

Digitized by the Internet Archive in 2008 with funding from Microsoft Corporation

Smithsonian Miscellaneous Collections 1038

SMITHSONIAN

PHYSICAL TABLES

PREPARED BY

THOMAS GRAY

THIRD REVISED EDITION

The Knickerbocker Press, Rew Dork

ADVERTISEMENT TO REVISED EDITION.

THE edition of the Smithsonian Physical Tables issued in 1896 having become exhausted, a careful reëxamination of the original work has been made at my request by the author, Professor Gray, and the few changes found necessary have been made in the plates.

S. P. LANGLEY,

Secretary.

SMITHSONIAN INSTITUTION,
WASHINGTON CITY, October 30, 1897.

ADVERTISEMENT TO SECOND REVISED EDITION.

THE revised edition of the Smithsonian Physical Tables issued in 1897 having become exhausted, and the demand continuing, a second revised edition is now issued. The author, Professor Gray, has again examined the work and made a few corrections in the plates, table 283 in particular being rewritten to agree with the recent report of the International Committee on Atomic Weights.

S. P. LANGLEY.

Secretary

SMITHSONIAN INSTITUTION,
WASHINGTON CITY, January, 1903.

ADVERTISEMENT TO THIRD REVISED EDITION.

The second revised edition of the Smithsonian Physical Tables issued in January, 1903, having become exhausted, and the demand for the work continuing, a third revised edition is now published, in which the author has made a few corrections to agree with the latest researches.

S. P. LANGLEY,

Secretary.

SMITHSONIAN INSTITUTION, WASHINGTON CITY April, 1904.

ADVERTISEMENT.

In connection with the system of meteorological observations established by the Smithsonian Institution about 1850, a series of meteorological tables was compiled by Dr. Arnold Guyot, at the request of Secretary Henry, and was published in 1852. A second edition was issued in 1857, and a third edition, with further amendments, in 1859. Though primarily designed for meteorological observers reporting to the Smithsonian Institution, the tables were so widely used by physicists that, after twenty-five years of valuable service, the work was again revised and a fourth edition was published in 1884. In a few years the demand for the tables exhausted the edition, and it appeared to me desirable to recast the work entirely, rather than to undertake its revision again. After careful consideration I decided to publish a new work in three parts - Meteorological Tables, Geographical Tables, and Physical Tables - each representative of the latest knowledge in its field, and independent of the others, but the three forming a homogeneous series. Although thus historically related to Dr. Guyot's Tables, the present work is so entirely changed with respect to material, arrangement, and presentation that it is not a fifth edition of the older tables, but essentially a new publication.

The first volume of the new series of Smithsonian Tables (the Meteorological Tables) appeared in 1893, and so great has been the demand for it that a second edition has already become necessary. The second volume of the series (the Geographical Tables), prepared by Prof. R. S. Woodward, was published in 1894. The present volume (the Physical Tables), forming the third of the series, has been prepared by Prof. Thomas Gray, of the Rose Polytechnic Institute, Terre Haute, Indiana, who has given to the work the results of a wide experience.

S. P. LANGLEY, Secretary.

PREFACE.

In the space assigned to this book it was impossible to include, even approximately, all the physical data available. The object has been to make the tables easy of reference and to contain the data most frequently required. In the subjects included it has been necessary in many cases to make brief selections from a large number of more or less discordant results obtained by different experimenters. I have endeavored, as far as possible, to compile the tables from papers which are vouched for by well-known authorities, or which, from the method of experiment and the apparent care taken in the investigation, seem likely to give reliable results.

Such matter as is commonly found in books of mathematical tables has not been included, as it seemed better to utilize the space for physical data. Some tables of a mathematical character which are useful to the physicist, and which are less easily found, have been given. Many of these have been calculated for this book, and where they have not been so calculated their source is given.

The authorities from which the physical data have been derived are quoted on the same page with the table, and this is the case also with regard to explanations of the meaning or use of the tabular numbers. In many cases the actual numbers given in the tables are not to be found in the memoirs quoted. In such cases the tabular numbers have been obtained by interpolation or calculation from the published results. The reason for this is the desirability of uniform change of argument in the tables, in order to save space and to facilitate comparison of results. Where it seemed desirable the tables contain values both in metric and in British units, but as a rule the centimetre, gramme, and second have been used as fundamental units. In the comparison of British and metric units, and quantities expressed in them, the metre has been taken as equal to 39.37 inches, which is the legal ratio in the United States. It is hardly possible that a series

iv PREFACE.

of tables, such as those here given, involving so much transcribing, interpolation, and calculation, can be free from errors, but it is hoped that these are not so numerous as to seriously detract from the use of the book.

I wish to acknowledge much active assistance and many valuable suggestions during the preparation of the book from Professors S. P. Langley, Carl Barus, F. W. Clarke, C. L. Mees, W. A. Noyes, and Mr. R. E. Huthsteiner. I am also under obligations to Professors Landolt and Börnstein, who kindly placed an early copy of their "Physikalisch-Chemische Tabellen" at my disposal.

THOMAS GRAY.

Rose Polytechnic Institute, Terre Haute, Ind., July 13, 1896.

The state of the s

. 273

TABLE OF CONTENTS.

																			PAGE
I	ntrodu	ction	on uni	its of m	easu	rement	and c	conv	vers	sion	n fa	cto	ors						xv
						discuss													xv
D	imens	ion fo	rmulæ	for dy	nami	c units					•								xvii
	66		66	" he	at un	its .			٠				,						xiii
	44	of	f elect			netic ur													xxv
	66					atic sys													xxvi
	66		66			nagnetic													xix
P	ractica	al unit	s of el			galizatio												X	xiii
					97 .	,													
TABL						٠													
I.				version															
	(a)	Func	damen	tal unit	s .		* *	•				٠		٠					2
	(b)	Deri	ved un	nits .					٠										2
		I.	Geom	etric an	nd dy	namic u	inits												2
		II.	Heat	units															3
		III.	Magn	etic and	d elec	etric un	its .												3
2.	Equiv	valents	s of m	etric an	d Br	itish im	peria	1 w	eigi	hts	an	d ı	mea	asu	res	:			
	(i)	Metr	ic to i	mperial															. 5
	(2)	Mult	iples,	metric	to im	perial											٠		6
	(3)	Impe	erial to	metric														٠.	- 7
	(4)	Mult	iples,	imperia	l to 1	metric													8
3.						veights													
																•	۰		9
	(2)	Metr	ic to c	customa	iry .														10
4.	Facto	rs for	the co	onversi	on of	length	s .												11
5.	44	66	4.6,	66		_													11
6.	"	4.6	66	46	66	volume	es .												12
7.	66	44	66	461		capaci													.12
8.	44	"	66	6.6	66	masses													13
9.	46	44	"	66	44	momen													13
10.	66	64	66	66		angles													14
II.	66	44	46	66		times													14
12.	"	66	66	66		linear													15
13.	66	66	66	64	. 66	angula	r velo	ociti	ies										15
14.	66	66	46	66	46	momen	tums												16
15.	"	"	66	44		momen													16

16.	Factors	for	the	conversion		forces	17
17.	66	66	66	**	66	linear accelerations	17
18.	66	66	66	66	66	angular accelerations	18
19.	46	66	44	66		linear and angular accelerations	18
20.	66	66	66	"	"	stress or force per unit of area, gravitation	
						units	19
21.	44	44	46.	•6	66	power, rate of working, or activity, gravi-	
						tation units	19
22.	44	44	44	66	66	work or energy, gravitation units	20
23.	66	66	66	£6·	44	film or surface tension	20
24.	66	44	66	44	66	power, rate of working or activity, absolute	
						units	21
25.	"	66	46	45	44	work or energy, absolute units	21
26.	44	46	66	. 66	**	stress or force per unit of area, absolute	
	66	44	66	41	44	units	22
27.	"	"	66	66	44	film or surface tension, absolute units	22
28.	44	66	66	66	44	densities	23
29.	66	66	66	66		specific electrical resistance electrolytic deposition	23
30.	66	66	66	66	- 66	heat units	24
31.	66	46	66	46	66	thermometer scales	24
32.	66	66	66	44	66	electric displacement and other quantities	23
33-						of dimensions $M^{\frac{1}{2}}L^{-\frac{n}{2}}$	25
34.	66	66	66	44	44	surface density of magnetization and other	- 3
57.						quantities of dimensions M ^{1/2} L ^{-1/2}	26
35.	44	44	46	661	66	intensity of magnetization and other quan-	
						tities of dimensions $M^{\frac{1}{2}} L^{\frac{1}{2}} \dots$.	26
36.	66	44	44	. 66	66	electric potential and other quantities of	
						dimensions $M^{\frac{1}{2}} L^{\frac{3}{2}} \ldots \ldots$	27
37.	66	44	66	44	66	magnetic moment and other quantities of	
						dimensions M ¹ L ¹	27
38.	Values	of é	re	$\stackrel{-x}{-}$ (hyperbo	lic	sines) for values of x from o to 5	28
9							
39.	44	« e	$^{x}+e$	(hyperbo	lic	cosines) for " " " "	29
40.	Logarith	hms	of	2 "			30
				2			
41.	66		of	2		" " "	31
42.	Values	of e	^x an	$d e^{-x}$ and tl	nei	r logarithms	32
43.	66	" e	x2 al	nd e^{-x^2} "	66		33
44.	66		т _х	nd $e^{-\frac{\pi}{4}x}$ "	66	46	34
45.				and $e^{\sqrt{\pi}x}$	66	"	34
46.				u t	46	" fractional values of x	35
47.	Probabi	lity	of "	errors of obs		vation	35
48.	4.6		**				36

49.	Values of 0.6745 $\sqrt{\frac{1}{n-1}}$	36
50.	" " $0.6745\sqrt{\frac{1}{n(n-1)}}$	37
51.	" " $0.8453\sqrt{\frac{1}{n(n-1)}}$	37
52.	" " $0.8453 \frac{1}{n\sqrt{n-1}}$	37
53.	" the logarithm of the gamma function $\Gamma(n)$ for values of n	
	between r and 2	38
54	" the first seven zonal harmonics from $\theta = 0^{\circ}$ to $\theta = 90^{\circ}$	40
55.	" " $\log M/4\pi\sqrt{aa^3}$ for facilitating the calculation of the mutual	4.0
	inductance between two coaxial circles	42
.56.	" " $\int_0^{\pi_2} (1-\sin^2\theta\sin^2\phi)^{\frac{1}{2}}d\phi$ for different values of θ with the loga-	
	rithms of these integrals	43
57.		
0	diameters, British units	44
58.	Cross section and weight of copper, iron, and brass wire of different diameters, metric units	46
59.	Cross section and weight in various units of aluminium wires of differ-	40
23.	ent diameters	48
60.	Cross section and weight in various units of platinum wires of different	
	diameters	50
61.	Cross section and weight in various units of gold wires of different	
c -	diameters	52
02.	Cross section and weight in various units of silver wires of different diameters	- 4
63.	Weight, in grammes per square metre, of sheet metal	54
64.	" " various British units, of sheet metal	57
65.	Size, weight, and electrical constants of copper wire according to Brown	31
	and Sharp's gauge and British measure	58
66.	Same data as 65, but in metric measure	60
67.	" " " but British standard wire gauge	62
68.	" " 67, but in metric measure	64
б9.	os, but Diffillingham whe gauge	66
70. 71.	" " 69, but in metric measure	68
,	(a) Metals and alloys	70
	(b) Stones and bricks	70
	(c) Timber	70
72.	Composition and physical properties of steel	71
73.	Effect of the reduction of section produced by rolling on the strength of	
-	bar iron	72
74.	Effect of diameter on the strength of bar iron	72

*** ***	Characteristic of a surface of the s	
75.		73
76.	" copper-zinc alloys (brasses)	73
77.	" copper-zinc-tin alloys	73
78.	Moduli of rigidity	74
79.	Young's modulus of elasticity	75
80.	Effect of temperature on rigidity	76
81.	Values of Poisson's ratio	76
82.	Elastic moduli of crystals, formulæ	77
83.	" " " numerical results	78
84.	Compressibility of nitrogen at different pressures and temperatures .	79
85.	" hydrogen " " " "	
86.	" methane " " " "	79
87.	" ethylene " " " "	79
88.		79
		80
89.	values of	
	the ratio pv/p_1v_1	80
90.	an, oxygen, and carbon monoxide at different pres-	
*	sures and ordinary temperature	80
91.	" sulphur dioxide at different pressures and tempera-	
	tures	81
92.	" ammonia at different pressures and temperatures .	81
93.	" and bulk moduli of liquids	82
94.	" " " " solids	83
95.	Density of various solids	84
96.	lare " " alloys	85
97.	" " metals	86
98.	" " woods	87
99.	" " " liquids	88
100.	" " gases	89
101.	" " aqueous solutions of salts	90
101.		-
	water between 0 and 32 C	93
103.	Volume of water at different temperatures in terms of its volume at	è
	temperature of maximum density	93
104.	Density and volume of water in terms of the density and volume at	
	4° C	94
105.	mercury at different temperatures	95
	Specific gravity of aqueous ethyl alcohol	96
107.	Density of aqueous methyl alcohol	97
108.	Variation of density of alcohol with temperature	98
109.		99
110.	" " " solids	100
III.	" " " liquids and gases	101
112.	Force of gravity at sea level and different latitudes	102
113.		103
114.	Value of gravity at stations occupied by U. S. C. & G. Survey in 1894.	
115.		104
		105

TABLE OF CONTENTS.

117.	Miscellane	ous data as	to the earth and planets	106
118.	Aerodynan		for wind pressure and values of F in $P_a = F_a P_{90}$	
119.	. 66		for the soaring of planes	
120.			total intensity	
121.	66	66	secular variation of total intensity	
122.	44	66	dip	
123.	46	66	secular variation of dip	111
124.	44	44	horizontal intensity	
125.	66	66	secular variation of horizontal intensity	112
126.	. 66	44	formulæ for value and secular variation of dec-	
			lination	113
127.	46	46	secular variation of declination (eastern stations)	
128.	46	66	" (central stations)	
129.	44	66	" " (western stations)	116
130.	46	66	position of agonic line in 1800, 1850, 1875,	
			and 1890	117
131.	44	66	date of maximum east declination at various	1 3
			stations	118
132.	Tables for	computing	pressure of mercury and of water, British and	1 1
	metric m	easures .	while a day to compare some and it is to	119
133.	Reduction	of barometr	ic height to standard temperature	120
134.	Correction	of baromet	er to standard gravity, British and metric mea-	
	sures .			121
135.			r to latitude 45°, British scale	
136.	66	66 66	" " metric scale	123
137.	Correction		er for capillarity, metric and British measures .	
138.	Absorption	of gases by	liquids	125
139.				126
140.				128
141.	46	66 66	" miscellaneous liquids in air	128
142.	66		" aqueous solutions of salts	
143.	66.	46 . 66	" liquids in contact with air, water, or	
1			mercury of the work of the work of the mercury of the work of the	
144.	66	66 66	" liquids at solidifying point	129
145.	44	44 44	" thickness of soap films	
146.	Colors of t	hin plates, N	Newton's Rings . 3	130
147.			by solution of salts	
148.	66		" dilution of solutions	
149.	Coefficients			
150.				136
151.	Coefficients	s of viscosity	y for solutions of alcohol in water	137
152.	Specific vis	scosity of mi	neral oils	
153.	"		rious "	137
154.	"	" va		138
155.	"	<i>"</i> , "	" temperature variation	139
156.	" ,	" sol	utions, variation with density and temperature	
157.	"	"	" atomic concentrations	

158.		. 145
159.	" " formulæ for temperature variation	. 146
160.	Diffusion of liquids and solutions of salts into water	
161 .	" "vapors	
162.	" gases and vapors	. 449
163.	Isotonic coefficients and lowering of the freezing-point	. 150
164.	Osmotic pressure	. 150
165.	Pressure of aqueous vapor (Regnault)	
166.	" " (Regnault and Broch)	. 154
167.	Weight in grains of aqueous vapor in a cubic foot of saturated air .	. 155
168.	" grammes of " " " metre of " ".	. 155
169.	Pressure of aqueous vapor at low temperatures	. 156
170.	Hygrometry, vapor pressure in the atmosphere	. 157
171.	" dew-points	
172.		. 160
17.3.	Relative humidity	. 160
174.		
175.	Logarithms of $h/760$ for values of h between 80 and 800	. 162
176.	Values of 1+.00367t:	
	(a) For values of t between 0° and 10° C. by tenths	. 164
	(b) " " t " -90° and $+1990^{\circ}$ C. by tens	. 165
	(c) Logarithms for t " -49° and $+399^{\circ}$ C. by units	. 166
	(d) " " t " t " 400° and 1990° C. by tens	
	Determination of beights by barameter	-
177.	0 ,	
177.	Barometric pressures corresponding to different temperatures of the	
	Barometric pressures corresponding to different temperatures of the boiling-point of water:	
	Barometric pressures corresponding to different temperatures of the boiling-point of water: (a) British measure	
178.	Barometric pressures corresponding to different temperatures of the boiling-point of water: (a) British measure	ne
178.	Barometric pressures corresponding to different temperatures of the boiling-point of water: (a) British measure	. 170 . 171 . 172
178. 179. 180.	Barometric pressures corresponding to different temperatures of the boiling-point of water: (a) British measure	. 170 . 171 . 172 . 175
178. 179. 180. 181.	Barometric pressures corresponding to different temperatures of the boiling-point of water: (a) British measure (b) Metric measure Rowland's standard wave-lengths in arc and sun spectra Wave-lengths of the Fraunhofer lines Various determinations of the velocity of light	. 170 . 171 . 172 . 175
178. 179. 180. 181.	Barometric pressures corresponding to different temperatures of the boiling-point of water: (a) British measure (b) Metric measure Rowland's standard wave-lengths in arc and sun spectra Wave-lengths of the Fraunhofer lines Various determinations of the velocity of light Photometric standards	. 170 . 171 . 172 . 175 . 176
178. 179. 180. 181. 182.	Barometric pressures corresponding to different temperatures of the boiling-point of water: (a) British measure (b) Metric measure Rowland's standard wave-lengths in arc and sun spectra Wave-lengths of the Fraunhofer lines Various determinations of the velocity of light Photometric standards Solar energy and its absorption by the terrestrial atmosphere.	. 170 . 171 . 172 . 175 . 176
178. 179. 180. 181. 182. 183.	Barometric pressures corresponding to different temperatures of the boiling-point of water: (a) British measure (b) Metric measure Rowland's standard wave-lengths in arc and sun spectra Wave-lengths of the Fraunhofer lines Various determinations of the velocity of light Photometric standards Solar energy and its absorption by the terrestrial atmosphere. The solar constant	. 170 . 171 . 172 . 175 . 176
178. 179. 180. 181. 182.	Barometric pressures corresponding to different temperatures of the boiling-point of water: (a) British measure (b) Metric measure Rowland's standard wave-lengths in arc and sun spectra Wave-lengths of the Fraunhofer lines Various determinations of the velocity of light Photometric standards Solar energy and its absorption by the terrestrial atmosphere The solar constant Index of refraction of glass:	. 170 . 171 . 172 . 175 . 176 . 177
178. 179. 180. 181. 182. 183.	Barometric pressures corresponding to different temperatures of the boiling-point of water: (a) British measure (b) Metric measure Rowland's standard wave-lengths in arc and sun spectra Wave-lengths of the Fraunhofer lines Various determinations of the velocity of light Photometric standards Solar energy and its absorption by the terrestrial atmosphere The solar constant Index of refraction of glass: (a) Fraunhofer's determinations	. 170 . 171 . 172 . 175 . 176 . 177 . 177
178. 179. 180. 181. 182. 183.	Barometric pressures corresponding to different temperatures of the boiling-point of water: (a) British measure (b) Metric measure Rowland's standard wave-lengths in arc and sun spectra Wave-lengths of the Fraunhofer lines Various determinations of the velocity of light Photometric standards Solar energy and its absorption by the terrestrial atmosphere The solar constant Index of refraction of glass: (a) Fraunhofer's determinations (b) Baille's " Output Definition The solar constant The solar co	. 170 . 171 . 172 . 175 . 176 . 177 . 177
178. 179. 180. 181. 182. 183.	Barometric pressures corresponding to different temperatures of the boiling-point of water: (a) British measure (b) Metric measure Rowland's standard wave-lengths in arc and sun spectra Wave-lengths of the Fraunhofer lines Various determinations of the velocity of light Photometric standards Solar energy and its absorption by the terrestrial atmosphere The solar constant Index of refraction of glass: (a) Fraunhofer's determinations (b) Baille's (c) Hopkinson's " (d) Hopkinson's (e) Hopkinson's	. 170 . 171 . 172 . 175 . 176 . 177 . 177
178. 179. 180. 181. 182. 183.	Barometric pressures corresponding to different temperatures of the boiling-point of water: (a) British measure (b) Metric measure Rowland's standard wave-lengths in arc and sun spectra Wave-lengths of the Fraunhofer lines Various determinations of the velocity of light Photometric standards Solar energy and its absorption by the terrestrial atmosphere The solar constant Index of refraction of glass: (a) Fraunhofer's determinations (b) Baille's (c) Hopkinson's (d) Mascart's (a) Mascart's	. 170 . 171 . 172 . 175 . 176 . 176 . 177 . 177
178. 179. 180. 181. 182. 183.	Barometric pressures corresponding to different temperatures of the boiling-point of water: (a) British measure (b) Metric measure Rowland's standard wave-lengths in arc and sun spectra Wave-lengths of the Fraunhofer lines Various determinations of the velocity of light Photometric standards Solar energy and its absorption by the terrestrial atmosphere The solar constant Index of refraction of glass: (a) Fraunhofer's determinations (b) Baille's (c) Hopkinson's (d) Mascart's (e) Langley's (c) Langley's	. 170 . 171 . 172 . 175 . 176 . 176 . 177 . 178 . 178 . 178 . 179
178. 179. 180. 181. 182. 183.	Barometric pressures corresponding to different temperatures of the boiling-point of water: (a) British measure (b) Metric measure Rowland's standard wave-lengths in arc and sun spectra Wave-lengths of the Fraunhofer lines Various determinations of the velocity of light Photometric standards Solar energy and its absorption by the terrestrial atmosphere The solar constant Index of refraction of glass: (a) Fraunhofer's determinations (b) Baille's (c) Hopkinson's (d) Mascart's (e) Langley's (f) Vogel on effect of temperature	. 170 . 171 . 172 . 175 . 176 . 176 . 177 . 178 . 178 . 178 . 179 . 179
178. 179. 180. 181. 182. 183. 184.	Barometric pressures corresponding to different temperatures of the boiling-point of water: (a) British measure (b) Metric measure Rowland's standard wave-lengths in arc and sun spectra Wave-lengths of the Fraunhofer lines Various determinations of the velocity of light Photometric standards Solar energy and its absorption by the terrestrial atmosphere The solar constant Index of refraction of glass: (a) Fraunhofer's determinations (b) Baille's (c) Hopkinson's (d) Mascart's (e) Langley's (f) Vogel on effect of temperature (g) Müller " " "	. 170 . 171 . 172 . 175 . 176 . 176 . 177 . 178 . 178 . 178 . 179 . 179
178. 179. 180. 181. 182. 183. 184. 185.	Barometric pressures corresponding to different temperatures of the boiling-point of water: (a) British measure (b) Metric measure Rowland's standard wave-lengths in arc and sun spectra Wave-lengths of the Fraunhofer lines Various determinations of the velocity of light Photometric standards Solar energy and its absorption by the terrestrial atmosphere The solar constant Index of refraction of glass: (a) Fraunhofer's determinations (b) Baille's (c) Hopkinson's (d) Mascart's (e) Langley's (f) Vogel on effect of temperature (g) Müller " " Indices of refraction for various alums	. 170 . 171 . 172 . 175 . 176 . 176 . 177 . 178 . 178 . 178 . 179 . 179
178. 179. 180. 181. 182. 183. 184.	Barometric pressures corresponding to different temperatures of the boiling-point of water: (a) British measure (b) Metric measure Rowland's standard wave-lengths in arc and sun spectra Wave-lengths of the Fraunhofer lines Various determinations of the velocity of light Photometric standards Solar energy and its absorption by the terrestrial atmosphere The solar constant Index of refraction of glass: (a) Fraunhofer's determinations (b) Baille's (c) Hopkinson's (d) Mascart's (e) Langley's (f) Vogel on effect of temperature (g) Müller " " Indices of refraction for various alums " " metals and metallic oxides:	. 170 . 171 . 172 . 175 . 176 . 177 . 177 . 178 . 178 . 179 . 179 . 179 . 179
178. 179. 180. 181. 182. 183. 184. 185.	Barometric pressures corresponding to different temperatures of the boiling-point of water: (a) British measure (b) Metric measure Rowland's standard wave-lengths in arc and sun spectra Wave-lengths of the Fraunhofer lines Various determinations of the velocity of light Photometric standards Solar energy and its absorption by the terrestrial atmosphere The solar constant Index of refraction of glass: (a) Fraunhofer's determinations (b) Baille's (c) Hopkinson's (d) Mascart's (e) Langley's (f) Vogel on effect of temperature (g) Müller " " " Indices of refraction for various alums (a) Kundt's experiments	170 171 172 175 176 176 177 178 178 178 179 179 180
178. 179. 180. 181. 182. 183. 184. 185.	Barometric pressures corresponding to different temperatures of the boiling-point of water: (a) British measure (b) Metric measure Rowland's standard wave-lengths in arc and sun spectra Wave-lengths of the Fraunhofer lines Various determinations of the velocity of light Photometric standards Solar energy and its absorption by the terrestrial atmosphere The solar constant Index of refraction of glass: (a) Fraunhofer's determinations (b) Baille's (c) Hopkinson's (d) Mascart's (e) Langley's (f) Vogel on effect of temperature (g) Müller " " Indices of refraction for various alums " " metals and metallic oxides:	. 170 . 171 . 172 . 175 . 176 . 177 . 177 . 178 . 178 . 179 . 179 . 179 . 179

188.	Index of refraction of rock salt, various authorities	. 182
189.	" " " sylvine	. 182
190.		. 183
191.	" " various monorefringents	. 184
192.	" " " Iceland spar	. 185
193.		. 186
194.		. 187
195.		. 187
196.	" " solutions of salts and acids:	
-9.0.		. 188
		. 188
	(c) " potassium permanganate	. 188
197.	Index of refraction of various liquids	. 189
198.	" " gases and vapors	. 190
	Rotation of plane of polarized light by solutions	. 191
199.	" " " sodium chlorate and by quartz	
200.		
201.	Lowering of freezing-points by salts in solution	. 192
202.	Vapor-pressures of solutions of salts in water	. 194
203.	Raising of boiling-points by salts in solution	. 196
204.	Thermal conductivity of metals and alloys	. 197
205.	various substances	. 198
206.	water and solutions of saits	. 198
207.	organic inquies	. 198
208.	gases	. 198
209.	Freezing mixtures	. 199
210.	Critical temperatures, pressures, volumes, and densities of gases	. 200
211.	Heat of combustion	. 201
212.	" " combination	. 202
213.	Latent heat of vaporization	. 204
214.	" " " fusion	. 206
215.	Melting-points of chemical elements	. 207
216.	Boiling-points of " "	. 207
217.	Melting-points of various inorganic compounds	. 208
218.	Boiling-points of " "	. 210
219.	Melting-points of mixtures	. 211
220.	Densities, melting-points, and boiling-points of some organic com-	-
	pounds:	
	(a) Paraffin series	. 212
	(b) Olefine series	. 2:1/2
	(c) Acetylene series	. 212
	(a) Monatomic alcohols	. 213
	(e) Alcoholic ethers	. 213
	(f) Ethyl ethers	. 213
221.	Coefficients of linear expansion of chemical elements	. 214
222.	" " " miscellaneous substances	. 215
223.	" cubical expansion of crystalline and other solids	. 216
224.		. 217

225.		
226.	Dynamical equivalent of the thermal unit	219
227.	" " " " historical table	220
228.	Specific heat of water, descriptive introduction	222
228.		.222
229.		.223
230.	Specific heats of gases and vapors	.224
231.	Vapor pressure of ethyl alcohol	-225
232.	// // // // .1 1 //	-225
233.	Vapor pressures and temperatures of various liquids:	
	() 6 1 11 1 1 1 1	226
	(b) Chlorobenzene	
	(c) Bromobenzene	226
٧	(d) Aniline	
	(e) Methyl salicylate	.227
	(f) Bromonaphthaline	
	(g) Mercury	
234.	Thermometers, comparisons of mercury in glass and air thermometers	
235.	" comparison of various kinds with hydrogen thermometer	
236.	" " air thermometer	220
237.	" change of zero due to heating (Jena glass)	
238.	" " " " (various kinds of glass) .	
239.	" " " effect of composition of	
-39.	glass	
240.	" slow change of zero with time	
241.	" correction for mercury in stem	
	Emissivity of polished and blackened surfaces in air at ordinary pres-	
242.	sures	
243.	Emissivity of polished and blackened surfaces in air at different pres-	23.
243.	sures	22/
244	Constants of emissivity from various substances to vacuum	
	Effect of absolute temperature of surface on the emissivity, constants	233
243.	of bright and blackened platinum wire	225
246.		-33
240.	ferent pressures	976
247	Effect of pressure on radiation at different temperatures	
248.		
249.	" " " British measure	
	Ratio of the electrostatic to the electromagnetic unit of electricity, dif-	230
250.		2/12
251	Dielectric strength:	243
251.		244
		244
	(c) " balls comparison of the results of dif-	244
,	ferent observers	2.4.4
252	Dielectric strength of gases, effect of pressure on	
252. 253.	" " various substances	
477	various substatices	W 63. 4

254.	Data as to electric battery cells:
	(a) Double fluid batteries
	(b) Single fluid batteries
	(c) Standard cells
	(d) Secondary cells
255.	Thermoelectric power of various metals and alloys
256.	" " " alloys
257.	Thermoelectric neutral point of various metals relative to lead 249
258.	Specific heat of electricity for metals
259.	Thermoelectric power of metals and solutions
260.	Peltier effect, Jahn's experiments
261.	" " Le Roux's "
262.	Conductivity of three-metal and miscellaneous alloys
263.	" alloys
264.	Specific resistance of metallic wires, various dimension units
-	" " metals, various authorities
265. 266.	
	" " and alloys at low temperatures
267.	
- 60	wires
268.	Resistance of wires of different diameter to alternating currents
269.	Conductivity of dilute solutions proportional to amount of dissolved salt 259
270.	Electrochemical equivalent numbers and densities of approximately nor-
	mal solutions
271.	Specific molecular conductivities of solutions
2 72.	Limiting values of specific molecular conductivities
273.	Temperature coefficients of dilute solutions
274.	Various determinations of the ohm, the electrochemical equivalent of
	silver and the electromotive force of the Clark cell
275.	Specific inductive capacity of gases
276.	" " solids
277.	" " " liquids
278.	Contact difference of potential, solids with liquids and liquids with
	liquids in air
279.	
280.	Potential difference between metals in various solutions
281.	O The state of the
282.	Relation between thermal and electrical conductivities:
	(a) Arbitrary units
	(b) Values in c. g. s. units
	(c) Berget's experiments
	(d) Kohlrausch's results
080	
203.	Electrochemical equivalents and atomic weights of the chemical ele-
203.	Electrochemical equivalents and atomic weights of the chemical elements
284.	ments
284.	ments

	(c) Spec	cimen of	Westin	ghouse	No. 4 trans	sformer .			275
	(d)	"	Thoms	on-Ho	uston 1500-	watt transformer			275
286.	Compositio	on and ma	gnetic	prope	rties of iron	and steel			276
287.	Permeabili	ity of som	e speci	mens	in Table 28	6			278
288.	Magnetic 1	properties	of sof	t iron	at o° and 10	oo° C			278
289.	66	"	" ste	el at o	and 100°	C			278
290.	44	46	" cob	alt at	100° C				2.79
291.	46	4.6.	" nic	kel at	100° €			, .	279
292.	46	"	" ma	gnetite					279
293.	66	44	" Lo	wmoor	wrought ire	on in intense fiel	ds .		279
294.	44	44	" Vio	ker's	tool steel in	intense fields.			279
295.	66	44	" Ha	dfield'	s manganes	e steel in intense	e fields		279
296.	Saturation	values fo	r diffe	rent st	eels				27.9
297.	Magnetic 1	properties	of ver	y weal	k fields .				280
298.	Dissipation	n of energ	y in the	e cyclie	c magnetizat	tion of magnetic	substa	nces	280
299.	4.6		66. 66	66	66	" cable tran	nsforme	ers .	280
300.	46	66 66	66 66	66	66	" various su	ubstanc	ces .	281
301.	44	46 4.6	66 66	66	66	" transform	er core	s .	282
302.	44	66 46	46 46	ce	66	" various sp	ecimer	ns of	
						soft iro	n .		283
	Magneto-o	ptic rotat							283 284
303.	Magneto-o	ptic rotat	in	solids					0
303. 304.	0	-	in "	solids liquid	s				284
	"	- 44	in "	solids liquid	s ons of acids	and salts in wat			284 285
304.	"		in "	solids liquid	s ons of acids		er .		284 285 286
304. 305.	"	££	in "	solids liquid solution	s ons of acids " salts	and salts in wat			284 285 286 288
304. 305. 306.	44	44 44 44 44	in 	solids liquid solutio	s	and salts in wat	er .		284 285 286 288 290
304. 305. 306. 307.	44 44 44 44	66 66 66	in " " " es of V	solids liquid solutio " gases erdet's	s	and salts in wat in alcohol iloric acid is constants	er .		284 285 286 288 290 290
304. 305. 306. 307. 308.	" " " " " " " Miscellane	" " " " " " " " " " " " " " " " " " "	in " " es of V " si	solids liquid solutio " gases erdet's	ons of acids " salts in hydrocl	and salts in wat in alcohol hloric acid 's constants quids and gases	er .		284 285 286 288 290 290 291 291 292
304. 305. 306. 307. 308. 309.	" " " " Miscellane " Kerr's con	" eous value " astants for	in " " es of V " su r iron,	solids liquid solutie " gases erdet's asceptinickel,	ons of acids " salts in hydrocl and Kundi	and salts in wat in alcohol illoric acid t's constants quids and gases I magnetite			284 285 286 288 290 290 291 291 292 292
304. 305. 306. 307. 308. 309.	" " Miscellane " Kerr's con	" eous value instants for	in " " " es of V " si r iron, field o	solids liquid solution gases erdet's inckel, in the	ons of acids " salts in hydrocl s and Kunde bility for lic cobalt, and electric res	and salts in wat in alcohol	eer .	nitial	284 285 286 288 290 291 291 291 292
304. 305. 306. 307. 308. 309. 310.	" " Miscellane " Kerr's con Effect of resistan	eous value instants for magnetic acc of one	in "" " " es of V " su r iron, field o	solids liquid solution gases erdet's asception in the or zero	ons of acids " salts in hydrocl and Kundu bility for lic cobalt, and electric res	and salts in water in alcohol	er	itial	284 285 286 288 290 291 291 291 292
304. 305. 306. 307. 308. 309. 310.	Miscellane Kerr's con Effect of resistan Effect of	eous value astants for magnetic ace of one magnetic	in " " " " " so of V " so r r r iron, field of	solids liquid solution "" gases erdet's asceptionickel, in the or zero on the	ons of acids " salts in hydrocl s and Kunde bility for lic cobalt, and electric res o field and v	and salts in war in alcohol inloric acid 's constants quids and gases I magnetite sistance of bism various temperat	eer	itial	284 285 286 288 290 290 291 291 292 292
304. 305. 306. 307. 308. 309. 310. 311. 312.	Miscellane Kerr's con Effect of resistan Effect of	eous value astants for magnetic ce of one magnetic ce one o	in " " es of V " so r iron, field o ohm f field o	solids liquid solution of the gases erdet's asceptimickel, in the or zero on the zero f	ons of acids " salts in hydrocl and Kundr bility for lic cobalt, and electric res ofield and v electric res field and ten	and salts in water in alcohol	eer	itial	284 285 286 288 290 290 291 291 292 292
304. 305. 306. 307. 308. 309. 310. 311. 312.	Miscellane Kerr's con Effect of resistan Effect of resistan Specific he	eous value stants for magnetic nee of one magnetic nee one of eat of var	in " " es of V " si r iron, field cohm for field cohm for ious so	solids liquid solution was gases erdet's asception ickel, on the zero filids ar	ons of acids " salts in hydrocl and Kunda bility for lic cobalt, and electric res ofield and v electric res field and ten and liquids	and salts in war in alcohol inloric acid 's constants quids and gases I magnetite sistance of bism various temperat	uth (in ures) uth (in Centigra	iitial	284 285 286 288 290 290 291 291 292 292

INTRODUCTION.

UNITS OF MEASUREMENT AND CONVERSION FORMULÆ.

Units. — The quantitative measure of anything is a number which expresses the ratio of the magnitude of the thing to the magnitude of some other thing of the same kind. In order that the number expressing the measure may be intelligible, the magnitude of the thing used for comparison must be known. This leads to the conventional choice of certain magnitudes as units of measurement, and any other magnitude is then simply expressed by a number which tells how many magnitudes equal to the unit of the same kind of magnitude it contains. example, the distance between two places may be stated as a certain number of miles or of vards or of feet. In the first case, the mile is assumed as a known distance; in the second, the yard, and in the third, the foot. What is sought for in the statement is to convey an idea of the distance by describing it in terms of distances which are either familiar or easily referred to for comparison. Similarly quantities of matter are referred to as so many tons or pounds or grains and so forth, and intervals of time as a number of hours or minutes or seconds. Generally in ordinary affairs such statements appeal to experience; but, whether this be so or not, the statement must involve some magnitude as a fundamental quantity, and this must be of such a character that, if it is not known, it can be readily referred to. We become familiar with the length of a mile by walking over distances expressed in miles, with the length of a yard or a foot by examining a yard or a foot measure and comparing it with something easily referred to, - say our own height, the length of our foot or step, — and similarly for quantities of other kinds. This leads us to be able to form a mental picture of such magnitudes when the numbers expressing them are stated, and hence to follow intelligently descriptions of the results of scientific work. The possession of copies of the units enables us by proper comparisons to find the magnitude-numbers expressing physical quantities for ourselves. The numbers descriptive of any quantity must depend on the intrinsic magnitude of the unit in terms of which it is described. Thus a mile is 1760 yards, or 5280 feet, and hence when a mile is taken as the unit the magnitude-number for the distance is 1, when a yard is taken as the unit the magnitude-number is 1760, and when a foot is taken it is 5280. Thus, to obtain the magnitude-number for a quantity in terms of a new unit when it is already known in terms of another we have to multiply the old magnitudenumber by the ratio of the intrinsic values of the old and new units; that is, by the number of the new units required to make one of the old.

Fundamental Units of Length and Mass. - It is desirable that as few different kinds of unit quantities as possible should be introduced into our measurements, and since it has been found possible and convenient to express a large number of physical quantities in terms of length or mass or time units and combinations of these they have been very generally adopted as fundamental units. Two systems of such units are used in this country for scientific measurements, namely, the British and the French, or metric, systems. Tables of conversion factors are given in the book for facilitating comparisons between quantities expressed in terms of one system with similar quantities expressed in the other. In the British system the standard unit of length is the yard, and it is defined as follows: "The straight line or distance between the transverse lines in the two gold plugs in the bronze bar deposited in the Office of the Exchequer shall be the genuine Standard of Length at 62° F., and if lost it shall be replaced by means of its copies." [The authorized copies here referred to are preserved at the Royal Mint, the Royal Society of London, the Royal Observatory at Greenwich, and the New Palace at Westminster.]

The British standard unit of mass is the pound avoirdupois, and is the mass of a piece of platinum marked "P. S. 1844, 1 lb.," which is preserved in the Exchequer Office. Authorized copies of this standard are kept at the same places as those of the standard of length.

In the metric system the standard of length is defined as the distance between the ends of a certain platinum bar (the mètre des Archives) when the whole bar is at the temperature o° Centigrade. The bar was made by Borda, and is preserved in the national archives of France. A line-standard metre has been constructed by the International Bureau of Weights and Measures, and is known as the International Prototype Metre. This standard is of the same length as the Borda standard. A number of standard-metre bars which have been carefully compared with the International Prototype have lately been made by the International Bureau of Weights and Measures and furnished to the various governments who have contributed to the support of that bureau. These copies are called National Prototypes.

Borda, Delambre, Laplace, and others, acting as a committee of the French Academy, recommended that the standard unit of length should be the ten millionth part of the length, from the equator to the pole, of the meridian passing through Paris. In 1795 the French Republic passed a decree making this the legal standard of length, and an arc of the meridian extending from Dunkirk to Barcelona was measured by Delambre and Mechain for the purpose of realizing the standard. From the results of that measurement the metre bar was made by Borda. The metre is not now defined as stated above, but as the length of Borda's rod, and hence subsequent measurements of the length of the meridian have not affected the length of the metre.

The French, or metric, standard of mass, the kilogramme, is the mass of a piece of platinum also made by Borda in accordance with the same decree of the Republic. It was connected with the standard of length by being made as nearly as possible of the same mass as that of a cubic decimetre of distilled water at the temperature of 4° C., or nearly the temperature of maximum density.

As in the case of the metre, the International Bureau of Weights and Measures

has made copies of the kilogramme. One of these is taken as standard, and is called the International Prototype Kilogramme. The others were distributed in the same manner as the metre standards, and are called National Prototypes.

Comparisons of the French and British standards are given in tabular form in Table 2; and similarly Table 3, differing slightly from the British, gives the legal ratios in the United States. In the metric system the decimal subdivision is used, and thus we have the decimetre, the centimetre, and the millimetre as subdivisions, and the dekametre, hektometre, and kilometre as multiples. The centimetre is most commonly used in scientific work.

Time. — The unit of time in both the systems here referred to is the mean solar second, or the 86,400th part of the mean solar day. The unit of time is thus founded on the average time required for the earth to make one revolution on its axis relatively to the sun as a fixed point of reference.

Derived Units. — Units of quantities depending on powers greater than unity of the fundamental length, mass, and time units, or on combinations of different powers of these units, are called "derived units." Thus, the unit of area and of volume are respectively the area of a square whose side is the unit of length and the volume of a cube whose edge is the unit of length. Suppose that the area of a surface is expressed in terms of the foot as fundamental unit, and we wish to find the area-number when the yard is taken as fundamental unit. The yard is 3 times as long as the foot, and therefore the area of a square whose side is a vard is 3 × 3 times as great as that whose side is a foot. Thus, the surface will only make one ninth as many units of area when the yard is the unit of length as it will make when the foot is that unit. To transform, then, from the foot as old unit to the yard as new unit, we have to multiply the old area-number by 1/9, or by the ratio of the magnitude of the old to that of the new unit of area. This is the same rule as that given above, but it is usually more convenient to express the transformations in terms of the fundamental units directly. In the above case, since on the method of measurement here adopted an area-number is the product of a length-number by a length-number the ratio of two units is the square of the ratio of the intrinsic values of the two units of length. Hence, if l be the ratio of the magnitude of the old to that of the new unit of length, the ratio of the corresponding units of area is l^2 . Similarly the ratio of two units of volume will be 13, and so on for other quantities.

Dimensional Formulæ. — It is convenient to adopt symbols for the ratios of length units, mass units, and time units, and adhere to their use throughout; and in what follows, the small letters, l, m, t, will be used for these ratios. These letters will always represent simple numbers, but the magnitude of the number will depend on the relative magnitudes of the units the ratios of which they represent. When the values of the numbers represented by l, l, l are known, and the powers of l, l, and l involved in any particular unit are also known, the factor for transformation is at once obtained. Thus, in the above example, the value of l was l/3 and the power of l involved in the expression for area is l²; hence, the factor for transforming from square feet to square yards is l/9. These factors

have been called by Prof. James Thomson "change ratios," which seems an appropriate term. The term "conversion factor" is perhaps more generally known, and has been used throughout this book.

Conversion Factor. — In order to determine the symbolic expression for the conversion factor for any physical quantity, it is sufficient to determine the degree to which the quantities length, mass, and time are involved in the quantity. Thus, a velocity is expressed by the ratio of the number representing a length to that representing an interval of time, or L/T, an acceleration by a velocity-number divided by an interval of time-number, or L/T^2 , and so on, and the corresponding ratios of units must therefore enter to precisely the same degree. The factors would thus be for the above cases, ℓ/ℓ and ℓ/ℓ^2 . Equations of the form above given for velocity and acceleration which show the dimensions of the quantity in terms of the fundamental units are called "dimensional equations." Thus

$$E = ML^2T^{-2}$$

is the dimensional equation for energy, and $ML^{2r}\Gamma^{-2}$ is the dimensional formula for energy.

In general, if we have an equation for a physical quantity

$$Q = CL^aM^bT^c$$
,

where C is a constant and LMT represents length, mass, and time in terms of one set of units, and we wish to transform to another set of units in terms of which the length, mass, and time are $L_i M_i T_i$, we have to find the value of $L_i M_i T_i$, which

in accordance with the convention adopted above will be $l_l m_l t_l$, or the ratios of the magnitudes of the old to those of the new units.

Thus $L_1 = Ll$, $M_1 = Mm$, $T_1 = Tt$, and if Q_1 be the new quantity-number

$$Q_{i} = CL_{i}^{a}M_{i}^{b}\Gamma_{i}^{c}$$

$$= CL^{a}l^{a}M^{b}m^{b}\Gamma^{c}t^{c} = Ql^{a}m^{b}t^{c},$$

or the conversion factor is $l^a m^b t^c$, a quantity of precisely the same form as the dimension formula $L^a M^b T^c$.

We now proceed to form the dimensional and conversion factor formulæ for the more commonly occurring derived units.

r. Area. — The unit of area is the square the side of which is measured by the unit of length. The area of a surface is therefore expressed as

$$S = CL^2$$
,

where C is a constant depending on the shape of the boundary of the surface and L a linear dimension. For example, if the surface be square and L be the length of a side C is unity. If the boundary be a circle and L be a diameter $C = \pi/4$, and so on. The dimensional formula is thus L^2 , and the conversion factor ℓ^2 .

2. Volume. — The unit of volume is the volume of a cube the edge of which is measured by the unit of length. The volume of a body is therefore expressed as

$$V = CL^3$$
,

where as before C is a constant depending on the shape of the boundary. The dimensional formula is L^3 and the conversion factor ℓ^3 .

3. Density. — The density of a substance is the quantity of matter in the unit of volume. The dimension formula is therefore M/V or ML^{-3} , and conversion factor ml^{-3} .

Example. — The density of a body is 150 in pounds per cubic foot: required the density in grains per cubic inch.

Here m is the number of grains in a pound = 7000, and l is the number of inches in a foot = 12; $ml^{-3} = 7000/12^3 = 4.051$. Hence the density is $150 \times 4.051 = 607.6$ in grains per cubic inch.

NOTE. — The specific gravity of a body is the ratio of its density to the density of a standard substance. The dimension formula and conversion factor are therefore both unity.

4. Velocity. — The velocity of a body at any instant is given by the equation $v = \frac{d'L}{d'l'}$, or velocity is the ratio of a length-number to a time-number. The dimension formula is LT⁻¹, and the conversion factor lt^{-1} .

Example. — A train has a velocity of 60 miles an hour: what is its velocity in feet per second?

Here l = 5280 and t = 3600; $lt^{-1} = \frac{5280}{3600} = \frac{44}{30} = 1.467$. Hence the velocity $= 60 \times 1.467 = 88.0$ in feet per second.

- 5. Angle. An angle is measured by the ratio of the length of an arc to the length of the radius of the arc. The dimension formula and the conversion factor are therefore both unity.
- 6. Angular Velocity. Angular velocity is the ratio of the magnitude of the angle described in an interval of time to the length of the interval. The dimension formula is therefore T^{-1} , and the conversion factor is t^{-1} .
- 7. Linear Acceleration. Acceleration is the rate of change of velocity or $a = \frac{dv}{dt}$. The dimension formula is therefore VT⁻¹ or LT⁻², and the conversion factor is tt^{-2} .

Example:— A body acquires velocity at a uniform rate, and at the end of one minute is moving at the rate of 20 kilometres per hour: what is the acceleration in centimetres per second per second?

Since the velocity gained was 20 kilometres per hour in one minute, the acceleration was 1200 kilometres per hour per hour.

Here l = 100000 and t = 3600; $\therefore lt^{-2} = 100000/3600^2 = .00771$, and therefore acceleration = .00771 \times 1200 = 9.26 centimetres per second.

8. Angular Acceleration. — Angular acceleration is rate of change of angu-

lar velocity. The dimensional formula is thus $\frac{\text{angular velocity}}{T}$ or T^{-2} , and the conversion factor t^{-2} .

- 9. Solid Angle. A solid angle is measured by the ratio of the surface of the portion of a sphere enclosed by the conical surface forming the angle to the square of radius of the spherical surface, the centre of the sphere being at the vertex of the cone. The dimensional formula is therefore $\frac{\text{area}}{L^2}$ or 1, and hence the conversion factor is also 1.
- 10. Curvature. Curvature is measured by the rate of change of direction of the curve with reference to distance measured along the curve as independent variable. The dimension formula is therefore $\frac{\text{angle}}{\text{length}}$ or L⁻¹, and the conversion factor is l^{-1} .
- 11. Tortuosity. Tortuosity is measured by the rate of rotation of the tangent plane round the tangent to the curve of reference when length along the curve is independent variable. The dimension formula is therefore $\frac{\text{angle}}{\text{length}}$ or L^{-1} , and the conversion factor is l^{-1} .
- 12. Specific Curvature of a Surface. This was defined by Gauss to be at any point of the surface, the ratio of the solid angle enclosed by a surface formed by moving a normal to the surface round the periphery of a small area containing the point, to the magnitude of the area. The dimensional formula is therefore $\frac{\text{solid angle}}{\text{surface}}$ or L^{-2} , and the conversion factor is thus l^{-2} .
- 13. **Momentum.** This is quantity of motion in the Newtonian sense, and is, at any instant, measured by the product of the mass-number and the velocity-number for the body.

Thus the dimension formula is MV or MLT⁻¹, and the conversion factor mlt^{-1} . Example. — A mass of 10 pounds is moving with a velocity of 30 feet per second: what is its momentum when the centimetre, the gramme, and the second are fundamental units?

Here m = 453.59, l = 30.48, and t = 1; $mlt^{-1} = 453.59 \times 30.48 = 13825$. The momentum is thus $13825 \times 10 \times 30 = 4147500$.

- 14. Moment of Momentum. The moment of momentum of a body with reference to a point is the product of its momentum-number and the number expressing the distance of its line of motion from the point. The dimensional formula is thus ML^2T^{-1} , and hence the conversion factor is ml^2t^{-1} .
- 15. Moment of Inertia. The moment of inertia of a body round any axis is expressed by the formula $\sum mr^2$, where m is the mass of any particle of the body

and r its distance from the axis. The dimension formula for the sum is clearly the same as for each element, and hence is ML^2 . The conversion factor is therefore ml^2 .

- 16. Angular Momentum. The angular momentum of a body round any axis is the product of the numbers expressing the moment of inertia and the angular velocity of the body. The dimensional formula and the conversion factor are therefore the same as for moment of momentum given above.
- 17. Force. A force is measured by the rate of change of momentum it is capable of producing. The dimension formulæ for force and "time rate of change of momentum" are therefore the same, and are expressed by the ratio of momentum-number to time-number or MLT^{-2} . The conversion factor is thus mlt^{-2} .

NOTE. — When mass is expressed in pounds, length in feet, and time in seconds, the unit force is called the poundal. When grammes, centimetres, and seconds are the corresponding units the unit of force is called the dyne.

Example. Find the number of dynes in 25 poundals.

Here m = 453.59, l = 30.48, and t = 1; $mlt^{-2} = 453.59 \times 30.48 = 13825$ nearly. The number of dynes is thus $13825 \times 25 = 345625$ approximately.

- 18. Moment of a Couple, Torque, or Twisting Motive. These are different names for a quantity which can be expressed as the product of two numbers representing a force and a length. The dimension formula is therefore FL or ML^2T^{-2} , and the conversion factor is ml^2t^{-2} .
- 19. Intensity of a Stress. The intensity of a stress is the ratio of the number expressing the total stress to the number expressing the area over which the stress is distributed. The dimensional formula is thus FL^{-2} or $ML^{-1}T^{-2}$, and the conversion factor is $ml^{-1}t^{-2}$.
- 20. Intensity of Attraction, or "Force at a Point." This is the force of attraction per unit mass on a body placed at the point, and the dimensional formula is therefore FM^{-1} or LT^{-2} , the same as acceleration. The conversion factors for acceleration therefore apply.
- 21. Absolute Force of a Centre of Attraction, or "Strength of a Centre."—This is the intensity of force at unit distance from the centre, and is therefore the force per unit mass at any point multiplied by the square of the distance from the centre. The dimensional formula thus becomes FL^2M^{-1} or L^8T^{-2} . The conversion factor is therefore l^3t^{-2} .
- 22. Modulus of Elasticity. A modulus of elasticity is the ratio of stress intensity to percentage strain. The dimension of percentage strain is a length divided by a length, and is therefore unity. Hence, the dimensional formula of a modulus of elasticity is the same as that of stress intensity, or $ML^{-1}T^{-2}$, and the conversion factor is thus also $ml^{-1}t^{-2}$.

23. Work and Energy. — When the point of application of a force, acting on a body, moves in the direction of the force, work is done by the force, and the amount is measured by the product of the force and displacement numbers. The dimensional formula is therefore FL or ML²T⁻².

The work done by the force either produces a change in the velocity of the body or a change of shape or configuration of the body, or both. In the first case it produces a change of kinetic energy, in the second a change of potential energy. The dimension formulæ of energy and work, representing quantities of the same kind, are identical, and the conversion factor for both is ml^2t^{-2} .

- 24. Resilience. This is the work done per unit volume of a body in distorting it to the elastic limit or in producing rupture. The dimension formula is therefore $ML^2T^{-2}L^{-3}$ or $ML^{-1}T^{-2}$, and the conversion factor $ml^{-1}t^{-2}$.
- 25. Power, or Activity. Power or, as it is now very commonly called, activity is defined as the time rate of doing work, or if W represent work and P power $P = \frac{dw}{dt}$. The dimensional formula is therefore WT^{-1} or $ML^2\Gamma^{-8}$, and the conversion factor ml^2t^{-8} , or for problems in gravitation units more conveniently flt^{-1} , where f stands for the force factor.

Examples. (a) Find the number of gramme centimetres in one foot pound. Here the units of force are the attraction of the earth on the pound * and the gramme of matter, and the conversion factor is fl, where f is 453.59 and l is 30.48.

Hence the number is $453.59 \times 30.48 = 13825$.

(b) Find the number of foot poundals in 1 000 000 centimetre dynes.

Here m = 1/453.59, l = 1/30.48, and t = 1; $ml^2t^{-2} = 1/453.59 \times 30.48^2$, and $10^6 ml^2t^{-2} = 10^6/453.59 \times 30.48^2 = 2.373$.

(c) If gravity produces an acceleration of 32.2 feet per second per second, how many watts are required to make one horse-power?

One horse-power is 550 foot pounds per second, or $550 \times 32.2 = 17710$ foot poundals per second. One watt is 10^7 ergs per second, that is, 10^7 dyne centimetres per second. The conversion factor is ml^2t^{-8} , where m = 453.59. l = 30.48, and t = 1, and the result has to be divided by 10^7 , the number of dyne centimetres per second in the watt.

Hence, $17710 \, ml^2 t^{-8} / 10^7 = 17710 \times 453.59 \times 30.48^2 / 10^7 = 746.3$.

(d) How many gramme centimetres per second correspond to 33000 foot pounds per minute?

The conversion factor suitable for this case is flt^{-1} , where f is 453.59, l is 30.48, and t is 60.

Hence, 33000 $ll^{-1} = 33000 \times 453.59 \times 30.48/60 = 7604000$ nearly.

^{*} It is important to remember that in problems like that here given the term "pound" or "gramme" refers to force and not to mass.

HEAT UNITS.

r. If heat be measured in dynamical units its dimensions are the same as those of energy, namely ML^2T^{-2} . The most common measurements, however, are made in thermal units, that is, in terms of the amount of heat required to raise the temperature of unit mass of water one degree of temperature at some stated temperature. This method of measurement involves the unit of mass and some unit of temperature, and hence if we denote temperature-numbers by Θ and their conversion factors by θ the dimensional formula and conversion factor for quantity of heat will be $M\Theta$ and $m\theta$ respectively. The relative amount of heat compared with water as standard substance required to raise unit mass of different substances one degree in temperature is called their specific heat, and is a simple number.

Unit volume is sometimes used instead of unit mass in the measurement of heat, the units being then called thermometric units. The dimensional formula is in that case changed by the substitution of volume for mass, and becomes L³ Θ , and hence the conversion factor is to be calculated from the formula $l^3\theta$.

For other physical quantities involving heat we have: —

- 2. Coefficient of Expansion. The coefficient of expansion of a substance is equal to the ratio of the change of length per unit length (linear), or change of volume per unit volume (voluminal) to the change of temperature. These ratios are simple numbers, and the change of temperature is inversely as the magnitude of the unit of temperature. Hence the dimensional and conversion-factor formulæ are Θ^{-1} and θ^{-1} .
- 3. Conductivity, or Specific Conductance. This is the quantity of heat transmitted per'unit of time per unit of surface per unit of temperature gradient. The equation for conductivity is therefore, with H as quantity of heat,

$$K = \frac{H}{\frac{\Theta}{L}L^2T}$$

and the dimensional formula $\frac{H}{\omega LT} = \frac{M}{LT}$, which gives $mt^{-1}t^{-1}$ for conversion factor.

In thermometric units the formula becomes L^2T^{-1} , which properly represents diffusivity. In dynamical units H becomes ML^2T^{-2} , and the formula changes to $MLT^{-3}\Theta^{-1}$. The conversion factors obtained from these are l^2t^{-1} and $mlt^{-8}\theta^{-1}$ respectively.

Similarly for emission and absorption we have -

4. Emissivity and Immissivity. — These are the quantities of heat given off by or taken in by the body per unit of time per unit of surface per unit difference of temperature between the surface and the surrounding medium. We thus get the equation

 $EL^2\Theta T = H = M\Theta$.

The dimensional formula for E is therefore ML-2T-1, and the conversion factor

 $ml^{-2}t^{-1}$. In thermometric units by substituting l^8 for m the factor becomes lt^{-1} , and in dynamical units $mt^{-8}\theta^{-2}$.

- 5. Thermal Capacity. This is the product of the number for mass and the specific heat, and hence the dimensional formula and conversion factor are simply M and m.
- 6. Latent Heat. Latent heat is the ratio of the number representing the quantity of heat required to change the state of a body to the number representing the quantity of matter in the body. The dimensional formula is therefore M@/M or Θ , and hence the conversion factor is simply the ratio of the temperature units or θ . In dynamical units the factor is $\ell^2 t^{-2}$.*
- 7. Joule's Equivalent. Joule's dynamical equivalent is connected with quantity of heat by the equation

$$ML^2T^{-2} = JH$$
 or $JM\Theta$.

This gives for the dimensional formula of J the expression $L^2T^{-2}\Theta^{-1}$. The conversion factor is thus represented by $l^2t^{-2}\theta^{-1}$. When heat is measured in dynamical units J is a simple number.

8. Entropy. — The entropy of a body is directly proportional to the quantity of heat it contains and inversely proportional to its temperature. The dimensional formula is thus $M\Theta/\Theta$ or M, and the conversion factor is m. When heat is measured in dynamical units the factor is $ml^2l^{-2}\theta^{-1}$.

Examples. (a) Find the relation between the British thermal unit, the calorie, and the therm.

Neglecting the variation of the specific heat of water with temperature, or defining all the units for the same temperature of the standard substance, we have the following definitions. The *British thermal unit* is the quantity of heat required to raise the temperature of one pound of water 1° F. The *calorie* is the quantity of heat required to raise the temperature of one kilogramme of water 1° C. The *therm* is the quantity of heat required to raise the temperature of one gramme of water 1° C. Hence:—

- (1) To find the number of calories in one British thermal unit, we have m = .45399 and $\theta = \frac{5}{9}$; $\therefore m\theta = .45399 \times 5/9 = .25199$.
- (2) To find the number of therms in one calorie, m = 1000 and $\theta = 1$; $\therefore m\theta = 1000$.

It follows at once that the number of therms in one British thermal unit is $1000 \times .25199 = 251.99$.

(b) What is the relation between the foot grain second Fahrenheit-degree and the centimetre gramme second Centigrade-degree units of conductivity?

The number of the latter units in one of the former is given by the for-

^{*} It will be noticed that when Θ is given the dimension formula L^2T^{-2} the formulæ in thermal and dynamical units are always identical. The thermometric units practically suppress mass.

mula $ml^{-1}t^{-1}\theta^{\circ}$, where m = .064799, l = 30.48, and t = 1, and is therefore = $.064799/30.48 = 2.126 \times 10^{-8}$.

(c) Find the relation between the units stated in (b) for emissivity.

In this case the conversion formula is $ml^{-2}t^{-1}$, where ml and t have the same value as before. Hence the number of the latter units in the former is $0.064799/30.48^2 = 6.975 \times 10^{-6}$.

(d) Find the number of centimetre gramme second units in the inch grain hour unit of emissivity.

Here the formula is $ml^{-2}t^{-1}$, where m = 0.064799, l = 2.54, and t = 3600. Therefore the required number is $0.064799/2.54^2 \times 3600 = 2.790 \times 10^{-6}$.

(e) If Joule's equivalent be 776 foot pounds per pound of water per degree Fahrenheit, what will be its value in gravitation units when the metre, the kilogramme, and the degree Centigrade are units?

The conversion factor in this case is $\frac{l^2t^{-2}\theta^{-1}}{lt^{-1}}$ or $l\theta^{-1}$, where l=.3048 and $\theta^{-1}=1.8$; $\therefore 776 \times .3048 \times 1.8=425.7$.

(f) If Joule's equivalent be 24832 foot poundals when the degree Fahrenheit is unit of temperature, what will be its value when kilogramme metre second and degree-Centigrade units are used?

The conversion factor is $l^{t}t^{-2}\theta^{-1}$, where l = .3048, t = 1, and $\theta^{-1} = 1.8$; $\therefore 24832 \times l^{2}t^{-2}\theta^{-1} = 24832 \times .3048^{2} \times 1.8 = 4152.5$.

In gravitation units this would give 4152.5/9.81 = 423.3.

ELECTRIC AND MAGNETIC UNITS.

There are two systems of these units, the electrostatic and the electromagnetic

systems, which differ from each other because of the different fundamental suppositions on which they are based. In the electrostatic system the repulsive force between two quantities of static electricity is made the basis. This connects force, quantity of electricity, and length by the equation $f = a \frac{qq_1}{l^2}$, where f is force, a a quantity depending on the units employed and on the nature of the medium, q and q_1 quantities of electricity, and l the distance between q and q_1 . The magnitude of the force f for any particular values of q, q_1 and l depends on a property of the medium across which the force takes place called its inductive capacity. The inductive capacity of air has generally been assumed as unity, and the inductive capacity of other media expressed as a number representing the ratio of the inductive capacity of the medium to that of air. These numbers are known as the specific inductive capacities of the media. According to the ordinary assumption, then, of air as the standard medium, we obtain unit quantity of electricity when in the above equation $q = q_1$, and f, a, and l are each unity. A formal definition is given below.

In the electromagnetic system the repulsion between two magnetic poles or

quantities of magnetism is taken as the basis. In this system the quantities force, quantity of magnetism, and length are connected by an equation of the form

$$f = a \frac{mm_1}{l^2},$$

where m and m_l are in this case quantities of magnetism, and the other symbols have the same meaning as before. In this case it has been usual to assume the magnetic inductive capacity of air to be unity, and to express the magnetic inductive capacity of other media as a simple number representing the ratio of the inductive capacity of the medium to that of air. These numbers, by analogy with specific inductive capacity for electricity, might be called specific inductive capacities for magnetism. They are usually called permeabilities. (Vide Thomson, "Papers on Electrostatics and Magnetism," p. 484.) In this case, also, like that for electricity, the unit quantity of magnetism is obtained by making $m = m_l$, and l, m_l , and m_l each unity.

In both these cases the intrinsic inductive capacity of the standard medium is suppressed, and hence also that of all other media. Whether this be done or not, direct experiment has to be resorted to for the determination of the absolute values of the units and the relations of the units in the one system to those in the other. The character of this relation can be directly inferred from the dimensional formulæ of the different quantities, but these can give no information as to the relative absolute values of the units in the two systems. Prof. Rücker has suggested (Phil. Mag. vol. 27) the advisability of at least indicating the existence of the suppressed properties by putting symbols for them in the dimensional formulæ. This has the advantage of showing how the magnitudes of the different units would be affected by a change in the standard medium, or by making the standard medium different for the two systems. In accordance with this idea, the symbols K and P have been introduced into the formulæ given below to represent inductive capacity in the electrostatic and the electromagnetic systems respectively. In the conversion formulæ k and p are the ordinary specific inductive capacities and permeabilities of the media when air is taken as the standard, or generally those with reference to the first medium taken as standard. The ordinary formulæ may be obtained by putting K and P equal to unity.

ELECTROSTATIC UNITS.

r. Quantity of Electricity. — The unit quantity of electricity is defined as that quantity which if concentrated at a point and placed at unit distance from an equal and similarly concentrated quantity repels it, or is repelled by it, with unit force. The medium or dielectric is usually taken as air, and the other units in accordance with the centimetre gramme second system.

In this case we have the force of repulsion proportional directly to the square of the quantity of electricity and inversely to the square of the distance between the quantities and to the inductive capacity. The dimensional formula is therefore the same as that for $[\text{force} \times \text{length}^2 \times \text{inductive capacity}]^{\frac{1}{2}}$ or $M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-1}K^{\frac{3}{2}}$, and the conversion factor is $m^{\frac{3}{2}}l^{\frac{3}{2}}t^{-1}k^{\frac{3}{2}}$.

- 2. Electric Surface Density and Electric Displacement. The density of an electric distribution at any point on a surface is measured by the quantity per unit of area, and the electric displacement at any point in a dielectric is measured by the quantity displaced per unit of area. These quantities have therefore the same dimensional formula, namely, the ratio of the formulæ for quantity of electricity and for area or $M^{\frac{1}{2}}L^{-\frac{1}{2}}T^{-1}K^{\frac{1}{2}}$, and the conversion factor $m^{\frac{1}{2}}l^{-\frac{1}{2}}l^{-1}k^{\frac{1}{2}}$.
- 3. Electric Force at a Point, or Intensity of Electric Field. This is measured by the ratio of the magnitude of the force on a quantity of electricity at a point to the magnitude of the quantity of electricity. The dimensional formula is therefore the ratio of the formulæ for force and electric quantity, or

$$\frac{MLT^{-2}}{M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-1}K^{\frac{1}{2}}} = M^{\frac{1}{2}}L^{-\frac{1}{2}}T^{-1}K^{-\frac{1}{2}},$$

which gives the conversion factor $m^{\frac{1}{2}}l^{-\frac{1}{2}}t^{-1}k^{-\frac{1}{2}}$.

4. Electric Potential and Electromotive Force. — Change of potential is proportional to the work done per unit of electricity in producing the change. The dimensional formula is therefore the ratio of the formulæ for work and electric quantity, or

$$\frac{ML^{2}T^{-2}}{M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-1}K^{\frac{1}{2}}} = M^{\frac{1}{2}}L^{\frac{1}{2}}T^{-1}K^{-\frac{1}{2}},$$

which gives the conversion factor $m^{\frac{1}{2}}l^{\frac{1}{2}}t^{-1}k^{-\frac{1}{2}}$.

5. Capacity of a Conductor. — The capacity of an insulated conductor is proportional to the ratio of the numbers representing the quantity of electricity in a charge and the potential of the charge. The dimensional formula is thus the ratio of the two formula for electric quantity and potential, or

$$\frac{M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-1}K^{\frac{3}{2}}}{M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-1}K^{-\frac{3}{2}}} = LK,$$

which gives *lk* for conversion factor. When K is taken as unity, as in the ordinary units, the capacity of an insulated conductor is simply a length.

- 6. Specific Inductive Capacity. This is the ratio of the inductive capacity of the substance to that of a standard substance, and hence the dimensional formula is K/K or 1.*
- 7. Electric Current. Current is quantity flowing past a point per unit of time. The dimensional formula is thus the ratio of the formulæ for electric quantity and for time, or

$$\frac{M^{\frac{1}{2}}L^{\frac{5}{4}}T^{-1}K^{\frac{1}{2}}}{\Gamma} = M^{\frac{1}{2}}L^{\frac{5}{4}}T^{-2}K^{\frac{1}{2}},$$

and the conversion factor $m^{\frac{1}{2}}l^{\frac{1}{2}}t^{-2}k^{\frac{1}{2}}$.

* According to the ordinary definition referred to air as standard medium, the specific inductive capacity of a substance is K, or is identical in dimensions with what is here taken as inductive capacity. Hence in that case the conversion factor must be taken as I on the electrostatic and as $l^{-2}l^{2}$ on the electromagnetic system.

8. Conductivity, or Specific * Conductance. — This, like the corresponding term for heat, is quantity per unit area per unit potential gradient per unit of time. The dimensional formula is therefore

$$\frac{M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-1}K^{\frac{1}{2}}}{L^{\frac{3}{2}}L^{\frac{1}{2}}T} = T^{-1}K, \text{ or } \frac{\text{electric quantity}}{\text{area} \times \text{potential gradient} \times \text{time}}.$$

The conversion factor is $t^{-1}k$.

- 9. Specific * Resistance. This is the reciprocal of conductivity as above defined, and hence the dimensional formula and conversion factor are respectively TK^{-1} and tk^{-1} .
- ro. Conductance. The conductance of any part of an electric circuit, not containing a source of electromotive force, is the ratio of the numbers representing the current flowing through it and the difference of potential between its ends. The dimensional formula is thus the ratio of the formulæ for current and potential, or

$$\frac{M^{\frac{1}{2}}L^{\frac{5}{2}}T^{-2}K^{\frac{1}{2}}}{M^{\frac{1}{2}}L^{\frac{1}{2}}T^{-1}K^{-\frac{1}{2}}}\!=\!LT^{-1}K,$$

from which we get the conversion factor $lt^{-1}k$.

11. **Resistance.**—This is the reciprocal of conductance, and therefore the dimensional formula and the conversion factor are respectively $\mathbf{L}^{-1}\mathbf{T}\mathbf{K}^{-1}$ and $l^{-1}tk^{-1}$.

EXAMPLES OF CONVERSION IN ELECTROSTATIC UNITS.

- (a) Find the factor for converting quantity of electricity expressed in foot grain second units to the same expressed in c. g. s. units.
- By (1) the formula is $m^{\frac{1}{2}}l^{\frac{3}{2}}t^{-1}k^{\frac{1}{2}}$, in which in this case m = 0.0648, l = 30.48, t = 1, and k = 1; \therefore the factor is $0.0648^{\frac{1}{2}} \times 30.48^{\frac{1}{2}} = 4.2836$.
- (b) Find the factor required to convert electric potential from millimetre milligramme second units to c. g. s. units.
- By (4) the formula is $m^{\frac{1}{2}}l^{-1}k^{-\frac{1}{2}}$, and in this case m = 0.001, l = 0.1, t = 1, and k = 1; \therefore the factor $= 0.001^{\frac{1}{2}} \times 0.1^{\frac{1}{2}} = 0.01$.
- (c) Find the factor required to convert from foot grain second and specific inductive capacity 6 units to c. g. s. units.
- By (5) the formula is lk, and in this case l = 30.48 and k = 6; \therefore the factor $= 30.48 \times 6 = 182.88$.
- * The term "specific," as used here and in 9, refers conductance and resistance to that between the ends of a bar of unit section and unit length, and hence is different from the same term in specific heat, specific inductivity, capacity, etc., which refer to a standard substance.

ELECTROMAGNETIC UNITS.

As stated above, these units bear the same relation to unit quantity of magnetism that the electric units do to quantity of electricity. Thus, when inductive capacity is suppressed, the dimensional formula for magnetic quantity on this system is the same as that for electric quantity on the electrostatic system. All quantities in this system which only differ from corresponding quantities defined above by the substitution of magnetic for electric quantity may have their dimensional formulæ derived from those of the corresponding quantity by substituting P for K.

- 1. Magnetic Pole, or Quantity of Magnetism. Two unit quantities of magnetism concentrated at points unit distance apart repel each other with unit force. The dimensional formula is thus the same as for [force \times length² \times inductive capacity] or $M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-1}P^{\frac{1}{2}}$, and the conversion factor is $m^{\frac{1}{2}}l^{\frac{3}{2}}t^{-1}p^{\frac{1}{2}}$.
- 2. Density of Surface Distribution of Magnetism. This is measured by quantity of magnetism per unit area, and the dimension formula is therefore the ratio of the expressions for magnetic quantity and for area, or $M^{\frac{1}{2}}L^{-\frac{1}{2}}T^{-1}P^{\frac{1}{2}}$, which gives the conversion factor $m^{\frac{1}{2}}l^{-\frac{1}{2}}t^{-1}p^{\frac{1}{2}}$.
- 3. Magnetic Force at a Point, or Intensity of Magnetic Field. The number for this is the ratio of the numbers representing the magnitudes of the force on a magnetic pole placed at the point and the magnitude of the magnetic pole.

The dimensional formula is therefore the ratio of the expressions for force and magnetic quantity, or

 $\frac{MLT^{-2}}{M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-1}P^{\frac{1}{2}}} = M^{\frac{1}{2}}L^{-\frac{1}{2}}T^{-1}P^{-\frac{1}{2}},$

and the conversion factor $m^{\frac{1}{2}}l^{-\frac{1}{2}}t^{-1}p^{-\frac{1}{2}}$.

4. Magnetic Potential. — The magnetic potential at a point is measured by the work which is required to bring unit quantity of positive magnetism from zero potential to the point. The dimensional formula is thus the ratio of the formula for work and magnetic quantity, or

$$rac{ML^{2}T^{-2}}{M^{\frac{1}{2}}L^{\frac{1}{2}}T^{-1}P^{\frac{1}{2}}}=M^{\frac{1}{2}}L^{\frac{1}{2}}T^{-1}P^{-\frac{1}{2}},$$

which gives the conversion factor $m^{\frac{1}{2}}l^{\frac{1}{2}}t^{-1}p^{-\frac{1}{2}}$.

- 5. Magnetic Moment. This is the product of the numbers for pole strength and length of a magnet. The dimensional formula is therefore the product of the formulæ for magnetic quantity and length, or $M^{\frac{1}{2}}L^{\frac{4}{7}}T^{-1}P^{\frac{1}{2}}$, and the conversion factor $m^{\frac{1}{2}}l^{\frac{4}{7}}t^{-1}p^{\frac{1}{2}}$.
- 6. Intensity of Magnetization. The intensity of magnetization of any portion of a magnetized body is the ratio of the numbers representing the magni-

tude of the magnetic moment of that portion and its volume. The dimensional formula is therefore the ratio of the formulæ for magnetic moment and volume, or

$$\frac{M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-1}P^{\frac{1}{2}}}{L^{3}}\!=\!M^{\frac{1}{2}}L^{-\frac{1}{2}}T^{-1}P^{\frac{1}{2}}.$$

The conversion factor is therefore $m^{\frac{1}{2}}l^{-\frac{1}{2}}t^{-1}p^{\frac{1}{2}}$.

- 7. Magnetic Permeability,* or Specific Magnetic Inductive Capacity.

 This is the analogue in magnetism to specific inductive capacity in electricity. It is the ratio of the magnetic induction in the substance to the magnetic induction in the field which produces the magnetization, and therefore its dimensional formula and conversion factor are unity.
- 8. Magnetic Susceptibility. This is the ratio of the numbers which represent the values of the intensity of magnetization produced and the intensity of the magnetic field producing it. The dimensional formula is therefore the ratio of the formulæ for intensity of magnetization and magnetic field or

$$\frac{M^{\frac{1}{2}}L^{-\frac{1}{2}}T^{-1}P^{\frac{1}{2}}}{M^{\frac{1}{2}}L^{-\frac{1}{2}}T^{-1}P^{-\frac{1}{2}}} \text{ or } P.$$

The conversion factor is therefore p, and both the dimensional formula and conversion factor are unity in the ordinary system.

- 9. Current Strength. A current of strength c flowing round a circle of radius r produces a magnetic field at the centre of intensity $2\pi c/r$. The dimensional formula is therefore the product of the formulæ for magnetic field intensity and length, or $M^{\frac{1}{2}}L^{\frac{1}{2}}T^{-1}P^{-\frac{1}{2}}$, which gives the conversion factor $M^{\frac{1}{2}}l^{\frac{1}{2}}T^{-1}P^{-\frac{1}{2}}$.
- 10. Current Density, or Strength of Current at a Point. This is the ratio of the numbers for current strength and area. The dimensional formula and the conversion factor are therefore $M^{\frac{1}{2}}L^{-\frac{1}{2}}T^{-1}P^{-\frac{1}{2}}$ and $m^{\frac{1}{2}}l^{-\frac{1}{2}}l^{-\frac{1}{2}}l^{-\frac{1}{2}}$.
- II. Quantity of Electricity. This is the product of the numbers for current and time. The dimensional formula is therefore $M^{\frac{1}{2}}L^{\frac{1}{2}}T^{-1}P^{-\frac{1}{2}} \times T = M^{\frac{1}{2}}L^{\frac{1}{2}}P^{-\frac{1}{2}}$, and the conversion factor $m^{\frac{1}{2}}l^{\frac{1}{2}}l^{\frac{1}{2}}$.
- 12. Electric Potential, or Electromotive Force. As in the electrostatic system, this is the ratio of the numbers for work and quantity of electricity. The dimensional formula is therefore

$$\frac{ML^{2}T^{-2}}{M^{\frac{1}{2}}L^{\frac{1}{2}}P^{-\frac{1}{2}}} = M^{\frac{1}{2}}L^{\frac{6}{2}}T^{-2}P^{\frac{1}{2}},$$

and the conversion factor $m^{\frac{1}{2}}l^{\frac{3}{2}}t^{-2}p^{\frac{1}{2}}$.

* Permeability, as ordinarily taken with the standard medium as unity, has the same dimension formula and conversion factor as that which is here taken as magnetic inductive capacity. Hence for ordinary transformations the conversion factor should be taken as 1 in the electromagnetic and $J^{-2}\ell^{2}$ in the electrostatic systems.

13. Electrostatic Capacity. — This is the ratio of the numbers for quantity of electricity and difference of potential. The dimensional formula is therefore

$$\frac{M^{\frac{1}{2}}L^{\frac{1}{2}}P^{-\frac{1}{2}}}{M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-2}P^{\frac{1}{2}}} = L^{-1}T^{2}P^{-1},$$

and the conversion factor $l^{-1}t^2p^{-1}$.

14. Resistance of a Conductor. — The resistance of a conductor or electrode is the ratio of the numbers for difference of potential between its ends and the constant current it is capable of producing. The dimensional formula is therefore the ratio of those for potential and current or

$$\frac{M^{\frac{1}{2}}L^{\frac{3}{4}}T^{-2}P^{\frac{1}{2}}}{M^{\frac{3}{2}}L^{\frac{3}{2}}T^{-1}P^{-\frac{1}{2}}} = LT^{-1}P.$$

The conversion factor thus becomes $lt^{-1}p$, and in the ordinary system resistance has the same conversion factor as velocity.

- 15. Conductance. This is the reciprocal of resistance, and hence the dimensional formula and conversion factor are respectively $L^{-1}TP^{-1}$ and $\ell^{-1}tp^{-1}$.
- 16. Conductivity, or Specific Conductance. This is quantity of electricity transmitted per unit of area per unit of potential gradient per unit of time. The dimensional formula is therefore derived from those of the quantities mentioned as follows:—

$$\frac{M^{\frac{1}{2}}L^{\frac{3}{2}}P^{-\frac{1}{2}}}{L^{2}} = L^{-2}TP^{-1}.$$

The conversion factor is therefore $l^{-2}tp^{-1}$.

- 17. **Specific Resistance.** This is the reciprocal of conductivity as defined in 15, and hence the dimensional formula and conversion factor are respectively $L^{2}\Gamma^{-1}P$ and $l^{2}t^{-1}p$.
- 18. Coefficient of Self-Induction, or Inductance, or Electro-kinetic Inertia. These are for any circuit the electromotive force produced in it by unit rate of variation of the current through it. The dimensional formula is therefore the product of the formulæ for electromotive force and time divided by that for current or

$$\frac{M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-2}P^{\frac{1}{2}}}{M^{\frac{1}{2}}L^{\frac{1}{2}}T^{-1}P^{-\frac{1}{2}}} \times T = LP.$$

The conversion factor is therefore lp, and in the ordinary system is the same as that for length.

19. Coefficient of Mutual Induction. — The mutual induction of two circuits is the electromotive force produced in one per unit rate of variation of the current in the other. The dimensional formula and the conversion factor are therefore the same as those for self-induction.

- 20. Electro-kinetic Momentum. The number for this is the product of the numbers for current and for electro-kinetic inertia. The dimensional formula is therefore the product of the formulæ for these quantities, or $M^{\frac{1}{2}}L^{\frac{1}{2}}T^{-1}P^{-\frac{1}{2}} \times LP$ = $M^{\frac{1}{2}}L^{\frac{1}{2}}T^{-1}P^{\frac{1}{2}}$, and the conversion factor is $m^{\frac{1}{2}}l^{\frac{1}{2}}l^{-\frac{1}{2}}P^{\frac{1}{2}}$.
- 21. Electromotive Force at a Point. The number for this quantity is the ratio of the numbers for electric potential or electromotive force as given in 12, and for length. The dimensional formula is therefore $M^{\frac{1}{2}}L^{\frac{1}{2}}T^{-2}P^{\frac{1}{2}}$, and the conversion factor $m^{\frac{1}{2}}l^{\frac{1}{2}}t^{-2}p^{\frac{1}{2}}$.
- 22. Vector Potential. This is time integral of electromotive force at a point, or the electro-kinetic momentum at a point. The dimensional formula may therefore be derived from 21 by multiplying by T, or from 20 by dividing by L. It is therefore $M^{\frac{1}{2}}L^{\frac{1}{2}}T^{-1}P^{\frac{1}{2}}$, and the conversion factor $m^{\frac{1}{2}}l^{\frac{1}{2}}l^{-1}P^{\frac{1}{2}}$.
- 23. Thermoelectric Height. This is measured by the ratio of the numbers for electromotive force and for temperature. The dimensional formula is therefore the ratio of the formulæ for these two quantities, or $M^{\frac{1}{2}}L^{\frac{3}{4}}T^{-2}P^{\frac{1}{2}}\otimes^{-1}$, and the conversion factor $m^{\frac{1}{2}}l^{\frac{3}{4}}t^{-2}p^{\frac{1}{2}}\theta^{-1}$.
- 24. Specific Heat of Electricity. This quantity is measured in the same way as 23, and hence has the same formulæ.
- 25. Coefficient of Peltier Effect. This is measured by the ratio of the numbers for quantity of heat and for quantity of electricity. The dimensional formula is therefore

$$\frac{M\Theta}{M^{\frac{1}{2}}L^{\frac{1}{2}}P^{-\frac{1}{2}}} = M^{\frac{1}{2}}L^{-\frac{1}{2}}P^{\frac{1}{2}}\Theta,$$

and the conversion factor $m^{\frac{1}{2}}l^{-\frac{1}{2}}p^{\frac{1}{2}}\theta$.

EXAMPLES OF CONVERSION IN ELECTROMAGNETIC UNITS.

- (a) Find the factor required to convert intensity of magnetic field from foot grain minute units to c. g. s. units.
- By (3) the formula is $m^{\frac{1}{2}}t^{-\frac{1}{2}}p^{-\frac{1}{2}}$, and in this case m = 0.0648, l = 30.48, t = 60, and p = 1; ... the factors $= 0.0648^{\frac{1}{2}} \times 30.48^{-\frac{1}{2}} \times 60^{-1} = 0.00076847$.

Similarly to convert from foot grain second units to c. g. s. units the factor is $0.0648^{\frac{1}{2}} \times 30.48^{-\frac{1}{2}} = 0.046 \text{ 108}$.

- (b) How many c. g. s. units of magnetic moment make one foot grain second unit of the same quantity?
- By (5) the formula is $m^{\frac{1}{2}}l^{\frac{1}{2}}t^{-1}p^{\frac{1}{2}}$, and the values for this problem are m = 0.0648, l = 30.48, t = 1, and p = 1; : the number = $0.0648^{\frac{1}{2}} \times 30.48^{\frac{3}{2}} = 1305.6$.
- (c) If the intensity of magnetization of a steel bar be 700 in c. g. s. units, what will it be in millimetre milligramme second units?

- By (6) the formula is $m^{\frac{1}{2}}l^{\frac{1}{2}}t^{-1}p^{\frac{1}{2}}$, and in this case m=1000, l=10, t=1, and p=1; \therefore the intensity $=700 \times 1000^{\frac{1}{2}} \times 10^{\frac{1}{2}} = 70000$.
- (d) Find the factor required to convert current strength from c. g. s. units to earth quadrant 10^{-11} gramme and second units.
- By (9) the formula is $m^{\frac{1}{2}}l^{\frac{1}{2}}t^{-\frac{1}{2}}p^{-\frac{1}{2}}$, and the values of these quantities are here $m=10^{11}$, $l=10^{-9}$, t=1, and p=1; ... the factor $=10^{1\frac{1}{2}}\times 10^{-\frac{9}{2}}=10$.
- (e) Find the factor required to convert resistance expressed in c. g. s. units into the same expressed in earth-quadrant 10⁻¹¹ grammes and second units.
- By (14) the formula is $lt^{-1}p$, and for this case $l = 10^{-9}$, t = 1, and p = 1; \therefore the factor $= 10^{-9}$.
- (f) Find the factor required to convert electromotive force from earth-quadrant 10^{-11} gramme and second units to c. g. s. units.
- By (12) the formula is $m^{\frac{1}{2}}l^{\frac{n}{2}}p^{\frac{1}{2}}$, and for this case $m=10^{-11}$, $l=10^9$, t=1, and p=1; \therefore the factor $=10^8$.

PRACTICAL UNITS.

In practical electrical measurements the units adopted are either multiples or submultiples of the units founded on the centimetre, the gramme, and the second as fundamental units, and air is taken as the standard medium, for which K and P are assumed unity. The following, quoted from the report to the Honorable the Secretary of State, under date of November 6th, 1893, by the delegates representing the United States, gives the ordinary units with their names and values as defined by the International Congress at Chicago in 1893:—

"Resolved, That the several governments represented by the delegates of this International Congress of Electricians be, and they are hereby, recommended to formally adopt as legal units of electrical measure the following: As a unit of resistance, the *international ohm*, which is based upon the ohm equal to 10⁹ units of resistance of the C. G. S. system of electro-magnetic units, and is represented by the resistance offered to an unvarying electric current by a column of mercury at the temperature of melting ice 14.4521 grammes in mass, of a constant cross-sectional area and of the length of 106.3 centimetres.

"As a unit of current, the *international ampère*, which is one tenth of the unit of current of the C. G. S. system of electro-magnetic units, and which is represented sufficiently well for practical use by the unvarying current which, when passed through a solution of nitrate of silver in water, and in accordance with accompanying specifications,* deposits silver at the rate of o.ooiii8 of a gramme per second.

* "In the following specification the term 'silver voltameter' means the arrangement of apparatus by means of which an electric current is passed through a solution of nitrate of silver in water. The silver voltameter measures the total electrical quantity which has passed during the time of the experiment, and by noting this time the time average of the current, or, if the current has been kept constant, the current itself can be deduced.

"In employing the silver voltameter to measure currents of about one ampère, the following arrangements should be adopted:—

"As a unit of electromotive force, the *international volt*, which is the electromotive force that, steadily applied to a conductor whose resistance is one international ohm, will produce a current of one international ampère, and which is represented sufficiently well for practical use by $\frac{1000}{434}$ of the electromotive force between the poles or electrodes of the voltaic cell known as Clark's cell, at a temperature of 15° C., and prepared in the manner described in the accompanying specification.*

"As a unit of quantity, the *international coulomb*, which is the quantity of electricity transferred by a current of one international ampère in one second.

"As a unit of capacity, the *international farad*, which is the capacity of a condenser charged to a potential of one international volt by one international coulomb of electricity.†

"As a unit of work, the *joule*, which is equal to 10⁷ units of work in the c. g. s. system, and which is represented sufficiently well for practical use by the energy expended in one second by an international ampère in an international ohm.

"As a unit of power, the *watt*, which is equal to 10⁷ units of power in the c. g. s. system, and which is represented sufficiently well for practical use by the work done at the rate of one joule per second.

"As the unit of induction, the *henry*, which is the induction in a circuit when the electromotive force induced in this circuit is one international volt, while the inducing current varies at the rate of one ampère per second.

"The Chamber also voted that it was not wise to adopt or recommend a standard of light at the present time."

By an Act of Congress approved July 12th, 1894, the units recommended by the Chicago Congress were adopted in this country with only some unimportant verbal changes in the definitions.

By an Order in Council of date August 23d, 1894, the British Board of Trade adopted the ohm, the ampere, and the volt, substantially as recommended by the Chicago Congress. The other units were not legalized in Great Britain. They are, however, in general use in that country and all over the world.

"The kathode on which the silver is to be deposited should take the form of a platinum bowl not less than 10 centimetres in diameter and from 4 to 5 centimetres in depth.

"The anode should be a plate of pure silver some 30 square centimetres in area and 2 or 3 millimetres in thickness.

"This is supported horizontally in the liquid near the top of the solution by a platinum wire passed through holes in the plate at opposite corners. To prevent the disintegrated silver which is formed on the anode from falling on to the kathode, the anode should be wrapped round with pure filter paper, secured at the back with sealing wax.

"The liquid should consist of a neutral solution of pure silver nitrate, containing about 15 parts by weight of the nitrate to 85 parts of water.

"The resistance of the voltameter changes somewhat as the current passes. To prevent these changes having too great an effect on the current, some resistance besides that of the voltameter should be inserted in the circuit. The total metallic resistance of the circuit should not be less than 10 ohms."

* "A committee, consisting of Messrs. Helmholtz, Ayrton, and Carhart, was appointed to prepare specifications for the Clark's cell. Their report has not yet been received."

† The one millionth part of the farad is more commonly used in practical measurements, and is called the microfarad.

PHYSICAL TABLES

(a) FUNDAMENTAL UNITS.

(")				
Name of Unit.	Symbol.	Conversion Factor.		
Length. Mass. Time. Temperature. Electric Inductive Capacity. Magnetic Inductive Capacity.	L M T Θ K P	/ m t θ k		

(b) Derived Units.

I. Geometric and Dynamic Units.

Name of Unit.	Conversion Factor.
Area. Volume. Angle. Solid Angle. Curvature. Tortuosity. Specific curvature of a surface. Angular velocity. Angular acceleration. Linear velocity. Linear acceleration. Density. Moment of inertia. Intensity of attraction, or "force at a point." Absolute force of a centre of attraction, or "strength of a centre." Momentum. Moment of momentum, or angular momentum. Force. Moment of a couple, or torque. Intensity of stress. Modulus of elasticity. Work and energy. Resilience. Power or activity.	Conversion Factor. 1

II. Heat Units.

Quantity of heat (thermal units). " " (thermometric units). " " (dynamical units). " " (thermometric units). " (thermometric units), or diffusivity. " (dynamical units). Emissivity and imissivity (thermal units). " " (thermometric units), " " (thermometric units). " " (thermometric units). " " (dynamical units). Thermal capacity. Latent heat (thermal units). " " (dynamical units). " " (dynamical units). " " (dynamical units). " " (dynamical units). " " (dynamical units). " " (dynamical units). ### Conversion Factor. ### θ #### θ ###################################		
" (thermometric units). " (dynamical units). Coefficient of thermal expansion. Conductivity (thermal units). " (thermometric units), or diffusivity. " (dynamical units). Emissivity and imissivity (thermal units). " " (thermometric units). " " (dynamical units). " " (dynamical units). Thermal capacity. Latent heat (thermal units). " " (dynamical units). " " (dynamical units). " " θ θ θ θ θ θ θ θ	Name of Unit.	Conversion Factor.
	" (thermometric units). " (dynamical units). Coefficient of thermal expansion. Conductivity (thermal units). " (thermometric units), or diffusivity. " (dynamical units). Emissivity and imissivity (thermal units). " " (thermometric units). " " (dynamical units). Thermal capacity. Latent heat (thermal units). " " (dynamical units). " " (dynamical units). Joule's equivalent. Entropy (heat measured in thermal units).	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

III. Magnetic and Electric Units.

Name of Unit.	Conversion factor for electrostatic system.	Conversion factor for electromag- netic system.
Magnetic pole, or quantity of magnetism. Density of surface distribution of magnetism. Intensity of magnetic field. Magnetic potential. Magnetic moment. Intensity of magnetisation. Magnetic permeability. Magnetic susceptibility and magnetic inductive capacity. Quantity of electricity. Electric surface density and electric displacement. Intensity of electric field. Electric potential and e. m. f. Capacity of a condenser. Inductive capacity. Specific inductive capacity. Electric current.	$m^{\frac{1}{2}} l^{\frac{1}{2}} k^{-\frac{1}{2}}$ $m^{\frac{1}{2}} l^{\frac{1}{2}} k^{-\frac{1}{2}}$ $m^{\frac{1}{2}} l^{\frac{1}{2}} l^{-\frac{1}{2}} k^{\frac{1}{2}}$ $m^{\frac{1}{2}} l^{\frac{1}{2}} k^{-\frac{1}{2}}$ $l^{\frac{1}{2}} l^{\frac{1}{2}} l^{\frac{1}{2}} k^{\frac{1}{2}}$ $m^{\frac{1}{2}} l^{\frac{1}{2}} l^{\frac{1}{2}} l^{\frac{1}{2}} k^{\frac{1}{2}}$ $m^{\frac{1}{2}} l^{\frac{1}{2}} $	m ³ l ³ t ⁻¹ p ³ m ³ l ⁻³ t ⁻¹ p ³ m ³ l ⁻³ t ⁻¹ p ⁻³ m ³ l ⁻³ t ⁻¹ p ⁻³ m ³ l ⁻³ t ⁻¹ p ³ p m ³ l ⁻³ t ⁻¹ p ³ p m ³ l ³ t ⁻² p ³ l ⁻¹ l ² p ⁻¹ l ⁻² t ² p ⁻¹ l m ³ l ³ t ⁻¹ p ⁻³

III. Magnetic and Electric Units.

Name of Unit.	Conversion factor for electrostatic system.	Conversion factor for electromagnetic system.
Conductivity. Specific resistance. Conductance. Resistance. Coefficient of self induction and coefficient of mutual induction. Electrokinetic momentum. Electromotive force at a point. Vector potential. Thermoelectric height and specific heat of electricity. Coefficient of Peltier effect.	$t^{-1} k$ $t k^{-1}$ $l t^{-1} k$ $l^{-1} t k^{-1}$ $t^{-1} t^{2} k^{-1}$ $m^{\frac{1}{2}} l^{\frac{1}{2}} k^{-\frac{1}{2}}$ $m^{\frac{1}{2}} l^{\frac{1}{2}} k^{-\frac{1}{2}}$ $m^{\frac{1}{2}} l^{\frac{1}{2}} k^{-\frac{1}{2}}$ $m^{\frac{1}{2}} l^{\frac{1}{2}} t^{-\frac{1}{2}} k^{-\frac{1}{2}} \theta^{-1}$ $m^{\frac{1}{2}} l^{\frac{1}{2}} t k^{-\frac{1}{2}} \theta$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

EQUIVALENTS OF METRIC AND BRITISH IMPERIAL WEIGHTS AND MEASURES.*

(I) METRIC TO IMPERIAL.

LINEAR MEASURE.	MEASURE OF CAPACITY.
I millimetre (mm.) = 0.03937 in.	I millilitre (ml.) (.001 } = 0.06103 cub. in.
centimetre (.01 m.) = 0.39371 " decimetre (.1 m.) = 3.93708 "	v contilitre (ov litro) _ (0.61027 " "
1 METRE (m.) . = \(\begin{cases} 39.37079 \text{ "} \\ 3.28089917 \text{ ft.} \end{cases} \)	o.07043 gill. I decilitre (.1 litre) = 0.17608 pint.
1.09363306 yds.	I LITRE (1,000 cub.) centimetres or 1 = 1.76077 pints.
(10 m.) = 10.93633 " I hectometre (= 10.93633 "	cub. decimetre)
(100 m.) \ \ \ = 109.30331	I dekalitre (10 litres) . = 2.20097 gallons. I hectolitre (100 ") . = 2.75121 bushels.
(1,000 m.) = 0.62138 mile.	1 kilolitre (1,000 ") . = 3.43901 quarters.
1 myriametre (10,000 m.) = 6.21382 miles.	ı microlitre = 0.001 ml.
1 micron = 0.001 mm.	APOTHECARIES' MEASURE.
	i cubic centi- metre (1) = 0.03527 fluid ounce.
	gramme w't)) (15.43235 grains weight.
SQUARE MEASURE.	1 cub. millimetre = 0.01693 minim.
1 sq. centimetre = 0.15501 sq. in.	AVOIRDUPOIS WEIGHT.
1 sq. decimetre (100 sq. centm.) = 15.50059 sq. in.	ı milligramme (mgr.) . = 0.01543 grain.
1 sq. metre or centi- are (100 sq. dcm.) = { 1.0.76430 sq. ft. 1.19603 sq. yd.	I centigramme (.o. gram) = 0.15432 " I decigramme (.I ") = 1.54324 grains.
I ARE (100 sq. m.) = 119.60333 sq. yds. I hectare (100 ares) = 2.47117 ares	I GRAMME = 15.43235 " I dekagramme (10 gram.) = 5.64383 drams.
or 10,000 sq. m.) \ 2.4/115 acres.	1 hectogramme (100 ") = 3.52739 oz. (2.20462125 lb.
	I KILOGRAMME (1,000 ") = { 15432.34874 grains.
CUBIC MEASURE.	I myriagramme (10 kilog.) = 22.04621 lb. I quintal (100 ") = 1.96841 cwt.
t cub. centimetre	I millier or tonne = 0.98420591 ton.
(c.c.) (1,000 cubic = 0.06103 cub. in. millimetres)	
(c.d.) (1,000 cubic) = 61.02705 """	TROY WEIGHT.
centimetres)	o.03215073 oz. Troy. o.64301 pennyweight.
or stere	(15.43235 grains.
	APOTHECARIES' WEIGHT.
	(0.25721 drachm.
	I GRAMME = 0.77162 scruple.
	3.0,000

Note. — The Metre is the length, at the temperature of oo C., of the platinum-iridium bar deposited with the Board of Trade.

The present legal equivalent of the metre is 39'37079 inches, as above stated. If a brass metre is, however, compared, not at its legal temperature (°° C. or 32° F.), but at the temperature of 62° F., with a brass yard at the temperature also of 62° F., then the apparent equivalent of the metre would be analy 39'38' sinches.

The Kilogramme is the weight in vacuo at °° C. of the platinum-iridium weight deposited with the Board of

Trade.

The Litre contains one kilogramme weight of distilled water at its maximum density (4° C.), the barometer being at 760 millimetres.

^{*} Quoted from sheets issued in 1890 by the Standard Office of the British Board of Trade.

EQUIVALENTS OF METRIC AND BRITISH IMPERIAL WEIGHTS AND MEASURES.

(2) METRIC TO IMPERIAL.

					4					
	L	INEAR MI	EASURE.			М	EAS	URE OF	CAPACITY	r.
	Millimetres to inches.	Metres to feet.	Metres to yards.	Kilo- metres to miles.		Litres to pints.		Dekalitres to gallons.	Hectolitres to bushels.	Kilolitres to quarters.
1 2 3 4 5 6 7 8 9 9	0.0393707 0.0787415 0.1181123 0.1574831 0.1968539 0.2362247 0.2755955 0.3149663 0.3543371	6.5618c 9.84270 13.1236c 16.4045c 19.6854c 22.96629 26.24719	2.18727 3.28090 4.37453 5.46817 6.56180 7.65543 8.74906	0.62138 1.24276 1.86415 2.48553 3.10691 3.72829 4.34968 4.97106 5.59244	1 2 3 4 5 6 7 8 9	1.7607; 3.52152 5.2823; 7.04306 8.8038; 10.5646; 12.3253; 14.08616 15.8469;	4 1 8 5 1 2 1 9 1 1	2.20097 4.40193 6.60290 8.80386 1.00483 3.20580 5.40676 7.60773 9.80870	2.7 5121 5.50242 8.25362 11.00483 13.7 5604 16.50725 19.25846 22.00966 24.76087	3.43901 6.87802 10.31703 13.75604 17.19505 20.63406 24.07307 27.51208 30.95110
	SQUARE MEASURE.					WEI	GHT (Av	oirdupois).		
	Square centimetres to square inches.	Square metres to square feet.	Square metres to square yards.	Hectares to acres.		Milli- grammes to grains.		ogrammes o grains.	Kilo- grammes to pounds.	Quintals to hundred- weights.
1 2 3 4 5	0.15501 0.31001 0.46502 0.62002 0.77503	10.76430 21.52860 32.29290 43.05720 53.82150	1.19603 2.39207 3.58810 4.78413 5.98017	2.47114 4.94229 7.41343 9.88457 12.35572	1 2 3 4 5 6	0.01543 0.03086 0.04630 0.06173 0.07716	308 46: 61; 77	432.34874 864.69748 297.04622 729.39496 161.74370	8.81849	1.96841 3.93682 5.90523 7.87364 9.84206
7 8 9	0.93004 1.08504 1.24005 1.39505	64.58580 75.35010 86.11439 96.87869	7.17620 8.37223 9.56827 10.76430	17.29800 19.76914 22.24029	789	0.09259 0.10803 0.12346 0.13889	1080	594.09244 526.44118 458.78992 891.13866	15.43235	11.81047 13.77888 15.74729 17.71570
	CUBIC	C MEASUR	E.	APOTHE- CARIRS' MEASURE.	RS' (cont.) TROY WEIGHT.		APOTHE- CARIES' WEIGHT.			
	Cubic decimetres to cubic inches.	Cubic metres to cubic feet.	Cubic metres to cubic yards.	Cub. centimetres to fluid drachms.		Milliers of tonnes to tons.		Grammes to ounces Troy.	Grammes to penny- weights.	Grammes to scruples.
3 4 5	61.02705 122.05410 183.08115 244.10821 305.13526	35.31658 70.63316 105.94974 141.26632 176.58290	1.30802 2.61604 3.92406 5.23209 6.54011	0.28219 0.56438 0.84657 1.12877 1.41096	1 2 3 4 5	0.98421 1.96841 2.95262 3.93682 4.92103	2 2 3	0.03215 0.06430 0.09645 0.12860 0.16075	0.64301 1.28603 1.92904 2.57206 3.21507	0.77162 1.54323 2.31485 3.08647 3.85809
6 7 8 9	366.16231 427.18936 488.21641 549.24346	211.89948 247.21607 282.53265 317.84923	7.84813 9.15615 10.46417 11.77219	1.69315 1.97534 2.25753 2.53972	6 7 8 9	5.90524 6.88944 7.87369 8.85789	4 5	0.19290 0.22506 0.25721 0.28936	3.8 5809 4.50110 5.14412 5.78713	4.62970 5.40131 6.17294 6.94455

EQUIVALENTS OF BRITISH IMPERIAL AND METRIC WEIGHTS AND MEASURES.

(3) IMPERIAL TO METRIC.

LINEAR MEASURE.

I	$1 \text{ inch } \dots = \begin{cases} 25.399 \\ \text{mod} \end{cases}$	54113 etres.	milli-
I	I foot (12 in.) = 0.3047	9449	metre.
I	I YARD (3 ft.) = 0.9143	38348	66
1	1 pole $(5\frac{1}{2} \text{ yd.})$ = 5.0291	1 me	tres.
I	I chain (22 yd. or) = 20.1164	4	44
I	I furlong (220 yd.) = 201.1643	7	66
1	1 mile (1,760 yd.) . = { 1.6093	1493 tres.	kilo-

SQUARE MEASURE.

1 square inch = \ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
1 sq. ft. (144 sq. in.) = { 9.28997 sq. decimetres.
I SQ. YARD (9 sq. ft.) = $\begin{cases} 0.83609715 \text{ sq.} \\ \text{metres.} \end{cases}$
1 perch $(30\frac{1}{4} \text{ sq. yd.}) = \begin{cases} 25.29194 \text{ sq. metres.} \end{cases}$
1 rood (40 perches) = 10.11678 ares.
I ACRE (4840 sq. yd.) = 0.40467 hectare.
1 sq. mile (640 acres) = $\begin{cases} 258.98945312 \text{ hectares.} \end{cases}$

CUBIC MEASURE.

1 cub. inch = 16.386	617589 cub. centimetres.
1 cub. foot (1728)	o.02832 cub. metre, or 28.31531 cub. decimetres.
I CUB. YARD (27)	= 0.76451342 cub. metre.

APOTHECARIES' MEASURE.

I gallon (8 pints or)	= 4.54346 litres.
I fluid ounce, f 3 (_ § 28.39661 cubic
(8 drachms)	centimetres.
I fluid drachm, f 3 \ _	_ \ 3.54958 cubic
(60 minims)	centimetres.
r minim, m (0.91146) =	\$ 0.05916 cubic
grain weight)	centimetres.

Note. — The Apothecaries' gallon is of the same capacity as the Imperial gallon.

MEASURE OF CAPACITY.

I gill = 1.41983 decilitres.
I pint (4 gills) . . . = 0.56793 litre.
I quart (2 pints) . . = 1.13586 litres. I GALLON (4 quarts) = 4.54345797 "
I peck (2 galls.) . = 9.08692 "
I bushel (8 galls.) . = 3.63477 dekalitres.
I quarter (8 bushels) = 2.90781 hectolitres.

AVOIRDUPOIS WEIGHT.

ı grain	5	64.79895036 grammes	milli-
. 6		grammes	S.
ı dram	. ==	1.77185 gr	ammes.
1 ounce (16 dr.).	. =	28.34954	66
7,000 grains)	}=	0.45359265	kilogr.
)		,
I stone (14 lb.) .	. ===	6.35030	66
I quarter (28 lb.)	$\cdot =$	12.70059	66
I hundredweight !	_ {	50.80238	66
I hundredweight (112 lb.)	= 1	0.50802 qu	intal.
I ton (20 cwt.) .		1.01604754 or tonne	millier
I ton (20 CWL) .		or tonne	

TROY WEIGHT.

1 Troy OUNCE (480) = 31.10350 grammes. grains avoir.) grains avoi...

1 pennyweight (24) = 1.55517 grains)

Note. - The Troy grain is of the same weight as the Avoirdupois grain.

APOTHECARIES' WEIGHT.

1 ounce (8 drachms) = 31.10350 grammes. 1 drachm, 3 i (3 scru-) = 3.88794 ples) 1 scruple, Di (20) = 1.29598 grains)

Note. — The Apothecaries' ounce is of the same weight as the Troy ounce. The Apothecaries' grain is also of the same weight as the Avoirdupois grain.

Note. — The Yard is the length at 62° Fahr., marked on a bronze bar deposited with the Board of Trade.

The Pound is the weight of a piece of platinum weighed in vacuo at the temperature of o° C., and which is also deposited with the Board of Trade.

The GALLON contains 10 lb. weight of distilled water at the temperature of 62° Fahr., the barometer being at 30 inches. The weight of a cubic inch of water is 252.286 grains.

cub. ft.)

EQUIVALENTS OF BRITISH IMPERIAL AND METRIC WEIGHTS AND MEASURES.

(4) IMPERIAL TO METRIC.

LINEAR MEASURE.						MEA	ASURE OF	CAPACIT	γ.
	Inches to millimetres	Feet to metres.	Yards to metres,	Miles to kilo- metres.		Quarts to litres.	Gallons to litres.	Bushels to dekalitres.	Quarters to hectolitres.
3 4 5 6 7 8	25.399541 50.799082 76.198623 101.598164 126.997705 152.397246 177.796787 203.196329 228.595870	26 0.60959 40 0.91438 53 1.21918 66 1.52397 79 1.82876 92 2.13356 06 2.43835	1.82877 2.74315 3.65753 4.57192 5.48630 6.40068 7.31507	1.60931 3.21863 4.82794 6.43726 8.04657 9.65589 11.26520 12.87452 14.48383	1 2 3 4 5 6 7 8 9	1.13586 2.27173 3.49759 4.54346 5.67932 6.81519 7.95105 9.08692 10.22278	4-54346 9.08692 13.63037 18.17383 22.71729 27.26075 31.80421 36.34766 40.89112	3.63477 7.26953 10.90430 14.53907 18.17383 21.80860 25.44336 29.07813 32.71290	2.90781 5.81563 8.72344 11.63125 14.53907 17.44688 20.35469 23.26250 26.17032
	sQ	UARE ME	ASURE.			wı	EIGHT (Av	OIRDUPOIS).	
	Square inches to square centimetres.	Square feet to square decimetres.	Square yards to square metres.	Acres to hectares.		Grains to milligramm			weights to
1 2 3 4 5	6.45137 12.90273 19.35410 25.80547 32.25683	9.28997 18.57994 27.86990 37.15987 46.44984	0.83610 1.67219 2.50829 3.34439 4.18049	0.40467 0.80934 1.21401 1.61868 2.02336	I 2 3 4 5	64.798950 129.597900 194.396851 259.195801 323.994751	56.699 609 85.048 45 113.398	908 0.9071 362 1.3607 316 1.8143	9 1.01605 8 1.52407 7 2.03209
6 7 8 9	38.70820 45.15957 51.61094 58.06230	55.73981 65.02978 74.31974 83.60971	5.01658 5.85268 6.68878 7.52487	2.42803 2.83270 3.23737 3.64204	6 7 8 9	388.793702 453.592652 518.391602 583.190553	255 198.446	579 3.1751 533 3.6287	3.55617 4 4.06419
CUBIC MEASURE.			APOTHE- CARIES' MEASURE.	A	voirdupois (cont.).	TROY V	Veight.	APOTHE- CARIES' WEIGHT.	
	Cubic inches to cubic centimetres.	Cubic feet to cubic metres.	Cubic yards to cubic metres.	Fluid drachms to cubic centi- metres.		Tons to milliers or tonnes.	Ounces to grammes.	Penny- weights to grammes.	Scruples to grammes.
1 2 3 4 5 6	16.38618 32.77235 49.15853 65.54470 81.93088 98.31706	0.02832 0.05663 0.08495 0.11326 0.14158 0.16989 0.19821	0.76451 1.52903 2.29354 3.05805 3.82257 4.58708	3.54958 7.09915 10.64873 14.19831 17.74788	1 2 3 4 5 6 7	1.01605 2.03210 3.04814 4.06419 5.08024 6.09629	31.10350 62.20699 93.31049 124.41398 155.51748 186.62098	1.55517 3.11035 4.66552 6.22070 7.77587 9.33105 10.88622	1.29598 2.59196 3.88794 5.18391 6.47989 7.77587
7 8 9	114.70323 131.08941 147.47558	0.19821 0.22652 0.25484	5.35159 6.11611 6.88062	24.84704 28.39661 31.94619	7 8 9	7.11233 8.12838 9.14443	217.72447 248.82797 279.93147	10.88622 12.44140 13.99657	9.07185 10.36783 11.66381

TABLES FOR CONVERTING U. S. WEIGHTS AND MEASURES.*

(1) CUSTOMARY TO METRIC.

	LINEAR.						CAPAC	CITY.	
	Inches to millimetres.	Feet to metres.	Yards to metres.	Miles to kilometres.		Fluid drams to millimetres or cubic centimetres.	Fluid ounces to millilitres.	Quarts to litres.	Gallons to litres.
1 2 3 4 5 6 7 8 9	25.4001 50.8001 76.2002 101.6002 127.0003 152.4003 177.3004 203.2004 228.6005	0.304801 0.609601 0.914402 1.219202 1.524003 1.828804 2.133604 2.438405 2.743205	0.914402 1.828804 2.743205 3.657607 4.572009 5.486411 6.400813 7.315215 8.229616	1.60935 3.21869 4.82804 6.43739 8.04674 9.65608 11.26543 12.87478 14.48412	1 2 3 4 5 6 7 8 9	3.70 7.39 11.09 14.79 18.48 22.18 25.88 29.57 33.27	29.57 59.15 88.72 118.29 147.87 177.44 207.02 236.59 266.16	0.94636 1.89272 2.83908 3.78543 4.73179 5.67815 6.62451 7.57087 8.51723	3.78543 7.57087 11.35630 15.14174 18.92717 22.71261 26.49804 30.28348 34.06891
		SQUAF	RE.		WEIGHT.				
	Square inches to square centimetres.	Square feet to square decimetres.	Square yards to square metres.	Acres to hectares.		Grains to milli- grammes.	Avoirdu- pois ounces to grammes.	Avoirdu- pois pounds to kilo- grammes.	Troy ounces to grammes.
1 2 3 4 5	6.452 12.903 19.355 25.807 32.258 38.710	9.290 18.581 27.871 37.161 46.452	0.836 1.672 2.508 3.344 4.181 5.017	0.4047 0.8094 1.2141 1.6187 2.0234 2.4281	1 2 3 4 5	64.7989 129.5978 194.3968 259.1957 323.9946 388.7935	28.3495 56.6991 85.0486 113.3981 141.7476	0.45359 0.90719 1.36078 1.81437 2.26796	31.10348 62.20696 93.31044 124.41392 155.51740 186.62088
7 8 9	45.161 51.613 58.065	55.742 65.032 74.323 83.613	5.853 6.689 7.525	2.8328 3.2375 3.6422	7 453.5924 198.4467 3.17515		3.62874	217.72437 248.82785 279.93133	
	•	CUBI	C.	1					
	Cubic inches to cubic centimetres.	Cubic feet to cubic metres.	Cubic yards to cubic metres.	Bushels to hectolitres.		I Gunter's		20.1168 259.000	metres.
1 2 3 4 5	16.387 32.774 49.161 65.549 81.936 98.323	0.02832 0.05663 0.08495 0.11327 0.14158	0.765 1.529 2.294 3.058 3.823 4.587	0.35239 0.70479 1.05718 1.40957 1.76196 2.11436	15	I fathom I nautical I foot I avoir. po	ound =		metres. metres. metre. r7 gramme. logramme.
7 8 9	114.710 131.097 147.484	0.19822 0.22654 0.25485	5.352 6.116 6.881	2.46675 2.81914 3.17154					-

The only authorized material standard of customary length is the Troughton scale belonging to the United States Office of Standard Weights and Measures, whose length at 59°.62 Fahr. conforms to the British standard. The yard in use in the United States is therefore equal to the British yard.

The only authorized material standard of customary weight is the Troy pound of the Mint. It is of brass of unknown density, and therefore not suitable for a standard of mass. It was derived from the British standard Troy pound of 1758 by direct comparison. The British Avoirdupois pound was also derived from the latter, and contains 7,000 grains Troy.

The grain Troy is therefore the same as the grain Avoirdupois, and the pound Avoirdupois in use in the United States is equal to the British pound Avoirdupois.

The British gallon = 4.54346 litres.

The British bushel = 36.3477 litres.

The length of the nautical mile given above and adopted by the U. S. Coast and Geodetic Survey many years ago, is defined as that of a minute of arc of a great circle of a sphere whose surface equals that of the earth (Clarke's Spheroid of 1866).

^{*} Quoted from sheets issued by the United States Office of Standard Weights and Measures.

TABLES FOR CONVERTING U.S. WEIGHTS AND MEASURES.

(2) METRIC TO CUSTOMARY.

	LINEAR.						CA	PAC	ITY.		
	Metres to inches	Metres to feet.	Metres to yards.	Kilometres to miles.		Millilitres or cubic centi- metres to fluid drams.	Centi- litres to fluid ounces.	1	tres to arts.	Deca- litres to gallons	Hecto- litres to bushels.
1 2 3 4 5	39.3700 78.7400 118.1100 157.4800 196.8500	3.28083 6.56167 9.84250 13.12333 16.40417	1.093611 2.187222 3.280833 4.374444 5.468056	0.62137 1.24274 1.86411 2.48548 3.10685	1 2 3 4 5	0.27 0.51 0.81 1.08 1.35	0.338 0.676 1.014 1.353 1.691	3.I 4.2	267 1	2.641; 5.283. 7.925 0.566 3.208	5.6755 1 8.5132 8 11.8510
6 7 8 9	236.2200 275.5900 314.9600 354.3300	19.68500 22.96583 26.24667 29.52750	6.561667 7.655278 8.748889 9.842500	3.72822 4.34959 4.97096 5.59233	6 7 8 9	1.62 1.89 2.16 2.43	2.029 2.367 2.705 3.043	7.3	968 I	5.850: 18.4919 21.1336 23.775	9 19.8642
	SQUARE.			WEIGHT.							
	Square centimetres to square inches.	Square metres to square feet.	Square metres to square yards.	Hectares to acres.		Milli- grammes to grains.	Kilo gramn to grain	nes	Hec gram to our avoird	mes	Kilo- grammes to pounds avoirdupois.
1 2 3 4 5	0.1550 0.3100 0.4650 0.6200 0.7750	10.764 21.528 32.292 43.055 53.819	1.196 2.392 3.588 4.784 5.980	2.471 4.942 7.413 9.884 12.355	1 2 3 4 5	0.01543 0.03086 0.04630 0.06173 0.07716	15433 30862 46293 61720 7716	1.71 7.07 9.43		096	2.20462 4.40924 6.61387 8.81849 11.02311
6 7 8 9	0.9300 1.0850 1.2400 1.3950	64.583 75.347 86.111 96.875	7.176 8.372 9.568 10.764	14.826 17.297 19.768 22.239	6 7 8 9	0.09259 0.10803 0.12346 0.13889	9259 108026 123458 138891	5.49	21.10 24.6 28.2 31.7	918	13.22773 15.43236 17.63698 19.84160
		CUBIC	С.	-			W	EIG	нт.		
	Cubic centimetres to cubic inches.	Cubic decimetres to cubic inches.	Cubic metres to cubic feet.	Cubic metres to cubic yards.			als to		lilliers of the second		Kilogrammes to ounces Troy.
1 2 3 4 5	0.0610 0.1220 0.1831 0.2441 0.3051	61.023 122.047 183.070 244.094 305.117	35.314 70.629 105.943 141.258 176.572	1.308 2.616 3.924 5.232 6.540	1 2 3 4 5	44 66	0.46 0.92 1.39 1.85 2.31		2204.6 4409.2 6613.9 8818.5	2	32.1507 64.3015 96.4522 128.6030 160.7537
6 7 8 9	0.3661 0.4272 0.4882 0.5492	366.140 427.164 488.187 549.210	211.887 247.201 282.516 317.830	7.848 9.156 10.464 11.771	6 7 8 9		3.24	I	3227.7 5432.4 7637.0 9841.6	1	192.9044 225.0552 257.2059 289.3567

By the concurrent action of the principal governments of the world an International Bureau of Weights and Measures has been established near Paris. Under the direction of the International Committee, two ingots were cast of pure platinum-iridium in the proportion of 9 parts of the former to 1 of the latter metal. From one of these a certain number of kilogrammes were prepared, from the other a definite number of metre bars. These standards of weight and length were intercompared, without preference, and certain ones were selected as International prototype standards. The others were distributed by lot, in September, 1889, to the different governments, and are called National prototype standards. Those apportioned to the United States were received in 1890, and are kept in the Office of Standard Weights and Measures in Washington, D. C.

The metric system was legalized in the United States in 1866,

The International Standard Metre is derived from the Mètre des Archives, and its length is defined by the distance between two lines at 0° Centigrade, on a platinum-iridium bar deposited at the International Bureau of Weights and Measures.

The International Standard Kilogramme is a mass of platinum-iridium deposited at the same place, and its weight in vacuo is the same as that of the Kilogramme des Archives.

The litre is equal to a cubic decimetre, and it is measured by the quantity of distilled water which, at its maximum density, will counterpoise the standard kilogramme in a vacuum, the volume of such a quantity of water being, as nearly as has been ascertained, equal to a cubic decimetre.

TABLE 4. - Conversion Factors for Expression of Lengths.

_			CONVE
Dimensions = L.	re.*	Log.	5.206650 5.267939 1.961137 1.484016 0.404833
Dimens	Centimetre.*	No.	1.60935 × 10 ⁶ 1.85327 × 10 ⁶ 9.14400 × 10 3.04801 × 10 2.54000
		Log.	4.801815 4.863104 1.556302 1.079181 7.595165
	Inch.	No.	6.33600 × 104 7.29632 × 104 3.60000 × 10 1.20000 × 10 1
	Foot.	Log.	3.722634 3.783923 0.477121 2.920819 2.515984
		No.	5-28000 × 10 ⁸ 6-8827 × 10 ⁸ 3-00000 1 8-33333 × 10 ⁻² 3-28083 × 10 ⁻²
		Log.	3.245513 3.306802 0 1.522879 2.443697 2.038863
	Yard.	No.	1.76000 × 10 ⁸ 2.02676 × 10 ⁸ 3.33333 × 10 ⁻¹ 2.77778 × 10 ⁻² 1.09361 × 10 ⁻²
	le.	Log.	1.938711 0 4.693198 4.216077 5.136896 6.732061
	Nautical mile.	No.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	ile.	Log.	0.061289 4.774487 4.277366 5.198185 6.793350
	Statute mile.	No.	1.15157 5.68182 × 10 ⁻⁴ 4.754487 1.89394 × 10 ⁻⁴ 4.77366 1.57828 × 10 ⁻⁶ 5.198185 6.21370 × 10 ⁻⁶ 6.793350

* In accordance with the United States Standards the metre is taken as = 39.37 inches.

TABLE 5. - Conversion Factors for Expression of Areas.

-			
Dimensions = L2.	mil.	Log.	15.708540 9.217515 8.262272 6.104910 5.295241
Dimensi	. Circular mil.	No.	0.413299 5.11141 X 10 ⁴⁵ 3.922274 1.65012 X 10 ⁴⁵ 0.809603 1.82925 X 10 ⁴⁵ 0.809609 1.27324 X 10 ⁴⁵ 6.704759 1.97352 X 10 ⁴⁵
	metre.	Log.	10.413299 3.922274 2.968032 0.809669 6.704759
	Square centimetre.	No.	2.59000 × 10 ¹⁰ 8.36127 × 10 ⁸ 9.29030 × 10 ² 6.45163 1 5.06709 × 10 ⁻⁶
	ch.	Log.	9.603630 3.112605 2.158362 0 1.190331 7.895090
	Square inch.	No.	4.01449 × 10 ⁹ 1.29600 × 10 ⁸ 1.44000 × 10 ² 1.55000 × 10 ⁻¹ 7.85398 × 10 ⁻⁷
	ot.	Log.	7.445268 0.954242 0.3.841637 3.031968 9.737727
	Square foot.	No.	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	rd.	Log.	6491025 0 1.045757 4.887395 4.077726 10.782485
	Square yard.	No.	3.09760 × 10 ⁶ 1.11111 × 10 ⁻¹ 7.71605 × 10 ^{-‡} 1.19598 × 10 ^{-‡} 6.06017 × 10 ⁻¹⁹
	mile.	Log.	0 7.508975 8.554732 10.396370 11.586700 16.291460
	Square mile.	No.	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Dimensions = L3.

CONVERSION FACTORS.

TABLE 6. - Conversion Factors for Expression of Volumes.

imetre.	Log.	15.619948 5.883410 4.452046 1.214502
Cubic centimetre.	No.	4405445 4.16825 × 10 ¹⁵ 15.619948 4.668007 7.64555 × 10 ⁵ 5.883410 3.237544 2.83168 × 10 ⁴ 4.452046 1.63871 × 10 1.214502
ch.	Log.	14.405445 4.668907 3.237544 0 2.785498
Cubic inch.	No.	1.167902 1.431364 4.66566 × 10 ⁴ 1.72800 × 10 ⁸ 4.762456 5.547954 6.10236 × 10 ⁻²
ot.	Log.	11.167902 1.431364 0 4.762456 5.547954
Cubic foot.	No.	1.47198 × 10 ¹¹ 2.7000 × 10 1 5.78704 × 10 ⁻⁴ 3.53147 × 10 ⁻⁵
d.	Log.	9.736538 0 2.568636 5.331092 6.116590
Cubic yard.	No.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
aî.	Log.	0 10.263462 12.832098 15.594555 16.380052
Cubic mile.	No.	1.83426 × 10 ⁻¹⁰ 10.263462 6.79357 × 10 ⁻¹² 12.832098 3.94071 × 10 ⁻⁴⁶ 15.594555 2.40796 × 10 ⁻¹⁶ 16.380052

TABLE 7. - Conversion Factors for Expression of Capacities.

-	010	ns.	
Dimensions = L3.	16	Log.	1.452046 2.214502 0.578114 0.657707
Dine	Litres.	No.	2.83168 × 10 1.63872 × 10 ⁻² 3.78542 4.54682
	on.	Log.	.556795 .920407 0 342292
	British gallon.	No.	6.22785 3.60408 × 10 ⁻⁸ 8.32544 × 10 ⁻¹ 1 2.19934 × 10 ⁻¹ 1.
	gallon.	Log.	0.873932 3.636388 0.079593 1.421886
	United States gallon.	No.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	ch.	Log.	3.237544 2.363612 2.443205 1.785498
	Cubic inch.	No.	常
		Log.	0 1.126068 1.205601 2.547954
The state of the s	Cubic foo	No.	2578704 × 10 ⁻⁴ 1.33681 × 10 ⁻¹ 1.60569 × 10 ⁻¹ 3.53147 × 10 ⁻²

* Founded on weight of one cubic inch of water at 62° F. = 252.286 grains, and one British gallon = 10 pounds Avoirdupois.

TABLE 8. -- Conversion Factors for Expression of Masses.*

Dimensions = M.	٠,	Log.	6.006914 5.957696 2.656666 7.811568
Dime	Gramme.	No.	1.01605 × 106 9.07186 × 105 4.53593 × 102 6.47989 × 10-2
		Log.	7.195346 7.146128 3.845098 0
	Grain.	No.	1.56800 × 10 ⁷ 1.40000 × 10 ⁷ 7.00000 × 10 ³ 1 1.54324 × 10
		Log.	3.350248 3.301030 0 4.154902 3.343334
	Pound.	No.	2.24000 × 108 2.00000 × 108 1.42857 × 10 ⁻⁴ 2.2402 × 10 ⁻⁸ 3.343334
	rt Ton.	Log.	0.049218 0 4.698970 8.853872 6.042304
	U. S. or Short Ton. (2000 lbs.)	No.	1.12000 5.00000 × 10 ⁻⁴ 7.14286 × 10 ⁻⁸ 1.10231 × 10 ⁻⁶
	Ton.	Log.	0 1.950782 4.649752 8.804654 7.993086
	British or Long (2240 lbs.)	No.	8.92857 × 10 ⁻¹ 4.46429 × 10 ⁻⁴ 6.37755 × 10 ⁻⁸ 9.84205 × 10 ⁻⁷
S	MITHSON	IAN T	ABLES.

* The French tonne = rooo kilogrammes = rob grammes. The troy pound = 5760 grains. The troy onne = 480 grains. The avoirdupois ounce = 437.5 grains. Troy weight s used for gold, silver, and jewels, except diamonds and pearls, for which the grain is 0.8 troy grain. One carat = 3.2 troy grains.

TABLE 9. -- Conversion Factors for Expression of Moments of Inertia.

Dimensions = ML2.	ome Units.	Log.	5.624698 3.466336 1.779600
Dimens	Centimetre Gramme Units.	No.	4.21402 × 10 ³ 2.92640 × 10 ³ 6.02005 × 10
	Units.	Log	3.845098 1.686735 0 2.220400
	Foot Grain Units.	No.	7,00000 × 10 ³ 4,86111 × 10 1 1,66111 × 10 ⁻²
	Units.	Log.	2.158362 0 <u>2</u> .313264 4.533664
	Inch Pound Units.	No.	1.44000 × 10 ² 2.05714 × 10 ⁻² 3.41715 × 10 ⁻⁴
	Jnits.	Log.	0 3.841637 4.154902 6.375302
	Foot Pound Units.	No.	0.9444 × 10 ⁻⁸ 1.42857 × 10 ⁻⁴ 2.37302 × 10 ⁻⁶

Dimensions = 'T.

TABLE 10. -- Conversion Factors for Expression of Angles.

Dimension = 1.

Radian.		Degree	4°	Hundredth of Circumference.	umference.
No.	Log.	No.	Log.	No.	Log.
1.74533 × 10 ⁻² 5.28319 × 10 ⁻²	0 2.241878 2.798180	5.72958 × 10 3.60000	0.556302	1.59155 × 10 2.77778 × 10 ⁻¹	1.201819 1.443697 0

TABLE 11. — Conversion Factors for Expression of Intervals of Time.

Second.	Log.	4.935326 4.936514 3.556302 1.778151
Mean Solar Second.	No.	3.157175 8.61641 × 10 ⁴ 3.15352 8.64000 × 10 ⁴ 1.778151 3.60000 × 10 ³ 5.2221849 1.0000 × 10
inute.	Log.	3.157175 3.158362 1.778151 0 2.221849
Mean Solar Minute.	No.	1.43607 × 10³ 3.155175 1.44600 × 10³ 3.155362 6.00000 × 10° 1.778151 1.66667 × 10°2 2.221849
our.	Log.	9024 80211 0 21849 13697
Mean Solar Hour.	No.	Ī.998813 2.39345 × 10 1. 2.619789 1.66667 × 10 ⁻² 2.45667 × 10 ⁻² 3.063486 2.77778 × 10 ⁻⁴ 4.4167
Day.	Log.	1.998813 0 2.619789 4.841637 5.063486
Mean Solar Day.	No	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
y. **	Log.	0 2.62097 4.84282 5.06467
Sidereal Day.	No.	1.00274 4.17807 × 10 ⁻² 6.96346 × 10 ⁻⁴ 1.16058 × 10 ⁻⁶

* The sidereal year = 365.2563578 mean solar days.

Dimensions = 1/T.

TABLE 12. - Conversion Factors for Expression of Velocities.

Dimensions = L/T.

ıd.	Log.	1.650347 1.484016 1.443697 0.221849
per secon	7	1.65
Centimetres per second.	No.	4.47040 × 10 3.04801 × 10 2.77778 × 10 1.66667
inute.	Log.	1.428499 1.262167 1.221849 0 1.778151
Metres per minute.	No.	2.68224 × 10 1.82880 × 10 1.66667 × 10 1 6.00000 × 10 ⁻¹
r hour.	Log.	0.206650 0.040318 0 2.778151 2.556302
Kilometres per hour.	No.	1.60934 1.09727 2 6.0000×10^{-2} 3.6000×10^{-2}
ond.	Log.	0.166331 0 T.959681 2.737833 2.515984
Feet per second.	No.	1.46667 9.11344 × 10 ⁻¹ 5.46807 × 10 ⁻² 3.28084 × 10 ⁻²
our.	Log.	0 1.833669 1.793350 2.571501 2.349653
Miles per hour.	No.	1 6.81828 × 10 ⁻¹ 6.21371 × 10 ⁻¹ 3.72821 × 10 ⁻² 2.23694 × 10 ⁻²

TABLE 13. - Conversion Factors for Expression of Angular Velocities (angle / time).

No. Log. Log. Log. No. Log. Log. Log. No. Log. Log.			
Log. 1.778151 3.556303 0.97997 2.758129	second.	Log.	3.241877 1.020028 0.798180 2.221849
Log. 1.778151 3.556303 0.975972 2.75812972	Radians per	No.	1.74533 × 10 ⁻³ 1.04720 × 10 ⁻¹ 6.28319 1.66667 × 10 ⁻²
Log. 1.778151 3.55393 2.7581297 2.758129	ninute.	Log.	7.020028 0.798180 3.576331 0
Log. 1.778151 3.55393 2.7581297 2.758129	Radians per n	No.	1.04720 × 10 ⁻¹ 6.28319 3.76998 × 10 ³ 1 6.00000 × 10
Log. 1.778151 3.556303 0.979972 2.758129	second.	Log.	4.443697 2.221849 0 3.423669 1.201820
Log. 1.778151 3.556303 0.979972 2.758129	Revolutions per	No.	2.77778 × 10 ⁻⁴ 1.66667 × 10 ⁻² 1 2.65258 × 10 ⁻³ 1.59155 × 10 ⁻¹
Log. 1.778151 3.556303 0.979972 2.758129	minute.	Log.	2.221849 0 1.778151 1.201820 0.979972
Log. 1.778151 3.556303 0.979972 2.758129	Revolutions per	No.	1.66667 × 10 ⁻² 6.0000 × 10 1.59155 × 10 ⁻¹ 9.54944
	r hour.	Log.	0 1.778151 3.556303 0.979972 2.758123
No 6.00000 3 60000 9.54944 5.72958	Revolutions per	No.	1 6.00000 × 10 3 60000 × 10³ 9.54944 5.72958 × 10²

Dimensions = ML/T.

Dimensions = ML2/T.

TABLE 14. - Conversion Factors for Expression of Momentum.

		42.40
Gramme Juits.	Log.	7.608044 4.140682 0.295584 5.000000
Centimetre Gramme Second Units.	No.	4.05549×10 ⁷ 1.38255×10 ⁴ 1.97508 1.00000×10 ⁵
		4.05549 × 1.38255 × 1.97508 1.00000 ×
ramme nits.	Log.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Metre Kilogramme Second Units.	6.	X X 10°2 X 10°5 X 10°5
Me	Z	4.05549 × 10 ² 1.38255 × 10 ⁻¹ 1.97508 × 10 ⁻⁵ 1.00000 × 10 ⁻⁵
econd	Log.	7.312459 3.845098 4.704416 1.704416
Foot Grain Second Units.	No.	×× ×× 10°7 × 10°8 × 10°4 × 10°
Fo	Z	2.05333 7.00000 1 5.06309 5.06309
second	Log.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Foot Pound Second Units.	9.	× 10.4 × 10.4 × 10.5
Foo	No.	2.93333 × 10 ³ 1.42857 × 10 ⁻⁴ 7.23300 × 10 ⁻⁵
Units.	Log.	0 .532639 .657541 .391956
Mile Ton Hour Units. (One to π = 2000 lbs.)		1,40909 × 10 ⁻⁴ 1,87013 × 10 ⁻⁸ 1,46580 × 10 ⁻⁸ 1,46580 × 10 ⁻⁸
Mile T	No.	3,40909 × 10 ⁻¹ 4 4,87013 × 10 ⁻⁸ 8 2,46580 × 10 ⁻⁸ 3 2,46580 × 10 ⁻⁸ 8

TABLE 15. - Conversion Factors for Expression of Moments of Momentum.

bramme nits.	Log.	5.624698 3.466336 1.779600 7.000000
Centimetre Gramme Second Units.	No.	4.21402 × 10 ⁵ 2.92640 × 10 ³ 6.02002 × 10 1.0C000 × 10 ⁷
amme nits.	Log.	2.624698 4.466336 6.779600 7.000000
Metre Kilogramme Second Units.	No.	3.845098 4.21402 × 10 ⁻² 2.624698 .686736 6.02002 × 10 ⁻⁴ 4.466336 6.02002 × 10 ⁻⁶ 6.779600 1.220400 1.00000 × 10 ⁻⁷ 7.000000
in its.	Log.	3.845098 1.686736 0 5.220400
Foot Grain Second Units.	No.	2.158362 7.00000 × 10 ³ 2.313263 4.86112 × 10 3.533664 1.66112 × 10 ⁵ 4.533664 1.66112 × 10 ⁵
nd nits.	Log.	2.158362 2.313263 3.533664 4.533664
Inch Pound Second Units.	No.	1.44000 × 10 ² 2.05714 × 10 ⁻² 3.41716 × 10 ⁻⁴ 3.41716 × 10 ⁻⁴
nd its.	Log.	9.841637 1.154902 1.375302 5.375302
Foot Pound Second Units.	No.	6.94444 × 10 ⁻⁸ 3 1.42857 × 10 ⁻⁴ 2.37302 × 10 ⁻⁵ 6

TABLE 16. Conversion Factors for Expression of Force or Time Rate of Change of Momentum.

Dimensions = ML / T2.

rain Units.	Log.	1.704416 5.704416 3.845098
Foot Grain Second Units.	No.	5.06310 × 10 ⁻¹ 5.06310 × 10 ⁻⁵ 7.00000 × 10 ³
ls. ond Units.)	Log.	5.859318 9.859318 0 4.154902
Poundals. (Foot Pound Second Units.)	No.	7.23300 × 10 ⁻⁵ 7.23300 × 10 ⁻⁵ 1.42854 × 10 ⁻⁴
gramme nits.	Log.	4.000000 0 8.140682 4.295584
Millimetre Milligramme Second Units.	No.	1.00000×10^4 1.38255×10^8 1.97507×10^4
Units.)	Log.	0 4.14682 0.295584
Dynes. (Cm. Gr. Sec. Units.)	No.	1.00000 × 10 ⁻⁴ 1.38255 × 10 ⁴ 1.97507

TABLE 17. - Conversion Factors for Expression of Linear Accelerations.

Dimensions = L/TY.

res r sec.	Log.	1.650347 1.872196 1.484016 1.443697 1.665546
Centimetres per sec., per sec.	No.	4.47040 × 10 7.45067 × 10 ⁻¹ 3.27778 × 10 4.62963 × 10 ⁻¹
r, per min.	Log.	1.984801 0.206650 1.818470 1.778151 0
Kilom. { per hour, per min.	No.	0.20655 9.6566 × 10 2.428498 1.60934 0.040318 6.58368 × 10 0.00000 × 10 2.221849 2.16000
r, per sec.	Log.	0.206650 2.428498 0.040318 0 0 2.221849 2.556302
Kilom. { per hour, per sec.	No.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
r sec.	Log.	0.166331 0.166331 0.1.959681 2.181530 2.515984
Feet per sec., per sec.	No.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
, per min.	Log.	1.778151 0 1.611820 1.571502 1.571502 1.793350 0.127804
Miles { per hour, per min.	No.	.00000 X IO .00001 X IO 72824 X IO .21371 X IO-1
, per sec. per hour.	Log.	2.221849 1.833669 1.793350 2.015199 2.349653
Miles { per hour, per sec.	No.	1.66667 × 10 ⁻² 2.221849 6.81818 × 10 ⁻¹ 1.833669 6.31371 × 10 ⁻¹ 1.793350 1.03562 × 10 ⁻² 2.015199 2.23694 × 10 ⁻² 2.349653

TABLE 18. -- Conversion Factors for Expression of Angular Accelerations.

_			
GLE/ I I .	s sec.	Log.	1.020029 3.241877 0.798180 2.221849 4.443697
Dimensions — angle, 14.	Radians per sec., per sec.	No.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	er min,	Log.	2.576331 0.798180 4.354482 1.778151 0 3.556303
	Radians per min., per min.	No.	3.76991 × 10 ² 6.28319 6.00000 × 10 ⁴ 7.50000 × 10 ⁴ 7.500000 × 10 ⁴ 7.50000 × 10 ⁴ 7.500000 × 10 ⁴ 7.500000 × 10 ⁴ 7.500000 × 10 ⁴ 7.5000000 × 10 ⁴ 7.5000000 × 10 ⁴ 7.5000000 × 10 ⁴ 7.5000000 × 10 ⁴ 7.500000000 × 10 ⁴ 7.50000000 × 10 ⁴ 7.500000000 × 10 ⁴ 7.50000000 × 10 ⁴ 7.500000000 × 10 ⁴ 7.50000000 × 10 ⁴ 7.5000000000 × 10 ⁴ 7.5000000000 × 10 ⁴ 7.5000000000000 × 10 ⁴ 7.5000000000000000000000000000000000000
	n., per sec.	Log.	0.798180 1.020028 2.576331 0 2.221849 1.778151
	Radians { per min., per sec.	No.	6.28319 1.04720×10 ⁻¹ 3.76990×10 ² 1.66667×10 ⁻² 6.00000×10
	ons r sec.	Log.	2.221849 4.443697 0 3.423669 5.645517 1.201820
	Revolutions per sec., per sec.	No.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	ons r min.	Log.	1.778151 0 3.556303 0.979971 1.201820 2.758123
	Revolutions per min., per min.	No.	6.00000 × 10 3.60000 × 10³ 9.54930 1.59155 × 10² 5.72958 × 10²
	, per sec. per min.	Log.	0 2.221849 1.778151 1.201820 3.423669 0.979971
	Rev. { per min., per sec.	No.	1.66667 × 10 ⁻² 2.221849 6.00000 × 10 1.778151 1.59155 × 10 ⁻¹ 1.201850 2.65258 × 10 ⁻³ 3.423669 9.54930 0.979971

TABLE 19. — Conversion Factors for Expression of Linear and Angular Accelerations, when the Time Unit only changes.

Mean Solar Day.		Mean Solar Hour.	Iour.	Mean Solar Minute.	Minute.	Mean Solar Second.	econd.	Sidereal Day.	Jay.	Sidereal Second.	second.
No. Lo	Log.	No.	Log.	No.	Log.	No.	Log.	No.	Log.	No.	Log.
5.76cox 10 ² 2.76c422 2.07360 × 10 ³ 6.316725; 3 7.46496 × 10 ³ 9.873027 1. 1.05348 0.002375 1. 7.50589 × 10 ³ 9.875402 1.	0 00422 6725 3027 3375 5402	1.73611×10-3 3,60000×10³ 1.29600×10³ 1.74563×10-3 1.30311×10²	3.556302 7.112655 3.241952 7.114980	4.82253 × 10 ⁻⁷ 2.77778 × 10 ⁻⁴ 3.60000 × 10 ³ 4.84897 × 10 ⁻³ 3.61974 × 10 ³	7.683275 4.443697 3.556302 7.685550 3.558677	1.33961 × 10 ⁻¹) 7.71605 × 10 ⁻⁸ 2.77773 × 10 ⁻⁴ 1.34694 × 10 ⁻¹ .	10.126972 8.887395 4.443697 0.002375	9.94547 × 10 ⁻¹ 5.72859 × 10 ² 2.06229 × 10 ⁶ 7.42425 × 10 ⁹ 7.46496 × 10 ⁹	1.997625 2.758048 6.314350 9.870653 9.873027	$\begin{array}{c} \begin{array}{c} .73611 \times 10^{-3} \\ 1.73611 \times 10^{-3} \\ 3.536302 \times 10^{-3} \\ 1.12655 \times 10^{-3} \\ 3.54950 \times 10^{-3} \\ 1.12655 \times 10^{$	10.124598 8.885020 4.441323 1.997625 10.126972

TABLE 20. — Conversion Factors for Expression of Stress or Force per Unit Area. (Gravitation Measure.)

Dimensions = M/LT.

mercury at.	Log.	4.063847 2.555236 0.713599 2.866602 0.404834
Centimetres of mercury at o° Cent.	No.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
rcury nt.	Log.	3.659013 2.150402 0.308765 2.461768 1.595166
Inches of mercury at oo Cent.	No.	4.56050 × 10 ³ 1.41385 × 10 ⁻² 2.03594 2.89579 × 10 ⁻² 3.93701 × 10 ⁻¹
square e.	Log.	5.197245 1.688634 1.846997 0 1.538232 1.133398
Grammes per square centimetre.	No.	1.57487 × 10 ⁵ 4.88241 × 10 ⁻¹ 7.03067 × 10 3.45328 × 10 1.35956 × 10
quare	Log.	3.350248 3.841637 0 2.153003 1.691235 1.286401
Pounds per square inch.	No.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
square	Log.	5.508610 2.158362 0.311365 1.849598 1.444764
Pounds per square foot.	No.	3.22560 × 10 ⁵ 1.44000 × 10 ² 2.04817 7.07290 × 10 2.78461 × 10
re inch.	Log.	0 4.649752 6.802755 4.340987 5.936153
Tons per square inch. One ton = 2240 lbs.	No.	3.10019 × 10° 649138 4.46429 × 10° 4 4.6497 5.34973 × 10° 6.8027 2.19274 × 10° 4.34998 8.63283 × 10° 5.93619

TABLE 21. — Conversion Factors for Expression of Power, Rate of Working, or Activity. (Gravitation Measure.) Dimensions = ML2/T3.

rtimetres	Log.	6.881045 4.140682 2.362531 6.875061 3.221849
Gramme Centimetres per second.	No.	7.60403 × 10 ⁶ 1.38255 × 10 ⁴ 2.30425 × 10 ² 7.50000 × 10 ⁶ 1.66667 × 10 ³
Metres le.	Log.	3.659196 0.918833 1.140682 3.653213 4.778151
Kilogramme Metres per minute.	No.	4.56242 × 10 ⁸ 8.29531 1.38252 × 10 ⁻¹ 4.50000 × 10 ⁸ 6.00000 × 10 ⁻⁴
sval.*	Log.	0.005984 3.265621 5.487470 0 4.346787 7.124939
Force de cheval.*	No.	1.01387 1.84340 × 10 ⁻⁸ 3.07241 × 10 ⁻⁵ 2.22222 × 10 ⁻⁴ 1.33333 × 10 ⁻⁷
r minute.	Log.	4.518514 0.778151 4.512530 0.859328 3.637479
Foot Pounds per minute.	No.	3,30000 × 10 ⁴ 6,00000 × 10 1 3,25485 × 10 ⁴ 7,23327 4,33990 × 10 ⁻⁸
r second.	Log.	2.740363 0 2.221849 2.734379 1.081166 5.859319
Foot Pounds per second.	No.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
rer.	Log.	3.259637 5.481486 1.994016 4.340804 7.118955
Horse power.	No.	1.81818 × 10 ⁻⁸ 3-259537 3-03030 × 10 ⁻⁶ 5-481486 9-86319 × 10 ⁻¹ 1.994016 2.19182 × 10 ⁻⁴ 4.34884 1.31599 × 10 ⁻⁷ 7.118955

* One force de cheval = 75 kilogramme metres per second.

TABLE 22. - Conversion Factors for Expression of Work or Energy. (Gravitation Measure.)

ML2/T2.	timetres.	Log.	7.490930 7.441712 4.140682 0.295584 5.000000
Dimensions = ML2/T2.	Gramme Centimetres.	No.	3.09691 × 10 ⁷ 2.76540 × 10 ⁷ 1.38255 × 10 ⁴ 1.097507 1.00000 × 10 ⁵
.0.	Kilogramme Metres.	Log.	2.490930 2.441712 1.140682 5.295584 0 5.000000
ARTHUR GET CORNORS AND LANGUAGE OF TOTAL OF LINES OF CARACTERIOR MEGABLICS.		No.	3.09691 × 10 ² 2.76510 × 10 ² 1.38255 × 10 ⁻¹ 1.97507 × 10 ⁻⁵ 1.00000 × 10 ⁻⁶
more y.	Foot Grains,	Log.	7.195346 7.146128 3.845098 4.704416 1.704416
		No.	1.56800 × 10 ⁷ 1.40000 × 10 ³ 7.00000 × 10 ⁸ 2. 06310 × 10 ⁴ 5.06310 × 10 ⁴
TO THE PARTY OF TH	Foot Pounds.	Log.	3.350248 3.301030 6.859318 5.859318
		No.	2.24000 × 10 ⁸ 2.0000 × 10 ⁸ 1.428 54 × 10 ⁻⁴ 7.23300 × 10 ⁻⁵
-	is.	Log.	0.049218 0.049218 4.698970 8.558288 8.558288
	Foot Tons. (One ton = 2000 lbs.)	No.	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	Foot Tons. (One ton $= 2a40$ lbs.)	Log.	0 1.950782 4.649752 8.804654 3.509070 8.509070
		No.	8.92857 × 10 ⁻¹ 4.46429 × 10 ⁻⁴ 6.37755 × 10 ⁻⁸ 3.22902 × 10 ⁻⁸ 3.22902 × 10 ⁻⁸

TABLE 23. — Conversion Factors for Expression of Film or Surface Tension. (Gravitation Measure.)

linear e.	Log.	1.172650 2.251832 2.406734 0
Grammes per centimetr	No.	1.48816×10 1.78579×10² 2.55113×10²²
ear inch.	Log.	2.765917 3.845098 0 1.593266
Grains per line	No.	5.83333 × 10 ² 7.00000 × 10 ³ 1 3.91983 × 10
ar inch.	Log.	2.920819 0 4.154902 3.748168
Pounds per line	No.	8.3333 × 10 ⁻² 1.42854 × 10 ⁻⁴ 5.59976 × 10 ⁻⁸
ar foot.	Log.	0 1.079181 3.234083 2.827349
Pounds per line	No.	1.20000 × 10 1.71428 × 10 ⁻³ 6.71971 × 10 ⁻²
	Pounds per linear foot. Grains per linear inch. Grains per linear inch. Grains per linear centimetre.	Pounds per linear inch. Grains per linear inch. Grammes per linear centimetre. No. Log. No. Log. No.

TABLE 24. — Conversion Factors for Expression of Power, Rate of Working or Activity. (Absolute Measure.) Dimensions = ML2/T3.

(g = 981)	Log.	5.757969 10.133271 3.133271 0.005984
Force de cheval. (g = 981)	No.	5.72755 × 10 ⁻⁵ 1.35916 × 10 ⁻¹) 1.35916 × 10 ⁻³ 1.01387
(186 = g)	Log.	-5.751985 10.127287 3.127287 0 1.994016
Horse power. (g = 981)	No.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	Log.	2.624698 7.000000 0 2.872713 2.866730
Watts.	No.	5.624698 4.21403 × 10 ⁻² 7 7.00000 × 10 ⁻⁷ 7 9.872713 7.45956 × 10 ² 2 9.866730 7.35750 × 10 ² 2
d.	Log.	5.624698 0 7.000000 9.872713 9.866730
Centimetre Dynes or Ergs per second.	No.	
r second.	Log.	6.375302 1.375302 4.248015 4.242031
Foot Poundals per second.	No.	2.37302 × 10 ⁻⁶ 2.37302 × 10 1.77013 × 10 ⁴ 1.74595 × 10 ⁴

TABLE 25. -- Conversion Factors for Expressing Work or Energy. (Absolute Measure.)

imetres.	Log.	2.633029 3.008331 4.008331 4.140682
Gramme Centimetres.	No.	4.29565 × 10 ² T.01937 × 10 ⁻³ 1.01937 × 10 ⁴ 1.38255 × 10 ⁴
= 32.18504)	Log.	2.492347 8.867649 1.867649 5.859318
Foot Pounds. (g = 32.18504)	No.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	Log.	2.624698 7.000000 0.132351 5.991669
Joules.	No.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
re Dynes.	Log.	5.624698 4 7.000000 7.132351 1 2.991669 9.
Ergs or Centimetre Dynes.	No.	4.21403×10^{5} 1.00000×10^{7} 1.35629×10^{7} 9.81000×10^{2}
als.	Log.	6.375302 1.375302 1.507653 3.366971
Foot Poundals.	No.	2.37302 × 10 ⁻⁶ 6.375302 2.37302 × 10 3.21850 × 10. 2.32794 × 10 ⁻⁸ 3.366971

Dimensions = M / T2.

Dimensions = M / LT2. TABLE 26. -- Conversion Factors for Expression of Stress or Porce per Unit of Area. (Absolute Measure.)

Poundals per square foot.	are foot.	Poundals per square inch.	uare inch.	Dynes per square centimetre.	centimetre.	Megadynes per square metre.	quare metre.
No.	Log.	No.	Log.	No.	Log.	No.	Log.
1.44000 × 10 ² 6.71971 × 10 ⁻² 6.71971	2.158362 2.827349 0.827349	6.94444 × 10 ⁻⁸ 4.66646 × 10 ⁻⁴ 4.66646 × 10 ⁻²	3.841638 0 4.668987 2.668987	2.14295 × 10° 2.14295 × 10° 1.00000 × 10°	1.172651 3.331013 0 2.000000	1.48816×10 ⁻¹ 2.14295×10 1.00000×10 ⁻²	1.17265t 1.331013 2.000000

TABLE 27. - Conversion Factors for Expression of Film or Surface Tension. (Absolute Measure.)

inear cm.	Log.	0.744179 3.008331 2.406734 0
Grammes per linear cm. (g = 981 cms. per sec.)	No.	5.54854 1.01937 × 10 ⁻⁸ 2.55114 × 10 ⁻²
ec., per sec.)	Log.	2.337445 2.601597 0 1.593266
Grains per linear inch. (g = 981 cms. per sec.)	No.	$\begin{array}{c} 2.17490 \times 10^{2} \\ 3.9953 \times 10^{2} \\ \hline 3.91981 \times 10 \end{array}$
ar cm.	Log.	3.735848 0 1.398403 2.991669
Dynes per linear cm.	No.	5.44312×10^{3} 2.50267×10^{-1} 9.81000×10^{2}
ear inch.	Log.	0 4.264152 3.662556 1.255821
Poundals per linear inch.	No.	1.83723 × 10 ⁻¹ 4.59786 × 10 ⁻³ 1.80228 × 10 ⁻³

TABLE 28. - Conversion Factors for Expression of Densities.

Dimensions - M /I.3

bic centim.	Log.	10.337748 2.204620 1.442164 3.597066
Grammes per cubic centim.	No.	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
ic inch.	Log.	8.740683 0.607554 3.845098 2.402934
Grains per cubic inch.	No.	5.50405 × 10 ⁻⁸ 4.05093 7.00000 × 10 ⁸ 1 2.52891 × 10 ²
bic inch.	Log.	12.895584 4.762456 0 4.154902 2.557836
Pounds per cubic inch.	No. Log.	7.86293 × 10 ⁻¹² 5.78704 × 10 ⁻⁴ 1.42857 × 10 ⁻⁴ 3.61274 × 10 ⁻²
bic foot.	Log.	8.133128 0 3.237544 1.392446 1.795380
Pounds per cubic foot.	No.	1.35872×10^{-8} 1.72800×10^{3} 2.46857×10^{-1} 6.24281×10^{-1}
sic mile.	Log.	7.86872 11.104415 7.259317 9.662252
Tons per cubic mile. 2000 pounds == 1 ton.	No.	7.35990 × 10 ⁷ 1.27179 × 10 ¹¹ 1.8168 5 × 10 ⁷ 4.59466 × 10 ⁹

TABLE 29. - Conversion Factors for Expression of Specific Electrical Conductance.

	1	
of a Cubic	Log.	4.501891 7.256378 5.104910 4.104910
Conductance of a Cubic Centimetre.*	No.	3.17607 × 10 ⁴ 1.80459 × 10 ⁷ 1.27324 × 10 ⁵ 1.27324 × 10 ⁴
a Metre.*	Log.	0.396981 3.151468 1.000000 0 5.895090
Conductance of a M (d = 1 mm.)	No.	2.49448 1.41732 × 108 1.00000 × 10 2 7.85398 × 10 ⁻⁵
Kilometre.*	Log.	1.396981 2.151368 0 1.00000 6.895090
Conductance of a Yard.* Conductance of a Kilometre.* Conductance of a Metre.* (d = one mil.)	No.	2:49448 × 10 ⁻¹ 1:41732 × 10 ² 1:00000 × 10 ⁻¹ 7:85398 × 10 ⁻⁶
a Yard.*	Log.	3.245513 0 3.848532 4.848532 8.743622
Conductance of a V (d = one mil.)	No.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
a Mile.*	Log.	2.7.54487 0.663019 1.663019 5.498109
Conductance of a Mile.* (d = 1 inch.)	No.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

* Taken as unit.

TABLE 30. - Conversion Pactors for Expression of Electrolytic Deposition.

Dimensions = M/T.	er minute.	Log.	3.589719 1.656666 2.778151
Dimen	Kilogrammes per minute.	No.	3.88793 × 10 ⁻³ 4.53593 × 10 ⁻¹ 6.0000 × 10 ⁻²
1	second.	. Log.	2.811568 · 0.878515 0
	Grammes per second.	No.	6.47989 × 10 ⁻² ·
	nute.	Log	3.933053 0.1.21485 0.343334
	Pounds per minute.	No.	8.57143×10-8
	cond.	Log.	2.066947 1.188432 2.410281
	Grains per second.	No.	1.16667 × 10 ² 1.54323 × 10 2.57206 × 10 ²
8	MITHS	ONIAN	TABLES.

TABLE 31. -- Conversion Factors for Expression of Quantities of Heat.

Dimensions = MO.	ee C.)	Log.	0.343334 3.343334 1.745727
Dimê	(Pound degree C.)	No.	2.20462 2.20462 × 10-8 5.56836 × 10-1
,	al Unit. se F.)	Log.	0.598607 3.598607 0.254273
	British Thermal Unit. (Pound degree F.)	No.	3.96832 3.96832×10-3 1.79586
	Calorie. e C.)	Log.	3.00000 0 2.401393 2.656666
	Therm, or Small Calorie. (Gramme degree C.)	No.	1,00000 × 108 2,51996 × 104 4,53593 × 109
	gree C.)	Log.	3.00000 1.401393 1.656666
	Calorie. (Kilogramme degree C.)	No.	1.0000 × 10-8 2.51996 × 10-1 4.53593 × 10-1

TABLE 32. - Conversion Factors for Expression of Temperatures.

Dimension = 0.

Centigrad	Centigrade.		renheit.*	Réaumur.	
No.	Log.	No.	Log.	No.	Log.
5.55556 × 10 ⁻¹	0 1.744727 0.096910	1.80000 1 2.25000	0.255272 0 0.352182	8.00000 × 10 ⁻¹ 4.44444 × 10 ⁻¹	ī.903090 ī.647817 O

^{*} The zero of the Fahrenheit scale is 32° below the freezing point of water.

In many of the derived units for the measurement of physical quantities, the unit of time may be taken as constant, because it is seldom that any other unit than the second is used. This is the case, in particular, for the electric and magnetic units. Tables 33-37 below, giving the factors for the conversion of units depending on different dimensional equations in M and L from one set of fundamental units to another, will be found sufficient for almost all cases.

TABLE 33. - Electric Displacement, etc.

Dimensions = $M^{\frac{1}{2}}L^{-\frac{3}{2}}\Gamma^n$.

	Foot Grain Second Units.		mme nits.	Centimetre Gramm Millimetre Milligram	
No.	Log.	No.	Log.	No.	Log.
1 6.61058 × 10 ⁻¹ 6.61058 × 10 ²	0 1.820240 2.820240	1.51273 1 1.00000 × 108	0.179760 0 3.000000	1.51273 × 10 ⁻⁸ 1.00000 × 10 ⁻⁸	3.179760 3.000000 0

TABLE 34. - Surface Density of Magnetism, etc.

_		
dillimetre Milligramme Second Units.	Log.	0.663776 1.000000 2.000000
Millimetre Milligramme Second Units.	No.	4.61079 1.00000 × 10 1.00000 × 10 ²
ramme nits.	Log.	2.663776 1.000000 0 2.00000
Centimetre Gramme Second Units.	No.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
nme iits.	Log.	1.663776 0 1.000000 1.000000
Metre Gramme Second Units.	, o Z	4.61079 × 10 ⁻¹ 1.00000 × 10 ⁻¹ 1.00000 × 10 ⁻¹
n its.	Log	0.336224 I.336224 I.336224
Foot Grain Second Units.	No.	2.16832 2.16882 × 10 2.16882 × 10 ⁻¹

TABLE 35. - Intensity of Magnetization,* etc.

Dimensions = $M^{\frac{1}{2}}L^{\frac{1}{2}}T^n$.

lligramme Jnits.	Log.	2.147792 3.000000 2.000000
Millimetre Milligramme Second Units.	No.	1.40538 × 10 ² 1.00000 × 10 ³ 1.00000 × 10 ²
ramme iits.	Log.	0.147792 1.000000 0 2.000000
Centimetre Gramme Second Units.	No.	1.40538 1.00000 × 10 1.00000 × 10 ⁻²
nme nits.	Log.	T.147792 0 T.000000 3.000000
Metre Gramme Second Units.	No.	0 52208 52208 1.00000 × 10 ⁻¹ 52208 1.00000 × 10 ⁻³
n ts.	Log.	0.852208 1.852208 3.852208
Foot Grain Second Units.	No.	7.11554 7.11554 × 10 ⁻¹ 7.11554 × 10 ⁻³

* In electrostatic units. For electromagnetic units take table 34.

TABLE 36. - Electric Potential, etc.

lligramme Inits.	Log.	4.631808 6.000000 3.000000
Millimetre Milligramme Second Units.	No.	4.28359 × 104 1.00000 × 10 ⁶ 1.00000 × 10 ³
ramme nits.	Log.	1.631808 3.000000 3.000000
Centimetre Gramme Second Units.	No.	4.28359 × 10 1.00000 × 10 ³ 1 1.00000 × 10 ⁻³
nme iits.	Log.	2.631808 0 3.00000 6.000000
Metre Gramme Second Units.	No.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
n ts.	Log.	0 1.368192 0.368192 5.368192
Foot Grain Second Units.	No.	2.33449 × 10 2.33149 2.33449 × 10 ⁻⁶

TABLE 37. - Magnetic Moment, etc.

T'n.	9	Ď.	.115823 .000000 .000000
$= M^{\frac{1}{2}}\Gamma^{\frac{1}{2}}$	filligramm Units.	Log.	104
Dimensions $= M^{\frac{6}{2}}L^{\frac{6}{8}}T^n$.	Millimetre Milligramme Second Units.	No.	1.30564 × 10 ⁷ 1.00000 × 10 ⁵ 1.00000 × 10 ⁴
	Framme nits.	Log.	3.115823 1.000000 0 7.000000
тарын эт. — жарасыс жошен, ою.	Centimetre Gramme Second Units.	No.	1.30564 × 10 ³ 1.00000 × 10 ⁻⁴ 1.00000 × 10 ⁻⁴
	mme nits.	Log.	2.115823 0 1.ccocco
	Metre Gramme Second Units.	No.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	n ts.	Log.	1.884177 4.884177 8.884177
	Foot Grain Second Units.	No.	1 7.65908 × 10 7.65908 × 10 ⁻⁴ 7.65908 × 10 ⁻⁸

TABLE 38: HYPERBOLIC FUNCTIONS.*

Hyperbolic sines.

Values of $\frac{e^x-e^{-x}}{2}$.

æ	0	1	2	3	4	5	6	7	8	9
0.0	0.0000	0.0100	0.0200	0.0300	0.0400	0.0500	0.0600	0.0701	0.0801	0.0001
0.1	.1002	.1102	1	.1304	.1405		1 -	.1708	.1810	0.0901
0.2	.2013	.2115		.2320	.2423	.2526	.2629	.2733	.2837	.2941
0.3	.3045	.3150	·3255 ·4325	.3360	.3466			.3785	.3892	.4000
0.4	.4100	.4210	4325	-44,34	•4543		1	.4875	.4986	.5098
0.5	0.5211	0.5324	0.5438	0.5552	0.5666		0.5897	0.6014	0.6131	0.6248
0.6	.6367	.6485	.6605	.6725	.6846		.7090	.7213	.7336 .8615	.7461
0.8	.7 586 .8881	.9015	.9150	.9286	.9423		.9700	.9840	.9981	.8748
0.9	1.0265	1.0409	1.0554	1.0700	1.0847	1.0995	1.1144	1.1294	1.1446	1.1598
1.0	1.1752	1.1907	1.2063	1.2220	1.2379	1.2539	1.2700	1.2862	1.3025	1.3190
1.1	.3356	.3524	.3693	.3863	.4035	.4208	.4382	.4558	•4735	.4914
1.2	.5095	.5276	.5460	.5645	.5831	.6019	.6209	.6400	.6593	.6788
1.3	.6984	.7182	.7381	.7583	.7786		.8198	.8406	.8617	.8829
1.4	.9043	.9259	•9477	.909/	.9919	2.0143	2.0309	2.0597	2.002/	2.1059
1.5	2.1293	2.1529	2.1768	2.2008	2.2251	2.2496	2.2743	2.2993	2.3245	2.3499
1.6	.37 56	.6740	.4276	.4540	.4806		.5346	.5620	.5896	.0175
1.8	.9422	.9734	3.0049	3.0367	3.0689	3.1013	3.1340	3.1671	3.2005	3.2341
1.9	3.2682	3.3025	.3372	.3722	.4075	-4432	.4792	.5156	.5523	.5894
2.0	3.6269	3.6647	3.7028	3.7414	3.7803	3.8196	3.8593	3.8993	3.9398	3.9806
2.I	4.0219	4.0635	4.1056	4.1480	4.1909	4.2342	4.2779	4.3221	4.3666	4.4117
2.2	4.4571	4.5030	4.5494	4.5962	4.6434	4.6912	4.7394	4.7880	4.8372	4.8868
2.3	4.9370 5.4662	4.9876	5.0387	5.6354	5.1425	5.1951	5.2483	5.3020 5.8689	5.3562 5.9288	5.4109
						14	5.009/			
2.5 2.6	6.0502	6.1118	6.1741	6.2369	6.3004	6.3645	6.4293	6.4946	6.5607	6.6274
2.7	6.6947 7.4063	7.4814	6.8315	6.9009 7.6338	6.9709 7.7112	7.0417	7.1132	7.1854	7.2583 8.0285	7.3319
2.8	7.4063	7.4814 8.2749	7·5572 8.3586	8.4432	7.7112 8.5287	7.7894 8.6150	7.8683	7.9480 8.7902	8.8791	8.9689
2.9	9.0596	9.1512	9.2437	9.3371	9.4315	9.5268	9.6231	9.7203	9.8185	9.9177
3.0	10.018	10.119	10.221	10.324	11.429	11.534	11.640	11.748	11.856	11.966
3.1	11.076	11.188	11.301	11.415	11.530	12.647	12.764	12.883	12.003	12.124
3.2	12.246	12.369	12.494	12.620	12.747	12.876	13.006	13.137	13.269	13.403
3.3	13.538	15.116	15.268	13.951	15.577	14.234	14.377	14.522	16.214	16.378
3.5 3.6	16.543	16.709	16.877	17.047	17.219	17.392	17.567	17.744	17.923	18.103
3.7	20.211	20.415	20.620	20.828	21.037	21.249	21.463	21.679	21.897	22.117
3·7 3.8	22.339	22.564	22.791	23.020	23.252	23.486	23.722	23.961	24.202	24.445
3.9	24.691	24.939	25.190	25.444	25.700	25.958	26.219	26.483	26.749	27.018
4.0	27.290	27.564	27.842	28.122	28.404	28.690	28.979	29.270	29.564	29.862
4.1	30.162	30.465	30.772	31.081	31.393	31.709	32.028	32.350	32.675	33.004
4.2	33.336 36.843	33.671	34.009	34.351 37.966	34.697 38.347	35.046	35.398	35.754 39.515	36.113	36.476
4.4	40.719	41.129	41.542	41.960	42.382	42.808	43.238	43.673	44.112	44.555
4.5	45.003	45.455	45.912	46.374	46.840	47.311	47.787	48.267	48.752	49.242
4.6	49.737	50.237	50.742	51.252	51.767	52.288	52.813	53.344	53.880	54.422
4.7	54.969	55.522	56.080	56.643	57.213	57.788	58.369	58.955	59.548 65.812	60.147
4.8	60.751	61.362	68.498	62.601	63.231	63.866	64.508	65.157 72.010	72.734	73.465
4.9	3/1141	57.010	30.490	59.100	09.002	70.304	71.293	/2.010	72.734	73.403
	* Tables 22-41 are quoted from "Dec Ingenieurs Tacchenhuch" hersucgegeben vom Akademischen Verein (Hütte)									

^{*} Tables 38-41 are quoted from "Des Ingenieurs Taschenbuch," herausgegeben vom Akademischen Verein (Hütte). SMITHSONIAN TABLES.

HYPERBOLIC FUNCTIONS.

Hyperbolic cosines.

Values of $\frac{e^x + e^{-x}}{2}$.

-				1						
æ	0	1	2	3	4	5	6	7	8	9
0.0 0.1 0.2 0.3 0.4	1.0000 .0050 .0201 .0453	1.0001 .0061 .0221 .0484 .0852	1.0002 .0072 .0243 .0516 .0895	1.0005 .0085 .0266 .0549	1.0008 .0098 .0289 .0584 .0984	1.0013 .0113 .0314 .0619	1.0018 .0128 .0340 .0655	1.0025 .0145 .0367 .0692	1.0032 .0162 .0395 .0731	1.0041 .0181 .0423 .0770 .1225
0.5	1.1276	1.1329	1.1383	1.1438	1.1494	1.1551	1.1609	1.1669	1.1730	1.1792
0.6	.1855	.1919	.1984	.2051	.2119	.2188	.2258	.2330	.2402	.2476
0.7	.2552	.2628	.2706	.2785	.2865	.2947	.3030	.3114	.3199	.3286
0.8	.3374	.3464	·3555	.3647	.3740	.3835	.3932	.4029	.4128	.4229
0.9	.4331	4434	·4539	.4645	.4753	.4862	.4973	.5085	.5199	.5314
1.0	1.5431	1.5549	1.5669	1.5790	1.5913	1.6038	.6164	1.6292	1.6421	1.6552
I.I	.6685	.6820	.6956	.7093	.7233	•7374	.7517	.7662	.7808	.7956
I.2	.8107	.8258	.8412	.8568	.8725	.8884	.9045	.9208	.9373	.9540
I.3	.9709	.9880	2.0053	2.0228	2.0404	2.0583	2.0764	2.0947	2.1132	2.1320
I.4	2.1509	.1700	.1894	.2090	.2288	.2488	.2691	.2896	.3103	.3312
1.5	2.3524	2.3738	2.3955	2.4174	2.4395	2.4619	2.4845	2.5073	2.5305	2.5538
1.6	.5775.	.6013	.6255	.6499	.6746	.6995	.7247	.7502	.7760	.8020
1.7	.8283	.8549	.8818	.9090	.9364	.9642	.9922	3.0206	3.0492	3.0782
1.8	3.1075	3.1371	3.1669	3.1972	3.2277	3.2585	3.2897	.3212	.3530	.3852
1.9	.4177	.4506	.4838	.5173	.5512	.5855	.6201	.6551	.6904	.7261
2.0	3.7622	3.7987	3.8355	3.8727	3.9103	3.9483	3.9867	4.0255	4.0647	4.1043
2.1	4.1443	4.1847	4.2256	4.2668	4.3085	4.3507	4.3932	4.4362	4.4797	4.5236
2.2	4.5679	4.6127	4.6580	4.7037	4.7499	4.7966	4.8437	4.8914	4.9395	4.9881
2.3	5.0372	5.0868	5.1370	5.1876	5.2388	5.2905	5.3427	5.3954	5.4487	5.5026
2.4	5.5569	5.6119	5.6674	5.7235	5.7801	5.8373	5.8951	5.9535	6.0125	6.0721
2.5	6.1323	6.1931	6.2545	6.3166	6.3793	6.4426	6.5066	6.5712	6.6365	6.7024
2.6	6.7690	6.8363	6.9043	6.9729	7.0423	7.1123	7.1831	7.2546	7.3268	7.3998
2.7	7.4735	7.5479	7.6231	7.6990	7.7758	7.8533	7.9136	7.0106	8.0905	8.1712
2.8	8.2527	8.3351	8.4182	8.5022	8.5871	8.6728	8.7594	8.8469	8.9352	9.0244
2.9	9.1146	9.2056	9.2976	9.3905	9.4844	9.5791	9.6749	9.7716	9.8693	9.9680
3.0	10.068	10.168	10.270	10.373	10.476	10.581	10.687	10.794	10.902	11.011
3.1	11.121	12.233	11.345	11.459	11.574	11.689	11.806	11.925	12.044	12.165
3.2	12.287	13.410	12.534	12.660	12.786	12.915	13.044	13.175	13.307	13.440
3.3	13.575	14.711	13.848	13.987	14.127	14.269	14.412	14.556	14.702	14.850
3.4	14.999	15.149	15.301	15.455	15.610	15.766	15.924	16.084	16.245	16.408
3.5	16.573	16.739	16.907	17.077	17.248	17.421	17.596	17.772	17.951	18.131
3.6	18.313	18.497	18.682	18.870	19.059	19.250	19.444	19.639	19.836	20.035
3.7	20.236	20.439	20.644	20.852	21.061	21.272	21.486	21.702	21.919	22.139
3.8	22.362	22.586	22.813	23.042	23.273	23.507	23.743	23.982	24.222	24.466
3.9	24.711	24.959	25.210	25.463	25.719	25.977	26.238	26.502	26.768	27.037
4.0	27.308	27.582	27.860	28.139	28.422	28.707	28.996	29.287	29.581	29.878
4.1	30.178	30.482	30.788	31.097	31.409	31.725	32.044	32.365	32.691	33.019
4.2	33.351	33.686	34.024	34.366	34.711	35.060	35.412	35.768	36.127	36.490
4.3	36.857	37.227	37.601	37.979	38.360	38.746	39.135	39.528	39.925	40.326
4.4	40.732	41.141	41.554	41.972	42.393	42.819	43.250	43.684	44.123	44.566
4.5	45.014	45.466	45.923	46.385	46.851	47.321	47·797	48.277	48.762	49.252
4.6	49.747	50.247	50.752	\$1.262	51.777	52.297	52.823	53.354	53.890	54.431
4.7	54.978	55.531	56.089	\$6.652	57.221	57.796	58.377	58.964	59.556	60.155
4.8	60.759	61.370	61.987	62.609	63.239	63.874	64.516	65.164	65.819	66.481
4.9	67.149	67.823	68.505	69.193	69.889	70.591	71.300	72.017	72.741	73.472

HYPERBOLIC FUNCTIONS.

Common logarithms + 10 of the hyperbolic sines.

	0 1 2 3 4 5 6 7 8						-	9		
ae	0					5	ь	7	8	9
0.0	8.——	0000	3011	4772	6022	6992	7784	8455	9036	9548
0.1	0007	0423	0802	1152	1475	1777	2060	2325	2576	2814
0.2	3039	3254	3459	3656	3844	4025	4199	4366	4528	4685
0.3	4836	4983	5125	5264	5398	5529	5656	5781	5902	6020
0.4	9.6136	6249	6359	6468	6574	6678	6780	6880	6978	7074
0.5	9.7169	7262	7354	7444	7533	7620	7707	7791	7875	7958
0.6	8039	8119	8199	8277	8354	8431	8506	8581	8655	8728
0.7	8800	8872	8942	9012	9082	9150	9218	9286	9353	9419
0.8	9485	9550	9614	9678	9742	9805	9868	9930	9992	0053
0.9	10.0114	0174	0234	0294	0353	0412	0470	0529	0586	0644
1.0	10.0701	0758	0815	0871	0927	0982	1038	1093	1148	1203
1.1	1257	1311	1365	1419	1472	1 525	1578	1631	1684	1736
1.2	1788	1840	1892	1944	1995	2046	2098	2148	2199	2250
1.3	2300	2351	2401	2451	2501	2551	2600	2650	2699	2748
1.4	2797	2846	2895	2944	2993	3041	3090	3138	3186	3 ² 34
1.5	10.3282	3330	3378	3426	3474	3521	3569	3616	3663	3711
1.6	3758	3805	3852	3899	3946	3992	4039	4086	4132	4179
1.7	4225	4272	4318	4364	4411	4457	4503	4549	4595	4641
1.8	4687	4733	4778	4824	4870	4915	4961	5007	5052	5098
1.9	5143	5188	5234	5279	5324	5370	5415	5460	5505	5550
2.0	10.5595	5640	5685	5730	5775	5820	5865	5910	5955	5999
2.1	6044	6089	6134	6178	6223	6268	6312	6357	6401	6446
2.2	6491	6535	6580	6624	6668	6713	6757	6802	6846	6890
2.3	6935	6979	7023	7067	7112	7156	7200	7244	7289	7333
2.4	7377	7421	7465	7509	7553	7597	7642	7686	7730	7774
2.5	10.7818	7862	7906	7950	7994	8038	8082	8126	8169	8213
2.6	8257	8301	8345	8389	8433	8477	8521	8564	8608	8652
2.7	8696	8740	8784	8827	8871	8915	8959	9co3	9046	9090
2.8	9134	9178	9221	9265	9309	9353	9396	9440	9484	9527
2.9	9571	9615	9658	9702	9746	9789	9833	9877	9920	9964
3.0	11.0008	0051	0095	0139	0182	0226	0270	0313	0357	0400
3.1	0444	0488	0531	0575	0618	0662	0706	0749	0793	0836
3.2	0880	0923	0967	1011	1054	1098	1141	1185	1228	1272
3.3	1316	1359	1403	1446	1490	1533	1577	1620	1664	1707
3.4	1751	1794	1838	1881	1925	1968	2012	2056	2099	2143
3.5	11.2186	2230	2273	2317	2360	2404	2447	2491	2534	2578
3.6	2621	2665	2708	2752	2795	2839	2882	2925	2969	3012
3.7	3056	3099	3143	3186	3230	3273	3317	3360	3404	3447
3.8	3491	3534	3578	3621	3665	3708	3752	3795	3838	3882
3.9	3925	3969	4012	4056	4099	4143	4186	4230	4273	4317
4.0	11.4360	4403	4447	4490	4534	4577	4621	4664	4708	47 51
4.1	4795	4838	4881	4925	4968	5012	5055	5099	5142	5186
4.2	5229	5273	5316	5359	5403	5446	5490	5533	5577	5620
4.3	5664	5707	5750	5794	5837	5881	5924	5968	6011	6055
4.4	6098	6141	6185	6228	6272	6315	6359	6402	6446	6489
4.5 4.6 4.7 4.8 4.9	6967 7401 7836 8270	6576 7010 7445 7879 8313	6619 7054 7488 7922 8357	6663 7097 7531 7966 8400	6706 7141 7575 8009 8444	6750 7184 7618 8053 8487	6793 7227 7662 8096 8530	6836 7271 7705 8140 8574	6880 7314 7749 8183 8617	6923 7358 7792 8226 8661

HYPERBOLIC FUNCTIONS.

Common logarithms of the hyperbolic cosines.

æ	o	1	2	3	4	5	6	7	8	9
0.0	0.0000	0000	0001	0002	0003	0005	0008	0011	0014	0018
0.1	0022	0026	0031	0037	0042	0049	0055	0062	0070	0078
0.2	0086	0095	0104	0114	0124	0134	0145	0156	0168	0180
0.3	0193	0205	0219	0232	0246	0261	0276	0291	0306	0322
0.4	0339	0355	0372	0390	0407	0426	0444	0463	0482	0502
0.5 0.6 0.7 0.8 0.9	0.0522 0739 0987 1263 1563	0542 0762 1013 1292 1594	0562 0786 1040 1321 1625	0583 0810 1067 1350 1657	0605 0835 1094 1380 1689	0626 0859 1122 1410	0648 0884 1149 1440 1753	0670 0910 1177 1470 1785	0693 0935 1206 1501 1818	0716 0961 1234 1532 1851
1.0	0.1884	1917	1950	1984	2018	2051	2086	2120	2154	2189
1.1	2223	2258	2293	2328	2364	2399	2435	2470	2506	2542
1.2	2578	2615	2651	2688	2724	2761	2798	2835	2872	2909
1.3	2947	2984	3022	3059	3097	3135	3173	3211	3249	3288
1.4	3326	33 ⁶ 5	3403	3442	3481	3520	3559	3598	3637	3676
1.5	0.3715	37 54	3794	3833	3873	3913	3952	3992	4032	4072
1.6	4112	41 52	4192	4232.	4273	4313	4353	4394	4434	4475
1.7	4515	45 56	4597	4637	4678	4719	4760	4801	4842	4883
1.8	4924	49 65	5006	5048	5089	5130	5172	5213	5254	5296
1.9	5337	53 7 9	5421	5462	5504	5545	5587	5629	5671	5713
2.0	0.5754	5796	5838	5880	5922	5964	6006	6048	6090	6132
2.1	6175	6217	6259	6301	6343	6386	6428	6470	6512	6555
2.2	6597	6640	6682	6724	6767	6809	6852	6894	6937	6979
2.3	7022	7064	7107	7150	7192	7235	7278	7320	7363	7406
2.4	7448	7491	7534	7577	7619	7662	7705	7748	7791	7833
2.5	0.7876	7919	7962	8005	8048	8091	8134	8176	8219	8262
2.6	8305	8348	8391	8434	8477	8520	8563	8606	8649	8692
2.7	8735	8778	8821	8864	8907	8951	8994	9037	9080	9123
2.8	9166	9209	9252	9295	9338	9382	9425	9468	9511	9554
2.9	9597	9641	9684	9727	9770	9813	9856	9900	9943	9986
3.0	1.0029	0073	0116	0159	0202	0245	0289	0332	0375	0418
3.1	0462	0505	0548	0591	0635	0678	0721	0764	0808	0851
3.2	0894	0938	0981	1024	1067	1111	1154	1197	1241	1284
3.3	1327	1371	1414	1457	1501	1544	1587	1631	1674	1717
3.4	1761	1804	1847	1891	1934	1977	2021	2064	2107	2151
3.5	1.2194	2237	2281	2324	2367	2411	2454	2497	2 54 I	2584
3.6	2628	2671	2714	2758	2801	2844	2888	2931	297 4	3018
3.7	3061	3105	3148	3191	3235	3278	33 ²²	3365	3408	3452
3.8	3495	3538	3582	3625	3669	3712	3755	3799	3842	3886
3.9	3929	3972	4016	4059	4103	4146	4189	4233	4278	4320
4.0	1.4363	4406	4450	4493	4537	4580	4623	4667	4710	4754
4.1	4797	4840	4884	4927	4971	5014	5057	5101	5144	5188
4.2	5231	5274	5318	5361	5405	5448	5492	5535	5578	5622
4.3	5665	5709	5752	5795	5839	5882	5926	5969	6012	6056
4.4	6099	6143	6186	6230	6273	6316	6360	6403	6447	6490
4.5	1.6533	6577	6620	6664	6707	6751	6794	6837	6881	6924
4.6	6968	7011	7055	7098	7141	7185	7228	7272	7315	7358
4.7	7402	7445	7489	7532	7576	7619	7662	7706	7749	7793
4.8	7836	7880	7923	7966	8010	8053	8097	8140	8184	8227
4.9	8270	8314	8357	8401	8444	8487	8531	8574	8618	8661

Values of e^x and of e^{-x} and their logarithms.

Values of e^x and e^{-x} for values of x intermediate to those here given may be found by adding or subtracting the values of the hyperbolic cosine and sine given in Tables 38-39.

values of											
æ	ex	log ex	æ	ex	log ex	ac	e-x	log e-x			
0.1	1.1052	0.04343	5.1	164.03	2.21490	0.1	0.90484	7.95657			
2	1.2214	08686	2	181.27	25833	2	81873	91314			
3	1.3499	13029	3	200.34	30176	3	74082	86971			
4	1.4918	17372	4	221.41	34519	4	67032	82628			
5	1.6487	21715	5	244.69	38862	5	60653	78285			
0.6 7 8 9 1.0	1.8221 2.0138 2.2255 2.4596 2.7183	0.26058 30401 34744 39087 43429	5.6 7 8 9 6.0	270.43 298.87 330.30 365.04 403.43	2.43205 47548 51891 56234 60577	0.6 7 8 9	0.54881 49659 44933 40657 36788	7.73942 69599 65256 60913 56570			
1.1	3.0042	0.47772	6.1	445.86	2.64920	1.1	0.33287	ī.52228			
2	3.3201	52115	2	492.75	69263	2	30119	47885			
3	3.6693	56458	3	545.57	73606	3	27253	43542			
4	4.0552	60801	4	601.85	77948	4	24660	39199			
5	4.4817	65144	5	665.14	82291	5	22313	34856			
1.6	4.9530	0.69487	6.6	735.10	2.86634	1.6	0.20190	ī.30513			
7	5.4739	73830	7	812.41	90977	7	18268	26170			
8	6.0496	78173	8	897.85	95320	8	16530	21827			
9	6.6859	82516	9	992.27	99663	9	14957	17484			
2.0	7.3891	86859	7.0	1096.63	3.04006	2.0	13534	13141			
2.1	8.1662	0.91202	7.1	1212.0	3.08349	2.1	0.12246	7.08798			
2	9.0250	95545	2	1339.4	12692	2	11080	04455			
3	9.9742	99888	3	1480.3	17035	3	10026	00112			
4	11.0232	1.04231	4	1636.0	21378	4	09073	2.95769			
5	12.1825	08574	5	1808.0	25721	5	08208	91426			
2.6	13.463	1.12917	7.6	1998.2	3.30064	2.6	0.074274	2.87083			
7	14.880	17260	7	2208.3	34407	7	067205	82740			
8	16.445	21602	8	2440.6	38750	8	060810	78398			
9	18.174	25945	9	2697.3	43093	9	055023	74055			
3.0	20.086	30288	8.0	2981.0	47436	3.0	049787	69712			
3.1	22.198	1.34631	8.1	3294.5	3.51779	3.1	0.045049	2.65369			
2	24.533	38974	2	3641.0	56121	2	040762	61026			
3	27.113	43317	3	4023.9	60464	3	036883	56683			
4	29.964	47660	4	4447.1	64807	4	033373	52340			
5	33.115	52003	5	4914.8	69150	5	030197	47997			
3.6	36.598	1.56346	8.6	5431.7	3.73493	3.6	0.027324	2.43654			
7	40.447	60689	7	6002.9	77836	7	024724	39311			
8	44.701	65032	8	6634.2	82179	8	022371	34968			
9	49.402	69375	9	7332.0	86522	9	020242	30625			
4.0	54.598	73718	9.0	8103.1	90865	4.0	018316	26282			
4.1 2 3 4 5	60.340 66.686 73.700 81.451 90.017	1.78061 82404 86747 91090 95433	9.1 2 3 4 5	8955. 9897. 10938. 12088.	3.95208 99551 4.03894 08237 12580	4.1 2 3 4 5	0.016573 014996 013569 012277 011109	2.21939 17596 13253 08910 04567			
4.6	99.48	1.99775	9.6	14765.	4.16923	4.6	0.010052	2.00225			
7	109.95	2.04118	7	16318.	21266	7	009095	3.95882			
8	121.51	08461	8	18034.	25609	8	008230	91539			
9	134.29	12804	9	19930.	29952	9	007447	87196			
5.0	148.41	17147	10.0	22026.	34295	5.0	006738	82853			

Value of e^{x^2} and e^{-x^2} and their logarithms.

The equation to the probability curve is $y=e^{-x^2}$, where x may have any value, positive or negative, between zero and infinity.

,				
ae	ex^2	log ex²	e-x ²	log e-x2
0.1 2 3 4 5	1.0101 1.0408 1.0904 1.1735 1.2840	0.00434 01737 03909 06949 10857	0.99005 96079 91393 85214 77880	1.99566 98263 96091 93051 89143
0.6 7 8 9	1.4333 1.6323 1.8965 2.2479 2.7183	0.15635 21280 27795 35178 43429	0.69768 61263 52729 44486 36788	7.84365 78720 72205 64822 56571
1.1 2 3 4 5	3·3535 4·2207 5·4195 7·0993 9·4877	0.52550 62538 73396 85122 97716	0.29820 23693 18452 14086 10540	7.47450 37462 26604 14878 02284
1.6 7 8 9 2.0	1.2936 × 10 1.7993 " 2.5534 " 3.6996 " 5.4598 "	1.11179 25511 40711 56780 73718	0.77306 × 10 ⁻¹ 55576 " 39164 " 27052 " 18316 "	2.88821 74489 59289 43220 26282
2.1 2 3 4 5	8.2269 " 1.2647 × 10 ² 1.9834 " 3.1735 " 5.1802 "	1.91524 2.10199 29742 50154 71434	0.12155 " 79070 × 10 ⁻² 50418 " 31511 " 19304 "	2.08476 3.89801 70258 49846 28566
2.6 7 8 9 3.0	8.6264 " 1.4656×10^{3} 2.5402 " 4.4918 " 8.1031 "	2.93583 3.16601 40487 65242 90865	0.11592 " 68233 × 10 ⁻⁸ 39367 " 22263 " 12341 "	3.06417 4.83400 59513 34758 09£35
3.1 2 3 4 5	1.4913×10^4 2.8001 " 5.2960 " 1.0482×10^5 2.0898 "	4.17357 44718 72947 5.02044 32011	0.67055×10^{-4} $357^{1}3$ 18644 95402×10^{-5} 47851 "	5.82643 55283 27053 6.97956 67989
3.6 7 8 9 4.0	4.2507 " 8.8205 " 1.8673×10^{6} 4.0329 " 8.8861 "	5.62846 94549 6.27121 60562 94871	$\begin{array}{c} 0.23526 \\ 11337 \\ 53554 \times 10^{-6} \\ 24796 \\ .11254 \end{array}$	6.37154 05451 7.72879 39438 05129
4.1 2 3 4 5	1.9976 × 10 ⁷ 4.5809 " 1.0718 × 10 ⁸ 2.5583 " 6.2297 "	7.30049 66095 8.03011 40796 79447	0.50062 × 10 ⁻⁷ 21829 " 93303 × 10 ⁻⁸ 39088 " 16052 "	8.69951 _ 33905 _ 9.96989 _ 59204 _ 20553
4.6 7 8 9 5.0	1.5476 × 10 ⁹ 3.9228 " 1.0143 × 10 ¹⁰ 2.6755 " 7.2005 "	9.18967 59357 10.00615 42741 85736	0.64614 × 10 ⁻⁹ 25494 " 98595 × 10 ⁻¹⁰ 37376 " 13888 "	10.81¢33 40¢43 11.99385 57°259 14264

Values of $e^{\frac{\pi}{4}x}$ and $e^{-\frac{\pi}{4}x}$ and their logarithms.

æ	e 42	$\log e^{\frac{\pi}{4^x}}$	$e^{-\frac{\pi}{4}z}$	$\log e^{-\frac{\pi}{4}x}$
1 2 3 4 5	2.1933 4.8105 1.0551 × 10 2.3141 " 5.0754 "	0.34109 .68219 1.02328 .36438	0.45594 .20788 .94780 × 10 ⁻¹ .43214 " .19703 "	ī.65891 31781 2.97672 .63562 .29453
6 7 8 9	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.04656 .38766 .72875 3.06985 .41094	0.89833×10^{-2} 0.40958 " 0.18674 " 0.85144×10^{-3} 0.38820 "	3.95344 .61234 .27125 4.93015 .58906
11 12 13 14 15	5.6498 " 1.2392×10^4 2.7168 " 5.9610 " 1.3074×10^5	3.7 5204 4.09313 .43422 .77 532 5.11641	0.17700 " .80699 × 10 ⁻⁴ .36794 " .16776 " .76487 × 10 ⁻⁵	4.24796 5.90687 .56578 .22468 6.88359
16 17 18 19 20	2.8675 " 6.2893 " 1.3794×10^{6} 3.0254 " 6.6356 "	5.45751 .79860 6.13969 .48079 .82189	0.34873 " .15900 " .72495 X 10 ⁻⁶ .33°53 " .15070 "	6.54249 .20140 7.86031 .51921 .17812

TABLE 45.

EXPONENTIAL FUNCTIONS.

Values of $e^{\frac{\sqrt{\pi}}{4\pi}}$ and $e^{-\frac{\sqrt{\pi}}{4\pi}}$ and their logarithms.

æ	$e^{\frac{\sqrt{\pi}}{4}z}$	$\log e^{\frac{\sqrt{\pi}}{4}x}$	$e^{-\frac{\sqrt{\pi}}{4}x}$	$\log e^{-\frac{\sqrt{\pi}}{2}}$
1	1.4429	0.19244	0.64203	ī.807 56
2	2.4260	.38488	.41221	.61 51 2
3	3.7786	.57733	.26465	.42267
4	5.8853	.76977	.16992	.23023
5	9.1666	.96221	.10909	.03779
7 8 9	14.277 22.238 34.636 53.948 84.027	1.15465 ·34709 ·53953 ·73198 ·92442	0.070041 .044968 .028871 .018536 .011901	2.84535 .65291 .46047 .26802 .07558
11	130.87	2.11686	0.0076408	3.88314
12	203.85	.30930	.0049057	.69070
13.	317.50	.50174	.0031496	.49826
14	494.52	.69418	.0020222	.30582
15	770.24	.88663	.0012983	.11337
16	1199.7	3.07907	0.00083355	4.92093
17	1868.5	.27151	.00053517	.72849
18	2910.4	.46395	.00034360	.53605
19	4533-1	.65639	.00022060	.34361
20	7060.5	.84883	.00014163	.15117

Value of e^x and e^{-x} and their logarithms.

26	e [#]	log e ^z	e^{-x}	log e-z
1/64 1/32 1/16 1/10	1.0157 .0317 .0645 .1052 .1175	0.00679 .01357 .02714 .04343 .04825	0.98450 .96923 .93941 .90484 .89484	ī.99321 .98643 .97286 .95657 .95175
1/8	1.1331	0.05429	0.88250	7.94571
1/7	.1536	.06204	.86688	.93796
1/6	.1814	.07238	.84648	.92762
1/5	.2214	.08686	.81873	.91314
1/4	.2840	.10857	.77880	.89143
1/3	1.3956	0.14476	0.71653	7.85524
1/2	.6487	.21715	.60653	.78285
3/4	2.1170	.32572	.47237	.67428
1	.7183	.43429	.36788	.56571
5/4	3.4903	.54287	.28650	.45713
3/2	4.4817	0.65144	0.22313	7.34856
7/4	5.7546	.76002	.17377	.23998
2	7.3891	.86859	.13535	.13141
9/4	9.4877	.97716	.10540	.02284
5/2	12.1825	1.08574	.08208	2.91426

TABLE 47.

LEAST SQUARES.*

Values of P =
$$\frac{2}{\sqrt{\pi}} \int_0^{hx} e^{-(hx)^2} d(hx)$$

This table gives the value of P, the probability of an observational error having a value positive or negative equal to or less than x when h is the measure of precision, $P = \frac{2}{\sqrt{\pi}} \int_0^{hx} e^{-(hx)^2} d(hx)$

hæ	1	2	3	4	5	6	7	8	9	10
0.0 o.1 o.2 o.3 o.4	.01128 .12362 .23352 .33891 .43797	.02256 .13476 .24430 .34913 .44747	.03384 .14587 .25502 .35928 .45689	.04511 .15695 .26570 .36936 .88623	.05637 .16800 .27633 .37938 .47548	.06762 .17901 .28690 .38933 .48466	.07886 .18999 .29742 .33921 .49375	.09008 .20094 .30788 .40901 .50275	.10128 .21184 .31828 .41874 .51167	.11246 .22270 .32863 .42839 .52050
0.5 0.6 0.7 0.8 0.9	.52924 .61168 .68467 .74800 .80188	.53790 .61941 .69143 .75381 .80677	.54646 .62705 .69810 .75952 .81156	·55494 ·63459 ·70468 ·76514 ·81627	.56332 .64203 .71116 .77067 .82089	.57162 .64938 .71754 .77610 .82542	.57982 .65663 .72382 .78144 .82987	.58792 .66378 .73001 .78669 .83423	.59594 .67084 .73610 .79184 .83851	.60386 .67780 .74210 .79691 .84270
1.0 I.1 I.2 I.3 I.4	.84681 .88353 .91296 .93606 .95385	.85084 .88679 .91553 .93807 .95538	.85478 .88997 .91805 .94001 .95686	.85865 .89308 .92051 .94191 .95830	.86244 .89612 .92290 .94376 .95970	.86614 .89910 .92524 .94556	.86977 .90200 .92751 .94731 .96237	.87333 .90484 .92973 .94902 .96365	.87680 .90761 .93190 .95067 .96490	.88020 .91031 .93401 .95229 .96610
1.5 1.6 1.7 1.8 1.9	.96728 .97721 .98441 .98952 .99309	.96841 .97804 .98500 .98994 .99338	.96952 .97884 .98558 .99035 .99366	.97059 .97962 .98613 .99074 .99392	.97162 .98038 .98667 .99111	.97263 .98110 .98719 .99147 .99443	.97360 .98181 .98769 .99182 .99466	.97455 .98249 .98817 .99216 .99489	.97546 .98315 .98864 .99248	.97635 .98379 .98909 .99279 .99532

^{*} Tables 47-52 are for the most part quoted from Howe's "Formulæ and Methods used in the application of Least Squares."

TABLE 48.

LEAST SQUARES.

This table gives the values of the probability P, as defined in last table, corresponding to different values of x/r where r is the "probable error." The probable error r is equal to 0.47694 / h.

1	1 .	1	1	1	1.					
$\frac{x}{r}$	0	1	2	3	4	5	6	7	8	9
0.0	00000	.00538	.01076	.01614	02512	.02690	02228	02766	0.4202	0.49.40
0.0	.00000	.05914	.06451	.06987	.02512	.08059	.03228	.03766	.04303	.04840
0.2	.10731	.11264	.11796	.12328	.12860	13391	.13921	.14451	.14980	.15508
0.3	.16035	.16562	.17088	.17614	.18138	.18662	.19185	.19707	.20229	.20749
0.4	.21268	.21787	.22304	.22821	.23336	.23851	.24364	.24876	.25388	.25898
0.5	.26407	.26915	.27421	.27927	.28431	.28934	.29436	-29936	.30435	.30933
0.6	.31430	.31925	.32419	.32911	.33402	.33892	.34380	.34866	.35352	.35835
0.8	.41052	.41517	.41979	.42440	.42899	.43357	.43813	44267	.44719	.40586
0.9	.45618	.46064	.46509	.46952	-47393	.47832	.48270	48605	.49139	.49570
1.0	.50000	.50428	.50853	.51277	.51699	.52119	.52537	.52952	-53366	-53778
I.I	.54188	.54595	.55001	.55404	1.55806	.56205	.56602	.56998	·57391	.57782
1.2	.58171	.58558	.58942	.59325	.59705	.60083	.60460	.60833	.61205	.61575
1.3	.65498	.62308	.62671	.63032	.63391	.63747	.64102	.64554	.64804	.65152
1.5	.68833	.69155	.69474	.69791	.70106	.70419	.70729	.71038		.71648
1.6	.71949	.72249	.72546	.72841	.73134	.73425	.73714	.74000	.71344	.74567
1.7	.74847	.75124	.75400	.75674	-75945	.76214	.76481	76746	.77009	.77270
1.8	.77528	.77785	.78039	.78291	.78542	.78790	.79036	,79280	.79522	.79761
1.9	.79999	.80235	.80469	.80700	.80930	.81158	.81383	.81607	.81828	.82048
2.0	.82266	.82481	.82695	.82907	.83117	.83324	.83530	.83734	.83936	.84137
2.I 2.2	.84335	.84531	.84726 .86570	.84919	.85109	.85298 .87088	.85486	.85671	.85854	.86036
2.3	.87918	.88078	.88237	.88395	.88550	.88705	.88857	.89008	.891 57	.89304
2.4	.89450	.89595	.89738	.89879	.90019	.90157	.90293	.90428	.90562	.90694
2.5	.90825	.90954	.91082	.91208	.91332	.91456	.91578	.91698	.91817	.91935
2.6	.92051	.92166	.92280	.92392	.92503	.92613	.92721	.92828	.92934	.93038
2.7	.93141	.93243	.93344	•93443	.93541	.93638	•93734	.93828	.93922	.94014
2.0	.94105	.94195	.94284	.94371	.94458	·94543 ·95338	.94627	.94711	·94793 ·95557	.94874
	74754						1.7			
	0	1	2	3	4	5	6	7	8	9
3	.95698	.96346	.96910	-97397	.97817	.98176	.98482	.98743	.98962	.99147
4	.99302	.99431	.99539	99627	.99700	.99760	.99808	.99848	.99879	.99905
5	.99926	.99943	.99956	.99966	.99974	.99980	.99985	.99988	.99991	.99993

TABLE 49.

LEAST SQUARES.

Values of the factor $0.6745\sqrt{\frac{1}{n-1}}$.

This factor occurs in the equation $e_a = 0.6745 \sqrt{\frac{\sum y^2}{n-1}}$ for the probable error of a single observation, and other similar equations.

n	Americana Americ	1	2	3	4	5	6	7	8	9
00 10 20 30 40 50 60 70 80 90	0.2248 .1547 .1252 .1080 0.0964 .0878 .0812 .0759	0.2133 .1508 .1231 .1066 0.0954 .0871 .0806 .0754	0.6745 .2029 .1472 .1211 .1053 0.0944 .0864 .0800 .0749	0.4769 .1947 .1438 .1192 .1041 0.0935 .0857 .0795 .0745	0.3894 .1871 .1406 .1174 .1029 0.0926 .0850 .0789 .0940	0.3372 .1803 .1377 .1157 .1017 0.0918 .0843 .0784 .0736	0.3016 .1742 .1349 .1140 .1005 0.0909 .0837 .0778 .0731	0.2754 .1686 .1323 .1124 .0994 0.0901 .0830 .0773 .0727 .0688	0.2549 .1636 .1298 .1109 .0984 0.0893 .0824 .0768 .0723 .0685	0.2385 .1590 .1275 .1094 .0974 0.0886 .0818 .0763 .0719

LEAST SQUARES.

Values of the factor 0.6745 $\sqrt{\frac{1}{n(n-1)}}$.

This factor occurs in the equation $e_m = 0.6745 \sqrt{\frac{\sum y^2}{n(n-1)}}$ for the probable error of the arithmetic mean.

n	=	1	2	3	4	5	6	7	8	9
00 10 20 30 40 50	0.0711 .0346 0.0229 .0171 .0136	0.0643 .0329 0.0221 .0167 .0134	0.4769 .0587 .0314 0.0214 .0163 .0131	0.2754 .0540 .0300 0.0208 .0159 .0128	0.1947 .0500 .0287 0.0201 .0155 .0126	0.1508 .0465 .0275 0.0196 .0152 .0124	0.1231 .0435 .0265 0.0190 .0148 .0122	0.1041 .0409 .0255 0.0185 .0145 .0119	0.0901 .0386 .0245 0.0180 .0142 .0117	0.0795 .0365 .0237 0.0175 .0139

LEAST SQUARES.

TABLE 51.

Values of the factor 0.8453 $\sqrt{\frac{1}{n(n-1)}}$.

This factor occurs in the equation $e_s = 0.8453 \frac{\Sigma_y}{\sqrt{n(n-1)}}$ for the probable error of a single observation.

n	==	1	2	3	4	5	6	7	8	9
00 10 20	0.0891	0.0806	0.5978 .0736 .0393	0.3451 .0677 .0376	0.2440 .0627 .0360	0.1890 .0583 .0345	0.1543 .0546 .0332	0.1304 .0513 .0319	0.1130 .0483 .0307	0.0996 .0457 .0297
30 40 50	0.0287 .0214 .0171	0.0277 .0209 .0167	0.0268 .0204 .0164	0.0260 .0199 .0161	0.0252 .0194 .0158	0.0245 .0190 .0155	0.0238 .0186 .0152	0.0232 .0182 .0150	0.0225 .0178 .0147	0.0220 .0174 .0145

LEAST SQUARES.

TABLE 52.

Values of $0.8453\frac{1}{n\sqrt{n-1}}$.

This table gives the average error of the arithmetic mean when the probable error is one.

n	=	1	2	3	4	5	6	7	8	9
00 10 20	0.0282	0.0243	0.4227 .0212 .0084	0.1993 .0188 .0078	0.1220 .0167 .0073	0.0845	0.0630 .0136 .0065	0.0493 .0124 .0061	0.0399 .0144 .0058	0.0332
30 40 50	0.0052	0.0050	0.0047 .0031 .0023	0.0045 .0030 .0022	0.0043	0.0041 .0028 .0021	0.0040 .0027 .0020	0.0038 .0027 .0020	0.0037 .0026 .0019	0.0035

GAMMA FUNCTION.*

Value of
$$\log \int_0^\infty e^{-x} x^{n-1} dx + 10$$
.

Values of the logarithms + 10 of the "Second Eulerian Integral" (Gamma function) $\int_{0}^{\infty} e^{-x}x^{n-1}dx \text{ or log } \Gamma(n)+\text{10}$ for values of n between 1 and 2. When n has values not lying between 1 and 2 the value of the function can be readily calculated from the equation $\Gamma(n+1) = n\Gamma(n) = n(n-1) \dots (n-r)\Gamma(n-r)$.

			1			1				
n	0	1	2	3	4	5	6	7	8	9
1.00	9.99——————————————————————————————————	97497	95001	92512	90030	87 555	85087	82627	80173	77727
1.01		72855	70430	68011	65600	63196	60799	58408	56025	53648
1.02		48916	46 5 61	44212	41870	39535	37207	34886	32572	30265
1.03		25671	23384	21104	18831	16564	14305	12052	09806	07567
1.04		03108	00889	98677	96471	94273	92080	89895	87716	85544
1.05	9.9883379	81220	79068	76922	74783	72651	70525	68406	66294	64188
1.06	62089	59996	57910	55830	537 57	51690	49630	47577	45530	43489
1.07	41469	39428	37407	35392	33384	31382	29387	27398	25415	23449
1.08	21469	19506	17549	15599	13655	11717	09785	07860	05941	04029
1.09	02123	00223	98329	96442	94561	92686	90818	89856	87100	85250
1.10	9.9783407	81570	79738	77914	76095	74283	72476	70676	68882	67095
1.11	65313	63538	61 7 68	60005	58248	56497	54753	53014	51281	49555
1.12	47834	46120	44411	42709	41013	39323	37638	35960	34 2 88	32622
1.13	30962	29308	27659	26017	24381	22751	21126	19508	17896	16289
1.14	14689	13094	11505	09922	08345	06774	05209	03650	02096	00549
1.15	9.9699007	97471	95941	94417	92898	91 386	89879	88378	86883	85393
1.16	83910	82432	80960	79493	78033	76578	75129	73686	72248	70816
1.17	69390	67969	66554	65145	63742	62344	60952	59566	58185	56810
1.18	55440	54076	52718	51366	50019	48677	47341	46011	44867	43368
1.19	42054	40746	39444	38147	36856	35570	34290	33016	31747	30483
1.20	9.9629225	27973	26725	25484	24248	23017	21792	20573	19358	18150
1.21	16946	15748	14556	13369	12188	11011	09841	08675	07515	06361
1.22	05212	04068	02930	01796	00669	99546	98430	97318	96212	95111
1.23	594015	92925	91840	90760	89685	88616	87553	86494	85441	84393
1.24	83350	82313	81280	80253	79232	78215	77204	76198	75197	74201
1.25	9.9573211	72226	71246	70271	69301	68337	67377	66423	65474	64530
1.26	63592	62658	61730	60806	59888	58975	58067	57165	56267	55374
1.27	54487	53604	52727	51855	50988	50126	49268	48416	47570	46728
1.28	45891	45059	44232	43410	42593	41782	40975	40173	39376	38585
1.29	37798	37016	36239	35467	34700	33938	33181	32439	31682	30940
1.30	9.9530203	29470	28743	28021	27303	26590	25883	25180	24482	23789
1.31	23100	22417	21739	21065	20396	19732	19073	18419	17770	17125
1.32	16485	15850	15220	14595	13975	13359	12748	12142	11540	10944
1.33	10353	09766	09184	08606	08034	07466	06903	06344	05791	05242
1.34	04698	04158	03624	03094	02568	02048	01532	01021	00514	00012
1.35	9.9499515	99023	98535	98052	97573	97100	96630	96166	95706	95251
1.36	94800	94355	93913	93477	93044	92617	92194	91776	91362	90953
1.37	90549	90149	89754	89363	88977	88595	88218	87846	87478	87115
1.38	86756	86402	86052	85707	85366	85030	84698	84371	84049	83731
1.39	83417	83108	82803	82503	82208	81916	81630	81348	81070	80797
1.40	9.9480528	80263	80003	79748	79497	79250	79008	78770	78537	78308
1.41	78084	77864	77648	77437	77230	77027	76829	76636	76446	76261
1.42	76081	75905	75733	75565	75402	75243	75089	74939	74793	74652
1.43	74515	74382	74254	74130	74010	73894	73783	73676	93574	73746
1.44	73382	73292	73207	73125	73049	72976	72908	72844	72784	72728

^{*} Quoted from Carr's "Synopsis of Mathematics," and is there quoted from Legendre's "Exercises de Calcul Intégral," tome ii.

n	0	1	2	3	4	5	6	7	8	9
1.45	9.9472677	72630	72587	72549	72514	72484	72459	72437	72419	72406
1.46	72397	72393	72392	72396	72404	72416	72432	72452	72477	72506
1.47	72539	72576	72617	72662	72712	72766	72824	72886	72952	73022
1.48	73097	73175	73258	73345	73436	73531	73630	73734	73841	73953
1.49	74068	74188	74312	74440	74572	74708	74848	74992	75141	75293
1.50	9.9475449	75610	75774	75943	76116	76292	76473	76658	76847	77040
1.51	77237	77438	77642	77851	78064	78281	78502	78727	78956	79189
1.52	79426	79667	79912	80161	80414	80671	80932	81196	81465	81738
1.53	82015	82295	82580	82868	83161	83457	83758	84062	84370	84682
1.54	84998	85318	85642	85970	86302	86638	86977	87321	87668	88019
1.55	9.9488374	88733	89096	89463	89834	90208	90587	90969	91355	91745
1.56	92139	92537	92938	93344	93753	94166	94583	95004	95429	95857
1.57	96289	96725	97165	97609	98056	98508	98963	99422	99885	00351
1.58	500822	01296	01774	02255	02741	03230	03723	04220	04720	05225
1.59	05733	06245	06760	07280	07803	08330	08860	09395	09933	10475
1.60	9.9511020	11569	12122	12679	13240	13804	14372	14943	15519	16098
1.61	16680	17267	17857	18451	19048	19650	20254	20862	21475	22091
1.62	22710	23333	23960	24591	25225	25863	26504	27149	27798	28451
1.63	29107	29767	30430	31097	31767	32442	33120	33801	34486	35175
1.64	35867	36563	37263	37966	38673	39383	40097	40815	41536	42260
1.65	9.9542989	43721	44456	45195	45938	46684	47434	48187	48944	49704
1.66	50468	51236	52007	52782	53560	54342	55127	55916	56708	57504
1.67	58303	59106	59913	60723	61536	62353	63174	63998	64826	65656
1.68	66491	67329	68170	69015	69864	70716	71571	72430	73293	74159
1.69	75028	75901	76777	77657	78540	79427	80317	81211	82108	83008
1.70	9.9583912	84820	85731	86645	87536	88484	89409	90337	91268	92203
1.71	93141	94083	95028	95977	96929	97884	98843	99805.	00771	01740
1.72	602712	03688	04667	05650	06636	07625	08618	09614	10613	11616
1.73	12622	13632	14645	15661	16681	17704	18730	19760	20793	21830
1.74	22869	23912	24959	26009	27062	28118	29178	30241	31308	32377
1.75	9.9633451	34527	35607	36690	37776	38866	39959	41055	42155	43258
1.76	44364	45473	46586	47702	48821	49944	51070	52200	53331	54467
1.77	55606	56749	57894	59043	60195	61350	62509	63671	64836	66co4
1.78	67176	68351	69529	70710	71895	73082	74274	75468	76665	77866
1.79	79070	80277	81488	82701	83198	85138	86361	87588	88818	90051
1.80	9.9691287	92526	93768	95014	96263	97515	98770	00029	01291	02555
1.81	703823	05095	06369	07646	08927	10211	11498	12788	14082	15378
1.82	16678	17981	19287	20596	21908	23224	24542	25864	27189	28517
1.83	29848	31182	32520	33860	35204	36551	37900	39254	40610	41969
1.84	43331	44697	46065	47437	48812	50190	51571	52955	54342	55733
1.85	9.9757126	58522	59922	61325	62730	64140	65551	66966	68384	69805
1.86	71230	72657	74087	75521	76957	78397	79839	81285	82734	84186
1.87	85640	87098	88559	90023	91490	92960	94433	95910	97389	98871
1.88	800356	01844	93335	04830	06327	07827	09331	10837	12346	13859
1.89	15374	16893	18414	19939	21466	22996	24530	26066	27606	29148
1.90	9.9830693	32242	33793	35348	36905	38465	40028	41 595	43164	44736
1.91	46311	47890	49471	51055	52642	54232	55825	57421	59020	60622
1.92	62226	63834	65445	67058	68675	70294	71917	73542	75170	76802
1.93	78436	80073	81713	83356	85002	86651	88302	89957	91614	93275
1.94	94938	96605	98274	99946	01621	03299	04980	06663	08350	10039
1.95	9.9911732	13427	15125	16826	18530	20237	21947	23659	25375	27093
1.96	28815	30539	32266	33995	35728	37464	39202	40943	42688	44435
1.97	46185	47937	49693	51451	53213	54977	56744	58513	60286	62062
1.98	63840	65621	67405	69192	70982	72774	74570	76368	78169	79972
1.99	81779	83588	85401	87216	89034	90854	92678	94504	96333	98165

TABLE 54.

ZONAL HARMONICS.*

The values of the first seven zonal harmonics are here given for every degree between $\theta = 0^{\circ}$ and $\theta = 90^{\circ}$.

			1				
θ	Z ₁	Z ₂	Z ₃	Z ₄	Z ₅	z ₆	Z ₇
0 °	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
1° 2 3 4 5	0.9998 9994 .9986 .9976 .9962	0 9995 .9982 .9959 .9927 .9886	0.9991 .9963 .9918 .9854 .9773	0.9985 •9939 •9863 •9758 •9623	0.9977 .9909 .9795 .9638 .9437	0 9967 .9872 .9713 .9495 .9216	0.9955 .9829 .9617 .9329 .8961
6° 7 8 9 10	.9945 .9925 .9903 .9877 .9848	.9836 .9777 .9709 .9633 .9548	.9674 ·9557 ·9423 ·9273 ·9106	.9459 .9267 .9048 .8803 .8532	.9194 .8911 .8589 .8232 .7840	.8881 .8476 .8053 .7571 .7045	.8522 .7986 .7448 .6831
11° 12 13 14 15	.9816 .9781 .9744 .9703 .9659	.9454 .9352 .9241 .9122 .8995	.8923 .8724 .8511 .8283 .8042	.8238 .7920 .7582 .7224 .6847	.7417 .6966 .6489 .5990	.6483 .5892 .5273 .4635 .3982	.5461 .4732 .3940 .3219 .2454
16° 17 18 19 20	.9613 .9563 .9511 .9455 -9397	.8860 .8718 .8568 .8410	.7787 .7519 .7240 .6950 .6649	.6454 .6046 .5624 .5192 .4750	.4937 .4391 .3836 .3276	.3322 .2660 .2002 .1347 .0719	.1699 .0961 .0289 —.0443 : —.1072
21° 22 23 24 25	.9336 .9272 .9205 .9135 .9063	.8074 .7895 .7710 .7518	.6338 .6019 .5692 .5357 .5016	.4300 .3845 .3386 .2926 .2465	.2156 .1602 .1057 .0525	.0107 0481 1038 1559 2053	1662 2201 2681 3095 3463
26° 27 28 29 30	.8988 .8910 .8829 .8746 .8660	.7117 .6908 .6694 .6474 .6250	.4670 .4319 .3964 .3607 .3248	.2007 .1553 .1105 .0665	0489 0964 1415 1839 2233	2478 2869 3211 3503 3740	3717 3921 4052 4114 4101
31° 32 33 34 35	.8572 .8480 .8387 .8290 .8192	.6021 .5788 .5551 .5310 .5065	.2887 .2 5 27 .2167 .1809	0185 0591 0982 1357 1714	2595 2923 3216 3473 3691	3924 4052 4126 4148 4115	4022 3876 3670 3409 3096
36° 37 38 39 4°	.8090 .7986 .7880 .7771 .7660	.4818 .4567 .4314 .4059 .3802	.1102 .0755 .0413 .0077 —.0252	2052 2370 2666 2940 3190	3871 4011 4112 4174 4197	4031 3898 3719 3497 3234	2738 2343 1918 1469 1003
41° 42 43 44 45	·7547 ·7431 ·7314 ·7193 ·7071	·3544 ·3284 ·3023 ·2762 ·2500	0574 0887 1191 1485 1768	3416 3616 3791 3940 4062	4181 4128 4038 3914 3757	2938 2611 2255 1878 1485	0534 0065 .0395 .0846

^{*} Calculated by Prof. Perry (Phil. Mag. Dec. 1891). See also A. Gray, "Absolute Measurements in Electricity and Magnetism," vol. ii., part 2.

ZONAL HARMONICS.

θ	z ₁	Z ₂	Z ₃	Z ₄	Z ₅	\mathbf{z}_6	Z 7
46° 47 48 49 50	0.6947 .6820 .6691 .6561 .6428	0.2238 .1977 .1716 .1456 .1198	2040 2300 2547 2781 3002	4158 4252 4270 4286 4275	3568 3350 3105 2836 2545	1079 0645 0251 .0161	0.1666 .2054 .2349 .2627 .2854
51° 52 53 54 55	.6293 .6157 .6018 .5878 .5736	.0941 .0686 .0433 .0182 —.0065	3209 3401 3578 3740 3886	4239 4178 4093 3984 3852	2235 1910 1571 1223 0868	.0954 .1326 .1677 .2002	.3031 .3153 .3221 .3234 .3191
56° 57 58 59 60	.5592 .5446 .5299 .5150 .5000	0310 0551 0788 1021 1250	4016 4131 4229 4310 4375	3698 3524 3331 3119 2891	0510 0150 .0206 .0557 .0898	.2559 .2787 .2976 .3125 .3232	.3095 .2949 .2752 .2511 .2231
61° 62 63 64 65	.4848 .4695 .4540 .4384 .4226	1474 1694 1908 2117 2321	4423 4455 4471 4470 4452	2647 2390 2121 1841 1552	.1229 .1545 .1844 .2123 .2381	.3298 .3321 .3302 .3240 .3138	.1916 .1571 .1203 .0818
66° 67 68 69 7°	.4067 .3907 .3746 .3584 .3420	2518 2710 2896 3074 3425	4419 4370 4305 4225 4130	1256 0955 0650 0344 0038	.2615 .2824 .3005 .3158 .3281	.2996 .2819 .2605 .2361	.0021 0375 0763 1135 1485
71° 72 73 74 75	.3256 .3090 .2924 .2756 .2588	3410 3568 3718 3860 3995	4021 3898 3761 3611 3449	.0267 .0568 .0864 .1153	·3373 ·3434 ·3463 ·3461 ·3427	.1786 .1472 .1144 .0795 .0431	1811 2099 2347 2559 2730
76° 77 78 79 80	.2419 .2250 .2079 .1908 .1736	4112 4241 4352 4454 4548	3275 3090 2894 2688 2474	.1705 .1964 .2211 .2443 .2659	.3362 .3267 .3143 .2990 .2810	.0076 0284 0644 0989 1321	2848 2919 2943 2913 2835
81° 82 83 84 85	.1 564 .1392 .1219 .1045 .0872	4633 4709 4777 4836 4886	2251 2020 1783 1539 1291	.2859 .3040 .3203 .3345 .3468	.2606 .2378 .2129 .1861	1635 1926 2193 2431 2638	2709 2536 2321 2067 1779
86° 87 88 89 90	.0698 .0523 .0349 .0175 .0000	4927 4959 4982 4995 5000	1038 0781 0522 0262 0000	·3569 ·3648 ·3704 ·3739 ·3750	.1278 .0969 .0651 .0327 .0000	2811 2947 3045 3105 3125	1460 1117 073 5 0381 0000

MUTUAL INDUCTANCE.*

Values of $\log \frac{M}{4\pi \sqrt{aa'}}$.

Table of values of $\log \frac{M}{4\pi \sqrt{aa'}}$ for facilitating the calculation of the mutual inductance M of two coaxial circles of radii a, a', at distance apart b. The table is calculated for intervals of b' in the value of $\cos^{-1}\left\{\frac{(a-a')^2+b^2}{(a-a')^2+b^2}\right\}^{\frac{1}{2}}$ from b = 0.

	0′	6′	12′	18′	24′	30′	36′	42′	48′	54′
60°	ī.4994783	5022651	5050505	5078345	5106173	5133989	5161791	5189582	5217361	5245128
61								5466872		
62	5549864	5577510	5605147	5632776	5660398	5688011	5715618	5743217	5770809	5798394
63								6018871		
64	6101472	6128998	61 56 522	6184042	6211560	6239076	6266589	6294101	6321612	6349121
65°	1.6376629	6404137	6131615	6450153	6486660	6514160	6541678	6560180	6506701	6624215
66	6651732	6670250	6706772	6734206	6761824	6789356	6816801	6844431	6871076	6899526
67								7120146		
68								7396675		
69								7674392		
70°			-00	-060	-960-00	-90-606		2052200	200	0000000
	1.7758000									
71								8235080		
7.2								8519018 8806106		
73								9097012		
	0092943	0921909	0931030	0900144	9009293	9030409	900//20	909/012	9120341	9133/1/
75°	1.9185141	9214613	9244135	9273707	9303330	9333005	9362733	9392515	9422352	9452246
76								9693537		
77	9785079	9815731	9846454	9877249	9908118	9939062	9970082	1811000	0032359	0063618
78	0.0094959									
79	0413273	0445633	0478098	0510668	0543347	0576136	0609037	0642054	0675187	0708441
80°	0.0741816	0775316	0808044	0842702	0876502	0010610	0044784	0070001	1013542	1048142
81								1330691		
82								1700609		
83								2094108		
84	2217823									
050										
85°	0.2654152									
								3520327		
87 88								4160138		
89	4385420							6663883		
09	5,50000/	5490909	5032000	5/00400	5901 320	015/3/0	0305907	0003003	/02//05	7500941

^{*} Quoted from Gray's "Absolute Measurements in Electricity and Magnetism," vol. ii., p. 852.

ELLIPTIC INTECRALS.

Values of $\int_0^{\pi} (1-\sin^2\theta\sin^2\phi)^{\frac{1}{2}} d\phi.$

This table gives the values of the integrals between o and $\pi/2$ of the function $(1-\sin^2\theta\sin^2\phi)^{\frac{1}{2}}d\phi$ for different values of the modulus corresponding to each degree of θ between o and ϕ .

θ	$\int_0^{\pi} \frac{1}{1-s}$	$\frac{\mathrm{d}\phi}{\sin^2\theta\sin^2\phi)^{\frac{1}{2}}}$	$\int_0^{\frac{\pi}{2}} (1-s)^{\frac{\pi}{2}}$	$\sin^2 \theta \sin^2 \phi)^{\frac{1}{2}} d\phi$	θ	$\int_0^{\pi} \frac{1}{(1-s)^{n-1}}$	$\frac{d\phi}{\sin^2\theta\sin^2\phi)^{\frac{1}{2}}}$	$\int_0^{\pi/2} (1-t)^{-t}$	$\sin^2\theta \sin^2\phi)^{\frac{1}{2}}d\phi$
	Number.	Log.	Number.	Log.		Number.	Log.	Number.	Log.
00	1.5708	0.196120	1.5708	0.196120	45°	1.8541	0.268127	1.3506	0.130541
I	5709	196153	5707	196087	6	8691	271644	3418	127690
2	5713	196252	5703	195988	7 8	8848	275267	3329	124788
3 4	5719 5727	196418 196649	5697 5689	195822 195591	9	9180	279001 282848	3238 3147	121836 118836
5°	1.5738	0.196947	1.5678	0.195293	50°	1.9356	0.286811	1.3055	0.115790
6	5751	197312	5665	194930	I	9539	290895	2963	112698
7 8	5767	197743	5649	194500	2	9729	295101	2870	109563
	5785	197241	5632	194004	3	9927	299435	2776	106386
9	5805	190000	5611	193442	4	2.0133	303901	2681	103169
10°	1.5828	0.199438	1.5589	0.192815	55°	2.0347	0.308504	1.2587	0.099915
I	5854 5882	200137	5564	192121	6	0571	313247 318138	2492	096626
2		200904	5537	191302	7 8	0804	323182	2397	093303
3 4	5913 5946	202643	5507 5476	189646	9	1047	328384	2301 2206	086569
15°	1.5981	0.203615	1.5442	0.188690	60°	2.1565	0.333753	1.2111	0.083164
6	6020	204657	5405	187668	1	1842	339295	2015	079738
7	6061	205768	5367	186581	2	2132	345020	1920	076293
8	6105	206948	5326	185428	3	2435	350936	1826	072834
9	6151	208200	5283	184210	4	27 54	357053	1732	069364
20°	1.6200	0.209522	1.5238	0.182928	65°	2.3088	0.363384	1.1638	0.065889
1	6252	210916	5191	181580	6	3439	369940	1545	062412
2	6307	212382	5141	180168	7	3809	376736	1453	058937
3	6365	213)21	5090	178691	8	4198	383787	1362	055472
4	6426	21 55 3 3	5037	177150	9	4610	391112	1272	052020
25°	1.6490	0.217219	1.4981	0.175545	70°	2.5046	0.398730	1.1184	0.048589
6	6557	218981	4924	173876	I	5507	406665	1096	045183
7 8	6627	220818	4864	172144	2	5998	414943	IOII	041812
9	6777	222732 224723	4803 4740	170348	3 4	7081	423596 432660	0927	035200
30°	1.6858	0.226793	1.4675	0.166567	750	2.7681	0.442176	1.0764	0.031976
1	6941	228943	4608	164583	6	8327	452196	0686	028819
2	7028	231173	4539	162537	7 8	9026	462782	0611	025740
3 4	7119	233485	4469	160429	9	9786	474008 485967	0538	022749
			4397			3.0017			
35°	1.7312	0.238359	1.4323	0.156031	80°	3.1534	0.498777	1.0401	0.017081
6	7415	240923		153742	I	2553	512591	0338	014432
7 8	7522	243575	4171	151393	2	3699	527613	0278	011927
9	7633 7748	246315	4092	148985	3 4	6519	544120	0223	009584
40°	1.7868	0.252068	1.3931	0.143995	85°	3.8317	0.583396	1.0127	0.005465
I	7992 8122	255085	3849	141414	6	4.0528	607751	0086	003740
3	8256	258197	3765 3680	138778	7 8	3387	637355	0053	002270
4	8396	261406 264716	3594	133340	9	7427 5•4349	735192	0008	000326
45°	1.8541	0.268127	1.3506	0.130541	90°	00	00	1.0000	

BRITISH UNITS.

Cross sections and weights of wires.

This table gives the cross section and weights in British units of copper, iron, and brass wires of the diameters given in the first column. For one tenth the diameter divide section and weights by 100. For ten times the diameter multiply by 100, and so on.

dian	ieter mutti	oly by 100,	and so on.							
.e.	Area of cross	Сорре	r — Densit	y 8.90.	Iron -	- Density	7.80.	Brass	— Density	8.56.
Diam. i Mils.	section in Sq. Mils.	Pounds per Foot.	Log.	Feet per Pound.	Pounds per Foot.	Log.	Feet per Pound.	Pounds per Foot.	Log.	Feet per Pound.
10	78.54	.000303	4.48150	3300.	.0002656	4.42420	3765.	.0002915	4.46458	3431.
11	95.03	0367	.56429	2727. 2291.	03214	.50697	3112. 2615.	03527	54735 62295	2836. 2383.
13	132.73	0512	.70939	1953.	04488	.58257	2228.	04926	69246	2030.
14	153.94	0594	.77376	1683.	05206	.71646	1921.	05713	7 5 6 8 4	1750.
15	176.71	.000682	4.83368	1467.	.0005976	4.77637	1674.	.0006558	4.81675	1525.
16	201.06	0776 0876	.88974	1289	06799	.83244	1471.	07461	.87282	1340. 1187.
17	226.98 254.47	03/0	.94240	1142.	08605	.93475	1303.	09443	.92548	1059.
19	283.53	1094	3.03902	914.	09588	.98171	1043.	.0010522	3.02209	950.
20	314.16	.001212	3.08357	825.1	.001062	3.02626	941.4	.001166	3.06664	857.7
21	346.36	1336	.12594	825.1 748.3	1171	.06864	853.8	1285	.10902	778.0
22 23	380.13	1467	.16634	681.8	1286	.10904	777.8	1411 1542	.14942	708.9 648.6
24	452.39	1746	.24192	572.9	1530	.18463	653.7	1679	.22500	595.7
25	490.87	.001894	3.27738	528.0	.001660	3.22008	602.4	.001822	3.26046	549.0
26	530.93	2046	.31146	488.1	1795	.25415	557.0	1970	.29453	507.5
27 28	572.56 615.75	2209	-34423	452.6	1936	.28693	516.5	2125	.32731	470.6
20 29	660.52	2376 2549	.37583	420.9 392.4	2082	.31852	480.3	2285 2451	.35890	437.6
30			_							.0.
31	706.82 754.77	.002727	3.43575	366.7 343.4	2552	3.37845	418.4	.002623	3.41882	381.2
32	804.25	3103	.49181	322.2	2720	.43450	367.7	2985	.47488	335.1
33	855.30	3300	.51854	303.0	2892	.46123	345.8	3174 3369	.50161	31 5.1 296.8
34	907.92	3503	.54446	285.4	3070	.40/10	325.7	3309	.52754	
35	962.11	.003712	3.56964	269.4	.003253	3.51233	307.4	.003570	3.55271	280.1
36	1017.88	4927 4149	.59412	254.6 241.0	3442 3636	.53681	290.5	3777 3990	.57719	264.7
37 38	1134.11	4376	.64108	228.5	3844	.58476	260.2	4218	.62514	237.1
39	1194.59	4609	.66364	216.9	4040	.60633	247.6	4433	.64671	225.6
40	1256.64	.004849	3.68563	206.2	.004249	3.62833	235.3	.004664	3.66871	214.4
41	1320.25	5094	.70708	196.3	4465 4685	.64977	224.0	4900	.69015	204.1
42 43	1385.44	5346 5603	.74845	178.5	4911	.69114	213.5	5141	.73152	194.5
44	1 520.53	5867	.76842	170.4	5142	.71111	194.5	5643	.75149	177.2
45	1590.43	.006137	3.78793	162.9	.005378	3.73063	185.9	.005902	3.77101	169.4
46	1661.90	6412	.80703	155.9	5620	.74972	177.9	6167	.79010	162.1
47	1734.94	6694 6982	.82569	149.4	5867	.76840	170.5	6438	.82706	155.3
49	1885.74	7276	.86289	137.4	6377	.80459	156.8	6998	.84497	142.9
50	1963.50	.007 576	3.87945	132.0	.006640	3.82214	150.6	.007287	3.86252	137.2
51	2042.82	.007576	.89664	126.9	6908	.83934	144.8	7581 7881	.87972	131.9
52	2123.72	8194 8512	.91352	122.0	7181 7460	.85621	139.2	7881 8187	.89659	126.9
53 54	2290.22	8837	.94630	113.2	7744	.88899	129.1	8499	.92937	117.7
55	2375.83	.009167	3.96223	100.1	.008034	3.90493	124.5	.008817	3.94531	113.4
33	23/5.03	.00910/	3.90223	109.1	.500034	3.90493	124.5	.300017	3.94551	113.4

BRITISH UNITS.

Cross sections and weights of wires.

in s	Area of cross	Сорре	r — Densit	y 8.90.	Iron	— Density	7.80.	Brass	— Density	8.56.
Diam. i Mils.	section in Sq. Mils.	Pounds per Foot.	Log.	Feet per Pound.	Pounds per Foot.	Log.	Feet per Pound.	Pounds per Foot.	Log.	Feet per Pound.
55 56 57 58 59	2375.83	.009167	3.96223	109.1	.008034	3.90493	124.5	.008817	3.94531	113.4
	2463.01	09504	.97789	105.2	08329	.92058	120.1	09140	.96096	109.4
	2551.76	09846	.99325	101.6	08629	.93595	115.9	09470	.97633	105.6
	2642.08	10195	2.00837	98.1	08934	.95106	111.9	09805	.99144	102.0
	2733.97	10549	.02320	94.8	09245	.96591	108.2	10146	2.00629	98.6
60	2827.43	.01091	2.03782	91.66	.00956	3.98050	104.59	.01049	2.02088	95.30
61	2922.47	1128	.05216	88.68	0988	.99486	101.19	1085	.03524	92.21
62	3019.07	1165	.06628	85.84	1021	2.00898	97.95	1120	.04936	89.25
63	3117.25	1203	.08019	83.14	1054	.02288	94.87	1157	.06326	86.45
64	3216.99	1241	.09386	80.56	1088	.03656	91.83	1194	.07694	83.77
65	3318.31	.01280	2.10732	78.11	.01122	2.05003	89.12	.01231	2.09041	81.21
66	3421.19	1320	.12061	75.76	1157	.06329	86.44	1270	.10367	78.76
67	3525.65	1360	.13367	73.51	1192	.07635	83.88	1308	.11673	76.43
68	3631.68	1401	.14655	71.36	1228	.08922	81.42	1348	.12960	74.20
69	3739.28	1443	.15924	69.30	1264	.10190	79.09	1388	.14228	72.06
70	3848.45	.01485	2.17174	67.34	.01302	2.11451	76.82	.01429	2.15489	70.00
71	3959.19	1528	.18404	65.46	1339	.12672	74.69	1469	.16710	68.06
72	4071.50	1571	.19618	63.65	1377	.13887	72.63	1511	.17925	66.19
73	4185.39	1615	.20817	61.92	1415	.15085	70.66	1553	.19123	64.38
74	4300.84	1660	.22000	60.26	1454	.16267	68.76	1596	.20304	62.66
75	4417.86	.01705	2.23165	58.66	.01494	2.17432	66.95	.01639	2.21460	61.01
76	4536.46	1751	.24317	57.13	1534	.18583	65.19	1684	.22621	59.40
77	4656.63	1797	.25453	55.65	1575	.19718	63.50	1728	.23756	57.87
78	4778.36	1844	.26574	54.23	1616	.20839	61.89	1773	.24877	56.39
79	4901.67	1892	.27681	52.87	1658	.21946	60.33	1819	.25974	54.99
80	5026.55	.01939	2.28769	51.56	.01700	2.23038	58.83	.01865	2.27076	53.61
81	5153.00	1988	.29848	50.29	1743	.24117	57.39	1912	.28155	52.29
82	5281.02	2038	.30914	49.07	1786	.25183	56.00	1960	.29221	51.03
83	5410.61	2088	.31966	47.90	1830	.26236	54.66	2008	.30274	49.80
84	5541.77	2138	.33006	46.77	1874	.27276	53.36	2057	.31314	48.63
85	5674.50	.02189	2.34034	45.67	.01919	2.28304	52.11	.02106	2.32342	47.49
86	5808.80	2241	.35050	44.62	1964	.29320	50.91	2156	·33358	46.39
87	5944.68	2294	.36054	43.60	2010	.30324	49.75	2206	·34362	45.33
88	6082.12	2347	.37047	42.61	2057	.31317	48.62	2257	·35355	44.30
89	6221.14	2400	.38028	41.66	2104	.32298	47.54	2309	·36336	43.31
90	6361.73	.02455	2.38999	40.74	.02151	2.33269	46.49	.02360	2.37297	42.37
91	6503.88	2509	.39958	39.85	2199	.34228	45.47	2414	.38266	41.43
92	6647.61	2565	.40908	38.99	2248	.35178	44.49	2467	.39216	40.54
93	6792.91	2621	.41847	38.15	2297	.36116	43.54	2521	.40154	39.67
94	6939.78	2678	.42775	37.35	2347	.37046	42.61	2575	.41084	38.83
95	7088.22	.02735	2.43694	36.56	.02397	2.37965	41.72	.02630	2.42003	38.02
96	7238.23	2793	.44604	35.81	2448	.38874	40.86	2686	.42912	37·37
97	7389.81	2851	.45404	35.07	2499	.39775	40.02	2742	.43812	36.46
98	7542.96	2910	.46395	34.36	2551	.40665	39.20	2799	.44703	35·72
99	7697.69	2970	.47277	33.67	2603	.41547	38.42	2857	.45585	35.01
100	7853.98	.03030	2.48150	33.00	.02656	2.42420	37.65	.02915	2.46458	34.31

METRIC UNITS.

Cross sections and weights of wires.

This table gives the cross section and the weight in metric units of copper, iron, and brass wires of the diameters given in the first column. For one tenth the diameter divide sections and weights by 100. For ten times the diameter multiply by 100, and so on.

Ciliani	cter materp	ly by 100,	and so on.								
nou- a cm.	cross	Сорре	r — Density	y 8.90.	Iron	— Density	7.80.	Brass	s — Density	8.56.	
Diam. in thousandths of a cm	Area of cre section.	Grammes per Metre.	Log.	Metres per Gramme.	Grammes per Metre.	Log.	Metres per Gramme.	Grammes per Metre.	Log.	Metres per Gramme.	
10 11 12 13 14	78.54 95.03 113.10 132.73 153.94	0.06990 .08458 .10065 .11813 .13701	2.84448 .92725 I.00285 .07236 .13674	14.306 11.823 9.935 8.465 7.299	0.06126 .07412 .08822 .10353 .12008	2.78718 .86996 .94556 1.01506	16.324 13.492 11.335 9.659 8.328	0.06723 .08135 .09681 .11362 .13177	2.82756 .91034 .98594 1.05544 .11983	14.874 12.293 10.330 8.801 7.589	
15 16 17 18 19	176.71 201.06 226.98 254.47 283.53	0.1573 .1789 .2020 .2265 .2523	7.19665 .25272 .30538 .35503 .40199	6.358 5.588 4.951 4.415 3.963	0.1378 .1568 .1770 .1985 .2212	ī.13936 .19542 .24808 .29773 .34469	7.255 6.376 5.648 5.038 4.522	0.1513 .1721 .1943 .2178	ī.17974 .23580 .28846 .33811 .38507	6.611 5.810 5.147 4.591 4.120	
20 21 22 23 24	314.16 346.36 380.13 415.48 452.39	0.2796 .3083 .3383 .3698 .4026	T.44654 .48892 .52932 .56794 .60490	3.577 .244 2.956 .704 .484	0.2450 .2702 .2965 .3241 .3529	ī.38925 .43162 .47203 .51064 .54761	4.081 3.701 ·373 .086 2.834	0.2689 .2965 .3254 .3557 .3872	ī.42963 .47200 .51241 .55103 .58799	3.719 ·373 ·073 2.812 ·582	
25 26 27 28 29	490.87 530.93 572.56 615.75 660.52	0.4369 .4725 .5096 .5480 .5879	7.64036 .67443 .70721 .73880 .76928	2.289 .116 1.962 .825	0.3829 .4141 .4466 .4803 .5152	ī.58306 .61713 .64992 .68150 .71198	2.612 .415 .239 .082 1.941	0.4202 •4545 •4901 •5271 •5654	7.62344 .65751 .69030 .72188 .75236	2.380 .200 .040 1.897 .769	
30 31 32 33 34	706.86 754.77 804.25 855.30 907.92	0.6291 .6717 .7158 .7612 .8081	1.79872 .82721 .85478 .88151 .90744	1.590 .489 .397 .314 .238	0.5514 .5887 .6273 .6671 .7082	7.74143 .76991 .79749 .82421 .85014	1.814 .699 .594 .499 .412	0.6051 .6461 .6884 .7321 .7772	7.78181 .81029 .83787 .86459 .89052	1.653 .548 .453 .366 .287	
35 36 37 38 39	962.11 1017.88 1075.21 1134.11 1194.59	0.856 .906 .957 1.012 .063	7.93261 .95709 .98088 0.00504 .02661	1.168 .104 .045 0.988 .941	0.7504 •7939 •8387 •8866 •9318	ī.87531 .89979 .92359 .94775 .96931	1.333 .260 .192 .128	0.8236 .8713 .9204 .9730 1.0230	ī.91570 .94017 .96397 .98813 0.00969	1.214 .148 .087 .028 0.978	
40 41 42 43 44	1256.64 1320.25 1385.44 1452.20 1520.53	1.118 .175 .233 .292 .353	0.04861 .07005 .09098 .11142 .13139	0.8941 .8511 .8110 .7738 .7389	0.980 1.030 .081 .133 .186	ī.99131 0.01275 .03368 .05412 .07409	1.0200 0.9711 .9254 .8828 .8432	1.076 .130 .186 .243 .302	0.03169 .05313 .07406 .09450	0.9296 .8849 .8432 .8044 .7683	
45 46 47 48 49	1 590.43 1661.90 1734.94 1809.56 1885.74	1.415 •479 •544 •611 •678	0.15091 .17000 .18868 .20696 .22487	0.7065 .6761 .6476 .6209 .5958	1.241 .296 .353 .411 .471	0.09361 .11270 .13138 .14967 .16758	0.8061 .7714 .7389 .7085 .6799	1.361 .423 .485 .549 .614	0.13399 .15308 .17176 .19005 .20796	0.7345 .7029 .6734 .6456 .6195	
50 51 52 53 54	1963.50 2042.82 2123.72 2206.18 2290.22	1.748 .818 .890 .964 2.038	0.24242 .25962 .27649 .29303 .30927	0.5722 .5500 .5291 .5093 .4906	1.532 .593 .657 .721 .786	0.18513 .20232 .21919 .23574 .25197	0.6530 .6276 .6037 .5811 .5598	7.53 .818 .888 .960	0.22551 .24371 .25957 .27612 .29235	0.5950 .5705 .5501 .5295 .5101	
55	2375.83	2.114	0.32521	0.4729	1.853	0.26791	0.5396	2.034	0.30829	0.4917	

METRIC UNITS.

Cross sections and weights of wires.

		C. D. Tarak								
thou- of a cm.	SSC	Coppe	er — Densit	y 8.90.	Iron	— Density	7.80.	Brass	s — Density	8.56.
Diam. in thousandths of a c	Area of cross section.	Grammes per Metre.	Log.	Metres per Gramme.	Grammes per Metre.	Log.	Metres per Gramme.	Grammes per Metre.	Log.	Metres per Gramme.
55 56 57 58 59	2375.83 2463.01 2551.76 2642.08 2733.97	2.114 .192 .271 .351 .433	0.32521 .34086 .35623 .37134 .38618	.4729 .4562 .4403 .4253 .4112	1.853 .921 .990 2.061	0.26791 .28356 .29893 .31404 .32889	.5396 .5205 .5024 .4852 .4689	2.034 .108 .184 .262	0.30829 ·32394 ·33931 ·35442 ·36927	.4917 .4743 .4578 .4422 .4273
60 61 62 63 64	2827.43 2922.47 3019.07 3117.25 3216.99	2.516 .601 .687 .774 .863	0.40078 .41514 .42926 .44316 .45684	·3974 ·3845 ·3722 ·3604 ·3493	2.205 .280 .355 .431 .509	0.34349 .35784 .37196 .38587 .39954	·4534 ·4387 ·4246 ·4113 ·3985	2.420 .502 .584 .668 .760	0.38387 .39823 .41235 .42625 .44092	.4132 ·3997 ·3869 ·3748 ·3623
65 66 67 68 69	3318.31 3421.19 3525.65 3631.68 3739.28	2.953 3.045 .138 .232 .328	0.47031 .48357 .49663 .50950 .52218	.3386 .3284 .3187 .3094 .3005	2.588 .669 .750 .833 .917	0.41301 .42627 .43933 .45220 .46488	.3864 ·3747 ·3636 ·3530 ·3429	2.840 .929 3.018 .109	0.45339 .46665 .47971 .49258 .50526	·3521 ·3415 ·3313 ·3217 ·3124
70 71 72 73 74	3848.45 3959.19 4071.50 4185.39 4300.84	3.426 .524 .624 .725 .828	0.53479 .54700 .55915 .57113 .58294	.2919 .2838 .2759 .2685 .2612	3.003 .088 .176 .265	0.47749 .48970 .50185 .51383 .52565	·3330 ·3238 ·3149 ·3063 ·2981	3.295 .389 .485 .583 .682	0.51787 .53008 .54223 .55421 .56603	.3035 .2951 .2869 .2791 .2716
75 76 77 78 79	4417.86 4536.46 4656.63 4778.36 4901.67	3.932 4.037 .144 .253 .362	0.59460 .60611 .61746 .62867 .63974	.2543 .2477 .2413 .2351 .2292	3.446 .538 .632 .727 .823	0.53731 .54881 .56017 .57137 .58244	.2902 .2826 .2753 .2683 .2615	3.782 .883 .986 4.090	0.57769 .58919 .60056 .61175 .62283	.2644 .2575 .2509 .2445 .2394
80 81 82 83 84	5026.55 51 53.00 5281.02 5410.61 5541.77	4.474 .586 .700 .815 .932	0.65066 .66145 .67211 .68264 .69304	.2235 .2180 .2128 .2077 .2027	3.921 4.019 .119 .220 .323	0.59336 .60415 .61481 .62534 .63574	.2550 .2488 .2428 .2369 .2313	4.3°3 .411 .521 .631 .744	0.63375 .64454 .65519 .66572 .67612	.2324 .2267 .2212 .2159 .2108
85 86 87 88 89	5674.50 5808.80 5944.68 6082.12 6221.14	5.050 .170 .291 .413 .537	0.70332 .71348 .72352 .73345 .74326	.1980 .1934 .1890 .1847	4.426 .531 .637 .744 .852	0.64602 .65618 .66622 .67615 .68596	.2259 .2207 .2157 .2108 .2061	4.857 .972 5.089 .206 .325	0.68640 .69656 .70660 .71653 .72634	.2059 .2011 .1965 .1921 .1878
90 91 92 93 94	6361.73 6503.88 6647.61 6792.91 6939.78	5.662 .788 .916 6.046 .176	0.75297 .76256 .77206 .78144 .79074	.1766 .1728 .1690 .1654 .1619	4.962 5.073 .185 .298 .413	0.69567 .70527 .71476 .72414 .73344	.2015 .1971 .1929 .1887 .1847	5.446 .567 .690 .815	0.73605 .74565 .75514 .76452 .77382	.1836 .1796 .1757 .1720 .1683
95 96 97 98 99	7088.22 7238.23 7389.81 7542.96 7697.69	6.309 ·442 ·577 ·713 .851	0.79993 .80902 .81802 .82693 .83575	.1585 .1552 .1520 .1490 .1460	5.529 .646 .764 .884 6.004	0.74263 .75173 .76073 .76964 .77846	.1809 .1771 .1735 .1670 .1665	6.068 .196 .326 .457 .589	0.78301 .79211 .80111 .81002 .81884	.1648 .1614 .1581 .1549 .1518
100	7853.98	6.990	0.84448	.1431	6.126	0.78718	.1632	6.723	0.82756	.1487

Cross sections and weights of wires.

The cross section and the weight, in different units, of Aluminium wire of the diameters given in the first column.

For one tenth the diameter divide sections and weights by 100. For ten times the diameter multiply by 100, and so on.

	Area of			. A	luminium	- Density	2.67.			
Diam. in Mils.	cross section in Sq. Mils.	Pounds per Foot.	Log.	Feet per Pound.	Ounces per Foot.	Log.	Feet per Ounce.	Grammes per Metre.*	Log.	Metres per Gramme.
10	78.54	.0000909	5.95862	11000.	.001455	3.16274	687.5	.02097	2.32160	47.69
11	95.03	01100	4.04139	9091.	01760	.24551	602.4	.02537	.40437	39.41
12	113.10	01309	.11699	7638.	02095	.32111	477.4	.03020	.47997	33.11
13	132.73	01536	.18650	6509.	02458	.39062	406.8	.03544	.54948	28.22
14	153.94	01782	.25088	5612.	02851	.45500	350.8	.04110	.61386	24.33
15	176.71	.0002045	4.31079	4889.	.003273	3.51491	305.6	.04718	2.67377	21.19
16	201.06	02327	.36685	4297.	03724	.57097	268.5	.05368	.72984	18.63
17	226.98	02627	.41952	3876.	04204	.62364	237.9	.06060	.78250	16.50
18	254.47	02946	.46917	3395.	04713	.67329	212.2	.06794	.83215	14.72
19	283.53	03282	.51613	3047.	05251	.72025	190.4	.07570	.87911	13.21
20	314.16	.0003636	4.56068	2750.	.005818	3.76480	171.9	.08388	2.92366	11.922
21	346.36	04009	.60306	2494.	06415	.80718	155.9	.09248	.96604	10.813
22	380.13	04400	.64346	2273.	07040	.84758	142.0	.10149	1.00644	9.853
23	415.48	04809	.68208	2079.	07697	.88630	129.9	.11093	.04506	9.014
24	452.39	05237	.71904	1910.	08378	.92316	119.4	.12079	.08202	8.279
25	490.87	.0005682	4.75450	1760.	.00909	3.95862	110.00	.1311	ī.11748	7.030
26	530.93	06147	.78867	1627.	0983	.99269	101.70	.1418	.15155	7.054
27	572.56	06628	.82135	1509.	1060	2.02547	94.30	.1529	.18433	6.541
28	615.75	07127	.85293	1403.	1140	.05705	87.69	.1644	.21592	6.083
29	660.52	07646	.88341	1308.	1223	.08753	81.75	.1764	.24640	5.670
30	706.86	.0008182	4.91286	1222.	.01309	2.11698	76.39	.1887	7.27584	5.299
31	754.77	08737	.94134	1145.	1398	.14546	71.54	.2015	·30433	4.962
32	804.25	09309	.96892	1074.	1489	.17304	66.89	.2147	·33190	.657
33	855.30	09900	.99565	1010.	1584	.19977	63.13	.2284	·35863	.379
34	907.92	10509	3.02158	952.	1681	.22570	59.47	.2424	·38456	.125
35	962.11	.001114	3.04675	897.9	.01782	2.25 087	56.12	.2569	1.40973	3.893
36	1017.88	1178	.07123	848.8	1885	.27535	53.05	.2718	.43421	.680
37	1075.21	1245	.09502	803.5	1991	.29914	50.22	.2871	.45800	.483
38	1134.11	1316	.11918	760.0	2105	.32329	47.50	.3035	.48216	.295
39	1194.59	1383	.14075	723.2	2212	.34487	45.20	.3190	.50373	.135
40	1256.64	.001455	3.16275	687.5	.02327	2.36687	42.97	·3355	1.52573	2.980
41	1320.25	1528	.18419	654.4	2445	.38831	40.90	·3525	.54717	.837
42	1385.44	1604	.20512	623.6	2566	.40924	38.97	·3699	.56810	.704
43	1452.20	1681	.22556	594.9	2690	.42968	37.18	·3877	.58854	.579
44	1520.53	1760	.24552	568.2	2816	.44964	35.51	·4060	.60851	.463
45 46 47 48 49	1590.43 1661.90 1734.94 1809.56 1885.74	.001841 1924 2008 2095 2183	3.26504 .28413 .30281 .32110 .33901	543.2 519.8 498.0 477.4 458.1	.02946 3078 3213 3351 3492	2.46916 .48825 .50693 .52522 .54313	33.95 32.49 31.12 29.84 28.63	.4246 .4437 .4632 .4832 .5035	ī.62803 .64712 .66580 .68408	2.355 .254 .159 .070 1.986
50	1963.50	2365	3.35656	440.0	.03636	2.56068	27.50	.5243	7.71954	1.907
51	2042.82	2365	.37376	422.9	3783	.57788	26.43	.5454	.73674	.833
52	2123.72	2458	.39063	406.8	3933	.59475	25.42	.5670	.75361	.764
53	2206.18	2554	.40717	394.2	4086	.61129	24.47	.5891	.77015	.698
54	2290.22	2651	.42341	377.2	4242	.62753	23.57	.6115	.78639	.635
55	237 5.83	.002750	3.43934	363.6	.04400	2.64346	22.73	.6343	1.80233	1.576

^{*} Diameters and sections in terms of thousandths of a centimetre.

Cross sections and weights of wires.

	Area of				Aluminiu	ım — Dens	ity 2.67.			
Diam. in Mils.	cross section in Sq. Mils.	Pounds per Foot.	Log.	Feet per Pound.	Ounces per Foot.	Log.	Feet per, Ounce.	Grammes per Metre.*	Log.	Metres per Gramme.
55	237 5.83	.002750	3.43934	363.6	.04400	2.64346	22.73	0.6343	ī.80233	1.576
56	2463.01	2851	.45500	350.8	.04562	.65912	21.92	.6576	.81798	.521
57	2551.76	2954	.47037	338.6	.04726	.67449	21.16	.6813	.83335	.468
58	2642.08	3058	.48547	327.0	.04893	.68959	20.44	.7054	.84846	.418
59	2733.97	3165	.50032	316.0	.05063	.70444	19.75	.7300	.86331	.370
60	2827.43	.003273	3.51492	305.5	.05236	2.71904	19.10	0.7549	ī.87790	1.325
61	2922.47	3383	.52928	295.6	.05413	.73340	18.48	.7803	.89226	.282
62	3019.07	3495	.54340	286.2	.05591	.74752	17.88	.8061	.90638	.241
63	3117.25	3608	.55730	277.1	.05773	.76142	17.32	.8323	.92028	.201
64	3216.99	3724	.57098	268.5	.05958	.77510	16.78	8589	.93396	.164
65 66 67 68 69	3318.31 3421.19 3525.65 3631.68 3739.28	.003841 3960 4081 4204 4328	3.58445 .59771 .61077 .62364 .63632	260.3 252.5 245.0 237.9 231.0	.06146 .06336 .06530 .06726 .06925	2.78857 .80183 .81489 .82777 .84044	16.27 15.78 15.31 14.87 14.44	0.8860 .9135 .9413 .9697 .9984	1.94743 .96069 .97375 .98662 .99930	.095 .062 .031 .002
70	3848.45	.004456	3.64893	224.4	.07129	2.85305	14.03	1.028	0.01191	0.9730
71	3959.19	4583	.66114	218.2	.07333	.86526	13.64	.057	.02412	.9460
72	4071.50	4713.	.67328	212.2	.07541	.87740	13.26	.087	.03627	.9199
73	4185.39	4845	.68526	206.4	.07751	.88938	12.90	.117	.04825	.8949
74	4300.84	4978	.69708	200.9	.07965	.90120	12.55	.148	.06006	.8708
75	4417.86	.005114	3.70874	195.5	.08182	2.91286	12.22	1.180	0.07172	0.8477
76	4536.46	5251	.72025	190.4	.08402	.92437	11.90	.211	.08323	.8256
77	4656.63	5390	.73160	185.5	.08624	.93572	11.60	.243	.09458	.8043
78	4778.36	5531	.74281	180.8	.08850	.94693	11.30	.276	.10579	.7838
79	4901.67	5674	.75387	176.2	.09078	.95799	11.02	.309	.11686	.7641
80	5026.55	.005818	3.76480	171.9	.09309	2.96892	10.742	1.342	0.12778	0.7451
81	5153.00	5965	.77559	167.6	.09544	.97971	10.479	.376	.13857	.7268
82	5281.02	6113	.78625	163.6	.09781	.99037	10.224	.410	.14923	.7092
83	5410.61	6263	.79678	159.7	.10021	1.00090	9.979	.445	.15976	.6922
84	5541.77	6415	.80718	155.9	.10264	.01130	9.743	.480	.17016	.6757
85	5674.50	.006568	3.81746	152.2	.1051	7.02158	9.515	1.515	0.18044	0.6600
86	5808.80	6724	.82762	148.7	.1076	.03174	9.295	.551	.19060	.6448
87	5944.68	6881	.83766	145.3	.1101	.04178	9.082	.587	.20064	.6300
88	6082.12	7040	.84758	142.0	.1126	.05170	8.878	.624	.21057	.6158
89	6221.14	7201	.85740	138.9	.1152	.06152	8.679	.661	.22038	.6020
90	6361.73	.007364	3.86710	135.8	.1178	1.07122	8.488	1.699	0.23009	0.5887
91	6503.88	7528	.87670	132.8	.1205	.08082	8.302	•737	.23968	·5759
92	6647.61	7695	.88619	130.0	.1231	.09031	8.122	•775	.24918	·5634
93	6792.91	7863	.89558	127.2	.1258	.09970	7.949	•814	.25856	·5514
94	6939.78	8033	.90487	124.5	.1285	.10899	7.780	•853	.26786	·5397
95 96 97 98 99	7088.22 7238.23 7389.81 7542.96 7697.69	.008205 8378 8554 8731 8910	3.91407 .92316 .93216 .94107 .94989	121.9 119.4 116.9 114.5 112.2	.1313 .1341 .1369 .1397 .1426	7.11819 .12728 .13628 .14519 .15401	7.617 7.459 7.307 7.158 7.015	1.893 .933 .973 2.014	0.27705 .28614 .29514 .30405 .31287	0.5284 .5174 .5068 .4965 .4865
100	7853.98	.009091	3.95862	110.0	.1455	ī.16274	6.875	2.097	0.32160	0.4769

^{*} Diameters and sections in terms of thousandths of a centimetre.

Cross sections and weights of wires.

The cross section and the weight, in different units, of Platinum wire of the diameters given in the first column.

For one tenth the diameters divide sections and weights by 100. For ten times the diameter multiply by 100, and so on.

	Area of				Platinum	— Density	7 21.50.			
Diam. in Mils.	cross section in Sq. Mils.	Pounds per Foot.	Log.	Feet per Pound.	Ounces per Foot.	Log.	Feet per Ounce.	Grammes per Metre.*	Log.	Metres per Gramme.
10	78.54	.0007321	4.86455	1366.0	.01171	2.06867	85.38	0.1689	ī.227 53	5.922
I	95.03	008858	-94732	1129.0	.01417	.15144	70.56	.2043	.31030	4.894
I2	113.10	01054	3.02292	948.6	.01687	.22704	59.29	.2432	.38590	4.113
I3	132.73	01237	-09243	808.3	.01979	.29655	50.52	.2854	.45541	3.504
I4	153.94	01435	-15681	696.9	.02296	.36093	43.56	.3310	.51979	3.021
15	176.71	.001647	3.21672	607.1	.02635	2.42084	37.95	0.3799	ī.57970	2.632
16	201.06	01874	.27278	533.6	.03005	.47790	33.27	.4323	.63576	2.311
17	226.98	02116	.32544	472.7	.03385	.52956	29.54	.4880	.68843	2.049
18	254.47	02372	.37509	421.6	.03795	.57921	26.35	.5471	.73808	1.828
19	283.53	02643	.42206	378.4	.04228	.62618	23.65	.6096	.78504	1.640
20 21 22 23 24	314.16 346.36 380.13 415.48 452.39	.002928 03228 03543 03873 04217	3.46661 .50898 .54939 .58801 .62497	341.5 309.7 282.2 258.2 237.2	.04685 .05165 .05669 .06196	2.67073 .71310 .75351 .79213 .82909	21.34 19.36 17.64 16.14 14.82	0.6754 •7447 •8173 •8933 •9726	ī.82959 .87197 .91237 .95099 .98795	1.481 •343 .224 .119
25 26 27 28 29	490.87 530.93 572.56 615.75 660.52	.004575 04949 05324 05739 06157	3.66042 .69449 .72628 .75886 .78934	218.6 202.1 187.8 174.2 162.4	.07321 .07918 .08539 .09183	2.86454 .89861 .93140 .96298 .99346	13.66 12.63 11.71 10.89 10.15	1.055 .142 .231 .324 .420	0.02341 .05748 .09026 .12184 .15232	0.9475 .8760 .8124 .7553 .7042
30	706.86	.006589	3.81879	151.8	.1054	ī.02291	9.486	1.520	0.18177	0.6580
31	754.77	07035	.84727	142.1	.1126	.05139	8.884	.623	.21025	.6162
32	804.25	07496	.87485	133.4	.1199	.07897	8.338	.729	.23783	.5783
33	855.30	07972	.90157	125.4	.1276	.10569	7.840	.839	.26456	.5438
34	907.92	08463	.92750	118.2	.1354	.13162	7.385	.952	.29049	.5123
35	962.11	.008968	3.95268	111.52	.1435	ī.15680	6.970	2.069	.031566	0.4834
36	1017.88	09488	.97715	105.41	.1518	.18127	6.588	.188	.34014	.4569
37	1075.21	10022	2.00095	99.78	.1604	.20507	6.236	.312	.36393	.4326
38	1134.11	10595	.02511	94.38	.1695	.22923	5.899	.444	.38809	.4092
39	1194.59	11134	.04668	89.81	.1782	.25080	5.613	.568	.40966	.3893
40 41 42 43 44	1256.64 1320.25 1385.44 1452.20 1520.53	.01171 1231 1291 1354 1417	2.06867 .09011 .11104 .13148 .15145	85.38 81.26 77.44 73.88 70.56	.1874 .1969 .2066 .2166	1.27279 .29423 .31516 .33560 .35557	5.336 5.079 4.840 4.617 4.410	2.702 .839 .979 3.122 .269	0.43166 .45309 .47403 .49446 .51443	0.3701 ·35 ² 3 ·3346 ·3 ² 03 ·3 ⁰ 59
45	1590.43	.01482	2.17097	67.46	.2372	ī.37509	4.216	3.419	0.53395	0.2924
46	1661.90	1549	.19006	64.56	.2478	.39418	4.035	·573	.55304	.2799
47	1734.94	1617	.20874	61.84	.2587	.41286	3.865	·730	.57172	.2681
48	1809.56	1687	.22703	59.29	.2699	.43115	3.705	.891	.59001	.2570
49	1885.74	1758	.24494	56.89	.2812	.44906	3.556	4.054	.60792	.2467
50	1963.50	.01830	2.26249	54.64	.2928	ī.46661	3.415	4.222	0.62547	0.2369
51	2042.82	1904	.27969	52.52	.3047	.48381	3.282	.392	.64267	.2277
52	2123.72	1979	.29655	50.52	.3167	.50067	3.157	.566	.65954	.2190
53	2206.18	2056	.31310	48.63	.3290	.51722	3.039	.743	.67608	.2108
54	2290.22	2135	.32933	46.84	.3415	·53345	2.928	.924	.69232	.2031
55	237 5.83	.02214	2.34527	45.16	-3543	ī.54939	2.822	5.108	0.70825	0.1958

^{*} Diameters and sections in terms of thousandths of a centimetre.

Cross sections and weights of wires.

	Area of				Platinum	— Density	21.50.			
Diam. in Mils.	cross section in Sq. Mils.	Pounds per Foot.	Log.	Feet per Pound.	Ounces per Foot.	Log.	Feet per Ounce.	Grammes per Metre.*	Log.	Metres per Gramme.
55 56 57 58 59	237 5.83 2463.01 2551.76 2642.08 2733.97	.02214 2296 2378 2463 2548	2.34527 .36092 .37630 .39140 .40625	45.16 43.56 42.04 40.61 39.24	0.3543 •3673 •3806 •3940 •4077	7.54939 .56504 .58042 .59552 .61037	2.822 .722 .628 .538 .453	5.108 .295 .486 .680 .878	0.70825 .72390 .73928 .75438 .76923	.1958 .1888 .1823 .1760
60	2827.43	.02635	2.42085	37.94	0.4217	ī.62497	2.372	6.079	0.78383	.1645
61	2922.47	2724	.43521	36.71	.4358	.63933	.294	.283	.79819	.1592
62	3019.07	2814	.44933	35.54	.4502	.65345	.221	.491	.81231	.1541
63	3117.25	2906	.46323	34.42	.4649	.66735	.151	.702	.82621	.1492
64	3216.99	2999	.47691	33.35	.4798	.68103	.084	.917	.83989	.1446
65 66 67 68 69	3318.31 3421.19 3525.65 3631.68 3739.28	.03093 3189 3286 3385 3485	2.49037 .50363 .51670 .52956 .54224	32·33 31·36 30·43 29·54 28.69	0.4949 .5102 .5258 .5416 .5577	7.69449 .70775 .72082 .73368 .74636	2.021 1.960 .902 .846 .793	7.134 .356 .580 .808 8.039	0.85336 .86662 .87968 .89255 .90523	.1402 .1360 .1319 .1281
70	3848.45	.03588	2.55485	27.87	0.574I	ī.75897	1.742	8.276	0.91784	.1208
71	3959.19	3690	.56706	27.10	.5904	.77118	.694	.512	.93004	.1175
72	4071.50	3795	.57921	26.35	.6072	.78333	.647	.754	.94219	.1142
73	4185.39	3901	.59119	25.63	.6242	.79531	.602	.999	.95417	.1111
74	4300.84	4009	.60301	24.95	.6414	.80713	.559	9.247	.96599	.1081
75 76 77 78 79	4417.86	.04118	2.61467	24.28	0.6589	7.81879	1.518	9.498	0.97765	.10528
	4536.46	4228	.62617	23.65	.6765	.83029	.478	9.753	.98916	.10253
	4656.63	4340	.63753	23.04	.6945	.84165	.440	10.012	1.00051	.09988
	4778.36	4454	.64874	22.45	.7126	.85286	.403	10.273	.01172	.09734
	4901.67	4569	.65980	21.89	.7310	.86392	.368	10.539	.02278	.09489
81 82 83 84	5026.55 5153.00 5281.02 5410.61 5541.77	.04685 4803 4922 5043 5165	2.67073 .68152 .69217 .70270 .71310	21.34 20.82 20.32 19.83 19.36	0.7496 .7685 .7876 .8069 .8265	1.87485 .88564 .89629 .90682 .91722	1.334 .301 .270 .239	10.81 11.08 11.35 11.63 11.91	1.03371 .04450 .05516 .06568 .07609	.09253 .09026 .08807 .08596 .08393
85	5674.50	.05289	2.72338	18.91	0.8463	7.92750	1.182	12.20	1.08637	.08197
86	5808.80	5414	·73354	18.47	.8663	.93766	.154	12.49	.09652	.08007
87	5944.68	5541	·74358	18.05	.8866	.94770	.128	12.78	.10657	.07807
88	6082.12	5669	·75351	17.64	.9070	.95763	.102	13.08	.11649	.07647
89	6221.14	5799	·76333	17.25	.9278	.96745	.078	13.37	.12631	.07477
90	6361.73	.05930	2.77303	16.86	0.9487	ī.97715	1.0541	13.68	1.13601	.07311
91	6503.88	6062	.78263	16.50	.9699	.98675	.0310	13.98	.14561	.07152
92	6647.61	6196	.79212	16.14	.9914	.99624	.0087	14.29	.15510	.06997
93	6792.91	6332	.80151	15.79	1.0130	0.00563	0.9871	14.60	.16449	.06847
94	6939.78	6469	.81080	15.46	.0350	.01492	.9661	14.92	.17378	.06702
95	7088.22	.06607	2.81999	15.14	1.057	0.02411	0.9460	15.24	1.18298	.06562
96	7238.23	6747	.82909	14.82	.079	.03321	.9264	15.56	.19207	.06426
97	7389.81	6888	.83809	14.52	.102	.04221	.9074	15.89	.20107	.06294
98	7542.96	7031	.84700	14.22	.125	.05112	.8890	16.22	.20998	.06166
99	7697.69	7175	.85582	13.94	.148	.05994	.8711	16.55	.21880	.06042
100	7853.98	.07321	2.86455	13.66	1.171	0.06867	0.8538	16.89	1.22753	.05922

^{*} Diameters and sections in terms of thousandths of a millimetre.

Cross sections and weights of wires.

The cross section and the weight, in different units, of Gold wire of the diameters given in the first column.

For one tenth the diameters divide sections and weights by 100. For ten times the diameter multiply by 100 and so on.

	Area of				Gold —	Density 19.	.30.			
Diam. in Mils.	cross section in Sq. Mils.	Troy Ounces per Foot.	Log.	Feet per Troy Ounce.	Grains per Foot.	Log.	Feet per Grain.	Grammes per Metre.*	Log.	Metres per Gramme.
10 11 12 13 14	78.54 95.03 113.10 132.73 153.94	.00958 .01160 .01380 .01657 .01878	3.98152 2.06429 .13989 .21940 .27378	104.35 86.24 72.46 60.34 53.24	4.600 5.566 6.624 7.774 9.016	0.66276 •74553 •82114 •89064 •95503	.2174 .1797 .1510 .1286	0.1516 .1834 .2183 .2562 .2971	ī.18065 .26342 .33902 .40853 .47291	6.597 5.452 4.581 3.904 3.366
15	176.71	.02156	2.33369	46.38	10.35	1.01493	.09662	0.3411	ī.53282	2.932
16	201.06	.02453	.38976	40.76	11.78	.07100	.08492	.3880	.58888	.577
17	226.98	.02770	.44242	36.11	13.29	.12366	.07522	.4381	.64154	.283
18	254.47	.03105	.49207	32.21	14.90	.17331	.06710	.4911	.69119	.036
19	283.53	.03460	.53903	28.90	16.61	.22027	.06022	.5472	.73816	1.827
20	314.16	.03833	2.58358	26.09	18.40	1.26482	.05435	0.6063	1.78271	1.649
21	346.36	.04226	.62596	23.66	20.29	.30720	.04939	.6685	.82509	.496
22	380.13	.04638	.66636	21.56	22.26	.34761	.04492	.7337	.86549	.363
23	415.48	.04954	.69498	20.18	24.33	.38622	.04109	.8019	.90411	.248
24	452.39	.05520	.74194	18.12	26.50	.42319	.03774	.8731	.94107	.145
25	490.87	.05990	2.77740	16.70	28.75	1.45865	.03478	0.9474	7.97652	1.0555
26	530.93	.06478	.81147	15.44	31.10	.49271	.03216	1.0247	0.01059	0.9759
27	572.56	.06986	.84425	14.31	33.53	.52549	.02982	.1050	.04338	9050
28	615.75	.07513	.87584	13.31	36.06	.55708	.02773	.1884	.07496	.8415
29	660.52	.08060	.90632	12.41	38.69	.58756	.02585	.2748	.10544	.7844
30	706.86	.08625	2.93577	11.594	41.40	1.61701	.02415	1.364	0.13489	0.7330
31	754.77	.09210	.96425	10.858	44.21	.64549	.02262	.457	.16337	.6912
32	804.25	.09813	.99182	10.190	47.10	.67306	.02123	.552	.19095	.6442
33	855.30	.10436	1.01855	9.582	50.09	.69979	.01996	.651	.21768	.6058
34	907.92	.11078	.04448	9.027	53.18	.72572	.01881	.752	.24360	.5707
35	962.11	.1174	ī.06965	8.518	56.35	1.75089	.01775	1.857	0.26878	0.5385
36	1017.88	.1242	.09413	8.051	59.62	.77537	.01677	.965	.29325	.5090
37	1075.21	.1312	.11792	7.622	62.97	.79917	.01588	2.070	.31605	.4830
38	1134.11	.1387	.14208	7.210	66.58	.82332	.01502	.194	.34121	.4558
39	1194.59	.1458	.16365	6.861	69.97	.84489	.01429	.306	.36278	.4337
40	1256.64	.1533	ī.18565	6.521	73.60	1.86689	.01359	2.425	0.38478	0.4123
41	1320.25	.1611	.20709	6.207	77.33	.88833	.01293	.548	.40621	·3924
42	1385.44	.1691	.22802	5.915	81.14	.90926	.01232	.674	.42715	·3740
43	1452.20	.1772	.24846	5.643	85.05	.92970	.01176	.803	.44758	·3568
44	1520.53	.1855	.26843	5.390	89.06	.94967	.01123	.935	.46755	·3408
45	1590.43	.1941	1.28795	5.153	93.15	1.96919	.010735	3.070	0.48707	0.3258
46	1661.90	.2028	.30704	4.931	97.34	.98828	.010273	.207	.50616	.3118
47	1734.94	.2117	.32572	4.724	101.61	2.00696	.009842	.348	.52484	.2986
48	1809.56	.2208	.34400	4.529	105.99	.02525	.009435	.492	.54313	.2863
49	1885.74	.2301	.36191	4.346	110.45	.04315	.009054	.639	.56104	.2748
50 51 52 53 54	1963.50 2042.82 2123.72 2206.18 2290.22	.2396 .2493 .2591 .2692 .2795	ī.37946 .39666 .41353 .43007 .44631	4.174 4.012 3.859 3.715 3.578	115.0 119.6 124.4 129.2 134.1	2.06070 .07790 .09477 .11131 .12755	.008696 .008358 .008039 .007739	3.790 .943 4.099 .258 .420	0.57859 ·59579 ·61265 ·62920 ·64543	0.2639 .2537 .2440 .2349 .2262
55	2375.83	.2899	T.46225	3.449	139.2	2.14349	.007 186	4.585	0.66137	0.2181

^{*} Diameters and sections in terms of thousandths of a centimetre.

Cross sections and weights of wires.

	Area of				Gold -	Density 10	9.30.			
Diam. in Mils.	cross section in Sq. Mils.	Troy Ounces per Foot.	Log.	Feet per Troy Ounce.	Grains per Foot.	Log.	Feet per Grain.	Grammes per Metre.*	Log.	Metres per Gramme.
55	2375.83	.2899	7.46225	3.449	139.2	2.14349	.007186	4·585	0.66137	.2181
56	2463.01	.3005	.47790	•327	144.3	.15914	6932	4·754	.67702	.2104
57	2551.76	.3114	.49327	.212	149.5	.17451	6691	4·925	.69240	.2031
58	2642.08	.3224	.50838	.102	154.7	.18962	6462	5·099	.70750	.1961
59	2733.97	.3336	.52323	2.998	160.1	.20447	6245	5·277	.72235	.1895
60 61 62 63 64	2827.43 2922.47 3019.07 3117.25 3216.99	.3450 .3566 .3684 .3804 .3925	ī.53782 .55218 .56630 .58020 .59388	2.899 .804 .715 .629	165.6 171.2 176.8 182.6 188.4	2.21906 .23342 .24754 .26144 .27512	.006039 5842 5655 5477 5307	5.457 5.640 5 .827 6.016 6.209	0.73695 .75131 .76543 .77933 .79301	.1833 .1773 .1716 .1662 .1611
65	3318.31	.4049	7.60735	2.470	194.4	2.28859	.005145	6.404	0.80647	.1561
66	3421.19	.4175	.62061	•395	200.4	.30185	4991	6.603	.81973	.1514
67	3525.65	.4302	.63367	•324	206.5	.31491	4843	6.805	.83280	.1470
68	3631.68	.4431	.64654	•257	212.7	.32778	4701	7.010	.84566	.1427
69	3739.28	.4563	.65922	•192	219.0	.34046	4566	7.217	.85835	.1386
70 71 72 73 74	3848.45 3959.19 4071.50 4185.39 4300.84	.4697 .4831 .4968 .5107 .5248	7.67183 .68404 .69619 .70817 .71998	2.129 .070 .013 1.958	225.5 231.9 238.4 245.1 251.9	2.35307 .36528 .37743 .38941 .40123	4312 4195 4079 3970	7.429 7.641 7.858 8.078 8.301	0.87096 .88316 .89531 .90729 .91911	.1346 .1309 .1273 .1238 .1204
75	4417.86	.5391	7.73164	1.855	258.8	2.41288	.003865	8.526	0.93077	.1173
76	4536.46	.5535	.74315	.807	265.7	.42439	3764	8.755	.94227	.1142
77	4656.63	.5682	.75450	.760	272.7	.43574	3666	8.987	.95363	.1113
78	4778.36	.5831	.76571	.715	279.9	.44695	3573	9.222	.96484	.1084
79	4901.67	.5981	.77678	.672	287.1	.45801	3483	9.460	.97590	.1057
80	5026.55	.6133	7.78770	1.630	294.4	2.46894	.003401	9.701	0.98683	.10308
81	5153.00	.6288	.79849	.590	301.8	•47973	3313	9.945	.99762	.10055
82	5281.02	.6444	.80915	.552	309.3	•49039	3233	10.192	1.00828	.09812
83	5410.61	.6602	.81968	.515	316.9	•50092	3156	10.442	.01880	.09577
84	5541.77	.6762	.83008	.479	324.6	•51132	3081	10.696	.02921	.09349
85 86 87 88 89	5674.50 5808.80 5944.68 6082.12 6221.14	.6924 .7088 .7254 .7421 .7591	7.84036 .85052 .86056 .87049 .88030	1.444 .411 .379 .347 .317	33 ² ·4 340.2 348.2 356.2 364.4	2.52160 .53176 .54180 .55173 .56154	.003009 2939 2872 2807 2744	10.95 11.21 11.47 11.74 12.01	1.03948 .04964 .05969 .06961	.09131 .08919 .08716 .08519 .08328
90	6361.73	.7763	7.89001	1.288	372.6	2.57125	.002684	12.28	1,08913	.08145
91	6503.88	.7936	.89960	.260	380.9	.58085	2625	12.55	.09873	.07967
92	6647.61	.8111	.90910	.233	389.3	.59034	2568	12.83	.10822	.07794
93	6792.91	.8291	.91858	.206	397.9	.59972	2513	13.11	.11761	.07628
94	6939.78	.8468	.92778	.181	406.5	.60902	2460	13.39	.12690	.07466
95	7088.22	.8649	7.93697	1.156	415.2	2.61821	.002409	13.68	1.13609	.07310
96	7238.23	.8832	.94606	.132	423.9	.62731	2359	13.97	.14519	.07158
97	7389.81	.9017	.95507	.109	432.8	.63631	2310	14.26	.15419	.07011
98	7542.96	.9204	.96397	.086	441.8	.64521	2263	14.56	.16310	.06869
99	7697.69	.9393	.97279	.065	450.9	.65403	2218	14.86	.17192	.06731
100	7853.98	.9583	7.98152	1.043	460.0	2.66276	.002174	15.16	1.18065	.06597

^{*} Diameters and sections in terms of thousandths of a centimetre.

Cross sections and weights of wires.

The cross section and the weight, in different units, of Silver wire of the diameters given in the first column. For one tenth the diameters divide the section and weights by 100. For ten times the diameter muliply by 100, and so on.

	Area of				Silver	— Density	10.50.			
Diam. in Mils.	cross section in Sq. Mils.	Troy Ounces per Foot.	Log.	Feet per Troy Ounce.	Grains per Foot.	Log.	Feet per Grain.	Grammes per Metre.*	Log.	Metres per Gramme.
10 11 12 13 14	78.54 95.03 113.10 132.73 153.94	.005214 .006308 .007508 .008811	3.71715 .79992 .87553 .94503 2.00942	191.79 158.52 133.19 113.49 97.86	2.503 3.028 3.604 4.229 4.905	0.39839 .48117 .55677 .62627 .69066	.3996 .3302 .2775 .2364 .2039	0.08247 .09978 .11876 .13937 .16164	2.91628 .99905 1.07465 .14416 .20854	12.126 10.022 8.420 7.175 6.186
15 16 17 18 19	176.71 201.06 226.98 254.47 283.53	.01173 .01335 .01507 .01689 .01882	2.06932 .12539 .17805 .22770 .27466	85.24 74.92 66.37 59.20 53.13	5.631 6.407 7.233 8.109 9.034	0.75057 .80663 .85929 .90894 .95590	.1776 .1561 .1383 .1233	0.1855 .2111 .2383 .2672 .2977	1.26845 .32452 .37718 .42683 .47379	5.389 4.737 4.196 3.743 3.359
20 21 22 23 24		.02086 .02299 .02523 .02758 .03003	2.31921 .36159 .40200 .44061 .47758	47.95 43.49 39.63 36.26 32.99	10.01 11.04 12.11 13.24 14.42	1.00046 .04283 .08324 .12186 .15882	.09990 .09060 .08256 .07553 .06937	0.3299 .3637 .3991 .4363 .4750	ī.51834 .56072 .60112 .63974 .67670	3.031 2.7 5 0 .505 .292
25 26 27 28 29	490.87 530.93 572.56 615.75 660.52	.03259 .03525 .03801 .04088 .04385	2.51303 .54710 .57988 .61147 .64195	30.69 28.37 26.31 24.46 22.81	15.64 16.92 18.24 19.62 21.05	1.19427 .22834 .26113 .29271 .32319	.06425 .05911 .05481 .05097 .04751	0.5154 ·5575 .6012 .6465 .6935	7.71216 .74623 .77901 .81059 .84108	1.940 •794 •663 •547 •442
30 31 32 33 34	706.86 754.77 804.25 855.30 907.92	.04692 .05010 .05339 .05678 .06027	2.67140 .69988 .72745 .75418 .78011	21.31 19.96 18.73 17.61 16.59	22.52 24.05 25.63 27.25 28.93	1.35264 .38112 .40870 .43542 .46135	.04440 0.4158 0.3902 0.3669 0.3457	0.7422 .7925 .8445 .8981 .9533	1.87052 .89900 .92658 .95331 .97924	1.347 .262 .184 .113
35 36 37 38 39	962.11 1017.88 1075.21 1134.11 1194.59	.06387 .06757 .07138 .07546 .07930	2.80528 .82976 .85356 .87772 .89928	15.66 14.80 14.01 13.25 12.61	30.66 3 ² .43 34.26 36.22 38.06	1.48653 .51100 .53480 .55896 .58052	.03262 .03083 .02919 .02761	1.010 .069 .129 .194 .254	0.00441 .02889 .05268 .07684 .09841	0.9899 •9356 .8857 .8378 •7973
40 41 42 43 44	1256.64 1320.25 1385.44 1452.20 1520.53		2.92128 .94272 .96365 .98409 1.00406	11.99 11.41 10.87 10.37 9.91	40.04 42.07 44.15 46.27 48.45	1.60252 .62396 .64489 .66533 .68530	.02497 .02377 .02265 .02161 .02064	1.319 .386 .455 .525 .597	0.12041 .14185 .16278 .18322 .20318	0.7579 .7213 .6874 .6558 .6263
45 46 47 48 49	1 590.43 1661.90 1734.94 1809.56 1885.74	.1152	ī.02358 .04267 .06135 .07964 .09755	9.471 9.065 8.683 8.325 7.988	50.68 52.96 55.28 57.66 60.09	1.70482 .72391 .74259 .76088 .77879	.01973 .01888 .01809 .01734 .01664	1.670 ·745 ·822 ·900 ·980	0.22270 .24179 .26047 .27876 .29667	0.5988 ·5731 ·5489 ·5263 ·5050
50 51 52 53 54	1963.50 2042.82 2123.72 2206.18 2290.22	.1303 .1356 .1410 .1465	ī.11509 .13229 .14916 .16570 .18194	7.672 7.374 7.093 6.828 6.578	62.57 65.09 67.67 70.30 72.99	1.79634 .81354 .83040 .84695 .86328	.01598 .01536 .01478 .01422 .01370	2.062 .145 .230 .316 .405	0.31422 .33142 .34829 .36483 .38107	0.4850 .4662 .4484 .4317 .4158
55	2375.83	.1 577	ī.19788	6.340	75.70	1.87912	.01321	2.495	0.39700	0.4009

^{*} Diameters and sections in terms of thousandths of a centimetre.

Cross sections and weights of wires.

	Area of				Silve	er — Densit	y 10.50;			
Diam. in Mils.	cross section in Sq. Mils.	Troy Ounces per Foot.	Log.	Feet per Troy Ounce.	Grains per Foot.	Log.	Feet per Grain.	Grammes per Metre.*	Log.	Metres per Gramme.
55 56 57 58 59	2375.83 2463.01 2551.76 2642.08 2733.97	0.1577 .1635 .1694 .1754 .1815	ī.19788 .21353 .22890 .24401 .25886	6.340 .116 5.903 .701	75.70 78.48 81.31 84.19 87.12	1.87912 .89477 .91014 .92525 .94010	.01321 1274 1230 1188 1148	2.495 .586 .679 .774 .871	0.39700 .41266 .42803 .44314 .45798	0.4009 .3867 .3732 .3605 .3484
60	2827.43	0.1877	ī.27346	5.328	90.09	1.95470	.01110	2.969	0.47258	0.3368
61	2922.47	.1940	.28781	.155	93.12	.96906	1074	3.069	.48694	.3259
62	3019.07	.2004	.30193	4.990	96.20	.98318	1040	.170	.50106	.3155
63	3117.25	.2069	.31584	.832	99.33	.99708	1007	.273	.51496	.3055
64	3216.99	.2136	.32951	.683	102.51	2.01075	0975	.378	.52864	.2961
65	3318.31	0.2203	ī.34298	4.540	105.7	2.02422	.009457	3.484	0.54211	0.2870
66	3421.19	.2271	.35624	.403	109.0	.03748	09173	.592	·55537	.2784
67	3525.65	.2340	.36930	.273	112.3	.05054	08903	.702	·56843	.2701
68	3631.68	.2411	.38217	.148	115.7	.06341	08642	.813	·58130	.2622
69	3739.28	.2482	.39485	.029	119.1	.07609	08393	.926	·59398	.2547
70	3848.45	0.2555	ī.40746	3.913	122.7	2.08870	.008153	4.042	0.60659	0.2474
71	3959.19	.2628	.41967	.805	126.2	.10091	07926	.157	.61880	.2406
72	4071.50	.2703	.43182	.700	129.7	.11306	07708	.275	.63094	.2339
73	4185.39	.2778	.44380	.599	133.4	.12504	07498	.395	.64293	.2275
74	4300.84	.2855	.45560	.502	137.0	.13686	07297	.516	.65474	.2214
75 76 77 78 79	4417.86 4536.46 4656.63 4778.36 4901.67	0.2933 .3011 .3091 .3172 .3254	ī.46728 .47878 .49014 .50134 .51241	3.410 .321 .235 .152	140.8 144.6 148.4 152.3 156.2	2.14852 .16002 .17138 .18258 .19365	.007104 06918 06739 06568 06402	4.639 .763 .889 5.017	0.66640 .67791 .68926 .70047 .71153	0.2156 .2099 .2045 .1993 .1943
80	5026.55	0.3337	ī.52333	2.997	160.2	2.20458	.006243	5.278	0.72246	0.1895
81	5153.00	.3421	·53412	.923	164.2	.21537	06090	.411	•73325	.1848
82	5281.02	.3506	·54478	.852	168.3	.22602	05942	.545	•74391	.1803
83	5410.61	.3592	·55531	.784	172.4	.23655	05800	.681	•75444	.1760
84	5541.77	.3679	·56571	.718	176.6	.24695	05663	.819	•76484	.1719
85	5674.50	0.3767	ī.57599	2.655	180.8	2.25723	.005531	5.958	0.77512	0.1678
86	5808.80	.3856	.58615	·593	185.1	.26739	05403	6.099	.78528	.1640
87	5944.68	.3946	.59619	·534	189.4	.27743	05279	.242	.79532	.1602
88	6082.12	.4038	.60612	·477	193.8	.28736	05160	.386	.80524	.1566
89	6221.14	.4130	.61593	·421	198.2	.29717	05045	.532	.81506	.1531
90 91 92 93 94	6361.73 6503.88 6647.61 6792.91 6939.78	0.4223 .4318 .4413 .4509 .4607	ī.62564 .63524 .64473 .65411 .66341	2.368 .316 .266 .218	202.7 207.2 211.8 216.4 221.1	2.30688 .31648 .32597 .33535 .34465	.004933 04825 04721 04620 04522	6.680 .829 .980 7.132 .287	0.82476 .83436 .84385 .85324 .86254	0.1497 .1464 .1433 .1402 .1372
95	7088.22	0.4705	ī.67260	2.125	225.9	2.35384	.004428	7.443	0.87173	0.1344
96	7238.23	.4805	.68170	.081	230.6	.36294	04336	.600	.88082	.1316
97	7389.81	.4906	.69070	.038	235.5	.37194	04247	.759	.88982	.1289
98	7542.96	.5007	.69961	1.997	240.4	.38085	04161	.920	.89873	.1263
99	7697.69	.5110	.70842	.957	245.3	.38967	04077	8.083	.90755	.1237
100	7853.98	0.5214	1.71715	1.918	250.3	2.39839	.003996	8.247	0.91628	0.1213

^{*} Diameters and sections in terms of thousandths of a centimetre.

WEIGHT OF SHEET METAL.

TABLE 63. - Weight of Sheet Metal. (Metric Measure.)

This table gives the weight in grammes of a plate one metre square and of the thickness stated in the first column.

Silver.	105.0 210.0 215.0 315.0 525.0 630.0 735.0 840.0 945.0
Gold.	193.0 386.0 379.0 772.0 965.0 1158.0 1351.0 1351.0 1544.0
Platinum.	215.0 430.0 645.0 865.0 1075.0 1290.0 1720.0 1935.0 2150.0
Aluminium.	26.7 53.4 86.1 106.8 133.5 166.2 186.9 240.3 267.0
Brass,	85.6 171.2 256.8 342.4 428.0 513.6 589.8 684.8 684.8 684.8 684.8 684.8 684.8 684.8 684.8 684.8
Copper.	89.0 267.0 267.0 356.0 356.0 356.0 534.0 623.0 801.0 890.0
Iron.	78.0 156.0 234.0 312.0 390.0 468.0 546.0 624.0 702.0 780.0
Thick- ness in thou- sandths of a cm.	H 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

WEIGHT OF SHEET METAL.

TABLE 64. -- Weight of Sheet Metal. (British Measure.)

	Grains per Sq. Foot.	382.4 765.8 1147.2 1912.0 1912.0 2294.4 2676.8 3059.2 341.6
Silver.*	Ounces per Gra Sq. Foot. Sq.	0.7967 1.5933 3.3867 11.5933 11.5933 11.5933 11.5933 12.5767 2.55767 2.3734 2.7.1700 2.7.1700 2.7.1700 2.7.1700 3.7.1700
Gold.*	Grains per Sq. Foot.	702.8 1405.7 2108.5 2811.3 3514.2 3514.2 4217.0 4919.8 5622.7 5632.5 7028.3
°S	Ounces per Sq. Foot.	1.4642 2.9285 4.3927 5.8570 7.3212 8.7854 10.2497 11.7139 13.1782 14.6424
Platinum.	Ounces per Sq. Foot.	1.790 3.579 5.369 7.158 8.948 12.527 14.317 16.106 17.896
Plat	Pounds per Sq. Foot.	.1119 .2237 .3356 .4474 .5593 .6711 .7830 .8948 .1.0067
Aluminium.	Ounces per Sq. Foot.	1.335 1.5557 1.7780 2.0002 2.0002
Alum	Pounds per Sq. Foot.	.01389 .02778 .04167 .05556 .05945 .08334 .09723 .11112 .12501
Brass.	Pounds per Sq. Foot.	.08908 .13363 .17817 .22271 .26725 .31179 .35634 .45088
Copper.	Pounds per Sq. Foot.	
Iron.	Pounds per Sq. Foot.	.04058 .08116 .08116 .16231 .24347 .28405 .32463 .32463 .36520
Thickness	in Mils.	H 2 24 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

* Gold and silver are given in Troy ounces.

SIZE, WEIGHT, AND ELECTRICAL

Size, Weight, and Electrical Constants of pure hard drawn Copper Wire of different numbers

Size and Weight.

Gauge Number.	Diameter in Inches.	Square of Diameter (Circular Inches).	Section in Sq. Inches.	Pounds per Foot.	Log.	Feet per Pound.
0000 000 00	0.4600 .4096 .3648 .3249	0.2116 .1678 .1331 .1055	0.1662 .1318 .1045 .0829	0.6412 .5085 .4033 .3198	ī.80701 .70631 .60560 .50489	1.560 1.967 2.480 3.127
1 2 3 4 5	0.2893 .2576 .2294 .2043 .1819	0.08369 .06637 .05263 .04174 .03310	0.06573 .05213 .04134 .03278 .02600	0.2536 .2011 .1595 .1265 .1003	1.40419 .30348 .20277 .10206 .00136	3.943 4.972 6.270 7.905 9.969
6 7 8 9	0.1620 .1443 .1285 .1144 .1019	0.02625 .02082 .01651 .01309 .01038	0.02062 .01635 .01297 .01028 .00815	0.07955 .06309 .05003 .03968 .03146	2.90065 •79994 •69924 •59853 •49782	12.57 15.85 19.99 25.20 31.78
11 12 13 14 15	0.09074 .08081 .07196 .06408	0.008234 .006530 .005178 .004107 .003257	0.006467 .005129 .004067 .003225 .002558	0.02495 .01979 .01569 .01244 .00987	2.39711 .29641 .19570 .09499 3.99429	40.08 50.54 63.72 80.35
16 17 18 19 20	0.05082 .04526 .04030 .03589 .03196	0.002583 .002048 .001624 .001288	0.002028 .001609 .001276 .001012 .000802	0.007827 .006207 .004922 .003904 .003096	3.89358 .79287 .69217 .59146 .49075	127.8 161.1 203.2 256.2 323.1
21 22 23 24 25	0.02846 .02535 .02257 .02010 .01790	0.0008101 .0006424 .0005095 .0004040	0.0006363 .0005046 .0004001 .0003173 .0002517	0.002455 .001947 .001544 .001224	3.39004 .28934 .18863 .08792 4.98722	408.2 513.6 647.7 81 6.7 1029.9
26 27 28 29 30	0.01594 .01419 .01264 .01126	0.0002541 .0002015 .0001598 .0001267 .0001005	0.0001996 .0001583 .0001255 .0000995	0.0007700 .0006107 .0004843 .0003841	4.88651 .78580 .68510 .58439 .48368	1298. 1638. 2065. 2604. 3283.
31 32 33 34 35	0.008928 .007950 .007080 .006304 .005614	0.00007970 .00006321 .00005013 .00003975 .00003152	0.00006260 .00004964 .00003937 .00003122 .00002476	0.0002415 .0001915 .0001519 .0001205 .0000955	4.38297 .28227 .18156 .08085 5.98015	4140. 5221. 6583. 8301. 10468.
36 37 38 39 40	0.005000 .004453 .003965 .003531 .003145	0.00002500 .00001983 .00001372 .00001247 .00000989	0.00001963 .00001557 .00001235 .00000979	0.00007 576 .00006008 .00004765 .00003778 .00002996	5.87944 .77873 .67802 .57732 .47661	13200. 16644. 20988. 26465. 33372.

CONSTANTS OF COPPER WIRE.

according to the American Brown and Sharp Gauge. British Measure. Temperature o° C. Density 8.90.

Electrical Constants.

	T	16	1 4 1		
	F	Resistance and Co			Gauge
Ohms per Foot.	Log.	Feet per Ohm.	Ohms per Pound.	Pounds per Ohm.	Number.
0.00004629 .00005837 .00007361 .00009282	5.66551 .76622 .86693 .96764	21601. 17131. 13586. 10774.	0.00007219 .00011479 .00018253 .00029023	13852. 8712. 5479. 3445.	0000 000 00
0.0001170	4.06834	8544.	0.0004615	2166.8	1
.0001476	.16905	6775.	.0007338	1362.8	2
.0001861	.26976	5373.	.0011668	857.0	3
.0002347	.37046	4261.	.0018552	539.0	4
.0002959	.47117	3379.	.0029499	339.0	5
0.000373I .0004705 .0005933 .0007482 .0009434	4.57188 .67259 .77329 .87400 .97471	2680. 2125. 1685. 1337. 1060.	0.004690 .007458 .011859 .018857 .029984	213.22 134.08 84.32 53.03 33.35	6 7 8 9
0.001190	3.07541	840.6	0.04768	20.973	11
.001500	.17612	666.6	.07581	13.191	12
.001892	.27683	528.7	.12054	8.296	13
.002385	.37753	419.2	.19166	5.218	14
.003008	.47824	332.5	.30476	3.281	15
0.003793	3.57895	263.7	0.4846	2.0636	16
.004783	.67966	209.1	.7705	1.2979	17
.006031	.78036	165.8	1.2252	0.8162	18
.007604	.88107	131.5	1.9481	.5133	19
.009589	.98178	104.3	3.0976	.3228	20
0.01209	2.08248	82.70	4.925	0.20305	21
.01525	.18319	65.59	7.832	.12768	22
.01923	.28390	52.01	12.453	.08030	23
.02424	.38461	41.25	19.801	.05051	24
.03057	.48531	32.71	31.484	.03176	25
0.03855	2.58602	25.94	50.06	0.019976	26
.04861	.68673	20.57	79.60	.012563	27
.06130	.78743	16.31	126.57	.007901	28
.07729	.88814	12.94	201.26	.004969	29
.09746	.98885	10.26	320.01	.003125	30
0.1229	ī.08955	8.137	508.8	0.0019654	31
.1550	.19026	6.452	809.1	.0012359	32
.1954	.29097	5.117	1286.5	.0007773	33
.2464	.39168	4.058	2045.6	.0004889	34
.3107	.49238	3.218	3252.6	.0003074	35
0.3918 .4941 .6230 .7856 .9906	1.59309 .69380 .79450 .89521 .99592	2.552 2.024 1.605 1.273 1.009	5172. 8224. 13076. 20792. 33060.	0.0001934 .0001216 .0000765 .0000481	36 37 38 39 40

SIZE, WEIGHT, AND ELECTRICAL

Size, Weight, and Electrical Constants of pure hard drawn Copper Wire of different numbers

Size and Weight.

Gauge Number.	Diameter in Centimetres.	Square of Diameter (Circular Cms.).	Section in Sq. Cms.	Grammes per Metre.	Log.	Metres per Granne.
0000 000 00	1.1684 .0405 0.9266 .8251	1.3652 .0826 0.8586 .6809	1.0722 0.8503 .6743 .5348	954·3 756.8 600.1 475·9	2.97966 .87896 .77825 .67754	0.001048 .001322 .001666 .002101
1	0.7348	0.5400	0.4241	377.4	2.57684	0.002649
2	.6544	.4282	.3363	299.3	.47613	.003341
3	.5827	.3396	.2667	237.4	.37542	.004213
4	.5189	.2693	.2115	188.2	.27472	.005312
5	.4621	.2136	.1677	149.3	.17401	.006699
6 7 8 9	0.4115 .3665 .3264 .2906 .2588	0.16936 .13431 .10651 .08447 .06699	0.13302 .10549 .08366 .06634 .05261	118.39 93.88 74.45 59.94 46.82	2.07330 1.97259 .87189 .77118 .67047	0.00845 .01065 .01343 .01694 .02136
11	0.2305	0.05312	0.04172	37.13	1.56977	0.02693
12	.2053	.04213	.03309	29.45	.46906	.03396
13	.1828	.03341	.02624	23.35	.36835	.04282
14	.1628	.02649	.02081	18.52	.26764	.05400
15	.1450	.02101	.01650	14.69	.16694	.06809
16	0.12908	0.016663	0.013087	11.648	1.06623	0.0859
17	.11495	.013214	.010378	9.237	0.96552	.1083
18	.10237	.010479	.008231	7.325	.86482	.1365
19	.09116	.008330	.006527	5.809	.76411	.1721
20	.08118	.006591	.005176	4.607	.66340	.2171
21	0.07229	0.005227	0.004105	3.653	0.56270	0.2737
22	.06438	.004145	.003255	2.898	.46199	.3450
23	.05733	.003287	.002582	2.298	.36128	.4352
24	.05106	.002607	.002047	1.822	.26057	.5488
25	.04545	.002067	.001624	1.445	.15987	.6920
26	0.04049	0.0016394	0.0012876	1.1459	0.05916	0.873
27	.03606	.0013001	.0010211	.9088	1.95845	1.100
28	.03211	.0010310	.0008098	.7207	.85775	1.388
29	.02859	.0008176	.0006422	.5715	.75704	1.750
30	.02546	.0006484	.0005093	.4532	.65633	2.206
31	0.02268	0.0005142	0.0004039	0.3594	1.55562	2.782
32	.02019	.0004078	.0003203	.2850	•45492	3.508
33	.01798	.0003234	.0002540	.2261	•35421	4.424
34	.01601	.0002565	.0002014	.1793	•25350	5.578
35	.01426	.0002034	.0001597	.1422	•15280	7.034
36	0.01270	0.0001613	0.0001267	0.1127	ī.05209	8.87
37	.01131	.0001279	.0001005	.0894	2.95138	11.18
38	.01007	.0001014	.0000797	.0709	.85068	14.10
39	.00897	.0000804	.0000632	.0562	.74997	17.78
40	.00799	.0000638	.0000501	.0446	.64926	22.43

CONSTANTS OF COPPER WIRE.

according to the American Brown and Sharp Gauge. Metric Measure. Temperature o° C. Density 8.90.

Electrical Constants.

					į.
		Resistance a	and Conductivity.		
Ohms per Metre.	Log.	Metres per Ohm.	Ohms per Gramme.	Grammes per Ohm.	Gauge Number.
0.0001519 .0001915 .0002415 .0003045	4.18150 .28221 .38191 .48362	6584. 5221. 4141. 3284.	0.0000001 592 .0000002 531 .0000004024 .0000006 398	6283000. 3951000. 2485000. 1563000.	0000 000 00
0.0003840	4.58433	2604.	0.000001017	982900.	1
.0004842	.68503	2065.	.000001618	618200.	2
.0006106	.78574	1638.	.000002572	388800.	3
.0007699	.88645	1299.	.000004090	244500.	4
.0009709	.98715	1030.	.000006504	153800.	5
0.001224 .001544 .001947 .002455 .003095	3.08786 .18857 .28928 .38998 .49069	816.9 647.8 513.7 407.4 323.1	0.00001034 .00001644 .00002615 .00004157 .00006610	96700. 60820. 38250. 24050. 15130.	6 7 8 9
0.003903	3.59140	256.2	0.00010511	9514.	11
.004922	.69210	203.2	.00016712	5984.	12
.006206	.79281	161.1	.00026574	3763.	13
.007826	.89352	127.8	.00042254	2367.	14
.009868	.99423	101.3	.00067187	1488.	13
0.01244 .01569 .01979 .02495	2.09493 .19564 .29635 .39705 .49776	80.37 63.73 50.54 40.08 31.79	0.0010683 .0016987 .0027010 .0042948 .0068290	936.1 588.7 370.2 232.8 146.4	16 17 18 19 20
0.03967	2.59847	25.21	0.010859	92.09	21
.05002	.69917	19.99	.017266	57.92	22
.06308	.79988	15.85	.027454	36.42	23
.07954	.90059	12.57	.043653	22.91	24
.10030	T.00130	9.97	.069411	11.88	25
0.12647	1.10200	7.907	0.11037	9.060	26
.15948	.20271	6.270	.17549	5. 698	27
.20110	.30342	4.973	.27904	3.584	28
.25358	.40412	3.943	.44369	2.254	29
.31976	.50483	3.127	.70550	1.417	30
0.4032	7.60554	2.480	1.1218	0.8914	31
.5084	.70624	1.967	1.7837	.5606	32
.6411	.80695	1.560	2.8362	.3526	33
.8085	.90766	1.237	4.5097	.2217	34
1.0194	0.00837	0.981	7.1708	.1394	35
1.2855	0.10907	0.7779	11.376	0.08790	36
1.6210	.20978	.6169	18.130	.05516	37
2.0440	.31049	.4892	28.828	.03469	38
2.5775	.41119	.3880	45.838	.02182	39
3.2501	.51190	.3076	72.885	.01372	40

SIZE, WEIGHT, AND ELECTRICAL

Size, Weight, and Electrical Constants of pure hard drawn Copper Wire of different numbers

Size and Weight.

Gauge Number.	Diameter in Inches.	Square of Diameter (Circular Inches).	Section in Sq. Inches.	Pounds per Foot.	Log.	Feet per Pound.			
7-0 6-0	0.500	0.2500	0.1963	0.75760 .65243	ī.87944 .81453	1.320			
5-0	0.432	0.1866	0.1466	0.56554	Ī.75247	1.768			
4-0	.400	.1600	.1257	.48486	.68562	2.062			
3-0	.372	.1384	.1087	.41936	.62258	2.385			
2-0	.348	.1211	.0951	.36699	.56466	2.725			
0	.324	.1050	.0825	.31812	.50259	3.143			
1	0.300	0.09000	0.07069	0.27274	1.43574	3.667			
2	.276	.07618	.05983	.23084	.36332	4.332			
3	.252	.06350	.04988	.19244	.28430	5.196			
4	.232	.05382	.04227	.13620	.13417	7.342			
5			0.02895	0.11171	ī.04810	8.95			
	.176	0.03686 .03098	.02433	.09387	2.97252	10.65			
7 8	.160	.02560	.02010	.07758	.88974	12.89			
9	.144	.02074	.01629	.06284	.79822	15.91			
10	.128	.01638	.01287	.04965	.69592	20.14			
11	0.116	0.013456	0.010568	0.04078	2.61041	24.52			
12	.104	.010816	.008495	.03278	-51557	30.51			
13	.092	.008464	.006648	.02565	.40907	38.99			
14	.080	.006400	.005027	.01939	.28768	51.56 63.66			
15	.072	.005184	.004071	.01571					
16	0.064	0.004096	0.003217	0.012412	2.09386	80.6			
17	.056	.003136	.002403	.009503	3.97787	143.2			
19	.040	.0001000	.001257	.004849	.68562	206.2			
20	.036	.001296	.001018	.003927	.59410	254.6			
21	0.032	0.0010240	0.0008042	0.003103	3.49180	322.3			
22	.028	.0007840	.0006157	.002376	.37581	420.9			
23	.024	.0005760	.0004524	.001746	.24192	572.9			
24	.022	.0004840	.0003801	.001467	.16634	681.8 824.9			
25	.020	.0001000	.0003141		.08356				
26	0.0180	0.0003240	0.0002545	0.0009818	4.99209	1018.			
27 28	.0164	.0002690	.0002112	.0006131	.82202	1227. 1506.			
29	.0136	.0001850	.0001453	.0005605	.74858	1784.			
30	.0124	.0001538	.0001208	.0004660	.66834	2146.			
31	0.0116	0.00013456	0.00010568	0.0004078	4.61041	2452.			
32	.0108	.00011664	.00009161	.0003535	.54835	2829.			
33	.00100	.00010000	.00007854	.0003030	.48150	3300.			
34	.0092	.00008464	.00006648	.0002565	.33006	3899. 4677.			
35 36					-				
	0.0076	0.00005776	.00003632	0.0001750	4.24313	5713. 7120.			
37 38	.0060	.00003600	.00002827	.0001001	03780	9167.			
39	.0052	.00002704	.00002124	.0000819	5.91351	12200.			
40	.0048	.00002304	.00001810	.0000682	.84398	14660.			
41	0.0044	0.00001936	0.00001521	0.00005867	5.76840	17050.			
42	.0040	.00001600	.00001257	.00004849	.68562	20620.			
43	.0036	.00001296	.00001018	.00003927	.59410	25460.			
44 45	.0032	,0000784	.00000616	.00003103	.37681	32230. 41990.			
46	0.0024	0.00000576	0.00000452	0.00001746	5.24192	57290.			
47	.0020	.00000400	.00000314	.00001212	.08356	82490.			
48	.0016	.00000256	.00000201	.00000776	6.88974	1 28900.			
49	.0012	.00000144	.00000113	.00000436	.63986	229200.			
50	.0010	.00100000	.00000079	.00000303	.48150	330000.			

CONSTANTS OF COPPER WIRE.

according to the British Standard Wire Gauge. British Measure. Temperature oo C. Density 8.90.

Electrical Constants.

Resistance and Conductivity.					
Ohms per Foot.	Log.	Feet per Ohm.	Ohms per Pound.	Pounds per Ohm.	Gauge Number.
0.00003918	5.59310 .65799	25520. 21980.	0.000051719	19335. 14339.	7-0 6-0
0.00005249 .00006122 .00007078 .00008089 .00009331	5.72006 .78691 .84994 .90787 .96994	19050. 16330. 14130. 12360. 10720.	0.00009281 .00012627 .00016880 .00022040 .00029333	10775. 7920. 5924. 4537. 3409.	5-0 4-0 3-0 2-0
0.0001088	4.03679	9188.	0.0003991	2505.8	1
.0001286	.10921	7777.	.0005570	1795.2	2
.0001543	.18823	6483.	.0008015	1247.7	3
.0001820	.26005	5495.	.0011158	896.2	4
.0002180	.33836	4588.	.0016002	624.2	5
0.0002657 .0003162 .0003826 .0004724 .0005979	-4.42443 .50000 .58279 .67430 .77661	3763. 3162. 2613. 2117. 1673.	0.0023786 .0033688 .0049323 .0075176 .0084978	420.4 296.9 202.7 133.0	6 7 8 9
0.0007280	4.86211	1373.6	0.017853	56.013	11
.0009056	.95696	1104.2	.027631	36.191	12
.0011573	3.06345	864.1	.045121	22.163	13
.0015305	.18485	653.4	.078927	12.669	14
.0018896	.27636	529.2	.120282	8.314	15
0.002391	3.37867	418.1	0.19267	5.1902	16
:003124	.49465	320.2	.32868	3.0423	17
:004252	.62855	235.2	.60893	1.6423	18
:006122	.78691	163.3	1.26268	0.7919	19
:007558	.87842	132.3	1.92451	.5196	20
0.00957	3.98073	104.54	3.0827	0.32439	21
.01249	2.09671	80.04	5.2599	.19011	22
.01701	.23061	58.80	9.7429	.10264	23
.02024	.30618	49.41	13.7988	.07246	24
.02506	.38897	39.91	20.2028	.04951	25
0.03023	2.48048	33.08	30.792	0.032478	26
.03642	.56134	27.46	56.254	.017778	27
.04472	.65051	22.36	67.373	.014843	28
.05296	.72395	18.88	94.488	.010583	29
.06371	.80419	15.70	136.724	.007314	30
0.07449 .08398 .09796 .11573 .13883	2.87211 .92418 .99103 1.06345	13.42 11.91 10.21 8.64 7.20	182.68 237.59 323.25 451.21 649.25	0.005474 .004209 .003094 .002216 .001540	31 32 33 34 35
0.16959	1.22940	5.897	968.9	0.0010321	36
.21184	.32601	4.720	1508.3	.0006630	37
.27210	.43473	3.675	2494.2	.0004009	38
.36226	.55902	2.760	4421.0	.0002262	39
.42515	.62855	2.352	6089.3	.0001642	40
0.5060	7.70412	1.976	8624.	0.00011596	41
.6122	.78691	.633	12627.	.00007919	42
.7558	.87842	.323	19245.	.00005196	43
.9566	.98073	.045	30827.	.00003244	44
1.2494	0.09671	0.800	52468.	.00001906	45
1.7006	0.23061	0.5880	97429.	0.000010264	46
2.5059	.38897	.3991	202028.	.000004950	47
3.8264	.58279	.2613	493232.	.000002027	48
6.8025	.83267	.1470	1558851.	.000000642	49
9.7956	.99103	.1021	3232451.	.000000196	50

SIZE, WEIGHT, AND ELECTRICAL

Size, Weight, and Electrical Constants of pure hard drawn Copper Wire of different numbers

Size and Weight.

Gauge Number.	Diameter in Centimetres.	Square of Diameter (Circular Cms.).	Section in Sq. Cms.	Grammes per Metre.	Log.	Metres per Gramme.	
7-0 6-0	1.2700	1.6129 .3890	1.267	1127.4 970.9	3.05209	0.000887	
5-0 4-0 3-0 2-0	1.0973 .0160 0.9449 .8839 .8230	1.2040 .0323 0.8928 .7815	0.9456 .8107 .7012 .6136	841.6 721.6 624.1 546.3 484.4	2.92512 .85827 .79524 .73741	0.001188 .001386 .001602 .001831 .002064	
1 2 3 4	0.7620 .7010 .6401 .5893	.6773 0.58065 .49157 .40970 .34725 .28996	.5319 0.4560 .3858 .3218 .2727	405.9 343.6 286.4 242.7	.68524 2.60839 .53607 .45695 .38512 .30682	0.002464 .002910 .003492 .004120	
5 6 7 8 9	.5385 0.4877 .4470 .4064 .3658 .3251	0.23783 .19984 .16516 .13378 .10570	.2277 0.18679 .15696 .12973 .10507 .08302	202.7 166.25 139.69 115.45 93.51 73.89	2.22075 .14517 .06239 1.97087 .86857	.004934 0.006015 .007159 .008662 .010694 .013533	
11 12 13 14	0.2946 .2642 .2337 .2032 .1829	0.08681 .06978 .05461 .04129	0.06818 .05480 .04289 .03243 .02627	60.68 48.78 38.17 28.86 23.38	1.78307 .68822 .58172 .46033 .36881	0.01648 .02051 .02620 .03465 .04278	
16 17 18 19 20	0.16256 .14224 .12192 .10160	0.026426 .020233 .014865 .010323 .008361	0.020755 .015890 .011675 .008107 .006567	18.514 14.142 10.390 7.216 5.845	1.26751 .15053 .01663 0.85827 .76675	0.05401 .07071 .09625 .13858	
21 22 23 24 25	0.08128 .07112 .06096 .05588	0.006606 .005058 .003716 .003123	0.005188 .003972 .002922 .002452 .002027	4.618 3.536 2.598 2.183 1.804	0.66445 ·54847 ·41457 ·33899 ·25621	0.2165 .2828 .3850 .4581	
26 27 28 29 30	0.04572 .04166 .03759 .03454 .03150	0.0020903 .0017352 .0014132 .0011922 .0009920	0.0016417 .0013628 .0011099 .0009363 .0007791	1.4625 .2129 0.9878 .8333 .6934	0.16509 .08384 1.99467 .92083 .84099	0.6838 .8245 1.0123 .2000 .4422	
31 32 33 34 35	0.02946 .02743 .02540 .02337 .02134	0.0008681 .0007525 .0006452 .0005461	0.0006818 .0005910 .0005067 .0004289 .0003575	0.6068 .5260 .4510 .3817 .3182	7.78307 .72100 .65415 .58172 .50271	1.648 1.901 2.217 2.620 3.143	
36 37 38 39 40	0.01930 .01727 .01524 .01321 .01219	0.0003726 .0002983 .0002323 .0001746	0.0002927 .0002343 .0001824 .0001370 .0001167	0.2605 .2090 .1623 .1219	1.41578 .31917 .21045 .08616 .01663	3.839 4.784 6.160 8.201 9.625	
41 42 43 44 45	0.01118 .01016 .00914 .00813 .00711	0.0001249 .0001032 .0000836 .0000661	0.0000982 .0000813 .0000656 .0000519 .0000397	0.0873 .0722 .0584 .0462	2.94105 .85827 .76675 .66445	11.45 13.86 17.11 21.65 28.28	
46 47 48 49 50	0.00610 .00508 .00406 .00305 .00254	0.00003716 .00002581 .00001652 .00000929 .00000645	0.0000292 .0000203 .0000129 .0000073 .0000051	0.0260 .0180 .0115 .0065 .0045	2.41457 .25621 .06239 3.81251 .65415	38.5 55.4 86.6 154.0 221.8	

according to the British Standard Wire Gauge. Metric Measure. Temperature oo C. Density 8.90.

Electrical Constants.

Resistance and Conductivity.							
Ohms per Metre.	Log.	Metres per Ohm.	Ohms per Gramme.	Grammes per Ohm.	Gauge Number.		
0.0001286	4.10907 .17398	7779. 6699.	0.0000001140	8770000. 6504000.	7-0 6-0		
0.0001722 .0002009 .0002322 .0002653 .0003061	4.23605 .30289 .36593 .42376 .48592	5814. 4979. 4306. 3769. 3266.	0.000002046 .0000002784 .0000003721 .0000004857 .0000006319	4887000. 3592000. 2687000. 2059000. 1583000.	5-0 4-0 3-0 2-0		
0.0003571	4.55 ² 77	2801.	0.0000008 7 98	1137000.	1		
.0004218	.62510	2371.	.0000012275	814700.			
.0005061	.70421	1976.	.0000017671	565900.			
.0005971	.77604	1675.	.0000024600	406500.			
.0007151	.85434	1398.	.0000035279	283500.			
0.0008718 .0010375 .0012554 .0015499	4.94041 3.01599 .09877 .19029 .29259	1147.1 963.9 796.6 645.2 509.8	0.000005244 .000009350 .00010874 .00016573 .000026547	190700. 107000. 91960. 60340. 37670.	6 7 8 9		
0.002388	3.37810	418.7	0.00003936	25410.	11		
.002978	.47295	335.8	.00006092	16420.	12		
.003796	.57934	263.4	.00009945	10060.	13		
.005022	.70083	199.1	.00017398	5748.	14		
.006199	.79235	161.3	.00026518	3771.	15		
0.007846	3.89465	127.45	0.0004238	2359.6	16		
.010248	2.01064	97.58	.0007246	1380.1	17		
.013949	.14453	71.69	.0013425	744.9	18		
.020086	.30289	49.79	.0027837	359.2	19		
.024798	.39441	40.32	.0042428	235.7	20		
0.03138 .04099 .05579 .06640 .08034	2.49671 .61270 .74659 .82217	31.86 24.39 17.92 15:06 12.45	0.005398 .011594 .021479 .030421 .044539	185.25 86.25 46.56 32.87 22.45	21 22 23 24 25		
0.09919	2.99647	10.082	0.06782	14.745	26		
.11949	T.07733	8.369	.09851	10.151	27		
.14672	.16649	6.816	.14853	6.732	28		
.17391	.24034	5.750	.20869	4.792	29		
.20901	.32017	4.784	.30142	3.318	30		
0.2388	7.37810	4.187	0.3936	2.5407	31		
.2755	.44017	3.629	.5238	1.9091	32		
.3214	.50701	3.112	.7126	1.4033	33		
.3797	.57944	2.634	.9947	1.0053	34		
.4555	.65846	2.196	1.4313	0.6987	35		
0.5564 .6950 .8927 1.1885	7.74539 .84200 .95070 0.07501 .14453	1.7973 .4388 .1202 0.8414 .7169	2.136 3.333 7.019 9.747 13.424	0.46816 .30003 .14247 .10260 .07449	36 37 38 39 40		
1.660	0.22011	0.6024	19.01	0.05260	41		
2.009	.30289	•4979	27.84	.03592	42		
2.480	.39441	•4033	42.43	.02357	43		
3.138	.49671	•3186	67.96	.01471	44		
4.099	.61270	•2440	115.94	.00863	45		
5.579	0.74659	0.1792	210.4	0.004753	46		
8.034	.90495	.1245	445.4	.002245	47		
12.554	1.09877	.0797	1087.4	.000920	48		
22.318	.34865	.0448	3436.7	.000291	49		
32.138	.50701	.0311	7126.3	.000140	50		

SIZE, WEIGHT, AND ELECTRICAL

Size, Weight, and Electrical Constants of pure hard drawn Copper Wire of different numbers

Size and Weight.

X						
Gauge Number.	Diameter in Inches.	Square of Diameter (Circular Inches).	Sections in Sq. Inches.	Pounds per Foot.	Log.	Feet per Pound.
0000	0.454 .425 .380 .340	o 2061 .1806 .1440 .1156	0.16188 .14186 .11341 .09079	0.6246 •5474 •4376 •3503	7.79561 .73828 .64107 .54446	1.601 1.827 2.285 2.855
1 2 3 4 5	0.300 .284 .259 .238 .220	0.09000 .08065 .06708 .05664 .04840	0.07069 .06335 .05269 .04449 .03801	0.2727 .2444 .2033 .1717 .1467	7.43574 .38814 .30810 .23465 .16634	3.666 4.091 4.919 5.826 6.818
6 7 8 9	0.203 .180 .165 .148	0.04121 .03240 .02723 .02190 .01796	0.03237 .02545 .02138 .01720 .01410	0.12488 .09818 .08250 .06638 .05441	1.09649 2.99204 .91647 .82202 .73571	8.008 10.185 12.121 15.065 18.379
11 12 13 14	0.120 .109 .095 .083	0.014400 .011881 .009025 .006889 .005184	0.011310 .009331 .007088 .005411	0.04364 .03600 .02735 .02088 .01571	2.63986 ·55635 ·43695 ·31965 ·19616	22.91 27.77 36.56 47.90 63.65
16 17 18 19 20	0.065 .058 .049 .042	0.004225 .003364 .002401 .001764 .001225	0.0033183 .0026421 .0018857 .0013854 .0009621	0.012803 .010194 .007276 .005346 .003712	2.10733 .00835 3.86189 .72800 .56963	78.10 98.10 137.44 187.06 269.40
21 22 23 24 25	0.032 .028 .025 .022 .020	0.001024 .000784 .000625 .000484 .000400	0.0008042 .0006158 .0004909 .0003801 .0003142	0.003103 .002376 .001894 .001467 .001212	3.49180 .37581 .27738 .16634 .08356	322.3 420.9 528.0 681.8 824.9
26 27 28 29 30	0.018 .016 .014 .013	0.000324 .000256 .000196 .000169	0.0002545 .0002011 .0001539 .0001327 .0001131	0.0009818 .0007758 .0005940 .0005121 .0004364	4.99204 .88974 .77375 .70939 .63986	1018. 1289. 1684. 1953. 2292.
31 32 33 34 35	0.010 .009 .008 .007	0.000100 .000081 .000064 .000049 .000025	0.00007854 .00006362 .00005027 .00003848 .00001963	0.00030304 .00024546 .00019395 .00014849 .00007576	4.48150 .38998 .28768 .17169 5.87944	3300. 4074. 5156. 6734. 13200.
36	0.004	0.000016	0.00001257	0.00004849	<u>5</u> .68562	20620.

CONSTANTS OF COPPER WIRE.

according to the Birmingham Wire Gauge. British Measure. Temperature oo C. Density 8.90.

Electrical Constants.

	F	Resistance and Co	nductivity.		C
Ohms per Foot.	Log.	Feet per Ohm.	Ohms per Pound.	Pounds per Ohm.	Gauge Number.
0.00004752 .00005423 .00006784 .00008474	5.67692 .73425 .83146 .92807	21040. 18440. 14740. 11800.	0.0000761 .0000991 .0001550 .0002419	13140. 10090. 6451. 4134.	0000 000 00
0.0001088 .0001214 .0001460 .0001729 .0002024	4.03679 .08439 .16443 .23788 .30618	9188. 8234. 6848. 5783. 4941.	0.0003991 .0004969 .0007183 .0010074 .0013799	2505.8 2012.5 1392.2 992.6 724.7	1 2 3 4 5
0.0002377 .0003023 .0003598 .0004472 .0005455	4.37604 .48048 .55606 .65051 .73682	4207. 3308. 2779. 22 3 6. 1833.	0.001903 .003079 .004361 .006737 .010025	525.26 324.76 229.30 148.43 99.75	6 7 8 9
0.0006802 .0008245 .0010854 .0014219 .0018896	4.83267 .91618 3.03558 .15287 .27636	1470.2 1212.9 921.3 703.3 529.2	0.01559 · .0229 0 .03969 .06811 .12028	64.148 43.670 25.195 14.682 8.314	11 12 13 14 15
0.002318 .002980 .004080 .005553 .007996	3 36520 .47417 .61064 .74453 .90289	431.3 335.6 245.1 180.1 125.1	0.1811 .2923 .5607 1.0388 2.1541	5.5225 3.4211 1.7835 0.9627 .4643	16 17 18 19 20
0.009566 .012494 .015709 .020239	3.98073 2.09671 .19515 .30618 .38897	104.54 80.04 63.66 49.41 40.83	3.083 5.259 8.275 13.799 20.203	0.32439 .19015 .12085 .07246 .04950	21 22 23 24 25
0.02887 .03826 .04998 .05796 .06802	2.46048 .58279 .69877 .76314 .83266	34.64 • 26.13 20.01 17.25 14.70	29.41 49.32 84.14 113.18 155.88	0.034006 .020275 .011885 .008835 .006415	26 27 28 29 30
0.09796 .12095 .15306 .19991 .39182	2.99103 T,08254 •18485 •30083 •59309	10.209 8.269 6.533 5.002 2.552	323.2 492.7 789.2 1346.3 5171.9	0.0030936 .0020290 .0012671 .0007420 .0001933	31 32 33 34 35
0.61222	7.78691	1.663	12627.	0.00007920	36

SIZE, WEIGHT, AND ELECTRICAL

Size, Weight, and Electrical Constants of pure hard drawn Copper Wire of different numbers

Size and Weight.

Gauge Number.	Diameter in Centimetres.	Square of Diameter (Circular Cms.).	Section in Sq. Cms.	Grammes per Metre.	Log.	Metres per Gramme.
0000 000 00 0	1.1532 .0795 0.9652 .8636	1.3298 .1653 0.9316 .7458	1.0444 .9152 .7317 .5858	929.5 814.6 651:2 521.3	2.96826 .91093 .81372 .71711	0.001076 .001228 .001536 .001918
1 2 3 4 5	0.7620 .7214 .6579 .6045	0.5806 .5216 .4328 .3655 .3123	0.4560 .4087 .3399 .2870 .2452	405.9 363.7 302.5 255.4 218.3	2.60839 .56079 .48075 .40730 .33899	0.002464 .002749 .003306 .003915 .004581
6 7 8 9	0.5156 .4572 .4191 .3759 .3404	0.2659 .2090 .1756 .1413 .1158	0.20881 .16417 .13795 .11099 .09098	185.84 146.11 122.78 98.78 80.98	2.26914 .16469 .08912 1.99467 .90836	0.005381 .006844 .008145 .010124 .012349
11 12 13 14 15	0.3048 .2769 .2413 .2108 .1829	0.09290 .07665 .05823 .04445 .03345	0.07297 .06160 .04573 .03491 .02627	64.94 54.83 40.70 31.07 23.43	1.81251 .73900 .60960 .49231 .36981	0.01 540 .01824 .02457 .03219 .04268
16 17 18 19 20	0.16510 .14732 .12446 .10668 .08890	0.027258 .021703 .015490 .011381 .007903	0.021409 .017046 .012166 .008938 .006207	19.054 15.171 10.828 7.955 5.524	1.27998 .18101 .03454 0.90065 .74229	0.05248 .06592 .09235 .12571 .18103
21 22 23 24 25	0.08128 .07112 .06350 .05588	0.006606 .005058 .004032 .003123 .002581	0.005189 .003973 .003167 .002452 .002027	4.618 3.536 2.820 2.183 1.804	0.66445 .54847 .45003 .33899 .25621	0.2165 .2828 ·3547 .4581 ·5544
26 27 28 29 30	0.04572 .04064 .03556 .03302 .03048	0.0020903 .0016516 .0012645 .0010903 .0009290	0.0016418 .0012972 .0009932 .0008563 .0007297	1.4611 .1545 0.8839 .7621 .6494	0.16469 .06239 7.94641 .88204 .81251	0.6844 .8662 1.1313 .3122 .5399
31 32 33 34 35	0.02540 .02286 .02032 .01778 .01270	0.0006452 .0005226 .0004129 .0003161 .0001613	0.0005067 .0004104 .0003243 .0002483 .0001267	0.4510 .3653 .2886 .2210	7.65415 .56263 .46033 .34435 .05209	2.217 2.738 3.465 4.525 8.870
36	0.01016	0.0001032	0.0000811	0.0722	2.85827	13.861

CONSTANTS OF COPPER WIRE.

according to the Birmingham Wire Gauge. Metric Measure. Temperature oo C. Density 8.90.

Electrical Constants.

Distilical Constants.									
	I	Resistance and Co	nductivity.						
Ohms per Metre.	Log.	Metres per Ohm.	Ohms per Gramme.	Grammes per Ohm.	Gauge Number.				
0.0001559	4.19290	6414.	0.0000001677	5962000.	0000				
.0001779	.25024	5620.	.0000002184	4578000.	000				
.0002226	.34745	4493.	.0000003418	2926000.	00				
.0002780	.44406	3597.	.0000005333	1875000.	0				
0.0003571	4.55277	2800.	o.oooooo8798	1137000.	1				
.0003985	.60038	2510.	.ooooo10955	912800.	2				
.0004791	.68041	2087.	.ooooo15837	631400.	3				
.0005674	.75386	1763.	.ooooo22210	450200.	4				
.0006640	.82217	1506.	.ooooo30420	328700.	5				
0.0007799 .0009257 .0011804 .0014672 .0017898	4.89202 .99647 3.07205 .16649 .25280	1282.2 1080.3 847.2 681.6 558.7	0.000004196 .000006789 .000009615 .000014853 .000022103	238300. 147300. 104000. 67330. 45240.	6 7 8 9				
0.002232 .002643 .003561 .004665 .006185	3.34865 .42216 .55157 .66886 .79135	448.1 378.3 280.8 214.4 161.7	0.00003437 .00004822 .00008749 .00015016 .00026396	29100. 20740. 11430. 6660. 3789.	11 12 13 14				
0.007607	3.88119	131.46	0.0003992	2504.9	16				
.009553	.98016	104.68	.0006297	1588.0	17				
.013385	2.12662	74.71	.0012362	808.9	18				
.018219	.26052	54.89	.0022902	436.6	19				
.026235	.41888	38.12	.0047489	210.6	20				
0.03138	2.49671	31.86	0.006796	147.14	21				
.04099	.61270	24.39	.011594	86.25	22				
.05142	.71113	19.45	.018243	54.82	23				
.06640	.82217	15.06	.030421	32.87	24				
.08034	.90495	12.45	.044539	22.45	25				
0.09919	2.99647	10.08	0.06789	14.731	26				
.12583	T.09877	7.947	.10874	9.196	27				
.16397	.21476	6.099	.18550	5.391	28				
.19016	.27913	5.259	.24951	4.008	29				
.22138	.34865	4.517	.34367	2.910	30				
0.3214	7.50701	3.112	0.7126	1.4032	31				
.3968	.59853	2.520	1.0862	0.9206	32				
.5022	.70083	1.991	1.7398	·5748	33				
.6559	.81682	1.525	2.9861	·3349	34				
1.2855	0.10907	0.778	11.4020	.0877	35				
2.0086	0.30289	0.498	27.8370	0.0359	36				

ABLE 71.	S	STRI	ENC.	TH C	OF I	MA"	TERI	ALS.*	-
				(a) I	MET	ALS	S.		
		Na	me of 1	metal.					Tensile strength in pounds per sq. in.
Aluminium wire .									30000-40000
Brass wire, hard draw	m .								50000-150000
Bronze, phosphor, ha	rd dra								110000-140000
" silicon "							•		95000-115000
Copper wire, hard dra	wn				•	٠	•		60000-70000
Gold t wire			•	•	•	•	•		38000-41000
Iron,‡ cast	wn .	. *		•	•	•	•		1 3000-29000 80000-1 20000
" annealed			:						50000-60000
Lead, cast or drawn									2600-3300
Palladium†									39000
Platinum † wire .									50000
Silver t wire				-					42000
Steel, mild, hard draw		•	•	•	•	•	•		100000-200000
Tin, cast or drawn .					•	•	•		150000-33000
Zinc, cast									7000-13000
" drawn									22000-30000
		(6)	STO	ONES	AN	ID	BRIC	KS.	
		(-)							1
		Mama	of aut	ostance					Resistance to crus
		Mame	e or sur	ostance	•				per sq. in.
T) 1.									0
Basalt		•	•	•			•		18000-27000
Brick, soft		•	•	•	•	•			300-1500
" vitrified.				•	•	•	•		1 500-5000 9000-26000
Granite							1		17000-26000
Limestone									4000-9000
Marble									9000-22000
Sandstone									4500-8000
Slate		•	•	•	• *				11000-30000
				(c)]	гімі	BER			
								Tensile strengt	th Resistance to
	Name	of wo	od.					in pounds per	crushing in
								sq. in.	pounds per sq.
Ash								11000-21000	6000 0000
Beech			•	•	•			11000-21000	9000
Birch								12000-18000	/ /
Chestnut								10000-13000	3 /
Elm								12000-18000	
Hackberry								10000-16000	
Hickory			•					15000-25000	
Maple			•		•		•	8000-12000	
Oak, burr			•			•		8000-14000 15000-20000	
" red								13000-18000	
" water								12000-16000	
" white								20000-25000	6000-9000
Poplar								10000-15000	
Walnut								8000-14000	4000-8000

^{*} The strength of most materials is so variable that very little is gained by simple tabulation of the results which have been obtained. A few approximate results are given for materials of common occurrence, mainly to indicate the limits between which the strength of fairly good specimens may lie. Some tables are also given indicating the relation of strength to composition in the case of alloys. It has not been thought worth while to state these results in other than the ordinary inch pound units.

† On the authority of Wertheim.

The crushing strength of cast iron is from 5.5 to 6.5 times the tensile strength.

Notes. — According to Boys, quartz fibres have a tensile strength of between 116000 and 167000 pounds per square inch.

inch.

Leather belting of single thickness bears from 400 to 1600 pounds per inch of its breadth.

							ERIII			EEL.			IABI	
			Per	rcentage	es of				ield	ngth†	snlus	yield oounds.	rupture Is ÷ 100.	er cent.
S.	P.	Si.	C.	Mn.	Cu.	Co.	Ni.	Sb.	Strength at yield point ÷ 100.	Ultimate strength†	Young's Modulus ÷ 105.	Resilience to yield point in inch pounds	Resilience to ruin in inch pounds	Elongation per
.004 .009 .011 .027	.014 .084 .109 .247 .029	.145 .163 .168 .216	.257 .009 .042 .036	.020 .020 .051 .072	.002 .023 .028 .027	.008 .021 .028 .048 trace	.010 .016 .044 .070 trace		216 252 276 322 317	379 434 481 529 534	246 260 234 243 277	9.5 12.3 17.4 24.7 18.4	106 129 119 117 151	30.9 32.6 27.5 24.9 32.0
trace .008 .056 .004 .058	.039 .034 .113 .024 .128	.084 .073 .007 .087	.234 .316 .139 .447 .254	.000 .064 .165 .072 .341	.014 .008 .364 .005	.036 .016 .076 .018	.057 .023 .107 .023 .065	.115	260 419 478 461 487	605 649 687 755 785	250 263 261 271 293	15.6 37.9 46.3 46.0 55.0	110 130 110 124 91	20.8 22.3 18.1 18.6 15.5
.066 .002 .008 .041 .062	.099 .022 .062 .125	.016 .123 .071 .028	.326 ·595 ·447 ·355 ·390	.525 .124 •493 .404 .584	.306 .001 .007 .253 .344	.054 .007 .040 .049	.078 .006 .065 .102		549 480 484 543 565	793 828 859 880 953	255 267 284 254 259	58.0 42.7 38.2 55.9 73.7	38 151 174 49 44	5.6 21.0 22.7 6.7 5.6
.002 .002 .043 .028	.020 .026 .104 .065	.096 .164 .074 .028	.652 .935 .756 .690	.061 .099 .465 .459	.030 .004 .346 .022 .007	.007 .018 .052 .000	.018 .016 .120 .000		510 557 652 516 590	955 957 1010 1022 1050	269 278 237 285 284	50.2 65.3 94.6 55.6 62.1	112 123 14 37 148	13.7 16.6 1.7 4.6 16.0
.038 .001 .000	.092 .015 .019 .063	.070 .150 .192 .043	.387 .971 1.105 .681	.625 .074 .226 .625	.210 .003 .001 .038	.050 .003 .002 .000	.015 .004 .000		631 555 668 614	1112 1171 1254 1288	279 262 272 260	83.2 65.6 82.7 82.2	135 99 93 108	13.7 9.9 9.0 9.9
				S	TEEL	CONTA	INING	Снко	MIUM.					
trace .001 trace —	.020	.116 .136 .154	.461 .454 .639 .600	.027 .023 .050	trace .000 .008	.000 .000 trace		Cr.	370 495 500 675 1770	810 915 967 1030 1778	275 287 281 —	28.3 44.8 56.1	1 10 1 57 25 —	15.6 19.1 3.5 19.9 7.5
				S	TEEL	CONTA	INING	Tung	STEN.					
Same	- .09 1.99 .19 7.81 per cent tungsten .													
				Si	TEEL C	CONTAI	NING]	MANGA	NESE.					
.06	.08	•37	.72	9.8	one ano	test ther te	st		_	1065	_		_	22.0

^{*} The samples here given are arranged in the order of ultimate strength. The table illustrates the great complexity of the problem of determining the effect of any given substance on the physical properties. It will be noticed that the specimens containing moderately large amounts of copper are low in ductility,—that high carbon or high sum of carbon and manganese generally gives high strength. The first specimen seems to indicate a weakening effect of silicon when a moderate amount of carbon is present. It has to be remembered that no table of this kind proves much unless nearly the same amount of work has been spent on the different specimens in the process of manufacture. Most of the lines give averages of a number of tests of similar steels. The table has been largely compiled from the Report of the Board on Testing Iron and Steel, Washington, 1881, and from results quoted in Howe's "Metallurgy of Steel."

† The strengths and elasticity data here given refer to bar or plate of moderate thickness, and are in pounds per square inch. Mild steel wire generally ranges in strength between 100000 pounds per square inch, with an elongation of from 8 to 4 per cent. Thoroughly annealed wire does not differ greatly in strength from the data given in the table unless it has been subjected to special treatment for the purpose of producing high density and fine-grained structure. Drawing or stretching and subsequent rest tend to increase the Young's Modulus.

ELASTICITY AND STRENGTH OF IRON.*

Area of cross section of the bar in percentage of the area of the cross section of the pile.	Relative values of ultimate strength.	Relative values of the stress at the yield point.	
1	125	194	The variation of the yield point is not regular, and seems to have been much affected by the temperature of rolling.
2	112	170	
3	106	144	
4	104	140	
5	103	130	
7	101	114	
10	100	100	
15	98	92	

TABLE 74.

APPROXIMATE VARIATION OF THE STRENGTH OF BAR IRON, WITH VARIATION OF SECTION.†

Diameter in inches.	Strength per sq. in, in pounds.	Total strength of bar.	Diameter in inches.	Strength per sq. in. in pounds.	Total strength of bar.
2.2 2.1 2.0 1.9 1.8 1.7 1.6	59000 58500 58000 57600 57100 56700 56300 55900	224000 203000 182000 163000 145000 129000 113000 99000	1.1 1.0 0.9 0.8 0.7 0.6 0.5	54300 54000 53700 53300 53000 52700 52400 52100	52000 42000 34000 27000 20000 14900 10300 6600
I.4 I.3 I.2	55500 55100 54700	85000 73000 62000	0.3 0.2 0.1	51900 51600 51300	3700 1600 400

^{*} This table was computed from the results published in the Report of the U. S. Board on Testing Iron and Steel, Washington, 1881, and shows approximately the relative effect of different amounts of reduction of section from the pile to the rolled bar. A reduction of the pile to 10 per cent of its original volume is taken as giving a strength of 100, and the others are expressed in the same units.

Notes. — The stress at the yield point averages about 60 per cent of the ultimate strength, and generally lies between 50 and 70 per cent. The variation depends largely on the temperature of rolling if the iron be otherwise fairly pure.

According to the experiments of the U. S. Board for Testing Iron and Steel, above referred to, a bar of iron which has been subject to tensile stress up to its limit of strength gains from 10 to 20 per cent in strength if allowed to rest free from stress for eight days or more before breaking. The effect of stretching and subsequent rest in raising the elastic limit and tensile strength was discovered by Wöhler, and has been investigated by Bauschinger, who shows that the modulus of elasticity is also raised after rest. The strengthening effect of stretching with rest, or continuous very slowly increased loading, has been rediscovered by a number of experimenters.

[†] The strength of bar iron may be taken as ranging from 15 per cent above to 15 per cent below the numbers here given, which represent the average of a large number of tests taken from various sources.

EFFECT OF RELATIVE COMPOSITION ON THE STRENGTH OF ALLOYS OF COPPER, TIN, AND ZINC.*

TABLE 75. — Copper-Tin Alloys. (Bronzes.)

TABLE 76. - Copper-Zinc Alloys. (Brasses.

Percentage of copper.	Percentage of tin.	Tensile strength. Vield point.		Crushing t strength.	Percentage elongation.	Percentage compression.
100	00	28000	14000	42000	8.	44
95	5	31000	17000	46000	10.	41
90	10	29000	21000	54000	4.	31
85	15	33000	26000	74000	1.6	24
80	20	32000	28000	124000	0.5	14
75	25	18000	18000	1 50000	0.0	- 8
70	30	6500	6500	143000	0.0	2
65	35	2800	2800	7 5000	0.0	4

Percentage of copper.	Percentage of zinc.	Tensile strength.	Vield point,	Crushing ‡	Percentage elongation.
95 90 85 80 75 70 65 60 55 50 45	5 10 15 20 25 30 35 40 45 50	27000 28000 30000 32000 34000 37000 41000 46000 49000 44000 30000 14000	14000 12000 10000 9000 8000 9000 10000 13000 17000 20000 24000 14000	41000 28000 29000 33000 39000 46000 54000 63000 74000 90000 116000 126000	7 12 18 25 33 38 38 38 39 10 4

TABLE 77. - Copper-Zinc-Tin Alloys.§

	Percentage of		Tensile strength		Tensile strength		
Copper.	Zinc.	Tin.	in pounds per sq. in.	Copper.	Zinc.	Tin.	in pounds per sq. in.
45 50 50 55 60	50 45 40 43 40 35 30 37 35 30 20 (30 25 20 15	5 10 2 5 10 15 3 5 10 20 5 10 20 5 10 20 20 25	15000 50000 15000 65000 62000 32500 15000 60000 52500 40000 10000 50000 42000 30000 18000	70 75 80 85 90	25 20 15 10 5 20 15 10 5 10 5 10 5 10 5	5 10 15 20 25 5 10 15 20 5 10 15 10 15	45000 44000 37000 30000 24000 45000 45000 41000 45000 45000 47500 47500 43500 46500 42000

^{*} These tables were compiled from the results published by the U. S. Board on Testing of Metals. The numbers refer to unwrought castings, and are subject to large variations for individual specimens.

[†] The crushing strengths here given correspond to 10 per cent compression for those cases where the total compression exceeds that amount.

[‡] For crushing strength, 10 per cent compression was taken as standard.

[§] This table covers the range of triple combinations of these three metals which contain alloys of useful strength and moderate ductility. The weaker cases here given, and those lying outside the range here taken, are generally weak and brittle. The absolute strength may of course be varied by the method of fusing and casting, and certainly can be greatly increased by working. The object of the table is to show relative values, and to give an idea of the strength of sound castings of these alloys.

ELASTIC MODULI.

Rigidity Modulus.*

	Modulus	of Rigidity.	
Substance.	Pounds per square inch : 106.	Grammes per square centimetre ÷ 106.	Authority.
Metals:— Aluminium Brass and Bronze wire Copper, drawn "" German silver "" Gold, pure "" Iron, soft "" drawn Platinum "" Silver "" Steel, cast "" Tin Zinc "" Glass "" Stone:— Clay rock Granite Marble Slate Tuff Wood	3.4-4.8 4.6-5.8 5.6-6.7 5.0 6.2 7.1 5.6 4.0 9.6 10-14 8.9 9.4 3.8 3.6 3.8 10.6 11.8 2.2 5.1 5.4 3.3 3.9 2.5 1.8 1.7 3.2 1.5 11.7	241-335 320-410 393-473 352 432 496 395 281 671 700-800 622 663 270 256 265 746 829 154 360 382 235 273	Thomson†-Katzenelsohn. Various. Thomson.† Katzenelsohn. "Gray. Katzenelsohn. Thomson.† Wertheim. Various. Thomson.† Pisati. Thomson.† Pisati. Baumeister. Wertheim. Pisati. Kiewiet. Thomson.† Kiewiet. Wertheim. Kowalski. Gray & Milne. Gray.

^{*} The modulus of rigidity as used in this table may be shortly defined by the following equation: -

Modulus of rigidity = Intensity of tangential stress.

Distortion in radians.

To interpret the equation imagine a cube of the material, to four consecutive faces of which a tangential stress of uniform intensity is applied, the direction of the stress being opposite on adjacent faces. The modulus of rigidity is the number obtained by dividing the numerical value of the tangential stress per unit of area by the number representing the change of the angles on the nonstressed faces of the cube measured in radians.

† Lord Kelvin.

ELASTIC MODULI.

Young's Modulus.*

	Young's Modulus.	
Substance.	Pounds per square inch square cer metre ÷ 106.	iti-
Metals: — Brass and bronze, cast . Brass, drawn Copper, drawn annealed German silver, drawn Gold, drawn annealed Iron, cast wwought Iron wire Lead, cast or drawn Palladium, soft hard Platinum, drawn soft Silver, drawn Palladium, soft hard Platinum, drawn frin Jinc Jinc Bone Carbon Glass Ice Stone: — Clay rock Granite	8.6-10 600-700 14-17 1000-120 15-18 1150-120 15 1052 17-20 1209-140 18 558 8-17† 550-120 24-30 1700-210 " " " " " " " " " " " " " " " " " " "	Various. Wertheim. Various. Wertheim. Various. Wertheim. Various. Wertheim. Various. Wertheim. Various. Wertheim. Various.
Marble	5.7 400 9.8 686 2.7 189 0.85 60 1.0-2.2 70-154	Milne. Various.

^{*} The Young's Modulus of elasticity is used in connection with elongated bars or wires of elastic material. It is the ratio of the number representing the longitudinal stress per unit of area of transverse section to the number representing the elongation per unit of length produced by the stress, or:—

Young's Modulus = Intensity of longitudinal stress.

Elongation per unit length.

In the case of an isotropic substance the Young's Modulus is related to the elasticity of form (or rigidity modulus) and the elasticity of volume (or bulk modulus) in the manner indicated in the following equation:—

$$E = \frac{9nk}{3k+n}$$

where E is Young's Modulus, n the rigidity modulus and k the bulk modulus.

The bulk modulus is the ratio of the number expressing the intensity of a uniform normal stress applied all over the bounding surface of a body (solid, liquid or gas) to the number expressing the change of volume, per unit volume, produced by the stress.

† The modulus for cast iron varies greatly, not only for different specimens, but in the same specimen for different intensities of stress. It is diminished for tension stress by permanent elongation.

‡ See also Table 72.

ELASTIC MODULI.

TABLE 80. - Variation of the Rigidity of Metals with Temperature.*

The modulus of rigidity at temperature t is given by the equation $n_t = n_0$ ($\tau + \alpha t + \beta t^2 + \gamma t^6$).

Meta	1.	n ₀	и	β	γ	Authority
Brass		 $\begin{array}{c} 320 \times 10^{6} \\ 265 \times 10^{5} \\ 397 \times 10^{6} \\ 399 \times 10^{6} \\ 694 \times 10^{6} \\ 811 \times 10^{6} \\ 663 \times 10^{6} \\ 257 \times 10^{6} \\ 829 \times 10^{5} \end{array}$	000455 002158 002716 000572 000483 000206 000111 000387 000187	00001360000048 +.00000230000012000001900000500000059		K. & L. Pisati. K. & L. Pisati.

TABLE 81. — Ratio ρ of Transverse Contraction to Longitudinal Extension under Tensile Stress (Poisson's Ratio).

Name of substance.	Range of the value of ρ .	Mean of each range.	Final mean.	Authority.
Brass " " " " " Copper Iron " " " " " Lead Steel, hard " " " " " " " " " " " " " " " " " " "	0.340-0.500	0.469 0.420 0.387 0.325 0.315 0.226 0.315 0.226 0.332 0.310 0.253 0.304 0.243 0.375 0.294 0.294 0.306 0.253 0.304 0.295 0.305 0.253 0.306 0.253	0.357 0.340 0.277 0.375 0.295 0.299 0.205 0.389 0.500 0.500 0.000 0.502	Everett. Baumeister. Kirchhoff. Mallock. Wertheim. Littmann. Mallock. Thomson. Everett. Mallock. Baumeister. Littmann. Mallock. Kirchhoff. Okatow. Schneebeli. Okatow. Schneebeli. Mallock. Goetz & Kurz. Mallock. " " " { Röntgen. } Amagat.
Jelly		0.500	0.500	Maurer.
Katzenelsohn gives the following values, to	ogether with the per	centage varia	ation δ betw	

Substance.								ρ	δ		
Aluminium .										0.13	15.7
Brass										0.42	3.9
German silver										0.33	3.4
Gold					w.					0.17	2.5
Iron						14				0.27	3.7
Platinum .										0.16	5.5
Silver		4								0.37	12.2

^{*} According to the experiments of Kohlrausch and Loomis (Pogg. Ann. vol. 141), and of Pisati (N. Cim. (3) vols. 4, 5).

SMITHSONIAN TABLES.

76

ELASTICITY OF CRYSTALS.*

The formulæ were deduced from experiments made on rectangular prismatic bars cut from the crystal. These bars were subjected to cross bending and twisting and the corresponding Elastic Moduli deduced. The symbols $\alpha \beta \gamma$, $\alpha_1 \beta_1 \gamma_1$ and $\alpha_2 \beta_2 \gamma_2$ represent the direction cosines of the length, the greater and the less transverse dimensions of the prism with reference to the principal axis of the crystal. E is the modulus for extension or compression, and T is the modulus for torsional rigidity. The moduli are in grammes per square centimetre.

Barite.
$$\frac{10^{10}}{E} = 16.13\alpha^4 + 18.51\beta^4 + 10.42\gamma^4 + 2(38.79\beta^2\gamma^2 + 15.21\gamma^2\alpha^2 + 8.88\alpha^2\beta^2)$$

$$\frac{10^{10}}{T} = 69.52\alpha^4 + 117.66\beta^4 + \frac{1}{116.46\gamma^4} + 2(20.16\beta^2\gamma^2 + 85.29\gamma^2\alpha^2 + 127.35\alpha^2\beta^2)$$
Beryl (Emerald).
$$\frac{10^{10}}{E} = 4.325 \sin^4\phi + 4.619 \cos^4\phi + 13.328 \sin^2\phi \cos^2\phi$$

$$\frac{10^{30}}{T} = 15.00 - 3.675 \cos^4\phi_2 - 17.536 \cos^2\phi \cos^2\phi$$
where $\phi \phi_1 \phi_2$ are the angles which the length, breadth, and thickness of the specimen make with the principal axis of the crystal.

Fluor spar.
$$\frac{10^{13}}{E} = 13.05 - 6.26 (\alpha^4 + \beta^1 + \gamma^4)$$

$$\frac{10^{13}}{T} = 58.04 - 50.08 (\beta^2\gamma^2 + \gamma^2\alpha^2 + \alpha^2\beta^2)$$
Pyrites.
$$\frac{10^{10}}{E} = 5.08 - 2.24 (\alpha^4 + \beta^4 + \gamma^4)$$

$$\frac{10^{10}}{E} = 13.60 - 17.95 (\beta^2\gamma^2 + \gamma^2\alpha^2 + \alpha^2\beta^2)$$
Rock salt.
$$\frac{10^{13}}{T} = 154.58 - 77.28 (\beta^2\gamma^2 + \gamma^2\alpha^2 + \alpha^2\beta^2)$$
Sylvine.
$$\frac{10^{10}}{T} = 306.0 - 192.8 (\beta^2\gamma^2 + \gamma^2\alpha^2 + \alpha^2\beta^2)$$
Topaz.
$$\frac{10^{10}}{E} = 4.341\alpha^4 + 3.460\beta^4 + 3.771\gamma^4 + 2 (3.879\beta^2\gamma^2 + 28.56\gamma^2\alpha^2 + 2.39\alpha^2\beta^2)$$

$$\frac{10^{10}}{T} = 14.88\alpha^4 + 16.54\beta^4 + 16.45\gamma^4 + 30.89\beta^2\gamma^2 + 40.89\gamma^2\alpha^2 + 43.51\alpha^2\beta^2$$
Quartz.
$$\frac{10^{10}}{E} = 12.734 (1 - \gamma^2)^2 + 16.693 (1 - \gamma^2)\gamma^2 + 9.705\gamma^4 - 8.460\beta\gamma (3\alpha^2 - \beta^2)$$

SMITHSONIAN TABLES.

 $T = 19.665 + 9.060\gamma_2^2 + 22.984\gamma^2\gamma_1^2 - 16.920 \left[(\gamma \beta + \beta \gamma_1) (3\alpha \alpha_1 - \beta \beta_1) - \beta_2 \gamma_2 \right]$

^{*} These formulæ are taken from Voigt's papers (Wied. Ann. vols. 34, 34, and 35).

ELASTICITY OF CRYSTALS.

Some particular values of the Elastic Moduli are here given. Under E are given moduli for extension or compression in the directions indicated by the subscripts and explained in the notes, and under T the moduli for torsional rigidities round the axes similarly indicated.

	(a) Regular System.*										
Substance.	\mathbf{E}_{a}	\mathbf{E}_{b}	\mathbf{E}_{c}	T_a	Authority.						
Fluor spar Pyrites Rock salt	1473 × 10 ⁶ 3530 × 10 ⁶ 416 × 10 ⁶ 403 × 10 ⁶ 401 × 10 ⁶ 372 × 10 ⁶ 405 × 10 ⁶ 181 × 10 ⁶ 186 × 10 ⁶	1008 × 10 ⁶ 2530 × 10 ⁶ 346 × 10 ⁶ 339 × 10 ⁶ 209 × 10 ⁶ 196 × 10 ⁶ 319 × 10 ⁶ 199 × 10 ⁶ 177 × 10 ⁶	910 × 10 ⁶ 2310 × 10 ⁶ 311 × 10 ⁶ — — — — — — — — —	345 × 10 ⁶ 1075 × 10 ⁶ 129 × 10 ⁶ — 655 × 10 ⁶ —	Voigt.† "Koch.‡ Voigt. Koch. Beckenkamp.§						

(b) RHOMBIC SYSTEM.

Substance.	E ₁	\mathbf{E}_2	\mathbf{E}_{8}	E_4	\mathbf{E}_{5}	\mathbf{E}_{6}	Authority.
Barite . Topaz .	620×10^{6} 2304×10^{6}	540 × 10 ⁶ 2890 × 10 ⁶	959×10^{6} 2652×10^{6}	376×10^{6} 2670×10^{6}	702×10^{6} 2893×10^{6}	740 × 1 3180 × 1	06 Voigt.
5	Substance.		$T_{12} = T_{21}$	$T_{13} = T_{3}$	T ₂₃ =	= T _{3 2}	Authority.

 283×10^{6} 293×10^{6} 121 × 106 Voigt. Barite 1336 × 106 1353 × 106 1104 × 106 Topaz

In the Monoclinic System, Coromilas (Zeit. für Kryst. vol. 1) gives

 $\label{eq:Gypsum} \left\{ \begin{array}{l} E_{max} \!=\! 887 \times 10^6 \text{ at 21.9}^\circ \text{ to the principal axis.} \\ E_{min} \!=\! 313 \times 10^6 \text{ at 75.4}^\circ \qquad \text{``} \qquad \text{``} \end{array} \right.$ $\begin{cases} E_{max} = 2213 \times 10^6 \text{ in the principal axis.} \\ E_{min} = 1554 \times 10^6 \text{ at } 45^\circ \text{ to the principal axis.} \end{cases}$ Mica

In the HEXAGONAL SYSTEM, Voigt gives measurements on a beryl crystal (emerald). The subscripts indicate inclination in degrees of the axis of stress to the principal axis of the crystal.

 $E_0 = 2165 \times 10^6$, $E_{45} = 1796 \times 10^6$, $E_{90} = 2312 \times 10^6$,

 $T_0 = 667 \times 10^6$, $T_{90} = 883 \times 10^6$. The smallest cross dimension of the prism experimented on (see Table 82), was in the principal axis for this last case.

In the RHOMBOHEDRIC SYSTEM, Voigt has measured quartz. The subscripts have the same meaning as in the hexagonal system.

 $E_0 = 1030 \times 10^6$, $E_{-45} = 1305 \times 10^6$, $E_{+45} = 850 \times 10^6$, $E_{90} = 785 \times 10^6$,

 $T_0 = 508 \times 10^6$, $T_{90} = 348 \times 10^6$.

Baumgarten ¶ gives for calcspar

 $E_0 = 501 \times 10^6$, $E_{-45} = 441 \times 10^6$, $E_{+45} = 772 \times 10^6$, $E_{\theta\theta} = 790 \times 10^6$.

^{*} In this system the subscript a indicates that compression or extension takes place along the crystalline axis, and * In this system the subscript a indicates that compression or extension takes place foring the distortion round the axis. The subscripts band correspond to directions equally inclined to two and normal to the third and equally inclined to all three axes respectively.

† Voigt, "Wied. Ann." vol. 31, 34-35.

‡ Koch, "Wied. Ann." vol. 18.

§ Beckenkamp, "Zeit. für Kryst." vol. 10.

|| The subscripts 1. 2, 3 indicate that the three principal axes are the axes of stress; 4, 5, 6 that the axes of stress are in the three principal planes at angles of 45° to the corresponding axes.

¶ Baumgarten, "Pogg. Ann." vol. 152.

COMPRESSIBILITY OF CASES.*

These tables give the relative values of the product pv for different pressures and temperatures, and hence show the departure from Boyle's law. The pressures are in metres of mercury, or in atmospheres, the volume being arbitrary. The temperatures are in centigrade degrees.

TABLE 84. - Nitrogen.

Pressure in	Relative values of pv at —							
metres of mercury.	170.7	300.1	50°.4	75°-5	1000.1			
30 60 100 140 180 220 260 300 320	2745 2740 2790 2890 3015 3140 3290 3450 3525	2875 2875 2930 3040 3150 3285 3440 3600 3675	3080 3100 3170 3275 3390 3530 3685 3840 3915	3330 3360 3445 3550 3675 3820 3975 4130 4210	3575 3610 3695 3820 3950 4090 4240 4400 4475			

TABLE 85. - Hydrogen.

Pressure in	F	Relative	values o	of pv at	-
metres of mercury.	170.7	40°.4	60°.4	810.1	1000.1
30 60 100 140 180 220 260 300 320	2830 2885 2985 3080 3185 3290 3400 3500 3550	3045 3110 3200 3300 3420 3520 3625 3730 3780	3 ² 35 3 ² 95 3400 3500 3620 37 ² 5 3830 3935 3990	3430 3500 3620 3710 3830 3930 4040 4140 4200	3610 3680 3780 3880 4010 4110 4220 4325 4385

TABLE 86. - Methane.

Pressure in		Relative values of pv at —								
metres of mercury.	140.7	29°.5	400.6	60°.1	79°.8	1000.1				
30 60 100 140 180 220	2580 2400 2275 2260 2360 2510	2745 2590 2480 2480 2560 2690	2880 2735 2640 2655 2730 2840	3100 2995 2935 2940 3015 3125	3230 3180 3190 3260 3360	3460 3435 3460 3525 3625				

TABLE 87. — Ethylene.

Pressure in	Relative values of pv at —									
metres of mercury.	160.3	200.3	300.1	40°.0	500.0	60°.0	70°.0	79°-9	89°.9	1000.0
30 60 90 120 150 180 210 240 270 300 320	1950 810 1065 1325 1590 1855 2110 2360 2610 2860 3035	2055 900 1115 1370 1625 1890 2145 2395 2640 2890 3065	2220 1190 1195 1440 1690 1945 2200 2450 2710 2960 3125	2410 1535 1325 1540 1785 2035 2285 2540 2790 3040 3200	2580 1875 1510 1660 1880 2130 2375 2625 2875 3125 3285	2715 2100 1710 1780 1990 2225 2470 2720 2965 3215 3375	2865 2310 1930 1950 2125 2340 2570 2810 3060 3300 3470	2970 2500 2160 2115 2250 2450 2680 2910 3150 3380 3545	3090 2680 2375 2305 2390 2565 2790 3015 3240 3470 3625	3225 2860 2565 2470 2540 2700 2910 3125 3345 3560 3710

^{*} Tables 84-89 are from the experiments of Amagat; "Ann. de chim. et de phys.," 1881, or "Wied. Bieb.," 1881, p. 418.

COMPRESSIBILITY OF CASES.

TABLE 88. - Carbon Dioxide.

Pressure in	Relative values of pv at —								
metres of mercury.	180.2	35°.1	40°.2	50°.0	60°.0	70°.0	80°.0	90°.0	1000.0
30 50 80 110 140 170 200 230 260 290 320	liquid	2360 1725 750 930 1120 1310 1500 1690 1870 2060 2240	2460 1900 825 980 1175 1360 1550 1730 1920 2100 2280	2590 2145 1200 1090 1250 1430 1615 1800 1985 2170 2360	2730 2330 1650 1275 1360 1520 1705 1890 2070 2260 2440	2870 2525 1975 1550 1525 1645 1810 1990 2166 2340 2525	2995 2685 2225 1845 1715 1780 1930 2090 2265 2440 2620	3120 2845 2440 2105 1950 1975 2075 2210 2375 2550 2725	3225 2980 2635 2325 2160 2135 2215 2340 2490 2655 2830

TABLE 89. - Carbon Dioxide.*

Pressure in	Value of the ratio pv/p_1v_1 at —							
atmospheres.	500	1000	200°	250°				
0.725 1.440 2.850	1.0037 1.0075 1.1045	1.0021 1.0048 1.0087	1.0009 1.0025 1.0040	1.0003 1.0015 1.0020				

TABLE 90. - Air, Oxygen, and Carbon Monoxide at Temperature between 18° and 22°.†

The pressure p is in metres of mercury; the product pv is simply relative.

A	ir.	Oxy	/gen.	Carbon 1	nonoxide.	
Þ	pv	pv p		Þ	pv	
24 07 34.90 45.24 55.30 64.00 72.16 84.22 101.47 133.89 177.60 214.54 250.18 304.04	26968 26908 26791 26789 26778 26779 26840 27041 27608 28540 29585 30572 32488	24.07 34.89 - 55.50 64.07 72.15 84.19 101.46 133.88 177.58 214.52	26843 26614 ———————————————————————————————————	24.06 34.91 45.25 55.52 64.00 72.17 84.21 101.48 133.90 177.61 214.54 250.18 304.05	27147 27102 27007 27025 27060 27071 27158 24420 28092 29217 30467 31722 33919	

^{*} Similar experiments made on air showed the ratio pv/p_1v_1 to be practically constant.

[†] Amagat, "Compte Rendu," 1879.

RELATION BETWEEN PRESSURE, TEMPERATURE AND VOLUME OF SULPHUR DIOXIDE AND AMMONIA.*

TABLE 91. - Sulphur Dioxide.

Original volume 100000 under one atmosphere of pressure and the temperature of the experiments as indicated at the top of the different columns.

ure in nos.	Correspor	nding Volun ts at Tempe	ne for Ex-	Volume.	Pressure Experime	e in Atmosphents at Temp	neres for erature —
Pressure i	580.0	99°.6	183°.2	voiume.	580.0	990.6	183°.2
10 12 14 16 18 20 24 28 32 36 40 50 60 70 80 90 100 120 140 160	8560 6360 4040 	9440 7800 6420 5310 4405 4030 3345 2780 2305 1935 1450	3180 2640 2260 2040 1640 1375 1130 930 790 680 545 430 325	10000 9000 8000 7000 6000 5000 4000 3500 3000 2 500 2 500 1 500	9.60 10.40 11.55 12.30 13.15 14.00 14.40	9.60 10.35 11.85 13.05 14.70 16.70 20.15 23.00 26.40 30.15 35.20 39.60	29.10 33.25 40.95 55.20 76.00

TABLE 92. - Ammonia.

Original volume 100000 under one atmosphere of pressure and the temperature of the experiments as indicated at the top of the different columns.

	orrespon periment	ding Volum s at Tempe	ne for Ex- rature —	77.1	Pressure in Atmospheres for Experiments at Temperature —					
Pressure	46°.6	993.6	183°.6	Volume.	30°.2	46°.6	99°.6	183°.0		
12.5	9500 7245 55880 	7635 6305 4645 3560 2875 2440 2080 1795 1490 1250 975		10000 9000 8000 7000 6000 5000 4000 3500 3000 2500 2000 1500	8.85 9.60 10.40 11.05 11.80 12.00	9.50 10.45 11.50 13.00 14.75 16.60 18.35 18.30	12.00 13.60 15.55 18.60 22.70 25.40 29.20 34.25 41.45 49.70 59.65	- - 19.50 24.00 27.20 31.50 37.35 45.50 58.00 93.60		

^{*} From the experiments of Roth, "Wied. Ann." vol. 11, 1880.

TABLE 93.

COMPRESSIBILITY AND BULK MODULI OF LIQUIDS.

	Tr.	ssion t vol-	e or f pres- at- res.		Calculated bulk mod	l values of ulus in—
Liquid.	C.	Compre per unit ume per X 10 ⁶ .	Pressur range o sure in mosphe	Authority.	Grammes per sq. cm.	Pounds per sq. in.
Acetone	14 16 15.4 50.1 0 15.6 100 8.5 9.2 12 13 999 999 63 663 25.4 10 12 14 28 28 65 65 185 185 185 185 185 185 185 185 185 18	510 495 25.1 3.38 3.92 90.4 91.1 221 338.5 55.19 63.32	8.7-35.4 8.12-37.2 1-4 1-4 	Authority. Amagat Pagliani & Palazzo Colladon & Sturm Quincke Amagat Grassi Amagat Colladon & Sturm Tait Amagat Barus " " " " " " " Colladon & Sturm Tait Amagat Barus " " " " " " " " " " " " "	Grammes per sq. cm. 94 × 10 ⁵ 115 " 119 " 93 " 133 " 165 " 119 " 59 " 165 " 165 " 119 " 18.6 " 19.8 " 34.4 " 35.3 " 34.4 " 35.3 " 34.4 " 102 " 120 "	Pounds per sq. in. 1.34 × 10 ⁵ 1.64 " 1.69 " 1.32 " 1.89 " 2.35 " 2.35 " 2.26 " 0.87 " 0.26 " 0.28 " 0.49 " 0.50 " 1.55 " 2.00 " 1.45 " 1.71 " 1.81 " 1.81 " 1.81 " 1.81 " 1.81 " 0.87 " 0.97 " 0.97 " 0.97 " 0.97 " 0.97 " 0.97 " 0.97 " 0.97 " 0.97 " 0.94 " 0.97 " 0.97 " 0.97 " 0.97 " 0.97 " 0.97 " 0.98 " 0.99
Paraffine . Petroleum . Rock Rape seed .	14.84 16.5 19.4 20.3	62.69 69.58 74.58 59.61		De Metz Martini	164.5 " 148.3 " 138.4 " 174.3 "	2.34 2.11 " 1.97 " 2.48 "
Turpentine. Sulphur dioxide Toluene Xylene	19.7 0 10 10	79.14 302.5 79 73.8	1–16	Colladon & Sturm De Heen	130.7 " 034.4 " 130.7 " 140.0 "	1.86 " 0.49 " 1.86 " 1.99 "

COMPRESSIBILITY AND BULK MODULI OF LIQUIDS.

	Temp.	ession t vol- r atmo.	re or of pres- atmos-		Calculated values of bulk modulus in—		
Liquid.	C.	Compression per unit volume per atmc	Pressure or range of pressure in atme	Authority.	Grammes per sq. cm.	Pounds per sq. in.	
Water, sea " pure " " " " " " " " " " " " " " " " " " "	12 12 0 17.6 0 10 20 30 40 50 60 70 80 90	44* 47* 49.65 42.9 50.3 47.0 44.5 42.5 40.9 39.7 38.9 39.0 39.6 40.2 41.0	I I I -24 I -262 I -5 I -5 I -5 I -5 I -5 I -5 I -5 I -5	Tait	234.8 × 10 ⁵ 220.0 " 208.0 " 241.1 " 206.0 " 220.0 " 232.0 " 243.2 " 253.1 " 260.1 " 265.0 " 264.3 " 260.8 " 257.3 "	3.34 × 10 ⁵ 3.13 " 2.96 " 3.43 " 2.93 " 3.13 " 3.30 " 3.46 " 3.60 " 3.77 " 3.77 " 3.66 " 3.59 "	

TABLE 94.

COMPRESSIBILITY AND BULK MODULI OF SOLIDS.

C.V.	ession t vol- r atmo.	A .12 .24	Calculated bulk mod	
Solid.	Compression Der unit volume per atm X 10.0.		Grammes per sq. cm.	Pounds per sq. in.
Crystals: Barite Beryl Fluorspar Pyrites Quartz Rock salt Sylvine Topaz Tourmaline Brass Copper Delta metal Lead Steel Glass	1.93 0.747 1.20 1.14 2.67 4.2† 7.45† 0.61 0.113 0.95 0.86 1.02 2.76 0.68 2.2-2-9	Voigt	535×10 ⁶ 1384 " 860 " 906 " 387 " 246 " 138 " 1694 " 9140 " 11202 " 1012 " 374 " 1518 " 405 "	7.61×10 ⁶ 19.68 " 12.24 " 12.89 " 5.50 " 1.97 " 24.11 " 130.10 " 15.48 " 17.10 " 14.41 " 5.32 " 21.61 " 5.76 "

^{*} Tait finds for fresh water the value .0072 (1 - 0.034 p) and for sea water .00666 (1 - 0.034 p) where p is the pressure in tons per square inch. The range of variation of p was from 1 to 3 tons.

[†] Röntgen and Schneider by piezometric experiments obtained 5.0 × 10-6 for rock salt and 5.6 × 10-6 for sylvine (Wied. Ann., vol. 31).

TABLE 95.

DENSITY OR MASS IN CRAMMES PER CUBIC CENTIMETRE AND POUNDS
PER CUBIC FOOT OF VARIOUS SOLIDS.*

1 2	1 00010	10010	F VARIOUS SOLIDS	•	
	Grammes	Pounds	1	Grammes	Pounds
Substance.	per cubic	per cubic	Substance.	per cubic	per cubic
	centimetre.	foot.		centimetre.	foot.
		((0	G 1	- 00	
Agate	2.5-2.7	156-168	Gas carbon	1.88	119
Alabaster:		60	Glass:		
Carbonate	2.69-2.78	168-173	Common	2.4-2.8	150-175
Sulphate	2.26-2.32	141-145	Flint	2.9-4.5	180-280
Alum, potash	1.7	106	Glauber's salt	1.4-1.5	87-93
Amber	1.06-1.11	66-69	Glue	1.27	80
Anthracite	1.4-1.8	87-112	Gneiss	2.4-2.7	150-168
Apatite	3.16-3.22	197-201	Granite	2.5-3.0	156-187
Aragonite	3.0	187	Graphite	1.9-2.3	120-140
Arsenic	5.7-5.72	356-358	Gravel	1.2-1.8	94-112
Asbestos	2.0-2.8	125-175	Green stone	4.4-5.4	275-335
Barite	1.1-1.2	69-75	Gum arabic	2.9-3.0	180–185 80–85
Basalt	4.5	168-193	Gunpowder:	1.3-1.4	00-05
Beeswax	0.96-0.97	60-61	Loose	0.0	56
Bole	2.2-2.5	137-156	Tamped		109
Bone	1.7-2.0	106-125	Gypsum, burnt	1.75	113
Boracite	2.9-3.0	181-187	Hornblende		187
Borax	1.7-1.8	106-112	Ice	3.0 0.88-0.91	55-57
Borax glass	2.6	162	Iodine	4.95	309
Boron	2.68-2.69	167-168	Ivory	1.83-1.92	114-120
Brick	2.0-2.2	125-137	Kaolin	2.2	137
Butter	0.86-0.87	53-54	Lava:		-3/
Calamine	4.1-4.5	255-280	Basaltic	2.8-3.0	175-185
Calcspar	2.6-2.8	162-175	Trachytic	2.0-2.7	125-168
Carbon.		, 5	Lead acetate	2.4	150
See Graphite, etc.			Leather:		3
Caoutchouc	0.92-0.99	57-62	Dry	0.86	54
Celestine	3.9	243	Greased	1.02	64
Cement:	3,	.5	Lime:		,
Pulverized loose .	1.15-1.7	72-105	Mortar	1.65-1.78	103-111
Pressed	1.85	115	Slaked	1.3-1.4	81-87
Set	2.7-3.0	168-187	Lime	2.3-3.2	144-200
Cetin	0.88-0.94	55-59	Limestone	2.46-2.86	154-178
Chalk	1.9-2.8	118-175	Litharge:		
Charcoal:			Artificial	9.3-9.4	580-585
Oak	0.57	35	Natural	7.8-8.0	489-492
Pine	0.28-0.44	17.5-27.5	Magnesia	3.2	200
Chrome yellow	6.00	374	Magnesite	3.0	187
Cinnabar	8.12	507	Magnetite	4.9-5.2	306-324
Clay	1.8-2.6	122-162	Malachite	3.7-4.1	231-256
Clayslate	2.8-2.9	175-180	Manganese:		
Coal, soft	1.2-1.5	75-94	Red ore	3.46	216
Cobaltite	6.4-7.3	400-455	Black ore	3.9-4.1	243-256
Cocoa butter	0.89-0.91	56-57	Marble	2.5-2.8	157-177
Coke	1.0-1.7	62-105	Marl	1.6-2.5	100-156
Copal	1.04-1.14	65-71	Masonry	1.85-2.3	116-144
Corundum	3.9-4.0	245-250	Meerschaum	.99-1.28	61.8-79.9
Diamond	3.5-3.6	220-225	Melaphyre	2.6	162
Anthracitic	1.66	104	Mica	2.6-3.2	165-200
Carbonado	3.01-3.25	188-203	Mortar	1.75	109
Diorite	2.8-3.1	175-193	Nitroglycerine	1.6	102
Dolomite	3.8-2.9	175-181	Ochre		99
Earth, dry		100-120	Opal	3.5	
Emery	4.0	72 250	Orpiment		212-218
Epsom salts:	4.0	250	Paper	3.4-3.5	44-72
Crystalline	1.7-1.8	106-112	Paraffin	0.87-0.91	54-57
Anhydrous	2.6	162	Peat	0.84	54 37
Feldspar	2.53-2.58	158-161	Phosphorus, white	1.82	114
Flint	2.63	164	Pitch	1.07	67
Fluor spar	3.14-3.18	196-198	Porcelain	2.3-2.5	143-156
Gabronite	2.9-3.0	181-187	Porphyry	2.6-2.9	162-181
Gamboge	1.2	75	Potash	2.26	141
Galena	7.3-7.6	460-470	Pyrites	4.9-5.2	306-324
Garnet	3.6-3.8	230-335	Pyrolusite	3.7-4.6	231-287
1		0 000			

^{*} For metals, see Table 97.

Substance.	Grammes per cubic centimetre.	Pounds per cubic foot.	Substance.	Grammes per cubic centimetre.	Pounds per cubic foot.
Pumice stone Quartz Resin Rock crystal Rock salt Sal ammoniac Saltpetre Sand: Dry Damp Sandstone Selenium Serpentine Shale Silicon Siliceous earth Slag, furnace Slate Snow, loose	0.37-0.9 2.65 1.07 2.6 2.28-2.41 1.5-1 6 1.95-2.08 1.40-1.65 1.90-2.05 2.2-2.5 4.2-4.8 2.43-2.66 2.6 2.0-2.5 2.6 2.5-3.0 2.6-2.7 0.125	23-56 165 67 162 142-150 94-100 122-130 87-103 119-128 137-156 262-300 152-166 162 125-156 166 156-187 162-168 7.8	Soapstone, Steatite Soda: Roasted Crystalline Spathic iron ore Starch Stibnite Strontianite Syenite Sugar Talc Tallow Tellurium Tile Tinstone Topaz Tourmaline Trachyte Trap	2.6-2.8 2.5 1.45 3.7-3.9 1.53 4.6-4.7 3.7 2.6-2.8 1.61 2.7 .9197 6.38-6.42 1.4-7.0 3.5-3.6 2.94-3.24 2.7-2.8 2.6-2.7	162-175 156 90 231-243 95 287-293 231 162 100 168 570-605 398-401 87-143 399-437 210-223 183-202 168-175 162-170

TABLE 96.

DENSITY OR MASS IN CRAMMES PER CUBIC CENTIMETRE AND POUNDS
PER CUBIC FOOT OF VARIOUS ALLOYS (BRASSES AND BRONZES).

Alloy.	Grammes per cubic centimetre.	Pounds per cubic foot.
Brasses: Yellow, 70Cu + 30Zn, cast " " " rolled drawn " Red, 90Cu + 10Zn " White, 50Cu + 50Zn Bronzes: 90Cu + 10Sn " 85Cu + 15Sn " 80Cu + 20Sn " 75Cu + 25Sn German Silver: Chinese, 26.3Cu + 36.6Zn + 36.8 Ni " " Berlin (1) 52Cu + 26Zn + 22Ni " " (2) 59Cu + 30Zn + 11Ni " " (3) 63Cu + 30Zn + 6Ni " " Nickelin Lead and Tin: 87.5Pb + 12.5Sn " " 84Pb + 16Sn " " 77.8Pb + 22.2Sn " " 63.7Pb + 36.3Sn " " " 63.7Pb + 36.3Sn " " " 46.7Pb + 53.3Sn " " " 30.5Pb + 69.5Sn Bismuth, Lead, and Tin: 53Bi + 40Pb + 7Cd Wood's Metal: 50Bi + 25Pb + 12.5Cd + 12.5Sn Cadmium and Tin: 32Cd + 68Sn Gold and Copper: 98Au + 2Cu " " 96Au + 4Cu " " 88Au + 12Cu " " 88Au + 14Cu Aluminium and Copper: 10Al + 90Cu " " " 88Au + 12Cu Aluminium and Iridium: 90Pt + 10Ir " " 85Pt + 15Ir " " 85Pt + 15Ir " " 85Pt + 15Ir " " " 85Pt + 15Ir " " " 85Pt + 15Ir " " " 85Pt + 33.33Ir " " " 5Pt + 95Ir	8.44 8.56 8.70 8.60 8.70 8.60 8.78 8.89 8.74 8.83 8.30 8.45 8.31 10.60 10.33 10.05 9.43 8.73 8.24 10.56 9.70 7.70 18.84 18.36 17.52 17.16 16.81 16.81 16.81 16.81 16.81 16.81 16.81 16.82 21.62 21.62 21.62 21.87 22.38	527 534 542 536 511 548 555 545 551 518 527 520 518 547 661 644 627 588 545 545 661 649 605 480 1176 1145 1120 1093 1071 1049 1027 480 522 542 175 1348 1348 1348 1348 1364 1396

DENSITY OR MASS IN CRAMMES PER CUBIC CENTIMETRE AND POUNDS PER CUBIC FOOT OF THE METALS.*

When the value is taken from a particular authority that authority is given, but in most cases the extremes or average from a number of authorities are given.

,Metal.	Physical state.	Grammes per cubic centi- metre.	Pounds per cubic foot.	Temp. C.†	Authority.
Aluminium	Cast Wrought	2.56-2.58 2.65-2.80 6.70-6.72 About 6.22 3.75-4.00 9.70-9.90 9.673 10.004 8.54-8.57 8.670 8.366 7.989 1.88-1.90	160-161 165-175 418-419 388 234-250 605-618 604 624 533-535 541 522 498	271 271 318 318	Vincentini and Omodei. Vincentini and Omodei.
Calcium Cerium Chromium Cobalt Columbium Copper "" Didymium Gallium Germanium Glucinium Gold	Cast	1.586 6.62-6.72 6.52-6.73 8.50-8.70 9.100 7.10-7.40 8.80-8.95 8.85-8.95 8.217 6.540 5.930 1.86-2.06 19.26-19.34	98.6 47.5–482 407–420 530–542 563 443–462 549–558 513 408 370 341 116–127 1202–1207	24 20	Roberts & Wrightson. Lecoq de Boisbaudran. Winkler.
Indium Iridium Iridium Iron " " Lanthanum Lead " " Lithium Magnesium Manganese Mercury	Wrought	19.33-19.34 7.27-7.42 21.78-22.42 7.03-7.13 7.58-7.73 7.80-7.90 6.880 6.05-6.16 11.340 11.360 11.005 10.645 0.590 1.69-1.75 6.86-8.03 Av. abt. 7.4 13.596	1207 454-463 1359-1399 439-445 473-482 485-493 429 377-384 708 709 686 664 39 105-109 428-501 462 .848	24 24 325 325 325	Roberts & Wrightson. Hildebrand & Norton. Reich. '' Vincentini and Omodei.
Molybdenum Nickel Osmium Palladium Platinum Potassium " Rhodium Ruthenium " "	Solid	8.40-8.60 8.30-8.90 21.40-22.40 11.00-12.00 21.20-21.70 0.86-0.88 0.8510 0.8298 11.00-12.10 11.00-11.40 10.40-10.50 10.55-10.57 9.500	524-536 517-555 1335-1398 686-749 1322-1354 54-55 53-7 53-8 686-755 686-711 649-655 658-659 593	62.I 62.I	Vincentini and Omodei. Roberts & Wrightson.

^{*} This table has been to a large extent compiled from Clark's "Constants of Nature," and Landolt & Börnstein's "Phys. Chem. Tab."
† When the temperature is not given, ordinary atmospheric temperature is to be understood.

SMITHSONIAN TABLES.

DENSITY OR MASS IN CRAMMES PER CUBIC CENTIMETRE AND POUNDS PER CUBIC FOOT OF THE METALS.

Metal.	Physical state.	Grammes per cubic centi- metre.	Pounds per cubic foot.	Temp. C.	Authority.
Sodium " " Strontium Thallium Tin " " " " Titanium † Thorium † Thorium † Tungsten Uranium Zinc " " Zirconium	At boiling pt. Cast Wrought Crystallized . Solid	0.97-0.99 0.9519 0.9287 0.7414 2.50-2.58 11.8-11.9 7.290 7.300 6.97-7.18 7.1835 6.988 5.300 9.4-10.1 19.120 18.33-18.65 7.04-7.16 7.190 6.480 4.140	605-618 59.4 58.0 46.3 156-161 736-742 455 455 455 435-448 454 436 341 587-630 1193 1143-1163 439-447 449 404 258	97.6 97.6	\ \text{Vincentini and } \ \text{Omodei.} \ \text{Ramsay.} \ \text{Matthieson.} \ \text{Vincentini and } \ \text{Omodei.} \ \text{Roscoe.} \ \text{Roberts & Wrightson.} \ \text{Froost.} \ \text{Froost.} \ \text{Vincentini and } \ \text{Froost.} \ Proposition of the proof

TABLE 98.

MASS IN GRAMMES PER CUBIC CENTIMETRE AND IN POUNDS PER CUBIC FOOT OF DIFFERENT KINDS OF WOOD.

The wood is supposed to be seasoned and of average dryness.

Wood.	Grammes per cubic centimetre.	Pounds per cubic foot.	Wood.	Grammes per cubic centimetre.	Pounds percubic foot.
Alder	0.42-0.68 0.66-0.84 0.65-0.85 0.70-0.90 0.84 0.51-0.77 0.95-1.16 1.05 0.38 0.49-0.57 0.70-0.90 0.22-0.26 1.11-1.33 0.54-0.60 0.35-0.50 0.50-0.56 0.83-0.85 0.48-0.70 0.43-0.53 0.48-0.70 0.37-0.60	26-42 41-52 40-53 43-56 52 32-48 59-72 65 24 30-35 43-56 14-16 69-83 34-37 22-31 31-35 52-53 30-44 27-33 30-44 23-37	Greenheart Hazel Hickory Iron-bark Laburnum Lancewood Lignum vitæ Linden or Lime-tree Locust Mahogany, Honduras "Spanish Maple Oak Pear-tree Plum-tree Poplar Satinwood Sycamore Teak, Indian "African Walnut Water gum Willow	0.93-1.04 0.60-0.80 0.60-0.93 1.03 0.92 0.68-1.00 1.17-1.33 0.32-0.59 0.67-0.71 0.56 0.85 0.62-0.75 0.60-0.90 0.61-0.73 0.35-0.5 0.95 0.40-0.60 0.64-0.70 1.00 0.40-0.60	58-65 37-49 37-58 64 57 42-62 20-37 42-44 35 53 39-47 37-56 38-45 41-49 22-31 59 24-37 41-56 61 40-43 62 24-37

^{*} When the temperature is not given, ordinary atmospheric temperature is to be understood.
† The density of titanium is inferential, and actual determination a year or two ago gave a lower value.
‡ The lower value for thorium represents impure material.

DENSITY OF LIQUIDS.

Density or mass in grammes per cubic centimetres and in pounds per cubic foot of various liquids.

	C	D 1	
Liquid.	cubic centimetre.	cubic foot.	Temp. C.
Acetone Alcohol, ethyl "methyl "proof spirit Anilin Benzene Bromine Carbolic acid (crude) Carbon disulphide Chloroform Ether Glycerine Mercury Naphtha (wood) Naphtha (petroleum ether) Oils: Amber Anise-seed Camphor Castor Cocoanut Cotton seed Creosot	0.792 0.791 0.810 0.916 1.035 0.899 3.187 0.950-0.965 1.293 1.480 0.736 1.260 13.596 0.848-0.810 0.665 0.800 0.996 0.910 0.969 0.925 0.926 1.040-1.100	49.4 49.4 50.5 57.2 64.5 56.1 199.0 59.2–60.2 80.6 92.3 45.9 78.6 836.0 52.9–50.5 41.5 49.9 61.1 56.8 60.5 57.7 60.2 64.9–68.6	0° 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Creosot Lard Lavender Lemon Linseed (boiled) Mineral (lubricating) Olive Palm Pine Poppy Rapeseed (crude) " (refined) Resin Train or Whale Turpentine Valerian Petroleum " (light) Pyroligneous acid Sea water Soda lye Water	1.040-1.100 0.920 0.877 0.844 0.942 0.900-0.925 0.918 0.905 0.850-0.860 0.924 0.913 0.913 0.955 0.918-0.925 0.873 0.965 0.878 0.795-0.805 0.800 1.025 1.210 1.000	64.9-68.6 57.4 54.7 52.7 58.8 56.2-57.7 57.3 56.5 53.0-54.0 57.7 57.1 57.0 59.6 57.3-57.7 54.2 60.2 54.8 49.6-50.2 49.9 64.0 75.5 62.4	15 15 16 16 15 20 15 15 15 15 15 16 0 15 17 4

DENSITY OF CASES.

The following table gives the specific gravity of gases at o° C. and 76 centimetres pressure relative to air at o° and 76 centimetres pressure, together with their mass in grammes per cubic centimetre and in pounds per cubic foot.

	Gas.					Sp. gr.	Grammes per cubic centimetre.	Pounds per cubic foot.
Air						1.000	0.001293	0.08071
Ammonia						0.597	0.000770	0.04807
Carbon dioxide .						1.529	0.001974	0.12323
Carbon monoxide .					· . · · .	0.967	0.001234	0.07704
Chlorine		•				2.422	0.003133	0.19559
Coal gas					from	0.340	0.000421	0.02628
Coar gas		• .	. *	•	to	0.450	0.000558	0.03483
Cyanogen			٠			1.806	0.002330	0.14546
Hydrofluoric acid .			٠	4		2.370	0.002937	0.18335
Hydrochloric acid		۰				1.250	0.001616	0.10088
Hydrogen						0.0696	0.000090	0.00562
Hydrogen sulphide .			¹a	٠		1.191	0.001476	0.09214
Marsh gas						0.559	0.000727	0.04538
Nitrogen						0.972	0.001257	0.07847
Nitric oxide, NO .						1.039	0.001343	0.08384
Nitrous oxide, N2O.					19 9	1.527	0.001970	0.12298
Oxygen					•	1.105	0.001430	0.08927
Sulphur dioxide .						2.247	0.002785	0.17386
Steam at 100° C.						0.469	0.000581	0.03627

DENSITY OF AQUEOUS SOLUTIONS.*

The following table gives the density of solutions of various salts in water. The numbers give the weight in grammes per cubic centimetre. For brevity the substance is indicated by formula only.

											,
Substance.	W	eight of	the diss	solved s	ubstance e solution	e in 100 on.	parts by	weigh	of	р. С.	Authority.
	5	10	15	20	25	30	40	50	60	Temp.	
K_2O KOH Na_2O $NaOH$	1.047 1.040 1.073	1.082	1.027		1.229	1.286	1.410	1.538	1.666	15.	Schiff.
NaOH NH ₈	0.978		0.940		0.909		-	1.539	1.642	15. 16.	Carius.
NH ₄ Cl	1.015 1.031 1.035 1.029	1.065		1.135	_	- - 1.181	1.255	-		15. 15. 15.	Gerlach.
CaCl ₂	1.041	1.086	1.132	1.181	1.232	1.286	1.402	-	-	15.	66
$CaCl_2 + 6H_2O$ $AlCl_3$ $MgCl_2$	1.019	1.072	1.111	1.177	1.196 1.226	1.241	1.340	-	_	18. 15.	Schiff. Gerlach. "Schiff.
$\begin{array}{c} \operatorname{MgCl}_2 + 6\operatorname{H}_2\operatorname{O} \\ \operatorname{ZnCl}_2 & \cdot & \cdot \end{array}$	1.014		1.135	1.067	1.236		1.141		1.737	19.5	Kremers.
$\begin{array}{c} CdCl_2 & . & . \\ SrCl_2 & . & . \\ SrCl_2 + 6H_2O \\ BaCl_2 & . & . \end{array}$	1.043 1.044 1.027 1.045	1.053	1.143 1.082 1.147	1.198	1.269	1.321	-	1.317	1.887 - - -	19.5 15. 15.	Gerlach.
BaCl2 + 2H2O $CuCl2$	1.035	1.075	1.119		1.217		1.527	_	_	17.5	Schiff. Franz.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.048	1.098	1.157	I.223 - I.179	1.299	- - 1.290	_	- 1.545	- 1.668 -	17.5 20. 17.5	" Mendelejeff. Hager. Precht.
$\begin{array}{c} SnCl_2 + 2H_2O \\ SnCl_4 + 5H_2O \\ LiBr \\ KBr \\ NaBr \end{array}$	1.032 1.029 1.033 1.035 1.038	1.058 1.070 1.073	1.089	1.154	1.157	1.193 1.252 1.254	1.274	1.365		15. 15. 19.5 19.5	Gerlach. " Kremers. "
$\begin{array}{c} MgBr_2 \\ ZnBr_2 \\ CdBr_2 \\ CaBr_2 \\ BaBr_2 \\ \end{array}$	1.041 1.043 1.041 1.042 1.043	1.091 1.088 1.087	1.139	1.202	1.263 1.258 2.250	1.328 1.324 1.313		1.648 1.678 1.639	1.8 ₇₃	19.5 19.5 19.5 19.5	66 66 66 66
SrBr ₂ KI	1.043 1.036 1.036 1.038	1.076 1.077 1.080	I.I18 I.I22 I.I26	1.198 1.164 1.170 1.177 1.194	1.216 1.222 1.232	1.269 1.278 1.292	1.394 1.412 1.430	I.544 I.573 I.598	1.953 1.732 1.775 1.808 1.873	19.5 19.5 19.5 19.5	66 66 66 66
$\begin{array}{c} \operatorname{ZnI}_2 \dots \\ \operatorname{CdI}_2 \dots \\ \operatorname{MgI}_2 \dots \\ \operatorname{CaI}_2 \dots \\ \operatorname{SrI}_2 \dots \end{array}$	1.043 1.042 1.041 1.042 1.043	1.086 1.086 1.088	1.136 1.137 1.138 1.140	1.192 1.192 1.196 1.198	1.251 1.252 1.258 1.260	1.317 1.318 1.319 1.328	I.474 I.472 I.475 I.489	1.678 1.666 1.663	- 1.913 1.908	19.5	66 66 66
BaI ₂	1.043	1.089	1.141	1.145	1.263	1.233	1.493	1.702		19.5	66 66
$NaBrO_8$ KNO_3 $NaNO_8$ $AgNO_8$	1.039 1.031 1.031 1.044	1.064	1.099		1.180	1.222	- 1.313 1.479	- 1.416 1.675	1.918	19.5 15. 20.2 15.	Gerlach. Schiff. Kohlrausch.

^{*} Compiled from two papers on the subject by Gerlach in the "Zeit. für Anal. Chim.," vols. 8 and 27.

SMITHSONIAN TABLES.

	1									1	
	W	eight of	the dis	solved s	substanc ie soluti	e in 100	parts b	y weigh	t of	C.	
Substance.			1	1	1	1		1	1	Temp.	Authority.
	5	10	15	20	25	30	40	50	60	H	
$NH_4NO_8 \dots ZnNO_3 \dots$	1.020	1.041	1.063	2	1.107	1.131	1.178				
$ZnNO_3+6H_2O$.	-	1.095	-	1.113	-	1.178	1.456	1.329	=	17.5	Oudemans.
$Ca(NO_3)_2 \dots Cu(NO_3)_2 \dots$	1.037	1.075	1.118	1.162	-	1.260	1.367	1.482	1.604	17.5	
$Sr(NO_3)_2 \dots$	1.039	1.083	1.129	1.179	-	-	-	-	-	19.5	Kremers.
$Pb(NO_3)_2 \dots Cd(NO_3)_2 \dots$	1.043	1.091	1.143	1.199	1.262	1.332	1.536	1.759	_	17.5	Gerlach. Franz.
$Co(NO_3)_2$ $Ni(NO_3)_2$	1.045	1.090	1.137	1.192	1.252	1.318	1.465	-	=	17.5	66
$Fe_2(NO_3)_6$	1.039	1.076	1.137	1.192	1.210	1.261	1.373		1.657	17.5	66
Mg(NO ₃) ₂ +6H ₂ O Mn(NO ₃) ₂ +6H ₂ O	1.018	1.038	1.060	1.082	1.105	1.129	1.179	1.232	1.386	8	Schiff. Oudemans.
K_2CO_3	1.044	1.092	1.141	1.192	1.245	1.300	1.417	1.543	-	15	Gerlach.
$K_2CO_3 + 2H_2O$. $Na_2CO_3IOH_2O$.	1.037	1.072	1.110	1.150	1.191	1.233	1.320	1.415	1.511	15.	66
$(NH_4)_2SO_4$	1.027	1.038	1.057	1.077	1.098	1.170	1.226	1.287	_	15.	Schiff.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.045	1.096	1.150	1.207	I.270 I.141	1.336	1.489	_	_	18.	Hager. Schiff.
$MgSO_4$	1.051	1.104	1.161	1.221	1.284	-	-	-	-	15	Gerlach.
$\begin{array}{c} MgSO + 7H_2O \\ Na_2So_4 + 10H_2O \end{array}$	1.025	1.050	1.075	1.101	1.129	1.155	1.215	1.278	_	15.	66
$CuSO_4 + 5H_2O$.	1.031	1.064	1.098	1.134	1.173	1.213	-	-	-	15.	Schiff.
$\begin{array}{c} MnSO_4 + _4H_2O \\ ZnSO_4 + _7H_2O \end{array}.$	1.031	1.064	1.099	1.135	1.174	1.214	1.303	1.398	1.443	I 5. 20.5	Gerlach. Schiff.
Fe ₂ (SO) ₃ +K ₂ SO ₄	1.026	T 0 4 5	× 066	- 000							France
$+24H_2O$ $Cr_2(SO)_3+K_2SO_4$		1.045	1.066	1.088	1.112	1.141	-		_	17.5	Franz.
+24H2O $MgSO4 + K2SO4$	1.016	1.033	1.051	1.073	1.099	1.126	1.188	1.287	1.454	17.5	"
$+6H_2O$ $(NH_4)_2SO_4$ +	1.032	1.066	1.101	1.138	-	-	-	-	-	15.	Schiff.
$FeSO_4 + 6H_2O$	1.028	1.058	1.090			1.191	-	-	-	19.	66
K_2CrO_4 $K_2Cr_2O_7$	1.039	1.082	1.127	1.174	1.225	1.279	1.397	_	_	19.5	Kremers.
$Fe(Cy)_6K_4$	1.028	1.059	1.092	1.126	-	-	-	-	-	15.	Schiff.
$\begin{array}{c} \operatorname{Fe}(\operatorname{Cy})_{6}\operatorname{K}_{3} \dots \\ \operatorname{Pb}(\operatorname{C}_{2}\operatorname{H}_{3}\operatorname{O}_{2})_{2} + \end{array}$	1.025	1.053	1.145	1.179	-	_	_	_	_	13	
$_{2\text{NaOH}}^{3\text{H}_{2}\text{O}}$	1.031	1.064	1.100	1.137	1.177	1.220	1.315	1.426	-	15.	Gerlach.
+24H2O	1.020	1.042	1.066	1.089	1.114	1.140	1.194	-	-	14.	Schiff.
	5	10	15	20	30	40	60	80	ICO		
SO ₃	1.040	1.084	1.132	1.179	1.277	1.389	1.564	1.840	-	15.	Brineau. Schiff.
N2O5	1.033	1.028	2.104	1.063	1.217	1.294	1.422	1.506	_	4.	Kolb.
$C_4H_6O_6 \dots C_6H_8O_7 \dots$	1.021	1.047		1.096	1.150	I.207 I.170	1.273	_	-	15. 15.	Gerlach.
Cane sugar	1.019	1.039	1.060	1.082	1.129	1.178	1.289	-		17.5	"
HCl HBr	1.025	1.050	1.075	1.101	1.151	1.200	_	_	=	15.	Kolb. Topsöe.
$HI_{2}SO_{4}$	1.037	1.077	1.118	1.165	1.271	1.400	-	-	1.838	13.	Kolb.
H_2SO_4 H_2SiFl_6	1.032	1.069	1.127	1.145	1.223	1.307	1.501	1.732	-	17.5	Stolba.
P_2O_5	1.035	1.077	1.119	1.167	1.271	1.385	1.676	_	=	17.5	Hager. Schiff.
$\begin{array}{c} P_2O_5 + 3H_2O \\ HNO \\ \end{array}$	1.027				1.184		1.438	1.459	1.528		Kolb.
$C_2H_4O_2$	1.007	1.014	1.021	1.028	1.041	1.052	1.068	1.075	1.055	15.	Oudemans.

DENSITY OF WATER AT DIFFERENT TEMPERATURES BETWEEN 0° AND 32° C.*

The following table gives the relative density of water containing air in solution,—the maximum density of water free from air being taken as unity. The correction required to reduce to densities of water free from air are given at the foot of the table. For all ordinary purposes the correction may be neglected. The temperatures are for the hydrogen thermometer.

Temp. C.	.0	.1	.2	.3	.4	.5	.6	.7	.8	.9
-0	0.9998742	8678	8613	8547	8478	8408	8336	8263	8188	8111
+ 0 1 2 3 4	0.9998742 9287 9671 9897 9968	8804 9332 9701 9911 9966	8864 9376 9729 9923 9964	8922 9419 9755 9934 9959	8979 9460 9780 9944 9953	9035 9499 9803 9952 9946	9088 9536 9825 9958 9933	9140 9572 9846 9963 9927	9191 9607 9864 9966 9915	9240 9640 9881 9968 9901
5 6 7 8	0.9999886 9656 9278 8758 8095	9870 9625 9232 8697 8021	9852 9592 9185 8636 7946	9833 9558 9137 8573 7869	9933 9812 9522 9087 8509 7791	9790 9485 9035 8443 7712	9766 9446 8982 8376 7631	9740 9407 8928 8308 7549	9714 9365 8873 8238 7466	9685 9322 8815 8167 7381
10 11 12 13 14	0.9997295 6360 5292 4096 2772	7208 6259 5178 3969 2633	7119 6157 5063 3841 2493	7029 6053 4947 3712 2351	6937 5949 4829 3581- 2208	6844 5842 4710 3450 2064	67 50 57 35 4590 3317 1919	6654 5626 4468 3182	6558 5516 4345 3047 1624	6459 5405 4221 2910 1475
15 16 17 18	0.9991325 897 5 7 8071 6270 4357	7594 7896 6084 4160	1021 9429 7720 5897 3961	0867 9264 7543 5708 3762	0712 9097 7365 5518 3561	0556 8929 7185 5328 3359	0399 8760 7004 5136 3157	0240 8589 6823 4943 2953	0080 8418 6640 4749 2748	9919 8245 6456 4553 2542
20 21 22 23 24	0.9982335 0205 77972 5639 3207	4126 9987 7744 5400 2959	1917 9767 7514 5160 2709	1707 9546 7283 4920 2459	1496 9325 7051 4678 2208	1283 9102 6818 4435 1956	1070 8878 6584 4191 1702	0855 8653 6340 3947 1448	0640 8427 6114 3701 1193	0423 8200 5877 3455 937
25 26 27 28 29	0.9970681 68061 5353 2558 59679	0423 7794 5077 2274 9387	0164 7527 4801 1989 9094	9904 7258 4523 1703 8800	9644 6988 4245 1416 8 5 05	9382 6718 3966 1129 8209	9120 6447 3686 0840 8913	8857 6175 3405 0551 7616	8592 5901 3124 0261 7318	8327 5628 2841 9971 7019
30 31	0.9956720 3682	6419 3374	3066	5816 2756	5514 2446	5210 2135	4906 1823	4601 1511	4296 1198	3989 0884

If we put D'_t for the density of water containing air and D_t for the density of water free from air, we get the following corrections on the above table to reduce to pure water:—

^{*} This table is given by Marek in "Wied. Am.," vol. 44, p. 172, 1891.

VOLUME IN CUBIC CENTIMETRES AT VARIOUS TEMPERATURES OF A CUBIC CENTIMETRE OF WATER AT THE TEMPERATURE OF MAXIMUM DENSITY.*

The water in this case is supposed to be free from air. The temperatures are by the hydrogen thermometer.

Temp. C.	.0	.1	.2	.3	.4	.5	.6	.7	.8	.9
0° 1 2 3 4	1.000127 070 030 007 000	120 066 027 006 000	014 061 024 004 001	108 057 021 003 001	102 052 019 002 001	096 048 017 002 002	091 044 014 001 003	086 040 012 001	080 037 010 000 005	075 033 009 000 007
5 6 7 8 9	1.000008	010	012	014	016	018	020	023	026	029
	032	035	038	041	045	049	053	057	061	065
	069	074	079	084	089	094	099	105	110	116
	122	128	134	141	147	154	160	167	174	181
	189	196	204	211	219	227	235	244	252	260
10	1.000269	278	287	296	305	314	324	334	343	353
11	363	373	383	394	405	415	426	437	448	459
12	471	482	494	505	517	529	541	553	566	578
13	591	603	616	629	642	655	668	681	695	709
14	722	736	750	765	779	794	809	823	838	853
15	1.000868	884	899	914	930	945	961	977	993	009
16	1025	042	058	075	091	108	125	142	159	177
17	194	211	229	247	265	283	301	319	338	356
18	374	393	412	431	450	469	488	507	527	546
19	566	585	605	625	645	666	686	707	727	748
20	1.001768	789	810	831	852	874	895	916	938	960
21	981	003	025	047	069	092	114	137	159	182
22	2205	228	251	274	297	320	343	367	391	414
23	438	462	486	510	534	559	583	607	632	657
24	682	707	732	757	782	807	833	858	884	910
25 26 27 28 29	1.002935 3199 472 754 4045	961 226 500 783 075	987 253 528 812 105	014 280 556 841 134	040 307 584 870 164	066 335 612 899 194	092 362 641 928 224	389 669 957 254	146 417 697 987 284	172 445 726 016 315
30	1.004345	375	406	436	467	498	529	560	591	622
31	653	684	716	748	780	811	843	875	907	939
32	971	003	036	068	101	133	166	199	231	264
33	5297	330	363	396	430	463	497	530	564	597
34	631	665	699	733	767	801	835	870	904	939
35	1.005973	008	042	077	III	146	181	217	252	287

^{*} The table is quoted from Landolt and Börnstein's "Physikalische Chemie Tabellen," and depends on experiments by Thiesen, Scheel, and Marek.

SMITHSONIAN TABLES.

DENSITY AND VOLUME OF WATER.*

The mass of one cubic centimetre at 4° C. is taken as unity.

Temp. C.	Density.	Volume.	Temp. C.	Density.	Volume.
201121	201101191				
—10°	0.998145	1.001858	25°	0.99712	1.00289
-9	8427	1575	26	687	314
-9 -8	8685	1317	27	660	341
-7 -6	8911	1089	28	633	368
-6	9118	0883	29	605	396
-5	0.999298	1.000702	30	0.99577	1.00425
-4	9455	0545	31	547	455
-3	9590	0410	32	517	486
- 2	9703	0297	33	485	518
-1	9797	0203	34	452	551
0	0.999871	1.000129	35	0.99418	1.00586
I	9928	0072	36	383	621
2	9969	0031	37	347	657
3	9991	0009	38	310	694
4	1.000000	0000	39	273	, 732
5	0.999990	010000.1	40	0.99235	1.00770
6	9970	0030	41	197	809
7 8	9933	0067	42	158	849
	9886	0114	43	118	889
9	9824	0176	44	078	929
10	0.999747	1.000253	45	0.99037	1.00971
11	9655	0345	46	8996	014
12	9549	0451	47	954	057
13	9430	0570	48	910	101
14	9299	0701	49	865	148
15	0.999160	1.000841	50	0.98820	1.00195
16	9002	0999	55	582	439
17	8841	1160	60	338	691
18	8654	1348	65	074	964
19	8460	1542	70	7794	256
20	0.998259	1.001744	75	0.97498	1.00566
21	8047	1957	80	194	887
22	7826	2177	85	6879	221
23	7601	2405	90	556	567
24	7367	2641	95	219	931
25	0.997120	1.002888	100	0.95865	1.00312

^{*} Rossetti, "Berl. Ber," 1867.

TO SEE & CALLERSON, W. S.).

DENSITY OF MERCURY.

Density or mass in grammes per cubic centimetre, and the volume in cubic centimetres of one gramme of mercury. The density at 0° is taken as 13.5956,* and the volume at temperature t is $V_t = V_0 (1 + .000181792 t + 175 \times 10^{-12} t^2 + 35116 \times 10^{-15} t^3)$.†

Temp. C.	Mass in grammes per cub. cm.	Volume of gramme in cub. cms.	Temp. C.	Mass in grammes per cub. cm.	Volume of r gramme in cub. cms.
-10° -9 -8 -7 -6	13.6203	0.0734195	30°	13.5218	0.0739544
	6178	4329	31	5194	9678
	6153	4463	32	5169	9812
	6129	4596	33	5145	9945
	6104	4730	34	5120	40079
-5	13.6079	0.0734864 *	35	13.5096	0.0740213
-4	6055	4997	36	5071	0346
-3	6030	5131	37	5047	0480
-2	6005	5265	38	5022	0614
-1	5981	5398	39	4998	0748
0	13.5956	0.0735532	40	13.4974	0.0740882
1	5931	5666	50	4731	2221
2	5907	5800	60	4488	3561
3	5882	5933	70	4246	4901
4	5857	6067	80	4005	6243
5	13.5833	0.0736201	90	13.3764	0.0747586
6	5808	6334	100	3524	8931
7	5783	6468	110	3284	50276
8	5759	6602	120	3045	1624
9	5734	6736	130	2807	2974
10	13.5709	0.0736869	140	13.2569	0.0754325
11	5685	7003	150	2331	5679
12	5660	7137	160	2094	-7035
13	5635	7270	170	1858	8394
14	5611	7404	180	1621	9755
15 16 17 18 19	13.5586 5562 5537 5513 5488	0.0737538 7672 7805 7939 8073	200 210 220 230	13.1385 1150 0915 0680 0445	0.0761120 2486 3854 5230 6607
20	13.5463	0.0738207	240	13.0210	0.0767988
21	5439	8340	250	12.9976	9372
22	5414	8474	260	9742	70760
23	5390	8608	270	9508	1252
24	5365	8742	280	9274	3549
25 26 27 28 29	13.5341 5316 5292 5267 5243	0.0738875 9009 9143 9277 9411	300 310 320 330	12.9041 8807 8573 8340 8107	0.0774950 6355 7765 9180 80600
30	13.5218	0.0739544	340 350 360	12.7873 7640 7406	0.0782025 3455 4891

^{*} Marek, "Trav. et Mém. du Bur. Int. des Poids et Més." 2, 1883.

[†] Broch, l. c.

SPECIFIC CRAVITY OF AQUEOUS ETHYL ALCOHOL.

ntage ohol sight.	0	1	2	3	4	5	6	7	8	9	
Percentage of alcohol by weight.		Spec	ific gravity	v at 15°.56	C. in term	ns of wate	r at the sa	me tempe	rature.		
0	1.0000	.9981	.9965	-9947	.9930	.9914	.9898	.9884	. 9869	.9855	
10	.9841	.9828	.9815	.9802	.9789	.9778	.9766			.9728	
20	.9716	.9703	.9691	.9678	.9665	.9652	.9638		1	1 2000	
30	.9396	.9560 .9376	·9544 .9356	.9528	.9314	.9490	.9470				
50	0.9184	.9160	.9135	.9113	.9090	.9069	.9047	.9025		.8979	
60	.8956	.8932	.8908	.8886	.8863	.8840	.8816		.8769	.8745	
70 80	.8721 .8483	.8696	.8672	.8649	.8625	.8603	.8581	.8557	.8533		
90	.8228	.8199	.8172	.8145	.8118	.8089	.8331	.8305	.8279		
base	following a d on Mende	lejen's for	mula,† an	d are for a	ilcohol of	specific gr	rmal-Aich avity .794	ungs Kon 25, at 15	nmission." C., in tern	They are	
ntage ohol ight.	0	1	2	3	4	5	6	7	8	9	
Percentage of alcohol by weight.		Sp	ecific grav	ity at 15°	C. in term	s of water	at the san	ne tempera	ature.		
0	1.00000	.99812	.99630	-99454	.99284	.99120	.98963	.98812	.98667	.98528	
10	.98393	.98262	.98135	.98010	.97888	.97768	.97648	.97 528	.97408	.97287	
20	.97164	.97040	.96913	.96783	.96650	.96513	.96373	.96228	.96080	.95927	
30 40	.95770	.95608	.93570	.95273	.95099	.94920	.94738	.94552	.94363	.94169	
50	0.91865	.91644	.91421	.91197	.90972	.90746	.90519	.90292	.90063	.89834	
60	89604	.89373	.89141	.88909	.88676	.88443	.88208	.87974	.87738	.87502	
70 80	87265 84852	.87028	.86789	.86550	.86310	.86070	.85828	.85586	.85342	.85098	
90	82304	.82036	.84358	.81488	.81207	.83604 .80923	.83349	.83091	.82832	.82569 ·79735	
speci	following vad of by weific gravity o	alues have	the same he temper lute alcoho	authority rature 15°. ol being .7	as the las 56 C. on t	t; the percur	centage of y in Thur		1		
30-0	0	1	-	•	-	3	3	7	8	9	
centag ilcohol volume		Specific gravity at 15°.56 C. in terms of water at same temperature.									
Percentage of alcohol by volume		Sp	ecific grav	ity at 15				1			
0	1.00000	.99847	.99699	.99555	.99415	.99279	.99147	.90019	.98895	.98774	
0	.98657	.99847	.99699	·99555 .98324	.98218	.98114	.98011	.97909	.97808	.97708	
0 10 20	.98657 .97608	.99847 .98543 .97507	.99699 .98432 .97406	·99555 ·98324 ·97304	.98218	.98114	.98011	.97909	.97808	.97708 .966 5 8	
0	.98657	.99847	.99699	·99555 .98324	.98218	.98114	.98011	.97909	.97808	.97708	
0 10 20 30 40	.98657 .97608 .96541 .95185	.99847 .98543 .97507 .96421 .95029	.99699 .98432 .97406 .96298 .94868	.99555 .98324 .97304 .96172 .94704	.98218 .97201 .96043 .94536	.98114 .97097 .95910 .94364	.98011 .96991 .95773 .94188	.97909 .96883 .95632 .94008	.97808 .96772 .95487 .93824	.97708 .96658 .95338 .93636	
0 10 20 30 40 50 60	.98657 .97608 .96541 .95185	.99847 .98543 .97507 .96421 .95029	.99699 .98432 .97406 .96298 .94868	.99555 .98324 .97304 .96172 .94704 .92850 .90678	.98218 .97201 .96043 .94536 .92646	.98114 .97097 .95910 .94364 .92439 .90214	.98011 .96991 .95773 .94188 .92229 .89978	.97909 .96883 .95632 .94008	.97808 .96772 .95487 .93824 .91799 .89499	.97708 .96658 .95338 .93636	
10 20 30 40 50	.98657 .97608 .96541 .95185	.99847 .98543 .97507 .96421 .95029	.99699 .98432 .97406 .96298 .94868	.99555 .98324 .97304 .96172 .94704	.98218 .97201 .96043 .94536	.98114 .97097 .95910 .94364	.98011 .96991 .95773 .94188	.97909 .96883 .95632 .94008	.97808 .96772 .95487 .93824	.97708 .96658 .95338 .93636	

^{*} Fownes, "Phil. Trans. Roy. Soc." 1847. † "Pogg. Ann." vol. 138, 1869.

TABLE 107.

DENSITY OF AQUEOUS METHYL ALCOHOL.*

Densities of aqueous methyl alcohol at 0° and 15.56 C., water at 4° C. being taken as 100000. The numbers in the columns a and b are the coefficients in the equation $\rho_t = \rho_0 - at - bt^2$ where ρ_t is the density at temperature t. This equation may be taken to hold between 0° and 20° C.

Percentage of CH ₄ O.	Density at o° C.	Density at 15°.56 C.	a	ь	Percentage of CH ₄ O.	Density at o° C.	Density at 15°.56 C.	а
0 1 2 3 4	99987 99806 99631 99462 99299	99907 99729 99554 99382 99214	6.0 5.4 4.8 3.9 3.0	0.705 .694 .681 .670	50 51 52 53 54	92873 92691 92507 92320 92130	91855 91661 91465 91267 91066	65.41 66.19 66.95 67.68 68.39
5 6 7 8	99142 98990 98843 98701 98563	99048 98893 98726 98569 98414	-2.2 -1.2 -0.2 +0.9	0.648 .634 .621 .609	55 56 57 58 59	91938 91742 91544 91343 91139	90863 90657 90450 90239 90026	69.07 69.72 70.35 70.96 71.54
10 11 12 13 14	98429 98299 98171 98048 97926	98262 98111 97962 97814 97668	3·3 4.8 6.2 7.8 9·5	0.581 .569 .552 .536 .519	60 61 62 63 64	90917 90706 90492 90276 90056	89798 89580 89358 89133 88905	71.96 72.37 72.91 73.45 73.98
15 16 17 18	97806 97689 97573 97459 97346	97523 97379 97235 97093 96950	11.0 12.5 14.5 16.2 18.3	0.500 .480 .461 .440	65 66 67 68 69	89835 89611 89384 89154 88922	88676 88443 88208 87970 87714	74.51 75.05 75.57 76.10 76.62
20 21 22 23 24	97233 97120 97007 96894 96780	96808 96666 96524 96381 96238	20.0 22.2 24.3 26.4 29.0	0.398 ·373 ·350 ·321 ·291	70 71 72 73 74	88687 88470 88237 88003 87767	87487 87262 87021 86779 86535	77.14 77.66 78.18 78.69 79.20
25 26 27 28 29	96665 96549 96430 96310 96187	96093 95949 95802 95655 95506	31.3 33.8 36.0 38.8 41.1	0.261 .230 .191 .151 .106	75 76 77 78 79	87530 87290 87049 86806 86561	86290 86042 85793 85542 85290	79.71 80.22 80.72 81.23 81.73
	Equation	$\rho_t = \rho_0 - a$	t		80	86314	85035	82.22
30 31 32 33	96057 95921 95783 95643	95367 95211 95053 94894	44.36 45.66 46.93 48.17		81 82 83 84	86066 85816 85564 85310	84779 84521 84262 84001	82.72 83.21 83.70 84.19
34 35 36 37 38	95500 95354 95204 95051	9473 ² 94567 94399 94228	49·39 50.58 51·75 52.89	jble.	85 86 87 88 89	85055 84798 84539 84278 84015	83738 83473 83207 82938 82668	84.67 85.16 85.64 86.12 86.59
39 40 41	94895 94734 94571 94400	94055 93877 93697 93510	54.01 55.10 56.16 57.20	n <i>bt</i> ² negligible.	90 91 92 93	83751 83485 83218 82948	82396 82123 81849 81572	87.07 87.54 88.01 88.48
42 43 44 45	94239 94076 93911 93744	93335 93155 92975 92793	58.22 59.20 60.17	Term	94 95 96 97 98	82677 82404 82129 81853	81293 81013 80731 80448	89.40 89.86 90.32
46 47 48 49	93575 93403 93229 930 52	92610 92424 92237 92047	62.01 62.90 63.76 64.60		98 99 100	81576 81295 81015	80164 79872 79589	90.78 91.23 91.68

^{*} Quoted from the results of Dittmar & Fawsitt, "Trans. Roy. Soc. Edin." vol. 33.

VARIATION OF THE DENSITY OF ALCOHOL WITH TEMPERATURE.

(a) The density of alcohol at t° in terms of water at 4° is given * by the following equation: $d_t = 0.80025 - 0.0008340t - 0.000020t^2.$

From this formula the following table has been calculated.

p. C.	Density or Mass in grammes per cubic centimetre.													
Temp.	0	1	2	3	4	5	6	7	8	9				
0 10 20 30	.80625 .79788 .78945 .78097	.80541 .79704 .78860 .78012	.80457 .79620 .78775 .77927	.80374 ·79535 ·78691 ·77841	.80290 .79451 .78606 .77756	.80207 .79367 .78522 .77671	.80123 .79283 .78437 .77585	.80039 .79198 .78352 .77500	.79956 .79114 .78267 .77414	.79872 .79029 .78182 .77329				

(b) Variations with temperature of the density of water containing different percentages of alcohol. Water at 4° C. is taken as unity.†

Percent- age of		Density a	t temp. C.		Percent-		Density a	t temp. C.	
alcohol by weight.	00	100	200	30°	alcohol by weight.	00	100	200	300
5 10 15 20	0.99988 .99135 .98493 .97995 .97566	0.99975 .99113 .98409 .97816 .97263	0.99831 .98945 .98195 .97527 .96877	0.99579 .98680 .97892 .97142 .96413	50 55 60 65 70	0.92940 .91848 .90742 .89595 .88420	0.92182 .91074 .89944 .88790 .87613	0.91400 .90275 .89129 .97961 .86781	0.90577 .89456 .88304 .87125 .85925
25 30 35 40 45 50	0.97115 .96540 .95784 .94939 .93977 0.92940	0.96672 .95998 .95174 .94255 .93254 0.92182	0.96185 .95403 .94514 .93511 .92493 0.91400	0.95628 .94751 .93813 .92787 .91710 0.90577	75 80 85 90 95	0.87245 .86035 .84789 .83482 .82119	0.86427 .85215 .83967 .82665 .81291	0.85580 .84366 .83115 .81801 .80433	0.84719 .83483 .82232 .80918 .79553 0.78096

^{*} Mendelejeff, "Pogg. Ann." vol. 138.

[†] Quoted from Landolt and Börnstein, "Phys. Chem. Tab." p. 223;

VELOCITY OF SOUND IN AIR.

Rowland has discussed (Proc. Am. Acad. vol. 15, p. 144) the principal determination of the velocity of sound in atmospheric air. The following table, together with the footnotes and references, are quoted from his paper. Some later determinations will be found in Table 111, on the velocity of sound in gases.

Observer. (See References below.) Date.	Place of determination.	Number of observations made.	Temperature observed.	Velocity observed.	Velocity reduced to o° C. and ordi- nary air.	Velocity reduced to oo and dry air.	Velocity approximately reduced to oo C. and dry air (mean).	Estimated weight of observation.
1 1738 2 1811 3 1821 4 1822 5 1822 6 1823 7 1824–5 8 1839 9 1844 10 1868*	France . Düsseldorf India . { France . Austria Holland { Port Bowen Alps France	40 120 70 30 88 22 shots 14 " 51 - 34 149	5°-7°.5 C.	172.56 T. 1149.2 ft. 1131.5 ft. 340.89 m. 340.37 339.27 336.50 338.01	332.9m. 333.7 b 333.0 c 329.6 c 331.36 332.96 333.62 332.62 332.27 f 332.20 g 332.11	- - - 332.82 ^d 331.91 ^d	332.6 m. 332.7 330.9 330.8 332.5	2 2 2 4 3 7 1 1 4 10

General mean deduced by Rowland, 331.75.

Correcting for the normal carbonic acid in the atmosphere, this becomes 331.78 metres per second in pure dry air at 0° C.

REFERENCES.

- 1 French Academy: "Mém. de l'Acad. des Sci." 1738, p. 128.
- 2 Benzenburg: Gibberts's "Annalen," vol. 42, p. I.
- 3 Goldingham: "Phil. Trans." 1823, p. 96.
- 4 Bureau of Longitude: "Ann. de Chim." 1822, vol. 20, p. 210; also, "Œuvres d'Arago," "Mem. Sci." ii. 1.
- 5 Stampfer und Von Myrbach: "Pogg. Ann." vol. 5, p. 496.
- 6 Moll and Van Beek: "Phil. Trans." 1824, p. 424.
- 7 Parry and Foster: "Journal of the Third Voyage," 1824-5, App. p. 86; "Phil. Trans." 1828, p. 97.
- 8 Savant: "Ann. de Chim." sér. 2, vol. 71, p. 20. Recalculated.
- 9 Bravais and Martins: "Ann. de Chim." sér. 3, vol. 13, p. 5.
- 10 Regnault: "Rel. des Exp." iii. p. 533.
- a I believe that I calculated these reduced numbers on the supposition that the air was rather more than half saturated with moisture.
- b Reduced to oo C. by empirical formula.
- c Wind calm.
- d Moll and Van Beek found 332.049 at o° C. for dry air. They used the coefficient .00375 to reduce. I take the numbers as recalculated by Schröder van der Kolk.
 - e An error of 0.21° C. was made in the original. See Schröder van der Kolk, "Phil. Mag." 1865.
 - f Corrected for wind by Galbraith.
 - g Recalculated from Savart's results.
 - * This is given as 1864 in Rowland's table. The original paper is in "Mém. de l'Institut," vol. 37, 1868.

VELOCITY OF SOUND IN SOLIDS.

The numbers given in this table refer to the velocity of sound along a bar of the substance, and hence depend on the Young's Modulus of elasticity of the material. The elastic constants of most of the materials given in this table vary through a somewhat wide range, and hence the numbers can only be taken as rough approximations to the velocity which may be obtained in any particular case. When temperatures are not marked, between 10° and 20° is to be understood.

	,			
Substance.	Temp. C.	Velocity in metres per second.	Velocity in feet per second.	Authority.
W. 1 41 11				24
Metals: Aluminium	_	5104	16740	Masson. Various.
Brass		3500 2307	11480	Masson.
Cobalt		4724	7570 15500	11 435011.
Copper	20	3560	11670	Wertheim.
"	100	3290	10800	46
	200	2950	9690	66
Gold (soft)	20	1743	5717	66
	100	1720	5640	"
	200	1735	5691	
Gold (hard) Iron and soft steel .	_	2100	6890	Various.
Iron	20	5130	16410	Wertheim.
"	100	5300	17390	44
"	200	4720	15480	66
" cast steel	20	4990	16360	66
66 66 66	100	4920	16150	"
" "	200	4790	15710	3.5.1.1
Magnesium	-	4602	15100	Melde.
Nickel	_	4973	16320	Masson. Various.
Platinum	20	31 50 2690	8815	Wertheim.
Tiatilium .	100	2570	8437	44
46	200	2460	8079	66
Silver	20	2610	8553	66
46	100	2640	8658	66
66	200	2480	8127	"
Tin	-	2500	8200	Various.
Zinc	-	3700	12140	Chi. L.
Various: Brick	-	3652	11980	Chladni. Gray & Milne.
Granite	_	3480 3950	11420	Gray & Millie.
Marble	_	3810	12500	66
Slate	_	4510	14800	44
Tuff	-	2850	9350	46
Glass { from	-	5000	16410	Various.
(to	-	6000	19690	G: 0 G "
Ivory	-	3013	9886	Ciccone & Campanile.
Vulcanized rubber (black)	0	54	177	Exner.
" (red) .	50	31 69	226	66
" " "	70	34	III	66
Woods: Ash, along the fibre .	_	4670	15310	Wertheim.
" across the rings .	-	1390	4570	46
" along the rings .	-	1260	4140	66
Beech, along the fibre .	-	3340	10960	66
" across the rings " along the rings	_	1840	6030	"
Elm, along the fibre .	_	1415 4120	13516	66
" across the rings .	_	1420	4665	66
" along the rings .	-	1013	3324	66
Fir, along the fibre .	-	4640	15220	46
Maple "	-	4110	13470	66
Oak "	-	3850	12620	"
Tille	-	3320 4280	10900	66
Poplar "		4460	14050	66
Sycamore		4400	14040	

VELOCITY OF SOUND IN LIQUIDS AND CASES.

Substance.	Temp. C.	Velocity in metres per second.	Velocity in feet per second.	Authority.
Substance. Liquids: Alcohol Ether Oil of turpentine Water (Lake Geneva) " (from Seine river) " " " " Water " " " Gases: Air " " " " " " " " " " " " "		metres per	feet per	Authority. Martini. Wertheim. " Colladon & Sturm. Wertheim. " Martini. " Dulong. Wertheim. Masson. Le Roux. Schneebeli. Kayser. Wullner. Blaikley. Violle & Vautier. Greely. " Stone. Masson. Wullner. Dulong.
" dioxide . Carbon disulphide . Chorine	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	261.6 189 206.4 205.3 314 1269.5 1286.4 490.4 422 325 261.8 317.2 230.6 179.2 401	858 606 677 674 1030 4165 4221 1609 1385 1066 859 1041 756 588 1315	Masson. Martini. Strecker. Dulong. Zoch. Masson. Dulong. Masson. "" Masson. "" "" "" "" "" "" "" "" "" "

FORCE OF CRAVITY FOR SEA LEVEL AND DIFFERENT LATITUDES.

This table has been calculated from the formula $g_{\phi} = g_{45} [i - .oo_2662 \cos 2\phi],*$ where ϕ is the latitude.

Lati- tude φ.	in cms. per sec. per sec.	Log.	in inches per sec. per sec.	Log.	g in feet per sec. per sec.	Log.
0° 5 10 15 20	977.989	2.990334	385.034	2.585498	32.0862	1.506318
	8.029	0352	.050	5517	.0875	6336
	.147	0404	.096	5570	.0916	6338
	.339	0490	.173	5655	.0977	6474
	.600	0605	.275	5771	.1062	6590
30 31 32 33	978.922 9.295 •374 •456 •538	2.990748 0913 0949 0985 1021	385.402 .548 .580 .612 .644	2.585914 6079 6114 6150 6187	32.1168 .1290 .1316 .1343 .1370	1.506732 6898 6933 6969 7005
34 35 36 37 38	979.622 .707 .793 .880 .968	2.991059 1096 1135 1173 1212	385.677 .711 .745 .779 .813	2.586224 6262 6300 6339 6377	32.1398 .1425 .1454 .1490	1.507043 7080 7119 7167 7196
39	980.057	2.991251	385.849	2.586417	32.1540	1.507236
40	.147	1291	.884	6457	.1570	7275
41	.237	1331	.919	6496	.1607	7325
42	.327	1372	.955	6537	.1630	7356
43	.418	1411	.990	6577	.1659	7395
44	980.509	2.991452	386.026	2.586617	32.1688	1.507436
45	.600	1492	.062	6657	.1719	7476
46	.691	1532	.098	6698	.1748	7516
47	.782	1573	.134	6738	.1778	7557
48	.873	1613	.170	6778	.1808	7597
50 51 52 53	980.963 1.053 .143 .231 .318	2.991653 1693 1732 1772 1810	386.205 .241 .276 .311 .345	2.586818 6858 6898 6937 6975	32.1838 .1867 .1896 .1924 .1954	1.507637 7677 7716 7756 7794
54	981.407	2.991849	386.380	2.587014	32.1983	1.507833
55	·493	1887	.414	7053	.2011	7871
56	·578	1925	.447	7090	.2039	7909
57	·662	1962	.480	7127	.2067	7946
58	·744	1998	.513	7164	.2094	7983
59	981.825	2.992034	386.545	2.587200	32.2121	1.508018
60	.905	2070	.576	7235	.2147	8054
65	2.278	2234	.723	7400	.2276	8229
70	.600	2377	.849	7542	.2375	8361
75	.861	2492	.952	7657	.2460	8476
80	983.053	2.992577	387.028	2.587742	32.2523	1.508561
85	.171	2629	.074	7794	.2562	8613
90	.210	2646	.090	7812	.2575	8631

^{*} The constant .002662 is based on data given by Harkness (Solar Parallax and Related Constants, Washington,

The force of gravity for any latitude ϕ and elevation above sea level k is very nearly expressed by the equation $\mathcal{E}_{\phi} = \mathcal{E}_{45} \left(1 - .002662 \cos 2\phi \right) \left[1 - \frac{2\hbar}{R} \left(1 - \frac{3\delta}{4\Delta} \right) \right],$ where R is the earth's radius, δ the density of the surface strata, and Δ the mean density of the earth. When $\delta = 0$ we get the formula for elevation in air. For ordinary elevations on land $\frac{\delta}{\Delta}$ is nearly $\frac{1}{2}$, which gives for the correction where R is the earth we get the formula for elevation in air. For ordinary elevation we get the formula for elevation in air. For ordinary elevation is at latitude 45° for elevated portions of the earth's surface $g_{40}\frac{5h}{4R} = 980.6 \times \frac{5h}{4R} = 1225.75 \frac{h}{R} \text{ in dynes.}$ $= 386.062 \times \frac{5h}{4R} = 482.562 \frac{h}{R} \text{ in inch pound units.}$ $= 32.1719 \times \frac{5h}{4R} = 40.2149 \frac{h}{R} \text{ in poundals.}$

$$g_{45}$$
, $\frac{5h}{4R}$ = 980.6 $\times \frac{5h}{4R}$ = 1225.75 $\frac{h}{R}$ in dynes.
= 386.062 $\times \frac{5h}{4R}$ = 482.562 $\frac{h}{R}$ in inch pound units
= 32.1719 $\times \frac{5h}{4R}$ = 40.2149 $\frac{h}{R}$ in poundals.

.00588 dynes .00232 inch pound units diminution. 200193 coundals

CRAVITY.

In this table the results of a number of the more recent gravity determinations are brought together. They serve to show the degree of accuracy which may be assumed for the numbers in Table 112. In general, gravity is a little lower than the calculated value for stations far inland and slightly higher on the coast line.

Place.	Latitude.	Elevation	Gravity	in dynes.	Refer-
I lace.	N. +, S	in metres.	Observed.	Reduced to sea level.	ence.
Cingapara	I° 17′		00000	978.07	I
Singapore	-7 56	14	978.07 978.24	978.24	2
Green Mountain, Ascension	-7 57	686	978.08	978.21	2
Loanda, Angola	-8 49	46	978.14	978.15	2
Caroline Islands	- 10 00	2	978.36	978.36	3
Bridgetown, Barbadoes	13 04	18	978.16	978.16	2
Jamestown, St. Helena	- 15 55	10	978.66	978.66	2
Longwood, "	- 15 57	533	978.52	978.58	2
Pakaoao, Sandwich Islands	20 43	3001	978.27	978.84	3
Lahaina, " "	20 52	3	978.85	978.85	3
Haiki, " "	20 56	117	978.90	978.92	3
Honolulu, " "	21 18	3	978.96	978.96	3
St. Georges, Bermuda	32 23	2	979.75	979.75	2
Sidney, Australia	- 33 52	4.3	979.67	979.68	I
Cape Town	-33 56	11	979.61	979.61	2
Tokio, Japan	35 41	6	979.94	979.94	I
Auckland, New Zealand	- 36 52	43	979.67	979.68	1
Mount Hamilton, Cal. (Lick Obs.)	37 20	1282	979.64	979.89	4
	37 20	1282	979.68	979.92	5
San Francisco, Cal	37 47	114	979.95	979-97	4
" "	37 47	114	980.02	980.04	4 5 4 5 6
Washington, D. C.*	38 53	10	980.10	980.10	4
Denver, Colo	39 54	1645	979.68	979.98	5
York, Pa	39 58	122	980.12	980.14	6
Ebensburgh, Pa	40 27	651	980.08	980.20	
Allegheny, Pa	40 28	348	980.09	980.15	6
Hoboken, N. J	40 44	II	980.26	980.26	4
Salt Lake City, Utah	40 46	1288	979.82	980.05	5
Chicago, Ill.	41 49	165	980.34	980.37	5
Pampaluna, Spain	42 49	450	980.34	980.42	7
Montreal, Canada	45 31	100	980.73	980.75	5 5 7 5 8
Geneva, Switzerland	46 12	405	980.58 980.60	980.64 980.66	0
	46 12	405	980.61	980.60	9 9 9 8
Berne, "	46 57	572	980.67	980.74	9
Paris, France	47 23 48 50	67	980.07	980.74	8
		,	981.20	981.20	8
Kew, England	51 28 52 30	7 49	981.26	981.27	8
Port Simpson, B. C.		6	981.45	981.45	4
Burroughs Bay, Alaska	54 34 55 59	0	981.49	981.49	4
Wrangell, "	56 28		981.59	981.59	4
Sitka, "	57 03	7 8	981.68	981.68	4
St. Paul's Island, "	57 07	12	981.66	981.66	4
Juneau, "	58 18	5	981.73	981.73	4
Pyramid Harbor, "	59 10	5	981.81	981.81	4
Yakutat Bay, "	59 32	4	981.82	981.82	4
, , , ,	37 3				

¹ Smith: "United States Coast and Geodetic Survey Report for 1884," App. 14.

<sup>Smith: "United States Coast and Geodetic Survey Report for 1864," App. 14.
Preston: "United States Coast and Geodetic Survey Report for 1860," App. 12.
Preston: Ibid. 1888, App. 14.
Mendenhall: Ibid. 1891, App. 15.
Defforges: "Comptes Rendus," vol. 118, p. 231.
Pierce: "U. S. C. and G. S. Rep. 1883," App. 19.
Cebrian and Los Arcos: "Comptes Rendus des Séances de la Commission Permanente de l'Association Géodesique International," 1893.
Pierce: "U. S. C. and G. S. Report 1876, App. 15, and 1881, App. 17."</sup>

⁸ Pierce: "U. S. C. and G. S. Report 1876, App. 15, and 1881, App. 17." 9 Messerschmidt: Same reference as 7.

^{*} In all the values given under references 1-4 gravity at Washington has been taken at 980.100, and the others derived from that by comparative experiments with invariable pendulums.

SUMMARY OF RESULTS OF THE VALUE OF CRAVITY (g) AT STATIONS IN THE UNITED STATES, OCCUPIED BY THE U. S. COAST AND GEODETIC SURVEY DURING THE YEAR 1894.*

Station.	Latitude.	Longitude.	Elevation.	observed.
Atlantic Coast. Boston, Mass. Cambridge, Mass. Princeton, N. J. Philadelphia, Pa. Washington, C. & G. S. Washington, Smithsonian Appalachian Elevation. Ithaca, N. Y. Charlottesville, Va. Deer Park, Md. Central Plains. Cleveland, Ohio Cincinnati, Ohio Terre Haute, Ind. Chicago, Ill. St. Louis, Mo. Kansas City, Mo. Ellsworth, Kan. Wallace, Kan. Colorado Springs, Col. Denver, Col. Rocky Mountains. Pike's Peak, Col. Gunnison, Col. Grand Junction, Col. Grand Junction, Col.	Latitude. 0 / // 42 21 33 42 22 48 40 20 57 39 57 06 38 53 13 38 53 20 42 27 04 38 02 01 39 25 02 41 30 22 39 08 20 39 28 42 41 47 25 38 38 03 39 05 50 38 43 43 38 54 44 38 50 44 39 40 36 38 50 20 38 22 33 39 04 09 38 59 23	Longitude. 0 / // 71 03 50 71 07 45 74 39 28 75 11 40 77 00 32 77 01 32 76 29 00 78 30 16 79 19 50 81 36 38 84 25 20 87 23 49 87 36 03 90 12 13 94 35 21 98 13 32 101 35 26 104 49 02 104 56 55 105 02 02 106 56 02 108 33 56 110 00 56	Elevation. Metres. 22 14 64 16 14 10 247 166 770 210 245 151 182 154 278 469 1005 1841 1638 4293 2340 1398 1243	9 observed. Dynes. 980.382 980.384 980.164 980.182 980.190† 980.286 979.924 979.921 980.227 979.990 980.058 980.264 979.976 979.912 979.476 979.915 979.476 979.912 979.476 979.912
Green River, Utah Grand Canyon, Wyo. Norris Geyser Basin, Wyo. Lower Geyser Basin, Wyo. Pleasant Valley, Jct., Utah Salt Lake City, Utah	38 59 23 44 43 16 44 44 09 44 33 21 39 50 47 40 46 04	110 09 56 110 29 44 110 42 02 110 48 08 111 00 46 111 53 46	1243 2386 2276 2200 2191 1322	979.622 979.885 979.936 979.918 979.498 979.789

TABLE 115.

LENGTH OF SECONDS PENDULUM AT SEA LEVEL FOR DIFFERENT LATITUDES.

Latitude.	Length in centimetres.	Log.	Length in inches.	Log.	Latitude.	Length in centimetres.	Log.	Length in inches.	Log.
5 10 15 20	99.0910 .0950 .1079 .1265	1.996034 6052 6104 6190 6306	39.0121 .0137 .0184 .0261 .0365	1.591200 1217 1270 1356 1471	50 55 60 65 70	99.4014 .4459 .4876 .5255 .5581	1.997393 7587 7770 7935 8077	39.1344 .1520 .1683 .1832 .1960	1.592558 2753 2935 3100 3242
35 40 45	99.1855 .2234 .2651 .3096 .3555	1.996448 6614 6796 6991 7192	39.0493 .0642 .0806 .0982 .1163	1.591614 1779 1962 2157 2357	75 80 85 90	99.5845 .6040 .6160 .6200	8277 8329 8347	39.2065 .2141 .2188 .2204	1.593358 -3442 -3494 -3512

^{*} G. R. Putnam, Phil. Soc. of Washington, Bull. vol. xiii. † Taken as standard. The other values were obtained from this by means of invariable pendulums. ‡ Calculated from force of gravity table by the formula $l=g/\pi^2$. For each 100 feet of elevation subtract 0.000596 centimetres, or 0.000235 inches, or 0.000196 feet.

LENGTH OF THE SECONDS PENDULUM.*

Date of determination. Number of observation stations.	Range of latitude included by the stations.	Length of pendulum in metres for latitude φ.	Corresponding length of pendulum for lat. 45°.	Reference.
1799 15 1816 31 1821 8 1825 25 1827 41 1829 5 1830 49 1833 - 1869 73 1866 73 1884 123	From $+67^{\circ}$ os' to -33° 56' " $+74^{\circ}$ 53' " -51° 21' " $+38^{\circ}$ 40' " -60° 45' " $+79^{\circ}$ 50' " -12° 59' " $+79^{\circ}$ 50' " -51° 35' " 0° 0' " $+67^{\circ}$ 04' " $+79^{\circ}$ 51' " -51° 35' " $+79^{\circ}$ 50' " -51° 35' " $+79^{\circ}$ 50' " -62° 56' " $+79^{\circ}$ 50' " -62° 56'	0.990631 $+$.005637 $\sin^2 \phi$ 0.990743 $+$.005466 $\sin^2 \phi$ 0.990880 $+$.005340 $\sin^2 \phi$ 0.990977 $+$.005142 $\sin^2 \phi$ 0.991026 $+$.005072 $\sin^2 \phi$ 0.990555 $+$.005079 $\sin^2 \phi$ 0.990517 $+$.005087 $\sin^2 \phi$ 0.990941 $+$.005142 $\sin^2 \phi$ 0.99091011 $+$.005105 $\sin^2 \phi$ 0.990918 $+$.005262 $\sin^2 \phi$ 0.990910 $+$.005290 $\sin^2 \phi$	0.993450 0.993976 0.993550 0.993562 0.993562 0.993395 0.993560 0.993554 0.993554 0.993554	1 2 3 4 5 6 7 8 9 10 11

In 1884, from the series of observations used by Dr. Fischer, Dr. G. W. Hill 13 found

l = 0.9927148 metre + 0.0050800 $\rho^{-4}(\sin^2\phi - \frac{1}{3})$ + 0.0000979 $\rho^{-4}\cos^2\phi\cos(2\omega' + 29^\circ 04')$ - 0.0001355 $\rho^{-5}(\sin^3\phi - \frac{3}{3}\sin)\phi$ + 0.0005421 $\rho^{-5}(\sin^2\phi - \frac{1}{3})\cos\phi\cos(\omega' + 217^\circ 51')$ $+ 0.0002640 \rho^{-5} \sin \phi \cos^2 \phi \cos (2\omega' + 4^{\circ} 49')$ $+ 0.0001248 \rho^{-5} \cos^8 \phi \cos (3\omega' + 110^\circ 24')$ + 0.0001248 $\rho^{-1}\cos^{2}\phi\cos^{2}\phi\cos(3\omega'+110^{\circ}.24')$ + 0.0001489 $\rho^{-6}(\sin^{4}\phi-\frac{6}{9}\sin^{2}\phi+\frac{3}{35})$ + 0.0007386 $\rho^{-6}(\sin^{3}\phi-\frac{1}{9}\sin\phi)\cos\phi\cos(\omega'+3^{\circ}02')$ + 0.0002175 $\rho^{-6}(\sin^{2}\phi-\frac{1}{7})\cos^{2}\phi\cos(2\omega'+262^{\circ}17')$ + 0.0003126 $\rho^{-6}\sin\phi\cos^{3}\phi\cos(3\omega'+148^{\circ}20')$ + 0.000584 $\rho^{-6}\cos^{4}\phi\cos(4\omega'+248^{\circ}19')$ where ϕ is the geocentric latitude, ω the geographical longitude, and ρ a factor, varying with the latitude, such that the radius of the earth at latitude ϕ is $a\rho$ where a is the equa-

torial radius of the earth.

- I Laplace: "Traité de Mécanique Céleste," T. 2, livre 3, chap. 5, sect. 42.
- 2 Mathieu: "Sur les expériences du pendule;" in "Connaissance des Temps 1816,"
- Additions, pp. 314-341, p. 332. 3 Biot et Arago: "Recueil d'Observations géodésiques, etc." Paris, 1821, p. 575.
- Sabine: "An Account of Experiments to determine the Figure of the Earth, etc., by Sir Edward Sabine." London, 1825, p. 352.
- Saigey: "Comparaison des Observations du pendule à diverses latitudes; faites par MM. Biot, Kater, Sabine, de Freycinet, et Duperry; "in "Bulletin des Sciences Mathé-
- MM. Biot, Kater, Sabine, de Freycinet, et Duperry; "in "Bulletin des Sciences Mathematiques, etc.," T. I, pp. 31-43, and 171-184. Paris, 1827.

 6 Pontécoulant: "Théorie analytique du Système du monde," Paris, 1829, T. 2, p. 466.

 7 Airy: "Figure of the Earth;" in "Encyc. Met." 2d Div. vol. 3, p. 230.

 8 Poisson: "Traité de Mécanique," T. 1, p. 377; "Connaissance des Temps," 1834,

 pp. 32-33; and Puissant: "Traité de géodésie," T. 2, p. 464.

 9 Unferdinger: "Das Pendel als geodätisches Instrument;" in Grunert's "Archiv,"
- 1869, p. 316.

 10 Fischer: "Die Gestalt der Erde und die Pendelmessungen;" in "Ast. Nach." 1876,
- 11 Helmert: "Die mathematischen und physikalischen Theorieen der höheren Geodäsie, von Dr. F. R. Helmert," II. Theil. Leipzig, 1884, p. 241.
 - 12 Harkness.
- 13 Hill, Astronomical paper prepared for the use of the "American Ephemeris and Nautical Almanac," vol. 3, p. 339.

^{*} The data here given with regard to the different determinations which have been made of the length of the seconds pendulum are quoted from Harkness (Solar Parallax and its Related Constants, Washington, 1891).

† Calculated from a logarithmic expression given by Unferdinger.

MISCELLANEOUS DATA WITH RECARD TO THE EARTH AND PLANETS.*

Acceleration produced by gravity per second per second mean solar time . $= g = 32.086528 + 0.171293 \sin^2 \phi \text{ feet.}$ $= 977.9886 + 5.2210 \sin^2 \phi \text{ centimetres.}$

Equatorial semidiameter = $a = 20925293 \pm 409.4$ feet. = 3963.124 ± 0.078 miles. = 6377972 ± 124.8 metres.

Polar semidiameter = b = 20855590 \pm 325.1 feet. = 3949.922 \pm 0.062 miles. = 6356727 \pm 99.09 metres.

One earth quadrant = 393775819 ± 4927 inches. = 32814652 ± 410.6 feet. = 6214.896 ± 0.078 miles. = 10001816 ± 125.1 metres.

Flattening $=\frac{a-b}{a} = \frac{1}{300.205 \pm 2.964}$

Eccentricity = $\frac{a^2 - b^2}{a^2}$ = 0.006651018.

Difference between geographical and geocentric latitude = $\phi - \phi'$ = 688.2242" sin 2 $\phi - 1.1482$ " sin 4 $\phi + 0.0026$ " sin 6 ϕ .

Mean density of the Earth = 5.576 ± 0.016 .

Surface density of the Earth = 2.56 + 0.16.

Moments of inertia of the Earth; the principal moments being taken as A, B, and C, and C the greater:

 $\frac{C-A}{C} = 0.00326521 = \frac{1}{306.259};$ $C-A = 0.001064767 Ea^{2};$ $A = B = 0.325029 Ea^{2};$ $C = 0.326094 Ea^{2};$

where E is the mass of the Earth and a its equatorial semidiameter.

Length of sidereal year = 365.2563578 mean solar days; = 365 days 6 hours 9 minutes 9.314 seconds.

Length of tropical year

= $365.242199870 - 0.0000062124 \frac{t - 1850}{100}$ mean solar days; = 365 days 5 hours 48 minutes $\left(46.069 - 0.53675 \frac{t - 1850}{100}\right)$ seconds.

Length of sidereal month

= 27.321661162 - 0.00000026240 $\frac{t - 1800}{100}$ days; = 27 days 7 hours 43 minutes $\left(11.524 - 0.022671 \frac{t - 1800}{100}\right)$ seconds.

Length of synodical month

= 29.530588435 - 0.00000030696 $\frac{t - 1800}{100}$ days; = 29 days 12 hours 44 minutes $\left(2.841 - 0.026522 \frac{t - 1800}{100}\right)$ seconds.

Length of sidereal day = 86164.09965 mean solar seconds.

N. B. — The factor containing t in the above equations (the epoch at which the values of the quantities are required) may in all ordinary cases be neglected.

MISCELLANEOUS DATA WITH RECARD TO THE EARTH AND PLANETS.

MASSES OF THE PLANETS.

Reciprocals of the masses of the planets relative to the Sun and of the mass of the Moon relative to the Earth:

Mercury = 8374672 ± 1765762 . Venus = 408968 ± 1874 . Earth* = 327214 ± 624 . Mars = 3093500 ± 3295 . Jupiter = 1047.55 ± 0.20 . Saturn = 3501.6 ± 0.78 . Uranus = 22600 ± 36 . Neptune = 18780 ± 300 . Moon = 81.068 ± 0.238 .

Mean distance from Earth to Sun = 92796950 ± 59715 miles; = 149340870 ± 96101 kilometres.

Eccentricity of Earth's orbit = e_1 = 0.016771049 — 0.0000004245 (t – 1850) — 0.00000001367 ($\frac{t-180}{100}$)²

Solar parallax = $8.80905'' \pm 0.00567''$.

Lunar parallax = $3422.54216'' \pm 0.12533''$.

Mean distance from Earth to Moon = 60.269315 ± 0.002502 terrestrial radii; = 238854.75 ± 9.916 miles; = 384396.01 ± 15.958 kilometres.

Lunar inequality of the Earth = $L = 6.52294'' \pm 0.01854''$.

Parallactic inequality of the Moon = $Q = 124.95126'' \pm 0.08197''$.

Mean motion of Moon's node in 365.25 days = $\mu = -19^{\circ} 21' 19.6191'' + 0.14136'' \frac{t - 1800}{100}$

Eccentricity and inclination of the Moon's orbit = e_2 = 0.054899720.

Delaunay's $\gamma = \sin \frac{1}{2} I = 0.044886793$. $I = 5^{\circ} 08' 43.3546''$.

Constant of nutation = $9.22054'' \pm 0.00859'' + 0.00000904'' (t - 1850)$.

Constant of aberration = $20.45451'' \pm 0.01258''$.

Time taken by light to traverse the mean radius of the Earth's orbit = 498.00595 \(\psi \) 0.30834 seconds.

Velocity of light = 186337.00 ± 49.722 miles per second. = 299877.64 ± 80.019 kilometres per second.

* Earth + Moon.

AERODYNAMICS.

The pressure on a plane surface normal to the wind is for ordinary wind velocities expressed by $P = kwav^2$

where k is a constant depending on the units employed, w the mass of unit volume of the air, a the area of the surface and v the velocity of the wind.* Engineers generally use the table of values of P given by Smeaton in 1759. This table was calculated from the formula

$$P = .00492 v^2$$

and gives the pressure in pounds per square foot when v is expressed in miles per hour. The corresponding formula when v is expressed in feet per second is

$$P = .00228 v^2$$
.

Later determinations do not agree well together, but give on the average somewhat lower values for the coefficient. The value of w depends, of course, on the temperature and the barometric pressure. Langley's † experiments give kw = .00166 at ordinary barometric pressure and 10° C. temperature.

For planes inclined at an angle α less than 90° to the direction of the wind the pressure may be expressed as $P_{\alpha} = F_{\alpha} P_{90}$.

Table 118, founded on the experiments of Langley, gives the value of F_{α} for different values of α . The word aspect, in the headings, is used by him to define the position of the plane relative to the direction of motion. The numerical value of the aspect is the ratio of the linear dimension transverse to the direction of motion to the linear dimension, a vertical plane through which is parallel to the direction of motion.

TABLE 118. — Values of P_a in Equation $P_a = P_a P_{90}$.

	in. × 4.8 in. 6 (nearly).		in. X 12 in.		in. × 24 in. ect 1.
α	Fa	а	F_a	a	F_a
0° 5 10 15 20 25 30 35 40 45	0.00 0.28 0.44 0.55 0.62 0.66 0.69 0.72 0.74 0.76	0° 5 10 15 20 25 30 35 40 45	0.00 0.15 0.30 0.44 0.57 0.69 0.78 0.84 0.88	0° 5 10 15 20 25 3°	0.00 0.07 0.17 0.29 0.43 0.58 0.71

^{*} The pressure on a spherical surface is approximately 0.36 that on a plane circular surface of the same diameter as the sphere; on a cylindrical surface with axis normal to the wind, about 0.5 that on a rectangular surface of length equal to the length, and breadth equal to the diameter of the cylinder.

[†] The data here given on Professor Langley's authority were communicated by him to the author.

AERODYNAMICS.

On the basis of the results given in Table, 118 Langley states the following condition for the soaring of an aeroplane 76.2 centimetres long and 12.2 centimetres broad, weighing 500 grammes,—that is, a plane one square foot in area, weighing 1.1 pounds. It is supposed to soar in a horizontal direction, with aspect 6.

TABLE 119. - Data for the Soaring of Planes 76.2 × 12.2 cms. weighing 500 Grammes, Aspect 6.

Inclination to the horizontal a.	Metres per sec. 20.0 66 15.2 50 12.4 41 11.2 37		ded per minute ivity).	Weight of planes of like form, capable of soaring at speed v with the expenditure of one horse power.			
2° 5 10 15 30 45	20.0 15.2 12.4 11.2	sec. 66 50 41	Kilogramme metres. 24 41 65 86 175 336	Foot pounds. 174 297 474 623 1268 2434	95.0 55.5 34.8 26.5 13.0 6.8	209 122 77 58 29 15	

In general, if
$$\rho = \frac{\text{weight}}{\text{area}}$$
Soaring speed $v = \sqrt{\frac{\rho}{k} \frac{I}{F_a \cos a}}$
Activity per unit of weight $= v \tan a$

The following data for curved surfaces are due to Wellner (Zeits. für Luftschifffahrt, x., Oct. 1893).

Let the surface be so curved that its intersection with a vertical plane parallel to the line of motion is a parabola whose height is about $\frac{1}{12}$ the subtending chord, and let the surface be bounded by an elliptic outline symmetrical with the line of motion. Also, let the angle of inclination of the chord of the surface be α , and the angle between the direction of resultant air pressure and the normal to the direction of motion be β . Then $\beta < \alpha$, and the soaring speed is

$$v = \sqrt{\frac{1}{k \cdot \mathcal{F}_{\alpha} \cos \beta}}$$
, while the activity per unit of weight $= v \tan \beta$.

The following series of values were obtained from experiments on moving trains and in the wind.

Angle of inclination
$$\alpha = -3^{\circ}$$
 0° $+3^{\circ}$ 6° 9° 12° Inclination factor $F_{\alpha} = 0.20$ 0.50 0.75 0.90 1.00 1.05 tan $\beta = 0.01$ 0.02 0.03 0.04 0.10 0.17

Thus a curved surface shows finite soaring speeds when the angle of inclination α is zero or even slightly negative. Above $\alpha = 12^{\circ}$ curved surfaces rapidly lose any advantage they may have for small inclinations.

TABLE 120. - Total Intensity of the Terrestrial Magnetic Field.

This table gives in the top line the total intensity of the terrestrial magnetic field for the longitudes given in the first column and the latitudes given in the body of the table. Under the headings 13, 13.5, and 13.75 there are sometimes several entries for one longitude. This indicates that these lines of total force cut the same longitude line more than once. The isodynamic lines are peculiarly curved and looped north of Lake Ontario. The values are for the epoch January 1, 1885, and the intensities are in British and C. G. S. units.

Longi- tude.	10.5 or .4841	11.0 or .5072	11.5 or .5302	12.0 or •5533	12.5 or .5764	13.0 or .5994			13.5 01	.6225		13.75	or .6340
67 68 70 72 75	- - -	°	- - - -	- - - -	- - - -	44.5 43.1 41.9 40.6 36.7	45.5 48.2 - -	- - - -			- - - -	- - - -	- - -
76 77 78 80 81		- 22.6 22.8 22.8	- 24.5 24.5 24.5	- - 27.9 27.1	- - 31.2 31.2	36.4 36.0 34.1 35.1 35.5		44.7 43.6 43.3 43.9 41.4	45.4 45.2 44.6 41.9	- - - 44·3	- - - 45.8	11311	
82 83 85 86 87	- 19.6 19.8 20.0	22.8 22.7 22.2 22.3 22.5	24.6 24.8 25.0 –	26.4 26.6 27.9 28.3 28.6	31.2 30.8 30.6 30.4	35·5 35·2 34·4 35·3 35·5	11111	41.2 41.0 40.8 41.1 41.9	42.1 46.2 47.6 48.0 48.4	43.6	45.8	- 45.5 45.2 43.2	- 46.1 47.4 47.7
90 92 95 100 105	20.1 20.1 20.0 20.0 21.7	22.5 22.3 22.3 22.8 24.4	-	29.9 29.3 28.3 30.0 33.1	31.9 33.3 33.1 34.1 36.1	36.6 37.4 37.2 39.0 39.8		41.6 41.7 41.2 41.4 43.6	49.1 50.2 - -			43.2 44.7 43.7 42.7 44.8	48.2 48.2 - -
110 115 120 124	23.2	26.9 29.1 30.7	31.2 31.8 34.7	34·4 36.2 37.8 39.6	37·7 40·1 42·3 44·2	41.6 44.5 46.4		45.2	= = = = = = = = = = = = = = = = = = = =	-	-	47.0 - - -	

TABLE 121. - Secular Variation of the Total Intensity.

Values in British units of total intensity of terrestrial magnetic force at stations given in the first column and epochs

January 1 of the years given in the top line.

Station.	1840	1845	1850	1855	1860	1865	1870	1875	1880	1885
Cambridge	13.48	13.33	13.21	13.22	13.37	13.45	13.49	13.39	13.14	12.79
New Haven .	13.47	13.40	13.25	13.11	13.20	13.33	13.41	13.41	13.29	13.05
New York .	13.56	13.51	13.39	13.27	13.32	13.36	13.36	13.31	13.19	12.99
Sandy Hook .	13.70	13.59	13.36	13.17	13.23	13.35	13.40	13.39	13.30	13.13
Albany	13.68	13.65	13.72	13.80	13.87	13.93	13.92	13.82	13.61	13.27
Philadelphia . Baltimore Washington . Toronto Cleveland .	13.52	13.44	13.45	13.47	13.51	13.55	13.58	13.57	13.49	13.25
	13.56	13.45	13.38	13.37	13.44	13.46	13.48	13.48	13.38	13.22
	13.43	13.36	13.31	13.34	13.39	13.42	13.42	13.38	13.29	13.20
	14.03	13.93	13.95	13.91	13.82	13.82	13.77	13.78	13.78	13.76
	13.85	13.78	13.76	12.75	13.78	13.83	13.84	13.78	13.74	13.61

^{*} Tables 120-125 have been compiled from a very full discussion of the magnetic dip and intensity for the United States and adjacent countries, given in Appendix 6 of the Report of the United States Coast and Geodetic Survey for 1885. Later Reports of the survey have been consulted, particularly in connection with the extrapolation of the values of horizontal intensity to 1890 and 1895, but most of the data are taken from Mr. Schott's Appendix to the 1885 Report.

TABLE 122. - Values of the Magnetic Dip.

This table gives for the epoch January 1, 1885, the values of the magnetic dip, stated in first column, corresponding to the longitudes given in the top line and the latitudes given in the body of the table. Thus, for longitude 95° and latitude 30° the dip was 59° on January 1, 1885. The longitudes are west of Greenwich. For positions above the division line in the table the dip was increasing, and for positions below that line decreasing, in 1885.

D.					Lo	ngitudes	west of	Greenw	rich.				
Dip.	66°	700	75°	80°	85°	900	95°	1000	105°	1100	1150	1200	1240
0	0	J	0	0	0	0	0	0	0	0	0	0	0
44	-	-	-	-	-	17.9	18.4	19.1	19.6	-	-	-	-
45	- 1	-	_	-	- 1	18.7	19.2	19.8	20.3	_	-	-	_
6	-	_	-	-	-	19.2	19.8	20.6	21.1	-	-	-	-
7 8		_	17.9		_	20.0	20.5	2I.2 2I.0	21.8	-	-	_	-
9	_	_	18.7	_	_	21.2	21.9	22.6	23.2	23.3	_	_	_
50	_	_		_	21.4	22.1	22.7	23.5	24.1	24.7		_	_
I	_	_	-	-	22.2	22.8	23.6	24.3	24.8	25.5	_	_	_
2	-	_	-	22.4	23.0	23.7	24.4	25.1	25.6	26.3	27.4	-	-
3	-	_	-	23.3	23.9	24.5	25.2	25.9	26.5	27.I	28.2	-	-
. 4	_	_	_	24.0	24.7	25.3	26.0	26.7	27.2	28.1	29.0	-	-
55	_	_	24.7	24.8 25.6	25.5 26.3	26.1 26.0	26.8	27.5 28.1	28.1 28.0	28.9	29.9 30.6	_	_
	_	_	-4.7	26.4	27.I	27.7	28.3	28.0	29.7	30.6	31.4	_	
7 8	_	-	-	27.3	27.9	28.5	29.1	29.8	30.5	31.4	32.3	-	_
9	-	_	-	28.0	28.7	29.4	30.0	30.6	31.5	32.4	33.3	34-4	-
60	-		-	28.6	29.6	30.2	30.8	31.5	32.4	33.4	34.3	35-3	-
I	-	-	-	29.9	30.3	30.9	31.7	32.4	33.3	34.2	35.3	.36.2	-
2	-	-	-	30.6	31.3	31.9	32.5	33.3	34.3	35.2	36.3	37.1	-
3	_	_	_	31.6	32.0	32.7	33.6	34.2	35.2	36.2	37.I 38.I	38.1	39.0
65					33.2	33.6	34.5	35.2	36.1	37.2		39.0	40.3
6		_	_	33·5 34·3	34.0	34.6 35.8	35·5 36.5	37.2	37.I 38.I	39.2	39.2	40.3	41.5
7	_	_	35.1	35.3	35.9	36.6	37.2	38.2	39.1	40.2	41.4	42.5	43.6
8	-	-	35.8	36.0	36.6	37.5	38.2	39.2	40.0	41.2	42.4	43.6	44.7
9	-	_	37.0	37.5	37.6	38.5	39.2	40.0	41.2	42.2	43.5	44.6	45-7
70	-	-	38.0	38.5	39.0	39.6	40.4	41.0	42.I	43.3	44.5	45.6	46.9
I 2		_	39. I 40.4	39.5	39.8	40.7	4I.I 42.I	41.8	43.2	44.3	45·7 47·I	47.2	47.9
3	_	41.7	41.2	41.9	42.2	42.7	43.4	44.4	45.5	46.9	48.6	50.0	-
4	43.5	43.1	42.9	43.1	43.4	43.9	44.5	45.6	46.7	48.3	49.7	-	-
75	44.9	44.5	44.3	44.0	44.5	45.0	45.7	46.7	48.0	49.5	51.0	-	-
6	45.7	45.9	45.5	45.4	45.5	46.1	47.1	48.2	49.5	50.7	****	-	-
7 8	47.3	47.6	46.7	46.9	47.0	47·4 48.8	48.3	49.4	50.6	_		_	_
9	_	_	-	49.3	49.3	-	51.0	51.9	-	_	-	_	_
80	-	-	+	50.4	50.4	-	_	-	-	_	-	-	-
											1		

TABLE 123. - Secular Variation of the Magnetic Dip.

Values of magnetic dip at stations given in the first column, and epochs, January 1, of the years given in the top line.

Station.	1840	1845	1850	1855	1860	1865	1870	1875	1880	1885
Cambridge New Haven New York Sandy Hook Albany Philadelphia Baltimore Washington Toronto Cleveland Detroit	74-25 73-47 72-75 72-63 74-75 71.99 71.74 71.39 75-28 73-22 73-61	74.29 73.51 72.73 72.61 74.80 72.02 71.66 71.39 75.25 73.19 73.61	74-35 73-56 72-75 72-63 74-88 72-08 71-66 71-38 75-32 73-21 73-63	74.40 73.61 72.78 72.66 74.96 72.15 71.69 71.36 75.39 73.24 73.66	74.42 73.64 72.80 72.68 75.02 72.20 71.74 71.32 75.41 73.28 73.68	74.38 73.62 72.78 72.66 75.02 72.21 71.77 71.25 75.35 73.29 73.69	74.26 73.54 72.71 72.59 .74.95 72.16 71.76 71.15 75.27 73.27 73.67	74.02 73.38 72.56 72.44 74.77 72.02 71.60 75.20 73.18 73.60	73.65 73.11 72.31 72.19 74.46 71.48 70.80 75.03 73.03 73.47	73.12 72.72 71.93 71.81 73.99 71.38 71.16 70.55 74.88 72.78 73.28

TABLE 124. - Horizontal Intensity.

This table gives, for the epoch January 1, 1885, the horizontal intensity, H, corresponding to the longitudes in the top line and the latitudes in the body of the table. At epoch 1885 the force was increasing for positions above the division line, and was decreasing for positions below the division line.

Н					Long	itudes	west of	Greenv	wich.					Н
in British units.	65°	70°	75°	80°	850	900	95.º	1000	105°	1100	1150	1200	1240	in C.G.S. units.
2.50 2.75 3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.00 5.25 5.50 5.75 6.00 6.25 6.50 6.75	48.3 45.5 43.2 - - - -	9 47·3 45·6 43·8 42·2 40·7 — — — — — — — — — — — — — — — — — — —	75 	48.5 47.2 45.8 44.0 42.6 41.5 40.2 38.7 37.4 35.8 34.6 31.0 28.8	49.8 48.8 47.6 46.1 44.6 43.2 42.1 40.4 39.2 37.6 33.8 33.8 33.2 30.6 29.2 27.3	49.8 48.5 46.7 45.1 43.6 42.4 41.0 39.7 38.4 36.9 35.4 33.2.1 30.3 28.1 27.3	95. 	50.1 48.5 47.2 45.8 44.6 41.6 39.9 38.5 37.0 33.3 33.6 31.6 29.9 28.0	47·3 45·7 44·2 42.8 41·0 39·3 38·0 33·3 34·7 31·9	48.4 46.8 45.4 43.8 42.0 40.3 37.7 34.8 32.3	49-4 47-7 46-3 44-6 42-8 41.1 39-2 35-2 33-1 31.1 28-6	0	49.6 47.6 45.7 44.2 42.6 39.8 37.4	.1153 .1268 .1383 .1498 .1614 .1729 .1844 .1959 .2075 .2190 .2305 .2422 .2536 .2651 .2766 .2881 .2997 .3112
7.00 7.25	-	1 1	18.2	20.8	22.1	19.5	19.9	23.0	23.2	24.0	-	-	_	.3228

TABLE 125. - Secular Variation of the Horizontal Intensity.

Values of the horizontal intensity, H, in British units, for stations given in first column and epochs given in top line.

The values for 1890 and 1895 have been extrapolated from the values up to 1885. The epochs are for January 1 of the different years given.

Station.	1840	1845	1850	1855	1860	1865	1870	1875	1880	1885	1890	1895
Cambridge New Haven	3.66 3.83 4.02 4.09 3.60 4.18 4.25 4.28 3.56 4.00	3.61 3.80 4.01 4.06 3.58 4.15 4.23 4.26 3.54 3.98	3.56 3.75 3.97 3.99 3.58 4.14 4.21 4.25 3.53 3.97	3.55 3.70 3.93 3.92 3.58 4.13 4.20 4.26 3.51 3.96	3.59 3.72 3.94 3.94 3.58 4.13 4.21 4.29 3.48 3.96	3.62 3.76 3.95 3.98 3.60 4.14 4.21 4.31 3.49 3.97	3.66 3.80 3.97 4.01 3.61 4.16 4.22 4.33 3.50 3.98	3.68 3.83 3.99 4.04 3.63 4.19 4.24 4.35 4.52 3.99	3.70 3.86 4.01 4.07 3.64 4.22 4.25 4.37 3.56 4.01	3.71 3.87 4.03 4.10 3.66 4.23 4.27 4.39 3.58 4.03	3.73 3.87 4.05 4.13 3.67 4.24 4.28 4.41 4.60 4.05	3.74 3.86 4.07 4.16 3.69 4.24 4.30 4.42 4.61 4.07
Detroit San Diego Santa Barbara	3.91 6.12 5.87 5.63 5.49	3.89 6.19 5.93 5.71 5.54 4.51	3.86 6.22 5.94 5.75 5.56 4-55	3.85 6.25 5.95 5.77 5.57 4.56	3.85 6.26 5.96 5.76 5.59 4.58	3.86 6.24 5.95 5.75 5.59 4.58	3.87 6.20 5.94 5.72 5.58 4.57	3.89 6.15 5.92 5.69 5.54 4.56	3.90 6.10 5.88 5.66 5.51 4.54	3.92 6.07 5.84 5.65 5.49 4.53	3.93 6.04 5.80 5.64 5.47 4.52	3.94 6.03 5.77 5.63 5.45 4.52

Secular Variation of Declination in the Form of a Function of the Time for a Number of Stations.

More extended tables will be found in App. 7 of the United States Coast and Geodetic Survey Report for 1888, from which this table has been compiled. The variable m is reckoned from the epoch 1850 and thus = t - 1850.

which this table has been compiled. The variable m is reckoned from the epoch 1850 and thus $= t - 1850$.											
Station.	Latitude.	West longitude.	The magnetic declination (D) expressed as a function of time.								
	(a) Eastern S	Series of St	ations.								
St. Johns, N. F Quebec, Canada	47 34.4 46 48.4	52 41.9 71 14.5	$\begin{array}{c} \circ \\ 21.93 + 8.89 \sin (1.05 m + 63.4) * \\ 14.66 + 3.03 \sin (1.4 m + 4.6) \end{array}$								
Charlottetown, P. E. I Montreal, Canada	46 14.0	63 27.0 73 34.6	+ 0.6i sin $(4.0 m + 0.3)$ 15.95 + 7.78 sin $(1.2 m + 49.8)$ 11.88 + 4.17 sin $(1.5 m - 18.5)$ + 0.36 sin $(4.9 m + 19.6)$								
Bangor, Me	44 82.2 44 39.6 42 39 2	68 46.9 63 35.3 73 45.8	$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
Cambridge, Mass	42 22.9	71 07.7	$\begin{array}{c} 9.54 + 2.69 \sin \left(1.30 m + 7.0\right) \\ + 0.18 \sin \left(3.20 m + 44.0\right) \\ 7.78 + 3.11 \sin \left(1.40 m - 22.1\right) \end{array}$								
New York, N. Y	. 40 42.7 . 40 15.9 . 39 56.9	74 00.4 70 52.6 75 09.0	7.04 + 2.77 sin (1.30 m - 18.1) + 0.14 sin (6.30 m + 64.0) 2.93 + 2.98 sin (1.50 m + 0.2) 5.36 + 3.17 sin (1.50 m - 26.1)								
Washington, D. C	. 38 53.3	77 00.6	+ 0.19 sin $(4.00 m + 14.6)$ 2.73 + 2.57 sin $(1.45 m - 21.6)$ + 0.14 sin $(12.00 m + 27)$								
Cape Henry, Va	36 55.6	76 00.4 70 55.8	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
Paris, France	. 48 50.2	† 2 20.2	$\begin{array}{l} 6.479 + 16.002 \sin \left(0.765 m + 118.77 \right) \\ + \left[0.85 - 0.35 \sin \left(0.69 n \right) \right] \sin \left[(4.04 + 0.0054 n + .00035 n^2) n \right] t \end{array}$								
St. George's Town, Bermuda Rio de Janeiro, Brazil	32 23.0	64 42.0 43 09.5	$\begin{array}{c} 6.95 + 0.0145 m + 0.00056 m^2 * \\ 2.19 + 9.91 \sin \left(0.80 m - 10.4 \right) * \end{array}$								
	(b) Central S	eries of St	ations.								
York Factory, B. N. A Fort Albany, B. N. A Sault Ste Marie, Mich Toronto, Canada	. 56 59.9 . 52 22.0 . 46 29.9 . 43 39.4	92 26.0 82 38.0 84 20.1 79 23.5	7.34 + 16.03 sin (1.10 m - 97.9) 15.78 + 6.95 sin (1.20 m - 99.6)* 1.54 + 2.70 sin (1.45 m - 58.5) 3.60 + 2.82 sin (1.40 m - 44.7) + 0.09 sin (9.30 m + 136)								
Chicago, Ill	. 41 50.0 . 41 30.4 . 39 45.3	87 36.8 81 41.5 104 59.5	+ 0.08 sin (19.00 m + 247) - 3.77 + 2.48 sin (1.45 m - 62.5) 0.47 + 2.39 sin (1.30 m - 14.8) - 15.30 + 0.011 m + 0.0005 m^2								
Athens, Ohio Cincinnati, Ohio St. Louis, Mo. New Orleans, La.	. 39 19.0 . 39 08.4 . 38 38.0 . 29 52.2	82 02.0 84 25.3 90 12.2	$ \begin{array}{l} -1.51 + 2.63 \sin \left(1.40 m - 24.7 \right) \\ -2.59 + 2.43 \sin \left(1.42 m - 37.9 \right) \\ -5.91 + 3.00 \sin \left(1.40 m - 51.1 \right) * \\ -5.20 + 2.98 \sin \left(1.40 m - 69.8 \right) \end{array} $								
Key West, Fla Kingston, Port Royal, Jamaic	. 24 33.5	90 03.9 81 48.5 76 50.6	$-4.31 + 2.86 \sin (1.30 m - 23.9)$								
(b) Stations on the Pacific Coast, etc.											
City of Mexico, Mex. Cerros Island, Lower Cal., M San Francisco, Cal. Vancouver, Wash. Sitka, Alaska Petropavlovsk, Siberia	. 19 26.0 ex. 28 04.0 . 37 47.5 . 45 37.5 . 57 02.9 . 60 20.7 . 53 01.0	99 11.6 115 12.0 122 27.3 122 39.7 135 19.7 146 37.6 †158 43.0	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$								

^{*} Approximate expression. † East longitude. ‡ Compiled from a series of observations extending back to 1541. The primary wave follows the sum of the constant and first periodic term closely. The period seems to be about 470 years. In the expression for the secondary wave $n = \ell - 1700$.

Secular Variation of the Declination. - Eastern Stations.*

		1		1			1		1		1
Station.	1800	1810	1820	1830	1840	1850	1860	1870	1880	1890	1900
St. Johns, N. F Quebec, Canada Charlottetown,	23.5 12.1	25.0 12.1	26.5 12.3	28.0 12.9	o 29.0 13.8	o 29.9 14.9	35.0 16.0	30.8 16.9	30.8 17.4	30.5 17.5	29.9 17.5
P. E. I	8.0 13.2	7.8 14.0	7.9 14.8	19.3 8.4 15.6	20.7 9.4 16.4	21.9 10.7 17.1	22.8 12.0 17.8	23.4 13.0 18.3	23.7 13.8 18.7	23.7 14.4 18.9	23.3 15.0 19.0
Bangor, Me Halifax, N. S Burlington, Vt Hanover, N. H Portland, Me	10.9 15.9 7.3 5.8 8.5	11.4 16.7 7.2 6.0 8.9	12.1 17.4 7.5 6.5 9.5	12.8 18.2 8.1 7.2 10.1	13.6 18.9 8.9 7.9 10.8	14.4 19.4 9.7 8.8 11.6	15.2 19.9 10.3 9.8 12.3	15.9 20.3 11.0 10.8 13.0	16.5 20.6 11.9 11.7 13.6	16.9 20.7 12.8 12.5 14.1	17.3 20.7 13.5 13.1 14.4
Rutland, Vt Portsmouth, N. H Chesterfield, N. H Newburyport, Mass. Williamstown, Mass.	6.3 7.4 - 7.3 5.7	6.2 7.7 6.0 7.6 5.9	6.5 8.1 6.4 8.1 6.3	6.9 8.7 7.0 8.6 6.8	7.6 9.5 7.7 9.3 7.4	8.5 10.3 8.5 10.0 8.1	9.4 11.1 9.4 10.7 8.8	10.4 11.9 10.3 11.4 9.6	11.3 12.7 11.2 12.0 10.3	12.3 13.3 12.0 12.5 10.9	13.0 13.7 12.6 12.8 11.4
Albany, N. Y Salem, Mass Oxford, N. Y Cambridge, Mass Boston, Mass	6.3 3.0 7.1 6.9	5.4 6.6 3.1 7.5 7.3	5.8 7.2 3.4 8.0 7.8	6.3 7.9 3.9 8.6 8.4	7.0 8.7 4.5 9.3 9.0	7·7 9.6 5.1 10.0 9·7	8.5 10.6 5.9 10.6 10.3	9.2 11.5 6.6 11.2 10.9	9.9 12.3 7.4 11.6 11.5	10.5 13.0 8.0 11.9	10.9 13.5 8.6 12.0 12.2
Provincetown, Mass. Providence, R. I Hartford, Conn New Haven, Conn Nantucket, Mass	7.2 6.5 5.2 4.7 6.8	7.7 6.5 5.2 4.7 7.2	8.2 6.7 5.5 5.0 7.7	8.9 7·3 5.8 5·4 8.7	9.6 8.2 6.2 5.9 9.0	10.2 9.2 6.8 6.6 9.6	10.9 9.8 7·4 7·3 10.1	11.5 10.2 8.0 8.1 10.6	12.0 10.8 8.6 8.8 11.0	12.4 11.6 9.2 9.5 11.3	12.6 12.1 9.8 10.1 11.5
Cold Spring Harbor, N. Y New York, N. Y Bethlehem, Pa Huntingdon, Pa New Brunswick,	4·7 4·3 2.6 1.0	4.9 4.5 2.3 0.8	5.2 4.6 2.3 0.9	5.6 5.0 2.5 1.1	6.1 5.6 2.9 1.5	6.7 6.3 3.5 2.1	7·3 6.9 4·2 2·7	7·9 7·4 5·0 3·5	8.4 7.9 5.8 4.2	8.9 8.5 6.7 4.9	9·3 9·1 7·4 5.6
N. J	2.5	2.9	3.4	4.0	4.7	5.3	6.0	6.6	7.1	7.5	7.9
Jamesburg, N. J Harrisburg, Pa Hatboro, Pa Philadelphia, Pa Chambersburg, Pa	3.I 0.0 1.8 2.I —0.3	3.1 0.3 2.0 2.2 —0.5	3·4 0.8 2·5 2·4 —0·3	3.8 1.4 3.0 2.9 0.2	4·3 2.2 3·7 3·4 0.7	4.9 2.9 4.3 4.1 1.4	5.6 3.7 5.0 4.7 2.0	6.3 4.4 5.7 5.4 2.7	7.0 5.0 6.7 6.2 3.4	7.6 5.5 7.6 7.0 4.2	8.2 5.8 8.0 7.7 5.0
Baltimore, Md Washington, D. C Cape Henlopen, Del. Williamsburg, Va Cape Henry, Va	0.6 0.2 0.8 —0.2 0.2	0.7 0.2 0.9 0.3 0.2	0.9 0.4 1.1 —0.2 0.2	1.2 0.7 1.5 0.0 0.5	1.7 1.1 2.0 0.4 0.8	2.3 1.8 2.6 0.9 1.3	2.9 2.5 2.4 1.5 1.8	3·5 2·9 4·1 2·1 2·4	4.2 3.7 4.9 2.7 2.9	4·7 4·3 5·6 3·3 3·5	5.2 4.6 6.2 3.9 3.9
New Berne, N. C Milledgeville, Ga Charleston, S. C Savannah, Ga Paris, France	-1.9 -5.0 -4.5 -22.6	-1.9 -5.3 -4.4 -4.7 22.3	-1.6 -5.6 -4.0 -4.7 21.9	-1.2 -5.6 -3.6 -4.5 21.8	-0.7 -5.5 -3.0 -4.2 21.8	-0.2 -5.3 -2.4 -3.8 20.9	0.5 -5.0 -1.7 -3.3 19.1	1.1 -4.5 -1.1 -2.7 17.5	1.7 -4.0 -0.4 -2.1 16.6	2.3 -3.4 0.1 -1.4 15.1	2.7 —2.7 0.5 —0.9
St. George's Town, B. I. Rio de Janeiro, Bra- zil	-5.4	- -4·5	- -3·4	6.9	6.9	6.9	7.1	7·5	.7.9	8.4	
	3.4	7.3	3.4	3.2	0.9	5.4	1.0	3.1	4.2	3.0	

^{*} This table gives the secular variation of the declination since the year 1800 for a series of stations in the Eastern States and adjacent countries. Compiled from a paper by Mr. Schott, forming App. 7, Report of the United States Coast and Geodetic Survey for 1888. The minus sign indicates eastern declination.

Secular Variation of the Declination. - Central Stations.*

Station.	1800	1810	1820	1830	1840	1850	1860	1870	1880	1890	1900
York Factory, Brit. N. A	1.0	-2.5	-4.7	-6.5	-7.8	-8.5	-8.6	-8.2	-7.2	— 5.6	-3.6
N. A Duluth, Minn Superior City, Wis.	13.4	12.1	10.9	10.0	9.3		8.8 —10.0	9.1 —10.1	9.6 —10.1	10.3 9.9	11.4 -9.5
Sault Ste. Marie, Mich	-0.5	-0.9	-1.1	-1.6	—1.0	-0.8	-0.3	0.2	0.8	1.5	2.2
Pierrepont Manor, N. Y. Toronto, Canada Grand Haven, Mich. Milwaukee, Wis. Buffalo, N. Y.	- - - - 0.2	- - - - 0.2	2.6 - -5.0 - 0.4	0.8 -5.2	-5.2	1.6 -4.9 -7.4	5.4 2.2 -4.4 -6.9 2.8	-6.2	7.2 3.6 —2.7 —5.4 4.5	8.0 4.1 —1.5 —4.5 5.3	8.8 4.8 - -3.6 6.0
Detroit, Mich Ypsilanti, Mich Erie, Pa Chicago, Ill Michigan City, Ind.	-3.2 -0.5	-3.1 -4.1 -0.5	-2.9 -3.6 -0.4 -6.2	-3.0 -0.1	-2.2 0.4 -6.2	-1.4 0.9 -6.0	-0.6 1.6 -5.6	2.3 —5.1		0.6 1.5 3.6 -4.0 -2.9	0.9 1.9 4.2 -3.3 -2.3
Cleveland, Ohio . Omaha, Neb Beaver, Penn Pittsburg, Pa Denver, Colo	-1.9 -1.1 -		<u>—12.6</u>	-1 2.6	-0.6 -12.4 -0.8 0.2	-0.3	0.2	—10.9 0.9 1.9	-10.2 1.5	1.9 -9.5 2.2 3.1 -14.1	2.3 -8.7 2.8 3.5
Marietta, Ohio Athens, Ohio Cincinnati, Ohio . St. Louis, Mo Nashville, Tenn	-4.1 -4.9 -	-2.9 -4.1 -5.0	-3.9	-3.6 -4.8 -8.9		-2.6 -4.1	-2.0 -3.6 -7.7	-1.4 -3.0 -7.1	-0.7 -2.4 -6.4		1.4 0.4 -1.3 -4.9 -3.6
Florence, Ala Mobile, Ala Pensacola, Fla New Orleans, La San Antonio, Texas	- -5.8 -6.8 -7.1	-6.3 -7.2	-6.7 -7.5 -8.0	-7.0 -7.6 -8.1	-6.4 -7.1 -7.4 -8.2 -10.3	-7.0 -7.1 -8.0	-6.7 -6.6 -7.7	-6.4 -6.0 -7.2	-5.8 -5.3 -6.6		-3.8 -4.6 -3.8 -5.2 -8.1
Key West, Fla Havana, Cuba Kingston, Port	- 7.0	_ 6.9								-3.0 -3.0	-2.4 -2.5
Royal, Jamaica . Barbadoes, Car. Isl. Panama, New Gra-	-3.4	-5.8 -3.0	-2.5	2.0	-1.5	-0.9	-0.4	0.1	0.5	0.9	—2.I I.2
nada	-7.9	-7.8	-7.6	-7.3	-7.0	6.7	-6.3	—5.9	− 5·5	-5.0	-4.6

^{*} This table gives the secular variation of the declination since the year 1800 for a series of stations in the Central States and adjacent countries. The minus sign indicates eastern declination. Reference same as Table 127.

SMITHSONIAN TABLES.

Secular Variation of the Declination. - Western Stations.*

	1						,				
Station.	1800	1810	1820	1830	1840	1850	1860	1870	1880	1890	1900
	0	0	0	0	0	0	0	0	0	0	0
Acapulco, Mex	7.6	8.1	8.5	8.7	8.9	8:9	8.7	8.5	8.1	7.6	7.1
Vera Cruz, Mex	8.6	9.0	9.3	9·3 8·5	9.2	8.9	8.4	7.8 8.4	7.0 8.1	6.2 7.8	5.3
San Blas, Mex.	7.1	7.8	8.4	8.9	9.3	9.4	9.4	9.3	9.0	8.5	7.4
Cape San Lucas, Mex	6.2	6.9	7.6	8.3	8.8	9.2	9.5	9.6	9.6	9.4	9.0
Magdalena Bay, L. Cal	6.6	7.4	8.2	8.9	9.5	10.0	10.3	10.5	10.5	10.3	10.0
Ceros Island, Mex	9.0	9.8	10.5	0.11	11.5	11.8	12.0	12.0	11.9	11.6	11.2
El Paso, Mex	-	10.8	-	-	TO 0	12.3	12.5	12.4	12.3	11.9	11.4
Santa Barbara, Cal	10.3	12.3	11.4	11.9	12.3	12.7	13.0	13.2	13.3	13.3	13.2
Monterey, Cal	12.3	12.9	13.4	13.9	14.4	14.0	15.3	16.6	15.0	16.0	16.1
San Francisco, Cal	13.6	14.1	14.5	15.0	15.4	15.8	16.1	16.3	16.5	16.6	16.6
Cape Mendocino	15.1	15.6	16.0	16.5	16.9	17.2	17.4	17.6	17.7	17.7	17.6
Salt Lake City, Utah	- (0	-	-	-0	-	16.0	16.4	16.6	16.6	16.3	15.7
Vancouver, Wash	16.8	17.5	18.2	18.9	19.6	20.2	20.6	20.9	21.0	21.0	20.8
Walla Walla, Wash	_	_	-	_	_	20.4	20.8	21.0	21.1	21.0	20.8
Cape Disappointment,											
Wash	17.7	18.2	18.7	19.2	19.8	20.3	20.8	21.2	21.6	21.8	21.9
Seattle, Duwanish Bay, Wash	_	_			_	21.3	21.8	22.I	22.0	22.2	22.1
Port Townsend, Wash.	18.1	18.8	19.6	20.3	20.0	21.4	21.7	21.8	22.3	21.5	21.1
Nee-ah Bay, Wash	18.3	18.9	19.6	20.3	21.0	21.6	22.1	22,5	22.7	22.7	22.6
Nootka, Vancouver Island Captain's and Iliuliuk Har-	19.6	20.1	20.7	21.3	22.0	22.5	23.0	23.5	23.8	23.9	24.0
bors, Unilaska Island .	19.3	19.6	19.7	19.8	19.7	19.7	19.5	19.3	18.9	18.6	18.2
Sitka, Alaska	26.4	27.I	27.8	28.3	28.7	29.0	29.1	29.0	28.8	28.4	27.9
St. Paul, Kadiak Island .	25.5	26.4	27.0	27.3	27.4	27.I	26.6	25.9	25.0	23.9	22.7
Port Mulgrave, Yakutat Bay, Alaska	27.8	29.2	20.4	21.2	217	31.8	21.4	20.7	20.7	28.4	26.8
July Haska	27.0	29.2	30.4	31.2	31.7	31.0	31.4	30.7	29.7	20.4	20.0
Port Etches, Alaska	27.8	29.3	30.4	31.2	31.6	31.5	31.0	30.1	28.8	27.3	25.5
Port Clarence, Alaska	-	-	26.6	27.0	26.9	26.4	25.6	24.4	22.9	21.2	19.5
Chamisso Island, Kotze- bue Sound	_	_	21.1	21.2	27.7	20.5	29.6	28.3	26.8	25.2	22 5
Petropavlovsk, Kamchatka,			31.1	31.3	31.1	30.5	29.0	20.3	20.0	25.2	23.5
Siberia	5.7	5.2	4.7	4.1	3.4	2.7	2. I	1.5	1.0	0.7	0.5

^{*} This table gives the secular variation of the declination since the year 1800 for a series of stations in the Western States and adjacent countries. The declinations are all east of north. Reference same as Table 127.

Agonic Lines.*

The line of no declination is moving westward in the United States, and east declination is decreasing west of, while west declination is increasing east of the agonic line.

	Longitudes of the agonic line for the years —											
Lat. N.	1800	1850	1875	1890								
0	′ 0	0	0	0								
25	-	-	-	75.5								
30	-	-	-	78.6								
35	-	76.7	79.0	79-9								
6	75.2	77-3	79.7	80.5								
7	76.3	77-7	80.6	82.2								
8	76.7	78.3	81.3	82.6								
9	76.9	78.7	81.6	82.2								
40	77.0	79.3	81.6	82.7								
I	77.9	80.4	81.8	82.8								
2	79.1	81.0	82.6	83.7								
3	79.4	81.2	83.1	84.3								
4	79.8	-	83.3	84.9								
45	_	-	83.6	85.2								
6	_	-	84.2	84.8								
7	_	-	85.1	85.4								
8		_	86.0	85.9								
9	-	-	86.5	86.3								

^{*} Reference same as Table 127.

Date of Maximum East Declination.*

This table gives the date of maximum east declination for a number of stations, beginning at the northeast of the United States and extending down the Atlantic coast to New York and west to the Pacific.

Station.				Date.
Halifax,† N. S.				1714
Eastport, Me.			**	1753
Bangor, Me				1774
Portland, Me				1779
Boston, Mass.				1780
New Haven, Conn.				1800
New York, N. Y.				1784
Jamesburg, N. J.				1802
Philadelphia, Pa.				1802
Pittsburg, Pa				1808
Cincinnati, Ohio .				1814
Florence, Ala				1821
St. Louis, Mo				1822
Nashville, Tenn				1834
Chicago, Ill				1831
Denver, Colo		•		1839
Salt Lake, Utah .				1873
Vancouver, Wash.				1883
Cape Mendocino, Cal.			,	1886
San Francisco, Cal.	6			1893

^{*} Reference same as Table 127.

[†] The opposite phase of maximum west declination is now located at Halifax.

SMITHSONIAN TABLES.

PRESSURE OF COLUMNS OF MERCURY AND WATER.

British and metric measures. Correct at oo C. for mercury and at 4° C. for water.

-			()		
	METRIC MEAS	SURE.		BRITISH MEAS	SURE.
Cms. of Hg.	Pressure in grammes per sq. cm.	Pressure in pounds per sq. inch.	Inches of Hg.	Pressure in grammes per sq. cm.	Pressure in pounds per sq. inch.
1	13.5956	0.193376	1	34-533	0.491174
2	27.1912	0.386752	2	69.066	0.982348
3	40.7868	0.580128	3	103.598	1.473522
4	54.3824	0.773504	4	138.131	1.964696
5	67.9780	0.966880	5	172.664	2.455870
6	81.5736	1.160256	6	207.197	2.947044
7	95.1692	1.353632	7	241.730	3.438218
8	108.7648	1.547008	8	276.262	3.929392
9	122.3604	1.740384	9	310.795	4.420566
10	135.9560	1.933760	10	345.328	4.911740
Cms. of H ₂ O.	Pressure in grammes per sq. cm.	Pressure in pounds per sq. inch.	Inches of H ₂ O.	Pressure in grammes per sq. cm.	Pressure in pounds per sq. inch.
1	1	0.0142234	1	2.54	0.036227
2	2	0.0284468	2	5.08	0.072255
3	3	0.0426702	3	7.62	0.108382
4	4	0.0568936	4	10.16	0.144510
5	5	0.0711170	5	12.70	0.180637
6	6	0.0853404	6	15.24	0.216764
7	7	0.0995658	7	17.78	0.252892
8	8	0.1137872	8	20.32	0.289019
9	9	0.1280106	9	22.86	0.325147
10	10	0.1422340	10	25.40	0.361274

REDUCTION OF BAROMETRIC HEIGHT TO STANDARD TEMPERATURE.

	r brass scale and measure.		brass scale and neasure.		r glass scale and measure.
Height of barometer in inches.	in inches for temp. F.	Height of barometer in mm.	in mm. for temp. C.	Height of barometer in mm.	in mm. for temp. C.
15.0 16.0 17.0 17.5 18.0 18.5 19.0 19.5 20.0 20.5 21.0 21.5 22.0 22.5 23.0 23.5 24.0 24.5 25.0 26.5 27.0 27.5 28.0 28.5 29.0 29.2 29.4 29.6 29.8 30.0 30.2 30.4 30.6 30.8 31.0 31.2	0.00135 .00145 .00154 .00158 .00163 .00167 .00172 .00176 0.00181 .00185 .00190 .00293 .00208 .00212 0.00217 .00221 .00226 .00231 .00236 .00240 .00245 .00249 0.00258 .00265 .00265 .00267 .00279	#00 410 420 430 440 450 460 470 480 490 \$500 \$10 \$520 \$530 \$540 \$550 \$560 \$570 \$580 \$590 \$600 610 620 630 640 650 660 670 680 690 #00 #00 #00 #00 #00 #00 #00	0.0651 .0668 .0684 .0700 .0716 .0732 .0749 .0765 .0781 .0797 0.0813 .0830 .0846 .0862 .0878 .0894 .0911 .0927 .0943 .0959 0.0975 .0992 .1008 .1024 .1040 .1056 .1073 .1089 .1105 .1121 0.1137 .1154 .1170 .1186 .1202 .1218 .1255 .1251	50 100 150 200 250 300 350 400 450 520 540 560 580 600 610 620 630 640 650 660 670 680 690 700 710 720 730 740 750 760 770 780 790 800	0.0086 .0172 .0258 .0345 .0431 .0517 .0603 0.0689 .0775 .0861 .0898 .0934 .0971 .1007 0.1034 .1051 .1068 .1085 .1103 .1120 .1137 0.1154 .1172 .1189 .1206 .1223 .1240 .1258 0.1275 .1292 .1309 .1327 .1344 .1361 .1378 0.1464
31.4 31.6	.00283	790 800	.1283	950	.1639

^{*} The height of the barometer is affected by the relative thermal expansion of the mercury and the glass, in the case of instruments graduated on the glass tube, and by the relative expansion of the mercury and the metallic inclosing case, usually of brass, in the case of instruments graduated on the brass case. This relative expansion is practically proportional to the first power of the temperature. The above tables of values of the coefficient of relative expansion will be found to give corrections almost identical with those given in the International Meteorological Tables. The numbers tabulated under α are the values of α in the equation $H_t = H_t' - \alpha$ (t' - t') where H_t is the height at the standard temperature t', and $\alpha t'$ the correction for temperature. The standard temperature is α 0° C. for the metric system, and α 8° S. F. for the English system. The English barometer is correct for the temperature of melting ice at a temperature of approximately α 8° S. F., because of the fact that the brass scale is graduated so as to be standard at α 9° F., while mercury has the standard density at α 9° F.

Example. —A barometer having a brass scale gave α 9° F. The properties of the corresponding reading at α 9° C. Here the value of α is the mean of α 1235 and α 1251, or α 1243; α 0° C.; required, the corresponding reading at α 9° C. Here the value of α is the mean of α 1235 and α 25° F. Although α is here given to three and sometimes to four significant figures. It is solden worth while

N. B. — Although α is here given to three and sometimes to four significant figures, it is seldom worth while to use more than the nearest two-figure number. In fact, all barometers have not the same values for α , and when great accuracy is wanted the proper coefficients have to be determined by experiment.

CORRECTION OF BAROMETER TO STANDARD CRAVITY.

Height			Obse	rved heig	ht of bard	meter in	millimetr	es.		
above sea level in metres.	400	4.00			600	650	700		800	
metres.	400	450	500	550			700	750		
100		1	1 1				.014	.015	.016	
300			in mi				.041	.044	.047	
500	sea	level in	first co	lumn		.064	.055	.059 .073 .088	.078	
700		op line.				.077	.082	.102		
800						.103	.109	.117		
1000				.108	.118	.128	.137	.146		
I 100 I 200				.118	.130	.141	.150			
1300				.140	.153	.166	.178			
1500			.147	.162	.176	.191	.205			
1700			.167	.183	.200	.217				
1900			.177	.194	.212	.230			1.245	1 5000 14 500
2000		.176	.196	.215	.235	.255		I.340 I.292	1.162	14000
2200		.194	.216	.237	.259 .271			1.244	1.088	13000
2400	.195	.212	.236	.259	.283		1.345	1.196	1.046	12500 12000
2600	.203	.229	.255	.2/0		1.315	1.237	1.101	.962	11500
2700 2800	.211	.238	.265			1.255	1.130	1.005	.879	10500
3000	.227	.256	.285		1.050	1.136	1.022	.909	·795 ·753	9500
3100	.243	.274			.018	1.016	.915	.813	•/ 55	8500
3300	.259	.292		1.077	.853	.957 .897	.861	.765		8000 7500
3400 3500	.267	.309		1.005	.721	.837	·753			7000 6500
3600	.283			.934 .862	.789	.777 .718 .658				6000 5500
3800 3900	.299		.779	.718	.658	.598				5000
4000	.314		.623	.646	.592					4500 4000
		.503	.545	.503	.461		rrections			3500 3000
	.359	.419	.389	·359 .287		sea le	evel in la	st column	and	2500 2000
.192	.359 .269	.251	.233	.215		line.				I 500 I 000
.096	.090	.084	.078				1	ı	1	500
32	30	28	26	24	22	20	18	16	14	Height above sea
		0	bserved	height of	baromete	er in inch	es.			above sea level in feet.

REDUCTION OF BAROMETER TO STANDARD CRAVITY.*

Reduction to Latitude 45°. - English Scale.

N. B. From latitude 9° to 44° the correction is to be subtracted. From latitude 99° to 46° the correction is to be added.

					H	leight o	f the ba	rometer	in inche	·s.			
Latit	ide.	19	20	21	22	23	24	25	26	27	28	29	30
0 °	90°	Inch. 0.051	Inch. 0.053	Inch. 0.056	Inch. 0.059	Inch. 0.061	Inch. 0.064	Inch. 0.067	Inch. 0.069	Inch. 0.072	Inch. 0.074	Inch. 0.077	Inch. 0.080
5 6 7 8	85 84 83 82 81	0.050 .049 .049 .049	0.052 .052 .052 .051	0.055 .055 .054 .054	0.058 .057 .057 .056 .056	0.060 .060 .059 .059	0.063 .062 .062 .061	0.066 .065 .065 .064	0.068 .068 .067 .067	0.071 .070 .070 .069	0.073 .073 .072 .072	0.076 .076 .075	
9 10 11 12 13 14	80 79 78 77 76	0.048 .047 .046 .045	0.050 .049 .049 .048	.053 .053 .052 .051 .050	0.055 .054 .054 .053 .052	0.058 .057 .056 .055	0.060 .059 .058 .057	0.063 .062 .061 .060	0.065 .064 .063 .062	0.068 .067 .066 .065	0.070 .069 .068 .067	.073 0.073 .072 .071 .069	0.075 .074 .073 .072
15 16 17 18 19	75 74 73 72 71	0.044 .043 .042 .041	0.046 .045 .044 .043	0.048 .047 .046 .045	0.051 .050 .049 .047 .046	0.053 .052 .051 .050 .048	0.055 .054 .053 .052 .050	0.058 .056 .055 .054 .052	0.060 .059 .057 .056	0.062 .061 .060 .058 .057	0.065 .063 .062 .060	0.067 .065 .064 .062 .061	0.069 .068 .066 .065 .063
20 21 22 23 24	70 69 68 67 66	0.039 .038 .036 .035 .034	0.041 .040 .038 .037 .036	0.043 .042 .040 .039 .037	0.045 .044 .042 .041 .039	0.047 .045 .044 .043	0.049 .047 .046 .044	0.051 .049 .048 .046	0.053 .051 .050 .048 .046	0.055 .053 .052 .050 .048	0.057 .055 .054 .052 .050	0.059 .057 .056 .054 .052	0.061 .059 .057 .055 .053
25 26 27 28 29	65 64 63 62 61	0.033 .031 .030 .028 .027	0.034 .033 .031 .030 .028	0.036 .034 .033 .031 .030	0.038 .036 .034 .033	0.039 .038 .036 .034 .032	0.041 .039 .038 .036 .034	0.043 .041 .039 .037 .035	0.044 .043 .041 .039 .037	0.046 .044 .042 .040 .038	0.048 .046 .044 .042 .039	0.050 .048 .045 .043 .041	0.051 .049 .047 .045 .042
30 31 32 33 34	59 58 57 56	0.025 .024 .022 .021	0.027 .025 .023 .022 .020	0.028 .026 .025 .023 .021	0.029 .027 .026 .024	0.031 .029 .027 .025	0.032 .030 .028 .026	0.033 .031 .029 .027	0.035 .032 .030 .028	0.036 .034 .032 .029	0.037 .035 .033 .030 .028	0.039 .036 .034 .031	0.040 .037 .035 .032 .030
35 36 37 38 39	55 54 53 52 51	0.017 .016 .014 .012	0.018 .016 .015 .013	0.019 .017 .015 .014	0.020 .018 .016 .014	0.021 .019 .017 .015	0.022 .020 .018 .015	0.023 .021 .018 .016	0.024 .021 .019 .017	0.025 .022 .020 .017	0.025 .023 .021 .018	0.026 .024 .021 .019	0.027 .025 .022 .019 .017
40 41 42 43 44	50 49 48 47 46	0.009 .007 .005 .004	0.009 .007 .006 .004	0.010 .008 .006 .004	0.010 .008 .006 .004 .002	0.011 .009 .006 .004 .002	0.011 .009 .007 .004 .002	0.012 .009 .007 .005	0.012 .010 .007 .005 .002	0.012 .010 .008 .005	0.013 .010 .008 .005	0.013 .011 .008 .005 .003	0.014 .011 .008 .006 .003

^{* &}quot;Smithsonian Meteorological Tables," p. 58.

REDUCTION OF BAROMETER TO STANDARD CRAVITY.*

Reduction to Latitude 45°. - Metric Scale.

N. B. — From latitude 9° to 44° the correction is to be subtracted. From latitude 99° to 46° the correction is to be added.

)													
Total	tude.				Н	eight of	the bard	meter i	n millim	etres.			
Lati	iude.	520	560	600	620	640	660	680	700	720	740	760	780
0°	90°	mm.	mm. 1.49	mm.	mm.	min. 1.70	mm.	mm.	mm.	mm. 1.92	mm.	mm.	mm.
5 6 7 8 9	85 84 83 82 81	1.36 1.35 1.34 1.33 1.32	I.47 I.46 I.45 I.43 I.42	1.57 1.56 1.55 1.54 1.52	1.63 1.61 1.60 1.59 1.57	1.68 1.67 1.65 1.64 1.62	1.73 1.72 1.70 1.69 1.67	1.81 1.78 1.77 1.76 1.74	1.84 1.82 1.81 1.79 1.77	1.89 1.87 1.86 1.84 1.82	1.94 1.93 1.91 1.89 1.87	1.99 1.98 1.96 1.94 1.92	2.04 2.03 2.01 2.00 1.97
10 11 12 13 14	80 79 78 77 76	1.30 1.28 1.26 1.24 1.22	1.40 1.38 1.36 1.34 1.32	1.50 1.48 1.46 1.44 1.41	1.55 1.53 1.51 1.48 1.46	1.60 1.58 1.56 1.53 1.50	1.65 1.63 1.60 1.58 1.55	1.70 1.68 1,65 1,63 1.60	1.75 1.73 1.70 1.67 1.65	1.80 1.78 1.75 1.72 1.69	1.85 1.83 1.80 1.77 1.74	1.90 1.88 1.85 1.82 1.79	1.95 1.93 1.90 1.87 1.83
15 16 17 18 19	75 74 73 72 71	1.20 1.17 1.15 1.12 1.09	1.29 1.26 1.24 1.21 1.17	1.38 1.35 1.32 1.29 1.26	I.43 I.40 I.37 I.34 I.30	1.48 1.44 1.41 1.38 1.34	1.52 1.49 1.45 1.42 1.38	1.57 1.54 1.50 1.46 1.43	1.61 1.58 1.54 1.51 1.47	1.66 1.63 1.59 1.55 1.51	1.71 1.67 1.63 1.59 1.55	1.75 1.72 1.68 1.64 1.59	1.80 1.76 1.72 1.68 1.64
20 21 22 23 24	70 69 68 67 66	1.06 1.03 1.00 0.96 .93	I.I4 I.II I.07 I.04 I.00	1.22 1.19 1.15 1.11 1.07	1.26 1.23 1.19 1.15 1.10	1.31 1.27 1.23 1.18 1.14	1.35 1.31 1.26 1.22 1.18	1.39 1.35 1.30 1.26 1.21	1.43 1.38 1.34 1.29 1.25	I.47 I.42 I.38 I.33 I.28	1.51 1.46 1.42 1.37 1.32	1.55 1.50 1.46 1.41 1.35	1.59 1.54 1.49 1.44 1.39
25 26 27 28 29	65 64 63 62 61	0.89 .85 .81 .77 .73	0.96 .92 .88 .83 .79	1.03 0.98 •94 .89	1.06 1.02 0.97 .92 .87	1.10 1.05 1.00 0.95 .90	1.13 1.08 1.03 0.98	1.16 1.11 1.06 1.01 0.96	1.20 1.15 1.10 1.04 0.99	I.23 I.18 I.13 I.07 I.02	I.27 I.21 I.16 I.10 I.04	1.30 1.25 1.19 1.13 1.07	1.33 1.28 1.22 1.16 1.10
30 31 32 33 34	59 58 57 56	0.69 .65 .61 .56 .52	0.75 .70 .65 .61	0.80 .75 .70 .65	0.83 .77 .72 .67 .62	0.85 .80 .75 .69	0.88 .82 .77 .71 .66	0.91 .85 .79 .74 .68	0.94 .87 .82 .76 .70	0.96 .90 .84 .78	0.98 .92 .86 .80	1.01 0.95 .89 .82 .76	1.04 0.97 .91 .84
35 36 37 38 39	55 54 53 52 51	0.47 .43 .38 .33 .29	0.51 .46 .41 .36 .31	0.55 .49 .44 .39 .33	0.56 .51 .45 .40 .34	0.58 ·53 ·47 ·41 ·35	0.60 ·54 ·48 ·43 ·37	0.62 .56 .50 .44 .38	0.64 .58 .51 .45 .39	0.66 ·59 ·53 ·46 ·40	0.67 .61 .54 .48	0.69 .63 .56 .49	0.71 .64 .57 .50 .43
40 41 42 43 44	50 49 48 47 46	0.24 .19 .14 .10	0.26 .21 .16 .10	0.28 .22 .17 .11	0.29 .23 .17 .12 .06	0.30 .24 .18 .12	0.31 .24 .18 .12 .06	0.31 .25 .19 .13	0.32 .26 .19 .13	0.33 .27 .20 .13	0.34 .27 .21 .14	0.35 .28 .21 .14 .07	0.36 .29 .22 .14

^{* &}quot;Smithsonian Meteorological Tables," p. 59.

CORRECTION OF THE BAROMETER FOR CAPILLARITY.*

			ı. Me	TRIC MEA	SURE.						
			Heigh	r of Menis	cus in Mil	LIMETRES.					
Diameter of tube in mm.	0.4	0.6	0.8	1.6	1.8						
			Corre	ction to be a	dded in mill	imetres.					
4 5 6 7 8 9 10 11 12 13	0.83 .47 .27 .18 - - -	.47 0.65 0.86 1.19 1.45 1.80									
			2. Bri	TISH MEA	SURE.						
			Нег	GHT OF ME	NISCUS IN I	NCHES.					
Diameter of tube in inches.	.01	.02	.03	.04	.05	.06	.07	.08			
			Correction	to be added	in hundredtl	ns of an inch					
.15 .20 .25 .30 .35 .40 .45 .50	2.36 1.10 0.55 .36 - - -	4.70 2.20 1.20 0.79 .51 .40	6.86 3.28 1.92 1.26 0.82 .61 .32 .20	9.23 4.54 2.76 1.77 1.15 0.81 .51 .35	11.56 5.94 3.68 2.30 1.49 1.02 0.68 .47	7.85 4.72 2.88 1.85 1.22 0.83 .56	- 5.88 3.48 2.24 1.42 0.96 .64	- 4.20 2.65 1.62 1.15 0.71			

^{*} The first table is from Kohlrausch (Experimental Physics), and is based on the experiments of Mendelejeff and Gutkowski (Jour. de Phys. Chem. Geo. Petersburg, 1877, or Wied. Beib. 1867). The second table has been calculated from the same data by conversion into inches and graphic interpolation.

A number of tables, mostly based on theoretical formulæ and the capillary constants of mercury in glass tubes in air and vacuum, were given in the fourth edition of Guyot's Tables, and may be there referred to. They are not repeated here, as the above is probably more accurate, and historical matter is excluded for convenience in the use of the book.

ABSORPTION OF CASES BY LIQUIDS.*

Temperature			Absor	RPTION COEFF.	icients, a,	FOR GASI	SS IN	WATE	R.		
Centigrade.	Carl diox CO	ide.	Carbon monoxide. CO	Hydrogen. H	Nitrogen.	Nitr oxio N	le.	0	trous kide. N ₂ O	Ox	ygen. O
0 5 10 15 20 25 30 40 50	1.7 1.4 1.1 1.0 0.9 0.7	.50 85 02 01 72 -06	0.0354 .0315 .0282 .0282 .0232 .0214 .0200 .0177 .0161	0.02110 .02022 .01044 .01875 .01809 .01745 .01690 .01644 .01608	0.02399 .02134 .01918 .01742 .01599 .01481 .01370 .01195	0.07 .06 .05 .05 .04 .04	46 71 15	1.305 1.095 0.920 0.778 0.670 - - -		.0.	4925 4335 3852 3456 3137 2874 2646 2316 2080 1690
Temperature Centigrade.	Ai	ir. Ammonia.		Chlorine. Cl	Ethylene. C ₂ H ₄	Meth: CH		sulp	rogen hide. I ₂ S	dic	lphur oxide. SO ₂
0 5 10 15 20 25	0.022 .021 .019 .017	953 795	1174.6 971.5 840.2 756.0 683.1 610.8	3.036 2.808 2.585 2.388 2.156 1.950	0.2563 .2153 .1837 .1615 .1488	0.054 .048 .043 .039 .034	89 67 03	3.3.2.	965 586 233 905 604	67 56 47 39	9.79 7.48 6.65 7.28 9.37 2.79
Temperature		Aı	BSORPTION (CORFFICIENTS,	at, for GA	SES IN A	гсоно	L, C ₂	H₅OH.		
Centigrade.	Carbon dioxide.	oxide. Ethylene. Methan		Hydrogen.	Nitrogen.	Nitric oxide. NO	Nitr oxi N		Hydrog sulphic H ₂ S	le. d	Sulphur lioxide. SO ₂
0 5 10 15 20 25	4.329 3.891 3.514 3.199 2.946 2.756	91 3.323 .5086 14 3.086 .4953 99 2.882 .4828 46 2.713 .4716		.0685 .0679 .0673 .0667	0.1263 .1241 .1228 .1214 .1204 .1196	0.3161 .2998 .2861 .2748 .2659 .2595	3.0	38	17.8 14.7 11.9 9.5 7.4 5.6	9 4 1	328.6 251.7 190.3 144.5 114.5 99.8

^{*} This table contains the volumes of different gases, supposed measured at o° C. and 76 centimetres' pressure, which unit volume of the liquid named will absorb at atmospheric pressure and the temperature stated in the first column. The numbers tabulated are commonly called the absorption coefficients for the gases in water, or in alcohol, at the temperature t and under one atmosphere of pressure. The table has been compiled from data published by Bohr & Bock, Bunsen, Carius, Dittmar, Hamberg, Henrick, Pagliano & Emo. Raoult, Schönfeld, Setschenow, and Winkler. The numbers are in many cases averages from several of these authorities.

NOTE. — The effect of increase of pressure is generally to increase the absorption coefficient. The following is approximately the magnitude of the effect in the case of ammonia in alcohol at a temperature of 23° C.:

 $\begin{cases} P = 45 \text{ cms.} & 50 \text{ cms.} & 55 \text{ cms.} & 60 \text{ cms.} & 65 \text{ cms.} \\ a_{23} = 69 & 74 & 79 & 84 & 88 \end{cases}$

According to Setschenow the effect of varying the pressure from 45 to 85 centimetres in the case of carbonic acid in water is very small.

VAPOR PRESSURES.

The vapor pressures here tabulated have been taken, with one exception, from Regnault's results. The vapor pressure of Pictet's fluid is given on his own authority. The pressures are in centimetres of mercury.

Tem- pera- ture Cent.	Acetone. C ₈ H ₆ O	Benzol. C ₆ H ₆	Carbon bisul- phide. CS ₂	Carbon tetra- chloride, CCl ₄	Chloro- form. CHCl ₈	Ethyl alcohol. C ₂ H ₆ O	Ethyl ether. C ₄ H ₁₀ O	Ethyl bromide. C ₂ H ₅ Br	Methyl alcohol, CH ₄ O	Turpentine.
-25° -20 -15 -10 -5		- .58 .88 1.29 1.83	4·73 6.16 7·94 10.13	- .98 1.35 1.85 2.48		- •33 •51 •65	6.89 8.93 11.47 14.61	4.41 5.92 7.81 10.15 13.06	.41 .63 .93 1.35	-
5 10 15 20	- - - - 17.96	2.53 3.42 4.52 5.89 7.56	12.79 16.00 19.85 24.41 29.80	3.29 4.32 5.60 7.17 9.10	16.05	1.27 1.76 2.42 3.30 4.45	18.44 23.09 28.68 35.36 43.28	16.56 20.72 25.74 31.69 38.70	2.68 3.69 5.01 6.71 8.87	.212944
25 30 35 40 45	22.63 28.10 34.52 42.01 50.75	9.59 12.02 14.93 18.36 22.41	36.11 43.46 51.97 61.75 72.95	11.43 14.23 17.55 21.48 26.08	20.02 24.75 30.35 36.93 44.60	5.94 7.85 10.29 13.37 17.22	52.59 63.48 76.12 90.70 107.42	46.91 56.45 67.49 80.19 94.73	11.60 15.00 19.20 24.35 30.61	- .69 - 1.08
50 55 60 65 70	62.29 72.59 86.05 101.43 118.94	27.14 32.64 39.01 46.34 54.74	85.71 100.16 116.45 134.75 155.21	31.44 37.63 44.74 52.87 62.11	53.50 63.77 75.54 88.97 104.21	21.99 27.86 35.02 43.69 54.11	126.48 148.11 172.50 199.89 230.49	111.28 130.03 151.19 174.95 201.51	38.17 47.22 57.99 70.73 85.71	1.70 - 2.65 - 4.06
75 80 85 90 95	138.76 161.10 186.18 214.17 245.28	64.32 75.19 87.46 101.27 116.75	177.99 203.25 231.17 261.91 296.63	72.57 84.33 97.51 112.23 128.69	121.42 140.76 162.41 186.52 213.28	66.55 81.29 98.64 118.93 142.51	264.54 302.28 343.95 389.83 440.18	231.07 263.86 300.06 339.89 383.55	103.21 123.85 147.09 174.17 205.17	6.13 - 9.06
100 105 110 115 120	279.73 317.70 359.40 405.00 454.69	134.01 153.18 174.14 197.82 223.54	332.51 372.72 416.41 463.74 514.88	146.71 166.72 188.74 212.91 239.37	242.85 275.40 311.10 350.10 392.57	169.75 201.04 236.76 277.34 323.17	495.33 555.62 621.46 693.33 771.92	431.23 483.12 539.40 600.24 665.80	240.51 280.63 325.96 376.98 434.18	13.11 - 18.60 - 25.70
125 130 135 140 145	508.62 566.97 629.87 697.44	251.71 282.43 315.85 352.07 391.21	569.97 629.16 692.59 760.40 832.69	268.24 299.69 333.86 370.90 411.00	438.66 488.51 542.25 600.02 661.92	374.69 432.30 496.42 567.46 645.80		736.22 811.65 892.19 977.96	498.05 569.13 647.93 733.71 830.89	- 34.90 - 46.40
150 155 160 165 170	-	433·37 478.65 527·14 568·30 634·07	909.59	454.31 501.02 551.31 605.38 663.44	728.06 798.53 873.42 952.78	731.84 825.92 - -			936.13	60.50 68.60 77.50

VAPOR PRESSURES.

Temperature, Centigrade.	Ammonia. NH ₃	Carbon dioxide. CO ₂	Ethyl chloride. C ₂ H ₅ Cl	Ethyl iodide. C ₂ H ₅ I	Methyl chloride. CH ₃ Cl	Methylic ether. C ₂ H ₆ O	Nitrous oxide. N ₂ O	Pictet's fluid. 64SO ₂ + 44CO ₂ by weight	Sulphur dioxide. SO ₂	Hydrogen sulphide. H ₂ S
_30°	86.61	-	11.02	-	57.90	57.65	_	58.52	28.75	-
-25 -20 -15 -10 -5	110.43 139.21 173.65 214.46 264.42	1300.70 1514.24 1758.25 2034.02 2344.13	14.50 18.75 23.96 30.21 37.67	<u>-</u>	71.78 88.32 107.92 130.96 157.87	71.61 88.20 107.77 130.66 157.25	1569.49 1758.66 1968.43 2200.80 2457.92	67.64 74.48 89.68 101.84 121.60	37.38 47.95 60.79 76.25 94.69	374-93 443.85 519.65 608.46 706.60
5 10 15 20	318.33 383.03 457.40 543.34 638.78	2690.66 3075.38 3499.86 3964.69 4471.66	46.52 56.93 61.11 83.26 99.62	4.19 5.41 6.92 8.76 11.00	189.10 225.11 266.38 313.41 366.69	187.90 222.90 262.90 307.98 358.60	2742.10 3055.86 3401.91 3783.17 4202.79	139.08 167.20 193.80 226.48 258.40	116.51 142.11 171.95 206.49 246.20	820.63 949.08 1089.63 1244.79 1415.15
25 30 35 40 45	747.70 870.10 1007.02 1159.53 1328.73	5020.73 5611.90 6244.73 6918.44 7631.46	118.42 139.90 164.32 191.96 223.07	13.69 16.91 20.71 25.17 30.38	426.74 494.05 569.11	415.10 477.80 - - -	4664·14 5170.85 6335.98	297.92 338.20 383.80 434.72 478.80	291.60 343.18 401.48 467.02 540.35	1601.24 1803.53 2002.43 2258.25 2495.43
50 55 60 65 70	1515.83 1721.98 1948.21 2196.51 2467.55	-	257.94 266.84 340.05 387.85 440.50	36.40 43.32 51.22	11111		1111	521.36 - - - -	622.00 712.50 812.38 922.14	2781.48 3069.07 3374.02 3696.15 4035.32
75 80 85 90 95	2763.00 3084.31 3433.09 3810.92 4219.57	-	498.27 561.41 630.16 704.75 785.39	- 1 1 1 1		1 1 1 1			11111	
100	4660.82	-	872.28	-	-	-	-	-	-	-

CAPILLARITY. - SURFACE TENSION OF LIQUIDS.*

TABLE 140. - Water and Alcohol in Contact with Air.

TABLE 142. - Solutions of Salts in Water.

Temp.	in dy	e tension ynes per metre.	Temp.	in dy	e tension nes per metre.	Temp.	Surface tension in dynes per cen- timetre.
С.	Water.	Ethyl alcohol.	C.	Water.	Ethyl alcohol.	C.	Water.
0° 5 10 15 20 25 30 35	75.6 74.9 74.2 73.5 72.8 72.1 71.4 70.7	23.5 23.1 22.6 22.2 21.7 21.3 20.8 20.4	40° 45 50 55 60 65 70 75	70.0 69.3 68.6 67.8 67.1 66.4 65.7 65.0	20.0 19.5 19.1 18.6 18.2 17.8 17.3 16.9	80° 85 90 95 100 - -	64.3 63.6 62.9 62.2 61.5

BaCl ₂
" 1.2830 15-16 80.7 1.1039 15-16 77.8

TABLE 141. - Miscellaneous Liquids in Contact with Air.

		l c	
Liquid.	Temp.	Surface tension in dynes per cen- timetre.	Authority.
Aceton Acetic acid Amyl alcohol Benzene Butyric acid Carbon disulphide Chloroform Ether Glycerine Hexane Mercury Methyl alcohol Olive oil Petroleum Propyl alcohol "Toluol	14.0 17.0 15.0 15.0 20.0 20.0 20.0 0.0 68.0 20.0 15.0 20.0 20.0 15.0 20.0 15.0 15.0	25.6 30.2 24.8 28.8 28.7 30.5 28.3 18.4 63.14 21.2 14.2 470.0 24.7 34.7 25.9 25.9 25.9 18.0 29.1 18.9	Average of various. "" Quincke. Average of various. Hall. Schiff. Average of various. "" Magie. Schiff. "" "" ""
Turpentine	21.0	28.5	Average of various.

^{*} This determination of the capillary constants of liquids has been the subject of many careful experiments, but the results of the different experimenters, and even of the same observer when the method of measurement is changed, do not agree well together. The values here quoted can only be taken as approximations to the actual values for the liquids in a state of purity in contact with pure air. In the case of water the values given by Lord Rayleigh from the wave length of ripples (Phil. Mag. 1890) and by Hall from direct measurement of the tension of a flat film (Phil. Mag. 1893) have been preferred, and the temperature correction has been taken as 0.141 dyne per degree centigrade. The values for alcohol were derived from the experiments of Hall above referred to and the experiments on the effect of temperature made by Timberg (Wied. Ann. vol. 30).

The authority for a few of the other values given is quoted, but they are for the most part average values derived from a large number of results published by different experimenters.

† From Volkmann (Wied. Ann. vol. 17, p. 353).

TENSION OF LIQUIDS.

TABLE 143. - Surface Tension of Liquids.*

Liquid.	Specific		nsion in dyn iquid in con	es per cen- tact with —
	gravity.	Air.	Water.	Mercury.
Water Mercury Bisulphide of carbon Chloroform Ethyl alcohol Olive oil Turpentine Petroleum Hydrochloric acid Hyposulphite of soda solution	I.0 I3.543 I.2687 I.4878 0.7906 0.9136 0.8867 9.7977 I.10 I.1248	75.0 513.0 30.5 (31.8) (24.1) 34.6 28.8 29.7 (72.9) 69.9	0.0 392.0 41.7 26.8 - 18.6 11.5 (28.9)	(392) 0 (387) (415) 364 317 241 271 (392) 429

TABLE 144. - Surface Tension of Liquids at Solidifying Point, †

Subst	tance		Temperature of solidification. Cent.°	Surface tension in dynes per centimetre.	Substance.	Tempera- ture of solidifi- cation. Cent.°	Surface tension in dynes per centimetre.
Platinum			2000	1691	Antimony	432	249
Gold .			1200	1003	Borax	1000	216
Zinc .			360	877	Carbonate of soda .	1000	210
Tin .			230	599	Chloride of sodium .	-	116
Mercury			-40	599 588	Water	0	87.91
Lead .		4	330	457	Selenium	217	71.8
Silver .			1000	427	Sulphur	III	42.I
Bismuth			265	1390	Phosphorus	43 68	. 42.0
Potassium			58	37 I	Wax	68	34.1
Sodium	•		90	258			

TABLE 145. - Tension of Soap Films.

Elaborate measurements of the thickness of soap films have been made by Reinold and Rucker. They find that a film of oleate of soda solution containing I of soap to 70 of water, and having 3 per cent of KNO3 added to increase electrical conductivity, breaks at a thickness varying between 7.2 and 14.5 micro-millimetres, the average being 12.1 micromillimetres. The film becomes black and apparently of nearly uniform thickness round the point where fracture begins. Outside the black patch there is the usual display of colors, and the thickness at these parts may be estimated from the colors of thin plates and the refractive index of the solution (vide Newton's rings, Table 146).

When the percentage of KNO₃ is diminished, the thickness of the black patch increases. For example, KNO3 = 30.5 0.0

Thickness = 12.4 13.5 14.5 22.1 micro-mm.

A similar variation was found in the other soaps.

It was also found that diminishing the proportion of soap in the solution, there being no KNO3 dissolved, increased the thickness of the film.

- I part soap to 30 of water gave thickness 21.6 micro-mm.
- I part soap to 40 of water gave thickness 22.1 micro-mm.
- I part soap to 60 of water gave thickness 27.7 micro-mm.
- I part soap to 80 of water gave thickness 29.3 micro-mm.

Quincke, " Pogg. Ann." vol. 135, p. 661.

Tullible observed that the value here given on the authority of Quincke is much higher than his subsequent measurements, as quoted above, give.

| "Proc. Roy. Soc." 1877, and "Phil. Trans. Roy. Soc." 1881, 1883, and 1893.

Note. — Quincke points out that substances may be divided into groups in each of which the ratio of the surface tension to the density is nearly constant. Thus, if this ratio for mercury be taken as unit, the ratio for the bromides and iodides is about a half: that of the mitrates, chlorides, sugars, and fats, as well as the metals, lead, bismuth, and antimony, about 1; that of water, the carbonates, sulphates, and probably phosphates, and the metals platinum, gold, silver, cadmium, tin, and copper, 2; that of zinc, iron, and palladium, 3; and that of sodium, 6.

^{*} This table of tensions at the surface separating the liquid named in the first column and air, water or mercury as stated at the head of the last three columns, is from Quincke's experiments (Pogg. Ann. vol. 130, and Phil. Mag. 1871). The numbers given are the equivalent in degrees per centimetre of those obtained by Worthington from Quincke's results (Phil. Mag. vol. 20, 1885) with the exception of those in brackets, which were not corrected by Worthington; they are probably somewhat too high, for the reason stated by Worthington. The temperature was about 20 °C.

NEWTON'S RINGS.

Newton's Table of Colors.

The following table gives the thickness in millionths of an inch, according to Newton, of a plate of air, water, and glass corresponding to the different colors in successive rings commonly called colors of the first, second, third, etc., orders.

Order.	Color for re- flected light.	Color for transmitted	mill	hickness ionths o nch for -	f an	Order.	Color for re- flected light.	Color for trans- mitted	milli	onths o	f an
O	nected right.	light.	Air.	Water.	Glass.	Ö	nected right.	light.	Air.	Water.	Glass.
I.	Very black Black Beginning of black . Blue	White Yellowish	0.5	0.4 0.75	0.2 0.9 1.3		Yellow Red Bluish red	Bluish green	27.1 29.0 32.0	20.3 21.7 24.0	17.5 18.7 20.7
	White Yellow Orange . Red	red Black	2.4 5.2 7.1 8.0 9.0	1.8 3.9 5.3 6.0 6.7	1.5 3.4 4.6 4.2 5.8	IV.	Bluish green . Green Yellowish green .	Red .	24.0 35·3 36.0	25.5 26.5	22.0 22.7 23.2
II.	Violet Indigo Blue	White . Yellow .	11.2 12.8 14.0	3·4 9.6 10.5	7.2 8.4 9.0	v.		Bluish green	40.3	30.2	26.0
	Green Yellow Orange . Bright red	Red Violet Blue	15.1 16.3 17.2 18.2	11.3 12.2 13.0 13.7	9.7 10.4 11.3 11.8	VI.	Red Greenish	Red .	46.0 52.5	34·5 39·4	39.7
III.	Scarlet Purple Indigo	Green .	19.7 21.0 21.1	14.7 15.7 17.6	12.7 13.5 14.2	VII.	Red Greenish	Ξ	58.7 65.0	46 48.7	38.0
	Blue Green	Yellow . Red	23.2	17.5	15.1 16.2		blue Reddish white .	_	72.0	53.2 57·7	45.8

The above table has been several times revised both as to the colors and the numerical values. Professors Reinold and Rucker, in their investigations on the measurement of the thickness of soap films, found it necessary to make new determinations. They give a shorter series of colors, as they found difficulty in distinguishing slight differences of shade, but divide each color into ten parts and tabulate the variation of thickness in terms of the tenth of a color band. The position in the band at which the thickness is given and the order of color are indicated by numerical subscripts. For example: $R_{1.5}$ indicates the red of the first order and the fifth tenth from the edge furthest from the red edge of the spectrum. The thicknesses are in millionths of a centimetre.

Order.	Color.	Posi-	Thick- ness.	Order.	Color.	Posi- tion.	Thick- ness.	Order.	Color.	Posi-	Thick- ness.
I. II.	Violet Blue Green Yellow * Orange * Red Blue Blue Green	P _{3 5} B _{8 0} B _{3 5} G _{8 5}	28.4 30.5 35.3 40.9 45.4 49.1 52.2 55.9 57.7 60.3 65.6 71.0	IV.	Red * . Bluish red * . Green . Yellow green * Red * . Green . Green . Green * . Red * .	BR ₈ 5 G ₄ 0 G ₄ 5 YG ₄ 5 R ₄ 5 G ₅ 0 G ₅ 5 R ₅ 0	76.5 81.5 84.1 89.3 96.4 105.2 111.9 118.8 126.0 133.5	VII.	Green . Green* Red . Red* . Green . Green* Red . Red* . Red* .	G7 0 G7 5 R7 0	141.0 147.9 154.8 162.7 170.5 178.7 186.9 193.6 200.4 211.5

^{*} The colors marked are the same as the corresponding colors in Newton's table.

CONTRACTION PRODUCED BY SOLUTION.*

Across the top of the heading are given the formulas of the salt dissolved, its molecular weight (M. W.), and the density of the salt, with the authority for that density.

Grammes of the salt in 100 of water.	Observed volume.	Calculated volume.	Per cent of contraction.	Grammes of the salt in 100 of water.	Observed volume.	Calculated volume.	Per cent of contraction.
M. W		K_2O . nsity = 2.656 (K	arsten).	M. W.=	Na(OH. nsity=2.130(Filhol).
	(Hager.)				(Schiff.)		
4-702 9-404 14-106 18-808 23-510 28-212 32-914 37-616 42-318 47-020 70-530 79-934	99.88 99.92 100.18 100.60 101.20 102.00 103.90 104.96 106.10 112.20 114.88	101.77 103.55 105.32 107.09 108.86 110.64 112.41 114.18 115.96 117.73 126.59 130.14	1.86 4.20 4.88 6.06 7.04 7.81 8.46 9.01 9.80 9.88 11.37 11.73	3.995 7.990 11.985 15.980 19.975 23.970 27.965 31.960 35.955 39.950 59.925 79.900	99.4 99.6 100.2 100.8 101.7 102.7 103.8 105.0 106.2 113.4 121.2 138.6	101.88 103.75 105.63 107.50 109.38 111.26 113.13 115.01 116.88 118.76 128.14 137.52 156.28	2.43 4.19 5.71 6.79 7.84 8.59 9.22 9.75 10.17 10.58 11.50 11.87
М. У		OH. sity=2.044 (Fil	hol).	159.800 199.750 239.970	156.6 174.8 193.6	175.04 193.80 212.56	10.54 9.80 8.92
	(Schiff.)						
5.6 11.2 16.8 22.4 28.0	101.2 102.6 104.0 105.4 106.8	102.74 105.48 108.22 110.26 113.70	1.50 2.73 3.90 5.01 6.07	M. W. =	NI 17. Densit	H ₃ . ty = 0.616 (At	ndreef).
33.6 39.2 44.8 50.4 56.0 84.0 112.0 168.0 224.0	108.4 110.0 111.6 113.2 115.0 124.2 134.6 157.6 181.8	116.44 119.18 121.92 124.66 127.40 141.10 154.80 182.20 209.60	6.91 7.70 8.46 9.19 9.72 11.98 13.05 13.50	1.7 3.4 5.1 6.8 8.5 10.2 11.9 13.6 15.3	102.5 105.0 107.4 109.8 112.2 114.6 117.0 119.4 121.8	102.76 105.52 108.28 111.04 113.80 116.56 119.32 122.08 124.84	0.25 0.49 0.81 1.12 1.41 1.68 1.95 2.20 2.44
M. W.		a ₂ O. sity = 2.805 (Ka	arsten).	17.0 25.5 34.0 51.0	124.2 135.8 147.3 169.7	127.60 141.40 155.20 182.80	2.66 3.96 5.09 7.17
	(Hager.)			,			
3.097 6.194 9.291 12.388 15.485 18.582	99.01 98.26 97.76 97.45 97.29 97.23	101.10 102.21 103.31 104.42 105.52 106.63	2.07 3.86 5.37 6.67 7.80 8.81	M. W.=5	NH 3-38. Dens (Gerlach.)	4Cl. ity=1.52 (Sci	nroeder).
21.679 24.776 27.873 30.970 46.455 52.649	97.32 97.55 97.84 98.20 100.94 102.30	107.73 108.83 109.94 111.04 116.56 118.77	9.66 10.37 11.00 11.56 13.40 13.87	5.338 10.676 16.014 21.352 26.690	103.7 107.5 111.5 115.3 119.2	103.51 107.02 110.54 114.05 117.56	0.18 0.45 0.87 1.10 1.40

^{*} The table was compiled from a paper by Gerlach (Zeits. für Anal. Chem. vol. 27).

CONTRACTION PRODUCED BY SOLUTION.

Grammes of the salt in 100 of water.	Observed volume.	Calculated volume.	Per cent of contraction.	Grammes of the salt in 100 of water.	Observed volume.	Calculated volume.	Per cent of contraction.
M. W.		Cl. nsity = 1.945 (C	larke).	M. W.=		Cl ₂ . sity = 3.75 (Sc	hroeder).
	(Gerlach.)				(Gerlach.)		
7.441 14.882 22.323	102.8 105.8 108.9	103.83 107.65 111.48	0.99 1.72 2.31	10.377 20.754 31.131	101.6 102.9 104.9	102.77 105.53 108.30	1.14 2.50 3.14
M. W.:		nCl. nsity == 2.150 (C	Clarke).	M. W.:	K = 166.57. De	I. ensity=3.07 ((Clarke).
	(Gerlach.)				(Kremers.)		
5.836 11.672 17.508 23.344 29.180	101.7 103.7 105.8 107.9	102.71 105.43 108.14 110.86 113.58	0.99 1.64 2.16 2.67 3.06	16.657 33·314 49·971 66.628 83·285	104.5 109.3 114.2 119.1 124.0	105.39 110.77 116.18 121.57 126.97	0.85 1.34 1.70 2.20 2.34
M. W.		Cl. ity = 1.980 (Ger	lach).	M. W. =	KC = 122.29. De	10_3 , nsity = 2.331 (0	Clarke).
	(Gerlach.)	.,			(Kremers.)	www.no	
4.2	101.9	102.14	0.24	6.114	102.3	102.62	0.314
8.4 12.6 16.8 21.0	103.8 105.8 107.8	104.28 106.42 108.56 110.70	0.46 0.58 0.70 0.63	M. W.=	KN 2 100.93. Des	O ₈ . nsity = 2.092 (0	Clarke).
42.0	120.7	121.40	0.58		(Gerlach.)		
M. W. = 1		Cl_2 , ity = 2.216 (Sc	hroeder).	5.046 10.093 20.186	101.90 104.84 108.40	102.41 104.83 109.65	0.50 0.79 1.14
5.532	(Gerlach.)	102.50	1.26	M. W. =	NaN = 84.88. Der	NO ₈ . nsity == 2.244 (C	Clarke).
16.596	102.2	104.99	2.66 3.71		(Kremers.)		
22.128 27.660 33.192 66.384	104.8 106.3 108.0 118.6	109.99 112.48 114.98 129.96	4.72 5.50 6.07 8.74	8.488 16.976 42.440 84.880	102.9 106.1 116.2 134.3	103.78 107.56 118.91 137.82	0.85 1.36 2.28 2.55
M. W. =		Cl ₂ . sity=3.05 (Sch	roeder).	M. W.=	NH ₄	NO ₃ . ity= 1.74 (Sch	roeder).
	(Gerlach.)				(Gerlach.)		
7.895 15.790 23.685 31.580 39.475	101.4 102.5 104.0 105.5 107.2	102.59 105.17 107.76 110.34 112.93	1.16 2.55 3.43 4.39 5.07	7.990 15.980 39.950 79.900	104.6 109.3 124.4 149.8	104.59 109.18 122.96 145.92	0.076 0.106 1.170 2.660

Grammes of the salt in 100 of water.	Observed volume.	Calculated volume.	Per cent of contraction.	Grammes of the salt in 100 of water.	Observed volume.	Calculated volume.	Per cent of contraction.	
M.W.		$NO_8)_2$. ensity = 2.36 (6)	Clarke):	Na ₃ CO ₃ . M. W. = 105.8 ₃ . Density 2.476 (Clarke and Schroeder).				
	(Gerlach.)				(Gerlach.)		1	
- (
1.637 3.274 4.910 6.547	100.45	100.69 101.39 102.08 102.77	0.24 0.48 0.72 0.90	5.292 10.582 15.875	100.00	102.14 104.27 106.41	2.09 3.68 5.03	
8.184 16.368 32.736 49.104 65.472	102.30 104.70 109.90 115.55 121.50	103.47 106.94 113.87 120.81	1.13 2.09 3.49 4.35 4.89	M.W.	K_2SO_4 . M. W. = 173.90. Density 2.647 (Clark			
81.840	127.65	134.68	5.22		(Gerlach.)			
	Ba(N	NO ₃) ₂ .		8.695	101.94	103.29	1.30	
M. W.	= 260.58. De	ensity=3.23 (C	Clarke).					
	(Gerlach.)			$(NH_4)_2SO_4$. M. W. = 131.84. Density 1.762 (Clarke).				
2.606 5.212	100.5	100.81	0.30		(Schiff.)			
7.817	101.5	102.42	0.60	6.592	102.92	103.74	0.792	
M. W.		O ₃) ₂ . ensity = 2.93 (C	larke).	13.184 19.776 26.369 65.920 98.880	105.96 109.20 112.60 135.20 154.50	107.48 112.26 114.97 137.42 156.13	1.418 1.821 2.060 1.615 1.044	
2.110 4.220 6.329	100.48 100.95 101.40	100.72 101.44 102.16	0.24 0.48 0.74	FeSO ₄ . M. W. = 151.72. Density 2.99 (Clarke).				
10.549	101.95	102.88	0.90					
21.098	104.95	107.20	2.10	= =96		700 71		
42.196 63.294	116.15	114.40	3.67	7.586 15.172 22.758	100.52 101.30 102.40	102.54	1.97 3.59 4.84	
	Pb(No	O ₃) ₂ .	- 11	30.344	103.70	110.15	5.85	
M. W. =	(Gerlach.)	nsity = 4.41 (C	larke).	MgSO ₄ .				
				M.W.	= 197.6. De	ensity 2.65 (Clas	rke).	
16.509 33.018 82.545	102.4 105.1 114.0	103.74 107.49 118.72	1.29 2.22 3.97	- 00	. %			
	K ₂ C			5.988 11.976 17.964 23.952	100.13 100.40 101.26 102.10	102.26 104.52 106.78 109.04	2.08 3.94 5.16 6.36	
-3/-		-) (Omino dile	1					
6.897	(Gerlach.)	103.01	1.99	Na ₂ SO ₄ . M. W. = 141.80. Density = 2.656 (Clarke).				
13.793	102.22	106.02	3·59 4.82			21030 ((1110)	
27.586 68.965	105.44	112.05	5.90 9.16	7.09	(Gerlach.)	102.67	1.67	
96.551	128.10	142.16	9.89	14.18	102.26	105.34	2.92	

^{*} Authority not given.

TABLE 147. CONTRACTION PRODUCED BY SOLUTION.

Grammes of the salt in 100 of water.	Observed volume.	Calculated volume.	Per cent of contraction.	Grammes of the salt in 100 of water.	Observed volume.	Calculated volume.	Per cent of contraction.	
M. W.		50 ₄ . Density 3.49 (Cl	arke).	$KC_2H_3O_2$. M. W. = 97.90. Density = 1.472 (Gerlach).				
	*				(Gerlach.)			
8.036 16.072 24.108 32.144 40.180	100.06 100.44 101.08 101.90 102.86	102.30 104.61 106.91 109.21	2.19 3.98 5.45 6.69 7.76	9.79 19.58 48.95 97.90	105.2 110.5 127.3 156.4	106.65 113.30 133.26 166.51	1.36 2.47 4.47 6.07	
	Al_2K_2	$(SO_4)_4$. $nsity = 2.228$ (0)		K ₂ C ₄ H ₄ O ₆ . M. W.= 225.72. Density 1.98 (Gerlach).				
	(Gerlach.)				(Gerlach.)			
6.450	100.58	102.90	2.25	22.572 45.144	108.8	111.39	2.33 3.66	
M. W. =		$_{3}$ H $_{3}$ O $_{2}$. sity = 1.476 (G	erlach).	67.716 90.288 112.860 135.432	4.46 4.73 4.95 5.15			
	(Gerlach.)			158.004	159.7	168.36 179.76	5.10	
8.185 16.360	104.1	105.55	1.37					
M. W.	- '	H ₄ O ₆ . ensity 1.83 (Ger	rlach).	Pb(C ₂ H ₃ O ₂) ₂ . M. W. = 162.06. Density 3.251 (Schroeder).				
	(Gerlach.)				(Gerlach.)			
19.362 38.724	106.6	110.57	3·59 5·74	16.206 32.412 81.030	104.7 109.5 124.6	104.98 109.96 124.91	0.27 0.42 0.25	

TABLE 148.

CONTRACTION DUE TO DILUTION OF A SOLUTION.

The first column gives the name of the salt dissolved, the second the amount of the salt required to produce saturation and the third the contraction produced by mixing with an equal volume of water.

Water with equal volume of saturated solution of following salts.	Parts of an- hydrate salt dissolved by 100 parts of H ₂ O at 10° C.	Contraction when mixed. Per cent.	Water with equal volume of saturated solution of following salts.	Parts of an- hydrate salt dissolved by 100 parts of H ₂ O at 10° C.	Contraction when mixed. Per cent.
KCl K ₂ SO ₄ KNO ₈	31.97 10.10 20.77 88.72 35.75 8.04 84.30 16.66 36.60	0.325 0.082 0.144 2.682 0.490 0.107 0.975 0.206 0.273 1.302	NH ₄ NO ₃	185.00 63.30 33.30 30.50 48.36 19.90 4.99 20.92 48.30	0.772 1.135 0.235 0.677 0.835 0.327 0.033 0.218 0.228

^{*} Authority not given. † R. Broom, "Proc. Roy. Soc. Edin." vol. 13, p. 172.

FRICTION.

The following table of coefficients of friction f and its reciprocal ι/f , together with the angle of friction or angle of repose ϕ , is quoted from Rankine's "Applied Mechanics." It was compiled by Rankine from the results of General Morin and other authorities, and is sufficient for all ordinary purposes.

Material.	f	1/f	ф
Wood on wood, dry """ soapy Metals on oak, dry """ wet """ soapy """ wet Leather on oak """ metals, dry """ wet """ wet """ wet """ wet Smooth surfaces, occasionally greased """ continually greased """ continually greased """ oiled * Iron on stone Wood on stone Masonry and brick work, dry """ on dry clay """ on dry clay """ damp mortar """ odry sand, clay, and mixed earth """ damp clay """ wet clay	f -2550 -20 -5060 -2426 -20 -2025 -53 -33 -2738 -56 -36 -23 -15 -1520 -3 -0708 -05 -05 -0708 -05 -07 -08 -07 -08 -07 -08 -09 -74 -51 -33 -25-1.00 -38 -75 -1.00 -31 -81-1.11	1/f 4.00-2.00 5.00 2.00-1.67 4.17-3.85 5.00 5.00-4.00 1.89 3.70-2.86 1.79 2.78 4.35 6.67 6.67-5.00 3.33 14.3-12.50 20.00 33.3-27.6 5.00 9.35 3.33-1.43 2.50 1.67-1.43 1.35 1.96 3.00 4.00-1.00 2.63-1.33 1.00 3.23 1.23-0.0	4 14.0-26.5 11.5 26.5-31.0 13.5-14.5 11.5-14.0 28.0 18.5 15.0-19.5 29.5 20.0 13.0 8.5 8.5-11.5 16.5 4.0-4.5 3.0 1.75-2.0 11.5 6.1 16.7-35.0 22.0 33.0-35.0 36.5 27.0 18.25 14.0-45.0 21.0-37.0 45.0 17.0 39.0-48.0

^{*} Quoted from a paper by Jenkin and Ewing, "Phil. Trans. R. S." vol. 167. In this paper it is shown that in cases where "static friction" exceeds "kinetic friction" there is a gradual increase of the coefficient of friction as the speed is reduced towards zero.

VISCOSITY.

The coefficient of viscosity is the tangential force per unit area of one face of a plate of the

fluid which is required to keep up unit distortion between the faces. Viscosity is thus measured in terms of the temporary rigidity which it gives to the fluid. Solids may be included in this definition when only that part of the rigidity which is due to varying distortion is considered. One of the most satisfactory methods of measuring the viscosity of fluids is by the observation of the rate of flow of the fluid through a capillary tube, the length of which is great in comparison with its diameter. Poiseuille * gave the following formula for calculating the viscosity coefficient in this case: $\mu = \frac{\pi h r^4 s}{8vl}$, where h is the pressure height, r the radius of the tube, s the density of the fluid, v the quantity flowing per unit time, and l the length of the capillary part of the tube. The liquid is supposed to flow from an upper to a lower reservoir joined by the tube, hence h and l are different. The product hs is the pressure under which the flow takes place. Hagenbach † pointed out that this formula is in error if the velocity of flow is sensible, and suggested a correction which was used in the calculation of his results. The amount to be subtracted from h, according to Hagenbach, is $\frac{v^2}{\sqrt{2s}}$, where g is the acceleration due to gravity. Gartenmeister ‡ points out an error in this to which his attention had been called by Finkener, and states that the quantity to be subtracted from h should be simply $\frac{v^2}{\sigma}$; and this formula is

and states that the quantity to be subtracted from h should be simply $\frac{v^{\mu}}{g}$; and this formula is used in the reduction of his observations. Gartenmeister's formula is the most accurate, but all of them nearly agree if the tube be long enough to make the rate of flow very small. None of the formula take into account irregularities in the distortion of the fluid near the ends of the tube, but this is probably negligible in all cases here quoted from, although it probably renders the

results obtained by the "viscosimeter" commonly used for testing oils useless for our purpose.

The term "specific viscosity" is sometimes used in the headings of the tables; it means the ratio of the viscosity of the fluid under consideration to the viscosity of water at a specified temperature.

TABLE 150. - Specific Viscosity of Water at different Temperatures relative to Water at 0° C.

Temp.		Authorities.								
in Co.	Poiseuille.	Graham.		Poiseuille. Graham. Rellstab. Sprung. Wagner.		Slotte.	value.	value in C. G. S. units.		
0 5 10 15 20 25 30 35 40 45 50	100.0 85.2 73.5 64.3 56.7 - 45.2 - - 30.8	100.0 84.4 73.6 63.5 56.0 49.5 44.7 40.2 36.8 33.9	100.0 84.8 72.9 63.7 56.0 50.5 45.0 41.1 37.0 33.9	85.3 73.5 63.0 55.5 48.7 45.0 40.0 37.2 34.5	100.0 84.9 73.2 63.9 56.2 50.5 45.2 40.8 37.0 34.0	100.0 - 63.9 56.2 50.3 44.6 40.3 36.7 34.5 31.7	100.0 - 56.4 - 45.2 36.9	100.0 84.9 73·3 63·7 56.2 49·9 45·0 40·5 36·9 34·2	0.0178§ 0.0151 0.0131 0.0113 0.0100 0.0089 0.0080 0.0072 0.0066 0.0061	

^{* &}quot; Comptes rendus," vol. 15, 1842. " Mém. Serv. Etr." 1846.

^{† &}quot;Pogg. Ann." vol. 109, 1860.

^{‡ &}quot;Zeits. für Phys. Chim." vol. 6, 1890.

[§] The value 0.0178 is taken from a paper by Crookes (Phil. Trans. R. S. L. 1886), where the coefficient is given as $\mu = 0.0177931P$, where $P=1 = 1 + .0336793T + .0002209936P^2$, where T is the temperature of the water in degrees Centigrade. The numbers in the table were calculated not from the formula but from the numbers in the column headed "mean value."

VISCOSITY.

TABLE 151. - Solution of Alcohol in Water.*

Coefficients of viscosity, in C. G. S. units, for solution of alcohol in water.

Temp.	Percentage by weight of alcohol in the mixture.									
C.*	0	8.21	16.60	34.58	43.99	53.36	75-75	87.45	99.72	
0° 5 10 15 20 25 30 35 40 45	0.0181 .0152 .0131 .0114 .0101 0.0090 .0081 .0073 .0067 .0061	0.0287 .0234 .0195 .0165 .0142 0.0123 .0108 .0096 .0086 .0077	0.0453 .0351 .0281 .0230 .0193 0.0163 .0141 .0122 .0108 .0095	0.0732 .0558 .0435 .0435 .0283 0.0234 .0196 .0167 .0143 .0125	0.0707 .0552 .0438 .0353 .0286 0.0241 .0204 .0174 .0150 .0131	0.0632 .0502 .0405 .0332 .0276 0.0232 .0198 .0171 .0149 .0130	0.0407 .0344 .0292 .0250 .0215 0.0187 .0163 .0144 .0127 .0113	0.0294 .0256 .0223 .0195 .0172 0.0152 .0135 .0120 .0107 .0097	0.0180 .0163 .0148 .0134 .0122 0.0110 .0100 .0092 .0084 .0077	
55 60	.0052	.0063	.0076	.0096	.0102	.0102	.0091	.0086	.0065	

The following tables (152-153) contain the results of a number of experiments in the viscosity of mineral oils derived from petroleum residues and used for lubricating purposes.†

TABLE 152. - Mineral Oils. ‡

sity.	Flashing point.	Burning point.	Sp. viso	cosity. W	ater at
Density	° C.	o C.	20° C.	50° C.	100° C.
.931 .921 .906	243 216 189	274 246 208		7.31 3.45	2.9 2.5 1.5
.921	163 132	190	-	27.80	2.8
.904 .891 .878 .855	170 151 108 42	207 18 2 148 45	8.65 4.77 2.94 1.65	2.65 1.86 1.48	1.7 1.3 -
.905 .894 .866	165 139 90	202 270 224	7.60 2.50	3.10 3.60 1.50	1.5

TABLE 153. - Mineral Oils.

Oil.	Density.	o Flashing o point.	o Burning C.	Viscosity at 19° C., water at 19° C.=1.
Cylinder oil Machine oil Wagon oil " Naphtha residue	.917 .914 .914 .911	227 213 148 157 134	274 260 182 187 162	191 102 80 70 55
Oleo-naphtha	.910 .904 .894 .884	219 201 184 185	257 242 222 217	121 66 26 28
Olive oil Whale oil	.916 .879 .875		-	22 9 8

^{*} This table was calculated from the table of fluidities given by Noack (Wied. Ann. vol. 27, p. 217), and shows a maximum for a solution containing about 40 per cent of alcohol. A similar result was obtained for solutions of acetic

acid.

† Table 152 is from a paper by Engler in Dingler's "Poly. Jour." vol. 268, p. 76, and Table 153 is from a paper by Lamansky in the same journal, vol. 248, p. 29. The very mixed composition of these oils renders the viscosity a very uncertain quantity, neither the density nor the flashing point being a good guide to viscosity.

‡ The different groups in this table are from different residues.

VISCOSITY.

This table gives some miscellaneous data as to the viscosity of liquids, mostly referring to oils and paraffins. The viscosities are in C. G. S. units.

	1			
Liquid.	G. %	Coefficient of viscosity.	Temp. Cent. °	Authority.
Ammonia		0.0160 0.0149	11.9	Poiseuille.
Anisol		0.0111	20.0	Gartenmeister.
Glycerine		42.20 25.18 13.87 8.30	2.8 8.1 14.3 20.3	Schottner. " " " "
Chapting and water	94.46	4.94	26.5 8.5	"
"" "" "" "" "" "" "" "" "" "" "" "" ""	80.31 64.05 49.79	7.437 1.021 0.222 0.092	8.5 8.5 8.5	66 66
Glycol		0.0219	0.0	Arrhenius.
Mercury*		0.0184	20 0.0	Koch.
66		0.0157	20.0	66
"		0.0102	300.0	46
Meta-cresol		0.1878	20.0	Gartenmeister.
Olive oil		3.2653†	0.0	Reynolds.
Paraffins: Decane Dodecane		0.0077 0.0126 0.0045 0.0359 0.0033	22.3 23.3 24.0 22.2 23.7	Bartolli & Stracciati. """ """ """" """" """"
Nonane		0.0062	22.3	66 66
Octane Pentane Pentadecane		0.0053 0.0026 0.0281	22.2 2I O 22.0	66 66 66 . 66
Tetradecane Tridecane Undecane		0.0213 0.0155 0 0095	21.9 23.3 22.7	66 66 66 66
Petroleum (Caucasian)		0.0190	17.5	Petroff.
Rape oil		25.3 3.85 1.63 0.96	0.0 10.0 20.0 30.0	O. E. Meyer. "
		0.90	30.0	

^{*} Calculated from the formula $\mu = .017 - .000066t + 0.0000021t^2 - .0000000025t^3$ (vide Koch, Wied. Ann. vol. 14 p. 1).

[†] Given as $\equiv 3.2653 e^{-.0123T}$, where T is temperature in Centigrade degrees.

VISCOSITY.

This table gives the viscosity of a number of liquids together with their temperature variation. The headings are temperatures in Centigrade degrees, and the numbers under them the coefficients of viscosity in C. G. S. units.*

		Temper	ratures Cen	tigrade.		Authority.
Liquid.	100	20'	300	40°	50°	Authority.
Acetone	.0043	.0039	.0036	.0032	.0028	Pribram & Handl.
Acetates: Allyl	.0068	.0061	.0054	.0049	.0044	"
Amyl	.0106	.0089	.0077	.0065	.0058	66 66
Ethyl	.0051	.0044	.0040	.0035	.0032	66 66
Methyl	.0046	.0041	.0036	.0032	.0030	" "
Propyl	.0066	.0059	.0052	.0044	.0039	66 66
Acids:† Acetic Butyric	.0150	.0126	.0109	.0094	.0082	Gartenmeister.
Formic	.0231	.0184	.0149	.0125	.0104	"
Propionic	.0125	.0107	.0092	.0081	.0073	Rellstab.
"	.0139	.0118	.0101	1000.	.0080	Pribram & Handl.
Salicylic	.0320	.0271	.0222	.0181	.0150	Rellstab.
Valeric	.0271	.0220	.0183	.0155	.0127	46
Alcohols: Allyl	.0206	.0163	.0128	.0103	.0083	Pribram & Handl.
Amyl	.0651	.0470	.0344	.0255	.0196	66 66
Butyl	.0424	.0324	.0247	.0190	.0150	
Ethyl Isobutyl	.0150	.0122	.0102	.0085	.0072	Gartenmeister.
Isobutyl Isopropyl	.0580	.0411	.0301	.0223	.0170	66
Methyl	.0073	.0062	.0054	.0047	.0041	46
Propyl	.0293	.0227	.0179	.0142	.0115	66
Aldehyde	.0037	.0037	-	-	-	Rellstab.
Aniline	- "	.0440	.0319	.0241	.0189	Wijkander.
Benzene	.0073	.0064	.0055	.0048	.0043	"
Benzoates: Ethyl	.0265	.0217	.0174	.0146	.0124	Rellstab.
Methyl	.0231	.0196	.0160	.0134	.0115	D " 0 TT 11
Bromides: Allyl	.0061	.0053	.0048	.0045	.0041	Pribram & Handl.
Ethyl Ethylene	.0043	.0037	.0035	_		"
Carbon disulphide	_	.0169	.0035	.0034		Wijkander.
Carbon dioxide (liquid) .	.0008	.0030	.0005	.0034	_	Warburg & Babo.
Chlorides: Allyl	.0039	.0036	.0033	-	_	Pribram & Handl.
Ethylene	-	.0083	.0072	.0063	.0056	66 66
Chloroform	.0064	.0057	.0052	.0046	.0043	" "
Ether	.0026	.0023	.0021	-	-	66 66
Ethyl sulphide	.0048	.0043	.0039	.0035	.0032	"
Iodides: Allyl	.0080	.0072	.0065	.0059	.0053	" "
Ethyl	.0064	.0057	.0052	.0048	.0044	" "
Nitro benzene	.0075	.0066	.0058	.0052	.0047	"
" butane	.0110	.0103	.0089	.0078	.0069	66 66
" ethane	.0080	.0071	.0064	.0057	.0052	66 66
" propane	.0099	.0087	.0077	.0068	.0061	66 66
" toluene	-	.0233	.0190	.0159	.0136	"
Propyl aldehyde	.0047	.0041	.0036	.0033	-	66 66
Toluene	.0068	.0059	.0052	.0047	.0042	66 64

^{*} Calculated from the specific viscosities given in Landolt & Boernstein's "Phys. Chem. Tab." p. 289 et seq., on the assumption that the coefficient for water at 0° C. is .0178.

[†] For inorganic acids, see Solutions.

This table is intended to show the effect of change of concentration and change of temperature on the viscosity of solutions of salts in water. The specific viscosity \times 100 is given for two or more densities and for several temperatures in the case of each solution. μ stands for specific viscosity, and t for temperature Centigrade.

Salt.	Percentage by weight of salt in solution.	Density.	μ	ŧ	μ	t	μ	ŧ	μ	t	Authority.
BaCl ₂	7.60 15.40 24.34		77.9 86.4 100.7	10	44.0 56.0 66.2	30	35.2 39.6 47.7	50		_ _ _	Sprung.
Ba(NO ₃) ₂	2.98 5.24	1.027	62.0 68.1	15	51.I 54.2	25	42.4 44.I	3,5	34.8 36.9	45	Wagner.
CaCl ₂ "	15.17 31.60 39.75 44.09		110.9 272.5 670.0	10 "	71.3 177.0 379.0 593.1	30 "	50.3 124.0 245.5 363.2	50 "	-		Sprung.
Ca(NO ₃) ₂	17.55 30.10 40.13	1.171 1.274 1.386	93.8 144.1 242.6	15	74.6 112.7 217.1	25	60.0 90.7 156.5	35	49.9 75.1 128.1	45	Wagner.
CdCl ₂	11.09 16.30 24.79	1.109 1.181 1.320	77.5 88.9 104.0	15	60.5 70.5 80.4	25	49.1 57.5 64.6	35	40.7 47.2 53.6	45	66
Cd(NO ₃) ₂ "	7.81 15.71 22.36	1.074 1.159 1.241	61.9 71.8 85.1	15	50.1 58.7 69.0	25	41.1 48.8 57·3	3.5	34.0 41.3 47.5	45	66 66
CdSO ₄	7.14 14.66 22.01	1.068 1.159 1.268	78.9 96.2 120.8	15	61.8 72.4 91.8	25	49.9 58.1 73.5	35 "	41.3 48.8 60.1	45	66 66
CoCl ₂	7.97 14.86 22.27	1.081 1.161 1.264	83.0 111.6 161.6	15 "	65.1 85.1 126.6	25 "	53.6 73.7 101.6	35	44.9 58.8 85.6	45	66
Co(NO ₃) ₂	8.28 15.96 24.53	1.073 1.144 1.229	74·7 87.0 110.4	15	57·9 69.2 88.0	25	48.7 55.4 71.5	35	39.8 44.9 59.1	45	66
CoSO ₄	7.24 14.16 21.17	1.086 1.159 1.240	86.7 117.8 193.6	15	68.7 95.5 146.2	25	55.0 76.0 113.0	35	45.1 61.7 89.9	45	46 66
CuCl ₂	12.01 21.35 33.03	1.104 1.215 1.331	87.2 .121.5 178.4	15	67.8 95.8 137.2	25	55.1 77.0 107.6	35	45.6 63.2 87.1	45	66
Cu(NO ₃) ₂ "	18.99 26.68 46.71	1.177 1.264 1.536	97·3 126.2 382.9	15	76.0 98.8 283.8	25	61.5 80.9 215.3	35	51.3 68.6 172.2	45	66
CuSO ₄	6.79 12.57 17.49	1.055 1.115 1.163	79.6 98.2 124.5	.15	61.8 74.0 96.8	25 "	49.8 59.7 75.9	35	41.4 52.0 61.8	45	66
HCl "	8.14 16.12 23.04	1.037 1.084 1.114	71.0 80.0 91.8	15	57.9 66.5 79.9	25	48.3 56.4 65.9	3,5	40.1 48.1 56.4	45	66 66
HgCl ₂	0.23 3·55	1.023	- 76.75	10	58.5 59.2	20	46.8 46.6	30	38.3 38.3	40	66

Salt.	Percentage by weight of salt in solution.	Density.	μ	t	μ	t	μ	t	μ	t	Authority.
HNO ₃	8.37 12.20 28.31	1.067 1.116 1.178	66.4 69.5 80.3	15	54.8 57·3 65.5	25	45·4 47·9 54·9	35	37.6 40.7 46.2	45	Wagner.
H ₂ SO ₄	7.87 15.50 23.43	1.065 1.130 1.200	77.8 95.1 1 <i>2</i> ,2.7	15	61.0 75.0 95.5	25	50.0 60.5 77.5	35	41.7 49.8 64.3	45	66 66
KCl "	10.23 22.21	-	70.0 70.0	10	46.1 48.6	30	33.1 36.4	50	_	-	Sprung.
KBr "	14.02 23.16 34.64	-	67.6 66.2 66.6	10 "	44.8 44.7 47.0	30 "	32.1 33.2 35.7	50		- - -	"
KI	8.42 17.01 33.03 45.98 54.00	11111	69.5 65.3 61.8 63.0 68.8	10	44.0 42.9 42.9 45.2 48.5	30 ""	31.3 31.4 32.4 35.3 37.6	50 "	-	1 1 1 1	66 66 66
KClO ₃	3.51 5.69	-	71.7	10	44·7 45.0	30	31.5 31.4	50		-	66
KNO ₃	6.32 12.19 17.60	-	70.8 68.7 68.8	10 "	44.6 44.8 46.0	30	31.8 32.3 33.4	50	-	-	44
K ₂ SO ₄	5.17 9.77	- ~	77·4 81.0	10	48.6 52.0	30	34·3 36.9	50	_	_	66
K ₂ CrO ₄ "	11.93 19.61 24.26 32.78	1.233	75.8 85.3 97.8 109.5	10	62.5 68.7 74.5 88.9	30	41.0 47.9 54.5 62.6	40	-		" Slotte. Sprung.
K ₂ Cr ₂ O ₇	4.71 6.97	1.032	72.6 73.1	10	55.9 56.4	20	45·3 45·5	30	37·5 37·7	40	Slotte.
LiCl "	7.76 13.91 26.93		96.1 121.3 229.4	10 "	59·7 75·9 142·1	30 "	41.2 52.6 98.0	50	- - -		Sprung.
Mg(NO ₈) ₂	18.62 34.19 39.77	1.102 1.200 1.430	99.8 213.3 317.0	15	81.3 164.4 250.0	25 "	66.5 132.4 191.4	35	56.2 109.9 158.1	45	Wagner.
MgSO ₄	4.98 9.50 19.32	-	96.2 1 30.9 302.2	10 "	59.0 77.7 166.4	30 "	40.9 53.0 106.0	50 "	-		Sprung.
MgCrO ₄	12.31 21.86 27.71	1.089 1.164 1.217	111.3 167.1 232.2	10 "	84.8 125.3 172.6	20 "	67.4 99.0 133.9	30 "	55.0 79.4 106.6	40 "	Slotte.
MnCl ₂ " "	8.01 15.65 30.33 40.13	1.096 1.196 1.337 1.453	92.8 1 30.9 2 56.3 537·3	15 "	71.1 104.2 193.2 393.4	25 " "	57·5 84.0 155.0 300.4	35 "	48.1 68.7 123.7 246.5	45 "	Wagner.

Salt.	Percentage by weight of salt in solution.	Density.	μ	t	μ	t	μ	t	μ	t	Authority.
Mn(NO ₈) ₂	18.31 29.60 49.31	1.148 1.323 1.506	96.0 167.5 396.8	15	76.4 126.0 301.1	25	64.5 104.6 221.0	35	55.6 88.6 188.8	45	Wagner.
MnSO ₄	11.45 18.80 22.08	1.147 1.251 1.306	129.4 228.6 661.8	15	98.6 172.2 474·3	25	78.3 137.1 347.9	3.5	63.4 107.4 266.8	45	66
NaCl "	7.95 14.31 23.22		82.4 94.8 128.3	10 "	52.0 60.1 79.4	30 "	31.8 36.9 47.4	50 "	-		Sprung.
NaBr "	9.77 18.58 27.27	=	75.6 82.6 95.9	10 "	48.7 53.5 61.7	30 "	34·4 38·2 43·8	50 "	-		66
NaI "	8.83 17.15 35.69 55.47		73.1 73.8 86.0 157.2	10 " "	46.0 47.4 55.7 96.4	30 "	32.4 33.7 40.6 66.9	50 "	-	1 1 1	66 66 66
NaClO ₈	11.50 20.59 33.54	-	78.7 88.9 121.0	10 "	50.0 56.8 75.7	30 "	35·3 40·4 53·0	50	-	-	66
NaNO ₈ " "	7.25 12.35 18.20 31.55	- - -	75.6 81.2 87.0 121.2	10 "	47.9 51.0 55.9 76.2	30 "	33.8 36.1 39.3 53.4	50 "	-		66 66 66
Na ₂ SO ₄	4.98 9.50 14.03 19.32	-	96.2 130.9 187.9 302.2	10 " "	59.0 77.7 107.4 166.4	30 "	40.9 53.0 71.1 106.0	50 "	-		66 66 66
Na ₂ CrO ₄	5.76 10.62 14.81	1.058 1.112 1.164	85.8 103.3 127.5	10 "	66.6 79.3 97.1	20 "	53·4 63·5 77·3	30	43.8 52.3 63.0	40 "	Slotte.
NH ₄ Cl " "	3.67 8.67 15.68 23.37	-	71.5 69.1 67.3 67.4	10	45.0 45.3 46.2 47.7	30 "	31.9 32.6 34.0 36.1	50 "	-	1 1 1 1	Sprung.
NH ₄ Br "	1 5.97 2 5.33 36.88	-	65.2 62.6 62.4	10	43.2 43.3 44.6	30 "	31.5 32.2 34.3	50 "	-		66
NH ₄ NO ₃ " " "	5.97 12.19 27.08 37.22 49.83	1 1 1 1	69.6 66.8 67.0 71.7 81.1	10	44·3 44·3 47·7 51·2 63·3	30	31.6 31.9 34.9 38.8 48.9	50	-	1 1 1 1 1	66 66 66
(NH ₄) ₂ SO ₄	8.10 15.94 25.51	=	107.9 120.2. 148.4	10 "	52.3 60.4 74.8	30 "	37.0 43.2 54.1	50 %	- - -		66 66

Salt.	Percentage by weight of salt in solution.	Density.	μ	t	μ	ż	μ	t	μ	t	Authority.
(NH ₄) ₂ CrO ₄	10.52 19.75 28.04	1.063 1.120 1.173	79.3 88.2 101.1	10 "	62.4 70.0 80.7	20 "	57.8 60.8	30.	42.4 48.4 56.4	40 - -	Slotte.
(NH ₄) ₂ Cr ₂ O ₇	6.85 13.00 19.93	1.039 1.078 1.126	72.5 72.6 77.6	10	56.3 57.2 58.8	20 "	45.8 46.8 48.7	30 "	38.0 39.1 40.9	40	66 66
NiCl ₂	11.45 22.69 30.40	1.109 1.226 1.337	90.4 140.2 229.5	15	70.0 109.7 171.8	25	57.5 87.8 139.2	35	48.2 72.7 111.9	45	Wagner.
Ni(NO ₃) ₂	16.49 30.01 40.95	1.136 1.278 1.388	90.7 135.6 222.6	15	70.1 105.9 169.7	25	57·4 85·5 128.2	35	48.9 70.7 152.4	45	66 66
NiSO ₄	10.62 18.19 25.35	1.092 1.198 1.314	94.6 1 54.9 298.5	15	73·5 119·9 224·9	25	60.1 99.5 173.0	35	49.8 75.7 152.4	45	66
Pb(NO ₃) ₂	17.93 32.22	1.179	74.0 91.8	15	59.1 72.5	25	48.5 59.6	3,5	40.3 50.6	45	66
Sr(NO ₃) ₂	10.29 21.19 32.61	1.088 1.124 1.307	69.3 87.3 116.9	15	56.0 69.2 93.3	25	45.9 57.8 76.7	35	39.1 48.1 62.3	45	66
ZnCl ₂	15.33 23.49 33.78	I.146 I.229 I.343	93.6 111.5 151.7	15	72.7 86.6 117.9	25	57.8 69.8 90.0	35	48.2 57.5 72.6	45	66
Zn(NO ₃) ₂ "	1 5.95 30.23 44.50	1.115 1.229 1.437	80.7 104.7 167.9	15 "	64.3 85.7 130.6	25	52.6 69.5 105.4	35	43.8 57.7 87.9	45	66
ZnSO ₄	7.12 16.64 23.09	1.106 1.195 1.281	97.1 156.0 232.8	15	79.3 118.6 177.4	25	62.7 94.2 135.2	35	51.5 73.5 108.1	45	66

SPECIFIC VISCOSITY.*

	Normal s	solution.	½ nor	mal.	1 nor	mal.	l nor	mal.	
Dissolved salt.	Density.	Specific viscosity.	Density.	Specific viscosity.	Density.	Specifie viscosity.	Density.	Specific viscosity.	Authority.
Acids: Cl ₂ O ₃	1.0562 1.0177 1.0485 1.0332 1.0303	1.012 1.067 1.052 1.027 1.090	1.0283 1.0092 1.0244 1.0168 1.0154	1.003 1.034 1.025 1.011 1.043	1.0143 1.0045 1.0126 1.0086 1.0074	1.000 1.017 1.014 1.005 1.022	1.0074 1.0025 1.0064 1.0044 1.0035	0.999 1.009 1.006 1.003 1.008	Reyher. " " Wagner.
Aluminium sulphate Barium chloride " nitrate Calcium chloride . " nitrate	1.0550 1.0884 - 1.0446 1.0596	1.406 1.123 - 1.156 1.117	1.0278 1.0441 1.0518 1.0218 1.0300	1.178 1.057 1.044 1.076 1.053	1.0138 1.0226 1.0259 1.0105 1.0151	1.082 1.026 1.021 1.036 1.022	1.0068 1.0114 1.0130 1.0050 1.0076	1.038 1.013 1.008 1.017 1.008	66 66 66
Cadmium chloride . " nitrate . " sulphate . Cobalt chloride . " nitrate . " sulphate .	1.0779 1.0954 1.0973 1.0571 1.0728 1.0756	1.134 1.165 1.348 1.204 1.166 2.354	1.0394 1.0479 1.0487 1.0286 1.0369 1.0383	1.063 1.074 1.157 1.097 1.075 1.160	1.0197 1.0249 1.0244 1.0144 1.0184 1.0193	1.031 1.038 1.078 1.048 1.032 1.077	1.0098 1.0119 1.0120 1.0058 1.0094 1.0110	1.020 1.018 1.033 1.023 1.018 1.040	66 66 66 66 66
Copper chloride	1.0624 1.0755 1.0790 1.1380 1.0243 1.0453	1.205 1.179 1.358 1.101 1.142 1.290	1.0313 1.0372 1.0402 0.0699 1.0129 1.0234	1.098 1.080 1.160 1.042 1.066	1.0158 1.0185 1.0205 1.0351 1.0062 1.0115	1.047 1.040 1.080 1.017 1.031 1.065	1.0077 1.0092 1.0103 1.0175 1.0030 1.0057	I.027 I.018 I.038 I.007 I.012 I.032	66 66 66 66 66
Magnesium chloride " nitrate . " sulphate Manganese chloride " nitrate . " sulphate	1.1375 1.0512 1.0584 1.0513 1.0690 1.0728	1.201 1.171 1.367 1.209 1.183 1.364	1.0188 1.0259 1.0297 1.0259 1.0349 1.0365	1.094 1.082 1.164 1.098 1.087 1.169	1.0091 1.0130 1.0152 1.0125 1.0174 1.0179	1.044 1.040 1.078 1.048 1.043	1.0043 1.0066 1.0076 1.0063 1.0093	1.021 1.020 1.032 1.023 1.023 1.037	66 66 66
Nickel chloride	1.0591 1.0755 1.0773 1.0466 1.0935 1.0605	1.205 1.180 1.361 0.987 1.113 0.975 1.105	1.0308 1.0381 1.0391 1.0235 1.0475 1.0305 1.0338	1.097 1.084 1.161 0.987 1.053 0.982 1.049	1.0144 1.0192 1.0198 1.0117 1.0241 1.0161 1.0170	I.044 I.042 I.075 0.990 I.022 0.987 I.021	1.0067 1.0096 1.0017 1.0059 1.0121 1.0075 1.0084	1.021 1.019 1.032 0.993 1.012 0.992 1.008	66 66 66
Sodium chloride	1.0401 1.0786 1.0710 1.0554 1.1386	1.097 1.064 1.090 1.065 1.058	1.0208 1.0396 1.0359 1.0281 1.0692	1.047 1.030 1.042 1.026 1.020	1.0107 1.0190 1.0180 1.0141 1.0348	1.024 1.015 1.022 1.012 1.006	1.0056 1.0100 1.0092 1.0071 1.0173	I.013 I.008 I.012 I.007 I.000	Reyher. " " Wagner.
Strontium chloride . " nitrate . Zinc chloride " nitrate " sulphate	1.0676 1.0822 1.0509 1.0758 1.0792	1.141 1.115 1.189 1.164 1.367	1.0336 1.0419 1.0302 1.0404 1.0402	1.067 1.049 1.096 1.086 1.173	1.0171 1.0208 1.0152 1.0191 1.0198	1.034 1.024 1.053 1.039 1.082	1.0084 1.0104 1.0077 1.0096 1.0094	1.014 1.011 1.024 1.019 1.036	66 66 66

^{*} In the case of solutions of salts it has been found (vide Arrhennius, Zeits, für Phys. Chem. vol. 1, p. 285) that the specific viscosity can, in many cases, be nearly expressed by the equation $\mu = \mu_1 n$, where μ_1 is the specific viscosity for a normal solution referred to the solvent at the same temperature, and n the number of gramme molecules in the solution under consideration. The same rule may of course be applied to solutions stated in percentages instead of gramme molecules. The table here given has been compiled from the results of Reyher (Zeits. für Phys. Chem. vol. 2, p. 749) and of Wagner (Zeits. für Phys. Chem. vol. 5, p. 31) and illustrates this rule. The numbers are all for $a_2 c_1 c_2 c_2 c_3 c_4 c_4 c_4 c_5 c_5 c_6 c_6$

VISCOSITY OF CASES AND VAPORS.

The values of μ given in the table are 106 times the coefficients of viscosity in C, G. S. units.

Substance.	Temp.	μ	Authority.	Substance.	Temp.	μ	Authority.
Acetone	18.0 0.0 0.0 16.7 66.8 78.4	78. 172 168 183 135 142 142 162	Puluj. Thomlinson. Obermeyer. Puluj. Stendel. " " " "	Carbon dioxide Carbon monoxide Chlorine Chloroform Ether Ethyl iodide Methyl " Mercury Mercury	12.8 100.0 0.0 20.0 17.4 16.0 73.3 44.0 270.0 300.0	147 208 163 129 147 103 73 216 232 489 536	Schumann. Obermeyer. Graham. Puluj. Stendel. Koch.*
Ammonia	0.0 20.0 19.0 100.0	96 108 79 118	Graham. Schumanni	Water	330.0 360.0 390.0 0.0 16.7	536 582 627 671 90 97 132	Puluj. L. Meyer & Schumann.

^{*} The values here given were calculated from Koch's table (Wied. Ann. vol. 19, p. 869) by the formula $\mu = 489 \left[1 + 746 \left(t - 270\right)\right]$.

SMITHSONIAN TABLES.

COEFFICIENT OF VISCOSITY OF CASES.

The following are a few of the formulæ that have been given for the calculation of the coefficient of viscosity of gases for different temperatures.

Gas.	Value of μ.	Authority.
Air	μ_0 (1 + .002751 t 00000034 t^2) .000172 (1 + .00273 t) .0001683 (1 + .00274 t)	Holman. O. E. Meyer. Obermeyer.
Carbon dioxide	μ_0 (1 + .003725 t 00000264 t^2 + .00000000417 t^8) .0001414 (1 + .00348 t)	Holman. Obe rmeye r.
Carbon monoxide .	.0001630 (1 + .00269 <i>t</i>)	16
Ethylene	.0000966 (1 + .00350 t)	"
Ethylene chloride .	.0000935 (1 + .00381 t)	46 .
Hydrogen	.0000822 (1 + .00249 t)	66
Nitrogen	.0001635 (1 + .00269 t)	"
Nitrous oxide (N2O)	.0001408 (1 + .00345 t)	"
Oxygen	.0001873 (1 + .00283 t)	66

DIFFUSION OF LIQUIDS AND SOLUTIONS OF SALTS INTO WATER.

The coefficient of diffusion as tabulated below is the constant which multiplied by the rate of change of concentration in any direction gives the rate of flow in that direction in C. G. S. units. Suppose two liquids diffusing into each other, and let ρ be the quantity of one of them per unit volume at a point A, and ρ the quantity per unit volume at an adjacent point B, and α the distance from A to B. Then if α is small the rate of flow from A towards B is equal to $k(\rho - \rho')/x$, where k is the coefficient of diffusion. Similarly for solutions of salts diffusing into the solvent medium, ρ and ρ' being taken as the quantities of the salt per unit volume. The results indicate that k depends on the absolute density of the solution. Under ℓ will be found the concentration in grammes of the salt per 100 cu. cms. of the solution; under n the number of gramme-molecules of water per gramme-molecule of salt or of acid or other liquid.

Substance.	c	n	k×107	Temp. C.	Authority.
Ammonia	_	16.0	123	4.5	Scheffer.*
"	_	85.0	123	4.5	46
Ammonium chloride	23	_	135	10.0	Schuhmeister.†
Barium chloride	_	61.0	152	17:5	Scheffer
C-1-1 11 11	_	46.0	76 83	8.0	"
Calcium chloride	_	13.0	74	9.0	"
" "	-	384.0	79	9.0	66
" "	10	_	79	10.0	Schuhmeister.
Copper "	10	_	53	10.0	"
Copper "	10		50	10.0	66
Hydrochloric acid	_	5.0	267	0.0	Scheffer.
66 66	-	9.8	215	0.0	44
" " "	_	14.1	195	0.0	"
" "	-	27.I	176	0.0	"
"		129.5 7.2	309	0.0	"
66 56	_	27.6	245	11.0	46
" "	-	69.4	234	11.0	66
	-	108.4	213	11.0	"
Lead nitrate	_	136.0	76 82	12.0	"
Lithium chloride	14	514.0	81	10.0	Schuhmeister.
" bromide	20	_	93	10.0	"
66 66	38	-	100	10.0	46
" iodide	17	-	93	10.0	66
Magnesium sulphate	10	-	32	10.0	Scheffer.
46 66		45.0 184.0	32 37	5·5 5·5	Schener.
66 66	_	30.0	31	10.0	46
" "	-	248.0	39	10.0	66
Potassium chloride	-	32.0	98	7.0	66
" "	-	107.0	106	7.0	Schuhmeister.
66 66	30		127	10.0	"
" · bromide · · ·	10	_	131	10.0	"
" "	30		144	100	"
iodide	10	-	130	10.0	66
" "	30		145	10.0	"
" nitrate	90	_		10.0	46
" sulphate	13	-	93 87	10.0	"
Sodium chloride	10	-	97	10.0	46
" bromide	30	-	106	10.0	"
" iodide	30	_	99	10.0	66
66 66	30	_	100	100	"
nitrate	10	-	69	10.0	44
" carbonate	13	-	45	10.0	"
" sulphate	10	20	76	9.0	Scheffer.
Withie acid	_	2.9 7·3	234	9.0	schener.
" "	_ =	35.0	206	9.0	46
	-	426.0	200	9.0	"
Sulphuric acid	-	18.8	124	8.0	"
44 44	_	686.0	115	9.0	66
"	_	0.5	150	13.0	46
	-	35.0	144	13.0	"
	1			1	

^{* &}quot; Z. für Phys. Chem." 2, p. 390.

^{† &}quot;Wien. Akad. Ber." vol. 79, 2. Abth. p. 603.

DIFFUSION OF CASES AND VAPORS.

Coefficients of diffusion of vapors in C. G. S. units. The coefficients are for the temperatures given in the table and a pressure of 76 centimetres of mercury.*

Vapor.	Temp. C.	kt for vapor diffusing into hydrogen.	kt for vapor diffusing into air.	kt for vapor diffusing into carbon dioxide.
Acids: Formic " Acetic " Isovaleric	0.0 65.4 84.9 0.0 65.5 98.5	0.5131 0.7873 0.8830 0.4040 0.6211 0.7481 0.2118	0.1315 0.2035 0.2244 0.1061 0.1578 0.1965 0.0555	0.0879 0.1343 0.1519 0.0713 0.1048 0.1321 0.0375
Alcohols: Methyl " Ethyl " Propyl " Butyl " Amyl " Hexyl " Carbon disulphide	98.0 0.0 25.6 49.6 0.0 40.4 66.9 0.0 66.9 83.5 0.0 99.0 0.0 99.1 0.0 99.0 0.0 19.9 45.0	0.3934 0.5001 0.6015 0.6738 0.3806 0.5030 0.5430 0.3153 0.4832 0.5434 0.2716 0.5045 0.2351 0.4362 0.1998 0.3712 0.2940 0.3409 0.3993 0.3690	0.1031 0.1325 0.1620 0.1809 0.0994 0.1372 0.1475 0.0803 0.1237 0.1379 0.0681 0.1265 0.0589 0.1094 0.0499 0.0927 0.0751 0.0877 0.1011	0.0696 0.0880 0.1046 0.1234 0.0693 0.0898 0.1026 0.0577 0.0901 0.0976 0.0476 0.0884 0.0422 0.0784 0.0351 0.0651 0.0527 0.0609 0.0715
Esters: Methyl acetate Ethyl " Methyl butyrate. Ethyl " valerate Ether Water "	0.0 20.3 0.0 20.3 0.0 46.1 0.0 92.1 0.0 96.5 0.0 97.6 0.0 19.9 0.0 49.5 92.4	0.4255 0.4626 0.3357 0.3928 0.2373 0.3729 0.2422 0.4308 0.2238 0.4112 0.2050 0.3784 0.2960 0.3410 0.6870 1.0000 1.1794	0.1015 0.1120 0.0852 0.1013 0.0630 0.0970 0.0640 0.1139 0.0573 0.1064 0.0505 0.0932 0.0775 0.0893	0.0726 0.0789 0.0572 0.0679 0.0450 0.0666 0.0438 0.0809 0.0406 0.0756 0.0366 0.0676 0.06552 0.0636 0.1310 0.1811 0.2384

^{*} Taken from Winkelmann's papers (Wied. Ann. vols. 22, 23, and 26). The coefficients for 0° were calculated by Winkelmann on the assumption that the rate of diffusion is proportional to the absolute temperature. According to the investigations of Loschmidt and of Obermeyer the coefficient of diffusion of a gas, or vapor, at 0° C. and a pressure of 76 centimetres of mercury may be calculated from the observed coefficient at another temperature and pressure by the formula $k_0 = k_T \left(\frac{T_0}{T}\right)^n \frac{P}{\rho}$, where T is temperature absolute and ρ the pressure of the gas. The exponent n is found to be about 1.75 for the permanent gases and about 2 for condensible gases. The following are examples: Air $-CO_2$, n=1.068; $CO_2 - N_2O$, n=2.05; $CO_3 - H$, n=1.742; CO - O, n=1.755; H - O, n=1.755; O - N, n=1.792. Winkelmann's results, as given in the above table, seem to give about 2 for vapors diffusing into air, hydrogen or carbon dioxide.

COEFFICIENTS OF DIFFUSION FOR VARIOUS CASES AND VAPORS.*

Gas or vapor diffusing.	Gas or vapor diffused into.	Temp.	Coefficient of diffusion.	Authority.
Gas or vapor diffusing. Air Carbon dioxide """ """ Carbon disulphide Carbon monoxide """ """ Ether Hydrogen """ "" "" Nitrogen Oxygen "" Sulphur dioxide	Carbon dioxide Oxygen Air Carbon monoxide Ethylene Hydrogen Methane Nitrous oxide Oxygen Air Carbon dioxide Ethylene Hydrogen Oxygen Air Hydrogen Oxygen Air Larbon dioxide Ethylene Hydrogen Oxygen Air Carbon dioxide Ethylene Hydrogen Oxygen Air Air Carbon dioxide Ethane Ethylene Methane Nitrous oxide Oxygen Oxygen Oxygen Oxygen Oxygen Carbon dioxide Hydrogen Nitrogen Hydrogen Nitrogen Hydrogen	Temp. C. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		Authority. Obermayer. Loschmidt. Waitz. Loschmidt. Obermayer. " Loschmidt. Stefan. Obermayer. Loschmidt. Obermayer. " " " " " " " " Loschmidt. " " " " " " " Loschmidt. " " " " " " Loschmidt. " Loschmidt. " Loschmidt. " " Loschmidt. Obermayer. Loschmidt.
Water	Air "Hydrogen	18	0.2390 0.2475 0.8710	Guglielmo.

^{*} Compiled for the most part from a similar table in Landolt & Boernstein's "Phys. Chem. Tab."

OSMOSE.

The following table given by H. de Vries* illustrates an apparent relation between the isotonic coefficient † of solutions and the corresponding lowering of the freezing-point and the vapor pressure. The freezing-points are taken on the authority of Raoult, and the vapor pressures on the authority of Tammann.\$

Substance.	Formula.	Isotonic coefficient × 100.	Molecular lowering of the freezing point X 100.	Molecular lowering of the vapor pressure X 1000.
Glycerine Cane sugar Tartaric acid Magnesium sulphate Potassium nitrate Sodium nitrate Potassium chloride Sodium chloride Ammonium chloride Potassium acetate Potassium oxalate Potassium sulphate Magnesium chloride Calcium chloride	C ₃ H ₈ O ₃ C ₁₂ H ₂₂ O ₁₁ C ₄ H ₆ O ₆ MgSO ₄ KNO ₃ NaNO ₈ KCl N2Cl N4Cl KC ₂ H ₃ O ₂ K ₂ C ₂ O ₄ K ₂ SO ₄ MgCl ₂ CaCl ₂	178 188 202 196 300 300 287 305 300 300 393 393 433 433	171 185 195 192 308 337 336 351 348 345 450 390 488 466	- 188 156 267 296 313 330 313 372 351 513 517

TABLE 164.

OSMOTIC PRESSURE.

The following numbers give the result of Pfeffer's § measurement of the magnitude of the osmotic pressure for a one per cent sugar solution. The result was found to agree with that of an equal molecular solution of hydrogen. The value for the hydrogen solution is given in the third column of the table.

Temperature C.	Osmotic pressure in atmospheres.	0.649(1+.00367£)
6.8	0.664	0.665
13.7	0.691	0.681
14.2	0.671	0.682
15.5	0.684	0.686
22.0	0.721	0.701
32.0	0.716	0.725
36.0	0.746	0.735

^{* &}quot;Zeits. für Phys. Chem." vol. 2, p. 427.
† The isotonic coefficient is the relative value of the molecular attraction of the different salts for water or the relative value of the osmotic pressures for normal solutions. In the above table the coefficient for KNO₃ was taken as 3 arbitrarily and the others compared with it. The concentrations of different salts which give equal osmotic pressures are called by Tammann and others isosmotic concentrations; they are sometimes called isotonic concentrations. The reciprocals of the numbers of molecules in the isotonic concentrations are called by De Vries the isotonic coefficient.

^{115. \$} See also Tammann, "Wied. Ann." vol. 34, p. 315. \$ Winkelmann's " Handbuch der Physik," vol. 1, p. 632.

SMITHSONIAN TABLES.

PRESSURE OF AQUEOUS VAPOR, ACCORDING TO REGNAULT.

The last four columns were calculated from the data given in the second column and the density of mercury.

Temp. O Cent.	Pressure: mm. of mercury.	Grammes per sq. centimetre.	Pounds per sq. inch.	Pressure: inches of mercury.	Pressure: atmospheres.	Temp. O Fahr.	Temp. ° Cent.	Pressure: mm. of mercury.	Grammes per sq. centimetre.	Pounds per sq.	Pressure: inches of mercury.	Pressure: atmospheres.	Temp. ° Fahr.
0 1 2 3 4	4.60 4.94 5.30 5.69 6.10	6.254 6.716 7.206 7.736 8.291	0.0890 .0955 .1025 .1100	0.181 .194 .209 .224 .240	0.0061 .0065 .0070 .0075	32.0 33.8 35.6 37.4 39.2	40 41 42 43 44	54.91 57.91 61.01 64.35 67.79	74.653 78.678 82.947 87.488 92.165	1.061 1.121 1.216 1.244 1.312	2.162 2.280 2.404 2.533 2.669	0.072 .076 .080 .085	105.8 107.6 109.4
5 6 7 8 9	6.53 7.00 7.49 8.02 8.57	8.878 9.517 10.183 10.904 11.651	0.1263 .1354 .1452 .1551 .1657	0.257 .276 .295 .316 .338	0.0086 .0092 .0099 .0107	41.0 42.8 44.6 46.4 48.2	45 46 47 48 49	71.39 75.16 79.09 83.20 87.50	97.059 102.184 107.528 113.115 118.962	1.381 1.454 1.530 1.609 1.692	2.811 2.959 3.114 3.276 3.444	0.094 .099 .104 .109	116.6
10 11 12 13 14	9.17 9.79 10.46 11.16 11.91	12.467 13.310 14.207 15.173 16.192	0.1773 .1893 .2023 .2158 .2303	0.361 .386 .412 .439 .469	0.012 .013 .014 .015	50.0 51.8 53.6 55.4 57.2	50 51 52 53 54	91.98 96.66 101.54 106.64 111.95	125.05 131.42 138.04 144.98 152.20	1.78 1.87 1.96 2.06 2.17	3.62 3.81 4.00 4.20 4.41	0.121 .127 .134 .140	129.2
15 16 17 18 19	12.70 13.54 14.42 15.36 16.35	17.266 18.408 19.605 20.883 22.229	0.2456 .2618 .2789 .2970 .3162	0.500 ·533 ·568 ·605 ·644	0.017 .018 .019 .020	59 0 60.8 62.6 64.4 66.2	55 56 57 58 59	117.48 123.24 129.25 135.51 142.02	159.72 167.55 175.72 184.23 193.08	2.27 2.39 2.50 2.62 2.75	4.63 4.85 5.09 5.33 5.59	0.155 .163 .170 .178 .187	132.8 134.6 136.4
20 21 22 23 24	17.39 18.50 19.66 20.89 22.18	23.643 25.152 26.729 28.401 30.155	0.3363 ·3577 .3802 .4040 .4289	0.685 .728 .774 .822 .873	0.023 .024 .026 .028	68.0 69.8 71.6 73.4 75.2	60 61 62 63 64	148.79 155.84 163.17 170.79 178.71	202.29 211.87 221.84 232.20 242.97	2.88 3.01 3.16 3.30 3.46	5.86 6.14 6.42 6.72 7.04	0.196 .205 .215 .225 .235	
25 26 27 28 29	23.55 24.99 26.51 28.10 29.78	32.018 33.975 36.042 38.204 40.488	0.4554 .4833 .5126 .5434 .5759	0.927 .984 1.044 .106 .172	0.031 .033 .034 .037 .039	77.0 78.8 80.6 82.4 84.2	65 66 67 68 69	186.95 195.50 204.38 213.60 223.17	290.40	3.62 3.78 3.95 4.13 4 .32	7.36 7.70 8.05 8.41 8.79	0.246 .257 .267 .281 .494	150.8 152.6 154.4
30 31 32 33 34	31.55 33.41 35.36 37.41 39.57	42.894 45.423 48.074 50.861 53.798	0.6101 .6461 .6838 .7234 .7655	.315 .392 .473 .558	0.042 .044 .047 .049 .052	86.0 87.8 89.6 91.4 93.2	70 71 72 73 74	233.09 243.39 254.07 265.15 276.62	330.90 345.42 360.49 376.08	4.51 4.71 4.91 5.12 5.35	9.18 9.58 10.00 10.44 10.89	0.306 .320 .334 .349 .364	159.8
35 36 37 38 39	41.83 44.20 46.69 49.30 52.04	56.870 60.093 63.478 67.026 70.752	0.810 .855 .903 .954 1.007	1.647 .740 .838 .941 2.049	0.055 .058 .061 .065 .068	95.0 96.8 98.6 100.4 102.2	75 76 77 78 79	288.52 300.84 313.60 326.81 340.49	409.01 426.36 444.32	5.58 5.82 6.06 6.32 6.58	11.36 11.84 12.35 12.87 13.40	0.380 .396 .414 .430 .448	168.8 170.6 172.4

PRESSURE OF AQUEOUS VAPOR, ACCORDING TO RECNAULT.

Temp. O Cent.	Pressure: mm. of mercury.	Grammes per sq. centimetre.	Pounds per sq. inch.	Pressure: inches of mercury.	Pressure: atmospheres.	Temp. ° Fahr.	Temp. O Cent.	Pressure: mm. of mercury.	Grammes per sq. centimetres.	Pounds per sq.	Pressure: inches of mercury.	Pressure:	Temp. · Fahr.
80 81 82 83 84	354.64 369.29 384.44 400.10 416.30	482.15 502.07 522.67 543.96 565.99	6.85 7.14 7.44 7.74 8.05	13.96 14.54 15.14 15.75 16.39	.506	176.0 177.8 179.6 181.4 183.2	121 122 123	1491.28 1539.25 1588.47 1638.96 1690.76	2027.48 2092.70 21 59.62 2228.26 2298.69	28.85 29.78 30.73 31.70 32.70	58.71 60.61 62.54 64.53 66.56	.091	249.8 251 ₁ 6
85 86 87 88 89	433.04 450.34 468.22 486.69 505.76	588.74 612.26 636.57 661.68 687.61	8.37 8.71 9.05 9.41 9.78	17.0\$ 17.73 18.43 19.16 19.91	.640	185.0 186.8 188.6 180.4 192.2	127	1743.88 1798.35 1854.20 1911.47 1970.15	2598.76	33.72 34.78 35.86 36.97 38.11	68.66 70.80 73.90 75.25 77.57	.366 .430	257.0 258.8 269.6 262.4 264.2
90 91 92 93 94	525.45 545.78 566.76 588.41 610.74	714.38 740.31 770.54 799.98 830.34	10.16 10.56 10.95 11.38 11.81	21.49 22.31 23.17 24.04	.746 .774 .804	195.8 197.6 199.4 201.2	131	2030.28 2091.94 2155.03 2219.69 2285.92	2844.12 2929.89 3017.80	40.47 41.68	79.93 82.36 84.84 87.39 89.99	.030	266.0 267.8 269.6 271.4 273.2
95 96 97 98 99	633.78 657.54 682.03 707.28 733.31	861.66 893.97 927.26 961.59 996.98	12.26 12.71 13.19 13.68 14.18	24.95 25.89 26.85 27.85 28.87	.897	203.0 204.8 206.6 208.4 210.2	137 138	2353.73 2423.16 2494.23 2567.00 2641.44	3391.06	45.52 46.87 48.24 49.65 51.06	92.67 95.39 98.19 101.06 103.99	.188 .282 .378	
100 101 102 103 104	760.00 787.59 816.01 845.28 875.41	1033.26 1070.78 1109.41 1149.21 1190.17	14.70 15.23 15.79 16.35 16.94	29.92 31.01 32.13 33.28 34.46	.036 .074 .112	212.0 213.8 215.6 217.4 219.2	142 143	2717.63 2795.57 2875.30 2956.86 3040.26	3694.78 3800.75 3909.14 4020.03 4133.42	54.07 55.60 57.16	106.99 110.06 113.20 116.41 119.69	.678 .783 .890	285.8 287.6 289.4
105 106 107 108 109	906.41 938.31 971.14 1004.91 1039.65		17.53 18.15 18.78 19.44 20.11	35.69 36.94 38.23 39.56 40.93	.235	221.0 222.8 224.6 226.4 228.2	146 147 148	3125.55 3212.74 3301.87 3392.98 3486.09	4249.37 4367.91 4489.09 4612.96 4739.55	60.44 62.13 63.86 65.62 67.41	126.48	.227 ·344 ·464	
111 112 113	1075.37 1112.09 1149.83 1188.61 1228.47	1462.03 1511.97 1563.26 1615.99 1670.18	20.80 21.51 22.24 22.99 23.76	43.78 45.25 46.80	.463 .513 .564	230.0 231.8 233.6 235.4 237.2	151 152 153	3581.2 3678.4 3777.7 3879.2 3982.8	4868.9 5001.1 5136.1 5275.0 5414.8	71.14 73.06 75.02	148.7	.840 .971 5.104	302.0 303.8 305.6 307.4 309.2
116 117 118	1269.41 1311.47 1354.66 1399.02 1444.55	1902.05	26.20	49.98 51.63 53.34 55.08 56.87	.726 .782 .841	239.0 240.8 242.6 244.4 246.2	157	4088.6 4196.6 4306.9 4419.5 4534.4	5558.6 5705.5 5855.5 6008.5 6164.7	79.07 81.22 83.29 85.47 87.69	165.2 169.6 174.0	.522 .667 .815	311.0 312.8 314.6 316.4 318.2

PRESSURE OF AQUEOUS VAPOR, ACCORDING TO RECNAULT.

Temp. O Cent.	Pressure: mm. of mercury.	Grammes per sq. centimetre.	Pounds per sq. inch.	Pressure: inches of mercury.	Pressure: atmospheres.	Temp. ° Fahr.	Temp. O Cent.	Pressure: mm. of mercury.	Grammes per sq. centimetre.	Pounds per sq. inch.	Pressure: inches of mercury.	Pressure: atmospheres.	Temp. O Fahr.
160 161 162 163 164 165	4651.6 4771.3 4893.4 5017.9 5145.0 5274.5 5406.7	6486.8 6652.8 6822.2 6994.9 7171.1 7350.7	97.04 99.50 102.01 104.56	187.9 192.7 197.6 202.6 207.7 212.9	6.278 6.439 6.603 6.770 6.940 7.114	323.6 325.4 327.2 329.0 330.8	196 197 198 199 200	10519.6 10746.0 10975.0 11209.8 11447.5 11689.0 11934.4	14609.8 14921.2 15240.4 15563.5 15891.9 16225.5	207.81 212.25 216.77 221.37 226.04 230.79	423.1 432.1 441.3 450.7 460.1 469.8	14.139 14.441 14.749 15.062 15.380 15.703	384.8 386.6 388.4 390.2 392.0 393.8
167 168 169 170	5541.4 5678.8 5818.9 5961.7 6107.2	7720.7 7911.1	107.18 109.84 112.53 115.29 118.11	223.6 229.1	7.472 7.656 7.844	332.6 334.4 336.2 338.0 339.8	203 204 205	12183.7 12437.0 12694.3 12955.7 13221.1	16908.8	240.54 245.49 250.53	489.6 499.8 510.1	16.364 16.703	397.4 399.2 401.0
172 173 174 175 176	6255.5 6406.6 6560.6 6717.4 6877.2	8504.7 8710.2 8919.5	120.98 123.90 126.87 129.91 133.00	252.2 258.3 264.5	8.231 8.430 8.632 8.839	341.6 343.4 345.2 347.0 348.8	208 209 210	13490.8 13764.5 14042.5 14324.8 14611.3	18341.5 18713.7 19091.6	260.88 266.18 271.55	531.2 541.9 552.9 564.1	17.751 18.111 18.477 18.848	404.6 406.4 408.2 410.0
177 178 179 180 181	7040.0 7205.7 7374.5 7546.4	9571.3	136.15 139.35 142.62	277.2 283.7 290.3	9.263 9.481 9.703 9.929	350.6 352.4 354.2 356.0	213 214 215	14902.2 15197.5 15497.2 15801.3 16109.9	20260.5 20661.9 21069.3 21482.8	288.21 293.92 299.72 305.57	586.7 598.3 610.2 622.1	19.608 19.997 20.391 20.791	413.6 415.4 417.2 419.0
182 183 184 185 186	7899.5 8080.8 8265.4 8453.2	10739.9 10986.4 11237.3 11490.0 11752.5	1 52.77 1 56.32 1 59.84 163.47	311.0 318.1 325.4 332.3	10.394 10.633 10.876	359.6 361.4 363.2 365.0	217 218 219 220		22328.3 22760.3 23198.6	317.62 323.78 330.01 336.30	646.6 659.1 671.8	21.690 22.027 22.452 22.882	422.6 424.4 426.2 428.0
187 188 189 190	8838.8 9036.7 9238.0 9442.7	12016.9 12285.9 12559.6 12837.9	170.94 174.76 178.65	348.0 355.8 363.7 371.8	11.630 11.885 12.155	368.6 370.4 372.2 374.0	222 223 224 225	18058.6 18399.9 18746.1 19097.0	24551.8 25015.8 25486.4 25963.5	349.21 355.81 362.50 369.29	711.0 724.4 738.0	23.761 24.210 24.666 25.128	431.6 433.4 435.2 437.0
191 192 193 194		13121.0 13408.9 13701.7 13999.4	190.72	388.3 396.8	12.977	377.6 379.4	227 228	19813.8 20179.6 20550.5	26938.0 27435.4	383.15	780.9 794.5	26.071 26.552	440.6

PRESSURE OF AQUEOUS VAPOR, ACCORDING TO BROCH.*

Temp.	0.0	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8
-28	0.46	0.45	0.44	0.43	0.43	0.42	0.41	0.40	0.40	0.39
-26	0.55	0.54	0.53	0.52	0.51	0.50	0.50	0.49	0.48	0.47
-24	0.66	0.65	0.64	0.63	0.62	0.61	0.60	0.58	0.57	0.56
-22	0.79	0.78	0.77	0.75	0.74	0.73	0.71	0.70	0.69	0.68
-20	0.94	0.93	0.91	0.90	0.88	0.87	.0.85	0.84	0.82	0.81
-18 -16 -14 -12 -10	1.12 1.32 1.56 1.84 2.15	1.10 1.30 1.54 1.81 2.12	1.08 1.28 1.51 1.78 2.08	1.06 1.26 1.49 1.75 2.05	1.05 1.24 1.46 1.72 2.02	1.03 1.22 1.44 1.69	1.01 1.20 1.42 1.67 1.96	0.99 1.18 1.39 1.64 1.93	0.98 1.16 1.37 1.61 1.90	0.96 1.14 1.35 1.59 1.87
-8	2.51	2.48	2.44	2.40	2.36	2.33	2.29	2.26	2.22	2.19
-6	2.93	2.89	2.84	2.80	2.76	2.72	2.67	2.63	2.59	2.55
-4	3.41	3.36	3.31	3.26	3.21	3.16	3.11	3.07	3.03	2.98
-2	3.95	3.89	3.84	3.78	3.72	3.67	3.62	3.56	3.51	3.46
-0	4.57	4.50	4.44	4.37	4.31	4.25	4.19	4.13	4.07	4.01
+ 0 2 4 6 8	4.57	4.64	4.70	4.77	4.84	4.91	4.98	5.05	5.12	5.20
	5.27	5.35	5.42	5.50	5.58	5.66	5.74	5.82	5.90	5.99
	6.07	6.15	6.24	6.33	6.42	6.51	6.60	6.69	6.78	6.88
	6.97	7.07	7.17	7.26	7.36	7.47	7.57	7.67	7.78	7.88
	7.99	8.10	8.21	8.32	8.43	8.55	8.66	8.78	8.90	9.02
10	9.14	9.26	9.39	9.51	9.64	9.77	9.90	10.03	10.16	10.30
12	10.43	10.57	10.71	20.85	10.99	11.14	11.28	11.43	11.58	11.73
14	11.88	12.04	12.19	12.35	12.51	12.67	12.84	13.00	13.17	13.34
16	13.51	13.68	13.86	14.04	14.21	14.40	14.58	14.76	14.95	15.14
18	15.33	15.52	15.72	15.92	16.12	16.32	16.52	16.73	16.94	17.15
20	17.36	17.58	17.80	18.02	18.24	18.47	18.69	18.92	19.16	19.39
22	19.63	19.87	20.11	20.36	20.61	20.86	21.11	21.37	21.63	21.89
24	22.15	22.42	22.69	22.96	23.24	23.52	23.80	24.08	24.37	24.66
26	24.96	25.25	25.55	25.86	26.16	26.47	26.78	27.10	27.42	27.74
28	28.07	28.39	28.73	29.06	29.40	29.74	30.09	30.44	30.79	31.15
30	31.51	31.87	32.24	32.61	32.99	33·37	33.75	34.14	34.53	34.92
32	35.32	35.72	36.13	36.54	36.95	37·37	37.79	38.22	38.65	39.08
34	39.52	39.97	40.41	40.87	41.32	41·78	42.25	42.72	43.19	43.67
36	44.16	44.65	45.14	45.64	46.14	46.65	47.16	47.68	48.20	48.73
38	49.26	49.80	50.34	50.89	51.44	52.00	52.56	53.13	53.70	54.28
40	54.87	55.46	56.05	56.65	57.26	57.87	58.49	59.11	59.74	60.38
42	61.02	61.66	62.32	62.98	63.64	64.31	64.99	65.67	66.36	67.05
44	67.76	68.47	69.18	69.90	70.63	71.36	72.10	72.85	73.60	74.36
46	75.13	75.91	76.69	77.47	78.27	79.07	79.88	80.70	81.52	82.35
48	83.19	84.03	84.89	85.75	86.61	87.49	88.37	89.26	90.16	91.06
50	91.98	92.90	93.83	94·77	95.71	96.66	97.63	98.60	99.57	100.56
52	101.55	102.56	103.57	104·59	105.62	106.65	107.70	108.76	109.82	110.89
54	111.97	113.06	114.16	115·27	116.39	117.52	118.65	119.80	120.95	122.12
56	123.29	124.48	125.67	126.87	128.09	129.31	130.54	131.79	133.04	134.30
58	135.58	136.86	138.15	139.46	140.77	142.10	143.43	144.78	146.14	147.51
60	148.88	150.27	151.68	153.09	154.51	155.95	157.39	158.85	160.32	161.80
62	163.29	164.79	166.31	167.83	169.37	170.92	172.49	174.06	175.65	177.25
64	178.86	180.48	182.12	183.77	185.43	187.10	188.79	190.49	192.20	193.93
66	195.67	197.42	199.18	200.96	202.75	204.56	206.38	208.21	210.06	211.92
68	213.79	215.68	217.58	219.50	221.43	223.37	225.33	227.30	229.29	231.29

^{*} This table is based on Regnault's experiments, the numbers being taken from Broch's reduction of the observations (Trav. et Mém. du Bur. Int. des Poids et Més. form. 1). The numbers differ very slightly from those of Regnault (see Table 165). The direct measurements of Marvin given in Table 169 show that the numbers in this table are high for temperature below zero centigrade.

TABLE 166. PRESSURE OF AQUEOUS VAPOR, ACCORDING TO BROCH.

Temp.	0.0	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8
70	233.31	235.34	237.39	239.45	241.52	243.62	245.72	247.85	249.98	252.14
72	254.30	256.49	258.69	260.91	263.14	265.38	267.65	269.93	272.23	274.54
74	276.87	279.21	281.58	283.95	286.35	288.76	291.19	293.64	296.11	298.59
76	301.09	303.60	306.14	308.69	311.26	313.85	316.45	319.07	321.72	324.38
78	327.05	329.75	332.47	335.20	337.95	340.73	343.52	346.33	349.16	352.01
80	354.87	357.76	360.67	363.59	366.54	369.51	372.49	375.50	378.53	381.58
82	384.64	387.73	390.84	393.97	397.12	400.29	403.49	406.70	409.94	413.19
84	416.47	419.77	423.09	426.44	429.81	433.19	436.60	440.04	443.49	446.97
86	450.47	454.00	457.54	461.11	464.71	468.32	471.96	475.63	479.32	483.03
88	486.76	490.52	494.31	498.12	501.95	505.81	509.69	513.60	517.53	521.48
90	525.47	529.48	533.51	537·57	541.65	545.77	549.90	554.07	558.26	562.47
92	566.71	570.98	575.28	579.61	583.96	588.33	592.74	597.17	601.64	606.13
94	610.64	615.19	61976	624.37	629.00	633.66	638.35	643.06	647.81	652.59
96	657.40	662.23	667.10	672.00	676.00	681.88	686.87	691.89	696.93	702.02
98	707.13	712.27	717.44	722.65	727.89	733.16	738.46	743.80	749.17	754.57
100	760.00	765.47	770.97	776.50	782.07	787.67	-	-	-	-

TABLE 167.
WEIGHT IN GRAINS OF THE AQUEOUS VAPOR CONTAINED IN A CUBIC FOOT OF SATURATED AIR.*

Temp.	0.0	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0	9.0
-10 0	0 356	0.340	0.324	0.309	0.294	0.280	0.267	0.254	0.242	0.230
+0 10 20	0.564 0.873 1.321	0.590 0.910 1.374	0.617 0.950 1.430	0.645 0.991 1.488	0.674 1.033 1.549	0.705 1.077 1.611	0.735 1.122 1.675	0.767 1.169 1.743	0.801 1.217 1.812	0.837 1.268 1.882
30 40	1.956 2.849	2.034	3.064	2.194 3.177	2.279 3.294	2.366 3.414	2.457 3·539	2.550 3.667	2.646 3.800	2.746 3.936
50 60 70 80 90	4.076 5.745 7.980 10.934 14.790	4.222 5.941 8.240 11.275 15.234	4.372 6.142 8.508 11.626 15.689	4.526 6.349 8.782 11.987 16.155	4.685 6.563 9.066 12.356 16.634	4.849 6.782 9.356 12.736 17.124	5.016 7.009 9.655 13.127 17.626	5.191 7.241 9.962 13.526 18.142	5.370 7.480 10.277 13.937 18.671	5.555 7.726 10.601 14.359 19.212
100	19.766	20.335 26.832	20.917 27.570	21.514 28.325	22.125 29.096	22.750 29.887	23.392	24.048	24.720	25.408

TABLE 168.
WEIGHT IN GRAMMES OF THE AQUEOUS VAPOR CONTAINED IN A
CUBIC METRE OF SATURATED AIR.

Temp.	0.0	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0	9.0
-20	1.078	0.992	0.913	0.839	0.770	0.706	0.647	0.593	0.542	0.496
-10	2.363	• 2.192	2.032	1.882	1.742	1.611	1.489	1.375	1.269	1.170
-0	4.835	4.513	4.211	3.926	3.659	3.407	3.171	2.949	2.741	2.546
+0	4.835	5.176	5.538	5.922	6.330	6.761	7.219	7.703	8.215	8.757
10	9.330	9.935	10.574	11.249	11.961	12.712	13.505	14.339	15.218	16.144
20	17.118	18.143	19.222	20.355	21.546	22.796	24.109	25.487	26.933	28.450
30	30.039	31.704	33.449	35.275	37.187	39.187	41.279	43.465	45.751	48.138

^{*} See "Smithsonian Meteorological Tables," pp. 132-133.

PRESSURE OF AQUEOUS VAPOR AT LOW TEMPERATURE.*

Pressures are given in inches and millimetres of mercury, temperatures in degrees Fahrenheit and degrees Centigrade.

	(a) Pressur	es in inche	es of mercu	ry; temper	atures in d	egrees Fal	renheit.		
Temp. F.	0°.0	10.0	2°.0	3°.0	4 °.0	5°.0	6°.0	7°.0	8 °.0	9°.0
-50°	0.0021	0.0019	0.0018	0.0017	0.0016	0.0015	0.0013	0.0013	0.0012	0.001
-40	.0039	.0037	.0035	.0033	.0031	.0029	.0027	.0026	.0024	.002
30	.0069	.0065	.0061	.0057	.0054	.0051	.0048	.0046	.0044	.004
20	.0126	.0119	.0112	.0106	.0100	.0094	.0089	.0083	.0078	.007
-10	.0222	.0210	.0199	.0188	.0178	.0168	.0159	.0150	.0141	.013
-0	0.0383	0.0263	0.0244	0.0225	0.0307	0.0291	0.0275	0.0260	0.0247	0.023
+0	.0383	.0403	.0423	.0444	.0467	.0491	.0515	.0542	.0570	.060
10	.0631	.0665	.0699	.0735	.0772	.0810		.0891	.0933	.097
20	.1026	.1077	.1130	.1185	.1242	.1302	.1365	.1430	.1497	.156
30	.1641	.1718	.1798							
	(b)	Pressures	in millimet	res of mero	cury; temp	eratures in	degrees F	'ahrenheit		ı
Temp. F.	0°.0	10.0	2 °.0	3°.0	4 °.0	5°.0	6°.0	7 °.0	8°.0	9°.0
—50°	0.053	0.049	0.046	0.043	0.040	0.037	0.034	0.032	0.030	0.028
-40	.100	.094	.089	.084	.079	.074	.069	.065	.061	.057
-30	.176	.165	.155	.146	.138	.130	.123	.117	III.	.10
-20	.319	.301	.284	.268	.253	.239	.225	.212	.199	.187
-10	.564	.534	.505	.478	.452	-427	.403	.384	.358	.338
—0 °	0.972	0.922	0.873	0.826	0.781	0.738	0.698	0.661	0.627	0.59
+0	.972	1.023	1.075	1.129	1.186	1.246	1.309	1.376	1.447	1.523
10	1.603	1.688	1.776	1.867	1.961	2.058	2.158	2.262	2.371	2.486
20	2.607	2.735	2.869	3.009	3.155	3.307	3.466	3.631	3.803	3.98:
30	4.169	4.364	4.568							
	,	e) P	in in abo	6						
				s of mercu						
Temp. C.	0 °.0	1°.0	2°.0	3°.0	4 °.0	5°.0	6°.0	7 °.0	8°.0	9°.0
-0 °	0.1798	0.1655	0.1524	0.1395	0.1290	0.1185	0.1091	0.0998	0.0016	0.084
-10	.0772	.0706	.0645	.0588	.0537	.0491	.0449	.0411	.0375	.034
-20	.0307	.0278	.0252	.0229	.0208	.0188	.0171	.0153	.0138	.012
-30	.0112	.0101	.0091	.0082	.0073	.0065	.0059	.0053	.0048	.004
-40	.0040	.0036	.0032	.0029	.0025	.0022	.0020	.0017	.0015	.001
	(d)	Pressures	in millime	tres of mer	cury; tem	peratures in	degrees (Centigrade	·	
Temp. C.	0°.0	1°.0	2 °.0	3°.0	4 °.0	5°.0	6°.0	7°.0	8°.0	9°.0
-0 °	4.568	4.208	3.875	3.565	3.277	3.009	2.767	2.534	2.327	2.138
	1.961	1.794	1.637	1.493	1.363	1.246	1.140	1.044	0.952	0.86
-10		177		100						
—10 —20	0.781	0.706	0.641	0.583	0.528	0.478	0.432	0.389	0.350	0.31
		0.706 0.256 0.090	0.641	0.583	0.528	0.478	0.432	0.389	0.350	0.31

^{*} Marvin's results (Ann. Rept. U. S. Chief Signal Officer, 1891, App. 10).

PRESSURE OF AQUEOUS VAPOR IN THE ATMOSPHERE.

This table gives the vapor pressure corresponding to various values of the difference $t-t_1$ between the readings of dry and wet bulb thermometers and the temperature t_1 of the wet bulb thermometer. The differences $t-t_1$ are given by two-degree steps in the top line, and t_1 by degrees in the first column. Temperatures in Centigrade degrees and Regnault's vapor pressures in millimetres of mercury are used throughout the table. The table was calculated for barometric pressure B equal to t_1 0 centimetres, and a correction is given for each centimetre at the top of the columns.*

1						-						
t_1	= 0	2	4	6	8	10	12	14	16	18	20	ce ber
Correct B pe	r centi-	.013	.026	.040	.053	.056	.079	.092	.106	.119	.132	Difference t_1 of $t-t_1$
-10 -9 -8 -7 -6	1.96 2.14 2.33 2.53 2.76	0.96 1.14 1.33 1.53 1.76	0.14 0.33 0.53 0.76			1		Exan	•	$-t_1 = \frac{1}{2}$		0.100 0.100 0.100 0.100
-5 -4 -3 -2 -1	3.01 3.28 3.57 3.88 4.22	2.01 2.28 2.57 2.88 3.22	1.00 1.27 1.56 1.87 2.21	0.27 0.56 0.87 1.21	0.21			hber=6 for B= Hence		8=	4·5 5·51 ·07	0.100 0.100 0.100 0.100 0.100
0 1 2 3 4	4.60 4.94 5.30 5.69 6.10	3.60 3.93 4.29 4.68 5.09	2.59 2.92 3.29 3.68 4.09	1.59 1.92 2.28 2.67 3.08	0.59 0.92 1.28 1.66 2.07	0.27 0.66 1.06	0.05					0.100 0.100 0.100 0.101
5 6 7 8 9	6.53 7.00 7.49 8.02 8.57	5.52 5.99 6.48 7.01 7.56	4.51 4.98 5.47 5.99 6.54	3.50 3.97 4.45 4.98 5.53	2.49 2.96 3.44 3.97 4.51	1.48 1.95 2.43 2.96 3.50	0.48 0.94 1.42 1.94 2.49	0.41 0.93 1.48	0.46			0.10I 0.10I 0.10I 0.10I
10 11 12 13 14	9.17 9.79 10.46 11.16	8.16 8.77 9.44 10.14 10.89	7.14 7.76 8.43 9.12 9.87	6.12 6.74 7.41 8.10 8.85	5.11 5.73 6.39 7.09 7.83	4.09 4.71 5.37 6.07 6.81	3.08 3.69 4.36 5.05 5.79	2.07 2.68 3·34 4·03 4·77	1.06 1.66 2.32 3.01 3.71	0.05 0.64 1.30 1.99 2.69	0.28 0.97 1.67	0.101 0.102 0.102 0.102 0.102
15 16 17 18 19	12.70 13.54 14.42 15.36 16.35	11.68 12.52 13.40 14.34 15.33	10.66 11.50 12.37 13.31 14.30	9.64 10.47 11.35 12.29 13.27	8.62 9.45 10.33 11.26 12.25	7.60 8.43 9.31 10.24 11.22	6.58 7.41 8.28 9.21 10.20	5.56 6.39 7.26 8.19 9.17	4.54 5.37 6.24 7.17 8.15	3.52 4.35 5.22 6.15 7.13	2.50 3.33 4.20 5.13 6.11	0.102 0.102 0.102 0.102 0.102
20 21 22 23 24	17.39 18.50 19.66 20.89 22.18	16.37 17.47 18.63 19.86 21.15	15.34 16.45 17.60 18.83 20.12	14.31 15.42 16.57 17.80 19.09	13.28 14.39 15.54 16.77 18.05	12.26 13.36 14.51 15.74 17.02	11.23 12.33 13.48 14.71 15.99	10.21 11.31 12.46 13.68 14.96	9.18 10.28 11.43 12.66 13.94	8.15 9.25 10.40 11.63 12.91	7.12 8.22 9.37 10.60 11.88	0.103 0.103 0.103 0.103
25 26 27 28 29	23.55 24.99 26.51 28.10 29.78	22.52 23.96 25.48 27.07 28.75	21.49 22.92 24.44 26.03 27.7·I	20.45 21.89 23.40 24.99 26.67	19.43 20.86 22.37 23.96 25.63	18.39 19.82 21.34 22.92 24.59	17.36 18.79 20.30 21.89 23.56	16.33 17.76 19.27 20.85 22.52	15.30 16.73 18.24 19.82 21.49	14.27 15.70 17.21 18.79 20.46	13.24 14.67 16.18 17.76 19.43	0.103 0.103 0.103 0.103
30 31 32 33 34	31.55 33.41 35.36 37.41 39.57	30.51 32.37 34.32 36.37 38.53	29.47 31.33 33.28 35.33 37.48	28.43 30.29 32.24 34.29 36.44	27.40 29.25 31.21 33.25 35.40	26.36 28.22 30.17 32.22 34.36	25.32 27.18 29.13 31.18 33.32	24.29 26.14 28.09 30.14 32.28	23.25 25.10 27.05 29.10 31.24	22.22 24.07 26.01 28.06 30.20	21.18 23.03 24.97 27.02 29.16	0.104 0.104 0.104 0.104 0.104
35 .36 .37 .38 .39	41.83 44.20 46.69 49.30 52.04	40.79 43.16 45.65 48.26 51.00	39.74 42.11 44.60 47.21 49.95	38.70 41.07 43.56 46.17 48.91	37.66 40.03 42.52 45.13 47.86	36.62 38.99 41.48 44.08 46.82	35.68 37.95 40.44 43.04 45.77	34.64 36.90 39.39 41.99 44.73	33.60 35.86 38.35 40.95 43.78	32.56 34.82 37.31 39.91 42.74	31.52 33.78 36.27 38.87 41.69	0.104 0.104 0.104 0.104 0.105

^{*} The table was calculated from the formula $p = p_1 - 0.00066 B(t - t_1) (1 + 0.00115 t_1)$ (Ferrel, Annual Report U.S. Chief Signal Officer, 1886, App. 24).

† When B is less than 76 the correction is to be added, and when B is greater than 76 it is to be subtracted.

SMITHSONIAN TABLES.

The first column of this table gives the temperatures of the wet-bulb thermometer, and the top line the difference the table. The dew-points were computed for a barometric pressure of 76 centimetres. When the barometer differs and the resulting number added to or subtracted from the tabular number according as the barometer is below or

between the dry and the wet bulb, when the dew-point has the values given at corresponding points in the body of from 76 centimetres the corresponding numbers in the lines marked $\delta T/\delta B$ are to be multiplied by the difference or above 76. See examples.

or above 76.	See examples.				1		
t_1	$t-t_1=9$	10	11	12	13	14	15
	Dew-points	corresponding wet-b			ature given in en in first colu		ne and the
			1	l E	EXAMPLES.		
			Then	$B = 72, t_1 = 1$ tabular numb	per for $t_1 = 10$	and $t-t_1=5$	is 5.2
			Ca	orrection = 0.0 ce the dew-point	and $\delta T/\delta B = .0$ $\delta \times 4 =$ and $\delta T/\delta B = .0$		·24 5·44
			Then	$B = 71.5, t_1 = 71.5, t_2 = 71.5, t_3 = 71.5, t_4 = $	oulated numbe	r=	3.4
			Corre	ection = 0.15 X	4.5=		.67
		_	Dew-	point = .			4.07
$\begin{array}{c} \delta T/\delta B = 0 \\ 0 \end{array}$.45	.67					
2	- 20.0						
3 4 \$ T/\$ R —	15.8	22.2 16.8				66	
$\begin{array}{c} \delta T/\delta B = \\ 5 \\ 6 \end{array}$	— 19.8	- 13.1 10.1	- 17.7	- 18.1	-54	.66	.72
7 8	7·4 5·3 3·3	7.6 5.2	13.4 10.1 7.4	13.5	- 18.3 13.5	 18.3	
§ δ T/δB=	1.6	3.2	5. I .20	7.2	9.9	13.1	— 17.2 .36
10 11	0.0	- 1.3 + 0.3	- 3.0 1.0	- 4·7 2.6	- 6.8 4.3	- 9.4 6.3	- 12.5 8.8
13	3·5 5·1	2.2 3.9	+ 0.8	0.6	2.I 0.I	3·7 1.6	5·7 3·1
$\begin{array}{c} {}^{14} \\ {}^{\delta}T/\delta B = \\ {\bf 15} \end{array}$	6.7	5.6	4·5 . 12 6.2	3.3	+ 1.9	+ 0.5	.20
16	8.2 9.6 11.0	7.2 8.7 10.2	7.8 9.4	5.1 6.8 8.5	3·9 5.8 7·5	2.7 4.7 6.5	+ 1.3 3.5
18	12.4	11.7	10.9	10.1	9.2	8.3	5·5 7·4 9.1
δ T/δB = 20	. 06	07	. 08 13.8	. 09 13.1	.10 12.4	. 11 11.6	.13
2I 22	16.4 17.6	15.8	15.2 16.5	14.5	13.9	13.2 14.7	12.5
23 24 \$ T/\$ P	18.9	18.4	17.9	17.3	16.8	16.2	15.7
δ T/δB = 25 26	.045 21.4 22.6	.05 20.9 22.1	. 06 20.4	.06 20.0 21.3	.07 19.5 20.8	.08 19.0 20.3	.0 9 18.5 19.9
27 28	23.7	23.4 24.5	21.7 22.9 24.2	22.5	22.I 23.4	21.7	21.2
²⁹ δ T/δB=	26.1	25.7	25.4 .041	25.0	24.6	24.2 .of	23.9
30 31	27.2 28.4	26.9 28.1	26.6 27.8	26.2 27.4	25.9 27.I	25.5 26.8	25.2 26.4
32 33	29.5 30.7	29.2 30.4	28.9 30.1	28.6 29.8	28.3	28.0	27.7 28.9
$\begin{array}{c c} 34 \\ \delta T/\delta B = \\ 35 \end{array}$	31.8 .024 32.9	31.5 .027 32.6	31.2 .029 32.4	30.9 . 032 32.1	30.7 . 037 31.8	30.4 .037 31.6	30.1 . 04 31.4
36	34.0 35.1	33·7 34·9	33·5 34.6	33·3 34·4	33.0	32.8 33.9	32.5
37 38 39	36.2 37·3	35.9 37.1	35·7 36.8	35·5 36.6	35·3 36.4	35.1 36.2	34.8 36.0
		1					

VALUES OF 0.378 e.*

This table gives the humidity term $0.378\,e$, which occurs in the equation $\delta = \delta_0 \frac{\hbar}{760} = \delta_0 \frac{B - 0.378\,e}{760}$ for the calculation of the density of the dry air in a sample containing aqueous vapor at pressure ϵ ; δ_0 is the density at normal barometric pressure, B the observed barometric pressure, and \hbar the pressure corrected for humidity. For values of $\frac{\hbar}{760}$ see Table 174. Temperatures are in degrees Centigrade, and pressures in millimetres of mercury.

Dew- point.	Vapor pressure.	0.378 e.	Dew- point.	Vapor pressure.	0.378 e.	Dew- point.	Vapor pressure.	o.378 e.
-30° -29 -28 -27 -26	0.38 .42 .46 .50 .55	0.14 .16 .17 .19	0 1 2 3 4	4·57 4·91 5·27 5·66 6·07	1.73 1.86 1.99 2.14 2.29	30° 31 32 33 34	31.51 33.37 35.32 37.37 39.52	11.91 12.61 13.35 14.13
-25 -24 -23 -22 -21	0.61 .66 .73 .79 .87	0.23 .25 .28 .30 .33	5 6 7 8 9	6.51 6.97 7.47 7.99 8.55	2.46 2.63 2.82 3.02 3.23	35 36 37 38 39	41.78 44.16 46.65 49.26 52.00	15.79 16.69 17.63 18.62 19.66
-20 -19 -18 -17 -16	0.94 1.03 .12 .22 .32	0.36 .39 .42 .46	10 11 12 13 14	9.14 9.77 10.43 11.14 11.88	3.45 3.69 3.94 4.21 4.49	40 41 42 43 44	54.87 57.87 61.02 64.31 67.76	20.74 21.86 23.06 24.31 25.61
-15 -14 -13 -12 -11	1.44 .56 .69 .84	0.54 .59 .64 .70 .75	15 16 17 18	12.67 13.51 14.40 15.33 16.32	4·79 5·11 5·44 5·79 6·17	45 46 47 48 49	71.36 75.13 79.07 83.19 87.49	26.97 28.40 29.89 31.45 33.07
-10 -9 -8 -7 -6	2.15 ·33 ·51 ·72 ·93	0.81 .88 .95 1.03	20 21 22 23 24	17.36 18.47 19.63 20.86 22.15	6.56 6.98 7.42 7.89 8.37	50 51 52 53 54	91.98 96.66 101.5 5 106.65 111.97	34·77 36·54 38·39 40·31 42·32
-5 -4 -3 -2 -1	3.16 .41 .67 .95 4.25	1.19 .29 .39 .49	25 26 27 28 29	23.52 24.96 26.47 28.07 29.74	8.89 9.43 10.01 10.61 11.24	55 56 57 58 59	117.52 123.29 129.31 135.58 142.10	44.42 46.60 48.88 51.25 53.71

^{*} This table is quoted from "Smithsonian Meteorological Tables," p. 225.

RELATIVE HUMIDITY.*

This table gives the humidity of the air, for temperature t and dew-point d in Centigrade degrees, expressed in percentages of the saturation value for the temperature t.

Depression of		Dev	v-point	(d).		Depression of		Dev	v-point	(d).	
the dew-point. $t-d$	10	0	+ 10	+20	+30	the dew-point, $t-d$	-10	o	+ 10	+ 20	+ 30
C. O°.O 0.2 0.4 0.6 0.8	98 97 95 94	99 97 96 94	99 97 96 95	99 98 96 95	99 98 97 96	C. 8°.0 8.2 8.4 8.6 8.8	54 54 53 52 51	57 56 56 55 54	60 59 58 57 57	62 61 60 60 59	64 63 63 62 61
1.0 1.2 1.4 1.6 1.8	92 91 90 88 87	93 92 90 89 88	94 92 91 90 89	94 93 92 91 90	94 93 92 91 90	9.0 9.2 9.4 9.6 9.8	51 50 49 48 48	53 53 52 51 51	56 55 55 54 53	58 58 57 56 56	61 60 59 59 58
2.0 2.2 2.4 2.6 2.8	86 84 83 82 80	87 85 84 83 82	88 86 85 84 83	88 87 86 85 84	89 88 87 86 85	10.0 10.5 11.0 11.5 12.0	47 45 44 42 41	50 48 47 45 44	53 51 49 48 47	55 54 52 51 49	57
3.0 3.2 3.4 3.6 3.8	79 78 77 76 75	81 80 79 77 76	82 81 80 79 78	83 82 81 80 79	84 83 82 82 81	12.0 13.0 13.5 14.0 14.5	39 38 37 35 34	42 41 40 38 37	45 44 43 41 40	48 46 45 44 43	
4.0 4.2 4.4 4.6 4.8	73 72 71 70 69	75 74 73 72 71	77 76 75 74 73	78 77 77 76 75	80 79 78 77 76	15.0 15.5 16.0 16.5 17.0	33 32 31 30 29	36 35 34 33 32	39 38 37 36 35	42 40 39 38 37	
5.0 5.2 5.4 5.6 5.8	68 67 66 65 64	70 69 68 67 66	72 71 70 69 69	74 73 72 71 70	75 75 74 73 72	17.5 18.0 18.5 19.0	28 27 26 25 24	31 30 29 28 27	34 33 32 31 30	36 35 34 33 33	
6.0 6.2 6.4 6.6 6.8	63 62 61 60 60	66 65 64 63 62	68 67 66 65 64	70 69 68 67 66	71 71 70 69 68	20.0 21.0 22.0 23.0 24.0	24 22 21 19 18	26 25 23 22 21	29 27 26 24 23	32	
7.0 7-2 7-4 7.6 7.8	59 58 57 56 55	61 60 60 59 58	63 63 62 61 60	66 65 64 63 63	68 67 66 65 65	25.0 26.0 27.0 28.0 29.0	17 16 15 14	19 18 17 16	22 21 20 19 18		
8.0	54	57	60	62	64	30.0	12	14	17		

^{*} Abridged from Table 45 of "Smithsonian Meteorological Tables."

DENSITY OF AIR FOR DIFFERENT PRESSURES AND HUMIDITIES.

TABLE 174. — Values of $\frac{h}{760}$, from h=1 to h=9, for the Computation of Different Values of the Ratio of Actual to Normal Barometric Pressure.

This gives the density of air at pressure h in terms of the density at normal atmosphere pressure. When the air contains moisture, as is usually the case with the atmosphere, we have the following equation for the dry air pressure: h = B - 0.378e, where e is the vapor pressure, and B the observed barometric pressure corrected for temperature. When the necessary observations are made the value of e may be taken from Table 170, and then 0.378e from Table 172, or the dew-point may be found and the value of 0.378e taken from Table 172.

h	h 760
1	0.0013158
2	.0026316
3	.0039474
4	0.0052632
5	.0065789 .0078947
7	0.0092105
8 9	.0105263 .0184210

Examples of Use of the Table. To find the value of $\frac{h}{760}$ when h = 754.3

$$h = 700$$
 gives .92105
50 '' .065789
4 '' .005263
.3 '' .00395
754-3 .992497

To find the value of $\frac{h}{760}$ when h = 5.73

$$h = 5 \quad \begin{array}{c} 760 \\ \text{yives} \quad 0.065789 \\ 0.007895 \\ 0.03 \quad 0.000395 \\ \hline 5.73 \quad 0.0074079 \end{array}$$

TABLE 175. — Values of the logarithms of $\frac{h}{760}$ for values of h between 80 and 340.

Values from 8 to 80 may be got by subtracting 1 from the characteristic, and from 0.8 to 8 by subtracting 2 from the characteristic, and so on.

									1		
h					Values of $\log \frac{h}{760}$.						
	O	0 1 2			4	5	6	7	8	9	
80	ī.02228 .07343	ī.02767 .07823	ī.03300 .08297	ī.03826 .08767	ī.04347 .09231	ī.04861 .09691	T.05368	ī.05871 .10596	ī.06367 .11041	ī.06858 .11482	
100 110 120 130 140	7.11919 .16858 .19837 .23313 .26531	1.12351 .16451 .20197 .23646 .26841	ī.12779 .16840 .20555 .23976 .27147	I.13202 .17226 .20909 .24304 .27452	ī.13622 .17609 .21261 .24629	ī.14038 .17988 .21611 .24952 .28055	7.14449 .18364 .21956 .25273 .28354	ī.14857 .18737 .22299 .25591 .28650	7.15261 .19107 .22640 .25907 .28945	1.15661 .19473 .22978 .26220 .29237	
150 160 170 180 190	ī.29528 .32331 .34964 .37446 .39794	ī.29816 .32616 .35218 .37686 .40022	ī.30103 .32870 .35471 .37926 .40249	1.30388 ·33137 ·35723 ·38164 ·40474	7.30671 .33403 .35974 .38400 .40699	ī.30952 .33667 .36222 .38636 .40922	ī.31231 ·33929 ·36470 ·38870 ·41144	1.31509 .34190 .36716 .39128 .41365	7.31784 .34450 .36961 .39334 .41585	7.32058 ·34797 ·37294 ·39565 ·41864	
200 210 220 230 240	1.42022 .44141 .46161 .48091 .49940	1.42238 ·44347 ·46358 ·48280 ·50120	1.42454 .44552 .46554 .48467 .50300	7.42668 •44757 •46749 •48654 •50479	1.42882 .44960 .46943 .48840 .50658	1.43094 .45162 .47137 .49025 .50835	1.43305 .45364 .47329 .49210 .51012	1.43516 .45565 .47521 .49393 .51188	1.43725 45764 47712 49576 51364	1.43933 -459 ⁶ 3 -47902 -4975 ⁸ -51539	
250 260 270 280 290	ī.51713 .53416 .55055 .56634 .58158	7.51886 ·53583 ·55216 ·56789 ·58308	ī.52059 ·53749 ·55376 ·56944 ·58457	7.52231 ·53914 ·55535 ·57097 ·58605	1.52402 ·54079 ·55694 ·57250 ·58753	7.52573 ·54243 ·55852 ·57403 ·58901	1.52743 .54407 .56010 .57555 .59048	7.52912 ·54570 ·56167 ·57707 ·59194	5473 ² .563 ² 3 .57858 .59340	7.53249 .54894 .56479 .58008 .59486	
300 310 320 330 340	7.59631 .61055 .62434 .63770 .65067	ī.59775 .61195 .62569 .63901 .65194	ī.59919 .61334 .62704 .64032 .65321	ī.60063 .61473 .62839 .64163 .65448	ī.60206 .61611 .62973 .64293 .65574	ī.60349 .61750 .63107 .64423 .65701	ī.60491 .61887 .63240 .64553 .65826	ī.60632 .62025 .63373 .64682 .65952	7.60774 .62161 .63506 .64810 .66077	ī.60914 .62298 .63638 .64939 .66201	

DENSITY OF AIR.

Values of logarithms of $\frac{h}{760}$ for values of h between 350 and 800.

h					Values o	f $\log \frac{k}{760}$.				
	0	1	2	3	4	5	6	7	8	9
350	ī.66325	ī.66449	ī.66573	ī.66696	ī.66819	ī.66941	ī.67064	ī.67185	ī.67307	ī.67428
360	.67549	.67669	.67790	.67909	.68029	.68148	.68267	.68385	.68503	.68621
370	.68739	.68856	.68973	.69090	.69206	.69322	.69437	.69553	.69668	.69783
380	.69897	.70011	.70125	.70239	.70352	.70465	.70577	.70690	.70802	.70914
390	.71025	.71136	.71247	.71358	.71468	.71578	.71688	.71798	.71907	.72016
400 410 420 430 440	73197 -74244 -75265 -76264	ī.72233 ·733°3 ·74347 ·75366 ·76362	7.72341 .73408 .74450 .75467 .76461	73514 -73514 -74553 -75567 -76559	7.72557 .73619 .74655 .75668 .76657	7.72664 .73723 .74758 .75768 .76755	1.72771 .73828 .74860 .75867 .76852	ī.72878 ·73932 ·74961 ·75967 ·76949	1.72985 .74036 .75063 .76066 .77046	7.73091 .74140 .75164 .76165 .77143
450	7.77240	ī.77336	7.77432	ī.77528	7.77624	7.77720	7.77815	7.77910	7.78005	7.78100
460	.78194	.78289	.78383	.78477	.78570	.78664	.78757	.78850	.78943	.79036
470	.79128	.79221	.79313	.79405	.79496	.79588	.79679	.79770	.78961	.79952
480	.80043	.80133	.80223	.80313	.80403	.80493	.80582	.80672	.80761	.80850
490	.80938	.81027	.81115	.81203	.81291	.81379	.81467	.81554	.81642	.81729
500	7.81816	7.81902	7.81989	7.82075	7.82162	7.82248	ī.82334	7.82419	7.82505	ī.82590
510	.82676	.82761	.82846	.82930	.83015	.83099	.83184	.83268	.83352	.83435
520	.83519	.83602	.83686	.83769	.83852	.83935	.84017	.84100	.84182	.84264
530	.84346	.84428	.84510	.84591	.84673	.84754	.84835	.84916	.84997	.85076
540	.85158	.85238	.85319	.85399	.85479	.85558	.85638	.85717	.85797	.85876
550	1.85955	7.86034	.7.86113	ī.86191	7.86270	7.86348	ī.86426	7.86504	7.86582	ī.86660
560	.86737	.86815	.86892	.86969	.87047	.87123	.87200	.87277	.87353	.87430
570	.87506	.87282	.87658	.87734	.87810	.87885	.87961	.88036	.88111	.88186
580	.88261	.88336	.88411	.88486	.88560	.88634	.88708	.88782	.88856	.88930
590	.89004	.89077	.89151	.89224	.89297	.89370	.89443	.89516	89589	.89661
600	7.89734	7.89806	1.89878	7.89950	1.90022	1.90094	ī.90166	ī.90238	1.90309	1.90380
610	.90452	.90523	.90594	.90665	.90735	.90806	.90877	.90947	.91017	.91088
620	.91158	.91228	.91298	.91367	.91437	.91507	.91576	.91645	.91715	.91784
630	.91853	.91922	.91990	.92059	.92128	.92196	.92264	.92333	.92401	.92469
640	.92537	.92604	.92672	.92740	.92807	.92875	.92942	.93009	.93076	.93143
650	1.93210	1.93277	ī.93343	7.93410	ī.93476	ī.93543	ī.93601	ī.93675	1.93741	ī.93807
660	.93873	.93930	.94004	.94070	.94135	.94201	.94266	.94331	.94396	.94461
670	.94526	.94591	.94656	.94720	.94785	.94849	.94913	.94978	.95042	.95106
680	.95170	.95233	.95297	.95361	.95424	.95488	.95551	.95614	.95677	.95741
690	.95804	.95866	.95929	.95992	.96055	.96117	.96180	.96242	.96304	.96366
700	7.96428	7.96490	7.96552	1.96614	1.96676	1.96738	1.96799	1.96861	ī.96922	ī.96983
710	.97044	.97106	.97167	.97228	.97288	.97349	.97410	.97471	.97531	.97592
720	.97652	.97712	.97772	.97832	.97892	.97951	.98012	.98072	.98132	.98191
730	.98251	.98310	.98370	.98429	.98488	.98547	.98606	.98665	.98724	.98783
740	.98842	.98900	.98959	.99018	.99076	.99134	.99193	.99251	.99309	.99367
750	1.99425	7.99483	7.99540	ī.99598	ī.99656	7.99713	1.99771	ī.99828	ī.99886	i.99942
760	0.00000	0.00057	0.00114	0.00171	0.00228	0.00285	0.00342	0.00398	0.00455	0.00511
770	.00568	.00624	.00680	.00737	.00793	.00849	.00905	.00961	.01017	.01072
780	.01128	.01184	.01239	.01295	.01350	.01406	.01461	.01516	.01571	.01626
790	.01681	.01736	.01791	.01846	.01901	.01955	.02010	.02064	.02119	.02173

VOLUME OF PERFECT CASES.

Values of 1 + .00367 t.

The quantity $\mathbf{1} + .00367t$ gives for a perfect gas the volume at t° when the pressure is kept constant, or the pressure at t° when the volume is kept constant, in terms of the volume or the pressure at 0° .

(a) This part of the table gives the values of 1+.00367t for values of t between o° and 10° C. by tenths of a degree.

(b) This part gives the values of 1 + .00367t for values of t between -90° and $+1990^{\circ}$ C. by 10° steps.

These two parts serve to give any intermediate value to one tenth of a degree by a simple computation as follows:—In the (b) table find the number corresponding to the nearest lower temperature, and to this number add the decimal part of the number in the (a) table which corresponds to the difference between the nearest temperature in the (b) table and the actual temperature. For example, let the temperature be $682^{\circ}.2:$

We have for 680 in table (b) the number \cdot . 3.49560 And for $2\cdot 2$ in table (a) the decimal \cdot . \cdot 3.50367

- (c) This part gives the logarithms of $\tau + .00367 t$ for values of t between -49° and $+399^{\circ}$ C. by degrees.
- (d) This part gives the logarithms of 1 + .00367 t for values of t between 400° and 1990°.
 C. by 10° steps.

(a) Values of $1+.00367\,t$ for Values of t between 0° and 10° C. by Tenths of a Degree.

t	0.0	0.1	0.2	0.3	0.4
0 1 2 3 4	1.00000 .00367 .00734 .01101 .01468	1.00037 .00404 .00771 .01138 .01505	1.00073 .00440 .00807 .01174 .01541	1.00110 .00477 .00844 .01211 .01578	1.00147 .00514 .00881 .01248 .01615
6 7 8 9	.02202 .02569 .02936 .03303	.02239 .02606 .02973 .03340	.0227 5 .02642 .03009 .03376	.02312 .02679 .03046 .03413	.02349 .02716 .03083 .03450
	0.5	0.6	0.7	0.0	0.0
t	0.5	0.6	0.7	0.8	0.9
0 1 2 3 4	0.5 1.00184 .00550 .00918 .01284 .01652	1.00220 .00587 .00954 .01321 .01688	1.00257 .00624 .00991 .01358 .01725	0.8 1.00294 .00661 .01028 .01395 .01762	1.00330 .00697 .01064 .01431 .01798

VOLUME OF PERFECT CASES.

(b) Values of $1+.00367\,t$ for Values of t between -90° and $+1990^{\circ}$ C. by 10° Steps.

t	00	10	20	30	40
-000	1.00000	0.96330	0.92660	0.88990	0.85320
+000	1.00000	1.93670	1.07340	01011.1	1.14680
100	1.36700	1.40370	1.44040	1.44710	1.51380
200	1.73400	1.77070	1.80740	1.84410	1.88080
300	2.10100	2.13770	2.17440	2.21110	2.24780
400	2.46800	2.50470	2.54140	2.57810	2.61480
500	2.83500	2.87170	2.90840	2.94510	2.98180
600	3.20200	3.23870	3.27540	3.31210	3.34880
700	3.56900	3.60570	3.64240	3.67910	3.71580
800	3.93600	3.97270	4.00940	4.04610	4.08280
900	4.30300	4.33970	4.37640	4.41310	4.44980
1000	4.67000	4.70670	4.74340	4.78010	4.81680
1100	5.03700	5.07370	5.11040	5.14710	5.18380
1200	5.40400	5.44070	5.47740	5.51410	5.55080
1 300	5.77100	5.80770	5.84440	5.88110	5.91780
1400	6.13800	6.17470	6.21140	6.24810	6.28480
1500	6.50500	6.54170	6.57840	6.61510	6.65180
1600	6.87200	6.90870	6.94540	6.98210	7.01880
1700	7.23900	7.27570	7.31240	7.34910	7.38580
1800	7.60600	7.64270	7.67940	7.71610	7.75280
1900	7.97300	8.00970	8.04640	8.08310	8.11980
2000	8.34000	8.37670	8.41340	8.45010	8.48680
t	50	60	70	80	90
-000	0.81650	0.77980	0.74310	0.70640	0.66970
-000	0.81650	0.77980	0.74310	0.70640	0.66970
-000 +000	0.81650	0.77980	0.74310	0.70640	0.66970
-000 +000	0.81650 1.18350 1.55050	0.77980 1.22020 1.58720	0.74310 1.25690 1.62390	0.70640 1.29360 1.66060	0.66970 1.33030 1.69730
-000 +000 100 200	0.81650	0.77980 1.22020 1.58720 1.95420	0.74310 1.25690 1.62390 1.99090	0.70640 1.29360 1.66060 2.02760	0.66970 1.33030 1.69730 2.06430
-000 +000	0.81650 1.18350 1.55050 1.91750	0.77980 1.22020 1.58720	0.74310 1.25690 1.62390	0.70640 1.29360 1.66060	0.66970 1.33030 1.69730
-000 +000 100 200 300 400	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820	0.74310 1.25690 1.62390 1.99090 2.55790 2.72490	0.70640 1.29360 1.66060 2.02760 2.39460 2.76160	0.66970 1.33030 1.69730 2.06430 2.43130 2.79830
-000 +000 100 200 300 400 500	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150 3.01850	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520	0.74310 1.25690 1.62390 1.99090 2.555790 2.72490 3.09190	0.70640 1.29360 1.66060 2.02760 2.39460 2.76160 3.12860	0.66970 1.33030 1.69730 2.06430 2.43130 2.79830 3.16530
-000 +000 100 200 300 400 500 600	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150 3.01850 3.38550	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520 3.42220	0.74310 1.25690 1.62390 1.99090 2.55790 2.72490 3.09190 3.45890	0.70640 1.29360 1.66060 2.02760 2.39460 2,76160 3.12860 3.49560	0.66970 1.33030 1.69730 2.06430 2.43130 2.79830 3.16530 3.53230
-000 +000 100 200 300 400 500 600 700	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150 3.01850 3.38550 3.75250	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520 3.42220 3.78920	0.74310 1.25690 1.62390 1.99090 2.55790 2.72490 3,09190 3,45890 3,82590	0.70640 1.29360 1.66060 2.02760 2.39460 2,76160 3.12860 3.49560 3.80260	0.66970 1.33030 1.69730 2.06430 2.43130 2.79830 3.16530 3.53230 3.89930
-000 +000 100 200 300 400 500 600	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150 3.01850 3.38550	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520 3.42220	0.74310 1.25690 1.62390 1.99090 2.55790 2.72490 3.09190 3.45890	0.70640 1.29360 1.66060 2.02760 2.39460 2,76160 3.12860 3.49560	0.66970 1.33030 1.69730 2.06430 2.43130 2.79830 3.16530 3.53230
-000 +000 100 200 300 400 500 600 700, 800 900	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150 3.01850 3.75250 4.11950 4.48650	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520 3.42220 3.78920 4.15620 4.52320	0.74310 1.25690 1.62390 1.99090 2.55790 2.72490 3.09190 3.45890 4.19290 4.55990	0.70640 1.20360 1.66060 2.02760 2.39460 2.76160 3.12860 3.40560 3.86260 4.22960 4.59660	0.66970 1.33030 1.69730 2.06430 2.43130 2.79830 3.16530 3.53230 3.89930 4.26630 4.63330
-000 +000 100 200 300 400 500 600 700. 800 900	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150 3.01850 3.75250 4.11950 4.48650	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520 3.42220 3.78920 4.15020 4.89020	0.74310 1.25690 1.62390 1.99090 2.55790 2.72490 3.09190 3.45890 3.82590 4.19290 4.92690	0.70640 1.29360 1.66060 2.02760 2.39460 2.76160 3.12860 3.49560 3.80260 4.29960 4.959660	0.66970 1.33030 1.69730 2.06430 2.43130 2.79830 3.16530 3.53230 3.89930 4.26630 4.63330 5.00030
-000 +000 100 200 300 400 500 600 700, 800 900	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150 3.01850 3.75250 4.11950 4.48650	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520 3.42220 4.15620 4.52320 4.89020 5.25720	0.74310 1.25690 1.62390 1.99090 2.55790 2.72490 3,09190 3,45890 4,19290 4,19290 4,9290 4,9290 5,29390 5,66000	0.70640 1.20360 1.66060 2.02760 2.39460 2.76160 3.12860 3.49560 4.22960 4.22960 4.53660	0.66970 1.33030 1.69730 2.06430 2.43130 2.79830 3.16530 3.53230 3.89930 4.26630 4.63330 5.00030 5.36730
-000 +000 100 200 300 400 500 600 700, 800 900 1100 1200	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150 3.01850 3.38550 3.75250 4.11950 4.48650 4.85350 5.22050 5.58750	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520 3.42220 3.78920 4.15620 4.89020 5.25720 5.62420	0.74310 1.25690 1.62390 1.99090 2.55790 2.72490 3,09190 3,45890 4,19290 4,19290 4,9290 4,9290 5,29390 5,66000	0.70640 1.20360 1.66060 2.02760 2.39460 2.76160 3.12860 3.49560 4.22960 4.22960 4.53660	0.66970 1.33030 1.69730 2.06430 2.43130 2.79830 3.16530 3.53230 3.89930 4.26630 4.63330 5.00030 5.36730 5.73430 6.10130
-000 +000 100 200 300 400 500 600 700. 800 900 1000 1100	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150 3.01850 3.75250 4.11950 4.48650	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520 3.42220 4.15620 4.52320 4.89020 5.25720	0.74310 1.25690 1.62390 1.99090 2.55790 2.72490 3,09190 3,45890 4.19290 4.55990 4.92690 5,29390	0.70640 1.29360 1.66060 2.02760 2.39460 2.76160 3.12860 3.49560 3.80260 4.29960 4.959660	0.66970 1.33030 1.69730 2.06430 2.43130 2.79830 3.16530 3.53230 3.89930 4.26630 4.63330 5.00030 5.36730
-000 +000 100 200 300 400 500 600 700. 800 900 1100 1200 1300	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150 3.01850 3.78250 4.11950 4.48650 4.85350 5.22050 5.58750 5.95450 6.32150	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520 3.42220 3.78920 4.15620 4.52320 4.89020 5.25720 5.62420 5.99120 6.35820	0.74310 1.25690 1.62390 1.99090 2.55790 2.72490 3.09190 3.45890 4.19290 4.19290 4.55990 4.92690 5.20390 5.66090 6.02790 6.39490	0.70640 1.20360 1.66060 2.02760 2.39460 2.76160 3.12860 3.49560 4.22960 4.22960 4.59660 4.96360 5.33060 5.69760 6.06460 6.43160	0.66970 1.33030 1.69730 2.06430 2.43130 2.79830 3.16530 3.53230 3.89930 4.26630 4.663330 5.00030 5.36730 5.73430 6.10130 6.46830
-000 +000 100 200 300 400 500 600 700, 800 900 1100 1200 1300 1400	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150 3.01850 3.38550 3.75250 4.11950 4.48650 4.85350 5.22050 5.58750 5.95450 6.32150	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520 3.42220 3.78920 4.15620 4.52320 4.89020 5.25720 5.62420 5.99120 6.35820 6.72520	0.74310 1.25690 1.62390 1.99090 2.55790 2.72490 3.09190 3.45890 4.19290 4.19290 4.92690 5.29390 5.66090 6.02790 6.39490 6.76190	0.70640 1.20360 1.66060 2.02760 2.39460 2.76160 3.12860 3.49560 3.86260 4.22960 4.59660 4.96360 5.33060 5.69760 6.06460 6.43160 6.70860 7.16460	0.66970 1.33030 1.69730 2.06430 2.43130 2.79830 3.16530 3.53230 3.89930 4.26030 4.63330 5.00030 5.36730 5.73430 6.10130 6.46830 6.83530
-000 +000 100 200 300 400 500 600 700. 800 900 1100 1200 1300 1400 1500	0.81650 I.18350 I.55050 I.91750 2.28450 2.65150 3.01850 3.38550 3.75250 4.11950 4.48650 4.85350 5.282050 5.58750 5.95450 6.32150 6.68850 7.05550	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520 3.42220 3.78020 4.15620 4.52320 4.89020 5.25720 5.62420 5.99120 6.35820 6.72520 7.09220	0.74310 1.25690 1.62390 1.99090 2.55790 2.72490 3.09190 3.45890 4.19290 4.19290 4.92690 5.29390 5.66090 6.02790 6.39490 6.76190 7.12890	0.70640 1.20360 1.66060 2.02760 2.39460 2.76160 3.12860 3.49560 3.86260 4.22960 4.59660 4.96360 5.33060 5.69760 6.06460 6.43160 6.70860 7.16460	0.66970 1.33030 1.69730 2.06430 2.43130 2.79830 3.16530 3.53230 3.89930 4.26630 4.63330 5.00030 5.36730 5.73430 6.10130 6.46830 6.83530 7.20230
-000 +000 100 200 300 400 500 600 700. 800 900 1100 1200 1300 1400 1500 1600	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150 3.01850 3.78550 3.75250 4.11950 4.46650 4.85350 5.22050 5.58750 5.95450 6.32150 6.68850 7.452250 7.78950	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520 3.42220 3.78920 4.15620 4.52320 4.89020 5.25720 5.62420 5.99120 6.35820 6.72520 7.45920 7.45920 7.82620	0.74310 1.25690 1.62390 1.99090 2.55790 2.72490 3.09190 3.45890 3.82590 4.19290 4.529390 5.20390 6.22790 6.39490 6.76190 7.48590 7.49590 7.485290	0.70640 1.20360 1.66060 2.02760 2.39460 2.76160 3.12860 3.49560 4.22960 4.59660 4.96360 5.33060 5.69760 6.06460 6.43160 6.70860 7.16560 7.85960	0.66970 1.33030 1.69730 2.06430 2.43130 2.79830 3.16530 3.53230 3.89930 4.26030 4.63330 5.00030 5.36730 5.73430 6.10130 6.46830 6.83530
-000 +000 100 200 300 400 500 600 700. 800 900 1100 1200 1300 1400 1500 1600 1700	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150 3.01850 3.75250 4.11950 4.48650 4.85350 5.22050 5.95450 6.32150 6.68850 7.05550 7.42250	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520 3.42220 3.78920 4.15020 4.52320 4.89020 5.25720 5.62420 5.99120 6.75250 7.09220 7.45920	0.74310 1.25690 1.62390 1.99090 2.55790 2.72490 3.09190 3.45890 3.82590 4.19290 4.55990 4.92690 5.20390 5.60690 6.2790 6.39490 6.76190 7.12890 7.49590	0.70640 1.20360 1.66060 2.02760 2.39460 2.76160 3.12860 3.49560 3.86260 4.29660 4.59660 4.96360 5.33060 5.69760 6.06460 6.43160	0.66970 1.33030 1.69730 2.06430 2.43130 2.79830 3.16530 3.53230 3.89930 4.26630 4.63330 5.00030 5.36730 5.73430 6.10130 6.46830 6.83530 7.20230 7.56930

VOLUME OF

(c) Logarithms of 1 + .00367 t for Values

t	0	1	2	3	4	Mean diff. per degree.
-40 -30 -20 -10 -0	1.931051 .949341 .966892 .983762 0.000000	1.929179 .947546 .965169 .982104	1.927299 ·945744 ·963438 ·980440 ·996801	1.925410 .943934 .961701 .978769 .995192	ī.923513 .942117 .959957 .977092	1884 1805 1733 1667 1605
+ 0 10 20 30 40	0.000000	0.001591	0.003176	0.0047 55	0.006329	1582
	.015653	.017188	.018717	.020241	.021760	1526
	.030762	.032244	.033721	.035193	.036661	1474
	.045362	.046796	.048224	.049648	.051068	1426
	.059488	.060875	.062259	.063637	.065012	1381
50	0.073168	0.074513	0.075853	0.077190	0.078522	1335
60	.086431	.087735	.089036	.090332	.091624	1299
70	.099301	.100567	.101829	.103088	.104344	1259
80	.111800	.113030	.114257	.115481	.116701	1226
90	.123950	.125146	.126339	.127529	.128716	1191
100	0.135768	0.136933	0.138094	0.139252	0.140408	1158
110	1.147274	.248408	.149539	.150667	.151793	1129
120	1.158483	.159588	.160691	.161790	.162887	1101
130	1.169410	.170488	.171563	.172635	.173705	1074
140	1.180068	.181120	.182169	.183216	.184260	1048
150	0.190472	0.191498	0.192523	0.193545	0.194564	1023
160	.200632	.201635	.202635	.203634	.204630	1000
170	.210559	.211540	.212518	.213494	.214468	976
180	.220265	.221224	.222180	.223135	.224087	956
190	.229959	.230697	.231633	.232567	.233499	935
200	0.239049	0.239967	0.240884	0.241798	0.242710	916
210	.248145	•249044	.249942	.250837	.251731	897
220	.257054	•257935	.258814	.259692	.260567	878
230	.265784	•266648	.267510	.268370	.269228	861
240	.274343	•275189	.276034	.276877	.277719	844
250	0.282735	0.283566	0.284395	0.285222	0.286048	828
260	.290969	.291784	.292597	.293409	.294219	813
270	.299049	.299849	.300648	.301445	.302240	798
280	.306982	.307768	.308552	.309334	.310115	784
290	.314773	.315544	.316314	.317.083	.3178 5 0	769
300	0.322426	0.323184	0.323941	0.324696	0.325450	756
310	-329947	.330692	.331435	.332178	.332919	743
320	-337339	.338072	.338803	.339533	.340262	730
330	-344608	.345329	.345048	.346766	.347482	719
340	-351758	.352466	.353174	.353880	.354585	707
350	0.358791	0.359488	0.360184	6.366879	0.361573	696
360	.365713	.366399	.367084	.367768	.368451	684
370	.372525	.373201	.373875	.374549	.375221	674
380	.379233	.379898	.380562	.381225	.381887	664
390	.385439	.386494	.387148	.387801	.388453	654

PERFECT CASES.

of t between -49° and $+399^{\circ}$ C. by Degrees.

		<u> </u>				
t	5	6	7	8	9	Mean diff. per degree.
-40	ī.921608	ī.919695	1.917773	ī.915843	ī.913904	1 926
-30	.940292	.938460	.936619	.934771	.932915	184 5
-20	.958205	.956447	.954681	.952909	.951129	1771
-10	.975409	.973719	.972022	.970319	.968609	1699
-0	.991957	.990330	.988697	.987058	.985413	1636
+0	0.007897	0.009459	0.011016	0.012567	0.014113	1554
10	.023273	.024781	.026284	.027782	.029274	1500
20	.038123	.039581	.041034	.042481	.043924	1450
30	.052482	.053893	.055298	.056699	.058096	1402
40	.066382	.067748	.069109	.070466	.071819	1359
50	0.079847	0.081174	0.082495	0.083811	0.085123	1315
60	.092914	.094198	.095516	.096715	.098031	1281
70	.105595	.106843	.108088	.109329	.110566	1243
80	.117917	.119130	.120340	.121547	.122750	1210
90	.129899	.131079	.132256	.133430	.134601	1175
100	0.141559	0.142708	0.143854	0.144997	0.146137	1144
110	.152915	.1 54034	.155151	.156264	.157375	1115
120	.163981	.164072	.166161	.167246	.168330	1087
130	.174772	.17 5836	.176898	.177958	.179014	1060
140	.185301	.186340	.187377	.188411	.189443	1035
150 160 170 180 190	0.195581 .205624 .215439 .225038 .234429	0.196596 .206615 .216409 .225986 .235357	0.197608 .207605 .217376 .226932 .236283	0.198619 .208592 .218341 .227876 .237207	0.199626 .209577 .219904 .228819 .238129	988 966 946 925
200	0.243621	0.244529	0.245436	0.246341	0.247244	906
210	.252623	.253512	.254400	.255287	.256172	887
220	.261441	.262313	.263184	.264052	.264919	870
230	.270085	.270940	.271793	.272644	.273494	853
240	.278559	.279398	.280234	.281070	.281903	836
250	0.286872	0.287694	0.288515	0.289326	0.290153	820
260	.295028	.295835	.296860	.297445	.298248	805
270	.303034	.303827	.304618	.305407	.306196	790
280	.310895	.311673	.312450	.313226	.314000	776
290	.318616	.319381	.320144	.320906	.321667	763
300	0.326203	0.326954	0.327704	0.328453	0.329201	750
310	•333659	·334397	·335 ¹ 35	·335871	.336606	737
320	•340989	·341715	·34244 ¹	·343164	.343887	724
330	•348198	·348912	·349624	·359337	.351048	713
340	•355289	·355991	·356693	·357394	.358093	701
350	0.362266	0.362957	0.363648	0.364337	0.365025	690
360	.369132	.369813	.370493	.371171	.371849	678
370	.375892	.376562	.377232	.377900	.378567	668
380	.382548	.383208	.383868	.384525	.385183	658
390	.389104	.389754	.390403	.391052	.391699	648

VOLUME OF PERFECT CASES.

(d) Logarithms of $1+.00367\,t$ for Values of t between 400° and 1990° C. by 10° Steps.

		,			
t	00	10	20	30	40
400	0.392345	0.398756	0.405073	0.411300	0.417439
500 600 700 800 900	0.452553 .505421 .552547 .595055 .633771	0.458139 .510371 .556990 .599086 .637460	0.463654 .515264 .561388 .603079 .641117	0.469100 .520103 .565742 .607037 .644744	0.474479 .524889 .570052 .610958 .648341
1000 1100 1200 1300 1400	0.669317 .702172 .732715 .761251 .788027	0.672717 .705325 .735655 .764004 .790616	0.676090 .708455 .738575 .766740 .793190	0.679437 .711563 .741745 .769459 .795748	0.682759 .714648 .744356 .772160 .798292
1500 1600 1700 1800 1900	0.813247 .837083 .859679 .881156 .901622	0.815691 .839396 .861875 .883247 .903616	0.818120 .841697 .864060 .885327 .905602	0.820536 .843986 .866234 .887398 .907578	0.822939 .846263 .868398 .889459 .909545
z	50	60	70	80	90
400	0.423492	0.429462	0.435351	0.441161	0.446894
500 600 700 800 900	0.479791 .529623 .574321 .614845 .651908	0.485040 .534305 .578548 .618696 .655446	0.490225 .538938 .582734 .622515 .658955	0.495350 .543522 .586880 .626299 .662437	0.500415 .548058 .590987 .630051 .665890
1000 1100 1200 1300 1400	0.686055 .717712 .747218 .774845 .800820	0.689327 .720755 .750061 .777514 .803334	0.692574 .723776 .752886 .780166 .805834	0.695797 .726776 .755692 .782802 .808319	0.698996 .729756 .758480 .785422 .810790
1500 1600 1700	0.825329 .848828 .870550	0.827705 .850781 .872692	0.830069 .853023 .874824 .895583	0.832420 .855253 .876945 .897605	0.834758 .857471 .879056 .899618

DETERMINATION OF HEIGHTS BY THE BAROMETER.

Formula of Babinet:
$$Z = C \frac{B_0 - B}{B_0 + B}$$
.
 C (in feet) = 52494 $\left[1 + \frac{t_0 + t - 64}{900}\right]$ English measures.
 C (in metres) = 16000 $\left[1 + \frac{2(t_0 + t)}{1000}\right]$ metric measures.

In which Z= difference of height of two stations in feet or metres. B_0 , B= barometric readings at the lower and upper stations respectively, corrected for all sources of instrumental error.

 t_0 , t = air temperatures at the lower and upper stations respectively.

Values of C.

Eng	LISH MEAS	SURES.	METRIC MEASURES.					
$\frac{1}{2}(t_0+t).$	С	Log C	$\frac{1}{2}(t_0+t).$	С	Log C			
Fahr. 10° 15 20 25 30 35 40 45 50 65 70 75 80 85 90 95	Feet. 49928 50511 51094 51677 52261 52844 53428 54011 54595 55178 55761 56344 56927 57511 58094 58677 59260 59844 60427	4.69834 .70339 4.70837 .71330 4.71818 .72300 4.72777 .73248 4.73715 .74177 4.74633 .75085 4.75532 .75975 4.76413 .76847 4.77276 .77702 4.78123	Cent10° -8 -6 -4 -2 0 +2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36	Metres. 15360 15488 15616 15744 15872 16000 16128 16256 16384 16512 16640 16768 16886 17024 17152 17280 17408 17536 17664 17792 17920 18048 18176 18304	4.18639 .19000 .19357 .19712 .20063 4.20412 .20758 .21101 .21442 .21780 4.22115 .22448 .22778 .23106 .23431 4.23754 .24075 .24393 .24709 .25022 4.25334 .25643 .25950 .26255			

BAROMETRIC

Barometric pressures corresponding to different This table is useful when a boiling-point apparatus is used

(a) British Measure.

Temp. F.	.0	.1	.2	.3	.4	.5	.6	.7	.8	.9
185 °	17.05 17.42	17.08 17.46	17.12	17.16	17.20	17.23 17.61	17.27 17.65	17.31	17.35	17.39
187 188	17.81	17.84 18.24	17.88	17.92 18.31	17.96 18.35	18.00	18.04	18.08 18.47	18.12 18.51	18.16
189 190	18.59	18.63 19.04	18.67	18.71 19.12	18.75	18.79	18.83	18.87	18.91	18.95
191 192	19.41	19.45	19.49	19.53	19.57	19.61	19.66	19.70	19.74	19.78
193	20.25 20.68	20.29 20.73	20.34	20.38	20.42 20.86	20.47	20.51	20.55	20.60	20.64
195 196	21.13	21.17	21.22	21.26 21.71	21.30 21.76	21.35	21.39 21.85	21.44	21.48 21.94	21.53
197	22.03	22.08	22.12 22.59	22.17 22.64	22.22	22.26 22.73	22.31 22.78	22.36 22.83	22.40 22.88	22.45 22.92
199 200	22.97 23.45	23.02 23.50	23.07 23.55	23.11 23.60	23.16 23.65	23.21 23.70	23.26 23.75	23.31 23.80	23.36 23.85	23.40 23.89
201 202	23.94 24.44	23.99 24.49	24.04 24.54	24.09 24.59	24.14 24.64	24.19 24.69	24.24	24.29 24.80	24.34 24.85	24.39 24.90
203 204	24.95 25.46	25.00 25.52	25.05 25.57	25.10 25.62	25.15 25.67	25.21 25.73	25.26 25.78	25.31 25.83	25.36 25.88	25.41 25.94
205 206	25.99 26.52	26.04 26.58	26.10 26.63	26.15 26.68	26.20 26.74	26.25 26.79	26.31 26.85	26.36 26.90	26.42 26.96	26.47 27.01
207 208	27.07 27.62	27.12 27.67	27.18 27.73	27.23 27.79	27.29 27.84	27.34 27.90	27.40 27.95	27.45 28.01	27.51 28.07	27.56 28.12
209 210	28.18 28.75	28.24 28.81	28.29 28.87	28.35 28.92	28.41 28.98	28.46 29.04	28.52 29.10	28.58 29.16	28.64 29.21	28.69 29.27
211 212	29.33 29.92	29.39 29.98	29.45 30.04	29.51	29.57 30.16	29.62 30.22	29.68 30.28	29.74 30.34	29.80 30.40	29.86 30.46
		,								

PRESSURES.

temperatures of the boiling-point of water.
in place of the barometer for the determination of heights.

(b) Metric Measure.*

			1							
Temp. C.	.0	.1	.2	.3	.4	.5	.6	.7	.8	.9
80°	354.6	356.1	357.5	359.0	360.4	361.9	363.3	364.8	366.3	367.8
81	369.3	370.8	372.3	373.8	375-3	376.8	378.3	379.8	381.3	382.9
82	384.4	385.9	387.5	389.0	390.6	392.2	393.7	395-3	396.9	398.5
83	400.1	401.7	403.3	404.9	406.5	408.1	409.7	411.3	413.0	414.6
84	416.3	417.9	419.6	421.2	422.9	424.6	426.2	427.9	429:6	431.3
85	433.0	434.7	436.4	438.1	439.9	441.6	443.3	445.1	446;8	448.6
86	450.3	452.1	453.8	455.6	457-4	459.2	461.0	462.8	464.6	466.4
87	468.2	470.0	471.8	473.7	475.5	477.3	479.2	481.0	482.9	484.8
88	486.6	488.5	490.4	492.3	494.2	496.1	498.0	499.9	8.102	503.8
89	505.7	507.6	509.6	511.5	513.5	515-5	517.4	519.4	521.4	523.4
90	525.4	527.4	529.4	531.4	533-4	535-5	537.5	539.6	541.6	543.7
91	545.7	547,8	549-9	551.9	554.0	556.1	558.2	560.3	562.4	564.6
92	566.7	568.8	571.0	573.1	575-3	577-4	579.6	581.8	584.0	586.1
93	588.3	590.5	592.7	595.0	597.2	599-4	601.6	603.9	606.1	608.4
94	610.7	612.9	'615.2	617.5	619.8	622.1	624.4	626.7	629. o	631.4
95	633.7	636.0	638.4	640.7	643.1	645.5	647.9	650.2	652.6	655.0
96	657.4	659.9	662.3	664.7	667.1	669.6	672.0	674.5	677.0	679.4
97	681.9	684.4	686.9	689.4	691.9	694.5	697.0	699.5	702.I	704.6
98	707.2	709.7	712.3	714.9	717.5	720.1	722.7	725.3	727.9	730.5
99	733.2	735.8	738.5	741.2	743.8	746.5	749.2	751.9	754.6	757-3
100	760.0	762.7	765.5	768.2	770.9	773.7	776.5	779.2	782.0	784.8

^{*} Pressures in millimetres of mercury.

STANDARD WAVE-LENGTHS.

This table is an abridgment of the table published by Rowland (Phil. Mag. [5] vol. 36, pp 49-75). The first column gives the number of the line reckoned from the beginning of Rowland's table, and thus indicates the number of lines of the table that have been omitted. The second column gives the chemical symbol of the element represented by the line of the spectrum. The third column indicates approximately the relative intensity of the lines recorded and also their appearance; R stands for reversed, d for double,? for doubtful or difficult. The fourth column gives the relative "weights" to be attached to the values of the wave-lengths as standards. The last column gives the values of the wave-lengths in Angström's units, i.e., in ten millionths of a millimetre in ordinary air at about 20° C. and 760 millimetres pressure. When two or more elements are on the same line of the table it indicates that they have apparently coincident lines in the spectrum for that wave-length. When two or more lines are bracketed it means that the first one has a line coinciding with one side of the corresponding line in the solar spectrum and so on in order. Lines marked A(o) and A(wn) denote lines due to absorption by the oxygen or water vapor in the earth's atmosphere. The letters placed in front of some of the numbers in the first column are the symbols of well-known lines in the spectrum. The footnotes are from Rowland's paper.

No. of line.	Element.	Intensity and appearance.	Weight.	Wave- length (arc spectrum).	No. of line.	Element.	Inten- sity and appear- ance.	Weight.	Wave- length (arc spectrum).
1 4 7 9	Sr Si Si Al Ca	2 3 2 4 20 <i>R</i>	1 2 2 2 3	2152.912 2210.939 2218.146 2269.161 2275.602	115 117 121 124 126	Fe Fe Fe Fe	10 R 7 R 8 R 12 R 10 R	4 4 12 15	2937.020 2954.058 2967.016 2973 358 2983.689
14 16 19 22 24 29 31	Ba Fe Al Fe Ca Si	20 R - 7 - 25 R 8 3	1 2 3 2 5 5 10	2335.267 2348.385 2373.213 2388.710 2398.667 2435.247 2443.460	129 131 135 136 141 151 163 169	Fe Ca Fe Fe Fe Fe	8 R 10 R 8 R 15 R 6 R 25 R 20 R 10 R	18 3 15 3 15 18 13	2994.547 2997.430 3001.070 3006.978 3008.255 3020.759 3047.720 3059.200
33 37* 46 51 55 59† 63 68	Si C Bo Si Si Hg Al Mu	3 10 20 15 9 50 R	7 10 20 7 10 2 5	2452.219 2478.661 2497.821 2516.210 2524.206 2536.648 2568.085 2593.810	136 144 154 158 164	Co	3 4 5 5 3 d 3	- - 7 7 5 5	(Sun spectrum.) 3005.160 3012.557 3024.475 3035.850 3050.212 3061.930
² 73 77 78 82 85	Si Fe Ca Fe Fe	5 - 5 -	7 3 1 3 3	2631.392 2720.989 2721.762 2742.485 2756.427	177 187 197 201 203	Fe? ? Va‡ — Mn	4 2 5 3	6 9 9 5 5	3078.148 3094.739 3121.275 3140.869 3167.290
99 102 106 111 112	Mg Mg Fe Mg Si	20 R 20 R 4 100 R	12 10 7 15 12	2795.632 2802.805 2832.545 2852.239 2881.695	207 209 211 215 222	Cr? Ti Ti Ti Cu	4 4 3 4 9	5 5 6 3 5	3188.164 3200.032 3218.390 3224.368 3247.680

^{*} Seems to be the only single carbon line not belonging to a band in the arc spectrum. It was determined to belong to carbon by the spark spectrum.

[†] This line appears as a sharp reversal, with no shading, in the spectra of all substances tried that contained any trace of a continuous spectrum in the region.

[‡] There is a faint line visible on the violet side.

STANDARD WAVE-LENGTHS.

No. of Line.	Element.	Intensity and appearance.	Weight.	Wave- length (sun spectrum).	No. of Line.	Element.	Intensity and appearance.	Weight.	Wave- length (sun spectrum).
224 229 235 239 241	Va Na Ti Zr Fe	4 6 5 1 2	10 6 10 8 12	3267.839 3302.501 3318.163 3356.222 3389.887	409† 410 417 420 422	Fe? Fe Fe Mn Fe	3 20 5	3 7 7 13 7	4005.305 4016.578 4045.975 4055.701 4063.756
244 250 255 261 265	Fe Co Co, Fe, Ni Fe Co	4 4 4 3 5	18 10 10 4	3406.955 3455.384 3478.001 3500.721 3518.487	424 428 431 434 436	Fe Fe Fe Fe Fe	4 2 4 3 3	14 8 14 17 20	4073.920 4088.716 4114.600 4157.948 4185.063
269 274 278 279	Fe { Ti } Fe } Fe Fe ?	5 4 d? 40 4	10 12 6 12	3540.266 3564.680 3581.344 3583.483	439 & 445 448 451 456	Fe Ca Cr Fe ?	5 10 7 8 4	4 10 15 9	4202.188 4226.892 4254.502 4271.924 4293.249
284 290 292 294 298	Fe Fe Fe Fe	4 15 4 20 4	12 10 15 10	3597.192 3609.015 3612.217 3618.924 3623.332	G 462 f 465 467	Ca Fe Fe Fe	$\begin{bmatrix} 2 \\ -5 \\ 8 \\ 3 \end{bmatrix}$	3 3 10 15	4307.904 4308.034 4308.071 4325.940 4352.903
301 307 311 313	Fe Fe Co Fe Va	20 10 3 6	10 11 13	3631.619 3647.995 3667.397 3683.202	d 471 473 477 480‡ 484	Fe Fe Ca Fe Fe	10 8 4 5 5	11 11 7 18 18	4383.721 4404.927 4425.609 4447.899 4494.735
320 324 327 338 341	Fe Fe Fe Fe Fe	5 50 5 20 15	11 10 15 8 7	3707.186 3720.086 3732.542 3789.633 3758.379	490 493 496 500	Ti Ba Ti Fe { Ti } Co }	4 7 6 4 5	17 8 14 20	4508.456 4554.213 4572.157 4602.183 4629.515
348 355 358 361 369	Fe Fe Fe Fe	3 3 30 20 5	15 15 4 4 8	3781.330 3804.153 3820.567 3826.024 3843.406	508 512 515 518§ 524	Fe Fe Ni Mg Mn	4 6 4 9 6	17 12 12 11	4643.645 4679.028 4686.395 4703.180 4783.601
371 375 379 382 K 387*	Fe C Fe Ti Ca	10 7 4 4 300	3 3 12 15 5	3860.048 3883.472 3897.599 3924.669 3933.809	528 F 531 537 545	Mn H Fe Ti Fe Fe	6 15 7 3	12 5 4 10	4823.697 4861.496 4919.183 4973.274
391 393 397 H 399 404	Al Fe Fe Ca Fe, Ti	10 4 3 200 4	7 15 11 5	3944.159 3950.101 3960.429 3968.620 3981.914	549 558 561 564 567	Fe Ti Fe Fe Fe	4 3 5 4 2	7 8 12 14 9	4994.316 5020.210 5050.008 5068.946 5090.959

^{*} This line is doubly reversed and spread out in broad shading for 6.000 to 7.000 on either side. In each case the second reversal is slightly excentric with respect to the other, being displaced towards the red.

[†] Seven or eight lines, the brightest, and most of the others are due to iron.

[‡] There is a faint side line towards the red.

[§] This line is shaded towards the violet, probably due to a close side line.

STANDARD WAVE-LENGTHS.

No. of Line.	Element.	Intensity and appearance.	Weight.	Wave- length (sun spectrum).	No. of Line.	Element.	Intensity and appearance.	Weight.	Wave- length (sun spectrum).
570 575 580 589	Fe Fe Fe	2 4 3 4	11 9 5 13	5109.825 5127.530 5141.916 5162.448	762 764 770 774	Fe Si Fe Mn Fe	6 6 6 6	14 14 7 5	5930.410 5948.761 5987.286 6013.717
b ₄ { 592 593 594 595 596 597	Mg Fe Fe Fe	$\begin{bmatrix} 8 \\ -6 \\ 4 \\ 4 \\ 4 \end{bmatrix} d$	3 7 3 3 5 3	5167.501 5167.572 5167.686 5169.066 5169.161 5169.218	778 782 786 792 797 804	Fe Ca Ca Ca Fe	7 6 9	13 9 11 9 10	6024.280 6065.708 6102.941 6122.428 6162.383 6191.770
62 599 61 601 610 614 618	Mg Mg Fe Fe Fe	10 20 4 8 3	9 11 10 9 12	5172.871 5183.792 5215.352 5233.124 5253.649	808 811 815 822 827	Fe, Va Fe Fe Fe Fe	7 7 5 7 6	12 9 11 7 12	6230.946 6252.776 6265.347 6301.719 6335.550
E_2 630* $E_1 \begin{cases} 631 \\ 632 \\ 633 \\ 639 \end{cases}$	Fe Ca Fe Fe	8 d? 4 d 4 d 6	16 12	5269.722 5270.448 5270.495 5270.533 5283.803	834 838 843 846 850	Fe Fe Ca Ca Fe (Ti)	7 7 7 5 7	9 10 11 7 9	6393.818 6411.864 6439.298 6471.881 6495.209
643 647 655 659 662	Fe Fe Fe Fe Fe	4 8 6 6 7	10 8 8 11 14	5307.546 5324.373 5367.670 5383.576 5405.987	856 C 858 863 867 870	{Fe} H Fe Ni Fe	6 30 5 5 5	13 11 10	6546.486 6563.054 6593.161 6643.482 6678.232
668 674 676 679 682	Fe Fe Ni Fe Mg	7 4 4 4 7	9 10 10 8 8	5347.130 5463.493 5477.128 5501.685 5528.636	877 879 883 886 \$86	Fe Ni Fe Fe A(o)	4 4 3 3 4 d	9 8 6	67 50.412 6768.044 6810.519 6441.591 6870.186
687 690 695 699† 700†	Fe Ca Ca Fe Fe, Va	5 6 4 2 4	8 9 4 12 14	5569.848 5588.980 5601.501 5624.253 5624.768	911 925 931 938 940	A(o) $A(o)$ $A(wv)$ $A(wv)$	4 6 4 8 8	13 9 9 10 12	6884.083 6909.675 6919.245 6947.781 6956.700
706 710 717 720 725	Fe Na Fe Fe Cu?Co?	5 5 7 d?	9 7 10 10	5662.745 5688.434 5731.973 5753.342 5782.346	957 961 969 977 984	? A(wv) A(wv) A(wv)	6 6 10 15	8 5 5 4 3	7035.159 7122.491 7200.753 7243.904 7290.714
73^{2} 737^{\ddagger} $D_{3}740^{\$}$ $D_{2}743$ $D_{1}745$	Fe Ca He Na Na	5 7 - 15 10	7 14 - 20 20	5806.954 5857.672 5875.982 5890.182 5896.154	990 997 998 1004 1010	? A(o) A(o) A(o)	7 - 10 14 4	2 4 5 3 1	7389.696 7594.059 7621.277 7660.778 7714.686

^{*} Component about .088 apart on the photographic plate. It is an exceedingly difficult double.

[†] Lines used by Pierce in the determination of absolute wave-lengths.

[‡] There is a nickel line near to the red.

[§] This value of the wave-length is the result of three series of measurements with a grating of 20,000 lines to the inch and is accurate to perhaps .02.

^{||} Beginning at the head of A, outside edge.

WAVE-LENGTHS OF FRAUNHOFER LINES.

For convenience of reference the values of the wave-lengths corresponding to the Fraunhofer lines usually designated by the letters in the column headed "index letters," are here tabulated separately. The values are in ten millionths of a millimetre on the supposition that the D line value is 5896.156. The table is for the most part taken from Rowland's table of standard wave-lengths, but when no corresponding wave-length is there given, the number given by Kayser and Runge has been taken. These latter are to two places of decimals.

1					
Index letter.	Line due to —	Wave-length in centimetres × 108.	Index letter.	Line due to-	Wave-length in centimetres × 108.
	(0	7621.277*	G' or H _y	н	4340.66 §
A	10	7594.059*		[Fe	4308.071
a	-	7184.781	G	-	4308.034
В	O	6870.186†		Ca	4307.904
C or Ha	Н	6563.054	g	Ca	4226.892
а	0	6278.289‡	h or H _δ	H	4101.87
D_1	Na	5896.154	Н	Ca	3968.620
D_2	Na	5890.182	K	Ca	3933.809
D_3	He	587 5.982	L	Fe	3820.567
	[Fe	5270.533	M	Fe	3727.763
\mathbf{E}_1	-	5270.495	N	Fe	3581.344
	Ca	5270.448	0	Fe	3441.135
\mathbf{E}_2	Fe	5269.722	P	Fe	3361.30
b ₁	Mg	5183.792	Q	Fe	3286.87
b_2	Mg	5172.871	R II	∫ Ca	3181.40
	(Fe	5169.218	K	(Ca	3179.45
b ₃	-	5169.161	v¶	Fe	3144.58 (?)
	Fe	5169.066	S ₁	Fe	3100.779
	[Fe	5167.686	S ₂	Fe	3100.415
b ₄	-	5167.572	52	Fe	3100.064
	Mg	5167.501	s	Fe	3047.720
F or H _β	Н	4861.496	Т	Fe	3020.759
d	Fe	4383.721	t	Fe	2994.542
f	· Fe	4325.940	U	Fe	2947.993

^{*} The two lines here given for A are stated by Rowland to be: the first, a line "beginning at the head of A, outside edge;" the second, a "single line beginning at the tail of A."

[†] The principal line in the head of B.

[‡] Chief line in the a group.

[§] Ames, " Phil. Mag." (5) vol. 30.

^{||} Cornu gives 3179.8, which, allowing for the different value of the standard D line, corresponds to about 3180.3.

[¶] Cornu gives 3144.7, which would correspond to about 3145.2.

DETERMINATIONS OF THE VELOCITY OF LIGHT, BY DIFFERENT OBSERVERS.*

Date of determination.	No. of experiments made.	Method.	Interval worked across in kilometres.	Velocity in kilometres per second.	Velocity in miles per second.	Reference.	Wt. of obser- vation as esti- mated by Hark- ness.
1849	-	Toothed wheel	8.633	31 5324	195935	I	0
1862	80	Revolving mirror	0.02	298574 ± 204	185527 ± 127	2	I
1872	658	Toothed wheel	10.310	298500 ± 995	185481 ± 618	3	1
1874	546		22.91	300400 ± 300	186662 ± 186	4	2
1879	100	Revolving mirror	0.6054	299910 ± 51	186357 ± 31.7	5	3
1880	I 2	Toothed wheel	{ 5.1313 } { 5.5510 }	301384 ± 263	187273 ± 164	6	I
1880	148	Revolving mirror	5.1019	299709	186232	7	
to {	39	66 66	7.4424	299776	186274	7	-
1002	65	46 46	7.4424	299860	186326	7	6
1882	23	46 66	0.6246	299853±60	186322 ± 37	8	3
Mean f	rom all	weighted measurem	nents .	299835 ± 154	186310 ± 95.6	9	
		se having weights >					
wiean i	TOIL THO	se naving weights >		299893 ± 23	186347 ± 14.3	9	

1 Fizeau. "Comptes Rendus," 1849. 2 Foucault, "Recueil des travaux scientifiques," Paris, 1878. 3 Cornu, "Jour. de l'Ecole Polytechnique," Paris, 1874. 4 Cornu, "Annales de l'Observatoire de Paris," Memoires, tome 13, p. A. 298, 1876.

5 Michelson, "Proc. A. A. S." 1878. 6 Young and G. Forbes, "Phil. Trans." 1882.

7 Newcomb, "Astronomical Papers of the American Ephemeris," vol. 2, pp. 194, 201, and 202. 8 Michelson, "Astronomical Papers of the American Ephemeris," vol. 2, p. 244.

9 Harkness.

TABLE 182.

PHOTOMETRIC STANDARDS.†

Name of standard	Violle units.	Carcels.	Star candles.	German candles.	English candles.	Hefner- Alteneck lamps.
Violle units ‡ Carcels Star candles German candles English candles Hetner-Alteneck lamp	1.000 0.481 0.062 0.061 0.054 0.053	2.08 1.00 0.130 0.127 0.112 0.114	16.1 7-75 1.00 0.984 0.870 0.853	16.4 7.89 1.02 1.00 0.886 0.869	18.5 8.91 1.15 1.13 1.00 0.98	18.9 9.08 1.17 1.15 1.02 1.00

tometry," p. 173.

‡ The Violle unit is sometimes called the absolute standard of white light. It is the quantity of light emitted normally by one square centimetre of the surface of melted platinum at the temperature of solidification.

^{*} Quoted from Harkness, "Solar Parallax," p. 33.
† This table, founded on Violle's experiments, is quoted from Paterson's translation of Palaz' "Industrial Phonetry." p. 173.

SOLAR ENERGY AND ITS ABSORPTION BY THE EARTH ATMOSPHERE.

This table gives some of the results of Langley's researches on the atmospheric absorption of solar energy.* The first column gives the wave-length λ_i in microns, of the spectrum line, while the second and third columns give the corresponding absorption, according to an arbitrary scale, for high and low solar attitudes. The fourth column, E, gives the relative values of the energy for the different wave-lengths which would be observed were there no terrestrial atmosphere.

λ	<i>a</i> ₁	a_2	E
o ⁴ ·375 ·400 ·450 ·500 ·600 ·700 ·800 ·900 I.000	235 424 570 621 553 372 238	27 63 140 225 311 324 246 167	353 683 1031 1203 1083 849 519 316 309

TABLE 184.

THE SOLAR CONSTANT.

The "solar constant" is the amount of heat per unit of area of normally exposed surface which, at the earth's mean distance, would be received from the sun's radiation if there were no terrestrial atmosphere. The following table is taken from Langley's researches on the energy of solar radiation.† The first column gives the wave-length in microns. The second and third columns give relatively on an arbitrary scale a paper and a lower limit to the possible value of spectrum energy.

Wave- length.	Spectrum energy (upper limit).	Spectrum energy (lower limit).	Wave- length.	Spectrum energy (upper limit).	Spectrum energy (lower limit).
ο ^μ .530	203.9	122.5	I ^M .000	105.0	102.3
·375	196.6	110.0	1.200	78.2	61.3
·400	242.2	139.1	1.400	65.1	92.2
·450	783.2	105.5	1.600	48.0	45.0
·500	852.9	374.1	1.800	39.2	36.4
·600	514.7	333.0	2.000	29.1	27.1
·700	317.7	255.4	2.200	19.4	17.5
·800	173.9	167.3	2.400	7.0	6.8

The areas of the energy curves are respectively . . . 149,060 and 95,933

The solar constants deduced from these areas are . . . 3,505 and 2.630

Langley concludes that "in view of the large limit of error we can adopt three calories as the most probable value of the solar constant," or that "at the earth's mean distance, in the absence of its absorbing atmosphere, the solar rays would raise one gramme of water three degrees per minute, for each normally exposed square centimetre of its surface."

* "Am. Jour. of Sci." vols. xxv., xxvii., and xxxii.

† "Professional Papers of U. S. Signal Service," No. 15, 1884.

SMITHSONIAN TABLES.

INDEX OF REFRACTION FOR CLASS.

The table gives the indices of refraction for the Fraunhofer lines indicated in the first column. The kind of glass, the density, and, where known, the corresponding temperature of the glass are indicated at the top of the different columns. When the temperature is not given, average atmospheric temperature may be assumed.

		(a) I	RAUNHOF	ER'S	DETER	MINATIO	ÒŃS.	(Ber.	Mün	ch. Al	kad. B	d. 5.)		
				Flint	glass.				C	Crown	glass.				
	D T	ensity = emp. C. =	3·723	5	3.	512		2.756	1	2.5	535 • 5		2.535		
B C D E F G H		C D E F G	.629 .635 .642 .648:	.63504 .608 .64202 .614 .64826 .620		0380 0849 1453 2004 3077	380 .555 849 .559 453 .563 .566 977 .573		93		685 959 301 605 166	1.52431 ·52530 ·52798 ·53137 ·53434 ·53991 ·54468			
(b) Baille's Determinations. (Quoted from the Ann. du Bur. des Long. 193, p. 620.)															
Flint glass.															
Density Temp. C.	=	2.98	3.22 18°.4	3.	24	3·44 19°.5	2	30.2	3.	63	3.65 24°.	8	4.08 12 ⁰ .4		5.00
B C D b ₁ F G H	C .5624 D .5660 b ₁ .5715 F .5748 G .5828		1.5659 .5675 .5715 .5776 .5813 .5902 .5979	· 5.56 · 58 · 58 · 56	.5766 I.59 .5783 .5822 .66 .5887 .66 .5924 .618 .6018 .62		.0	6045 6062 6109 6183 6225 6335 6428	.6 .6 .6	131 149 198 275 321 435 534	1.6237 .6255 .6304 .6384 .6429 .6549		.6795 .6858 .84 .6959 .29 .7019 .49 .7171		1.7801 .7831 .7920 .8062 .8149 .8368 .8567
				(Crown g	glass. (Baill	e, <i>ibid</i> .	.)						
	D	ensity = emp. C. =	2.49	5	2.	50		2.55 18°.4		2.8			3.00 21 ⁶ .9		
		B C D b ₁ F G H	1.512 .513 .516 .519 .522 .527 .532	8 2 8	1.524 .525 .528 .532 .534 .539		1.5226 .5237 .5265 .5307 .5332 .5392 .5442		.51 .51 .52 .52	1.5157 .5166 .5192 .5234 .5256 .5313 .5360		1.5554 .5568 .5604 .5658 .5690 .5769 .5836			
		(c)	Hopkinso	on's I	Detern	MINATIO	NS.	(Proc.	Roy	Soc.	vol. 20	6.)			
		Hard crown.	Soft crown.	S	itani- ilicie rown.					Flin	t glass.				
Density:		2.486	2.550		2-553	2.86	6	3-20	56	3.	659	3	.889		4-422
A B C D E b ₁ F (G)	B .513625 .510916 1.539155 .55 C .514568 .511904 .540255 .55 D .517114 .514591 .543249 .54 E .520331 .518010 .547088 .54 b ₁ .520967 .518686 .547852 .52 F .523139 .520996 .550471 .523139 .520996 .550471 .5253139 .526207 .556386 .55		·537 ·541 ·545 ·546 ·549 ·555	450 673 011 306 166 121 863	50 1.568 5 58 1.61 73 .570011 .61 11 .574015 .62 10 .579223 .62 10 .580271 .63 10 .583886 .63		7484 22414 28895 30204 34748 15267	.6 .6 .6 .6	39143 42874 44866 50388 57653 59122 664226 76111		696531 701060 703478 710201 719114 720924 727237 742063				
G h H ₁		.528353 .530902 .532792	.526595 .529359 .531416		556830 559999 562392	.560	010		332	.69	1840 1840	.6	683577 688569		743204 751464 757785

(d) MASCART'S DETERMINATIONS. (Ann. Chim. Phys. 1868.)

(e)	Langley's	DETERMINATIONS. nal, 27, 1884.)	(Silliman's	Jour-
-----	-----------	------------------------------------	-------------	-------

	Flint	glass.	Crown glass.	F	Flint glass.		
Density= Temp. =	3.615 30°.0	3.239 26°.0	2.578 28°.0	Wave length in mm. X			
A B C D E b ₄ F G H L M N O P Q	1.60927 .61268 .61443 .61929 .62569 .62706 .63148 .64269 .65268 .65817 .66211 .66921	1.57829 .58114 .58261 .58671 .59197 .59304 .59673 .60589 .61390 .62012 .62138 .62707	1.52814 .53011 .53113 .53386 .53735 .53801 .54037 .54007 .55093 .55349 .55531 .55853 .56198 .56419 .56646	2030 1918 1870 1810 1580 1540 1360 1270 1130 940 910 890 850 815 760.1 = 656.2 = 588.9 = 516.7 = 486.1 = 396.8 = 344.0 =	C .57 57 D ₁ .5798 b ₄ .5862 F .5899 H ₁ .6070		

(f) Effect of Temperature. (Vogel, Wied. Ann. vol. 25.)

 $n_t + n_{t'} = \alpha(t - t') + \beta(t - t')^2$,

where n_t is the absolute index of refraction for the temperature t, and α and β are constants. For temperatures ranging from 12° to 260° Vogel obtains the following values of α and β for the Fraunhofer lines given at the tops of the columns.

	H_{a}	D	H_{β}	H_{γ}
White glass $\begin{cases} \alpha.10^8 = \\ \beta.10^{10} = \end{cases}$	96 107	123	224 97	3 ² 7 93
Flint glass $\begin{cases} \alpha.10^8 = \\ \beta.10^{10} = \end{cases}$	190	190	362 221	575 221

(g) Effect of Temperature. (Müller, Publ. d. Astrophys. Obs. zu Potsdam, 1885.)

Fraun- hofer line.	Flint	glass.	Crown glass.
	Density $=$ 3.855. Temp. C. $=$ 1° to 24°.	Density $=$ 3.218. Temp. C. $=$ $-$ 3° to 21°.	Density = 2.522. Temp. $C. = -5^{\circ}$ to 23°.
B C D b ₁ F H _y	1.643776 + .00000474 t .645745 + .00000486 t .651193 + .00000495 t .659632 + .00000710 t .664936 + .00000653 t .676720 + .0000783 t .684144 + .0000861 t	1.574359 + .00000324 t .575828 + .00000333 t .579856 + .00000323 t .586000 + .00000443 t .589828 + .00000439 t .598205 + .00000560 t .603398 + .0000636 t	1.512588 — .00000043 t .513558 — .00000033 t .516149 + .00000017 t .520004 + .00000054 t .522349 + .00000082 t .520376 + .00000143 t

N. B. — The above examples on the effect of temperature give an idea of the order of magnitude of that effect, but are only applicable to the particular specimens experimented on.

Indices of Refraction for the various Alums.*

Index of refraction for the Fraunhofer lines.										
K	Density.	Temp.	a	В	C	D	E	b	P	G
Aluminium Alums. RAl(SO ₄) ₂ +12H ₂ O.†										
Na NH ₃ (CH ₃) K Rb Cs NH ₄ Te	1.667 1.568 1.735 1.852 1.961 1.631 2.329	17-28 7-17 14-15 7-21 15-25 15-20 10-23	1.43492 .45013 .45226 .45232 .45437 .45509 .49226	1.43563 .45062 .45303 .45328 .45517 .45599 .49317	1.43653 .45177 .45398 .45417 .45618 .45693 .49443	1.43884 .45410 .45645 .45660 .45856 .45939 .49748	1.44185 .45691 .45934 .45955 .46141 .46234 .50128	1.44231 .45749 .45996 .45999 .46203 .46288 .50209	1.44412 .45941 .46181 .46192 .46386 .46481	1.44804 .46363 .46609 .46618 .46821 .46923 .51076
Indium Alums. RIn(SO ₄) ₂ +12H ₂ O.†										
Rb Cs NH ₄	2.065	3-13 17-22 17-21	1. 45 942 .46091 .46193	1.46024 .46170 .46259	1.46126 .46283 .46352	1.46381 .46522 .46636	1.46694 .46842 .46953	1.46751 .46897 .47015	1.46955 .47105 .47234	1.49402 .47562 .47750
			Ga	llium Alun	ns. RGa(SO ₄) ₂ +12H	I ₂ O.†			
Cs K Rb NH ₄ Te	2.113 1.895 1.962 1.777 2.477	17-22 19-25 13-15 15-21 18-20	1.46047 .46118 .46152 .46390 .50112	1.46146 .46195 .46238 .46485 .50228	1.46243 .46296 .46332 .46575 .50349	1.46495 .46528 .46579 .46835 .50665	1.46785 .46842 .46890 .47146 .51057	1.46841 .46904 .46930 .47204 .51131	1.47034 .47093 .47126 .47412 .51387	1.47481 .47548 .47581 .47864 .52007
			Ch	rome Alun	ns. RCr(S	5O ₄) ₂ +12H	20.†			
Cs K Rb NH ₄ Te	2.043 1.817 1.946 1.719 2.386	6-12 6-17 12-17 7-18 9-25	1.47627 .47642 .47660 .47911 .51692	1.47732 .47738 .47756 .48014 .51798	1.47836 .47865 .47868 .48125 .51923	1.48100 .48137 .48151 .48418 .52280	1.48434 .48459 .48486 .48744 .52704	1.48491 .48513 .48522 .48794 .52787	1.48723 .48753 .48775 .49040 .53082	1.49280 .49309 .49323 .49594 .53808
			· I	ron Alums	. RFe(SC	O ₄) ₂ +12H ₂ (O.†		-	
K Rb Cs NH ₄ Te	1.806 1.916 2.061 1.713 2.385	7-11 7-20 20-24 7-20 15-17	1.47639 .47700 .47825 .47927 .51674	1.47706 .47770 .47921 .48029 .51790	1.47837 .47894 .48042 .48150 .51943	1.48169 .48234 .48378 .48482 .52365	1.48580 .48654 .48797 .48921 .52859	1.48670 .48712 .48867 .48993 .52946	1.48939 .49093 .49136 .49286 .53284	1.49605 .49700 .49838 .49980 .54112

^{*} According to the experiments of Soret (Arch. d. Sc. Phys. Nat. Genève, 1884, 1888, and Comptes Rendus, 1885).
† R stands for the different bases given in the first column.

SMITHSONIAN TABLES.

Index of Refraction of Metals and Metallic Oxides.

(a) Experiments of Kundt* by transmission of light through metallic prisms of small angle.

		Index of refraction for			
Name of substance.		Red.	White.	Blue.	
Silver Gold Copper Platinum Iron Nickel Bismuth Gold and gold oxide "" " † Bismuth oxide Iron oxide Nickel oxide Platinum and platinum oxide		0.38 0.45 1.76 1.81 2.17 2.61 1.04 0.89 	0.27 0.58 0.65 1.64 1.73 2.01 2.26 0.99 2.03 1.91 2.11 2.23 2.84 3.29 4.82	1.00 0.95 1.44 1.52 1.85 2.13 1.25 1.33 - - 2.36 2.39 3.18 2.90 4.40	

(b) Experiments of Du Bois and Rubens by transmission of light through prisms of small angle.

The experiments were similar to those of Kundt, and were made with the same spectrometer. Somewhat greater accuracy is claimed for these results on account of some improvements introduced, mainly by Prof. Kundt, into the method of experiment. There still remains, however, a somewhat large chance of error.

	Index of refraction for light of the following color and wave-length.								
Name of metal.	Red (Li _a). $\lambda = 67.1$	Red." λ = 64.4	Yellow (D). λ = 58.9	Blue (F). λ = 48.6	Violet (G). $\lambda = 43.1 \ddagger$				
Nickel Iron Cobalt	2.04 3.12 3.22	1.93 3.06 3.10	1.84 2.72 2.76	1.71 2.43 2.39	1.54 2.05 2.10				

(c) Experiments of Drude.

The following table gives the results of some of Drude's experiments.§ The index of refraction is derived in this case from the constants of elliptic polarization by reflection, and are for sodium light.

Metal.	Index of refraction.					
Aluminium Antimony Bismuth Cadmium Copper Gold Iron Lead Magnesium	1.13	Mercury Nickel Platinum Silver Steel Tin, solid "fluid Zinc	1.73 1.79 2.06 0.181 2.41 1.48 2.10 2.12			

^{* &}quot;Wied. Ann." vol. 34, and "Phil Mag." (5) vol. 26.
‡ Wave-lengths λ are in millionths of a centimetre.

[†] Nearly pure oxide. § "Wied. Ann." vol. 39.

TABLE 188. - Index of Refraction of Rock Salt.

Deter	mined by l Temp. 24°	Langley. C.	Determin	Snow.	ibens and	D	etermined b	y other authorities.		
Line of spectrum.	Wave- length in cms. X ro ⁶ .	Index of refraction.	Line of spectrum.	Wave- length in cms. X 106.	Index of refraction.	Line of spectrum.	Index of refraction.	Authority.		
M L H ₂ H ₁ G F b ₄ b ₁₁ D ₁ D ₂ C B A	37.27 38.20 39.33 39.68 43.03 48.61 51.67 51.83 57.89 58.95 65.62 68.67 76.01	1.57486 .57207 .56920 .56833 .56133 .55323 .54991 .54418 .54414 .54051 .53919 .5367	Hy F D C	43.4 48.5 58.9 65.6 75.5 79.0 83.1 87.6 92.3 97.8 103.5 110.7	1.5607 ·5531 ·5441 ·5404 ·5370 ·5358 ·5347 ·5337 ·5329 ·5321 ·5313 ·5305 ·5299	Η _α Η _β Η _γ Η _α Η _β Η _γ Ε Ε Ε	1.54046 .55319 .56056 1.54095 .55384 .52515 1.53884 .54016 .54381 .54866 .55280	Haagen at 20° C. Bedson and Carleton Williams at 15° C. Mülheims.		
ρστ ψ Ψ Ω	94. 113. 139. 132.	1.5403 -5415 -5448 -5498 -5541 -5691		127.7 138.4 151.1 166.0 184.5 207.6 237.2 277.1 302.2 332.0 369.0 415.0 474.5 554.0 644.7 830.7	.5293 .5286 .5280 .5275 .5270 .5264 .5257 .5247 .5239 .5230 .5217 .5208 .5197 .5184 .5163	A B C D E G H	1.53663 .53918 .53902 .54050 .54032 .54418 .54400 .54901 .54882 .55324 .55324 .55129 .56129 .56188 .56823	Stefan at 17° and 22° C. The upper values are at 17° and the lower at 22° for each line.		

TABLE 189. - Index of Refraction of Sylvine (Potassium Chloride).

Deter	mined by Rul	bens and Sno	Determined by other authorities.			
Wave-length in cms. X 10 ⁶ .	Index of refraction.	Wave- length in cms. × 106.	Index of refraction.	Line of spectrum.	Index of refraction.	Authority.
43.4 (H _γ) 48.6 (F) 58.9 (D) 65.6 (C) 80.2 84.5 89.3 94.4	1.5048 .4981 .4900 .4868 1.4829 .4819 .4809	145.8 160.3 178.1 200.5 229.1 267.3 320.9 356.1	1.4766 .4761 .4755 .4749 1.4742 .4732 .4722 .4717	A B C D E F G H B	1.48377 .48597 .48713 .49031 .49455 .49830 .50542 .51061 .4754	Stefan at 20 C.
100.3 107.0 114.5 123.4	1.4795 .4789 .4781 .4776	400.1 457.7 534.5 641.2 802.2	1.4712 .4708 .4701 .4693	C D E F G D	.4767 .4825 .4877 .4903 .5005 .4904 .4930	Grailich. Tschermak. Groth.

Index of Refraction of Fluor-Spar.

Determin Rubens and			Determined Sarasin.	by		Determined l authorities q	
Wave-length in cms.	Index of refraction.	Line of spectrum.	Wave- length in cms. × 10 ⁶ .	Index of refraction.	Line of spectrum.	Index of refraction.	Authority.
43.4(Ηγ)	1.4393	A	76.040	1.431010	D	1.4339	Fizeau.
48.5(F)	.4372	a	71.836	.431575			
58.9(D)	.4340	В	68.671	.431997	A	1.43003	
65.6(C)	•4325	С	65.618	.432571	a	.43153	
80.7	.4307	D	58.920	•433937	В	.43200	
85.0	.4303	F	48.607	-437051	С	.43250	Mülheims.
89.6	.4299	h	41.012	.441215	D	.43384	
95.0	.4294	Н	39.681	.442137	E	-43551	
100.9	.4290	Cd	36.090	.445356	F	.43696	
107.6	.4286	66	34.655	.446970			
115.2	.4281	46 .	34.015	•447754	В	1.43200	
124.0	.4277	46	32.525	.449871	D	-43390	
134.5	-4272	46	27.467	.459576	F	.43709 }	Stefan.
146.6	.4267	16	25.713	.464760	G	.43982	
161.3	.4260	66	23.125	.475166	Н	.44204	
179.2	.4250		22.645	.477622			
201.9	.4240	"	21.935	.481515	Red	1.433	DesCloi-
230.3	.4224	66	21.441	.484631	Yellow	.435	seaux.
268.9	.4205	Zn	20.988	.487655			
322.5	.4174	46	20.610	.490406	Na	1.4324* }	Kohl-
403.5	.4117	66	20.243	.493256	66	.4342† \$	rausch.
462.0	.4080	Al	19.881	.496291			
538.0	.4030	66	19.310	.502054			
646.0	.3960	66	18.560	.509404			
807.0	.3780						

^{*} Gray at 23° C. † Black at 19° C.

Various Monorefringent or Optically Isotropic Solids.

Authority				
Ammonium chloride	Substance.	Line of Spectrum.		Authority.
	Ammonium chloride Arsenite Barium nitrate Bell metal Blende Boric acid Borax (vitrified) Camphor Diamond (colorless) Diamond (brown) Ebonite Fuchsin Garnet (different varieties) Gum arabic """ Hanyne Helvine Obsidian Opal Pitch Potassium bromide "chloristannate "iodide Phosphorus Resins: Aloes Canada balsam Colophony Copal Mastic Peru balsam Selenium, vitreous Silver Sodium chlorate	red D D D D D C C D F C D F C D F C D F C D C C D F C D C C D F C D C C D C C C D C C C C	1.5374 1.6422 1.755 1.5716 1.0052 2.34165 2.36923 2.40069 1.46245 1.46303 1.47024 1.51222 1.51484 1.52068 1.532 1.5462 2.414 2.428 2.46062 2.47902 1.6 1.73 1.81 1.90 1.73 1.81 1.90 1.74 to 1.73 1.81 1.90 1.480 1.73 1.154 1.74 to 1.74 to 1.75 1.6666 2.1442 1.486 1.4961 1.739 1.486 1.486 1.4961 1.739 1.486 1.486 1.4961 1.739 1.486 1.4961 1.739 1.486 1.4961 1.739 1.486 1.4961 1.739 1.4866 1.4961 1.739 1.4866 1.4961 1.739 1.5513 1.5513 1.5533 1.5533 1.5535 1.5933 2.6533 2.730 2.86 2.98 2.86 2.98 2.86 2.98 3 2.613 2.730 3 2.6533 2.730 3 2.6533 2.730 3 2.6533 2.730 3 2.86 2.98 3 2.5331 2.730 3 2.86 2.98 3 2.5331 2.730 3 3 2.6533 3 2.730 3 3 2.730 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Grailich. DesCloiseaux. Fock. Beer. Ramsay. Bedson and Carleton Williams. Kohlrausch. Mulheims. DesCloiseaux. Schrauf. Ayrton & Perry. Wernicke. Various. Jamin. Wollaston. Tschichatscheff. Levy & Lecroix. Various. " Wollaston. Topsöe and Christiansen. Gladstone & Dale. Jamin. Wollaston. Jamin. " Wollaston. Sirks. Wernicke. Feusner. Dussaud. DesCloiseaux.

Index of Refraction of Iceland Spar.

The determinations of Carvallo, Mascart, and Sarasin cover a considerable range of wave-length, and are here given.

Many other determinations have been made, but they differ very little from those quoted.

		Index of ref	raction for —			Index of ref	raction for—
Line of spectrum.	length in cms. X 106.	Ordinary ray.	Extraordi- nary ray.	Line of spectrum.	Wave- length in cms. X 10 ⁶ .	Ordinary ray.	Extraordi- nary ray.
	1		mary ray.			Tay.	nary ray.
	Authority	: Carvallo.			Authorit	y: Sarasin.	
-	215	-	1.4753	Cd_{12}	32.53	1.70740	1.50857
-	198	1.6279		Cd ₁₇	27.46	.74151	.52276
-	177	-	.4766	Cd ₁₈	25.71	.76050	.53019
-	1 54	.6350	_	Cd ₂₃	23.12	.80248	-54559
-	145	.6361	·4779	Cd_{24}	22.64	.81300	.54920
-	122	.6403	-	Cd ₂₅	21.93	.83090	-55514
-	108	.6424	•44799	Cd ₂₆	21.43	.84580	.55993
A	76.04	.65006	.48275			16	
В	68.67	.65293	.48406		Authority	: Mascart.	
					. –	1.65013	1.48285
	Authorit	y: Sarasin.		a	. –	.65162	-
A	76.04	1.65000	1.48261	В	-	.65296	.48409
, a	71.84	.65156	.48336	C	_	.65446	.48474
. В	68.67	.65285	.48391	D	. –	.65846	.48654
Cd ₁	64.37	.65501	.48481	E	-	.66354	.48885
D.	58.92	.65839	.48644	b ₄	-	.66446	-
Cd ₂	53.77	.66234	.48815	F	-	.66793	.49084
Cd ₃	53.36	.66274	.48843	G	_	.67620	.49470
Cd ₄	50.84	.66525	.48953	Н	_	.68330	-49777
F	48.61	.66783	49079	L	_	.68706	.49941
Cd5	47.99	.66858	.49112	M	_	.68966	.50054
Cd ₆	46.76	.67023	.49185	N	-	.69441	.50256
Cd ₇	44.14	.67417	.49367	0	-	.69955	.50486
h	41.01	.68036	.49636	P	-	.70276	.50628
Н	39.68	.68319	-49774	Q	-	.70613	.50780
Cd ₉	36.09	.69325	.50228	R	-	.71155	.51028
Cd_{10}	34.65	.69842	.50452	S	-	.71580	-
Cd ₁₁	34.01	.70079	.50559	Т	-	.71939	- `

Index of Refraction of Quartz.

			1				
Line or wave-	Index	x for —	Line	Index	for—		
length in cms. × 10 ⁶ .	Ordinary ray.	Extraordinary ray.	of spectrum.	Ordinary ray.	Extraordinary ray.		
	Authority: Sarasir		Quincke (right-handed quartz).				
	Authority . Sarasii	1."	B C D	1.53958 .5408 7 .54335	1.54780 ·54933 ·55199		
$\begin{array}{c} \mathbf{C} \mathbf{d_1} \\ \mathbf{D} \\ \mathbf{C} \mathbf{d_2} \\ \mathbf{C} \mathbf{d_3} \end{array}$	1.54227 .54419 .54655 .54675	1.55124 ·55335 ·55573 ·55595	E F G	.54649 .54868 .55241	.55508 .55758 .56193		
Cd_4 Cd_5 Cd_6 Cd_7	.54825 .55014 .55104	·55749 ·55943 ·56038	Qui	ncke (left-handed qu	ıartz).		
$\begin{array}{c} \text{Cd}_9 \\ \text{Cd}_{10} \\ \text{Cd}_{11} \\ \text{Cd}_{12} \\ \text{Cd}_{17} \\ \text{Cd}_{18} \\ \text{Cd}_{23} \end{array}$.55318 .56348 .56617 .56744 .57094 .58750 .59624 .61402	.56348 .5731 .56617 .5755 .56744 .5774 .57094 .5806 .58750 .5981 .59624 .6071	.56270 .57319 .57599 .57741 .58097 .59812 .60713	B C D E F G	1.54022 .54092 .54318 .54575 .54845 .55246	1.54880 ·54945 ·55245 ·55533 ·55801 ·56163	
Cd ₂₄ Cd ₂₅ Cd ₂₆ Zn ₂₇	.61816 .62502 .63040	.62992 .63705 .64268 .64813 .65308 .65852 .66410 .67410		Authority: Mascart.			
Z_{127} Z_{128} Z_{129} Al_{80} Al_{31} Al_{82}	.63569 .64041 .64566 .65070 .65990		A a B C D	1.53902 54018 .54099 .54188 .54423 .54718	1.54812 .54919 .55002 .55095 .55338 .55636		
	Authority: Ruben	S.	b ₄ F G H L	b ₄ .54770 F .54966 G .55429 H .55816 L .56019	.55694 .55897 .56372 .56770 .56974		
43·4(H _γ) 48·5(F) 59·0(G) 65·6(C) 83·9 90·4	1.5538 •5499 •5442 •5419 •5376 •5364	-	M N O P Q R	.56150 .56400 .56668 .56842	.57121 .57381 .57659 .57822 .57998 .58273		
97.9 106.7 117.4	·5353 - ·5353 - ·5342 - ·5325 -	Authority: Va	n der Willigen (left-	-handed quartz).			
130.5 146.8 167.9 195.7 234.8	.5310 .5287 .5257 .5216 .5160		A B C D E	1.53914 .54097 .54185 .54419 .54715	1.54806 .54998 .55085 .55329 .55633		
			G H	.54966 .55422 .55811	•5585 5 •56365 •56769		

^{*} For wave-lengths, see Tables 190 and 192.

TABLE 194. - Uniaxial Crystals.

Substance.	Line of spectrum.	Ordinary ray.	Extraordinary ray.	Authority.
Alunite (alum stone) Ammonium arseniate Anatase Apatite Benzil Beryl Brucite Calomel Cinnabar Corundum (ruby, sapphire, etc.) Dioptase Emerald (pure) Ice at — 8° C. Idocrase Ivory Magnesite Potassium arseniate "" Silver (red ore) Sodium arseniate "" sirvate " phosphate Strychnine sulphate Tin stone Tourmaline (colorless) "" (different colors)	D red D T D T D T D T D T D T D T D T D T D	1.573 1.577 2.5354 1.6390 1.6588 1.589 to 1.570 1.560 1.96 2.854 1.767 to 1.769 1.667 1.784 1.309 1.719 to 1.722 1.539 1.717 1.564 1.493 3.084 1.459 1.587 1.446 1.637 1.633 to 1.650	1.592 4.524 2.4959 1.6345 1.6784 1.582 to 1.566 1.581 2.60 3.199 1.762 1.723 1.772 1.723 1.578 1.313 1.717 to 1.720 1.515 1.515 1.515 1.515 1.515 1.515 1.336 2.452 1.467 1.336 2.452 1.519 2.093 1.610 1.616 to	Levy & Lacroix. De Senarmont. Schrauf. DesCloiseaux Various. Kohlrausch. De Senarmont. DesCloiseaux. Meyer. DesCloiseaux. Kohlrausch. Mallard. DesCloiseaux. De Sernamont. Fizeau. Baker. Schrauf. Dufet. Martin. Grubenman. Heusser. Jeroféjew.
Zircon (hyacinth)	red D	1.92	1.97	De Senarmont. Sanger.

TABLE 195. - Biaxial Crystals.

Substance.	Line of	Inc	lex of refracti	on.	Authority.	
Substance.	spec- trum.	Minimum.	Interme- diate.	Maximum.	Authority.	
Anglesite	D	1.8771	1.8823	1.8936	Arzruni.	
Anhydrite	D.	1.5693	1.5752	1.6130	Mülheims.	
Antipyrin	D	1.5101	1.6812	1.6858	Glazebrook.	
Aragonite	D	1.5301	1.6816	1.6859	Rudberg.	
Axinite	red	1.6720	1.6779	1.6810	DesCloiseaux.	
Barite	D .	1.636	1.637	1.648	Various.	
Borax	D	1.4467	1.4694	1.4724	Dufet.	
Copper sulphate	D	1.5140	1.5368	1.5433	Kohlrausch.	
Gypsum	D	1,5208	1.5228	1.5298	Mülheims.	
Mica (muscovite).	D	1.5601	1.5936	1.5977	Pulfrich.	
Olivine	D	1,661	1.678	1.697	DesCloiseaux.	
Orthoclase	D	1.5190	1.5237	1.5260	46	
Potassium bichromate.	D	1.7202	1.7380	1.8197	Dufet.	
" nitrate .	D	1 3346	1.5056	1.5064	Schrauf.	
" sulphate .	D	1.4932	1.4946	1.4980	Topsöe & Christiansen.	
Sugar (cane)	D	1.5397	1.5667	1.5716	Calderon.	
Sulphur (rhombic) .	D	1.9505	2.0383	2.2405	Schrauf.	
Topaz (Brazilian)	D	1.6294	1.6308	1.6375	Mülheims.	
Topaz (different kinds)	D	1.630 to	1.631 to	1.637 to	Various.	
Zinc sulphate	D '	1.4568	1.4801	1.4836	Topsöe & Christiansen.	

Indices of Refraction relative to Air for Solutions of Salts and Acids.

-				,						
	C 1		D .:	T	Indi	ces of refr	A - 11 *4			
	Substanc	е.	Density.	Temp. C.	С	D	F	Ηγ	н	Authority.
				(a) S	SOLUTIONS	IN WAT	ER.			
	onium o	ride .	1.067 .025 .398 .215	27°.05 29.75 25.65 22.9 25.8	1.37703 .34850 .44000 .39411 .37152	.35050 .44279 .39652	.44938	-	1.39336 .36243 .46001 .41078 .38666	Willigen.
Nitric Potasl		ic)	1.166 ·359 .416 normal double	20.75 18.75 11.0 solution normal	1.40817 .39893 .40052 .34087 .34982 .35831	1.41109 .40181 .40281 .34278	1.41774 .40857 .40808 .34719 .35645	-	1.42816 .41961 .41637	" Fraunhofer. Bender. "
Sodiui	(caustic m chlor "	ide	1.376 .189 .109	21.6 18.07 18.07 18.07	1.41071 .37562 .35751 .34000	1.41334 ·37789 ·35959 ·34191	1.41936 .38322 .36442 .34628	_	1.42872 - - - -	Willigen. Schutt.
	m nitrat uric acio " "		1.358 .811 .632 .221 .028	22.8 18.3 18.3 18.3	1.38283 ·43444 ·42227 ·36793 ·33663	1.38535 .43669 .42466 .37009 .33862	.44168	11111	1.40121 .44883 .43694 .38158 .34938	Willigen. " " " "
Zinc cl	hloride "		1.359	26.6 26.4	1.39977 .37292	·37515	1.40797 .38026		1.41738 .38845	66
				(b) Solur	rions in	Етнуг А	LCOHOL.			
Fuchsi urat	alcohol in (near ed) in (satur	rly sat-	0.789 .932 - -	25.5 27.6 16.0 16.0	1.35791 ·35372 .3918 .3831	1.35971 .35556 .398	1.36395 .35986 .361 .3705	- -	1.37094 .36662 .3759 .3821	Willigen. "Kundt.
a 4.5	per cer	nt. solut	ion $\mu_4 =$	1.4593, 4	$L_B = 1.40$	95, MF (S	(reen) =	1.4514,	ua (blue	en gives for) = 1.4554.) = 1.4597.
		(0) Solutio	NS OF POT	ASSIUM I	PERMANGA	NATE IN	WATER.*		
Wave- length in cms. × 10 ⁶ .	Spec- trum line.	Index for 1 % sol.	Index for 2 % sol.	Index for 3 % sol.	for	in cme	rum f	or f	dex or for sol. 3 %	dex for for 4 % sol.
68.7 65.6 61.7 59.4 58.9 56.8 55.3 52.7 52.2	B C - D - E -	1.3328 ·3335 ·3343 ·3354 ·3353 ·3362 ·3366 ·3363 ·3362	I.3342 .3348 .3365 .3373 .3372 .3387 .3387 .3395	1.3365 .3381 .3393 .3412 .3417 .3388	1.3382 .3391 .3410 .3426 .3426 .3445 .3438	51.6 50.0 48.6 48.0 46.4 44.7 43.4 42.3	F ·3 - ·3 - ·3 - ·3 - ·3	374 ·3 377 381 ·3 397 ·3 407 ·3 417	395 ·3 402 ·3 421 ·3	

^{*} According to Christiansen.

Indices of Refraction of Liquids relative to Air.

Substance.	Temp.	Inc	dex of refra	action for s	pectrum lii	nes.	Authority.
Substance.	С.	C	ם	F	Ηγ	н	
Acetone	10° 0 20 21.4 15.1	1.3626 ·4755 ·5993 ·5410 ·5508	1.3646 .4782 .5863 .5475 .5572	1.3694 .4847 .6041 .5647 .5743	1.3732 - .6204 -	- - - - 1.6084	Korten. Olds. Weegmann. Willigen. Baden Powell.
Benzene†	10 21.5 20 20	· 1.4983 · 4934 · 5391 · 6495	1.5029 ·4979 - .6582	1.5148 .5095 .5623 .6819	- - -5775 -7041	1.5355 .5304 - .7289	Gladstone. " Landolt. Walter.
Carbon disulphide ‡ " " " Cassia oil	0 20 10 19 10 22.5	1.6336 .6182 .6250 .6189 .6007	1.6433 .6276 .6344 .6284 .6104 .6026	1.6688 .6523 .6592 .6352 .6389 .6314	1.6920 .6748 - - -	.6994 .7078 .7010 .7039 .6985	Ketteler. Gladstone. Dufet. Baden Powell. "
Chinolin	20 10 30 20 23.5	1.6094 .4466 - .4437 .6077	1.6171 .4490 .4397 .4462 .6188	1.6361 ·4555 -4525 .6508	1.6497 - - -	.4661 .4561 -	Gladstone. Gladstone & Dale. " " Lorenz. Willigen.
Ether	15 0 10 20 15	1.3554 ·3573 ·3677 ·3636 ·3596 ·3621	1.3566 ·3594 ·3695 ·3654 ·3614 ·3638	1.3606 .3641 .3739 .3698 .3657 .3683	- ·3773 ·3732 ·3690	1.3683 .3713 - - - .3751	Gladstone & Dale. Kundt. Korten. " Gladstone & Dale.
Glycerine Methyl alcohol Olive oil Rock oil	20 15 0	1.4706 .3308 .4738 .4345	1.3326 .4763 .4573	1.4784 .3362 .4825 .4644	1.4828 - - -	-3421	Landolt. Baden Powell. Olds.
Turpentine oil	10.6 20.7 20 16 16	1.4715 .4692 .4911 .3318 .3318	1.4744 .4721 .4955 .3336 .3337	1.4817 -4793 -5070 -3377 -3378	- .5170 .3409	1.4939 .4913 - - .3442	Fraunhofer. Willigen. Bruhl. Dufet. Walter.

^{*} Weegmann gives $\mu_D = 1.59668 - .000518 t$. Knops gives $\mu_F = 1.61500 - .00056 t$.

[†] Weegmann gives $\mu_D = 1.51474 - .000665 t$. Knops gives $\mu_D = 1.51399 - .000644 t$.

[‡] Wüllner gives $\mu_C = 1.63407 - .00078 t$; $\mu_F = 1.66908 - .00082 t$; $\mu_h = 1.69215 - .00085 t$.

[§] Dufet gives $\mu_D=1.33397-10^{-7}(125\,t+20.6\,t^2-.000435\,t^3-.00115\,t^4)$ between 0° and 50°; and nearly the same variation with temperature was found by Ruhlmann, namely, $\mu_D=1.33373-10^{-7}(20.14\,t^2+.000494\,t^4)$.

Indices of Refraction of Gases and Vapors.

A formula was given by Biot and Arago expressing the dependence of the index of refraction of a gas on pressure and temperature. More recent experiments confirm their conclusions. The formula is $n_t - 1 = \frac{n_0 - 1}{1 + \alpha t/56}$, where n_t is the index of refraction for temperature t, n_0 for temperature zero, α the coefficient of expansion of the gas with temperature, and β the pressure of the gas in millimetres of mercury. Taking the mean value, for air and white light, of $n_0 - 1$ as 0.0002936 and α as 0.00367 the formula becomes

$$n_t - 1 = \frac{.0002036}{1 + .00367 t} \cdot \frac{P}{1.0136 \times 10^6} = \frac{.0002895}{1 + .00367} \frac{P}{10^{67}}$$

where P is the pressure in dynes per square centimetre, and t the temperature in degrees Centigrade.

(a) The following table gives some of the values obtained for the different Fraunhofer lines for air.

Spectrum	Index	of refraction according	Spectrum	Index of refraction according to		
line.	Ketteler.	Lorenz.	Kayser & Runge.	line.	Kayser & Runge.	
A B C D E F G H K	1.0002929 2935 2938 2947 2958 1.0002968 2987 3003	I.0002893 2899 2902 2911 2922 I.0002931 2949 2963	1.0002905 2911 2914 2922 2933 1.0002943 2962 2978 2980 2987	M N O P Q R S T	1.0002993 3003 3015 1.0003023 3031 3043 1.0003053 3064 3075	

(b) The following data have been compiled from a table published by Brühl (Zeits. für Phys. Chem. vol. 7, pp. 25-27). The numbers are from the results of experiments by Biot and Arago, Dulong, Jamin, Ketteler, Lorenz, Mascart, Chappius, Rayleigh, and Rivière and Prytz. When the number given rests on the authority of one observer the name of that observer is given. The values are for 0° Centigrade and 760 mm. pressure.

		1	1	1	
Substance.	Kind of light.	Indices of refraction and authority.	Substance.	Kind of light.	Indices of refraction and authority.
Acetone	D white D white D white D	I.001079-I.001100 I.000381-I.000385 I.000373-I.000379 I.000281 Rayleigh. I.001700-I.001823 I.001152 Mascart. I.000449-I.000450 I.000448-I.000454 I.001500 Dulong. I.001478-I.001485	Hydrogen sul- { phide } Methane Methyl alcohol . Methyl ether . Nitric oxide	white white D D white D D D white D D D white D D D white D	I.000138-I.000143 I.000139-I.000143 I.000644 Dulong I.000623 Mascart I.000443 Dulong I.000549-I.000623 I.000891 Mascart I.000303 Dulong I.000297 Mascart
Carbon mon- oxide	white white D D D D D D D D	1.000340 Dulong. 1.000335 Mascart. 1.000772 Dulong. 1.00073 Mascart. 1.001436–1.001464 1.000834 Dulong. 1.000784–1.000825 1.000784–1.000855 1.000521–1.001544 1.000043 Rayleigh.	Nitrogen Nitrous oxide Oxygen Pentane Sulphur dioxide Water	white D white D D white D white D white D white D white D white D	1.000295-1.000300 1.000296-1.000298 1.000503-1.000507 1.000516 Mascart. 1.000272-1.000280 1.000271-1.000272 1.001711 Mascart. 1.000685 Vetteler. 1.00061 Jamin.
Hydrochloric acid	white D	1.000449 Mascart. 1.000447 ''	44	D	1.000249-1.000259

TABLE 199.

ROTATION OF PLANE OF POLARIZED LICHT.

A few examples are here given showing the effect of wave-length on the rotation of the plane of polarization. The rotations are for a thickness of one decimetre of the solution. The examples are quoted from Landolt & Börnstein's "Phys. Chem. Tab." The following symbols are used:—

p=number grammes of the active substance in 100 grammes of the solution.

c= " " solvent " " cubic centimetre " active " cubic centimetre "

Right-handed rotation is marked +, left-handed -.

Line of spectrum.	Wave-length according to Angström in cms. X 10 ⁶ .	Tartaric acid,* CuH_6O_6 , dissolved in water. $q = 50 \text{ to } 95$, $\text{temp.} = 24$ C.	Camphor,* $C_{10}H_{16}O$, disselved in alcohol. q = 50 to 95, temp. = 22.9° C.	Santonin,† $C_{15}H_{18}O_3$, dissolved in chloroform. $q = 75$ to 96.5 , temp. $= 20^{\circ}$ C.						
B C D E b ₁ b ₂ F e	68.67 65.62 58.92 52.69 51.83 51.72 48.61 43.83	$+ 2^{\circ}.748 + 0.09446 q$ $+ 1.950 + 0.13030 q$ $+ 0.153 + 0.17514 q$ $- 0.832 + 0.19147 q$ $- 3.598 + 0.23977 q$ $- 9.657 + 0.31437 q$	38°.549 — 0.0852 q 51.945 — 0.0964 q 74.331 — 0.1343 q 79.348 — 0.1451 q 99.601 — 0.1912 q 149.696 — 0.2346 q	$\begin{array}{c} -140^{\circ}.1 + 0.2085 q \\ -149.3 + 0.1555 q \\ -202.7 + 0.3086 q \\ -285.6 + 0.5820 q \\ -302.38 + 0.6557 q \\ -365.55 + 0.8284 q \\ -534.98 + 1.5240 q \end{array}$						
		Santonin,† $C_{13}H_{18}O_3$, * dissolved in alcohol. $c=1.782.$ temp. = 20° C.	$ \begin{array}{c c} \text{Santonin,f} & \text{$C_{15}H_{18}O_{3}$,} \\ \hline \text{dissolved in alcohol.} & \text{dissolved in chloroform} \\ c = 4.046. \\ \text{temp.} = \\ 20^{\circ} \text{ C.} \\ \end{array} $	chloroform, dissolved in						
$\begin{array}{c} B\\ C\\ D\\ E\\ b_1\\ b_2\\ F\\ e\\ G\\ g\\ \end{array}$	68.67 65.62 58.92 52.69 51.83 51.72 48.61 43.83 43.97 42.26	110.4° 118.8 161.0 222.6 237.1 261.7 380.0	442° 484° 504 549 693 754 991 1088 1053 1148 	- 49° 47°.56 - 57 52.70 - 74 60.41 - 105 84.56 - 112 - 87.88 - 137 101.18 - 197 - 131.96 - 230 -						
	* Arndtsen, "Ann. Chim. Phys." (3) 54, 1858. † Narini, "R. Acc. dei Lincei," (3) 13, 1882. ‡ Stefan, "Sitzb. d. Wien. Akad." 52, 1865.									

ROTATION OF PLANE OF POLARIZED LIGHT.

TABLE 200.

Sodium	chlorate (G	uye, C. R.	108, 1889).	Quarta	Quartz (Soret & Sarasin, Arch. de Gen. 1882, or C. R. 95, 1882).*						
Spec- trum line.	Wave- length.	Temp. C.	Rotation per mm.	Spec- trum line.	Wave- length.	Rotation per mm.	Spec- trum line.	Wave- length.	Rotation per mm.		
B C D E F G G H L M N P Q R T Cd ₁₇ Cd ₁₈	71.769 67.889 65.073 59.085 53.233 48.912 45.532 42.834 40.714 38.412 37.352 35.544 33.931 32.341 30.645 29.918 28.270 25.038	15°.0 17.4 20.6 18.3 16.0 11.9 10.1 14.5 13.3 14.0 10.7 12.9 12.1 11.9 12.8 12.2 11.6	2°.068 2.318 2.599 3.104 3.841 4.587 5.331 6.005 6.754 7.654 8.100 8.861 9.801 10.787 11.921 12.424 13.426 14.965	A a B C D 2 D 1 E F G h H K L	76.04 71.836 68.671 65.621 58.951 58.891 52.691 48.607 43.072 41.012 39.681 39.333 38.196 27.262	12°.668 14.304 15.746 17.318 21.684 21.727 27.543 32.773 42.604 47.481 51.193 52.155 55.625 58.894	Cd ₉ N Cd ₁₀ O Cd ₁₁ P Q Cd ₁₂ R Cd ₁₇ Cd ₁₈ Cd ₂₃ Cd ₂₄ Cd ₂₅ Cd ₂₆	36.090 35.818 34.655 34.406 34.015 33.600 32.858 32.470 31.798 27.467 25.713 23.125 22.645 21.935 21.431	63°.268 64.459 69.454 70.587 72.448 74.571 78.579 80.459 84.972 121.052 143.266 190.426 201.824 220.731 235.972		

^{*} The paper is quoted from a paper by Ketteler in "Wied. Ann." vol. 21, p. 444. The wave-lengths are for the Fraunhofer lines, Angström's values for the ultra violet sun, and Cornu's values for the cadmium lines.

LOWERING OF FREEZING-POINT BY SOLUTION OF SALTS.

Under P is the number of grammes of the substance dissolved in 100 cubic centimetres of water. Under C is the amount of lowering of the freezing-point. The data have been obtained by interpolation from the results published by the authorities quoted.

	Substance and observer.	P	Co	Substance and observer.	Р	Co	Substance and observer.	P	G ₂
	AgNO ₃ F. M. Raoult.*	5	0.93	ZnSO ₄ F. M. Raoult.*	I 2	0.10	MgCl ₂ S. Arrhenius.†	0.5	0.26
ш	1. M. Raouit.	15	2.38	r. m. Raouit.	3	0.36	S. Almemus.	1.5	0.53
		20	2.97		4	0.49		2.0	1.10
		30	3.53		5	0.61	,	2.5	1.39
		35	4.43		15	1.85		3.5	2.00
		40	4.80		20	2.50		4.0	2.32
	1	45	5.15		25 30	3.19		4.5	2.65
Ш		55	5.75		50	3.94		5-5	3.32
		60	6.00	CuSO ₄	I	0.15		6.0	3.67
		65	6.26	F. M. Raoult.*	3	0.29	BaCl ₂	0.5	0.119
	$Ca(NO_3)_2$	I	0.28		4	0.51	Harry C. Jones.§	1.0	0.234
	F. M. Raoult.*	2	0.56		5	0.62		1.5	0.344
		3	0.84			0.72		2.0	0.450
	7	5	1.40		7 8	0.92	SrCl ₂	0.5	0.17
		10	2.78		9	I.02	S. Arrhenius.†	1.0	0.34
		15	4.26 6.00		10	1.12		2.0	0.50
				CdSO ₄	I	0.09		2.5	0.80
	Cd(NO ₃) ₂	0.5	0.112	F. M. Raoult.*	2	0.19		3.0	0.95
	Harry C. Jones.§	1.0	0.217		3	0.28		3.5	1.12
	Na ₂ SO ₄	I	0.28		5	0.48		4.5	1.44
	F. M. Raoult.*	2	0.56		10	1.00		5.0	1.60
ı		3.	0.84		15	2.11		5.5	1.76
ı		5	1.40		25	2.77			95
	V 80.	0 "	0.7.4		30	3.51	CuCl ₂ + 2H ₂ O	0.5	0.15
	K ₂ SO ₄ S. Arrhenius.	0.5	0.14		35	4.40	S. Arrhenius.†	I.0 I.5	0.30
		1.5	0.39	NaC1	0.5	0.32		2.0	0.58
		2.0	0.51	S. Arrhenius.†	1.0	0.62		2.5	0.72
		2.5	0.74		1.5	0.92		3.0	1.00
		3.5	0.85		2.5	1.52	1	4.0	1.14
		4.0	0.96		3.0	1.82		4·5 5.0	1.29
		4.5	1.17	KC1	0.5	0.234			1.43
		5.5	1.27	Harry C. Jones.‡	1.0	0.464		5.5	1.71
		6.0	I.37 I.47		1.5	0.693		6.5	2.00
	1,8	7.0	1.57		2.5	1.136	,	2.0	2.00
		7.5	1.67		3.0	1.359	CdCl ₂	0.5	0.120
		8.0	1.77	LiCl	0.5	0.45	Harry C. Jones.§	1.0	0.227
	MgSO ₄	1	0.18	S. Arrhenius.†	1.0	0.89	CaCl ₂	0.5	0.23
	F. M. Raoult.*	2	0.35		1.5	1.34	S. Arrhenius.†	1.0	
		3	0.52		2.0	1.78		1.5	0.45
		5	0.89					2.0	0.91
1		10	1.77	NH ₄ Cl	0.5	0.326		3.0	1.14
		15	2.78 3.68	Harry C. Jones.‡	1.0	0.644		3.5	1.61
			5.22		3	751		4.0	1.85

^{*} In "Zeits. für Physik. Chem." vol. 2, p. 489, 1888. † Ibid. vol. 2, p. 491, 1888. ‡ Ibid. vol. 11, p. 110, 1893. § Ibid. vol. 11, p. 529, 1893.

LOWERING OF FREEZING-POINT BY SOLUTION OF SALTS.

Substance and observer.	Р	Co	Substance and observer.	P	C°	Substance and observer.	P	Co
ZnCl ₂ Harry C. Jones.*	0.5	0.185	Alcohol, C ₂ H ₆ O Harry C. Jones.‡	0.1	0.044	H ₂ SO ₃ S. Arrhenius.†	0.5	0.15
Trairy C. Jones.	1.0	0.348	marry C. Jones.	0.2	0.087	5. Arrhenius.	1.0	0.30
CdBr ₂	0.5	0.080	•	0.4	0.170		2.0	0.60
Harry C. Jones.*	1.0	0.142		0.5	0.212		2.5	0.75
	1.5	0.195		1.0	0.402		3.0	0.90
	2.0	0.248					3.5	1.05
	3.0	0.352					4.0	I.20 I.35
	J	55-	Acetic acid,	0.1	0.034		5.0	1.50
CdI_2	I	0.06	$C_2H_4()_2$	0.2	0.067		5-5	1.65
S. Arrhenius.†	2	0.12	Harry C. Jones.‡	0.3	0.099		. 6.0	1:80
	3 4	0.19		0.4	0.131		6.5	2.10
	5	0.32		1.0	0.313		7.0	2.10
	10	0.63			3.3	H ₂ SO ₄	0.1	0.044
	15	0.92				Harry C. Jones.‡	0.2	0.088
	20	1.22	D/OH)		0.0		0.3	0.131
	25	1.52	P(OH) ₃ S. Arrhenius.†	0.5	0.18		0.4	0.172
NaOH	0.1	0.002	D. ZITTICITUS.	1.5	0.50		1.0	0.402
Harry C. Jones.‡	0.2	0.178		2.0	0.65			
	0.3	0.260				H ₃ PO ₄	0.5	0.14
	0.4	0.337				S. Arrhenius.†	1.0	0.27
	0.5	0.410	HIO ₃	0.5	0.00		2.0	0.38
КОН	0.1	0.064	S. Arrhenius.†	1.0	0.18		2.5	0.49
Harry C. Jones.‡	0.2	0.126		1.5	0.27		3.0	0.70
	0.3	0.189		2.0	0.35	1.	3.5	0.80
	0.4	0.252		2.5	0.44		4.0	0.90
	0.5	0.312		3.0	0.52	Cane sugar.	0.5	0.030
	0.7	0.430	4	4.0	0.69	F. M. Raoult.§	1.0	0.060
				4.5	0.78		2.0	0.118
NH ₄ OH	0.05	0.028		5.0	0.86		3.0	0.176
Harry C. Jones.‡	0.10	0.056				0.0	4.0	0.234
	0.20	0.004					5.0	0.292
	0.25	0.143	HC1	0.1	0.099	l u	15.0	0.881
N. CO			Harry C. Jones.‡	0.2	861.0		20.0	1.174
Na ₂ CO ₃	0.1	0.048		0.3	0.296		25.0	1.465
Harry C. Jones.‡	0.2	0.096		0.4	0.395		30.0	2.048
	0.4	0.143		0.5	0.493		40.0	2.333
	0.5	0.228						333
	1.0	0.417	11310			Glycerine.	1.0	0.22
K ₂ CO ₃	0.1	0.030	HNO3	0.1	0.061	S. Arrhenius.†	2.0	0.42
Harry C. Jones.‡	0.I 0.2	0.039	Harry C. Jones.‡	0.2	0.118		3.0	0.64
1	0.3	0.116		0.4	0.232		5.0	1.11
	0.4	0.152		0.5	0.285		6.0	1.34
	0.5	0.187		0.6	0.338		8.0	1.83
	1.0	0.343		0.7	0.390		10.0	2.32
							12.0	2.03

^{*} In "Zeits. für Physik. Chem." vol. 11, p. 529, 1883.
† Ibid. vol. 2, p. 491, 1888.
‡ Ibid. vol. 12, p. 623, 1893.
§ F. M. Raoult, C. R. 114, p. 268.

50% solution solidifies at —31° C., according to Fabian, "Ding. Poly. Journ." vol. 155, p. 345. This gives an average of .3 per gramme.

VAPOR PRESSURE OF SOLUTIONS OF SALTS IN WATER.*

The first column gives the chemical formula of the salt. The headings of the other columns give the number of gramme-molecules of the salt in a litre of water. The numbers in these columns give the lowering of the vapor pressure produced by the salt at the temperature of boiling water under 76 centimetres barometric pressure.

					water und				
Substance.	0.5	1.0	2.0	3.0	4.0	5.0	6.0	8.0	10.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12.8 22.5 6.6 12.3 13.5	36.5 61.0 15.4 22.5 27.0	179.0 34.4 39.0	318.0					
Ba(ClO ₃) ₂	15.8 16.4 16.8 19.9 16.4	33·3 36·7 38·8 23·0 34·8	70.5 77.6 91.4 56.0 74.6	150.0 106.0 139.3	204.7	205.4			
CaCl ₂	17.0 17.7 4.1 7.6 8.6	39.8 44.2 8.9 14.8 17.8	95.3 1.5.8 18.1 33.5	166.6 191.0	241.5 283.3	319.5 368.5			
CdCl ₂	9.6 15.9 17.5	18.8 36.1	36.7 36.7 78.0	55·7 57.0 122.2	77.3	99.0			
CoSO ₄ · · · · · · · · · · · · · · · · · · ·	5·5 15.0	34.8	83.0	45.5 136.0	186.4				
Co(NO ₃) ₂	17.3 5.8 6.0 6.6 7.3	39.2 10.7 12.3 14.0 15.0	89.0 24.0 25.1 28.6 30.2	152.0 42.4 38.0 45.2 46.4	51.0 62.0 64.9	282.0	332.0	146.9	189.5
H ₂ SO ₄	12.9 10.2 10.3 10.6 10.9	26.5 19.5 21.1 21.6 22.4	62.8 33.3 40.1 42.8 45.0	104.0 47.8 57.6 62.1	148.0 60.5 74.5 80.0	198.4 73.1 88.2	247.0 85.2 102.1	343.2	148.0
KHSO ₄	10.9 11.1 11.5	21.9 22.8 22.3	43·3 44.8	65.3 67.0	85.5	107.8	129.2	170.0 167.0	198.8
KCl	12.2	24.4	48.8	74.I 77.6	100.9	128.5	152.2	210.0	255.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12.5 13.9 13.9 14.4 15.0	25.3 28.3 33.0 31.0 29.5	52.2 59.8 75.0 68.3 64.0	82.6 94.2 123.8 105.5 99.2	112.2 131.0 175.4 152.0 140.0	226.4 209.0 181.8	171.8 258.5 223.0	225.5 350.0 309.5	387.8
K ₂ CrO ₄ LiNO ₃ LiCl LiBr Li ₂ SO ₄	16.2 12.2 12.1 12.2 13.3	29.5 25.9 25.5 26.2 28.1	60.0 55.7 57.1 60.0 56.8	88.9 95.0 97.0 89.0	122.2 132.5 140.0	155.1 175.5 186.3	188.0 219.5 241.5	253.4 311.5 341.5	309.2 393.5 438.0
$\begin{array}{ccccc} LiHSO_4 & . & . & .\\ LiI & . & . & .\\ Li_2SiFl_6 & . & .\\ LiOH & . & .\\ Li_2CrO_4 & . & .\\ \end{array}$	12.8 13.6 15.4 15. 9 16.4	27.0 28.6 34.0 37.4 32.6	57.0 64.7 70.0 78.1 74.0	93.0 105.2 106.0	130.0	168.0 206.0	264.0	357.0	445.0

^{*} Compiled from a table by Tammann, "Mém. Ac. St. Petersb." 35, No. 9, 1887. See also Referate, "Zeit. f. Phys." ch. 2, 42, 1886.

VAPOR PRESSURE OF SOLUTIONS OF SALTS IN WATER.

			1	1	1		1		
Substance.	0.5	1.0	2.0	3.0	4.0	5.0	6.0	8.0	10.0
MgSO ₄	6.5 16.8 17.6 17.9 18.3	12.0 39.0 42.0 44.0 46.0	24.5 100.5 101.0 115.8 116.0	47.5 183.3 174.8 205.3	277.0	377.0			
MnSO ₄	6.0 15.0 10.5 10.9 10.6	10.5 34.0 20.0 22.1 22.5	21.0 76.0 36.5 47.3 46.2	122.3 51.7 75.0 68.1	167.0 66.8 100.2 90.3	209.0 82.0 126.1 111.5	96.5 148.5 131.7	126.7 189.7 167.8	157.1 231.4 198.8
NaClO ₃	10.5	23.0	48.4	73.5	98.5	123.3	147.5	196.5	223.5
(NaPO ₃) ₆	11.8 11.6 12.1	22.8 24.4 23.5	48.2 . 50.0 43.0	77.3 75.0 60.0	107.5 98.2 78.7	139.1 122.5 99.8	'172.5 146.5 122.1	243.3 189.0	314.0 226.2
NaHCO ₂	12.9 12.6 12.3 12.1 12.6	24.I 25.0 25.2 25.0 25.9	48.2 48.9 52.1 54.1 57.0	77.6 74.2 80.0 81.3 89.2	102.2 111.0 108.8 124.2	127.8 143.0 136.0 159.5	152.0 176.5	198.0	239.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12.1 13.2 14.3 14.5 14.8	25.6 22.0 27.3 30.0 33.6	53.5 65.8 71.6	99-5 80.2 105.8 115.7	136.7 111.0 146.0 162.6	177.5	221.0	301.5	370.0
Na ₃ PO ₄	16.5 17.1 12.8 11.5 12.0	30.0 36.5 22.0 25.0 23.7	52.5 42.1 44.5 45.1	62.7 69.3	82.9 94.2	103.8	121.0	152.2	180.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11.5 11.0 11.9 12.9 5.0	22.0 24.0 23.9 25.1 10.2	46.8 46.5 48.8 49.8 21.5	71.0 69.5 74.1 78.5	94.5 93.0 99.4 104.5	118. 117.0 121.5 132.3	139.0 141.8 145.5 156.0	181.2 190.2 200.0	218.0 228.5 243.5
NiCl ₂	16.1 16.1 12.3 7.2 15.8	37.0 37.3 23.5 20.3 31.0	86.7 91.3 45.0 47.0 64.0	147.0 156.2 63.0	212.8 235.0				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16.8 17.8 4.9 9.2 16.6	38.8 42.0 10.4 18.7 39.0	91.4 101.1 21.5 46.2 93.5	156.8 179.0 42.1 75.0 157.5	223.3 267.0 66.2 107.0 223.8	281.5	195.0		

SMITHSONIAN TABLES.

RISE OF BOILING-POINT PRODUCED BY SALTS DISSOLVED IN WATER.*

This table gives the number of grammes of the salt which, when dissolved in 100 grammes of water, will raise the boiling-point by the amount stated in the headings of the different columns. The pressure is supposed to be 76 centimetres.

Salt.		1 ° C.	2 °	3 °	4 °	5 ^	7 °	10 °	15°	20 °	25
$\begin{array}{c} \text{BaCl}_2 + 2\text{H}_2\text{O} \\ \text{CaCl}_2 \\ \text{Ca(NO}_3)_2 + 2\text{H}_2\text{O} \\ \text{KOH} \\ \text{KC}_2\text{H}_3\text{O}_2 \\ \end{array}.$.	15.0 6.0 12.0 4.7 6.0	31.1 11.5 25.5 9.3 12.0	47·3 16.5 39·5 13.6 18.0	63.5 21.0 53.5 17.4 24.5	(71.6 g) 25.0 68.5 20.5 31.0	32.0 98.7 26.4 44.0	.5 rise 41.5 152.5 34.5 63.5	of temp 55.5 240 0 47.0 98.0	69.0 331.5 57.5 134.0	84.5 443.5 67.3 171.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		9.2 11.5 13.2 15.0 15.2	16.7 22.5 27.8 30.0 31.0	23.4 32.0 44.6 45.0 47.5	29.9 40.0 62.2 60.0 64.5	36.2 47·5 74.0 82.0	48.4 60.5 99.5 120.5	(57.4 78.5 134. 188.5	gives a 103.5 185.0 338.5	127.5	3°.5) 152.5 res 18°.5)
$\begin{array}{c} K_2C_4H_4O_6 + \frac{1}{2}H_2O \\ KNaC_4H_4O_6 \\ KNaC_4H_4O_6 + 4H_2 \\ LiCl \\ LiCl \\ LiCl + 2H_2O \end{array}.$		18.0 17.3 25.0 3.5 6.5	36.0 34.5 53.5 7.0 13.0	54.0 51.3 84.0 10.0	72.0 68.1 118.0 12.5 26.0	90.0 84.8 157.0 15.0	126.5 119.0 266.0 18.5 44.0	182.0 171.0 554.0 26.0 62.0	284.0 272.5 5510.0 35.0 92.0	390.0 42.5 123.0	510.0 50.0 160.5
$\begin{array}{c} \text{MgCl}_2 + 6\text{H}_2\text{O} \\ \text{MgSO}_4 + 7\text{H}_2\text{O} \\ \text{NaOH} \\ \text{NaCl} \\ \text{NaNO}_3 \end{array}.$		11.0 41.5 4.3 6.6 9.0	22.0 87.5 8.0 12.4 18.5	33.0 138.0 11.3 17.2 28.0	44.0 196.0 14.3 21.5 38.0	55.0 262.0 17.0 25.5 48.0	77.0 22.4 33.5 68.0	30.0 (40.7 99.5	170.0 41.0 gives 8° 156.0		334·5 60·1
$\begin{array}{c} {\rm NaC_2H_3O_2 + 3H_2O} \\ {\rm Na_2S_2O_3} \\ {\rm Na_2HPO_4} \\ {\rm .} \\ {\rm Na_2C_4H_4O_6 + 2H_2O} \\ {\rm Na_2S_2O_8 + 5H_2O} \end{array}$		14.9 14.0 17.2 21.4 23.8	30.0 27.0 34.4 44.4 50.0	46.1 39.0 51.4 68.2 78.6	62.5 49.5 68.4 93.9 108.1	79.7 59.0 85.3 121.3 139.3	118.1 76.0 183.0 216.0		484.0 147.0 gives 8	214.5	302.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		34.1 39. 6.5 10.0 15.4	86.7 93.2 12.8 20.0 30.1	177.6 254.2 19.0 30.0 44.2	369.4 898.5 24.7 41.0 58.0	1052.9 (5555.5 29.7 52.0 71.8	gives 39.6 74.0 99.1	56.2	88.5	248.0 108.2)	337.0
$\begin{array}{c} \text{Sr(NO_3)_2} & . \\ \text{C}_4\text{H}_6\text{O}_6 & . \\ \text{C}_2\text{H}_2\text{O}_4 + 2\text{H}_2\text{O} \\ \text{C}_6\text{H}_8\text{O}_7 + \text{H}_2\text{O} \end{array}$			45.0 34·4 40.0 58.0	63.6 52.0 62.0 87.0	81.4 70.0 86.0 116.0	97.6 87.0 112.0 145.0	123.0 169.0 208.0	177.0 262.0 320.0	273.0 536.0 553.0	374.0 1316.0 952.c	484.0 50000.0
Salt.	40 °	6	0°	80°	100°	120°	1 40 °	160	180	200	240°
KOH	93.5 93.5 682.6	137		314.0 152.6 230.0 2400.0 (infinit	345.0	526.3 8547.0	800.0				

^{*} Compiled from a paper by Gerlach, "Zeit. f. Anal. Chem." vol. 26.

CONDUCTIVITY FOR HEAT.

Metals and Alloys.

The coefficient k is the quantity of heat in therms which is transmitted per second through a plate one centimetre thick per square centimetre of its surface when the difference of temperature between the two faces of the plate is one degree Centigrade. The coefficient k is found to vary with the absolute temperature of the plate, and is expressed approximately by the equation $k_t = k_0$ $(i + \alpha t)$. In the table k_0 is the value of k_t for 0° C., t the temperature Centigrade, and α a constant.

	1			1				
Substance.	ŧ	K _t	а	Authority.	Substance.	t	k_t	Authority.
Aluminium	0 100 0 100	0.3435 .3619 .0442 .0396 .0177 .0164 .2540 .2540 .2540 .2540 .2045 .10405 .7189 .7226 .0726 .0887 .1665 .1567 .0836 .0764 .0189 .0201 .3760 .0520 .1110 .0528 .1423 .0319 .3030	.0005356 001041 000735 .002445 .001492 000051 .000651 .002670 000228 000861 001267 .000000 000687	I I I I I I I I I I I I I I I I I I I	Clay slate, (Devonshire) Granite		.00272 .00510 .00550 .00550 .00550 .00360 .00315 .00360 .00470 .00560 .00441 .00093 .00545 .00033 .00014 .00023 .00168 .00012 .00087 .00087 .0009	6 6 6 6 6 6 6 6 7 6 8 8 8 8 9 9 8 10 6 6 6 8 8 8 8
	. Forbe		AUTHOR 5 Kohlra 6 H. L. &	usch.	7 Hjeltström.	9 10	R. Webe Stefan.	er.

^{*} A repetition of Forbes's experiments by Mitchell, under the direction of Tait, shows the conductivity to increase with rise of temperature. (Trans. R. S. E. vol. 33, 1887.)

[†] Herschel, Lebour, and Dunn (British Association Committee).

CONDUCTIVITY FOR HEAT.

TABLE 205. - Various Substances.

Substance.	t	k_t	Au- thor- ity.
Carbon	000000000000000000000000000000000000000	.000405 .000162 .000717 .000043 .000033 .002000 .000370 .000087 .000087 .000087 .000087 .000042 .00223 .00568	1
AUTHO		ES. Various.	
2 H., L., & D.*		Neumann.	

TABLE 206. - Water and Salt Solutions.

Substance.	Density.	t	k_t	Au- thor- ity.					
Water	1111111	- 0 9-15 4 30 18	.002 .00120 .00136 .00129 .00157	2 2 3 4 5					
Solutions in water. CuSO ₄	1.160 1.026 33 ¹ / ₃ % 1.054 1.100 1.180 1.134 1.136	4.4 13 10–18 20.5 20.5 21 4.5 4.5	.00118 .00116 .00267 .00126 .00128 .00130 .00118	2 4 6 5 5 5 Z 2					
AUTHORITIES. 1 Bottomley. 4 Graetz. 2 H. F. Weber. 5 Chree.									

- 6 Winkelmann.
- 3 Wachsmuth.

TABLE 207. - Organic Liquids.

Substance.	t	k _t × 1000	α	Authority.
Acetic acid Alcohols: amyl ethyl . methyl Carbon disulphide Chloroform Ether	9-15 9-15 9-15 9-15 9-15	·423 ·495 ·343 ·288 ·303	0.12	I I I I I I I I I I I I I I I I I I I
AUT	HORIT	ES.		

1 H. F. Weber. 2 Graetz. 3 Wachsmuth.

TABLE 208. - Gases.

Substance.	t	k _t × 1000	α	Authority.
Air	0 0 0 0	.568 .458 .499 .307	.00190	I
Hydrogen Methane	o 7-8 7-8	·395 ·327 ·647	.00445	I
Nitrous oxide Oxygen	7-8 7-8	.350	.00446	I

1 Winkelmann.

^{*} Herschel, Lebour, and Dunn (British Association Committee).

FREEZING MIXTURES.*

Column r gives the name of the principal refrigerating substance, A the proportion of a second substance named in the column, C the proportion of a third substance, D the temperature of the substances before mixture, E the temperature of the mixture, P the lowering of temperature, C the temperature when all snow is melted, when snow is used, and P the amount of heat absorbed in heat units (therms when P is grammes). Temperatures are in Centigrade degrees.

Substance.	A .	В	С	D	E	F	G	Н
NaC ₂ H ₃ O ₂ (cryst.)	85	1120-100	_	10.7	-4.7	15.4	_	-
$NH_4Cl.$ $NaNO_3$	30		_	13.3	- 5.I - 5.2	18.4	_	_
Na ₂ S ₂ O ₃ (cryst.)	75	46 46	_	13.2	- 5·3 - 8·0	18.7	_	_
KI.	140	" "	-	10.8	- 11.7	22.5	-	-
CaCl ₂ (cryst.) .	250	66 66	-	10.8	- 12.4	23.2	-	-
NH ₄ NO ₃ · · ·	60	" "	NII NO	13.6	-13.6	27.2	-	-
$(NH_4)_2SO_4$ NH_4Cl	25	" 50	NH4NO3-25	_	_	26.0	_	
CaCl ₂	25 25	66 66	46 66	_	_	20.0	_	_
KNO ₃	25	"	NH ₄ Cl-25	-	-	20.0	-	-
Na ₂ SO ₄	25	"		-	-	19.0	-	- 1
NaNO ₃	25	" " · · · ·	46 .6	-	-	17.0	-	-
K_2SO_4 Na_2CO_3 (cryst.) .	10 20	Snow 100	<u>-</u>	— I	- 1.9 - 2.0	0.9		_
KNO3	13	"	_	I	-2.85	1.85	_	-
CaCl ₂	30		-	- 1	- 10.9	9.9	_	-
NH ₄ Cl	25	66 66	-	-1	- I 5·4	14.4	-	-
$ \begin{array}{cccc} NH_4NO_3\\ NaNO_3 \end{array} $	45	66 66	_	— I	— 16.75 — 17.75	15.75		_
NaCl	33	66 66	_	- i	-21.3	20.3	_	_
(I	" 1.097	-	1	- 37.0	36.0	-37.0	0.0
	I	" 1.26	-	— I	- 36.0	35.0	- 30.2	17.0
$H_2SO_4 + H_2O$	I	1.30	-	— I	- 35.0	34.0	- 25.0	27.0
(66.1 % H ₂ SO ₄)	I	" 2.52 " 4.32	_	— I	- 30.0 - 25.0	29.0 24.0	-12.4 -7.0	273.0
	I	" 7.92	_	- i	- 20.0	19.0	- 3.1	553.0
,	I	" 13.08	-	- I	- 16.0	15.0	2.I	967.0
	I	" 0.35	-	0	-		0.0	52.1
	I	" .49 " .61	_	0	_	_	- 19.7 - 39.0	49.5
C-CL LOTTO	I	" .70	_	0		-	- 54.9 [†]	30.0
$CaCl_2 + 6H_2O$	I	.81	-	0	-	-	- 40.3	46.8
	I	" 1.23	-	0	-	-	- 21.5	88.5
	I	2.40		0	_	_	- 9.0	192.3
1	77	" 4.92 " 73		0	- 30.0	_	- 4.0	392.3
Alcohol at 4°	-	CO ₂ solid	-	-	- 72.0		-	-
Chloroform	-	46 46	-	-	-77.0	-	-	-
Ether Liquid SO ₂	_	66 66	-	_	- 77.0 - 82.0	_	_	_
Liquid SO2	1	H ₂ O75	_	20	5.0	_	_	33.0
	ì	" .94	_	20	-4.0	-	-	21.0
	I	46 66	-	IO.	-4.0	-	-	34.0
	I	Snow "	-	5	-4.0	- 1	-	40.5
NH ₄ NO ₃ .	I	Snow " H ₂ O-1.20	_	0	- 4.0 - 14.0	_	_	122.2
11141103	I	Snow "	_	0	- I4.0	_	_	129.5
	I	H ₂ O-1.31	-	10	— I7.5 [†]	-	-	10.6
	I	Snow "	-	0	- I7.5t	-	-	131.9
	I	H ₂ O-3.61 Snow "	-	10	- 8.o - 8.o	_		0.4
		SHOW			-0.0			327.0
L		1		1				

^{*} Compiled from the results of Cailletet and Colardeau, Hammerl, Hanamann, Moritz, Pfanndler, Rudorf, and Tollinger.
† Lowest temperature obtained.

CRITICAL TEMPERATURES, PRESSURES, VOLUMES, AND DENSITIES OF GASES.*

 θ = Critical temperature.

P == Pressure in atmospheres.

 ϕ = Volume referred to air at 0° and 76 centimetres pressure.

d = Density in grammes per cubic centimetre.

Substance.	θ	P	φ	d	Observer.
Air	-140.0 243.6 233.7 239.95	39.0 62.76 - 78.5	0.00713	0.288	Olszewski. Ramsay and Young. Jouk (lowest value recorded). Ramsay and Young.
Ammonia	130.0 121.0 288.5	50.6 47.9	0.00981	- 1.5 0.355	Dewar. Olszewski. Young.
Carbon dioxide	30.92 —141.1 277.7 260.0	77 35.9 78.1 54.9	o.oo66 - - -		Andrews. Wroblewski. Dewar. Sajotschewski.
Chlorine Ether Ethylene	141.0 148.0 19.7 194.4 9.2 13.0	83.9 - 35.77 35.61 58.0	0.01584 0.01344 - 0.00569	- 0.208 0.246 - 0.21	Dewar. Ladenburg. Battelli. Ramsay and Young. Van der Waals. Cailletet.
Hydrogen	-220.0 51.25 52.3 100.0 -81.8 -99.5	20.0 86.0 86.0 88.7 54.9 50.0		- 0.61 - -	Olszewski. Ansdell. Dewar. Olszewski. "Dewar.
Nitric oxide (NO)	-93.5 -146.0 -146.0 354.0	71.2 35.0 33.0 75.0		0.44	Olszewski. Wroblewski. Dewar.
Oxygen	—118.0 155.4 157.0 358.1 370.0	50.0 78.9 - - 195.5	0.001874	0.6044 - - 0.429	Wroblewski. Sajotschewski. Clark. Nadejdine. Dewar.

^{*} Abridged for the most part from Landolt and Boernstein's "Phys. Chem. Tab."

Note. — Guldberg shows (Zeit. für Phys. Chem. vol. 5, p. 375) that for a large number of organic substances the ratio of the absolute boiling to the absolute critical temperature, although not constant, lies between 0.58 and 0.7, the majority being between 0.65 and 0.7. Methane, ethane, and ammonia gave approximately 0.58. H₃S gave .566, and CS₂, N₂O, and O gave about .59.

SMITHSONIAN TABLES.

HEAT OF COMBUSTION.

Heat of combustion of some common organic compounds. Products of combustion, CO_2 or SO_2 and water, which is assumed to be in a state of vapor.

Substance.	Therms per gramme of substance.	Authority.
Acetylene	11923	Thomsen.
Alcohols: Amyl	8958	Favre and Silbermann.
Ethyl	7183	66 66
Methyl	5307	66 66 66
Benzene	9977	Stohmann, Kleber, and Langbein.
Coals: Bituminous	7400-8500	Various.
Anthracite	7800	Average of various.
Lignite	6900	u u · u
Coke	7000	46 46 . 66
Carbon disulphide	3244	Berthelot.
Dynamite, 75%	1290	Roux and Sarran.
Gas: Coal gas	5800-11000	Mahler.
Illuminating	5200-5500	Various.
Methane	13063	Favre and Silbermann.
Naphthalene	9618-9793	Various.
Gunpowder	720-750	46
Oils: Lard	9200-9400	46
Olive	9328-9442	Stohmann.
Petroleum, Am. crude .	11094	Mahler.
" refined .	11045	66
" Russian	10800	"
Woods: Beech with 12.9% H ₂ O	4168	Gottlieb.
Birch " 11.83 "	4207	46
Oak " 13.3 "	3990	66
Pine " 12.17 ".	4422	66

Heat of combination of elements and compounds expressed in units, such that when unit mass of the substance is units, which will be raised in temperature

	1						
Substance.	Combined with oxygen forms—	Heat units.	Combined with chlorine forms—	Heat units.	Combined with sulphur forms—	Heat units.	Author-
Calcium Carbon — Diamond " — Graphite Chlorine Copper " Hydrogen* " Iron " Iodine Lead Magnesium Manganese Mercury Nitrogen* " Phosphorus (red) " (yellow) " Potassium Silver Sodium Sulphur Tin " Zinc	CaU CO2 CO2 CO2 CO3 CU2O CU2O CU2O CU2O CU3O M2O M2O M2O M2O M2O M2O M2O M2O M2O M2	3284 7859 2141 7796 —254 3211 585 593 34154 34800 34417 1353 — 177 243 6077 1721 105 153 —654 —1541 —143 5272 5747 5964 1745 1745 577 3293 2241 2165 573 — 1185	CaCl ₂	4255 - - 520 819 22000 - 1464 1714 - 400 6291 2042 206 310 - - - - - - - - - - - - -	CaS	2300 - - - 158 - 2250 - 428 - - - 428 - - - 1312 24 1900 - - -	1 2 3 3 3 1 1 1 4 3 5 6 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Substance.	Combined with S+O ₄ to form —	Heat units.	Combined with N + O ₃ to form -	Heat units.	Combined with C+O ₃ to form —	Heat units.	Author-
Calcium	CaSO ₄ CuSO ₄ H ₂ SO ₄ FeSO ₄ PbSO ₄ MgSO ₄ 	7997 2887 96450 4208 1047 12596 4416 776 7119 3538	Ca(NO ₃) ₂ Cu(NO ₃) ₂ HNO ₃ Fe(NO ₃) ₂ Pb(NO ₃) ₂ - KNO ₃ AgNO ₃ NaNO ₃	5080 1304 41500 2134 512 - 3061 266 4834	CaCO ₃	6730 - 814 - 3583 561 5841	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

AUTHORITIES.

I Thomsen. 2 Berthelot.

3 Favre and Silbermann.
4 Joule.
5 Hess.
6 Average of seven different.

7 Andrews. 8 Woods.

^{*} Combustion at constant pressure.

COMBINATION.

caused to combine with oxygen or the negative radical, the numbers indicate the amount of water, in the same from o° to τ° C. by the addition of that heat.

			In dilute solution	ons.			tor-
Substance.	Forms —	Heat units.	Forms —	Heat units.	Forms —	Heat units.	Author ity.
Calcium	CaOH ₂ O	3734	CaCl ₂ H ₂ O	4690	CaS + H ₂ O	2457	I
" Carbon — Diamond .	_	_	_	_	_	_	3
" - Graphite .	-	_	-	-		-	3
Chlorine	-	-	-	-	-	-	I
Copper		_	=	_	_	_	I
		-	_	-	-	-	4
Hydrogen	_	-	-	-	-	area .	3
"	_	_	_	_	_	_	5
Iron	$FeO + H_2O$	1220*	$FeCl_2 + H_2O$	1785	-	-	3
Iodine	_	_	FeCl ₃	2280	-	-	3
Lead	_	-	PbCl ₂	368	_	_	I
Magnesium	MgO_2H_2	9050+	MgCl ₂	7779	MgS	4784	1
Manganese	_	_	MnCl ₂	2327		-	I
	-	_	HgCl ₂	299	_		I
Nitrogen	-	-	-	-	-	-	I
66		_	_	_		_	I
Phosphorus (red) .	-	-	- 0	-	-	-	I
" (yellow).	-	-	-	-	-	-	7
Potassium	K ₂ O	2110*	KCl	2592	K_2S	1451	8
Silver	-	-	_	- 39-	-	-	I
Sodium	Na ₂ O	3375	NaCl	4190	Na ₂ S	2260	8
"	_	_	_	_	_	_	1 2
Tin	- 7	+	SnCl ₂	691	-	-	7
Zinc : :	_		SnCl ₄	1344	-	-	7
"	-	_	ZnCl ₂	1735	_	_	4
	*		In dilute solutio				,
Substance.		**	The direct Solution		1		Author- ity.
	Forms —	Heat units.	Forms —	Heat units.	Forms —	Heat units.	Au
Calcium	_	-	Ca(NO ₃) ₂	5175	_	_	r
Copper	CuSO ₄	3150	Cu(NOs)2	1310	-	-	I
Hydrogen	H ₂ SO ₄	105300	HNO ₃	24550	-	-	I
Iron	FeSO ₄	-	$Fe(NO_3)_3$ $Pb(NO_3)_2$	2134 475	_	_	I
Magnesium	MgSO ₄	13420	Mg(NO ₃) ₂	8595	_	-	I
Mercury	K.80	4324	$\frac{\text{Hg(NO}_3)_2}{\text{KNO}_3}$	335 2860	_	-	I
Silver	K_2SO_4 Ag_2SO_4	753	AgNO ₈	216	_	_	I
Sodium	Na ₂ SO ₄	7160	NaNO ₃	4620	Na ₂ CO ₃	5995	I
Zinc	ZnSO ₄	3820	$Zn(NO_3)_2$	2035	_	_	I
	avre and Silbo		orities. 5 Hess. 6 Average of	seven d	ifferent. 8 W	ndrews loods.	S
<u> </u>							

^{*} Thomsen.

[†] Total heat from elements.

LATENT HEAT OF VAPORIZATION.

The temperature of vaporization in degrees Centigrade is indicated by T; the latent heat in calories per kilogramme or in therms per gramme by H; the total heat from \circ° C. in the same units by H'. The pressure is that due to the vapor at the temperature T.

		(D		1	
Substance.	Formula.	T	H	H'	Authority.
Acetic acid	$C_2H_4O_2$	1180	84.9	-	Ogier.
Alcohol: Amyl	C ₅ H ₁₂ O	131	I 20	-	Schall.
Ethyl	C ₂ H ₆ O	78.1	209	255	Favre and Silbermann. Wirtz.
"	44	50	236	236 264	Regnault.
"	66	100	_	267 285	66
Methyl	CH ₄ O	64.5	2.67	307	Wirtz.
66	"	50	289	289 274	Ramsay and Young.
"	66	100	-	246 206	66 66 66
66	"	200 238.5	_	1 52 44.2	
Ammonia	NH ₃	7.8	294.2	-	Regnault.
"	66	16	291.3. 297.4	_	"
	66	17	296.5		46
Benzene	C ₆ H ₆	80.1	92.9	127.9	Wirtz.
Bromine	Ва	88	45.6	_	Andrews.
Carbon dioxide, solid liquid	CO ₂	-25	72.23	1 38.7	Favre. Cailletet and Mathias.
	66	0 12.35	57.48 44.97	_	" " " Mathias.
	66	22.04	31.8	_	66
" " "	46	30.82	3.72	-	* "
" disulphide	CS ₂	46.1	83.8	94.8	Wirtz.
66 66	"	100	90	90	Regnault.
		140		102.4	
Chloroform	CHCl ₃	60.9	58.5	78.8	Wirtz.
Ether	C ₄ H ₁₀ O	34·5 34·9	90.5	107	Andrews.
"	"	50	94	94 115.1	Regnault.
"	66	120	-	140	66
Iodine	I	-	2.95	-	Favre and Silbermann.
Sulphur dioxide	SO ₂	o 30	91.2 80.5	_	Cailletet and Mathias.
" "	66	65	68.4	_	66 66 66
Turpentine	$C_{10}H_{10}$	1 59.3	74.04	-	Brix.
Water	H ₂ O	100	535-9	637	Andrews. Regnault.
				3/	

LATENT HEAT OF VAPORIZATION.*

Substance, formula, and temperature.	$l = \text{total heat from fluid at o}^{\circ}$ to vapor at t° . $r = \text{latent heat at } t^{\circ}$.	Authority.
Acetone, C_3H_6O , -3° to 147°.	$l = 140.5 + 0.36644 t - 0.000516 t^{2}$ $l = 139.9 + 0.23356 t + 0.00055358 t^{2}$ $r = 139.9 - 0.27287 t + 0.0001571 t^{2}$	Regnault. Winkelmann.
Benzene, C_6H_6 , 7° to 215 $^{\circ}$.	$l = 109.0 + 0.24429 t - 0.0001315 t^2$	Regnault.
Carbon dioxide, CO ₂ , — 25° to 31°.	$r^2 = 118.485 (31 - t) - 0.4707 (31 - t^2)$	Cailletet and Mathias.
Carbon disulphide, CS ₂ , -6° to 143°.	$ \begin{array}{c} l = 90.0 + 0.14601 t - 0.000412 t^2 \\ l = 89.5 + 0.16993 t - 0.0010161 t^2 + 0.000003424 t^3 \\ r = 89.5 - 0.06530 t - 0.0010976 t^2 + 0.000003424 t^3 \end{array} $	Regnault. Winkelmann.
Carbon tetrachloride, CCl ₄ , 8° to 163°.	$ \begin{array}{c} l = 52.0 + 0.14625 t - 0.000172 t^2 \\ l = 51.9 + 0.17867 t - 0.0009599 t^2 + 0.000003733 t^3 \\ r = 51.9 - 0.01931 t - 0.0010505 t^2 + 0.000003733 t^3 \end{array} $	Regnault. Winkelmann.
Chloroform, CHCl ₃ , — 5° to 159°.	$l = 67.0 + 0.1375 t$ $l = 67.0 + 0.14716 t - 0.0000437 t^{2}$ $r = 67.0 - 0.08519 t - 0.0001444 t^{2}$	Regnault. Winkelmann.
Nitrous oxide, N_2O , -20° to 36° .	$r^2 = 131.75 (36.4 - t) - 0.928 (36.4 - t)^2$	Cailletet and Mathias.
Sulphur dioxide, SO ₂ , o° to 60°.	$r = 91.87 - 0.3842 t - 0.000340 t^2$	Mathias.

^{*} Quoted from Landolt and Boernstein's "Phys. Chem. Tab." p. 350.

SMITHSONIAN TABLES.

LATENT HEAT OF FUSION.

This table contains the latent heat of fusion of a number of solid substances. It has been compiled principally from Landolt and Boernstein's tables. C indicates the composition, T the temperature Centigrade, and H the latent heat.

r				
Substance.	С	T	Н	Authority.
Alloys: 30.5Pb + 69.5Sn	PbSn ₄ PbSn ₃ PbSn Pb ₂ Sn	183 179 177.5 176.5 236	17 15.5 11.6 9.54 28.0*	Spring. " " Ledebur.
Rose's alloy, 24Pb + 27.3Sn + 48.7Bi Wood's alloy $\begin{cases} 25.81'\text{b} + 14.7\text{Sn} \\ + 52.4\text{Bi} + 7\text{Cd} \end{cases}$	-	98.8 75·5	6.8 ₅ 8.4 ₀	Mazzotto.
Bromine	Br Bi C ₆ H ₆ Cd	-7.32 266.8 5.3 320.7	16.2 12.64 30.85 13.66	Regnault. Person. Fischer. Person.
Calcium chloride Iron, Gray cast	CaCl2 + 6H2O -	28.5	40.7 23 33	Gruner.
Slag	I IH ₂ O	0 0	50 11.71 79.24 80.02	Favre and Silbermann. Regnault. Bunsen.
" (from sea-water) Lead	H ₂ O + 3.535 of solids Pb Hg	-8.7 3 ² 5	54.0 5.86 2.82	Petterson. Rudberg. Person.
Naphthalene Palladium Phosphorus Potassium nitrate	C ₁₀ H ₈ Pd P KNO ₈	79.87 (1500)? 40.05	35.62 36.3 4.97 48.9	Pickering. Violle. Petterson. Person.
Phenol Paraffin Silver Sodium nitrate	C ₆ H ₆ Ö - Ag NaNO ₃	25.37 52.40 999 305.8	24.93 35.10 21.07 64.87	Petterson. Batelli. Person.
Sodium phosphate	{ Na ₂ HPO ₄ } + 12H ₂ O }	36.1 43.9	66.8	" Batelli.
Sulphur	S Zn	61.8 415.3	9.37 42.3 28.13	Person.

^{*} Total heat from o° C.

SMITHSONIAN TABLES.

MELTING-POINT OF CHEMICAL ELEMENTS.

The melting-points of the chemical elements are in many cases somewhat uncertain, owing to the very different results obtained by different observers. This table gives the extreme values recorded except in a few cases where one observation differed so much from all others as to make its accuracy extremely improbable. The column headed "Mean" gives a probable average value.

Substance.	Min.	Max.	Mean.	Observer.	Substance.	Min.	Max.	Mean.	Observer.
Aluminium Antimony	above to below 266.8 melts — 7.2 315. — above to 1500. 1050. — 1035. — 107. 1500	321.	ast fron silver (268.1 ft. arc —7.27 318. 26.5 —102. latinum 1650. 1100. 30.15 900. 176. 112. 2225. 1635. 1075. 1200. 1360. 1375.	1 2 3 4 4 5 6 7 8 9 10 III 12	Lithium	abov 1450. 	e white 1600.	1500. 2500. —208. 1600. 44.25 1900. 60. 2000. 38.5 1800. 217. nd steel 950. 97.6 t	13 13 14 15 16 16
1 Mallet. 6 Olszewski, 1884. 10 Winkler, 1867. 14 Carnelley, 1879. 2 Frey. 7 Deville, 1856. 11 Ledebur, 1881. 15 Buchholz. 19 Wöhler. 8 Debray. 8 Lecoq de Boisbaudran, 1876. 12 Hildebrand and Norton, 1875. 16 Pictet, 1879. 17 Hittorf, 1851. 5 Setterberg, 1882. 9 Winkler, 1886. 18 Bunsen. 18 Matthieson, 1855.									

BOILING-POINT OF CHEMICAL ELEMENTS.

TABLE 216.

The column headed "Range" gives the extremes of the records found. Where the results are from one observer the authority is quoted with date of publication.

Substance.	Range. Min. Max.	Mean.	Observer.	Substance.	Rai Min.	Max.	Mean.	Observer.
Aluminium Antimony Arsenic Bismuth Bromine Cadmium Chlorine Iodine Lead Magnesium Mercury	1470. 1700.	1535. 1413. 62.08 779. —33.6	3 4 5 6 7	Nitrogen Oxygen Ozone	287·3 667· 664· 742· 447· 1600.	-	-106. 288. 695. 675. 825. 448.1 1700.	8 9

Deville, 1854.
 Regnault, 1863.
 Carnelley, 1879.
 Regnault, 1862.
 Olszewski, 1887.
 Olszewski, 1884.

MELTING-POINTS OF VARIOUS INORGANIC COMPOUNDS.*

		Melting-points.			ž.	
Substance.	Chemical formula.	Min.	Max.	Particular or average values.	Authority	Date of publication.
Aluminium chloride	AlCl ₃ Al(NO ₃) ₈ + 9H ₂ O NH ₃ (NH ₄)NO ₃ (NH ₄) ₂ SO ₄ NH ₄ H ₂ PO ₈ SbH ₃ SbCl ₅ AsCl ₃ AsH ₃ Ba(ClO ₃) ₂ Ba(NO ₃) ₂ Ba(ClO ₄) ₂	- - - 145. - - 72. - - -	166. - 73.2	190. 72.8 -75. 156. 140. 12391.5 72.8 -618113.5 414. 593.5 505.	1 2 3 - 4 56 - 78 6 9 9 10	1888 1859 1875
Bismuth trichloride	$\begin{array}{c} \text{BiCl}_3 \\ \text{H}_3 \text{BO}_3 \\ \text{B}_2 \text{O}_3 \\ \text{N}_{a_2} \text{B}_4 \text{O}_7 \\ \text{CdCl}_2 \\ \text{Cd(NO}_3)_2 + 4 \text{H}_2 \text{O} \\ \text{CaCl}_2 + 6 \text{H}_2 \text{O} \\ \text{Ca(NO}_3)_2 + 4 \text{H}_2 \text{O} \\ \text{Ca(NO}_3)_2 + 4 \text{H}_2 \text{O} \\ \text{CCl}_4 \\ \text{C}_2 \text{Cl}_6 \\ \text{CO} \\ \text{CO}_2 \\ \end{array}$	225. 184. - - 719. 28. - - - 182. —199.	230. 186. - - 723. 29. - 187. —207.	227.5 185, 577. 561. 59.5 721. 28.5 561. 44. —24.7 184.5 203. —57.	99929-9212-3	1876 1878 1878 1878 1878 1878 1859 1878 1859 1863
" disulphide	$\begin{array}{c} \text{CS}_2 \\ \text{HClO}_4 + \text{H}_2\text{O} \\ \text{ClO}_2 \\ \text{KCr}(\text{SO}_4)_2 + \text{I}_2\text{H}_2\text{O} \\ \text{Cr}_2(\text{NO}_3)_6 + \text{I8H}_2\text{O} \\ \text{CoSO}_4 \\ \text{CuCl}_2 \\ \text{Cuy2Cl}_2 \\ \text{Cu}(\text{NO}_3)_2 + \text{2H}_2\text{O} \\ \text{HBr} \\ \text{HCl} \\ \text{HFl} \\ \text{HI} \end{array}$	96.	98.	-110. 5076. 89. 37. 97. 498. 434. 114.5 -86.7 -112.5 -92.3 -49.5	13 14 3 15 2 15 9 2 36 6 3	1883 1861 1845 1834 1859 1878 1878 1878 1859 1845 1886
Hydrogen peroxide . " phosphide . " sulphide . Iron chloride . " nitrate . " sulphate . Lead chloride . " metaphosphate . Magnesium chloride . " nitrate . " sulphate . Manganese chloride . " nitrate . " sulphate . Manganese chloride . " nitrate . " sulphate . Mercuric chloride .	$\begin{array}{c} H_2O_2\\ PH_3\\ H_2S\\ FeCl_3\\ Fe(NO_3)_3+9H_2O\\ FeSO_4+7H_2O\\ PbCl_2\\ Pb(PO_3)_2\\ MgCl_2\\ Mg(NO_3)_2+6H_2O\\ MgSO_4+5H_2O\\ Mn(NO_3)_2+4H_2O\\ Mn(NO_3)_2+6H_2O\\ Mn(NO_3)_4+5H_2O\\ MnSO_4+5H_2O\\ HgCl_2\\ \end{array}$	301. - - 498. - - - - - - - - - -	307. - 580. - - - - - - - - -	-30132.5 -85.6 303. 47.2 64. 526. 800. 708. 90. 54. 87.5 25.8 54. 290.	16 6 3 15 9 2 15 17 2 15 17	1818 1886 1845 - 1859 1884 - 1878 1878 1859 1884 - 1859 1884
1 Friedel and Crafts. 5 Amat. 9 Carnelley. 13 Wroblewski and Olszewski. 2 Ordway. 6 Olszewski. 10 Carnelley and O'Shea. 14 Roscoe. 15 Tilden. 17 Clark, "Const. of Nat." 4 Marchand. 8 Besson. 12 Regnault. 16 Thénard.						

^{*} For more extensive tables on this subject, see Carnelley's "Melting and Boiling-point Tables," or Landolt and Boernstein's "Phys. Chem. Tab."

MELTING-POINTS OF VARIOUS INORGANIC COMPOUNDS.

		Melting-point.		. 1		
Substance.	Chemical formulæ.	Min.	Max.	Particular or probable value.	Authority	Date of publication.
Nickel carbonyl	NiCO ₄	_	_	-25.	1	1890
" nitrate	$Ni(NO_3)_2 + 6H_2O$	-	-	56.7	2	1859
" sulphate	$NiSO_4 + 7H_2O$ HNO_3	98.	100.	99.	3	1884
Nitric acid	N_2O_5	_	-	-47· 30.	4	1878 1872
" oxide *	NO	-	-	-16.7	5	1885
" peroxide	N_2O_4	-	-	-10.14	7 8	1890
Nitrous anhydride	N_2O_3	-	-	-82.		1889
" oxide	N ₂ O H ₃ PO ₄	38.6	41.7	—99. 40.3	9	1873
Phosphorous acid	H ₃ PO ₃	70.1	74.	72.	-	
Phosphorus trichloride .	PCl ₃	-	-	111.8	10	1883
oxychloride .	PClO ₈		-	-1.5	II	1871
" disulphide . ' " pentasulphide . '	$ ext{PS}_2 ext{P}_2 ext{S}_5$	296. 274.	298. 276.	297. 275.	12	1879
sesquisulphide	P ₄ S ₃	142.	167.	158.	-	-
" trisulphide .	P_2S_3	-	_	290.	14	1864
Potassium carbonate	K ₂ CO ₃	834.	1150. ?	836.	_	_
" perchlorate .	KClO ₃ KClO ₄	334.	372.	354· 610.	15	1880
" chloride	KCl	730.	738.	734.	-	-
" nitrate	KNO ₃	327.	353-	340.	-	-
acid phospitate.	KH ₂ PO ₄	_	_	96.	16	1884
" acid sulphate .	KHSO ₄ AgCl	450.	457.	200. 453·	-	1840
" nitrate	AgNO ₃	198.	224.	214.	-	-
" nitrogenietted	AgN_3	-		250.	20	1890
" perchlorate	AgClO ₄	-	-	486.	18	1884
" phosphate metaphosphate	Ag ₃ PO ₄ AgPO ₃	_	_	849.	15	1878
" sulphate	Ag ₂ SO ₄	_	_	654.	15	1878
Sodium chloride	NaCl	772.	960.	772.	-	-
" hydroxide	NaOH	-	-	60.	17	1884
" nitrate	$NaNO_3$ $NaClO_3$	298.	330.	315.	15	1878
" perchlorate	NaClO ₄	_	-	482.	18	1884
" carbonate	Na ₂ CO ₃	814.	920.	884.	-	-
" nhoenhate	Na ₂ CO ₃ + 10H ₂ O	-	26.4	34.	3	1884
" phosphate metaphosphate .	Na ₂ HPO ₄ + 4H ₂ O NaPO ₃	35.	36.4	35·4 617.	15	1878
" pyrophosphate .	Na ₄ P ₂ O ₇	-	_	888.	15	1878
" phosphite	$(H_2NaPO_3)_2 + 5H_2O$	-	-	42.	19	1888
" sulphate	Na_2SO_4 $Na_2SO_4 + 10H_2O$	861.	865.	863.	15	1878
" hyposulphite	$Na_2S_2O_3 + 5H_2O$	45.	48.1	34· 47·	3	-
Sulphur dioxide	SO_2	76.	79.	78.	-	_
Sulphuric acid	H_2SO_4	10.1	10.6	10.4	21	1884
46 66	$H_2SO_4 + H_2O$ $H_2SO_4 + H_2O$		8.5	-0.5 8.	22	1853
" " (pyro)	H ₂ S ₂ O ₇	7.5	-	35.	22	1853
Sulphur trioxide	SO_3	14.8	15.	14.9	5	1876-1886
Tin, stannic chloride	SnCl ₄	-	-	-33.	23	1889
Zinc chloride	SnCl ₂ ZnCl ₂	_	_	250. 262.	24 25	1875
" "	$ZnCl_2 + 3H_2O$	-	-	7.	26	1886
" nitrate	$Zn(NO_3)_2 + 6H_2O$	-	-	36.4	3	1884
" sulphate	$ZnSO_4 + 7H_2O$	-	1 -	50.	3	1884
r Mond, Langer & Quincke. 2 Ordway. 6 Olszewski. 3 Tilden. 7 Ramsay. 4 Berthelot. 8 Birhaus. 5 R. Weber. 9 Wills. 10 Wroblewski & Olszewski. 15 Carnelley. 11 Genther & Michaelis. 16 Mitscherlich. 12 Mendelejeff. 26 Engel. 12 Ramme. 17 Cripps. 18 Carnelley. 20 Curtius. 17 Cripps. 22 Marignac. 23 Besson. 24 Clark, "Const. of Nat."						

^{*} Under pressure 138 mm. mercury.

BOILING-POINTS OF INORGANIC COMPOUNDS.*

		Boiling-point.				
Substance.	Chemical formula.	Min.	Max.	Particular or aver- age values.	Authority	Date of publication.
Air † "Aluminium chloride‡ "nitrate Ammonia Antimonietted hydrogen Antimony pentachloride § "trichloride Bismuth trichloride Cadmium chlorlde "nitrate	- AlCl ₃ Al(NO ₃) ₃ + 9H ₂ O NH ₃ SbH ₃ SbCl ₅ SbCl ₃ BiCl ₃ CdCl ₂ Cd(NO ₃) ₂ + 4H ₂ O	- - - - 102. 216. 427. 861.	103. 223.5 441. 954.	-192.2 -191.4 207.5 134. -38.5 -18. - 220. 435. 908.	1 2 3 4 5 2 6 - 5,7	1884 1884 1888 1859 1863 1886 1889
Calcium nitrate Carbon dioxide "disulphide "monoxide Chromic oxychloride Chromium nitrate Copper nitrate Cuprous chloride Hydrobromic acid Hydrofluoric acid Hydrofluoric acid	Cd(NO ₃) ₂ + 4H ₂ O Ca(NO ₃) ₂ + 4H ₂ O CO ₂ CS ₂ CO CrO ₂ Cl ₂ Cr ₂ (NO ₃) ₆ + 18H ₂ O Cu(NO ₃) ₂ + 3H ₂ O Cu ₂ Cl ₂ HBr HCl HF			132. 132. -79.1 46.6 -191.5 117. 125.5 170. 993.	4 4 - 8, 9 2, I - 4 4 10 11 12 13	1859 1859 1863–1880 1880–1883 1884 – 1859 1859 1880 1870 1859
Hydroiodic acid Iron nitrate	$\begin{array}{c} \text{HI} \\ \text{Fe}(\text{NO}_3)_3 + 9\text{H}_2\text{O} \\ \text{Mg}(\text{NO}_3)_2 + 6\text{H}_2\text{O} \\ \text{MnCl}_2 + 4\text{H}_2\text{O} \\ \text{Mn}(\text{NO}_3)_2 + 6\text{H}_2\text{O} \\ \text{HgCl}_2 \\ \text{Ni}(\text{NO}_3)_2 + 6\text{H}_2\text{O} \\ \text{HNO}_3 \\ \text{N}_2\text{O}_5 \\ \text{NO} \\ \text{N}_2\text{O}_3 \end{array}$	502.	307.	127. 125. 143. 106. 129.5 304. 136.7 86.	4 4 4 4 15 16 2	1870 1859 1859 - 1859 - 1859 1830 1849 1885
" oxide Phosphorus trichloride " sesquisulphide " trisulphide " pentasulphide " trioxide " Silicon chloride " Sulphuric acid Sulphur trioxide " dioxide	N ₂ O ₃ N ₂ O PCl ₃ P ₄ S ₃ P ₂ S ₃ P ₂ S ₅ P ₂ O ₃ SiCl ₄ 12H ₂ SO ₄ + H ₂ O SO ₃ SO ₂ SO ₂ S ₂ Cl ₂	-87.9 73.8 - 518. - 56.8 - 46. -8. 138.	3·5 —92. 76. — 530. — 59. — 47· —10.5	—92. 75. 380. 490. 522. 173. 58. 338. 46.3 —9.6	- 17 17 - 18 - 19 -	1883 1886 1890 - 1853 -
Tin, stannous chloride stannic Zinc chloride nitrate which is a stannous chloride To which is a stannous chloride which	$\begin{array}{c} \operatorname{SnCl_2} \\ \operatorname{SnCl_4} \\ \operatorname{ZnCl_2} \\ \operatorname{Zn}(\operatorname{NO_3})_2 + 6\operatorname{H_2O} \end{array}$ 8 Thorpe.	606. - 676. -	628.	617. 113.9 703. 131.	- 8 - 4	1876 - 1859
2 Olszewski. 3 Friedel and Crafts. 4 Ordway. 5 Regnault. 6 Anschütz and Evans. 7 Pictet. 9 Friedburg. 10 Carnelley and Carleton-Williams. 11 Topsöe. 12 Roscoe and Dittmar. 13 Gore. 14 Clark, "Const. of Nature."						

MELTING-POINTS OF MIXTURES.*

Metals and observer.	Atomic ratio.	Per cent of metal.	Per cent of metal.	Melting- point.	Metals and observer.	Atomic ratio.	Per cent of metal.	Per cent of metal.	Per cent of metal.	Per cent of metal.	Melting- point.
Pb and Sn 1	Pb ₄ Sn Pb ₃ Sn Pb ₂ Sn PbSn PbSn ₂	Pb 87.5 84.0 77.8 63.7 46.7	Sn 12.5 16.0 22.2 36.3 53.3 63.1	292. 283. 270. 235. 197.	Cd, Sn, Pb and Bi ⁶	Cd ₄ Sn ₅ Pb ₅ Bi ₁₀ Cd ₃ Sn ₄ Pb ₄ Bi ₈ CdSn ₂ Pb ₂ Bi ₄ CdSnPbBi	Cd 10.8 10.2 7.0 13.1	Sn 14.2 14.3 14.8 13.8	Pb 24.9 25.1 26.0 24.3	Bi 50.1 50.4 52.2 48.8	65.5 67.5 68.5 68.5
Pb and Bi ²	PbSn ₈ PbSn ₄ Pb ₃ Bi ₈	36.9 30.5 Pb 27.2	63.1 69.5 Bi 72.8	181. 187.	Cd, Pb and Bi ⁶	CdPb ₃ Bi ₄ Cd ₂ Pb ₇ Bi ₈	Cd 7.1 6.7	Pb 39·7 43·4	Bi 53.2 49.9	=	89.5 95.0
Cd and Bi ²	CdBi ₄	Cd 21.2	Bi 78.8	146.3	Sn, Pb and Bi ⁷	Ξ	Sn 25.0 18.8	Pb 25.0 31.2	Bi 50.0 50.0	-	95.0 95.0
Cd and Sn 2	CdSn ₂	Cd 32.2	Sn 67.8	173.8	Zn, Pb and Sn ⁸	-	Zn 4.2	Pb 26.9	Sn 68.9	-	168.
Sn and Bi ²	Sn ₃ Bi ₄	Sn 29.8	Bi 70.2 Pb	136.4	Cu and Zn (white	-	Cu 50.0	Zn 50.0	-	-	912.
Zn and Pb ³	-	83.3 69.5 50.0	16.7 30.5 50.0	205. 190. 202.	brass) 9	_	Ag 100. 80.	Au - 20.	Ξ		954· 975·
Zn and Sb ³	-	Zn 90. 82.	Sb 10. 18.	236. 250.	Ag and Au ¹⁰	- - -	60. 40. 20.	40. 60. 80.	-	-	995. 1020. 1045. 1075.
Pb and Sb ³	-	Pb 90. 82.	Sb 10. 18.	240. 260.		_	Au 100.	Pt -	_	_	1075.
Na and K ⁴	-	Na 50.	K 50.	6.		=	95. 90. 85. 80.	5. 10. 15. 20.	-		1100. 1130. 1160. 1190.
	- - -	Ag 100. 92.5 82.1	Cu - 7.5 17.9 20.2	1040. 931.0 886.0 887.0	Au	-	75. 70. 65. 60.	25. 30. 35. 40.	, -		1220. 1255. 1285. 1320.
Ag and	-	79.8 77.4 75.0 71.9 63.0	22.6 25.0 28.1 37.0	858.0 850.0 870.5 847.0	and Pt ⁸	-	55. 50. 45. 40.	45· 50. 55· 60. 65.			1350. 1385. 1420. 1460. 1495.
Cu ⁵	-	60.0 57.0 54.1 50.0	40.0 43.0 45.9 50.0	857.0 900.0 920.0 941.0		- - -	35. 30. 25. 20.	70. 75. 80. 85.	-		1535. 1570. 1610. 1650.
	-	45.9	54.I 75.0 100.	961.0 1114. 1330.		=	5.	95. 100.	-	-	1690. 1730. 1775.

r Pillichody, "Ding. Poly. Jour." vol. 162.
Rudberg, "Pogg. Ann." 71.
Ledebur, "Wied. Bieb." 5, 650, 1881.
Rosenfeld, "Ber. Chem. Ges." 1891.
W. Roberts, "Ann. Chem. et Phys." (5), 13, 118, 1878.

^{*} From Landolt and Boernstein's "Phys. Chem. Tab."

DENSITIES, MELTING-POINTS, AND BOILING-POINTS OF SOME ORGANIC COMPOUNDS.

N. B. - The data in this table refer only to normal compounds.

Substance.	Formula.	Temp.	Den- sity.	Melting- point.	Boiling-point.	Authority.
		(a) P	'araffin	Series:	$C_{n}II_{2n+2}$	
Methane * Ethane† Propane Butane Pentane Hexane Heptane Octane Nonane Decane Undecane Tridecane Tetradecane	$\begin{array}{c} CH_4 \\ C_2H_6 \\ C_3H_8 \\ C_4H_{10} \\ C_5H_{12} \\ C_6H_{14} \\ C_7H_{16} \\ C_8H_{18} \\ C_9H_{20} \\ C_{10}H_{22} \\ C_{11}H_{24} \\ C_{12}H_{26} \\ C_{13}H_{28} \\ C_{14}H_{30} \end{array}$	-164 0 17. 17. 0 0 2026126. +4.	0.415 - .60 .626 .663 .701 .719 .718 .730 .774 .773 .775 .775		-16425 to -30 +1. +37. +69. 98.4 125.5 150. 173. 195. 214. 234. 252.	Olszewski. Roscoe and Schorlemmer. Butlerow. Schorlemmer. Thorpe. Krafft. " " " " " " " " " " " " "
Pentadecane	C 15 H 32 C 16 H 34 C 17 H 36 C 18 H 38 C 18 H 38 C 19 H 40 C 20 H 42 C 21 H 44 C 22 H 46 C 23 H 48 C 24 H 50 C 27 H 56 C 31 H 64 C 32 H 66 C 35 H 72	10. 18. 22. 28. 32. 37. 40. 44. 48. 51. 60. 68. 70.	·776 ·775 ·777 ·777 ·777 ·778 ·778 ·778 ·779 ·779	16. 18. 22. 28. 32. 37. 40. 44. 48. 51. 60. 68. 70.	270. 287. 303. 317. 330. 205.‡ 215.‡ 224.‡ 234.‡ 243.‡ 270.‡ 310.‡ 331.‡	66 66 66 66 66 66 66 66 66 66 66 66 66
	(b) (Olefines	or the	Ethylen	e Series : C _n	H _{2n} .
Ethylene Propylene Butylene Amylone Hexylene Heptylene Octylene Nonylene Decylene Undecylene Tridecylene Tetradecylene Hexadecylene Hexadecylene Eicosylene Cerotene Melene	$\begin{array}{c} C_2H_4 \\ C_3H_6 \\ C_4H_8 \\ C_5H_{10} \\ C_6H_{12} \\ C_7H_{14} \\ C_8H_{18} \\ C_{10}H_{20} \\ C_{11}H_{22} \\ C_{12}H_{24} \\ C_{13}H_{26} \\ C_{14}H_{28} \\ C_{15}H_{30} \\ C_{16}H_{32} \\ C_{20}H_{40} \\ C_{27}H_{54} \\ C_{30}H_{60} \end{array}$		—169.	—103. 1. 36. 69. 96.—99. 122123. 153. 175. 195. 96.‡ 233. 127.‡ 247. 155.‡ 179.‡	Wroblewski or Olszewski. Sieben. Wagner or Saytzeff. Wreden or Znatowicz. Morgan or Schorlemmer. Möslinger. Bernthsen, "Org. Chem." """ Krafft. Bernthsen. Krafft. Bernthsen. Krafft, Mendelejeff, etc. Krafft. Bernthsen.	

^{*} Liquid at — 11.0 C. and 180 atmospheres' pressure (Cailletet),
† " + 4.5 " 46 " "

Boiling-point under 15 mm. pressure.

DENSITIES, MELTING-POINTS, AND BOILING-POINTS OF SOME ORGANIC COMPOUNDS.

Substance.	Chemical formula.	Temp.	Specific gravity.	Melting- point.	Boiling- point.	Authority.						
	(c) A	cetylene	Series:	C_nH_{2n}	-2.							
Acetylene	C ₂ H ₂	_	_	_	-							
Allylene	C ₃ H ₄	-	-	-	-							
Ethylacetylene	C ₄ H ₆	_	-	-	+ 18.	Bruylants, Kutscheroff, and others.						
Propylacetylene	C ₅ H ₈	_	_	-	4850.	Bruylants, Taworski.						
Butylacetylene	C ₆ H ₁₀	_	-	-	6870.	Taworski.						
Oenanthylidene	C ₇ H ₁₂	-	-	-	106108.	Bruylants, Behal, and others.						
Caprylidene	C ₈ H ₁₄	0.	0.771	_	133134.	Behal.						
Undecylidene	$C_{11}H_{20}$	-	-	-	210215.	Bruylants.						
Dodecylidene	C ₁₂ H ₂₂	-9. $+6.5$.810	<u>-9.</u>	105.*	Krafft.						
Hexadecylidene	$C_{14}H_{26} \\ C_{16}H_{30}$	20.	.804	+ 6.5	134.*	66						
Octadecylidene	C ₁₈ H ₃₄	30.	.802	30.	184.*	66						
	(d) Mono	tomic al	cohols	СН	OH							
(d) Monatomic alcohols: $C_nH_{2n+1}OH$.												
Methyl alcohol CH ₃ OH o. 0.812 - 66.												
Ethyl alcohol Propyl alcohol	C_2H_5OH C_8H_7OH	0.	.806	-130.†		From Zander, "Lieb.						
Butyl alcohol	C ₄ H ₉ OH	0.	.823	_	97.	Ann." vol. 224, p. 85,						
Amyl alcohol	C ₅ H ₁₁ OH	0.	.829	-	138.	and Krafft, "Ber."						
Hexyl alcohol Heptyl alcohol	C ₆ H ₁₃ ()H	0.	.833	_	157.	vol. 16, 1714,						
Octyl alcohol	$C_{7}H_{15}OH$ $C_{8}H_{17}OH$	0.	.836	_	176.	" 19, 2221, " 23, 2360,						
Nonyl alcohol	$C_9H_{19}OH$	0.	.842	- 5.	213.	and also Wroblew-						
Decyl alcohol	C ₁₀ H ₂₁ OH	+7.	.839	+7.	231.	ski and Olszewski,						
Dodecyl alcohol Tetradecyl alcohol	$C_{12}H_{25}OH \\ C_{14}H_{29}OH$	38.	.831	38.	143.*	"Monatshefte," vol. 4, p. 338.						
Hexadecyl alcohol	$C_{16}H_{33}OH$	50.	.818	50.	190.*	1011 di bi 3301						
Octadecyl alcohol	C ₁₈ H ₃₇ OH	59.	.813	59.	211.*							
	(e) Ale	coholic e	thers:	C_nH_{2n+1}	₂ O.							
Dimethyl ether	C ₂ H ₆ O	_	_	-	- 23.6	Erlenmeyer, Kreich-						
						baumer.						
Diethyl ether Dipropyl ether	$C_{6}H_{10}O$ $C_{6}H_{14}O$	4.	0.731	_	+ 34.6	Regnault. Zander and others.						
Di-iso-propyl ether	C ₆ H ₁₄ O	0.	.743	_	69.	"						
Di-n-butyl ether	C ₈ H ₁₈ O	0.	.784		141.	Lieben, Rossi, and others.						
Di-sec-butyl ether	C ₈ H ₁₈ O	21.	.756	-	121.	Kessel.						
Di-iso-butyl "	C ₈ H ₁₈ O	15.	.762	-	I 22.	Reboul.						
Di-iso-amyl "	C ₁₀ H ₂₂ O	0.	.799	_	170175.	Wurtz. Erlenmeyer and						
Di-sec-hexyl "	$C_{12}H_{26}O$			_	203208.	Wanklyn.						
Di-norm-octyl "	C ₁₆ H ₃₄ O	17.	.805	-	280282.	Moslinger.						
	(f) E	thyl eth	ers: C _n	H _{2n+2} ()								
Ethyl-methyl ether	C ₃ H ₈ O \	-	_	_	II.	Wurtz, Williamson.						
" propyl "	C ₅ H ₁₂ O	20.	0.739	-	6364.	Chancel, Brühl.						
" iso-propyl ether."	$C_{6}H_{12}O$ $C_{6}H_{14}O$	0.	.745	_	54· 92.	Markownikow. Lieben, Rossi.						
" iso-butyl ether .	$C_{6}H_{14}O$.751	-	78.–80.	Wurtz.						
" iso-amyl ether .	C ₇ H ₁₆ O	18.	.764	-	112.	Williamson and						
" norm-hexyl ether	C ₈ H ₁₈ O	_	_	_	134137.	others. Lieben, Janeczek.						
" norm-heptyl ether	$C_9H_{20}O$	16.	.790	-	165.	Cross.						
" norm-octyl ether	$C_{10}H_{22}O$	17.	.794	-	182.–184.	Moslinger.						

^{*} Boiling-point under 15 mm. pressure. † Liquid at —11.° C. and 180 atmospheres' pressure (Cailletet).

Coefficients of Linear Expansion of the Chemical Elements.

In the heading of the columns T is the temperature or range of temperature, C the coefficient of linear expansion, A_1 the authority for C, M the mean coefficient of expansion between 0° and 10° C., a and β the coefficients in the equation $t_1 = t_0$ (i + $at + \beta t^2$), where t_0 is the length at 0° C. and t_0 the length at t^0 C., t_0 is the authority for t_0 , t_0 , and t_0 .

				1			
Substance.	T	C × 10 ⁴	A ₁	M × 10 ⁴	× 104	β × 10 ⁶	A 2
Aluminium	40	0.2313	Fizeau:	0.2220			S Calvert, John-
"	600	.3150	Les Chatelier.	0.2220) son and Lowe.
Antimony:	300	.7.70	Lico Chatchion.	1.			
Parallel to cryst.				2.			
axis	40	.1692	Fizeau.				
Perp. to axis .	40	.0882	46				
Mean	40	.1152	66	.1056	.0923	.0132	Matthieson.
Arsenic	40	.0559					
Bismuth:							
Parallel to axis	40	.1621	"				
Perp. to axis .	40	.1208	46				M-441.:
Mean	40	.1346			.1167	.0149	Matthieson.
Cadmium	40	.3069		.3159	.2693	.0466	
Diamond	10	.0118	66				
Gas carbon	40 40	.0540	46	1111			
Graphite	40	.0786	66				
Anthracite	40	.2078	46				
Cobalt	40	.1236	"				
Copper	40	.1678	"	.1666	.1481	.0185	Matthieson.
Gold	40	.1443	66	.1470	.1358	.0112	66
Indium	40	.4170	46		33		
Iron:							
Soft	40	.1210	46				
Cast	40	.1061	"				
Wrought	-18 to 100		Andrews.				
Steel	40	.1322	Fizeau.	0	0		70
anneared	40	.1095		.1089	.1038	.0052	Benoit.
Lead	40	.2924	66	.2709	.0273	.0074	Matthieson.
Magnesium	40	.2694	66				
Osmium	40 40	.1279	44				
Palladium	40	.1176	66	.1104	.1011	.0093	Matthieson.
Phosphorus	0-40	1.2530	Pisati and De	11104	10.1	.0093	
		-33-	Franchis.				20 127
Platinum	40	.0899	Fizeau	.0886	.0851	.0035	Matthieson.
Potassium	0-50	.8300	Hagen.				10
Rhodium	40	.0850	Fizeau.				
Ruthenium	40	.0960	46				0.1
Selenium	40	.3680	86	.6604	T	_	Spring.
Silicon	40	.0763	66		.000		Matthiagan
Silver	40	.1921		.1943	.1009	.0135	Matthieson.
Sulphur:	40	6473	66	1.180			Spring.
Cryst. mean Tellurium	40	.6413	"	.3687			opring.
Thallium	40	.3021	460	.300/			
Tin	40	.2234		.2296	.2033	.2063	Matthieson.
Zinc	40	.2918	"	.2976	.2741	.0234	66
		, ,		1		3.6	

N. B. — The above table has been with a few exceptions compiled from the results published by Fizeau, "Comptes Rendus," vol. 68, and Matthieson, "Proc. Roy. Soc.," vol. 15.

Coefficient of Linear Expansion for Miscellaneous Substances.

N. B. — The coefficient of cubical expansion may be taken as three times the linear coefficient. T is the temperature or range of temperature, C the coefficient of expansion, and A the authority.

1				1			
Substance.	T	C X 104	A	Substance.	T	C X 104	A
Brass:				771			
Cast	0-100°	0.1875	I	Platinum-silver:			
Wire	66	0.1930	I	IPt+2Ag	0-100°	0.1523	4
		.17831930	2	Porcelain	20-790	0.0413	16
71.5Cu+27.7Zn+		-0		Dayeux .	1000-1400	0.0553	17
0.3Sn+0.5Pb	40	0.1859	3	Quartz:	- 0-		
71Cu+29Zn .	0-100	0.1906	4	Parallel to axis . Perpend. to axis .	0-80	0.0797	6
Bronze:	166-100	0.1844	-	Speculum metal .	0-100	0.1337	6
3Cu+1Sn	166-350	0.1044	5	Topaz:	0-100	0.1933	I
"""	16.6-957		5	Parallel to lesser			
86.3Cu+9.7Sn+	10.0-95/	0.1737	5	horizontal axis	66	0.0832	8
4Zn	40	0.1782	2	Parallel to greater		0.0032	0
97.6Cu+2.2Sn+	40	0.1/02	3	horizontal axis	66	0.0836	8
0.2P hard	0-80	0.1713	6	Parallel to verti-		0.0030	
" " " soft	"	0.1708	6	cal axis	44	0.0472	8
Caoutchouc	_	.657686	2	Tourmaline:		5.04/2	
44	16.7-25.3	0.770	7	Parallel to longi-			
Ebonite	25.3-35.4	0.842		tudinal axis	44	0.0937	8
Fluor spar : CaF ₂ .	0-100	0.1950	7 8	Parallel to hori-		10937	
German silver	66	0.1836	8	zontal axis	"	0.0773	8
Gold-platinum:		3		Type metal	16.6-254	0.1952	
2Au+1Pt	66	.0.1523	4	Vulcanite	0-18	0.6360	18
Gold-copper:		3 3		Wedgwood ware .	0-100	0.0890	5
2Au+1Cu	66	0.1552	4	Wood:			
Glass:		00		Parallel to fibre:			
Tube	44	0.0833	I	Ash	46	0.0951	19
"	46	0.0828	9	Beech	2-34	0.0257	20
Plate	66	0.0891	10	Chestnut		0.0649	20
Crown (mean) .	66	0.0897	10	Elm	66	0.0565	20
• • • • • • • • • • • • • • • • • • • •	50-60	0.0954	H	Mahogany .	66	0.0361	20
Flint	66	0.0788	II	Maple	44	0.0638	20
Jena thermometer				Oak	66	0.0492	20
(normal)	0-100	0.081	12	Pine	44	0.0541	20
" " 59 ^{III}	6.6	0.058	12	Walnut	66	0.0658	20
Gutta percha	20	1.983	13	Across the fibre:	66		
Ice	-20 to -I	0.375	14	Beech	"	0.614	20
Iceland spar: .	- 0-	6	6	Chestnut	"	0.325	20
Parallel to axis .	0-80	0.2631	6	Elm	"	0.443	20
Perpendicular to axis	66	00544	6	Mahogany .	"	0.404	20
Lead-tin (solder)		0.0544	0	Maple	"	0.484	20
2Pb+1Sn	0-100	0.2508	I	Pine	66	0.544	20
Paraffin	0-16	1.0662	15	Walnut	46	0.341	20
"	16-38	1.3030	15	Wax: White	10-26	2.300	21
"	38-49	4.7707	15	Wax. Wille.	26-31	3.120	21
Platinum-iridium	J 49	4.7707	* 3	. "	31-43	4.860	21
10Pt+1Ir	40	0.0884	3	"	43-57	15.227	21
	, ,		3		13 37	3/	
		AUT	HOR	ITIES.			
	Benoit.			lfrich. 16 Braun.	1 773	21 Kop	p.
2 Various. 7 K	Cohlrausch faff.	. 12		nott. 17 Deville an	u I roost.		
3 Fizeau. 8 F 4 Matthieson. 9 I				ssner. 18 Mayer.			
5 Daniell. 10 Lav							
5 Daniell, 10 Lav	oisici ailu	Laplace. 15	, 100	dwell. 20 villati.			

Coefficients of Cubical Expansion of some Crystalline and other Solids.*

T = temperature or range of temperature, C = coefficient of cubical expansion, A = authority.

Substance.	T .	C × 10 ⁴	A
Antimony	0-100	0.3167	Matthieson.
Beryl	0-100	0.0105	Pfaff.
Bismuth	-	0.4000	Корр.
Diamond	40	0.0354	Fizeau.
Emerald	40	0.0168	66
Fluor spar	14-47	0.6235	Kopp.
Garnet	0-100	0.2543	Pfaff.
Glass, white tube	0-100	0.2648	Regnault.
" green tube	C-100	0.2299	66
" Swedish tube	0-100	0.2363	66
" hard French tube .	0-100	0.2142	66
" crystal tube	0-100	0.2101	44
" common tube	0-1	0.2579	46
" Jena	0-100	0.2533	Reichsanstalt.
Ice	—20 to —1	1.1250	Brunner.
Iceland spar	50-60	0.1447	Pulfrich.
Idocrase	0-100	0.2700	Pfaff.
Iron	0-100	0.3550	Dulong and Petit.
"	0-300	0.4410	66 66 66
Magnetite, Fe ₃ O ₄	0-100	0.2862	Pfaff.
Manganic oxide, Mn ₂ O ₈ .	0-100	0.522	Playfair and Joule.
Orthoclase (adularia) .	0-100	0.1794	Pfaff.
Porcelain	0-100	0.1080	Deville and Troost.
Quartz	50-60	0.3530	Pulfrich.
Rock salt	50-60	1.2120	44
Spinel ruby	40	0.1787	Fizeau.
Sulphur, rhombic	0-100	2.2373	Корр.
Topaz	0-100	0.2137	Pfaff.
Tourmaline	0-100	0.2181	66
Zincite, ZnO	40	0.0279	Fizeau.
Zircon	0-100	0.2835	Pfaff.

^{*} For more complete tables of cubical expansion, see Clarke's "Constants of Nature," (Smithsonian Collections), published in 1876.

Coefficients of Cubical Expansion of Liquids.

This table contains the coefficients of expansion of some liquids and solutions of salts. When not otherwise stated atmospheric pressure is to be understood. T gives the temperature range, C the mean coefficient of expansion for range T in degrees C, and A_1 the authority for C. α , β , and γ are the coefficients in the volume equation $v_t = v_0$ ($t + \alpha t + \beta \ell^2 + \gamma \ell^6$), and m the mean coefficient for range o -100° C., and A_2 is the authority for these.

Acetic acid	r=====================================											
Actone Alcohol: Bethyl, sp. gr. 8995 Bethyl, sp. gr. 8995 Bethyl Bethyl, sp. gr. 8995 Bethyl B	Liquid.	T	C X 1000	A 1		a × 1000	β × 10 ⁶	γ × 10 ⁸	A2			
Alcohol:		,	-									
Ethyl, sp. gr. 8095 . " 50% by volume 0-39		34			.1010	1.3240	3.0090	0.0790	3			
Ethyl, sp. gr. 8095 . " 50% by volume o -39	Amyl	-15 to +80		-	_	0.8900	0.6573	1.1846	4			
" 30% " " 18–39	Ethyl, sp. gr8095 .			-	-							
" 500 atmo, press. " 3000 " " 0-40 Methyl38 to +70 Benzene	. " 50 % by volume		-	-					6			
## Scot almo, pless. 0-40 0-40 0-524 1 - - - - - - - - -	30 /0				-	0.2928	17.900	11.87				
Methyl −38 to +70 1.433 1.1856 1.5649 0.9111 4 Benzene 11-81 1.385 1.1763 1.2775 0.8665 5 Bromine 1.168 1.0382 1.7114 0.5447 4 Calcium chloride: 0.050 0.0788 4.2742 7 Carbon disulphide 1.1468 1.1398 1.3706 1.9122 4 500 atmos, pressure 0.50 .581 1.1398 1.3706 1.9122 4 3000 " 0.531 1	500 atilio, press.				-	-	-					
Benzené	3000					0-6	6.0	-				
Bromine			1									
Calcium chloride: CaCl ₂ , 5.8 % solution CaCl ₂ , 40.9 % " . 17-24			1					9				
CaCl ₂ , 5.8 % solution CaCl ₂ , 40.9 % ". 17-24		7 10 100			.1100	1.0302	11./114	0.5447	4			
CarCl ₂ , 40.9 % "		18-25	<i>′</i> _	_	.0506	0.0788	4.2742	_	7			
Carbon disulphide -34 to +60 -50 0.940 1 -70 -70 0.940 1 -70 -70 0.940 1 -70 -70 0.940 1 -70 -70 0.940 1 -70 -70 0.940 1 -70 -70 0.940 1 -70 -70 0.940 1 -70 -70 0.940 1 -70 -70 0.940 1.071 0.4647 1.7433 4 1.7433 1.7433 4 1.7433 4 1.7433 4 1.7433 4 1.7433 1.7433 4 1.7433			-	-				-				
Spot atmos. pressure O-50 O-50 O-50 O-50 O-581 I O-50 O-50 O-581 I O-50 O-50 O-581 I O-50 O-63 O-60		-34 to +60	-	-	.1468			1.9122				
Chloroform		0-50		I	-	-	-	-	-			
Ether	3000		.581	I		-	-	_	-			
Glycerine	T 1 1		-									
Hydrochloric acid:		-15 to +38						4.0051	4			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-	_	_	.0534	0.4053	0.4895	-	0			
HCl + 50H2O		0-20			0480	0.4460	0.430					
Mercury												
Olive oil			_	_				0.003512				
Potassium chloride		-4 -99	_	_	.0742							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Potassium chloride:						, 3	337				
Potassium nitrate: KNO ₃ , 5.3 % sol'n KNO ₃ , 5.19 % "053912 Phenol, C ₆ H ₆ O 36-1570899 0.8340 0.1073 0.4446 13 Petroleum		-	-	-	.0572	-	-	-	7			
KNO ₃ , 5.3 % sol'n -	11, 24.3 /0	-	-	- 1	.0477	-	_	-				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-	-			-	-	-				
Petroleum		26_1 57			.0577	08240	0.1073	2446				
Sp. gr. 0.8467					.0099	- 0.0340	0.10/3	0.4440	-			
Sodium chloride NaCl, 1.6 % solution - - .1067 0.0213 10.462 - 9			1992		.1030	0.8004	1.306	_				
Sodium sulphate: Na ₂ SO ₄ , 24 % sol'n . Sodium nitrate: Na _N O ₃ , 36.2 % sol'n . Sulphuric acid: H ₂ SO ₄ + O-30			-		-39		-37-		-4			
Sodium sulphate: Na ₂ SO ₄ , 24 % sol'n . Sodium nitrate: NaNO ₃ , 36.2 % sol'n . Sulphuric acid: H ₂ SO ₄		-	-	-	.1067	0.0213	10.462	-	9			
Sodium nitrate : NaNO ₃ , 36.2 % sol'n 20-78 - - .0627 0.5408 1.075 - 12												
NaNO ₃ , 36.2 % sol'n. Sulphuric acid: H ₂ SO ₄		10-40	-	-	.0611	0.3599	2.516	-	9			
Sulphuric acid: H ₂ SO ₄ +		20. 78			0605	0 4100		N. Contraction				
H ₂ SO ₄	Sulphuric acid:	20-70	_		.0027	0,5408	1.075	N -	12			
H ₂ SO ₄ + 50H ₂ O . 0-300799 0.2835 5.160 - 9 to +1061051 0.9003 1.959 - 5 Water	YY (1/2)	0-30	_	_	.0480	0.5758	0.864	_	0			
Turpentine —9 to +106 — — — .1051 0.9003 1.959 — — .5 Water —9 to +106 — — — — .1051 0.9003 1.959 — — .6.769 1.5 AUTHORITIES. 1 Amagat. 4 Pierre. 7 Decker. 10 Broch. 13 Pinette. 2 Barrett. 5 Kopp. 8 Emo. 11 Spring. 14 Frankenheim.						0.2835		_				
Nater 0-200 - - - - - - - - -	Turpentine		-	-			-	-				
AUTHORITIES. I Amagat. 4 Pierre. 7 Decker. 10 Broch. 13 Pinette. 2 Barrett. 5 Kopp. 8 Emo. 11 Spring. 14 Frankenheim.												
1 Amagat. 4 Pierre. 7 Decker. 10 Broch. 13 Pinette. 2 Barrett. 5 Kopp. 8 Emo. 11 Spring. 14 Frankenheim.	10030 0.307 -0.709 13											
1 Amagat. 4 Pierre. 7 Decker. 10 Broch. 13 Pinette. 2 Barrett. 5 Kopp. 8 Emo. 11 Spring. 14 Frankenheim.			Аитн	ORIT	TES.							
2 Barrett. 5 Kopp. 8 Emo. 11 Spring. 14 Frankenheim.	I Amagat. 4 Pi	erre.				no Broch	12	Pinette				
3 Zander. 6 Recknagel. 9 Marignac. 12 Nicol. 15 Scheel.	2 Barrett.	opp.	8 Em	0.					m.			
	3 Zander. 6 Re	ecknagel.										
							3					

Coefficients of Expansion of Gases.

The numbers obtained by direct experiment on the change of volume at constant pressure, E_p , are separated in the table from those obtained from the change of pressure at constant volume, E_v . The two parts of the table are headed "Coefficient at constant pressure" and "Coefficient at constant volume," respectively. Ordinary changes of atmospheric pressure produce very little change in the coefficient of expansion, and hence entries in the pressure column of 1 atm. have been made for all pressures near to 76 centimeters of mercury. The other numbers in the column of 1 atm. have been made for all pressures near to 76 centimetres of mercury. The other numbers in the pressure columns are centimetres of mercury at 6° C. and approx. 45° latitude, unless otherwise marked. Thomson has given (vide Encyc. Brit. art. "Heat") the following equations for the calculation of the expansion, E, between 6° and 100° C. of the gases named. Expansion is to be understood as change of volume under

constant pressure.

where V_0/v_0 is the ratio of the actual density of the gas at o° C. to the density it would have at o° C. and one atmosphere of pressure. The same experiments (Thomson & Joule, Trans. Roy. Soc. 1860),—which, together with Regnault's data, led to these equations,—give for the absolute temperature of melting ice 2.731 times the temperature interval between the melting-point of ice and the boiling-point of water under normal atmospheric

Coefficient at con	nstant volume			Coefficient at co	nstant pressu	ire.†	
Substance.	Pressure.	E _v × 100	Author- ity.	Substance.	Pressure.	Е _р Х 100.	Author-
Air " " " " " " " " " " " " " " " " " "	0.6 1.6 7.6 10.0 26.0 37.6 75.0 76-83 11-15 17-24 37-51 76 2000 2000 10000 76 76 1 atm. 1 " 1 " 25.87 " 25.87 " 25.87 " 25.87 " 25.87 " 33.53 " 31 " 1 " 1 " 1 " 1 " 1 " 1 "	.3765 .3703 .3665 .3665 .3665 .3670 .3648 .3651 .3658 .3657 .3690 .3706 .3706 .3706 .3706 .3752 .4252 .4754 .4607 .3638 .5406 .3752 .4754 .4507 .3638 .3638 .3637 .3638 .3637 .3638 .3638 .3637 .3638	1 1 1 2* 3 3 3 3 3 3 3 4 4 * 5 5 1 3 3 3 3 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	Air	24.81 " 24.81 " 24.81 " 34.49 " 34.49 "	0.3671 0.3695 0.36613 0.36616 0.3710 0.3645 0.5136 0.4747 0.6204 0.5435 1.0970 0.8450 0.6574 0.3669 0.3719 0.3903 0.3980 0.4187 0.4188 0.3799	3 3 3 3 3 3 6 6 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7

^{*} Corrected by Mendelejeff to 45° latitude and absolute expansion of mercury. Rowland gets almost the same correction on Regnault, using Wüllner's value of the expansion of mercury.

† The series of results at different pressures are given because of their interest. The absolute values are a little too low. (See preceding footnote.)

DYNAMICAL EQUIVALENT OF THE THERMAL UNIT.

Rowland in his paper quoted in Table 227 has given an elaborate discussion of Joule's determinations and the corrections required to reduce them to temperatures as measured by the air thermometer. The following table contains the results obtained, together with the corresponding results obtained in Rowland's own experiments. The variation for change of temperature in Rowland's result is due to the variation with temperature of the specific heat of water.

Date.	Method of experiment.	Temp. of water C.°	Temp. of Joule's water C.°		Joule's value reduced to air thermometer and latitude of Baltimore.		J—R.	Relative weight of Joule's value as estimated by Rowland.
		1		Eng. units.	Met. units.			of R
1847	Friction of water .	15	781.5	787.0	442.8	427.4	+15.4	0
1850		14	772.7	778.0	426.8	427.7	-0.9	10
1850	" " mercury	9	772.8	779.2	427.5	428.8	-1.3	2
1850	** ** **	9	775-4	781.4	428.7	428.8	—o.1	2
1850	" iron .	9	776.0	782.2	429.1	428.8	+0.3	I
1850	66 66 66	9	773.9	780.2	428.0	428.8	0.8	I
1867	Electric heating	18.6	-	-	428.0	426.7	+1.3	3
1878	Friction of water .	14.7	772.7	776.1	425.8	427.6	-1.8	2
1878	66 66 64	12.7	774.6	778.5	427.I	428.0	-0.9	3
1878		15.5	773.1	776.4	426.0	427.3	-1.3	5
1878		14.5	767.0	770.5	422.7	427.5	-4.8	I
1878		17.3	7 7 4.0	777.0	426.3	426.9	0.6	1

From the above values and weights Rowland concludes as the most probable value from Joule's experiments, at the temperature 14.6° C. and the latitude of Baltimore, 426.75, and from his own experiments 427.52.

The mean of these results is 427.13 in metric units, or 778.6 in British units. Correcting back for latitude, and to mercury thermometer, this gives about 774.5 for the latitude of Manchester, instead of 772, as has been commonly used.

An elaborate determination recently made by Griffith and referred to in Table 227 gives a value about one tenth of one per cent higher than Rowland's. Probably when a mercury thermometer is involved in the measurements we may take 776 as the nearest whole number in foot-pounds and British thermal units for the latitude of Manchester, and 777 for that of Baltimore. The corresponding values in the metric system will be 425.8 and 426.3, or in round numbers 426 for both latitudes.

The following quantities should be added to the equivalent of Baltimore to give the equivalent at the latitude named:—

MECHANICAL EQUIVALENT OF HEAT.

The following historical table of the principal experimental determinations of the mechanical equivalent of the unit of heat has been, with the exception of the few determinations bearing dates later than 1879, taken from Rowland.*

The different determinations are divided into four groups, according to the method used. Calculations based on the constants of gases and vapors as determined by others are not included in this table.

Method.	Observer.	Date.	Result.
Compression of air	Joule 1	1845	4428
Expansion " "	Joule 1	1845	443.8
Experiments on steam engine	Hirn 2		437.8
Experiments on steam engine	Hirn ²	1857	413.0
	111111 -	1860-1	420-432
TO 1	T2.11 1.9	00	443.6
Expansion and contraction of metals .	Edlund ³	1865	430.I
		(428.3
66 66 66 66	Haga 4	1881	437.8
·	11454	1001	428.I
Measurement of the specific volume of			
vapor	Perot 5	1886	424.3
•			
	•		
Boring of cannon	Rumford 6	1798	940 ftlbs.
Friction of water in tubes	Joule 7	1843	424.6
" " " calorimeter	Joule 1	1845	488.3
46 66 66 66	Joule 8	1847	428.9
46 46 46 46	Joule 9	1850	423.9
" " mercury in "	Joule 9	1850	424.7
	Joule 9	1850	425.2
" " plates of iron	Hirn 2	1857	371.6
" " in mercury calorimeter .	Favre 10	1858	413.2
" " "	Hirn 2	1858	400-450
Boring " "	Hirn 2	1858	425.0
Water in balance à frottement	Hirn 2	1860-1	
	Hirn 2	1860-1	432.0
Flow of liquids under strong pressure .	Hirn 2	1860-1	432.0
Crushing of lead	Puluj 11	1876	425.0
Friction of metals			426.6
Friction of water in calorimeter	Joule 12	1878	423.9
	Rowland 18	1879	426.3
" " metals	Sahulka 14	1890	427.5
Heating by magneto-electric currents .	Joule 7	1843	460.0
Heat generated in a disc between the			435.2
poles of a magnet	Violle 15	1870 }	434.9
poice of a magnet	1.0	20,0	435.8
		00	437.4
Flow of mercury under pressure	Bartoli 16	1880	428.4
Heat developed in wire of known abso-		1857	399-7
lute resistance	also Weber	3,	
Heat developed in wire of known abso-	Lenz	1859 }	396.4
lute resistance	Weber) 37 (478.2
Heat developed in wire of known abso-	T 1 10	-06	455.5
lute resistance	Joule 18	1867	429.5
Heat developed in wire of known abso-	TT TO 337-1 10	-0	100 **
lute resistance	H. F. Weber 19	1877	428.15
Heat developed in wire of known abso-	Webster 20	188 - I	414.0 ergs per
lute resistance	Webster 27	1885 {	gramme degree.
Heat developed in wire of known abso-	Dieterici 21	1888	
lute resistance	Dieterici **	1000	424.36
			-
REFE	RENCES.		
See opp	osite page.		
эсс орр	1-9-		

^{* &}quot; Proc. Am. Acad. Arts and Sci." vol. 15.

MECHANICAL EQUIVALENT OF HEAT.

Method.	Observer.	Date.	Result.
Diminishing the heat contained in a battery when the current produces work Diminishing the heat contained in a battery when the current produces work Heat due to electrical current, electro-chemical equivalent of water = .009379, absolute resistance, electro-motive force of Daniell cell, heat developed by action of zinc on sulphate of copper Heat developed in Daniell cell Electromotive force of Daniell cell Combination of electrical heating and mechanical action by stirring water	Joule 7 Favre 22 Weber, Boscha, Favre, and Silbermann Joule Boscha 23 Griffiths 24	1843 1858 1857 1859	499.0 443.0 432.1 419.5 428.0

REFERENCES.

- I Joule, "Phil. Mag." (3) vol. 26.
- 2 Hirn, "Théorie Méc. de la Chaleur," sér. 1, 3me éd.
- 3 Edlund, "Pogg. Ann." vol. 114.
- 4 Haga, "Wied. Ann." vol. 15.
- 5 Perot, "Compt. Rend." vol. 102.
- 6 Rumford, "Phil. Trans. Roy. Soc." 1798; Fayre, "Compt. Rend." 1858.
- 7 Joule, "Phil. Mag." (3) vol. 23.
- 8 Joule, " " " 27.
 9 Ioule, " " " 31.
- 10 Favre, "Compt. Rend." 1858; "Phil. Mag." (4) vol. 15.
- 11 Puluj, "Pogg. Ann." vol. 157.
- 12 Joule, "Proc. Roy. Soc." vol. 27.
- 13 Rowland, "Proc. Am. Acad. Arts & Sci." vols. 15 & 16.
- 14 Sahulka, "Wied. Ann." vol. 41.
- 15 Violle, "Ann. de Chim." (4) vol. 22.
- 16 Bartoli, "Mem. Acc. Lincei," (3) vol. 8.
- 17 Quintus Icilius, "Pogg. Ann." vol. 101.
- 18 Joule, "Rep. Com. on Elec. Stand.," "B. A. Proc." 1867.
- 19 H. F. Weber, "Phil. Mag." (5) vol. 5.
- 20 Webster, "Proc. Am. Acad. Arts & Sci." vol. 20.
- 21 Dieterici, "Wied. Ann." vol. 33.
- 22 Favre, "Compt. Rend." vol. 47.
- 23 Boscha, " Pogg. Ann." vol. 108.
- 24 Griffiths, "Phil. Trans. Roy. Soc." 1893.

SPECIFIC HEAT.

Specific Heat of Water.

The specific heat of water is a matter of considerable importance in many physical measurements, and it has been the subject of a number of experimental investigations, which unfortunately have led to very discordant results. Regnault's measurements, published in 1847,* show an increase of specific heat with rise of temperature. His results are approximately expressed by the equation

 $c = 1 + .0004 t + 0000009 t^2$

which makes the specific heat nearly constant within the atmospheric range. A different equation was found from Regnault's results by Boscha, who thought the temperatures required correction to the air-thermometer. Regnault, however, pointed out that the results had already been corrected. Jamin and Amaury † found, for a range from 9° to 76° C., the equation

$$c = 1 + .0011t + .0000012t^3$$

which nearly all the evidence available shows to be very much too rapid a change. Wüllner gives, for some experiments of Münchhausen,‡ the equation

c = 1 + .00030102t

in vol. 1, changed to

$$c = 1 + .000425t$$

in vol. 10, for a range of temperature from 17° to 64°. In 1879, experiments are recorded by Stamo, by Henrichsen, and by Baumgarten, all of them giving large variation with temperature.

In 1879, Rowland inferred from his experiments on the mechanical equivalent of heat that the specific heat of water really passes through a minimum at about 30°, and he attempted to verify this by direct experiment. The results obtained by direct experiments were not by any means so satisfactory as those obtained from the friction experiment; but they also indicated that the specific heat passed through a minimum, — but, in this case, at about 20° C. Further, direct experiments were made in 1883, in Rowland's laboratory, by Liebig, using the same calorimetric apparatus; and these experiments also show a minimum at about 20° C. Since the publication of Rowland's paper a number of new determinations have been made. Gerosa gave, in 1881, a series of equations which show a maximum at 4°.4, then a minimum a little above 5° and afterwards a rise to 24°! Neesen ** found a minimum near 30°, but got rather less variation than Rowland. Rapp,†† taking the mean specific heat between 0° and 100° as unity, gives the equation

$$c = 1.039925 - .007068t + .00021255t^2 - .000001584t^8$$

which gives a minimum between 20° and 30° and a maximum about 70°. Volten ‡‡ gives an equation which is even more extraordinary with regard to coefficients than the last, namely,

$$c = 1 - .0014625512t + .0000237981t^2 - .00000010716t^3$$

which puts the minimum between 40° and 50°, and gives a maximum at 100°; which maximum is, however, less than unity. Dieterici, in his paper on the mechanical equivalent of heat, discusses this subject; but his own results being in close agreement with Rowland's, his table practically only extends Rowland's results through a greater range of temperature, assuming straightline variation to the two sides of the minimum. Bartoli and Stracciati §§ found a minimum at about 30°; while Johanson in the same year gives a minimum at about 4° and then a rise about 12 times as rapid as that of Regnault. Griffiths ||| finds the equation

$$c = 1 - .0002666 (t - 15)$$

to satisfy his experiments through the range from 15° to 26°. This agrees fairly well with Rowland through the same range, and indicates that the minimum is at a temperature higher than 26°.

The following table gives the results of Rowland, Bartoli and Stracciati, and Griffiths. The column headed "Rowland" has been calculated from Rowland's values of the mechanical equivalent of heat at different temperatures, on the assumption that the specific heat at 15° is equal to unity.

```
* "Mém. de l'Acad." vol. 21.

‡ "Wied. Ann." vols. 1 and 10.

|| "Wied. Ann." vol. 8.

|| "Wied. Men." vol. 3.

|| "Wied. Ann." vol. 18.

|| "Oiler Ann." vol. 18.

|| "Wied. Ann." vol. 21.

|| "Phil. Trans." 1893.
```

SPECIFIC HEAT.

TABLE 228. - Specific Heat of Water.

Temp.			Griffiths.	Temp.	Rowland.	Bartoli and	Griffiths.	Di	eterici.
С.	Kowianu.	Stracciati.	Offinities.	C.	Kowiana.	Stracciati.	Offinities.	Temp. C.	Specific heat.
0° 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	I.0075* I.0070* I.0065* I.0065* I.0055* I.0045 I.0045 I.0029 I.0024 I.0029 I.0014 I.0009 I.0005 I.0000	1.0066 1.0060 1.0054 1.0049 1.0043 1.0038 1.0028 1.0023 1.0019 1.0015 1.0001 1.0008 1.0005 1.0002	- - - - - - - - - - - - - - - - - - -	19° 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35	0.9984 0.9980 0.9976 0.9973 0.9971 0.9968 0.9965 0.9964 0.9963 0.9963 0.9963 0.9964 0.9964 0.9964 0.9966	0.9995 0.9995 0.9995 0.9996 0.9996 0.9998 1.0001 1.0003 1.0016 1.0014 1.0014 1.0014	0.9989 0.9987 0.9984 0.9979 0.9976 0.9973 0.9971 0.9967	0° 10 20 30 40 50 60 70 80 90 100	1.0000 0.9943 0.9893 0.9872 0.9934 0.9995 1.0057 1.0182 1.0244 1.0306
17	0.9991	0.9997 0.9996	0.9995	36	0.9967				

TABLE 229. - Specific Heat of Air.

The ratio of the specific heat at constant pressure to the specific heat at constant volume has been the subject of much investigation, and more particularly so in the case of atmospheric air, on account of its interest in connection with the velocity of sound. The following table gives the results of the principal direct determinations of this ratio for air. It may be remarked that the methods most commonly employed have been modifications of that employed by Clement and Desormes, and that the chances of error towards too small a ratio by this method are considerable.

Date.	Ratio.	Experimenters.
1812 1853 1858 1859 1861 1862 1863 1864 1864 1869 1873 1874 1883 1887	1.354 1.374 1.249 1.421 1.4196 1.4025 1.3845 1.41 1.399 1.302 1.4053 1.397 1.4062 1.384	Clement and Desormes. Gay Lussac and Welter. Delaroche and Berard. Favre and Silbermann. Masson. Weisbach. Hirn. Cazin. Dupré. Jamin and Richards. Tresca and Laboulaye. Kohlrausch. Röntgen. Amagat. Müller. Lummer.

Some of these results are clearly too low; and hence neglecting all those that fall below 1.39 and giving equal weights to the remainder we obtain, with a somewhat large probable error, the value 1.4070.

The values obtained indirectly from the velocity of sound are undoubtedly much more accurate, judged either by the greater ease of the experiment or by the better agreement of the results. Assuming that the value 332 metres per second is good for the velocity of sound, the ratio of the specific heats must be near to 1.4063. Probably 1.4065 may be taken as fairly representing present knowledge of the subject.

Note. - For specific heats of metals, solids and liquids, see pp. 294 to 296.

^{*} Variation assumed uniform below 7 with same slope as from 7 to 5.

SPECIFIC HEAT.

Specific Heat of Gases and Vapors.

Substance.	Range of temp. C.°	Sp. ht. pressure constant.	Authority.	Mean ratio of sp. hts.	Authority.	Calculated sp. ht. vol. const.
Aastana	26 110	0 2 160	W:			
Acetone	26-110	0.3468	Wiedemann	-	-	
66	27-179 129-233	0.3740	Regnault	_	_	
Air	-30 to + 10	0.2377.1	Kegnaurt	_		
66	0-100	0.23741	66	_	, –	
"	0-200	0.23751	46	-	-	
	20-100	0.2389	Wiedemann	-	_	
	mean	0.23788	-	1.4066	Various	0.1691
Alcohol, ethyl	108-220	0.4534	Regnault	1.136	Jaeger	0.3991
methyl	101-223	0.4580	66	_) Neyreneuf	
Ammonia	23-100	0.5202	Wiedemann	_	_	
	27-200	0.5356	44	-	_	
	24-216	0.5125	Regnault	-	-	
	mean	0.5228	_	1.31	Cazin	0.3991
Benzene	34-115	0.2990	Wiedemann	_) Wüllner	0,7
"	35-180	0.2990	" icucinailli	_		-
46	116-218	0.3754	Regnault	_	_	
Bromine	83-228	0.0555	"	-	_	
	19-388	0.0553	Strecker	1.293	Strecker	0.0428
Carbon dioxide	-28 to +7	0.1843	Regnault	-	-	
66 66	15-100	0.2025	"	_	_	
		1			(Röntgen	
	mean	0.2012	_	1.300	Wüllner	0.1548
Carbon monoxide	23-99	0.2425	Wiedemann	_		
66 66	26-198	0.2426	44 6	1.403	Cazin Wüllner	0.1729
Carbon disulphide	86-190	0.1596	Regnault	1.200	Beyne	0.1330
Chlorine	13-202	0.1210	"	-	-	0.1330
	1.6-343	0.1125	Strecker	1.323	Strecker	0.0850
Chloroform	27-118	0.1441	Wiedemann			
"	28-189	0.1489	66	1.106	Seyme Müller	0.1346
Ether	69-224	0.4797	Regnault	_	-	
66	27-189	0.4618	Wiedemann	-	_	
46	25-111	0.4280	6.6	-	a -	
"	mean	0.4565	D a sen a valt	1.029	Müller	0.4436
Hydrochloric acid	13-100	0.1852	Regnault Strecker	1.395	Strecker	0.1391
Hydrogen	-28 to +9	3.3996	Regnault	- 282	-	5.1391
ft	12-198	3.4090	"	-	_	
	21-100	3.4100	Wiedemann	-	~ -	
" sulphide (H-S)	mean	3.4062	Dogmont.	1.410	Cazin	2.419
" sulphide (H ₂ S) . Methane	20-206 18-208	0.2451	Regnault	1.276	Müller "	0.1925
Nitrogen	0-200	0.5929	"	1.410	Cazin	0.4505
Nitric oxide (NO)	13-172	0.2317	66	-	-	
Nitrogen tetroxide (NO ₂) .	27-67	1.625) Berthelot	-	-	
66 66 66	27-150	1.115	and	_	-	
Nitrous oxide	27-280 16-207	0.650) Ogier Regnault		_	
" "	26-103	0.2126	Wiedemann	_		
66 66	27-206	0.2241	46	1-	-	
66 66	mean	0.2214	-	1.291	Wüllner	.1715
Sulphur d'oxide (SO ₂)	16-202	0.1544	Regnault	1.26	Cazin (Müller)	0.1225
Water	128-217	0.4805	66	_	(muner)	
66	100-125	0.3787	Macfarlane			
66			Gray	T 200	Various	0 2205
	mean	0.4296		1.300	Various	0.3305

VAPOR PRESSURE.

TABLE 231. - Vapor Pressure of Ethyl Alcohol.*

j 0	0 °	1°	2°	3 °	40	5 °	6 °	7 °	8°	9°
Tem;			Va	por pressur	e in millim	etres of me	ercury at o	° C.		
0° 10 20 30 40 50 60 70	12.24 23.78 44.00 78.06 133.70 220.00 350.30 541.20	13.18 25.31 46.66 82.50 140.75 230.80 366.40 564.35	$ \begin{array}{c} 14.15 \\ 27.94 \\ 49.47 \\ 87.17 \\ 148.10 \\ 242.50 \\ 383.10 \\ 588.35 \\ \end{array} $	15.16 28.67 52.44 92.07 155.80 253.80 400.40 613.20	* 16.21 30.50 55.56 97.21 163.80 265.90 418.35 638.95	17.31 32.44 58.86 102.60 172.20 278.60 437.00 665.55	18.46 34.49 62.33 108.24 181.00 291.85 456.35 693.10	19.68 36.67 65.97 114.15 190.10 305.65 476.45 721.55	20.98 38.97 69.80 120.35 199.65 319.95 497.25 751.00	22.34 41.40 73.83 126.86 209.60 334.85 518.85 781.45
ن	0°	10°	200	30°	40 °	50°	60°	70°	80°	90°
Temp.	Vapor pressure in millimetres of mercury at o° C.									
0° 100 200	12.24 1692.3 22182.	23.73 2359.8 26825.	. 43.97 3223.0 32196.	78.11 4318.7 38389.	133.42 5686.6 45 5 19.	219.82 7368.7		540.91 11858.	811.81 14764.	1186.5 18185.

TABLE 232. - Vapor Pressure of Methyl Alcohol. ‡

. C.	0°	1°	2°	3°	4 °	5 °	6°	7 °	80	9°
Temp.	(t)		Vaj	por pressur	e in millim	etres of me	ercury at o	° C.		
0° 10 20 30 40 50 60	29.97 53.8 94.0 158.9 259.4 409.4 624.3	31.6 57.0 99.2 167.1 271.9 427.7 659.0	33.6 60.3 104.7 175.7 285.0 446.6 676.5	35.6 63.8 110.4 184.7 298.5 466.3 703.8	37.8 67.5 116.5 194.1 312.6 486.6 732.0	40.2 71.4 122.7 203.9 327.3 507.7 761.1	42.6 75.5 129.3 214.1 342.5 529.5 791.1	45.2 79.8 136.2 224.7 358.3 552.0 822.0	47.9 84.3 143.4 235.8 374.7 575.3	50.8 89.0 151.0 247.4 391.7 599.4

^{*} This table has been compiled from results published by Ramsay and Young (Jour. Chem. Soc. vol. 47, and Phil. Trans. Roy. Soc., 1886).

[†] In this formula a = 5.0720301; $\log b = \overline{2}.6406131$; $\log c = 0.6050854$; $\log a = 0.003377538$; $\log \beta = \overline{1.99682424}$ (c is negative).

[‡] Taken from a paper by Dittmar and Fawsitt (Trans. Roy. Soc. Edin. vol. 33). 8mithsonian Tables.

VAPOR PRESSURE.*

Carbon Disulphide, Chlorobenzene, Bromobenzene, and Aniline.

Temp.	0°	10	2°	3 °	4 °	5°	6°	7 °	8°	9°
	1			(a) CAR	BON DI	SULPHID	Ε.			
0° 10 20 30 40	127.90 198.45 298.05 434.60 617.50	133.85 207.00 309.90 450.65 638.70	140.05 215.80 322.10 467.15 660.50	146.45 224.95 334.70 484.15 682.90	153.10 234.40 347.70 501.65 705.90	160.00 244.15 361.10 519.65 729.50	167.15 254.25 374.95 538.15 753.75	174.60 264.65 389.20 557.15 778.60	182.25 275.40 403.90 576.75 804.10	190.20 286.55 419.00 596.85 830.25
		,		(b) C	HLOROB	ENZENE.	1			
20° 3° 4° 50 6° 7° 8° 9° 100	30 14.95 15.77 16.63 17.53 18.47 19.45 20.48 21.56 22.69 40 25.10 26.38 27.72 29.12 30.58 32.10 33.69 35.35 37.08 50 40.75 42.69 44.72 46.84 49.05 51.35 53.74 56.22 58.79 60 64.20 67.06 70.03 73.11 76.30 79.60 83.02 86.56 90.22 70 97.90 101.95 106.10 110.41 114.85 119.45 124.20 129.10 134.15 1 80 144.80 150.30 156.05 161.95 168.00 174.25 181.70 187.30 194.10 2 90 208.35 215.80 223.45 231.30 239.35 247.70 256.20 265.00 274.00 2								14.17 23.87 38.88 61.45 94.00 139.40 201.15 283.25 390.25	
110 120 130	402.55 542.80 718.95	415.10 558.70 738.65	427.95 575.05 758.80	441.15	454.65 608.75	468.50 626.15	355.25 482.65 643.95	497.20 662.15	512.05	527.25 699.65
				(c) 1	Вкомові	ENZENE.				
40°	-	-	-	-	-	12.40	13.06	13.75	14.47	15.22
50 60 70 80 90	16.00 26.10 41.40 63.90 96.00	16.82 27.36 43.28 66.64 99.84	17.68 28.68 45.24 69.48 103.80	18.58 30.06 47.28 72.42 107.88	19.52 31.50 49.40 75.46 112.08	20.50 33.00 51.60 78.60 116.40	21.52 34.56 53.88 81.84 120.86	22.59 36.18 56.25 85.20 125.46	23.71 37.86 58.71 88.68 130.20	24.88 39.60 61.26 92.28 135.08
100 110 120 130 140	140.10 198.70 274.90 372.65 495.80	145.26 205.48 283.65 383.75 509.70	150.57 212.44 292.60 395.10 523.90	156.03 219.58 301.75 406.70 538.40	161.64 226.90 311.15 418.60 553.20	167.40 234.40 320.80 430.75 568.35	173.32 242.10 330.70 443.20 583.85	179.41 250.00 340.80 455.90 599.65	185.67 258.10 351.15 468.90 615.75	192.10 266.40 361.80 482.20 632.25
150	649.05	666.25	683.80	701.65	719.95	738.55	757-55	776.95	796.70	816.90
				(6	A) ANIL	INE.	1	ı	1	1
90° 90°	18.80 30.10 45.90	19.78 31.44 47.80	20.79 32.83 49.78	21.83 34.27 51.84	22.90 35.76 53.98	24.00 37.30 56.20	25.14 38.90 58.50	26.32 40.56 60.88	27.54 42.28 63.34	28.80 44.06 65.88
110 120 130 140	68.50 100.40 144.70 204.60	71.22 104.22 149.94 211.58	74.04 108.17 155.34 218.76	76.96 112.25 160.90 226.14	79.98 116.46 166.62 233.72	83.10 120.80 172.50 241.50	86.32 125.28 178.56 249.50	89.66 129.91 184.80 257.72	93.12 134.69 191.22 266.16	96.70 139.62 197.82 274.82
150 160 170 180	283.70 386.00 515.60 677.15	292.80 397.65 530.20 695.30	302.15 409.60 545.20 713.75	311.75 421.80 560.45 732.65	321.60 434.30 576.10 751.90	331.70 447.10 592.05 771.50	342.05 460.20 608.35	352.65 473.60 625.05	363.50 487.25 642.05	374.60 501.25 659.45

^{*} These tables of vapor pressures are quoted from results published by Ramsay and Young (Jour. Chem. Soc. vol. 47). The tables are intended to give a series suitable for hot-jacket purposes.

VAPOR PRESSURE.

Methyl Salicylate, Bromonaphthaline, and Mercury.

Temp.	0°	1°	2°	3°	4°	5 °	6 °	7°	8 °	9°
			'	(e) ME	THYL SA	LICYLAT	E.		r.	
70° 80 90	2.40 4.60 7.80	2.58 4.87 8.20	2.77 5.15 8.62	2.97 5.44 9.60	3.18 5.74 9.52	3.40 6.05 9.95	3.62 6.37 10.44	3.85 6.70 10.95	4.09 7.05 11.48	4·34 7·42 12.03
100 110 120	12.60 19.80 30.25	13.20 20.68 31.52	13.82 21.60 32.84 49.01	14.47 22.55 34.21	15.15 23.53 35.63	15.85 24.55 37.10	16.58 25.61 38.67	17.34 26.71 40.40	18.13 27.85 41.84 61.73	18.95 29.03 43.54 64.10
130 140 150	45.30 66.55 95.60	47.12 69.08 99.00	71.69	50.96 74.38	52.97 77.15	55.05 80.00	57.20 82.94	59.43 85.97	89.09	92.30
160 170 180 190	134.25 184.70 249.35 330.85	138.72 190.48 256.70 340.05	143.31 196.41 264.20 349.45	148.03 202.49 271.90 359.05	152.88 208.72 279.75 368.85	157.85 215.10 287.80 378.90	162.95 221.65 296.00 389.15	168.19 228.30 304.48 399.60	173.56 235.15 313.05 410.30	179.06 242.15 321.85 421.20
200 210 220	432.35 557.50 710.10	443.75 571.45 727.05	455·35 585.70 744·35	467.25 600.25 761.90	479.35 615.05 779.85	491.70 630.15 798.10	504.35 645.55	517.25 661.25	530.40 677.25	543.80 693.60
				(f) Bro	MONAPH	THALINI	ε.			
110° 120 130 140	3.60 5.45 8.50 13.15	3.74 5.70 8.89 13.72	3.89 5.96 9.29 14.31	4.05 6.23 9.71 14.92	4.22 6.51 10.15 15.55	4.40 6.80 10.60 16.20	4.59 7.10 11.07 16.87	4.79 7.42 11.56 17.56	5.00 7.76 12.07 18.28	5.22 8.12 12.60 19.03
150 160 170 180 190	19.80 28.85 40.75 56.45	20.59 29.90 42.12 58.27 79.54	21.41 30.98 43.53 60.14 81.99	22.25 32.09 44.99 62.04 84.51	23.11 33.23 46.50 64.06 87.10	24.00 34.40 48.05 66.10 89.75	24.92 35.60 49.64 68.19 92.47	25.86 36.83 51.28 70.34 95.26	26.83 38.10 52.96 72.55 98.12	27.83 39.41 54.68 74.82
200 210 220 230 240	104.05 138.40 181.75 235.95 303.35	107.12 142.30 186.65 242.05 310.90	110.27 146.29 191.65 248.30 318.65	113.50 150.38 196.75 254.65 326.50	116.81 154.57 202.00 261.20 334.55	120.20 158.85 207.35 267.85 342.75	123.67 163.25 212.80 274.65 351.10	127.22 167.70 218.40 281.60 359.65	130.86 172.30 224.15 288.70 368.40	134.59 176.95 230.00 295.95 377.30
250 260 270	386.35 487.35 608.75	39 5 .60 498.55 622.10	405.05 509.90 635.70	414.65 521.50 649.50	424.45 533.35 663.55	434·45 545·35 677.85	444.65 557.60 692.40	455.00 570.05 70 7 .15	465.60 582.70 722.15	476.35 595.60 737.45
				(g) Mercu	JRY.				
270° 280 290	123.92 157.35 198.04	126.97 161.07 202.53	130.08 164.86 207.10	133.26 168.73 211.76	136. 5 0 172.67 216. 5 0	139.81 176.79 221.33	143.18 180.88 226.25	146.61 185.05 231.25	150.12 189.30 236.34	153.70 193.63 241.53
300 310 320 330 340	246.81 3°4.93 373.67 454.41 548.64	252.18 311.30 381.18 463.20 558.87	257.65 317.78 388.81 472.12 569.25	263.21 324.37 396.56 481.19 579.78	268.87 331.08 404.43 490.40 590.48	274.63 337.89 412.44 499.74 601.33	280.48 344.81 420.58 509.22 612.34	286.43 351.85 428.83 518.85 623.51	292.49 359.00 437.22 528.63 634.85	298.66 366.28 445.75 538.56 646.36
350 360	658.03 784.31	669.86	681.86	694.04	706.40	718.94	731.65	744-54	757.61	770.87

AIR AND MERCURY THERMOMETERS.

Rowland has shown (Proc. Am. Acad. Sci. vol. 15) that, when oo and 1000 are chosen for fixed points, the relation between the readings of the air and the mercury in glass thermometers can be very nearly expressed by an equation t = T - at(100 - t)(b - t).

where t is the reading of the air thermometer and T that of the mercury one, a and b being constants. The smaller a is, the more nearly will the thermometers agree at all points, and there will be absolute agreement for t=0 or

100 or 6.

Regnault found that a mercury thermometer of ordinary glass gave too high a reading between o° and 100°, and 100 low a reading between 100° and about 245°. As to some other thermometers experimented on by Regnault, little is recorded of their performance between o° and 100°, but all of them gave too high readings above 100°, indicating that below 100° the mercury thermometer probably reads too low. Regnault states this to be the case for a thermometer of Choisy le Roi crystal glass, and puts the maximum error at from one tenth to two tenths of a degree. Regnault's comparisons of the air and mercury thermometers and a comparison by Recknagel of a of a degree. Regnant's comparisons of the an and therefore the regnance of the above formula by Rowland. The tables are interesting as showing approximately the error to be expected in the use of a mercury thermometer and the magnitude of the constants a and b for different glasses. They are given in the following Table. Regnault's results above 100° C. compared with the formula t = T - at(100 - t)(b - t), give for the constants a

and b the following values :

Cristal de Choisy le Roi $a = 0.00000032, b = 0^{\circ}.$ $a = 0.00000034, b = 245^{\circ}.$ Verre ordinaire . Verre vert $a = 0.000000005, b = -270^{\circ}.*$ Verre de Suède . . . $a = 0.00000014, b = 10^{\circ}.$ Common glass (Recknagel) . . . $a = 0.0000033, b = 290^{\circ}.$

(a) TEMPERATURES BETWEEN OO AND 100° C.

There are no observed results with which to compare the calculations for the Choisy le Roi thermometer through this range, and in the case of the *verre ordinaire*, the specimen for which the readings below 100° are given was not the same as that used above 100° , from which the constants a and b were calculated. Rowland shows that a = 0.00000044 and b = 260 give considerably better agreement.

Air		Regnault's t	hermometers.		Reck	nagel's thermo	meter
thermome-	Choisy	Verre o	rdinaire.	70.00			W
ter.	le Roi. Calculated.	Observed.	Calculated.	Difference.	Observed.	Calculated.	Difference.
0	00,00	00.00	00.00		00.00	00.00	
10	10.00	00.00	10.07	_	10.08	00.00	.00
20	19.99	_	20.12	_	20.14	20.14	.00
30	29.98	30.12	30.15	+.03	30.18	30.18	.00
40	30.97	40.23	40.17	06	40.20	40.20	.00
50 60	49.96	50.23	50.17	06	50.20	50.20	.00
	59.95	60.24	60.15	09	60.18	60.18	.00
70 80	69.95	70.22	70.12	10	70.14	70.15	10.+
	79.96	80.10	80.09	01	80.10	90.06	+.01
90	89.97	100.00	90.05	_	90.05	100.00	+.0
100	100.00	100.00	100.00		100.00	100.00	1.0

(b) TEMPERATURES ABOVE 100° C., REGNAULT'S THERMOMETERS.

Air	Ch	oisy le R	oi.	Ver	re ordina	ire.	1	Verre vert		Ver	re de Suè	de.
ther.	Obs.	Calc.	Diff.	Obs.	Calc.	Diff.	Obs.	Calc.	Diff.	Obs.	Calc.	Diff.
100 120 140 160 180 200 220 240 260 280 300 320 340	120.12 140.29 160.52 180.80 201.25 221.82 242.55 263.44 284.48 305.72	140.25 160.49 180.83 201.28 221.86 242.56	+.03 +.04 +.03 03 04 01 02 04 04 05	100.00 119.95 139.85 159.74 179.63 179.70 219.80 239.90 260.20 280.58 301.08 321.80 343.00	119.90 139.80 159.72 179.68 199.69 219.78 239.96 260.21 280.00 301.12 321.80	+.05 +.05 +.02 05 +.01 +.02 06 01 02 04	100.00 120.07 140.21 160.40 180.60 200.80 221.20 241.60 262.15 282.85	120.09 140.22 160.39 180.62 200.89 221.23 241.63 262.09	01 +.01 02 09 03 03 +.07	180.33	120.04 140.10 160.21 180.34 200.53 220.78	.00 .00 +.01 01 03 03 +.08

^{*} Misprinted [+] 270 in Rowland's paper.

COMPARISON OF THERMOMETERS.*

Chappius gives the following equations for comparing glass thermometers:

 $1000 \left(T_N - T_H\right) = .00543 \left(100 - T_m\right) T_m + 1.412 \times 10^{-4} \left(100^2 - T_m^2\right) T_m - 1.323 \times 10^{-6} \left(100^3 - T_m^3\right) T_m.$ $1000 \left(T_{CO_2} - T_H\right) = .0359 \left(100 - T_m\right) T_m - 0.234 \times 10^{-4} \left(100^2 - T_m^2\right) T_m - 0.510 \times 10^{-6} \left(100^3 - T_m^3\right) T_m$ N = nitrogen; H = hydrogen; $CO_2 = \text{carbon dioxide}$; m = mercury.

TABLE 235. - Hydrogen Thermometer compared with others.

This table gives the correction which added to the thermometer reading gives the temperature by the hydrogen thermometer.

	Chapp	oius's experin	nents.†	Marek's experiments.‡						
Tempera- ture by hydrogen	Hard French		Ćarbon		M	lercury in gla	188.			
thermom- eter.	glass mercury ther-	Nitrogen thermome- ter.	dioxide thermome- ter.	Hard French	French crystal	Jena normal	Thuring	ian glass.		
	mometer.			glass.	glass.	glass.	1830-40.	1888.		
-20 -10 c 10 20 30 40 50 60 70 80 90	+0.172 +0.073 0.000 -0.052 -0.102 -0.107 -0.103 -0.090 -0.072 -0.050 -0.026	+0.014 +0.007 0.000 -0.006 -0.010 -0.011 -0.001 -0.005 -0.001 +0.002 +0.003	+0.071 +0.032 0.000 -0.025 -0.043 -0.054 -0.059 -0.053 -0.044 -0.030 -0.016	0.000 -0.044 -0.073 -0.091 -0.098 -0.096 -0.086 -0.070 -0.050 -0.026	0.000 -0.060 -0 100 -0.125 -0.134 -0.132 -0.118 -0.096 -0.068	0.000 -0.056 -0.091 -0.109 -0.111 -0.103 -0.086 -0.064 -0.041 -0.018	0.000 -0.086 -0.149 -0.191 -0.213 -0.216 -0.201 -0.127 -0.069 0.000	0.000 -0.072 -0.125 -0.159 -0.178 -0.180 -0.168 -0.143 -0.106 -0.058 0.000		

TABLE 236. - Air Thermometer compared with others.

This table gives the correction which added to the thermometer reading gives the temperature by the air thermometer.

Temperature by air thermome- ter.	Mercury in Thuringian glass thermometer (Grommach §).	Mercury in Jena glass thermome- ter (Wiebe and Böttcher).	Temperature by air thermome- ter.	Mercury in Jena glass thermome- ter (Wiebe and Böttcher).	Temperature by air thermome- ter.	Baudin alcohol thermometer (White ¶).
-20 -10 0 10 20 30 40 50 54 60 70 73 80 82 90 100 110	+0.03 +0.02 0.00 -0.03 -0.11 -0.12 -0.08 -0.04 	+0.153 +0.067 0.000 -0.049 -0.083 -0.103 -0.110 -0.107 -0.096 -0.078 -0.054 -0.028 0.000 -0.03 -0.05	130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300	-0.07 -0.09 -0.10 -0.10 -0.88 -0.06 -0.02 +0.04 +0.11 +0.21 +0.32 +0.46 +0.63 +0.63 +1.05 +1.30 +1.58 +1.91	0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -80 -90 -100	-0.000 -0.144 -0.382 -0.704 -1.100 -1.563 -2.082 -2.648 -3.253 -3.887 -4.541 -5.206 -5.872 -6.531 -7.174 -8.371 -9.392 -10.163

^{*} These two tables are taken with some slight alteration from Landolt and Boernstein's "Phys. Chem. Tab." † P. Chappius, "Trav. et Mém. du Bur. internat. des Poids et Més." vol. 6, 1888. † Marek, "Zeits. für Inst.-K." vol. 10, p. 283. † Grommach, "Metr. Beitr. heraus. v. d. Kaiser. Norm.-Aich. Comm." 1872. † Wiebe und Böttcher, "Zeits. für Inst. K." vol. 10, p. 233. † White, "Proc. Am. Acad. Sci." vol. 21, p. 45.

CHANGE OF THERMOMETER ZERO DUE TO HEATING.*

When a thermometer is used for measurements extending over a range of more than a few degrees, its indications are generally in error due to the change of volume of the glass lagging behind the change of temperature. Some data are here given to illustrate the magnitude of the change of zero after heating. This change is not permanent, but the thermometer may take several days or even weeks to return to its normal reading.

				Kind of glass		
No. of experi-	Maximum temp. in	Time at maximum	Normal J	Normal Jena glass.		Composition of Jena glass
ment.	deg. cent.	temp. in hours.	I.	II.	Thuringian glass.	used.
			Depres	ssion of freezin	g-point.	
2 3 4 5 6	290 290 290 290 290 290	5 5 5 5 5 5 25	1.0 1.3 1.5 1.6 1.7 1.8	1.0 1.5 1.7 1.8 1.9 2.0	2.1 2.7 3.1 3.4 3.6 3.7 4.2	ZnO 7 % CaO 7 % Na ₂ O 14.5 % Al ₂ O ₃ 2.5 % B ₂ O ₃ 2 % SiO ₂ 67 %

TABLE 238.

CHANCE OF THERMOMETER ZERO DUE TO HEATING.

Description of thermometer.	Year of manufacture.	Ratio of sod in the	Depression of zero due to one hour's	
	manutactuc.	Na ₂ O / K ₂ O	K ₂ O / Na ₂ O	heating to
Humboldt, No. 2 J. G. Greiner, F ₁ "F ₂ "F ₃ Ch. F. Geissler, No. 13 G. A. Schultze, No. 3 Rapp's Successor, F ₄	Before 1835 1848 1856 1872 1875 1875 1878	0.04 0.08 0.22 - - -	 0.21 0.26 0.24 0.83	0.06 0.15 0.38 0.38 0.40 0.44 0.65

^{*} Allihn, "Zeits. für Anal. Chem." vol. 29, p. 385.

[†] W. Fresenius, "Zeits. für Anal. Chem." vol. 27, p. 189. See also, for this and following table, Wiebe in the "Zeitschrift für Instrumentenkunde," vol. 6, p. 167, from which Fresenius quotes. The thermometer referred to im this table belonged to the Kaiserlichen Normal-Aichungs Commission.

EFFECT OF COMPOSITION ON THERMOMETER ZERO.*

Jena Glasses.

Descriptive number.	Si ₂ O	Na ₂ O	K ₂ O	CaO	$\mathrm{Al}_2\mathrm{O}_3$	$\mathrm{B_{2}O_{3}}$	ZnO	Depression of zero due to one hour's heating to 100° C.
IV VIII XXXII XXXII XVIII XIVIII † XVIIII XVIIII	70 70 66 66 69 70 69 67-5	- 15 14 11.1 15 7.5 14	13.5 -14 16.9 10.5 7.5 -	16.5 15 6 6 6 7 7	5 - 1 - 225	- - - - 2 2 2 9	- - - - - 7 7 7 30	0.08 0.08 1.05 1.03 1.06 0.17 0.05 0.05

TABLE 240.

CHANGE OF ZERO OF THERMOMETER WITH TIME.

Closely allied to the changes illustrated in Tables 235-237 is the slow change of volume of the bulb of a thermometer with age. The following short table shows the change for the normal Jena thermometer.:

0.3 0.2 0.3	0.04 0.04	Total rise.
0.3	0.04	
0.2	0.04	
1		0.03
0.3		
	0.05	0.04
0.4	0.05	0.03
0.5	0.06	0.04
0.3	0.04	0.04
0.9	0.09	0.04
0.8	0.08	0.03
	0.3 0.9 0.8	0.3 0.04 0.09

^{*} Fresenius, "Zeits. für Anal. Chem." vol. 27, p. 189.

[†] Normal Jena glass.

[‡] Allihn, "Zeits. für Anal. Chem." vol. 29, p. 385.

CORRECTION FOR TEMPERATURE OF MERCURY IN THERMOMETER STEM.*

T=t-0.0000795 n (#-t), in Fahrenheit degrees; T=t-0.000143 n (#-t), in Centigrade degrees. Where T= corrected temperature, t= observed temperature, t= mean temperature of glass stem and mercury column, n= the length of mercury in the stem in scale degrees.

	(a) Correction for Fahrenheit Thermometer = value of 0.0000795 $n(\ell-t)$.										
	<i>t</i> /- <i>t</i>										
n	10 °	20 °	30°	40 °	50 °	60 °	70 °	80°	90°	100°	
10°	0.01	0.02	0.02	0.03	0.04	0.05	0.06	0.06	0.07	0.08	
20	0.02	0.03	0.05	0.06	0.08	0.10	0.11	0.13	0.14	0.16	
30	0.02	0.05	0.07	0.10	0.12	0.14	0.17	0.19	0.21	0.24	
40	0.03	0.06	0.10	0.13	0.16	0.19	0.22	0.25	0.29	0.32	
50	0.04	0.08	0.12	0.16	0.20	0.24	0.28	0.32	0.36	0.40	
60	0.05	0.10	0.14	0.19	0.24	0.29	0.33	0.38	0.43	0.48	
70	0.06	0.11	0.17	0.22	0.28	0.33	0.39	0.45	0.50	0.56	
80	0.06	0.13	0.19	0.25	0.32	0.38	0.45	0.51	0.57	0.64	
90	0.07	0.14	0.21	0.29	0.36	0.43	0.50	0.57	0.64	0.72	
100	0.08	0.16	0.24	0.32	0.40	0.48	0.56	0.64	0.72	0.79	
110	0.09	0.17	0.26	0.35	0.44	0.52	0.61	0.70	0.79	0.87	
120		0.19	0.29	0.38	0.48	0.57	0.67	0.76	0.86	0.95	
130		0.21	0.31	0.41	0.52	0.62	0.72	0.83	0.93	1.03	

(b) Correction for Centigrade Thermometer = value of 0.000143 n (t'-t).

	t'-t										
n	10 °	20°	30°	40"	50 °	60°	70 °	80°			
10°	0.01	0.03	0.04	0.06	0.07	0.09	0.10	0.11			
20	0.03	0.06	0.09	0.11	0.14	0.17	0.20	0.23			
30	0.04	0.09	0.13	0.17	0.21	0.26	0.30	0.34			
40	0.06	0.11	0.17	0.23	0.29	0.34	0.40	0.46			
50	0.07	0.14	0.21	0.29	0.36	0.43	0.50	0.57			
60	0.09	0.17	0.26	0.34	0.43	0.51	0.60	0.69			
70	0.10	0.20	0.30	0.40	0.50	0.60	0.70	0.80			
80	0.11	0.23	0.34	0.46	0.57	0.69	0.80	0.92			
90	0.13	0.26	0.39	0.51	0.64	0.77	0.90	1.03			
100	0.14	0.29	0.43	0.57	0.72	0.86	1.00	1.14			

N. B. — When t'-t is negative the correction becomes additive.

^{* &}quot;Smithsonian Meteorological Tables," p. 12.

CORRECTION FOR TEMPERATURE OF MERCURY IN THERMOMETER STEM.

	(c) Correction to be added to Thermometer Reading.*											
					t-	- 1'						
31	70°	80°	90°	100°	120°	140°	160°	180°	200°	220°	21	
10° 20 30 40	0.02 0.13 0.24 0.35	0.03 0.15 0.28 0.41	0.05 0.18 0.33 0.48	0.07 0.22 0.39 0.56	0.11 0.29 0.48 0.68	0.17 0.38 0.59 0.82	0.21 0.46 0.70 0.94	0.27 0.53 0.78 1.04	0.33 0.61 0.88 1.16	0.38 0.67 0.97 1.28	10° 20 30 40	
50 60 70 80	0.47 0.57 0.69 0.80	0.53 0.66 0.79 0.91	0.62 0.77 0.92 1.05	0.72 0.89 1.06 1.21	0.88 1.09 1.30 1.52	1.03 1.25 1.47 1.71	1.17 1.42 1.67 1.94	1.31 1.58 1.86 2.15	I.44 I.74 2.04 2.33	1.59 1.90 2.23 2.55	50 60 70 80	
90 100 110 120	0.91 1.02 -	I.04 I.18	1.19	1.38 1.56 1.78 1.98	1.73 1.97 2.19 2.43	1.96 2.18 2.43 2.69	2.20 2.45 2.70 2.95	2.42 2.70 2.98 3.26	2.64 2.94 3.26 3.58	2.89 3.23 3.57 3.92	90 100 110 120	
130 140 150 160		-		· -	2.68 2.92 - -	2.94 3.22 - -	3.20 3.47 3.74 4.00	3.56 3.86 4.15 4.46	3.89 4.22 4.56 4.90	4.28 4.64 5.01 5.39	130 140 150 160	
170 180 190 200			-		-		4.27 4.54 -	4.76 5.07 5.38 5.70	5.24 5.59 5.95 6.30	5.77 6.15 6.54 6.94	170 180 190 200	
210 220	-	-	-	-	-	-	-	-	6.68	7·35 7·75	210	

^{*} This table is quoted from Rimbach's results, "Zeit. für Instrumentenkunde," vol. 10, p. 153. The numbers represent the correction made by direct experiment for thermometers of Jena glass graduated from 0° to 360° C., the degrees being from 1 to 1.6 mm. long. The first column gives the length of the mercury in the part of the stem which is exposed in the air, and the headings under t-t' give the difference between the observed temperature and that of the air.

EMISSIVITY.

TABLE 242. - Emissivity at Ordinary Pressures.

According to McFarlane* the rate of loss of heat by a sphere placed in the centre of a spherical enclosure which has a blackened surface, and is kept at a constant temperature of about 14° C., can be expressed by the equations

$$e = .000238 + 3.06 \times 10^{-6}t - 2.6 \times 10^{-8}t^2$$

when the surface of the sphere is blackened, or

$$e = .000168 + 1.98 \times 10^{-6}t - 1.7 \times 10^{-8}t^2$$

when the surface is that of polished copper. In these equations e is the emissivity in c. g. s. units, that is, the quantity of heat, in therms, radiated per second per square centimetre of surface of the sphere, per degree difference of temperature t, and t is the difference of temperature between the sphere and the enclosure. The medium through which the heat passed was moist air. The following table gives the results.

Differ- ence of	Valu	e of e.	Ratio.
tempera- ture t	Polished surface.	Blackened surface.	Ratio.
5	.000178	.000252	.707
10	.000186	.000266	.699
15	.000193	.000279	.692
20	.000201	.000289	.695
25	.000207	.000298	.694
30	.000212	.000306	.693
35	.000217	.000313	.693
40	.009220	.000319	.693
45	.000223	.000323	.690
50	.000225	.000326	.690
55	.000226	.000328	.690
60	.000226	.000328	.690

TABLE 243. - Emissivity at Different Pres Sures.

Experiments made by J. P. Nicol in Tait's Laboratory show the effect of pressure of the enclosed air on the rate of loss of heat. In this case the air was dry and the enclosure kept at about 8° C.

Polishe	ed surface.	Blacken	ed surface.						
t	et	t	et						
PRI	SSURE 76 CM	s. of Mei	RCURY.						
63.8 57.1 50.5 44.8 40.5 34.2 29.6 23.3 18.6	.00987 .00862 .00736 .00628 .00562 .00438 .00378 .00278	61.2 50.2 41.6 34.4 27.3 20.5	.01746 .01360 .01078 .00860 .00640 .00455						
Pres	PRESSURE 10.2 CMS. OF MERCURY.								
67.8 61.1 55 49.7 44.9 40.8	.00492 .00433 .00383 .00340 .00302 .00268	62.5 57.5 53.2 47.5 43.0 28.5	.01298 .01158 .01048 .00898 .00791						
Pa	ESSURE 1 CM	of Merc	CURY.						
65 60 50 40 30 23.5	.00388 .00355 .00286 .00219 .00157 .00124	62.5 57.5 54.2 41.7 37.5 34.0 27.5 24.2	.01182 .01074 .01003 .00726 .00639 .00569 .00446 .00391						

^{* &}quot; Proc. Roy. Soc." 1872. † " Proc. Roy. Soc." Edinb. 1869.

EMISSIVITY.

TABLE 244. - Constants of Emissivity.

The constants of radiation into vacuum have been determined for a few substances. The object of several of the investigations has been the determination of the law of variation with temperature or the relative merits of Dulong and Petit's and of Stefan's law of cooling.

Dulong and Petit's law gives for the amount of heat radiated in a given time the equation

$$H = Asa^{\theta}(a^t - 1)$$

where A is a constant depending on the units employed and on the nature of the surface, s the surface, a a constant determined by Dulong and Petit to be 1.0077, θ the absolute temperature of the enclosure, and t the difference of temperature between the hot surface and the enclosure. The following values of A are taken from the experiments of W. Hopkins, the results being reduced to centimetre second units, and the therm as unit of heat.

> Glass A = .00001327Dry chalk A = .00001105Dry new red-sandstone A = .00001162Sandstone (building) . A = .00001232Polished limestone . . A = .00001263Unpolished limestone (same block) . . A = .0001777

Stefan's law is expressed by the equation

$$H = \sigma s(T_1^4 - T_0^4),$$

where H and s have the same meaning as above, σ is a constant, called Stefan's radiation constant, T_1 is the absolute temperature of the radiating body and T_0 the absolute temperature of the enclosure. Stefan's constant would represent, if the law held to absolute zero, the amount of heat which would be radiated per unit surface from the body at 1° absolute temperature to space at absolute zero. The experiments of Schleiermacher, Bottomley, and others show that this law approximates to the actual radiation only through a limited range of temperature.

Graetz * finds for glass	. $T_1 = 400$, $T_0 = 0$, $\sigma = 1.0846 \times 10^{-12}$
Schleiermacher † find for polished platinum wire	$\begin{cases} T_1 = 1085, \ T_0 = 0, \ \sigma = 0.185 \times 10^{-12} \\ T_1 = 1150, \ T_0 = 0, \ \sigma = 0.177 \times 10^{-12} \end{cases}$
For copper oxide	$\{T_1 = 850, T_0 = 0. \sigma = 0.600 \times 10^{-12} \\ \{T_1 = 1080, T_0 = 0, \sigma = 0.701 \times 10^{-12} \}$

TABLE 245. - Effect of Absolute Temperature of Surface.

The following tabular results are given by Bottomley. The results of Schleiermacher were calculated from data given in the paper above quoted. The temperatures t_1 are in degrees centigrade, and e is the emissivity or amount of in the paper above quoted. The temperatures t_1 are in degrees centigrade, and e is the emissivity or amount of heat in therms radiated per square centimetre of surface per degree difference of temperature between the hot body and the enclosure. The results are all for high vacuum.

Schlei	ermacher's results. polished platin	polishe	Bottomley's results for polished platinum, the enclosures being at 15° C.				
<i>t</i> ₁	e_1	t ₂	e_2	<i>t</i> ₃	e_3	t	e
130 200 337 581 826	21.6 × 10 ⁻⁶ 30.0 " 53.8 " 137.0 " 315.0 "	65 110 232 383 740 900	14.5 × 10 ⁻⁶ 18.7 " 32.2 " 61.6 " 198.0 " 358.0 "	16 38 94 228 403 585	60.9 × 10 ⁻⁶ 67.6 " 83.7 " 147.0 " 293.0 " 540.0 "	302 425 613 744 806	65.05 × 10 ⁻⁶ 120.3 " 282.0 " 537.0 " 653.0 "

* "Wied. Ann." vol. 11, p. 297. † "Wied. Ann." vol. 26, p. 305. ‡ "Phil. Trans. Roy. Soc." 1887, p. 429.

EMISSIVITY.

TABLE 246. - Radiation of Platinum Wire to Copper Envelope.

Bottomley gives for the radiation of a bright platinum wire to a copper envelope when the space between is at the highest vacuum attainable the following numbers:—

$$t = 408^{\circ}$$
 C., $et = 378.8 \times 10^{-4}$, temperature of enclosure 16° C. $t = 505^{\circ}$ C., $et = 726.1 \times 10^{-4}$, " 17° C.

It was found at this degree of exhaustion that considerable relative change of the vacuum produced very small change of the radiating power. The curve of relation between degree of vacuum and radiation becomes asymptotic for high exhaustions. The following table illustrates the variation of radiation with pressure of air in enclosure.

Temp. of enclosus	re 16° C., $t = 408^{\circ}$ C.	Temp. of enclosure 17° C., $t = 505^{\circ}$ C.					
Pressure in mm.	et	Pressure in mm.	et				
740. 440. 140. 42. 4. 0.444 .070 .034 .012 .0051	8137.0 × 10 ⁻⁴ 7971.0 " 7875.0 " 7591.0 " 6036.0 " 2633.0 " 1045.0 " 727.3 " 539.2 " 436.4 " 378.8 "	0.094 .053 .034 .013 .0046 .00052 .00019 Lowest reached but not measured }	1688.0 × 10 ⁻⁴ 1255.0 " 1126.0 " 920.4 " 831.4 " 767.4 " 746.4 "				

TABLE 247. - Effect of Pressure on Radiation at Different Temperatures.

The temperature of the enclosure was about 15° C. The numbers give the total radiation in therms per square centimetre per second.

Temp.	of	Pressure in mm.							
wire in (10.0	1.0	0.25	0.025	About o. 1 M.				
100 ⁶ 200 300 400 500 600 700 800	0.14 .31 .50 .75 - - -	0.11 .24 .38 .53 .69 .85	0.05 11 .18 .25 .33 .45	0.01 .02 .04 .07 .13 .23 .37 .56	0.005 .0055 .0105 .025 .055 .13 .24 .40				

Note. — An interesting example (because of its practical importance in electric lighting) of the effect of difference of surface condition on the radiation of heat is given on the authority of Mr. Evans and himself in Bottomley's paper. The energy required to keep up a certain degree of incandescence in a lamp when the filament is dull black and when it is "flashed" with coating of hard bright carbon, was found to be as follows:—

Dull black filament, 57.9 watts. Bright " " 39.8 watts.

Metric Measure.

The temperature Centigrade and the absolute temperature in degrees Centigrade, together with other data for steam or water vapor stated in the headings of the columns, are here given. The quantities of heat are in therms or calories according as the gramme or the kilogramme is taken as the unit of mass.

_												
Temp. C.	Absolute temp.	Pressure in mm. of mercury.	Pressure in grammes per sq. centimetre $= p$.	Pressure in atmospheres.	Total heat of evaporation from o° at $t^{\circ} = H$.	Heat of liquid $=h$.	Heat of evaporation $= H - h$.	Outer latent or external-work heat $= A \rho v$.*	Total heat of steam $=H-A pv$.	Inner latent or internal-work heat $=H-(h+Ap\nu)$.	Litres per gramme, or cubic metres per kilog. == v.	Ratio of inner latent heat to volume of steam.†
0° 5 10 15 20	273 278 283 288 293	4.60 6.53 9.17 12.70 17.39	6.25 8.88 12.47 17.27 23.64	0.006 .009 .012 .017	606.5 608.0 609.5 611.1 612.6	0.00 5.00 10.00 15.00 20.01	606.5 603.0 599.5 596.0 592.6	31.07 31.47 31.89 32.32 32.75	575.4 576.5 577.7 578.8 579.8	575.4 571.5 567.7 563.7 559.8	210.66 150.23 108.51 79.35 78.72	2.732 3.805 5.231 7.104 9.532
25 30 35 40 45	298 303 308 313 318	23.55 31.55 41.83 54.91 71.39	32.02 42.89 56.87 74.65 97.06	0.031 .042 .055 .072 .094	614.1 615.6 617.2 618.7 620.2	25.02 30.03 35.04 40.05 45.07	589.1 585.6 582.1 587.6 575.1	33.20 33.66 34.12 34.59 35.06	580.9 582.0 583.1 584.1 585.2	555.9 552.0 548.2 544.1 540.1	43.96 33.27 25.44 19.64 15.31	12.64 16.59 21.54 27.70 35.26
50 55 60 65 70	323 328 333 338 343	91.98 117.47 148.79 186.94 233.08	125.0 159.7 202.3 254.2 316.9	0.121 .155 .196 .246 .306	621.7 623.3 624.8 626.3 627.8	50.09 55.11 60.13 65.17 70.20	571.7 568.2 564.7 561.1 557.6	35.54 36.02 36.51 37.00 37.48	586.2 587.2 588.3 589.3 590.4	536.1 532.1 528.1 524.2 520.2	12.049 9.561 7.653 6.171 5.014	44·49 55.65 69.02 84·94 103.75
75 80 85 90 95	348 353 358 363 368	288.50 354.62 433.00 525.39 633.69	392.3 482.1 588.7 714.4 861.7	0.380 .446 .570 .691 .834	629.4 630.9 632.4 633.9 635.5	75.24 80.28 85.33 90.38 95.44	554.1 550.6 547.1 543.6 540.0	37.96 38.42 38.88 39.33 39.76	591.4 592.5 593.5 594.6 595.7	516.2 512.2 508.2 504.2 500.3	4.102 3.379 2.800 2.334 1.957	125.8 151.6 181.5 216.0 255.7
100 105 110 115 120	373 378 383 388 393	760.00 906.41 1075.4 1269.4 1491.3	1033. 1232. 1462. 1726. 2027.	1.000 .193 .415 .670 .962	637.0 638.5 640.0 641.6 643.1	100.5 105.6 110.6 115.7 120.8	536.5 533.0 529.4 525.8 522.3	40.20 40.63 41.05 41.46 41.86	596.8 597.9 599.0 600.1 601.2	496.3 492.3 488.4 484.4 480.4	1.6496 1.3978 1.1903 1.0184 0.8752	300.8 352.2 410.3 475.6 549.0
125 130 135 140 145	398 403 408 413 418	1743.9 2030.3 2353.7 2717.6 3125.6	2371. 2760. 3200. 3695. 4249.	2.295 2.671 3.097 3.576 4.113	644.6 646.1 647.7 649.2 650.7	125.9 131.0 136.1 141.2 146.3	518.7 515.1 511.6 508.0 504.4	42.25 42.63 43.01 43.38 43.73	602.4 603.5 604.7 605.8 607.0	476.5 472.5 468.6 464.6 460.7	0.7555 0.6548 0.5698 0.4977 0.4363	630.7 721.6 822.3 933.5 1055.7
150 155 160 165 170	423 428 433 438 443	3581.2 4088.6 4651.6 5274.5 5961.7	4869. 5589. 6324. 7171. 8105.	4.712 5.380 6.120 6.940 7.844	652.2 653.8 655.3 656.8 658.3	151.5 156.5 161.7 166.9 172.0	500.8 497.2 493.5 489.9 486.3	45.40	610.5 611.7 612.9	452.8 448.8 444.8 440.9	0.3839 0.3388 0.3001 0.2665 0.2375	1190. 1336. 1496. 1669. 1856.
175 180 185 190 195	448 453 458 463 468	6717.4 7546.4 8453.2 9442.7 10520.	9133. 10260. 11490. 12838. 14303.	8.839 9.929 11.123 12.425 13.842	659.9 661.4 662.9 664.4 666.0	177.2 182.4 187.6 192.8 198.0	482.7 479.0 475.3 471.7 468.0	45.71 46.01 46.30 46.59 46.86	619.1	433.0 429.0 425.0 421.1	0.2122 0.1901 0.1708 0.1538 0.1389	2059. 2277. 2512. 2763. 3031.
200	4/3	11689.	1 5892.	15.380	667.5	203.2	404.3	47.13	620.4	41/.1	0.1257	3318.

^{*} Where A is the reciprocal of the mechanical equivalent of the thermal unit. $t = \frac{H - (h + A\rho v)}{v} = \frac{\text{internal-work pressure}}{\text{mechanical equivalent of heat}}.$ Where v is taken in litres the pressure is given per square decimetre, and where v is taken in cubic metres the pressure is given per-square metre,—the mechanical equivalent being that of the therm and the kilogramme-degree or calorie respectively.

British Measure.

The quantities given in the different columns of this table are sufficiently explained by the headings. The abbreviation B. T. U. stands for British thermal units. With the exception of column 3, which was calculated for this table, the data are taken from a table given by Dwelshauvers-Dery (Trans. Am. Soc. Mech. Eng. vol. xi.).

table, the data are taken from a table given by Dwollhauvels-Dely (Trans. Ann. 60c. Meen. Eng. vol. Ar.).										
Pressure in pounds per square inch.	Pressure in pounds per square foot.	Pressure in atmospheres.	Temp. in degrees Fahr.	Volume per pound in cubic feet.	Weight per cubic foot in pounds.	Heat of water per pound in B. T. U.	Internal latent heat per pound of steam in B. T. U.	External latent heat per pound of steam in B. T. U.	Total latent heat per pound of steam in B. T. U.	Total heat per pound of steam in B. T. U.
1 2 3 4 5	144 288 432 576 720	0.068 .136 .204 .272 .340	102.0 126.3 141.6 153.1 162.3	334.23 173.23 117.98 89.80 72.50	0.0030 .0058 .0085 .0111	70.1 94.4 109.9 121.4 130.7	980.6 961.4 949.2 940.2 932.8	62.34 64.62 66.58 67.06 67.89	1043. 1026. 1011. 1007. 1001.	1113.0 1120.4 1127.0 1128.6 1131.4
6 7 8 9 10	864 1008 1152 1296 1440	0.408 .476 .544 .612 .680	170.1 176.9 182.9 188.3 193.2	61.10 53.00 46.60 41.82 37.80	0.0163 .0189 .0214 .0239 .0264	138.6 145.4 151.5 156.9 161.9	926.7 921.3 916.5 912.2 908.3	68.58 69.18 69.71 70.18 70.61	995.2 990.5 986.2 982.4 979.0	1133.8 1135.9 1137.7 1139.4 1140.9
11 12 13 14 15	1584 1728 1872 2016 2160	0.748 .816 .884 .952 1.020	197.8 202.0 205.9 209.5 213.0	34.61 31.90 29.58 27.59 25.87	0.0289 .0314 .0338 .0362 .0387	166.5 170.7 174.7 178.4 181.9	904.8 901.5 898.4 895.4 892.7	70.99 71.34 71.68 72.00 72.29	975.8 972.8 970.0 967.4 965.0	1142.3 1143.5 1144.7 1145.9 1146.9
16 17 18 19 20	2304 2448 2592 2736 2880	1.088 .156 .224 .292 .360	216.3 219.4 222.4 225.2 227.9	24.33 22.98 21.78 20.70 19.72	0.0411 .0435 .0459 .0483 .0507	185.2 188.4 191.4 194.3 197.0	890.1 887.6 885.3 883.1 880.9	72.57 72.82 73.07 73.30 73.53	962.7 960.4 958.3 956.3 954.4	1147.9 1148.9 1149.8 1150.6
21 22 23 24 25	3024 3168 3312 3456 3600	1.429 ·497 ·565 .633 .701	230.5 233.0 235.4 237.7 240.0	18.84 18.03 17.30 16.62 15.99	0.0531 .0554 .0578 .0602 .0625	199.7 202.2 204.7 207.0 209.3	878.8 876.8 874.9 873.1 871.3	73:74 73:94 74:13 74:32 74:51	952.6 950.8 949.1 947.4 945.8	1152.2 1153.0 1153.7 1154.4 1155.1
26 27 28 29 30	3744 3888 4032 4176 4320	1.769 .837 .905 .973 2.041	242.2 244.3 246.3 248.3 250.2	15.42 14.88 14.38 13.91 13.48	0.0649 .0672 .0695 .0619	211.5 213.7 215.7 217.8 219.7	869.6 867.9 866.3 864.7 863.2	74.69 74.85 75.01 75.17 75.33	944.3 942.8 941.3 939.9 938.5	1155.8 1156.4 1157.1 1157.7 1158.3
31 32 33 34 35	4464 4608 4752 4896 5040	2.109 .177 .245 .313 .381	252.1 253.9 255.7 257.5 259.2	13.07 12.68 12.32 11.98 11.66	0.0765 .0788 .0811 .0835 .0858	221.6 223.5 225.3 227.1 228.8	861.7 860.3 858.9 857.5 856.1	75.47 75.61 75.76 75.89 76.02	937.2 935.9 934.6 933.4 932.1	1158.8 1159.4 1159.9 1160.5 1161.0
36 37 38 39 40	5184 5328 5472 5616 5760	2.449 .517 .585 .653 .722	260.8 262.5 264.0 265.6 267.1	11.36 11.07 10.79 10.53 10.29	0.0881 .0903 .0926 .0949	230.5 232.2 233.8 235.4 236.9	854.8 853.5 852.3 851.0 849.8	76.16 76.28 76.40 76.52 76.63	931.0 929.8 928.7 927.6 926.5	1161.5 1162.0 1162.5 1162.9 1163.4
41 42 43 44 45	5904 6048 6192 6336 6480	2.789 .857 .925 .993 3.061	268.6 270.1 271.5 272.9 274.3	9.83 9.61 9.41 9.21	0.0995 .1018 .1040 .1063 .1086	238.5 239.9 241.4 242.9 244.3	848.7 847.5 846.4 845.2 844.1	76.75 76.86 76.97 77.07 77.18	925.4 924.4 923.3 922.3 921.3	1163.9 1164.3 1164.7 1165.2 1165.6
46 47 48 49	6624 6768 6912 7056	3.129 .197 .265 ·333	275.6 277.0 278.3 279.6	9.02 8.84 8.67 8.50	0.1108 .1131 .1153 .1176	245.6 247.0 248.3 249.7	843.1 842.0 841.0 840.0	77.29 77.39 77.49 77.58	920.4 919.4 918.5 917.5	1166.0 1166.4 1166.8 1167.2

British Measure.

Pressure in pounds per square inch.	Pressure in pounds per square foot.	Pressure in atmospheres.	Temp. in degrees Fahr.	Volume per pound in cubic feet.	Weight per cubic foot in pounds.	Heat of water per pound in B. T. U.	Internal latent heat per pound of steam in B. T. U.	External latent heat per pound of steam in B. T. U.	Total latent heat per pound of steam in B. T. U.	Total heat per pound of steam in B. T. U.
50	7200	3.401	280.8	8.34	0.1198	251.0	839.0	77.67	916.6	1167.6
51	7344	.469	282.1	8.19	.1221	252.2	838.0	77.76	915.7	1168.0
52	7488	.537	283.3	8.04	.1243	253.5	837.0	77.85	914.9	1168.3
53	7632	.605	284.5	7.90	.1266	254.7	836.0	77.94	914.0	1168.7
54	7776	.673	285.7	7.76	.1288	256.0	835.1	78.03	913.1	1169.1
55	7920	3.741	286.9	7.63	0.1310	257.1	834.2	78.12	912.3	1169.4
56	8064	.801	288.1	7.50	.1333	258.3	833.2	78.21	911.5	1169.8
57	8208	.878	289.2	7.38	.1355	259.5	832.3	78.29	910.6	1170.1
58	8352	.946	290.3	7.26	.1377	260.7	831.5	78.37	909.8	1170.5
59	8496	4.014	291.4	7.14	.1400	261.8	830.6	78.45	909.0	1170.8
60	8640	4.082	292.5	7.03	0.1422	262.9	829.7	78.53	908.2	1171.2
61	8784	.150	293.6	6.92	.1444	264.0	828.9	78.61	907.5	1171.5
62	8928	.218	294.7	6.82	.1466	265.1	828.0	78.68	906.7	1171.8
63	9072	.286	295.7	6.72	.1488	266.1	827.2	78.76	905.9	1172.1
64	9216	.354	296.7	6.62	.1511	267.2	826.4	78.83	905.2	1172.4
65	9360	4.422	297.8	6.52	0.1533	268.3	825.6	78.90	904.5	1172.8
66	9504	.490	298.8	6.43	.1555	269.3	824.8	78.97	903.7	1173.1
67	9648	.558	299.8	6.34	.1577	270.4	824.0	79.04	903.1	1173.4
68	9792	.626	300.1	6.25	.1599	271.4	823.2	79.11	902.3	1173.7
69	9936	.694	301.8	6.17	.1621	272.4	822.4	79.18	901.6	1174.0
70 71 72 73 74	10080 10224 10368 10512 10656	4.762 .830 .898 .966 5.034	302.7 303.7 304.6 305.5 306.5	6.09 6.00 5.93 5.85 5.78	0.1643 .1665 .1687 .1709	273.4 274.3 275.3 276.3 277.2	821.6 820.9 820.1 819.4 818.7	79.25 79.32 79.39 79.46 79.53	900.9 900.2 899.5 898.8 898.1	1174.3 1174.6 1174.9 1175.1
75	10800	5.102	307.4	5.70	0.1753	278.2	817.9	79.59	897.5	1175.7
76	10944	.170	308.3	5.63	.1775	279.1	817.2	79.65	896.9	1176.0
77	11088	.238	309.2	5.57	.1797	280.0	816.5	7 9.71	896.2	1176.2
78	11232	.306	310.1	5.50	.1818	280.9	815.8	79.77	895.6	1176.5
79	11376	.374	310.9	5.43	.1840	281.8	815.1	79.83	895.0	1176.8
80	11520	5.442	311.8	5·37	0.1862	282.7	814.4	79.89	894.3	1177.0
81	11664	.510	312.7	5·31	.1884	283.6	813.8	79.95	893.7	1177.3
82	11808	.578	313.5	5·25	.1906	284.5	813.0	80.01	893.1	1177.6
83	11952	.646	314.4	5·19	.1928	285.3	812.4	80.07	892. 5	1177.8
84	12096	.714	315.2	5·13	.1949	286.2	811.7	80.13	891.9	1178.0
85	12240	5.782	316.0	5.07	0.1971	287.0	811.1	80.19	891.3	1178.3
86	11384	.850	316.8	5.02	.1993	287.9	810.4	80.25	890.7	1178.6
87	12528	.918	317.6	4.96	.2015	288.7	809.8	80.30	890.1	1178.9
88	12672	.986	318.4	4.91	.2036	289.5	809.2	80.35	889.5	1179.0
89	12816	6.054	319.2	4.86	.2058	290.4	808.5	80.40	888.9	1179.3
90	12960	6.122	320.0	4.81	0.2080	291.2	807.9	80.45	888.4	1179.5
91	13104	.190	320.8	4.76	.2102	292.0	807.3	80.50	887.8	1179.8
92	13248	.258	321.6	4.71	.2123	292.8	806.7	80.56	887.2	1180.0
93	13392	.327	322.4	4.66	.2145	293.6	806.1	80.61	886.7	1180.3
94	13536	.396	323.1	4.62	.2166	294.3	805.5	80.66	886.1	1180.5
95	13680	6.463	323.9	4·57	0.2188	295.1	804.9	80.71	885.6	1180.7
96	13824	.531	324.6	4·53	.2209	295.9	804.3	80.76	885.0	1180.9
97	13968	.599	325.4	4·48	.2231	296.7	803.7	80.81	884.5	1181.2
98	14112	.667	326.1	4·44	.2252	297.4	803.1	80.86	884.0	1181.4
99	14256	.735	326.8	4·40	.2274	298.2	802.5	80.91	883.4	1181.6

British Measure.

Pressure in pounds per square inch.	Pressure in pounds per square foot.	Pressure in atmospheres.	Temp. in degrees Fahr.	Volume per pound in cubic feet.	Weight per cubic foot in pounds.	Heat of water per pound in B. T. U.	Internal latent heat per pound of steam in B. T. U.	External latent heat per pound of steam in B. T. U.	Total latent heat per pound of steam in B. T. U.	Total heat per pound of steam in B. T. U.
100	14400	6.803	327.6	4.356	0.2295	298.9	802.0	80.95	882.9	1181.8
101	14544	.871	328.3	.316	.2317	299.7	801.4	81.00	882.4	1182.1
102	14688	.939	329.0	.276	.2338	300.4	800.8	81.05	881.9	1182.3
103	14832	7.007	329.7	.237	.2360	301.1	800.3	81.10	881.4	1182.5
104	14976	.075	330.4	.199	.2381	301.9	799.7	81.14	880.8	1182.7
105	15120	7.143	331.1	4.161	0.2403	302.6	799.2	81.18	880.3	1182.9
106	15264	.211	331.8	.125	.2424	303.3	798.6	81.23	879.8	1183.1
107	15408	.279	332.5	.088	.2446	304.0	798.1	81.27	879.3	1183.4
108	15552	.347	333.2	.053	.2467	304.7	797.5	81.31	878.8	1183.6
109	15696	.415	333.8	.018	.2489	305.4	797.0	81.36	878.3	1183.8
110	15840	7.483	334·5	3.984	0.2510	306.t	796.5	81.41	877.9	1184.0
111	15984	.551	335·2	.950	.2531	306.8	795.9	81.45	877.4	1184.2
112	16128	.619	335.8	.917	.2553	307.5	795.4	81.50	876.9	1184.4
113	16272	.687	336·5	.885	.2574	308.2	794.9	81.54	876.4	1184.6
114	16416	.757	337·2	.853	.2596	308.8	794.4	81.58	875.9	1184.8
115	16560	7.823	337.8	3.821	0.2617	309.5	793.8	81.62	875.5	1185.0
116	16704	.891	338.5	.790	.2638	310.2	793.3	81.66	875.0	1185.2
117	16848	.959	339.1	.760	.2660	310.8	792.8	81.70	874.5	1185.4
118	16992	8.027	339.7	.730	.2681	311.5	792.3	81.74	874.1	1185.6
119	17136	.095	340.4	.700	.2702	312.1	791.8	81.78	873.6	1185.7
120	17280	8.163	341.0	3.671	0.2724	312.8	791.3	81.82	873.2	1185.9
121	17424	.231	341.6	.643	.2745	313.4	790.8	81.86	872.7	1186.1
122	17568	.299	342.2	.615	.2766	314.1	790.3	81.90	872.2	1186.3
123	17712	.367	342.8	.587	.2787	314.7	789.9	81.94	871.8	1186.5
124	17856	.435	343.5	.560	.2809	315.3	789.4	81.98	871.4	1186.7
125	18000	8.503	344.1	3.534	0.2830	316.0	788.9	82.02	870.9	1186.9
126	18144	.571	344.7	.507	.2851	316.6	788.4	82.06	870.5	1187.1
127	18288	.639	345.3	.481	.2872	317.2	787.9	82.09	870.0	1187.2
128	18432	.708	345.9	.456	.2893	317.8	787.5	82.13	869.6	1187.4
129	18576	.776	346.5	.431	.2915	318.4	787.0	82.17	869.2	1187.6
130	18720	8.844	347.1	3.406	0.2936	319.0	786.5	82.21	868.7	1187.8
131	18864	.912	347.6	.382	.2957	319.7	786.1	82.25	868.3	1188.0
132	19008	.980	348.2	.358	.2978	320.3	785.6	82.28	867.9	1188.1
133	19152	9.048	348.8	.334	.2999	320.9	785.1	82.32	867.5	1188.3
134	19296	.116	349.4	.310	.3021	321.5	784.7	82.35	867.0	1188.5
135 136 137 138 139	19440 19584 19728 19872 20016	9.184 .252 .320 .388 .456	349.9 350.5 351.1 351.6 352.2	3.287 .265 .424 .220	0.3042 .3063 .3084 .3105 .3126	322.1 322.6 323.2 323.8 324.4	784.2 783.8 783.3 782.9 782.4	82.38 82.42 82.45 82.49 82.52	866.6 866.2 865.8 865.4 865.0	1188.7 1188.8 1189.0 1189.2 1189.4
140 141 142 143 144	20160 20304 20448 20592 20736	9.524 .592 .660 .728 .796	352.8 353.3 353.9 354.4 355.0	3.177 .156 .135 .115	0.3147 .3168 .3190 .3211 .3232	325.0 325.5 326.1 326.7 327.2	782.0 781.6 781.1 780.7 780.3	82.56 82.59 82.63 82.66 82.69	864.6 864.2 863.8 863.4 863.0	1189.5 1189.7 1189.9 1190.0 1190.2
145	20880	9.864	355.5	3.074	0.3253	327.8	779.8	82.72	862.6	1190.4
146	21024	.932	356.0	.054	·3274	328.4	779.4	82.75	862.2	1190.5
147	21168	10.000	356.6	.035	·3295	328.9	779.0	82.79	861.8	1190.7
148	21312	.068	357.1	.016	·3316	329.5	778.6	82.82	861.4	1190.9
149	21456	.136	357.6	.997	·3337	330.0	778.1	82.86	861.0	1191.0

British Measure.

Pressure in pounds per square inch.	Pressure in pounds per square foot.	Pressure in atmospheres.	Temp. in degrees Fahr.	Volume per pound in cubic feet.	Weight per cubic foot in pounds.	Heat of water per pound in B. T. U.	Internal latent heat per pound of steam in B. T. U.	External latent heat per pound of steam in B. T. U.	Total latent heat per pound of steam in B. T. U.	Total heat per pound of steam in B. T. U.
150 151 152 153 154	21600 21744 21888 22032 22176	.272 .340 .408 .476	358.2 358.7 359.2 359.7 360.2	2.978 .960 .941 .923 .906	0.3358 ·3379 ·3400 ·3421 ·3442	330.6 331.1 331.6 332.2 332.7	777·7 777·3 776.9 776.5 776.1	82.89 82.92 82.95 82.98 83.01	860.6 860.2 859.9 859.5 859.1	1191.2 1191.3 1191.5 1191.7 1191.8
155 156 157 158 159	22320 22464 22608 22752 22896	.612 .680 .748 .816	360.7 361.3 361.8 362.3 362.8	2.888 .871 .854 .837 .820	0.3462 .3483 .3504 .3525 .3546	333.2 333.8 334.3 334.8 335.3	775.7 775.3 774.9 774.5 774.1	83.04 83.07 83.10 83.13 83.16	858.7 858.3 858.0 857.6 857.2	1192.0 1192.1 1192.3 1192.4 1192.6
160 161 162 163 164	23040 23184 23328 23472 23616	10.884 .952 11.020 .088 .157	363.3 363.8 364.3 364.8 365.3	2.803 .787 .771 .755 .739	0.3567 .3588 .3609 .3630 .3650	335.9 336.4 336.9 337.4 337.9	773.7 773.3 772.9 772.5 772.1	83.19 83.22 83.25 83.28 83.31	856.9 856.5 856.1 855.8 855.4	1192.7 1192.9 1193.0 1193.2 1193.3
165 166 167 168 169	23760 23904 24048 . 24192 24336	.293 .361 .429 .497	365.7 366.2 366.7 367.2 367.7	2.724 .708 .693 .678 .663	0.3671 .3692 .3713 .3734 .3754	338.4 338.9 339.4 339.9 340.4	771.7 771.3 771.0 770.6 770.2	83.34 83.37 83.39 83.42 83.45	855.1 854.7 854.3 854.0 853.6	1193.5 1193.6 1193.8 1193.9 1194.1
170 171 172 173 174	24480 24624 24768 24912 25056	.769 .837	368.2 368.6 369.1 369.6 370.0	2.649 .634 .620 .606 .592	0.3775 .3796 .3817 .3838 .3858	340.9 341.4 341.9 342.4 342.9	769.8 769.4 769.1 768.7 768.3	83.48 83.51 83.54 83.56 83.59	853.3 852.9 852.6 852.2 851.9	1194.2 1194.4 1194.5 1194.7 1194.8
175 176 177 178 179	25200 25344 25488 25632 25776	.11.905 .973 12.041 .109	370.5 371.0 371.4 371.9 372.4	2.578 .564 .550 .537 524	0.3879 .3900 .3921 .3942 .3962	343·4 343·9 344·3 344·8 345·3	767.9 767.6 767.2 766.8 766.5	83.62 83.64 83.67 83.70 83.73	851.6 851.2 850.9 850.5 850.2	1194.9 1195.1 1195.2 1195 4 1195.5
180 181 182 183 184	25920 26064 26208 26352 26496	.313 .381 .449 .517	372.8 373.3 373.7 374.2 374.6	2.510 •497 •485 •472 •459	0.3983 .4004 .4025 .4046 .4066	345.8 346.3 346.7 347.2 347.7	766.1 765.8 765.4 765.0 764.7	83.75 83.77 83.80 83.83 83.86	849.9 849.5 849.2 848.9 848.5	1195.6 1195.8 1195.9 1196.1 1196.2
185 186 187 188 189	26640 26784 26928 27072 27216	.721 .789 .857	375.1 375.5 376.0 376.4 376.8	2.447 .434 .422 .410 .398	0.4087 .4108 .4129 .4150 .4170	348.1 348.6 349.1 349.5 350.0	764.3 764.0 763.6 763.3 762.9	83.88 83.90 83.92 83.95 83.97	848.2 847.9 847.5 847.2 846.9	1196.3 1196.5 1196.6 1196.7 1196.9
190 191 192 193 194	27360 27504 27648 27792 27936	12.925 .993 13.061 .129 .197	377·3 377·7 378.2 378.6 379.0	2.386 ·374 ·362 ·351 ·339	0.4191 .4212 .4233 .4254 .4275	350.4 350.9 351.3 351.8 352.2	762.6 762.2 761.9 761.6 761.2	83.99 84.02 84.04 84.06 84.08	846.6 846.3 845.9 845.6 845.3	1197.0 1197.1 1197.3 1197.4 1197.5
195 196 197 198 199	28080 28224 28368 28512 28656	. 13.265 .333 .401 .469 .537	379.4 379.9 380.3 380.7 381.1	2.328 .317 .306 .295 .284	0,4296 .4316 .4337 .4358 .4379	352.7 353.1 353.6 354.0 354.4	760.9 760.5 760.2 759.9 759.5	84.10 84.13 84.16 84.19 84.21	845.0 844.7 844.4 844.0 843.7	1197.7 1197.8 1197.9 1198.1 1198.2

British Measure.

-										
Pressure in pounds per square inch.	Pressure in pounds per square foot.	Pressure in atmospheres.	Temp. in degrees Fahr.	Volume per pound in cubic feet.	Weight per cubic foot in pounds.	Heat of water per pound in B. T. U.	Internal latent heat per pound of steam in B. T. U.	External latent heat per pound of steam in B. T. U.	Total latent heat per pound of steam in B. T. U.	Total heat per pound of steam in B. T. U.
200	28800	13 605	381.6	2.273	0.4399	354·9	759.2	84.23	843.4	1198.3
201	28944	13.673	382.0	.262	.4420	355·3	758.9	84.26	843.1	1198.4
202	29088	13.742	382.4	.252	.4441	355·8	758.5	84.28	842.8	1198.6
203	29232	13.810	382.8	.241	.4461	356·2	758.2	84.30	842.5	1198.7
204	29376	13.878	383.2	.231	.4482	356·6	757.9	84.33	842.5	1198.8
205 206 207 208 209	29520 29664 29808 29952 30096	13.946 14.014 14.082 14.150 14.218	383.7 384.1 384.5 384.9 385.3	2.22I .211 .20I .191 .181	0.4503 .4523 .4544 .4564 .4585	357.1 357.5 357.9 358.3 358.8	757.5 757.2 756.9 756.6 756.2	84.35 84.37 84.40 84.42 84.44	841.9 841.6 841.3 841.0 840.7	1199.0 1199.1 1199.2 1199.3
210	30240	14.386	385.7	2.171	0.4605	359.2	755.9	84.46	840.4	1199.6
211	30384	14.454	386.1	.162	.4626	359.6	755.6	84.48	840.1	1199.7
212	30528	14.522	386.5	.152	.4646	360.0	755.3	84.51	839.8	1199.8
213	30672	14.590	386.9	.143	.4666	360.4	755.0	84.53	839.5	1199.9
214	30816	14.658	387.3	.134	.4687	360.9	754.7	84.55	839.2	1200.1
215	30960	14.726	387.7	2.124	0.4707	361.3	754·3	84.57	838.9	1200.2
216	31104	14.794	388.1	.115	.4727	361.7	754·0	84.60	838.6	1200.3
217	31248	14.862	388.5	.106	.4748	362.1	753·7	84.62	838.3	1200.4
218	31392	14.930	388.9	.097	.4768	362.5	753·4	84.64	838.0	1200.5
219	31536	14.998	389.3	.088	.4788	362.9	753·1	84.66	837.7	1200.7

RATIO OF THE ELECTROSTATIC TO THE ELECTROMAGNETIC UNIT OF ELECTRICITY (v) IN RELATION TO THE VELOCITY OF LIGHT.

	Ratio of elec	trical units.	Reference.	
Date of determination.	in cms. per sec.*	Determined by —	Publication.	Year.
1856	3.107 × 10 ¹⁰	Weber & Kohlrausch .	Pogg. Ann	1856
1868	2.842 × 10 ¹⁰	Maxwell	Phil. Trans	1868
1869	2.808 × 10 ¹⁰	W. Thomson & King .	B. A. Report	1869
1872	2.896 × 10 ¹⁰	McKichan	Phil. Trans	1872
1879	2.960 × 10 ¹⁰	Ayrton & Perry	Jour. Soc. Tel. Eng.	1879
1879	2.968 × 10 ¹⁰	Hocken	B. A. Report	1879
1880	2.955 × 10 ¹⁰	Shida	Phil. Mag.	1880
1881	2.99 × 10 ¹⁰ †	Stoletow	Soc. de Phys	1881
1881	3.019×10 ¹⁰	Klemenčič	Wien. Ber	1884
1882	2.923 × 10 ¹⁰	Exner	Wien. Ber	1882
1883	2.963 × 10 ¹⁰	J. J. Thomson	Phil. Trans	1883
1888	3.009 × 10 ¹⁰	Himstedt	Wied. Ann. 35	1888
1889	2.981 × 10 ¹⁰	Rowland	Phil. Mag.	1889
1889	3.000 × 10 ¹⁰	Rosa	66 1 66	1889
1889	3.004 × 10 ¹⁹	W. Thomson	Phil. Mag.	1889
1890	2.995 × 10 ¹⁰	J. J. Thomson & Searle	Phil. Trans	1890

^{*} The results in this column correspond to a value of the B. A. ohm = .98664 × 109 cms. per sec. If we neglect the first four determinations, and also that of Exner and Shida, because of their large deviation from the mean, the remaining determinations give a mean value of 2.9889 + .0137, a value which practically agrees with the best determinations of the velocity of light. (Cf. Table 181.)
† Given as between 2.98 × 10¹⁰ and 3.00 × 10¹⁰.

DIELECTRIC STRENCTH.

Difference of Electric Potential required to produce a Spark in Air.

(a)	MEDIUM.	AIR.	ELECTRODE	TERMINALS,	FLAT PLATES.
-----	---------	------	-----------	------------	--------------

Spark length	Difference of potential in volts required to produce a spark according to —									
centimetres.	W. Thomson.1	De la Rue.2	MacFarlane.3	Baille.4	Freyberg.5					
10.0	790	500	_	-	-					
0.02	1340	970	-	-	-					
0.04	1840	1900	-	-	-					
0.07	2940	3170	-	-	-					
0.10	4010	4330	3507	4401	4344					
0.14	5300	5740	-	-	-					
0.20	-	7620	5715	7653	7539					
0.30	-	10400	7818	10603	10671					
0.40	-	-	9879	13431	13665					
0.50		-	11925	16341	16293					
0.60	-		13956	19146	19059					
0.80	-	-	18006	25458	24465					
1.00	-	_	22044	31647	28800					

 ^{1 &}quot;Reprint of Papers on Elect, and Mag," p. 252.
 2 "Proc. R. Soc." vol. 36, p. 151.
 3 "Phil. Mag," vol. 10, 1880.
 4 "Ann. de Chim. et de Phys." vol. 25, 1882.
 5 "Wied. Ann." vol. 38, 1889.

⁽b) MEDIUM, AIR. ELECTRODE TERMINALS, BALLS OF DIAMETER d IN CENTIMETRES.

Ex	perim	ents	of l	rev	berg.

Spark length in centimetres.	d=0 (points).	d = 0.50	d=1.0	d=2.0	d=4.0	d=6.0
0.1	3720	5050	4660	4560	_	4530
0.2	4700	8600	9500	8700	8400	7900
0.3	5300	1,1100	11700	11600	11200	10500
0.4	6000	13500	14000	14400	14200	12800
0.6	6900	16600	19300	19500	20100	19200
0.8	8100	18400	23200	24600	25800	26000
1.0	8600	19500	25800	29000	29900	31600
2.0	10100	24600	35400	-	-	-
5.0	13100	30700	-	-	-	-

From the above table it appears, as remarked by Freyberg, that for each length of spark there is a particular size of ball which requires the greatest difference of potential to produce the spark.

(6) COMPARISON OF RESULTS OF DETERMINATIONS, THE TERMINALS BEING BALLS.

		Difference of potential required to produce a spark in air according to —										
Spark length in cms.	Baille.	Bichat and Blondlot.1	Paschen.	Freyberg.	Paschen.	Freyberg.	Quincke.2	Baille.	Freyberg.			
	Ва	alls 1 centim	etre diamet	er.	Balls	2 cms. dian	Balls 6 cms. diam.					
.I .2 .3 .4 .5 .6 .7 .8 .9 I.0	4590 8040 111190 13650 16410 19560 21690 23280 24030 24930	4200 8130 10860 14130 16800 19350 21030 23190 24540 25800	4860 8430 11670 14830 17760 20460 22640 24780	4660 9500 11670 13980 16800 19260 20970 23220 25110	4830 8340 11670 14820 18030 20820 23670	4560 8700 11550 14400 17040 19470 22530 24630 27240 29040	4440 7920 11190 14010 16920 19980 22590 25770	4440 7680 10830 13500 16530 19560 22620 26400 29220 33870	4530 7860 10470 12750 16410 19200 22590 26010 28770 31620			

^{1 &}quot;Electricien," Aug. 1886.

^{2 &}quot;Wied. Ann." vol. 19, 1883.

DIELECTRIC STRENCTH.

TABLE 252. - Effect of Pressure of the Gas on the Dielectric Strength.*

Length of spark is indicated by I in centimetres. The pressure is in centimetres of mercury at oo C.

Pressure.		Hydrogen			Air.		Carbon dioxide.			
rressure.	l=0.2	l=0.4	l=0.6	l=0.2	l=0.4	l=0.6	l=0.2	· /=0.4	l=0.6	
4 6 8 10	510 729 945 1098 1242	606 1017 1323 1572 1806	- 1437 1839 2172 2463	819 1140 1455 1740 2004	1202 1725 2229 2721 3186	1 536 2289 3012 3684 4272	1125 1431 1755 2070 2355	1446 1971 2484 2913 3288	1650 2373 3105 3813 4278	
20 25 30 35	1584 1866 2169 2475 2748	2376 2937 3444 3957 4407	3330 4020 4668 5331 5997	2664 3294 3816 4347 4845	4212 5205 6108 7020 7980	5736 7074 8346 9570 10797	2991 3705 4248 4707 5163	4227 5235 6120 6921 7737	5592 6801 8004 9147 10293	
40 45 50 55 60	3051 3339 3606 2834 4107	4863 5334 5829 6294 6747	6681 7347 7971 8583 92 2 2	5349 5853 6288 6711 7134	8853 9639 10431 11259 12084	12009 13224 14361 15441 16548	5772 6222 6489 6789 7197	8543 93°3 10038 10650 11397	11397 12483 13557 14610 15702	
65 70 75	4476 4731 4914	7197 7629 8031	9867 10476 11040	7 569 8016 8487	12885 13710 14523	17688 18804 19896	7605 8001 8388	12114 12816 13506	16740 17727 18705	

Paschen deduces from the above, and also shows by separate experiments, that if the product of the pressure of the gas and the length of spark be kept constant the difference of potential required to produce the spark also remains constant.

In the following short table l is length of spark, P pressure, and V difference of potential, the unit being the same as above. The table illustrates the potential difference required to produce a spark for different values of the product l.P.

l.P.	V for H	V for Air.	V for CO2	l.P.	V for H	V for Air.	V for CO ₂
0.2 0.4 0.6 1.0 2.0 4.0	456 567 660 846 1427 1884	669 837 996 1326 2019 3216	873 1110 1281 1599 2271 3468	6.0 10.0 20.0 30.0 45.0	2481 3507 5835 8004 11013	4251 6162 10392 13448 19848	4443 6198 10011 13527 18705

TABLE 253. — Dielectric Strength (or Difference of Potential per Centimetre of Spark Length) of Different Substances, in Kilo Volts.†

Substance.	Dielectric strength.	Substance.	Dielectric strength.	Substance.	Dielectric strength.
Air (thickness 5 mm.) Carbon dioxide " Coal gas " Hydrogen " Oxygen "	23.8 22.7 15.1 22.2 22.3	Beeswaxed paper . Paraffined paper . Paraffin (solid)	540. 360. 130.	Kerosene oil Oil of turpentine . Olive oil Paraffin oil Paraffin (melted) .	50. 94. 82. 87. 56.

^{*} Paschen

[†] MacFarlane and Pierce, "Phys. Rev." vol. 1, p. 165, 1893.

COMPOSITION AND ELECTROMOTIVE FORCE OF BATTERY CELLS.

The electromotive forces given in this table approximately represent what may be expected from a cell in good working order, but with the exception of the standard cells all of them are subject to considerable variation.

(a) Double Fluid Batteries.								
Name of cell.	Negative pole.	Solution.	Positive pole.	Solution.	E.M.F.			
Bunsen	Amalgamated zinc	$\{$ 1 part H_2SO_4 to $\}$ 12 parts H_2O . $\}$	Carbon	Fuming H ₂ NO ₈ .	1.94			
и .	- 66 46 1	46	66	HNO ₃ , density 1.38	1.86			
Chromate.		$ \left\{ \begin{array}{l} \text{12 parts } K_2Cr_2O_7 \\ \text{to 25 parts of} \\ H_2SO_4 \text{ and 100} \\ \text{parts } H_2O \end{array} \right \right\} $	66	{ 1 part H ₂ SO ₄ to } { 12 parts H ₂ O . }	2.00			
"	46 46	I part H ₂ SO ₄ to \ 12 parts H ₂ O . \	66	{ 12 parts K ₂ Cr ₂ O ₇ } to 100 parts H ₂ O }	2.03			
Daniell* .	66 66	$ \left\{ \begin{array}{c} \text{1 part } H_2SO_4 \text{ to} \\ \text{4 parts } H_2O \end{array} \right. $	Copper	Saturated solution \ of CuSO ₄ +5H ₂ O \	1.06			
"	66 66	$ \left\{ \begin{array}{c} \text{1 part } H_2SO_4 \text{ to } \\ \text{12 parts } H_2O \text{ .} \end{array} \right\} $	44	46	1.09			
66		$ \begin{cases} 5\% & \text{solution of } \\ ZnSO_4 + 6H_2O \end{cases} $	64	"	1.08			
"	66 66	{ 1 part NaCl to } 4 parts H ₂ O . }	46	66	1.05			
Grove	"	$ \left\{ \begin{array}{c} \text{1 part } H_2SO_4 \text{ to } \\ \text{12 parts } H_2O \end{array} \right\} $	Platinum	Fuming HNO ₈	1.93			
"	66 66	Solution of ZnSO ₄	66	HNO ₈ , density 1.33	1.66			
s6	44 44	{ H ₂ SO ₄ solution, } density 1.136 . }	46	Concentrated HNO ₃	1.93			
		{ H ₂ SO ₄ solution, } density 1.136 . }	44	HNO ₈ , density 1.33	1.79			
		{ H ₂ SO ₄ solution, } density 1.06 . }	44	66	1.71			
	دد ده د	{ H ₂ SO ₄ solution, } density 1.14 . }	"	HNO ₃ , density 1.19	1.66			
	66 66	{ H ₂ SO ₄ solution, } density 1.06 . }	66	66 66 66	1.61			
"	46 46	NaCl solution	66	" density 1.33	1.88			
Marié Davy		{ 1 part H ₂ SO ₄ to }	Carbon	Paste of protosul- phate of mercury and water	1.50			
Partz		Solution of MgSO ₄	44	Solution of K ₂ Cr ₂ O ₇	2.06			

^{*} The Minotto or Sawdust, the Meidinger, the Callaud, and the Lockwood cells are modifications of the Daniell, and hence have about the same electromotive force.

SMITHSONIAN TABLES.

COMPOSITION AND ELECTROMOTIVE FORCE OF BATTERY CELLS.

Name of cell.	Negative pole.	Solution.	Positive pole.	E. M. F. in volts.			
		(b) Single Fluid Batterie	rs.				
Leclanche	Amal. zinc	Solution of sal-ammo- \ niac	Carbon surrounded by powdered carbon and peroxide of manganese	1.46			
Chaperon	46	Solution of caustic potash	Copper and CuO	0.98			
Edison-Lelande .	66	"	"	0.70			
Chloride of silver	Zinc	23 % solution of sal-	Silver surrounded by silver chloride	1.02			
Law	"	15 %	Carbon	1.37			
Dry cell (Gassner)	4	I pt. ZnO, I pt. NH ₄ Cl, 3 pts. plaster of paris, 2 pts. ZnCl ₂ , and water to make a paste		1.3			
Poggendorff	Amal. zinc	Solution of chromate () of potash	44	1.08			
	. 66	$\left\{\begin{array}{c} 12 \text{ parts } K_2Cr_2O_7 + \\ 25 \text{ parts } H_2SO_4 + \\ 100 \text{ parts } H_2O \end{array}\right.$	"	2.01			
J. Regnault	46	$\left\{\begin{array}{c} \text{I part } \text{H}_2\text{SO}_4 + \\ \text{I 2 parts } \text{H}_2\text{O} + \\ \text{I part } \text{CaSO}_4 \end{array}\right.$	Cadmium	0 34			
Volta couple	Zinc : .	H_2O	Copper	0.98			
(c) Standard Cells.							
Kelvin, Gravity,) Daniell }	Amal. zinc	(Sity 1.40)	Electrolytic copper in CuSO ₄ sol. density 1.10	\[\begin{align*} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			
Clark standard .	66 .	Mercurous sulphate in paste with saturated solution of neutral ZnSO4	Mercury	\[\begin{cases} \ \ \ \00077 \ \ \ (t-15) \end{cases} \]			
Baille & Ferry .	66	{ Zinc chloride, density }	Lead surrounded by powdered PbCl ₂	o.50 tem- perature coeffic't about .00011			
Gouy	46	Oxide of mercury in a 10 % sol. of ZnSO ₄ (paste)	Mercury	\[\begin{cases} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			
Lodge's standard cel iell zinc-zinc sulphate,	l and Fleming copper-copper	s's standard cell are, like the Kell sulphate cell.	lvin cell above, modification	s of the Dan-			
		(d) Secondary Cells.					
Faure-Sellon- (Volckmar) .	Lead	$\left\{ \begin{array}{ll} H_2SO_4 \ solution \ of \\ density \ \textbf{1.1} \end{array} \right \left. \right\}$	PbO ₂	2.2*			
Regnier (1)	Copper .	$CuSO_4 + H_2SO_4$	46	1.68 to 0.85, av- erage 1.3.			
" (2) Main	Amal. zinc Amal. zinc	ZnSO ₄ solution H ₂ SO ₄ density ab't 1.1	" in H ₂ SO ₄	2.36 2.50			

* F. Streintz gives the following value of the temperature variation $\frac{dE}{dt}$ at different degrees of charge: —

E. M. F.	$dE / dt \times 10^6$	E. M. F.	$dE \int dt \times 10^6$	E. M. F.	$dE \int dt \times 10^6$
1.9223	140 228	2.0031 2.0084 2.0105	335 285 255	2.0779 2.2070	130 73

THERMOELECTRIC POWER.

The thermoelectric power of a circuit of two metals at mean temperature t is the electromotive force in the circuit for one degree difference of temperature between the junctions. It is expressed by dE/dt = A + Bt, when dE/dt = 0, t = -A/B, and this the neutral point or temperature at which the thermoelectric power vanishes. The ratio of the specific heat of electricity to the absolute value of the temperature t is expressed by -B for any one metal when the other metal is lead. The thermoelectric power of different couples may be inferred from the table, as it is the difference of the tabulated values with respect to lead, which is here taken as zero. The table has been compiled from the results of Becquerel, Matthieson, and Tait. In reducing the results the electromotive forces of the Grove's and the Daniell cells have been taken as 1.95 and 1.07 volts respectively.

Substance.	A	B×10-2	Thermoelec	temp, of	Neutral point	Author-
Substance.	A	BAIO	20° C.	50° C.	$-\frac{A}{B}$	ity.
Aluminium	0.76	-0.39	0.68	0.56	195	T
Antimony, comm'l pressed wire axial	_	_	-6.0 -22.6	_	_	M
" equatorial	-	-	-26.4	_	_	66
" ordinary	-	-	-17.0	-	-	B
Argentan	11.94	5.06	12.95	14.47	-236	T B
Arsenic	-		13.56	-		M
Bismuth, comm'l pressed wire .	-	-	97.0	-	-	66
" pure " " . " crystal, axial	_	_	89.0 65.0	_		66
" " equatorial .	_	-	45.0	-	_	66
" commercial	-	-	-	39.9	-	B
Cadmium	-2.63	-4.24	-3.48	-4.75 -2.45	<u>-62</u>	T B
Cobalt	-	_	22.	-	-	M
Copper	-1.34	-0.94	-1.52	-1.81	-143	T
" commercial	_	_	0.10 3.8	_	_	66
Gold	-	_	-1.2	-	-	66
Iron	-2.80	—1.01 4.82	-3.0 -16.2	-3.30	-277	T
" pianoforte wire	—17.15 —	4.02	—10.2 —17.5	-14.74	356	M
" commercial	-	_	-	-12.10	-	В
Lead	_	0.00	0.00	-9.10	_	- "
Magnesium	-3.22	0.94	-2.03	-1.75	236	T
Mercury	-	-	0.413	-	-	M
Nickel	_	_	_	3.30		B
" (—18° to 175°)	21.8	5.06	22.8	1 5.50 24.33	-438	T
" (250°-300°)	83.57	-23.84	-	-	-	66
" (above 340°)	3.04 6.18	5.06 3·55	6.9	7.96	-174	66
66	-		-	6.9	-/4	В
Phosphorus (red)	_	_	-29.9 -0.9	-	_	M
" (hardened)	-2.57	0.74	-2.42	-2.20	347	T
" (malleable)	0.60	1.09	8.82	1.15	-55	- 66 TO
" wire	_	_	_	-0.94 2.14	_	В "
Platinum-iridium alloys:						
85 % Pt + 15 % Ir	-7.90	-0.62	-8.03	-8.21	-1274	T
95% Pt + 5% Ir	-5.90 -6.15	-0.55	-5.63 -6.26	-5.23 -6.42	-1118	66
Selenium		-	-807.	-	-	M
Silver	-2.12	-1-47	-2.41	-2.86	-144	TM
" wire		_	-3.00	-2.18	-	В
Steel	-11.27	3.25	-10.62	-9.65	347	T
Tellurium	- 1	_	—502 .	- -429.3	_	M B
Tin (commercial)	_	_	_	 0.33	-	66
	-	-	O. I	-		M
Zinc	0.43 -2.32	-0.55 -2.38	0.33 —2.79	0.16 -3.51	78 —98	T "
" pure pressed	-	-	-3.7	- 3.31	-	M
D Fd Presugged ((Aug de Chim	. 1 701 1	151 10		44b.' (CD		

B = Ed. Becquerel, "Ann. de Chim. et de Phys" [4] vol. 8. T = Tait, "Trans. R. S. E." vol. 27, reduced by Mascart.

M = Matthieson, "Pogg. Ann." vol. 103, reduced by Fleming Jenkin.

THERMOELECTRIC POWER OF ALLOYS.

The thermoelectric powers of a number of alloys are given in this table, the authority being Ed. Becquerel. They are relative to lead, and for a mean temperature of 50° C. In reducing the results from copper as a reference metal, the thermoelectric power of lead to copper was taken as -1.9.

Substance.	Relative quantity.	Thermo- electric power in microvolts.	Substance.	Relative quantity.	Thermo- electric power in microvolts.
Antimony	806 } 696 }	227	Antimony Bismuth	10 }	8.8
Antimony	4 2	146	Antimony	4 1	2.5
Antimony	806)	137	Magnesium	8 }	1.4
Bismuth	121)	13/	Lead	1 }	-0.4
Antimony Zinc	806 }	95	Bismuth	2 }	-43.8 -33.4
Antimony Zinc	806) 406 }	8.1	Antimony Bismuth	1 \\ 4 \\ 1 \\	-51.4
Antimony	4 2	76	Bismuth	8 }	-63.2
Zinc	I		Bismuth Antimony	10	-68.2
Antimony	4 2	46	Bismuth	12	66.9
Zinc	I		Bismuth Tin	2 }	60
Antimony	2 I	43	Bismuth	10	-24.5
Antimony	1)		Bismuth Zinc	12	-31.1
Cadmium Zinc	3	35	Bismuth	12 }	-46.0
Antimony Tellurium	1 }	10.2	Bismuth Bismuth sulphide	1 }	68.1

TABLE 257.

TABLE 258.

NEUTRAL POINTS WITH LEAD.*

Substance.	Temp. C.	Substance.	Temp. C.
Bismuth . Nickel . Gold Argentan Cobalt . Palladium Antimony	-424 -276 -238 -228 -172 -156	Zinc Cadmium . Platinum . Tin Rhodium . Ruthenium Aluminium	—59 —56 75 132
Silver Copper .		Magnesium Iron	239 356

SPECIFIC HEATS OF ELECTRICITY.

The numbers are the coefficients B in the equation $\frac{dE}{dt} = A + Bt$, and have to be multiplied by the absolute temperature T to give the specific heat of electricity. (See also Table 255.)

Metal.	Sp. ht. of el.	Metal	Sp. ht. of el.
Aluminium . Antimony Argentan Bismuth . Cadmium Cobalt . Copper . Gold . Iron . Iridium . Lead .	.00094 .00101 —.00481	250°-310° . Above 340° . Platinum (soft) Palladium . Rhodium . Rubidium . Silver	0009400507 .002190035100109003550011300206 .00148 .00055

^{*} Tait's "Heat," p. 180. † Calculated from a table given by Tait by assuming the electromotive force of a Grove's cell = 1.95 volts.

THERMOELECTRIC POWER OF METALS AND SOLUTIONS.*

Thermoelectric power of circuits, the two parts of which are either a metal and a solution of a salt of that metal or two solutions of salts. The concentration of the solution was such that in 1000 parts of the solution there was one half gramme equivalent of the crystallized salt. The circuit is indicated symbolically; for example, Cu and CuSO₄ indicates that the circuit was partly copper and partly a solution of copper sulphate.

Substances forming circuit.	Thermoelectric power in microvolts.	Insoluble salts mixed with the corresponding zinc or c	admium salts
Cu and CuSO ₄	754 760 660 176 693	for the purpose of acting as The other part of the circuit of the insoluble salts. The re- plex and of doubtful value.	was the metal
$\begin{array}{ccccc} Cd \ and \ CdAc & . & . & . \\ Zn \ and \ ZnCl_2 & . & . & . \\ Cd \ and \ CdCl_2 & . & . & . \\ Zn \ and \ ZnBr_2 & . & . & . \\ \end{array}$	503 562 562 632	Substances forming circuit.	Thermoelectric power in microvolts.
Zn and ZnI ₂ Cd and CdI ₂ CuSO ₄ and ZnSO ₄ CuAc and ZnAc ZnAc and CdAc CuAc and CdAc PbAc and ZnAc PbAc and CdAc PbAc and CdAc ZnCl ₂ and CdCl ₂ ZnBr ₂ and CdBr ₂ ZnI ₂ and CdI ₂	602 594 40 8 0 0 73 54 133 9 9	Ag and AgCl in ZnCl ₂ Ag and AgCl in CdCl ₂ Ag and AgBr in ZnBr ₂ Ag and AgBr in CdBr ₂ Ag and AgI in Znl ₂ Ag and AgI in Cdl ₂ Ag and AgI in Cdl ₂ Hg and Hg ₂ Cl ₂ in ZnCl ₂ Hg and Hg ₂ Cl ₂ in CdCl ₂ Hg and Hg ₂ Br ₂ in ZnBr ₂ Hg and Hg ₂ Br ₂ in ZnBr ₂ Hg and Hg ₂ I ₂ in ZnI ₂ Hg and Hg ₂ I ₂ in ZnI ₂ Hg and Hg ₂ I ₂ in ZnI ₂ Hg and Hg ₂ I ₂ in CdI ₂	143 310 327 461 414 unsuccessful 680 673 650 815 948 891

TABLES 260, 261.

PELTIER EFFECT.

TABLE 260. - Jahn's Experiments. †

TABLE 261. - Le Roux's Experiments. 1

Current flows from copper to metal mentioned. Table gives therms per ampere per hour.

Table gives therms per ampere per hour, and current flows from copper to substance named.

Metals.	Therms.
Cadmium Iron Nickel Platinum Silver Zinc Cd to CdSO ₄ Cu to CuSO ₄ Ag to AgNO ₃ Zn to ZnSO ₄	-0.616 -3.613 4.362 0.320 -0.413 -0.585 4.29 -1.4 7.53 -2.14

Metals.	Therms.	
Antimony (Becquerel's) § (commercial)	: :	13.02
Bismuth (pure) (Becquerel's)	: :	19.1
Cadmium German silver	: :	0.46
Zinc	: :	2.5

^{*} Gockel, "Wied. Ann." vol. 24, p. 634.
† "Wied. Ann." vol. 34, p. 767.
‡ "Ann. de Chim. et de Phys." (4) vol. 10, p. 201.
§ Becquerel's antimony is 806 parts Sb + 406 parts Zn + 121 parts Bi.
§ Becquerel's bismuth is 10 parts Bi + 1 part Sb.

CONDUCTIVITY OF THREE-METAL AND MISCELLANEOUS ALLOYS.

Conductivity $C_t = C_0 (1 + at + bt^2)$.

Metals and alloys.	Composition by weight.	$\frac{C_0}{10^4}$	a × 10 ⁶	<i>b</i> × 10 ⁹	Authority.
	58.3 Au + 26.5 Cu + 15.2 Ag 66.5 Au + 15.4 Cu + 18.1 Ag 7.4 Au + 78.3 Cu + 14.3 Ag	7.58 6.83 28.06	574 529 1830	924 93 7280	I
Nickel-copper-zinc	12.84 Ni + 30.59 Cu +	4.92	444	51	I
Brass	Various	12.2 – 15.6 12.16 14.35	I-2 × 10 ³ -	- - -	3 3
German silver	Various	3-5	_	-	2
	60.16 Cu + 25.37 Zn + 14.03 Ni + .30 Fe with trace of cobalt and manganese.	3.33	360	-	4
Aluminium bronze		7.5-8.5	5-7 × 10 ²	-	2
Phosphor bronze		10-20	-		2
Silicium bronze		41	-	-	5
Manganese-copper	30 Mn + 70 Cu	1.00	40	-	4
Nickel-manganese-copper	3 Ni + 24 Mn + 73 Cu	2.10	-30	-	4
Nickelin	\[\begin{pmatrix} 18.46 \text{ Ni} + 61.63 \text{ Cu} + \\ 19.67 \text{ Zn} + 0.24 \text{ Fe} + \\ 0.19 \text{ Co} + 0.18 \text{ Mn} \\ \end{pmatrix}. \end{pmatrix} \right\}	3.01	300	-	4
Patent nickel	25.1 Ni + 74.41 Cu + 0.42 Fe + 0.23 Zn + 0.13 Mn + trace of cobalt	2.92	190	-	4
Rheotan	53.28 Cu + 25.31 Ni + 16.89 Zn + 4.46 Fe + 0.37 Mn	1.90	410	-	4
Copper-manganese-iron	91 Cu + 7.1 Mn + 1.9 Fe . 70.6 Cu + 23.2 Mn + 6.2 Fe 69.7 Cu + 29.9 Ni + 36 Fe .	4.98 1.30 2.60	120 22 120	- - -	6 6 7
Manganin	84 Cu + 12 Mn + 4 Ni	2.33	25 14	Temp. C.º 10-20 20-30	8
"		66	4 3	30-35 35-40	8
66	66 66 66	66	1 —T	40-45	8
66		66	-2 -4	50-55 55-68	8
	W. Siemens Feusner and Lindeck.	Van der Ve Blood.		eusner.	

SMITHSONIAN TABLES.

CONDUCTING POWER OF ALLOYS.

This table shows the conducting power of alloys and the variation of the conducting power with temperature.*

The values of C_0 were obtained from the original results by assuming silver $=\frac{10^6}{1.585}$ mhos. The conductivity is

taken as $Ct = C_0$ $(1 - at + \beta t^2)$, and the range of temperature was from o^0 to roo° C. The table is arranged in three groups to show (1) that certain metals when melted together produce a solution which has a conductivity equal to the mean of the conductivities of the components, (2) the behavior of those metals alloyed with others, and (3) the behavior of the other metals alloyed together. It is pointed out that, with a few exceptions, the percentage variation between o° and roo° can be calculated from the

formula $P = P_{c|\vec{l}|}$, where l is the observed and l' the calculated conducting power of the mixture at 100° C., and P_e is the calculated mean variation of the metals mixed.

Allovs.	Weight %	Vo lume %	Co	a × 10 ⁶	å× 109	Variation	per 100° C.
Anoys.	of first named.	a × 10°	0 × 10°	Observed.	Calculated.		
Group 1.							
Sn ₆ Pb Sn ₄ Cd SnZn PbSn ZnCd ₂ SnCd ₄ CdPb ₆	77.04 82.41 78.06 64.13 24.76 23.05 7.37	83.96 83.10 77.71 53.41 26.06 23.50 10.57	7.57 9.18 10.56 6.40 16.16 13.67 5.78	3890 4080 3880 3780 3780 3850 3500	8670 11870 8720 8420 8000 9410 7270	30.18 28.89 30.12 29.41 29.86 29.08 27.74	29.67 30.03 30.16 29.10 29.67 30.25 27.60
		G	ROUP 2.				
Lead-silver (Pb ₂₀ Ag) . Lead-silver (PbAg) . Lead-silver (PbAg ₂) .	95.05 48.97 32.44	94.64 46.90 30.64	5.60 8.03 13.80	3630 1960 1990	7960 3100 2600	28.24 16.53 17.36	19.96 7.73 10.42
Tin-gold $(Sn_{12}Au)$ (Sn_5Au)	77·94 59·54	90.32 79·54	5.20 3.03	3080 2920	6640 6300	24.20 22.90	14.83
Tin-copper	92.24 80.58 12.49 10.30 9.67 4.96 1.15	93.57 83.60 14.91 12.35 11.61 6.02 1.41	7.59 8.05 5.57 6.41 7.64 12.44 39.41	3680 3330 547 666 691 995 2670	8130 6840 294 1185 304 705 5070	28.71 26.24 5.18 5.48 6.60 9.25 21.74	19.76 14.57 3.99 4.46 5.22 7.83 20.53
Tin-silver	91.30 53.85	96. 5 2 75.51	7.81 8.65	3820 3770	8190 8550	30.00	23.31 11.89
Zinc-copper †	36.70 25.00 16.53 8.89 4.06	42.06 29.45 23.61 10.88 5.03	13.75 13.70 13.44 29.61 38.09	1370 1270 1880 2040 2470	1340 1240 1800 3030 4100	12.40 11.49 12.80 17.41 20.61	11.29 10.08 12.30 17.42 20.62

Note. - Barus, in the "Am. Jour. of Sci." vol. 36, has pointed out that the temperature variation of platinum alloys containing less than 10% of the other metal can be nearly expressed by an equation $y = \frac{n}{x} - m$, where y is the temperature coefficient and x the specific resistance, m and n being constants. If a be the temperature coefficient at b° C. and s the corresponding specific resistance, s (a+m) = n.

For platinum alloys Barus's experiments gave m = -.000194 and n = .0378.

For steel m = -.000303 and n = .0620.

Matthieson's experiments reduced by Barus gave for

Gold alloys m = -.000045, n = .00721. Silver " m = -.000112, n = .00538. Copper " m = -.000386, n = .00055.

^{*} From the experiments of Matthieson and Vogt, "Phil. Trans. R. S." v. 154. † Hard-drawn.

SMITHSONIAN TABLES.

CONDUCTING POWER OF ALLOYS.

Group 3.								
Allovs.	Weight %	Volume %	Co			Variation	Variation per 100° C.	
Alloys.	of first	named.	104	a × 10 ⁶	b× 109	Observed.	Calculated.	
Gold-copper †	99.23 90.55	98.36 81.66	35.42 10.16	2650 749	4650 81	21.87 7.41	23.22 7·53	
Gold-silver †	87.95 87.95 64.80 64.80 31.33 31.33	79.86 79.86 52.08 52.08 19.86	13.46 13.61 9.48 9.51 13.69	1090 1140 673 721 885 908	793 1160 246 495 531 641	10.09 10.21 6.49 6.71 8.23 8.44	9.65 9.59 6.58 6.42 8.62 8.31	
Gold-copper †	34.83 1.52	19.17	12.94 53.02	864 3320	570 7300	8.07 25.90	8.18 25.86	
Platinum-silver † " † "	33·33 9.81 5.00	19.65 5.05 2.51	4.22 11.38 19.96	330 774 1240	208 656 1150	3.10 7.08 11.29	3.21 7.25 11.88	
Palladium-silver †	25.00	23.28	5.38	324	154	3.40	4.21	
Copper-silver †	98.08 94.40 76.74 42.75 7.14 1.31	98.35 95.17 77.64 46.67 8.25	56.49 51.93 44.06 47.29 50.65 50.30	3450 3250 3030 2870 2750 4120	7990 6940 6070 5280 4360 8740	26.50 25.57 24.29 22.75 23.17 26.51	27.30 25.41 21.92 24.00 25.57 29.77	
Iron-gold †	13.59 9.80 4.76	27.93 21.18 10.96	1.73 1.26 1.46	3490 2970 487	7010 1220 103	27.92 17.55 3.84	, 14.70 11.20 13.40	
Iron-copper †	0.40	0.46	24.51	1550	2090	13.44	14.03	
Phosphorus-copper † . " † .	2.50 0.95	_	4.62 14.91	476 1320	145 1640	_		
Arsenic-copper †	5.40 2.80 trace	-	3.97 8.12 38.52	516 736 2640	989 446 4830	= -		

* Annealed.

† Hard-drawn.

SPECIFIC RESISTANCE OF METALLIC WIRES.

This table is modified from the table compiled by Jenkin from Matthieson's results by taking the resistance of silver, gold, and copper from the observed metre gramme value and assuming the densities found by Matthieson, namely, 10.468, 19.265, and 8.95.

Substance.	Resistance at o° C. of a wire one cm. long, one sq. cm. in section.	Resistance at o° C. of a wire one metre long, one mm. in diam.	Resistance at o° C. of a wire one metre long, weighing one gramme.	Resistance at o° C. of a wire one foot long, root in in diam.	Resistance at o° C. of a wire one foot long, weighing one grain.	Percentage increase of resistance for 1° C. increase of temp. at 20° C.
Silver annealed	1.460 × 10-6	0.01859	.1 523	8.781	.2184	0.377
" hard drawn	1.585 "	0.02019	.1659	9.538	.2379	-
Copper annealed	1.584 "	0.02017	.1421	9.529	.2037	0.388
" hard drawn	1.619 "	0.02062	.1449	9.741	.2078	-
Gold annealed	2.088 "	0.02659	.4025	12.56	.5771	0.365
" hard drawn	2.125 "	0.02706	.4094	12.78	.5870	-
Aluminium annealed	2.906 "	0.03699	.0747	17.48	.1071	-
Zinc pressed	5.613 "	0.07146	.4012	33.76	-5753	0.365
Platinum annealed	9.035 "	0.1150	1.934	54-35	2.772	-
Iron "	9.693 "	0.1234	.7551	58.31	1.083	-
Nickel "	12.43 "	0.1583	1.057	74.78	1.515	-
Tin pressed	13.18 "	0.1678	.9608	79.29	1.377	0.365
Lead "	19.14 "	0.2437	2.227	115.1	3.193	0.387
Antimony pressed	35.42 "	0.4510	2.379	213.1	3.410	0.389
Bismuth "	130.9 "	1.667	12.86	787.5	18.43	0.354
Mercury "	94.07 "	1.198	12.79	565.9	18.34	0.072
Platinum-silver, 2 parts Ag, 1 part Pt, by weight	24.33 "	0.3098	2.919	146.4	4.186	0.031
German silver	20.89 "	0.2660	1.825	125.7	2.617	0.044
Gold-silver, 2 parts Au, 1 part Ag, by weight .	10.84 "	0.1380	1.646	65.21	2.359	0.065

SPECIFIC RESISTANCE OF METALS.

The specific resistance is here given as the resistance, in microhms, per centimetre of a bar one square centimetre in cross section.

	DI L	2 12 1		
Substance.	Physical state.	Specific resistance.	Temp. C.	Authority.
Aluminium	_	2.9-4.5	0	Various.
Antimony .	- 0.111	35.4-45.8 182.8	0	" "
	Solid Liquid	182.8	Melting-point	De la Rive.
46	- Inquia	137.7	860	66
Arsenic .	-	33.3	0	Matthieson and
Diamarkh	Electrolytic noft	108.0		Vogt.
Bismuth "	Electrolytic soft	108.7	0	Van Aubel.
	Commercial	110-268	0	Various.
Boron	Pulverized and com-	0 > 4 10		3.6 1
Cadmium .	pressed	8 × 10 ¹⁰ 6.2–7.0	_	Moissan. Various.
" Cadimum	Solid	16.5	318	Vassura.
66	Liquid	37.9	318	66
Gold	-	2.04-2.09	0	Various.
Calcium . Cobalt		7·5 9.8	16.8	Matthieson.
Copper	Commercial	1.58-2.20	0	Various.
Iron	46	9.7-12.0	0	46
"	Electrolytic	11.2	Ordinary	Kohlrausch.
"	66	105.5	Red heat Yellow heat	46
"	46	118.3	Iron magnetic	
			heat	66
Steel	Cast	19.1 85.8	Ord. temp. Red heat	66
"	66	104.4	Yellow heat	66
66	46	113.9	Nearly white	
	m 1 1 1 1		heat	46
	Tempered glass hard	45.7 (1 + .00161t)		Barus and Strouhal.
"	" light yellow	28.9 (1 + .00244t)	t	"
"	" yellow blue	26.3 (1 + .00280t)	t	66 66
"	" light blue	20.5 (I + .00330t)	t	66 66
16	" soft	18.4 (1 + .00360t) 15.9 (1 + .00423t)	t	66 66
Iron	Cast, hard	97.8	0.	"
"	" soft	74.4	0	ii ii
Indium Lead		8.38 18.4–19.6	0	Erhard. Various.
Lithium .	_	8.8	20	Matthieson,
Magnesium	1 -	4:1-5.0	0	Various.
Nickel Palladium .	-	10.7-12.4	0	"
Platinum .		9.0-15.5	0	"
Potassium.	_	25.1	0	Matthieson.
6:1	Fluid	50.4	100	Various.
Silver Strontium .		1.5-1.7	0 20	Matthieson.
Tellurium .	_	2.17 × 10 ⁵	19.6	66
	-	55.05	294	Vincentini and
Tin	_	9.53-11.4	0	Omodei. Various.
46	_	9.53-11.4	0	Vassura.
66	Solid	20.96	226.5	66
Zinc	Liquid	44.56 5.56–6.04	226.5	
Zinc	Solid	18.16	Melting-point	De la Rive.
"	Liquid	36.00	"	66

RESISTANCE OF METALS AND

The electrical resistance of some pure metals and of some alloys have been determined by Dewar and Fleming and increases as the temperature is lowered. The resistance seems to approach zero for the pure metals, but not for temperature tried. The following table gives the results of Dewar and Fleming.*

When the temperature is raised above o° C. the coefficient decreases for the pure metals, as is shown by the experience experiments to be approximately true, namely, that the resistance of any pure metal is proportional to its absolute is greater the lower the temperature, because the total resistance is smaller. This rule, however, does not even zero Centigrade, as is shown in the tables of resistance of alloys. (Cf. Table 262.)

Temperature ==	100°	200	00	· 80°
Metal or alloy.	Sp	ecific resistanc	e in c. g. s. un	its.
Aluminium, pure hard-drawn wire	4745	3505	3161	-
Copper, pure electrolytic and annealed	1920	1457	1349	-
Gold, soft wire	2665	2081	1948	1400
Iron, pure soft wire	13970†	9521	8613	-
Nickel, pure (prepared by Mond's process from compound of nickel and carbon monoxide)	19300	13494	12266	7470
Platinum, annealed	10907	8752	8221	6133
Silver, pure wire	2139	1647	1 5 5 9	1138
Tin, pure wire	13867	10473	9575	6681
German silver, commercial wire	35720	34707	34524	33664
Palladium-silver, 20 Pd + 80 Ag	15410	14984	14961	14482
Phosphor-bronze, commercial wire	9071	8588	8479.	8054
Platinoid, Martino's platinoid with 1 to 2% } .	44590	43823	43601	43022
Platinum-iridium, 80 Pt + 20 Ir	31848	29902	29374	27504
Platinum-rhodium, 90 Pt + 10 Rh	18417	14586	13755	10778
Platinum-silver, 66.7 Ag + 33.3 Pt	27404	26915	26818	26311
Carbon, from Edison-Swan incandescent lamp	-	4046×10 ⁸	4092×108	4189×10 ⁸
Carbon, from Edison-Swan incandescent lamp	3834×10 ⁸	3908×108	3955×10 ⁸	4054×10 ³
Carbon, adamantine, from Woodhouse and Rawson incandescent lamp	6168×10 ⁸	6300×10 ⁸	6363×10 ⁸	6495×10 ⁸

^{* &}quot; Phil. Mag." vol. 34, 1892.

[†] This is given by Dewar and Fleming as 13777 for 960.4, which appears from the other measurements too high.

ALLOYS AT LOW TEMPERATURES.

by Cailletet and Bouty at very low temperatures. The results show that the coefficient of change with temperature the alloys. The resistance of carbon was found by Dewar and Fleming to increase continuously to the lowest

ments or Müller, Benoit, and others. Probably the simplest rule is that suggested by Clausius, and shown by these temperature. This gives the actual change of resistance per degree, a constant; and hence the percentage of change approximately hold for alloys, some of which have a negative temperature coefficient at temperatures not far from

Temperature =	-1000	— 182°	— 197°	Mean value of temperature co- efficient between
Metal or alloy.	Specific resis	Specific resistance in c. g. s. units. $-\frac{100^{\circ} \text{ an}}{+\frac{100^{\circ} \text{ C.}}{\text{ C.}}}$		
Aluminium, pure hard-drawn wire	1928	894	-	.00446
Copper, pure electrolytic and annealed	757	272	178	431
Gold, soft wire	1207	604	-	375
Iron, pure soft wire	4010	1067	608	578
Nickel, pure (prepared by Mond's process from compound of nickel and carbon monoxide)	6110	1900	-	538
Platinum, annealed	5295	2821	2290	341
Silver, pure wire	962	472	-	377
Tin, pure wire	5671	2553	_	428
German silver, commercial wire	33280	32512	-	035
Palladium-silver, 20 Pd + 80 Ag	14256	1 3797	-	039
Phosphor-bronze, commercial wire	7883	7371	-	070
Platinoid, Martino's platinoid with 1 to 2% } tungsten	42385	41454	-	025
Platinum-iridium, 80 Pt + 20 Ir	26712	24440	-	087
Platinum-rhodium, 90 Pt + 10 Rh	9834	7134	-	312
Platinum-silver, 66.7 Ag + 33.3 Pt	26108	25537	_	024
Carbon, from Edison-Swan incandescent }	4218×10 ³	4321×10 ⁸	-	-
Carbon, from Edison-Swan incandescent }	4079×10 ⁸	4180×10 ³	-	031
Carbon, adamantine, from Woodhouse and { Rawson incandescent lamp	6533×10 ³	-	-	029

^{*} This is α in the equation $R = R_0$ (1 + αt), as calculated from the equation $\alpha = \frac{R_{100} - R_{-100}}{200 R_0}$.

EFFECT OF ELONGATION ON THE SPECIFIC RESISTANCE OF SOFT METALLIC WIRES.*

0.1	Increase of specific resistance for 1 % of elongation —				
Substance.	Permanent elongation.	Elastic elongation.			
Copper	From .50 % to .60 %	From 2.5 % to 7.7 %			
Iron	" .70 " " .80 " " .50 " " .55 "	" 4.6 " " 4.8 " " 0.7 " " I.0 "			

TABLE 268.

EFFECT OF ALTERNATING THE CURRENT ON ELECTRIC RESISTANCE.

This table gives the percentage increase of the ordinary resistance of conductors of different diameters when the current passing through them alternates with the periods stated in the last column.†

Diam	eter in —	Area i	in —	Percentage increase of	Number of complete	
Millimetres.	Inches.	Sq. mm.	Sq. in.	ordinary resistance.	periods per second.	
10	•3937	78.54	.122	Less than 1/10		
15	.5905	176.7	.274	2.5		
20	.7874	314.16	.487	8		
25	9842	490.8	.760	17.5	80	
40	1.575	1256	1.95	68		
100	3.937	7854	12.17	3.8 times		
1000	39-39	785400	1217	35 times		
9	• 3543	63.62	.098	Less than $\frac{1}{100}$		
13.4	.5280	141.3	.218	2.5		
18	.7086	254.4	·394	8	100	
22.4	.8826	394	.611	17.5		
7.75	.3013	47.2	.07 I	Less than 1 1000		
11.61	.4570	106	.164	2.5		
15.5	.6102	189	.292	8	133	
19.36	.7622	294	.456	17.5		

^{*} T. Gray, "Trans. Roy. Soc. Edin." 1880. † W. M. Mordey, "Inst. El. Eng. London," 1889.

CONDUCTIVITY OF ELECTROLYTIC SOLUTIONS.

This subject has occupied the attention of a considerable number of eminent workers in molecular physics, and a few results are here tabulated. It has seemed better to confine the examples to the work of one experimenter, and the tables are quoted from a paper by F. Kohl-

The study of electrolytic conductivity, especially in the case of very dilute solutions, has furnished material for generalizations, which may to some extent help in the formation of a sound theory of the mechanism of such conduction. If the solutions are made such that per unit volume of the solvent medium there are contained amounts of the salt proportional to its electrochemical equivalent, some simple relations become apparent. The solutions used by Kohlrausch were therefore made by taking numbers of grammes of the pure salts proportional to their electrochemical equivalent, and using a litre of water as the standard quantity of the solvent. Taking the electrochemical equivalent number as the chemical equivalent or atomic weight divided by the valence, and using this number of grammes to the litre of water, we get what is called the normal or gramme molecule per litre solution. In the table, m is used to represent the number of gramme molecules to the litre of water in the solution for which the conductivities are tabulated. The conductivities were obtained by measuring the resistance of a cell filled with the solution by means of a Wheatstone bridge alternating current and telephone arrangement. The results are for 18° C., and relative to mercury at 0° C., the cell having been standardized by filling with mercury and measuring the resistance. They are supposed to be accurate to within one per cent of the true value.

The tabular numbers were obtained from the measurements in the following manner:—

Let K_{18} = conductivity of the solution at 18° C. relative to mercury at 0° C.

 K_{18}^{**} = conductivity of the solvent water at 18° C. relative to mercury at 0° C. Then $K_{18} - K_{18}^{**} = k_{18} =$ conductivity of the electrolyte in the solution measured.

 $\frac{k_{18}}{k_{18}} = \mu = \text{conductivity of the electrolyte in the solution per molecule, or the "specific$ molecular conductivity."

TABLE 269. — Value of k_{18} for a few Electrolytes.

This short table illustrates the apparent law that the conductivity in very dilute solutions is proportional to the amount of salt dissolved.

m	KC1	NaCl	AgNO ₃	KC ₂ H ₃ O ₂	$ m K_2SO_4$	MgSO ₄
0.00000I	1.216	1.024	1.080	0.939	1.275	1.056
0.00002	2.434	2.056	2.146	1.886	2.532	2.104
0.00006	7.272	6.162	6.462	5.610	7.524	6.216
0.000I	12.09	10.29	10.78	9.34	12.49	10.34

TABLE 270. - Electro-Chemical Equivalents and Normal Solutions.

The following table of the electro-chemical equivalent numbers and the densities of approximately normal solutions of the salts quoted in Table 271 may be convenient. They represent grammes per cubic centimetre of the solution at the temperature given.

Salt dissolved.	Grammes per litre.	m	Temp. C.	Density.	Salt dissolved.	Grammes per litre.	m	Temp. C.	Density.
KCl	74-59 53-55 58-50 42-48 104.0 68.0 165.9 101.17 85.08 169.9 65-28 61.29 98.18	1.0 1.0009 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.5 0.5	15.2 18.6 18.4 18.4 18.6 15.0 18.6 18.7	1.0457 1.0152 1.0391 1.0227 1.0888 1.0592 1.1183 1.0601 1.0542	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	87.16 71.09 55.09 60.17 80.58 79.9 69.17 53.04 56.27 36.51 63.13 49.06	1.0 1.0003 1.0007 1.0023 1.0 1.001 1.0006 1.0 . 1.0025 1.0041 1.0014 1.0006	18.9 18.6 18.6 18.6 5.3 18.2 18.3 17.9 18.8 18.6 18.6 18.6	I.0658 I.0602 I.0445 I.0573 I.0794 I.0776 I.0576 I.0517 I.0477 I.0161 I.0318 I.0300

^{* &}quot;Wied. Ann." vol. 26, pp. 161-226.

SPECIFIC MOLECULAR CONDUCTIVITY μ : MERCURY=10°.

Salt dissolved.	m=10	5	3	I	0.5	0.1	.05	.03	10.
½K ₂ SO ₄		- 770 752	827 900 825 572	919 968 907 752	672 958 997 948 839	736 1047 1069 1035 983	897 1083 1102 1078 1037	959 1107 1123 1101 1067	1098 1147 1161 1142 1122
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- - - -	- - - 351	487 - 150 448	658 - - 241 635	725 799 531 288 728	861 927 755 424 886	904 (976) 828 479 936	939 1006 (870) 537 (966)	1006 1053 951 675 1017
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		82 82 - 180 398	146 151 - 280 528	249 270 475 514 695	302 330 559 601 757	431 474 734 768 865	500 53 ² 784 817 897	556 587 828 851 (920)	685 715 906 915 962
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-	240 - 270 2.6	430 381 254 1560 5.2	617 594 427 1820	694 671 510 1899	817 784 682 2084 43	855 820 751 2343 62	877 841 799 2515 79	907 879 899 2855 132
HCl	610 1.	420 470 160 990 2.4	2010 2070 170 1314 3·3	2780 2770 200 1718 8.4	3017 2991 250 1841 12	3244 3225 430 1986 31	3330 3289 540 2045 43	3369 3328 620 2078 50	3416 3395 790 2124 92
Salt dissolved.	.006	.002	100.	.0006	.0002	1000.	.00006	.00002	10000
1K ₂ SO ₄	1162 1176 1157	1181 1185 1197 1180	1207 1193 1203 1190 1180	1220 1199 1209 1197 1190	1241 1209 1214 1204 1199	1249 1209 1216 1209 1207	1254 1212 1216 1215 1220	1266 1217 1216 1209 1198	1275 1216 1207 1205 1215
1BaCl ₂	982 740	1074 1091 1033 873 1057	1092 1101 1054 950 1068	1102 1109 1066 987 1069	1118 1119 1084 1039 1077	1126 1122 1096 1062 1078	1133 1126 1100 1074 1077	1144 1135 1114 1084 1073	1142 1141 1114 1086 1080
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	744 773 933 939 976	861 881 980 979 998	91 9 935 998 994 1008	953 967 1009 1004 1014	1001 1015 1026 1020 1018	1023 1034 1034 1029 1029	1032 1036 1038 1031 1027	1047 1052 1056 1035 1028	1060 1056 1054 1036 1024
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		942 913 1010 3240 283	952 919 1037 3316 380	956 923 1046 3342 470	966 933 988 3280 796	975 934 874 3118 995	970 935 790 2927 1133	972 943 715 2077 1328	975 939 697* 1413* 1304*
HCl	3421 3	3455 3448 945 2140 190	3455 3427 968 2110 260	3440 3408 977 2074 330	3340 3285 920 1892 500	3170 3088 837 1689 610	2968 2863 746 1474 690	2057 1904 497 845 700	1254* 1144* 402* 747* 560*

^{*} Acids and alkaline salts show peculiar irregularities.

LIMITING VALUES OF 4

This table shows limiting values of $\mu = \frac{k}{m}$. 108 for infinite dilution for neutral salts, calculated from Table 271.

Salt.	μ	Salt.	μ	Salt.	μ	Salt.	μ
½K2SO4 .	1280	⅓BaCl₂ .	1150	½MgSO ₄ .	1080	½H₂SO4 .	3700
KC1	1220	₹KClO ₃ .	1150	½Na ₂ SO ₄ .	1060	HCl	3500
кі	1220	$\frac{1}{2}$ BaN $_2$ O $_6$.	1120	½ZnCl	1040	HNO3	3500
NH ₄ Cl	1210	½CuSO ₄ .	1100	NaCl	1030	$\frac{1}{3}$ H ₃ PO ₄ .	1100
KNO3	1210	AgNO ₃ .	1090	NaNO ₃ .	980	кон	2200
	-	$\frac{1}{2}$ ZnSO ₄ .	1080	K ₂ C ₂ H ₃ O ₂	940	½Na₂CO₃ .	1400

If the quantities in Table 271 be represented by curves, it appears that the values of the specific molecular conductivities tend toward a limiting value as the solution is made more and more dilute. Although these values are of the same order of magnitude, they are not equal, but depend on the nature of both the ions forming the electrolyte.

When the numbers in Table 272 are multiplied by Hittorf's constant, or 0.00011, quantities ranging between 0.14 and 0.10 are obtained which represent the velocities in millimetres per second of the ions when the electromotive force gradient is one volt per

millimetre.

Specific molecular conductivities in general become less as the concentration is increased, which may be due to mutual interference. The decrease is not the same for

different salts, but becomes much more rapid in salts of high valence.

Salts having acid or alkaline reactions show marked differences. They have small specific molecular conductivity in very dilute solutions, but as the concentration is increased the conductivity rises, reaches a maximum and again falls off. Kohlrausch does not believe that this can be explained by impurities. H_3PO_4 in dilute solution seems to approach a monobasic acid, while H_2SO_4 shows two maxima, and like H_3PO_4 approaches in very weak solution to a monobasic acid.

Kohlrausch concludes that the law of independent migration of the ions in media like

water is sustained.

TABLE 273.

TEMPERATURE COEFFICIENT.

The temperature coefficient in general diminishes with dilution, and for very dilute solutions appears to approach a common value. The following table gives the temperature coefficient for solutions containing o.o. gramme molecule of the salt.

Salt.	Temp. Coeff.	Salt.	Temp. Coeff.	Salt.	Temp. Coeff.	Salt.	Temp. Coeff.
KCl NH ₄ Cl	0.0221	KI KNO ₈	0.0219	$\frac{1}{2}$ K ₂ SO ₄ . $\frac{1}{2}$ Na ₂ SO ₄ .	0.0223	$\frac{1}{2}$ K ₂ CO ₃ $\frac{1}{2}$ Na ₂ CO ₃	0.0249
NaCl LiCl	0.0238	NaNO ₃ AgNO ₃ $\frac{1}{2}$ Ba(NO ₃) ₂	0.0226	$\begin{array}{l} \frac{1}{2} \text{Li}_2 \text{SO}_4 & . \\ \\ \frac{1}{2} \text{MgSO}_4 & . \\ \\ \frac{1}{2} \text{ZnSO}_3 & . \end{array}$	0.0242 0.0236 0.0234	KOH HCl HNO ₃ ½H ₂ SO ₄	0.0194 0.0159 0.0162 0.0125
$\frac{1}{2}$ ZnCl ₂ $\frac{1}{2}$ MgCl ₂ .	0.0239	KClO ₃ , . KC ₂ H ₃ O ₂ .	0.0219	½CuSO ₄ .	0.0229	$\frac{1}{2}$ H ₂ SO ₄ for $m = .001$	0.0159

VARIOUS DETERMINATIONS OF THE VALUE OF THE OHM, ETC.*

	Observer.	Date.	Method.	Value of B. A. U. in ohms.	Value of 100 cms. of Hg in B. A.U.	Value of ohm in cms. of Hg.
1 2 3 4 5 6 7 8 9	Lord Rayleigh Lord Rayleigh Mascart Rowland Kohlrausch Glazebrook Wuilleumeier Duncan & Wilkes Jones	1882 1883 1884 1887 1887 1882 to 1888 1890 1890 1891	Rotating coil Lorenz method	.98651 .98677 .98611 .98644 .98660 .98665 .98686	(.95412) -95374 -95349 -95338 -95352 -95355 -95341	106.31 106.27 106.33 106.32 106.32 106.31 106.34 106.31
10 11 12 12	Strecker Hutchinson Salvioni Salvioni	1885 1888 1890	Mean		•95334 •95352 •95332 •95354	106.31 106.32 106.30 106.33 106.30
13 14 15 16 17 18	H. F. Weber Roti	1884 	Induced current . Rotating coil Mean effect of induced current . Damping of magnet Damping of magnet Lorenz method	ments with Gerr	man silver ls issued nens or	105.37 106.16 105.89 105.98 106.24 106.03 105.93

The Board of Trade committee recommended for adoption the values .9866 and 106.3. The specific resistance of mercury in ohms is thus .9407 \times 10⁻⁴.

Also I Siemens unit = .9407 ohm. = .9535 B. A. U. I ohm . . = I.01358 B. A. U.

The following values have been found for the mass of silver deposited from a solution of silver nitrate in one second by a current of one ampere:—

Mascart, "J. de Physique," iii. 1884 .			.0011156
Rayleigh, "Phil. Trans." ii. 1884			.0011179
Kohlrausch, "Wied. Ann." xxvii. 1886.			.0011183
T. Gray, "Phil. Mag." xxii. 1886		about †	.001118
Portier et Pellat, "J. de Physique," ix. 1890			.0011192

The following values have been found for the electromotive force of a Clark cell at 15° C. They have been reduced from those given in the original papers on the supposition that 1 B. A. U. = .9866 ohm, and that the mass of silver deposited per second per ampere is .001118 gramme.

Rayleigh, "Trans." ii. 1884 .					1.4345 volt.
Carhart		1.4			1.4340 "
Kohle, "Zeitschrift für Instrume					1.4341 "
Glazebrook and Skinner, "Proc.	R. S.'	' li. 18	92		1.4342 "

^{*} Abstract from the Report of the British Association Committee on Practical Standards for Electrical Measurement, "Proc. Brit. Assoc." 1892.
† ± .0000002 T. G.

SPECIFIC INDUCTIVE CAPACITY OF CASES.

With the exception of the results given by Ayrton and Perry, for which no temperature record has been found, the values are for o° C. and 760 mm. pressure.

	Sp. inc	d. cap.	
Gas	Vacuum = 1.	Air = 1.	Authority.
Air	1.0015	1.0000	Ayrton and Perry.
"	1.00059	1.0000	Klemenčič.
"	1.00059	1.0000	Boltzmann.
Carbon disulphide	1.0029	1.0023	Klemenčič.
Carbon dioxide, CO ₂	1.0023	1.0008	Ayrton and Perry.
	1.00098	1.00039	Klemenčič.
	1.00095	1.00036	Boltzmann.
Carbon monoxide, CO	1.00069	1.00010	Klemenčič.
	1.00069	1.00010	Boltzmann.
Coal gas (illuminating)	1.0019	1.0004	Ayrton and Perry.
Hydrogen	1.0013	0.9998	Ayrton and Perry.
	1.00026	0.99967	Klemenčič.
	1.00026	0.99967	Boltzmann.
Nitrous oxide, N ₂ O	1.00116	1.00057	Klemenčič.
	1.00099	1.00040	Boltzmann.
Sulphur dioxide	1.0052	1.0037	Ayrton and Perry.
66 66	1.00955	1.00896	Klemenčič.
Vacuum 5 mm. pressure	1.0000	0.9985	Ayrton and Perry.
" 0,001 " " about	1.0000	0.94	Ayrton and Perry.
	1.0000	0.99941	Klemenčič.
46	1.0000	0.99941	Boltzmann.

SPECIFIC INDUCTIVE CAPACITY OF SOLIDS (AIR-UNITY).

Substance.	Sp. ind. cap.	Authority.
Calcspar parallel to axis	7.5	Romich and Nowak.
" perpendicular to axis	7.7	
Caoutchouc	2.12-2.34 2.69-2.94	Schiller.
" vulcanized	1.10	Elsas.
" " red	1.44	66
" " black	1.89	"
" soft red	2.66	66
Ebonite	2.08	Rossetti.
"	3.15-3.48	Boltzmann. Schiller.
	2.21-2.76	Winkelmann.
"	2.72	Willner.
	2.86	Elsas.
66	1.0	Thomson (from Hertz's vibrations).
Fluor spar	6.7	Romich and Nowak.
	6.8	Curie.
Glass,* density 2.5 to 4.5	5-10	Various.
Double extra dense flint, density 4 g	9.90	Hopkinson.
Dense flint, density 3.66	7.38	66
Light flint, " 3.20	6.70 6.61	66
Very light flint " 2.87	6.96	66
Hard crown " 2.485	8.45	46
Mirror	5.8-6.34	Schiller.
44	6.46-7.57	Winkelmann.
66	6.88	Donle.
"	6.44-7.46	Elsas.
Plate	3.31-4.12	Schiller.
66	7.5	Romich and Nowak.
	6.10	Wüllner. Submarine cable data.
Guttapercha	3.3-4.9 6.33	Curie.
Mica	6.64	Klemenčič.
46	8.00	Curie.
66	7.98	Bouty.
"	5.66-5.97	Elsas.
	4.6	Romich and Nowak.
Paraffin	2.32	Boltzmann.
46	1.98	Gibson and Barclay.
" quickly cooled translucent	2.29	Hopkinson. Schiller.†
" slowly cooled white	1.85-2.47	"
"	2.18	Winkelmann.
	1.96-2.29	Donle, Wüllner.
" fluid — pasty	1.98-2.08	Arons and Rubens.
" solid	1.95	" " "
Porcelain	4.38	Curie.
Quartz, along the optic axis	4.55	66
Resin	4.49 2.48-2.57	Boltzmann.
Rock salt	18.0	Hopkinson.
66 66	5.85	Curie.
Selenium	10.2	Romich and Nowak.
Shellac	3.10	Winkelmann.
66	3.67	Donle.
	2.95-3.73	Wüllner.
	1	1

^{*} The values here quoted apply when the duration of charge lies between 0.25 and 0.00005 of a second. J. J. Thomson has obtained the value 2.7 when the duration of the charge is about $_1/_{25} \times 10^6$ of a second; and this is confirmed by Blondlot, who obtained for a similar duration of 2.8. † The lower values were obtained by electric oscillations of duration of charge about 0.0006 second. The larger values were obtained when duration of charge was about 0.02 second.

SPECIFIC INDUCTIVE CAPACITY OF SOLIDS (AIR = UNITY).

	Sı	ıbstanı	ce.		Sp. ind. cap.	Authority.
Spermaceti Sulphur " " " " " "				 	 2.18 2.25 3.84-3.90 2.88-3.21 2.24 2.94 2.56	Rossetti. Felici. Boltzmann. Wüllner. J. J. Thomson. Blondlot. Trouton and Lilly.

TABLE 277.

SPECIFIC INDUCTIVE CAPACITY OF LIQUIDS.

Substance.	Sp. ind. cap.	Authority.
Alcohols: Amyl Ethyi Methyl Propyl Anilin Benzene "average about "at 5° C. "15° C. "40° C. Hexane, between 11° and 13° C. Octane, "13° 5-14° C. Decane, "13° 5-14° C. Octylene, "15° -16° 2 C. Octylene, "15° -16° 2 C. Octylene, "16° -7 C. Oils: Arachid Castor Colza Lemon Neatsfoot Olive Petroleum Petroleum Petroleum Petroleum Petroleum ether Rape-seed Sesame Sperm Turpentine Vaseline Ozokerite Toluene Xylene	15-15-9 24-27 32.65 22.8 7.5 1.93-2.45 2.3 2.1898 2.1534 2.1279 2.1103 1.859 1.934 1.966 2.201 2.175 2.236 3.17 4.6-4.8 3.07-3.14 2.25 3.07 3.08-3.16 2.02-2.19 1.92 2.2-3.0 3.17 3.02-3.09 2.15-2.28 2.17 2.13 2.2-2.4	Cohn and Arons; Tereschin. Various. Tereschin. " Various. Negreano. " " Landolt and Jahn. " " " " " " " " " " " " " Hopkinson. Various. Hopkinson. Tomaszewski. Hopkinson. Various. Hopkinson. Various. Hopkinson. Various. Hopkinson. Various. Hopkinson. Various. Hopkinson. Various. Hopkinson. Hopkinson. Various. Hopkinson. Hopkinson. Various. Hopkinson. Various. Fuchs. Hopkinson. Various. "

CONTACT DIFFERENCE OF

Solids with Liquids and

Temperature of substances

	Carbon.	Copper.	Iron.	Lead.	Platinum.	Tin.	Zinc.
Mercury	.092 (.01 to .17	.308 .269 to .100	.502 .148 —.653	- .171 139	.156 (.285) to (.345)	- .177 225	
Copper sulphate solution: \\ sp. gr. 1.087 at 16°.6 C. \\ Copper sulphate solution: \\ saturated at 15° C \\	-	.103	-	-	-	-	-
Sea salt solution: sp. gr. (1.18 at 20°.5 C (Sal-ammoniac solution:) saturated at 15°.5 C	-	475 396	605 652	189	856 .059	- ⋅334 - ⋅364	565 637
Zinc sulphate solution: sp. \\ gr. 1.125 at 16°.9 C \\ Zinc sulphate solution: \\	-	-	-	-	-	-	238 430
saturated at 15°.3 C One part distilled water + 3 parts saturated zinc sulphate solution Strong sulphuric acid in distilled water:	-	-	-	-	-	-	444
I to 20 by weight	about	-	-	-	-	-	344
I to 10 by volume	035	-	-	-	-	-	-
1 to 5 by weight	(10.)	-	-	-	-	-	-
5 to 1 by weight	{ to }	-	-	120	-	25	-
Concentrated sulphuric acid	\ \text{\contact}{\contact	1.113	-	to 1.252	to 1.6	-	-
Concentrated nitric acid . Mercurous sulphate paste .	_	_	_	_	.672	_	_
Distilled water containing trace of sulphuric acid	-	-	-	-	-	-	241

^{*} Everett's "Units and Physical Constants: "Table of

POTENTIAL IN VOLTS.

Liquids with Liquids in Air.*

during experiment about 16° C.

	Amalgamated zinc.	Brass.	Mercury.	Distilled water.	Alum solution: saturated at 16°.5 C.	Copper sulphate solution: saturated at 15° C.	Zinc sulphate solution: sp. gr. 1.25 at 16°.9 C.	Zinc sulphate solution: saturated at 15°.3 C.	One part distilled water + 3 pts. zinc sulphate.	Strong nitric acid.
Mercury	-	-	-	-		_	-	_		-
Distilled water	.100	.231	-	-	-	043	-	.164	-	-
Alum solution: saturated } at 16°.5 C }	_	014	-	_	-	-		_	-	-
Copper sulphate solution: sp. gr. 1.087 at 16°.6 C.	-	-	-	-	-	_	.090	-	-	-
Copper sulphate solution: { saturated at 15° C }		-	-	043	-	-	-	.095	.102	-
Sea salt solution: sp. gr. { 1.18 at 20°.5 C }	-	435	-	-	-	-	-	-	-	-
Sal-ammoniac solution: \ saturated at 15°.5 C.	-	348	-	-	-	-	-	-	-	-
Zinc sulphate solution: \ sp. gr. 1.125 at 16°.9 C.	-	-	-	-	-	-	-	-	-	-
Zinc sulphate solution: { saturated at 15°.3 C.	284	-		200	-	095	-	-	-	-
One part distilled water + 3 parts saturated zinc sulphate solution Strong sulphuric acid in	-	-	-	-	-	102	-	-	-	-
distilled water: I to 20 by weight	_	_	_	_	_		_	_	_	
I to 10 by volume	358		_	_	_	_	_		_	_
I to 5 by weight	.429	-	-	-	_	-	-	-	-	-
5 to 1 by weight	-	016	-	-	-	-	-	-	-	-
Concentrated sulphuric acid	.848	_	-	1.298	1.456	1.269	-	1.699		-
Concentrated nitric acid . Mercurous sulphate paste .			475	-	-	-	_	-	-	-
Distilled water containing \\ trace of sulphuric acid.	-	-	·475 -	-	-	-	-	-	-	.078

Ayrton and Perry's results, prepared by Ayrton.

CONTACT DIFFERENCE OF POTENTIAL IN VOLTS.

Solids with Solids in Air.*

Temperature of substances during the experiment about 18° C.

	Carbon.	Copper.	Iron.	Lead.	Platinum.	Tin.	Zinc.	Zinc amal- gam.	Brass.
Carbon	0	.370	.485	.858	.113	·795	1.096†	1.208†	-414†
Copper	370	0	.146	.542	238	.456	.750	.894	.087
Iron	485†	146	0	.401†	369	.313†	.600†	·744†	064
Lead	858	542	401	0	—.77 I	099	.210	-357†	472
Platinum	113†	.238	.369	.771	0	.690	.981	1.125†	.287
Tin	795†	458	313	.099	690	0	.281	.463	372
Zinc	-1.096†	750	600	216	981	.281	0	.144	679
" amalgam	-1.208†	894	744	357†	-1.125†	463	144	0	822
Brass	414	087	.064	-472	287	-372	.679	.822	0

The numbers not marked were obtained by direct experiment, those marked with a dagger by calculation, on the assumption that in a compound circuit of metals, all at the same temperature, there is no electromotive force.

The numbers in the same vertical column are the differences of potential in volts between the substance named at the top of the column and the substance named on the same line in the first column, when the two substances are in contact.

The metals used were those ordinarily obtained in commerce.

^{*} Everett's "Units and Physical Constants." The table is from Ayrton and Perry's experiments, and was prepared by Ayrton.

DIFFERENCE OF POTENTIAL BETWEEN METALS IN SOLUTIONS OF SALTS.

The following numbers are given by G. Magnanini* for the difference of potential in hundredths of a volt between zinc in a normal solution of sulphuric acid and the metals named at the head of the different columns when placed in the solution named in the first column. The solutions were contained in a U-tube, and the sign of the difference of potential is such that the current will flow from the more positive to the less positive through the external circuit.

	of the solution in	Zinc.†	Cadmium.†	Lead.	Tin.	Copper.	Silver.	
litre.	no moreumes per	2,711,011	Cacimani	Dead.	1111.	соррег.	Silver.	
No. of molecules.	Salt.	Difference of potential in centivolts.						
0.5 1.0 1.0 0.5	${ m H_2SO_4} \\ { m NaOH} \\ { m KOH} \\ { m Na_2SO_4} \\ { m Na_2S_2O_3}$	0.0 -32.1 -42.5 1.4 -5.9	36.6 19.5 15.5 35.6 24.1	51.3 31.8 32.0 50.8 45.3	51.3 0.2 —1.2 51.4 45.7	100.7 80.2 77.0 101.3 38.8	95.8 104.0 120.9 64.8	
1.0 1.0 0.5 0.5 0.5	KNO ₃ NaNO ₃ K ₂ CrO ₄ K ₂ Cr ₂ O ₇ K ₂ SO ₄	11.8‡ 11.5 23.9‡ 72.8 1.8	31.9 32.3 42.8 61.1 34.7	42.6 51.0 41.2 78.4 51.0	31.1 40.9 40.9 68.1 40.9	81.2 95.7 94.6 123.6 95.7	105.7 114.8 121.0 132.4 114.8	
0.5 0.25 0.167 1.0	$(NH_4)_2SO_4$ $K_4FeC_6N_6$ $K_6Fe_2(CN)_2$ $KCNS$ $NaNO_3$	-0.5 -6.1 41.0§ -1.2 4.5	37.1 33.6 80.8 32.5 35.2	53.2 50.7 81.2 52.8 50.2	57.6‡ 41.2 130.9 52.7 49.0	101.5 - ‡ 110.7 52.5 103.6	125.7 87.8 124.9 72.5 104.6?	
0.5 0.125 1.0 0.2 0.167	SrNO ₃ Ba(NO ₃) ₂ KNO ₃ KClO ₃ KBrO ₃	14.8 21.9 — ‡ 15-10‡ 13-20‡	38.3 39.3 35.6 39.9 40.7	50.6 51.7 47.5 53.8 51.3	48.7 52.8 49.9 57.7 50.9	103.0 109.6 104.8 105.3 111.3	119.3 121.5 115.0 120.9 120.8	
I.0 I.0 I.0	NH ₄ Cl KF NaCl KBr KCl	2.9 2.8 — 2.3	32.4 22.5 31.9 31.7 32.1	51.3 41.1 51.2 47.2 51.6	50.9 50.8 50.3 52.5 52-6	81.2 61.3 80.9 73.6 81.6	101.7 61.5 101.3 82.4 107.6	
0.5 - 1.0 0.5 0.5	$egin{array}{l} Na_{2}SO_{3} \\ NaOBr \\ C_{4}H_{6}O_{6} \\ C_{4}H_{6}O_{6} \\ C_{4}H_{4}KNaO_{6} \\ \end{array}$	-8.2 18.4 5.5 4.1 -7.9	28.7 41.6 39.7 41.3 31.5	41.0 73.1 61.3 61.6 51.5	31.0 70.6 ‡ 54.4\$ 57.6 42-47	68.7 89.9 104.6 110.9 100.8	103.7 99.7 123.4 125.7 119.7	

^{* &}quot;Rend. della R. Acc. di Roma," 1890.

[†] Amalgamated.

¹ Not constant.

[&]amp; After some time.

^{||} A quantity of bromine was used corresponding to NaOH = 1.

VARIATION OF ELECTRICAL RESISTANCE OF CLASS AND PORCELAIN WITH TEMPERATURE.

The following table gives the values of a, b, and c in the equation

 $\log R = a + bt + ct^2,$

where R is the specific resistance expressed in ohms, that is, the resistance in ohms per centimetre of a rod one square centimetre in cross section.*

No.	Kind of glass.		Density.	а	В		С	Range of temp. Centigrade.
I	Test-tube glass	-	13.86	044	.00	0065	0°-250°	
2	66 66 66		2.458	14.24	055	.00	10	37-131
3	Bohemian glass		2.43	16.21	043	.00	00394	60-174
4	Lime glass (Japanese manu	ufacture).	2.55	13.14	031	00	0021	10-85
5	66 66 66		2.499	14.002	025	00	006	35-95
6	Soda-lime glass (French fla	ask) .	2.533	14.58	049	.00	0075	45-120
7	Potash-soda lime glass		2.58	16.34	0425	.00	00364	66-193
8	Arsenic enamel flint glass		3.07	18.17	055	.00	0088	105-135
9	9 Flint glass (Thomson's electrometer jar)			18.021	0360		00091	100-200
10	Porcelain (white evaporating dish) .			15.65	042	.00	005	68-290
	Composition	OF SOME OF	THE ABOV	E SP CIN	iens of G	LASS.		
	Number of specimen =	3	4		5	7	8	9
Sil	ica	61.3	57.2	70	0.05	5.65	54.2	55.18
Po	tash	22.9	21.1	1	-44	7.92	10.5	13.28
So	da	Lime, etc.	Lime, e	tc. 14	.32	6.92	7.0	-
Le	ad oxide	by diff.	by diff	f. 2	2.70	-	23.9	31.01
Li	Lime 15.8			10	0.33	8.48	0.3	0.35
Ma	Magnesia –				-	0.36	0.2	0.06
Ar	senic oxide	-	-		-	-	3.5	-
Alı	umina, iron oxide, etc	_	-	I	-45	0.70	0.4	0.67

^{*} T. Gray, "Phil. Mag." 1880, and "Proc. Roy. Soc." 1882.

RELATION BETWEEN THERMAL AND ELECTRICAL CONDUCTIVITIES.

between the thermal and the electrical conductivities metal was shown experimentally by Wiedemann and Franz in 1853, and had been referred to by Forbes, with whom a difficulty arose with regard to the direction of the variation with temperature. The experiments of Tait and his students have shown that this difficulty was largely, if not entirely, due to experimental error. The same relation has been shown to hold for alloys by Chandler Roberts and by Neumann. This relation was

That there is a close relation a. VALUES IN ARBITRARY UNITS AT 15 C.

Substance.	1,5	k ₁₅	$\frac{l_{15}}{k_{15}}$
Lead Tin Zinc Copper Iron, No. 1	7.93	4.569	1.74
	14.46	8.823	1.64
	25.45	14.83	1.72
	41.52	24.04	1.73
	14.18	6.803	2.08
	9.64	4.060	2.37
	13.75	6.565	2.09

denied by H. F. Weber, and has been again experimentally investigated and apparently established by the experiments of Kirchhoff and Hansemann, of L. Lorenz, of F. Kohl-rausch, and of Berget.

Putting /= thermal conductivity, and k=electrical conductivity, Kirchhoff and Hansemann find the values in Table a. This table shows iron to deviate considerably from the other metals in the relationship of the two con-ductivities; but this may possibly be explained by its magnetic properties.

Lorenz's results * show that the ratio l/k for the different metals, except iron, is nearly constant for values at 0° and 100° C., but that the ratio is generally greater for poorly conducting substances. He shows that the

 $\frac{l_{100}}{k_0} \div \frac{l_0}{k_0}$ $\frac{l_0}{h}$ remains nearly constant for all metals examined, with the exception of iron, and has an averratio $\overline{k_{100}}$ age value, as shown by Table **b**, of about 1.37. He concludes that $l/k \equiv \text{constant} \times T$, where T is the absolute temperature.

In this table the values of l and k are given in c. g. s. units, and the metals are arranged in the order of their heat conductivities. The same specimens were used for both the thermal and the electrical experiments.

b. VALUES IN C. G. S. UNITS.

Substan	Substances.					$k_0 \times 10^5$	$k_{100} \times 10^5$	$\frac{l_0}{k_0}$	$\begin{array}{c} l_{100} \\ k_{100} \\ \vdots \\ k_{0} \end{array}$
Copper .				0.7198	0.7226	45.74	33.82	1574	1.358
Magnesium				c.3760	0.3760	24.47	17.50	1 537	1.398
Aluminium				0.3435	0.3619	22.46	17.31	1529	1.367
Brass, red.				0.2460	0.2827	15.75	13.31	1562	1.360
Cadmium .				0.2200	0.2045	14.41	10.18	1527	1.315
Brass, yellow				0.2041	0.2540	12.62	00.11	1617	1.428
Iron				0.1665	0.1627	10.37	6.628	1605	1.530
Tin	٠			0.1528	0.1423	9.346	6.524	1635	1.334
Lead				0.0836	0.0764	5.141	3.602	1627	1.304
German silver				0.0700	0.0887	3.766	3.632	1858	1.314
Antimony.			- 4	0.0442	0.0396	2.199	1.522	2011	1.294
Bismuth .	٠	•		0.0177	0.016.1	0.929	0.633	1900	1.372

c. Berget's Experiments.†

The same specimens were used for both experiments. It will be seen that the ratio is nearly constant, but not exactly so.

Substance.	Z	k×10-5	k 10-3	Substance.	I	k×10-5	$\frac{l}{k}$ 10 ⁻³
Copper Zinc Brass Iron	1.0405 0.303 0.2625 0.1587	65.13 18.00 15.47 9.41	1.6 1.7 1.7	Tin	0.151 0.0810 0.042 0.0201	8.33 5.06 2.47 1.06	1.8 1.6 1.7 1.8

d. KOHLRAUSCH'S RESULTS.

An interesting confirmation of the relationship of the two conductivities has been furnished by F. Kohlrausch, who has shown that tempering steel causes equal proportional changes in the thermal and electrical conductivities of the metal, thus leaving the ratio l/k unchanged by the process.

Tempered steel				l = 0.062; $k = 3.3$; $l/k = 0.019$
Soft steel .				"=0.111; "=5.5; "=0.020

In the consideration of this subject it must be borne in mind that closely accurate values of thermal conductivity are very difficult to obtain, and hence fairly large variations are to be expected.

^{* &}quot;Wied. Ann." vol. 13, p. 598. † "Compt. Rend." vol. 110, p. 76.

ELECTROCHEMICAL EQUIVALENTS AND INTERNATIONAL ATOMIC WEIGHTS.

With the exception of the value given for silver and that corresponding to valence 2 for copper, the electrochemical equivalents given in this table have been calculated from the atomic weights and one or two of the more common apparent valences of the substance. The value given for silver is that which was adopted by the International Congress of Electricians at Chicago in 1894. The number for silver is made the basis of the table; the other numbers, with the exception of copper, above referred to, are theoretical.

The International Atomic Weights are quoted from the report of the International Committee on Atomic Weights ("Jour. Am. Chem. Soc.," vol. 25, p. 4).

Substance.	Symbol.	Relative atomic wt. Oxygen = 16.	Relative atomic wt. Hydrogen = 1.	Valence.	Electrochemical equivalent in grammes per coulomb X 1000.
Aluminum	Al Sb	27. I 120.2	26.9 119.3	3 3 5	.0936 .4150 .2490
Argon	A As	39.9 75.0	39.6 74.4	3	.2590
Barium	Ba Bi	137.4 208.5	136.4 206.9	5 2 3 5 3	.1554 .7116 .7199 .4319 .0380
Bromine	Br Cd Cs Ca	79.96 112.4 133. 40.1	79.36 111.6 132. 39.8 11.91	1 2 1 2	.8283 .5822 1.3777 .2077
Cerium	Ce Cl Cr 	140. 35.45 52.1	139. 35.18 51.7 58.56	2 1 3 6	.7251 .3672 .1800
Columbium	Cb Cu	59.0 94. 63.6	93.3 63.1	3 5 1 2 2	.2038 .1947 .6588 .3290 .8598
Fluorine	F Gd Ga Ge Gl	19. 156. 70. 72.5 9.1	18.9 155. 69.5 71.9 9 03	<u>1</u> <u>3</u> <u>2</u>	.1968
Gold	Au He H In I	197.2 4. 1.008 114. 126.85	195.7 4. 1.000 113.1 125 90	3 1 3 1	.6809 .0104 .3936 1.3140
Iridium Iron Krypton Lanthanum	Ir Fe " Kr La	193.0 55.9 81.8 138.9	191.5 55:5 81.2 137 9	4 2 3 2	.4998 .2895 .1930
Lead	Pb Li Mg Mn	206.9 7.03 24.36 55.0	205.35 6.98 24.18 54.6	2 1 2 2 4	1.0716 .0728 .1262 .2849 .1424

ELECTROCHEMICAL EQUIVALENTS AND INTERNATIONAL ATOMIC WEIGHTS.

Substance.	Symbol.	Relative atomic wt. Oxygen = 16.	Relative atomic wt. Hydrogen = 1.	Valence.	Electrochemical equivalent in grammes per coulomb × 1000
Mercury	Hg Mo Nd Ne	200.0 96.0 143.6	198.5 95.3 142.5 19.9	1 2 6 —	2.0717 1.0359 .1657
Nickel	Ni N Os	58.7 14.04	58.3 13.93 189.6	2 3 3 5 6	.3040 .2027 .0485 .0291
Oxygen	O Pd "	16.00 106.5 31.0	15.88 105.7 30.77	2 2 5 3	.0829 ,5516 ,2206 .1070
Platinum	Pt K Pr Rd	194.8 39.15 140.5	193.3 38.86 139.4	5 2 4 1	.0642 1.0098 .5049 .4055
Radium	Rh Rb Ru Sm Sc	225. 103.0 85.4 101.7 150. 44.1	223.3 102.2 84.8 100.9 148.9 43.8	3 1 4	.3556 .8846 .2634
Selenium Silicon Silver Sodium Strontium	Se Si Ag Na Sr	79.2 28.4 107.93 23.05 87.6	78.6 28.2 107.12 22.88 86.94	2 4 1 1	.4102 .0735 1.1180 .2388 .4537
Sulphur	S Ta Te Tb Tl	32.06 183. 127.6 160. 204.1	31.83 181.6 126.6 158.8 202.6	5 2 1	.1660 .3791 .6609
Thorium	Th Tm Sn "	232.5 171. 119.0	230.8 169.7 118.1	2 2 4 4	1.2042
Tungsten Urnaium Vanadium	W U V	184. 238.5 51.2	182.6 236.7 50.8	6 2 3 3 5	.3177 1.2353 .8235 .1768
Xenon Ytterbium Yttrium Zinc Zirconium	Xe Yb Yt Zn Zr	128. 173.0 89.0 65.4 90.6	127. 171.7 88.3 64.9 89.9	2 2 2 4	.4610 .3387 .2346

PERMEABILITY OF IRON.

TABLE 284. - Permeability of Iron Rings and Wire.

This table gives, for a few specimens of iron, the magnetic induction B, and permeability \(\mu\), corresponding to the magneto-motive forces H recorded in the first column. The first specimen is taken from a paper by Rowland,* and refers to a welded and annealed ring of "Burden's Best" wrought iron. The ring was 6,77 cms. in mean diameter, and the bar had a cross sectional area of 0.916 sq. cms. Specimens 2-4 are taken from a paper by Bosanquet,† and also refers to soft iron rings. The mean diameters were 21.5, 22.1, and 22.725 cms., and the thickness of the bars 2.535, 1.295, and .7544 cms. respectively. These experiments were intended to illustrate the effect of thickness of bar on the induction. Specimen 5 is from Ewing's book,‡ and refers to one of his own experiments on a soft iron wire .077 cms. diameter and 30.5 cms. long.

Specin	Specimen 1 2			3 4			5		ity wn	
В	μ	В	μ	В	μ	В	μ	В	μ	ively h force meabil hin dra men 5.
0.2 80 0.5 330 1.0 1450 2.0 4840 5.0 9880 10.0 12970 20.0 14740 50.0 16390 100.0 –	400 660 1450 2420 1976 1297 737 328	126 377 1449 4564 9900 13023 14911 16217 17148	630 754 1449 2282 1980 1302 746 324 171	65 224 840 3533 8293 12540 14710 16062 17900	325 448 840 1766 1659 1254 735 321 179	85 214 885 2417 8884 11388 13273 13890 14837	425 428 885 1208 1777 1139 664 278 148	22 74 246 950 12430 15020 15790	110 148 246 475 2486 1502 789	Note. — The comparatively high value of the magnetizing force required for maximum permeability when the specimen is a film drawn wire is noticeable in specimen 5.

TABLE 285. - Permeability of Transformer Iron.§

This table contains the results of some experiments on transformers of the Westinghouse and Thomson-Houston types. Referring to the headings of the different columns, M is the total magneto-motive force applied to the iron; M/ℓ the magneto-motive force per centimetre length of the iron circuit: B the total induction through the magnetizing coil; B/a the induction per square centimetre of the mean section of the iron core; M/B the magnetic reluctance of the iron circuit; $B\ell/Ma$ the permeability of the iron, a being taken as the mean cross section of the iron circuit as it exists in the transformer, which is thus slightly greater than the actual cross section of the iron.

		(a) Westings	HOUSE NO	. 8 Transform	ERS (ABO	OUT 2500 WAY	TTS CAP	ACITY).		
	3.5		First sp	ecimen.		Second specimen.				
M	M	В	B	$\frac{M}{B}$	Bl Ma	В	$\frac{B}{a}$	$\frac{M}{B}$	Bl Ma	
40 60 80 100	0.597 1.194 1.791 2.338 2.985 3.582 4.179 5.373 5.970 6.567 7.761	218 × 10 ⁵ 587	1406 3790 5660 7040 7860 8580 9060 9510 9880 10200 10430 10910	0.917 × 10 ⁻⁴ 0.681 " 0.683 " 0.734 " 0.819 " 0.993 " 1.180 " 1.270 " 1.360 " 1.540 "	2360 3120 3180 2960 2440 2410 2186 2000 1850 1720 1410	16×10 ⁴ 49 " 82 " 104 " 118 " 124 " 131 " 135 " 140 " 142 "	1032 3140 5290 6710 7610 8000 8450 8710 9030 9160 9290	1.25×10 ⁻⁴ 0.82 " 0.73 " 0.77 " 0.85 " 1.07 " 1.18 " 1.29 " 1.41 " 1.53 "	1730 2640 2970 2820 2560 2250 2036 1830 1690 1540	

^{* &}quot;Phil. Mag." 4th series, vol. xlv. p. 151. † Ibid. 5th series, vol. xix. p. 73. † "Magnetic Induction in Iron and Other Metals." § T. Gray, from special experiments.

PERMEABILITY OF TRANSFORMER IRON.

		(b) W	ESTINGH	ouse No	ь 6 Т	RANSFO	RMERS	(ABOU	г 1800 WA7	TTS CAPAC	стту).			
		3.6			First sp	ecim	en.		Second specimen.						
М		M		В	$\frac{B}{a}$	$\frac{M}{B}$		la la	В	$\frac{B}{a}$	$\frac{M}{B}$	Bl Ma			
20 40 60 80 100 120 140 160 180 200		0.62 1.23 1.85 2.46 3.08 3.70 4.31 4.93 5.55 5.16	147 442 697 862 1010 1060 1090 1120	7 ."	1320 3980 6280 7770 8550 9106 9550 9820 10100	1.3 0.9 0.8 0.9 1.0 1.1 1.3 1.4 1.6	66 " 3390 3 " 3140 5 " 2770 9 " 2450 13 " 2210 7 " 1990 11 " 1830		60 90 40 70 1 50 1 10 1 90 1	215×10 ³ 615 " 826 " 986 " 050 " 100 " 140 " 190 "	1940 5540 7440 8880 9460 9910 10300 10500 10700	0.93×10 ⁻⁴ 0.64 " 0.72 " 0.81 " 0.95 " 1.09 " 1.23 " 1.37 " 1.51 "	3140 4490 4030 3590 3060 2670 2430 2180 1970		
(TRANSF		ER	(d) '	Гномѕ	on-Houston	¥ 1500 W.	ATTS TRANSFO	ORMER.		
M	$\frac{M}{l}$		В	$\frac{B}{a}$	$\frac{M}{B}$		Bl Ma	М	$\frac{M}{l}$	В	$\frac{B}{a}$	$\frac{M}{B}$	Bl Ma		
20	0.69	147	×103	1470	1.36×1	0-4	2140	20	0.42	70×10 ³	1560	2.86×10 ⁻⁴	3730 3780		
40	1.38	406		4066	0.90	66	2940	60 80	1.26	214 " 265 "	4770 5910	3.02 "	3790 3520		
60	2.07	573		5730	1.05	66	2770	100	2.10	309 "	6890 7760	3.24 " 3.45 "	3280 3080		
80	2.76	659	"	6590	1.21	66	2390	160 200 240	3.36 4.20 5.04	456 "	9100 10200 11000	3.92 " 4.39 " 4.87 "	2710 2430 2190		
120	3.45	748	66	7490	1.40	66	1810	280 320	5.88	495 " 524 " 550 "	11690	5·35 " 5.82 "	1990		
140	4.83	777	"	7770		"	1610	360 400 440	7.56 8.40 9.24	573 " 591 " 504 "	12780 13180 13470	6.29 " 6.78 " 7.28 "	1690 1570 1460		

COMPOSITION AND MACNETIC

This table and Table 289 below are taken from a paper by Dr. Hopkinson * on the magnetic properties of iron and steel, which is stated in the paper to have been 240. The maximum magnetization is not tabulated; but as stated in the by 4π . "Coercive force" is the magnetizing force required to reduce the magnetization to zero. The "demagnetization in the opposite direction to the "maximum induction" stated in the table. The "energy which, however, was only found to agree roughly with the results of experiment.

No.					Chemic	al analys	is.	
of Test.	Description of specimen.	Temper.	Total Carbon.	Manga- nese.	Sulphur.	Silicon.	Phos-	Other substances.
I	Wrought iron	Annealed	_	_	-	_	_	_
2	Malleable cast iron	66	-	_	-	-	- 1	-
3	Gray cast iron Bessemer steel	-	0.045	0.200	0.030	None.	0.040	-
4	Whitworth mild steel	Annealed	0.045	0.153	0.030	Wolle.	0.040	_
5	66 66	"	0.320	0.438	0.017	0.042	0.035	_
7	66 66 .	Oil-hard-	66	66	66	66	"	-
8	66 66	Annealed	0.890	0.165	0.005	0.081	0.019	-
9	"	(Oil-hard-	. 66	. 66	66	"	66	-
IO	Hadfield's manganese	ened –	1.005	12.360	0.038	0.204	0.070	_
11	Manganese steel	Asforged	0.674	4.7.30	0.023	0.608	0.078	- //
13	"	Annealed Oil-hard-	66	66	"	66	66	_
14	66 66	As forged	1.298	8 740	0.024	0.094	0.072	_
15	.6 46	Annealed	"	66	66	"	6.6	
16		Oil-hard-	66	66	46	46	66	~
17	Silicon steel	As forged Annealed	0.685	0.694	66	3.438	0.123	_
19	66 66	{ Oil-hard- } ened	66	66	66	6.6	46	-
20 21	Chrome steel	As forged Annealed	0.532	0.393	0.020	0.220	0.041	0.621 Cr.
22	"	(Oil-hard-	66	66	66	66	66	66
23	66 66	As forged	0.687	0.028	66	0.134	0.043	1.195 Cr.
24		Annealed (Oil-hard-						"
25	" "	ened	66	66	66	66	66	66
26	Tungsten steel	As forged Annealed	1.357	0.036	None.	0.043	0.047	4.649 W.
27		(Hardened						
28		in cold water	66	66		66	66	"
29	66 66	Hardened in tepid	64	"	66	66	66	"
30	" " (French) .	(water	0.511	0.625	None.	0.021	0.028	3.444 W.
31	66 66	Very hard	0.855	0.312	_	0.151	0.089	2.353 W.
32	Gray cast iron	-	3.455	0.173	0.042	2.044	0.151	2.064 C.†
33	Mottled cast iron	-	2.581	0.610	0.105	1.476	0.435	1.477 C.†
34	White " "	-	2.036	0.386	0.467	0.764	0.458	-
35	Spiegeleisen	-	4.510	7.970	Trace.	0.502	0.128	-
L'								

^{*} Phil. Trans. Roy. Soc. vol. 176.

† Graphitic carbon.

PROPERTIES OF IRON AND STEEL.

The numbers in the columns headed "magnetic properties" give the results for the highest magnetizing force used, paper, it may be obtained by subtracting the magnetizing force (240) from the maximum induction and then dividing netizing force "is the magnetizing force which had to be applied in order to leave no residual magnetization after dissipated" was calculated from the formula:—Energy dissipated = coercive force \times maximum induction $\frac{1}{2}$ π

			-		Magnetic p	roportio		
No.	Description of		Specific		ragnetic [nopertie:	5.	Energy dis-
of Test.	specimen.	Temper.	electri- cal resis-	Maxi-	Residual	Coer-	Demag-	sipated per cycle.
1 Cot.			tance.	mum in-	induc-	cive force.	netizive force.	Cycle.
	THE PART OF THE CONTRACT OF TH				11011,		Torce.	
ı	Wrought iron	Annealed	.01278	18251	7248	2.30	_	13356
2	Malleable cast iron	66		12408	7479	8.80	_	34742
3	Gray cast iron		.10560	10783	3928	3.80	-	1 3037
4	Bessemer steel	Annealed		18196	7860 7080	2.96	-	17137
5 6	" " " " " " " " " " " " " " " " " " "	46		19840	9840	6.73	_	10289 40120
7	46 66	Soil-hard-		18796	11040	11.00	_	65786
8	46	ened Annealed	-	16120	10740	8.26	_	42366
9	"	(Oil-hard-		16120	8736	19.38	_	99401
	Hadfield's manganese () ened				7.0		771.
10	steel ()	As forged	.06554		2200	02.50	2m 12	21565
11	wanganese steer	Annealed	.05368	4623	2202 5848	23.50 33.86	37.13	34567 113963
13	"	Oil-hard-	.05556		2158	27.64	40.29	41941
14	46 ' 46	As forged	.06993	747	_	-	_	_
15		Annealed	.06316	1985	540	24.50	50.39	15474
16		(Oil-hard-	.07066	733	-		-	-
17	Silicon steel	As forged		15148	11073	9.49	12.60	45740
		Annealed Oil-hard-	_	14701	8149	7.80	10.74	36485
19		ened		14696	8084	12.75	17.14	59619
20	Chrome steel	As forged		15778	9318	12.24	13.87	61439
21		Annealed Oil-hard-		14848	7570	8.98	12.24	42425
22		ened		13960	8595	38.15	48.45	169455
23	" "	As forged Annealed		14680	7 568 6489	18.40	22.03	85944 64842
		SOil-hard-	.03035	0.10	7891	40.80	56.70	167050
25	Timestan steel	ened	0 00					
26	Tungsten steel	As forged . Annealed		15718	10144	15.71	17.75	78568 80315
		(Hardened	.52230	20490	.1000	13.30	10.93	003.3
28	" "	in cold	.02274	-	-	-		-
		(water (Hardened						
29	" "	in tepid	.02249	15610	9482	30.10	34.70	149500
		(water						
30	" (French) .	ened	.03604	14480	8643	47.07	64.46	216864
31	" "	Very hard		12133	6818	51.20	70.69	197660
32	Gray cast iron	_	.11400		3161	13.67	17.03	39789
33 34	White " "	_	.05661	9342	5108	12.24	20.40	36383
35	Spiegeleisen	-	.10520		77	-	-	-
							1	

PERMEABILITY OF SOME OF THE SPECIMENS IN TABLE 286.

This table gives the induction and the permeability for different values of the magnetizing force of some of the specimens in Table 286. The specimen numbers refer to the same table. The numbers in this table have been taken from the curves given by Dr. Hopkinson, and may therefore be slightly in error; they are the mean values for rising and falling magnetizations.

Magnetiz- ing force.	Specimen	ı (iron).	Specim (annealed		Specimen of 8 temper		Specimen 3 (cast iron).		
H	В	μ	В	μ	В	μ	В	μ	
T	-	-	_	_	_	-	265	265	
2	200	100	-	-		-	700	350	
3	-	-	-	-	-	-	1625	542	
5	10050	2010	1525	300	7.50	150	3000	600	
10	12550	1255	9000	900	1650	165	5000	500	
20	14550	727	11500	575	5875	294	6000	300	
30	15200	507	12650	422	9875	329	6500	217	
40	1 5800	395	13300	332	11600	290	7100	177	
50	16000	320	1 3800	276	I 2000	240	7350	149	
70	16360	234	14350	205	13400	191	7900	113	
100	16800	168	14900	149	14500	145	8500	85 63	
150	17400	116	1 5700	105	1 5800	105	9500	63	
200	17950	90	16100	80	16100	80	10190	51	

Tables 288-292 give the results of some experiments by Du Bois,* on the magnetic properties of iron, nickel, and cobalt under strong magnetizing forces. The experiments were made on ovoids of the metals 18 centimetres long and 6.6 centimetres diameter. The specimens were as follows: (1) Soft Swedish iron carefully annealed and having a density 7.28. (2) Hard English cast steel yellow tempered at 230° C.; density 7.78. (3) Hard drawn best nickel containing 99 % Ni with some SiO₂ and traces of Fe and Cu; density 8.82. (4) Cast cobalt giving the following composition on analysis: Co = 93.1, Ni = 5.8, Fe = 0.8, Cu = 2.2, Si = 0.1, and C = 0.3. The specimen was very brittle and broke in the lathe, and hence contained a surfaced joint held together by clamps during the experiment. Referring to the columns, H, B, and \(\mu\) have the sam: meaning as in the other tables, S is the magnetic moment per gramme, and I the magnetic moment per cubic centimetre. H and S are taken from the curves published by Du Bois; the others have been calculated using the densities given.

TABLE 288.

MACNETIC PROPERTIES OF SOFT IRON AT 0° AND 100° C.

	S	oft iron at o	∘ C.		Soft iron at 100° C.						
Н	S I B μ				Н	S	I	В	μ		
100 200 400 700 1000 1200	180.0 194.5 208.0 215.5 218.0 218.5	1408 1521 1627 1685 1705 1709	17790 19310 20830 21870 22420 22670	177.9 96.5 52.1 31.2 22.4 18.9	100 200 400 700 1000 1200	180.0 194.0 207.0 213.4 215.0 215.5	1402 1511 1613 1663 1674 1679	17720 19190 20660 21590 22040 22300	177.2 96.0 51.6 29.8 21.0 18.6		

TABLES 289.

MACNETIC PROPERTIES OF STEEL AT 0° AND 100° C.

Steel at o° C.				S	teel at 100°	C.			
Н	S	I	В	μ	Н	S	I	В	μ
100 200 400 700 1000 1200 3750†	165.0 181.0 193.0 199.5 203.5 205.0 212.0	1283 1408 1500 1552 1583 1595 1650	16240 17900 19250 20210 20900 21240 24470	162.4 89.5 48.1 28.9 20.9 17.7 6.5	100 200 400 700 1000 1 500 3000 5000	165.0 180.0 191.0 197.0 199.0 203.0 205.5 208.0	1278 1395 1480 1527 1543 1573 1593 1612	16170 17730 19000 19890 20380 21270 23020 25260	161.7 88.6 47.5 28.4 20.4 14.2 7.7 5.1

^{* &}quot;Phil. Mag," 5 series, vol. xxix.

† The results in this and the other tables for forces above 1200 were not obtained from the ovoids above referred to, but from a small piece of the metal provided with a polished mirror surface and placed, with its polished face normal to the lines of force, between the poles of a powerful electromagnet. The induction was then inferred from the rotation of the plane of a polarized ray of red light reflected normally from the surface. (See Kerr's "Constants," p. 292,)

MAGNETIC PROPERTIES OF METALS.

TABLE 290. - Cobalt at 100° C.

TABLE 291. - Nickel at 100° C.

Н	S	I	В	μ
200	106	848	10850	54.2
300	116	928	11960	39.9
500	127	1016	13260	26.5
700	131	1048	13870	19.8
1000	134	1076	14520	14.5
1500	138	1104	15380	10.3
2500	143	1144	16870	6.7
4000	145	1164	18630	4.7
6000	147	1176	20780	3.5
9000	149	1192	23980	2.6
At oo			n gave th	e fol-
	lov	wing resu		
7900	154	1232	23380	3.0

Н	S	I	В	μ				
100	35.0	309	3980	39.8				
200	43.0	380	4966	24.8				
300	46.0	406	5399	18.0				
500	50.0	441	6043	12.1				
700	51.5	454	6409	9.1				
1000	53.0	468	6875	6.9				
1500	56.0	494	7707	5.1				
2500	58.4	515	8973	3.6				
4000	59.0	520	10540	2.6				
6000	59.2	522	12561	2.1				
90,00	59.4	524	15585	1.7				
12000	59.6	526	18606	1.5				
At oo C			gave th	e fol-				
	lowing results:							
12300	67.5	595	19782	1.6				

TABLE 292. - Magnetite.

The following results are given by Du Bois * for a specimen of magnetite.

Н	I	В	μ
500	325	8361	16.7
1000	345	9041	9.0
2000	350	10084	5.0
I 2000	350	20084	1.7

Professor Ewing has investigated the effects of very intense fields on the induction in iron and other metals.† The results show that the intensity of magnetization does not increase much in iron after the field has reached an intensity of 1000 c. g. s. units, the increase of induction above this being almost the same as if the iron were not there, that is to say, \(\alpha B \) if \(\alpha B \) is practically unity. For hard steels, and particularly manganese steels, much higher forces are required to produce saturation. Hadfield's manganese steel seems to have nearly constant susceptibility up to a magnetizing force of 10,000. The following tables, taken from Ewing's papers, illustrate the effects of strong fields on iron and steel. The results for nickel and cobalt do not differ greatly from those given above.

TABLE 293. — Lowmoor Wrought Iron.

Н	1	В	μ
3080	1680	24130	7.83
6450	1740	28300	4.39
10450	1730	32250	3.09
13600	1720	35200	2.59
16390	1630	36810	2.25
18760	1680	39900	2.13
18980	1730	40730	2.15

TABLE 294. — Vicker's Tool Steel.

Н	I	В	μ
6210	1530	25480	4.10
9970	1570	29650	2.97
12120	1550	31620	2.60
14660	1580	34550	2.36
15530	1610	35820	2.31

TABLE 295. — Hadfield's Manganese Steel.

	Н	I	В	μ
ı	1930	55 84	2620	1.36
ı	2380		3430	1.44
ı	3350	84	4400	1.31
I	5920	III	7310	1.24
Ш	6620	187	8970	1.35
ı	7890	191	10290	1.30
	8390	263	11690	1.39
i	9810	396	14790	1.51

TABLE 296. - Saturation Values for Steels of Different Kinds.

	Н	I	В	μ
Bessemer steel containing about 0.4 per cent carbon Siemens-Marten steel containing about 0.5 per cent carbon Crucible steel for making chisels, containing about 0.6 per cent carbon	17600 18000 19470 18330 19620 18700	1660	39880 38860 38010 38190 37690 38710	1.95 2.08 1.92

^{# &}quot; Phil. Mag." 5 series, vol. xxix.

^{† &}quot;Phil. Trans. Roy. Soc." 1885 and 1889.

MACNETIC PROPERTIES OF IRON IN VERY WEAK FIELDS.

The effect of very small magnetizing forces has been studied by C. Baur* and by Lord Rayleigh.† The following short table is taken from Baur's paper, and is taken by him to indicate that the susceptibility is finite for zero values of H and for a finite range increases in simple proportion to H. He gives the formula k = 15 + 100 H, or l = 100 H. of H and for a finite range increases in simple proportion of H. The gives the foliation H and H are H and H are H and H are H and H are H are H are H are H are H and H are H are H are H are H are H and H are H are H are H are H are H and H are H are H are H are H are H and H are H and H are H are H are H and H are H are H are H and H are H are H are H are H are H and H are H are H are H are H are H and H are H and H are +5.1 H2.

F	irst experimen	Second en	cperiment.	
Н	k	1	Н	k
.01 580 .03081 .07083 .13188 .23011 .38422	16.46 17.65 23.00 28.90 39.81 58.56	2.63 5.47 16.33 38.15 91.56 224.87	.0130 .0847 .0946 .1864 .2903 ·3397	15.50 18.38 20.49 25.07 32.40 35.20

TABLES 298, 299.

DISSIPATION OF ENERGY IN CYCLIC MAGNETIZATION OF MAGNETIC SUBSTANCES.

When a piece of iron or other magnetic metal is made to pass through a closed cycle of magnetization dissipation of energy results. Let us suppose the iron to pass from zero magnetization to strong magnetization in one direction and then gradually back through zero to strong magnetization in the other direction and thence back to zero, and this operation to be repeated several times. The iron will be found to assume the same magnetization when the same magnetizing force is reached from the same direction of change, but not when it is reached from the other direction. This has been long known, and is particularly well illustrated in the permanency of hard steel magnets. That this fact involves a dissipation of energy which can be calculated from the open loop formed by the curves giving the relation of magnetization to magnetizing force was pointed out by Warburg ‡ in 1881, reference being made to experiments of Thomson, § where such curves are illustrated for magnetism, and to E. Cohn, | where similar curves are given for thermoelectricity. The results of a number of experiments and calculations of the energy dissipated are given by Warburg. The subject was investigated about the same time by Ewing, who published results somewhat later. T Extensive investigations have since been made by a number of investigators.

TABLE 298. - Soft Iron Wire.

(From Ewing's 1885 paper.)

Total induction per sq. cm.	Dissipation of energy in ergs per cu. cm.	Horse- power wasted per ton at 100 cycles per sec.
2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000 13000 14000	420 800 1230 1700 2200 2760 3450 4200 5000 5820 6720 7650 8650 9670	0.74 1.41 2.18 3.01 3.89 4.88 6.10 7.43 8.84 10.30 11.89 13.53 15.30 17.10

TABLE 299. - Cable Transformers.

This table gives the results obtained by Alexander Siemens with one of Siemens' cable transformers. The transformer core consisted of 900 soft iron wires 1 mm. diameter and 6 metres long.** The dissipation of energy in watts is for 100 complete cycles per second.

Mean maximum induction density in core.	Total ob- served dis- sipation of energy in the core in watts per 112 lbs.	Calculated eddy current loss in watts per 112 lbs.	Hysteresis loss of energy in watts per 112 lbs.	Hysteresis loss of energy in ergs per cu. cm. per cycle.
1000	43.2	4	39.2	602
2000	96.2	16	80.2	1231
3000	158.0	36	122.0	1874
4000	231.2	64	167.2	2566
5000	309.5	100	209.5	3217
6000	390.1	144	246.1	3779

SMITHSONIAN TABLES.

"Phil. Mag." vol. xxiii.

^{* &}quot;Wied. Ann." vol. xi. "Wied. Ann." vol. xiii. p. 141. "Wied. Ann." vol. 6. \$ "Phil. Trans. Roy. Soc." vol. 175. ¶ "Proc. Roy. Soc." vol. 175. ¶ "Proc. Roy. Soc." 1882, and "Trans. Roy. Soc." 1885. ** "Proc. Inst. of Elect. Eng." Lond., 1892.

DISSIPATION OF ENERGY IN THE CYCLIC MAGNETIZATION OF VARIOUS SUBSTANCES.

C. P. Steinmetz concludes from his experiments * that the dissipation of energy due to hysteresis in magnetic metals can be expressed by the formula $e=aB^{1.6}$, where e is the energy dissipated and a a constant. He also concludes that the dissipation is the same for the same range of induction, no matter what the absolute value of the terminal inductions may be. His experiments show this to be nearly true when the induction does not exceed ± 15000 c. g. s. units per sq. cm. It is possible that, if metallic induction only be taken, this may be true up to saturation; but it is not likely to be found to hold for total inductions much above the saturation value of the metal. The law of variation of dissipation with induction range in the cycle, stated in the above formula, is also subject to verification.†

Values of Constant a.

The following table gives the values of the constant α as found by Steinmetz for a number of different specimens. The data are taken from his second paper.

Number of specimen.	Kind of material.	Description of specimen.	Value of a.
1 2 3 4 5 6 7 7 8 9 10 11 12 13 14 15 10 17 18 19 20 21 22 23 24 25 26	Iron	Norway iron Wrought bar Commercial ferrotype plate Annealed Thin tin plate Medium thickness tin plate Soft galvanized wire Annealed cast steel Soft annealed cast steel Soft annealed cast steel Very soft annealed cast steel Same as 8 tempered in cold water Tool steel glass hard tempered in water " tempered in oil " annealed Same as 12, 13, and 14, after having been subjected to an alternating m. m. f. of from 4000 to 6000 ampere turns for demagnetization Gray cast iron " " containing \$ % aluminium " " " " containing \$ % aluminium A square rod 6 sq. cms. section and 6.5 cms. long, from the Tilly Foster mines, Brewsters, Putnam County, New York, stated to be a very pure sample Soft wire Annealed wire, calculated by Steinmetz from Ewing's experiments Hardened, also from Ewing's experiments Hardened, also from Ewing's experiments Consisted of thin needle-like chips obtained by milling grooves about 8 mm. wide across a pile of thin sheets clamped together. About 30 % by volume of the specimen was iron. Ist experiment, continuous cyclic variation of m. m. f. 180 cycles per second 2d experiment, 114 cycles per second 3d " 79-91 cycles per second	.00227 .00326 .00548 .00458 .00286 .00425 .00348 .002670 .007476 .02670 .02670 .02670 .01445 .01306 .01365 .01459 .02348 .0122 .0156 .0385 .0120

^{* &}quot;Trans Am. Inst. Elect. Eng." January and September, 1892. † See T. Gray, "Proc. Roy. Soc." vol. lvi.

DISSIPATION OF ENERGY IN THE CYCLIC MAGNETIZATION OF TRANS-FORMER CORES.*

This table gives, for the most part, results obtained for transformer cores. The electromagnet core formed a closed iron circuit of about 320 sq. cms. section and was made up of sheets of Bessemer steel about 1-20 inch thick. The No. 20 transformer had a core of soft steel sheets about 7-1000 inch thick insulated from each other by sheets of thin paper. The cores of the other transformers were formed of soft steel sheets 15-1000 inch thick insulated from each other by their oxidized surfaces only. The following are the particulars of the data given in the different columns: columns : -

Column 1. Description of specimen.

- Description of specimen.
 The total energy, in joules per cycle, required to produce the magnetic induction given in column B
 The energy, in joules per cycle, returned to the circuit on reversal of the magnetizing force.
 The energy dissipated, in joules per cycle, or the difference of columns 2 and 3.
 5, 6, and 7. The quantities in columns 2, 3, and 4 reduced to ergs per cubic centimetre of the core.
 B. The maximum induction in c. g. s. units per sq. cm. 6.6
- 66

1	2	3 ,	4	5	8	7	В
Electromagnet	6.5 24.4 66.8 81.4 96.6 126.2 153.0 178.4 221.2 275.6	0.9 2.6 10.4 15.4 21.8 38.2 57.6 79.2 116.8	5.6 21.8 56.4 66.0 74.8 88.0 95.4 99.2 104.4	1010 3800 10400 12700 15100 19700 23900 27800 34500 42900	140 406 1620 2400 3400 5960 8990 12400 18300 26200	867 3400 8800 10300 11700 13700 14900 15500 16300 16800	2660 6700 11600 12700 14100 15200 15900 16600 17240 17420
Westinghouse No 20 transformer	1.31	0.30	1.01	1435	328	1107	2330
	4.65	1.10	3.55	5110	1210	3900	4980
	8.25	1.62	6.63	9060	1780	7280	6620
	10.36	1.89	8.47	11350	2070	9280	7720
	12.20	2.98	9.22	13440	3280	10160	8250
	18.20	5.15	13.05	19980	5660	14320	9690
Westinghouse No. 8 transformer, specimen 1	0.45	0.055	0.400	875	105	770	3480
	0.80	0.102	0.101	1544	196	1348	5140
	1.66	0.199	1.460	3200	380	2820	7570
	2.42	0.406	2.010	4650	780	3870	9250
	3.54	0.795	2.750	6820	1530	5290	10940
Westinghouse No. 8 transformer, specimen 2	0.399	0.046	0.353	768	88	680	3060
	0.820	0.085	0.735	1574	164	1410	4830
	1.713	0.183	1.530	3300	352	2948	7570
	2.663	0.343	2.320	5120	660	4460	9270
Westinghouse No. 6 transformer, specimen 1	0.488	0.062	0.426	1360	172	1188	4640
	0.814	0.096	0.718	2260	266	1994	6760
	1.430	0.205	1.225	3980	570	3410	9370
	2.000	0.330	1.670	5560	918	4642	10950
Westinghouse No. 6 transformer, specimen 2	0.722	0.100	0.622	2000	278	1722	7290
	1.048	0.164	0.884	2920	456	2464	9000
	1.379	0.222	1.157	3830	616	3214	9990
	1.731	0.328	1.403	4810	912	3898	11210
Westinghouse No. 4 transformer	0.355	0.044	0.311	1210	152	1058	4540
	0.549	0.074	0.475	1880	255	1625	5720
	0.783	0.126	0.657	2690	433	2257	7*40
	0 970	0.175	0.795	3340	603	2737	7800
Thomson-Houston 1500 watt transformer	0.413	0.105	0.308	1930	490	1440	6150
	0.681	0.189	0.492	3190	880	2310	8250
	1.207	0.389	0.818	5660	1830	3830	11110
	1.797	0.710	1.087	8420	3320	5100	13290

[#] T. Gray, from special experiments; see Table 285 for other properties.

DISSIPATION OF ENERGY DUE TO MACNETIC HYSTERESIS IN IRON.*

The first column gives the maximum magnetic induction B per square centimetre in c. g. s. units. The other columns give the dissipation of energy in ergs per cycle per cubic centimetre for the iron specified in the foot-note

В	1	2	3	4	5	6	7
2000	400	420	530	600	750 .	930	1100
3000	780	800	1050	1150	1350	1700	2150
4000	1200	1260	1670	1780	2030	2600	3300
5000	1680	1770	2440	2640	2810	3800	4700
6000	2200	2370	3170	3360	3700	5200	6200
7000	2800	3150	4020	4300	4650	6600	7800
8000	3430	3940	5020	5300	5770	8400	9500
9000	4160	4800	6100	6380	6970	10100	11400
10000	4920	5730	7200	7 520	8340	11800	13400
11000	5800	6800	8410	8750	9880	13600	15600
I 2000	6700	8000	97 50	10070	11550	1 5400	-
13000	7620	9200	I I 200	11460	13260	17300	-
14000	8620	10500	12780	13100	15180	- /	-
15000	9730	12150	14600	14900	17300	-	-

The iron for which data are given in columns 1 to 7 is described as follows:

- 1. Very soft iron wire (taken from a former paper).
- 2a. Sheet iron 1.95 millimetres thick
- 2b. Thin sheet iron 0.367 millimetres thick almost alike.
- 3. Iron wire 0.975 millimetres diameter.
- 4. Iron wire of hedgehog transformer 0.602 millimetres diameter.
- 5. Thin sheet iron 0.47 millimetres thick.
- 6. Fine iron wire 0.2475 millimetres diameter.
- 7. Fine iron wire 0.34 millimetres diameter.

^{*} Ewing and Klassen, "Phil. Trans. Roy. Soc." vol. clxxxiv. A, p. 1015.

Faraday discovered that, when a piece of heavy glass is placed in magnetic field and a beam of plane polarized light passed through it in a direction parallel to the lines of magnetic force, the plane of polarization of the beam is rotated. This was subsequently found to be the case with a large number of substances, but the amount of the rotation was found to depend on the kind of matter and its physical condition, and on the strength of the magnetic field and the wave-length of the polarized light. Verdet's experiments agree fairly well with the formula —

$$\theta = clH\left(r - \lambda \frac{dr}{d\lambda}\right) \frac{r^2}{\lambda^2},$$

where c is a constant depending on the substance used, i the length of the path through the substance, II the intensity of the component of the magnetic field in the direction of the path substance, H the index of refraction, and λ the wave-length of the light in arr. If H be different, at different parts of the path, IH is to be taken as the integral of the variation of magnetic potential between the two ends of the medium. Calling this difference of potential v, we may write $\theta = Av$, where A is constant for the same substance, kept under the same physical conditions, when the one kind of light is used. The constant A has been called "Verdet's constant," * and a number of values of it are given in Tables 303-310. For variation with temperature the following formula is given by Bichat: -

$$R = R_0 (1 - 0.00104t - 0.000014t^2),$$

which has been used to reduce some of the results given in the table to the temperature corresponding to a given measured density. For change of wave-length the following approximate formula, given by Verdet and Becquerel, may be used:—

$$\frac{\theta_1}{\theta_2} = \frac{\mu_1^2(\mu_1^2 - 1)\lambda_2^2}{\mu_2^2(\mu_2^2 - 1)\lambda_1^2},$$

where μ is index of refraction and λ wave-length of light.

A large number of measurements of what has been called molecular rotation have been made. particularly for organic substances. These numbers are not given in the table, but numbers proportional to molecular rotation may be derived from Verdet's constant by multiplying in the ratio of the molecular weight to the density. The densities and chemical formulæ are given in the table. In the case of solutions, it has been usual to assume that the total rotation is simply the algebraic sum of the rotations which would be given by the solvent and dissolved substance, or substances, separately; and hence that determinations of the rotary power of the solvent medium and of the solution enable the rotary power of the dissolved substance to be calculated. Experiments by Quincke and others do not support this view, as very different results are obtained from different degrees of saturation and from different solvent media. No results thus obtained from different degrees of saturation and from different solvent media. No results thus calculated have been given in the table, but the qualitative result, as to the sign of the rotation produced by a sait, may be inferred from the table. For example, if a solution of a salt in water gives Verdet's constant less than 0.0130 at 20° C., Verdet's constant for the salt is negative.

The table has been for the most part compiled from the experiments of Verdet,† H. Becquerel,‡ Quincke, \$ Koepsel, Arons, Kundt,** Jahn,†† Schönrock,‡‡ Gordon, \$\$ Rayleigh and

Sidgewick, | Perkin, Bichat.***

As a basis for calculation, Verdet's constant for carbon disulphide and the sodium line D has been taken as 0.0420 and for water as 0.0130 at 20° C.

* The constancy of this quantity has been verified through a wide range of variation of magnetic field by H. E. J. G. Du Bois (Wied. Ann. vol. 35).

† "Ann. de Chim. et de Phys." [3] vol. 52.

‡ "Ann. de Chim. et de Phys." [5] vol. 12; "C. R." vols. 90 and 100.

§ "Wied. Ann." vol. 24.

| "Wied. Ann." vol. 24.

** "Wied. Ann." vols. 23 and 27.

†† "Wied. Ann." vols. 23 and 27.

†† "Wied. Ann." vols. 83.

‡ "Zeits, für Phys. Chem." vol. 11.

§ "Proc. Roy. Soc." 1883.

| "Jun. Chem. Soc." vols. 8 and 12.

** "Jour. Chem. Soc." vols. 8 and 12.

Solids.

Substance.	Chemical formula.	Density or grammes per c. c.	Kind of light.	Verdet's constant in minutes.	Temp. C.	Authority.
Amber	_	_	D	0.0095	18-200	Quincke.
Blende	ZnS	-	46	0.2234	15	Becquerel.
Diamond	С	-	66	0.0127	66	66
Fluor spar	CaFl ₂	-	66	0.0087	46	"
Glass:	-					
Crown	-	-	46	0.0203	6.6	66
Faraday A	_	5.458	46	0.0782	18-20	Quincke.
" B	-	4.284	66	0.0649	66	44
Flint	-	-	66	0.0420	46	66
	_	-	66	0.0325	15	Becquerel.
66	-	 .	66	0.0416	66	66
" dense	-	-	66	0.0576	46	66
66 66	_	-	66	0.0647	66	"
Plate	-	-	66	0.0406	18-20	Quincke.
Lead borate	PbB ₂ O ₄	-	46	0.0600	15	Becquerel.
Quartz (perpendicular to axis)	_	-	66	0.0172	18-20	Quincke.
Rock salt	NaCl	-	44	0.0355	15	Becquerel.
Selenium	Se	-	В	0.4625	66	46
Sodium borate	Na ₂ B ₄ O ₇	- 1	D	0.0170	46	"
Spinel (colored by chrome) .	-	-	44	0.0209	66	66
Sylvine	KC1	-	66	0.0283	66	44
Ziqueline (suboxide of copper)	Cu ₂ O	-	В	0.5908	66	"

Liquids.

Substance.	Chemical formula.	Density in grammes per c. c.	Kind of light.	Verdet's constant in minutes.	Temp.	Authority.
Acetone	. C ₈ H ₆ O	0.7947	D	0.0113	20	Jahn.
"	. 66	0.7957	46	0.0115	15	Perkin.
	46	0.7947	66	0.0114	16	Schönrock.
Acids: (see also solutions	in					
water)	CHO		66			D 1:
Acetic Butyric	$C_2H_4O_2$ $C_4H_8O_2$	0.9663	66	0.0105	21	Perkin.
Formic	$C_4H_8O_2$ CH_2O_2	1.2273	66	0.0105	15	66
Hydrochloric	. HCl	1.2072	66	0.0224	15	66
	. 46	-	66	0.0206	15	Becquerel.
Hydrobromic	. HBr	1.7859	66	0.0343	15	Perkin.
Hydroiodic	. HI . HNO ₈	1.9473	66	0.0513	15	66
Nitric	· HNO8	1.5190	66	0.0070	13	
Propionic	. C ₃ H ₆ O ₂	0 9975	66	0.0000	15	Becquerel. Perkin.
Sulphuric	. H ₂ SO ₄	- 9913	66	0.0121	15	Becquerel.
Sulphurous	H_2SO_3	-	66	0.0153	15	46
Valeric	$C_5H_{10}O_2$	0.9438	46	0.0121	15	Perkin.
Alcohols:	CH OH		66			D1
Amyl	$C_5H_{11}OH$	0.8107	66	0.0131	15	Becquerel.
Butyl	. C ₄ H ₉ OH	0.8021	66	0.0124	20	Jann.
"	. 46	-	66	0.0124	15	Becquerel.
Ethyl	. C ₂ H ₅ OH	0.7929	66	0.0107	18-20	Quincke.
	. 66	0.7900	66	0.0112	20	Jahn.
	. "	0.7944	66	0.0114	15	Perkin.
25 (1.1	: CH ₈ OH	0.7943	66	0.00113	16	Schönrock. Ouincke.
Methyl	. Cligoti	0.7915	66	0.0093	20	Jahn.
"		-	46	0.0106	15	Becquerel.
	. 46	0.7966	66	0.0096	15	Perkin.
"	. "	0.7903	66	0.0096	21.9	Schönrock.
Octyl	. C ₈ H ₁₇ OH	0.8296	66	0.0134	15	Perkin.
Propyl	. C ₃ H ₇ OH	0.8050	66	0.0120	20.8	Schönrock. Perkin.
16	"	0.0002	66	0.0118	15.0	Becquerel.
"	. 66	0.8042	66	0.0120	20	Jahn.
Benzene	. C ₆ H ₆	0.8786	66	0.0297	20	Jahn.
"	. 66	-	66	0.0268	15	Becquerel.
Bromides:		0.8718		0.0301	26.9	Schönrock.
Bromoform	. CHBr ₈	2.9021	66	0.0317	15	Perkin.
Ethyl	. C ₂ H ₅ Br	1.4486	66	0.0183	15	66
Ethylene	. C ₂ H ₄ Br ₂	2.1871	66	0.0268	15	66
	. 66	2.1780	66	0.0269	20	Jahn.
Methyl	. CH ₃ Br	1.7331	66	0.0205	0	Perkin.
Methylene Octyl	$\begin{array}{c c} \cdot & CH_2Br_2 \\ \cdot & C_8H_{17}Br \end{array}$	2.4971	66	0.0276	15	"
Propyl	C_8H_7Br	1.3600	46	0.0180	15	66
Carbon d'sulphide	. CS ₂	1.2644	66	0.0441	18-20	Quincke.
" "	"		66	0.0434	0	(Becquerel,
	. 6		"			1885.
46 66	. 66	-	"	0.0433	0	Gordon.
"	"	_	66	0.0420	18	Rayleigh. Koepsel.
"	. "	_	66	0.0439	0	Arons.
				137		

Liquids.

Solutions of Acids and Salts in Water.

Substance.	Chemical formula.	Density, grammes per c. c.	Kind of light.	Verdet's constant in minutes.	Temp.	Authority.
Acetone	C ₃ H ₆ O	0.9715	D	0.0129	200	Jahn.
Hydrobromic	HBr	1.7859	66	0.0343	15	Perkin.
46	66	1.6104	66	0.0304	"	66
46	46	1.3775	66	0.0244	66	66
	66	1.2039	66	0.0194	46	66
Hydrochloric	HC1	1.2072	66	0.0225	66	46
	44	1.1856	66	0.0219	66	46
	46	1.1573	46	0.0204	66	46
	66	1.1279	66	0.0193	66	46
"	44	1.0762	46	0.0150	20	Jahn.
"	66	1.0158	66	0.0140.	66	"
Hydriodic	HI	1.9473	46	0.0513	66	Perkin.
66	66	1.9057	66	0.0499	66	66
"	46	1.8229	66	0.0468	46	"
	6.6	1.7007	66	0.0323	66	44
		1.2966	6.6	0.0258	66	44
"	"	1.1760	66	0.0205	66	"
Nitric	HNO ₃	1.5190	66	0100.0	66	46
Sulphuric + 3H ₂ O	H ₂ SO ₄	1.3560	66	0.0105	66	Becquerel.
Ammonia	NH ₃	0.8918	66	0.0121	15	Perkin.
Bromides:		0.09.0		5.55		
Ammorium	NH ₄ Br	1.2805	66	0.0226	66	66
T	BaBr ₂	1.1576	66	0.0186	20	Jahn.
Barium	16	1.5399	66	0.0215	"	Jailli.
Cadmium	CdBr ₂	1.3291	66	0.0192	66	66
	" (1 D	1.1608	66	0.0162	66	66
Calcium	CaBr ₂	1.2491	66	0.0189	66	66
Potassium	KBr	1.1337	66	0.0164	46	66
46	66	1.0876	66	0.0151	46	"
Sodium	NaBr	1.1351	46	0.0165	66	66
CA	C.D.	1.0824	66	0.0152	66	46
Strontium	SrBr ₂	1.2901	66	0.0186	66	**
Carbonate of potassium	K ₂ CO ₃	1.1906	66	0.0140	20	"
" sodium	Na ₂ CO ₃	1.1006	66	0.0140	66	66
	66	1.0564	66	0.0137	44	66
Chlorides: Ammonium (sal ammoniac)	NH ₄ Cl	1.0718	44	0.0178	15	Verdet.
Barium	BaCl ₂	1.2897	66	0.0168	20	Jahn.
	66	1.1338	66	0.0149	66	"
Cadmium	CdCl ₂	1.3179	46	0.0185	66	66
	16	1.2755	44	0.0179	66	"
"		1.1732		0.0157	66	16
Calcium	CaCl ₂	1.1504	44	0.0165	4.6	46
	66	1.0832	66	0.0152	"	(C-1.**1
	CuCl ₂	1.1049	66	0.0157	16	Schönrock. Becquerel.
Copper	"	1.5158	46	0.0221	1.5	-66
66	66	1.1330	66	0.0156	46	66

Solutions of Acids and Salts in Water.

Substance.	Chemical	Density, grammes	Kind of	Verdet's constant	Temp.	Authority.
Substance.	formula.	per c. c.	light.	in minutes.	C.	rumorny.
Chloridae						
Chlorides:	FeCl ₂	1.4331	D	0.0025	150	Becquerel.
"	66	1.2141	66	0.0099	15°	66
		1.1093	66	0.0118	66	66
(formia)	"	1.0548	66	0.0124	66	66
(ferric)	Fe ₂ Cl ₆	1.6933	66	-0.2026	66	46
	66	1.5315	66	-0.1140 -0.0348	66	46
46	66	1.3230	66	0.0015	66	66
"	66	1.0864	46	0.0081	66	44
"	66	1.0445	66	0.0113	66	66
"	66 T. 15613	1.0232	66	0.0122	66	"
Lithium	LiCl	1.0619	66	0.0145	20	Jahn.
	MnCl ₂	1.0316	66	0.0143		Becquerel.
Manganese	14111112	1.0876	66	0.0150	15	iii
Mercury	HgCl ₂	1.0381	46	0.0137	16	Schönrock.
"	66	1.0349	66	0.0137	66	"
Nickel	NiCl ₂	1.4685	66	0.0270	15	Becquerel.
	66	1.2432	66	0.0196	66	66
	66	1.1233	66	0.0162	66	66
Potassium	KCl	1.6000	ć.	0.0163	66	66
46	66	1.0732	6.6	0.0148	20	Jahn.
66	66	1.0418	66	0.0144	6.6	46
Sodium	NaCl	1.2051	66	0.0180	15	Becquerel.
	66	1.1058	66	0.0155	66	46
	66	1.0546	66	0.0144	20	Jahn.
	66	1.0418	66	0.0144	"	66
Strontium	SrCl ₂	1.1921	66	0.0162	46	66
	. 46	1.0877	66	0.0146	66	46
Tin	SnCl ₂	1.3280	66	0.0266	15	Verdet.
66	66 .	1.1637	66	0.0198	66	46
Zinc	ZnCl ₂	1.2851	66	0.0175	66	46
66	"	1.1595	66	0.0161	66	66
Chromate of potassium.	K ₂ CrO ₄	1.3598	66	0.0098	66	66
Bichromate of ".	$K_2Cr_2O_7$	1.0786	"	0.0126	66	66
Cyanide of mercury .	Hy(CN) ₂	1.0638	66	0.0136	16	Schönrock.
66 66 66	66	1.0425	46	0.0134	66	46
Iodides:		1.0005		0.0135		
Ammonium	NH ₄ I	1.5948	66	0.0396	15	Perkin.
66	"	1.5688	66	0.0386	1	66
"	66	1.5109	66	0.0358	66	66
	GAT.	1.2341	66	0.0235	1	Jahn.
Cadmium	CdI "	1.5156	46	0.0291	20	Jann.
66	66	1.1521	66	0.0213	66	66
Potassium	KI	1.6743	66	0.0338	15	Becquerel.
	"	1.3398	66	0.0237	66	66
	"	1.1705	66	0.0182	66	66
66	66	1.0871	66	0.0152	20	Jahn.
	"	1.2380	66	0.0211	"	jaiii.
Sodium	NaI	1.1939	46	0.0200	66	66
**	66	1.1191	66	0.0175	66	66
			1		1	1

TABLE 305. - Solutions of Acids and Salts in Water.

Substance.	Chemical formula.	Density, grammes per c. c.	Kind of light.	Verdet's constant in minutes.	Temp.	Authority.
Nitrates: Ammonium Potassium Sodium Uranium " " Sulphates: Ammonium " (acid) Barium " Cadmium " Lithium " Manganese " Potassium Sodium	NH4NO3 KNO3 NaNO3 U2O3.N2O5 "" (NH4)2SO4 NH4.HSO4 BaSO4 "CdSO4 "Li2SO4 "MnSO4 "K2SO4 NaSO4	1.2803 1.0634 1.1112 2.0267 1.7640 1.3865 1.1963 1.2286 1.4417 1.1788 1.0938 1.1762 1.0890 1.1762 1.0942 1.2441 1.1416 1.0475 1.0661	D	0.0121 0.0130 0.0131 0.0053 0.0078 0.0105 0.0115 0.0140 0.0085 0.0134 0.0133 0.0136 0.0137 0.0135 0.0136 0.0133	15 20	Perkin. "Becquerel. "" Perkin. "" Jahn. "" "" "" "" "" "" "" "" ""

TABLE 306. - Solutions of Salts in Alcohol.

Substance.	Chemical formula.	Density, grammes per c. c.	Kind of light.	Verdet's constant in minutes.	Temp.	Authority.
Cadmium bromide	CdBr ₂ " CaBr ₂ " SrBr ₂ " CdCl ₂ SrCl ₂ " CdI ₂ "	1.0446 0.9420 0.9966 0.8846 0.9636 0.8814 0.8303 0.8313 0.8274 1.0988 0.9484	D " " " " " " " " " " " " " " " " " " "	0.0159 0.0140 0.0154 0.0130 0.0140 0.0126 0.0118 0.0118 0.0117 0.0199 0.0156	20 44 46 46 46 46 46 46 46 46 46 46 46 46	Jahn.

TABLE 307. - Solutions in Hydrochloric Acid.

Substance.	Chemical formula.	Density, grammes per c. c.	Kind of light.	Verdet's constant in minutes.	Temp.	Authority.
Antimony trichloride	SbCl ₃ " " BiCl ₃ "	2.4755 1.8573 1.5195 1.3420 2.0822 1.6550 1.4156	D "" "" "" "" "" "" "" "" "" "" "" "" ""	0.0603 0.0449 0.0347 0.0277 0.0396 0.0359 0.0350	15 " " "	Becquerel. "" "" "" "" "" ""

Gases.

Substance.	Pressure.	Temp.	Verdet's constant in minutes.	Authority.
Atmospheric air	Atmospheric 74 cms. Atmospheric " " " " 246 cms.	Ordinary 70° C. Ordinary " " 20° C.	6.83 × 10 ⁻⁶ 13.00 " 23.49 " 34.48 " 6.92 " 16.90 " 6.28 " 31.39 " 38.40 "	Becquerel. Bichat. Becquerel. " " " Bichat.

Du Bois discusses Kundt's results and gives additional experiments on nickel and cobalt. He shows that in the case of substances like iron, nickel, and cobalt which have a variable magnetic susceptibility the expression in Verdet's equation, which is constant for substances of constant susceptibility, requires to be divided by the susceptibility to obtain a constant. For this expression he proposes the name "Kundt's constant." These experiments of Kundt and Du Bois show that it is not the difference of magnetic potential between the two ends of the medium, but the product of the length of the medium and the induction per unit area, which controls the amount of rotation of the beam.

TABLE 309.

VERDET'S AND KUNDT'S CONSTANTS.

The following short table is quoted from Du Bois' paper. The quantities are stated in c. g. s. measure, circular measure (radians) being used in the expression of "Verdet's constant" and "Kundt's constant."

N. ()	Magnetic	Verdet's co	enstant.	Wave-length	Kundt's
Name of substance.	susceptibility.	Number. Authority.		of light in cms.	constant.
Cobalt	+ 0.0126 × 10 ⁻⁵ - 0.0751 " - 0.0694 " - 0.0633 " - 0.0566 " - 0.0541 " - 0.0876 " - 0.0716 " - 0.0982 "	0.000179 × 10 ⁻⁵ 0.302	Becquerel. Arons Becquerel. De la Rive. Becquerel. Rayleigh. Becquerel.	6.44×10 ⁻⁵ 6.56 ' 5.89 " " " " "	3.99 3.15 2.63 0.014 -4.00 -5.4 -5.6 -5.8 -14.9 -17.1 -17.7

TABLE 310.

MACNETIC SUSCEPTIBILITY OF LIQUIDS AND CASES.

The following table gives a comparison by Du Bois * of his own and some other determinations of the magnetic susceptibility of a few standard substances. Verdet's and Kundt's constants are in radians for the sodium line D.

Substance.	Verdet's constant.	Farac val k×	ue		cquerel's value ½ × 10 ⁶	Wähner's value k×10 ⁶
Water	3.77 × 10	-6 —o.	69	— 0.63		— 0.536
Alcohol, C ₂ H ₆ O	3.30 "	— o.	57	-	-0.49	-o.388
Ether, C ₄ H ₁₀ O	3.15 "	0.	54		-	-0.360
Carbon disulphide	12.22 "	0.	72	-	-0.84	-0.465
Oxygen at 1 atmosphere .	0.00179"	0.00179 " 0.13			0.12	-
Air at 1 atmosphere	0.00194"	0.024			0.025	-
	Quincke :	at 20° C.	Du Bois			5° C.
Substance.	Density.	k× 10 ⁶	Dens	sity.	k × 106	Kundt's constant.
Water	0.9983	-0.815	0.99	92	0.837	7 —4.50
Alcohol, C ₂ H ₆ O	0.7929	-0.660	0.79	63	-0.694	-4.75
Ether, C ₄ H ₁₀ O	0.7152	0.607	0.72	50	0.642	-4.91
Carbon disulphide	1.2644 —0.72		1.26	92	-0.816	5 -14.97
Oxygen at 1 atmosphere .	-	-	0.00	135	0.117	0.016
Air at 1 atmosphere	-	-	0.00	123	0.024	180.0

TABLE 311.

VALUES OF KERR'S CONSTANT.

Du Bois has shown that the rotation of the major axis of vibration of radiations normally reflected from a magnet is algebraically equal to the normal component of magnetization multiplied into a constant K. He calls this constant, K, Kerr's constant for the magnetized substance forming the magnet.

Color of light.	Spectrum	Wave- length	Kerr's constan	nt in minutes pe	r c. g. s. unit of	magnetization.
Color of light.	line.	in cms. × 10 ⁶	Cobalt.	Nickel.	Iron.	Magnetite.
Red	Lia	67.7	-0.0208	-0.0173	-0.0154	+0.0096
Red		62.0	-0.0198	-0.0160	0.0138	+0.0120
Yellow	D	58.9	-0.0193	-0.0154	-0.0130	+0.0133
Green	ь	51.7	-0.0179	-0.0159	0.0111	+0.0072
Blue	F	48.6	-0.0180	-0.0163	-0.0101	+0.0026
Violet	G	43.1	-0.0182	-0.0175	-0.0089	-

^{* &}quot; Wied. Ann." vol. 35, p. 163.

[†] H. E. J. G. Du Bois, "Phil. Mag." vol. 29.

EFFECT OF MACNETIC FIELD ON THE ELECTRIC RE-SISTANCE OF BISMUTH.*

TABLE 312. - Resistance One Ohm for Zero Field and Various Temperatures.

This table gives the resistance to the flow of a steady electric current when conveyed across a magnetic field of the strength in c. g. s. units given in the first column if the wire has a resistance of one ohm at the temperature given at the top of the column when the field is of zero strength.

Temp. C.=	0°	10 °	18 °	30 °	50 °	80 °	
Field.		Resistance.					
000 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 15000 20000 25000 35000 40000	1.000 1.018 1.045 1.088 1.135 1.185 1.240 1.304 1.365 1.423 1.480 1.743	1.000 1.019 1.050 1.094 1.153 1.214 1.274 1.340 1.406 1.467 1.535 1.875 2.507 2.846	1.000 1.018 1.045 1.084 1.131 1.183 1.242 1.295 1.358 1.417 1.480 1.785 2.087 2.393 2.704 3.031 3.369	1.000 1.017 1.041 1.074 1.118 1.156 1.202 1.258 1.308 1.355 1.409 1.665 1.927 2.193	1.000 1.014 1.034 1.055 1.085 1.113 1.148 1.190 1.223 1.266 1.303 1.505 1.713 1.931	1.000 1.007 1.015 1.032 1.050 1.074 1.100 1.127 1.154 1.182 1.203 1.343 1.490 1.804	

TABLE 313. — Resistance One Ohm for Zero Field and Temperature Zero Centigrade.

This table gives the resistance in different magnetic fields and at different temperatures of a wire, the resistance of which is one ohm at o° C., when the magnetic field is zero. The current is supposed to be steady and to flow across the field.

Temp. C.=	0,5	10 °	18 °	30°	50 °	80°	
Field.		Resistance.					
0000 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 15000 20000 25000	1.000 1.018 1.045 1.088 1.135 1.185 1.240 1.304 1.365 1.423 1.480 1.743	1.037 1.057 1.089 1.134 1.198 1.260 1.323 1.392 1.458 1.523 1.523 1.592 1.946 2.295 2.645	1.072 1.091 1.118 1.162 1.210 1.265 1.327 1.385 1.453 1.515 1.583 1.907 2.243 2.560	I.115 I.129 I.156 I.198 I.246 I.290 I.34I I.404 I.460 I.509 I.573 I.860 2.148 2.445	1.200 1.217 1.241 1.266 1.302 1.335 1.379 1.428 1.465 1.520 1.562 1.805 2.055 2.320	1.332 1.341 1.352 1.375 1.397 1.428 1.464 1.500 1.536 1.573 1.610 1.784 1.980 2.157	

^{*} Calculated from the results of J. B. Henderson's experiments, "Phil. Mag." vol. 38, p. 488.

SPECIFIC HEATS OF VARIOUS SOLIDS AND LIQUIDS.*

Solids.				
Substance.	Temperature in degrees C.	Specific heat.	Authority.	
Alloys: Bell metal Brass, red "yellow. 80 Cu + 20 Sn 88.7 Cu + 11.3 Al German silver Lipowitz alloy: 24.97 Pb + 10.13 Cd + 50.66 Bi + 14.24 Sn ditto Rose's alloy: 27.5 Pb + 48.9 Bi + 23.6 Sn ditto Wood's alloy: 25.85 Pb + 6.99 Cd + 52.43 Bi + 14.73 Sn ditto (fluid) Miscellaneous alloys: 17.5 Sb + 29.9 Bi + 18.7 Zn + 33.9 Sn 37.1 Sb + 62.9 Pb 39.9 Pb + 60.1 Bi ditto (fluid) 63.7 Pb + 36.3 Sn 46.7 Pb + 53.3 Sn 46.9 Bi + 53.1 Sn CdSn ₂ Basalt Calcspar Diamond " " " Gas coal Glass, crown " flint " " " " " " " " Gas coal Glass, crown " flint " " " " " " " " " " " " " " " " " " "	15-98 0 0 14-98 20-100 0-100 5-50 100-150 -77-20 20-89 5-50 100-150 20-99 10-98 16-99 144-358 12-99 10-99 20-99 20-99 20-99 20-99 20-99 10-98 16-48 -50.5 10.7 140.0 206.0 606.7 985 20-1040 10-50 10-50 10-50 10-50 10-50 10-50 10-50 10-50 10-50 17-213 0-100 -50.3 10.8	0.0858 .08991 .08831 .0862 .10432 .09464 .0345 .0426 .0356 .0552 .0352 .0426 .05657 .03880 .03165 .03500 .04073 .04507 .04001 .04504 .05537 .2024 .206 .0635 .1128 .2218 .2733 .4408 .4589 .3145 .161 .117 .186 .1726 .2143 .1920 .1138 .1604	R L R L R L S M S M R R W K H W H M R W I & B H W W	
46	138.5 201.6 641.9 977.0 16–1040	.1004 .2542 .2966 .4450 .4670 .310	" " " D	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				

^{*} Condensed from more extensive tables given in Landolt and Börnstein's "Phys. Chem. Tab."

SPECIFIC HEATS OF VARIOUS SOLIDS AND LIQUIDS.

Substance.	Temperature in degrees C.	Specific heat.	Authority.
Gypsum Ice " India rubber (Para) Marble, white " gray Paraffin " " " fluid Quartz " Sulphur, cryst. Vulcanite	16-46 -78-0 -30-0 -21-1 ? -100 16-98 23-98 -20-3 -19-20 0-20 35-40 60-63 0 359 400-1200 17-45 20-100	0.259 .4627 .505 .5017 .481 .2158 .2099 .3768 .5251 .6939 .622 .712 .1735 .2786 .305 .163	K R P G & T R " R W " B " Pn " K A M
Liquids.			
Alcohol, ethyl " " " " methyl " " " Benzene " " Ethyl ether Glycerine Oils, castor " citron " olive " sesame " turpentine Petroleum CuSO ₄ + 50 H ₂ O " + 200 H ₂ O KOH + 30 II ₂ O " + 200 H ₂ O NaOH + 50 H ₂ O " + 200 H ₂ O NaOH + 50 H ₂ O " + 200 H ₂ O NaCI + 10 H ₂ O NaCI + 10 H ₂ O Sea water: density I.0043 " " I.0235 (about normal) " " I.0463	20 0 40 5-10 15-10 15-10 10 40 0 15-50 - 5-4 6.6 - 0 21-58 12-15 12-14 13-17 20-52 20-52 18 18 18 18 18 18 18 18 18 18 18 18 18	0.5053 -5475 -6479 -5901 -6009 -3402 -4233 -5290 -576 -434 -438 -471 -387 -4106 -511 -848 -951 -975 -842 -952 -876 -975 -842 -952 -975 -942 -983 -791 -978 -980 -938 -903	R " " " " " " " " " " " " " " " " " " "
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			

SPECIFIC HEAT OF METALS.*

Metal.	Temperature in degrees C.	Specific heat.	Authority.	Metal	Temperature in degrees C.	Specific heat.	Authority.
Aluminium "" Antimony "" Bismuth "fluid Cadmium Chromium (?) Cobalt "" Copper "" "" Gold Iridium Iron "" "" Lead "" "" Lead "" "" Lithium Magnesium	20 100 200 300 15 100 200 300 0 20-84 280-380 21 100 200 300 0-100 22-51 9-97 500 1000 0 50 17 100 200 300 0-100 0-100 0-1400 15 100 200 300 720-1000 1000-1200 -78-11 15 100 200 310 360 27-99 0	0.2135 .2211 .2306 .2401 .04890 .05031 .05198 .05366 .03013 .0305 .0363 .0551 .0570 .0594 .0617 .10674 .14516 .204 .08988 .09166 .09244 .09422 .09634 .09846 .0316 .0323 .0401 .1151 .1249 .1376 .17645 .32431 .19887 .03065 .02993 .03108 .03244 .03556 .04096 .04096 .04096 .04096 .03108 .03244 .03556 .0409	N" " " LKPN" " BKRP" L. N" " V" " N" " " P" " " RN" " S" RL"	Manganese Mercury: solid "" "" Nickel "" "" Palladium "" "" "" "" "" "" "" "" "" "" "" "" ""	14-97 -78 to -40 20-50 0 100 200 250 14-97 100 300 500 800 1000 0-1265 -78-20 0-100 0-78-5-23 0-100 23 100 200 300 800 907-1100 -79.5-17 -28-6 -78-20 0 50 75 250-350 250 1100 0-100 18 190 200 300 300 300 300	0.1217 .03192 .03312 .03337 .03284 .03235 .03212 .10916 .11283 .14029 .12988 .1484 .16075 .0592 .0714 .03037 .0323 .0365 .0377 .0388 .03854 .03854 .03854 .03896 .0559 .05498 .05663 .05691 .076 .0748 .2830 .2934 .05594 .05663 .05594 .05663 .05594 .05663 .05799 .05663 .05799 .05663 .05799 .05663 .05799 .05663 .05799 .05663 .05799 .05663 .05799 .0758 .0935 .0915 .0951 .0996 .1040	R "WN" " " " " " " " " " " " " " " " " "
"							

 $\begin{array}{lll} B = Bunsen, & K = Kopp, & L = Lor \\ P = Person, & Pn = Pionchon, \\ S = Schiiz, & Sp = Spring. \end{array}$

^{*} Condensed from Landolt and Börnstein's "Phys. Chem. Tab."

INDEX.

PAGE	PAGI
Absorption of gases by liquids125	Capillarity (continued).
of solar energy by the atmosphere177	surface-tension of water and alcohol 128
Acceleration, angular and linear, conversion	various liquids
factors for	Carat, definition of
Activity, conversion factors for	Cells, battery246, 247
Aerodynamics; data for the soaring of	secondary247
planes	standard247
data for wind pressure	Chemical elements, boiling and melting
Agonic lines	points of207
Air, specific heat of223	Cobalt, Kerr's constants of291
thermometer	magnetic properties of
Alcohol, density of96–98	Coefficients, isotonic
vapor pressure of126, 225	of diffusion
Alloys, electric conductivity of251-253	of friction135
electric resistance of251-253, 256, 257	of thermal expansion214-218
density of85	of viscosity
specific heat of294	Color scale, Newton and Reinold and
strength of73	Rucker
thermal conductivity of	Combination, heat of202
thermoelectric power of248, 249	Combustion, heat of201
Alternating currents, resistance of wires for . 258	Compressibility, of gases79, 81
Alums, indices of refraction for180	of liquids82
Angles, conversion factors for14	of solids83
Aqueous solutions, boiling-points of196	Conducting power of alloys251-253
vapor, density of	Conductivities, molecular260, 261
pressure of151-154	of electrolytes
Arc spectrum, wave-lengths in	thermal197, 198
Areas, conversion factors for	Contact, difference of potential268
Atmosphere, pressure of vapor in	Conversion factor, definition ofxviii
Atomic weights272	Conversion factors for acceleration, angular18
	acceleration, linear
	activity
Barometer, correction for capillarity124	angles
determination of heights by	areasII
reduction to latitude 45°	capacities12
reduction to sea level121	densities23
reduction to standard temperature120	electric deposition24
Battery cells, composition and electromotive	electric displacement25
force of	electric potential27
Bismuth, electric resistance of, in magnetic	electric resistance23
field293	energy20, 21
Boiling-point, of chemical elements207	film tension20, 22
of various inorganic compounds210	force17
of various organic compounds212	heat, quantities of24
of water, barometric height correspond-	intensity of magnetization26
ing to	lengthII
of water, effect of dissolved salts on196	masses
Brick, strength of70	moment of inertia
British weights and measures, equivalents in	moment of momentum
metric	momentum
	magnetic moment
Canacitica conversion feature for	magnetization, intensity of
Capacities, conversion factors for	magnetization, surface density of26
Capacity, specific inductive263–265	power
Capillarity, of aqueous solutions128	resistance, electric
correction of barometer for124	stress
of liquids as solidifying-point129	temperatures
of soap films129	tension, film or surface20

Conversion (continuea).	Factors, conversion
time, intervals of	formulæ for conversion
velocities	Film-tension, conversion factors for20, 2
volumes12	constants for128, 128
work	Fluor spar, refractive index of18
Critical temperature of gases200	Formulæ for conversion factors, dynamic
Crystals, cubic expansion of216	units
elastic constants of	electric and magnetic units
formulæ for elasticity of	fundamental units
refractive indices of	geometric units
Cubic expansion, gases	heat units
liquids217	Formulæ, dimension (see also <i>Units</i>)xvii-xxii
solids216	Force, conversion factors for
Cyclic magnetization, dissipation of energy	Force de cheval, definition of
in	Fraunhofer lines, wave-lengths of
	Freezing mixtures
	Freezing-point, lowering of, by salts192
Declination, magnetic113-118	Friction, coefficients of
Densities, of air, values of $h/760 \dots 162$	Functions, hyperbolic
alcohol96–98	gamma
alloys and other solids85	Fundamental units
aqueous solutions90	Fusion, latent heat of206
gases	
liquids88	
mercury95	Gamma functions38
metals	Gases, absorption by liquids
organic compounds212	compressibility of
water92-94	critical temperatures of200
woods	density and specific gravity of86
Density, conversion factors for23	expansion of
Dew-points, table for calculating158	magnetic susceptibility of
Diamonds, unit of weight for	magneto-optic rotation in 291
Dielectric strength244, 245	refractive indices of
Diffusion of gases and vapors149	specific heat of
liquids and solutions	thermal conductivity of
Dilution of solution, contraction due to 134	viscosity of
Dimension formulæ (see also Units)xvii	volume of perfect (values of $1 + .00367 t$)
Dip, magnetic	164-168
Dynamic units, dimension formulæ ofxvii	Gauges, wire 58-68
formulæ for conversion of2	Geometric units, conversion formulæ for
Dynamical equivalent of thermal unit219	Glass, electric resistance of
	indices of refraction for 178, 179
· ·	Gravity, force of102-104
Earth, miscellaneous data concerning 106	
Elasticity, moduli of74-78	
Electric conductivity of alloys251, 252	Harmonics, zonal40
of metals	Heat, conversion factors for quantities of 24
relation to thermal271	latent heat of fusion206
constants of wires	latent heat of vaporization204
displacement25	mechanical equivalent of220
potential, conversion factors for27	units, conversion factors for24
resistance, conversion factors for23	dimension formulæ forxxii
resistance, effect of elongation on258	formulæ for conversion factors of
units, conversion factors for3	Heats of combustion and combination 201, 202
units, dimension formulæxxv	Heights, determination by barometer 169
Electrochemical equivalents and atomic	Humidity, relative161
weights272	Hydrogen thermometer233
of solutions	Hyperbolic cosines29-31
Electrolytes, conductivities of259	Hyperbolic functions28-35
Electrolytic deposition, conversion factors for .24	Hyperbolic sines28–30
Electromagnetic system of unitsxxix	Hysteresis, magnetic280–283
Electromotive force of battery cells246, 247	
Electrostatic system of unitsxxvi	
Electrostatic unit of electricity, ratio of, to	Iceland spar, refractive index of
electromagnetic243	Indices of refraction for alums
Elliptic integrals43	crystals
Elongation, effect on resistance of wires258	fluor spar
Emissivity234, 235	gases and vapors190
Energy, conversion factors for20, 21	glass
Equivalent, electrochemical272	Iceland spar
electrochemical of solutions259	liquids, various
mechanical, of heat	metals and metallic oxides
CADAUSIUM IMPERMAT 214 218	monorefringent solids

Indices of refraction for alums (continued).	Melting-points (continued).
quartz186	of mixtures and alloys21
rock salt182	of organic compounds
solutions of salts188 sylvine182	Mercury, density of
Inductance, mutual42	index of refraction
Integrals, elliptic43	specific heat of22
Intensity, horizontal, of earth's magnetic field	strength of70
112	Metals, density of8
total, of earth's magnetic field	electric resistance of
Iron, elasticity and strength of	specific heat of
hysteresis in	thermal conductivity of
Isotonic coefficients	tion for
	Metre, definition ofxv
	Metric weights and measures —
Jewels, unit of weight for	equivalents in British
Joule's equivalent220	equivalents in United States
	Mixtures, freezing
Kerr's constant, definition and table of 292	Molecular conductivities261, 26:
Kilogramme, definition ofxvi	Moments of inertia, conversion factors for 1
Kundt's constants291	Moment of momentum, conversion factor
definition of291	for10
	Momentum, conversion factors for
Totant host	Mutual inductance, table for calculating4
Least squares, various tables for35, 37	
Legalization of practical electric unitsxxxiv	Neutral-points, thermoelectric
Length, conversion factors for	Newton's rings and scale of colors130
Light, velocity of	Nickel, Kerr's constants for29
rotation of plane of polarized191	magnetic properties of279
Linear expansion of chemical elements214	
of various substances	Ohm manious determinations of
Liquids, absorption of gases by	Ohm, various determinations of
density of88	Osmose and Osmotic pressure
magneto-optic rotation in286, 287	
magnetic susceptibility292	Pearls, unit of weight for
refractive indices of	Peltier effect250
specific heat of295	Pendulum, length of seconds104, 10
thermal conductivity of	Permeability, magnetic
thermal expansion of	Photometric standards
Lowering of freezing-point by saits	Poisson's ratio70
	Polarized light, rotation of the plane of19
Magnetic field, effect of, in resistance of bis-	Potential, contact difference of268
muth	difference of, between metals in solu-
moment, conversion factors for27	tions
permeability	electric, conversion factors for2
properties of cobalt, manganese steel, magnetite and nickel279	Pound, definition ofxv Power, conversion factors for19, 2
properties of iron and steel276	Practical electrical unitsxxxii
saturation values for steel279	Pressure, barometric, for different boiling-
susceptibility of liquids and gases292	points of water
units, conversion formulæ for3	critical, of gases200
dimension formulæ forxxv	effect on radiation230
Magnetism, conversion factors for surface	of aqueous vapor
density	at low temperatures
Magnetization, conversion factors for inten-	of mercury column
sity of26	osmotic
Magnetite, Kerr's constant for292	of vapors126, 225-227
magnetic properties of279	of wind
Magneto-optic rotation, general reference to	Probability, table for calculating36
tables of285-291	
Masses, conversion factors for	Quartz, fibres, strength of70
Materials, strength of70-73	refractive index of
Measurement, units ofxv	
Mechanical equivalent of heat220	7 11 15 16 16
Melting-points of chemical elements 207	Radiation, effect of pressure on230
of inorganic compounds2c8	Relative humidity

300 INDEX.

Resistance (see also Conductivity), electric.	Terrestrial magnetism (continued).
of alloys251–253, 256, 257	horizontal intensity and its secular varia-
of electrolytes259	tion for different latitudes and longi-
of glass and porcelain270	tudes
of metals and metallic wires254-257	secular variation of declination113-116
of wires, effect of elongation on258	Thermal conductivities197, 198
Rigidity, modulus defined74	relation to electrical271
of metals74	expansion, coefficients of214-218
variation of, with temperature76	units, dynamic equivalent of219
Rotation, magneto-optic284-291	Thermoelectricity248-250
	Thermometer
	air228, 231
Saturation values, magnetic, for steel279	correction of, for mercury in stem232
Seconds pendulum, length of104, 105	hydrogen231
Secondary batteries247	mercury in glass229
Sections of wires44-54, 58-68	zero change due to heating229
Sheet metal, weight of	zero, change of, with time230
Soaring of planes, data for	Timber, strength of70
Solar constant	Time, unit of, definedxvii
Solar spectrum, wave-length in	Times, conversion factors for14
Solids, compressibility and bulk moduli of 83	Transformers, permeability of
density of85	iron in274, 275, 280, 282
magneto-optic rotation in	Units of measurement
Solution, contraction produced by131–134	Units of measurementxv
Solutions, aqueous, boiling-points of 196	dimension formulæ for dynamic xviii
density of90	electric and magneticxxv
magneto-optic rotation in288-290	electromagneticxxix
refractive indices for188	electrostaticxxvi
specific heat of224	fundamental2
Sound, velocity of, in air99	heatxxiii
in gases and liquids	practical, legalization of electricxxxiii
in solids100	ratio of electrostatic to electromagnetic
Specific electrical resistance, conversion fac-	243
tors for23, 254-256	United States weights and measures in
Specific gravity (see also <i>Density</i>).	metric9
of aqueous ethyl alcohol96	
methyl alcohol97	
of gases89	Vapor, density of aqueous155
Specific heat of air223	diffusion of149
of gases and vapors224	pressure of
of metals296	pressure of aqueous151-154
of solids and liquids294, 295	values of 0.378 e160
of water223	pressure of, for aqueous solutions194
of water, formulæ for222	refractive indices for190
Specific inductive capacity263-265	specific heats of224
viscosity, aqueous solutions144	Vaporization, latent heat of204
oils	Velocity, angular and linear, conversion fac-
water136	tors for
Spectra, wave-lengths in arc and solar172	of light176, 243
Standard cells247	of sound99, 101
wave-lengths of light	Verdet's constants for alcoholic solution of
Standards, photometric	salts290
Steel, physical properties of71	aqueous solutions of salts287
Steam, properties of saturated237	gases291
Steinmetz, constants for hysteresis of281	hydrochloric acid solutions of salts 200
Stone, strength of70	liquids and solids285-287
thermal conductivity of	and Kundt's constants292
dielectric244	Viscosity, coefficient, definition of
Strength of materials70-73	coefficient of, for aqueous alcohol137
Stress, conversion factors for	for gases146
Surface-tension, constants of128, 129	for liquids
conversion factors for20, 22	temperature effect on, for liquids139
Sylvine, refractive index of	specific, for oils
James, Common of the Common of	for water
	Volumes, conversion factors for12
Temperature, conversion factors for25	critical, of gases200
critical, of gases200	Carried of Buscott in the carried of
Terrestrial magnetism, agonic lines117	
declination, data for maximum east at	Water, boiling-point for various barometric
various stations	pressures
dip and its secular variation for differ-	density of92–94
ent latitudes and longitudesIII	specific heat of222, 223

viscosity of	Wire, gauges
Metric to British Imperial5, 6	Yard, definition ofxv Young's moduli
United States to Metric	

