Apriori Algorithm

The Apriori algorithm is used to find frequent patterns or itemsets in a dataset and then to discover interesting association rules from those patterns. Here $\hat{a} \in TM$ s a simple step-by-step explanation:

Key Concepts

1. Support:

- What it is: The number of times an item or itemset appears in the dataset.
- Why it matters: It helps us find frequent items that appear together often.

2. Confidence:

- What it is: The likelihood that item B is purchased when item A is purchased.
- **o** Why it matters: It shows the strength of an association rule.

3. Lift:

- **What it is:** It compares the observed support to the expected support if A and B were independent.
- Why it matters: It helps us understand how much more likely item B is to be bought when item A is bought.

Algorithm Steps

1. Find Frequent Items:

O Start by finding items that appear frequently in the dataset.

2. Generate Candidate Itemsets:

• Create combinations of these frequent items to see which pairs (or groups) appear frequently together.

3. Prune Infrequent Itemsets:

O Remove the item combinations that do not appear often enough.

4. Repeat:

O Keep combining itemsets and checking their frequency until no more frequent itemsets can be found.

5. Generate Association Rules:

• Create rules that show the relationship between items (e.g., if a customer buys item A, they are likely to buy item B).

Example

Imagine a store's transaction dataset:

Transaction ID	Items
1	Milk, Bread
2	Milk, Diaper, Beer
3	Milk, Bread, Diaper

4	Bread, Diaper
5	Milk, Bread, Beer

- Step 1: Find frequent items (e.g., Milk, Bread, Diaper, Beer).
- Step 2: Combine these items to see which pairs appear frequently (e.g., Milk & Bread).
- Step 3: Remove pairs that do not meet the minimum frequency requirement.
- Step 4: Repeat for larger combinations until no more frequent itemsets are found.
- Step 5: Create rules like "If a customer buys Milk, they are likely to buy Bread."

ECLAT Algorithm

The ECLAT algorithm is another method for finding frequent itemsets but works differently. It focuses on transactions (or lists of transaction IDs) rather than individual items.

Key Concepts

- 1. Tidset (Transaction ID Set):
 - What it is: A list of transaction IDs where a specific item appears.
 - Why it matters: It helps quickly find common items in transactions.
- 2. Intersection:
 - What it is: Finding common transaction IDs between different items.
 - Why it matters: It helps find items that frequently appear together.

Algorithm Steps

- 1. Convert Dataset to Transaction ID Lists:
 - O For each item, create a list of transaction IDs where that item appears.
- 2. Find Frequent Itemsets:
 - O Start with single items and find common transaction IDs between them to form item pairs.
- 3. Repeat:
 - O Continue combining items and finding common transaction IDs until no more frequent itemsets are found.

Example

Using the same store' s transaction dataset:

Transaction ID	Items
1	Milk, Bread
2	Milk, Diaper, Beer
3	Milk, Bread, Diaper
4	Bread, Diaper

5 Milk, Bread, Beer

- **Step 1**: Convert to transaction ID lists:
 - o Milk: $\{1, 2, 3, 5\}$
 - o Bread: $\{1, 3, 4, 5\}$
 - o Diaper: $\{2, 3, 4\}$
 - o Beer: $\{2, 5\}$
- Step 2: Find common transaction IDs (e.g., Milk & Bread are in transactions {1, 3, 5}).
- **Step 3**: Combine items and find common transaction IDs until no more frequent itemsets are found.

Summary

- Apriori:
 - O Uses the frequency of itemsets to find associations.
 - O Combines items step-by-step and removes infrequent combinations.
 - O Generates rules showing relationships between items.
- ECLAT:
 - O Uses transaction IDs to find frequent itemsets.
 - O Focuses on finding common transactions for item combinations.
 - o More efficient for larger datasets.

Apriori Algorithm

The Apriori algorithm is used to find frequent patterns or itemsets in a dataset and then to discover interesting association rules from those patterns. Here $\hat{a} \in \mathbb{T}^{M}$ s a simple step-by-step explanation:

Key Concepts

- 1. Support:
 - o What it is: The number of times an item or itemset appears in the dataset.
 - **o** Why it matters: It helps us find frequent items that appear together often.
- 2. Confidence:
 - What it is: The likelihood that item B is purchased when item A is purchased.
 - Why it matters: It shows the strength of an association rule.
- 3. Lift:
 - What it is: It compares the observed support to the expected support if A and B were independent.
 - Why it matters: It helps us understand how much more likely item B is to be bought when item A is bought.

Algorithm Steps

1. Find Frequent Items:

O Start by finding items that appear frequently in the dataset.

2. Generate Candidate Itemsets:

• Create combinations of these frequent items to see which pairs (or groups) appear frequently together.

3. Prune Infrequent Itemsets:

O Remove the item combinations that do not appear often enough.

4. Repeat:

O Keep combining itemsets and checking their frequency until no more frequent itemsets can be found.

5. Generate Association Rules:

• Create rules that show the relationship between items (e.g., if a customer buys item A, they are likely to buy item B).

Example

Imagine a store' s transaction dataset:

Transaction ID	Items
1	Milk, Bread
2	Milk, Diaper, Beer
3	Milk, Bread, Diaper
4	Bread, Diaper
5	Milk, Bread, Beer

- **Step 1**: Find frequent items (e.g., Milk, Bread, Diaper, Beer).
- Step 2: Combine these items to see which pairs appear frequently (e.g., Milk & Bread).
- Step 3: Remove pairs that do not meet the minimum frequency requirement.
- Step 4: Repeat for larger combinations until no more frequent itemsets are found.
- Step 5: Create rules like "If a customer buys Milk, they are likely to buy Bread."

ECLAT Algorithm

The ECLAT algorithm is another method for finding frequent itemsets but works differently. It focuses on transactions (or lists of transaction IDs) rather than individual items.

Key Concepts

1. Tidset (Transaction ID Set):

- What it is: A list of transaction IDs where a specific item appears.
- Why it matters: It helps quickly find common items in transactions.

2. Intersection:

- What it is: Finding common transaction IDs between different items.
- **o** Why it matters: It helps find items that frequently appear together.

Algorithm Steps

1. Convert Dataset to Transaction ID Lists:

O For each item, create a list of transaction IDs where that item appears.

2. Find Frequent Itemsets:

O Start with single items and find common transaction IDs between them to form item pairs.

3. Repeat:

O Continue combining items and finding common transaction IDs until no more frequent itemsets are found.

Example

Using the same store' s transaction dataset:

Transaction ID	Items
1	Milk, Bread
2	Milk, Diaper, Beer
3	Milk, Bread, Diaper
4	Bread, Diaper
5	Milk, Bread, Beer

• **Step 1**: Convert to transaction ID lists:

o Milk: $\{1, 2, 3, 5\}$

o Bread: $\{1, 3, 4, 5\}$

o Diaper: $\{2, 3, 4\}$

o Beer: $\{2, 5\}$

- Step 2: Find common transaction IDs (e.g., Milk & Bread are in transactions {1, 3, 5}).
- **Step 3**: Combine items and find common transaction IDs until no more frequent itemsets are found.

Summary

• Apriori:

- Uses the frequency of itemsets to find associations.
- O Combines items step-by-step and removes infrequent combinations.
- O Generates rules showing relationships between items.

• ECLAT:

- O Uses transaction IDs to find frequent itemsets.
- o Focuses on finding common transactions for item combinations.
- O More efficient for larger datasets.