Seguridad de la Información

Una introducción con enfoque práctico

Ing. Mariano Aliaga

Universidad Católica de Córdoba - Facultad de Ingeniería

2021

Panorama General

- Port Scanning
 - Tipos de scanning
 - Herramientas

- Packet Sniffing
 - Tipos de sniffing
 - Herramientas

Port Scanning

Port Scanning: es una técnica mediante la cual se realiza un barrido de los puertos TCP y/o UDP de un determinado host, en busca de puertos abiertos que permitan conectarse a algún servicio.

- Cada puerto con un servicio escuchando es una potencial puerta de entrada al equipo atacado.
- Los servicios "mayores" utilizan una serie de puertos conocidos (well-known ports).
 - http://www.iana.org/assignments/port-numbers
- Mediante herramientas de port scanning se puede buscar una lista de puertos, un rango, o todos los posibles puertos TCP y UDP.

Port Scanning Encabezado TCP

Source Port (16)			Destination Port (16)	
Sequence Number (32)				
Acknowledgement Number (32)				
Data offset	Reserved (6)	Flags (6)	Window (16)	
Checksum (16)			Urgent (16)	
Options and Padding				
Data (Varies)				

TCP Connect Scan: intenta completar la negociación de tres vías (3-way handshake) con cada puerto buscado en el equipo "target".

- Puerto Abierto: se completa correctamente la negociación.
- Puerto Cerrado: el target devuelve un RESET, ICMP Port Unreachable o nada.
- Ventajas: comportamiento estándar, no produce fallas en el target.
- Desventajas: fácil de detectar.

TCP SYN Scan: completa sólo los dos primeros pasos de la negociación: envía SYN y espera el SYN-ACK correspondiente.

- Puerto Abierto: se recibe SYN-ACK.
- Puerto Cerrado: el target devuelve un RESET, ICMP Port Unreachable o nada.
- Ventajas: es menos detectable y más rápido.
- Desventajas: algunos equipos viejos o desactualizados pueden fallar ante este tipo de scanning, produciéndose un DoS.

Tipos de scanning TCP FIN Xmas Tree y Null

TCP FIN Scan: envía paquetes de finalización de la conexión (FIN) sin que la conexión exista.

- Puerto Abierto: no se recibe nada.
- Puerto Cerrado: el sistema target responde con un RESET (especificación TCP).

TCP Xmas Tree Scan: envía paquetes con todos los bits de control activados (URG, ACK, PSH, RST, SYN y FIN).

- **Ventajas:** puede pasar a través de algunos routers o firewalls que busquen que bits de control específicos estén activados.
- Desventajas: puede ser detectado por IDS modernos.
- TCP Null Scan: envía paquetes con todos los bits de control desactivados.

TCP ACK Scan: se envían paquetes con el bit ACK activado para que los firewalls crean que son paquetes de respuesta.

FTP Bounce Scan: el atacante utiliza una vieja funcionalidad habilitada en algunos servicios de FTP para ocultarse.

UDP Scan: se envía un paquete UDP a cada puerto.

- Puerto Abierto: se recibe otro paquete UDP.
- Puerto Cerrado: el sistema target responde con un ICMP Port Unreachable.
- Version Scan: luego de identificar los puertos abiertos, intenta determinar qué servicio y versión en particular está escuchando en ellos.
- Ping Sweep: se envían paquetes ICMP Echo Request a una lista o rango de direcciones IP para determinar cuáles tienen hosts activos.
- OS Fingerprinting: se envía una serie de paquetes a varios puertos en el target para, en base a la respuesta recibida, determinar el Sistema Operativo remoto.

Nmap

- Herramienta más popular para scanning.
- Open Source y disponible libremente.
- Corre en los Sistemas Operativos más utilizados (Unix, Linux, Windows)

Nmap

Tipo Scan	Opción línea comandos
TCP Connect	-sT
TCP SYN	-sS
TCP FIN	-sF
TCP Xmas Tree	-sX
Null	-sN
TCP ACK	-sA
FTP Bounce	-b
UDP	-sU
Version	-sV
Ping Sweep	-sP
OS Fingerprint	-0

Packet Sniffing

Packet Sniffer: también conocido como "packet analyzer", "protocol analyzer" o "network analyzer". Es un software o hardware que puede interceptar y registrar el tráfico que pasa a través de una red digital, o parte de ella.

USOS

- Analizar problemas de red.
- Detectar intentos de intrusiones en la red.
- Obtener información para atacar una red.
- Monitorear el uso de red.
- Espiar usuarios u obtener información sensible.
- Hacer ingeniería reversa de protocolos propietarios.

Tipos de sniffing

 Pasivo: consiste en escuchar y capturar el tráfico que pasa por la red. Para ver el tráfico de toda la red, se requiere un dispositivo del tipo hub. No es detectable.

BROADCAST ETHERNET

Tipos de sniffing

 Activo: se lanza un ataque de ARP Spoofing para capturar tráfico en redes con dispositivos como un switch. Es detectable.

ARP Spoofing

ARP Spoofing: también conocido como ARP Poisoning, es una técnica utilizada para atacar a una red Ethernet y que permite al atacante capturar tráfico en una red con switchs. Para ello se envían mensajes ARP falsos, confundiendo así a los hosts y dispositivos de la red.

Prevención: definir una entrada estática en la tabla ARP del equipo con la IP y MAC del gateway por defecto.

TCPDump

tcpdump: herramienta de línea de comandos para analizar el tráfico que circula por la red.

Filtros

- **type:** indica a qué se refiere el nombre o número pasado como parámetro. Tipos posibles son host, net, port y portrange. Ejemplo: 'host foo', 'net 128.3', 'port 20', 'portrange 6000-6008'
- dir: especifica la dirección desde/hacia el nombre o número indicado. Direcciones posibles son src, dst, src or dst, src and dst, etc. Ejemplo: 'src foo', 'dst net 128.3', 'src or dst port ftp'
- **proto:** restringe la búsqueda a un protocolo en particular. Protocolos válidos son: ether, fddi, tr, wlan, ip, ip6, arp, rarp, tcp, udp, etc. Ejemplo: 'ether src foo', 'arp net 128.3', 'tcp port 21', 'udp portrange 7000-7009'

TCPDump

• **Ejemplo 1:** capturar el tráfico de la interfaz eth0 y enviarlo a un archivo

tcpdump -w archivo.cap -ni eth0

• **Ejemplo 2:** capturar el tráfico ICMP de la interfaz wlan0, a excepción del dirigido a la IP 192.168.10.200

tcpdump -ni wlan0 icmp and not host 192.168.10.200

• **Ejemplo 3:** capturar en un archivo el tráfico HTTP o HTTPS de la interfaz wlan0

tcpdump -w captura.cap -ni wlan0 port 80 or port 443

Wireshark

Wireshark: es un analizador de protocolos utilizado para realizar análisis y solucionar problemas en redes de comunicaciones, y como herramienta didáctica para educación. Se caracteriza por tener múltiples herramientas de análisis de tráfico y una completa interfaz gráfica.

Filtros

- Filtros de captura: filtra paquetes durante la captura. Ejemplos:
 - src net 192.168.1.0/24
 - host 10.20.30.1 and not port 80 and not port 22
- Filtros de pantalla: muestra u oculta en la pantalla paquetes de la captura analizada. Ejemplos:
 - tcp.port eq 25
 - ip.addr == 10.43.54.65
 - http.host matches "acme\.(org|com|net)"

Más información

- wireshark.org. Sample captures.
 https://wiki.wireshark.org/SampleCaptures
- freesoft.org. Connected: An Internet Encyclopedia.
 http://freesoft.org/CIE/Course/Section4/8.htm
- **GRAVES, Kimberly.** CEH Official Ethical Hacker Review Guide. Capítulo 6
- SANDERS, Chris. Practical Packet Analysis.
- **SKOUDIS LISTON.** Counter Hack Reloaded, Second Edition: A Step-by-Step Guide to Computer Attacks and Effective Defenses. Capítulos 6 y 8.