Rank of a Matrix

Michael Brodskiy

Professor: Lynn Knight

March 24, 2021

- If **A** is an $m \times n$ matrix: $\begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \dots & a_{mn} \end{bmatrix}$, then row space = subspace of \mathbb{R}^n spanned by rows $\overrightarrow{\mathbf{r}}_1, \overrightarrow{\mathbf{r}}_2, \dots, \overrightarrow{\mathbf{r}}_m$ and column space = subspace of \mathbb{R}^m spanned by columns $\overrightarrow{\mathbf{c}}_1, \overrightarrow{\mathbf{c}}_2, \dots, \overrightarrow{\mathbf{c}}_n$
 - 1. Example: $\begin{bmatrix} 1 & 0 & 1 \\ 2 & 1 & 0 \end{bmatrix}$
 - (a) The row space is the subspace of \mathbb{R}^3 spanned by $\{(1,0,1),(2,1,0)\}$
 - (b) The column space is the subspace of \mathbb{R}^2 spanned by $\{(1,2),(0,1),(1,0)\}$
- Let $\dim(\mathbf{A}) = \dim(\mathbf{B}) = m \times n$ such that \mathbf{A} is row equivalent to \mathbf{B} , then the row space of \mathbf{A} = the row space of \mathbf{B}
- If **A** is row equivalent to **B**, where **B** is in row-echelon form, then the non-zero row vectors of **B** form a basis for the row space of **A**
- If **A** and **B** are row equivalent matrices, then a collection of columns of **A** are linearly independent or dependent iff corresponding columns of **B** are linearly independent or dependent, respectively
- To find a basis for a row space:
 - Reduce A
 - Take non-zero rows in reduced form to create
- To find a basis for a column space:
 - 1. Reduce **A** to **B**
 - 2. Take columns in A that correspond to identity columns in B to form a basis

- ullet The dimension of the column space should equal the dimension of the row space, which is the rank of ${f A}$
- If **A** is an $n \times n$ matrix, then the following are equivalent:
 - 1. $\det(\mathbf{A}) \neq 0$
 - 2. $\overrightarrow{Ax} = \overrightarrow{b}$ has a unique solution for any $n \times 1$ column matrix \overrightarrow{b}
 - 3. $\mathbf{A}\overrightarrow{x} = \overrightarrow{0}$ has a trivial solution only
 - 4. **A** is invertible
 - 5. A is a product of elementary matrices
 - 6. **A** is row equivalent to I_n
 - 7. The rank of \mathbf{A} is n
 - 8. The n rows of \mathbf{A} are linearly independent
 - 9. The n columns of **A** are linearly independent
- Null Space of a Matrix:
 - 1. If **A** is an $m \times n$ matrix, then set of all solutions of homogeneous system of linear equations $\mathbf{A}\overrightarrow{x} = \overrightarrow{0}$ is a subspace of \mathbb{R}^n called the null space of A. That is, $N(\mathbf{A}) = \left\{ \overrightarrow{x} \in \mathbb{R}^n | \mathbf{A}\overrightarrow{x} = \overrightarrow{0} \right\}$. The dimension of the null space is the nullity of \mathbf{A}
- In an $m \times n$ matrix, the nullity plus the rank equals n