Certifiable Controller Synthesis for Underactuated Robotic Systems

From Convex Optimization to Learning-based Control

Lujie Yang Northeast Systems and Control Workshop 05/04/2024

Agenda

Approximate Optimal Controller Synthesis for CartPoles and Quadrotors via Sums-of-Squares

Lujie Yang, Hongkai Dai, Alexandre Amice, Russ Tedrake RA-L 2023

Motivation

- Huge empirical success of RL
 - No formal guarantees
- Some approximate dynamic programming works provide theoretical guarantees
 - Can not scale to complicated robotics system yet
- Synthesize controllers with certifiable optimality and stability guarantees for underactuated robotics systems

SIAM J. CONTROL OPTIM. Vol. 47, No. 4, pp. 1643–166 © 2008 Society for Industrial and Applied Mathematics

NONLINEAR OPTIMAL CONTROL VIA OCCUPATION MEASURES AND LMI-RELAXATIONS*

JEAN B. LASSERRE†, DIDIER HENRION‡, CHRISTOPHE PRIEUR§, AND EMMANUEL TRÉLAT¶

Method – HJB Inequalities

- Intractable to solve exactly
- "Curse of dimensionality"
- Approximately solve with guarantees

$$\forall x, \min_{u \in U} l(x, u) + \frac{\partial J^*}{\partial x} f(x, u) = 0$$

$$\forall x, \min_{u \in U} l(x, u) + \frac{\partial J_{lower}}{\partial x} f(x, u) \ge 0$$

global J_{lower}

$$\forall x, \min_{u \in U} l(x, u) + \frac{\partial J_{upper}}{\partial x} f(x, u) \le 0$$

$$\text{global } J_{upper}$$

Sums of Squares

Lasserre, Jean B., et al. "Nonlinear optimal control via occupation measures and LMI-relaxations." SIAM journal on control and optimization.

Jiang, Y., & Jiang, Z. P. (2015). Global adaptive dynamic programming for continuous-time nonlinear systems. IEEE Transactions on Automatic Control.

Method – Under-Approximation

$$\forall x, \min_{u \in U} l(x, u) + \frac{\partial J_{lower}}{\partial x} f(x, u) \ge 0 \qquad \forall x, u \in U, l(x, u) + \frac{\partial J_{lower}}{\partial x} f(x, u) \ge 0$$

Integral to push up under-approximation

$$\max \int_{X_{int}} J_{lower}(x) \ dx$$
 s.t. $l(x,u) + \frac{\partial J_{lower}}{\partial x} f(x,u) \geq 0$ for $u \in U, x \in X$
$$J_{lower}(x) \geqslant 0$$
 SOS conditions to enforce value-function-like

$$l(x,u) = q(x) + u^T R u \qquad \pi_{lower}(x) = \text{clamp}(-\frac{1}{2}R^{-1}f_2(x)^T \frac{\partial J_{lower}}{\partial x}^T, u_{\min}, u_{\max})$$

Inverted Pendulum

- Input limits = 0.37mgl
- Nontrivial pumping

3-deg J_{upper}

3-deg J_{lower}

Cartpole

 $2-\deg J_{upper}$ 6-deg J_{lower}

3D Quadrotor

2-deg J_{upper}

2-deg J_{lower}

 $x_{init} = [1, 1, 1, \pi, 0.4\pi, \pi, 1, 1, 1, 1, 1, 1]$

Planar Pusher

2-deg J_{lower}

sticking, sliding up and down

teleportation

Lyapunov-stable Neural Control for State and Output Feedback

A Novel Formulation for Efficient Synthesis and Verification

Lujie Yang*, Hongkai Dai*, Zhouxing Shi, Cho-Jui Hsieh, Russ Tedrake, Huan Zhang ICML 2024

Motivation

- Synthesize complex stabilizing controllers with certifiable region of attraction
- Verification for output feedback control

- State feedback
- Can't handle complicated observation function

- Impressive empirical performance
- Brittle, no formal guarantees

Lyapunov-stable NN control [Chang et al. '19, Dai et al. '21]

- NN Verification
- Require expensive solvers:
 MIP, SMT, SDP

Contribution

- Lyapunov-stable NN controller synthesis for both state and output feedback
- Post hoc rigorous NN verification
- Expensive complete solvers → fast empirical falsification + regularization

Visuomotor policy [Levine et al '15, Pete et al '19]

- Impressive empirical performance
- Brittle, no formal guarantees

Lyapunov-stable NN control

[Ya-Chien et al '19, Hongkai et al '21]

- NN Verification
- Require expensive solvers:
 MIP, SMT

Contribution

- Lyapunov-stable NN controller synthesis for both state and output feedback
- Post hoc rigorous NN verification
- Expensive complete solvers → fast empirical falsification + regularization

Novel Formulation

- Easier to train & certify
- Afford control over ROA growth during training

Verification Formulation

Theorem:

- Defines larger ROA inner-approximation
- Removes previous unnecessarily restrictive conditions in uncertified regions

Verifying Existing Neural Lyapunov Models

• DITL uses MIP to verify $\tilde{\mathcal{S}} = \{\xi_t | V(\xi_t) < \min_{\bar{\xi}_t \in \partial \mathcal{B}} V(\bar{\xi}_t) \}$

Training Formulation

- Jointly optimize controller, observer and Lyapunov function, all parameterized with NNs
- Explicitly reason about ROA during training

previous NN verification

train Lyapunov time derivative condition for the entire square

expensive solvers: MIP, SMT, SDP...

ours **ROA**

- train only within certifiable ROA
- cheap projected gradient descent attack
- regularization to ease post-training verification
- GPU-accelerated complete α , β -CROWN NN Verifier (https://abcrown.org)

Training + Verification with New Formulation

2D Quadrotor

- Previous methods fail to train
- Our method succeeds for large ROA

Inverted Pendulum with Angle observation

- Previous work: $|u| \le 8.15 \, mgl$ for state feedback
- Our work: succeed under challenging torque limit $|u| \leq \frac{mgl}{3}$

2D Quadrotor with Lidar Sensor

- Output feedback control
- Generalize well outside of ROA

Conclusion

- Solve HJB inequalities for value function under-/over-approximation via SOS
 - Optimality & stability
 - Planar pushing task
- Lyapunov-stable neural control via NN verification
 - Novel formulation: efficient synthesis & verification
 - Output feedback control

Thank you!

 "Approximate Optimal Controller Synthesis for Cart-Poles and Quadrotors via Sums-of-Squares."

Lujie Yang, Hongkai Dai, Alexandre Amice, Russ Tedrake RA-L 2023

• "Lyapunov-stable Neural Control for State and Output Feedback: A Novel Formulation for Efficient Synthesis and Verification."

Lujie Yang*, Hongkai Dai*, Zhouxing Shi, Cho-Jui Hsieh, Russ Tedrake, Huan Zhang ICML 2024