STA401

Statistique et Calcul des Probabilités

Responsable : Carole Durand-Desprez

CHAPITRE 2 : Lois continues "autour de la loi Normale"

1. Lois continues - Généralités

X une variable aléatoire, $\Omega = I$ (intervalle de toutes les réalisations) \longrightarrow continue

Les probabilités sont définies sur des intervalles par la fonction de répartition aire sous la courbe de densité f.

$$P(\Omega) = 1$$

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(t)dt$$

$$f(x) = F'(x)$$

$$P(a \le X \le b) = \int_{a}^{b} f(t)dt$$

$$P(a \le X \le b) = P(X \le b) - P(X \le a)$$

$$P(X \ge a) = 1 - P(X \le a)$$

$$E[X] = \mu = \int x f(x) dx$$

$$V[X] = \sigma^2 = E[X - E[X]]^2 = E[X^2] - E[X]^2$$

$$V[X] = \int (x - \mu)^2 f(x) dx = \int x^2 f(x) dx - \mu^2$$

Propriétés: (identiques au cas discret)

$$E[aX + bY] = aE[X] + bE[Y]$$

$$V[X] = E[X - E[X]]^{2} = E[X^{2}] - (E[X])^{2}$$

$$V[aX + b] = a^{2}V[X]$$

Inégalité de Markov: X v.a. positive, pour tout a > 0: $P(X \ge a) \le \frac{E(X)}{a}$

$$P(X \ge a) \le \frac{E(X)}{a}$$

$$\underline{\underline{D\acute{e}m}}: \quad E(X) = \int_{0}^{\infty} x f(x) dx = \int_{0}^{a} x f(x) dx + \int_{a}^{\infty} x f(x) dx \ge \int_{a}^{\infty} x f(x) dx$$

$$E(X) \ge a \int_{a}^{\infty} f(x) dx \ge a P(X \ge a)$$

Inégalité de Bienaymé Tchebychev

Soit X v.a. positive, pour tout a > 0:

$$P(|X - E(X)| \ge a) \le \frac{V(X)}{a^2}$$

La loi Uniforme continue sur [a;b] (vue au lycée)

Densité:
$$f(x) = \frac{1}{b-a}$$
 si $a \le x \le b$; $f(x) = 0$ sinon

Espérance et variance :
$$E[X] = \frac{a+b}{2}$$
 $V[X] = \frac{(b-a)^2}{12}$

La loi Exponentielle de paramètre λ (avec $\lambda > 0$):

Densité:
$$f(x) = \lambda e^{-\lambda x}$$
 si $x \ge 0$; $f(x) = 0$ sinon

Espérance:
$$E[X] = \frac{1}{\lambda}$$
 Variance: $V[X] = \frac{1}{\lambda^2}$ (2 IPP)

$$\underline{\underline{D\acute{e}mo}}: \quad E[X] = \int_0^\infty \lambda x e^{-\lambda x} dx = \lim_{t \to \infty} \left[-x e^{-\lambda x} \right]_0^t + \lim_{t \to \infty} \int_0^t e^{-\lambda x} dx \qquad (IPP)$$

$$E[X] = \lim_{t \to \infty} \left[-x e^{-\lambda x} \right]_0^t - \frac{1}{\lambda} \lim_{t \to \infty} \left[e^{-\lambda x} \right]_0^t = \frac{1}{\lambda}$$

Propriété: $P(X > s + t \mid X > t) = P(X > s)$ (loi sans mémoire, sans vieillissement)

Démo:
$$P(X > s + t \mid X > t) = \frac{P(X > s + t)}{P(X > t)}$$
; de plus $P(X > s + t) = e^{-\lambda(s+t)}$ et $P(X > t) = e^{-\lambda t}$. On en déduit l'égalité voulue.

2. La loi Normale (Gauss):

La loi Normale $N(\mu; \sigma^2)$

Densité:
$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Espérance :
$$E[X] = \mu$$

Variance:
$$V[X] = \sigma^2$$

La loi Normale centrée réduite N(0;1):

Densité:
$$f(x) = \frac{1}{\sqrt{2\pi}} e^{\frac{-x^2}{2}}$$

Espérance :
$$E[X] = 0$$

Variance:
$$V[X] = 1$$

Lecture des tables statistiques (pas de calcul d'intégrales!) :

Loi de Gauss (Normale), Student, Khi-deux, Fisher ...

Notation importante:

$$x_p$$
 quantile d'ordre p : $F(x_p) = P(X \le x_p) = p$

Convention – Notation :

Pour la loi Normale centrée-réduite, on notera u_p le quantile d'ordre p

Pour la loi de Student, on notera t_p le quantile d'ordre p

Pour la loi du Khi-deux, on notera z_p le quantile d'ordre p

Pour la loi de Fisher, on notera f_p le quantile d'ordre p

Propriétés :

Si X suit
$$N(\mu; \sigma^2)$$
 et a un réel \longrightarrow X+a suit $N(\mu+a; \sigma^2)$

Si X suit
$$N(\mu; \sigma^2)$$
 et a un réel \longrightarrow aX suit $N(a\mu; a^2\sigma^2)$

Si X suit
$$N(\mu_1; \sigma_1^2)$$
 et Y suit $N(\mu_2; \sigma_2^2)$ indépendantes $\longrightarrow X+Y$ suit $N(\mu_1 + \mu_2; \sigma_1^2 + \sigma_2^2)$ $\longrightarrow X-Y$ suit $N(\mu_1 - \mu_2; \sigma_1^2 + \sigma_2^2)$

Si
$$X_i$$
 suit $N(\mu; \sigma^2)$, $i=1,...,n$ indépendantes $\longrightarrow X_1 + ... + X_n$ suit $N(n\mu; n\sigma^2)$ $\longrightarrow X_1 + ... + X_n$ suit $N(\mu; \sigma^2/n)$

Si X suit
$$N(\mu; \sigma^2)$$
 \longrightarrow $Y = (X - \mu)/\sigma$ suit $N(0; 1)$ [centrage-réduction]

Exemples:

Si X suit
$$N(3;4) \longrightarrow 2X-1$$
 suit $N(5;16)$

Si X suit
$$N(3;4)$$
 et Y suit $N(1;9)$ indépendantes \longrightarrow $(2X-Y)$ suit $N(5;25)$ \longrightarrow $(2X-Y-5)/5$ suit $N(0;1)$

Lecture de table de la loi Normale N(0;1) - Exemples :

Si X suit la loi Normale N(0;1) [loi tabulée] Lecture directe :

$$P(X < 0.51) = p \longrightarrow p = 0.695$$

$$P(X < u) = 0.95 \longrightarrow u = 1.6449$$

$$P(X > u) = 0.2 \text{ alors } P(X < u) = 0.8 \longrightarrow u = 0.8416$$

Lecture de table et centrage-réduction

Si X suit la loi $N(\mu; \sigma^2)$ alors $Y = (X - \mu)/\sigma$ suit la loi N(0; 1)

•
$$P(X < a) = p \Rightarrow P((X - \mu)/\sigma < (a - \mu)/\sigma) = P(Y < (a - \mu)/\sigma) = p$$

$$\longrightarrow$$
 lecture de u_p sur la table avec : $u_p = (a - \mu)/\sigma$ \Rightarrow $a = \mu + \sigma u_p$

• Si X suit la loi N(3;4) alors Y = (X-3)/2 suit la loi N(0;1):

$$+$$
 Si P(X < 4) = p \Rightarrow P(Y < (4 - 3)/2) = p \Rightarrow P(Y < 1/2) = p \Rightarrow p = 0,6915

$$→$$
 Si P(X < a) = 0,9 \Rightarrow P(Y < (a - 3)/2) = 0,9 \Rightarrow P(Y < u) = 0,9

→ lecture de
$$u_{0,9} = 1,2816 = (a - 3)/2$$
 \Rightarrow $a = \mu + \sigma u = 3+2x1,2816 = 5,5632$

3. Théorème Central Limite: (Tous les théorèmes de convergence seront vus en L3)

Théorème Central Limite :

Soient X_1, \ldots, X_n des variables aléatoires indépendantes de même loi, avec

$$E(X_i) = \mu$$
 et $V(X_i) = \sigma^2$. Soit $Y = \sum X_i$ alors, sin est grand

$$\frac{Y-n\mu}{\sigma\sqrt{n}}$$
 suit la loi $N(0;1)$ ou Y suit la loi $N(n\mu;n\sigma^2)$

En pratique, on prendra: n>30

Cas particulier : Moivre-Laplace **Approximation d'une loi Binomiale par une loi Gaussienne** **Approximation d'une loi Binomiale par une loi Binomiale pa

Soient X_i de loi B(p) indépendantes, alors $\mu = p$ et $\sigma^2 = p(1-p)$

On sait que
$$Y = \sum_{i} X_{i}$$
 suit $B(n; p)$

Sin est grand, alors Y suit approx. N(np; np(1-p))

$$B(n;p) \approx N(np;np(1-p))$$

En pratique, on prendra: n>30, np>5, n(1-p)>5

Approximation d'une loi de Poisson par une loi Gaussienne

Soit Y une v.a. de loi $P(\lambda)$. Si λ est grand, alors Y suit approx. $N(\lambda; \lambda)$

$$P(\lambda) \approx N(\lambda; \lambda)$$

En pratique, on prendra : $\lambda > 25$

<u>Démo</u>: Soit (X_i) un échantillon de taille n de loi P(λ /n), alors Y= Σ X_i suit une loi P(λ) – cf chapitre pécédent -. De plus, E(X_i) = V(X_i) = λ /n. D'après le TCL, Y suit une loi $N(\lambda; \lambda)$

Exemple d'approximation :

Une certaine boîte mail affirme que la probabilité qu'un courriel soit classé en tant que 'spam' alors qu'il ne l'est pas réellement est p=1%.

On prend un échantillon de 1000 mails. X suit la loi Binomiale (1000; 1%)

$$P(X \le 15) = {1000 \choose 0} 0.01^{0} (0.99)^{1000} + \dots + {1000 \choose 15} 0.01^{15} (0.99)^{985} = ???$$

Approximation:
$$n \text{ grand} \longrightarrow n > 30$$
; $np=10 > 5$; $n(1-p)=990 > 5$

$$B(n; p) \approx N(np; np(1-p))$$
 ici $B(1000; 0,01) \approx N(10; 9,9)$

$$P(X \le 15) = P((X - 10)/\sqrt{9.9} \le (15 - 10)/\sqrt{9.9}) = P(Y \le 1.59) = 0.9441$$

→ Lecture N(0;1)

4. Intervalle de fluctuation de la proportion :

Soit p la probabilité de succès d'un évènement A. Soit un n-échantillon indépendant.

X: " le nombre d'individus pour lequel l'évènement A a réussi " , X suit la loi B(n,p) La fréquence F=X/n représente la proportion (dans l'échantillon) de réussites de A.

<u>But</u>: Trouver un intervalle [a ; b] qui contient F avec une probabilité 1 - α :

$$P(a \le F \le b) = 1 - \alpha \qquad \Longrightarrow \qquad$$

Si n est grand, alors F suit approximativement une loi N(p, p(1-p)/n) – TCL (conditions).

$$P\left[\frac{(a-p)/\sqrt{p(1-p)/n}}{(a-p)/\sqrt{p(1-p)/n}}\right] = 1 - \alpha$$

$$\frac{-u_{1-\alpha/2}}{(a-p)/\sqrt{p(1-p)/n}} = 1 - \alpha$$

$$[a;b] = \left[p - u_{1-\alpha/2} \sqrt{p(1-p)/n} ; p + u_{1-\alpha/2} \sqrt{p(1-p)/n} \right]$$

Bon échantillonnage : si F est suffisamment proche de p

si $F \in [a; b]$

si $X \in [na; nb]$

Exemple:

Dans une boîte mail un courriel a une probabilité de1% d'être classé comme un spam à tort. On prend un échantillon de taille 1000 mails. Soit X le nombre de mails classés "spam" à tort. On repère 14 mails mal classés dans cet échantillon.

L'échantillon est-il bon', conforme ? L'échantillon est-il représentatif de la population totale ?

On cherche à savoir si le nombre de mails mal classés X est cohérent, donc si la fréquence F est bien dans l'intervalle de fluctuation à 95% :

$$I = [0.01 - 1.96 * 0.0031464; 0.01 + 1.96 * 0.0031464] = [0.00383; 0.01617]$$

Pour 14 mails mal classés dans l'échantillon, on a F=0,014. On remarque que F est bien dans l'intervalle I. Ou bien : $14 \in [3,83;16,17]$

L'échantillon est donc représentatif (ou conforme).

Intervalle de fluctuation de la moyenne :

Soit X une variable de loi $N(\mu; \sigma^2)$. Soit un n-échantillon indépendant. La moyenne empirique \bar{X} suit la loi $N(\mu; \sigma^2/n)$. (μ et σ connus)

<u>But</u> : Trouver un intervalle [a ; b] qui contient \bar{X} avec une probabilité 1 - α :

$$P(a \le \bar{X} \le b) = 1 - \alpha \qquad \Longrightarrow \qquad \frac{X}{b}$$

Raisonnement analogue à l'intervalle de fluctuation de la proportion : $\frac{\bar{X} - \mu}{\sigma/\sqrt{n}}$ suit une loi N(0;1). Donc,

$$P\left[\frac{a-\mu}{\sigma/\sqrt{n}} \le \frac{\bar{X}-\mu}{\sigma/\sqrt{n}} \le \frac{b-\mu}{\sigma/\sqrt{n}}\right] = 1-\alpha$$

$$-u_{1-\alpha/2}$$

$$u_{1-\alpha/2}$$

$$[a;b] = \left[\mu - u_{1-\alpha/2} \frac{\sigma}{\sqrt{n}} ; \mu + u_{1-\alpha/2} \frac{\sigma}{\sqrt{n}} \right]$$

Idem pour l'intervalle de fluctuation asymptotique - n grand - dans le cas où X ne serait pas Gaussienne (à faire en exo)

Exemple:

Le temps de compilation d'une page de codes avec la version 1 d'un logiciel était en moyenne de 0,2 seconde avec un écart type de 0,09 seconde. On suppose que ce temps suit une loi Normale. On s'intéresse à la version 2 du même logiciel. On prend un échantillon de 150 pages, la moyenne de compilation est de 0,18. Calculer l'intervalle de fluctuation de la moyenne à un niveau de confiance de 0,98, puis conclure si le temps de compilation moyen a varié entre les deux versions.

Dans la version 1, les paramètres sont connus. On cherche à savoir si cette nouvelle version est 'conforme' ou pas à l'ancienne.

Intervalle de fluctuation à 98% de la moyenne :

$$I = \left[0.2 - 2.3263 * 0.09 / \sqrt{(150)}; 0.2 + 2.3263 * 0.09 / \sqrt{(150)}\right] = [0.183; 0.217]$$

On remarque que la moyenne $\bar{x}=0.18$ n'est pas dans l'intervalle I, par valeur inférieure. On conclut que le temps moyen de compilation a varié depuis l'ancienne version, il a diminué avec un niveau de confiance de 98%.

5. Quelques autres lois usuelles (liens avec la loi normale) :

• Soient $X_1, ..., X_n$ n variables indépendantes de loi N(0; 1):

$$Z = \sum X_i^2$$
 suit la loi du Khi – deux \aleph_n^2

• Soient X et Y deux variables indépendantes, avec X suit une loi N(0;1) et Y suit une loi \aleph_n^2 :

$$T = \frac{X}{\sqrt{Y/n}}$$
 suit la loi de Student $T_{(n)}$

 Soient X et Y deux variables indépendantes de deux lois du Khi-deux à n et p degrés de liberté :

$$F = \frac{X/n}{Y/p}$$
 suit la loi de Fisher $F_{(n;p)}$

