PROJECT REPORT

ELECTRONICS AND COMMUNICATION ENGINEERING K.L.N. COLLEGE OF ENGINEERING POTTAPALAYM

INDUSTRY – SPECIFIC INTELLIGENT FIRE MANAGEMENT SYSTEM TEAM ID :PNT2022TMID11542

Submitted By

VENKATESH B G (910619106066)

SANTHOSE M (910619106048)

SASI KUMAR K (910619106052)

SHARVESH BARATH(910619106055)

TEAM MENTOR: INDUSTRY MENTOR:

-DR.N.JANAKIRAMAN -SANTHOSI

PROF/ECE

EVALUATOR:

-DR.P.KARPAGAVALLI

ASP/ECE

BONAFIDE CERTIFICATE

Certified that this project report "......TITLE OF THE PROJECT... "

is the Bonafide work of "NAME OF THE CANDIDATE(reg number),

NAME OF THE CANDIDATE (reg number), NAME OF THE

CANDIDATE (reg number)", who carried out the project work under our supervision.

SIGNATURE

FACULTY MENTOR

SIGNATURE

FACULTY EVALUATOR

Name

Name

Designation

Designation

ELECTRONICS AND COMMUNICATION

ENGINEERING

ELECTRONICS AND COMMUNICATION ENGINEERING

K.L.N COLLEGE OF ENGINEERING

K.L.N COLLEGE OF ENGINEERING

SIGNATURE

DR.V.KEJALAKSHMI

HEAD OF THE DEPARTMENT

ELECTRONICS AND COMMUNICATION ENGINEERING K.L.N **COLLEGE OF ENGINEERING**

LIST OF FIGURES

FIGURENO	TITLE	PAGENO
3.1	Empathymapcanvas	7
3.2	Ideation&Brainstorming	7
3.4	Problemsolutionfit	9
5.1	DataFlowDiagrams	11
6.2	BurndownChart	15
6.3	JIRAReport	15
7.2.1	IBM Watson IoT Platform	32
7.2.2	Node Red Platform	35
7.2.3	Web UI	39

LIST OF TABLES

FIGURE NO	TITLE	PAGE NO
3.3	Proposed Solution	7
4.1	Functional Requirement	8
4.2	Non -Functional Requirement	8
5.3	User Stories	9
6.1	Sprint Planning & Estimation	15
6.2	Sprint Delivery Schedule	20
8.1	Test Cases	36
8.2	User Acceptance Testing	37
9.1	Performance Metrics	40

CONTENTS

S NO	TITLE	Page Number
1	INTRODUCTION	
	1.1 ProjectOverview	4
	1.2 Purpose	4
2	LITERATURESURVEY	
	2.1 Existingproblem	5
	2.2 References	5
	2.3 ProblemStatementDefinition	6
3	IDEATION & PROPOSED SOLUTION	
	3.1 EmpathyMapCanvas	7
	3.2 Ideation&Brainstorming	8
	3.3 ProposedSolution	9
	3.4 ProblemSolutionfit	10
4	REQUIREMENTANALYSIS	
	4.1 Functionalrequirement	11
	4.2 Non-Functionalrequirements	11
5	PROJECTDESIGN	
	5.1.DataFlowDiagrams	13
	5.2 Solution&TechnicalArchitecture	14
	5.3 UserStories	15
6	PROJECTPLANNING&SCHEDULING	

	6.1 SprintPlanning&Estimation	15
	6.2 SprintDeliverySchedule	16
	6.3 ReportsfromJIRA	17
7	CODING&SOLUTIONING	
	7.1 Feature 1	18
	7.2 Feature 2	20
8	TESTING	
	8.1 TestCases	21
	8.2 UserAcceptanceTesting	22
9	RESULTS	
	9.1 PerformanceMetrics	23
10	ADVANTAGES&DISADVANTAGES	24
11	CONCLUSION	24
12	FUTURESCOPE	24
13	APPENDIX	
	SourceCode	25
	GitHub&ProjectDemoLink	25

1.INTRODUCTION

1.1 ProjectOverview

- The smartfiremanagement systemic ludes a Gassensor, Flame sensor and temperatures ensors to detect any changes in the environment.
- BasedonthetemperaturereadingsandifanyGasesarepresenttheexhaus tfansarepoweredON.
- Ifanyflameisdetectedthesprinklerswillbeswitchedonautomatically Emergencyalertsare notified to theauthorities and Firestation.

1.2 Purpose

Thepurpose of the system is:

- Topreventlifelosses, assests damage and uncontrollable spread of fire.
- $\bullet \quad To ensure the safety of workers and alert the manager and firedepartment.$
- Tonottorecklesslyendangerthelifeofthefireworkers. This can be done by taking the control measures automatically.

2. LITERATURESURVEY

2.1 Existingproblem

The existing problems of the system are:

- Cost of ownership: The fire management system should be cost effective. In average, the fire management is expected to last 10 years. The biggest problem is when the system cannot be maintained any longer due to component non-availability or due to being unsupported by the manufacturer.
- Structuralchanges: The structure of the hospital changes over time. The fire Management system should be easily able to upgrade and adaptable to the changing structure.
- **Evacuationandfirestrategy**: The alert and the control measures are taken immediately, so that the building can be completely evacuated.
- <u>Systemperformancechangeswithinspecificenvironments:</u> The industry will have Unique or specified conditionat sometime. The major problem caused is the false fire alarm.

2.2 References

[1] Gaziweldesyase,BahtaG/meskel,MekonenAbreha,SolomonBayne s,"GSMBasedFireandSmokeDetectionandPreventionSystem",on08/10/201 0,Adigrat,Tigray,Ethiopia.

[2]MayZawTun,HtayMyint,"ArduinobasedFireDetectionandAlarmSyste mUsingSmokeSensor",Volume6, Issue4,on April–2020, Myanmar.

[3]NitinGalugade,MaheshJakka,DevikaNair,MadhurGawas,"Fire MonitoringandControllingSystembased onIot", 2020,Mumbai, India.

2.3 ProblemStatementDefinition

Background: Fire is the rapid oxidation of a material in the exothermic chemical process of combustion, releasing heat, light and various reaction products. Although it's a natural process, it can lead to great destruction. On average, everyday 35 people killed due to Fire-related accidents in the five years between 2016 and 2020, according to a report by Accidental Deathsand Suicides in India (ADSI), maintained by the National Crime Records Bureau. Fire is one of the major concerns when analyzing the potential risks on the building. Industrial Fires and Explosions cost companies and governments billions of Rupees every year apart from the loss of life, which can't be described in monetary terms. These Fires not only results only in huge loss of Lives and Property but also disrupt production in the Industry. The Nilflisk says that the five major causes of industrial fires and explosions

are Combustible dust, hot works, Flammableliquids and gasses, equipmentand machinery and Electrical hazards.

Objective:

Based on the temperature readings and if any Gasses are present the exhaust fans should be powered ON automatically to replace contaminated and stale air with fresh, healthy air. If any flame is detected the sprinklers will be witched on automatically. Emergency alerts are notified to the authorities and Fire station. So that the authorities and Fire fighters can control the situation.

3 .IDEATION AND PROPOSED SOLUTION

3.1 Empathy Map Canvas

Figure 3.1Empathy Map Canvas

3.2 Ideation & Brainstorming

Figure 3.2 Ideation & Brainstorming

TABLE 3.3 Proposed Solution

S.No	Parameter	Description
1.	Problem Statement(Problem tobesolved)	Themaingoalofafirealarmsystemistogivep eopleadvancenoticeofafiresotheycanescap eandtakeswiftactiontoreduceorcompletely extinguishthefire'seffectsassoonasfeasible.
2.	Idea /Solutiondescription	 The exhaust fans are turned on based onthe temperature readings and if any gasesarepresent. Sprinklerswillbeactivatedautomatica llyifaflame isdetected. Theauthoritiesandthefirestationar enotifiedof anyemergencyalerts.
3.	Novelty/Uniqueness	 Whenthefirebeginstospread,thetem perature rises, and if any gases arepresent,theexhaust fansareactivated. If a flame is detected, the sprinklers willactivate automatically and send a messagetohigherauthoritiesandthefire station. Our proposed system provides a solutionfor secure transmission of the real timedataobtainedfromthesensorstoth eIBMcloudratherthanusingthenetwo rking devices like ZigBee, LORA,GSMmoduleswhichcausesth einterferenceofdataobtainedfrommul tipleusers. Ourproductiscosteffective,sinceforco mmunication to higher officials we haveawebdashboardratherusinghardw aredevices. Design and implementation of highlyscalableproduct.

						
		AlltheIOTenddevicesarecontrol ledusingstandalonerechargeable batteriesso that the product would last for a longspan.				
4.	SocialImpact/CustomerSatisfac	Customer experience can be				
	tion	identifiedthroughclientfeedbac				
		kprovidedbycustomers who				
		use our kit and				
		providefeedback.				
		PreventsPollution.				
5.	Business	Thisversionisusedtocalculatetheopp				
	Model(RevenueModel)	ortunity of the ignition and spread				
		acrossthelandscape.				
6.	ScalabilityoftheSolution	Withthehelpofoursoftware, automatedr				
		eal-timedecision-				
		makingispossibleinasettingwherehundr				
		edsofthousandsofsensorsareconstantly				
		providing data through a				
		webdashboardwithoutinterferingwith				
		eachother.				

3.4 Problem Solution Fit

Figure 3.4 Problem Solution Fit

4.REQUIREMENT ANALYSIS

TABLE 4.1 Functional requirement

FunctionalRequirements:

Following are the functional requirements of the proposed solution.

FRNo.	FunctionalRequirement(SubRequirement(Story/Sub-Task)
	Epic)	
FR-1	Deviceconfiguration	NewIoTdeviceiscreatedinthecloud
		Thedeviceisconfiguredwiththenewclouddevice
FR-2	Admindashboard/adminpa	DatafromsensorsshowninpictorialformCont
	nel	rolsaregiveninthebuttonformat
FR-3	Internetconnectivity	Makesurefully-
		fledgedinternetconnectivityisrequiredforsmoothc
		ommunicationbetweendeviceandcloud
FR-4	SMSAPI	AexternalSMSAPIisrequired

TABLE 4.2 Non-functional Requirements:

Following are the non-functional requirements of the proposed solution.

FRNo.	Non-	Description
	FunctionalRequirement	
NFR-1	Usability	The dashboard can be used via a web
		browserItgivesanabstractviewinaneas
		y-to-useform.
NFR-2	Security	AsthedataissentthroughHTTPSthe
		dataisencrypted,soitissafe.
NFR-3	Reliability	Thesystemiscompletelyreliableaslongasthe
		internetandpowerisreliable

5.PROJECT DESIGN

5.1 Data Flow Diagrams

Project design is an early phase of a project where the project's keyfeatures, structure, criteria for success, and major deliverables are planned out. The aim is to develop one or moredesigns thatcan be usedto achieve the desired projectgoals. Stakeholders can then choose the best design for the execution of the might project. The project design steps generate variousoutputs, suchassketches, flowcharts, sitetrees, HTML screendesigns, prototypes ,photoimpressions,andmore.Theprojectdesign includeseverythingfromwhoisresponsibleforcompletingthe project toa description of the project, its goals, outcomes and objectives. It describes when these goals, outcomes objectives will be reached. and the major and deliverables, products or features that will be completed

Figure 5.1 Data Flow Diagrams

5 2	Solution	and '	Technical	Architecture
J.4	MULLION	anu	ı cenincai	AICHICCIUIC

SolutionArchitecture:

Solutionarchitectureisacomplexprocess—withmanysub-processes—thatbridgesthegapbetweenbusiness problems and technology solutions. Its goals are to:

- Findthebesttechsolutiontosolveexistingbusinessproblems.
- Describethestructure, characteristics, behavior, and other aspects of the software to projectstakeholders.
- Define features, development phases, and solution requirements.
- Providespecifications according towhichthe solution is defined,managed, anddelivered

Figure 5.2 Solution Architecture

TABLE 5.3 User Stories

UserType	Functionalr equirement	Userst orynum ber	Usersto ry/task	Acceptance criteria	Priority	Release
Customer (Mobileuser, Webuser, Care executive, Administrator)	Registration	USN-1	As auser,I canregister forthe application byentering mymail, password, and confirming my password	Ican access myaccount/ dashboard	High	Sprint-1
		USN-2	As auser,I willreceive confirmation emailonceI have registered forthe application	I canreceive confirmation email&click confirm	High	Sprint-1
	Dashboard	USN-3	As auser,I canregister forthe application through internet	Icanregister &accessthe dashboard withInternet login	Low	Sprint-2

	USN-4	As auser,I	Icanconfirm	Medium	Sprint-3
		canregister	the		
		forthe	registrationin		
		application	Gmail		
		through			
		Gmail			
Login	USN-5	As auser,I	Icanlogin	High	Sprint-4
		canloginto	withmyid		
		the	andpassword		
		application			
		byentering			
		email&			
		password			

6. PROJECT PLANNING AND SCHEDULING

TABLE 6.1 Sprint Planning & Estimation

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint-1	Sensing	USN-1	Sensing the environment using the sensors.	3	High	Venkatesh Santhose Sasi Kumar Sharvesh Barath
	Operating	USN-2	Turning on the exhaust fan as well as the fire sprinkler system in cause of fire and gas leakage.	3	Medium	Venkatesh Santhose Sasi Kumar Sharvesh Barath
Sprint-2	Sending collected data to the IBM Watson platform	USN-3	Sending the data of the Sensors to the IBM Watson.	3	High	Venkatesh Santhose Sasi Kumar Sharvesh Barath

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
	Node red	USN-4	Sending the data from the IBM Watson to the Node red.	3	High	Venkatesh Santhose Sasi Kumar Sharvesh Barath
Sprint-3	Storing of sensor data	USN-5	Storing in Cloudant database.	2	Medium	Venkatesh Santhose Sasi Kumar Sharvesh Barath
	Registration	USN-6	Entering my email and password to verify authentication process.	1	Medium	Venkatesh Santhose Sasi Kumar Sharvesh Barath
	Web UI	USN-7	Monitors the situation of the environment which displays sensor information.	3	High	Venkatesh Santhose Sasi Kumar Sharvesh Barath
Sprint-4	Fast SMS Service	USN-8	Use Fast SMS to Send alert message once the parameters like temperature, flame and gas sensor readings goes beyond the threshold value.	3	High	Venkatesh Santhose Sasi Kumar Sharvesh Barath
	Turn ON/OFF the actuators	USN-9	User can turn off the Exhaust fan as well as the sprinkler system If need in that Situation.	2	Medium	Venkatesh Santhose Sasi Kumar Sharvesh Barath

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
	Testing	USN-10	Testing of project and Final Deliverables.	1	Low	Venkatesh Santhose Sasi Kumar Sharvesh Barath

TABLE 6.2 Sprint Delivery Schedule

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	6	6 Days	24 Oct 2022	29 Oct 2022	6	29 Oct 2022
Sprint-2	6	6 Days	31 Oct 2022	05 Nov 2022	6	05 Nov 2022
Sprint-3	6	6 Days	07 Nov 2022	12 Nov 2022	6	12 Nov 2022

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-4	6	6 Days	14 Nov 2022	19 Nov 2022	6	19 Nov 2022

Velocity:

Imaginewehavea10-

daysprintduration, and the velocity of the team is 20 (points persprint). Let's calculate the team's average velocity (AV) per iteration unit (story points per day)

$$AV = \frac{sprint\ duration}{velocity} = \frac{20}{10} = 2$$

$$AV = 6/6 = 1$$

BurndownChart:

Aburndownchartisagraphicalrepresentationofworkleft todoversustime. It is often used in a giles of twared evelopment methodologies such as Scrum. However, burn down charts can be applied to any project containing measurable progressover time

Figure 6.2 Burndown Chart

6.3 Reports from JIRA

https://pnt2022tmid47460.atlassian.net/jira/software/projects/ISIFMS2/boards/2/roadmap

Figure 6.3 Report from JIRA

7 CODING AND SOLUTIONING

7.1 Feature 1

client.disconnect()

```
#IBM Watson IOT Platform
#pip install wiotp-sdk
import wiotp.sdk.device
import time
import random
myConfig = {
           "identity": {
                "orqId": "ci5v5e",
                "typeId": "Rasberypi",
                "deviceId": "1234"
           },
           "auth": {
                "token": "12345678"
def myCommandCallback(cmd):
   print("Message received from IBM IoT Platform: %s" % cmd.data['command'])
   m=cmd.data['command']
client = wiotp.sdk.device.DeviceClient(config=myConfig, logHandlers=None)
client.connect()
while True:
   temp=random.randint(-5,100)
   flame=random.randint(0,10)
   gas=random.randint(0,100)
   if temp>50 or gas>50:
       if flame>8 and temp>50:
           myData={'temperature':temp,'flame':flame,'gas':gas,'exhaust':1,'spri
           myData={'temperature':temp,'flame':flame,'qas':qas,'exhaust':1,'spri
   else:
       myData={'temperature':temp,'flame':flame,'gas':gas,'exhaust':0,'sprinkle
   client.publishEvent(eventId="status", msgFormat="json", data=myData, qos=0,
   print("Published data Successfully: %s", myData)
   client.commandCallback = myCommandCallback
   time.sleep(5)
```

```
Output
Published data Successfully: %s {'temperature': 99, 'flame': 8, 'gas': 41, 'exhaust': 1,
'sprinklers': 0}
Published data Successfully: %s {'temperature': 43, 'flame': 4, 'gas': 22, 'exhaust': 0,
'sprinklers': 0}
Published data Successfully: %s {'temperature': 64, 'flame': 10, 'gas': 73, 'exhaust':
1, 'sprinklers': 1}
Published data Successfully: %s {'temperature': 43, 'flame': 2, 'gas': 87, 'exhaust': 1,
'sprinklers': 0}
Published data Successfully: %s {'temperature': 39, 'flame': 8, 'gas': 19, 'exhaust': 0,
'sprinklers': 0}
Published data Successfully: %s {'temperature': 52, 'flame': 8, 'gas': 6, 'exhaust': 1,
'sprinklers': 0}
Published data Successfully: %s {'temperature': -2, 'flame': 3, 'gas': 98, 'exhaust': 1,
'sprinklers': 0}
Published data Successfully: %s {'temperature': 95, 'flame': 10, 'gas': 75, 'exhaust':
1, 'sprinklers': 1}
Published data Successfully: %s {'temperature': 90, 'flame': 4, 'gas': 25, 'exhaust': 1,
'sprinklers': 0}
```

```
Published data Successfully: %s {'temperature': -2, 'flame': 5, 'gas': 18, 'exhaust': 0,
'sprinklers': 0}
Published data Successfully: %s {'temperature': 99, 'flame': 0, 'gas': 38, 'exhaust': 1,
'sprinklers': 0}
Published data Successfully: %s {'temperature': 80, 'flame': 6, 'gas': 70, 'exhaust': 1,
'sprinklers': 0}
Published data Successfully: %s {'temperature': 48, 'flame': 9, 'gas': 46, 'exhaust': 0,
'sprinklers': 0}
Published data Successfully: %s {'temperature': 1, 'flame': 10, 'gas': 63, 'exhaust': 1,
'sprinklers': 0}
Published data Successfully: %s {'temperature': 95, 'flame': 6, 'gas': 86, 'exhaust': 1,
'sprinklers': 0}
Published data Successfully: %s {'temperature': 29, 'flame': 6, 'gas': 2, 'exhaust': 0,
'sprinklers': 0}
```

7.2 Feature 2

Figure 7.2.1 IBM Watson IoT Platform

Node Red:

Figure 7.2.2 Node Red Platform

Figure 7.2.3 Web UI

8 TESTING

TABLE 8.1 Test Cases

	A	В	C	D	E	F	G	н	1	JJ	K	1 1
1				_	Date	15-Nov-22	_					
3					Team ID	PNT2022TMID11542	1					
3					Project Name	Industry-Specific Intelligent Fire I	1					
4					Maximum Marks	4 marks	1					
5	Test case ID	Feature Type	Component	Test Scenario	Pre-Requisite	Steps To Execute	Test Data	Expected Result	Actual Result	Stat	Comments	TC for Automation(Y/M
6	TC_001	Functional	IBM cloud	Create the IBM Cloud services which are being used in this project.	IBM Cloud Login ID & Password	Go to IBM Cloud signup page Enter e-mail id and other credentials Enter a password	https://cloud.ibm.com/	Should be able to create the IBM Cloud account.	Working as expected	Pass	Results verified	No
7	TC_002	Functional	IBM Cloud	Configure the IBM Cloud services which are being used in completing this project.	IBM Cloud Login ID & Password	1.Go to Cloud login 2.Enter user ID & Password 3.Verify login by the popup display	https://cloud.ibm.com/	Should able login to IBM Cloud and navigated to IBM Cloud dashboard page	Working as expected	Pass	Results verified	No
8	TC_003	Functional	IBM Watson IoT Platform	IBM Watson IoT platform acts as the mediator to connect the web application to IoT devices, so create the IBM Watson IoT platform.	IBM Watson IoT Platform Login ID & Password	1.Login to IBM Cloud 2.Click Catalog 3.Search IoT and click create 4.Go to resource list and search Internet of Things platform 5.Press Launch and click Sign in IBM Watson Platform	https://ci5v5e.internetoft hings.ibmcloud.com/das hboard/devices/browse	Should be able to navigate to IBM IoT Watson Platform	Working as expected	Pass	Results verified	No
9	TC_004	Functional	IBM Watson	To create a device in the IBM Watson IoT platform and get the device credentials.	IBM Watson IoT Platform Login ID & Password	1.Login to IBM Watson Platform 2. Click Add Device 3.Enter the details and click Finish. Note down the Device ID, Device Name, Authentication key, Organization name	Device credentials	Should be able to get Device details	Working as expected	Pass	Results verified	No
10	TC_005	Functional	IBM Cloud(Node Red)	Configure the connection security and create API keys that are used in the Node-RED service for accessing the IBM IoT Platform.	Node Red Installation	Search "Node-red" in catalog Wait for some time to completely configure the Node- Red.	veloperlappserviceloreat e: app?starterKit=59c3d5b d=4d31-3611-897a: f34eea80dc3f8defaultLa	Should be able to open Node- Red service	Working as expected	Pass	Results verified	No
						1. Select IBM IoT input in Node. In IBM IoT Watson Platform, go to apps and click on generate API keys. 2 Conu & naste generated API	button for Alarm &	Values of sensors and button for Alarm & Sprinkler ON/OFF should be displayed				

A	А	В	С	D	E	F	G	н	1	J	К	L
1 2 3 4					Date Team ID Project Name Maximum Marks	15-Nov-22 PNT2022TMID11542 Industry-Specific Intelligent Fire I 4 marks						
5	Test case ID	Feature Type	Component	Test Scenario	Pre-Requisite	Steps To Execute	Test Data	Expected Result	Actual Result	Stat	Comments	TC for Automation(Y/N
12	TC_007	Functional	Python 3.7.0	level and Gas level to the IBM IoT platform	Python 3, 7, 0(64 bit) installatio	1.Download and install Python 3.7.0 2.Develop python code	https://www.puthon.org/d ownloads/release/puthon: 370/	generate and send Temperature, Gas level and Flame level values to the IBM IoT Watson Platform	Working as expected	Pass	Results verified	No
13	TC_008	Functional	. /	After developing python code, commands are received just print the statements which represent the control of the devices.	Python 3, 7,0(64 bit) installatio	1.Download and install Python 3.7.0 2. Open Node-Red or MIT mobile app	Set the output from the cod	Should be able to display the commands like Sprinkler ON, Sprinkler OFF, Exhaust Fan ON, Exhaust Fan OFF	Working as expected	Pass	Results verified	No
14	TC_009	Functional	IBM Cloudant DE	Temperature, Flame Level and Gas Level in the Cloud	IBM Cloud Account	2. Verify the displayed output	Dutput from the python cod	Should be able to store the sensor values generated by the python script in the cloud	Working as expected	Pass	Results verified	No
15	TC_010	Web UI	Node Red & MIT Inventor	Create Web UI in Node-Red	MIT Inventor Login ID & password	I.Go to Node Red. Select http:in & http:response. Add functions and select another http:in and http:response. Connect them to IEM loT output and function. Print the command statements such as Spiritider ONNOFF, Alam ONNOFF and possible of the sensor 2. Go to MIT approventor and create frontend using buttons, horizonal arrangement, text bar, etc. Add blocks and so not ocreate back end Verlijf when	Sensors values and command values is displayed in the Debug window and in the mobile application	Sensors values and command values is displayed in the Debug vindow and the User should be able to view there data in the MT Mobile APP and be able to press the buttons if any value exceeds the threshold value	Working as expected	Pass	Results verified	No
	TC_011	Functional	IBM Cloudant DB	Configure the Node-RED flow to receive data from the IBM IoT platform and also use Cloudant DB nodes to store the received sensor data in the cloudant DB.	IBM Cloud Login ID & Password	1. Go to IBM cloud, search Cloudant in Catalog, Add new dashboard, go to Node Red 2. Connect to cloudant and	the NODE RED	User should be able to connect the Cloudant and Node Red and be able to see the created cloud database with the sensor values	Working as expected	Pass	Results verified	No

TABLE 8.2 User Acceptance Testing

1. Purpose of Document

The purpose of this document is to briefly explain the test coverage and open issues of the Industry-specific intelligent fire management system project at the time of the release to User Acceptance Testing (UAT).

2. Defect Analysis

This report shows	Severity 1	Severity 2	Severity 3	Severity 4	Subtotal
the number of					
resolved or closed					
bugs at each					
severity level, and					
how they were					
resolved					
Resolution					
By Design	10	4	2	3	20
Duplicate	1	0	3	0	4
External	2	3	0	1	6
Fixed	11	2	4	20	37
Not Reproduced	0	0	1	0	1
Skipped	0	0	1	1	2
Won't Fix	0	0	0	1	8
Totals	24	14	13	26	70

3. Test Case Analysis

This report	Total Cases	Not Tested	Fail	Pass
shows the				
number of test				
cases that have				
passed, failed,				
and untested				
Section				
Print the Sensor	7	0	0	7
values				
Client Mobile	51	0	0	51
Application				
Security	2	0	0	2
Outsource	3	0	0	3
Shipping				
Exception	9	0	0	9
Reporting				
Final Report	4	0	0	4
Output				
Version Control	2	0	0	2

9. RESULTS

TABLE 9.1 Performance Metrics

	•	•	•	ř.	,	4	И	1	,	ĸ
					NFT - Risk Asse	ssment				
S.No	Project Name	Scope/feature	Functional Changes	Hardware Changes	Software Changes	Impact of Downtime	Load/Voluem Changes	Risk Score	Justification	
_ 1	Receiving sensor va	Existing	Moderate	No Changes	Moderate	No	>5 to 10%	ORANGE	As we have seen the changes	
2	Sprinkler ON/OFF	Existing	Low	No Changes	Low	No	>5 to 10%	GREEN	As we have seen the changes	
3	Exhaust Fan ON/OFF	Existing	Low	No Changes	Low	No	>5 to 10%	GREEN	As we have seen the changes	
4	Fast SMS	New	Low	No Changes	No Changes	No	>5 to 10%	GREEN	As we have seen the changes	
5	Cloudant DataBase	New	No Changes	No Changes	No Changes	No	>5 to 10%	GREEN	As we have seen the changes	
					NFT - Detailed T	est Plan				
•			S.No	Project Overview	NFT Test approach	mptions/Dependencies/F	Approvals/SignOff			
			1	Python 3.7.0	Developing Python Scri	Depends on the code	https://www.python.org/psf/sponsors	#heroku		
,			2	IBM Watson IoT Platform	Creating and configuring	Depends on the Device Crede	https://ci5v5e.internetofthings.ibmcle	oud.com/dashboard/devices/browse		
			3	Node-Red	Creating Web-UI	Depends on the sensor value	https://nodered.org/	<u> </u>		
1			4	MIT App Devoloper	Developing Mobile app	Depends on the Sensor value	https://appinventor.mit.edu/about/te	rmsofservice		
			5	Cloudant DB	Storing Sensor values	Depends on the Sensor value	https://2e953d0c-d7c4-4584-a048-34	d5dc603b28-bluemix.cloudant.com/c	dashboard.html#/ all dbs	
,										
					End Of Test R	eport				
S.No	Project Overview	NFT Test approach	NFR - Met	Test Outcome	GO/NO-GO decision	Recommendations	Identified Defects (Detected/Closed/Open)	Approvals/SignOff		
. 1	ame sensor and tem	This is done by develo	Met	Pass	GO .	Code working properly	Closed	https://www.python.org/psf/sponso	rs/#heroku	
		This is done by creati		Pass	GO	Sprinkler is turning on and off	Closed	https://node-red-dahfa-2022-11-13.	eu-gb.mybluemix.net/red/#flow/591d8	2622c4ff
3	If any flame is detec	This is done by creati	Met	Pass	GO	Exhaust fan is turning on and	Closed	https://node-red-dahfa-2022-11-13.	u-gb.mybluemix.net/red/#flow/591d8	2622c4ff
, 4	Emergency alerts ar	e notified to the author	Met	Pass	GO	Emergency alerts are send vi	Closed	https://www.fast2sms.com/dashbox		

10 .ADVANTAGES& DISADVANTAGES

The Advantages of this Industry-

Specific Intelligent Fire Management system are as follows

- Theuserneednotrequireexpertiseknowledgetocontrolthissystem. Thissys temissimple. Theusercaneasilyview thesensorvalues and take controlactions.
- The controlactions are taken automatically.
- Ifitisimplementedinhardware,thenthecostofimplementationwillbeafforda ble.
- Aswearesensingthesensorvaluescontinuously, any slightchange in the environment is detected
- ThissystemisinUser-Friendlyformat.

The Disadvantage of this Industry-

Specific Intelligent Fire Management system are as follows

- Thissystemwillnotbeabletodetecttheoriginoffire.
- This system will not provide the escaperoute if there is fire out break.
- Iftheindustryhasspecificchangesintheenvironment,thenthissystemwillgi vesfalsealarm.

11.CONCLUSION

An understanding and having Fire Management system in the industry is of utmostimportance. This project is a fire management system that can be user in the industry based onIOT. This system creates a simulation device credentials in IBM WATSON IOT PLATFORM. in node-red, necessary nodes are installed and used. These nodes are installed and used. These nodes are deployed and the data is collected. In the event of fire, this system can issue sprinkle ron,exhaust fan on. This remote user monitoring system can monitor the eachnodeinrealtime. This system of monitors the data system status continuously so that the any slight change in he environment can be easily detected.This .This Industrygood control accuracy ensures SpecificIntelligent Fire Management ensures the protection of property, asset and the processes are costeffective and the automatic measures are incontrol.

12.FUTURE SCOPE
Thefuturescopeofthisprojectistoaddadditionalfeaturesliketriggeringtheex
tinguisherautomatically, predict the escape route if the fire outbreaks and to
implement this system inrealtime using hardware.

13.APPENDIX

```
Source Code
#IBM Watson IOT Platform
#pip install wiotp-sdk
import wiotp.sdk.device
import time
import random
myConfig = {
    "identity": {
      "orgId": "ci5v5e",
      "typeId": "Rasberypi",
      "deviceId":"1234"
    },
    "auth": {
      "token": "12345678"
    }
  }
def\ my Command Callback (cmd):
```

```
print("Message received from IBM IoT Platform: %s" %
cmd.data['command'])
  m=cmd.data['command']
client = wiotp.sdk.device.DeviceClient(config=myConfig, logHandlers=None)
client.connect()
while True:
  temp=random.randint(-5,100)
  flame=random.randint(0,10)
  gas=random.randint(0,100)
  if temp>50 or gas>50:
    if flame>8 and temp>50:
myData={'temperature':temp,'flame':flame,'gas':gas,'exhaust':1,'sprinklers':
1}
    else:
myData={'temperature':temp,'flame':flame,'gas':gas,'exhaust':1,'sprinklers':
0}
```

```
else:
myData={'temperature':temp,'flame':flame,'gas':gas,'exhaust':0,'sprinklers':
0}
client.publishEvent(eventId="status", msgFormat="json", data=myData,
qos=0, onPublish=None)
print("Published data Successfully: %s", myData)
client.commandCallback = myCommandCallback
time.sleep(5)
client.disconnect()
```

G	itHub link:
<u>ht</u>	tps://github.com/IBM-EPBL/IBM-Project-26263-1660022715
Vi	ideo link:
	https://youtu.be/pCsSLY8IoCA