MATH 381 Section 1.7

Olivia Dumitrescu

31 January 2024

Introduction to Proofs

Definition

- 1. The integer $n = \text{even number if } \exists \text{ an integer } k \text{ so that } n = 2k$.
- 2. The integer n = odd number if \exists an integer k so that n = 2k + 1.

If $x \in \mathbb{Z}$, either x = odd or x = even.

Example Give a proof for the statement "If n = odd integer, then n^2 is an odd integer".

proof
$$P(n) : n = \text{ odd integer}$$

 $Q(n) : n^2 = \text{ odd integer}$

claim $\forall n(P(n) \to Q(n))$

Example Give a direct proof to

"If m and n are both perfect squares, then $m \times n$ is also a perfect square."

Proof Since m and n are both perfect squares $\implies \exists a, b \in \mathbb{Z}^+$ so that

1.
$$m \times n = a^2 \times b^2 = (ab)^2$$

Section 1.7.6 proof by negation

Assume we want to prove a conditional statement $p \to q \equiv \neg q \to \neg p$.

1. prove it by **contraposition** i.e. prove

$$\neg q \rightarrow \neg p$$
.

2. prove it by **contradiction** i.e. assume $p \rightarrow q$ is False i.e. p = T and q = F.

Example Prove that if $n = a \cdot b$ where a and b are positive integers, then $a \leq \sqrt{n}$ or $b \leq \sqrt{n}$.

$$q: \quad a \leq \sqrt{n} \lor b \leq \sqrt{n}$$
$$\neg q: \quad \neg (a \leq \sqrt{n}) \land \neg (b \leq \sqrt{n})$$
$$(a > \sqrt{n}) \land (b > \sqrt{n})$$

Example Prove that $\sqrt{2}$ is an irrational number.

Proof Assume by contradiction that $\sqrt{2} \in \mathbb{Q}$.

$$\mathbb{Q} = \{\frac{a}{b}, (a,b) = 1, b \neq 0; a,b \in \mathbb{Z}\}$$

$$\sqrt{2} \in \mathbb{Q} \implies \exists a,b \in \mathbb{Z}, b \neq 0, (a,b) = 1$$

$$\sqrt{2} = \frac{a}{b}$$

$$\implies 2 = (\frac{a}{b})^2 = \frac{a^2}{b^2}$$

$$\implies a^2 = 2b^2$$

Proof of Equivalences

To prove a theorem that is a biconditional statement of the form $p \leftrightarrow q$, you must prove two conditional statements: $p \to q$ and $q \to p$.

$$p \leftrightarrow q = (p \to q) \land (q \to p)$$

Sometimes a theorem stating that many propositions are equivalent

$$p_1, p_2, p_3, \ldots, p_n$$

Show that TFAE (that the following are equivalent)

- 1. p_1
- 2. p_2
- 3. p_3

n. p_n

bu definition it means prove

$$p_1 \leftrightarrow p_2$$

$$p_2 \leftrightarrow p_3$$

$$\vdots$$

$$p_{n-1} \leftrightarrow p_n$$

i.e. 2(n-1) statements to prove

Theorem 0.1 If we can prove a loop in the form

$$p_1 \to p_2$$

$$p_2 \to p_3$$

$$\vdots$$

$$p_{n-1} \to p_n$$

$$p_n \to p_1$$

i.e. n statements then it suffices to show that p_1, \ldots, p_n are equivalent statements.

Example Let $n \in \mathbb{Z}$

Prove that n is odd if and only if n^2 is odd.

Proof

$$p:n$$
 is odd $q:n^2$ is odd

- 1. Show that $p \to q$ i.e. if n is odd then n^2 is odd.
- 2. Show that $q \to p$ i.e. if n^2 is odd then n is odd. We prove $q \to p$ by showing the contrapositive $\neg p \to \neg q$ i.e. if n is even then n^2 is even.

Example Let $n \in \mathbb{Z}$.

Show that the following are equivalent:

$$p_1 : n$$
 is even
 $p_2 : n - 1$ is odd
 $p_3 : n^2$ is even

 $p_1 \to p_2$ is obvious.

 $p_2 \to p_3$ can be proven with another integer k.

 $p_3 \to p_1$ is proven by its equivalence with $\neg p_1 \to \neg p_3$.

Example Show that the statement "every positive integer is the sum of two squares of integers" is false.

Counterexample is n = 3.