The De Havilland DHC-2 'Beaver' aircraft

- We have 12 equations need to be arranged for integration :
- Equations 7-12 are OK.

Velocity Components along the fixed frame $\begin{bmatrix} \frac{d}{dt} \\ \frac{dy}{dt} \\ \frac{dz}{dz} \end{bmatrix} = \begin{bmatrix} C \end{bmatrix} \begin{bmatrix} u \\ v \\ w \end{bmatrix}$ Velocity Components along the body axes

• Equation 1-3 need small arrangement:

$$F_{x} - mg \sin(\theta) = m(\dot{u} + qw - rv)$$

$$F_{y} + mg \cos(\theta) \sin(\phi) = m(\dot{v} + ru - pw)$$

$$F_{z} + mg \cos(\theta) \cos(\phi) = m(\dot{w} + pv - qu)$$

What about equations 4-6?

Manufacturer De Havilland Aircraft of Canada Ltd.

Serial no. 1244

Type of aircraft Single engine, high-wing, seven seat, all-metal aircraft

 $\begin{array}{ll} \mbox{Wing span } b & 14.63 \ m \\ \mbox{Wing area } S & 23.23 \ m^2 \\ \mbox{Mean aerodynamic chord } \overline{c} & 1.5875 \ m \end{array}$

Wing sweep 0° Wing dihedral 1°

Wing profile NACA 64 A 416

Fuselage length 9.22 mMax. take-off weight 22800 NEmpty weight 14970 N

Engine Pratt and Whitney Wasp Jr. R-985

Max. power 450 Hp at n=2300 RPM, $p_z=26''Hg$

Propeller Hamilton Standard, two-bladed metal regulator propeller

 $\begin{array}{lll} \text{Diameter of the propeller} & 2.59 \ m \\ \text{Total contents of fuel tanks} & 521 \ l \\ \text{Contents fuselage front tank} & 131 \ l \\ \text{Contents fuselage center tank} & 131 \ l \\ \text{Contents fuselage rear tank} & 95 \ l \\ \text{Contents wing tanks} & 2 \times 82 \ l \\ \end{array}$

Most forward admissible of position 17.200/ E at 16000 N. 00.000/ E at 20

Most forward admissible e.g. position 17.36% \overline{c} at 16989 N; 29.92% \overline{c} at 22800 N

Most backward admissible c.g. position $40.24\% \ \overline{c}$

$x_{c.g.}$	=	0.5996	[m]	in F_M
$y_{c.g.}$	=	0.0	[m]	in F_M
$z_{c.g.}$	=	-0.8851	[m]	in F_M
I_x	=	5368.39	$[kg m^2]$	in F_R
I_y	=	6928.93	$[kg m^2]$	in F_R
I_z	=	11158.75	$[kg m^2]$	in F_R
J_{xy}	=	0.0	$[kg m^2]$	in F_R
J_{xz}	=	117.64	$[kg m^2]$	in F_R
J_{yz}	=	0.0	$[kg m^2]$	in F_R
m	=	2288.231	[kg]	$X_a = C_{X_a} \cdot \frac{1}{2} \rho V^2 S$
h	=	1828.8	[m]	$(=6000 [ft]_{Z_a = C_{Z_a} \cdot \frac{1}{2} \rho V^2 S}$
ρ	=	1.024	$[kgm^{-3}]$	$Z_a = C_{Z_a} \cdot \frac{1}{2} \rho V \cdot S$ and:

 $L_a = C_{l_a} \cdot \frac{1}{2} \rho V^2 S b$ $M_a = C_{m_a} \cdot \frac{1}{2} \rho V^2 S \bar{c}$ $N_a = C_{n_a} \cdot \frac{1}{2} \rho V^2 S b$

Aerodynamic force and moment coefficients measured in the body-fixed reference frame:

$$\begin{split} C_{X_a} &= C_{X_0} + C_{X_\alpha}\alpha + C_{X_{\alpha^2}}\alpha^2 + C_{X_{\alpha^3}}\alpha^3 + C_{X_q}\frac{q\overline{c}}{V} + C_{X_{\delta_r}}\delta_r + C_{X_{\delta_f}}\delta_f + C_{X_{\alpha\delta_f}}\alpha\delta_f \\ C_{Y_a}^* &= C_{Y_0} + C_{Y_\beta}\beta + C_{Y_p}\frac{p\,b}{2V} + C_{Y_r}\frac{r\,b}{2V} + C_{Y_{\delta_a}}\delta_a + C_{Y_{\delta_r}}\delta_r + C_{Y_{\delta_r\alpha}}\delta_r\alpha \\ C_{Z_a} &= C_{Z_0} + C_{Z_\alpha}\alpha + C_{Z_{\alpha^3}}\alpha^3 + C_{Z_q}\frac{q\overline{c}}{V} + C_{Z_{\delta_e}}\delta_e + C_{Z_{\delta_e\beta^2}}\delta_e\beta^2 + C_{Z_{\delta_f}}\delta_f + C_{Z_{\alpha\delta_f}}\alpha\delta_f \\ C_{l_a} &= C_{l_0} + C_{l_\beta}\beta + C_{l_p}\frac{p\,b}{2V} + C_{l_r}\frac{r\,b}{2V} + C_{l_{\delta_a}}\delta_a + C_{l_{\delta_r}}\delta_r + C_{l_{\delta_a\alpha}}\delta_a\alpha \\ C_{m_a} &= C_{m_0} + C_{m_\alpha}\alpha + C_{m_{\alpha^2}}\alpha^2 + C_{m_q}\frac{q\overline{c}}{V} + C_{m_{\delta_e}}\delta_e + C_{m_{\beta^2}}\beta^2 + C_{m_r}\frac{r\,b}{2V} + C_{m_{\delta_f}}\delta_f \\ C_{n_a} &= C_{n_0} + C_{n_\beta}\beta + C_{n_p}\frac{p\,b}{2V} + C_{n_r}\frac{r\,b}{2V} + C_{n_{\delta_a}}\delta_a + C_{n_{\delta_r}}\delta_r + C_{n_q}\frac{q\overline{c}}{V} + C_{n_{\beta^3}}\beta^3 \end{split}$$

C_X		C_Y		C_Z	
parameter	value	parameter	value	parameter	value
0	-0.03554	0	-0.002226	0	-0.05504
α	0.002920	β	-0.7678	α	-5.578
α^2	5.459	$\frac{pb}{2V}$	-0.1240	α^3	3.442
α^3	-5.162	$\frac{rb}{2V}$	0.3666	$rac{q\overline{c}}{V}$	-2.988
$rac{q\overline{c}}{V}$	-0.6748	δ_a	-0.02956	δ_e	-0.3980
δ_r	0.03412	δ_{r}	0.1158	$\delta_e \beta^2$	-15.93
δ_f	-0.09447	$\delta_r \alpha$	0.5238	δ_f	-1.377
$\alpha \delta_f$	1.106	$\frac{\dot{\beta}b}{2V}$	-0.1600	$\alpha \delta_f$	-1.261

C_{l}		C_m		C_n	
parameter	value	parameter	value	parameter	value
0	0.0005910	0	0.09448	0	-0.003117
β	-0.06180	α	-0.6028	β	0.006719
$\frac{pb}{2V}$	-0.5045	α^2	-2.140	$\frac{pb}{2V}$	-0.1585
$\frac{rb}{2V}$	0.1695	$\frac{q\overline{c}}{V}$	-15.56	$\frac{rb}{2V}$	-0.1112
δ_a	-0.09917	δ_e	-1.921	δ_a	-0.003872
δ_r	0.006934	eta^2	0.6921	δ_r	-0.08265
$\delta_a \alpha$	-0.08269	$\frac{rb}{2V}$	-0.3118	$rac{q\overline{c}}{V}$	0.1595
		δ_f	0.4072	eta^3	0.1373

C_X		C_Y		C_Z	
parameter	value	parameter	value	parameter	value
dpt	0.1161	_	_	dpt	-0.1563
$\alpha \cdot dpt^2$	0.1453				

C_l		C_m		C_n	
parameter	value	parameter	value	parameter	value
$\alpha^2 \cdot dpt$	-0.01406	dpt	-0.07895	dpt^3	-0.003026

$$dpt \equiv \frac{\Delta p_t}{\frac{1}{2}\rho V^2} = C_1 + C_2 \frac{P}{\frac{1}{2}\rho V^3}$$
 with:
$$\begin{cases} C_1 = 0.08696 \\ C_2 = 191.18 \end{cases}$$

• Engine power P, $[Nm \, s^{-1}]$:

$$P = 0.7355 \left\{ -326.5 + \left(0.00412(p_z + 7.4)(n + 2010) + (408.0 - 0.0965n) \left(1.0 - \frac{\rho}{\rho_0} \right) \right) \right\}$$

Equations

• Dimensional forces, [N]:

$$X_a = C_{X_a} q_{dyn} S$$

$$Y_a = C_{Y_a} q_{dyn} S$$

$$Z_a = C_{Z_a} q_{dyn} S$$

• Dimensional moments, [Nm]:

$$L_a = C_{l_a} q_{dyn} S b$$

$$M_a = C_{m_a} q_{dyn} S \overline{c}$$

$$N_a = C_{n_a} q_{dyn} S b$$

```
Steady wings-level flight.
                                                                    State vector (trimmed):
Give desired airspeed [m/s],
                                           35
                                                                                       x = 3.5000e + 001
Give (initial) altitude [m],
                                          2000*0.3048
                                                                                            2.1131e-001
                                                                                           -2.0667e-002
Give heading [deg], default = 0:
                                                                                            1.9190e-001
Give flap angle [deg], default = 0:
Give engine speed [RPM], default = 1800:
```

 y_e H9 x_e u = -9.3083e - 0029.6242e-003 $u = V \cos \alpha \cos \beta$ -4.9506e-002 U= $\delta_a \quad \delta_r \quad \delta_f \quad n \quad p_z$ 0

Give manifold pressure pz ["Hg], default = 20:

 $v = V \sin \beta$ 1.8000e+003 2.0000e+001 $w = V \sin \alpha \cos \beta$

Input vector (trimmed):

0

1.7 ISA Atmospheric Model

For the atmospheric data an approximation of the International Standard Atmosphere (ISA) is used [Mulder et al., 2000].

$$T = T_0 - 0.0065h$$

 $\rho = \rho_0 e^{-\frac{g}{287.05T}h}$
 $a = \sqrt{1.4 \times 287.05T}$

where $T_0 = 288.15$ is the temperature at sea level and $\rho_0 = 1.225$ is the air density at sea level. This atmospheric model is only valid in the troposphere (h < 11000 m). Given the aircraft's altitude (h in meters) it returns the current temperature (T in Kelvin), the current air density (ρ in kg/m³) and the speed of sound (a in m/s).