Des exemples pour révision

1) Calcul des clés candidates

Soit par calcul de la fermeture transitive des parties gauches des DF de F+ ou simplement par une lecture du graphe

Exemple:

Une relation R(A,B,C,D) et un ensemble de DF initial F={AB \rightarrow C; B \rightarrow D; BC \rightarrow A}

Aucune transitivité ou pseudo transitivité d'où F⁺=F

Nous remarquons que le B ne figure dans aucune des parties droites donc il doit faire partie de la clé

 $(AB)^{+}=ABCD$; $B^{+}=BD$ et $(BC)^{+}=ABCD$ d'où clés candidates = $\{AB, BC\}$

2) Vérifier si une décomposition est sans perte d'information (SPI)

D'après le thérème de Hearth, une décompsition d'un relation R en R1 et R2 est SPI ssi:

- R=R1∪R2
- $(R1 \cap R2) \rightarrow (R1-R2)$ ou (R2-R1) est une DF de F⁺

Exemple:

R(A,B,C,D) et $F=\{A\rightarrow B; C\rightarrow D\}$ aucune transitivité F+=F

- 1^{ère} décomposition: R1(A,B) et R2(C,D)

La première condition du théorème est vérifiée mais pour la seconde aucune DF n'est retrouvée

- 2^{ème} décomposition: R1(A,B) et R2(A,C,D)
 - ✓ R=R1∪R2
 - ✓ On retrouve $A \rightarrow B$

Les deux conditions sont vérifiées cette décomposition est SPI

3) Vérifier si une décomposition est sans perte de DF (SPD)

Une décomposition est SPD ssi F+=(F1∪F2)+

Exemple

R(A,B,C,D), $F=\{A\rightarrow B; B\rightarrow C; D\rightarrow B\}$ et la décomposition R1(A,C,D) et R2(B,D)

$$F+ = F \cup \{A \rightarrow C; D \rightarrow C\}$$

Pour R1 on a F1= $\{A \rightarrow C\}$ et pour R2 on a F2 = $\{D \rightarrow B\}$

$$(F1 \cup F2) + = \{A \rightarrow C; D \rightarrow B\}$$

 $F+ \neq (F1 \cup F2)+$ nous avons perdu $A \rightarrow B$; $B \rightarrow C$ et $D \rightarrow C$ donc c'est une décompodition non SPD

4) Algorithme de synthèse

Au lieu d'appliquer la normalisation forme par forme cet algorithme fournit directement un schéma en 3^{ème} FN. Dont voici le principe:

- 1) Rechercher une couverture minimale (C^M) G de F
- 2) Partionner G en G₁, G₂, ... tels que les DF d'un même groupe aient ma même partie gauche
- 3) Construire pour chaque groupe G_i une relation R_i
- 4) Si aucune des clés candidates ne figure dans une des relations R_i alors il est nécessaire de rejouter une relation dont les attributs constitue une clé candidate

Exemple1:

R(A,B,C,D,E) et $F=\{A\rightarrow B; A\rightarrow C; CD\rightarrow E; B\rightarrow D\}$ avec une seule clé candidate A

F est déjà une couverture minimale

$$G1=\{A\rightarrow B; A\rightarrow C\}$$
 \Rightarrow $R1(\underline{A},B,C)$

$$G2 = \{CD \rightarrow E\}$$
 \Rightarrow $R2(\underline{C},\underline{D},E)$

$$G3 = \{B \rightarrow D\}$$
 \Rightarrow $R3(\underline{B},D)$

Pas d'application du point 4 car R1 contient la clé

Exemple 2:

une couverture minimale représentée par son graphe

une seule clé candidate (GB)

$$G1=\{G\rightarrow A\}$$
 \Rightarrow $R1(\underline{G},A)$

$$G2 = \{AB \rightarrow D\} \Rightarrow R2(\underline{A},\underline{B},D)$$

$$G3 = \{B \rightarrow C\}$$
 \Rightarrow $R3(\underline{B},C)$

$$G4 = \{ D \rightarrow EF \} \Rightarrow R4(\underline{D}, E, F)$$

Aucune relation ne contient la clé on applique alors le dernier point de l'algorithme et on rajoute R5(G,B)

Algorithme de décomposition BCNF

C'est un algorithme qui fournit directement un schéma en BCNF:

- a) Chercher une DF non triviale X→Y dans R telle que X n'est pas une clé candidate (c'est une DF qui viole la BCNF)
- b) Construire la relation $R_i(X,Y)$

Exemple:

R(A,B,C,D,E) et $F=\{A\rightarrow B; A\rightarrow C, CD\rightarrow E; B\rightarrow D\}$

On commence par calculer F⁺

 $F^+ = F \cup \{A \rightarrow DE; BC \rightarrow E; \}$

Une seule clé candidate A

Les DF {CD→E, B→D et BC→E} violent la BCNF car les parties gauches ne sont pas des clés candidates

Décomposition:

Selon CD \rightarrow E on construit **R1**(C,D,E)

Il nous reste R(A,B,C,D) et les DF ={A \rightarrow B; A \rightarrow C; B \rightarrow D; A \rightarrow D;} dont la clé est toujours A

Selon B \rightarrow D on construit **R2**(\underline{B} ,D)

Il nous reste R(A,B,C) et les DF= $\{A \rightarrow B; A \rightarrow C\}$ dont la clé est toujours A, d'où la relation **R3**(A,B,C)

Ce n'est pas la seule décomposition possible et ceci selon l'ordre d'application des DF qui violent la BCNF