第二次作业

李阳 5150272910019 黄弘毅 515072910038 王潇卫 515072910032

1

(a)

the solution of x=g(x)= $\frac{1}{2}$ (x+ $\frac{a}{x}$) is x*= \sqrt{a} the first derivative:g'(x)=\$\frac{1}{2}-\frac{a}{2}-\f

(b)

Code:Fixedpoint.m

```
%% to write a function of fixed point and output the convergence result
and graph.
%Author:Lyon(515072910019)
function Fixedpoint(x_initial,g)%函数形参: x_initial:初始点 g: 函数表达式
N=100; eps=1e-8; %循环次数和结果精度
x_former=x_initial;
x=linspace(2,2.6,101);
% the interval of picture change with the function g when we use this
code.
y=g(x);
plot(x,y,x,x);% 首先画出两个主图: x和g(x)
hold on
for i=1:N
    x_latter=g(x_former);
    fprintf("N:%d \t xf:%.8f \t x1:%.8f \n",i,x_former,x_latter);
    plot([x_former,x_former],[x_former,x_latter]);
    hold on
    plot([x_former,x_latter],[x_latter,x_latter]);%画fixedpoint过程线
    hold on
    if abs(x latter-x former)<eps</pre>
        fprintf("the final result is %.8f \n",x_latter);
        break
    end
    x_former=x_latter;
end
end
```


(c)

we use g(x)= x^2-5 to evaluate $\sqrt{5}$ by using Newton-Rafson method. code:New_Raf.m

After running the code, we get the result:

N:1	x1:2.20000000	x2:2.23636364
N:2	x1:2.23636364	x2:2.23606800
N:3	x1:2.23606800	x2:2.23606798
N:4	x1:2.23606798	x2:2.23606798
the	final result is 2.2	3606798

2 (a) For even wave function, we has the equation $\sqrt{10+E}\tan(\sqrt{10+E})=\sqrt{-E}$, where -10 < E < 0 First, transform the equation into $\tan(\sqrt{10+E})=\sqrt{\frac{-E}{10+E}}$, and plot $y_1=\tan(\sqrt{10+E}), y_2=\sqrt{\frac{-E}{10+E}}$ at -10 < E < 0 Then we have

Note that there is a singular point near E=-7.5, so at -10 < E < -7 there is only one point of intersection at $E\approx -8.6$. What's more, $y_1(0)<0, y_2(0)=0$ so there is another solution around 0. The figure shows that the soultion is -0.004.

Using fixed-point method to solve the equation. Transform the equation into $E=\arctan(\sqrt{\frac{-E}{10+E}})^2-10$

Setting initial guess $x_1=-8.5$, then we have x=-8.592791

Fixed-point is: -8.592786, found in iteration 12, intial guess -8.500000

Here is the code for question (a).

```
%HW_2_2_a
%计算物理 第二次作业 第2题(a)
%王潇卫 515072910032

clc
clear all
%% First part: plot the figure.
f1 = @(E) tan(sqrt(10+E));
f2 = @(E) sqrt(-E./(10+E));
E = -10:0.01:0;
y1 = f1(E);
y2 = f2(E);
```

```
axis([-10,0.5,-5,5])
grid on
xlabel('E')
ylabel('y')
title('y_1, y_2 函数图像')
legend ('y_1','y_2')
%% Second part: use fixed-point method to find the solution.
espon = 1e-5;
Iteration = 20;
E_intial = -8.5; %猜测值
E0 = E_intial;
E1 = 0;
f3 = @(E) (atan(sqrt(-E./(10+E)))).^2 -10;
for i=1:Iteration
    E1 = f3(E0);
    if abs(E0-E1) <= espon
        fprintf (1,'Fixed-point is: %f ,found in iteration %d ,intial
guess %f \n',E0,i,E_intial)
        break
    else
        E0 = E1;
    end
end
```

(b) The change of the depth of the potential causes equations turning into

$$\sqrt{V_0+E} an(\sqrt{V_0+E})=\sqrt{-E}$$
, where $-V_0 < E < 0$ (even) $\sqrt{V_0+E}\cot(\sqrt{V_0+E})=-\sqrt{-E}$, where $-V_0 < E < 0$ (odd)

Change the potential deeper:

Using the graphical method to find the approximation of bound states when $V_0=10,20,30\,$, 40 then we have

For even wave function

 $V_0=10$: Two bound state: E=-8.592786 (exact solution) and $E\approx-0.004$ $V_0=20$: Two bound states: $E\approx-6.1,-18.4$ $V_0=30$ Two bound states: $E\approx-14.9,-28.3$ $V_0=40$ Three bound states: $E\approx-0.055,-23.7,-38.2$

For odd wave function

 $V_0=10$: One bound state: $Epprox -4.6~V_0=20$: One bound state: $Epprox -13.6~V_0=30$ Two bound states: $Epprox -23.1, -4.1~V_0=40$ Two bound states: Epprox -32.7, -12.0

Change the potential shallower

To sum up:

potential	number of bound state	ground state

20	1(o) + 2(e)	-18.4
30	2(o) + 2(e)	-28.3
40	2(o) + 3(e)	-38.2

(o) means number of bound state for odd wave functions; (e) means number of bound state for even wave functions;

So making the potential deeper will produce a lager number of and deeper bound states. And the relationship between ground state energy and depth is showen as follow.

(c) Changing the width of the barrier causes equations turning into $a\sqrt{10+E}\tan(a\sqrt{10+E})=\sqrt{-E}$, where -10< E<0 (even) $a\sqrt{10+E}\cot(a\sqrt{10+E})=-\sqrt{-E}$, where -10< E<0 (odd)

barrier	even state	odd state	ground state
0.5	-6.9	-0.9	-6.9
1.0	-8.592786	-4.6	-8.59
1.5	-9.1 ; -2.0	-6.5	-9.1

۷. ا	-2.2, -2.0	-0.0 , -0.7	·
3.0	-9.6 ; -5.9	-8.4 ; -2.1	-9.6

As the width of the barrier increase, ground state energy approach to -10.

From the lecture, we know that the bond length req is the equilibrium distance when V(r) is at its minimum. So we should find the root of $V\prime(r)=0$ $V(r)=-\frac{e^2}{r}+V_0e^{-\frac{r}{r_0}}$ $V\prime(r)=\frac{e^2}{r^2}-\frac{V_0}{r_0}e^{-\frac{r}{r_0}}$ so using the Newton-Rafson method: code: pro3.m

```
clear all;close all;clc;
x1=2.5;e_square=14.4;v0=1090;r0=0.330;
g=@(x) e_square./(x.^2) - (v0/r0)*exp(-x./r0);
g_prime=@(x) -2*e_square./(x.^3)+(v0/(r0^2))*exp(-x./r0);
N=100;eps=1e-8
for i=1:N
    x2=x1-g(x1)./g_prime(x1);
    fprintf("N:%d \t x1:%.8f \t x2:%.8f \n",i,x1,x2);
    if abs(x2-x1)<eps
        fprintf("the result of Newton-Rafson is %.8f \n",x2);
        break
    end
    x1=x2;
end
v=@(x) -e_square/x + v0*exp(-x/r0);
req=fminsearch(v,x1);
fprintf("the result of matlab built-in fminsearch is %.8f \n",req)
```

the result is: the result is:

N:1	x1:2.50000000	x2:2.31439241
N:2	x1:2.31439241	x2:2.35685357
N:3	x1:2.35685357	x2:2.36051342
N:4	x1:2.36051342	x2:2.36053848
N:5	x1:2.36053848	x2:2.36053848

the result of Newton-Rafson is 2.36053848

the result of matlab built-in fminsearch is 2.36053848 we find that the result is equal.

4

$$2^{-\frac{x}{s}} + e^x = 2.2 \, g_1(x) = -3 \log_2(2.2 - e^x), g_2(x) = \ln(2.2 - 2^{-\frac{x}{3}})$$

(a)

We plot g_1 and g_2 and y=x in a single graph. Reading from the graph, the left fixed point is about $x_1=-3.35$, the right fixed point is about $x_2=0.225$

(b)

For $g_1(x)$, We start from $x_1=-4$ and $x_1=-3$ and apply 4 iterations. Numerical result shows in the following. And we find in both cases x_1 converge to the same result, about -3.34. We also using plot to demonstrate process of the convergence graphically. **Code:**

```
%g1
g1=@(t) -3*log2(2.2-exp(t));
x=-4:0.001:-3;
y=g1(x);
```

```
x1=-4;
result1=zeros(4,2);
for i=1:4
    x2=g1(x1);
    plot([x1,x1],[x1,x2]);
    plot([x1,x2],[x2,x2]);
    x1=x2;
    result1(i,:)=[i,x2];
end
%smaller fixed point, right side integer
x1=-3;
result2=zeros(4,2);
for i=1:4
    x2=g1(x1);
    plot([x1,x1],[x1,x2]);
    plot([x1,x2],[x2,x2]);
    x1=x2;
    result2(i,:)=[i,x2];
end
```

Result:

$g_1(x) = -3\log_2(2.2 - e^x)$				
Iteration ₽	x1=-443	x1=-3₽		
1₽	-3.376327177213716	-3.313438602977319¢		
2₽	-3.344754557425512	-3.340319761994467		
3₽	-3.342563538129475	-3.342250111379362₽		
40	-3.342408865593288	-3.342386711413074		

graphical process of convergence

And we apply the same algorithm to the bigger fixed point of $g_1(x)$ Set $x_1=0$ and $x_1=1$

$g_1(x) = -3\log_2(2.2 - e^x)\varphi$				
Iteration ₽	x1=0₽ x1=1€		x1=1₽	
	1	-0.789103217501382·	Imaginary₽	
	2	-2.411536014525200·	Imaginary₽	
	3.	-3.232390583529030	Imaginary₽	4
	4	-3.334169720882290	Imaginary₽	

In this case $g_1(1)$ is already imaginary. And start from $x_1=0$, it converges to the smaller fixed point ≈ -3.3 after 4 iterations.

g1, start from x1= 0 and 1€

Then we do the same process on $g_2(x)$

$g_2(x) = \ln\left(2.2 - 2^{-\frac{x}{3}}\right) \varphi$		
Iteration₽	x1=-4'₽	x1=-3¢
	1 · Imaginary₽	-1.609437912434100 ↔
0.0	2: Imaginary	-0.288253737557777 ↔
(4)	3 Imaginary₽	0.123218324184092.
	1 Imaginary₽	0.205442236170297:

 g_2 , start from $x_1=-4$ and -3 Here $x_1=-3$ converges to the bigger fixed point pprox 0.21

$g_2(x) = \ln\left(2.2 - 2^{-\frac{x}{3}}\right)\varphi$			
Iteration			
	1	0.182321556793955*	0.340961767874156
	2	0.216119166591763	0.243538743454569*
	3.	0.222109349725443	0.226908898256741*
	4	0.223162446115954	0.224004375308323*

 g_2 , start from $x_1=0$ and 1 both converge to the bigger fixed point pprox 0.22

Comments:

For g_1 , near the smaller fixed point |g'(x)| < 1, and near the bigger fixed point |g'(x)| > 1. In our experiment, start from x = -4, -3, 0, 1 all converge to the smaller fixed point |g'(x)| < 1. similar for g_2 , near the smaller fixed point |g'(x)| > 1, and near the bigger fixed point |g'(x)| < 1. Start from x = -4, -3, 0, 1 it all converge to the bigger fixed point (≈ 0.22) where |g'(x)| < 1. Theory of fixed point says if |g'(x)| < 1 at fixed point, convergence is guaranteed. And g_1, g_2 are two good examples demonstrating the theory.

5 Halley's model is :
$$x_{n+1}=x_n-rac{2f(x_n)f\prime(x_n)}{2f\prime(x_n)^2-f(x_n)f\prime\prime(x_n)}$$

(a)Show that Halley's method has order of convergence 3 for simple zero.

First order

$$\lim_{n\to\infty} \frac{|x_{n+1}-x^*|}{|x_n-x^*|} = 1 - 2f \left[\frac{f'}{2(f')^2 - ff''} \right]' - 2f' \frac{f'}{2(f')^2 - ff''} \bigg|_{x=x^*} = 0$$

→ Second order

$$\begin{split} \lim_{\mathbf{n} \to \infty} \frac{|\mathbf{x}_{\mathbf{n}+1} - \mathbf{x}^*|}{|\mathbf{x}_{\mathbf{n}} - \mathbf{x}^*|^2} &= \frac{1}{2} \left(1 - 2\mathbf{f} \left[\frac{\mathbf{f}'}{2(f')^2 - \mathbf{f} \mathbf{f}''} \right]' - 2f' \frac{\mathbf{f}'}{2(f')^2 - \mathbf{f} \mathbf{f}''} \right)' \bigg|_{\mathbf{x} = \mathbf{x}^*} \right) \\ &= \frac{1}{2} \left(-2\mathbf{f}' \left[\frac{\mathbf{f}'}{2(f')^2 - \mathbf{f} \mathbf{f}''} \right]' - 2\mathbf{f} \left[\frac{\mathbf{f}'}{2(f')^2 - \mathbf{f} \mathbf{f}''} \right]'' - \left[\frac{2(\mathbf{f}')^2}{2(f')^2 - \mathbf{f} \mathbf{f}''} \right]' \right) \bigg|_{\mathbf{x} = \mathbf{x}^*} \\ &= \frac{3\mathbf{f} \mathbf{f}' \mathbf{f}''^2 - 2\mathbf{f} \mathbf{f}'^2 \mathbf{f}'''}{(2f'^2 - f \mathbf{f}'')^2} \bigg|_{\mathbf{x} = \mathbf{x}^*} = 0.4 \end{split}$$

→ Third order

$$\lim_{n \to \infty} \frac{|\mathbf{x}_{n+1} - \mathbf{x}^*|}{|\mathbf{x}_n - \mathbf{x}^*|^3} = \frac{1}{3} \left[f \frac{3f'f''^2 - 2f'^2f'''}{(2f'^2 - ff'')^2} \right]' \Big|_{\mathbf{x} = \mathbf{x}^*}$$

$$= \frac{1}{3} f' \left. \frac{3f'f''^2 - 2f'^2f'''}{(2f'^2 - ff'')^2} \right|_{\mathbf{x} = \mathbf{x}^*} = \frac{3f''^2 - 2f'f'''}{12f'^2} \Big|_{\mathbf{x} = \mathbf{x}^*}$$

So for simple zero(which means $f' \neq 0$), the convergence of Halley method has order of 3.

(b)

Apply Halley's method to
$$f(x)=5x^7+2x-1$$
 and $g(x)=rac{1}{x^3}-10$ For $f(x)=5x^7+2x-1$

a quick plot shows the zero point is near 0.5 Use Halley's method to find the zero point $\mathbf{Code}:$

```
%Halley's method
y=@(t) 5*power(t,7)+2*t-1;
y1=@(t) 35*power(t,6)+2;
y2=@(t) 210*power(t,5);
x0=0.5; %initial guess
format long
for i=1:20
    [i-1,x0,y(x0)]
    x0=x0-2*y(x0)*y1(x0)/(2*y1(x0)*y1(x0)-y(x0)*y2(x0));
end
```

Result:

Iteration <i>↔</i>	X _n o	$f(x_n)$
0₽	0.500000000000000000	0.0390625000000000
1₽	0.484353401935187¢	-0.000024736639697
2₽	0.484363490583419	0.0000000000000007
3₽	0.484363490583416	0.00000000000000000000
40	0.484363490583416	0.00000000000000000000₽

We can see only after 3 iterations, the x_n reaches its best value – it can't be improved more due to machine precision.

a quick plot shows the zero point is near 0.5

Firstly we apply the same algorithm as before using $g(x)=\frac{1}{x^3}-10$, but $g(x_n)$ still remains a small deviation from zero, 0.00000000000000002, after several iterations when x_n can't be improved any more. We think this small deviation may comes from the division $\frac{1}{x^3}$, so instead, we turn to use another function which has the same zero point, that is, $g(x)=10x^3-1$. And it successfully eliminate the small deviation.

Code:

```
%Halley's method
y=@(t) 10*t*t*t-1;
y1=@(t) 30*t*t;
y2=@(t) 60*t;
x0=0.5; %initial guess
format long
for i=1:20
    [i-1,x0,y(x0)]
    x0=x0-2*y(x0)*y1(x0)/(2*y1(x0)*y1(x0)-y(x0)*y2(x0));
end
```

Result:

Iteration <i>₽</i>	Xn⁴	$f(x_n)$
043	0.50000000000000000	0.250000000000000000
1₽	0.464285714285714	0.000819970845481
2.5	0.464158883367588	0.000000000040787

(c) Compare the results above with the results from the bisection method and the Newton's method for these functions.

We apply all Halley's method, bisection, Newton's method in every iteration, to figure out how fast every method converges.

Code:

```
%Halley & bisection & Newton
y=@(t) 5*power(t,7)+2*t-1;
y1=@(t) 35*power(t,6)+2;
y2=@(t) 210*power(t,5);
h0=0.5; %initial guess of Halley'method
b0=0.4; b1=0.6; %initial range of bisection
n0=0.5; %initial guess of Newton's method
result=zeros(20,7);
for i=1:20
    h0=h0-2*y(h0)*y1(h0)/(2*y1(h0)*y1(h0)-y(h0)*y2(h0)); %halley
method
    b2=(b0+b1)/2; %bisection method
    if (y(b0)*y(b2)) < 0 %since the zero point is an irrational
number, it can't locate at b2
        b1=b2;
    else
       b0=b2;
    end
    n0=n0-y(n0)/y1(n0); %newton's method
    result(i,:)=[i,b2,y(b2),n0,y(n0),h0,y(h0)];
end
```

Since both $f(x)=5x^7+2x-1$ and $g(x)=10x^3-1$ use similar codes: with only functions and numbers changing. We only attach the code of $f(x)=5x^7+2x-1$ here. While we will show the results of both.

Result:

			$f(x) = 5x^7 + 2$	X-1+		
م	bisection4		Newton's method₽		Halley's method₽	
3	Xn€	$f(x_n)$	Xn⁴	$f(x_n)$	Xn⁴	f(x _n)₽
1.	0.500000000000 000:	0.039062500000	0.484662576687 117	0.000733596717 110	0.484353401935 187	0.00002473663
2.4	0.450000000000 000	0.081316527343 750	0.484363592847 448	0.000000250746 967	0.484363490583 419	0.0000000000000000000000000000000000000
3.4	0.475000000000 000°.	0.022721199371 338	0.484363490583 <u>4</u> 28	0.00000000000 029	0.484363490583 416	0.0000000000000000000000000000000000000
4.	0.487500000000 000:	0.007718421621 084	0.484363490583 416	0.000000000000	0.484363490583 416	0.0000000000000000000000000000000000000
5.4	0.481250000000 000:	0.007607295984 676:	0.484363490583 416	0.0000000000000000000000000000000000000	0.484363490583 416	0.0000000000000000000000000000000000000
6.	0.484375000000 000	0.000028220957 347:	0.484363490583 416	0.000000000000	0.484363490583 416	0.0000000000000000000000000000000000000
7.	0.482812500000 000-	0.003796263089 269	0.484363490583 416	0.000000000000	0.484363490583 416	0.0000000000000000000000000000000000000
8:	0.483593750000 000	0.001885716085 254°	0.484363490583 416	0.000000000000	0.484363490583 416	0.0000000000000000000000000000000000000
9.	0.483984375000 000	0.000929173031 604	0.484363490583 416	0.0000000000000000000000000000000000000	0.484363490583 416	0.00000000000
10.	0.484179687500 000:	0.000450582618 750	0.484363490583 416	0.0000000000000000000000000000000000000	0.484363490583 416	0.00000000000
11	0.484277343750 000°	0.000211207502 984	0.484363490583 416	0.000000000000	0.484363490583 416	0.0000000000000000000000000000000000000
11	0.484277343750 000°.	0.000211207502 984°	0.484363490583 416	0.000000000000	0.484363490583 416	0.0000000000000000000000000000000000000
12	0.484326171875 000	0.000091499944 251	0.484363490583 416	0.0000000000000	0.484363490583 416	0.0000000000000000000000000000000000000
13	0.484350585937 500	0.000031641161 730	0.484363490583 416	0.000000000000	0.484363490583 416	0.00000000000
14	0.484362792968 750	0.000001710519 314:	0.484363490583 416	0.000000000000	0.484363490583 416	0.0000000000000000000000000000000000000
15	0.484368896484 375°	0.000013255114 729	0.484363490583 416	0.000000000000	0.484363490583 416	0.0000000000000000000000000000000000000
16.	0.484365844726 563	0.000005772271 637:	0.484363490583 416	0.0000000000000	0.484363490583 416	0.0000000000000000000000000000000000000
17	0.484364318847 656:	0.000002030869 644:	0.484363490583 416	0.0000000000000000000000000000000000000	0.484363490583 416:	0.00000000000
18	0.484363555908 203	0.0000001601 7 3 536°.	0.484363490583 416	0.000000000000	0.484363490583 416	0.00000000000
19	0.484363174438 477	0.000000775173 297	0.484363490583 416	0.000000000000	0.484363490583 416	0.000000000000
20	0.484363365173 340	0.000000307499 982	0.484363490583 416	0.000000000000	0.484363490583 416	0.00000000000

Halley's method reaches its best x_n in 3 iterations, and Newton's method 4 iterations, while bisection only obtains 6 effective digits after all 20 iterations end. Clearly Halley's method and Newton's method ride over bisection algorithm in this case. And we plot \log (relative error) of all three methods against iteration times, here we use $x^* = 0.484363490583416$ to calculate the relative error.

Theoretically, bisection algorithm converges as-

$$\frac{|\mathbf{x}_{\mathsf{n}+1} - \mathbf{x}^*|}{|\mathbf{x}_{\mathsf{n}} - \mathbf{x}^*|} \cong \frac{1}{2} \mathbf{1}$$

Newton's method converges as ₩

$$\sim \lim_{n \to \infty} \frac{|\mathbf{x}_{n+1} - \mathbf{x}^*|}{|\mathbf{x}_n - \mathbf{x}^*|^2} = \frac{\mathbf{f}''(\mathbf{x}^*)}{2f'(\mathbf{x}^*)} \approx 1.142 (in \ this \ case) + \frac{1}{2} (in \ this \ case)$$

Halley's method converges as+

$$\sim \lim_{n \to \infty} \frac{|x_{n+1} - x^*|}{|x_n - x^*|^3} = \frac{3f''^2 - 2f'f'''}{12f'^2} \approx 2.625 (in \ this \ case)$$

Result of $g(x) = 10x^3 - 1$

	2 22	- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	g(x)=10x		1103000	1 1 1 1 1 1 1 1 2 2
Þ	bisection₽		Newton's method₽		Halley's method₽	
	Xn4 ²	$f(x_n)e^{-x}$	Xn.47	$f(x_n)$	Xn ^{e3}	$f(x_n)^{\omega}$
1.	0.45000000000 0000	0.0887500 <mark>0</mark> 000 0000	0.4666666666666666666666666666666666666	0.01629629629 6297	0.46428571428 5714	0.0008199708 548
2.	0.47500000000 0000	0.07171875000 0000:	0.46417233560 0907	0.00008694843 5035:	0.46415888336 7589	0.0000000000 078
31.	0.46250000000 0000	0.01 <mark>068359375</mark> 0000-	0.46415888375 1135	0.00000000251 9766	0.46415888336 1278	0.0000000000000000000000000000000000000
4.	0.46875000000 0000	0.02996826171 8750	0.46415888336 1278	0.00000000000	0.46415888336 1278	0.0000000000
5	0.46562500000 0000	0.00950592041	0.46415888336 1278	0.00000000000	0.46415888336 1278	0.0000000000
61.	0.46406250000 0000	0.00062282562 2558	0.46415888336 1278	0.00000000000	0.46415888336 1278	0.0000000000
7:	0.46484375000 0000	0.00443303585 0525	0.46415888336 1278	0.00000000000	0.46415888336 1278	0.0000000000
81.	0.46445312500 0000	0.00190297901 6304:	0.46415888336 1278	0.00000000000	0.46415888336 1278	0.0000000000
9.	0.46425781250 0000	0.00063954539 5970	0.46415888336 1278	0.00000000000	0.46415888336 1278	0.0000000000
10.	0.46416015625 0000	0.00000822708 9420	0.46415888336 1278	0.00000000000	0.46415888336 1278	0.0000000000
11:	0.46411132812 5000-	0.00030733246 2398	0.46415888336 1278	0.00000000000	0.46415888336 1278	0.0000000000
12.	0.46413574218 7500	0.00014956098 5882*	0.46415888336 1278	0.00000000000	0.46415888336 1278	0.0000000000000000000000000000000000000
131	0.46414794921 8750	0.00007066902 3134	0.46415888336 1278	0.00000000000	0.46415888336 1278	0.0000000000
14	0.46415405273 4375	0.00003122148 5590:	0.46415888336 1278	0.00000000000	0.46415888336 1278	0.0000000000
15	0.46415710449 2188	0.00001149732 7768	0.46415888336 1278	0.00000000000	0.46415888336 1278	0.0000000000
16	0.46415863037 1094	0.00000163515 1595	0.46415888336 1278	0.00000000000 0000-	0.46415888336 1278	0.00000000000
17	0.46415939331 0547	0.00000329596 0808	0.46415888336 1278	0.00000000000	0.46415888336 1278	0.0000000000
18	0.46415901184 0820	0.00000083040 2580	0.46415888336 1278	0.00000000000	0.46415888336 1278	0.00000000000
19	0.46415882110 5957	0.00000040237 5014	0.46415888336 1278	0.00000000000	0.46415888336 1278	0.00000000000
20	0.46415891647 3389	0.00000021401 3657	0.46415888336 1278	0.00000000000	0.46415888336 1278	0.0000000000

In this case Halley's method reaches its best x_n in 3 iterations, and Newton's method 4 iterations, while bisection only obtains6 effective digits after all 20 iterations end.