49 Conclusion

- New tool for video coding
- ullet Original contribution o lattices embedding
- Design of a complete vector quantizer

 - ▷ determination of the optimal lattice
 - ▶ labeling of the codebook points
 - > processing of the outlying source vectors
 - ▶ bit allocation

Perspectives

- Progressive image coding
- Codebook updating (adaptive coding)

Plan

- 1. Context of the study
- 2. Vector Quantization (VQ)
- 3. Lattice VQ and Tree-Structured VQ
- 4. Tree-Structured Lattice VQ (TSLVQ)
- 5. Experimental results
- 6. Conclusion

47 RESULTS

Image sequences coding

image	image	PSNR	entropy	maximal time of encoding
sequence	number	[dB]	[bpp]	[s/image]
Salesman	200	33.86	0.238	1.5
MissAmerica	107	39.38	0.064	1.3

46 Results

Region-based coder

- Very low bit rate
- Motion estimation
 - \rightarrow polygonal shapes (Nzomigni95, Pateux96)
- Dyadic wavelet transform (Mallat89, Daubechies88)
- Multiresolution codebook (Antonini91)
- Bit allocation \rightarrow thresold 0.2 bpp [final rate 0.175 bpp]

1.5	0.6	0.3
0.6	0.35	
	0.3	0.2

45 RESULTS

Coding of the image sequence "MissAmerica"

44 RESULTS

Coding of the image sequence "Salesman"

43 Results

Coding of the image sequence "MissAmerica"

42 Results

Coding of the image sequence "Salesman"

41 RESULTS

Image sequences coding

image	number of	PSNR	entropy	maximal time of encoding
sequence	images	[dB]	[bpp]	[s/image]
Salesman	200	39.07	0.201	2
MissAmerica	107	38.98	0.162	2
Claire	200	38.03	0.157	2

Codebooks design (before bit allocation)

Image sequence "Salesman"

subband	training sequence	cpu	number of	entropy	training
label	size	time [s]	code vectors	[bpp]	ratio
А	5 images	6.75	43	0.992	884
В	10 images	13.95	358	0.427	186
С	10 images	14.13	434	0.496	153
D	148 images	48.50	1248	0.087	189

Bit allocation

Threshold 0.2 bpp \rightarrow final rate 0.188 bpp

subband	number of	entropy	
label	code vectors	[bpp]	
А	19	0.416	
В	64	0.111	
С	108	0.134	
D	1234	0.086	

39 Results

MPEG-based coder

- ullet Motion estimation o "block matching"
- DCT 2x2, intra-band configuration
- Codebooks

38 Results

4 steps

- \triangleright training sequences \rightarrow open loop coder
- bit allocation
- \triangleright image sequence coding \rightarrow closed loop coder

Formulae

$$\triangleright PSNR = 10.\log_{10} \ 255^2 / \left(\frac{1}{N_x \cdot N_y} \cdot d(e, e_q)\right)$$

- \triangleright prediction gain $G_p = 10.\log_{10} \ 255^2 / \left(\frac{1}{N_x.N_y}.d(e)\right)$
- \triangleright quantization gain $G_q = 10.\log_{10} \ d(e)/d(e,e_q)$
- QCIF image sequence
- Sparc-Station 5 [110 Mhz] computer

Plan

- 1. Context of the study
- 2. Vector Quantization (VQ)
- 3. Lattice VQ and Tree-Structured VQ
- 4. Tree-Structured Lattice VQ (TSLVQ)
- 5. Experimental results
- 6. Conclusion

36 TSLVQ

Conclusion

- Partition of the space according to :
 - > the source distribution
 - by the rate vs. distorsion tradeoff
- Simple labeling method
- \bullet $Z^k \to \text{simple processing for the outlying source vectors}$
- Fast quantizing \rightarrow complexity O(h.k)
- Bit allocation

Optimal bit allocation

Singular value of λ (Shoham88)

- ullet From a first point of the hull, by successive calculations of singular values ullet global convex hull
- ullet λ o search the BFOS criterion with the maximal value among the subbands

Lagrange multiplier

- ullet N^M combination of quantizers o complex
- $\min(D + \lambda.R) \iff \sum_{j=0}^{M-1} \min_{q_{j,i}} (d_{j,i} + \lambda.r_{j,i})$
- Algorithm (general form)
 - 1. convex hull of each subband \rightarrow directly obtained when growing the tree
 - 2. global convex hull \rightarrow search C

33

Bit allocation

- $\bullet M$ subbands
- $\min D$ subject to $R \leq R_d$
- Lagrangian methods (Shoham88, Ramchandran93)
 - $\triangleright N$ quantizers $q_{j,i}$ for each subband j
 - \rightarrow different configurations of the tree
 - ▷ for one combination of quantizers

$$D = \frac{1}{M} \cdot \sum_{j=0}^{M-1} d_{j,i} \quad \text{and} \quad R = \frac{1}{M} \cdot \sum_{j=0}^{M-1} r_{j,i}$$

 \triangleright cluster of points \rightarrow search on the convex hull

Processing of a source vector whose energy is too large

Detection

$$\triangleright F = b_{min}.\rho/\sqrt{\mathcal{E}_{max}}$$

 $\triangleright L_{\infty}$ norm of a vector ${\bf u}$ within the cube :

$$L_{\infty}(\mathbf{u}) = \max_{i=1,\dots,k} |u_i| \le (b_{min} \times \rho)$$

 $\triangleright L_{\infty}$ norm of a vector ${\bf x}$ which can be quantized :

$$L_{\infty}(\mathbf{x}) = \max_{i=1,\dots,k} |x_i| \le \sqrt{\mathcal{E}_{max}}$$

Processing

If
$$|x_i|_{i=1,...,k} > \sqrt{\mathcal{E}_{max}} \implies x_i = \text{sign}(x_i).\sqrt{\mathcal{E}_{max}}$$

31 TSLVQ

Labeling of the codebook vectors

- 1. Look-up table \rightarrow index of the truncated lattice points
- 2. Scan the tree in order to number the nodes
- 3. Re-scan the tree and store for each node:
 - the children numbers
 - the father number
 - the index of the corresponding lattice point
 - the entropy code word (for the leaves)

Optimal lattice

 $\Longrightarrow Z^k$ is optimal

29 TSLVQ

Unbalanced tree design (greedy approach)

- Partition adapted to the source distribution
- "Dead zone"

Quantization scheme

$$F = b.\rho/\sqrt{\mathcal{E}_{max}}$$

- A tree-structured codebook
- Progressive splitting $\rightarrow b = b_{min} = 3$

27 TSLVQ

Hierarchy of embedded lattices

26

TSLVQ

- ullet Packing radius of the support lattice : ho
- Packing radius of the dilated lattice :

$$b.\rho$$
 avec $b \in \mathbf{R} \ / \ b > 1$

$$\implies b = 2.n + 1 / n \in N^*$$

25 TSLVQ

Embedded Lattices

- ullet Support Lattices Z^k , D_k , E_8 , $\Lambda_{16} o$ fastest quantizing algorithms
- Embedding :
 by contracting it, embed a truncated lattice in its Voronoï cell
- Optimal embedding : the rescaled truncated lattice covers exactly the Voronoï cell
- Sub-optimal embedding : the rescaled truncated lattice covers maximaly the Voronoï cell

Plan

- 1. Context of the study
- 2. Vector Quantization (VQ)
- 3. Lattice VQ and Tree-Structured VQ
- 4. Tree-Structured Lattice VQ (TSLVQ)
- 5. Experimental results
- 6. Conclusion

Conclusion

- Pruning algorithm
 - ⊳ global approach
 - ▷ storage of the complete tree
- Greedy algorithm
 - ▷ local approach
 - ▷ limited storage

Greedy approach

 \Longrightarrow Splitting of the leaf for which $\lambda(n_i)$ is maximal

Pruning principle

 \Longrightarrow Pruning of the branch for which $\lambda(n_i)$ is minimal

20

TSVQ

Tree pruning

- BFOS algorithm (Breiman84)
 - 1. complet tree ${\mathcal T}$
 - 2. successive pruning
- ullet Characterisation of each branch \mathcal{S}_{n_i}
 - \triangleright increase in distorsion if \mathcal{S}_{n_i} is removed $\Delta d(\mathcal{S}_{n_i})$
 - \triangleright decrease in rate if \mathcal{S}_{n_i} is removed $\Delta r(\mathcal{S}_{n_i})$
 - \triangleright BFOS criterion $\lambda(n_i) = \Delta d(\mathcal{S}_{n_i})/\Delta r(\mathcal{S}_{n_i})$

Training

Characterisation of each node n_i

ullet Probability of reaching n_i

$$P(n_i) = \frac{\operatorname{card}(C_{n_i})}{\operatorname{card}(SA)}$$

Average distorsion

$$d(n_i) = \frac{1}{\operatorname{card}(C_{n_i})} \cdot \sum_{\mathbf{x} \in C_{n_i}} \sum_{\mathbf{x} \in SA} \|\mathbf{x} - \mathbf{y}_{n_i}\|^2$$

Entropy code length

$$r(n_i) = -\log_2 P(n_i)$$

Encoding

- \triangleright complexity $O(\log_B L)$

Decoding

- ▷ leaves
- ▷ progressive reconstruction
- ullet Unbalanced tree o variable rate
 - ⊳ pruning approach (Breiman84, Chou89)
 - □ greedy approach (Makhoul85, Riskin91)

Plan

- 1. Context of the study
- 2. Vector Quantization (VQ)
- 3. Lattice VQ and Tree-Structured VQ
- 4. Tree-Structured Lattice VQ (TSLVQ)
- 5. Experimental results
- 6. Conclusion

16 LVQ

Conclusion

- Advantage

 - ▷ predefined codebook
- ullet Drawback o method for simple sources

 \Longrightarrow TSLVQ : hierarchical packing of embedded truncated lattices

15 LVQ

Labeling of the lattice points

- Index calculation \rightarrow product code (Lamblin88, Moureaux94, Onno95)
 - ▷ sub-index for the sphere energy
 - ▷ sub-index for the point position

14 LVQ

Projection within a sphere

- ullet Sphere radius $\sqrt{\mathcal{E}_t}$
- Training sequence $\mathcal{SA} = \{\mathbf{x}_j = (x_1, \dots, x_k)^T \ / \ j = 0, 1, 2, \dots \}$
- Vector energy $\mathcal{E}(\mathbf{x}) = L_2(\mathbf{x})$
- $\mathcal{E}_{max} = \max_{\mathcal{E}} \{ \mathcal{E}(\mathbf{x}) / \mathbf{x} \in \mathcal{SA} \}$
- Scaling factor $F = \sqrt{\mathcal{E}_t/\mathcal{E}_{max}}$
- ullet Real source o vectors with energy greater than \mathcal{E}_{max} are processed separately

13 LVQ

Coding scheme

Lattice Truncation

- Source normalisation
 - before quantization
 - ▷ scaling factor

Characteristics

ullet Packing radius ho

• Series Theta, Nu (Gaidon93), modified Theta (Moureaux94)

- \bullet Best quantizing lattices : A_2 , D_4 , E_8 , Λ_{16}
- Fast quantizing lattices (Conway and Sloane83) : Z^k , D_k , E_8 , Λ_{16} \Longrightarrow complexity O(k)

11 LVQ

Lattices Λ

• Regular arrangement of identical spheres \rightarrow spheres centers $0 \rightarrow$ origin

$$\bullet Z^k = \{ \mathbf{y} = (y_1, y_2, \dots, y_k)^T / y_i \in Z \}$$

Plan

- 1. Context of the study
- 2. Vector Quantization (VQ)
- 3. Lattice \overline{VQ} and Tree-Structured \overline{VQ}
- 4. Tree-Structured Lattice VQ (TSLVQ)
- 5. Experimental results
- 6. Conclusion

(nearly) Optimal VQ

- Training
- ullet Encoding o exhaustive research O(L)

8

Performance evaluation

Rate [bpp]

 $ightharpoonup \mathsf{Rate}\ \mathsf{constrained}\ :\ R = \frac{1}{k}.\log_2 L$

 $\triangleright \ \mathsf{Entropy} \ \mathsf{constrained} : \ R \simeq H(\mathcal{D})$

Distorsion

$$D = \frac{1}{k} \sum_{i=1}^{L} \int_{C_i} L_2(\mathbf{x}, \mathbf{y}_i) . p_{\mathbf{X}}(\mathbf{x}) \ d\mathbf{x}$$

Coding

• Encoding, "Nearest Neighbour" rule

$$C_i = \{ \mathbf{x} \in R^k / \mathcal{Q}(\mathbf{x}) = \mathbf{y}_i, \ si \ d(\mathbf{x}, \mathbf{y}_i) \le d(\mathbf{x}, \mathbf{y}_j), \forall j \ne i \}$$

Principe

• Vector Quantizer, dimension k, size L

$$Q: R^k \longrightarrow \mathcal{D}$$

$$\mathbf{x} \longmapsto \mathcal{Q}(\mathbf{x}) = \mathbf{y}_i$$

$$\mathcal{D} = \left\{ \mathbf{y}_i \in R^k / i = 1, 2, ..., L \right\}$$

ullet R^k partition into L Voronoï cells

$$C_i = \{ \mathbf{x} \in R^k / \mathcal{Q}(\mathbf{x}) = \mathbf{y}_i \}$$

Plan

- 1. Context of the study
- 2. Vector Quantization (VQ)
- 3. Lattice VQ and Tree-Structured VQ
- 4. Tree-Structured Lattice VQ (TSLVQ)
- 5. Experimental results
- 6. Conclusion

• Hybrid approach

3

- Standarts design (H261, MPEG1&2, MPEG4)
- Image coding scheme

Plan

- 1. Context of the study
- 2. Vector Quantization (VQ)
- 3. Lattice VQ and Tree-Structured VQ
- 4. Tree-Structured Lattice VQ (TSLVQ)
- 5. Experimental results
- 6. Conclusion

Tree-Structured Lattice Vector Quantization for the Compression of Digital Image Sequences

Vincent Ricordel

Tampere University of Technology Signal Processing Laboratory