(1) From the given set of And gurations.

BV	X	26.2	263	Xq	XS	RHS
743	V.2-	0	1	3/2	- Y ₂	2.5
χ_2	l,	1	0	-1/2	1/2	25
2,-0;	13	0	O	4	1	300

- (a) shadow price for sugar = 4
- (b) Since X, is non-basic variable, so only = 1-c, will change

 =1-c, = caB-a, -c, = [a 1][1] -c, = 6-c, 7,0 = [4-6]

 Thus I a
- Thus, if $c_1 \le 6$, the current basis remains optimal (c) $B''b' = \begin{bmatrix} 3/2 & -\frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} b_1 \\ 100 \end{bmatrix} = \begin{bmatrix} \frac{3b_1}{2} 50 \\ -\frac{b_1}{2} + 50 \end{bmatrix}$

The current basis remains optimal if

$$\frac{3b_{1}}{2} - 50 70 \Rightarrow b_{1} 7 \frac{100}{3}$$
and $-\frac{b_{1}}{2} + 50 70 \Rightarrow b_{1} \leq 100$

(d) 1000 For b1=30, the current basic wered not be optimite feature.
To find new solution using almost simplese method

N 21	×2	1 35	3/2		25 -5>	= [5 7] 3
112 1/2	t	0	-1/2 C+	- γ ₂ _	350220	- 22
-c) 3	0			イボ	110	
×5 -1	0	-2	1	O	30	
マュー1	0	2	7	O	210	
) orh	eved sol"	ス	-0,	212	20, 24, 24	O'

(e) Let 26 50 the number of type a condy board to be produced

120 Hance, the current bosis is not optimal

134	24	×2-	263	3/2	745	(5/2)	12 MS	Roho 10-7	5' a 6 = [3/2 - 1/2] -4/2 1/2]
×3	4.2-	0		19_	1/2			(0)	HAZZWAY CONTRACTOR
×2	42	1	Ö	- Y2	42	1/2	25	50	= [5/2]
-6;	3	0	O	4	1	-1	300		
26	5	0	45	3/5	1/5	1	10		
262	-2-	1	-15	-4	3/5		310	i	
	1-8	0	21.	23	5 4/5	5 0	310		

Optimal sol": - 12 = 20 , 24 = 6, 1/3 = 0
26 = 10
2 = 310

- (a) Max $z = 2x_1 + 3x_3 + x_3$, $s + \frac{2}{5}x_1 + \frac{1}{5}x_2 + \frac{3}{5}x_3 \le \frac{4}{5}$ and $\frac{1}{5}x_1 + \frac{3}{5}x_2 + \frac{4}{5}x_3 \le \frac{7}{5}$
- (b) GBA-C = 0 + C3 ≤ 5 For G=6-0 GBA-C = [0 0-1] x3 will enler the basis [0,1,1,0,0] Z=9
- (c) -25253
- 4) Equation (2) as shadow price is higher (472)

 Increase in obj fine = 4, Student needs to show & box for

 this increase (for full marks)

A YOU		Approxin		method			to total cost/day	our spet ran	
1	pelhi	Munda	1	china	iverly		7 3).	
rysou	20	٤	17	5	5000				
hozik	12	2	18	الما	1500	:			
Down	0	D	0	0	2000	1			
Donug		3000	3000	3000	12000	0			
Der	1	50		n nicht	Supplus	penalty-1	ppralby-2	penalty-3	
		20 000	6 19	3000	190f 20	00 1	•	(11)4-	
		12 2	[[8	1/2/16	1000	10.	lo	to	
22	300	O X X	200	0 . 0	1080	• • •	ð.	0	
Dom	and 11	0000	2000	3000	1000	0	ū.		
peno	lhorl	15 5		a) 5					
ppna	1ty-2	8	4	(11	14 '				3
bus	1ty-1	8	4	0					

12	13	19
-60	-70	80/
-50	-20	901
_96	108	_68
1 20	60	90
	-60 -50 -76	-60 -70 -50 -20 -76 -80/

*11	72	T3	Tf
30	20	ΙĐ	b
20	40	70	0
40	0)	0	20
0	30	40	10
	30 20 40	30 20 20 20 40 40 10	30 20 10 20 40 70 40 10 0

-> column with deduction.

Colomn	7	Th	T3	14	ř	
c,	30	10	10	[6]		
	20	39	76	ox		
Cz	40	0	ox	20		min A-10
-C3	TO	20	40	10		c = 10
	10	- Ambitioned	-			

TI	T2	To	TH
20	0	D	D
10	20	60	[0]
40	0	0	30
0	20	40	20
	10	20 0 10 20 40 0	20 0 0 10 20 60 40 0 0

2)	330
	1/

		71	TL,	13	19
	CI	20	0	0	D
(2)	c ₂	10	20	0.3	0
. C	Cz	40	0	0	30
	Cq	0	20	40	20
			-		-