PRINTABLE VERSION

Quiz 4

You scored 100 out of 100

Question 1

Your answer is CORRECT.

Which of the following would be the scatterplot for the given data?

x	4	5	7	14	13	20
y	23	29	26	40	30	42

b) O

c) O

- **d)** 0
- e) None of the above

Question 2

Your answer is CORRECT.

What can be said about the relationship between the explantory variable and the response variable in the following scatterplot?

	_ TI	•	1	• , •	1.	• ,•
a)	() I here	is a	weak	positive	linear	association.

- b) The explanatory variable causes the responses.
- c) There is a strong positive linear association.
- d) There is a strong negative linear association.
- e) One of the above

Question 3

Your answer is CORRECT.

Determine the correlation coefficient for the data shown in this table:

x	2	4	10	15	13	16
у	22	29	28	40	34	43

- a) 0.8332
- **b) 0**.9128
- c) 0.4564
- **d)** 0.9128
- **e)** −0.8332
- f) None of the above

Question 4

Your answer is CORRECT.

Choose the best correlation coefficient for the data shown in this scatterplot:

- a) 01.5809
- **b)** 0.3889
- **c)** 0.3889
- **d) 0**.7779
- **e)** −0.7779

Question 5

Your answer is CORRECT.

Which of the following is a true statement?

- a) If there is no correlation between the independent and dependent variables, then the value of the correlation coefficient must be -1.
- **b)** The variable that is being predicted in regression analysis is the independent variable.
- c) \odot The correlation coefficient r is always between -1 and +1.
- d) The coefficient of determination can assume negative values.
- e) \bigcirc A negative correlation indicates that as values of x decrease, values of y will decrease.

f) None of the above

Question 6

Your answer is CORRECT.

The decline of salmon fisheries along the Columbia River in Oregon has caused great concern among commercial and recreational fishermen. The paper 'Feeding of Predaceous Fishes on Out-Migrating Juvenile Salmonids in John Day Reservoir, Columbia River' (Trans. Amer. Fisheries Soc. (1991: 405-420)) gave the accompanying data on y = maximum size of salmonids consumed by a northern squaw fish (the most abundant salmonid predator) and x = squaw fish length, both in mm. Use the following statistics to give the equation of the least squares regression line.

$$\overline{x} = 524.970$$
, $\overline{y} = 319.417$, $s_x = 19.943$, $s_y = 16.100$, $r = 0.9662$

- a) $\hat{y} = 1.197x + 90.060$
- **b)** $\hat{y} = 0.780x 90.060$
- $\hat{\mathbf{c}}$ $\hat{\mathbf{y}} = 1.197x 90.060$
- **d)** \circ $\hat{y} = -90.060x + 0.780$
- e) $\hat{y} = 0.780x + 90.060$
- f) None of the above

Question 7

Your answer is CORRECT.

Suppose that you are given the following results. Find the correlation coefficient of the data.

$$s_x = 1.355$$
, $s_y = 12.300$, $b = 6.100$

- **a)** 0.672
- **b)** 0.336
- c) 0.488
- **d)** −0.672
- **e)** −0.488
- n None of the above

Ouestion 8

Your answer is CORRECT.

Suppose you find that the correlation coefficient for a set of data is 0.814. What is the coefficient of determination and what does it mean?

- a) \bigcirc 0.814; This means that 81.4% of the variation of y is explained by the LSRL of y on x.
- **b)** \bigcirc 0.663; This means that 66.3% of the variation of y is explained by the LSRL of y on x.
- c) 0.663; This means that we are 66.3% accurate with our prediction of the LSRL equation.
- d) 0.814; This means that we are 81.4% accurate with our prediction of the LSRL equation.
- e) None of the above

Question 9

Your answer is CORRECT.

Suppose that the LSRL for the appraised value (in thousands of dollars) and number of rooms for houses in East Meadow, New York is $\hat{y} = 19.718x + 74.80$. Predict the price of a 9 room house (in thousands of dollars). tbl

- a) © 252.262
- **b)** 356.262
- c) 3027.144
- **d)** 360.262
- e) 0257.262
- f) None of the above

Question 10

Your answer is CORRECT.

Select the equation of the least squares line for the data: (27.2, 1.50), (26.0, 3.75), (28.0, .75), (24.8, 7.50), (24.0, 6.75), (22.0, 9.75), (23.2, 7.50).

- a) $\hat{y} = -43.434 1.5206x$
- **b)** \bigcirc $\hat{y} = 47.777 1.6727x$
- **c)** $\hat{y} = 43.434 1.6727x$
- **d)** $\hat{y} = 43.434 1.5206x$

- **e)** $\hat{y} = 1.5206 x 43.434$
- f) None of the above

Question 11

Your answer is CORRECT.

Which of the following would be the LSRL for the given data?

x	1	8	8	11	16	17
y	21	28	29	41	32	43

a)
$$\circ$$
 $\hat{y} = 1.136 x + 20.78$

b)
$$\bigcirc$$
 $\hat{y} = -1.136 x + 20.78$

c)
$$\circ$$
 $\hat{y} = -20.78 x + 1.136$

d)
$$\bigcirc$$
 $\hat{y} = 20.78 \text{ x} + 1.136$

e) None of the above

Question 12

Your answer is CORRECT.

Suppose you have the following data:

x	1	2	3	4	5	6
y	24	30	27	42	27	41

and the LSRL is $\hat{y} = 2.600 \text{ x} + 22.73$. Find the residual value for x = 2.

- **a)** 027.930
- **b)** -2.070
- c) 030
- **d)** ② 2.070
- e) None of the above

Question 13

Your answer is CORRECT.

In the least-squares regression line, the desired sum of the errors (residuals) should be

- a) onegative
- **b)** opositive
- c) maximized
- **d)** 01
- e) © zero

Question 14

Your answer is CORRECT.

The decline of salmon fisheries along the Columbia River in Oregon has caused great concern among commercial and recreational fishermen. The paper 'Feeding of Predaceous Fishes on Out-Migrating Juvenile Salmonids in John Day Reservoir, Columbia River' (Trans. Amer. Fisheries Soc. (1991: 405-420) gave the accompanying data on y = maximum size of salmonids consumed by a northern squaw fish (the most abundant salmonid predator) and x = squaw fish length, both in mm. Here is the computer software printout of the summary:

Coefficients:				
	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	-91.030	16.703	-5.450	0.000
Length	0.706	0.042	16.759	0.000

Using this information, give the equation of the least squares regression line.

- a) $\hat{y} = 16.703x 91.030$
- **b)** \circ $\hat{y} = -91.030x + 0.706$
- **c)** $\hat{y} = 0.706x 91.030$
- **d)** \circ $\hat{y} = 16.703x + 0.042$
- e) $\hat{y} = 0.706x + 16.703$
- f) None of the above