Represent each of these relations on {1, 2, 3} with a matrix (with the elements of this set listed in increasing order). Then draw the directed graphs representing each relation

- a) $\{(1, 1), (1, 2), (1, 3)\}$
- b) $\{(1, 2), (2, 1), (2, 2), (3, 3)\}$
- c) $\{(1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3)\}$
- $d) \ \{(1,3),(3,1)\}$

Solution

$$a) \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$b) \begin{bmatrix} 0 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$c) \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

$$d) \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

Exercise

Represent each of these relations on {1, 2, 3, 4} with a matrix (with the elements of this set listed in increasing order). Then draw the directed graphs representing each relation

- a) $\{(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)\}$
- b) $\{(1, 1), (1, 4), (2, 2), (3, 3), (4, 1)\}$
- $c) \{ (1, 2), (1, 3), (1, 4), (2, 1), (2, 3), (2, 4), (3, 1), (3, 2), (3, 4), (4, 1), (4, 2), (4, 3) \}$
- $d) \{(2, 4), (3, 1), (3, 2), (3, 4)\}$

Solution

$$a) \begin{bmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$b) \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

$$c) \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}$$

$$d) \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

List the ordered pairs in the relations on {1, 2, 3} corresponding to these matrices (where the rows and columns correspond to the integers listed in increasing order). Then draw the directed graphs representing each relation

$$a) \quad \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \qquad b) \quad \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix} \qquad c) \quad \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$b) \quad \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

$$c) \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

Solution

c)
$$\{(1, 1), (1, 2), (1, 3), (2, 1), (2, 3), (3, 1), (3, 2), (3, 3)\}$$

List the ordered pairs in the relations on {1, 2, 3, 4} corresponding to these matrices (where the rows and columns correspond to the integers listed in increasing order). Then draw the directed graphs representing each relation

a)
$$\begin{bmatrix} 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{bmatrix}$$
 b)
$$\begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \end{bmatrix}$$
 c)
$$\begin{bmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix}$$

Solution

b) {(1, 1), (1, 2), (1, 3), (2, 2), (3, 3), (3, 4), (4, 1), (4, 4)}

c) $\{(1, 2), (1, 4), (2, 1), (2, 3), (3, 1), (3, 4), (4, 1), (4, 3)\}$

Let *R* be the relation represented by the matrix

$$M_R = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

Find: a) R^2 b) R^3 c) R^4

Solution

a)
$$M_{R^2} = M_R^2 = M_R \odot M_R$$

$$R^{2} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$
$$= \begin{pmatrix} 0 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$

b)
$$M_{R^3} = M_R^3 = M_R \odot M_R^2$$

$$R^{3} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$
$$= \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

c)
$$M_{R^4} = M^{(4)}_R = M_R \odot M^{(3)}_R$$

$$R^{4} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$
$$= \begin{pmatrix} 0 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

Exercise

Draw the directed graph that represents the relation $\{(a, a), (a, b), (b, c), (c, b), (c, d), (d, a), (d, b)\}$

Solution

Determine whether the relations represented by the directed graphs are reflexive, irreflexive, symmetric, antisymmetric, and/or transitive

Solution

- $a) \ \{(a, b), (a, c), (b, c), (c, b)\}$
 - It is not reflexive since (a, a) doesn't exist

It is not symmetric

It is transitive since $(a, b), (b, c) \Rightarrow (a, c)$

b) $\{(a, a), (a, c), (b, a), (b, b), (b, c), (c, c)\}$

It is reflexive

It is not symmetric

It is transitive since $(b, a), (a, c) \Rightarrow (b, c)$

c) $\{(a, c), (b, a), (c, d), (d, b)\}$

It is not reflexive; it is not symmetric, and not transitive since

d) $\{(a, a), (a, b), (b, a), (b, b), (c, a), (c, c), (c, d), (d, d)\}$

It is reflexive, not symmetric (no (a, c)), and not transitive (c, a), (a, b) but no (c, b)

e) $\{(a, a), (a, b), (a, c), (b, a), (b, b), (b, c), (c, a), (c, b), (d, d)\}$

It is not reflexive; it is symmetric and transitive

f) $\{(a, a), (a, b), (b, a), (b, b), (c, c), (c, d), (d, d), (d, c)\}$ It is reflexive; it is symmetric and transitive