	UPGRADE TO PRO ✔	≡
	Step-by-Step Solutions with Pro Get a step ahead with your homewo	× rk
	FROM THE MAKERS OF WOLFRAM LANGUAGE AND MATHEMATICA WOLFRAM LANGUAGE AND MATHEMATICA	
	gamma(gamma(2)) \star \checkmark \circ \circ (::) \checkmark \circ \circ	
	+ Assuming "gamma" is a math function	
	Input	
	$\Gamma(\Gamma(2))$	‡
	Result 1	‡
	Number line	
	0.7 0.8 0.9 1.0 1.1 1.2 1.3 Number name	*
	Visual representation	*
	Alternative representations	*
	$\Gamma(\Gamma(2)) = \frac{G(1+\Gamma(2))}{G(\Gamma(2))}$	rå:
	$\Gamma(\Gamma(2)) = e^{-\log G(\Gamma(2)) + \log G(1 + \Gamma(2))}$	*
	$\frac{\Gamma(\Gamma(2)) = (-1 + \Gamma(2))!}{\Gamma(\Gamma(2)) - \Gamma(\Gamma(2), 0)}$	*
	$\Gamma(\Gamma(2)) = \Gamma(\Gamma(2), 0)$ $\Gamma(\Gamma(2)) = (1)_{-1+\Gamma(2)}$	‡
	$\Gamma(\Gamma(2)) = e^{\log\Gamma(\Gamma(2))}$	*
	$\Gamma(\Gamma(2)) = \left(-2 + 2\Gamma(2)\right)!! 2^{1/4 \left(3 + \cos\left(2\pi\Gamma(2)\right) - 4\Gamma(2)\right)} \pi^{1/2 \sin^2\left(\pi\Gamma(2)\right)}$	*
	Less	
		(i)
	Series representations $\Gamma(\Gamma(2)) = \sum_{k=0}^{\infty} \frac{(\Gamma(2) - z_0)^k \Gamma^{(k)}(z_0)}{k!} \text{for } \left(z_0 \notin \mathbb{Z} \text{ or } z_0 > 0\right)$	
	k=0	*
	$\Gamma(\Gamma(2)) \propto e^{-\Gamma(2)} \exp \left[\sum_{k=0}^{\infty} \frac{B_{2+2k} \Gamma(2)^{-1-2k}}{2+6k+4k^2} \right] \Gamma(2)^{-1/2+\Gamma(2)} \sqrt{2\pi} \text{for } \infty \to 1$	*
	$\Gamma(\Gamma(2)) \propto \frac{e^{-\Gamma(2)} \Gamma(2)^{-1/2 + \Gamma(2)} \sqrt{2\pi}}{\exp\left(-\sum_{k=0}^{\infty} \frac{B_{2+2k} \Gamma(2)^{-1-2k}}{2 + 6k + 4k^2}\right)} \text{ for } \infty \to 1$	
	$\exp\left[-\sum_{k=0}^{\infty} \frac{1}{2+6k+4k^2}\right]$ $\Gamma(\Gamma(2)) \propto$	*
	$e^{-\Gamma(2)} \Gamma(2)^{-1/2+\Gamma(2)} \sqrt{2\pi} + e^{-\Gamma(2)} \Gamma(2)^{-1/2+\Gamma(2)} \sqrt{2\pi} \sum_{k=1}^{\infty} \sum_{j=1}^{2k} \frac{(-1)^j \ 2^{-j-k} \ \Gamma(2)^{-k} \ \mathcal{D}_{2\cdot (j+k),j}}{(j+k)!}$ for $\left(\left(\infty \to 1 \text{ and } \mathcal{D}_{n,j} = (-1+n) \left((-2+n) \ \mathcal{D}_{-3+n,-1+j} + \mathcal{D}_{-1+n,j}\right) \text{ and } \right)$	
	$\mathcal{D}_{0,0}=1$ and $\mathcal{D}_{n,1}=(-1+n)!$ and $\mathcal{D}_{n,j}=0)$ for $n\leq -1+3j$ $\Gamma(\Gamma(2))=\frac{\pi}{}$	*
	$\sum_{k=0}^{\infty} (\Gamma(2) - z_0)^k \sum_{j=0}^k \frac{(-1)^j \pi^{-j+k} \sin(\frac{1}{2} \pi(-j+k+2z_0)) \Gamma^{(j)}(1-z_0)}{j! (-j+k)!}$	*
	$\Gamma(\Gamma(2)) \propto 2^{-\left[(\pi + \arg(\Gamma(2)))/(2\pi)\right]} e^{-\Gamma(2)} \csc^{\left[(\pi + \arg(\Gamma(2)))/(2\pi)\right]} \left(\pi \; \Gamma(2)\right) \exp\left(\sum_{k=0}^{\infty} \frac{B_{2+2k} \; \Gamma(2)^{-1-2k}}{2+6k+4k^2}\right)$ $\left(\exp\left(i \; \pi \left\lfloor \frac{\pi + \arg(\Gamma(2))}{2\pi} \right\rfloor\right) \Gamma(2)\right)^{-1/2 + \Gamma(2)} \sqrt{2\pi} \text{for } \infty \to 1$	
	Less	*
		\bigcirc
	Integral representations	O
	$\Gamma(\Gamma(2)) = \int_0^\infty e^{-t} t^{-1+\Gamma(2)} dt$	‡
	$\Gamma(\Gamma(2)) = \int_0^1 \log^{-1+\Gamma(2)} \left(\frac{1}{t}\right) dt$	*
	$\Gamma(\Gamma(2)) = \exp\left(\int_0^1 \frac{-1 + x^{\Gamma(2)} + \Gamma(2) - x \Gamma(2)}{(-1 + x) \log(x)} dx\right)$	
		*
	$\Gamma(\Gamma(2)) = \exp\left(-\gamma \Gamma(2) + \int_0^1 \frac{1 - x^{\Gamma(2)} + \log(x^{\Gamma(2)})}{\log(x) - x \log(x)} dx\right)$	*
	$\Gamma(\Gamma(2)) = \int_{1}^{\infty} e^{-t} t^{-1+\Gamma(2)} dt + \sum_{k=0}^{\infty} \frac{(-1)^{k}}{k! (k+\Gamma(2))}$	*
	$\Gamma(\Gamma(2)) = \frac{2 i \pi}{\oint e^t t^{-\Gamma(2)} dt}$	
	$\Gamma(\Gamma(2)) = \tilde{\infty} \oint e^{-t} t^{-1+\Gamma(2)} dt$	*
		*
	$\Gamma(\Gamma(2)) = \frac{2\pi}{i \oint e^{-t} (-t)^{-\Gamma(2)} dt}$	‡
	Less	
	M DOWEDED BY THE WOLFDAM LANGUAGE	(i)
(POWERED BY THE WOLFRAM LANGUAGE	
	Related Queries:	_
	use Simpson's rule x! from 1 to 3 with 3 intervals	
	poles of Gamma(z)	
	word frequency history for the word factorial	
	some products containing Gamma(k)	<u>=</u>
	gamma(x) duplication formula	
	Give us your feedback »	
	Have a question about using Wolfram Alpha?	
	Contact Pro Premium Expert Support »	
	Pro Mobile Apps	
	Products Business API LLM	
	About Contact	