Organizacija datoteka

Metode pristupa i organizacija datoteka

Usluge metoda pristupa i vrste organizacija datoteka

Sadržaj

- Osnovna struktura datoteke
- Struktura datoteke kao niza blokova
- Metoda pristupa
- Parametri organizacije datoteka
- Vrste organizacije datoteka
- Opšte procedure nad datotekama
- Performanse obrade datoteke

Osnovna struktura datoteke

- Datoteka kao struktura slogova
 - organizovana nad tipom sloga
 - kao linearnom strukturom atributa
 - opšta struktura sloga datoteke kao FSP
 - uključuje podatke iz LSP i podatke o organizaciji FSP na eksternom memorijskom uređaju
 - informacija o strukturi tipa sloga
 - Informacija o vezama između slogova (opciono)
 - svaki slog predstavlja niz polja sa vrednostima atributa

format sloga

pravila za strukturiranje i interpretaciju sadržaja sloga

Osnovna struktura datoteke

Opšta struktura sloga datoteke kao FSP

$k_1(S)$ $k_n(S)$	p ₁ (S)	$p_m(S)$	s(S)	<i>u</i> ₁ (<i>S</i>)		$u_k(S)$	$f_1(S)$		f _l (S)
-------------------	--------------------	----------	------	------------------------------------	--	----------	----------	--	--------------------

- $-k_i(S)$ polja vrednosti atributa primarnog ključa ($n \ge 1$)
- $-p_i(S)$ polja vrednosti ostalih atributa ($m \ge 0$)
- s(S) polje statusa sloga indikator aktuelnosti sloga u LSP
- $-u_i(S)$ polja pokazivača za memorisanje veza u LSP ($k \ge 0$)
- $-f_i(S)$ kontrolna polja kod slogova varijabilne dužine $(I \ge 0)$

Skraćena notacija

Osnovna struktura datoteke

- k(S) predstavlja jedinu obaveznu grupu polja
 - koja se sastoji od najmanje jednog polja
- često se posmatra kao linearna struktura slogova
 - uređena u rastućem ili opadajućem redosledu vrednosti primarnog ključa
- redosled polja u formatu sloga ne mora biti isti kao u opštoj strukturi sloga
 - datoj na prethodnom slajdu
 - pozicija kontrolnih polja uslovljena je njihovom semantikom

- Format polja sloga
 - uslovljen specifikacijom domena odgovarajućeg atributa, odnosno primenjenim tipom podatka
- Vrste polja u slogovima
 - polja konstantne dužine
 - nije potrebno memorisati informaciju o granicama polja
 - polja promenljive dužine
 - potrebno je memorisati informaciju o granicama polja
 - koristi se kontrolno polje f_i(S)
 - tehnike
 - navođenjem aktuelne dužine polja u kontrolnom polju, neposredno ispred sadržaja polja
 - navođenjem specijalne oznake kraja polja u kontrolnom polju, neposredno nakon sadržaja polja

- Vrste slogova prema dužini
 - slogovi konstantne dužine
 - sva polja u svakom slogu su konstantne dužine
 - nije potrebno memorisati informaciju o granicama sloga
 - slogovi promenljive dužine
 - postoji barem jedno polje promenljive dužine u slogu
 - potrebno je memorisati informaciju o granicama sloga
 - koristi se kontrolno polje f_i(S)
 - tehnike
 - navođenjem aktuelne dužine sloga u kontrolnom polju, neposredno ispred ostalog sadržaja kompletnog sloga
 - navođenjem specijalne oznake kraja sloga u kontrolnom polju, neposredno nakon ostalog sadržaja sloga
 - uvođenjem posebne indeksne strukture sa rednim brojevima bajtova koji ukazuju na početke slogova

itt

Osnovna struktura datoteke

- Karakteristike vrsta slogova prema dužini
 - slogovi konstantne dužine
 - pojavljuju se u praksi
 - homogena struktura
 - jednostavnije pristupanje podacima i ažuriranje podataka
 - lakša i preciznija procena performansi obrade podataka
 - manja efikasnost upotrebe memorijskog prostora

slogovi promenljive dužine

- izuzetno često se pojavljuju u praksi
- nehomogena struktura
- teže pristupanje podacima i ažuriranje podataka
- teža i nepreciznija procena performansi obrade podataka
- veća efikasnost upotrebe memorijskog prostora

- Vrste slogova prema ponavljanju vrednosti
 - slogovi s ponavljajućim grupama
 - višestruko pojavljivanje vrednosti atributa u jednom slogu
 - kada je dozvoljeno da jedna vrednost atributa bude predstavljena kao niz vrednosti istog tipa
 - primer

```
» tip entiteta: Student({StdID, ..., StdStrJez}, {StdID})
```

- » tip podatka: (StdStrJez : string(55))
- » moguća vrednost, tri puta navedena (kao tri polja)
- » 'engleski', 'francuski', 'nemački'
- moraju uvek biti slogovi varijabilne dužine
- slogovi bez ponavljajućih grupa
 - nije dozvoljeno višestruko pojavljivanje vrednosti atributa
 - moguće je uvek projektovati tip sloga bez ponavljajućih grupa
 - primenom odgovarajućih projektantskih tehnika

- Polja pokazivača u strukturi sloga
 - predstavljaju adrese lokacija u memorijskom prostoru
- Vrste adresa lokacija
 - apsolutna (mašinska) adresa
 - strukturirana prema adresnom prostoru jedinice diska
 - relativna adresa
 - predstavlja redni broj lokacije
 - može biti praćen rednim brojem podlokacije
 - primeri
 - rbr. bloka, rbr. bajta, (rbr. bloka, rbr. bajta u bloku)
 - rbr. sloga (u linearnoj strukturi), (rbr. bloka, rbr. sloga u bloku)
 - simbolička (asocijativna) adresa
 - vrednost ključa

Osnovna struktura datoteke

- Vrste adresa lokacija
 - apsolutna (mašinska) adresa
 - praktično se ne koristi u organizaciji datoteka
 - stvara zavisnost od fizičkih karakteristika uređaja
 - ne zahteva transformaciju

relativna adresa

- vrlo često se koristi u organizaciji datoteka
- obezbeđuje nezavisnost od fizičkih karakteristika uređaja
- zahteva jednu ili više transformacija do apsolutne adrese
 - na nivou metode pristupa i/ili sistemskih poziva

simbolička (asocijativna) adresa

- često se koristi u organizaciji datoteka
- zahteva transformaciju u relativnu adresu
 - na nivou metode pristupa

Sadržaj

- Osnovna struktura datoteke
- Struktura datoteke kao niza blokova
- Metoda pristupa
- Parametri organizacije datoteka
- Vrste organizacije datoteka
- Opšte procedure nad datotekama
- Performanse obrade datoteke

Struktura datoteke kao niza blokova

Blok (logički blok)

- kao organizaciona jedinica podataka
 - predstavlja niz slogova
 - ima konstantni kapacitet
 - tipične veličine: 2KB, 4KB, 8KB, 16KB
 - najčešće predstavlja celobrojni umnožak kapaciteta fizičkog bloka
- Odnos blok fizički blok
 - uobičajeno, jedan blok predstavlja niz od 2^n ($n \ge 0$) fizičkih blokova
 - nije nemoguće da kapacitet bloka bude
 - jednak kapacitetu fizičkog bloka ili
 - manji od kapaciteta fizičkog bloka

Opšta struktura (format) bloka

zaglavlje bloka i niz slogova

 A_i

Zaglavlje bloka	A_i^1	A_i^1		***	A_i^f	
	S ₁	•••	S _j		S_f	

- A_i adresa bloka (najčešće iskazana kao relativna)
- Aj realtivna adresa j-tog sloga u i-tom bloku (i, j)
- f faktor blokiranja broj slogova u bloku
- zaglavlje bloka neobavezna kategorija
 - obuhvata podatke vezane za FSP datoteke, npr.
 - » različita polja pokazivača
 - » broj slogova u bloku
 - » indeks na početke slogova

Vrste blokova

blokovi sa slogovima promenljive dužine

- više slogova može biti smešteno u jedan blok
- dozvoljeno je i da veličina jednog sloga premaši kapacitet bloka
 - tada se vrši ulančavanje blokova jednog sloga

blokovi sa slogovima konstantne dužine

- homogena struktura bloka i datoteke
- svaki blok datoteke sadrži uvek isti broj slogova
- f faktor blokiranja datoteke
- B ukupan broj blokova datoteke
- N ukupan broj slogova u LSP datoteke

$$B = \lceil (N + x) / f \rceil$$

x – broj dodatno upotrebljenih specijalnih slogova

Proračun potrebnog kapaciteta datoteke

- moguć u slučaju primene blokova sa slogovima konstantne dužine
 - K_s kapacitet sloga
 - predstavlja zbir kapaciteta svih polja (konstantne dužine)
 - K_b kapacitet bloka (unapred zadata konstanta)
 - K_z kapacitet zaglavlja bloka (zavisi od organizacije)

$$f = \lfloor (K_b - K_z) / K_s \rfloor$$

K_d – kapacitet datoteke (zavisi od organizacije)

$$K_d = BK_b + W_d$$

W_d – kapacitet STD za datoteku

Struktura datoteke kao niza blokova

- linearna struktura blokova datoteke
 - svaki blok datoteke obuhvata niz slogova datoteke

Strogo strukturirana datoteka

- strogo tipizovana datoteka sa pridruženom semantikom
- organizovana kao struktura nad skupom slogova

postoje blokovi, pa je faktor blokiranja taj i taj... - format sloga i bloka

Zaglavlje datoteke

- potrebno proširenje osnovne strukture datoteke
- uvodi se specijalni slog na početku datoteke
 - sa podacima o organizaciji datoteke i formatu bloka i sloga datoteke
 - uključuje podatke
 - broj slogova i/ili blokova u datoteci
 - dužina i format sloga
 - pozicija polja ključa u slogu
 - pokazivači na početke spregnutih struktura slogova ili blokova

Oznaka kraja datoteke

- načini označavanja kraja datoteke u osnovnoj strukturi
 - (A) uvođenjem specijalnog sloga za oznaku kraja datoteke
 - zapisuje se na kraju strukture, iza poslednjeg sloga u LSP, u prvu slobodnu lokaciju memorijskog prostora datoteke
 - (B) uvođenjem specijalne oznake kraja u polje pokazivača
 - navodi se u polju pokazivača logički narednog sloga u(S), kod poslednjeg sloga u LSP
 - (C) vođenjem posebne evidencije zauzetosti prostora
 - memorisanjem npr. broja zauzetih lokacija u prostoru dodeljenom datoteci
 - u pomoćnoj strukturi podataka
 - (D) kraj datoteke je kraj prostora dodeljenog datoteci
 - ne uvodi se poseban mehanizam za označavanje kraja datoteke

Sadržaj

- Osnovna struktura datoteke
- Struktura datoteke kao niza blokova
- Metoda pristupa
- Parametri organizacije datoteka
- Vrste organizacije datoteka
- Opšte procedure nad datotekama
- Performanse obrade datoteke

(

- Paket programa (rutina) za podršku usluga visokog nivoa
 - upravljanje strogo strukturiranim datotekama
 - upravljanje organizacijom i memorisanjem polja, slogova i blokova
 - različite vrste usluga u pogledu organizacije sloga i bloka
 - upravljanje baferima metode pristupa
 - viši nivo "baferisanja" u odnosu na nivo sistemskih bafera

- Paket programa (rutina) za podršku usluga visokog nivoa
 - podrška različitih vrsta organizacije datoteka
 - podrška različitih načina memorisanja logičkih veza i adresiranja (pristupa podacima)
 - u strogo strukturiranim datotekama
 - vođenje brige o kategorijama
 - zaglavlje datoteke
 - početak i kraj datoteke
 - tekući pokazivač, indikator aktuelnosti
 - » iskazan kao relativna adresa bloka ili sloga na kojem se sprovodi operacija (ili alternativno, na kojem je izvršena prethodna operacija)
 - podrška izgradnje specijalnih pomoćnih struktura za poboljšanje efikasnosti obrade podataka

- Paket programa (rutina) za podršku usluga visokog nivoa
 - podrška opštih postupaka upravljanja sadržajem datoteka
 - kreiranje, traženje, pretraživanje, ažuriranje i reorganizacija
 - koristi ili uključuje usluge niskog nivoa izabranog OS
 - u zavisnosti od mesta i načina implementacije metode pristupa
 - obezbeđuje nezavisnost aplikativnog programa od usluga niskog nivoa OS
 - obezbeđuje preslikavanje strogo strukturirane datoteke u FSP niza fizičkih blokova
 - obezbeđuje transformacije relativne adrese sloga ili bloka datoteke u relativnu adresu bajta ili fizičkog bloka

- Upravljanje strogo strukturiranim datotekama
 - podrška organizacije slogova i polja
 - konstantne dužine
 - promenljive dužine
 - podrška različitih (alfanumeričkih, datumskih, bitorijentisanih, multimedijalnih) tipova podataka
 - podrška različitih kodnih rasporeda
 - konverzije podataka
 - iz tipa podatka programske promenljive u tip podatka atributa datoteke i obratno
 - iz tipa podatka atributa strogo strukturirane datoteke u niz bajtova i obratno

- Upravljanje strogo strukturiranim datotekama
 - usluge razmene podataka sa aplikativnim programom
 - na nivou sloga
 - grupisanje slogova u blokove pri upisu podataka
 - rastavljanje bloka na slogove pri čitanju podataka
 - održavanje tekućeg pokazivača kao relativne adrese sloga
 - » redni broj sloga u datoteci
 - i njegova transformacija u oblik
 - » (redni broj bloka u datoteci, redni broj sloga u bloku)

na nivou bloka

- razmena sadržaja kompletnih logičkih blokova između aplikativnog programa i datoteke
- održavanje tekućeg pokazivača kao relativne adrese bloka, u obliku
 - » redni broj bloka u datoteci

- Upravljanje strogo strukturiranim datotekama
 - usluge pristupa podacima iz aplikativnih programa
 - sekvencijalni (redosledni) pristup
 - slogovima ili blokovima datoteke
 - » najčešće slogovima datoteke
 - automatski održavaju (inkrementiraju) vrednost tekućeg pokazivača
 - » pri operacijama učitavanja / zapisivanja podataka
 - direktni pristup
 - slogovima ili blokovima datoteke
 - zahtevaju eksplicitno zadavanje vrednosti tekućeg pokazivača
 - » rednog broja sloga ili bloka datoteke
 - » pri operacijama pozicioniranja
 - dinamički (kombinovani) pristup
 - kombinacija direktnog i sekvencijalnog pristupa

- Upravljanje strogo strukturiranim datotekama
 - pozivi rutina metode pristupa
 - otvaranje i zatvaranje datoteke
 - učitavanje i ispisivanje sadržaja sloga ili bloka
 - pozicioniranje na slog ili blok datoteke
 - ispitivanje statusa datoteke
 - kreiranje, brisanje datoteke, itd.
 - preuzimaju parametre poziva iz pozivajućeg okruženja aplikativnog programa
 - » putanja i naziv datoteke (otvaranje datoteke)
 - » oznaka datoteke (rutine nad otvorenom datotekom)
 - » oznaka promenljive u radnoj zoni programa
 - prosleđuju u pozivajuće okruženje informacije o statusu izvršenja rutine metode pristupa
 - » osnova za obradu izuzetaka

- Okruženja koja uključuju metode pristupa
 - operativni sistem
 - programski jezik sa pridruženim paketima (bibliotekama) funkcija
 - sistem za upravljanje bazama podataka
- Neki servisi metode pristupa mogu biti implementirani direktno u aplikativnom programu

- Okruženja koja uključuju metode pristupa
 - operativni sistem
 - najčešće stariji operativni sistemi "mainframe" računara
 - nije bila vidljiva eksplicitna podela na usluge OS niskog i visokog nivoa
 - servisi metode pristupa, tj. fajl sistema, vidljivi kao "monolitna" struktura
 - prvi SUBP nastaju na temelju eksplicitne upotrebe servisa takvih metoda pristupa
 - podržavali upravljanje blokovima i baferima metode pristupa
 - Block = Control Interval (CI)
 - dozvoljavaju eksplicitno deklarisanje formata bloka (time i kapaciteta bafera) na nivou pojedinačne datoteke
 - pozivi servisa metode pristupa često kombinovani s programskim jezikom Cobol ili PL/I (IBM)

- Okruženja koja uključuju metode pristupa
 - programski jezik sa pridruženim paketima (bibliotekama) funkcija
 - praktično svaki savremeni programski jezik (npr. C, Java) pruža određene usluge metode pristupa, koje mogu biti
 - ugrađene u sam jezik ili
 - uključene u određene pakete (biblioteke) funkcija
 - » "upakovane" i isporučene zajedno s kompajlerom i razvojnim okruženjem (npr. za C, stdio.h) ili
 - » isporučene nezavisno od samog jezika / kompajlera
 - eksplicitno koriste usluge niskog nivoa izabranog OS
 - najčešće pružaju samo usluge na nivou sloga datoteke
 - upravljanje blokovima i baferima sakriveno od aplikativnog programa
 - » baferi bibliotečkih funkcija su konstantnog kapaciteta (u C definisan u stdio.h) i nedostupni aplikativnom programu

- Okruženja koja uključuju metode pristupa
 - sistem za upravljanje bazama podataka
 - svaki SUBP obavezno obezbeđuje usluge metode pristupa
 - najčešće, ne koriste se direktno iz aplikativnih programa
 - već su na raspolaganju drugim modulima unutar SUBP
 - eksplicitno koristi usluge niskog nivoa izabranog OS
 - mada je moguće, u specifičnim situacijama, da SUBP
 "zaobiđe" usluge niskog nivoa OS
 - » tada SUBP direktno upravlja fizičkom razmenom podataka između datoteke na disku (raw device) i OM
 - podržava upravljanje blokovima i baferima metode pristupa
 - Database Block
 - dozvoljava eksplicitno deklarisanje kapaciteta bloka / bafera na nivou instalacije SUBP
 - » uniformno za sve datoteke kojima upravlja SUBP

- Upravljanje baferima metode pristupa
 - okruženje u kojem je implementirana metoda pristupa brine o zadacima upravljanja baferima
 - alociranje i dealociranje bafera
 - vođenje evidencije o sadržaju bafera
 - tri nivoa "baferisanja" podataka datoteke u OM
 - nivo sistemskih bafera
 - kojim upravlja OS
 - nivo bafera metode pristupa
 - kojim upravlja okruženje u kojem je implementirana metoda pristupa
 - nivo lokacija promenljivih u aplikativnom programu
 - kojim upravlja aplikativni program

Sadržaj

- Osnovna struktura datoteke
- Struktura datoteke kao niza blokova
- Metoda pristupa
- Parametri organizacije datoteka
- Vrste organizacije datoteka
- Opšte procedure nad datotekama
- Performanse obrade datoteke

Parametri organizacije datoteka

Organizacija podataka

- projekat logičke strukture obeležja (LSO)
- projekat i implementacija FSP, u kontekstu
 - isprojektovane LSO i
 - sistemske arhitekture
- sa ciljevima da se obezbede
 - zadovoljenje korisničkih zahteva
 - uslovi za efikasnu obradu podataka
- Rezultat organizovanja podataka
 - sistem baze podataka ili
 - sistem datoteka

Parametri organizacije datoteka

Projekat i implementacija FSP

- izbor načina dodele lokacija slogovima
- izbor načina memorisanja logičkih veza između slogova u LSP
- projektovanje osnovnih struktura podataka
- projektovanje pomoćnih struktura podataka
- proračun i rezervisanje potrebnog prostora na eksternim memorijskim uređajima
- smeštanje slogova sa vezama na eksterne memorijske uređaje
- proračun, praćenje i analiza performansi postupaka obrade podataka

Organizacija datoteke

- projektovanje LSO svodi se na projektovanje tipa entiteta N(Q, C), tj. tipa sloga
- izbor vrste organizacije datoteke (osnovnih i pomoćnih struktura) zavisi od vrednosti parametara
 - način dodele lokacija slogovima
 - uslovljava i način evidentiranja slobodnog i zauzetog prostora u datoteci
 - način memorisanja logičkih veza između slogova u LSP

- Način dodele lokacija slogovima (DLS)
 - moguće vrednosti parametra DLS
 - (A) svaki novi slog upisuje se na kraj datoteke, kao fizički susedan u odnosu na poslednji slog datoteke
 - ako se prostor datoteke dinamički alocira (povećava pri upisu)
 - » samo poslednji blok može biti delimično popunjen
 - » svi ostali blokovi su kompletno popunjeni

- ako se prostor datoteke statički (unapred) alocira
 - » poslednji upisani slog datoteke deli prostor datoteke na kompletno zauzet i kompletno slobodni deo

Način dodele lokacija slogovima (DLS)

- moguće vrednosti parametra DLS
 - (B) svaki novi slog dobija prvu slobodnu lokaciju iz spregnute linearne strukture slobodnih lokacija
 - prostor datoteke uvek se statički (unapred) alocira
 » ne izaziva ga svaki f-ti upis novih slogova u datoteku
 - indeks na listu slobodnih lokacija memoriše se u zaglavlju datoteke

Način dodele lokacija slogovima (DLS)

- moguće vrednosti parametra DLS
 - (C) svaki novi slog dobija slobodnu lokaciju čija relativna adresa predstavlja funkciju vrednosti ključa
 - prostor datoteke uvek se statički alocira
 - » nezavisno od upisa novih slogova u datoteku
 - moguće kad su u pitanju isključivo slogovi konstantne dužine
 - funkcija transformacije vrednosti ključa
 - » hash (analitička) transformacija ili
 - » tabelarno zadata, uz upotrebu pomoćne strukture

Način memorisanja logičkih veza (MLV)

- između slogova u LSP
- moguće vrednosti parametra MLV
 - (1) fizičkim pozicioniranjem
 - logički susedni slogovi smeštaju se u fizički susedne lokacije
 - (2) pomoću pokazivača kao relativnih adresa
 - pokazivač memoriše relativnu adresu logički susednog sloga
 - (2a) polja pokazivača ugrađena u osnovnu strukturu
 - » svaki slog osnovne strukture datoteke proširuje se barem jednim poljem pokazivača
 - (2b) polja pokazivača ugrađena u pomoćne strukture
 - » uvodi se barem jedna pomoćna, tzv. indeksna struktura
 - » često oblika stabla
 - » sa formatom sloga u obliku para ili n-torke (polja identifikatora sloga, polja pokazivača)

- Način memorisanja logičkih veza (MLV)
 - između slogova u LSP
 - moguće vrednosti parametra MLV
 - (3) logičke veze se ne memorišu
 - u FSP ne postoje podaci o logički susednim slogovima
 - podaci o logički susednim slogovima se jedino mogu generisati
 - » putem posebnih programa, na zahtev korisnika
 - » programi za uređivanje (sortiranje) datoteka

Sadržaj

- Osnovna struktura datoteke
- Struktura datoteke kao niza blokova
- Metoda pristupa
- Parametri organizacije datoteka
- Vrste organizacije datoteka
- Opšte procedure nad datotekama
- Performanse obrade datoteke

itt

Vrste organizacije datoteka

- Vrste organizacija datoteka
 - osnovne organizacije
 - organizacija datoteke svodi se na osnovnu organizaciju
 - FSP nad skupom slogova organizovana je u jednoj memorijskoj zoni
 - često, to je i jedna datoteka operativnog sistema

- složene organizacije

- dobijaju se kombinovanjem osnovnih organizacija
- FSP uključuju barem dve memorijske zone
 - što mogu biti i barem dve datoteke operativnog sistema
 - osnovna FSP može biti raspoređena u jednu, ili u više od jedne zone
 - mogu se pojaviti pomoćne strukture podataka, smeštene u posebnim zonama

Vrste organizacije datoteka

- Vrste organizacija datoteka
 - osnovne organizacije datoteka
 - serijska (pile, heap)
 - sekvencijalna (sequential)
 - spregnuta (chain)
 - rasuta (hash) sa jedinstvenim memorijskim prostorom
 - direktna
 - relativna
 - statička rasuta
 - dinamička rasuta
 - složene organizacije

yona prekoracenja: sve ono sto nije naslo svoje mjesto u radnoj zoni

- rasute (hash) sa zonom prekoračenja
- statičke indeksne (indeks-sekvencijalna)
- dinamičke indeksne (organizacije sa B-stablom)

Vrste organizacije datoteka

Osnovne organizacije datoteka

sekvencijalna

serijska

spregnuta

rasuta

Vrste organizacije datoteka

Osnovne organizacije datoteka

Vrste organizacije datoteka

Složene organizacije datoteka

- rasute (hash) sa zonom prekoračenja
 - primarna zona osnovna struktura
 - osnovna rasuta organizacija
 - zona prekoračenja nastavak osnovne strukture
 - spregnuta ili serijska organizacija
- statičke indeksne (indeks-sekvencijalne)
 - primarna zona osnovna struktura
 - sekvencijalna organizacija
 - zona prekoračenja nastavak osnovne strukture
 - spregnuta organizacija
 - zona indeksa pomoćna struktura
 - spregnuta organizacija
 - » sprezanje u obliku n-arnog stabla traženja

Vrste organizacije datoteka

Složene organizacije datoteka

- dinamičke indeksne (organizacije sa B-stablom)
 - primarna zona osnovna struktura
 - serijska ili spregnuta organizacija
 - zona indeksa pomoćna struktura
 - spregnuta organizacija
 - » sprezanje u obliku jedne od varijanti B-stabla

Vrste organizacije datoteka

- Navedene vrste organizacije pojavljuju se u praksi kao
 - fizičke organizacije datoteka
 - u sistemima datoteka
 - svaka datoteka u sistemu datoteka pojavljuje se kao jedna ili više posebnih OS datoteka
 - fizičke organizacije tabela
 - u sistemima baza podataka
 - svaka tabela BP može biti distribuirana u više datoteka podataka kojima upravlja SUBP
 - u jednoj datoteci podataka kojom upravlja SUBP može biti smešteno više tabela BP

Sadržaj

- Osnovna struktura datoteke
- Struktura datoteke kao niza blokova
- Metoda pristupa
- Parametri organizacije datoteka
- Vrste organizacije datoteka
- Opšte procedure nad datotekama
- Performanse obrade datoteke

- Vrste postupaka (operacija) nad LSP datoteke
 - formiranje datoteke
 - pristupanje u datoteci
 - traženje u datoteci
 - pretraživanje u datoteci
 - obrada datoteka
 - ažuriranje datoteke
 - reorganizacija datoteke

Formiranje datoteke

- postupak kreiranja FSP datoteke
 - sa smeštanjem slogova na eksterni memorijski uređaj
 - saglasno projektovanoj organizaciji
 - na osnovu sadržaja neke druge strukture podataka
 - uključuje preuzimanje podataka iz drugih datoteka ili
 - direktno zadavanje podataka od strane korisnika

– dve vrste datoteka

- datoteke koje se formiraju u posebnom postupku
 - najčešće: sekvencijalna, spregnuta, statičke rasute, statičke indeksne
- datoteke koje se formiraju u redovnom postupku ažuriranja (upisa novih slogova)
 - najčešće: serijska, indeksne s B stablima, dinamička rasuta

Pristupanje u datoteci

- postupak pozicioniranja na željenu lokaciju
 - sloga ili bloka datoteke
- vrste pristupa
 - sekvencijalni pristup
 - automatsko održavanje relativne adrese tekućeg pokazivača
 - operacija se odnosi na neposredno susednu lokaciju u odnosu na lokaciju na kojoj je obavljena prethodna operacija
 - direktni pristup
 - eksplicitno zadavanje relativne adrese tekućeg pokazivača koji ukazuje na lokaciju nad kojom će se realizovati neka operacija
 - dinamički
 - kombinacija sekvencijalnog i direktnog pristupa
 - NAPOMENA: sekvencijalni i direktni pristup i sekvencijalna i direktna organizacija datoteke nisu isti pojmovi

Traženje u datoteci

- algoritam AT: $dom(K) \rightarrow Ind \times A \times S$
 - za zadatu vrednost argumenta traženja
 - vrednost ključa iz domena, a ∈ dom(K)
 - u stanju je da generiše i vrati, po potrebi, u program
 - indikaciju uspešnosti traženja Ind = {true, false}
 - » ako je slog nađen, traženje je uspešno (true)
 - » ako slog nije pronađen, traženje je neuspešno (false)
 - relativnu adresu mesta zaustavljanja traženja
 - » iz skupa svih adresa u adresnom prostoru datoteke A
 - » koji, po potrebi, uključuje i adresu prve naredne lokacije nakon kraja datoteke
 - sadržaj sloga na mestu zaustavljanja traženja
 - » ili specijalnu vrednost, ako je reč o nepostojećem slogu

Traženje u datoteci

- algoritam AT: $dom(K) \rightarrow Ind \times A \times S$
 - nisu uvek svi nabrojani izlazni parametri potrebni aplikativnom programu
 - specifični algoritmi traženja na izlazu će generisati samo vrednosti onih parametara koji su stvarno neophodni aplikativnom programu
 - moguće svrhe primene algoritma traženja
 - da bi se utvrdilo ima li traženog sloga u datoteci ili nema
 - » npr. radi provere ispunjenosti uslova za upis novog ili brisanje postojećeg sloga sa zadatom vrednošću ključa
 - da bi se utvrdila adresa na kojoj se traženi slog nalazi
 - » jer je potrebno direktno pozicioniranje na datu adresu
 - da bi se preneo sadržaj traženog sloga u aplikativni program
 - » npr. radi daljih potreba obrade podataka

- Traženje u datoteci
 - algoritam AT: $dom(K) \rightarrow Ind \times A \times S$

```
POČETAK TRAŽENJA
```

```
generisanje početne relativne adrese traženja
  postoji potreba za nastavak traženja ← DA
  RADI petlja traženja DOK postoji potreba za nastavak traženja
        čitanje sadržaja sloga s tekuće adrese
        AKO argument traženja = vrednost ključa tekućeg sloga TADA
          traženje uspešno, postoji potreba za nastavak traženja ← NE
        INAČE
          AKO postoje uslovi za nastavak traženja TADA
             generisanje naredne relativne adrese traženja
          INAČE
             traženje neuspešno, postoji potreba za nastavak traženja ← NE
           KRAJ AKO
        KRAJ AKO
  KRAJ RADI petlja_traženja
KRAJ TRAŽENJA
```


Traženje u datoteci

- metode traženja s obzirom na vrstu postupka
 - linearno traženje
 - moguće u sekvencijalnim, serijskim i rasutim organizacijama
 - binarno traženje
 - isključivo moguće u sekvencijalnim organizacijama
 - traženje praćenjem pokazivača
 - isključivo moguće u spregnutim organizacijama
 - » u osnovnim strukturama i
 - » uz korišćenje pomoćnih struktura
 - traženje metodom transformacije argumenta u adresu
 - $h: dom(K) \rightarrow A$
 - moguće u rasutim organizacijama

Traženje u datoteci

- vrste traženja s obzirom na predistoriju traženja
 - traženje slučajno odabranog sloga (tso)
 - izbor početne adrese traženja je unutrašnje pitanje algoritma
 - » ne zavisi od mesta zaustavljanja prethodnog traženja, niti od toga da li je postojalo prethodno traženje
 - moguće u svim organizacijama datoteka
 - traženje logički narednog sloga (tln)
 - početna adresa traženja predstavlja adresu na kojoj je zaustavljeno prethodno traženje
 - » moguće je ako je prethodno postojalo barem jedno traženje
 - svaka naredna adresa traženja može biti samo adresa logički narednog sloga
 - moguće u organizacijama u kojima se vode podaci o logički narednom slogu

Pretraživanje u datoteci

- algoritam AP: dom(LogUslov) → P(S) ili P(A)
 - za zadatu vrednost argumenta pretraživanja
 - zadati logički uslov
 - u stanju je da generiše i vrati, po potrebi, u program
 - skup slogova koji zadovoljavaju logički uslov pretraživanja
 - » P(S) partitivni skup skupa slogova S ili
 - skup adresa slogova koji zadovoljavaju logički uslov pretraživanja
 - » P(A) partitivni skup skupa adresa iz adresnog prostora
 - pretraživanje je uspešno, ako je skup slogova koji zadovoljava zadati uslov neprazan

Opšte procedure nad datotekama

Pretraživanje u datoteci

- algoritam AP: dom(LogUslov) → P(S) ili P(A)
 - logički uslov zahteva definisanje sintakse zapisivanja
 - predstavlja logički izraz, moguća upotreba
 - logičkih izraza i operanada
 - relacionih izraza i operanada
 - tipskih izraza i operanada
 - » aritmetičkih, alfanumeričkih, datumskih
 - u ulozi operanada mogu se pojaviti atributi tipa sloga, konstante i funkcije primenjene nad izrazima
 - neki specijalni tipovi logičkih uslova
 - uslovi konjuktivnog tipa: $A_1 = a_1 \wedge ... \wedge A_n = a_n$
 - uslovi disjunktivnog tipa: $A_1 = a_1 \vee ... \vee A_n = a_n$

sekundarni ključ

niz obeležja strukture po kojem se vrši pretraživanje

Ažuriranje datoteke

- postupak dovođenja LSP datoteke u sklad sa izmenjenim stanjem klase entiteta u realnom sistemu
- osnovne operacije
 - upis novog sloga u datoteku
 - zahteva prethodno neuspešno traženje
 - može iziskivati premeštanje određenog broja drugih slogova
 - modifikacija vrednosti neprimarnih atributa sloga
 - zahteva prethodno uspešno traženje
 - uobičajeno, zabranjuje se modifikacija vrednosti obeležja primarnog ključa
 - » po kojem je uspostavljena osnovna organizacija
 - brisanje postojećeg sloga iz datoteke
 - zahteva prethodno uspešno traženje
 - može iziskivati premeštanje određenog broja drugih slogova

Ažuriranje datoteke

- vrste brisanja
 - logičko brisanje sloga iz datoteke
 - svodi se na izmenu vrednosti polja statusa sloga
 - iz statusa aktuelnog u status neaktuelnog sloga
 - neaktuelni slog i dalje zauzima lokaciju u memorijskom prostoru
 - lokacije neaktuelnih slogova oslobađaju se reorganizacijom

fizičko brisanje sloga iz datoteke

- dovodi do izmene sadržaja bloka u kojem se nalazio izbrisani slog
- može izazvati pomeranje drugih slogova iz jednih u druge lokacije
- dovodi do oslobađanja jedne lokacije sloga u memorijskom prostoru
 - » to ne mora obavezno biti lokacija izbrisanog sloga

Obrada datoteka

- algoritamski iskazani niz operacija nad LSP jedne ili više datoteka
 - sa ciljem svrsishodne transformacije podataka datoteka
 - moguća primena operacija
 - pristupa slogovima
 - » jedina obavezna vrsta operacija u obradi datoteka
 - traženja i pretraživanja
 - ažuriranja (unosa, brisanja i modifikacije)
 - generisanja (izračunavanja) novih podataka

- Obrada datoteka
- Uloge datoteka u obradi
 - podela prema vrstama primenjenih operacija u obradi
 - ulazna datoteka
 - datoteka u kojoj se isključivo vrše čitanja
 - izlazna datoteka
 - datoteka u koju se isključivo zapisuju novi slogovi u obradi
 - ulazno-izlazna datoteka
 - datoteka u kojoj se vrše i čitanja i ažuriranja slogova

Obrada datoteka

- Uloge datoteka u obradi
 - podela prema ulozi u traženjima slogova
 - vodeća datoteka
 - datoteka koja isključivo generiše argumente traženja ili pretraživanja slogova tokom obrade
 - barem jedna ulazna datoteka u obradi mora biti vodeća
 - obrađivana datoteka
 - datoteka u kojoj se isključivo vrše traženja ili pretraživanja, na osnovu generisanih argumenata
 - vodeća i obrađivana datoteka
 - datoteka sa obe uloge
 - » vodeća za neku drugu, obrađivanu i
 - » obrađivana, u odnosu na neku vodeću

Obrada datoteka

OD – Metode pristupa

Obrada datoteka

OD – Metode pristupa

Obrada datoteka

- vrste obrade, prema načinima traženja slogova u obrađivanoj datoteci
 - direktna obrada
 - u svakom narednom koraku obrade zahteva se traženje slučajno odabranog sloga (tso)
 - redosledna (sekvencijalna) obrada
 - u svakom narednom koraku obrade zahteva se
 - » traženje logički narednog sloga (tln) i/ili
 - » sekvencijalni pristup fizički susednoj lokaciji

Reorganizacija datoteke

- ponovno formiranje datoteke
- u cilju dovođenja u sklad FSP sa novim stanjem LSP
- motivacija
 - operacije ažuriranja vrše izmene u LSP koje FSP nekada ne prati na odgovarajući način
 - to dovodi do degradacije performansi rada sa datotekom
 - primeri
 - nagomilavanje neaktuelnih, logički izbrisanih slogova koji zauzimaju lokacije u FSP
 - nagomilavanje lanaca slogova
 - neizbalansiranost podataka s obzirom na postojeću indeksnu strukturu
 - prevelika fragmentacija slobodnog prostora

Reorganizacija datoteke

- organizacije koje traže povremenu reorganizaciju
 - sekvencijalna
 - spregnuta
 - statička rasuta
 - statička indeksna
- organizacije koje ne traže povremenu reorganizaciju
 - serijska
 - reorganizacija nije neophodna
 - indeksna s B stablom
 - reorganizacija se sprovodi dinamički i lokalizovana je
 - dinamička rasuta
 - reorganizacija se sprovodi dinamički i lokalizovana je

Sadržaj

- Osnovna struktura datoteke
- Struktura datoteke kao niza blokova
- Metoda pristupa
- Parametri organizacije datoteka
- Vrste organizacije datoteka
- Opšte procedure nad datotekama
- Performanse obrade datoteke

Performanse obrade datoteke

- Mere podobnosti datoteke sa zadatom organizacijom da participira u obradi
 - kao vodeća ili obrađivana
 - u redoslednoj ili direktnoj obradi
- Idealna organizacija datoteke
 - zahteva tačno onoliko lokacija koliko sadrži slogova
 - faktor popunjenosti 100%
 - zahteva najviše jedan pristup za tso i tln
 - zahteva najviše jedan pristup za pretraživanje
 - po bilo kom zadatom uslovu
 - zahteva jedan pristup za bilo koju operaciju ažuriranja
 - nikada ne zahteva reorganizaciju

Performanse obrade datoteke

- Izbor vrste organizacije datoteke
 - predstavlja kompromisno rešenje
 - nemoguće je da jedna vrsta organizacije zadovolji sve navedene zahteve
 - favorizacija jednih često defavorizuje druge zahteve
 - uzimaju se u obzir potrebe i uticajnost aplikativnih programa
 - favorizuju se željene mere performansi, u odnosu na zauzeće memorijskog prostora
 - cena memorisanja po jedinici kapaciteta sve niža

Performanse obrade datoteke

- Ukupno vreme traženja ili pretraživanja slogova
 - zavisi od
 - broja i vremena pristupa blokovima na jedinici diska
 - broj dominantno opredeljen vrstom organizacije datoteke
 - » u slučaju pretraživanja i prirodom logičkog uslova
 - broj (za velike datoteke) zavisi od karakteristika fajl sistema OS
 - vreme dominantno opredeljeno karakteristikama diska (~ 10ms)
 - vremena prenosa bloka sa diska u OM
 - dominantno opredeljeno karakteristikama diska i sprežnog podsistema (< 1ms)
 - broja i vremena upoređivanja argumenta sa vrednošću ključa
 - broj dominantno opredeljen vrstom organizacije datoteke
 - » u slučaju pretraživanja i prirodom logičkog uslova
 - vreme dominantno opredeljeno karakteristikama OM i CPU (~ 10ns)

Performanse obrade datoteke

Mere za ocenu performansi

- -(A)
 - broj pristupa blokovima
 - broj upoređivanja argumenta i vrednosti ključa
- -(B)
 - srednji broj
 - broj u najgorem slučaju (apsolutni broj)
- -(C)
 - traženje logički narednog sloga
 - traženje slučajno odabranog sloga
 - operacije ažuriranja (upis, brisanje, modifikacija)
- -(D)
 - uspešna operacija
 - neuspešna operacija

Performanse obrade datoteke

Mere za ocenu performansi

		Broj pristupa		Broj upoređivanja	
		apsolutni	srednji	apsolutni	srednji
tln	uspešno	√	√	√	V
	neuspešno	√	√	√	√
tso	uspešno	√	√	√	√
	neuspešno	√	√	√	V
upis	uspešno	√	√	√	V
	neuspešno	√	√	√	V
brisanje	uspešno	√	√	√	√
	neuspešno	√	√	√	√
modifikacija	uspešno	√	√	√	√
	neuspešno	√	√	√	√

Sadržaj

- Osnovna struktura datoteke
- Struktura datoteke kao niza blokova
- Metoda pristupa
- Parametri organizacije datoteka
- Vrste organizacije datoteka
- Opšte procedure nad datotekama
- Performanse obrade datoteke

Pitanja i komentari

Metode pristupa i organizacija datoteka

Usluge metoda pristupa i vrste organizacija datoteka