PROBLEM SET 7. DUE THURSDAY, 14 SEPTEMBER

Reading. Quick Calculus, pp. 167–170; review 151–185. Supplementary reading. Simmons, sections 7.2 and 10.7.

- 1. (3pts) Compute the following definite integrals.
 - (a) $\int_0^1 x(x^2+2)^3 dx$

 - (b) $\int_0^1 x e^x dx$ (c) $\int_0^2 \sqrt{4-x} dx$
- 2. (3pts) Find the geometric area of the following functions on the corresponding interval.
 - (a) $f(x) = 6 3x^2$ on [0, 2]
 - (b) $f(x) = 3x^2 3$ on [0, 3]
 - (c) $f(x) = 9x^2 36$ on [0, 4]
- 3. (8pts) Compute the following integrals using integration by parts.
 - (a) $\int \frac{\ln(x)}{x} dx$
 - (b) $\int_{0}^{\infty} x^{2} e^{x} dx$ (You will have to do the process twice in this example.)
 - (c) $\int xe^{ax} dx$ for a real number a
 - (d) $\int (\ln(x))^2 dx$
- 4. (3pts) Find the (geometric) area between the following curves and the x-axis.
 - (a) $f(x) = 27 3x^2$

 - (a) $f(x) = \frac{3}{4}x^2$ (b) $f(x) = 12 \frac{3}{4}x^2$ (c) $f(x) = -2x \frac{x^2}{2}$
- 5. (3pts) Find the area of the region bounded by the two curves given.
 - (a) $f(x) = \cos(x)$ and $g(x) = \sin(2x)$ on $[0, \frac{\pi}{2}]$ (Hint: f(x) = g(x) when $x = \frac{\pi}{6}$.)
 - (b) $f(x) = x^2 4x$ and g(x) = 2x(c) $f(x) = 7 x^2$ and g(x) = 2