Quantum Mechanics I Problem Set 6

Professor Hanno Rein

Due: Monday, March 10th 2014

Problem 6.1

Name or describe the following quantum mechanical symbols or expressions in a few buzz words each. If there is more than one meaning associated with an expression, mention them all.

(0) ~	(.	~) C
(a) a	()	S_z

(b)
$$m$$

(c)
$$H\psi = E\psi$$

 (i) $\phi(p) = (2\pi\hbar)^{-3/2} \int e^{i(p \cdot r)/\hbar} \psi(r) d^3r$

(d)
$$\sigma_x$$
 (j) l

(e)
$$\langle L^2 \rangle$$
 (J) l
(f) $\int |\Psi|^2 d^3 r = 1$ (k) Y_2^2

Problem 6.2

A spin- $\frac{1}{2}$ particle is prepared in the state

$$\chi = \frac{1}{\sqrt{3}} \begin{pmatrix} i+1\\1 \end{pmatrix}.$$

- (a) What is the probability of finding the particle in a spin up state when you measure S_x, S_y or S_z ?
- (b) What are the expectation value of S_x, S_y and S_z ?
- (c) What are the uncertainties σ_{S_x} , σ_{S_y} and σ_{S_z} ?
- (d) Check if the uncertainty principle is satisfied:

$$\sigma_{S_x}\sigma_{S_y} \ge \frac{\hbar}{2} |\langle S_z \rangle|$$

Also check the other two permutations.

(e) What is the probability of finding each of the particles in a spin up state of S_x after you measured S_z ? No calculation allowed.

Problem 6.3

Consider a spin-1 particle (s=1). What values are allowed for m? Construct the matricies S_x , S_y and S_z . Do it the same way we did it in the lectures for a spin- $\frac{1}{2}$ particle by looking at the action of S_z , S_+ and S_- on each state.