Predicting Walmart Sales

MSA 8200

Meet the Team

Bennie Amani

Pranidhi Prabhat

Nimeelitha Akkiraju

Keerthi Bojja

Data Overview

Total Observations: 421,570

Feb 2010 to Oct 2012: 143 weeks

Stores: 45 | Departments: 90+

Store Types: A, B & C

Exploratory Data Analysis

Correlation Matrix

 None of the features have very strong correlation with Weekly Sales

Features	Correlation with Target Variable
Size	0.243828
Dept	0.148032
MarkDown5	0.090362
MarkDown1	0.085251
Store	-0.085195

Exploratory Data Analysis

- Avg Sales: \$15,981
- Store Type A has higher range of Weekly Sales compared to Type B & C
- Variation in Weekly Sales is almost same irrespective of whether it is a Holiday week or not

Data Selection for Prediction

Filtered data store wise

Aggregated weekly sales across department as there are more than 90 entries for each store

Out of 45 stores, we randomly selected store no's 3, 20 & 30 from different store types for prediction

Split the data into 80-20 for train and test

SARIMA with no additional variables

Stationarity and Model Selection

Type A /Store 20 - ARMA(1,0,1)

ACF and PACF (seasonality)

ACF and PACF (no seasonality)

Stationarity and Model Selection

Type B/Store 3 - ARMA(3,0,2)

ACF and PACF (seasonality)

ACF and PACF (no seasonality)

Stationarity and Model Selection

Type C/Store 30 – ARMA(2,0,1)

ACF and PACF (seasonality)

ACF and PACF (no seasonality)

SARIMA model output

Forecast Results: MAPE

• Type A: 4.34%

• Type B: 3.68%

• Type C: 2.24%

SARIMA with additional variables

Regression Model

- Store Type A 20
 - fit1 <- lm(Total_Sales ~Temperature + MarkDown3+ month, data = train_data)
- Store Type B − 3
 - fit <- lm(Total_Sales ~Temperature, data = train_data)
- Store Type C 30
 - fit <- lm(Total_Sales ~Temperature + month + year, data = train_data)

Residual Plots

Decomposition

ACF/PACF

Forecast Results

Forecast Results: MAPE

• Store 3: 4.34%

• Store 20: 3.68%

• Store 30: 2.24%

BSTS

Why BSTS? shortage of data no

Handling shortage of data points
Handling Uncertainty

- Doesn't rely on differencing, lags and MA
- Combines prior and estimate parameters from posterior probability distributions of each co-variate

Store Type B - 3

Local level model

Store Type B – 3

Local trend with seasonality

Local trend with seasonality – Components & Prediction

Store Type B - 3

Local trend with seasonality and Regression

$$y_t = \mu_t + au_t + eta^T \mathbf{x}_t + \epsilon_t$$

Prediction

```
newpred<- predict(model3, newdata =Store3_test, horizon = 52)
plot(newpred, plot.original =90, main = 'trend')</pre>
```


Comparison of models

Store Type A - 20

Store Type C - 30

Forecast Results: MAPE

• Store 3: 14.4%

• Store 20: 16.6%

• Store 30: 5.04%

Conclusion

- Comparing all the three methods
- Store wise conclusion

Next Steps

- Final Model Tuning
- Test one store each from the same story type category and fit the model to test accuracy
- Extend the analysis for across all stores
- Develop department wise forecast model