

# Wnioskowanie Boolowskie w obliczaniu reduktów i reguł decyzyjnych

2 czerwca 2011

### Outline



- Metody wnioskowań Boolowskich w szukaniu reduktów
  - Algebry Boolo
  - Funkcje Boolowskie i wnioskowanie Boolowskie
- 2 Szukanie reduktu metodą wnioskowania Boolowskiego
  - Heurystyka Johnsona
  - Inne heurystyki
- 3 Systemy decyzyjne oparte o zbiory przybliżone
  - Reguly decyzyjne
  - Regułowe systemy decyzyjne
  - Szukanie minimalnych reguł decyzyjnych



### Algebra Boola

Jest to struktura algebraiczna

$$\mathcal{B}=(B,+,\cdot,0,1)$$

spełniająca następujące aksjomaty

- Przemienność:

$$(a+b)=(b+a)$$
 oraz  $(a\cdot b)=(b\cdot a)$ 

- Rozdzielność:

$$a\cdot (b+c)=(a\cdot b)+(a\cdot c), ext{ Oraz} \ a+(b\cdot c)=(a+b)\cdot (a+c)$$

- Elementy neutralne:

$$a+0=a$$
 oraz  $a\cdot 1=a$ 

- Istnienie elementu komplementarnego:

$$a + \overline{a} = 1$$
 and  $a \cdot \overline{a} = 0$ 

\*) Czasem negacja jest dodana do sygnatury algebry Boola.





1 Algebra zbiorów:  $\mathbb{P}(X)=(2^X,\cup,\cap,-,\emptyset,X)$ ;





- lacksquare Algebra zbiorów:  $\mathbb{P}(X)=(2^X,\cup,\cap,-,\emptyset,X)$ ;
- Rachunek zdań

 $(\{\mathit{zdania\ logiczne}\}, \lor, \land, \neg, \bot, \top)$ 



- lacksquare Algebra zbiorów:  $\mathbb{P}(X)=(2^X,\cup,\cap,-,\emptyset,X)$ ;
- Rachunek zdań

$$(\{\textit{zdania logiczne}\}, \lor, \land, \neg, \bot, \top)$$

Binarna algebra Boola  $\mathcal{B}_2=(\{0,1\},+,\cdot,0,1)$  to jest najmniejsza, ale najważniejsza algebra Boola w zastosowaniu.

| $\boldsymbol{x}$ | у                | x + y | $x \cdot y$ |   |   |          |
|------------------|------------------|-------|-------------|---|---|----------|
| 0                | 0                | 0     | 0           |   | x | $\neg x$ |
| 0                | 0<br>1<br>0<br>1 | 1     | 0           | _ | 0 | 1        |
| 1                | 0                | 1     | 0           |   | 1 | 0        |
| 1                | 1                | 1     | 1           |   |   |          |

Przykłady zastosowań:

- projektowanie układów scalonych;
- rachunek zdań.





Łączność (ang. Associative law):

$$(x+y)+z=x+(y+z)$$
 oraz  $(x\cdot y)\cdot z=x\cdot (y\cdot z)$ 

Idempotence: x + x = x oraz  $x \cdot x = x(dual)$ 

Działania z 0 i 1: x+1=1 oraz  $x\cdot 0=0$  (dual)

Pochłanienie (ang. Absorption laws):

$$(y \cdot x) + x = x$$
 oraz  $(y + x) \cdot x = x(dual)$ 

Involocja (ang. Involution laws):  $\overline{(\overline{x})} = x$ 

Prawa DeMorgana (ang. DeMorgan's laws):

$$\neg(x+y) = \neg x \cdot \neg y \quad oraz \quad \neg(x \cdot y) = \neg x + \neg y(dual)$$

Prawa konsensusu (ang. Consensus laws):

$$\begin{split} (x+y)\cdot(\overline{x}+z)\cdot(y+z) &= (x+y)\cdot(\overline{x}+z) \text{ oraz} \\ (x\cdot y) &+ (\overline{x}\cdot z) + (y\cdot z) &= (x\cdot b) + (\overline{x}\cdot z) \end{split}$$

Zasada dualności: Każda algebraiczna równość pozostaje prawdziwa jeśli zamieniamy operatory + na ·, · na +, 0 na 1 oraz 1 na 0.



■ Każde odwzorowanie  $f:\{0,1\}^n \to \{0,1\}$  nazywamy (zupełną) funkcją Boolowską.



- Każde odwzorowanie  $f:\{0,1\}^n \to \{0,1\}$  nazywamy (zupełną) funkcją Boolowską.
- Funkcje Boolowskie = formuły Boolowskie:
  - State, zmienne, operatory -, + oraz.
  - Literały, mintermy (jednomiany), maxtermy, ...
  - Kanoniczna postać dyzjunkcyjna (DNF), np.  $f = xy\bar{z} + x\bar{y}z + \bar{x}yz + xyz$ ;
  - lacktriangle Kanoniczna postać koniunkcyjna (CNF), np.  $f=(x+y+z)(\overline{x}+y)$



- Każde odwzorowanie  $f:\{0,1\}^n \to \{0,1\}$  nazywamy (zupełną) funkcją Boolowską.
- Funkcje Boolowskie ≡ formuły Boolowskie:
  - Stałe, zmienne, operatory -, + oraz .
  - Literały, mintermy (jednomiany), maxtermy, ...
  - Kanoniczna postać dyzjunkcyjna (DNF), np.  $f=xy\overline{z}+x\overline{y}z+\overline{x}yz+xyz;$
  - Kanoniczna postać koniunkcyjna (CNF), np.  $f = (x + y + z)(\overline{x} + y)$
- lacksquare Term  $t=x_{i_1}...x_{i_m}\overline{x_{j_1}}...\overline{x_{j_k}}$  nazywamy **implikantem** funkcji f jeśli

$$\forall_{\mathbf{a} \in \{0,1\}^n} \quad t(\mathbf{a}) = 1 \Rightarrow f(\mathbf{a}) = 1$$



- Każde odwzorowanie  $f:\{0,1\}^n \to \{0,1\}$  nazywamy (zupełną) funkcją Boolowską.
- Funkcje Boolowskie ≡ **formuły Boolowskie**:
  - Stałe, zmienne, operatory -, + oraz .
  - Literały, mintermy (jednomiany), maxtermy, ...
  - Kanoniczna postać dyzjunkcyjna (DNF), np.  $f = xy\overline{z} + x\overline{y}z + \overline{x}yz + xyz$ ;
  - Kanoniczna postać koniunkcyjna (CNF), np.  $f = (x + y + z)(\overline{x} + y)$
- Term  $t=x_{i_1}...x_{i_m}\overline{x_{j_1}}...\overline{x_{j_k}}$  nazywamy **implikantem** funkcji f jeśli  $orall_{\mathbf{a}\in\{0,1\}^n}$   $t(\mathbf{a})=1\Rightarrow f(\mathbf{a})=1$
- Implikant pierwszy: jest to implikant, który przestaje nim być po usunięciu dowolnego literału.



- Każde odwzorowanie  $f:\{0,1\}^n \to \{0,1\}$  nazywamy (zupełną) funkcją Boolowską.
- Funkcje Boolowskie ≡ formuły Boolowskie:
  - Stałe, zmienne, operatory -, + oraz .
  - Literały, mintermy (jednomiany), maxtermy, ...
  - Kanoniczna postać dyzjunkcyjna (DNF), np.  $f=xy\overline{z}+x\overline{y}z+\overline{x}yz+xyz;$
  - Kanoniczna postać koniunkcyjna (CNF), np.  $f = (x + y + z)(\overline{x} + y)$
- Term  $t=x_{i_1}...x_{i_m}\overline{x_{j_1}}...\overline{x_{j_k}}$  nazywamy **implikantem** funkcji f jeśli  $orall_{\mathbf{a}\in\{0,1\}^n}$   $t(\mathbf{a})=1\Rightarrow f(\mathbf{a})=1$
- Implikant pierwszy: jest to implikant, który przestaje nim być po usunięciu dowolnego literału.
- Kanoniczna postać Blake'a: każdą funkcję Boolowską można przedstawić jako sumę wszystkich jej imlikantów pierwszych:

$$f = t_1 + t_2 + \dots + t_k$$



### Wiele formuł reprezentuje tę samą funkcję;

$$\begin{array}{l} \phi_1=xy\overline{z}+x\overline{y}z+\overline{x}yz+xyz\\ \phi_2=(x+y+z)(\overline{x}+y+z)(x+\overline{y}+z)(x+y+\overline{z})\\ \phi_3=xy+xz+yz\\ xy\overline{z} \text{ jest implikantem} \end{array}$$

xy jest implikantem pierwszym

| $\boldsymbol{x}$ | у | z | f |
|------------------|---|---|---|
| 0                | 0 | 0 | 0 |
| 1                | 0 | 0 | 0 |
| 0                | 1 | 0 | 0 |
| 1                | 1 | 0 | 1 |
| 0                | 0 | 1 | 0 |
| 1                | 0 | 1 | 1 |
| 0                | 1 | 1 | 1 |
| 1                | 1 | 1 | 1 |
|                  |   |   |   |





■ Niech  $\prec$  oznacza relację częściowego porządku w  $\{0,1\}^n$ 



- Niech  $\prec$  oznacza relację częściowego porządku w  $\{0,1\}^n$
- Funkcja f jest monotoniczna (niemalejąca) wtw, gdy dla każdych  $\mathbf{x},\mathbf{y}\in\{0,1\}^n$  jeśli  $\mathbf{x}\prec\mathbf{y}$  to  $f(\mathbf{x})\leq f(\mathbf{y})$



- Niech  $\prec$  oznacza relację częściowego porządku w  $\{0,1\}^n$
- Funkcja f jest monotoniczna (niemalejąca) wtw, gdy dla każdych  $\mathbf{x}, \mathbf{y} \in \{0,1\}^n$  jeśli  $\mathbf{x} \prec \mathbf{y}$  to  $f(\mathbf{x}) \leq f(\mathbf{y})$
- monotoniczne funkcje Boolowskie można zapisać bez użycia negacji.



- Niech  $\prec$  oznacza relację częściowego porządku w  $\{0,1\}^n$
- Funkcja f jest monotoniczna (niemalejąca) wtw, gdy dla każdych  $\mathbf{x},\mathbf{y}\in\{0,1\}^n$  jeśli  $\mathbf{x}\prec\mathbf{y}$  to  $f(\mathbf{x})\leq f(\mathbf{y})$
- monotoniczne funkcje Boolowskie można zapisać bez użycia negacji.
- term  $f' = x_{i_1} \cdot x_{i_2} \dots \cdot x_{i_k}$  nazywamy implikantem pierwszym funkcji monotonicznej f jeśli
  - $\blacksquare f'(\mathbf{x}) \leqslant f(\mathbf{x})$  dla każdego wektora  $\mathbf{x}$  (jest implikantem)
  - $\blacksquare$  każda funkcja większa od f' nie jest implikantem



- Niech  $\prec$  oznacza relację częściowego porządku w  $\{0,1\}^n$
- Funkcja f jest monotoniczna (niemalejąca) wtw, gdy dla każdych  $\mathbf{x},\mathbf{y}\in\{0,1\}^n$  jeśli  $\mathbf{x}\prec\mathbf{y}$  to  $f(\mathbf{x})\leq f(\mathbf{y})$
- monotoniczne funkcje Boolowskie można zapisać bez użycia negacji.
- term  $f'=x_{i_1}\cdot x_{i_2}...\cdot x_{i_k}$  nazywamy implikantem pierwszym funkcji monotonicznej f jeśli
  - $\blacksquare f'(\mathbf{x}) \leqslant f(\mathbf{x})$  dla każdego wektora  $\mathbf{x}$  (jest implikantem)
  - lacktriangle każda funkcja większa od f' nie jest implikantem
- Np. funkcja

$$f(x_1, x_2, x_3) = (x_1 + x_2)(x_2 + x_3)$$

posiada 2 implikanty pierwsze:  $f_1 = x_2$  i  $f_2 = x_1 \wedge x_3$ 







- Modelowanie: Kodowanie problemu za pomocą układu równań Boolowskich;
- **Redukcja:** Sprowadzenie układu równań do pojedynczego równania postaci f=0 lub f=1
- **Konstrukcja:** Znalezienie wszystkich implikantów pierwszych funkcji *f* (konstrukcja kanonicznej postaci Blake'a);
- Dedukcja: Zastosowanie pewnej sekwencji wnioskowań transformujących implikanty pierwsze do rozwiązań problemu.





A, B, C, D are considering going to a party. Social constrains:

- If A goes than B won't go and C will;
- If B and D go, then either A or C (but not both) will go
- If C goes and B does not, then D will go but A will not.



A, B, C, D are considering going to a party. Social constrains:

- If A goes than B won't go and C will;
- If B and D go, then either A or C (but not both) will go
- If C goes and B does not, then D will go but A will not.

### **Problem modeling:**

$$A 
ightarrow \overline{B} \wedge C 
ightharpoonup A(B+\overline{C}) = 0$$
...  $ightharpoonup BD(AC+\overline{AC}) = 0$ 
...  $ightharpoonup \overline{B}C(A+\overline{D}) = 0$ 





A, B, C, D are considering going to a party. Social constrains:

- If A goes than B won't go and C will;
- If B and D go, then either A or C (but not both) will go
- If C goes and B does not, then D will go but A will not.

#### After reduction:

$$\frac{f = A(B + \overline{C}) + BD(AC + \overline{AC}) + \overline{B}C(A + \overline{D}) = 0$$

### Problem modeling:

$$A 
ightarrow \overline{B} \wedge C 
ightharpoons A(B+\overline{C}) = 0 \ ... 
ightharpoons BD(AC+\overline{AC}) = 0 \ ... 
ightharpoons \overline{B}C(A+\overline{D}) = 0$$





A, B, C, D are considering going to a party. Social constrains:

- If A goes than B won't go and C will;
- If B and D go, then either A or C (but not both) will go
- If C goes and B does not, then D will go but A will not.

#### After reduction:

$$\frac{f = A(B + \overline{C}) + BD(AC + \overline{AC}) + \overline{B}C(A + \overline{D}) = 0$$

■ Blake Canonical form:  $f = B\overline{C}D + \overline{B}C\overline{D} + A = 0$ 

### **Problem modeling:**

$$A 
ightarrow \overline{B} \wedge C 
ightharpoons A(B+\overline{C}) = 0 \ ... 
ightharpoons BD(AC+\overline{AC}) = 0 \ ... 
ightharpoons \overline{B}C(A+\overline{D}) = 0$$





A, B, C, D are considering going to a party. Social constrains:

- If A goes than B won't go and C will;
- If B and D go, then either A or C (but not both) will go
- If C goes and B does not, then D will go but A will not.

### **Problem modeling:**

$$egin{aligned} A 
ightarrow \overline{B} \wedge C &\leftrightsquigarrow A(B+\overline{C}) &= 0 \ & ... &\leftrightsquigarrow BD(AC+\overline{AC}) &= 0 \ & ... &\leftrightsquigarrow \overline{B}C(A+\overline{D}) &= 0 \end{aligned}$$

After reduction:

$$\frac{f = A(B + \overline{C}) + BD(AC + \overline{AC}) + \overline{B}C(A + \overline{D}) = 0$$

Blake Canonical form:

$$f = B\overline{C}D + \overline{B}C\overline{D} + A = 0$$

Facts:

$$BD \longrightarrow C$$

$$C \longrightarrow B \lor D$$

$$A \longrightarrow 0$$





A, B, C, D are considering going to a party. Social constrains:

- If A goes than B won't go and C will;
- If B and D go, then either A or C (but not both) will go
- If C goes and B does not, then D will go but A will not.

### **Problem modeling:**

$$egin{aligned} A 
ightarrow \overline{B} \wedge C &\leftrightsquigarrow A(B+\overline{C}) &= 0 \ & \ldots & \divideontimes BD(AC+\overline{AC}) &= 0 \ & \ldots & \mathclap{} \overline{B}C(A+\overline{D}) &= 0 \end{aligned}$$

After reduction:

$$\frac{f = A(B + \overline{C}) + BD(AC + \overline{AC}) + \overline{B}C(A + \overline{D}) = 0$$

Blake Canonical form:

$$f = B\overline{C}D + \overline{B}C\overline{D} + A = 0$$

Facts:

$$BD \longrightarrow C$$

$$C \longrightarrow B \lor D$$

$$A \longrightarrow 0$$

Reasoning: (theorem proving)
 e.g., show that "nobody can go alone."



# Metoda BR w Sztucznej Inteligencji

**Problem SAT**: czy równanie  $f(x_1,...,x_n)=1$  posiada rozwiązanie?



# Metoda BR w Sztucznej Inteligencji

- **Problem SAT**: czy równanie  $f(x_1,...,x_n) = 1$  posiada rozwiązanie?
- SAT odgrywa ważną rolę w teorii złożoności (twierdzenie Cooka, dowodzenie NP-zupełności ...)



# Metoda BR w Sztucznej Inteligencji

- **Problem SAT**: czy równanie  $f(x_1,...,x_n) = 1$  posiada rozwiązanie?
- SAT odgrywa ważną rolę w teorii złożoności (twierdzenie Cooka, dowodzenie NP-zupełności ...)
- Każdy SAT-solver może być używany do rozwiązywania problemu planowania.







- **Problem SAT**: czy równanie  $f(x_1,...,x_n)=1$  posiada rozwiązanie?
- SAT odgrywa ważną rolę w teorii złożoności (twierdzenie Cooka, dowodzenie NP-zupełności ...)
- Każdy SAT-solver może być używany do rozwiązywania problemu planowania.
- Blocks world problem: Po redukcji formuła boolowska nadal zawiera O(tk²) zmiennych i O(tk³) klauzuli (k,t - liczby bloków i kroków).







- **Problem SAT**: czy równanie  $f(x_1,...,x_n) = 1$  posiada rozwiązanie?
- SAT odgrywa ważną rolę w teorii złożoności (twierdzenie Cooka, dowodzenie NP-zupełności ...)
- Każdy SAT-solver może być używany do rozwiązywania problemu planowania.
- Blocks world problem: Po redukcji formuła boolowska nadal zawiera O(tk²) zmiennych i O(tk³) klauzuli (k, t - liczby bloków i kroków).
- Np. Dla k = 15, t = 14, mamy 3016 zmiennych i 50457 klausuli



### Outline



- 1 Metody wnioskowań Boolowskich w szukaniu reduktów
  - Algebry Boolo
  - Funkcje Boolowskie i wnioskowanie Boolowskie
- 2 Szukanie reduktu metodą wnioskowania Boolowskiego
  - Heurystyka Johnsona
  - Inne heurystyki
- 3 Systemy decyzyjne oparte o zbiory przybliżone
  - Reguly decyzyjne
  - Regułowe systemy decyzyjne
  - Szukanie minimalnych reguł decyzyjnych







- **Modelowanie**: Kodowanie problemu za pomocą układu równań Boolowskich;
- **Redukcja:** Sprowadzenie układu równań do pojedynczego równania postaci f=0 lub f=1
- **Konstrukcja:** Znalezienie wszystkich implikantów pierwszych funkcji *f* (konstrukcja kanonicznej postaci Blake'a);
- Dedukcja: Zastosowanie pewnej sekwencji wnioskowań transformujących implikanty pierwsze do rozwiązań problemu.





- Konstrukcja funkcji odróżnialności:
  - Zmienne boolowskie: atrybuty  $a_1,...,a_k$ ;
  - Klauzula:

$$\phi_{u,v} = \bigvee \{a \in A : a(u) \neq a(v)\}$$

Funkcja rozróżnialności:

$$\mathcal{F}_{\mathbb{S}}(a_1,...,a_k) = \bigwedge_{x,y \in U: dec(x) \neq dec(y)} \phi_{x,y}(a_1,...,a_k)$$





- Konstrukcja funkcji odróżnialności:
  - Zmienne boolowskie: atrybuty  $a_1,...,a_k$ ;
  - Klauzula:

$$\phi_{u,v} = \bigvee \{a \in A : a(u) \neq a(v)\}$$

Funkcja rozróżnialności:

$$\mathcal{F}_{\mathbb{S}}(a_1,...,a_k) = \bigwedge_{x,y \in U: dec(x) 
eq dec(y)} \phi_{x,y}(a_1,...,a_k)$$

przekształcenie funkcji rozróżnialności do postaci DNF





- Konstrukcja funkcji odróżnialności:
  - Zmienne boolowskie: atrybuty  $a_1,...,a_k$ ;
  - Klauzula:

$$\phi_{u,v} = \bigvee \{a \in A : a(u) \neq a(v)\}$$

Funkcja rozróżnialności:

$$\mathcal{F}_{\mathbb{S}}(a_1,...,a_k) = \bigwedge_{x,y \in U: dec(x) 
eq dec(y)} \phi_{x,y}(a_1,...,a_k)$$

- przekształcenie funkcji rozróżnialności do postaci DNF
- 3 każdy implikant pierwszy odpowiada jednemu reduktowi;



# Przykład tablicy decyzyjnej

| Hurt. | Jakość obsługi | Jakość towaru | Obok autostrady? | Centrum? | decyzja |
|-------|----------------|---------------|------------------|----------|---------|
| ID    | $a_1$          | $a_2$         | $a_3$            | $a_4$    | dec     |
| 1     | dobra          | dobra         | nie              | nie      | strata  |
| 2     | dobra          | dobra         | nie              | tak      | strata  |
| 3     | bdb            | dobra         | nie              | nie      | zysk    |
| 4     | slaba          | super         | nie              | nie      | zysk    |
| 5     | slaba          | niska         | tak              | nie      | zysk    |
| 6     | slaba          | niska         | tak              | tak      | strata  |
| 7     | bdb            | niska         | tak              | tak      | zysk    |
| 8     | dobra          | super         | nie              | nie      | strata  |
| 9     | dobra          | niska         | tak              | nie      | zysk    |
| 10    | slaba          | super         | tak              | nie      | zysk    |
| 11    | dobra          | super         | tak              | tak      | zysk    |
| 12    | bdb            | super         | nie              | tak      | zysk    |
| 13    | bdb            | dobra         | tak              | nie      | ?       |
| 14    | slaba          | super         | nie              | tak      | ?       |



| $\mathbb{M}$ | 1                    | 2                    | 6                    | 8                    |
|--------------|----------------------|----------------------|----------------------|----------------------|
| 3            | $a_1$                | $a_1, a_4$           | $a_1, a_2, a_3, a_4$ | $a_1, a_2$           |
| 4            | $a_1, a_2$           | $a_1, a_2, a_4$      | $a_2, a_3, a_4$      | $a_1$                |
| 5            | $a_1, a_2, a_3$      | $a_1, a_2, a_3, a_4$ | $a_4$                | $a_1, a_2, a_3$      |
| 7            | $a_1, a_2, a_3, a_4$ | $a_1, a_2, a_3$      | $a_1$                | $a_1, a_2, a_3, a_4$ |
| 9            | $a_2, a_3$           | $a_2, a_3, a_4$      | $a_1, a_4$           | $a_2, a_3$           |
| 10           | $a_1, a_2, a_3$      | $a_1, a_2, a_3, a_4$ | $a_2, a_4$           | $a_1, a_3$           |
| 11           | $a_2, a_3, a_4$      | $a_{2}, a_{3}$       | $a_1, a_2$           | $a_3, a_4$           |
| 12           | $a_1, a_2, a_4$      | $a_1, a_2$           | $a_1, a_2, a_3$      | $a_{1}, a_{4}$       |

$$f = (\alpha_1)(\alpha_1 \vee \alpha_4)(\alpha_1 \vee \alpha_2)(\alpha_1 \vee \alpha_2 \vee \alpha_3 \vee \alpha_4)(\alpha_1 \vee \alpha_2 \vee \alpha_4)$$
$$(\alpha_2 \vee \alpha_3 \vee \alpha_4)(\alpha_1 \vee \alpha_2 \vee \alpha_3)(\alpha_4)(\alpha_2 \vee \alpha_3)(\alpha_2 \vee \alpha_4)$$
$$(\alpha_1 \vee \alpha_3)(\alpha_3 \vee \alpha_4)(\alpha_1 \vee \alpha_2 \vee \alpha_4)$$





$$f = (\alpha_1)(\alpha_1 \vee \alpha_4)(\alpha_1 \vee \alpha_2)(\alpha_1 \vee \alpha_2 \vee \alpha_3 \vee \alpha_4)(\alpha_1 \vee \alpha_2 \vee \alpha_4)$$
$$(\alpha_2 \vee \alpha_3 \vee \alpha_4)(\alpha_1 \vee \alpha_2 \vee \alpha_3)(\alpha_4)(\alpha_2 \vee \alpha_3)(\alpha_2 \vee \alpha_4)$$
$$(\alpha_1 \vee \alpha_3)(\alpha_3 \vee \alpha_4)(\alpha_1 \vee \alpha_2 \vee \alpha_4)$$

usuwanie alternatyw regułą pochłaniania (t.j.  $p \land (p \lor q) \equiv p$ ):

$$f = (\alpha_1)(\alpha_4)(\alpha_2 \vee \alpha_3)$$





$$f = (\alpha_1)(\alpha_1 \vee \alpha_4)(\alpha_1 \vee \alpha_2)(\alpha_1 \vee \alpha_2 \vee \alpha_3 \vee \alpha_4)(\alpha_1 \vee \alpha_2 \vee \alpha_4)$$
$$(\alpha_2 \vee \alpha_3 \vee \alpha_4)(\alpha_1 \vee \alpha_2 \vee \alpha_3)(\alpha_4)(\alpha_2 \vee \alpha_3)(\alpha_2 \vee \alpha_4)$$
$$(\alpha_1 \vee \alpha_3)(\alpha_3 \vee \alpha_4)(\alpha_1 \vee \alpha_2 \vee \alpha_4)$$

usuwanie alternatyw regułą pochłaniania (t.j.  $p \land (p \lor q) \equiv p$ ):

$$f = (\alpha_1)(\alpha_4)(\alpha_2 \vee \alpha_3)$$

 sprowadzanie funkcji f z postaci CNF (koniunkcja alternatyw) do postaci DNF (alternatywa koniunkcji)

$$f = \alpha_1 \alpha_4 \alpha_2 \vee \alpha_1 \alpha_4 \alpha_3$$



$$f = (\alpha_1)(\alpha_1 \vee \alpha_4)(\alpha_1 \vee \alpha_2)(\alpha_1 \vee \alpha_2 \vee \alpha_3 \vee \alpha_4)(\alpha_1 \vee \alpha_2 \vee \alpha_4)$$
$$(\alpha_2 \vee \alpha_3 \vee \alpha_4)(\alpha_1 \vee \alpha_2 \vee \alpha_3)(\alpha_4)(\alpha_2 \vee \alpha_3)(\alpha_2 \vee \alpha_4)$$
$$(\alpha_1 \vee \alpha_3)(\alpha_3 \vee \alpha_4)(\alpha_1 \vee \alpha_2 \vee \alpha_4)$$

usuwanie alternatyw regułą pochłaniania (t.j.  $p \land (p \lor q) \equiv p$ ):

$$f = (\alpha_1)(\alpha_4)(\alpha_2 \vee \alpha_3)$$

 sprowadzanie funkcji f z postaci CNF (koniunkcja alternatyw) do postaci DNF (alternatywa koniunkcji)

$$f = \alpha_1 \alpha_4 \alpha_2 \vee \alpha_1 \alpha_4 \alpha_3$$

Każdy składnik jest reduktem! Zatem mamy 2 redukty:  $R_1 = \{A_1, A_2, A_4\}$  i  $R_2 = \{A_1, A_3, A_4\}$ 





Atrybut jest ważniejszy jeśli częściej występuje w klauzulach;





- Atrybut jest ważniejszy jeśli częściej występuje w klauzulach;
- Selekcja: W każdym kroku wybierzmy atrybut, który najczęściej występuje w funkcji rozróżnialności;





- Atrybut jest ważniejszy jeśli częściej występuje w klauzulach;
- Selekcja: W każdym kroku wybierzmy atrybut, który najczęściej występuje w funkcji rozróżnialności;
- Usuwanie: Usuwamy z tej funkcji te klauzule, które zawierają wybrany atrybut;





- Atrybut jest ważniejszy jeśli częściej występuje w klauzulach;
- Selekcja: W każdym kroku wybierzmy atrybut, który najczęściej występuje w funkcji rozróżnialności;
- Usuwanie: Usuwamy z tej funkcji te klauzule, które zawierają wybrany atrybut;
- Powtarzamy Selekcja i Usuwanie dopóty, póki funkcja rozróżnialności zawiera jeszcze jakaś klazulę.





#### Heurystyka Johnsona

- Znaleźć atrybut, który występuje najczęściej w macierzy rozróżnialności;
- Usuwnąć wszystkie pola zawierające wybrany atrybut;
- 3 Powtarzamy kroki 1 i 2 dopóki wszystkie pola macierzy są puste.



| M  | 1                    | 2                    | 6                    | 8                    |
|----|----------------------|----------------------|----------------------|----------------------|
| 3  | $a_1$                | $a_1, a_4$           | $a_1, a_2, a_3, a_4$ | $a_1, a_2$           |
| 4  | $a_1, a_2$           | $a_1, a_2, a_4$      | $a_2, a_3, a_4$      | $a_1$                |
| 5  | $a_1, a_2, a_3$      | $a_1, a_2, a_3, a_4$ | $a_4$                | $a_1, a_2, a_3$      |
| 7  | $a_1, a_2, a_3, a_4$ | $a_1, a_2, a_3$      | $a_1$                | $a_1, a_2, a_3, a_4$ |
| 9  | $a_2, a_3$           | $a_2, a_3, a_4$      | $a_1, a_4$           | $a_2, a_3$           |
| 10 | $a_1, a_2, a_3$      | $a_1, a_2, a_3, a_4$ | $a_2, a_4$           | $a_1, a_3$           |
| 11 | $a_2, a_3, a_4$      | $a_2, a_3$           | $a_1, a_2$           | $a_3, a_4$           |
| 12 | $a_1, a_2, a_4$      | $a_1, a_2$           | $a_1, a_2, a_3$      | $a_1, a_4$           |

W macierzy nierozróznialności z poprzedniego przykładu

 $a_1$  - występuje 23 razy  $a_2$  - występuje 23 razy

 $a_3$  - występuje 18 razy  $a_4$  - występuje 16 razy

- Jeśli wybieramy  $a_1$ , to po usunięciu pól zawierających  $a_1$  zostało 9 niepustych pól macierzy nierozróżnialności. Wśród nich:
  - $a_2$  występuje 7 razy  $a_3$  występuje 7 razy  $a_4$  występuje 6 razy
- Jeśli wybieramy tym razem  $a_2$  to zostały 2 niepuste pola i wśród nich  $a_4$  jest zdecydowanym faworytem.
- Możemy dostać w ten sposób redukt:  $R_1 = \{a_1, a_2, a_4\}$ .





- Niech  $X = \{(u,v) \in U^2 : dec(u) \neq dec(v)\};$
- lacksquare Niech  $S_{a_i}=\{(u,v)\in X: a_i(u)
  eq a_i(v)\};$
- Niech  $C^* \subset A$  będzie minimalnym reduktem, lecz  $C = \{a_1,...,a_k\}$  będzie reduktem znalezionym przez heurystykę Johnsona;
- Załóżmy, że HEURYSTYKA JOHNSONA musi płacić 1zł za każdym razem, gdy dodała  $a_i$  do C.
- Rozłóżmy ten koszt tym elementom, które zostały po raz pierwszy pokryte przez zbiór  $S_{a_i}$
- Niech  $c_x$  = koszt ponoszony przez x. Jeśli x jest pokryty po raz pierwszy przez  $a_i$ , to

$$c_x = rac{1}{|S_{a_i} - (S_{a_1} \cup ... \cup S_{a_{i-1}})|}$$





lacktriangle Heurystyka Johnsona ponosi łączny koszt=|C|. Mamy

$$|C| = \sum_{x \in X} c_x \le \sum_{a \in C^*} \sum_{x \in S_a} c_x$$

Gdybyśmy pokazali, że dla dowolnego altrybutu  $a \in A$ 

$$\sum_{x \in S_a} c_x \le H(|S_a|)$$

gdzie  $H(n) = \sum_{i=1}^n rac{1}{i}$ , wówczas możemy oszacować dalej:

$$egin{aligned} |C| & \leq \sum_{a \in C*} \sum_{x \in S_a} c_x \leq |C^*| \cdot H(\max\{|S_a: a \in A|\}) \ & \leq |C^*| \cdot H(|X|) \leq |C^*| \cdot \ln(|X|+1) \end{aligned}$$



### Dla dowolnego altrybutu $a \in A$

$$\sum_{x \in S_a} c_x \le H(|S_a|)$$

#### Dowód:

■ Niech  $u_i = |S_a - (S_{a_1} \cup ... \cup S_{a_{i-1}})|$ , mamy:

$$u_0 = |S_a| \ge ... \ge u_{i-1} \ge u_i \ge ... \ge u_k = 0;$$

gdzie k jest najmniejszym indeksem t., że  $S_a = S_{a_1} \cup ... \cup S_{a_k}$ 

Zatem

$$egin{aligned} \sum_{x \in S_a} c_x &= \sum_{i=0}^k (u_{i-1} - u_i) \cdot rac{1}{|S_{a_i} - (S_{a_1} \cup ... \cup S_{a_{i-1}})|} \ &\leq \sum_{i=0}^k (u_{i-1} - u_i) \cdot rac{1}{u_{i-1}} \leq \sum_{i=0}^k (H(u_{i-1}) - H(u_i)) = H(|S_a|) \end{aligned}$$



- ILP (Integer Linear Program)
- Symulowane wyżarzanie (simulated annealing)
- Algorytmy genetyczne
- SAT solver
- ???



Dana jest funkcja  $f:\{0,1\}^n \to \{0,1\}$  zapisana w postaci CNF za pomocą zmiennych  $x_1,...,x_n$ 

- Utwórz nowe zmienne  $\{y_1,...,y_{2n}\}$  odpowiadające literałom  $x_1,\overline{x_1},...,x_n,\overline{x_n}$ ;
- 2 Dla każdej zmiennej  $x_i$ , utwórzmy nierówność  $y_{2i-1}+y_{2i}\leq 1$
- Zamień każdą klausulę  $\omega_i=(l_{i_1}\vee...\vee l_{i_{n_i}})$  na nierówność  $y_{i_1}+...+y_{i_{n_i}}\geq 1$ ;
- Utwórzmy układ nierówności z poprzednich punktów:

$$Ay \geq b$$

Zagadnienie programowania liniowego liczb całkowitych (ILP) jest definiowane jako problem szukania

$$\min \sum_{i=1}^{n} y_i$$
 przy ograniczeniu:  $\mathbf{A}\mathbf{y} \geq \mathbf{b}$ .

## Outline



- 1 Metody wnioskowań Boolowskich w szukaniu reduktów
  - Algebry Boolo
  - Funkcje Boolowskie i wnioskowanie Boolowskie
- 2 Szukanie reduktu metodą wnioskowania Boolowskiego
  - Heurystyka Johnsona
  - Inne heurystyki
- 3 Systemy decyzyjne oparte o zbiory przybliżone
  - Reguły decyzyjne
  - Regułowe systemy decyzyjne
  - Szukanie minimalnych reguł decyzyjnych





Dla danego zbioru atrybutów A definiujemy język deskryptorów jako trójkę

$$\mathcal{L}(A) = (\mathbf{D}, \{\vee, \wedge, \neg\}, \mathbf{F})$$

gdzie

**D** jest zbiorem *deskryptorów* 

$$\mathbf{D} = \{(a = v) : a \in A \text{ and } v \in Val_a\};$$

- $\{\lor,\land,\lnot\}$  jest zbiorem standardowych operatorów logicznych;
- **F** jest zbiorem formuł logicznych zbudowanych na deskryptorach z **D**.
- Dla każdego zbioru atrybutów  $B\subseteq A$  oznaczamy:  $\mathbf{D}|_B=\{(a=v):a\in B \text{ and } v\in Val_a\}$ , czyli zbiór deskryptorów obciętych do B.
  - $\mathbf{F}|_{B}$  zbiór formuł zbudowanych na  $\mathbf{D}|_{B}$ .

## Semantyka w systemach informacyjnych

#### Semantyka

Niech  $\mathbb{S}=(U,A)$  będzie tablicą informacyjną. Każda formuła  $\phi\in\mathbf{F}$ , jest (semantycznie) skojarzona ze zbiorem  $[[\phi]]_{\mathbb{S}}$  zawierającym obiekty spełniające  $\phi$ .

Formalnie możemy indukcyjnie definiować semantykę jak następująco:

$$[[(a = v)]]_{S} = \{x \in U : a(x) = v\}$$
 (1)

$$[[\phi_1 \lor \phi_2]]_{\mathbb{S}} = [[\phi_1]]_{\mathbb{S}} \cup [[\phi_2]]_{\mathbb{S}}$$
 (2)

$$[[\phi_1 \land \phi_2]]_{\mathbb{S}} = [[\phi_1]]_{\mathbb{S}} \cap [[\phi_2]]_{\mathbb{S}}$$
(3)

$$[[\neg \phi]]_{\mathbb{S}} = U \setminus [[\phi]]_{\mathbb{S}} \tag{4}$$

Każda formuła  $\phi$  może być charakteryzowana przez:

- $length(\phi) = liczba deskryptorów w \phi;$
- $\blacksquare support(\phi) = |[[\phi]]_{\mathbb{S}}| =$ liczba obiektów spełniających formułę



#### Definicja reguł decyzyjnych

Niech  $\mathbb{S}=\{U,A\cup\{dec\}\}$  będzie tablicą decyzyjną. Regułą decyzyjną dla  $\mathbb{S}$  nazywamy formuły postaci:

$$\phi \Rightarrow \delta$$

gdzie  $\phi \in \mathbf{F}_A$  i  $\delta \in \mathbf{F}_{dec}$ .

Formułę  $\phi$  nazywamy *poprzednikiem* (lub założeniem) reguły  ${\bf r}$ , a  $\delta$  nazywamy *następnikiem* (lub tezą) reguły  ${\bf r}$ .

Oznaczamy poprzednik i następnik reguły  ${\bf r}$  przez  $prev({\bf r})$  oraz  $cons({\bf r})$ .

#### Reguly atomowa:

Są to reguły postaci:

$$\mathbf{r} \equiv (a_{i_1} = v_1) \wedge \dots \wedge (a_{i_m} = v_m) \Rightarrow (dec = k)$$
 (5)



Każda reguła decyzyjna  ${f r}$  postaci (5) może być charakteryzowana następującymi cechami:

```
\begin{array}{l} length(\mathbf{r}) = \text{liczba deskryptorów występujących w zatożeniu reguły } \mathbf{r} \\ [\mathbf{r}] = \text{nośnik reguły } \mathbf{r}, \text{ czyli zbiór obiektów z } U \\ \text{spełniających założenie reguły } \mathbf{r} \\ support(\mathbf{r}) = \text{liczba obiektów z } U \text{ spełniających założenie reguły} \mathbf{r}; support(\mathbf{r}) = card([\mathbf{r}]) \\ confidence(\mathbf{r}) = \text{wiarygodność reguły } \mathbf{r}; confidence(\mathbf{r}) = \frac{|[\mathbf{r}] \cap DEC_k|}{|[\mathbf{r}]|} \end{array}
```

Mówimy, że reguła **r** jest *niesprzeczna* z A jeśli

$$confidence(\mathbf{r}) = 1$$



#### Minimalne niesprzeczne reguły:

Niech  $\mathbb{S}=(U,A\cup\{dec\})$  będzie daną tablicą decyzyjną. Niesprzeczną regułę

$$(a_{i_1} = v_1) \wedge ... \wedge (a_{i_m} = v_m) \Rightarrow (dec = k)$$

nazywamy *minimalną niesprzeczną regułą decyzyjną* jeśli usunięcie któregokolwiek z deskryptorów spowoduje, że reguła przestaje być niesprzezcna z S.





#### Klasyfikatory regułowe dzialają w trzech fazach:

- Faza treningu: Generuje pewien zbiór reguł  $RULES(\mathbb{A})$  z danej tablicy decyzyjnej  $\mathbb{A}$ .
- Faza selekcji reguł: Szuka w  $RULES(\mathbb{A})$  tych reguł, które są wspierane przez obiekt x. Oznaczamy zbiór tych reguł przez  $MatchRules(\mathbb{A},x)$ .
- Faza klasyfikacji: wyznacza klasędecyzyjną dla x za pomocą reguł z  $MatchRules(\mathbb{A},x)$  według następującego schematu:
  - Jeśli  $MatchRules(\mathbb{A},x)$  jest pusty: odpowiedź dla x jest "NIEWIEM", tzn. nie mamy podstaw, aby klasyfikować obiekt x do którejkolwiek z klas;
  - Jeśli  $MatchRules(\mathbb{A},x)$  zawiera tylko obiekty z k-tej klasy: wówczas dec(x)=k;
  - Jeśli  $MatchRules(\mathbb{A},x)$  zawiera reguły dla różnych klas decyzyjnych: wówczas decyzja dla x określimy za pomocą pewnego, ustalonego schematu głosowania między regułami z  $MatchRules(\mathbb{A},x)$ .





- Każda reguła powstaje poprzez skracanie opisu jakiegoś obiektu.
- Redukty lokalne
- Te same heurystyki dla reduktów decyzyjnych.



# Przykład tablicy decyzyjnej

| Hurt. | Jakość obsługi | Jakość towaru | Obok autostrady? | Centrum? | decyzja |
|-------|----------------|---------------|------------------|----------|---------|
| ID    | $a_1$          | $a_2$         | $a_3$            | $a_4$    | dec     |
| 1     | dobra          | dobra         | nie              | nie      | strata  |
| 2     | dobra          | dobra         | nie              | tak      | strata  |
| 3     | bdb            | dobra         | nie              | nie      | zysk    |
| 4     | slaba          | super         | nie              | nie      | zysk    |
| 5     | slaba          | niska         | tak              | nie      | zysk    |
| 6     | slaba          | niska         | tak              | tak      | strata  |
| 7     | bdb            | niska         | tak              | tak      | zysk    |
| 8     | dobra          | super         | nie              | nie      | strata  |
| 9     | dobra          | niska         | tak              | nie      | zysk    |
| 10    | slaba          | super         | tak              | nie      | zysk    |
| 11    | dobra          | super         | tak              | tak      | zysk    |
| 12    | bdb            | super         | nie              | tak      | zysk    |
| 13    | bdb            | dobra         | tak              | nie      | ?       |
| 14    | slaba          | super         | nie              | tak      | ?       |



| M  | 1                    | 2                    | 6                    | 8                    |
|----|----------------------|----------------------|----------------------|----------------------|
| 3  | $a_1$                | $a_1, a_4$           | $a_1, a_2, a_3, a_4$ | $a_1,a_2$            |
| 4  | $a_1, a_2$           | $a_1, a_2, a_4$      | $a_2, a_3, a_4$      | $a_1$                |
| 5  | $a_1, a_2, a_3$      | $a_1, a_2, a_3, a_4$ | $a_4$                | $a_1, a_2, a_3$      |
| 7  | $a_1, a_2, a_3, a_4$ | $a_1, a_2, a_3$      | $a_1$                | $a_1, a_2, a_3, a_4$ |
| 9  | $a_2, a_3$           | $a_2, a_3, a_4$      | $a_1, a_4$           | $a_2, a_3$           |
| 10 | $a_1, a_2, a_3$      | $a_1, a_2, a_3, a_4$ | $a_2, a_4$           | $a_1, a_3$           |
| 11 | $a_2, a_3, a_4$      | $a_2, a_3$           | $a_1, a_2$           | $a_3, a_4$           |
| 12 | $a_1, a_2, a_4$      | $a_1, a_2$           | $a_1, a_2, a_3$      | $a_1, a_4$           |

$$f_{u_3} = (\alpha_1)(\alpha_1 \vee \alpha_4)(\alpha_1 \vee \alpha_2 \vee \alpha_3 \vee \alpha_4)(\alpha_1 \vee \alpha_2) = \alpha_1$$

Reguly:

$$(a_1 = \mathsf{bdb}) \implies dec = \mathsf{zysk}$$



| $\mathbb{M}$ | 1                    | 2                    | 6                    | 8                 |
|--------------|----------------------|----------------------|----------------------|-------------------|
| 3            | $a_1$                | $a_1, a_4$           | $a_1, a_2, a_3, a_4$ | $a_1, a_2$        |
| 4            | $a_1, a_2$           | $a_1, a_2, a_4$      | $a_2, a_3, a_4$      | $a_1$             |
| 5            | $a_1, a_2, a_3$      | $a_1, a_2, a_3, a_4$ | $a_4$                | $a_1,a_2,a_3$     |
| 7            | $a_1, a_2, a_3, a_4$ | $a_1, a_2, a_3$      | $a_1$                | $a_1,a_2,a_3,a_4$ |
| 9            | $a_2, a_3$           | $a_2, a_3, a_4$      | $a_1, a_4$           | $a_2,a_3$         |
| 10           | $a_1, a_2, a_3$      | $a_1, a_2, a_3, a_4$ | $a_2, a_4$           | $a_1, a_3$        |
| 11           | $a_2, a_3, a_4$      | $a_2, a_3$           | $a_1, a_2$           | $a_3, a_4$        |
| 12           | $a_1, a_2, a_4$      | $a_1, a_2$           | $a_1, a_2, a_3$      | $a_1, a_4$        |

$$f_{u_8} = (\alpha_1 \vee \alpha_2)(\alpha_1)(\alpha_1 \vee \alpha_2 \vee \alpha_3)(\alpha_1 \vee \alpha_2 \vee \alpha_3 \vee \alpha_4)(\alpha_2 \vee \alpha_3)$$
$$(\alpha_1 \vee \alpha_3)(\alpha_3 \vee \alpha_4)(\alpha_1 \vee \alpha_4)$$
$$= \alpha_1(\alpha_2 \vee \alpha_3)(\alpha_3 \vee \alpha_4) = \alpha_1\alpha_3 \vee \alpha_1\alpha_2\alpha_4$$

#### Reguly:

- $a_1 = dobra \wedge (a_3 = nie) \implies dec = strata$
- $(a_1 = \mathsf{dobra}) \land (a_2 = \mathsf{super}) \land (a_4 = nie) \implies dec = \mathsf{strata}$