Fernando Lozano

Universidad de los Andes

9 de noviembre de 2022

1/36

• Construir un clasificador combinando múltiples clasificadores.

- Construir un clasificador combinando múltiples clasificadores.
- Clasificador combinado:

- Construir un clasificador combinando múltiples clasificadores.
- Clasificador combinado:
 - ▶ Obtener clasificadores h_1, h_2, \ldots, h_T minimizando error en diferentes versiones de los datos.

- Construir un clasificador combinando múltiples clasificadores.
- Clasificador combinado:
 - ▶ Obtener clasificadores h_1, h_2, \ldots, h_T minimizando error en diferentes versiones de los datos.
 - ► Formar combinación:

$$f(\mathbf{x}) = \sum_{i=1}^{T} \alpha_i h_i(\mathbf{x})$$

- Construir un clasificador combinando múltiples clasificadores.
- Clasificador combinado:
 - ▶ Obtener clasificadores h_1, h_2, \ldots, h_T minimizando error en diferentes versiones de los datos.
 - ► Formar combinación:

$$f(\mathbf{x}) = \sum_{i=1}^{T} \alpha_i h_i(\mathbf{x})$$

ightharpoonup Clasificar con el signo de f

$$h(\mathbf{x}) = \operatorname{signo}(f(\mathbf{x})) = \begin{cases} 1 & \text{si } f(\mathbf{x}) \ge 0 \\ 0 & \text{si } f(\mathbf{x}) < 0 \end{cases}$$

- Construir un clasificador combinando múltiples clasificadores.
- Clasificador combinado:
 - ▶ Obtener clasificadores h_1, h_2, \ldots, h_T minimizando error en diferentes versiones de los datos.
 - ► Formar combinación:

$$f(\mathbf{x}) = \sum_{i=1}^{T} \alpha_i h_i(\mathbf{x})$$

ightharpoonup Clasificar con el signo de f

$$h(\mathbf{x}) = \operatorname{signo}(f(\mathbf{x})) = \begin{cases} 1 & \text{si } f(\mathbf{x}) \ge 0 \\ 0 & \text{si } f(\mathbf{x}) < 0 \end{cases}$$

• Muy efectivos en la práctica.

• Bootstrapping (Efron, 1979):

- Bootstrapping (Efron, 1979):
 - ► Técnica para mejorar precisión de parámetros/estimativos.

- Bootstrapping (Efron, 1979):
 - ▶ Técnica para mejorar precisión de parámetros/estimativos.
 - Muestreo con remplazo.

- Bootstrapping (Efron, 1979):
 - ► Técnica para mejorar precisión de parámetros/estimativos.
 - ▶ Muestreo con remplazo.
 - ► Muestra~ población.

- Bootstrapping (Efron, 1979):
 - ► Técnica para mejorar precisión de parámetros/estimativos.
 - ▶ Muestreo con remplazo.
 - ► Muestra~ población.
- Clasificadores h_1, h_2, \ldots entrenados en muestras bootstrap de los datos de entrenamiento.

- Bootstrapping (Efron, 1979):
 - ► Técnica para mejorar precisión de parámetros/estimativos.
 - Muestreo con remplazo.
 - ► Muestra~ población.
- Clasificadores h_1, h_2, \ldots entrenados en muestras bootstrap de los datos de entrenamiento.
- Combinación por votación.

Algorithm 1 Bagging

for t = 1 to T do

Obtenga \mathcal{S}_t de \mathcal{S} muestreando con reemplazo.

$$h_t \leftarrow A(\mathcal{S}_t)$$

end for

Retorne $f(x) = \text{votacion}\{h_t(x)\}$

ullet Aprendibilidad PAC: encontrar h que satisfaga:

$$\mathbf{P}\left(e(h) \geq \epsilon\right) \leq \delta$$

para cualquier distribución de los datos.

 \bullet Aprendibilidad PAC: encontrar h que satisfaga:

$$\mathbf{P}\left(e(h) \ge \epsilon\right) \le \delta$$

para cualquier distribución de los datos.

 \bullet Suponga que podemos encontrar h_d , que satisface la condición de aprendibilidad débil

$$\mathbf{P}\left(e(h_d) \ge \epsilon_0\right) \le \delta_0$$

para cualquier distribución de los datos.

ullet Aprendibilidad PAC: encontrar h que satisfaga:

$$\mathbf{P}\left(e(h) \ge \epsilon\right) \le \delta$$

para cualquier distribución de los datos.

 \bullet Suponga que podemos encontrar h_d , que satisface la condición de aprendibilidad débil

$$\mathbf{P}\left(e(h_d) \ge \epsilon_0\right) \le \delta_0$$

para cualquier distribución de los datos.

• Es posible obtener aprendibilidad fuerte a partir de aprendibilidad débil?

ullet Aprendibilidad PAC: encontrar h que satisfaga:

$$\mathbf{P}\left(e(h) \ge \epsilon\right) \le \delta$$

para cualquier distribución de los datos.

 \bullet Suponga que podemos encontrar h_d , que satisface la condición de aprendibilidad débil

$$\mathbf{P}\left(e(h_d) \ge \epsilon_0\right) \le \delta_0$$

para cualquier distribución de los datos.

- Es posible obtener aprendibilidad fuerte a partir de aprendibilidad débil?
- Si! (The strength of weak learnability, Schapire, 1996).

• Suponga que existe un algoritmo A, que toma datos $\{x_i, y_i\} \sim \mathcal{D}$, y retorna h, con $e(h) \leq \beta$, para cualquier \mathcal{D} .

- Suponga que existe un algoritmo A, que toma datos $\{x_i, y_i\} \sim \mathcal{D}$, y retorna h, con $e(h) \leq \beta$, para cualquier \mathcal{D} .
- Podemos pedir datos (x_i, y_i) a un oráculo $EX(c, \mathcal{D})$.

- Suponga que existe un algoritmo A, que toma datos $\{x_i, y_i\} \sim \mathcal{D}$, y retorna h, con $e(h) \leq \beta$, para cualquier \mathcal{D} .
- Podemos pedir datos (x_i, y_i) a un oráculo $EX(c, \mathcal{D})$.
- Algoritmo modesto:

- Suponga que existe un algoritmo A, que toma datos $\{x_i, y_i\} \sim \mathcal{D}$, y retorna h, con $e(h) \leq \beta$, para cualquier \mathcal{D} .
- Podemos pedir datos (x_i, y_i) a un oráculo $EX(c, \mathcal{D})$.
- Algoritmo modesto:

- Suponga que existe un algoritmo A, que toma datos $\{x_i, y_i\} \sim \mathcal{D}$, y retorna h, con $e(h) \leq \beta$, para cualquier \mathcal{D} .
- Podemos pedir datos (x_i, y_i) a un oráculo $EX(c, \mathcal{D})$.
- Algoritmo modesto:

 - ② $h_2 \leftarrow A(\mathcal{D}_2)$ donde \mathcal{D}_2 es tal que $\mathbf{P}_{\mathcal{D}_2}[h_1(x) \neq c(x)] = \frac{1}{2}$

- Suponga que existe un algoritmo A, que toma datos $\{x_i, y_i\} \sim \mathcal{D}$, y retorna h, con $e(h) \leq \beta$, para cualquier \mathcal{D} .
- Podemos pedir datos (x_i, y_i) a un oráculo $EX(c, \mathcal{D})$.
- Algoritmo modesto:

 - \bullet $h_2 \leftarrow A(\mathcal{D}_2)$ donde \mathcal{D}_2 es tal que $\mathbf{P}_{\mathcal{D}_2}[h_1(x) \neq c(x)] = \frac{1}{2}$
 - \bullet $h_3 \leftarrow A(\mathcal{D}_3)$ donde \mathcal{D}_3 es tal que $\mathbf{P}_{\mathcal{D}_3} [h_1(x) \neq h_2(x)] = 1$

- Suponga que existe un algoritmo A, que toma datos $\{x_i, y_i\} \sim \mathcal{D}$, y retorna h, con $e(h) \leq \beta$, para cualquier \mathcal{D} .
- Podemos pedir datos (x_i, y_i) a un oráculo $EX(c, \mathcal{D})$.
- Algoritmo modesto:

 - \bullet $h_2 \leftarrow A(\mathcal{D}_2)$ donde \mathcal{D}_2 es tal que $\mathbf{P}_{\mathcal{D}_2}[h_1(x) \neq c(x)] = \frac{1}{2}$
 - **③** $h_3 \leftarrow A(\mathcal{D}_3)$ donde \mathcal{D}_3 es tal que $\mathbf{P}_{\mathcal{D}_3}[h_1(x) \neq h_2(x)] = 1$

Retorna $h(x) = \text{mayoría}(h_1(x), h_2(x), h_3(x))$

- Suponga que existe un algoritmo A, que toma datos $\{x_i, y_i\} \sim \mathcal{D}$, y retorna h, con $e(h) \leq \beta$, para cualquier \mathcal{D} .
- Podemos pedir datos (x_i, y_i) a un oráculo $EX(c, \mathcal{D})$.
- Algoritmo modesto:

 - ② $h_2 \leftarrow A(\mathcal{D}_2)$ donde \mathcal{D}_2 es tal que $\mathbf{P}_{\mathcal{D}_2}[h_1(x) \neq c(x)] = \frac{1}{2}$
 - **③** $h_3 \leftarrow A(\mathcal{D}_3)$ donde \mathcal{D}_3 es tal que $\mathbf{P}_{\mathcal{D}_3}[h_1(x) \neq h_2(x)] = 1$

Retorna $h(x) = \text{mayoria}(h_1(x), h_2(x), h_3(x))$

• Se puede mostrar

$$\mathbf{P}_{\mathcal{D}} [h_1(x) \neq c(x)] \leq \beta
\mathbf{P}_{\mathcal{D}_2} [h_2(x) \neq c(x)] \leq \beta
\mathbf{P}_{\mathcal{D}_3} [h_3(x) \neq c(x)] \leq \beta$$

$$\Rightarrow \mathbf{P}_{\mathcal{D}} [h(x) \neq c(x)] \leq 3\beta^2 - 2\beta^3$$

• Asumimos que A retorna h con $e(h) \leq \beta < \frac{1}{2}$, para cualquier distribución \mathcal{D} .

8/36

- Asumimos que A retorna h con $e(h) \leq \beta < \frac{1}{2}$, para cualquier distribución \mathcal{D} .
- Queremos tener $e(h) \leq \varepsilon$

8/36

- Asumimos que A retorna h con $e(h) \leq \beta < \frac{1}{2}$, para cualquier distribución \mathcal{D} .
- Queremos tener $e(h) \le \varepsilon$
- \bullet Si algoritmo débil garantiza $e(h) \leq g^{-1}(\varepsilon) > \varepsilon$

- Asumimos que A retorna h con $e(h) \leq \beta < \frac{1}{2}$, para cualquier distribución \mathcal{D} .
- Queremos tener $e(h) \le \varepsilon$
- Si algoritmo débil garantiza $e(h) \leq g^{-1}(\varepsilon) > \varepsilon \Rightarrow$ aplicamos algoritmo modesto.

- Asumimos que A retorna h con $e(h) \leq \beta < \frac{1}{2}$, para cualquier distribución \mathcal{D} .
- Queremos tener $e(h) \leq \varepsilon$
- Si algoritmo débil garantiza $e(h) \leq g^{-1}(\varepsilon) > \varepsilon \Rightarrow$ aplicamos algoritmo modesto.
- Si no, podemos aplicar algoritmo modesto recursivamente.

Algorithm 2 Algoritmo BoostingFuerte($\varepsilon, \mathcal{D}'$)

Algorithm 3 Algoritmo BoostingFuerte($\varepsilon, \mathcal{D}'$)

if $\varepsilon \geq \varepsilon_{WL}$ then

Algorithm 4 Algoritmo BoostingFuerte($\varepsilon, \mathcal{D}'$)

if $\varepsilon \geq \varepsilon_{WL}$ then

Retorne $AD(\varepsilon, \mathcal{D}')$

Algorithm 5 Algoritmo BoostingFuerte($\varepsilon, \mathcal{D}'$)

if $\varepsilon \geq \varepsilon_{WL}$ then Retorne $AD(\varepsilon, \mathcal{D}')$ end if

Algorithm 6 Algoritmo BoostingFuerte $(\varepsilon, \mathcal{D}')$

if
$$\varepsilon \geq \varepsilon_{WL}$$
 then
Retorne $AD(\varepsilon, \mathcal{D}')$
end if
 $\beta \leftarrow g^{-1}(\varepsilon)$

Algorithm 7 Algoritmo BoostingFuerte($\varepsilon, \mathcal{D}'$)

if
$$\varepsilon \geq \varepsilon_{WL}$$
 then
Retorne $AD(\varepsilon, \mathcal{D}')$
end if
 $\beta \leftarrow g^{-1}(\varepsilon)$
 $h_1 \leftarrow \text{BoostingFuerte}(\beta, \mathcal{D}'_1)$

Algorithm 8 Algoritmo BoostingFuerte($\varepsilon, \mathcal{D}'$)

if
$$\varepsilon \geq \varepsilon_{WL}$$
 then
Retorne $AD(\varepsilon, \mathcal{D}')$
end if
 $\beta \leftarrow g^{-1}(\varepsilon)$
 $h_1 \leftarrow \text{BoostingFuerte}(\beta, \mathcal{D}'_1)$
 $h_2 \leftarrow \text{BoostingFuerte}(\beta, \mathcal{D}'_2)$

Algorithm 9 Algoritmo BoostingFuerte($\varepsilon, \mathcal{D}'$)

Retorne
$$AD(\varepsilon, \mathcal{D}')$$

end if
 $\beta \leftarrow g^{-1}(\varepsilon)$
 $h_1 \leftarrow \text{BoostingFuerte}(\beta, \mathcal{D}'_1)$
 $h_2 \leftarrow \text{BoostingFuerte}(\beta, \mathcal{D}'_2)$
 $h_3 \leftarrow \text{BoostingFuerte}(\beta, \mathcal{D}'_3)$

if $\varepsilon > \varepsilon_{WL}$ then

Algorithm 10 Algoritmo BoostingFuerte($\varepsilon, \mathcal{D}'$)

if
$$\varepsilon \geq \varepsilon_{WL}$$
 then
Retorne $AD(\varepsilon, \mathcal{D}')$
end if
 $\beta \leftarrow g^{-1}(\varepsilon)$
 $h_1 \leftarrow \text{BoostingFuerte}(\beta, \mathcal{D}'_1)$
 $h_2 \leftarrow \text{BoostingFuerte}(\beta, \mathcal{D}'_2)$
 $h_3 \leftarrow \text{BoostingFuerte}(\beta, \mathcal{D}'_3)$
 $h \leftarrow \text{mayoria}(h_1, h_2, h_3)$

Algorithm 11 Algoritmo BoostingFuerte($\varepsilon, \mathcal{D}'$)

if
$$\varepsilon \geq \varepsilon_{WL}$$
 then
Retorne $AD(\varepsilon, \mathcal{D}')$
end if
 $\beta \leftarrow g^{-1}(\varepsilon)$
 $h_1 \leftarrow \text{BoostingFuerte}(\beta, \mathcal{D}'_1)$
 $h_2 \leftarrow \text{BoostingFuerte}(\beta, \mathcal{D}'_2)$
 $h_3 \leftarrow \text{BoostingFuerte}(\beta, \mathcal{D}'_3)$
 $h \leftarrow \text{mayoria}(h_1, h_2, h_3)$
Retorne h

• Eficiencia?

- Eficiencia?
 - ▶ Profundidad del árbol de recursión?

- Eficiencia?
 - ▶ Profundidad del árbol de recursión?
 - ▶ Número de llamadas a $EX(c, \mathcal{D})$?

• Requierer oráculo.

- Requierer oráculo.
- Genera estructura no regular.

- Requierer oráculo.
- Genera estructura no regular.
- Requiere conocer garantía de error del algoritmo débil.

- Requierer oráculo.
- Genera estructura no regular.
- Requiere conocer garantía de error del algoritmo débil.
- No es práctico.

- Requierer oráculo.
- Genera estructura no regular.
- Requiere conocer garantía de error del algoritmo débil.
- No es práctico.

• Datos $S = \{\mathbf{x}_i, y_i\}_{i=1}^n$, con $\mathbf{x}_i \in \mathcal{X}$ y $y_i \in \{-1, 1\}$

- Datos $S = \{\mathbf{x}_i, y_i\}_{i=1}^n$, con $\mathbf{x}_i \in \mathcal{X}$ y $y_i \in \{-1, 1\}$
- Asociamos a los datos un vector de pesos $D = \{D_1, D_2, \dots, D_n\}.$

- Datos $S = \{\mathbf{x}_i, y_i\}_{i=1}^n$, con $\mathbf{x}_i \in \mathcal{X}$ y $y_i \in \{-1, 1\}$
- Asociamos a los datos un vector de pesos $D = \{D_1, D_2, \dots, D_n\}$.
- $\{D_1, D_2, \dots, D_n\}$ es una distribución, es decir

$$D_i \ge 0 \quad \text{y} \quad \sum_{i=1}^n D_i = 1$$

- Datos $S = \{\mathbf{x}_i, y_i\}_{i=1}^n$, con $\mathbf{x}_i \in \mathcal{X}$ y $y_i \in \{-1, 1\}$
- Asociamos a los datos un vector de pesos $D = \{D_1, D_2, \dots, D_n\}.$
- $\{D_1, D_2, \dots, D_n\}$ es una distribución, es decir

$$D_i \ge 0 \quad \text{y} \quad \sum_{i=1}^n D_i = 1$$

• Clase de hipótesis base: $h \in \mathcal{H}$, y $h: \mathcal{X} \longrightarrow \{-1, 1\}$

- Datos $S = \{\mathbf{x}_i, y_i\}_{i=1}^n$, con $\mathbf{x}_i \in \mathcal{X}$ y $y_i \in \{-1, 1\}$
- Asociamos a los datos un vector de pesos $D = \{D_1, D_2, \dots, D_n\}.$
- $\{D_1, D_2, \dots, D_n\}$ es una distribución, es decir

$$D_i \ge 0 \quad \text{y} \quad \sum_{i=1}^n D_i = 1$$

- Clase de hipótesis base: $h \in \mathcal{H}$, y $h : \mathcal{X} \longrightarrow \{-1, 1\}$
- \bullet Error pesado de una hipótesis h de acuerdo a D:

$$e_D(h) = \sum_{i=1}^n D_i I_{\{y_i f(\mathbf{x}_i) \le 0\}} = \sum_{i: h(\mathbf{x}_i) \ne y_i} D_i$$

$$e_D(h) < \frac{1}{2}$$

$$e_D(h) < \frac{1}{2}$$

• AdaBoost procede en una serie de rondas $1, 2, \ldots$, en las que obtiene hipótesis h_1, h_2, \ldots

$$e_D(h) < \frac{1}{2}$$

- AdaBoost procede en una serie de rondas $1, 2, \ldots$, en las que obtiene hipótesis h_1, h_2, \ldots
- En la primera ronda se llama A con la distribución uniforme $D_i = \frac{1}{n}, i = 1, 2, \dots, n$.

$$e_D(h) < \frac{1}{2}$$

 h_1,h_2,\ldots

• AdaBoost procede en una serie de rondas 1, 2, ..., en las que obtiene hipótesis

- En la primera ronda se llama A con la distribución uniforme $D_i = \frac{1}{n}, i = 1, 2, \dots, n$.
- \bullet En la siguiente ronda se modifica D:

$$e_D(h) < \frac{1}{2}$$

 h_1,h_2,\ldots

• AdaBoost procede en una serie de rondas 1, 2, ..., en las que obtiene hipótesis

- En la primera ronda se llama A con la distribución uniforme $D_i = \frac{1}{n}, i = 1, 2, \dots, n$.
- \bullet En la siguiente ronda se modifica D:

$$D_i \begin{cases} \text{aumenta} & \text{si } h_1(\mathbf{x}) \neq y_i, \\ \text{disminuye} & \text{si } h_1(\mathbf{x}) = y_i. \end{cases}$$

$$e_D(h) < \frac{1}{2}$$

 h_1,h_2,\ldots

• AdaBoost procede en una serie de rondas 1, 2, ..., en las que obtiene hipótesis

- En la primera ronda se llama A con la distribución uniforme $D_i = \frac{1}{n}, i = 1, 2, \dots, n$.
- \bullet En la siguiente ronda se modifica D:

$$D_i \begin{cases} \text{aumenta} & \text{si } h_1(\mathbf{x}) \neq y_i, \\ \text{disminuye} & \text{si } h_1(\mathbf{x}) = y_i. \end{cases}$$

• Se itera este procedimiento, modificando los pesos en cada ronda de acuerdo a la hipótesis de la ronda anterior.

• Construir $f(\mathbf{x})$ para minimizar

$$e(f) = \frac{1}{n} \sum_{i=1}^{n} e^{-y_i f(\mathbf{x}_i)}$$

• Construir $f(\mathbf{x})$ para minimizar

$$e(f) = \frac{1}{n} \sum_{i=1}^{n} e^{-y_i f(\mathbf{x}_i)} \ge \frac{1}{n} \sum_{i=1}^{n} I_{\{y_i f(\mathbf{x}_i) \le 0\}}$$

• Construir $f(\mathbf{x})$ para minimizar

$$e(f) = \frac{1}{n} \sum_{i=1}^{n} e^{-y_i f(\mathbf{x}_i)} \ge \frac{1}{n} \sum_{i=1}^{n} I_{\{y_i f(\mathbf{x}_i) \le 0\}}$$

• Construir $f(\mathbf{x})$ para minimizar

$$e(f) = \frac{1}{n} \sum_{i=1}^{n} e^{-y_i f(\mathbf{x}_i)} \ge \frac{1}{n} \sum_{i=1}^{n} I_{\{y_i f(\mathbf{x}_i) \le 0\}}$$

• Minimizar función de costo de los márgenes en los datos.

• Suponga que conocemos α_j, h_j para $j = 1, 2, \dots, k - 1$, y queremos hallar α_k y h_k . Denote $f_k = \sum_{j=1}^k \alpha_j h_j$.

• Suponga que conocemos α_j, h_j para $j = 1, 2, \dots, k - 1$, y queremos hallar α_k y h_k . Denote $f_k = \sum_{j=1}^k \alpha_j h_j$.

• Suponga que conocemos α_j, h_j para $j = 1, 2, \dots, k - 1$, y queremos hallar α_k y h_k . Denote $f_k = \sum_{j=1}^k \alpha_j h_j$.

$$e(f_k) = \frac{1}{n} \sum_{i=1}^{n} e^{-y_i f(\mathbf{x}_i)}$$

• Suponga que conocemos α_j, h_j para $j = 1, 2, \dots, k-1$, y queremos hallar α_k y h_k . Denote $f_k = \sum_{j=1}^k \alpha_j h_j$.

$$e(f_k) = \frac{1}{n} \sum_{i=1}^n e^{-y_i f(\mathbf{x}_i)}$$
$$= \frac{1}{n} \sum_{i=1}^n e^{-y_i f_{k-1}(\mathbf{x}_i) - y_i \alpha_k h_k(\mathbf{x}_i)}$$

• Suponga que conocemos α_j, h_j para $j = 1, 2, \dots, k-1$, y queremos hallar α_k y h_k . Denote $f_k = \sum_{j=1}^k \alpha_j h_j$.

$$e(f_k) = \frac{1}{n} \sum_{i=1}^n e^{-y_i f(\mathbf{x}_i)}$$

$$= \frac{1}{n} \sum_{i=1}^n e^{-y_i f_{k-1}(\mathbf{x}_i) - y_i \alpha_k h_k(\mathbf{x}_i)}$$

$$= \frac{1}{n} \sum_{i=1}^n e^{-y_i f_{k-1}(\mathbf{x}_i)} e^{-y_i \alpha_k h_k(\mathbf{x}_i)}$$

• Suponga que conocemos α_j, h_j para $j = 1, 2, \dots, k-1$, y queremos hallar α_k y h_k . Denote $f_k = \sum_{j=1}^k \alpha_j h_j$.

$$e(f_k) = \frac{1}{n} \sum_{i=1}^n e^{-y_i f(\mathbf{x}_i)}$$

$$= \frac{1}{n} \sum_{i=1}^n e^{-y_i f_{k-1}(\mathbf{x}_i) - y_i \alpha_k h_k(\mathbf{x}_i)}$$

$$= \frac{1}{n} \sum_{i=1}^n e^{-y_i f_{k-1}(\mathbf{x}_i)} e^{-y_i \alpha_k h_k(\mathbf{x}_i)}$$

$$= \frac{1}{n} \left(\sum_{i=1}^n e^{-y_i f_{k-1}(\mathbf{x}_i)} \right) \sum_{i=1}^n \left(\frac{e^{-y_i f_{k-1}(\mathbf{x}_i)}}{\sum_{i=1}^n e^{-y_i f_{k-1}(\mathbf{x}_i)}} \right) e^{-y_i \alpha_k h_k(\mathbf{x}_i)}$$

• Suponga que conocemos α_j, h_j para $j = 1, 2, \dots, k-1$, y queremos hallar α_k y h_k . Denote $f_k = \sum_{i=1}^k \alpha_i h_i$.

$$e(f_k) = \frac{1}{n} \sum_{i=1}^n e^{-y_i f(\mathbf{x}_i)}$$

$$= \frac{1}{n} \sum_{i=1}^n e^{-y_i f_{k-1}(\mathbf{x}_i) - y_i \alpha_k h_k(\mathbf{x}_i)}$$

$$= \frac{1}{n} \sum_{i=1}^n e^{-y_i f_{k-1}(\mathbf{x}_i)} e^{-y_i \alpha_k h_k(\mathbf{x}_i)}$$

$$= \frac{1}{n} \left(\sum_{i=1}^n e^{-y_i f_{k-1}(\mathbf{x}_i)} \right) \sum_{i=1}^n \left(\frac{e^{-y_i f_{k-1}(\mathbf{x}_i)}}{\sum_{i=1}^n e^{-y_i f_{k-1}(\mathbf{x}_i)}} \right) e^{-y_i \alpha_k h_k(\mathbf{x}_i)}$$

$$= \frac{1}{n} \left(\sum_{i=1}^n e^{-y_i f_{k-1}(\mathbf{x}_i)} \right) \sum_{i=1}^n D_i e^{-y_i \alpha_k h_k(\mathbf{x}_i)}$$

$$\sum_{i=1}^{n} D_i e^{-y_i \alpha h(\mathbf{x}_i)}$$

$$\sum_{i=1}^{n} D_i e^{-y_i \alpha h(\mathbf{x}_i)}$$

$$\sum_{i=1}^{n} D_i e^{-y_i \alpha h(\mathbf{x}_i)} = \sum_{i: y_i \neq h(\mathbf{x}_i)} D_i e^{\alpha} + \sum_{i: y_i = h(\mathbf{x}_i)} D_i e^{-\alpha}$$

$$\sum_{i=1}^{n} D_i e^{-y_i \alpha h(\mathbf{x}_i)} = \sum_{i:y_i \neq h(\mathbf{x}_i)} D_i e^{\alpha} + \sum_{i:y_i = h(\mathbf{x}_i)} D_i e^{-\alpha}$$
$$= e_D(h) e^{\alpha} + (1 - e_D(h)) e^{-\alpha}$$

$$\sum_{i=1}^{n} D_i e^{-y_i \alpha h(\mathbf{x}_i)} = \sum_{i: y_i \neq h(\mathbf{x}_i)} D_i e^{\alpha} + \sum_{i: y_i = h(\mathbf{x}_i)} D_i e^{-\alpha}$$
$$= e_D(h) e^{\alpha} + (1 - e_D(h)) e^{-\alpha}$$

• $h = \arg\min_{g \in \mathcal{H}} e_D(g)$

$$\sum_{i=1}^{n} D_i e^{-y_i \alpha h(\mathbf{x}_i)} = \sum_{i: y_i \neq h(\mathbf{x}_i)} D_i e^{\alpha} + \sum_{i: y_i = h(\mathbf{x}_i)} D_i e^{-\alpha}$$
$$= e_D(h) e^{\alpha} + (1 - e_D(h)) e^{-\alpha}$$

• $h = \arg\min_{g \in \mathcal{H}} e_D(g) \Longrightarrow \text{Aprendiz d\'ebil}$

$$\sum_{i=1}^{n} D_i e^{-y_i \alpha h(\mathbf{x}_i)} = \sum_{i: y_i \neq h(\mathbf{x}_i)} D_i e^{\alpha} + \sum_{i: y_i = h(\mathbf{x}_i)} D_i e^{-\alpha}$$
$$= e_D(h) e^{\alpha} + (1 - e_D(h)) e^{-\alpha}$$

- $h = \arg\min_{g \in \mathcal{H}} e_D(g) \Longrightarrow \text{Aprendiz débil}$
- Con h fija, encontramos α derivando e igualando a cero:

$$\alpha = \frac{1}{2} \ln \left(\frac{1 - e_D}{e_D} \right)$$

Algorithm 12 AdaBoost

 $D_1(i) = 1/n \text{ para } i = 1 \dots n.$

Algorithm 13 AdaBoost

$$D_1(i) = 1/n \text{ para } i = 1 \dots n.$$

for $t = 1 \text{ to } T \text{ do}$

Algorithm 14 AdaBoost

$$D_1(i) = 1/n$$
 para $i = 1 \dots n$.
for $t = 1$ to T do
 $h_t \leftarrow A(S, D_t)$.

Algorithm 15 AdaBoost

$$D_1(i) = 1/n \text{ para } i = 1 \dots n.$$

for $t = 1$ to T do
 $h_t \leftarrow A(S, D_t).$
 $\epsilon_t = \sum_{i:h_t(X_i) \neq y_i} D_t(i).$

Algorithm 16 AdaBoost

$$D_1(i) = 1/n \text{ para } i = 1 \dots n.$$
for $t = 1$ to T do
$$h_t \leftarrow A(S, D_t).$$

$$\epsilon_t = \sum_{i:h_t(X_i) \neq y_i} D_t(i).$$

$$\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)$$

Algorithm 17 AdaBoost

$$D_1(i) = 1/n \text{ para } i = 1 \dots n.$$

$$\mathbf{for } t = 1 \text{ to } T \text{ do}$$

$$h_t \leftarrow A(S, D_t).$$

$$\epsilon_t = \sum_{i:h_t(X_i) \neq y_i} D_t(i).$$

$$\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)$$
Actualice D: $D_{t+1}(i) = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t}$

Algorithm 18 AdaBoost

$$D_1(i) = 1/n \text{ para } i = 1 \dots n.$$
for $t = 1$ to T do
$$h_t \leftarrow A(S, D_t).$$

$$\epsilon_t = \sum_{i:h_t(X_i) \neq y_i} D_t(i).$$

$$\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)$$
Actualice D: $D_{t+1}(i) = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t}$
Donde Z_t normaliza D de manera que $\sum_{i=1}^t D_{t+1}(i) = 1$.

Algorithm 19 AdaBoost

$$\begin{split} D_1(i) &= 1/n \text{ para } i = 1 \dots n. \\ \text{for } t &= 1 \text{ to } T \text{ do} \\ h_t &\leftarrow A(S, D_t). \\ \epsilon_t &= \sum_{i:h_t(X_i) \neq y_i} D_t(i). \\ \alpha_t &= \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right) \\ \text{Actualice D: } D_{t+1}(i) &= \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t} \\ \text{Donde } Z_t \text{ normaliza } D \text{ de manera que } \sum_{i=1}^t D_{t+1}(i) = 1. \\ \text{end for} \end{split}$$

Algorithm 20 AdaBoost

$$\begin{aligned} D_1(i) &= 1/n \text{ para } i = 1 \dots n. \\ \text{for } t &= 1 \text{ to } T \text{ do} \\ h_t &\leftarrow A(S, D_t). \\ \epsilon_t &= \sum_{i:h_t(X_i) \neq y_i} D_t(i). \\ \alpha_t &= \frac{1}{2} \ln \left(\frac{1-\epsilon_t}{\epsilon_t} \right) \\ \text{Actualice D: } D_{t+1}(i) &= \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t} \\ \text{Donde } Z_t \text{ normaliza } D \text{ de manera que } \sum_{i=1}^t D_{t+1}(i) = 1. \\ \text{end for} \\ \text{Retorne } f(x) &= \sum_{i=1}^T \alpha_t h_t(x) \end{aligned}$$

Algorithm 21 AdaBoost

$$\begin{aligned} &D_1(i) = 1/n \text{ para } i = 1 \dots n. \\ &\textbf{for } t = 1 \text{ to } T \textbf{ do} \\ &h_t \leftarrow A(S, D_t). \\ &\epsilon_t = \sum_{i:h_t(X_i) \neq y_i} D_t(i). \\ &\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right) \\ &\text{Actualice D: } D_{t+1}(i) = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t} \\ &\text{Donde } Z_t \text{ normaliza } D \text{ de manera que } \sum_{i=1}^t D_{t+1}(i) = 1. \\ &\textbf{end for} \\ &\text{Retorne } f(x) = \sum_{i=1}^T \alpha_t h_t(x) \end{aligned}$$

$$D_{t+1}(i) = \begin{cases} \frac{D_t(i)\sqrt{\frac{\epsilon_t}{1-\epsilon_t}}}{Z_t} & \text{si } y_i = h_t(\mathbf{x}_i) ,\\ \frac{D_t(i)\sqrt{\frac{1-\epsilon_t}{\epsilon_t}}}{Z_t} & \text{si } y_i \neq h_t(\mathbf{x}_i) . \end{cases}$$

$$D_{t+1}(i) = \begin{cases} \frac{D_t(i)\sqrt{\frac{\epsilon_t}{1-\epsilon_t}}}{Z_t} & \text{si } y_i = h_t(\mathbf{x}_i) ,\\ \frac{D_t(i)\sqrt{\frac{1-\epsilon_t}{\epsilon_t}}}{Z_t} & \text{si } y_i \neq h_t(\mathbf{x}_i) . \end{cases}$$

• El error pesado de h_t con respecto a D_{t+1} :

$$D_{t+1}(i) = \begin{cases} \frac{D_t(i)\sqrt{\frac{\epsilon_t}{1-\epsilon_t}}}{Z_t} & \text{si } y_i = h_t(\mathbf{x}_i) ,\\ \frac{D_t(i)\sqrt{\frac{1-\epsilon_t}{\epsilon_t}}}{Z_t} & \text{si } y_i \neq h_t(\mathbf{x}_i) . \end{cases}$$

• El error pesado de h_t con respecto a D_{t+1} :

$$e_{D_{t+1}}(h) = \sum_{i: h(\mathbf{x}_i) \neq y_i} D_{t+1}(i)$$

$$D_{t+1}(i) = \begin{cases} \frac{D_t(i)\sqrt{\frac{\epsilon_t}{1-\epsilon_t}}}{Z_t} & \text{si } y_i = h_t(\mathbf{x}_i) ,\\ \frac{D_t(i)\sqrt{\frac{1-\epsilon_t}{\epsilon_t}}}{Z_t} & \text{si } y_i \neq h_t(\mathbf{x}_i) . \end{cases}$$

• El error pesado de h_t con respecto a D_{t+1} :

$$e_{D_{t+1}}(h) = \sum_{i:h(\mathbf{x}_i) \neq y_i} D_{t+1}(i)$$
$$= \sum_{i:h(\mathbf{x}_i) \neq y_i} \frac{D_t(i)\sqrt{\frac{1-\epsilon_t}{\epsilon_t}}}{Z_t}$$

$$D_{t+1}(i) = \begin{cases} \frac{D_t(i)\sqrt{\frac{\epsilon_t}{1-\epsilon_t}}}{Z_t} & \text{si } y_i = h_t(\mathbf{x}_i) ,\\ \frac{D_t(i)\sqrt{\frac{1-\epsilon_t}{\epsilon_t}}}{Z_t} & \text{si } y_i \neq h_t(\mathbf{x}_i) . \end{cases}$$

• El error pesado de h_t con respecto a D_{t+1} :

$$e_{D_{t+1}}(h) = \sum_{i: h(\mathbf{x}_i) \neq y_i} D_{t+1}(i)$$

$$= \sum_{i: h(\mathbf{x}_i) \neq y_i} \frac{D_t(i) \sqrt{\frac{1 - \epsilon_t}{\epsilon_t}}}{Z_t}$$

$$= \frac{\epsilon_t \sqrt{\frac{1 - \epsilon_t}{\epsilon_t}}}{\epsilon_t \sqrt{\frac{1 - \epsilon_t}{\epsilon_t}} + (1 - \epsilon_t) \sqrt{\frac{\epsilon_t}{1 - \epsilon_t}}}$$

$$D_{t+1}(i) = \begin{cases} \frac{D_t(i)\sqrt{\frac{\epsilon_t}{1-\epsilon_t}}}{Z_t} & \text{si } y_i = h_t(\mathbf{x}_i) ,\\ \frac{D_t(i)\sqrt{\frac{1-\epsilon_t}{\epsilon_t}}}{Z_t} & \text{si } y_i \neq h_t(\mathbf{x}_i) . \end{cases}$$

• El error pesado de h_t con respecto a D_{t+1} :

$$e_{D_{t+1}}(h) = \sum_{i:h(\mathbf{x}_i) \neq y_i} D_{t+1}(i)$$

$$= \sum_{i:h(\mathbf{x}_i) \neq y_i} \frac{D_t(i)\sqrt{\frac{1-\epsilon_t}{\epsilon_t}}}{Z_t}$$

$$= \frac{\epsilon_t\sqrt{\frac{1-\epsilon_t}{\epsilon_t}}}{\epsilon_t\sqrt{\frac{1-\epsilon_t}{\epsilon_t}} + (1-\epsilon_t)\sqrt{\frac{\epsilon_t}{1-\epsilon_t}}}$$

$$= \frac{\sqrt{\epsilon_t(1-\epsilon_t)}}{\sqrt{\epsilon_t(1-\epsilon_t)} + \sqrt{\epsilon_t(1-\epsilon_t)}}$$

$$D_{t+1}(i) = \begin{cases} \frac{D_t(i)\sqrt{\frac{\epsilon_t}{1-\epsilon_t}}}{Z_t} & \text{si } y_i = h_t(\mathbf{x}_i) ,\\ \frac{D_t(i)\sqrt{\frac{1-\epsilon_t}{\epsilon_t}}}{Z_t} & \text{si } y_i \neq h_t(\mathbf{x}_i) . \end{cases}$$

• El error pesado de h_t con respecto a D_{t+1} :

$$\begin{split} e_{D_{t+1}}(h) &= \sum_{i: h(\mathbf{x}_i) \neq y_i} D_{t+1}(i) \\ &= \sum_{i: h(\mathbf{x}_i) \neq y_i} \frac{D_t(i) \sqrt{\frac{1 - \epsilon_t}{\epsilon_t}}}{Z_t} \\ &= \frac{\epsilon_t \sqrt{\frac{1 - \epsilon_t}{\epsilon_t}}}{\epsilon_t \sqrt{\frac{1 - \epsilon_t}{\epsilon_t}} + (1 - \epsilon_t) \sqrt{\frac{\epsilon_t}{1 - \epsilon_t}}} \\ &= \frac{\sqrt{\epsilon_t (1 - \epsilon_t)}}{\sqrt{\epsilon_t (1 - \epsilon_t)} + \sqrt{\epsilon_t (1 - \epsilon_t)}} = \frac{1}{2} \\ \end{split}$$

$$\frac{1}{n} \sum_{i=1}^{n} I_{\{y_i f(\mathbf{x}_i) \le 0\}}$$

$$\frac{1}{n} \sum_{i=1}^{n} I_{\{y_i f(\mathbf{x}_i) \le 0\}} \le \frac{1}{n} \sum_{i=1}^{n} e^{-y_i f(\mathbf{x}_i)}$$

$$\frac{1}{n} \sum_{i=1}^{n} I_{\{y_i f(\mathbf{x}_i) \le 0\}} \le \frac{1}{n} \sum_{i=1}^{n} e^{-y_i f(\mathbf{x}_i)}$$

$$D_{t+1}(i) = \frac{e^{-\sum_{t} \alpha_t y_i h_t(\mathbf{x}_i)}}{n \prod_{t} Z_t}$$

$$\frac{1}{n} \sum_{i=1}^{n} I_{\{y_i f(\mathbf{x}_i) \le 0\}} \le \frac{1}{n} \sum_{i=1}^{n} e^{-y_i f(\mathbf{x}_i)}$$

$$D_{t+1}(i) = \frac{e^{-\sum_t \alpha_t y_i h_t(\mathbf{x}_i)}}{n \prod_t Z_t} = \frac{e^{-y_i f(\mathbf{x}_i)}}{n \prod_t Z_t}$$

$$\frac{1}{n} \sum_{i=1}^{n} I_{\{y_i f(\mathbf{x}_i) \le 0\}} \le \frac{1}{n} \sum_{i=1}^{n} e^{-y_i f(\mathbf{x}_i)}$$

У

$$D_{t+1}(i) = \frac{e^{-\sum_t \alpha_t y_i h_t(\mathbf{x}_i)}}{n \prod_t Z_t} = \frac{e^{-y_i f(\mathbf{x}_i)}}{n \prod_t Z_t}$$

luego:

$$\frac{1}{n}\sum_{i=1}^{n}I_{\{y_if(\mathbf{x}_i)\leq 0\}}\leq \prod_{t}Z_t$$

Error empírico

$$\frac{1}{n} \sum_{i=1}^{n} I_{\{y_i f(\mathbf{x}_i) \le 0\}} \le \frac{1}{n} \sum_{i=1}^{n} e^{-y_i f(\mathbf{x}_i)}$$

У

$$D_{t+1}(i) = \frac{e^{-\sum_t \alpha_t y_i h_t(\mathbf{x}_i)}}{n \prod_t Z_t} = \frac{e^{-y_i f(\mathbf{x}_i)}}{n \prod_t Z_t}$$

luego:

$$\frac{1}{n} \sum_{i=1}^{n} I_{\{y_i f(\mathbf{x}_i) \le 0\}} \le \prod_{t} Z_t = \prod_{t} 2\sqrt{\epsilon_t (1 - \epsilon_t)}$$

Error empírico

$$\frac{1}{n} \sum_{i=1}^{n} I_{\{y_i f(\mathbf{x}_i) \le 0\}} \le \frac{1}{n} \sum_{i=1}^{n} e^{-y_i f(\mathbf{x}_i)}$$

У

$$D_{t+1}(i) = \frac{e^{-\sum_t \alpha_t y_i h_t(\mathbf{x}_i)}}{n \prod_t Z_t} = \frac{e^{-y_i f(\mathbf{x}_i)}}{n \prod_t Z_t}$$

luego:

$$\frac{1}{n} \sum_{i=1}^{n} I_{\{y_i f(\mathbf{x}_i) \le 0\}} \le \prod_{t} Z_t = \prod_{t} 2\sqrt{\epsilon_t (1 - \epsilon_t)}$$

• Si $\epsilon_t < \frac{1}{2}$ el error empírico decrece exponencialmente!

Error empírico

$$\frac{1}{n} \sum_{i=1}^{n} I_{\{y_i f(\mathbf{x}_i) \le 0\}} \le \frac{1}{n} \sum_{i=1}^{n} e^{-y_i f(\mathbf{x}_i)}$$

У

$$D_{t+1}(i) = \frac{e^{-\sum_t \alpha_t y_i h_t(\mathbf{x}_i)}}{n \prod_t Z_t} = \frac{e^{-y_i f(\mathbf{x}_i)}}{n \prod_t Z_t}$$

luego:

$$\frac{1}{n} \sum_{i=1}^{n} I_{\{y_i f(\mathbf{x}_i) \le 0\}} \le \prod_{t} Z_t = \prod_{t} 2\sqrt{\epsilon_t (1 - \epsilon_t)}$$

- Si $\epsilon_t < \frac{1}{2}$ el error empírico decrece exponencialmente!
- Si $\epsilon_t < \frac{1}{2}$ el error empírico llega a cero en un número finito de pasos.

• Sea
$$\mathcal{F} = \text{conv}(\mathcal{H}) = \left\{ f = \sum_{i=1}^{T} \alpha_i h_i : h \in \mathcal{H}, \alpha_t \ge 0, \sum_t \alpha_t = 1 \right\}$$

• Sea
$$\mathcal{F} = \text{conv}(\mathcal{H}) = \left\{ f = \sum_{i=1}^{T} \alpha_i h_i : h \in \mathcal{H}, \alpha_t \ge 0, \sum_t \alpha_t = 1 \right\}$$

• $VC(\mathcal{F}) \le 2(VC(\mathcal{H}) + 1)(T+1)log_2(e(T+1))$

• Sea
$$\mathcal{F} = \text{conv}(\mathcal{H}) = \left\{ f = \sum_{i=1}^{T} \alpha_i h_i : h \in \mathcal{H}, \alpha_i \geq 0, \sum_t \alpha_t = 1 \right\}$$

- $VC(\mathcal{F}) \le 2(VC(\mathcal{H}) + 1)(T+1)log_2(e(T+1))$
- Si $VC(\mathcal{H}) < \infty$ entonces AdaBoost hace boosting en el modelo PAC.

• Sea
$$\mathcal{F} = \text{conv}(\mathcal{H}) = \left\{ f = \sum_{i=1}^{T} \alpha_i h_i : h \in \mathcal{H}, \alpha_t \ge 0, \sum_t \alpha_t = 1 \right\}$$

- $VC(\mathcal{F}) \le 2(VC(\mathcal{H}) + 1)(T+1)log_2(e(T+1))$
- Si $VC(\mathcal{H}) < \infty$ entonces AdaBoost hace boosting en el modelo PAC.
- Sobreajuste de los datos de entrenamiento?

• Incluso cuando el error empírico es cero, error real disminuye.

- Incluso cuando el error empírico es cero, error real disminuye.
- Eventualmente puede producir sobreajuste para $T \gg 1$.

- Incluso cuando el error empírico es cero, error real disminuye.
- Eventualmente puede producir sobreajuste para $T \gg 1$.
- Sobreajuste con datos ruidosos.

• El márgen de f en (\mathbf{x}_i, y_i) es $m_i = y_i f(\mathbf{x}_i)$.

- El márgen de f en (\mathbf{x}_i, y_i) es $m_i = y_i f(\mathbf{x}_i)$.
- (\mathbf{x}_i, y_i) es incorrectamente clasificado si $m_i < 0$.

- El márgen de f en (\mathbf{x}_i, y_i) es $m_i = y_i f(\mathbf{x}_i)$.
- (\mathbf{x}_i, y_i) es incorrectamente clasificado si $m_i < 0$.
- Si $m_i > 0$, podemos interprentar $|m_i|$ como una medida de confianza.

- El márgen de f en (\mathbf{x}_i, y_i) es $m_i = y_i f(\mathbf{x}_i)$.
- (\mathbf{x}_i, y_i) es incorrectamente clasificado si $m_i < 0$.
- Si $m_i > 0$, podemos interprentar $|m_i|$ como una medida de confianza.
- AdaBoost intenta minimizar una función de costo del márgen:

$$\phi(m_1, \dots, m_n) = \frac{1}{n} \sum_{i=1}^n e^{-y_i f(\mathbf{x}_i)} = \frac{1}{n} \sum_{i=1}^n e^{-m_i}$$

Generalización de AdaBoost

Theorem (Schapire, Freund, Bartlett y Lee, 1998)

 $\forall \alpha \in (0,1)$ with probability at least $1-\alpha$ for all $f \in conv(\mathcal{H})$ the following inequality holds:

$$P\{(x,y):yf(x)\leq 0\}\leq$$

$$\inf_{\delta} \left[P_n\{(x,y) : yf(x) \le \delta\} + \frac{C}{\sqrt{n}} \left(\frac{V(\mathcal{H}) \log^2(\frac{n}{V(\mathcal{H})})}{\delta^2} + \log(1/\alpha) \right)^{1/2} \right].$$

Generalización de AdaBoost

Theorem (Schapire, Freund, Bartlett y Lee, 1998)

 $\forall \alpha \in (0,1)$ with probability at least $1-\alpha$ for all $f \in conv(\mathcal{H})$ the following inequality holds:

$$P\{(x,y): yf(x) \le 0\} \le \inf_{\delta} \left[P_n\{(x,y): yf(x) \le \delta\} + \frac{C}{\sqrt{n}} \left(\frac{V(\mathcal{H}) \log^2(\frac{n}{V(\mathcal{H})})}{\delta^2} + \log(1/\alpha) \right)^{1/2} \right].$$

• Un clasificador combinado con márgenes grandes puede tener probabilidad de error pequeña.

Efecto de Adaboost en los márgenes

• \mathcal{Y} : posibles etiquetas.

- \mathcal{Y} : posibles etiquetas.
- $|\mathcal{Y}| = k \ge 2$.

- \mathcal{Y} : posibles etiquetas.
- $|\mathcal{Y}| = k \ge 2$.
- Multiclase:
 - $(x,y), y \in \mathcal{Y}.$

- \mathcal{Y} : posibles etiquetas.
- $|\mathcal{Y}| = k \ge 2$.
- Multiclase:
 - $(x,y), y \in \mathcal{Y}.$
 - ▶ Meta de aprendizaje: minimizar $\mathbf{P}_{\mathcal{D}}[h(x) \neq y]$.

- \mathcal{Y} : posibles etiquetas.
- $|\mathcal{Y}| = k \ge 2$.
- Multiclase:
 - $(x,y), y \in \mathcal{Y}.$
 - ▶ Meta de aprendizaje: minimizar $\mathbf{P}_{\mathcal{D}}[h(x) \neq y]$.
- Multiclase y multietiqueta:

- \mathcal{Y} : posibles etiquetas.
- $|\mathcal{Y}| = k \ge 2$.
- Multiclase:
 - $(x,y), y \in \mathcal{Y}.$
 - ▶ Meta de aprendizaje: minimizar $\mathbf{P}_{\mathcal{D}}[h(x) \neq y]$.
- Multiclase y multietiqueta:
 - $(x,Y), Y \subseteq \mathcal{Y}.$

- \mathcal{Y} : posibles etiquetas.
- $|\mathcal{Y}| = k \ge 2$.
- Multiclase:
 - $(x,y), y \in \mathcal{Y}.$
 - ▶ Meta de aprendizaje: minimizar $\mathbf{P}_{\mathcal{D}}[h(x) \neq y]$.
- Multiclase y multietiqueta:
 - $(x,Y), Y \subseteq \mathcal{Y}.$
 - ► Meta?

- \mathcal{Y} : posibles etiquetas.
- $|\mathcal{Y}| = k \ge 2$.
- Multiclase:
 - $(x,y), y \in \mathcal{Y}.$
 - ▶ Meta de aprendizaje: minimizar $P_{\mathcal{D}}[h(x) \neq y]$.
- Multiclase y multietiqueta:
 - $(x,Y), Y \subseteq \mathcal{Y}.$
 - ▶ Meta? depende del problema.

• Hipótesis $h: \mathcal{X} \to 2^{\mathcal{Y}}$

- Hipótesis $h: \mathcal{X} \to 2^{\mathcal{Y}}$
- Función de pérdida de Hamming:

$$\operatorname{hloss}_{\mathcal{D}}(h) = \frac{1}{k} \mathbf{E}_{\mathcal{D}} [|h(x) \triangle Y|]$$

- Hipótesis $h: \mathcal{X} \to 2^{\mathcal{Y}}$
- Función de pérdida de Hamming:

$$\operatorname{hloss}_{\mathcal{D}}(h) = \frac{1}{k} \mathbf{E}_{\mathcal{D}} [|h(x) \triangle Y|]$$

 \bullet Promedio del error en k problemas binarios.

- Hipótesis $h: \mathcal{X} \to 2^{\mathcal{Y}}$
- Función de pérdida de Hamming:

$$\operatorname{hloss}_{\mathcal{D}}(h) = \frac{1}{k} \mathbf{E}_{\mathcal{D}} [|h(x) \triangle Y|]$$

- \bullet Promedio del error en k problemas binarios.
- Para $Y \subseteq \mathcal{Y}$ definimos:

$$Y[l] = \begin{cases} +1 & \text{si } l \in Y \\ -1 & \text{si } l \notin Y \end{cases}$$

- Hipótesis $h: \mathcal{X} \to 2^{\mathcal{Y}}$
- Función de pérdida de Hamming:

$$\operatorname{hloss}_{\mathcal{D}}(h) = \frac{1}{k} \mathbf{E}_{\mathcal{D}} [|h(x) \triangle Y|]$$

- \bullet Promedio del error en k problemas binarios.
- Para $Y \subseteq \mathcal{Y}$ definimos:

$$Y[l] = \begin{cases} +1 & \text{si } l \in Y \\ -1 & \text{si } l \notin Y \end{cases}$$

• Identificamos función $h: \mathcal{X} \to 2^{\mathcal{Y}}$ con $h: \mathcal{X} \times \mathcal{Y} \to \{-1, +1\}$, con h(x, l) = h(x)[l].

- Hipótesis $h: \mathcal{X} \to 2^{\mathcal{Y}}$
- Función de pérdida de Hamming:

$$\operatorname{hloss}_{\mathcal{D}}(h) = \frac{1}{k} \mathbf{E}_{\mathcal{D}} [|h(x) \triangle Y|]$$

- \bullet Promedio del error en k problemas binarios.
- Para $Y \subseteq \mathcal{Y}$ definimos:

$$Y[l] = \begin{cases} +1 & \text{si } l \in Y \\ -1 & \text{si } l \notin Y \end{cases}$$

- Identificamos función $h: \mathcal{X} \to 2^{\mathcal{Y}}$ con $h: \mathcal{X} \times \mathcal{Y} \to \{-1, +1\}$, con h(x, l) = h(x)[l].
- Dato $(x_i, Y_i) \longrightarrow k$ datos $((x_i, l), Y_i[l])$

Algorithm 22 AdaBoost.MH

$$D_1(i, l) = 1/(nk) \text{ para } i = 1 \dots n.$$

Algorithm 23 AdaBoost.MH

$$D_1(i, l) = 1/(nk) \text{ para } i = 1 \dots n.$$

for $t = 1$ to T do

Algorithm 24 AdaBoost.MH

$$D_1(i, l) = 1/(nk)$$
 para $i = 1 \dots n$.
for $t = 1$ to T do
 $h_t \leftarrow A(S, D_t)$.

Algorithm 25 AdaBoost.MH

$$D_1(i, l) = 1/(nk)$$
 para $i = 1 \dots n$.
for $t = 1$ to T do
 $h_t \leftarrow A(S, D_t)$.
Escoja α_t

Algorithm 26 AdaBoost.MH

$$D_1(i,l) = 1/(nk) \text{ para } i = 1 \dots n.$$

$$\mathbf{for } t = 1 \text{ to } T \text{ do}$$

$$h_t \leftarrow A(S, D_t).$$

$$\mathbf{Escoja } \alpha_t$$

$$\mathbf{Actualice } D: D_{t+1}(i,l) = \frac{D_t(i,l) \exp(-\alpha_t Y_i[l]h_t(x_i,l))}{Z_t}$$

Algorithm 27 AdaBoost.MH

$$\begin{split} D_1(i,l) &= 1/(nk) \text{ para } i = 1 \dots n. \\ \textbf{for } t &= 1 \text{ to } T \text{ do} \\ h_t &\leftarrow A(S,D_t). \\ \textbf{Escoja } \alpha_t \\ \text{Actualice } D \text{: } D_{t+1}(i,l) &= \frac{D_t(i,l) \exp(-\alpha_t Y_i[l]h_t(x_i,l))}{Z_t} \\ \text{Donde } Z_t \text{ normaliza } D \text{ de manera que sea una distribución.} \end{split}$$

Algorithm 28 AdaBoost.MH

$$\begin{aligned} D_1(i,l) &= 1/(nk) \text{ para } i = 1 \dots n. \\ \text{for } t &= 1 \text{ to } T \text{ do} \\ h_t &\leftarrow A(S,D_t). \\ & \text{Escoja } \alpha_t \\ & \text{Actualice } D \text{: } D_{t+1}(i,l) = \frac{D_t(i,l) \exp(-\alpha_t Y_i[l]h_t(x_i,l))}{Z_t} \\ & \text{Donde } Z_t \text{ normaliza } D \text{ de manera que sea una distribución.} \\ & \text{end for} \end{aligned}$$

Algorithm 29 AdaBoost.MH

$$\begin{split} D_1(i,l) &= 1/(nk) \text{ para } i = 1 \dots n. \\ \text{for } t &= 1 \text{ to } T \text{ do} \\ h_t &\leftarrow A(S,D_t). \\ & \underbrace{\text{Escoja } \alpha_t} \\ \text{Actualice } D \colon D_{t+1}(i,l) &= \frac{D_t(i,l) \exp(-\alpha_t Y_i[l]h_t(x_i,l))}{Z_t} \\ \text{Donde } Z_t \text{ normaliza } D \text{ de manera que sea una distribución.} \end{split}$$

end for

Retorne
$$f(x) = \sum_{i=1}^{T} \alpha_t h_t(x, l)$$

Algorithm 30 AdaBoost.MH

$$D_1(i,l) = 1/(nk)$$
 para $i = 1 \dots n$.
for $t = 1$ to T do
 $h_t \leftarrow A(S, D_t)$.
Escoja α_t
Actualice D : $D_{t+1}(i,l) = \frac{D_t(i,l) \exp(-\alpha_t Y_i[l]h_t(x_i,l))}{Z_t}$
Donde Z_t normaliza D de manera que sea una C

Donde Z_t normaliza D de manera que sea una distribución.

end for

Retorne
$$f(x) = \sum_{i=1}^{T} \alpha_t h_t(x, l)$$

• Hipótesis asigna ranking a las etiquetas.

- Hipótesis asigna ranking a las etiquetas.
- Queremos que etiquetas correctas reciban ranking más alto.

- Hipótesis asigna ranking a las etiquetas.
- Queremos que etiquetas correctas reciban ranking más alto.
- Hipótesis $f: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$.

- Hipótesis asigna ranking a las etiquetas.
- Queremos que etiquetas correctas reciban ranking más alto.
- Hipótesis $f: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$.
- Para un x dado la etiqueta l_1 tiene un ranking más alto que la etiqueta l_2 si $f(x, l_1) > f(x, l_2)$.

- Hipótesis asigna ranking a las etiquetas.
- Queremos que etiquetas correctas reciban ranking más alto.
- Hipótesis $f: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$.
- Para un x dado la etiqueta l_1 tiene un ranking más alto que la etiqueta l_2 si $f(x, l_1) > f(x, l_2)$.
- Para un dato (x, Y) consideramos pares de etiquetas cruciales: $l_1, l_2: l_1 \notin Y, l_2 \in Y$

- Hipótesis asigna ranking a las etiquetas.
- Queremos que etiquetas correctas reciban ranking más alto.
- Hipótesis $f: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$.
- Para un x dado la etiqueta l_1 tiene un ranking más alto que la etiqueta l_2 si $f(x, l_1) > f(x, l_2)$.
- Para un dato (x, Y) consideramos pares de etiquetas cruciales: $l_1, l_2: l_1 \notin Y, l_2 \in Y$
- f desordena (l_1, l_2) si $f(x, l_1) \geq f(x, l_2)$.

- Hipótesis asigna ranking a las etiquetas.
- Queremos que etiquetas correctas reciban ranking más alto.
- Hipótesis $f: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$.
- Para un x dado la etiqueta l_1 tiene un ranking más alto que la etiqueta l_2 si $f(x, l_1) > f(x, l_2)$.
- Para un dato (x, Y) consideramos pares de etiquetas cruciales: $l_1, l_2: l_1 \notin Y, l_2 \in Y$
- f desordena (l_1, l_2) si $f(x, l_1) \ge f(x, l_2)$.
- Meta:

- Hipótesis asigna ranking a las etiquetas.
- Queremos que etiquetas correctas reciban ranking más alto.
- Hipótesis $f: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$.
- Para un x dado la etiqueta l_1 tiene un ranking más alto que la etiqueta l_2 si $f(x, l_1) > f(x, l_2)$.
- Para un dato (x, Y) consideramos pares de etiquetas cruciales: $l_1, l_2: l_1 \notin Y, l_2 \in Y$
- f desordena (l_1, l_2) si $f(x, l_1) \ge f(x, l_2)$.
- \bullet Meta: Encontrar f con pocos pares cruciales desordenados.

- Hipótesis asigna ranking a las etiquetas.
- Queremos que etiquetas correctas reciban ranking más alto.
- Hipótesis $f: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$.
- Para un x dado la etiqueta l_1 tiene un ranking más alto que la etiqueta l_2 si $f(x, l_1) > f(x, l_2)$.
- Para un dato (x, Y) consideramos pares de etiquetas cruciales: $l_1, l_2: l_1 \notin Y, l_2 \in Y$
- f desordena (l_1, l_2) si $f(x, l_1) \ge f(x, l_2)$.
- \bullet Meta: Encontrar f con pocos pares cruciales desordenados.

$$\operatorname{rloss}_{\mathcal{D}}(f) = \mathbf{E}_{\mathcal{D}} \left[\frac{|\{(l_1, l_2) \in (\mathcal{Y} - Y) \times Y : f(x, l_1) \ge f(x, l_2)\}|}{|Y| |\mathcal{Y} - Y|} \right]$$

Algorithm 31 AdaBoost.MR

$$D_1(i, l_1, l_2) = \begin{cases} \frac{1}{n|Y_i||\mathcal{Y} - Y_i|} & \text{si } l_1 \notin Y_i, l_2 \in Y_i \\ 0 & \text{en otro caso} \end{cases}$$

Algorithm 32 AdaBoost.MR

$$D_1(i, l_1, l_2) = \begin{cases} \frac{1}{n|Y_i||\mathcal{Y} - Y_i|} & \text{si } l_1 \notin Y_i, l_2 \in Y_i \\ 0 & \text{en otro caso} \end{cases}$$

$$\mathbf{for } t = 1 \text{ to } T \mathbf{do}$$

Algorithm 33 AdaBoost.MR

$$D_1(i, l_1, l_2) = \begin{cases} \frac{1}{n|Y_i||\mathcal{Y} - Y_i|} & \text{si } l_1 \notin Y_i, l_2 \in Y_i \\ 0 & \text{en otro caso} \end{cases}$$

$$\mathbf{for} \ t = 1 \text{ to } T \mathbf{do}$$

$$h_t \leftarrow A(S, D_t).$$

Algorithm 34 AdaBoost.MR

$$D_1(i, l_1, l_2) = \begin{cases} \frac{1}{n|Y_i||\mathcal{Y} - Y_i|} & \text{si } l_1 \notin Y_i, l_2 \in Y_i \\ 0 & \text{en otro caso} \end{cases}$$

$$\mathbf{for} \ t = 1 \ \text{to} \ T \ \mathbf{do}$$

$$h_t \leftarrow A(S, D_t).$$
Escoja α_t

Algorithm 35 AdaBoost.MR

$$D_1(i, l_1, l_2) = \begin{cases} \frac{1}{n|Y_i||\mathcal{Y} - Y_i|} & \text{si } l_1 \notin Y_i, l_2 \in Y_i \\ 0 & \text{en otro caso} \end{cases}$$

$$\mathbf{for } t = 1 \text{ to } T \mathbf{do}$$

$$h_t \leftarrow A(S, D_t).$$

$$\mathbf{Escoja } \alpha_t$$

$$\mathbf{Actualice } D: D_{t+1}(i, l_1, l_2) = \frac{D_t(i, l_1, l_2) \exp\left(\frac{1}{2}\alpha_t(h_t(x_i, l_1) - h_t(x_i, l_2))\right)}{Z_t}$$

Algorithm 36 AdaBoost.MR

$$D_1(i, l_1, l_2) = \begin{cases} \frac{1}{n|Y_i||\mathcal{Y} - Y_i|} & \text{si } l_1 \notin Y_i, l_2 \in Y_i \\ 0 & \text{en otro caso} \end{cases}$$
 for $t = 1$ to T do

 $h_t \leftarrow A(S, D_t).$

Escoja α_t

Actualice D: $D_{t+1}(i, l_1, l_2) = \frac{D_t(i, l_1, l_2) \exp(\frac{1}{2}\alpha_t(h_t(x_i, l_1) - h_t(x_i, l_2)))}{Z_t}$

Donde Z_t normaliza D de manera que sea una distribución.

Algorithm 37 AdaBoost.MR

$$D_1(i, l_1, l_2) = \begin{cases} \frac{1}{n|Y_i||\mathcal{Y} - Y_i|} & \text{si } l_1 \notin Y_i, l_2 \in Y_i \\ 0 & \text{en otro caso} \end{cases}$$
for $t = 1$ to T do

 $\mathbf{ior}\ t = 1\ \mathbf{to}\ 1\ \mathbf{do}$

 $h_t \leftarrow A(S, D_t).$

Escoja α_t

Actualice D: $D_{t+1}(i, l_1, l_2) = \frac{D_t(i, l_1, l_2) \exp(\frac{1}{2}\alpha_t(h_t(x_i, l_1) - h_t(x_i, l_2)))}{Z_t}$

Donde Z_t normaliza D de manera que sea una distribución.

end for

Algorithm 38 AdaBoost.MR

$$D_1(i, l_1, l_2) = \begin{cases} \frac{1}{n|Y_i||\mathcal{Y} - Y_i|} & \text{si } l_1 \notin Y_i, l_2 \in Y_i \\ 0 & \text{en otro caso} \end{cases}$$

for t = 1 to T do

$$h_t \leftarrow A(S, D_t).$$

Escoja α_t

Actualice D: $D_{t+1}(i, l_1, l_2) = \frac{D_t(i, l_1, l_2) \exp(\frac{1}{2}\alpha_t(h_t(x_i, l_1) - h_t(x_i, l_2)))}{Z_t}$

Donde Z_t normaliza D de manera que sea una distribución.

end for

Retorne
$$f(x) = \sum_{i=1}^{T} \alpha_t h_t(x, l)$$

Algorithm 39 AdaBoost.MR

$$D_1(i, l_1, l_2) = \begin{cases} \frac{1}{n|Y_i||\mathcal{Y} - Y_i|} & \text{si } l_1 \notin Y_i, l_2 \in Y_i \\ 0 & \text{en otro caso} \end{cases}$$

for t = 1 to T do

$$h_t \leftarrow A(S, D_t).$$

Escoja α_t

Actualice D: $D_{t+1}(i, l_1, l_2) = \frac{D_t(i, l_1, l_2) \exp(\frac{1}{2}\alpha_t(h_t(x_i, l_1) - h_t(x_i, l_2)))}{Z_t}$

Donde Z_t normaliza D de manera que sea una distribución.

end for

Retorne
$$f(x) = \sum_{i=1}^{T} \alpha_t h_t(x, l)$$

• Clase de funciones \mathcal{F} .

- Clase de funciones \mathcal{F} .
- Espacio de combinaciones lineales $\mathrm{span}(\mathcal{F})$

- Clase de funciones \mathcal{F} .
- Espacio de combinaciones lineales span (\mathcal{F})
- Producto punto en span(\mathcal{F}).

- Clase de funciones \mathcal{F} .
- Espacio de combinaciones lineales span (\mathcal{F})
- Producto punto en span(\mathcal{F}).
- Funcional de costo C(F): span $(\mathcal{F}) \to \mathbb{R}$ a minimizar.

- Clase de funciones \mathcal{F} .
- Espacio de combinaciones lineales span (\mathcal{F})
- Producto punto en span (\mathcal{F}) .
- Funcional de costo C(F): span $(F) \to \mathbb{R}$ a minimizar.
- Dada $F \in \text{span}(\mathcal{F})$, encontrar $f \in \mathcal{F}$ de tal manera que $C(F + \alpha f) < C(F)$.

- Clase de funciones \mathcal{F} .
- Espacio de combinaciones lineales span (\mathcal{F})
- Producto punto en span(\mathcal{F}).
- Funcional de costo C(F): span $(\mathcal{F}) \to \mathbb{R}$ a minimizar.
- Dada $F \in \text{span}(\mathcal{F})$, encontrar $f \in \mathcal{F}$ de tal manera que $C(F + \alpha f) < C(F)$.
- Buscar en dirección f que maximiza $-\langle \nabla C(F), f \rangle$, donde

$$\nabla C(F)(\mathbf{x}) = \frac{\partial C(F + \delta \mathbf{1}_{\mathbf{x}})}{\partial \delta} \Big|_{\delta = 0}$$

Algorithm 1: AnyBoost

Require:

- An inner product space $(\mathcal{X}, \langle,\rangle)$ containing functions mapping from X to some set Y.
- A class of base classifiers $\mathcal{F} \subseteq \mathcal{X}$.
- A differentiable cost functional $C: \lim (\mathcal{F}) \to \mathbb{R}$.
- A weak learner $\mathcal{L}(F)$ that accepts $F \in \text{lin}(\mathcal{F})$ and returns $f \in \mathcal{F}$ with a large value of $-\langle \nabla C(F), f \rangle$.

```
\begin{array}{l} \text{Let } F_0(x) := 0. \\ \text{for } t := 0 \text{ to } T \text{ do} \\ \text{Let } f_{t+1} := \mathcal{L}(F_t). \\ \text{if } -\langle \nabla C(F_t), f_{t+1} \rangle \leq 0 \text{ then } \\ \text{return } F_t. \\ \text{end if } \\ \text{Choose } w_{t+1}. \\ \text{Let } F_{t+1} := F_t + w_{t+1} f_{t+1} \\ \text{end for } \\ \text{return } F_{T+1}. \end{array}
```

• Clasificar con sign(F).

- Clasificar con sign(F).
- Producto punto:

$$\langle F, G \rangle = \frac{1}{n} \sum_{i=1}^{n} F(\mathbf{x}_i) G(\mathbf{x}_i)$$

- Clasificar con sign(F).
- Producto punto:

$$\langle F, G \rangle = \frac{1}{n} \sum_{i=1}^{n} F(\mathbf{x}_i) G(\mathbf{x}_i)$$

• Función de costo:

$$C(F) = \frac{1}{n} \sum_{i=1}^{n} c(y_i F(\mathbf{x}_i))$$

- Clasificar con sign(F).
- Producto punto:

$$\langle F, G \rangle = \frac{1}{n} \sum_{i=1}^{n} F(\mathbf{x}_i) G(\mathbf{x}_i)$$

• Función de costo:

$$C(F) = \frac{1}{n} \sum_{i=1}^{n} c(y_i F(\mathbf{x}_i))$$

donde $c: \mathbb{R} \to \mathbb{R}$ es función (diferenciadle, decreciente) de costo del márgen $yF(\mathbf{x})$

Clasificación

- Clasificar con sign(F).
- Producto punto:

$$\langle F, G \rangle = \frac{1}{n} \sum_{i=1}^{n} F(\mathbf{x}_i) G(\mathbf{x}_i)$$

• Función de costo:

$$C(F) = \frac{1}{n} \sum_{i=1}^{n} c(y_i F(\mathbf{x}_i))$$

donde $c: \mathbb{R} \to \mathbb{R}$ es función (diferenciadle, decreciente) de costo del márgen $yF(\mathbf{x})$

• Tenemos:

Clasificación

- Clasificar con sign(F).
- Producto punto:

$$\langle F, G \rangle = \frac{1}{n} \sum_{i=1}^{n} F(\mathbf{x}_i) G(\mathbf{x}_i)$$

• Función de costo:

$$C(F) = \frac{1}{n} \sum_{i=1}^{n} c(y_i F(\mathbf{x}_i))$$

donde $c: \mathbb{R} \to \mathbb{R}$ es función (diferenciadle, decreciente) de costo del márgen $yF(\mathbf{x})$

• Tenemos:

$$-\langle \nabla C(F), f \rangle = -\frac{1}{n^2} \sum_{i=1}^{n} y_i f(\mathbf{x}_i) c'(y_i F(\mathbf{x}_i))$$

• Escoger f que minimice ell error pesado:

$$\sum_{i: y_i f(\mathbf{x}_i) < 0} D_i, \quad \text{donde} \quad D_i = \frac{c'(y_i F(x_i))}{\sum_{i=1}^n c'(y_i F(x_i))}, \quad i = 1, \dots, n$$

 \bullet Escoger f que minimice ell error pesado:

$$\sum_{i: y_i f(\mathbf{x}_i) < 0} D_i, \text{ donde } D_i = \frac{c'(y_i F(x_i))}{\sum_{i=1}^n c'(y_i F(x_i))}, i = 1, \dots, n$$

Algorithm	Cost function	Step size
AdaBoost [9]	$e^{-yF(x)}$	Line search
ARC-X4 [2]	$(1 - yF(x))^5$	1/t
ConfidenceBoost [19]	$e^{-yF(x)}$	Line search
LogitBoost [12]	$\ln(1 + e^{-yF(x)})$	Newton-Raphson

Arboles de decisión

• Datos $\{\mathbf{x}_i, y_i\}_{i=1}^n$.

- Datos $\{\mathbf{x}_i, y_i\}_{i=1}^n$.
- Seleccionar x_i, d_i de manera greedy.

- Datos $\{\mathbf{x}_i, y_i\}_{i=1}^n$.
- Seleccionar x_i, d_i de manera greedy.
- Maximizar Ganancia de información:
- Minimizar impureza de los nodos resultantes:

- Datos $\{\mathbf{x}_i, y_i\}_{i=1}^n$.
- Seleccionar x_i, d_i de manera greedy.
- Maximizar Ganancia de información:
- Minimizar impureza de los nodos resultantes:

$$P_N = p_1(1 - p_1) + p_2(1 - p_2)$$

- Datos $\{\mathbf{x}_i, y_i\}_{i=1}^n$.
- Seleccionar x_i, d_i de manera greedy.
- Maximizar Ganancia de información:
- Minimizar impureza de los nodos resultantes:

$$P_N = p_1(1 - p_1) + p_2(1 - p_2) = 1 - p_1^2 - p_2^2$$

- Datos $\{\mathbf{x}_i, y_i\}_{i=1}^n$.
- Seleccionar x_i, d_i de manera greedy.
- Maximizar Ganancia de información:
- Minimizar impureza de los nodos resultantes:

$$P_N = p_1(1 - p_1) + p_2(1 - p_2) = 1 - p_1^2 - p_2^2$$

• Indice de Gini:

$$G = P_{N_1} \times \frac{N_1}{N} + P_{N_2} \times \frac{N_2}{N}$$

• Arboles (clasificación regresión, ranking).

- Arboles (clasificación regresión, ranking).
- Dirección de Newton (aproximación cuadrática de C(F).

- Arboles (clasificación regresión, ranking).
- Dirección de Newton (aproximación cuadrática de C(F).
- Introduce regularización (penaliza árboles con hojas muy puras).

- Arboles (clasificación regresión, ranking).
- Dirección de Newton (aproximación cuadrática de C(F).
- Introduce regularización (penaliza árboles con hojas muy puras).
- Algoritmo eficiente para encontrar mejor split (aproximado).

- Arboles (clasificación regresión, ranking).
- Dirección de Newton (aproximación cuadrática de C(F).
- Introduce regularización (penaliza árboles con hojas muy puras).
- Algoritmo eficiente para encontrar mejor split (aproximado).
- Implementación eficiente.