Lecture 1:

Statistical Models Exponential families Toric varieties

We describe discrete random variables in terms of its probability distributions and continuos random variables in terms of its density functions.

X a random variale discrete → probability distribution continuous - density function

Example 1:

(1) Suppose $\theta \in (0,1)$. X is a binomial random variable

$$P(X=0) = \theta$$
 , $P(X=1) = (1-\theta)$
"success" "failure"

(2) Suppose X is a univariate random variable with mean = \mu and variance = \sigma^2 X has density function $f(x \mid \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$

- Def:

 A statistical model M is a collection of probability

 Limitions over a given space distributions or density functions over a given space.
- · A parametric statistical model \mathcal{M}_{Θ} is the image of a map from a finite dimensional parameter space $\Theta \subseteq \mathbb{R}^d$ to a space of probability distributions or density

functions. i.e. $\rho_{ullet}: \Theta \to \mathcal{M}_{\Theta}$, $\theta \mapsto \rho_{\theta}$,

$$\mathcal{M}_{\Theta} := \left\{ \rho_{\theta} : \theta \in \Theta \right\}$$

- For each parameter value in the model, we want each p_{θ} to be uniquely determined by θ .
 - → If this is the case, we say the model is identifiable.

Example 2:

(1) The binomial random variable model.

Take
$$\Theta = (0,1)$$
, $\rho_{\bullet} : \Theta \to \mathcal{M}_{\Theta} \subseteq \mathbb{R}^{2}$
 $\Theta \mapsto (\theta, 1 - \theta)$

(2) The normal random variable model
(2) (2) (3)

$$(\mu, \sigma) \mapsto f(\chi | \mu, \sigma)$$

(3) The probability simplex.

Consider a discrete random variable X with outcome space $X = \{1, \dots, r\}$ fix $p_i = P(X = i)$.

The set of all possible probability distributions for X is the probability simplex

$$\Delta_{r-1} = \left\{ (\rho_1, \dots, \rho_r) \in \mathbb{R}^r : \rho_i \geqslant 0 , \rho_1 + \rho_2 + \dots + \rho_{r-1} \right\}$$

- ightarrow Discrete statistical models are subsets of the probability simplex
- (4) The independence model. X = discrete r.v. with outcome space {r}

 Y = " ______ " {1,....o!}

Denote the joint distribution of X and Y by $\rho_{ij} = P(X=i, Y=j)$

$$X=$$
 sample space with σ -algebra \mathcal{H} .
 $V=$ σ -finite measure on A , X is countable union of measurable sets with finite $T=X\to\mathbb{R}^K$ is a statistic. measure.
i.e a measurable map.

T-'(meas. set) is meas. in A.

We define the natural parameter space

$$N = \left\{ \eta \in \mathbb{R}^{\kappa} : \int_{\mathcal{Y}} h(x) \cdot e^{\eta^{t} T(x)} d\nu(x) < \infty \right\}$$

For
$$\eta \in N$$
 we define a prob. density ρ_n on X as
$$\rho_n(x) = h(x) e^{n^t T(x) - \phi(n)}$$

Where $\phi(\eta) = \log\left(\int_X h(x) e^{\eta^t T(x)} d\nu(x)\right) \rightarrow This is the normalizing constant$

Let P_n be the probability measure on (X,\mathcal{A}) that has ν -density ρ_n .

 $\frac{Def:}{distributions} \ \, \text{Let} \ \, \text{K} \ \, \text{be a positive integer. The probability} \\ \text{distributions} \ \, (P_n: n\in N) \ \, \text{form a regular exponential} \\ \text{family}.$

• To show a family is a regular exponential family, find h(x), T(x) and show the family has the desired form.

Example:

(1) Binomial random variable model

(2) Univariate Normal random variable.

More examples in Ch. 6.

Discrete Regular exponential families

Regular exponential families for discrete random variables.

- · X= [r] = {1,..., r} → discrete outcome space.
- T: $X \longrightarrow \mathbb{R}^k \Rightarrow T(x)$ is a vector for each $x \in [r]$. h: X → R ⇒ h is a vector (h(1),...,h(r))
- For $n \in \mathbb{R}^{\kappa}$, the normalizing constant $\phi(n)$ is a sum
- $Z(\eta) = \sum h(x) e^{n^{t} \cdot T(x)}$ x e(r1
- If $x \in [r] \Rightarrow$ the exponential family is given by $P_{\eta}(x) = h(x) e^{\eta^{t} \cdot T(x) - \phi(\eta)}$ $Look at \eta^{t} \cdot T(x) \quad Write \quad T(x) = Q_{x} = \begin{pmatrix} Q_{1x} \\ \vdots \\ Q_{1x} \end{pmatrix}, \eta = \begin{pmatrix} \eta_{1} \\ \vdots \\ \eta_{1x} \end{pmatrix}$

Look at
$$\eta^{t} \cdot T(x)$$
. Write $T(x) = a_{x} = \begin{pmatrix} a_{ix} \\ \vdots \\ a_{kx} \end{pmatrix}$, $\eta = \begin{pmatrix} n_{i} \\ \vdots \\ n_{k} \end{pmatrix}$. $\theta_{i} = \exp(\eta_{i})$

Set $h = (h_1, \dots, h_r) \in \mathbb{R}_{>0}$ $P_n(x) = h(x) e^{n^t T(x) - \phi(n)}$

$$\rho_{n}(x) = h(x) e^{n(x) - \varphi(n)}$$

$$= h_{x} e^{(n_{1}, \dots, n_{K}) \cdot (\alpha_{1K}, \dots, \alpha_{KX})^{\frac{1}{2}}}$$

$$= h_{x} e^{n(\alpha_{1K}, \dots, \alpha_{KX})}$$

If a_{jx} are integers $\Rightarrow \rho_{\theta}(x)$ are rational functions on θ .

Another way to describe distributions in an exponential family.

family.
$$\log(\rho_{\theta}(x)) = \log(h_{x}) + (\log(\theta_{1}), \dots, \log(\theta_{K})) \begin{pmatrix} a_{1x} \\ \vdots \\ a_{Kx} \end{pmatrix} - \log(Z(\theta))$$

$$\log(\rho_{\theta}(x)) = \log(h) + (\log(\theta_{i}), \dots, \log(\theta_{K})) A - 4 \log(\Xi(\theta))$$

If $1 \in \text{rowspan}(A) \Rightarrow vA = 1$ for some $v \in \mathbb{R}^k$

$$\Rightarrow \log(\rho_{\theta}) = \log(h) + (\log(\theta)^{+} - \log(\mathcal{Z}(\theta))\nu^{+})A$$

$$\rho_{\theta} \in \triangle_{r-1} \text{ is a member of the family if}$$

 $log(P_{\theta}) \in Span \{ log(h) + rowspan(A) \}$

distributions $\mathcal{M}_{A,h}:=\{\rho\in\inf(\Delta_{r-1}):\log(\rho)\in\log(h)+\operatorname{rowspan}(A)\}$

If h=1, then $\mathcal{M}_A=\mathcal{M}_{A,1}$ is called a log-linear model.

These are toric varieties.

we removed $Z(\theta)$ to homogenize the map.

 $\frac{\text{Def:}}{\text{ls the toric ideal associated to the pair A, h.}} \subseteq \text{RCp]}$ is the toric ideal associated to the pair A, h. If h=1, we write $I_A = I_{A,1}$.

$$P_i \mapsto P_i/h_i$$

Prop: Let $A \in \mathbb{Z}^{k \times r}$ be a $K \times r$ matrix of integers. Then the toric ideal I_A is a binomial ideal and

$$I_A = \langle p^u - p^v : u, v \in \mathbb{N}^r \text{ and } Au = Av \}.$$

If 1 erowspan (A), then IA is homogeneous.

Example: The independence model. Ex. 6.2.6.