Predicting Sea Ice Movement

Graphice

Initial idea: Graph Neural Networks

The glacier is a material and buoys are simulated particle

For the graph representation to work, we'd need a constant set of nodes across multiple time steps, which doesn't really happen:(

Back to the drawing board...

Take 2: Convolutional Networks for Embedding States

Snap buoys on a grid, consider their features channels and feed them through a CNN

Performance is not great, let's make sure the embeddings learned are meaningful!

Back to the drawing board...

Take 2.5: Convolutional Autoencoders

Let's try to reconstruct the initial state from the embeddings!

More than half of the days recorded have buoys that would overlap in the grid space...

Maybe there is another way to feed the data into a neural network? Back to the drawing board again...

Third Take: A simpler approach

Simple dense, permutation-invariant dense layer to encode the state.

Results

Ideas we didn't have time for