鸽笼原理

刘正阳 zhengyang@bit.edu.cn

一个简单的事实

鸽子多,笼子少

- 反证法的应用
- 证明存在性的方法,非构造性
- 简单蕴含着不简单!
- 什么是鸽子? 什么是笼子?

一些例子

• 任意图存在两个点度数相等

一些例子

• 任意图存在两个点度数相等

If G is a finite graph, the *independence number* $\alpha(G)$ is the maximum number of pairwise nonadjacent vertices of G. The *chromatic number* $\chi(G)$ of G is the minimum number of colors in a coloring of the vertices of G with the property that no two adjacent vertices have the same color.

Proposition 4.2. In any graph G with n vertices, $n \leq \alpha(G) \cdot \chi(G)$.

一些例子

• 任意图存在两个点度数相等

If G is a finite graph, the *independence number* $\alpha(G)$ is the maximum number of pairwise nonadjacent vertices of G. The *chromatic number* $\chi(G)$ of G is the minimum number of colors in a coloring of the vertices of G with the property that no two adjacent vertices have the same color.

Proposition 4.2. In any graph G with n vertices, $n \leq \alpha(G) \cdot \chi(G)$.

Proposition 4.3. Let G be an n-vertex graph. If every vertex has a degree of at least (n-1)/2 then G is connected.

序列中的递增和递减,一种对偶?

Theorem 4.5 (Erdős–Szekeres 1935). Let $A = (a_1, \ldots, a_n)$ be a sequence of n different real numbers. If $n \geq sr + 1$ then either A has an increasing subsequence of s + 1 terms or a decreasing subsequence of r + 1 terms (or both).

序列中的递增和递减,一种对偶?

Theorem 4.5 (Erdős–Szekeres 1935). Let $A = (a_1, \ldots, a_n)$ be a sequence of n different real numbers. If $n \geq sr + 1$ then either A has an increasing subsequence of s + 1 terms or a decreasing subsequence of r + 1 terms (or both).

$$a_i \rightarrow (x_i, y_i)$$

序列中的递增和递减,一种对偶?

Theorem 4.5 (Erdős–Szekeres 1935). Let $A = (a_1, \ldots, a_n)$ be a sequence of n different real numbers. If $n \geq sr + 1$ then either A has an increasing subsequence of s + 1 terms or a decreasing subsequence of r + 1 terms (or both).

$$a_i \rightarrow (x_i, y_i)$$

其中 x_i 是以 a_i 终止的最长递增序列长度, y_i 是以 a_i 起始的最长递减序列长度。

序列中的递增和递减,一种对偶?

Theorem 4.5 (Erdős–Szekeres 1935). Let $A = (a_1, \ldots, a_n)$ be a sequence of n different real numbers. If $n \geq sr + 1$ then either A has an increasing subsequence of s + 1 terms or a decreasing subsequence of r + 1 terms (or both).

$$a_i \rightarrow (x_i, y_i)$$

其中 x_i 是以 a_i 终止的最长递增序列长度, y_i 是以 a_i 起始的最长递减序列长度。

所有元素的 (x_i, y_i) 均不相等

序列中的递增和递减,一种对偶?

Theorem 4.5 (Erdős–Szekeres 1935). Let $A = (a_1, \ldots, a_n)$ be a sequence of n different real numbers. If $n \geq sr + 1$ then either A has an increasing subsequence of s + 1 terms or a decreasing subsequence of r + 1 terms (or both).

$$a_i \rightarrow (x_i, y_i)$$

其中 x_i 是以 a_i 终止的最长递增序列长度, y_i 是以 a_i 起始的最长递减序列长度。

所有元素的 (x_i, y_i) 均不相等

序列中的递增和递减,一种对偶?

Theorem 4.5 (Erdős–Szekeres 1935). Let $A = (a_1, \ldots, a_n)$ be a sequence of n different real numbers. If $n \geq sr + 1$ then either A has an increasing subsequence of s + 1 terms or a decreasing subsequence of r + 1 terms (or both).

另一种角度: $a_i \rightarrow x_i$

其中 x_i 是以 a_i 终止的最长递增序列长度

序列中的递增和递减,一种对偶?

Theorem 4.5 (Erdős–Szekeres 1935). Let $A = (a_1, \ldots, a_n)$ be a sequence of n different real numbers. If $n \geq sr + 1$ then either A has an increasing subsequence of s + 1 terms or a decreasing subsequence of r + 1 terms (or both).

另一种角度:
$$a_i \rightarrow x_i$$

其中 x_i 是以 a_i 终止的最长递增序列长度

如果某个 $x_i \ge s+1$,结束;于是有 $x_i \le s$,从而存在 r+1 个 x_i 相同,即 $x_{l_1}=x_{l_2}=\cdots=x_{l_{r+1}}$,且 $l_1 < l_2 < \cdots < l_{r+1}$

序列中的递增和递减,一种对偶?

Theorem 4.5 (Erdős–Szekeres 1935). Let $A = (a_1, \ldots, a_n)$ be a sequence of n different real numbers. If $n \geq sr + 1$ then either A has an increasing subsequence of s + 1 terms or a decreasing subsequence of r + 1 terms (or both).

另一种角度:
$$a_i \rightarrow x_i$$

其中 x_i 是以 a_i 终止的最长递增序列长度

如果某个 $x_i \ge s+1$,结束;于是有 $x_i \le s$,从而存在 r+1 个 x_i 相同,即 $x_{l_1}=x_{l_2}=\cdots=x_{l_{r+1}}$,且 $l_1 < l_2 < \cdots < l_{r+1}$

考虑 a_{l_k} 与 $a_{l_{k+1}}$ 的关系?

无三角形(triangle-free)的图最多有多少边?

无三角形(triangle-free)的图最多有多少边?

Theorem 4.7 (Mantel 1907). If a graph G on n vertices contains more than $n^2/4$ edges, then G contains a triangle.

• 算两次: 没有三角形->相邻两点不存在公共邻居, $d(x) + d(y) \le n$, 对于 $(x, y) \in E$

无三角形(triangle-free)的图最多有多少边?

- 算两次: 没有三角形->相邻两点不存在公共邻居, $d(x) + d(y) \le n$, 对于 $(x, y) \in E$
- 均值不等式: 令 $A \subseteq V$ 为一个最大独立集,那么 $B = V \setminus A$ 有什么性质?

无三角形(triangle-free)的图最多有多少边?

- 算两次: 没有三角形->相邻两点不存在公共邻居, $d(x) + d(y) \le n$, 对于 $(x, y) \in E$
- 均值不等式: 令 $A \subseteq V$ 为一个最大独立集,那么 $B = V \setminus A$ 有什么性质?
- 鸽笼原理+数学归纳法:不妨考虑图里有2n个点, n^2+1 条边会出现三角形。

无三角形(triangle-free)的图最多有多少边?

- 算两次: 没有三角形->相邻两点不存在公共邻居, $d(x) + d(y) \le n$, 对于 $(x, y) \in E$
- 均值不等式: 令 $A \subseteq V$ 为一个最大独立集,那么 $B = V \setminus A$ 有什么性质?
- 鸽笼原理+数学归纳法:不妨考虑图里有2n个点, n^2+1 条边会出现三角形。
 - **Theorem 4.8** (Turán 1941). If a graph G = (V, E) on n vertices has no (k+1)-clique, $k \geq 2$, then

$$|E| \le \left(1 - \frac{1}{k}\right) \frac{n^2}{2}.\tag{4.1}$$

Dirichlet 定理

Theorem 4.9 (Dirichlet 1879). Let x be a real number. For any natural number n, there is a rational number p/q such that $1 \le q \le n$ and

$$\left|x - \frac{p}{q}\right| < \frac{1}{nq} \le \frac{1}{q^2}.$$

$$\{x\} := x - \lfloor x \rfloor$$

Dirichlet 定理

Theorem 4.9 (Dirichlet 1879). Let x be a real number. For any natural number n, there is a rational number p/q such that $1 \le q \le n$ and

$$\left| x - \frac{p}{q} \right| < \frac{1}{nq} \le \frac{1}{q^2}.$$

$$\{x\} := x - \lfloor x \rfloor$$

$$\{kx\}, k = 1, 2, ..., n + 1 \Rightarrow [0, 1/n), ..., [1 - 1/n, 1)$$

Dirichlet 定理

Theorem 4.9 (Dirichlet 1879). Let x be a real number. For any natural number n, there is a rational number p/q such that $1 \le q \le n$ and

$$\left|x - \frac{p}{q}\right| < \frac{1}{nq} \le \frac{1}{q^2}.$$

$$\{x\} := x - \lfloor x \rfloor$$

$$\{kx\}, k = 1, 2, ..., n + 1 \Rightarrow [0, 1/n), ..., [1 - 1/n, 1)$$

$$q = a - b, p = |ax| - |bx|$$

几个练习题

• n 个整数 a_1, \ldots, a_n ,一定存在相邻的整数求和 $\sum_{i=k}^{l} a_i$ 是 n 的倍数。

几个练习题

• n 个整数 $a_1, ..., a_n$,一定存在相邻的整数求和 $\sum_{i=k}^{t} a_i$ 是 n 的倍数。

• 从1到2n这些整数中取出n+1个数,证明存在两个数他们互质。

几个练习题

• n 个整数 $a_1, ..., a_n$,一定存在相邻的整数求和 $\sum_{i=k}^{t} a_i$ 是 n 的倍数。

• 从1到2n这些整数中取出n+1个数,证明存在两个数他们互质。

从1到2n这些整数中取出n+1个数,证明存在两个数,一个能被另一个整除。

公平分配

模型

- 蛋糕 [0,1]
- 玩家 $[n] := \{1,2,...,n\}$
- 每人分到的蛋糕, 子区间的并集
- 0

 α

- 价值函数 v_i 将分到的蛋糕映射成非负实数,满足
 - 可加性

- 可分性
- 假设 $v_i([0,1]) = 1$

目标

将 [0,1] 分配成 $(A_1,...,A_n)$, 互不相交, 满足:

- 按比例(Proportional): $v_i(A_i) \ge 1/n$
 - Knife-moving 算法
- 无嫉妒(Envy-free): $v_i(A_i) \ge v_i(A_j)$
 - 2人? cut-and-choose
 - 3人? 不太容易。。