

3D-Space Mapping via UAV-based RF sensing

Project Readiness Presentation

12/08/2020

Team 4

Customer Mentor/Technical Manager:
Dr. Honggang Zhang

Zhuoming Huang
Alinson Sanquintin (Junior)

Team Roles

- SAR Experiment team:
 - Zhuoming Huang
 - SAR experiments, synthesize radar data for model training
 - Alinson Sanquintin
 - Assist with experiments and data processing in MATLAB, reviewing.
- Neural Network team (external):
 - Yue Sun and Lucas Lomba
 - Building Neural Network to train AI models and generate high-resolution images/depth images.

Initial Design

- Use 64x8 virtual antennas to form a SAR (Syntheticaperture Radar) structure, collect raw mmWave radar data, and generate raw intensity images
- Use depth images from a 3D camera as ground truth to train neural network models
- The neural network generates high-resolution intensity images or depth images from low-resolution raw images

Design Improvement

- Use 2 sliders to form a SAR (Synthetic-aperture Radar) structure
 - In addition to 64 vertical positions with 8 virtual antennas in horizontal direction, move the radar sensor horizontally as well to improve the azimuth resolution.
 - Virtual antennas: 64x8 -> 64x24
 - -> 64x64 (need more time)
 - Azimuth resolution: 15° -> 5°
- Use CAD models to synthesize radar data and intensity images to train a deep neural network model.
 - We need huge number of data samples (>= 3000) for neutral network training. But it needs significant time to construct a 64x24 SAR in real experiments (at least 1 hour).
 - Speed up data sample collection
 - Less than 1 minute for synthesizing one data sample
 - (not including time for generating CAD models)
 - 3000 samples: 3000hrs -> 50hrs

Parts, Tool, Equipment, and Software Availability

- TI IWR6843ISK mmWave radar sensor & Data capture card DCA1000EVM
 - Collect raw ADC radar data
- ZED mini 3D camera
 - Captures depth images as ground truth
- 2D Ball Screw Slider driven by Arduino
 - Moves the radar sensor to form a synthetic-aperture radar structure
- TI mmWave Studio
 - Configures and triggers radar sensor to collect data
- MATLAB
 - Process radar sensor data
 - Radar Data Synthesizer [1]
 - Synthesizes radar data from CAD models
 - Generates intensity images/radar heatmaps
- Python
 - Trains Neural Network models

Subsystems: Hardware

- Sliders
 - Repeated positioning accuracy of ± 0.05mm
 - Allow us to accurately move the radar by half of wavelength $\lambda/2 = 2.5$ mm, to form a SAR.

Arduino Uno with Adafruit motor shield

Slider controller

Subsystem: mmWave Studio

Configure mmWave radar sensor:

- Start frequency
 - 60GHz
- Sweep slope
 - 29.982MHz/us
- Sample rate
 - 2047ksps
- Number of samples
 - 256
- Bandwidth
 - 3987.61MHz ≅ 4GHz
- Transmitters and receivers
 - 2Tx + 4Rx

Trigger frames to send and capture radar signal

Subsystem: MATLAB Program

HeatmapGenerator.m

- 1. Apply range-FFT along 256 samples from each virtual antenna
- 2. Fit data from each range bin (64x24) into a 64x64 matrix, with zero-padding
- 3. Apply 2D-FFT on each 64x64 matrix
- 4. Generate heatmaps in each range bin

RadarDataSynthesizer.m [1]

- Simulate reflector from CAD models of objects
- 2. Remove occlusion
- 3. Simulate radar signal
- 4. Generate radar heatmaps

(screenshots of parts of the program)

```
for range_idx = 1:numADCSamples
    fft_data(:,1:NTX) = rf_data(:,range_idx,:);
    all_fft = fft2(fft_data);
    all_fft = fftshift(all_fft);
    all_fft = flip(flip(all_fft,2));
    temp = abs(all_fft);
    f = figure('visible', 'off');
    heatmap(temp);
    grid off
    colorbar;
    colormap default
    caxis([0 round(m/0.8)]);
    svaddr = '..\intensity_figs\el_az_rg_';
    saveas(f, strcat(svaddr,num2str(range_idx)), 'png')
    disp(range_idx)
end
```

```
149
             % Visulize the radar heatmap top view
150 -
             radar heatmap top = squeeze(max(radar heatmap,[],3));
             f3 = figure('visible', sp);
152 -
             imagesc(radar_heatmap_top);
153 -
             set(gca, 'XDir', 'reverse');
154 -
             set(gca,'YDir','normal');
155 -
             colormap jet; caxis([0 lell]);
156 -
             %xlabel('Range'); ylabel('Azimuth');
             xlabel('Azimuth'); ylabel('Range'); % 20201129
159 -
             set(gca, 'FontSize', 16) % Creates an axes and sets its FontSize to 18
160 -
             svaddr = 'F:\3 Education\UMASS\Courses\droneSLAM\mmWave\hawkeye synthesizer\figs\md ';
161 -
             saveas(f3, strcat(svaddr,num2str(CAD_idx),"_pm_",num2str(ks),"_3RadarHeatmapTopView"), 'png');
162
163
             % Visulize the radar heatmap front view
164 -
             radar heatmap front = squeeze(max(radar heatmap,[],1));
165 -
             f4 = figure('visible', sp);
166 -
             imagesc(radar heatmap front.');
167 -
             set(gca,'XDir','reverse');
168 -
             colormap jet; caxis([0 lell]);
169 -
170 -
             xlabel('Azimuth'); ylabel('Elevation');
171 -
             set(gca, 'FontSize', 16) % Creates an axes and sets its FontSize to 18
172 -
             svaddr = 'F:\3 Education\UMASS\Courses\droneSLAM\mmWave\hawkeye synthesizer\figs\md ';
            saveas(f4, strcat(svaddr,num2str(CAD idx), "pm ",num2str(ks), " 4RadarHeatmapFrontView"), 'png');
```

Updated Preliminary Budget

No.	ltem	Qty	Unit Price (USD)	Cost (USD)	Description	Note
1	IWR6843ISK	1	135	135	mmWave radar sensor	Previously owned
2	ZED mini	1	399	399	3D camera	Previously owned
3	3D-printed connector	1	N/A	10	Holding radar and camera, extend to a drone	Plan to order
4	T6x1-200mm Ball Screw Slider	2	70	140	For moving the radar sensor horizontally/ vertically in SAR experiments only	Recently purchased
5	Arduino Uno	1	23	23	Slider control	Previously owned
6	Adafruit motor shield	1	19.95	19.95	Motor driver	Previously owned
7	DCA1000EVM	1	499	499	Raw data capture card, for experiments only	Previously owned
8	Customized 2D slider	1	N/A	25	For forming a SAR on a drone	Plan to order
	Total			1250.95		
	Used budget			140	Out of the \$1000 budget	
	Final product estimated budget			569		

System Architecture

Preliminary Data: Heatmaps from Real Experiments

Operating frequency: 60GHz-64GHz

Number of samples: 256

• Size of virtual antennas: 64 x 24

Antenna spacing: 2.5mm

Range resolution: 4cm

Angular resolution:

• Azimuth = 5° , Elevation = 1.8°

Range bin: 51 Corresponding to distance:

(51-1)*4cm = 200cm

Total 256

Preliminary Data: Radar Data Synthesizer [1]

Preliminary Data: Neural Network

- Low-resolution input -> high-resolution output
- 2D-to-2D, pix2pix GAN (Generative Adversarial Network)
- Using only 2x8 virtual antennas to achieve similar resolution from 64x8 virtual antennas.
- Example of our NN producing output from data provided by SuperRF [2]

Metrics and Performance Measurement (preview of DVP)

Requirement	Measurement
Capability to outline shapes of objects in a scene	Observe that the shapes of objects are successfully outlined in the 2D depth image output after processing raw radar data.
 Accurately estimates positions of objects in 3D space 	Compare our result to depth images (ground truth) given by ZED mini camera.
Portable (small and lightweight)	Measure physical dimension and weight (≈ 100g)
 Mounted on a drone (connector) 	Confirm that a connector is given, and all hardware components can be secured on a drone through this connector.
• Low-cost	Calculate the budget for final product (≤ \$1000)
Easy to use	Count the steps for configuration and operation (≤ 10)

Deliverables

- A 3D-space mapping system
 - Generates high-resolution depth images from sparse raw mmWave radar data
 - Model-training function
 - MATLAB program for generating raw intensity images
 - Neural network for training AI Models
 - 2D slider with control code
 - Modified radar sensor firmware
 - A holder connecting the radar sensor and camera, mounting the system on a drone

Project Management (till Design Validation Presentation)

Anticipated Problems and Solutions

- Access to 3D printers on campus
 - Temporarily using handcrafted wooden connectors
 - Order 3D-printing online or handcrafting with acrylic board.
- UAV flight tests
 - Safety issue
 - Wear eye protectors and gloves
 - Flight-test room availability
 - Outdoor public facility with net-covering
 - Hardware availability
 - Use another ZED mini (not the one on UAV) to capture depth images as ground truth for scene reference if Kinect or OptiTrack system are not available.

Ethical Considerations

- Privacy issue when conducting outdoor experiments
 - Must ask for a permission if private properties are involved
 - Keep the camera off in public areas if it is not necessary to turn it on, or if someone doesn't feel comfortable in front of it.
- Covid-19 Guidelines
 - Masks on
 - Keep social distance

Thank you

• Questions?

- Reference
 - [1] Junfeng Guan, Sohrab Madani, Suraj Jog, and Haitham Hassanieh. 2020. High Resolution Millimeter Wave Imaging For Self-Driving Cars. IEEE CVPR (2020).
 - [2] Shiwei Fang and Shahriar Nirjon. 2020. SuperRF: Enhanced 3D RF Representation Using Stationary Low-Cost mmWave Radar. In International Conference on Embedded Wireless Systems and Networks (EWSN)..., Vol. 2020. NIH Public Access, 120.