9.1. The data in Table 9E.1 represent individual observations on molecular weight taken hourly from a chemical process. The target value of molecular weight is 1,050 and the process standard deviation is thought to be about s = 25.

no	X\bar	C	i+	Ci-	Plot Ci-	Y = 0	Y = +H	Y = -H
	1	1045	C	0	0	0	125	-125
4	2	1055	C	0	0	0	125	-125
	3	1037	C	0.5	-0.5	0	125	-125
4	4	1064	1.5	0	0	0	125	-125
	5	1095	34	- 0	0	0	125	-125
(5	1008	C	29.5	-29.5	0	125	-125
,	7	1050	C	17	-17	0	125	-125
8	8	1087	24.5	0	0	0	125	-125
Ģ	9	1125	87	0	0	0	125	-125
10)	1146	170.5	0	0	0	125	-125
1	1	1139	247	0	0	0	125	-125
12	2	1169	353.5	0	0	0	125	-125
13	3	1151	442	0	0	0	125	-125
14	4	1128	507.5	0	0	0	125	-125
1:	5	1238	683	0	0	0	125	-125
10	5	1125	745.5	0	0	0	125	-125
1′	7	1163	846	0	0	0	125	-125
18	8	1188	971.5	0	0	0	125	-125
19	9	1146	1055	0	0	0	125	-125
20)	1167	1159.5	0	0	0	125	-125

(a) Set up a tabular CUSUM for the mean of this process. Design the CUSUM to quickly detect a shift of about 1.0s in the process mean.

$$\mu = 1050$$
 $\sigma = 25$ $\delta = 1s$ $K = \delta / 2 * \sigma = (1/2) * 25 = 12.5$ $H = 5\sigma = 125$

(b) Is the estimate of s used in part (a) of this problem reasonable?

$$\hat{\sigma}$$
 = MR / d2 = 38.8421/1.128 = 34.4345

No, the σ in this question is smaller than $\hat{\sigma}$

9.3.

(a) Add a headstart feature to the CUSUM in Exercise 9.1.

Headstart = H/2 = 62.5

(b) Use a combined Shewhart–CUSUM scheme on the data in Exercise 9.1. Interpret the results of both charts.

平均	+3.5SL	-3.5SL	MR\bar
1116.3	1236.8	995.8	38.8421

9.5Bath concentrations are measured hourly in a chemical process. Data (in ppm) for the last 32 hours are shown in Table 9E.4 (read down from left). The process target is m0 = 175 ppm.

no	num	MR	
	1	160	
	2	158	2
	3	150	8
	4	151	1
	5	153	2
	6	154	1
	7	158	4
	8	162	4

```
9
         186
                    24
10
         195
                     9
11
         179
                    16
12
                     5
         184
                     9
13
         175
14
         192
                     17
15
         186
                     6
         197
16
                    11
17
                     7
         190
                                 miu =
                                            MR-bar =
18
         189
                     1
                                     183.59
                                                  6.35
19
         185
                     4
20
         182
                     3
21
         181
                     1
22
         180
                     1
23
         183
                     3
                     3
24
         186
25
         206
                    20
26
         210
                     4
27
         216
                     6
28
         212
                     4
         211
29
                     1
30
         202
                     9
31
         205
32
         197
                     8
```

(a) Estimate the process standard deviation.

$$\hat{\sigma}$$
 = MR2 / d2 = 6.35 / 1.128 = 5.629

(b)Construct a tabular CUSUM for this process using standardized values of h=5 and k=1/2.

$$\mu = 175$$
 $\hat{\sigma} = 5.629$ $k = 1/2$ $h = 5$

Test Results for CUSUM Chart of num

TEST. One point beyond control limits.

Test Failed at points: 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32

9.6 Viscosity measurements on a polymer are made every 10 minutes by an on-line viscometer. Thirty-six observations are shown in Table 9E.5 (read down from left). The target viscosity for this process is m0 = 3,200.

no	num	MR		
	1	3169		
	2	3173	4	
	3	3162	11	
	4	3154	8	
	5	3139	15	
	6	3145	6	
	7	3160	15	
	8	3172	12	
	9	3175	3	
	10	3205	30	
	11	3203	2	
	12	3209	6	
	13	3208	1	MR-bar

14	3211	3	6.7143
15	3214	3	
16	3215	1	
17	3209	6	
18	3203	6	
19	3185	18	
20	3187	2	
21	3192	5	
22	3199	7	
23	3197	2	
24	3193	4	
25	3190	3	
26	3183	7	
27	3197	14	
28	3188	9	
29	3183	5	
30	3175	8	
31	3174	1	
32	3171	3	
33	3180	9	
34	3179	1	
35	3175	4	
36	3174	1	

(a) Estimate the process standard deviation.

 $\hat{\sigma}$ = MR2 / d2 = 6.71/1.128 = 5.949

(b)Construct a tabular CUSUM for this process using standardized values of h = 8.01 and k = 0.25.

Test Results for CUSUM Chart of num

TEST. One point beyond control limits.

Test Failed at points: 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36

- (c) Discuss the choice of h and k in part (b) of this problem on CUSUM performance. k is smaller, so you need a bigger h to balance to give longer in-control ARLs.
- 9.15 Rework Exercise 9.1 using an EWMA control chart with I = 0.1 and L = 2.7. Compare your results to those obtained with the CUSUM.

The process was out of control after sample 10, is the same as cusum chart