Домашнее задание по дискретному анализу. Неделя 1. Алгебра логики. Введение

Талашкевич Даниил Александрович 18 октября 2020 г.

Согласно условию задачи,

$$\neg (x = y) \land ((y < x) \rightarrow (2z > x)) \land ((x < y) \rightarrow (x > 2z)) = 1$$

Так как это выражение - истина, тогда истине равны:

$$a) \neg (x = y) = 1$$

b)
$$(y < x) \to (2z > x) = 1$$

$$(x < y) \rightarrow (x > 2z) = 1$$

Из пункта а) следует, что $x \neq y$, то есть $x \neq 16$. Пункт б) выполняется всегда, кроме случая:

$$\begin{cases} (y < x) = 1\\ (2z > x) = 0 \end{cases}$$

$$\begin{cases} x > y\\ x \ge 2z \end{cases}$$

$$\begin{cases} x > 16\\ x \ge 14 \end{cases}$$

То есть пункт б) выполняется, если

$$x \leqslant 15$$

Пункт в) отличается от б) только знаками неравенств:

$$x \geqslant 15$$

В итоге получили систему уравнений:

$$\begin{cases} x \geqslant 15 \\ x \leqslant 15 \\ x \neq 16 \end{cases}$$
$$x = 15$$

Ответ: 15

$$f(x, y, z) = \neg((x \land \neg y) \land z)$$

Найдём все значения функции для построения таблицы истинности:

$$f(0,0,0) = \neg((0 \land \neg 0) \land 0) = \neg(0 \land 0) = 1$$

$$f(0,0,1) = \neg((0 \land \neg 0) \land 1) = \neg(0 \land 1) = 1$$

$$f(0,1,0) = \neg((0 \land \neg 1) \land 0) = \neg(0 \land 0) = 1$$

$$f(0,1,1) = \neg((0 \land \neg 1) \land 1) = \neg(0 \land 1) = 1$$

$$f(1,0,0) = \neg((1 \land \neg 0) \land 0) = \neg(1 \land 0) = 1$$

$$f(1,0,1) = \neg((1 \land \neg 0) \land 1) = \neg(1 \land 1) = 0$$

$$f(1,1,0) = \neg((1 \land \neg 1) \land 0) = \neg(0 \land 0) = 1$$

$$f(1,1,1) = \neg((1 \land \neg 1) \land 1) = \neg(1 \land 0) = 1$$

x	y	z	f(x,y,z)
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1
1	1	0	1 1

$$1 \oplus x_1 \oplus x_2 = (x_1 \to x_2) \land (x_2 \to x_1)$$

Для доказательства рассмотрим, когда (в каких случаях) оба выражения равны истине:

- 1) $f_1(x_1, x_2) = (1 \oplus x_1) \oplus x_2 = 1$
- a) если $x_1 = 0$, то $x_2 = 0$,
- b) если $x_1 = 1$, то $x_2 = 1$, То есть $x_1 = x_2$, если $f_1(x_1, x_2) = 1$
- 2) $f_2(x_1, x_2) = (x_1 \to x_2) \land (x_2 \to x_1) = 1$

Заметим, что $x_1=x_2=0$ или $x_1=x_2=1$, иначе возникает ситуация $1\to 0=0$, то есть $x_1=x_2$, если $f_2(x_1,x_2)=1$

Оба выражения равны истине только тогда, когда $x_1 = x_2$, в остальных случаях $(x_1 \neq x_2)$ они равны нулю (лжи), то есть булевы функции $f_1(x_1, x_2)$ и $f_2(x_1, x_2)$ ведут себя одинаково при различных x_1 и x_2 , значит они эквивалентны.

Доказано

Задача 4

$$(x \land (y \to z)) = (x \land y) \to (x \land z)$$

Пусть x = 0, тогда выражение слева в a) всегда равно нулю

$$(0 \land (y \rightarrow z)) = 0$$

Значит

$$(x \wedge y) \rightarrow (x \wedge z) = 0$$

$$\begin{cases} x \land y = 1 \\ x \land z = 0 \end{cases}$$
$$x = y = 1$$

Получили, что x=1, предполагая, что x=0. Противоречие. Дистрибутивность не выполяне b) $x \oplus (y \leftrightarrow z) = (x \oplus y) \leftrightarrow (x \oplus z)$

Предположим, что выражение слева $(x \oplus (y \leftrightarrow z))$ равно истине, тогда:

$$x \oplus (y \leftrightarrow z) = 1 \tag{1}$$

$$(x \oplus y) \leftrightarrow (x \oplus z) = 1 \tag{2}$$

Рассмотрим решение уравнения (1): случай 1:

$$\begin{cases} x \oplus y = 1 \\ x \oplus z = 1 \end{cases}$$

$$y = z \neq x$$

Рассмотрим случай 2:

$$\begin{cases} x \oplus y = 0 \\ x \oplus z = 0 \end{cases}$$
$$y = z = x$$

В любом случае в решении $(x \oplus y) \leftrightarrow (x \oplus z) = 1$ выполняется y = z. Решением уравнения (2) являются 2 системы:

$$\begin{cases} x = 0 \\ y = z \end{cases} \tag{3}$$

$$\begin{cases} x = 1 \\ y \neq z \end{cases} \tag{4}$$

То есть одно из решений содержит $y \neq z$, но в решении уравнения (1) всегда y=z. Противоречие. Дистрибутивность не выполянется.

- а) Коммутативность для импликации $x \to y = y \to x$ не выполняется, так как если x=0,y=1, то $0\to 1=1,$ но $1\to 0=0$
- b) <u>Ассоциативность</u> $(x \to y) \to z = x \to (y \to z)$ <u>не выполняется,</u> так как при если x=0, то $x \to (y \to z)=1$ при любых y и z, при этом $x \to y=1$, но если z=0, то $(x \to y) \to z=0$, в то время как $x \to (y \to z)=1$

Задача 6

a) $f(x_1, x_2, x_3) = 00111100$

Для наглядности составим таблицу истинности:

₩				
x_1	x_2	x_3	$f(x_1, x_2, x_3)$	
0	0	0	0	
0	0	1	0	
0	1	0	1	
0	1	1	1	
1	0	0	1	
1	0	1	1	
1	1	0	0	
1	1	1	0	

Заметим, что при $x_1=x_2$ выходит $f(x_1,x_2,x_3)=0$, а в других случаях $f(x_1,x_2,x_3)=1$, значит x_1 и x_2 - существенные переменные, а x_3 - фиктивная.

b)
$$g(x_1, x_2, x_3) = (x_1 \to (x_1 \lor x_2)) \to x_3$$

Если
$$x_1 = 1$$
, то $(x_1 \to (x_1 \lor x_2)) = (1 \to 1) = 1$.

Если
$$x_1 = 0$$
, то $(x_1 \to (x_1 \lor x_2)) = (0 \to (0 \lor x_2)) = 1$.

Получили, что $(x_1 \to (x_1 \lor x_2)) = 1$ не зависит от x_1 и тем более от x_2 , значит $g(x_1, x_2, x_3) = 1 \to x_3$. Итак, x_1 и x_2 - фиктивные переменные, а x_3 - существенная пе

$$f(x_1,...,x_n) = (x_1 \lor f(0,x_2,...,x_n)) \land (\neg x_1 \lor f(1,x_2,...,x_n))$$

1) Пусть $f(0, x_2, ..., x_n) = 0$, тогда:

$$f(0, x_2, ..., x_n) = (0 \lor f(0, x_2, ..., x_n)) \land (1 \lor f(1, x_2, ..., x_n)) = 0 \land 1 = 0$$

Выражение выполняется.

2) Пусть $f(0, x_2, ..., x_n) = 1$, тогда:

$$f(0, x_2, ..., x_n) = (0 \lor f(0, x_2, ..., x_n)) \land (1 \lor f(1, x_2, ..., x_n)) = 1 \land 1 = 1$$

Выражение выполняется.

3) Пусть $f(1, x_2, ..., x_n) = 0$, тогда:

$$f(1, x_2, ..., x_n) = (1 \lor f(0, x_2, ..., x_n)) \land (0 \lor f(1, x_2, ..., x_n)) = 1 \land 0 = 0$$

Выражение выполняется.

4) Пусть $f(1, x_2, ..., x_n) = 1$, тогда:

$$f(0, x_2, ..., x_n) = (1 \lor f(0, x_2, ..., x_n)) \land (0 \lor f(1, x_2, ..., x_n)) = 1 \land 1 = 1$$

Выражение выполняется.

Итак, исходное равенство выполняется для любых функций с любыми значениями x_1 . Интересно также отметить, что равенство выполняется для любого аргумента x_i $(0 \le i \le n)$, так как аргументы являются независимыми.

$$x_1^{\alpha_1} \wedge x_2^{\alpha_2} \wedge \dots \wedge x_n^{\alpha_n} = 1$$

Равенство возможно только в одном случае: $x_i^{\alpha_i}=1$ $(1\leqslant i\leqslant n)$. Значение $x_i^{\alpha_i}$ зависит от x_i и α_i : если $x_i=0$, то $\alpha_i=0$, чтобы $x_i^{\alpha_i}=1$ и если $x_i=1$, то $\alpha_i=1$, чтобы $x_i^{\alpha_i}=1$. Определённому значению x_i соответсвует определённое α_i , значит если выбран определённый набор $x_1,...,x_n$, ему будет соответствовать единственный набор $\alpha_1,...,\alpha_n$

Доказано

Задача 9

$$\bigvee_{i,j} (x_i \oplus x_j) = (x_1 \vee x_2 \vee \dots \vee x_n) \wedge (\overline{x_1} \vee \overline{x_2} \vee \dots \vee \overline{x_n})$$

1) $\bigvee_{i,j}(x_i\oplus x_j)=1$, если хотя бы одна комбинация x_i и x_j отличается по значениям. В этом же случае $(x_1\vee x_2\vee\ldots\vee x_n)=1$, так как среди x_i будет по крайней мере одна единица, и $(\overline{x_1}\vee\overline{x_2}\vee\ldots\vee\overline{x_n})=1$, так как по крайней мере найдётся одно значение $x_i=0$, а значит $\overline{x_i}=1$. Значит

$$\bigvee_{i,j} (x_i \oplus x_j) = (x_1 \vee x_2 \vee \dots \vee x_n) \wedge (\overline{x_1} \vee \overline{x_2} \vee \dots \vee \overline{x_n}) = 1$$

Получается, что равенство в условии выполняется.

2) $\bigvee_{i,j} (x_i \oplus x_j) = 0$, если все значения x_i равны (0 или 1), значит либо $(x_1 \vee x_2 \vee ... \vee x_n) = 0$, либо $(\overline{x_1} \vee \overline{x_2} \vee ... \vee \overline{x_n}) = 0$, тогда

$$\bigvee_{i,j} (x_i \oplus x_j) = (x_1 \vee x_2 \vee \dots \vee x_n) \wedge (\overline{x_1} \vee \overline{x_2} \vee \dots \vee \overline{x_n}) = 0$$

Равенство в условии снова выполняется, значит оно справедливо для любых значений x_i .

Пусть булева функция выражается только через связки \vee и \wedge . Заметим, что эти связки могут только либо сохранять предыдущие значения выражений (переменных), либо увеличивать их до 1, значит функции, использующие только эти связки - нестрого возрастающие. Получается, что нестрого или строго убывающую функцию эти связки описать не могут (перевести 1 в 0), для этого как минимум требуется использовать связку \neg . Значит существует убывающая функция, которая не может быть описана только связками \vee и \wedge .