### PROPOSAL GRADES POSTED



### SPOTLIGHT REMINDER

- Spotlight PPT slide due 10/30 on Canvas
- Project spotlight presentation on 11/1
  - 2 min each group
  - I min between groups
  - Group order 16 -> 1

### ENSEMBLE METHODS

- Ensemble of same classifiers
  - Bagging and random forest
  - Boosting and gradient boosted tree
- Ensemble of different classifiers

#### VOTING

- Voting ensembles mimic error-correcting codes
  - More voters —> potential better signal to noise
  - Lower correlation between models



How do we combine the predictions?

### STACKING

- Introduced by Wolpert, 1992
- Use a pool of base classifiers and do out-of-fold predictions, then train a meta-classifier to combine their predictions
- Stacker model gains information by using first-stage predictions as features



### BLENDING

- Close to stacked generalization, but a bit simpler
- Instead of out-of-fold predictions, create small holdout set that the stacker is then trained on this set
- Disadvantages:
  - Less data used overall
  - Final model may overfit to holdout set

## EXAMPLE: COMBINING DIFFERENT CLASSIFIERS



### STACKING AND BLENDING

• Why stop at two stages? Why not combine multiple ensembles models?

### EXAMPLE: AIRBNB 2ND PLACE



https://github.com/Keiku/kaggle-airbnb-recruiting-new-user-bookings

### The Netflix Prize

- An open competition 2006 2009 held by Netflix
- Training data
  - 100 million ratings (with timestamps), 480,000 users, 17,770 movies
  - 6 years of data: 2000-2005
- Test data
  - Last few ratings of each user (2.8 million)
- Evaluation criterion: Root Mean Square Error

(RMSE) = 
$$\frac{1}{|R|} \sqrt{\sum_{(i,x) \in R} (\hat{r}_{xi} - r_{xi})^2}$$

- Competition
  - Netflix's system Cinematch RMSE: 0.9514
  - \$1 million prize for 10% improvement on Netflix
  - \$50,000 progress prize every year

### **Netflix Prize**

Global average: 1.1296

User average: 1.0651

Movie average: 1.0533

Netflix: 0.9514

Basic Collaborative filtering: 0.94

Collaborative filtering++: 0.91

Latent factors: 0.90

Latent factors+Biases: 0.89

Latent factors+Biases+Time: 0.876

Grand Prize: 0.8563

## The big picture solution of BellKor's Pragmatic Chaos



### DIMENSIONALITY REDUCTION

CS 334: Machine Learning

### TYPES OF UNSUPERVISED LEARNING

Clustering

identify unknown structure in the data

Dimensionality Reduction

use structural characteristics to simplify data

### CURSE OF DIMENSIONALITY

- Increasing features should improve performance right?
- In practice, too many features leads to worse performance
- # of training examples required increases exponentially with the # of features



#### FEATURE SELECTION/REDUCTION

- Feature selection
  - Filter methods (agnostic to the learning algorithm)
  - Wrapper methods (keep model in the loop)
  - Embedded methods (e.g. Lasso regularization)
- Dimension reduction

### MOTIVATION: EXAMPLE

- Two features: Height and cigarettes per day
- Both features are correlated
- Can we reduce the features to one?



### DIMENSIONALITY REDUCTION

- Represent data with fewer dimensions
- Discover "intrinsic dimensionality" of data
- New feature space: linear / non-linear combination of original features



### WHY DIMENSIONALITY REDUCTION

- Simplified data processing
- Noise reduction (removing feature redundancy)
- Easier learning less parameters
- Robust learning numerical stability due to less correlations
- Easier visualization show high dimensional data in 2D or 3D



GROUP ACTIVITY

## WHICH IS THE BEST PROJECTION AND WHY?



# PRINCIPAL COMPONENT ANALYSIS (PCA)

- Developed by Pearson in 1901
- Popular and widely studied
- Finds sequence of linear combinations of the features (also known as principal components) that have maximal variance and are uncorrelated

## PRINCIPAL COMPONENT ANALYSIS (PCA)

- First principal component
  - Yields the highest variance of the projection
  - Minimizes sum of squared perpendicular distances (reconstruction error between data and projected points)



### TWO INTERPRETATIONS OF PCA

- Maximize the variance of projection along principal component
- Minimize the reconstruction error between original data and projected components



### IST PRINCIPAL COMPONENT



### 2<sup>ND</sup> PRINCIPAL COMPONENT

- Second principal component
  - Orthogonal to the first principal component
  - And has largest variance
- In general, we can construct up to p principal components (p features)





### 2<sup>ND</sup> PRINCIPAL COMPONENT



## PRINCIPAL COMPONENT ANALYSIS (PCA)

- Principal component loadings
  - Determines the axis
  - $\vee = (0.839, 0.544)$
- Principal component scores
  - Projected position of each point on the axis
  - $Z = X_V$

(Data is centered first)



$$Z_1 = 0.839 \times (pop - \overline{pop}) + 0.544 \times (ad - \overline{ad}).$$

## PROJECTION ONTO UNIT VECTORS

Definition of dot product:

$$\mathbf{A} \cdot \mathbf{B} = ||\mathbf{A}||_2 ||\mathbf{B}||_2 \cos \theta$$

• If B is a unit vector, dot product is length of the projection

$$\mathbf{A} \cdot \mathbf{B} = ||\mathbf{A}||_2 \cos \theta$$

Projection of A onto B (vector):

$$(\mathbf{A} \cdot \mathbf{B})$$
B

Coefficient / score



https://en.wikipedia.org/wiki/Dot\_product

### EXAMPLE: US ARRESTS DATASET

- 50 states with 4 features
  - Number of arrests per 100,000 residents for Murder, Assault, Rape
  - Percent of population living in urban areas (UrbanPop)

| 1  |             | Murder | Assault | UrbanPop | Rape |
|----|-------------|--------|---------|----------|------|
| 2  | Alabama     | 13.2   | 236     | 58       | 21.2 |
| 3  | Alaska      | 10     | 263     | 48       | 44.5 |
| 4  | Arizona     | 8.1    | 294     | 80       | 31   |
| 5  | Arkansas    | 8.8    | 190     | 50       | 19.5 |
| 6  | California  | 9      | 276     | 91       | 40.6 |
| 7  | Colorado    | 7.9    | 204     | 78       | 38.7 |
| 8  | Connecticut | 3.3    | 110     | 77       | 11.1 |
| 9  | Delaware    | 5.9    | 238     | 72       | 15.8 |
| 10 | Florida     | 15.4   | 335     | 80       | 31.9 |
| 11 | Georgia     | 17.4   | 211     | 60       | 25.8 |

## EXAMPLE: US ARRESTS (BIPLOT)

|          | PC1       | PC2        |
|----------|-----------|------------|
| Murder   | 0.5358995 | -0.4181809 |
| Assault  | 0.5831836 | -0.1879856 |
| UrbanPop | 0.2781909 | 0.8728062  |
| Rape     | 0.5434321 | 0.1673186  |

Biplot: displays both principal component scores and principal component loadings.



#### PCA: IST PC

 Ist PC of X is unit vector that maximizes the sample variance compared to all other unit vectors

$$\mathbf{v}_1 = \operatorname{argmax}_{||\mathbf{v}||_2 = 1} (\mathbf{X}\mathbf{v})^{\top} (\mathbf{X}\mathbf{v})$$

- 1st PC score:  $\mathbf{X}\mathbf{v}_1$
- Variance explained by first PC:  $(\mathbf{X}\mathbf{v}_1)^{\top}(\mathbf{X}\mathbf{v}_1)/n$

### PCA: NEXT PC

- Idea: Successively find orthogonal directions of highest variance
- Why orthogonal?
  - Want to minimize redundancy
  - · Want to look at variance in different direction
  - Computation is easier

### PCA: 2ND PC

• 2nd PC of X is unit vector that is orthogonal to the 1st PC such that it maximizes the sample variance compared to all other unit vectors that are orthogonal to the 1st PC

$$\mathbf{v}_2 = \operatorname{argmax}_{||\mathbf{v}||_2 = 1, \mathbf{v}^{\top} \mathbf{v}_1 = 0} (\mathbf{X} \mathbf{v})^{\top} (\mathbf{X} \mathbf{v})$$

- 2nd PC score:  $\mathbf{X}\mathbf{v}_2$
- Variance explained by 2nd PC:  $(\mathbf{X}\mathbf{v}_2)^{\top}(\mathbf{X}\mathbf{v}_2)/n$

### PCA: PROBLEM FORMULATION

Recall 1st and 2nd PC

$$\mathbf{v}_1 = \underset{||\mathbf{v}||_2 = 1}{\operatorname{argmax}} (\mathbf{X} \mathbf{v})^{\top} (\mathbf{X} \mathbf{v})$$
$$\mathbf{v}_2 = \underset{||\mathbf{v}||_2 = 1, \mathbf{v}^{\top} \mathbf{v}_1 = 0}{\operatorname{argmax}} (\mathbf{X} \mathbf{v})^{\top} (\mathbf{X} \mathbf{v})$$

• Find orthonormal vectors that maximizes variance (assuming **X** is zero-centered)

### PCA: PROBLEM FORMULATION

• Given a feature matrix  $\mathbf{X}$  with n data points, find  $\mathbf{W}$  such that  $||\mathbf{W}||_2 = 1$  and the  $Var(\mathbf{X}\mathbf{W})$  is maximized and  $\mathbf{W}$  consists of orthonormal vectors

$$Var(\mathbf{X}\mathbf{W}) = \frac{1}{N} (\mathbf{W}^{\top}(\mathbf{X} - \mu_{\mathbf{X}})^{\top}(\mathbf{X} - \mu_{\mathbf{X}})\mathbf{W})$$
$$= \mathbf{W}^{\top} \mathbf{\Sigma}_{\mathbf{X}} \mathbf{W}$$

Sample covariance matrix

• The solution is the Eigenvectors of the covariance matrix

## EXAMPLE: COVARIANCE MATRIX



# REVIEW: EIGENVALUES + EIGENVECTORS

- Eigenvector and eigenvalue  $\mathbf{A}\mathbf{x} = \lambda\mathbf{x}$
- Analogy: Matrix is a gust of wind (invisible force with visible result)
  - Eigenvector is like a weathervane which tells you the direction the wind is blowing in
  - Eigenvalue is just the scalar coefficient
- Eigenvectors of a symmetric matrix are orthonormal



## BASIC PCA ALGORITHM

- Start with a zero-centered m x n data matrix X
- Compute covariance matrix
- Find eigenvectors of covariance matrix
- PCs: k eigenvectors with highest eigenvalues (variance)

## EXAMPLE: FOOD NUTRITION

- What is the best way to differentiate food items?
  - Vitamin content
  - Protein levels
  - Fat
  - Fiber



https://algobeans.com/2016/06/15/principal-component-analysis-tutorial/

# **EXAMPLE: PCA**

|           | PC1   | PC2  | PC3   | PC4   |
|-----------|-------|------|-------|-------|
| Fat       | -0.45 | 0.66 | 0.58  | 0.18  |
| Protein   | -0.55 | 0.21 | -0.46 | -0.67 |
| Fiber     | 0.55  | 0.19 | 0.43  | -0.69 |
| Vitamin C | 0.44  | 0.70 | -0.52 | 0.22  |



1st Principal Component

https://algobeans.com/2016/06/15/principal-component-analysis-tutorial/

## PCA: # OF PCS?

• How many components are sufficient to summarize the data?

## PROPORTION VARIANCE EXPLAINED

• Total variance in data (assuming zero mean):

$$Var(\mathbf{X}) = \sum_{j=1}^{p} \frac{1}{n} \sum_{i=1}^{n} x_{ij}^{2}$$

Variance explained by the m<sup>th</sup> component:

$$\operatorname{Var}(\mathbf{W}_m) = \frac{1}{n} \sum_{i=1}^n w_{im}^2$$

Proportion of variance explained by m<sup>th</sup> component :

$$PVE_m = \frac{Var(\mathbf{W}_m)}{Var(\mathbf{X})}$$

# PCA: SCREE PLOT (UNSUPERVISED)



# USE PCA FOR SUPERVISED LEARNING



## PCA: INTERPRETATION

- If variances of PCs drop off quickly, then X is highly collinear
- Reduce dimensionality of data by keeping only the PCs with highest variance



https://plot.ly/ipython-notebooks/principal-component-analysis/

## PCA: SKLEARN

```
from sklearn.decomposition import PCA as sklearnPCA
sklearn_pca = sklearnPCA(n_components=2)
Y_sklearn = sklearn_pca.fit_transform(X_std)
```

## HOMEWORK #5

- Due II/16@ II:59 PM ET on Gradescope
- 2 questions
  - PCA
  - Almost Random Forest



## DEMO: PCA-EXAMPLE.IPYNB

HTTPS://COLAB.RESEARCH.GOOGLE.COM/DRIVE/12VDO-JD0PVFLVZZLI2FT50DYESJ8V6WW