

## UNIVERSIDADE FEDERAL DO CEARÁ CAMPUS MUCAMBINHO – SOBRAL ALGEBRA LINEAR

| Nome: | Data: / / |   |
|-------|-----------|---|
|       |           | _ |
|       |           |   |
|       |           |   |

Matrícula:\_\_\_\_\_

1. (1 pts) Seja W o subespaço de M(3,2) gerado por:

$$\begin{bmatrix} 0 & 0 \\ 1 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & -1 \\ 1 & 0 \end{bmatrix} e \begin{bmatrix} 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}. \text{ O vetor } \begin{bmatrix} 0 & 2 \\ 3 & 4 \\ 5 & 0 \end{bmatrix} \text{ pertence a } W?$$

- 2. (2 pts) Seja V o espaço vetorial de matrizes 2x2 triangulares superiores. Sejam  $\beta_1 = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$  e  $\beta_2 = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \right\}$ . Determine:
- a)  $[I]_{\beta_2}^{\beta_1}$ .
- b)  $[I]_{\beta_1}^{\beta_2}$ .
- 3. (1 pts) Ache a transformação linear  $T: \mathbb{R}^2 \to \mathbb{R}^3$  tal que T(1,1) = (3,2,1) e T(0,-2) = (0,1,0).
- 4. (2 pts) Sejam  $\alpha = \{(0,2), (2,-1)\}$  e  $\beta = \{(1,1,0), (0,0,-1), (1,0,1)\}$  bases de  $\mathbb{R}^2$  e  $\mathbb{R}^3$ . Seja

$$[S]^{\alpha}_{\beta} = \begin{bmatrix} 2 & 0 \\ 4 & 0 \\ 0 & -4 \end{bmatrix}$$

Dê a expressão para S(x, y).

5. (4 pts) Sejam:

$$A = \begin{bmatrix} 0 & 1 \\ 0 & 2 \\ 0 & 1 \end{bmatrix} e B = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 2 & 1 \\ -1 & 0 & 0 \end{bmatrix}$$

- a) Encontre o núcleo, a imagem e as dimensões de  $T_A$ .
- b) Encontre o núcleo, a imagem e as dimensões de  $T_B$ .
- c) Encontre o núcleo, a imagem e as dimensões de  $[T_B \circ T_A]$ .