SPEC

Spec No.	TQ3C-8EAF0-E1YAC32-01
Date	October 24, 2014

TYPE: TCG121SVLPAANN-AN00

< 12.1 inch SVGA transmissive color TFT with LED backlight>

CONTENTS

- 1. Application
- 2. Construction and outline
- 3. Mechanical specifications
- 4. Absolute maximum ratings
- 5. Electrical characteristics
- 6. Optical characteristics
- 7. Interface signals
- 8. Input timing characteristics
- 9. Backlight characteristics
- 10. Lot number identification
- 11. Warranty
- 12. Precautions for use
- 13. Reliability test data
- 14. Outline drawing

KYOCERA DISPLAY CORPORATION

This specification is subject to change without notice.

Consult Kyocera before ordering.

Original	Designed by: I	Engineering dep	Confirmed by: QA dept.		
Issue Date	Prepared	Checked	Approved	Checked	Approved
December 7, 2011	X. Janimuka	y Yamazaki	W. Yano	O. Sato	1-Hamars

Spec No.	Part No.	Page
TQ3C-8EAF0-E1YAC32-01	TCG121SVLPAANN-AN00	-

Warning

- 1. This Kyocera LCD module has been specifically designed for use only in electronic devices and industrial machines in the area of audio control, office automation, industrial control, home appliances, etc. The module should not be used in applications where the highest level of safety and reliability are required and module failure or malfunction of such module results in physical harm or loss of life, as well as enormous damage or loss. Such fields of applications include, without limitation, medical, aerospace, communications infrastructure, atomic energy control. Kyocera expressly disclaims any and all liability resulting in any way to the use of the module in such applications.
- 2. Customer agrees to indemnify, defend and hold Kyocera harmless from and against any and all actions, claims, damages, liabilities, awards, costs, and expenses, including legal expenses, resulting from or arising out of Customer's use, or sale for use, or Kyocera modules in applications.

Caution

1. Kyocera shall have the right, which Customer hereby acknowledges, to immediately scrap or destroy tooling for Kyocera modules for which no Purchase Orders have been received from the Customer in a two-year period.

Spec No.	Part No.	Page
TQ3C-8EAF0-E1YAC32-01	TCG121SVLPAANN-AN00	-

Revision record

	Revision record						
	Date	Design	ed by:	Engineering d	lept.	Confirmed by : QA dept.	
	Date	Prep	ared	Checked	Approved	Checked	Approved
Octob	per 24, 2014	X. Ja	Janimus J. Yamazaki W. Yano D. Sato I.				
Rev.No.	Date	Page			Descripti	ons	
01	Oct 24,2014	_	chang	e KYOCERA Co →KYOO	ORPORATION		
		15	9.Bacl	klight character		70 000ls \1/	20 0001-
				change Operat	ing life time 1	yp 70,000n →10	50,000n

Spec No.	Part No.	Page
TQ3C-8EAF0-E1YAC32-01	TCG121SVLPAANN-AN00	1

1. Application

This document defines the specification of TCG121SVLPAANN-AN00. (RoHS Compliant)

2. Construction and outline

LCD : Transmissive color dot matrix type TFT

Backlight system : LED

Polarizer : Anti-Glare treatment

Interface : LVDS

Additional circuit : Timing controller, Power supply (3.3V input)

(without constant current circuit for LED Backlight)

3. Mechanical specifications

Item	Specification	Unit
Outline dimensions 1)	278.3(W)×(207.5)(H)×9.5(D)	mm
Active area	246(W)×184.5(H) (30.8cm/12.1 inch(Diagonal))	mm
Dot format	800×(R,G,B)(W)×600(H)	dot
Dot pitch	0.1025(W)×0.3075(H)	mm
Base color 2)	Normally White	-
Mass	645	g

- 1) Projection not included. Please refer to outline for details.
- 2) Due to the characteristics of the LCD material, the color varies with environmental temperature.

Spec No.	Part No.	Page
TQ3C-8EAF0-E1YAC32-01	TCG121SVLPAANN-AN00	2

4. Absolute maximum ratings

4-1. Electrical absolute maximum ratings

Item	Symbol	Min.	Max.	Unit	
Supply voltage(+3.3V)	V_{DD}	-0.3	4.0	V	
	RxINi+, RxINi- 2)	V_{I1}	-0.3	2.8	V
Input signal Voltage 1)	CK IN+, CK IN-	V_{I2}	-0.3	2.8	V
	SELLVDS	V_{I3}	-0.3	V _{DD} +0.5	V
LED forward current 3)	BLBRT, BLEN	V_{I4}	-0.3	$V_{\rm IN}$	V

- 1) When power source is correctly supplied
- 2) i=0,1,2,3
- 3) For each "AN-CA"

4-2. Environmental absolute maximum ratings

Item		Symbol	Min.	Max.	Unit
Operating temperature	1)	Тор	-20	70	$^{\circ}\mathrm{C}$
Storage temperature	2)	T_{STO}	-30	80	$^{\circ}\mathrm{C}$
Operating humidity	3)	Нор	10	4)	%RH
Storage humidity	3)	Нѕто	10	4)	%RH
Vibration		-	5)	5)	-
Shock		-	6)	6)	-

1) Operating temperature is to warrant only the temperature of performance to define the temperature of the center of display including self-heating.

Since display performance is evaluated at 25°C, another temperature range should be confirmed.

2) Temp. = -30° C < 48h, Temp. = 80° C < 168h

Store LCD at normal temperature/humidity. Keep them free from vibration and shock. An LCD that is kept at a low or a high temperature for a long time can be defective due to other conditions, even if the low or high temperature satisfies the standard.

(Please refer to "Precautions for Use" for details.)

- 3) Non-condensing
- 4) Temp. ≤ 40°C, 85%RH Max.

Temp. > 40°C, Absolute humidity shall be less than 85%RH at 40°C.

5)

Frequency	10∼55 Hz	Acceleration value
Vibration width	0.15mm	$(0.3\sim 9 \text{ m/s}^2)$
Interval	10-55-10	Hz 1 minutes

2 hours in each direction X, Y, Z (6 hours total)

EIAJ ED-2531

Non-operating

6) Acceleration: 490 m/s², Pulse width: 11 ms

3 times in each direction: $\pm X$, $\pm Y$, $\pm Z$

EIAJ ED-2531

Non-operating

Spec No.	Part No.	Page
TQ3C-8EAF0-E1YAC32-01	TCG121SVLPAANN-AN00	3

5. Electrical characteristics

5-1. LCD

Temp. = $-20 \sim 70$ °C

					remp.	-20° 70 C
Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Supply voltage 1)	$V_{ m DD}$	-	3.0	3.3	3.6	V
Current consumption	$I_{ m DD}$	2)	-	280	340	mA
Permissive input ripple voltage	V_{RP}	V_{DD} =3.3 V	-	-	100	mVp-p
I and a second and the second	$V_{\rm IL}$	"Low" level	0	-	0.8	V
Input signal voltage 3)	$V_{\rm IH}$	"High" level	2.0	-	$V_{ m DD}$	V
I and male many	Iol	V _{I3} =0V	-10	-	10	μ A
Input reek current	Іон	V _{I3} =3.3V	-	-	400	μΑ
LVDS Input voltage 4)	$V_{\rm L}$	-	0	-	1.9	V
Differential input voltage	V_{ID}	-	250	350	480	mV
Differential input 4)	V _{TL}	"Low" level	V _{CM} -100	-	-	mV
threshold voltage 4)	V _{TH}	"High" level	-	-	V _{CM} +100	mV
Terminator	R_1	-	-	100	-	Ω
	t1	-	0.02	-	10	ms
	t2	-	0	-	-	ms
	t3	-	0	-	-	ms
17	t4	-	0.5	-	-	s
V _{DD} -turn-on conditions 1)	t5	-	200		-	ms
	t6	-	200	-	-	ms
	t7		0		10	s
	t8		0			ms

1) V_{DD} -turn-on conditions

Spec No.	Part No.	Page
TQ3C-8EAF0-E1YAC32-01	TCG121SVLPAANN-AN00	4

2) Display pattern:

$$V_{DD} = 3.3V$$
, Temp. = 25°C

3) Input signal: SELLVDS

4) Input signal: RxIN3+, RxIN3-, RxIN2+, RxIN2-, RxIN1+, RxIN1-,

5) V_{CM} : LVDS Common mode voltage (V_{CM} =1.25V)

Spec No.	Part No.	Page
TQ3C-8EAF0-E1YAC32-01	TCG121SVLPAANN-AN00	5

6. Optical characteristics

Measuring spot = ϕ 6.0mm, Temp. = 25°C

Item		Symbol	Condition	Min.	Тур.	Max.	Unit
D 4:	Rise	Τr	$\theta = \phi = 0$ °		4		ms
Response time	Down	τd	$\theta = \phi = 0$ °	_	22	_	ms
		θ upper		_	80	_	1
Viewing angle View direction	range	θ lower	CD > 10	_	80	_	deg
: 6 o'cloc		ϕ LEFT	CR≧10	_	80	_	1
(Gray in	version)	φ right		_	80	_	deg
Contrast ratio	Contrast ratio		$\theta = \phi = 0^{\circ}$	700	1000	_	_
Brightness	Brightness		IF=60mA/Line	350	500	_	cd/m²
		X	$\theta = \phi = 0$ °	0.560	0.610	0.660	
	Red	У		0.300	0.350	0.400	
	C	x		0.280	0.330	0.380	
Chromaticity	Green	У	$\theta = \phi = 0^{\circ}$	0.510	0.560	0.610	
coordinates	DI	X	0 - 1 -00	0.100	0.150	0.200	_
	Blue	У	$\theta = \phi = 0^{\circ}$	0.070	0.120	0.170	
	White x y	X	0 1 00	0.245	0.295	0.345	
		$\theta = \phi = 0$ °	0.265	0.315	0.365		

6-1. Definition of contrast ratio

CR(Contrast ratio) = Brightness with all pixels "White"
Brightness with all pixels "Black"

6-2. Definition of response time

Spec No.	Part No.	Page
TQ3C-8EAF0-E1YAC32-01	TCG121SVLPAANN-AN00	6

6-3. Definition of viewing angle

6-4. Brightness measuring points

- 1) Rating is defined as the white brightness at center of display screen(3).
- 2) The brightness uniformity is calculated by using following formula.

Brightness uniformity =
$$\frac{\text{Minimum brightness from 1 to 5}}{\text{Maximum brightness from 1 to 5}} \times 100 [\%]$$

3) 5 minutes after LED is turned on. (Ambient Temp.=25°C)

Spec No.	Part No.	Page
TQ3C-8EAF0-E1YAC32-01	TCG121SVLPAANN-AN00	7

7. Interface signals

7-1. Interface signals

No.	Symbol	Description	Note
1	GND	GND	
2	SELLVDS	Mode select signal(LVDS Data mapping)	
3	GND	GND	
4	GND	GND	
5	RxIN3+	LVDS receiver signal CH3(+)	LVDS
6	RxIN3-	LVDS receiver signal CH3(-)	LVDS
7	GND	GND	
8	CK IN+	LVDS receiver signal CK(+)	LVDS
9	CK IN-	LVDS receiver signal CK(-)	LVDS
10	GND	GND	
11	RxIN2+	LVDS receiver signal CH2(+)	LVDS
12	RxIN2-	LVDS receiver signal CH2(-)	LVDS
13	GND	GND	
14	RxIN1+	LVDS receiver signal CH1(+)	LVDS
15	RxIN1-	LVDS receiver signal CH1(-)	LVDS
16	GND	GND	
17	RxIN0+	LVDS receiver signal CH0(+)	LVDS
18	RxIN0-	LVDS receiver signal CH0(-)	LVDS
19	GND	GND	
20	GND	GND	
21	$V_{ m DD}$	+3.3V power supply	
22	$V_{ m DD}$	+3.3V power supply	
23	AN1	Anode1	
24	AN2	Anode2	
25	AN3	Anode3	
26	NC	NC	
27	NC	NC	
28	CA3	Cathode3	
29	CA2	Cathode2	
30	CA1	Cathode1	

LCD connector : FI-X30SSLA-HF (JAE)

Plate specification : Au

Matching connector : FI-X30HL (JAE)

FI-X30HL-T (JAE) FI-X30C2L-NPB (JAE) FI-X30C2L-T-NPB (JAE)

LVDS receiver : Embedded in ASIC

Matching LVDS transmitter : THC63LVDM83R(THine Electronics) or compatible

Spec No.	Part No.	Page
TQ3C-8EAF0-E1YAC32-01	TCG121SVLPAANN-AN00	8

7-2. Data mapping(6bit RGB input)

1) Location of SELLVDS (THC63LVDM83R(THine Electronics) or compatible)

Transmitter		2Pin SELLVDS		
Pin No.	Data	= L(GND) or OPEN	= H(3.3V)	
51	TA0	_	R0(LSB)	
52	TA1	_	R1	
54	TA2	_	R2	
55	TA3	_	R3	
56	TA4	_	R4	
3	TA5	_	R5(MSB)	
4	TA6	_	G0(LSB)	
6	TB0	_	G1	
7	TB1	_	G2	
11	TB2	_	G3	
12	TB3	_	G4	
14	TB4	_	G5(MSB)	
15	TB5	_	B0(LSB)	
19	TB6	_	B1	
20	TC0	_	B2	
22	TC1	_	В3	
23	TC2	_	B4	
24	TC3	_	B5(MSB)	
27	TC4	_	(HS)	
28	TC5	_	(VS)	
30	TC6	_	DE	
50	TD0	_	GND	
2	TD1	_	GND	
8	TD2	_	GND	
10	TD3	_	GND	
16	TD4	_	GND	
18	TD5	_	GND	
25	TD6	_	GND	

SELLVDS=H(3.3V)

DE: DATA ENABLE

 $HS: H_{SYNC}$ $VS: V_{SYNC}$

There are no problem to input Vsync and Hsync but recommend to use by fixed "H".

Spec No.	Part No.	Page
TQ3C-8EAF0-E1YAC32-01	TCG121SVLPAANN-AN00	9

2) Block Diagram

SELLVDS=H(3.3V)

When using "6-bit Transmitter", please note that you are required to do the process of "surplus receiver" as following chart.

Spec No.	Part No.	Page
TQ3C-8EAF0-E1YAC32-01	TCG121SVLPAANN-AN00	10

7-3. Data mapping(8bit RGB input)

1) Location of SELLVDS (THC63LVDM83R(THine Electronics) or compatible)

	mitter		ELLVDS
Pin No.	Data	= L(GND) or OPEN	= H(3.3V)
51	TA0	R0(LSB)	R2
52	TA1	R1	R3
54	TA2	R2	R4
55	TA3	R3	R5
56	TA4	R4	R6
3	TA5	R5	R7(MSB)
4	TA6	G0(LSB)	G2
6	TB0	G1	G3
7	TB1	G2	G4
11	TB2	G3	G5
12	TB3	G4	G6
14	TB4	G5	G7(MSB)
15	TB5	B0(LSB)	B2
19	TB6	B1	В3
20	TC0	B2	B4
22	TC1	В3	B5
23	TC2	B4	В6
24	TC3	B5	B7(MSB)
27	TC4	(HS)	(HS)
28	TC5	(VS)	(VS)
30	TC6	DE	DE
50	TD0	R6	R0(LSB)
2	TD1	R7(MSB)	R1
8	TD2	G6	G0(LSB)
10	TD3	G7(MSB)	G1
16	TD4	В6	B0(LSB)
18	TD5	B7(MSB)	B1
25	TD6	(NA)	(NA)

SELLVDS=L(GND) or OPEN

DE: DATA ENABLE

 $HS: H_{SYNC}$ $VS: V_{SYNC}$

There are no problem to input Vsync and Hsync but recommend to use by fixed "H".

Spec No.	Part No.	Page
TQ3C-8EAF0-E1YAC32-01	TCG121SVLPAANN-AN00	11

DE: DATA ENABLE

 $\begin{array}{l} HS: H_{SYNC} \\ VS: V_{SYNC} \end{array}$

There are no problem to input Vsync and Hsync but recommend to use by fixed "H".

2) Block Diagram

SELLVDS=L(GND) or OPEN

Spec No.	Part No.	Page
TQ3C-8EAF0-E1YAC32-01	TCG121SVLPAANN-AN00	12

SELLVDS=H(3.3V)

Spec No.	Part No.	Page
TQ3C-8EAF0-E1YAC32-01	TCG121SVLPAANN-AN00	13

8. Input timing characteristics

8-1. Timing characteristics

	Item	Symbol	Min.	Typ.	Max.	Unit	Note
Clock (CK)	Clock (CK) Frequency			40	48	MHz	
	Horizontal Period	Th -	860	1056	1395	Тс	
	norizontal Feriod		24.0	26.4	-	μ s	1)
Enable signal (DE)	Horizontal display period	Thd		800		Тс	
(DII)	Vertical Period	Tv	610	628	1024	Th	
	Vertical display period	Tvd		600		Th	
Refresh rate	fv	50	60	70	Hz	2)	

- 1) Please set a clock frequency, a vertical dormant period, and the horizontal dormant period so that the Horizontal Period should not reach less than Min. value.
- 2) If the refresh rate reach less than Min. value, the deterioration of the display quality, flicker etc., may occur.(fv=1/Tv)

Vertical Timing Diagram

8-2. Input Data Signals and Display position on the screen

Spec No.	Part No.	Page
TQ3C-8EAF0-E1YAC32-01	TCG121SVLPAANN-AN00	14

8-3. Relation between input signal and displays color

Displa	y colors		Data signal (0:Low level, 1:High le																						
Dispia		R7	R6	R5	R4	R3	R2	R1	R0	G7	G6	G5	G4	G3	G2	G1	G0	В7	В6	B5	B4	В3	B2	B1	В0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
œ	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
lor	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
00	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Basic colors	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Ba	Cyan	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ale		0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
scs	dark	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Red gray scale	1						:								:								:		
96 56	↓ hwiadh+	1	1	1	1	1	1	0	1	0	0	0	0	Λ	: 0	0	0	0	0	0	0	0	:	0	0
Rec	bright	1 1	1	1	1	1	1	0 1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
de	Diack	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
sca	dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
ay	1		Ü	O	O			O	O	ľ	O	Ü	O	Ü		-	O		Ü	O	O			Ü	O
Green gray scale	į																								
eer	bright	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0
Gr		0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ule		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
sca	dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Blue gray scale	1						:								:								:		
gr	↓						:								:								:		
lue	bright	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1
B		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

S	Spec No.	Part No.	Page
,	TQ3C-8EAF0-E1YAC32-01	TCG121SVLPAANN-AN00	15

9. Backlight characteristics

Item		Symbol	Min.	Тур.	Max.	Unit	Note
Forward current 1)		IF	-	60	-	mA	Ta=-20~70°C
			-	22.0	25.8	V	IF=60mA, Ta=-20°C
Forward voltage	1)	VF	-	21.0	24.7	V	IF=60mA, Ta=25℃
			-	20.4	24.1	V	IF=60mA, Ta=70°C
Operating life time	2), 3)	Т	-	100,000	-	h	IF=60mA, Ta=25°C

- 1) For each "AN-CA"
- 2) When brightness decrease 50% of minimum brightness.

 The average life of a LED will decrease when the LCD is operating at higher temperatures.
- 3) Life time is estimated data.(Condition : IF=60mA, Ta=25 $^{\circ}$ C in chamber).
- 4) An input current below 15mA may reduce the brightness uniformity of the LED backlight. This is because the amount of light from each LED chip is different. Therefore, please evaluate carefully before finalizing the input current.
- 5) LED formation: 7 series, 3 parallel

Spec No.	Part No.	Page
TQ3C-8EAF0-E1YAC32-01	TCG121SVLPAANN-AN00	16

9. Lot number identification

The lot number shall be indicated on the back of the backlight case of each LCD.

No1. - No5. above indicate

- 1. Year code
- 2. Month code
- 3. Date
- 4. Version Number
- 5. Country of origin (Japan or China)

Year	2011	2012	2013	2014	2015	2016
Code	1	2	3	4	5	6

Month	Jan.	Feb.	Mar.	Apr.	May	Jun.	
Code	1	2	3	4	5	6	

Month	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.
Code	7	8	9	X	Y	Z

10. Warranty

10-1. Incoming inspection

Please inspect the LCD within one month after your receipt.

10-2. Production warranty

Kyocera warrants its LCD's for a period of 12 months from the ship date. Kyocera shall, by mutual agreement, replace or re-work defective LCD's that are shown to be Kyocera's responsibility.

Spec No.	Part No.	Page
TQ3C-8EAF0-E1YAC32-01	TCG121SVLPAANN-AN00	17

11. Precautions for use

11-1. Installation of the LCD

- 1) Please ground either of the mounting (screw) holes located at each corner of an LCD, in order to stabilize brightness and display quality.
- 2) A transparent protection plate shall be added to protect the LCD and its polarizer.
- 3) The LCD shall be installed so that there is no pressure on the LSI chips.
- 4) The LCD shall be installed flat, without twisting or bending.

11-2. Static electricity

- 1) Since CMOS ICs are mounted directly onto the LCD glass, protection from static electricity is required.
- 2) Workers should use body grounding. Operator should wear ground straps.

11-3. LCD operation

1) The LCD shall be operated within the limits specified. Operation at values outside of these limits may shorten life, and/or harm display images.

11-4. Storage

- 1) The LCD shall be stored within the temperature and humidity limits specified. Store in a dark area, and protect the LCD from direct sunlight or fluorescent light.
- 2) Always store the LCD so that it is free from external pressure onto it.

11-5. Usage

- 1) <u>DO NOT</u> store in a high humidity environment for extended periods. Polarizer degradation bubbles, and/or peeling off of the polarizer may result.
- 2) The front polarizer is easily scratched or damaged. Prevent touching it with any hard material, and from being pushed or rubbed.
- 3) The LCD screen may be cleaned by wiping the screen surface with a soft cloth or cotton pad using a little Ethanol.
- 4) Water may cause damage or discoloration of the polarizer. Clean condensation or moisture from any source immediately.
- 5) Always keep the LCD free from condensation during testing. Condensation may permanently spot or stain the polarizer.
- 6) Do not disassemble LCD because it will result in damage.
- 7) This Kyocera LCD has been specifically designed for use in general electronic devices, but not for use in a special environment such as usage in an active gas. Hence, when the LCD is supposed to be used in a special environment, evaluate the LCD thoroughly beforehand and do not expose the LCD to chemicals such as an active gas.
- 8) Please do not use solid-base image pattern for long hours because a temporary afterimage may appear. We recommend using screen saver etc. in cases where a solid-base image pattern must be used.
- 9) Liquid crystal may leak when the LCD is broken. Be careful not to let the fluid go into your eyes and mouth. In the case the fluid touches your body; rinse it off right away with water and soap.

Spec No.	Part No.	Page
TQ3C-8EAF0-E1YAC32-01	TCG121SVLPAANN-AN00	18

12. Reliability test data

Test item	Test condition	Test time	Jud	gement
High temp. atmosphere	80°C	240h	Display function Display quality Current consumption	: No defect : No defect : No defect
Low temp. atmosphere	-30°C	240h	Display function Display quality Current consumption	: No defect : No defect : No defect
High temp. humidity atmosphere	40°C 90% RH	240h	Display function Display quality Current consumption	: No defect : No defect : No defect
Temp. cycle	-30°C 0.5h R.T. 0.5h 80°C 0.5h	10cycles	Display function Display quality Current consumption	: No defect: No defect: No defect
High temp. operation 70°C		500h	Display function Display quality Current consumption	No defectNo defectNo defect

- 1) Each test item uses a test LCD only once. The tested LCD is not used in any other tests.
- 2) The LCD is tested in circumstances in which there is no condensation.
- 3) The reliability test is not an out-going inspection.
- 4) The result of the reliability test is for your reference purpose only.

 The reliability test is conducted only to examine the LCD's capability.

Spec No.	TQ3C-8EAF0-E2YAC32-01
Date	October 24, 2014

KYOCERA INSPECTION STANDARD

TYPE: TCG121SVLPAANN-AN00

KYOCERA DISPLAY CORPORATION

Original	Designed by : Engineering dept.			Confirmed by : QA dept.	
Issue Date	Prepared	Checked	Approved	Checked	Approved
December 7, 2011	K. Janimuka	Y. Yamazaki	W. Yano	O. Sato	1-Hamars

Spec No.	Part No.	Page
TQ3C-8EAF0-E2YAC32-01	TCG121SVLPAANN-AN00	-

Revision record

	Kevision record						
Date		Design	ed by:	Engineering of	lept.	Confirmed by	: QA dept.
		Prepa	ared	Checked	Approved	Checked	Approved
Octo	ber 24, 2014	X. Yas	animuka y. Yamazaki W. Yano D. Sato I. Ham			1. Hamars	
Rev.No.	Date	Page			Descripti	ons	
01	Oct 24,2014	_	chang	e KYOCERA C	ORPORATION	LCD DIVISIO	
						Y CORPORAT	
		1	chang	e "Definition of	'inspection iter	m" Bright dot d	efect

Spec No.	Part No.	Page
TQ3C-8EAF0-E2YAC32-01	TCG121SVLPAANN-AN00	1

Visuals specification

1) Note

1) Note			Note				
General	1. Custom	er identified anomalies not	t defined within this inspection standard shall be				
	reviewed by Kyocera, and an additional standard shall be determined by mutual consent.						
	2. This inspection standard about the image quality shall be applied to any defect within the						
	effective viewing area and shall not be applicable to outside of the area.						
		ion conditions	or so applicable to calciae of the area.				
	Lumina		: 500 Lux min.				
		ion distance	: 300 mm.				
	Temper		: 300 mm. : 25 ± 5℃				
	Direction		Directly above				
Definition of	Dot defect						
	Dot defect	Bright dot defect	The dot is constantly "on" when power applied to the				
inspection			LCD, even when all "Black" data sent to the screen.				
item			Inspection tool: 5% Transparency neutral density filter.				
			Count dot: If the dot is visible through the filter.				
			Don't count dot: If the dot is not visible through the				
			filter.				
			There is an electrode in the middle of the dot				
			RGBRGBRGB and one dot is shown in the left drawing.				
		Dlask datas	 				
		Black dot defect	The dot is constantly "off" when power applied to the				
			LCD, even when all "White" data sent to the screen.				
		White det	Similar size compared to bright dot.				
		White dot	Pixel works electrically, however, circular/foreign				
		(Circular/foreign	particle makes dot appear to be "on" even when all				
		particle)	"Black" data is sent to the screen.				
		Adjacent dot	Adjacent dot defect is defined as two or more bright dot				
			defects or black dot defects.				
			RGBRGB				
			RGBRGB				
			R G B R G B R G B				
	External	Bubble, Scratch,	Visible operating (all pixels "Black" or "White") and non				
	inspection	Foreign particle	operating.				
		(Polarizer, Cell, Backlight)					
		Appearance inspection	Does not satisfy the value at the spec.				
	Others	CFL wires	Damaged to the CFL wires, connector, pin, functional				
	0 011015	or B wiles	failure or appearance failure.				
	Definition	Definition of cir					
	of size		-				
		()	<u> </u>				
							
		 ° →	• •				
		d = (a + b)	0)/2				

Spec No.	Part No.	Page
TQ3C-8EAF0-E2YAC32-01	TCG121SVLPAANN-AN00	2

2) Standard

2) Standar	rd							
Classif	ication	Inspect	ion item	Judgement standard				
Defect	Dot	Bright dot	defect	Acceptable number : 4				
(in LCD	defect			Bright dot spacing : 5 mm		or more		
glass)		Black dot defect		Acceptable number : 5				
				Black dot spacing	or more			
		2 dot join	Bright dot defect	Acceptable number				
			Black dot defect	Acceptable number		: 3	3	
		2 00 00 00		Acceptable number		: 0		
		3 or more						
	0.1	Total dot d		Acceptable number		: 5 Ma	X	
	Others	White dot,	Dark dot		`	Ι .		
		(Circle)		Size (mm		Ac	ceptable number	
				$\begin{array}{c c} & d \leq \\ \hline 0.2 < d \leq \end{array}$			(Neglected)	
				$0.2 < d \le 0.4 $			5 3	
				$0.4 < d \equiv 0.5 < d$	0.0		0	
				0.5 \ u			U	
External	inspection	Polarizer (Scratch)					
(Defect on	L			Width (mm)	Width (mm) Length (mm)		Acceptable number	
Polarizer	or			$W \leq 0.1$	_		(Neglected)	
between F	Polarizer			$0.1 < W \le 0.3$		≦ 5.0	(Neglected)	
and LCD	glass)				5.0 < L		0	
				0.3 < W	_		0	
		Polarizer (Bubble)					
				Size (mm	Size (mm)		ceptable number	
				d ≦	0.2	(Neglected)		
				$0.2 < d \le 0.3$		5		
				0.3 < d ≦	0.5		3	
				0.5 < d			0	
		Foreign pa	rticle					
		(Circular	shape)	Size (mm)		Acceptable number		
					d ≦ 0.2		(Neglected)	
				0.2 < d ≦			5	
				$0.4 < d \le 0.5$		3		
				0.5 < d			0	
		Foreign pa	rticle					
		(Linear s	hape)	Width (mm)	Length	(mm)	Acceptable number	
		Scratch		W ≤ 0.03 -			(Neglected)	
						≤ 2.0	(Neglected)	
				$0.03 < W \le 0.1$	2.0 < L		3	
					4.0 < L		0	
				0.1 < W	_		(According to	
							circular shape)	

