2008 VCAA Mathematical Methods Exam 2 Solutions Free download & print from www.itute.com Do not photocopy ©Copyright 2008 itute.com

SECTION 1: Multiple-choice questions

1	2	3	4	5	6	7	8	9	10	11
Е	С	D	Α	Е	Α	D	D	D	С	D

12	13	14	15	16	17	18	19	20	21	22
В	C	D	Е	C	В	Е	В	В	D	C

Q1 The quotient rule:

$$\frac{d}{dx}\left(\frac{\log_e(2x)}{2x}\right) = \frac{\left(2x\right)\left(\frac{1}{x}\right) - 2\log_e(2x)}{4x^2} = \frac{1 - \log_e(2x)}{2x^2}$$
 E

Q2 Translate y = |x| to the left by 2 units and down by 2 units to obtain y = |x+2| - 2.

Q3
$$3\log_e(2x-3) = 6$$
, $\log_e(2x-3) = 2$, $2x-3 = e^2$,
 $x = \frac{1}{2}(e^2 + 3)$.

Q4
$$\int_{1}^{3} (2f(x)-3)dx = 2\int_{1}^{3} f(x)dx - \int_{1}^{3} 3dx = 2 \times 5 - [3x]_{1}^{3} = 4$$

Q5
$$\mu = np = 1.2$$
, $\sigma^2 = np(1-p)$, $0.72 = 1.2(1-p)$, $p = 0.4$ and $n = 3$.

Q6
$$\int \left(e^{3(x-2)} + \frac{2}{2-x} \right) dx = \frac{1}{3} e^{3(x-2)} - 2\log_e |2-x| + c$$

= $\frac{1}{3} e^{3(x-2)} - 2\log_e |x-2| + c$

Q7
$$y = \frac{1}{\sqrt{x}} - 3$$
, inverse is $x = \frac{1}{\sqrt{y}} - 3$, $\sqrt{y} = \frac{1}{x+3}$,

$$y = \frac{1}{(x+3)^2}$$
, $f^{-1}(x) = \frac{1}{(x+3)^2}$.

Q8
$$f(x) = \frac{x-3}{2-x} = -\left(\frac{x-3}{x-2}\right) = -\left(\frac{x-2-1}{x-2}\right) = -\left(1 - \frac{1}{x-2}\right)$$

= $\frac{1}{x-2} - 1$. Asymptotes: $x = 2$, $y = -1$.

Q9
$$\int_{1}^{3} \left(6x^{2} + \frac{3a}{x^{2}}\right) dx = \left[2x^{3} - \frac{3a}{x}\right]_{1}^{3} = (54 - a) - (2 - 3a)$$

= 52 + 2a.

Q10

The range is
$$\left[\sqrt{2},2\right]$$
,

Q11

Ē

A

D

D

$$Pr(X < 1.5) = \frac{1}{2} \times 1 \times 1 + \frac{1}{2} \times 0.5 \times 0.5 = 0.625$$

Q12 The quotient rule:

$$f'(x) = \frac{2\pi g(x)\cos(2\pi x) - \sin(2\pi x)g'(x)}{[g(x)]^2}$$
B

Q13 Binomial distribution: n = 10, p = 0.30.

$$Pr(X \ge 7) = 1 - Pr(X \le 6) = 1 - binomcdf(10, 0.30, 6) = 0.0106$$
 C

Q14 Pr(allheads) < 0.0005, $0.5^n < 0.0005$,

$$n > \frac{\log_e 0.0005}{\log_e 0.5} = 10.97$$
, : minimum *n* is 11.

Note: < is changed to > because $\log_e 0.5$ has a negative value.

Q15
$$Pr(\{1,2\} \cap \{2,4,6\}) = Pr(\{2\}) = \frac{1}{6}$$
,

$$Pr(\{1,2\})Pr(\{2,4,6\}) = \frac{2}{6} \times \frac{3}{6} = \frac{1}{6}$$
.

$$\therefore$$
 {1,2} and {2,4,6} are independent.

Q16
$$V = \pi r^2 h = \pi 2^2 h = 4\pi h$$
, $\frac{dV}{dt} = 4\pi \frac{dh}{dt}$,

$$\therefore \frac{dh}{dt} = \frac{1}{4\pi} \times \frac{dV}{dt} = \frac{1}{4\pi} \times 2 = \frac{1}{2\pi}.$$

Е

Q17
$$e^{2x} - 2 = e^x$$
, $e^{2x} - e^x - 2 = 0$, $(e^x)^2 - e^x - 2 = 0$, $(e^x - 2)(e^x + 1) = 0$.

Since
$$e^x + 1 > 0$$
, $\therefore e^x - 2 = 0$, $x = \log_e 2$.

Q18
$$\sin(4x)+1 \rightarrow -(\sin(4x)+1) \rightarrow -\left(\sin 4\left(\frac{x}{4}\right)+1\right) = -\sin x - 1$$
.

The domain of the transformed function is $\left[0, \frac{\pi}{2} \times 4\right]$,

i.e.
$$[0,2\pi]$$
.

Q19 The gradient of the antiderivative graph B is the graph of function *f*. B

Q20 Domain $B = \left(\frac{1}{2}, \infty\right)$ makes f a one-to-one function for it to have an inverse function.

Q21
$$y = x^3 - 12x = x(x^2 - 12) = x(x - 2\sqrt{3})(x + 2\sqrt{3}),$$

 $x = 0, \pm 2\sqrt{3}.$

Positive gradient: $x \in (-2\sqrt{3}, -2) \cup (0, 2) \cup (2\sqrt{3}, \infty)$

Q22 For
$$x = 2$$
, $f(x) \neq 0$.

SECTION 2:

Q1ai
$$Pr(SSSSSSSS) = (Pr(S))^8 = 0.80^8 \approx 0.1678$$

Q1aii Binomial: n = 8, p = 0.80,

Pr(X = 6) = binompdf(8,0.80,6) = 0.2936.

Q1aiii Conditional probability:

Let A be the event that the first 4 are successful, and B the event that exactly 6 of the first 8 are successful.

$$\Pr(A \mid B) = \frac{\Pr(A \cap B)}{\Pr(B)} = \frac{0.8^4 \times binompdf(4, 0.8, 2)}{0.2936} \approx 0.214$$
.

В

$$S \xrightarrow{0.84} S$$
, $S \xrightarrow{0.16} S'$, $S' \xrightarrow{0.64} S$, $S' \xrightarrow{0.36} S'$.

$$Pr(SSSSSSS) = 0.84^7 = 0.2951.$$

Q1bii
$$Pr(2ofnext3) = Pr(SSSS') + Pr(SSS'S) + Pr(SS'SS)$$

= $0.84 \times 0.84 \times 0.16 + 0.84 \times 0.16 \times 0.64 + 0.16 \times 0.64 \times 0.84 = 0.2849$

Q1ci
$$y = f(x) = \begin{cases} \frac{1}{64}(6-x)(x-2)(x+2) & if \ 2 \le x \le 6\\ 0 & elsewhere \end{cases}$$

Local maximum (4.31,0.38), graphics calculator.

Q1cii $Pr(X < 3) = \int_{2}^{3} f(x)dx = 0.1211$, graphics calculator.

Q1ciii Mean time = $\int_{2}^{6} xf(x)dx = 4.1333$, graphics calculator.

Q2ai
$$f(1) = 7$$
, $f(a) = \frac{7}{a}$.

D

Gradient of
$$CA = \frac{\frac{7}{a} - 7}{a - 1} = \frac{7(1 - a)}{a(a - 1)} = -\frac{7}{a}$$

Q2aii Gradient of tangent = $f'(x) = -\frac{7}{x^2} = -\frac{7}{a}$ for x > 0.

$$\therefore x^2 = a \,, \ x = \sqrt{a} \,.$$

Q2bi
$$\int_{1}^{e} \frac{7}{x} dx = [7 \log_{e} x]_{1}^{e} = 7 \log_{e} e - 7 \log_{e} 1 = 7$$

Q2bii
$$\int_{b}^{1} \frac{7}{x} dx = [7 \log_{e} x]_{b}^{1} = 7 \log_{e} 1 - 7 \log_{e} b = -7 \log_{e} b = 7$$
.

$$\log_e b = -1, \ b = e^{-1} = \frac{1}{e}.$$

Q2ci

Area of trapezium =
$$\frac{1}{2} \left(7 + \frac{7}{a} \right) (a-1) = \frac{7}{2} \left(1 + \frac{1}{a} \right) (a-1)$$
.

Q2cii
$$\frac{7}{2} \left(1 + \frac{1}{a} \right) (a - 1) = 7$$
, $\left(1 + \frac{1}{a} \right) (a - 1) = 2$.

Expand and simplify to $a^2 - 2a - 1 = 0$, where a > 1. Use the quadratic formula to find $a = 1 + \sqrt{2}$.

Q2ciii $\int_{1}^{a} f(x)dx < 7$, i.e. less than the area of the trapezium,

because the function f(x) is below the line CA between x = 1 and $x = 1 + \sqrt{2}$.

From Q2bi,
$$\int_{1}^{e} f(x)dx = 7$$
,
$$\int_{1}^{a} f(x)dx < \int_{1}^{e} f(x)dx$$
, $\therefore a < e$.

Q3a
$$50\log_e(1+2t) < 100$$
, $\log_e(1+2t) < 2$, $1+2t < e^2$, $t < \frac{1}{2}(e^2 - 1) \approx 3.19453$ hours

or 3hours and 12 minutes (to the nearest minute as required by the question). Tasmania would be killed by then.

Q3b Time required = $\frac{18}{5}$ = 3.6 hours > 3.19453 hours.

Q3c
$$NY = XM = \sqrt{3^2 + x^2} = \sqrt{9 + x^2}$$
.

$$T = \frac{2\sqrt{9 + x^2}}{5} + \frac{18 - 2x}{13} = 2\left(\frac{\sqrt{9 + x^2}}{5} + \frac{9 - x}{13}\right).$$

Q3d
$$\frac{dT}{dx} = 2\left(\frac{x}{5\sqrt{9+x^2}} - \frac{1}{13}\right) = 0 \text{ for } x > 0 ,$$

$$\frac{x}{\sqrt{9+x^2}} = \frac{5}{13}, \frac{x^2}{9+x^2} = \frac{25}{169}, 144x^2 = 225, \therefore x = \frac{5}{4}.$$

Q3e Minimum time =
$$2\left(\frac{\sqrt{9 + \left(\frac{25}{16}\right)^2}}{5} + \frac{9 - \frac{5}{4}}{13}\right) = 2.4923 < 3.19453$$

Q3f Curve AB:
$$z = \frac{16}{d+1}$$
.

Point A: d = 0, z = 16, (0,16).

Point B: d = 1, z = 8.

Point C: d = 1, z = 8 + 16 = 24, (1,24).

Q3g Curve CD: Curve AB is translated to the right by 1 unit and upwards by 8 units. $z = \frac{16}{(d-1)+1} + 8$,

i.e.
$$z = \frac{16}{d} + 8$$
, where $d \in [1,2)$.

Q3h

Day	Z
1	16 to 8
2	24 to 16
3	32 to 24
4	40 to 32
5	48 to 40
6	56 to 48

∴ 6 days.

Q4ai
$$f(x) = \tan\left(\frac{x}{2}\right)$$
, $f'(x) = \frac{1}{2}\sec^2\left(\frac{x}{2}\right)$,
 $f'\left(\frac{\pi}{2}\right) = \frac{1}{2}\sec^2\left(\frac{\pi}{4}\right) = 1$.

Q4aii At
$$x = \frac{\pi}{2}$$
, $y = \tan\left(\frac{\pi}{4}\right) = 1$, $\left(\frac{\pi}{2}, 1\right)$.

Gradient of the normal = -1.

Equation:
$$y-1 = -1\left(x - \frac{\pi}{2}\right)$$
, $y = -x + \frac{\pi}{2} + 1$.

Q4aiii x-intercepts: y = 0, $x = \frac{\pi}{2} + 1$, $\left(\frac{\pi}{2} + 1, 0\right)$.

y-intercepts:
$$x = 0$$
, $y = \frac{\pi}{2} + 1$, $\left(0, \frac{\pi}{2} + 1\right)$.

Q4b
$$f'(x) = f'(\frac{\pi}{2})$$
 when $x = -\frac{\pi}{2}, \frac{\pi}{2}, \frac{3\pi}{2}, \frac{5\pi}{2}$.

Q4c
$$-1 < a < 1$$
, $0 < \frac{1-a}{2} < 1$ and

$$g(1) = f(1-a) = \tan\left(\frac{1-a}{2}\right) = 1$$
.

$$\therefore \frac{1-a}{2} = \frac{\pi}{4}, \ a = 1 - \frac{\pi}{2}.$$

Q4di
$$h(x) = \sin\left(\frac{x}{2}\right) + \tan\left(\frac{x}{2}\right) + 2$$
,

$$h'(x) = \frac{1}{2} \left(\cos \left(\frac{x}{2} \right) + \sec^2 \left(\frac{x}{2} \right) \right).$$

Q4dii
$$h'(x) = \frac{1}{2} \left(\cos \left(\frac{x}{2} \right) + \sec^2 \left(\frac{x}{2} \right) \right) = 0$$
,

$$\cos\left(\frac{x}{2}\right) + \sec^2\left(\frac{x}{2}\right) = 0, \cos\left(\frac{x}{2}\right) + \frac{1}{\cos^2\left(\frac{x}{2}\right)} = 0,$$

$$\cos^3\left(\frac{x}{2}\right) = -1$$
, $\therefore \cos\left(\frac{x}{2}\right) = -1$, $\frac{x}{2} = \pi$, $x = 2\pi$.

Q4e

Please inform mathline@itute.com re conceptual, mathematical and/or typing errors