Homework4 for Mathmatical Image Process

Yiping Lu 1500010638

April 22, 2017

1 Wavelet Based Image Processing

Image Restoration can be considered as solving the inverse problem of

$$Au=f+\eta$$

There are two approaches to process images by wavelets:

• Analysis Approach

$$\min_{u} ||\lambda \cdot Wu||_{1} + \frac{1}{2} ||Au - f||_{2}^{2}$$

• Balanced Approach

$$\min_{\alpha} ||\lambda \cdot \alpha||_1 + \frac{1}{2} \left| \left| A W^T \alpha - f \right| \right|_2^2 + \frac{\kappa}{2} \left| \left| (I - W W^T) \alpha \right| \right|_2^2$$

To solve the analysis approach method, we used Split Bregman method to do the optimization problem:

Algorithm 1 Split Bregman For Analysis Approach

set d_0 and b_0

repeat

update:

- $u_k = (A^T A + \mu I)^{-1} (A^T f + \mu W^T (d_k b_k))$
- $d_{k+1} = \mathscr{T}_{\lambda/\mu}(Wu_{k+1} + b_k)$
- $b_{k+1} = b_k + \delta(Wu_{k+1} d_{k+1})$

until $\frac{||Wu_{k+1}-d_{k+1}||}{||f||_2} < tol$

To solve the balanced approach problem we use the ISTA algorithm:

Algorithm 2 ISTA For Balanced Approach

set α_0

repeat

update:

- $g_k = \alpha_k \nabla F_2(\alpha_k)/L$
- $\bullet \quad \alpha_{k+1} = \mathscr{T}_{\lambda/L}(g_k)$

 $\mathbf{until} \ \mathrm{end}$

2 Wavlet Based Image Denoising

In the denoising problem, the linear operator A here is id, results is shown bellow:

Test1. Image Denoising Test:(a) Original Image (b) Noised Image (c) Analysis Approach (d) Balanced Approach (e) TV model

Test2.Detail Of The Denoised Image:(a) Analysis Approach (b) Balanced Approach (c) TV model

Obviously, the wavelet based image denoising holds more detials.

3 Wavelet Based Deblur

Test3. Image Debluring Test:(a) Original Image (b) Blured Image With Noise (c) Analysis Approach (d) Balanced Approach (e) TV model

4 ReadMe

The functions in the folder **profunc** are functions to process the images, for denoising there are three functions:

- denoise_TV.m
- denoise_anl.m
- denoise_wav.m(balanced approach)

For debluring, the code of TV model is in blur.m and others are in deblur_wav.m The **test_another.m** and test_wavelet.m are the test enterance.