关于大作业批改及评分:

- ▶批改工作量确实很大
- ▶ 难免有疏漏和判断标准不一的问题
- → 文无第一,武无第二

Python程序设计与数据科学导论大作业

单人作业一: Movielens1M 分析

徐俐欣 2100015855

光华管理学院

2023.05.04

目 录

0	Abstract
1	数据预处理
	1.1 观察数据
	1.2 数据预处理
2	Task 1: 流行&偏好分析
	2.1 最流行男/女偏好电影类型
	2.2 统计不同类型电影男/女偏好程度
3	Task 2: 性别&年龄预测
4	Task 3: 用户画像
	4.1 SVD 实现代表性电影选取1
	4.2 标签定义
	4.3 单用户画像(词云图+雷达图)1
	4.4 开放性问题探究1

2000013064 张泽楷

```
# 研究有独特品味的都是哪些人
data = data orig
movie_popularity = data.groupby('movie_id')['user_id'].count()
movie num = 1en(movies)
# 处理数据,定义"独特品味"的值
data['movie_specialty'] = data['movie_id'].apply(lambda x: np.log(movie_num/movie_popularity.loc[x]))
user_special_taste = data.groupby('user_id')['movie_specialty'].mean().reset_index(name="special_taste_scor
user_special_taste = pd.merge(user_special_taste, users, on='user_id')
age_list = users['age_desc'].unique()
gender list = ['F', 'M']
occ list = users['occ desc'].unique()
```

```
15 # 人工评测: 最有独特品味职业和最空闲职业的命中率
16 top6hit = (4+4+4+4+3)/5
17 print(f"{top6hit}/6")
```

	occ_desc	special_taste_score
0	retired	1.862514
1	writer	1.853165
2	unemployed	1. 846372
3	K-12 student	1. 833271
4	artist	1.813899
5	customer service	1.805580
6	clerical/admin	1.802295
7	other or not specified	1.799106
8	self-employed	1. 797269
9	tradesman/craftsman	1.791920
10	academic/educator	1. 754723
11	doctor/health care	1. 736265
12	1awyer	1. 732230
13	farmer	1.730894
14	homemaker	1.724964
15	executive/managerial	1.701489
16	college/grad student	1.694023
17	sales/marketing	1.687978
18	scientist	1. 674935
19	technician/engineer	1.650981
20	programmer	1. 635625
3.8	/6	


```
# 1900012725-陈奕奇
                                                                                                     用神经网络编码模型实现年龄预测
# 首先,我们构建一下数据集
user_movie_matrix_dataframe = ratings.pivot_table('rating', index='user_id', cold
# print(user movie matrix dataframe)
user_movie_matrix_dataframe = pd.merge(left=user_movie_matrix_dataframe, right=user_movie_matrix_dataframe, right=user_mo
valid_mask = user_movie_matrix_dataframe.apply(lambda x: (x != 0).sum () > 100,
# print(valid mask)
user_movie_matrix_dataframe_valid = user_movie_matrix_dataframe.loc[valid_mask]
# print(user_movie_matrix_dataframe_valid)
# print(user movie matrix dataframe valid.shape)
X_test = user_movie_matrix_dataframe_valid.sample(frac=0.2, random_state=42)
X_train = user_movie_matrix_dataframe_valid.drop(X_test.index)
X_train_np = np. array(X_train) # 为之后做神经网络准备数据。
X_{test_np} = np. array(X_{test})
age_dict = {'Under 18':0, '18-24':1, '25-34':2, '35-44':3, '45-49':4, '50-55':5,
age_dict_np = {'Under 18':[0], '18-24':[1], '25-34':[2], '35-44':[3], '45-49':[4]
gender_dict = {'F':0, 'M':1}
gender_dict_np = {'F':[0], 'M':[1]} # 这里是为了转化为one-hot向量,以供后面深度。
y_age_test = X_test['age_desc'].map(age_dict)
y_age_train = X_train['age_desc'].map(age_dict)
from sklearn.preprocessing import MultiLabelBinarizer
mlb = MultiLabelBinarizer()
y_age_test_np = np. array(mlb. fit_transform(X_test['age_desc']. map(age_dict_np)))
y_age_train_np = np.array(mlb.fit_transform(X_train['age_desc'].map(age_dict_np))
```

Ordinal Regression with Multiple Output CNN for Age Estimation (Zhenxing Niu1 2016 cvpr)

时间序列分析基础-C16

胡俊峰 北京大学 2023/04/08

内容摘要

- ▶时间序列问题简介
- ▶线性回归与预测模型
- ▶ 序列成分分解基础
- →平稳序列与序列平稳化
- ▶序列谱分析与滤波

时间序列:随时间变化的(一组)数据观测

- ──一般情况下,时间间隔是一致的,数据观测在时间序列上是连续的。特殊情况下也可以有间隔
- ▶ 时间序列可以来源于一组离散的由时间索引的数据,也可能来源于连续信号的离散时间点采样

时间序列分析(TSA)的主要研究领域

- ▶ 趋势预测(回归)、成分分析,滤波
- ▶ 实时交互与控制
- ▶ 序列信号模式识别

趋势预测(回归)分析

- 需求 (流量) 预测
- 金融量化分析
- ▶ 网络(生态)演化分析

实时交互与控制

- ▶ 飞行器控制与预警系统
- ■自动机械控制与自动驾驶系统

序列信号模式识别 (语言模型理解)

- → 语音信号识别
- ▶ 视频 (动作) 内容分析
- ▶ 生物信号 (序列) 处理

TSA研究涉及的主要知识领域

- ▶ 数字信号处理技术(谱分析)
- 统计与多元回归分析
- ▶模式识别与特征工程
- ► 深度学习: RNN+CNN

时间序列与传统的线性回归(预测)模型

- 模型回归
- ▶ 时间序列的成分分析与滤波
- ▶ 平稳序列模型

最小二乘loss线性回归

```
#多个样本点,最小二乘拟合
x = np.array([1, 2, 3, 4, 5, 6,8])
y = np.array([4, 2, 1, 3, 7,3,8])
X = x[:, np.newaxis]
model = LinearRegression().fit(X, y) # 简单线性回归
yfit = model.predict(X)
plt.scatter(x, y)
plt.plot(x, yfit)
```


多元函数线性回归

```
X1 = \text{np. array}([[1, 1], [1, 2], [2, 2], [2, 3]])
                                        \# y = 1 * x_0 + 2 * x_1 + 3n
y1 = np. multi(X1, np. array([1, 2])) + 3
                                      # 二元函数回归
reg = LinearRegression().fit(X1, y1)
print (reg. score (X1, y1), reg. coef, reg. intercept)
reg. predict(np. array([[3, 5]]))
1.0 \ [1. \ 2.\ ] \ 3.00000000000000000018
array([16.])
y2 = X1 on np. array([[0, 1], [1, 0]]) + [1, 3]
reg = LinearRegression().fit(X1, y2)
                                                                # 矩阵变换回归
print (reg. score (X1, y2), reg. coef, reg. intercept)
reg. predict(np. array([[3, 5]]))
1. 0 [[-1.66533454e-16 1.00000000e+00]
 [ 1.00000000e+00 -1.11022302e-16]] [1. 3.]
array([[6., 6.]])
```

Ordinal Regression (有序回归)

■ 回归目标为一组有序的分类

```
url = "https://stats.idre.ucla.edu/stat/data/ologit.dta"
data_student = pd.read_stata(url) # DTA是Stata使用的一种专有的非文本文件格式
```

data_student. head (5)

	apply	pared	public	gpa
0	very likely	0	0	3.26
1	somewhat likely	1	0	3.21
2	unlikely	1	1	3.94
3	somewhat likely	0	0	2.81
4	somewhat likely	0	0	2.53

```
data_student['apply']. dtype
```

CategoricalDtype(categories=['unlikely', 'somewhat likely', 'very likely'], ordered=True)

Logit ordinal regression:

模型学习

	coef	std err	z	P> z	[0.025	0.975]
pared	1.0476	0.266	3.942	0.000	0.527	1.569
public	-0.0586	0.298	-0.197	0.844	-0.642	0.525
gpa	0.6158	0.261	2.363	0.018	0.105	1.127
unlikely/somewhat likely	2.2035	0.780	2.827	0.005	0.676	3.731
somewhat likely/very likely	0.7398	0.080	9.236	0.000	0.583	0.897

<u> Prdinal Logistic Regression | R Data Analysis Examples (ucla.edu)</u>

模型预测

```
predicted = res_log.model.predict(res_log.params, exog=data_student[['pared', 'public', 'gpa']])
predicted
```

	apply	pared	public	gpa
0	very likely	0	0	3.26
1	somewhat likely	1	0	3.21
2	unlikely	1	1	3.94

```
array([[0.54884071, 0.35932276, 0.09183653], [0.30558191, 0.47594216, 0.21847593], [0.22938356, 0.47819057, 0.29242587],
```

...,