Fault Simulation

- Introduction
- Fault simulation techniques
- Comparison of fault simulation
- Alternatives to fault simulation
 - Toggle coverage
 - Fault sampling (1974)
 - Critical path tracing (1979)
- Issues of fault simulation
- Concluding remarks

Motivating Problem

- Boss: Why can't we speed up design sign-off?
- You: But the fault simulation is slow...
- Boss: We do not need exact fault coverage. Just give me an estimation and DO IT FAST!

What Should You Do?

Alternatives to Fault Simulation

- Q: Is exact fault simulation necessary?
 - Exact fault simulation is too expensive
 - Sometimes, we just want to know approximate fault coverage
 - with reasonable error
- Approximation is good for
 - DFT check in early design phase
 - Functional test pattern evaluation
- Approximation is NOT good for
 - ATPG
 - Diagnosis

Toggle Coverage (DEF-1)

```
toggle\ coverage = \frac{\sum\limits_{all\ nodes\ i}\#\ of\ different\ values\ in\ node\ i}{2\times total\ \#\ of\ nodes}
```

= numbers

Toggle Coverage = 17/18 = 94%

Toggle Coverage

- Advantage: Toggle coverage is easy to obtain
 - Logic simulation only, NO fault simulation
- Oisadvantage: Toggle coverage is very optimistic
 - Fault activation only, NO fault propagation

TC is Upper Bound of FC

Fault Coverage = 11/18 = 61% see 5.3 P.10 Toggle Coverage = 17/18 = 94%

Quiz

Q: Apply 3 patterns to this circuit of 7 nodes. Toggle coverage =? A: 100

Toggle Coverage (DEF-2)

```
toggle\ coverage = \frac{\sum\limits_{all\ nodes\ i}\#of\ different\ transitions\ in\ node\ i}{2\times total\ \#\ of\ nodes}
```


Toggle Coverage = 9/18 =50%

DEF-2 more stringent

Fault Simulation

- Introduction
- Fault simulation techniques
- Comparison of fault simulation
- Alternatives to fault simulation
 - Toggle coverage
 - Fault sampling (1974)
 - Critical path tracing (1979)
- Issues of fault simulation
- Concluding remarks

Fault Sampling [Butler 74]

- Idea: Actual fault simulation of whole circuit is too slow
 - Can we just sample a small portion of faults?
 - Like Polling before election
- Notation
 - M: number of total faults
 - m: number of sampled faults
 - **K**: number of total faults detected (unknown)
 - **k**: number of sampled faults detected
 - Actual fault coverage F = K/M (unknown)
 - Sampled fault coverage f = k/m

f=k/m

Fault Sampling (2)

- $P_k(M,m,K)$ = probability that a test detects k faults from a random sample size of m, given that it detects K faults from M total faults
 - P_k is hypergeometric distribution (discrete valued)

$$P_{k}(m, M, K) = \frac{C_{k}^{K} C_{m-k}^{M-K}}{C_{m}^{M}}$$

- For large M,
 - P_k can be approximated by normal distribution (continuous valued)
 - with mean μ_k and standard deviation σ_k

$$\mu_k = m\frac{K}{M} = mF$$

$$\sigma_k^2 = m\frac{K}{M}(1 - \frac{K}{M})\frac{M - m}{M - 1} \cong mF(1 - F)(1 - \frac{m}{M})$$

See papers for detailed derivation

Fault Sampling (3)

For large M, sampled fault coverage f is random variable with normal distribution:

$$\mu_f = \mu_k/m = F$$

$$\sigma_f^2 = \sigma_k^2 / m^2 = F(1 - F)(1 - m/M) / m$$

$$\sigma_f = \sqrt{F(1-F)(1-m/M)} / m$$

$$\cong \sqrt{F(1-F)} / m \quad \text{if } M >> m$$

Confidence Level

- Confidence Level = probability that estimated fault coverage f falls
 in between the confidence interval
- If we assume normal distribution:

Confidence interval	Confidence level
$\mu_f \pm \sigma_f$	68.27%
$\mu_f \pm 2\sigma_f$	95.44%
$\mu_{\rm f} \pm 3\sigma_{\rm f}$	99.73%
$\mu_f \pm 4\sigma_f$	99.99%

Example

- M=1,000,000
- m=10,000 (1% of M)
- NOTE: F is unknown so we use μ_f

$$\sigma_f = \sqrt{F(1-F)(1-m/M)} / m$$

$$\cong \sqrt{F(1-F) / m}$$

μ_f (= F)	70%	80%	90%	95%
$\sigma_{\!\scriptscriptstyle f}$	0.5%	0.4%	0.3%	0.2%
68% CL	70%±0.5%	80%±0.4%	90%±0.3%	95%±0.2%
95% CL	70%±1%	80%±0.8%	90%±0.6%	95%±0.4%
99% CL	70%±1.5%	80%±1.2%	90%±0.9%	95%±0.6%

Accurate Prediction: High CL and Small Cl

Quiz

Q: Suppose FC=95% but we want to improve std σ_f to 0.1%. How many samples do we need, m=?

A:

$$\sigma_f = \sqrt{F(1-F)(1-m/M)} / m$$

$$\cong \sqrt{F(1-F)} / m$$

$\mu_f(=F)$	70%	80%	90%	95%
$\sigma_{\!\scriptscriptstyle f}$	0.5%	0.4%	0.3%	0.2%
68% CI	70%±0.5%	80%±0.4%	90%±0.3%	95%±0.2%
95% CI	70%±1%	80%±0.8%	90%±0.6%	95%±0.4%
99% CI	70%±1.5%	80%±1.2%	90%±0.9%	95%±0.6%

Fault Simulation

- Introduction
- Fault simulation techniques
- Comparison of fault simulation
- Alternatives to fault simulation
 - Toggle coverage
 - Fault Sampling (1974)
 - Critical path tracing (1979)
- Issues of fault simulation
- Concluding remarks

Critical Path Tracing (CPT) [Roth 79]

- x is Critical Signal
 - x's value change causes some primary output values to change
- Critical path
 - All signals on this path that are critical signals
- Example: critical signals are circled

Note: In timing analysis, *critical path* has different definition

Critical path = Path with the longest path delay

CPT Algorithm [Abramovici 84]

- Critical Path Tracing: Start from primary outputs to primary inputs
 - If gate output is critical, backtrace its critical gate input(s)
- Example: fanout-free cone (FFC)
 - Critical signals: a, b, f, g. Critical paths: afg and bfg

CPT (O) /*O is a node*/

- 1. **foreach** gate input *g* of *O*
- 2. **if** $(g ext{ is critical signal})$ **then**
- 3. CPT(g);
- 4. else return;

CPT Theorem

THEOREM:

If critical signal g has good value v, then g stuck-at v' fault is detected

Example: Detected faults: a SAO, b SAO, f SAO, g SAO

- CPT Advantages:
 - CPT can be done in linear time
 - Only logic simulation needed for FFC
 - Used in first commercial ATPG tool, LASER

CPT Is Very Fast ... but

How about Fanout Stem?

- L is critical; F is non-critical
- E is non-critical

Is This Always The Case?

Fanout stems are non-critical?

Quiz

Q: Determine if fanout stem E is critical or not

A:

CPT Does NOT Work Well when Fanout Reconverges

So... What Should We Do?

- 1. Count fanout stems as non-critical
 - Fast but fault coverage pessimistic
- 2. Only fault simulate fanout stems, CPT in fanout-free cones
 - Slow but fault coverage accurate

> fanout-free cone

fanout stem

Summary

- Alternatives to fault simulation, fast but inaccurate
- Toggle coverage
 - Only logic simulation needed
- Fault Sampling
 - Only fault simulate a small portion of faults
 - Confidence interval and confidence level
- 3 Critical path tracing
 - Linear time for fanout-free cones
 - Still need fault simulation when fanouts reconverge

FFT

- Q1: For CPT, all four cases are possible.
 - We have shown first two cases
 - Find example for latter two cases?

- Q2: Toggle coverage ≥ fault coverage. Can you prove it?
 - assume DEF-1 toggle coverage