

Presented and Prepared by Brandon Fisher



## Power consumption in digital temperature sensors



## Power consumption in digital temperature sensors



## Power consumption in digital temperature sensors



## Calculating sensor power consumption



$$I_{AVG} = \frac{t_{idle} \times i_{idle} + t_1 \times i_1 + t_2 \times i_2}{T_{sample}} \qquad t_{idle} = T_{sample} - (t_1 + t_2)$$

| PARAMETER       |                |       | TEST CONDITIONS                                                                    | MIN | TYP  | MAX | UNIT |
|-----------------|----------------|-------|------------------------------------------------------------------------------------|-----|------|-----|------|
|                 |                | $i_2$ | RH measurement <sup>(1)</sup>                                                      |     | 650  | 890 |      |
|                 |                | $i_1$ | Temperature measurement <sup>(1)</sup>                                             |     | 550  | 730 |      |
|                 | i,             | idle  | Sleep Mode                                                                         |     | 0.05 | 0.1 |      |
|                 |                | idio  | Average at 1 measurement/second, RH or temperature only $^{(1)}$ $^{(2)}$          |     | 0.3  |     |      |
| I <sub>DD</sub> | Supply current |       | Average at 1 measurement/second, RH (11 bit) + temperature (11 bit) <sup>(1)</sup> |     | 0.55 |     | μА   |

## Calculating sensor power consumption



$$I_{AVG} = \frac{t_{idle} \times i_{idle} + t_1 \times i_1 + t_2 \times i_2}{T_{sample}} \qquad t_{idle} = T_{sample} - (t_1 + t_2)$$

| RH <sub>CT</sub>   | Conversion-time <sup>(7)</sup> | 9 bit accuracy  | 275 |    |
|--------------------|--------------------------------|-----------------|-----|----|
|                    |                                | 11 bit accuracy | 400 | μs |
|                    |                                | 14 bit accuracy | 660 |    |
|                    |                                |                 |     |    |
| TEMP <sub>CT</sub> | Conversion-time <sup>(7)</sup> | 9 bit accuracy  | 225 | μs |
|                    |                                | 11 bit accuracy | 350 |    |
|                    |                                | 14 bit accuracy | 610 |    |

## Digital humidity sensor conversion – 14-bit



#### Consider...

- Conversion time
- Active current
- Sleep/standby current
- Frequency of conversion

## Digital humidity sensor conversion – 11-bit



#### Consider...

- Conversion time
- Active current
- Sleep/standby current
- Frequency of conversion

Here, using a lower conversion rate setting will save our system power

## Example: 14-bit average current consumption



$$I_{AVG} = \frac{t_{idle} \times i_{idle} + t_1 \times i_1 + t_2 \times i_2}{T_{sample}} \qquad t_{idle} = T_{sample} - (t_1 + t_2)$$

$$I_{AVG} = \frac{(1s - 610us - 660us) \times 0.05uA + 610us \times 550uA + 660us \times 650uA}{1s}$$

$$I_{AVG} = \frac{(0.99873s) \times 0.05uA + 0.3355 + 0.429}{1s} = 0.814uA \rightarrow 5000 + days from 100mAh$$

## Example: 11-bit average current consumption



$$I_{AVG} = \frac{t_{idle} \times i_{idle} + t_1 \times i_1 + t_2 \times i_2}{T_{sample}} \qquad t_{idle} = T_{sample} - (t_1 + t_2)$$

$$I_{AVG} = \frac{(1s - 350us - 400us) \times 0.05uA + 350us \times 550uA + 400us \times 650uA}{1s}$$

$$I_{AVG} = \frac{(0.99925s) \times 0.05uA + 0.1925 + 0.26}{1s} = 0.5uA \rightarrow 8000 + days from 100mAh$$

## System power consumption

### Digital humidity sensor

- Low sleep/standby current
- Modest active current

#### **Microcontroller**

- Low sleep current
- Modest standby current
- Large active current



Maximize MCU sleep time, minimize MCU active time

# To find more humidity sensor resources and products, visit ti.com/humidity