CP-Algorithms

Search

0-1 BFS

Table of Contents

- Algorithm
- Dial's algorithm
- Practice problems

It is well-known, that you can find the shortest paths between a single source and all other vertices in O(|E|) using Breadth First Search in an **unweighted graph**, i.e. the distance is the minimal number of edges that you need to traverse from the source to another vertex. We can interpret such a graph also as a weighted graph, where every edge has the weight 1. If not all edges in graph have the same weight, that we need a more general algorithm, like Dijkstra which runs in $O(|V|^2 + |E|)$ or $O(|E|\log |V|)$ time.

However if the weights are more constrained, we can often do better. In this article we demonstrate how we can use BFS to solve the SSSP (single-source shortest path) problem in O(|E|), if the weights of each edge is either 0 or 1.

Algorithm

We can develop the algorithm by closely study Dijkstra's algorithm and think about the consequences that our special graph implies. The general form of Dijkstra's algorithm is (here a **set** is used for the priority queue):

```
d.assign(n, INF);
d[s] = 0;
set<pair<int, int>> q;
q.insert({0, s});
while (!q.empty()) {
    int v = q.begin()->second;
    q.erase(q.begin());
    for (auto edge : adj[v]) {
        int u = edge.first;
        int w = edge.second;
        if (d[v] + w < d[u]) {
            q.erase({d[u], u});
            d[u] = d[v] + w;
            q.insert({d[u], u});
        }
    }
}
```

We can notice that the difference between the distances between the source ${\bf s}$ and two other vertices in the queue differs by at most one. Especially, we know that $d[v] \leq d[u] \leq d[v] + 1$ for each $u \in Q$. The reason for this is, that we only add vertices with equal distance or with distance plus one to the queue each iteration. Assuming there exists a u in the queue with

d[u]-d[v]>1, then u must have been insert in the queue via a different vertex t with $d[t]\geq d[u]-1>d[v]$. However this is impossible, since Dijkstra's algorithm iterates over the vertices in increasing order.

This means, that the order of the queue looks like this:

$$Q = \underbrace{v}, \ldots, \underbrace{u}, \underbrace{m}, \underbrace{m}_{d[v]+1} \ldots \underbrace{n}_{d[v]+1}$$

This structure is so simple, that we don't need an actually priority queue, i.e. a balanced binary tree, is an overkill. We can simply use a normal queue, and append new vertices at the beginning if the corresponding edge has weight 0, i.e. if d[u]=d[v], or at the end if the edge has weight 1, i.e. if d[u]=d[v]+1. This way the queue still remains sorted at all time.

```
vector<int> d(n, INF);
d[s] = 0;
deque<int> q;
q.push_front(s);
while (!q.empty()) {
    int v = q.front();
    q.pop_front();
    for (auto edge : adj[v]) {
        int u = edge.first;
        int w = edge.second;
        if (d[v] + w < d[u]) {
            d[u] = d[v] + w;
            if (w == 1)</pre>
```

```
q.push_back(u);
else
q.push_front(u);
}
}
```

Dial's algorithm

We can extend this even further if we allow the weights of the edges to be even bigger. If every edge in the graph has a weight $\leq k$, than the distances of vertices in the queue will differ by at most k from the distance of v to the source. So we can keep k+1 buckets for the vertices in the queue, and whenever the bucket corresponding to the smallest distance gets empty, we make a cyclic shift to get the bucket with the next higher distance. This extension is called **Dial's algorithm**.

Practice problems

CodeChef - Chef and Reversing

(c) 2014-2019 translation by http://github.com/e-maxx-eng 07:80/112