





**Dealing with Different Types of Data** 

# **Learning Objectives**

By the end of this lesson, you will be able to:

- List the terminologies used in data analytics
- Describe the types of data
- Explain the levels of measurement





















- If a sample is randomly selected with 1 or *n* observations, then *n* is the sample size.
- The chart explains the sampling process where a few people are randomly sampled from a group of population.
- Data sampling is cost effective and surveys only the representative sample.
- It enables data scientists, predictive modelers, and data analysts to produce accurate findings.









The table represents loan data with attributes such as loan ID, borrower's gender, education, employment status, credit history, loan amount, and property details.

| Loan_ID  | Gender | Married | Dependents Education | Self_Employed | ApplicantIncome | CoapplicantIncome | LoanAmount | Loan_Amount_Term Credit_History | Property_Area | Loan_Status |
|----------|--------|---------|----------------------|---------------|-----------------|-------------------|------------|---------------------------------|---------------|-------------|
| LP001003 | Male   | Yes     | 1 Graduate           | No            | 4583            | 1508              | 128        | 360                             | Rural         | N           |
| LP001005 | Male   | Yes     | 0 Graduate           | Yes           | 3000            | 0                 | 66         | 360                             | Urban         | Υ           |
| LP001006 | Male   | Yes     | 0 Not Graduate       | No            | 2583            | 2358              | 120        | 360                             | Urban         | Υ           |
| LP001008 | Male   | No      | 0 Graduate           | No            | 6000            | 0                 | 141        | 360                             | Urban         | Y           |
| LP001011 | Male   | Yes     | 2 Graduate           | Yes           | 5417            | 4196              | 267        | 360                             | Urban         | Υ           |
| LP001013 | Male   | Yes     | 0 Not Graduate       | No            | 2333            | 1516              | 95         | 360                             | Urban         | Υ           |
| LP001014 | Male   | Yes     | 3+ Graduate          | No            | 3036            | 2504              | 158        | 360                             | Semiurban     | N           |
| LP001018 | Male   | Yes     | 2 Graduate           | No            | 4006            | 1526              | 168        | 360                             | Urban         | Y           |
| LP001020 | Male   | Yes     | 1 Graduate           | No            | 12841           | 10968             | 349        | 360                             | Semiurban     | N           |
| LP001024 | Male   | Yes     | 2 Graduate           | No            | 3200            | 700               | 70         | 360                             | Urban         | Υ           |
| LP001028 | Male   | Yes     | 2 Graduate           | No            | 3073            | 8106              | 200        | 360                             | Urban         | Υ           |
| LP001029 | Male   | No      | 0 Graduate           | No            | 1853            | 2840              | 114        | 360                             | Rural         | N           |
| LP001030 | Male   | Yes     | 2 Graduate           | No            | 1299            | 1086              | 17         | 120                             | Urban         | Υ           |
| LP001032 | Male   | No      | 0 Graduate           | No            | 4950            | 0                 | 125        | 360                             | Urban         | Υ           |
| LP001036 | Female | No      | 0 Graduate           | No            | 3510            | 0                 | 76         | 360                             | Urban         | N           |
| LP001038 | Male   | Yes     | 0 Not Graduate       | No            | 4887            | 0                 | 133        | 360                             | Rural         | N           |
| LP001043 | Male   | Yes     | 0 Not Graduate       | No            | 7660            | 0                 | 104        | 360                             | Urban         | N           |
| LP001046 | Male   | Yes     | 1 Graduate           | No            | 5955            | 5625              | 315        | 360                             | Urban         | Υ           |
| LP001047 | Male   | Yes     | 0 Not Graduate       | No            | 2600            | 1911              | 116        | 360                             | Semiurban     | N           |









**Types of Data** 



# **Types of Data**





It is the data that is processed, stored, and retrieved in a fixed format.

Example: Employee details, job positions, and salaries.



#### **Unstructured Data**

It is the type of data that lacks any specific form or structure.

Example: Email



#### **Semi-Structured Data**

It is the data type containing both structured and unstructured data.

Example: CSV and JSON documents



### **Analyzing Unstructured Data**

About 80% of business data is unstructured.



Unstructured information is text-heavy and contains data such as dates, numbers, and facts.

Internally generated information is considered *unstructured* as the intelligence doesn't fit neatly into a database.

Unstructured data is primarily used for BI and analytics but not for transaction processing applications.

#### **Analyzing Unstructured Data**

Retailers and manufacturers analyze unstructured data to:

- Improve customer relationship management processes
- Enable targeted marketing
- Perform sentiment analysis on product reviews



The line between unstructured and semi-structured data is not clearly defined.

Unstructured data has some level of structure in it.





**Qualitative and Quantitative Data** 



## **Qualitative and Quantitative Data**

#### **Qualitative Data**

Data in which classification of objects is based on attributes and properties. Example: Softness of skin etc.





#### **Quantitative Data**

Data can be measured and expressed numerically.

Example: Your height and shoe size.





## **Qualitative and Quantitative Data**

#### **Qualitative Data**

- Data collection is unstructured.
- It asks why.
- It cannot be computed as it is nonstatistical.
- It develops initial understanding and defines the problem.

#### **Quantitative Data**

- Data collection is structured.
- It is all about *how much* or *how many*.
- It is statistical and is about numbers.
- It recommends the final course of action.

## **Subgroups of Qualitative Data**

#### **Nominal data**

Unordered data to which an order is assigned in relation to other named categories

Example: Grade classification like pass or fail for student's test results.





#### **Ordinal data**

Ordered data that is assigned to categories in a ranked fashion

Example: Feedback to a product with 1–5 ranking.



# **Subgroups of Quantitative Data**

Quantitative **Discrete data Continuous data** Data It can only take certain values. specified range.

Example: The number of students

in a class



It can take any value within a

Example: Share price of a company







It is a classification that describes the nature of information within the values assigned to variables.





- In nominal level of measurement, numbers in the variable are used to classify data.
- At this level, words, letters, and alphanumeric symbols can be used.
- Example: People in female gender category are classified as F and those in male gender are category classified as M.





F



- Ordinal level of measurement depicts ordered relationship among the variable's observations.
- It indicates an order of the measurements.
- Example: A student with 100% score is assigned the first rank, another student with 95% score would be assigned the second rank, and so on.







- The interval level of measurement classifies and orders the measurements.
- It also specifies that the distances between each interval on the scale are equivalent.
- Example: Temperature in centigrade where the distance between 80 degrees and 100 degrees is same as the distance between 1000 degrees and 1020 degrees.





- In the ratio level of measurement, observations can have a value of zero.
- Although properties of ratio measurement are similar to the interval level of measurement, the zero in scale makes it different from the other levels of measurement.

**Note:** The nominal level classifies data, while the ordinal level indicates an order of measurements. The interval level and the ratio level of measurements provide the same level of measurement.



**Normal Distribution of Data** 



#### **Normal Distribution of Data**

 Normal distribution is also known as Gaussian distribution or Bell curve.

Most of the natural phenomena and grade occurrences follow Bell curve.



• It is denser at the center and has equal mean, median, and mode values.

• It is the most important probability distribution in statistics.

 It is a perfectly symmetric bellshaped distribution curve with only one peak.

• It is continuous and have tails that are asymptotic.





# **Statistical Parameters**



#### **Basic Statistical Parameters**

#### Mean

- Mean is the average of all data points for a given set of data.
- It is used to derive the central tendency of the data.
- It is measured by adding all data points and dividing the sum by the number of data points.

#### Variance

- Variance is the sum of the squares of differences between all numbers and means divided by the number of data points.
- It gives a measure of how the data distributes itself about the mean.
- It looks at all the data points and then determines their distribution.

#### Standard Deviation

- Standard deviation is the square root of variance and shows the extent to which data varies from the mean.
- It shows how tightly data points are clustered around the mean.
- It is more concrete and gives the exact distances from the mean.



#### **Basic Statistical Parameters: Example**

**Dataset**  $x = \{1;2;3;4;5;6\}$ 

$$\mu = \Sigma \frac{x_i}{n}$$

**Mean** = (1+2+3+4+5+6)/6 = 3.5

$$\sigma^2 = \frac{\sum (X_i - \mu)^2}{N}$$

**Variance** =  $[(1-3.5)^2+(2-3.5)^2+(3-3.5)^2+(4-3.5)^2+(5-3.5)^2+(6-3.5)^2]/6 = 2.917$ 

$$ext{SD} = \sqrt{rac{\sum |x-\mu|^2}{N}}$$

**Standard deviation** =  $\sqrt{2.917}$  = 1.708



# implilearn. All rights reserved.

## **Key Takeaways**

- Structured data, unstructured data, and semi-structured data are the three types of data.
- Nominal, ordinal, interval, and ratio are four data levels of measurement.
- Normal distribution of data is the most important probability distribution in statistics.
- Mean, variance and standard deviation are the basic statistical parameters.

