

SOLID STATE MICROWAVE

Montgomeryville, PA 18936 = (215) 362-8500 = TWX 510-661-7299

THOMSON-CSF COMPONENTS CORPORATION

2N6080 2N6081 2N6082 2N6083 2N6084

VHF COMMUNICATIONS TRANSISTOR

DESCRIPTION:

This line of epitaxial silicon NPN-planar transistor is designed primarily for VHF mobile and marine transmitters. The device utilizes emitter ballasting resistors and improved metallization systems to achieve extreme ruggedness under severe operating conditions.

FEATURES:

- Designed for VHF mobile and marine transmitters
- Withstands severe mismatch under operating conditions
- Low inductance stripline package
- All leads electrically isolated from stud

ABSOLUTE MAXIMUM RATINGS ($TA = 25^{\circ}C$)

Symbol	Characteristic	2N6080	2N6081	⁻ 2N6082	2N6083	2N6084
V _{CBO}	Collector to Base Voltage	36.0V	36.0V	36.0V	36.0V	36.0V
v_{CEO}	Collector to Emitter Voltage	18.0V	18.0V	18.0V	18.0V	18.0V
V_{EBO}	Emitter to Base Voltage	4.0V	4.0V	4.0V	4.0V	4.0V
	Continuous Collector Current	1.0A	2.5A	4.0A	4.0A	6.0A
P_{D}	Total Dissipation at 25°C Stud	12.0W	31.0W	65.0W	65.0W	80.0W
$\phi_{ m JC}$	Thermal Resistance (Junction to Stud)	15.0°C/W	5.6°C/W	2.8°C/W	2.8°C/W	2.2°C/W
$T_{\mathbf{J}}$	Junction Temperature	–65°C to 200°C	-65°C to 200°C	65°C to 200°C	-65°C to 200°C	-65°C to 200°C
T _{stg}	Storage Temperature	-65°C to 200°C	-65°C to 200°C	–65°C to 200°C	-65°C to 200°C	−65°C to 200°C

ELECTRICAL CHARACTERISTICS (TA = 25°C)

Symbol	Characteristic	Test Conditions	2N Min.	6080 Max.	2N6 Min.	081 Max.	· 2N Min.	6082 Max.	2N Min.	6083 Max.	2N Min.	6084 Max.
BV _{CEO}	Collector to Emitter Breakdown Voltage	$I_C = 200$ mA, $I_B = 0$ Pulsed through 25mH	18.V	-	18.V	- -	18.V	-	18.V	. –	18.V	÷
BV _{CES}	Collector to Emitter Breakdown Voltage	I _C = 200mA, V _{BE} = 0 Pulsed through 25mH	36.V	-	36.V	-	36.V	-	36.V	-	36.V	. –
BV _{EBO}	Emitter to Base Breakdown Voltage	$I_E = 2.5 \text{mA}, I_C = 0$	4.V	_	. 4,V	1	4,V	1 .	4.V	-	4.V	_
ІСВО	Collector Cutoff Current	$V_{CB} = 15.0V, I_E = 0$	_	1.0mA	-	1.0mA	-	1,0mA	-	1.0mA	-	1.0mA
h _{FE}	DC Current Gain	$V_{CE} = 5V, I_{C} = 250mA$	5.	-	5.	_	5.	_	5.	_	5.	_
fT	Gain Bandwidth Product	$V_{CE} = 13.6 \text{ V}, I_{C} = 100 \text{mA}$ $f_{O} = 100 \text{mHz}$	200.ml	Hz_	200.mH	iz –	200.m	Hz_	200mI	Iz –	200mF	Iz –
C _{ob}	Output Capacitance	$V_{CE} = 12.5V, I_{C} = 0$ $f_{O} = 1 \text{mHz}$	_	20. pF	-	85. pF		130. pF	-	130. pF	-	200 pF
Pout	Output Power Class C	$f_0 = 175 \text{mHz}, V_{CE} = 12.5 \text{V},$ Class C	4.W	-	15.W	-	25.W		30.W	-	40.W	-
G _{pe}	Power Gain Class C	$f_0 = 175 \text{mHz}, V_{CE} = 12.5 \text{V}$ Class C	12. dl	В —	6.3 d	B -	6.2	dB—	5.7	dB-	4.5	dB-
η	Collector Efficiency	$f_0 = 175 \text{mHz}, V_{CE} = 12.5 \text{ V}$ Class C	60.%		60.%	_	50.%	<u>-</u>	50.%		50.%	_

f _o = 175MHz, Vcc = 12.5V								
PIN WATTS	POUT WATTS	INPUT OHMS	OUTPUT OHMS					
0.1	3.3	1.5 + J1,7	5.8 + J1.4					
0.3	4.9	2.2 + J1.3	7.6 + J9.8					
0.5	5.8	2.9 + J0.4	8.4 + J6.9					

NETWORK IMPEDANCE AT TRANSISTOR TERMINALS

	fo = 175 N	//Hz, Vcc = 12	2.5 VOLTS
P _{IN} WATTS	POUT WATTS	INPUT OHMS	OUTPUT OHMS
1	9.3	0.8 - j 1.0	4.0 + j 3.0
3	19.6	1.0 – j 1.4	3.3 + j 1.2
5	27.6	1.0 — j 1.0	2.9 + j 0.6

NETWORK IMPEDANCE AT TRANSISTOR TERMINALS

	_								
50									80
									Ż
_					•			_	33
9 40 <u>و</u>									70 🚉
- 5			·						S (PERCENT)
*									
POWER OUTPUT (WATTS) で さ さ		EFFICIENCY							8 8 EFFICIENCY
5		ETTICIENCE							₽
Ŧ								-	ု
3 20									50 H
~					P out	•		•	
Ō									5
₹		ا ا							S COLLECTOR
<u>a</u> 10					/				40 <u>ii</u>
									Ä
		1					-		៥
				3 .	L	<u> </u>	L		ļ.
		•	POW		ŬT (WA		• '	•	•
			. • • • •	""	(1177	,			
20160	182 _	2N60	722 B	OWE	OHT	DI IT \	C DOM	VED I	MDIIT
21400	,U2 —	2140	JUJ F	OAAEL	1 001		OFU	ARU II	NEOI

fo = 175 MHz, Vcc = 12.5 VOLTS							
P _{IN} WATTS	POUT WATTS	INPUT OHMS	OUTPUT OHMS				
2.5	17.4	0:8 — j 1.0	2.4 + j 1.5				
5.0	27.5	0.9 — j 0.9	2.1 + j 0.4				
7.5	35.8	0.9 — j 1.1	2.2 + j 0.1				

NETWORK IMPEDANCE AT TRANSISTOR TERMINALS

			fe • Vcc	175 MHZ 125 VOLT	 s 			
		EFF	ICIENCY				_	
				-				70
								. 64
-			-	 -	-			51
		 		· -	-			
,L	1 .	4	POWER	INPUT (WATTS)	12 (4 . 16	

fo = 175 MHz, Vcc = 12.5 VOLTS							
P _{IN} WATTS	POUT WATTS	INPUT OHMS	OUTPUT OHMS				
- 4	21,7	0.8 — j 1.1	2,2 — j 0,3 ·				
8	37,1	0.8 — j 1.3	1.7 – j 0.5				
12	46.5	0.8 – j 1.6	1.6 — j 0.3				

NETWORK IMPEDANCE AT TRANSISTOR TERMINALS