Autoregressive Model as a State Space Model

Ivan Jacob Agaloos Pesigan

1 Measurement Model

The measurement model is given by

$$Y = \nu + \lambda \eta + \varepsilon \quad \text{with} \quad \varepsilon \sim \mathcal{N}\left(0, \theta^2\right)$$
 (1)

where Y, η , and ε are random variables and ν , λ , and θ^2 are model parameters. Y is the observed random variable, η is the latent random variable, and ε is the random measurement error while ν is the intercept, λ is the factor loading, and θ^2 is the variance of ε . For the autoregressive model some constraints are applied specifically $\nu = 0$, $\lambda = 1$, $\varepsilon = 0$. Such that

$$Y = \eta. (2)$$

1.1 Example

The measurement model is given by

$$Y = \nu + \lambda \eta + \varepsilon$$

$$Y = 0 + 1\eta + 0$$

$$Y = \eta.$$
(3)

2 Dynamic Structure

The dynamic structure is given by

$$\eta_t = \alpha + \beta \eta_l + \zeta_t \quad \text{with} \quad \zeta_t \sim \mathcal{N}\left(0, \psi^2\right)$$
(4)

where η_t , η_l , and ζ_t are random variables and α , β , and ψ^2 are model parameters. η_t is the latent variable at time t, η_l is a vector of latent variables at lags $l = \{1, \ldots, p\}$, and ζ_t is the dynamic noise at time t while α is the intercept, β is a row vector of autoregression coefficients, and ψ^2 is the variance of ζ_t .

2.1 Example

The random variables and the parameters are given below for p=2.

$$\eta_t$$
 (5)

$$\eta_l = \begin{pmatrix} \eta_{t-1} \\ \eta_{t-2} \end{pmatrix} \tag{6}$$

$$\alpha$$
 (7)

$$\beta = (\beta_1 \quad \beta_2) \tag{8}$$

$$\begin{array}{c|cccc}
\beta_1 & \eta_t & \text{regressed on} & \eta_{t-1} \\
\beta_2 & \eta_t & \text{regressed on} & \eta_{t-2}
\end{array}$$
(9)

$$\psi^2 \tag{10}$$

3 Initial Condition

In the state space model, the initial value of the latent variable η given by $\eta_{|0}$ need to be specified. We can sample from a particular distribution, for example, the normal distribution as follows

$$\eta_{|0} \sim \mathcal{N}\left(\mu_0, \sigma_0^2\right).$$
(11)