

Βικέντιος Βιτάλης el18803

Συστήματα Αναμονής

Εργαστηριακή Άσκηση 4

6^ο Εξάμηνο

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

Τομέας Επικοινωνιών, Ηλεκτρονικής & Συστημάτων Πληροφορικής Εργαστήριο Διαχείρισης και Βέλτιστου Σχεδιασμού Δικτύων Τηλεματικής - NETMODE

Ηρώων Πολυτεχνείου 9, Ζωγράφου, 157 80

e-mail: queuing@netmode.ntua.gr, URL: http://www.netmode.ntua.gr

Ανάλυση και Σχεδιασμός ενός τηλεφωνικού κέντρου

Έχουμε ουρά M/M/c/c με λ μέσο ρυθμό αφίξεων (poisson) και μ μέσος εκθετικός ρυθμός εξυπηρετήσεων.

1)Το διάγραμμα ρυθμού μεταβάσεων φαίνεται παρακάτω:

Αποδεικνύεται ότι για την παραπάνω ουρά με την βοήθεια των εξισώσεων ισορροπίας ότι:

$$p_k = \frac{\lambda}{k\mu} p_{k-1} = \frac{\lambda^2}{k(k-1)\mu^2} p_{k-2} = \dots = \frac{1}{k!} \left(\frac{\lambda}{\mu}\right)^k p_0,$$
 όπου $1 \le k \le c$.

και επειδή το άθροισμα όλων των πιθανοτήτων ισούται με 1 βρίσκουμε ότι:

$$P_0 = \frac{1}{\sum_{k=1}^{c} \frac{\rho^k}{k!}}$$

Οπότε:

$$p_k = p_0 \frac{a^k}{k!} = \frac{a^k/k!}{\sum_{i=0}^s (a^j/j!)},$$

Από ιδιότητα PASTA (Poisson arrivals see time averages) προκύπτει η:

$$P_c = P_{\text{blocking}} = \frac{\rho^c/c!}{\sum_{k=0}^c \frac{\rho^k}{k!}} \triangleq B(\rho, c)$$
 (Erlang-B Formula)

Κώδικας για Erlang Factorial:

```
1 addpath(pwd);
2pfunction Result = erlang_factorial(ro,c)
 3
       arithmitis = (ro^c)/factorial(c)
 4
       paranomasths = 0
 5
       i = 0;
       while i <= c</pre>
 7
            paranomasths += (ro^i)/factorial(i);
8
           i++;
9
       endwhile
       Result = arithmitis/paranomasths;
11 endfunction
12 #exit;
```

2) Erlang Iterative

3) Αφού υλοποίησα τον αναδρομικό τύπο, συγκρίνω τους δύο αλγορίθμους.

```
>> erlangb_iterative (1024, 1024);
B = 0.024524
>> erlangb_factorial (1024,1024);
P blocking = NaN
```

Παρατηρούμε για τον αλγόριθμο με το παραγοντικό δεν ορίζεται καν αποτέλεσμα αφού είναι πολύ μεγάλο το νούμερο που προκύπτει.(Not a Number)

4α) Έχουμε 200 γραμμές άρα το σύστημα μπορεί να εξυπηρετεί ταυτόχρονα το πολύ 200 χρήστες. Θεωρώ ότι ο κάθε χρήστης κάνει κατά μέσο όρο N κλήσεις την ώρα. Κάθε κλήση θα διαρκεί κάτα μέσο όρο 23/N λεπτά (αναμονή + εξυπηρέτηση), δηλαδή $\mu = 1/(23/N) = N/23$ (ρυθμός εξυπηρέτηση).

Έχουμε 200*Ν κλήσεις την ώρα , δηλ 200Ν/60 κλήσεις/min άρα λ =10*Ν/3 (ρυθμός αφίξεων). Άρα έχουμε συνολική ένταση φορτίου ρ = λ/μ =76,67 Erlangs περίπου.

γ) Με την βοήθεια του octave βρίσκουμε:

0.2

(77.051, 0.98635)

>> erlangb_iterative_find(76.67 , 200);
93

Το αρχείο με τον συνολικό κώδικα του ερωτήματος έχει επισυναπτεί στο .zip της υποβολής.

150

Σύστημα εξυπηρέτησης με δύο ανόμοιους servers

Οι δύο εξυπηρετητές είναι ανεξάρτητοι και έχουν διαφορετικούς ρυθμούς εξυπηρέτησης, μα, μβ.

Αφίξεις είναι Poisson με $\lambda=1$ πελάτες/sec και $1/\mu\alpha=1.25$ sec => $\mu\alpha=$ και $1/\mu\beta=2.5$ sec .

1) Οι εργοδικές πιθανότητες συστήματος προκύπτουν από τις εξισώσεις ισορροπίας: P0=0.8P1a+0.4P1b

1.8P1a = P0+0.4P2

1.4P1b = 0.8P2

και προφανώς P0+P1a+P1b+P2=1.

Άρα:

P0=0.2495

P1a=0.2144

P1b=0.1949

P2=0.3411

Η πιθανότητα απόρριψης πελάτη ισούται με P2 =0.3411.

Ο μέσος αριθμός πελατών στο σύστημα είναι E(n(t))= P1a + P1b + 2P2

2) Χωρίζουμε σε κατάλληλα διαστήματα το threshold όπως ειπώθηκε στο μάθημα οπότε συμπληρώνω κατάλληλα.

```
threshold_0=1;
threshold_1a =lambda/(lambda +m1);
threshold_1b = lambda / (lambda +m2);
threshold_2_first = lambda/ (lambda + m1 + m2);
threshold_2_second = (lambda + m1) / (lambda + m1 + m2);
```


Εργαστήριο Συστήματα Αναμονής 2021 – 4^H Εργαστηριακή Άσκηση Βιτάλης el18803

Και τα αποτελέσματα είναι τα εξής:

Ο κώδικας του ερωτήματος έχει επισυναπτεί στο .zip file της υποβολής.