LETTER

A photon-photon quantum gate based on a single atom in an optical resonator

Bastian Hacker¹*, Stephan Welte¹*, Gerhard Rempe¹ & Stephan Ritter¹

2017-04-17

Journal club

Authors

• G. Rempe

 Director @ Max Planck Institute of Quantum optics, quantum dynamics

• S. Ritter

- Scientist @ Max Planck Institute of Quantum optics, quantum dynamics
- Nondestructive Detection of an Optical Photon, Science (2012)
- A quantum gate between a flying optical photon and a single trapped atom, Nature (2014)
- A photon-photon quantum gate based on a single atom in an optical resonator, Nature (2016)

Introduction

- No direct photon-photon interaction
 - Nonlinear medium needed
 - Simultaneous overlap of two photons locality & causality problem
 - Alternative solution : consecutive interaction followed by state reduction
- Single atom in cavity: strong nonlinearity

Nondestructive Detection of an Optical Photon

- External field couple to cavity only in the case of atom in |1> state
- Two cases differ by overall quantum phase of π
- With initial atomic state with superposition state, the phase precession was measured

Quantum gates

- Single qubit gate
 - Hadamard gate, Pauli gates, phase gates
 - single qubit rotation Rabi oscillation
- Two qubit gate
 - Controlled-NOT gate (C-NOT)

Before		After	
Control	Target	Control	Target
0>	0>	0>	0>
0>	1>	0>	1>
1>	0>	1>	1>
1>	1>	1>	0>

$$\mathbf{cNOT} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

$$\mathbf{cNOT}\ \boldsymbol{\psi} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \\ \gamma \\ \delta \end{pmatrix} = \begin{pmatrix} \alpha \\ \beta \\ \delta \\ \gamma \end{pmatrix}$$

Controlled-phase gate or Controlled-Z gate

A quantum gate between a flying optical photon and a single trapped atom

- Photon qubit : polarization (- / +)
- Zeeman splitting allows only + polarization interact with atom-cavity system
- C-phase gate → C-NOT gate (basis rotation)

Exp scheme

a Gate schematic Atom as an $\frac{\pi}{2}$ ancillary qubit First photon: Z $|p_2\rangle$ Z Z

Second photon:

photon-photon C-NOT gate

- Basis rotation on second photon → C-Z gate to C-NOT gate
- Gate fidelity: (76.9±1.5)%

Entanglement generation by quantum gate

- Input state : $|DD\rangle$
- Expected output state ; $|\Psi_{BELL}\rangle = \frac{1}{\sqrt{2}}(|DL\rangle + |AR\rangle)$
- State Fidelity: (72.9±2.8)%
- Entangling capability : $C < -0.242 \pm 0.028$

Discussion

- Average gate fidelity: 76.2±3.6%
- Gate efficiency
 - Fiber loss (T= 40.4%), limited cavity reflectivity (R=67%), optical element loss (T= 81%) → overall 22%
 - Two photons $(22\%)^2 = 4.8\%$
- Gate fidelity
 - Two photon case ($\bar{n} = 0.17$) \rightarrow reduction 12%
 - Photon bandwidth (limited by delay time): 6%
 - etc. (cavity characteristic 5%, atomic state 6%, other optical element 2%)

Q&A

- 10p. Why cavity reflectivity is limited? (Jinuk)
 - Not perfectly one-sided cavity leakage to other side of cavity, finite cooperativity of C=3.3
- Difference between quantum gate vs. classical gate (Daeho)
 - Do not measure qubit state → reversible process (unitary)