Aim: To study the working of Schmitt trigger, Multivibrators and precision rectifiers.

Software used: LTspice

Schmitt trigger:

(a) When Va is connected to ground:

Circuit:

Output waveform on scope when 6V, 1kHz sine wave is applied:

Input and output waveforms in X-Y mode:

(b) When Va is connected to 3V:

Circuit:

Output waveform on scope when 6V, 1kHz sine wave is applied:

Input and output waveforms in X-Y mode:

Astable multivibrator:

Circuit:

Output voltage (red) and voltage across capacitor (green) observed on scope:

Observed waveforms after disconnecting the zener diodes:

No, The frequency of waveforms didn't change because the time period of the output voltage and voltage across capacitor is given by

$$T = 2RC \ln \left(1 + \frac{2R_2}{R_1} \right)$$

Monostable multivibrator:

Circuit:

*The circuit above is the given circuit in the lab manual from which I am not getting the correct output.

Circuit explained in lab:

Output voltage and Voltage at the inverting opamp's terminal:

Half wave Rectifier:

A) Positive Rectifier:

Circuit:

Input and Output voltage waveforms on scope when 1V, 1kHz sine wave is applied:

Transfer characteristics:

B) Negative Rectifier:

Circuit:

Input and Output voltage waveforms on scope when 1V, 1kHz sine wave is applied:

Transfer characteristics:

Full wave Rectifier:

A) Positive Rectifier:

Circuit:

Input and Output voltage waveforms on scope when 1V, 1kHz sine wave is applied:

Transfer characteristics:

B) Negative Rectifier:

Circuit:

Input and Output voltage waveforms on scope when 1V, 1kHz sine wave is applied:

Transfer characteristics:

