FUNCTIONAL ANALYSIS II SUMMARY

YANNIS BÄHNI

Abstract. This is a rough summary of the course *Functional Analysis II* held at *ETH Zurich* by *Prof. Dr. Alessandro Carlotto* in spring 2018. The main focus of this summary is to give a neat preparation for the oral exam.

Contents

Sobolev Space Theory
The Spaces $W^{k,p}(\Omega)$
Elliptic Operators
Sobolev Spaces on an Interval
Dirichlet and Neumann Boundary Problems on <i>I</i>
References

Sobolev Space Theory

The Spaces $W^{k,p}(\Omega)$. In what follows, let $n \in \omega$, $n \ge 1$, and $1 \le p \le \infty$.

Definition 1.1 (Distributional and Weak Derivative). Let $\Omega \subseteq \mathbb{R}^n$ open and $u \in L^1_{loc}(\Omega)$. For any multiindex α , the **distributional derivative of order \alpha of u**, written $D^{\alpha}u$, is defined to be the mapping $D^{\alpha}u: C_c^{\infty}(\Omega) \to \mathbb{R}$ defined by

$$\varphi \mapsto (-1)^{|\alpha|} \int_{\Omega} u D^{\alpha} \varphi dx.$$

Moreover, a function $D^{\alpha}u \in L^{p}(\Omega)$ is called weak derivative of order α of u with exponent p, iff

$$\forall \varphi \in C_c^{\infty}(\Omega) : \int_{\Omega} D^{\alpha} u \varphi dx = (-1)^{|\alpha|} \int_{\Omega} u D^{\alpha} \varphi dx.$$

(Yannis Bähni) University of Zurich, Rämistrasse 71, 8006 Zurich *E-mail address*: yannis.baehni@uzh.ch.

Theorem 1.1 (Fundamental Lemma of Variational Calculus). Let $\Omega \subseteq \mathbb{R}^n$ open and $f \in L^1_{loc}(\Omega)$. If

$$\forall \varphi \in C_c^{\infty}(\Omega) : \int_{\Omega} f \varphi dx = 0,$$

then f = 0 a.e.

Remark 1.1. Let $\Omega \subseteq \mathbb{R}^n$ open. Then $L^p(\Omega) \subseteq L^1_{loc}(\Omega)$.

Remark 1.2. From the fundamental lemma of variational calculus 1.1 it follows that *weak derivatives, if they exist, are unique.*

Examples 1.1.

- (a) Consider $\Omega := (-1, 1)$ and u := |x|. Then $u' = \chi_{[0,1)} \chi_{(-1,0)}$.
- (b) Consider $\Omega := \mathbb{R}$ and $u := \chi_{(0,\infty)}$. Then the weak derivative u' does not exist. Indeed, the *Dirac distribution* is not representable as one may see by considering the smooth family $\varphi_{\varepsilon} : \mathbb{R} \to \mathbb{R}$ for $\varepsilon > 0$ defined by

$$\varphi_{\varepsilon}(x) := \begin{cases} e^{\varepsilon^2/(x^2 - \varepsilon^2)} & |x| < \varepsilon, \\ 0 & |x| \ge \varepsilon. \end{cases}$$

Definition 1.2 (Sobolev Space). Let $\Omega \subseteq \mathbb{R}^n$ open. For any $k \in \omega$, the **Sobolev space of index (k, p)**, written $W^{k,p}(\Omega)$, is defined to be the space

$$W^{k,p}(\Omega) := \{ f \in L^p(\Omega) : D^{\alpha}u \in L^p(\Omega) \text{ exists for all } |\alpha| \le k \},$$

with norm

$$\|-\|_{W^{k,p}(\Omega)} := \sum_{|\alpha| \le k} \|D^{\alpha} - \|_{L^p(\Omega)}.$$

Moreover, define

$$W_0^{k,p}(\Omega) := \overline{C_c^{\infty}(\Omega)}^{\|-\|_{W^{k,p}(\Omega)}},$$

and $H^k(\Omega) := W^{k,2}(\Omega)$ as well as $H_0^k(\Omega) := W_0^{k,2}(\Omega)$.

Theorem 1.2. Let $\Omega \subseteq \mathbb{R}^n$ open. Then $W^{k,p}(\Omega)$ is

- (a) a Banach space for all $1 \le p \le \infty$.
- (b) separable for all $1 \le p < \infty$.
- (c) reflexive for all 1 .*Proof.*
- (a) This follows from the fact that $L^p(\Omega)$ is a Banach space for all $1 \le p \le \infty$. Let $(f_i)_{i \in \omega}$ be a Cauchy sequence in $W^{k,p}$. By definition of the $W^{k,p}$ -norm, $(D^{\alpha}f_i)_{i \in \omega}$ is a Cauchy sequence in L^p . Thus we get $D^{\alpha}f_i \to f_{\alpha}$ in L^p , in particular, $f_i \to f$ in L^p . Using Hölder's inequality we compute

$$\int_{\Omega} f_{\alpha} \varphi dx = \lim_{i \to \infty} \int_{\Omega} D^{\alpha} f_{i} \varphi dx = (-1)^{|\alpha|} \lim_{i \to \infty} \int_{\Omega} f_{i} D^{\alpha} \varphi dx = (-1)^{|\alpha|} \int_{\Omega} f D^{\alpha} \varphi dx$$

for $\varphi \in C_c^{\infty}(\Omega)$.

- (b) For simplicity, we consider k=1 only. Consider $\iota:W^{1,p}\hookrightarrow (L^p)^{n+1}$ defined in the obvious way. Then ι is an isometry and the statement follows.
- (c) Same argument as in part (b).

Elliptic Operators.

Lemma 1.1 (Poincaré Inequality). Let $\Omega \subseteq \mathbb{R}^n$ open and bounded. Then for any $u \in C_c^{\infty}(\Omega)$ we have that

$$||u||_{L^2} \leq C ||\nabla u||_{L^2}$$
.

Proof. Let n=1. Since Ω is bounded, we get that $\Omega\subseteq [a,b]$ and we may extend u on [a,b]=:I to be zero. Hence an application of Jensen's inequality (or Cauchy-Schwarz) yields

$$|u(x)|^{2} = |u(x) - u(a)|^{2} = \left| \int_{a}^{x} u'(t)dt \right|^{2} \le (x - a) \int_{a}^{x} |u'(t)|^{2} dt \le (b - a) \|u'\|_{L^{2}(I)}^{2}.$$

Thus

$$\|u\|_{L^{2}(\Omega)}^{2} \le \|u\|_{L^{2}(I)}^{2} \le (b-a)^{2} \|u'\|_{L^{2}(I)}^{2} = (b-a)^{2} \|u'\|_{L^{2}(\Omega)}^{2}$$

where the last equality follows due to the fact that u and thus u' is compactly supported in Ω . If n > 1, we have $\Omega \subseteq [a, b] \times \mathbb{R}^{n-1}$ and thus the claim follows by reduction to the previous case.

Theorem 1.3 (Riesz Representation Theorem). *Let* H *be a real Hilbert space. Then the mapping* $J: H \to H^*$ *defined by* $J(x) := \langle x, - \rangle$ *is an isometric isomorphism.*

Theorem 1.4. Let $\Omega \subseteq \subseteq \mathbb{R}^n$ and consider the elliptic operator

$$L := \frac{\partial}{\partial x^i} \left(a^{ij} \frac{\partial}{\partial x^j} \right),$$

for $a^{ij} \in L^{\infty}(\Omega)$ symmetric. Then: Given $f \in L^{2}(\Omega)$, the homogenous Dirichlet problem

$$\begin{cases}
-Lu = f & \text{in } \Omega, \\
u = 0 & \text{on } \partial\Omega
\end{cases}$$
(1)

admits a unique weak solution $u \in H_0^1(\Omega)$. Proof.

Step 1: Derivation of Weak Formulation. Suppose $u \in C^2(\overline{\Omega})$ is a solution of (1). Let $\varphi \in C_c^{\infty}(\Omega)$. Then integration by parts (see [Lee13, p. 436]) yields

$$-\int_{\Omega} L(u)\varphi = -\sum_{j=1}^{n} \int_{\Omega} \operatorname{div}(X_{j})\varphi = \int_{\Omega} a^{ij} \frac{\partial u}{\partial x^{j}} \frac{\partial \varphi}{\partial x^{i}} = \int_{\Omega} a^{ij} \frac{\partial u}{\partial x^{i}} \frac{\partial \varphi}{\partial x^{j}},$$

where $X_j := \left(a^{ij} \frac{\partial}{\partial x^j}\right)_i$. Thus we get the weak formulation:

$$\forall \varphi \in C_c^{\infty}(\Omega) : \int_{\Omega} a^{ij} \frac{\partial u}{\partial x^i} \frac{\partial \varphi}{\partial x^j} = \int_{\Omega} f \varphi. \tag{2}$$

Step 2: Existence and Uniqueness of Weak Solutions. Since L is uniformly elliptic, there exists $\lambda > 0$ such that

$$a^{ij}(x)\xi_i\xi_i \ge \lambda |\xi|^2$$

holds for any $x \in \Omega$ and $\xi \in \mathbb{R}^n$. Moreover, since $a^{ij} \in L^{\infty}(\Omega)$, we get that L is uniformly bounded, i.e. there exists $\Lambda > 0$ such that

$$a^{ij}(x)\xi_i\xi_i \leq \Lambda |\xi|^2$$

holds for any $x \in \Omega$ and $\xi \in \mathbb{R}^n$. Now define a bilinear form $\langle \cdot, \cdot \rangle_a : H_0^1(\Omega) \times H_0^1(\Omega) \to \mathbb{R}$ by

$$\langle u, v \rangle_a := \int_{\Omega} a^{ij} \frac{\partial u}{\partial x^i} \frac{\partial v}{\partial x^j} \tag{3}$$

Then it is easy to see, that $\langle \cdot, \cdot \rangle_a$ is symmetric. Also, $\langle \cdot, \cdot \rangle_a$ is positive definite since

$$\langle u, u \rangle_a = \int_{\Omega} a^{ij} \frac{\partial u}{\partial x^i} \frac{\partial u}{\partial x^j} \ge \lambda \int_{\Omega} |\nabla u|^2 \ge C\lambda \int_{\Omega} |u|^2$$

using ellipticity and Poincaré's inequality. Moreover by Poincaré's inequality we have that

$$\lambda \|u\|_{H_0^1(\Omega)}^2 \le \|u\|_a^2 \le \Lambda \|u\|_{H_0^1(\Omega)}^2$$

for the induced norm $\|\cdot\|_a$. Hence the induced norm is equivalent to the standard norm on $H^1_0(\Omega)$ and thus $(H^1_0(\Omega),\|\cdot\|_a)$ is a Hilbert space. Thus an application of Riesz representation theorem 1.3 yields the existence of a unique $u \in H^1_0(\Omega)$, such that

$$\langle u, \varphi \rangle_a = l(\varphi) := \int_{\Omega} f \varphi$$

holds for all $\varphi \in H_0^1(\Omega)$, since $l \in (H_0^1(\Omega))^*$.

Sobolev Spaces on an Interval. In what follows, let $-\infty \le a < b \le \infty$ and I := (a, b).

Lemma 1.2 (Du Bois-Reymond). Let $f \in L^1_{loc}(I)$ such that

$$\forall \varphi \in C_c^{\infty}(I) : \int_I f \varphi' dx = 0.$$

Then f is almost everywhere constant.

Proof. Let $v:=w-c_0\psi$ for $w,\psi\in C_c^\infty(I)$ such that $\int_I\psi=1$ and $\int_Iv=0$. This implies $c_0=\int_Iw$. By the fundamental theorem of calculus, the function $\varphi:I\to\mathbb{R}$ defined by

$$\varphi(x) := \int_{I} v(t)dt$$

belongs to $C_c^{\infty}(I)$ with $\varphi' = v$. Thus we compute

$$0 = \int_{I} f \varphi' = \int_{I} f v = \int_{I} f w - c_{0} \int_{I} f \psi = \int_{I} f w - \int_{I} w \int_{I} f \psi = \int_{I} (f - c) w,$$

where $c := \int_I f \psi$. Since w was arbitrary, we conclude by the fundamental lemma of variational calculus 1.1.

Lemma 1.3. Let $f \in L^1_{loc}(I)$ and $x_0 \in I$. Then $u : I \to \mathbb{R}$ defined by

$$u(x) := \int_{x_0}^x f(t)dt$$

is absolutely continuous and belongs to $W_{loc}^{1,1}(I)$ with u'=f a.e.

Proof. Absolute continuity follows from real analysis. Let $\varphi \in C_c^\infty(I)$. Then Fubini yields

$$\int_{I} u\varphi' = \int_{a}^{x_{0}} \int_{x_{0}}^{x} f(t)\varphi'(x)dtdx + \int_{x_{0}}^{b} \int_{x_{0}}^{x} f(t)\varphi'(x)dtdx$$

$$= -\int_{a}^{x_{0}} \int_{x}^{x_{0}} f(t)\varphi'(x)dtdx + \int_{x_{0}}^{b} \int_{x_{0}}^{x} f(t)\varphi'(x)dtdx$$

$$= -\int_{a}^{x_{0}} \int_{a}^{t} f(t)\varphi'(x)dxdt + \int_{x_{0}}^{b} \int_{t}^{b} f(t)\varphi'(x)dxdt$$

$$= -\int_{a}^{x_{0}} f(t)\varphi(t)dt - \int_{x_{0}}^{b} f(t)\varphi(t)dt$$

$$= -\int_{I} f\varphi.$$

Theorem 1.5. Let $u \in W^{1,p}(I)$. Then there exists an absolutely continuous representant \tilde{u} of u on \bar{I} , such that

$$\widetilde{u}(x) = \widetilde{u}(x_0) + \int_{x_0}^x u'(t)dt$$

holds for all $x, x_0 \in I$.

Proof. By lemma 1.3, the function $v(x) := \int_{x_0}^x u'(t)dt$ is in $W^{1,1}_{loc}(I)$ with weak derivative u'. Moreover, for any $\varphi \in C_c^\infty(I)$ we compute

$$\int_I (u-v)\varphi' = \int_I u\varphi' - \int_I v\varphi' = -\int_I u'\varphi + \int_I u'\varphi = 0.$$

Thus lemma 1.2 yields u = c + v, for some $c \in \mathbb{R}$. But $c = u(x_0)$ and we conclude by setting

$$\widetilde{u}(x) := u(x_0) + \int_{x_0}^x u'(t)dt.$$

Theorem 1.6 (Characterization of $W^{1,p}(I)$ **).** Let $1 and <math>u \in L^p(I)$. Then the following statements are equivalent:

- (a) $u \in W^{1,p}(I)$.
- (b) There exists $C \ge 0$ such that

$$\forall \varphi \in C_c^{\infty}(I) : \left| \int_I u \varphi' \right| \le C \|\varphi\|_{L^q}.$$

(c) There exists $C \ge 0$ such that for all $I' \subseteq \subseteq I$ and $|h| < \operatorname{dist}(I', \partial I)$ holds

$$\|\tau_h u - u\|_{L^p(I')} \leq C|h|,$$

where $\tau_h u(x) := u(x+h)$.

Proof. The implication $(a) \Rightarrow (b)$ follows immediately from Hölder's inequality. To prove $(b) \Rightarrow (a)$, we observe that $l: C_c^{\infty}(I) \to \mathbb{R}$ defined by

$$L(\varphi) := \int_I u \varphi'$$

is continuous. Since $C_c^{\infty}(I)$ is dense in $L^q(I)$, we get that $l \in (L^q(I))^*$. Hence we find $g \in L^p$, such that $\int_I g\varphi = l(\varphi)$ and so u' = -g.

Next we show $(a) \stackrel{\circ}{\Rightarrow} (c)$. By theorem 1.5, we find an absolutely continuous representant \tilde{u} of u. Thus

$$\widetilde{u}(x+h) - \widetilde{u}(x) = h \int_0^1 u'(x+th)dt$$

Hence Jensen's inequality yields

$$\|\tau_h u - u\|_{L^p(I')} \le |h| \int_0^1 \|u'(\cdot + th)\|_{L^p(I')} dt \le |h| \|u'\|_{L^p(I)}.$$

Lastly, we prove $(c) \Rightarrow (b)$. Let $\varphi \in C_c^{\infty}(I)$. Then we may find $I' \subseteq \subseteq I$ such that $\operatorname{supp} \varphi \subseteq I'$. Hence we compute

$$\left| \int_{I} u\varphi' \right| = \lim_{h \to 0} \frac{1}{|h|} \left| \int_{I} u(x) \left(\varphi(x+h) - \varphi(x) \right) dx \right|$$

$$\begin{split} &= \lim_{h \to 0} \frac{1}{|h|} \left| \int_{I} \left(u(x - h) - u(x) \right) \varphi(x) dx \right| \\ &= \lim_{h \to 0} \frac{1}{|h|} \left| \int_{I} \left(\tau_{-h} u - u \right) \varphi \right| \\ &\leq \lim_{h \to 0} \frac{1}{|h|} \left\| \tau_{-h} u - u \right\|_{L^{p}(I')} \left\| \varphi \right\|_{L^{q}(I)} \\ &\leq C \left\| \varphi \right\|_{L^{q}(I)}. \end{split}$$

Theorem 1.7 (Extension Theorem). There exists a continuous linear operator

$$E: W^{1,p}(I) \to W^{1,p}(\mathbb{R})$$

such that:

(*i*) $Eu|_{I} = u$.

 $(ii) \|Eu\|_{L^p(\mathbb{R})} \le C \|u\|_{L^p(I)}.$

$$(iii) \ \|(Eu)'\|_{L^p(\mathbb{R})} \le C \|u\|_{W^{1,p}(I)}.$$

Proof. First we consider the case $I = (0, \infty)$. We extend u by continuity to 0 and then we extend u by means of even symmetry. If I is bounded we can without loss of generality assume that I = (0, 1). Now use a cut-off function.

Theorem 1.8 (Approximation Theorem). Let $1 \leq p < \infty$ and $u \in W^{1,p}(I)$. Then there exists a sequence $(u_i)_{i \in \omega}$ in $C_c^{\infty}(\mathbb{R})$ such that

$$||u_i|_I - u||_{W^{1,p}(I)} \to 0.$$

Proof. The main idea of the proof is to use convolutions. Moreover, it is enough to consider the case $I = \mathbb{R}$ only, due to the extension theorem 1.7.

Theorem 1.9 (Sobolev Embedding). There is a continuous embedding

$$W^{1,p}(I) \hookrightarrow L^{\infty}(I).$$

Proof. Without loss of generality, consider $|I| \leq 1$. By theorem 1.5 we get that

$$||u||_{L^{\infty}} = \sup_{x \in I} |u(x)| \le |u(y)| + \sup_{x \in I} \left| \int_{y}^{x} u'(t)dt \right| \le |u(y)| + ||u'||_{L^{1}},$$

for any $y \in I$. Hence

$$||u||_{L^{\infty}} \leq \inf_{y \in I} |u(y)| + ||u'||_{L^{1}} \leq \frac{1}{|I|} \int_{I} |u(y)| + ||u'||_{L^{1}} \leq C ||u||_{W^{1,1}} \leq C ||u||_{W^{1,p}}.$$

Corollary 1.1. Let I be unbounded and $u \in W^{1,p}(I)$ for $1 \le p < \infty$. Then $u \to 0$ as $|x| \to \infty$.

Dirichlet and Neumann Boundary Problems on *I***.** In what follows, let us consider $-\infty < a < b < \infty$ and I := (a, b).

Proposition 1.1. Let $f \in C^0(\overline{I})$. Then the weak solution u of the homogenous Dirichlet problem

$$\begin{cases} -u'' = f & \text{in } I, \\ u(a) = 0 = u(b). \end{cases}$$

is a classical solution, i.e. $u \in C^2(\overline{I})$.

Proof. \Box

Proposition 1.2. Let $f \in C^0(\overline{I})$. Then the weak solution u of the homogenous Neumann problem

$$\begin{cases} -u'' + u = f & \text{in } I, \\ u'(a) = 0 = u'(b). \end{cases}$$

is a classical solution, i.e. $u \in C^2(\overline{I})$.

Proof.

References

[Lee13] John M. Lee. *Introduction to Smooth Manifolds*. Second Edition. Graduate Texts in Mathematics. Springer, 2013.