Raisonner avec les niveaux d'intensité sonore APPLICATION

a.
$$L = 10 \log \left| \frac{I}{I_0} \right|$$
 avec $I = \frac{P}{4\pi d^2}$.

$$\begin{split} L &= 10 \log \left| \frac{I}{I_o} \right| = 10 \log \left| \frac{\mathcal{P}}{I_o \times 4\pi d^2} \right| \text{ et } L' = 10 \log \left| \frac{\mathcal{P}}{I_o \times 4\pi (10d)^2} \right| \\ L' &= 10 \log \left| \frac{\mathcal{P}}{I_o \times 4\pi d^2 \times 10^2} \right| = 10 \log \left| \frac{\mathcal{P}}{I_o \times 4\pi d^2} \times 10^{-2} \right| \end{split}$$

En utilisant les propriétés de la fonction logarithme décimal :

$$L' = 10 \log \left| \frac{\mathcal{P}}{I_0 \times 4\pi d^2} \right| + 10 \log(10^{-2}) = L - 20 \log 10 = L - 20.$$

Avec les hypothèses faites, le niveau d'intensité sonore diminue de 20 dB lorsque la distance est multipliée par 10.

b. D'après la question précédente, quand la distance est multipliée par 10, le niveau d'intensité sonore baisse de 20 dB à cause de l'atténuation géométrique.

Lorsqu'on passe d'une distance d = 1,0 km à une distance d' = 10 km, le niveau d'intensité sonore diminue donc de 20 dB. L'atténuation par absorption est de 10^{-1} dB · km⁻¹.

Pour passer de d=1.0 km à d'=10 km, il faut se déplacer de 9,0 km, ce qui provoque une atténuation par absorption de 9 km $\times 10^{-1}$ dB \cdot km⁻¹ = 0,90 dB.

Cette atténuation est négligeable devant l'atténuation géométrique puisqu'elle est 22 fois plus faible.

36 Vitesse de fuite de la galaxie NGC 3627

- **a.** Si les deux raies ne sont pas superposées avec le même spectroscope, elles n'ont pas la même longueur d'onde. Il s'agit pourtant de la même raie α de l'hydrogène. Le décalage en longueur d'onde provient de l'effet Doppler : la vitesse de la galaxie a une composante non nulle dans la direction de visée.
- **b.** La longueur d'onde de la raie α de l'hydrogène, mesurée dans le spectre de la galaxie, est plus grande que celle mesurée dans le laboratoire. Ce « décalage vers le rouge » correspond à une vitesse d'éloignement de la galaxie.
- **c.** On calcule le décalage Doppler $|\Delta \lambda|$:

Entre les deux pics je mesure 2,5 mm. Or l'échelle me donne 10mm < -> 7 nm, donc $\Delta \lambda = 1,75\text{nm}$.

On en déduit la vitesse de fuite de la galaxie :

$$\frac{V}{C} = \frac{|\Delta\lambda|}{\lambda} = > V = C * \frac{|\Delta\lambda|}{\lambda} = 3.10^8 \frac{1,75}{656} = 8.10^5 m/s$$

38 Radar routier

a. Avant de calculer le décalage Doppler fréquence, il faut commencer par convertir les vitesses en m \cdot s⁻¹ :

90 km
$$\cdot$$
 h⁻¹ = 25 m \cdot s⁻¹.

$$|\Delta f|_{90} = \frac{2 \times \cos(25^{\circ}) \times 34.0 \times 10^{9} \text{ Hz} \times 25 \text{ m} \cdot \text{s}^{-1}}{3.00 \times 10^{8} \text{ m} \cdot \text{s}^{-1}} = 5.1 \times 10^{3} \text{ Hz}.$$

98 km
$$\cdot$$
 h⁻¹ = 27 m \cdot s⁻¹.

$$|\Delta f|_{_{98}} = \frac{2 \times \cos(25^\circ) \times 34.0 \times 10^9 \text{ Hz} \times 27 \text{ m} \cdot \text{s}^{-1}}{3.00 \times 10^8 \text{ m} \cdot \text{s}^{-1}} = 5.5 \times 10^3 \text{ Hz}.$$

b. Calculons le décalage Doppler pour une voiture roulant à $90 \text{ km} \cdot \text{h}^{-1}$ pour le nouveau radar.

$$|\Delta f|_{90} = \frac{2 \times \cos(9^{\circ}) \times 34,0 \times 10^{9} \text{ Hz} \times 25 \text{ m} \cdot \text{s}^{-1}}{3,00 \times 10^{8} \text{ m} \cdot \text{s}^{-1}} = 5,6 \times 10^{3} \text{ Hz}.$$

Le décalage Doppler est plus grand que celui obtenu avec le radar bien orienté lorsque la voiture roule à 98 km · h⁻¹.

La voiture est donc contrôlée en infraction alors qu'elle roule à $90 \text{ km} \cdot \text{h}^{-1}$.

Il faut donc veiller à ce que les radars soient correctement orientés pour que les vitesses mesurées à partir du décalage Doppler soient justes ou re-étalonner le radar.