Relatório Projeto 3 AED

Filipe David Amado Mendes Nº Estudante: 2020218797

Login no *Mooshak*: 2020218797

Turma: PL3

Docente Responsável: Prof. Doutor Ivo Gonçalves

Tabela

Número de Nós	Tempos (s)	
	5000	0.009251117706298828
	10000	0.01513814926147461
	25000	0.0339810848236084
	50000	0.09288406372070312
	75000	0.13920092582702637

Gráfico

Equação: y = 2E-06x - 0.0049

 $R^2 = 0.9915$

Introdução e Possíveis Algoritmos

Algoritmos de organização de dados são uma área muito desenvolvida da informática e da ciência dos dados. Ao longo dos anos foram-se desenvolvendo algoritmos cada vez mais eficientes. Para este projeto, a organização dos NFTs foi feita com uma árvore de N nós. Para ser implementado, este projeto pode seguir duas abordagens, uma iterativa e outra recursiva.

A solução iterativa recorre a ciclos para percorrer a árvore o número de vezes necessário para percorrer todos os nós. Para um pequeno número de casos (até às centenas de casos) não vemos muita diferença para a solução recursiva. Porém quando entramos nos milhares de casos vemos que esta solução é muito pouco eficiente visto o programa tem que passar por todos os nós a cada nó que é adicionado ou lido. Assim os tempos de execução do programa aumentam exponencialmente com o número de casos.

Por outro lado, a solução recursiva é bastante mais eficiente, passando apenas uma vez por cada nó. A implementação recursiva deste algoritmo passa pela chamada da função dentro dela própria a cada nó que é escrito ou lido na árvore. Isto permite ao programa garantir a presença de um nó na árvore sem ter que passar por ele mais que uma vez. Assim os tempos de execução do programa aumentam linearmente com o número de casos.

Além disso, usando o algoritmo iterativo para o cálculo da soma dos nós é necessário percorrer a árvore uma vez até ao final outra vez inversamente para realmente fazer o cálculo. Pelo contrário, usando a solução recursiva, a soma dos nós é calculada também de forma recursiva sendo necessária apenas uma passagem pela árvore para ter todos os resultados pretendidos.

Análise dos Resultados

Tendo em vista uma maior eficiência, neste projeto foi implementada a solução com o algoritmo recursivo. Como podemos observar a partir da tabela e do gráfico, o algoritmo implementado para a população, soma e escrita da árvore, tem complexidade linear, ou seja, f(N) = N, sendo por isso um algoritmo bastante eficiente.

Os tempos foram calculados apenas para a função de soma dos nós e para a função de escrita da árvore. Porém, apesar de um pouco maiores, os resultados teriam a mesma complexidade se tivessem em conta também a população da árvore, visto que as funções utilizadas tiram todas proveito da recursividade para percorrer os nós.

Conclusão

Com isto, podemos concluir que o método de implementação de um algoritmo pode alterar totalmente a sua eficiência e complexidade. Assim, olhando para a teoria e para os resultados obtidos vemos que a solução recursiva utilizada foi a mais adequada para este projeto.