Kodaira Vanishing Theorem

1 Preliminary

Theorem 1 (Serre Duality). Let X be a Cohen-Macaulay projective variety of dimension n over k and D a divisor on X. Then there is an isomorphism

$$H^{i}(X,D) \cong H^{n-i}(X,K_X-D)^{\vee}, \quad \forall i=0,1,\ldots,n.$$

Theorem 2 (Log Resolution of Singularities). Let X be an irreducible reduced algebraic variety over \mathbb{C} (or a suitably small neighborhood of a compact set of an irreducible reduced analytic space) and $I \subset \mathcal{O}_X$ a coherent sheaf of ideals defining a closed subscheme (or subspace) Z. Then there is a smooth variety (or analytic space) Y and a projective morphism $f: Y \to X$ such that

- (a) f is an isomorphism over $X (\operatorname{Sing}(X) \cup \operatorname{Supp} Z)$,
- (b) $f^*I \subset \mathcal{O}_Y$ is an invertible sheaf $\mathcal{O}_Y(-D)$ and
- (c) $\operatorname{Exc}(f) \cup D$ is an snc divisor.

Theorem 3 (Lefschetz Hyperplane Theorem). Let X be a smooth projective variety of dimension n over \mathbb{C} and Y a hyperplane section of X. Then the restriction map

$$H^k(X,\mathbb{C}) \to H^k(Y,\mathbb{C})$$

is an isomorphism for k < n - 1 and an injection for k = n - 1.

Theorem 4 (Hodge Decomposition). Let X be a smooth projective variety of dimension n over \mathbb{C} . Then for any k, there is a functorial decomposition

$$H^k(X,\mathbb{C}) = \bigoplus_{p+q=k} H^p(X,\Omega_X^q).$$

Combine Theorem 3 and Theorem 4, we have the following lemma.

Lemma 5. Let X be a smooth projective variety of dimension n over \mathbb{C} and Y a hyperplane section of X. Then the restriction map $r_k: H^k(X,\mathbb{C}) \to H^k(Y,\mathbb{C})$ decomposes as

$$r_k = \bigoplus_{p+q=k} r_{p,q}, \quad r_{p,q} : H^p(X, \Omega_X^q) \to H^p(Y, \Omega_Y^q).$$

And $r_{p,q}$ is an isomorphism for p+q < n-1 and an injection for p+q=n-1. In particular,

$$H^p(X, \mathcal{O}_X) \to H^p(Y, \mathcal{O}_Y)$$

Date: July 20, 2025, Author: Tianle Yang, My Website

is an isomorphism for p < n - 1 and an injection for p = n - 1.

Theorem 6 (Leray spectral sequence). Let $f: Y \to X$ be a morphism of varieties and \mathcal{F} a coherent sheaf on Y. Then there is a spectral sequence

$$E_2^{p,q} = H^p(X, R^q f_* \mathcal{F}) \implies H^{p+q}(Y, \mathcal{F}).$$

2 Kodaira Vanishing Theorem

Lemma 7. Let X be a smooth projective variety over k and \mathcal{L} a line bundle on X. Suppose there is an integer m and a smooth divisor $D \in H^0(X, \mathcal{L}^m)$. Then there exists a finite surjective morphism $f: Y \to X$ of smooth projective varieties such that $D' := f^{-1}(D)$ is smooth and satisfies that $bD' = af^*D$.

Proof. Let $s \in \mathcal{L}^m$ be the section defining D. It induces a homomorphism $\mathcal{L}^{-m} \to \mathcal{O}_X$. Consider the \mathcal{O}_X -algebra

$$\mathcal{A} := \left(igoplus_{i=0}^{\infty} \mathcal{L}^{-i}
ight) \bigg/ \left(\mathcal{L}^{-m} o \mathcal{O}_X
ight) \cong igoplus_{i=0}^{m-1} \mathcal{L}^{-i}.$$

Then \mathcal{A} is a finite \mathcal{O}_X -algebra. Let $Y := \operatorname{Spec}_X \mathcal{A}$. Then Y is a finite \mathcal{O}_X -scheme and the natural morphism $f: Y \to X$ is finite and surjective.

For every $x \in X$, let \mathcal{L} locally generated by t near x. Then \mathcal{O}_Y locally equal to $\mathcal{O}_X[t]/(t^m - s)$. Let D' be the divisor locally given by t = 0 on Y. Since X and D are smooth, then Y is a smooth variety and D' is smooth. Since f is finite, it is proper. Then Y is proper and hence Y is projective.

Remark 8. Let D_i be reduced effective divisors on X such that $D + \sum_{i=1}^k D_i$ is snc. Set $D'_i = f^*(D_i)$. Then $D' + \sum_{i=1}^k D'_i$ is snc on Y by considering the local regular system of parameters.

Lemma 9. Let $f: Y \to X$ be a finite surjective morphism of projective varieties and \mathcal{L} a line bundle on X. Suppose that X is normal. Then for any $i \geq 0$, $H^i(X, \mathcal{L})$ is a direct summand of $H^i(Y, f^*\mathcal{L})$.

Proof. Since f is finite, we have $H^i(Y, f^*\mathcal{L}) \cong H^i(X, f_*\mathcal{O}_Y \otimes \mathcal{L})$. Since X are normal, the inclusion $\mathcal{O}_X \to f_*\mathcal{O}_Y$ splits by the trace map $(1/n)\operatorname{Tr}_{Y/X}$. Thus we have $f_*\mathcal{O}_Y \cong \mathcal{O}_X \oplus \mathcal{F}$ and hence

$$H^i(X, f_*\mathcal{O}_Y \otimes \mathcal{L}) \cong H^i(X, \mathcal{L}) \oplus H^i(X, \mathcal{F} \otimes \mathcal{L}).$$

Then the conclusion follows.

Theorem 10 (Kodaira Vanishing Theorem). Let X be a smooth projective variety of dimension n over k of characteristic 0 and A an ample divisor on X. Then

$$H^i(X, \mathcal{O}_X(-A)) = 0, \quad \forall i < n.$$

Equivalently, we have

$$H^i(X, K_X + A) = 0, \quad \forall i > 0.$$

Proof. By Lemma 7 and 9, after taking a multiple of A, we can assume that A is effective. Then we have an exact sequence

$$0 \to \mathcal{O}_X(-A) \to \mathcal{O}_X \to \mathcal{O}_A \to 0.$$

Taking the long exact sequence of cohomology, we have

$$H^{i-1}(X, \mathcal{O}_X) \to H^{i-1}(X, \mathcal{O}_A) \to H^i(X, \mathcal{O}_X(-A)) \to H^i(X, \mathcal{O}_X) \to H^i(X, \mathcal{O}_A).$$

Then the conclusion follows from Lemma 5 and Serre duality (Theorem 1).

3 Kawamata-Viehweg Vanishing Theorem

We list three versions of Kawamata-Viehweg Vanishing Theorem here.

Theorem 11 (Kawamata-Viehweg Vanishing Theorem I). Let X be a smooth projective variety of dimension n over k of characteristic 0 and D a nef and big \mathbb{R} -divisor on X. Then

$$H^i(X, K_X + D) = 0, \quad \forall i > 0.$$

Theorem 12 (Kawamata-Viehweg Vanishing Theorem II). Let X be a smooth projective variety of dimension n over k of characteristic 0 and D a nef and big \mathbb{Q} -divisor on X. Suppose that $\lceil D \rceil - D$ has snc support. Then

$$H^i(X, K_X + \lceil D \rceil) = 0, \quad \forall i > 0.$$

Theorem 13 (Kawamata-Viehweg Vanishing Theorem III). Let (X, B) be a klt pair over k of characteristic 0. Let D be a nef \mathbb{Q} -divisor on X such that $D + K_{(X,B)}$ is a Cartier divisor. Then

$$H^{i}(X, K_{(X,B)} + D) = 0, \quad \forall i > 0.$$

If we replace the assumption "nef and big" of D by "ample" in II and III, we denote them as "II(ample)" and "III(ample)" respectively. Then the proof follows the following line:

Kodaira Vanishing
$$\implies$$
 II(ample) \implies III(ample) \implies I \implies III.

The proofs leave here and the lemmas used in the proofs are collected in the end of this section.

Proof of II (Theorem 12). Set M := [D]. Let

$$B := \sum_{i=1}^{k} b_i B_i := \lceil D \rceil - D = M - A, \quad b_i \in (0,1) \cap \mathbb{Q}.$$

We do not require that B_i are irreducible but we require that B_i are smooth.

We induct on k. When k = 0, the conclusion follows from Theorem 11. (For the ample case, it follows Kodaira Vanishing Theorem (Theorem 10.)) Let $b_k = a/c$ with lowest terms. Then a < c. By Lemma 15 and 9, we can assume that $(1/c)B_k$ is a Cartier divisor (not necessarily effective).

Applying Lemma 7 on B_k , we can find a finite surjective morphism $f: X' \to X$ such that $f^*B_k = cB'_k, B'_i = f^*B_i$ for i < k and $\sum_{i=1}^k B'_i$ is an snc divisor on X'. Let $B' = \sum_{i=1}^{k-1} B'_i, A' = f^*A$ and $M' = f^*M$. Then $A' + B' = M' - aB'_k$ is Cartier. Hence by induction hypothesis, $H^i(X', -A' - B')$ vanishes for i > 0. On the other hand, we have

$$\mathcal{O}_{X'}(-M' + aB'_k) \cong \sum_{i=0}^{c-1} f^* \mathcal{O}_X(-M + (a-i)B_k).$$

Hence $H^i(X, \mathcal{O}_X(-M))$ is a direct summand of $H^i(X', \mathcal{O}_{X'}(-M'+aB'_k))$ by Lemma 9.

Proof of III (Theorem 13). Let $f: \tilde{X} \to X$ be a resolution such that Supp $f^*B \cup \operatorname{Exc} f$ is snc. We can write

$$f^*(K_{(X,B)} + D) + E = K_{(\tilde{X},\tilde{B})} + f^*D,$$

where $\tilde{B} \in (0,1)$ has snc support and E is an effective exceptional divisor.

By Lemma 14, we have

$$H^{i}(\tilde{X}, K_{(\tilde{X}, \tilde{B})} + f^{*}D) = H^{i}(X, f_{*}\mathcal{O}_{Y}(f^{*}(K_{(X,B)} + D) + E)) = H^{i}(X, K_{(X,B)} + D),$$

and the left hand vanishes by Theorem 12 in either case relative to the assumption of D.

Proof of I (Theorem 11). By Lemma 17, we can choose $k \gg 0$ such that (X, 1/kB) is a klt pair with $D \sim_{\mathbb{Q}} A + \frac{1}{k}B$ for some ample divisor A. Then the theorem comes down to Theorem 13.

Lemma 14. Let $f: Y \to X$ be a birational morphism of projective varieties with Y smooth and X has only rational singularities. Let E be an effective exceptional divisor on Y and D a divisor on X. Then we have

$$f_*(\mathcal{O}_Y(f^*D+E)) \cong \mathcal{O}_X(D), \quad R^i f_*(\mathcal{O}_Y(f^*D+E)) = 0, \quad \forall i > 0.$$

Proof. Yang: I am unable to proof this lemma.

Lemma 15. Let X be a projective variety, \mathcal{L} a line bundle on X and $m \in \mathbb{Z}_{\geq 0}$. Then there exists a finite surjective morphism $f: Y \to X$ and a line bundle \mathcal{L}' on Y such that $f^*\mathcal{L} \sim \mathcal{L}'^m$. If X is smooth, then we can take Y to be smooth. Moreover, if $D = \sum D_i$ is an snc divisor on X, then we can take f such that f^*D is an snc divisor on Y.

Proof. We can assume that \mathcal{L} is very ample by writing it as a difference of two very ample line bundles. Consider the fiber product $Y := \mathbb{P}^N \times_{\mathbb{P}^N} X$ as the following diagram

$$Y \xrightarrow{\psi} \mathbb{P}^{N} ,$$

$$f \downarrow \qquad \qquad \downarrow g$$

$$X \xrightarrow{\varphi_{\mathcal{L}}} \mathbb{P}^{N}$$

where $g:[x_0:\ldots:x_N]\mapsto [x_0^m:\ldots:x_N^m]$. The morphism f is finite and surjective since so is g. Let $\mathcal{L}':=\psi^*\mathcal{L}$.

For smoothness, we can compose g with a general automorphism of \mathbb{P}^N . Then the conclusion

follows from [Har13, Chapter III, Theorem 10.8].

Lemma 16 (ref. [KM98, Theorem 5.10, 5.22]). Let (X, B) be a klt pair over k of characteristic 0. Then X has rational singularities and is Cohen-Macaulay.

Lemma 17. Let X be a projective variety of dimension n and D a nef and big divisor on X. Then there exists an effective divisor B such that for every k, there is an ample divisor A_k such that

$$D \sim_{\mathbb{Q}} A_k + \frac{1}{k}B.$$

Proof. By Yang: definition of big divisor, there exists an ample divisor A_1 and effective divisor B such that

$$D \sim_{\mathbb{Q}} A_1 + B$$
.

Then we have

$$D \sim_{\mathbb{Q}} \frac{A + (k-1)D}{k} + \frac{1}{k}B.$$

Since A is ample and D is nef, we can take $A_k = (A + (k-1)D)/k$ which is ample.

References

[Har13] Robin Hartshorne. Algebraic geometry. Vol. 52. Springer Science & Business Media, 2013.

[KM98] János Kollár and Shigefumi Mori. "Birational geometry of algebraic varieties". In: (No Title) 134 (1998).