Departamento de Física da Faculdade de Ciências da Universidade de Lisboa

Física Experimental para Engenharia Informática

2019/2020 (1°. Semestre)

Nome: Diogo Pinto nº 52763 Turma PL 12 Nome: Francisco Ramalho nº 53472 Grupo 3 Nome: João Funenga nº 53504 Data: 02 / 10 /2019

Lab #2 – Divisor de tensão, curva V-I da R óhmica e da lâmpada

Notas MUITO Importantes:

- 1. Faça o registo dos valores medidos respeitando os algarismos significativos (a.s.) da leitura dos aparelhos. Nos multímetros escolha sempre a escala que dá mais a.s..
- 2. Inclua sempre as unidades de cada valor medido ou calculado.
- 3. Ao fazer os cálculos apresente os resultados finais respeitando os a.s..
- 4. O Voltímetro deve ser colocado em paralelo com as resistências, e o Amperímetro colocado em série no circuito onde se quer medir a intensidade de corrente eléctrica.
- 5. Use sempre o mesmo aparelho como Amperímetro, pois vai determinar e usar o valor da sua resistência interna nas várias escalas. O Voltímetro tem uma resistência interna R_{iV}= 10 MΩ.
- 6. As tabelas com dados experimentais, cálculos e resultados daí obtidos incluindo os gráficos, são todos feitos na folha de cálculo. Devem ser apensos a este relatório/protocolo.

Equipamento necessário:

- 1. Fonte de tensão contínua regulável com painel de ligações breadboard □
- 2. Multímetros digitais.
- 3. Resistências de 680 Ω e 820 Ω .
- 4. Lâmpada de 12V, 1W, e resistência de 47Ω, ½ W, em série.

Objetivos

- Estudar o divisor de tensão.
- Determinar a resistência interna do amperímetro R_{iA}.
- Representar graficamente as curvas características V-l da resistência óhmica e de uma lâmpada de incandescência.
- Fazer a distinção entre elementos lineares e não lineares.
- Calcular a potência calorífica dissipada num elemento passivo.
- Tratamento e análise dos dados recorrendo a folha de cálculo.

Experiência 1 – Divisor de Tensão com Resistências.

1. As resistências têm os valores nominais R_1 = 680 Ω e R_2 = 820 Ω . Meça os seus valores reais (em Ω) com a maior precisão possível.

 R_1 medido = 667 Ω R_2 medido = 814 Ω

2. Faça a montagem experimental do circuito esquematizado na Figura 1. Coloque a fonte de tensão numa ddp V_f=15V. Registe os valores de i e V_f que são medidos, com as respectivas incertezas de leitura $\Delta V_f e \Delta i$.

 $V_f \text{ medido} = 14.95 \pm 0.01 \text{ V}$ $i \text{ medido} = 10.06 \pm 0.01 \text{ mA}$

3. Meça com um multímetro as ddp V_{R1} , V_{R2} , aos terminais de R_1 e R_2 . Registe os valores em V com a incerteza de leitura ΔV_n .

 V_{R1} medido = 6,69 ± 0,01 V V_{R2} medido = 8,17 ± 0,01 V R_{eq} medido = 14,86 ± 0,01 Ω

4. Usando <u>apenas</u> os valores medidos calcule a intensidade de corrente i_p prevista para a tensão V_f . Inclua a resistência interna do amperímetro R_{iA} (<u>atenção</u> à escala usada) obtida na Exp. 3 alínea 5.

V = IR Iprevista =
$$\frac{V_{fonte}}{R_{eq}} = \frac{14,95}{667+814+11,63} = 0,010015878 \text{ A}$$

A resistência interna do amperímetro foi tirada através dos declives das retas no gráfico.

5. Calcule o valor $|i_p-i|/i$ e use-o para comparar a intensidade prevista i_p com a real (medida) i, recorrendo às incertezas relativas de leitura dos instrumentos $\Delta V/V$, $\Delta i/i$, etc.

$$\frac{|0,010015878 - 0,01006|}{0,01006} = 0,0043859$$

A diferença é inferior a 0,01 (incerteza do amperímetro na escala de 20mA) logo a corrente calculada encontra-se correta face à corrente medida.

6. Calcule o valor previsto de V_{R2} usando somente os valores medidos de R₁ e R₂ e V_f.

$$I = \frac{V_f}{R_{12}} = \frac{14,95}{667+814} = 0,01009453 \text{ A}$$
 (Corrente total do circuito)

Como todos as resistências se encontram em série, a corrente será igual em todas. Assim,

$$V_{R2} = I * R_2 = 0.01009453 * 814 = 8.216948 V$$

7. Calcule o valor $|V_{R2p}-V_{R2}|/V_{R2}e$ use-o para comparar o valor previsto de V_{R2p} com o valor real (medido) V_{R2} , recorrendo às incertezas relativas de leitura dos instrumentos $\Delta V/V$, $\Delta i/i$, etc.

$$\frac{|8,216948-8,17|}{817} = 0,005746389$$

A diferença é inferior a 0,01 (incerteza do voltímetro na escala de 20V) logo a tensão calculada encontra-se correta face a tensão medida.

Experiência 2 - Curva Característica V vs I de uma Resistência Óhmica.

- 1. Para estudar a Curva Característica (V_R vs *i*) da resistência óhmica de carvão, *utilize a mesma montagem da experiência anterior*, esquematizada na Fig. 1 anterior.
- 2. Proceda à aquisição de dados da seguinte maneira:
 - a. Varie a tensão V_f da fonte de 0∨ a 12∨ escolhendo N=16 valores diferentes e igualmente espaçados entre si, ou seja ≈0,75 ∨.
 - b. Para cada valor de V_f escolhido registe as grandezas físicas $V_f(V)$, $V_{R1}(V)$, $V_{R2}(V)$ e i(A).
 - c. Para cada medição anote a escala usada no amperímetro. A respetiva R_{iA} vem da Exp. 3.
 - d. Construa uma tabela com os N valores registados. Introduza-os na folha de cálculo.
- 3. Para cada uma das N medições, calcule $V_{R1}+V_{R2}+i$. R_{iA} e compare com V_f . Justifique o resultado.

Da formula apresentada no enunciado: $V_{R1} + V_{R2} + I^*$ Ria tem-se $V_{R1} + V_{R2} + V_{amp}$ porque da lei de ohm temos i * r = V.

Como todas as resistências se encontram em série (tendo também em conta a resistência interna do amperímetro), a soma da tensão em cada um dos componentes será igual à tensão da fonte. Ao fazer os cálculos, $V_f - (V_{R1} + V_{R2} + V_{amp})$ é sempre igual a 0, verificando assim as medições.

4. Para os N valores medidos calcule $\frac{V_{R2}}{V_c}$, compare com $\frac{R_2}{R_{iA}+R_1+R_2}$ e justifique o resultado.

Como se verificou, a corrente será igual em todos os componentes por se encontrarem em série. Desenvolvendo a expressão V_{R2} / V_f, temos (I * R₂) / (V_{R1} + V_{R2} + V_{amp})

$$\frac{i*R_2}{V_{R1}+V_{R2}+V_{amp}} = \frac{i*R_2}{i*R_1+i*R_2+i*R_{amp}} = \frac{i*R_2}{i(R_1+R_2+R_{amp})} = \frac{R_2}{R_1+R_2+R_{amp}}$$

Como podemos verificar, as 2 formulas são equivalentes. Sendo assim, os resultados de cada uma das expressões serão muito semelhantes, havendo apenas uma mínima diferença devido à imprecisão dos aparelhos bem como da truncação dos algarismos menos significativos.

- 5. Com os N valores experimentais trace as curvas $Y=V_R(V)$ vs X=i(A) para R_1 e R_2 , recorrendo à folha de cálculo. Junte ao protocolo os gráficos assim obtidos. Inclua etiquetas nos eixos, etc...
- 6. Recorrendo à folha de cálculo ajuste uma curva aos pontos V_R vs i obtidas para R_1 e R_2 , com a opção "intercepção=0". Qual é a curva que melhor se ajusta aos dados experimentais? Registe a equação obtida usando as variáveis físicas, suas unidades e o valor dos coeficientes numéricos.

Para V1 vs i, temos que a curva que melhor se ajusta é y= 0,6657x, o cujo declive, 0,6657, representa a resistência em kOhms por estarmos a trabalhar com um gráfico Y=V e X=i. O coeficiente de determinação é 1 (R^2=1).

Para V2 vs i, temos que a curva que melhor se ajusta é y= 0,8135x, o cujo declive, 0,8135, representa a resistência em kOhms por estarmos a trabalhar com um gráfico Y=V e X=i. O coeficiente de determinação é 1 (R^2=1).

7. Compare os valores de R₁ e R₂ medidos com o ohmímetro com os calculados através do ajuste às curvas características. Comente a concordância (ou não) nos resultados, não se esquecendo das incertezas de leitura do ohmímetro.

 R_1 medido = 667 Ω

 R_2 medido = 814 Ω

Analisando o declive das retas, cujo significado físico corresponde ao valor das resistências por se tratar de um gráfico V-I, os valores aproximam-se bastante sendo respetivamente 665,7 Ω e 813,5 Ω . Os valores retirados do declive das retas são mais precisos que os medidos no ohmímetro porque resultam de um maior número de medições agregadas da tensão e corrente que nos dão o valor da resistência. O ohmímetro não nos permite ter medições mais precisas na casa das decimas, o que se consegue obter através da análise gráfica.

Experiência 3 – Curva Característica da Lâmpada Incandescente.

1. A resistência R = 47Ω e R_L representa o filamento da lâmpada de incandescência. Meça com o ohmímetro o valor de cada uma com a maior precisão possível.

 $R=48,4 \Omega$ $R_L=13,7 \Omega$

Meça o valor da série $(R+R_L)_s$ = 60,2 Ω

Compare $(R+R_L)_s$ com $R+R_L$ medidos individualmente. Comente.

Como já estudamos, estes valores supostamente deveriam ser iguais por se encontrarem em série. No entanto, isso apenas acontece quando se trata de uma resistência ohmica. A lâmpada não é uma resistência ohmica e isto implica não ter um valor de resistência constante, vai-se alterando. Deste modo, a medição em série é diferente do que a soma das individuais.

- 2. Faça a montagem experimental do circuito esquematizado na figura em cima. Ao inserir o amperímetro tenha em atenção que *i* poderá atingir os 100 mA.
- 3. Proceda à aquisição de dados da seguinte maneira:
 - a. Varie a tensão da fonte Vf de 0v até 10v escolhendo N (=20) valores diferentes e espaçados entre si de ≈0,5∨. Nota: comece com V_f = 10∨ e vá diminuindo este valor.
 - b. Para cada valor escolhido de V_f registe as grandezas físicas $V_f(V)$, $V_R(V)$, $V_L(V)$ e i(A).
 - c. Construa uma tabela com os N valores registados. Introduza-os na folha de cálculo.

4. Para cada um dos N valores obtidos calcule a grandeza $\frac{V_f - V_R - V_L}{i}$ e justifique o que representa.

$$V_f = V_{amp} + V_{R1} + V_1$$
$$V_{amp} = V_f - V_{R1} - V_1$$

Assim temos, V_{amp} / i e, como sabemos, isto é igual a R_{amp} . Logo $(V_f - V_{R1} - V_1)$ / i = Resistência interna do amperímetro

5. Dos resultados da alínea 4 calcule o valor (± incerteza) da resistência interna R_{iA} do amperímetro nas várias escalas que utilizou. Registe o valor. Nota: registe também o modelo do aparelho.

(Usando o primeiro valor – Modelo do amperimetro: Escort EDM168A)

Para a escala 20mA temos que a resistência interna do amperimetro é $\frac{V_f-V_{R1}-V_1}{i}=\frac{0,505-0,313-0,097}{6,73*10^{-3}}=14,12~\Omega$

$$\frac{V_f - V_{R1} - V_1}{i} = \frac{0.505 - 0.313 - 0.097}{6.73 \times 10^{-3}} = 14,12 \ \Omega$$

Para a escala 200mA temos que a resistência interna do amperimetro é

$$\frac{V_f - V_{R1} - V_1}{i} = \frac{2,00 - 1,01 - 0,90}{2,17 \times 10^{-2}} = 4,15 \ \Omega$$

- 6. Com os N valores experimentais trace a curva $Y=V_L(V)$ vs X=i(A) para a lâmpada, recorrendo à folha de cálculo. Junte ao protocolo os gráficos assim obtidos.
- 7. Na folha de cálculo ajuste uma função aos pontos V_L vs i obtidos com a opção "intercepção=0". Qual é a função $V_L(i)$ que melhor se ajusta aos pontos experimentais? Justifique e registe aqui a equação usando as variáveis físicas e suas unidades, assim como o coeficiente de regressão R².

Para VI vs i, temos que a curva que melhor se ajusta é y= 0,0011x² + 0,0197x, representa uma resistência em kOhms da lâmpada, por estarmos a trabalhar com um gráfico Y=VI e X=i. Como não é uma resistência ohmica, não existe proporcionalidade entre a corrente e a tensão, o que provoca uma alteração do valor da resistência. Assim a função terá grau 2 e será representada por uma parábola. O coeficiente de determinação é 0,9994 (R²=0,9994).

8. Do resultado anterior calcule analiticamente a função $Z(i) = \frac{V_L}{i}$ e interprete fisicamente o que é a função Z(i) assim obtida. Justifique se a lâmpada é uma resistência óhmica pura. Usando a função obtida calcule o valor de R_{\perp} para i = 14 mA e i = 62 mA.

A função obtida é o valor da resistência em função da tensão e da corrente. Como a resistência não é ohmica, o seu valor vai variar conforme a corrente aumente de uma forma linear, representado pela função Z(i).

Equação anterior: $y=0.0011x^2+0.0197x$, onde Y=V e X=i.

Da lei de ohm temos que R= V/i, logo R=Y/X . Calculando, $y/x = 0.0011x^2/x + 0.0197x/x =$ 0.0011x+0.0197. Isto é assim a função Z(i).

Z(14) = 0.0011*(14) + 0.0197 = 0.0351 KOhms = 35.1 Ohms

Z(62) = 0.0011*(62) + 0.0197 = 0.0879 KOhms= 87.9 Ohms

 Compare o valor de R₁ medido no ohmímetro com o valor calculado através da equação anterior, para i=0 mA. Justifique se representam a mesma grandeza e se há concordância nos valores obtidos. Interprete o resultado.

Para i=0, Z(0) = 0.0011*(0) + 0.0197 = 0.0197 KOhms = 19.7 Ohms

Caso a corrente fosse 0, a lâmpada teria uma resistência de 19.7 Ohms, no entanto, na nossa medição, a lâmpada tinha uma resistência de 13.7 Ohms. A resistência calculada é superior à resistência medida porque na medição da resistência da lâmpada, ainda não tínhamos qualquer tipo de corrente a passar.

Na calculada, ao ser usada a função, temos que a resistência da lâmpada mínima é de 19.7 Ohms e aumenta com a corrente. Não há concordância nos valores e ambas representam a mesma grandeza, resistência.

Turma PL 12	nº 52763	nº 53472	nº 53504	Grupo: 3	Data: 02	/ 10	/2019

10. Represente num (mesmo) gráfico os dois conjuntos de N valores calculados pelas expressões: $P_R = (V_f - R_{iA}.i - V_L).i$ e $P_L = V_L.i$ (no eixo dos Y) no intervalo de $i \in [0; 70]$ mA (eixo dos X). O que representam fisicamente estas grandezas P? Que unidades têm? (Nota: R_{iA} vem da alínea 5)

O gráfico segue na folha em anexo.

A grandeza P representa a potência dissipada, ou seja, watts.

11. Ajuste um polinómio aos dados de (i, P_R) e de (i, P_L) com a opção "intercepção=0". Determine qual o menor grau n do polinómio, adequado para descrever as curvas (i, P_R) e (i, P_L) . Registe aqui a equação, as variáveis físicas e suas unidades, assim como o coeficiente de regressão R^2 .

Para (i, P_r) temos que a curva que melhor se ajusta é y = $5E-5x^2 + 6E-6x$.

Assim a funcao terá grau 2 e será representada por uma parabola. O coeficiente de determinação é 1 (R²=1)

A resistência é ohmica, logo a resistência é representada por uma função constante.

Para (i, P_I) temos que a curva que melhor se ajusta é $y = 1E-6x^3 + 3E-5x^2 - 0,0003x$.

Assim a função terá grau 3. O coeficiente de determinação é 1 (R₂=1)

A resistência é não ohmica, logo a resistência é representada por uma função linear.

12. Justifique analiticamente os valores escolhidos do grau n, usando a lei de Ohm e a expressão de $R_L(i)$ deduzida na alínea 8.

$$P_R = \frac{V_R}{I_R} = \frac{I_R * R}{I_R} = I_R^2 * R$$

Como a nossa resistência é ohmica, sabemos que é algo constante, logo temos algo do género $P_R = i_R^2$, ou simplificando, $y = x^2$ sendo assim um polinómio de grau 2.

$$P_{lamp} = V_{lamp} * i_{lamp} = i_{lamp} * R_{lamp} * i_{lamp} = i_{lamp}^2 * R_{lamp}$$

Como a lâmpada não é uma resistência ohmica, sabemos que não é constante, logo temos algo do género $P_R = i^2 * R_{lamp}$, ou simplificando, $y = x^3$, sendo assim um polinómio de grau 3.

Entrega obrigatória do relatório na Semana Seguinte

Turma PL_12 nº 52763 nº 53472 nº 53504 Grupo: 3 Data: 02 / 10 /2019

Experiência 2

Vf	Vr1	Vr2	I(A) em A	I(A) em mA	Escala mA	RiA c/obtidos	Vr1+Vr2+ <i>i</i> *RiA	Vr2/Vf	R2/(RiA+R1+R2)	Diferença
0,750	0,315	0,385	0,00047	0,47	2	105,93	0,75	0,5133	0,5129	0,000
1,502	0,632	0,773	0,00095	0,95	2	102,32	1,50	0,5146	0,5141	0,001
2,25	0,948	1,158	0,00142	1,42	2	101,34	2,25	0,5147	0,5144	0,000
3,00	1,268	1,549	0,00190	1,90	2	96,37	3,00	0,5163	0,5161	0,000
3,75	1,678	2,05	0,00252	2,52	20	8,73	3,75	0,5467	0,5464	0,000
4,50	2,01	2,46	0,00302	3,02	20	9,93	4,50	0,5467	0,5460	0,001
5,25	2,35	2,87	0,00352	3,52	20	8,52	5,25	0,5467	0,5465	0,000
6,00	2,68	3,28	0,00403	4,03	20	9,93	6,00	0,5467	0,5460	0,001
6,75	3,01	3,68	0,00453	4,53	20	13,25	6,75	0,5452	0,5448	0,000
7,50	3,35	4,1	0,00504	5,04	20	9,92	7,50	0,5467	0,5460	0,001
8,25	3,69	4,5	0,00554	5,54	20	10,83	8,25	0,5455	0,5456	0,000
9,00	4,02	4,92	0,00604	6,04	20	9,93	9,00	0,5467	0,5460	0,001
9,75	4,36	5,32	0,00654	6,54	20	10,70	9,75	0,5456	0,5457	0,000
10,50	4,69	5,73	0,00705	7,05	20	11,35	10,50	0,5457	0,5454	0,000
11,25	5,03	6,15	0,00756	7,56	20	9,26	11,25	0,5467	0,5462	0,000
12,00	5,37	6,56	0,00806	8,06	20	8,68	12,00	0,5467	0,5464	0,000

Experiência 3

Vf(V)	Vr(V)	VIa()	I(A) em A	Escala	I(A) em mA	RiA c/obtidos
0,505	0,313	0,097	0,00673	20mA	6,73	14,12
1,000	0,553	0,287	0,01182	20mA	11,82	13,54
1,505	0,761	0,531	0,01633	20mA	16,33	13,04
2,00	1,01	0,90	0,02170	200mA	21,70	4,15
2,50	1,19	1,20	0,02550	200mA	25,50	4,31
3,01	1,36	1,53	0,02910	200mA	29,10	4,12
3,50	1,52	1,84	0,03270	200mA	32,70	4,28
4,00	1,67	2,18	0,03580	200mA	35,80	4,19
4,50	1,82	2,52	0,03900	200mA	39,00	4,10
5,00	1,96	2,86	0,04200	200mA	42,00	4,29
5,50	2,10	3,22	0,04510	200mA	45,10	3,99
6,00	2,23	3,57	0,04800	200mA	48,00	4,17
6,50	2,36	3,93	0,05070	200mA	50,70	4,14
7,00	2,49	4,29	0,05350	200mA	53,50	4,11
7,50	2,62	4,65	0,05620	200mA	56,20	4,09
8,00	2,73	5,03	0,05870	200mA	58,70	4,09
8,50	2,85	5,40	0,06110	200mA	61,10	4,09
9,00	2,97	5,78	0,06370	200mA	63,70	3,92
9,50	3,07	6,16	0,06600	200mA	66,00	4,09
10,00	3,14	6,42	0,06760	200mA	67,60	6,51

Pr	Plam
0,0021065	0,00065281
0,0065365	0,00339234
0,0124271	0,00867123
0,021917	0,01953
0,030345	0,0306
0,039576	0,044523
0,049704	0,060168
0,059786	0,078044
0,07098	0,09828
0,08232	0,12012
0,09471	0,145222
0,10704	0,17136
0,119652	0,199251
0,133215	0,229515
0,147244	0,26133
0,160251	0,295261
0,174135	0,32994
0,189189	0,368186
0,20262	0,40656
0,212264	0,433992

