

硬布线控制器的设计 确定哪些指令在什么阶段、在什么 条件下会使用到的微操作 设计步骤: 1. 分析每个阶段的微操作序列(取值、间址、执行、中断四个阶段) 假设采用同步控制方 2. 选择CPU的控制方式 式(定长机器周期), 一个机器周期内安排3 3. 安排微操作时序 个节拍。 4. 电路设计 安排,必须安排 王道考研/CSKAOYAN.COM

安	排微操作时序的原则
原则一	微操作的 先后顺序不得 随意 更改
原则二	被控对象不同 的微操作
	尽量安排在 一个节拍 内完成
原则三	占用 时间较短 的微操作
	尽量 安排在 一个节拍 内完成
	并允许有先后顺序
	王道考研/CSKAOYAN.COM

安排微操作时序-取指周期

原则一 微操作的 先后顺序不得 随意 更改

原则二 被控对象不同的微操作

尽量安排在 一个节拍 内完成

原则三 占用 时间较短 的微操作

尽量 安排在 一个节拍 内完成

并允许有先后顺序

(1) PC \rightarrow MAR

(2) 1 → R 存储器空闲即可

(3) M (MAR) → MDR 在(1)之后

(4) MDR → IR 在(3)之后

(5) OP (IR) → ID 在(4)之后

(6) (PC)+1→PC 在(1)之后

王道考研/CSKAOYAN.COM

9

安排微操作时序-取指周期

原则一 微操作的 先后顺序不得 随意 更改

原则二 被控对象不同的微操作

尽量安排在 一个节拍 内完成

原则三 占用 时间较短 的微操作

尽量 安排在 一个节拍 内完成

并允许有先后顺序

 T_0 (1) PC \rightarrow MAR

 T_0 (2) 1 \rightarrow R

(2) 1 → R 存储器空闲即可

 T_1 (3) M (MAR) \rightarrow MDR

在(1)之后

 T_1 (6) (PC) + 1 \rightarrow PC

在(1)之后

 T_2 (4) MDR \rightarrow IR

在(3)之后

(5) OP (IR) \rightarrow ID

在(4)之后

M(MAR)→MDR 从主存取数据,用时较长,因此必须一个时钟周期才能保证微操作的完成

两个微操作占用时 间较短,根据原则 三安排在一个节拍

MDR \rightarrow IR 是CPU内部寄存器的数据传送,速度很快,因此在一个时钟周期内可以紧接着完成 OP (IR) \rightarrow ID。也就是可以一次同时发出两个微命令。

王道考研/CSKAOYAN.COM

王道考研/CSKAOYAN.COM

安排微操作时序-间址周期 原则一 微操作的 先后顺序不得 随意 更改 To (1) Ad(IR) → MAR 原则二 被控对象不同 的微操作 To (2) 1 → R 尽量安排在 一个节拍 内完成 T1 (3) M (MAR) → MDR 原则三 占用 时间较短 的微操作 T2 (4) MDR → Ad(IR) 尽量 安排在 一个节拍 内完成 并允许有先后顺序

11

```
安排微操作时序-执行周期
原则一 微操作的 先后顺序不得 随意 更改
                                                   ① CLA
                                                                \mathsf{T}_0
                                                                \mathsf{T}_1
                                                    clear
原则二 被控对象不同的微操作
                                                                T_2 0 \rightarrow AC
                                                    ACC清零
         尽量安排在 一个节拍 内完成
                                                   @ com
                                                                \mathsf{T}_0
原则三 占用时间较短的微操作
                                                   complement \mathsf{T}_1
                                                   ACC取反
                                                                T_2 \rightarrow AC
        尽量 安排在 一个节拍 内完成
                                                    ③ SHR
                                                                 \mathsf{T}_0
         并允许有先后顺序
                                                                 \mathsf{T}_1
                                                    shift
                                                                 T_2 L(AC) \rightarrow R(AC)
                                                    算术右移
                                                                 T_2 AC_0 \rightarrow AC_0
                                                    4 CSL
                                                                 \mathsf{T}_0
                                                                \mathsf{T_1}
                                                    cyclic shift
                                                                 T_2 R (AC) \rightarrow L (AC), AC<sub>0</sub> \rightarrow AC<sub>n</sub>
                                                    循环左移
⑤ STP
                                                                 \mathsf{T}_0
                                                                 \mathsf{T}_1
                                                    stop
                                                                 T_2 0 \rightarrow G
                                                    停机
                                                                                        王道考研/CSKAOYAN.COM
```


安排微操作时序-中断周期 原则一 微操作的 先后顺序不得 随意 更改 T_0 (1) a \rightarrow MAR 原则二 被控对象不同的微操作 T_0 (2) 1 \rightarrow W 存储器空闲即可 T_0 (3) 0 \rightarrow EINT 尽量安排在 一个节拍 内完成 硬件关中断 T_1 (4) (PC) \rightarrow MDR 原则三 占用时间较短的微操作 内部数据通路空闲即可 T_2 (5) MDR \rightarrow M(MAR) 在(3)之后 尽量 安排在 一个节拍 内完成 T₂ (6) 向量地址 → PC 在(3)之后 并允许有先后顺序 这些操作由中断隐指令完成 注:中断隐指令不是一条指令,而是指一条指令的 中断周期由硬件完成的一系列操作 设计步骤: 中断周期的三个任务: 1. 分析每个阶段的微操作序列 1. 保存断点 2. 选择CPU的控制方式 2. 形成中断服务程序的入口地址 3. 安排微操作时序 3. 关中断 4. 电路设计 王道考研/CSKAOYAN.COM

			_	20. [合逻辑 ———	+ 12 11								
				:计步骤 列出抽	: 操作时间	司表	非访	存指令						
工作 周期 标记	节拍	状态 条件	微操作命令信号	CLA	СОМ	SHR	CSL	STP	ADD	STA	LDA	JMP	BAN	
	т		PC → MAR	1	1	1	1	1	1	1	1	1	1	
	10	T_0	1 → R	1	1	1	1	1	1	1	1	1	1	
			$M(MAR) \rightarrow MDR$	1	1	1	1	1	1	1	1	1	1	
FE	T_1	11		$(PC)+1 \longrightarrow PC$	1	1	1	1	1	1	1	1	1	1
取指			$MDR \rightarrow IR$	1	1	1	1	1	1	1	1	1	1	
			$OP(IR) \rightarrow ID$	1	1	1	1	1	1	1	1	1	1	
	T ₂	I	1→ IND						1	1	1	1	1	
		Ī	1 → EX	1	1	1	1	1	1	1	1	1	1	

工作		404	1.	- 50 III 1	操作时间 	710										
周期 标记	节拍	状态 条件	微操作命令信号	CLA	COM	SHR	CSL	STP	ADD	STA	LDA	JMP	BAN			
	т	т	$Ad(IR) \rightarrow MAR$						1	1	1	1	1			
IND	T ₀	10	1 → R						1	1	1	1	1			
间址	T_1		$M(MAR) \rightarrow MDR$						1	1	1	1	1			
						MDR→Ad (IR)						1	1	1	1	1
	T ₂	ĪND	1 → EX						1	1	1	1	1			

设计步骤 1. 列出搏		表		组合	逻辑	设计						
2. 写出微 操作命令的 最简表达式	工作 周期 标记	节拍	状态 条件	微操作命令信号	CLA	СОМ	ADD	STA	LDA	JMP	BAN	
				$Ad(IR) \rightarrow MAR$			1	1	1			
		T_0		$1 \longrightarrow R$			1		1			
				$1 \longrightarrow W$				1				
		т		$M(MAR) \rightarrow MDR$			1		1			
	EX	T_1		$AC \rightarrow MDR$				1				
	执行			(AC)+(MDR)→AC			1					
				$MDR \rightarrow M(MAR)$				1				
				MDR→AC					1			
		T ₂		0→ AC	1							
				$\overline{AC} \rightarrow AC$		1						
				$Ad(IR) \rightarrow PC$						1		
			A_0	$Ad(IR) \rightarrow PC$							1	
•				• •						王道考	研/CSKA	OYAN.COM

			_	微操	作信	号综	合						
工作 周期 标记	节拍	状态 条件	微操作命令信号	CLA	СОМ	SHR	CSL	STP	ADD	STA	LDA	JMP	BAN
	T ₀		$PC \longrightarrow MAR$	1	1	1	1	1	1	1	1	1	1
FE 取指			1 → R	1	1	1	1	1	1	1	1	1	1
	T ₁		$M(MAR) \rightarrow MDR$	1	1	1	1	1	1	1	1	1	1
IND 间址	T ₁		$M(MAR) \rightarrow MDR$						1	1	1	1	1
刊刊			EX 执行		1 → W					1	-		
			T_1	M(M	AR)→	MDR			1		1		
M (FE·	MAR $\Gamma_1 + IN$ $\{FE+IN\}$) →M] D·T₁(A JD(AD	DR微操作命令的逻 ADD+STA+LDA+JM D+STA+LDA+JMP	辑表达 IP+BA +BAN	式: N)+E)+EX(A	X·T ₁ (A	ADD+L	.DA)					

硬布线控制器的设计

设计步骤:

- 1. 分析每个阶段的微操作序列
- 2. 选择CPU的控制方式
- 3. 安排微操作时序
- 4. 电路设计
 - (1) 列出操作时间表
 - (2)写出微操作命令的最简表达式
 - (3)画出逻辑图

硬布线控制器的特点:

指令越多,设计和实现就越复杂,因此一般用于 RISC (精简指令集系统)如果扩充一条新的指令,则控制器的设计就需要大改,因此扩充指令较困难。由于使用纯硬件实现控制,因此执行速度很快。微操作控制信号由组合逻辑电路即时产生。

王道考研/CSKAOYAN.COM

21

@王道论坛

@王道计算机考研备考

@王道咸鱼老师-计算机考研

@王道楼楼老师-计算机考研

@王道计算机考研

知乎

※ 微信视频号

@王道计算机考研

@王道计算机考研

@王道在线