# On the Shortest Path between two Vertices in Permutation Polytope

Filip Zieliński

UKEN Kraków

11.01.2024

#### **Definitions**

#### Definition 1

**Extreme points.** Let  $A \subset \mathbb{R}^n$  be a set. A point  $a \in A$  is called an *extreme point* of A provided for any two points  $b, c \in A$  such that  $\frac{b+c}{2} = a$  one must have b = c = a. The set of all extreme points of A is denoted ex(A).

### **Definitions**

#### Definition 1

**Extreme points.** Let  $A \subset \mathbb{R}^n$  be a set. A point  $a \in A$  is called an *extreme point* of A provided for any two points  $b, c \in A$  such that  $\frac{b+c}{2} = a$  one must have b = c = a. The set of all extreme points of A is denoted ex(A).

#### Definition 2

**Polytope.** The convex hull of a finite set of points in  $\mathbb{R}^n$  is called a *polytope*.

#### Definition 3

**Polyhedron**. Let  $c_1,...,c_m$  be vectors from  $\mathbb{R}^n$  and let  $\beta_1,...,\beta_m$  be real numbers and additionally  $\langle\cdot,\cdot\rangle$  be the standard inner product. The set:

$$P = \{x \in \mathbb{R}^n : \langle c_i, x \rangle \leq \beta_i, i = 1, ..., m\}$$

is called **polyhedron**.

### Extreme Points Theorem

#### **Notation**

An extreme point of a polyhedron is called a *vertex*.

#### Theorem 4

Let  $P \subset \mathbb{R}^n$  be a polyhedron:

$$P = \{x \in \mathbb{R}^n : \langle c_i, x \rangle \leq \beta_i, i = 1, ..., m\}$$

where  $c_i \in \mathbb{R}^n$  and  $\beta_i \in \mathbb{R}$  for i = 1, ..., m. For  $u \in P$  let

$$I(u) = \{i : \langle c_i, u \rangle = \beta_i\}$$

be a set of the inequalities that are active on u. Then u is a vertex of P if and only if the set of vectors  $\{c_i: i \in I(u)\}$  linearly spans the vector space  $\mathbb{R}^n$ . In particular if u is a vertex of P the set I(u) contains at least n indices:  $|I(u)| \geq n$ 

## Permutation Polytope

#### Definition 5

Let us fix a point  $x=(\xi_1,...,\xi_n)\in\mathbb{R}^n$ . For a permutation  $\sigma$  of the set  $\{1,...,n\}$  let  $\sigma(x)$  be the vector  $y=(\eta_1,...,\eta_n)$  where  $\eta_i=\xi_{\sigma^{-1}(i)}$  Let  $S_n$  be the symmetric group of all permutations of the set  $\{1,...,n\}$ . Let us define the *permutation polytope* P(x) by

$$P(x) = conv(\sigma(x) : \sigma \in S_n)$$

in words: we permute the coordinates of a given vector x in all possible ways and take the convex hull of resulting vectors.

### Permutohedron

#### Theorem 6

Permutation Polytope P(x) where  $x = (1, 2, ..., n) \in \mathbb{R}^n$  lies in a n - 1 dimensional affine subspace of euclidan  $\mathbb{R}^n$  space.

#### Definition 7

Permutation Polytope P(x) where  $x = (1, ..., n) \in \mathbb{R}^n$  is called *Permutohedron*.

#### Theorem 8

Every permutation is a vertex of Permutohedron.

## Permutohedron of point x = (1, 2, 3)



# Permutohedron of point x = (1, 2, 3, 4)



## Permutohedron of point x = (1, 2, 3, 4, 5)



## Facets and Faces of Polyhedron

Let P be a polyhedron defined as earlier. For  $u \in P$  we define a set inequalities that are active on u as following:

$$I(u) = \{i : \langle c_i, u \rangle = \beta_i\}$$

#### Definition 9

**Face.** Let  $P \subset \mathbb{R}^n$  be a polyhedron. Let  $F \subset P$  be a set of all points  $u \in P$  such that some  $i_1, ..., i_k \in I(u)$  for all u. Set F is called a Face. by dimension of a Face we understand  $d = n - dim(span(c_{i_1}, ..., c_{i_k}))$ 

## Facets and Faces of Polyhedron

#### Theorem 10

Every face of Polyhedron is a Polyhedron.

**Proposition/Definition** Face of n-1 dimension is called a *Facet*.

Face of 1 dimension is called an Edge.

Face of 0 dimension is a Vertex.

Every Edge contains exactly two vertices.

If there exists and edge between two vertices then the vertices are called *adjacent*.

## Edges of Permutohedron

#### Theorem 11

Let  $x_1, x_2 \in \mathbb{R}^n$  be two vertices of Permutohedron associated with permutations  $\sigma_1, \sigma_2$ . There is an edge between  $x_1$  and  $x_2$ , which means they are adjacent if and only if there exist transposition (permutation)  $\sigma_i = (i \ i + 1)$  such that  $\sigma_1 = \sigma_2 \circ \sigma_i$ .

## Edges of Permutohedron

#### Theorem 11

Let  $x_1, x_2 \in \mathbb{R}^n$  be two vertices of Permutohedron associated with permutations  $\sigma_1, \sigma_2$ . There is an edge between  $x_1$  and  $x_2$ , which means they are adjacent if and only if there exist transposition (permutation)  $\sigma_i = (i \ i + 1)$  such that  $\sigma_1 = \sigma_2 \circ \sigma_i$ .

#### Definition 12

Let  $[n] = \{1, ..., n\}$  be a set of n first natural numbers. Set of points  $x \in \mathbb{R}^n$  fulfilling  $2^n - 2$  inequalities and one equality:

$$\sum_{i\in I} x_i \geq \frac{|J|(|J|+1)}{2}, J\subset [n], J\neq \emptyset, J\neq [n]$$

$$\sum_{i=1}^{n} x_i = \frac{n(n+1)}{2}$$

is a Permutohedron.

## Example

### Example 13

$$x = (3, 4, 1, 2) \in \mathbb{R}^4$$

adjacent vertices to the vertex x are:

$$x_1 = x \circ (1 \ 2) = (3, 4, 2, 1)$$

$$x_2 = x \circ (2 \ 3) = (2, 4, 1, 3)$$

$$x_3 = x \circ (3 \ 4) = (4, 3, 1, 2)$$

# Permutohedron of point x = (1, 2, 3, 4)



## Adjacent Vertices as Matrices

$$\sigma = (2,4,3,1), \ X^{\sigma} = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

## Adjacent Vertices as Matrices

$$\sigma = (2,4,3,1), \ X^{\sigma} = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

$$(2,4,3,1)\circ(1\ 2)=(1,4,3,2)$$

$$\begin{bmatrix} \mathbf{0} & 0 & 0 & \mathbf{1} \\ \mathbf{1} & 0 & 0 & \mathbf{0} \\ \mathbf{0} & 0 & 1 & \mathbf{0} \\ \mathbf{0} & 1 & 0 & \mathbf{0} \end{bmatrix} \xrightarrow{(1\ 2)} \begin{bmatrix} \mathbf{1} & 0 & 0 & \mathbf{0} \\ \mathbf{0} & 0 & 0 & \mathbf{1} \\ \mathbf{0} & 0 & 1 & \mathbf{0} \\ \mathbf{0} & 1 & 0 & \mathbf{0} \end{bmatrix}$$

## Adjacent Vertices as Matrices

$$\sigma = (2,4,3,1), \ X^{\sigma} = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

$$(2,4,3,1)\circ(1\ 2)=(1,4,3,2)$$

$$\begin{bmatrix} \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} \\ \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \xrightarrow{(1 \ 2)} \begin{bmatrix} \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

## Adjacent vertices to vertex (2, 4, 3, 1)

$$(2,4,3,1)\circ(1\ 2)=(1,4,3,2)$$

$$\begin{bmatrix} \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} \\ \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \xrightarrow{(1\ 2)} \begin{bmatrix} \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

$$(2,4,3,1)\circ(2\ 3)=(3,4,2,1)$$

$$\begin{bmatrix} 0 & 0 & 0 & 1 \\ \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{0} \\ 0 & 1 & 0 & 0 \end{bmatrix} \xrightarrow{(2\ 3)} \begin{bmatrix} 0 & 0 & 0 & 1 \\ \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{0} \\ \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

$$(2,4,3,1)\circ(3 4)=(2,3,4,1)$$

$$\begin{bmatrix} 0 & 0 & 0 & 1 \\ \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{0} \\ 0 & 1 & 0 & 0 \end{bmatrix} \xrightarrow{(2\ 3)} \begin{bmatrix} 0 & 0 & 0 & 1 \\ \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{0} \\ 1 & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ 0 & 1 & 0 & 0 \end{bmatrix} \xrightarrow{\begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & \mathbf{0} & \mathbf{1} & \mathbf{0} \\ 0 & \mathbf{1} & \mathbf{0} & \mathbf{0} \end{bmatrix} \xrightarrow{(3\ 4)} \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{0} \end{bmatrix}$$

$$X^{\sigma_1} = \begin{pmatrix} 2, 4, 3, 1 \end{pmatrix}$$

$$X^{\sigma_1} = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

$$X^{\sigma_2} = (2,3,1,4)$$

$$X^{\sigma_2} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$X^{\sigma_1} = (2,4,3,1)$$
  $X^{\sigma_1} = \begin{bmatrix} 0 & 0 & 0 & 1 \ 1 & 0 & 0 & 0 \ \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{0} \ 0 & 1 & 0 & 0 \end{bmatrix}$ 

$$egin{aligned} \sigma_2 &= (2,3,1,4) \ X^{\sigma_2} &= egin{bmatrix} \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{0} \ 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix} \end{aligned}$$

$$\sigma_{1} = (2, 4, 3, 1) \qquad \sigma_{2} = (2, 3, 1, 4) 
X^{\sigma_{1}} = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{0} \\ 0 & 1 & 0 & 0 \end{bmatrix} \qquad X^{\sigma_{2}} = \begin{bmatrix} \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{0} \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} 
\begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{0} \\ 0 & \mathbf{0} & \mathbf{1} & \mathbf{0} \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \xrightarrow{(2 \ 3)} \begin{bmatrix} 0 & 0 & 0 & 1 \\ \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{0} \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \xrightarrow{(1 \ 2)} \begin{bmatrix} \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{0} \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

$$egin{bmatrix} 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \ \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} \ 0 & 1 & 0 & 0 \end{bmatrix} \hspace{1cm} X^{\sigma_2} = egin{bmatrix} 0 & 0 & 1 & 0 \ \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} \ 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ 0 & 1 & 0 & 0 \end{bmatrix} \xrightarrow{(2\ 3)} \begin{bmatrix} 0 & 0 & 1 & 0 \\ \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ 0 & 1 & 0 & 0 \end{bmatrix} \qquad \qquad X^{\sigma_2} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ 0 & 1 & 0 & 0 \end{bmatrix} \xrightarrow{(2\ 3)} \begin{bmatrix} 0 & 0 & 1 & 0 \\ \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix} \xrightarrow{(3\ 4)} \begin{bmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ 0 & 1 & 0 & 0 \end{bmatrix} \qquad X^{\sigma_2} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ 0 & 1 & 0 & 0 \end{bmatrix} \xrightarrow{(2\ 3)} \begin{bmatrix} 0 & 0 & 1 & 0 \\ \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix} \xrightarrow{(3\ 4)} \begin{bmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\sigma_1 \circ (23) \circ (12) \circ (23) \circ (34) = \sigma_2$$

$$\sigma_1 = (2, 4, 3, 1)$$

$$\begin{vmatrix} \mathbf{4} : \\ \mathbf{2} : \\ 1 & 0 & 0 & 0 \\ 1 : \\ 0 & 0 & 1 & 0 \\ 3 : \\ 0 & 1 & 0 & 0 \\ \end{vmatrix}$$

$$\sigma_2 = (2, 3, 1, 4)$$

$$\begin{bmatrix} \mathbf{1} : \\ \mathbf{2} : \\ \mathbf{3} : \\ \mathbf{4} : \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\sigma_{1} = (2,4,3,1) \qquad \sigma_{2} = (2,3,1,4)$$

$$\begin{bmatrix} \mathbf{4} : \\ \mathbf{2} : \\ \mathbf{1} : \\ \mathbf{3} : \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \qquad \begin{bmatrix} \mathbf{1} : \\ \mathbf{2} : \\ \mathbf{3} : \\ \mathbf{4} : \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Problem of finding the shortest path between two vertices is the same as problem of sorting an array swapping only adjacent elements.

## Permutohedron vertices coloring



### Further Questions and Ideas.

- 1 Finite Groups found in Permutohedron.
- 2 Derangements in Permuatohedron.
- 3 Inverse Permutations in Permutohedron.
- 4 Charachteristics of all Faces of Permutohedron.

#### Literature

- A. Barvinok A Course in Convexity American Mathematical Society, 2002.
  - G. Lancia and P. Serafini Compact Extended Linear Programming

    Models http:

    (1941) at home at a divert (hit at recorn (1934-5730) (714-56) (1/77, ma)
    - //ndl.ethernet.edu.et/bitstream/123456789/71466/1/77.pdf
- M. Goemans Smallest Compact Formulation for the Permutahedron https://math.mit.edu/~goemans/PAPERS/permutahedron.pdf