

Department of Computer Science and Engineering

Experiment 1.2

Course Name: Digital Logic Design

Course Code: CSE 345

Instructor Name: Nishat Tasnim

Group No: 04

Student ID	Full Name	
2022-3-60-221	Fahim Ahmed Sifat	
2022-3-60-064	MD. Aseer Hamim Mahi	
2022-2-60-133	Abdul Wadud	
2023-1-60-121	Mirza MD Asif Iqbal	

Date of Submission: 10th March, 2025

Experiment Name:

Experimenting with NAND gate IC (7400) and NOR gate IC (7402) to Prove their

Universality.

Objectives

To Understand the concept of NAND and NOR gate

• To verify that NAND and NOR gates can be used to implement all basic logic

gates (AND, OR, NOT)

To compare experimental results using theoretical results.

• To simulate the designed circuits using computer software for verification.

Tasks

Universality Prove: NAND Gate

Task 1

Description:

This task involves designing and implementing an AND gate using NAND gates. Since a

NAND gate produces the inverse of an AND gate, an AND gate can be constructed by

connecting the output of a NAND gate to another NAND operation. The circuit is tested

using a simulation tool, and the outputs are verified against the expected AND gate truth

table. So, the outputs will be 1 only when both inputs are 1, otherwise it outputs 0.

Truth Table (NAND to AND gate):

Input A	Input B	Expected Output	Experimental Output
0	0	0	0
0	1	0	0
1	0	0	0
1	1	1	1

Task 2

Description:

This task involves designing and implementing an OR gate using only NAND gates. Since NAND is a universal gate, an OR gate can be constructed by applying De Morgan's theorem. The circuit is tested using a simulation tool, and the outputs are verified against the expected OR gate truth table. The outputs will be 1 when at least one input is 1.

Logic Circuit Diagram:

Truth Table (NAND to OR gate):

Input A	Input B	Expected Output	Experimental Output
0	0	0	0
0	1	1	1
1	0	1	1
1	1	1	1

Task 3

Description:

This task involves designing and implementing a NOT gate using a single NAND gate. Since a NAND gate outputs the inverse of an AND operation, a NOT gate can be created by connecting both inputs of the NAND gate together. The circuit is tested using a simulation tool, and the outputs are verified against the expected NOT gate truth table. So, if input is 0, output will be 1 and if input is 1, output will be 0.

Truth Table (NAND to NOT gate):

Input A	Expected Output	Experimental Output
0	1	1
1	0	0

Universality Prove: NOR Gate

Task 4

Description:

This task involves designing and implementing a NOT gate using a single NOR gate. Since a NOR gate outputs the inverse of an OR operation, a NOT gate can be created by connecting both inputs of the NOR gate together. The circuit is tested using a simulation tool, and the outputs are verified against the expected NOT gate truth table. So, if input is 0, output will be 1 and if input is 1, output will be 0.

Truth Table (NOR to NOT gate):

Input A	Expected Output	Experimental Output
0	1	1
1	0	0

Task 5

Description:

This task involves designing and implementing an OR gate using only NOR gates. By applying De Morgan's theorem, an OR gate can be constructed using multiple NOR gates. The circuit is tested using a simulation tool, and the outputs are verified against the expected OR gate truth table. The outputs will be 1 when at least one input is 1.

Truth Table (NOR to OR gate):

Input A	Input B	Expected Output	Experimental Output
0	0	0	0
0	1	1	1
1	0	1	1
1	1	1	1

Task 6

Description:

This task involves designing and implementing an AND gate using only NOR gates. By applying De Morgan's theorem, an AND gate can be constructed using multiple NOR gates. The circuit is tested using a simulation tool, and the outputs are verified against the expected AND gate truth table. So, the outputs will be 1 only when both inputs are 1, otherwise it outputs 0.

Truth Table (NOR to AND Gate):

Input A	Input B	Expected Output	Experimental Output
0	0	0	0
0	1	0	0
1	0	0	0
1	1	1	1

Discussion:

During the experiment, the expected results were compared with the actual outcomes, and the constructed logic gates behaved as anticipated, aligning with their respective truth tables. Some minor discrepancies were observed due to factors like faulty components, voltage variations, and improper wiring. Challenges included debugging circuit errors, ensuring proper gate functionality, and handling unstable outputs. Despite these difficulties, the experiment successfully validated the universality of NAND and NOR gates, reinforcing their importance in digital logic design and providing a deeper understanding of fundamental logic operations.

Subject: CSE 345(LAB)

Sat	Sun	Mon	Tue	Wed	Thu	Fri
Time		Date	04	03	202	5

Group - 03

400

NAND Gate Universality Prove:

① HAND → AND

Α	B	Y (Expected)	(Experiment
0	0	0	0
0	1	0	0
1	0	0	0
1	1	1	1

Subject :....

Sat	Sun	Mon	Tue	Wed	Thu	Fri
Time		Date				

Α	ß	(Expected)	(Experiment
0	0	110	0
٥	1	1	1
1	0	1	1
1	1	1	1

AA	(Expectes)	(Experiment)
9	1	1.
1	0	0

Sat	Sun	Mon	Tue	Wed	Thu	Fri
			D	0		
Time	Tanada (C)	Date	1			
1 mile		and the same		and the same		

MOR Gate Universality Prove:

1 HOR - AND

A	в	(Expected)	(Expertiment)
0	0	0	0
0	1	. 0	0
1	0	0	0
1	1	1	1

$$\frac{A}{B} = \frac{\overline{A+B}}{\overline{A+B}} = A+B$$

А	В	(Expected)	Experiment)
0	0	0	6
0	1 2	1	1
1	0	1	1
1	1	1	. 1

Subject :....

Sat	Sun	Mon	Tue	Wed	Thu	Fri
Time		Date				

$$A \longrightarrow A + A = \overline{A}$$

A	(Expected)	(Experiment)	
Ō	1	1	
1	0	0	

Do 4/3/25

\$\$\$