Nearest Neighbor Predictors

Texts in Computer Science

Michael R. Berthold · Christian Borgelt Frank Höppner · Frank Klawonn Rosaria Silipo

Guide to Intelligent Data Science

How to Intelligently Make Use of Real Data

Second Edition

Summary of this lesson

"Good fences make good neighbors" -Robert Frost

Can we learn from surrounding elements?

*This lesson refers to chapter 9 of the GIDS book

What you will learn

Nearest Neighbors Predictors

- Lazy learners vs eager learners
- k-nearest neighbor (kNN) predictors
- Weighting & prediction functions
- Choosing parameter k

Datasets

- Datasets used : iris dataset
- Example Workflow:
 - "Classification of the iris data using kNN" https://kni.me/w/ZVkD_W8LnSh_t9Na
 - normalization
 - kNN with k=1

Classification of the iris data set using kNN

Lazy and Eager Learners

Nearest-Neighbor Predictors

- One of the simplest learning methods
- Predict class labels or target values from nearest neighbors
- Majority voting classification
- Averaging numeric prediction

An example of lazy learners, in contrast to eager learners

- Lazy learners: Save all data from training, use it for classifying
 (The learner was lazy, classifier had to do the work)
- Eager learners: Build a (compact) model/structure during training, use the model for classification.

(The learner was eager/worked harder, classifier had simple life)

Motivation

- How to classify a new observation (red X)? Blue or red?
- Solution: the majority vote of its neighbors,

Motivation

Examining k-nearest neighbors, decided based on the majority vote

- k=3: 3 blues → classified as blue
- k=5: 3 blues, 2 reds → classified as blue
- k=10: 6 blues, 4 reds → classified as blue

Nearest-Neighbor Predictors

An example of lazy learners, in contrast to eager learners

- Lazy learners: Save all data from training, use it for classifying (The learner was lazy, classifier had to do the work)
- Eager learners: Build a (compact) model/structure during training, use the model for classification.

(The learner was eager/worked harder, classifier had simple life)

k-Nearest Neighbor Predictors

Nearest-Neighbor Predictors

- Nearest neighbor predictors are special case of *instance-based learning*
- Instead of constructing a model that generalizes beyond the training data, the training examples are merely stored.
- Predictions for new cases are derived directly from these stored examples and their (known) classes or target values.

Simple Nearest Neighbor Predictors

 For a new instance, use the target value of the closest neighbor in the training set

Nearest Neighbor Predictor: Issues

- Nearest neighbor predictors are sensitive to noises
- → How can we overcome this?

k-Nearest Neighbor Predictor

Prediction with k neighbors (k > 1) taken into account \rightarrow k-nearest neighbor predictor

- Classification: Choose the majority class among the k nearest neighbors for prediction
- Regression: Take the mean value of the k nearest neighbors for prediction

Problem:

- All k nearest neighbors have the same influence on the prediction.
- → Closer nearest neighbors should have higher influence

Ingredients of kNN

Ingredients for k-Nearest Neighbor Predictor

Distance Metric:

- Determines which of the training examples are nearest to a query data point
- Possible scaling or weighting of some attributes

Number of Neighbors (k):

- The number of neighbors to be considered
- In theory it can range from 1 to all data points

Ingredients for k-Nearest Neighbor Predictor

Weighting function:

- Weighting function defined from the query point
- Higher (lower) values for smaller (larger) distances

Prediction function:

- A way to compute the prediction from the neighbors
- Neighbors may differ from each other → may not produce a unique prediction

Average (3 nearest neighbors)

Distance weighted (2 nearest neighbors)

Choosing the Right Ingredients

Distance metric

Problem dependent – often Euclidean

Number of Neighbors (k)

- Often chosen by cross-validation
- Should use an odd number to avoid possible ties in classification

Choosing the Right Ingredients

Weighting function

- Example: tri-cubic weighting function $w(s_i,q,k) = \left(1 \left(\frac{d(s_i,q)}{d_{\max}(q,k)}\right)^3\right)^3$
- q: Query point
- $-s_i$: Input vector of the *i*-th nearest neighbor
- k: Number of neighbors to be considered
- d: Distance function
- $-d_{max}(q,k)$: Maximum distance between any two nearest neighbors and the distances of the nearest neighbours to the query point

Choosing the Right Ingredients

Prediction function

Regression

weighted average of the target of the nearest neighbors

Classification

- Sum up the weights for each class among the nearest neighbors.
- Choose the class with the highest weighted sum

Kernel Functions

A k-nearest neighbor predictor with a weighting function

- Interpreted as an n-nearest neighbor predictor with a modified weighting function
- The modified weighting function simply assigns 0 to all instances not belonging to the k nearest neighbors.

More general approach

 Use a kernel function assigning distance-dependent weights to all instances in the training data set.

Kernel Functions

A kernel function $K(\cdot)$:

- -K(d) a function of distance d (originating from a query point)
- $-K(d) \ge 0$
- -K(0) = 1 (or it peaks at 0)
- -K(d) decreases monotonically as d incerases

Kernel Function Examples

Typical examples for kernel functions

$$K_{rect}(d) = \begin{cases} 1 & \text{if } d \leq \sigma \\ 0 & \text{otherwise} \end{cases}$$

$$K_{triangle}(d) = K_{rect}(d) \cdot \left(1 - \frac{d}{\sigma}\right)$$

$$K_{tricubic}(d) = K_{rect}(d) \cdot \left(1 - \frac{d^3}{\sigma^3}\right)^3$$

$$K_{Gauss}(d) = exp\left(-\frac{d^2}{2\sigma^2}\right)$$

Where $\sigma > 0$ is a predefined constant

Locally Weighted (Polynomial) Regression

- For regression, we can use weighted averaging of the target
- Alternatively, we can also compute a local weighed-regression function at the query point

Adjusting the Distance Function

- Choice of a distance function → crucial in nearest neighbor methods
- Weighted features in a distance function → more emphasis on important features
- Feature weights can be found based on heuristic strategies
 - Hill climbing, simulated annealing, evolutionary algorithms, etc.
- Can be evaluated via cross-validation

Data Reduction – Prototype Building

Nearest neighbor methods

- Pro: no training is needed
- Con: prediction on a large data set is computationally demanding

Solutions:

- Smaller subset of the training data for the nearest neighbor predictor
- Prototypes by merging close instances, e.g., by averaging
- → Can be carried out based on cross-validation and using heuristic optimization strategies

Choice of Parameter k

Linear classification problem (with some noise)

Choice of Parameter k

Decision boundaries with different k

Choice of Parameter k

- k=1: y=piecewise constant labeling
- k too small: very sensitive to outliers
- k too large: many objects from other classes in the decision set
- k = N: y=globally constant (majority) label

→ k can be determined manually, or heuristically (such as cross-validation)

Special Case, k=1

Simple classifier, k=1. Voronoi tessellation of input space

Special Case, k=1

Highly localized classifier, perfectly fits separable training data

Bias of the Learning Algorithm?

- No variations in search: simple store all examplesModel Bias?
- Classification via Nearest NeighborHypothesis Space?
- One hypothesis only: Voronoi partitioning of space

Summary

Nearest neighbor classifiers are:

- Instance-based classifiers → remember all training cases
- Sensitive to neighborhood things to consider:
 - Number of neighbors k
 - Distance function
 - Weighting function
 - Prediction function

Practical Examples with KNIME Analytics Platform

Classification of the iris data using kNN

Classification of the iris data set using kNN

Thank you

For any questions please contact: education@knime.com