

# SYS-660 Decision and Risk Analysis Final Project Report

# Investment Portfolio Decision Support System (DSS)

**Instructor: Dr. Ting Liao** 

Group 1:

**Girik Shroff** 

Bhavya Modi

Kavya Das

#### **Table of Contents**

#### 1. Introduction

- o Problem Statement
- Motivation and Context
- Targeted Users

#### 2. Objectives and Needs

- Decision Framework
- Goals and Challenges

#### 3. Alternatives and Attributes

- Available Alternatives
- Defined Attributes

#### 4. Development Process

- Data Understanding
- o Model and Utility Function Development
- o Monte Carlo Simulation Overview

#### 5. Utility Model and Weighting

- Utility Function Formulation
- o Weight Assignment Based on Risk Profile

#### 6. Risk Analysis

- o Uncertainty in Investments
- o Monte Carlo Simulation Results and Insights

#### 7. User Interface and Usability

- Screenshots and Features
- Flexibility and Usability

#### 8. Results and Interpretation

- Portfolio Optimization Outcomes
- Portfolio Metrics
- Simulation Results Analysis

#### 9. Challenges and Limitations

#### 10. Conclusion and Recommendations

#### 11. References

#### 1. Introduction

#### **Problem Statement**

Investors often face challenges in making data-driven decisions when allocating investments between stocks and bonds. These decisions become more complex when considering factors such as risk tolerance, investment horizon, and market volatility. The **Investment Portfolio Decision Support System (DSS)** is designed to assist users in determining optimized stock and bond allocations based on user-specific inputs and risk profiles.

#### **Motivation and Context**

Investing involves balancing risk and reward while considering long-term objectives and uncertainties. Many investors struggle to:

- 1. Identify suitable investment alternatives.
- 2. Quantify risk tolerance and returns.
- 3. Incorporate evolving market conditions.

The DSS provides a structured solution by integrating utility models, Monte Carlo simulations, and portfolio optimization techniques.

#### **Targeted Users**

The primary users of this DSS include:

- Individual investors seeking optimized portfolios.
- Financial analysts providing investment recommendations.
- Retirees planning long-term savings.

# 2. Objectives and Needs

The DSS aims to provide:

- 1. **Personalized Portfolio Allocation**: Generate optimized investment allocations for stocks and bonds based on risk tolerance.
- 2. Monte Carlo Simulations: Model portfolio growth and uncertainties over time.
- 3. **Usability and Flexibility**: Allow users to input personalized parameters (e.g., age, horizon, risk tolerance).

#### **Goals and Challenges**

| Goal                             | Challenge                                    |  |
|----------------------------------|----------------------------------------------|--|
| Optimize portfolio allocation    | Handling data for diverse stock/bond tickers |  |
| Model investment uncertainties   | Simulating market fluctuations               |  |
| Incorporate user preferences     | Customizing utility models dynamically       |  |
| Ensure usability and flexibility | Designing an intuitive user interface        |  |

# 3. Alternatives and Attributes

#### **Available Alternatives**

The DSS incorporates alternatives for both **stocks** and **bonds**:

- Stocks: Top 50 stocks based on historical performance.
- **Bonds**: Top 20 bonds selected for risk-averse options.
- ETFs: Sector-specific ETFs for balanced investment.

#### **Defined Attributes**

| Attribute   | Description                                        |  |
|-------------|----------------------------------------------------|--|
| Mean Return | Average daily returns derived from historical data |  |
| Volatility  | Standard deviation of daily returns                |  |
| Horizon     | Number of years to invest                          |  |

# 4. Development Process

#### **Data Understanding**

The financial data last year.csv dataset includes:

- Historical stock and bond price data.
- Attributes like mean\_return, volatility, and utility\_score derived using Python.

# Example Data Columns AAPL.3 (Closing Prices) TSLA.3 SPY.3

#### **Model and Utility Function Development**

The utility function incorporates three key components:

- 1. **Return Utility (u\_r)**: Based on mean returns.
- 2. **Risk Utility (u** $_{\sigma}$ ): Inverse of volatility.
- 3. Horizon Utility (u\_h): Weighted based on the time horizon.

#### **Utility Function Formula:**

$$U\_Total = w\_r * u\_r + w\_\sigma * u\_\sigma + w\_h * u\_h$$

Where:

- $\mathbf{w_r} = \text{Weight for returns}$
- $\mathbf{w} \ \mathbf{\sigma} = \text{Weight for risk}$
- $\mathbf{w} \mathbf{h} = \text{Weight for horizon}$

# 5. Utility Model and Weighting

#### **Utility Function and Calculations**

The **utility function** forms the backbone of the DSS as it quantifies the value of different investment alternatives based on the user's risk tolerance, expected return, and investment horizon. It assigns a weighted score to each investment option, allowing for optimal selection.

#### **Utility Function Formula**

The total utility U Total for each investment is calculated as:

U Total = 
$$w r * u r + w \sigma * u \sigma + w h * u h$$

#### Where:

- U Total: The overall utility score.
- u\_r: **Return utility** Utility derived from the mean return of the investment.
- U\_σ: **Risk utility** Utility inversely proportional to the volatility (risk) of the investment.
- u\_h: **Horizon utility** Utility derived from the time horizon (number of years) for investment.
- W r, w σ, w h: Weights assigned based on the user's **risk tolerance**.

#### **Components of the Utility Function**

#### 1. Return Utility (u r):

Return utility is proportional to the mean return of the investment. It rewards investments with higher expected returns.

$$U r = Mean Return$$

#### 2. Risk Utility ( $u \sigma$ ):

Risk utility penalizes investments with high volatility. It is modeled as the **inverse of volatility** to reflect risk aversion:

U 
$$\sigma = 1 / \text{Volatility}$$
 (if Volatility > 0)

If volatility equals zero (rare in practice), the risk utility is assigned a value of zero to avoid computational errors.

#### 3. Horizon Utility (u h):

Horizon utility reflects the benefit of long-term investments. It scales linearly with the investment horizon in years:

```
U_h = Investment Horizon (years)
```

#### Weight Assignment

Weights w\_r,w\_\sigma,w\_h are dynamically adjusted based on the user's **risk tolerance**. This ensures the utility function aligns with the user's preferences.

| Risk Tolerance | Return Weight (w_r) | Risk Weight (w_σ) | Horizon Weight (w_h) |
|----------------|---------------------|-------------------|----------------------|
| Low            | 0.3                 | 0.5               | 0.2                  |
| Moderate       | 0.4                 | 0.3               | 0.3                  |
| High           | 0.5                 | 0.2               | 0.3                  |

#### **Utility Function in Action**

The DSS calculates the utility score for each investment using the formula:

U Total=w r \* Mean Return + w 
$$\sigma$$
 \* (1 / Volatility) + w h \* Horizon

For example:

- **Stock A** has a mean return of 0.002, volatility of 0.01, and the investment horizon is 10 years.
- User selects a **Moderate Risk Profile**:  $w_r = 0.4$ ,  $w_\sigma = 0.3$ ,  $w_h = 0$ . The utility components are:

$$U_r = 0.002$$
,  $u_\sigma = 1 / 0.01 = 100$ ,  $u_h = 10$ 

The total utility score is:

U Total= 
$$(0.4*0.002) + (0.3*100) + (0.3*10) = 0.0008 + 30 + 3 = 33.0008$$

Each investment alternative is scored using this methodology, and the DSS ranks investments based on their utility scores.

# 6. Risk Analysis

#### **Uncertainty in Investments**

The DSS evaluates uncertainty through Monte Carlo simulations. Results highlight:

- Mean expected portfolio value.
- Range of outcomes (5th and 95th percentiles).

#### **Simulation Results**

Example Output (40-year horizon):

Total Investment: \$240,000Mean Portfolio Value: \$931,525

5th Percentile: \$312,50195th Percentile: \$2,025,203

# 7. User Interface and Usability

#### **Screenshots of DSS**

#### 1. Input Parameters:

o User inputs monthly investments, age, retirement horizon, and risk tolerance.



#### 2. Portfolio Allocation:

o Adjust stock-bond allocations dynamically.



#### 3. Utility Scores:

o Table displaying mean return, volatility, and utility scores.



#### 4. Optimized Investments:

Selected stocks and bonds displayed with metrics.



#### 5. Monte Carlo Visualization:

o Histogram showing portfolio growth under uncertainty.



# 8. Results and Interpretation

# **Portfolio Optimization Outcomes**

The DSS recommends a portfolio based on:

- 1. User's risk profile.
- 2. Utility scores for selecting top-performing assets.

#### **Portfolio Metrics**

Metric Value
Portfolio Mean (Monthly) 0.0568
Portfolio Volatility 0.1242

# **Simulation Insights**

- Monte Carlo simulation results indicate potential future portfolio values.
- The 5th and 95th percentiles provide a range of possible outcomes.

# 9. Challenges and Limitations

#### **Challenges Faced**

- 1. Yahoo Finance API Limitations:
  - o Limited data requests led to the use of a static dataset.
- 2. Data Cleaning:
  - o Ensuring consistent and clean financial data for analysis.

#### Limitations

- Static dataset restricts real-time analysis.
- Simplified utility function may not capture all market behaviors.

#### 10. Conclusion and Recommendations

The Investment Portfolio DSS effectively assists users in making data-driven investment decisions. By leveraging utility functions, portfolio optimization, and Monte Carlo simulations, the system:

- Provides personalized recommendations.
- Models investment uncertainties over time.

#### **Future Enhancements:**

- 1. Integrate live APIs for real-time data analysis.
- 2. Expand asset coverage beyond top 50 stocks and bonds.
- 3. Add advanced risk metrics for better decision-making.

# 11. References

- 1. [Markowitz, H. (1952). Portfolio Selection: Efficient Frontier]
- 2. [Monte Carlo Simulation: Geometric Brownian Motion]
- 3. [Python Libraries: Pandas, Numpy, Matplotlib, Streamlit]