

FCC PART 15.247 TEST REPORT

For

ZIONCOM ELECTRONICS (SHENZHEN) LTD.

Building A1-A2, Lantian Science and Technology Park, Xinyu Road, Xinqiao Henggang Block, Shajing Street, Baoan District, Shenzhen, China

FCC ID: X7DIP04336

Product Name:

Report Type:

Original Report

Report Number: RDG171206017-00A

Report Date: 2017-12-12

Jerry Zhang EMC Manager

Reviewed By: EMC Manager

Bay Area Compliance Laboratories Corp. (Dongguan)
No.69 Pulongcun, Puxinhu Industry Area,

Tangxia, Dongguan, Guangdong, China

Tel: +86-769-86858888

Fax: +86-769-86858891 www.baclcorp.com.cn

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Dongguan).

Report No.: RDG171206017-00A

TABLE OF CONTENTS

GENERAL INFORMATION	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
Objective	
RELATED SUBMITTAL(S)/GRANT(S)	
TEST METHODOLOGY	4
MEASUREMENT UNCERTAINTYTEST FACILITY	
SYSTEM TEST CONFIGURATION	
DESCRIPTION OF TEST CONFIGURATION	
EQUIPMENT MODIFICATIONS	
EUT EXERCISE SOFTWARE	
LOCAL SUPPORT EQUIPMENT LIST AND DETAILS SUPPORT CABLE LIST AND DETAILS	
BLOCK DIAGRAM OF TEST SETUP	
SUMMARY OF TEST RESULTS	
FCC §15.247 (i) & §1.1310 & §2.1091- MAXIMUM PERMISSIBLE EXPOSURE (MPE)	12
APPLICABLE STANDARD	
FCC §15.203 - ANTENNA REQUIREMENT	
APPLICABLE STANDARD	14
Antenna Connector Construction	
FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS	15
APPLICABLE STANDARD	15
EUT SETUP	
EMI TEST RECEIVER SETUP	
TEST PROCEDURE	
TEST EQUIPMENT LIST AND DETAILS	10 16
TEST DATA	
FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS	
APPLICABLE STANDARD	
EUT Setup	19
EMI Test Receiver & Spectrum Analyzer Setup	
TEST PROCEDURE	
CORRECTED AMPLITUDE & MARGIN CALCULATION	
TEST DATA	
FCC §15.247(a) (2) – 6 dB EMISSION BANDWIDTH	
APPLICABLE STANDARD	
Test Procedure	
TEST EQUIPMENT LIST AND DETAILS.	30
TEST DATA	
FCC §15.247(b) (3) - MAXIMUM CONDUCTED OUTPUT POWER	
APPLICABLE STANDARD	
TEST PROCEDURE	
LEST EQUIPMENT LIST AND DETAILS	38

Report No.: RDG171206017-00A

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

	EUT Name:	1200Mbps Smart Home Wi-Fi Router
	EUT Model:	T10
M	Iultiple Models:	IP04336
	FCC ID:	X7DIP04336
Rated	Input Voltage:	DC 12V from Adapter
Model Name:		DCP014E121000U
Nominal Adapter Information	Input:	100-240V ~ 50/60Hz 0.5A Max
inioi mation	Output:	DC 12V, 1A
External Dimension:		Length (8.9cm)*Width (8.9cm)*High (6.8cm)
Serial Number:		170912023
EUT	Received Date:	2017. 09.12

Report No.: RDG171206017-00A

Note: The series product, models T10, IP04336 are electrically identical, the differences between them just the model name for marketing purpose, we selected T10 for full test, and please refer to the declaration letter for details.

Objective

This report is prepared on behalf of **ZIONCOM ELECTRONICS** (SHENZHEN) LTD. in accordance with Part 2, Subpart J, Part 15, Subparts A, and C of the Federal Communications Commission's rules.

The tests were performed in order to determine the compliance of the EUT with FCC Rules Part 15-Subpart C, section 15.203, 15.205, 15.207, 15.209 and 15.247 rules.

Related Submittal(s)/Grant(s)

FCC Part 15E NII submissions with FCC ID: X7DIP04336.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices and KDB 558074 D01 DTS Meas Guidance v04.

All emissions measurement was performed and Bay Area Compliance Laboratories Corp. (Dongguan).

FCC Part 15.247 Page 4 of 63

Measurement Uncertainty

Parameter	Measurement Uncertainty
Occupied Channel Bandwidth	±5 %
RF output power, conducted	±0.61dB
Power Spectral Density, conducted	±0.61 dB
Unwanted Emissions, radiated	30M~200MHz: 4.58 dB for Horizontal, 4.59 dB for Vertical 200M~1GHz: 4.83 dB for Horizontal, 5.85 dB for Vertical 1G~6GHz: 4.45 dB, 6G~26.5GHz: 5.23 dB
Unwanted Emissions, conducted	±1.5 dB
Temperature	±1 °C
Humidity	±5%
DC and low frequency voltages	±0.4%
Duty Cycle	1%
AC Power Lines Conducted Emission	3.12 dB (150 kHz to 30 MHz)

Report No.: RDG171206017-00A

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Dongguan) to collect test data is located on the No.69 Pulongcun, Puxinhu Industry Area, Tangxia, Dongguan, Guangdong, China.

Bay Area Compliance Laboratories Corp. (Dongguan) has been accredited to ISO/IEC 17025 by CNAS(Lab code: L5662). And accredited to ISO/IEC 17025 by NVLAP(Test Laboratory Accreditation Certificate Number 500069-0), the FCC Designation No. CN5002 under the KDB 974614 D01.

The Federal Communications Commission has the reports on file and is listed under FCC Registration No.: 273710. The test site has been approved by the FCC for public use and is listed in the FCC Public Access Link (PAL) database.

Bay Area Compliance Laboratories Corp. (Dongguan) was registered with ISED Canada under ISED Canada Registration Number 3062D.

FCC Part 15.247 Page 5 of 63

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The system was configured for testing in Engineering Mode, which was provided by the manufacturer.

Report No.: RDG171206017-00A

The device has 2 external antennas for 2.4GHz and 2 external antennas for 5GHz. For 2.4GHz band, 11 channels are provided:

Channel	Frequency(MHz)	Channel	Frequency(MHz)
1	2412	7	2442
2	2417	8	2447
3	2422	9	2452
4	2427	10	2457
5	2432	11	2462
6	2437	/	/

For 802.11b, 802.11g, and 802.11n ht20 modes were test with channel 1,6,11.

For 802.11n ht40 mode was test with channel 3,6, 9.

The device supports SISO and MIMO mode at 802.11n ht20 and 802.11n ht40 mode, per pre-test, MIMO mode was the worst and reported.

Equipment Modifications

No modification was made to the EUT tested.

EUT Exercise Software

The software "MP_TEST.exe" was used for testing, which was provided by manufacturer. The worst-case data rates are determined to be as follows for each mode based upon investigations by measuring the average power and PSD across all date rates bandwidths, and modulations. The maximum power was configured as below table, that provided by the manufacturer:

	Antenna 0/Antenna 1					
Test Mode	Test Software Version	MP_TEST.exe				
	Test Frequency	2412MHz	2437MHz	2462MHz		
802.11b	Data Rate	CCK 1M	CCK 1M	CCK 1M		
0020110	Power Level Setting	57/59	58/58	59/58		
	Test Frequency	2412MHz	2437MHz	2462MHz		
802.11g	Data Rate	OFDM 6M	OFDM 6M	OFDM 6M		
002.11g	Power Level Setting	50/53	51/53	53/54		
	Test Frequency	2412MHz	2437MHz	2462MHz		
802.11n	Data Rate	MCS0	MCS0	MCS0		
ht20 Power Level Setting		49/52	50/53	51/53		
	Test Frequency	2422MHz	2437MHz	2452MHz		
802.11n	Data Rate	MCS0	MCS0	MCS0		
ht40	Power Level Setting	49/52	50/52	50/53		

FCC Part 15.247 Page 6 of 63

The duty cycle as below:

Mode	T _{on} (ms)	T _{on+off} (ms)	Duty Cycle (%)
802.11b	20	20	100
802.11g	20	20	100
802.11n ht20	20	20	100
802.11n ht40	20	20	100

Report No.: RDG171206017-00A

802.11b

FCC Part 15.247 Page 7 of 63

002.11

802.11n ht20

FCC Part 15.247 Page 8 of 63

Local Support Equipment List and Details

Manufacturer	Description	Model	Serial Number
DELL	Laptop	PP11L	QDS-BRCM1017

Support Cable List and Details

Cable Description	Shielding Type	Ferrite Core	Length (m)	From Port	То
RJ45 Cable	yes	No	10	RJ45 Port of Laptop	EUT
RJ45 Cable*2	yes	No	10	EUT	Load
Adapter Cable	No	No	1.36	Adapter	EUT

FCC Part 15.247 Page 9 of 63

Block Diagram of Test Setup

FCC Part 15.247 Page 10 of 63

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
FCC \$15.247 (i) & \$1.1310 & \$2.1091	Maximum Permissable Exposure (MPE)	Compliant
§15.203	Antenna Requirement	Compliant
§15.207 (a)	AC Line Conducted Emissions	Compliant
§15.205, §15.209, §15.247(d)	Spurious Emissions	Compliant
§15.247 (a)(2)	6 dB Emission Bandwidth	Compliant
§15.247(b)(3)	Maximum conducted output power	Compliant
§15.247(d)	100 kHz Bandwidth of Frequency Band Edge	Compliant
§15.247(e)	Power Spectral Density	Compliant

Report No.: RDG171206017-00A

FCC Part 15.247 Page 11 of 63

FCC §15.247 (i) & §1.1310 & §2.1091- MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Applicable Standard

According to subpart 15.247(i)and subpart §1.1310, systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

Report No.: RDG171206017-00A

Limits for Maximum Permissible Exposure (MPE) (§1.1310, §2.1091)

(B) Limits for General Population/Uncontrolled Exposure					
Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm²)	Averaging Time (minutes)	
0.3-1.34	614	1.63	*(100)	30	
1.34–30	824/f	2.19/f	*(180/f²)	30	
30–300	27.5	0.073	0.2	30	
300–1500	/	/	f/1500	30	
1500-100,000	/	/	1.0	30	

f = frequency in MHz; * = Plane-wave equivalent power density;

According to §1.1310 and §2.1091 RF exposure is calculated.

Calculation formula:

Prediction of power density at the distance of the applicable MPE limit

 $S = PG/4\pi R^2$ = power density (in appropriate units, e.g. mW/cm²);

P = power input to the antenna (in appropriate units, e.g., mW);

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain;

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm);

For simultaneously transmit system, the calculated power density should comply with:

$$\sum_{i} \frac{S_{i}}{S_{Limit,i}} \le 1$$

FCC Part 15.247 Page 12 of 63

Frequency Band	Antenna Gain		Output Power including Turn-Up tolerance		Evaluation Distance (cm)	Power Density (mW/cm ²)	MPE Limit (mW/cm ²)
	(dBi)	(numeric)	(dBm)	(mW)	,		
2.4GHz	2	1.58	29	794.33	20.00	0.25	1.0
5GHz	2	1.58	21	125.89	20.00	0.04	1.0

Report No.: RDG171206017-00A

The 2.4GHz and 5GHz band can transmit simultaneously:

$$\sum_i \frac{S_i}{S_{Limit,i}}$$

$$=S_{2.4}/S_{limit-2.4} + S_5/S_{limit-5}$$

$$=0.25/1+0.04/1$$

$$=0.29$$

Result: The device meet FCC MPE at 20 cm distance

FCC Part 15.247 Page 13 of 63

FCC §15.203 - ANTENNA REQUIREMENT

Applicable Standard

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited. The structure and application of the EUT were analyzed to determine compliance with section §15.203 of the rules. §15.203 state that the subject device must meet the following criteria:

Report No.: RDG171206017-00A

- a. Antenna must be permanently attached to the unit.
- b. Antenna must use a unique type of connector to attach to the EUT. Unit must be professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.

Antenna Connector Construction

The EUT have 2 internal antennas for 2.4G Band and 5G band, both antenna gains are 2dBi in 2.4G and 5G band. Please refer to the EUT photo.

Result: Compliance.

FCC Part 15.247 Page 14 of 63

FCC §15.207 (a) - AC LINE CONDUCTED EMISSIONS

Applicable Standard

FCC§15.207(a)

EUT Setup

Report No.: RDG171206017-00A

Note: 1. Support units were connected to second LISN.
2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.207 limits.

The spacing between the peripherals was 10 cm.

The adapter was connected to the main lisn with AC 120 V/60 Hz power source.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W
150 kHz – 30 MHz	9 kHz

FCC Part 15.247 Page 15 of 63

Test Procedure

During the conducted emission test, the adapter was connected to the first LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All data was recorded in the Quasi-peak and average detection mode.

Corrected Amplitude & Margin Calculation

The basic equation is as follows:

$$\begin{split} V_C &= V_R + A_C + VDF \\ C_f &= A_C + VDF \end{split}$$

Herein,

V_C (cord. Reading): corrected voltage amplitude

 V_R : reading voltage amplitude A_c : attenuation caused by cable loss VDF: voltage division factor of AMN

C_f: Correction Factor

The "Margin" column of the following data tables indicates the degree of compliance within the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Report No.: RDG171206017-00A

Margin = Limit – Corrected Amplitude

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	EMI Test Receiver	ESCS 30	830245/006	2016-12-08	2017-12-08
R&S	L.I.S.N	ESH2-Z5	892107/021	2017-09-25	2018-09-25
R&S	Two-line V-network	ENV 216	3560.6550.12	2016-12-08	2017-12-08
R&S	Test Software	EMC32	Version8.53.0	N/A	N/A
N/A	Coaxial Cable	C-NJNJ-50	C-0200-01	2017-09-05	2018-09-05

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

FCC Part 15.247 Page 16 of 63

Test Data

Environmental Conditions

Temperature:	27.3°C
Relative Humidity:	46 %
ATM Pressure:	100.4kPa

The testing was performed by Gaochao Gong on 2017-09-25.

Test Mode: Transmitting

AC120 V, 60 Hz, Line:

Report No.: RDG171206017-00A

Frequency (MHz)	QuasiPeak (dBµV)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)	Comment
0.151200	42.3	9.000	L1	11.2	23.6	65.9	Compliance
0.157346	35.9	9.000	L1	11.1	29.7	65.6	Compliance
0.169044	38.0	9.000	L1	10.9	27.0	65.0	Compliance
0.180171	34.7	9.000	L1	10.8	29.8	64.5	Compliance
0.314718	32.1	9.000	L1	10.1	27.7	59.8	Compliance
1.363512	28.7	9.000	L1	9.7	27.3	56.0	Compliance

Frequency (MHz)	Average (dBμV)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)	Comment
0.151200	31.7	9.000	L1	11.2	24.2	55.9	Compliance
0.169044	25.6	9.000	L1	10.9	29.4	55.0	Compliance
0.264113	20.3	9.000	L1	10.3	31.0	51.3	Compliance
0.309742	29.7	9.000	L1	10.1	20.3	50.0	Compliance
0.330129	23.2	9.000	L1	10.1	26.2	49.4	Compliance
1.363512	19.3	9.000	L1	9.7	26.7	46.0	Compliance

FCC Part 15.247 Page 17 of 63

AC120 V, 60 Hz, Neutral:

Report No.: RDG171206017-00A

Frequency (MHz)	QuasiPeak (dBµV)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)	Comment
0.150000	44.1	9.000	N	11.2	21.9	66.0	Compliance
0.163741	39.0	9.000	N	11.0	26.3	65.3	Compliance
0.188994	34.1	9.000	N	10.7	30.0	64.1	Compliance
0.228823	31.7	9.000	N	10.4	30.8	62.5	Compliance
0.290613	31.0	9.000	N	10.2	29.5	60.5	Compliance
0.317235	38.6	9.000	N	10.1	21.2	59.8	Compliance

Frequency (MHz)	Average (dBμV)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)	Comment
0.152410	37.2	9.000	N	11.1	18.7	55.9	Compliance
0.249785	31.2	9.000	N	10.3	20.6	51.8	Compliance
0.259937	25.6	9.000	N	10.3	25.8	51.4	Compliance
0.304845	31.1	9.000	N	10.1	19.0	50.1	Compliance
0.324910	32.4	9.000	N	10.1	17.2	49.6	Compliance
1.374420	26.9	9.000	N	9.7	19.1	46.0	Compliance

FCC Part 15.247 Page 18 of 63

FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS

Applicable Standard

FCC §15.247 (d); §15.209; §15.205;

EUT Setup

Below 1GHz:

Report No.: RDG171206017-00A

Above 1GHz:

The radiated emission tests were performed in the 3 meters chamber test site, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209, and FCC 15.247 limits.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

The spacing between the peripherals was 10 cm.

FCC Part 15.247 Page 19 of 63

EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 30 MHz to 25 GHz.

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

30MHz-1000MHz:

Measurement	RBW	Video B/W	IF B/W
QP	120 kHz	300 kHz	120kHz

Report No.: RDG171206017-00A

1GHz-25GHz:

Measurement	Duty cycle	RBW	Video B/W	
PK	Any	1MHz	3 MHz	
Arro	>98%	1MHz	10 Hz	
Ave.	<98%	1MHz	1/T	

Note: T is minimum transmission duration

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

Data was recorded in Quasi-peak detection mode for frequency range of 30 MHz-1 GHz, peak and Average detection modes for frequencies above 1 GHz.

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Corrected Amplitude = Meter Reading + Antenna Factor + Cable Loss - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Margin = Limit –Corrected Amplitude

FCC Part 15.247 Page 20 of 63

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	EMI Test Receiver	ESCI	100224	2017-09-01	2018-09-01
Sunol Sciences	Antenna	JB3	A060611-2	2017-08-25	2020-08-25
HP	Amplifier	8447D	2727A05902	2017-09-05	2018-09-05
N/A	Coaxial Cable	C-NJNJ-50	C-0400-01	2017-09-05	2018-09-05
N/A	Coaxial Cable	C-NJNJ-50	C-0075-01	2017-09-05	2018-09-05
N/A	Coaxial Cable	C-NJNJ-50	C-1000-01	2017-09-05	2018-09-05
Agilent	Spectrum Analyzer	E4440A	SG43360054	2016-12-08	2017-12-08
ETS-Lindgren	Horn Antenna	3115	000 527 35	2016-01-05	2019-01-05
MITEQ	Amplifier	AFS42-00101800- 25-S-42	2001271	2017-09-05	2018-09-05
Ducommun Technolagies	Horn Antenna	ARH-4223-02	1007726-02 1304	2016-11-18	2019-11-18
Quinstar	Amplifier	QLW-18405536-JO	15964001001	2017-06-27	2018-06-27
N/A	Coaxial Cable	C-SJSJ-50	C-0800-01	2017-09-05	2018-09-05
Chengdu Ouli	Band Rejection Filter	2400-2483.5	002	2017-09-05	2018-09-05
Farad	Test Software	EZ-EMC	V1.1.4.2	N/A	N/A

Report No.: RDG171206017-00A

Test Data

Environmental Conditions

Temperature:	23.6~28.4 °C
Relative Humidity:	30~37 %
ATM Pressure:	100.4~101.7 kPa

^{*} The testing was performed by Sunny Cen from 2017-09-18 to 2017-12-07.

Test Mode: Transmitting

FCC Part 15.247 Page 21 of 63

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

1) Below 1GHz(802.11n ht40 mode Low channel was the worst):

Horizontal

Report No.: RDG171206017-00A

Frequency (MHz)	Receiver Reading (dBµV)	Detector	Correction Factor (dB/m)	Cord. Amp. (dBµV/m)	Limit (dBμV/m)	Margin (dB)
49.4000	39.74	QP	-11.34	28.40	40.00	11.60
125.0600	34.23	QP	-4.83	29.40	43.50	14.10
159.0100	31.56	QP	-6.56	25.00	43.50	18.50
250.1900	43.92	QP	-6.42	37.50	46.00	8.50
375.3200	35.97	QP	-2.77	33.20	46.00	12.80
500.4500	29.67	QP	-1.07	28.60	46.00	17.40

FCC Part 15.247 Page 22 of 63

Vertical

Report No.: RDG171206017-00A

Frequency (MHz)	Receiver Reading (dBµV)	Detector	Correction Factor (dB/m)	Cord. Amp. (dBµV/m)	Limit (dBμV/m)	Margin (dB)
65.8900	40.90	QP	-11.80	29.10	40.00	10.90
125.0600	38.33	QP	-4.83	33.50	43.50	10.00
250.1900	40.32	QP	-6.42	33.90	46.00	12.10
383.0800	35.41	QP	-2.61	32.80	46.00	13.20
600.3600	36.30	QP	0.20	36.50	46.00	9.50
675.0500	37.99	QP	1.81	39.80	46.00	6.20

FCC Part 15.247 Page 23 of 63

802.11b(Chain 1 was the worst)

	Receiver		Rx Antenna		Cable	Amplifier	Corrected				
Frequency (MHz)	Reading (dBµV)	Detector (PK/QP/AV)	Polar (H/V)	Factor (dB)	loss (dB)	Gain (dB)	Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)		
Low Channel: 2412 MHz											
2412.00	61.73	PK	Н	28.12	1.81	0.00	91.66	N/A	N/A		
2412.00	55.28	AV	Н	28.12	1.81	0.00	85.21	N/A	N/A		
2412.00	73.81	PK	V	28.12	1.81	0.00	103.74	N/A	N/A		
2412.00	66.95	AV	V	28.12	1.81	0.00	96.88	N/A	N/A		
2390.00	29.24	PK	V	28.08	1.80	0.00	59.12	74.00	14.88		
2390.00	17.63	AV	V	28.08	1.80	0.00	47.51	54.00	6.49		
4824.00	47.65	PK	V	32.95	3.19	37.20	46.59	74.00	27.41		
4824.00	33.42	AV	V	32.95	3.19	37.20	32.36	54.00	21.64		
7236.00	46.84	PK	V	35.81	4.77	37.27	50.15	74.00	23.85		
7236.00	33.28	AV	V	35.81	4.77	37.27	36.59	54.00	17.41		
6908.50	47.82	PK	V	35.02	5.10	36.99	50.95	74.00	23.05		
6908.50	34.49	AV	V	35.02	5.10	36.99	37.62	54.00	16.38		
			Mid	ldle Chann		MHz					
2437.00	64.86	PK	Н	28.17	1.82	0.00	94.85	N/A	N/A		
2437.00	58.57	AV	Н	28.17	1.82	0.00	88.56	N/A	N/A		
2437.00	74.13	PK	V	28.17	1.82	0.00	104.12	N/A	N/A		
2437.00	68.11	AV	V	28.17	1.82	0.00	98.1	N/A	N/A		
4874.00	47.69	PK	V	33.05	3.26	37.21	46.79	74.00	27.21		
4874.00	33.37	AV	V	33.05	3.26	37.21	32.47	54.00	21.53		
7311.00	46.84	PK	V	36.01	4.64	37.36	50.13	74.00	23.87		
7311.00	33.35	AV	V	36.01	4.64	37.36	36.64	54.00	17.36		
5899.00	47.91	PK	V	34.26	3.79	37.22	48.74	74.00	25.26		
5899.00	34.39	AV	V	34.26	3.79	37.22	35.22	54.00	18.78		
6125.00	46.59	PK	V	34.28	4.06	37.27	47.66	74.00	26.34		
6125.00	32.34	AV	V	34.28	4.06	37.27	33.41	54.00	20.59		
				gh Channe							
2462.00	63.15	PK	Н	28.22	1.83	0.00	93.2	N/A	N/A		
2462.00	54.28	AV	Н	28.22	1.83	0.00	84.33	N/A	N/A		
2462.00	74.84	PK	V	28.22	1.83	0.00	104.89	N/A	N/A		
2462.00	68.59	AV	V	28.22	1.83	0.00	98.64	N/A	N/A		
2483.50	27.79	PK	V	28.27	1.84	0.00	57.9	74.00	16.1		
2483.50	15.43	AV	V	28.27	1.84	0.00	45.54	54.00	8.46		
4924.00	47.85	PK	V	33.15	3.27	37.22	47.05	74.00	26.95		
4924.00	33.27	AV	V	33.15	3.27	37.22	32.47	54.00	21.53		
7386.00	46.66	PK	V	36.20	4.51	37.46	49.91	74.00	24.09		
7386.00	33.24	AV	V	36.20	4.51	37.46	36.49	54.00	17.51		
5698.00	47.75	PK	V	34.18	3.68	37.35	48.26	74.00	25.74		
5698.00	34.55	AV	V	34.18	3.68	37.35	35.06	54.00	18.94		

Report No.: RDG171206017-00A

FCC Part 15.247 Page 24 of 63

802.11g(Chain 1 was the worst)

802.11g(C	802.11g(Chain 1 was the worst)									
F	Receiver		Rx A	ntenna	Cable	Amplifier	Corrected	T **4	M	
Frequency (MHz)	Reading (dBµV)	Detector (PK/QP/AV)	Polar (H/V)	Factor (dB)	loss (dB)	Gain (dB)	Amplitude (dBµV/m)	Limit (dBμV/m)	Margin (dB)	
Low Channel: 2412 MHz										
2412.00	64.38	PK	Н	28.12	1.81	0.00	94.31	N/A	N/A	
2412.00	54.26	AV	Н	28.12	1.81	0.00	84.19	N/A	N/A	
2412.00	74.88	PK	V	28.12	1.81	0.00	104.81	N/A	N/A	
2412.00	63.49	AV	V	28.12	1.81	0.00	93.42	N/A	N/A	
2390.00	40.26	PK	V	28.08	1.80	0.00	70.14	74.00	3.86	
2390.00	17.83	AV	V	28.08	1.80	0.00	47.71	54.00	6.29	
4824.00	47.79	PK	V	32.95	3.19	37.20	46.73	74.00	27.27	
4824.00	33.46	AV	V	32.95	3.19	37.20	32.4	54.00	21.6	
7236.00	46.59	PK	V	35.81	4.77	37.27	49.9	74.00	24.1	
7236.00	33.37	AV	V	35.81	4.77	37.27	36.68	54.00	17.32	
5965.00	47.83	PK	V	34.29	3.82	37.29	48.65	74.00	25.35	
5965.00	34.73	AV	V	34.29	3.82	37.29	35.55	54.00	18.45	
		-	Mic	ldle Chann				-	_	
2437.00	64.04	PK	Н	28.17	1.82	0.00	94.03	N/A	N/A	
2437.00	55.13	AV	Н	28.17	1.82	0.00	85.12	N/A	N/A	
2437.00	74.47	PK	V	28.17	1.82	0.00	104.46	N/A	N/A	
2437.00	65.13	AV	V	28.17	1.82	0.00	95.12	N/A	N/A	
4874.00	47.52	PK	V	33.05	3.26	37.21	46.62	74.00	27.38	
4874.00	33.28	AV	V	33.05	3.26	37.21	32.38	54.00	21.62	
7311.00	46.76	PK	V	36.01	4.64	37.36	50.05	74.00	23.95	
7311.00	33.53	AV	V	36.01	4.64	37.36	36.82	54.00	17.18	
5899.00	47.95	PK	V	34.26	3.79	37.22	48.78	74.00	25.22	
5899.00	34.42	AV	V	34.26	3.79	37.22	35.25	54.00	18.75	
6125.00	46.57	PK	V	34.28	4.06	37.27	47.64	74.00	26.36	
6125.00	32.24	AV	V	34.28	4.06	37.27	33.31	54.00	20.69	
				gh Channe						
2462.00	62.34	PK	Н	28.22	1.83	0.00	92.39	N/A	N/A	
2462.00	53.82	AV	Н	28.22	1.83	0.00	83.87	N/A	N/A	
2462.00	74.35	PK	V	28.22	1.83	0.00	104.4	N/A	N/A	
2462.00	65.62	AV	V	28.22	1.83	0.00	95.67	N/A	N/A	
2483.50	38.91	PK	V	28.27	1.84	0.00	69.02	74.00	4.98	
2483.50	19.83	AV	V	28.27	1.84	0.00	49.94	54.00	4.06	
4924.00	47.66	PK	V	33.15	3.27	37.22	46.86	74.00	27.14	
4924.00	33.42	AV	V	33.15	3.27	37.22	32.62	54.00	21.38	
7386.00	46.68	PK	V	36.20	4.51	37.46	49.93	74.00	24.07	
7386.00	33.27	AV	V	36.20	4.51	37.46	36.52	54.00	17.48	
6256.00	47.67	PK	V	34.25	4.30	37.20	49.02	74.00	24.98	
6256.00	34.73	AV	V	34.25	4.30	37.20	36.08	54.00	17.92	

Report No.: RDG171206017-00A

FCC Part 15.247 Page 25 of 63

802.11n ht20(2Tx was the worst)

	Receiver		Rx A	ntenna	Cable	Amplifier	Corrected	T			
Frequency (MHz)	Reading (dBµV)	Detector (PK/QP/AV)	Polar (H/V)	Factor (dB)	loss (dB)	Gain (dB)	Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)		
Low Channel: 2412 MHz											
2412.00	61.42	PK	Н	28.12	1.81	0.00	91.35	N/A	N/A		
2412.00	52.54	AV	Н	28.12	1.81	0.00	82.47	N/A	N/A		
2412.00	73.14	PK	V	28.12	1.81	0.00	103.07	N/A	N/A		
2412.00	63.76	AV	V	28.12	1.81	0.00	93.69	N/A	N/A		
2390.00	41.61	PK	V	28.08	1.80	0.00	71.49	74.00	2.51		
2390.00	19.12	AV	V	28.08	1.80	0.00	49	54.00	5		
4824.00	47.78	PK	V	32.95	3.19	37.20	46.72	74.00	27.28		
4824.00	33.55	AV	V	32.95	3.19	37.20	32.49	54.00	21.51		
7236.00	46.48	PK	V	35.81	4.77	37.27	49.79	74.00	24.21		
7236.00	33.48	AV	V	35.81	4.77	37.27	36.79	54.00	17.21		
5965.00	48.02	PK	V	34.29	3.82	37.29	48.84	74.00	25.16		
5965.00	34.92	AV	V	34.29	3.82	37.29	35.74	54.00	18.26		
				ldle Chann							
2437.00	60.52	PK	Н	28.17	1.82	0.00	90.51	N/A	N/A		
2437.00	50.35	AV	Н	28.17	1.82	0.00	80.34	N/A	N/A		
2437.00	72.31	PK	V	28.17	1.82	0.00	102.3	N/A	N/A		
2437.00	62.93	AV	V	28.17	1.82	0.00	92.92	N/A	N/A		
4874.00	47.78	PK	V	33.05	3.26	37.21	46.88	74.00	27.12		
4874.00	33.31	AV	V	33.05	3.26	37.21	32.41	54.00	21.59		
7311.00	46.66	PK	V	36.01	4.64	37.36	49.95	74.00	24.05		
7311.00	33.5	AV	V	36.01	4.64	37.36	36.79	54.00	17.21		
5899.00	47.92	PK	V	34.26	3.79	37.22	48.75	74.00	25.25		
5899.00	34.33	AV	V	34.26	3.79	37.22	35.16	54.00	18.84		
6125.00	46.39	PK	V	34.28	4.06	37.27	47.46	74.00	26.54		
6125.00	32.16	AV	V	34.28	4.06	37.27	33.23	54.00	20.77		
	•			gh Channe				•			
2462.00	62.47	PK	Н	28.22	1.83	0.00	92.52	N/A	N/A		
2462.00	53.52	AV	Н	28.22	1.83	0.00	83.57	N/A	N/A		
2462.00	73.69	PK	V	28.22	1.83	0.00	103.74	N/A	N/A		
2462.00	63.86	AV	V	28.22	1.83	0.00	93.91	N/A	N/A		
2483.50	41.43	PK	V	28.27	1.84	0.00	71.54	74.00	2.46		
2483.50	19.48	AV	V	28.27	1.84	0.00	49.59	54.00	4.41		
4924.00	47.62	PK	V	33.15	3.27	37.22	46.82	74.00	27.18		
4924.00	33.39	AV	V	33.15	3.27	37.22	32.59	54.00	21.41		
7386.00	46.75	PK	V	36.20	4.51	37.46	50	74.00	24		
7386.00	33.49	AV	V	36.20	4.51	37.46	36.74	54.00	17.26		
7265.00	47.92	PK	V	35.89	4.72	37.30	51.23	74.00	22.77		
7265.00	34.86	AV	V	35.89	4.72	37.30	38.17	54.00	15.83		

Report No.: RDG171206017-00A

FCC Part 15.247 Page 26 of 63

802.11n ht40(2Tx was the worst)

	Receiver		Rx A	ntenna	Cable	Amplifier	Corrected	T			
Frequency (MHz)	Reading (dBµV)	Detector (PK/QP/AV)	Polar (H/V)	Factor (dB)	loss (dB)	Gain (dB)	Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)		
Low Channel: 2422 MHz											
2422.00	63.29	PK	Н	28.14	1.81	0.00	93.24	N/A	N/A		
2422.00	54.62	AV	Н	28.14	1.81	0.00	84.57	N/A	N/A		
2422.00	71.14	PK	V	28.14	1.81	0.00	101.09	N/A	N/A		
2422.00	62.43	AV	V	28.14	1.81	0.00	92.38	N/A	N/A		
2390.00	35.26	PK	V	28.08	1.80	0.00	65.14	74.00	8.86		
2390.00	21.24	AV	V	28.08	1.80	0.00	51.12	54.00	2.88		
4844.00	47.82	PK	V	32.99	3.22	37.20	46.83	74.00	27.17		
4844.00	33.57	AV	V	32.99	3.22	37.20	32.58	54.00	21.42		
7266.00	46.75	PK	V	35.89	4.72	37.31	50.05	74.00	23.95		
7266.00	33.57	AV	V	35.89	4.72	37.31	36.87	54.00	17.13		
5965.00	47.95	PK	V	34.29	3.82	37.29	48.77	74.00	25.23		
5965.00	34.66	AV	V	34.29	3.82	37.29	35.48	54.00	18.52		
			Mid	ldle Chann	el: 2437 l	MHz					
2437.00	61.21	PK	Н	28.17	1.82	0.00	91.2	N/A	N/A		
2437.00	52.45	AV	Н	28.17	1.82	0.00	82.44	N/A	N/A		
2437.00	71.16	PK	V	28.17	1.82	0.00	101.15	N/A	N/A		
2437.00	62.49	AV	V	28.17	1.82	0.00	92.48	N/A	N/A		
4874.00	47.87	PK	V	33.05	3.26	37.21	46.97	74.00	27.03		
4874.00	33.55	AV	V	33.05	3.26	37.21	32.65	54.00	21.35		
7311.00	46.77	PK	V	36.01	4.64	37.36	50.06	74.00	23.94		
7311.00	33.45	AV	V	36.01	4.64	37.36	36.74	54.00	17.26		
5899.00	48.18	PK	V	34.26	3.79	37.22	49.01	74.00	24.99		
5899.00	34.26	AV	V	34.26	3.79	37.22	35.09	54.00	18.91		
6125.00	46.73	PK	V	34.28	4.06	37.27	47.8	74.00	26.2		
6125.00	32.32	AV	V	34.28	4.06	37.27	33.39	54.00	20.61		
	_		Hi	gh Channe		ſHz					
2452.00	63.14	PK	Н	28.20	1.83	0.00	93.17	N/A	N/A		
2452.00	54.53	AV	Н	28.20	1.83	0.00	84.56	N/A	N/A		
2452.00	71.75	PK	V	28.20	1.83	0.00	101.78	N/A	N/A		
2452.00	62.34	AV	V	28.20	1.83	0.00	92.37	N/A	N/A		
2483.50	38.75	PK	V	28.27	1.84	0.00	68.86	74.00	5.14		
2483.50	19.64	AV	V	28.27	1.84	0.00	49.75	54.00	4.25		
4904.00	47.63	PK	V	33.11	3.30	37.21	46.83	74.00	27.17		
4904.00	33.56	AV	V	33.11	3.30	37.21	32.76	54.00	21.24		
7356.00	46.79	PK	V	36.13	4.56	37.42	50.06	74.00	23.94		
7356.00	33.28	AV	V	36.13	4.56	37.42	36.55	54.00	17.45		
5489.00	47.79	PK	V	34.08	3.55	37.34	48.08	74.00	25.92		
5489.00	34.56	AV	V	34.08	3.55	37.34	34.85	54.00	19.15		

Report No.: RDG171206017-00A

FCC Part 15.247 Page 27 of 63

Worst plots(802.11n40 2TX Low channel) Horizontal

Report No.: RDG171206017-00A

FCC Part 15.247 Page 28 of 63

Vertical

Report No.: RDG171206017-00A

FCC Part 15.247 Page 29 of 63

FCC $\S15.247(a)$ (2) – 6 dB EMISSION BANDWIDTH

Applicable Standard

Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

Report No.: RDG171206017-00A

Test Procedure

- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) $\geq 3 \times RBW$.
- c) Detector = Peak.
- d) Trace mode = \max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	Spectrum Analyzer	FSIQ 26	831929/005	2017-08-31	2018-08-31
N/A	Coaxial Cable	C-SJ00-0010	C0010/04	Each Time	/

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	27.6 °C
Relative Humidity:	39 %
ATM Pressure:	100.4 kPa

^{*} The testing was performed by Rick Chen on 2017-09-20.

FCC Part 15.247 Page 30 of 63

Test Mode: Transmitting

Test Result: Compliant

Test performed at chain 0, please refer to the following table and plots.

Test mode	Channel	Frequency (MHz)	6 dB Emission Bandwidth (MHz)	Limit (MHz)
	Low	2412	10.1	≥0.5
802.11b	Middle	2437	10.1	≥0.5
	High	2462	10.1	≥0.5
	Low	2412	16.51	≥0.5
802.11g	Middle	2437	16.51	≥0.5
	High	2462	16.59	≥0.5
	Low	2412	17.56	≥0.5
802.11n ht20	Middle	2437	17.64	≥0.5
	High	2462	17.56	≥0.5
	Low	2422	36.39	≥0.5
802.11n ht40	Middle	2437	36.39	≥0.5
	High	2452	36.39	≥0.5

Report No.: RDG171206017-00A

802.11b -Low Channel

FCC Part 15.247 Page 31 of 63

802.11b- Middle Channel

FCC Part 15.247 Page 32 of 63

802.11g- Low Channel

802.11g - Middle Channel

FCC Part 15.247 Page 33 of 63

Report No.: RDG171206017-00A

802.11g- High Channel

Date: 20.SEP.2017 10:23:06

802.11n ht20- Low Channel

Date: 20.SEP.2017 10:35:12

FCC Part 15.247 Page 34 of 63

802.11n ht20- Middle Channel

802.11n ht20- High Channel

FCC Part 15.247 Page 35 of 63

Report No.: RDG171206017-00A

802.11n ht40 - Middle Channel

FCC Part 15.247 Page 36 of 63

802.11n ht40 - High Channel

FCC Part 15.247 Page 37 of 63

FCC §15.247(b) (3) - MAXIMUM CONDUCTED OUTPUT POWER

Applicable Standard

According to FCC §15.247(b) (3), for systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

Report No.: RDG171206017-00A

Test Procedure

- 1. Place the EUT on a bench and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to test equipment.
- 3. Add a correction factor to the display.
- 4. Set the power Meter to test Peak output power, record the result as peak power.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Agilent	Wideband Power Sensor	N1921A	MY54210016	2016-11-03	2017-11-03
Agilent	P-Series Power Meter	N1912A	MY5000448	2016-11-03	2017-11-03
Unknown	RF Cable	Unknown	C-4	Each Time	/

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

FCC Part 15.247 Page 38 of 63

Test Data

Environmental Conditions

Temperature:	27.6 °C	
Relative Humidity:	39 %	
ATM Pressure:	100.4 kPa	

^{*} The testing was performed by Rick Chen on 2017-09-20.

Test Mode: Transmitting

Test Result: Compliant. Please refer to the following table.

Test mode	Channel	Frequency (MHz)	Max Peak Conducted Output Power (dBm)			Limit (dBm)
			Chain 0	Chain 1	Total	(ubiii)
	Low	2412	23.19	23.71	/	30
802.11b	Middle	2437	23.76	23.25	/	30
	High	2462	23.25	22.66	/	30
802.11g	Low	2412	25.8	25.82	/	30
	Middle	2437	25.43	25.36	/	30
	High	2462	24.91	24.83	/	30
000 11	Low	2412	25.7	25.19	28.46	30
802.11n ht20	Middle	2437	25.3	24.87	28.1	30
	High	2462	24.75	24.35	27.56	30
802.11n ht40	Low	2422	25.94	25.52	28.75	30
	Middle	2437	25.71	25.34	28.54	30
	High	2452	25.43	25	28.23	30

Report No.: RDG171206017-00A

Note: the maximum antenna gain is 2.0 dBi, the device employed Cyclic Delay Diversity (CDD) for 802.11 MIMO transmitting, per KDB 662911 D01 Multiple Transmitter Output v02r01, for power measurements on IEEE 802.11 devices:

Array Gain = 0 dB (i.e., no array gain) for NANT \leq 4;

So:

Directional gain = G_{ANT} + Array Gain = 2.0dBi < 6dBi

FCC Part 15.247 Page 39 of 63

FCC §15.247(d) – 100 kHz BANDWIDTH OF FREQUENCY BAND EDGE

Report No.: RDG171206017-00A

Applicable Standard

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	Spectrum Analyzer	FSIQ 26	831929/005	2017-08-31	2018-08-31
N/A	Coaxial Cable	C-SJ00-0010	C0010/04	Each Time	/

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

FCC Part 15.247 Page 40 of 63

Test Data

Environmental Conditions

Temperature:	27.6 °C		
Relative Humidity:	39 %		
ATM Pressure:	100.4 kPa		

^{*} The testing was performed by Rick Chen on 2017-09-20.

Test mode: Transmitting

Test Result: Compliant. Please refer to following plots.

Chain 0:

802.11b: Band Edge, Left Side

Report No.: RDG171206017-00A

FCC Part 15.247 Page 41 of 63

802.11b: Band Edge, Right Side

802.11g: Band Edge, Left Side

FCC Part 15.247 Page 42 of 63

802.11g: Band Edge, Right Side

Report No.: RDG171206017-00A

802.11n ht20 Band Edge, Left Side

FCC Part 15.247 Page 43 of 63

802.11n ht20 Band Edge, Right Side

802.11n ht40 Band Edge, Left Side

FCC Part 15.247 Page 44 of 63

802.11n ht40 Band Edge, Right Side

Chain 1:

802.11b: Band Edge, Left Side

FCC Part 15.247 Page 45 of 63

802.11b: Band Edge, Right Side

802.11g: Band Edge, Left Side

FCC Part 15.247 Page 46 of 63

802.11g: Band Edge, Right Side

Report No.: RDG171206017-00A

802.11n ht20 Band Edge, Left Side

FCC Part 15.247 Page 47 of 63

802.11n ht20 Band Edge, Right Side

Report No.: RDG171206017-00A

802.11n ht40 Band Edge, Left Side

FCC Part 15.247 Page 48 of 63

802.11n ht40 Band Edge, Right Side

FCC Part 15.247 Page 49 of 63

FCC §15.247(e) - POWER SPECTRAL DENSITY

Applicable Standard

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

Report No.: RDG171206017-00A

Test Procedure

- a) Set analyzer center frequency to DTS channel center frequency.
- b) Set the span to 1.5 times the DTS bandwidth.
- c) Set the RBW to: $3 \text{ kHz} \le \text{RBW} \le 100 \text{ kHz}$.
- d) Set the VBW $\geq 3 \times RBW$.
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level within the RBW.
- j) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	Spectrum Analyzer	FSIQ 26	831929/005	2017-08-31	2018-08-31
N/A	Coaxial Cable	C-SJ00-0010	C0010/04	Each Time	/

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	27.6 °C	
Relative Humidity:	39 %	
ATM Pressure:	100.4 kPa	

^{*} The testing was performed by Rick Chen on 2017-09-20.

FCC Part 15.247 Page 50 of 63

Test Mode: Transmitting

Test Result: Compliant. Please refer to the following table and plots

Test mode	Channel	Frequency (MHz)	PSD (dBm/3kHz)		Total	Limit
			Chain 0	Chain 1	(dBm/3kHz)	(dBm/3kHz)
	Low	2412	-8.02	-8.39	/	≤8
802.11b	Middle	2437	-8.39	-8.9	/	≤8
	High	2462	-8.87	-9.39	/	≤8
802.11g	Low	2412	-9.89	-9.83	/	≤8
	Middle	2437	-10.27	-10.28	/	≤8
	High	2462	-10.83	-10.93	/	≤8
	Low	2412	-8.92	-9.45	-6.17	≤8
802.11n ht20	Middle	2437	-9.75	-10.08	-6.9	≤8
	High	2462	-9.65	-10.54	-7.06	≤8
802.11n ht40	Low	2422	-11.05	-13.63	-9.14	≤8
	Middle	2437	-12.22	-13.81	-9.93	≤8
	High	2452	-11.49	-14.37	-9.69	≤8

Report No.: RDG171206017-00A

Note: the maximum antenna gain is 2.0 dBi, the device employed Cyclic Delay Diversity (CDD) for 802.11 MIMO transmitting, per KDB 662911 D01 Multiple Transmitter Output v02r01, for power spectral density (PSD) measurements on the devices:

Array Gain = $10 \log(N_{ANT}/N_{SS}) dB$.

So:

Directional gain = GANT + Array Gain = 2.0+10*log(2) =5.0 dBi

FCC Part 15.247 Page 51 of 63

Chain 0:

Power Spectral Density, 802.11b, Low Channel

Report No.: RDG171206017-00A

Power Spectral Density, 802.11b, Middle Channel

FCC Part 15.247 Page 52 of 63

Power Spectral Density, 802.11b, High Channel

Report No.: RDG171206017-00A

Power Spectral Density, 802.11g, Low Channel

FCC Part 15.247 Page 53 of 63

Power Spectral Density, 802.11g, Middle Channel

Report No.: RDG171206017-00A

Power Spectral Density, 802.11g, High Channel

FCC Part 15.247 Page 54 of 63

Power Spectral Density, 802.11n ht20, Low Channel

Report No.: RDG171206017-00A

Power Spectral Density, 802.11n ht20, Middle Channel

FCC Part 15.247 Page 55 of 63

Power Spectral Density, 802.11n ht20, High Channel

Report No.: RDG171206017-00A

Power Spectral Density, 802.11n ht40 Low Channel

FCC Part 15.247 Page 56 of 63

Power Spectral Density, 802.11n ht40 Middle Channel

Power Spectral Density, 802.11n ht40 High Channel

FCC Part 15.247 Page 57 of 63

Chain 1:

Power Spectral Density, 802.11b, Low Channel

Report No.: RDG171206017-00A

Power Spectral Density, 802.11b, Middle Channel

FCC Part 15.247 Page 58 of 63

Power Spectral Density, 802.11b, High Channel

Report No.: RDG171206017-00A

Power Spectral Density, 802.11g, Low Channel

FCC Part 15.247 Page 59 of 63

Power Spectral Density, 802.11g, Middle Channel

Report No.: RDG171206017-00A

Power Spectral Density, 802.11g, High Channel

FCC Part 15.247 Page 60 of 63

Power Spectral Density, 802.11n ht20, Low Channel

Report No.: RDG171206017-00A

Power Spectral Density, 802.11n ht20, Middle Channel

FCC Part 15.247 Page 61 of 63

Power Spectral Density, 802.11n ht20, High Channel

Report No.: RDG171206017-00A

Power Spectral Density, 802.11n ht40 Low Channel

FCC Part 15.247 Page 62 of 63

Power Spectral Density, 802.11n ht40 Middle Channel

Report No.: RDG171206017-00A

Power Spectral Density, 802.11n ht40 High Channel

***** END OF REPORT *****

FCC Part 15.247 Page 63 of 63