Clustering

Victor Kitov

v.v.kitov@yandex.ru

Table of Contents

- Clustering introduction
- Representative-based clustering
- 3 Hierarchical clustering
- Outlier filtering

Aim of clustering

- Clustering is partitioning of objects into groups so that:
 - inside groups objects are very similar
 - objects from different groups are dissimilar
- Unsupervised learning
- No definition of "similar"
 - different algorithms use different formalizations of similarity

Clustering demo

Applications of clustering

- data summarization
 - feature vector is replaced by cluster number
- feature extraction
 - cluster number, cluster average target, distance to native cluster center / other clusters
- customer segmentation
 - e.g. for recommender service
- community detection in networks
 - nodes people, similarity number of connections
- outlier detection
 - outliers do not belong any cluster

Clustering algorithms comparison

We can compare clustering algorithms in terms of:

- computational complexity
- do they build flat or hierarchical clustering?
- can the shape of clustering be arbitrary?
 - if not is it symmetrical, can clusters be of different size?
- can clusters vary in density of contained objects?
- robustness to outliers

Table of Contents

- Clustering introduction
- Representative-based clustering
- 3 Hierarchical clustering
- Outlier filtering

Representative-based clustering

- Clustering is flat (not hierarchical)
- Number of clusters K is specified in advance
- Each object x_n is associated cluster z_n
- Each cluster C_k is defined by its representative μ_k , k = 1, 2, ... K.
- Criterion to find representatives $\mu_1, ... \mu_K$:

$$Q(z_1,...z_K) = \sum_{n=1}^{N} \min_{k} \rho(x_n, \mu_k) \to \min_{\mu_1,...\mu_K}$$
 (1)

Generic algorithm

```
initialize \mu_1,...\mu_K from
random training objects
WHILE not converged:
    FOR n = 1, 2, ...N:
         z_n = \arg\min_{k} \rho(x_n, \mu_k)
    FOR k = 1, 2, ...K:
         \mu_k = \arg\min_{\mu} \sum_{n:z_n = k} \rho(x_n, \mu) \# \text{mean for L2 sq}
RETURN z_1,...z_N
```

Comments

Convergence conditions:

- maximum number of iterations reached
- cluster assignments $z_1, ... z_N$ stop to change (exact)
- $\{\mu_i\}_{i=1}^K$ stop changing significantly (approximate)

Initialization:

• typically $\{\mu_i\}_{i=1}^K$ are initialized to randomly chosen training objects/

Comments

- different distance functions lead to different algorithms:
 - $\rho(x, x') = ||x x'||_2^2 =$ K-means
 - $\rho(x, x') = ||x x'||_1 => \text{K-medians}$
- μ_k may be arbitrary or constrained to be existing objects
- K unknown parameter
 - if chosen small=>distinct clusters will get merged
 - ullet better to take K larger and then merge similar clusters.
- Shape of clusters is defined by $\rho(\cdot,\cdot)$
- Close clusters will have similar size.

K-means properties

Optimality:

- criteria is non-convex
- solution depends on starting conditions
- may restart several times from different initializations and select solution giving minimal value of (??).

Complexity: O(NDKI)

- K is the number of clusters
- I is the number of iterations.
 - usually few iterations are enough for convergence.

Gotchas

K-means assumes that clusters are convex:

- It always finds clusters even if none actually exist
 - need to control cluster quality metrics

K-means for non-convex clusters

K-means for data without clusters

Table of Contents

- Clustering introduction
- 2 Representative-based clustering
- 3 Hierarchical clustering
 - Top-down hierarchical clustering
 - Bottom-up hierarchical clustering
 - DBScan
- Outlier filtering

Motivation

- Number of clusters K not known a priory.
- Clustering is usually not flat, but hierarchical with different levels of granularity:
 - sites in the Internet
 - books in library
 - animals in nature

Hierarchical clustering

Hierarchical clustering may be:

- top-down
 - hierarchical K-means
- bottom-up
 - agglomerative clustering

Clustering - Victor Kitov
Hierarchical clustering
Top-down hierarchical clustering

- 3 Hierarchical clustering
 - Top-down hierarchical clustering
 - Bottom-up hierarchical clustering
 - DBScan

Clustering - Victor Kitov
Hierarchical clustering
Top-down hierarchical clustering

Algorithm

INPUT:

data D, flat clustering algorithm A leaf selection criterion, termination criterion

Initialize tree T to root, containing all data

REPEAT

based on selection criterion, select leaf L using algorithm A split L into children $L_1,...L_K$ add $L_1,...L_K$ as child nodes to tree T **UNTIL** termination criterion

Comments

- Leaf selection criterion:
 - split leaf most close to the root
 - result: balanced tree by height
 - split leaf with maximum elements
 - result: balanced tree by cluster size
- Building hierarchy top-down is more natural for a human

Clustering - Victor Kitov
Hierarchical clustering
Bottom-up hierarchical clustering

- 3 Hierarchical clustering
 - Top-down hierarchical clustering
 - Bottom-up hierarchical clustering
 - DBScan

Bottom-up clustering demo

Algorithm

initialize distance matrix $M \in \mathbb{R}^{\mathit{NxN}}$ between singleton clusters $\{x_1\},...\{x_N\}$

REPEAT:

- 1) pick closest pair of clusters i and j
- 2) merge clusters i and j
- 3) delete rows/columns i,j from M and add new row/column for merged cluster

UNTIL 1 cluster is left

RETURN hiearchical clustering of objects

- Early stopping is possible when:
 - K clusters are left
 - distance between most close clusters >threshold

Agglomerative clustering - distances

- Consider clusters $A = \{x_{i_1}, x_{i_2}, ...\}$ and $B = \{x_{j_1}, x_{j_2}, ...\}$.
- We can define the following natural distances
 - nearest neighbour (or single link)

$$\rho(A,B) = \min_{a \in A, b \in B} \rho(a,b)$$

furthest neighbour (or complete-link)

$$\rho(A,B) = \max_{a \in A, b \in B} \rho(a,b)$$

group average link

$$\rho(A,B) = \mathsf{mean}_{a \in A, b \in B} \rho(a,b)$$

closest centroid

$$\rho(A,B) = \rho(\mu_A,\mu_B)$$
 where $\mu_U = \frac{1}{|U|} \sum_{x \in U} x$ or $m_U = median_{x \in U}\{x\}$

Clustering - Victor Kitov Hierarchical clustering DBScan

- 3 Hierarchical clustering
 - Top-down hierarchical clustering
 - Bottom-up hierarchical clustering
 - DBScan

DBScan

- Core point: point having $\geq k$ points in its ε neighbourhood
- \bullet Border point: not core point, having at least 1 core point in its ε neighbourhood
- Noise point: neither a core point nor a border point

• k, ε - parameters of the method.

Algorithm

INPUT: training set, parameters ε, k .

- 1) Determine core, border and noise points with ε, k .
- 2) Create graph in which core points are connected if they are within ε of one another
- 3) Determine connected components in the graph
- Assign each border point to connected component with which it is best connected

RETURN points in each connected component as a cluster

Failure for varying density

- Large k: cluster C is missed
- Small k: clusters A and B get merged

Comments

- Connecting core points agglomerative clustering with single linkage, stopping at distance ε .
- Advantages:
 - Resistant to outliers by ignoring noise points.
 - automatically determines the number of clusters
- Disadvantages:
 - works badly for density varying clusters
- Complexity $O(N^2Dk)$
 - can be reduced to $O(N \ln NDk)$ for small D with spatial indexing.

Mean shift clustering

```
\begin{array}{l} \underline{\textbf{INPUT}} \colon \text{ training set } x_1,...x_N, \text{ step size } \eta, \\ & \text{ kernel } K(\cdot), \text{ bandwidth } h. \\ \\ \hline \textbf{FOR } n=1,...N \colon \\ z_0=x_n, i=0 \\ & \text{ REPEAT until convergence:} \\ z_{i+1} = \frac{\sum_{k=1}^N K(\rho(z_i,x_k)/h)x_k}{\sum_{k=1}^N K(\rho(z,x_k)/h)} \\ & i=i+1 \\ & \text{ assosiate } x_n \text{ to peak } z_i \\ \\ \hline \text{Merge almost identical peak positions } z_1,...z_N \end{array}
```

RETURN clusters of data points, converging to the same peak.

Comments

Mean shift convergence process

- Mean shift clustering is equivalent to steepest gradient clustering.
- Usually RBF kernel $K(\rho(x,x')/h) = e^{-\rho(x,x')^2/h^2}$ is used
- Efficient to discard objects that are outside some ε-neighbourhood of z_i in z_i recalculation.

Clustering evaluation: Silhuette coefficient¹

For each object x_i define:

- s_i-mean distance to objects in the same cluster
- d_i-mean distance to objects in the next nearest cluster

Silhouette coefficient for x_i :

$$Silhouette_i = \frac{d_i - s_i}{\max\{d_i, s_i\}}$$

Silhouette coefficient for $x_1, ... x_N$:

$$Silhouette = \frac{1}{N} \sum_{i=1}^{N} \frac{d_i - s_i}{\max\{d_i, s_i\}}$$

¹Peter J. Rousseeuw (1987). "Silhouettes: a Graphical Aid to the Interpretation and Validation of Cluster Analysis". Computational and Applied Mathematics 20: 53–65.

Discussion

- Advantages
 - The score is bounded between -1 for incorrect clustering and +1 for highly dense clustering.
 - Scores around zero indicate overlapping clusters.
 - The score is higher when clusters are dense and well separated.
- Disadvantages
 - complexity $O(N^2D)$
 - use feature space indexing or random subsampling
 - favours convex clusters

Table of Contents

- Clustering introduction
- Representative-based clustering
- 3 Hierarchical clustering
- 4 Outlier filtering

Isolation forest

Isolation tree splitting algorithm:

```
while nodes with \geq 2 observations exist: take node with \geq 2 observations select random non-constant feature f for that node select random threshold t \in [f_{min}, f_{max}) split current node into 2 nodes depending on f \leq t rule
```

Isolation forest

Isolation tree splitting algorithm:

```
while nodes with \geq 2 observations exist: take node with \geq 2 observations select random non-constant feature f for that node select random threshold t \in [f_{min}, f_{max}) split current node into 2 nodes depending on f \leq t rule
```

- Typicalness of object≈depth of the node containing only that object
 - outliers are easier to separate
 - but depends too much on randomness
- Isolation forest collection of M independent isolation trees.
 - Typicalness of object=average depth of the node of that object in M trees.
 - outlier score = typicalness.

Example

