Predicción del precio de vehículos

Empresa VALTEL

Descripción del proyecto

- **CRISP-DM** (Cross Industry Standard Process for Data Mining) ha sido el marco metodológico para estructurar el proyecto de principio a fin.
- Permite seguir un enfoque iterativo, flexible y
 replicable que se adapta perfectamente a problemas de predicción como el que abordamos.
- Facilita una clara división de etapas: desde el entendimiento del negocio y los datos, hasta la preparación, modelado, evaluación y despliegue.
- Su enfoque centrado en el **valor del negocio** nos asegura que las decisiones técnicas estén siempre alienadas con los objetivos del análisis.

Entendimiento del negocio

Objetivo empresarial: Ofrecer vehículos a precios competitivos para diversificar la cartera de productos.

Objetivo del científico de datos: Diseñar un modelo que estime el precio de cada vehículo.

Beneficios esperados: Establecerse como el comercial de nicho dominante en la venta de vehículos de segunda mano a ciudadanos no nacionales.

Entendimiento de los datos

El departamento de I+D nos ha proporcionado un dataset con **11199 registros**.

Principales dimensiones:

- CV (potencia)
- Cilindros
- Mercado
- Año
- Consumo

Indicador principal:

- Precio

Preparación de los datos

Problemas principales:

- Mercado: 3742 nulos (31.41%).
- **Duplicados**: 715 duplicados (6.4%).
- Outliers: Gran cantidad de valores atípicos en todas las variables.
- Variables correlacionadas no linealmente.
- Variables redundantes -> Consumo en Ciudad

Soluciones propuestas:

- Imputar los nulos según la moda/mediana/media en variables similares.
- Eliminar los duplicados.
- Utilizar **modelos basados en árboles**, pues soportan **outliers** y la **no linealidad.**
- Eliminar la variable Consumo en Ciudad y utilizar únicamente el Consumo en Carretera.

Proporción de Valores Duplicados en el Dataset

Proporción de Valores Nulos en Mercado

Modelado

¿Qué modelos escogemos?

Los modelos escogidos:

- Árboles de Decisión.
- Random Forest.
- XGBoost,

reúnen las siguientes características:

- No requieren escalado ni estandarización.
- Tolerantes a outliers.
- Manejan eficientemente múltiples variables.
- Admiten relaciones no lineales entre variables.

¿Sobre qué datos los entrenamos?

Por redundancia, crearemos 2 datasets:

- Uno con las filas **nulas imputadas**.
- Otro con las filas **nulas eliminados**.

¿Cómo los entrenamos?

- Escogeremos un 80% de datos para el entrenamiento y un 20% para la evaluación.
- Aplicaremos validación cruzada.
- Generaremos: 3 árboles x 2 datasets = 6 modelos.
- Seleccionaremos el modelo, con los datos, que mejor desempeño obtenga.

Evaluación

Random Forest

Árbol de Decisión

XGBoost

Dataset sin nulos:

- MAE: 4677.43 - RMSE: 21846.95 - R²: 0.9137

Dataset con nulos imputados:

- MAE: 3060.03 - RMSE: 6332.32 - R²: 0.9826

Dataset sin nulos:

MAE: 5124.49
 RMSE: 23423.72
 R²: 0.9008

Dataset con nulos imputados:

- MAE: 3215.62 - RMSE: 6707.06 - R²: 0.9805

Escogemos esta configuración

- Los datasets con nulos imputados obtienen un mayor desempeño.
- Los 3 modelos obtienen un **rendimiento** muy similar y **excepcionalmente alto**.
- Escogemos el **Arbol de Decisión** por tener una mayor explicabilidad para el negocio.

Dataset sin nulos:

- MAE: 4971.11 - RMSE: 15680.18 - R²: 0.9556

Dataset con nulos imputados:

- MAE: 3404.06 - RMSE: 6277.15 - R²: 0.9829

Despliegue

¿Qué acciones debemos tomar?

Piloto

Monitorización

Operativizar

Realizar una **prueba piloto** en un conjunto
reducido de clientes.

Decidir si se debe **ampliar** a otros clientes.

Medir los **resultados** del modelo en los clientes.

Establecer **KPI's** clave:

- Satisfacción del cliente
- Porcentaje de compras reales en interesados

Desplegar el modelo y **automatizar** sus acciones.

Monitorizar métricas de rendimiento. Si el modelo pierde rendimiento, considerar reentrenamiento (MLOps).

Muchas gracias por su atención