AN AID FOR USING THE REVISED UNIFORM SUMMARY OF SURFACE WEATHER OBSERVATI. (U) AIR FORCE ENVIRONMENTAL TECHNICAL APPLICATIONS CENTER SCOTT A. JUN 83 USAFETAC/TN-83/001 SBI-AD-E850 405 F/G 4/2 AD-A132 186 1/1 -UNCLÄSSIFIED NL

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

SEP 6 1983

B

JUNE 1983

Approved For Public Release; Distribution Unlimited

UNITED STATES AIR FORCE
AIR WEATHER SERVICE (MAC)

USAF
ENVIRONMENTAL
TECHNICAL APPLICATIONS
CENTER

SCOTT AIR FORCE BASE, ILLINOIS 62225

83 08 23 090

REVIEW AND APPROVAL STATEMENT

USAFETAC/TN-83/001, An Aid for Using the Revised Uniform Summary of Surface Weather Observations (RUSSWOS), June 1983, is approved for public release. There is no objection to unlimited distribution of this document to the public at large, or by the Defense Technical Information Center (DTIC) to the National Technical Information Service (NTIS).

This technical publication has been reviewed and is approved for publication.

DR. PATRICK J. BREITLING

Chief Scientist

The second second second

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOC	READ INSTRUCTIONS BEFORE COMPLETING FORM			
1. REPORT NUMBER	2. (SOUT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER	
USAFETAC/TN-83/001	\mathcal{A}	DA 132 186		
4. TITLE (and Subtitle)			5. TYPE OF REPORT & PERIOD COVERED	
AN AID FOR USING THE R	Final			
SURFACE WEATHER OBS	· .	40s)	6. PERFORMING ORG. REPORT NUMBER	
7. AUTHOR(s)			8. CONTRACT OR GRANT NUMBER(s)	
			-	
9. PERFORMING ORGANIZATION N	AME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS	
US Air Force Environme	ntal Technical		ANEX & WORK UNIT NOMBERS	
Applications Center				
Scott AFB Illinois 62				
US Air Force Environme			12. REPORT DATE	
Applications Center	ntal lechnical		June 1983	
Scott AFB Illinois 62	225	İ		
14. MONITORING AGENCY NAME 8		n Controlling Office)	69 15. SECURITY CLASS. (of this report)	
			Unclassified	
			15a. DECLASSIFICATION DOWNGRADING SCHEDULE	
This document has been unlimited. 17. DISTRIBUTION STATEMENT (of				
Supersedes AWSP 105-1,	30 November 196	56.		
19 KEY WORDS (Continue on reverse	side if necessary and ide	ntily by block number		
Climatology	Ceiling-Visibili	lty	Weather Conditions	
	Relative Humidit		Monthly Climatology	
	Station Pressure		RUSSWO Guide	
-	Extreme Max & Mi		USER's Guide	
•	Sea-Level Pressu			
Environmental Technica	scusses the six- 1 Applications (orm Summary of S cal document thi	part statistic Center's standa Surface Weather cough a series	2	

DD 1 FORM 1473

(B) Precipitation, Snowfall, and Snow Depth; (C) Surface Winds; (D) Ceiling Visibility, Sky Cover; (E) Daily Max, Min, and Mean Temperatures, Psychrometric

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)
Block 20 Continued:
- Dry vs Wet-Bulb Temperature, Mean & Standard Deviation - (Dry Bulb, Wet Bulb, & Dew Point, & Relative Humidity; and (F) Station Pressure and Sea-Level
Pressure.

PREFACE

This technical note (TN) is designed to acquaint forecasters, primarily at the detachment level, with the use of the Revised Uniform Summary of Surface Weather Observations (RUSSWO) which is prepared by the United States Air Force Environmental Technical Applications Center (USAFETAC).

A thorough familiarity with the RUSSWO will allow the detachment to satisfy many of its requirements for local climatological information. Assistance in providing more rigorous climatological information than can be determined from the RUSSWO can be obtained through an AWSR 105-18 request.

This TN includes a brief explanation of each part of the RUSSWO together with reproductions of selected summaries. Exercises that stress procedures for extracting key climatic data are included for each reproduced climatological data summary. Some exercises introduce techniques for obtaining data that are not tabulated directly in the RUSSWO. In most cases, the page of exercises for a particular summary faces the summary to facilitate study.

Although this TN will have diminished applicability for a new RUSSWO format expected in the 1984 calendar year time-frame, it will be relevant for current RUSSWOs which will not be updated for a number of years. Additional parts that the new RUSSWOs will contain will be an hourly breakout of thunderstorm occurrences, weather conditions versus wind direction, cross wind summaries, and heating and cooling degree days summaries. The new RUSSWO will no longer be produced on preprinted forms but will be machine generated on computer paper.

This Technical Note supersedes AWS Pamphlet 105-1, 30 November 1966.

CONTENTS

			Page
Chapter	1 1.1 1.2 1.3 1.4	INTRODUCTION	1 1 1 1
	1.5	Station History	2
Chapter	2 2.1	WEATHER CONDITIONS AND ATMOSPHERIC PHENOMENA (PART A) Percentage Frequency of Occurrence of Weather Conditions from Hourly Observations	3
	2.2	Exercises and Examples	4
	2.3	Atmospheric Phenomena from Daily Observations Exercises for the All-Months Atmospheric Phenomenon Summaries (Weather Conditions from Daily Observations)	6
			_
Chapter	3 3.1	PRECIPITATION, SNOWFALL, AND SNOW DEPTH (PART B) Fart B Summary Description	9
	3.1.1	Percentage Frequency of Various Daily Amounts of Precipi-	-
	3.1.2	tation, Snowfall, and Snow Depth	9
		Snow Depth	10
	3.1.3	Total Monthly Amounts of Precipitation and Snowfall	10
	3.2.1	General	11 11
	3.2.2	Hail and Snow Occurrences	11
	3.2.3	Snow Depth	11
	3.3	Exercises for the Precipitation, Snowfall, and Snow Depth Summaries	11
Chapter		SURFACE WINDS (PART C)	22
	4.1	General	22
	4.2 4.3	Bivariate Percentage Frequency Tabulations	22 22
	4.4	Exercises for the Extreme Values Wind, All-Weather Sur-	
		face Winds Summary	23
Chapter	5	CEILING AND VISIBILITY (PART D)	31
_	5.1	General	31
	5.2 5.2.1	Ceilings and Visibilities	31 32
	5.2.2	Other "Indirect" Methods	34
	5.3	Sky Cover	35
Chapter	6	PSYCHROMETRIC SUMMARIES (PART E)	38
chapter	6.1	General	38
	6.2	Cumulative Percentage Frequency of Occurrence - Daily	
	6 2	Temperatures	38 39
	6.3 6.4	Extreme Values	40
	6.5	Means and Standard Deviations	41
	6.6	Relative Humidity	41
	6.7	Exercises for Temperatures, Dew Point, and Relative Humidity Summaries	42
Chapter		PRESSURE SUMMARY (PART F)	56
	7.1	General	56 56
	7.2	Definitions	56 56
	7.2.1	Station Elevation	56
	7.2.3	Barometer Elevation	56
	7.2.4	Climatological Station Elevation	56
	7.3	Exercises for the Station Pressures and Sea-Level Pressure Summaries	56
REFEREN	CES		60

ILLUSTRATIONS

ELLSWORTH AFS SD, RAPID CITY

Figure	2.1	Percentage Frequency of Occurrence of Weather Conditions
D	2 2	from Hourly Observations, 1967-1977, All Months
Figure	2.2	Percentage Frequency of Occurrence of Weather Conditions from Hourly Observations, 1968-1977, January
Figure	2 3	Percentage of Days with Various Atmospheric Phenomena
rigure	2.3	from Daily Observations, 1948-1977, All Months
Figure	3.1	Percentage Frequency of Precipitation from Daily Observa-
		tions, 1948-1977, Daily Amounts
Figure	3.2	Percentage Frequency of Snowfall from Daily Observations,
		1948-1977, Daily Amounts
Figure	3.3	Percentage Frequency of Snow Depth from Daily Observa-
	^ <i>^</i>	tions, 1948-1977, Daily Amounts
Figure	3.4	Extreme Values of Precipitation from Daily Observations,
Figure	3 5	1948-1977, 24-Hour Amounts in Inches
riguie	3.5	Extreme Values of Snowfall from Daily Observations, 1948-1977, 24-Hour Amounts in Inches
Figure	3.6	Extreme Values of Snow Depth from Daily Observations,
	0.0	1948-1977, Daily Snow Depth in Inches
Figure	3.7	Total Monthly Precipitation in Inches from Daily Observa-
-		tions, 1948-1977
Figure	3.8	Total Monthly Snowfall in Inches from Daily Observations,
_,		1948-1977
Figure	4.1	Station Location and Instrumentation History, April 1948
Figure	4 2	to December 1978
Figure	4.2	Extreme Values of Surface Winds from Daily Observations, 1949-1977, Daily Peak Gusts in Knots
Figure	4.3	Percentage Frequency of Wind Direction and Speed from
riguio	1.5	Hourly Observations, 1967-1977, All Weatner, All Hours,
		All Months
Figure	4.4	Percentage Frequency of Wind Direction and Speed from
-		Hourly Observations, 1968-1977, All Weather, All Hours,
		January
Figure	4.5	Percentage Frequency of Wind Direction and Speed from
		Hourly Observations, 1968-1977, All Weather, 0000-0200
- 2	4 6	LST, November
Figure	4.6	Percentage Frequency of Wind Direction and Speed from
		Hourly Observations, 1967-1977, Instrument, All Hours, All Months, Cig 200 to 1400 Ft W/Vsby 1/2 Mi or More,
		and/or Vsby 1/2 to 2-1/2 Mi W/Cig 200 Ft or More 30
Figure	5.1	A Simple Contingency Table
Figure		Partially Completed Contingency Table
Figure		Completed Contingency Table
Figure		Initial Filling of 4 x 4 Contingency Table
Figure		Partially Completed 4 x 4 Contingency Table
Figure		Last Step of 4 x 4 Contingency Table Prior to Completion. 33
Figure		Completed Contingency Table
Figure	5.6	Percentage Frequency of Occurrence from Hourly Observa-
		tions, 1967-1977, Ceiling Versus Visibility, All Hours, All Months
Figure	6 1	Cumulative Percentage Frequency of Occurrence from Daily
rigure	0.1	Observations, 1948-1977, Maximum Daily Temperatures,
		Annual Summary
Figure	6.2	Cumulative Percentage Frequency of Occurrence from Daily
		Observations, 1948-1977, Minimum Daily Temperatures 40
Figure	6.3	Cumulative Percentage Frequency of Occurrence from Daily
-		Observations, 1948-1977, Mean Daily Temperatures 4
Figure	6.4	Cumulative Percentage Frequency of Occurrence, Maximum
_		Daily Temperature, Annual Summary 4
Figure	6.5	Extreme Values of Maximum Temperature in Whole Degrees
		Fahrenheit, 1948-1977
Figure	6.6	Extreme Values of Minimum Temperature in Whole Degrees
 .		Fahrenheit, 1948-1977
Figure		Psychrometric Summary, 1967-1977, All Hours, All Months . 4
Figure	0.8	Means and Standard Deviations for Dew-Point Temperatures
		in Degrees Fahrenheit from Hourly Observations, 1967-1977 48

Figure 6.9 Figure 6.10 Figure 7.1	Cumulative Percentage Frequency of Occurrence from Hourly Observations, 1967-1977, Relative Humidity, All Months Cumulative Percentage Frequency of Occurrence, Maximum Daily Temperature in Degrees Fahrenheit, July Summary Means and Standard Deviations of Station Pressure in	49 50
Figure 7.2	Inches Hg from Hourly Observations, 1967-1977 Means and Standard Deviations of Sea-Level Pressure in MB from Hourly Observations, 1967-1977	57 58
	TABLES	
Table 2.1	Procedures for Determining Answers to Sample Questions from the WEATHER CONDITIONS - All Months Summary (Figure 2.1)	5
Table 2.2	Procedures for Determining Answers to Sample Questions from the WEATHER CONDITIONS - January Summary (Figure 2.2)	5
Table 2.3	Procedures for Determining Answers to Sample Questions from the ATMOSPHERIC PHENOMENON, All Months, Daily Observations Summary (Figure 2.3)	7
Table 3.1	Procedures for Determining Answers to Sample Questions from the Daily Amounts Percentage Frequency of Precipitation Summary (Figure 3.1)	12
Table 3.2	Procedures for Determining Answers to Sample Questions from the Daily Amounts Snowfall Summary (Figure 3.2)	14
Table 3.3	Procedures for Determining Answers to Sample Questions from the Daily Amounts Snow Depth Summary (Figure 3.3).	16
Table 3.4	Procedures for Determining Answers to Sample Questions from the Extreme Values Precipitation Summary (Figure 3.4)	17
Table 3.5	Procedures for Determining Answers to Sample Questions from the Extreme Values Snowfall Summary (Figure 3.5)	18
Table 3.6	Procedures for Determining Answers to Sample Questions from the Extreme Values Snow Depth Summary (Figure 3.6).	19
Table 3.7	Procedures for Determining Answers to Sample Questions from the Monthly Precipitation Summat: (Figure 3.7)	20
Table 3.8	Procedures for Determining Answers to Sample Questions from the Monthly Snowfall Summary (Figure 3.8)	20
Table 4.1	Procedures for Determining Answers to Sample Questions from the Extreme Values Surface Wind Summary (Figure 4.2)	23
Table 4.2	Procedures for Determining Answers to Sample Questions from the All-Months, All-Hours, All-Weather Surface Winds Summary (Figure 4.3)	24
Table 4.3	Procedures for Determining Answers to Sample Questions from the January, All-Hours, All-Weather Surface Wind	26
Table 4.4	Summary (Figure 4.4)	27
Table 4.5	Procedures for Determining Answers to Sample Questions from the All-Months, All-Hours Instrument - Weather Surface Winds Summary (Figure 4.6)	28
m-5-1 - 5 - 1	Putatio Gameraian From Chatus to Novice Nilos	21
Table 5.1 Table 5.2	RUSSWO Conversion from Statue to Nautical Miles	31 34
Table 5.2 Table 5.3	Exercises for the Ceiling Versus Visibility Summaries Octas - Tenths Conversion	36
Table 5.3	Airways Sky Conditions to Sky Cover Conversions	37
TANTO 2.1		٠,
Table 6.1	Procedures for Determining Answers to Sample Questions	
	from the Daily Maximum Temperature Summary (Figure 6.1) .	42
Table 6.2	Procedures for Determining Answers to Sample Questions	_
	from the Daily Minimum Temperature Summary (Figure 6.2) .	44

Table	6 3	Procedures for Determining Answers to Sample Questions	
14210	0.5		46
Table	6.4	Procedures for Determining Answers to Sample Questions	
		from the Extreme Value Maximum Temperature Summary	
		(Figure 6.5)	49
Table	6.5	Procedures for Determining Answers to Sample Questions	
		from the Extreme Value Minimum Temperature Summary	
		(Figure 6.6)	51
Table	6.6	Procedures for Determining Answers to Sample Questions	
		from the All-Months Psychrometric Summary (Figure 6.7)	51
Table	6.7	Procedures for Determining Answers to Sample Questions	
		from the Dew-Point Temperature (Means and Standard Devia-	
		tions) Summary (Figure 6.8)	53
Table	6.8	Procedures for Determining Answers to Sample Questions	
		from the All-Months Relative Humidity Summary (Figure	
		6.9)	54
Table	7.1	Procedures for Determining Answers to Sample Questions	
		from the Station Pressure Summary (Figure 7.1)	57
Table	7.2	Procedures for Determining Answers to Sample Questions	
		from the Sea-Level Pressure Summary (Figure 7.2)	58

INTRODUCTION

1.1 Background

The Revised Uniform Summary of Surface Weather Observations (RUSSWO) contains six parts, A through F. Each part is preceded by a short explanation; however, additional clarification, not appropriate for inclusion in the RUSSWO is usually required. This technical note is intended to fill that requirement and to show by means of specific exercises how to use the RUSSWO.

1.2 Quality Control

Before a RUSSWO is produced, the observations in USAFETAC's computerized data base are audited to determine if there are enough observations of the various meteorological elements to warrant RUSSWO production. Where possible, missing data are recovered from the original, hard-copy station records or are computed from other reported elements. Once we have an adequate data base in terms of quantity, the observations are checked for quality. Various quality control techniques are used. Some examples are trend analyses for temperatures and pressures, checks for incompatibility of related values, and filters for removing absolute errors. Thus, much effort is made to ensure a good data base is used for RUSSWO production.

1.3 Period of Record

Different parts of the RUSSWO are likely to be based on different periods of record. USAFETAC's current policy is to use the latest 10-year period of record for summaries based on hourly observations, and to use the maximum available period of record for those summaries based on the "Summary of the Day" or daily observations. Because of the differing periods of record used, care must be exercised in comparing similar values from different summaries.

1.4 Definition and Interpretation

The terms "mean percent of time" and "mean percent of observations" are synonymous as used in this TN because the number of hourly observations in nearly all cases is the same as the number of hours in the months of years involved. It needs emphasizing, nonetheless, that only HOURLY observations are used in summaries listed as derived from hourly observations. However, ALL observations (hourlies, specials, "Summary of the Day," etc.) are used in summaries listed as derived from daily observations. A long period of record will usually overcome the disadvantages of not using all of the observations for some summaries; but a few apparent inconsistencies can be reconciled if this fact is kept in mind.

Many stations for which RUSSWOs are now prepared operate less than 24 hours per day and less than 7 days per week. Some RUSSWO parts can be significantly affected by data processed from these less than full time stations with data shortfalls.

Throughout all parts of the RUSSWO containing percentage frequencies of occurrence, the lack of an entry in a block signifies either that no occurrences were observed during the period of record for the summary or that data were missing. The recording of ".0" or "0.0" is an indicator that a phenomenon was observed so infrequently that it is "0.0" in the mean after rounding to the nearest tenth of a percent.

Several terms from statistics are used throughout this TN. They are defined here so that we may have a common vocabulary with which to work.

Mean. The mean is the arithmatic average of all the values of concern. It is found by simply adding all the values and dividing by the number of values added. Symbolically we write the mean as

$$\bar{x} = \frac{\sum x}{N}$$

Where x is an individual value and N is the total number of values.

The mean is also known as the expected value of the variable.

Standard Deviation. The standard deviation is defined by

$$_{\Omega}^{\mathbf{X}} = \left[(\Sigma \mathbf{x}_{5} / \mathbf{N}) - (\Sigma \mathbf{x} / \mathbf{N})_{5} \right]_{7}^{2}$$

The standard deviation gives a measure of the dispersion on the variability of the quantity of concern about its arithmatic mean. The larger the standard deviation, the greater the variability.

- Bivariate Distribution. A bivariate distribution gives the joint distributions of two related variables. A classic example from the RUSSWO is the bivariate distribution of ceilings and visibilities. Each row and each column of a bivariate distribution is a frequency distribution. Joint frequencies are found at the row-column intersections.
- Frequency. In statistics the frequency is the number of times a given cot occurs. We often express this as PERCENTAGE FREQUENCY wherein we give t frequency (number of occurrences) as a percent of all possible occurrences our sample. Hence, if snow fell on five out of 100 days we could express t "Percentage Frequency of Occurrence" of snow as 5 percent over the 100 c period of record.
- Probability. If f is the frequency of a specified event or condition, and N is the number of all events, the f/N is the probability. Probability can be expressed as a fraction or a percentage. Its range is limited by definition from 0 (0 Percent) to 1 (100 Percent). When expressed as a percentage, we refer to the "Percent Probability" or "Percentage Probability."

A fuller discussion of statistical methods as applied to climatology can be found in AWS TR 77-267 (1977), in Panofsky and Brier's (1968) classic text, and in numerous other sources. The reader is encouraged to refer to these references.

1.5 Station History

On a page preceding the Weather Conditions (PART A) write-up in a RUSSWO, is the "Station Location and Instrumentation History" sheet (see Figure 4.1, page 23). Significant information is given on station name changes, location changes, type of station, latitude and longitude, height of station and barometer height above mean sea level, and observations per day. For example, beginning in January 1965, most National Weather Service station data were key punched for the 3-hourly synoptic times only. Thus, there were eight observations per day in contrast to the previous key punching which was accomplished for all hourly observations. The observations per day column would have an "8" listed in the case of the 3-hourly synoptic observations, and a '24" for hourly observations. The instrumentation and history sheet also lists a history of the type of wind equipment and its height above ground. This equipment information is important for considering the representativeness of the wind for operational and planning considerations.

Chapter 2

WEATHER CONDITIONS AND ATMOSPHERIC PHENOMENA (PART A)

Part A of the RUSSWO consists of two sections: WEATHER CONDITIONS and AIMOS-PHERIC PHENOMENA. The summaries given for weather conditions address the "hourly" and "all-hours" occurrences of the specified phenomena. The summaries for atmospheric phenomena give the percent of days per month and per year that the same specified phenomena occurred during the period of record used.

2.1 <u>Percentage Frequency of Occurrence of Weather Conditions from Hourly Observations</u>

Figures 2.1 and 2.2 illustrate respectively the "all-months, all-hours" and monthly "hourly" summaries of specified weather occurrences. The specified phenomena are defined on pages A-1 and A-2 of the RUSSWO. NOTE: The "Percent of Obs With Obst to Vision" excludes those cases where vision was obstructed by precipitation. Also the term "sleet" is obsolete; the current name of this phenomena is "ice pellets."

1414 PRICESSI GORES IN USAS ETAC SIR CATOLS SERVICES AN

WEATHER CONDITIONS

монтн	HOURS LST:	THUNDER	RAIN AND OR JRIZZLE	FREEZING RAIN & OR DRIZZLE	SNOW AND OR SLEET	HAIL	S OF OBS WITH PRECIP	FOG	SMORE AND OF HAZE	SOUNC)	DUST AND OR SAND	N OF OBS WITH OBS! TO VISION	TOTAL) OF UBS
	ALL_	.	5	3,	17.7		18.31.	3.5	1	. 2.4.		. 5.9	744
F <u>5 3</u>		 	2.65	7	17.3		19.5	7.7	• ?	1.3		9.7	6791
Α		! +	1.6	.5.	15 e = .		17.3.	5.4	= 1	3.1			7423
_42 ← ↓		,2	9.6	1.	4.9	•.	14.8	. 5.5.	. 2	1.2	• • • • • • • • • • • • • • • • • • • •		_7 <u>2^.</u> ,
4 <u>r</u>		1.3	1 .3	•	. 2,		1.4	2.4				2.4	7439
		2.9	7.4	, :	. 12.		7.6	2.2				2.0	7199
إيالي		2,0	4 . 4	:			4,4	,5.	2			.6	7439
_ماليو		. <u>1.</u> 9;	3.7				1	_1+1.		' '		. 1.1.	7436
SEP.		. ,,	5 . 2	• •	٤ ² .	٠.	5.5.	1.4.				. 1.4	7200
ÇŢ.		1.	4.5	•	<u>5,2</u> .		. 3 P.	2.1.		. 4	•0	2.5	7440
7			1.6	4.	12.3		13.9	5.5	<u>.</u> ^_	1.4.		6. A	7193
ΕÇ			. 7	<u> </u>	15.2		15.9	5.1		2,2		6.9	7436
TOTALS		. 5	4.1	• 2	7,7		11.7	3.5	• 1	1.1	•0	4.4	37654

Figure 2.1. Percentage Frequency of Occurrence of Weather Conditions from Hourly Observations, 1967-1977, All-Months.

In Figures 2.1 and 2.2 the totals at the bottom of the summary are the mean annual or mean monthly percentage frequency of occurrence values. Since more than one weather condition may be reported in any given observation, say, rain and snow mixed, the "percentage of obs with precip" and the "percentage of obs with obst to vision" columns may contain values less than the sum of the values in columns to the left. Hence we find, for example, in Figure 2.1 that the "percentage of obs with precip" total is 11.7, yet the sum of the columns to the left is 12.8; and the sum of the values for fog (3.5), smoke and/or haze (0.1), blowing snow (1.1), and dust and/or sand (0.0) is 4.7 compared to a "percentage of obs with obst to vision" of 4.6. Conversely, not all of the potential contributing conditions need occur simultaneously for the "percentage of obs with..."

DATA PROCESSING REALDHOUSAF ETAC AIR REATHER SERVICE/MAC

WEATHER CONDITIONS

24006 ELLSWORT- AFT SOMALL GITY

PERCENTAGE FRENCE OF THE TOTAL TO THE TOTAL TO THE TOTAL TOT

MUNIH	HOURS 1, 3.1			18: 62mil. 84 m \$	And be	нац			See of See into	b	1474D	• • • • • • • • • • • • • • • • • • •	.
A.A.	, 00-62.		>		14.4.		10.9.	۰.		:	•1.	•••	٠,
-	, 23-65.		3	. ••.	4144.		24.1	1.1		1.		*.*	, , ,
:	. Q <u>6</u> -Q8.	. ,	2	٠9.	٤.٠٠		25.0	3.4		1.5		٠,٠	*3 .
	29-11.		. ,9		17.5.		10.2	4,1,		2		٠,٠	73
	. 12-14,		. • •	. 44	13.2.		14.3	4.2	٠,	2.5		٠.٠	12.
	. 15-17.		. 44	1.	12.7		13.1	2.5		٠.		7.2.	#3
	. 18-22.		5	2.	4.3.		16.5.	2•?.		2.		5.	922.
	. 21-23.		5	, ι4.	19.4		21.3	2.		1.0		4.1	12
								•	,				
	• • • •								-				
TOTALS			,		17.		18.2	215		24 .		* 5.5.	11.

Figure 2.2. Percentage Frequency of Occurrence of Weather Conditions from Hourly Observations, 1968-1977, January.

columns to be incremented. [See USWE (1979) for a discussion of observing practices.]

As the name suggests, the percentage frequency of occurrence or weather conditions from hourly observations are derived from hourly data. Special (off-hour) observations, "Summary of the Day" data, etc., are not used. It is also important to realize that the mean number of days per month or per year cannot be cannot be determined from the WEATHER CONDITIONS SUMMARY. They must be found from the ATMOSPHERIC PHENOMENA SECTION of Part A.

Hourly data are given in terms of 3-hour time blocks. We assumed here that each hour of the interval has the same frequency of occurrence of the specified condition. If this were not so, there would be little reason for grouping these data. (Indeed, grouping of data does increase sample size and hence tends to ensure more stable means.) If values are required for discrete hours, plotting the percentage frequencies at the appropriate mid-hour of each 3-hour block, and then graphically interpolating (preferably with a smooth curve instead of a straight line) will give an adequately accurate estimate.

2.2 Exercises and Examples

Tables 2.1 and 2.2 contain a variety of questions along with procedures for determining answers from the WEATHER CONDITIONS "All-Months" summary (Figure 2.1, page 3) and the "January 3-hourly summary" (Figure 2.2, page 4) from the Ellsworth AFB RUSSWO. Many of the answers can be determined directly from the summaries and others require additional supporting information to determine an answer. The exercises are only intended to acquaint the user with the type of information that can be gleaned from these data summaries and therefore, are not intended to be comprehensive.

Table 2.1. Procedures for Determining Answers To Sample Questions from the WEATHER CONDITIONS - All-Months Summary (Figure 2.1, page 3).

To Find	Pertinent Row/Column	Answer
Mean percentage of time that fog occurs in February.	Feb/Fog	7.9
Mean percentage of time that thunderstorms occur in August.	Aug/Thunder- storms	1.9
Mean annual percentage of time that dust and/or sand occur.	Totals/Dust a/o Sand	0.01
Mean percentage of time that hail is observed in June.	Jun/Hail	No Occur- rences in POR ²
Mean percentage of time with precipitation in March.	Mar/% of Obs with precip	17.33
Precipitation subcategories for March:		
Mean percentage of time with rain and/or drizzle.	Mar/Rain a/o drizzle	1.6
Mean percentage of time with freezing rain and/or drizzle.	Mar/Frz Rain a/o Drizzle	0.5
Mean percentage of time with snow and/or sleet.	Mar/Snow a/o sleet	15.8
Mean percentage of time with hail.	Mar/Hail	None
Mean percentage of time in October with obstructions to vision.	Oct/% of obs with obst to vision	2.5
Mean annual percentage of time with fog.	Totals/Fog	3.5

¹ It is seen from this exercise that dust and/or sand obstructions to visibility do occur during the year, but in such small numbers that the percentage becomes 0.0 after rounding off to the nearest tenth. The requester of this information should be apprised of this fact.

Table 2.2. Procedures for Determining Answers To Sample Questions from the WEATHER CONDITIONS - January Summary (Figure 2.2, page 4).

To Find	Pertinent Row/Column	Answer	
Mean percentage of time with blowing snow.	Totals/Blowing Snow	2.41	
Mean percentage of time with blowing snow, 0600-0800 LST.	06-08/Blowing Snow	1.5	

 $^{^2}$ Since no number is given, we know there were no occurrences of hail in June at Ellsworth AFB for the period 1967-1977.

³ Observe that the total for the above listed subcategories equals 17.9 percent versus the 17.3 percent in the "Mar/percent of obs with precip" block. This stems from the reporting of multiple weather conditions occurring simultaneously.

Table 2.2 - Continued

Table 2.2 - Continued				
To Find	Pertinent Row/Column	Answer		
Mean percentage of time with fog, 1200-1400.	12-14/Fog	4.2 LST		
Mean percentage of time with obstructions to vision 1500-1700 LST.	15-17/Obst to vision	7.2		
Obstructions to Vision for January Subcategories:				
Mean percentage of time with fog.	15-17/Fog	3.5		
Mean percentage of time with smoke and/or haze.	15-17/Smoke a/o Haze	None		
Mean percentage of time with blowing snow.	15-17/Blowing Snow	4.02		
Mean percentage of time with rain and/or drizzle 2100-2300 LST.	21-23 Rain a/o Drizzle	0.5		

¹ The answer on this exercise can also be obtained from the "ALL-MONTH" WEATHER CONDITIONS Summary (Figure 2.1, page 3 Row = blowing snow).

2.3 Atmospheric Phenomena from Daily Observations

This one page summary (Figure 2.3) lists the mean percentage of days having specific weather conditions as determined from all available weather data (i.e., hourly observations, special observations, summary of the day observations, etc.). One occurrence of a weather condition during a day, regardless of time or duration, is sufficient for that day to be considered a day with the specified atmospheric phenomenon. To illustrate this point, six thunderstorms in one day and one on another day are both counted a "day with thunderstorms." Since more than one type of precipitation or more than one type of obstruction to vision may occur on the same day, the sum of the values in the individual categories may differ from the totals in the "percent of obs with ..." columns.

To obtain the mean number of days per month that a given phenomenon occurs, multiply the figures in the appropriate percentage frequency block times the number of days in the given month and divide by 100. Use the same method to determine the number of days per year that the phenomenon occurs.

2.4 Exercises for the All-Months Atmospheric Phenomenon Summaries (Weather Conditions from Daily Observations)

Table 2.3 contains a variety of questions along with procedures for determining answers from the Atmospheric Phenomena All-Months Summary (Figure 2.3, from daily observations). Many of the answers can be determined directly from the summary while others require additional supporting information. The exercise is intended to acquaint the user with the type of information that can be gleaned from these data summaries and as such are not intended to be comprehensive. NOTE: The percentage of time a given phenomenon occurs cannot be determined from this summary. For such values, you must consult the "Percentage Frequency of Occurrence of Weather Conditions from Hourly Observations" discussed previously.

 $^{^2}$ The total percentage of the subcategories constituting meteorological elements which obstruct visibility is 7.5 percent whereas the 15-17/obst to vision block shows this percentage to be 7.2. This stems, once again, from the reporting of more than one weather condition, say, blowing snow and fog (an unlikely combination), on the same observation.

DATA PROCESSING RK4.02 USAF ETAC AIR REATHER SERVICE/ MAC

24104 ELLS FUFTH IF TILLED STATION NAME VEATS MONTH

PERSENTAGE OF PAYS STIFF CARTORS STOREPRO PART SES SERVICES OF PART OF THE PAR

MONTH	HOURS	THUNDER	BAIN AND OR DRIZZLE	FREEZING . RAIN & OR DRIZZLE	SNOW AND OR SLEET	HAIL	OF OS WITH PRECIP	FOG	SMOKE AND OR HAZE	BLOWING SNOW	DUST AND OR SAND	% OF OBS WITH OBST TO VISION	TOTAL NO OF OBS
MAL	LAILY		7.8	1.6	46.1		51.5	18.n	, 3	15.8	• 1	20.4	336
FEB	i	ļ	11.5	3,1	52.3		55.3	26.4	.7	13.3		34.8	818
442	! !	. 3	15.3	2,3	47.7		53.9	23.9	1.0	11.9	.4	32.4	Ay
APR		4,3	37.1	1.3	28.1.	. A	50.9	21.8	1.5	4.2		24.4	483
4AY	i	16.9	55.1	•2	3.0	4 • 1	55.3	16.1	. 4	. 6		14.9	٠ د و
JUN		32.7	54.1			7.9	53.4	14.2	• 2	• 1		14.4	r.u.
JUL	•	32.5	45,3			3,1	45,3	6.0				5.	- 3
AJG	i •	25.1	41,9			3 . D	41.2	6.7	. 2			٨.3	ر :
SEP	!	8.0	33,8	. 2:	9.2	•6	33.7	9.0	• 1	. 1		9,1	٠,
7C T		. 9	21.9	9	10.4		27.3	10.2	. 2	1.1		1	ز ٬
NU V	:!	. 1	14.7	2.3	29.5	• 2	36.5	15.7	• 2	7.5		17	7
DEC		• 1	0.7	۷•2	40.3		43.9	18.9	• 1	11.0		24.2	y c
TOTALS		10.1	29.1	1.2	22.7	٠.,٠	45.7	15.5	. 4	5.5	.0	12.3	1 79

Figure 2.3. Percentage of Days with Various Atmospheric Phenomena from Daily Observations, 1948-1977, All-Months.

Table 2.3. Procedures for Determining Answers To Sample Questions from the ATMOSPHERIC PHENOMENON, All-Months, Daily Observations Summary (Figure 2.3, page 7).

To Find	Pertinent Row/Column	Answer
Mean number of days with thunderstorms in June, July, and August.	Jun, Jul, Aug/ Thunderstorms	10,10,8 ¹ (9.8,10.1, 7.8)
Mean number of days with fog in January, February, and March.	Jan,Feb,Mar/ Fog	5.6,7.4, 7.4
Mean annual number of days with fog.	Total/Fog	56.6
Mean annual number of days with smoke and/or haze in August.	Aug/Smoke a/o Haze	0.11
Mean number of days with obstructions to vision in October.	Oct/Obst to Vision	3.4
Mean annual number of days with dust and/or sand which restricts the vision to less than 5/8 mile. ³	Totals/Dust a/o Sand	0.02
Mean number of days with precipitation in December; include subcategories.	Dec/% Obs with Precip	13.6
Mean number of days with rain and/or drizzle.	Dec/Rain a/o Drizzle	3.0

Table 2.3 - Continued

To Find	Pertinent Row/Column	Answer
Mean number of days with freezing rain and/or drizzle.	Dec/Frz Rain a/o Drizzle	0.7
Mean number of days with snow and/or sleet.	Dec/Snow a/o Sleet	12.7
Mean number of days with hail.	Dec/Hail	None

Rounding to the nearest whole number is suggested when presenting data to a customer. All too often confusion arises over something happening on, say, 7.6 days per month. Persons not trained in statistics fail to realize that the mean of a sample need not be an element of the sample. For example, the mean of 1, 2, 4, and 5 is 3; yet, 3 is not an element of the sample. Caution must be used in rounding, however, lest we round to zero and mislead a customer into believing a phenomenon never occurs. Thus, the decision to round must be tailored to the particular case at hand.

 $^{^2}$ No value in a given block (row/column) means that the given phenomenon did not occur in the specified month (or at all if the totals row at the bottom is blank for the period of record considered). A value of "0.0" shows that the phenomenon has occurred, but that its frequency of occurrence (percent of days with) is less than 0.05 percent.

 $^{^3}$ In this summary, a day with dust and/or sand as an obstruction to vision occurs only when the visibility is reduced to less than 5/8 statute miles (sm), rather than the usual value of less than 7 sm.

Chapter 3

PRECIPITATION, SNOWFALL, AND SNOW DEPTH (PART B)

3.1 Part B Summary Description

Eight summaries derived from daily observations (all available data) are presented in Part B. Three summaries are for daily amounts of precipitation, snowfall, and snow depth. An additional three summaries are provided for extreme daily amounts by month and year for precipitaion, snowfall, and snow depth. The final set of two summaries provides total monthly amounts of precipitation and snowfall for each year-month and annual.

3.1.1 Percentage Frequency of Various Daily Amounts of Precipitation, Snowfall, and Snow Depth. Three summaries of daily percentage frequency of precipitation (Figure 3.1), snowfall (Figure 3.2), and snow depth (Figure 3.3) are presented. The "Daily Amounts" summaries are prepared for each month and an annual summary

DATA PROCESSING BRANCH USAF ETAC AIR WEATHER SERVICE/MAC **DAILY AMOUNTS**

PERCENTAGE FREQUENCY OF PRECIPITATION [FROM DAILY OBSERVATIONS]

24006 ELLSWURTH AFR SO/KAPID CITY 48-77

						A# 0	DUNTS (IN	CHES:					PERCENT		MON	HLY AMO	UNTS
mec.	NONE	TRACE	Ç1	02 25	00.00	P 25	26 50	si 99	0.313	7 5 5 90 5 91 1	0 20 10 01 20	00 OVER 20 00	OF DAYS	NO .		(INCHES)	
MOM. 4/1	NONE	TRACE	0.04	0514	. 524	2334	1344	4104	65(24	65 54 55	21 4 23 5 50	4 OVER 50 4	MEASUR.	OF T	mt an	GREATEST	LEAST
SHOW DEPTH	NONE	MACE		,	<u>, </u>	4.	712	17.74	21 34	37 48 49	40 41 170	Ov4= 70	AMT\$;			
JAN	48.5	30.4	5.1	7.5	3.4	4.1	. 9					i i	21.1	899 ,	.47	1.30	.0
fEB	44.3	31.9	3.8	9.5	4.0	4,5	1.3	. 6					23.8	R18	. 65	2.19	TRACI
MAR	44.9	28.9	4.8	8.8	5.6	3.9	2.0	. 8	. 3				26.1	899	.97	2,78	.1
APR	47.4	23.3	3.1	7.6	۵.6	6,5	4.7	2.6	1.3			,	29.3	898	2.13	5.59	.02
MAY	42.9	22.9	3.7	6.8	6.3	6,6	4.9	4.0	1.5	.1,			34.2	930	2.93	9.81	. 2
אטנ	44.4	18.8	2.8	1,3	5.9	7.0	5.8	4.6	2.2	.1			36.7	900	3.23	7.74	. 8
)UL	53.2	21.1	2.4	6.2	4.6	4.8	3.5	2.8	. 6	. 2			25.7	930	1.91	5.73	.04
AUG	57.3	18.9	3.1	6.0	3.0	5.1	3.7	2.4	. 5	····			23.8	930	1.52	4.10	.01
SEP	64.9	16.6	2.2	5,2	2.6	3.9	2.1	2.0	.6		-		11.6	900	1.20	3.63	.01
oct	71.0	15.4	1.9	3.5	2.6	2.3	2.0	1.2	• 1			1	13.7	930	.77	1.92	.0
NOV	61.6	21.5	2.7	6.2	3.0	3.2	1.3	. 4					16.9	899	.52	2.16	.00
DEC	54.7	26.5	3.3	7.6	3.7	3.7	. 6			· - · - · - · - · · · · · · · · · · · ·		!	10.9	896	.42	1.10	TRACI
ANNUAL	52.9	23.0	3.3	6.9	4.0	4.6	2.7	1.8	.6	. 0			24.1	10829	16.72	\times	`

Figure 3.1. Percentage Frequency of Precipitation from Daily Observations, 1948-1977, Daily Amounts.

(all years combined). These summaries include percent of days with measurable amounts; percent of days having none, a trace, and specified amounts. Also given are means, greatest, and least monthly amounts (the last three statistics are omitted from the snow depth summary because of their doubtful and limited value). A total count of valid observations is given for each month and annual summary. For stations for which a portion or all of the period may contain months with missing days, this will be noted on the summary pages. A percentage frequency value of "0.0" in these daily amount summaries indicates less than 0.05 percent which is usually only one occurrence.

ELLSWORTH AFR SU/KAPID CITY

PERCENTAGE FREQUENCY OF SITH FALL IFROM DAILY OBSERVATIONS

						A #4 C	CUNTS IN	∴HES					PERCENT		MONTHLY AMOUNTS		
PREF	NONE	MACE		22.65		;*	«		. 43		: 1	Cr Sett	Of DAYS	101AL	•	NCHES	•
MOW! 411	NONE	tex()	2.24	٠.	. 124	23.14			4.5104	• • •	* * 1* * 3	15 to 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	. WEASUP	015	wt.a	GREATEST	1+3:
SHOW	NON*	MACE			,	<u></u> -	2.2	1 24	, 1.34 	1 44	45.60	6116 CHE P	. AM15				
IAN	50.9	28.1	10.7	6.8	2.1	. 6	. 3	• 1	• 1				2^.9	199	5.4	18.7	7146
FEB	47.0	29,3	10.6	6.4	2.9	1.6	. 2	. 5	. 2				29.1	515	6.9	19.5	. 5
MAR	31.5	25.4	9.7	8.0	2.2	1.2	.4	. 6	. 7	. 3			23.1	899	9.4	28.7	. 7
APR	71.3	15.9	4.4	3.0	2.0	1.1	. 4	. 4	. 4	,	.1		12.8	49 4	7.0	42.8	• 0
MAT	95.4	2.7	.1	. 9	. Z	.1	.1	•1					1.7	930	. 7	7.1	• 0
JUN	77.4	.1	• 1	. i	•			• 1		•			. 3	900	. 2	6.1	• 3
JOI	100.0	•	•		-					•	•			930	٠.	.0	
AUG	100.0			•	•					•			•	931	.0	.0	• 0
589	76.9	2.6	.1	. 2	•	*		,	•	٠	•		.6	900	.1	1.6	٠٠
OC1	19.5	6.7	1.7	1.5	, 5	. 3	•	. 2	•		•		3.9	929	1.5	8.2	•
NOV	69.1	18.4	5.1	4.1	1.1	. 7	. 4	. 4	. 1	.1		•	12.1	899	4.5	16.0	• (,
DEC	57.4	24.0	7.4	6.1	3.0	. 9	. 2	. 1				•	18.1	#99	5.0	11.0	TKACE
ANNUAL	77.5	12.0	4.2	3.1	1.2	. 6	. 2	. 2		.3	.0		9.7	10831	40.7	•	

Figure 3.2. Percentage Frequency of Snowfall from Daily Observations, 1948-1977, Daily Amounts.

3.1.2 Extreme Daily Amounts of Precipitation, Snowfall, and Snow Depth. Three summaries of extreme daily amounts of precipitation (Figure 3.4), snowfall (Figure 3.5), and snow depth (Figure 3.6) are presented which cover each month of each year. Data in these summaries consist of the various extremes and the means and standard deviations of the extremes for each month and for all months (annual summary along with the total valid observation count). Values for means and standard deviations exclude measurements from incomplete months. A prefix asterisk (*) is printed in any year-month block when the extreme value is based on an incomplete month (at least one day missing for the month). When a month has valid observations reported but no occurrences, zeros are entered in the summaries as follows

EXTREME DAILY PRECIPITATION "0.0" equals none for the month.

EXTREME DAILY SNOWFALL "0.00" equals none for the month (tenths).

EXTREME DAILY SNOW DEPTH "0" equals none for the month (whole inches).

3.1.3 Total Monthly Amounts of Precipitation and Snowfall. Two summaries (Figures 3.7 and 3.8) are provided for the total monthly amounts of precipitation and snowfall for each year-month and for all-months (annual summary). The summaries contain monthly and annual totals, means, standard deviations, and total number of valid observations for each month and annual (all months) values. Values for means and standard deviations do not include measurements from incomplete months. A prefix asterisk (*) is printed in each data block if one or more days are missing for the month. No occurrence for a month is indicated in the same manner as in paragraph 3.1.2. If a trace becomes the extreme or monthly total in any of the tables, it is printed as "TRACE."

DAILY AMOUNTS

PERCENTAGE PREQUENCY OF SNOW DEPTH (FROM DAILY OBSERVATIONS)

STANON ST

						4.4	OUNIS III	4_HES!										
***	NONE	MACE	-		• :	15	26 W	1 30	. 2 50	2 - 5 - 50	•: •:	0.01.26.3	CIVITE 2: A	PERCENT OF DAYS WITH	TOTAL NO	MOP	INCHES	
MC 44 4 11	NONE	18.400	2 +	•			1:44		. 5 6 4	,	.,,,	25550	UVER 50-4	MEASUR	OF OBS			•
110.0	MCME	IBACI		-1			7.7	3:•	is 10	17 **	47 0.	6 2.	OVER 20	AMTS	•••	ME AN	GERATISI	it AS
JAN	38.5	23.4	15.0	9.5	4.2	5,5	4.0					,		30.2	899	•		
*68	42.2	16.1	11.6	10.4	6.0	8,4	4.5	.7	•				-	41.7	818		•	
MAR	52.4	16.0	10.7	6.9	• • 7	5,3	3.1	. 8						31.9	A98		•	
464	91.0	7.8	3.4	2.1	1.2	1.8	1.2	. 8	•	•		•	•	10.6	899:			•
MAY	98.4	. 5	. 2	. 3		•	•1						•	1.1	930		• •	
10 N	99.7	. 1	. 1		-	.1	• •	•		•	•			. 2	••••		!	Ļ ;
JUL	100.0		-	•						•		•			930			,
AUG	100.0	•		• •	•								•	· · •	• • • • • • • • • • • • • • • • • • •		··	
SEP	99.7	. 2		. 1	- •			•	•					.1	900			
ОСТ	94.7	2.4	1.3	. 4	. 5	.,6	•	• • •		•		• • • • - •		2.9	930			
NOV	72.0	12.5	5.0	3,4	2.0	3.3	1.0		1	· ·	• • • •		- •	15.6	899		+	
DEC	47.2	20.9	12.8	8.6	6.1	4.1	•1							31.9	899		 	
NNUAL	77.2	8,3	5.1	3,5	2.1	2,5	1.2				-			14.5	10933			

Figure 3.3. Percentage Frequency of Snow Depth from Daily Observations, 1948-1977, Daily Amounts.

3.2 General

- 3.2.1 Less Than Full-Time Stations. Precipitation, snowfall, and snow depth summaries may be prepared for stations operating for less than full time for portions or all of the period of record. This may include stations operating 5 or 6 days a week and those with only random days missing. An asterisk (*) in these data blocks will give an indication that a month is incomplete. Refer to the Station History Sheet (see Figure 4.1, page 23) at the front of the RUSSWO and the observation counts in each summary to evaluate the amounts of data missing.
- 3.2.2 <u>Hail and Snow Occurrences</u>. Hail was included in snowfall occurrences in the "Summary of the Day" observations prior to January 1956; therefore, care must be used when applying the statistics. Current procedures remove all hail occurrences in the pre-1956 data from the snowfall category and list them as hail in the Weather Occurrence Summary.
- 3.2.3 <u>Snow Depth</u>. Snow depth was recorded at various hours during the periods available from US-operated weather reporting stations. The hours used by each service for each period are as follows

Air Force Stations US Navy and National Weather Service
Beginning through 1945 at 0800 LST Beginning through Jun 52 at 0030 GMT

Jan 46 to May 57 at 1230 GMT Jul 52 to May 57 at 1230 GMT

Jun 57 to present at 1200 GMT Jun 57 to present at 1200 GMT

3.3 Exercises for the Precipitation, Snowfall, and Snow Depth Summaries

Tables 3.1-3.8 contain sample questions and their solutions illustrating the uses of the various summaries in Part B of the RUSSWO. Most of the answers can

PRECIPITATI

24004 ELLSHURTH AFR SJ/KAPIU CITY 40-7

TEARS

Figure 3.4. Extreme Values of Precipitation from Daily Observations, 1948-1977, 24-Hour Amounts in Inches.

be determined directly from the summaries. Others require ancillary data. These exercises are intended only to acquaint the user with the types of information that can be obtained from these data summaries. They are not intended to be comprehensive.

Table 3.1. Procedures for Determining Answers To Sample Questions from the Daily Amounts Precentage Frequency of Precipitation Summary (Figure 3.1, page 9).

To Find	Pertinent Row/Column	Answer
Mean percentage of days with a trace of precipitation in July.	Jul/Trace	21.1
Mean percentage of days with measurable precipitation in February.	Feb/% of Days	23.8
Mean percentage of days with precipitation (measurable and/or trace) in September.	Sep/Trace and % Days	35.21
Mean percentage of days with 0.26 to 0.50 inches of precipitation in March.	Mar/0.26-0.50	2.0
Mean percentage of days with 1.01 to 2.50 inches of precipitation in November.	Nov/1.01-2.50	0

24 104 ELLS STA OF SUNAPIL CITY

40-77

24 JOUR BAT ITS 1 - 1909ES

MONTH	IAN	FE8	MAY	APP	MAT	1.74	1.1	A ∪G	SEP	OC1	NOV	DEC	ALL CHTMCM
48					TRACE		• ^		- 2	THACE	1.4	1.5	
49	3.	2.5	1.0	TRACE		•	2	, ta	THACE	1.	c	2.1	з.
50	9	1.7	6.7	4.4	7.4				TRACE	3.1	3.9	TRACE	5.
51	. 6	. 6	3.0	1.5	THACE	4 , 3	10	• 3.	TRACE	TRACT	• 7.	2.3	5.
52	THACE	3.5	3.6	. 3	• ^	• 1	• 0	• ^ `	• ^	TRACE	. 4	. 3	3,
53	1,5	6.4	4,9	2,3	9.	• `.	٠,	• 7,	0	• 1.	1.5	.7_	6
54	7	.7	10.9	TRACE	1.0	TLACE	• ၁	• ^`	• 0	4.7	4.5	.5	10.
55	2.4	9,7	3.0	6.1	<u>. ۹</u>	± 2.	• 0,	• 0.	3.	• 5.	2 . 5.	2.2	9,
56	2.7	1.1	7.1	5.6	. 5	• ^	• 7	• ^ `	• 0	. 3	4.0	1.C	7
57	1,6	1,8	1.9	3,3	۰°.	•).	• º.	• "	, 3,	TRACE	£4.	•1	3
5.9	2.8	1.4	1.0	5.4	• 0	• 2	.0	• ^	• 0	• i	3.0	2.3	5
59	<u>2.•</u> ℃	2.2	.6	8.0		± `.	, 0,		TRACE	• • •	. 7.1.	1.2	B
60	1.4	2.9	1.0	5.4	• 0	• `	• 0	• 0	TRACE	• 1	1.6	5.8	5
ol .	1.1	1,2	3,6	2,2	TRACE	€ 2.	Q.	•≎.	6.	2.3.	. 2.1,	2.1	
62	3.9	3.1	1.8	. 5	• 1	• 6	• ၁	• ^ .	TRACE	• 3	. 2	1.4	3
63 .	2.2	4.8	9.7	2.8		. • ?.	•0.		<u></u> 0.	TRACE.	# 5.		
64	2.4	3.7	5,2	1.7	• 0	• '	• 0	• 1	•0	• ^:	1.6	2.7	5
5 .	2.4	, 9	1.6	5 . 4.	4,5		• 0	0,			13,	eli	5
66	. 6	7.2	14.2		. 5	• "	• 0	• ^	. ni		5.3	1.9	14
67	2.5	1,7	2.9	7.3	7.2.	• 2.	Q,	0.			. 2.5.	149.	7
69	3.4	2.2	. 5	3.6	TKACE	•)	.0	• .	• 0.	•):	1.0	3.0	3
69 .		2.9	1.8	1 aR	TRACE	. <u>• A</u> .	. <u></u> Q,	±2,	₽.	2.5	1.0	<u>. 4a0</u> s.	
7 0 ,	T * 7	4.3	5,3	18.0	TRACE	• `	• 0	• 0	THACE	2.3	3.0	2.8	16
71_ [6.9	2.8	5.7.	5.4.			 2.			5.	3.2,	2.0	
72	2.0	2.6	3	1.3	• 5	• 3	• 0	• 0;	TRACE	1.3	1.2	5.8	2
73	8,0	8	_ <u>1</u> 4_ <u>0</u> _	2,5	. .	9		<u> </u>		1.3	4.7	3.9	14:
74	1.2	2.9	. 5	4.2	• 0	• * .	•0	• 0.	TRACE	TRACE'	•6'	- 3	4
75 .	4 <u>1</u>	2.1	3 . 2.	1.9	• 0		<u>Q</u> _	z 🚉	• 0	2.3	6.0		<u>.</u>
76	3, A	2.7	2.0		• ()	•)	• 0	• _ '	• C	, Ai		3.0 €	3
<u> </u>	<u> </u>		10 C	<u> </u>	- • C	_ _	- • • • •	• 0		TRACE	12.0	· · · · · · ·	
MEAN		2.83	4.34	3.637	1.779	1. 182	•00	.00	- 08	98	2.62	1.351	3,2
\$ D	1.442	2.099	3.941	3.037	930	1.782	•000	930	.248	1,429	2.617	899	
TAL OBS				EL UI	LESS		930		900	42.4	*74	877]	109

Figure 3.5. Extreme Values of Snowfall from Daily Observations, 1948-1977, 24-Hour Amounts in Inches.

Table	3 1	_	Continued
Tante	3.1	_	Continued

To Find	Pertinent Row/Column	Answer
Mean annual percentage of days with a trace of precipitation.	Annual/Trace	23.0
Greatest amount of precipitation in May.	May/Greatest	9.81
Least amount of precipitation in August.	Aug/Least	0.09
Mean precipitation in December.	Dec/Mean	0.42
Mean annual precipitation.	Annual/Mean	16.72
The month with the greatest mean precipitation.	Jun/Mean	3.23
Mean annual number of days with measurable precipitation.	Annual/% of Days	882
Mean annual number of days with a trace of precipitation.	Annual/Trace	843
The month with the least precipitation on record.	Fèb & Dec/ Least	Feb & D

FROM CARL CASSEVATIONS

SHOW MEPTH

24004 ELLSHOOT AFA SUNAPI. CITY

40-7

DATLY SOLA LEPT. IN INCHES

MONTH	JAN	FEB	MAP	APR	MAY	JUN	HUL	AUG	SEP	oct	40 V	DEC	MONTHS
YEAR						·							
4.8			٠.,'	• ′		-	c.	2	7. 465		3	. 3	
٠.	11	12	10	2	TAACE	~·	0.	2.	THACE	2		. 3	. !
•	*	T 405	13	7	4		7		-	7. 465		1	
51		Thice	<u>.</u>	*		^.	0_	<u> </u>	Ç	TRACE		•	4
52	THACE			THACE	7.465		9	^	9		THACE		
53 -	4	15	11	٠,	TRACE		Ŏ,	ΰ.	. 0				
54	- 4		1.5	1	1		0)		•			
55	3	4.5	•	ξ.			. 2		- <u>`</u>				•
56	2	- 2		3	TRACE	٦,		2	0	TRACE			
57	5	4	. و	?	7.	·	0.	2.	0.	TRACE	TRACE	TRACE	•
5/` 59	3		- 4			`	0	2	0	****		: :	
		*			₹.	٦.	ο,	-].		TRACE	19	· - 1	
3 !	7	4		4	,	•	0						1
61 .	ζ.	. 3.	- 5.	3	?.	٠,	0.	.ი.	TRACE.			<u>. </u>	••
67	•	?	•	TRACE	n	,	0	ŗ	9		TRACI		5
63	🚉		9.	. 3	_ <u>_ 2</u> .	2	<u>.</u>	⊋.	_ 9		TRACE		· · ·
04	2.			2	ņ	7	0:		· ·	•	- 1	2 9	3
٠ ۽		<u>I</u> ,	·	. 4	. 6		0,	1	<u></u> Z,		9	- 0	<u></u>
66	3	7		10		•	0	r	0	1	•		
6.7	4	<u></u>	3	🗅	<u>fc</u> _			<u> </u>	0		<u>3</u>	4	1
9		3	.,	3	ņ	•	0	0	0	1		4	5
70		. <u> </u>			ე.		0		0	3			<u></u>
	7	4	7	23	9	-,	0	C.	0	3.		5	
71	- 9	13					<u> 0</u>	c		6		ļ	֥
72 :	2	4	2	TLACE	n	J.	3	ni	0	2	3	5	ř
73	1		15	Z			9	Ci	2	TRACE			·
74	1	Z	1	2	Ċ	~	0	0)	ņ	2		1	4
75		💃	· · · · · · · · · · · · · · · · · · ·		<u>0;</u> .	- 4	0_	0;	🤄		<u>_</u>		
76		- 5	Z.	1	•	^	0:	_ · · · · ·	0	TRACE	* .	. 6	ii.
77	en vagenger	4,1	15	15		- 	0	<u> </u>	<u> </u>			*	
MEAN	3.5	4.7	5.5	4.1	7		.0	• ^1	1	1.2	2.		1 5
5 D	2.771	7,551	4.105	5.752		1.104	000	.000	.365	1.850	3.070	2.000	4.5
TOTAL OBS	- न्वृद	-14 -016	* (5A)	559	LESS T	9 05	930	931 TH5)	900	931	99	199	113

Figure 3.6. Extreme Values of Snow Depth from Daily Observations, 1948-1977, Daily Snow Depth in Inches.

Table 3.2. Procedures for Determining Answers To Sample Questions from the Daily Amounts Snowfall Summary (Figure 3.2, page 10).

To Find	Pertinent Row/Column	Answer	
Mean number of days with measurable snowfall in December.	Dec/% of Days	5.6 ¹	
Mean percentage of days with snowfall (measured and trace) in March.	Mar/Trace and % of Days	48.52	
Mean percentage of days with snowfall (measured and trace) in February.	Feb/Trace and % of Days	52.4	

The foregoing percentage was obtained by adding the percentage of days with a trace (16.6) and measured amounts (18.6). Compare this percentage with that of the All-Months summary of Part A, Atmospheric Phenomena from Daily Observation, Figure 2.3 (SEP/PRECIP block). The two values, 35.2 and 33.7, disagree because of the rounding that is used in the precipitation summary. The value in the Atmospheric Phenomena summary is slightly more accurate when all things correspond such as the number of observations and the period of record.

² Percent of days = 24.1, number of days per year = 365. Number of days per year with measurable precip = $0.241 \times 365 = 88.0$.

 $^{0.23 \}times 365 = 84.$

II

24005 ELLSHURTH AFB SOZEAPIN CITY

TOTAL MONTHLY PRECIPITATION IN INCHES

MONTH	JAN	PES.	MAR	APR	MAT	JUN	JUL	AUG	SEP	OC1	NOV	DEC	ALL MONTHS
48			*	.02	1,15	2,91	2.05	2.61	.51	1.20	.13	.14	
49	,48	25	, 32.	2.42	1.61.	2.08	04.	1.04	C7.	1.15.	.13*	. 11.	. 9.76
50	.63	.30	2.37	2 . 48	1,98	. 84	1.22	2.32	2.29	.60		TRACE .	15.44
51	.06	THÁCE	.70	119	1.70	3,32.	492.	4.10:	2.72	1.30	.10.	.80	15.99
52	.51	.78	.73	,21	6,01	2.51	1.63	1.60	.01	.01	.32	,03	13.8
53	, 56	2.19	, 59	3.33	2.12	5.14	485.	2.74:	65.	07	.12	9	18.9
54	.17	.20	2.21	.18	2,48	3.11	.60	1.76	•0B	1.01	.56	25	12.69
.25	. 23	1.82	. 82	1.15	2.29	2.35	2.55	1.24	2.26	30.	.50.	85	16.7
56	. 59	28	1.12	1.82	1,74	1,24	1.96	2.77	1.70	.23	.86	,34	14.6
57	, 35	41	40	1146	6.60	2.98	71.	1.30.	.58	1.05.	32	. 04	15.3
58	. 28	.59	.89	5.45	1.02	6.24	3.95	.72	.06	.46	.80	.68	21.1
59 1	.62	71	. 21	1:50	2.54	1.86	1.08	1.02	2.59	.11.	2.16.	. 27	14.7
60	.39	,99	.71	1.31	1,32	3.94	.33	2.45	.74	.01	.54	,89	13.6
.01	14	29	. 85	1:39	1.12	1,14	1.47.	. 10	. 65.	.84	. 61	.60	9.2
62	1.30	1.13	.80	.56	9,81	3.05	3.02	, 49	.31	1.82	.09	,24	22.6
63	1.12	1,31	1.12	3,69	2,37	3,64	1.27	. 95	1.43	.62	30	.19	18.3
64	. 39	1.03	1.09	1.20	3.10	4.47	.63	1.56	.82	.49	.38	1,10	16.2
65 1	77	.28	.49	1:51	7.56	3.23	2.55	2.45	1.83	.57	.27	27	21.7
66	.27	.98	2,34#	3.04	,23	1.91	5.73	1.77	2.84	1.77	.44	45	+22.2
67	, 36	.25	.40	5,59	4.84	7,74	2 . 25	.76	1.96	-20.	,23	39	24.9
05	.25	.49	11	1.79	1.25	6.89	2.08	2,26	.99	.08	.46	,70	17.2
69	.16	. 85	_, 52	1447	2.27	3,22	4.87	.09	. 67.	.67	.28	38	15.4
70	.92	.50	1.32	4.50	2,53	2.64	.91	.37	1.52	85	1.23	,55	17.8
71 1	1.05	.78	. 86	3.23	4.11	1.87.	. 92	1.00	2.36	1.92	.02	06	.18.8
72	.31	.41	.44	2.87	3.61	6.21	4.52	1.52	.22	.84	. 25	,41	21.6
73	.07*	. 15	2.78	2 . 79	2,54	.92	1,98	1.21	1.74	1.32	.62	_ 441	*16.5
74	.10	.32	.43	1.47	2.56	1.09	1.49	2.29	.81	1.27	.08	,14	12.0
75	.78	. 25	1.13	1.82	1.19	4,21.	2.10	.79	.C3	.45	30	79	13.9
76	.32	.68	.17	2.55	3.15	4.92	1.02	. 68	,38	.38*	.74	,43	+15.4
77 i	.63	.18	2.18	1.71	3.16	1.16	2.41	1.40	3.03	1.41	94		
MEAN	.470	.654		130	2.932	3,232	1.906	1,516	1.195	769	.518	.410	16.84
3. D	.333	.506	.727	.419			1.371	.923	.964	.559	.425	.291	3.712
TOTAL OBS	£99	919	P99	899	931	900	930	930	900	930	899	896	10829

Figure 3.7. Total Monthly Precipitation in Inches from Daily Observations, 1948-1977.

Table 3.2 - Continued

To Find	Pertinent Row/Column	Answer	
Mean annual number of days with snowfall (measured and trace).	Annual/Trace and % of Days	823	
Mean annual number of days with snowfall 0.5 to 4.4 inches.	Annual/0.5-4.4	19 4	
Greatest amount of snowfall in March.	Mar/Greatest	28.7 in	
Least amount of snowfall in November.	Nov/Least	0.0 in	
Mean annual snowfall.	Annual/Mean	40.7 in	
The month with the greatest snowfall on record.	Apr/Greatest	Apr	
Mean amount of snowfall in May.	May/Mean	0.7 in	

 $^{0.181 \}times 31 = 5.6$. Consider rounding to 6.

 $^{^2\,}$ The answer of 48.5 percent can also be found from the Mar/None block by subtracting the value in the block (51.5) from 100.0.

 $^{^{3}}$ (1 - 0.775) x 365 = 82.1

24006 ELLSHORTH AFE SD/RAPID CITY

45-77

FOTAL CATHLY STOFFALL IN INCHES

MONTH	JAN	FEB	MAR	APR	MAT	JUN .	IUL	AUG	40	ok :	NÚV	DE C	ALI MONTHS
48	·				THACE		.0	• • •		TRACE	1.5	1.5	
49	12.1	2.5	2,4	TRACE			ÃÕ.		TRACE.	1.	٠.	7.3	25,
50	2.4	1.9	28.7	12.3			. 5		TRACE	6. ^	5.9	TRACE	53.
51	. 6	7	6.6	1.4		6.1	.0		TRACE	TRACE	1.7	7.7	24.
52	TRACE	7.5	5.8	. 3		•	.0	r	.,,,,,	TRACE		3	14.
53	5.5	19.5	5,9	9,7		12	.0	, n	0,		3.3	1.3	45,
54	1.6	1.5	22.1	TRACE		TAAČE	. ö	. ^	• •	6.5	5.6	1.5	400
	5,3	18.0	A 2	6.6		2	. 0.	• 2.	. 3.		4.5	9,5	52.
55; 56	4.5	2.8	11.2	13.8			. 0		ີ ວັ		8.6	3.2	45.
57	3.8	4.1	4,0	11.9			0.	• 5	. 3	THACE	1.2	.1	25.
58	3.0	4.7	4.6	16.1		• • •	. 5			.1	4.4	6.6	39.
59	4,7	5.9	2,1	13.3			ō	٠,٠	TRACE	. 5	16.0	3.4	46
60	3.9	9.9	4.4	6.6			.0		TRACE	. 1	4.6	17.6	411
61	1,4	2.1	7,0	4.0			, Ö		, 5	2.7	3,7	6.1	27
61 62	12.3	7.6	6.1	. 6			.0	• ^	TRACE	• • • • • • • • • • • • • • • • • • • •		2.3	29
63	11,2	10.9	10,5	4,7			, ŏ,			TRACE	. 4.	2.1	39
š	4.3	10.0	10.4	3,5	· .		ŏ	•			3.6	11.0	42.
65	5.5	2.7	4.9	7.8	7,1	• 1	Ď		1.6		. é.	.1	3.
66	2.7	10.0	24.14			15	Ö		, c		9.2	3 4	
67	6,5	7.0	7.4	7.3			Ö	,	TRACE		4,0	10.7	47
68	8.5	7.2	1.3	9.0		• 3		, n		•	1.1	9.9	37
69	1,9	10.2	5.6	2.0		. 4	jč	•	• 1	2.5	2,7	A . 4	33
70	5.9	6.0	15.6			• 7	.0		TRACE	5.	4.3	9.1	89.
71	18.7	9.1	13.5	7.0	.0				TRACE.	8.2	8,8	3.1	68.
72	5.6	10.4	13.4	1.6		* 3 -		- :	TRACE	2.4	3.2	7.5	31.
73	1.6*	2.3	10 2	3.5			0.	• ,			11.2	5,3	* 40.
74 1	2.4	4.6	19,2	~ 6.i	· · · · · · ·		0.	• •	TRAĈE	TRACE	. 6	2.2	17
75	13.3	7.2	16.4	2.7	• 0	• `	ŏ	• ^-	1 KHUE	5.1		4.	56
76	4.3	5.1	4,2	1.4	0	<u>•</u> 2.	<u>• V</u>	• -	• •	3.38	7.6	6.6	* 25
77		7 . 4	19.6	•••	• 0	• `		• .	• ,	-	12.6	0 • "	- 200
	5.38	 14	-5.14	7.51	75	23	- 50	٠.٠٠		1.52		Commercial de la compansión de la compan	47
MEAN S D		4.677	7.475	8.413		1.114	.000	000	0°	2 41 4	4.57	3.501	16.7
· · · ·	899	818	999	898	1.037	901	930	93.	900	920	199	3.30	1763
TAL OSS		VOTE	* (BAS				FF 100		70'1	767	77		<u> </u>

Figure 3.8. Total Monthly Snowfall in Inches from Daily Observations, 1948-1977.

Table 3.3. Procedures for Determining Answers To Sample Questions from the Daily Amounts Snow Depth Summary (Figure 3.3, page 11).

	Pertinent	
To Find	Row/Column	Answer
Mean percentage of days with measurable snow depth in January.	Jan/% of Days	38.2
Mean number of days with measurable snow depth in February.	Feb/% of Days	11.7
Mean percentage of days with snow depth (trace and measured) in March.	Mar/Trace and % of Days	47.5 ¹
Mean number of days with snow depth (trace and measured) in December.	Dec/Trace and No. of Days	16.4
Mean annual number of days with snow depth (trace and measured).	Annual/Trace and % of Days	83.2
Mean annual number of days with a trace of snow depth.	Annual/Trace	30.3

Add the percentages for the snowfall increments 0.5-1.4 (3.1), 1.5-2.4 (1.2), 2.5-3.4 (0.6), and 3.5-4.4 (0.2); divide this percentage by 100, then multiply by the number of days in the year (365): $(5.1/100 \times 365 = 18.6.)$

Table 3.3 - Continued

Table 3.5 - Continued		
To Find	Pertinent Row/Column	Answer
Mean annual number of days with snow depth 1 to 3 inches.	Annual/1-3	392
Mean annual number of days with snow depth 4 to 6 inches.	Annual/4-6	9
Mean number of days in January with snow depth 3 to 6 inches.	Jan/3-6	3
Mean number of days with a trace of snow depth for January, February, and March.	Jan,Feb,Mar/ Trace	7+4+5=16 ³ (7.3+4.5 +5.0=17.0)
Mean number of days with snow depth (trace and measured) for January, February, and March.	Jan,Feb,Mar/ Trace and % of Days	19.1+16.2 +14.8=50
Mean percentage of days with snow depth 7 to 12 inches in October.	Oct/% of Days	None ⁴

 $^{^{1}\,}$ A trace of snow depth indicates that the snow on the ground is visible but not measurable.

Table 3.4. Procedures for Determining Answers To Sample Questions from the Extreme Values Precipitation Summary (Figure 3.4, page 12).

To Find	Pertintent Row/Column	Answer
Month with the greatest 24-hour precipitation in 1949.	49/Jun	Jun
Month with the smallest 24-hour precipitation in 1976.	76/Mar	Mar
Extreme 24-hour precipitation in 1969.	69/Jul or All-Months	3.23 in
Extreme 24-hours precipitation in October 1973.	73/Oct	0.98 in
Extreme 24-hour precipitation in December (all years).	60/Dec	0.48 in
Extreme 24-hour precipitation in May (all years).	65/May	3.09 in
Mean of extreme 24-hour precipitation in April.	Mean /Apr	0.793 in
Standard deviation of the extreme 24-hour precipitation in April.	S.D./Apr	0.458

To obtain the answer, add the individual percentages for 1 (5.1), 2 (3.5), and 3 (2.1) inches, divide this percentage by 100, multiply it by the number of days in the year (365.25), and round.

 $^{^3}$ Note the different answers obtained with and without rounding (16 vs 17 days per year).

 $^{^{4}\,}$ The lack of an entry indicates that no occurrences of snow depth 7 to 12 inches were observed from 1948 to 1977.

Table 3.4 - Continued

To Find	Pertinent Row/Column	Answei
10 11114	- Row/ Corumn	- Allawei
Mean annual extreme 24-hour precipitation.	Mean/All- Months	1.695
Greatest monthly extreme 24-hour precipitation.	76/Jun or All Months	3.25
Highest monthly standard deviation of the extreme 24-hour precipitation.	S.D./Jun	0.733

The standard deviation is a measure of the deviation of individual numbers of a given distribution from the mean of the distribution. For a normal or Gaussian distribution, it happens that 68 percent of the numbers are included between the mean minus one standard deviation and mean plus one standard deviation. Extreme values cannot usually be described by a normal distribution, and as a result the forementioned percentage does not apply, but the standard deviation is still a useful tool in working with extreme values. For additional background material, refer to Gringorten (1960).

Table 3.5. Procedures for Determining Answers To Sample Questions from the Extreme Values Snowfall Summary (Figure 3.5, page 13).

To Find	Pertinent Row/Column	Answer
Extreme 24-hour snowfall in January in 1949.	49/Jan	3.0 in
Extreme 24-hour snowfall in November 1976.	76/Nov	3.0 in1
Extreme 24-hour snowfall in May 1966.	66/May	0.5 in
Extreme 24-hour snowfall in January (all years).	71/Jan	6.9 in
Extreme 24-hour snowfall in November (all years).	77/Nov	12.0 in
Month with the greatest 24-hour snowfall in 1957.	57/Apr	Apr
Month with the greatest 24-hour snowfall on record.	70/Apr	Apr
Standard deviation ² of the extreme 24-hour snowfall in February.	S.D./Feb	2.099 in
Standard deviation of the extreme 24-hour snowfall in November.	S.D./Nov	2.617 in
Mean annual extreme 24-hour snowfall.	Mean/All- Months	6.22 in
Highest monthly mean of the extreme 24-hour snowfall.	Mean/Mar	4.34 in
Highest monthly standard deviation of the extreme 24-hour snowfall.	S.D./Mar	3.941 in
Mean extreme 24-hour snowfall for the period January, February, and March to two significant digits.	See Foot- note 3	3.07 in

The mean can be approximated by adding the mean monthly amounts for January, February, and March (9.22) and dividing by 3 or determined properly by totaling the reported values for all three months (265.5) and dividing by 82 (total number of months for which observations are reported). NOTE: The mean of several mean values will equal the mean of all individual elements only if all of the samples are of the same size. An example of the mean of means not equalling the population mean is

Sample 1	Sample 2	Population
2,4,6,8,10	12,14	2,4,6,8,10,12,14
Mean 1 = 6	Mean 2 = 13	Mean = 8

Mean of sample means = (6 + 13)/2 = 9.5

In our particular case the true mean is 3.05 as contrasted with 3.07 as the mean of the means approximation. If February had 31 days so that all three columns had the same total number of observations (899), the mean of the means would equal the mean of the tabulated values.

Table 3.6. Procedures for Determining Answers To Sample Questions from the Extreme Values Snow Depth Summary (Figure 3.6, page 14).

To Find	Pertinent Row/Column	Answer
Month with the greatest extreme daily snow depth in 1951.	51/Mar	Mar
Value of the greatest extreme daily snow depth in 1959.	59/Apr	11 in
Extreme daily snow depth in February 1973.	73/Feb	2 in ¹
Extreme daily snow depth in April 1968.	68/Apr	3 in
Extreme daily snow depth in February (all years).	53/Feb	15 in
Greatest extreme daily snow depth recorded from 1949 to 1976.	70/Apr or All-Months	23 in
Mean extreme daily snow depth in February.	Mean/Feb	4.7 in
Standard deviation ² of the extreme daily snow depth in March.	S.D./Mar	4.105 in
Mean annual extreme daily snow depth.	Mean/All- Months	8.5 in
Highest monthly mean of the extreme daily snow depth.	Mean/Mar	5.5 in

The asterisk (*) in the February 1973 entry indicates that at least one of the 28 potential snow depth observations for the month is missing. We do not know how many daily observations were consulted to obtain the 2-inch maximum; it could have been 27 or it could have been just one. In older RUSSWOS, those produced before 24 March 1974, a blank was shown instead of results based on an incomplete month of data. In such cases some estimate of extreme snow depth may be obtained by checking the daily amounts summary for extreme snowfall (see Figure 3.5) to see if any snowfall occurred, and checking the extreme temperature values (Figure 6.6) to see if the snow might have lasted on the ground. Appropriate subjective

Based on less than a full month of data.

See Footnote 1, Table 3.4.

and objective adjustments should be used to allow for snow compaction and settling, melting, and sublimation, etc.

Table 3.7. Procedures for Determing Answers To Sample Questions from the Monthly Precipitation Summary (Figure 3.7, page 15).

To Find	Pertinent Row/Column	Answer
Month with the greatest total monthly precipitation in 1949.	49/Apr	Apr
Total monthly precipitation in July 1960.	60/Jul	0.33 in
Total annual precipitation in 1976.	76/All-Months	15.42 in ¹
Year with the greatest monthly precipitation in December.	64/Dec	64
Year with the greatest monthly precipitaion in June.	67/Jun	67
Mean of total monthly precipitation in April.	Mean/Apr	2.130 in
Standard deviation ² of the total monthly precipitation in April.	S.D./Apr	1.419 in
Mean annual total monthly precipitation.	Mean/All- Months	16.840 in
Greatest total monthly precipitation (all years).	62/May	9.81 in
Highest monthly mean of precipitation.	Mean/Jun	3.232 in
Highest monthly standard deviation of precipitation	S.D./May	2.128 in
Greatest annual precipitation amount.	67/All-Months	24.97

 $^{^1}$ This total is based on incomplete data. Specifically, at least one precipitation report is missing from November 1976. We have no way of knowing what this missing value (or values) was.

Table 3.8. Procedures for Determining Answers To Sample Questions from the Monthly Snowfall Summary (Figure 3.8, page 16).

To Find	Pertinent Row/Column	Answer	
Month with the greatest total monthly snowfall in 1949.	49/Jan	Jan	
Total monthly snowfall in July 1970.	70/Jul	None ¹	
Total annual snowfall in 1976.	76/All-Months	26.5 ² in	
Year with the greatest monthly snowfall in December.	64/Dec	1964	

² See Footnote 1, Table 3.4., page 17.

² See Footnote 1, Table 3.4.

Table 3.8 - Continued

Table 3.8 - Continued		
To Find	Pertinent Row/Column	Answer
Year with the greatest monthly snowfall.	70/Apr	1970
Mean monthly snowfall in April.	Mean/Apr	7.01 in
Standard deviation ³ of the total monthly snowfall in April.	S.D./Apr	8.413 in
Mean annual snowfall.	Mean/All- Months	40.50 in
Greatest monthly total snowfall.	70/Apr	42.8 in
Highest monthly mean snowfall.	Mean/Mar	9.44 in
Largest annual snowfall.	70/All-Months	89.5 in
Highest monthly standard deviation of snowfall.	S.D./Apr	8.413 in

 $^{^{1}\,}$ When a month has valid observations but no occurrences, a 0.0 is entered in the table.

 $^{^2\,}$ An asterisk (*) is indicated with this value because the month of November had at least one day missing. Whether snow occurred on the missing day is not known.

See Footnote 1, Table 3.4., page 17.

Chapter 4

SURFACE WINDS (PART C)

4.1 General

Part C of the RUSSWO contains four groupings of summaries. The first 15 a listing of peak wind gusts for each year-month along with monthly and annual means and standard deviations. The second, based on hourly observations, contains bivariate percentage frequency distributions by month and year of the wind direction and speed. The third gives similar data by month for eight 3-hourly periods. The fourth has a bivariate percentage frequency distribution (annual summary only) of wind direction by speed groups based on wind observations taken during "INSTRUMENT CONDITIONS" (see paragraph 4.3 below).

Wind speeds are given in knots and the speed groupings are according to the Beaufort Scale (e.g., Beaufort Force 1 = 1-3 kt; Beaufort Force 4 - 11-16 kt; etc.). Wind directions are given according to the 16 points of the compass (N. NNE, NE, etc., or in tens of degrees (32 = 320° = 315-325, etc.). Directions are with respect to true north.

The Surface Wind Equipment Information portion of the Station Location and Instrumentation History sheet (Figure 4.1) should be studied before using the various wind summaries. Usually, given an adequately long period of record, the locations of the wind sensors and the types of equipment used have changed during the period. Keep this information in mind when applying these data to specific requirements since the summaries are a composite of information covering the period of record from a possible variety of equipment and anemometer heights and locations. The various wind data and statistics are not normalized to some standard height.

4.2 Extreme Values-Surface Winds

Extreme wind data are provided for each month of each year of the period of record given that sufficient data are available (Figure 4.2). These wind values are derived from daily observations. According to Federal Meteorological Handbook No. 1 (FMH-1), "peak gust data are recorded only at stations with continuous instantaneous wind speed recorders." Thus, some stations may not have this summary or may have an incomplete one.

Before July 1968, the direction of the daily peak gust in knots is given according to the 16 points of the compass. Subsequent to that date, directions are given in tens of degrees. An asterisk (*) is printed in the data block if less than 90 percent (three or more missing observations) of the peak gust data is available for the month. A dollar sign (\$) indicates that the peak gust was in excess of 100 knots and thus that 100 must be added to the two-digit value given in the table.

An all-months value is presented when every month of the year has at least some valid observations. Means and standard deviations are computed when four or more values are present in the given column. However, calculations of the mean and standard deviation do not include data for incomplete months. For each month and for the all-months column, a total count of all valid observations is given.

4.3 Bivariate Percentage Frequency Tabulations

The annual, monthly, and hourly tabular wind roses (bivariate percentage frequency tabulations) (Figures 4.3-4.6) are derived from hourly observations. The percentage frequencies are tabulated according to wind direction (16 points of the compass) and wind speed (Beaufort Scale speed intervals). Also given are values for variable winds and for calm winds, along with the mean wind speed for each direction. When a percentage frequency of "0.0" is given, it means that the appropriate wind did occur during the period of record, but that it was such a rare event that, after rounding, the percentage frequency was less than 0.05. Thus, it is possible to sum the zeros in a given speed interval column and get a total of 0.1 or 0.2 or so up to a maximum of 0.6.

2400		ELISWORTH AFB/RAPID CITY			- 1	MG 104 2 103 06	3276 FT	, 1	##0 #U#F*#	
_400	,	STATION LOCATIO	ON A	_ 		MENT	ATION	HISTORY		
N. WBE F		GEOGRAPHICAL LOCA" ON E NAME	TEPE OF STATION	et twis Loc		. a" "WDt	.ong/1/SE	E EVATION ABOVE MSL FIELD FEE HT BARD	085 PER D41	
1	Rapid	Tity AFB SP	AFB	A 51 - 4 5	чч	N 4 08	w 103-05	3196 3589		
2	Same		Same	-an -	Star 24	\$ 54.09	5 103 Ob	3246 3215	24	
,	Ellswor	rth AFB SD	Same	Apr >+	Mas 55) the	Same	Same Same	24	
. [Same		Same	55n 55	Feb 58	Same	Simi	Same Same	24	
5	Same		Same	та З	Dt. 70	Same	Same	3276 Same	24	
,	5 time		Same	+a: 71	Dec. 79	Same	Same	Same Same	24	
o angea	DA'E	SURFACE MINO E	EQUIPMENT INFORMATION TYPE OF TYPE OF HI ANDVE				AL MARK 400	ITIONAL EQUIPMENT ON FEA	SON AN CHARGE	
OCATION	CHANGE	_OCATION			TECOMOEN	MT ABOVE CROUNC				
1 2 3 4	Apr 48 Jun 50 Jun 55 Apr 76	Same		Selson Selson OMQ-11 Same	er N/A M1 = 14 = R0 = 2 R0 = 2A	N/A 100 tt 197 ft 13 ft				
,	May ha		GMQ - 20	Sime	28 to					
0	May 69	1. Same		Same:	Res- 362	Sime Same	1			
7	Jas. 71	1. Located 887 If from ser and 1886 it from end of row 2. Located 730 if from cut and 892 if from end of rows	sterline		Same	Same Same				
4	Nov 77	1. Same		Sime	San	Same				

Figure 4.1. Station Location and Instrumentation History, April 1948 to December 1978.

The tabular wind roses are grouped first by month- (all hours) and annual-(all hours) then by month according to 3-hour time blocks, and finally an annual all-hour summary is given for so-called "instrument" conditions. Instrument weather, for RUSSWO purposes, is defined as ceiling 200-1400 feet with visibility 0.5 statute mile (sm) or greater and/or visibility 0.5-2.5 sm with ceiling of 200 feet or more. Thus, specifically excluded on the low end are conditions below 200 feet ceiling and/or 0.5 sm visibility.

4.4 Exercises for the Extreme Values Wind, All-Weather Surface Winds Summary

Tables 4.1 through 4.5 contain sample questions and their solutions illustrating the uses of the various summaries in Part C of the RUSSWO. Most of the answers can be determined directly from the summaries. These excercises are intended only to acquaint the user with the types of information that can be obtained from these data summaries. They are not intended to be comprehensive.

Table 4.1. Procedures for Determining Answers To Sample Questions from the Extreme Values Surface Wind Summary (Figure 4.2, page 25).

To Find	Pertinent Row/Column	Answer		
Month and year with the greatest recorded extreme daily peak gust.	64/Sep	Sep 1964 ¹		
Direction and magnitude of the greatest extreme daily peak gust.	64/Sep	NW 76		
Extreme daily peak gust for 1953.	53/All-Months	WNW 70		

Table 4.1 - Continued

To Find	Pertinent Row/Column	Answer		
Month with extreme daily peak gust for 1959.	59/Jul	Jul (NE 70)		
Extreme daily peak gust for May 1972.	72/ May	30/56		
Extreme daily peak gust for July (all years).	59/Jul	NE /70		
Standard deviation of the extreme daily peak gust in August.	S.D./Aug	8.3182		
Mean extreme daily peak gust in July.	Mean/Jul	48.9		
Mean annual extreme daily peak gust.	Mean/All- Months	62.6 ³		

From the "Station Location and Instrument History Sheet" (Figure 4.1), it is seen that several changes were made in the location of the wind equipment. For example during May 1964, the locations of the wind equipment for runways 30 and 12 were changed to the respective heights of 20 and 28 feet from 13 feet. As a direct result of the changes in both the horizontal and vertical position of the wind measuring devices, the figures in this summary are not necessarily representative. They are, however, all that are available unless a correction factor can be deduced which reduces the wind data to the standard anemometer height of 13 feet as used by the USAF since 1978. For stations not under USAF purview, different standards are followed. Since 1974 the National Weather Service has followed World Meteorological Organization Technical Regulation Procedures (1971) and uses 10 meters as the standard height unless local restrictions preclude installation of the 10 meter tower, in which case the installation will be at 20 feet. The Federal Aviation Administration (1979) also follows World Meteorological Organization procedures.

Table 4.2. Procedures for Determining Answers to Sample Questions for the All-Months, All-Hours, All-Weather Surface Winds Summary (Figure 4.3, page 26).

To Find	Pertinent Row/Column	Answer	
Mean annual percentage of time that winds are calm.	Calm/%	13.8	
Annual prevailing wind direction.	NNW/%	NNW¹	
Mean speed of the annual prevailing wind direction.	NNW/Mean Wind Speed	14.2 kt	
Mean annual percentage of time that wind speeds greater than 47 knots occur from the NNW.	NNW/48-55, 56	0.02	
Mean annual wind speed.	Bottom Row/ Wind Speed	8.2 k t	
Mean annual wind speed, excluding calms.	All Direc- tions/% Mean Wind Speed	9.5 ³	

See Footnote 1, Table 3.4., page 17.

The answer is based on only those 25 values listed in the ALL-MONTHS column and is not completely reliable in that 4 values are missing for years with less than the full 12 months record.

MONTH	.AN	> E	• ~	AV 4	Pr .	4 • :			٠	er -	~	٠.	ot-	M-Miles
40		•			آ≑و•	, 5	44				• 5 4		ر ر	
	14	62	> 7.	*7 %, € 6	5°, '	> F			#4r],"		55hN			
51		_									*5111	_	*55	
				•59.				+ - 2 - 5 "			4 = 1+4	545	5 %	* 1
53				67				4755			441.40	-	24	
			6.7444		5 ^ , 1		445			52.			5	
55		61		59				#43. Sn			4FWN.		5 7	
			41,n V.a		45,			4755.		42: "		> 3 to 1	٤١.	55 '
57	N-1	51	47 . K	44 /		451		401.4		35:	3 7'	3 A .	49	•
		341.			38.	200	35.			47 .			* 5	
59	/. 11 W			451. v.		431.	42. F		4211	49.	521.4	50.	. 57	
67.		46 A . A		51,5	5 7	411.	۳۰ کړ ک	36551		361	43.44	49	44.	ډ ۶
61	24	43" 14		30 n n		371.	33 .		331.	37.	*3°¦*		2 3	
62	*. by	47.	4 7 W	445.	54 4 14	3.5×	55, 24	3.1	541.4	46.	491.8	45	٠,٠	
3	:.W	52114	61 NN 11	48.5W	59.	525	62 . 4	615	371.0	34	351.11	441	52	5.
54		4411	46	53,	69	4 31.	525€	531 -	6414	76: 1	6 2 N.N.	5 P 🔻	. 52	
65 `	1.4	691. 14	53.4	45,4	441 4	5155	47 .	54.	30.1	471 6	5 3 iva	*45.	42	
56	A A	58N'IN	34' 4	66mt n	32S '	51m	40 %	531 1 4	4 E jah	3	54: 4	45%	. 21	
57	·	6504	54NNn	• 1is*	721.	62N	4.2	39, 1,	3010	47	541.W	46N	54	
8 .	. μ	4.21	411.W	45I.	4655E	401	2232/	4127/	4234/	43327	5-32/	4434	/ 54 .	34/
. 9	29/	5929/	3729/	5337	5334/	5437	4 5A/	A 133/	4533/	44531	5 31/	5031	/ 54	2 ./
70	32/	5131/	5:35/	5033/	4631/	5035,	45 37/	44321	4274/	6332/	5331/	5734	/ 52	341
71 '	30/	49321	5232/	5033/	5824/	5931/	4231/	4832/	45711	6934/	5234/	5427	1 44	31/
72	33/	4432/	5932*	4817/	4730/	5411	3955/	3733/	3733/	4235/	4-33/	4634	/ 44	321
73 1		4335/		5613/				4224/						357
		4233/						+032/					/ 44	11/
75		4831/	58.12/	5732/	5219/	5431	5755/	6633/	4734/	5 ,3/	4432/	6232		25/
								3432/						341
ילל								62 1/					•	- 4
• •		• • • • • • • • • • • • • • • • • • • •						J		• .,, .,		• •		
MEAN	51	1 4	9.2 5	1.5	5 A .	G 4	7.4	a 5 4	5.7 4	4.7 4		2.6	51.7	54
5 D	9.4	8.	411 8.	607 6	556 7	ε ο Λ	86	472 9	310	11 () T	33.7	7.5	474	- 4
TAL ORS	A	oc.	732	810	795	314	79	472 A. 810	i 3. " \"		64.	836	4	7.7
		******************	725	ICACE		- **	- 44	- 			· -		_ <u>-</u> -	

Figure 4.2 Extreme Values of Surface Winds from Daily Observations, 1949-1977, Daily Peak Gusts in Knots.

- The prevailing wind direction is that direction containing the highest percent frequency of occurrence during the period under study. The prevailing wind direction can be misleading, though, if the percentages of several wind directions, which are larger than any of the other percentages, differ by only a few percent. For instance, if winds occur from the South 10.0 precent of the time, the West 9.5 percent of the time, and North 9.8 percent of the time, the prevailing wind direction is South. The mere statement to a customer that the prevailing wind direction is South, although true, could lead to an erroneous impression unless additional facts were presented.
- The percent 0.0 with speeds of 41-47 knots or more means that wind speeds greater than 41 knots occurred in so few cases that it is 0.0 in the mean after being rounded.
- ³ The mean annual wind of 8.2 knots obtained in the preceding exercise includes observations with variables and calms. To find the mean wind speed for combinations of direction (N-ENE, SE-W, etc.) or for all directions, including variable, use the expression

$$M_{I} = (P_{1}M_{1} + P_{2}M_{2} + ... + P_{k}M_{k}) / (P_{1} + P_{2} + ... + P_{k})$$

where M_I is the mean wind speed for the interval; M₁, M₂, ..., M_k are the mean wind speeds for each direction of the interval: and P₁, P₂, ..., P_k are the percent frequencies of occurrence associated with each direction. For this exercise, M₁ = 10.6, M₂ = 7.0, ..., M₁₇ = 5.0; P₁ = 11.3, P₂ = 2.8 ..., P₁₇ = 0.0; and M₁ = 816.22/86.2 = 9.5 knots. If calms are included (M₁₈ = 0 and P₁₈ = 13.8), M₁ = 816.22/100 = 8.2 knots as determined from the summary

SURFACE WINDS

PERCENTAGE FREQUENCY OF WIND DIRECTION AND SPEED (FROM HOURLY OBSERVATIONS)

	<i>₩</i> ₩₩ <u>*</u> 	6747 14			ALL		.77		4100				4 L L
	-			,									
SPEED (ENTS) DIR.	1 - 3	4.4	7 - 10	11 - 16	17 - 21	22 - 27	20 33	34 - 40	41 - 47	4 55	≥ 54		MEAN WIND SPEED
N	.7	2.1	3.5	3.4	1.0	. 4	•1			1		11.3	10.
NNE	. 4	1.5	• 7	. 4		•	• 12					7.7	7.
NE	.4	.7	.5	•1								1.7	
ENE	.4	.7	. 4	•1	• 0	• •				1		1.6	
	.7	1.1	.8	٠Ž		•				1		2.5	5.
ESE	.5	.9	1.0	. 4	•6	• .	• 5			,		2.7	7.
SÆ	.6	1.3	1.7	1	. 2		• •			Ţ		4.2	_ r.
SSE	. 9	1.9	2.6	2.2	• 5	•1	• 3	٠.				P . 2	9.
	1.2	2.3	2.1	1.6	, 5	• 1	•	.0				7.5	
ssw	. 0	. 8	• 3	• 1	.0	•				<u> </u>		2.0	
\$W	• 6	. 6	2	• 1	.)							2.0	
wsw	1.2	1.2	• 3	• 2	• 0	•	• 0	.0				7.0	5.
	2.5	2.5	• 6	• 3	.1	• •	• ٧					5.2	5.
WHW	1.4	1.6	.7	• 5	• Z	<u>• 1</u>	_ • •	0	• 10	L		4.6	7.
NW	. 8	1.7	1.5	2.0	1.4	1.2	5	. 2	• •			9.6	13.
MW	.6	1.6	3.1	4.6	2.6	1.7	• 5	2		• 0		14.9	14.
VARBL		.0		Ļ					ر		ر	1	_ 5.
CALM	><	><	><	><	$\geq \leq$	$> \leq$	> <	$\geq \leq$	$\geq \leq$	$\geq \leq$	$> \leq$	13.9	
	13.8	22,3	20.0	د. 17	6.0	3.7	1.1	. 4		نزه		1,00.0	я,
									TOTAL NUA	ABER OF ORS	EEVATIONS		2743

Figure 4.3. Percentage Frequency of Wind Direction and Speed from Hourly Observations, 1967-1977, All-Weather, All-Hours, All Months.

Table 4.3. Procedures for Determining Answers To Sample Questions from the January, All-hours All-Weather Surface Wind Summary (Figure 4.4, page 27). (Exercises for the summaries of this type in the RUSSWO for the other months of the year are omitted.)

To Find	Pertinent Row/Column	Answer
Direction and speed of the prevailing wind. Mean wind speed.	NNW/% and Mean Wind Speed (Bottom row)/ Mean Wind Speed	NNW 15.4 ¹ 8.5 kt
Direction containing the highest mean wind speed.	NNW/Mean Wind Speed	NNW
Mean wind speed which occurs from SSE-SSW.	SSE-SSW/% and Mean Wind Speed	7.11 kt²
Mean percentage of time that winds are calm.	Calm/%	17.4
Mean percentage of time that winds from 7 to 16 knots occur from the South.	S/7-16	2.1
Mean percentage of time that winds from 22 to 33 knots occur from the North.	N/22-33	0.8
Mean percentage of time that winds of 15 knots or 15 knots or less occur.	Bottom Row (see Footnote 3)	81.3
Mean percentage of time that winds blow from NE through S.	NE-S/1-3%, 4-6% 7-10%, 11-16%	20.9

PERCENTAGE FREQUENCY OF WIND DIRECTION AND SPEED (FROM HOURLY OBSERVATIONS)

Figure 4.4. Percentage Frequency of Wind Direction and Speed from Hourly Observations, 1968-1977, All-Weather, All-Hours, January.

- The mean wind speed for the interval SSE-SSW cannot be found by adding the three mean wind speeds for each direction (8.9, 6.4, and 4.0) and dividing by 3. The answer so obtained (6.4 knots) is incorrect because it does not give proper weight to the percent frequency of occurrence of winds from each direction. Refer to Footnote 3, Table 4.2 for details.
- The foregoing value (81.3) can be obtained by adding the percentages for calm (17.4), 1-3 knots (13.6), 4-6 knots (20.6), 7-10 knots (16.3), and 11-15 knots (5/6 x 16.1). It is assumed that the 16.1 percent in the 11-16 knot block is evenly distributed among each of the speeds 11 through 16 knots and that 5/6 of this percentage should be added to the other block percentage to obtain the total. This assumption is sufficiently accurate for most purposes, but in reality the block percentage is not evenly distributed within its interval. In the case at hand, the percentage is probably distributed as follows: 11 knots (5.0), 12 knots (3.2), 13 knots (2.4), 14 knots (2.1), 15 knots (1.8), and 16 knots (1.6). The probable error in the first figure (81.3) does not exceed a few percent if the last subjective distribution is accepted as the real one.

Table 4.4. Procedures for Determining Answers To Sample Questions from the November 0000-0200 Local Standard Time (LST), All-Weather Surface Winds Summary (Figure 4.5, page 29). (Exercises for the summaries of this type in the RUSSWO for the other 3-hour groups and months of the year are not included.)

	Pertinent	
To Find	Row/Column	Answer
Mean wind speed.	(Bottom Row)/ Mean Wind Speed	6.7 k t

See Footnote 2, Table 4.2.

Table 4.4 - Continued

Table 4.4 - Continued		
To Find	Pertinent Row/Column	Answer
Direction and speed of the prevailing wind.	W/% and Mean Wind Speed	W 4.6 kt ¹
Direction and speed of that wind which is second only to the prevailing wind direction in percentage frequency of occurrence.	NW/% and Mean Speed	NW 13 kt
Direction containing the third highest mean wind speed.	N/Mean Wind Speed	N
Direction containing the lowest mean wind speed.	E/Mean Wind Speed	Е
Mean wind speed, excluding calms.	(All Direc- tions)/% and Mean Wind Speeds	8.32
Mean percentage of time that winds occur from NNW, N, and NNE.	NNW, N, NNE/%	19.7
Mean percentage of time that winds are calm.	Calm/%	20.0
Mean percentage of time that winds are 10 knots or less.	Calm/% and (Bottom Row)/ 1-10	77.6
Mean percentage of time that winds of 4-16 knots occur.	(Bottom Row)/ 4-16	49.9
Mean percentage of time that winds greater than 40 knots occur.	(Bottom Row)/ 41-≥56	03
Direction from which winds are observed the least percent of time.	ESE/%	ESE
Direction containing the highest percentage of winds from 7 to 10 knots and the percentage frequency.	NW/7-10	NW, 2.6

See Footnote 1, Table 4.2.

$$M_1 = (P_1 M_1 + P_2 M_2 + ... + P_k M_k) / (P_1 + P_2 + ... + P_k)$$

where M₁ is the mean wind speed for the interval; M₁, M₂, ..., M_k are the mean wind speeds for each direction of the interval; and P₁, M₂, ..., P_k are the percent frequencies of occurrence associated with each direction. For this exercise, M₁ = 12.3, M₂ = 5.8, ... M₁₇ = 0 P₁ = 6.5, P₂ = 2.2, ... P₁₇ and M₁ = 667.2/80 = 8.3 knots.

Table 4.5. Procedures for Determining Answers To Sample Questions from the All-Months, All-Hours Instrument - Weather Surface Winds Summary (Figure 4.6, page 30).

 $^{^2}$ To find the mean wind speed for combinations of directions (N-ENE, SW-W, etc.) or for all directions including variable, use the expression

 $^{^3}$ The lack of an entry in this summary for winds exceeding 40 knots denotes that no occurrences were observed during 1968 through 1977.

SURFACE WINDS

PERCENTAGE FREQUENCY OF WIND DIRECTION AND SPEED (FROM HOURLY OBSERVATIONS)

Figure 4.5. Percentage Frequency of Wind Direction and Speed from Hourly Observations, 1968-1977, All-Weather, 0000-0200 LST, November.

Table 4.5 - Continued

To Find	Pertinent Row/Column	Answer
Annual prevailing wind (direction and speed).	N/% and Mean Wind Speed	N 11.7 kt ²
Mean annual percentage of time that winds are calm.	Calm/%	7.2
Mean annual percentage of time that winds occur from NNW-ENE.	NNW-ENE/%	58.1
Mean annual wind speed.	(Bottom Row)/ Wind Speed	10.6 kt
Direction with the lowest mean wind speed.	SW/Mean Wind Speed	SW 3.1 kt
Directions with mean wind speeds of 11 knots or more.	N,NW,NNW/Mean Wind Speed	N, NW NNW
Mean annual percentage of the time that winds between 11-21 knots occur.	(Botton Row)/	31.3
Mean annual percentage of time that winds exceed 21 knots.	(Bottom Row)/ 22->56	10.0
Mean a inual percentage of time that winds of 10 knots or less occur.	Calm/% and (Bottom Row)/ 1-10	58.7
Mean annual percentage of time that winds between 22 to 40 knots occur from N.	N/22-40	1.5

TOTAL NUMBER OF OBSERVATIONS

PERCENTAGE FREQUENCY OF WIND DIRECTION AND SPEED (FROM HOURLY OBSERVATIONS)

24006	ELLSHURTH AFF SU/APPI CITY 17-77	
	I STn C,T	ALL .
	CIG 200 To 14(" FT A/ \5 TV 1/2 I TR (FXC)	
	A-G/LR VSRY 1/2 TT 2-1/2 11 /GIN 200 FT GE 10 1	

SPEED (KNTS) DIB	1 - 3	4.4	7 - 10	17 16	17 - 21	22 27	28 - 33	34 - 40	41 47	48 - 55	≥ 56	•	MEAN WIND SPEED
N	1.1	3.0	6.7	_ 7.2	2.6	1.1	- 2	-1		1		22.9	111
NNE	. 7	2.1	3,1	1.2	. 1					Ţ		7.1	7.
NE	. 6	1.6	1.6									4.0	_ ^.
ENE	. 4	1.2	1.0	• 6	• J							7.0	۸.
	, c	1.6	1.6		.1					i		4.5	۶.
ese	• 7	1.4	1.6	• 9	• 6				L	1		4.0	7.
SE	.6	1.9	2.5	1.5	. 5							7.0	9.
534	.6	1.3	2.3	1.7	. 3				I			4.4	ာ.
3	. 6	1.0	1.1	• 7	• 1	1				[3,5	7.
55W	• 1	. 1	• 1									.3	4.
sw	.1	• 5										• 2	_ 3.
wsw	. 2	• C	• ٧									. 2	3.
w	2	. 2										.4	4.
WHW	. 2			.1		. 1	ار ه	لا م				. 7	10.
HW		• 7	. 6	•9	1.0	1		. 2				5.3	17.
WW	. 4	1.2	3.2	6.1	4.0	4.	1.2	.3		1		21.2	16.
VARM													
CALM	><	><		\geq	$\geq \leq$	\geq	\times	><	$\geq <$	\sim	> <	7.7	
	7.7	10.2	25.6	21.4	9.4		2.6	7				1	1.0

Figure 4.6. Percentage Frequency of Wind Direction and Speed from Hourly Observations, 1967-1977, Instrument, All-Hours, All-Months, Ceiling 200 to 1400 Feet With Visibility 1/2 Miles or More, and/or Visibility 1/2 to 2-1/2 Miles With Ceiling 200 Feet or More.

Table 4.5 - Continued

To Find	Pertinent Row/Column	Answer
Mean annual percentage of time that winds exceed 16 knots from N.	N/17-≥56	4.3
Mean annual percentage of .ime that winds are less than 11 knots from S.	S/1-10	2.7
Mean annual percentage of time that winds between 7 to 16 knots occur from W to N.	W-NW-N/7-16	24.8
Mean annual percentage of time that winds between 4 to 21 knots occur from E to S.	E-S/4-21	23.1
Directions whose mean wind speeds exceed the mean annual wind speed.	WNW-N/Mean Wind	WNW-N

Instrument weather is defined as ceiling 200 to 1400 feet with visibility equal to or greater than 0.5 mile, and/or visibility 0.5 to 2.5 miles with ceiling equal to or greater than 200 feet.

² See Footnote 1, Table 4.2.

CEILING AND VISIBILITY (PART D)

5.1 General

Part D, Ceiling Versus Visibility, has one section with a bivariate percentage frequency distribution of visibility (statute miles) versus ceiling height (feet). A cumulative form is contained in both arguments so the intersection of ceiling ≥ 0 feet and visibility ≤ 0 statute mile will equal 100 percent. Higher classes include no ceiling and range from $\geq 20,000$ feet down to ≥ 0 feet. Visibility classes vary from ≥ 10 miles down to ≥ 0 mile. Data are summarized by months and year, and by months for eight 3-hourly periods. A second section, Sky Cover, has the percentage frequency of occurrence of total sky cover by tenths, and mean tenths of sky cover (zero includes $\leq 1/10$; 10/10 includes 9+ tenths). Data are summarized by month and year, and by months for eight 3-hourly groups.

5.2 Ceilings and Visibilities

The bivariate ceiling and visibility summaries (see for example, Figure 5.8, page 36) give the percentage frequencies of occurrence of specified ceiling conditions, specified visibilities, and the joint occurrence of combined ceiling and visibility conditions. The far right column of the table is the cumulative distribution of ceiling heights since all visibilities are included in the visibility ≥ 0 category. Similarly, the bottom row gives the cumulative distribution of visibilities (ceiling ≥ 0). The main body of each table contains the joint occurrence values. Also given with each table is the number of observations used.

The ceiling versus visibility summaries are derived from hourly observations. For stations with limited observing hours, the monthly-hourly summaries will not address those hours for which no observations are to be had. Before 1949 US Weather Bureau and Navy Stations did not report ceilings of 10,000 feet or greater. Summaries for the stations based on pre-1947 data are thus limited to ceilings below 10,000 feet. For Air Force stations up through June 1948, the "no ceiling" category included clear conditions, scattered conditions, and ceilings above 20,000 feet. Beginning in July 1948 for Air Force stations and in January 1949 for US Weather Bureau and Navy stations, the "no ceiling" category includes all hourly observations with less than 6/10 total sky cover and those observations with 6/10 or more sky cover but where less than half of the sky cover is opaque.

Beginning in January 1968, METAR stations report actual visibilities up to 6 miles (9000 m) and then all visibilities greater than 6 miles are lumped together (as 9999 m). Thus, for METAR stations, the category equal to or greater than 10 miles is not printed in the tables, unless the summary was for a period ending before January 1968. NOTE: METAR observations are taken in nautical miles (nm). So that a RUSSWO might truly be a uniform summary, the same format and units are used for all locations; nautical mile visibilities have therefore been converted to statute miles (sm), and all visibilities in the RUSSWO are in statute miles. If nautical mile visibilities are desired, simple linear interpolation can be used. An adequate system of conversion is given in Table 5.1. For those METAR stations reporting "CAVOK" all values > 5000 feet and > 3 miles are grouped with those equal to 5000 feet and equal to 3 miles.

Table 5.1 RUSSWO Conversions from Statute to Nautical Miles.

EXACT CONVERSION	RUSSWO APPROXIMATION
1 / rum / 0.5 sm	(1/2 + 5/8)/2
1 nm 1.15 sm	(1 + 1 1/4)/2
1 1 2 nm = 1 /25 sm	$(1\ 1/2\ +\ 2)/2$
⊾ nm - 2.30 sm	(2 + 2 1/2)/2
3 num = 3.5 sm	(3 + 4)/2
-ınım 4i.6 sm	(4 + 5)/2
^{r.} nm : 5.8 sm	6

When using the Ceiling Versus Visibility Summary care must be taken lest semantics lead us astray. Consider for instance the row for ceilings > 5000 feet and the column for visibility > 3 sm. The intersection of this row and column shows the percentage frequency of occurrence of ceiling > 5000 feet AND visibilities > 3 sm (83.3 percent from Figure 5.8, page 36). If we subtract this value from 100 percent (100.0 - 83.3 = 16.7) we get the percentage frequency of occurrence of ceilings < 5000 feet AND/OR visibilities > 3 sm. To determine the frequencies with which we can expect ceilings AND visibilities below given limits, as well as other combinations of ceiling above ..., and visibility below ..., etc; we can use a contingency table.

5.2.1 Contingency Tables. A contingency table (see Figure 5.1, page 32) is basically an N x M array. In our illustration we have a 3 x 3 array with nine areas (labeled A-I) for specified categories and percentages. From these data in the RUSSWO we can fill in some blocks immediately (see Figure 5.1). Since our categories are mutually exclusive, the totals must sum to 100 percent, thus block I is 100.0. From row "Ceiling > 5000 feet" and column "visibility > 0" (see Figure 5.8) we get a value for block C of 83.6. Block F is then simply 100.0-83.6 = 16.4. Next, from the visibility column > 3 and the ceiling row > 5000 feet we find, at the column-row intersection, the value for block B (83.3, see Figure 5.2). Similarly, for visibility > 3 and ceiling > 0 we get 95.7 for block H. We can now complete our contingency table.

Block E is determined by E = 95.7 - 83.3 = 12.4. Blocks A, D, and G are now found as

$$A = 83.6 - 83.3 = 0.3$$

$$D = 16.4 - 12.4 = 4.0$$

$$G = 100.0 - 95.7 = 4.3$$

and so our contingency table is filled (Figure 5.3, page 33).

With our completed contingency table (Figure 5.3) we can now answer questions such as "What is the percent frequency of occurrence, of ceilings below 5000 feet $\overline{\text{AND}}$ visibilities below 3 sm?" (Answer: 4.0) and "What is the percentage frequency of occurrence of ceilings at 5000 feet or above, but visibilities below 3 statute miles?" (Answer: 0.3) and so on.

/	VS	BY	TOTAL
CIG/	<3	<u>></u> 3	(<u>≥</u> 0)
>5000	Α	В	С
₹5000	υ	E	F
TOTAL			
(>0)	G	H	1

Figure 5.1. A Simple Contingency Table.

/	VS	вч	TOTAL
CIG/	<3	<u>></u> 3	(≥0)
>5000 <5000	A D	83.3 E	83.6 16.4
TOTAL	D	£	10.4
(>0)	G	95.7	100.0

Figure 5.2. Partially Completed Contingency Table.

/	VSBY		TOTAL
CIG/	< 3	<u>≥</u> 3	(<u>≥</u> 0)
	0.3	02.2	02.6
≥5000	0.3	83.3	83.6
₹5000	4.0	12.4	16.4
TOTAL			
(>0)	4.3	95.7	100.0
(,			

Figure 5.3. Completed Contingency Table.

Let us now look at another contingency table exercise. Although the question may seem a bit obtuse, it is just the sort of question that customers actually ask and that we have to answer. Suppose we want to find the percentage frequency of "ceiling \geq 300 feet and visibilities \geq 3/4 miles but < 4 miles, or ceilings \geq 300 feet but < 2,000 feet with visibilities \geq 3/4 miles." We start with a 4 x 4 contingency table as shown in Figure 5.4 (page 33) and immediately fill in what we can from the RUSSWO (see Figure 5.8, page 36). The values in blocks A, H, L, M, and N are calculated directly (A = 90.5 - 90.4, H = 98.6 - 90.5, L = 100.0 - 98.6, M = 100.0 - 98.5, N = 98.5 - 94.8).

Consider now that the sum of the percentages in blocks B, C, F, and G is the percentage frequency of ceilings \geq 300 feet and visibilities \geq 3/4 of a mile (= 97.9 from the RUSSWO). Thus, B + C + F + G = 97.9, but C is already known to be 89.7, so we get B + F + G = 8.2. This number is the answer to the question asked, but further information can be gained by completing the contingency table.

/		TOTAL		
CIG/	<3/4	$\geq 3/4$ to <4	<u>></u> 4	(<u>></u> 0)
<u>≥</u> 2000	A	В	89.7	90.5
>300 to <2000	E	F	G	8.1
<300	I	J	K	1.4
TOTAL				
(>0)	1.5	3.7	94.8	100.0

Figure 5.4. Initial Filling of 4 x 4 Contingency Table.

CIG/	<3.74	VSBY < 3.74 $\ge 3/4$ to < 4 ≥ 4				
>2000 >300 to <2000 <300	0.1 E I	0.7 F J	89.7 G K	90.5 8.1 1.4		
TOTAL (>0)	1.5	3.7	94.8	100.0		

Figure 5.5. Partially Completed 4 x 4 Contingency Table.

CIG/	<3/4	VSBY <u>></u> 3/4 to <4	<u>></u> 4	TOTAL (<u>></u> 0)	
>2000 >300 to <2000 <300	0.1 E I	0.7 2.5 J	89.7 5.0 K	90.5 8.1 1.4	
TOTAL (>0)	1.5	3.7	94.8	100.0	

Figure 5.6. Last Step of 4 x 4 Contingency Table Prior to Completion.

clg/	< 3/4	VSBY ≥3/4 to <4	<u>></u> 4	TOTAL (>0)
≥2000 ≥300 to <2000 <300 TOTAL	0.1 0.6 0.8	0.7 2.5 0.5	89.7 5.0 0.1	90.5 8.1 1.4
(<u>≥</u> 0)	1.5	3.7	94.8	100.0

Figure 5.7. Completed Contingency Table.

B is simply found as 90.4 ($\geq 2000/\geq 3/4$ from Figure 5.8) - C = 89.7, or B = 0.7. This then gives A = 0.10 directly (see Figure 5.5). G is found as 94.7 ($\geq 300/\geq 4$ from Figure 5.8) minus C, or 94.7 - 89.7 = 5.0. Then, since we had earlier that B + C + F + G = 97.9, we can now solve for the remaining unknown F = 2.5 which gives us the table in Figure 5.6. The completion of the contingency table is trivial: K = 94.8 - 5.0 - 89.7 = 0.1, J = 3.7 - 2.5 - 0.7 = 0.5, E = 8.1 - 2.5 - 5.0 = 0.6, and I = 1.5 - 0.6 - 0.1 = 1.4 - 0.5 - 0.1 = 0.8, which gives us Figure 5.7 (page 34).

Careful study of this example will show what is to be taken from the RUSSWO and what must be calculated. Note how many different ceiling and visibility ranges we have now evaluated and how much information that is not explicitly stated in the RUSSWO has been found.

5.2.2 Other "Indirect" Methods. Since our customers often have a proclivity for asking for climatological data not immediately available, let us look at a few more examples of how to find or approximate derived data from the RUSSWO's D-Summary.

As noted earlier, the RUSSWO gives ceiling and visibility data as percentage frequencies of conditions "GREATER THAN OR EQUAL TO" specified lower limits. We have already seen how to find "LESS THAN" values. Now, what do we do in the case of needing a "LESS THAN OR EQUAL TO" value? Here, we must make an assumption which allows us to approximate the desired answer. We assume that only the RUSSWO categories of ceilings and visibilities can occur so that 100 percent minus the next higher " \geq category" will give us the desired " \leq category." Thus, to find the percentage frequency of occurrence of, say, ceilings \leq 1000 feet, we see from Figure 5.8 (page 36) that ceilings \geq 1200 feet occur 92.9 percent of the time so that ceilings \leq 1000 feet can be expected 100.0 - 92.9 = 7.1 percent of the time. Clearly this approximation is most valid for the lower ranges of ceilings and visibilities where the separation between adjacent categories is small.

Table 5.2 gives a series of illustrative examples of using the Ceiling Versus Visibility summary.

Table 5.2. Exercises for the Ceiling Versus Visibility Summaries. (The following exercises are based on Figure 5.8, page 36 the all-months, all-hours summary. Similar methods apply to the monthly and hourly summaries.)

To Find	Pertinent Row/Colum.	Answer	
Mean annual percentage of time with no ceiling	No Ceiling/≥0	61.0	
Mean annual percentage of time with no ceiling and visibility \geq 6 statute miles.	No Ceiling/≥6	60.7	
Mean annual percentage of time with ceilings below 3000 feet.	<u>></u> 3000/≥0	11.91	
Mean annual percentage of time with visibilities > 3 statute miles.	<u>></u> 0/ <u>></u> 3	95.7	

Table 5.2 - Continued		
To Find	Pertinent Row/Column	Answer
Mean annual percentage of time with 3 statute miles \leq visibilty \leq 5 statute miles.	≥0/≥5 and ≥3	1.52
Mean annual percentage of time with 500 feet < ceiling < 1000 feet.	2500 and 21000/0	2.8
Mean annual percentage of time with ceiling < 3000 feet and/or visibility < 3 statute miles.	<u>≥</u> 30C0/ <u>></u> 3	12.2
Mean annual percentage of time with ceilings from 200 feet to 1500 feet and with visibility from 0.5 to 1.5 statute miles.	≥1500/≥1.5 ≥200/≥0.5	7.3
Mean annual percentage of time with ceilings below 3000 feet and visibility below 3 statute miles.	See Footnote 3	4.0
Mean annual percentage of time with ceilings \geq 3000 feet and visibility \geq 3 statute miles.	$\geq 3000/\geq 3$ and $\geq 3\overline{0}00/\geq 4$ (see also Table 5.1	87.7

Since the percentages given are for conditions GREATER THAN OR EQUAL TO to find the percentage for below a set value, simply subtract the appropriate table value from 100. In this case: 100.0 - 88.1 = 11.9.

5.3 Sky Cover

The second section of Part D of the RUSSWO gives the percentage frequency of occurrence of sky cover in tenths by month and by 3-hour time block. Sky cover is derived from hourly observations.

Sky cover is defined as that amount of the sky that is filled with clouds or otherwise obscured. Hence, a clear sky has zero sky cover and a total overcast or obscuration would have 10 tenths sky cover. In those cases where sky cover is reported in octas (eights), the octas are converted to tenths according to Table 5.3 and entered in the RUSSWO in tenths.

No sky cover data were reported by US stations until mid-1945. All available sky cover data have been entered in the USAFETAC data base. Earliest dates for sky cover data are sometime in 1945 for US Weather Bureau stations; 1946 for Air Force stations; and 1948-49 for Navy stations.

Starting in January 1971, Airways sky cover data have been taken directly from transmitted weather observations as opposed to being taken from the actual forms on which the observations were written. Since sky cover per se is not transmitted, a conversion is made from the clear, scattered, broken, overcast, partially obscured and obscured of airways observations to tenths of sky cover. Table 5.4 shows this conversion. For METAR stations the only way to get sky cover data is to manually extract it from the AWS Form 10a. Since this is the era of automation and reduced manning, such manually intensive operations are anathema and have not been performed. Older RUSSWOS will contain full tables of sky cover data. More recent ones (produced since the mid-1970s) will generally have full data based on a period of record ending with December 1970. Newer RUSSWOS will have incomplete tables with data only in the columns for 0, 3, 9,

To determine the percentage frequency of occurrence of a range of values, simply find the difference between the values at the end points of the specified range. In this example: 95.7 - 94.2 = 1.5.

 $^{^{3}}$ With reference to Table 5.2 we have (0/0) - (0/3) - [(3000/0) - (3000/3)] = 100.0 - 95.7 - [88.1 - 87.8] = 4.0.

24004

, p414

PERCENTAGE FREQUENCY OF OCCURRENCE
FROM HOURLY OBSERVATIONS

FROM PIOURLY OBSERVATIONS								
FILING.	what is statute with							
FEET	promote reservante de la composition della comp							
	\$ 260, 260, 250, 240, 250, 250, 250, 250, 250, 250, 250, 25							
NO I FINNE	၀၀- ရ ၀၀- ၈ ၈၀- ၆ ၀၀- ၈ ၀၀- ၈ ၀၁- ၈ ၀၁- ၈ ၁- ၁ - ၁ - ၁ - ၁ - ၁ - ၁ - ၁ - ၁ -							
2000L	07.0 07.1 07.2 07.3 07.3 07.3 12.4 27.3 67.4 67.4 07.4 67.4 07.4 67.4 07.4							
2 1904	67.4 67.8 67.0 67.4 67.7 67.7 67.7 67.7 67.7 67.7 67.8 67.8							
2 (600)	67.7 07.9 08.4 08.4 08.1 0 .1 4 .1 4 .1 08.1 08.1 68.1 68.1 68.1 08.2 08.2 08.2							
≥ 1400X	. 990% 9701 9704 9704 5704 5705 9705 9700 93 110% 5704 5704 5944 5944 5944 5944 5944 5944 5944							
2.12000	<u> </u>							
0000								
> W4XC	75.8 76.0 76.1 76.2 76.3 76.2 7.3 76.3 76.3 76.3 76.3 76.2 76.2 76.4 76.4 76.4 76.4 76.4 76.4 76.4 76.4							
≥ 8000 ± 7000	77.5 77.9 77.9 78.0 78.0 78.0 78.0 78.0 73.1 70.1 70.1 70.1 78.1 78.1 70.1 70.2 74.2							
-	. 1965 1761 1762 1765 1766 1766 1766 7566 7966 7966 7765 7655 765 76 8 76 6 76 6 76 6							
5.24:	- 5005 0007 5007 5007 510. 5105 2100							
	. 92.49 93.61 43.11 43.2 43.5 43.4 9 .4 .3.4 83.4 83.5 43.5 43.5 43.5 43.5 43.5 43.6 83.6 43.6 43.6							
2 4000 2 4000	83-1 63.5 63.7 83.6 83.9 83.9 63.9 4.C 84.0 64.0 84.1 64.1 84.1 94.1 84.1 84.1							
1500	84.4 64.7 85.1 85.2 85.4 65.4 4.4 (5.5 85.5 85.6 65.6 85.4 85.6 45.6 45.6 45.6							
2 1000	85.2 85.0 86.0 86.1 86.3 06.3 77.4 15.4 86.4 07.5 P6.5 86.4 86.5 86.5 06.5							
2 :500	86.4 67.1 87.4 67.6 87.6 67.6 67.9 7.9 7.9 80.0 60.0 60.0 60.1 80.1 60.1 80.1 60.1 80.1 60.1 80.1 60.1 60.1 60.2 87.2 88.0 88.5 88.7 50.0 20.9 50.9 89.0 60.1 89.1 60.1 89.1 60.1 89.1 60.1							
2 2406	98-1, 49 0, 80 4, 80 7, 84 0, 90 0 0 1 1 0 7, 89 0 0 0 1 7, 1 0 6-1, 89-1 89-1 49-1 16-2							
- W(X)	98.1 49.0 89.4 89.7 89.9 90.0 5 1 90.2 90.3 90.4 60.4 90.4 90.4 90.4 90.4 90.4 90.4 90.4 9							
NO.	89a0 90-1 90-6 90-9 91-2 31-2 32 33 1-1 A 31 A 9 A 9 A 9 A 9 A 9 A 9 A 9 A 9 A 9 A							
2 1701	89.01 90.1 90.6 90.9 91.2 91.3 71.5 11.6 91.6 91.8 91.3 91.4 91.5 91.6 11.7 91.9 91.7 92.7 92.8 92.7 92.8 92.7 92.8 92.7 92.8 92.7 92.8 92.8 92.7 92.8 92.8 92.7 92.8 92.8 92.8 92.7 92.8 92.8 92.8 92.8 92.8 92.8 92.8 92.8							
2 100.0								
2 900								
2 800	- 90ah 11a9 99a9 97a9 97a 4 79a 5 9 a 4 1 94 9 97 4 97 4 94 4 94 94 94 94 94 94 94 94 94 94 94							
. 100	- YU+3 YC+1 92+6 93+2 Y3+7 97+8 94+2 -4+5 94+5 94+9 95- UR-1 9+ 0 CR-5 36-1 ER-5							
2 846	- 70 e 0 7 c e 3 7 d e 1 7 d e 0 7 d e 0 7 d e 0 7 d e 0 7 d e 0 7 d e 0 7 d e 0 7 d e 0 7 d e 0 7 d e 0 7 d e							
نهاد ۾	70.8 72.7 93.5 94.6 74.6 74.7 55.1 35.5 95.8 96.1 96.4 94.2 96.6 96.4 96.5 36.6 36.4 96.5							
	-71a0 72a7, 73a7 76a4 75a: 75a2 7 a7 a6 7 96 8 94 9 69 a 69 a 69 a 69 a 69 a 69 a							
. ku	-7404 7704 7404 7407-7505-7504, 9001-3507 9701-9705-9709-9-9-9-9-9-9-9-9-9-9-9-9-9-9-9-9-9-							
- //	71.11 72.21 94.21 94.4 75.7 95.81 0 . 4 . 7.0 97.5 95.0 06.4 02.4 0. 4 35 5 66 5 5 5 6							
ة بورا د	71:11 73:2' 74:2! 74:7' 75:7' 75:8 7::4 :7:1 97:5 97:1 38:5 00:7 00:1 00:9 00 6 30 00							
	91.1 93.2 94.2 94.8 95.7 98.8 9. 4 17.1 97.5 96.1 96.0 98.7 99.1 99.2 09.2100.2							

Figure 5.8. Percentage Frequency of Occurrence from Hourly Observations, 1967-1977, Ceiling Versus Visibility, All-Hours, All-Months.

Table 5.3. Octas - Tenths Conversion.

Octas	Tenths
0	0
1	1
2	3
3	4
4	5
5	6
6	8
7	9
8 (or obscured)	10

and 10 tenths. For any sky cover summary whose period of record includes both pre- and post-1970 data, only the 0, 3, 9 and 10 tenths columns are given. Data for 1970 and earlier were converted to the four-category system before preparing the summary.

Table 5.4. Airways Sky Conditions to Sky Cover Conversion.

Airways	Sky Cover
Clear	0
Scattered	· 3
Broken	9
Overcast	10
Partially Obscured	9
Total Obscuration	10

Chapter 6

PSYCHROMETRIC SUMMARIES (PART E)

6.1 General

Part E, Psychrometric Summaries, has one section with the cumulative percentage frequency of occurrence in 5°F intervals of daily maximum, minimum, and mean temperatures from daily observations, along with means and standard deviations. A second section of Part E has extreme daily temperatures, maximum and minimum, from daily observations for each year-month of record, and monthly and annual means and standard deviations. A third section has a bivariate percentage frequency distribution of wet-bulb depression classes versus dry-bulb temperatures. Also included is the raw frequency of occurrence of dry-bulb, wet-bulb, and dewpoint temperatures in 2°F intervals. A summary block contains the sums of squares, sum, mean, and standard deviation of relative humidity, dry-bulb, wet-bulb, and dew-point temperatures, and also the mean number of hours with temperatures $\leq 0, \leq 32, \geq 67, \geq 73, \geq 80,$ and $\geq 93°F.$ Data are by month and year. A fourth section has means and standard deviations of dry-bulb, wet-bulb, and dew-point temperatures by month and year for 3-hourly groups and for all hours combined. The final section, relative humidity, has cumulative percentage frequencies of occurrence of relative humidity greater than 10, 20, 30, 40, 50, 60, 70, 80, and 90 percent, and the mean relative humidity. Data are by month and year, by month for eight 3-hourly groups, and for all hours combined.

Because the temperatures are given in degrees Fahrenheit, certain minor departures from the actual observations may occur in the summations, especially when discrete values are concerned. This is because all surface data at USAFETAC are stored in DATSAV format (see USAFETAC TN 77-2) wherein temperatures are kept in terms of Kelvins, and because data from METAR stations are reported in degrees Celsius. Thus, two conversions may be involved. One is for degrees Fahrenheit to degrees Celsius and back (F = 9/5C + 32; C = 5/9(F-32)). The other is to convert from degrees Celsius to Kelvin (K = 273.16 + C). Some data processing routines convert from degrees Celsius to Kelvins using the factor 273.2. The bottom line is, that minor differences (on the order of 1° F) may arise due to conversions and to rounding, but these differences do not affect the meaningfulness nor the representativeness of the psychrometric data presented in the summaries.

6.2 Cumulative Percentage Frequency of Occurrence - Daily Temperatures

Three summaries, one each for the maximum (Figure 6.1), minimum (Figure 6.2), and mean (Figure 6.3) daily temperatures, are given for cumulative percentage frequency of occurrence. The tabulated values are the percentage frequencies with which the specified temperature is equalled or exceeded. For example, if a daily maximum temperature in January of, say, 50°F is of concern, Figure 6.1 shows that on only 14.6 percent of the days in January, or on only 4 to 5 days, will the daily maximum temperature equal or exceed 50°F, according to climatology.

A convenient way to display cumulative percentage frequencies is to draw a graph such as Figure 6.4. In this example we plotted the annual cummulative percentage frequencies of occurrence of the daily maximum temperature. The resulting curve is called an "ogive" (o-jiv). From a curve like Figure 6.4 we can easily answer such questions as: "What maximum temperature is equalled or exceeded 25 percent of the time?" Answer: 77.3°F; "What daily maximum temperature is equalled or exceeded 90 percent of the time?" Answer: 28°F.

The three "Daily Temperature" summaries (maximum, minimum, and mean) are derived from daily (i.e., Summary of the Day) observations. Beginning in January 1964, the daily maximum and minimum temperatures were selected from hourly observations. For stations reporting less than 24-hours per day, and where maximum and minimum temperatures are required but not recorded, these are also selected from the available hourly observations. This procedure has been followed since January 1949. The user must pay close attention to notes on the summary pages and in the Station History for further information on reporting practices at individual stations.

OATA PROCESSING BRANCH USAF ETAC AIR GEATHER SERVICE/MAC 24006 ELLSHURTH AFR SD/HAPID CITY

48-77

THE COMPLIATIVE PERCENTAGE PREQUENCY OF OCCURRENCE
FROM DARLY OBSERVATIONS:

110

11.5

12.5

13.1

14.1

15.5

15.1

15.5

15.5

15.1

15.5

15.1

15.5

15.1

15.5

15.1

15.5

15.1

15.5

15.1

15.5

15.1

15.5

15.1

15.5

15.1

15.5

15.1

15.5

15.1

15.5

15.1

15.5

15.1

15.5

15.1

15.5

15.1

15.5

15.1

15.5

15.1

15.5

15.1

15.5

15.1

15.5

15.1

15.5

15.1

15.5

15.1

15.5

15.1

15.5

15.1

15.5

15.1

15.5

15.1

15.5

15.1

15.5

15.1

15.5

15.1

15.5

15.1

15.5

15.1

15.5

15.1

15.5

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15.1

15

Figure 6.1. Cumulative Percentage Frequency of Occurrence from Daily Observations, 1948-1977, Maximum Daily Temperatures, Annual Summary.

The "mean" temperature given in the cumulative daily temperature distributions is not really the mean. Since it is derived from daily observations, this "mean" is calculated as the average of the day's maximum and minimum or

"mean" =
$$\frac{\text{maximum} + \text{minimum}}{2}$$

For days with what might be considered a normal temperature profile, this "mean" is an adequate approximation of the true mean. However, on days with a sudden temperature change brought about by, say, a frontal passage or chinook, this "mean" can be quite misleading. Since such sharp daily temperature changes are rare, overall, the daily "means" may be used with confidence. If, however, the true mean daily temperature for the month is required, the "Means and Standard Deviations" summaries based on hourly observations should be used. Indeed, the astute observer will note differences between the means given here and those in the "Means and Standard Deviation Summary."

The "Daily Temperatures" summaries give, in addition to monthly distributions of the temperatures, an annual summary, and, for each column, the mean, standard deviation, and observation count.

6.3 Extreme Values

As for the "Daily Temperatures" summaries, the "Extreme Values" summaries are based on daily observations. In these two summaries, Extreme Maximum Temperature (Figure 6.5) and Extreme Minimum Temperature (Figure 6.6), the monthly extremes are tabulated by year and month. Months where extremes are based on less than a full month's worth of data are indicated by an asterisk (*). Extremes from months in which at least one day had fewer than 24 hourly observations are indicated by a pound sign (#). An extreme is given for each month provided that the given month has at least one day with valid observations. All months of a year

Figure 6.2. Cumulative Percentage Frequency of Occurrence from Daily Observations, 1948-1977, Minimum Daily Temperatures.

must have valid extremes before the annual extreme is selected. Means and standard deviation are computed for each month and for the annual summary provided that four or more values are in the specified column.

6.4 Bivariate Psychrometric Summaries

The summaries titled "Psychrometric Summary" are bivariate frequency distributions of dry-bulb temperatures with wet-bulb depression (see Figure 6.7). The numbers in the body of the summaries are the percentage frequencies of occurrence of a specified dry-bulb temperature with a specified wet-bulb depression. Both wet-bulb depressions and dry-bulb temperatures are given in 2°F intervals. A percentage frequency of "0.0" represents one or more occurrence, but less than 0.05%.

Given at the right of the summaries are total number of hours that had the specified dry-bulb temperature and some (any value) wet-bulb temperature, the total number of hours that had the specified dry-bulb temperature, the total numbers of hours that had the specified wet-bulb temperature, and the total number of hours that had the specified dew-point temperature. Differences between the first two columns (Total D.B./W.B. and Total Dry Bulb) arise from a reported dry-bulb temperature with no associated wet-bulb temperature.

At the bottom left of the last page of each discrete summary are statistical data pertinent to that summary. Given for the relative humidity, dry-bulb temperature, wet-bulb temperature, and the dew point are the sum of squares (Σx^2) , the sum (Σx) , the mean (\bar{x}) the standard deviation (σ_x) , and the number of observations used. At bottom right on the page are the mean number of hours with dry-bulb temperatures in specified ranges. The total given with these data should equal the total number of hours per year or per month, or per 3-hour interval per month, as appropriate.

ELLENDRIH AFB SD/RAPID CITY

48-77

Figure 6.3. Cumulative Percentage Frequency of Occurrence from Daily Observations, 1948-1977, Mean Daily Temperatures.

Although the summaries contain data for wet-bulb temperature and depression, relative humidity, and dew point, it is important to realize that differing reporting procedures have had their effect on these moisture parameters. Before 1946 wet-bulb temperatures were not reported. From 1946 to about mid- 1971 wet-bulb temperature data were extracted by hand from station records. Since mid-1971 wet-bulb temperatures have been calculated from the reported dry-bulb and dew-point temperatures. Similarly relative humidity values have been calculated except for the period from about 1946 to June 1978 during which they were reported. All values of dew-point temperatures and relative humidity are with respect to liquid water unless others indicated.

6.5 Means and Standard Deviations

Three tabulations of means and standard deviations (see Figure 6.8) are given; one each for dry-bulb temperature, wet-bulb temperature, and dew point. These summaries are based on hourly as opposed to daily observations (hence 24 instead of one observation per day). These data are presented in eight 3-hour time blocks and for all hours by month and by year (annual summary). In addition to the means and standard deviations, the number of observations used is also given.

6.6 Relative Humidity

Cumulative percent frequencies of occurrence of relative humidity greater than specified values are given in two sets of summaries. Figure 6.9 is a sample of one of these summaries. These values are determined from hourly observations. The first summary is for all months, all hours combined. The second summary gives monthly tabulations broken out in three-hour increments.

Figure 6.4. Cumulative Percentage Frequency of Occurrence, Maximum Daily Temperature, Annual Summary.

The relative humidities are given in 10 percent class intervals. Mean values of the relative humidity and the number of observations used in determining it are given at the right, and at bottom an overall total for the month or year.

6.7 Exercises for Temperatures, Dew Point, and Relative Humidity Summaries

Tables 6.1 through 6.8 contain sample questions and their solutions illustrating the uses of the various summaries in Part E of the RUSSWO. Most of the answers can be determined directly from the summaries; others may require ancillary data. These exercises are intended only to acquaint the user with the types of information that can be obtained from these data summaries. They are not intended to be comprehensive.

Table 6.1. Procedures for Determining Answers To Sample Questions from the Daily Maximum Temperature Summary (Figure 6.1, page 39). (All temperatures are in degrees Fahrenheit).

To Find	Pertinent Row/Column	Answer-
Mean daily maximum March temperature.	Mean/Mar	42.3°F
50th percentile of the daily maximum July temperature.	See Footnote 1	86.4°F
Mean number of June days when the daily maximum temperature is 90°F or more.	90/Jun	32
Mean number of October days when the daily maximum temperature is 80°F or more.	80/Oct	3
Mean number of July days when the daily maximum temperature is 78°F or more.	75/80/July	25³
Standard deviation of the daily maximum September temperature.	S.D./Sep	12.378 ⁴
Mean annual daily maximum temperature.	Mean/Annual	58.2°F

FROM DAILY OBSERVATIONS

24005 ELLSHURTH AFR SO/KAPIU CITY

48-77

WHOLE DEGREES HARRENHEIT

MONTH	JAN	FEB	MAR	APR	MAY	JU N	204	A JG	SEP	OC T	NO:	DEC	ALL MUNIHS
48				84	94	89	100	1 32	102	83	02	55	
49	54	52	56	83	86	97.	104.	104	93.	8 •	72.	5 0	15
້ 5 ດ	53	62	66	74	85	9 1	95	95	92	83	65	5 A *	•
51	53	71.	65	63	89	84.	102	94:	82.	84	65.	66.	1'
52	56	63	57	â6	89	101	108	97	96	ă~	76	65	i
53	67	54	64	. 79.	. 82.	92		100.	89	92	75.	59	. i
54	63	72	71	79	89	99	106	100	91	8.4	73	51.	i i
55	60	. 53	6.5	94.	89:	97.		99	97.	84	73.	65	Ξ,
56	61	64	78	78	83	99	97	92	90	H A	57	62	
57 7	44	63.	67.	73.	. 84.	85.	97	97.	88	87.	64.	71.	
58	63	68	66	83	87	97	90	100	94	84	71	65	1.
59	58	54	66	84	85.	95.	97.	100	. 102.	75.	72.	. 03.	1
60	61	63	76	84	89	95	102	101	103	85	74	64	î
61	59	69	75.	ài.	89:	105	100	193.	92.	63	68.	60	i
62	60	71	70	85	83	97	89	98	93	82	64	62	•
63	60	64	80:	81	88	94	. 99.	94	96.	94	7C.	64.	
64	59	57	72	77	89	92	100	99	93	70	73	62	1
65	60	6.5	58	79	87	81	98	99	90	67	74.	73.	
66	61	47	75	72	8.8	103	109	95	94	84	69	64	1
67	62	64	82	74	84.	84	96	98	91.	83.	72.	5 4	. •
68	66	58	73	79	77	93	95	96	91	84	64	อ์ก"	
69	55	54	71	81	97	95	99	105	94	83	73	7/1	1
70 "	60	66	66	ಕರೆ	85	93	96	100	97	85	64	57	ī
71	51	50	70	82		92.	96	100	102	70	70	50	î
72	61	67	81	73	79 85	89	96	99	94	81	60	54	•
73	65*	60	63	74	86	91	111	102	8.8	82.	68	70	1
74	68	61	73	82	82	105	100	100.	92	87	70	61	i
75	50	48	61	79	87	89	104	107	87	92	73	56	1
76	56	64	64	78	88	97	98	101	101	8 4	71	۴ ھۇ	i
77	43	63	68	82	84	94	103	94	91	d1	69	•	•
MEAN	58.2	61.0	68,9	79.9	84.3	93.6	99.3	99.2	93.	84.5	69.4	63.1	7737
5 D	6.075		6.928	4.021	3,947							4.257	وَ وَقَ
TAL OBS	899	818	899	900	937	901	930.	93^	900	930	999	aya T	100
		VOTES	· (BAS	ED UN		4 N F	LL HON	THS)					

Figure 6.5. Extreme Values of Maximum Temperature in Whole Degrees Fahrenheit, 1948-1977.

Table 6.	1 -	Cont	inued
----------	-----	------	-------

To Find	Pertinent Row/Column	Answer
Mean number of days per year when the daily maximum temperature is greater than 49°F.	50/Annual	237
Month with the highest mean daily maximum temperature.	Mean/Jul	Jul

There are several ways to answer this question. The simplest is to assume (usually falsely) that the temperatures are normally distributed. Thus, the 50th percentile is the same as the mean, and the mean is given at the bottom of the table (in this case 85.4°F). In fact, the 50th percentile is the median value or that value above and below which half the observations lie. Only in a normal distribution are the mean and medium equal. If the distribution is skewed they are not equal. A second method is to linearly interpolate between the 33.5 percent and 57.0 percent (90°F and 85°F) values to obtain the temperature equalled or exceeded 50 percent of the time. This technique gives an answer of 86.5°F. A third method is to construct the appropriate ogive (the 'S' shaped cumulative frequency curve of Figure 6.10) and read from the graph the 50th percentile value (86.4°F). This last is probably the most accurate method since it makes the fewest assumptions about the distribution of temperature (it does not assume a normal distribution nor does it assume linearity between neighboring points on the curve). Also, once drawn, the curve can quickly give other percentiles as well:

FROM SITHER CUSERVATIONS

24006 ELLSWEITH AF9 SO/HAPID CITY

48-77

| MONTH | IAM | IA

Figure 6.6. Extreme Values of Minimum Temperature in Whole Degrees Fahrenheit, 1948-1977.

10th percentile = 96°F (i.e., 10 percent of the maximum temperatures will equal or exceed 96°F), 25th percentile = 92°F.

- Ordinarily, the percent of time that a phenomenon occurs cannot be readily converted into the mean number of days. In the case of this summary, only one maximum temperature is observed per day and as a result, the conversion can be made. The above answer is found by multiplying the percent of time that the temperature is 90 or greater (8.7 percent) by the number of days in June (30) and rounding to the nearest whole number $(0.87 \times 30 = 2.61 \text{ or } 3 \text{ days})$.
- ³ The pertinent percentage (81.7) may be interpolated from the table or preferably obtained from the appropriate ogive (82.5 from Figure 6.3). See Footnote 1 for further discussion. This percentage is then multiplied by 31 days in July to determine the number of days when the daily maximum temperture is 78°F or more.
- 4 The standard deviation is a measure of the deviation of individual numbers of a given distribution from the mean of the distribution. For a normal or Gaussian distribution, 68 percent of the numbers are included between the mean minus one standard deviation and the mean plus one standard deviation. Extreme values cannot usually be described by a normal distribution, and as a result, the aforementioned percentage does not apply, but the standard deviation is still a useful tool in working with extreme values. For additional material, refer to Gringorten (1960).

Table 6.2. Procedures for Determining Answers To Sample Questions from the Daily Minimum Temperature Summary (Figure 6.2, page 40). (All temperatures are in degrees Fahrenheit.)

PSYCHROMETRIC SUMMARY

4705	ELLS	WJRT-	AF a	SU/ N		CIT	-		7-1	<u>! </u>										LL
			•										*1	1485			044	E 1		LL
Temp.					WET	BULB T	EMPER	ATURE	DEPRE	SSION	1					_	TOTAL	,	TOTAL	
(F)	0 1	2 3 . (3 - 4	7 77	9 - 10	11 - 12	13 14	15 - 16	17 - 16	19 - 20	21 22 2	23 74	25 26	77 28	29 30	- 31	D.B. W B.	D., B.	Par Bui	. D. P.
12/111				•										•		• • • •	·	1	•	1
08/107			!	ł								. !					5	. 6	1	1
06/105		<u> </u>	:											•:	-			<u> </u>	÷	†
4/103		1							- 1								1.8	15		•
2/101			+	·:					•		- +-			• • • • •	. ^		32	- 32	: 1	•
0/ 99	,		1				1					÷				- 1	69	- 59	1	
8/ 97										•	· — †	•	;	,		24.	124		÷	• •
6/ 95									- 1	:	- ;	•	• -	• 1	• •	• ;	202	212		
4/ 93							+		 す	,+			2-14	, - -	- 	- • • -	271	271	ļ	· ·
2/ 91				1	1			, .	• '	• 0	• 5	• •	• •	• 1		• 1			:	
0/ 89				++			+	_•≥,				- + +					414	414	•	-,
				. (• 🤳		• ५]	• 0	• 0	- 1	• 1	• 1	• 1	•1,	• 0	• 3	521	521		1
8/ 87						• 01	- 0	•) i		- <u>•</u>	-2	_• ! -	•1	• 1	• ٠.	<u>•</u> £ .	499	7,00		
6/ 85				• •:	• U;	• 0	اِن و	• 1	• 1	- 2	• 2	• 1	• 1	• 1	ال ه	• •	- P01	> 2		
4/ 83				÷	 .	عباه _	-1	<u>. 4</u>			_ • 2 .	-1:	•1		<u> Q.,</u>		923	77.	+	4 -
2/ 61		• J.	• 0	• •	• 1	• 1	. 2	. 2	. 2	• 2	• 2	- 1	• 1	• • •	• 01	• 🗘	1237	1292		1
0/ 79.		, <u>.</u>	<u> </u>	. <u> </u>	<u>•1,</u>	- 1	<u>• 2'.</u>	.3	.2	. 3	- 2	• 1	. 1		ر ن و	ن و	1364	1354		
8/ 77		•	€ •	• 2	• 1.	• 1	. 3	. 3	. 3	. 2	• 1	• 1	• 1		•0;	- 1	1372	1394	3	,
6/ 75		0 .	ر . ي	1	• 2.	• 2		3.	. 3	. 2	. • 1	. 1					1635	1537	. 3 .	
4/ 73:	,	, Oi +	J .1	• 2i	ع و	. 4	. 3	. 4	, 3	. 2	• 1	.1	•	•	_ ,		1829	133	152	
2/ 71	- 43	<u>. 0</u>	<u>C</u>	2	. 3	• 4	. 3	. 4	. 2	. 1	• 1	• 01	• .				1954	1 +55	. 324	. 3
0/ 69	، اد ،	. 0	1 .2	. 3	. 4	.4	.5	. 3	. 2	. 2:	• 1		• •		•		2300	23A2	6:4	. in
8/ 67	.0	Ur .	2 . 2	. 4	. 4	• 4	. 41	. 3	. 2	. 1	• •						2234	2290	1235	17
6/ 65	. 7	1 .	2 . 3	. 5	• 5	• 5'	. 4	. 3	. 2	.1.	. 1			+	1		2537		1970	Ĩ
4/ 63		1		. 5	. 6	.4.	. 3	. 3	. 2	11		•			- 1		2932	2554	246	- a0
2/ 61	.5	2 .		. 5	- 5	• 4	. 3	- 3	2		. I.z.	·- •		•	- •	•	2715	7715	3-11	1 3
7/ 59		2		1	. 5	. 3	. 3	. 3	. 1	1							2552		3341	
8/ 57		2		.5	- 4	. 3	. 4	• 2		- . č:	• • • • • • • • • • • • • • • • • • • •						36.4	254	3575	
6/ 55				. 5	4	. 4	4		• •	•	1	4		,			2472	•	33-1	
4/ 53		2 .		.5	- 3	- 5	3		-:5	• ∺					- 4.	-	5437		. 335 . 1	
2/ 51					• 5	- 5	. 2			i	- 1	1			1		2605 2605			
0/ 49					- 5			• 0	- 4	+								2510	3274	
			-1	. 6		• 4	• 1	(1)						- 1				24.14		
8/ 47		.3		• 0	• 5	• 3,	•1	• C	<u>_</u>								2671			
6/ 45	• 0	.5			• 0	• 3	• •	·ci	- 1	- 1	1			- 7	- 1	į		3712		
4/ 43	بيانب	3 .		<u>. 7</u>	• 5	- 1	• 0			غبب						!		2771	د ڏڙ	315
emen* (X)	Z x '		+	z x		7		<u> </u>	No Obe								Temperat			
I. Hum.			 								2 0 F		32 F	+ 57 F	4 - 2	3 F	- 80 F	- 93		Teret
y Bulb			L							_					·			1		
er Bulb			<u> </u>		\perp					!_					1			7		
w Point					- 1															

Figure 6.7. Psychrometric Summary, 1967-1977, All-Hours, All-Months.

Tabl	lе	6.	. 2	-	Con	tin	ued

Table 6.2 - Continued		
To Find	Pertinent Row/Column	Answer
Standard deviation of the annual daily minimum temperature.	S.D/Annual	19.520¹
Highest and lowest standard deviation of the daily minimum temperature.	S.D./Jan and Jul	14.802/ 5.671
Mean daily minimum October temperature.	Mean/Oct	38.7°F
Months with the highest and lowest daily minimum temperatures.	Mean/Jul and Jan	Jul(61.4°F) Jan(11.3°F)
Values of the April daily minimum temperatures spanning the 16th through the 84th percentile.	See Footnote 2	26.4°F/ 43.3°F
Mean annual daily minimum temperature.	Mean/Annual	36.4°F
Mean number of August days when the daily minimum temperature is less than 60°F.	60/Aug	143
Mean number of January days with daily minimum temperatures of 32°F or less.	33/Jan	294

514 34				٠,	4. 0. 4	·								** ***			•			
																	D 4	E 2		
Temp											ESSION F			. ,	- ,		TOTAL		TOTAL	
.F1	_ 0	1 - 2 +-	3.4.,	. 5 . 6 . ,	7 8	9 10	41.1	2,13 _14	.15 - 1	6,17 1	1.19 20	22,23	74, 25	26,27	28,79	30	31 10.8. # 8	D 8. L	We B.	
2/ 41	• •	. 3	• C	. 7		• •	• • •	1, •									2467			
2/ 39.	1	, 5	<u> 5</u> ,	1.0	2	. •		¥	+ -	-							3044	7901	.3372	27
9/ 37	- 1	• 5	1.	1.1	. 5		. •													
5/ 35	ببأرفس		2	. 1 . 1	-14			Ē						•			2745			. 29
4/ 33	• 1	• 0	1.2	1.3.	. 3	• •						1	1	1				2915	3729	
2/ <u>31</u> ,	_ <u>-•</u> -		1.2	- 1/3	• 1	•.	٠						- + -		- + -			2557		
3/ 29	• 1	1.2	1 . 2	. 5	• •			:				į		İ	- 1	1	2639			
9/ 27	- 2	1.3	Ŧ•Ť	- 3					+	+	·	. 	+		4			2579	292	
6/ 25	. 2.	1.1	ۇ .	• 2	٠						1 :	!					1449		2413	
4/ 23		100	- 5	<u></u> ,			 -		¥ .		4		+			+		1472	195	
2/ 21	• 1	1.0	. 5	• 0		!	1				1	1	i		,		1472		150	
C/ 19	1	1.1	3	_ <u> • ``</u>		,	-		ķ						- ;					
8/ 17	. 1	9	. 2	• •						1	1		- 1		1			1169		
6/ 15	• <u>2</u> ,	_ • <u>6</u> ,	. • 1.	. • ℃,		٠	4		÷	·	+	i					1017		140	
4/ 13	. 2	٦٠,	• 1			:	1	1							- 1	1	826			21
2/ 11	. 2	. 7	• 1				.		į., ,		+						P56			1:19
0/ 9/	. 2	. 9	• Ĉ			!	i	1	Ì		. i		1	- 1	i	İ	1035		92	
9/ 7		_•7	. •	٠.		· 	<u> </u>				+						711	716	870	
6/ 5	• 1,	. 5	• ~ 1				1		1		1	1	ļ		1	1	55			19
4/ 3	• 1	. 5									i i						517		52	
2/ 1	إد	• 4i	,	!			1		-	1	1 1		į			1	371		438	
0/ -1.	. 2	• 1		i		L		1	<u> </u>	+							323		477	
2/ -3	. 1	• 3	- 1								1 1	i i	!			i	342		* 357	
4/ -5	. 1	1		.					ļ	-i				_ :		_ i _	203		244	
6/ -7	. 1	. 1				_		i	i		1 1		i				198		27	
8/ -9	• 2	• 01	2			L				1	1 1		1				252		264	
7/-11	. 1.	.0							ī -		7	1					141		144	
2/-13	. 1.	• 0:									ii			_i	<u></u> .		81		1 85	2
4/-15	. 1	.)	•	T				•			1					:	87	P.7	91	2
5/-17	. 0:						1			1	1 1	- 1	1		i		41	41	41	1, 2
9/-19	.)	• 0		•					;	Ţ	1	1		1			16	16	16	\$ 1
0/-21	. 0					!	i i		1		1 1		Ì	- 1	- }		12		12	
2/-23		-				-	•				+								i	-
4/-25	1						1	1	1		1 1	1	i	:	j]	j	i	i	1
ment (X)	ž	x'		1	×		Ţ			No. O	be.			M	en 'ta	of Hours	with Tamper	o.n.e		
Hum								-				10F	: 32		+ 67 F				F	Tetal
, Bu 6				-				Τ	1				T			T				
Burb		-	++										1			Ť		1		
- Pe.nt .								1					1			†		— ——		

Figure 6.7. Psychometric Summary (Cont'd).

- ³ Reference Footnote 2, Table 6.1. Also observe that the percentage in the block (55.4) must be subtracted from 100.0 to determine the percentage of time temperature less than 60°F occurs.
- We assume only integer values for temperature. Thus, the appropriate temperature row is " \geq 32," which is to say that if 5.8 percent of the January minimum temperatures equal or exceed 33°F then 100 5.8 = 94.2 percent of the minimum temperatures must be 32°F or colder. Hence, 0.942 x 31 = 29.2 days or, rounding, 29 days on average can be expected to have a minimum temperature \leq 32°F in January.

Table 6.3. Procedures for Determining Answers To Sample Questions from the Daily Mean Temperature Summary (Figure 6.3, page 41). (All temperatures are in degrees Fahrenheit.)

See Footnote 4, Table 6.1.

The most direct and accurate way to answer this question would be to plot the ogive and then read off the appropriate limits. An alternative is to linearly extrapolate to the specified percentile (in this case giving a temperature range of 26.4°F-43.3°F). A third method would be to realize that the specified range of the 16th-84th percentiles is 68 percent and that for a normal (i.e., Gaussian) distribution the mean plus and minus one standard deviation includes 68 percent of the values. Thus, we may assume a normal distribution and use the mean (34.1) and the standard deviation (8.172) to arrive at the temperature range 25.9-42.3°F. Because of the various errors involved and assumptions required, regardless of method, rounding to the nearest whole degree is suggested.

PSYCHROMETRIC SUMMARY

Figure 6.7. Psychrometric Summary (Cont'd).

Tabl	е	6.	. 3	-	Cont	tinued

	Pertinent	
To Find	Row/Column	Answer
Mean daily temperature in May.	Mean/May	56.0°F1
Daily mean December temperature.	Mean/Dec	27.3°F
Standard deviation of the daily mean November temperature.	S.D./Nov	11.6212
Mean number of July days with daily mean temperature greater than 79°F.	80/Jul	6 ³
Mean number of February days with daily mean temperature less than 45°F.	45/Feb	26 ⁴
Daily mean June temperature which is exceeded 90 percent of the time.	55/Jun and 60/Jun	56°F ⁵
Daily mean September temperature which is exceeded 10 percent of the time.	70/Sep and 75/Sep	7 4°F ⁶
Highest monthly daily mean temperature.	Mean/July	73.6°F
Next to the lowest monthly daily mean temperature.	Mean/Feb	27.1°F
Mean annual number of days with daily mean temperature less than 35°F.	35/Annual	997

OF HE ITT SOLE AT TES OF FIRE ENDING TOTAL TESTINATE. O

		LSW_RT-	⊅₽ S	J11.671.	, ÇİTY		77	7						
			·	· · · · · · · · · · · · · · · · · · ·										
MR: 151	***	7.3	14.2	19.5	28.7	**************************************	7.	51.2	49.2	33.5	25.	1 - 4	12.7	<u>******</u> 2´•*
		15.34					7.44							17.531 1.441
(3m05		7.2		17.4	27.5	37.3	7,499	51,4	48.7 7.412	59.1 8.514	24.3	10.9	12.4	20.1 17.491
		93								100				
6 6− 16	***	15.141		9.065						4 .3 F.43"	7.294	12.9 9.5131	17.4	
		922		929	9 00	729	٠, ٠	927	03	רט י	۲3	: 99	. 5	
o9-11	5 (14.864	17.295	21.3 9.465	9.263	2 42	5 . 7	53.7 7.232	51.4	41.2 8.4d1	3	21.4 9.4201	14.0	۱۰۰ر ۱۲۰۰۶
	C'ALORY	927	847	929	9 ú t.	٦3٦.	٠, ٠,	928	93 \	^ C.3	93^	ئ∂∂د	٥	1 54
		14.417		8.410	3.994	9.372	1.362	7.214	٠.27-	8.435	7.4.7	9.1501	1.214	
	TOTAL DAY	. 9 <u>2</u> 9			•									1,755
		14.503		8,599	P. 945	7.766	". 78°3	7.158	°.197	E. (13	7.545		1.335	14.50
		929	944	_	901			927	.		°2″		92 7	
		14.858	10.012		F.872	3.312	7.794	7.188	P.144	8.475	7.610	9.3641	1.417	17.524
	'UTA. CB)		-	930	997 (= 1			927			93		•	1,747
		14.784	13.060	8.635	9.013	9.701	7.75	7.033	7.703	8.656	7.530	9.3121	1.717	17.4+7
		930								רטי				
HOURS		15.008	10.346	8.755	9.133	4.379	7.967	7.066	7.904	€.639	7.504	9.3661	1.5.7	د. 17.541
	TOTAL OFS	7637	4747	7448	72 17	7427	7101	7410	743	7701	7427	7110	7416	1 7 6 6

Figure 6.8. Means and Standard Deviations for Dew-Point Temperatures in Degrees Fahrenheit from Hourly Observations, 1967-1977.

Table 6.3 - Continue	ed.		
То	Find	Pertinent Row/Column	Answer
Mean number of days mean temperature of		50/Mar	28

If the daily mean temperature is needed, the "MEANS AND STANDARD DEVIATIONS" summary of dry-bulb temperature since for this summary hourly observations are used, instead of "DAILY TEMPERATURES" where only "daily observations" are used. Indeed, this summary (DAILY TEMPERATURES - MEAN) should be used only for determining the distributions of the means and for determining "the number of days with. . ."

 $^{^2}$ See Footnote 1, Table 6.1. Also, the comments of Footnote 1 above apply here as well.

ordinarily, the percentage of time that a phenomenon occurs cannot be readily converted into the mean number of days. In the case of this summary, only one mean temperature is observed per day and as a result, the conversion can be made. The above answer is found by multiplying the percentage of time that the temperatures greater than $79^{\circ}F$ occur (19.0) by the number of days in July (31) and rounding to the nearest whole number. Here, we assume that the mean temperature can assume only integer values so that saying > 79 is equivant to saying ≥ 80 .

⁴ $(1 - 0.079) \times 28 = 25.788$ or 26 days.

24005 ELLS'1.0 T AF SU/APEL CITY 67-77 ALL STATION STATION STATION AND MODELS

CUMULATIVE PERCENTAGE FREQUENCY OF OCCURRENCE (FROM HOURLY OBSERVATIONS)

	HOURS			PERCENTAG	E FREQUENCY	OF RELATIVE	HUMIDITY G	EATER THAN			MEAN	TOTAL
MONTH	(LST)	10%	20%	30%	40%	50%	60%	70%	80%	90%	RELATIVE	NO OF OBS
) <u> </u>	uLL	160.0	99,8	97.5	92.7	76,9	54,5	30,0	11.7	2,7	62.4	743
= t =		100.0	59.3	95.5	87.R	74.5	56.9	25.2	13.6	2.9	62.2	676
·Ag		100.0	97.5	90.6	70.9	48.1	51.9	33.3	15.1	2.6	59.5	743
A F Q		99.5	97.2	89-1	77.2	A2. +	46.9	32.9	13.5	5.9	58.7	720
'AY		100.0	99.4	93.5	79.8	65.2	49.5	32.6	16.6	5.6	59.8	743
R.S.		100.0	99.3	94.5	62.0	A0.1	45.4	28.3	12.9	3.9	58.9	719
JUL		100.0	97.3	P6+1	69.3	49.2	30.9	15.7	5.1	1.6	51.3	741
166		176.0	94.9	P1+0	67.0	44.1	27.A	15.7	7.1	2.3	49.3	743
SEP		94.9	54.E	R2+6	65.8	47.6	31.2	18.2	5.9	1.0	50.3	720
CT		100.0	96.1	850 U	70.3	54.0	38.2	24.7	11.3	3.1	54.0	743
יינע		176.0	98.5	92.0	50.l	43.5	46.9	32.0	19.2	5.1	59.3	718
^EC		100.0	99.5	07.3	91.0	79.4	60•¢	35.9	17.5	4.7	64.1	741
101	ALS	100.0	57.5	90.5	79.2	62	45.0	27.9	13.0	3.5	57.5	8756

Figure 6.9. Cumulative Frequency of Occurrence from Hourly Observations, 1967-1977, Relative Humidity, All-Months.

- ⁵ The correct solution is that temperature associated with the 90th cumulative percentage frequency which must be interpolated from the summary. Linear interpolation is adequate, but plotting the ogive would give a more exact answer (see Footnote 1, Table 6.1).
- ⁶ The answer is found by interpolating for the temperature value at the 10th cumulative percentage frequency (see Footnote 5 above).
- 7 (1 0.729) x 365 = 98.915 or 99 days.
- 8 31 x 0.073 = 2.263 or 2 days.

Table 6.4. Procedures for Determining Answers To Sample Questions from the Extreme Value Maximum Temperature Summary (Figure 6.5, page 43). (All temperatures are degrees Fahrenheit.)

To Find	Pertinent Row/Column	Answer
Extreme maximum temperature in April 1948.	48/Apr	84°F
Extreme maximum temperature in November 1963.	63/Nov	70°F
Extreme all-years June maximum temperature.	74/Jun	106°F
Extreme all-years October maximum temperature	63/0ct	94°F
Highest temperature ever observed during 1952 through 1975.	73/Jul or 73/All-Months	111°F

Figure 6.10. Cumulative Percentage Frequency of Occurrence, Maximum Daily Temperature in Degrees Fahrenheit, July Summary.

Table 6.4 - Continued

To Find	Pertinent Row/Column	Answer
Extreme maximum temperature recorded in 1975.	75/Aug or 75/All-Months	107°F
Standard deviation of the extreme maximum temperature in October.	S.D./Oct	4.1321
Highest monthly mean of the extreme maximum temperature.	Mean/Jul	99.3°F
Lowest monthly mean of the extreme maximum temperature.	Mean/Jan	58.2°F
Highest standard deviation of the monthly extreme maximum temperature.	S.D./Feb	7.115
Lowest standard deviation of the monthly extreme maximum temperature.	S.D./Aug	3.343
Mean annual extreme maximum temperature.	Mean/All- Months	101.6°F
Range over which 68 percent of the annual extreme temperatures can be expected to occur.	Mean and SD/All-Months	98 - 105°F²

See Footnote 1, Table 6.1.

 $^{^2\,}$ Recall that 68 percent of the values in a normally distributed sample will fall between the mean minus one standard deviation and the mean plus one standard deviation. We assume a normal distribution.

Table 6.5. Procedures for Determining Answers To Sample Questions from the Extreme Value Minimum Temperature Summary (Figure 6.6, page 44). (All temperatures are in degrees Fahrenheit.)

To Find	Pertinent Row/Column	Answer
Extreme minimum temperature in March 1949.	49/Mar	-3°F
Extreme minimum temperature in September 1952.	52/Sep	41°F
Extreme all-years May minimum temperature.	54/May	20°F
Extreme all-years minimum temperature for November.	59/Nov	-14°F
Lowest temperature ever observed from 1952 through 1975.	63/Jan or 63/All-Months	-23°F
Extreme minimum temperature recorded in 1971.	71/Feb or 71/All-Months	-20°F
Extreme minimum temperature recorded in 1976	76/Jan or 76/All-Months	-16°F
Extreme minimum temperature recorded in 1949.	49/Jan or 49/All-Months	-25°F
Standard deviation of the mean extreme minimum January temperature.	S.D./Jan	8.2061
Mean annual extreme minimum.	Mean/All- Months	-16.4°F
Month with the highest monthly mean of the extreme minimum temperature.	Mean/Jul	Jul
Month with the lowest monthly mean of the extreme minimum temperature.	Mean/Jan	Jan
Largest standard deviation of the mean monthly extreme minimum temperature.	S.D./Mar	10.070
Smallest standard deviation of the mean monthly extreme minimum temperature.	S.D./Aug	3.403

See Footnote 1, Table 6.1.

Table 6.6. Procedures for Determining Answers To Sample Questions from the All-Months Psychrometric Summary (Figure 6.7, page 45). (All temperatures are in degrees Fahrenheit.)

To Find	Pertinent Row/Column	Answer
Mean annual number of hours with dry-bulb temperature (air temperature) of 93°F or more.	Dry Bulb/Mean No. of Hours with Temperature	72.3 ¹

Table 6.6 - Continued

Mean annual number of hours with wet-bulb temperature of 73°F nor less. Mean annual number of hours with the dew-point temperature of 73°F nor more. Mean annual percentage of time dry-bulb temperature of 79 or 80°F (80/79) and wet-bulb depression of 13-14. Mean annual percentage of time nor more time nor more time nor more. Mean annual percentage of time nor more nor more nor nor nor nor nor nor nor nor nor nor
wet-bulb temperature 32°F or less. No. of Hours with Temperature Mean annual number of hours with Dew Point/Mean 1.0 the dew-point temperature of 73°F No. of Hours or more. Mean annual percentage of time 80/79 / 13-14 0.2 dry-bulb temperature of 79 or 80°F (80/79) and wet-bulb depression of 13-14. Mean annual percentage of time 74/73 / 15-16 0.4 with dry-bulb temperature 74/73 and
the dew-point temperature of 73°F No. of Hours or more. Mean annual percentage of time dry-bulb temperature of 79 or 80°F (80/79) and wet-bulb depression of 13-14. Mean annual percentage of time with dry-bulb temperature 74/73 and
dry-bulb temperature of 79 or 80°F (80/79) and wet-bulb depression of 13-14. Mean annual percentage of time 74/73 / 15-16 0.4 with dry-bulb temperature 74/73 and
with dry-bulb temperature 74/73 and
wet-buib depressions of 13-10.
The total number of dry-bulb Total D.B./W.B. 6983 temperatures 88/87 for which wet-bulb temperatures were simultaneously reported.
Total number of dry-bulb temperatures 88/87 / Dry Bulb 7004 reported in the 88/87 range.
Mean annual percentage of time with Total/1-2 20.0 wet-bulb depressions of 1-2.
Mean annual percentage of time 72/71 0.05 with dry-bulb temperature 72/71 and wet-bulb depressions of O.
Mean annual percentage of time 46/45 / 0-10 3.2 with dry-bulb temperatures 46/45 and wet-bulb depressions of 0-10.
Mean annual percentage of time Total/1-4 35.9 with wet-bulb depressions of 1-4.
Total number of dry-bulb and total Total/Total 87634 number of wet-bulb temperature (Dry Bulb and observations. Wet Bulb) 87564
Mean annual number of hours with Dry Bulb/Mean 1165.3 dry-bulb temperatures of 73° or No. of Hours greater. with Temperature
Mean annual dry-bulb temperature. Dry Bulb/ \bar{x} 47.16
Standard deviation of the wet-bulb Wet Bulb/ $\sigma_{_{\mbox{\scriptsize X}}}$ 17.261 temperature.
Mean annual dew-point temperature. Dew Point/ \bar{x} 30.9
Mean annual relative humidity. Rel. Hum. $/\bar{x}$ 57.4

If this value had not already been calculated, it could be found by summing up the number of hours that had a dry-bulb temperature of $93^{\circ}F$ or greater, dividing by the total number of dry-bulb temperatures observed and multiplying by the number of hours in a year. This methodology must be followed to find, for instance, the number of hours per year with temperature between 95 and $100^{\circ}F$ (Answer: ((202 + 124 + 69)/87634)x(365.25x24) = 39.51 or 40 hours).

- The wet-bulb temperature is determined by wetting the muslin covering around the base of the wet-bulb thermometer, expediting the evaporation of the water from the muslin by whirling the thermometer, ventilating it, etc., and reading the resulting temperature. The values of the air pressure and wet-bulb depression (dry-bulb minus wet-bulb temperatures) are used with look-up tables to obtain the dew-point temperature, vapor pressure, and relative humidity. For more information, refer to Marvin (1941).
- ³ Wet-bulb temperatures were usually not reported before 1946; therefore, it is often desirable to know how many dry-bulb temperatures for a given range, e.g., 88/87 were accompanied by simultaneously observed wet-bulb temperatures. The 'Total D.B/W.B.' block permits this information to be determined.
- ⁴ From this and the preceding exercise, it is concluded that two observations in the 88/87 dry-bulb temperature range lacked associated wet-bulb temperatures.
- ⁵ The answer of 0.0 means that some observations occurred in the range considered but this amounted to less than 0.05 percent. For those blocks with no entries, no values in those categories were ever observed during the period of record (1967-1977).
- This temperature $(47.1^{\circ}F)$ should be the same as that listed for the annual mean temperature $(47.5^{\circ}F)$ in the daily mean temperature summary (Figure 6.5). The numerical difference between the two is due to the method of computation. The dry-bulb temperature in this section is calculated from the expression where \bar{x} is the mean, Σx is the sum of all the temperatures, and N is the total number of temperatures observed. The mean from Figure 6.1 was based not on all hourly observations but on "daily observations" of the maximum and minimum temperatures (mean = (max + min)/2). The mean value of 47.1 given here is identical with that from the "Means and Standard Deviations" summary.
- The standard deviation is a measure of the deviation of individual numbers of a given distribution from the mean of the distribution. For a normal or Gaussian distribution, 68 percent of the numbers are included between the mean minus one standard deviation and the mean plus one standard deviation. The standard deviation (σ_{χ}) can be calculated from the expression $\sigma_{\chi} = ((\Sigma x^2/N) (\Sigma x/N)^2)^2$. The statistical terms Σx^2 , Σx , and N are all included in this summary.

Table 6.7. Procedures for Determining Answers To Sample Questions from the Dew-Point Temperature (Means and Standard Deviations) Summary (Figure 6.8, page 48). (All temperatures are in degrees Fahrenheit.)

To Find	Pertinent Row/Column	Answer
Mean May dew-point temperature during 12-14 LST.	12-14 (Mean)/ May	41.5°F
Mean January dew-point temperature.	All-Hours (Mean)/Jan	9.1°F
Mean annual dew-point temperature luring 06-08 LST.	06-08 (Mean)/ Annual	30.2°F
Standard deviation of the August dew-point temperature during 21-23 LST.	21-23 (S.D.)/Aug	7.703
Highest and lowest mean April dew- point temperature during a standard 3-hourly interval.	12-14 (Mean)/Apr 03-05 (Mean)/Apr	30.5°F 27.5°F
Greatest 3-hourly standard deviation of the September dew-point temperature.	15-17(S.D.)/Sep	8.813
Lowest mean annual 3-hourly dew-point temperature.	03-05(Mean)/Ann	29.1°F

Table 6.7 - Continued

	Pertinent	
To Find	Row/Column	Answer
Standard deviation of the June dew- point temperature.	All-Hours (S.D.)/ Jun	7.963
Values of the 16th and 84th percentiles of the 15-17 LST December dew-point temperature.	15-17 Mean and S.D./Dec	4.1°F 26.7°F
The 99.95th percentile lowest July dew-point temperature.	All-Hours Mean and S.D./Jul	29.3°F³
The 99.95th percentile highest November dew point.	All-Hours Mean and S.D./Nov	51.1°F
Greatest 3-hourly standard deviation of the dew-point temperature.	00-02(S.D.)/Jan	15.340

¹ The standard deviation is a measure of the deviation of individual numbers of a given distribution from the mean of the distribution. For a normal or Gaussian distribution, 68 percent of the numbers are included between the mean minus one standard deviation and the mean plus one standard deviation.

Table 6.8. Procedures for Determining Answers To Sample Questions from the All-Months Relative Humidity Summary (Figure 6.9, page 49).

To Find	Pertinent Row/Column	Answer
Mean January relative humidity.	Jan/Mean Relative Humidity	62.4%
Mean May relative humidity.	May/Mean Relative Humidity	59.8%
Month with highest mean monthly relative humidity.	Dec/Mean Relative Humidity	Dec
Month with lowest mean monthly relative humidity.	Aug/Mean Relative Humidity	Aug
Mean annual percentage of time when the relative humidity is greater than 60 percent.	Totals/60%	45.0
Mean annual percentage of time when the relative humidity is less than or equal to 50 percent.	Total/50%	37.2
Mean percentage of the time that July relative humidity is greater than 90 percent.	Jul/90%	1.6

² The required values are obtained by adding to and subtracting from the mean one standard deviation. The dew-point temperature distribution can be assumed to be almost normal (Gaussian).

³ In a normal distribution the 0.05th percentile lowest value is determined by multiplying the standard deviation (7.066) by 3.29 and subtracting the product (23.2) from the mean (52.5). This value would ordinarily be exceeded 99.95 percent of the time in July. The value 3.29 is the number of standard deviations from the mean to the 99.95th percentile assuming a normal distribution.

Table 6.8 - Continued		· · · · · · · · · · · · · · · · · · ·
To Find	Pertinent Row/Column	Answer
Month with the highest percentage of relative humidity greater than 80 percent.	Apr and Nov/80%	Apr & Nov
Month with the highest percentage of relative humidity greater than 30 percent.	Jan/30%	Jan
Number of observations during the period of record (1967-1977) with relative humidity greater than 70 percent in November.	Nov/70%(Total No. of Obs)	2300¹
Mean percentage of time in September with relative humidity less than or equal to 46 percent.	Sep/40% and 50%	54.92

 $^{^1}$ The value 2300 is calculated by multiplying the percentage frequency of relative humidity of greater than 70 percent (0.32) by the total number of observations (7188).

 $^{^2\,}$ The percentage frequency of relative humidity greater than 46 percent (54.9) is approximated by linear interpolation.

Chapter 7

PRESSURE SUMMARY (PART F)

7.1 General

Part F of the RUSSWO contains two types of summaries, the Station Pressure Summary (Figure 7.1) and the Sea-Level Pressure Summary (Figure 7.2). The Station Pressure Summary contains means, standard deviations, and total observations of station pressure in inches of mercury for eight selected hours and for all hours of the day by month. The Sea-Level Pressure Summary includes the same statistical treatments and categories as the station pressure except that the pressure for mean sea level is expressed in millibars. Both summaries are derived from 3-hourly observations.

Monthly and annual station pressure and mean sea-level pressure distributions are near normal (Gaussian) although some positive or negative skewness occurs. Additionally, deviations from the normal distribution occur near the extremities of these pressure distributions. Unless great accuracy is desired, these pressure distributions can usually be considered as normal.

7.2 Definitions

For most stations located at airfields in the United States, station pressure is that pressure recorded at the station elevation which is defined in paragraph 7.2.1. Other elevations listed in various publications are often wrongly interpreted as this station elevation. The three types of elevation generally used are defined in paragraphs 7.2.1 through 7.2.3. Complete explanations on the various definitions can be found in the Federal Meteorological Handbook, No. 8 (1963) and current definitions can be found in WMO/OMM No. 9 (1983).

- 7.2.1 <u>Station Elevation</u>. Station elevation is the datum level to which barometric pressure reports at the station refer. These pressure values are called "station pressure" and are understood to refer to the given level for the purpose of maintaining continuity in the pressure records.
- 7.2.2 <u>Field Elevation</u>. Field elevation is the official elevation of an airport which is given for meteorological stations located at airports. This elevation is the highest point of the airport runway above mean sea level. This elevation is printed on the front cover of the RUSSWO. Field elevations can be found in the USAF/USN Flight Information Publication, Enroute Supplements (1983).
- 7.2.3 <u>Barometer Elevation</u>. Barometer elevation is the height above mean sea level at which the barometer (ivory point) at a station is positioned. Many stations not located at airfields and those located in or near cities in the United States use the barometer level as their reference point.
- 7.2.4 Climatological Station Elevation. Climatological station elevation is the elevation above mean sea level used as the reference datum level for all climatological records of atmospheric pressure in a given locality; it is not necessarily the same as station elevation. The reduction of pressure to this standard elevation is necessary only if a station has changed its specific location but has stayed within the general area so that the two or more sets of records remain comparable.

7.3 Exercises For the Station Pressures and Sea-Level Pressure Summaries

Tables 7.1 and 7.2 contain a variety of questions with procedures for determining answers from the Station Pressure Summary (Figure 7.1) and Sea- Level Pressure Summary (Figure 7.2), respectively. Many of the answers can be determined directly from the summary and others require additional supporting information to arrive at a solution. Extensive footnoting is used in cases which require supporting information to determine an answer. The exercises are intended only to acquaint the user with the type of information that can be gleaned from these data summaries and as such, are not intended to be comprehensive.

DATA PRICESSI G BRA.CH USAF ETAC AIK EATHER SERVICE/TAC

ELLSWURT + AFR SUZKAPID CITY

24304

MEANS AND STANDARD DEVIATIONS

STATICY PRISSING IN INCHES HE FROM HEINLY EBSERVATIONS

5141.0	~	Staf ON NAME					rt +4)							
HET LS.		.AN	f E B	MAI	APP	MA1	JUN	701	AUG	SEP	001	NOV	DEC	ANNUAL
	MEAN	26.535	6.554	26.492	26.504	26.5362	A . 524.	6. 6122	6.5942	6.605	5,598	6.5742	6.521	26,554
J2	5 C	.215	.237	.204	.211	.173	157	.141	.123	.182	.194	.206	.208	. 192
	_101AL 085	351				303								
		26.525					4 233			4 404	4 604	4 .753	A 813*	- A 453
۸.						2-و-،05 176.								.194
05		.211												
	O'AL OBS	297	20 n		284	100	794.	200	307	645	307	. / (0_	2012	3523
+	WEAN	26.543	6.567	26.565	26.521	26.5532	A . RGR	5.6382	4.6172	6.624	5.614	6.5952	6.532	26. 471
6.4						.178								
-	101AL CBS	301												
		26.546							4 400	4 419	· 600	4 5093	4 630°	34 347
11		.213											-210 304	
	O'AL OBS	304	. 212	- 304		107.	799	<u> 2</u> 0 4,	301	. 277	274	/07		3559
	MEAN	26.515	6.537	26.475	6.495	26.4172	4,512	26.5.52	6.5752	6.5752	6.970	6.5562	6.504	26.536
14		.216												
	10'AL 285	299	278	299	269	321	295	289	299	286	302	291	307	3536
		26.531	4 84 8			14 E0E3	4 404	A 89A	A 5603	6 876	4 877º	A 6685	A 822	26 825
17		.216												
L/														
		302	212	3(,3			793.	280	677.	6 7 2.			- 350	3:31
	MEAN	26.534	6.564	26.504	26.527	26.5292	6.414	25.5992	6.5842	6.6072	6,6012	6.5752	c.532	26.555
21		.220	.202	.201	.200	.17A	.152	.135	.11#	.176	.199	.212	.206	
	1014: 085	290	274	3 <u>C</u> 7	293	302	294	_ 285	301	290	301	289	304	3530
		26.5392	4 5.2			A E413	4 833	4 6303	A 8903	A 4122	4 4023	A 59A2	6 522	26 862
23						.183							207	
63		299												
ALL		26.5342												
HOURS	5 0					•13n							.20A	
	TOTAL OBS	2393	2190	2427	2351	2429	2767	2291	2921	2537	2417	2284	2426	28324

Figure 7.1. Means and Standard Deviations of Station Pressure in Inches Hg from Hourly Observations, 1967-1977.

Table 7.1. Procedures for Determining Answers To Sample Questions from the Station Pressure Summary (Figure 7.1, page 57).

To Find	Pertinent Row/Column	Answer
Mean January station pressure.	Mean (All-Hours)/Jan	26.534 in
Standard deviation of 0800 LST June station pressure.	S.D. (08)/Jun	0.161 in
Values of the October station pressure ranging from the 16th through the 84th percentile.	Mean and S.D. (All-Hours) Oct	26.397 to 26.795 in ¹
Mean annual station pressure in millibars.	Mean (All-Hours)/ Annual	899.23 mb ²
The 0.05th percentile lowest May station pressure.	Mean and S.D. (All-Hours)/May	25.941 in ³
The 99.95th percentile highest May pressure altitude.	See Footnote 4 Below	3900 ft
Mean annual 0500 LST station pressure.	Mean (05)/Annual	26.533 in
Mean 1400 LST July pressure altitude.	See Footnote 5 Below	+3200 ft

ELLSWORTH AFB SO/KAPIU CITY

MEANS AND STANDARD DEVIATIONS

SEA LEVEL PRESSING IN MAS FRUT HURRLY UBSERVATIONS

51A1-01	•		57.41	04 4441						TEARS				
HRS ILST		IAN	***	M A.S	APR	WAT	IUM	17.	AUG	569	001	NOV	Dir.	ANNUAL
02	MEAN 5 D TOTAL OBS	1017.7 9.933 310	6.545	9.053	8.026	7.313	6.423	5.793	1012.91 5.147 310	7.641	P.47P	1016.8 8.664 299	P.884	A . 273
05	MEAN S D TOTAL OBS	9.801	1017.4	9.144	013.1 8.772	1017.7	1/11.5	1014.11 5.732	1013.31	014.9	116.2	1017.3	1016.5 3.716	
08		1018.4	1018.3	9.108	1013.a	1017.4	10; Ñ.9; 6.442	1014.51		7.674	1716.9 9.321	1018.7 8.592	1717.2	•
11	S D		8,779	9.178	8.794	7.468	6.460	5.643	5.200	7.729	3.381	8.489	1.865	1015.1 9.30 3653
14	MEAN S D TOTAL OBS	9.853	8.700	9.131	8,653	7.462	6.489	5.565	1012.21 5.095 309	7.591	9.261	8,605	F. 851	1013.9 8.189 3651
17	MEAN 5 D TOTAL OBS	9.839	8.560	8,891	8.464	7.497	6.271	5.532	1011.71 5.032 310	7.486	9.194	8.620	1016.9 8.691 310	1014.1 8.262 365
20	MEAN S D TOTAL OBS		8,636	014.91 8.727 310	8,495	7.291	6.11	5.479 310	4.903	014.81 7.440 300	116.4 9.292 311	8.769	1017.3 8.705 310	1015.0 8.227 3647
23	MEAN S D TOTAL OBS	10.036	8,688	8.970 310	8,629	7.361	6.293	5.728	013.11 5.069 308	7.523	016.13 9.513 310	8.865	1^16.9 9.833 317	1015.0 P.242 3647
ALL	MEAN S D TOTAL OBS	1017.91 9.870 2479	8.725	9.033	8.681	7.385	6.375	5.667	012.91 5.159 2476	7.612	2.371	8.494	9.835	1014.8 8.261 29204

Figure 7.2. Means and Standard Deviations of Sea-Level Pressure in MB from Hourly Observations, 1967-1977.

- ¹ The required pressures are obtained by adding to and subtracting from the mean (26.596) one standard deviation (0.199).
- The beginning of Part F of all RUSSWOs has a pressure altitude versus barometric pressure scale. It can also be used to convert pressures in inches of mercury to millibars. For more accurate conversion, use 1 inch = 33.864 millibars.
- 3 In a normal distribution the 0.05th percent lowest value is determined by multiplying the standard deviation (0.180) by 3.29 and subtracting the product (0.592) from the mean (26.533). This value would ordinarily be exceeded 99.95 percent of the time in May.
- This value is found by entering the pressure altitude-barometric pressure scale at the beginning of each F Summary with 25.941 inches found in the previous exercise. A more accurate answer is 3897 feet which can be found by consulting FMH-8 (USWB 1963) or the US Standard Atmosphere, 1962. Simply enter the appropriate table with the given pressure to find the equivalent pressure altitude. A value greater than the pressure altitude found has a chance of occurring only 0.05 percent of the time.
- ⁵ Use the pressure altitude-barometric pressure scale. Enter with the mean station pressure at 1400 LST in July (26.606). The scale, of course, is very crude and tables should be used for greater accuracy.
 - Table 7.2. Procedures for Determining Answers To Sample Questions from the Sea-Level Pressure Summary (Figure 7.2, page 58).

Table 7.2 - Continued

Table 7.2 - Continued				
To Find	Pertinent Row/Column	Answer		
Mean November sea-level pressure.	Mean (All- Hours)/Nov	1017.2 mb		
Mean sea-level pressure at 1700 LST in February in inches Hg.	Mean (17)/Feb	30.038 in ¹		
January hour (LST) with the lowest mean of the sea-level pressure.	Mean (14)/Jan	1400		
Annual Hour (LST) with the greatest standard deviation.	Mean (11)/ Annual	1100		
August hour (LST) with the smallest standard deviation.	S.D. (20)/Aug	2000		
Values of the April sea-level pressure spanning the 16th through 84th percentile.	Mean and S.D. (All-Hours)/ April	1004.4 to 1021.8 mb ²		
The 0.05th percent lowest May sea-level pressure.	Mean and S.D. (All-Hours)	988.3 mb ³		
The 99.95th percent highest May pressure altitude at station.	See Footnote 4 Below	3966 ft		
The 50th percentile of the 0500 LST sea level January pressure.	Mean (05)/Jan	1017.7 mb ⁵		
Month with the lowest mean sea-level pressure.	Mean (All-Hours)/ Jun	Jun		
Month with the highest mean sea-level pressure	Mean And S.D. (All-Hours)/Jan	Jan		
Greatest hourly standard deviation.	S.D. (23)/Jan	10.036		
Value of the November sea-level pressure which has a probability of being exceeded 16 percent of the time.	Mean And S.D. (All-Hours)/Nov	1025.9 ⁶		

¹ At the beginning of Part F of all RUSSWOs is a pressure altitude versus pressure scale. It can also be used to convert pressures in millibars of mercury to inches. For more accurate conversion, use one millibar equals 0.02953 inches of mercury.

² The required sea-level pressures are obtained by adding to and subtracting from the mean (1013.1) one standard deviation (8.681). We assume a normal distribution of sea-level pressure.

³ In a normal distribution, the 0.05th percent lowest value is determined by multiplying the standard deviation (7.385) by 3.29 and subtracting the product (24.30) from the mean (1012.6). This value would ordinarily be exceeded 99.95 percent of the time in May.

⁴ The answer can be closely approximated by entering the pressure altitude-barometric pressure scale with 988.3 millibars (29.184 inches of mercury), obtaining the pressure altitude (690 feet) and algebraically adding to it the field elevation (3276 feet). Compare this value with that determined in Table 7.1 from the station pressure.

 $^{^{5}}$ In a normal distribution the 50th percentile is identical with the mean.

⁶ The 84th percentile satisfies the criterion. Hence, the sought-after value is the mean plus one standard deviation.

REFERENCES

- AWS-TR-77-267, "Guide for Applied Climatology," November 1977, 156p (AD-A052579).
- DOD Flight Information Publication, Enroute Supplement Europe, North Africa and Middle East, Effective 14 April 1983 to 12 May 1983.
- Federal Aviation Administration, 1979: "Advisory Circular," AC 91-54, Washington DC, February 26, 1979.
- Gringorten, Irving I., 1960: "Extreme-Value Statistics in Meteorology A Method of Application," AFCRL TN-60-442 (also in AF Survey in Geophysics No. 125), June 1960, 71p (AD-245023).
- Marvin, C. F., 1941: Psychrometric Tables for Obtaining the Vapor Pressure, Relative Humidity, and Temperature of the Dew-Point, US Government Printing Office, Washington, D.C., 1941, 87p.
- Panofsky, Hans A., and Glenn W. Brier, 1968: Some Applications of Statistics to Meteorology, Pennsylvania State University, University Park, PA, 1968, 224p.
- Revised Uniform Summary of Surface Weather Observations (RUSSWOS), 1983:

 - Part A: Weather Conditions; Atmospheric Phenomena.

 Part B: Precipitation and Snow Depth (Daily amounts and extreme values).
 - Part C: Surface Winds.
 - Part D: Ceiling versus Visibility; Sky Cover.
 - Part E: Psychrometric Summaries (Daily maximum and minimum temperatures, extreme maximum and minimum temperatures, psychrometric summary of wet-bulb temperature depression versus dry-bulb temperature, means and standard deviations of dry-bulb, wet-bulb and dew-point temperatures and relative humidity).
 - Part F: Pressure Summary (Means, standard, deviations, and observation counts of station pressure and sea-level pressure).
- USAFETAC TN 77-2, "USAFETAC Data Base Handbook," December 1977, 80p (AD-A061955).
- U.S. Standard Atmosphere, 1962, US Government Printing Office, Washington, D.C., 1962, 278p.
- US Weather Bureau, 1963: "Manual of Barometry (WBAN)," Federal Meteorological Handbook, No. 8, 1st ed., US Government Printing Office, Washington, D.C., 1963.
- US Weather Bureau, 1979: "Surface Observations," Federal Meteorological Handbook, No. 1, 2nd ed., US Government Printing Office, Washington, D.C., 1 January 1979.
- World Meteorological Organization, 1971: "Technical Regulations Procedures."
- World Meteorological Organization, 1982: "Weather Reporting Messages, Observing Stations, Volume A, WMO/OMM No. 9 June 1982.

9-83

DIFIC