

Figura 1.2.1 θ es el ángulo entre los vectores \mathbf{a} y \mathbf{b} .

Algunas propiedades del producto escalar se deducen de la definición. Si $\mathbf{a}, \mathbf{b} \ \mathbf{y} \ \mathbf{c}$ son vectores en $\mathbb{R}^3 \ \mathbf{y} \ \alpha \ \mathbf{y} \ \beta$ son números reales, entonces

- (I) $\mathbf{a} \cdot \mathbf{a} \ge 0$; $\mathbf{a} \cdot \mathbf{a} = 0$ si y solo si $\mathbf{a} = \mathbf{0}$.
- (II) $\alpha \mathbf{a} \cdot \mathbf{b} = \alpha (\mathbf{a} \cdot \mathbf{b})$ y $\mathbf{a} \cdot \beta \mathbf{b} = \beta (\mathbf{a} \cdot \mathbf{b}).$
- (III) $\mathbf{a} \cdot (\mathbf{b} + \mathbf{c}) = \mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{c}$ y $(\mathbf{a} + \mathbf{b}) \cdot \mathbf{c} = \mathbf{a} \cdot \mathbf{c} + \mathbf{b} \cdot \mathbf{c}$.
- (IV) $\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a}$.

Para demostrar la primera de estas propiedades, obsérvese que si $\mathbf{a} = a_1\mathbf{i} + a_2\mathbf{j} + a_3\mathbf{k}$, entonces $\mathbf{a} \cdot \mathbf{a} = a_1^2 + a_2^2 + a_3^2$. Puesto que a_1, a_2 y a_3 son números reales, sabemos que $a_1^2 \geq 0, a_2^2 \geq 0, a_3^2 \geq 0$. Por tanto, $\mathbf{a} \cdot \mathbf{a} \geq 0$. Además, si $a_1^2 + a_2^2 + a_3^2 = 0$, entonces $a_1 = a_2 = a_3 = 0$; por tanto, $\mathbf{a} = \mathbf{0}$ (vector cero). Las demostraciones de las restantes propiedades del producto escalar se pueden obtener también fácilmente.

A partir del teorema de Pitágoras se deduce que la **longitud** del vector $\mathbf{a} = a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k}$ es $\sqrt{a_1^2 + a_2^2 + a_3^2}$ (véase la Figura 1.2.2). La longitud del vector \mathbf{a} se denota mediante $\|\mathbf{a}\|$. Esta magnitud a menudo se denomina **norma** de \mathbf{a} . Puesto que $\mathbf{a} \cdot \mathbf{a} = a_1^2 + a_2^2 + a_3^2$, se sigue que

$$\|\mathbf{a}\| = (\mathbf{a} \cdot \mathbf{a})^{1/2}.$$

Figura 1.2.2 La longitud del vector ${\bf a}=(a_1,a_2\,,\,a_3)$ viene dada por la fórmula pitagórica: $\sqrt{a_1^2+a_2^2+a_3^2}$.