DOCUMENTAÇÃO DE **SOFTWARE**

1. Introdução

O que é documentação de **software**?

Qualquer **software**, se encarado como a implementação de uma solução de problema em computador, pode ser comparado a um mapa. Entretanto, se a esse mapa faltarem legendas, marcas e orientações, ele será de pouco valor. Desse mesmo modo, pode-se imaginar um programa sem documentação.

Para quê é necessária?

- Para decidir a compra
- Para instalar o produto
- Para treinar o usuário
- Para permitir o uso eficiente
- Para permitir a alteração
- Para informar a correção de erros

Como deve ser a documentação de software?

- Completa e pertinente ao serviço a que se destina
- Com o nível adequado de detalhes
- Apropriada ao tipo de usuário e inteligível
- Testada como o software
- Bem apresentada
- Fácil de ser trabalhada

2. Documentação de programa

O que é documentação de programa?

Dentre os diversos documentos que acompanham um determinado **software**, a documentação de programa é aquele mais próximo da descrição da solução implementada, comentando-a e fornecendo informações técnicas que possibilitem a sua melhor compreensão.

Para que serve a documentação de programa?

- Para responder às consultas sobre a performance operacional do software
- Para a identificação e correção de erros
- Para auxiliar na alteração do software, seja através do desenvolvimento de seus recursos, seja pelo acréscimo de novas funções
- Para manter sempre atualizada a descrição

Quem deve fazer documentação de programa?

Cabe principalmente ao profissional responsável pela implementação determinar a forma, o conteúdo e a adequação do documento.

Quando deve ser feita a documentação de programa?

- Desde a fase de planejamento
- Durante a fase de implementação
- - Durante a fase de desenvolvimento
- Após qualquer revisão

3. O que deve conter a documentação de programa?

0. Apresentação

- capa
 - identificação do sistema
 - identificação do programa
 - data da última atualização
 - responsável pelo produto
- índice geral
- índice de figuras, diagramas, fluxogramas
- índice de anexos
- índice de listagens
- referências

1. Identificação

- nome do programa
- identificação do sistema
- identificação do programa
- data de implementação
- data da última revisão
- responsável pelo produto
- localização do produto

2. Ambiente

- equipamento de desenvolvimento
- sistema operacional (versão)
- compilador / interpretador (versão)
- forma de compilação e edição (montagem)
- equipamento de uso
- requisitos de operação

3. Conteúdo

- sumário dos objetivos
- descrição de ambiente
- estrutura e relacionamento dos módulos
- descrição de cada módulo
- lógica de cada módulo
 - método / algoritmo
 - diagramas / fluxogramas
 - formulário técnico
 - limitações / extensões
- descrição de dados e abstrações
 - dicionário de dados
 - nome, tipo, faixa de valores, valores iniciais e tolerâncias
 - verificações e observações
 - fluxo de dados
 - importações / exportações
 - opções
- listagens
 - numeração de linhas e páginas
 - destaque das palavras-chaves, dos títulos, dos módulos
- tratamento de erros
 - situações de erros previstas
 - classificação e forma de tratamento dos erros
 - mensagens de erros
 - explicações
- operação
 - carga
 - fornecimento de dados
 - resultados esperados
 - exemplos
- testes
 - dados
 - resultados
 - condições avaliadas
 - limitações
 - extensões possíveis

4. Recomendações para a documentação de programas

4.1 O uso de comentários

Comentários devem ser empregados no desenvolvimento de programas com o objetivo de ilustrar e explicar detalhes de seu funcionamento.

Os programas são as traduções de algoritmos expressos através de linguagens de programação. Sua legibilidade deve ser buscada sempre, como indicador de qualidade, e o uso de comentários pode ser útil nesse sentido.

Após as etapas de análise do problema e confecção de sua solução algorítmica, pode passar-se à escolha da linguagem de programação mais apropriada à natureza do problema e às exigências da solução elaborada. A tradução do algoritmo para a linguagem deve ser uma atividade realizada de maneira sistemática, cuidadosa, buscando preservar todas as informações contidas no algoritmo, inclusive os comentários acrescidos durante o desenvolvimento.

Além disso, os comentários devem servir para esclarecer detalhes específicos da implementação. É sugerido incluir:

- uma breve descrição dos objetivos do programa ou da abstração de comandos que estiver sendo desenvolvida;
- o autor e datas de escrita e de última atualização; e neste caso, quais as modificações realizadas;
- uma breve descrição de como utilizá-lo; no caso de abstrações, incluir também a descrição e utilidade de cada parâmetro;
- uma descrição sucinta de tipos, variáveis e constantes empregadas;
- uma descrição sucinta de arquivos e dispositivos de entrada e/ou saída necessários;
- uma breve descrição ou referência para métodos ou procedimentos especiais empregados;
- avaliação de custo de processamento (tempo e memória requeridos).

Dentre outras recomendações para a melhoria de legibilidade pode-se citar:

- a utilização de espaços em branco:
 - · entre definições;
 - entre operadores, quando conveniente;
 - antes e depois de comentários ou de seções de código
 - para separar trechos que atendam a objetivos distintos;
 - para destacar a parte principal de um programa;
- a escolha de identificadores representativos para tipos, constantes, variáveis, funções, procedimentos e arquivos;
- · o uso de um comando por linha;
- a utilização de parênteses para explicitar prioridades;
- o emprego de endentação (deslocamento para a direita) e identificação de blocos associados às estruturas ou às abstrações;
- a busca da clareza na escolha de representações de dados e estruturas de controle;
- o detalhamento de testes e verificações de condições especiais para utilização;
- o cuidado no emprego e na explicação de particularidades de uma linguagem ou de característica de um compilador ou interpretador.

É pensamento frequente a crença de que a qualidade de um programa é avaliada apenas pelo seu funcionamento correto. A correção de um programa é uma atividade criteriosa que deve levar em conta vários fatores, inclusive a própria documentação. Um bom programa pode não estar funcionando bem, mas ter uma boa documentação que sugira suas fraquezas, onde encontrá-las e, talvez, como superá-las; um programa que funcione, mas não possa ser alterado ou expandido com facilidade, por falta de informações, é de pouca utilidade.

5. Exemplo

PUCMinas – Curso de Ciência da Computação	TP
ALGORITMOS E ESTRUTURAS DE DADOS I	DATA//
NOME DO PROGRAMA :	
PROGRAMADOR :	

1. Identificação

Nome do Programa : Equação.java

Objetivo:

Este programa tem por objetivo o calculo das raízes reais de uma equação de segundo grau, dados os coeficientes.

Os dados serão fornecidos em um arquivo em disco de nome DADOS.TXT.

2. Ambiente

Equipamento

Desenvolvimento : PC compatível Uso : PC compatível

Sistema Operacional

Versão : qualquer Compatibilidade : qualquer

Linguagem

Compilador : Sun Java Compiler

Versão : v.1.8.0_241

Forma de Edição : jGrasp v.2.6.02_01

Forma de Compilação : do próprio

Forma de Execução : Run in console window

Exemplo alternativo:

C:\>javac Equação.java <ENTER> C:\>java Equacao <ENTER>

- 3. Conteúdo
- 3.1 Descrição sumária de funcionamento

3.1.1 Descrição de ambiente

3.1.2 Diagrama funcional

3.1.3 Descrição de funcionamento

Acionado o programa, ele procurará pelo arquivo DADOS.TXT, e lerá os coeficientes A, B, C. O valor de A será testado, para verificar se a equação é mesmo do segundo grau; se for, será calculado o delta. Se o valor de delta for positivo ou nulo, serão calculadas e exibidas as raízes. Os resultados também serão guardados em arquivo.

Exemplo:

C:\>Equacao

Calculo de raizes reais de equação do 2º. grau :

Dados:

Equacao: $1 \times ^2 + 4 \times + 4 = 0$

Resultados:

X1 = -2.000X2 = -2.000

Apertar <ENTER> para continuar.

C:\>

3.2 Descrição de dados

Nome	Tipo	Valor Inicial	Limites	Observações
dados	Coeficientes			dados do arquivo
а	inteiro			primeiro coeficiente
b	inteiro			segundo coeficiente
С	inteiro			terceiro coeficiente
delta	real			valor de delta
Х	Raízes			resultados

3.3 Descrição de métodos

3.3.1 Descrição de funções

		Funçã	io
Nome: calcula	ar_Raiz		
Objetivo:	roiz do oque	saão do acaus	do arou
		ição de segund ficientes (a), (b	
		o valor de delt	
	,		
Retorno	Tipo		Observações
raiz	real	valor cal	culado de uma raiz da equação
		D	
	Parâmetros		
Nome	Tipo	Passagem	Observações
а	inteiro	valor	primeiro coeficiente
b	inteiro	valor	segundo coeficiente
С	inteiro	valor terceiro coeficiente	
sinal	inteiro	valor sinal da raiz de delta	
delta	real	valor	valor calculado de delta
		Teste	S
D			
Para os valor		1 a 1 aina	l 11 delte 0.0
Resultado:	a = 1, b	= 4, C =4, Sina	ll = +1, delta = 0.0
raiz = -2.00			
	Limite	es / Extensões	/ Observações
- Somente ca		iz;	
- Poderia calc	cular o sinal.		

3.3.2 Descrição de procedimentos

		Procedime	nto
Nome: Calcula	ar Delta		
Objetivo:	<u> </u>		
Calcular o valo	or de delta po	or meio da exp	ressão:
$delta = b^2 -$	4·a·c		
		Parâmetro	os
Nome	Tipo	Passagem	Observações
а	inteiro	valor	primeiro coeficiente
b	inteiro	valor	segundo coeficiente
С	inteiro	valor	terceiro coeficiente
delta	real	referência	valor calculado de delta
		Testes	
Para os valore	s:		
a = 1, b = 4, c = 4			
Resultado:			
		Delta = 0.	0
	Limites	/ Extensões /	Observações

Procedimento Nome: ler_Coeficientes Objetivo: Ler um arquivo (do tipo texto), contendo os três coeficientes (a), (b) e (c), um por linha Parâmetros Nome Tipo Observações Passagem cadeia valor nome do arquivo nome conjunto de dados dados real(3) referência Testes Fornecido um arquivo com o conteúdo: 1 4 4 os valores foram convenientemente lidos. Limites / Extensões / Observações

3.4 Descrição de arquivo

Arquivo)
Nome interno: arquivo	
Nome externo:	Tamanho: 08 bytes
DADOS.TXT	-
Organização	Acesso
texto	seqüencial
Registr	0
linhas de texto, com ur	n dado em cada
Objetivo:	
Armazenar os coeficientes de uma ed	quação do segundo grau.

Arquivo	0
Nome interno: Arquivo	
Nome externo:	Tamanho: 08 bytes
RESULTADOS.TXT	-
Organização	Acesso
texto	seqüencial
Registr	0
linhas de texto, com dados e res	ultados, um em cada linha
Objetivo:	
Armazenar os coeficientes de uma e	quação do segundo grau,
e seus resultados	

4. Previsão de testes

4.1 Execução normal:

Dados: Resultados esperados:

a = 1 X1 = -2 b = 4 X2 = -2

c = 4

4.2 Teste do tipo de equação:

Dados: Resultados esperados:

a = 0 A equacao não e' do segundo grau.

b = 4

c = 4

4.3 Teste do valor de delta:

Dados: Resultados esperados:

a = 1 Delta menor que zero, raizes complexas.

b = 4

c = 5

5. Execução de testes

5.1 Execução normal:

Dados	Resultados esperados	Resultados obtidos
a = 1 b = 4	x1 = -2 x2 = -2	x1 = -2.0 x2 = -2.0
c = 4		

5.2 Teste do tipo de equação:

Dados	Resultados esperados	=	Resultados obtidos
a = 0 b = 4 c = 4	A equacao nac	e' do se	egundo grau.

5.3 Teste do valor de delta:

Dados	Resultados esperados	=	Resultados obtidos
a = 1 b = 4 c = 5	Delta menor que	e zero,	raizes complexas.

6. Sugestão de documentação de programa em Java:

```
-----identificacao
* Pontificia Universidade Catolica de Minas Gerais
* Curso de Ciencia da Computação
* Algoritmos e Estruturas de Dados 1
* Trabalho pratico: 00 (Exemplo de documentacao)
* Objetivo:
* Modelo de programa para a disciplina AED I
* Sugestao para montar um trabalho pratico
* Programa para resolver uma equcao do segundo grau:
* ax ^2 + bx + c = 0,
* lidos os valores reais de (a), (b) e (c)
* Source files: {@files}
* @author Matricula: 999999 Nome: xxx yyy zzz
* @version 1.0
                             Data: 99/99/9999
* Dados:
* - opcao de execucao escolhida pelo usuario
* Resultados:
* - execucao de um teste de cada vez a escolha do usuario
* - so' aceita as opcoes numericas oferecidas.
* Forma de compilacao:
 - acionar o compilador no modo console:
  <drive>:>javac Equacao.java
  ou mediante uso de um lançador de programas (do sistema operacional)
  <drive>:>compile Equação
  OBS:
  A variavel CLASSPATH deve ter sido definida para os
  diretorios adequados (ex: C:\java\aed1); ou ter sua
  definicao equivalente no arquivo classpath.bat.
* Forma de uso:
 - acionar o programa no modo console:
  <drive>:>java Equacao
  ou mediante uso de um lançador de programas (do sistema operacional)
  <drive>:>run Equação
* - escolher uma das opcoes oferecidas.
* Referencias:
* - Exemplos mostrados em sala de aula
* - Apostila: Fundamentos de Programação
```

```
// ----- classes nativas
import IO.*;
// ----- definicao de classe
 * classe Equacao - para raizes de equacao do segundo grau.
 * @param mensagem - identificacao do erro
 * <br>
 */
class Equacao
// ----- conversao para String
  * toString - metodo converter dados para caracteres.
  */
 public String toString ()
  return ( "Equacao" );
 } // end Equacao.toString ()
// ----- tratamento de erros
  * tratar_Erro - metodo para tratar erro.
  * @param mensagem - identificacao do erro
  * <br>
  */
 private static void tratar_Erro
           (String mensagem)
  IO.println ();
  IO.println ( mensagem );
  IO.println ();
  IO.pause ( "Apertar <ENTER> para continuar." );
  IO.println ();
 } // fim Equacao.tratar_Erro ( )
```

```
// ----- definicoes globais
// ----- definicao de constantes
// ----- definicao de armazenadores
// ----- definicao de construtor(es)
// ----- definicao de metodos restritos
  * identificar - metodo para mostrar dados do programa e do autor.
  * <br>>
  * @param tp
                   - identificacao do programa
  * @param versao - versao do programa
  * @param data - data da liberacao
  * @param titulo - titulo do programa
  * @param matricula - numero de matricula
  * @param nome - nome do autor
  * <br/>/pre>
 private static void identificar
               (String tp, String versao, String data,
                String titulo,
                String matricula, String nome)
  IO.clrscr ();
  IO.println ( tp + "\t" + versao + "\t" + data );
  IO.println ();
  IO.println (titulo);
  IO.println ();
  IO.print ("Matricula:" + matricula + "\t" + "Nome:" + nome );
  IO.println ();
 } // fim Equacao.identificar ( )
```

```
// ----- definicao de metodos publicos
   * ler_Coeficientes - metodo para ler dados de arquivo.
  * <br>
  * @param nome - nome do arquivo
  * @param dados - armazenador dos coeficientes
   * OBS.: Supor a existencia de tres valores em arquivo, um em cada linha.
 public static void ler_Coeficientes
                    (String nome, double [] dados)
 // definicao de dados locais
   FILE arguivo = new FILE ( FILE.INPUT, nome );
   String linha;
 // ler dado
   linha = arquivo.readln ();
   dados [ 0 ] = IO.getdouble ( linha );
   linha = arquivo.readln ();
   dados [1] = IO.getdouble (linha);
   linha = arquivo.readln ();
   dados [2] = IO.getdouble (linha);
 } // fim Equacao.ler_Coeficientes ( )
   * calcular_Delta - metodo para calcular o valor de delta,
                    conhecidos os coeficientes da equacao.
  * @return valor do delta da equação
   * <br>
   * @param a - coeficiente do termo de grau 2
   * @param b - coeficiente do termo de grau 1
  * @param c - coeficiente do termo de grau 0
   * <br>
  * OBS.: Supor que esta ordem tambem esta' refletida no arquivo.
 public static double calcular Delta
                    (double a, double b, double c)
 // definicao de dado local
   double resposta = 0.0;
 // calcular a resposta
   resposta = b * b - 4.0 * a * c;
 // retornar resposta
   return (resposta):
 } // fim Equacao.calcular Delta ( )
```

```
* calcular_Raiz - metodo para calcular uma raiz real
                  da equacao.
   * <br>
   * @return valor de uma raiz real da equação
   * <br>
   * @param a
                 - coeficiente do termo de grau 2
   * @param b
                 - coeficiente do termo de grau 1
   * @param delta - valor calculado do delta
   * @param sinal - valor calculado do delta
  * <br>
  */
 public static double calcular_Raiz
                   (double a, double b, double sinal, double delta)
 // definicao de dado local
   double resposta = 0.0;
 // calcular a resposta
   resposta = (-b + sinal * Math.sqrt (delta)) / (2.0 * a);
 // retornar resposta
   return (resposta);
 } // fim Equacao.calcular_Delta ( )
// ----- definicao de metodos
    parte principal - calcular raizes reais de
                   uma equacao do segundo grau
                   com dados lidos de arquivo.
   * <br>
   * 
   *----- Testes
    Versao Teste
         01. (OK) identificação de programa
          02. (OK) definicao de variaveis
          03. (OK) teste do primeiro arquivo
                    equacao: 1 x^2 + 4 x + 4
                    previsto: (x-2) (x-2)
          04. (OK) teste do segundo arquivo
                    equacao: 0 x^2 + 4 x + 4
                    previsto: "A equacao nao e' do segundo grau."
          05. (OK) teste do terceiro arquivo
                    equacao: 1 x^2 + 4 x + 5
                    previsto: "Delta nulo: raizes complexas."
   *
```

```
public static void main (String [] args)
// identificar
    identificar ( "Equacao", "v.1.0", "99/99/9999",
                "Exemplo de documentacao",
                "99999", "xxx yyy zzz");
// definir dados
    double [] dados
                              // em arquivo
    = new double [ 3 ];
                              // coeficientes da equação
    double a, b, c,
           delta,
                              // delta = b^2 - 4*a*c
                              // raizes reais da equacao
           x1, x2;
    FILE arquivo
                              // para os resultados
    = new FILE ( FILE.OUTPUT, "RESULTADOS.TXT" );
// processar dados
   // ler dados
     ler_Coeficientes ( "DADOS.TXT", dados );
     a = dados [0];
     b = dados [1];
     c = dados [2];
   // mostrar dados
     IO.println ();
     IO.println ("Equacao: " + a + " \times ^2 + " + b + " \times + " + c + " = 0");
   // gravar o erro em arquivo, tambem
     arquivo.println ("Arquivo gerado pelo programa Equação.java");
     arquivo.println ( "Equacao: " + a + " \times ^2 + " + b + " \times + " + c + " = 0" );
     IO.println ();
   // verificar o grau da equacao
     if (a == 0.0)
     {
      // erro: nao e' equacao do segundo grau
        tratar Erro ( "A equacao nao e' do segundo grau." );
      // gravar o erro em arquivo, tambem
        arquivo.println ( "A equacao nao e' do segundo grau." );
      // calcular delta
        delta = calcular_Delta (a, b, c);
      // testar delta
        if (delta < 0)
         // nao ha' raizes reais
          tratar_Erro ( "Delta nulo: raizes complexas." );
        // gravar o erro em arquivo, tambem
           arquivo.println ("Delta nulo: raizes complexas.");
```

```
else // ( ha' raizes reais )
         // calcular raizes
           x1 = calcular_Raiz (a, b, +1, delta);
           x2 = calcular_Raiz (a, b, -1, delta);
         // mostrar raizes
           IO.println ( "x1 = " + x1 );
           IO.println ( "x2 = " + x2 );
         // gravar as raizes em arquivo, tambem
           arquivo.println ( x1 = x1 );
           arquivo.println ( x2 = x2 );
         } // fim se ( delta < 0 )
       } // fim se (equacao do segundo grau)
   // encerrar a execucao
                         // fechar arquivo
      arquivo.close ();
      IO.pause ( "Apertar <ENTER> para terminar." );
   } // fim da parte principal - main ( )
} // fim da classe Equação
// ----- Documentacao complementar
/*
  ----- Manual
 Formas de uso:
 a.) Pela console/terminal:
    - ir ate' a pasta que contem programa
    - executa-lo acionando-o pelo nome, sem parametros:
     java Equacao
    OBS:
```

Os arquivos de dados devem estar presentes na pasta.

Descricao de funcionamento:

O programa buscara' os dados automaticamente no arquivo de dados.

Os resultados serao apresentados em seguida.

Observação:

Para mudar os dados, o nome do arquivo devera' ser editado, e o programa recompilado.

Para evitar isso, basta copiar e renomear o arquivo de dados de forma conveniente.

Versao 0.0	Data Modificacao 01/02 esboco
	Testes
Versao	Teste
0.0	01. (OK) identificacao de programa
	02. (OK) definicao de variaveis
	03. (OK) teste do primeiro arquivo
	equacao: 1 x^2 + 4 x + 4
	previsto: (x-2) (x-2)
	04. (OK) teste do segundo arquivo
	equacao: 0 x^2 + 4 x + 4
	previsto: "A equacao nao e' do segundo gra
	05. (OK) teste do terceiro arquivo
	equacao: 1 x^2 + 4 x + 5
	previsto: "Delta nulo: raizes complexas."
	Desempenho
T' 1- (-	and the state to a second to a second Paris.
i ipo da fun	cao de custo do numero de operacoes: linear