

ESCUELA POLITÉCNICA NACIONAL FACULTAD DE INGENIERÍA DE SISTEMAS INGENIERÍA CIENCIAS DE LA COMPUTACIÓN

PERÍODO ACADÉMICO: 2025-A

ASIGNATURA: ICCD412 Métodos Numéricos GRUPO: GR2

TIPO DE INSTRUMENTO: Tarea 07

FECHA DE ENTREGA LÍMITE: 11/05/2025

ALUMNO: Freire Ismael

TEMA

Método de Newton, Secante y Posición Falsa

OBJETIVOS

Analizar y comparar la eficacia y aplicabilidad de los métodos de Newton-Raphson,
Secante y Posición Falsa en la resolución de ecuaciones no lineales mediante ejercicios prácticos.

MARCO TEÓRICO

Existen varios métodos que sirven para encontrar raíces de funciones, y que se forman como herramientas fundamentales en diferentes análisis matemáticos y ejemplos prácticos. Para la presente práctica se analizan los métodos de Newton-Raphson, Secante y Posición Falsa.

El **método de Newton-Raphson** es un método iterativo basado en el trazo de una recta tangente a la función y en el cálculo de la derivada para la aproximación a una raíz.

Por lo que, este método requiere que la función sea derivable cerca de la raíz buscada y que se tenga una aproximación inicial lo suficientemente cercana a la raíz. Lo que facilita una rápida convergencia y hace que el método sea muy eficiente cuando es aplicable.

A continuación, se muestra la ecuación que permite encontrar cada raíz:

$$x_n = x_{n-1} - \frac{f(x_{n-1})}{f'(x_{n-1})}, n \ge 1$$

Por otra parte, el **método de la Secante** emplea la recta secante entre dos aproximaciones para obtener la siguiente. En lugar de calcular la derivada, se toman dos valores aproximados iniciales x_{n-2} y x_{n-1} , y se obtiene el nuevo punto x_n haciendo que la recta formada corte al eje x.

La fórmula del método se puede expresar como:

$$x_n = x_{n-1} - f(x_{n-1}) \cdot \frac{x_{n-1} - x_{n-2}}{f(x_{n-1}) - f(x_{n-2})}, n \ge 2$$

la cual es similar al sustituir la derivada por el cálculo de la pendiente. Tras cada iteración se descarta la aproximación más antigua x_{n-2} para trabajar con la siguiente recta usando siempre los dos valores más recientes, y así sucesivamente hasta no cumplir con la tolerancia especificada en un principio. La principal diferencia que destaca al método de la Secante del método de Newton es que no necesita el calculo de una derivada, aunque si requiere dos aproximaciones iniciales.

En cuanto a la convergencia, siempre que sus dos puntos iniciales estén bien tomados, es decir, se encuentren cerca de la raíz, va a converger más rápido que bisección, pero tendrá más iteraciones que Newton-Raphson. El método resulta más efectivo porque aparte de que no realiza el cálculo de derivadas, ejecuta menos operaciones, pero aun así requiere tener dos puntos iniciales bien elegidos.

Finalmente, el **método de la Posición Falsa** es una variante del método de la bisección que también maneja una recta secante entre dos extremos cuyos signos son opuestos. Partiendo del intervalo, se calcula la intersección de la recta con el eje x mediante la formula:

$$x_n = x_{n-1} - f(x_{n-1}) \cdot \frac{x_{n-1} - x_{n-2}}{f(x_{n-1}) - f(x_{n-2})}, n \ge 2$$

$$sngf(p_2) \cdot sgnf(p_1) < 0$$

De donde se elige el nuevo intervalo para la siguiente iteración manteniendo siempre los extremos con signos diferentes.

Este método junta la garantía de convergencia del método de la bisección con la fórmula de la secante, lo que también asegura un intervalo con cambio de signo y que se encontrará la raíz dentro del intervalo.

DESARROLLO

1. Sea $f(x) = x^2 6$ y $p_0 = 1$. Use el método de Newton para encontrar p_2 .

р	x n-1 x n		x n f(x n-1) f'(x n - 1)		f(x n)	
1	1,0000000000000	3,5000000000000	-5,0000000000000	2,0000000000000	3,5000000000000	
2	3,5000000000000	2,6071428571429	6,2500000000000	7,0000000000000	2,6071428571429	

Figura 1: Soluciones Ej1.

 p_2 se aproxima a 2,60714

2. Sea $f(x) = -x^3 - \cos(x)$ y $p_0 = -1$. Use el método de Newton para encontrar p_2 .

р	x n-1	хn	f(x n-1)	f'(x n - 1)	f(x n)
1	-1,0000000000000	-0,8803328995716	0,4596976941319	-3,8414709848079	-0,8803328995716
2	-0,8803328995716	-0,8656841631761	0,0453511546365	-3,0959089857349	-0,8656841631761

Figura 2: Soluciones Ej2.

 p_2 se aproxima a -0.86568

¿Se podría usar $p_0 = 0$?

No, porque en ese punto la derivada f'(x) es:

$$f'(0) = -3 \cdot 0^2 + sen(0) = 0$$

Esto provoca que al reemplazar en la formula de Newton-Raphson el denominador sea 0, se produzca una división por 0 y el método no pueda avanzar.

3. Use el método de Newton para encontrar soluciones precisas dentro de 10^{-4} para los siguientes problemas.

(a)
$$x^3 - 2 \cdot x^2 - 5 = 0$$
, [1, 4]

i	x n-1	x n	f(x n-1)	f'(x n - 1)	f(x n)	error < tolerancia (10^-4)
1	2,5000000000000	2,7142857142857	-1,8750000000000	8,7500000000000	2,7142857142857	0,2142857142857
2	2,7142857142857	2,6909515167228	0,2623906705539	11,2448979591837	2,6909515167228	0,0233341975629
3	2,6909515167228	2,6906474992569	0,0033319870795	10,9598541291675	2,6906474992569	0,0003040174659
4	2,6906474992569	2,6906474480286	0,0000005612653	10,9561618987446	2,6906474480286	0,0000000512283

Figura 3: Soluciones Ej3. Literal a)

La raíz se aproxima a 2,69065

(b)
$$x^3 + 3 \cdot x^2 - 1 = 0$$
, $[-3, -2]$

i	x n-1	x n	f(x n-1)	f'(x n - 1)	f(x n)	error < tolerancia (10^-4)
1	-2,5000000000000	-3,0666666666667	2,1250000000000	3,7500000000000	-3,0666666666667	0,5666666666667
2	-3,0666666666667	-2,9008756038647	-1,6269629629630	9,8133333333333	-2,9008756038647	0,1657910628019
3	-2,9008756038647	-2,8797199044238	-0,1658603490203	7,8399841841044	-2,8797199044238	0,0211556994409
4	-2,8797199044238	-2,8793853246693	-0,0025428197713	7,6000407572615	-2,8793853246693	0,0003345797546
5	-2,8793853246693	-2,8793852415718	-0,0000006312305	7,5962675957467	-2,8793852415718	0,0000000830974

Figura 4: Soluciones Ej3. Literal b)

La raíz se aproxima a -2,87939

(c)
$$x - cos(x) = 0$$
, $[0, \frac{\pi}{2}]$

i	x n-1	хn	f(x n-1)	f'(x n - 1)	f(x n)	error < tolerancia (10^-4)
1	0,7853981633974	0,7395361335152	0,0782913822109	1,7071067811866	0,7395361335152	0,0458620298822
2	0,7395361335152	0,7390851781060	0,0007548746825	1,6739452882820	0,7390851781060	0,0004509554092
3	0,7390851781060	0,7390851332152	0,0000000751299	1,6736120623614	0,7390851332152	0,0000000448908

Figura 5: Soluciones Ej3. Literal c)

La raíz se aproxima a 0,73909

(d)
$$x - 0.8 - 0.2 \cdot sen(x) = 0, [0, \frac{\pi}{2}]$$

i	x n-1	хn	f(x n-1)	f'(x n - 1)	f(x n)	error < tolerancia (10^-4)
1	0,7853981633974	0,9671208209237	-0,1560231928399	0,8585786437627	0,9671208209237	0,1817226575263
2	0,9671208209237	0,9643346085486	0,0024698813254	0,8864655643014	0,9643346085486	0,0027862123752
3	0,9643346085486	0,9643338876953	0,0000006386812	0,8860072530919	0,9643338876953	0,0000007208533

Figura 6: Soluciones Ej3. Literal d)

La raíz se aproxima a 0,96433

4. Use los tres métodos en esta sección para encontrar las soluciones dentro de 10^{-5} para los siguientes problemas.

Previo a la resolución, se calcula el número de iteraciones que va a realizaar el método de la Posición Falsa.

$$n > \frac{5}{\log_{10}(2)}$$

n > 16.6 iteraciones

(a)
$$3x - e^x = 0$$
 para $1 \le x \le 2$

Resolución método de Newton-Raphson

i	x n-1	хn	f(x n-1)	f'(x n - 1)	f(x n)	error < tolerancia (10^-5)
1	1,5000000000000	1,5123581458678	0,0183109296619	-1,4816890703381	1,5123581458678	0,0123581458678
2	1,5123581458678	1,5121346254271	-0,0003436443672	-1,5374180819705	1,5121346254271	0,0002235204407
3	1,5121346254271	1,5121345516579	-0,0000001133394	-1,5364039896208	1,5121345516579	0,0000000737693

Figura 7: Soluciones Newton-Raphson Ej4. a)

La raíz se aproxima a 1,51213

Resolución método de la Secante

i	x n-2	x n-1	хn	f(x n-2)	f(x n-1)	f(x n)	error < tolerancia (10^-5)
1	1,0000000000000	2,0000000000000	1,1686153399175	0,2817181715410	-1,3890560989307	1,1686153399175	0,8313846600825
2	2,0000000000000	1,1686153399175	1,3115165547176	-1,3890560989307	0,2883116585051	1,3115165547176	0,1429012148001
3	1,1686153399175	1,3115165547176	1,7970430096312	0,2883116585051	0,2227510725745	1,7970430096312	0,4855264549137
4	1,3115165547176	1,7970430096312	1,4367778925335	0,2227510725745	-0,6406561086123	1,4367778925335	0,3602651170978
5	1,7970430096312	1,4367778925335	1,4867662868726	-0,6406561086123	0,1032155100400	1,4867662868726	0,0499883943391
6	1,4367778925335	1,4867662868726	1,5153257605231	0,1032155100400	0,0375284614943	1,5153257605231	0,0285594736505
7	1,4867662868726	1,5153257605231	1,5120119343333	0,0375284614943	-0,0049261085007	1,5120119343333	0,0033138261898
8	1,5153257605231	1,5120119343333	1,5121339760023	-0,0049261085007	0,0001883556046	1,5121339760023	0,0001220416690
9	1,5120119343333	1,5121339760023	1,5121345517621	0,0001883556046	0,0000008844386	1,5121345517621	0,0000005757598

Figura 8: Soluciones Secante Ej4. a)

La raíz se aproxima a 1,51213

Resolución método de la Posición Falsa

i	x n-2	x n-1	хn	f(x n-2)	f(x n-1)	f(x n)	sig(f(x n-2)) * sig(f(x n))
1	1	2	1,16861534	0,281718172	-1,389056099	0,288311659	+1
2	1,16861534	2	1,311516555	0,288311659	-1,389056099	0,222751073	+1
3	1,311516555	2	1,406664677	0,222751073	-1,389056099	0,137677204	+1
4	1,406664677	2	1,460170255	0,137677204	-1,389056099	0,073818063	+1
5	1,460170255	2	1,487410593	0,073818063	-1,389056099	0,036610844	+1
6	1,487410593	2	1,500573787	0,036610844	-1,389056099	0,017460018	+1
7	1,500573787	2	1,506773496	0,017460018	-1,389056099	0,008171672	+1
8	1,506773496	2	1,509658126	0,008171672	-1,389056099	0,003790891	+1
9	1,509658126	2	1,510992682	0,003790891	-1,389056099	0,001751416	+1
10	1,510992682	2	1,511608479	0,001751416	-1,389056099	0,000807632	+1
11	1,511608479	2	1,511892277	0,000807632	-1,389056099	0,000372098	+1
12	1,511892277	2	1,512022996	0,000372098	-1,389056099	0,000171367	+1
13	1,512022996	2	1,51208319	0,000171367	-1,389056099	7,89068E-05	+1
14	1,51208319	2	1,512110905	7,89068E-05	-1,389056099	3,633E-05	+1
15	1,512110905	2	1,512123665	3,633E-05	-1,389056099	1,67263E-05	+1
16	1,512123665	2	1,51212954	1,67263E-05	-1,389056099	7,70061E-06	+1
17	1,51212954	2	1,512132244	7,70061E-06	-1,389056099	3,54526E-06	+1

Figura 9: Soluciones Posición Falsa Ej4. a)

La raíz se aproxima a 1,51213

(b)
$$2x + 3\cos(x) - e^x = 0$$
 para $1 \le x \le 2$

Resolución método de Newton-Raphson

i	x n-1	хn	f(x n-1)	f'(x n - 1)	f(x n)	error < tolerancia (10^-5)
1	1,0000000000000	1,2783564749634	0,9026250891454	-3,2426947828827	1,2783564749634	0,2783564749634
2	1,2783564749634	1,2404585015863	-0,1691524288981	-4,4633634420250	1,2404585015863	0,0378979733771
3	1,2404585015863	1,2397149833006	-0,0031934085768	-4,2949966912279	1,2397149833006	0,0007435182857
4	1,2397149833006	1,2397146979753	-0,0000012245317	-4,2917028635749	1,2397146979753	0,0000002853254

Figura 10: Soluciones Newton-Raphson Ej.4 b)

La raíz se aproxima a 1,23971

Resolución método de la Secante

i	x n-2	x n-1	хn	f(x n-2)	f(x n-1)	f(x n)	error < tolerancia (10^-5)
1	1,0000000000000	2,0000000000000	1,1629251374599	0,9026250891454	-4,6374966085721	1,1629251374599	0,8370748625401
2	2,00000000000000	1,1629251374599	1,2164104232881	-4,6374966085721	0,3165404939121	1,2164104232881	0,0534852858282
3	1,1629251374599	1,2164104232881	1,2406842080723	0,3165404939121	0,0988133701211	1,2406842080723	0,0242737847842
4	1,2164104232881	1,2406842080723	1,2397029136618	0,0988133701211	-0,0041629300354	1,2397029136618	0,0009812944104
5	1,2406842080723	1,2397029136618	1,2397146920815	-0,0041629300354	0,0000505744490	1,2397146920815	0,0000117784197

Figura 11: Soluciones Secante Ej4 b)

La raíz se aproxima a 1,23970

Resolución método de la Posición Falsa

i	x n-2	x n-1	хn	f(x n-2)	f(x n-1)	f(x n)	sig(f(x n-2)) * sig(f(x n))
1	1	2	1,162925137	0,902625089	-4,637496609	0,316540494	+1
2	1,162925137	2	1,216410423	0,316540494	-4,637496609	0,09881337	+1
3	1,216410423	2	1,232758409	0,09881337	-4,637496609	0,029747172	+1
4	1,232758409	2	1,237648504	0,029747172	-4,637496609	0,008858032	+1
5	1,237648504	2	1,239101887	0,008858032	-4,637496609	0,002629168	+1
6	1,239101887	2	1,239533024	0,002629168	-4,637496609	0,000779616	+1
7	1,239533024	2	1,239660846	0,000779616	-4,637496609	0,00023111	+1
8	1,239660846	2	1,239698736	0,00023111	-4,637496609	6,85048E-05	+1
9	1,239698736	2	1,239709967	6,85048E-05	-4,637496609	2,03054E-05	+1
10	1,239709967	2	1,239713296	2,03054E-05	-4,637496609	6,01865E-06	+1
11	1,239713296	2	1,239714282	6,01865E-06	-4,637496609	1,78396E-06	+1
12	1,239714282	2	1,239714575	1,78396E-06	-4,637496609	5,28776E-07	+1
13	1,239714575	2	1,239714661	5,28776E-07	-4,637496609	1,56732E-07	+1
14	1,239714661	2	1,239714687	1,56732E-07	-4,637496609	4,64562E-08	+1
15	1,239714687	2	1,239714695	4,64562E-08	-4,637496609	1,37699E-08	+1
16	1,239714695	2	1,239714697	1,37699E-08	-4,637496609	4,08146E-09	+1
17	1,239714697	2	1,239714698	4,08146E-09	-4,637496609	1,20977E-09	+1

Figura 12: Soluciones Posición Falsa Ej4. b)

La raíz se aproxima a 1,23791

5. El polinomio de cuarto grado

$$f(x) = 230 \cdot x^4 + 18 \cdot x^3 + 9 \cdot x^2 \cdot 221 \cdot x9$$

tiene dos ceros reales, uno en [1,0] y el otro en [0,]. Intente aproximar estos ceros dentro de 10^6 con

- a) El método de posición falsa
- b) El método de la secante
- c) El método de Newton

Use los extremos de cada intervalo como aproximaciones iniciales en las partes a) y b) y los puntos medios como la aproximación inicial en la parte c).

(a)

Previo a la resolución, se calcula el número de iteraciones que va a realizaar el método de la Posición Falsa.

$$n > \frac{6}{\log_{10}(2)}$$

n > 19,93 iteraciones

Primer intervalo

i	x n-2	x n-1	хn	f(x n-2)	f(x n-1)	f(x n)	sig(f(x n-2)) * sig(f(x n))
1	-1	0	-0,020361991	433	-9	-4,496380928	-1
2	-1	-0,020361991	-0,030430247	433	-4,496380928	-2,266891367	-1
3	-1	-0,030430247	-0,035479814	433	-2,266891367	-1,148071191	-1
4	-1	-0,035479814	-0,038030414	433	-1,148071191	-0,58277074	-1
5	-1	-0,038030414	-0,039323379	433	-0,58277074	-0,296160751	-1
6	-1	-0,039323379	-0,039980008	433	-0,296160751	-0,150595231	-1
7	-1	-0,039980008	-0,040313782	433	-0,150595231	-0,076599144	-1
8	-1	-0,040313782	-0,040483524	433	-0,076599144	-0,038967468	-1
9	-1	-0,040483524	-0,040569867	433	-0,038967468	-0,019825027	-1
10	-1	-0,040569867	-0,040613793	433	-0,019825027	-0,010086543	-1
11	-1	-0,040613793	-0,040636141	433	-0,010086543	-0,005131916	-1
12	-1	-0,040636141	-0,040647511	433	-0,005131916	-0,002611086	-1
13	-1	-0,040647511	-0,040653296	433	-0,002611086	-0,00132851	-1
14	-1	-0,040653296	-0,040656239	433	-0,00132851	-0,000675943	-1
15	-1	-0,040656239	-0,040657737	433	-0,000675943	-0,000343918	-1
16	-1	-0,040657737	-0,040658499	433	-0,000343918	-0,000174985	-1
17	-1	-0,040658499	-0,040658887	433	-0,000174985	-8,90322E-05	-1
18	-1	-0,040658887	-0,040659084	433	-8,90322E-05	-4,52995E-05	-1
19	-1	-0,040659084	-0,040659184	433	-4,52995E-05	-2,30483E-05	-1
20	-1	-0,040659184	-0,040659235	433	-2,30483E-05	-1,1727E-05	-1

Figura 13: Soluciones Posición Falsa Ej
5. [-1,0]

La raíz se aproxima a -0.04066

Segundo intervalo

i	x n-2	x n-1	хn	f(x n-2)	f(x n-1)	f(x n)	sig(f(x n-2)) * sig(f(x n))
1	0	1	0,25	-9	27	-62,5078125	+1
2	0,25	1	0,773762765	-62,5078125	27	-83,83052028	+1
3	0,773762765	1	0,944885169	-83,83052028	27	-11,26513025	+1
4	0,944885169	1	0,961110797	-11,26513025	27	-0,855867823	+1
5	0,961110797	1	0,962305662	-0,855867823	27	-0,061802369	+1
6	0,962305662	1	0,962391747	-0,061802369	27	-0,004446181	+1
7	0,962391747	1	0,962397939	-0,004446181	27	-0,000319781	+1
8	0,962397939	1	0,962398384	-0,000319781	27	-2,29991E-05	+1
9	0,962398384	1	0,962398416	-2,29991E-05	27	-1,65412E-06	+1
10	0,962398416	1	0,962398419	-1,65412E-06	27	-1,18966E-07	+1
11	0,962398419	1	0,962398419	-1,18966E-07	27	-8,55621E-09	+1
12	0,962398419	1	0,962398419	-8,55621E-09	27	-6,15358E-10	+1
13	0,962398419	1	0,962398419	-6,15358E-10	27	-4,4281E-11	+1
14	0,962398419	1	0,962398419	-4,4281E-11	27	-3,21165E-12	+1
15	0,962398419	1	0,962398419	-3,21165E-12	27	-2,27374E-13	+1
16	0,962398419	1	0,962398419	-2,27374E-13	27	-2,84217E-14	+1
17	0,962398419	1	0,962398419	-2,84217E-14	27	-2,84217E-14	+1
18	0,962398419	1	0,962398419	-2,84217E-14	27	-2,84217E-14	+1
19	0,962398419	1	0,962398419	-2,84217E-14	27	-2,84217E-14	+1
20	0,962398419	1	0,962398419	-2,84217E-14	27	-2,84217E-14	+1

Figura 14: Soluciones Posición Falsa Ej5. [0,1]

La raíz se aproxima a 0,96239

(b)

Primer intervalo

i	x n-2	x n-1	хn	f(x n-2)	f(x n-1)	f(x n)	error < tolerancia (10^-6)
1	-1,0000000000000	0,0000000000000	-0,0203619909502	433,0000000000000	-9,0000000000000	-0,0203619909502	0,0203619909502
2	0,0000000000000	-0,0203619909502	-0,0406912564352	-9,0000000000000	-4,4963809278369	-0,0406912564352	0,0203292654850
3	-0,0203619909502	-0,0406912564352	-0,0406592625777	-4,4963809278369	0,0070874831623	-0,0406592625777	0,0000319938576
4	-0,0406912564352	-0,0406592625777	-0,0406592883157	0,0070874831623	-0,0000057062438	-0,0406592883157	0,0000000257380

Figura 15: Soluciones Secante Ej5. [-1,0]

La raíz se aproxima a -0.04066

Segundo intervalo

Con una modificación al intervalo $p_o=0.01$ se llega a la otra raíz.

i	x n-2	x n-1	x n	f(x n-2)	f(x n-1)	f(x n)	error < tolerancia (10^-6)
1	0,0100000000000	1,0000000000000	0,3004280602969	-11,2090797000000	27,0000000000000	0,3004280602969	0,6995719397031
2	1,0000000000000	0,3004280602969	0,8096317490650	27,0000000000000	-72,2205490107214	0,8096317490650	0,5092036887681
3	0,3004280602969	0,8096317490650	-25,4504640225725	-72,2205490107214	-73,6486537087167	-25,4504640225725	26,2600957716375
4	0,8096317490650	-25,4504640225725	0,8096116472168	-73,6486537087167	96211015,1358050000000	0,8096116472168	26,2600756697893
5	-25,4504640225725	0,8096116472168	0,8095915436436	96211015,1358050000000	-73,6550302260643	0,8095915436436	0,0000201035732
6	0,8096116472168	0,8095915436436	1,0418358879587	-73,6550302260643	-73,6614065168760	1,0418358879587	0,2322443443151
7	0,8095915436436	1,0418358879587	0,9358346987946	-73,6614065168760	61,8504557887219	0,9358346987946	0,1060011891642
8	1,0418358879587	0,9358346987946	0,9584496068175	61,8504557887219	-16,7742505085758	0,9584496068175	0,0226149080230
9	0,9358346987946	0,9584496068175	0,9626181209243	-16,7742505085758	-2,6107082036509	0,9626181209243	0,0041685141068
10	0,9584496068175	0,9626181209243	0,9623966666887	-2,6107082036509	0,1464767215507	0,9623966666887	0,0002214542356
11	0,9626181209243	0,9623966666887	0,9623984179773	0,1464767215507	-0,0011675901885	0,9623984179773	0,0000017512886

Figura 16: Soluciones Secante Ej5 [0,01,1]

La raíz se aproxima a 0,96239

(c)

Primer intervalo

i	x n-1	хn	f(x n-1)	f'(x n - 1)	f(x n)	error < tolerancia (10^-6)
1	-0,5000000000000	-0,1504524886878	115,8750000000000	-331,5000000000000	-0,1504524886878	0,3495475113122
2	-0,1504524886878	-0,0418168139489	24,5102709758391	-225,6189878209470	-0,0418168139489	0,1086356747389
3	-0,0418168139489	-0,0406593434973	0,2566407710278	-221,7255487482740	-0,0406593434973	0,0011574704515
4	-0,0406593434973	-0,0406592883158	0,0000122339989	-221,7044362626240	-0,0406592883158	0,0000000551816

Figura 17: Soluciones Newton-Raphson Ej5.

La raíz se aproxima a -0.04066

Segundo intervalo

Tomando el punto medio del intervalo dado, $x_{n-1} = 0.5$ se tiene que la raíz converge hacia la misma respuesta. A pesar de que sea correcto que existen soluciones diferentes en ambos valores iniciales.

i	x n-1	хn	f(x n-1)	f'(x n - 1)	f(x n)	error < tolerancia (10^-6)
1	0,5000000000000	-0,7050898203593	-100,6250000000000	-83,5000000000000	-0,7050898203593	1,2050898203593
2	-0,7050898203593	-0,3237911142305	201,8363035194660	-529,3390726882850	-0,3237911142305	0,3812987061288
3	-0,3237911142305	-0,0646031310306	65,4184266869419	-252,3976068616100	-0,0646031310306	0,2591879831999
4	-0,0646031310306	-0,0406861511520	5,3140070699667	-222,1855391832790	-0,0406861511520	0,0239169798786
5	-0,0406861511520	-0,0406592883453	0,0059556164853	-221,7049234417570	-0,0406592883453	0,0000268628066
6	-0,0406592883453	-0,0406592883158	0,0000000065571	-221,7044352604260	-0,0406592883158	0,0000000000296
7	-0,0406592883158	-0,0406592883158	0,0000000000000	-221,7044352598890	-0,0406592883158	0,0000000000000

Figura 18: Soluciones Newton-Raphson Ej
5 $\boldsymbol{x}_{n-1} = 0.5$

La raíz se aproxima a -0.04066

Se debe tomar un valor x_{n-1} diferente para obtener la aproximación a la raíz requerida:

i	x n-1	хn	f(x n-1)	f'(x n - 1)	f(x n)	error < tolerancia (10^-6)
1	2,0000000000000	1,5387633608443	3409,0000000000000	7391,0000000000000	1,5387633608443	0,4612366391557
2	1,5387633608443	1,2261843372814	1027,3076396885900	3286,5533585043200	1,2261843372814	0,3125790235629
3	1,2261843372814	1,0445628258845	286,6670618918230	1578,3761498676900	1,0445628258845	0,1816215113969
4	1,0445628258845	0,9735267065050	64,3074289685215	905,2778998954020	0,9735267065050	0,0710361193794
5	0,9735267065050	0,9626400917467	7,5831058710561	696,5531562747020	0,9626400917467	0,0108866147583
6	0,9626400917467	0,9623985360402	0,1611319097893	667,0590072219720	0,9623985360402	0,0002415557065
7	0,9623985360402	0,9623984187506	0,0000781631982	666,4118949521710	0,9623984187506	0,0000001172896

Figura 19: Soluciones Newton-Raphson Ej5

La raíz se aproxima a 0,96239

6. La función $f(x) = tan(\pi x)6$ tiene cero en $\frac{1}{\pi}arcotangente(6) \approx 0,447431543$. Sea $p_0 = 0$ y $p_1 = 0,48$ y use 10 iteraciones en cada uno de los siguientes métodos para aproximar esta raíz. ¿Cuál método es más eficaz y por qué?

(a) Método de bisección

i	а	b	р	f(a)	f(b)	f(p)
1	0,00000000	0,48000000	0,24000000	-6,00000000	9,89454484	-5,06093749
2	0,24000000	0,48000000	0,36000000	299,72630001	298,93887263	299,39375745
3	0,36000000	0,48000000	0,42000000	299,39375745	298,93887263	299,18124301
4	0,42000000	0,48000000	0,45000000	299,18124301	298,93887263	299,06374516
5	0,45000000	0,48000000	0,46500000	299,06374516	298,93887263	299,00222521
6	0,46500000	0,48000000	0,47250000	299,00222521	298,93887263	298,97077731
7	0,47250000	0,48000000	0,47625000	298,97077731	298,93887263	298,95488198
8	0,47625000	0,48000000	0,47812500	298,95488198	298,93887263	298,94689154
9	0,47812500	0,48000000	0,47906250	298,94689154	298,93887263	298,94288564
10	0,47906250	0,48000000	0,47953125	298,94288564	298,93887263	298,94088002

Figura 20: Soluciones Bisección Ej6. a)

La raíz se aproxima a 0,47953125

(b) Método de posición falsa

i	x n-2	x n-1	хn	f(x n-2)	f(x n-1)	f(x n)	sig(f(x n-2)) * sig(f(x n))
1	0	0,48	0,181194242	-6	9,894544844	-5,360105282	+1
2	0,181194242	0,48	0,286187166	-5,360105282	9,894544844	-4,742210954	+1
3	0,286187166	0,48	0,348981227	-4,742210954	9,894544844	-4,052821259	+1
4	0,348981227	0,48	0,387052621	-4,052821259	9,894544844	-3,301069067	+1
5	0,387052621	0,48	0,41030472	-3,301069067	9,894544844	-2,545637755	+1
6	0,41030472	0,48	0,424566483	-2,545637755	9,894544844	-1,859550385	+1
7	0,424566483	0,48	0,433336313	-1,859550385	9,894544844	-1,295153329	+1
8	0,433336313	0,48	0,438737409	-1,295153329	9,894544844	-0,868485046	+1
9	0,438737409	0,48	0,442066949	-0,868485046	9,894544844	-0,566358054	+1
10	0,442066949	0,48	0,444120662	-0,566358054	9,894544844	-0,362258333	+1

Figura 21: Soluciones Posición Falsa Ej6 b)

La raíz se aproxima a 0,444120662

(c) Método de la secante

En el método de la secante, tras las 10 iteraciones, falla en la convergencia y no obtiene el valor requerido. La raíz se aproxima a -2956,366.

i	x n-2	x n-1	хn	f(x n-2)	f(x n-1)	f(x n)
1	0,0000000000000	0,4800000000000	0,1811942416905	-6,0000000000000	9,8945448438653	0,1811942416905
2	0,4800000000000	0,1811942416905	0,2861871658223	9,8945448438653	-5,3601052815619	0,2861871658223
3	0,1811942416905	0,2861871658223	1,0919861065028	-5,3601052815619	-4,7422109536614	1,0919861065028
4	0,2861871658223	1,0919861065028	-3,6922966654011	-4,7422109536614	-5,7026945763305	-3,6922966654011
5	1,0919861065028	-3,6922966654011	-22,6006498547406	-5,7026945763305	-4,5511425303868	-22,6006498547406
6	-3,6922966654011	-22,6006498547406	-57,2228324727246	-4,5511425303868	-2,9435626868127	-57,2228324727246
7	-22,6006498547406	-57,2228324727246	3,5387581414707	-2,9435626868127	-6,8423719064049	3,5387581414707
8	-57,2228324727246	3,5387581414707	-113,9443980284150	-6,8423719064049	-14,1720955579648	-113,9443980284150
9	3,5387581414707	-113,9443980284150	-195,8944307792030	-14,1720955579648	-5,8235226614386	-195,8944307792030
10	-113,9443980284150	-195,8944307792030	-2956,3667707202600	-5,8235226614386	-5,6556243654588	-2956,3667707202600

Figura 22: Soluciones Secante Ej6. c)

En consecuencia, se nota que el método de la Posición Falsa es el más eficaz porque es el único que converge y se aproxima a la raíz requerida tras 10 iteraciones.

7. La función descrita por $f(x) = ln(x^2+1) - e^{0,4x}cos(\pi x)$ tiene un número infinito de ceros.

(a) Determine, dentro de 10^{-6} , el único cero negativo

Por medio del método de Newton, se obtiene:

i	x n-1	x n	f(x n-1)	f'(x n - 1)	f(x n)	error < tolerancia (10^-6)
1	-0,5000000000000	-0,4338268954523	0,2231435513142	-3,3721185191378	-0,4338268954523	0,0661731045477
2	-0,4338268954523	-0,4341430585731	-0,0010698551787	-3,3838708826073	-0,4341430585731	0,0003161631208
3	-0,4341430585731	-0,4341430472857	0,0000000381978	-3,3841120291205	-0,4341430472857	0,0000000112874

Figura 23: Soluciones Newton Ej7.a)

(b) Determine, dentro de 10^{-6} , los cuatro ceros positivos más pequeños El primer cero, se obtiene tomando $x_{n-1} = 0.5$

i	x n-1	хn	f(x n-1)	f'(x n - 1)	f(x n)	error < tolerancia (10^-6)
1	0,5000000000000	0,4518791597035	0,2231435513142	4,6371499321103	0,4518791597035	0,0481208402965
2	0,4518791597035	0,4506577398554	0,0053735158491	4,3994011212509	0,4506577398554	0,0012214198481
3	0,4506577398554	0,4506567478906	0,0000043569653	4,3922579906189	0,4506567478906	0,0000009919648

Figura 24: Soluciones Newton para $x_{n-1} = 0.5$ Ej7. b)

El segundo cero, se obtiene tomando $x_{n-1} = 1,5$

i	x n-1	хn	f(x n-1)	f'(x n - 1)	f(x n)	error < tolerancia (10^-6)
1	1,50000000000000	1,7454877572820	1,1786549963417	-4,8012781141978	1,7454877572820	0,2454877572820
2	1,7454877572820	1,7447374072121	-0,0031709651893	-4,2259810670057	1,7447374072121	0,0007503500700
3	1,7447374072121	1,7447380533684	0,0000027353518	-4,2332663944932	1,7447380533684	0,0000006461563

Figura 25: Soluciones Newton para $x_{n-1} = 1.5$ Ej7. b)

El tercer cero, se obtiene tomando $x_{n-1} = 2.5$

i	x n-1	x n	f(x n-1)	f'(x n - 1)	f(x n)	error < tolerancia (10^-6)
1	2,5000000000000	2,2853594225940	1,9810014688666	9,2293893950874	2,2853594225940	0,2146405774060
2	2,2853594225940	2,2419356088744	0,2706758798742	6,2333511658443	2,2419356088744	0,0434238137196
3	2,2419356088744	2,2383458848584	0,0191684890919	5,3398225061966	2,2383458848584	0,0035897240160

Figura 26: Soluciones Newton para $x_{n-1}=2,5$ Ej
7. b)

El cuarto y último cero, se obtiene tomando $x_{n-1}=3{,}5\,$

i	x n-1	x n	f(x n-1)	f'(x n - 1)	f(x n)	error < tolerancia (10^-6)
1	3,50000000000000	3,7116038835750	2,5839975524322	-12,2114845378844	3,7116038835750	0,2116038835750
2	3,7116038835750	3,7090362119707	-0,0295261999608	-11,4992119364538	3,7090362119707	0,0025676716043
3	3,7090362119707	3,7090412013574	0,0000575971166	-11,5439272592285	3,7090412013574	0,0000049893867

Figura 27: Soluciones Newton para $x_{n-1} = 3.5$ Ej7. b)

(c) Determine una aproximación inicial razonable para encontrar el enésimo cero positivo más pequeño de f.[Sugerencia: Dibuje una gráfica aproximada de f]

Dibujo de f:

Figura 28: Gráfica de la función f

Partiendo de la cual, se obtiene el enésimo cero positivo.

i	x n-1	хn	f(x n-1)	f'(x n - 1)	f(x n)	error < tolerancia (10^-6)
1	9,4000000000000	9,5446575561301	17,7644666638533	-122,8035862010200	9,5446575561301	0,1446575561301
2	9,5446575561301	9,5318663686077	-1,8406195655431	-143,8974733442120	9,5318663686077	0,0127911875224
3	9,5318663686077	9,5318335337423	-0,0046994795573	-143,1246783254350	9,5318335337423	0,0000328348655

Figura 29: Soluciones Newton para el enésimo cero Ej7. c)

 $(\rm d)$ Use la parte c) para determinar, dentro de $10^{-6},$ el vigésimoquinto cero positivo más pequeño de f

Se obtiene tomando $x_{n-1} = 24,4$

i	x n-1	хn	f(x n-1)	f'(x n - 1)	f(x n)	error < tolerancia (10^-6)
1	24,4000000000000	24,5077595512671	-5347,8327983464100	49627,4597978917000	24,5077595512671	0,1077595512671
2	24,5077595512671	24,4999101994672	447,3374724617760	56990,3711622945000	24,4999101994672	0,0078493517999
3	24,4999101994672	24,4998870476606	1,3115658108904	56650,6898379409000	24,4998870476606	0,0000231518065
4	24,4998870476606	24,4998870474460	0,0000121608246	56649,6392630125000	24,4998870474460	0,0000000002147

Figura 30: Soluciones Newton para el vigésimoquinto cero Ej7. d)

8. La función $f(x) = x^{(\frac{1}{3})}$ tiene raíz en x = 0. Usando el punto de inicio de x = 1 y $p_0 = 5$, $p_1 = 0.5$ para el método de la secante, compare los resultados de secante y Newton.

Resolución por método de la secante en el intervalo [5,0,5]. Se nota que en 10 iteraciones el método no logra converger y la raíz aproximada que se obtiene es -0.82036

i	x n-2	x n-1	хn	f(x n-2)	f(x n-1)	f(x n)
1	5,0000000000000	0,5000000000000	-3,3980117618223	1,7099759466767	0,7937005259841	-3,3980117618223
2	0,5000000000000	-3,3980117618223	-0,8468509642592	0,7937005259841	-1,5034014309146	-0,8468509642592
3	-3,3980117618223	-0,8468509642592	3,4840773300578	-1,5034014309146	-0,9460969929243	3,4840773300578
4	-0,8468509642592	3,4840773300578	0,8173796732587	-0,9460969929243	1,5159885758976	0,8173796732587
5	3,4840773300578	0,8173796732587	-3,4741115686122	1,5159885758976	0,9349921065644	-3,4741115686122
6	0,8173796732587	-3,4741115686122	-0,8206913425864	0,9349921065644	-1,5145417645112	-0,8206913425864
7	-3,4741115686122	-0,8206913425864	3,4752136173043	-1,5145417645112	-0,9362531330827	3,4752136173043
8	-0,8206913425864	3,4752136173043	0,8203238673251	-0,9362531330827	1,5147018939217	0,8203238673251
9	3,4752136173043	0,8203238673251	-3,4750911029499	1,5147018939217	0,9361133723670	-3,4750911029499
10	0,8203238673251	-3,4750911029499	-0,8203647038902	0,9361133723670	-1,5146840940657	-0,8203647038902

Figura 31: Soluciones Secante Ej8

Resolución por el método de Newton-Raphson para x=1. Se nota que tampoco logra converger por una falla durante la ejecución

i	x n-1	хn	f(x n-1)	f'(x n - 1)	f(x n)	error < tolerancia (10^-6)
1	1,0000000000000	-2,00000000000000	1,0000000000000	0,3333333333333	-2,0000000000000	3,0000000000000
2	-2,00000000000000	#¡NUM!	-1,2599210498949	#¡NUM!	#¡NUM!	#¡NUM!

Figura 32: Soluciones Newton Ej8

CONCLUSIONES

Los métodos analizados, de Newton, secante y posición falsa presentan características que los destacan y los hacen adecuados para diferentes escenarios. El método de Newton destaca por su rápida convergencia cuando la aproximación inicial dada es cercana a la raíz y la derivada no es cercana o es cero. Sin embargo, por esto último, su dependencia de la derivada lo hace inestable en funcionas cuyas derivadas son problemáticas, tal como sucedió en $f(x) = x^{1/3}$ donde la derivada en x = 0 es infinita, causando divergencia o fallo en la ejecución.

Por otra parte, el método de la secante, al no depender de la derivada y en su lugar utilizar aproximaciones, ofrece una alternativa adecuada cuando el cálculo de la derivada

es complicado. Aunque su convergencia es mas lenta que la de Newton, su implementación es más sencilla y evita problemas asociados a las derivadas mencionadas.

Mientras que, el método de la posición falsa combina la seguridad de la secante (al tomar intervalos y asegurar convergencia) y agrega un toque de bisección lo que lo hace efectivo pero lento en ciertos casos. En aplicaciones donde la función es "grande", como sucede en el polinomio de cuarto grado del problema 5, este método, aunque largo, aseguró resultados confiables.

RECOMENDACIONES

Para el método de Newton es importante tener en cuenta el cálculo de la derivada, ya que como se mencionó, limita su funcionamiento adecuado. Para máximizar su eficiencia, se recomienda realizar un análisis gráfico previo, como sugiere el problema 7, para identificar zonas estables y poder proceder con la resolución sin problemas.

El método de la secante surge como una alternativa efectiva cuando existen derivadas problemáticas y es particularmente útil cuando se tiene dos aproximaciones iniciales cercanas a la raíz. No obstante, sino se disponen de puntos iniciales, se requiere tener cuidado en la toma de estos puntos, para evitar estancamientos o fallos en la ejecución.

Por su parte, el método de la posición falsa garantiza convergencia al mantener el intervalo con cambio de signo, lo que lo hace confiable en distintos escenarios. Por ello se recomienda emplearlo cuando se trabaje con polinomios "grandes", o se requiera mayor seguridad en las aproximaciones.

REFERENCIAS

[1] J. A. G. Robles and M. Ángel Olmos Gómez, *Análisis Numérico*, 1st ed. México: Pearson Educación, 2008.