2018 Putnam A2

Tristan Shin

4 Dec 2018

Let $S_1, S_2, \ldots, S_{2^n-1}$ be the nonempty subsets of $\{1, 2, \ldots, n\}$ in some order, and let M be the $(2^n - 1) \times (2^n - 1)$ matrix whose (i, j) entry is

$$m_{ij} = \begin{cases} 0 & \text{if } S_i \cap S_j = \emptyset; \\ 1 & \text{otherwise.} \end{cases}$$

Calculate the determinant of M.

Lemma: The determinant is invariant under any permutation of the subsets.

Proof. Consider two permutations $\{S_i\}$ and $\{T_i\}$. There exists a sequence of swaps which takes $\{S_i\}$ to $\{T_i\}$. Perform these swaps on the matrix for S_i in both the rows and the columns; there are an even number of swaps. Then we get the matrix for T_i . Since each swap multiplies the determinant by -1 and there are an even number of swaps, the determinant is preserved at the end of the swapping and thus the claim is true.

For $i=1,2,\ldots,2^n-1$, let $(a_na_{n-1}\ldots a_2a_1)_2=\sum_{k=1}^n a_k2^{k-1}$ be the binary representation of i. Let S_i be the set such that $k\in S_i$ if and only if $a_k=1$. This is clearly a permutation of the nonempty subsets of $\{1,2,\ldots,n\}$ because every binary string of length n is covered among $\{1,2,\ldots,2^n-1\}$ except the string of all 0's (which corresponds to the empty subset).

Claim. If $i + j \geq 2^n$ then $S_i \cap S_j \neq \emptyset$ and thus $m_{i,j} = 1$.

Proof. Suppose that $i + j \ge 2^n$ but $S_i \cap S_j = \emptyset$. Let $i = \sum_{k=1}^n a_k 2^{k-1}$ and $j = \sum_{k=1}^n b_k 2^{k-1}$ be their binary representations. Then

$$i + j = \sum_{k=1}^{n} a_k 2^{k-1} + \sum_{k=1}^{n} b_k 2^{k-1} = \sum_{k=1}^{n} (a_k + b_k) 2^{k-1} \le \sum_{k=1}^{n} 2^{k-1} = 2^n - 1,$$

contradiction. \Box

Claim. If $i + j = 2^n - 1$ then $S_i \cap S_j = \emptyset$ and thus $m_{i,j} = 0$.

Proof. Suppose that $i+j=2^n-1$ but $S_i\cap S_j\neq\varnothing$. Let $i=\sum_{k=1}^n a_k2^{k-1}$ and $j=\sum_{k=1}^n b_k2^{k-1}$ be their binary representations so that

$$i + j = \sum_{k=1}^{n} (a_k + b_k) 2^{k-1}.$$

2018 Putnam A2 Tristan Shin

Let e be the smallest element of $S_i \cap S_j$. Then $a_k + b_k = 1$ for k = 1, 2, ..., e - 1 (it cannot be 0 otherwise there is a 0 in the binary representation of i + j) and $a_e + b_e = 2$. Then the 2^{e-1} place in the binary representation of i + j is 0, contradiction.

For example, if n = 3 then

Let C_k for $k = 1, 2, ..., 2^n - 1$ be the matrix formed by the rightmost k columns and topmost k rows. For example, if n = 3 then

$$C_4 = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix}.$$

I claim that

$$\det C_{k+1} = (-1)^k \det C_k$$

for $k = 1, 2, ..., 2^n - 2$. First, perform a determinant-preserving row operation on C_{k+1} by subtracting the kth row from the (k+1)th row. Observe that the (k+1)th row consists of the terms $m_{k+1,2^n-k-1} \to m_{k+1,2^n-1}$ and thus is all 1's. In addition, the kth row consists of the terms $k_{k,2^n-k-1} \to m_{k,2^n-1}$ and thus is a 0 followed by all 1's. Thus after the row operation, the (k+1)th row is a 1 followed by all 0's. Now, expand the determinant about the (k+1)th row. There is only one non-zero term, and that is $(-1)^{(k+1)+1} \det C_k = (-1)^k C_k$ as desired.

Now, with $\det C_1 = 1$, we have that

$$\det C_{2^{n}-1} = (-1)^{1+2+\dots+(2^{n}-2)} = (-1)^{(2^{n}-1)(2^{n-1}-1)}.$$

If n=1 then this is 1; if $n \geq 2$ then this is -1. But $C_{2^n-1}=M$, so

$$\det M = \begin{cases} 1 & \text{if } n = 1 \\ -1 & \text{otherwise.} \end{cases}$$

2