Tom Smith Unit 11 Assignment

Individual Project: Executive Summary

Introduction

Pampered Pets has chosen to implement digitalisation improvements to build their brand and

streamline their business operations. As recommended by our previous assessment,

e-commerce capabilities, online marketing and blogging, and an ERP will streamline business

processes and provide new revenue streams.

Furthermore, the business has taken initiatives to expand to an international supply chain to

lower costs and diversify market reach, and utilise automated warehouses to increase efficiency.

The risks associated with these initiatives will be mapped to strong mitigation strategies, and will

be supplemented by a robust business continuity plan.

Risk Summary

The table below summarises the financial outcomes of the quantitative analysis performed.

There are more risks during the initial period of digitisation and this has been reflected in the

summary.

Туре	Year 1 Cost	Year 2 Onward Cost
Product Quality Risks	£122 200	£97 000
Supply Chain Security Risks	£86 500	£66 500
Legal Risks	£7 500	£7 500

Product Quality risks make up a slight majority of the overall risk costing which is expected as this is a key priority of the business. The most expensive risk is the cost of data synchronisation issues which is due to the critical RPO requirement of 1 minute. The least costly risk is the cost of physical security breaches which are both low impact and low probability.

Risk Analysis

Annualised Loss Expectancy (ALE)

Method

The risks have been quantified by using the Annualised Loss Expectancy (ALE) model (Blakely et al., 2001) as it performs well as an indicator of budget required to mitigate risks (De Bruyn, 2019). Furthermore, Kuzminykh et al. (2021) calls this assessment method "business-friendly" which is suitable for an executive summary for business stakeholders, and Taylor (2013) explains that it is useful to decide whether a risk is worth its cost.

Other methods of analysis were considered such as Monte Carlo simulations analysis. Monte Carlo simulations are very good at making predictions based on historical data, but as this is a new endeavour with very limited data available, it has limited applicability here (Bonate, 2001). A simulation can be carried out based on assumptions, but Monte Carlo is very sensitive to assumptions and so a small misjudgement can give dramatically different results (Kanade, 2023).

ALE is calculated as follows:

$ALE = SLE \times ARO$

Where SLE is the Single Loss Expectancy: the loss to the company in the case that the risk occurs once, and ARO is the Annualised Rate of Occurrence: how many times the risk is likely to actually occur in a year (De Bruyn, 2019).

$SLE = AV \times EF$

Where AV is the Asset Value (in this case the business has been assumed as a single asset as the digitalisation is company-wide - see assumption A-01), and EF is the Exposure Factor: the percentage of the business that is affected by each risk event (Krutz, 2001).

Data

The table below outlines the key risks associated with the mentioned digitalisation. Risks are organised into the categories of 'product quality', 'supply chain security', and 'legal'.

Risk	SLE	SLE Justification	ARO	ARO Justification	ALE
Product Quality	Product Quality				
Data corruption	30 000	Product specifications,	0.8	A study by Bairavasundaram et	24 000
within ERP	(A-02)	production processes,		al. (2008) found that the	
system		and resource planning		average disk experiences 0.08	
		compromised leads to		corruptions per year (A-12,	
		reduction in product		A-13).	
		quality.			
Errors in	500	Machinery or	44	Tsarouhas & Fourlas (2015)	22 000
automated	(A-03)	configuration faults can		found that the average	
warehouse		lead to lower quality,		operating time of robotic	

systems		damaged or incorrect		systems is 88%.	
		products reaching clients.			
Integration issues	30 000	Critical processes may	0.84	Forbes found that 84% of	25 200
between new and	(A-04)	not be compatible or may	0.01	digital transformations	
	(/\-04)	need adapting which can			
existing systems				experience integration issues	
		affect the end product or		(Rogers, 2016) - although this	
		cause delays.		is likely to be a one off issue at	
				the beginning of the digitisation	
				process.	
Reduced human	500	Defects and quality issues	22	As above for 'errors in	11 000
oversight and	(A-05)	may be missed by		automated warehouse	
intervention		automated systems, or		systems'. Assume that half of	
		affect larger batches		the errors are worsened by lack	
		before being found.		of oversight (A-15).	
International	20 000	Inconsistent material	2	See assumption A-14.	40 000
supply chain	(A-06)	supply can affect the			
affects quality or		reliability of product			
availability of raw		quality or the amount of			
materials		product that is able to be			
		manufactured.			
Supply Chain Secu	rity				
Cyber attacks	20 000	Unauthorised access can	0.5	Cyber Security Breaches	10 000

		1			
target supply	(A-07)	lead to operational		Survey 2024 found that half of	
chain systems		disruption, data breaches,		UK businesses experienced a	
		and reputational damage.		cyber attack over 12 months	
				(DIST, 2024).	
International	20 000	Implementation of an	1	Organisation of the supply	20 000
supply chain	(A-06)	international supply chain		chain is likely to occur at the	
creates logistical		will take time and		beginning of the digitisation	
complexities		research to set up.		process and then further issues	
				will be absorbed in other risk	
				categories.	
Inaccurate or	100	Discrepancies in	525	The 1 minute RPO requested	52 500
delayed data	(A-08)	inventory can or cause		means 525 600	
synchronisation		supply chains to be		synchronisation per year and a	
between ERP,		inefficient. Orders may		failure rate of 0.1% is assumed	
e-commerce and		need checking to be		(A-15).	
supply chain		completed properly.			
Physical security	80 000	Theft, tampering or	0.05	One-in-ten small businesses	4 000
of geographically	(A-09)	sabotage can ruin large		were victims of crime which	
diverse supply		batches of products or		cost in excess of £10 000 in a	
chain		cause delays.		two year period (Downes,	
				2023).	
Legal					
9~.					

Non-compliance	16 000	Fines and legal	0.47	47% of small businesses were	7 520
with GDPR in		implications as well as		subjects of a breach in a 12	
online marketing,		brand reputational		month period (Vaidya, 2018).	
e-commerce or		damage and loss of			
ERP system		custom (Vaidya, 2018).			
Non compliance	120 000	Payment fraud, data	-	Fines are based on	-
with PCI-DSS	(A-10)	breaches and theft can		non-compliance and vary	
through		have catastrophic results		depending on severity and	
e-commerce		for customers and the		length of time (GoCardless,	
sales		business.		2023).	

Mitigation Recommendations

In order to mitigate these risks and sustain product quality, the following recommendations are provided in priority order:

#	Recommendation	Justification
1	Supply chain diversification	As the largest likely cost per year, having multiple
		supply chains across multiple geographical regions to
		improve product resilience is paramount (Li et al., 2022).
		This is a trade-off with logistical complexities (also
		modelled), but as that is more of a one off cost, pay-off

		is likely to be seen over time.
2	Use a cloud provided datacenter infrastructure	Dixit et al. explain how compiler optimisation, protected datapaths, and architectural priority can mitigate data corruption (2021), but a non-technical team should abstract this strategy to a specialist provider. This is particularly key due to the expected RPO of 1 minute. This solution is also key to reducing the cost of data synchronisation issues between key systems.
3	Automation Monitoring	Due to the impact of automation errors, and the exacerbation from uncaught errors, monitoring is integral to the success of automated warehouses. This may include IoT quality scanning devices and predictive maintenance via AI and big data analytics - beware these come with their own cyber security risks (Ani et al., 2024).
4	Data management policies and audits	A company-wide data management policy should be implemented to counter the likelihood of cyber breaches, as well as reduce synchronisation error occurrence. This should be enforced on the e-commerce site, ERP system, online blog, and throughout the in-store customer experience. Clear incentives and sanctions should be embedded into the

		policy to ensure that people comply with the policy (Janssen, 2020).
5	Hire an Information Security	An Information Security Officer can implement
	Officer	measures and processes to protect you from cyber
		crime, physical thefts. The byproduct of the good
		practices they would introduce is that you are more
		likely to avoid GDPR and PCI-DSS fees and fines.
		Although this has many benefits, it is a lower priority as
		it is a greater consideration.

Business Continuity

Disaster Recovery Strategy

Requirements

RTO: 1 minute

RPO: 1 minute

Availability: 24/7/365

Strategy

The DR requirements are typical of a highly critical system and so an active-active DRaaS (Disaster Recovery as a Service) solution is most appropriate (Necat, 2022). DRaaS uses cloud

technology providers to emulate systems remotely so that they can be initiated when the original

system experiences a disaster (Andrade et al., 2017). Although using an on-site solution

provides higher synchronisation rates (due to the shorter distance for the data to travel), this

advantage is offset by the risk of any geographical disaster - which warrants the need for cloud

based geographical diversification (Alhazmi & Malaiya, 2013).

To meet the 1 minute Recovery Time Objective and 'always on' availability, two data centres

must be running at all times with a traffic manager able to instantly change to the secondary

system in case of failure. Both systems must be active at all times which will mean higher

utilisation costs (Wood et al., 2010).

To meet the 1 minute Recovery Point Objective, data should be copied synchronously between

the two sites to guarantee data consistency, although due to geographical distancing, additional

latency means there may be a slight delay (Alhazmi & Malaiya, 2013). This may work

favourably, however, as a small delay can eliminate the impact of data corruption (Necat, 2022).

Regular failover testing is essential to ensure that these measures are operating effectively.

Periodic drills and simulations should be scheduled to ensure that the RTO and RPO are being

met.

Platform

Recommended Provider: Zerto

Secondary Recommended Provider: Amazon Web Services

Feature	AWS	Zerto
Deployment Model	Public cloud	On-premises, Hybrid, Multi-cloud
RTO (Recovery	Near-zero to minutes	Near-zero to minutes
Time Objective)		
RPO (Recovery	Near-zero to seconds	Near-zero to seconds
Point Objective)		
Data Replication	Asynchronous and synchronous	Continuous Data Protection (CDP)
	replication	
Failover	Automated failover and failback	Automated failover and failback
Automation		
Disaster Recovery	Yes	Yes
Testing		
Cost Model	Pay-as-you-go or Reserved	Subscription-based pricing
	Instances	
Integration with	Integrates with AWS Backup, AWS	Integrates with VMware vSphere,
Other Tools	CloudWatch, AWS Security Hub	Nutanix Prism, AWS, Azure

(AWS, 2024; Wilson, 2022; Zerto, 2022)

AWS is easy to get started, and is suitable for SMEs such as Pampered Pets. Zerto is also very user friendly and supports a variety of cloud options, as opposed to AWS which only works within its own ecosystem (Zerto, 2022). Zerto is likely to be more expensive, although this cost

is offset by the variety of compatible hosting options which helps to avoid vendor lock-in (Rawool et al., 2020).

Vendor lock-in happens when providers make their service incompatible with alternative providers to make any transition difficult and so the customer is dependent (Opara-Martins, 2016). The lock-in might not be purely cost related as system differences may require new staff to be hired to gain suitable resources. AWS Lambda functions, for example, are known to require specialist knowledge to transfer to other cloud providers (Alhosban et al., 2024).

Although Microsoft Azure is a common provider with equivalent capability to those recommended above, it is considered more difficult to use and requires more IT knowledge to set up solutions (Rawool et al., 2020).

Assumptions

#	Assumption
A-01	The current annual revenue of Pampered Pets represents the value of the business and is £500,000, as given in the previous assessment.
A-02	Data corruption of key information on products and processes could take roughly 3 weeks to rectify.
A-03	An error in machinery could take a few hours for a configuration fault or a day for a repair.

A-04	Integration issues between complex systems may take several weeks to resolve if
	multiple parties need to communicate and implement fixes.
A-05	Reduced human oversight may mean that a day's worth of batches are generated
	without quality control.
A-06	International reshipping of a large order may take multiple weeks to organise and
	receive.
A-07	Cyber attacks may limit services for a few weeks.
A-08	Inaccurate data could take a few hours to be noticed and rectified.
A-09	Sabotage and theft could affect up to 2 months worth of production.
A-10	PCI-DSS fine is £60,000 but reputational damage is equal (GoCardless, 2023).
A-11	Revenue is earned uniformly throughout the year.
A-12	Corruption rates have not improved since 2008.
A-13	10 HDDs/SSDs are used in the ERP system.
A-14	Supply chains experience availability issues twice per year due to extreme weather.
A-15	Half of automated machinery errors have reduced impact as they are noticed by
	human intervention before damage can occur.

References

Alhazmi, O. H. & Malaiya, Y. K. (2013) 'Evaluating disaster recovery plans using the cloud', 2013 Proceedings Annual Reliability and Maintainability Symposium (RAMS). Orlando, 28-31 January. New York: IEEE. 1-6.

Alhosban, A., Pesingu, S. & Kalyanam, K. (2024) CVL: A Cloud Vendor Lock-In Prediction Framework. *Mathematics* 12(3): 387.

Andrade, E., Nogueira, B., Matos, R., Callou, G. & Maciel, P. (2017) Availability modeling and analysis of a disaster-recovery-as-a-service solution. *Computing* 99(10): 929-954.

Ani, E. C., Olu-lawal, K. A., Olajiga, O. K., Montero, D. J. P. & Adeleke, A. K. (2024) Intelligent monitoring systems in manufacturing: current state and future perspectives. *Engineering Science & Technology Journal* 5(3): 750-759.

AWS (2024) AWS Elastic Disaster Recovery. Available from:

https://aws.amazon.com/disaster-recovery/?nc=sn&loc=1 [Accessed 27 May 2024].

Bairavasundaram, L. N., Arpaci-Dusseau, A. C., Arpaci-Dusseau, R. H., Goodson, G. R. & Schroeder, B. (2008) An analysis of data corruption in the storage stack. *ACM Transactions on Storage (TOS)* 4(3): 1-28.

Blakley, B., McDermott, E., & Geer, D. (2001) 'Information security is information risk management', *Proceedings of the 2001 workshop on New security paradigms*. Cloudcroft, New Mexico, 10-13 September. New York: ACM. 97-104.

Bonate, P. L. (2001) A brief introduction to Monte Carlo simulation. *Clinical pharmacokinetics* 40: 15-22.

De Bruyn, I. (2019) *The Influence Of Annualized Loss Expectancy On IT Risk Management And Cybersecurity In Belgian SMEs*. Belgium: Ghent University.

Downes, R. (2023) Organised shoplifting among most common types of crime affecting small businesses. Available from

https://www.fsb.org.uk/resources-page/organised-shoplifting-among-most-common-types-of-cri me-affecting-small-businesses.html [Accessed 25 May 2024].

DIST (2024) Cyber security breaches survey 2024. Available from <a href="https://www.gov.uk/government/statistics/cyber-security-breaches-survey-2024/cyber-security-breaches-

Dixit, H. D., Pendharkar, S., Beadon, M., Mason, C., Chakravarthy, T., Muthiah, B. & Sankar, S. (2021) Silent data corruptions at scale. *arXiv* (2102): 11245.

GoCardless (2023) PCI fines and penalties.

https://gocardless.com/guides/posts/pci-fines-penalties/ [Accessed on 24 May 2024].

ICO (2018) UK GDPR guidance and resources. Available from:

https://ico.org.uk/for-organisations/uk-gdpr-guidance-and-resources/data-sharing/data-sharing-a -code-of-practice/enforcement-of-this-code/ [Accessed on 24 May 2024]. Janssen, M., Brous, P., Estevez, E., Barbosa, L. S. & Janowski, T. (2020) Data governance: Organizing data for trustworthy Artificial Intelligence. *Government information quarterly* 37(3): 101493.

Kanade, V. (2023) What Is a Monte Carlo Simulation? Working, Applications, Pros, and Cons. Available from:

https://www.spiceworks.com/tech/tech-general/articles/what-is-a-monte-carlo-simulation/ [Accessed on 26 May 2024].

Krutz, R. L., Vines, R. D., & Stroz, E. M. (2001) *The CISSP prep Guide: Mastering the ten domains of Computer Security.* 1st ed. New York: Wiley.

Kuzminykh, I., Ghita, B., Sokolov, V. & Bakhshi, T. (2021) Information security risk assessment. *Encyclopedia* 1(3): 602-617.

Li, G., Liu, M. & Zheng, H. (2022) Subsidization or diversification? Mitigating supply disruption with manufacturer information sharing. *Omega* 112: 102670.

Necat, B. (2022) *Business Continuity and Disaster Recovery* [Lecturecast]. SRM_PCOM7E March 2024. University of Essex Online.

Opara-Martins, J., Sahandi, R. & Tian, F. (2016) Critical analysis of vendor lock-in and its impact on cloud computing migration: a business perspective. *Journal of Cloud Computing* 5(4): 1-18.

Rawool, A., Joshi, A. & Sayyed, S. (2020) Comparison Between Disaster Recovery As A Service Providers. *International Research Journal of Modernization in Engineering Technology and Science* 2(12): 1116-1120.

Rogers, B. (2016) Why 84% Of Companies Fail At Digital Transformation. Available from: https://www.forbes.com/sites/brucerogers/2016/01/07/why-84-of-companies-fail-at-digital-transfo rmation/?sh=5bf4f1ad397b [Accessed on 24 May 2024].

Taylor, L. P. (2013) 'Performing the Business Risk Assessment', in: Taylor, L. P. (eds) *FISMA Compliance Handbook*. Oxford: Syngress. 201-220.

Tsarouhas, P. H. & Fourlas, G, K. (2015) Reliability and Maintainability Analysis of a Robotic System for Industrial Applications: A Case Study. *Int J Performability Eng* 11(5): 453-462.

Vaidya, R. (2018) *Cyber Security Breaches Survey 2018: Statistical Release.* Available from https://www.gov.uk/government/statistics/cyber-security-breaches-survey-2018 [Accessed on 25 May 2024].

Wilson, M. (2022) Establishing RPO and RTO Targets for Cloud Applications. Available from: https://aws.amazon.com/blogs/mt/establishing-rpo-and-rto-targets-for-cloud-applications/ [Accessed on 27 May 2024].

Wood, T., Cecchet, E., Ramakrishnan, K. K., Shenoy, P., Van der Merwe, J. & Venkataramani, A. (2010) 'Disaster recovery as a cloud service: Economic benefits & deployment challenges', 2nd USENIX Workshop on Hot Topics in Cloud Computing (HotCloud 10). Boston, 22-25 June. 1-7.

Zerto (2022) DRaaS eBOOK 101. Available from:

https://www.zerto.com/wp-content/uploads/2022/09/DRaaS-101_eBook.pdf [Accessed on 27 May 2024].