Education

2017.8–2021.6 **Sun Yat-sen University**, Guangzhou, China.

B.Sc. in Computer Science, School of Data and Computer Science Overall GPA: 92.0/100 (3.95/4.00) Ranking: 1/188

Publications

- 1. **Hongzheng Chen**, Minghua Shen, *A Deep-Reinforcement-Learning-Based Scheduler for FPGA HLS*, in Proceedings of the 38th International Conference on Computer-Aided Design (ICCAD), 2019.
- 2. Minghua Shen, **Hongzheng Chen***, Nong Xiao, *Entropy-Directed Scheduling for FPGA High-Level Synthesis*, in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (TCAD), 2020.
- Yichi Zhang, Junhao Pan, Xinheng Liu, Hongzheng Chen, Deming Chen, Zhiru Zhang, FracBNN: Accurate and FPGA-Efficient Binary Neural Networks with Fractional Activations, in Proceedings of the 29th ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (FPGA), 2021.
 - * Corresponding Author

Research Experience

2020.5-Present Auto-Streaming Support for Heterogeneous Programming Platform.

Supervisor: Prof. Zhiru Zhang, Cornell University

Project Link: https://github.com/cornell-zhang/heterocl

- Designed a binary neural network library for HeteroCL, and implemented the quantized ReAct-ResNet that outperforms previous BNN models with large accuracy improvement and significant speedup.
- Provided dataflow architecture generation support for HeteroCL, and proposed a fully pipelined BNN accelerator that achieved 1,992 FPS on Xilinx Alveo U280 FPGA.
- Implemented an auto-profiling IR pass for HeteroCL, enabling to generate the roofline model automatically and guide users to make better optimizations.

2018.8-2020.4 Large-Scale Graph Processing Systems for Concurrent Graph Jobs.

Supervisor: Dr. Minghua Shen and Prof. Nong Xiao, National Supercomputer Center in Guangzhou, Prof. Xuehai Qian, University of Southern California

- Designed a graph processing system Krill that consists of a compiler and a runtime, enabling to execute
 multiple graph applications on a shared graph concurrently.
- Proposed property buffer and its compiler to enable data layout transformation, and graph kernel fusion for runtime system to maximumly reduce the number of memory accesses.
- Shown up to 7x speedup, 5x memory access reduction, and 4x latency reduction compared with the state-of-the-art graph processing system.
- This work has been summited to anonymous peer-review and is open-sourced on Github https://github.com/chhzh123/krill.

2018.3-2019.1 High-Level Synthesis for Field-Programmable Gate Array (FPGA).

Supervisor: Dr. Minghua Shen and Prof. Nong Xiao, National Supercomputer Center in Guangzhou

2018.3–2018.7 Project 1: Entropy-Directed Scheduler for FPGA HLS.

- Proposed a heuristic scheduler based on information entropy for FPGA HLS.
- Established a connection between the maximum entropy principle and resource/time-constrained scheduling problems theoretically.
- Integrated the scheduler into the open-source HLS system *Legup* and obtained up to 20% performance improvement.
- This work has been published in Transaction on Computer-Aided Design of Integrated Circuits and Systems (TCAD).

2018.7-2019.1 Project 2: Deep-Reinforcement-Learning-Based Scheduler for FPGA HLS.

- o Designed a novel state and action representation for leveraging deep reinforcement learning in HLS scheduling.
- Proposed a training pipeline that consists of supervised learning and reinforcement learning enabling better scheduling performance.
- o This work has been accepted by International Conference on Computer-Aided Design (ICCAD'19).

Internship

2020.8-Present Large-Scale Graph Neural Network Training Platform.

Supervisor: Jun He and Yibo Zhu, Bytedance Al Lab

Awards & Honors

2020.10 CCF Elite Collegiate Award (98 undergrads in China), China Computer Federation (CCF).

2018-2020 National Scholarship \times 2 (Top 1%), Ministry of Education of PRC.

2017-2020 First-Prize Scholarship × 3 (Top 5%), Sun Yat-sen University.

2017-2018 Samsung Scholarship, Samsung Electronics.

2019.7 Second Place, IEEE EDAthon, IEEE Council on Electronic Design Automation (CEDA).

2019.1 Meritorious Winner, Mathematical Contest in Modeling (MCM), COMAP.

Selected Projects

2019 Fall Chatbot-Based Agenda Management System.

Project link: https://github.com/chhzh123/AIDO

- o Designed a chat bot based on natural language processing, which can grab user's schedule information and add it to database when chatting.
- o Provided functions like daily chatting, agenda management, and voice input.
- Ranked the 1st in Database System course among 190 students.

2019 Spring Advanced Operating System in Protected Mode.

Project link: https://github.com/chhzh123/AdvancedOS

- o Implemented an operating system running in 32-bit protected mode from a bare machine, which enables to load and run user programs concurrently in a time-sharing setting.
- o Provided a simple shell with multiple consoles, a FAT file system with C file operations support, and a basic pthread library that can be directly called from user programs.
- o Attained the only full score (100/100) in Operating Systems course among 190 students.

2018 Fall Multi-Cycle CPU in MIPS Architecture.

- o Designed a multi-cycle CPU, implemented in Verilog, and fully emulated on FPGA.
- o Proposed a simple assembler written in Python, enabling MIPS operations to be transformed into binary instructions automatically.
- Ranked the 1st in Computer Organization course among 190 students.

Skills

Programming C, C++, Python, Haskell, Prolog, x86 assembly, Verilog

Toolkits OpenMP, CUDA, MPI, Pytorch, Wolfram Mathematica, Matlab, Vivado HLS, LaTEX

Languages English (fluent), Chinese (native)