rPPG Overview

김 대 열 2022.09.30 시작하기 전에 실습을 위해 UBFC 데이터 일부 다운로드 scp -P 12222 -r an@175.209.36.34 :/media/hdd1/dy/dataset/PhysNet_UBFC_train_9.hdf5 로컬 경로

- 비밀번호: 1324

- https://github.com/TVS-AI/Pytorch_rppgs star & clone 부탁 드립니다.
- git clone git@github.com:TVS-AI/Pytorch_rppgs.git

PPG(Photoplethysmography)

- 혈류를 관찰 하는 방법
- 혈액이 손가락 끝에 닿기 까지는 1~2초가 걸리지만 맥파(Plethysmogram, PTG)는 0.16초 소모
- 빛으로 맥파에 따라 변하는 미세한 혈류량을 측정하면 혈액량의 변화를 알 수 있음
- 빛으로(Photo) 변화를(Plethysmo) 기록한다(Graphy)

Fig 1. ppg 측정 방안

1. LED로 심박수를 측정한다고? https://news.samsungdisplay.com/30140

PPG(Remote Photoplethysmography)

- 혈류의 성분
 - oxyHb, 45~70%
 - deoxyHb, 0%~5%(동맥) 15%~40%(정맥)
 - MetHb, 0% ~ 1.5%
 - COHb 0~2.5%(비흡연자) 1.5%~10%(흡연자)

Fig 2. 투과형 및 반사형 Oximeter

Fig 3. 피부 반사 모델

Fig 4. 빛의 파장에 따른 빛 흡수량

2. 모바일 환경에서 안면 영상을 이용한 실시간 생체징후 측정 시스템

rPPG(Remote Photoplethysmography)

rPPG

- 측정 부위 : 손 -> 얼굴
- 측정 기기 : Oximeter -> camera

Fig 5. rPPG 모델

rPPG(Remote Photoplethysmography)

- 얼굴의 혈류의 변화 감지를 통해 다양한 활력징후(Vital Sign)가 측정 가능함
 - 측정 가능한 Vital Sign
 - PPG (Photoplethysmography)
 - HR (Heart Rate)
 - RR (Respiration Rate)
 - BP (Blood Pressure)
 - Stress

9/29/2022

SPo2 (Saturation of peripheral O2)

rPPG(Remote Photoplethysmography)

rPPG

- 측정된 파형을 가공하여 추가 정보를 생성할 수 있음.
- 일반적으론 주파수 필터를 이용해서 정보를 추가 추출
- 0.02 0.17Hz: 산소포화도
- 0.18 0.40Hz : 호흡수
- 0.80 4.00*Hz* : 심장박동 수
- < 0.003 Hz : 급성 심장마비 및 부정맥 신호
- 0.033Hz 0.04 Hz : 레닌 안티오텐신계 시스템 변수 (혈압, 신장 관련 정보)
- 0.04Hz 0.15 Hz: 교감 신경계와 부교감 신경계에 의해 조절
- 0.15Hz 0.4Hz: 호흡과 관련된 심박 변이율

^{2.} 모바일 환경에서 안면 영상을 이용한 실시간 생체징후 측정 시스템

SPo2

- 혈류의 성분
 - oxyHb, 45~70%
 - deoxyHb, 0%~5%(동맥) 15%~40%(정맥)
- 동맥혈과 정맥혈의 색상
 - 철 이온의 전자 상태에 따른 색상 변화
 - OxyHb : 적색
 - deOxyHb : 어두운 붉은 보라색

^{3.} Kienle A, Lilge L, Vitkin AI, et al. Why do veins appear blue? A new look at an old question. Appl Optics 1996; 35:1151-1160. (Maybe more than you wanted to know, but here it is).

rPPG Challenge

- 2가지 rPPG approach
 - V4V(Vision For Vitals)
 - PPG 신호의 형태에 집중
 - 평가 지표 : 신호 correlation의 rmse, mae, correlation factor
 - RePSS(Remote Physiological Signal Sensing)
 - PPG 신호로 뽑아 낼 수 있는 추가적인 생체 징후
 - 혹은 얼굴 영상으로부터 바로 추가적인 생체 징후를 뽑아내고자 함

V4V (Vision for Vital)

V4V

- APRL 데이터를 주로 이용하는 Daniel Mcduff 주관.
- https://competitions.codalab.org/competitions/31978#learn_the_details-evaluation
- 1st Challenge: ICCV 2021
 - 목표 : 파형의 correlation , 심박, 호흡 측정이 목표

RePSS(Remote Physiological Signal Sensing)

RePSS

- OBF 데이터 셋을 만든 필란드 Oulu 대학의 Xiaobai Li, VIPL-HR 데이터 셋을 만든 Hu han이 주최
- https://competitions.codalab.org/competitions/?q=Repss
- 1st Challenge: CVPM2020
 - 목표 : 평균 심장박동 수 측정 https://openaccess.thecvf.com/CVPR2020 workshops/CVPR2020 w19
- 2nd Challenge: ICCV 2021
 - Track 1 : Mean IBI(InterBeat Interval), Track 2 : MAE RR https://openaccess.thecvf.com/ICCV2021 workshops/RePSS
- 3rd Challenge : ICCV 2023(예정)

대표 연구

Methods

- McDuffs Approach
 - DeepPhys³⁾: Dyschromatic Reflection Model(DRM)을 이용한 전처리 기법 제안 (빛을 고려한 모델)
 - High order⁴⁾: LVET의 특성 + DRM을 이용한 변곡점 학습 방안을 제안 (심장박동의 주기를 고려한 모델)
- Zithong Yu Approach
 - PhysNet⁵⁾: 3D Convolution을 이용하여 시공간적인 특징을 학습하는 방법 제안(Deep Learning Module로써 접근)
 - PhysFormer⁶⁾: Tube based Vision Transformer방법 제안(ViT를 사용하는 방법 제안)
- STMap Approach
 - RhythmNet⁷⁾: STMAP을 이용한 방법 제안(전처리 기법 제안)
- 4. DeepPhys: Video-Based Physiological Measurement Using Convolutional Attention Networks https://arxiv.org/abs/1805.07888
- 5. Learning Higher-Order Dynamics in Video-Based Cardiac Measurement https://arxiv.org/pdf/2110.03690.pdf
- 6. Remote Photoplethysmograph Signal Measurement from Facial Videos Using Spatio-Temporal Networks: https://arxiv.org/abs/1905.02419
- 7. PhysFormer: Facial Video-based Physiological Measurement with Temporal Difference Transformer: https://arxiv.org/abs/2111.12082
- 8. RhythmNet: End-to-end Heart Rate Estimation from Face via Spatial-temporal Representation: https://arxiv.org/abs/1910.11515

대표 연구 -mcduff

DeepPhys

• Dyschromatic Reflection Model(DRM)을 이용한 전처리 기법 제안 (빛을 고려한 모델)

대표 연구 - mcduff

- High order
 - BVP를 두 번 미분하면 LVET를 쉽게 구할 수 있는 점을 착안
 - LVET는 심장의 상태를 관찰하는 요소
 - 허혈성 심장 질환, 심부전, 고혈압 및 대동맥 협착증 환자에서 LVET의 기울기가 감소, 심장 수축 기간이 늘어남

Fig 7. High order network

Fig 8. LVET

대표 연구 -zithong yu

- Physnet
 - 3D CNN이 시공간적 특징을 학습하는 점을 이용, 얼굴 영상을 분석하는 방법으로 접근

Fig 9. PhysNet Network Architecture

대표 연구 -zithong yu

Physnet

• Neg-Pearson loss 제안

Table 1: Performance comparison	of two loss functions with	negative Pearson and MSE. Small	ller
RMSE and bigger R values indicate l	etter performance.		

	HR(bpm)	RF(Hz)	LF(u.n)	HF(u.n)	LF/HF
Method	RMSE R	RMSE R	RMSE R	RMSE R	RMSE R
PhysNet64-3DCNN-MSE PhysNet64-3DCNN-NegPea	4.012 0.955 2.143 0.985	0.069 0.435 0.067 0.494			

Table 2: Performance comparison of spatio-temporal networks.

	HR(bpm	1)	RF(I	Hz)	LF(u	ı.n)	HF(u	ı.n)	LF/I	HF
Method	RMSE 1	R	RMSE	R	RMSE	R	RMSE	R	RMSE	R
PhysNet64-2DCNN	10.237 0.	.928	0.092	0.104	0.247	0.321	0.247	0.321	0.962	0.318
PhysNet64-3DCNN PhysNet64-3DCNN-ED		.985 .989	0.067 <u>0.066</u>	0.494 0.501	0.15 0.146	0.749 0.772	0.15 <u>0.146</u>	0.749 0.772	0.647 <u>0.624</u>	0.72 0.748
PhysNet64-LSTM PhysNet64-BiLSTM PhysNet64-ConvLSTM	4.595 0.	.975 .945 .977	0.084 0.085 0.083	0.189 0.183 0.191	0.226 0.231 0.22	0.478 0.421 0.485	0.226 0.231 0.22	0.478 0.421 0.485	0.928 0.956 0.896	0.404 0.396 0.44

Fig 10. PhysNet Network result

대표 연구 – zithong yu

PhysFormer

• rPPG 신호를 재구성 하는 방법 및 3d Vit 적용 방안 제안

Fig 11. PhysFormer Network

Method	SD↓ (bpm)	MAE↓ (bpm)	RMSE↓ (bpm)	$r \uparrow$
Tulyakov2016 [55]▲ POS [59]▲	18.0 15.3	15.9 11.5	21.0 17.2	0.11
CHROM [13]▲	15.3	11.3	16.9	0.30
RhythmNet [45]♦ ST-Attention [47]♦ NAS-HR [40]♦ CVD [46]♦ Dual-GAN [41]♦	8.11 7.99 8.10 7.92 7.63	5.30 5.40 5.12 5.02 4.93	8.14 7.99 8.01 7.97 7.68	0.76 0.66 0.79 0.79 0.81
I3D [7]* PhysNet [65]* DeepPhys [11]* AutoHR [63]*	15.9 14.9 13.6 8.48	12.0 10.8 11.0 5.68	15.9 14.8 13.8 8.68	0.07 0.20 0.11 0.72
PhysFormer (Ours)⋆	<u>7.74</u>	<u>4.97</u>	<u>7.79</u>	0.78

Fig 12. PhysFormer Network result

대표 연구 – zithong yu

RhythmNet

- Spatial-Temporal Map approach를 처음으로 제안
- 얼굴의 특징보다 시공간적인 특징에 집중

Fig 13. STMAP preprocessing

Fig 14. RhythmNet

대표 연구

RhythmNet

TABLE VII: The HR estimation results by the proposed approach and several state-of-the-art methods on the MAHNOB-HCI database.

Method	Mean (bpm)	Std (bpm)	RMSE (bpm)	MER	r
Poh2010 [1]	-8.95	24.3	25.9	25.0%	0.08
Poh2011 [2]	2.04	13.5	13.6	13.2%	0.36
Balakrishnan2013 [3]	-14.4	15.2	21.0	20.7%	0.11
Li2014 [5]	-3.30	6.88	7.62	6.87%	0.81
Haan2013 [4]	-2.89	13.67	10.7	12.9%	0.82
Tulyakov2016 [6]	3.19	5.81	6.23	5.93%	0.83
RhythmNet(WithinDB)	0.41	3.98	4.00	4.18%	0.87
RhythmNet(CrossDB)	-5.66	6.06	8.28	8.00%	0.64
RhythmNet(Fine-tuned)	0.43	3.97	3.99	4.06 %	0.87

Fig 15. RhythmNet Result

대표 연구

TransRppg

Fig 16. TransRppg

TABLE II: Cross-dataset results on 3DMAD and MARsV2.

Method	3DMA AUC(%)↑	AD→MARsV2 FFR@FLR=0.01↓	MARsV2→3DMAD AUC(%)↑ FFR@FLR=0.01↓		
MS-LBP [17]▲	60.4	100.0 98.3	75.3 60.5	87.8	
CTA [42]▲ VGG16 [43]▲	62.1 54.6	98.3 97.9	58.6	96.5 99.3	
GrPPG [19]⋆	86.7	78.5	87.2	94.5	
LrPPG [21]⋆	<u>95.6</u>	61.7	92.3	48.7	
CFrPPG [22]⋆	99.0	19.6	<u>98.0</u>	12.4	
TransRPPG (Ours)*	91.3	<u>47.6</u>	98.3	<u>18.5</u>	

Fig 17. TransRppg result

이전 연구의 한계

Methods

- McDuffs Approach
 - DeepPhys³⁾: Dyschromatic Reflection Model(DRM)을 이용한 전처리 기법 제안 (빛을 고려한 모델)
 - High order⁴⁾: LVET의 특성 + DRM을 이용한 변곡점 학습 방안을 제안 (심장박동의 주기를 고려한 모델)
 - => 차분 영상을 이용하여 공간 변화의 연속성을 학습하지 않음
- Zithong Yu Approach
 - PhysNet⁵⁾: 3D Convolution을 이용하여 시공간적인 특징을 학습하는 방법 제안(Deep Learning Module로써 접근)
 - PhysFormer⁶⁾: Tube based Vision Transformer방법 제안(ViT를 사용하는 방법 제안)
 - => 생체신호의 특징을 고려하지 않음
- STMap Approach
 - RhythmNet⁷⁾: STMAP을 이용한 방법 제안(전처리 기법 제안)
 - => 얼굴의 특징을 학습하지 않음 / 전처리를 필요로 함
- 3. DeepPhys: Video-Based Physiological Measurement Using Convolutional Attention Networks https://arxiv.org/abs/1805.07888
- 4. Learning Higher-Order Dynamics in Video-Based Cardiac Measurement https://arxiv.org/pdf/2110.03690.pdf
- 5. Remote Photoplethysmograph Signal Measurement from Facial Videos Using Spatio-Temporal Networks: https://arxiv.org/abs/1905.02419
- 6. PhysFormer: Facial Video-based Physiological Measurement with Temporal Difference Transformer: https://arxiv.org/abs/2111.12082
- 7. RhythmNet: End-to-end Heart Rate Estimation from Face via Spatial-temporal Representation: https://arxiv.org/abs/1910.11515

제안 방법

* 딥러닝 기반 rPPG 모델 사용을 위한 경량 모델 연구

Methods

- McDuffs Approach
 - => 차분 영상을 이용하여 공간 변화의 연속성을 학습하지 않음
- Zithong Yu Approach
 - => 생체신호의 특징을 고려하지 않음
- STMap Approach
 - => 얼굴의 특징을 학습하지 않음 / 전처리를 필요로 함

• 공간변화의 연속성, 생체신호의 특징, 얼굴 특징을 고려하며 전처리를 필요로 하지 않는 E2E 모델 제안

제안방법

실험 평가

• 데이터셋

- V4V
 - 여성 참여자 82명, 남성참여자 58명
 - 웃거나 눈을 찡그리는 등 10가 지 테스크 수행
 - 1000kHz로 bvp, 호흡, 심박 생체 징후 측정

Fig 6. V4V train loss

Fig 7. V4V test loss

실험 결과

• 실험평가

Fig 15. Loss Graph

실험 결과

• 실험평가

- V4V challenge 참가 7개 비교군과 비교
- Feature Mixer 별로 추가 비교
- HR-MAE, HR-RMSE, BVP Pearson Correlation
- Activation map 평가

Fig 16. 피부 두께에 따른 빛 흡수 량

Fig 17. 해부학적으로 구분된 39개 영역에 대한 피부 두께

Fig 18. 피부 두께에 따른 BVP 추출 이 우수한 영역

실험 결과

• 실험평가

Table 1. Experiment result

Method	HR-MAE	HR-RMSE	Correlation(r)
Brain et.al[67]	9.42	14.6	0.436
Benjamin et.al[68]	8.32	10.95	0.336
Stent et.al[69]	9.22	14.18	0.47
Hill et.al[70]	9.37	14.59	0.44
Ouzar et.al[71]	11.60	14.90	0.2
Green	15.45	20.73	0.05
Proposed	7.66	10.08	0.69

Fig 19. Regression Activation Map

논문을 위한 소스코드 작성법

- 딥 러닝 논문은 이론적인 접근도 중요하지만, 다양한 모델에 비해 얼마나 성능이 좋아졌는지도 중요함.
- 또, 논문 작성을 위해 실험할 때는 전처리 조건, 하이퍼파라미터 조건등 다양한 조건을 바꿔가면서 실험을 진행해야함.

- 딥 러닝 논문은 재사용성이 중요
 - 하이퍼파라미터 설정이 중요한 요인

main.py

```
bpm_flag = False
K_Fold_flag = False
model_save_flag = False
log_flag = False
wandb flag = False
random seed = 0
save_img_flag = False
torch.manual seed(random seed)
torch.cuda.manual_seed(random_seed)
torch.cuda.manual_seed_all(random_seed) # if use multi-GPU
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
np.random.seed(random_seed)
random.seed(random seed)
```

- torch/tensorflow는 init 때마다 랜덤한 값으로 초기화하며, 매 실험마다 결과가 달라짐
- Weight initialize 뿐만아니라 torch.Tensor.index_add(), torch.Tensor.scatter_add_() 등.. 여 러 함수가 random하고 nondeterministic 하게 동작하여 고정 값이 필요

main.py

```
with open('params.json') as f:
    jsonObject = json.load(f)
    __PREPROCESSING__ = jsonObject.get("__PREPROCESSING__")
    __TIME__ = jsonObject.get("__TIME__")
    __MODEL_SUMMARY__ = jsonObject.get("__MODEL_SUMMARY__")
    options = jsonObject.get("options")
    params = jsonObject.get("params")
    preprocessing_prams = jsonObject.get("preprocessing_params")
    hyper_params = jsonObject.get("hyper_params")
    model_params = jsonObject.get("model_params")
    wandb_params = jsonObject.get("wandb")
```

- 실험 때마다 전처리 여부/ 학습 소요시간/ 데이터셋의 종류/ 전처리 방법 등 정해야할 것이 많아 params로 관리

Params.json

```
" PREPROCESSING ": 1,
"preprocessing_params": {
    "dataset_name": "V4V",
                "V4V",
                "PURE".
                "UBFC",
                "cuff_less_blood_pressure",
                "VIPL_HR"
    "face_detect_algorithm" : 1,
    "face detect algorithm comment" :
                "1: face_recognition_algorithm",
                "2: FaceMeshDetector"
    "divide flag comment":
                "0: divide by subject",
                "1: divide by number"
    "fixed_position": 1,
    "fixed position comment":
                "0: face Tracking",
                "1: fixed Position"
    "image size": 128
"__MODEL_SUMMARY__" : 0,
    "parallel_criterion_comment" : "TODO need to verification",
    "set_gpu_device" : "6"
```

```
"validation_ratio_comment" : "split train dataset using validation_ratio",
           "mse", "L1", "neg_pearson", "multi_margin", "bce", "huber", "cosine_embedding"
           "cross_entropy", "ctc", "bce_with_logits", "gaussian_nll", "hinge_embedding"
           "KLDiv", "margin_ranking", "multi_label_margin", "multi_label_soft_margin",
           "nll", "nll2d", "pairwise", "poisson_nll", "smooth_l1", "soft_margin",
          "triplet_margin", "triplet_margin_distance",
"optimizer": "ada_mw",
            "adam","sgd","rms_prop","ada_delta","ada_grad","ada_max",
            "ada_mw", "a_sgd", "lbfgs", "n_adam", "r_adam", "rprop", "sparse_adam",
"learning_rate_comment": [
   "DeepPhys : lr = 1",
    "PhysNet : lr = 0.001",
   "PPNet : lr = 0.001"
            "PPNET : 100"
```

Main.py

- 전처리 때마다 고려해야하는 요소들을 param으로 관리하여 전처리 과정을 변경하였을 때 편하게 이용하도록 작성

dataset_preprocess.py

 데이터셋 전처리 과정은 데이터의 종류에 따라 억겁의 시간이 소요될 수 있음으로 멀티 프로세싱으로 처리

Dataset_preprocess.py

```
train file path = save root path + model name + " " + dataset name + " train.hdf5"
test_file_path = save_root_path + model_name + "_" + dataset_name + "_test.hdf5"
dt = h5py.special dtype(vlen=np.float32)
train_file = h5py.File(save_root_path + model_name + "_" + dataset_name + "_train.hdf5", "w")
if model_name in ["DeepPhys", "PhysNet", "PhysNet_LSTM"]:
      for index, data path in enumerate(return dict.keys()[:train]):
          dset = train_file.create_group(data_path)
          dset['preprocessed video'] = return dict[data path]['preprocessed video']
          dset['preprocessed_label'] = return_dict[data_path]['preprocessed_label']
          dset['preprocessed_hr'] = return_dict[data_path]['preprocessed_hr']
      train file.close()
      test_file = h5py.File(save_root_path + model_name + "_" + dataset_name + "_test.hdf5", "w")
      for index, data path in enumerate(return dict.keys()[train:]):
          dset = test file.create group(data path)
          dset['preprocessed_video'] = return_dict[data_path]['preprocessed_video']
          dset['preprocessed label'] = return dict[data path]['preprocessed label']
          dset['preprocessed_hr'] = return_dict[data_path]['preprocessed_hr']
       test file.close()
```

- 전처리된 데이터는 필요에 따라 다른 방식으로 이용 될 수 있음으로, h5py구조로 계층 적 관리 models.py

```
def get_model(model_name: str = 'DeepPhys', log_flag:bool = True):
    :param model name: model name
    :return: model
    if log_flag:
        print("====== set model get model() in"+ os.path.basename( file ))
    if model_name == "DeepPhys":
        return DeepPhys()
    elif model name == "DeepPhys_DA":
        return DeepPhys DA()
    elif model_name == "PhysNet":
        return PhysNet()
    elif model_name == "PhysNet_LSTM":
        return PhysNet_2DCNN_LSTM()
    elif model name == "PPNet":
        return PPNet()
    elif model_name == "GCN":
        return TEST()#Seg GCN()#TEST()#
    elif model_name == "AxisNet":
        return AxisNet(),PhysiologicalGenerator()
    else:
        log_warning("use implemented model")
        raise NotImplementedError("implement a custom model(%s) in /nets/models/" % model_name)
```

- 모델을 불러올때도, 간단히 param만 변경해서 동작 가능하도록 함수 작성

main.py

```
for epoch in range(hyper_params["epochs"]):
    train_fn(epoch, model, optimizer, criterion, data_loaders[0], "Train",wandb_flag)
    if data_loaders.__len__() == 3:
        _ = test_fn(epoch, model, criterion, data_loaders[1], "Val", wandb_flag, save_img_flag )
    if epoch % 10 == 0:
        running_loss = test_fn(epoch, model, criterion, data_loaders[-1], "Test", wandb_flag,
    save_img_flag )
```

- 모델 학습시에는 데이터를 train/val/test 로 구성했는지, train/test 로 구성했는지에 따라 알아서 동작하도록 차이를 둠

요약

- Reproducible 한 코드를 만들기위해 randomness를 제어 하게 코드 작성
- 논문에서 본인이 생각했을 때, 논문 결과의 차이를 줄 만한 요소들 그리고 논문 실험시 편의성을 줄만한 요소들을 params.json 에서 컨트롤
 - Ex) learning rate, batch size, preprocessing 유무, log 유무, 데이터셋 분할 비율 등.,

- 대표적인 rPPG 알고리즘인 physnet을 간단히 학습하는 과정 진행
- 1. test.py 생성 후 reproducible 코드 생성
- 2. PhysNet_UBFC_train_9.hdf5 를 이용하는 test_param.json 생성
- 3. Test.py에서 test_param 파싱
- 4. Test.py 에서 모델 호출 후 학습 진행
- Randomness 에 따른 변화를 보기위해 Reproducible code가 있는 환경에서 3번 실험 Reproducible code가 없는 환경에서 3번 실험
- Loss의 변화 관측

1. test.py 생성 후 reproducible 코드 생성

```
import random
import numpy as np
import torch
random_seed = 0
# for Reproducible model
torch.manual_seed(random_seed)
torch.cuda.manual_seed(random_seed)
torch.cuda.manual_seed_all(random_seed) # if use multi-GPU
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
np.random.seed(random_seed)
random.seed(random_seed)
```

2. PhysNet_UBFC_train_9.hdf5 를 이용하는 test_param.json 생성

```
"data_path" : "본인 데이터 경로",
"train_ratio": 0.7,
"validation_ratio": 0.1,
"batch_size": 100,
"train_shuffle": 1,
"test_shuffle": 0,
"loss_fn": "neg_pearson",
"optimizer" : "adam",
"learning_rate": 0.0001,
"epochs" : 31,
"model": "physnet"
```

3. Test.py에서 test_param 파싱

```
with open(test_param.json') as f:
  jsonObject = json.load(f)
  data_path = jsonObject.get("data_path")
  train_ratio = jsonObject.get("train_ratio")
  val_ratio = jsonObject.get("val_ratio")
  batch_size = jsonObject.get("batch_size")
  train_shuffle = jsonObject.get("train_shuffle")
  test_shuffle = jsonObject.get("test_shuffle")
   loss_fn = jsonObject.get("loss_fn")
  optimizer = jsonObject.get("optimizer")
   learning_rate = jsonObject.get("learning_rate")
  epochs = jsonObject.get("epochs")
  model = jsonObject.get("model")
```

4. Test.py에 get_model 함수 생성 후 호출

```
from colorama import Fore, Style
from nets.models.PhysNet import PhysNet
def log_warning(message):
  print(Fore.LIGHTRED_EX + Style.BRIGHT + message + Style.RESET_ALL)
def get_model(model):
  if model == "physnet":
     return PhysNet()
  else:
     log_warning("use implemented model")
     raise NotImplementedError("implement a custom model(%s) in /nets/models/" % model)
model = get_model(model).to("cuda")
```

5. Test.py에 dataset_loader 함수 생성 후 호출

```
from dataset.PhysNetDataset import PhysNetDataset
def dataset_loader(path):
  dataset_file = h5py.File(path, "r")
  video_data = []
   label_data = []
  for key in dataset_file.keys():
     if len(dataset_file[key]['preprocessed_video']) == len(dataset_file[key]['preprocessed_label']):
         video_data.extend(dataset_file[key]['preprocessed_video'])
         label_data.extend(dataset_file[key]['preprocessed_label'])
   dataset_file.close()
   dataset = PhysNetDataset(video_data=np.asarray(video_data),
                            label_data=np.asarray(label_data))
  return dataset
dataset = dataset_loader(data_path)
```

6. Test.py에서 dataset 분리 진행

```
from torch.utils.data import random_split
def dataset_split(dataset, ratio):
   dataset_len = len(dataset)
   if ratio.__len__() == 3:
      train_len = int(np.floor(dataset_len * ratio[0]))
      val_len = int(np.floor(dataset_len * ratio[1]))
      test_len = dataset_len - train_len - val_len
      return random_split(dataset, [train_len, val_len, test_len])
   elif ratio.__len__() == 2:
      train_len = int(np.floor(dataset_len * ratio[0]))
      test_len = dataset_len - train_len
      return random_split(dataset, [train_len, test_len])
datasets = dataset_split(dataset, [0.7, 0.1, 0.2])
```

7. Test.py에서 분리된 데이터를 호출하는 데이터 로더 생성

```
from torch.utils.data import DataLoader
def split_data_loader(datasets, batch_size, train_shuffle, test_shuffle=False):
  if datasets. len () == 3:
      train_loader = DataLoader(datasets[0], batch_size=batch_size, shuffle=train_shuffle)
      validation_loader = DataLoader(datasets[1], batch_size=batch_size, shuffle=test_shuffle)
      test_loader = DataLoader(datasets[2], batch_size=batch_size, shuffle=test_shuffle)
      return [train loader, validation loader, test loader]
   elif datasets. len () == 2:
      train loader = DataLoader(datasets[0], batch size=batch size, shuffle=train shuffle)
      test_loader = DataLoader(datasets[1], batch_size=batch_size, shuffle=test_shuffle)
      return [train_loader, test_loader]
data_loaders = split_data_loader(datasets, batch_size, train_shuffle,test_shuffle)
```

8. Test.py에서 loss function 생성

```
def neg_Pearson_Loss(predictions, targets):
  rst = 0
  targets = targets[:, :]
  predictions = torch.squeeze(predictions)
  # Pearson correlation can be performed on the premise of normalization of input data
   predictions = (predictions - torch.mean(predictions)) / torch.std(predictions)
  targets = (targets - torch.mean(targets)) / torch.std(targets)
  for i in range(predictions.shape[0]):
      sum_x = torch.sum(predictions[i]) # x
      sum_y = torch.sum(targets[i]) # y
      sum_xy = torch.sum(predictions[i] * targets[i]) # xy
      sum_x^2 = torch.sum(torch.pow(predictions[i], 2)) # x^2
      sum_y2 = torch.sum(torch.pow(targets[i], 2)) # y^2
      N = predictions.shape[1]
      pearson = (N * sum_xy - sum_x * sum_y) / (
         torch.sqrt((N * sum_x2 - torch.pow(sum_x, 2)) * (N * sum_y2 - torch.pow(sum_y, 2))))
     rst += 1 - pearson
  rst = rst / predictions.shape[0]
  return rst
```

8. Test.py에서 loss function 생성

```
class NegPearsonLoss(nn.Module):
  def __init__(self):
      super(NegPearsonLoss, self).__init__()
  def forward(self, predictions, targets):
      return neg_Pearson_Loss(predictions, targets)
def loss(loss_fn: str = "mse"):
   :param loss_fn: implement loss function for training
   :return: loss function module(class)
  if loss_fn == "neg_pearson":
      return NegPearsonLoss()
criterion = loss(loss_fn)
```

9. Test.py에서 optimizer / scheduler 설정

```
import torch.optim as opt
from torch.optim import lr_scheduler
def optimizer(model_params, learning_rate: float = 1, optim: str = "mse"):
  if optim == "adam":
     return opt.Adam(model_params, learning_rate,weight_decay=0.00005)
optimizer = optimizer(model.parameters(), hyper_params["learning_rate"], hyper_params["optimizer"])
scheduler = Ir_scheduler.ExponentialLR(optimizer, gamma=0.99)
```

10. Test.py에서 train 함수 생성

```
from tqdm import tqdm
def train_fn(epoch, model, optimizer, criterion, dataloaders, step:str = "Train " , wandb_flag:bool = True):
  #TODO: Implement multiple loss
  with tqdm(dataloaders,desc= step, total=len(dataloaders)) as tepoch:
      model.train()
     running_loss = 0.0
      for inputs, target in tepoch:
         optimizer.zero_grad()
         tepoch.set_description(step + "%d" % epoch)
         p = model(inputs)
         loss = criterion(p,target)
        if ~torch.isfinite(loss):
            continue
         loss.backward()
         running_loss += loss.item()
         optimizer.step()
         tepoch.set_postfix(loss=running_loss / tepoch.__len__())
```

10. Test.py에서 test_fn 함수 생성

```
def test_fn(epoch, model, criterion, dataloaders, step:str = "Test"):
  with tqdm(dataloaders,desc= step, total=len(dataloaders)) as tepoch:
      model.eval()
     running_loss = 0.0
     inference_array = []
      target_array = []
     with torch.no_grad():
         for inputs, target in tepoch:
            tepoch.set_description(step + "%d" % epoch)
            p = model(inputs)
            loss = criterion(p,target)
            if ~torch.isfinite(loss):
               continue
            running_loss += loss.item()
            tepoch.set_postfix(loss=running_loss / tepoch.__len__())
     return running_loss
```

10. Test.py에서 test_fn 함수 생성

```
def test_fn(epoch, model, criterion, dataloaders, step:str = "Test"):
  with tqdm(dataloaders,desc= step, total=len(dataloaders)) as tepoch:
      model.eval()
     running_loss = 0.0
     inference_array = []
      target_array = []
     with torch.no_grad():
         for inputs, target in tepoch:
            tepoch.set_description(step + "%d" % epoch)
            p = model(inputs)
            loss = criterion(p,target)
            if ~torch.isfinite(loss):
               continue
            running_loss += loss.item()
            tepoch.set_postfix(loss=running_loss / tepoch.__len__())
     return running_loss
```

10. Test.py에서 학습진행

```
for epoch in range(epochs):
    train_fn(epoch, model, optimizer, criterion, data_loaders[0], "Train")
    if data_loaders.__len__() == 3:
        _ = test_fn(epoch, model, criterion, data_loaders[1], "Val" )
    if epoch % 10 == 0:
        running_loss = test_fn(epoch, model, criterion, data_loaders[-1], "Test" )
```

reference

- https://news.samsungdisplay.com/30140
- 모바일 환경에서 안면 영상을 이용한 실시간 생체징후 측정 시스템
- DeepPhys: Video-Based Physiological Measurement Using Convolutional Attention Networks https://arxiv.org/abs/1805.07888
- Learning Higher-Order Dynamics in Video-Based Cardiac Measurement https://arxiv.org/pdf/2110.03690.pdf
- Remote Photoplethysmograph Signal Measurement from Facial Videos Using Spatio-Temporal Networks: https://arxiv.org/abs/1905.02419
- PhysFormer: Facial Video-based Physiological Measurement with Temporal Difference Transformer: https://arxiv.org/abs/2111.12082
- RhythmNet: End-to-end Heart Rate Estimation from Face via Spatial-temporal Representation : https://arxiv.org/abs/1910.11515
- Pulse transit time estimation of aortic pulse wave velocity and blood pressure using machine learning and simulated training data https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6711549/#pcbi.1007259.e026
- Phase Velocity of Facial Blood Volume Oscillation at a Frequency of 0.1 Hz https://www.frontiersin.org/articles/10.3389/fphys.2021.627354/full
- Assessment of ROI Selection for Facial Video-Based rPPG
- Kienle A, Lilge L, Vitkin AI, et al. Why do veins appear blue? A new look at an old question. Appl Optics 1996; 35:1151-1160. (Maybe more than you wanted to know, but here it is).