

AI Club

Survival Analysis

What is survival analysis?

- Definition: A set of tools and techniques for analyzing and predicting the time until a specific event happens.
- Examples of events: Machine failure, disease recovery, or customer churn.

Core Focus - Time-to-Event

- **Main Objective:** Predict *when* an event will occur, not just if it will.
- Importance: Helps in planning and decision-making by anticipating future events.

Key Concept - Censoring

- Definition: Some subjects don't experience the event during the study.
- **Example:** Patients in a trial who haven't relapsed by study end.
- Solution: Techniques to handle incomplete data and make full use of available information.

Common Survival Models

- Kaplan-Meier Estimate:
 - Purpose: To estimate survival functions over time.
 - Visualization: Often displayed as a step chart.

Common Survival Models

- Kaplan-Meier Estimate:
 - Purpose: To estimate survival functions over time.
 - Visualization: Often displayed as a step chart.
- Cox Proportional Hazards Model:
 - Purpose: To model the relationship between event timing and covariates.
 - Feature: Assumes proportional hazards over time.

Common Survival Models

Kaplan-Meier Estimate:

- **Purpose:** To estimate survival functions over time.
- Visualization: Often displayed as a step chart.

Cox Proportional Hazards Model:

- Purpose: To model the relationship between event timing and covariates.
- **Feature:** Assumes proportional hazards over time.

Deep Survival Model:

- Purpose: Improve prediction accuracy for when events will happen by handling complex patterns,
 using large datasets, and combining different types of information like pictures and text.
- Feature: Use powerful neural networks to find patterns in data, adjust to different types of information over time, automatically pick out important details, and predict better than old methods.

Incorporating Time-Dependent Covariates

- Real-world Scenarios: Factors affecting risk can change over time.
- Solution: Models account for these variations to improve prediction accuracy.

Use Cases of Survival Analysis

Healthcare:

- Predict patient survival times or disease recurrence.
- Improve treatment planning and resource allocation.

Engineering:

 Estimate lifespan of machinery and plan maintenance schedules.

Business:

- Predict when a customer might leave or switch services.
- Enhance customer retention strategies.

Output - The Survival Function

- **Definition:** Probability the event has not occurred by a given time.
- Importance: Helps quantify risk and make informed decisions.

Benefits of Survival Analysis

- Provides nuanced insights into time-dependent phenomena.
- Facilitates actionable predictions for better strategic planning.
- Versatile applications across various sectors.

THANK YOU

