## A Technical Lemmas

Lemma A.1 (p.343, [1])

$$\left| e^{\mathbf{i}x} - \sum_{k=0}^{n} \frac{(\mathbf{i}x)^k}{k!} \right| \leq \min \left\{ \frac{|x|^{n+1}}{(n+1)!}, \frac{2|x|^n}{n!} \right\}, \quad \text{for any } x \in \mathbb{R} \text{ and any } n \geq 0.$$

Proof

Claim 1:

$$\int_0^x (x-s)^n e^{\mathbf{i}s} \, ds = \frac{x^{n+1}}{n+1} + \frac{\mathbf{i}}{n+1} \int_0^x (x-s)^{n+1} e^{\mathbf{i}s} \, ds, \quad \text{for any } x \in \mathbb{R} \text{ and any } n \ge 0.$$

Proof of Claim 1: We proceed by integration by parts. Let  $u = e^{is}$  and  $dv = (x - s)^n ds$ . Then,  $du = i e^{is}$  and  $v = -(x - s)^{n+1}/(n+1)$ . Hence,

$$\int_0^x (x-s)^n e^{\mathbf{i}s} \, ds = \int u \, dv = uv - \int v \, du$$

$$= \left[ e^{\mathbf{i}s} \cdot \frac{(-1)(x-s)^{n+1}}{n+1} \right]_{s=0}^{s=x} - \int_0^x \frac{(-1)(x-s)^{n+1}}{n+1} \cdot \mathbf{i}e^{\mathbf{i}s} \, ds,$$

$$= \frac{x^{n+1}}{n+1} + \frac{\mathbf{i}}{n+1} \int_0^x (x-s)^{n+1} e^{\mathbf{i}s} \, ds.$$

This proves Claim 1.

Claim 2:

$$e^{\mathbf{i}x} = \sum_{k=0}^{n} \frac{(\mathbf{i}x)^k}{k!} + \frac{\mathbf{i}^{n+1}}{n!} \int_0^x (x-s)^n e^{\mathbf{i}s} \, \mathrm{d}s, \quad \text{for any } x \in \mathbb{R} \text{ and any } n \ge 0.$$

Proof of Claim 2: We proceed by induction. For n = 0, we have:

RHS
$$(n = 0)$$
 =  $\sum_{k=0}^{0} \frac{(\mathbf{i} x)^k}{k!} + \frac{\mathbf{i}^{0+1}}{0!} \int_0^x (x - s)^0 e^{\mathbf{i} s} ds = 1 + \mathbf{i} \int_0^x e^{\mathbf{i} s} ds = 1 + \mathbf{i} \left[ \frac{e^{\mathbf{i} s}}{\mathbf{i}} \right]_{s=0}^{s=x}$   
=  $1 + (e^{\mathbf{i} x} - 1) = e^{\mathbf{i} x}$ .

Thus, Claim 2 is indeed true for n = 0. Next, by induction hypothesis, assume Claim 2 is true for n, and we verify that Claim 2 is also true for n + 1.

$$RHS(n+1) = \sum_{k=0}^{n+1} \frac{(\mathbf{i} x)^k}{k!} + \frac{\mathbf{i}^{n+2}}{(n+1)!} \int_0^x (x-s)^{n+1} e^{\mathbf{i} s} ds$$

$$= \sum_{k=0}^n \frac{(\mathbf{i} x)^k}{k!} + \frac{(\mathbf{i} x)^{n+1}}{(n+1)!} + \frac{\mathbf{i}^{n+2}}{(n+1)!} \cdot \frac{n+1}{\mathbf{i}} \left[ \int_0^x (x-s)^n e^{\mathbf{i} s} ds - \frac{x^{n+1}}{n+1} \right]$$

$$= \sum_{k=0}^n \frac{(\mathbf{i} x)^k}{k!} + \frac{\mathbf{i}^{n+1}}{n!} \int_0^x (x-s)^n e^{\mathbf{i} s} ds + \frac{(\mathbf{i} x)^{n+1}}{(n+1)!} - \frac{\mathbf{i}^{n+1}}{n!} \cdot \frac{x^{n+1}}{n+1} = e^{\mathbf{i} x},$$

where the second equality follows from Claim 1 and the last equality follows from the induction hypothesis (that Claim 2 holds for n). This proves Claim 2.

Study Notes May 1, 2015 Kenneth Chu

Claim 3:

$$e^{\mathbf{i}x} = \sum_{k=0}^{n} \frac{(\mathbf{i} x)^k}{k!} + \frac{\mathbf{i}^n}{(n-1)!} \int_0^x (x-s)^{n-1} (e^{\mathbf{i}s} - 1) ds$$
, for any  $x \in \mathbb{R}$  and any  $n \ge 1$ .

Proof of Claim 3:

Lemma A.2 (§7.1, [2])

Let  $\{\theta_{nj} \in \mathbb{C} \mid 1 \leq j \leq k_n, n \in \mathbb{N}\}$  be doubly indexed array of complex numbers. If all the following three conditions are true:

(a) there exists M > 0 such that

$$\sum_{j=1}^{k_n} |\theta_{nj}| \le M, \quad \text{for each } n \in \mathbb{N},$$

- (b)  $\lim_{n \to \infty} \max_{1 < j < k_n} |\theta_{nj}| = 0, and$
- (c) there exists  $\theta \in \mathbb{C}$  such that

$$\lim_{n \to \infty} \sum_{j=1}^{k_n} \theta_{nj} = \theta,$$

then

$$\lim_{n \to \infty} \prod_{j=1}^{k_n} (1 + \theta_{nj}) = e^{\theta}.$$

PROOF First, note that hypothesis (b) immediately implies that there exists some  $n_0 \in \mathbb{N}$  such that

$$|\theta_{nj}| \le \frac{1}{2}$$
, for each  $n \ge n_0$ , for each  $1 \le j \le k_n$ .

Thus, without loss of generality, we may assume that:

$$|\theta_{nj}| \leq \frac{1}{2}$$
, for each  $n \in \mathbb{N}$ , for each  $1 \leq j \leq k_n$ .

We denote by  $\log(1 + \theta_{nj})$  the (unique) complex logarithm<sup>1</sup> of  $1 + \theta_{nj}$  with argument in  $(-\pi, \pi]$ . Next, recall the MacLaurin Series for  $\log(1 + x)$ :

$$\log(1+x) = \sum_{m=1}^{\infty} (-1)^{m+1} \frac{x^m}{m}, \quad \text{for any } x \in \mathbb{C} \text{ with } |x| < 1.$$

Hence, we have the following inequality: for each  $n \in \mathbb{N}$  and for each  $1 \leq j \leq k_n$ ,

$$|\log(1+\theta_{nj}) - \theta_{nj}| = \left| \sum_{m=2}^{\infty} (-1)^{m+1} \frac{(\theta_{nj})^m}{m} \right| \le \sum_{m=2}^{\infty} \frac{|\theta_{nj}|^m}{m} \le \frac{|\theta_{nj}|^2}{2} \sum_{m=2}^{\infty} |\theta_{nj}|^{m-2}$$

$$\le \frac{|\theta_{nj}|^2}{2} \sum_{m=2}^{\infty} \left(\frac{1}{2}\right)^{m-2} = \frac{|\theta_{nj}|^2}{2} \sum_{i=2}^{\infty} \left(\frac{1}{2}\right)^{i-2} = \frac{|\theta_{nj}|^2}{2} \cdot 2 = |\theta_{nj}|^2.$$

The call that the complex exponential function is defined by  $\exp: \mathbb{C} \to \mathbb{C}: x+\mathbf{i}\, y \mapsto e^x \cdot e^{\mathbf{i}\, y} = e^x \left(\cos y + \mathbf{i}\sin y\right)$ . Clearly,  $\exp$  is not injective. More precisely, for  $x_1+\mathbf{i}\, y_1,\, x_2+\mathbf{i}\, y_2 \in \mathbb{C}\backslash\{0\}$ , we have  $e^{x_1+\mathbf{i}y_1}=e^{x_2+\mathbf{i}y_2}$  if and only if  $x_1=x_2\in\mathbb{R}\backslash\{0\}$  and  $y_1-y_2\in 2\pi\mathbb{Z}$ . For  $z=re^{\mathbf{i}\theta}\in\mathbb{C}\backslash\{0\}$ , a complex logarithm of z is any  $w=x+\mathbf{i}\, y\in\mathbb{C}\backslash\{0\}$  such that  $e^{x+\mathbf{i}y}=e^w=z=re^{\mathbf{i}\theta}$ , i.e.  $x=\log r$  and  $y=\theta+2\pi\mathbb{Z}$ . In particular, let  $\mathcal{D}:=\{x+\mathbf{i}\, y\in\mathbb{C}\mid x\in\mathbb{R}, y\in(-\pi,\pi]\}$ . Then, the restriction  $\exp:\mathcal{D}\to\mathbb{C}\backslash\{0\}$  is bijective.

This in turn implies: for each  $n \in \mathbb{N}$ ,

$$\left| \sum_{j=1}^{k_n} \log(1 + \theta_{nj}) - \sum_{j=1}^{k_n} \theta_{nj} \right| = \left| \sum_{j=1}^{k_n} \left( \log(1 + \theta_{nj}) - \theta_{nj} \right) \right| \le \sum_{j=1}^{k_n} |\log(1 + \theta_{nj}) - \theta_{nj}| \le \sum_{j=1}^{k_n} |\theta_{nj}|^2.$$

Thus, for each  $n \in \mathbb{N}$ , there exists  $\Lambda_n \in \mathbb{C}$  with  $|\Lambda_n| \leq 1$  such that

$$\sum_{j=1}^{k_n} \log(1 + \theta_{nj}) = \sum_{j=1}^{k_n} \theta_{nj} + \Lambda_n \cdot \sum_{j=1}^{k_n} |\theta_{nj}|^2.$$

(Since for any  $z \in \mathbb{C}$ ,  $|z| \le A \implies z = A \cdot w$ , for some  $w \in \mathbb{C}$  with  $|w| \le 1$ .) Next note that, hypotheses (a) and (b) together imply:

$$\sum_{j=1}^{k_n} |\theta_{nj}|^2 \leq \left( \max_{1 \leq j \leq k_n} |\theta_{nj}| \right) \left( \sum_{j=1}^{k_n} |\theta_{nj}| \right) \leq M \cdot \left( \max_{1 \leq j \leq k_n} |\theta_{nj}| \right) \longrightarrow 0, \text{ as } n \longrightarrow \infty.$$

Therefore, since  $|\Lambda_n| \leq 1$  for each  $n \in \mathbb{N}$ , we now see that

$$\lim_{n \to \infty} \sum_{j=1}^{k_n} \log(1 + \theta_{nj}) = \lim_{n \to \infty} \sum_{j=1}^{k_n} \theta_{nj} + \lim_{n \to \infty} \left( \Lambda_n \cdot \sum_{j=1}^{k_n} |\theta_{nj}|^2 \right) = \theta + 0 = \theta.$$

We may now conclude, by continuity of the exponential function  $\exp(\cdot)$ :

$$\lim_{n \to \infty} \prod_{j=1}^{k_n} (1 + \theta_{nj}) = \lim_{n \to \infty} \exp \left( \log \prod_{j=1}^{k_n} (1 + \theta_{nj}) \right) = \lim_{n \to \infty} \exp \left( \sum_{j=1}^{k_n} \log (1 + \theta_{nj}) \right)$$

$$= \exp \left( \lim_{n \to \infty} \sum_{j=1}^{k_n} \log (1 + \theta_{nj}) \right) = \exp \left( \theta \right)$$

This completes the proof of the Lemma.

## B The Central Limit Theorems

Theorem B.1 (Lindeberg's Central Limit Theorem, Theorem 1.15, [3])

Suppose:

- $\{k_n\}_{n\in\mathbb{N}}\subset\mathbb{N}$  is a sequence of natural numbers such that  $k_n\to\infty$  as  $n\to\infty$ , and
- for each  $n \in \mathbb{N}$ ,  $X_1^{(n)}, X_2^{(n)}, \dots, X_{k_n}^{(n)} : \Omega_n \longrightarrow \mathbb{R}$  are independent (but not necessarily identically distributed)  $\mathbb{R}$ -valued random variables defined on a common probability space  $(\Omega_n, \mathcal{A}_n, \mu_n)$  such that

$$\mu_j^{(n)} := E\left[X_j^{(n)}\right] \in \mathbb{R} \text{ exists, for each } 1 \leq j \leq k_n, \text{ and } 0 < \sigma_n^2 := \operatorname{Var}\left[\sum_{j=1}^{k_n} X_j^{(n)}\right] < \infty.$$

Let N(0,1) denote the standard Gaussian distribution on  $\mathbb{R}$ . Then, the following implication holds: If

$$\lim_{n \to \infty} \frac{1}{\sigma_n^2} \sum_{j=1}^{k_n} E\left[ \left( X_j^{(n)} - \mu_j^{(n)} \right)^2 \cdot I_{\left\{ |X_j^{(n)} - \mu_j^{(n)}| > \epsilon \sigma_n \right\}} \right] = 0, \quad \text{for each } \epsilon > 0,$$

Study Notes May 1, 2015 Kenneth Chu

then

$$\frac{1}{\sigma_n} \sum_{j=1}^{k_n} \left( X_j^{(n)} - \mu_j^{(n)} \right) \stackrel{\mathcal{L}}{\longrightarrow} N(0, 1).$$

PROOF Considering  $\left(X_j^{(n)} - \mu_j^{(n)}\right) / \sigma_n$ , we may assume, without loss of generality, that

$$E\left[X_j^{(n)}\right] = 0$$
, and  $\sigma_n^2 := \operatorname{Var}\left[\sum_{j=1}^{k_n} X_j^{(n)}\right] = 1$ .

Lemma A.2.

## References

[1] BILLINGSLEY, P. Probability and Measure, third ed. John Wiley & Sons, 1995.

[2] Chung, K. L. A Course in Probability Theory, third ed. Academic Press, 2001.

[3] Shao, J. Mathematical Statistics, second ed. Springer, 2003.