

AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE

AGH UNIVERSITY OF KRAKOW

Wstęp do Modelu Standardowego

Oscylacje zapachu

Agnieszka Obłąkowska-Mucha

Wydział Fizyki i Informatyki Stosowanej Katedra Oddziaływań i Detekcji Cząstek

Oddziaływania słabe

- Rozpady β zachodzą poprzez oddziaływania słabe:
 - neutron zmienia się w proton i emituje elektron i neutrino
- 1930 W.Pauli zaproponował hipotezę neutrino (odkryte w 1956)
- Obecnie rozpady β uważane są jako zmianę kwarków $u \leftrightarrow d$ spowodowaną emisją bozonu W^{\pm} :

Oddziaływania słabe

Procesy słabe można podzielić ze względu na rodzaj oddziałujących cząstek:

leptonowe:
$$\mu^- \rightarrow e^- \nu_\mu \bar{\nu}_e$$

- półleptonowe:
$$n \to p \ e^- \ \bar{\nu}_e$$

$$p \rightarrow n e^+ v_e$$

$$\pi^- \to \mu^- \bar{\nu}_\mu$$

$$D^0 \rightarrow K^- \pi^+$$

$$B^0 \to K^- \, \pi^+$$

- Procesy słabe zachodzą poprzez wymianę:
 - bozonu pośredniczącego W^{\pm} (prądy naładowane)
 - bozonu pośredniczącego Z^0 (prądy neutralne)

Zajmiemy się tu prądami naładowanymi:

Rozpady słabe

Zacznijmy od rozpadów leptonowych:

- Widzimy, że za każdym razem, gdy powstaje elektron, powstaje również jego neutrino.
- Rozpady słabe z obecnością kwarków i leptonów (półleptonowe):

 Widzimy, zmianę zapachu kwarka! Tutaj w obrębie tej samej rodziny (generacji).

Rozpady jeszcze bardziej słabe

- Czy jest tu różnica w porównaniu z rozpadami β?
- Okazuje się, że w procesach słabych kwarki zmieniają się (oddziałują) również ze zmianą rodziny.
- Doświadczalnie pokazano, że procesy ze zmianą rodziny są mniej prawdopodobne

Zagadka $\theta - \tau$

W 1949 C.F Powell zaobserwował w promieniowaniu kosmicznym piony oraz dwa stany o tych samych masach, ale różnych rozpadach:

$$\theta^0 \to \pi^0 + \pi^0$$

$$\theta^0 \to \pi^0 + \pi^0$$
 $\tau^0 \to \pi^0 + \pi^0 + \pi^0$

$$\theta^0 \to \pi^+ + \pi^-$$

$$\theta^0 \to \pi^+ + \pi^- \qquad \qquad \tau^0 \to \pi^+ + \pi^- + \pi^0$$

Nazwano je θ^0 , τ^0 , jako dwie osobne cząstki, ponieważ te rozpady prowadzą do stanów o różnej parzystości przestrzennej:

$$P(\pi\pi) = +1$$
$$P(\pi\pi\pi) = -1$$

- W 1956 r Lee i Yang zapostulowali, że jest to ta sama cząstka (mezon K^0), ale parzystość P nie jest zachowana w oddziaływaniach słabych.
- Dwa eksperymenty potwierdziły brak symetrii P i C w oddziaływaniach słabych:
- C.S. Wu 1957 rozpad ^{60}Co w 0.01K w silnym polu magnetyczny (P)

Rozpady $\pi^0 \rightarrow \gamma \gamma$

ćwiczenia!

Epicka historia o neutralnych kaonach

Kaony są mezonami "dziwnymi", zaobserwowanymi w promieniowaniu kosmicznym (poprzedni slajd) i w zderzeniach pionów z tarczą.

Neutralne kaony są zatem produkowane w oddziaływaniach silnych, a obserwacja pokazała, że wtedy zawsze produkowane są DWA hadrony dziwne:

własnymi operatora dziwności:

$$\mathcal{S}|K^0\rangle = +1|K^0\rangle,$$

$$\mathcal{S}|\overline{K}^0\rangle = -1|\overline{K}^0\rangle$$

103773

Pin PNP Volume 113

Muon (µ)

Neutrino (v)

 $\pi \rightarrow uv$

Kaon (K)

Neutron (n)

Anti Proton (p)

Pion (π)

Target Nucleus

Proton (p)

Neutron (n)

Epicka historia o neutralnych kaonach

• Neutralne kaon $K^0(\bar{s}d)$ jest rozróżnialny od swojej antycząstki $\bar{K}^0(\bar{d}s)$ w **oddziaływaniach silnych**:

$$\overline{K}^{0} + p \to \Sigma^{+} + \pi^{+} + \pi^{-}$$
 $K^{0} + p \not\to \Sigma^{+} + \pi^{+} + \pi^{-}$
 $\overline{K}^{0} + p \to \Lambda^{0} + \pi^{+} + \pi^{0}$ $K^{0} + p \not\to \Lambda^{0} + \pi^{+} + \pi^{0}$

- Neutralne kaony, wyprodukowane w oddz. silnych rozpadają się poprzez oddz. słabe...
- Mezony K^0 i \overline{K}^0 jak zmierzymy ich czas życia i masę powinny być takie same (cząstka i antycząstka!)
- Mamy jeszcze naładowane kaony pełny obraz, to tzw. izospinowe dublety:

$$J^{P} = 0^{-}$$
+I $\overline{K^{0}}$ $(s\overline{d})$ K^{+} $(\overline{s}u)$
-I K^{-} $(s\overline{u})$ K^{0} $(\overline{s}d)$
+I "Strangeness"

C i P w neutralnych kaonach

$$|K^0\rangle \equiv |\bar{s}d\rangle$$

$$|\bar{K}^0\rangle \equiv |\bar{d}s\rangle$$

Neutralne kaony są stanami własnymi operatora \mathcal{P} , ale nie \mathcal{C} i złożenia \mathcal{CP} (parzystość kombinowana):

$$\mathcal{P}|K^0\rangle = -|K^0\rangle$$

$$\mathcal{C}|\overline{K}^{0}\rangle = e^{-i\eta}|K^{0}\rangle$$

$$\mathcal{P}|\overline{K}^0\rangle = -|\overline{K}^0\rangle$$

$$\mathcal{C}|K^0
angle = e^{i\eta}|\overline{K}^0
angle \qquad \eta = \pi$$

$$\mathcal{CP}|K^{0}\rangle = -\mathcal{C}|K^{0}\rangle = +|\overline{K}^{0}\rangle$$

$$\mathcal{CP}|\overline{K}^{0}\rangle = -\mathcal{C}|\overline{K}^{0}\rangle = +|K^{0}\rangle$$

$$\mathcal{CP}|\overline{K}^0\rangle = -\mathcal{C}|\overline{K}^0\rangle = +|K^0\rangle$$

Ale ortogonalne kombinacje K^0 i \overline{K}^0 :

$$|K_1^0\rangle = \frac{1}{\sqrt{2}}(|K^0\rangle + |\overline{K}^0\rangle) \qquad |$$

$$|K_2^0\rangle = \frac{1}{\sqrt{2}}(|K^0\rangle - |\overline{K}^0\rangle)$$

są eigenstanami operatora \mathcal{CP} :

$$\mathcal{CP}|K_1^0\rangle = +1$$
 $\mathcal{CP}|K_2^0\rangle = -1$

$$\mathcal{CP}|K_1^0\rangle = \frac{1}{\sqrt{2}}(\mathcal{CP}|K^0\rangle + \mathcal{CP}|\overline{K}^0\rangle) = \frac{1}{\sqrt{2}}(+|\overline{K}^0\rangle + |K^0\rangle) = \frac{1}{\sqrt{2}}(|K^0\rangle + |\overline{K}^0\rangle) = |K_1^0\rangle$$

możliwa jest konwencja $\eta = 0$ wtedy $|K_1^0\rangle = \frac{1}{\sqrt{2}}(|K^0\rangle - |\bar{K}^0\rangle)$ etc.

C i P w neutralnych kaonach

- Stany "zapachowe" ("flavourove) K^0 i \overline{K}^0 nie stanami własnymi CP, ale ich kombinacja jest!
- Jakie są tego konsekwencje doświadczalne?

 K_1^0 powinno się rozpadać do dwóch pionów, jeśli CP jest zachowane w oddz. słabych. Jest to częsty rozpad, obserwowany.

 K_2^0 powinno się rozpadać do trzech pionów...

• Czy zatem rozwiązana jest zagadka $\theta - \tau$?

$$\theta^0 \to K_1^0$$

$$\tau^0 \to K_2^0$$

- \checkmark rozpad na dwa piony jest częsty, dlatego K_1^0 powinno mieć krótszy czas życia,
- ✓ zmierzono: $\tau_1 \approx 0.9 \times 10^{-10} \, s$ oraz $\tau_2 \approx 5.0 \times 10^{-8} \, s$.
- ✓ zatem K_1^0 nazwano K_s^0 , a K_2^0 to K_L^0 (short i long).
- ✓ Stany K_1^0 i K_2^0 to układy będące superpozycją dwóch stanów kwantowych K^0 i \overline{K}^0
- Sytuacja się zmieniła, gdy zaobserwowano dwupionowy rozpad K_L^0 :

Łamanie parzystości CP

- Jak wyprodukować wiązkę czystych mezonów K_L⁰ ?
- Wyprodukować czyste K^0 (jak), poczekać, aż K_s^0 się rozpadnie $\frac{\tau_2}{\tau_1} \cong 580$

Cronin & Fitch experiment

 Następnie szukać rozpadów na dwa piony – suma pędów w okolicy zero

 $K_2 \rightarrow \pi\pi$ decays

$$\vec{p}_1 + \vec{p}_2 \cong 0$$

Efekt mierzalny, z prawdstwem

$$2.3 \times 10^{-3}$$

(skala łamania CP w sektorze słabych rozpadów neutralnych kaonów)

Oscylacje dziwności

- Niespodziewaną obserwacją stała się "regeneracja" K_s^0 po włożeniu przegrody z materiału w wiązkę K_L^0
- Jak matematycznie opisać zaobserwowane zjawisko?

 $\langle K^0 | \overline{K}^0 \rangle = 0 \rightarrow \langle K^0 | H_{Strong} | \overline{K}^0 \rangle = 0$

Może na wzór oscylacji w mechanice? Nazwiemy je "oscylacją flavouru"

Uwaga: K^0 i \overline{K}^0 są stanami własnymi silnego hamiltonianu (stany "flavourowe"): K^0

$$K^0$$
 K^0 K^0 K^0

$$H_{Strong}|K^{0}\rangle = m_{K^{0}}|K^{0}\rangle$$
 $H_{Strong}|\overline{K}^{0}\rangle = m_{\overline{K}^{0}}|\overline{K}^{0}\rangle$

$$m_{K^0} = m_{\overline{K}^0} \approx 498 \, MeV$$

 K_s^0 i K_L^0 (K_1^0 i K_2^0) są stanami własnymi hamiltonianu słabego.

$$\langle K^0|H_{Weak}|\overline{K}^0\rangle\neq 0$$

Ale skoro są kombinacją stanów zapachowych - K^0 i \overline{K}^0 - oscylację zapachu wydają się oczywiste....

Efektywny Hamiltonian i kwantowe układy dwustanowe

- Zapiszmy dowolny stan układu jako sumę dwóch stanów zapachowych: $|\psi(t)\rangle=a(t)|P^0\rangle+b(t)|\overline{P}^0\rangle$
- Ewolucja czasowa stanu $ar{P}^0$: $i\hbar \frac{\partial |\psi(t)\rangle}{\partial t} = \mathcal{H}_{eff} |\psi(t)\rangle$ Zespolona macierz 2 × 2

Opisuje, co może się stać ze stanem
$$\mathcal{H}_{eff}=\mathcal{M}-rac{i}{2}\Gamma$$

Opisuje, co moze się stać ze stanem
$$\mathcal{H}_{eff} = \mathcal{M} - \frac{1}{2}\Gamma$$

$$\mathcal{M} = \frac{1}{2}(\mathcal{H}_{eff} + \mathcal{H}_{eff}^{\dagger}),$$

$$\mathcal{M} = \mathcal{M}^{\dagger} \rightarrow \mathcal{M}_{ij} = \mathcal{M}_{ji}^{*}$$

$$\Gamma = i(\mathcal{H}_{eff} - \mathcal{H}_{eff}^{\dagger})$$
 Hermitowskie
$$\Gamma = \Gamma^{\dagger} \rightarrow \Gamma_{ij} = \Gamma_{ji}^{*}$$

Mass matrix \mathcal{M} – jej wartości własne opisują masy w układzie CMS. Elementy pozadiagonalne odpowiadają za mieszanie.

Decay matrix Γ – wprowadza rozpady stanów, elementy pozadiagonalne – wspólne rozpady, efekty interferencyine.

Oscylacje zapachu – dowolne mezony neutralne

• Gdy układ może przyjąć dwa stany: P^0 oraz \bar{P}^0 , to mamy:

$$i\hbar \frac{d}{dt} \begin{pmatrix} P^0(t) \\ \bar{P}^0(t) \end{pmatrix} = \begin{pmatrix} H & H_{12} \\ H_{12}^* & H \end{pmatrix} \begin{pmatrix} \bar{P}^0(t) \\ \bar{P}^0(t) \end{pmatrix}$$

• R. Schrodingera z całkowitym Hamiltonianem dla $|\psi(t)\rangle=a(t)|P^0\rangle+b(t)|\bar{P}^0\rangle$:

$$i\hbar \frac{d}{dt} \binom{a(t)P^0}{b(t)\bar{P}^0} = \mathcal{H}_{eff} \binom{a(t)P^0}{b(t)\bar{P}^0}$$

s.8:

$$|K_1^0\rangle = \frac{1}{\sqrt{2}}(|K^0\rangle + |\overline{K}^0\rangle)$$

$$|K_2^0\rangle = \frac{1}{\sqrt{2}}(|K^0\rangle - |\overline{K}^0\rangle)$$

$$i\hbar \frac{d}{dt} \binom{a}{b} = \binom{M}{M_{12}^*} \quad \frac{M_{12}}{M} - \frac{i}{2} \binom{\Gamma}{\Gamma_{12}^*} \quad \frac{\Gamma_{12}}{\Gamma} \binom{a}{b}$$

cząstka się propaguje z masą m lub rozpada z pr-twem Γ

Zachowanie CPT: masy i szerokości cząstek i antycząstek są takie same, czyli $H_{11} = H_{22}$

Oscylacje zapachu

$$i\hbar\frac{d}{dt}\binom{a(t)|P^0\rangle}{b(t)|\bar{P}^0\rangle} = \binom{M}{M_{12}^*} \quad \frac{M_{12}}{M} - \frac{i}{2}\binom{\Gamma}{\Gamma_{12}^*} \quad \frac{\Gamma_{12}}{\Gamma}\binom{a(t)|P^0\rangle}{b(t)|\bar{P}^0\rangle}$$

Gdyby macierz \mathcal{H}_{eff} była diagonalna – to stany 1 i 2 by się nie mieszały:

$$M_{11}$$
 i M_{22} to masy stanów stacjonarnych

$$i\hbar \frac{d}{dt}a(t) = H_{11} a(t)$$

$$a(t) = a(t = 0)e^{-iH_{11}t}$$

$$|\psi(t)\rangle = a(t)|P^0\rangle$$

- Pozadiagonalne elementy \mathcal{H}_{eff} pozwalają na mieszanie się stanów.
- Diagonalizacja \mathcal{H}_{eff} znalezienie wartości własnych i stanów własnych (mass eigenstates).

$$|\mathcal{H}_{eff} - \lambda I| = 0$$

$$\left(M - \frac{i}{2}\Gamma\right)^2 = \left(M_{12} - \frac{i}{2}\Gamma_{12}\right)\left(M_{12}^* - \frac{i}{2}\Gamma_{12}^*\right)$$

$$\lambda_1 = m_1 - \frac{i}{2}\Gamma_1 = \left(M - \frac{\Delta m}{2}\right) - \frac{i}{2}\left(\Gamma - \frac{\Delta\Gamma}{2}\right)$$

$$\lambda_2 = m_2 + \frac{i}{2}\Gamma_2 = \left(M - \frac{\Delta m}{2}\right) - \frac{i}{2}\left(\Gamma + \frac{\Delta\Gamma}{2}\right)$$

$$\lambda_1 = m_1 - \frac{i}{2} \Gamma_1 = \left(M - \frac{\Delta m}{2} \right) - \frac{i}{2} \left(\Gamma - \frac{\Delta \Gamma}{2} \right)$$

$$\lambda_2 = m_2 + \frac{i}{2}\Gamma_2 = \left(M - \frac{\Delta m}{2}\right) - \frac{i}{2}\left(\Gamma + \frac{\Delta \Gamma}{2}\right)$$

Oznaczenia:

$$\Delta m = m_1 - m_2$$
 $\Delta \Gamma = \Gamma_1 - \Gamma_2$

$$\Delta\Gamma = \Gamma_1 - \Gamma_2$$

$$m_{1,2} = M \pm \frac{\Delta m}{2}$$
 $\Gamma_{1,2} = \Gamma \pm \frac{\Delta \Gamma}{2}$

$$\Gamma_{1,2} = \Gamma \pm \frac{\Delta\Gamma}{2}$$

Stany masowe ewoluuja w czasie:

Ewolucja czasowa neutralnych mezonów- ogólnie

- Formalizm oddz. słabych przede wszystkim poszukuje łamania lub zachowania parzystości kombinowanej CP.
- Rozważamy zatem stany, które są najprostsza kombinacją stanów własnych operatora CP (p. kaons story):

 $|P_1\rangle = p|P^0\rangle + q|\overline{P^0}\rangle$

 $|P_2\rangle = p|P^0\rangle - q|\overline{P^0}\rangle$

p i q to zespolone liczby, takie, że: $|p|^2 + |q|^2 = 1$ (dla K_1^0 i K_2^0 : $p = q = \frac{1}{\sqrt{2}}$)

• Rozwiązując r. Schrodingera mamy:

$$|P_1(t)\rangle = |P_1\rangle e^{-i\left(m_1 - \frac{i\Gamma_1}{2}\right)t}$$

$$|P_2(t)\rangle = |P_2\rangle e^{-i\left(m_2 - \frac{i\Gamma_2}{2}\right)t}$$

i możemy wyliczyć prawdopodobieństwo, że pierwotny mezon P^0 albo zmieni się na $\overline{P^0}$ albo rozpadnie

$$P(P^0 \to \overline{P^0}; t) = |\langle \overline{P^0} | P^0(t) \rangle|^2$$

Ewolucja czasowa neutralnych mezonów - rozwiązanie

• Ewolucja czasowa stanów słabych jest kombinacją stanów zapachowych:

$$\begin{aligned}
& |P^{0}(t)\rangle = f_{+}(t)|P^{0}\rangle + \frac{q}{p}f_{-}(t)|\overline{P^{0}}\rangle \\
& |\overline{P^{0}}(t)\rangle = f_{+}(t)|\overline{P^{0}}\rangle + \frac{p}{q}f_{-}(t)|P^{0}\rangle
\end{aligned}$$

$$f_{\pm}(t) \equiv \frac{1}{2} \left[e^{-i(m_1 - \frac{i}{2}\Gamma_1)t} \pm e^{-i(m_2 - \frac{i}{2}\Gamma_2)t} \right]$$

$$\overline{\Gamma} = \frac{\Gamma_1 + \Gamma_2}{2}$$

$$\left| \mathbf{f}_{\pm}(\mathbf{t}) \right|^{2} = \frac{1}{4} \left[e^{-i\Gamma_{1}t} + e^{-i\Gamma_{2}t} \pm 2e^{-\overline{\Gamma}t} \mathbf{cos}(\Delta mt) \right]$$

Czynnik interferencyjny

Ewolucja czasowa stanu słabego – prawdopodobieństwo, że wyprodukowany mezon w stanie zapachowym P^0 po pewnym czasie t obserwowany zostanie jako P^0 lub zmieni zapach (oscyluje) na $\overline{P^0}$

$$P(P^{0} \to P^{0}; t) = |\langle P^{0} | P^{0}(t) \rangle|^{2} = |f_{+}(t)|^{2}$$

$$P(P^{0} \to \overline{P^{0}}; t) = |\langle \overline{P^{0}} | P^{0}(t) \rangle|^{2} = \left| \frac{q}{p} f_{-}(t) \right|^{2}$$

Od czego zależą parametry oscylacji?

Ewolucja czasowa mezonów K^0 (bez CPV)

• Mezon K^0 może się rozpaść na dowolne stany (zas.zach) wg prawa rozpadu lub propagować w czasie:

$$|K^{0}(t)\rangle = |K^{0}\rangle e^{-\frac{\Gamma t}{2}} e^{-imt}$$
 ewolucja czasowa stabilnej cząstki o masie $m, mc^{2} = E$ całkowita szerokość, która można

R.Sch. zapiszemy zatem w postaci:

$$i\frac{\partial}{\partial t}|K^{0}(t)\rangle = \left(m - \frac{i}{2}\Gamma\right)|K^{0}(t)\rangle$$

całkowita szerokość, którą można interpretować, jako prawdopodobieństwo, że po czasie t znajdziemy mezon K^0 :

$$|\langle K^0(t)|K^0\rangle|^2 = e^{-\Gamma t}$$

• Ale po czasie t, pierwotny mezon K^0 może zmienić się na \overline{K}^0 po zadziałaniu H (jakiego?):

$$|K^{0}(t)\rangle = e^{-iHt}|K^{0}(t=0)\rangle = e^{-iHt}\frac{1}{\sqrt{2}}(|K_{1}^{0}\rangle + |K_{2}^{0}\rangle) =$$

$$= \frac{1}{\sqrt{2}} \left[\underbrace{e^{-i\left(m_1 - \frac{i\Gamma_1}{2}\right)t}}_{\theta_1(t)} | K_1^0 \rangle + \underbrace{e^{-i\left(m_2 - \frac{i\Gamma_2}{2}\right)t}}_{\theta_2(t)} | K_2^0 \rangle \right] = \dots = \dots = \dots$$

wyprodukowany został stan zapachowy K^0 , ale obserwujemy stany K_1^0 i K_2^0 , które się rozpadają słabo (ale z zachowaniem CP – na razie!)

$$m_1 \equiv m_S$$

$$m_2 \equiv m_L$$

Ewolucja czasowa mezonów K^0 (bez CPV)

• Wyliczmy pr-two, że znajdziemy K^0 po czasie t:

$$P(K^{0},t) = |\langle K^{0}|K^{0}(t)\rangle|^{2} = \frac{1}{4} \left| e^{-\frac{i}{\hbar} \left(m_{S} - \frac{i}{2}\Gamma_{S}\right)t} + e^{-\frac{i}{\hbar} \left(m_{L} - \frac{i}{2}\Gamma_{L}\right)t} \right|^{2}$$

$$= \frac{1}{4} \left(e^{-\frac{\Gamma_S t}{\hbar}} + e^{-\frac{\Gamma_L t}{\hbar}} + e^{-\frac{1}{2\hbar}(\Gamma_S + \Gamma_L)t} \times 2\cos(m_L - m_S) \frac{t}{\hbar} \right)$$

$$= \frac{1}{4}e^{-\frac{t}{\tau_S}} + \frac{1}{4}e^{-\frac{t}{\tau_L}} + \frac{1}{2}e^{-\left(\frac{1}{\tau_S} + \frac{1}{\tau_S}\right)t}\cos\frac{\Delta mt}{\hbar}$$

• Analogicznie dla \overline{K}^0 :

$$P(\overline{K}^{0},t) = |\langle \overline{K}^{0} | K^{0}(t) \rangle|^{2}$$

$$= \left[\frac{1}{4} e^{-\frac{t}{\tau_{S}}} + \frac{1}{4} e^{-\frac{t}{\tau_{L}}} - \frac{1}{2} e^{-\left(\frac{1}{\tau_{S}} + \frac{1}{\tau_{S}}\right)t} \cos \frac{\Delta mt}{\hbar} \right]$$

Częstość oscylacji zależy od niezerowej różnicy mas pomiędzy dwoma stanami "słabymi"

po kilku czasach rozpadu K_S^0 pozostaje K_L^0 , czyli 50% K^0 , 50% \bar{K}^0

$$\tau(K_S) = 0.9 \times 10^{-10} \,\mathrm{s}$$
 $\tau(K_L) = 0.9 \times 10^{-10} \,\mathrm{s}$

$$\tau(K_L) = 0.5 \times 10^{-7} \,\mathrm{s}$$

$$\Delta m = (3.506 \pm 0.006) \times 10^{-15} \,\text{GeV}$$

 B_q^0

u, c, t

W

W

u, c, t

q

Oscylacje neutralnych mezonów

- Słabe oddziaływania umożliwiają zmianę zapachu, czyli przejścia od materii do antymaterii
- Następnym krokiem jest znalezienie diagramów Feynmana i przejść pomiędzy kwarkami, dzięki którym taka zmiana jest możliwa

 \bar{B}_q^0

	d	s	b
\overline{d}	×	K^0	B^0
\overline{s}	$\overline{K^0}$	×	B_s
\overline{b}	$\overline{B^0}$	$\overline{B_s}$	×
	u	c	t
\overline{u}	$u \times$	$\frac{c}{D^0}$	$\frac{t}{\diamond}$
$\overline{\overline{u}}$ \overline{c}	$\frac{u}{\sum_{D=0}^{\infty}}$		

Mieszanie układów mezonów B^0 i B^0_s

1. The weak B-meson states are a combination of flavour states:

$$|B_L\rangle = p|B^0\rangle + q|\overline{B^0}\rangle$$
 $|B_H\rangle = p|B^0\rangle - q|\overline{B^0}\rangle$

$$|B_H\rangle = p|B^0\rangle - q|\overline{B^0}\rangle$$

2. In terms of the CKM elements q/p is given by:

here d is replaced by s in case of B_s^0

$$\frac{q}{p} = \frac{V_{ts}V_{tb}^*}{V_{tb}V_{ts}^*} = e^{-i2\beta_S}$$

$$\frac{q}{p} = \frac{V_{td}V_{tb}^*}{V_{tb}V_{td}^*} = e^{-i2\beta}$$

so now the physical states are written as:

$$|B_L\rangle = 1/\sqrt{2} \left[|B^0\rangle + e^{-i2\beta} |\overline{B^0}\rangle \right]$$

$$|B_H\rangle = 1/\sqrt{2} \left[|B^0\rangle - e^{-i2\beta} |\overline{B^0}\rangle \right]$$

Mieszanie układów mezonów B^0 i B^0_S

1. The physical states are written as:

$$|B_L\rangle = 1/\sqrt{2} \left[|B^0\rangle + e^{-i2\beta} |\overline{B^0}\rangle \right]$$

$$|B_H\rangle = 1/\sqrt{2} \left[|B^0\rangle - e^{-i2\beta} |\overline{B^0}\rangle \right]$$

the eigenstates of the effective Hamiltonian $|B_{L,H}\rangle$, with definite mass and lifetime, are mixtures of the flavour eigenstates $|B^0\rangle$ and $\overline{B^0}\rangle$

and β is also called the B^0 mixing phase

- 3. The states B_L and B_H are lighter and heavier state, with almost identical lifetimes: $\Gamma_L = \Gamma_H \equiv \Gamma$
- 4. The mass difference Δm between them is greater then in kaons.

Mieszanie układów mezonów B^0 i B^0_S

5. If we write the flavour states as a combination of weak states:

$$|B^0\rangle = 1/\sqrt{2} \left[|B_L\rangle + |B_H\rangle \right]$$

then the wavefunction evolves according to the time dependence of physical states:

$$|B(t)\rangle = 1/\sqrt{2}\{a(t)|B_L\rangle + b(t)|B_H\rangle\} \leftarrow$$

where time dependence of coefficients is:

$$a(t) = e^{-i(m_L - \frac{i}{2}\Gamma)t}$$
 $b(t) = e^{-i(m_H - \frac{i}{2}\Gamma)t}$

Now substitute a(t) and b(t) and $|B_{L,H}\rangle$ into time-dependent wave function. Do not forget to express mass states as a combination of flavour states....

$$|B_L\rangle = 1/\sqrt{2} \left[|B^0\rangle + e^{-i2\beta} |\overline{B^0}\rangle \right]$$

$$|B_H\rangle = 1/\sqrt{2} \left[|B^0\rangle - e^{-i2\beta} |\overline{B^0}\rangle \right]$$

Mieszanie układów mezonów B^0 i B^0_s

6. Now substitute a(t) and b(t) and $|B_{L,H}\rangle$ into time-dependent wave function:

$$|B(t)\rangle = 1/\sqrt{2}\{a(t)|B_L\rangle + b(t)|B_H\rangle\}$$

$$|B_L\rangle = 1/\sqrt{2}\left[|B^0\rangle + e^{-i2\beta}|\overline{B^0}\rangle\right]$$

$$|B_H\rangle = 1/\sqrt{2}\left[|B^0\rangle - e^{-i2\beta}|\overline{B^0}\rangle\right]$$

$$|B_H\rangle = 1/\sqrt{2}\left[|B^0\rangle - e^{-i2\beta}|\overline{B^0}\rangle\right]$$

$$|B_L\rangle = 1/\sqrt{2} \left[|B^0\rangle + e^{-i2\beta} |\overline{B^0}\rangle \right]$$
$$|B_H\rangle = 1/\sqrt{2} \left[|B^0\rangle - e^{-i2\beta} |\overline{B^0}\rangle \right]$$

.... and calculate the probabilities of the state to stay as a $|B^0\rangle$

$$P(B^{0}(t=0) \to B^{0}; t) = |\langle B^{0}(t)|B^{0}\rangle|^{2} = .. = .. = e^{-\Gamma t} \cos^{2}\left(\frac{\Delta m}{2}t\right)$$

7. The same calculation can be done for B_s^0

Mieszanie układów mezonów B^0 i B_S^0 ?

$$\begin{pmatrix} B^0 = d\bar{b} \\ \overline{B^0} = \bar{d}b \end{pmatrix}$$

$$\left(\frac{B_S^0 = s\bar{b}}{B_S^0 = \bar{d}s}\right)$$

$$A \propto \sum all \ pair \ of \ quarks \ A_{bi}A_{jb}^*$$

Doświadczalnie:	$B^0 = d\overline{b} \ \overline{B^0} = \overline{d}b$	$B_S^0 = s\overline{b} \ \overline{B_S^0} = \overline{d}s$
Parametry oscylacji	$x_d = \frac{\Delta m_d}{\overline{\Gamma_d}} \approx 0.72$	$x_{s} = \frac{\Delta m_{s}}{\overline{\Gamma_{s}}} \approx 24$
Różnica mas (duża)	$\Delta m_d \approx 3.3 \cdot 10^{-13} \; GeV$ $\approx 0.5 \; ps^{-1}$	$\Delta m_s \approx 17.8 \ ps^{-1}$
Różnica czasów życia (mała)	$x_d = \frac{\Delta \Gamma_d}{\overline{\Gamma_d}} \approx 5 \cdot 10^{-3}$	$x_d = \frac{\Delta \Gamma_s}{\overline{\Gamma_s}} \approx 0.1$
$\frac{q}{p}$ - czuły naCPV	$\frac{q}{p} = \frac{V_{td}V_{tb}^*}{V_{tb}V_{td}^*} \sim \beta$	$\frac{q}{p} = \frac{V_{ts}V_{tb}^*}{V_{tb}V_{ts}^*} \sim \beta_s$

$$\frac{q}{p} = \sqrt{\frac{M_{12}^*}{M_{12}}}$$

Jak znaleźć CPV?

LHCb: $\Delta m_S = 17.768 \pm 0.023 \ ps^{-1}$

$$\Gamma(B \to J/\psi \ K_S) = \left| Ae^{-imt - \Gamma t} \left(\cos \frac{\Delta mt}{2} + e^{-i\phi} \sin \frac{\Delta mt}{2} \right) \right|^2$$

$$A_{CP}(t) = \frac{\Gamma\{B \to J/\psi \ K_S\} - \Gamma\{\bar{B} \to J/\psi \ K_S\}}{\Gamma\{B \to J/\psi \ K_S\} + \Gamma\{\bar{B} \to J/\psi \ K_S\}} = -\sin 2\beta \sin \Delta mt$$