Лекция 5 по курсу «Дискретные преобразования сигналов» 4 марта 2025 г.

4. Дискретное во времени преобразование Фурье (ДВПФ).

Оценка спектра сигнала по последовательности его отсчетов. Формы записи ДВПФ для разных частотных переменных. Сходимость ДВПФ.

Примеры.

Оценка спектра сигнала по последовательности его отсчетов

Оценка спектра сигнала по последовательности его отсчетов

Пусть есть последовательность выборок $x(k\Delta t)$, некоторого аналогового сигнала x(t), где Δt — шаг дискретизации — интервал времени между каждой парой соседних эквидистантных отсчетов, $k \in \mathbb{Z}$ — номер отсчета.

 $f_{_{
m I}}=1/\Delta t$ — частота дискретизации — величина, обратная шагу дискретизации (размерность [Гц]=[c^{-1}]). Будем считать, что спектр исходного аналогового сигнала ограничен интервалом $\left\lceil -f_{_{
m I}}/2;\,f_{_{
m I}}/2
ight
ceil$, а соответственно при

дискретизации не наблюдается эффект наложения спектров $(f_{\pi} > 2f_{\rm B}).$

Рассмотрим последовательность отсчетов (дискретный сигнал) x[k], которую будем определять через выборки следующим образом

$$x[k] = Tx(k\Delta t),$$

где $T=\Delta t$. Как ранее было установлено, при $T=\Delta t$ спектр дискретизованного сигнала x[k] представляет собой периодическое повторение исходного спектра $X_a(f)$ аналогового сигнала x(t) с периодом, равным частоте дискретизации f_π :

$$X_{\mathrm{I}}(f) = \sum_{n=-\infty}^{\infty} X_{\mathrm{a}}(f - nf_{\mathrm{I}}).$$

Необходимая спектральная информация будет содержаться в полосе $\left[-f_{_{\rm I\! I}}/2;f_{_{\rm I\! I}}/2\right]$. Теперь оценим спектр исходного сигнала по его выборкам в этой полосе.

Оценка спектра сигнала по последовательности его отсчетов

Континуальная запись дискретного сигнала x[k] в данном случае

$$x_{\mathbf{I}}(t) = \sum_{k=-\infty}^{\infty} x[k] \delta(t - k\Delta t).$$

Вычислим его спектр (преобразование Фурье)

$$X_{\mathrm{J}}(f) = \int_{-\infty}^{\infty} x_{\mathrm{J}}(t) \exp(-j2\pi f t) dt =$$

$$= \int_{-\infty}^{\infty} \sum_{k=-\infty}^{\infty} x[k] \delta(t - k\Delta t) \exp(-j2\pi f t) dt =$$

$$= \sum_{k=-\infty}^{\infty} x[k] \int_{-\infty}^{\infty} \delta(t - k\Delta t) \exp(-j2\pi f t) dt = \sum_{k=-\infty}^{\infty} x[k] \exp(-j2\pi f k\Delta t),$$

Таким образом, спектр дискретного сигнала определяется через его отсчёты по формуле

$$X_{\mathrm{II}}(f) = \sum_{k=-\infty}^{\infty} x[k] \exp(-j2\pi f k \Delta t).$$

Эта формула определяет прямое дискретное во времени преобразование Фурье (ДВПФ).

Учитывая, что формула прямого ДВПФ представляет собой ряд Фурье для периодической функции $X_{\pi}(f)^{1}$, получаем, что отсчётные значения дискретного сигнала соответствуют коэффициентам Фурье в этом ряде:

$$x[k] = c_{-k} = \frac{1}{f_{\pi}} \int_{-f_{\pi}/2}^{f_{\pi}/2} X_{\pi}(f) \exp(j2\pi f k \Delta t) df.$$
 (1)

¹ Напоминание. Для 2l - периодической функции f(x), абсолютно интегрируемой на интервале (-l;l) ряд Фурье по системе функций $\phi_m(x) = \exp(jm\frac{\pi}{l}x)$, $m \in Z$: $f(x) = \sum_{m=-\infty}^{+\infty} c_m \exp(jm\frac{\pi}{l}x)$, где коэффициенты Фурье $c_m = \frac{1}{2l} \int_{-l}^{l} f(x) \exp(-jm\frac{\pi}{l}x) dx$.

Оценка спектра сигнала по последовательности его отсчетов

В итоге получаем пару формул определяющих прямое и обратное дискретное во времени преобразование Фурье (ДВПФ):

$$X_{\mathrm{I}}(f) = \sum_{k=-\infty}^{\infty} x[k] \exp(-j2\pi f k \Delta t),$$

$$x[k] = \frac{1}{f_{\mathrm{II}}} \int_{-f/2}^{f_{\mathrm{I}}/2} X_{\mathrm{II}}(f) \exp(j2\pi f k \Delta t) df.$$

ДВПФ показывает, каким является спектр дискретного сигнала x[k], который на отрезке оси частот $\left[-f_{_{\rm I\! I}}/2; f_{_{\rm I\! I\! I}}/2\right]$ в отсутствии наложения совпадает со спектром исходного аналогового сигнала.

$$X_{\mathrm{I}}(f) = \sum_{n=-\infty}^{\infty} X_{\mathrm{a}}(f - nf_{\mathrm{I}}).$$

При этом важно помнить, что в данном случае выборки аналогового сигнала связаны с дискретной последовательностью как $x[k] = \Delta t x(k \Delta t)$.

Различные формы записи ДВПФ

Различные формы записи ДВПФ

Итак, мы установили, что пара дискретного во времени преобразования Фурье (ДВПФ) имеет вид

$$X(f) = \sum_{k=-\infty}^{\infty} x[k] \exp(-j2\pi f k \Delta t),$$

$$x[k] = \frac{1}{f_{\pi}} \int_{-f/2}^{f_{\pi}/2} X(f) \exp(j2\pi f k \Delta t) df.$$

Введем нормированные частоты $\nu = f \ / \ f_{_{\rm I\! I}} = f \Delta t$. Тогда пара ДВПФ может быть записана следующим образом:

$$X(v) = \sum_{k=-\infty}^{\infty} x[k] \exp(-j2\pi vk),$$

$$x[k] = \int_{-1/2}^{1/2} X(v) \exp(j2\pi vk) dv.$$

Если принять $2\pi f=\omega$, а частоту дискретизации взять в рад/с $\omega_\pi=2\pi\,/\,\Delta t$, то

$$X(\omega) = \sum_{k=-\infty}^{\infty} x[k] \exp(-j\omega k \Delta t),$$
$$x[k] = \frac{\Delta t}{2\pi} \int_{-\omega/2}^{\omega_{\pi}/2} X(\omega) \exp(j\omega k \Delta t) d\omega.$$

Приняв $\theta = 2\pi v$ (нормированный угол в радианах), получаем

$$X(\theta) = \sum_{k=-\infty}^{\infty} x[k] \exp(-j\theta k),$$
$$x[k] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(\theta) \exp(j\theta k) d\theta.$$

Частотная	Размерность	Период	
переменная		повторения	
		спектра	
f	Гц	$f_{\mathcal{A}} = 1/\Delta t$	$[-f_{\mathcal{I}}/2;f_{\mathcal{I}}/2]$
$\omega = 2\pi f$	рад/с	$\omega_{\mathcal{I}} = 2\pi / \Delta t$	$[-\omega_{\mathcal{I}}/2;\omega_{\mathcal{I}}/2]$
$v = f / f_{\mathcal{I}}$	безразмерная	1	[-0,5;0,5]
$\theta = 2\pi f / f_{\mathcal{A}}$	рад	2π	$[-\pi;\pi]$

Различные формы записи ДВПФ

Пример. Рассмотрим в качестве примера последовательность единичных импульсов

$$x[k] = \mathbf{1}[k+1] + \mathbf{1}[k] + \mathbf{1}[k-1],$$

где $\mathbf{1}[k]$ — единичный импульс, определяемый как

$$\mathbf{1}[k] = \begin{cases} 1, k = 0; \\ 0, k \neq 0. \end{cases}$$

ДВПФ x[k] в нормированных частотах v

$$X(v) = \sum_{k=-\infty}^{\infty} x[k]e^{-j2\pi vk} = \sum_{k=-1}^{1} x[k]e^{-j2\pi vk} =$$

$$= x[-1]e^{j2\pi v} + x[0]e^{0} + x[1]e^{-j2\pi v} =$$

$$= \exp(j2\pi v) + 1 + \exp(-j2\pi v) = 1 + 2\cos(2\pi v).$$

Аналогично для частот в герцах (f)

$$X(f) = 1 + 2\cos(2\pi f \Delta t),$$

для частот в рад/с ($\omega = 2\pi f$)

$$X(\omega) = 1 + 2\cos(\omega \Delta t)$$
,

для $\theta = 2\pi v$

$$X(\theta) = 1 + 2\cos(\theta)$$
.

Функция X(v) периодическая и в силу четной симметрии x[k] относительно нуля действительная.

Пример. Прямоугольное окно.

Пример. Прямоугольное окно.

$$x[k] = \sum_{m=0}^{N-1} \mathbf{1}[k-m].$$

$$X(v) = \sum_{k=-\infty}^{\infty} x[k] \exp(-j2\pi vk) = \sum_{k=0}^{N-1} \exp(-j2\pi vk).$$

Используем формулу суммы N членов геометрической прогрессии ($q=\exp(-j2\pi v)$, $b_0=e^0=1$).

$$X(v) = \frac{1 - \exp(-j2\pi vN)}{1 - \exp(-j2\pi v)} = \frac{2j}{2j} \frac{e^{-j\pi vN}}{e^{-j\pi v}} \frac{(e^{j\pi vN} - e^{-j\pi vN})}{(e^{j\pi v} - e^{-j\pi v})} = \frac{\sin(N\pi v)}{\sin(\pi v)} \exp(-j(N-1)\pi v).$$

АЧХ

$$|X(v)| = \left| \frac{\sin(N\pi v)}{\sin(\pi v)} \right|.$$

Нули АЧХ: $v_n = \frac{n}{N}$, при целых n, не кратных N.

Пример. Отсчеты прямоугольного импульса.

- ullet Выбрать шаг дискретизации Δt симметричного прямоугольного импульса длительностью au с высотой E.
- В качестве верхней граничной частоты спектра f_e принять значение частоты, при котором спектральная плотность обращается в нуль и при $f > f_e$ значение спектральной плотности не превышает 0,1 от максимального значения.
- Записать ряд Котельникова для этого случая.
- Определить спектр дискретизованного сигнала.
- Считать, что отсчеты дискретизованного сигнала определяются как $x[k] = \Delta t x(k \Delta t)$.

Решение. Спектр прямоугольного импульса до дискретизации можно определить с помощью преобразования Фурье:

$$X_{\text{inp}}(f) = \int_{-\tau/2}^{\tau/2} E e^{-j2\pi f t} = \frac{E}{-j2\pi f} e^{-j2\pi f t} \Big|_{-\tau/2}^{\tau/2} =$$

$$= E \frac{\sin(\pi f \tau)}{\pi f} = E \tau \frac{\sin(\pi f \tau)}{\pi f \tau}.$$

Максимальное значение $X_{\mathrm{np}}(f)$ достигается на нулевой

частоте и равно

$$X_{\text{np}}(0) = \lim_{f \to 0} E \tau \frac{\sin(\pi f \tau)}{\pi f \tau} = \lim_{f \to 0} E \tau \frac{\pi \tau \cos(\pi f \tau)}{\pi \tau} = E \tau.$$

Нули функции $X_{\rm np}(f)$ совпадают с нулями $\sin(\pi f \, \tau)$, за исключением точки 0, где находится неопределённость «0/0». Соответственно, они находятся в точках

$$f_m = \pm \frac{m}{\tau}, m \in \mathbb{N}.$$

По условию требуется, чтобы $f_{\scriptscriptstyle \theta}$ совпадала с одним из нулей и для любого $f > f_{\scriptscriptstyle \theta}$ выполнялось

$$E\tau \frac{\sin(\pi f \tau)}{\pi f \tau} \leq \frac{E\tau}{10}.$$

Спектр прямоугольного импульса.

$$E \tau \frac{\sin(\pi f \tau)}{\pi f \tau} \le \frac{E \tau}{10}.$$

Преобразуем неравенство к виду

$$\sin(\pi f \tau) \le 0.1\pi f \tau$$
.

Функция $\sin(\pi f \tau)$ достигает максимального значения при

$$\pi f \tau = \frac{\pi}{2} + 2\pi m.$$

Найдем $f_m = f_{\it e}$, потребовав, чтобы значение линейной функции $0.1\pi f \, \tau$ для $f = (0.5 + 2m) / \, \tau$ (максимума синусоиды) превышало единицу, что является необходимым условием для выполнения неравенства для всех $f > (0.5 + 2m) / \, \tau$.

Минимально возможное значение m для этого случая m=2. Заметим, что для всех $f>3/\tau$ неравенство $\sin(\pi f\tau) \le 0.1\pi f\tau$. выполнено. Тогда $f_e=3/\tau$. Поскольку рассматривается сигнал, со спектром, сосредоточенным вокруг нулевой частоты (видеосигнал), то

$$f_{\rm M}=2f_{\rm e}=6/\tau.$$

$$\frac{f_{\pi}}{2} = f_{\theta} = \frac{3}{\tau}.$$

Спектр прямоугольного импульса.

Шаг дискретизации равен $\Delta t = 1/f_{_{\rm I\! I}} = \tau/6$. Дискретизуем сигнал таким шагом, получаем 7 ненулевых отсчетов прямоугольного импульса, симметрично расположенных относительно нуля времени.

С учетом нулевых слагаемых и выбора частоты дискретизации ряд Котельникова принимает вид

$$x_{\text{iip}}(t) = \sum_{k=-3}^{3} E \frac{\sin\left(\frac{6\pi}{\tau}(t - k\Delta t)\right)}{\frac{6\pi}{\tau}(t - k\Delta t)}.$$

Отсчеты дискретизованного сигнала

$$x[k] = \Delta t x(k\Delta t) = \begin{cases} E\Delta t, |k| \le 3, \\ 0, |k| > 3. \end{cases}$$

Спектр дискретизованного сигнала

$$X_{_{
m I\!I}}\!\left(f
ight) = \sum\limits_{k=-\infty}^{\infty} x[k] \exp(-j2\pi f k \Delta t) = E \Delta t \sum\limits_{k=-3}^{3} \exp(-j2\pi f k \Delta t)$$
 Используя формулу суммы геометрической прогрессии со

Используя формулу суммы геометрической прогрессии со знаменателем $\exp(-j2\pi f\,\Delta t)$, получаем

$$X_{\mathrm{A}}(f) = E\Delta t \exp(j6\pi f \Delta t) \frac{1 - \exp(-j14\pi f \Delta t)}{1 - \exp(-j2\pi f \Delta t)}.$$

Обозначим $\theta = 2\pi f \, \Delta t$ (нормированный угол в радианах). Для числителя и знаменателя вынесем половину степени экспоненты за скобки.

$$X_{A}(\theta) = E\Delta t \exp(j3\theta) \frac{1 - \exp(-j7\theta)}{1 - \exp(-j\theta)} = E\Delta t e^{j3\theta} \frac{e^{-j7\theta/2} \left(e^{j7\theta/2} - e^{-j7\theta/2}\right)}{e^{-j\theta/2} \left(e^{j\theta/2} - e^{-j\theta/2}\right)}.$$

Воспользуемся следствием из формулы Эйлера

$$X_{_{\mathrm{II}}}(\theta) = E\Delta t \frac{\sin(7\theta/2)}{\sin(\theta/2)}.$$

Тогда в переменных f

$$X_{_{\mathrm{II}}}(f) = E\Delta t \frac{\sin(7\pi f \Delta t)}{\sin(\pi f \Delta t)}.$$

Функция $X_{_{\rm I\! I}}(f)$ является периодической с периодом, равным частоте дискретизации $f_{_{\rm I\! I}}=1/\Delta t$.

С учетом выбора шага дискретизации ($f_{\pi}=2f_{g}=6$ / au)

$$X_{_{\mathrm{I}}}(f) = \frac{E\tau}{6} \frac{\sin(7\pi f\tau/6)}{\sin(\pi f\tau/6)}.$$

Заметим, что из-за влияния эффекта наложения значения $X_{\rm np}(f)$ и $X_{\rm g}(f)$ не являются строго равными на интервале частот от $-f_{\it e}$ до $f_{\it e}$. В частности, $X_{\rm g}(f) = \frac{7}{6} E \tau$.

АЧХ исходного и дискретизованного сигналов.

Спектр прямоугольного импульса.

Сходимость ДВПФ

Рассмотрим вопрос об взаимной обратимости формул ДВПФ

$$X(v) = \sum_{k=-\infty}^{\infty} x[k] \exp(-j2\pi vk),$$

$$x[k] = \int_{-1/2}^{1/2} X(v) \exp(j2\pi vk) dv.$$

Выполним подстановку прямого преобразования в обратное

$$\hat{x}[k] = \int_{-1/2}^{1/2} \left(\sum_{m=-\infty}^{\infty} x[m] \exp(-j2\pi v m) \right) \exp(j2\pi v k) dv.$$

Если <u>бесконечный ряд</u> под интегралом <u>равномерно сходится</u> на множестве определения v, то его можно почленно проинтегрировать

$$\hat{x}[k] = \sum_{m=-\infty}^{\infty} x[m] \int_{-1/2}^{1/2} \exp(j2\pi v(k-m)) dv.$$

Вычислим интеграл отдельно.

а) При
$$k=m$$

$$\int_{-1/2}^{1/2} \exp(j2\pi\nu(k-m)) \ d\nu = \int_{-1/2}^{1/2} e^0 d\nu = 1$$

б) При $k \neq m$

$$\int_{-1/2}^{1/2} \exp(j2\pi\nu(k-m)) d\nu = \frac{\exp(j2\pi\nu(k-m))}{j2\pi(k-m)} \Big|_{-1/2}^{1/2} = \frac{1}{\pi(k-m)} \cdot \frac{e^{j\pi(k-m)} - e^{-j\pi(k-m)}}{2j} = \frac{\sin(\pi(k-m))}{\pi(k-m)}$$

В итоге

$$\int_{-1/2}^{1/2} \exp(j2\pi\nu(k-m)) \ d\nu = \mathbf{1}[k-m] = \begin{cases} 1, \ k=m; \\ 0, \ k \neq m. \end{cases}$$

Тогда

$$\hat{x}[k] = \sum_{m=-\infty}^{\infty} x[m] \ \mathbf{1}[k-m] = x[k],$$

Таким образом, когда ряд

$$X(v) = \sum_{m=-\infty}^{\infty} x[m] \exp(-j2\pi vm)$$

равномерно сходится на множестве определения v, формулы ДВПФ взаимно обратимы.

Равномерная сходимость к непрерывной функции.

Достаточное условие сходимости ряда

$$X(v) = \sum_{m=-\infty}^{\infty} x[m] \exp(-j2\pi vm)$$

определяется следующим образом:

$$|X(v)| = \left| \sum_{m=-\infty}^{\infty} x[m] \exp(-j2\pi vm) \right|,$$

$$|X(v)| < \sum_{m=-\infty}^{\infty} |x[m]| \cdot \left| \exp(-j2\pi vm) \right| < \sum_{m=-\infty}^{\infty} |x[m]| < \infty$$

Таким образом, для <u>абсолютно суммируемой</u> последовательности x[k] ДВПФ X(v) определено на всей числовой прямой. Заметим, что любая последовательность конечной длительности будет абсолютно суммируемой.

Можно показать, что по признаку Вейерштрасса ряд равномерно сходится к непрерывной функции от ν .

Пример. Пусть $h[k] = a^k \sigma[k]$, где $\sigma[k]$ – дискретная функция включения. ДВПФ этой последовательности

$$H(v) = \sum_{k=-\infty}^{\infty} h[k]e^{-j2\pi vk} = \sum_{k=0}^{\infty} a^k e^{-j2\pi vk} = \sum_{k=0}^{\infty} \left(ae^{-j2\pi v}\right)^k.$$

Если |a| < 1, то

$$H(v) = \sum_{k=0}^{\infty} \left(ae^{-j2\pi v} \right)^k = \frac{1}{1 - ae^{-j2\pi v}}.$$

При этом |a| < 1 является также критерием абсолютной суммируемости последовательности h[k], т. е.

$$\sum_{k=0}^{\infty} |a|^k = \frac{1}{1-|a|} < \infty$$
, если только $|a| < 1$.

Сходимость в среднеквадратичном.

Некоторые последовательности не являются абсолютно суммируемыми, но обладают конечной энергией:

$$\sum_{k=-\infty}^{\infty} |x[k]|^2 < \infty.$$

Такие последовательности с суммируемым квадратом могут быть представлены в виде

$$X(v) = \sum_{m=-\infty}^{\infty} x[m] \exp(-j2\pi vm)$$

если мы откажемся от равномерной сходимости ряда

$$X(\mathbf{v}) = \sum_{k=-\infty}^{\infty} x[k]e^{-j2\pi \mathbf{v}k}.$$

В этом случае мы имеем сходимость в среднеквадратичном:

$$\lim_{N \to \infty} \int_{-\pi}^{\pi} |X(\theta) - \sum_{k=-N}^{N} x[k] e^{-j2\pi vk}|^{2} dv = 0.$$

Пример (цифровой ФНЧ).

Рассмотрим идеальный фильтр нижних частот (ИФНЧ), частотная характеристика которого по переменной ν периодическая с периодом 1 и равна на промежутке [-0.5;0.5]

$$H_0(v) = \begin{cases} 1, |v| \le v_c, \\ 0, v_c < |v| \le 0.5, \end{cases}$$
 при $|v| \le 0.5.$

Частота \mathbf{v}_c называется частотой среза, полоса частот $[-\mathbf{v}_c,\mathbf{v}_c]$ называется полосой пропускания. Это фильтр с нулевой фазочастнотной характеристикой, т.е. $\phi_0(\mathbf{v}) = 0$, а значит, он не вносит никаких задержек во входной сигнал.

Импульсная характеристика ИФНЧ находится обратным ДВПФ от $H_0(\mathbf{v})$

$$h_{l}[k] = \int_{-1/2}^{1/2} H_{0}(v) e^{j2\pi vk} dv = \int_{-v_{c}}^{v_{c}} e^{j2\pi vk} dv = \int_{-v_{c}}^{v_{c}} \frac{e^{j2\pi vk} d(j2\pi kv)}{j2\pi k} = \frac{1}{\pi k} \frac{e^{j2\pi v_{c}k} - e^{-j2\pi v_{c}k}}{2j} = \frac{\sin(2\pi v_{c}k)}{\pi k}.$$

$$h_l[k] = \frac{\sin(2\pi v_c k)}{\pi k}.$$

Импульсная характеристика является реакцией цифрового фильтра на единичный импульс на входе. $h_l[k]$ не обращается тождественно в нуль при k < 0, а значит идеальный фильтр нижних частот физически не реализуем в системе реального времени.

Последовательность $h_l[k]$ не является абсолютно суммируемой, члены последовательности стремятся к нулю не быстрее, чем $1/\sqrt{k}$.

Ряд

$$\sum_{k=-\infty}^{\infty} \frac{\sin(2\pi v_c k)}{\pi k} e^{-j2\pi v k}$$

Сходится неравномерно на числовой оси. Частичная сумма этого ряда

$$H_0(v, N) = \sum_{k=-N}^{N} \frac{\sin(2\pi v_c k)}{\pi k} e^{-j2\pi v k}.$$

сходится к $H_0(v)$ в среднеквадратичном:

$$\lim_{N \to \infty} \int_{-1/2}^{1/2} |H_0(v) - H_0(v, N)|^2 dv = 0.$$

Даже достаточно больших N мы наблюдаем пульсации вблизи точек разрыва $H_0(\mathbf{v})$, причем они принципиально не устранимы с ростом N. Этот эффект называется <u>явлением</u> Гиббса.

Максимальная амплитуда пульсаций не стремится к нулю при $N \to \infty$. Пульсации сжимаются по горизонтали к вертикальному отрезку, проведённому через точку разрыва $\mathbf{v} = \pm \mathbf{v}_c$. Следовательно, ряд сходится к разрывной функции $H_0(\theta)$ неравномерно.

$$H_0(v, N) = \sum_{k=-N}^{N} \frac{\sin(2\pi v_c k)}{\pi k} e^{-j2\pi v k}.$$

Задачи с лекции

Задачи для самостоятельного решения

Nº1. Найти и изобразить по модулю для N=1 и для N=2 спектральную плотность группы из (2N+1) дельта-импульсов, симметрично расположенных относительно начала координат с шагом Δt .

Отметить величины главных максимумов в спектре и их частоты. Указать частоты, на которых спектральная плотность принимает нулевые значения.

Nº2. Прямоугольный импульс x(t), $t \in [-\tau/2, \tau/2]$, высотой E = 1В дискретизован с шагом Δt так, что получилось 2N + 1 ненулевых отсчетов, симметрично расположенных относительно t = 0. Найти спектральную плотность дискретизованного сигнала и изобразить ее для случая 2N + 1 = 9, отметив особые точки.

№3. Экспоненциальный импульс

$$x(t) = e^{-\alpha t}, t \ge 0, \alpha = 20$$
 кГц.

дискретизован с шагом $\Delta t = 10$ мкс. Найти спектральную плотность дискретизованного сигнала.

Nº4. Определить спектр дискретизованного с шагом $\Delta t = \tau/5$ симметричного треугольного импульса высотой E и длительностью τ .

No. Выбрать шаг дискретизации Δt симметричного треугольного импульса длительностью $\tau = 100$ мкс. В качестве верхней граничной частоты спектра f_e принять значение частоты, при котором спектральная плотность обращается в нуль и при $f > f_e$ значения спектральной плотности не превышают 0,1 от максимального значения. Записать ряд Котельникова для этого случая.