ChernyshovDS 19022025-160848

Если в каком-либо задании среди предлагаемых вариантов ответа нет правильного, нужно внести 0 в соответствующую строчку файла .txt.

К однопортовому анализатору цепей, измеряющему коэффициенты отражения без погрешности, подключён заполненный фторопластом ($\epsilon=2$) коаксиальный кабель без потерь . Была выполнена калибровка на частоте 3.1 ГГц с помощью калибровочной меры с названием "короткое замыкание". (Калибровочная мера идеально соответствует своему названию.)

Результат калибровочного измерения: -0.81 + 0.59i

Какую из предложенных ниже длин может иметь этот кабель:

- 1) 22.2 cm
- 2) 111.1 см
- 3) 41.4 см
- 4) 154 cm

Дана частотная характеристика модуля коэффициента отражения (см. рисунок 1) от входа цепи согласования (слева) с действительным импедансом R (подключённым справа), причём $\theta_{\Pi} < \frac{\pi}{2}$. (Измерения проведены с помощью генератора с внутренним импедансом 50 Ом).

Рисунок 1 – Частотная характеристика модуля коэффициента отражения

Какой из предложенных на рисунке 2 ситуаций соответствует эта частотная характеристика? Варианты ОТВЕТА: 1) а 2) b 3) с 4) d

Рисунок 2 — Различные реализаци и Γ -образной цепи согласования

Отрезок микрополосковой линии использован для согласования 50-омного генератора с широкополосной нагрузкой R=122 Ом.

Известно, что:

- 1 в полосе, ограниченной частотами $f_{\text{\tiny H}}=3.8$ ГГц и $f_{\text{\tiny B}}=12$ ГГц, модули коэффициента отражения от входа цепи согласования на частотах $f_{\text{\tiny H}}$ и $f_{\text{\tiny B}}$ равны;
- 2 коэффициент отражения на центральной частоте полосы равен 0.23 + j0;
- 3 использован наикратчайший отрезок, удовлетворяющий вышеупомянутым условиям.

Каковы максимальные потери рассогласования в полосе $[f_{\scriptscriptstyle \rm H}, f_{\scriptscriptstyle \rm B}]$?

Варианты ОТВЕТА:

- 1) 1.5 дБ
- 2) 1.1 дБ
- 3) 0.6 дБ
- 4) 0.3 дБ

Реактивная цепь коррекции выполнена с помощью отрезка микрополосковой линии, являющегося полуволновым на частоте $f_{\scriptscriptstyle \rm B}$.

Дано значение коэффициента отражения s_{11} от входа этой цепи коррекции на частоте $f_{\scriptscriptstyle \rm H}=0.76f_{\scriptscriptstyle \rm B}$:

```
s_{11}=0.132-0.135і.
(Значение s_{11} приведено для 50-омной среды).
```

Найти волновое сопротивление микрополосковой линии.

Варианты ОТВЕТА:

- 1) 38 Om
- 2) 74 O_M
- 3) 66 Ом
- 4) 121 O_M

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.2	0.564	156.8	4.666	68.8	0.058	58.1	0.263	-44.1

Выбрать Γ -образный четырёхполюсник (см. рисунок 3), который *не может* обеспечить согласование со стороны плеча 1 на частоте 1.2 $\Gamma\Gamma$ ц при наложении следующих ограничений:

- 1 W_T больше 25 Ом;
- 2 θ_{Π} меньше $\frac{\pi}{2}$.

Рисунок 3 – Различные реализации Г-образного четырёхполюсника

Варианты ОТВЕТА:

1) A 2) B 3) C 4) D

Четыре микрополосковые линии изготовлены на подложке, выполненной из материала RO4003C ($\epsilon=3,55$):

- 1 толщиной 0.203 мм и с волновым сопротивлением 13 Ом;
- 2 толщиной 0.305 мм и с волновым сопротивлением 22 Ом;
- 3 толщиной 0.508 мм и с волновым сопротивлением 47 Ом;
- 4 толщиной 0.406 мм и с волновым сопротивлением 34 Ом.

В каком из случаев ширина микрополосковой линии будет наименьшей?

Варианты ОТВЕТА:

- 1) 1
- 2) 2
- 3) 3
- 4) 4