

SÍLABO Termodinámica

Código	ASUC00887	7	Carácter	Obligatorio	
Prerrequisito	Física 2				
Créditos	4				
Horas	Teóricas	2	Prácticas	4	
Año académico	2025-00				

I. Introducción

Termodinámica es una asignatura obligatoria de facultad, se ubica en el sexto periodo académico de la Escuelas Académico Profesionales de Ingeniería de Minas e Ingeniería Industrial; tiene como prerrequisito la asignatura de Física 2. Con ella, se desarrolla, a nivel intermedio, la competencia transversal de conocimientos de ingeniería. Su relevancia reside en brindar al estudiante un panorama general de la Termodinámica para desarrollar en él la capacidad de reconocer e interpretar sus principios para aplicarlos en un contexto real.

Los contenidos generales que la asignatura desarrolla son los siguientes: Definiciones fundamentales; Energía y la primera ley de la termodinámica; Evaluación de propiedades con consideraciones generales; Evaluación de propiedades utilizando el modelo de gas ideal; Análisis del volumen de control; Segunda ley de la termodinámica; Uso de la entropía; Análisis de la energía; Sistemas de potencia de vapor; Sistemas de potencia de gas. Refrigeración y bombas de calor; Relaciones termodinámicas; Mezclas de gas de ideal; Reacciones de mezclas y combustión.

II. Resultado de aprendizaje de la asignatura

Al finalizar la asignatura, el estudiante será capaz de interpretar los principios de la termodinámica para aplicarlos en problemas reales, considerando las diferentes formas de energía que se presentan en los aparatos y sistemas energéticos más usuales.

III. Organización de los aprendizajes

Definiciones	Duración en horas	24	
Resultado de aprendizaje de la unidad:	Al término la unidad, el estudiante será capaz de termodinámica aplicados en la ingeniería de m definiciones fundamentales de la termodinámico factores de conversión de unidades, propuestos e casos específicos.	inas e Indust 1, de las susta	trial, utilizando
Ejes temáticos	 Definiciones fundamentales y conversión de ur Presión, volumen y temperatura Gases ideales y aire como gas ideal Sustancia pura (vapor de agua y refrigerantes) 		

Energía, p	Unidad 2 rimera, segunda ley de la termodinámica, entropía y la máquina térmica	Duración en horas	24	
Resultado de aprendizaje de la unidad	Al finalizar la unidad, el estudiante será capaz d primera y segunda ley, identificando la entro procesos y sistemas tanto cerrados como abierto precisión y eficiencia en la solución de problemas industria.	pía en difei os, demostro	rentes estados, ando exactitud,	
Ejes temáticos	3. Segunda ley de la termodinamica y la maquina	oiertos a térmica		
	4. Entropía y cambios de entropía en líquidos, sólidos y gases			

Aplicaciones	Duración en horas	24		
	a gas			
Resultado de aprendizaje de la unidad	Al finalizar la unidad, el estudiante será capaz de interpretar el principio de funcionamiento en los ciclos termodinámicos de potencia considerando sus principales componentes y evaluando su eficiencia y potencia.			
	Ciclo Carnot y ciclo Carnot invertido			
Ejes temáticos 2. Ciclo Otto				
	3. Ciclo Diésel			
	4. Ciclo Joule-Brayton (planta térmica con turb	ina a gas)		

-	Unidad 4 es de la termodinámica a los ciclos teóricos e potencia a vapor, refrigeración y mezclas de gas ideal	Duración en horas	24
Resultado de aprendizaj e de la unidad	Al finalizar la unidad el estudiante será capa termodinámicas en los ciclos de potencia a refrigeración y mezcla de gases existentes e internacional y su implicancia en el desarrollo del lineamientos planteados con claridad y criterio.	vapores, a n la indust	sí como en la ria nacional e
Ejes temáticos	 Ciclo Rankine (planta térmica con turbina a vo Refrigeración y bombas de calor Mezclas de gas de ideal 	apor)	

IV. Metodología

Modalidad Presencial

Las actividades se desarrollarán siguiendo una metodología activa centrada en las habilidades de los estudiantes y promoviendo su participación de manera constante. Para el desarrollo de la asignatura, se utilizarán los siguientes métodos:

- Aprendizaje colaborativo
- Aprendizaje experiencial
- Aprendizaje basado en problemas
- Aprendizaje orientado en proyectos
- Aprendizaje basado en retos
- Clase magistral activa
- Flipped classroom
- Otros

Modalidad A Distancia

Las actividades se desarrollarán siguiendo una metodología activa centrada en las habilidades de los estudiantes y promoviendo su participación de manera constante. Para el desarrollo del curso, se utilizarán los siguientes métodos:

- Aprendizaje colaborativo
- Aprendizaje basado en problemas
- Aprendizaje orientado en proyectos
- Clase magistral activa
- Otros

Modalidad Semipresencial - Virtual

Las actividades se desarrollarán siguiendo una metodología activa centrada en las habilidades de los estudiantes y promoviendo su participación de manera constante. Para el desarrollo del curso, se utilizarán los siguientes métodos:

- Aprendizaje colaborativo
- Aprendizaje experiencial
- Aprendizaje orientado en proyectos
- Aprendizaje basado en problemas
- Clase magistral activa
- Otros

V. Evaluación

Modalidad Presencial

Rubros	Unidad por evaluar	Fecha	Entregable / Instrumento	Peso Parcial	Peso total
Evaluación de entrada	Prerrequisit 0	Primera sesión	Evaluación individual teórica / Prueba objetiva	0 9	%
Consolidado 1	1	Semana 3	Evaluación individual escrita teórico-práctica / Prueba de desarrollo	50 %	
	2	Semana 6	Evaluación individual escrita teórico-práctica / Prueba de desarrollo	50 %	20 %
Evaluación parcial EP	1 y 2	Semana 8	Evaluación individual escrita teórico-práctica / Prueba de desarrollo	20	%
Consolidado 2	3	Semana 11	Proyecto grupal / Rúbrica de evaluación	50 %	
C2	4	Semana 14	Proyecto grupal: Evaluación energética aplicando las leyes termodinámicas (solución reto) / Rúbrica de evaluación	50 %	20 %
Evaluación final EF	Todas las unidades	Semana 16	Evaluación individual escrita teórico-práctica / Prueba de desarrollo	40	%
Evaluación sustitutoria*	Todas las unidades	Posterior a la evaluació n final	Aplica		

^{*} Reemplaza la nota más baja obtenida en los rubros anteriores.

Modalidad Semipresencial - Virtual

Rubros	Unidad por evaluar	Fecha	Entregable / Instrumento	Peso total
Evaluación de entrada	Prerrequisito	Primera sesión	Evaluación individual teórica / Prueba objetiva	0 %
Consolidado 1 C1	1	Semana 2	Evaluación individual escrita teórico- práctica / Prueba de desarrollo	20 %
Evaluación parcial EP	1 y 2	Semana 4	Evaluación individual escrita teórico-práctica / Prueba de desarrollo	20 %
Consolidado 2 C2	3	Semana 6	Proyecto grupal / Rúbrica de evaluación	20 %
Evaluación final EF	Todas las unidades	Semana 8	Evaluación individual escrita teórico-práctica / Prueba de desarrollo	40 %
Evaluación sustitutoria*	Todas las unidades	Fecha posterior a evaluación final	Aplica	

^{*} Reemplaza la nota más baja obtenida en los rubros anteriores.

Modalidad A Distancia

Rubros	Unidad por evaluar	Fecha	Entregable / Instrumento	Peso
Evaluación de entrada	Prerrequisito	Primera sesión	Evaluación individual teórica / Prueba objetiva	0 %
Consolidado 1	1	Semana 2	Evaluación individual teórico- práctica de desarrollo en plataforma virtual / Rúbrica de evaluación	20 %
Evaluación parcial EP	1 y 2	Semana 4	Evaluación individual escrita teórica- práctica / Prueba de desarrollo	20 %
Consolidado 2 C2	3	Semana 6	Proyecto grupal / Rúbrica de evaluación	20 %
Evaluación final EF	Todas las unidades	Semana 8	Evaluación individual escrita teórica- práctica / Prueba de desarrollo	40 %
Evaluación sustitutoria	Todas las unidades	Fecha posterior a la evaluación final	Aplica	

^{*} Reemplaza la nota más baja obtenida en los rubros anteriores.

Fórmula para obtener el promedio

$$PF = C1 (20 \%) + EP (20 \%) + C2 (20 \%) + EF (40 \%)$$

VI. Bibliografía

Básica

Cengel, Y., Boles, M. y Kanoglu, M. (2019). Termodinámica (9.ª ed.). McGraw-Hill. https://bit.ly/40WPttk

Complementaria

Burgard, D (1997). Introducción a la Termodinámica (2.º ed.). McGraw-Hill.

Morán, M. J., y Shapiro, H. N. (2004). Termodinámica (2.ª ed.). Reverté.

Pooter, M. C., y Somerton, C. W. (2004). Termodinámica para ingenieros. McGraw-Hill.

VII. Recursos digitales

AeroEnergía (5 de abril 2017). ¿Cómo funciona una turbina de vapor? [Video]. YouTube. https://www.youtube.com/watch?v=w0tRID8uljl

Dirección de Educación Online (9 de julio de 2019). *Ciclo Brayton* [Video]. YouTube. https://www.youtube.com/watch?v=jzezy_Y5Lq8

García, G. F. (12 de agosto 2016). *Introducción a la Termodinámica - Clase 1* [Video]. YouTube. https://www.youtube.com/watch?v=n6d UhOZVUA

- García, G. F. (16 de julio de 2017). Ejercicio 2 Primera Ley Volúmenes de Control Clase Termodinámica [Video]. YouTube. https://www.youtube.com/watch?v=vPzGHTcb2Rw
- García, G. F. (2 de mayo 2017). La Segunda Ley de la Termodinámica Parte 1 (Enunciado Kelvin-
 - Planck) Clase 13 Termodinámica [Video]. YouTube. https://www.youtube.com/watch ?v=rPr-ORyYGr8
- García, G. F. (7 de julio de 2017). Sustancias puras Clase 5 Termodinámica [Video]. YouTube. https://www.youtube.com/watch?v=H-aeNea1Rq8