6. Design of Logic gates using Complementary MOSFET (CMOS)

Course: ECE1008 – Electronic Hardware Troubleshooting LAB

-Dr Richards Joe Stanislaus

Assistant Professor - SENSE

Email: 51749@vitstudent.ac.in

1. MOSFET

- Metal Oxide Semiconductor Field Effect Transistor
- MOSFET is a semiconductor device used for
 - switching purposes
 - Amplification of electronic signals in electronic devices
- Since MOSFETs are available in very small sizes, they are used in integrated circuits.

1. MOSFET

- Four terminal device -> (3 terminal device)
- Source (S)
- Drain (D)
- Gate (G)
- Body (B) which is in connection with source
- Functionality depends on the electrical variations in the channel width along with the flow of carriers (either holes or electrons)
- The charge carriers enter into the channel through the source terminal and exit via the drain.

1. MOSFET

- Width of channel (controlled by voltage at Gate – which is between source and drain)
- Metal oxide layer (extremely thin and insulated)

1.1 MOSFET functionality

- Depletion mode
 - a) No voltage across gate terminal Channel Maximum conductance

b) If gate voltage is positive/negative (based on type)

Channel conductivity decreases

P- Channel

N-Channel

1.1 MOSFET functionality

- Depletion mode
- Enhancement mode

 No voltage across gate: Device does not conduct

 Maximum gate voltage: Device has enhanced conductivity

 FET

2.1 Practical switch characteristics

- ON condition: Power management abilities should be limited (flow of conduction current has to be restricted)
- OFF state: Blocking voltage levels should not be limited
- Turning ON and OFF with finite times restricts limiting speed of device and limits function frequency
- ON: Minimal resistance values (Voltage drop in forward bias)
- OFF: Finite off resistance delivering reverse leakage current
- Loses power in ON and OFF states

2.2 Example of MOSFET as switch

- Enhancement mode and N Channel MOSFET for switch operation
- Positive input voltage -> Gate terminal positive
 - -> Lamp moves to ON condition
- Zero input voltage -> Gate terminal at zero volts
 - -> Device turns OFF

- n-type source and drain
- P-type substrate(body)
- When voltage is applied to gate: Holes in body are driven away from gate
- n-type channel is formed between source and drain

MOSFET Type	Logic Circuit Symbol	A=0 Approximation	A=1 Approximation
NMOS	Gate Source		

MOSFET Type	Logic Circuit Symbol	A=0 Approximation	A=1 Approximation
NMOS	Gate Source	Gate Source	

MOSFET Type	Logic Circuit Symbol	A=0 Approximation	A=1 Approximation
NMOS	Gate A Source	Gate A Source	Drain Gate A

- p-type source and drain
- P-type substrate(body)
- When voltage is applied to gate: (Negative voltage between G and S) Electrons in body are driven away from gate
- p-type channel is formed between source and drain

MOSFET Type	Logic Circuit Symbol	A=0 Approximation	A=1 Approximation
NMOS	Drain Gate A Source	Gate A Source	Drain Gate A Source
PMOS	Source Gate A -d		

MOSFET Type	Logic Circuit Symbol	A=0 Approximation	A=1 Approximation
NMOS	Drain Gate A Source	Gate A Source	Drain Gate A Source
PMOS	Source Gate A -d Drain	Source Gate A—d	

MOSFET Type	Logic Circuit Symbol	A=0 Approximation	A=1 Approximation
NMOS	Drain Gate A Source	Gate A Source	Drain Gate A Source
PMOS	Source Gate A - d Drain	Source Gate A—d	Source Gate A-d Drain

3.3 CMOS

- Complementary Metal Oxide Semiconductor (CMOS) is an integrated circuit technology (process technology)
- Applications: Microprocessors, microcontrollers, static RAM, other digital circuits
- Analog circuits: Image sensors (CMOS sensor), data converters, highly integrated transceivers
- Uses PMOS and NMOS

3.3 CMOS: Advantages

- Both low to high and high to low transitions are fast
- Output signal oscillates the full voltage between low and high rail

Edit-> Label net

ansient AC Analysis DC sv				
Periorina	Hon-illear, i	ime-domain sir	Hulauon.	
		Stop tim	e:	80n
	Time to s	start saving dat	a:	0
	Ma	ximum Timeste	p:	0.1n
Start extern	nal DC suppl	y voltages at 0	V:	
Stop simulatir	ng if steady s	tate is detecte	d: 🗌	
Don't reset T=0 w	hen steady s	tate is detecte	d:	
	Step the load	d current sourc	e: 🗌	
Skip i	nitial operatir	ng point solutio	n: 🔲	
	nitial operatir	ng point solutio	n: 🗌	ion>]]

Note: The source

(connected with body)

Task 1: Implementation of Inverter

PULSE(0 1.2 0 0.5n 0.5n 10n 20n)

Wrong Output:

Does not contain true low Check orientation of PMOS and NMOS in previous slide.

Correct output:

This step is for all logic gates using CMOSP and CMOSN

 CMOS has CMOSN and CMOSP as PMOS and NMOS configuration with an additional option of selecting separate body connection.

- Download the files from <u>https://drive.google.com/drive/folders/1i2rQEH</u> siQ-Fp3v2wIIZP3EiMy_MBpy3l?usp=sharing
- Save all four files in same folder as the simulation file's folder

Task 2: Implementation of Inverter using CMOS

 Once the steps in previous slides are completed, select component and choose the current folder to select CMOSN and CMOSP.

Cancel

OK

Task 2: Implementation of Inverter using CMOS

• Once the steps in previous slides are completed, select component and choose the current folder to select CMOSN and CMOSP.

- Note: in the symbol, Gate contact is close to source. So, you
 may have to rotate and place the CMOSP using CTRL+E and
 CTRL+R.
- Remember to connect Body contact to source.

We need to specify which CMOS configuration we are going to use.

Width 2:1 ratio

- Right click at CMOSP -> select length as 130nm and width as 400nm.
- Right click at CMOSN -> select length as 130nm and width as 200nm.

• •	• •	
Monolithic MOSFET - M2		×
Model Name:	CMOSN	OK
Length(L):	130n	Cancel
Width(W):	200n	
Drain Area(AD):		
Source Area(AS):		
Drain Perimeter(PD):		
Source Perimeter(PS):		
No. Parallel Devices(M):		
CMOSN I=130n w=200n		

Correct output:

• If you get spikes, then you need to check previous slide for setting the length and width of the channel.

With same 2:1 ratio (400nm for CMOSP and 200nm for CMOSN):

• With same 2:1 ratio (400nm for CMOSP and 200nm for CMOSN):

Run and select Vin, Vout, current of source of PMOS.

• Run and select Vin, Vout, current of source of PMOS.

• Run and select Vin, Vout, current of source of PMOS.

Change Width 5.3:1 ratio

- Right click at CMOSP -> select length as 130nm and width as 1600nm.
- Right click at CMOSN -> select length as 130nm and width as 300nm.

For the 5.3:1 ratio

 Two PMOS are in parallel, Two NMOS are in series.
 The whole connection is in series

Adjust the sources V2 and V3 as below:

Right click -> Add plot plane to plot input and output separately

Verify the truth table

Α	В	$Y=\overline{A\cdot B}=\overline{A}+\overline{B}$
0	0	1
0	1	1
1	0	1
1	1	0

• Implement, plot the inputs and output and verify the truth table.

Α	В	$Y = \overline{A + B} = \overline{A} \cdot \overline{B}$
0	0	1
0	1	0
1	0	0
1	1	0

• Implement, plot the inputs and output and verify the truth table.

Important NOTE

 Enter your registration number and Full Name next to

all your circuits and the output plots.

•Keep the background of circuit and plot as white.

LAB record instructions:

For the lab experiment,

- Write the Aim.
- Complete the Software/Hardware components used.
- Obtain the expression for the outputs.
- Place the respective circuits in LT Spice.
- Connect the inputs and outputs. Name them and write the same in the lab copy(inputs and outputs section).
- Use probe in LT spice to plot all possible combinations.
- Write a concluding statement for each circuit.
- Submit the document's soft copy on time in Ims.vit.ac.in when available.

Some sources

- https://www.elprocus.com/mosfet-as-a-switch-circuit-diagram-freecircuits/
- http://electrotopic.com/difference-between-nmos-pmos-and-cmostransistors/
- https://courses.engr.illinois.edu/ece110/sp2021/content/courseNotes/files/?logicAndCMOS
- https://en.wikipedia.org/wiki/PMOS_logic
- https://www.youtube.com/watch?v=qhsleQAAj3g
- https://www.youtube.com/watch?v=Esnx3wd3hJ0

