data needed, and completing a this burden to Department of D 4302. Respondents should be	and reviewing this collection of i Defense, Washington Headquar aware that notwithstanding an	nformation. Send comments regaters Services, Directorate for Infor	arding this burden estimate or an mation Operations and Reports (n shall be subject to any penalty f	y other aspect of this co 0704-0188), 1215 Jeffe	and existing data sources, galleting at in inflammating the billection of information, including suggestions for reducing erson Davis Highway, Suite 1204, Arlington, VA 22202-in a collection of information if it does not display a currently		
1. REPORT DATE (1) xx-11-2011		2. REPORT TYPE Presentation	1200.	3.	DATES COVERED (From - To) Oct 2011 - Nov 2011		
4. TITLE AND SUBT	very and Resiliend	cv Program (WARRF	P)		CONTRACT NUMBER		
Presentation - F	easi̇́bility of Wide-A a Germination-Lysi̇́	rea Decontaminatio	n of Bacillus anthrac	5b.	5b. GRANT NUMBER		
				5c.	PROGRAM ELEMENT NUMBER		
5. AUTHOR(S) Kane, Staci				5d.	PROJECT NUMBER		
Campbell, Chris					TASK NUMBER		
				5f. '	WORK UNIT NUMBER		
6. PERFORMING O Lawrence Live PO Box 808, I Livermore, CA	ermore National La 627	S) AND ADDRESS(ES) boratory		l N	PERFORMING ORGANIZATION REPORT NUMBER LLNL-PRES-508394		
SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS Lori Miller Department of Homeland Security			(ES)		D. SPONSOR/MONITOR'S ACRONYM(S) DHS		
Washington, D	echnology Directora C 20538	11. SPONSOR/MONITOR'S REPORT NUMBER(S) 3.2.1		NUMBER(S)			
Dist A: 13. SUPPLEMENTAR' This is a work of the Ui		nt and therefore is not cop	oyrighted The WARRP	Program is a join	t effort of DOE, DoD, EPA, HHS, and DHS.		
14. ABSTRACT							
his presentation co					urrent solutions, the Germinationd challenges and possible solutions.		
15. SUBJECT TERMS WARRP. Bacillus	anthracis. Anthrax	Germination-Lysis,	Wide-area Deconta	mination			
			17. LIMITATION				
	6. SECURITY CLASSIFICATION OF:			18. NUMBER OF PAGES 21	19a. NAME OF RESPONSIBLE PERSON Peggy West		
a. REPORT U	b. ABSTRACT U	c. THIS PAGE U	υυ	<u> </u>	19b. TELEPHONE NUMBER (include area code) (619) 553-6899		

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Feasibility of Wide-Area Decontamination of Bacillus Anthracis Spores Using a Germination-Lysis Approach

2011 CBD S&T Conference

November 16, 2011

Staci Kane and Chris G. Campbell*
Lawrence Livermore National Laboratory

LLNL-PRES-508394

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Talk Outline

- Background & Problem: Spore Resistance to Decontamination
- Current Solutions
- Germination-Lysis Approach
- Proof of Concept
- Germination Rate –Timing
- Relative Cost
- Potential for Scale-up
- Challenges and Possible Solutions

Few Options Exist for Wide-Area Outdoor Decontamination of B. anthracis Spores

Gruinard Island5% formaldehyde

- Sverdlosk Release
 UNKNOWN: but washing,
 chloramines, soil disposal
 believed to have been used
- Danbury, Connecticut
 nonporous surfaces treated
 with ~0.5-0.6% pH amended bleach

Sources:

Meselson et al., 1994, EPA, 2007 http://petra.wijnsema. nl/pictures/train_trip. htm http://yosemite.epa.q ov/opa/admpress.nsf/ names/ro1 2007-12-12_danbury http://www.thesahara .info/medical/anthrax _gruinard_island.jpg http://news.bbc.co.uk /olmedia/1455000/ima ges/_1457035_gruinar d island 150map.gif

Manchee et a l., 1994,

EPA Testing on Outdoor Materials Provide Options for Hard Nonporous Surfaces

Disinfectant	>6 Log Reduction on Materials (EPA, 2010a,b; Wood et al., 2011)	Target Disinfectant Concentration (ppm)	OSHA PEL (ppm)	CDC IDLH (ppm)
pH-amended bleach (sodium hypochlorite)	Stainless Steel, Glass, Aluminum, Porcelain, Granite, Concrete, Brick, Butyl Rubber	6000	1	30
Hydrogen peroxide /peroxyacetic acid (Peridox, Spor-Klenz, Oxonia)	Stainless Steel, Glass, Aluminum, Porcelain, Granite, Brick, Treated Wood, Butyl Rubber, Galvanized Metal	Various formulations	10	75
Aqueous chlorine dioxide (ClO ₂) (DioxiGard, SanDes)	Galvanized Metal, Glass	500	0.1	5
Hydrogen peroxide and other agents (Decon Green)	Stainless Steel, Glass, Aluminum, Porcelain, Granite, Brick, Butyl Rubber	35,000	1	75
Sodium dichloroisocyanurate (CASCAD)	Stainless Steel, Glass, Aluminum, Porcelain, Granite, Concrete, Brick, Asphalt, Treated Wood, Butyl Rubber	Per formulation	NA	NA

Challenges for Outdoor Decontamination of **B.** anthracis Spores

- High disinfectant concentrations increase operational costs and risk to human health during application
- Disinfectants are corrosive, damaging to surfaces/materials
- Disinfectants may be consumed in organic/chemical backgrounds in the environment
- Decontamination activities could promote spore transport in liquid or air phase (reaerosolization), or via fomites
- No disinfectants have been demonstrated to be effective in soils or on vegetation
- Disinfectants pose long-term human health and environmental impacts

The Germination-Lysis Approach

At acceptable environmental conditions and on appropriate surfaces, spores are germinated and then disinfected. Germinated spores and vegetative cells are more susceptible to simple disinfection methods, including UV exposure and desiccation.

- Option 1: Apply germinant and wait 15 to 30 min and then apply disinfectant solution (or demonstrate natural attenuation).
- Option 2: Apply germinant with a time released disinfectant solution (if feasibility is demonstrated).

Proof of Concept: Low cost, readily available materials may be effective

- Percent spore germination determined by heat treatment relative to the total population (cells and spores) from plate culture analysis (starting with ~10⁴ spores/mL).
- Filtered, fat-free chicken broth was diluted in phosphate-buffered saline.
- Time o represents 10-15 min exposure before analysis could be conducted.

Germination kinetics relative to **decontamination** kinetics

- Chicken Broth 15 to 30 min germination
- L-Alanine/inosine 15 to 30 min germination
- Casamino acids/inosine and Proteose Peptone/inosine 30 min germination
- Typical decontamination contact times vary between 30 to 120 min (pH amended bleach, Hydrogen peroxide /peroxyacetic acid, etc..)

Our preliminary data in solution indicate that germination can occur on time scales relevant for wide-area decontamination activities

B. anthracis Sterne spores showed rapid germination with dilute chicken broth

- Rapid germination immediately after broth addition (relative to control, phosphate-buffered saline, PBS)
 - 1X 93% germination
 - o.5X 78% germination
- 100% germination at 30 min with
 0.2X, 0.5X and 1X broth
- Average of 3 replicates shown
- Determined by direct plating for cells and spores
- Determined by heat treatment (65°C for 20 min) for spores
- Broth was filter-sterilized and pH adjusted (pH = 7.4)

Dilute media components showed rapid spore germination

- Nearly 100% germination at 30 min with 20 μM casamino acids/100 μM inosine
- Determined by direct plating for cells and spores
- Determined by heat treatment (65°C for 20 min) for spores

Summary: B. anthracis Sterne spores treated with simple germinant solutions

- Chicken Broth and L-alanine/inosine effective in first 15 min (time to process samples) for low spore levels (10²-10³)
- Casamino acids/inosine and Proteose Peptone/inosine effective in ~30 min
 - Casamino acids: 2% free Alanine; Proteose Peptone: 0.5% free Alanine;
 Inosine concentration not known

Subsequent addition of another germinant may enhance germination

- 10⁶ B. anthracis Sterne spores; 1X filtered, fat-free chicken broth (CB)
- Addition of alanine/inosine/NH₄Cl (AIN) to spores in CB or addition of CB to spores in AIN showed higher percent germination
- Need to compare with addition of same germinant
- Results for 30°C and 25°C were consistent; > 4 log germination

B. anthracis cells treated with lysis materials

- 30% and 70% ethanol showed disinfection within 15 min
- 5% pH-adjusted bleach was effective within 15 min (100% lysis)
- 3% H₂O₂ was effective after 30 min (100% lysis)
- Salt up to 30% was only partially effective at cell lysis
- 5% acetic acid (vinegar) was ineffective
- Analysis of natural degradation (UV exposure, desiccation) is ongoing

Challenges to Germination-Lysis Decon

- Levels of germinants and disinfectants needed
- Materials may be consumed in organic/chemical backgrounds in the environment
- Maintenance of optimal environmental conditions for activity
- Kinetics of processes may be too slow relative to maintaining optimal conditions
- Impact of nutrient source on indigenous populations (fouling)
- Spore transport (liquid or air phase)
- Superdormancy or incomplete germination (challenge for higher spore densities)
- Incomplete lysis—propagation of pathogen cells/spores
- Need to confirm that surrogate (Sterne) responds like virulent
 B. anthracis

Relative Cost

- Chicken broth estimated material cost = \$5 to \$11 per gallon germination solution (0.5x), (\$2 to \$5 at 0.2x solution)
- Casamino acids estimated material cost = \$0.06 per gallon germination solution
- Alanine/Inosine estimated material cost = \$0.05 per gallon germination solution
- Clorox bleach estimated material cost = \$0.4 to \$0.9 per gallon decontaminant solution

Potential Required Decontaminant Volumes

Conservative estimates for a 30-min contact time:

- Impervious surfaces (e.g., glass or plastic) = 1,400 gal/ac.
- Concrete = 3,500 gal/ac (assuming 10% porosity) and 0.25-in material penetration depth.
- Asphalt = 4,200 gal/ac (assuming 20% porosity) and 0.25-in.
 material penetration depth.
- Soils (NRCS Hydrologic Group C and NRCS Hydrologic Group A) = 4,800 to 83,600 gal/ac.

Potential for Scale-up

Type of application equipment	Volume capacity (gal)	Reported liquid application rate (gpm)	Apparatus cost ^b (\$)					
Plot scale—limited or personnel decontamination (<0.5 acre) ^c								
Backpack sprayers								
Portable sprayers (on dolly or								
rollers)	2 to 50	<10	≤10K					
Mesoscale—small structures or roads (0.5 to 5 acres)								
Skid-mounted spray systems								
Horizontal boom sprayers								
Tree sprayers	100 to 3,200							
Vertical boom sprayers	(modular)	<100	10K to ≥100K					
Large-scale—large buildings, ports, or parking lots (5 to 50 acres)								
		1,000 to 1,500						
		trucks and hydrants						
		up to 20,000						
Fire trucks, fire boats, and		fire boats (total)						
hydrants		74 to 695						
Agricultural sprinklers	120 to 2,000	sprinkler heads						
Small aircraft		(aircraft not available)	10K to 100K					
Wide-area—large, uniform areas (not applicable to high-permeability soils) (>50 acres)								
Larger aircraft (C-130 or DC-10)								
Super tanker aircraft (747)	3,000 to 20,000	Not available	50K to ≥100K					

^a Data from DHS (2007); Cal Fire (2010); Hsu (2006); company websites; and customer sales representatives.

^b Approximate cost for equipment purchase or rental does not include staffing, reagents, or other deployment costs.

Agricultural and Other Spray Technologies

- Liquid application rates: 10⁻³ to 1 L/m²
- Deposition layers: 1 to 10³ μm
- Work rates: 3 to 600 ha/hr
- Droplet size (diameter): 10 to 10³ μm
- Droplet velocities: 10⁻¹ to 10¹ m/s

Opportunities & Possible Solutions

- Synergistic reactions to multiple germinants (e.g., Yi et al., 2011 J. Bacteriol. 193:4664)
- Novel lytic proteins for B. anthracis—1) germination specific lytic enzymes and 2) endolysins for vegetative cells (Dr. Paul Jackson & collaborators at LLNL)
- Possible combined germinant and lytic agent applications (Dr. Paul Jackson & collaborators at LLNL)
- Advanced agricultural spray technologies (Dr. Ken Giles, UC Davis)
- Work with collaborators in the LLNL Select Agent Facility for testing with virulent B. anthracis to confirm surrogate results
- Increased understanding of spore germination will enhance our ability to optimize the germination-lysis process

Collaboration

LLNL colleagues:

- Dr. Paul Jackson, Dr. Matt Coleman (enzyme-based decon approaches, experimental systems for testing)
- Dr. Joe Tringe (engineering and spray technology for other applications)
- Partner with UC-Davis colleagues for dissemination technology
 - Dr. Ken Giles
 Optimization of germinant and disinfectant application (formulation and delivery parameters)
- Partner with US EPA National Homeland Security Research Center (NHSRC):
 - Dr. Worth Calfee, Dr. Shawn Ryan
 Experimental design and data analysis of microcosm studies and EPA chamber studies

Acknowledgments

- Feliza Bourguet, Jessica Wollard, Gloria Murphy, Teneile Alfaro (LLNL)
- DHS Wide Area Recovery and Resiliency Program (WARRP) and Interagency Biological Restoration Demonstration (IBRD)
 - Chris Russell & Lance Brooks

