

# **ПРИМЕР 6.** $R \subseteq A^2$ , $A = \{1,2,3,4\}$ , $R = \{(1,1), (1,2), (2,2), (2,3), (2,4)\}$

# Рефлексивность

• Высказывание  $(x,x) \in R$  для всех  $x \in A$  ложно. Контрпример:  $x=3, 3 \in A$ , но  $(3,3) \notin R$ . Следовательно, отношение R не является рефлексивным.

### Иррефлексивность

• Высказывание  $(x,x) \notin R$  для всех  $x \in A$  ложно. Контрпример: x=1, но  $(1,1)\in R$ . Следовательно, отношение R не является ирррефлексивным.

# Симметричность

• Высказывание если  $(x,y) \in R => (y,x) \in R$  ложно. Контрпример:  $(1,2) \in R$ , но  $(2,1) \notin R$ . Следовательно, отношение R не является симметричным.

### Антисимметричность

• Высказывание если  $(x,y) \in R$   $u(y,x) \in R => x = y$  истинно. Контрпример подобрать невозможно. Нет подходящих пар. Следовательно отношение R является антисимметричным.

### Транзитивность

• Высказывание если  $(x,y) \in R$   $u(y,z) \in R => (x,z) \in R$  ложно. Контрпример: пары  $(1,2),(2,3) \in R$ , но пара  $(1,3) \notin R$ . Следовательно отношение R не является транзитивным.

#### Отношение эквивалентности

Отношение  $R \subseteq M^2$  называется *отношением эквивалентности* (или просто эквивалентностью) на множестве M, если оно рефлексивно, симметрично и транзитивно.

**Пример:** Пусть  $R \subseteq N^2$ ,  $R = \{(x,y) | (x-y)/2 - целое число\}$ . Доказать, что R есть эквивалентность на множестве N.

**Решение**: Если R есть эквивалентность на N, то R должно быть **рефлексивно**, симметрично и транзитивно. Проверим это:

**1**. Если отношение рефлексивно, то  $[(\forall x \in N) xRx]$ 

$$xRx$$
  $\implies (x-x)/2 = 0$  - целое число  $\implies R$  – рефлексивно

2. Если отношение симметрично, то  $[xRy \rightarrow yRx]$ 

$$xRy$$
  $\Rightarrow$   $(x-y)/2 = k, k \in \mathbb{Z}$   $\Rightarrow$   $(y-x)/2 = -k$  - целое число  $\Rightarrow$   $yRx$   $R$  – симметрично

R – транзитивно

3. Если отношение транзитивно, то  $[xRy \land yRz \rightarrow xRz]$ 

$$xRy$$
  $\Rightarrow$   $(x-y)/2 = k, k \in \mathbb{Z}$   $\Rightarrow$   $(x-z)/2 = k + n$  - целое число  $\Rightarrow$   $xRz$   $\Rightarrow$   $(y-z)/2 = n, n \in \mathbb{Z}$   $\Rightarrow$   $(y-z)/2 = n, n \in \mathbb{Z}$ 

Пусть М – произвольное множество. Семейство Р непустых, попарно непересекающихся подмножеств называется разбиением множества М, если их объединение образует множество М.

Другими словами: семейство P есть разбиение множества M, если каждый элемент множества M принадлежит точно одному подмножеству из P.

Пример: 
$$\mathbf{M} = \{1, 2, 3, 4, 5, 6\}$$
.  $\mathbf{P} = \{P_1, P_2, P_3\}$  – есть разбиение  $\mathbf{M}$  на 3 части.  $P_1 = \{1, 3, 5\}, P_2 = \{2\}, P_3 = \{4, 6\}$ 

Пусть P есть разбиение множества M. Определим отношение  $R \subseteq M^2$  следующим образом:

 $xRy \Leftrightarrow x$  и y принадлежат одной части разбиения



$$(x,z) \in R \quad (x,y) \notin R$$

Очевидно, что *R* есть эквивалентность на *M*.

**Теорема** ( о факторизации). Пусть R есть эквивалентность на множестве M. Тогда существует такое разбиение P множества M, что элементы x и y находятся в отношении R тогда и только тогда, когда они принадлежат одной части разбиения P.

#### Доказательство:

1. Построим семейство Р подмножеств множества М следующим образом

Для каждого элемента 
$$x \in M$$
 положим  $P(x) = \{y | xRy\}$   $P = \{P(x) | x \in M\}$ 

Замечание: может быть  $x \neq y$ , но P(x) = P(y)

Например, пусть R – есть эквивалентность, представленная графом



Тогда: 
$$P(a) = P(b) = P(c) = \{a, b, c\}$$

$$P(d) = \{d\}$$

$$P(e) = P(f) = \{e, f\}$$

$$P = \{\{a, b, c\}, \{d\}, \{e, f\}\}\$$

2. Покажем, что Р есть разбиение множества М.

$$P = \{P(x) | x \in M\}$$

1) 
$$R$$
 - рефлексивно  $\Rightarrow$   $(\forall x \in M) xRx$   $P(x) = \{y | xRy\}$   $\Rightarrow$   $(\forall x \in M) x \in P(x)$ 

То есть каждый элемент  $x \in M$  содержится в хотя бы в одном подмножестве P, т.е. в объединение подмножеств из P войдут все элементы множества.

$$\bigcup_{x\in M}P(x)=M$$

2) Покажем теперь, что если части разбиения  $P(x) \neq P(y)$ , то они не пересекаются.

Пусть 
$$P(x) \cap P(y) \neq \emptyset \Longrightarrow \exists z : z \in P(x) \cap P(y) \Longrightarrow \begin{cases} z \in P(x) \\ z \in P(y) \end{cases} \Longrightarrow \begin{cases} xRz \\ yRz \end{cases} \Longrightarrow xRy$$

Рассмотрим теперь произвольный элемент  $h \in M$ 

$$h \in P(x) \implies xRh \ u \ xRy \implies hRy \implies h \in P(y)$$
  
 $h \in P(y) \implies yRh \ u \ xRy \implies hRx \implies h \in P(x)$ 

Таким образом мы доказали, что если части разбиения пересекаются, то они совпадают. Следовательно, если части разбиения не совпадают, то они не пересекаются.

**3.** Осталось доказать, что  $xRy \iff x$  и y принадлежат одной части разбиения P.

$$P(x) = \{y | xRy\}$$

Если 
$$xRy$$
, то  $y \in P(x)$ , но  $x \in P(x)$   $\qquad \qquad x, y \in P(x)$ 

И наоборот, если 
$$x \in P(z)$$
 для некоторого  $z$   $\Rightarrow$   $xRz$   $yRz$   $y \in P(z)$ 

Таким образом отношение эквивалентности R разбивает все множество M на части таким образом, что любые два элемента одной части находятся в отношении R, а любые два элемента разных частей не находятся в отношении R.

Эти части разбиения называются классами эквивалентности.

**Классом эквивалентности** элемента  $x \in M$  по эквивалентности R называется множество  $[x]_R = \{y | (x,y) \in R\}.$ 

Семейство классов эквивалентности называется  $\phi$ актор множеством M по R и обозначается M/R

#### Классы эквивалентности

**Пример:** Пусть  $R \subseteq N^2$ ,  $R = \{(x,y)| (x-y)/2 - целое число\}$ . Найти фактор множество.

**Решение:**  $[x]_R = \{y | (x,y) \in R\}$ 

Найдем классы эквивалентности каждого элемента множества  $N = \{1, 2, 3, ...\}$  по заданному отношению

Для элемента «1»: 
$$[1]=\{y|(1,y)\in R\}=\{y|\frac{1-y}{2}-\text{целое число}\}=\{1,3,5,7,\ldots\}$$
Для элемента «2»:  $[2]=\{y|(2,y)\in R\}=\{y|\frac{2-y}{2}-\text{целое число}\}=\{2,4,6,8,\ldots\}$ 
Фактор множество  $N/R=\{[1],[2]\}$ 

### Таким образом:

- 1. Отношение эквивалентности разбивает все множество натуральных чисел на два непустых непересекающихся подмножества.
- 2. Элементы одного класса находятся в отношении R друг с другом, элементы разных классов не находятся в отношении R друг с другом.

### ОТНОШЕНИЕ ПОРЯДКА

Отношение  $R \subseteq M^2$  называется *отношением частичного порядка*, если оно *рефлексивно*, антисимметрично и транзитивно.

При этом само множество M называется *частично упорядоченным* по отношению R.

Если R — (частичный) порядок на M, то запись xRy читается как «элемент x предшествует элементу y».

**Пример:** Пусть отношение R задано на множестве  $\mathbf{N}$  следующим образом  $R = \{(a,b) \mid b/a$  — целое число $\}$ . Покажем, что  $\mathbf{R}$  — есть частичный порядок на  $\mathbf{N}$ .

**Решение:** Проверим, что R – рефлексивно, антисимметрично и транзитивно.

**1**. 
$$[(\forall a \in N) \ aRa] \iff a / a$$
 - целое число  $\implies R$  - рефлексивно

2. 
$$[(aRb \bowtie bRa) \rightarrow a = b]$$
  $\Longrightarrow$   $b/a = k, k \in Z$   $\Longrightarrow$   $a = b$   $\Longrightarrow$   $R - антисимметрично$ 

Почему частичный? Не все пары элементов *не все элементы сравнимы по* заданному отношению. Например, пара  $(2,4) \in R$ , пара  $(2,5) \notin R$ . Говорят, что элементы 2 и 5 несравнимы по данному отношению.

# ОТНОШЕНИЕ ПОРЯДКА

Отношение R называется строгим порядком, если оно иррефлексивно, антисимметрично и транзитивно.

Частичный порядок называется линейным, если любые два элемента множества сравнимы по данному отношению. Множество, вместе с установленным на нем линейным порядком называется линейно упорядоченным.

**Пример:** Пусть отношение R задано на множестве N следующим образом  $R = \{(a,b) \mid a \le b\}$ . Такой порядок называют *естеемвенным*. Покажем, что R – линейный порядок на N.

**Решение:** Проверим, что R – рефлексивно, антисимметрично и транзитивно.

1. 
$$[(\forall a \in N) \ aRa]$$

**1**. 
$$[(\forall a \in N) \ aRa] \iff a \leq a$$
 - истинно  $\implies R$  – рефлексивно







3. 
$$[aRb \land bRc \rightarrow aRc] \iff a \leq b \ u \ b \leq c \implies a \leq c \implies R - mpaнзитивно$$







Следовательно R – есть частичный порядок на N.

Любые 2 натуральных числа можно сравнить по данному отношению



Естественный порядок на множестве натуральных чисел является линейным.

### Непосредственное предшествование

Пусть (A, R) – упорядоченное множество, xRy и  $x \neq y$ .

Говорят, что элемент x непосредственно предшествует элементу y, если не существует такого элемента z, отличного от элементов x и y, что xRz и zRy.

Отношение непосредственного предшествования для отношения R будем обозначать  $R^*$ 

### Примеры:

- 1) В множестве ( $\mathbb{Z}$ ,  $\leq$ ) каждому элементу  $z \in Z$  непосредственно предшествует элемент z-1.
- 2) В множестве ( $\mathbb{R}$ ,  $\leq$ ) ни один элемент не имеет непосредственно предшествующего элемента, т.е.  $R^* = \emptyset$ .

### Непосредственное предшествование

Пусть R — есть порядок на множестве A и xRy. Последовательность элементов  $z_1, z_2, ..., z_n$  множества A, где  $z_1 = x, z_n = y$ , и  $z_k R z_{k+1}$  (k = 1, 2, ..., n-1), называется цепочкой между x и y.

**Теорема** ( о конечных упорядоченных множествах). Пусть (A, R) – конечное упорядоченное множество, x и y – различные элементы множества A, и xRy. Существует цепочка  $z_1, z_2, \ldots, z_n$  между элементами x и y в которой  $z_k R^* z_{k+1}$  для каждого  $k=1,2,\ldots,n-1$ .

#### Доказательство:

Среди всех цепочек между элементами x и y выберем цепочку наибольшей длины. Пусть это будет цепочка  $z_1, z_2, ..., z_n$ . Эта цепочка удовлетворяет условиям теоремы: каждый ее элемент цепочки, кроме  $z_n$ , непосредственно предшествует следующему элементу, т.е.  $z_k R^* z_{k+1}$ .

Действительно, если это не так, то между элементами  $z_k$  и  $z_{k+1}$  найдется промежуточный элемент u, такой что  $z_k R u$  и  $uRz_{k+1}$ . Но в этом случае мы получим более длинную цепочку:  $z_1, z_2, \dots z_k, u, z_{k+1}, z_n$  между x и y.

# ДИАГРАММЫ ХАССЕ

Граф отношения  $R^*$  называют диаграммой Хассэ упорядоченного множества (A, R).

Диаграмма Хассэ дает полное описание множества, вместе с заданным на нем порядком. Обычно на диаграмме предшествующая вершина изображается ниже последующей. Поэтому связь между вершинами на диаграмме изображаются линиями, а не стрелками.

**Пример**: Пусть  $M = \{2,3,4,6,7,9,12\}$ ,  $R = \{(a,b)/b/a -$  *целое число*,  $a,b \in M\}$ .

