Welcome to DAATE

We are team of passionate data scientists working to provide greater transparency into the US criminal justice system

Defense Attorney Advisory Tool for Equity (DAATE)

Jackie Nichols, Hao Wu, Robert Ling, Song Park

DAATE - Welcome

TEAM

Our Hardworking Team

The team that created DAATE

Jackie Nichols

Robert Ling

Data Engineer

Song Park
Data Scientist

Hao Wu Data Scientis

DAATE Mission Statement

Our Mission

To empower legal professionals to realize fairness and equity for their clients by providing transparency into sentencing in the US criminal justice system using data science techniques.

Why DAATE?

Our MVP goal is to provide greater transparency into sentencing of Black and White Americans in the United States (US) criminal justice system, through simple yet impactful analytics beginning first with the Florida Department of Corrections (DOC). In addition to analytics, the DAATE MVP provides statistical guidelines for evidence of sentencing bias through exploring causality, as well as providing easily interpretable, statistical model-based sentence time predictions.

DAATE is intended to be an advisory tool for defense attorneys to gain additional insight about potential inequity in sentencing, and to aid in the attorneys case preparation to represent and to seek fair and equal treatment for their client.

Incarcerations

Approximately **five times more Black Americans are being incarcerated** than that of White Americans

Sentencing

Recent research suggests that **Black Americans receive as much as 19.1% longer sentences** than White American offenders

DAATE Potential Impact

DAATE DEMO

MVP Goals

- Show simple yet impactful analytics for all the data
- Provide statistical guideline for evidence of disparity beyond analytics (causal model)
- Provide easily interpretable, statistical modelbased sentence time predictions (predictive model)

Applying User Feedback

- Importance of including judge-level model results
- Including p-values and statistical jargon for transparency
- Allowing detailed visibility into each judge's sentence history

DAATE Data Overview

- Sentencing data from the Florida Department of Corrections
 - 2004-2016
 - Publicly available data
- 1.35m rows originally \rightarrow 1.23m rows after EDA (detecting unusual data) and identifying outliers
 - Removed 9.34% of data
 - Outliers in total points and sentence time
- Important factors for modeling:
 - Imbalanced data (race, gender, sentencing points)
 - Potential human error in manually entered data

Distribution of Total Points: Before vs After Removing Outliers

DAATE MVP Architecture v.01

DAATE Predictive Model Architecture

DAATE Predictive Model Results

Difference sentencing days Model vs Historical Averages

					_
Black Defendant	22-44	44-54	104-114	114-124	194-204
20	-3	-26	-241	-433	-849
40	14	-9	-224	-417	-833
60	23	0	-215	-408	-824
80	30	6	-208	-401	-817
White Defendant	22-44	44-54	104-114	114-124	194-204
20	-22	-26	-51	43	-1506
40	-5	-9	-34	104	-1489
60	4	0	-25	113	-1480
80	11	7	-18	120	-1474
					$\overline{}$

Accuracy was a goal rather than interpretability: RMSE ~300.

Overprediction

 Errors: Overprediction at low end of point ranges with significant underprediction at high end of point ranges. Reasons: different effect of point ranges on sentencing, use age for analytics & OVB

Underprediction

- Pre-rendered predictions worked well with Tableau. Challenge was many misspellings of Judge Names (fixed by fuzzy matching & sanity checks)
- Implement the front-end with Streamlit & serve predictions via API

DAATE BDDE Model Architecture

DAATE BDDE Model Results

- IBM pre-trained model on Miami data. We included this as a POC of how other models fit into architecture.
- Results didn't match our predictive model: Reasons included possession quantity as additional variable, lack of age variable
- A small and tidy table of results were generated. Documentation wasn't clear for example 6,7 were the only amounts and units were unspecified
- Retrain the model on our datasets to ensure consistent results

DAATE Causal Model Architecture

DAATE Causal Model Approach

DAATE Causal Model Evaluation

Stableness of the Estimator

Unbiasedness of Estimator

Practical Interpretation & Explainability

Easy to understand input metrics

Gender, Age Total Points

Distance based clustering

Sentencing Difference as Outcome

 With estimated lower bound and upper bound for interpretation

DAATE Causal Model Results

- Vertical "0" line reference for evidence for disparity
- Range of "colored box" estimated interval for disparity"
- Color codes" Indicator for statistical significance

Evaluation of the Results

- Stats test result vs Observation
- SME feedback
- Usability of confidence interval provided
- Visualization
 Interpretability

Error Adjustment

- Multiple comparison adjustment
- Multiple random sampling and average statistics

Below are links to additional infrmation on the data & methodology DAATE uses.

For more information on the data: Click here

For more information on the bias detection & predicted sentence time methodology: Click

DAATE MVP Takeaway and Learnings

Little to no examples of detecting disparity through the use DS

Novel Approach

Many external factors to consider

1.3M rows, 290 columns, 638 crime types

Data Complexity

No Data Dictionary

Legal Terms

Viable UX

DAATE Roadmap and Recommendations

DAATE Summary

Our Mission

To empower legal professionals to realize fairness and equity for their clients by providing transparency into sentencing in the US criminal justice system using data science techniques.

Why DAATE?

Our MVP goal is to provide greater transparency into sentencing of Black and White Americans in the United States (US) criminal justice system, through simple yet impactful analytics beginning first with the Florida Department of Corrections (DOC). In addition to analytics, the DAATE MVP provides statistical guidelines for evidence of sentencing bias through exploring causality, as well as providing easily interpretable, statistical model-based sentence time predictions.

DAATE is intended to be an advisory tool for defense attorneys to gain additional insight about potential inequity in sentencing, and to aid in the attorneys case preparation to represent and to seek fair and equal treatment for their client.

Incarcerations

Approximately **five times more Black Americans are being incarcerated** than that of White Americans

Sentencing

Recent research suggests that **Black Americans receive as much as 19.1% longer sentences** than White American offenders

DAATE Acknowledgements

THANK YOU!

Do you have any questions?

mspuckit1@berkeley.edu robling@berkeley.edu hwu24@berkeley.edu song.park@berkeley.edu