2 La droite dans le plan métrique

On supposera, dès ce chapitre, que les bases et les repères sont orthonormés. On pourra ainsi utiliser la norme et le produit scalaire.

Perpendicularité

2.1 Montrer que le vecteur $\vec{n} = \begin{pmatrix} a \\ b \end{pmatrix}$ est perpendiculaire à la droite d d'équation ax + by + c = 0.

Choisir un vecteur directeur de la droite d et utiliser le produit scalaire.

Remarques

- 1) Toute droite perpendiculaire au vecteur $\vec{n} = \begin{pmatrix} a \\ b \end{pmatrix}$ peut donc s'écrire sous la forme ax + by + c = 0.
- 2) Le vecteur $\vec{n} = \begin{pmatrix} a \\ b \end{pmatrix}$ s'appelle un **vecteur normal** à la droite d.
- Montrer que deux droites non verticales d_1 et d_2 , de pentes respectives m_1 et m_2 , sont perpendiculaires si et seulement si le produit de leur pente vaut -1:

$$d_1 \perp d_2 \iff m_1 \, m_2 = -1$$

Les vecteurs $\vec{d_1} = \begin{pmatrix} 1 \\ m_1 \end{pmatrix}$ et $\vec{d_2} = \begin{pmatrix} 1 \\ m_2 \end{pmatrix}$ constituent respectivement des vecteurs directeurs des droites d_1 et d_2 .

- **2.3** Déterminer l'équation cartésienne de la droite :
 - 1) de vecteur normal $\vec{n} = \begin{pmatrix} 5 \\ 2 \end{pmatrix}$ et qui passe par le point (-2; -4);
 - 2) perpendiculaire à la droite d'équation 4x + y 3 = 0 et qui passe par le point (-3; 5);
 - 3) perpendiculaire au segment AB, avec A(-5;2) et B(6;-1), et qui passe par le point (-1;-2);
 - 4) perpendiculaire à la droite d'équation 3y = 1 et qui passe par le point (2; -3).
- 2.4 Déterminer l'équation de la médiatrice d'un segment AB, si l'on donne A(2; -3) et B(-5; -2).
- 2.5 Déterminer les coordonnées de la projection du point A(2;6) sur la droite -2x+3y=1.
- 2.6 Déterminer les coordonnées de l'image du point A(7;3) par la symétrie d'axe 3x + 5y 2 = 0.

- 2.7 On donne les équations de deux côtés d'un rectangle -2x + y 11 = 0 et 2x y = -1, ainsi que l'équation de l'une de ses diagonales y = 3. Trouver les sommets du rectangle.
- 2.8 Déterminer les équations des côtés d'un triangle ABC connaissant C(4;-1) ainsi que les équations de la hauteur $(h_A): 2x = 3y 12$ et de la médiane $(g_A): 2x + 3y = 0$ issues du sommet A.
- 2.9 On donne un sommet A(6;12) d'un triangle ainsi que deux de ses hauteurs $(h_{\rm B}): 2\,x + 7\,y 65 = 0$ et $(h_{\rm C}): 2\,x 5\,y + 17 = 0$. Calculer les coordonnées des deux autres sommets.

Angle de deux droites

- 2.10 On appelle angle directeur d'une droite d tout angle entre $\vec{e_1}$ et un vecteur directeur \vec{d} de d.
 - 1) Soit une droite d de pente m et d'angle directeur α . Quel lien y a-t-il entre m et α ?
 - 2) Soient deux droites d_1 et d_2 de pentes respectives m_1 et m_2 et d'angles directeurs respectifs α_1 et α_2 . Montrer que l'angle orienté φ entre les droites d_1 et d_2 est donné par

$$\tan(\varphi) = \frac{m_2 - m_1}{1 + m_1 m_2}$$

Utiliser la formule démontrée en 1^{re} année à l'exercice 16.13: $\tan(\alpha - \beta) = \frac{\tan(\alpha) - \tan(\beta)}{1 + \tan(\alpha) \tan(\beta)}$

Remarques

- 1) Cette formule ne s'applique pas si l'une des droites est verticale ou si les droites d_1 et d_2 sont perpendiculaires (on a alors $1 + m_1 m_2 = 0$).
- 2) Le produit scalaire permet de déterminer l'angle φ entre les droites d_1 et d_2 à partir de leurs vecteurs directeurs respectifs $\vec{d_1}$ et $\vec{d_2}$ ou à partir de leurs vecteurs normaux respectifs $\vec{n_1}$ et $\vec{n_2}$:

$$\cos(\varphi) = \frac{\vec{d_1} \cdot \vec{d_2}}{\|\vec{d_1}\| \|\vec{d_2}\|} = \frac{\vec{n_1} \cdot \vec{n_2}}{\|\vec{n_1}\| \|\vec{n_2}\|}$$

2.11 Déterminer l'équation cartésienne de la droite passant par (-1; -5) et d'angle directeur 120° .

- **2.12** Un triangle est donné par les équations de ses côtés : (a) : 2x 3y + 5 = 0, (b) : 5x + y = 0, (c) : -4x + 2y + 11 = 0.
 - 1) Déterminer les angles directeurs des côtés du triangle et en déduire les angles intérieurs du triangle.
 - 2) Calculer directement les angles intérieurs du triangle avec la formule $\tan(\varphi) = \frac{m_2 m_1}{1 + m_1 m_2}.$
- **2.13** Calculer l'angle aigu entre les droites d_1 et d_2 :

1)
$$(d_1): 5x - y = 7$$

$$(d_2): 3x + 2y = 0$$

2)
$$(d_1): x - y + 7 = 0$$

$$(d_2): \begin{cases} x = 1 + \lambda \\ y = 4 + \sqrt{3}\lambda \end{cases}, \ \lambda \in \mathbb{R}$$

3)
$$(d_1): 2y = 3x + 7$$

$$(d_2): 2x + 3y = 5$$

4)
$$(d_1): \sqrt{3}x - y + 1 = 0$$

$$(d_2): x-2=0$$

2.14 Déterminer les équations des droites passant par (2;1) et déterminant avec la droite d'équation 2x + 3y + 4 = 0 un angle aigu de 45° .

Distance d'un point à une droite

2.15 Soient une droite d d'équation ax + by + c = 0 et un point quelconque du plan $P(x_0; y_0)$.

Soit encore $H(x_H; y_H)$ la projection orthogonale du point P sur la droite d.

Le vecteur $\vec{n} = \begin{pmatrix} a \\ b \end{pmatrix}$ est un vecteur normal à

- 1) Vérifier que $\vec{n} \cdot \overrightarrow{HP} = a x_0 + b y_0 a x_H b y_H$.
- 2) Sachant que $H \in d$, montrer que $\vec{n} \cdot \overrightarrow{HP} = a x_0 + b y_0 + c$.
- 3) En utilisant que $\vec{n} \cdot \overrightarrow{HP} = ||\vec{n}|| ||\overrightarrow{HP}|| \cos(\varphi)$ (où φ désigne l'angle entre les vecteurs \vec{n} et \overrightarrow{HP}), montrer que $||\overrightarrow{HP}|| = \frac{|a x_0 + b y_0 + c|}{\sqrt{a^2 + b^2}}$.

En d'autres termes, la distance du point $P(x_0; y_0)$ à la droite d d'équation ax + by + c = 0, que l'on note $\delta(P; d)$, est donnée par la formule :

$$\delta(P; d) = \frac{|a x_0 + b y_0 + c|}{\sqrt{a^2 + b^2}}$$

2.16 Calculer la distance du point P à la droite d dans les cas suivants :

1)
$$P(3;-2)$$

$$(d): 4x + 3y + 9 = 0$$

2)
$$P(-2; -4)$$

$$(d): 5x - 12y = 12$$

3)
$$P(5;9)$$
 $(d): \begin{cases} x = 5 + \lambda \\ y = 4 - 2\lambda \end{cases}, \ \lambda \in \mathbb{R}$
4) $P(-2;3)$ $(d): 6x - 8y - 4 = 0$

- Calculer l'aire d'un rectangle connaissant le sommet A(-2;1) ainsi que les équations de deux côtés non parallèles : 3x = 2y + 5 et ax + 3y + 7 = 0.
- **2.18** Trouver les longueurs des hauteurs du triangle donné par les équations de ses côtés : (a): 2x+3y=0, (b): x+3y+3=0 et (c): x+y+1=0. Calculer aussi la longueur d'un de ses côtés et son aire.
- **2.19** Après avoir vérifié leur parallélisme, déterminer la distance des deux droites 2x 3y + 4 = 0 et -4x + 6y 9 = 0.
- **2.20** Quelles sont les droites, passant par A(1;1), dont la distance à B(-6;2) est égale à 5?
- **2.21** Déterminer les équations des droites qui passent par P(-2;3) et qui sont équidistantes de A(5;-3) et de B(3;7).

Bissectrices d'une paire de droites

Les bissectrices d'une paire de droites sont le lieu géométrique des points équidistants de ces droites. Étant donné un point $P(x\,;y)$ et une paire de droites $(d_1): a_1\,x + b_1\,y + c_1 = 0$ et $(d_2): a_2\,x + b_2\,y + c_2 = 0$, les conditions suivantes sont donc équivalentes :

- 1) le point P appartient à l'une des bissectrices de d_1 et d_2
- 2) $\delta(P; d_1) = \delta(P; d_2)$

3)
$$\frac{a_1 x + b_1 y + c_1}{\sqrt{a_1^2 + b_1^2}} = \pm \frac{a_2 x + b_2 y + c_2}{\sqrt{a_2^2 + b_2^2}}$$

Cette dernière formule délivre les équations des bissectrices de la paire de droites d_1 et d_2 .

- **2.22** Former les équations des bissectrices des droites d_1 et d_2 :
 - 1) $(d_1): x-3y+8=0$

$$(d_2): 3x - y = 1$$

2) $(d_1): x + y - 5 = 0$

$$(d_2): 7x + y + 14 = 0$$

- 2.23 On donne un triangle ABC par les équations de ses côtés : (a) : 3x 4y = 0, (b) : 4x + 3y + 24 = 0 et (c) : 3x + 4y 12 = 0. Montrer que la bissectrice de l'angle intérieur en B et celles des angles extérieurs en A et C sont concourantes.
- **2.24** Trouver le centre et le rayon du cercle inscrit dans le triangle donné par les équations de ses côtés : (a) : 4x 3y + 24 = 0, (b) : 12x + 5y 33 = 0, (c) : 3x + 4y + 11 = 0.

Réponses

2.3 1)
$$5x + 2y + 18 = 0$$

2)
$$x - 4y + 23 = 0$$

3) 90°

3)
$$11x - 3y + 5 = 0$$

4)
$$x - 2 = 0$$

2.4
$$7x - y + 8 = 0$$

2.6
$$(1; -7)$$

2.7
$$(-3;5)$$
 $(-4;3)$ $(0;1)$ $(1;3)$

2.8 (a):
$$3x + 2y - 10 = 0$$
 (b): $3x + 7y - 5 = 0$ (c): $9x + 11y + 5 = 0$

2.9
$$B(8;7)$$
 $C(4;5)$

2.10 1)
$$tan(\alpha) = m$$

2.11
$$\sqrt{3}x + y + 5 + \sqrt{3} = 0$$

2.12
$$\alpha = 37.88^{\circ}$$
 $\beta = 29.74^{\circ}$ $\gamma = 112.38^{\circ}$

2.14
$$x - 5y + 3 = 0$$
 et $5x + y - 11 = 0$

2.16 1) 3 2) 2 3)
$$\sqrt{5}$$
 4) 4

2.18
$$h_{\rm A} = \frac{3\sqrt{13}}{13}$$
 $h_{\rm B} = \frac{3\sqrt{10}}{5}$ $h_{\rm C} = \sqrt{2}$ $\mathcal{A} = 3$

2.19
$$\frac{\sqrt{13}}{26}$$

2.20
$$4x + 3y - 7 = 0$$
 et $3x - 4y + 1 = 0$

2.21
$$5x + y + 7 = 0$$
 et $x + 6y - 16 = 0$

2.22 1)
$$2x + 2y - 9 = 0$$
 et $4x - 4y + 7 = 0$
2) $12x + 6y - 11 = 0$ et $2x - 4y + 39 = 0$

2.23
$$I(-\frac{69}{2}; \frac{3}{2})$$

2.24
$$I(-\frac{11}{10}; \frac{17}{10})$$
 $r = \frac{29}{10}$

4) 30°