Electronic Devices Lecture 2 04-08-2018

↓ <u>Period</u>

1	1 <u>H</u>																	2 <u>He</u>
<u>2</u>	3 <u>Li</u>	4 <u>Be</u>											5 <u>B</u>	6 <u>C</u>	7 <u>N</u>	8 <u>O</u>	9 <u>F</u>	10 <u>Ne</u>
<u>3</u>	11 <u>Na</u>	12 <u>Mg</u>											13 <u>Al</u>	14 <u>Si</u>	15 <u>P</u>	16 <u>S</u>	17 <u>Cl</u>	18 <u>Ar</u>
<u>4</u>	19 <u>K</u>	20 <u>Ca</u>	21 <u>Sc</u>	22 <u>Ti</u>	23 <u>V</u>	24 <u>Cr</u>	25 <u>Mn</u>	26 <u>Fe</u>	27 <u>Co</u>	28 <u>Ni</u>	29 <u>Cu</u>	30 <u>Zn</u>	31 <u>Ga</u>	32 <u>Ge</u>	33 <u>As</u>	34 <u>Se</u>	35 <u>Br</u>	36 <u>Kr</u>
<u>5</u>	37 <u>Rb</u>	38 <u>Sr</u>	39 <u>Y</u>	40 <u>Zr</u>	41 <u>Nb</u>	42 <u>Mo</u>	43 <u>Tc</u>	44 <u>Ru</u>	45 <u>Rh</u>	46 <u>Pd</u>	47 <u>Ag</u>	48 <u>Cd</u>	49 <u>In</u>	50 <u>Sn</u>	51 <u>Sb</u>	52 <u>Te</u>	53 <u>I</u>	54 <u>Xe</u>
<u>6</u>	55 <u>Cs</u>	56 <u>Ba</u>	*	72 <u>Hf</u>	73 <u>Ta</u>	74 <u>W</u>	75 <u>Re</u>	76 <u>Os</u>	77 <u>lr</u>	78 <u>Pt</u>	79 <u>Au</u>	80 <u>Hg</u>	81 <u>Tl</u>	82 <u>Pb</u>	83 <u>Bi</u>	84 <u>Po</u>	85 <u>At</u>	86 <u>Rn</u>
<u>z</u>	87 <u>Fr</u>	88 <u>Ra</u>	**	104 <u>Rf</u>	105 <u>Db</u>	106 <u>Sg</u>	107 <u>Bh</u>	108 <u>Hs</u>	109 <u>Mt</u>	110 <u>Ds</u>	111 <u>Rg</u>	112 <u>Uub</u>	113 <u>Uut</u>	114 <u>Uuq</u>	115 <u>Uup</u>	116 <u>Uuh</u>	117 <u>Uus</u>	118 <u>Uuo</u>

•	Iа	nth	าลท	nd	es.
	<u>= u</u>			<u></u>	<u> </u>

** Actinides

57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
<u>La</u>	<u>Ce</u>	<u>Pr</u>	<u>Nd</u>	<u>Pm</u>	<u>Sm</u>	<u>Eu</u>	<u>Gd</u>	<u>Tb</u>	<u>Dy</u>	<u>Ho</u>	<u>Er</u>	<u>Tm</u>	<u>Yb</u>	<u>Lu</u>
89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
<u>Ac</u>	<u>Th</u>	<u>Pa</u>	<u>U</u>	<u>N</u> p	<u>Pu</u>	<u>Am</u>	<u>Cm</u>	<u>Bk</u>	<u>Cf</u>	<u>Es</u>	<u>Fm</u>	<u>Md</u>	<u>No</u>	<u>Lr</u>

Importance Semiconductor Devices

These devices enhance

- Performance
- Reliability
- Cost effectiveness of

Energy Systems

Generate, distribute and regulate energy information

Information Systems store, process and

communicate

Course Objective

Terminal Characteristics

DC I-V

AC I-V

Transient

Material Parameters

Geometry

Doping

Energy gap

Mobility

Life time

Dielectric constant

Ambient conditions:

Temperature

illumination

Today's Electronic Devices

Front Back

INTEL Pentium IV processor

Take the cover off a microprocessor. What do you see?

- A thick web of interconnects, many levels deep.
- High density of very small transistors.

Evolution of Microprocesor Packaging

1971

2001 onwards

PC Motherboard

Keys to success: I. MOSFET

Metal-Oxide-Semiconductor Field-Effect Transistor

MOSFET = switch

Keys to success: II. MOSFET scaling

MOSFET performance improves as size is decreased:

- Shorter switching time
- Lower power consumption

Keys to success: III. CMOS

CMOS: Complementary Metal-Oxide-Semiconductor

- "Complementary" switch activates with V<0.
- Logic without DC power consumption.

SEMICONDUCTORS: They are here, there, and everywhere

- Computers, palm pilots, laptops, Silicon (Si) MOSFETs, ICs, CMOS anything "intelligent"
- Cell phones, pagers

Si ICs, GaAs FETs, BJTs

CD players

AlGaAs and InGaP laser diodes, Si photodiodes

TV remotes, mobile terminals

Light emitting diodes

Satellite dishes

InGaAs MMICs

Fiber networks

InGaAsP laser diodes, pin photodiodes

 Traffic signals, car taillights

GaN LEDs (green, blue)
InGaAsP LEDs (red, amber)

Air bags

Si MEMs, Si Ics

Semiconductor materials

- If we look at the periodic table, the element semiconductors, such as silicon (Si) or germanium (Ge), can be found in column IV of the table.
- In the early 1950s, Ge was the most important semiconductor material, but, since the early 1960s,
 Si has played a major role and virtually displaced
 Ge as the main material for semiconductor material.

Silicon: our primary example and focus

Atomic no. 14

14 electrons in three shells: 2)8)4

i.e., 4 electrons in the outer "bonding" shell Silicon forms strong covalent bonds with 4 neighbors

Electronic structure of Si atom:

- 10 core electrons (tightly bound)
- 4 valence electrons (loosely bound, responsible for most chemical properties)

Other semiconductors:

- Ge, C (diamond form), SiGe
- GaAs, InP, InGaAs, InGaAsP, ZnSe, CdTe (on average, 4 valence electrons per atom)

Semiconductor materials

- The reasons of that are:
 - Better properties at room temperature
 - High-quality silicon dioxide (SiO₂) can be grown thermally.
 - Si is second only to oxygen in great quantity.
 - Devices made from Si cost less than any other semiconductor material
 - Silicon technology is by far the most advanced among all semiconductor technologies.

Significance of Si

- Easily oxidized to form SiO2, a high quality electrical insulator
- 2. Oxide layer provides an excellent barrier layer for the selective diffusion steps needed in integrated-circuit fabrication
- 3. Abundant element in nature, providing the possibility of a low-cost starting material
- Wider bandgap than Ge and operate at higher temperature than Ge

General	Semicondu	etor
Classification	Symbol	Name
Element	Si	Silicon
	Ge	Germanium
Binary compound		
IV-IV	SiC	Silicon carbide
III-V	AlP	Aluminum phosphide
	AlAs	Aluminum arsenide
	AlSb	Aluminum antimonide
	GaN	Gallium nitride
	GaP	Gallium phosphide
	GaAs	Gallium areside
	GaSb	Gallium antimonide
	InP	Indium phosphide
	InAs	Indium arsenide
	InSb	Indium antimonide
II-VI	ZnO	Zinc oxide
	ZnS	Zinc sulfide
	ZnSe	Zinc selenide
	ZnTe	Zinc telluride
	CdS	Cadmium sulfide
	CdSe	Cadmium selenide
	CdTe	Cadmium telluride
	HgS	Mercury sulfide
IV-VI	PbS	Lead sulfide
	PbSe	Lead selenide
	PbTe	Lead telluride
Ternary compound	$Al_xGa_{1-x}As$	Aluminum gallium arsenide
	$Al_x In_{1-x} As$	Aluminum indium arsenide
	$GaAs_{1-x}P_x$	Gallium arsenic phosphide
	$Ga_xIn_{1-x}As$	Gallium indium arsenide
	$Ga_xIn_{1-x}P$	Gallium indium phosphide
Quaternary compound	$Al_xGa_{1-x}As_ySb_{1-y}$	Aluminum gallium arsenic antimonide
D	$Ga_xIn_{1-x}As_{1-y}P_y$	Gallium indium arsenic phosphide

lead

Important properties of silicon

Physical, structural

Crystal structure diamond Lattice period (Å)

Energy levels

Energy gap (eV) **Band symmetry** indirect gap $N_c = 2.8 \times 10^{19}$ $N_v = 1.02 \times 10^{19}$ Density of states (cm⁻³)

Electrical, charge carriers

Low field mobility (cm²/V-s) Critical E-field (V/cm) Saturation velocity (cm/s) **Effective mass (relative)**

E	lectrons		Holes
	1450		450
	104		5 x 10 ⁴
	107		107
m	0.98	\mathbf{m}_{lh}	0.16
m_t	0.19	$\mathbf{m}_{\mathrm{hh}}^{\mathrm{m}}$	0.5

5.431

1.1

Optical

Absorption edge (\(\bar{\lambda}_{\text{gap}}\)) $1.1 \, \mu \mathrm{m}$ Radiative lifetime few ms **Typical radiative Efficiency** (%) <<1%

Crystal structures

(b) Amorphous

(c) Polycrystalline

Figure 1.2

A two-dimensional lattice showing translation of a unit cell by $\mathbf{r} = 3\mathbf{a} + 2\mathbf{b}$.

Cubic unit cell

Figure 1.3
Unit cells for three types of cubic lattice structures.

FCC structure

Figure 1.4
Packing of hard spheres in an fcc lattice.

Each Si atom has 4 nearest neighbors

lattice constant = 5.431Å

"diamond cubic" lattice

How Many Silicon Atoms per cm⁻³?

Number of atoms in a unit cell:

- 4 atoms completely inside cell
- Each of the 8 atoms on corners are shared among cells
 → count as 1 atom inside cell
- Each of the 6 atoms on the faces are shared among 2 cells → count as 3 atoms inside cell
- \Rightarrow Total number inside the cell = 4 + 1 + 3 = 8

Cell volume:

$$(.543 \text{ nm})^3 = 1.6 \times 10^{-22} \text{ cm}^3$$

Density of silicon atoms

=
$$(8 \text{ atoms}) / (\text{cell volume}) = 5 \times 10^{22} \text{ atoms/cm}^3$$

- "zincblende" structure
- III-V compound semiconductors: GaAs, GaP, GaN, etc.
 - ✓ important for optoelectronics and high-speed ICs

Miller Indices (h, k, l)

Figure 1.5 A (214) crystal plane.

Figure~1.6 Equivalence of the cube faces ({100} planes) by rotation of the unit cell within the cubic lattice.

Figure 1.7
Crystal directions in the cubic lattice.