Pre lab exp 10

1201738 Aya Dahbour

1201505 Noor Makhalfa

sec 2

Line #	Code	Description of what is done
6	reg [15:0] Memory [0:63]	Memory 64*16
7	reg [2:0] state	To manage instruction cycle steps
13	Memory [10] = 16'h3020	load data at address 20Hex into AC
14	Memory [11] = 16'h7021	add data at address 21Hex into AC
15	Memory [12] = 16'hB014	store data into address 14Hex
18	Memory [32] = 16'd7	store at address 20Hex or 32 decimal data = 7 decimal
19	Memory [33] = 16'd5	store at address 21Hex or 33 decimal data = 5 decimal
22	PC = 10; state = 0	the program should start from the address 10Decimal = 0A Hexadecimal
29	MAR <= PC	The address on pc sends it to MAR
30	state = 1	Next state, MAR Has the data
33	IR <= Memory [MAR]	Send data saved on MAR address to IR
34	PC <= PC + 1	Increment pc
35	state = 2	Next state, data now on IR
38	MAR <= IR [11:0]	Take the address of the operand saved at IR to MAR
39	state = 3	Next state, MAR and IR has the data
42	state = 4	Next state,
43	case (IR [15:12])	case for the various R-type instructions
44	load: MBR <= Memory [MAR]	Load data at the memory in MAR Memory [MAR] to MBR
45	add: MBR <= Memory [MAR]	Add data at the memory in MAR Memory [MAR] to one in MBR
46	store: MBR <= AC	Store data from AC into MBR
52	$AC \le AC + MBR$	If instruction was ADD then $AC = AC + MBR$
56	AC <= MBR	If instruction was LOAD, then AC = MBR
60	Memory [MAR] <= MBR	If instruction was STORE, then Memory [MAR] = MBR