Part 1

•
$$P = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0.4 & 0 & 0.6 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0.5 & 0.5 \end{bmatrix}$$
; (a) 2; (b) [3,4]; (c) [1,2]; (d) []; (e) []

•
$$P = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0.6 & 0 & 0 & 0.4 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
; (a) 2; (b) [4]; (c) []; (d) [1, 2, 3]; (e) [4]

•
$$P = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0.6 & 0.4 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
; (a) 3; (b) [4]; (c) [2,3]; (d) []; (e) [4]

•
$$P = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0.5 & 0 & 0.5 & 0 \\ 0 & 0.6 & 0 & 0.4 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
; (a) 2; (b) [4]; (c) [1,2,3]; (d) []; (e) [4]

Part 2

•
$$x_0 = 1$$
: (f) $r = 1/2$; (g) $Pi = [0, 0.25, 0.25, 0.5]$

•
$$x_0 = 2$$
: (f) $r = 1/3$; (g) $Pi = [0.4, 0, 0.2, 0.4]$

•
$$x_0 = 3$$
: (f) $r = 1/5$; (g) $Pi = [0.4, 0, 0.3, 0.3]$

•
$$x_0 = 1$$
: (f) $r = 1/4$; (g) $Pi = [0.5, 0, 0.5, 0]$

We study the weather and amount of snow every year in Seattle. A year can be either rainy (R) or snowy (S). We assume that whether a given year is snowy or rainy depends only on the previous year. Besides, if one year was S, the next year will be S or R with equal probability. Run the notebook for problem 2 with your student ID to find the transition probabilities between R and S, and the average number of inches of snow associated with each state. Justify all your answers.

Variants: The notebook displays the average amount of snow for snowy years $\mu(F)$; rainy years $\mu(G)$ and p_{RR} (other transition probabilities are also displayed below).

b=0
$$\mu(F)=6, \mu(G)=3$$

$$p_{RR}=2/3 \qquad p_{RS}=1/3 \qquad p_{SR}=1/2 \qquad p_{SS}=1/2.$$
 b=1 $\mu(F)=8, \mu(G)=2$
$$p_{RR}=1/3 \qquad p_{RS}=2/3 \qquad p_{SR}=1/2 \qquad p_{SS}=1/2$$
 b=2 $\mu(F)=8, \mu(G)=4$
$$p_{RR}=1/4 \qquad p_{RS}=3/4 \qquad p_{SR}=1/2 \qquad p_{SS}=1/2$$
 b=3 $\mu(F)=6, \mu(G)=2$
$$p_{RR}=3/4 \qquad p_{RS}=1/4 \qquad p_{SR}=1/2 \qquad p_{SS}=1/2$$

a. Find the probability that it is a rainy year two years after a rainy year.

Solution: This is a Markov chain on two states, with transition matrix

$$P = \begin{bmatrix} p_{RR} & p_{RS} \\ p_{SR} & p_{SS} \end{bmatrix}.$$

Calculate P^2 and find the (1,1) entry:

$$P = \begin{bmatrix} 2/3 & 1/3 \\ 1/2 & 1/2 \end{bmatrix} \qquad P^2 = \begin{bmatrix} 11/18 & 7/18 \\ 7/12 & 5/12 \end{bmatrix}$$

$$- b=1:$$

$$P = \begin{bmatrix} 1/3 & 2/3 \\ 1/2 & 1/2 \end{bmatrix} \qquad P^2 = \begin{bmatrix} 4/9 & 5/9 \\ 5/12 & 7/12 \end{bmatrix}$$

$$- b=2:$$

$$P = \begin{bmatrix} 1/4 & 3/4 \\ 1/2 & 1/2 \end{bmatrix} \qquad P^2 = \begin{bmatrix} 7/16 & 9/16 \\ 3/8 & 5/8 \end{bmatrix}$$

$$- b=3:$$

$$P = \begin{bmatrix} 3/4 & 1/4 \\ 1/2 & 1/2 \end{bmatrix} \qquad P^2 = \begin{bmatrix} 11/16 & 5/16 \\ 5/8 & 3/8 \end{bmatrix}$$

b. Suppose that the first year was rainy. Find the expected total number of inches of snow in the third year.

Solution: Denoting $\mu(F)$ and $\mu(G)$ the average number of inches of snow on a snowy year, respectively on a rainy year, this amounts to computing the quantity:

$$\begin{bmatrix} 1 & 0 \end{bmatrix} P^2 \begin{bmatrix} \mu(G) \\ \mu(F) \end{bmatrix}.$$

- b=0: $\mu(F) = 6, \mu(G) = 3$ gives

 $\mathbb{E}(\text{Inches of snow in year 3}|\text{Year 1 is rainy}) = \frac{25}{6}.$

- b=1: $\mu(F) = 8, \mu(G) = 2$ gives

 $\mathbb{E}(\text{Inches of snow in year 3}|\text{Year 1 is rainy}) = \frac{16}{3}.$

- b=2: $\mu(F) = 8, \mu(G) = 4$ gives

 $\mathbb{E}(\text{Inches of snow in year 3}|\text{Year 1 is rainy}) = \frac{25}{4}.$

- b=3: $\mu(F) = 6, \mu(G) = 2$ gives

 $\mathbb{E}(\text{Inches of snow in year 3}|\text{Year 1 is rainy}) = \frac{13}{4}.$

c. What is the the long run average number of inches of snow in Seattle?

Solution: Find the stationary distribution of the chain i.e. find

$$\pi P = \pi$$
 and $\pi(R) + \pi(S) = 1$.

Then, the long run average number of inches of snow is

$$\pi \begin{bmatrix} \mu(G) \\ \mu(F) \end{bmatrix}$$

- b=0: We obtain

$$\pi = [3/5, 2/5].$$

And therefore, with $\mu(F) = 6$, $\mu(G) = 3$

$$\mathbb{E}_{\pi}(\text{Inches of snow}) = 3/5 \times 3 + 2/5 \times 6 = 21/5.$$

− b=1: We obtain

$$\pi = [3/7, 4/7].$$

And therefore, $\mu(F) = 8, \mu(G) = 2$

$$\mathbb{E}_{\pi}(\text{Inches of snow}) = 3/7 \times 2 + 4/7 \times 8 = \frac{38}{7}.$$

- b=2: We obtain

$$\pi = [2/5, 3/5].$$

And therefore, $\mu(F) = 8, \mu(G) = 4$

$$\mathbb{E}_{\pi}(\text{Inches of snow}) = 2/5 \times 4 + 3/5 \times 8 = \frac{32}{5}.$$

- b=3: We obtain

$$\pi = [2/3, 1/3].$$

And therefore, $\mu(F) = 6, \mu(G) = 2$

$$\mathbb{E}_{\pi}(\text{Inches of snow}) = 2/3 \times 2 + 1/3 \times 6 = \frac{10}{3}.$$

The number of followers of Jacob's video game stream on Twitch follows a Poisson process with rate 5 per day. Assume that each follower is a subscriber with probability 1/5, all independently.

a. Run the notebook and find the probability asked for to Problem 3a. Justify your answer. The solution can be left as calculator ready.

Variants:

- b=0: probability that Jacob got at least one subscriber, and no followers who are not subscribers after a week
- b=1: probability that Jacob has exactly no subscriber and 2 followers who are not subscribers after 4 days.
- b=2: probability that Jacob has at most 1 follower who is not subscriber and exactly 2 subscribers after 4 days

Solution: By thinning, the total number of subscribers after n days is Poisson with mean $5 \times n/5 = n$; the total number of followers who are not subscribers after after n days is Poisson with mean $5 \times n \times 4/5 = 4n$. By thinning, these two variables are also independent. We obtain:

- b=0: $P = P(Poisson(7) \ge 1) \times P(Poisson(28) = 0) = (1 e^{-7})e^{-28}$
- b=1: $P = P(Poisson(4) = 0) \times P(Poisson(16) = 2) = 128e^{-20}$
- b=2: $P = P(Poisson(16) \le 1) \times P(Poisson(4) = 2) = 136e^{-20}$
- b. Run the notebook and find the probability asked for to Problem 3b. Justify your answer. The solution can be left as calculator ready.

Variants:

- b=0: Probability that exactly three followers are subscribers, given that Jacob got eight total followers in two days.
- b=1: Probability that exactly three followers are not subscribers, given that Jacob got six total followers in three days.
- b=2: Probability that exactly four followers are subscribers, given that Jacob got eight total followers in four days.

Solution: Given that there were n followers, the number of subscribers is Binomial(n, 1/5), and followers who are not subscribers is Binomial(n, 4/5).

- b=0:
$$P = P(Binom(8, 1/5) = 3) = {8 \choose 3} \frac{1}{5^3} \left(\frac{4}{5}\right)^5 = \frac{56 \times 4^5}{5^8}$$

- b=1:
$$P = P(Binom(6, 4/5) = 3) = \binom{6}{3} \frac{1}{5^3} \left(\frac{4}{5}\right)^3 = \frac{4^4}{5^5}$$

- b=2:
$$P = P(Binom(8, 1/5) = 4) = \binom{8}{4} \frac{1}{5^4} \left(\frac{4}{5}\right)^4 = 14 \frac{4^4}{5^7}$$

c. Run the notebook and find the value asked for to Problem 3c. Justify your answer. The solution can be left as calculator ready.

Variants:

- b=0: Expected number of followers who are not subscribers, given that Jacob got eight total followers in two days.
- b=1: Expected number of subscribers, given that Jacob got six total followers in three days.
- b=2: Expected number of followers who are not subscribers, given that Jacob got eight total followers in four days.

Solution: From the binomial B(n,p) found in question 2b, take the mean of the binomial with parameters n and 1 - p or n and p.

- b=0: $E = \frac{32}{5}$
- b=1: $E = \frac{6}{5}$ b=2: $E = \frac{32}{5}$

Becca only watches three TV channels: news A, news B, and sports. While watching the news, she switches channels after an exponential amount of time with mean μ_{news} minute(s). While watching sports, she switches after an exponential amount of time with mean μ_{sports} minute(s). After watching a news channel, Becca switches to the other news channel with probability p and to sports with probability 1-p. After watching sports, Becca switches to news A with probability p' and news B with probability 1-p'. Run the notebook to find the values of μ_{news} , μ_{sports} , p and p'. Variants:

• b=0, Data:

$$\mu_{\text{news}} = 1$$
 $\mu_{\text{sports}} = 1/2$ $p = 1/2$ $p' = 1/3$

Corresponding transition rates and probabilities:

$$p_{AB}=1/2$$
 $p_{BA}=1/2$ $p_{AS}=1/2$ $p_{SA}=1/3$ $p_{SB}=2/3$ $p_{BS}=1/2$, $\nu_A=1$ $\nu_B=1$ $\nu_S=2$, $\nu_{AB}=1/2$ $\nu_{AB}=1/2$

• b=1, Data:

$$\mu_{\text{news}} = 1/2$$
 $\mu_{\text{sports}} = 1/3$ $p = 1/3$ $p' = 1/2$

Corresponding transition rates and probabilities:

$$p_{AB}=1/3$$
 $p_{BA}=1/3$ $p_{AS}=2/3$ $p_{SA}=1/2$ $p_{SB}=1/2$ $p_{BS}=2/3$, $u_A=2$ $u_B=2$ $u_S=3$, $q_{AB}=2/3$ $q_{BA}=2/3$ $q_{AS}=4/3$ $q_{SA}=3/2$ $q_{SB}=3/2$ $q_{BS}=4/3$.

• b=2, Data:

$$\mu_{\text{news}} = 1/2$$
 $\mu_{\text{sports}} = 1/3$ $p = 1/4$ $p' = 2/3$

Corresponding transition rates and probabilities:

$$p_{AB}=1/4$$
 $p_{BA}=1/4$ $p_{AS}=3/4$ $p_{SA}=2/3$ $p_{SB}=1/3$ $p_{BS}=3/4$, $u_A=2$ $u_B=2$ $u_S=3$, $q_{AB}=1/2$ $q_{BA}=1/2$ $q_{AS}=3/2$ $q_{SA}=2$ $q_{SB}=1$ $q_{BS}=3/2$.

• b=3, Data:

$$\mu_{\text{news}} = 1/4 \quad \mu_{\text{sports}} = 1/2 \quad p = 1/3 \quad p' = 1/4$$

Corresponding transition rates and probabilities:

$$p_{AB}=1/3$$
 $p_{BA}=1/3$ $p_{AS}=2/3$ $p_{SA}=1/4$ $p_{SB}=3/4$ $p_{BS}=2/3$, $\nu_A=4$ $\nu_B=4$ $\nu_S=2$, $q_{AB}=4/3$ $q_{BA}=4/3$ $q_{AS}=8/3$ $q_{SA}=1/2$ $q_{SB}=3/2$ $q_{BS}=8/3$.

a. Model Becca's news watching habits by a continuous time Markov chain, with state 1 = news A, state 2 = news B, state 3 = sports. Draw the transition diagram, and add the rates q_{ij} , as defined in the course, to each arrow of the diagram.

Solution: See above for q_{ij} .

 Write down the two forward Kolmogorov equations with initial condition being the sports channel.

Solution: For this chain, with initial state S, the two forward equations are

$$P'_{SA}(t) = q_{BA}P_{SB}(t) - v_A P_{SA}(t)$$

and

$$P'_{SB}(t) = q_{AB}P_{SA}(t) - v_BP_{SB}(t).$$

- b=0,

$$P'_{SA}(t) = 1/2P_{SB}(t) - P_{SA}(t)$$

and

$$P'_{SB}(t) = 1/2P_{SA}(t) - P_{SB}(t).$$

- b=1,

$$P'_{SA}(t) = 2/3P_{SB}(t) - 2P_{SA}(t)$$

and

$$P'_{SB}(t) = 2/3P_{SA}(t) - 2P_{SB}(t).$$

- b=2,

$$P'_{SA}(t) = 1/2P_{SB}(t) - 2P_{SA}(t)$$

and

$$P'_{SB}(t) = 1/2P_{SA}(t) - 2P_{SB}(t).$$

- b=3,

$$P'_{SA}(t) = 4/3P_{SB}(t) - 4P_{SA}(t)$$

and

$$P'_{SB}(t) = 4/3P_{SA}(t) - 4P_{SB}(t).$$

c. Is the chain reversible? Justify your answer.

Solution: The detailed balance equations take the form

$$\pi_A = \pi_B$$
, and $\pi_S = \frac{q_{AS}}{q_{SA}} \pi_A = \frac{q_{BS}}{q_{SB}} \pi_B$.

Thus there is a solution if and only if $\frac{q_{AS}}{q_{SA}} = \frac{q_{BS}}{q_{SB}}$.

• b=0,

No solution. Not reversible.

• b=1,

Solution exists: $\pi = \frac{9}{26}(1, 1, 8/9)$.

• b=2,

No solution. Not reversible.

• b=3,

No solution. Not reversible.