Chapter 2

2.1 What is Statistical Learning?

- \bullet X denotes the input variable (aka: predictor or independent variable)
- \bullet Y denotes the output variable (aka: response or dependent variable)
- The relationship between X and Y can be written as:

$$Y = f(X) + \epsilon$$

- f is a fixed, but unknown function of X and ϵ is the error term.
- ϵ is independent of X and has a mean of 0. The function f may take more than one input variable. (e.g. income (y) as function of education (X_1) and seniority (X_2)).

Statistics is all about ways to estimate f

2.1.1 Why Estimate f?

- 1. Prediction: this is when we know the values of X, but can't easily determine Y.
- $\hat{y} = \hat{f}(x)$
- \hat{Y} is the resulting predicting for Y (aka the predicted response)
- \hat{f} is the estimate for f.
 - \circ It is a *black box* where we don't really care about \hat{f} as long as it gives accurate predictions for Y.

Generally, \hat{f} will not be a perfect estimate f, as a result the inaccuracy will introduce some error.

Types of Error:

- ullet reducible error: can be reduced to improve the accuracy of \hat{f} by using better statistical methods.
- *irreducible error:* since Y is a function of ϵ , not all of the error can be reduced. Therefore there will always be ϵ

Reasons that ϵ is not zero

- ullet is not zero because it might include variables that are useful in predicting Y.
 - \circ Since we don't measure these unincluded variables they can't be predicted using f .
- ullet may also contain unmeasurable variation, which also can't be predicted using f

So if we have estimate \hat{f} and predictors X we get the prediction: $\hat{Y} = \hat{f}(X)$.

If we assume that \hat{f} and \boldsymbol{X} are fixed:

$$E(Y - \hat{Y})^{2} = E[f(X) - \epsilon - \hat{f}(X)]^{2}$$

$$= [f(X) - \hat{f}(X)]^{2} + var(\epsilon)$$
(1)

- $E=(Y-Y^2)$ is the expected value of the squared difference between the predicted value and actual value of Y.
- $Var(\epsilon)$ is the variance associated with the error term ϵ

The irreducible error gives an upper bound on the accuracy of our prediction for Y & will almost always be unknown in practice.

2. Inference

- *Inference* is when we want to know how Y is affected by change in the predictors, $X_1...X_p$, but aren't necessarily interested in making predictions for Y.
- the goal is to understand the relationship between X and Y. How Y changes as a function of $X_1...X_p$
- \hat{f} can't be treated as a *black box* because we have to know its exact form.
- linear models are useful for inference.

Inference is useful for:

- determining which predictors are associated with the outcome.
- determining the relationship between the outcome and each predictor.
- ullet determining whether the relationship between Y and each predictor can be summarized using a linear equation or whether the relationship between the two is more complicated.

2.1.2 How do we Estimate f?

- ullet n is the number of data points or observations we have.
- $training\ data$ is a subset of the data we have that we use to train (or teach) the method how to estimate f.
- ullet We apply a statistical learning method to the training data in order to estimate f.
- x_{ij} is the value of the jth predictor for observation i. i = 1, 2,..., n and j = 1, 2,...,p
 - y_i is the response variable for ith observation.
- ullet The training data would be $(x_i,y_i),(x_2,y_2),...(x_n,y_n)$, where $x=(x_{i1},x_{i2},...,x_{ip})^T$.

The goal is to find \hat{f} such that $Y pprox \hat{f}(X)$ for any observation (X,Y)

There are two statistical learning methods we can use:

- 1. *Parametric:* to estimate f we only need to estimate one set of parameters.
 - $\circ~$ the problem is that it will usually not match the true unknown form of f
 - \circ if the model is too far off from the true f (or the f using all the observations), the estimate will be poor
 - to solve poor fit, we can use more flexible models. But more flexible models requires estimating more parameters.
 - more complex models can lead to overfitting: which means they follow the errors too closely.
 - these involve a two-step model-based approach.

Step 1 We make an assumption of f's form.

For example, if f is linear:

- $f(X) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + ... + \beta_p X_p$
- If f is linear, you only need to estimate the coefficients $eta_0+eta_1X_1+eta_2X_2+eta_pX_p$

Step 2 We use the training data to fit or train the model.

For the linear model we want to estimate: $Y \approx \beta_0 + \beta_1 X_1 + \beta_2 X_2 + ... + \beta_p X_p$

One method of fitting the model is (ordinary) least squares

- 2. Non-parametric:
 - $\circ \,$ do not make explicit assumptions about the functional form of f.
 - $\circ\;$ these methods try to get as close to the data points without being too rough.
 - \circ since they don't assume particular form of f, they can fit a wider range of shapes for f.
 - \circ will fit the data better since it does not assume the form of f.
 - \circ requires substantially more observations in order to get an accurate estimate for f than parametric approaches.

2.1.3 The Trade-off Between Prediction Accuracy and Model Interpretability

Some methods are less flexible because they can produce only a small range of shapes to estimate f (e.g. Linear regression can only create linear functions.)

- less flexible models are better for inference because they are more interpretable.
- it's easier to understand the relationship between Y and $X_1, X_2, ... X_p$ More flexible models include *thin plate splines* can generate a wider range of possible shapes to estimate f.

2.1.4 Supervised vs. Unsupervised Learning

Supervised Learning for each observation of the predictor measurements x_i , i = 1, ..., n there is an associated response to the measurement y_i .

Includes: logistic regression, GAM, Boosting, and support vector machines

Unsupervised Learning is more complicated because for every observation i = 1, ..., n there's a vector of measurements x_i , but no associated response y_i .

- it is called unsupervised because we have no response variable y to supervise our analysis.
 - Includes: cluster analysis (do the observations fall into relatively distinct groups?)

Semi-supervised Learning is when you have observations for the predictors, but the corresponding measurements for the responses are less available.

2.1.5 Regression vs. Classification Problems

Quantitative Variables are number variables.

problems involving Quantitative data are called regression problems.

Qualitative Variables (aka categorical) take on one of a number of classes or categories.

problems involving Qualitative data are called classification problems.

The difference between the two is not that clear cut and some methods (*K-nearest-neighbors* and *boosting*) can be used for both quantitative adn qualitative data.

Most statistical methods are based on whether the *response* is qualitative or quantitative.

2.2 Assessing Model Accuracy

There is no *best* method in statistical learning. The data you have determines what kind of method you can (and should!) use.

2.2.1 Measuring the Quality of Fit

Measuring the quality of fit is a quantification of the extent to which the predicted response value for a given observation is close to the true response value of the observation.

For regressions, the most common measure is the *mean squared error (MSE)*.

•
$$MSE = \frac{1}{n} \sum_{i=1}^{2} (y_i - \hat{f}(x_1)^2)$$

- $\circ \ \hat{f}(x_i)$ is the prediction \hat{f} gives for the ith observation.
- ullet a small test MSE is the goal
 - $\circ\,$ A small MSE means that the predicted responses are close to the true responses.
- We're interested in how well our method works with previously unseen data (*i.e.*, not the training data.)
- ullet If we have training observations, which we use to fit obtain an estimate of \hat{f}
 - $\circ (x_1,y_1),(x_2,y_2),...,(x_n,y_n)$
- ullet We then compute $\hat{f}(x_1),\hat{f}(x_2),...,\hat{f}(x_n)$
 - \circ If these are approximately equal to $y_1, y_2, ..., y_n$ then the MSE is small.
- What we want to know is if $\hat{f}(x_0) \approx y_0$ where x_0 and y_0 is a previously unseen test observation not used to train the statistical learning method. Essentially, a new data point.
 - \circ This is the *test* MSE which is what we're interested in and the lower the better.
- For a large number of observations we can compute:
 - $\circ Ave(y_0 \hat{f}(x_0))^2$
 - $\circ~$ The average squared prediction error for the test observations: (x_0,y_0)
 - The smaller the number the better
- DO NOT rely on a method that results in a small $training\ MSE$ even though the test and $training\ MSE$ are closely related because most methods try to make a small training MSE which does not always result in a small $test\ MSE$.
 - \circ Overfitting Is a method that gives as small training MSE but a large test MSE.
 - It means that the method may be picking up patterns that are just random chance
- ullet The *training* MSE will generally be smaller than the *test* MSE.
- ullet Cross-Validation is a method for estimating the $test\ MSE$ using the training data.

2.2.2 The Bias Variance Trade-Off

The expected $test\ MSE$ (for a given value, x_0) is the sum of three fundamental quantities:

- 1. The *variance* of $\hat{f}(x_0)$
- 2. The squared *bias* of $\hat{f}(x_0)$
- 3. The variance of the error terms ϵ .
- this is:

$$\circ \ E(y_0 - \hat{f}(x_0))^2 = Var(\hat{f}(x_0)) + [Bias(\hat{f}(x_0))]^2 + Var(\epsilon)$$

- Where $E(y_0 \hat{f}(x_0))$ is the *expected* test MSE.
 - $\,\blacksquare\,$ It is the average test MSE "we'd obtain if we repeatedly estimated f using a large number of training sets and tested each at x_0 "

- The test MSE will never be below $Var(\epsilon)$ (the irreducible error)
- Our goal is to have low variance and low bias through the bias-variance tradeoff
 - \circ *Variance:* the amount that \hat{f} would change if we estimated it using a different training data set.
 - Ideally, we would not like \hat{f} to vary much between data sets.
 - lacktriangleright a high variance would mean that small changes in the training data results in large changes in \hat{f} .
 - More flexible methods will have higher variance.
 - o Bias: is the error that is introduced by approximating real life using a simple model.
 - The closer real life is to the model used, the less bias there will be.
 - More flexible methods tend to have less bias.

2.2.3 The Classification Setting

This refers to problems where the outcome of interest is qualitative ($y_1,...y_n$)

The most common way to quantify the accuracy of the estimate \hat{f} is training the *error rate* - which is the proportion of mistakes that are made if we apply the estimated \hat{f} to the training observations.

Training error rate equation is computed using the data that was used to train the classifier.

•
$$\frac{1}{n}\sum_{i=1}^n I(y_i \neq \hat{y}_i)$$

- $\circ ~~\hat{y}_1$ is the predicted class label for the ith observation using \hat{f}
- $\circ~I(y_i
 eq \hat{y}_i)$ is an indicator variable
 - $y_i
 eq \hat{y}_i$ is coded with a 1
 - $y_i = \hat{y}_i$ is coded with a 0
 - if $I(y_i \neq \hat{y}_i) = 0$ then the *i*th observation was classified correctly by the method, otherwise it was misclassified.

We are still interested in the *test* error rate which is the error rate returned when we apply the classifier to test observations *not* used in training the data.

- The test error rate is:
 - $\circ \ Ave(I(y_0
 eq \hat{y}_0))$
 - \hat{y}_0 is the predicted class label that results from applying the classifier to the test observation with predictor x_0

We want the test error to be the smallest - which indicates we have a good classifier.

The Bayes Classifier

The test error rate is minimized (on average) by a simple classifier that assigns each observation to the most likely class, given its predictor values.

• we should assign a test observation with predictor vector x_0 to the class j for which the below is the largest

$$\circ Pr(Y=j|X=x_0)$$

- This is a *conditional probability* equation.
- ullet It is the probability that Y=j, given the observed predictor vector x_0

This is *the Bayes classifier*. In a two-class problem it says that there are only two possible response values.

- ullet it corresponds to predicting the first class if $Pr(Y=1|X=x_0)>0.5$, and class two otherwise.
- The Bayes decision boundary is where the points have a probability of exactly 50%.
 - The Bayes classifier is determined by this boundary.
- The Bayes classifier produces the Bayes error rate which is the lowest possible test error rate.
 - $\circ~$ The overall Bayes Error Rate: $1-E(\displaystyle \mathop{maxPr}_{i}(Y=j|X))$
 - ullet where the expectation averages the probability over all possible values of X
 - It is analogous to the irreducible error.

Since we will never know the conditional distribution of Y given X in a real data set, the *Bayes classifier* is an unattainable gold standard against which we compare other models.

K-Nearest Neighbors

Attempts to estimate the conditional distribution of Y given X, then classifies a given observation to the class with the highest *estimated* probability.

- Given a positive integer K and a test observation x_0 , KNN:
 - 1. Identifies the K points in the training data that are closest to x_0 (represented by \mathcal{N}_0)
 - 2. Estimates the conditional probability for class j as a fraction of points in \mathcal{N}_0 whose response value equals j.

$$\circ \ Pr(y=j|x=x_0) = rac{1}{K} {\sum_{i \in \mathcal{N}_0}} I(y_i=j)$$

- 3. Applies Bayes rule and classifies the test observation x_0 to the class with the largest possibility.
- ullet The user picks the value for K.
 - $\circ\,$ A low K will produce a flexible model, but may have low bias but very high variance.
 - \circ The higher the K, the less flexible the model, which will result in low variance but high bias.
- The *training* error and the *test* error do not have a strong relationship.