Introducción a tidyquant

Llevando el análisis financiero al tidyverse

Gabriel Cabrera

16 de agosto de 2018

Información de Contacto

- **★** gcabrerag@fen.uchile.cl
 - 🗞 gcabrerag.rbind.io
 - **У** @GaboC_g
 - **?** @GaboCg
- ♥ Facultad de Economía & Negocios, Universidad de Chile

Introducción a tidyquant

¿Qué es tidyquant?

- Una "megalibrería" creada por Matt Dancho (@mdancho84) y proxima a ser la base del libro "Reproducible Finance with R: Code Flows and Shiny Apps for Portfolio Analysis" de Jonathan K. Regenstein Jr. (@jkregenstein)
- 2 tidyquant integra los mejores recursos/librerías para colectar y analizar datos financieros: zoo, xts, quantmod, TTR y PerformanceAnalytic, con la infraestructura tidy data¹ del tidyverse, permitiendo la interacción entre ambos.
- Nos permite implementar las funciones de ggplot2, para visualizaciones hermosas!!!

4/33

¹Para mayor detalle ver el paper "Tidy Data (2014)" de Hadley Wickham.

Breve resumen de las librerías

- xts o eXtensible time series: Es una estructura dato y a la vez una librería para manipular series de tiempo. Detras se encuentra la estructura zoo.
- quantmod o Quantitative Financial Modelling & Trading Framework: Es una librería diseñada para recuperar, manipular y modelar datos cuantitativos financieros.
- **3** TTR o Technical Trading Rules: Librería que incluye varias funciones para computar análisis técnico.
- PerformanceAnalytics: Librería que incluye una colección de funciones econométricas para desempeño y análisis de riesgo. Se necesita los retornos y no los precios.

Pequeñas funciones con mucho poder

- Obtener data de diversas fuentes podemos usar tq_get().
- 2 Transmutar data: tq_transmute().
- o mutar data: tq_mutate().
- Análisis de "performance": 'tq_performance().

¿Qué sucede si escribimos tq_index(), tq_index_option o tq_exchange()?

Descargando el S&P 500

Cargamos las librerías con las que vamos a trabajar

```
if(!require("pacman")) install.packages("pacman")
p_load("tidyverse","tidyquant","ggthemes")
```

Imaginemos por una momento que necesitamos obtener los precios del S&P 500 desde Enero del 2010 hasta 31 de Agosto del 2018 con periodicidad diaria:

Tener presente que get es que "tipo" de datos financieros van a decargar. Cuando usamos stock.prices, se obtienen los datos desde Yahoo Finance. Si quisiera los finacial statements, escribo get = "financial" y los descarga desde **Google Finance**.

Ahora con quantmod

Podemos hacer los mismo de muchas formas, por ejemplo, usar directamente quantmod

Lo positivo de usar quantmod es que podemos aprovechar las funciones chartSeries()

```
chartSeries(GSPC)
```

Para verlo sin los volume

```
chartSeries(GSPC, TA = NULL)
```

Para ver los últimos 3 meses

```
chartSeries(GSPC, subset = "last 3 months")
```

Podemos replicar el objeto creado sp500_precio usando:

¿ Qué podemos observar?

Ahora con ggplot2

Continuaremos con el objeto sp500_precio, pero lo graficaremos usando ggplot2:

```
g <- ggplot(sp500_precio) + geom_line(aes(date,adjusted), color = "red")
g <- g + labs(title = "Precio S&P 500", subtitle = "Desde Enero 2010 hasta Julio 2018")
g <- g + theme_tq() + scale_color_tq()
g <- g + xlab("Periodo") + ylab("Precio")
g</pre>
```

Precio S&P 500

Desde Enero 2010 hasta Julio 2018

Para realizarlo deben usar la librería ggthemes.

Multiples Datos

Descargando Multiples Datos

Ahora veremos como podemos descargar más un activo. Usaremos las siguientes empresas; Oracle (ORCL), Intel (IT), Nvidia (NVDA) y Netflix (NFLX)

Retornos y Retornos Acumulados

Calculo Retornos

Calculo Retornos Acumulados

Gráficando Retornos

Retornos Activos

-0.2

0.0

0.2

Oracle (ORCL), Intel (IT), Nvidia (NVDA) y Netflix (NFLX) IT **NFLX** 30 20 10 NVDA **ORCL** 30 20 10

Retornos diarios

-0.4

-0.2

0.0

-0.4

Densidad

0.2

Gráficando Retornos Acumulados

Retornos Activos

Análisis Técnico

Bar Chart

S&P 500 Bar Chart

Con un zoom 6 semanas

Candlestick Chart

S&P 500 Candlestick Chart

Con un zoom 6 semanas

Bandas de Bollinger

El análisis Técnico se divide en cuatro tipo: Tendencia (*Trend*), Volatilidad (*Volatility*), Momentum (*Momentum*) y Volumen (*Volume*). Uno de los más utilizados son las bandas de Bollinger, las que son formadas por tres líneas.

• La línea central (Middle Line, ML) es una media móvil simple.

$$SMA = \frac{P_M + P_{M-1} + \dots + P_{M-(n-1)}}{n} = ML$$

• La línea superior (*Top Line*, TL) es la misma línea central pero desplazada hacia arriba a un número determinado de desviaciones estándares (D).

$$TL = ML + (D * \sigma)$$

• La línea inferior (*Bottom Line*, BL) es la línea central desplazada hacia abajo al mismo número de desviaciones estándares.

$$BL = ML - (D * \sigma)$$

Bandas de Bollinger con quantmod

Realizar las Bandas no es difícil:

```
# Bandas de Bollinger
chartSeries(GSPC, subset = "last 3 months")
addBBands()
```

addBBands tiene las siguientes opciones

```
addBBands(n = 20, sd = 2, ma= "SMA", draw = "bands", on = -1)
```

Donde n es el numero de periodo de la media movil, sd las desviaciones estandar y ma el tipo de media movil.

Otros tipos de Análísis en quantmod

Tendencia:

INDICATOR	TTR NAME	QUANTMOD NAME
Welles Wilder's Directional Movement Indicator	ADX	addADX
Double Exponential Moving Average	DEMA	addDEMA
Exponential Moving Average	EMA	addEMA
Simple Moving Average	SMA	addSMA
Parabolic Stop and Reverse	SAR	addSAR
Exponential Volume Weighted Moving Average	EVWMA	addEVWMA
Moving Average Convergence Divergence	MACD	addMACD
Triple Smoothed Exponential Oscillator	TRIX	addTRIX
Weighted Moving Average	WMA	addWMA
ZLEMA	ZLEMA	addZLEMA

Volatility:

INDICATORTTR NAMEQUANTMOD NAMEAverage True RangeATRaddATRBollinger BandsBBandsaddBBandsPrice EnvelopeN/AaddEnvelope			
Bollinger Bands BBands addBBands	INDICATOR	TTR NAME	QUANTMOD NAME
	Bollinger Bands	BBands	${\sf addBBands}$

Volume:

INDICATOR	TTR NAME	QUANTMOD NAME
Chaiken Money Flow	CMF	addCMF
Volume	N/A	addVo

Momentum:

INDICATOR	TTR NAME	QUANTMOD NAME
Commodity Channel Index	CCI	addCCI
Chande Momentum Oscillator	CMO	addCMO
Detrended Price Oscillator	DPO	addDPO
momentum	addMomentum	
Rate of Change	ROC	addROC
Relative Strength Indicator	RSI	addRSI
Stocastic Momentum Index	SMI	addSMI
Williams %R	WPR	addWPR

Bandas de Bollinger con tidyquant

Standard & Poor 500 Candlestick Chart

BBands con SMA, últimos 6 meses

