Quantization

- 1) Full Precision / Half Precision -> Data -> Weights and Parameters
- @ Calibration -> Model Quantization -> Problems
- 3 Modes of Quantization

L> Post Training Quantization
L> Quantization Aware Training

-> Quantization

Quantization is a compression technique that involves mapping high precision values to a lower precision ones.

	2.52	-1.15	1.74	0.050	1	· rem's .
	208	- 0.55	-1.21	2.65	m[rem\
	-0.13	1.60	0.02	-1.31	g ·	- 530)
	2.13	-0.01	1.83	1.65	0	- 276
3e bif float						91.8

181	-54	83	2	
9/100	-۱۱ ج	-58	127	
-6	77	١	- 63	
102	0	83	79	

8 bil int

> Full Precision / Half Precision

> Calibration How to Perform Quantization

- Symmetric Quantization

L> Batch Normalization

Min Max Scaler recognist of notice that

Scale =
$$\frac{\chi_{\text{max}} - \chi_{\text{min}}}{9 \text{max} - 9 \text{min}}$$

$$\gamma$$
ound $\left(\frac{250}{3.92}\right) = 64$

- Asymmetric Quantization

$$\frac{1000 + (-20)}{255 - 0} = \frac{1000 + 20}{255} = 4.0 = 3 \text{ Scale}$$

$$yound\left(\frac{-20}{4}\right) = -5.0$$

$$-5.0 + 5 = 0$$

$$2e70 point$$

> Modes of Quantization

- Post Training Quantization

- Quantization Aware Training (QAT)

