Explanatory Notes for 6.390

Shaunticlair Ruiz (Current TA)

Fall 2022

MIT 6.036 Spring 2022 1

OLS Objective-Matrix Form

This section follows from the "Using Multiple Data Points" topics section.

Putting it together: Matrices

Now, we have shown both a way to express x_1, x_2, x_3 as a single $(d \times 1)$ matrix:

$$\mathbf{x} = \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \mathbf{x}_3 \\ \vdots \\ \mathbf{x}_d \end{bmatrix} \tag{1}$$

We'll leave off the appended 1 for now.

And a way to express $x^{(1)}$, $x^{(2)}$, $x^{(3)}$ as a single $(1 \times n)$ matrix:

$$X = \begin{bmatrix} x^{(1)} & x^{(2)} & x^{(3)} & \cdots & x^{(d)} \end{bmatrix}$$
 (2)

Why not combine them into a single object?

Key Equation 1

X is our **input matrix** in the shape $(d \times n)$ that contains information about both **dimension** and **data points**.

$$X = \begin{bmatrix} x_1^{(1)} & \cdots & x_1^{(n)} \\ \vdots & \ddots & \vdots \\ x_d^{(1)} & \cdots & x_d^{(n)} \end{bmatrix}$$
 d dimensions (3)

If we include the appended 1, we write this as the $((d+1) \times n)$ matrix

$$X = \overbrace{\begin{pmatrix} 1 & \cdots & 1 \\ x_1^{(1)} & \cdots & x_1^{(n)} \\ \vdots & \ddots & \vdots \\ x_d^{(1)} & \cdots & x_d^{(n)} \end{pmatrix}}^{\text{n data points}} d + 1 \text{ dimensions}$$

$$(4)$$

Because each data point y⁽ⁱ⁾ has only one dimension, it's the same as in the last section:

Key Equation 2

Y is our **output matrix** in the shape $(1 \times n)$ that contains all data points.

$$Y = \begin{bmatrix} y^{(1)} & \cdots & y^{(n)} \end{bmatrix}$$

All we have to do is combine our **equations**: We can use the one in the last section, but because θ is a matrix, we have to **transpose** it.

Key Equation 3

Using our appended matrix, we can write our objective function for multiple variables and multiple data points as

$$J = \frac{1}{n} \left(\boldsymbol{\theta}^\mathsf{T} \boldsymbol{X} - \boldsymbol{Y} \right) \left(\boldsymbol{\theta}^\mathsf{T} \boldsymbol{X} - \boldsymbol{Y} \right)^\mathsf{T}$$

It is important to **remember** the **shape** of our objects, as well.

Concept 4

Our matrices have the shapes:

- $X: (d \times n)$ matrix
- Y: $(1 \times n)$ row vector
- θ : $(d \times 1)$ column vector
- θ_0 : (1×1) scalar
- J: (1×1) scalar

If we combine θ_0 into θ , replace every use of d with d+1.

These shapes are worth **memorizing**.

Alterate Notation

One side problem: some ML texts use the **transpose** of X and Y.

Notice that these shapes make sense for our above equation! Try working through the matrix multiplication to verify this.

Notation 5

Some subjects use **different notation** for **matrices**. The main difference is that X and Y use their **transpose**, which we'll notate as

$$\tilde{X} = X^T \qquad \tilde{Y} = Y^T$$

Thus, our equation above becomes

$$J = \frac{1}{n} \left(\tilde{X} \theta - \tilde{Y} \right)^T \left(\tilde{X} \theta - \tilde{Y} \right)$$