

2.5. (proof). Suppose be a simple graph and its complement
<u>Can be disconnected, then there exist two vertices</u> both. has
such that there is not a path connecting them.
but GUG is a complete graph, a controdiction.
2.7 < proof >
(i) Consider a vertex with degree exactly k.
the edges incident to vare e, ez,, ex, connecting
V to other vertices. Removing all this k edges will
<u>disconnect</u> G.
This set of k edges is a cutset, demonstrating
that the edge connectivity $\lambda(G)$ & $\leq k$.
(77)
$k(G)=1$ $\lambda(G)=2$ $\delta(G)=3$
2.8. (ii) : proof> cut
2.8. (ii) : proof, cut (= If G has a vertex v, then any two distinct vertices
are still jained by at least that paths then G is
are still joined by at least two paths, then G is connected by definition a contradiction.
connected of definition. a contradiction,

=> Assume there exist two vertices u and v with
between u and v must share an internal vertex
_ W. Removing w would disconnect u from v. a_
contradiction.
2.12. (Solution)
$u \rightarrow w$
(ii) We deduce by induction.
For G of n vertices.
On= +3 trivial as (i)
2n=k-1. holds. then for $n=k$.
Take a vertexs, which beats all other teams.
Remove s, the remaining graph is a transitive
tournament of size k-1, by hypothesis, it can be.
ranked
Since the transitivity guarantee that s can be
ranked in G. we prowhave shown the result.
(iii) . By (ii) , we note that there is are no directed
paths from the lowest ranked vertex to any sother
vertex. then G is not strongly directed.

LANZHOU UNIVERSITY

2.13: proof>
(1)
(+1) => Suppose G is not strongly connected.
then there a directed just
exist vertices u and v. s.t. there is not
a directed path from u to v.
Denote Riu as the set of vertices that u can't
reach. then $R(u) \neq \phi$.
u∈ G \ R(u), we claim that each arc joing a
vertex of GIR(u) and a vertex of KR(u) is
directed from GIRIU) to RIU). Otherwise, there is
a directed path from u to the vertex in Girun
a contradiction.
then G is not irreduciable. so G is strengly connected
= Suppose G is strongly connected bout not irreduciable
Theren we can split the set of vertices of G into
two disjoint sets V, and V2 so that each arc joining
_ a vertex of V1 and a vertex of V2 is directed from
U1 to U2. Let u ∈ V1 and u ∈ V2, we note that
there is not a directed path from u to u, a
contradiction.

<

前 m 大 曾 LANZHOU UNIVERSITY

21/1 () ()
2.14 (Solution).
The infinite Star obtained by joining the origin
to infinitely many points on the unit circle is an
counterexample.
I
244 44
2.44 (proof >
We prove by induction on k.
k=1. trivial
Suppose it's true for k=n-1 then we have zin-i)
<u>vertices</u> with at most (n-1) ² edges.
Suppose there is an edge between two vertices we
diffuse there is an eage between two to vastore
added. there there are at most 2(n-1) edges added.
because if we add more, there must be a vertex w
which both connected u and u, thus create a triangle.
then we have (k-1,2+21K-1)+1= k2 edges at most.
An example is Kx.x which can reach the upper bound
Problem : los Glandon III I The Land
Problem: Let G be a connected graph. Then dixiz) = dixiy)+diy,
for any triple of vertices x, y z of G.
proof > Let P be the shortest walk from x to y. Q from y to:
Proof > Let P be the Shortest walk from x to y. Q from y to : Combine P.Q. this is a walk from x to Z. If d(x,Z) > d(x,y) + we can walk as PUQ, then it's a contradiction 页 d'y' to the definition of d(x) > condition 页 d'y'
We can walk of PUO then it's a contradiction of dist
to the definition of de a dixitis dixinida 3.