Parameters=

```
param = {
    "booster": "gbtree",
    "learning_rate":0.01,
    "tree_method": "hist",
    "learning rate": 0.1,
    "max_depth": 5,
    "subsample": 0.5,
    "colsample_bytree": 0.4,
    "gamma": 0.1,
    "reg_alpha": 0.001,
    "reg_lambda": 0.1,
    "objective": "reg:pseudohubererror",
    "min_child_weight": 2,
    "eval_metric": "rmse",
    "early_stopping_rounds": 30,
    "random_state": 452,
    "validate_parameters": 1,
xgb_reg = XGB.XGBRegressor(n_estimator=100, **param)
```


Parameters

Param

Max_depth

No scaling

Poly degree 5

```
[0] validation_0-rmse:135987.55982 validation_1-rmse:1479190.65646
[1] validation_0-rmse:135932.81363 validation_1-rmse:1479182.47141
```

Eta 0.001

N_iter = 100

```
[98] validation_0-rmse:1.10650 validation_1-rmse:1.16304
[99] validation_0-rmse:1.10650 validation_1-rmse:1.16304
```

```
param = {
    "booster": "gbtree",
    "learning_rate":0.001,
    "tree_method": "hist",
    "max_depth": 5,
    "subsample": 0.1,
    "colsample_bytree": 0.1,
    "gamma": 0,
    "reg_alpha": 0.0,
```

```
"reg_lambda": 0.0,
    "objective": "reg:squarederror",
    "min_child_weight": 0,
    "eval_metric": "rmse",
    # "early_stopping_rounds": 30,
    "random_state": 452,
    "validate_parameters": 1,
}

xgb_reg = XGB.XGBRegressor(n_estimators=10000, **param)
```

```
validation 0-rmse:1.10586
                                      validation_1-rmse:1.16246
[1]
      validation 0-rmse:1.10523
                                      validation 1-rmse:1.16187
      validation 0-rmse:1.10483
                                      validation 1-rmse:1.16150
      validation_0-rmse:1.10420
                                      validation_1-rmse:1.16090
                                      validation 1-rmse:1.16052
[4]
      validation 0-rmse:1.10379
      validation 0-rmse:1.10321
                                      validation_1-rmse:1.15997
      validation 0-rmse:1.10267
                                      validation 1-rmse:1.15947
      validation 0-rmse:1.10223
                                      validation 1-rmse:1.15907
[8]
      validation 0-rmse:1.10181
                                      validation 1-rmse:1.15868
      validation 0-rmse:1.10118
                                      validation 1-rmse:1.15809
      validation 0-rmse:1.10072
                                      validation_1-rmse:1.15768
                                      validation_1-rmse:1.15721
      validation 0-rmse:1.10021
      validation 0-rmse:1.09978
                                      validation 1-rmse:1.15681
[13]
      validation 0-rmse:1.09909
                                      validation 1-rmse:1.15619
                                      validation 1-rmse:1.15573
[14]
      validation 0-rmse:1.09857
                                      validation_1-rmse:1.15472
[15]
      validation 0-rmse:1.09753
      validation 0-rmse:1.09712
                                      validation 1-rmse:1.15434
[17]
      validation 0-rmse:1.09620
                                      validation 1-rmse:1.15346
      validation 0-rmse:1.09531
                                      validation 1-rmse:1.15260
      validation 0-rmse:1.09480
                                      validation 1-rmse:1.15213
      validation 0-rmse:1.09378
                                      validation_1-rmse:1.15120
                                      validation_1-rmse:1.15061
[21]
      validation 0-rmse:1.09313
                                      validation_1-rmse:1.15023
      validation 0-rmse:1.09274
      validation 0-rmse:1.09235
                                      validation 1-rmse:1.14987
[24]
      validation 0-rmse:1.09195
                                      validation 1-rmse:1.14950
[9996] validation 0-rmse:0.42087
                                      validation_1-rmse:0.56629
[9997] validation 0-rmse:0.42086
                                      validation 1-rmse:0.56628
[9998]validation 0-rmse:0.42086
                                      validation 1-rmse:0.56628
[9999] validation 0-rmse:0.42086
                                      validation 1-rmse:0.56626
```



```
param = {
    "booster": "gbtree",
    "learning_rate": 0.01,
    "tree_method": "hist",
    "max_depth": 5,
    "subsample": 0.5,
    "colsample_bytree": 0.5,
    "gamma": 0.0,
    "reg_alpha": 0.0,
    "reg lambda": 0.0,
    "objective": "reg:squarederror",
    "min_child_weight": 0,
    "eval_metric": "rmse",
    # "early stopping rounds": 30,
    "random_state": 452,
    "validate_parameters": 10,
xgb_reg = XGB.XGBRegressor(n_estimators=1000, **param)
```

```
[0] validation_0-rmse:1.09993 validation_1-rmse:1.15705
[1] validation_0-rmse:1.09323 validation_1-rmse:1.15106
[2] validation_0-rmse:1.08721 validation_1-rmse:1.14570
[3] validation_0-rmse:1.06872 validation_1-rmse:1.12789
[4] validation_0-rmse:1.06249 validation_1-rmse:1.12190
```

```
validation 0-rmse:1.05646
                                      validation 1-rmse:1.11638
[7]
      validation 0-rmse:1.05013
                                      validation 1-rmse:1.11090
[8]
      validation 0-rmse:1.04416
                                      validation_1-rmse:1.10566
                                      validation_1-rmse:1.10041
      validation_0-rmse:1.03829
      validation 0-rmse:1.02936
                                      validation 1-rmse:1.09241
      validation 0-rmse:1.02353
                                      validation 1-rmse:1.08722
      validation 0-rmse:1.01903
                                      validation 1-rmse:1.08318
      validation 0-rmse:1.01310
                                      validation_1-rmse:1.07805
                                      validation_1-rmse:1.07344
[14]
      validation 0-rmse:1.00784
      validation 0-rmse:0.99910
                                      validation 1-rmse:1.06493
      validation 0-rmse:0.99468
                                      validation 1-rmse:1.06125
      validation 0-rmse:0.98579
                                      validation 1-rmse:1.05363
                                      validation_1-rmse:1.04514
      validation 0-rmse:0.97725
[19]
      validation 0-rmse:0.97257
                                      validation 1-rmse:1.04117
      validation 0-rmse:0.96406
                                      validation 1-rmse:1.03314
                                      validation 1-rmse:1.02566
[21]
      validation 0-rmse:0.95544
      validation_0-rmse:0.95151
                                      validation_1-rmse:1.02207
      validation 0-rmse:0.94688
                                      validation_1-rmse:1.01826
[24]
      validation_0-rmse:0.94220
                                      validation_1-rmse:1.01444
      validation 0-rmse:0.24250
                                      validation 1-rmse:0.52035
     validation 0-rmse:0.24247
                                      validation 1-rmse:0.52033
     validation 0-rmse:0.24244
                                      validation 1-rmse:0.52033
     validation 0-rmse:0.24236
                                      validation 1-rmse:0.52063
```


Test 1

```
param = {
    "objective": "reg:squarederror",
    "min_child_weight": 2,
    "base_score": 0.4,
    "eval_metric": "rmse",
    "random_state": 452
}
```

The best iteration and the R2 Scores is listed below'

	Results
Best_iteration	99.00
r2 train	0.99
r2 train after validation	0.68
r2 test	0.67
r2 test after validation	0.53

None

Mean Value of MPHE - Training = 0.14692556964733405 Mean Value of MPHE - Validation = 0.6118852138669802

```
param = {
    "booster": "gbtree",
    "tree method": "hist",
    "learning_rate": 0.01,
    "max depth": 5,
    "subsample": 0.5,
    "sampling method": "uniform",
    "colsample_bytree": 0.4,
    "gamma": 0.1,
    "reg_alpha": 0.001,
    "reg_lambda": 0.1,
    "objective": "reg:squarederror",
    "min_child_weight": 2,
    "base_score": 0.4,
    "eval metric": "rmse",
    "random_state": 452,
    "validate_parameters": 1,
```

'The best iteration and the R2 Scores is listed below'

Results

Best_iteration 99.00

r2 train 0.61

r2 train after validation 0.05

r2 test 0.51

r2 test after validation 0.19

None

Mean Value of MPHE - Training = 0.7999582952738752 Mean Value of MPHE - Validation = 0.8906350805804313

```
param = {
    "booster": "gbtree",
    "learning rate":0.01,
    "tree method": "hist",
    "max depth": 10,
    "subsample": 0.5,
    "colsample bytree": 0.5,
    "sampling method": "uniform",
    "gamma": 0.1,
    "reg alpha": 5.5,
    "reg lambda": 10.50,
    "objective": "reg:pseudohubererror",
    "min child weight": 54,
    "eval_metric": "mphe",
    "random state": 15615,
    "huber slope": np.linspace(start=10.0, stop=15.0, num=1, endpoint=True,
dtype=float).tolist()[0],
    "validate_parameters": 1,
```

'The best iteration and the R2 Scores is listed below'

Results

Best_iteration 999.00
r2 train 0.85
r2 train after validation 0.66
r2 test 0.71
r2 test after validation 0.57

None

Mean Value of MPHE - Training = 0.11555719663035964 Mean Value of MPHE - Validation = 0.16038161183126046

Test 4

```
param = {
    "booster": "gbtree",
    "learning_rate":0.01,
    "tree_method": "hist",
    "max_depth": 20,
    "subsample": 1.0,
    "colsample_bytree": 1.0,
    "gamma": 0.1,
    "reg_alpha": 5.5,
    "reg_lambda": 5.50,
    "objective": "reg:pseudohubererror",
    "min_child_weight": 5,
```

```
"eval_metric": "mphe",
    "random_state": 0,
    "huber_slope": np.linspace(start=10.0, stop=15.0, num=1, endpoint=True,
dtype=float).tolist()[0],
    "validate_parameters": 1,
}
```

'The best iteration and the R2 Scores is listed below'

Results

Best iteration 4,999.00

r2 train 0.95

r2 train after validation 0.68

r2 test 0.71

r2 test after validation 0.56

None

Mean Value of MPHE - Training = 0.02996989604642381 Mean Value of MPHE - Validation = 0.12104693883360358

Test 5

```
param = {
    "booster": "gbtree",
    "learning_rate":0.01,
    "tree_method": "hist",
    "max_depth": 20,
    "subsample": 1.0,
    "colsample_bytree": 1.0,
    "gamma": 0.1,
    "reg_alpha": 5.5,
    "reg_lambda": 10.50,
    "objective": "reg:pseudohubererror",
    "min_child_weight": 10,
    "eval metric": "mphe",
    "random_state": 42,
    "huber_slope": np.linspace(start=10.0, stop=15.0, num=1, endpoint=True,
dtype=float).tolist()[0],
    "validate_parameters": 1,
usecols=["price", "plot_area", "habitable_surface", "bedroom_count",
"land_surface", "room_count"])
```

'The best iteration and the R2 Scores is listed below'

Results

Best_iteration 999.00 r2 train 0.85

Results

r2 train after validation 0.66

r2 test 0.71

r2 test after validation 0.57

None

Mean Value of MPHE - Training = 0.11555719663035964 Mean Value of MPHE - Validation = 0.16038161183126046

Test 6

```
param = {
    "booster": "gbtree",
    "learning rate":0.01,
    "tree_method": "hist",
    "max depth": 20,
    "subsample": 1.0,
    "colsample_bytree": 1.0,
    "gamma": 0.1,
    "reg_alpha": 10.5,
    "reg_lambda": 15.50,
    "objective": "reg:pseudohubererror",
    "min child weight": 10.50,
    "eval_metric": "mphe",
    "random state": 42,
    "n jobs":-1,
    "huber slope": np.linspace(start=10.0, stop=15.0, num=1, endpoint=True,
dtype=float).tolist()[0],
    "validate_parameters": 1,
# load fit predict regression model
xgb_reg = XGB.XGBRegressor(n_estimators=5000, **param)
```

'The best iteration and the R2 Scores is listed below'

	Results
Best_iteration	4,999.00
r2 train	0.92
r2 train after 5 validation	0.68
r2 test	0.74
r2 test after 5 after validation	0.54
None	

Mean Value of MPHE - Training = 0.0441294333405825 Mean Value of MPHE - Validation = 0.11487400781310625