A Test File

Friedrich Leisch

October 24, 2016

A simple example: the integers from 1 to 10 are

[1] 1 2 3 4 5 6 7 8 9 10

We can also emulate a simple calculator:

- > 1 + 1
- [1] 2
- > 1 + pi
- [1] 4.141593
- > sin(pi/2)
- [1] 1

Now we look at Gaussian data:

One Sample t-test

```
data: x t = -2.4319, df = 19, p-value = 0.02508 alternative hypothesis: true mean is not equal to 0 95 percent confidence interval: -0.77804476 -0.05826645 sample estimates: mean of x -0.4181556
```

Note that we can easily integrate some numbers into standard text: The third element of vector \mathbf{x} is 1.49337337333103, the p-value of the test is 0.025081.

Now we look at a summary of the famous iris data set, and we want to see the commands in the code chunks:

> data(iris) > summary(iris)

Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
Min. :4.300	Min. :2.000	Min. :1.000	Min. :0.100	setosa :50
1st Qu.:5.100	1st Qu.:2.800	1st Qu.:1.600	1st Qu.:0.300	versicolor:50
Median :5.800	Median :3.000	Median :4.350	Median :1.300	virginica:50
Mean :5.843	Mean :3.057	Mean :3.758	Mean :1.199	
3rd Qu.:6.400	3rd Qu.:3.300	3rd Qu.:5.100	3rd Qu.:1.800	
Max. :7.900	Max. :4.400	Max. :6.900	Max. :2.500	

> library(graphics) > pairs(iris)

Figure 1: Pairs plot of the iris data.

> boxplot(Sepal.Length~Species, data=iris)

Figure 2: Boxplot of sepal length grouped by species.