ORG MODE introduction (BIBS)!!!!

Vaitea OPUU

Contents

1	Late	ex pour les rapports	2
	1.1	les formules de maths	2
	1.2		2
2	com	m nmandes~R	3
	2.1	Summary et autre calculs	3
	2.2	Figure sous R	
		2.2.1 Histogramme sur le tableau origin	
		2.2.2 Plot normale	
		2.2.3 Autres graphiques	
		2.2.0 Hadres Suppliques	_
3	Con	mmandes sql	6
4	Sch	éma uml	6
5	Pro	ogrammation	7
	5.1	Python	7
		5.1.1 Fonction factorielle	
		5.1.2 Autre	
	5.2	Haskell	
	5.3		
	5.4	Java	
	5.5	Shell	
	5.6	Et pas mal d'autre langages	
	0.0	Et das mai u aune langages	ل ۱

1 Latex pour les rapports

1.1 les formules de maths

Produit des densités et somme des logarithme.

$$L = \prod_{i} f(x_i)$$

$$log(L) = \sum_{i} log(f(x_i))$$

$$X \sim \mathcal{N}_{0.1}$$
(1)

1.2 Algorithmes

```
\begin{algorithm}[H]
  \Fn{gillepsie}{}{
    \KwIn{\Protein{} Recepteur, \Protein{} Ligand, \Real{} score, \Entier{} tau}
    \KwOut{\Protein{} Ligand}\\
    \tcp*[h]{On calcul si il existe un bon mouvement}\\
    new-ligand, new-score $\leftarrow$ simulation(récepteur, ligand, score)\\
    \uIf(\tcp*[h]{si on trouve un mouvement favorable}){new-socre < score}{
      \Return{gillepsie(recepteur, new-ligand, new-score, tau)}
    }
    \tcp*[h]{On va diviser la distance entre les deux par \textit{tau}}\\
    new-ligand $\leftarrow$ rapproche(ligand, tau)\\
    new-score $\leftarrow$ score(récepteur, ligand)\\
    \uElseIf(\tcp*[h]{aucun mouvement favorable})\{tau < 15 et
      collision(récepteur, ligand)}{
      \tcp*[h]{collision renvoi false si collision entre récepteur et ligand}
      \Return{gillepsie(récepteur, new-ligand, new-score, tau)}
    }
    \uElseIf(\tcp*[h]{mouvement trop grand}){tau < 15}{
      \tcp*[h]{diminution du mouvement}\\
      \Return{gillepsie(recepteur, new-ligand, new-score, tau+1)}\\
    }
    \Return{ligand}
```

```
\end{algorithm}
 1 Function gillepsie
   Entrées : Protein Recepteur, Protein Ligand, Real score, Entier tau
   Output: Protein Ligand
   // On calcul si il existe un bon mouvement
 2 new-ligand, new-score ← simulation(récepteur, ligand, score)
 {f si} new\text{-}socre < score {f alors} // {f si} on trouve un mouvement favorable
 4 | retourner gillepsie(recepteur, new-ligand, new-score, tau)
   // On va diviser la distance entre les deux par tau
 5 new-ligand \leftarrow rapproche(ligand, tau)
 6 new-score \leftarrow score(récepteur, ligand)
 7 sinon si tau < 15 et collision(r\'ecepteur, ligand) alors // aucun mouvement favorable
      // collision renvoi false si collision entre récepteur et ligand retourner
      gillepsie(récepteur, new-ligand, new-score, tau)
 {f s} sinon si tau < 15 alors // mouvement trop grand
      // diminution du mouvement
      retourner gillepsie(recepteur, new-ligand, new-score, tau+1)
```

Algorithme 1 : Gillespie

2 commandes R

10 retourner ligand

}

\caption{Gillespie}

2.1 Summary et autre calculs

```
Sortie du script R en verbatim.
```

```
dat <- read.table("./data/cafe.dat", header = T)
summary(dat)</pre>
```

1st Qu.:1.000 1st Qu.:14.72 1st Qu.:19.78 1st Qu.: 8.620 Median :3.000 Median :16.41 Median :23.41 Median :10.010 Mean :2.974 Mean :16.55 Mean :24.03 Mean : 9.963 3rd Qu.:4.000 3rd Qu.:18.16 3rd Qu.:27.51 3rd Qu.:11.490 Max. :7.000 Max. :22.81 Max. :41.15 Max. :14.520 xb xy xgn Min. : 6.33 Min. : 1.920 Min. :1.660 1st Qu.:12.06 1st Qu.: 2.890 1st Qu.:2.420 Median :16.29 Median : 3.790 Median :3.140 Mean :16.76 Mean : 4.249 Mean :3.464 3rd Qu.:20.89 3rd Qu.: 5.060 3rd Qu.:4.130	Origine	Perte	Lumin	xa
Median :3.000 Median :16.41 Median :23.41 Median :10.010 Mean :2.974 Mean :16.55 Mean :24.03 Mean : 9.963 3rd Qu.:4.000 3rd Qu.:18.16 3rd Qu.:27.51 3rd Qu.:11.490 Max. :7.000 Max. :22.81 Max. :41.15 Max. :14.520 xb xy xgn Min. : 6.33 Min. : 1.920 Min. :1.660 1st Qu.:12.06 1st Qu.: 2.890 1st Qu.:2.420 Median :16.29 Median : 3.790 Median :3.140 Mean :16.76 Mean : 4.249 Mean :3.464 3rd Qu.:20.89 3rd Qu.: 5.060 3rd Qu.:4.130	Min. :1.000	Min. :11.87	Min. :15.06	Min. : 5.730
Mean :2.974 Mean :16.55 Mean :24.03 Mean : 9.963 3rd Qu.:4.000 3rd Qu.:18.16 3rd Qu.:27.51 3rd Qu.:11.490 Max. :7.000 Max. :22.81 Max. :41.15 Max. :14.520 xb xy xgn Min. : 6.33 Min. : 1.920 Min. : 1.660 1st Qu.:12.06 1st Qu.: 2.890 1st Qu.:2.420 Median : 16.29 Median : 3.790 Median : 3.140 Mean : 16.76 Mean : 4.249 Mean : 3.464 3rd Qu.: 20.89 3rd Qu.: 5.060 3rd Qu.: 4.130	1st Qu.:1.000	1st Qu.:14.72	1st Qu.:19.78	1st Qu.: 8.620
3rd Qu.:4.000 3rd Qu.:18.16 3rd Qu.:27.51 3rd Qu.:11.490 Max. :7.000 Max. :22.81 Max. :41.15 Max. :14.520 xb xy xgn Min. : 6.33 Min. : 1.920 Min. :1.660 1st Qu.:12.06 1st Qu.: 2.890 1st Qu.:2.420 Median :16.29 Median : 3.790 Median :3.140 Mean :16.76 Mean : 4.249 Mean :3.464 3rd Qu.:20.89 3rd Qu.: 5.060 3rd Qu.:4.130	Median :3.000	Median :16.41	Median :23.41	Median :10.010
Max. :7.000 Max. :22.81 Max. :41.15 Max. :14.520 xb xy xgn Min. : 6.33 Min. : 1.920 Min. : 1.660 1st Qu.: 12.06 1st Qu.: 2.890 1st Qu.: 2.420 Median : 16.29 Median : 3.790 Median : 3.140 Mean : 16.76 Mean : 4.249 Mean : 3.464 3rd Qu.: 20.89 3rd Qu.: 5.060 3rd Qu.: 4.130	Mean :2.974	Mean :16.55	Mean :24.03	Mean : 9.963
xb xy xgn Min. : 6.33 Min. : 1.920 Min. : 1.660 1st Qu.:12.06 1st Qu.: 2.890 1st Qu.:2.420 Median :16.29 Median : 3.790 Median : 3.140 Mean :16.76 Mean : 4.249 Mean : 3.464 3rd Qu.:20.89 3rd Qu.: 5.060 3rd Qu.:4.130	3rd Qu.:4.000	3rd Qu.:18.16	3rd Qu.:27.51	3rd Qu.:11.490
Min. : 6.33 Min. : 1.920 Min. :1.660 1st Qu.:12.06 1st Qu.: 2.890 1st Qu.:2.420 Median :16.29 Median : 3.790 Median :3.140 Mean :16.76 Mean : 4.249 Mean :3.464 3rd Qu.:20.89 3rd Qu.: 5.060 3rd Qu.:4.130	Max. :7.000	Max. :22.81	Max. :41.15	Max. :14.520
1st Qu.:12.06	xb	xy	xgn	
Median: 16.29 Median: 3.790 Median: 3.140 Mean: 16.76 Mean: 4.249 Mean: 3.464 3rd Qu.: 20.89 3rd Qu.: 5.060 3rd Qu.: 4.130	Min. : 6.33	Min. : 1.920	Min. :1.660	
Mean :16.76 Mean : 4.249 Mean :3.464 3rd Qu.:20.89 3rd Qu.: 5.060 3rd Qu.:4.130	1st Qu.:12.06	1st Qu.: 2.890	1st Qu.:2.420	
3rd Qu.:20.89 3rd Qu.: 5.060 3rd Qu.:4.130	Median :16.29	Median : 3.790	Median :3.140	
·	Mean :16.76	Mean : 4.249	Mean :3.464	
Max. :30.57 Max. :11.970 Max. :9.120	3rd Qu.:20.89	3rd Qu.: 5.060	3rd Qu.:4.130	
141. 101.0. Har. 111.0.0 Har. 10.120	Max. :30.57	Max. :11.970	Max. :9.120	

head(dat)

Origine	Perte	Lumin	xa	xb	xy	xgn
1	12.24	29.62	12.41	23.66	6.08	4.61
1	13.2	27.51	12.16	21.72	5.28	3.96
1	13.52	26.54	12.05	21.03	4.93	3.74
1	13.52	26.11	11.69	20.09	4.79	3.63
1	13.68	25.59	11.67	19.75	4.61	3.54
1	13.81	25	11.38	19.11	4.41	3.36

2.2 Figure sous R

2.2.1 Histogramme sur le tableau origin

On peut prendre en entrée pour un script R, un tableau dans le fichier org. C'est pas un peu cool ça ?! hist(origin\$Lumin, main = "histogramme Lumin", xlab = "lumin")

Figure 1: hist

2.2.2 Plot normale

Et evidement que l'on peut faire communiquer les blocs de codes entre eux. Pas besoin de déclarer plusieurs fois le tableau dat.

```
plot(dat$Lumin, dat$Perte, main = "lumin vs perte", xlab = "lumin", ylab = "perte")
lines(lowess(dat$Perte ~ dat$Lumin), col = "red", lwd = 2, xlim = c(0, 50))
```

2.2.3 Autres graphiques

```
hist(dat$Perte, prob = T, main = "lumin", xlab = "lumin", ylab = "frequency")
lines(density(dat$Perte), col = "red", lwd = 2, xlim = c(0, 50))
```

heatmap(cov(dat))

lumin vs perte

Figure 2: plot

Figure 3: hist2

Figure 4: heatmap

3 Commandes sql

Petit exemple de requête sql sur une base de données en local. Il suffit de lui fournir les informations suivantes:

#+name: test_request

#+header: :engine postgresql
#+header: :dbhost localhost
#+header: :dbuser postgres
#+header: :dbpassword password
#+header: :database postgres

select * from projet limit 10

id	project.type	project.status
1	ChIP-Sequencing	incomplete
2	Chloroplast	Permanent Draft
3	Chloroplast	incomplete
4	Exome	incomplete
5	Genome fragments	complete
6	Genome fragments	incomplete
7	Metagenome	incomplete
8	Methylation	incomplete
9	Methylation	targeted
10	Mitochondria	Permanent Draft

EXPLAIN ANALYSE select * from projet limit 10

QUERY PLAN

Limit (cost=0.00..0.41 rows=10 width=72) (actual time=0.021..0.026 rows=10 loops=1)

-> Seq Scan on projet (cost=0.00..1.32 rows=32 width=72) (actual time=0.020..0.024 rows=10 loops=1)

Planning time: 0.665 ms Execution time: 0.077 ms

4 Schéma uml

Figure 5: schéma uml

5 Programmation

5.1 Python

5.1.1 Fonction factorielle

```
def factorial(n):
    if n == 1:
        return 1
    else:
        return factorial(n-1) * n
factorial(10)
3628800
5.1.2 Autre
Comme pour R, les blocs de codes peuvent aussi communiquer.
def affiche(n):
    gen = (i for i in range(factorial(n)))
    return [i for i in gen]
affiche(3)
[0, 1, 2, 3, 4, 5]
def affiche_table(table):
    result = np.
    for t in table:
        result.append(t)
    return result
```

map(lambda x: round(4+x), affiche_table(origin)[0])

5.2 Haskell


```
main :: IO ()
main = do
    fibo 10
fibos = 0 : 1 : [ (+) \times y \mid (x, y) \leftarrow (zip fibos (tail fibos))]
fibo n = fibos !! n
55
5.3 C
int main(int argc, char *argv[]) {
  int N = 10;
  int i;
  for (i = 0; i < N; i++) {
    printf("hello %d\n", i);
  }
  return 0;
}
                                             hello 0
                                             hello
                                                   1
                                             hello
                                             hello
                                                   3
                                             hello
                                                   4
                                             hello 5
                                             hello 6
                                             hello
                                                   7
                                             hello 8
                                             hello 9
5.4 Java
public class Hello {
    public int[][] pascal(int n) {
        int[][] score = new int[n][n];
        int p;
        for (int i = 1; i < n; i++) {
            score[i][0] = 1;
```

for (int j = 1; j < i; j++) {

```
score[i][j] = score[i-1][j-1] + score[i-1][j];
             }
         }
         return(score);
    }
    public void affiche(int[][] mat, int N) {
         for (int i = 0; i < N; i++) {
             for(int j = 0; j < N; j++) {
                  System.out.print(mat[i][j]+"|");
             System.out.println("");
         }
    }
    public static void main(String[] args) {
         Hello c = new Hello();
         int[][] p = c.pascal(taille);
         c.affiche(p, taille);
    }
}
                                  0
                                     0
                                                   0
                                                             0
                                                                0
                                                                    0
                                          0
                                              0
                                                        0
                                                                       0
                                  1
                                     0
                                          0
                                              0
                                                   0
                                                        0
                                                             0
                                                                0
                                                                    0
                                                                       0
                                  1
                                     1
                                          0
                                              0
                                                   0
                                                        0
                                                             0
                                                                0
                                                                    0
                                                                       0
                                  1
                                     2
                                          1
                                                   0
                                                             0
                                              0
                                                        0
                                                                0
                                                                    0
                                                                       0
                                  1
                                          3
                                                   0
                                     3
                                               1
                                                        0
                                                             0
                                                                0
                                                                    0
                                                                       0
                                  1
                                          6
                                     4
                                              4
                                                   1
                                                                       0
                                  1
                                     5
                                         10
                                              10
                                                   5
                                                             0
                                                                0
                                                                    0
                                                                       0
                                  1
                                     6
                                         15
                                              20
                                                  15
                                                        6
                                                             1
                                                                    0
                                                                       0
                                                                0
                                  1
                                     7
                                         21
                                              35
                                                  35
                                                       21
                                                             7
                                                                1
                                                                    0
                                                                       0
                                  1
                                     8
                                         28
                                                           28
                                             56
                                                  70
                                                       56
                                                                8
                                                                    1
                                                                       0
      Shell
5.5
ls -lah .
                             56
                 total
                             10
                                                     340B
                 drwxr-xr-x
                                  vaiteaopuu
                                               staff
                                                             29
                                                                 jan
                                                                       11:20
                                                                              0
                              7
                 drwxr-xr-x
                                  vaiteaopuu
                                               staff
                                                     238B
                                                             28
                                                                 jan
                                                                       15:28
                                                             29
                 -rw-r-r-
                               1
                                  vaiteaopuu
                                               staff
                                                     1.0K
                                                                 jan
                                                                       10:17
                                                                              Hello.class
                               1
                                  vaiteaopuu
                                                     727B
                                                             29
                                                                       10:18
                                                                              Hello.java
                 -rw-r-r-
                                               staff
                                                                 jan
                 drwxr-xr-x
                               3
                                  vaiteaopuu
                                               staff
                                                     102B
                                                             28
                                                                 jan
                                                                       17:36
                                                                              auto
                                  vaiteaopuu
                 drwxr-xr-x
                               3
                                               staff
                                                     102B
                                                             29
                                                                       09:34
                                                                              css
                                                                 jan
                 drwxr-xr-x
                               3
                                  vaiteaopuu
                                               staff
                                                     102B
                                                             28
                                                                 jan
                                                                       16:23
                                                                              data
                             16
                                                     544B
                                                             29
                 drwxr-xr-x
                                  vaiteaopuu
                                               staff
                                                                 jan
                                                                       11:11
                                                                              images
                               1
                                  vaiteaopuu
                                                     13K
                                                             29
                                                                       11:20
                                                                              rapport.org
                 -rw-r-r-
                                               staff
                                                                 jan
                                                             29
                                                                              test.hs
                 -rw-r-r-
                               1
                                  vaiteaopuu
                                               staff
                                                     474B
                                                                 jan
                                                                       10:53
cowsay ORG IS GREAT
< ORG IS GREAT >
 -----
```

cowsay "\$(python ../markov/markov.py ../song2 3 2)"

5.6 Et pas mal d'autre langages ...

Asymptote asymptote C C Clojure clojure D d Graphviz dot Emacs Lisp emacs-lisp	Language	Identifier
Clojure clojure D d Graphviz dot Emacs Lisp emacs-lisp	Asymptote	asymptote
D d dot Emacs Lisp emacs-lisp	\mathbf{C}	\mathbf{C}
Graphviz dot Emacs Lisp emacs-lisp	Clojure	clojure
Emacs Lisp emacs-lisp	D	d
	Graphviz	dot
1 . 1 .	Emacs Lisp	emacs-lisp
gnuplot gnuplot	$\operatorname{gnuplot}$	gnuplot
Java java	Java	java
IATEX latex	ĿATEX	latex
Lisp lisp	Lisp	lisp
Lua lua	Lua	lua
Mscgen mscgen	Mscgen	mscgen
Octave octave	Octave	octave
Oz oz	Oz	OZ
Plantuml plantuml	Plantuml	plantuml
Python python	Python	python
Ruby ruby	Ruby	ruby
Scheme scheme	Scheme	scheme
Sed sed	Sed	sed
SQL sql	SQL	sql
Awk awk	Awk	awk
C++ $C++$	C++	C++
CSS css	CSS	CSS
ditaa ditaa	ditaa	ditaa
Emacs Calc calc	Emacs Calc	calc
Fortran fortran	Fortran	fortran
Haskell haskell	Haskell	haskell
Javascript js	Javascript	js
Ledger ledger	Ledger	ledger
Lilypond lilypond	Lilypond	lilypond
MATLAB matlab	MATLAB	matlab
Objective Caml ocaml	Objective Caml	ocaml
Org mode org	Org mode	org
Perl perl	Perl	perl
Processing.js processing	Processing.js	processing
R	R	
Sass sass	Sass	sass
GNU Screen screen	GNU Screen	screen
shell sh	shell	sh
SQLite sqlite	SQLite	sqlite

ile: https://cdn.rawgit.com/syl20bnr/spacemacs/442d025779 da2f62fc86c2082703697714db6514/assets/spacemacs/syl20bnr/spacemacs/