Efekt úhlové rychlosti na odraz míčku První část experimentu a základ teorie

Jáchym Löwenhöffer

GEVO JM

9. Ledna 2024

Outline

- Uvedení do problému
- 2 Teorie
- 3 Experiment
- Otázky

 Uvedení do problému
 Teorie
 Experiment
 Otázky

 ●O
 OO
 OO
 O

Nastínění problému

 $v_{1,2}^{-}$ = rychlost před/po odrazu $\omega_{1,2}$ = spin před/po odrazu $\theta_{1,2}$ = úhel dopadu/odrazu

Výzkumná otázka

Pro jaké hodnoty úhlové rychlosti rotace míčku při dané počáteční rychlosti dochází při dopadu na tuhou podložku k odrazu, který směřuje zpět?

Teorie

Triviální příklady:

- Když míček nepadá dolů nemá se od čeho odrazit
- Bez úhlové rotace se úhel dopadu rovná úhlu odrazu
- Když míček letí kolmo na povrch stačí jakýkoliv backspin a odrazí se zpět

Předpoklady

- Uvažujeme jen deformaci míčku, deformaci povrchu zanedbáváme
- Popisujeme jen samotný odraz
- Normálová síla působí jen v jednom bodě
- Při odrazu dochází jen ke smýkání

Simulace

Výsledky

Pro materiálové konstanty relevantní pro golfový míček na žulovém povrchu:

zpětný odraz \iff úhel dopadu menší než 69°

Tedy směr odrazu není závislý ani na počíteční rychlosti ani na počátečním spinu.

Závěr

Cíl: pro různé typy míčků a povrchů být schopný předpovědět jakým směrem se míček odrazí a najít takový spin aby se vracel zpátky ($v_{x2} < 0$).

Postup:

- Simulace pro jednoduché podmínky
- Základy teorie
- Rozšířit simulaci na větší množství případů
- Rozlišit jaký bude průběh odrazu
- Porovnat simulovaná data s reálnými (ne nutně mými)

