Pekan ini kita masih membahas metode simpleks. Pada pekan lalu kita mengupas 3 hal berikut: mengubah masalah PL ke bentuk kanonik, matriks bentuk kanonik masalah PL, membentuk tabel awal masalah PL. Perhatikan flowchart atau diagram alur algoritma metode simpleks.

Flowchart algoritma simpleks (bentuk standar, $\bar{b} \geq \bar{0}$)

Berdasar flowchart tersebut, yang telah kita lakukan hingga pekan lalu baru sampai pada persiapan tabel simpleks awal. Untuk selanjutnya kita akan melakukan iterasi hingga optimum diperoleh.

- 1. Pada baris kedua tabel ditulis variabel-variabel $x_1, ..., x_n, s_1, ..., s_m$, dengan baris pertama tabel adalah c_i yaitu koefisien variabel pada fungsi tujuan.
- 2. Baris kedua dari bawah, disebut baris tujuan (z_j) , sedangkan baris terakhir tabel $(z_j c_j)$ adalah baris indikator keoptimuman.
- 3. Baris-baris ketiga dst (di tengah tabel) adalah matriks koefisien kendala utama.
- 4. Kolom kedua pada tabel adalah kolom variabel basis, dengan nilai koefisien variabel basis ada di kolom pertama tabel.
- 5. Kolom kedua terakhir adalah kolom nilai kanan/batasan sumber, dan
- 6. kolom terakhir tabel adalah kolom rasio, yang menjadi indikator pemilihan variabel keluar.

Dalam tabel, variabel basis mempunyai sifat-sifat berikut:

- 1. Muncul dalam satu persamaan dan dalam persamaan tersebut ia mempunyai koefisien +1.
- 2. Kolomnya berlabel 0 semua (termasuk elemen baris tujuan) kecuali untuk baris berlabel +1 sebagai variabel basis.
- 3. Nilai variabel basis adalah elemen dalam baris yang sama dengan kolom kedua dari kanan (b_i) .

Contoh:

Variabel s₁

- 1. Persamaannya: Lihat baris pertama matrik koefisien kendala utama dan perhatikan baris ke-2, yaitu $a_{11}x_1 + \cdots + a_{1n}x_n + 1s_1 + \cdots + 0s_m$.
- 2. Perhatikan kolom s_1 matriks koefisien kendala utama:

$$\begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$
 m baris dengan 0 sebanyak $m-1$ baris.

3. Perhatikan kolom nilai ruas kanan: b_1 adalah nilai variabel basis s_1 .

Bisa kalian coba untuk variabel basis yang lain.

Flowchart dapat kita terjemahkan dalam langkah-langkah algoritma simpleks berikut ini.

Langkah-langkah algoritma simpleks:

- 1. Bentuk masalah PL menjadi bentuk kanoniknya.
- 2. Susun tabel awal simpleksnya.
- 3. Uji keoptimumannya.

Tabel simpleks dikatakan optimum jika $z_i - c_i \ge 0$, $\forall j = 1, 2, ..., m + n$.

Nilai fungsi tujuan ada pada baris ke-m+1 kolom b_i dan plbnya adalah susunan nilai b_i untuk variabel basis dan nol untuk variabel non basis.

Jika masih terdapat $z_i - c_i < 0$, lanjutkan ke langkah 4.

4. Mengubah plb (Memperbaiki Tabel)

Mengubah plb mempunyai makna mengganti suatu variabel basis (VB) dengan VB baru dengan harapan VB baru tersebut akan mengoptimumkan fungsi tujuan. Dalam hal ini berarti membentuk tabel baru sebagai tabel lanjutan, hasil iterasi (hasil uji optimum).

Perhatikan tabel awal dengan keterangan berikut:

Tabel awal simpleks			Vari	abel mas	uk								
	c_j	c_1	•••	c_k	•••	c_n	0	•••	0	•••	0	b_i	R_i
$\bar{c_i}$	$\bar{x}_i \setminus x_j$	x_1	•••	x_k	•••	x_n	s_1	•••	s_l	•••	s_m	\mathcal{S}_l	\mathbf{r}_{l}
0	s_1	a ₁₁	•••	a_{1k}	•••	a_{1n}	1		0	•••	0	b_1	R_1
			•••	/	•••	•••	•••	•••	•••	•••		•••	
0	s_l	a_{l1}	•••	a_{lk}		a_{ln}	0	•••	1	•••	0	b_l	R_l
	···		•••			•••	•••	•••	•••	•••		•••	•••
0	$\int S_m$	a_{m1}	•••	$\langle a_{mk} \rangle$	•••	a_{mn}	0	•••	0	•••	1	b_m	R_m
	Z_j	z_1	/	z_k	\	z_n	\bar{c}_1	•••	$ar{c}_l$	•••	\bar{c}_n	Z	
/		21		2 _K		z_n	= 0		= 0		= 0	2	
	$z_j - c_j$	$z_1 - c_1$	<i>j</i>	$z_k - c_k$) /	$z_n - c_n$	0	•••	0	•••	0	Z	
Variabel	keluar	Kolo	m kun	ci	▼ Pivot								

Caranya:

- a. Mencari variabel masuk (akan menjadi VB (Variabel Basis) baru). Variabel dengan $z_j c_j < 0$ terkecil akan terpilih menjadi variabel masuk, misal $z_k c_k$ terkecil, maka x_k menjadi variabel masuk.
- b. Mencari variabel keluar (VB lama yang akan digantikan oleh variabel masuk sebagai VB baru).

Pada kolom koefisien x_k , a_{ik} , tentukan rasio $R_i = \frac{b_i}{a_{ik}}$, $a_{ik} > 0$. Pilih rasio (R_i) terkecil, misal R_l , maka s_l menjadi variabel keluar.

Kemudian susun tabel baru, dengan susunan VB barunya adalah

 $s_1, s_2, \dots s_{l-1}, x_k, s_{l+1}, \dots, s_m$, dan a_{lk} menjadi elemen pivot, dan pada kolom ke-k, a_{lk} harus menjadi 1 dan $a_{ik} = 0$, $\forall i \neq l$. Sehingga x_k menjadi VB baku baru, $\forall i = 1, 2, \dots, m$. Perubahan tersebut dilakukan dengan OBE dan berlaku untuk semua elemen pada baris yang sesuai sehingga diperoleh tabel baru.

5. Lakukan langkah 3 dan 4 hingga optimum tercapai.

Tabel baru

Setelah terpilih $z_k - c_k \le 0$ terkecil, variabel masuk, variabel keluar, serta pivot, dilanjutkan dengan membentuk tabel baru mengikuti langkah 4. Tabel baru yang diperoleh adalah...

			Varial	oel ma	suk								
	c_j	c_1	•••	c_k		c_n	0	•••	0	•••	0	b_i	R_i
\bar{c}_i	$\bar{x_i} \setminus x_j$	<i>x</i> ₁	((x_k)		x_n	<i>s</i> ₁	•••	s_l	•••	S_m		
0	s_1	<i>a</i> ₁₁ *	•••	$\sqrt{0}$	•••	<i>a</i> _{1<i>n</i>} *	1	•••	0*	•••	0	<i>b</i> ₁ *	R ₁ *
•••		•••	•••	/ \	•••	•••	•••	•••	•••	•••	•••	•••	•••
c_k	x_k	a_{l1}/a_{lk}	•••	1	•••	a_{ln}/a_{lk}	0	•••	$1/a_{lk}$	•••	0	b_l/a_{lk}	R_l/a_{lk}
	\	•••	•••	\		•••	•••	•••	•••	•••	•••	•••	•••
0	S_m	a_{m1} *	•••	$\sqrt{0}$		a_{mn} *	0		0*		1	$b_m *$	R_m^*
	$\int Z_j$	<i>z</i> ₁ *	•••	0	\	$z_n *$	c_1	•••	$c_l *$	•••	c_n	Z*	
/	$\int z_j - c_j$	$z_1 - c_1 *$	(0	<i>\</i>	$z_n - c_n^*$	0	•••	0*	•••	0		
*					4								

Variabel basis baru

Kolom basis baru

Perhatikan tabel baru:

- 1. Terdapat perubahan pada kolom variabel basis (\bar{x}_i) (diikuti kolom nilai variabel basis/ \bar{c}_i)
- 2. Terdapat perubahan pada matriks koefisien
- 3. Terdapat perubahan pada kolom kanan (b_i)
- 4. Terdapat perubahan pada baris $z_j c_j$

Keterangan:

 B_i adalah baris ke-i, $\forall i = 1, 2, ..., m$

 B_i' adalah baris ke-i, pada tabel baru $\forall i=1,2,\dots,m$

 B_i' pada tabel diatas dengan menggunakan rumus OBE:

 $B_1' = B_1 + (-a_{1k})B_l'$, dengan B_l' adalah baris ke-l yang kolom ke-k nya adalah elemen pivot.

$$B_2' = B_2 + (-a_{2k})B_l'$$

:

$$B_l' = \left(\frac{1}{a_{lk}}\right) B_l$$

:

$$B_m' = B_m + (-a_{mk})B_l'.$$