Redes Neurais – Exercício com o algoritmo de Hopfield

Aplicação: Reconhecimento de dígitos de 0 a 9 Algoritmo Neural: Memória Auto-Associativa

Formato de entrada: Matriz de pixels 12 linhas x 10 colunas

Etapas do Exercício:

- 1- Desenhar e apresentar no relatório os 10 dígitos, tentando diferenciá-los o máximo possível na utilização dos pixels.
- 2- Calcular a Distância de Haming entre os 10 padrões.
- 3- Verificar o desempenho da rede neural (a sua convergência para os pontos de equilibrio adequados) na filtragem de ruído dos casos especificados abaixo, com os seguintes níveis de ruído impostos ao padrão de entrada: 0%, 5%, 10%, 20%, 30%, 40% e 50%. Para cada nível de ruído efetuar 5 testes para cada dígito, extraindo o percentual de acerto para cada caso. Ao final dos testes apresentar um gráfico, com quatro curvas (3, 5, 7 e 10 padrões com maior distância entre si) do percentual de acerto em função do nível de ruído inserido.
 - a) armazenando os três padrões que apresentaram maior Distância de Hamming entre si;
 - b) armazenando os três padrões que apresentaram menor Distância de Hamming entre si;
 - c) armazenando os cinco padrões que apresentaram maior Distância de Hamming entre si;
 - d) armazenando os sete padrões que apresentaram maior Distância de Hamming entre si;
 - e) armazenando os dez padrões.
- 4- Comente os resultados encontrados acima, levando-se em consideração as Distâncias de Hamming calculadas no item 2 e a Distância de Hamming para os possíveis pontos de equilíbrio expúrios. O relatório deve apresentar explicitamente os padrões errados encontrados, especificando se houve confusão de padrões ou convergência para um padrão expúrio.