Chapitre VII

Flammes de Diffusion de Type Couche Limite

Propulseur de type hybride

Flamme de diffusion dans une couche limite oxydante développée au-dessus d'une plaque plane combustible

SOLUTION INTÉGRALE AU PROBLÈME D'EMMONS

Conservation de la masse

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0$$

Conservation de la quantité de mouvement

$$\frac{\partial \, u^2}{\partial x} + \frac{\partial u v}{\partial y} = -\frac{1}{\rho} \frac{dP}{dx} + \frac{\partial}{\partial y} \left(\nu \frac{\partial u}{\partial y} \right)$$

Conservation de la fraction de mélange (f) et de l'enthalpie (h)

$$\frac{\partial uf}{\partial x} + \frac{\partial vf}{\partial y} = \frac{\partial}{\partial y} \!\! \left(D_{\scriptscriptstyle AB} \frac{\partial f}{\partial y} \right)$$

$$\frac{k}{C_a} = \rho D_{AB} = \frac{\mu}{P_c} = \frac{\mu}{S_c}$$

Bilan énergétique à l'interface solide-gaz

$$\dot{m}\,L_{\scriptscriptstyle v}=\dot{q}_{\scriptscriptstyle fl}$$

3

Evolution d'une propriété globale $\delta(x)$, $\delta(x)$, $\dot{q}_{\alpha}(x)$, ...

Intégration entre y=0 et $y = \delta(x)$

$$\frac{\mathrm{d}}{\mathrm{d}x}\int_0^s \mathrm{u}\mathrm{d}y + \mathbf{v}_s - \mathbf{v}_0 = 0$$

$$\frac{d}{dx}\int_{0}^{s}u^{2}dy+U_{s}V_{s}-U_{0}V_{0}=-\frac{\delta}{\rho}\frac{dP}{dx}+V\frac{\partial u}{\partial y}\bigg|_{s}-V\frac{\partial u}{\partial y}\bigg|_{s}$$

$$\frac{d}{dx}\int_{\scriptscriptstyle 0}^{\scriptscriptstyle S} ufdy + {_{{\bf V}_{\scriptscriptstyle S}}}{_{f\,\scriptscriptstyle S}} - {_{{\bf V}_{\scriptscriptstyle O}}}{_{f\,\scriptscriptstyle O}} = D_{\scriptscriptstyle AB}\frac{\partial f}{\partial y}\bigg)_{\scriptscriptstyle S} - D_{\scriptscriptstyle AB}\frac{\partial f}{\partial y}\bigg)_{\scriptscriptstyle S}$$

Equation de continuité

$$\mathbf{v}_{s} = \mathbf{v}_{o} - \frac{d}{dx} \mathbf{s}_{o}^{s} \mathbf{u} \mathbf{d} \mathbf{y}$$

Conditions limites du problème

1) à la surface, y=0

$$u_0 = 0,$$
 $v_0 = \frac{\dot{m}}{\rho},$ $f_0 \rightarrow 1,$ $u_0 v_0 = 0$

2) au bord de la couche limite, $y = \delta$

$$u_s = U_e \quad \text{et} \quad v \frac{\partial u}{\partial v} \rightarrow 0$$

$$f_{s} = f_{e}$$
 et $D_{AB} \frac{\partial f}{\partial y} \Big|_{s} \to 0$

Equation de continuité

$$U_{\epsilon} \mathbf{v}_{\delta} = U_{\epsilon} \left(\mathbf{v}_{0} - \frac{\mathrm{d}}{\mathrm{d}x} \int_{0}^{\delta} u \mathrm{d}y \right)$$

SOLUTIONS ANALYTIQUES

On reporte les conditions limites dans les équations intégrales

Conservation de la quantité de mouvement

$$\begin{aligned} u_{\circ} v_{\circ} &= 0 & v \frac{\partial u}{\partial y} \bigg|_{\circ} \to 0 & U_{\circ} v_{\circ} &= U_{\circ} \bigg(v_{\circ} - \frac{d}{dx} \int_{\circ}^{s} u dy \bigg) \\ \frac{d}{dx} \int_{0}^{s} u (U_{e} - u) dy - U_{e} v_{o} &= \frac{\delta}{\rho} \frac{dP}{dx} + v \frac{\partial u}{\partial y} \bigg)_{0} \end{aligned}$$

Conservation de la fraction de mélange et de l'enthalpie

$$\begin{split} f_{\scriptscriptstyle \delta} &= f_{\scriptscriptstyle \delta} & D_{\scriptscriptstyle AB} \frac{\partial f}{\partial y} \bigg)_{\scriptscriptstyle \delta} \to 0 & v_{\scriptscriptstyle \delta} &= v_{\scriptscriptstyle 0} - \frac{d}{dx} \int_{\scriptscriptstyle 0}^{\scriptscriptstyle \delta} u dy \\ \\ \frac{d}{dx} \int_{\scriptscriptstyle 0}^{\scriptscriptstyle \delta} u (f - f_{\scriptscriptstyle c}) dy - v_{\scriptscriptstyle 0} (f_{\scriptscriptstyle 0} - f_{\scriptscriptstyle c}) &= - D_{\scriptscriptstyle AB} \frac{\partial f}{\partial y} \end{split}$$

Forme intrinsèque du profil de vitesse longitudinale

$$u=U_em(n)$$

$$0 < n \le 1$$

$$u=U_e$$

$$m = \frac{2n}{(3-n^2)}$$

Variable d'espace adimensionnelle :

$$n = \frac{y}{\delta(x)} \Rightarrow y = n\delta(x)$$

Equation intégrale de la quantité de mouvement après substitution de m(n)

$$\frac{d}{dx}\int_{0}^{1}\delta_{x}U_{e}m(U_{e}-U_{e}m)dn-U_{e}V_{0}=\frac{\delta_{x}}{\rho}\frac{dP}{dx}+\nu\frac{U_{e}}{\delta_{x}}\frac{\partial m}{\partial n}\bigg)_{0}$$

$$\frac{\delta_x}{U_{\text{e}}^2} \Longrightarrow \qquad \delta_x \frac{d\delta_x}{dx} \int_0^1 m(1-m) dn = \frac{\delta_x^2}{\rho U_{\text{e}}^2} \frac{dP}{dx} + \nu \frac{1}{U_{\text{e}}} \frac{\partial m}{\partial n} \bigg|_0^1 + \delta_x \frac{1}{U_{\text{e}}} v_0$$

Hypothèses:

1)
$$U_e$$
 et P_e indépendants de $x = \frac{dP}{dx} = 0$

2) Ecoulement incompressible

 $v_0 \approx 0 \ (U_e >> v_0)$ 3) Transfert pariétal faible

Equation de quantité de mouvement

$$\delta(x) \frac{d\delta(x)}{dx} \int_{0}^{1} m(1-m) dn = \frac{\nu}{U_{e}} \frac{dm}{dn}$$

$$\delta(x)\frac{d\delta(x)}{dx}\int_0^t m(1-m)dn = \frac{\nu}{U_*}\frac{dm}{dn}\Big|_0$$

$$a_1 = \left[\frac{2\frac{dm}{dn}\Big|_0}{\int_0^t m(1-m)dn}\right]^{1/2} = 4.64$$

$$2\delta(x)\frac{d\delta(x)}{dx} = \frac{\nu}{U_{\text{o}}} a_{\text{i}}^2$$

Après intégration : $\delta(x) = 4.64x \, \text{Re}_x^{-1/2}$

$$\delta(x) = 4.64 x R_0^{-1/2}$$

$$Re = \frac{U_{eX}}{v}$$

Force visqueuse de cisaillement à la paroi

$$\tau_0 = \mu \frac{\partial u}{\partial y} \bigg)_0 = \frac{\mu U_e}{\delta(x)} \frac{dm}{dn} \bigg)_0$$

$$\tau_0 = \frac{1}{2} C_{\scriptscriptstyle \rm I}(x) \rho \, U_{\scriptscriptstyle \rm e}^2$$

Equation de quantité de mouvement

$$\frac{d\delta(x)}{dx} \int_{0}^{t} m(1-m) dn = \frac{1}{\rho U_{e}^{2}} \frac{\mu U_{e}}{\delta(x)} \frac{dm}{dn} \bigg)_{0} = \frac{\tau_{0}}{\rho U_{e}^{2}} = \frac{1}{2} C_{f}$$

$$2\frac{d\delta(x)}{dx} = \frac{v}{U_e} \frac{a_1^2}{\delta(x)} = a_1 Re_x^{-1} \frac{1}{Re_x^{-1/2}} = a_1 Re_x^{-1/2}$$

$$\delta(x) = a_1 x \operatorname{Re}_x^{-1/2}$$

 $C_{t}(x) = a_{1} Re_{x}^{-1/2} \int_{0}^{1} m(1-m) dn$

9

$$C_{\rm f}(x) = \left\lceil \frac{2\frac{dm}{dn} \! \int_0^1 \! m(1-m) dn} \right\rceil^{1/2} \int_0^1 \! m(1-m) dn \, Re_x^{-1/2}$$

$$a_2 = \left[2\frac{dm}{dn}\right]_0^1 m(1-m)dn^{1/2} = 0.646$$

$$C_{\rm f}(x) = 0.646 \, {\rm Re}_{\rm x}^{-1/2}$$

Equation intégrale de la fraction de mélange

$$f = f_0 - (f_0 - f_e) m(p) \qquad \qquad 0
$$f = f_e \qquad \qquad p > 1$$$$

Rapport des épaisseurs de couche limite : $\Delta = \frac{\delta_i}{\delta}$ \Rightarrow $m(n) = m(p)\Delta$ Pr>1 $\delta_i(x) < \delta(x)$

$$\frac{d}{dx} U_e \delta_t \int_0^t m(n) (f_0 - f_e) [1 - m(p)] dp - v_0 (f_0 - f_e) = (f_0 - f_e) \frac{k}{\rho C_p \delta_t} \frac{dm(p)}{dp} \Big|_0^t$$

$$n = \frac{y}{\delta(x)} = \frac{p\delta(x)}{\delta(x)} = p\Delta$$

$$\frac{d}{dx} U_{e} \delta_{i} \int_{0}^{1} m(p) \Delta \left[1 - m(p)\right] dp - v_{0} = \frac{k}{\rho C_{p} \delta_{i}} \frac{dm(p)}{dp} \Big|_{0}$$

Equation de la fraction de mélange

$$v_{\text{\tiny 0}} \to 0 \Rightarrow \qquad U_{\text{\tiny 0}}\delta_{\text{\tiny 0}}(x) \frac{d\delta_{\text{\tiny 0}}(x)}{dx} \\ \int_{\text{\tiny 0}}^{\text{\tiny 0}} m(p) \Delta \big[1 - m(p)\big] dp = \frac{k}{\rho C_{\text{\tiny 0}}} \frac{dm(p)}{dp} \\ \Big]_{\text{\tiny 0}}$$

$$a_3 = \frac{2\frac{dm(p)}{dp} \bigg)_0}{\Delta \int_0^1 m(p) \Big[1 - m(p)\Big] dp} = Cst.$$

$$2\delta_{\text{t}}(x)\frac{d\delta_{\text{t}}(x)}{dx} = \frac{k}{C_{\text{p}}}\frac{1}{\rho U_{\text{e}}}a_{3} \qquad \qquad \rho D_{\text{\tiny AB}} = \frac{k}{C_{\text{p}}} = \frac{\mu}{Pr}$$

$$\Rightarrow \delta_{l}(x) = \left(\frac{a_{3}}{Pr}\right)^{1/2} x Re_{x}^{-1/2}$$

$$\delta_{t}(x) = \left(\frac{a_{3}}{Pr}\right)^{1/2} x \operatorname{Re}_{x}^{-1/2} \quad \Rightarrow \quad \operatorname{Pr} = a_{3} \operatorname{Re}_{x}^{-1} \frac{x^{2}}{\delta_{t}^{2}} = \frac{a_{3}}{\left(a_{1}\Delta\right)^{2}}$$

$$\Delta = \frac{\delta_{i}}{\delta}$$

$$\delta(x) = a_{i}x Re_{x}^{-1/2}$$

$$\delta(x) = \delta\Delta = a_{i}x Re_{x}^{-1/2} \Delta$$

$$Pr = \Delta^{-3}$$
 ou $\Delta = Pr^{-1/3}$

$$Pr = 1 \implies n = p$$

Flux de chaleur reçu de la flamme par la paroi

$$q_{\scriptscriptstyle B} = -k\frac{dT}{dy}\bigg)_{\scriptscriptstyle 0} = -\frac{k}{C_{\scriptscriptstyle P}}\frac{dh}{dy}\bigg)_{\scriptscriptstyle 0} = -\frac{k}{C_{\scriptscriptstyle P}}h_{\scriptscriptstyle P,\scriptscriptstyle 0}\frac{d\,h^{^{\star}}}{dy}\bigg)_{\scriptscriptstyle 0} = -\frac{k}{C_{\scriptscriptstyle P}}h_{\scriptscriptstyle P,\scriptscriptstyle 0}\frac{df}{dy}\bigg)_{\scriptscriptstyle 0}$$

$$h_{\text{F},\text{O}} = C_{\text{P}}(T_{\text{F},\text{O}} - T_{\text{ref}}) + Y_{\text{F},\text{O}}\Delta h_{\text{c}} \qquad (\Delta h_{\text{c}} \approx h_{\text{f},\text{F}}^{\text{O}})$$

$$f = f_0 - (f_0 - f_e) m(p)$$
 $p = \frac{y}{\delta(x)}$

$$q_{\scriptscriptstyle \rm f} = \frac{\rho D_{\scriptscriptstyle AB}}{\delta_{\scriptscriptstyle \rm f}(x)} \Big[C_{\scriptscriptstyle \rm F}(T_{\scriptscriptstyle \rm F,0} - T_{\scriptscriptstyle \rm ef}) + Y_{\scriptscriptstyle \rm F,0} \Delta h_{\scriptscriptstyle \rm c} \Big] (f_{\scriptscriptstyle \rm f} - f_{\scriptscriptstyle \rm c}) \frac{dm}{dp} \Bigg]_{\scriptscriptstyle \rm 0}$$

$$\delta_t(x) = \left(\frac{a_3}{Pr}\right)^{1/2} x Re_x^{-1/2}$$
 $Y_{F,0} = 1$ \Rightarrow $(f_0 - f_c) = 1$

$$q_{\text{n}} = \frac{\rho D_{\text{AB}} C_{\text{P}} P r^{\text{V}^{2}}}{x \, a_{\text{N}}^{\text{V}^{2}}} \Big[(T_{\text{N}} - T_{\text{0}}) + \Delta h_{\text{E}} / C_{\text{P}} \Big] \frac{dm}{dp} \Big]_{\text{0}} R e_{\text{x}}^{\text{V}^{2}}$$

$$q_{\scriptscriptstyle \rm I} = h_{\scriptscriptstyle \rm T} [(T_{\scriptscriptstyle \rm S} - T_{\scriptscriptstyle \rm O}) + \Delta h_{\scriptscriptstyle \rm C}/C_{\scriptscriptstyle \rm P}]$$

15

Coefficient d'échange thermique (aérodynamique et thermodynamique)

$$\begin{split} h_{\scriptscriptstyle T} &= \frac{\rho D_{\scriptscriptstyle AB} C_{\scriptscriptstyle P} P^{\prime\prime 2} R e_{\scriptscriptstyle x}^{\prime\prime 2}}{x} \frac{dm}{dp} \bigg|_{\scriptscriptstyle 0} \cdot \left\lfloor \frac{\Delta \int_{\scriptscriptstyle 0}^{t} \! m(p) \big[1 - m(p) \big] \! dp}{2 \frac{dm}{dp} \bigg|_{\scriptscriptstyle 0}} \right\rfloor \\ &= \left[\frac{dm}{dp} \bigg|_{\scriptscriptstyle 0} \cdot \frac{\int_{\scriptscriptstyle 0}^{t} \! m(p) \big[1 - m(p) \big] \! dp}{2} \right]^{\prime\prime 2} \cdot \frac{\rho D_{\scriptscriptstyle AB} C_{\scriptscriptstyle P} \, P r^{\prime\prime 2} \, R e_{\scriptscriptstyle x}^{\prime\prime 2}}{x} \cdot P r^{-1/6} \end{split}$$

$$\Delta = p_r^{_{-1/3}} \qquad \quad Le = 1 \quad \Rightarrow \quad \rho D_{_{AB}}C_{_{P}} = k$$

$$h_{\scriptscriptstyle T} = 0.323 \rho D_{\scriptscriptstyle AB} C_{\scriptscriptstyle P} \frac{R e_{\scriptscriptstyle x}^{\scriptscriptstyle 1/2}}{x} P r^{\scriptscriptstyle 1/3} = 0.323 k \, \frac{R e_{\scriptscriptstyle x}^{\scriptscriptstyle 1/2}}{x} P r^{\scriptscriptstyle 1/3}$$

$$Nu = \frac{h_r x}{k} = 0.323 Pr^{1/3} Re_x^{1/2}$$

Approximation pour un écoulement en régime turbulent (Approche de la longueur de mélange)

$$h_{\scriptscriptstyle T,\,\tau} = 0.323 \rho D_{\scriptscriptstyle t} C_{\scriptscriptstyle p} \frac{R e_{\scriptscriptstyle x}^{_{\scriptscriptstyle 1/2}}}{x} P_{r}^{_{\scriptscriptstyle 1/3}}$$

$$Sc_{\tau} = \frac{\mu_{\tau}}{\rho D_{\tau}} \approx 1 \qquad \Rightarrow \qquad D_{\tau} = \frac{\mu_{\tau}}{\rho} = \nu_{\tau}$$

$$\mu = \rho \, I_{\scriptscriptstyle m}^{\scriptscriptstyle 2} \left| \frac{\partial u}{\partial y} \right| \qquad \qquad \Longrightarrow \qquad \quad \nu_{\scriptscriptstyle 1} = I_{\scriptscriptstyle m}^{\scriptscriptstyle 2} \left| \frac{\partial u}{\partial y} \right| \approx I_{\scriptscriptstyle m}^{\scriptscriptstyle 2} \, \frac{U_{\scriptscriptstyle e}}{\delta} \quad (m^{\scriptscriptstyle 2}/s)$$

17

Condition critique pour une dégradation de combustible solide

1) Zone réactive

$$q_{_{s}}\!\geq\!q_{_{as}}\quad \Longrightarrow \ T_{s}\!>\!T_{d\acute{e}gradation}$$
 (dégradation du solide sous l'effet

du flux de chaleur issu de la flamme)

du flux de chaleur issu de la flamme)

2) Zone préchauffage

(rapprochement de la flamme)

3) Zone froide

$$q \approx 0 \implies T_s = T_0$$

(pas de préchauffage du solide)

Zone 1 Zone 2 Zone 3 réactive préchauffage froide

$$\left|k\frac{\widetilde{\partial T}}{\partial y}\right|_{_{0-}} = -\left|k\frac{\widetilde{\partial T}}{\partial y}\right|_{_{0+}} + q_{_{\text{ey}}} + -q_{_{\text{ey}}} + +\dot{m}''\left(h_{_{0}} - h_{_{0}}\right) + \left(\sum_{_{i}}^{_{N}} \rho D_{i}h_{_{i}}\frac{\widetilde{\partial Y}_{_{i}}}{\partial y}\right)_{_{0-}} - \left(\sum_{_{i}}^{_{N}} \rho D_{i}h_{_{i}}\frac{\widetilde{\partial Y}_{_{i}}}{\partial y}\right)_{_{0+}} + \left(\sum_{_{i}}^{_{N}} \rho D_{i}h_{_{i}}\frac{\widetilde{\partial Y}_{_{i}}}{\partial y}\right)_{_{0-}} + \left(\sum_{_{i}}^{_{N}} \rho D_{_{i}}h_{_{i}}\frac{\widetilde{\partial Y}_{_{i}$$

Réaction hétérogène à la surface : $w_0 \Delta h_{c,s} = \left(\sum_{i=1}^{N} \rho D_i h_i \frac{\partial Y_i}{\partial y} \right)_{0}$

$$k \frac{\partial T}{\partial y}\bigg|_{_{0-}} = -k \frac{\partial T}{\partial y}\bigg|_{_{0+}} + q_{_{0y}} + q_{_{0y}} + \dot{m}" \Big(h_{_{0-}} - h_{_{0-}}\Big) + w_{_{0}} \Delta h_{_{0-s}} - \left(\sum_{_{1}}^{_{N}} \rho D_{_{1}} h_{_{1}} \frac{\partial Y_{_{1}}}{\partial y}\right)_{_{0}}$$

Débit massique pariétal

Nombre de Lewis : $Le = \frac{\rho D_i}{k/C_p} = 1$ (Shvab-Zeldovich)

$$-\left.k\frac{\partial T}{\partial y}\right|_{_{\!\!\text{O}^{\!\scriptscriptstyle{1}}}}\!-\!\left(\sum_{^{^{\!\scriptscriptstyle{N}}}}\!\rho Dh_{\!\cdot}\frac{\partial Y_{\scriptscriptstyle{1}}}{\partial y}\right)_{_{\!\!\text{O}^{\!\scriptscriptstyle{1}}}}\!=\!-\frac{k}{C_{_{\scriptscriptstyle{P}}}}\frac{\partial h}{\partial y}\!\right|_{_{\!\!\text{O}^{\!\scriptscriptstyle{1}}}}\!$$

$$k \left. \frac{\partial T}{\partial y} \right|_{\scriptscriptstyle 0,L} = q_{\scriptscriptstyle 0,V} + -q_{\scriptscriptstyle 0,V} + \dot{m}'' \left(h_{\scriptscriptstyle 0,L} - h_{\scriptscriptstyle 0,L} \right) + w_{\scriptscriptstyle 0} \Delta h_{\scriptscriptstyle 0,L} - \frac{k}{C_{\scriptscriptstyle 0}} \frac{\partial h}{\partial y} \right|_{\scriptscriptstyle 0,L}$$

$$\left.k\frac{\partial T}{\partial y}\right|_{_{0^{-}}}\approx0, \quad q_{_{^{\text{BW}}}\text{--}}-q_{_{^{\text{BW}}}\text{--}}\approx0, \ w_{_{}^{0}}\Delta h_{^{\text{C},\,\text{S}}}\approx0, \quad L_{^{\text{N}}}=h_{_{}^{0}}\text{.}-h_{_{}^{0}}$$

$$\dot{m}^{'}L_{"}=-\frac{k}{C_{"}}\frac{dh}{dy}\bigg|_{_{0+}}=q_{"}\qquad \Longrightarrow \qquad \quad \dot{m}^{'}=h_{T}\!\!\left[\frac{(T_{"}-T_{"})+\Delta h_{"}/C_{"}}{L_{"}}\right]$$

Conditions limites à l'interface solide-gaz (bilan massique)

Bilan de masse des espèces chimiques (Loi de Fick)

$$\dot{\vec{w}}_{i,0} = -\rho D_i \frac{\partial Y_i}{\partial y} \bigg|_{x=0} + \dot{\vec{m}} \left(Y_{i,0} - Y_{i,0} - \right)$$

23

Approche instationnaire mono-dimensionnelle

 $\Rightarrow \left\{q_{\text{ray}} - q_{\text{ray}} = \dot{q}_{\text{s,r}}\right\}$

Equation de transfert de chaleur dans le solide

$$\rho_{_{s}}C_{_{P_{s}}}\frac{\partial T_{_{s}}}{\partial t}=\frac{\partial}{\partial y}\Bigg(k_{_{s}}\frac{\partial T_{_{s}}}{\partial y}\Bigg)+\dot{q}_{_{_{s,s}}}^{_{_{s}}}+\dot{q}_{_{_{s,s}}}^{_{_{s}}}$$

Processus de la décomposition thermique des matériaux thermoplastiques ou formant une matrice carbonée

 $Combustibl\,e\,\,solide_{_{\alpha}} \longrightarrow \nu_{_{s,\alpha\beta}} R\acute{e}sidu_{_{\alpha\beta}} + \nu_{_{w,\alpha\beta}} H_{_{2}}O + \nu_{_{f,\alpha\beta}} HC$

- 1) Réaction de pyrolyse endothermique; 2) Réaction de dégradation exothermique;
- 3) Réaction d'oxydation due au résidu charbonneux exothermique

Evolution de la mass volumique du composant

$$\frac{\partial}{\partial t} \left(\frac{\rho_{_{s,\alpha}}}{\rho_{_{s0}}} \right) = -\sum_{_{j=1}}^{N_{_{,\alpha}}} r_{_{\alpha\beta}} + S_{_{\alpha}} \qquad \qquad \begin{cases} \alpha \text{ composant} \\ \beta \text{ étape de réaction} \end{cases}$$

Réaction dans le solide (lois d'Arrhenius)

Productions issues de toutes les étapes de réactions chimiques

$$S_{\alpha} = \sum\limits_{lpha=1}^{N_m} \sum\limits_{eta=1}^{N_{r,lpha}}
ullet_{s,lphaeta} r_{lphaeta}$$

.5

Taux de production des gaz combustibles

$$\dot{m}_{\scriptscriptstyle \mathrm{f}}^{\scriptscriptstyle \mathrm{m}} =
ho_{\scriptscriptstyle s0} \sum_{\scriptscriptstyle lpha=1}^{\scriptscriptstyle N_{\scriptscriptstyle \mathrm{m}}} \sum_{\scriptscriptstyle eta=1}^{\scriptscriptstyle N_{\scriptscriptstyle \mathrm{r},lpha}}
u_{\scriptscriptstyle \mathrm{f},lphaeta} r_{\scriptscriptstyle lphaeta}$$

Taux de production de vaporisation de l'eau

$$\dot{m}^{"}_{w} = \rho_{so} \sum_{\alpha=1}^{N_{m}} \sum_{\beta=1}^{N_{r,\alpha}} \nu_{w,\alpha\beta} r_{\alpha\beta}$$

Source chimique issue de la chaleur de réaction et de la décomposition du combustible solide (chaleur latente)

$$\dot{q}_{\scriptscriptstyle s,c}^{\scriptscriptstyle \top}(x) = \rho_{\scriptscriptstyle s0} \sum_{\scriptscriptstyle \alpha=1}^{\scriptscriptstyle N_m} \sum_{\scriptscriptstyle \beta=1}^{\scriptscriptstyle N_{\scriptscriptstyle r,\alpha}} r_{\scriptscriptstyle \alpha\beta}(x) \big[H_{\scriptscriptstyle r,\alpha\beta} - \int_{\scriptscriptstyle T0}^{\scriptscriptstyle T(x)} C_{\scriptscriptstyle P}(T) dT \big]$$

Combustion d'un propergol composite

Réactions de surface (décomposition du propergol)

 $NH_4ClO_4 \rightarrow NH_3 + HClO_4 + \Delta h_{c,s}$

NH₃ (ammoniac)

HClO₄ (acide perchlorique)

Réactions gazeuses (oxydant Perchlorate d'Ammonium-flamme de prémélangée)

$$\begin{aligned} NH_3 + HClO_4 & \longrightarrow 0.265 N_2 + 0.12 N_2 O + 0.23 NO + 1.62 H_2 O + 0.76 HCl \\ & + 0.12 Cl_2 + 1.015 O_2 + \Delta h_{*,s} \end{aligned}$$

Réactions gazeuses (oxydant du liant Polybutadiène – flamme de diffusion)

$$C_4H_6 + 5.5O_2 \rightarrow 4CO_2 + 3H_2O + \Delta H_0$$

29

Approche stationnaire mono-dimensionnelle

Réaction en phase condensée

Equation du transfert de la chaleur

$$\rho_{\scriptscriptstyle P} C_{\scriptscriptstyle PP} \frac{dT}{dt} = \frac{d}{dy} \! \left(k_{\scriptscriptstyle P} \frac{dT}{dy} \right) \ \, \Rightarrow \ \, \rho_{\scriptscriptstyle P} C_{\scriptscriptstyle PP} r_{\scriptscriptstyle P} \frac{dT}{dy} = \frac{d}{dy} \! \left(k_{\scriptscriptstyle P} \frac{dT}{dy} \right)$$

Vitesse de régression du propergol: r_b (mm/s)

Equation de la fraction massique du propergol, $Y_{\mbox{\scriptsize p}}$

$$\rho_{\scriptscriptstyle P} r_{\scriptscriptstyle b} \frac{dY_{\scriptscriptstyle P}}{dy} = -\rho_{\scriptscriptstyle P} A \exp \biggl(-\frac{E_{\scriptscriptstyle c}}{R_{\scriptscriptstyle o} T} \biggr)$$

Conditions aux limites: $T(y = 0) = T_s$ $T(y \rightarrow -\infty) = T_0$

$$Y_p(y=0) = 0 \text{ et } Y_p(y \to -\infty) = 1$$

Réaction en phase gazeuse

Zone réactive

$$\dot{m}^{\text{T}}C_{\text{\tiny PS}}\frac{dT}{dy} = \frac{d}{dy}\Bigg(k_{\text{\tiny S}}\frac{dT}{dy}\Bigg) + B\Delta h_{\text{\tiny C,S}}\,P^{\text{\tiny M}}\,T^{\text{\tiny S}}\exp\Bigg(-\frac{E_{\text{\tiny S}}}{R.T}\Bigg)$$

En dehors de la zone réactive

$$\dot{m}^T C_{\text{\tiny PS}} \frac{dT}{dy} = \frac{d}{dy} \left(k_{\text{\tiny S}} \frac{dT}{dy} \right)$$

Intégration \Rightarrow T(y) avec C₁ et C₂

Conditions aux limites \Rightarrow détermin ation de C_1 et C_2

21

Conditions aux limites :

Bilan de l'énergie à la surface

$$k_{\epsilon}\frac{dT}{dy}\bigg|_{c}+\dot{m}^{2}\Delta h_{\epsilon,\epsilon}=\dot{m}^{2}(C_{\text{PE}}T_{\epsilon}-C_{\text{PP}}T_{\text{o}})$$

$$\Delta h_{\scriptscriptstyle c} = C_{\scriptscriptstyle pg} T_{\scriptscriptstyle s} - C_{\scriptscriptstyle pp} T_{\scriptscriptstyle 0} - \Delta h_{\scriptscriptstyle c,\,s}$$

A la surface, y = 0

1)
$$T = T_s$$
 2) $k_{\epsilon} \frac{dT}{dy}\Big|_{y=0} = \dot{m}^{2} \Delta h_{\epsilon}$ \Rightarrow Constantes d'intégration : C_{ϵ} et C_{ϵ}

Solution analytique

$$T(y) = T_{s} + \frac{\Delta h_{s}}{C_{rs}} \left[exp \left(\frac{y \dot{m} C_{rs}}{k_{s}} \right) - 1 \right]$$

$$\left. \begin{array}{l} T = T_{\rm r} \\ y = y_{\rm r} \end{array} \right\} \Longrightarrow \qquad y_{\rm r} = \frac{k_{\rm s}}{\dot{m} \, C_{\rm rs}} ln \big[1 + C_{\rm rs} (T_{\rm r} - T_{\rm s}) / \Delta h_{\rm s} \big] \label{eq:yr}$$

Bilan énergétique en phase gazeuse

$$\dot{m}^{\text{\tiny (}}(C_{\text{\tiny PB}}T_{\text{\tiny f}}-C_{\text{\tiny PP}}T_{\text{\tiny 0}})=\dot{m}^{\text{\tiny (}}(\Delta h_{\text{\tiny c,g}}+\Delta h_{\text{\tiny c,s}}) \implies C_{\text{\tiny PB}}T_{\text{\tiny f}}=\Delta h_{\text{\tiny c,g}}+\Delta h_{\text{\tiny c,s}}+C_{\text{\tiny PP}}T_{\text{\tiny 0}}$$

$$y_{\scriptscriptstyle f} = \frac{k_{\scriptscriptstyle g}}{\dot{m}^{\cdot} C_{\scriptscriptstyle PB}} ln\!\!\left(\frac{\Delta h_{\scriptscriptstyle c,\,g}}{\Delta h_{\scriptscriptstyle c}}\right)$$

Pouvoir Calorifique

 $\Delta h_{c,s} = 120 \text{ cal/g (phase condensée)}$

 $\Delta h_{c.s} = 265 \text{ cal/g (phase gazeuse)}$

 $\Delta h_{\text{\tiny c}} = C_{\text{\tiny Pg}} T_{\text{\tiny s}} - C_{\text{\tiny Pg}} T_{\text{\tiny f}} + \Delta h_{\text{\tiny c,g}} \quad \text{(total)}$

$$\left. \begin{array}{l} T_{\rm f} = 2500~K \\ T_{\rm s} = 650~K \end{array} \right\} \Longrightarrow \quad y_{\rm f} \approx 30~\mu m \label{eq:fitting}$$

33

Effets de la granulométrie et de la pression sur la structure de flamme

 $\mathbf{y}_{\mathrm{f}\,,\,\mathrm{diff}}$

 $x_{t,pr} \sim 1/P$ Compétition entre les régimes prémélangé et de diffusion pour la flamme O_2 -liant $x_{p,A} \sim 1/P$ PA : Perchlorate d'Ammonium (NH_CIO_J (10-200 μ m) PBHT : Polybutadiène (polymène)

Photographies au microscope

Mélange de gros grains de PA (NH₄ClO₄) et de particules d'aluminium

Hauteur de flamme de diffusion

$$y_{\scriptscriptstyle f,\, diff} \propto V_{\scriptscriptstyle g} \tau_{\scriptscriptstyle d}$$

Vitesse latérale de diffusion

$$v_{\rm d} \propto D_{\rm m}/d_{\rm ox}$$
 (m/s)

Temps caractéristique de diffusion :

$$v_{\rm d} au_{
m d} \propto d_{
m ox}$$

$$au_{\scriptscriptstyle d} \propto d_{\scriptscriptstyle
m ox}^2/D_{\scriptscriptstyle m}$$
 (s)

$$V_{\rm g} \tau_{\rm d} \propto V_{\rm g} \frac{d_{\rm ox}^2}{D_{\rm m}} \implies y_{\rm f,\,diff} \propto V_{\rm g} \frac{d_{\rm ox}^2}{D_{\rm m}}$$

Flamme de diffusion

Conservation du débit de masse

$$\dot{m} = \rho_{\scriptscriptstyle b} r_{\scriptscriptstyle b} = \rho_{\scriptscriptstyle g} V_{\scriptscriptstyle g}$$

$$y_{\text{\tiny f,diff}} \propto d_{\text{\tiny ox}}^2 \dot{m}^\text{\tiny f}/(\rho_{\text{\tiny g}} D_{\text{\tiny m}}) \qquad \qquad \dot{m}^\text{\tiny f} = \frac{k_{\text{\tiny g}}}{y_{\text{\tiny f,diff}} C_{\text{\tiny pg}}} ln \! \left(\frac{\Delta h_{\text{\tiny c,g}}}{\Delta h_{\text{\tiny c}}} \right)$$

$$y_{_{\mathrm{f,diff}}}^{^{2}} \propto d_{_{\mathrm{ox}}}^{^{2}} \frac{1}{\rho_{\scriptscriptstyle{g}} D_{_{\mathrm{m}}}} \frac{k_{\scriptscriptstyle{g}}}{C_{\scriptscriptstyle{pg}}} ln \!\! \left(\frac{\Delta h_{_{^{\mathrm{c}},\,\mathrm{g}}}}{\Delta h_{\scriptscriptstyle{c}}} \right)$$

$$\rho_{\scriptscriptstyle \text{I}} D_{\scriptscriptstyle \text{A}} \propto \frac{p}{RT/M} \, \frac{T^{\scriptscriptstyle \text{V}^2}}{p} \qquad \Rightarrow \rho_{\scriptscriptstyle \text{I}} D_{\scriptscriptstyle \text{A}} = f(T^{\scriptscriptstyle \text{V}^2})$$

$$L_{\rm e} = \frac{\rho_{\rm g} D_{\rm m}}{k_{\rm g}/C_{\rm pg}}$$

Flamme de diffusion

$$y_{\text{\tiny f, diff}} \propto d_{\text{\tiny ox}} L e^{^{\text{\tiny -1/2}}} \!\! \left[ln \!\! \left(\! \frac{\Delta h_{\text{\tiny c, g}}}{\Delta h_{\text{\tiny c}}} \right) \right]^{^{1/2}} \!\!$$

$$\dot{m}^{"}=\rho_{{}^{b}}r_{{}^{b}}\propto\frac{1}{d_{{}^{\mathrm{ox}}}}$$

$$d_{\text{ox}} \downarrow \begin{cases} y_{\text{f, diff}} \downarrow \\ \dot{m} \end{cases} \uparrow$$

La hauteur d'une flamme de diffusion est proportionnelle à la taille des grains (NH_4ClO_4), d_{ox}

/

Hauteur de flamme de prémélange

Taux de la réaction chimique

$$\dot{\omega} \propto p^2 \exp(-E_g/R_uT)$$
 (kg/m^3s)

Temps caractéristique de la réaction chimique

$$tau_{\text{\tiny th}} \propto \rho_{\text{\tiny E}}/\dot{\omega}$$
 (s

$$\dot{m} = \rho_{\scriptscriptstyle b} r_{\scriptscriptstyle b} = \rho_{\scriptscriptstyle E} V_{\scriptscriptstyle E}$$

$$y_{\scriptscriptstyle \rm f.\,pr} \propto V_{\scriptscriptstyle \rm g} \tau_{\scriptscriptstyle \rm ch} = \frac{\dot{m}}{\rho_{\scriptscriptstyle \rm g}} \tau_{\scriptscriptstyle \rm ch}$$

PA : Perchlorate d'Ammonium (NH₄CIO₄) PBHT : Polybutadiène (polymère)

$$\begin{split} y_{\text{\tiny f. pr}} & \propto \frac{\dot{m}}{\dot{\omega}} & \dot{m} = \frac{k_{\text{\tiny g}}}{y_{\text{\tiny f. pr}} C_{\text{\tiny ps}}} ln \bigg(\frac{\Delta h_{\text{\tiny e. g}}}{\Delta h_{\text{\tiny e}}} \bigg) \\ y_{\text{\tiny f. pr}} & \propto \frac{1}{\dot{\omega}^{1/2}} & \Rightarrow y_{\text{\tiny f. pr}} & \propto \frac{1}{p} exp(E_{\text{\tiny g}}/2R_{\text{\tiny u}}T_{\text{\tiny f}}) \\ \dot{m} & = \rho_{\text{\tiny h}} r_{\text{\tiny h}} \propto p \end{split}$$

La hauteur d'une flamme de prémélange est contrôlée par la cinétique chimique et inversement proportionnelle à la pression

Effets de la granulométrie et de la pression sur la vitesse de combustion flamme de flamme de ref 271 (90 microns diffusion prémélangée $y_{f,pr}$ $y_{f,diff}$ Burning rate (mm/s 100 120 100 80 10 80 atm 20 10 100 80 % AP - 20 % HTPB 40