# CSC520 - Artificial Intelligence Lecture 2

Dr. Scott N. Gerard

North Carolina State University

Jan 9, 2025

#### In The News

LinkedIn Jobs on the Rise 2025: The 25 fastest-growing jobs in the U.S.

- Artificial Intelligence Engineer
- Artificial Intelligence Consultant
- Opening Physical Therapist
- Workforce Development Manager
- Travel Advisor
- Event Coordinator
- Director of Development
- Outside Sales Representative
- Sustainability Specialist
- Security Guard

https://www.linkedin.com/pulse/linkedin-jobs-rise-2025-25-fastest-growing-us-linkedin-news-gryie/

# Agenda

- Agents and environments
- Agent function
- Performance measures
- Rational agent
- Task environment

### Agent and Environment



 Agent perceives from its environment through sensors and acts upon it through actuators

- Agent perceives from its environment through sensors and acts upon it through actuators
- Percept is what an agent perceives using its sensor

- Agent perceives from its environment through sensors and acts upon it through actuators
- Percept is what an agent perceives using its sensor
- Percept sequence is a list of percepts that an agent has perceived

- Agent perceives from its environment through sensors and acts upon it through actuators
- Percept is what an agent perceives using its sensor
- Percept sequence is a list of percepts that an agent has perceived
- Agent function maps a percept sequence to an action; external characterization

$$f: p_0, p_1, \ldots p_n \rightarrow a_i$$

- Agent perceives from its environment through sensors and acts upon it through actuators
- Percept is what an agent perceives using its sensor
- Percept sequence is a list of percepts that an agent has perceived
- Agent function maps a percept sequence to an action; external characterization

$$f: p_0, p_1, \ldots p_n \rightarrow a_i$$

• Agent program is a concrete implementation; internal characterization



Dr. Gerard (NCSU)

# Vacuum Cleaner Example



 $1: \ [\textit{A}, \textit{dirtyA}] \rightarrow \textit{vacA}$ 



2:  $[A, dirtyA], [A, cleanA] \rightarrow right$ 



3:  $[A, dirtyA], [A, cleanA], [B, dirtyB] \rightarrow vacB$ 



 $\textbf{4:} \quad [\textit{A, dirtyA}], [\textit{A, cleanA}], [\textit{B, dirtyB}], [\textit{B, cleanB}] \rightarrow \textit{left}$ 

- A rational agent is one that does the right thing
  - ▶ What does it mean to do the *right thing*?

- A rational agent is one that does the right thing
  - ▶ What does it mean to do the *right thing*?
  - ▶ Performance measure is a measure of how well an agent performs

- A rational agent is one that does the right thing
  - ▶ What does it mean to do the *right thing*?
  - ▶ Performance measure is a measure of how well an agent performs
- Performance measure evaluates a sequence of environmental states
  - Designer specifies it initially
  - Agent learns it as time goes by

- A rational agent is one that does the right thing
  - ▶ What does it mean to do the *right thing*?
  - ▶ Performance measure is a measure of how well an agent performs
- Performance measure evaluates a sequence of environmental states
  - Designer specifies it initially
  - Agent learns it as time goes by
- What if the performance measure of a vacuum cleaner agent is the amount of dirt cleaned per hour?

- A rational agent is one that does the right thing
  - ▶ What does it mean to do the *right thing*?
  - ▶ Performance measure is a measure of how well an agent performs
- Performance measure evaluates a sequence of environmental states
  - Designer specifies it initially
  - Agent learns it as time goes by
- What if the performance measure of a vacuum cleaner agent is the amount of dirt cleaned per hour?
  - Rational agent picks up the dirt and drop it back on the floor Be careful what you ask for !

- A rational agent is one that does the right thing
  - ▶ What does it mean to do the *right thing*?
  - ▶ Performance measure is a measure of how well an agent performs
- Performance measure evaluates a sequence of environmental states
  - Designer specifies it initially
  - Agent learns it as time goes by
- What if the performance measure of a vacuum cleaner agent is the amount of dirt cleaned per hour?
  - Rational agent picks up the dirt and drop it back on the floor Be careful what you ask for !
- Better performance measure will be amount of clean area per time step

- What if
  - Agent lacks perfect knowledge
  - ► Agent's action does not produce exactly the desired result

- What if
  - Agent lacks perfect knowledge
  - Agent's action does not produce exactly the desired result
- Perfection is rarely possible in reality

- What if
  - Agent lacks perfect knowledge
  - Agent's action does not produce exactly the desired result
- Perfection is rarely possible in reality
- Rationality  $\neq$  perfection

- What if
  - Agent lacks perfect knowledge
  - Agent's action does not produce exactly the desired result
- Perfection is rarely possible in reality
- Rationality  $\neq$  perfection
- Rationality means maximizing expected performance

### Rationality

For each possible *percept sequence*, a rational agent should select an *action* that is expected to maximize its *performance measure*, given the evidence provided by the percept sequence and whatever built-in *knowledge* the agent has.

#### Task Environment

 Performance measure, Environment, Actuators and Sensors are collectively referred to as the task environment

#### Task Environment

- Performance measure, Environment, Actuators and Sensors are collectively referred to as the task environment
- PEAS description

| Agent Type  | Performance<br>Measure | Environment | Actuators | Sensors |
|-------------|------------------------|-------------|-----------|---------|
| Tayi drivor |                        |             |           |         |

raxi drivei

#### Task Environment

- Performance measure, Environment, Actuators and Sensors are collectively referred to as the task environment
- PEAS description

| Agent Type  | Performance<br>Measure                                              | Environment                                              | Actuators                                           | Sensors                                                      |
|-------------|---------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------|
| Taxi driver | Maximize<br>profits while<br>providing<br>safe, fast,<br>legal trip | Roads, traffic,<br>weather,<br>pedestrians,<br>customers | Steering,<br>accelerator,<br>brake, signal,<br>horn | Cameras,<br>radar,<br>speedometer,<br>GPS, engine<br>sensors |

#### Class Exercise

 Select a task of your choice and give PEAS specification for an AI agent to solve that task

# Task Environment Properties

- Fully vs. Partially Observable
- Deterministic vs. Stochastic
- Episodic vs. Sequential
- Static vs. Dynamic
- Discrete vs. Continuous
- Known vs. Unknown
- Single vs. Multi-agent

• Fully observable if the agent's sensors can perceive complete state of the environment

- Fully observable if the agent's sensors can perceive complete state of the environment
- Partially observable if the agent's sensors can only perceive some part of the environment

- Fully observable if the agent's sensors can perceive complete state of the environment
- Partially observable if the agent's sensors can only perceive some part of the environment
  - Agent may keep an internal state with previous observations

- Fully observable if the agent's sensors can perceive complete state of the environment
- Partially observable if the agent's sensors can only perceive some part of the environment
  - Agent may keep an internal state with previous observations
- Unobservable task environment, the agent has no sensors

### Single-agent vs. Multiagent

- Single agent if everything else can be treated as environment
  - ▶ E.g. an agent solving cross-word puzzle
- Multiagent if multiple agents exist and influence each other's performance measures
  - ▶ E.g. two agents playing chess is a *competitive multiagent* environment
  - ► E.g. multiple taxi drivers minimizing accidents and traffic congestion is cooperative multiagent environment

#### Deterministic vs. Stochastic

 Deterministic if the next state is completely determined by the current state and the action

### Deterministic vs. Stochastic

- Deterministic if the next state is completely determined by the current state and the action
  - ► E.g. Vacuum cleaner

Dr. Gerard (NCSU)

#### Deterministic vs. Stochastic

- Deterministic if the next state is completely determined by the current state and the action
  - ► E.g. Vacuum cleaner
- Stochastic if we know the probability distribution of the next state given the current state and the action
  - ► E.g. Taxi driver

### Episodic vs. Sequential

• *Episodic* if agent's experience is divided into separate, unrelated, atomic episodes in which agent perceives and acts

### Episodic vs. Sequential

- *Episodic* if agent's experience is divided into separate, unrelated, atomic episodes in which agent perceives and acts
  - Next episode does not depend on actions from previous episodes
  - ► E.g. Spotting defective parts on assembly line

### Episodic vs. Sequential

- *Episodic* if agent's experience is divided into separate, unrelated, atomic episodes in which agent perceives and acts
  - Next episode does not depend on actions from previous episodes
  - ► E.g. Spotting defective parts on assembly line
- Sequential if agent's current decision can affect the future

## Episodic vs. Sequential

- *Episodic* if agent's experience is divided into separate, unrelated, atomic episodes in which agent perceives and acts
  - ▶ Next episode does not depend on actions from previous episodes
  - ► E.g. Spotting defective parts on assembly line
- Sequential if agent's current decision can affect the future
  - ▶ E.g. Current move in chess can affect the future

• Static if the environment stays unchanged while the agent deliberates

- Static if the environment stays unchanged while the agent deliberates
  - ▶ E.g. In chess, the board stays unchanged
- Dynamic if the environment continuously changes while the agent deliberates

- Static if the environment stays unchanged while the agent deliberates
  - ▶ E.g. In chess, the board stays unchanged
- Dynamic if the environment continuously changes while the agent deliberates
  - ▶ E.g. In taxi driving, the traffic changes continuously

- Static if the environment stays unchanged while the agent deliberates
  - ▶ E.g. In chess, the board stays unchanged
- Dynamic if the environment continuously changes while the agent deliberates
  - ► E.g. In taxi driving, the traffic changes continuously
- Semidynamic if the environment is static but the agent's performance score changes by time

- Static if the environment stays unchanged while the agent deliberates
  - E.g. In chess, the board stays unchanged
- Dynamic if the environment continuously changes while the agent deliberates
  - ► E.g. In taxi driving, the traffic changes continuously
- Semidynamic if the environment is static but the agent's performance score changes by time
  - E.g. Chess when played with a clock

18 / 26

• *Discrete* if the environment, percepts and actions have finite, distinct values

- *Discrete* if the environment, percepts and actions have finite, distinct values
  - ► E.g. Chess without clock

- Discrete if the environment, percepts and actions have finite, distinct values
  - ► E.g. Chess without clock
- Continuous if the environment, percepts or actions have infinite values

- Discrete if the environment, percepts and actions have finite, distinct values
  - ► E.g. Chess without clock
- Continuous if the environment, percepts or actions have infinite values
  - ► E.g. Taxi driving

### Known vs. Unknown

• *Known* if the outcomes (or outcome probabilities) of the actions are known to the agent

### Known vs. Unknown

- Known if the outcomes (or outcome probabilities) of the actions are known to the agent
- *Unknown* if the outcomes are not known and the agent needs to learn experientially

### Known vs. Unknown

- Known if the outcomes (or outcome probabilities) of the actions are known to the agent
- *Unknown* if the outcomes are not known and the agent needs to learn experientially
  - E.g. Rover sent to a new planet

#### Class Exercise

• Determine the characteristics of the task environment for the task from the PEAS exercise

# **Examples**

| Task Env.                 | Observable | Agents | Deterministic | Episodic | Static | Discrete |
|---------------------------|------------|--------|---------------|----------|--------|----------|
| Crossword puzzle          |            |        |               |          |        |          |
| Medical                   |            |        |               |          |        |          |
| diagnosis<br>Taxi driving |            |        |               |          |        |          |
| Taxi uriving              |            |        |               |          |        |          |

 Agent function maps a percept sequence to an action; external characterization

$$f: p_0, p_1, \ldots p_n \rightarrow a_i$$

23 / 26

 Agent function maps a percept sequence to an action; external characterization

$$f: p_0, p_1, \ldots p_n \rightarrow a_i$$

• Agent program is a concrete implementation; internal characterization

Dr. Gerard (NCSU)

 Agent function maps a percept sequence to an action; external characterization

$$f: p_0, p_1, \ldots p_n \rightarrow a_i$$

- Agent program is a concrete implementation; internal characterization
- Agent architecture is the computing device with sensors and actuators

 Agent function maps a percept sequence to an action; external characterization

$$f: p_0, p_1, \ldots p_n \rightarrow a_i$$

- Agent program is a concrete implementation; internal characterization
- Agent architecture is the computing device with sensors and actuators
- Agent is the combination of architecture and program agent = architecture + program

23 / 26

Dr. Gerard (NCSU) Lecture 1 Jan 9, 2025

• Selects action based on the current percept

- Selects action based on the current percept
- Does not track history of percepts

- Selects action based on the current percept
- Does not track history of percepts
- Simple but can fail if the environment is not fully observable

- Selects action based on the current percept
- Does not track history of percepts
- Simple but can fail if the environment is not fully observable
  - Agent cannot figure out if a car infront is braking by observing only a single image frame



```
function SIMPLE-REFLEX-AGENT(percept) return an action
    persistent: rules, a set of condition-action rules
    state ← INTERPRET-INPUT(percept)
    rule ← RULE-MATCH(state, rules)
    action ← rule.ACTION
    return action
```