

SIGNS WITH SMART CONNECTIVITY FOR BETTER ROAD SAFETY

IBM PROJECT REPORT Team ID - PNT2022TMID23978

SUBMITTED BY

I. MOHAMED ABDULLAH (110119106008)
 K. MOHAMED ABUSALIH (110119106009)
 A. SEENI HABEBU MOHAMED (110119106025)
 K. SYED IRFAN (110119106030)

Final Deliverables Report

Date	18.11.2022	
Team ID	PNT2022TMID23978	
Project Name	Signs with Smart Connectivity for Better Road Safety	

Team members and their Contributions:

Name	Roll no	Contribution
MOHAMED	110119106008	
ABDULLAH I		CREATED SOURCE CODE FOR THE WOKWI
		SIMULATOR AND MIT APP CODE.
MOHAMED	110119106009	CREATED NODE RED AND IOT WATSON PLATFORM.
ABUSALIH K		
SEENI HABEBU	110119106025	PROJECT REPORT MAKING PROCESS AND GATHERING
MOHAMED A		IDEAS FOR CREATING PROJECT.
SYED IRFAN K	110119106030	
		WORKINGS IN NODE RED FLOW AND IBM
		CLOUD
		DEPLOYMENT.

Introduction:

- 1. Sprint 1 Create and initialize accounts in various public APIs like OpenWeatherMap API, and write a Python program that outputs results given the inputs like weather and location.
- 2. Sprint 2 Push data from local code to cloud
- 3. Sprint 3 Hardware & Cloud integration
- 4. Sprint 4 UI/UX Optimization & Debugging

CONTENTS

1.	INTRODUCTION	
	1.1 Project Overview	5
	1.2 Purpose	5
2.	LITERATURE SURVEY	
	2.1 Existing problem	6
	2.2 References	6
	2.3 Problem Statement Definition	7
3.	IDEATION & PROPOSED SOLUTION	
	3.1 Empathy Map Canvas	8
	3.2 Ideation & Brainstorming	9
	3.3 Proposed Solution	10
	3.4 Problem Solution fit	13
4.	REQUIREMENT ANALYSIS	
	4.1 Functional requirement	15
	4.2 Non-Functional requirements	16
5.	PROJECT DESIGN	
	5.1 Data Flow Diagrams	17
	5.2 Solution & Technical Architecture	18
	5.3 User Stories	21
6.	PROJECT PLANNING & SCHEDULING	
	6.1 Sprint Planning & Estimation	22
	6.2 Sprint Delivery Schedule	23
	6.3 Reports from JIRA	24

7. C	CODING & SOLUTIONING	
7.	1 Feature 1	25
7.	2 Feature 2	26
8. T	TESTING	
8.	1 Test Cases	27
8.	2 User Acceptance Testing	27
9. R	RESULTS	
9.	1 Performance Metrics	28
10.	ADVANTAGES & DISADVANTAGES	28
11.	CONCLUSION	29
12.	FUTURE SCOPE	29
13.	APPENDIX	30
	Source Code	30
	GitHub & Project Demo Link	30

1. INTRODUCTION

1.1 Project Overview

- To replace the static signboards, smart connected signboards are used.
- These smart connected sign boards get the speed limitations from a web app using weather API and update automatically.
- Based on the weather changes the speed may increase or decrease.
- Based on the traffic and fatal situations the diversion signs are displayed.
- Guide (Schools), Warning and Service (Hospitals, Restaurants) signs are also displayed accordingly.
- Different modes of operations can be selected with the help of buttons.

1.2 Purpose

- Smart Traffic Management is a system to monitor and control traffic signals using sensors to regulate the flow of traffic and to avoid congestion for a smooth flow of traffic.
- Prioritizing traffic like ambulances, police etc. is also one application comes under smart traffic management.

2. LITERATURE SURVEY

2.1 Existing problem

- Analysis of crash data has suggested a link between roadside advertising signs and safety.
- Research suggests that crash risk increases by approximately 25–29% in the presence of digital roadside advertising signs compared to control areas.
- On the other hand, static roadside advertising signs have not been linked with differences in the crash count.
- However, this finding is contrary to previous research that suggests differences in crash counts exist in the presence of static roadside advertising.
- The quantity and quality of available evidence limit our conclusion.
- Fixed object, side swipe and rear end crashes are the most common types of crashes in the presence of roadside advertising signs.
- In addition, drivers showed increased eye fixations and increased drifting between lanes on the road.

2.2 References

- Cairney and Gunatillake, 2000; Sisiopiku et al., 2015
- Islam, 2015; Sisiopiku et al., 2015
- Yannis et al., 2013, Staffeld (1953) and Ady (1967)

2.3 Problem Statement Definition

This project will replace the static boards to smart signed boards that will change the speed limits according to the weather climate and show diversion messages if there are accidents in the road and alert messages if there is hospital, schools or any roadworks.

3. IDEATION AND PROPOSED SOLUTION

3.1 Empathy Map Canvas

3.2 Ideation & Brainstorming Map

3.3 Proposed Solution

S.No.	Parameter	Description		
1.	Problem Statement	To replace the static signboards, smart connected sign boards are used.		
		These smart connected sign boards get the speed limitations from a web app using weather API and update automatically.		
		Based on the weather changes the speed may increase or decrease		
		Based on the traffic and fatal situations the diversion signs are displayed.		
		Guide (Schools), Warning and Service (Hospitals, Restaurant) signs arealso displayed accordingly.		
		Different modes of operations can be selected with the help of buttons.		
2.	Idea description	The weather and temperature details are obtained from the OpenWeatherMap API. Using these details, the speed limit will be updated automatically in accordance with the weather conditions. Also, the details regarding any accidents and traffic congestion faced on the particular road are obtained. Based on this, the traffic is diverted followed by a change in map path and the traffic is cleared. So, in the traffic sign board, some buttons will be placed which willbe used to make it generic; where each button will be given a functionality such as changing the warning signs, which are predefined and separate signs will be present for both school and		

S.No.	Parameter	Description
		hospital zones. By activating this button, either through the web application or the physical buttons, sign of the board can be changed accordingly, and the speed limit will also be set depending upon the zones. Also, the pedestrians are given an option to change the traffic signs if they want to cross the road. If the pedestrian presses the button that is present on the post at the end of the road, then the traffic will be analyzed immediately. Accordingly, the sign of the traffic signal will be changed. This in turn reduces the frequent changing of the traffic signs even if the pedestrians are not present.
3.	Novelty	Generic Sign board for all applications that uses both buttons and web service for updation. Pedestrians are given the access to request the sign change of the signal to cross the road
4.	Customer Satisfaction	Diversion reasons will be displayed If there is no traffic, pedestrians can cross the street without waiting. Customer can reach the destination before the expected time

5.	Business Model	Since APIs are used to actively monitor the customer's environment,			
		this project employs a business strategy in which revenue will be			
		generated on the basis of the length of time in which the customers			
		actively interact with the product.			
		This product is aimed to be free of cost to the public, but the revenue			
		will be generated by selling this product to the government at a low			
		cost, so there will be less accidents and the public will be aware of the			
		discrepancies or accidents in the particular road. The public will also			
		gain all the information about the road, even if they are checking for an			
		alternate path because of some mishaps that happen on the roads and			
		these functionalities will increase the value of the product in the global			
		market.			
6.	Scalability of the	In the future, if any update is required either on the hardware or			
	Solution	software side, it can be easily implemented. The hardware			
		components can be directly interfaced with the microcontroller and			
		small modifications can be made in the programming of the existing			
		product. In case of the software, the website application has to be			
		updated with the additional functionality by creating a new section for			
		the updated hardware. So, this will not affect the existing functionality			
		of the product and new functionality can be easily integrated. In			
		addition, a separate circuit will be kept along with the hardware to			
		detect any problem which informs the web application. Also, a			
		notification will be sent to the product service department.			

3.4 Problem Solution fit

For better viewing experience of the problem solution fit visit the below link

https://github.com/IBM-EPBL/IBM-Project-47838-1664170967/blob/main/Project%20Design%20and%20planning/Project%20Design%20Phase%201/Problem solution fit%20.pdf

4. REQUIREMENT ANALYSIS

4.1 Functional Requirements

Following are the functional requirements of the proposed solution.

FR No.	Functional Requirement(Epic)	Sub Requirement (Story / Sub-Task)
FR-I	User Visibility	Sign Boards should be made of bright colored LEDs capable of attracting driver's attention Not too distracting to cause accidents
FR-2	User Understanding	Should display information through means like images/illustrations with text so that the user can understand the signs correctly
FR-3	User Convenience	Display should be big enough to display all the signscorrectly so that it is visible even to far away drivers

4.2 Non-Functional Requirements

Following are the non-functional requirements of the proposed solution.

FR No.	Non-Functional Requirement	Description	
NFR-I	Usability	Should be able to dynamically update with respect to time.	
NFR-2	Security	Should be secure enough that only the intendedmessages are displayed in the display.	
NFR-3	Reliability	Should convey the traffic information correctly.	
NFR-4	Performance	Display should update dynamically whenever theweather or traffic values are updated	
NFR-5	Availability	Should be on service 24/7	
NFR-6	Scalability	Should be modular and hence able to scale onservers horizontally.	

5. PROJECT DESIGN

5.1 Data Flow Diagram

5.2 Solution & Technical Architecture

Following is the Technical Architecture with slight change and is without the implementation of OpenCV API.

Following is the Solution Built

Table-1: Components & Technologies:

S.N o	Component	Description	Technology
1	User Interface	User can interact with the app using MIT App	HTML, CSS, JavaScript / Angular Js /React Js
2	Application Logic-1	Logic for a process in the application	Java / Python
	Application Logic-2	Logic for a process in the application	IBM Watson STT service
	Application Logic-3	Logic for a process in the application	IBM Watson Assistant
5 .	Database	Data Type, Configurations etc.	IBM Cloud
6	Cloud Database	Database Service on Cloud	IBM DB2, IBM Cloudant etc.
7	File Storage	File storage requirements	IBM Block Storage or Other StorageService or Local Filesystem
8	External API-1	Purpose of External API used in the application	Open Weather Map API
9	External API-2	Purpose of External API used in the application	IBM Watson Platform, Node - Red
10.	Infrastructure (Server / Cloud)	Application Deployment on Local System / CloudLocal Server Configuration: Cloud Server Configuration:	Local, Cloud Foundry, Kubernetes

Table-2: Application Characteristics:

S. No	Characteristics	Description	Technology
1.	Open-Source Frameworks	OpenWeatherMap, NODE- RED, IBM WATSON,MIT App Inventor	IoT, internet
2.	Security Implementations	Powerful security system for everyone'speace of mind No access data Hackers cannot access network	Firewall, Firebase, cyber resiliency, strategy
3.	Scalable Architecture	EASY TO EXTEND THE NETWORK WITH THEAID OF THE BANDWIDTH OF THE NETWORK	IBM Cloud
4.	Availability	Available every time and everywhere 24/7so long as the consumer is signed into thenetwork.	IBM Cloud
5.	Performance	AIDS MASSIVE RANGE OF USERS TO USE TECHNOLOGY	IBM Cloud

5.3 User Stories

6. PROJECT PLANNING AND SCHEDULING

6.1 Sprint Planning & Estimation

Sprint	Functional Requirement (Epic)	User Story / Task	Story Points	Priority	Team Members
Sprint-1	Resources Initialization	Create and initialize accounts in various public APIs like OpenWeatherMap API.	1	LOW	MOHAMED ABDULLAH, MOHAMED ABUSALIH, SEENI HABEBU MOHAMED, SYED IRFAN
Sprint-1	Local Server/Software Run	Write a Python program that outputs results given the inputs like weather and location.	1	MEDIUM	MOHAMED ABDULLAH, MOHAMED ABUSALIH, SEENI HABEBU MOHAMED, SYED IRFAN
Sprint-2	Push the server/software to cloud	Push the code from Sprint 1 to cloud so it can be accessed from anywhere	2	MEDIUM	MOHAMED ABDULLAH, MOHAMED ABUSALIH, SEENI HABEBU MOHAMED, SYED IRFAN
Sprint-3	Hardware initialization	Integrate the hardware to be able to access the cloud functions and provide inputs to the same.	2	HIGH	MOHAMED ABDULLAH, MOHAMED ABUSALIH, SEENI HABEBU MOHAMED, SYED IRFAN
Sprint-4	UI/UX Optimization & Debugging	Optimize all the shortcomings and provide better user experience.	2	LOW	MOHAMED ABDULLAH, MOHAMED ABUSALIH, SEENI HABEBU MOHAMED, SYED IRFAN

6.2 Sprint Delivery Schedule

Project Tracker, Velocity & Burndown Chart:

Sprint	Total Stor y Poin ts	Durati on	Sprint Start Date	Sprint End Date (Planne d)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	20	6 Days	24 Oct 2022	29 Oct 2022	20	29 Oct 2022
Sprint-2	20	6 Days	31 Oct 2022	05 Nov 2022	20	31 Oct 2022
Sprint-3	20	6 Days	07 Nov 2022	12 Nov 2022	20	07 Nov 2022
Sprint-4	20	6 Days	14 Nov 2022	19 Nov 2022	20	14 Nov 2022

Burndown Chart:

Balance Work

PNT2022TMID23978

6.3 Reports from JIRA Software

For Better Tracking of JIRA Reports visit the below link

https://smartsignboards.atlassian.net/jira/software/projects/SWSCF BRS/boards/1/roadmap?shared=&atlOrigin=eyJpIjoiNThmZjMyYjc4Yj ZmNGVjN2ExNzE1YTk4ZDhiY2ZkZjMiLCJwIjoiaiJ9

7. CODING AND SOLUTIONING

7.1 Feature 1 - GET SPEED FOR GIVEN LOCATION & CLIMATE

This part of Node RED flow accepts an http GET end point at "/getSpeed" from which the location, uid, hospital/school zone info are passed.

Message parser sets the required APIKEY for **OpenWeatherAPI** for the next block.

This data is then passed onto Decision Maker which makes all the decisions regarding the message to be output at the display and sends it as a http response.

This data is displayed at the microcontroller. Thus, a lot of battery is saved due to lesser processing time.

7.2 Feature 2 - SET DIRECTION REMOTELY FOR A GIVEN SIGN BOARD

This part of Node RED flow accepts an http GET end point at "/setDirection" from which the uid and direction information are passed by the respective authorities. Set Direction Function block adds the direction information to the database and returns the same as an http response. This data is sent to the microcontroller along with the "/getSpeed" path and the microcontroller displays it.

A detailed documentation of all the workflows is available at the **following link**:

https://github.com/IBM-EPBL/IBM-Project-47838-1664170967/tree/main/Project%20Development%20Phase

8. TESTING

8.1 Test Cases

***** TEST CASE 1

Clear weather - Usual Speed Limit.

❖ TEST CASE 2

Foggy Weather - Reduced Speed Limit.

***** TEST CASE 3

Rainy Weather - Further Reduced Speed Limit.

❖ TEST CASE 4

School/Hospital Zone - Do not Honk sign is displayed.

8.2 User Acceptance Testing

Dynamic speed & diversion variations based on the weather and traffic helps user to avoid traffic and have a safe journey home. The users would welcome this idea to be implemented everywhere.

9. RESULTS

9.1 Performance Metrics

Based on the IBM pack we chose, the performance of the website varies. Built upon NodeJS, a light and high performance engine, Node RED is capable of handling up to 10,000 requests per second. Moreover, since the system is horizontally scalable, an even higher demand of customers can be served.

10. ADVANTAGES & DISADVANTAGES

ADVANTAGES

- Lower battery consumption since processing is done mostly by Node RED servers in the cloud.
- Cheaper and low requirement micro controllers can be used since processing requirements are reduced.
- Longer lasting systems.
- Dynamic Sign updating.
- School/Hospital Zone alerts

DISADAVNTAGES

- The size of the display determines the requirement of the micro controller
- Dependent on OpenWeatherMap API and hence the speed reduction is same for a large area in the scale of cities.

11. CONCLUSION

Our project is capable of serving as a replacement for static signs for a comparatively lower cost and can be implemented in the very near future. This will help reduce a lot of accidents and maintain a more peaceful traffic atmosphere in the country.

12. FUTURE SCOPE

Introduction of intelligent road sign groups in real life scenarios could have great impact on increasing the driving safety by providing the end-user (car driver) with the most accurate information regarding the current road and traffic conditions. Even displaying the information of a suggested driving speed and road surface condition (temperature, icy, wet or dry surface) could result in smoother traffic flows and, what is more important, in increasing a driver's awareness of the road situation.

13. APPENDIX

GITHUB AND PROJECT DEMO LINK

https://github.com/IBM-EPBL/IBM-Project-47838-1664170967

PROJECT DEVELOPMENT PHASE LINK

https://github.com/IBM-EPBL/IBM-Project-47838-1664170967/tree/main/Project%20Develop ment%20Phase

DEMO VIDEO DOWNLOAD LINK

https://youtu.be/cjFPekA8Ghc

• SOURCE CODE – ESP 32

```
#include <WiFi.h>
#include <HTTPClient.h>
#include <Adafruit_GFX.h>
#include <Adafruit_ILI9341.h>
#include <string.h>

const char* ssid = "Wokwi-GUEST";
const char* password = "";
```

```
#define TFT DC 2
#define TFT CS 15
Adafruit ILI9341 tft = Adafruit ILI9341(TFT CS, TFT DC);
String myLocation = "Chennai,IN";
String usualSpeedLimit = "70"; // kmph
int schoolZone = 32;
int hospitalZone = 26;
int uid = 2504;
String getString(char x)
    String s(1, x);
    return s;
String stringSplitter1(String fullString,char delimiter='$')
    String returnString = "";
    for(int i = 0; i<fullString.length();i++) {</pre>
        char c = fullString[i];
        if(delimiter==c)
            break:
        returnString+=String(c);
    return(returnString);
String stringSplitter2(String fullString,char delimiter='$')
    String returnString = "";
    bool flag = false;
    for(int i = 0; i<fullString.length();i++) {</pre>
        char c = fullString[i];
        if(flag)
            returnString+=String(c);
        if(delimiter==c)
            flag = true;
    return(returnString);
void rightArrow()
```

```
int refX = 50;
  int refY = tft.getCursorY() + 40;
  tft.fillRect(refX,refY,100,20,ILI9341 RED);
 tft.fillTriangle(refX+100,refY-
30, refX+100, refY+50, refX+40+100, refY+10, ILI9341 RED);
void leftArrow()
  int refX = 50;
  int refY = tft.getCursorY() + 40;
  tft.fillRect(refX+40,refY,100,20,ILI9341 RED);
  tft.fillTriangle(refX+40,refY-
30, refX+40, refY+50, refX, refY+10, ILI9341 RED);
void upArrow()
  int refX = 125;
  int refY = tft.getCursorY() + 30;
 tft.fillTriangle(refX-
40, refY+40, refX+40, refY+40, refX, refY, ILI9341_RED);
  tft.fillRect(refX-15,refY+40,30,20,ILI9341 RED);
String APICall() {
 HTTPClient http;
  String url = "https://node-red-nwmrt-2022-11-04.eu-
gb.mybluemix.net/getSpeed?";
  url += "location="+myLocation+"&";
  url += "schoolZone="+(String)digitalRead(schoolZone)+(String)"&";
  url +=
"hospitalZone="+(String)digitalRead(hospitalZone)+(String)"&";
  url += "usualSpeedLimit="+(String)usualSpeedLimit+(String)"&";
  url += "uid="+(String)uid;
  http.begin(url.c_str());
  int httpResponseCode = http.GET();
  if (httpResponseCode>0) {
    String payload = http.getString();
    http.end();
```

```
return(payload);
 else {
    Serial.print("Error code: ");
    Serial.println(httpResponseCode);
 http.end();
void myPrint(String contents) {
  tft.fillScreen(ILI9341_BLACK);
 tft.setCursor(0, 20);
 tft.setTextSize(4);
 tft.setTextColor(ILI9341 RED);
  //tft.println(contents);
  tft.println(stringSplitter1(contents));
  String c2 = stringSplitter2(contents);
  if(c2=="s") // represents Straight
    upArrow();
  if(c2=="1") // represents left
    leftArrow();
  if(c2=="r") // represents right
    rightArrow();
void setup() {
 WiFi.begin(ssid, password, 6);
 tft.begin();
  tft.setRotation(1);
  tft.setTextColor(ILI9341_WHITE);
  tft.setTextSize(2);
  tft.print("Connecting to WiFi");
 while (WiFi.status() != WL_CONNECTED) {
    delay(100);
    tft.print(".");
```

```
tft.print("\nOK! IP=");
tft.println(WiFi.localIP());
}

void loop() {
  myPrint(APICall());
  delay(100);
}
```