CVX tutorial session

TA: Mykola Servetnyk

Instructor: Professor Carrson C. Fung

Optimization Theory and Applications

National Chiao Tung University

11 April, 2019

(NCTU) CVX tutorial 11 April, 2019 1 / 21

What is CVX?

- Website: http://cvxr.com/cvx
- CVX is a modeling system for disciplined convex programming (DCP)
 - http://cvxr.com/cvx/doc/dcp.html
- DCPs are convex optimization problems that are described using a limited set of construction rules, which enables them to be analyzed and solved efficiently
- CVX is implemented in Matlab
- CVX relies on external solvers to solve problems
 - Mosek, Gurobi, SDPT3, SeDuMi
- If CVX accepts your problem, you can be sure it is convex
 - Reverse is not always true: Problems that violate the ruleset are rejected, even when the problem is convex

◆ロト ◆個ト ◆差ト ◆差ト 差 めなべ

CVX Basics: structure of convex problems

Mathematically

min
$$f_0(x)$$
, $i = 1, ..., m$
s.t. $f_i(x) \le 0$, $i = 1, ..., p$
 $h_i(x) = 0$

In CVX

```
cvx_begin
  variables x(n)
  minimize(f0(x))
  subject to
    f(x) <= 0
    A * x - b == 0
cvx_end</pre>
```

(NCTU) CVX tutorial 11 April, 2019 3 / 21

Return variables

Upon exit, CVX sets the variables

- x-solution variable x*
- cvx_optval solution variable x*
- cvx_status solver status (Solved, Unbounded, Infeasible,...)
- ...

(NCTU) CVX tutorial 11 April, 2019 4 / 21

Examples - Basic

Optimization problem

$$min x + y$$
s.t. $x \ge 1$

$$y = 2$$

In CVX

```
cvx_begin
  variables x(1) y(1)
  minimize (x+y)
  subject to
    x >= 1
    y == 2
cvx_end
```

Examples - Basic

CVX returns a solution and status

(NCTU) CVX tutorial 11 April, 2019 6 / 21

Examples - LP

Optimization problem

$$\begin{aligned} & \mathsf{max} \ \mathbf{c}^T \mathbf{x} \\ & \mathsf{s.t.} \ \mathbf{A} \mathbf{x} = \mathbf{b} \\ & \mathbf{x} \succeq \mathbf{0} \end{aligned}$$

In CVX

```
cvx_begin
  variable x(n)
  maximize (c' * x)
  subject to
    A * x == b
    x >= 0
cvx_end
```

(NCTU) CVX tutorial 11 April, 2019 7 / 21

Examples - SDP

Optimization problem

min
$$\|\mathbf{X} - \mathbf{A}\|_2^2$$
 s.t. $\mathbf{X} \succeq \mathbf{0}$

In CVX

```
cvx_begin
  variable X(n,n) semidefinite
  minimize square_pos(norm(A - X))
  subject to
    X == semidefinite(n)
cvx_end
```

(NCTU) CVX tutorial 11 April, 2019 8 / 21

Examples - Assignments

Optimization problem

$$\min \sum_{i} \|\mathbf{x} - \mathbf{a}_{i}\|_{2}$$

In CVX

```
cvx_begin
  variable x(n,1)
  OBJ = cvx(0);
  for i = 1:n
      OBJ = OBJ + norm(x-A(:,i));
  end
  minimize norm(OBJ)
cvx_end
```

(NCTU) CVX tutorial 11 April, 2019 9 / 21

CVX - Variables

The currently supported structure keywords are

- banded(lb,ub)
- diagonal
- hankel
- hermitian
- skew_symmetric
- symmetric
- toeplitz
- tridiagonal
- lower_bidiagonal
- lower_hessenberg
- lower_triangular
- upper_bidiagonal
- upper_hankel
- upper_hessenberg
- upper_triangular

Supported properties

- complex
- nonnegative
- semidefinite
- integer
- binary

Some functions

function	meaning	attributes
norm(x, p)	$ x _p$	CVX
square(x)	x^2	cvx
square_pos(x)	$(x_{+})^{2}$	cvx, nondecr
pos(x)	x_{+}	cvx, nondecr
<pre>sum_largest(x,k)</pre>	$x_{[1]} + \dots + x_{[k]}$	cvx, nondecr
sqrt(x)	$\sqrt{x} (x \ge 0)$	ccv, nondecr
inv_pos(x)	1/x (x > 0)	cvx, nonincr
max(x)	$\max\{x_1,\ldots,x_n\}$	cvx, nondecr
quad_over_lin(x,y)	$x^2/y (y>0)$	cvx, nonincr in y
lambda_max(X)	$\lambda_{\max}(X)$ $(X = X^T)$	cvx
huber(x)	$\left \begin{cases} x^2, & x \le 1 \\ 2 x - 1, & x > 1 \end{cases} \right $	cvx

(NCTU) CVX tutorial 11 April, 2019 11 / 21

Composition rules

It is possible to form composite functions

- a convex function of an ane function is convex
- the negative of a convex function is concave
- a convex, nondecreasing function of a convex function is convex
- a concave, nondecreasing function of a concave function is concave

(NCTU) CVX tutorial 11 April, 2019 12 / 21

- Objective can be
 - minimize(convex expression)
 - minimize(convex expression)
 - omitted (feasibility problem)
- Constraint can be
 - convex expression <= concave expression
 - concave expression <= convex expression
 - affine expression == affine expression
 - omitted (unconstrained problem)

(NCTU) CVX tutorial 11 April, 2019 13 / 21

CVX hints/warnings

- watch out for = (assignment) versus == (equality constraint)
- X>=0, with matrix X is an elementwise inequality
- writing subject to is unnecessary (but can look nicer)
- many problems traditionally stated using convex quadratic forms can posed as norm problems

```
x'*P*x \le 1 can be replaced with norm(chol(P)*x) \le 1
```

(NCTU) CVX tutorial 11 April, 2019 14 / 21

Reference

• CVX user's guide: http://web.cvxr.com/cvx/beta/doc/CVX.pdf

(NCTU) CVX tutorial 11 April, 2019 15 / 21

Remark

- Some problems do not appear to be convex
- Even if it is known that problem is convex, it might require some reformulations to program it to cvx (or make it run much faster)
- It may help you to understand how cvx works and do your own problem reformulations.

(NCTU) CVX tutorial 11 April, 2019 16 / 21

Example: Chebyshev (ℓ_{∞}) norm

$$\label{eq:force_equation} \text{minimize} \quad f(Ax-b) \triangleq \|Ax-b\|_{\infty} = \max_{1 \leq k \leq m} |a_k^Tx-b|$$

This can be expressed as a linear program:

$$\begin{array}{ll} \text{minimize} & q \\ \text{subject to} & -q\mathbf{1} \leq Ax - b \leq +q\mathbf{1} \end{array} \implies \begin{array}{ll} \text{minimize} & \begin{bmatrix} \mathbf{0} & 1 \end{bmatrix} \begin{bmatrix} x \\ q \end{bmatrix} \\ \text{subject to} & \begin{bmatrix} A & -\mathbf{1} \\ -A & -\mathbf{1} \end{bmatrix} \begin{bmatrix} x \\ q \end{bmatrix} \leq \begin{bmatrix} b \\ -b \end{bmatrix} \end{array}$$

◆ロト ◆個ト ◆差ト ◆差ト 差 めらゆ

(NCTU) CVX tutorial 11 April, 2019 17 / 21

Example: Manhattan (ℓ_1) norm

minimize
$$f(Ax-b) \triangleq ||Ax-b||_1 = \sum_{k=1}^m |a_k^T x - b|$$

LP formulation:

(NCTU) CVX tutorial 11 April, 2019 18 / 21

Example: Largest-L norm

Let $|w|_{[k]}$ represent the k-th largest element (in magnitude) of $w \in \mathbf{R}^m$:

$$|w|_{[1]} \ge |w|_{[2]} \ge \cdots \ge |w|_{[m]}$$

Then define the *largest-L norm* as

$$||w||_{[L]} \triangleq |w|_{[1]} + |w|_{[2]} + \dots + |w|_{[L]} \triangleq \sum_{k=1}^{L} \sigma_k(\operatorname{diag}(w))$$

for any integer $1 \leq L \leq m$. Special cases include

$$\|w\|_{[1]} \equiv \|w\|_{\infty}, \quad \|w\|_{[m]} \triangleq \|w\|_{1}$$

but novel results are produced for all 1 < L < m

(NCTU) CVX tutorial 11 April, 2019 19 / 21

Example: Constrained ℓ_2 norm

Add some constraints:

$$\begin{array}{ll} \text{minimize} & \|Ax-b\|_2 \\ \text{subject to} & Cx=d \\ & \ell \leq x \leq u \end{array}$$

This is not a least-squares problem—but it is an SOCP, and SeDuMi can handle it, once it is converted to standard form:

 $s_l, s_u \in \mathbf{R}_+^n$ are slack variables, which are used quite often to convert inequalities to equations

(NCTU) CVX tutorial 11 April, 2019 20 / 21

Good Luck!

(NCTU) CVX tutorial 11 April, 2019 21 / 21