

LICENCE I

COURS DE DR. PAPA. IBRAHIMA. NDIAYE

Table des matières

1	Les	nombres réels	3
	1.1	Axiomes algébrique	3
	1.2	Axiomes d'ordre	5
	1.3	Propriétés de complétude	9
		1.3.1 Bornes supérieures-bornes inférieures	6
		1.3.2 Intervalles, droite numerique et voisinages	13

Chapitre 1

Les nombres réels

Introduction:

Soit $\mathbb R$ un ensemble non vide, appelé l'ensemble des nombres réels satisfaisant à un certains nombres d'axiomes. Sur ct ensemble on definit deux opérations :

prémière opération : l'addition, noté +

deuxieme opération : la multiplication, noté ·

1.1 Axiomes algébrique

\rightarrow Pour l'addition :

- A_1) Pour tout $a, b \in \mathbb{R}$, a.b = b.a (commutativité).
- A_2) Pour tout $a, b, c \in \mathbb{R}$, a.b.c = a.(b.c) = (a.b).c (associativité).
- A_3) Il existe $0 \in \mathbb{R}$ tel que pour tout $a \in \mathbb{R}$, 0 + a = a + 0 = a (zéro est l'élément neutre de l'addition).
- A_4) Pour tout $a \in \mathbb{R}$, il existe $-a \in \mathbb{R}$ tel que a + (-a) = (-a) + a = 0 (tout réel admet un élément opposé).

\rightarrow Pour la multiplication :

- M_1) Pour tout $a, b \in \mathbb{R}$, a + b = b + a (commutativité).
- M_2) Pour tout $a, b, c \in \mathbb{R}$, a+b+c=a+(b+c)=(a+b)+c (associativité).
- M_3) Il existe $1 \in \mathbb{R}$, $1 \neq 0$ tel que pour tout $a \in \mathbb{R}$, 1.a = a.1 = a (1 est l'élément neutre de la multiplication).
- M_4) Pour tout $a \in \mathbb{R}, a \neq 0$, il existe $b \in \mathbb{R}$ tel que a.b = 1.

La multiplication est distributive par rapport à l'addition :

Pour tout
$$a, b, c \in \mathbb{R}$$
, $a.(b+c) = ab + ac$

Nomenclature:

Si
$$a \neq 0$$
 alors
$$\begin{cases} \frac{1}{a}, \text{ est appelé inverse de } a \\ -a, \text{ est appelé l'opposé de } a. \end{cases}$$

Théorème 1.1.1

- 1. Soient $a, z \in \mathbb{R}$, l'équation a + z = a implique z = 0.
- 2. Si a, b sont des réels non nuls tels que ab = b alors a = 1.

Preuve:

1. Soient $a, z \in \mathbb{R}$ tels que a + z = a. Montrons que z = 0.

Comme $a \in \mathbb{R}$ alors il existe $-a \in \mathbb{R}$ tel que a + (-a) = (-a) + a = 0or $a+z=a \Longrightarrow (-a)+a+z=(-a)+a \Longrightarrow ((-a)+a)+z=0 \Longrightarrow 0+z=0 \Longrightarrow z=0.$ Pour tout $a, z \in \mathbb{R}$ tel que a + z = a alors z = 0.

2. Supposons que $a, b \in \mathbb{R}$, $a \neq 0$, $b \neq 0$ tel que ab = b. Montrons que a = 1.

 $b \neq 0$, il existe $c \in \mathbb{R}$ tel que bc = cb = 1

or $ab = b \Longrightarrow abc = bc \Longrightarrow a(bc) = 1 \Longrightarrow a(1) = 1 \Longrightarrow a.1 = 1 \Longrightarrow a = 1$.

Pour tout $a, b \in \mathbb{R}$, $a \neq 0$, $b \neq 0$ tel que ab = b alors a = 1.

Théorème 1.1.2

- 1. Pour tout $a, b \in \mathbb{R}$ tel que a + b = 0 alors b = -a.
- 2. Si $a \neq 0$ et $b \in \mathbb{R}$ tel que ab = 1 alors $b = \frac{1}{a}$.

Preuve:

1. Soient $a, b \in \mathbb{R}$ tel que a + b = 0. Montrons que b = -a.

Comme $a \in \mathbb{R}$ alors il existe $-a \in \mathbb{R}$ tel que a + (-a) = (-a) + a = 0or $a + b = 0 \Longrightarrow (-a) + a + b = (-a) + 0 \Longrightarrow ((-a) + a) + b = (-a) \Longrightarrow 0 + b = (-a) =$ $-a \Longrightarrow b = -a$.

Pour tout $a, b \in \mathbb{R}$ tel que a + b = 0 alors b = -a.

2. Supposons $a \in \mathbb{R}$, $a \neq 0$ et $b \in \mathbb{R}$ tel que ab = 1. Montrons que $b = \frac{1}{a}$.

Par hypothèse on a $a \neq 0$ alors $\frac{1}{a} \in \mathbb{R}$ tel que $a \cdot \frac{1}{a} = \frac{1}{a} \cdot a = 1$ or $ab = 1 \Longrightarrow \frac{1}{a}(ab) = \frac{1}{a} \cdot 1 \Longrightarrow (\frac{1}{a}a)b = \frac{1}{a} \Longrightarrow 1 \cdot b = \frac{1}{a} \Longrightarrow b = \frac{1}{a}$. Pour tous $a \in \mathbb{R}$, $a \neq 0$ et $b \in \mathbb{R}$ tels que ab = 1 alors $b = \frac{1}{a}$.

Théorème 1.1.3

Soient a et b deux nombres réels

- 1. a.0=0
- 2. (-a)=(-1)a
- 3. -(a+b)=(-a)+(-b)
- 4. -(-a)=a
- 5. (-1)(-1)=1

Preuve:

Soient $a, b \in \mathbb{R}$

1. On sait que:

$$a(0+0) = a.0 + a.0 \Longrightarrow a.0 = a.0 + a.0$$

or $a, 0 \in \mathbb{R}$ alors $a.0 \in \mathbb{R} \Longrightarrow \exists -a.0 \in \mathbb{R}$ tel que (-a.0) + a.0 = a.0 + (-a.0) = 0.

Donc: $a.0 = a.0 + a.0 \Longrightarrow (-a.0) + a.0 = (-a.0) + a.0 + a.0 \Longrightarrow 0 = ((-a.0) + a.0) = (-a.0) = ($ $(a.0) + a.0 \Longrightarrow 0 = 0 + a.0 \Longrightarrow 0 = a.0$

2. On sait que:

$$a(1+(-1)) = 1.a + (-1).a \Longrightarrow a.0 = 1a + (-1)a \Longrightarrow 0 = a + (-1)a$$

$$comme \ a \in \mathbb{R}, \text{ il existe } -a \in \mathbb{R} \text{ tel que } a + (-a) = (-a) + a = 0 \text{ et donc}:$$

$$0 = a + (-1)a \Longrightarrow (-a) + 0 = (-a) + a + (-1)a \Longrightarrow (-a) = ((-a) + a) + (-1)a \Longrightarrow$$

$$(-a) = 0 + (-1)a \Longrightarrow (-a) = (-1)a$$

3. D'après 2) on a :

$$-(a+b) = (-1)(a+b) \Longrightarrow -(a+b) = (-1)a + (-1)b \Longrightarrow -(a+b) = (-a) + (-b)$$

4. On sait que:

$$a + (-a) = 0$$

 $-a \in \mathbb{R}$, il existe $-(-a) \in \mathbb{R}$ tel que -a + (-(-a)) = 0.

Donc:

$$a + (-a) = 0 \Longrightarrow a + (-a) + (-(-a)) = 0 + (-(-a)) \Longrightarrow a + (-(a) + (-(-a))) = (-(-a)) \Longrightarrow a + 0 = (-(-a)) \Longrightarrow a = -(-a)$$

5. On sait que -a = (-1)a, pour tout $a \in \mathbb{R}$. Prenons

$$a = -1$$

donc: -(-1)=(-1)(-1) or d'après 4) -(-1)=1 alors 1=(-1)(-1).

Théorème 1.1.4

Soient a et b deux nombres réels

- 1. Si $a \neq 0$ alors $\frac{1}{a} \neq 0$ et $\frac{1}{a} = a$
- 2. $Si \ ab = 0 \ alors \ a = 0 \ ou \ b = 0$
- 3. (-a)(-b) = ab
- 4. Si $a \neq 0$ alors $\frac{1}{(-a)} = \frac{(-1)}{a} = -(\frac{1}{a})$

Preuve:

Soient $a, b \in \mathbb{R}$

1. Supposons $a \neq 0$ et $\frac{1}{a} = 0$. $a \neq 0$, il existe $\frac{1}{a} \in \mathbb{R}$ tel que $a \cdot \frac{1}{a} = \frac{1}{a} \cdot a = 1$ or $\frac{1}{a} = 0 \Longrightarrow a \cdot \frac{1}{a} = a \cdot 0 \Longrightarrow 1 = 0$ absurde (M_3) .

$$a \neq 0 \Longrightarrow \frac{1}{a} \neq 0, \exists \frac{1}{\frac{1}{a}} \in \mathbb{R} \text{ tel que } \frac{1}{a} \cdot \frac{1}{\frac{1}{a}} = 1 \Longrightarrow a \cdot \frac{1}{a} \cdot \frac{1}{\frac{1}{a}} = a.1 \Longrightarrow (a \cdot \frac{1}{a}) \cdot \frac{1}{\frac{1}{a}} = a \Longrightarrow 1 \cdot \frac{1}{\frac{1}{a}} = a \Longrightarrow \frac{1}{\frac{1}{a}} = a$$

2. Supposons que ab = 0

Supposons que $a \neq 0 \Longrightarrow \frac{1}{a}.a = 1$ comme $ab = 0 \Longrightarrow \frac{1}{a}ab = \frac{1}{a}.0 \Longrightarrow (\frac{1}{a}a)b = 0 \Longrightarrow 1.b = 0 \Longrightarrow b = 0.$ De fachon analogue si $b \neq 0$ alors a = 0.

Donc si ab = 0 alors a = 0 ou b = 0

- 3. Soient $a, b \in \mathbb{R}$. Montrons que (-a)(-b) = ab. (-a)(-b) = (-1)a(-1)b = (-1)(-1)ab or d'après 5) du théorème 1.1.3 , on a (-1)(-1) = 1 donc (-a)(-b) = 1.ab = ab .
- 4. Supposons que $a \neq 0$. Montrons que $\frac{1}{(-a)} = \frac{(-1)}{a} = -(\frac{1}{a})$. $a \neq \Longrightarrow -a \neq 0$, $\exists \frac{1}{(-a)} \in \mathbb{R}$ tel que $(-a) \cdot \frac{1}{(-a)} = 1 \Longrightarrow (-1) \cdot (-a) \cdot \frac{1}{(-a)} = (-1) \cdot 1 \Longrightarrow (-1) \cdot (-1) \cdot a \cdot \frac{1}{(-a)} = (-1) \Longrightarrow a \cdot \frac{1}{(-a)} = (-1)$ or $a \in \mathbb{R}$, $a \neq 0 \Longrightarrow \exists \frac{1}{a} \in \mathbb{R}$ tel que $\frac{1}{a} \cdot a = a \cdot \frac{1}{a} = 1$ donc on a: $a \cdot \frac{1}{(-a)} = (-1) \Longrightarrow \frac{1}{a} a \cdot \frac{1}{(-a)} = \frac{1}{a} (-1) \Longrightarrow (\frac{1}{a} a) \cdot \frac{1}{(-a)} = \frac{(-1)}{a} \Longrightarrow 1 \cdot \frac{1}{(-a)} = \frac{(-1)}{a}$.

Donc si $a \neq 0$ alors $\frac{1}{(-a)} = \frac{(-1)}{a} = -(\frac{1}{a})$.

1.2 Axiomes d'ordre

Supposons qu'il existe dans $\mathbb R$ une partie P ayant les propriétés suivantes :

- θ_1) Si $a, b \in P$ alors $a + b \in P$;
- θ_2) Si $a, b \in P$ alors $a.b \in P$;
- $\theta_3)$ Si $a\mathbb{R}$ une des trois relations suivante et une seule est vraie :

Soit
$$a \in P$$
 ou $a = 0 \in \{0\}$ ou $-a \in P$.

P est appelé l'ensemble des nombres réels positifs.

On pose

$$N = \{ a \in \mathbb{R} / -a \in P \}.$$

N est l'ensemble des nombres réels négatifs.

$$\mathbb{R} = P \cup \{0\} \cup N .$$

Soit $a \in \mathbb{R}$.

 \checkmark Si $a \in P$, on dit que a est strictement positif et on note a > 0.

 $\sqrt{\text{Si}} - a \in P$, on dit que a est strictement négatif et on note a < 0.

✓ Si $a \in P \cup \{0\}$, on dit que a est un réel positif ou nul et on note $a \ge 0$.

✓Si $-a \in P \cup \{0\}$, on dit que a est un réel négatif ou nul et on note $a \leq 0$.

Soient $a, b \in \mathbb{R}$.

✓ Si $a - b \in P$, on note a > b et on lit a supérieur à b.

 \checkmark Si $-(a-b) \in P$, on note a < b et on lit a inférieur à b.

✓ Si $a - b \in P \cup \{0\}$, on note $a \ge b$ et on lit a supérieur ou égale à b.

✓Si $-(a-b) \in P \cup \{0\}$, on note $a \leq b$ et on lit a inférieur ou égale à b.

Théorème 1.2.1

Soient $a, b, c \in \mathbb{R}$.

- 1. $Si \ a > b \ et \ b > c \ alors \ a > c$.
- 2. On a : a > b ou a = b ou a < b.
- 3. Si $a \ge b$ et $b \ge a$ alors a = b.

Preuve:

1. Supposons que a > b et b > c. Montrons que a > c.

$$\begin{cases} a > b \Longrightarrow a - b \in P \\ b > c \Longrightarrow b - c \in P \end{cases} \Longrightarrow (a - b) + (b - c) \in P \Longrightarrow a - b + b - c \in P \Longrightarrow a - c \in P \Longrightarrow a > c.$$

2. $a \in \mathbb{R}, b \in \mathbb{R} \Longrightarrow a - b \in \mathbb{R}$ alors d'après θ_3 :

soit
$$a - b \in P$$
 ou $a - b = 0$ ou $-(a - b) \in P$
soit $a > b$ ou $a = b$ ou $a < b$

3. Procédons par contraposé.

Supposons que $a \neq b$. Montrons que a < b ou b < a. $a \neq b \Longrightarrow a - b \neq 0 \Longrightarrow a - b \in P$ ou $-(a - b) \in P \Longrightarrow a > b$ ou a < b.

Théorème 1.2.2

L'ensemble \mathbb{R} muni de la relation \leq est ordonné c'est-à-dire les trois propriétés sont à la fois verifiées :

i) La reflexivité :

$$\forall x \in \mathbb{R}, \ x < x$$
.

ii) L'antisymetrie :

$$\forall x, y \in \mathbb{R}, \ si \ x \leq y \ et \ y \leq x \ alors \ x = y$$
.

iii) La transivité :

$$\forall x, y, z \in \mathbb{R}, \ si \ x < y \ et \ y < z \ alors \ x < z$$
.

Il est de plus **totalement ordonné**, c'est-à-dire la propriété suivante est verifiée :

 $iv) \ \forall x,y \in \mathbb{R} \ on \ a :$

$$x < ou y < x$$
.

Preuve:

ii) et iii) ok

Montrons i).

Soit $x \in \mathbb{R}$: $x - x = 0 \in \{0\} \Longrightarrow x - x \in P \cup \{0\} \text{ car } \{0\} \subset P \cup \{0\} \Longrightarrow x \leq x$.

Montrons iv).

Soient $x, y \in \mathbb{R} \Longrightarrow x - y \in \mathbb{R}$ alors : $x - y \in P$ ou x - y = 0 ou $-(x - y) \in P$.

 $x = y \Longrightarrow x - y = -x = 0 \in P \cup \{0\} \Longrightarrow x \le y \text{ ou } y \le x.$

 $x \neq y \Longrightarrow x - y \in P \text{ ou } -(x - y) \in P \text{ or } P \subset P \cup \{0\} \text{ donc } x - y \in P \cup \{0\} \text{ ou } -(x - y) \in P \cup \{0\} \Longleftrightarrow x \leq y \text{ ou } \leq x. \blacksquare$

Définition 1.2.3

1. On definit l'ensemble des entiers naturels noté N par

$$\mathbb{N} = \{0, 1, 1+1, 1+1+1, \cdots \}.$$

 $On \ note:$

$$\mathbb{N}^* = \mathbb{N} \setminus \{0\}.$$

2. Soit $n_0 \in \mathbb{N}$ et soit à démontrer que $\forall \in \mathbb{N}$ et soit $n \geq n_0$, $\mathcal{P}(n)$ est vraie où \mathcal{P} est une propriété dependant de n.

La demonstration par recurrence consiste à :

- a) Verifier que la propriété est vraie au rang n_0 ;
- b) Verifier que si n est un entier naturel $\geq n_0$ quelconq tel que :

 $\mathcal{P}(k)$ est vraie pour tout $k = n_0, n_0 + 1, \dots, n$ alors $\mathcal{P}(n+1)$ est vraie.

On peut conclure que $\forall n \in \mathbb{N}$ et $n \geq n_0$, $\mathcal{P}(n)$ est vraie.

Théorème 1.2.4

i) Si $(a \in \mathbb{R}, a \neq 0)$ alors a^2 (notée par a.a) est que $a^2 > 0$.

ii) 1 > 0.

iii) Si $n \in \mathbb{N}^*$ alors n > 0.

Preuve:

i) Soit $a \in \mathbb{R}$, $a \neq 0$ alors $a \in P$ ou $-a \in P$.

 $a \in P \Longrightarrow a^2 = a.a \in P \Longleftrightarrow a^2 > 0.$

 $-a \in P \Longrightarrow (-a).(-a) \in P \iff a^2 \in P \iff a^2 > 0.$

ii) $1 \in \mathbb{R}$, $1 \neq 0$ alors $1 = (-1)(-1) = (-1)^2 > 0$.

iii) Montrons pour tout $n \in \mathbb{N}^*$, n > 0.

Procédons par recurence.

Soit $\mathcal{P}(n)$ la propriété définie par : $\forall n \in \mathbb{N}^*, n > 0$.

Initialement:

Pour $n = 1 > 0 \Longrightarrow \mathcal{P}(1)$ est vraie.

Supposons que $\mathcal{P}(k)$ est vraie pour $k=1,2,\cdots,n$. Montrons que $\mathcal{P}(n+1)$ est vraie cad n+1>0.

On a:

$$\left\{ \begin{array}{l} 1 \in P \\ n \in P \end{array} \right. \implies n+1 \in P \Longleftrightarrow n+1 > 0$$

d'où $\mathcal{P}(n+1)$ est vraie en particulier $\mathcal{P}(n)$ est vraie.

D'où $\forall n \in \mathbb{N}^*, n > 0.$

Théorème 1.2.5

Soient $a, b, c, d \in \mathbb{R}$.

- 1. $Si \ a > b \ alors \ a + c > b + c$.
- 2. Si a > b et c > d alors a + c > b + d.
- 3. Si a > b et c > 0 alors ac > bc.
- 4. Si a > 0 alors $\frac{1}{a} > 0$.

Preuve: Exercice

Théorème 1.2.6

Si a > b alors $a > \frac{a+b}{2} > b$.

Preuve:

$$\left\{ \begin{array}{l} a \in \mathbb{R} \\ a > b \end{array} \right. \implies a + a > a + b \iff 2a > a + b$$

or $2 > 0 \Longrightarrow \frac{1}{2} > 0$ donc $\frac{1}{2}(2a) > \frac{1}{2}(a+b) \Longleftrightarrow a > \frac{a+b}{2}$.

De même qu'on a : $\frac{a+b}{2} > b$. Ainsi, on a : $a > b \Longrightarrow a > \frac{a+b}{2} > b$.

Théorème 1.2.7

Soient $a, b \in \mathbb{R}$.

 $Si\ ab > 0\ alors\ a > 0\ et\ b > 0\ ou\ a < 0\ et\ b < 0.$

Preuve:

Supposons que $a, b \in \mathbb{R}$ tel que ab > 0.

 $ab > 0 \Longrightarrow a \neq 0 \text{ et } b \neq 0.$

cas1: Supposons que a > 0.

 $a > 0 \Longrightarrow \frac{1}{a} > 0 \text{ or } ab > 0 \Longrightarrow \frac{1}{a}ab > \frac{1}{a}0 \Longleftrightarrow b > 0.$

cas2: Supposons que a < 0.

 $a < 0 \Longrightarrow \frac{1}{a} < 0 \text{ or } ab > 0 \Longrightarrow \frac{1}{a}ab < \frac{1}{a}0 \Longleftrightarrow b < 0. \blacksquare$

Corollaire 1.2.8

 $Si\ ab < 0\ alors\ a < 0\ et\ b > 0\ ou\ a > 0\ et\ b < 0.$

Preuve: Exercice

Définition 1.2.9

Si $a \in \mathbb{R}$, on appelle valeur absolue de a notée |a| l'élément de \mathbb{R} definie par :

$$|a| = \begin{cases} a & \text{si } a \ge 0, \\ -a & \text{si } a \le 0. \end{cases}$$

C'est une application de \mathbb{R} dans $P \cup \{0\} = \mathbb{R}_+$.

Théorème 1.2.10

Soient $a, b, c \in \mathbb{R}$.

- 1. $|a| = 0 \iff a = 0$.
- 2. |a| = |-a|.
- 3. |ab| = |a||b|.
- 4. $-|a| \le a \le |a|$.
- 5. Si c > 0, $|a| < c \iff -c < a < c$.

Preuve: Exercice

Théorème 1.2.11

Soient $a, b \in \mathbb{R}$:

$$||a| - |b|| \le |a \pm b| \le |a| + |b|.$$

Preuve:

Soient $a, b \in \mathbb{R}$ alors :

$$-|a| \le a \le |a| \text{ et } -|b| \le \pm b \le |b| \Longrightarrow -(|a|+|b|) \le a \pm b \le |a|+|b| \Longleftrightarrow |a\pm b| \le |a|+|b|.$$
 On sait que :

$$|b| = |b+a-a| \le |b\pm a| + |\pm a| \Longrightarrow |b| \le |b\pm a| + |a| \Longleftrightarrow |b| - |a| \le |a\pm b|$$
. Idem $|a| - |b| \le |a\pm b|$ d'où $||b| - |a|| \le |a\pm b|$.

Théorème 1.2.12

 $Si\ a_1, a_2, \cdots, a_n \in \mathbb{R}\ où\ n \in \mathbb{N}\ tel\ que\ n \geq 2\ alors$

$$|a_1 + a_2 + \dots + a_n| < |a_1| + |a_2| + \dots + |a_n|$$
.

Preuve: Exercice

1.3 Propriétés de complétude

1.3.1 Bornes supérieures-bornes inférieures

Soit $S \subset \mathbb{R}$ tel que $S \neq \emptyset$.

Définition 1.3.1

On dit que :

- 1. $M \in \mathbb{R}$ est un majorant de S si et seulement si pour tout $x \in S$, x < M.
- 2. $m \in \mathbb{R}$ est un minorant de S si et seulement si pour tout $x \in S$, $x \geq m$.
- 3. $M \in \mathbb{R}$ est le plus grand élément de S si et seulement si $M \in S$ et M est un majorant de S (maximum).
- 4. $m \in \mathbb{R}$ est le plus petit élément de S si et seulement si $m \in S$ et m est un minorant de S (minimum).

Définition 1.3.2

On dit que S est :

- 1. majoré s'il admet un majorant;
- 2. minoré s'il admet un minorant;
- 3. borné s'il est à la fois minoré et majoré.

Exemple 1.3.3

 $S =]1, 2[= \{x \in \mathbb{R}/ 1 < x < 2\}.$

5 est un mjorant de S.

0 est un minorant de S.

NB: 0 est le plus petit élément de N. Mais N n'admet pas de plus grand élément.

Définition 1.3.4

Si S admet un majorant, on appelle borne supérieure(resp borne inférieure) de S le plus petit de ses majorant (resp le plus grand de ses minorant).

Théorème 1.3.5

 $u \in \mathbb{R}$ est la borne supérieure de $S \subset \mathbb{R}$ tel que $S \neq \emptyset$ si et seulement si les propriétés suivantes sont à la fois verifiées :

- i) Il n'existe pas de $s \in S$ tel que u < s.
- ii) Si $v \in \mathbb{R}$ tel que v < u alors il existe $s_0 \in S$ tel que $s_0 > v$.

Preuve:

 \leftarrow Supposons i) et ii) soient verifiées.

 $i) \iff \forall s \in S, \ s \leq u, \ i.e, \ u \text{ est un majorant de } S.$

Par absurdité:

Soit $v \in \mathbb{R}$, v < u tel que $\forall s \in S$, $s \le v$ donc v est un majorant de S.

Alors ii) implique qu'il existe $s_0 \in S$ tel que $s_0 > v$ ce qui est absurde car v est un majorant de S.

Donc u est le plus petit des majorant de S cad u est la borne supérieure de S.

 \Longrightarrow Reciproquement supposons que u est la borne supérieure de S alors u est un majorant de S cad $\forall s \in S$, $s \leq u$ alors il n'existe pas de $s \in S$ tel que s > u donc i) est verifiée. Montrons ii).

Soit $v \in \mathbb{R}$ tel que v < u.

Par absurdité:

Supposons $\forall s \in S, s \leq v$ alors v est un majorant de S. Ceci est absurde car v < u et u est la borne supperieure de S.

Définition 1.3.6

- 1. Lorsque la borne supérieure existe et appartient à S, on l'appelle maximum.
- 2. Lorsque la borne inférieure existe et appartient à S, on l'appelle minimum.

Notation:

 $\checkmark Sup(S)$: la borne superieure de S.

 $\checkmark Inf(S)$: la borne inferieure de S.

 $\sqrt{\max(S)}$: le maximum de S.

 $\checkmark \min(S)$: le minimum de S.

Axiomes:

- C_1) Tout ensemble $S \subset \mathbb{R}$; non vide majoré; admet une borne superieure appartenant à \mathbb{R} .
- C_2) Tout ensemble $S \subset \mathbb{R}$; non vide minoré; admet une borne inferieure appartenant à \mathbb{R} .

Convention:

$$\begin{cases} Sup(\emptyset) &= -\infty, \\ Inf(\emptyset) &= +\infty. \end{cases}$$

Propriété 1.3.7 (Propriété d'Archimède)

Soit $x \in \mathbb{R}$ alors il existe $n \in \mathbb{N}$ tel que n > x.

Preuve:

Soit $x \in \mathbb{R}$. Montrons qu'i existe $n \in \mathbb{N}$ tel que n > x.

Procédons par absurdité.

Supposons $(\forall n \in \mathbb{N}), n \leq x \iff \mathbb{N}$ est majoré par x.

Or $\mathbb{N} \subset \mathbb{R}$ et $\mathbb{N} \neq \emptyset$ donc d'après l'axiome C_1), il existe $u \in \mathbb{R}$ tel que $Sup\mathbb{N} = u$.

Prenons $v = u - 1 < u = Sup\mathbb{N}$ alors compte tenu de la relation i) du théorème 1.3.5, il existe $n_0 \in \mathbb{N}$ tel que $n_0 > v \iff n_0 > u - 1 \iff u < (n_0 + 1) \in \mathbb{N}$ absurde car $u = Sup\mathbb{N}$.

Lemme 1.3.8

Toute paritie non vide de \mathbb{N} admet un plus petit élément.

Preuve: Exercice

Corollaire 1.3.9

Soient z et y deux réels strictement positifs alors on a :

- $i) \exists n \in \mathbb{N}^* : ny > z.$
- $(ii) \exists n \in \mathbb{N}^* : 0 < \frac{1}{n} < z.$
- $(iii) \exists n \in \mathbb{N}^* : n 1 \leq y < n.$

Preuve:

- i) Soient $z,y\in\mathbb{R}$ tels que z>0 et $y>0\Longrightarrow\frac{z}{y}>0$ alors en vertu de la propriété d'Archimède $\exists n\in\mathbb{N}$ tel que $n>\frac{z}{y}\Longrightarrow nz>y$.
- ii) Soit z>0 alors $\frac{1}{z}$ donc d'après la propriété d'Archmède $\exists n\in\mathbb{N}$ tel que $n>\frac{1}{z}$.
- iii) Soit y > 0 alors li existe $m \in \mathbb{N} : m > y$ donc m est un élément de $A_y = \{k \in \mathbb{N} : y < k\}$.

Donc $A_y \neq \emptyset$ et $A_y \subset \mathbb{N}$ (par définition). Alors d'après le lemme 1.3.8, il existe $n \in \mathbb{N}$ tel que pour tout $k \in A_y$, $n \leq k$.

Donc $n-1 \le y < n$ par définition de n.

Corollaire 1.3.10

Pour tout $x \in \mathbb{R}$, il existe $E(x) \in \mathbb{Z}$, appeléé partie entière de x telle que

$$E(x) \le x < E(x) + 1$$
 ou encore $x - 1 < E(x) \le x$.

Preuve: Exercice

Remarque 1.3.11

Soit $x \in \mathbb{R}$, $a \in \mathbb{Z}$ alors E(x+a) = E(x) + a.

En effet:

Pour tout $x \in \mathbb{R}$, on a :

$$E(x) \le x < E(x) + 1 \iff E(x) + a \le x + a < (E(x) + a) + 1.$$

Comme $E(x) \in \mathbb{Z}$ et $a \in \mathbb{Z}$ alors $(E(x) + a) \in \mathbb{Z}$ et donc par définition, il en découle que E(x + a) = E(x) + a.

Exercice 1

Montrer si $x \geq 0$ tel que $x \leq \frac{1}{n}$, $\forall n \in \mathbb{N}^*$ alors x = 0

Théorème 1.3.12

 $Si |a| \le \varepsilon \, \forall \varepsilon > 0 \iff a = 0$

Preuve: Exercice

Théorème 1.3.13

Il existe $x \in \mathbb{R}$ tel que $x^2 = 2$.

Preuve:

Considérons l'ensemble $S = \{ y \in \mathbb{R} \text{ tel que } y \ge 0 \text{ et } y^2 \le 2 \}.$

 $1 \in \mathbb{R}, \ 1 > 0, \ 1^2 = 1 < 2 \ \text{alors} \ 1 \in S \ \text{donc} \ S \neq \emptyset.$

Montrons que S admet une borne supperieure.

Procédons par absurdité.

Supposons S est non majoré alors 2 n'est pas un majorant de S alors il existe $s_0 \in S$ tel

que $2 < s_0 \Longrightarrow 4 < s_0$.

Comme $s_0 \in S$ alors $s_0^2 \le 2$ et donc $4 \le 2$ ce qui est absurde donc 2 est un majorant de S. Donc S est une partie de \mathbb{R} non vide et majorée, alors d'après l'axiome C_1), il existe $x \in \mathbb{R}$ tel que Sup(S) = x.

Montrons que $x^2 = 2$.

Faisons un raisonnement par absurdité. Supposons $x^2 \neq 2$ alors $x^2 < 2$ ou $x^2 > 2$.

Cas 1 : Supposons que $x^2 < 2$.

$$\begin{cases} 1 \in S \\ x = Sup(S) \end{cases} \implies x \ge 1 > 0 \implies x > 0.$$

$$\begin{cases} x^2 < 2 \\ x > 0 \end{cases} \implies \begin{cases} 2 - x^2 > 0 \\ x > 0 \end{cases} \implies \frac{2 - x^2}{2x + 1} > 0 \text{ alors d'après le corrollaire 1.3.9 d'Archi-$$

mède, il existe $n \in \mathbb{N}^*$ tel que $0 < \frac{1}{n} < \frac{2-x^2}{2x+1}$ et donc $x^2 + \frac{2x}{n} + \frac{1}{n} < 2$. Or $(x+\frac{1}{n})^2 = x^2 + \frac{2x}{n} + \frac{1}{n^2} < x^2 + \frac{2x}{n} + \frac{1}{n} < 2 \Longrightarrow x + \frac{1}{n} \in S$ absurde car $x + \frac{1}{n} > x = Sup(S)$. Cas 2: Supposons que $x^2 > 2$.

$$\begin{cases} x^2 > 2 \\ x > 0 \end{cases} \implies \begin{cases} x^2 - 2 > 0 \\ x > 0 \end{cases} \implies \frac{2-x^2}{2x} > 0 \text{ alors d'après le corrollaire 1.3.9 d'Archi-$$

mède, il existe $n \in \mathbb{N}^*$ tel que $0 < \frac{1}{n} < \frac{2-x^2}{2x}$ et donc $x^2 - \frac{2x}{n} > 2$. Comme $(x - \frac{1}{n})^2 = x^2 - \frac{2x}{n} + \frac{1}{n^2} > x^2 - \frac{2x}{n} \Longrightarrow (x - \frac{1}{n})^2 > 2$.

Comme
$$(x - \frac{1}{n})^2 = x^2 - \frac{2x}{n} + \frac{1}{n^2} > x^2 - \frac{2x}{n} \Longrightarrow (x - \frac{1}{n})^2 > 2.$$

$$\operatorname{Or} \left\{ \begin{array}{l} Sup(S) = x \\ x - \frac{1}{n} < x \end{array} \right. \Longrightarrow \text{ il existe } s_0 \in S \text{ tel que } \left\{ \begin{array}{l} s_0 > x - \frac{1}{n} \\ \text{ or } x - \frac{1}{n} > 0 \end{array} \right. \Longrightarrow \left. (x - \frac{1}{n})^2 < s_0^2 \\ \text{ alors } (x - \frac{1}{n})^2 < 2 \text{ puisque } s_0^2 \le 2. \text{ Ceci contradit } (x - \frac{1}{n})^2 > 2. \end{array} \right.$$

Dans les deux cas on aboutie à une contradiction alors $x^2 = 2$.

Exercice 2

Si a > 0 alors il existe un nombre positif b tel que $b^2 = a$.

Définition 1.3.14

On appelle racine carré positive d'un nombre positif a, le réel positif b tel que $b^2 = a$ on note $b = \sqrt{a}$.

Définition 1.3.15

- 1. On appelle nombre rationnelle les éléments de \mathbb{R} qui s'écrivent sous la forme $\frac{m}{n}$ où $m \in \mathbb{N}, n \in \mathbb{N}^*, leur opposée.$
- 2. On dit qu'un nombre réel est irrationnel s'il appartient à $\mathbb{R}\backslash\mathbb{Q}$ où \mathbb{Q} designe l'ensemble des nombres rationnels.

Exercice 3

Montrer que $\sqrt{2}$ est irrationnel.

Corollaire 1.3.16

Soit ζ un nombre irrationnel positif.

Soit $z \in \mathbb{R}$ et z > 0 alors il existe $m \in \mathbb{N}^*$ tel que $0 < \frac{\zeta}{m} < z$.

Soit ζ un nombre irrationel tel que $\zeta>0$ et soit $z\in\mathbb{R}$ tel que $z>0\Longrightarrow\frac{\zeta}{z}>0$ alors d'après le corrollaire 1.3.9 d'Archimède, il existe $m \in \mathbb{N}^*$ tel que $0 < \frac{1}{m} < \frac{z}{\zeta}$ or $\zeta > 0$ donc $0 < \frac{\zeta}{m} < z$.

Théorème 1.3.17

- i) Il existe un rationnel r tel que $x < r < y \ (\mathbb{Q} \ est \ dense \ dans \ \mathbb{R})$.
- ii) Si $\zeta > 0$ est irrationnel alors il existe un rationnel s tel que $x \leq s\zeta < y$.

Preuve: Exercice

1.3.2 Intervalles, droite numerique et voisinages

Définition 1.3.18

Soit I une partie non vide de \mathbb{R} , on dit que I est un intervalle de \mathbb{R} lorsque pour tout $x, \in I$, pour tout $z \in \mathbb{R}$ tel que $x \le z \le alors z \in I$.

 $NB : Par convention \emptyset est un intervalle.$

Exemple 1.3.19 : Exemple d'intervalle.

Soient $a \in \mathbb{R}$, $b \in \mathbb{R}$ tel que a < b soit $\varepsilon > 0$.

Les intervales suivants sont des intervalles de \mathbb{R} :

 $[a, +\infty[= \{x \in \mathbb{R} \setminus x \geq a\} (\text{ non majoré, fermé}).$

 $|a, +\infty| = \{x \in \mathbb{R} \setminus x > a\} (\text{non majoré, ouvert}).$

 $]-\infty, b[=\{x \in \mathbb{R} \setminus x < b\} (\text{ non minor\'e, ouvert}).$

 $]-\infty,b] = \{x \in \mathbb{R} \setminus x \leq b\} (\text{ non minoré, fermé}).$

 $|a,b| = \{x \in \mathbb{R} \setminus x < b\} (ouvert\ et\ born\acute{e}).$

 $[a, b] = \{ x \in \mathbb{R} \setminus a \le x < b \}.$

 $[a, b] = \{x \in \mathbb{R} \setminus a \le a < x \le b\}.$

 $[a,b] = \{x \in \mathbb{R} \setminus a \le a \le x \le b\}$ (fermé et borné).

 $|a + \varepsilon, a - \varepsilon| = \{x \in \mathbb{R} \setminus |x - a| < \varepsilon\}$ ouvert centré en a et de rayon ε .

Propriété 1.3.20

Soient I_1 et I_2 deux intervalles de \mathbb{R} alors on a :

- i) $I_1 \cap I_2$ est un intervalle de \mathbb{R} .
- ii) $I_1 \cup I_2$ est un intervalle de \mathbb{R} de ssi $I_1 \cap I_2 \neq \emptyset$.

Définition 1.3.21

Soit $A \subset \mathbb{R}$, $A \neq \emptyset$.

- 1. On dit que x point adhérant de A (noté \overline{A}) $si \forall \varepsilon > 0$, $]a + \varepsilon, a \varepsilon[\cap A \neq \emptyset]$.
- 2. On dit que x point d'acculation de A (notée A') si $\forall \varepsilon > 0$, $|a+\varepsilon, a-\varepsilon| \cap A \setminus \{x\} \neq \emptyset$.

NB:

Tout point d'acculation est un point adhérant mais la reciproque n'est pas vraie.

Définition 1.3.22

x point intérieur à A s'il existe $\varepsilon > 0$ tel que $]x + \varepsilon, x - \varepsilon[\subset A]$.