CS-2110 Quiz 2A

Alan Chiang

TOTAL POINTS

95 / 100

QUESTION 1

12's Complement 10 / 10

- + 10 Sample Answer: No. You need 6 bits to represent 32 in unsigned binary and you need one more bit to represent the sign totaling 7 bits.
- + O Graded

QUESTION 2

- 2 Division with Bitwise Operators 10 / 10
 - + 10 Rightshift by 3
 - + O Graded

QUESTION 3

3 Toggling Bits 10 / 10

- 10 Sample Answer: Addition could produce an incorrect result if the contents of the desired bit is unknown this is why we must use XOR.
- O Graded

QUESTION 4

4 Bitwise Operators and Hexadecimal 35 /

40

- + 5 a) Unsigned Binary 00011100
- + 5 a) Hexadecimal 0x1C
- + 5 b) Unsigned Binary 11111011
- + 5 b) Hexadecimal 0xFB
- + 5 c) Unsigned Binary 01001000
- + 5 c) Hexadecimal 0x48
- + 5 d) Unsigned Binary 11111111
- + 5 d) Hexadecimal 0xFF
- + O Graded
 - Partial credit was given for the correct hex representations of incorrect binary answers.

QUESTION 5

5 Bitmasking 30 / 30

- + 10 a) 4
- + 10 b) 1
- + 10 c) 1
- + O Graded

CS-2110 Spring 2016 Quiz 02a

Name:	Section:
Short Answer: (/30)	1111
a) Using 2's Complement, can we express 35 with	6 bits? Explain why or why not.
No, because using 2's	complement w/ 6 bits can
express the range of numb	sers -25 to +25-1
	35731, so no, 35 cont be expressed
b) How can we use bitwise operators and constant	
Rightshiff the number	by 3
71600773 = 0001	
8/8=1	
c) Why should we use bitwise operators instead of Be cause addition to	
can sometimes give unu	vanted/unexpected results.
If 0010 represents if a person accidentally double-ord	a steak dinner and 0100 representers and we are lobs ter,
using addition to tog will get lobster inst	igle, that person ead of 2 steaks.
But using bitwise operat	

CS-2110 Spring 2016 Quiz 02a

F-15

01101010

Name: Alan Chiang	Section: 3:00 PM Klaus
Bitwise Operators and Hexadecimal: (/ 40)	
 Evaluate the following bitwise operations and express your answer in unsigned binary and hexadecimal. All right shifts are signed shifts. PLEASE EXPRESS BINARY ANSWERS WITH 8 BITS AND HEXADECIMAL NUMBERS SHOULD HAVE 0x FOLLOWED BY YOUR ANSWER. 	
a) ~(11001000 ^ 00101011)	b) (00001001 << 3) 11111011 01001000
Unsigned Binary:	Unsigned Binary:
Hexadecimal: 0x E3	Hexadecimal: $0 \times FB$
c) 01001011 & (10001110 >> 4)	d) (~10100011 ^ 10100011) >> 2
Unsigned Binary:	Unsigned Binary:
Hexadecimal: 0×48	Hexadecimal: OxFF
Bitmasking: (/30)	
2. Fill in the blanks that would make the followare 8 bits . All right shifts are signed shifts . You have a signed shifts are signed shifts.	
a) ~(0x1 << <u>?</u>) & 0xBA = 10101010	b) (0xE << ?) 0xE3 = 11111111
Answer:	Answer:
c) (0x70 >> _?) & 0x6A = 00101000	* e
Answer:	