

Физическиинформированная модель нефтяного месторождения

Александр Тен

Георгий Мещеряков

Института Белка РАН ВЦ ДВО РАН

Кураторы проекта

Владимир Вановский¹

Александр Рябов¹

Григорий Шутов¹

¹Центр прикладного ИИ Сколтеха

План

01 Мотивация

02 Связанные работы

03 Задачи

План

04 Датасет

05 Методы

06 Эксперименты и обсуждение

01

Мотивация

Глубокое обучение широко используется для суррогатного моделирования в таких областях, как гидрология, нефтегазовая инженерия и т. д. [1, 2].

Физически-информированные нейронный сети (PINNs)

- → 1. Сеть обучается не только на одних данных, но и учитывает физические уравнения задачи.
- → 2. Уравнения добавляются в функцию потерь.

$$\begin{split} \mathcal{L}_{\mathrm{Data}}(\theta) &= ||\hat{h}(\theta) - h_{\mathrm{Data}}||_2^2 \\ \mathcal{L}_{\mathrm{PDE}}(\theta) &= ||\nabla[K\nabla\hat{h}(\theta)] - q - S_s \frac{\partial \hat{h}(\theta)}{\partial t}||_2^2 \\ \mathcal{L}_{\mathrm{Total}}(\theta) &= \mathcal{L}_{\mathrm{Data}}(\theta) + \alpha \mathcal{L}_{\mathrm{PDE}}(\theta) \end{split} \qquad \text{Уравнение} \\ \varphi \mathsf{ильтрации} \\ -S_s \frac{\partial h(\mathbf{x},t)}{\partial t} + \nabla\left[K(\mathbf{x})\nabla h(\mathbf{x},t)\right] &= q(\mathbf{x}) \end{split}$$

Физическиинформированная нейронная сеть может учитывать физические уравнения задачи

02

Связанные работы

GANSim-surrogate

 Song, Suihong & Zhang, Dongxiao & Mukerji, Tapan & Wang, Nanzhe. (2022). GANSim-surrogate: An integrated framework for conditional geomodelling and uncertainty analysis. 10.31223/X5N357.

Авторы разработали фреймворк на основе GAN для моделирования потока в скважинах по статическим данным и данным динамического потока.

GANSim-surrogate

Average relative error

0.0007

After 1 day

0.0011

After 3 day

0.0013

After 5 day

0.0015

After 7 day

0.0018

After 9 day

03

Задачи

Задачи

Реализовать схему: нейронная сеть
 + физически-информированная функция потерь.

Задачи

- Реализовать схему: нейронная сеть + физически-информированная функция потерь.
- Провести эксперименты с разными архитектурами и гиперпараметрами.

Задачи

- Реализовать схему: нейронная сеть
 + физически-информированная функция потерь.
- Провести эксперименты с разными архитектурами и гиперпараметрами.
- Предсказать карты распределения давления по данным проницаемости нефтяного месторождения. И сравнить с реальными данными.
- Исследовать зависимость значений Loss'ов от гиперпараметров.

04

Датасет

Датасеты

Наборы данных «проницаемость-давление»

- 470 семплов, 64x64
- 172 семпла, 256x256
- 14 685 семплов, 256х256
 (только проницаемости)

Карта проницаемости, мД

Карта давления, бар

05

Методы

- UNet + Physics-informed loss function (PI loss) [1]
- Convolutional Autoencoder + Physics-informed loss function [2]

Уравнение Дарси и PI loss

•
$$S_S \frac{\partial h(x,y,t)}{\partial t} - \nabla \cdot (K(x,y)\nabla h(x,y,t)) = q(x,y)$$

- $h(x,y) = h_D(x,y)$ на Γ_D
- $K(x,y)\nabla h(x,y,t)\cdot n(x,y)=g(x,y)$ на Γ_N

•
$$Loss_{data}(\theta) = \|\hat{h}(\theta) - h\|_2^2$$

•
$$Loss_{data}(\theta) = \|\hat{h}(\theta) - h\|_{2}^{2}$$

• $Loss_{PDE}(\theta) = \|S_{S} \frac{\partial \hat{h}(\theta)}{\partial t} - \nabla \cdot (K(x, y)\nabla \hat{h}(\theta)) - q(x, y)\|_{2}^{2}$

•
$$Loss_{NB}(\theta) = \|K(x,y)\nabla \hat{h}(\theta) \cdot n(x,y) - g(x,y)\|_{2}^{2}$$

•
$$Loss_{total} = Loss_{data} + \alpha_1 L_{PDE}(\theta) + \alpha_2 Loss_{NB}(\theta)$$

06

Эксперименты и обсуждение

Эксперименты

Конфигурация	Data loss train	Data loss test	Data loss test (masked)	Data / PI loss train	Data / PI loss test	Data / PI loss test (masked)
UNet	0.0383	0.0080	0.0092	-	-	-
UNet + PI loss (alpha=0.5)	-	-	-	0.0383	0.0073	0.0083
UNet + PI loss (alpha=0.1)	-	-	-	0.0341	0.0076	0.0089
UNet + PI loss (alpha=1, только PI loss)	-	-	-	02.35e-9	0.6319	0.5445
Convolutional Autoencoder	0.1745	0.0236	0.1789	-	-	-
Convolutional Autoencoder + PI loss (alpha=0.5)	_	_	_	0.1748	0.0236	0.1785
Convolutional Autoencoder + PI loss (alpha=1)	_	_	-	1.26e-10	0.6323	0.5551

UNet, test_masked

UNet, без PI loss

UNet, без PI loss

UNet, PI loss, alpha=0.5

UNet, PI loss, alpha=0.5

UNet, только PI loss, alpha=1

UNet, только PI loss, alpha=1

Conv Autoencoder

Conv Autoencoder

Conv Autoencoder, только PI loss

Conv Autoencoder

07

Заключение

Заключение и направления дальнейших исследований 💟

- Физически-информированные модели актуальны
- PI loss дает небольшое улучшение качеству предсказания
- Модель возможно обучать только с PI loss

Ссылка на репозиторий проекта

https://github.com/geomesch/AIRI_PI

Список источников

- 1. Song, Suihong & Zhang, Dongxiao & Mukerji, Tapan & Wang, Nanzhe. (2022). GANSim-surrogate: An integrated framework for conditional geomodelling and uncertainty analysis. 10.31223/X5N357.
- 2. Wang, Nanzhe & Chang, Haibin & Zhang, Dongxiao. (2020). Theory-guided Auto-Encoder for Surrogate Construction and Inverse Modeling.
- 3. Karniadakis, G.E., Kevrekidis, I.G., Lu, L. et al. Physics-informed machine learning. Nat Rev Phys 3, 422–440 (2021). https://doi.org/10.1038/s42254-021-00314-5

Выражаем благодарности кураторам проекта, организаторам и преподавателям школы!

@AIRI_Research_Institute

Artificial Intelligence Research Institute

airi.net

- airi_research_institute
- AIRI Institute
- AIRI Institute
- AIRI_inst
- in <u>artificial-intelligence-research-institute</u>