Escalonamento

- Conceitos Básicos
- Critérios de Escalonamento
- Algoritmos de Escalonamento
- Escalonamento Multiprocessador
- Escalonamento Tempo-Real
- Avaliação de Algoritmos

INE5355 – Sistemas Operacionais I

6.1

6.2

Conceitos Básicos

 Execução de processo consiste de um ciclo de UCP e espera de E/S

INE5355 – Sistemas Operacionais I

25/4/2007

1

Tipo de Escalonamento

- Long-term determina que programas são admitidos para execução; controla o grau de multiprogramação; mais processos
- Medium-term determina processos que são trazidos de/para memória;
- Short-term determina que processo recebe UCP; executa mais frequente; invocado quando eventos ocorrem (int., chamadas de sistema,sinais)

25/4/2007 INE5355 – Sistemas Operacionais I

355 – Sistemas Operacionais i

Tipo de Escalonamento

- Não preemptivo
 - · Estando um processo no estado running, ele continuará até terminar ou bloquear devido a E/S
- Preemptivo

25/4/2007

- Processo running pode ser interrompido e levado para o estado Ready pelo SO
- Permite melhor serviço, nenhum processo pode monopolizar o processador por muito tempo

INE5355 - Sistemas Operacionais I

Escalonador da UCP

- Seleciona entre os processos na memória que estão prontos para executar e aloca a UCP para um deles.
- As decisões de escalonamento da UCP podem acontecer quando um processo:
 - 1. Muda do estado running para o estado waiting.
 - 2. Muda do estado running para o estado ready.
 - 3. Muda do estado waiting para o estado ready.
 - 4. Termina.
- Escalonamento em 1 e 4 é não preemptivo.
- Nos outros casos o escalonamento é preemptivo.

INE5355 - Sistemas Operacionais I

25/4/2007

 O módulo Despachador passa o controle da UCP para o processo selecionado pelo escalonador (short-term); isto envolve:

Despachador

- Troca de contexto
- Mudança para modo usuário
- Salto para a posição apropriada no programa do usuário para reiniciar o programa
- Latencia de Despacho

 tempo gasto pelo despachador para parar um processo e iniciar outro.

INE5355 - Sistemas Operacionais I

25/4/2007

6.10

Critérios de Escalonamento

- Utilização da UCP manter a UCP ocupada
- Desempenho # de processos que completam sua execução por unidade de tempo
- Tempo de turnaround quantidade de tempo para executar um processo particular
- Tempo de espera quantidade de tempo que um processo espera na fila de prontos
- Tempo de resposta quantidade de tempo gasto desde a submissão da requisição até produzir a primeira resposta

25/4/2007 INE5355 – Sistemas Operacionais I

6.11

Critérios de Otimização

- Max utilização da UCP
- Max desempenho
- Min turnaround
- Min tempo de espera
- Min tempo de resposta

INE5355 - Sistemas Operacionais I

25/4/2007 INE5358

Metas dos Algoritmos

- Todos os sistemas
 - Justiça dar a cada processo parcela da UCP
 - Aplicação de política assegurar que política é adotada
 - Balanceamento manter todas as partes do sistema ocupadas
- Sistemas Batch

25/4/2007

25/4/2007

- · Max desempenho
- · Min. Turnaround
- Max utilização da UCP
- Sistemas Interativos
 - · Min tempo de resposta
 - · Proporcionalidade atender expectativas dos usuários
- Sistemas de Tempo-Real
 - Atender prazos (deadlines) evitar perda de dados
 - · Previsibilidade evitar degradação da qualidade em sistemas multimídia

INE5355 - Sistemas Operacionais I

First-Come, First-Served (FCFS)

6.13

6.14

<u>Processo</u>	Burst Time		
P_1	24		
$P_{2}^{'}$	3		
P_{2}^{2}	3		

Supor que os processos chegam na ordem: P_1 , P_2 , P_3 diagrama de Gantt para o escalonamento:

- Tempo de espera para $P_1 = 0$; $P_2 = 24$; $P_3 = 27$
- Tempo de espera médio : (0 + 24 + 27)/3 = 17

INE5355 - Sistemas Operacionais I

FCFS (Cont.)

Supor que os processos chegam na ordem

$$P_2, P_3, P_1$$
.

• Diagrama de Gantt :

- Tempo de espera $P_1 = 6$; $P_2 = 0$, $P_3 = 3$
- Tempo de espera médio: (6 + 0 + 3)/3 = 3
- Bem melhor que o caso anterior.
- Efeito comboio processos pequenos seguem processos longos

25/4/2007

INE5355 - Sistemas Operacionais I

6.15

Shortest-Job-First (SJR)

- Associar com cada processo o tamanho de seu próximo ciclo de UCP. Usar estes valores para escalonar o processo com o menor tempo.
- Dois esquemas:
 - · não preemptivo
 - preemptivo se um novo processo chegar com ciclo de UCP menor que o tempo remanescente do processo em execução, preempta. Este esquema é conhecido como Shortest-Remaining-Time-First (SRTF).
- SJF é ótimo resulta minimo tempo médio de espera para um dado conjunto de processos.

25/4/2007

INE5355 - Sistemas Operacionais I

Exemplo: SJF Não-Preemptivo

	Processo	<u>Chegada</u>	Ciclo de UCP		
•	P_1	0.0	7		
	P_2	2.0	4		
	P_3	4.0	1		
	P_4	5.0	4		

SJF (não-preemptivo)

Tempo médio de espera = (0 + 6 + 3 + 7)/4 - 4

25/4/2007

INE5355 - Sistemas Operacionais I

6.17

Exemplo: SJF Preemptivo

	Process	Arrival Time	Burst Time
- *	P_1	0.0	7
	P_2	2.0	4
	P_3	4.0	1
	P_4	5.0	4

SJF (preemptive)

• Average waiting time = (9 + 1 + 0 + 2)/4 - 3

25/4/2007

INE5355 - Sistemas Operacionais I

Determinar tamanho do ciclo da UCP

- Pode apenas estimar o tamanho.
- Esta estimativa leva em consideração que o próximo ciclo vai ser parecido com o anterior, assim é possível processar uma aproximação do próximo valor.
- Suponha que o tempo estimado para a execução de comandos em um terminal seja T₀, e que na próxima rodada o tempo medido seja T₁. Podemos atualizar nossa estimativa considerando a soma ponderada destes dois valores, a T₀ + (1- a) T₁.

25/4/2007

INE5355 - Sistemas Operacionais I

Estimativa

- Através da escolha de a, podemos fazer com que o processo cujo tempo estamos estimando esqueça rapidamente as últimas rodadas ou lembre-se delas por um tempo mais longo.
- a =0
 - $\tau_{n+1} = \tau_n$
 - · História recente não conta.
- a = 1
 - $\tau_{n+1} = t_n$
 - · Apenas o último ciclo conta.
- Com a= ½, teremos as seguintes estimativas sucessivas :

$$\mathsf{T_0},\,\mathsf{T_0/2}+\mathsf{T_1/2}\,,\,\mathsf{T_0/4}+\mathsf{T_1/2}+\mathsf{T_2/2}\,,\,\mathsf{T_0/8}+\mathsf{T_1/8}+\mathsf{T_2/4}+\mathsf{T_3/2}$$

- Observe que após 3 novas rodadas o peso de T₀ no tempo estimado caiu para 1/8.
- A técnica da estimativa do próximo valor através de uma série ponderada é chamada de aging, sendo aplicável nas situações em que a previsão deve ser baseada em valores anteriores.

INE5355 - Sistemas Operacionais I

25/4/2007

Prioridade

- Uma prioridade (numero inteiro) é associado a cada processo
- A UCP é alocada para o processo com a prioridade mais alta (menor inteiro ≡ maior prioridade).
 - Preemptivo
 - Não preemptivo
- SJF é um escalonamento com prioridade onde
- Problema ≡ postergação
- Solução ≡ ????

25/4/2007

INE5355 - Sistemas Operacionais I

6.22

Prioridade

		Win32 process class priorities					
		Realtime	High	Above Normal	Normal	Below Normal	Idle
	Time critical	31	15	15	15	15	15
	Highest	26	15	12	10	8	6
Win32	Above normal	25	14	11	9	7	5
thread	Normal	24	13	10	8	6	4
priorities	Below normal	23	12	9	7	5	3
	Lowest	22	11	8	6	4	2
	Idle	16	1	1	1	1	1

Mapeamento de prioridades Win32 para prioridades Windows 2000

INE5355 – Sistemas Operacionais I

25/4/2007

Round Robin (RR)

- Cada processo recebe uma pequena unidade de tempo da UCP (time quantum), usualmente 10-100 millisegs.
 Depois de passado este tempo, o processo é preemptado e colocado no final da fila de prontos.
- Se existem n processos na fila de prontos e o quantum é q, então cada processo recebe 1/n do tempo da UCP em pedaços de no máximo q unidades de tempo a cada vez. Nenhum processo espera mais que (n-1)q unidades de tempo.
- Desempenho
 - q grande ⇒ ????
 - q pequeno ⇒ ?????

25/4/2007 INE5355 – Sistemas Operacionais I

6.25

Customers arrive from outside the system PCFS queue Server Done? No Customers leave the system INE5355 – Sistemas Operacionais I 6.26

Exemplo: RR, Quantum = 20

 $\begin{array}{ccc} \underline{\text{Processo}} & \underline{\text{ciclo de UCP}} \\ P_1 & 53 \\ P_2 & 17 \\ P_3 & 68 \\ P_4 & 24 \\ \end{array}$

Diagrama de Gantt :

Tipicamente, turnaround médio maior que SJF, melhor resposta.

INE5355 – Sistemas Operacionais I

Filas Multinível

- Fila de prontos é particionada em filas separadas: foreground (interativa) background (batch)
- Cada fila tem seu próprio algoritmo, foreground – RR background – FCFS
- Escalonamento deve ser feito entre as filas.
 - Prioridade fixa; (i.e., serve todos da foreground depois da background). Possibilidade de
 - Fatia de tempo cada fila recebe uma quantidade do tempo de UCP o qual escalona entre seus processos; i.e., 80% para foreground com RR, 20% para background com FCFS

25/4/2007 INE5355 – Sistemas Operacionais I

Filas Multinível c/ Feedback

- Um processo pode mover-se entre as várias filas; envelhecimento pode ser implementado desta forma.
- Escalonador fila-multinível-feedback definido pelos seguintes parâmetros:
 - · número de filas
 - algoritmos de escalonamento para cada fila
 - método usado para determinar quando subir um processo
 - método usado para determinar quando baixar um processo
 - método usado para determinar em qual fila um processo entra quando precisa serviço

INE5355 – Sistemas Operacionais I

Exemplo: Filas Multinível c/ Feedback

- 3 filas:
 - Q₀ quantum 8 millisegs
 - Q₁ quantum 16 millisegs
 - Q₂ FCFS
- Escalonamento
 - Um novo job entra na fila Q_0 servida por FCFS. Quando ganha UCP, o job recebe 8 millisegs. Se ele não termina em 8 millisegs, o job é movido para fila Q_1 .
 - Em Q₁ o job é servido por FCFS e recebe 16 millisegs. Se ainda não completa, ele é preemptado e movido para fila Q₂.

INE5355 - Sistemas Operacionais I

25/4/2007

6.37

Filas Multinível c/ Feedback quantum = 8 quantum = 16 FCFS INE5355 – Sistemas Operacionais I 6.38

Escalonamento UNIX Traditional

- Filas Multinível com feedback usando RR em cada uma das filas
- Prioridades são recalculadas uma vez por segundo
- Prioridade é baseada no tipo de processo e sua história de execução

$$P_{j}(i) = Base_{j} + (CPU_{j}/2) + nice_{j}$$

 $CPU_{j}(i) = (U_{j}(i)/2) + (CPU_{j}(i-1)/2)$

- Prioridade Base divide todos processos em faixas
- Fator de ajuste (CPU, nice) é usado para manter o processo na sua faixa (Base)

25/4/2007

INE5355 - Sistemas Operacionais I

6.39

Faixas

- Ordem de prioridade decrescente
 - Swapper
 - · Controle de Dispositivos de E/S orientados a Bloco
 - Manipulação de Arquivos
 - · Controle de Dispositivos de E/S orientados a caracter
 - Processos de usuário

INE5355 – Sistemas Operacionais I

25/4/2007

Escalonamento Fair-Share - FSS

- Aplicação do usuário executa como uma coleção de processos (threads)
- Usuário esta preocupado com o desempenho da aplicação
- Necessário tomar decisões de escalonamento baseado em conjuntos de processos
 - · Grupo de usuários
 - · Atribuição de peso para utilização dos recursos
- Monitorar uso
 - Mais para aqueles que usam menos do que o fair share
 - · Menos para aqueles que usam mais do que o fair share

INE5355 - Sistemas Operacionais I

25/4/2007

6.43

Escalonamento FSS - Unix

- O sistema divide a comunidade de usuários em um conjunto de grupos fair-share e aloca uma fração do processador para cada grupo.
- Desta forma, se existirem 4 grupos, cada um vai ganhar 25% do tempo do processador.
- O escalonamento é feito com base em prioridades, levando em conta a prioridade do processo, sua utilização de CPU e a utilização de CPU do grupo ao qual o processo pertence.
- Quanto maior o valor numérico menor a prioridade.
- Os cálculos são baseados nas seguintes fórmulas:

INE5355 – Sistemas Operacionais I

25/4/2007

Escalonamento FSS - Unix

•
$$P_j(i) = Base_j + CPU_j/2 + GCPU_k/4xW_k$$

 $CPU_j(i) = U_j(i-1)/2 + CPU_j(i-1)/2$
 $GCPU_k(i) = GU_k(i-U)/2 + GCPU_k(i-1)/2$

onde:

25/4/2007

 $P_j(i) = prioridade do processo j no inicio do intervalo i Base_j = prioridade base do processo j <math display="block"> U_j(i) = utilização da CPU pelo processo j no intervalo i \\ GU_k(i) = utilização da CPU pelo grupo k durante o intervalo i \\ CPU_j(i) = utilização (ponderada) da CPU pelo processo j no intervalo i \\ GCPUk(i) = utilização (ponderada) da CPU pelo grupo k durante o intervalo i$

Wk = peso atribuído ao grupo (0..1)

INE5355 – Sistemas Operacionais I

MultiProcessador

- Quando se tem múltiplas UCPs o problema de escalonamento torna-se mais complexo.
- Processadores de um multiprocessador são idênticos (homogêneo)
 - qualquer processador que esteja disponível, pode ser usado para executar qualquer processo da fila. A questão que se deve resolver é se a atribuição deve ser estática ou dinâmica
- Load sharing
 - Cada processador é auto escalonado, ou seja, cada processador examina a fila de prontos comum e seleciona um processo para executar, sendo que desta forma devemos assegurar que dois processadores não irão escolher o mesmo processo.
- Multiprocessamento assimétrico
 - Apontar um processador como escalonador dos outros criando uma estrutura mestre - escravo. Somente um processador acessa as estruturas de dados do sistema, sem necessidade de compartilhar dados.
- Gang Scheduling
 - Algoritmo de escalonamento para multiprocessadores onde são escalonados threads/processos relacionados para executar em diferentes processadores

INE5355 - Sistemas Operacionais I

25/4/2007

Tempo-Real

- Hard real-time task é tarefa crítica que deve ser completada dentro de um tempo determinado e isto tem que ser garantido.
- Soft real-time tasks s\u00e3o menos restritivos, requerem que os processos cr\u00edticos recebam as prioridades maiores.
- O importante é que todas as tarefas hard sejam completadas em seus deadlines e que tanto quanto possível as tarefas soft também sejam completadas.
 - Abordagens estáticas dirigidas por tabelas
 - Abordagens estáticas com preempção dirigidas por prioridade
 - Abordagens dinâmicas baseadas em planejamento
 - Abordagens dinâmicas baseadas no melhor esforço

INE5355 – Sistemas Operacionais I

als I 6.50

6.49

25/4/2007

Avaliação de algoritmos

- Como selecionar um algoritmo de escalonamento da UCP para um sistema particular?
- Modelagem determinista verifica para uma carga particular o desempenho de cada algoritmo.
- Modelos de filas
- Simulação
- Implementação

25/4/2007

INE5355 – Sistemas Operacionais I

A scheduling example

- Job 1, 10 seconds, priority 3
- Job 2, 2 seconds, priority 2
- Job 3, 5 seconds, priority 1
- Job 4, 3 seconds, priority 4

25/4/2007

- Calcule o tempo médio de turnaround para as seguintes políticas de escalonamento :
 - FCFS, SJF, Prioridade, RR (q=2)

INE5355 – Sistemas Operacionais I