#### Mediate cardinals

 $\begin{array}{c} {\sf Kameryn} \ {\sf J.} \ {\sf Williams} \\ {\sf they/them} \end{array}$ 

Bard College at Simon's Rock

CUNY Set Theory Seminar 2024 Apr 5 What does it mean to be infinite?

### What does it mean to be infinite?

- X is finite if  $|X| < \omega$ . Otherwise X is infinite.
- X is infinite iff  $|X| \ge n$  for all  $n < \omega$ .

2 / 30

K. Williams (BCSR) Mediate cardinals CUNY Set Theory Seminar (2024 Apr 5)

### What does it mean to be infinite?

- X is finite if  $|X| < \omega$ . Otherwise X is infinite.
- X is infinite iff  $|X| \ge n$  for all  $n < \omega$ .

This isn't circular, because we can define  $\omega$  by its induction properties.

2 / 30

K. Williams (BCSR) Mediate cardinals CUNY Set Theory Seminar (2024 Apr 5)

- X is Dedekind-infinite if there is  $f: X \to X$  a non-surjective injection.
- X is Dedekind-finite if any injection
  f: X → X is a surjection.

3 / 30

K. Williams (BCSR) Mediate cardinals CUNY Set Theory Seminar (2024 Apr 5)

X is Dedekind-infinite iff  $\omega \leq |X|$ .

- X is Dedekind-infinite if there is  $f: X \to X$  a non-surjective injection.
- X is Dedekind-finite if any injection
  f: X → X is a surjection.

- X is Dedekind-infinite if there is  $f: X \to X$  a non-surjective injection.
- X is Dedekind-finite if any injection  $f: X \to X$  is a surjection.

X is Dedekind-infinite iff  $\omega \leq |X|$ .

- ( $\Leftarrow$ ) Push forward the +1 function on  $\omega$ .
- ( $\Rightarrow$ ) Fix  $z \in X \setminus \operatorname{ran} f$ . Then the map  $n \mapsto f^n(z)$  gives an injection  $\omega \to X$ .
  - Use fact that f is one-to-one to inductively prove this map is an injection.

#### Yes.

- If X is Dedekind-infinite then  $\omega \leq |X|$  so X is infinite.
- If X is infinite, choose for each n an injection e<sub>n</sub>: n → X. Inductively glue them together into an injection
  e: ω → X

#### Yes.

- If X is Dedekind-infinite then  $\omega \leq |X|$  so X is infinite.
- If X is infinite, choose for each n an injection e<sub>n</sub>: n → X. Inductively glue them together into an injection
  e: ω → X

Yes, assuming  $AC_{\omega}$ .

- If X is Dedekind-infinite then  $\omega \leq |X|$  so X is infinite.
- If X is infinite, choose for each n an injection e<sub>n</sub>: n → X. Inductively glue them together into an injection e: ω → X

- Dedekind-infinite implies infinite goes through in ZF.
- Infinite implies Dedekind-infinite needs a small fragment of AC.

### Yes, assuming $AC_{\omega}$ .

- If X is Dedekind-infinite then  $\omega \leq |X|$  so X is infinite.
- If X is infinite, choose for each n an injection e<sub>n</sub>: n → X. Inductively glue them together into an injection e: ω → X.

- Dedekind-infinite implies infinite goes through in ZF.
- Infinite implies Dedekind-infinite needs a small fragment of AC.

## Theorem (Cohen 1963)

It is consistent with ZF that there exists a Dedekind-finite, infinite set.

### Yes, assuming $AC_{\omega}$ .

- If X is Dedekind-infinite then  $\omega \leq |X|$  so X is infinite.
- If X is infinite, choose for each n an injection e<sub>n</sub>: n → X. Inductively glue them together into an injection e: ω → X

- Dedekind-infinite implies infinite goes through in ZF.
- Infinite implies Dedekind-infinite needs a small fragment of AC.

### Theorem (Cohen 1963)

It is consistent with ZF that there exists a Dedekind-finite, infinite set.

But you can't get a reversal: there's no hope the non-existence of a DFI set implies AC because the former is local while the latter is global.

# The first question

#### Question

Is there a suitable generalization of a Dedekind-finite, infinite set whose nonexistence gives a characterization of AC?

## A look back in history

• What we've seen is the state of the art for the 1910s.

## A look back in history

- What we've seen is the state of the art for the 1910s.
- In the late 1910s, Bertrand Russell is a few years after the last volume of *Principia Mathematica*. His time is occupied by legal troubles over his pacifism during World War I and thinking about the foundations of mathematics.
- Working with him are multiple students, including Dorothy Wrinch.
- The next decade (1923) she will publish a paper answering our first question.

# **Dorothy Wrinch**





- Born 1894, died 1976.
- Studied logic under Russell, did her doctorate (1921) under applied mathematician John Nicholson.
- Wrote in a range of subjects: logic, pure mathematics, philosophy of science, and mathematical biology.
- Was awarded a Rockefeller Foundation fellowship to support her work in mathematical biology.
- Early career was in the UK. later emigrated to the USA. Latter years of her career were at Smith College (Mass, USA).
- Had the misfortune of being on the losing side of a scientific dispute with Linus Pauling over the structure of proteins.

# Wrinch's question, and mine

#### Question

Is there a suitable generalization of a Dedekind-finite, infinite set whose nonexistence gives a characterization of AC?

# Wrinch's question, and mine

#### Question

Is there a suitable generalization of a Dedekind-finite, infinite set whose nonexistence gives a characterization of AC?

#### Question

Can we use modern techniques to prove more precise consistency results?

### Cardinals sans choice

#### **Notation:**

- $\kappa, \lambda, \ldots$  will be used for well-orderable, infinite cardinals.
- p, q, ... will be used for cardinals in general.
- I'll sometimes use p to refer to an arbitrary set of cardinality p.

- Under AC, every cardinal is well-orderable.
  We can thus define the cardinals as the initial ordinals.
- Without AC we have to fall back on defining cardinals as equivalence classes.
- Can use Scott's trick to make these sets.

### Mediate cardinals

Fix a cardinal  $\mathfrak{p}$ . Then X is  $\mathfrak{p}$ -mediate if

- $\mathfrak{q} \leq |X|$  for all  $\mathfrak{q} < \mathfrak{p}$ ;
- $\mathfrak{p} \not \leq |X|$ ; and
- $|X| \leq \mathfrak{p}$ .

A p-mediate cardinal is a cardinal number of a p-mediate set.

Mediate means p-mediate for some infinite p.

### Mediate cardinals

Fix a cardinal  $\mathfrak{p}$ . Then X is  $\mathfrak{p}$ -mediate if

- $\mathfrak{q} \leq |X|$  for all  $\mathfrak{q} < \mathfrak{p}$ ;
- $\mathfrak{p} \not \leq |X|$ ; and
- $|X| \leq \mathfrak{p}$ .

A p-mediate cardinal is a cardinal number of a p-mediate set.

Mediate means p-mediate for some infinite p.

- Dedekind-finite infinite  $\Leftrightarrow \aleph_0$ -mediate.
- ZF proves there are no n-mediate for finite n.

### A few facts

Some facts about DFI sets generalize.

#### Fact

Suppose q and r are p-mediate. Then:

- q + r is p-mediate;
- q·τ is p-mediate; and
- $2^{2^q}$  is not  $\mathfrak{p}$ -mediate.

### Wrinch's theorem

### Theorem (Wrinch 1923)

Over ZF, the following are equivalent.

- 4 AC;
- There are no mediate cardinals; and
- **3** There are no  $\kappa$ -mediate cardinals for well-ordered  $\kappa$ .

(Wrinch originally formulated this result in the framework of *Principia Mathematica*.)

# Wrinch's theorem, $(1 \Rightarrow 2)$

## Theorem (Wrinch 1923)

Over ZF, the following are equivalent.

- AC;
- 2 There are no mediate cardinals; and
- **3** There are no  $\kappa$ -mediate cardinals for well-ordered  $\kappa$ .

Prove  $(1 \Rightarrow 2)$  by contrapositive.

### Definition

- $\mathfrak{q} \leq \mathfrak{m}$  for all  $\mathfrak{q} < \mathfrak{p}$ ;
- $\mathfrak{p} \not\leq \mathfrak{m}$ ; and
- m ≮ p.

# Wrinch's theorem, $(1 \Rightarrow 2)$

### Theorem (Wrinch 1923)

Over ZF, the following are equivalent.

- AC;
- 2 There are no mediate cardinals; and
- **1** There are no  $\kappa$ -mediate cardinals for well-ordered  $\kappa$ .

### Prove $(1 \Rightarrow 2)$ by contrapositive.

 Suppose q is p mediate. Then p and q are incomparable, so Cardinal Trichotomy fails.

#### **Definition**

- $\mathfrak{q} \leq \mathfrak{m}$  for all  $\mathfrak{q} < \mathfrak{p}$ ;
- $\mathfrak{p} \not\leq \mathfrak{m}$ ; and
- m ≰ p.

# Wrinch's theorem, $(1 \Rightarrow 2)$

### Theorem (Wrinch 1923)

Over ZF, the following are equivalent.

- AC;
- 2 There are no mediate cardinals; and
- **1** There are no  $\kappa$ -mediate cardinals for well-ordered  $\kappa$ .

### Prove $(1 \Rightarrow 2)$ by contrapositive.

- Suppose q is p mediate. Then p and q are incomparable, so Cardinal Trichotomy fails.
- (Hartogs 1915) AC iff Cardinal Trichotomy.

#### Definition

- $\mathfrak{q} \leq \mathfrak{m}$  for all  $\mathfrak{q} < \mathfrak{p}$ ;
- p ≤ m; and
- m ≰ p.

# Wrinch's theorem, $(3 \Rightarrow 1)$

### Theorem (Wrinch 1923)

Over ZF, the following are equivalent.

- AC;
- 2 There are no mediate cardinals; and
- **3** There are no  $\kappa$ -mediate cardinals for well-ordered  $\kappa$ .

 $(2 \Rightarrow 3)$  is trivial. Prove  $(3 \Rightarrow 1)$  by contrapositive.

### Definition

- $\mathfrak{q} \leq \mathfrak{m}$  for all  $\mathfrak{q} < \mathfrak{p}$ ;
- $\mathfrak{p} \not\leq \mathfrak{m}$ ; and
- m ≮ p.

# Wrinch's theorem, $(3 \Rightarrow 1)$

## Theorem (Wrinch 1923)

Over ZF, the following are equivalent.

- AC;
- 2 There are no mediate cardinals; and
- **3** There are no  $\kappa$ -mediate cardinals for well-ordered  $\kappa$ .

 $(2 \Rightarrow 3)$  is trivial. Prove  $(3 \Rightarrow 1)$  by contrapositive.

- (Hartogs) For any p there is a smallest well-orderable cardinal ⋈(p) so that ⋈(p) ≤ p.
- If  $\mathfrak{p}$  is not well-orderable then  $\mathfrak{p}$  is  $\aleph(\mathfrak{p})$ -mediate.

#### Definition

- $\mathfrak{q} \leq \mathfrak{m}$  for all  $\mathfrak{q} < \mathfrak{p}$ ;
- p ≤ m; and
- m ≰ p.

# Dependent choice

Dependent choice (DC) informally says you can make  $\omega$  many choices where each choice depends on the previous ones.

• Suppose R is a relation on a set X so that for each  $x \in X$  there is  $y \in X$  with x R y. Then there is a branch  $\langle x_i : i \in \omega \rangle$  through R: for each i have  $x_i R x_{i+1}$ .

# Dependent choice

Dependent choice (DC) informally says you can make  $\omega$  many choices where each choice depends on the previous ones.

• Suppose R is a relation on a set X so that for each  $x \in X$  there is  $y \in X$  with x R y. Then there is a branch  $\langle x_i : i \in \omega \rangle$  through R: for each i have  $x_i R x_{i+1}$ .

### $\mathsf{DC}_{\kappa}$ says:

• Suppose R is a relation on  $X^{<\kappa} \times X$  so that for each  $s \in X^{<\kappa}$  there is  $y \in X$  with s R y.

Then there is a branch  $b = \langle x_i : i < \kappa \rangle$  through R: for each i have  $(b \upharpoonright i) R b_i$ .

 $\mathsf{DC}_{<\kappa}$  is  $\mathsf{DC}_{\lambda}$  for all  $\lambda < \kappa$ .

# Dependent choice

Dependent choice (DC) informally says you can make  $\omega$  many choices where each choice depends on the previous ones.

 Suppose R is a relation on a set X so that for each x ∈ X there is y ∈ X with x R y. Then there is a branch ⟨x<sub>i</sub> : i ∈ ω⟩ through R: for each i have x<sub>i</sub> R x<sub>i+1</sub>.

### $\mathsf{DC}_{\kappa}$ says:

• Suppose R is a relation on  $X^{<\kappa} \times X$  so that for each  $s \in X^{<\kappa}$  there is  $y \in X$  with s R y.

Then there is a branch  $b = \langle x_i : i < \kappa \rangle$  through R: for each i have  $(b \upharpoonright i) R b_i$ .

### $\mathsf{DC}_{<\kappa}$ is $\mathsf{DC}_{\lambda}$ for all $\lambda < \kappa$ .

#### Facts:

- AC is equivalent to  $\forall \kappa \ \mathsf{DC}_{\kappa}$ .
- $\lambda < \kappa$  implies  $DC_{\kappa} \Rightarrow DC_{\lambda}$ .
- $\mathsf{ZF} + \mathsf{DC}_{<\kappa} + \neg \mathsf{DC}_{\kappa}$  is consistent.
- DC implies  $AC_{\omega}$  over ZF, but not vice versa.
- DC is equivalent to "a relation is well-founded iff it has no infinite descending sequence".
- (Solovay) ZF + DC + "every set of reals is Lebesgue-measurable" is consistent.

### DC and mediate cardinals

**Lemma:**  $DC_{\kappa}$  implies there are no  $\kappa$ -mediates.

### DC and mediate cardinals

**Lemma:**  $DC_{\kappa}$  implies there are no  $\kappa$ -mediates.

- Suppose  $\lambda \leq \mathfrak{p}$  for all  $\lambda < \kappa$  but  $\mathfrak{p} \not\leq \kappa$ .
- Consider the collection of all injections  $\alpha \to \mathfrak{p}$  for  $\alpha < \mathfrak{p}$ .
- None of the injections are onto, so you can always extend them to an injection  $\alpha+1\to \mathfrak{p}$ .
- By  $DC_{\kappa}$  there's a branch, which gives an injection  $\kappa \to \mathfrak{p}$ .

# Refining mediacy

#### **Observation:**

- If  $\mathfrak p$  is  $\kappa$ -mediate and  $\lambda > \kappa$  then  $\mathfrak p + \lambda$  is  $\lambda^+$ -mediate.
- So if you have  $\kappa$ -mediates for one  $\kappa$  you have mediates for larger cardinals.

#### Definition

- $\mathfrak{q} \leq \mathfrak{m}$  for all  $\mathfrak{q} < \mathfrak{p}$ ;
- $\mathfrak{p} \not\leq \mathfrak{m}$ ; and
- $\mathfrak{m} \not \leq \mathfrak{p}$ .

# Refining mediacy

#### **Observation:**

- If  $\mathfrak p$  is  $\kappa$ -mediate and  $\lambda > \kappa$  then  $\mathfrak p + \lambda$  is  $\lambda^+$ -mediate.
- So if you have  $\kappa$ -mediates for one  $\kappa$  you have mediates for larger cardinals.

#### **Definition**

m is p-mediate if

- $\mathfrak{q} \leq \mathfrak{m}$  for all  $\mathfrak{q} < \mathfrak{p}$ ;
- $\mathfrak{p} \not\leq \mathfrak{m}$ ; and
- m ≰ p.

#### $\mathfrak p$ is exact $\kappa$ -mediate if

- ullet p is  $\kappa$ -mediate and
- if  $Y \subseteq \mathfrak{p}$  has cardinality  $< \kappa$  then  $\mathfrak{p} \setminus Y$  is  $\kappa$ -mediate.

# Refining mediacy

#### **Observation:**

- If  $\mathfrak p$  is  $\kappa$ -mediate and  $\lambda > \kappa$  then  $\mathfrak p + \lambda$  is  $\lambda^+$ -mediate.
- So if you have  $\kappa$ -mediates for one  $\kappa$  you have mediates for larger cardinals.

#### **Definition**

m is p-mediate if

- $\mathfrak{q} \leq \mathfrak{m}$  for all  $\mathfrak{q} < \mathfrak{p}$ ;
- $\mathfrak{p} \not\leq \mathfrak{m}$ ; and
- m ≰ p.

#### $\mathfrak p$ is exact $\kappa$ -mediate if

- ullet  ${\mathfrak p}$  is  ${\kappa}$ -mediate and
- if  $Y \subseteq \mathfrak{p}$  has cardinality  $< \kappa$  then  $\mathfrak{p} \setminus Y$  is  $\kappa$ -mediate.

**Lemma:** If  $\mathfrak p$  is  $\kappa$ -mediate where  $\kappa$  is smallest such that  $\kappa$ -mediates exist, then  $\mathfrak p$  is exact  $\kappa$ -mediate.

## Consistency questions

#### Question

- Consistently, what can be the smallest  $\kappa$  so that  $\kappa$ -mediates exist?
- Consistently, what can be the class of  $\kappa$  for which exact  $\kappa$ -mediates exist?

## Symmetric extensions

Motivating example: Add  $\omega$  many reals, then forget the order you added them.

# Symmetric extensions

Motivating example: Add  $\omega$  many reals, then forget the order you added them.

- $\mathbb{P} = \mathrm{Add}(\omega, \omega)$  is the poset. Conditions are finite partial functions  $\omega \times \omega \to 2$ .
- Changing the order is permuting the columns in the  $\omega \times \omega$  grid.
- Any permutation  $\pi: \omega \to \omega$  generates an automorphism of  $\mathbb{P}$ :  $\pi p(n,i) = p(\pi n,i)$ .
- Also generates an automorphism on the  $\mathbb{P}$ -names:

$$\pi\dot{x} = \{(\pi p, \pi\dot{y}) : (p, \dot{y}) \in \dot{x}\}$$



# Symmetric extensions

Motivating example: Add  $\omega$  many reals, then forget the order you added them.

- $\mathbb{P} = \mathrm{Add}(\omega, \omega)$  is the poset. Conditions are finite partial functions  $\omega \times \omega \to 2$ .
- Changing the order is permuting the columns in the  $\omega \times \omega$  grid.
- Any permutation  $\pi: \omega \to \omega$  generates an automorphism of  $\mathbb{P}$ :  $\pi p(n, i) = p(\pi n, i)$ .
- Also generates an automorphism on the  $\mathbb{P}$ -names:

$$\pi\dot{x} = \{(\pi p, \pi\dot{y}) : (p, \dot{y}) \in \dot{x}\}$$

- "Forgetting the order" is restricting to names fixed by a 'large' group of automorphisms:
   A group H of automorphisms is large if
  - A group H of automorphisms is large if there is finite  $e \subseteq \omega$  so that each  $\pi \in H$  fixes e pointwise:  $H \supseteq \text{fix}(e)$ .
- ullet This gives a normal filter  ${\mathcal F}$  on the lattice of subgroups.
- A name  $\dot{x}$  is  $\mathcal{F}$ -symmetric if  $\operatorname{sym}(\dot{x}) = \{\pi : \pi \dot{x} = \dot{x}\} \in \mathcal{F}$ .
- The symmetric extension consists of the interpretations of all hereditarily symmetric names.

# Symmetric extensions, in general

A symmetric system is  $(\mathbb{P}, G, \mathcal{F})$  so that

- ullet  $\mathbb{P}$  is a forcing poset;
- $G \leq \operatorname{Aut}(\mathbb{P})$ ; and
- F is a normal filter on the lattice of subgroups of G.

20 / 30

# Symmetric extensions, in general

A symmetric system is  $(\mathbb{P}, G, \mathcal{F})$  so that

- ullet  $\mathbb{P}$  is a forcing poset;
- $G \leq \operatorname{Aut}(\mathbb{P})$ ; and
- F is a normal filter on the lattice of subgroups of G.

A  $\mathbb{P}$ -name  $\dot{x}$  is symmetric if sym  $x \in \mathcal{F}$ .

• (Symmetry lemma)  $p \Vdash \varphi(\dot{x})$  iff  $\pi p \vdash \varphi(\pi \dot{x})$ .

# Symmetric extensions, in general

A symmetric system is  $(\mathbb{P}, G, \mathcal{F})$  so that

- ullet  $\mathbb{P}$  is a forcing poset;
- $G \leq \operatorname{Aut}(\mathbb{P})$ ; and
- $\mathcal{F}$  is a normal filter on the lattice of subgroups of G.

A  $\mathbb{P}$ -name  $\dot{x}$  is symmetric if sym  $x \in \mathcal{F}$ .

• (Symmetry lemma)  $p \Vdash \varphi(\dot{x})$  iff  $\pi p \Vdash \varphi(\pi \dot{x})$ .

The symmetric extension by  $(\mathbb{P}, G, \mathcal{F})$  via a generic  $g \subseteq \mathbb{P}$ :

- Consists of the interpretations of hereditarily symmetric names.
- $V[g/\mathcal{F}] = \{\dot{x}^g : \dot{x} \text{ is hereditarily symmetric}\}.$

 $V[g/\mathcal{F}] \models ZF$ , but the point is to make AC fail in a controlled way.

20 / 30

Fix regular  $\kappa$  and assume  $\kappa^{<\kappa}=\kappa$ .

- $\mathbb{P}_{\kappa} = \mathrm{Add}(\kappa, \kappa)$ ;
- $G_{\kappa} \leq \operatorname{Aut}(\mathbb{P}_{\kappa})$  is generated by permutations of  $\kappa$ ;
- $H \in \mathcal{F}_{\kappa}$  if  $\exists e \in [\kappa]^{<\kappa}$  so that  $fix(e) \subseteq H$ .

Fix regular  $\kappa$  and assume  $\kappa^{<\kappa}=\kappa$ .

- $\mathbb{P}_{\kappa} = \mathrm{Add}(\kappa, \kappa)$ ;
- $G_{\kappa} \leq \operatorname{Aut}(\mathbb{P}_{\kappa})$  is generated by permutations of  $\kappa$ ;
- $H \in \mathcal{F}_{\kappa}$  if  $\exists e \in [\kappa]^{<\kappa}$  so that  $fix(e) \subseteq H$ .

In  $V[g_{\kappa}/\mathcal{F}_{\kappa}]$  the set  $A = \{c_i : i < \kappa\}$  for Cohen subsets of  $\kappa$  is not well-orderable.

Fix regular  $\kappa$  and assume  $\kappa^{<\kappa}=\kappa$ .

- $\mathbb{P}_{\kappa} = \mathrm{Add}(\kappa, \kappa)$ ;
- $G_{\kappa} \leq \operatorname{Aut}(\mathbb{P}_{\kappa})$  is generated by permutations of  $\kappa$ ;
- $H \in \mathcal{F}_{\kappa}$  if  $\exists e \in [\kappa]^{<\kappa}$  so that  $fix(e) \subseteq H$ .

In  $V[g_{\kappa}/\mathcal{F}_{\kappa}]$  the set  $A = \{c_i : i < \kappa\}$  for Cohen subsets of  $\kappa$  is not well-orderable.

#### **Facts:**

- $\mathbb{P}_{\kappa}$  is  $\kappa$ -closed and has the  $\kappa^+$ -cc.
- $\mathcal{F}_{\kappa}$  is  $\kappa$ -complete.

Fix regular  $\kappa$  and assume  $\kappa^{<\kappa} = \kappa$ .

- $\mathbb{P}_{\kappa} = \mathrm{Add}(\kappa, \kappa)$ ;
- $G_{\kappa} \leq \operatorname{Aut}(\mathbb{P}_{\kappa})$  is generated by permutations of  $\kappa$ ;
- $H \in \mathcal{F}_{\kappa}$  if  $\exists e \in [\kappa]^{<\kappa}$  so that  $fix(e) \subseteq H$ .

In  $V[g_{\kappa}/\mathcal{F}_{\kappa}]$  the set  $A = \{c_i : i < \kappa\}$  for Cohen subsets of  $\kappa$  is not well-orderable.

#### **Facts:**

- $\mathbb{P}_{\kappa}$  is  $\kappa$ -closed and has the  $\kappa^+$ -cc.
- $\mathcal{F}_{\kappa}$  is  $\kappa$ -complete.

Thus,  $(\mathbb{P}_{\kappa}, G_{\kappa}, \mathcal{F}_{\kappa})$  will preserve  $\mathrm{DC}_{<\kappa}$ . In particular, there will be no  $\lambda$ -mediates for  $\lambda < \kappa$ .

# Symmetric extensions and DC

**Lemma:** Let  $\kappa$  be regular and  $\lambda < \kappa$ . If  $\mathbb{P}$  is  $\kappa$ -closed and  $\mathcal{F}$  is  $\kappa$ -complete then  $(\mathbb{P}, G, \mathcal{F})$  preserves  $\mathsf{DC}_{\lambda}$ .

# Symmetric extensions and DC

**Lemma:** Let  $\kappa$  be regular and  $\lambda < \kappa$ . If  $\mathbb{P}$  is  $\kappa$ -closed and  $\mathcal{F}$  is  $\kappa$ -complete then  $(\mathbb{P}, G, \mathcal{F})$  preserves  $\mathsf{DC}_{\lambda}$ .

- Consider appropriate  $R \subseteq X^{<\lambda} \times X$  in  $V[g/\mathcal{F}]$ . We need a branch through R in  $V[g/\mathcal{F}]$ .
- ullet By  $\kappa$ -closure  $\lambda$  remains a cardinal in V[g].
- In V[g], by  $DC_{\lambda}$  there is a branch  $b = \langle x_i : i < \lambda \rangle$ .
- Each  $x_i$  comes from a symmetric name  $\dot{x}_i$ .
- By  $\kappa$ -completeness  $H = \bigwedge_{i < \lambda} \operatorname{sym}(\dot{x}_i)$  is in  $\mathcal{F}$ .
- Can get a name  $\dot{b}$  for b with sym $(\dot{b}) \supseteq H$ .
- So the branch b is in  $V[g/\mathcal{F}]$ .

## Theorem (W.)

Suppose  $\kappa = \kappa^{<\kappa}$  is regular. In the symmetric extension by  $(\mathbb{P}_{\kappa}, G_{\kappa}, \mathcal{F}_{\kappa})$ :

- DC<sub><κ</sub>;
- $\kappa$  is least so that there is a  $\kappa$ -mediate cardinal; and
- There is an exact  $\lambda$ -mediate iff  $\lambda = \kappa$ .

## Theorem (W.)

Suppose  $\kappa = \kappa^{<\kappa}$  is regular. In the symmetric extension by  $(\mathbb{P}_{\kappa}, G_{\kappa}, \mathcal{F}_{\kappa})$ :

- DC<sub><κ</sub>;
- $\kappa$  is least so that there is a  $\kappa$ -mediate cardinal; and
- There is an exact  $\lambda$ -mediate iff  $\lambda = \kappa$ .

We've already seen  $DC_{<\kappa}$  and so there are no  $\lambda$ -mediates for  $\lambda < \kappa$ .

Claim: Let A be the set of the Cohen subsets of  $\kappa$  added by  $\mathbb{P}_{\kappa}$ . Then  $V[g/\mathcal{F}_{\kappa}] \models A$  is  $\kappa$ -mediate.

Like getting DFI set in  $(\mathbb{P}_{\omega}, G_{\omega}, \mathcal{F}_{\omega})$ .

## Theorem (W.)

Suppose  $\kappa = \kappa^{<\kappa}$  is regular. In the symmetric extension by  $(\mathbb{P}_{\kappa}, G_{\kappa}, \mathcal{F}_{\kappa})$ :

- DC<sub><κ</sub>;
- $\kappa$  is least so that there is a  $\kappa$ -mediate cardinal; and
- There is an exact  $\lambda$ -mediate iff  $\lambda = \kappa$ .

We've already seen  $DC_{<\kappa}$  and so there are no  $\lambda$ -mediates for  $\lambda < \kappa$ .

Claim: Let A be the set of the Cohen subsets of  $\kappa$  added by  $\mathbb{P}_{\kappa}$ . Then  $V[g/\mathcal{F}_{\kappa}] \models A$  is  $\kappa$ -mediate.

Like getting DFI set in  $(\mathbb{P}_{\omega}, G_{\omega}, \mathcal{F}_{\omega})$ .

- $\lambda < \kappa$  injects by  $\kappa$ -closure of  $\mathbb{P}_{\kappa}$  and  $\kappa$ -completeness of  $\mathcal{F}_{\kappa}$
- $|A| \leq \kappa$  because A can't be well-ordered.
- κ ≰ |A|:

23 / 30

## Theorem (W.)

Suppose  $\kappa = \kappa^{<\kappa}$  is regular. In the symmetric extension by  $(\mathbb{P}_{\kappa}, G_{\kappa}, \mathcal{F}_{\kappa})$ :

- DC<sub><κ</sub>;
- $\kappa$  is least so that there is a  $\kappa$ -mediate cardinal; and
- There is an exact  $\lambda$ -mediate iff  $\lambda = \kappa$ .

We've already seen  $DC_{<\kappa}$  and so there are no  $\lambda$ -mediates for  $\lambda < \kappa$ .

Claim: Let A be the set of the Cohen subsets of  $\kappa$  added by  $\mathbb{P}_{\kappa}$ . Then  $V[g/\mathcal{F}_{\kappa}] \models A$  is  $\kappa$ -mediate.

Like getting DFI set in  $(\mathbb{P}_{\omega}, G_{\omega}, \mathcal{F}_{\omega})$ .

- $\lambda < \kappa$  injects by  $\kappa$ -closure of  $\mathbb{P}_{\kappa}$  and  $\kappa$ -completeness of  $\mathcal{F}_{\kappa}$
- $|A| \leq \kappa$  because A can't be well-ordered.
- κ ≰ |A|:
  - Suppose  $\dot{f}$  is hereditarily symmetric,  $\operatorname{sym}(f) \supseteq \operatorname{fix}(e)$ , and  $p \Vdash \dot{f} : \kappa \to A$  is one-to-one.
  - Extend p to q deciding  $f(\alpha) = c_i$  for some  $\alpha \neq i$  both  $\notin e$ .
  - Find  $\pi$  fixing  $e \cup \{i\}$ , moving  $\alpha$ , and  $q \parallel \pi q$ .
  - So  $q \cup \pi q \Vdash \dot{f}$  is not one-to-one. Contradiction.

#### Theorem (W.)

Suppose  $\kappa = \kappa^{<\kappa}$  is regular. Then  $(\mathbb{P}_{\kappa}, G_{\kappa}, \mathcal{F}_{\kappa})$  forces that

- $\kappa$  is least so that there is a  $\kappa$ -mediate cardinal.
- $DC_{<\kappa}$ .
- There is an exact  $\lambda$ -mediate iff  $\lambda = \kappa$ .

**Lemma:** If X is exact  $\lambda$ -mediate for  $\lambda > \kappa$  in  $V[g/\mathcal{F}_{\kappa}]$ , then  $V[g] \models |X| = \lambda$ .

#### Theorem (W.)

Suppose  $\kappa = \kappa^{<\kappa}$  is regular. Then  $(\mathbb{P}_{\kappa}, \mathsf{G}_{\kappa}, \mathcal{F}_{\kappa})$  forces that

- $\kappa$  is least so that there is a  $\kappa$ -mediate cardinal.
- DC $<\kappa$ .
- There is an exact  $\lambda$ -mediate iff  $\lambda = \kappa$ .

**Lemma:** If X is exact  $\lambda$ -mediate for  $\lambda > \kappa$  in  $V[g/\mathcal{F}_{\kappa}]$ , then  $V[g] \models |X| = \lambda$ .

## Work in V[g]:

- Consider the tree of hereditarily symmetric names for injections  $\alpha \to X$  for  $\alpha < \lambda$ .
- Claim implies the tree has a branch.
- Branch has size  $\lambda > \kappa$  and  $|\mathcal{F}| = \kappa$ , so  $\lambda$  many names  $\dot{f}_{\alpha}$  on the branch have the same  $\operatorname{sym}(\dot{f}_{\alpha})$ .
- Can build a branch b so every injection on branch has same  $\operatorname{sym}(\dot{f}_{\alpha})$ .
- Then b has a hereditarily symmetric name.

Thus  $V[g/\mathcal{F}_{\kappa}] \models \lambda \leq |X|$ . Contradiction.

## Doing it more than once

When a set theorist can do something once, she wants to do it more than once. With forcing, she accomplishes this using products or iterations.

## Doing it more than once

When a set theorist can do something once, she wants to do it more than once. With forcing, she accomplishes this using products or iterations.

- Karagila has a framework for iterations of symmetric extensions.
- It's complicated, with scary group theoretic objects like wreath products.

## Doing it more than once

When a set theorist can do something once, she wants to do it more than once. With forcing, she accomplishes this using products or iterations.

- Karagila has a framework for iterations of symmetric extensions.
- It's complicated, with scary group theoretic objects like wreath products.
- We are lucky and can get away with products, where the details are significantly less technical.

# Products of symmetric extensions

Suppose  $(\mathbb{P}, G, \mathcal{F})$  and  $(\mathbb{Q}, H, \mathcal{E})$  are symmetric systems. Can define their product  $(\mathbb{P}, G, \mathcal{F}) \times (\mathbb{Q}, H, \mathcal{E})$ :

- $\mathbb{P} \times \mathbb{Q}$  is usual product of posets;
- $G \times H$  is generated by  $(\pi, \rho)$  with  $\pi \in G$ ,  $\rho \in H$ ; and
- $\mathcal{F} \times \mathcal{E}$  is generated by  $G_0 \times H_0$  for  $G_0 \in \mathcal{F}$  and  $H_0 \in \mathcal{E}$ .

# Products of symmetric extensions

Suppose  $(\mathbb{P}, G, \mathcal{F})$  and  $(\mathbb{Q}, H, \mathcal{E})$  are symmetric systems. Can define their product  $(\mathbb{P}, G, \mathcal{F}) \times (\mathbb{Q}, H, \mathcal{E})$ :

- $\mathbb{P} \times \mathbb{Q}$  is usual product of posets;
- $G \times H$  is generated by  $(\pi, \rho)$  with  $\pi \in G$ ,  $\rho \in H$ ; and
- $\mathcal{F} \times \mathcal{E}$  is generated by  $G_0 \times H_0$  for  $G_0 \in \mathcal{F}$  and  $H_0 \in \mathcal{E}$ .

Like with forcing, we have a product lemma stating that the extension by the product is the same as the two-step extensions, in either order.

# Products of symmetric extensions

Suppose  $(\mathbb{P}, G, \mathcal{F})$  and  $(\mathbb{Q}, H, \mathcal{E})$  are symmetric systems. Can define their product  $(\mathbb{P}, G, \mathcal{F}) \times (\mathbb{Q}, H, \mathcal{E})$ :

- $\mathbb{P} \times \mathbb{Q}$  is usual product of posets;
- $G \times H$  is generated by  $(\pi, \rho)$  with  $\pi \in G$ ,  $\rho \in H$ ; and
- $\mathcal{F} \times \mathcal{E}$  is generated by  $G_0 \times H_0$  for  $G_0 \in \mathcal{F}$  and  $H_0 \in \mathcal{E}$ .

Like with forcing, we have a product lemma stating that the extension by the product is the same as the two-step extensions, in either order. Can also do this for infinite products, with a notion of support.

- Suppose  $(\mathbb{P}_{\kappa}, G_{\kappa}, \mathcal{F}_{\kappa})$  are symmetric systems for  $\kappa \in M$ .
- Then there is a product  $\prod_{\kappa \in \mathcal{M}} (\mathbb{P}_{\kappa}, G_{\kappa}, \mathcal{F}_{\kappa})$  with that support.
- Again we get a product lemma stating we can split the full extension into two-step extensions.

# Refining earlier ideas

In a two-step symmetric extension, the intermediate step won't satisfy AC. So we need to look more carefully at our assumptions.

# Refining earlier ideas

In a two-step symmetric extension, the intermediate step won't satisfy AC. So we need to look more carefully at our assumptions.

Suppose  $\lambda < \kappa < \mu$  are regular.

- (ZF + DC<sub> $\kappa$ </sub>) If  $\mathbb P$  is  $\kappa$ -closed and  $\mathcal F$  is  $\kappa$ -complete then ( $\mathbb P$ , G,  $\mathcal F$ ) preserves DC<sub>1</sub>.
- $(ZF + DC_{\kappa})$  Suppose  $\mathbb{P}$  has the  $\kappa^+$ -cc and  $\mathcal{F}$  is generated by a basis of size  $\leq \kappa$ . Then  $V[g/\mathcal{F}] \models$  there are no exact  $\mu$ -mediates.

# The pattern of the exact mediates

## Theorem (W.)

Assume GCH and fix a class M of regular cardinals. Do the Easton support product of the  $(\mathbb{P}_{\kappa}, G_{\kappa}, \mathcal{F}_{\kappa})$  for  $\kappa \in M$ . In the symmetric extension, there is an exact  $\alpha$ -mediate iff  $\alpha \in M$ .

# The pattern of the exact mediates

## Theorem (W.)

Assume GCH and fix a class M of regular cardinals. Do the Easton support product of the  $(\mathbb{P}_{\kappa}, G_{\kappa}, \mathcal{F}_{\kappa})$  for  $\kappa \in M$ . In the symmetric extension, there is an exact  $\alpha$ -mediate iff  $\alpha \in M$ .

#### Sketch:

- $\mathbb{P}_{>\alpha}$  is  $\alpha$ -closed and  $\mathcal{F}_{>\alpha}$  is  $\alpha$ -complete.
- $\mathbb{P}_{<\alpha}$  has the  $\alpha^+$ -cc and  $\mathcal{F}_{<\alpha}$  is generated by a basis of cardinality  $<\alpha$ .
- In  $V[g_{>\alpha}/\mathcal{F}_{>\alpha}]$ : DC $_{\alpha}$  is true. So there are no  $\alpha$ -mediates.
- In  $V[g_{>\alpha}/\mathcal{F}_{>\alpha}][g_{<\alpha}/\mathcal{F}_{<\alpha}]$ : there are no exact  $\alpha$ -mediates.
- So the only way there could be an exact  $\alpha$ -mediate is if it was added by  $(\mathbb{P}_{\alpha}, G_{\alpha}, \mathcal{F}_{\alpha})$  which is nontrivial iff  $\alpha \in M$ .
- But we know that adds an exact mediate when  $\alpha \in M$ .

## Open questions

## Open questions

- What's up with singular cardinals?
- What if we don't make such strong cardinal arithmetic assumptions?
- What happens if AC fails badly in the ground model?

# Thank you!

- Dorothy Wrinch, "On mediate cardinals", American Journal of Mathematics, Vol. 45, No. 2. (1923). pp. 87–92.
   DOI: 10.2307/2370490.
- Kameryn J. Williams, "Mediate cardinals: old and new", *In preparation*.