

WHAT IS CLAIMED IS:

1. A method for controlling data transmission in a network system configured by a plurality of nodes including
5 a first node, a second node, and a third node, wherein the first node has a plurality of ports including a first port connected to the second node and a second port connected to the third node, and the first node enables data received by the first port from the second node to be transmitted from the second port to the third node, and wherein each node has address information, the received data including the address information of the node to which the received data is addressed, the method comprising the steps of:

comparing the address information of the first node with the address information included in the received data;

temporarily disconnecting the third node from the first node when the received data is not addressed to the third node.

20 2. The method according to claim 1, wherein the temporarily disconnecting includes dividing the network system into a plurality of sub-network systems, and wherein the method further comprises permitting data transmission within each of the sub-network systems.

25 3. The method according to claim 1, wherein the disconnecting step includes idling the second port.

30 4. The method according to claim 1, further comprising the steps of:
monitoring data transmission at each port; and
idling all of the ports when data transmission is completed at all of the ports.

5. A data transmission controller comprising:
a plurality of ports including a first port connected
to a first node and a second port connected to a second
node;
a network information memory for storing node
information of the first and second nodes;
a packet determiner connected to the first and second
ports and the network information memory for determining
with the node information an addressee of data received by
the first port from the first node; and
an interface control circuit connected to the packet
determiner to temporarily disconnect the second node from
the second port when the data is not addressed to the second
node.

6. The data transmission controller according to
claim 5, wherein the interface control circuit permits data
transmission within a sub-network system including the
second node.

7. The data transmission controller according to
claim 5, further comprising a plurality of interfaces
respectively connected between the ports and the interface
control circuit, wherein the interface control circuit
controls the interface associated with the second port to
idle the second port and temporarily terminates the
connection between the second port and the second node.

8. The data transmission controller according to
claim 5, wherein the interface control circuit monitors data
transmission at the ports and idles all of the ports after
data transmission is completed at all of the ports.

9. The data transmission controller according to
claim 5, wherein the data transmission controller is one of
a plurality of data transmission controllers provided in
each of a plurality of nodes configuring a network system,
each of the nodes transmitting to other nodes a packet
including a physical node number when the network system
undergoes a bus reset, and wherein the network information
memory stores the physical node number of each node as the
node information.

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95
10. A data transmission controller incorporated in a
first node for enabling data received by a first port from a
second node to be transmitted by a second port to a third
node, wherein the data includes packet information
containing a data origination address and a data destination
address, the data transmission controller comprising:

a first interface connected to the first port;
a second interface connected to the second port;
a network information memory for storing first address
information of the first node, second address information of
the second node, and third address information of the third
node;

a packet determiner connected to the first and second
interfaces for comparing the data destination address with
the second and third address information to determine an
addressee of the received data; and

30 35 40 45 50 55 60 65 70 75 80 85 90 95
an interface control circuit connected to the first and
second interfaces, the packet determiner, and the network
information memory for controlling the first and second
interfaces, wherein the interface control circuit processes
the data when the data is addressed to the first node,
transmits the data to the third node from the second port

when the data is addressed to the third node, and controls
the second interface when the data is not addressed to the
third node to idle the second port and disconnect the second
port from the third node to stop data transmission by the
second port to the third node.

11. The data transmission controller according to
claim 10, wherein the interface control circuit permits data
transmission within a first sub-network system including the
third node.

12. The data transmission controller according to
claim 10, wherein the first node and the second node
configure a second network system, and wherein the interface
control circuit permits independent data transmission in
each of the first and second sub-network systems when the
second port is idle.

13. The data transmission controller according to
claim 12, wherein the interface control circuit idles the
first and second ports when data transmission in the first
and second sub-network systems is completed.

14. A method for controlling data transmission in a
network system configured by a plurality of nodes including
a first node, a second node, and a third node, wherein the
first node has a plurality of ports including a first port
connected to the second node and a second port connected to
the third node, and the first node enables data received by
the first port from the second node to be transmitted by the
second port to the third node, and wherein each node has
address information, the received data including the address
information of the node to which the received data is

addressed, the method comprising:

comparing the address information of the first node
with the address information included in the received data;

temporarily disconnecting the third node from the
second port when the received data is not addressed to the
third node to divide the network system into a first sub-
network system including the third node and a second sub-
network system including the first and second nodes; and
permitting data transmission within the first sub-
network system.

1000250-7885TRB6