Дерево Фенвика

Содержание

- 1 Описание структуры
- 2 Запрос изменения элемента
- Запрос получения значения функции на префиксе
 - 3.1 Реализация
- 4 Сравнение дерева Фенвика и дерева отрезков
- 5 См. также
- 6 Источники информации

Описание структуры

Дерево Фе́нвика (англ. *Binary indexed tree*) — структура данных, требующая O(n) памяти и позволяющая эффективно (за $O(\log n)$) выполнять следующие операции:

- изменять значение любого элемента в массиве,
- выполнять некоторую ассоциативную, коммутативную, обратимую операцию на отрезке [i,j].

Впервые описано Питером Фенвиком в 1994 году.

Пусть дан массив $A=[a_0,a_1,\dots,a_{n-1}]$. Деревом Фенвика будем называть массив T из n элементов: $T_i=\sum_{k=F(i)}^i a_k$, где $i=0\dots n-1$

и F(i) — некоторая функция, от выбора которой зависит время работы операций над деревом. Рассмотрим функцию, позволяющую делать операции вставки и изменения элемента за время $O(\log n)$. Она задается простой формулой: F(i)=i&(i+1), где & — это операция побитового логического AND. При AND числа и его значения, увеличенного на единицу, мы получаем это число без последних подряд идущих единиц.

По горизонтали — индексы массива T (T_i является суммой элементов массива A, индексы которых заштрихованы), по вертикали — индексы массива A

Эту функцию можно вычислять по другой формуле: $F(i) = i - 2^{h(i)} + 1$, где h(i) — количество подряд идущих единиц в конце бинарной записи числа i. Оба варианта равносильны, так как функция, заданная какой-либо из этих формул, заменяет все подряд идущие единицы в конце числа на нули.

Запрос изменения элемента

Нам надо научиться быстро изменять частичные суммы в зависимости от того, как изменяются элементы. Рассмотрим как изменяется массив T при изменении элемента a_k .

Лемма

Для пересчёта дерева Фенвика при изменении величины a_k необходимо изменить элементы дерева T_i , для индексов i которых верно неравенство $F(i)\leqslant k\leqslant i$.

Доказательство:

 \triangleright

$$T_i = \sum_{k=F(i)}^i a_k, i=0.$$
 . $n-1 \Rightarrow$ необходимо менять те T_i , для которых a_k попадает в $T_i \Rightarrow$ необходимые i

удовлетворяют условию $F(i) \leqslant k \leqslant i$.

◁

Лемма:

Все такие i, для которых меняется T_i при изменении a_k , можно найти по формуле $i_{next} = i_{prev} \mid (i_{prev} + 1)$, где $\mid -$ это операция побитового логического OR.

Доказательство:

>

Из доказанной выше леммы следует, что первый элемент последовательности само k. Для него выполняется равенство, так как $F(i)\leqslant i$. По формуле $i_{next}=i_{prev}\mid (i_{prev}+1)$ мы заменим первый ноль на единицу. Неравенство при этом сохранится, так как F(i) осталось прежним или уменьшилось, а i увеличилось. F(i) не может увеличиться, так как функция F заменяет последние подряд идущие единицы числа i на нули, а по формуле $i_{next}=i_{prev}\mid (i_{prev}+1)$ у нового значения i увеличивается количество единиц в конце, что не может привести к увеличению F(i). Докажем от противного, что нельзя рассматривать значения i, отличные от тех, которые мы получили по формуле. Рассмотрим две различные последовательности индексов. Первая последовательность получена по формуле, вторая — некоторая последовательность чисел превосходящих k. Возьмём число j из второй последовательности, которого нет в первой последовательности. Пусть $F(j)\leqslant k$. Уберём y j все подряд идущие единицы в конце двоичной записи, столько же цифр уберём в конце числа k. Обозначим их как j_0 и k_0 . Чтобы выполнялось условие $F(j)\leqslant k$, должно выполняться неравенство $j_0\leqslant k_0$. Но если $j_0< k_0$, то и $j\leqslant k$, что противоречит условию j>k. Значит, $j_0=k_0$. Но тогда j возможно получить по формуле $i_{next}=i_{prev}\mid (i_{prev}+1)$, следовательно, F(j)>k. Получили противоречие: j можно вычислить по формуле, а это значит, что оно содержится в первой последовательности. Таким образом, нужные элементы можно искать по формуле $i_{next}=i_{prev}\mid (i_{prev}+1)$.

◁

Заметим, что F(i) возрастает немонотонно. Поэтому нельзя просто перебирать значения от k, пока не нарушается условие. Например, пусть k=3. При данной стратегии на следующем шаге (i=4) нарушится условие и мы прекратим пересчитывать T_i . Но тогда мы упускаем остальные значения i, например 7.

$oldsymbol{i},$ десятичная запись	0	1	2	3	4	5	6	7	8	9	10
$oldsymbol{i}$, двоичная запись	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010
F(i), двоичная запись	0000	0000	0010	0000	0100	0100	0110	0000	1000	1000	1010
F(i), десятичная запись	0	0	2	0	4	4	6	0	8	8	10

Все i мы можем получить следующим образом: $i_{next} = i_{prev} \mid (i_{prev} + 1)$. Следующим элементом в последовательности будет элемент, у которого первый с конца ноль превратится в единицу. Можно заметить, что если к исходному элементу прибавить единицу, то необходимый ноль обратится в единицу, но при этом все

следующие единицы обнулятся. Чтобы обратно их превратить в единицы, применим операцию OR. Таким образом все нули в конце превратятся в единицы и мы получим нужный элемент. Для того, чтобы понять, что эта последовательность верна, достаточно посмотреть на таблицу.

$$i_{prev}$$
 ... 011 ... 1
 $i_{prev} + 1$... 100 ... 0
 i_{next} ... 111 ... 1

Несложно заметить, что данная последовательность строго возрастает и в худшем случае будет применена логарифм раз, так как добавляет каждый раз по одной единице в двоичном разложении числа i.

Напишем функцию, которая будет прибавлять к элементу a_i число d, и при этом меняет соответствующие частичные суммы. Так как наш массив содержит N элементов, то мы будем искать i_{next} до тех пор, пока оно не превышает значение N.

```
function modify(i, d):
    while i < N
        t[i] += d
        i = i | (i + 1)</pre>
```

Часто можно встретить задачу, где требуется заменить значение элемента a_i на x. Заметим, что если вычислить разность x и a_i , то можно свести эту задачу к операции прибавления d к a_i .

```
function set(i, x):
    d = x - a[i]
    a[i] = x
    modify(i, d)
```

Построение дерева можно осуществить, исходя из его описания. Но можно быстрее, если использовать функцию modify для каждого элемента массива A. Тогда мы получим время работы $O(n \log n)$.

```
function build():
    for i = 0 to N - 1
        modify(i, a[i])
```

Запрос получения значения функции на префиксе

Пусть существует некоторая бинарная операция \circ . Чтобы получить значение на отрезке [i,j], нужно провести операцию, обратную к \circ , над значениями на отрезках [0,j] и [0,i-1].

В качестве бинарной операции • рассмотрим операцию сложения.

Обозначим
$$G_i = \operatorname{sum}(\mathrm{i}) = \sum_{k=0}^i a_k$$
. Тогда $\operatorname{sum}(\mathrm{i},\mathrm{j}) = \sum_{k=i}^j a_k = G_j - G_{i-1}$.

Для нахождения sum(i) будем действовать следующим образом. Берём T_i , которое является суммой элементов с индексами от F(i) до i. Теперь к этому значению нужно прибавить sum(F(i)-1). Аналогично продолжаем складывать, пока не F(i) не станет равным 0.

Покажем, что запрос суммы работает за $O(\log n)$. Рассмотрим двоичную запись числа i. Функция F(i) заменила его последние единицы на нули (заметим, что количество нулей в конце станет больше, чем количество единиц в конце до этого). Теперь вычтем единицу из F(i) (переход к следующему столбику). Количество единиц в конце

увеличилось, по сравнению с i, так как мы заменили все нули в конце на единицы. Проводя эти действия дальше, мы придём к тому, что получили 0. В худшем случае мы должны были повторять эти операции l раз, где l — количество цифр в двоичной записи числа i, что не превосходит $\log_2 i + 1$. Значит, запрос суммы выполняется за $O(\log n)$.

Реализация

Приведем код функции sum(i):

```
int sum(i):
    result = 0
    while i >= 0
    result += t[i]
    i = f(i) - 1
```

Сравнение дерева Фенвика и дерева отрезков

- Дерево Фенвика занимает в константное значение раз меньше памяти, чем дерево отрезков. Это следует из того, что дерево Фенвика хранит только значение операции для каких-то элементов, а дерево отрезков хранит сами элементы и частичные результаты операции на подотрезках, поэтому оно занимает как минимум в два раза больше памяти.
- Дерево Фенвика проще в реализации.
- Операция на отрезке, для которой строится дерево Фенвика, должна быть обратимой, а это значит, что минимум (как и максимум) на отрезке это дерево считать не может, в отличие от дерева отрезков. Но если нам требуется найти минимум на префиксе, то дерево Фенвика справится с этой задачей. Такое дерево Фенвика поддерживает операцию уменьшения элементов массива. Пересчёт минимума в дереве происходит быстрее, чем обновление массива минимумов на префиксе.

См. также

■ Дерево отрезков

Источники информации

- Peter M. Fenwick: A new data structure for cumulative frequency (http://citeseer.ist.psu.edu/viewdoc/download;jsessio nid=F180153B9C0CD797594314B736E2CCC5?doi=10.1.1.14.8917&rep=rep1&type=pdf)
- Wikipedia Fenwick tree (http://en.wikipedia.org/wiki/Fenwick tree)
- Maximal:: algo:: Дерево Фенвика (http://e-maxx.ru/algo/fenwick_tree)
- Хабрахабр Дерево Фенвика (http://habrahabr.ru/post/112828)

Источник — «http://neerc.ifmo.ru/wiki/index.php?title=Дерево_Фенвика&oldid=66552»

• Эта страница последний раз была отредактирована 20 октября 2018 в 19:55.