Rendu réaliste et temps réel pour la réalité augmentée

Hadrien Croubois

M2 IGI UCBL – ENS de Lyon

17/06/2014

La réalité augmentée

La réalité augmentée consiste à integrer des données numériques à des images réels. Cela implique de nombreuses problèmatiques :

- Positionnement des informations ajoutées;
- Intéractions lumineuses avec la scène.

Exemple d'application

Figure – Exemple d'application de réalitée augmentée développée par IKEA

Objectif

L'objectif du stage est de mettre en place les outils nécessaires à l'intégration réaliste d'un objet dans une scène, en temps réel, sur une plateforme mobile.

Plusieurs sous-objectifs :

- Repérage du terminal mobile dans l'espace;
- Acquisition dynamique de l'environnement de la scène;
- Rendu réaliste et temps réel à partir des données d'environnement.

Repérage dans l'espace par rapport à une mire : problème d'algèbre linaire simple.

- Choix de la mire : QRCode
- Résolution du système linéaire : OpenCV

Repérage dans l'espace par rapport à une mire : problème d'algèbre linaire simple.

- Choix de la mire : QRCode
- Résolution du système linéaire : OpenCV

Repérage dans l'espace par rapport à une mire : problème d'algèbre linaire simple.

- Choix de la mire : QRCode
- Résolution du système linéaire : OpenCV

Hiérarchie de référentiels 1/2

Figure – Les différents référentiels

Hiérarchie de référentiels 2/2

QRcode **Face** $model^{-1}$ () model Monde view^{−1} () view **Smartphone** orientation⁻¹ ₹) orientation Camera $cvToGI^{-1}$ () cvToGl Vue OpenGL projection⁻¹ ₹) projection Image rendu Table – Hiérarchie des matrices de transformations

Reconstruction de l'environnement

L'environnement est décrit à l'aide d'une carte d'environnement cubique (cubemap)

Pour chaque frame :

- Localisation du terminal mobile dans la scène;
- Reprojection des images issue des webcams dans le repère du monde;
- Remplissage de la partie visible de la cubemap.

Reconstruction de l'environnement

L'environnement est décrit à l'aide d'une carte d'environnement cubique (cubemap)

Pour chaque frame :

- Localisation du terminal mobile dans la scène;
- Reprojection des images issue des webcams dans le repère du monde;
- Remplissage de la partie visible de la cubemap

Reconstruction de l'environnement

L'environnement est décrit à l'aide d'une carte d'environnement cubique (cubemap)

Pour chaque frame :

- Localisation du terminal mobile dans la scène;
- Reprojection des images issue des webcams dans le repère du monde;
- Remplissage de la partie visible de la cubemap.

Méthode de rendu

Inspiré de Plausible

Plausible Blinn-Phong Reflection of Standart Cube Mip-Maps (Mcguire, Evangelakos, Wilcox, Donow, Mara)

Modification de la composante diffuse par la prise en compte pondère de la contribution des différentes faces.

Intégration de l'envmap

L'évaluation la lumière incidente est faite en intégrant l'envmap visible.

Figure – Intégration de l'envmap visible

Premier précalcul, l'auto-occlusion

Un facteur d'auto-occlusion est pré-calculé est stocké dans une texture.

Figure – Facteur d'auto-occlusion

Ombres

Afin de permettre une évaluation dynamique des ombres, on s'intéresse à l'ombre portée d'une sphère.

Figure – Occultation de la lumière incidente par une sphère

Second précalcul, décomposition en sphères

Afin d'appliquer la méthode de rendu d'ombres, il est nécessaire de décomposer l'objet en une union de sphère.

Figure - Décomposition en sphère

Résumé

Résultats du rendu 1/2

Figure – Rendu des ombres portées sans (à gauche) et avec (à droite) la décomposition en sphères

Résultats du rendu 2/2

Figure - Rendu du modèle "bigguy" pour différents niveau de spécularité

Perspectives d'évolution

- Envmap HDR;
- BRDF Microfacettes;
- Modèles animés.

- Merci de votre attention
- Avez-vous des questions?

