Contents

1	Wstep						
2	Kapitalizacja prosta						
	2.1	Przykład 1	4				
		2.1.1 a)	4				
		2.1.2 b)	4				
	2.2	Przykład 2	5				
		2.2.1 a)	5				
		2.2.2 b)	5				
	2.3	Przykład 3	6				
		2.3.1 a) roczna	6				
		2.3.2 b) miesieczna	6				
		2.3.3 c) tygodniowa	6				
3	Kapitalizacja złożona						
	3.1	Przykład 4	7				
	3.2	Przykład 5	8				
	3.3	Przykład 6	8				
		3.3.1 a)	8				
		3.3.2 b)	8				
		3.3.3 c)	9				
	3.4	Przykład 7	9				
	3.5		10				
			10				
		3.5.2 b)	10				
	3.6	Przykład 9	10				
	3.7	Przykład 10	10				
4	Równoważność stóp pod okresowych przy kapitalizacji złożonej 11						
	4.1	Przykład 11	11				
	4.2	Przykład 12	11				
5	Efektywna stopa procentowa 13						
	5.1	Przykład 13	13				
			13				
	5.2		14				
		5.2.1 a)	14				
		,	14				
6	Kar	pitalizacja ciagła	15				
	6.1	ů č	15				
		6.1.1 a)	15				
			1 -				

•	7 Na	Nateżenie procentowe	
	7.1	Przykład 16	16
8	8 Dy	Dyskonto proste i składane	
	8.1	Przykład 17	17
	8.2	Przykład 18	18

1 Wstep

Odestkami - nazywa sie kwote, która należy zapłacić za prawo użytkowania określonego kapitału. Odsetki sa zatem cena płacona za wypożyczenie kapitału. Ustala sie je w odniesieniu do pewnego ustalonego okresu. Stosunek odsetek do kapitału, który je wygenerował w ustalonym okresie, nazywa sie okresowa stopa procentowa.

W praktyce najcześciej mamy do czynienia ze stopami procentowymi ustalonymi dla okresy rocznego. Mówimy wtedy o **rocznej stopie procentowej**.

Jeżeli np. odsetki za 1 rok od pożyczonego kapitału 60 000 PLN wynosza 1 500 PLN, to roczna stopa procentowa jest równa $r=\frac{1500}{60000}=2,5\%$.

Powiekszenie kapitalu o odsetki, które zostały przez niego wygenerowane, nazywa sie **kapitalizacja odsetek**. Czas, w którym odsetki sa generowane, nazywa sie okresem kapitalizacji. W dalszym ciagu rozważań ograniczymy sie do przypadku, gdy odsetki sa dopisywane na końcu okresów kapitalizacji. Mówimy wtedy o kapitalizacji z dołu.

Wyróżniamy dwa podstawowe rodzaje kapitalizacji: prosta i złożona.

2 Kapitalizacja prosta

W przypadku kapitalizacji prostej odsetki od kapitału oblicza sie od kapitału poczatkowego proporcjonalnie od długości kresu oprocentowania. Oznaczamy przez W poczatkowa wartość kapitału, przez r roczna stope procentowa, przez I_n należne za czas n, zaś przez W_n oznaczamy końcowa wartość kapitału w czasie n (w latach).

Reguła bankowa – każdy rok ma 360 dni, zaś każdy miesiac ma 30 dni.

$$I_n = Wnr \tag{1}$$

Natomiast wartość końcowa kapitału:

$$W_n = W(1+nr) \tag{2}$$

2.1 Przykład 1

Przy kapitalizacji prostej i rocznej stopie procentowej r=4% wyznaczyć odsetki i końcowa wartość kapitału 25 000 PLN po upływie a) 3lat, b) 142dni.

2.1.1 a)

$$I_n = 25000 * 3 * 0,04 = 3000PLN$$

2.1.2 b)

$$W_n = 25000(1 + \frac{142}{360} + 0.04) = 25394,44PLN$$

Załóżmy że czas trwania inwestycji wynosi n lat i składa sie z m nastepujacych po sobie okresów o długości $n_1,, n_m$. Przyjmijmy że w każdym z nich obowiazuje roczna stopa procentowa, odpowiednio, $r_1, ..., r_m$. Wtedy wartość kapitału poczatkowego W po pierwszym okresie wyniesie:

$$W_n = W(1 + \sum_{i=0}^m r_i n_i) \tag{3}$$

$$I_n = W \sum_{i=0}^m r_i n_i \tag{4}$$

Przecietna roczna stopa procentowa oprocentowania kapitału W w czasie n nazywa sie roczna stope, przy której kapitał W generuje w czasie n odsetki o takiej samej wartości jak przy stopach zmiennych. Definicja ta dotyczy zarówno kapitalizacji prostej i złożonej.

Oznaczajac przez r
(z kreska na górze) przecietna roczna stopa oprocen, na podstawie wzorów
 (1)i(4)mamy

$$r = \frac{1}{n} \sum_{i=1}^{m} r_i n_i \tag{5}$$

Gdyby wszystkie okresy miały jednakowa długość to wzór:

$$r = \frac{1}{m} \sum_{i=1}^{m} r_i \tag{6}$$

2.2 Przykład 2

Przez poczatkowe 4 miesiaca trwania obowiazywała roczna stopa procentowa 6 Dane:

$$N_1 = \frac{4}{12} \\ N_2 = \frac{5}{12} \\ N_3 = \frac{3}{12}$$

$$R_1 = 0,06 \\ R_2 = 0,07 \\ R_3 = 0,075 \\ W = 20000 PLN$$

2.2.1 a)

Korzystajac ze wzoru (3) mamy
$$W_3=20000(1+0.06*\tfrac{4}{12}+0.07*\tfrac{5}{12}+0.075*\tfrac{3}{12})=21358,40PLN$$

2.2.2 b)

Obliczyć wysokość przecietnej rocznej stopy oprocentowania Korzystajac ze wzory (5) mamy $r=0.06*\tfrac{4}{12}+0.07*\tfrac{5}{12}+0.075*\tfrac{3}{12}=6,79\%$

Czesto zdarza sie, że stopa procentowa, przy której należy obliczyć odsetki nie jest stopa roczna lecz np. miesieczna lub kwartalna. Okres, po którym odsetki podlegaja kapitalizacji nazywa sie **podokresem kapitalizacji**. Stopa procentowa ustalona dla podokresu kapitalizacji nazywa sie **stopa pod okresowa. Czestotliwość kapitalizacji** oznacza ile razy odsetki sa kapitalizowane w ciagu roku.

 ${\bf W}$ dalszym ciagu zakładamy że czestotliwość kapitalizacji wynosi m. Wobec tego każdy rok jest podzielony na mrównych podokresów kapitalizacji.

```
\begin{split} m &= 1 - \text{kapitalizacja roczna} \\ m &= 2 - \text{kapitalizacja półroczna} \\ m &= 4 - \text{kapitalizacja kwartalna} \\ m &= 12 - \text{kapitalizacja miesieczna} \\ m &= 360 - \text{kapitalizacja dobowa} \text{(dzienna)} \end{split}
```

Jeżeli r_{okr} jest stopa podokresowa, to zgodnie z zasada oprocentowania prostego odsetki od kapitału W po upływie k podokresów wyznacza sie ze wzoru

$$I_k = Wkr_{okr} (7)$$

Natomast końcowa wartość kapitału W po upływie k:

$$W_k = W(1 + kr_{okr}) \tag{8}$$

Załóżmy że r_1 i r_2 sa podokresowymi stopami procentowymi, zaś m_1 i m_2 sa odpowiadajacymi im czestotliwościami kapitalizacji. Stopy r_1 i r_2 nazywamy równoważnymi w czasie n, jeżeli przy każdej z nich odsetki od ustalonego kapitału po czasie n sa równe.

Korzystajać z (7) mamy:

$$m_1 * r_1 = m_2 * r_2 \tag{9}$$

Z (9) stopy pod okresowe sa wtedy i tylko wtedy ich stosunek jest równy stosunkowi długości odpowiadajacych im po okresów. Takie stopy pod okresowe nazywaja sie **proporcjonalnymi**.

2.3 Przykład 3

Kwartalna stopa oprocentowania prostego wynosi 6

2.3.1 a) roczna

6*4 = 24%

2.3.2 b) miesieczna

6/3 = 2%

2.3.3 c) tygodniowa

6/12 = 0,5%

3 Kapitalizacja złożona

W przypadku kapitalizacji złożonej odsetki oblicza sie za każdy okres równy okresowi kapitalizacji i kapitalizuje sie je na koniec tego okresu. Załóżmy, że kwota W została ulokowana na rachunku z roczna stopa procentowa równa r. W przypadku kapitalizacji złożonej dochód przynosi poczatkowy kapitał wraz z odsetkami uzyskanymi na koniec poprzedniego okresu kapitalizacji. Przez I_n oznaczmy odsetki należne po czasie n, zaś przez W_n oznaczmy wartość kapitału po n latach. Wtedy:

$$W_1 = w(1+r)$$

$$W_n = W(1+r)^n \tag{10}$$

Liczba $(1+r)^n$ nazywa sie **czynnikiem wartości przyszłej** w kapitalizacji złożonej.

Odsetki po okresie n lat wynosza:

$$I_n = W((1+r)^n - 1) (11)$$

3.1 Przykład 4

Przy założeniu kapitalizacji złożonej i rocznej stopie procentowej r=5%, wyznaczymy wartość kapitału 40 000 PLN i odsetki po upływie 4 lat.

$$W_n = 40000(1+0,05)^4 = 48620PLN$$

$$I_n = 48620 - 40000 - 8620PLN$$

$$I_n = 40000((1+0,05)^4 - 1) = 8620PLN$$

Podobnie jak w przypadku kapitalizacji prostej w kapitalizacji złożonej, możemy dopuścić zmienne stopy procentowe w kolejnych latach trwania inwestycji. Przyjmijmy, że w kolejnych latach stopy procentowe sa równe $r_1, r_2, ..., 4_n$ gdzie n jest licza lat trwania inwestycji. Wtedy wartość poczatkowego kapitału W po pierwszym roku wyniesie. $W_1 = W(1+r_1)$, po drugim $W_2 = W(1+r_1)(1+r_2)$

Wartość kapitału po n latach:

$$W_n = W\Pi_{i=1}^n (1 + r_i) \tag{12}$$

$$I_n = W(\prod_{i=1}^n (1+r_i) - 1) \tag{13}$$

Przecietna roczna stopa oprocentowania w przypadku kapitalizacji złożonej:

$$r = (\prod_{i=1}^{n} (1+r_1)^{\frac{1}{n}} - 1 \tag{14}$$

3.2 Przykład 5

Kapitał 20 000 PLN został ulokowany na okres 5 lat. Przy założeniu kapitalizacji złożonej i rocznej stopie procentowej równej w kolejnych latach, 5%, 6%, 5%, 4%, 7%, wyznaczymy wartości kapitału na koniec kolejnych lat oraz przecietna roczna stope oprocentowania tego kapitału w czasie 5 lat.

$$W_1 = 21000PLN$$

$$W_5 = 20000(1+0.05)(1+0.06)(1+0.05)(1+0.04)(1+0.07) = 26009.47PLN$$

$$r = ((1+0.05)(1+0.06)(1+0.05)(1+0.04)(1+0.07))^{\frac{1}{5}} - 1 = 5.40\%$$

Niech r_{okr} bedzie stopa pod okresowa. Przy założeniu kapitalizacji złożonej, przyszła wartość kwoty W po l latach i n spośród m pod okresów l+1 roku, gdzie $0 \le n < m$ wynosi:

$$W_{(l,n)}^{(m)} = W(1 + r_{okr})^{l*m+n}$$
(15)

3.3 Przykład 6

Zakładajac kapitalizacje a) półroczna, b) kwartalna c) miesieczna i przyjmujac stope pod okresowa $r_{okr}=2\%$ wyznaczyć przyszła wartość kapitalu 20 000 PLN po 2 latach i 6 miesiacach.

3.3.1 a)

$$W_{(2,1)}^{(2)} = W(1+0,02)^{2*2+1} = 22081,62PLN$$

3.3.2 b)

$$W_{(2,2)}^{(4)} = W(1+0,02)^{10} = 24379,89PLN$$

3.3.3 c)

$$W_{(2,6)}^{(12)} = W(1+0,02)^{30} = 36227,23PLN$$

Roczna stopa procentowa r proporcjonalna do danej stopy pod okresowej r_{okr} nazywa sie **stopa nominalna**. (wyliczyć rocza stope, np. jak miesieczna jest 1% to roczna jest 12% itp.)

$$W_{(l,n)}^{(m)} = W(1 + \frac{r}{m})^{l*m+n} \tag{16}$$

Przyjmujac n = 0 wtedy:

$$W_l^{(m)} = W(1 + \frac{r}{m})^{l*m} \tag{17}$$

Liczbe:

$$R_m = \left(1 + \frac{r}{m}\right)^m \tag{18}$$

Nazywa sie rocznym czynnikiem oprocentowania.

3.4 Przykład 7

Kapitał w wysokości 40 000 PN został ulokowany na rachunku z nominalna stopa procentowa równa 12%. Zakładajac kapitalizacje, roczna, półroczna, kwartalna, miesieczna oraz dzienna, wyznaczyć przyszła wartość kapitalu po 4 latach.

Ze wzory (17)

W(1)4 = 62940,77PLN

W(2)4 = 63753.92PLN

W(4)4 = 64188.26PLN

W(12)4 = 64489.04PLN

W(360)4 = 64606.80PLN

3.5 Przykład 8

Wyznaczymy wartość kapitału 40 000 PLN po 5 ltach i 9 miesiacach przy założeniu że roczna stopa procentowa wynosi 6%, a kapitalizacji odsetek jest a) kwartalna, b) miesieczna.

Korzystajac(16)

$$W^4_{(5,3)} =$$

3.5.2 b)

$$W_{(5,9)}^{12} =$$

3.6 Przykład 9

Przy założeniu miesiecznej kapitalizacji odsetek i rocznych stopach procentowych równych 6% w pierwszym i drugim roku. 9% w trzecim i 12% w czwartym roku wyznaczyć wartość kapitału 100~000 PLN po a)3 latach i 7 miesiacach b) 4 latach.

X = kapitał po 3latach i 7 m

Y = po 4 latach

Wzór (16)

$$X = 100000 * (1 + \frac{0.06}{12})^2 4 * (1 + \frac{0.09}{12})^1 2 * (1 + \frac{0.12}{12}/12)^7 = 132183PLN$$

$$Y = 100000 * (1 + \frac{0.06}{12})^2 4 * (1 + \frac{0.09}{12})^1 2 * (1 + \frac{0.12}{12}/12)^1 2 = 138925,70PLN$$

3.7 Przykład 10

Przy miesiecznej kapitalizacji odsetek i nominalnej stopie procentowej równej 3% po 1 roku i 7 miesiacach uzyskano z lokaty 100 PLN odsetek. Jaka była kwota lokaty?

Odsetki uzyskane z inwestycji stanowia różnice miedzy wartościa kapitału po 1r i 7m a jego wartościa poczatkowa. W=?

$$W_{(1.7)}^{12} - W = 100 \Rightarrow W = 2058, 29PLN$$

4 Równoważność stóp pod okresowych przy kapitalizacji złożonej

Załóżmy że r_1 i r_2 sa pod okresowymi stopami procentowymi, zaś m_1 i m_2 sa odpowiadającymi im czestotliwościami kapitalizacji. Stopy r_1 i r_2 nazywamy równoważnymi w czasie l lat, gdzie $l \in N$, jeżeli przy każdej z nich odsetki od ustalonego kapitału po l latach sa równe.

Zauważmy, że równość odsetek po l latach oznacza równość wartości kapitału po tym czasie. Zatem, uwzgledniajac wzór (15) otrzymujemy, że podokresowe stopy proentowe r_1 i r_2 sa równoważne w czaei l lat, wtedy i tylko wtedy, gdy:

$$(l+r_1)^{m_1} = (1+r_2)^{m_2} (19)$$

Korzystajac ze wzory (17) warunek (19) można przedstawić w nastepujacej równoważnej postaci:

$$(1 + \frac{r_1}{m_1})^{m_1} = (1 + \frac{r_2}{m_2})^{m_2} \tag{20}$$

gdzie r_1 i r_2 sa nominanymi stopami procentowymi, odpowiednio r_1 i r_2 .

4.1 Przykład 11

Wyznaczymy miesieczna stope procentowa równoważna kwartalnej stopie procentowej $r_{okr}^{(1)}=4\%$.

Ponieważ $r_1 = \%, m_1 = 4im_2 = 12$ na podstawie (1) mamy:

$$(1+0,04)^4 = (1+r_2)^{12}$$
.

Stad
$$r_2 = (1+0,04)^{\frac{4}{12}} - 1 = 1,3159\%$$

4.2 Przykład 12

Wyznaczymy nominalna stope peocentowa, która przy kapitalizacji kwarta; nej jest równoważna nomnalnej stope
i $r_1 = 5\%$ przy kapitalizacji półrocznej.

Korzystajac ze wzoru (20) z $r_1 = 5\%, m_1 = 2im_2 = 4$ dostajemy:

$$(1 + \frac{0.05}{2})^2 = (1 + \frac{r_2}{4})^4$$
.

Wobec tego

 $r_2 = 4,9691\%.$

5 Efektywna stopa procentowa

Efektywna stopa procentowa nazywa sie roczna stope procentowa równoważna danej podokresowej stopie procentowej. Wobec tego, jeśli r_{okr} jest podokresowa stopa procentowa, zaś m jest czestotliwościa kapitalizacji, to korzystajac z (19) mamy:

$$r_{ef}^{(m)} = (1 + r_{okr})^m - 1 (21)$$

Z kolei na podstawie (2), efektywna stope procentowa odpowiadajaca nominalnej stopie procentowej r przy m-krotnej kapitalizacji w ciagu roku, wyznacza sie z równania:

$$r_{ef}^{(m)} = (1 + \frac{r}{m})^m - 1 \tag{22}$$

Efektywna stopa procentowa pozwala na zmiane okresu stopy procentowej bez zmiany eektywności kapitalizacji.

5.1 Przykład 13

Wyznacyzmy efektywna stope procentowa odpowiadajaca nominalnej stopie procentowej równiej 6% przy kapitalizacji: półrocznej, kwartalnej, miesiecznej, dziennej.

Korzystajac ze wzoru (22), otrzymujemy

$$\begin{split} r_{ef}^{(m)} &= (1 + \frac{0.06}{2})^2 - 1 = (1,03)^2 - 1 = 6,09\% \\ r_{ef}^{(m)} &= (1 + \frac{0.06}{4})^4 - 1 = (1,015)^4 - 1 = 6,14\% \\ r_{ef}^{(m)} &= (1 + \frac{0.06}{12})^1 2 - 1 = (1,005)^1 2 - 1 = 6,17\% \\ r_{ef}^{(m)} &= (1 + \frac{0.06}{360})^3 60 - 1 = (1,00016)^3 60 - 1 = 6,18\% \end{split}$$

Do wyznaczania efektywnej stopy procentowej stopy procentowej można zastosować formułe **EFEKTYWNA** wbudowana w pakiecie MS Excel. Jej argumentami sa stopa nominalna i liczba okresów.

5.1.1 Przykład 13 a)

EFEKTYWNA(6%, 2) = 6.0900%

5.2 Przykład 14

Wyznaczymy nominalna stope procentowa, której przy: a) kwartalnej, b) miesiecznej kapitalizacji odsetek odpowiada efektywna stopa procentowa równa 5%.

Wyznaczajac r ze wzoru (22), dostajemy:

$$r = m(\sqrt{1 + r_{ef}^{(m)}} - 1)$$

5.2.1 a)

r = 4,9089%

5.2.2 b)

r = 4,8889%

Do wyznaczania nominalnej stopy procentowej można zastosować fomułe **NOMINALNA** z Excela. Jej argumentami sa stopa efektywna i liczba okresów.

6 Kapitalizacja ciagła

Jeżeli przy m-krotnej kapitalizacji w ciagu roku powieksza sie liczba okresów, to w granicy przy $m\to\infty$ mamy do czynienia z ciagla kapitalizacja odsetek. W takim przypadku na podstawie wzoru (17) wartość kapitału W po l latach można wyznaczyć w nastepujacy sposób.

$$W_l^{(\infty)} = We^{l*r} \tag{23}$$

Można pokazać, że wzór (23) jesy prawdiwy dla l>0

6.1 Przykład 15

Przy założeniu ciagłej kapitalizacji odsetek i rocznej stopie procentowej r=5% wyznaczymy wartość kwoty 10 000 PLN po: a) 8 latach, b) 4 latach i 7 miesiacach.

6.1.1 a)

ze wzoru (23), W=10000, l=8, r=5%

$$W = 10000 * e^{8*0.05} = 10000 * e^{0.04} = 14918.25$$

6.1.2 b)

ze wzoru (23), $W=10000, l=4\frac{7}{12}, r=5\%$

$$W = 10000 * e^{4\frac{7}{12}*0.05} = 10000 * e^{0.2292} = 12575.94$$

7 Nateżenie procentowe

W przypadku ciagłej kapitalizacji odsetek efektywna stope procentowa wyznacza sie z równania:

$$l + r_{ef} = e^r (24)$$

gdzie r jest stopa nominalna. Zatem:

$$r_{ef} = e^r - 1 \tag{25}$$

Jeżeli natomiast dana jest efektywna stopa procentowa r_{ef} to z (24) otrzymujemy stope nominalna:

$$r = ln(1 + r_{ef}) \tag{26}$$

Nazywa sie nateżeniem oprocentowania zwiazanym z efektywna stopa procentowa $\boldsymbol{r}_{ef}.$

7.1 Przykład 16

Wyznaczymy nateżenie oprocentowania zwiazane z efektywna stopa procentowa równa 6%.

Stosujac (26):

$$r = ln(1+0,06) = Ln(1,06) = 5,83\%$$

8 Dyskonto proste i składane

Teraz zajmiemy sie zagadnieniem ustalania poczatkowej wartości kapitału na podstawie jego wartości na końcu pewnego okresu. Proces ten nazywa sie dyskontowaniem.

Dyskonto proste, które jest bezpośrednio zwiazane z prosta kapitalizacja oesetek. W przypadku kapitalizacji prostej na podstawie (2), wartość kapitału poczatkowego W po n latach.

W przypadku dyskonta prostego, obecna wartość kapitału W, która mamy otrzymać (badź zaplacić) za n lat wyznacz sie na podstawie równości:

$$PV(W) = \frac{W}{1 + nr} \tag{27}$$

Dyskontem nazywa sie różnice miedzy wartościa kapitału na koncu pewnego ustalonego okresu, a jego wartościa na poczatku tego okresu. Oznaczajać dyskonta przed D i uwzledniajac (27) otrzymujemy:

$$D = \frac{nrW}{1+nr} \tag{28}$$

8.1 Przykład 17

Zakładajac dyskonto proste i przyjmujac stope procentowa r=4% wyznaczyć wartość oraz dyskonto kwoty 50 000 PLN która mamy otrzymać za 8 lat.

Korzystajac z (27, 28)
$$W = 50000, r = 0, 04, n = 8$$

$$PV = \frac{50000}{1 + 8 \cdot 0.04} = 37878, 79$$

$$D = 50000 - 37878, 79 = 12121, 21$$

W przypadku **dyskonta składanego**, przy rocznej kapitalizacji odsetek wartość kapitału poczatkowego W po n latach, wyznaczona na podstawie wzoru (10).

Zatem obena wartość kapitału W która mamy otrzymać (badź zapłacic) za n lat wwyznacza sie z równości:

$$PV(W) = \frac{W}{(1+r)^n} \tag{29}$$

Wielkość $\frac{1}{(1+r)}$ nazywa sie rocznym czynnikiem dyskontujacym. Dyskonto wyraża sie w tym przypadku wzorem:

$$PD = W(1 - \frac{1}{(1+r)^n}) \tag{30}$$

8.2 Przykład 18

Zakładajac dyskonto składane i przyjmujac stope procentowa r=4% wyznaczyć wartość oraz dyskonto kwoty 50 000 PLN która mamy otrzymać za 8 lat.

Korzystajac z (29, 30)
$$W=50000, r=0, 04, n=8$$

$$PV = \frac{50000}{(1+0.04)^8} = 36534, 51$$

$$D = 50000 - 36534, 51 = 13465, 49$$