TRIGONOMETRY

Electronic

TRIGONOMETRY

TANGENT IDENTITIES

$\tan \theta =$	$\sin\theta$	
tan 0 =	cosθ	
cot θ =	$\cos \theta$	
coto =	$\sin \theta$	

RECIPROCAL IDENTITIES

DOUBLE ANGLE IDENTITIES

 $\sin(2\theta) = 2\sin\theta\cos\theta$

$$\csc \theta = \frac{1}{\sin \theta}$$

$$\sec \theta = \frac{1}{\cos \theta}$$

$$\cot \theta = \frac{1}{\tan \theta}$$

PYTHAGOREAN IDENTITIES

$$\sin^2 \theta + \cos^2 \theta = 1$$
$$\tan^2 \theta + 1 = \sec^2 \theta$$
$$\cot^2 \theta + 1 = \csc^2 \theta$$

PERIODIC IDENTITIES

$$\sin(\theta + 2\pi n) = \sin \theta$$

 $\cos(\theta + 2\pi n) = \cos \theta$
 $\tan(\theta + \pi n) = \tan \theta$
 $\csc(\theta + 2\pi n) = \csc \theta$

 $sec(\theta + 2\pi n) = sec \theta$

 $\cot(\theta + \pi n) = \cot \theta$

EVEN/ODD IDENTITIES

$$\sin(-\theta) = -\sin \theta$$

$$\cos(-\theta) = \cos \theta$$

$$\tan(-\theta) = -\tan \theta$$

$$\csc(-\theta) = -\csc \theta$$

 $sec(-\theta) = sec \theta$

 $\cot(-\theta) = -\cot\theta$

$$\cos(2\theta) = \cos^2\theta - \sin^2\theta$$

$$= 2\cos^{2}\theta - 1$$

$$= 1 - 2\sin^{2}\theta$$

$$\tan(2\theta) = \frac{2\tan\theta}{1 - \tan^{2}\theta}$$

HALF ANGLE IDENTITIES

$$\sin\left(\frac{\theta}{2}\right) = \pm \sqrt{\frac{1 - \cos\theta}{2}}$$

$$\cos\left(\frac{\theta}{2}\right) = \pm \sqrt{\frac{1 + \cos\theta}{2}}$$

$$\tan\left(\frac{\theta}{2}\right) = \pm \sqrt{\frac{1 - \cos\theta}{1 + \cos\theta}}$$

LAW OF COSINES

$$a^{2} = b^{2} + c^{2} - 2bc \cos \alpha$$

$$b^{2} = a^{2} + c^{2} - 2ac \cos \beta$$

$$c^{2} = a^{2} + b^{2} - 2ab \cos \gamma$$

PRODUCT TO SUM IDENTITIES

$$\sin \alpha \sin \beta = \frac{1}{2} [\cos(\alpha - \beta) - \cos(\alpha + \beta)]$$

$$\cos \alpha \cos \beta = \frac{1}{2} [\cos(\alpha - \beta) + \cos(\alpha + \beta)]$$

$$\sin \alpha \cos \beta = \frac{1}{2} [\sin(\alpha + \beta) + \sin(\alpha - \beta)]$$

$$\cos \alpha \sin \beta = \frac{1}{2} [\sin(\alpha + \beta) - \sin(\alpha - \beta)]$$

SUM TO PRODUCT IDENTITIES

$$\sin \alpha + \sin \beta = 2 \sin \left(\frac{\alpha + \beta}{2}\right) \cos \left(\frac{\alpha - \beta}{2}\right)$$

$$\sin \alpha - \sin \beta = 2 \cos \left(\frac{\alpha + \beta}{2}\right) \sin \left(\frac{\alpha - \beta}{2}\right)$$

$$\cos \alpha + \cos \beta = 2 \cos \left(\frac{\alpha + \beta}{2}\right) \cos \left(\frac{\alpha - \beta}{2}\right)$$

$$\cos \alpha - \cos \beta = -2 \sin \left(\frac{\alpha + \beta}{2}\right) \sin \left(\frac{\alpha - \beta}{2}\right)$$

LAW OF SINES

$$\frac{\sin \alpha}{a} = \frac{\sin \beta}{b} = \frac{\sin \gamma}{c}$$

LAW OF TANGENTS

$$\frac{a-b}{a+b} = \frac{\tan\left[\frac{1}{2}(\alpha-\beta)\right]}{\tan\left[\frac{1}{2}(\alpha+\beta)\right]}$$

$$\frac{b-c}{b+c} = \frac{\tan\left[\frac{1}{2}(\beta-\gamma)\right]}{\tan\left[\frac{1}{2}(\beta+\gamma)\right]}$$

$$\frac{a-c}{a+c} = \frac{\tan\left[\frac{1}{2}(\alpha-\gamma)\right]}{\tan\left[\frac{1}{2}(\alpha+\gamma)\right]}$$

SUM/DIFFERENCES IDENTITIES

$$\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$$
$$\cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta$$
$$\tan(\alpha \pm \beta) = \frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \tan \beta}$$

MOLLWEIDE'S FORMULA

$$\frac{a+b}{c} = \frac{\cos\left[\frac{1}{2}(\alpha - \beta)\right]}{\sin\left(\frac{1}{2}\gamma\right)}$$

COFUNCTION IDENTITIES

$$\sin\left(\frac{\pi}{2} - \theta\right) = \cos\theta$$

$$\csc\left(\frac{\pi}{2} - \theta\right) = \sec\theta$$

$$\tan\left(\frac{\pi}{2} - \theta\right) = \cot\theta$$

$$\cos\left(\frac{\pi}{2} - \theta\right) = \sin\theta$$

$$\sec\left(\frac{\pi}{2} - \theta\right) = \csc\theta$$

$$\cot\left(\frac{\pi}{2} - \theta\right) = \tan\theta$$

ElectronicProducts.com

No-nonsense tools for the busy EE

Basic Derivatives Rules

Constant Rule:
$$\frac{d}{dx}(c) = 0$$

Constant Multiple Rule:
$$\frac{d}{dx}[cf(x)] = cf'(x)$$

Power Rule:
$$\frac{d}{dx}(x^n) = nx^{n-1}$$

Sum Rule:
$$\frac{d}{dx}[f(x)+g(x)] = f'(x)+g'(x)$$

Difference Rule:
$$\frac{d}{dx}[f(x) - g(x)] = f'(x) - g'(x)$$

Product Rule:
$$\frac{d}{dx}[f(x)g(x)] = f(x)g'(x) + g(x)f'(x)$$

Quotient Rule:
$$\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] = \frac{g(x) f'(x) - f(x) g'(x)}{\left[g(x) \right]^2}$$

Chain Rule:
$$\frac{d}{dx} f(g(x)) = f'(g(x))g'(x)$$

Differentiation Formulas:

Integration Formulas:

1.
$$\frac{d}{dx}(x) = 1$$

$$2. \frac{d}{dx}(ax) = a$$

$$3. \frac{d}{dx}(x^n) = nx^{n-1}$$

$$4. \frac{d}{dx}(\cos x) = -\sin x$$

5.
$$\frac{d}{dx}(\sin x) = \cos x$$

$$6. \frac{d}{dx}(\tan x) = \sec^2 x$$

$$7. \frac{d}{dx}(\cot x) = -\csc^2 x$$

8.
$$\frac{d}{dx}(\sec x) = \sec x \tan x$$

9.
$$\frac{d}{dx}(\csc x) = -\csc x(\cot x)$$

$$10. \frac{d}{dx}(\ln x) = \frac{1}{x}$$

$$11. \frac{d}{dx}(e^x) = e^x$$

$$12. \frac{d}{dx}(a^x) = (\ln a)a^x$$

13.
$$\frac{d}{dx}(\sin^{-1} x) = \frac{1}{\sqrt{1 - x^2}}$$

14. $\frac{d}{dx}(\tan^{-1} x) = \frac{1}{1 + x^2}$

14.
$$\frac{d}{dx}(\tan^{-1}x) = \frac{1}{1+x^2}$$

15.
$$\frac{d}{dx}(\sec^{-1}x) = \frac{1}{|x|\sqrt{x^2-1}}$$

$$1. \int 1 dx = x + C$$

$$2. \int a \, dx = ax + C$$

3.
$$\int x^n dx = \frac{x^{n+1}}{n+1} + C, \ n \neq -1$$

$$4. \int \sin x \, dx = -\cos x + C$$

$$5. \int \cos x \, dx = \sin x + C$$

$$6. \int \sec^2 x \, dx = \tan x + C$$

$$7. \frac{d}{dx}(\cot x) = -\csc^2 x \qquad \qquad 7. \int \csc^2 x \, dx = -\cot x + C$$

8.
$$\frac{d}{dx}(\sec x) = \sec x \tan x$$
 8. $\int \sec x(\tan x) dx = \sec x + C$

$$9. \int \csc x(\cot x) \, dx = -\csc x + C$$

10.
$$\int \frac{1}{x} dx = \ln|x| + C$$

$$11. \int e^x dx = e^x + C$$

12.
$$\int a^{x} dx = \frac{a^{x}}{\ln a} + C \ a > 0, \ a \neq 1$$

13.
$$\int \frac{1}{\sqrt{1-x^2}} dx = \sin^{-1} x + C$$

14.
$$\int \frac{1}{1+x^2} dx = \tan^{-1} x + C$$

15.
$$\frac{d}{dx}(\sec^{-1}x) = \frac{1}{|x|\sqrt{x^2 - 1}}$$
 15. $\int \frac{1}{|x|\sqrt{x^2 - 1}} dx = \sec^{-1}x + C$

Table of Laplace Transforms						
	$f(t) = \mathcal{L}^{-1}\{F(s)\}$	$F(s) = \mathcal{L}\{f(t)\}$		$f(t) = \mathfrak{L}^{-1}\{F(s)\}$	$F(s) = \mathcal{L}\{f(t)\}$	
1.	1	$\frac{1}{s}$	2.	\mathbf{e}^{at}	$\frac{1}{s-a}$	
3.	t^n , $n = 1, 2, 3,$	$\frac{n!}{s^{n+1}}$	4.	t^p , $p > -1$	$\frac{\Gamma(p+1)}{s^{p+1}}$	
5.	\sqrt{t}	$\frac{\sqrt{\pi}}{2s^{\frac{3}{2}}}$	6.	$t^{n-\frac{1}{2}}, n = 1, 2, 3, \dots$	$\frac{1 \cdot 3 \cdot 5 \cdots (2n-1)\sqrt{\pi}}{2^n s^{n+\frac{1}{2}}}$	
7.	$\sin{(at)}$	$\frac{a}{s^2 + a^2}$	8.	$\cos(at)$	$\frac{s}{s^2+a^2}$	
9.	$t\sin(at)$	$\frac{2as}{\left(s^2+a^2\right)^2}$	10.	$t\cos(at)$	$\frac{s^2 - a^2}{\left(s^2 + a^2\right)^2}$	
11.	$\sin(at) - at\cos(at)$	$\frac{2a^3}{\left(s^2+a^2\right)^2}$	12.	$\sin(at) + at\cos(at)$	$\frac{2as^2}{\left(s^2+a^2\right)^2}$	
13.	$\cos(at) - at\sin(at)$	$\frac{s(s^2-a^2)}{(s^2+a^2)^2}$	14.	$\cos(at) + at\sin(at)$	$\frac{s(s^2+3a^2)}{\left(s^2+a^2\right)^2}$	
15.	$\sin(at+b)$	$\frac{s\sin(b) + a\cos(b)}{s^2 + a^2}$	16.	$\cos(at+b)$	$\frac{s\cos(b)-a\sin(b)}{s^2+a^2}$	
17.	$\sinh\left(at ight)$	$\frac{a}{s^2-a^2}$	18.	$\cosh\left(at ight)$	$\frac{s}{s^2-a^2}$	
19.	$\mathbf{e}^{a}\sin\left(bt\right)$	$\frac{b}{\left(s-a\right)^2+b^2}$	20.	$\mathbf{e}^{at}\cos\big(bt\big)$	$\frac{s-a}{\left(s-a\right)^2+b^2}$	
21.	$e^{at}\sinh\left(bt\right)$	$\frac{b}{\left(s-a\right)^2-b^2}$	22.	$\mathbf{e}^{at}\cosh\left(bt ight)$	$\frac{s-a}{\left(s-a\right)^2-b^2}$	
23.	$t^n e^{at}$, $n = 1, 2, 3,$	$\frac{n!}{(s-a)^{n+1}}$	24.	f(ct)	$\frac{1}{c}F\left(\frac{s}{c}\right)$	
25.	$u_{c}(t) = u(t-c)$	e ^{-ez}	26.	$\delta(t-c)$	e^{-cz}	
27.	$\frac{\text{Heaviside Function}}{u_c(t) f(t-c)}$	$e^{-cz}F(s)$	28.	$\frac{\text{Dirac Delta Function}}{u_c(t)g(t)}$	$e^{-ct}\mathfrak{L}\{g(t+c)\}$	
29.	$\mathbf{e}^{ct}f(t)$	F(s-c)		$t^n f(t), n = 1, 2, 3,$	$(-1)^n F^{(n)}(s)$	
	$\frac{1}{t}f(t)$	$\int_{z}^{\infty} F(u) du$		$\int_0^t f(v) dv$	$\frac{F(s)}{s}$	
33.	$\int_{0}^{t} f(t-\tau) g(\tau) d\tau$	F(s)G(s)	34.	$f\left(t\!+\!T\right)\!=\!f\left(t\right)$	$\frac{\int_{0}^{T} \mathbf{e}^{-st} f(t) dt}{1 - \mathbf{e}^{-sT}}$	
35.	f'(t)	sF(s)-f(0)	36.	f''(t)	$s^2F(s)-sf(0)-f'(0)$	
37.	$f^{(n)}\left(t ight)$	$s^{n}F\left(s\right) -s$	n-1 f ($0) - s^{n-2} f'(0) \cdots - s f^{(n-2)}$	$(0) - f^{(n-1)}(0)$	

May 25, 2018

Separable First Order Differential Equations

General form:
$$\frac{dy}{dx} = f(x, y)$$

Standard form:
$$\frac{dy}{dx} = g(x)h(y)$$

• Reduction to separable form $\frac{dy}{dx} = f\left(\frac{y}{x}\right)$

$$u = \frac{y}{x}$$
 => $y = ux$ => $y' = xu' + u$

Exact equation

Standard form: M(x,y)dx + N(x,y)dy = 0

Non-exact equation (use integrating factor)

$$\mu(x) = e^{\int (dM/dy - dN/dx) / N dx}$$

$$\mu(y) = e^{\int (dN/dx - dM/dy) / M dy}$$

- Linear first rrder ordinary differential equations
 - Standard form: y' + P(x)y = Q(x)

$$= \mu(x) = e^{\int p(x) dx}$$

Fourier series

$$\begin{cases} a_0 &= \frac{1}{2\pi} \int_{-\pi}^{\pi} F_n(x) dx, \\ \\ a_k &= \frac{1}{\pi} \int_{-\pi}^{\pi} F_n(x) \cos(kx) dx, \quad 1 \le k \le n \end{cases}$$

$$b_k &= \frac{1}{\pi} \int_{-\pi}^{\pi} F_n(x) \sin(kx) dx, \quad 1 \le k \le n.$$

