

Predicción de Aprobación de Préstamos

FINAL Análisis Predictivo

Nicolás Peric

Caso de Negocio - Bancos

Objetivo: Identificar quienes o no puedan acceder a un préstamo conlleva muchos recursos, un modelo predictivo con el fin de predecir si un cliente puede o no acceder puede reducir costos asociados al riesgo de otorgar préstamos. Se busca **reducir** riesgos, manteniendo **altas** las tasas de aprobación.

DATASET

https://www.kaggle.com/competitions/playground-series-s4e10/overvie w

Test: 39098 → Validación

- id
- person_age
- person income
- person_home_ownership
- person_emp_length
- loan_intent
- loan_grade
- loan_amount
- loan_int_rate
- loan_percent_income
- cb_person_default_on_file
- cb_person_cred_hist_length
- loan_status \rightarrow Target

Métrica de Evaluación:

$$ext{F1 Score} = 2 imes rac{ ext{Precision} imes ext{Recall}}{ ext{Precision} + ext{Recall}}$$

Weighted F1 Score =
$$\sum_{i=1}^{N} w_i \times \text{F1 Score}_i$$

Validación del rendimiento del modelo con Kaggle (AUC).

EDA

Boxplot of person_income

Boxplot of person_emp_length

0

120

Boxplot of person_age

0

120

EDA

Features

Se crearon nuevas columnas con el fin de mejorar el rendimiento de los modelos:

```
income_loan_ratio = person_income/loan_amnt
```

age_category = categorizar las edades en grupos: young adult, adult, senior. (19-30, 30-55, 55+)

emp_length_group = categorizar en grupos el employment length.

age_income_ratio = person_age/person_income

emp_age_ratio = person_emp_length/person_age

age_loan_ratio = person_age/loan_amnt

Se utilizaron pipelines y ColumnTransformer para transformar las variables numéricas y categóricas utilizando StandardScaler() y OneHotEncoder().

Modelos

Modelo	Accuracy	Precision	Recall	F1-Score	AUC	K. Private	K. Public
Logistic Regression Base	0.91269	0.90601	0.9127	0.9059	0.9019	0.89888	0.89943
Logistic Regression SMOTE	0.8442	0.8968	0.8442	0.8603	0.9048	0.90073	0.90133
Random Forest	0.9500	0.9494	0.9500	0.9469	0.9359	0.93124	0.93821
LightGBM	0.9532	0.9519	0.9532	0.9511	0.9588	0.95757	0.95757
KNN	0.9301	0.9265	0.9301	0.9256	0.8902	0.88237	0.88486
XGBoost	0.9527	0.9515	0.9527	0.9506	0.9557	0.95394	0.95603

^{*}Las métricas se midieron con weighted average.

En todos los modelos, se usa validación cruzada estratificada (5 folds), se definieron una distribución de hiperparámetros y RandomizedSearchCV para encontrar la mejor combinación usando el AUC como métrica. Se entrena el modelo final con los mejores hiperparámetros.

0.95757

0.95757

LightGBM con hiperparámetros:

- Learning Rate: 0.023

- max_depth: 10

- n_estimators: 365

Modelo Final

Conclusión

- LightGBM y XGBoost fueron los mejores modelos, siendo el primero el mejor de los dos.
- Además, LightGBM entrena a una velocidad mayor, ayudando al caso de negocio.
- **Recomendación:** Medir con AUC la capacidad del modelo de separar las clases y F1 Score el rendimiento del modelo ya que queremos asegurar un equilibrio entre riesgo y oportunidades.

Posibles Mejoras

- Enriquecimiento de la base, recopilar más variables.
- Probar KNN con Smote.
- Probar múltiples modelos a la vez con CV en lugar de probar uno por uno.
- Probar otras métricas de interpretabilidad como valores SHAP.

Muchas gracias!

Link al repositorio:

<u> https://github.com/Pericsen/loan-approval-prediction</u>

