Cours par Exercices: Limites et Continuité Niveau BAC Scientifique

Boris Kossi Koudaya

June 2025

Introduction

Ce cours présente les concepts fondamentaux de **limites** et de **continuité** à travers 25 exercices corrigés et classés par difficulté. Chaque correction intègre des rappels de cours pour consolider les connaissances. Les exercices couvrent l'intégralité du programme de Terminale Scientifique.

Difficulté	Description
*	Application directe du cours
**	Technique de base
***	Combinaison de techniques
* * **	Problème complexe
****	Exercice type bac

Partie 1 : Limites (Exercices 1 à 12)

1. (\star) Calcul de limite simple

Déterminer $\lim_{x \to +\infty} \frac{3x^2 - 2x + 5}{2x^2 + 4x - 1}$

Correction : Rappel : Pour les fractions rationnelles en ∞ , on factorise par le terme de plus haut degré.

$$\frac{3x^2 - 2x + 5}{2x^2 + 4x - 1} = \frac{x^2(3 - \frac{2}{x} + \frac{5}{x^2})}{x^2(2 + \frac{4}{x} - \frac{1}{x^2})} = \frac{3 - \frac{2}{x} + \frac{5}{x^2}}{2 + \frac{4}{x} - \frac{1}{x^2}}$$
$$\lim_{x \to +\infty} \frac{3 - \frac{2}{x} + \frac{5}{x^2}}{2 + \frac{4}{x} - \frac{1}{x^2}} = \frac{3}{2}$$

2. (**) Forme indéterminée $\infty - \infty$

Calculer $\lim_{x \to +\infty} (\sqrt{x^2 + 3x} - x)$

Correction : Rappel : Pour lever l'indétermination, on multiplie par l'expression conjuguée.

$$\sqrt{x^2 + 3x} - x = \frac{(\sqrt{x^2 + 3x} - x)(\sqrt{x^2 + 3x} + x)}{\sqrt{x^2 + 3x} + x} = \frac{3x}{\sqrt{x^2 + 3x} + x}$$
$$= \frac{3x}{x(\sqrt{1 + \frac{3}{x}} + 1)} = \frac{3}{\sqrt{1 + \frac{3}{x}} + 1} \xrightarrow{x \to +\infty} \frac{3}{1 + 1} = \frac{3}{2}$$

1

3. $(\star \star \star)$ Limite trigonométrique

Déterminer $\lim_{x\to 0} \frac{\tan(2x)}{\sin(5x)}$

Correction: Rappel: On utilise $\lim_{u\to 0} \frac{\sin u}{u} = 1$ et $\tan u = \frac{\sin u}{\cos u}$

$$\frac{\tan(2x)}{\sin(5x)} = \frac{\sin(2x)}{\cos(2x)\sin(5x)} = \frac{\sin(2x)}{2x} \times \frac{5x}{\sin(5x)} \times \frac{2}{5} \times \frac{1}{\cos(2x)}$$
$$\xrightarrow{x \to 0} 1 \times 1 \times \frac{2}{5} \times 1 = \frac{2}{5}$$

4. $(\star \star \star \star)$ Limite exponentielle Calculer $\lim_{x\to 0} \frac{e^{3x}-e^x}{x}$

Correction: Rappel: On reconnaît le taux d'accroissement de la fonction exponentielle.

$$\frac{e^{3x} - e^x}{x} = 3\frac{e^{3x} - 1}{3x} - \frac{e^x - 1}{x} \xrightarrow{x \to 0} 3 \times 1 - 1 = 2$$

5. $(\star \star \star \star \star)$ Problème complet

Soit $f(x) = x^2 \ln(1 + \frac{1}{x})$ pour x > 0.

- (a) Montrer que $\lim_{x\to +\infty} f(x) = 0$
- (b) Déterminer $\lim_{x\to 0^+} f(x)$

Correction: Rappel: On utilise $ln(1+u) \sim u$ quand $u \to 0$ et les croissances comparées.

a) Quand $x \to +\infty$, poser $u = \frac{1}{x} \to 0$:

$$f(x) = \frac{1}{u^2} \ln(1+u) = \frac{\ln(1+u)}{u^2} \sim \frac{u}{u^2} = \frac{1}{u} \to +\infty$$
 (Faux!)

Erreur: $\frac{1}{u^2} \times u = \frac{1}{u} \to +\infty$ mais:

$$f(x) = \frac{\ln(1 + \frac{1}{x})}{\frac{1}{x^2}} = \frac{\ln(1 + \frac{1}{x})}{\frac{1}{x} \cdot \frac{1}{x}} \xrightarrow{x \to +\infty} 0 \times (+\infty) \quad \text{F.I.}$$

Poser $t = \frac{1}{x}$:

$$\lim_{t \to 0^+} \frac{\ln(1+t)}{t^2} = \lim_{t \to 0^+} \frac{\ln(1+t)}{t} \times \frac{1}{t} = 1 \times (+\infty) = +\infty$$

b) Quand $x \to 0^+$:

$$f(x) = x^2 \ln(1 + \frac{1}{x}) \sim x^2 \ln(\frac{1}{x}) = -x^2 \ln x \xrightarrow{x \to 0^+} 0 \quad (\text{car } x^\alpha \ln x \to 0)$$

6. (**) Théorème des gendarmes

Montrer que $\lim_{x\to +\infty} \frac{\sin x}{x} = 0$ en utilisant le théorème des gendarmes.

Correction : Rappel : On encadre $\sin x$ qui est borné : $-1 \le \sin x \le 1$

$$-\frac{1}{x} \leqslant \frac{\sin x}{x} \leqslant \frac{1}{x} \quad \text{pour } x > 0$$

$$\lim_{x \to +\infty} -\frac{1}{x} = 0 \quad \text{et} \quad \lim_{x \to +\infty} \frac{1}{x} = 0$$

2

Par le théorème des gendarmes, $\lim_{x\to +\infty} \frac{\sin x}{x} = 0$.

7. $(\star \star \star)$ Limite avec paramètre

Soit $f(x) = \frac{\sqrt{x-a}}{x-a^2}$ pour $x \ge 0$, $x \ne a^2$. Déterminer $\lim_{x \to a^2} f(x)$ selon les valeurs de a > 0.

Correction: Rappel: On simplifie par la quantité conjuguée.

$$f(x) = \frac{\sqrt{x} - a}{(\sqrt{x})^2 - a^2} = \frac{\sqrt{x} - a}{(\sqrt{x} - a)(\sqrt{x} + a)} = \frac{1}{\sqrt{x} + a} \quad \text{pour } \sqrt{x} \neq a$$

$$\lim_{x \to a^2} f(x) = \frac{1}{a + a} = \frac{1}{2a}$$

8. $(\star \star \star \star)$ Forme 1^{∞}

Calculer $\lim_{x \to +\infty} \left(1 + \frac{2}{x}\right)^{3x}$

Correction: Rappel: On utilise la forme exponentielle: $f^g = e^{g \ln f}$

$$\left(1 + \frac{2}{x}\right)^{3x} = \exp\left[3x\ln\left(1 + \frac{2}{x}\right)\right]$$

$$\lim_{x \to +\infty} 3x\ln\left(1 + \frac{2}{x}\right) = \lim_{t \to 0} 3\frac{\ln(1+2t)}{t} = 3 \times 2 \times \lim_{t \to 0} \frac{\ln(1+2t)}{2t} = 6 \times 1 = 6$$

Donc $\lim_{x \to +\infty} \exp(\cdots) = e^6$

9. (**) Limite à droite et à gauche

Soit $f(x) = \frac{|x-1|}{x^2-1}$. Étudier les limites en x = 1.

Correction : Rappel : La valeur absolue change de définition selon x < 1 ou x > 1.

Pour x > 1 : |x - 1| = x - 1 donc

$$f(x) = \frac{x-1}{(x-1)(x+1)} = \frac{1}{x+1} \xrightarrow{x \to 1^+} \frac{1}{2}$$

Pour x < 1 : |x - 1| = 1 - x donc

$$f(x) = \frac{1-x}{(x-1)(x+1)} = -\frac{1}{x+1} \xrightarrow{x \to 1^-} -\frac{1}{2}$$

Limites différentes à droite et à gauche : pas de limite en 1.

10. $(\star \star \star \star \star)$ Asymptotes Soit $f(x) = \frac{2x^2 - 3x + 1}{x - 1}$.

Déterminer les asymptotes à la courbe de f.

Correction: Rappel: Asymptote verticale en a si $\lim f = \infty$, horizontale si $\lim f = b$, oblique si $\lim [f(x) - (ax + b)] = 0$.

1. Asymptote verticale en x = 1:

$$\lim_{x \to 1} f(x) = \lim_{x \to 1} \frac{(2x - 1)(x - 1)}{x - 1} = \lim_{x \to 1} (2x - 1) = 1 \quad \text{(pas d'AV)}$$

2. En ∞ :

$$f(x) = 2x - 1 + \frac{0}{x - 1} = 2x - 1$$
 après division
$$\lim_{x \to \infty} [f(x) - (2x - 1)] = 0$$

Donc asymptote oblique y = 2x - 1.

11. $(\star \star \star)$ Limite avec racine

Calculer $\lim \frac{\sqrt{x+1}}{x}$

Correction: Rappel: Multiplication par l'expression conjuguée.

$$\frac{\sqrt{x+1}-2}{x-3} \cdot \frac{\sqrt{x+1}+2}{\sqrt{x+1}+2} = \frac{(x+1)-4}{(x-3)(\sqrt{x+1}+2)} = \frac{x-3}{(x-3)(\sqrt{x+1}+2)} = \frac{1}{\sqrt{x+1}+2}$$

$$\xrightarrow{x \to 3} \frac{1}{2+2} = \frac{1}{4}$$

12. $(\star \star \star \star)$ Croissances comparées

Comparer $\lim_{x\to +\infty} \frac{e^x}{x^3}$ et $\lim_{x\to -\infty} x^2 e^x$ Correction: Rappel: e^x l'emporte sur toute puissance de x en $+\infty$, mais $e^x\to 0$ en $-\infty$.

$$\lim_{x\to +\infty}\frac{e^x}{x^3}=+\infty\quad \text{(croissance exponentielle > polynomiale)}$$

$$\lim_{x\to -\infty}x^2e^x=\lim_{x\to +\infty}(-t)^2e^{-t}=\lim_{t\to +\infty}\frac{t^2}{e^t}=0$$

Partie 2 : Continuité (Exercices 13 à 25)

13. (⋆) Continuité en un point

Soit $f(x) = \frac{\sin x}{x}$ si $x \neq 0$ et f(0) = a. Pour quelle valeur de a f est-elle continue en 0?

Correction : Rappel : $\lim_{x\to 0} \frac{\sin x}{x} = 1$ donc a=1 pour continuité.

14. $(\star \star \star)$ Prolongement par continuité

Soit $g(x) = \frac{\sqrt{1+x} - \sqrt{1-x}}{x}$ pour $x \in]-1, 0[\cup]0, 1[...]$

Prolonger g par continuité en 0.

Correction: Rappel: On calcule la limite en 0.

$$g(x) = \frac{(1+x) - (1-x)}{x(\sqrt{1+x} + \sqrt{1-x})} = \frac{2x}{x(\sqrt{1+x} + \sqrt{1-x})} = \frac{2}{\sqrt{1+x} + \sqrt{1-x}}$$
$$\lim_{x \to 0} g(x) = \frac{2}{1+1} = 1$$

Donc on pose q(0) = 1.

15. (***) Théorème des valeurs intermédiaires

Montrer que $x^3 + 3x - 5 = 0$ admet une unique solution dans \mathbb{R} .

Correction: Rappel: On applique le TVI et on montre la stricte monotonie.

Soit $f(x) = x^3 + 3x - 5$.

 $f'(x) = 3x^2 + 3 > 0$ donc f strictement croissante.

$$f(1) = -1 < 0, f(2) = 8 + 6 - 5 = 9 > 0.$$

Donc solution unique dans [1, 2].

16. $(\star \star \star \star \star)$ Bijection réciproque

Soit $h(x) = x + e^x \text{ sur } \mathbb{R}$.

- (a) Montrer que h réalise une bijection de \mathbb{R} sur un intervalle J.
- (b) Justifier que h^{-1} est dérivable et calculer $(h^{-1})'(1)$.

Correction: a) $h'(x) = 1 + e^x > 0$ donc strictement croissante.

 $\lim_{x\to-\infty} h(x) = -\infty$, $\lim_{x\to+\infty} h(x) = +\infty$

Donc bijection $\mathbb{R} \to \mathbb{R}$.

b) h dérivable et $h'(x) \neq 0$ donc h^{-1} dérivable.

Soit $y = 1 = h(x) \Rightarrow x + e^x = 1$.

Solution évidente x = 0 (car $0 + e^0 = 1$).

 $(h^{-1})'(1) = \frac{1}{h'(0)} = \frac{1}{1+1} = \frac{1}{2}$

17. (**) Continuité sur un intervalle

Les fonctions suivantes sont-elles continues sur \mathbb{R} ?

- (a) $f(x) = \frac{x^2 4}{x 2}$
- (b) g(x) = [x] (partie entière)

Correction: a) Non, discontinue en x = 2 (non définie).

- b) Non, discontinue en tout entier relatif.
- 18. $(\star \star \star)$ Composition

Soit $f(x) = \sqrt{x}$, $g(x) = \frac{x-1}{x-2}$.

Étudier la continuité de $g \circ f$ sur $[0, +\infty[$.

Correction: Rappel: La composition est continue si les fonctions sont continues.

f continue sur $[0, +\infty[$, g continue sur $\mathbb{R} \setminus \{2\}$.

$$g \circ f(x) = g(\sqrt{x}) = \frac{\sqrt{x-1}}{\sqrt{x-2}}$$

Définie si $\sqrt{x} \neq 2 \Leftrightarrow x \neq 4$.

Continue sur $[0, 4[\cup]4, +\infty[$, discontinue en x = 4.

19. $(\star \star \star \star)$ TVI avec paramètre

Soit $f(x) = x^3 - 3x + k$.

Montrer que pour tout $k \in \mathbb{R}$, f admet au moins une racine réelle.

Correction: Rappel: On cherche un changement de signe.

 $\lim_{x\to-\infty} f(x) = -\infty$, $\lim_{x\to+\infty} f(x) = +\infty$

f continue sur \mathbb{R} donc d'après TVI, f prend toute valeur réelle.

En particulier 0 est atteint.

20. $(\star \star \star \star \star)$ Problème synthèse

Soit
$$f(x) = \begin{cases} \frac{\sin x}{x} & \text{si } x > 0\\ a & \text{si } x = 0\\ \frac{e^{2x} - 1}{x} & \text{si } x < 0 \end{cases}$$

- (a) Déterminer a pour que f soit continue en 0.
- (b) Étudier la continuité sur \mathbb{R} .

Correction: a) Continuité en 0:

$$\lim_{x\to 0^+} f(x) = \lim_{x\to 0^+} \frac{\sin x}{x} = 1$$

$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} \frac{\sin x}{x} = 1$$
$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} \frac{e^{2x} - 1}{x} = 2$$

Limites différentes : impossible de rendre f continue en 0.

b) Sur \mathbb{R}^* : continue comme quotient de fonctions continues.

En 0: discontinue quel que soit a.

21. (**) Continuité et dérivabilité

La continuité implique-t-elle la dérivabilité? Donner un contre-exemple.

Correction: Rappel: Non, la continuité est nécessaire mais pas suffisante.

Contre-exemple: f(x) = |x| en 0.

Continue en 0 ($\lim = f(0) = 0$) mais non dérivable (pente -1 à gauche, 1 à droite).

22. $(\star \star \star)$ Fonction lipschitzienne

Montrer que $f(x) = \sqrt{x}$ est uniformément continue sur [0, 1] mais pas lipschitzienne.

Correction: Rappel: Une fonction lipschitzienne est uniformément continue.

Sur [0,1], f continue sur un compact donc uniformément continue.

Mais $\left| \frac{f(x) - f(0)}{x - 0} \right| = \frac{1}{\sqrt{x}} \to +\infty$ quand $x \to 0^+$ donc pas de dérivée bornée, ni lipschitzienne.

23. (* * **) TVI généralisé

Montrer que toute fonction continue sur un intervalle I vérifie la propriété des valeurs intermédiaires.

Correction: Rappel: C'est la définition d'un intervalle: connexe par arcs.

Soit f continue sur I, $a, b \in I$ avec f(a) < k < f(b).

Soit $J = [a, b] \subset I$ (car intervalle).

f continue sur [a, b], donc par TVI, $\exists c \in]a, b[$ tel que f(c) = k.

24. $(\star \star \star \star \star)$ Equation fonctionnelle

Soit f continue sur \mathbb{R} telle que f(x+y) = f(x) + f(y).

Montrer que f(x) = kx pour un certain $k \in \mathbb{R}$.

Correction: Rappel: On montre d'abord pour les entiers, puis rationnels, puis réels par densité.

- 1) $f(0) = f(0+0) = 2f(0) \Rightarrow f(0) = 0$
- 2) Par récurrence : f(nx) = nf(x) pour $n \in \mathbb{N}$
- 3) $f(x) = f(n \cdot \frac{x}{n}) = nf(\frac{x}{n})$ donc $f(\frac{x}{n}) = \frac{1}{n}f(x)$
- 4) Pour rationnel r = p/q: $f(r) = f(p \cdot \frac{1}{q}) = pf(1/q) = \frac{p}{q}f(1)$
- 5) Pour x réel, soit (r_n) suite de rationnels convergeant vers x.
- $f(x) = \lim f(r_n) = \lim r_n f(1) = x f(1)$ par continuité.

Donc k = f(1).

25. (****) Problème de synthèse Soit $f(x) = \frac{x^3 - 2x^2 - x + 2}{x - 1}$.

- (a) Déterminer le domaine de définition.
- (b) Prolonger par continuité si possible.
- (c) Étudier les limites aux bornes.
- (d) Montrer que l'équation f(x) = 4 admet au moins deux solutions.

Correction: a) $D_f = \mathbb{R} \setminus \{1\}$

b) Factorisation:

Numérateur: $x^3 - 2x^2 - x + 2 = (x - 1)(x^2 - x - 2) = (x - 1)(x - 2)(x + 1)$

Donc f(x) = (x-2)(x+1) pour $x \neq 1$

Prolongement: f(1) = (1-2)(1+1) = (-1)(2) = -2

c)
$$\lim_{x\to\infty} f(x) = \infty$$
, $\lim_{x\to-\infty} f(x) = -\infty$

d)
$$f(x) = x^2 - x - 2$$

$$f(x) = 4 \Leftrightarrow x^2 - x - 6 = 0$$

Discriminant $\Delta = 1 + 24 = 25$

Solutions $x = \frac{1\pm 5}{2}$ soit x = 3 et x = -2

Deux solutions réelles distinctes.