Feuille d'exercices n° 3 : trigonométrie

Exercice 1. Montrer que :

$$\forall x \in \left[0, \frac{\pi}{2}\right[, \quad \frac{2x}{\pi} \le \sin(x) \le \tan(x).$$

Exercice 2. Réduisez l'intervalle d'étude des fonctions suivantes :

$$f(x) = \sin(4x),$$
 $g(x) = \cos\left(\frac{x}{2}\right),$ $h(x) = \sin(x) + \sin(2x).$

Exercice 3. Soit $f(x) = \sin^2(x) + \cos x$.

- 1. Réduire l'intervalle d'étude en étudiant la périodicité et la parité.
- 2. Calculer f'(x) et étudier son signe.
- 3. Dresser le tableau de variations sur $[0, \pi]$.
- 4. Tracer la courbe de f.
- 5. Vérifier que pour tout x réel, $f(\pi + x) = f(\pi x)$. Qu'en déduit-on?

Exercice 4. On pose $f(x) = 2\cos x + \sin(2x)$. On souhaite réduire au maximum l'intervalle d'étude de f.

- 1. Déterminer la périodicité de f.
- 2. Pour $x \in \mathbb{R}$, calculer $f(\frac{\pi}{2} + x)$ et $f(\frac{\pi}{2} x)$. En déduire un centre de symétrie de la courbe représentative de f.
- 3. Montrer qu'on peut réduire l'intervalle d'étude de f à $\left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$

Exercice 5. On pose $f(x) = 2\cos 2x + \sin(x)$. On souhaite réduire au maximum l'intervalle d'étude de f.

- 1. Déterminer la périodicité de f.
- 2. Pour $x \in \mathbb{R}$, calculer $f(\frac{\pi}{2} + x)$ et $f(\frac{\pi}{2} x)$. En déduire un axe de symétrie de la courbe représentative de f.
- 3. Montrer qu'on peut réduire l'intervalle d'étude de f à $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

Exercice 6. Soient a et b des réels de $\left[-\frac{\pi}{2},0\right]$ vérifiant $\cos a = \frac{3}{5}$, et $\sin b = -\frac{3}{5}$. Calculer $\sin a, \cos b, \cos(a+b), \tan a, \tan(a+b)$.

Exercice 7. a et b sont deux réels de $[0, \frac{\pi}{2}]$ qui vérifient : $\tan a = 2$ et $\tan b = 1/7$. Calculer $\tan(2a + b)$, et déterminer la valeur de 2a + b.

Exercice 8. Calculer, par deux méthodes, la valeur exacte de $\cos\left(\frac{\pi}{12}\right)$. Vérifier qu'on obtient le même résultat.

Exercice 9. Soit $x \in \mathbb{R}$. Démontrer que : $|\sin x + \cos x| \leq \sqrt{2}$.

Exercice 10. Factoriser:

$$A = \sqrt{2}\cos x - \sqrt{6}\sin x$$
, $B = 1 + 2\cos x + \cos 2x$.

Exercice 11. Résoudre les équations suivantes. On donnera le nombre de solutions sur le cercle trigonométrique.

$$1. \sin 5x = \sin 3x$$

2.
$$\cos(2x + \frac{\pi}{12}) + \cos 3x = 0$$

3.
$$\cos(x + \frac{\pi}{12}) + \sin(3x + \frac{\pi}{12}) = 0$$

4.
$$\sin^2 2x + \cos^2 3x = 1$$

$$5. \tan 3x \tan 2x = 1$$

6.
$$\cot(3x - \pi/4) = \tan(x + \pi/4)$$

7.
$$\sqrt{3}\tan(x - \pi/6) = 1$$

8.
$$\tan 2x = 3\tan x$$
.

9.
$$\sqrt{3} \cot x = 2 \cos x$$

10.
$$2\sin x \tan x + \tan^2(x/2) = 0$$

11.
$$\sin^2 x - \frac{3}{2}\sin x \cos x + \frac{1}{2}\cos^2 x = 0$$

12.
$$\sqrt{3}\cos x - \sin x = -\sqrt{2}$$

Exercice 12. Résoudre les inéquations suivantes :

1.
$$|\cos x| < \frac{1}{2}$$

2.
$$-\frac{1}{\sqrt{3}} < \tan x < \sqrt{3}$$

3.
$$\cos x(1+2\sin x) > 0$$

4.
$$-\frac{1}{2} < \sin 2x < \frac{\sqrt{3}}{2}$$

$$5. \ 0 \leqslant \sqrt{3}\cos x - \sin x \leqslant -\sqrt{2}$$

6.
$$-1 < \cos x - \sin x < 0$$

7.
$$\sin 2x \leqslant 1 + \cos 2x$$

8.
$$\sqrt{3} \cot x > 2 \cos x$$

9.
$$\tan x + \cot x > \frac{4}{\sqrt{3}}$$

Exercice 13. Soit f la fonction définie par : $f(x) = \cos(x) + \cos(2x)$.

- 1. Réduire l'intervalle d'étude de f.
- 2. Résoudre f(x) = 0.
- 3. Faire l'étude de f puis tracer son graphe.

Exercice 14. Soit $x \in \left]0, \frac{\pi}{2}\right]$. On pose pour $n \in \mathbb{N}^*$: $P_n = \cos\left(\frac{x}{2}\right)\cos\left(\frac{x}{4}\right)\cdots\cos\left(\frac{x}{2^n}\right)$.

1. Montrer que :
$$\forall n \in \mathbb{N}^*$$
, $P_n = \frac{\sin(x)}{2^n \sin(\frac{x}{2^n})}$.

2. Déterminer la limite de $P_n(x)$ lorsque $n \to +\infty$.

Pour s'entrainer

Exercice 15. On considère l'équation (E): $\tan^2(3x) - 2\sqrt{2}\tan(3x) + 1 = 0$.

- 1. Déterminer le domaine de résolution de (E).
- 2. Résoudre : $X^2 2\sqrt{2}X + 1 = 0$.
- 3. En constatant : $2 \times \frac{\pi}{8} = \frac{\pi}{4}$, déterminer la valeur exacte de tan $\frac{\pi}{8}$.
- 4. Déterminer la valeur exacte de tan $\frac{3\pi}{8}$.
- 5. Résoudre (E).

2

Exercice 16. Montrer que : $\frac{\sin x}{1 + \cos x} = \frac{1 - \cos x}{\sin x} = \tan(x/2)$, en précisant les valeurs pour lesquelles cette formule est valide.

Exercice 17. Montrer l'inégalité

$$\forall \ x \in \left[0, \frac{\pi}{2}\right] \ : \ x - \sin(x) \leqslant \tan(x) - x.$$

Exercice 18. Écrire en fonction de x/2:

$$A = \frac{1 - \cos x}{1 + \cos x}, \qquad C = \frac{1 - \sin x}{1 + \sin x}.$$

Exercice 19. Simplifier l'expression suivante :

$$A = \frac{\cos(6x) + 6\cos(4x) + 15\cos(2x) + 10}{\cos(5x) + 5\cos(3x) + 10\cos(x)}$$

Exercice 20. Après avoir réduit l'intervalle d'étude, étudier les fonctions suivantes :

$$f(x) = 2\sin(x) + \sin(2x)$$
 $g(x) = \cos^{3}(x) + \sin^{3}(x)$

Indication : Pour réduire l'intervalle d'étude de g, on calculera $g(\pi/2 - x) - g(x)$ puis $g(x - \pi/2) + g(-x)$.

Exercice 21. Montrer que si $x - y = \frac{\pi}{2}$ alors $\cos^2 x + \cos^2 y = \sin^2 x + \sin^2 y = 1$.

Exercice 22. Résoudre dans $\mathbb{R}: \sqrt{3} - 4\cos^2 t \geqslant 1 + 3\sin t$.

Exercice 23. Sachant que $a + b + c = \pi$:

- 1. Factoriser $\sin a \sin b + \sin c$.
- 2. Montrer que $\tan a + \tan b + \tan c = \tan a \tan b \tan c$.

Exercice 24. Sachant que $\cot \alpha = 5$, calculer $\tan 5\alpha$.

Exercice 25.

- 1. À l'aide de considérations géométriques, montrer que, $\forall h \in \left[0; \frac{\pi}{2}\right[, \sin(h) \le h \le \tan(h).$
- 2. En déduire que, sous les mêmes hypothèses, $h\cos(h) \le \sin(h) \le h$, puis calculer $\lim_{h\to 0} \frac{\sin(h)}{h}$.
- 3. En déduire les limites quand h tend vers 0 de $\frac{\sin^2(h)}{h}$, puis de $\frac{1-\cos(h)}{h}$.
- 4. Retrouver à partir de ce dernier résultat la formule donnant la dérivée de la fonction cos.
- 5. Démontrer de même que la dérivée de la fonction sin est la fonction cos.

Exercice 26. Calculer, à l'aide de radicaux et de deux façons différentes, les nombres $\tan(\frac{\pi}{12})$ et $\cos(\frac{\pi}{12})$.

Exercice 27. À l'aide des formules d'addition et de duplication, déterminer les valeurs des lignes trigonométriques des angles $\frac{\pi}{12}$ et $\frac{\pi}{24}$.

Exercice 28. Transformer les expressions suivantes en produits :

$$A = \cos(x) + 2\cos(2x) + \cos(3x)$$

$$B = \sin(x) + \sin(2x) + \sin(7x) + \sin(8x)$$

Exercice 29. Factoriser:

$$A = \cos^2 2x - \cos^2 x$$
, $B = 1 + \cos x + \cos 2x + \cos 3x$, $C = \tan 2x - \tan x$

$$D = \tan x + \tan 3x$$
, $E = \sin x + \sin 2x + \sin 3x$, $F = 1 + \tan x \tan 2x$

Exercice 30. Résoudre l'équation $\sqrt{\cos x} + \sqrt{\sin x} = 1$

Exercice 31. Résoudre l'équation $\sqrt{3} + \tan x = 1 - \sqrt{3} \tan x$.

Indication : penser que $\sqrt{3} = \tan(\frac{\pi}{3})$ et utiliser une formule d'addition.

Exercice 32. Résoudre l'équation d'inconnues x et y:

$$\sin(x+y) = \sin x + \sin y.$$

Indication : penser que $x+y=\frac{x+y}{2}+\frac{x+y}{2}$ et utiliser les transformations de sommes en produits.

Exercice 33. Résoudre les équations suivantes :

1.
$$\tan(2x) = 1$$
; 3. $\cos\left(x + \frac{\pi}{6}\right)\cos\left(x - \frac{\pi}{6}\right) = \frac{1}{2}$;

2.
$$\sin\left(x + \frac{3\pi}{4}\right) = \cos\left(\frac{x}{4}\right);$$
 4. $\sin(3x)\cos^3(x) + \sin^3(x)\cos(3x) = \frac{3}{4}.$

Exercice 34. Résoudre les équations et inéquations suivantes :

1.
$$\sin(3x - \frac{\pi}{2}) = \sin(\frac{\pi}{2} - x);$$
 4. $\sin(2x + 3) = \frac{1}{2};$ 7. $\cos^2(x) = \frac{1}{2};$

2.
$$\cos(x + \frac{\pi}{6}) = \sin(x)$$
; 5. $\cos(x + \frac{\pi}{3}) = 3 - \sin(\frac{x}{2})$; 8. $\cos x \le -\frac{1}{2}$;

3.
$$\tan(x) = \cos(x + \frac{\pi}{2});$$
 6. $\sin(\frac{\pi + x}{2}) = \frac{1}{2};$ 9. $\sqrt{3}\cos(x) \le 3\cos(\frac{\pi}{2} + x).$

Exercice 35. Résoudre les équations :

4. $\tan(x)\tan(2x) = 1$;

1.
$$\cos 2x + \cos x = 0$$
; 2. $\sin x + \cos 3x = 0$; 3. $\sin 5x - \sin x = 0$.

Exercice 36. Résoudre les (in)équations suivantes dans \mathbb{R} :

1.
$$\cos(2x) + \cos x = 0$$
; 8. $\sin(x) = \cos^2(x)$;

2.
$$\sin x + \cos(3x) = 0$$
; 9. $\sin(2x) + \cos(2x) > 0$;

3.
$$\sqrt{3} + \tan x = 1 - \sqrt{3} \tan x$$
;
10. $2\sin(x) - \cos(x) = \frac{\sqrt{5}}{2}$;

5.
$$\cos(2x) > \cos(x) - 1$$
; 11. $\sin(x+y) = \cos(2x-y)$;

6.
$$\cos(2x) + \sqrt{3}\sin(2x) \ge 0$$
; 12. $2x - \sin(x) + 2\pi = 0$;

7.
$$\sin(x) + \sin(3x) + \sin(5x) = 0$$
; 13. $\sin(x) + \sin(2x) + \sin(5x) + \sin(6x) \ge 0$.