EXTREMVÄRDEN OCH EXTREMPUNKTER.

LOKALA OCH GLOBALA EXTREMPUNKTER

Definition 1. Låt $f: \mathbb{R}^n : \to \mathbb{R}$ vara en reell funktion av n variabler och P_0 en punkt i funktionens definitionsområde D.

Vi säger att f har ett **lokalt maximum** i punkten P_0 om det finns ett (oavsett hur litet) klot K med centrum i P_0 så att

 $f(P) \le f(P_0)$ för alla punkter P i $K \cap D$

[Om $f(P) < f(P_0)$ för alla $P \neq P_0$ i $K \cap D$ då har funktionen ett **strängt lokalt** maximum]

Punkten P₀ kallas en **lokal maximipunkt.**

Funktionens värde f(P) kallas ett **lokalt maximivärde** [ett strängt lokalt maximivärde]

Om

 $f(P) \le f(P_0)$ för alla punkter i **hela definitionsmängden** D

säger vi att funktionen har sitt **globalt maximum** eller **största värde i** P_0 .

(På liknande sätt definierar vi lokalt / globalt minimum.)

Definition 2. Låt $f: \mathbb{R}^n : \to \mathbb{R}$ vara en reell funktion av n variabler och P_0 en inre punkt i funktionens definitionsområde D. Punkten P_0 är en **stationär punkt** om f är deriverbar i punkten och om **alla partiella derivator av första ordningen är lika med 0** i punkten P_0 :

Definition 3. Maximi- och minimipunkter kallas med ett gemensamt namn **extrempunkter.** En stationär punkt som är varken maximipunkt eller minimipunkt kallas **sadelpunkt**.

Extrempunkter söker vi bland:

- 1. STATIONÄRA PUNKTER
- 2. RANDPUNKTER
- 3. INRE SINGULÄRA PUNKTER, dvs inre punkter i definitionsmängden som saknar minst en partiell derivata. Exempelvis punkten (0,0) är en singulär punkt för koniska ytan

 $f = \sqrt{x^2 + y^2}$ eftersom partiella derivator är ej definierade i punkten. [Funktionen har minimum $f_{min} = 0$ i punkten (0,0); skissera ytan]

STATIONÄRA PUNKTER OCH TAYLORS FORMEL

Stationära punkter bestämmer vi genom att finna alla lösningar till systemet

$$\frac{\partial f}{\partial x_1} = 0, \quad \frac{\partial f}{\partial x_2} = 0, \dots, \frac{\partial f}{\partial x_n} = 0,$$

som ligger i inre delen av funktionens definitions område.

För att avgöra om en stationär punkt minimipunkt, kan vi använda Taylors formel av andra ordningen:

Låt t ex f=f(x,y).

I en stationär punkt (a,b) till f blir partiella derivator av första ordningen =0 och därför blir Taylors formel av andra ordningen kring (a,b) :

$$f(a+h,b+k) = f(a,b) + \frac{1}{2!} \left[h^2 \frac{\partial^2 f}{\partial x^2}(a,b) + 2hk \frac{\partial^2 f}{\partial x \partial y}(a,b) + k^2 \frac{\partial^2 f}{\partial y^2}(a,b)\right] + R$$

Vi betecknar
$$A = \frac{\partial^2 f}{\partial x^2}(a,b)$$
 $B = \frac{\partial^2 f}{\partial x \partial y}(a,b)$ $C = \frac{\partial^2 f}{\partial y^2}(a,b)$

och
$$Q(h,k) = Ah^2 + 2Bhk + Ck^2$$
.

1. Från Taylors formel ser vi att om Q(h,k) > 0 för alla $(h,k) \neq (0,0)$ så är f(a+h,b+k) > f(a,b) och (a,b) en (sträng) lokal minimipunkt.

- 2. Om Q(h,k) < 0 för alla $(h,k) \neq (0,0)$ så är f(a+h,b+k) < f(a,b) och (a,b) en (sträng) lokal maximipunkt.
- 3. Om Q(h, k) antar såväl positiva som negativa värden så är (a,b) en **sadelpunkt**

Därmed har vi följande fall för en stationär punkt (a,b)

- **1.** Om Q(h,k) > 0 för alla $(h,k) \neq (0,0)$ så är (a,b) en lokal minimipunkt. (Vi säger att formen Q är positivt definit)
- **2.** Om Q(h,k) < 0 för alla $(h,k) \neq (0,0)$ så är (a,b) en **lokal maximipunkt.** (Vi säger att formen Q är n**egativt definit**)
- **3.** Om Q(h,k) antar såväl positiva som negativa värden så är (a,b) en **sadelpunkt** (Vi säger att formen Q är **indefinit**)

I följande fall **kan vi INTE bestämma punktens karaktär** med andragrads Taylors formel utan måste använda **andra metoder** (t ex direkt undersökning eller Taylors formel av högre ordning).

Fall1. Om $Q(h,k) \ge 0$ där det finns minst en punkt $(h_1,k_1) \ne (0,0)$ sådan att $Q(h_1,k_1) = 0$. (Vi säger att formen Q är **positivt semidefinit**)

{ Anmärkning: Om $Q(h_1, k_1) = 0$ då är också $Q(th_1, tk_1) = t^2 Q(h_1, k_1) = 0$ dvs i detta fall är Q=0 längs hela linjen (th_1, tk_1) .}

Fall2. Om $Q(h,k) \le 0$ där det finns minst en punkt $(h_1,k_1) \ne (0,0)$ sådan att $Q(h_1,k_1) = 0$. (Vi säger att formen Q är **negativt semidefinit**)

Fall3. Om $Q(h,k) \equiv 0$ dvs Q(h,k) = 0 för alla (h,k) (fallet kan räknas som både positivt eller negativt semidefinit)

Uppgift 1.

Bestäm alla stationära punkter och avgör deras karaktär (maximi-, minimi-, sadelpunkt)

a)
$$f(x, y) = 10 + x^3 + y^3 - 3xy$$

b)
$$f(x, y) = e^{x^2 + y^2 + 2y + 5}$$

c)
$$f(x, y) = -x^2 - 2x - y^2 + 4y + 11$$

d)
$$f(x, y) = 2x^3 + 2y^2 - 12xy + 10$$

e)
$$f(x, y) = 2x^3 + 2y^3 - 6xy + 10$$

f)
$$f(x, y) = xy - x^3 - y^2 + 20$$

Lösning a)

$$f'_{x} = 3x^{2} - 3y \qquad f'_{y} = 3y^{2} - 3x$$

$$\begin{cases} f'_{x} = 0 \\ f'_{y} = 0 \end{cases} \Rightarrow \begin{cases} 3x^{2} - 3y = 0 \\ 3y^{2} - 3x = 0 \end{cases} \Rightarrow \begin{cases} x^{2} - y = 0 \\ y^{2} - x = 0 \end{cases}$$

Från ekv 1 får vi

$$y = x^2 \tag{*}$$

som vi substituerar i ekv2:

$$x^4 - x = 0 \implies x(x^3 - 1) = 0 \Longrightarrow$$

$$x_1 = 0, x_2 = 1$$

Från (*)

$$y_1 = 0, y_2 = 1$$

Vi har fått två stationära punkter (0,0) och (1,1)

$$A = f''_{xx} = 6x$$
, $B = f''_{xy} = -3$, $C = f''_{yy} = 6y$

1. Stationär punkt (0,0)

För punkten (0,0) får vi Q-3hk som antar både positiva och negativa värden och därmed är stationära punkten (0,0) en SADELPUNKT.

2. Stationär punkt (1,1)

För punkten (1,1) har vi $6h^2 - 6hk + 6k^2$. För att avgöra typ göt vi en kvadratkomplettering:

$$Q = 6h^{2} - 6hk + 6k^{2} = 6[(h - \frac{1}{2}k)^{2} + \frac{3}{4}k^{2}].$$

Det är uppenbar att $Q \ge 0$ och därför har vi **två möjligheter**:

Antingen är Q positivt definit (dvs Q=0 endast i punkten (0,0))

eller positivt semidefinit form (dvs Q= 0 i minst en punkt $(h, k) \neq (0,0)$).

För att avgöra frågan löser vi ekvationen Q= 0:

Vi ser att Q= 0 om och endast om följande villkor är uppfyllda

$$\begin{cases} h - \frac{1}{2}k = 0 \\ k = 0 \end{cases} \Leftrightarrow h = 0, \quad k = 0.$$

Alltså $Q \ge 0$ där Q = 0 endast i punkten (0,0). Därmed är formen Q **positivt definit** och stationära punkten (1,1) är en MINIMIPUNKT.

Vi kan använda nedanstående tabell för att åskådligt göra föregående analys:

Punkt	\boldsymbol{A}	В	\boldsymbol{C}	$Q = Ah^2 + 2Bhk + Ck^2$	Formens	Punktens typ	f(x,y)
					typ		
(0,0)	0	-3	0	- 3hk	indefinit	sadelpunkt	10
(1,1)	6	-3	6	$6h^2 - 6hk + 6k^2$	positivt definit	minimipunkt	9
				$=6[(h-\frac{1}{2}k)^2+\frac{3}{4}k^2]$			

a) Svar: (0,0) sadelpunkt, (1,1) minimum

Tips b)

F ~ ~ /							
Punkt	\boldsymbol{A}	В	\boldsymbol{C}	$Q = Ah^2 + 2Bhk + Ck^2$	Formens	Punktens typ	f(x,y)
					typ		
(0,-1)	$2e^4$	0	$2e^4$	$2e^4h^2 + 2e^4k^2$	positivt	minimipunkt	e^4
					definit		

Tips c)

Punkt	A	В	C	$Q = Ah^2 + 2Bhk + Ck^2$		Punktens typ	f(x,y)
(-1,2)	-2	0	-2	$-2h^2-2k^2$	negativt definit	maximipunkt	16

Tinsd)

Punkt	A	В	C	$Q = Ah^2 + 2Bhk + Ck^2$	Formens	Punktens typ	f(x,y)
(0,0)	0	-12	4	$-24hk + 4k^2$	typ indefinit	sadelpunkt	10
						-	

	(6,18)	72	-12	4	$72h^2 - 24hk + 4k^2$	positivt	minimipunkt	- 206
--	--------	----	-----	---	-----------------------	----------	-------------	-------

Svar till uppgift 1.

- a) Svar: (0,0) sadelpunkt, (1,1) minimum
- b) Minimum $f_{min} = e^4$ i punkten (0,-1)
- c) Maximum $f_{\text{max}} = 16$ i punkten (-1,2)
- d) Sadelpunkt i(0,0), f(0,0) = 10
- och minimum $f_{min} = -206$ i punkten (6,18)
- e) Sadelpunkt i (0,0), f(0,0) = 10 och minimum $f_{min} = 8$ i punkten (1,1)
- f) (0,0) sadelpunkt, (1/6, 1/12) maximum

Uppgift 2.

Bestäm alla stationära punkter och avgör deras karaktär (max, min sadel, ..) (Tillhörande kvadratiska former är **semidefinita**!)

- a) $f(x, y) = 10 + x^2 + y^4$ b) $f(x, y) = 10 + x^3 + y^4$
- c) $f(x, y) = 5 + x^4 + y^4$ d) $f(x, y) = 5 x^4 y^4$
- e) $f(x, y, z) = 3 + x^4 + y^4 + z^4$ f) $f(x, y, z) = 3 + x^3 + y^4 + z^4$

Lösning a):

$$f'_x(x, y) = 2x$$
, $f'_y(x, y) = 4y^3$

$$f_{xx}''(x, y) = 2$$
, $f_{xy}''(x, y) = 0$, $f_{yy}''(x, y) = 12y^2$

En stationär punkt S(0,0) med motsvarande $\,Q=2h^2\geq 0\,.$

Eftersom exempelvis Q(0,3) = 0 (dvs Q(h,k) = 0 i en punkt skild från (0,0)

är formen **semidefinit.** Därför kan vi **inte** använda andragrads Taylors formel för att bestämma punktens typ.

Å andra sidan det är uppenbart, på grund av jämna potenser att f(x, y) > f(0,0) = 10 för alla $(x, y) \neq (0,0)$. Med andra ord har funktionen (strängt) minimum i punkten (0,0); $f_{min} = 10$.

Svar

- a) minimipunkt (0,0). b) sadelpunkt (0,0) c) minimipunkt (0,0) d) maximipunkt (0,0)
- e) minimipunkt (0,0,0) f) sadelpunkt(0,0,0)