Exploring defining single value indices - SPI

Andrew Mitchell^{a,*}

 a University College London, Institute for Environmental Design and Engineering, Central House, 14 Upper Woburn Place, London, WC1H 0NN

Abstract

This notebook contains several explorations and developments leading to the SPI framework.

1. Setup

1.1. Import Libraries

```
import soundscapy as sspy
import matplotlib.pyplot as plt
import pandas as pd
from pathlib import Path
import seaborn as sns
from scripts import msn_utils
import scripts.rpyskewnorm as snpy
import numpy as np
from scripts.MultiSkewNorm import MultiSkewNorm
import warnings
```

1.2. Load Data

In addition to loading the latest version of the ISD, we also exclude a few samples that were identified as survey outliers. Most notably, this includes the samples at RegentsParkFields which were impacted by helicopter flyovers.

^{*}Corresponding author

Email address: a.j.mitchell@ucl.ac.uk (Andrew Mitchell)

```
# excl_id = excl_id + list(data.query("LocationID == 'RegentsParkFields' and ISOPleasant < 0").index)
excl_id = [652, 706, 548, 550, 551, 553, 569, 580, 609, 618, 623, 636, 643]
data.drop(excl_id, inplace=True)
data</pre>
```

	LocationID	SessionID	GroupID	RecordID	start_time	end_time	latit
0	CarloV	CarloV2	2CV12	1434	2019-05-16 18:46:00	2019-05-16 18:56:00	37.1
1	CarloV	CarloV2	2CV12	1435	2019-05-16 18:46:00	2019-05-16 18:56:00	37.1
2	CarloV	CarloV2	2CV13	1430	2019-05-16 19:02:00	2019-05-16 19:12:00	37.1
3	CarloV	CarloV2	2CV13	1431	2019-05-16 19:02:00	2019-05-16 19:12:00	37.1
4	CarloV	CarloV2	2CV13	1432	2019-05-16 19:02:00	2019-05-16 19:12:00	37.1
1693	Noorderplantsoen	Noorderplantsoen1	NP161	61	2020-03-11 12:42:00	2020-03-11 12:55:00	NaN
1694	Noorderplantsoen	Noorderplantsoen1	NP162	63	2020-03-11 12:39:00	2020-03-11 13:00:00	NaN
1695	Noorderplantsoen	Noorderplantsoen1	NP162	62	2020-03-11 12:54:00	2020-03-11 12:58:00	NaN
1696	Noorderplantsoen	Noorderplantsoen1	NP162	64	2020-03-11 12:56:00	2020-03-11 12:59:00	NaN
1697	Noorderplantsoen	Noorderplantsoen1	NP163	70	2020-03-11 23:08:00	2020-03-11 23:18:00	NaN

1.2.1. ISOCoordinate calculation according to Aletta et. al. (2024)

To move the 8-item PAQ responses into the 2-dimensional circumplex space, we use the projection method first presented in ISO 12913-3:2018. This projection method and its associated formulae were recently updated further in Aletta et al. (2024) to include a correction for the language in which the survey was conducted. The formulae are as follows:

$$P_{ISO} = \frac{1}{\lambda_{pl}} \sum_{i=1}^{8} \cos \theta_i \cdot \sigma_i E_{ISO} = \frac{1}{\lambda_{pl}} \sum_{i=1}^{8} \sin \theta_i \cdot \sigma_i$$

where \$PAQ_i\$ is the response to the (i)th item of the PAQ. The resulting (x) and (y) values are then used to calculate the polar angle () and the radial distance (r) as follows:

from soundscapy.surveys.survey_utils import LANGUAGE_ANGLES, PAQ_IDS

LANGUAGE_ANGLES

```
{'eng': (0, 46, 94, 138, 177, 241, 275, 340),
  'arb': (0, 36, 45, 135, 167, 201, 242, 308),
  'cmn': (0, 18, 38, 154, 171, 196, 217, 318),
  'hrv': (0, 84, 93, 160, 173, 243, 273, 354),
  'nld': (0, 43, 111, 125, 174, 257, 307, 341),
  'deu': (0, 64, 97, 132, 182, 254, 282, 336),
  'ell': (0, 72, 86, 133, 161, 233, 267, 328),
  'ind': (0, 53, 104, 123, 139, 202, 284, 308),
  'ita': (0, 57, 104, 143, 170, 274, 285, 336),
  'spa': (0, 41, 103, 147, 174, 238, 279, 332),
  'swe': (0, 66, 87, 146, 175, 249, 275, 335),
  'tur': (0, 55, 97, 106, 157, 254, 289, 313)}

tab = pd.DataFrame.from_dict(LANGUAGE_ANGLES, orient="index", columns=PAQ_IDS)
tab
```

Table 2: Language-specific angles for projection into the ISO 12913-3:2018 circumplex space.

	PAQ1	PAQ2	PAQ3	PAQ4	PAQ5	PAQ6	PAQ7	PAQ8
eng	0	46	94	138	177	241	275	340
arb	0	36	45	135	167	201	242	308
cmn	0	18	38	154	171	196	217	318
hrv	0	84	93	160	173	243	273	354
nld	0	43	111	125	174	257	307	341
deu	0	64	97	132	182	254	282	336
ell	0	72	86	133	161	233	267	328
ind	0	53	104	123	139	202	284	308
ita	0	57	104	143	170	274	285	336
$_{\mathrm{spa}}$	0	41	103	147	174	238	279	332
swe	0	66	87	146	175	249	275	335
tur	0	55	97	106	157	254	289	313

```
from soundscapy.surveys.survey_utils import PAQ_IDS
for i, row in data.iterrows():
    lang = row["Language"]
    angles = LANGUAGE_ANGLES[lang]
    iso_pl, iso_ev = (
        sspy.surveys.processing._adj_iso_pl(row[PAQ_IDS], angles, scale=4),
        sspy.surveys.processing._adj_iso_ev(row[PAQ_IDS], angles, scale=4),
    data.loc[i, "ISOPleasant"] = iso_pl
    data.loc[i, "ISOEventful"] = iso_ev
data_list = [
    sspy.isd.select_location_ids(data, loc) for loc in data["LocationID"].unique()
fig = sspy.plotting.create_circumplex_subplots(
    data_list,
   plot_type="density",
   nrows=6,
   ncols=3,
    figsize=(9, 18),
    legend=True,
    incl_scatter=True,
    subtitles=[loc for loc in data["LocationID"].unique()],
   title="",
fig.tight_layout()
```



```
\# Plotting distribution density with empirical scatter
def empirical_msn_scatter(data, loc):
    loc_msn = MultiSkewNorm()
   loc_msn.fit(
       data=data.query(f"LocationID == '{loc}'")[["ISOPleasant", "ISOEventful"]]
    loc_msn.sample(1000)
    loc_Y = pd.DataFrame(loc_msn.sample_data, columns=["ISOPleasant", "ISOEventful"])
    return loc_Y
data_list = [empirical_msn_scatter(data, loc) for loc in data["LocationID"].unique()]
fig = sspy.plotting.create_circumplex_subplots(
    data_list,
   plot_type="density",
   nrows=6,
   ncols=3,
   figsize=(9, 18),
   legend=True,
    incl_scatter=True,
   subtitles=[loc for loc in data["LocationID"].unique()],
   title="",
fig.tight_layout()
```


1.3. The Soundscape Perception Index (SPI)

The SPI works by assessing the assessed (or calculated) distribution of soundscape responses against a target distribution. This target distribution represents the goal for the soundscape design. Since we consider a location's soundscape perception to be the collective perception of its users, it is crucial that the target includes both the central tendency and the distribution.

1.3.1. Note: Distributions in the circumplex

We should begin by discussing how sound scape circumplex distributions are defined. The circumplex is defined by two axes: P_{ISO} and E_{ISO} which are limited to the range [-1,1]. Typically the distribution of collective perception of a sound scape is also not symmetrical, therefore making it a skewed distribution. A sound scape distribution is thus a two-dimensional truncated skew-normal distribution.

The skew-normal distribution is defined by three parameters: location, scale and shape. The location parameter defines the centre of the distribution, the scale parameter defines the spread of the distribution, and the shape parameter defines the skew of the distribution. The skew-normal distribution is defined as:

$$f(x;a,\omega,\alpha) = \frac{2}{\omega} \phi\left(\frac{x-a}{\omega}\right) \Phi\left(\alpha \frac{x-a}{\omega}\right)$$

where ϕ and Φ are the standard normal probability density function and cumulative distribution function respectively. The skew-normal distribution is thus a generalisation of the normal distribution, with the shape parameter α defining the skew. A positive shape parameter results in a right-skewed distribution, and a negative shape parameter results in a left-skewed distribution.

To generate the truncated skew-normal distribution, we use rejection sampling. This is a method of generating a distribution by sampling from a simpler distribution and rejecting samples that do not fit the target distribution. In this case, we sample from a skew-normal distribution (scipy.stats.skewnorm) and reject samples that are outside of the range [-1,1].

1.3.1.1. Example - Calculating the moments of location's distribution and generating the equivalent distribution using rejection sampling.

```
test_loc = "SanMarco"
test_data = sspy.isd.select_location_ids(data, test_loc)

msn = MultiSkewNorm()
msn.fit(data=test_data[["ISOPleasant", "ISOEventful"]])

msn.summary()
```

Fitted from data. n = 96
Direct Parameters:
xi: [[0.06 0.597]]
omega: [[0.15 -0.058]
[-0.058 0.093]]
alpha: [0.868 -0.561]

Centred Parameters: mean: [[0.281 0.447]] sigma: [[0.101 -0.025] [-0.025 0.07]]

```
skew:
      [ 0.145 -0.078]
Y = msn.sample(1000, return_sample=True)
Y = pd.DataFrame(Y, columns=["ISOPleasant", "ISOEventful"])
D, p = msn.ks2ds(test_data[["ISOPleasant", "ISOEventful"]])
color = sns.color_palette("colorblind", 1)[0]
fig, axes = plt.subplots(1, 2, figsize=(12, 6))
sspy.density_plot(
    test_data,
    ax=axes[0],
   density_type="full",
   title=f"a) Empirical data",
    color=color,
sspy.density_plot(
    Υ,
    ax=axes[1],
   density_type="full",
   title="b) MSN sampled distribution\n n sample = 1000",
    color=color,
plt.tight_layout()
```


Figure 1: Example of fitting and sampling from a multivariate skew-normal distribution for data from the Piazza San Marco location.

```
# Hack using alpha dev version of soundscapy
from soundscapy.plotting.circumplex_plot import (
    CircumplexPlot,
    Backend,
```

```
CircumplexPlotParams,
)

Y = msn.sample(1000, return_sample=True)
Y = pd.DataFrame(Y, columns=["ISOPleasant", "ISOEventful"])
D, p = msn.ks2ds(test_data[["ISOPleasant", "ISOEventful"]])

params = CircumplexPlotParams(title="a) Sample data for Piazza San Marco")
plot = CircumplexPlot(test_data, params, backend=Backend.SEABORN)
g = plot.jointplot()
g.get_figure()[0].suptitle("a) Sample data for Piazza San Marco", y=1.02)
g.show()

params = CircumplexPlotParams(title="b) MSN sampled distribution\n n sample = 1000")
plot = CircumplexPlot(Y, params, backend=Backend.SEABORN)
g = plot.jointplot()
g.get_figure()[0].suptitle("b) MSN sampled distribution\n n sample = 1000", y=1.05)
g.show()
```

a) Sample data for Piazza San Marco

b) MSN sampled distribution n sample = 1000


```
# Universal pleasant target
target_1 = MultiSkewNorm()
target_1.define_dp(
    xi=np.array([0.5, 0.0]),
    omega=np.array([[0.2, 0], [0, 0.2]]),
    alpha=np.array([1, 0]),
)
target_2 = MultiSkewNorm()
target_2.define_dp(
    xi=np.array([[1.0, -0.4]]),
    omega=np.array([[0.17, -0.04], [-0.04, 0.09]]),
```

```
alpha=np.array([-8, 1]),
target_3 = MultiSkewNorm()
target_3.define_dp(
    xi=np.array([0.5, 0.7]),
    omega=np.array([[0.1, 0.05], [0.05, 0.1]]),
    alpha=np.array([0, -5]),
Y_1 = target_1.sample(1000, return_sample=True)
Y_1 = pd.DataFrame(Y_1, columns=["ISOPleasant", "ISOEventful"])
Y_2 = target_2.sample(1000, return_sample=True)
Y_2 = pd.DataFrame(Y_2, columns=["ISOPleasant", "ISOEventful"])
Y_3 = target_3.sample(1000, return_sample=True)
Y_3 = pd.DataFrame(Y_3, columns=["ISOPleasant", "ISOEventful"])
fig, axes = plt.subplots(1, 3, figsize=(18, 6))
sspy.density_plot(
    Y_1,
    ax=axes[0],
    title="a) Target 1",
    color="red",
sspy.density_plot(Y_2, ax=axes[1], title="b) Target 2", color="red")
sspy.density_plot(Y_3, ax=axes[2], title="c) Target 3", color="red")
plt.tight_layout()
plt.show()
                a) Target 1
                                                 b) Target 2
  1.00
                                                                     1.00
  0.75
                                                                     0.75
  0.25
                                    0.25
                                                                     0.25
  -0.25
                                   -0.25
                                                                     -0.25
                                                                     -0.50
  -0.75
                                   -0.75
                                                                     -0.75
                                   -1.00 <del>-0.75 -0.50</del>
  -1.00 -0.75 -0.50 -0.25
                                                                    -1.00 -0.75 -0.50
```

Figure 2: Example of defining and sampling from three arbitrary bespoke targets.

```
D_1 = msn_utils.ks2d2s(
    test_data=test_data[["ISOPleasant", "ISOEventful"]], target_data=Y_1, extra=True
)
D_2 = msn_utils.ks2d2s(
    test_data=test_data[["ISOPleasant", "ISOEventful"]], target_data=Y_2, extra=True
```

```
D_3 = msn_utils.ks2d2s(
    test_data=test_data[["ISOPleasant", "ISOEventful"]], target_data=Y_3, extra=True
)

from IPython.display import Markdown
from tabulate import tabulate

D_tbl = [
    ["tgt_1", D_1[1].round(2), D_1[0]],
    ["tgt_2", D_2[1].round(2), D_2[0]],
    ["tgt_3", D_3[1].round(2), D_2[0]],
]

Markdown(tabulate(D_tbl, headers=["Target", "D", "p"], tablefmt="grid"))
```

Table 3: Kolmogorov-Smirnov test comparing the empirical test distribution (Piazza San Marco) against three soundscape target distributions.

Target	D	p
tgt_1	0.66	6.94745 e-25
tgt_2	0.83	8.96388e-39
tgt_3	0.28	8.96388e-39

```
fig, ax = plt.subplots(figsize=(6, 6))
sspy.density_plot(
    sspy.isd.select_location_ids(data, "SanMarco"),
    ax=ax,
    simple_density=True,
    label="test",
    incl_scatter=True,
    incl_outline=True,
    color=sns.palettes.color_palette("colorblind", 1)[0],
sspy.density_plot(
    pd.DataFrame(
            "ISOPleasant": target_3.sample_data[:, 0],
            "ISOEventful": target_3.sample_data[:, 1],
        }
    ),
    ax=ax,
    incl_scatter=False,
    incl_outline=True,
    simple_density=True,
    label="target",
    title=f"San Marco compared against target\nD={D_3[1].round(2)}, p={D_3[0].round(4)}",
    color="red",
```

San Marco compared against target D=0.28, p=0.0001


```
return [
      f"{idx+1}",
      tgt_str(tgt_1_order, idx),
      tgt_str(tgt_2_order, idx),
      tgt_str(tgt_3_order, idx),
   ]
spis_tbl = [table_fill(spis_df, idx) for idx in range(len(spis_df))]
tabulate.PRESERVE_WHITESPACE = True
Markdown(
   tabulate(
       spis_tbl,
      headers=[
          "Ranking",
          "$SPI_1$ (pleasant)",
          "$SPI_2$ (calm)",
          "$SPI_3$ (vibrant)",
      tablefmt="pipe",
   )
```

Table 4: SPI scores and rankings for the soundscapes of locations included in the International Soundscape Database (ISD).

Ranking	SPI_1 (pleasant)	SPI_2 (calm)	SPI_3 (vibrant)
1	70 RegentsParkFields	61 CampoPrincipe	71 SanMarco
2	69 CarloV	52 CarloV	62 TateModern
3	65 RegentsParkJapan	50 PlazaBibRambla	60 StPaulsCross
4	62 CampoPrincipe	49 RegentsParkFields	58 Noorderplantsoen
5	61 PlazaBibRambla	45 MarchmontGarden	55 PancrasLock
6	61 RussellSq	44 MonumentoGaribaldi	54 TorringtonSq
7	61 MarchmontGarden	40 RussellSq	48 StPaulsRow
8	61 MonumentoGaribaldi	38 RegentsParkJapan	48 RussellSq
9	59 PancrasLock	38 PancrasLock	47 MiradorSanNicolas
10	53 StPaulsCross	32 MiradorSanNicolas	43 CamdenTown
11	49 TateModern	30 TateModern	40 CarloV
12	48 StPaulsRow	30 StPaulsCross	36 MonumentoGaribaldi
13	43 MiradorSanNicolas	28 TorringtonSq	34 MarchmontGarden
14	38 Noorderplantsoen	28 StPaulsRow	33 PlazaBibRambla
15	35 TorringtonSq	17 SanMarco	33 CampoPrincipe
16	33 SanMarco	16 Noorderplantsoen	32 EustonTap
17	21 CamdenTown	15 CamdenTown	27 RegentsParkFields
18	15 EustonTap	13 EustonTap	27 RegentsParkJapan

spis_df["tgt_1"].sort_values(ascending=False)

RegentsParkFields 70 CarloV 69 RegentsParkJapan 65

```
CampoPrincipe
                     62
PlazaBibRambla
                     61
                     61
RussellSq
MarchmontGarden
                     61
MonumentoGaribaldi
                     61
PancrasLock
                     59
StPaulsCross
                     53
TateModern
                     49
StPaulsRow
                     48
MiradorSanNicolas 43
Noorderplantsoen 38
                   35
TorringtonSq
SanMarco
                     33
CamdenTown
                     21
EustonTap
                     15
Name: tgt_1, dtype: int64
target = MultiSkewNorm()
target.define_dp(
    xi=np.array([0.5, 0.7]),
    omega=np.array([[0.1, 0.05], [0.05, 0.1]]),
    alpha=np.array([0, -5]),
target.sample(1000)
target.sspy_plot()
```



```
fig, axes = plt.subplots(1, 2, figsize=(12, 6))

sspy.density_plot(
    test_data,
    incl_scatter=True,
    title="San Marco\nEmpirical Density",
    ax=axes[0],
    color="blue",
)

sspy.density_plot(
    pd.DataFrame(target.sample_data, columns=["ISOPleasant", "ISOEventful"]),
    incl_scatter=True,
    title="Target Density",
    ax=axes[1],
    color="red",
)
```


Once the target is defined, we will generate a set of points that represent the target distribution.

Now that our target has been defined, we can calculate the SPI for a given set of responses. We will use the responses from Piazza San Marco in Venice, Italy, as an example.

```
test_spi = target.spi(
    data.query("LocationID == 'SanMarco'")[["ISOPleasant", "ISOEventful"]]
)
print(f"San Marco SPI = {test_spi}")
```

```
San Marco SPI = 71
```

```
fig, ax = plt.subplots(figsize=(6, 6))

sspy.density_plot(
    sspy.isd.select_location_ids(data, "SanMarco"),
    ax=ax,
    simple_density=True,
    title=f"",
    color="blue",
)

sspy.density_plot(
    pd.DataFrame(target.sample_data, columns=["ISOPleasant", "ISOEventful"]),
    ax=ax,
    incl_scatter=False,
    simple_density=True,
    title=f"Piazza San Marco\nSPI = {test_spi}",
    color="red",
)
```


We can compare this against another location, such as St Pancras Lock.

```
test_spi = target.spi(
    sspy.isd.select_location_ids(data, "PancrasLock")[["ISOPleasant", "ISOEventful"]]
)
fig, ax = plt.subplots(figsize=(6, 6))

sspy.density_plot(
    sspy.isd.select_location_ids(data, "RegentsParkFields"),
    ax=ax,
    simple_density=True,
    title=f"",
    color="blue",
)
sspy.density_plot(
    pd.DataFrame(target.sample_data, columns=["ISOPleasant", "ISOEventful"]),
    ax=ax,
```

```
incl_scatter=False,
simple_density=True,
title=f"Pancras Lock\nSPI = {test_spi}",
color="red",
)
```


SPI scores assessed against a target should not inherently be considered a measure of the quality of the soundscape - instead it reflects the degree to which the soundscape matches the target. A high SPI score does not necessarily mean that the soundscape is of high quality, but rather that the soundscape is of high quality according to the target.

The $SPI_{bespoke}$ thus provides a method for scoring and ranking the success of a soundscape design against the designer's goals. Sticking with our defined target, we can assess all of the locations in the ISD and see which locations best match our target.

```
loc_bespoke = {}
for location in data.LocationID.unique():
    loc_bespoke[location] = target.spi(
```

```
sspy.isd.select_location_ids(data, location)[["ISOPleasant", "ISOEventful"]]
)

loc_bespoke = pd.DataFrame.from_dict(loc_bespoke, orient="index", columns=["SPI"])
loc_bespoke.sort_values(by="SPI", ascending=False, inplace=True)
loc_bespoke
```

	SPI
SanMarco	71
TateModern	61
Noorderplantsoen	61
StPaulsCross	59
TorringtonSq	54
PancrasLock	53
StPaulsRow	47
RussellSq	46
MiradorSanNicolas	46
CamdenTown	43
CarloV	40
MonumentoGaribaldi	36
MarchmontGarden	35
PlazaBibRambla	35
CampoPrincipe	33
EustonTap	31
RegentsParkJapan	27
RegentsParkFields	25

Assessed against a different target would result in a different ranking:

```
target = MultiSkewNorm()
target.define_dp(
    np.array([-0.5, -0.5]),
    np.array([[0.1, 0], [0, 0.2]]),
    np.array([-0.85, 1.5]),
)
target.summary()
target.sample(n=1000)
target.sspy_plot()
```

Fitted from direct parameters.
Direct Parameters:
xi: [-0.5 -0.5]
omega: [[0.1 0.]
[0. 0.2]]
alpha: [-0.85 1.5]

None


```
loc_bespoke_2 = {}
for location in data.LocationID.unique():
    loc_bespoke_2[location] = target.spi(
        sspy.isd.select_location_ids(data, location)[["ISOPleasant", "ISOEventful"]]
    )

loc_bespoke_2 = pd.DataFrame.from_dict(loc_bespoke_2, orient="index", columns=["SPI"])
loc_bespoke_2.sort_values(by="SPI", ascending=False, inplace=True)
loc_bespoke_2
```

	SPI
EustonTap	30
CamdenTown	22
MarchmontGarden	19
TorringtonSq	19
PancrasLock	17
PlazaBibRambla	15
StPaulsRow	15
CampoPrincipe	11
StPaulsCross	11
RegentsParkJapan	8
RussellSq	8
CarloV	8

	SPI
SanMarco	8
TateModern	8
MiradorSanNicolas	6
MonumentoGaribaldi	5
Noorderplantsoen	4
RegentsParkFields	3

```
target1 = MultiSkewNorm()
target1.define_dp(
    np.array([-0.5, 0.5]), np.array([[0.1, 0], [0, 0.1]]), np.array([0, 0])
)
target1.sample()

target2 = MultiSkewNorm()
target2.define_dp(np.array([0.5, 0]), np.array([[0.1, 0], [0, 0.2]]), np.array([0, 0]))
target2.sample()

target_mix_y = target1.sample_data + target2.sample_data
target_mix_y = pd.DataFrame(target_mix_y, columns=["ISOPleasant", "ISOEventful"])

plot = CircumplexPlot(target_mix_y, backend=Backend.SEABORN)
g = plot.jointplot()
g.show()
```


References

Aletta, F., Mitchell, A., Oberman, T., Kang, J., Khelil, S., Bouzir, T.A.K., Berkouk, D., Xie, H., Zhang, Y., Zhang, R., Yang, X., Li, M., Jambrošić, K., Zaninović, T., van den Bosch, K., Lühr, T., Orlik, N., Fitzpatrick, D., Sarampalis, A., Aumond, P., Lavandier, C., Moshona, C.C., Lepa, S., Fiebig, A., Papadakis, N.M., Stavroulakis, G.E., Sudarsono, A.S., Sarwono, S.J., Puglisi, G.E., Jafari, F., Astolfi, A., Shtrepi, L., Nagahata, K., Jo, H.I., Jeon, J.Y., Lam, B., Chieng, J., Ooi, K., Hong, J.Y., Monteiro Antunes, S., Alves, S., de Ulhoa Carvalho, M.L., Michalski, R.L.X.N., Kogan, P., Vida Manzano, J., García Quesada, R., Suárez Silva, E., Almagro Pastor, J.A., Nilsson, M.E., Axelsson, ., Gan, W.S., Watcharasupat, K.N., Jaratjarungkiat, S., Ong, Z.T., Dökmeci Yörükoğlu, P.N., Erçakmak Osma, U.B., Nguyen, T.L., 2024. Soundscape descriptors in eighteen languages: Translation and validation through listening experiments. Applied Acoustics 224, 110109. doi:10.1016/j.apacoust.2024.110109.