ALS / SVD++ 개념

염은지

1. MF 모델 (ALS)

- **Collaborative Filtering**
 - 다른 유저의 정보까지 종합적으로 고려한 추천
 - A와 비슷한 과거, 선호를 지닌 B는 앞으로도 A와 비슷한 아이템을 좋아할 것이다
- - Rating (interaction) matrix를 Latent User / Item factor로 분해
 - User factor와 Item factor를 다시 곱하여 (Matrix completion) 누락된 Rating elements 추정
- MF for Implicit Feedback Datasets
 - o R (rating)을 P와 C의 표현으로 치환
 - P (preference): interaction 발생 유무
 - C (confidence): interaction 횟수에 비례한 가중치 (alpha는 hyper param)

$$p_{ui} = \begin{cases} 1 & if \ r_{ui} > 0 \\ 0 & if \ r_{ui} = 0 \end{cases} \qquad c_{ui} = 1 + \alpha r_{ui}$$

- **Loss Function**
 - 앞 수식은 prediction error
 - 뒤 수식은 regularization params

$$\min_{x^{*}, y^{*}} \sum_{u,i} c_{ui} (p_{ui} - x_{u}^{\mathsf{T}} y_{i})^{2} + \lambda (\sum_{u} ||x_{u}||^{2} + \sum_{i} ||y_{i}||^{2}) \qquad x_{u}^{\mathsf{T}} y_{i} : predicted \ rating \\ (r_{ui} - x_{u}^{\mathsf{T}} y_{i})^{2} : previous \ loss$$

- - Loss Function에서 X(User)를 학습할 때 Y(Item) 상수로, 반대의 경우도 동일하게 번갈아가며 진행 X와 Y에 대해 각각 미분하여, 해당 함수가 0이 되는 값으로 Latent Factor Update

$$x_u = (Y^T C^u Y + \lambda I)^{-1} Y^T C^u p(u)$$
User Latent Factor Optimizer

$$y_i = (X^T C^i X + \lambda I)^{-1} X^T C^i p(i)$$

Item Latent Factor Optimizer

[Example] 이 표는 잠재 요인 모델 접근방법에 대한 설명을 나타낸 표로 남자 대 여자, Serious 대 Escapist-두 축을 사용하여 사용자들과 영화들 모두의 특성들을 표현했다

$$R \approx P \times Q^T = \hat{R}$$

2. SVD++

- SVD
 - o latent factor 모델 (MF)
 - R 정의

$$\hat{r}_{ui} = \mu + b_i + b_u + q_i^T p_u$$

- $\qquad \qquad \text{Loss Function} \quad \min_{b_*,q_*,p_*} \sum_{(u,i) \in \mathscr{K}} (r_{ui} \mu b_i b_u q_i^T p_u)^2 + \lambda_4 (b_i^2 + b_u^2 + \|q_i\|^2 + \|p_u\|^2)$
- o explicit rating만 고려
 - implicit rating을 고려하게 만들기 위해서는? -> P / C 두개의 표현으로 변경하여 표현 가능
- SVD++
 - 기존의 explicit rating만 고려하는 형식의 SVD를 implicit rating도 함께 이용하도록 확장
 - Pu를 explicit + implicit 표현으로 세밀화
 - R 정의

$$\hat{r}_{ui} = \mu + b_i + b_u + q_i^T \left(p_u + |\mathbf{R}(u)|^{-\frac{1}{2}} \sum_{j \in \mathbf{R}(u)} y_j \right) \qquad \hat{r}_{ui} = \mu + b_i + b_u + q_i^T \left(p_u + |\mathbf{N}^1(u)|^{-\frac{1}{2}} \sum_{j \in \mathbf{N}^1(u)} y_j^{(1)} + |\mathbf{N}^2(u)|^{-\frac{1}{2}} \sum_{j \in \mathbf{N}^2(u)} y_j^{(2)} \right)$$

$$\begin{array}{ll} b_u \leftarrow b_u + \gamma \cdot (e_{ui} - \lambda_5 \cdot b_u) \\ b_i \leftarrow b_i + \gamma \cdot (e_{ui} - \lambda_5 \cdot b_i) \\ q_i \leftarrow q_i + \gamma \cdot (e_{ui} \cdot (p_u + |\mathbf{N}(u)|^{-\frac{1}{2}} \sum_{j \in \mathbf{R}(u)} y_j) - \lambda_6 \cdot q_i) \\ p_u \leftarrow p_u + \gamma \cdot (e_{ui} \cdot q_i - \lambda_6 \cdot p_u) \\ \forall j \in \mathbf{R}(u): \\ y_j \leftarrow y_j + \gamma \cdot (e_{ui} \cdot |\mathbf{R}(u)|^{-\frac{1}{2}} \cdot q_i - \lambda_6 \cdot y_j) \end{array}$$

2. SVD++

- Spark 환경에서 ALS 방식 활용

 - ALS (Alternating least squares)

 사용자와 아이템의 Latent Factor를 한번 씩 번갈아가며 학습

 두 행렬을 한꺼번에 최적화시키는 것은 어렵기 때문에 둘 중 하나를 상수로 고정
 - Error 계산 및 최적화 과정은 Worker node(RDD 연산)에서 진행
- 최적화 구현
 - 논문 수식 직접 구현
 - Least square method 최적화 진행 (sklearn 모델 사용)

[User data / Item data]

shop_prod_id_a bu	pu	sqrt_Iu
A1659552181 0.0 [-0.12]	108875 . 0 . 0	+ 2 . 6457512
A2119235940 0.0 [0.097	54314, -0.0	1.0
A2187867003 0.0 [0.138		
A2196357064 0.0 [0.110		
A2203924988 0.0 [-0.01	5826616, 0	1.0
*		

only showing top 5 rows

уj	qi	shop_prod_id_b bi
[0.09697321, 0.05	[0.10818558, -0.0	A5096606133 0.0
[0.02153944, 0.22	[-0.15400335, 0.1	J6696061506 0.0
[-0.08500709, 0.0	[0.06425026, -0.0	B5105570570 0.0
[0.111369066, -0	[-0.05927827, 0.0	D5086237873 0.0
[-0.037517827, -0	[0.024292057, -0	R13307021390 0.0

[Trainset]

rating	shop_prod_id_b	shop_prod_id_a
3	H10443559447	A1001968973
3	U15349028090	A1058977100
3	B5095005476	A1105753487
12	C5107181031	A111068111
14	G9215291458	A115957563
3	W8438536120	A115957563
3	Y9447238366	A115957563
3	A5086060334	A1245994986
4	E3215151476	A126031447
11	E5102725324	A126031447

only showing top 10 rows

only showing top 5 rows