MAT-269: Estimación sujeto a restricciones sobre μ y Σ

Felipe Osorio

fosorios.mat.utfsm.cl

Departamento de Matemática, UTFSM

Estimadores ML restringidos

Suponga x_1, \ldots, x_n vectores aleatorios IID desde $\mathsf{N}_p(\pmb{\mu}, \pmb{\Sigma})$ y considere:

1. $\mu = \mu_0$ conocido. Entonces,

$$\widehat{\boldsymbol{\Sigma}} = \frac{1}{n} \sum_{i=1}^{n} (\boldsymbol{x}_i - \boldsymbol{\mu}_0) (\boldsymbol{x}_i - \boldsymbol{\mu}_0)^{\top}.$$

2. $\Sigma = \Sigma_0$ conocido. De este modo,

$$\widehat{\mu} = \overline{x}$$
.

3. $\mu = \gamma a$, $\gamma \in \mathbb{R}$ con $a \in \mathbb{R}^p$ conocido. Luego,

$$\widehat{\gamma}_{\Sigma} = rac{oldsymbol{a}^{ op} oldsymbol{\Sigma}^{-1} \overline{oldsymbol{x}}}{oldsymbol{a}^{ op} oldsymbol{\Sigma}^{-1} oldsymbol{a}}.$$

Para Σ desconocido, tenemos:

$$\widehat{\gamma} = \frac{\boldsymbol{a}^{\top} \boldsymbol{S}^{-1} \overline{\boldsymbol{x}}}{\boldsymbol{a}^{\top} \boldsymbol{S}^{-1} \boldsymbol{a}}.$$

¹Ud. lo deberá resolver como parte de la Tarea 1 (Entrega: 4 Mayo).

Estimadores ML restringidos

4. $A\mu=a$, $A\in\mathbb{R}^{q imes p}$, $a\in\mathbb{R}^q$ matrices conocidas. Luego

$$\widehat{\boldsymbol{\mu}}_{\Sigma} = \overline{\boldsymbol{x}} - \boldsymbol{\Sigma} \boldsymbol{A}^{\top} (\boldsymbol{A} \boldsymbol{\Sigma} \boldsymbol{A}^{\top})^{-1} (\boldsymbol{A} \overline{\boldsymbol{x}} - \boldsymbol{a}),$$

para Σ desconocido

$$\widehat{\boldsymbol{\mu}} = \overline{\boldsymbol{x}} - \boldsymbol{S} \boldsymbol{A}^{\top} (\boldsymbol{A} \boldsymbol{S} \boldsymbol{A}^{\top})^{-1} (\boldsymbol{A} \overline{\boldsymbol{x}} - \boldsymbol{a}).$$

5. $\Sigma = \phi V$ con V > 0 conocida y $\phi > 0$. Por tanto,

$$\widehat{\boldsymbol{\mu}} = \overline{\boldsymbol{x}}, \qquad \widehat{\phi} = \frac{1}{p}\operatorname{tr}(\boldsymbol{V}^{-1}\boldsymbol{S}).$$

Matriz de covarianza diagonal

Suponga que

$$oldsymbol{\Sigma} = egin{pmatrix} oldsymbol{\Sigma}_{11} & oldsymbol{\Sigma}_{12} \ oldsymbol{\Sigma}_{21} & oldsymbol{\Sigma}_{22} \end{pmatrix}, \qquad ext{con} \qquad oldsymbol{\Sigma}_{12} = oldsymbol{0} = oldsymbol{\Sigma}_{21}^{ op},$$

y $\mu=(\mu_1^{\top},\mu_2^{\top})^{\top}$. De este modo, tenemos $\theta=(\mu_1,\mu_2,\Sigma_{11},\Sigma_{22})$, así la función de log-verosimilitud adopta la forma:

$$\ell(\boldsymbol{\theta}) = -\frac{np}{2}\log 2\pi - \frac{n}{2}\log |\boldsymbol{\Sigma}| - \frac{1}{2}\sum_{i=1}^{n}(\boldsymbol{x}_i - \boldsymbol{\mu})^{\top}\boldsymbol{\Sigma}^{-1}(\boldsymbol{x}_i - \boldsymbol{\mu}).$$

Note que el estimador ML para μ no depende de Σ , luego $\widehat{\mu}=\overline{x}$. Ahora, usando que

$$|\Sigma| = \begin{vmatrix} \Sigma_{11} & \mathbf{0} \\ \mathbf{0} & \Sigma_{22} \end{vmatrix} = |\Sigma_{11}||\Sigma_{22}|, \qquad \Sigma^{-1} = \begin{pmatrix} \Sigma_{11}^{-1} & \mathbf{0} \\ \mathbf{0} & \Sigma_{22}^{-1} \end{pmatrix}.$$

Matriz de covarianza diagonal

Sigue que la parte relevante de $\ell(\theta)$ es dada por:

$$\ell(\boldsymbol{\theta}) = -\frac{n}{2} \log |\mathbf{\Sigma}_{11}| - \frac{1}{2} \sum_{i=1}^{n} (\mathbf{x}_i - \boldsymbol{\mu}_1)^{\top} \mathbf{\Sigma}_{11}^{-1} (\mathbf{x}_i - \boldsymbol{\mu}_1)$$
$$- \frac{n}{2} \log |\mathbf{\Sigma}_{22}| - \frac{1}{2} \sum_{i=1}^{n} (\mathbf{x}_i - \boldsymbol{\mu}_2)^{\top} \mathbf{\Sigma}_{22}^{-1} (\mathbf{x}_i - \boldsymbol{\mu}_2)$$

que puede ser escrita como:

$$\ell(\boldsymbol{\theta}) = \ell_1(\boldsymbol{\theta}_1) + \ell_2(\boldsymbol{\theta}_2),$$

con
$$oldsymbol{ heta}_j = (oldsymbol{\mu}_j, oldsymbol{\Sigma}_{jj})$$
, para $j=1,2$, y

$$\ell_j(\boldsymbol{\theta}_j) = -rac{n}{2}\log|\mathbf{\Sigma}_{jj}| - rac{1}{2}\operatorname{tr}\mathbf{\Sigma}_{jj}^{-1}\mathbf{Q}_j(\boldsymbol{\mu}_j),$$

donde

$$oldsymbol{Q}_j(oldsymbol{\mu}_j) = \sum_{i=1}^n (oldsymbol{x}_i - oldsymbol{\mu}_j) (oldsymbol{x}_i - oldsymbol{\mu}_j)^ op.$$

Matriz de covarianza diagonal

De ahí que, usando el Resultado 2 de la Sesión 8, obtenemos el estimador ML para Σ :

$$\widehat{oldsymbol{\Sigma}} = egin{pmatrix} \widehat{oldsymbol{\Sigma}}_{11} & \mathbf{0} \ \mathbf{0} & \widehat{oldsymbol{\Sigma}}_{22} \end{pmatrix},$$

con

$$\widehat{\mathbf{\Sigma}}_{jj} = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{x}_i - \overline{\mathbf{x}}_j) (\mathbf{x}_i - \overline{\mathbf{x}}_j)^{\top},$$

para j=1,2, donde $\overline{{\pmb x}}=(\overline{{\pmb x}}_1^{\top},\overline{{\pmb x}}_2^{\top})^{\top}.$

Muestras con parámetros 'enlazados'

Suponga que la matriz de datos X es particionada como:

$$m{X} = egin{pmatrix} m{X}_1 \\ dots \\ m{X}_k \end{pmatrix},$$

donde las filas de $m{X}_i \in \mathbb{R}^{n_i imes p}$ son IID $N_p(m{\mu}_i, m{\Sigma}_{ii})$, para $i=1,\dots,k$.

Las restricciones más comunes son:

- (a) $\Sigma_{11} = \cdots = \Sigma_{kk}$ (digamos, $= \Sigma$).
- (b) $\Sigma_{11} = \cdots = \Sigma_{kk}$ y $\mu_1 = \cdots = \mu_k$.

Muestras con parámetros 'enlazados'

Para el caso en (a) note que podemos escribir:

$$\ell(\boldsymbol{\theta}) = \sum_{i=1}^{k} \ell_i(\boldsymbol{\theta}),$$

donde

$$\ell_i(\boldsymbol{\theta}) = -\frac{n_i}{2} \log |\boldsymbol{\Sigma}| - \frac{1}{2} \operatorname{tr} \boldsymbol{\Sigma}^{-1} \{ \boldsymbol{Q}_i + n_i (\overline{\boldsymbol{x}}_i - \boldsymbol{\mu}_i) (\overline{\boldsymbol{x}}_i - \boldsymbol{\mu}_i)^\top \},$$

Sea

$$oldsymbol{S}_i = rac{1}{n_i} oldsymbol{Q}_i = rac{1}{n_i} \sum_{j=1}^{n_i} (oldsymbol{x}_j - \overline{oldsymbol{x}}_i) (oldsymbol{x}_j - \overline{oldsymbol{x}}_i)^ op,$$

para $i = 1, \ldots, k$. Es decir,

$$\ell(\boldsymbol{\theta}) = -\frac{1}{2} \sum_{i=1}^{k} \left\{ n_i \log |\boldsymbol{\Sigma}| + n_i \operatorname{tr} \boldsymbol{\Sigma}^{-1} (\boldsymbol{S}_i + (\overline{\boldsymbol{x}}_i - \boldsymbol{\mu}_i)(\overline{\boldsymbol{x}}_i - \boldsymbol{\mu}_i)^{\top}) \right\}.$$

Muestras con parámetros 'enlazados'

Como no existe restricciones sobre μ sigue que el MLE de μ es \overline{x}_i $(i=1,\ldots,k)$. Además, considere

$$oldsymbol{W} = \sum_{i=1}^k n_i oldsymbol{S}_i, \qquad n = \sum_{i=1}^k n_i.$$

De este modo, la log-verosimilitud perfilada, es dada por:

$$\ell_*(\mathbf{\Sigma}) = \ell(\widehat{\boldsymbol{\mu}}, \mathbf{\Sigma}) = -\frac{n}{2} \log |\mathbf{\Sigma}| - \frac{1}{2} \operatorname{tr} \mathbf{\Sigma}^{-1} \boldsymbol{W}.$$

De ahí que el MLE para Σ adopta la forma:

$$\widehat{\boldsymbol{\Sigma}} = \frac{1}{n} \boldsymbol{W} = \frac{1}{n} \sum_{i=1}^{k} n_i \boldsymbol{S}_i$$

El caso en (b) es análogo (se deja como Ejercicio).

²Es decir $\widehat{\Sigma}_{ii} = \widehat{\Sigma}$, para $i = 1, \dots, k$.