Perceptron Training Algorithm - Single Output Class

- Initialize the weights and the bias. Also initialize the learning rate $\dot{\alpha}$ (0< $\dot{\alpha}$ \leq 1).
- · Until the final stopping condition is false.
 - for each training pair indicated by s:t.
 - Set each input unit i = 1 to n: X_i = S_i
 - · Calculate the output of the network.

$$y_{in} = b + \sum_{i=1}^{n} x_i w_i$$

$$(y_m) = \begin{vmatrix} 1 & \text{if } y_m > \theta \\ 0 & \text{if } -\theta \leq y_m \leq \theta \\ -1 & \text{if } y_m < -\theta \end{vmatrix}$$

· Weight and bias adjustment:

If
$$y \neq t$$
, then
 $w_i(\text{new}) = w_i(\text{old}) + \alpha t x_i$
 $b(\text{new}) = b(\text{old}) + \alpha t$
else we have
 $w_i(\text{new}) = w_i(\text{old})$

b(new) = b(old)

Perceptron Training Algorithm - Multiple Output Class

- Initialize the weights and the bias. Also initialize the learning rate $\dot{\alpha}$ (0< $\dot{\alpha} \leq$ 1).
- · Until the final stopping condition is false.
 - for each training pair indicated by s:t.
 - Set each input unit i = 1 to n: X_i = S_i
 - · Calculate the output of the network.

$$y_{ng} = b_j + \sum_{i=1}^{n} x_i w_{ij}$$
 $y_j = f(y_{ni}) = \begin{vmatrix} 1 & \text{if } y_{ni} > \theta \\ 0 & \text{if } -\theta \le y_{ni} \le \theta \\ -1 & \text{if } y_{ni} \le \theta \end{vmatrix}$

· Weight and bias adjustment:

If
$$t_i \neq y_i$$
, then
 $w_k(\text{new}) = w_k(\text{old}) + \alpha t_i x_i$
 $b_i(\text{new}) = b_i(\text{old}) + \alpha t_i$
else, we have
 $w_k(\text{new}) = w_k(\text{old})$
 $b_i(\text{new}) = b_i(\text{old})$

Perceptron Network Testing Algorithm

- The initial weights to be used here are taken from the training algorithms (the final weights obtained during training).
- · For each input vector X to be classified, perform the following
 - Calculate the net input of the unit.
 - Obtain the response of output unit.

$$\underline{y_{in}} = \sum_{i=1}^{n} x_{i} \underline{w_{i}}$$

$$y = f(y_{in}) = \begin{cases}
1 & \text{if } y_{in} > \theta \\
0 & \text{if } -\theta \le y_{in} \le \theta \\
-1 & \text{if } y_{in} < -\theta
\end{cases}$$

Perceptron Learning Rule

- In case of the perceptron learning rule, the learning signal is the difference between the calculated output and actual (target) output of a neuron.
- The output "y" is obtained on the basis of the net input calculated and activation function being applied over the net input.

$$\underline{y_{in}} = b + \sum_{i=1}^{n} x_i w_i$$

$$\underline{y} = f(y_{in}) = \begin{cases} 1 & \text{if } y_{in} > \theta \\ 0 & \text{if } -\theta \le y_{in} \le \theta \\ -1 & \text{if } y_{in} < -\theta \end{cases}$$

· Weights are updated using the formula

If
$$\underline{y \neq t}$$
, then
$$\underline{w(\text{new})} = w(\text{old}) + \underline{\alpha t x} \quad (\alpha - \text{learning rate})$$
else, we have
$$w(\text{new}) = w(\text{old})$$

AND function using Perceptron Rule Solved Example

- The perceptron network, which uses perceptron learning rule, is used to train the AND function.
- The input patterns are presented to the network one by one.
- When all the four input patterns are presented, then one epoch is said to be completed.
- · The initial weights and threshold are set to zero.
- · The learning rate a is set equal to 1.

x ,	X ₂	t
1	1	1
1	-1	-1
-1	1	-1
-1	-1	-1

AND function using Perceptron Rule Solved Example

$$y_{in} = b + x_1 w_1 + x_2 w_2 \qquad y = f(y_{in}) = \begin{cases} 1 & \text{if } y_{in} > 0 \\ 0 & \text{if } y_{in} = 0 \\ -1 & \text{if } y_{in} < 0 \end{cases} \qquad \frac{\Delta w_1 = \alpha t x_1;}{\Delta w_2 = \alpha t x_2;}$$

$$\frac{\Delta w_2 = \alpha t x_2;}{\Delta b} = \alpha t$$
Input Target Net input Calculated weight changes were change

Ing	put	Target	Net input	Calculated	We	ight change	es		Weights	
x, ~	X, -	(t)	(y_)	output (y)	Δw_i	Δw_z	Δb	w, (0	w, 0	b 0)
EPOCH-	1									
1	1	1	0	0	1	1	1	1	1	1
1	-1	-1	1	1	-1	1	-1	0	2	0
-1	1	-1	2	1	+1	-1	-1	1	1	-1
-1	-1	-1	-3	-1	0	0	0	10	1	-1

AND function using Perceptron Rule Solved Example

$$y_{in} = b + x_1 w_1 + x_2 w_2$$

$$0 + |x \cdot 0| + |x \cdot 0| = 0$$

$$y = f(y_{in}) = \begin{cases} 1 & \text{if } y_{in} > 0 \\ 0 & \text{if } y_{in} = 0 \\ -1 & \text{if } y_{in} < 0 \end{cases}$$

$$\frac{\Delta w_1}{\Delta w_2} = \alpha t x_2;$$

$$\frac{\Delta b}{\Delta b} = \alpha t$$

NEW YORK WAS A STORY OF THE PARTY OF THE PAR			5			and the same				
Input		Townst	Net input	Calculated	We	ight change	25		Weights	
x, ~	x, ~	Target (t) ✓	(y_)	output (y)	Δw_i	Δw_z	Δb	w, (0	w, 0	b 0)
EPOCH-1				174				- London		
V1	1	1	00	0	1	1	1_	1	1	1
1	-1	-1	1	1	-1	1	-1	0	2	0
1-1	1	-1	2	1	+1	-1	-1	1	1	-1
V-1	-1	-1	- 3	-1	0	0	0	1	1	-1
EPOCH-2										
1	1	1	1	1	0	0	0	1	1	-1
1	-1	- 1	-1	-1	0	0	0	1	1	-1
-1	1	-1	-1	-1	0	0	0	1	1	-1
-1	-1	-1	-3	-1	0	0	0	1	1	-1

AND function using Perceptron Rule Solved Example

WHAT IS BIAS ..??

- · Bias is one of the important terminologies.
- · Often we add bias while creating any model in the artificial neural network.
- In a Neural network, increase in weight increases the steepness of activation function.
- · Whereas bias is used to delay the triggering of the activation function.

Perceptron Network (Rule) Solved Example

- Find the weights required to perform the following classification using perceptron network.
- The vectors (1, 1, 1, 1) and (-1, 1 1, -1) are belonging to the class 1, vectors (1, 1, 1, -1) and (1, -1, -1, 1) are belonging to the class -1.
- · Assume learning rate as 1
- · and Initial weights as 0.

		Target			
X,	Х,	X,	· X	b	(t)
1	1	1	1	1	1
-1	1	-1	-1	1	1
1	1	1	-1	1	-1
1	-1	-1	1	1	-1

Perceptron Network (Rule) Solved Example

				Input	ts	Tarnet	Net	output		Wei	ght cha	nges			1	Weights		
	$x_1 w_1 + x_2 w_3 + x_4 w_4$, z,		x,	Target (f)	(y _n)	(h)	$(\Delta w_{_{\rm I}}$	ΔW_{2}	ΔW_{\pm}	ΔW_{a}	∆b)	W, (0	W,	W, 0	W,	b 0)
		EP	OCH-1															
		4(1	1	1	1	1	0	0	1	1	1	1	1	1	1	1	1	1
11	f a in	- V(-	1 1	-1	-1	1	-1	-1	-1	1	-1	-1	1	0	2	0	0	2
20 10	1 if y _n		1	1 1	-1	-1	4	1	-1	-1	-1	1	-1	-1	1	-1	1	1
$f(y_n) =$			-1	-1	1	-1	1	1	-1	1	1	-1	-1	-2	2	0	. 0	-
	-1 if y _n	<0 EF	OCH-2	2														
		V(1	1	1	1	1	0	0	1	1	1	1	1	-1	3	1	1	
Δw_1	= \alpha tx_;	V	1 1	1 -1	-1	1-1-1	3	1	0	0	0	0	0	-1	3	1	- 1	
Aur	= atx ₂ ;	H	1	1 1	-1	-1	4	1	-1	-1	1		-1	-2	2	0	2	
115355		-11	-1	1 -1	1	-1	-2	-1	0	. 0	0	0	0	-2	2	0	2	
Δw _g :	= $\alpha t x_3$;	EF	OCH-3	1														
Δw_4	= crtx ₄ ;	41		1	1	1	2	1	8	0	8	0	0	-2	2	0	2	
Δb		4	1 1	-1	-1	1	2	1	8	0	0	. 0	0	-2	2	0	2	
130	- 661	1	-	1 1	-1	-1	-2	-1	0	.0	0	0	0	-2	2	0	2	
		10	-1	-1	1	-1	-2	-1	0	0	0	0	0	(-2	2	0	2	-

```
Step 2: Philialine the network parameters
        ci) Epochs (training (terators)
        (ii) bias input (bias=1)
        (111) learning rate (0 to1)
        (iv) Input weights & blas Weights (N1, N2, Na)
Steps: Start the training process
      For Each Iteration (Epochs)
         For Each input instances
           3.1 Compute the Summation
                  for) = x, + 2, + x2 + N2 + Bas + Na
            3-2 Apply activation function
                    ( unit step; sigmoid)
                   your = { 1 f(x) >0
                            0 f(x) = 0
           3.3 Update input weights & bias weights
                    Error = y - Your
                    W1 = W1 + (1) # ETTOY # 1/4
                                            Input
                              Learning
                    W2 = W2 + (1) * error * ×2-
                   No = Wo + (E) * orrer * blas
```

Perceptron Network (Rule) Solved Example

Back Propagation Solved Example - 1

 Assume that the neurons have a sigmoid activation function, perform a forward pass and a backward pass on the network.
 Assume that the actual output of y is 0.5 and learning rate is 1.
 Perform another forward pass.

Forward Pass: Compute output for y3, y4 and y5.

$$a_{j} = \sum_{j} (w_{i,j} * x_{i}) \qquad y_{j} = F(a_{j}) = \frac{1}{1 + e^{-a_{j}}}$$

$$a_{1} = (w_{13} * x_{1}) + (w_{23} * x_{2}) \checkmark$$

$$= (0.1 * 0.35) + (0.8 * 0.9) = 0.755$$

$$y_{3} = f(a_{1}) = 1/(1 + e^{-0.755}) = 0.68$$

$$a_{2} = (w_{14} * x_{1}) + (w_{24} * x_{2}) \checkmark$$

$$= (0.4 * 0.35) + (0.6 * 0.9) = 0.68$$

$$y_{4} = f(a_{2}) = 1/(1 + e^{-0.68}) = 0.6637$$

$$a_{3} = (w_{35} * y_{3}) + (w_{45} * y_{4}) \checkmark$$

$$= (0.3 * 0.68) + (0.9 * 0.6637) = 0.801 \checkmark$$

$$y_{5} = f(a_{3}) = 1/(1 + e^{-0.801}) = 0.69 \text{ (Network Output)}$$

Back Propagation Solved Example - 1

Error =
$$y_{\text{target}} - y_5 = -0.19$$

Forward Pass: Compute output for y3, y4 and y5.

$$a_{j} = \sum_{j} (w_{i,j} * x_{i}) \qquad y_{j} = F(a_{j}) = \frac{1}{1 + e^{-a_{j}}}$$

$$a_{1} = (w_{13} * x_{1}) + (w_{23} * x_{2}) \checkmark$$

$$= (0.1 * 0.35) + (0.8 * 0.9) = 0.755$$

$$y_{3} = f(a_{1}) = 1/(1 + e^{-0.755}) = 0.68$$

$$a_{2} = (w_{14} * x_{1}) + (w_{24} * x_{2}) \checkmark$$

$$= (0.4 * 0.35) + (0.6 * 0.9) = 0.68$$

$$y_{4} = f(a_{2}) = 1/(1 + e^{-0.68}) = 0.6637$$

$$a_{3} = (w_{35} * y_{3}) + (w_{45} * y_{4}) \checkmark$$

$$= (0.3 * 0.68) + (0.9 * 0.6637) = 0.801 \checkmark$$

$$y_{5} = f(a_{3}) = 1/(1 + e^{-0.801}) = 0.69 \text{ (Network Output)}$$

Back Propagation Solved Example - 1

· Each weight changed by:

$$\frac{\Delta w_{ji} = \eta \delta_j o_{j.}}{\delta_j = o_j (1 - o_j)(t_j - o_j)}$$
 if j is an output unit
$$\delta_j = o_j (1 - o_j) \sum_k \delta_k w_{kj}$$
 if j is a hidden unit

- where η is a constant called the learning rate
- · tj is the correct teacher output for unit j
- δj is the error measure for unit j

Back Propagation Solved Example - 1

 Δw_{14} $\eta \delta_4 x_1 = 1 * -0.0082 * 0.35 = -0.00287$ w_{14} (new) = $\Delta w_{14} + w_{14}$ (old) = -0.00287 + 0.4 = 0.397

· Similarly, update all other weights

i	j	\mathbf{w}_{ij}	δ	x _i	η	Updated w _{ij}
1	3	0.1	-0.00265	0.35	1	0.0991
2	3	0.8	-0.00265	0.9	1	0.7976
1	4	0.4	-0.0082	0.35	1	0.3971
2	4	0.6	-0.0082	0.9	1	0.5926
3	5	0.3	-0.0406	0.68	1	0.2724
4	5	0.9	-0.0406	0.6637	1	0.8731

Back Propagation Solved Example - 1

$$Error = y_{target} - y_5 = -0.182$$

Forward Pass: Compute output for y3, y4 and y5.

$$a_j = \sum_j (w_{i,j} * x_i) \qquad yj = F(aj) = \frac{1}{1 + e^{-\alpha_j}}$$

$$a_1 = (w_{13} * x_1) + (w_{23} * x_2)$$

= (0.0991 * 0.35) + (0.7976 * 0.9) = 0.7525
 $y_3 = f(a_1) = 1/(1 + e^{-0.7825}) = 0.6797$

$$a_2 = (w_{14} * x_1) + (w_{24} * x_2)$$

$$= (0.3971 * 0.35) + (0.5926 * 0.9) = 0.6723$$

$$y_4 = f(a_2) = 1/(1 + e^{-0.6723}) = 0.6620$$

$$a_2 = (w_{10} * y_{10}) + (w_{10} * y_{10})$$

$$a_3 = (w_{35} * y_3) + (w_{45} * y_4)$$

= $(0.2724 * 0.6797) + (0.8731 * 0.6620) = 0.7631$
 $y_5 = f(a_3) = 1/(1 + e^{-0.7631}) = 0.6820$ (Network Output)

Assume that the neurons have a sigmoid activation function, perform a forward pass and a backward pass on the network.

Assume that the actual output of y is 1 and learning rate is 0.9.

Perform another forward pass.

Back Propagation Solved Example - 2

$$Error = y_{target} - y_6 = 0.526$$

Forward Pass: Compute output for y4, y5 and y6.

$$a_j = \sum_i (\underline{w_{i,j} * x_i}) \qquad \underline{yj} = F(aj) = \frac{1}{1 + e^{-a_j}}$$

$$a_4 = (w_{14} * x_1) + (w_{24} * x_2) + (w_{34} * x_3) + \theta_4$$

= $(0.2 * 1) + (0.4 * 0) + (-0.5 * 1) + (-0.4) = -0.7$
 $O(H_4) = y_4 = f(a_4) = 1/(1 + e^{0.7}) = 0.332$

$$\begin{array}{l} (\mathbf{a}_6) = (\mathbf{w}_{46} * \mathbf{H}_4) + (\mathbf{w}_{56} * \mathbf{H}_5) + \theta_6 \\ = (-0.3 * 0.332) + (-0.2 * 0.525) + 0.1 = -0.105 \\ \mathbf{O}(\mathbf{O}_6) = \mathbf{y}_6 = \mathbf{f}(\mathbf{a}_6) = 1/(1 + \mathbf{e}^{0.105}) = \mathbf{0.474} \end{array}$$

Each weight changed by:

$$\Delta w_{ji} = \eta \delta_j o_i$$

$$\sqrt{\delta_j} = o_j (1 - o_j) (t_j - o_j) \qquad \text{if } j \text{ is an output unit}$$

$$\sqrt{\delta_j} = o_j (1 - o_j) \sum_k \delta_k w_{kj} \qquad \text{if } j \text{ is a hidden unit}$$

- where η is a constant called the learning rate
- · tj is the correct teacher output for unit j
- δj is the error measure for unit j

Back Propagation Solved Example - 2

Similarly, update all other weights

i	j	W _{ij}	δί	x _i	η	Updated w _{ij}
4	6	-0.3	0.1311	0.332	0.9	-0.261
5	6	-0.2	0.1311	0.525	0.9	- <mark>0.138</mark>
1	4	0.2	-0.0087	1	0.9	0.192
1	5	-0.3	-0.0065	1	0.9	-0.306
2	4	0.4	-0.0087	0	0.9	0.4
2	5	0.1	-0.0065	0	0.9	0.1
3	4	-0.5	-0.0087	1	0.9	-0.508
3	5	0.2	-0.0065	1	0.9	0.194

Back Propagation Solved Example - 2

· Similarly, update bais weights

$\theta_{\mathbf{j}}$	Previous θ_{j}	δ_{j}	η	Updated θ_{j}		
Θ_6	0.1	0.1311	0.9	0.218		
Θ_5	0.2	-0.0065	0.9	0.194		
Θ_4	-0.4	-0.0087	0.9	-0.408		

 $O(O_8) = y_8 = f(a_8) = 1/(1 + e^{-0.081}) = 0.515$ (Network Output)