Université Paris-Sud - Topologie et Calcul Différentiel Année 2020-2021

Examen du mercredi 12 Mai 2021

Durée: 3 heures Départ 13h30

Les téléphones portables doivent obligatoirement être rangés éteints. Les documents et tout autre appareil électronique sont interdits.

Dans cet énoncé, \mathbb{R}^n est automatiquement muni de la norme euclidienne $|| \cdot ||_2$, et de la distance euclidienne. On note $\langle x,y\rangle$ le produit scalaire entre x et $y\in\mathbb{R}^n$. Et on n'hésitera pas à noter 0 au lieu de $(0, 0, ..., 0) \in \mathbb{R}^n$.

Exercice 1.

On définit sur \mathbb{R}^2 (où les variables sont notées r et θ) les deux fonctions suivantes, appelées X et Y,

$$X(r,\theta) = 2r\cos(\theta) \text{ et } Y(r,\theta) = 3r\sin(\theta).$$
 (1)

- 1. Calculer les dérivées partielles $\frac{\partial X}{\partial r}$, $\frac{\partial X}{\partial \theta}$, $\frac{\partial Y}{\partial r}$, et $\frac{\partial Y}{\partial \theta}$. 2. En déduire que lla fonction $F: \mathbb{R}^2 \to \mathbb{R}^2$ définie par $F(r, \theta) = (X(r, \theta), Y(r, \theta))$ est différentiable, et calculer le déterminant jacobien de $DF(r,\theta)$.
- 3. Démontrer qu'il existe un voisinage ouvert V de (1,0) dans \mathbb{R}^2 et un voisinage ouvert W de (2,0) dans \mathbb{R}^2 tels que $F:V\to W$ soit un difféomorphisme de classe C^1 .
- 4. Quelle est la différentielle de l'application réciproque F^{-1} au point (2,0)?
- 5. Démontrer que l'équation $X(r,\theta) + Y(r,\theta) = 2$ a une infinité non dénombrable de solutions $(r,\theta) \in \mathbb{R}^2$.

Exercice 2.

On se donne une fonction f de classe C^2 sur \mathbb{R}^2 , et on suppose qu'elle vérifie l'équation $\Delta f = 1$, ce qui signifie que

$$\frac{\partial^2 f}{\partial x^2}(x,y) + \frac{\partial^2 f}{\partial y^2}(x,y) = 1 \text{ pour tout } (x,y) \in \mathbb{R}^2.$$
 (2)

On veut démontrer que f ne peut pas avoir de maximum local en (0,0), et on procède par contradiction en supposant qu'au contraire f a un maximum local en (0,0).

- 1. Rappeler pourquoi la différentielle Df(0,0) est nulle.
- 2. On note H l'application Hessienne de f en (0,0) (qu'on verra comme une application bilinéaire symétrique définie sur $\mathbb{R}^2 \times \mathbb{R}^2$; si vous préférez utiliser la matrice, ne vous gênez pas mais annoncez-le). On note $e_1=(1,0)$ et $e_2=(0,1)$ les deux éléments de la base canonique. Prouver que $H(e_1, e_1) + H(e_2, e_2) = 1$.
- 3. En déduire qu'il existe un vecteur unitaire $\xi \in \mathbb{R}^2$ tel que $H(\xi,\xi) > 0$.
- 4. En déduire la contradiction souhaitée.

Exercice 3.

On condidère les fonctions f_1 et f_2 , de \mathbb{R}^3 dans \mathbb{R} , définies par les formules

$$f_1(x, y, z) = \exp(x + y + z) \tag{3}$$

$$f_2(x, y, z) = x^3 - y^3 + z + z^3. (4)$$

- 1. Expliquez, sans faire de calcul, pourquoi ces deux fonctions sont différentiables sur \mathbb{R}^3 .
- 2. Calculer les deux vecteurs $\nabla f_1(x,y,z)$ et $\nabla f_2(x,y,z)$.
- 3. Vérifier que le déterminant de la matrice 2×2 dont les coefficients sont les dérivées partielles $\frac{\partial f_1}{\partial u}$, $\frac{\partial f_1}{\partial z}$, $\frac{\partial f_2}{\partial u}$, et $\frac{\partial f_2}{\partial z}$ est toujours non nul.

TSVP

4. On se donne maintenant $(x_0, y_0, z_0) \in \mathbb{R}^3$, et on pose $a_0 = f_1(x_0, y_0, z_0)$, $b_0 = f_2(x_0, y_0, z_0)$, et

$$\Gamma = \{(x, y, z) \in \mathbb{R}^3 : f_1(x, y, z) = a_0 \text{ et } f_2(x, y, z) = b_0 \}.$$

Ecrire Γ sous la forme $\Gamma = \{(x, y, z) \in \mathbb{R}^3 ; F(x, y, z) = 0\}$, pour une fonction F que l'on écrira explicitement.

- 5. Démontrer qu'il existe un voisinage V du point (x_0, y_0, z_0) dans \mathbb{R}^3 , et une fonction $\varphi = (\varphi_1, \varphi_2)$ définie dans un voisinage de x_0 dans \mathbb{R} , et à valeurs dans \mathbb{R}^2 , tels que pour tout $(x, y, z) \in V$, $(x, y, z) \in \Gamma$ si et seulement si $y = \varphi_1(x)$ et $z = \varphi_2(x)$.
- 6. On garde (x_0, y_0, z_0) , V, et φ comme ci-dessus. Déduire de ce qui précède que $f_1(x, \varphi_1(x), \varphi_2(x)) = a_0$ et $f_2(x, \varphi_1(x), \varphi_2(x)) = b_0$ pour tout x dans un voisinage de x_0 .
- 7. Calculer les dérivées des fonctions $x \to f_1(x, \varphi_1(x), \varphi_2(x))$ et $x \to f_2(x, \varphi_1(x), \varphi_2(x))$ en fonctions de celles des φ_i et des gradients des f_i calculés plus haut.
- 8. On suppose que $x_0 = y_0 = z_0 = 0$ pour simplifier les calculs. En déduire, en utilisant la question précédente, les valeurs de $\varphi_1'(0)$ et $\varphi_2'(0)$.

Exercice 4. On se donne une fonction différentiable $f: \mathbb{R}^n \to \mathbb{R}$, et on dit que $f \in USC$ (pour uniformément strictement convexe) quand il existe une constante $\eta > 0$ telle que

$$f((x+y)/2) \le \frac{1}{2}(f(x) + f(y)) - \eta ||x - y||^2 \text{ pour tous } x, y \in \mathbb{R}^n.$$
 (5)

[On rappelle que $||\cdot||$ est la norme euclidienne.]

- **1.** Un exemple. Montrer que si $f : \mathbb{R} \to \mathbb{R}$ est de classe C^2 et si de plus $f''(x) \ge 1$ pour tout $x \in \mathbb{R}$, alors $f \in USC$ et f vérifie (5) avec une valeur de η qu'on calculera.
- **2.** Un autre exemple. On considère maintenant $f: \mathbb{R}^n \to \mathbb{R}$ définie par $f(x) = ||x||^2$. Cacluler $\frac{1}{2}(f(x) + f(y)) f((x+y)/2)$ en en déduire que $f \in USC$ et f vérifie (5) avec une valeur de η qu'on calculera.

On se donne à partir de maintenant $f: \mathbb{R}^n \to \mathbb{R}$ différentiable et qui vérifie (5).

- **3.** Vérifier que f est convexe, et en déduire que $f(x) \ge f(0) + \langle \nabla f(0), x \rangle$ pour $x \in \mathbb{R}^n$. [Faites un dessin si vous ne vous souvenez plus du cours.]
- **4.** On pose $g(x) = f(x) f(0) \langle \nabla f(0), x \rangle$. Démontrer que g vérifie encore (5), avec la même constante η . Et noter que g(0) = 0 et $g(x) \ge 0$ pour tout x.
- **5.** En déduire, en lui appliquant (5) avec y = 0, que $g(x) \ge 2\eta ||x||^2$.
- **6.** Démontrer que $\lim_{||x|| \to +\infty} f(x) = +\infty$.
- 7. En déduire (en utilisant un résultat du cours) que f admet au moins un minimum, c'est-à-dire qu'il existe $x_0 \in \mathbb{R}^n$ tel que $f(x_0) \leq f(x)$ pour tout $x \in \mathbb{R}^n$.
- 8. Démontrer l'unicité de x_0 . Indication : si $x_1 \neq x_0$ est aussi tel que $f(x_1) \leq f(x)$ pour tout $x \in \mathbb{R}^n$, appliquer (5) pour obtenir une contradiction. A nouveau un petit dessin aide.
- 9. Question bonus. On peut aussi démontrer l'existence de x_0 de la manière suivante, qui a l'avantage de marcher quand f est définie sur un espace de dimension infinie.
- **a.** On pose $M = \inf_{x \in \mathbb{R}^n} f(x)$. Démontrer que $M > -\infty$.
- **b.** On se choisit pour chaque $k \ge 0$ un point $y_k \in \mathbb{R}^n$ tel que $f(y_k) \le M + 2^{-k}$. Démontrer en appliquant (5) à y_k et y_l , puis en utilisant la définition de M, que pour tout choix de k et l, $\eta ||y_k y_l||^2 \le (2^{-k} + 2^{-l})/2$.
- **c.** En déduire que la suite $\{y_k\}$ est une suite de Cauchy.
- **d.** On pose $x_0 = \lim_{k \to +\infty} y_k$; vérifier que $f(x_0) = M$ et conclure.