Assignment - 9

Task 1

1. You survey households in your area to find the average rent they are paying. Find the standard deviation from the following data:

\$1550, \$1700, \$900, \$850, \$1000, \$950.

Solution:

Formula of Mean:

$$\bar{X} = \frac{1}{n} * \sum_{i=1}^{n} x_i$$

Calculation of Mean:

$$\bar{X} = \frac{(X1+X2+X3+X4+X5+X6)}{n}$$

The values of X1 = 1550, X2 = 1700, X3 = 900, X4 = 850, X5 = 1000 & <math>X6 = 950

The number of elements, n=6

$$\overline{X} = \frac{(1550 + 1700 + 900 + 850 + 1000 + 950)}{6}$$

$$\bar{X} = 1158.33$$

Formula of Variance:

$$S^2 = \frac{\sum (X - \bar{X})^2}{N - 1}$$

Calculation of Variance:

	X	$X-\overline{X}$	$(X-\bar{X})^2$
1	1550	391.67	153405.38
2	1700	541.67	293406.38
3	900	-258.33	66734.38
4	850	-308.33	95067.38
5	1000	-158.33	25068.38

6	950	-208.33	43401.38
Sum	6950		677083.28
Mean (\overline{X})	1158.33		
N	6		

Variance (
$$S^2$$
) = $\frac{677083.28}{(6-1)}$

Variance (S^2) = 135416.65

Formula of Standard Deviation:

$$S = \sqrt{\frac{\sum (X - \bar{X})^2}{N - 1}}$$

Calculation of Standard Deviation:

Standard Deviation (S) = $\sqrt{135416.65}$

Standard Deviation (S**) =** 367.99

	X	$X-\overline{X}$	$(X-\overline{X})^2$	
1	1550	391.67	153405.38	
2	1700	541.67	293406.38	
3	900	-258.33	66734.38	
4	850	-308.33	95067.38	
5	1000	-158.33	25068.38	
6	950	-208.33	43401.38	
Sum	6950		677083.28	
Mean (\overline{X})	1158.33			
N	6			
Variance (S ²)	135416.65			
Standard Deviation (S)	367.99			

2. Find the variance for the following set of data representing trees in California (heights in feet):

3, 21, 98, 203, 17, 9

Solution:

Formula of Mean:

$$\bar{X} = \frac{1}{n} * \sum_{i=1}^{n} x_i$$

Calculation of Mean:

$$\bar{X} = \frac{(X1+X2+X3+X4+X5+X6)}{n}$$

The values of X1= 3, X2=21, X3=98, X4=203, X5=17 & X6=9

The number of elements, n=6

$$\bar{X} = \frac{(3+21+98+203+17+9)}{6}$$

$$\bar{X} = 58.5$$

Formula of Variance:

$$S^2 = \frac{\sum (X - \bar{X})^2}{N - 1}$$

Calculation of Variance:

	X	$X-\overline{X}$	$(X-\overline{X})^2$
1	3	-55.5	3080.25
2	21	-37.5	1406.25
3	98	39.5	1560.25
4	203	144.5	20880.25
5	17	-41.5	1722.25
6	9	-49.5	2450.25
Sum	351		31099.5
Mean (\overline{X})	58.5		
N	6		
Variance (S ²)	6219.9		

Variance (
$$S^2$$
) = $\frac{31099.5}{(6-1)}$

Variance (
$$S^2$$
) = 6219.9

3. In a class on 100 students, 80 students passed in all subjects, 10 failed in one subject, 7 failed in two subjects and 3 failed in three subjects. Find the probability distribution of the variable for number of subjects a student from the given class has failed in.

Solution:

The probability of failing in 0 subjects, $P(X = 0) = \frac{80}{100} = 0.8$

The probability of failing in 1 subjects, $P(X = 1) = \frac{10}{100} = 0.1$

The probability of failing in 2 subjects, $P(X = 2) = \frac{7}{100} = 0.07$

The probability of failing in 3 subjects, $P(X = 3) = \frac{3}{100} = 0.03$

The probability distribution can be shown as:

X	0	1	2	3
P(X)	8.0	0.1	0.07	0.03

Task 2:

1. A test is conducted which is consisting of 20 MCQs (multiple choices questions) with every MCQ having its four options out of which only one is correct. Determine the probability that a person undertaking that test has answered exactly 5 questions wrong.

Solution:

Here, No of Trials = n = 20

Count of success = k = 5,

Count of getting a wrong answer = n - k = 20 - 5 = 15.

Here the probability of success = probability of giving a right answer = $q = \frac{1}{4}$

Hence, the probability of failure = probability of giving a wrong answer= $p = 1 - q = 1 - \frac{1}{4} = \frac{3}{4}$

Formula of Binomial Distribution:

$$b(k; n, P) = nCk * P^k * (1 - P)n - k$$

$$P(k) = \frac{n!}{(n-k)k!} * (p)^k * (q)^{n-k}$$

When we substitute these values in the formula for Binomial distribution we get,

$$P(k) = \frac{20!}{15! * 5!} * (\frac{3}{4})^5 * (\frac{1}{4})^{15}$$

$$P(k) = 0.0000034265$$

Thus, the required probability is 0.0000034265 approximately.

2. A die marked A to E is rolled 50 times. Find the probability of getting a "D" exactly 5 times. 2. A die marked A to E is rolled 50 times. Find the probability of getting a "D" exactly 5 times.

Solution:

Here, No of Trials = n = 50

Count of success = k = 5,

Count of getting a wrong answer = n - k = 50 - 5 = 45

The probability of success = probability of getting a "D" = $q = \frac{1}{5}$

Hence, the probability of failure = probability of not getting a "D" = $p = 1 - q = 1 - \frac{1}{5} = \frac{4}{5}$

Formula of Binomial Distribution:

$$b(k; n, P) = nCk * P^k * (1 - P)n - k$$

$$P(k) = \frac{n!}{(n-k)k!} * (p)^k * (q)^{n-k}$$

When we substitute these values in the formula for Binomial distribution we get,

$$P(k) = \frac{50!}{45! * 5!} * (\frac{1}{5})^5 * (\frac{4}{5})^{45}$$

$$P(k) = 0.02953$$

Thus, the required probability is 0.02953 approximately.

3. Two balls are drawn at random in succession without replacement from an urn containing 4 red balls and 6 black balls.

Solution:

Find the probabilities of all the possible outcomes.

Red balls (R) = 4 Black balls (B) = 6 Total balls (T) = 10

Total ways to draw 2 balls =10 * 9 = 90 ways

Ways to draw both red balls (RR) =4 * 3 = 12 ways

Ways to draw 1 red and 1 black ball (RB) = 4 * 6 = 24 ways

Ways to draw 1 black and 1 red ball (BR) = 6 * 4 = 24 ways

Ways to draw both black balls (BB) = 6 * 5 = 30 ways

The probability of all possible outcomes is:

Probability of drawing both red balls (RR) = $(\frac{4}{10}) * (\frac{3}{9}) = \frac{12}{90} = 0.1333 = 13.33\%$

Probability of drawing 1 red & 1 black ball (RB) = $\left(\frac{4}{10}\right) * \left(\frac{6}{9}\right) = \frac{24}{90} = 0.2666 = 26.67\%$

Probability of drawing 1 black & 1 red ball (BR) = $(\frac{6}{10}) * (\frac{4}{9}) = \frac{24}{90} = 0.2666 = 26.67\%$

Probability of drawing both black balls (BB) = $(\frac{6}{10}) * (\frac{5}{9}) = \frac{30}{90} = 0.3333 = 33.33\%$