AD-AU32 713 NAVAL ACADEMY ANNAPOLIS MD FREQUENCY ANALYSIS USING A MINICOMPUTER.(U) MAY 76 D C BOCH USNA-TSPR-75 F/G 14/2 UNCLASSIFIED NL OF AD A032713 盟 END DATE FILMED

PROBERT THE STATE

SHEQUENCY ANALYSIS USING A MINICOMPLUS

UNITED STATES NAVAL ACADEMY ANNIPOLE, MERINAND United States. Naval Academy. - Trident Scholar project report, no. 75 (1976)

FREQUENCY ANALYSIS USING A MINICOMPUTER.

Trident Scholar Project Report Disearch rept. Midshipman 176 D. C./Boch, Class 1976 U. S. Naval Academy Annapolis, Maryland # USNA-75PR-75 D. A. WRIGHT, MAJ, CAE Electrical Engineering Department EBERHARDT, Professor Electrical, Engineering Department Way Sarting (I) H. M. NEUSTADT, Associate Professor Electrical Engineering Department LIZIBISHTION/AVAILACILITY CODES A.A.V. SH. OF SPECIAL Accepted for Trident Scholar Committee C. W. RECTOR, Chairman 245 600 Date

ABSTRACT

The spectral analysis of waveforms, whether these waves are acoustic or electrical in nature, has evolved into an important aspect of quite a wide variety of scientific endeavors. Utilized primarily by the Navy in the study of underwater sound, frequency analysis also finds utility in research on mechanical vibrations, speech, music, et cetera. Real-time capability is necessary for many of these applications. That is, the transformation must be completed within the time interval over which its sampled data is acquired so that spectral plots may be generated on a continuing basis.

The basis for a computer-aided frequency analysis scheme is known as a Discrete Fourier Transform, or DFT.

The inherent flexibility of a general purpose computer lends itself quite well to the implementation of a high speed adaptation of the DFT, called a Fast Fourier Transform or FFT.

This study was initiated with the aim of determining the fundamental capabilities and limitations of one minicomputer in the development of a spectral plot. Included within this general topic were two fundamental goals:

1) Development of the fastest FFT possible utilizing only the basic capabilities of the PDP-8/E general purpose minicomputer. Successful completion of this objective brought the machine's fundamental limitations for real-time spectral analysis into clear perspective.

2) Investigation of the feasibility of an external hardware "add-on" which would considerably increase the spectral analysis capabilities of the computer. Proving worthwhile, the design of such hardware was launched but not completed, due to time restrictions.

As a result of this study, it became apparent that all three systems (DFT, FFT, FFT hardware) are capable of operation in real time. However, the upper frequency limit for the DFT would be approximately 50 Hz, for the FFT, 500 Hz, and for the FFT hardware, 2500 Hz.

TABLE OF CONTENTS

	Pag
Chapter 1	1
Chapter 2	7
Chapter 3	21
Chapter 4	32
Footnotes	42
Bibliography	43
Appendix A	44
Appendix B	46
Appendix C	53
Appendix D	57
Appendix E	72

CHAPTER ONE: THE DISCRETE FOURIER TRANSFORM

The first step towards developing a frequency analysis system on the PDP-8/E minicomputer involved the Discrete Fourier Transform, or DFT. As the ultimate goal of the research was to develop a real-time analysis capability, it was felt that the DFT would be the logical starting point. This is so primarily for two reasons. First of all, the DFT is the basis for the Fast Fourier Transform (FFT) algorithm. The FFT was to be the main course of study for this analysis. Secondly, the DFT is relatively simple, allowing the opportunity to become thoroughly familiar with the minicomputer, while at the same time, to gain a solid foothold in the understanding of the frequency analysis problem.

The basic approach used in the development of the DFT software was primarily very cautious. In other words, in order to avoid any overflow problems within the programming, triple precision (36 bit word) arithmetic was used. Likewise, as a full field (4096 points) was the simplest to implement, the first DFT was built around this idea.

The Fourier Transform itself is actually quite simple.

The energy proportion, w, present at a specific frequency, &

l, in a waveform of N data points is as given below.

$$w = \sqrt{a^2 + b^2}$$
 where $a+jb = S_{\ell}$ and

$$S_{\ell} = \sum_{n=0}^{N-1} X_n \ell$$
 $j \frac{2\pi}{N} n \ell$ where

Xn = "amplitude" of a given data point.

Since the computer can not distinguish a complex number from a real number, the term

$$e^{j\frac{2\pi}{N}}$$
 must be represented

as $\cos\frac{2\pi}{N}$ + j $\sin\frac{2\pi}{N}$. This necessitates a trigonometric table to be computed and stored in the PDP-8/E's memory. As N = 4096, a 4096 point SINE curve was written into memory, and the COSINE terms were determined by a simple 90° (1/4 field) phase shift of the SINE table.

bue to the uncertainty of the magnitude of each S_ℓ term which would be formed and of the degree of significance which should be maintained throughout each calculation, triple precision arithmetic was developed and utilized at all stages of summation. Thus, the possibility of any overflow was virtually eliminated. Overflow is the result of the addition of two numbers whose sum is greater than the largest word the machine can handle, in this case, 2^{12} or 4096. Hence the sum 3874 + 2521 would not be 6395. Rather, it would be represented as $6395 - 4096 = 2299_{10}$, which is 6395, modulo 4096.

When concerned with both positive and negative numbers in the minicomputer, the seemingly simple triple precision arithmetic can appear somewhat confusing upon application. Double precision arithmetic is available in the Extended Arithmetic Element installed on the PDP-8/E. Thus, only the inclusion of a third, highest order word poses a problem. Consider a double order case. The same principles are involved for triple order precision. If a single precision word, B, is added to the double precision word AHIALO, four cases exist which require an action on the high order word AHI. These cases, as well as the necessary actions, appear in Figure 1.

Figure 1: Triple Precision Operations.

After approximately one and a half months, the DFT was fully operational. In order to determine its effectiveness, several waveforms were sampled by the minicomputer's Analog-to-Digital (A/D) converter. The 4096 sample points were stored in core and the transform begun. In order to assure that the software was running properly, the

resultant S_ℓ for each frequency was displayed on an oscilloscope as that S_ℓ was formed. As a result, the transform could be seen "growing," which was rather impressive to watch, if nothing else. The DFT required nearly five minutes to run to completion. This run-time is based on the computation of only 512 frequencies of the 4096 possible.

The first test waveform was a simple 100 Hz, 10 volt peak-to-peak sine wave. The energy distribution appears in Figure 2. Note that the horizontal axis runs from zero to 512 Hz. The first "blip" at the start of the display is a sync pulse used to trigger the oscilloscope.

Figure 2: DFT of a 100 Hz Sine Wave

As can be seen, the point with the highest magnitude occurs at the frequency of the sinusoidal input, as expected.

The next logical test was a 100 Hz, 10 volt peak-topeak square wave. The resultant energy distribution appears in Figure 3.

Figure 3: DFT of a 100 Hz Square Wave

Energy distributions for other waveforms are shown in Appendix A.

The ability to choose a minimum frequency for the DFT to operate on is probably the greatest advantage of the DFT. For example, if one were only interested in frequencies greater than twenty Hertz, the minimum frequency would be chosen as twenty Hertz, allowing 532 Hz as the upper frequency in one 512 point pass of the program. In addition, if the frequency band of interest were, for example, 125 - 185 Hz, the minimum frequency could be set at 125 Hz and

the program could be halted after the first sixty S_ℓ calculations. In other words, the program would only have to run for 60/512 X five minutes in order to analyze this particular band.

The primary disadvantage of the DFT is its lack of speed, especially when considering the entire spectrum. Considering a one second data acquisition time and perhaps a one second display time (at the very greatest), a transform which takes five minutes to run is wholly unsuitable for any real-time application.

The DFT proved to be a very effective learning tool. The extensive amount of time spent debugging the program later proved valuable when debugging the Fast Fourier Transform software. Also, the actual use of the machine's A/D and D/A converters, real-time clock and Extended Arithmetic Element was a better way to learn of their use than were the handbooks. As the system proved absolutely incapable of running in real-time, further pursuit of the DFT, was not considered worthwhile. However, it became obvious while running test waveforms through the system that a logarithmic scaler on the output data would prove very useful. On further investigation, the idea was found to be infeasible in that nearly all low order significance would be destroyed. Hence, it too was abandoned, and work was started on the FFT.

CHAPTER TWO: THE FAST FOURIER TRANSFORM

The Fast Fourier Transform (FFT) was begun in the hope that it would significantly decrease the amount of time required to process any given waveform. The equations involved are basically the same as those used for calculation of the DFT. However, no transform is actually calculated, in the sense of the DFT. The FFT used (there are several different types) is quite simple on the surface. Basically, what occurs is successive reduction of one DFT into two smaller DFT's until the point is reached where a two point DFT is divided down into two single point DFT's. Actually, these single point DFT's are the relative energy proportions for a particular spectral line. An example of this reduction process for an eight point FFT is shown in Figure 4.

While the DFT is characterized as requiring N² operations to perform, the FFT has the advantage of only needing to perform Nlog₂N operations, where N is the number of points in the transform. The DFT calculations were laid out in the previous chapter. The FFT calculations are best illustrated by Figure 5. \tilde{Z}_a and \tilde{Z}_b are both complex numbers; $e^{mj\theta}$ can be expressed as $cosm\theta+jsinm\theta$. The use of sine and cosine necessitates the compilation of a trigonometric table for storage in the minicomputer. The basic

Figure 4: Reduction Process Involved in an Eight Point FFT.

Figure 5: A Demonstration of the Formation of Two Points Required for the Division of One DFT.

FFT calculation can be expanded as follows.

Assuming,
$$\tilde{Z}_a = A+jB$$
 $\tilde{Z}_b = C+jD$

$$\cos m\theta + j \sin m\theta = X+jY \quad \text{then,}$$

$$\tilde{Z}_a + \tilde{Z}_b = (A+C) = A^*$$

$$+ j(B+D) = jB^*$$

$$(\tilde{Z}_a - \tilde{Z}_b)e^{mj\theta} = [(A-C) \times - (B-D)Y] = C^*$$

$$+ j[(A-C)Y + (B-D)X] = jD^*.$$

Thus, the mathematics portion of the FFT program forms the four terms A', B', C', D'. These terms are then combined as

A' + jB' =
$$\tilde{Z}_{a+1}$$

C' + jD' = \tilde{Z}_{b+1} to form the

new set of DFTs, which will then be ready for division into two other DFT's.

Choosing which two complex numbers are to be combined in the manner of Figure 5 is perhaps the most difficult portion of the FFT algorithm to understand. In the example of Figures 4 and 6, the first word in each of the two four point DFT's is formed through combination of f_0 and f_4 . In this case, $f_0 = A+jB$ where B=0 and $f_4 = C+jD$ where D=0. Then, $a_0 = A+C+j(0)$ and $b_0 = (A-C) \times + j(A-C) \times Likewise$, a_1 and b_1 are formed by properly combining f_1 and f_5 . The first position in the first two point DFT is formed through combination of a_0 and a_2 , and so on. The manner of indexing

is explained further in the next chapter.

Note that the subscripts on the frequency components are out of order. Careful observation shows that the subscripts are in a bit-reversed order. That is, F_4 is in position 1 (4=100₂, 1=001₂). F_6 is in position 3 (6=110₂, 3=011₂), and so on.

Figure 6: Method of Combining Expressions for the FFT.

Bit reversal is easily and uniquely accomplished by use of the buffered I/O. The subscript (actually a core address) is put out on the I/O lines, reversed by means of a cable and put back in on the I/O line. The contents at the original core address are then placed in the correct, bitreversed core address.

Two major obstacles were encountered in the development of the FFT. The first concern was what degree of significance should be maintained in the calculations. The DFT indicated that double precision arithmetic would be most advantageous. By using double precision, round-off errors (actually truncation errors) would be eliminated when performing a multiplication. Multiplying two twelve bit numbers using the Extended Arithmetic Element produces a 24 bit (double order) result. If only single precision were required, the lower order twelve bits would be dropped. Through this process, the significance of the lower order 12 bits is obviously lost. In addition, any product less than 1 0000g (4096) becomes zero.

On the other hand, double precision addition and store operations require, obviously, twice as many instruction cycles within the computer and, therefore, twice as much time. Also, a double precision store will not clear the accumulator, as will a single precision store. Further, the amount of core required for data storage would be twice as great for double precision operations as for single precision.

As the primary concern of this research is the time required to run a complete transform, single precision arithmetic was chosen. The time advantage gained through the use of single precision greatly offsets the significance

lost through multiplication. Likewise, the extra core space available allows a transform of 512 points to be located in one data field. With double precision arithmetic, the largest transform which can be run in one data field is only half the size of the aforementioned transform. As the range of frequencies to be analyzed depends primarily upon the number of sampled data points, the use of single precision operations affords the capability to examine a larger spectrum.

The second major problem became apparent when considering how to avoid overflow problems when not using double, or even triple, precision arithmetic. Obviously, some sort of scaling scheme had to be devised where overflow could not possibly occur. With a simple addition, dividing each operand by two before adding will result in no overflow occurring. As an example, consider (with unsigned numbers)

$$6000_8 + 6000_8 = 14000_8$$
.

In this case, overflow does indeed occur (the 1 in the sum is the thirteenth bit). Now, if each operand is scaled as suggested,

$$\frac{60008}{2} + \frac{60008}{2} = 6000_8 \cdot$$

Since all operands are scaled before addition (or subtraction) the 6000_8 which is the sum has a somewhat different meaning than the 6000_8 which is an operand. In other words, before addition, the operands have become 3000_8 . Hence it is easy

to see that

$$3000_8 + 3000_8 = 6000_8$$
.

This same divide-by-two scale factor also applies itself in the formation of the term

$$[(A-C)X - (B-D)Y] + j[(A-C)Y + (B-D)X]$$
,

which can be represented as

$$|\tilde{Z}_a - \tilde{Z}_b| \ |\tilde{w}_m| \quad \text{where}$$

$$\tilde{Z}_a = A+jB, \ \tilde{Z}_b = C+jD, \ \text{and} \ \tilde{w}_m = X_m + jY_m \ .$$

When the terms (A-C) and (B-D) are scaled in the same manner, the relation essentially becomes

$$\left|\frac{\tilde{z}_a - \tilde{z}_b}{2}\right| \left|\tilde{w}_m\right|$$
.

Based on the fact that $|\overset{\sim}{w_m}|$ is unity and the fact that $|\overset{\sim}{Z_a}-\overset{\sim}{Z_b}|\leq 1$ (considering $|\overset{\sim}{Z_a}|$ and $|\overset{\sim}{Z_b}|$ to always be bounded above by unity), it is quite obvious that

$$\left|\frac{\tilde{z}_a - \tilde{z}_b}{2}\right| |\tilde{w}_m| \leq 1.$$

Since $|\tilde{z}_a + \tilde{z}_b| \le |\tilde{z}_a| + |\tilde{z}_b|$, it follows that

$$\left|\frac{\tilde{z}_a - \tilde{z}_b}{2}\right| \left|\tilde{w}_m\right| \leq \left|\tilde{z}_a\right| \text{ or } \left|\tilde{z}_b\right|.$$

Thus, a scale down factor of two cannot cause overflow when going from one vector to another. By the nature of the data acquisition techniques, the terms in the first vector

have a magnitude less than or equal to unity. That is, the magnitude of the real components are limited to unity and the magnitude of the imaginary components, naturally, are zero. Therefore as there is no overflow in going from the zeroeth vector to the first, there can be no overflow anywhere else, as just demonstrated.

The data acquisition software is such that the data are not scaled from 0 to 1, rather a scale of 0 to 3777_8 is used. The A/D converter was set up so that a ten volt signal would generate the number 3777_8 and a negative ten volt signal would generate the number 4000_8 . In the minicomputer architecture, the numbers 0 through 3777_8 are considered positive (3777_8 being the most positive), and the numbers 4000_8 through 7777_8 are considered to be negative (4000_8 being the most negative).

It turns out that such a scaling scheme is optimum. As the foregoing discussion points out, a scale factor greater than two would be unnecessary. The result would be a steady, almost drastic decrease in the magnitude of the contents of the data vectors. A scale factor less than two would surely be insufficient. Consider a worst-case situation. If a ten volt D.C. waveform were read in as data, the transform should produce a spectral line at zero H_Z , of magnitude 3777g. Since the zero H_Z component is found by repeated additions of A and C, scaled by two, the eventual result will be 3777g. That is

$$\frac{3777}{2}8 + \frac{3777}{2}8 = 3777_8.$$

This would continue for all points in the data vector (all of which have value 3777_8). Thus the end result would indeed be a spectral line at zero H_Z of magnitude 3777_8 . A scale factor of less than two would therefore result in repeated overflow problems.

The evidence presented in the foregoing discussions indicate that a divide-by-two scale factor is optimum. However, one other scaling difficulty results from the truncation of the product formed through the MUY (multiply) operation. Perhaps the best way to describe this is by example. Consider

37778 X 37778 Approximating,

 $4000_8 \times 4000_8 = 2000\ 0000_8$.

Truncating results in the product 2000_8 . Therefore, scaling the product up by 2 results in the proper answer 4000_8 , or more precisely, 3776_8 . The multiplication of two positive numbers should result in a positive product. As 3777_8 is the largest possible positive number, the result can be no "larger" than 3777_8 .

In order to overcome this difficulty without adding any additional time delays in the programming, the trigonometric tables were scaled on the basis of "+" 77778 rather than + 37778. Thus, by permanently scaling the multiplicands, there was no need to repeatedly scale the products. There

is an apparent deviation from the sign conventions used by the minicomputer. However, as the multiply operation works with unsigned numbers, another method of determining the sign of the trigonometric values needs to be utilized. This method is described in the next chapter.

The trigonometric tables discussed above differ in yet another way from those used with the DFT software. number of spectral lines which can be calculated is limited by the sampling rate and the transform size. For example, with a sampling rate of 4096 points per second and a 512 point transform, the Nyquist frequency is 2048 Hz. Because of the way the FFT algorithm is designed, the first 256 spectral lines show the energy proportions up to 2048 Hz in discrete steps of 8 Hz. The second set of 256 spectral lines is the exact mirror image of the first set. The nature of the FFT is such that the first referenced point in one of the trigonometric tables after the 180° point has the same value as the first point in the table, and so on. Therefore, only half-wave tables are required for the FFT. The same is true for the DFT, except that with the DFT, there is a gain in transform speed when separate tables are used. Figure 7 shows the combined effects of the "forced fullscaling" and the use of half-wave tables.

Due to the very nature of the PDP-8/E, there exists what is known as a "paging" problem. The method of memory addressing within the computer results in the capability to

only address directly 128 locations in core. Those locations not within a particular 128 point "page" must be addressed indirectly. As a result of this, the entire FFT program cannot be stored so that a simple loop will be run. Rather, the mathematics portion of the program must be indirectly accessed as a subroutine by the index controller program. The indexing program maintains the proper indirect address (to be explained later) of the data and trigonometric tables for use by the mathematics loop.

Figure 7: FFT Trigonometric Tables as Stored in Core.

The combination of the inherent speed of the FFT algorithm and those time-saving techniques discussed earlier

in this chapter result in a 512 point transform running to completion in 0.58 seconds. Though not quite a fair comparison (considering the relative size of the DFT) with the DFT, there is obviously a tremendous time advantage with In fact, the goal of real-time processing has been realized. Considering a one second data acquisition time, the FFT is capable of performing the transform in sufficient time. However, as was discussed earlier, the results of the transform are not in a readily usable form. The operations that must be performed, including display, require approximately .3 seconds of processor time. Adding this time and the .58 seconds required for the actual FFT, and the sum easily nears the one second that would allow for real-time processing. Real-time as discussed here actually means being able to analyze and display data within the time it takes to acquire new data. A sampling rate of 4096 points per second will take exactly one second to fill one data field. Thus, the performance of the FFT could casily be completed in time for real-time for FFT's of size 512 and below (given the one second acquisition time), wide enough range for most underwater sounds. Large FFT's could not be completed in sufficient time to apply to real-time considerations.

With respect to the DFT, the one major drawback of the FFT algorithm is its inability to be selective insofar as what frequency band is to be analyzed. The transform must

calculate the energy proportions from zero Hz up to the Nyquist frequency. There does exist however, a variation on the FFT which allows for a "zooming in" on a specified frequency band. This variation is beyond the scope of this report.

Associated with the actual FFT program is a set of software which serves to organize the output of the FFT. In addition, it also acquires data, allows the user to select a desired portion of that data for analysis, and transfers it to FFT's data vector. The data acquisition routine allows for a user variable sampling rate and for display of the acquired waveform on an oscilloscope. Also incorporated into the acquisition routine is a movable data "window". As set up, the window allows for the viewing of the data 512 (or any other number, depending on the desired transform size) points at a time. The speed at which the window slides through the data field is controlled by the setting on the computer's switch register. Once the desired 512 points are chosen, the window is stopped and that data is loaded for operation by the FFT.

A second portion of the aforementioned software package performs the squaring, summing, and square-rooting operations on the results of the transform. Once completed, the bit-reversing routine takes over and unshuffles the frequency components and displays the final result on the oscilloscope. Examples of the transform results and both

the shuffled and unshuffled spectral lines appear in Appendix B.

The FFT performed quite well with the exception of a small amount of processing noise. There are numerous causes of noise of this type, most of which are unavoidable. Volumes have been written concerning noise, therefore it shall not be discussed here. Several examples of transformed waveforms appear in Appendix C, along with descriptions of each.

CHAPTER THREE: FFT SOFTWARE

A complete analysis of the actual FFT program is essential for the understanding of the difficulties involved and for a demonstration of how necessary it is for careful programming techniques (which result in as fast an FFT as possible). As was mentioned previously, the FFT is broken down into two areas, arithmetic operations and index control. The purpose of this chapter is not to teach the minicomputer programming language, therefore the reader is directed to Introduction to Programming, fourth edition, published by Digital Equipment Corporation. The FFT software is reproduced in Appendix D.

Before proceeding to discuss the operation of the index controller, the variables used will be defined.

- M This variable is initialized at 2^L, which is also the size of the transform. M is halved with each pass through the program. With each pass, the DFTs of size M are all forced into DFTs of size M/2. M serves as 1) a "counter" which guarantees that the transform goes to completion (DFTs of size one are formed), 2) an "incrementor" for the FFT's running indices, and 3) a definitive variable which indicates the size of the DFTs being formed.
- IMAX Initialized at one, IMAX is doubled with every pass through the program. It serves 1) to initialize ITAL (ITAL = IMAX) 2) as a pointer within the sine and cosine tables to determine θ in $e^{jm\theta}$.
- ITAL Essentially ITAL counts the number of DFT pairs that must be operated upon with every pass of the program.

- JTAL JTAL is a counter which guarantees that each DFT block in Figure 4 gets filled. An example of how these four variables change for an eight point FFT is shown in Figure 8.
- RFIND This pointer for the first operand in the real vector is the same as "A" mentioned in the preceding chapter.
- RBIND This variable points to the second operand in the real vector and corresponds to "C".
- IMFIND This variable corresponds to "B" and points to the first operand in the imaginary vector.
- IMBIND This variable corresponds to "D" in the imaginary vector. IMBIND, IMFIND, RBIND, and RFIND are known as running variables and are initialized by M for each DFT run through.
- SWIND This variable points to the appropriate word in the Sine table.
- CWIND This variable points to the appropriate word in the Cosine table.

The index controller has two functions. The first is to ensure that the correct data words are applied to the basic FFT calculation discussed in the previous chapter. As there is a definite pattern to the manner in which the indices progress through the vector, the indexing problem is eased somewhat. The second function of the controller is to halt the FFT once all single point DFTs have been formed.

Figure 8: Values of counters at the start of each pass through the program. Those which start at values less than zero are run from that value to zero.

explain exactly how the index controller operates. The initialization shown at the beginning occurs only once when the program is started. Note that M is halved at the start of the first pass. This is because M indicates the size of the DFT being formed. Once M reaches zero (as a result of successive rotate right operations) the program is halted. With every pass through the program (LPASS), ITAL is initialized at -IMAX. Also, the running indices are initialized to the start of the DFTs last formed. Again,

Figure 9: Flow Diagram for Index Controller

with every pass through the program, M is halved and IMAX is doubled.

At the beginning of the JLOOP, the trigonometric table pointers are set to the top of the tables. Then, with every pass through the arithmetic subroutine, these same pointers are incremented by the value of IMAX. As the arithmetic subroutine only performs one basic FFT calculation each time, the running indices are incremented by one so as to point to the next set of operands. ITAL is then incremented by one and checked to determine whether or not each new DFT are filled. If they are not, another pass through the arithmetic subroutine is called for. Otherwise, the next pair of DFTs are started on as the JLOOP is entered again. Once each complete vector transformation is finished, another LPASS is begun and the process repeats.

A timing analysis yields the following results.

- 1) The ILOOP, excluding the arithmetic subroutine, requires 22.8 μsec of processor time.
- 2) The JLOOP (without the ILOOP) requires 53.0µsec.
- 3) The initial setup and LPASS take 54.0µsec to complete.

The LPASS routine is run through L-1 times. The JLOOP is run through first one time, then twice, then four times, and so on up to 2^{L-1} times. The ILOOP is run through 2^{L-1} times for each LPASS. All totaled, the time required for the index controlling operations is insignificant compared

to that required for the arithmetic subroutine.

That portion of the FFT software which performs the actual calculations is called the arithmetic subroutine. A description of these calculations has already been presented. A discussion of how they are done does not require a flowchart, however, it may be helpful to refer to the proper portion of the software listed in Appendix D. The subroutine starts at line number 1030 which is 0000 0400 1030 FFTMATH 0.

Lines 1040 through 1110 are concerned with setting up a series of "flags" used to check for the sign of a given number. As the multiply operation only works with unsigned numbers, the absolute value of all operands must be formed before multiplication. After multiplication, the product must be given the proper sign before any further operation. The functions of the remainder of the lines appear in the following table.

Line Numbers	Function
1120 - 1150	Fetches A, scales it down by two and stores A/2 in a temporary location.
1160 - 1180	Fetches and scales down (by two) C.
1190 - 1200	Adds A/2 and C/2 and stores the sum as A'.
1210 - 1240	Fetches B, scales it down by two and stores B/2 in a temporary location.
1250 - 1270	Fetches and scales down (by two) D.

Line Numbers	<u>Function</u>
1280 - 1290	Adds B/2 and D/2 and stores the sum as B'.
1300 - 1330	Fetches C, changes its sign, and scales it down by two.
1340	Adds -C/2 and A/2.
1350 - 1410	Forms A/2 - C/2 , increments the appropriate flags if A/2 - C/2 is negative, and stores A/2 - C/2 in a temporary location.
1420 - 1440	Checks sign of cosine by comparing the addressed location within the cosine table against the table's middle location. Recall that the cosine table is a half-wave table.
1450	Causes a program jump to line 1475. Occurs only if the cosine is positive.
1460 - 1500	Increments the appropriate flags, fetches the cosine and forms the absolute value of the cosine. Occurs only if the cosine is negative.
1530 - 1570	Multiplies A/2 - C/2 and COS .
1580 - 1610	Assigns the proper sign to the product and stores it in a temporary location.
1620 - 1650	Fetches D, scales it down by two and changes its sign.
1660 - 1680	Adds -D/2 and B/2, changes the sign of the sum and stores it in a temporary location.
1690 - 1770	Checks the sign of $B/2$ - $D/2$, increments the appropriate flags if it is negative, forms $ B/2$ - $D/2 $ and stores it in a temporary location.

Line Numbers	Function
1780 - 1810	Multiplies $ B/2 - D/2 $ and SIN.
1820 - 1830	Assigns the proper sign to the product.
1840 - 1850	Adds the last two products formed and stores the sum as C'.
1860 - 1890	Multiplies $ B/2 - D/2 $ and $ COS $.
1900 - 1920	Assigns the proper sign to the product and stores it in a temporary location.
1930 - 1960	Multiplies $ A/2 - C/2 $ and SIN.
1970 - 1980	Assigns the proper sign to the product.
1990 - 2000	Adds the last two products formed and stores the sum as D'.
2010	Returns processor control to the index controller.

The remainder of the FFT software is a display routine which outputs the real vector and the imaginary vector on two different D/A channels for display on an oscilloscope. Line 180 in the index controller portion of the program causes a jump to the display routine after every complete vector transformation by the FFT. Such an instruction allows an interesting look at every step in the formation of a complete FFT. Photographs of each step of an FFT performed on a simple one Hz square wave appear in Appendix B.

Nearly all of the time required to generate a complete FFT is used up by the arithmetic subroutine as it requires approximately 217 µseconds per pass (worst case). In a 512 point transform, the arithmetic subroutine must be entered 9 x 256 times. Therefore, of the .58 seconds required for a complete 512 point FFT, .50 seconds are spent in the subroutine. In order to determine how the speed of the FFT can be improved, it is necessary to develop a timing diagram. Such a diagram for the arithmetic subroutine appears in Figure 10. The diagram shows that little, if anything, can be done to improve the speed. There are no parts that take any significantly long periods of time to run. variations of the program have been tried with no increase in speed whatsoever. Note that in summing all the time delays, the worst case was always considered. In other words, where there were two paths to the same point, the slowest path was always considered. An examination of other possible methods of increasing the speed of the FFT will be examined in the next chapter.

As the indexing system and arithmetic operations are the same for all FFTs whose size is a power of two, the basic system presented herein can be expanded (within the limits of memory) or contracted. The procedures necessary for such alterations are relatively straightforward. However, as a system expansion requires data field changes, and as data field changes are inherently tricky, expansion

Figure 10: FFT Timing diagram showing the steps and the time required for each.

is not recommended. For system contraction, several actions must be undertaken.

- 1) M must be initialized to the proper 2^L, the size of the FFT.
- 2) MCNEG must be redefined to be $-3200_8 2^{L-2}$.
- 3) MSIZE in the display routine of the FFT must be redefined as -2^{L} .
- 4) The trigonometric tables must be made half-wave based on 2^L points full wave.
- 5) The movable data window must be resized.
- 6) The data transfer program must be resized.
- 7) The bit-reversal routine must be resized and adjusted for the reversal of the proper number of bits (L-1).
- 8) The square, sum, and square root program must be resized.

The resizing is necessary so that the desired operations are performed on 2^L words. A discussion of how to properly perform the above changes is in the FFT Users Manual (in preparation).

CHAPTER FOUR: THE "BLACK BOX" APPROACH

Since the arithmetic subroutine of the FFT requires such a relatively great amount of time to run (.50 seconds in comparison to the .58 seconds required for the entire FFT), the feasibility of utilizing an external device to perform the calculations was investigated. What is required is an extra set of hardware which will perform the basic FFT calculation described earlier. In order to be effective, the external device must be capable of high-speed operation so that the added time advantage will allow for real-time analysis. The device must also have a direct access to the minicomputer's memory for both the reading and writing of the data.

In order to access the required data quickly the device will have to do so directly from the PDP-8's memory. However, as the addresses of the desired data within memory change with every pass through the arithmetic subroutine, the device will have to access data in a pseudo-direct manner. That is, a set of addresses will need to be hardwired into the device. The contents of memory at these locations will be the addresses of the six desired data words. The device will then store these addresses in its own memory for future reference. The data will then be acquired and stored by the device, again in its own memory.

Once the data has been acquired by the device, program

control will be returned to the processor for maximum effective use of time. While the device is performing the calculations, the processor will update the indices from the next calculation. When finished with all calculation, the device will signal the processor that the device is ready to accept control of the program. At this time, the device will load into memory the four results of the basic calculation into their proper locations (which were stored by the device originally). Thus the device need only operate as quickly as the computer can update the indices.

By operating in this manner, those calculations which were performed by the arithmetic subroutine in one half second will require approximately

16 x 1.2 μsec x 9 x 256 - .044 seconds.

The 1.2 µseconds is the length of one machine cycle within the minicomputer. Sixteen of these cycles will be required by the device. The term 9 x 256 represents the total number of times the device would be used by a 512 point FFT. Thus it can be seen that what was once the slowest part of the FFT analysis has become nearly twice as fast as that which was once considered to be so fast as to have an almost negligible effect on the overall timing, namely the index controller.

Figure 11 is a block diagram of the external hardware device, indicating the flow of information between each part of the device. The figure also demonstrates the

Figure 11: Block Diagram of an FFT Aardware Device

relationship between the device and the computer. The operations which occur within the hardware are best outlined as follows for a basic understanding of the function of the device.

The first step is initiated by means of an IOT instruction within the FFT index controller. The purpose of the instruction is to tell the device that it is to set up a so-called DMA (Direct Memory Access) state within the minicomputer. A DMA state allows a device external to the computer to directly access the memory of the computer. The time required for the transfer of one data word is 1.2 μ seconds, corresponding to one fast machine cycle.

Once the device acquires control of the memory, it fetches the necessary six data words from memory as follows:

- The address register loads the first of the hardwired memory addresses onto the minicomputer's MA (Memory Address) lines.
- 2) The contents of memory at that address are fed back into the address register for storage and readdressing of the memory.
- 3) The contents of memory at the latter address are then stored in the input register as the first data word.
- 4) The above three steps are repeated until all six data words (A, B, C, D, X, and Y) are stored in the input register. Note that, as the final output

from the device will be four words (A', B', C', and D') only the addresses of A, B, C, and D are kept by the address register.

With all of the data read into the device, control of the memory is relinquished and returned to the processor. As the processor updates the indices for the next pass through the external hardware, this same hardware performs the basic FFT calculation described in a previous chapter.

First the term (A+C), appropriately scaled, is formed and stored as A' in the output register. Similarly, (B+D) is formed and stored as B' in the output register. Then the terms (A-C) and (B-D) are formed and loaded into the <u>input</u> register for use by the multiplier. By use of the multiplier, the terms (A-C)X, (A-C)Y, (B-D)X, and (B-D)Y are formed and again stored in the input register. Finally, the Arithmetic Logic Unit (ALU) combines these last four terms into (A-C)X - (B-D)Y and (A-C)Y + (B-D)X and loads each into the output register as C' and D', respectively.

As soon as all data is loaded into the output register, the device sets up a break request, telling the processor that control of the memory is again desired. Upon completion of the current instruction, the processor will relinquish control of the memory. Then the device loads the minicomputer memory from the output register as follows:

 The address loads the first stored address (that of A) onto the computer's MA lines.

- 2) The contents of the first location in the output register are loaded into the addressed location in memory.
- 3) The above steps are then repeated until all four data words are loaded into memory.

At this time, memory control is returned to the processor and the program continues from the point where the data break occurred.

The schematic diagrams of the address register, output register, input register and ALU can be found in Appendix E. Also included are diagrams of buffers for one set of input lines and output lines on both the ALU and multiplier, diagrams of the internal register addressing counters, of the device selection logic, and of the logic which activates the DMA state in the processor.

The multiplier is an array of individual 2x4 bit multiplier chips arranged to produce a 24 bit product from two twelve bit operands. As it operates with two's complement numbers there is no need to check for the sign of an operand before multiplication. Thus, the design of the hardware is simplified considerably.

The Arithmetic Logic Unit is a simple three chip device which must be capable of both addition and subtraction, the choice being made with one control line. It too is a twelve bit two's complement device. As both the ALU and multiplier devices are combinatorial logic devices,

no clocking is required for either. However, as there is no clock, there must exist a method of holding data on the outputs so a change on one of the inputs will not affect the desired answer. In order to read the outputs into the input register (as described earlier), the data at these outputs will necessarily be reapplied to the inputs. The consequences of not providing for an output latch could therefore be disastrous. Similarly, as both inputs to the ALU (as well as the multiplier) originate with the input register, a latch must be provided on one input line which will hold the proper data word while the other data word is being read from the input register.

The aforementioned latches must each be 12 bits wide. In addition, the clock should be edge triggerable, in order to avoid timing ambiguities which might otherwise arise as a result of too long (or too short) a clock pulse used with level triggering.

Likewise, the input, output, and addressing registers must all be twelve bits wide. As they are actually memories, however, and not simple latches, control signals are required for reading from, writing into, and addressing each of the registers. In order to read or write, the proper control line must be made low. On the other hand, the addressing is best performed by counters. Both the output and addressing registers are addressed sequentially from 0-3. The address sequence for the input register is not

quite so simple (Figure 12). The most convenient sequence yet contrived results in the input register holding the following words, in order from left to right.

Word			
0	A	(A-C)X	
1	В	(A-C)Y	
2	X		(B-D)X
3	Y		(B-D)Y
4	C	(A-C)	(/ -
5	D	(B-D)	

where A, B, X, Y, C, and D are written in order from top to bottom.

* indicates that these addresses occur two times in succession. 100* 101* 010* 011*

Figure 12: Input register address sequence.

As can be seen from Figure 12, the use of a simple counter utilizing J-K flip-flops is not feasible. However

a 5 bit counter can be used to address a ROM sequentially such that the ROM output at each address corresponds to the proper 3 bit code of Figure 12. The ROM address would be set to 00000 at the start of every pass through the device. The counter controlling the ROM address would be clocked every time a new location within the input register is to be accessed. The ROM (actually a PROM) would be by far the most economical approach, in terms of both money and hardware, as fewer components would be required with a ROM than without one.

It also appears that rather than suffer the design of a complicated hardware logic system to control the individual components within the FFT hardware, a ROM should be incorporated. Again, the ROM would be addressed sequentially by a counter which would be clocked every time another "instruction" was desired. In this instance, however, in order to ensure that all the outputs of the ROM change at the same time with a change in address, the outputs should be clocked into a latch. This clock would best be controlled by a time delay device (one-shot multivibrator) so that enough time is allowed for the outputs to change state as necessary.

Due to the limited time left for research, the control of external components will have to be investigated at a later date. It appears at this point that the idea of an external FFT hardware device is quite feasible. Once

constructed, the PDP-8/E's only functions will be:

- 1) indexing
- 2) data storage
- 3) data acquisition
- 4) display.

In the future, the last four functions of the minicomputer listed above could conceivably be taken over by a second set of hardware, most likely controlled by a super high-speed microprocessor. In this manner, an entire real-time FFT system could be constructed. This system would be entirely self-contained and relatively inexpensive (in comparison with the PDP-8/E). Hopefully such a design will be undertaken by this author within the next several years.

FOOTNOTES

Bernard Gold and Charles M. Rader, <u>Digital Processing</u> of <u>Signals</u>, (New York: McGraw-Hill, Inc., 1969), p. 173.

²Ibid., pp. 186-188.

3 Introduction to Programming, 4th ed. (Maynard, Mass: Digital Equipment Corporation, 1973), pp. 2-2 - 3-24.

⁴P.C.Y. Yip, "Some Aspects of the Zoom Transformation," I.E.E.E. Transactions of Computers, C-25 (1976), pp. 287-296.

⁵Introduction to Programming, pp. 1-1 - 1-34.

BIBLIOGRAPHY

- Gold, Bernard, and Charles M. Rader. <u>Digital Processing of Signals</u>. New York: McGraw-Hill, Inc., 1969.
- Introduction to Programming. 4th ed. Maynard, Mass.: Digital Equipment Corporation, 1973.
- Yip, P.C.Y. "Some Aspects of the Zoom Transformation."

 I.E.E.E. Transactions of Computers. C-25 (1976), 287-296.

APPENDIX A

Following are a series of photographs of the spectral density of a group of input wave forms developed by the Discrete Fourier Transform. Each photograph has a width of 512 spectral lines representing 512 Hz.

Figure A-1: DFT of a 31/32 of a second of a 180 Hertz 10 volt peak-to-peak sine wave with 1/32 of a second of a 300 Hertz 10 volt peak-to-peak sine wave.

Figure A-2: Amplitude expanded view of the waveform described in Figure A-1. Note the effect on the 180 Hertz component.

Figure A-2: DFT of a 100 Hertz sinusoidal input waveform buried approximately 10 dB down in "white" noise.

APPENDIX B

The Fast Fourier Transform, as described previously, divides a set of time sampled data points into a series of DFTs. The following photographs demonstrate the manner in which these vector transformations occur. Each photograph has a width of 512 points and is scaled at five volts/cm. The top trace in each photograph corresponds to the real part of the complex frequency components, the bottom trace corresponds to the imaginary part (unless otherwise noted).

Figure B-1: A one-cycle square-wave upon which the FFT was performed.

Figure B-2: The contents of the real and imaginary vectors after the first FFT vector transformation. Note the correlation with the COS (top) and with the SIN (bottom).

Figure B-3: The results of the second FFT vector transformation. Note the division of the two distinct forms in B-2 into four distinct forms. Also note the decrease in amplitude. The small points approximately 1 cm below the zero levels are images from the last point in the respective vectors.

Figure B-4: The third FFT vector transformation. Again note the decreasing amplitude.

Figure B-5: Note how the top trace still shows correlation with the COS, and the bottom trace with the SIN.

Figure B-6: Again note how drastically the amplitude has decreased since the first vector transformation.

Figure B-7: After the sixth FFT vector transformation, the results become too complicated to see how well the transform is running, with the exception of the correlations mentioned in Figure B-5.

Figure B-8: After the seventh FFT vector transformation, the only distinguishable point is what corresponds to the first spectral line in the bottom trace 5 cm from the left edge.

Figure B-9: The eighth vector transformation shows that the real terms are virtually equal to zero.

Figure B-10: The final step shows zero correlation with the COS and no even harmonics (the left half of the photograph).

Figure B-11: This photograph shows, on the bottom, the magnitudes of the complex frequency components. The top trace shows the bit-reversed magnitudes of the components the bottom trace.

Figure B-12: An amplitude expanded view of the top trace in Figure B-11. Note the 1:1/3, 1:1/5, etc. magnitudes of the first, third, fifth, etc., harmonics. The even harmonics are zero. Also note the reflection of the first 256 spectral lines which appears on the right half of the photograph. If the photograph were folded on the 5 cm line, the two ends would match up perfectly due to this "mirror imaging."

APPENDIX C

The following series of photographs demonstrate the applicability of the FFT developed. Shown are the FFT's of several input waveforms. Each photograph has a width of 256 spectral lines, each line has a bandwidth, or resolution, of eight Hertz.

Figure C-1: A 100 Hertz, 10 volt peak-to-peak sinusoidal input results in this spectral distribution with the FFT.

Figure C-2: A 100 Hertz, 10 volt peak-to-peak square wave produced this spectral plot.

Figure 6-3: Submarine running submerged with a screw of the second of 25 rpm yields this spectral plot. The input was a from a Hewlett-Packard instrumentation recorder.

AND THE

Figure C-4: The same submarine as in Figure C-3, recorded on audio quality tape recorder at 7 1/2 ips.

Note the increase in noise level.

Figure C-5: Fish noise combined with the submarine in Figure C-3 from the HP tape recorder. The output level from the tape had to be reduced in order to avoid amplitude distortion. Thus the submarine cannot be seen.

Figure C-6: The spectral plot of underwater background noise. Note strong peak at approximately 1900 Hertz.

APPENDIX D

Included in this appendix are the programs written for the PDP-8/E minicomputer in the development of the FFT. The first program is the FFT itself. The second is the data acquisition set of software. Finally, the programs which find the magnitude of the complex results and reorders these results is presented.

The FFT starts at location 200.

The data acquisition routine starts at location 6400. The sliding data window begins at location 3700; and the window loader starts at location 6600.

The program which calculates magnitudes begins at location 6000. The bit-reversal routine starts at location 3600.

DATAROUT

370	00	100	*3700		
3700	6211	110		6211	
3701	1343	120	TOPI	TAD	K 7000
3702	3344	130		DCA	TALLY
3703	7604	140		LAS	
3704	1345	150		TAD	POINT
3705	1343	160		TAD	K7000
3706	7421	170		MQL	
3707	7701	180		ACL	
3710	7440	190		SZA	
3711	5324	200		JMP	OUT
3712	1346	210		TAD	K 2000
3713	6551	220		6551	
3714	7000	230		NOP	
3715	7000 7000			NOP NOP	
3717	7000			NOP	
3720	7000			NOP	
3721	7000			NOP	
3722	7200			CLA	
3723	6551	2.35		6551	
3724	3345	240	OUT	DCA	POINT
3725	1346	250	00.	TAD	K2000
3726	6553	260		6553	delin i Line i
3727	7000	270		NOP	
3730	7000	280		NOP	
3731	7200	290		CLA	
3732	6553	300		6553	
3733	1745	310	1.00P2	TAD	I POINT
3734	6552	320		6552	
3735	7200	330		CLA	
3736	2345	340		ISZ	POINT
310	7000	350		NOP	
3740	2344	360		ISZ	TALLY
3741	5333	370		JMP	LOOP2
3742	5301	380	V7000	JMP 7000	TOP1
3743 3744	7000	390 400	K7000 TALLY	0	
3745	0000	410	POINT	0	
3746	2000	420	K2000	2000	
640		430	*6400	2000	
6400	6211	440		6211	
6401	7200	450		CLA	
6402	3247	460		DCA	INDEXI
6403	7240	470		STA	
6404	7100	480		CLL	
6405	6130	490		CLZE	
6406	7200	500		CLA	
6407	1245	510		TAD	K5600
6410	6132	520		CLOE	

DATAROUT	(CONTINU	ED)				
6411	7200	530		CLA		
6412	1246	540		TAD		M364
6413	6133	550		CLAB		
6414	7200	560		CLA		
6415	6535	570		ADSC		
6416	6534	580		ADCV		
6417	6131	590	LOOP	CLSK		
6420	5217	600		JMP		1
6421	6135	610		CLSA		
6422	6536	620		ADRC		
6423	3647	630		DC A	I	INDEXI
6424	2247	640		ISZ		INDEXI
6425	5217	650		JMP		LOOP
6426	1250	655	SYNC	TAD		K2002
6427	6553	656		6553		
6430	7000	657		NOP		
6431	7000			NOP		
6432	7200			CLA		
6433	6553	658		6553		- 1155141
6434	1647	660	DISP	TAD	I	INDEXI
6435	6551	670		6551		
6436	6131	680		CLSK		
6437	5236	690		JMP		1
6440	6135	700		CLSA		
6441	7200	710 720		CLA		INDEXI
6442 6443	2247 5234	730		JMP		DISP
6444	5226	740		JMP		SYNC
6445	5600	750	K5600	5600		31110
6446	7414	760	M364	-364		
6447	0000	770	INDEXI	0		
6450	2002	775	K2002	2002		
	6600	780	*6600			
6600	7200	790		CLA		
6601	7604	800		LAS		
6602	3246	810		DCA		BEGIN
6603		820		TAD		M1000
6604	3250	830		DC A		TALLYI
6605	1251	840		TAD		K600
6606	3244	850		DC A		INDEX
6607	1252	860		TAD		K1600
6610	3253	870		DC A		ZDEX
6611	6211	880	READ	6211		
6612	1646	890		TAD	I	BEGIN
6613	6201	900		6201		
6614	3644	910		DCA	I	INDEX
6615	3653	920		DCA	I	ZDEX
6616	2244	930		ISZ		INDEX
6617	2253	940		ISZ		ZDEX
6620	2246	950		ISZ		BEGIN

DA TARO UT	CONTINU	ED)				
6621	7000	960		NOP		
6622	2250	970		ISZ		TALLYI
6623	5211	980		JMP		READ
6624	1245	990	TOP	TAD		K2001
6625	6553	1000		6553		WE OUT
6626	7000	1010		NOP		
6627	7000			NOP		
6630	7200			CLA		
6631	6553	1020		6553		
6632	3244	1030		DCA		INDEX
6633	1247	1040		TAD		M1 000
6634	3250	1050		DCA		TALLYI
6635	1 644	1060	LOOPI	TAD	I	INDEX
6636	6551	1070		6551		
6637	7200	1080		CLA		
6640	2244	1090		ISZ		INDEX
6641	22.50	1100		ISZ		TALLYI
6642	5235	1110		JMP		LOOP1
6643	522.4	1120		JMP		TOP
6644	0000	1130	INDEX	0		
6645	2001	1140	K2 001	2001		
6646	0000	1150	BEGIN	0		
6647	7000	11 60	M1 000	7000		
6650	0000	1170	TALLYI	0		
6651	0600	1180	K600	600		
6652	1600	1190	K1 600	1600		
6653	0000	1200	ZDEX	0		
7200	654	1210	\$			
CROSS R	EFERENCE	TABLE				
TOPI	120	380				
K7000	120	160	390			
TALLY	130	360	400			
POINT	150	240	310	340		
	410					
OUT	200	240				
K2000	210	250	420			
L00 P2	310	370				
INDEXI	460	630	640	660		
	720	770				
K5600	510	750				
M364	540	760				
LOOP	590	650				
K2002	655	775				
DISP	660	730	740			
BEG IN	810	890	950	1150		
MI 000	820	1040	1160			
TALLYI	830	970	1050	1100		

DATAROUT (CONTINUED)

1170			
840	1180		
850	910	930	1030
1060	1090	1130	
860	1190		
870	920	940	1200
880	980		
990	1120		
990	1140		
1060	1110		
	840 850 1060 860 870 880 990	840 1180 850 910 1060 1090 860 1190 870 920 880 980 990 1120 990 1140	840 1180 850 910 930 1060 1090 1130 860 1190 870 920 940 880 980 990 1120 990 1140

UNSCRAM

360	0	100	*3600			
3600	7431	110		SWAB		
3601	1242	120		TAD		M512
3602	3243	130		DCA		TALLY
3603	1244	140		TAD		C600
3604	3240	150		DCA		TGTX
3605	7001	160		IAC		
3606	3241	170		DCA		LOCX
3607	7240	180	OUTP	CLA		CMA
3610	6503	190		DBCI		
3611	6505	200		DBCO		
3612	6500	210		DBDI		
3613	7200	220		CLA		
3614	1241	230		TAD		LOCX
3615	6506	240		DBSO		
3616	6502	250		DBSK		
3617	5216	260		JMP		1
3620	7200	270		CLA		
3621	6504	280		DBRI		
3622	7417	290		LSR		
3623	0003	300		3		
3624	1245	310		TAD		C1 600
3625	3246	320		DCA		TEMP
3626	1646	330		TAD	I	TEMP
3627	3640	340		DCA	I	TGTX
3630	2243	350		ISZ		TALLY
3631	5233	360		JMP		.+2
3632	5236	370		JMP		FINIS
3633	2240	380		ISZ		TGTX
3634	2241	390		ISZ		LOCX
3635	52 07	400		JMP		OUTP
3636	5637	410	FINIS	JMP	I	L310
J. 77	0310	420	L310	310		
3640	0000	430	TGTX	0		
3641	0000	440	LOCX	0		
3642	7000	450	M512	7000		
3643	0000	460	TALLY	0		
3644	0600	470	C600	600		
3645	1600	480	CI 600	1600		
3646	0000	490	TEMP	0		
600		500	* 6000			
6000	7431	510		SWAB		
6001	1303	520		TAD		MI 000
6002	3304	530		DCA		TALLYI
6003	1305	540		TAD		K600
6004	3306	550		DCA		RDEX
6005	1307	560		TAD		K1600
6006	3310	570		DCA		IDEX
6007	1706	580	TOP	TAD	I	RDEX
6010	7510	590		SPA		

UNSCRAM	CONTINU	ED)				
6011	7041	600		CIA		
6012	7421	610		MQL		
6013	7701	620		ACL		
6014	3311	630		DCA		MULT
6015	7405	640		MUY		
6016	6111	650		MULT		
6017	7445	660		DST		
6020	6112	670		DIEMP		
6021	7621	680		CAM		
6022	1710	690		TAD	I	IDEX
6023	7510	700		SPA		
6024	7041	710		CIA		
6025	7421	720		MQL		
602 6 6027	7701 3311	730 740		ACL		MIII -
6030	7405	750		DCA		MULT
6031	6111	760		MUY		
6032	7443	770		MULT		
6033	6112	780		DAD		
6034	7445	790		DST		
6035	6112	800		DTEMP		
6036	7621	810		CAM		
6037	1314	820		TAD		M1 3
6040	3315	830		DCA		TALLY2
6041	1316	840		TAD		K4000
60 42	3317	850		DCA		SQTRY
6043	1320	860		TAD		K2000
6044	3321	870		DCA		SQINC
6045	1317	880	UP HE RE	TAD		SQTRY
6046	7421	890		MQL		
6047	7405	900		MUY		
6050	6117	910		SQTRY		
6051	7575	920		DCM		
6052	7443	930		DAD		
6053	6112	940		DIEMP		
6054	7620	950		SNL		CLA
6055	5262	960		JMP		DOWN
6056	1317	970	UP	TAD		SQTRY
6057	1321	980		TAD		SQINC
6060	3317	990		DCA		SQTRY
60 61	52 66	1000		JMP		THAR
60 62	1321	1010	DOWN	TAD		SQINC
6063	7041	1020		CIA		
60 64	1317	1030		TAD		SQTRY
6065	3317	1040		DCA		SQTRY
6066		1050	THAR	TAD		SQINC
6067	7110	1060		7110		
6070	3321	1070		DCA		SQINC

	CONTINU	ED)			
6071	2315	1080		ISZ	TALLY2
6072	5245	1090		JMP	UPHERE
6073	1317	1100		TAD	SQTRY
6074	3710	1110		DCA	I IDEX
6075	2310	1120		ISZ	IDEX
6076	2306	1130		ISZ	RDEX
6077	2304	1140		ISZ	TALLYI
6100	5207	1150		JMP	TOP
61 01	5702	11 60		JMP	I 13600
6102	3600	1170	L3600	3600	1 23 600
6103	7000	1180	M1 000	-1000	
61 04	0000	1190	TALLYI	0	
6105	0600	1200	K600	600	
6106	0000	1210	RDEX	0	
6107	1 600	1220	K1 600	1600	
6110	0000	1230	IDEX	0	
6111	0000	1240	MULT	0	
6112	0000	1250	DTEMP	Ŏ	
6113	0000	1260		0	
6114	7765	1270	M1 3	-13	
6115	0000	1280	TALLY2	0	
6116	4000	1290	K4000	4000	
6117	0000	1300	SQTRY	0	
6120	2000	1310	X2000	2000	
6121	0000	1320	SQINC	0	
	122	1330	\$		
INC					
	The same of the sa				
CROSS F	REFERENCE	TABLE			
M512	120	450	460		
M512 TALLY	120 130	450 350	460		
M512 TALLY 0500	120 130 140	450 350 470			
M512 TALLY 0500 TGTX	120 130 140 150	450 350 470 340	380	430	
M512 TALLY 0500 TGTX LOCX	120 130 140 150	450 350 470 340 230		430 440	
M512 TALLY 0800 TG TX LOCX OUTP	120 130 140 150 170 180	450 350 470 340 230 400	380		
M512 TALLY 0500 TG TX LOCX OUTP 0 600	120 130 140 150 170 180 310	450 350 470 340 230 400 480	380 390		
M512 TALLY 0500 TG TX LOCX OUTP 0 600 TEMP	120 130 140 150 170 180 310 320	450 350 470 340 230 400 480 330	380		
M512 TALLY 0500 TG TX LOCX OUTP CI 600 TEMP FINIS	120 130 140 150 170 180 310 320 370	450 350 470 340 230 400 480 330 410	380 390		
M512 TALLY 0600 TG TX LOCX OUTP 0 600 TEMP FINIS L310	120 130 140 150 170 180 310 320 370 410	450 350 470 340 230 400 480 330 410 420	380 390		
M512 TALLY 0600 TGTX LOCX OUTP 0 600 TEMP FINIS L310 MI 000	120 130 140 150 170 180 310 320 370 410	450 350 470 340 230 400 480 330 410 420 1180	380 390 490		
M512 TALLY 0600 TGTX LOCX OUTP 0 600 TEMP FINIS L310 MI 000 TALLYI	120 130 140 150 170 180 310 320 370 410 520 530	450 350 470 340 230 400 480 330 410 420 1180 1140	380 390		
M512 TALLY 0500 TG TX LOCX OUTP 0 600 TEMP FINIS L310 MI 000 TALLYI M500	120 130 140 150 170 180 310 320 370 410 520 530	450 350 470 340 230 400 480 330 410 420 1180 1140 1200	380 390 490	440	
M512 TALLY 0500 TG TX LOCX OUTP 0 600 TEMP FINIS L310 MI 000 TALLYI M500 RDEX	120 130 140 150 170 180 310 320 370 410 520 530 540 550	450 350 470 340 230 400 480 330 410 420 1180 1140 1200 580	380 390 490		
M512 TALLY 0500 TG TX LOCX OUTP 0 600 TEMP FINIS L310 MI 000 TALLYI MS 00 RDEX KI 600	120 130 140 150 170 180 310 320 370 410 520 530 540 550	450 350 470 340 230 400 480 330 410 420 1180 1140 1200 580 1220	380 390 490 1190 1130	1210	
M512 TALLY 0500 TG TX LOCX OUTP 0 600 TEMP FINIS L310 MI 000 TALLYI M500 RDEX	120 130 140 150 170 180 310 320 370 410 520 530 540 550 560 570	450 350 470 340 230 400 480 330 410 420 1180 1140 1200 580	380 390 490	440	
M512 TALLY 0500 TG TX LOCX OUTP 0 600 TEMP FINIS L310 MI 000 TALLYI M500 RDEX KI 600 IDEX	120 130 140 150 170 180 310 320 370 410 520 530 540 550 560 570 1230	450 350 470 340 230 400 480 330 410 420 1180 1140 1200 580 1220 690	380 390 490 1190 1130	1210	
M512 TALLY 0500 TG TX LOCX OUTP 0 600 TEMP FINIS L310 MI 000 TALLYI MS 00 RDEX KI 600 IDEX	120 130 140 150 170 180 310 320 370 410 520 530 540 550 560 570 1230 580	450 350 470 340 230 400 480 330 410 420 1180 1140 1200 580 1220 690	380 390 490 1190 1130 1110	1210	
M512 TALLY 0500 TG TX LOCX OUTP 0 600 TEMP FINIS L310 MI 000 TALLYI M500 RDEX KI 600 IDEX	120 130 140 150 170 180 310 320 370 410 520 530 540 550 560 570 1230	450 350 470 340 230 400 480 330 410 420 1180 1140 1200 580 1220 690	380 390 490 1190 1130	1210	

UNSCRAM (CONTINUED)

UNSCRAM	(CONTINUED)					
TALLY2	830	1080	1280			
K4000	840	1290				
SQTRY	850	880	970	990		
	1030	1040	1100	1300		
N2 000	860	1310				
SQINC	870	980	1010	1050		
	1070	1320				
UPHERE	880	1090				
DOWN	960	1010				
UP	970					
THAR	1000	1050				
L3600	11 60	1170				
DIEMP	1250					

FFT

02	00	100	*200			
0200	7200	110	START	CLA		
0201	7431	120	J.A.	SWAB		
0202	1020	130		TAD		KSIZE
0203	3023	140		DCA		M
0204	7001	150		IAC		
0205	3024	160		DCA		IMAX
0206	3025	170		DCA		ITAL
0207	4310	180	LPASS	JMS		DISP
0210	1023	190		TAD		M
0211	7110	200		7110		
0212	7450	210		SNA		
0213	5302	220		JMP		FIN
0214	3023	230		DCA		M
0215	1024	240		TAD		IMAX
0216	7041	250		CIA		
0217	3025	260		DCA		ITAL
0220	1040	270		TAD		LIM
0221	3027	280		DCA		IMFIND
0222	1037	290		TAD		L RE
0223	3030	300		DCA		RFIND
0224	1040	310		TAD		LIM
0225	1023	320		TAD		M
0226	3031	330		DCA		IMBIND
0227	1037	340		TAD		LRE
0230	1023	350		TAD		M
0231	3032	360		DCA		RBIND
0232	1023	370	JL00P	TAD		M
0233	7041	380		CIA		
0234	3026	390		DCA		JTAL
0235	1035	400		TAD		LSWIND
0236	3033	410		DCA		SWIND
-	1036	420		TAD		LCWIND
0240	3034	430	****	DCA		CAIND
0241 0242	1033	440	ILOOP	JMS	1	LSUBR
0243	1024	450		TAD		SWIND
0244	3033	460		TAD		IMAX
0245	1034	480		DCA TAD		SWIND
0246	1024	490		TAD		CWIND
0247	3034	500		DCA		IMAX CWIND
0250	2027	510		ISZ		IMFIND
0251	2030	520		ISZ		RFIND
0252	2031	530		ISZ		IMBIND
0253	2032	540		ISZ		RBIND
0254	2026	550		ISZ		JTAL
0255	5241	5 60		JMP		ILOOP
0256	2025	570		ISZ		ITAL
0257	5261	580		JMP		.+2
0260	5276	590		JMP		CHANGE
				J		O'MANGE

FFT	(00	NTINUE	ED)					
	0261	1030	600		TAD	RFIND		
	02 62	1023	610		TAD	M		
	0263	3030	620		DCA	RFIND		
	02 64	1027	630		TAD	IMFIND		
	02 65	1023	640		TAD	M		
	0266	3027	650		DCA	IMFIND		
	0267	1032	660		TAD	RBIND		
	0270	1023	670		TAD	M		
	0271	3032	680		DCA	RBIND		
	0272	1031	690		TAD	IMBIND		
	0273	1023	700		TAD	M		
	0274	3031	710		DCA	IMBIND		
	0275	5232	720		JMP	JLOOP		
	0276	1024	730	CHANGE	TAD	IMAX		
	0277	71 04	740		7104			
	0300	3024	750		DCA	IMAX		
	0301	5207	760		JMP	LPASS		
	0302	7402	770	FIN	HLT			
	0020		780	*20				
	0020	1000	790	KSIZE	1000			
	0021	7000	800	MSIZE	-1000			
	0022	7400	810	MIIME	-400			
	0023	0000	820	M	0			
	0024	0000	830	IMAX	0			
	0025	0000	840	ITAL	0			
	0026	0000	850	JTAL	0			
	0027	0000	860	IMFIND	0			
	0030	0000	870	RFIND	0			
	0031	0000	880	IMBIND				
	0032	0000	890	RBIND	0			
	0033	0000	900	SWIND	0			
	0034	0000	910	CIVIND	0			
	0035	2600	920	LSWIND				
	0037	3200	930	LCWIND	600			
	0040	0600	940	LRE				
	00 40	0400	950 960	LSUBR	1600	•		
	0042	2000	970		2000			
	0042	2000	910	KSYNC	2000			
	0043	0000	980	RINDX	0			
	0044	0000	990	IMINDX	0			
	0045	0000	1000	TALLYI	0			
	0046	0000	1010	COUNT	0			
	0400		1020	*400				
	0400	0000	1030	FFTMATI	Н		0	
	0401	7344	1040		CLA	CLL	CMA	RAL
	0402	3055	1050		DCA	CFLG1		
	0403	7340	1060		CLA	CLL	CMA	
	0404	3056	1070		DCA	CFL G2		
	0405	7344	1080		CLA	CLL	CMA	RAL

FFT	(00	ONTINUE	(D)					
	0406	3057	1090		DCA		DFLGI	
	0407	7340	1100		CLA		CLL	CMA
	0410	3060	1110		DCA		DFLG2	
	0411	1430	1120	ACALC	TAD	I	RFIND	
	0412	7415	1130		ASR			
	0413	1000	1140		1			
	0414	3050	1150		DCA		ATEMP	
	0415	1432	1160		TAD	I	RBIND	
	0416	7415	1170		ASR			
	0417	0001	1180		1			
	0420	1050	1190		TAD		ATEMP	
	0421	3430	1200		DCA	-	RFIND	
	0422	1427	1210	BCALC	TAD	I	IMFIND	
	0423	7415	1220		ASR			
	0424	1000	1230		1		DTEMP	
	0425	3051	1240		DCA	I	BTEMP	
	0426	1431	1250		T AD ASR	1	THRIMD	
	0 42.7 0 4 3 0	7415	1260		1			
	0431	1051	1280		TAD		BTEMP	
	0432	3427	1290		DCA		IMFIND	
	0433	1432	1300	CCALC	TAD	Ī	RBIND	
	0434	7041	1310	COALC	CIA		MULIND	
	0435	7415	1320		ASR			
	0436	0001	1330		1			
	0437	1050	1340		TAD		ATEMP	
	0440	7500	1350		SMA			
	0441	5246	1360		JMP		.+5	
	0442	2055	1370		ISZ		CFLGI	
	0443	2056	1380		ISZ		CFLG2	
	0444	7000	1390		NOP			
	0445	7041	1400		CIA			
		3052	1410		DCA		CTEMP	
MA	0447	1034			TAD		CWIN	D
	0450	1063	1430		TAD		MCNEG	
	0451	7750	1440		SPA		SNA	CLA
	0452	5261	1450		JMP		NOCHNG	
	0453	2055	1460		ISZ		CFLG1	
	0454	7000	1470		NOP			
	0455	2057	1480		ISZ		DFLGI	
	0456	1434	1490		TAD	I	CWIND	
	0457	7041	1500		CIA			
	0460	5262	1510	MOCHINO	JMP		.+2	
	0461	1434	1520 1530	NOCHNG	TAD	I	CWIND	
	0463	7701	1540		ACL			
	0464	3061	1550		DCA		cos	
	0465	7405	1560		MUY		005	
	0466	0052	1570		CTEMP			

FFT	CONTINU	ED)				
0467		1580		ISZ		CFLG1
0470	Constitution of the Consti	1590		JMP		.+2
0471	The second secon	1600		DCM		
0472		1610		DCA		HOLD
0473	1431	1620		TAD	I	IMBIND
0474		1630		ASR		
0475		1640		1		
0476		1650		CIA		
0477		1660		TAD		BTEMP
0500		1670		CIA		
0501		1680		DCA		DTEMP
0502		1690		TAD		DIEMP
0503		1700		SMA		
0504		1710		JMP		.+6
0505		1720		ISZ		DFLG2
0506		1730		NOP		
0507		1740		ISZ		DFLGI
051 0		1750		NOP		
0511		1760		CIA		
0512 0513		1770		DCA		HOLDI
0514	1433	1780 1790		TAD	1	SWIND
0515		1800		MQL		
0516		1810		HOLDI		
0517		1820		ISZ		DFLG2
0520	7575	1830		DCM		DFLGZ
0521	1054	1840		TAD		HOLD
0522		1850		DCA	1	
0523		1860	DCALC	TAD	•	HOL DI
0524		1870	DONLO	MQL		MOLDI
0525	7405	1880		MUY		
0526	0061	1890		cos		
0527		1900		ISZ		DFLGI
0530		1910		DCM		
0531		1920		DCA		HOLD
0532		1930		TAD	I	SWIND
0533		1940		MQL		
0534		1950		MUY		
0535		1960		CTEMP		
0536		1970		ISZ		CFL 02
0537		1980		DCM		
0540		1990		TAD		HOLD
0541		2000		D'CA	I	IMBIND
0542		2010		JMP	I	FFTMATH
****	0050	2020	*50			
0050		2030	ATEMP	0		
0051		2040	BTEMP	0		
0052		2050	CTEMP	0		
0053		2060	DTEMP	0		
0054	0000	2070	HOLD	0		

FFT		(CONTINU	ED)				
	0055	0000	2080	CFLG1	0		
	0056	0000	2090	CFL@2	0		
	0057	0000	2100	DFLGI	0		
	0060	0000	2110	DFL@	0		
	0061	0000	2120	COS	0		
	0062	0000	21 30	HOLDI	0		
	0063	4400	2140	MCNEG	-3400		
		310	2150	*310			
	0310	0000	2160	DISP	0		
	0311	7200	2170	UP	CLA		MTIME
	0313	1 022 3046	21 90		T AD DCA		COUNT
	0314	1037	2200	SYNC	TAD		LRE
	0315	3043	2210	Stille	DCA		RINDX
	0316	1040	2220		TAD		LIM
	0317	3044	2230		DCA		IMINDX
	0320	1021	2240		TAD		MSIZE
	0321	3045	2250		DCA		TALLYI
	0322	1042	2260		TAD		KSYNC
	0323	6553	2270		6553		
	0324	7000	2280		NOP		
	0325	7000	2290		NOP		
	0326	7200	2300		CLA		
	0327 0330	6553 1443	2310 2320	DISPI	6553		DINA
	0331	6551	2330	DISLI	TAD 6551	I	RINDX
	0332	7200	2340		CLA		
	0333	1444	2350		TAD	I	IMINDX
	0334	6552	2360		6552		
	0335	7200	2370		CLA		
	0336	2043	2380		ISZ		RINDX
	0337	2044	2390		ISZ		IMINDX
	004	2045	2400		ISZ		TALLYI
	0341	5330	2410		JMP		DISPI
	0342	2046 5314	2420 2430		ISZ		COUNT
	0344	7604	2440		JMP LAS		SYNC
	0345	7440	2450		SZA		
	0346	5311	2460		JMP		UP
	0347	5710	2470		JMP	T	DISP
	0.	350	2480	\$	J		010.
CI	ROSS R	EFERENCE	TABLE				
STAI		110					
KSI	ZE	130	790				
M		140	190	230	320		
		350	370	610	640		
		670	700	820			

				-6-
FFT	CONTI	NUED)		
IMAX	1 60	240	460	490
	730	750	830	
ITAL	170	260	570	840
LPASS	180	760		
DISP	180 220	2160 770	2470	
LIM	270	310	950	2220
IMFIND	280	. 510	630	650
	860	1210	1290	
LRE	290	340	940	2200
RFIND	300	520	600	620
	870	1120	1200	
IMBIND	1430	2140		

APPENDIX E

This appendix presents that logic designed for the FFT hardware device discussed in Chapter 4. Note that no controlling logic has been included, only the registers and the like have. The multiplier matrix is also not included. For a description of this matrix the reader is directed to Fairchild Application Note 329.

Principal Supplied and

(September 1

EXPANSION OF 4 WORD REGISTER TO 8 WORDS

ALU A LINE BUFFER (+ MULT x LINE BUFF)

Parameter S

MSB FROM ALU A-LINE BUFFER MSB FROM INPUT REGISTER 9340 9340 9340 **~>** 138

TWO'S COMPLEMENT ALU (ACTIVE-LOW)

DEVICE SELECT

-

None of the last

Specifical A

None of the last

Nontrans.

Second Second

REGISTER ADDRESSING COUNTERS

LOGIC REQUIRED TO
CONTROL PROCESSOR
(INTO OMA)
(DATA XFER DIRECTION)

UNC	mo	OIL	TOD
-			

DOCUMENT CONT	ROL DATA - R	3 D	
Security classification of title, body of abstract and indexing	annotation must be e	ntered when the	overall report is classified)
1. ORIGINATING ACTIVITY (Corporate author)		28. REPORT SE	CURITY CLASSIFICATION
		u	NCLASSIFIED
U.S. Naval Academy, Annapolis.		26. GROUP	
3. REPORT TITLE		L	
Frequency analysis using a minicomputer.			
4. DESCRIPTIVE NOTES (Type of report and inclusive dates) Research report.			
5. AUTHOR(5) (First name, middle initial, last name)			
D.C. Boch.			
6. REPORT DATE	78. TOTAL NO. O	PACES	7b. NO. OF REFS
17 May 1976.	81	PAGES	3
88. CONTRACT OR GRANT NO.	98. ORIGINATOR"	REPORT NUME	BER(S)
b. PROJECT NO.			Annapolis - Trident/ ort, no. 75 (1976)
c.	9b. OTHER REPO	RT NO(S) (Any of	ther numbers that may be assigned
d.			
10. DISTRIBUTION STATEMENT			
This document has been approved for publits distribution is UNLIMITED.	ic release ;		
11. SUPPLEMENTARY NOTES	12. SPONSORING	MILITARY ACTI	VITY
	U.S. Nava	L Academy,	Annapolis.
13. ABSTRACT			

This study was initiated with the aim of determining the fundamental capabilities and limitations of one minicomputer in the development of a spectral plot through Discrete Fourier Transform (DFT). Included within this general topic were two fundamental goals:

1/ Development of the fastest FFT (Fast Fourier Transform) possible utilizing only the basic capabilities of the PDP-8/E general purpose minicomputer. Successful completion of this objective brought the machine's fundamental limitations for real-time spectral analysis into clear perspective.

2/ Investigation of the feasibility of an external hardware "add-on" which would considerable increase the spectral analysis capabilities of the computer. Proving worthwhile, the design of such hardware was launched but not completed - due to time restrictions.

As a result of this study, it became apparent that all three systems (DFT, FFT, FFT hardware) are capable of operation in real time. However, the upper frequency limit for the DFT would be approximately 50 Hz, for the FFT 500 Hz, and for the FFT hardware 2500 Hz.

DD FORM 1473 (PAGE 1)

UNCLASSIFIED.

Security Classification

Security Classification LINK A LINK B LINK C KEY WORDS ROLE ROLE ROLE

DD FORM 1473 (BACK)
(PAGE 2)