Large Sample Theory

Homework 5: Asymptotic, Maximum Likelihood Due Date: January 9th, 2004

- 1. Let X_n be a random variable having the Poisson distribution $P(n\theta)$, where $\theta > 0$, $n = 1, 2, \ldots$ Show that $(X_n n\theta)/\sqrt{n\theta} \stackrel{d}{\to} N(0, 1)$.
- 2. Let U_1, \ldots, U_n be i.i.d. random variables having the uniform distribution on [0,1] and $Y_n = (\prod_{i=1}^n U_i)^{-1/n}$. Show that $\sqrt{n}(Y_n e) \stackrel{d}{\to} N(0, e^2)$.
- 3. Set $\hat{\sigma} = \sqrt{n^{-1} \sum_{i=1}^{n} (X_i \bar{X})^2}$. Show that $\sqrt{n}(\hat{\sigma} \sigma) \stackrel{d}{\to} N(0, \sigma^2/2)$.
- 4. Let X_1, \ldots, X_n be i.i.d. $N(\theta, 1)$ with $\theta \ge 0$.
 - (a) Show that the MLE of θ , $\hat{\theta}_n$, is \bar{X} if $\bar{X} > 0$ and 0 otherwise.
 - (b) If $\theta > 0$, show that $\sqrt{n}(\hat{\theta}_n \theta) \stackrel{L}{\rightarrow} N(0, 1)$.
 - (c) If $\theta = 0$, the probability is 1/2 that $\hat{\theta}_n = 0$ and 1/2 that $\sqrt{n}(\hat{\theta}_n \theta) \stackrel{L}{\to} N(0, 1)$.
- 5. If X_1, \ldots, X_n are i.i.d. according to $U(0, \theta)$ and $T_n = X_{(n)}$, the limiting distribution of $n(\theta T_n)$ is exponential with density $\theta^{-1} \exp(-x/\theta)$. Use this result to determine the limit distribution of
 - (a) $n[f(\theta) f(T_n)]$, where f is any function with $f^{(1)}(\theta) \neq 0$;
 - (b) $[f(\theta) f(T_n)]$ is suitably normalized if $f^{(1)}(\theta) = 0$ but $f^{(2)}(\theta) \neq 0$.
- 6. Let X_1, \ldots, X_n be i.i.d. $N(\theta, \sigma^2)$ and consider the estimation of θ^2 .
 - (a) Find the maximum likelihood estimator.
 - (b) Obtain the limit distribution of the estimators obtained in (a) and (b). (Hint: You may need to consider $\theta \neq 0$ and $\theta = 0$ separately.)
- 7. Let X_1, \ldots, X_n be i.i.d. with $E(X_i) = \theta$, $Var(X_i) = \sigma^2 < \infty$, and let $\delta_n = \bar{X}$ with probability $1 \epsilon_n$ and $\delta_n = A_n$ with probability ϵ_n . If ϵ_n and A_n are constants satisfying

$$\epsilon_n \to 0$$
 and $\epsilon_n A_n \to \infty$,

then δ_n is consistent for estimating θ , but $E(\delta_n - \theta)^2$ does not tend to zero.

8. Suppose that X_n is a random variable having the binomial distribution Bin(n, p), where 0 Define

$$Y_n = \begin{cases} \log(X_n/n) & X_n \ge 1\\ 1 & X_n = 0. \end{cases}$$

Show that $Y_n \stackrel{a.s.}{\to} \log p$ and $\sqrt{n}(Y_n - \log p) \stackrel{d}{\to} N(0, (1-p)/p)$.

9. Let X_1, \ldots, X_n be iid random variables with $Var(X_1) < \infty$. Show that

$$\frac{2}{n(n+1)} \sum_{j=1}^{n} jX_j \xrightarrow{P} EX_1.$$

10. Let X_1, \ldots, X_n be iid random variables having a finite $E|X_1|^4$ and let \bar{X} and S^2 be the sample mean and variance. Express $E(\bar{X}^3)$, $Cov(\bar{X}, S^2)$, and $Var(S^2)$ in terms of $\alpha_k = EX_1^k$, k = 1, 2, 3, 4. Find a condition under which \bar{X} and S^2 are uncorrelated.

1

- 11. Let X_1, \ldots, X_n be iid with mean μ , variance σ^2 , and finite $\mu_j = EX_1^j$, j = 2, 3, 4. The sample coefficient of variation is defined to be S/\bar{X} , where S is the squared root of the sample variance S^2 .
 - (a) If $\mu \neq 0$, show that $\sqrt{n}(S/\bar{X} \sigma/\mu) \stackrel{d}{\to} N(0, \tau)$ and obtain an explicit formula of τ in terms of μ , σ^2 , and μ_i .
 - (b) If $\mu=0$, how would you describe the asymptotic distribution of S/\bar{X} with suitable normalization?
- 12. Let $(Y_1, Z_1), \ldots, (Y_n, Z_n)$ be i.i.d. with the Lebesgue pdf

$$\lambda^{-1}\mu^{-1}e^{-y/\lambda}e^{-z/\mu}I_{(0,\infty)}(y)I_{(0,\infty)}(z),$$

Where $\lambda > 0$ and $\mu > 0$.

- (a) Find the MLE of (λ, μ) .
- (b) Suppose that we only observe $X_i = \min(Y_i, Z_i)$ and $\delta_i = 1$ if $X_i = Y_i$ and $\delta_i = 0$ if $X_i = Z_i$. Find the MLE of (λ, μ) .
- 13. Let $(X_1, Y_1), \ldots, (X_n, Y_n)$ be i.i.d. from a two-dimensional normal distribution with $E(X_1) = E(Y_1) = 0$, $Var(X_1) = Var(Y_1) = 1$, and an unknown correlation coefficient $\rho \in (-1, 1)$. Show that the likelihood equation is a cubic in ρ and the probability that it has a unique root tends to 1.
- 14. et Z_1, \ldots, Z_n be *survival times* that are iid nonnegative random variables from a cdf F, and Y_1, \ldots, Y_n be iid nonnegative random variables independent of Z_i 's. Suppose that we are only able to observe the smaller of Z_i and Y_i and an indicator of which variables is smaller:

$$X_i = \min(Z_i, Y_i), \quad \delta_i = I_{(0,Y_i)}(Z_i), \quad i = 1, \dots, n.$$

An maximum empirical likelihood estimator (MELE) of F is defined by the maximizer of

$$\ell(F) = \prod_{i=1}^{n} p_i^{\delta_{(i)}} \left(\sum_{j=i+1}^{n+1} p_j \right)^{1-\delta_{(i)}}$$

subject to $p_i = P_F(\{x_{(i)}\}) \ge 0$, $1 \le i \le n$, $p_{n+1} = 1 - F(x_{(n)}) \ge 0$, and $\sum_{i=1}^{n+1} p_i = 1$. (a) Show the above maximization problem is equivalent to the maximization of

$$\prod_{i=1}^{n} q_i^{\delta_{[i]}} (1 - q_i)^{n-i+1-\delta_{[i]}}$$

where $q_i = p_i / \sum_{j=i}^{n+1} p_j$, i = 1, ..., n.

(b) Show that the MELE is

$$\hat{F}(t) = \sum_{i=1}^{n+1} \hat{p}_i I_{[X_{(i-1)}, X_{(i)})}(t),$$

where $X_{(0)}=0, X_{(n+1)}=\infty, X_{(i)}$ are order statistics, and

$$\hat{p}_i = \frac{\delta_{[i]}}{n-i+1} \prod_{j=1}^{i-1} \left(1 - \frac{\delta_{[j]}}{n-j+1} \right), i = 2, \dots, n, \hat{p}_{n+1} = 1 - \sum_{j=1}^{n} \hat{p}_j.$$

(c) Show that $\hat{F}(t)$ can also be expressed as

$$1 - \prod_{X_{(i)} \le t} \left(1 - \frac{\delta_{[i]}}{n - i + 1} \right),$$

which is the Kaplan-Meier product-limit estimator. (Hint: Use the fact that $p_i = q_i \prod_{j=1}^{i-1} (1-q_j)$.)

15. Consider a 2×2 contingency table from a propective study in which people in a particular industry who were or were not exposed to a pollutant are followed up and, after several tears, categorised according to the presence or absence of a disease. The table below gives the probabilities for each cell

	Exposed	
	Yes	No
Diseased	p_1	p_2
Not diseased	$1 - p_1$	$1 - p_2$

Define the odds ratio ψ of the disease for the *exposed* and *not exposed* groups. Consider the simple logistic model

$$p_i = \frac{\exp(\beta_i)}{1 + \exp(\beta_i)}$$

- (a) Show that $\psi=1$ corresponds to no difference between the exposed and unexposed groups.
- (b) Now consider $n \ 2 \times 2$ tables, one for each level x_j of a factor, with $j = 1, \dots, n$. For the logistic model

$$p_{ij} = \frac{\exp(\alpha_i + \beta_i x_j)}{1 + \exp(\alpha_i + \beta_i x_j)}$$

where i=1,2 and $j=1,\ldots,n$. Show that $\log \psi$ is constant over all tables if $\beta_1=\beta_2$.