

h(125)→aa→XXXX

TOYOKO ORIMOTO ANDREA MASSIRONI TANVI WAMORKAR

14th September 2017 Northeastern Meeting

MOTIVATION - Photons @ LHC

h(125)→aa→xxxx

Bad News Small branching ratios

Good News Excellent Photon isolation

Well established scenario:

Many extensions of the SM Higgs sector include CP-odd particles (**a**) with couplings to the Higgs and branching ratios into photons visible at LHC

- (N)MSSM , SM + Singlet, etc have a subdominant BR (a -> γγ)
- Non trivial extensions can suppress a -> fermions and lead to dominant Br(a -> γγ)
 See details at Exotic Higgs Decays website
- The 4γ final state is SM background free and we take advantage of the high online/offline reconstruction + identification efficiency
- Existing study from ATLAS h→γγ analysis reinterpreted as h→aa→4γ search with M(a) < 1 GeV (collimated photons) (only 7 TeV data) [ATLAS-CONF-2012-079]

New to CMS!

ANALYSIS STRATEGY

Pre-selection: require at least 4 γ 's with Et > 15 GeV and $|\eta|$ < 2.5 - **Good \gamma's**

γ-ID: at least 4 good γ 's that pass the γ MVA ID requirement

- Used H->γγ MVA ID: good signal efficiency
- photonIDMVA > -0.9 for both EB and EE eliminates a significant fraction of non prompt photons + conserves ~99% efficiency for prompt photons

Trigger Selection: choose 2 γ 's that pass trigger requirements + 2 other ID-ed γ 's ordered in Et

- Low Mass Diphoton Triggers
- Trigger Paths: One for γγ in EBEB, one for !EBEB
 - HLT Diphoton30EB 18EB R9Id OR IsoCalold AND HE R9Id DoublePixelVeto Mass55
 - HLT Diphoton30 18 R9Id AND IsoCalold AND HE10p0 R9Id DoublePixelVeto Mass55

SAMPLES BEING USED

DATA:

- Double EG re-Mini AOD dataset
- Corresponds to 35.86 fb⁻¹ for 2016

Signal MC:

- Generated using PYTHIA 8
- Officially produced Summer16 samples <u>DAS Link</u>

Background:

DiPhotons + Jets

DiPhotonJetsBox_M40_80-Sherpa DiPhotonJetsBox_MGG-80toInf_13TeV-Sherpa

Photons + Jets

GJet_Pt-20toInf_DoubleEMEnriched_MGG-40to80_TuneCUETP8M1_13TeV_Pythia8 GJet_Pt-20to40_DoubleEMEnriched_MGG-80toInf_TuneCUETP8M1_13TeV_Pythia8 GJet_Pt-40toInf_DoubleEMEnriched_MGG-80toInf_TuneCUETP8M1_13TeV_Pythia8

• QCD

QCD_Pt-30to40_DoubleEMEnriched_MGG-80toInf_TuneCUETP8M1_13TeV_Pythia8 QCD_Pt-40toInf_DoubleEMEnriched_MGG-80toInf_TuneCUETP8M1_13TeV_Pythia8 QCD_Pt-30toInf_DoubleEMEnriched_MGG-40to80_TuneCUETP8M1_13TeV_Pythia8

PHOTON MVA

-0.5

-1

-1.5

1 1.5 MVA (γ-4)

0.5

KINEMATIC DISTRIBUTIONS

DIPHOTON MASS

TETRAPHOTON MASS

SIGNAL EFFICIENCIES

TO - DO LIST

- Closure tests for Signal Efficiency
 - Gen Reco matching for Photons
 - Plot efficiency of Gen matching as a function of m(a)
- Photon ID improvement
 - Can try to develop different cuts for different photons
- Develop a separate 3γ category
- Perform Signal and Background fits

SUMMARY

- Analysis is being built upon expertise of similar analyses
- Converge the analysis with 2016 data and start looking at 2017 data

BACK UP

