- 1. [10] Величины (X_n) независимы и равномерно распределены на отрезке [1;2].
 - а) [5] Найдите предел по вероятности

plim
$$\frac{X_1^2 + X_2^2 + \dots + X_n^2}{n}$$
.

б) [5] Найдите предел по вероятности

$$\operatorname{plim} \frac{(X_1 - X_2)^2 + (X_2 - X_3)^2 + \dots + (X_{n-1} - X_n)^2}{3n + 2025}.$$

1a

- арифметика -1б
- нет упоминания ЗБЧ/упоминания независимости -26

1б

- $\mathbb{E}(X_i X_{i-1}) = \mathbb{E}(X_i^2) 1;$
- верные только ответ (решение существенно не доведено) = 1б
- нет проверки на независимость, но расписано в виде суммы -2б $[\sum (X_i X_{i+1})^2 = \sum X_i^2 + 2\sum X_i X_j$ и далее работа с ней]
- арифметика -1б
- 2. [10] Рассмотрим две последовательности нормально распределённых случайных величин,

$$X_n \sim \mathcal{N}((2n+1)/n; (4n^2+1)/n^2)$$
 in $Y_n \sim \mathcal{N}((2n+1)/n; (4n+1)/n^2)$.

- а) [2+2+2] К чему сходятся по распределению последовательности (X_n) , (Y_n) и (X_nY_n) ?
- б) [2 + 2] Если возможно, приведите пример, когда последовательность (X_n) сходится по вероятности и когда она не сходится по вероятности.

2a

- арифметика -1б (за подпункт) [$2\mathcal{N}(2,4)$ считается арифметикой, нужно внести 2 внутрь);
- только ответ = 1б (за подпункт)
- $\lim Y_n \sim \mathcal{N}(2,0)$ = 1б (неуказанно, что это константа)

2б

- примеры +1б (если 1 пример, то 0б)
- док-ва +1б (если 1 док-во, то 0б)
- 3. [10] Величины X_1, X_2, X_3 независимы и равномерно распределены на отрезке [1; 2]. Найдите характеристическую функцию случайной величины Y,

$$Y = egin{cases} X_1, \ ext{если} \ X_1 > 1.5 \ ext{и} \ X_2 > 1.5, \ X_1 + X_2 + X_3, \ ext{иначе}. \end{cases}$$

- по 1 баллу за отдельно верно найденные харфункции $X_1, X_1 + X_2 + X_3$, вероятности событий;
- 5 за неверное решение вида $1/4\phi(t) + 3/4\phi^3(t)$;
- 6 за решение содержащее верные слагаемые, но с потерянными случаями или косячными случаями;
- 9 за верное с какими-то минимальными ошибками типа неверных вероятностей;
- 10 полностью верное решение
- 4. [10] Характеристическая функция величины X равна $\phi(t) = \exp(2\exp(-2it))/\exp(2)$.
 - а) [6] Какое распределение имеет величина X?
 - б) [4] Найдите $\mathbb{E}(X)$ и $\mathbb{V}ar(X)$.

задача 4а

- 1 обрубание тейлоровского разложения и ответ N(-4,8), ссылка на пуассоновское без указания параметра, экспоненциальное итп;
- 3 Poiss(2)
- 4 есть попытка преобразовать, но неверный ответ (как правило, деление на -2 вместо умножения)
- 6 верный ответ

задача 4б

- 1 табличный ответ по неверному предположению из 4а
- 4 верный ответ из табличного верного в 4а или прямым вычислением
- штраф по -1 за арифметику при вычислении отдельно каждого пункта или за неверную формулу связи хар функции и момента
- 5. [10] Немного сигма-алгебр для настоящего самурая!
 - а) [2] Множество всех исходов равно $\Omega = \{a, b, c\}$. Случайная величина Y определена как Y(a) = -1, Y(b) = 1, Y(c) = 2. Найдите сигма-алгебру $\sigma(\cos Y)$.
 - б) [4] Верно ли, что $\sigma(X)\subseteq \sigma(X^2)$ для произвольной случайной величины X? Докажите или приведите контр-пример.
 - в) [4] Верно ли, что $\sigma(X^2)\subseteq\sigma(X)$ для произвольной случайной величины X? Докажите или приведите контр-пример.

Примечание: здесь $\sigma(R)$ — минимальная сигма-алгебра, порождённая величиной R, а не стандартное отклонение :)

Задача 5а

Обозначим $X=\cos(Y)$, тогда $X(a)=X(b)=\cos(1)=\cos(-1)$ так как косинус симметричен и $X(c)=\cos(2)$. $\sigma(X)$ в данном случае будет порождена событиями $\{w\in\Omega\mid X(w)=\cos(1)\}$ и $\{w\in\Omega\mid X(w)=\cos(2)\}$, то есть $\{a,b\}$ и $\{c\}$. В любой сигма-алгебре также лежат \emptyset и Ω , отсюда ответ:

$$\sigma(X) = \{\emptyset, \Omega, \{a, b\}, \{c\}\}.$$

Прямая проверка аксиом показывает, что это корректная сигма алгебра.

Критерии:

• Приведенный ответ не является системой подмножеств $\Omega - 0$ баллов за задачу.

Задача 5б

Нет, не верно. Рассмотрим пример, похожий на пример из предыдущего пункта: $\Omega=\{a,b,c\}$ и X(a)=1,X(b)=-1,X(c)=0. Так как значения величины X на всех элементарных исходах различны, $\sigma(X)$ содержит все подмножетсва Ω :

$$\sigma(X) = \{\emptyset, \Omega, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}\}.$$

В случае X^2 имеем $X^2(a) = X^2(b) = 1$ и $X^2(c) = 0$, отсюда, аналогично предыдущему пункту, имеем

$$\sigma(X^2) = \{\emptyset, \Omega, \{a, b\}, \{c\}\}.$$

Тогда $\sigma(X) \nsubseteq \sigma(X^2)$.

Критерии:

- Есть корректные рассуждения о том, почему это неверно, но отсутствует сам контр-пример случайной величины -1 или 2 балла из 4 за задачу в зависимости от полноты рассуждений
- Есть корректный контрпример (подразумевает хотя бы множество элементарных исходов Ω и отображение X из Ω в числа) с недочетами, напрример для него неверно выписаны $\sigma(X)$ или $\sigma(X^2)$, или нет корректного доказательства отсутствия включения 2 или 3 балла из 4 за задачу в зависимости от масштаба неточностей

Задача 5в

Да, верно. $\sigma(X)$ по определению является минимальной сигма-алгеброй, содержащей события вида $\{w\in\Omega\mid X(w)\leq v\}$ для всех $v\in\mathbb{R}$. Эквивалентным определением является минимальная сигма-алгебра, содержащей события вида $\{w\in\Omega\mid X(w)\in B\}$ для всех множеств B из Борелевской сигма алгебры.

 $\sigma(X^2)$ тогда является минимальной сигма-алгеброй, содержащей события вида $\{w\in\Omega\mid X^2(w)\leq v\}$ для всех $v\in\mathbb{R}$. При v<0 это будет пустое множество \emptyset . При $v\geq0$ имеем

$$\{w\in\Omega\mid X^2(w)\leq v\}=\{w\in\Omega\mid -\sqrt{v}\leq X(w)\leq \sqrt{v}\}.$$

Отрезок $[-\sqrt{v},\sqrt{v}]$ лежит в Борелевской сигма алгебре, а значит $\{w\in\Omega\mid -\sqrt{v}\leq X(w)\leq \sqrt{v}\}$ лежит в $\sigma(X)$, тогда и $\{w\in\Omega\mid X^2(w)\leq v\}$ лежит в $\sigma(X)$. Отсюда $\sigma(X^2)\subseteq\sigma(X)$.

Частичные баллы ставились за разумные рассуждения, не являющиеся формальным доказательством, или за доказательства с недочетами.

6. [10] Каждый день в заезде участвую только две лошади: Юлиус и Фру-фру. Ставки на Фру-фру принимаются с коэффициентом 2, то есть при победе Фру-фру ставка будет возвращена в двойном размере. Ставки на Юлиуса принимаются с коэффициентом 4. Вероятность победы Фру-фру равна 2/3.

Игрок начинает со стартовой суммой $S_0=100$ и каждый день ставит все свои деньги в некоторой пропорции на Фру-фру и Юлиуса.

Определим долгосрочную процентную ставку r условием $p\lim(S_n/S_0)^{1/n}=1+r$, где S_n — благосостояние игрока после n дней.

- а) [2] Какая стратегия максимизирует $\mathbb{E}(S_n)$?
- б) [5] Какая стратегия максимизирует долгосрочную процетную ставку?
- в) [3] Какая стратегия гарантирует безрисковый доход с \mathbb{V} ar $(S_n)=0$?

Пусть каждый день мы ставим долю v от имеющихся сбережений на Фру-фру и долю (1-v) на Юлиуса, $0 \le v \le 1$ (по условию мы должны каждый день поставить все свои деньги, поэтому доли обязаны суммироваться в единицу). Пускай в определенный день у нас на руках было x денег. Тогда при победе Фру-фру на руках в конце дня мы будем иметь 2vx, а при победе Юлиуса мы будем иметь 4(1-v)x.

Введем последовательность независимых одинаково распределенных величин M_i , где M_i принимает значение 2v с вероятностью 2/3 и значение 4(1-v) с вероятностью 1/3. По сути каждый день наши сбережения домножаются на случайный коэффициент. Тогда имеем

$$S_n = S_0 \prod_{i=1}^n M_i.$$

В пункте а) имеем

$$\mathbb{E}[S_n] = S_0 \,\mathbb{E}\left[\prod_{i=1}^n M_i\right] = S_0 \prod_{i=1}^n \mathbb{E}[M_i].$$

В последнем равенстве мы воспользовались независимостью величин M_i . Отсюда для максимизации матожидания мы должны максимизировать

$$\mathbb{E}[M_i] = \frac{2}{3}2v + \frac{1}{3}4(1-v) = \frac{4}{3}v + \frac{4}{3}(1-v) = \frac{4}{3}.$$

Матожидание это константа, тогда нам подойдет любое $0 \le v \le 1$.

В пункте б) хотим максимизировать $\operatorname{plim}(S_n/S_0)^{1/n}$. По лемме о наследовании сходимости это то же самое, что максимизировать $\operatorname{plim}\log\left((S_n/S_0)^{1/n}\right)$, так как логарифм является монотонно возрастающей функцией. Далее

$$\log ((S_n/S_0)^{1/n}) = \frac{\log S_0}{n} + \frac{1}{n} \left(\sum_{i=1}^n \log M_i \right).$$

Первое слагаемое это константа, а второе слагаемое по ЗБЧ сходится к $\mathbb{E}\left[\log M_i\right]$ по вероятности, отсюда нам нужно максимизировать данное матожидание по v (здесь мы по сути вывели критерий Кэлли, принимается просто сослаться на лекцию). Распишем

$$\mathbb{E}[\log M_i] = \frac{2}{3}\log(2v) + \frac{1}{3}\log(4(1-v)).$$

Найдем производную по v:

$$\frac{4}{6v} - \frac{4}{12(1-v)} = \frac{2}{3v} - \frac{1}{3(1-v)}$$

Прирванивая к нулю, получим

$$\frac{2}{3v} = \frac{1}{3(1-v)}$$
$$6(1-v) = 3v$$
$$v = \frac{2}{3}$$

Отсюда оптимальной стратегией будет две трети сбережений ставить на Фру-фру и одну треть на Юлиуса.

В пункте в) мы хотим добиться $\mathbb{V}\mathrm{ar}(S_n)=0$. Это возможно только если S_n это константа, а это возможно только если все коэффициенты M_i — константы. Вспомним, что M_i принимает значение 2v с вероятностью 2/3 и значение 4(1-v) с вероятностью 1/3. Значит мы хотим добиться 2v=4(1-v), отсюда единственное подходящее v это v=2/3. Значит стратегией с безрисковым доходом также будет две трети сбережений ставить на Фру-фру и одну треть на Юлиуса.

Критерии:

- Верные рассуждения но неверно выписанное матожидание или сам коэффициент в пункте а) -1 балл из 2 за пункт а)
- В пункте б) объяснено, что надо максимизировать матожидание логарифма коэффициента $\mathbb{E}[\log M_i]$ (вывести или сослаться на критерий Кэлли) +2 балла за пункт б)
- В пункте б) корректно найдено $\mathbb{E}[\log M_i]$ и найден максимум по v-+3 балла за пункт б) (возможны частичные баллы при неверно выписанном матожидании/неверно выписанном коэффициенте/арифметических ошибках)
- В пункте в) приведены корректные рассуждения достаточной степени подробности, как добиться безрискового дохода +1 балл за пункт в)
- В пункте в) найден правильный ответ -+2 балла за пункт в)