Problem 8): For a public key encryption scheme $\Pi = (\text{Gen, Enc, Dec})$, we define **CPA** security according to the probability obtaining a secure result, as defined in the privacy experiment $\text{PubK}_{\mathcal{A},\Pi}^{\text{LR-cpa}}$. This experiment goes as follows

The LR-orcale experiment $\mathsf{PubK}_{\mathcal{A},\prod}^{\mathsf{LR-cpa}}\left(n\right)$

- 1. Gen (1^n) is run to obtain keys (pk, sk).
- 2. A uniform bit $b \in \{0,1\}$ is chosen.
- 3. The adversary A is given input pk and oracle access to $\mathsf{LR}_{pk,b}\left(\cdot,\cdot\right)$.
- 4. The adversary A outputs a bit b'.
- 5. The adversary \mathcal{A} is defined to be 1 if b'=b, and 0 otherwise. If $\mathsf{PubK}_{\mathcal{A},\prod}^{\mathsf{LR-cpa}}(n)=1$, we say that \mathcal{A} succeeds.

Using this definition for the experiment $PubK_{\mathcal{A},\prod}^{LR\text{-}cpa}$, we say that the encryption scheme \prod is secure if the probability of \mathcal{A} succeeding during $PubK_{\mathcal{A},\prod}^{LR\text{-}cpa}$