

21 Compléments d'algèbre linéaire

Tout le programme de première année, sans encore les matrices : espaces vectoriels, sous-espaces vectoriels, combinaisons linéaires de familles finies, infinies, familles libres, familles génératrices, bases. Base incomplète, base extraite. Applications linéaires, noyau, image, théorème du rang (version géométrique et sur les dimension), $u \circ v = 0$, projecteurs, symétries.

Produit d'espaces vectoriels, somme de p sous-espaces vectoriels, somme directe, projecteurs associés à une décomposition de E en somme directe, lien avec les bases. Détermination d'une application linéaire par l'image des vecteurs d'une base, par les restrictions à des sous-espaces en somme directe. Rang.

11 Compléments sur les groupes

Révision du programme de première année : loi de composition interne, définitions et propriétés, partie stable. Groupe, exemples, groupe produit, sous-groupes. Morphismes de groupes, noyau, image, isomorphisme.

Sous-groupe engendré par une partie : intersection, plus petit sous-groupe, description extensive.

Interlude : $\mathbb{Z}/n\mathbb{Z}$. Relation de congruence modulo n, $\mathbb{Z}/n\mathbb{Z}$, loi de groupe. $(\mathbb{Z}/n\mathbb{Z}, +)$ est engendré par \overline{k} si et seulement si $k \wedge n = 1$.

Groupe monogène, groupe cyclique. Les sous-groupes de \mathbb{Z} . Description de $\langle a \rangle$. Théorème : un groupe monogène est isomorphe à \mathbb{Z} ou $\mathbb{Z}/n\mathbb{Z}$.

Ordre d'un élément dans un groupe. Définition, caractérisation. Si G est fini, l'ordre d'un élément divise le cardinal de G.

Exercices et résultats classiques à connaître

21.1

Soit E un \mathbb{K} -espace vectoriel de dimension n, et f un endomorphisme nilpotent d'indice n, i.e. $f^n = 0$ et $f^{n-1} \neq 0$. Montrer qu'il existe $x \in E$ tel que :

$$(f^{n-1}(x), f^{n-2}(x), \dots, f(x), x)$$
 base de E

Quelle est la matrice de f dans cette base?

21.2

Soit E un espace vectoriel et $f \in \mathcal{L}(E)$. Pour $p \in \mathbb{N}$, on définit :

$$I_p = \operatorname{Im}(f^p)$$
 et $K_p = \operatorname{Ker}(f^p)$

où
$$f^p = \underbrace{f \circ \cdots \circ f}_{p \text{ fois}}.$$

(a) Montrer que la suite $(I_p)_{p\in\mathbb{N}}$ (resp. $(K_p)_{p\in\mathbb{N}}$) est décroissante (resp. croissante) pour l'inclusion.

On suppose maintenant que E est de dimension finie.

- (b) Justifier l'existence de $r \in \mathbb{N}$ tel que $I_{r+1} = I_r$.
- (c) Montrer que les deux suites $(I_p)_{p\in\mathbb{N}}$ et $(K_p)_{p\in\mathbb{N}}$ sont constantes à partir du rang r.
- (d) Justifier que:

$$I_r \oplus K_r = E$$

21.3

Soit f un endomophisme de E. On suppose que, pour tout $x \in E$, (x, f(x)) est liée. Montrer que f est un homothétie.

11.1

Soit (G, \star) un groupe. On définit son **centre** comme l'ensemble des éléments de G qui commutent avec tous les éléments de G:

$$C = \{ g \in C, \ \forall h \in G, \ g \star h = h \star g \}$$

Montrer que C est un sous-groupe de (G, \star) .

11.2

Montrer que, si G est un sous-groupe de $(\mathbb{R}, +)$, alors il est soit de la forme $\alpha \mathbb{Z}$ avec $\alpha \in \mathbb{R}$, soit dense dans \mathbb{R} .

Dans le cas où $G \neq \{0\}$, on s'intéressera à $\alpha = \text{Inf}(G \cap \mathbb{R}_+^*)$ et on discutera selon que $\alpha > 0$ ou $\alpha = 0$.

Exercices du CCINP à travailler

0.3 Sp. 55.1

Soit a un nombre complexe.

On note E l'ensemble des suites à valeurs complexes telles que :

 $\forall n \in \mathbb{N}, u_{n+2} = 2au_{n+1} + 4(ia - 1)u_n \text{ avec } (u_0, u_1) \in \mathbb{C}^2.$

- 1. (a) Prouver que E est un sous-espace vectoriel de l'ensemble des suites à valeurs complexes.
 - (b) Déterminer, en le justifiant, la dimension de E.

 $\boxed{0.4}$

Soit n un entier naturel tel que $n \ge 2$.

Soit E l'espace vectoriel des polynômes à coefficients dans \mathbb{K} ($\mathbb{K} = \mathbb{R}$ ou $\mathbb{K} = \mathbb{C}$) de degré inférieur ou égal à n.

On pose : $\forall P \in E, f(P) = P - P'$.

- 1. Démontrer que f est bijectif de deux manières :
 - (a) sans utiliser de matrice de f,
- 2. Soit $Q \in E$. Trouver P tel que f(P) = Q.

Indication: si $P \in E$, quel est le polynôme $P^{(n+1)}$?

0.5 60

Soit la matrice $A = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}$ et f l'endomorphisme de $\mathcal{M}_2(\mathbb{R})$ défini par : f(M) = AM.

- 1. Déterminer une base de Ker f.
- 2. f est-il surjectif?

- 3. Déterminer une base de Im f.
- 4. A-t-on $\mathcal{M}_2(\mathbb{R}) = \operatorname{Ker} f \oplus \operatorname{Im} f$?

GNP 62.123

Soit E un espace vectoriel sur \mathbb{R} ou \mathbb{C} . Soit $f \in \mathcal{L}(E)$ tel que $f^2 - f - 2\mathrm{Id} = 0$.

- 1. Prouver que f est bijectif et exprimer f^{-1} en fonction de f.
- 2. Prouver que $E = \text{Ker}(f + \text{Id}) \oplus \text{Ker}(f 2\text{Id})$:
- 3. Dans cette question, on suppose que E est de dimension finie. Prouver que Im(f+Id)=Ker(f-2Id).

0.7

GNP 64

Soit f un endomorphisme d'un espace vectoriel E de dimension finie n.

- 1. Démontrer que : $E = \operatorname{Im} f \oplus \operatorname{Ker} f \Longrightarrow \operatorname{Im} f = \operatorname{Im} f^2$.
- 2. (a) Démontrer que : $\operatorname{Im} f = \operatorname{Im} f^2 \iff \operatorname{Ker} f = \operatorname{Ker} f^2$.
 - (b) Démontrer que : $\mathrm{Im} f = \mathrm{Im} f^2 \Longrightarrow E = \mathrm{Im} f \oplus \mathrm{Ker} f.$

0.8

GNP 71

Soit P le plan d'équation x + y + z = 0 et D la droite d'équation $x = \frac{y}{2} = \frac{z}{3}$.

- 1. Vérifier que $\mathbb{R}^3 = P \oplus D$.
- 2. Soit p la projection vectorielle de \mathbb{R}^3 sur P parallèlement à D. Soit $u=(x,y,z)\in\mathbb{R}^3$. Déterminer p(u) et donner la matrice de p dans la base canonique de \mathbb{R}^3 .
- 3. Déterminer une base de \mathbb{R}^3 dans laquelle la matrice de p est diagonale.

0.9

GNP 93.1

Soit E un espace vectoriel réel de dimension finie n > 0 et $u \in \mathcal{L}(E)$ tel que $u^3 + u^2 + u = 0$. On notera Id l'application identité sur E.

1. Montrer que $\text{Im} u \oplus \text{Ker} u = E$.