Transformações Geométricas - Parte 1

Petrúcio Ricardo Tavares de Medeiros

Universidade Federal Rural do Semi-Árido petrucior@gmail.com

Tópicos da aula

- Sistemas de coordenadas Cartesianas
- Pipeline Gráfico
 - Múltiplos sistemas de coordenadas
 - Sistema de coordenadas do objeto
 - Sistema de coordenadas do mundo
 - Sistema de coordenadas da câmera
 - Sistema de coordenadas normalizado
 - Sistema de coordenadas do dispositivo
- Escalar, Pontos e Vetores
 - Vetor a partir de pontos
 - Norma de um vetor
 - Deslocando um ponto no espaço com vetor
 - Soma de vetores
 - Multiplicação de um vetor por escalar
 - Produto interno / produto escalar
 - Produto vetorial

Sistemas de coordenadas Cartesianas

- Duras retas concorrentes:
- Eixo x (eixo das abscissas);
- Eixo y (eixo das ordenadas);
- Origem do sistema.

Ponto é par ordenado

2 eixos em um plano separamos em 4 quadrantes

Sistemas de coordenadas em espaço 3D

Ponto representado no espaço 3D

Regra da mão direita e mão esquerda

Pipeline Gráfico

From Computer Desktop Encyclopedia Reprinted with permission. © 1998 Intergraph Computer Systems

Múltiplos sistemas de coordenadas

- Objeto;
- Mundo;
- Câmera;
- Normalizado;
- Dispositivo

Sistema de coordenadas do objeto

Sistema de coordenadas do mundo

Sistema de coordenadas da câmera

Volume de visão da câmera

FIGURA 2.7. Volume de visão da câmera.

Sistema de coordenadas normalizado

FIGURA 2.9. Sistema de Coordenadas Normalizado (ou de Recorte): transformação do Frustrum para o cubo normalizado.

Figura: Cada eixo do frustum será normalizado entre [-1, 1]

Sistema de coordenadas do dispositivo

Definições: Escalar, Pontos e Vetores

Escalar: representa um valor numérico associado a unidade de medida;

Ponto: conjunto ordenado de escalares (localização no espaço);

Vetor: grandeza física que possui módulo, direção e sentido;

Vetor

O vetor é representado como uma seta partindo do ponto inicial (p_i) para um ponto final (p_f) .

2D:

$$v = \overrightarrow{p_i} \overrightarrow{p_f} = p_f - p_i = (x_{pf}, y_{pf}) - (x_{pi}, y_{pi}) = \langle x_{pf} - x_{pi}, y_{pf} - y_{pi} \rangle$$

3D:

$$v = \overrightarrow{p_i p_f} = p_f - p_i = (x_{pf}, y_{pf}, z_{pf}) - (x_{pi}, y_{pi}, z_{pi}) = \langle x_{pf} - x_{pi}, y_{pf} - y_{pi}, z_{pf} - z_{pi} \rangle$$

Exercícios: Encontre o vetor a partir dos pontos abaixo:

- a = (2,4) e b = (6,2);
- a = (6,7) e b = (-1,-2);
- a = (2, 2, 4) e b = (1, 1, 1);
- a = (-2, 4, -5) e b = (5, 2, -5)

Norma de um vetor

Dado um vetor v=< x,y,z>, temos que a norma desse vetor é dada por:

$$|v| = \sqrt{x^2 + y^2 + z^2}$$

Exercícios: Encontre a norma dos vetores abaixo.

- a = <2, -5>;
- b = <4,2>;
- c = <3, 5, -6>;
- d = <6, -2, 1>

Deslocamento de ponto no espaço através de um vetor

Podemos usar um vetor para deslocar um ponto do espaço para outra posição somando/subtraindo o vetor ao ponto.

$$p' = p + v = (x_p, y_p, z_p) + \langle x_v, y_v, z_v \rangle = (x_p + x_v, y_p + y_v, z_p + z_v)$$

$$p' = p + v = (x_p, y_p, z_p) - \langle x_v, y_v, z_v \rangle = (x_p - x_v, y_p - y_v, z_p - z_v)$$

Exercícios: Realize o deslocamento dos pontos usando os vetores.

- a = (2, -5) e v = <2, 4>;
- a = (3, 5, -6) e v = <-3, 2, -3>;

Podemos representar um ponto como um vetor e vice-versa subtraindo/somando a origem.

Soma de vetores

FIGURA 2.12 . Soma de vetores.

Soma de vetores

$$v_a + v_b = < x_{va}, y_{va}, z_{va} > + < x_{vb}, y_{vb}, z_{vb} > = < x_{va} + x_{vb}, y_{va} + y_{vb}, z_{va} + z_{vb} >$$

$$v_a - v_b = < x_{va}, y_{va}, z_{va} > - < x_{vb}, y_{vb}, z_{vb} > = < x_{va} - x_{vb}, y_{va} - y_{vb}, z_{va} - z_{vb} >$$

Exercícios: Realize as operações nos vetores abaixo:

- Soma entre a = <2, -5 > e v = <2, 4 >:
- Subtração entre $a = <3, 2 > e \ v = <1, 7 >$;
- Soma entre $a = <3, 5, -6 > e \ v = <-3, 2, -3 >;$
- Subtração entre $a = <5, 5, 1 > e \ v = <3, 1, 7 >$;

Multiplicação de um vetor por escalar

Multiplicação de um vetor por escalar e a normalização

A multiplicação de um vetor por escalar é dada pela expressão abaixo:

$$c * v = c * < x_v, y_v, z_v > = < c * x_v, c * y_v, c * z_v >$$

Um vetor unitário é um vetor com norma 1. Podemos transformar um vetor em vetor unitário da seguinte forma:

$$u = \frac{v}{\mid v \mid} = \left\langle \frac{x_v}{\mid v \mid}, \frac{y_v}{\mid v \mid}, \frac{z_v}{\mid v \mid} \right\rangle$$

Exercícios: Realize as operações nos vetores abaixo:

- Multiplique o vetor v = <2, 4 > pelo escalar 3;
- Multiplique o vetor v = <1,7,5> pelo escalar -5;
- Normalize o vetor v = <12, 3>;
- Normalize o vetor v = <-3, 4, -5>

Propriedades aritméticas de vetores

TABELA 2.1 Propriedades da aritmética de vetores		
Comutativa	V + W = W + V	
Distributiva	a * (v + w) = a * v + a * w (a + b) * v = a * v + b * v	
Associativa	u (v + w) = (v + u) + w	
Identidade Aditiva	v + 0 = 0 + v = v	
Identidade Multiplicativa	1 + v = v * 1 = v	
Inverso Aditivo	V + (-V) = 0	

Produto interno (produto escalar)

O produto interno é usado para verificar se dois vetores são ortogonais.

$$v.w = < x_v, y_v, z_v > . < x_w, y_w, z_w > = x_v * x_w + y_v * y_w + z_v * z_w = \mid v \mid * \mid w \mid * cos(\theta)$$

Um vetor unitário é um vetor com norma 1. Logo, podemos transformar um vetor em vetor unitário da seguinte forma:

$$u = \frac{v}{\mid v \mid} = \left\langle \frac{x_v}{\mid v \mid}, \frac{y_v}{\mid v \mid}, \frac{z_v}{\mid v \mid} \right\rangle$$

Exercícios: Realize as operações nos vetores abaixo:

- Calcule o produto escalar entre os vetores a = <2, -4 > e b = <5, 3 >;
- Calcule o produto interno entre os vetores a = <1,7,5> e b = <2,4,5>;
- Transforme o vetor v = <12, 3 > em vetor unitário;
- Transforme o vetor v = <-3, 4, -5> em vetor unitário

Propriedades do produto escalar

TABELA 2.2 Propriedades do produto escalar	
Produto nulo	$v \cdot 0 = 0$ para um vetor qualquer se $v \cdot v = 0$ então $v = 0$
Comutativa	$V \cdot W = W \cdot V$
Distributiva	$u \cdot (v + w) = u \cdot v + u \cdot w$ $(v + w) \cdot u = v \cdot u + w \cdot u$
Associativa	$a * (v \cdot w) = (a * v) \cdot w = v. (a * w)$
Produto escalar quadrado	$V \cdot V = V ^2$

Produto vetorial

Produto vetorial

O produto vetorial de dois vetores (\times) gera um terceiro vetor ortogonal aos dois primeiros. Obs.: Usamos para verificar se dois vetores são paralelos.

$$u = v \times w = < y_v * z_w - z_v * y_w, z_v * x_w - x_v * z_w, x_v * y_w - y_v * x_w > = < x_u, y_u, z_u >$$

$$v \times w = \begin{vmatrix} i & j & k \\ x_v & y_v & z_v \\ x_w & y_w & z_w \end{vmatrix}$$

O comprimento do vetor resultante é dado por:

$$\mid v \times w \mid = \mid v \mid * \mid w \mid *sen(\theta)$$

Exercícios: Realize as operações nos vetores abaixo:

- Calcule o produto vetorial entre os vetores a = <2, -4 > e b = <5, 3 >;
- Calcule o produto vetorial entre os vetores a=<1,7,5> e b=<2,4,5>;

Propriedades do produto vetorial

	Contraction of the contraction o
Produto vetorial inverso	$V \times W = -W \times V$
Múltiplo de escalar por produto vetorial	$a * (v \times w) = (a * v) \times w = v \times (a * w)$
Distributiva à direita	$u \times (v + w) = u \times v + u \times w$
Distributiva à esquerda	$(v + w) \times u = v \times u + w \times u$

Transformações Geométricas - Parte 1

Petrúcio Ricardo Tavares de Medeiros

Universidade Federal Rural do Semi-Árido petrucior@gmail.com