

Lesson 8: Recommender System

Agenda

- 1. Summary on Recommender System
- 2. Evaluation methods
- 3. Colaborative filtering using k-Nearest Neightbors
- 4. Colaborative filtering using Maxtrix Factorization
- 5. Neural Colaborative Filtering
- 6. Session-based Recommender System

1. Summary

Why we need recommender system?

- Users are overloaded with information on the web
- Sellers need to offer the right product to
 - Increase sale revenue
 - Improve serving quality
- The trend of personalization and digitization is inevitable

Recommender System and Query System

- Query System: Users express their wishes through a query
- Recommender System : Users do not know what they want

Application fields

- Ecommerce
- Online entertainment
- Online News
- Forums, social networks
- Scientific research
- Online Dating

Application fields (cont.)

- Amazon:
 - Recommend products
 - More than 30% increase in revenue
- Netflix:
 - Recommend movies, TV shows
 - Bring in \$1B per year
- Google News:
 - News Suggestions
 - Nearly 40% increase in traffic

Application fields (cont.)

Recommendation methods

- Content-based:
 - Suggestions based on user's transaction history
- Colaborative filtering:
 - Suggestions based on users with similar interests
- Session-based:
 - Suggestions based on transaction chains
- Hybrid methods

Netflix challenge

Netflix challenge (cont.)

Number of papers on recsys by years

Content-based

Colaborative Filtering

Challenge of recommender system

- The number of transactions is very small compared to the actual number of users and products
- Not enough information about new users and products
- Users and products change over time, seasonally
- Consumption habits change over time, seasonally
- Real-time recommendation

2. Evaluation methods

- Give
 - User set U
 - Item set I
- Dataset of transactions (u, i, r_{ui}, t)
 - u: user $u \in U$
 - **.** *i*: item | ∈ *I*
 - r_{ui} : ratings of user u to item i
 - t. rating time

- \blacksquare r_{ui}
 - 5-stage scale (1, 2, 3, ,4 ,5)
 - Binary scale (0, 1)
- Dataset separated into train set and test set
- RS is trained on train set
- On test set, RS predict ratings p_{ui} of user u to item i

train/test

	i ₁	i ₂	i ₃	i ₄
u ₁	-	5	3	-
u ₂	4	-	2	3
u_3	4	1	-	5

	—			
	i ₁	i ₂	i ₃	i ₄
u ₁	-	5		-
u ₂		-	2	3
u_3	4	1	-	

	i ₁	i ₂	i ₃	i ₄
u ₁	-		3	-
u ₂	4	-		
u_3			-	5

tes

Metrics

- (N)MAE
- RMSE
- Ranking:
 - Precision/Recall/F-score

MAE

$$MAE = \frac{\sum_{ui} |p_{ui} - r_{ui}|}{n}$$

- p_{ui} : prediction of model on ratings of user u to item i
- r_{ui} : ratings of user u to item i
- n: number of examples in test set

NMAE

$$NMAE = \frac{MAE}{r_{max} - r_{min}}$$

- r_{max} : User's maximum ratings value
- r_{min} : User's minimum ratings value

RMSE

$$RMSE = \sqrt{\frac{1}{n} \sum_{ui} (p_{ui} - r_{ui})^2}$$

A/B testing

3. Colaborative Filtering using kNN

- Based on product user interaction matrix
- No training
- Recommend based on users
 - Find set V of similar users to user u
 - Compute ratings for item i based on ratings of user in V to item i

Recommend based on users

User similarity

$$sim(\mathbf{u}, \mathbf{v}) = \frac{\sum_{i \in C} (r_{ui} - \bar{r}_{\mathbf{u}})(r_{vi} - \bar{r}_{\mathbf{v}})}{\sqrt{\sum_{i \in C} (r_{ui} - \bar{r}_{\mathbf{u}})^2} \sqrt{\sum_{i \in C} (r_{vi} - \bar{r}_{\mathbf{v}})^2}}$$

- C: set of item on that both user u and user v rated
- r_u : Average ratings of user u (only counting for items that u rated)

Predict ratings

$$p_{\mathbf{u}i} = \bar{r}_{\mathbf{u}} + \frac{\sum_{\mathbf{v} \in V} sim(\mathbf{u}, \mathbf{v})(r_{vi} - \bar{r}_{\mathbf{v}})}{\sum_{\mathbf{v} \in V} |sim(\mathbf{u}, \mathbf{v})|}$$

V: top k similar users to user u

Example (k = 2)

	i ₁	i ₂	i ₃	i ₄
u ₁	5	4	4	1
u ₂	2	1		
u_3	5	4	4	?
u ₄		1	2	5

$$r_1 = sim(u_3, u_1) = 14/4$$
 ~ 0.492 $r_2 = 3/2$ $sim(u_3, u_2) = r_3 = \sim 0.948$ $sim(u_3, u_4) = r_4 = 8/3$ ~ 0.919

$$p(u_3,i_4) = \sim 6.67$$

Disadvantages

- Regularly update the user vector when the user has a new transaction
- Requires computation on the entire set of users

Recommend products

- Product representation based on user-product interaction matrix
- Suitable for systems with product number << number of users
- Lower update frequency of product vectors
- Can calculate product-product similarity in advance

Product representation

Product similarity

$$sim(i,j) = \frac{\sum_{\mathbf{u} \in U} (r_{ui} - \bar{r}_{\mathbf{u}})(r_{uj} - \bar{r}_{\mathbf{u}})}{\sqrt{\sum_{\mathbf{u} \in U} (r_{ui} - \bar{r}_{\mathbf{u}})^2} \sqrt{\sum_{\mathbf{u} \in U} (r_{uj} - \bar{r}_{\mathbf{u}})^2}}$$

U: set of users rated both item i and item j

Ratings prediction

$$p(\mathbf{u}, i) = \frac{\sum_{j \in J} r_{\mathbf{u}, j} \times sim(i, j)}{\sum_{j \in J} sim(i, j)},$$

J: top k similar items to item i

Example

4. Colaborative Filtering using MF

- Based on the overall context of the user-product interaction
- Representing users, products in latent aspects
- Using Matrix Factorization technique
- Based on user and product vectors to make predictions

SVD

- User movies matrix R
- Factorize R into user-aspect matrix U and moviesaspect matrix M
- Each user is represented by a K-dimensional vector, where K is the number of latent aspect
- Each movie is represented by a K-dimensional vector

$$\mathbf{R} \approx \mathbf{U}^{\mathrm{T}} \mathbf{M}$$
. $r_{ij} \approx \mathbf{u}_{i}^{\mathrm{T}} \mathbf{m}_{j} = \sum_{k=1}^{K} u_{ki} \times m_{kj}$,

Ratings predictions

$$p_{ij} = \sum_{k=1}^K u_{ki} \times m_{kj} .$$

- p_{ii} : predict ratings of user *i* to movie *j*
- **u**_i: User vecrtor i
- m_i : movie vector j

Hàm lỗi:

Model

- U, M is learning parameters
- R is training dataset
- Mean Square Error: $E_{ij} = e_{ij}^2 = (p_{ij} r_{ij})^2$
- Learning technique: Gradient Descent

Gradient Descent

Derivative of the error function wrt u_{ki}

$$\frac{\partial (e_{ij})^2}{\partial u_{ki}} = 2e_{ij} \frac{\partial e_{ij}}{\partial u_{ki}}.$$

$$\frac{\partial e_{ij}}{\partial u_{ki}} = -\frac{\partial p_{ij}}{\partial u_{ki}}.$$

$$\frac{\partial (e_{ij})^2}{\partial u_{ki}} = 2e_{ij}(-m_{kj}) = -2(r_{ij} - p_{ij})m_{kj}.$$

Gradient Descent (Cont.)

Derivative of the error function wrt m_{ki}

$$\frac{\partial (e_{ij})^2}{\partial m_{kj}} = 2e_{ij}(-u_{ki}) = -2(r_{ij} - p_{ij})u_{ki}.$$

$$u_{ki}^{t+1} = u_{ki}^{t} - \gamma \frac{\partial (e_{ij})^{2}}{\partial u_{ki}} = u_{ki}^{t} + 2\gamma (r_{ij} - p_{ij}) m_{kj}^{t}.$$

$$u_{ki}^{t+1} = u_{ki}^{t} + 2\gamma(r_{ij} - p_{ij})m_{kj}^{t},$$

$$m_{kj}^{t+1} = m_{kj}^t + 2\gamma (r_{ij} - p_{ij})u_{ki}^t.$$

Gradient Descent (cont.)

Update u_{ki} :

$$u_{ki}^{t+1} = u_{ki}^{t} + \gamma (2(r_{ij} - p_{ij})m_{kj}^{t} - \lambda u_{ki}^{t}),$$

Update m_{kj} :

$$m_{kj}^{t+1} = m_{kj}^t + \gamma (2(r_{ij} - p_{ij})u_{ki}^t - \lambda m_{kj}^t).$$

λ: regularize parameter

γ: learning rate

5. Neural Colaborative Filtering

- Representing the user, product in a hidden aspect level may not fully capture the complex nature of the userproduct interaction
- Deep neural networks allow automatic learning of latent aspect levels from basic to abstract
- MF is basic form of neural network

Limitations of MF

- MF preserve similarity of user vectors
- Assume that user similarity is measured using Jaccard metric
- User vector and item vector are both represented in the K-dimensional latent aspect space

Limitations MF (cont.)

$$s_{23}(0.66) > s_{12}(0.5) > s_{13}(0.4)$$

$$s_{41}(0.6) > s_{43}(0.4) > s_{42}(0.2)$$

NCF architecture

Input layer

- The user is represented by a M-dimension one-hot vector
 - M is number of users
- Item are represented by a N-dimension one-hot vector where N is the number of products

Embedding layer

- Independently represent users and products
- M x K connection weight to represent user
- N x K connection weights to represent item
- E.g: K = 16

MLP

- User and item representations are feeded into a multilayered MLP network to learn complex user and product interactions
- E.g:
 - ReLU activation function
 - 3 layers with deceasing size 32 → 16 → 8

Loss function

- Implicit feedback:
 - 1: user interacts with item
 - 0: user do not interacts with item
- Binary classification problem with probability factor
- Using the cross entropy loss function

$$-\sum_{(u,i)\in\mathcal{Y}\cup\mathcal{Y}^{-}} y_{ui} \log \hat{y}_{ui} + (1 - y_{ui}) \log(1 - \hat{y}_{ui}).$$

6. Session-based

- In many cases, it is difficult to identify users and collect reviews.
 - Small commercial websites
 - News sites
- session-based recommendation
 - Do not require user identification
 - Each transaction, including transaction order, is used as model training data

Problem definition

- Input: Stream of items $i_1, i_2, ..., i_{n-1}$
- Output: suggest next item
- Given a list of products with the highest probability $Pr(i_n|i_1, i_2, ..., i_{n-1})$
- Suitable for implicit feedback

Implicit feedback

RNN architecture

Input layer

- Represent each item at a time t as V-dimension one-hot vector
 - 1 at position of item, otherwise 0
 - V: number of distinct

Embedding layer

- Biến đổi biểu diễn one-họt thành biểu diễn K chiều
 - K number of neural in embedding layer
 - Number of connection weight between input and embedding layer V x K

Recurrent layer

- The recurrent layer stores historical information through recurrent links
- Many recurrent layer stacked together to learn high level abstract features
- Advanced model: LSTM or GRU

MLP layer

- The output of the recurrent layer is used as the input of the MLP layer to generate the prediction
- The MLP layer can include hidden layers to learn the nonlinear function
- The MLP has V neurons corresponding to V products

Loss function

Pair-wise rank loss function

$$L = -\frac{1}{N} \sum_{j=1}^{N} log(\sigma(\hat{r}_i - \hat{r}_j))$$

- N: number of negative sample
- $\hat{r_i}$: ratings of positive sample i
- $\hat{r_j}$: ratings of negative sample j
- Implicit feedback hypothesis: item i is selected so i's priority is higher than any other item j

VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

Thank you for your attentions!

