Package 'MultivarTV'

April 16, 2018

Type Package
Title Mesh Based Solutions to Multivariate Total Variation Problems
Version 1.0
Date 2018-04-05
Author Brayan Ortiz
Maintainer Brayan Ortiz
Description Efficient procedures written in C++ for fitting approximate solutions to multivariate total variation denoising problems. The algorithm uses the alternating direction method of multipliers (ADMM), as described by Boyd et al. (2011).
License GPL (>= 2)
Imports Rcpp (>= 0.12.16), scatterplot3d
LinkingTo Rcpp, RcppArmadillo
RoxygenNote 6.0.1
Suggests knitr, rmarkdown
VignetteBuilder knitr
NeedsCompilation yes
R topics documented:
MultivarTV-package 2 gen_mesh 3
mvtv
mvtv.default
plotResiduals
predict.mvtv
Index 7

MultivarTV-package

MultivarTV-package Mesh Based Solutions to Multivariate Total Variation Problems

Description

2

Efficient procedures written in C++ for fitting approximate solutions to multivariate total variation denoising problems. The algorithm uses the alternating direction method of multipliers (ADMM), as described by Boyd et al. (2011).

Details

The DESCRIPTION file:

Package: MultivarTV Type: Package

Title: Mesh Based Solutions to Multivariate Total Variation Problems

Version: 1.0

Date: 2018-04-05 Author: Brayan Ortiz

Maintainer: Brayan Ortiz
 brayan@uw.edu>

Description: Efficient procedures written in C++ for fitting approximate solutions to multivariate total variation denoising

License: GPL (>= 2)

Imports: Rcpp (>= 0.12.16), scatterplot3d

LinkingTo: Rcpp, RcppArmadillo

RoxygenNote: 6.0.1

Suggests: knitr, rmarkdown

VignetteBuilder: knitr

Index of help topics:

MultivarTV-package Mesh Based Solutions to Multivariate Total

Variation Problems

gen_mesh Generate a mesh mvtv MVTV Generic Class

mvtv.default Default Multivariate Total Variation Denoising

Solver

plotFits Plotting Fitted Surface, p=1

plotResiduals Plotting Residuals predict.mvtv MVTV Predict Function

This section should provide a more detailed overview of how to use the package, including the most important functions.

Author(s)

Brayan Ortiz

gen_mesh 3

References

This optional section can contain literature or other references for background information.

See Also

Optional links to other man pages

Examples

```
## Optional simple examples of the most important functions
## Use \dontrun{} around code to be shown but not executed
```

gen_mesh

Generate a mesh

Description

Single function to handle creating a mesh regularly across domain of predictors. Mesh created is a convex hull of predictor space.

Usage

```
gen_mesh(data, m, mesh)
```

Arguments

data n by p matrix of inputs

wector of length p with number of knots desired for each predictor

mesh NULL; otherwise, takes user defined mesh.

mvtv

MVTV Generic Class

Description

Defining MVTV Generic Class

Usage

```
mvtv(data, ...)
```

Arguments

data n by p matrix of data

... ignore

4 mvtv.default

mvtv.default	Default Multivariate Total Variation Denoising Solver
	Dojumi Hamilan ine Telui kurtunen Denetanig Betre

Description

Create a mesh and find cross-validated best approximation to total variation denoising problem.

Usage

```
## Default S3 method:
mvtv(data, y, m, mesh = NULL, n_lambda = 100L,
  ftrue = NULL, lambdas = NULL, folds = 5L, verbose = TRUE)
```

Arguments

_	
data	n by p matrix of inputs
У	response column vector
m	vector of number of mesh points per predictor
mesh	user can supply or NULL for regularly spaced mesh, which will be returned
n_lambda	number of logarithmically spaced tuning parameters
ftrue	prediction target. If NULL, use observed data.
lambdas	user can supply vector of lambdas to be solved over. If NULL, function generates n_lambda logarithmically spaced lambdas from 0.00001*lambda_max and lambda_max, where lambda_max is our approximation of smallest lambda where regularization ends.
folds	number of folds for cross-validation

Default: true, prints out current working penalty and number of iters to solve.

Examples

verbose

```
# Approximating Bivariate Fused Lasso for Uniform Data
## Generate Data
set.seed(117)
x <- matrix(runif(100),ncol = 2)
y <- matrix(runif(50),ncol=1)
m <- matrix(c(3,3))

## Find Total Variation Solution over range of lambdas and whole data set
mvtv_fold1 <- mvtv(x,y,m,folds=1, verbose = FALSE)

## Find 5-fold validated MVTV Model over range of lambdas
mvtv_fold5 <- mvtv(x,y,m,folds=5, verbose = FALSE)</pre>
```

plotFits 5

plotFits

Plotting Fitted Surface, p=1

Description

Plotting fitted values for an 'mvtv' Object

Usage

```
plotFits(mvtvmodel, addmesh = FALSE)
```

Arguments

mvtvmodel

object of class 'mvtv'

addmesh

If TRUE, plot has vertical grey lines along x-axis value of mesh

plotResiduals

Plotting Residuals

Description

Plotting residuals for an 'mvtv' Object

Usage

```
plotResiduals(mvtvmodel)
```

Arguments

mvtvmodel

object of class 'mvtv'

predict.mvtv

MVTV Predict Function

Description

Use fitted 'mvtv' object to predict new data.

Usage

```
## S3 method for class 'mvtv'
predict(mvtvobject, data = NULL, mesh = NULL)
```

6 predict.mvtv

Arguments

mvtvobject object produced by mbtv.default

data n by p matrix of inputs

mesh m by p mesh used by fitting function mvtv

Examples

```
# Approximating Bivariate Fused Lasso for Uniform Data
## Generate Data
set.seed(117)
x <- matrix(runif(100),ncol = 2)
y <- matrix(runif(50),ncol=1)
m <- matrix(c(3,3))

## Find 5-fold validated MBS Model over range of lambdas
mbs_fold5 <- mvtv(x,y,m,folds=5,verbose=FALSE)

# Access fitted values of training data; equivalent to mbs_fold5$fitted
fitted.values <- predict(mbs_fold5)
newdata <- matrix( runif(50), ncol = 2) # Generate new data
newfits <- predict(mbs_fold5, newdata) # Fit new data</pre>
```

Index

```
*Topic package
MultivarTV-package, 2

gen_mesh, 3

MultivarTV (MultivarTV-package), 2

MultivarTV-package, 2

mvtv, 3

mvtv.default, 4

plotFits, 5
plotResiduals, 5
predict.mvtv, 5
```