Digital Signal Processing 02B_P1 Discrete Time Systems

CE3007 -

CE3007 - Digital Signal Processing

 $02B_P1$: Discrete Time Systems

Chng Eng Siong

January 15, 2018

02B_P1 Discrete Time Systems

Introduction

LTI Syster

Deriving Convolution

Frequency

Eigenfunction

Stability

Properties of

LTT System

Relationship

Part I

Discrete Time Systems

02B_P1 Discrete Time Systems

Introduction

LTI System

Deriving Convolution Equation

Response Eigenfunction

Stabilit

Properties o LTI System

LTI IO Relationship

Discrete Time Systems

- 1 Introduction
- 2 Linear Time Invariant System
- 3 Deriving Convolution Equation
- 4 Frequency Response of a LTI system
 Proof: Complex Exponential are Eigenfunction
- **5** Proof Stability of LTI System
- 6 Properties of LTI System
- 7 The various Input/Output relationships of LTI system.

02B_P1 Discrete Time Systems

Introductio

LTI Syster

Deriving Convolutio Equation

Response

Stability

Properties of LTI System

LTI IO Relationship

References for Discrete Time Systems

1 Reading:

- Oppenheim, "Signal and Systems" (2nd Edition): Sec 1.5, 1.6, Sec 2.0, 2.1, 2.3 and 2.4
- Oppenheim, "Discrete Time Signals and System (2nd edition): Sec 2.2, 2.3, 2.4 and 2.5

2 Video:

Oppenheim: MIT Signals and Systems , Lect Video: 4,5,6
 Oppenheim: MIT Digital Signal Processing, Lect Video: 2,3

02B_P1 Discrete Time Systems

Introduction

LTI System

Deriving Convolution Equation

Response

Ctabilit

Properties of

LTI System

DT system

- **1** What is a discrete time system?
- 2 Types of DT system (memory, memoryless), (causal,not-causal), (finite/infinite impulse response), (stable, non-stable), (linear,not-linear), (time-invariant/time-variant)
- **3** Focus: linear and time-invariant (LTI) and stable.
- 4 Representing IO relationship of LTI system:
 - In time domain impulse response and the convolution.
 - In frequency domain (Fourier Domain) as frequency response.
 - As difference equation.
 - In block diagram.
 - In frequency domain (Z-domain) as transfer function.

02B_P1 Discrete Time Systems

Introduction

LTI Syster

Deriving Convolutio Equation

Response Eigenfunction

Stability

Properties of

LTI IO Relationship

DT System: Definition

1 A DT system f(.) processes a DT input sequence x[n] to produce a DT output sequence y[n].

$$y[n] = f(x[n]) \tag{1}$$

$$x[n] = \{\dots, x[-1], x[0], x[1], x[2], \dots\}$$
 (2)

where $n \in \mathbb{Z}$. The output y[n] at index n can depend on all values of x[n].

02B_P1 Discrete Time Systems

Introduction

LTI Syster

Deriving Convolution Equation

Response

Eigenfunction

Stability

Properties of LTI System

LTI IO Relationship

DT System: Characteristic

- 1 A DT system can be classify according to the following characteristics
 - (linear, not-linear),
 - (time-invariant vs time-variant)
 - (stable vs non-stable) alternatively BIBO criterion.
 - (causal,non-causal),
 - Others: (memory, memoryless), (finite impulse response, infinite impulse response), ...

Remark: For system deemed to have the above properties, the property must hold for all types of input x[n].

02B_P1 Discrete Time Systems

Introduction

LTI Syster

Deriving Convolution Equation

Response

Stability

Properties of LTI System

Relationship

DT System Characteristics: Linearity

The system f(.) is linear if it satisfies the superposition property. That is,the input x[n] can be decomposed to study the output.

$$y[n] = f(x[n]) = f(\alpha x_1[n] + \beta x_2[n])$$

= $f(\alpha x_1[n]) + f(\beta x_2[n])$ (3)
= $\alpha f(x_1[n]) + \beta f(x_2[n])$ (4)

- where $\alpha, \beta \in \mathbb{R}$.
- Eq 3 is the additive property,
- Eq 4 is the homogeneity or scaling property.
- These two properties together forms the principle of superposition.

Systems which do not possess the above linearity property are called non-linear systems.

02B_P1 Discrete Time Systems

Introduction

LTI Syster

Deriving Convolutio Equation

Frequency Response Eigenfunction

Stability

Properties of

LTI IO Relationship

Characteristic: Time (shift) invariance

A time invariant DT system f(.) has the property that

- when the input x[n] is delayed by K samples, the output is similarly delayed by K samples.
- Example: time invariant means,

$$f(x[n]) = y[n]$$

$$\implies f(x[n-K]) = y[n-k]$$
(5)

02B_P1 Discrete Time Systems

Introduction

LTI Syster

Deriving Convolutio Equation

Frequency Response Eigenfunction

Stabilit

Properties of LTI System

LTI IO Relationship

DT System Characteristics: Stability

We want to design systems to be stable. If an LTI system is stable, it also means:

- 1 Its output is bounded if its input is bounded (Bounded input Bounded Output **BIBO**):
 - By bounded input means $|x[n]| \le B_x < \infty$, $\forall n$.
- 2 Its impulse response h[n] is absolute summable: $\sum_{n=-\infty}^{\infty} |h[n]| < \infty$. See proof pg 25.
- 3 Its transfer function H(z)'s region of convergence (ROC) includes the unit circle. See Z-transform lecture (week 5).

02B_P1 Discrete Time Systems

Introduction

LTI Syster

Deriving Convolution Equation

Response

Stabilit

Properties of LTI System

LTI IO Relationship

DT System Characteristics: Memory, Causal

- **1 memory**: A system has memory if y[n] depends not only on x[n] but past values of x[n], e.g, x[n-1], x[n-2], ... etc.
 - Example: $y[n] = x[n]^2$ has no memory.
 - y[n] = 2.5x[n] + 3.4x[n-1] has memory
- **2** causalilty: A system is a causal system if its output depends only on past values of x[n],
 - Example: y[n] = f(x[n], x[n-1], x[n-2], ..) is causal.
 - y[n] = f(..,x[n+2],x[n+1],x[n],x[n-1],..) is not causal
 - For causal LTI system, its impulse response h[n] is causal.

02B_P1 Discrete Time Systems

Introduction

LTI Syster

Deriving Convolution

Frequency Response Eigenfunction

Stabilit

Properties of LTI System

LTI IO Relationship

DT System Characteristics: Impulse response (finite/infinite)

The response y[n] of a system to a DT impulse $\delta[n]$ input sequence is called its impulse response.

- **1** Finite impulse response: The output y[n] becomes 0 after n > N, where $N < \infty$.
 - A finite impulse response system is ALWAYS stable.
- **2** Infinite impulse response: the output y[n] does not become 0 as $n \to \infty$.
 - An infinite impulse response system may be either stable or unstable!
 - Check stability by examining if the impulse response is absolutely summable.

02B_P1 Discrete Time Systems

Introductio

LTI System

Deriving Convolution Equation

Response Eigenfunction

Stability

LTI System

LTI IO Relationshin

LTI System

In this course,

- Focus only on Linear Time-invariant (LTI) system.
- Design stable LTI system.
- If require real time processing, i.e, cannot use future values as input, system must be causal.

02B_P1 Discrete Time Systems

Introduction

LTI System

Deriving Convolution

Frequency Response Eigenfunction

Stabilit

Properties of LTI System

LTI IO Relationship

LTI System: Examining IO relationship

Because the system is linear and time invariant, the input/output relationship can be examined by decomposing the input x[n] in two ways (see Fig Page 15):

- **1** Express x[n] as a sum of scaled delayed DT impulses.
 - Using linearity and time invariance condition, we derive convolution equation
 - Convolution equation shows that the output is a summation of scaled delayed impulse responses.
- 2 Express x[n] as sum of scaled and phase shifted complex exponentials by Fourier Analysis.
 - complex exponentials are eigen functions of LTI system.
 - For each discrete frequency, we find the frequency response (gain and phase shift at that frequency).
 - the output is represented as the summation of scaled and phase shifted complex exponentials (decomposed x[n]) modified by the frequency response.

02B_P1 Discrete Time Systems

Introductio

LTI System

Deriving Convolution Equation

Response Eigenfunction

Stabilit

Properties of LTI System

LTI IO Relationship

Decomposing input: Two ways

02B_P1 Discrete Time Systems

Introduction

LTI Systen

Deriving Convolution Equation

Response

Stability

Properties o

LTI IO

LTI system: Convolution Eq

Output of an LTI system for input x[n] is given by the convolution equation

$$y[n] = x[n] * h[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$
 (6)

where h[n] is its impulse response.

02B_P1 Discrete Time Systems

Introduction

LTI System

Deriving Convolution Equation

Response Eigenfunction

Stabilit

Properties of LTI System

LTI IO Relationship

LTI System: Convolution Eq

To proof the convolution relationship,

① Decompose input x[n] into scaled and delayed DT impulses,

$$x[n] = \{\dots, x[-1], x[0], x[1], x[2], \dots\}$$

$$= \dots + x[-1]\delta[n+1] + x[0]\delta[n]$$

$$+ x[1]\delta[n-1] + x[2]\delta[n-2] + \dots$$
 (7)

- **2** The LTI system f(.) impulse response is $h[n] = f(\delta[n])$.
- 3 Using linearity and time invariance property, examine f(.) for each $x[k]\delta[n-k]$ (Eq 7) separately.
- 4 The output for each term $x[k]\delta[n-k]$ is

$$y_{k}[n] = f(x[k]\delta[n-k])$$

$$= x[k]f(\delta[n-k])$$

$$= x[k]h[n-k]$$
(8)

02B_P1 Discrete Time Systems

Introduction

ITI System

Deriving Convolution Equation

Response France

Stability

Stability

LTI System

LTI IO Relationship

Convolution Eq: Decomposing x[n] to scaled and delayed DT impulses

 $x[-3]\delta[n+3]$ A sequence x[n] can be decomposed by the figure on the RHS to motivate how we can understand he convolution equation $x[-2]\delta[n+2]$ x[n] $x[3]\delta[n-3]$ -2 $x[4]\delta[n-4]$

02B_P1 Discrete Time Systems

Introduction

LTI System

Deriving Convolution Equation

Response Frequency

Stability

Properties of LTI System

LTI IO Relationship

Convolution Equation

Therefore by considering all $x[k]\delta[n-k]$ terms that makes up x[n], we have the convolution equation,

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$
 (9)

Decompose x[n] into scaled delayed impulse The output y[n] is the sum of individual response of scaled and delayed impulse

02B_P1 Discrete Time Systems

Introductio

LTI Syste

Deriving Convolution Equation

Frequency Response Eigenfunction

Stabilit

Properties of LTI System

LTI IO Relationship

Summary: Impulse Response and Convolution Equation

The impulse response is the most important response to an LTI system. This is because an LTI system is fully characterise by h[n],

- ① Given h[n] and x[n], the output y[n] is described by the convolution equation.
- 2 If h[n] is absolutely summable, the system is stable. Proof in page 25.

02B_P1 Discrete Time Systems

Introduction

LTI Syster

Deriving Convolution

Frequency Response

Eigenfunction

Stability

Properties of LTI System

LTI IO Relationship

Frequency Response: Decomposing x[n] to complex exponential

For periodic DT signal, using Fourier Analysis, we can decompose x[n] into sum of scaled and phased shifted complex exponentials

$$x[n] = \sum_{k=0}^{N-1} c_k e^{j(2\pi/N)kn}$$

$$= A_0 e^{j(\frac{2\pi}{N}0n + \phi_0)} + \dots + A_k e^{j(\frac{2\pi}{N}kn + \phi_k)} + \dots + A_{N-1} e^{j(\frac{2\pi}{N}(N-1)n + \phi_{(N-1)})}$$
(10)

where $c_k = A_k e^{j\phi_k}$. If the signal is not periodic, the DT Fourier Transform is used.

02B_P1 Discrete Time Systems

Introductio

Deriving

Convolutio Equation

Response Eigenfunction

Stability

Properties of

LTI IO

Complex Exponentials are eigenfunction of LTI

Key idea:

- Represent x[n] into sum of scaled and phase delayed version of $A_k e^{j(\frac{2\pi}{N}kn+\phi_k)}$
- Study how the LTI system will modify each $A_k e^{j(\frac{2\pi}{N}kn + \phi_k)}$

Proof: Consider $x[n] = e^{j\omega n}$, and h[n] impulse response, the output of LTI system by convolution is:

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k] = \sum_{k=-\infty}^{\infty} h[k]x[n-k]$$

$$= \sum_{k=-\infty}^{\infty} h[k]e^{j\omega(n-k)}$$

$$= \left(\sum_{k=-\infty}^{\infty} h[k]e^{j\omega(-k)}\right)e^{j\omega n}$$

$$= H(e^{j\omega})e^{j\omega n} = \left(|H(e^{j\omega})|e^{j\angle H(e^{j\omega})}\right)e^{j(\omega n)}$$

02B_P1 Discrete Time Systems

Introductio

Deriving Convolution

Convolution Equation

Eigenfunction

Stability

Properties of

LTI IO

Frequency Response of LTI

- Above eqn shows that for input $e^{j\omega n}$, the output remains as $e^{j\omega n}$ but modified by the first term.
- The term $H(e^{j\omega})$ is a complex number, and it is also known as the (Frequency Response) of the system:

$$H(e^{j\omega}) = \left(\sum_{k=-\infty}^{\infty} h[k]e^{j\omega(-k)}\right)$$

$$= H_R(e^{j\omega}) + jH_I(e^{j\omega})$$

$$= |H(e^{j\omega})|e^{j\angle H(e^{j\omega})}$$
(13)

- The components of $H(e^{j\omega})$ in polar form shows amplitude and phase component. These values introduce scaling and phase shift to the input $e^{j\omega n}$.
- Equation 12 is the well known Fourier Transform of the impulse response h[k] to get the Frequency Response of the system.

02B_P1 Discrete Time Systems

Introductio

_ . .

Deriving Convolution Equation

Response Eigenfunction

Ligentunctio

Duamantias

LTI System

LTI IO Relationship

Summary: Eigenfunction and Frequency Response of LTI

- 1 The LTI system will only modify the a single pure complex exponential by changing its amplitude and phase. No new signal is produced.
 - In other words, complex exponential are Eigen function of LTI systems.
- 2 Frequency response of a system $H(e^{j\omega})$ is produced by Fourier transforming $\mathcal{F}(h[n])$ the impulse response,
 - Frequency response shows how each complex exponential (at different frequency) is modified (gain and phase shift) when it passes through an LTI.
 - The gain and phase change imposed by the system on the complex exponential at frequency ω is the magnitude and phase (polar form) of the complex value at $H(\omega)$.

02B_P1 Discrete Time Systems

Introductio

LTI Systen

Deriving Convolution Equation

Response Eigenfunction

Stability

Properties of LTI System

LTI IO Relationship

Proof- Stability LTI systems

Showing BIBO stability. Since y[n] = x[n] * h[n], and $|x[n]| < B_x < \infty$ for all n (bounded input), then:

$$|y[n]| = \left| \sum_{k=-\infty}^{\infty} x[k]h[n-k] \right| = \left| \sum_{k=-\infty}^{\infty} h[k]x[n-k] \right|$$

$$\leq \sum_{k=-\infty}^{\infty} |h[k]| |x[n-k]| \leq \sum_{k=-\infty}^{\infty} |h[k]| B_{x}$$
 (14)

- When h[n] is absolutely summable, then y[n] is bounded by B_x multiply with $\sum_{k=-\infty}^{\infty} |h[k]|$.
- When the output is finite, the system is BIBO.
- Eq 14 is a sufficient condition to guarantee stability.

Frequency Response

Ligentuncti

Properties of LTI System

LTI IO Relationship

Properties of LTI System: Commutative

Convolution is Commutative

$$y[n] = x[n] * h[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$
 (15)

$$= h[n] * x[n] = \sum_{k=-\infty}^{\infty} h[k]x[n-k]$$
 (16)

The above can be shown by substituting m=n-k into Eq 16, and k=n-m, then we have $y[n]=\sum_{m=-\infty}^{\infty}x[n-m]h[m]$ as in Eq 15.

Order of the convolution is un-important! See illustration in Pg 29.

02B_P1 Discrete Time Systems

Introductio

LTI Systen

Deriving Convolution Equation

Response Figenfunction

Stability

Stability

Properties of LTI System

LTI IO Relationship

Properties of LTI System: Associative

Given two LTI connected in series with impulse response $h_1[n]$ and $h_2[n]$, and input x[n], the output y[n] is

1 By associative property of convolution,

$$y[n] = x[n] * h_1[n] * h_2[n]$$

$$= (x[n] * h_1[n]) * h_2[n]$$

$$= x[n] * (h_1[n] * h_2[n])$$

$$= x[n] * h[n]$$
(17)

2 From a system point of view, two LTI systems cascaded can be interpreted as one equivalent system h[n] that is the convolution of the individual two systems. See illustration in Pg 29.

LTI Systen

Deriving Convolutio Equation

Response

Eigenfuncti

Stability

Properties of LTI System

LTI IO Relationship

Properties of LTI System: Distributive

1 Convolution is distributive, specifically, convolution distributes over addition. Given two LTI connected in parallel with impulse response $h_1[n]$ and $h_2[n]$, and input x[n], then the output

$$y[n] = x[n] * (h_1[n] + h_2[n])$$

$$= (h_1[n] + h_2[n]) * x[n]$$

$$= x[n] * h_1[n] + x[n] * h_2[n]$$

Prom a systems point of view, the equivalent impulse response of a system that has two LTI connected in parallel, is one that impulse response is the sum of the two. See illustration in Pg 29.

$$h[n] = (h_1[n] + h_2[n])$$

02B P1 Discrete Time Systems

Eigenfunction

Properties of LTI System

Properties of LTI System

Figure: Illustration of Distributive property of convolution

02B_P1 Discrete Time Systems

Introductio

LTI Systen

Deriving Convolution Equation

Frequency Response Eigenfunction

Stability

Properties of LTI System

LTI IO Relationship

Describing IO of LTI

- **1** Convolution Equation: y[n] = x[n] * h[n]
- 2 In Frequency domain (Fourier): $Y(e^{j\omega}) = X(e^{j\omega})H(e^{j\omega})$, the frequency domain output is the multiplication of the Fourier transform of the input and impulse response.
- 3 By Constant Coefficient Difference equation

$$y[n] = b[0]x[n] + b[1]x[n-1] + \dots -a[1]y[n-1] - a[2]y[n-2] + \dots$$
 (18)

- 4 By Block diagram
- **5** In Frequency domain (z-transform): Y(z) = X(z)H(z), the z domain output is the multiplication of the Z transform of the input and impulse response.

02B_P1 Discrete Time Systems

Introduction

LTI System

Deriving Convolution

Response

Stabilit

Properties of

LTI IO Relationship

Linear Constant Coefficient Difference Equation

An important sub-class of LTI system are the N-order linear constant coefficient difference equation.

$$\sum_{k=0}^{N} a[k]y[n-k] = \sum_{m=0}^{M} b[m]x[n-m]$$

$$a[0]y[n] = \sum_{m=0}^{M} b[m]x[n-m] - \sum_{k=1}^{N} a[k]y[n-k]$$

Usually have a[0] = 1, and hence

$$y[n] = \sum_{m=0}^{M} b[m]x[n-m] - \sum_{k=1}^{N} a[k]y[n-k]$$

= feedforward feedback

02B_P1 Discrete Time Systems

Introductio

_ . . .

Deriving Convolution Equation

Frequency Response Eigenfunction

Stabilit

Properties of LTI System

LTI IO Relationship

Linear Constant Coefficient Difference Equation (LCCDE)

A causal LTI system has the property that when the input is zero for all time, the output will also be zero for all time. Hence for LCCDE system's memory $\{x[n-m], y[n-k]\}$ must be zero - initial rest condition.

- 1 Finite Impulse Response (FIR): when N = 0, there is no feedback terms of past values of y[n] in the eqn.
 - The output is fully characterise by the M terms of b[m].
 - If input $x[n] = \delta[n]$, the impulse response is simply the coefficients of b[m].
- ② Infinite impulse response (IIR): when N > 0, then the feedback from past values of y[n] will usually cause y[n] not to become 0 even as $n \to \infty$, i.e, infinite impulse response.

see Oppenheim's notes in link http://ocw.mit.edu/resources/res-6-007-signals-and-systems-spring-2011/lecture-notes/MITRES_6_007S11_lec06.pdf

02B_P1 Discrete Time Systems

Eigenfunction

LTI IO

Relationship

Basic Building Blocks of LTI systems

Delay Element
$$X_1(n) \longrightarrow Z^{-1} \longrightarrow Y_1(n) = X_1(n-1)$$

Multiplier
$$X_2(n) \longrightarrow K \longrightarrow Y_2(n) = KX_2(n)$$

Adder
$$\begin{array}{c} X_3(n) \\ X_4(n) \end{array} \longrightarrow \begin{array}{c} Y_3(n) = X_3(n) + X_4(n) \end{array}$$

Modulator
$$X_5(n) \longrightarrow Y_5(n) = X_5(n)m_6(n)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad$$

02B_P1 Discrete Time Systems

Introduction

ITI System

Deriving Convolution

Frequency Response

Eigenfunctio

Stability

Properties o

LTI IO Relationship

Example: A simple IIR Filter

$$y[n] = \sum_{m=0}^{2} b[m]x[n-m] - \sum_{k=1}^{2} a[k]y[n-k]$$

Figure: Building a IIR Filter

02B_P1 Discrete Time Systems

Introductio

LTI System

Deriving Convolution

Response

C+abili+

Properties of

LTI IO Relationship

Frequency Domain

Relationship of IO in the Frequency Domain

Figure: IO relationship in the Fourier Domain

02B_P1 Discrete Time Systems

Introduction

ITI System

Deriving Convolution

Response

C+abili+

Properties of

LTI IO Relationship

Frequency Z-Domain

Relationship of IO in the Frequency (Z-Domain)

Figure: IO relationship in the Z-domain