Homework 5

Jacob Nisnevich — 804375355

CS 161

November 2, 2015

1. (20 points) Use truth tables (worlds) to show that the following pairs of sentences are equivalent:

•
$$P \Rightarrow \neg Q, Q \Rightarrow \neg P$$

Р	Q	$\neg P \lor \neg Q$	$P \Rightarrow \neg Q$	$\neg Q \lor \neg P$	$\mathbf{Q} \Rightarrow \neg \ \mathbf{P}$
Τ	Т	F	\mathbf{F}	F	\mathbf{F}
T	F	T	${f T}$	${ m T}$	\mathbf{T}
F	Τ	T	${f T}$	${ m T}$	${f T}$
F	F	T	${f T}$	${ m T}$	\mathbf{T}

•
$$P \Leftrightarrow \neg Q, ((P \land \neg Q) \lor (\neg P \land Q))$$

Р	Q	$\mathbf{P}\Leftrightarrow\neg\ \mathbf{Q}$	$P \wedge \neg Q$	$\neg P \land Q$	$(\mathbf{P} \wedge \neg \ \mathbf{Q}) \vee (\neg \ \mathbf{P} \wedge \mathbf{Q})$
Τ	T	\mathbf{F}	F	F	${f F}$
T	F	${f T}$	Γ	F	${f T}$
F	$\mid T \mid$	\mathbf{T}	F	Τ	${f T}$
F	F	\mathbf{F}	F	F	${f F}$

2. (30 points) Consider the following sentences and decide for each whether it is valid, unsatisfiable, or neither:

• (Smoke
$$\Rightarrow$$
 Fire) \Rightarrow (\neg Smoke $\Rightarrow \neg$ Fire)

Smoke	Fire	¬ Smoke ∨ Fire	Smoke $\lor \neg$ Fire	$\neg (\neg \text{Smoke} \lor \text{Fire}) \lor (\text{Smoke} \lor \neg \text{Fire})$
Τ	Т	Т	T	T
${ m T}$	F	F	T	${ m T}$
F	\mathbf{T}	Τ	F	${ m F}$
F	\mathbf{F}	${ m T}$	m T	T

This sentence is neither valid nor unsatisfiable.

 $\bullet \ (Smoke \Rightarrow Fire) \Rightarrow ((Smoke \lor Heat) \Rightarrow Fire)$

Smoke	Fire	Heat	¬ Smoke ∨ Fire	Smoke ∨ Heat	\neg (Smoke \lor Heat) \lor Fire
Т	Т	Т	Т	T	T
T	F	T	F	T	F
F	Γ	Γ	Τ	T	T
F	F	Т	Т	Т	${ m F}$
Т	Γ	F	Т	T	${ m T}$
Τ	F	F	F	Т	${ m F}$
F	Γ	F	Т	F	${ m T}$
F	F	F	Т	F	${ m T}$

$\neg (\neg \text{Smoke} \lor \text{Fire}) \lor (\neg (\text{Smoke} \lor \text{Heat}) \lor \text{Fire})$
T
T
T
F
${ m T}$
T
${ m T}$
${ m T}$

This sentence is neither valid nor unsatisfiable.

 $\bullet \ ((Smoke \wedge Heat) \Rightarrow Fire) \Leftrightarrow ((Smoke \Rightarrow Fire) \vee (Heat \Rightarrow Fire))$

Smoke	Fire	Heat	Smoke \land Heat	\neg (Smoke \land Heat) \lor Fire	¬ Smoke ∨ Fire	¬ Heat ∨ Fire
Т	Т	Т	Т	T	Т	Т
T	\mathbf{F}	Τ	T	F	F	F
F	${ m T}$	T	F	${ m T}$	Т	T
F	F	T	F	${ m T}$	Т	F
T	${ m T}$	F	F	${ m T}$	Т	T
T	\mathbf{F}	F	F	${ m T}$	F	T
F	Τ	F	F	m T	T	T
F	\mathbf{F}	F	F	m T	T	T

	$((Smoke \land Heat) \Rightarrow Fire) \Leftrightarrow ((Smoke \Rightarrow Fire) \lor (Heat \Rightarrow Fire))$
T	T
F	T
T	T
T	T
T	T
T	T
T	T
T	T

This sentence is valid.

3. (50 points) Consider the following:

If the unicorn is mythical, then it is immortal, but if it is not mythical, then it is a mortal mammal. If the unicorn is either immortal or a mammal, then it is horned. The unicorn is magical if it is horned

- (a) Represent the above information using a propositional logic knowledge base (set of sentences in propositional logic).
 - 1. Mythical $\Rightarrow \neg$ Mortal
 - 2. \neg Mythical \Rightarrow (Mortal \land Mammal)
 - 3. $(\neg Mortal \lor Mammal) \Rightarrow Horned$
 - 4. Horned \Rightarrow Magical
- (b) Convert the knowledge base into CNF.

```
(\neg Mythical \lor \neg Mortal) \land (Mythical \lor Mortal) \land (Mythical \lor Mammal) \land (Mortal \lor Horned) \land (\neg Mammal \lor Horned) \land (\neg Horned \lor Magical)
```

(c) Can you use the knowledge base to prove that the unicorn is mythical? How about magical? Horned?

Mythical?

- 1. \neg Mythical $\lor \neg$ Mortal
- 2a. Mythical \vee Mortal
- 2b. Mythical \vee Mammal
- 3a. Mortal \vee Horned
- 3b. \neg Mammal \vee Horned
- 4. \neg Horned \vee Magical
- 5. ¬ Mythical

	v	
6.	Mortal	2a, 5
7.	Mammal	2b, 5
8.	Horned	3b, 7
9.	Magical	4, 8

We cannot prove that the unicorn is mythical.

Magical?

- 1. \neg Mythical $\lor \neg$ Mortal 2a. Mythical \lor Mortal
- 2b. Mythical \vee Mammal
- 3a. Mortal \vee Horned
- 3b. \neg Mammal \vee Horned
- 4. \neg Horned \lor Magical
- 5. ¬ Magical

٠.	111461041	
6.	¬ Horned	4, 5
7.	Mortal	3a, 6
8.	\neg Mythical	1, 7
9.	Mammal	2b, 8
10.	\neg Mammal	3b, 6

As there is a contradiction in the resolution, we can prove that the unicorn is magical.

Horned?

- 1. \neg Mythical $\lor \neg$ Mortal
- 2a. Mythical \vee Mortal
- 2b. Mythical \vee Mammal
- 3a. Mortal \vee Horned
- 3b. \neg Mammal \vee Horned
- 4. \neg Horned \lor Magical
- 5. \neg Horned

6.	Mortal	3a, 5
7.	\neg Mythical	1, 6
8.	Mammal	2b, 7
9.	¬ Mammal	3b. 5

As there is a contradiction in the resolution, we can prove that the unicorn is horned.