Fundação CECIERJ

Curso de Tecnologia em Sistemas de Computação Disciplina Probabilidade e Estatística

AD1, 2 semestre de 2018

Professores: Otton Teixeira da Silveira Filho e Regina Célia P. Leal Toledo

GABARITO

Questão 1 (1,0 ponto): Numa certa escola a probabilidade dos alunos gostarem de futebol é 1/3 enquanto que a de gostar de vôlei é 1/2. Determine a probabilidade de gostar de futebol e não de vôlei nos seguintes casos:

- (a) Gostar de futebol e gostar de vôlei são eventos disjuntos;
- (b) Gostar de futebol e gostar de vôlei são eventos independentes;
- (c) Todos que gostam de futebol gostam de vôlei;
- (d) A probabilidade daqueles que gostam de futebol e vôlei é 1/8;
- (e) Dentre os que não gostam de vôlei, a probabilidade de não gostar de futebol é 3/4.

Resposta:

Probabilidade dos alunos gostarem de futebol: $P(F) = \frac{1}{3}$. Probabilidade dos alunos gostarem de vôlei: $P(V) = \frac{1}{2}$. É necessário calcular a probabilidade do evento $F \cap V^C$.

(a) Neste caso,
$$F \in V$$
 são eventos disjuntos, ou seja, $F \cap V = \emptyset$. $P(F \cap V^C) = P(F) - P(F \cap V) = P(F) - P(\emptyset) = P(F) = \frac{1}{3}$.

(b) Neste caso,
$$P(F \cap V) = P(F)P(V)$$
 ($F \in V$ independentes). $P(F \cap V^C) = P(F) - P(F \cap V) = P(F) - P(F)P(V) = \frac{1}{3} - \frac{1}{3}\frac{1}{2} = \frac{2}{6} - \frac{1}{6} = \frac{1}{6}$.

(c) Neste caso, temos que
$$F \subseteq V$$
. $P(F \cap V^C) = P(F) - P(F \cap V) = P(F) - P(F) = 0$.

(d) Neste caso,
$$P(F \cap V) = \frac{1}{8}$$
.
 $P(F \cap V^C) = P(F) - P(F \cap V) = \frac{1}{3} - \frac{1}{8} = \frac{5}{24}$.

(e) Neste caso,
$$P(F^C|V^C) = \frac{3}{4}$$
. $P(F \cap V^C) = P(F|V^C)P(V^C) = (1 - P(F^C|V^C))(1 - P(V)) = (1 - \frac{3}{4})(1 - \frac{1}{2}) = \frac{1}{4}\frac{1}{2} = \frac{1}{8}$.

Questão 2 (1,0 ponto): Foi feita uma pesquisa em uma instituição de ensino que tem cursos de Engenharia Civil e Engenharia Mecânica, com 740 alunos, quanto às variáveis Turno, Curso e Opinião, sobre quem gosta da disciplina Probabilidade e Estatística. Foi obtido o seguinte resultado:

Período	Curso	Probabilidade e Estatística			
		Não gostam	Gostam	Sem opinião	Total
Diurno	Eng. Civil	20	80	20	120
	Eng. Mec.	80	90	80	250
Noturno	Eng. Civil	40	80	20	140
	Eng. Mec.	120	100	10	230
	Total	260	350	130	740

Determine a probabilidade de escolhermos ao acaso:

(a) Uma pessoa do curso de Engenharia Mecânica e sem opinião sobre a disciplina Probabilidade e Estatística.

Resposta:

$$P = \frac{80}{740} + \frac{10}{740} = \frac{90}{740}$$

(b) Uma pessoa do curso de Engenharia Civil que não gosta de Probabilidade e Estatística.

Resposta:

$$\mathbf{P} = \frac{20}{740} + \frac{40}{740} = \frac{60}{740}$$

(c) Dentre os estudantes do noturno, um que gosta da disciplina.

Resposta: Seja G o evento "escolher uma pessoa que gosta do curso", e N o evento "escolher um estudante do noturno". Usando probabilidade condicionada,

$$P(G|N) = \frac{P(G \cap N)}{P(N)} = \frac{\frac{180}{740}}{\frac{370}{740}} = \frac{180}{370}$$

(d) Uma pessoa sem opinião, sabendo-se que é do curso de Engenharia Civil.

 ${f Resposta}$: Seja S o evento "escolher uma pessoa sem opinião", e ES o evento "escolher um estudante do curso de Engenharia Civil". Usando probabilidade condicionada,

$$P(S|ES) = \frac{P(S \cap ES)}{P(ES)} = \frac{\frac{40}{740}}{\frac{260}{740}} = \frac{40}{260}$$

Questão 3 (1,0 ponto): Um restaurante serve dois tipos de pratos por dia: um vegetariano e outro não vegetariano. Considere que 20% dos fregueses que têm 25 anos ou menos preferem o prato vegetariano, 30% daqueles que têm mais de 25 anos preferem o prato não vegetariano, e 75% dos fregueses têm 25 anos ou menos. Para um freguês sorteado ao acaso desse restaurante, obtenha a probabilidade de:

- (a) Preferir o prato não vegetariano dado que tem 25 anos ou menos.
- (b) Ter mais de 25 anos, sabendo-se que prefere o prato vegetariano.

Resposta: Seja V o evento "o freguês preferir um prato vegetariano", e J o evento "o freguês ter 25 anos ou menos".

(a) Neste caso, precisamos calcular a probabilidade $P(V^C|J)$:

$$P(V^C|J) = 1 - P(V|J) = 1 - 0.2 = 0.8$$

(b) Neste caso, precisamos calcular a probabilidade $P(J^C|V)$. Pelo Teorema de Bayes, temos:

$$P(J^C|V) = \frac{P(V|J^C)P(J^C)}{P(V)}$$

Pela lei da probabilidade total:

$$P(V) = P(V|J)P(J) + P(V|J^{C})P(J^{C}) = 0.2 * 0.75 + 0.7 * 0.25 = 0.15 + 0.175 = 0.325$$

$$P(J^C|V) = \frac{0.175}{0.325} \approx 0.5385$$

Questão 4 (1,5 pontos): Três em cada quatro alunos de uma universidade estudaram em uma escola pública antes de entrar na universidade. Se 16 alunos são selecionados ao acaso, qual é a probabilidade de que:

- (a) Pelo menos 12 tenham estudado em escola pública.
- (b) No máximo 13 tenham estudado em escola pública;
- (c) Em um grupo de 80 alunos selecionados ao acaso, qual é o número esperado de alunos que estudaram em escola pública? E a variância?

Resposta: Seja X o número de alunos que estudaram numa escola pública antes de entrar na universidade. Estamos diante de uma distribuição binomial com $p = \frac{3}{4} = 0.75$ e n = 16.

(a) Temos que calcular a probabilidade $P(X \ge 12)$:

$$P(X \ge 12) = P(X = 12) + P(X = 13) + P(X = 14) + P(X = 16)$$

$$P(X = 12) = {16 \choose 12} * 0.75^{12} * (1 - 0.75)^4 = 1820 * 0.0317 * 0.0039 = 0.2253$$

$$P(X = 13) = {16 \choose 13} * 0.75^{13} * 0.25^3 = 0.2079$$

$$P(X = 14) = {16 \choose 14} * 0.75^{14} * 0.25^2 = 0.1336$$

$$P(X = 15) = {16 \choose 15} * 0.75^{15} * 0.25^1 = 0.0535$$

$$P(X = 16) = {16 \choose 16} * 0.75^{16} * 0.25^0 = 0.0100$$

$$P(X > 12) = 0.6303$$

(b) Agora temos que calcular a probabilidade $P(X \le 13)$:

$$P(X < 13) = 1 - P(X > 14) = 1 - (0.1336 + 0.0535 + 0.01) = 0.8029$$

(c) Neste caso, n=80. O valor esperado de alunos que estudaram em escola pública é E(x)=np=80*0.75=60. Para calcular a variância:

$$Var(X) = np(1-p) = 80 * 0.75 * (1-0.75) = 15$$

Questão 5 (1,0 ponto): Suponhamos que temos duas populações A e B representativas em um determinado país, e que foram escolhidas de forma independente. Vamos supor que, respectivamente, 90% e 80% dos indivíduos das populações A e B sejam alfabetizados. Se 12 pessoas da população A e 10 da população B forem selecionadas ao acaso, qual é a probabilidade de que pelo menos uma não seja alfabetizada?

Resposta: Seja X o número de pessoas não alfabetizadas selecionadas da população A, e Y o número de pessoas não alfabetizadas selecionadas da população B. É necessário calcular a probabilidade do evento " $X > 0 \lor Y > 0$ ", ou equivalentemente, a probabilidade $P(X > 0 \lor Y > 0) = 1 - P(X = 0, Y = 0)$.

$$P(X = 0, Y = 0) = P(X = 0)P(Y = 0)$$

pois X e Y são independentes. Temos que:

$$P(X = 0) = 0.9^{12} = 0.2824$$

$$P(Y = 0) = 0.8^{10} = 0.1074$$
$$1 - P(X = 0, Y = 0) = 1 - P(X = 0)P(Y = 0) = 1 - 0.0303 = 0.9697$$

Questão 6 (1,0 ponto): Suponha que de um grupo de pessoas de um determinado grupo genético, 30% tem probabilidade de ter uma certa doença. Suponha também que um exame caro e invasivo tem probabilidade de resultado falso positivo de 10% e de resultado negativo de 30%. Considerando que uma pessoa desse grupo genético com suspeita da doença fez o referido exame, qual a probabilidade dela ter a doença dado que o resultado do exame foi negativo?

Resposta: Seja D o evento "a pessoa ter a doença", e A o evento "o exame dar positivo". Precisamos calcular a probabilidade $P(D|A^C)$. Pelo Teorema de Bayes:

$$P(D|A^C) = \frac{P(A^C|D)P(D)}{P(A^C)} = \frac{P(A^C|D)P(D)}{P(A^C|D)P(D) + P(A^C|D^C)P(D^C)} = \frac{0.3*0.3}{0.3*0.3 + 0.7*0.9} = \frac{0.09}{0.72} = 0.125$$

Questão 7 (1,0 ponto): Considere uma urna com 3 bolas brancas e duas bolas vermelhas. Retiram-se duas bolas da urna, uma após a outra sem reposição. Defina a variável aleatória X igual a 1 se a primeira bola retirada é branca, e igual a 0 se esta é vermelha. Analogamente, defina Y = 1 se a segunda bola é branca e 0 se é vermelha. Calcule Cov(X,Y).

Resposta: Seja X a variável aleatória igual a 1 se a primeira bola retirada é branca, e 0 se é vermelha. Temos que:

- P(X=0)=0.4
- P(X = 1) = 0.6

Por outro lado, seja Y a variável aleatória igual a 1 se a segunda bola é branca e 0 se é vermelha. Temos:

•
$$P(Y=0) = P(Y=0|X=0)P(X=0) + P(Y=0|X=1)P(X=1) = 0.25 * 0.4 + 0.5 * 0.6 = 0.4$$

•
$$P(Y=1) = P(Y=1|X=0)P(X=0) + P(Y=1|X=1)P(X=1) = 0.75 * 0.4 + 0.5 * 0.6 = 0.6$$

Calculamos Cov(X, Y):

$$P(XY=1)=P(Y=1|X=1)P(X=1)=0.3$$

$$Cov(X,Y)=E(XY)-E(X)E(Y)=1*0.3-0.6*0.6=0.3-0.36=-0.03=-0.06$$

Questão 8 (1,0 ponto): Uma caixa contém 15 peças das quais quatro estão com defeito. Retira-se uma amostra de três peças da caixa sem reposição. Calcular a probabilidade que haja duas ou três peças defeituosas na amostra.

Resposta: Seja X a variável aleatória que indica o número de peças defeituosas na amostra de 3 peças retirada da caixa. Veja que X segue uma distribuição hipergeométrica com o tamanho da população N=15, o número de sucessos na população K=4, e tamanho da amostra n=3. Precisamos calcular a probabilidade do evento "X=2 ou X=3".

$$P(X = k) = \frac{\binom{K}{k} \binom{N-K}{n-k}}{\binom{N}{n}}$$

$$P(X = 2) = \frac{\binom{4}{2} \binom{15-4}{3-2}}{\binom{15}{3}} = \frac{\binom{4}{2} \binom{11}{1}}{\binom{15}{3}} = \frac{6*11}{455} = 0.1451$$

$$P(X=3) = \frac{\binom{4}{3}\binom{15-4}{3-3}}{\binom{15}{2}} = \frac{\binom{4}{3}\binom{11}{0}}{\binom{15}{2}} = \frac{4*1}{455} = 0.0088$$

Como os eventos X=2 e X=3 são mutuamente exclusivos, a resposta é 0.1451+0.0088=0.1539.

Questão 9 (1,5 ponto): Considere 4 fábricas, F1, F2, F3, F4, que produzem teclados de computadores em lotes semanais de 150, 200, 300 e 350 teclados, respectivamente. Uma empresa compra teclados dessas 4 fábricas para revender. Ao chegar nessa empresa os lotes semanais das 4 fábricas são misturadas. Suponha que a probabilidade de se encontrar teclados defeituosos em cada uma das fábricas seja de 2%, 10%, 7% e 5%, respectivamente. Faça um estudo das probabilidade de se encontrar um defeito, pela primeira vez, em cada uma dos 5 primeiros teclados a serem escolhidos ao acaso (com reposição), ou seja, de se encontrar o primeiro teclado com defeito; depois, de encontrar o segundo teclado com defeito, ..., até o 5° teclado com defeito (use o computador para facilitar seus cálculos).

Resposta: Cada semana a empresa recebe 150 + 200 + 300 + 350 = 1000 teclados. Seja X a variável aleatória igual a 1 se um teclado escolhido ao acaso dos 1000 teclados é defeituoso, e seja a variável aleatória F igual a i se o teclado o teclado escolhido ao acaso é produzido pela fábrica Fi. A probabilidade de encontrar um defeito no teclado escolhido ao acaso dos 1000 teclados que a empresa recebe é:

$$P(X = 1) = P(X = 1|F = 1)P(F = 1) + P(X = 1|F = 2)P(F = 2) + P(X = 1|F = 3)P(F = 3) + P(X = 1|F = 4)P(F = 4)$$

$$= 0.02 * 0.15 + 0.1 * 0.2 + 0.07 * 0.3 + 0.05 * 0.35$$

$$= 0.003 + 0.02 + 0.021 + 0.0175 = 0.0615$$

Agora, seja Y a variável aleatória igual ao número de tentativas necessárias para encontrar um teclado com defeito. A variável Y possui uma distribuição geométrica com parâmetro p = P(X = 1) = 0.0615:

$$P(Y = 1) = (1 - p)^{1 - 1} * p = p = 0.0615$$

$$P(Y = 2) = (1 - p)^{2 - 1} * p = (0.9385)^{1} * 0.0615 = 0.0577$$

$$P(Y = 3) = (1 - p)^{3 - 1} * p = (0.9385)^{2} * 0.0615 = 0.0542$$

$$P(Y = 4) = (1 - p)^{4 - 1} * p = (0.9385)^{3} * 0.0615 = 0.0508$$

$$P(Y = 5) = (1 - p)^{5 - 1} * p = (0.9385)^{4} * 0.0615 = 0.0477$$