Egzamin z matematyki dyskretnej

LUTY 2012, TERMIN POPRAWKOWY, CZĘŚĆ B, CZAS: 125 MIN.

zadania powinny być rozwiązane na osobnych kartkach

Zadanie 1

Pokaż, że dla każdej liczby naturalnej n istnieje dokładnie jedna para liczb całkowitych nieujemnych x i y , że

$$n = \frac{(x+y+1)(x+y)}{2} + x.$$

Zadanie 2

Niech $m \ge 1$. Zdefiniujmy ciąg rekurencyjny

$$a_0 = 1$$
 $a_{n+1} = \sum_{i=0}^{m} \sum_{\substack{k_1, k_2, \dots, k_m \\ k_1 + k_2 + \dots + k_m = n}} a_{k_1} a_{k_2} \cdots a_{k_m}.$

Niech $A_m(x)$ będzie funkcją tworzącą tego ciągu. Znajdź równanie, które spełnia $A_m(x)$.

Zadanie 3

Literą M nazywamy figurę geometryczną złożoną z dwóch półprostych, których końce połączone są łamaną złożoną z dwóch odcinków. Na ile maksymalnie obszarów dzieli płaszczyznę n liter M?

Zadanie 4

Danych mamy k nierozróżnialnych kul i n rozróżnialnych szuflad (ponumerowanych od 1 do n). Na ile sposobów możemy umieścić kule w szufladach tak, aby w każdej szufladzie parzystej była nieparzysta liczba kul a w każdej szufladzie nieparzystej parzysta liczba?

POWODZENIA!

EGZAMIN Z MATEMATYKI DYSKRETNEJ LUTY 2012, TERMIN POPRAWKOWY, CZĘŚĆ B, CZAS: 125 MIN. zadania powinny być rozwiązane na osobnych kartkach

Zadanie 5

Dany mamy spójny graf G o 2k krawędziach. Pokaż, że G można rozłożyc na k rozłącznych krawędziowo ścieżek o długości dwa (tzn. każda krawędź G znajdzie się w dokładnie jednej ścieżce o długości dwa).

Zadanie 6

Graf jest k-krawędziowo spójny jeśli jest spójny i usunięcie dowolnych k-1 krawędzi go nie rozspójnia. Pokaż, że jeśli z grafu k-krawędziowo spójnego usuniemy dowolnych k krawędzi, to otrzymany graf ma co najwyżej dwie składowe spójne. Pokaż też, że jeśli G jest k-krawędziowo spójny, to $m \geq kn/2$.

Zadanie 7

Niech L(G) będzie grafem krawędziowym prostego grafu G. Czy prawdą jest, że jeśli G jest grafem Hamiltonowskim, to również L(G) jest grafem Hamiltona? Odpowiedź uzasadnij.

Zadanie 8

Orientacją grafu nieskierowanego grafu Gnazywamy taki graf skierowany G^\prime na tych samych wierzchołkach, że

- spośród krawędzi (u, v), (v, u) najwyżej jedna jest w grafie G'
- w G' istnieje któraś z krawędzi (u, v), (v, u) wtedy i tylko wtedy gdy $\{u, v\}$ należy do G.

Pokaż, że graf ma orientaję silnie spójną dokładnie wtedy gdy nie ma mostów.

POWODZENIA!