АППРОКСИМАЦИЯ И ИНТЕРПОЛЯЦИЯ ФУНКЦИЙ (лабораторные работы)

Целью выполнения лабораторных работ является исследование алгоритмов fппроксимации и интерполяции функций.

Теоретические требования. Необходимо подготовить конспект, содержащий описание следующих численных методов:

полиномиальная аппроксимация - общая постановка задачи, полиномы Лагранжа, метод Невиля, конечные и раздельные разности, многочлены Ньютона и многочлены Эрмита, интерполяция сплайнами, среднеквадратическая интерполяция и аппроксимация, сходимость методов и методы ее улучшения.

Задание 1. Для заданных на отрезке $\begin{bmatrix} x_0, x_1 \end{bmatrix}$ функций f(x)

a)
$$f(x) = e^{2x} \cos 3x$$
, $x_0 = 0$, $x_1 = 0.3$, $x_2 = 0.6$, $n = 2$;

6)
$$f(x) = \sin(\ln x)$$
, $x_0 = 2.0$, $x_1 = 2.4$, $x_2 = 2.6$, $n = 2$;

B)
$$f(x) = \ln x$$
, $x_0 = 1$, $x_1 = 1.1$, $x_2 = 1.3$, $x_3 = 1.4$, $n = 3$;

r)
$$f(x) = \cos x + \sin x$$
, $x_0 = 0$, $x_1 = 0.25$, $x_1 = 0.5$, $x_3 = 1.0$, $n = 3$,

используйте три различных метода аппроксимации для оценки f(0.25), f(0.51), f(0.99), f(1.09), f(1.89) и f(2.39). Сравните результаты по абсолютной ошибке.

Задание 2. Используйте исторические данные о дневном приросте количества заболевших в мире (https://www.worldometers.info/coronavirus/worldwide-graphs/#daily-cases) для оценки динамики заболеваемости методом наименьших квадратов и сплайнами.

Задание 3. Аппроксимируйте форму буквы " N ". Используйте кривые Безьера и следующие данные

i	Xi	y _i	α_i	β_i	$lpha_{i}^{'}$	$eta_{i}^{'}$
0	3	6	3.3	6.5		
1	2	2	2.8	3.0	2.5	2.5
2	6	6	5.8	5.0	5.0	5.8
3	5	2	5.5	2.2	4.5	2.5
4	6.5	3			6.4	2.8

По аналогичной методологии аппроксимируйте первую букву своего имени.