TESTE K

TEORIA DE LINGUAGENS

Licenciatura em Ciências de Computação 18 de Abril de 2007 duração 2 horas

- 1. Considere o alfabeto $A = \{a, b\}$ e a linguagem S definida por:
 - i. $\varepsilon \in S$;
 - ii. se $w \in S$, então $wb \in S$;
 - iii. se $w \in S$, então $bw \in S$;
 - iv. se $w \in S$, então $awa \in S$;
 - v. se $w_1, w_2 \in S$, então $w_1w_2 \in S$.
 - (a) Verifique se a^2bab^3a , $ab^4(ab)^2 \in S$.
 - (b) Verifique se a definição de S é determinista.
 - (c) Mostre, por indução estrutural, que se $u \in S$, então $|u|_a$ é par.
 - (d) Mostre que $S = \{u \in A^* : |u|_a \text{ \'e par }\}.$
- 2. Considere o alfabeto $A = \{a, b, c\}$ e a linguagem

$$L = \{x \in A^* : |x|_c = |x|_a + |x|_b\}$$

- (a) Diga quais das palavras seguintes são elementos de L: $ababc^2$, cab^2cbc^2 , $c^4a^2b^2$, $(ab)^3c^8a^2$.
- (b) Verifique que L não é uma linguagem regular.
- 3. Considere a linguagem L_p sobre o alfabeto $A = \{a, b, c\}$ constituída pelas palavras de prefixo ab e sufixo bca.
 - (a) Verifique se ab^3ca , abca, $bcabcabca^2b \in L_p$.
 - (b) Determine uma expressão regular que represente L_p .
 - (c) Responda apenas a uma das seguintes questões, sabendo que a cotação de (ii) é metade da cotação de (i):
 - (i) Determine um autómato determinista e completo que reconhece L_p . Justifique a resposta.
 - (ii) Determine um autómato que reconhece L_p . Justifique a resposta.

- (a) Indique palavras u_1 e u_2 reconhecidas pelo autómato \mathcal{A} que admitem como factor $v_1 = aba^2$ e $v_2 = bacb^3$, respectivamente.
- (b) Classifique o autómato.
- (c) Determine um autómato minimal equivalente a A.
- (d) Calcule L(A) recorrendo à resolução de um sistema de equações lineares.
- (e) Determine um autómato que reconhece a linguagem $L(A)(b^2(a+c)^*)^*$.
- 5. Sejam A um alfabeto, $\mathcal{A}=(Q,A,E,\{i\},F)$ um autómato determinista completo e acessível e \sim a relação binária definida em Q por,

$$\forall q_0, q_1 \in Q, \ q_0 \sim q_1 \text{ se e s\'o se } \forall u \in A^* \ \delta(q_0, u) \in F \Leftrightarrow \delta(q_1, u) \in F.$$

Mostre que:

- (a) para $u \in A^*$, se u é reconhecida por \mathcal{A} , então u é reconhecida por \mathcal{A}/\sim .
- (b) para $u, v \in A^*$, $u \sim_{L(\mathcal{A})} v$ se e só se $\delta(i, u) \sim \delta(i, v)$. (Recordar que, para $L \subseteq A^*$ e $u, v \in A^*$, $u \sim_L v$ se e só se $uz \in L \Leftrightarrow vz \in L$, para todo $z \in A^*$)

COTAÇÃO:

2a)0.5 b)1.5

$$3a)0.5$$
 b)1.5 c)i-2 (ii-1)

$$(4a)0.75$$
 b)1 c)2.5 d)1.5 e)1.25

5a)1 b)1

TESTE L

TEORIA DE LINGUAGENS

Licenciatura em Ciências de Computação 18 de Abril de 2007 duração 2 horas

- 1. Considere o alfabeto $A = \{a, b, c\}$ e a linguagem S definida por:
 - i. $\varepsilon \in S$;
 - ii. se $w \in S$, então $wb \in S$;
 - iii. se $w \in S$, então $wc \in S$;
 - iv. se $w \in S$, então $awa \in S$;
 - v. se $w_1, w_2 \in S$, então $w_1w_2 \in S$.
 - (a) Verifique se $ca^2b^2cab^3a$, $a^2b^2c^2a^2bc \in S$.
 - (b) Verifique se a definição de S é determinista.
 - (c) Mostre, por indução estrutural, que se $u \in S$, então $|u|_a$ é par.
 - (d) Mostre que $S = \{u \in A^* : |u|_a \text{ \'e par }\}.$
- 2. Considere o alfabeto $A = \{a, b\}$ e a linguagem

$$L = \{x \in A^* : |x|_b = |x|_a + 3\}$$

- (a) Diga quais das palavras seguintes são elementos de L: aba^2ba^2 , $ab^2ab^3c^2$, a^3b^6 , $(ab)^3b^2ab^2$.
- (b) Verifique que L não é uma linguagem regular.
- 3. Considere a linguagem L_p sobre o alfabeto $A = \{a, b, c\}$ constituída pelas palavras de prefixo ca e sufixo cab.
 - (a) Verifique se cab^3ca , cab, $cac^2abcab \in L_p$.
 - (b) Determine uma expressão regular que represente L_p .
 - (c) Responda apenas a uma das seguintes questões, sabendo que a cotação de (ii) é metade da cotação de (i):
 - (i) Determine um autómato determinista, acessível e co-acessível que reconhece L_p . Justifique a resposta.
 - (ii) Determine um autómato que reconhece L_p . Justifique a resposta.

- (a) Indique palavras u_1 e u_2 reconhecidas pelo autómato \mathcal{A} que admitem como factor $v_1 = bcb^2$ e $v_2 = bac^2b$, respectivamente.
- (b) Classifique o autómato.
- (c) Determine um autómato minimal equivalente a A.
- (d) Calcule L(A) recorrendo à resolução de um sistema de equações lineares.
- (e) Determine um autómato que reconhece a linguagem $L(A)((a+c)^*b^2)^*$.
- 5. Sejam A um alfabeto, $\mathcal{A}=(Q,A,E,\{i\},F)$ um autómato determinista completo e acessível e \sim a relação binária definida em Q por,

$$\forall q_0, q_1 \in Q, \ q_0 \sim q_1 \text{ se e s\'o se } \forall u \in A^* \ \delta(q_0, u) \in F \Leftrightarrow \delta(q_1, u) \in F.$$

Mostre que:

- (a) para $u \in A^*$, se u é reconhecida por \mathcal{A} , então u é reconhecida por \mathcal{A}/\sim .
- (b) para $u, v \in A^*$, $u \sim_{L(A)} v$ se e só se $\delta(i, u) \sim \delta(i, v)$. (Recordar que, para $L \subseteq A^*$ e $u, v \in A^*$, $u \sim_L v$ se e só se $uz \in L \Leftrightarrow vz \in L$, para todo $z \in A^*$)

COTAÇÃO:

2a)0.5 b)1.5

$$3a)0.5$$
 b)1.5 c)i-2 (ii-1)

$$4a)0.75$$
 b)1 c)2.5 d)1.5 e)1.25

5a)1 b)1

TESTE P

TEORIA DE LINGUAGENS

Licenciatura em Ciências de Computação 18 de Abril de 2007 duração 2 horas

- 1. Considere o alfabeto $A = \{a, b\}$ e a linguagem S definida por:
 - i. $\varepsilon \in S$;
 - ii. se $w \in S$, então $aw \in S$;
 - iii. se $w \in S$, então $bwb \in S$;
 - iv. se $w_1, w_2 \in S$, então $w_1w_2 \in S$.
 - (a) Verifique se a^2bab^3a , $ab^4(ab)^3 \in S$.
 - (b) Verifique se a definição de S é determinista.
 - (c) Mostre, por indução estrutural, que se $u \in S$, então $|u|_b$ é par.
 - (d) Mostre que $S = \{u \in A^* : |u|_b \text{ \'e par }\}.$
- 2. Considere o alfabeto $A = \{a, b, c\}$ e a linguagem

$$L = \{ x \in A^* : |x|_c = |x|_a + |x|_b \}$$

- (a) Diga quais das palavras seguintes são elementos de L: $ababc^2$, cab^2cbc^2 , $c^4a^2b^2$, $(ab)^3c^8a^2$.
- (b) Verifique que L não é uma linguagem regular.
- 3. Considere a linguagem L_p sobre o alfabeto $A = \{a, b, c\}$ constituída pelas palavras de prefixo ab e sufixo bca.
 - (a) Verifique se ab^3ca , abca, $bcababca^2b \in L_p$.
 - (b) Determine uma expressão regular que represente L_p .
 - (c) Responda apenas a uma das seguintes questões, sabendo que a cotação de (ii) é metade da cotação de (i):
 - (i) Determine um autómato determinista e completo que reconhece L_p . Justifique a resposta.
 - (ii) Determine um autómato que reconhece L_p . Justifique a resposta.

- (a) Indique palavras u_1 e u_2 reconhecidas pelo autómato \mathcal{A} que admitem como factor $v_1 = aba^2$ e $v_2 = bacb^3$, respectivamente.
- (b) Classifique o autómato.
- (c) Determine um autómato minimal equivalente a A.
- (d) Calcule L(A) recorrendo à resolução de um sistema de equações lineares.
- (e) Determine um autómato que reconhece a linguagem $L(A)(b^2(a+c)^*)^*$.
- 5. Sejam A um alfabeto, $\mathcal{A}=(Q,A,E,\{i\},F)$ um autómato determinista completo e acessível e \sim a relação binária definida em Q por,

$$\forall q_0, q_1 \in Q, \ q_0 \sim q_1 \text{ se e s\'o se } \forall u \in A^* \ \delta(q_0, u) \in F \Leftrightarrow \delta(q_1, u) \in F.$$

Mostre que:

- (a) para $u \in A^*$, se u é reconhecida por \mathcal{A} , então u é reconhecida por \mathcal{A}/\sim .
- (b) para $u, v \in A^*$, $u \sim_{L(A)} v$ se e só se $\delta(i, u) \sim \delta(i, v)$. (Recordar que, para $L \subseteq A^*$ e $u, v \in A^*$, $u \sim_L v$ se e só se $uz \in L \Leftrightarrow vz \in L$, para todo $z \in A^*$)

COTAÇÃO:

2a)0.5 b)1.5

$$3a)0.5$$
 b)1.5 c)i-2 (ii-1)

$$4a)0.75$$
 b)1 c)2.5 d)1.5 e)1.25

5a)1 b)1

TESTE Q

TEORIA DE LINGUAGENS

Licenciatura em Ciências de Computação 18 de Abril de 2007 duração 2 horas

- 1. Considere o alfabeto $A = \{a, b, c\}$ e a linguagem S definida por:
 - i. $\varepsilon \in S$;
 - ii. se $w \in S$, então $wa \in S$;
 - iii. se $w \in S$, então $wb \in S$;
 - iv. se $w \in S$, então $cwc \in S$;
 - v. se $w_1, w_2 \in S$, então $w_1w_2 \in S$.
 - (a) Verifique se $ca^2b^2cab^3a$, $a^2b^2c^2a^2bc \in S$.
 - (b) Verifique se a definição de S é determinista.
 - (c) Mostre, por indução estrutural, que se $u \in S$, então $|u|_c$ é par.
 - (d) Mostre que $S = \{u \in A^* : |u|_c \text{ \'e par }\}.$
- 2. Considere o alfabeto $A = \{a, b\}$ e a linguagem

$$L = \{x \in A^* : |x|_b = |x|_a + 3\}$$

- (a) Diga quais das palavras seguintes são elementos de L: aba^2ba^2 , $ab^2ab^3c^2$, a^3b^6 , $(ab)^3b^2ab^2$.
- (b) Verifique que L não é uma linguagem regular.
- 3. Considere a linguagem L_p sobre o alfabeto $A = \{a, b, c\}$ constituída pelas palavras de prefixo ca e sufixo cab.
 - (a) Verifique se cab^3ca , cab, $cac^2abcab \in L_p$.
 - (b) Determine uma expressão regular que represente L_p .
 - (c) Responda apenas a uma das seguintes questões, sabendo que a cotação de (ii) é metade da cotação de (i):
 - (i) Determine um autómato determinista, acessível e co-acessível que reconhece L_p . Justifique a resposta.
 - (ii) Determine um autómato que reconhece L_p . Justifique a resposta.

- (a) Indique palavras u_1 e u_2 reconhecidas pelo autómato \mathcal{A} que admitem como factor $v_1 = aca^2$ e $v_2 = abc^2a$, respectivamente.
- (b) Classifique o autómato.
- (c) Determine um autómato minimal equivalente a A.
- (d) Calcule L(A) recorrendo à resolução de um sistema de equações lineares.
- (e) Determine um autómato que reconhece a linguagem $L(A)((b+c)^*a^2)^*$.
- 5. Sejam A um alfabeto, $\mathcal{A}=(Q,A,E,\{i\},F)$ um autómato determinista completo e acessível e \sim a relação binária definida em Q por,

$$\forall q_0, q_1 \in Q, \ q_0 \sim q_1 \text{ se e s\'o se } \forall u \in A^* \ \delta(q_0, u) \in F \Leftrightarrow \delta(q_1, u) \in F.$$

Mostre que:

- (a) para $u \in A^*$, se u é reconhecida por \mathcal{A} , então u é reconhecida por \mathcal{A}/\sim .
- (b) para $u, v \in A^*$, $u \sim_{L(A)} v$ se e só se $\delta(i, u) \sim \delta(i, v)$. (Recordar que, para $L \subseteq A^*$ e $u, v \in A^*$, $u \sim_L v$ se e só se $uz \in L \Leftrightarrow vz \in L$, para todo $z \in A^*$)

COTAÇÃO:

2a)0.5 b)1.5

$$3a)0.5$$
 b)1.5 c)i-2 (ii-1)

$$4a)0.75$$
 b)1 c)2.5 d)1.5 e)1.25

5a)1 b)1

TESTE

TEORIA DE LINGUAGENS

Licenciatura em Ciências de Computação 18 de Abril de 2007 duração 2 horas

Responda às seguintes questões justificando cuidadosamente:

1. Comente a seguinte argumentação que pretende justificar que 'sendo X um conjunto finito de cardinal $n \geq 1$ e Y um conjunto não vazio, toda a função $f: X \longrightarrow Y$ é constante':

Para |X| = 1 a afirmação é verdadeira pois |Im f| = 1.

Seja $n \in \mathbb{N}$. Admitindo por hipótese de indução que, se o domínio de uma função tem cardinal finito n então a função é constante, seja X tal que |X| = n + 1 e $f: X \longrightarrow Y$ uma função. Como $X \neq \emptyset$, seja $a \in X$ e $X_a = X \setminus \{a\}$. Então $|X_a| = n$ e a restrição de f a X_a é uma função cujo domínio tem cardinal n, pelo que, por hipótese de indução, a restrição de f a X_a é constante, digamos existe $c \in Y$ tal que

$$\begin{array}{cccc} f_{|X_a}: & \mathbb{X}_a & \longrightarrow & Y \\ & x & \longmapsto & c \end{array}$$

Seja b outro elemento de X e $X_b = X \setminus \{b\}$. Então $|X_b| = n$ e a restrição de f a X_b é uma função cujo domínio tem cardinal n, pelo que, novamente por hipótese de indução, a restrição de f a X_b é constante, pelo que a imagem por f de todos os elementos de X_b será necessariamente c, em particular f(a) = c. Logo $f: X \longrightarrow Y$ é a função constante igual a c.

Então, pelo princípio de indução matemática toda a função $f: X \longrightarrow Y$ de domínio finito é constante.

- 2. Considere o alfabeto $A = \{a, b, c\}$ e a linguagem S definida por:
 - i. $a \in S$;
 - ii. se $w \in S$, então $wb \in S$;
 - iii. se $w \in S$, então $wc \in S$:
 - iv. se $w \in S$, então $awa \in S$;
 - v. se $w_1, w_2 \in S$, então $w_1w_2 \in S$.
 - (a) Verifique se $ca^2b^2cab^3a$, $a^2b^2c^2a^2bc \in S$.
 - (b) Verifique se a definição de S é determinista.
 - (c) Mostre, por indução estrutural, que se $u \in S$, então $|u|_a$ é impar.
 - (d) Verifique que $S \neq \{u \in A^* : |u|_a \text{ \'e impar}\}.$
- 3. Considere o alfabeto $A = \{a, b\}$ e a linguagem $L = \{x \in A^* : x = x^I\}$.
 - (a) Diga quais das palavras seguintes são elementos de L: $(ab)^2b^3(ba)^2$, $ab^3a^2b^3a$, $a^2bab^2a^2ba$.
 - (b) Verifique que L não é uma linguagem regular.

- 4. Considere a linguagem L_p sobre o alfabeto $A = \{a, b, c\}$ constituída pelas palavras $u \in A^*$ que não admitem ca como factor e, existe $n \in \mathbb{N}$, tal que |u| = 2n.
 - (a) Verifique se c^2ab^3 , $baba^2cb$, $c^2abc^2a^2bc \in L_p$.
 - (b) Determine um autómato que reconhece L_p . Justifique a resposta.
 - (c) Determine uma expressão regular que represente L_p .
- 5. Considere o autómato \mathcal{A} sobre o alfabeto $A = \{a, b, c\}$ que admite a seguinte representação gráfica:

- (a) Indique palavras u_1 e u_2 reconhecidas pelo autómato \mathcal{A} que admitem como factor $v_1 = aca^2$ e $v_2 = abc^2a$, respectivamente.
- (b) Classifique o autómato.
- (c) Determine um autómato minimal equivalente a A.
- (d) Calcule L(A) recorrendo à resolução de um sistema de equações lineares.
- (e) Determine um autómato que reconhece a linguagem $((b+c)^*a^2)^*L(A)$.
- 6. Sejam A um alfabeto, $\mathcal{A} = (Q, A, E, \{i\}, F)$ um autómato determinista completo e acessível e \sim a relação binária definida em Q por,

$$\forall q_0,q_1\in Q,\ q_0\sim q_1 \text{ se e s\'o se } \forall u\in A^*\ \delta(q_0,u)\in F \Leftrightarrow \delta(q_1,u)\in F.$$

Mostre que:

- (a) Mostre que \mathcal{A}/\sim é determinista completo e acessível.
- (b) para $u, v \in A^*$, $u \sim_{L(A)} v$ se e só se $\delta(i, u) \sim \delta(i, v)$. (Recordar que, para $L \subseteq A^*$ e $u, v \in A^*$, $u \sim_L v$ se e só se $uz \in L \Leftrightarrow vz \in L$, para todo $z \in A^*$)

COTAÇÃO:

1)1 2a)1b)1 c)1.5d)0.53a)0.5b)1.54a)0.5b)2 c)1.55a)0.75c)2.5d)1.5e)1.25b)1 6a)1b)1 FIM