0.1 GRUPLAR

Tanım 1 A kümesi boştan farklı olmak üzere \circ işlemine göre aşağıdaki koşulları gerçekliyorsa (A, \circ) ikilisine bir Grup denir.

- 1. \circ kapalılık özelliğine sahiptir, yani her $x, y \in A$ için $x \circ y \in A$ olur.
- 2. o birleşme özelliğine sahiptir, yani her $x,\ y,\ z\in A$ için $(x\circ y)\circ z=x\circ (y\circ z)$ olur.
- 3. \circ işleminin birim elemanı vardır, yani her $x \in A$ için $x \circ e = e \circ x = x$ olacak şekilde $e \in A$ vardır.
- 4. \circ işlemine göre her elemanın tersi vardır, yani her $x\in A$ için $x\circ x^{-1}=x^{-1}\circ x=e$ olacak şekilde $x^{-1}\in A$ vardır.

Örnek 2 $\mathbb Z$ tamsayılar kümesi çarpma işlemine göre her elemanın tersi olmadığından, çarpma işlemi altında bir grup değildir. Fakat $\mathbb Z$ tamsayılar kümesi toplama işlemine göre bir gruptur.

Tanım 3 (A, \circ) grubu değişme özelliğine sahip ise yani her $x, y \in A$ için

$$x \circ y = y \circ x$$

özelliği sağlanıyorsa bu gruba değişmeli grup veya Abelyen grup adı verilir.

Örnek 4 $A = \{x, y, z, w\}$ olmak üzere aşağıdaki işlem tablasunu göz önüne alalım.

0	x	y	z	w
x	x	y	z	w
y	y	w	w	x
z	z	y	x	y
w	w	x	y	z

Bu tablo dikkate alınırsa A kümesinin o işlemi altında bir grup olduğu görülür. Bu qrubun birim elemanı x dir. Hatta bu qrup değişmelidir.

Örnek 5 (\mathbb{Z} , +) değişmeli bir gruptur.

Teorem 6 (Kısaltma Kuralı) Bir (A, \circ) grubunda her $x, y, z \in A$ için

$$x \circ y = x \circ z \Longrightarrow y = z$$

ve

$$y \circ x = z \circ x \Longrightarrow y = z$$

 $\"{o}zellikleri\ sa\"{g}lanır.$

İspat: Her $x,\ y,\ z\in A$ için $x\circ y=x\circ z$ olsun. Ters elemanın varlığı birleşme özeeliği nedeniyle

$$x^{-1} \circ (x \circ y) = x^{-1} \circ (x \circ z)$$
$$(x^{-1} \circ x) \circ y = (x^{-1} \circ x) \circ z$$
$$e \circ y = e \circ z$$
$$y = z$$

elde edilir. İspatın ikinci kısmıda benzer düşünce ile yapılır.

Teorem 7 (A, \circ) bir grup olsun. Bu durumda

- 1) Grubun birim elemanı tekdir.
- 2) Her $x \in A$ için $x^{-1} \circ x = x \circ x^{-1} = e$ eşitliğini sağlayan bir tek $x^{-1} \in A$ vardır.
- 3) Her $x \in A$ için $(x^{-1})^{-1} = x$ dir.
- 4) Her $x, y \in A$ için $(x \circ y)^{-1} = y^{-1} \circ x^{-1}$ olur.

İspat: 1) Kabul edelimki (A, \circ) grupunun e den farklı f birim elemanı olsun. Her $x \in A$ için

$$x \circ e = x$$

olduğundan özel olarak x = f alınırsa

$$f \circ e = f \tag{1}$$

bulunur. f bir birim eleman olduğundan her $x \in A$ için

$$f \circ x = x$$

olup x = e alınırsa

$$f \circ e = e \tag{2}$$

bulunur. (1) ve (2) eşitliklerinden

$$f \circ e = f = e$$

elde edilir. Dolayısıyla e = f bulunur.

2) Her $x \in A$ için

$$x^{-1} \circ x = x \circ x^{-1} = e$$

ve

$$x_1^{-1} \circ x = x \circ x_1^{-1} = e$$

olsun. O halde

$$x\circ x_1^{-1}=x\circ x^{-1}=e$$

olup kısaltma kuralından $x_1^{-1} = x^{-1}$ elde edilir.

3) Her $x \in A$ için

$$x^{-1} \circ (x^{-1})^{-1} = e = x^{-1} \circ x$$

yazaılabileceğinden ve kısaltma kuralından

$$(x^{-1})^{-1} = x$$

elde edillir.

4) Her $x, y \in A$ için birleşme özelliğinden

$$(x \circ y) \circ (y^{-1} \circ x^{-1}) = x \circ (y \circ y^{-1}) \circ x^{-1}$$
$$= x \circ (e \circ x^{-1})$$
$$= x \circ x^{-1}$$
$$= e$$

olduğundan

$$(x \circ y)^{-1} = y^{-1} \circ x^{-1}$$

elde edilir.

Teorem 8 (A, \circ) bir grup olsun. Bu durumda her $x, y \in A$ için

$$x \circ y = a$$

denkleminin bir tek çözümü vardır.

İspat: $x \circ y = a$ denklemini ele alalım. Eşitliğin her iki yanı $x^{-1} \in A$ ile çarpılırsa

$$x^{-1} \circ (x \circ y) = x^{-1} \circ a$$

$$(x^{-1} \circ x) \circ y = x^{-1} \circ a$$

$$e \circ y = x^{-1} \circ a$$

$$y = x^{-1} \circ a$$

elde edilir. O halde yukarıda verilen denklemin bir çözümü varsa $x^{-1}\circ a$ olmalıdır. Çözümün tekliğini göstermek için

$$x\circ y=a$$

ve

$$x \circ y_1 = a$$

olsun. Bu durumda

$$x \circ y = x \circ y_1$$

olup kısaltma kuralından $y=y_1$ elde edilir.

0.2 n MODÜLÜNE GÖRE TAMSAYILARIN GRUBU

Tanım 9 a tamsayısı b tamsayısını kalansız bölüyorsa (tam bölüyorsa) bu durumu göstermek için a | b sembolü kullanılır. Aksine a tamsayısı b tamsayısını kalansız bölmüyorsada bunun için a∤b sembolü kullanılır.

Tanım 10 a ve b iki tamsayı olmak üzere a-b farkı sabit bir n pozitif tamsayısına tam bölünüyorsa a ve b tamsayılarına n Modülüne Göre Eşdeğerdir (Denktir) denir. Bu durum

$$a \equiv b \pmod{n}$$

ile gösterilir.

O halde $a \equiv b \pmod{n}$ olması için gerek ve yeter şart en az bir $k \in \mathbb{Z}$ için a - b = kn olmasıdır.

Örnek 11 $4 \equiv 19 \pmod{5}$; $-7 \equiv 44 \pmod{3}$

Teorem 12 n pozitif bir sabit ve a, b, c keyfi sabitler olmak üzere aşağıdaki özellikler sağlanır.

- 1. $a \equiv a \pmod{n}$
- 2. $a \equiv b \pmod{n} \Rightarrow b \equiv a \pmod{n}$
- 3. $a \equiv b \pmod{n}$ ve $b \equiv c \pmod{n} \Rightarrow a \equiv c \pmod{n}$
- 4. $a \equiv b \pmod{n}$ ve $c \equiv d \pmod{n} \Rightarrow a + c \equiv b + d \pmod{n}$ ve $ac \equiv bd \pmod{n}$
- 5. $a \equiv b \pmod{n} \Rightarrow ac \equiv bc \pmod{n}$

İspat: 1. $a \in \mathbb{Z}$ olmak üzere a - a = 0n olup özellik ağlanır.

2. $a \equiv b \pmod{n}$ ise a - b = mn olacak şekilde bir $m \in \mathbb{Z}$ vardır. O halde

$$b-a=(-m)n, (-m)\in\mathbb{Z}$$

olduğundan $b \equiv a \pmod{n}$ sağlanır.

 $3.a \equiv b \pmod n$ ve $b \equiv c \pmod n$ olsun. Bu durumda $m,\ p \in \mathbb{Z}$ olmak üzere

$$a - b = mn$$
 ve $b - c = pn$

olur. Buradan

$$a-c = a-b+b-c$$
$$= mn+pn$$
$$= (m+p) n$$

yazılır. $(m+p) \in \mathbb{Z}$ olduğundan $a \equiv c \pmod{n}$ bulunur.

4. $a \equiv b \pmod{n}$ ve $c \equiv d \pmod{n}$ olsun. Bu durumda $m, p \in \mathbb{Z}$ olmak üzere

$$a - b = mn$$
 ve $c - d = pn$

olup,

$$(a+c) - (b+d) = (a-b) + (c-d)$$

= $mn + pn$
= $(m+p) n$

bulunur. Yani

$$a + c \equiv b + d \pmod{n}$$

elde edilir.

$$ac = (b+mn)(d+pn)$$
$$= bd + (bp + md + mpn) n$$

ve $(bp + md + mpn) \in \text{olduğundan } ac \equiv bd \pmod{n}$ elde edilir.

5. 4. özellikte $c \equiv c \pmod n$ olduğu dikkate alınırsa $ac \equiv bc \pmod n$ bulunur. Ayrıca bu özellikler dikkate alınırsa " \equiv " (mod n) bir denklik bağıntısıdır.

Tanım 13 Sabit bir $a \in \mathbb{Z}$ sayısının n modülüne göre eşdeğer olan bütün tamsayıların kümesine a ile tanımlanan denklik sınıfı denir ve [a] ile gösterilir. Buna göre

$$[a] = \{ x \in \mathbb{Z} : x \equiv a \pmod{n} \}$$

olur.

Örnek 14 4 modülüne göre denklik sınıflarını bulalım.

$$[0] = \{x \in \mathbb{Z} : x \equiv 0 \pmod{3} \}$$

= \{..., -12, -8, -4, 0, 4, 8, 12, ...\}

$$[1] = \{x \in \mathbb{Z} : x \equiv 1 \pmod{3} \}$$

$$= \{..., -11, -7, -3, 1, 5, 9, 13, ... \}$$

$$\begin{array}{lll} [2] & = & \{x \in \mathbb{Z} : x \equiv 2 \pmod 3\} \\ \\ & = & \{..., -10, \ -6, \ -2, \ 2, \ 6, \ 10, \ 14, ...\} \end{array}$$

$$[3] = \{x \in \mathbb{Z} : x \equiv 3 \pmod{3} \}$$

$$= \{..., -9, -5, -1, 3, 7, 11, 15, ... \}$$

Burada dikkat edilirse her tamsayı bu 4 sınıftan birine aittir.

Şimdi daha genel durumu düşünelim. Bir tamsayı n ile bölünürse kalan 0, 1, 2, ...,n-1 tamsayılarından biridir. Oluşabilen tüm denklik sınıfları

$$\mathbb{Z}_n = \{[0], [1], [2], ..., [n-1]\}$$

olur. Bu denklik sınıflarına n modülüne göre tamsayı sınıfları denir.

Teorem 15 \mathbb{Z}_n , n modulüne göre tamsayılar kümesi olsun. Bu durumda aşağıdakiler sağlanır.

- 1. Her $[a] \in \mathbb{Z}_n$ için $[a] \neq \emptyset$,
- 2. $[a] \in \mathbb{Z}_n \text{ ve } b \in [a] \text{ ise, } [b] = [a],$
- 3. Her [a], $[b] \in \mathbb{Z}_n$ ve $[b] \neq [a]$ için $[a] \cap [b] = \emptyset$,
- 4. $\bigcup_{[a]\in\mathbb{Z}_n} [a] = \mathbb{Z}.$

İspat: 1. $a \equiv a \pmod{n}$ olduğundan $a \in [a]$ olmalıdır. O halde $[a] \neq \emptyset$ sağlanır.

- 2. $b \in [a]$ olsun. Bu durumda $b \equiv a \pmod{n}$ olur. $x \in [b]$ ise $x \equiv b \pmod{n}$ dir. Bu durumda $x \equiv b \pmod{n}$ ve $b \equiv a \pmod{n}$ olup $x \equiv a \pmod{n}$ yani $x \in [a]$ elde edilir. Buna göre $[b] \subset [a]$ elde edilir. Benzer olarak $[a] \subset [b]$ elde edilir. Dolayısıyla [b] = [a] bulunur.
- 3. Kabul edelimki $[b] \neq [a]$ için $[a] \cap [b] \neq \emptyset$ olsun. Bu durumda $\exists c \in [a] \cap [b]$ vardır. O halde $c \in [a]$ ve $c \in [b]$ olup 2. özellikten [c] = [a] ve [c] = [b] bulunur. Bu ise [a] = [b] oluğundan kabul ile çelişir. O halde $[a] \cap [b] = \emptyset$ olmalıdır.

Tanım 16 Her [a], $[b] \in \mathbb{Z}_n$ olmak üzere $+_n$ işlemini aşağıdaki şekilde tanımlayalım.

$$[a] +_n [b] = [a+b]$$

Burada tanımlanan işlemin denklik sınıflarından her birinde seçilen eleman değil, denklik sınıfına bağlı olduğunu göstermeliyiz. O halde $[a_1] = [a]$ ve $[b_1] = [b]$ ise

$$[a_1 + b_1] = [a + b]$$

olur.

Örnek 17 [2], $[3] \in \mathbb{Z}_4$ için

$$[2] +_n [3] = [2+3] = [5] = [1]$$

elde edilir.

Teorem 18 Her n pozitif tamsayısı için $(\mathbb{Z}_n, +_n)$ matematiksel sistemi, n modülüne göre tamsayılar grubu olarak bilinen bir değişmeli grup (Abelyen) oluşturur

İspat: $(\mathbb{Z}_n, +_n)$ matematiksel sisteminin değişmeli grup olduğunu göstermek için birleşmeli, birim elemanlı ve her elemanın tersinin olduğunu gösterip son olarakta değişmeli olduğunu göstermeliyiz. [a], [b], $[c] \in \mathbb{Z}_n$ olmak üzere

$$[a] +_n ([b] +_n [c]) = [a] +_n [b+c] = [a+(b+c)]$$
$$= [(a+b)+c] = [a+b] +_n [c]$$
$$= ([a] +_n [b]) +_n [c]$$

olduğundan $+_n$ işlemi birleşmelidir.

$$[0] +_n [a] = [a] +_n [0] = [a]$$

olduğundan $[0] \in \mathbb{Z}_n$ birim elemandır. $[a] \in \mathbb{Z}_n$ için $[n-a] \in \mathbb{Z}_n$ olduğundan,

$$[a] +_n [n-a] = [a + (n-a)] = [n] = [0]$$

olup

$$[a]^{-1} = [n-a]$$

elde edilir. Bu durumda $(\mathbb{Z}_n, +_n)$ sistemi bir grup oluşturur.

$$[a] +_n [b] = [a + b] = [b + a] = [b] +_n [a]$$

olduğundan grup değişmelidir.

Uyarı 19 Yukarıda tanımlanan grup işlemi yerine

$$[a]\odot[b]=[ab]$$

işlemi, iyi tanımış olduğu, birleşmeli olduğu ve birim elemana sahip olduğu görülebilir. Birim eleman [1] olur. Fakat bu işleme göre her elemanın tersi olmadığından bir grup oluşturmaz.