Task 5: Operational Amplifiers: Feedback and Stability

Optical Uplink

Joseph Arsenault Ryan Dufour Phil Robb

Abstract

The design, simulation and construction of a differential amplifier circuit (developed in task 4) with feedback is described. In this task a multistage op-amp with a class B output amplifier will be developed, simulated and constructed. The required differential voltage gain for this circuit is $200 \frac{V}{V}$ while driving the smallest load possible. The uncompensated unity gain is required to be larger than 150 kHz. The gain was measured at 63.3 dB while unloaded. The smallest value for the load resistor which caused a 3 dB drop in gain was found to be 900 Ω , with a gain measured at 61.3 dB. The unity gain uncompensated unity gain frequency was measured at 2 MHz.

Electrical and Computer Engineering
University of Maine
ECE - 343
April 23, 2018

Contents

1	Introduction	1
2	Circuit Development	1
3	Experimental Implementation	5
4	Discussion	10
5	Conclusion	11

List of Figures

1	Simulated Circuit	2
2	Sweep values of load resistor vs gain	3
3	Gain with 900 Ω load resistance	3
4	Phase plot with 900 Ω load resistance	4
5	Experimental range of operation	5
6	Experimental range of operation	6
7	Gain of loaded amplifier	6
8	Phase plot of loaded amplifier	7
9	Gain plot of loaded amplifier and frequency compensation	7
10	Phase plot of loaded amplifier with frequency compensation	8
11	Gain of inverting amplifier	8
12	Phase plot of inverting amplifier	9
13	Gain of non-inverting amplifier	9
14	Phase plot of non-inverting amplifier	10
15	Harmonic spectrum of amplifier	10
List	of Tables	
1	Task 5 Specifications	1
2	Current values from simulated circuit	4
3	Current values from simulated circuit	4
4	Experimental DC values	5
5	RIT and NMOS comparison	11

1 Introduction

This report describes the design, construction, and analysis of negative feedback for an operational amplifier. This is achieved using capacitors and resistors attached to and across certain nodes in the op amp??

add fig here

Operational amplifiers serve an integral building block for modern electronics. Op amps provide large gain with various configuration schema. This allows the circuit designer to use the op amp in different topologies and achieve different results, all without modifying the op amp circuit itself. In addition, an op amp provides significant gain while maintaining stability, this is where the output stage comes in. The output stage allows design to accommodate for non-controllable factors such as transistor mismatch and temperature variation. The objective of this lab is to apply feedback to the op amp so that the op amp achieves the specifications as seen in Table 1

Specifications	
Power	$\pm 5\mathrm{V}$
Output Stage	$\geq 500\Omega$
Bias Current	$400~\mu\mathrm{A}$
Overall Voltage Gain	≥200V/V (46 dB)
CMRR	$\geq 60 dB$
Output Voltage Swing	$\geq \pm 2V$

Table 1: Task 5 Specifications

Section 2 of this report describes the design, and when relevant, the simulations of the experiments. Experimental results and implementation are addressed in Section 3, including reasoning as to why a different circuit than the one outlined previously was constructed. A discussion of the results, sources of error, and areas of possible improvement are outlined in Section 4. Section 5 concludes this report.

2 Circuit Development

This section covers the design choices associated with the actively loaded differential amplifier with cascoded current mirror and a class B amplifier for an output stage. Frequency compensation will also be considered in the development to ensure stability.

The circuit that was developed in task 4 will be used for the purposes of this circuit development section. The output stage will be added in this task which will be a class B amplifier. The class B amplifier will consist of a 2n3904 NPN BJT and a 2n3906 PNP BJT. The simulations were conducted in Microcap 10. As these schematics are difficult to read, a set of schematics with identical values and components were created in Eagle by Autodesk. The simulated schematic can be seen in Figure 1 below.

Figure 1: Simulated Circuit

The value of 13 k Ω was taken from the previous lab which gave a reference current of 401 μ A. There are several specifications to meet, or at least come near for the completion of this task. The unity gain frequency should be above 150 kHz. A small load resistance of 500 Ω or less should cause a drop of 3 dB from the unloaded gain. Lastly, the gain needs to be high than 200 $\frac{V}{V}$ or 46 dB. The equation for closed loop gain is shown below in equation 1.

$$A_f(j\omega) = \frac{x_o}{x_i} = \frac{A_f(j\omega)}{1 + A_f(j\omega)\beta}$$
 (1)

The part of the denominator, $A_f(j\omega)\beta$ is the actual loop gain for the amplifier, which it is much greater than one, then the closed loop gain is approximately $\frac{1}{\beta}$. The value of β in this case was found to be $21\frac{V}{V}$. The value for the resistor at the source of the ALD1106 NMOS, RS, was found to be 1.1k in the previous lab, and yielded similar results for this simulation, as it gave the appropriate offset nulling at the base of the BJTs at approximately zero volts. This will allow the amplifier to have it's maximum amount of gain.

The output of the amplifier met the specifications as it was simulated to have a 63.3 dB gain. To find the smallest load resistor that the amplifier could drive, Microcap 11 was used to do a sweep of load resistor values from 250 Ω to 2.5 k Ω . The goal is to find the load resistor value that will cause a 3 dB drop from the unloaded gain, which would be 60.3 dB, or at least a value close to that. The result can be seen in Figure 2 below.

Figure 2: Sweep values of load resistor vs gain

It was found that the load of approximately 900 Ω caused a 3 dB drop in gain. A load of 500 Ω caused a 6 dB drop. Therefore, 900 is the smallest load the circuit can drive according to the simulation. Using this value for the load, a simulation was conducted and the resulting data was exported to Matlab to plot. The gain verses frequency plot at a 900 Ω load resistance is seen below in Figure 3. During this simulation, the capacitor at the collector of the 2n3906 (used for frequency compensation) was found to work at any value below 500 pF.

Figure 3: Gain with 900 Ω load resistance

As seen, the gain is valued at just over 60 dB, which meets the 3 dB drop in gain requirement at 900 Ω load. The zero crossing for the gain was found to be approximately 8 MHz. In order to be a stable amplifier, the phase shift should not change more than 180 degrees before the zero crossing of the gain. The resultant phase plot from simulations is see in Figure 4 below.

Figure 4: Phase plot with 900 Ω load resistance

The value for an 180 degree phase shift was found to be approximately 12.9 MHz from the simulations. This is well beyond the required 8.9 MHz found from the plot of the gain in Figure 3. All of the nodal voltages and currents were found during the simulation using dynamic DC analysis in Microcap 11. The current values are shown in Table 2 AC analysis was used in order to simulate the gain and phase.

Table 2: Current values from simulated circuit

Simulated current values			
I_{Ref}	$410.8 \ \mu A$		
I_{D_1}	$204.4 \ \mu A$		
I_{D_2}	$204.4 \ \mu A$		
I_{CS}	$\approx 227 \ \mu A$		
I_C	$\approx 2 \ \mu A$		

The voltage values are seen in Table 3 below.

Table 3: Current values from simulated circuit

Simulated voltage values			
V_{Ref_2}	-340 mV		
V_{Ref_1}	-2.987 V		
V_{D_1}	2.796 V		
V_{D_2}	2.796 V		
V_Base	$9.7~\mu V$		
V_{out}	$\approx 0 \text{ V}$		

This concludes the section on circuit development for task 5.

3 Experimental Implementation

This section details the experimental implementation of an actively loaded differential amplifier with a common source output, cascoded current mirror and a class B amplifier stage at the output. These also include components for frequency compensation and a load. The power supplies and analysis were implemented using the Digilent Analog Discovery kit. The experimental circuit can be seen Figure 5.

Figure 5: Experimental range of operation

The DC bias conditions were measured using a DT830B DVM. Nodal voltages were measured in reference to ground and current was measured by wiring the DVM in series while in ammeter mode. The bias conditions were measured while both input nodes to the circuit were grounded. The final measured values can be seen in Table 4.

Table 4:	Experimental	DC	values

DC Bias Conditions	
V_{Ref_1}	-3.01 V
V_{Ref_2}	-403 mV
D1	2.82 V
D2	2.84 V
S	2 V
OutCS	.09mV
I_{Ref}	$387 \mu A$
I_{D_1}	193.7 μA
I_{D_2}	$194 \mu A$
I_{CS} (CS stage)	$217 \mu A$
I_C Collector	$2.23~\mu\mathrm{A}$

Notably, the voltage at the "OutCS" node should be zero. In the default state, the offset at that node was measured to be 2.5V. A potentiometer was used as the source degeneration resistance for the common

source amplifier. This pot was varied until the offset was nulled out and the final resistance value required was found to be $1.1k\Omega$. The range of operation for the circuit can be seen in Figure 6.

Figure 6: Experimental range of operation

The range of operation is extremely narrow. This, however, is expected due to the limits imposed by the use of a cascode current mirror. The cascode affords more gain at the expense of voltage range. This was explored in more depth in Task 3. In order to prevent the op amp from saturating, a 1000:1 voltage divider was added at the signal input. The channel 1 probe was connected after the voltage divider to compensate for the 60dB drop from the voltage divider. Channel 2 was connected at the final output of the operational amplifier.

Figure 7: Gain of loaded amplifier

Figure 8: Phase plot of loaded amplifier

Figure 9: Gain plot of loaded amplifier and frequency compensation

Figure 10: Phase plot of loaded amplifier with frequency compensation

Figure 11: Gain of inverting amplifier

Figure 12: Phase plot of inverting amplifier

Figure 13: Gain of non-inverting amplifier

Figure 14: Phase plot of non-inverting amplifier

Figure 15: Harmonic spectrum of amplifier

4 Discussion

After several minor changes, both circuits operated correctly. This lab served as introduction to the main differences between MOSFET and BJT devices. The two components are both transistors but have defining differences, mainly the polarity of the devices. The specifications are outlined in Table 5.

Table 5: BJT and NMOS comparison

BJT	Values	NMOS	Values
Q_1, Q_2, Q_3	2N3904	N_1, N_2, N_3	2N7000
$R_r ef$	$19.3 \mathrm{k}\Omega$	$R_R ef$	$22\mathrm{k}\Omega$
R_C	$4.7\mathrm{k}\Omega$	R_D	$8.2 \mathrm{k}\Omega$
R_B	$10 \mathrm{k}\Omega$	R_G	$1 \mathrm{M}\Omega$
R_E	$3.3 \mathrm{k}\Omega$	R_S	$8.2 \mathrm{k}\Omega$
R_L	$1 \mathrm{k}\Omega$	R_L	$1 \mathrm{k}\Omega$
C_B, C_C, C_E	470nF	C_G, C_S, C_D	$10\mu\mathrm{F}$
Gain	25 dB	Gain	22 dB

Notably, different voltages than those specified in the lab manual were used as the Analog Discovery handles small voltage signals very poorly, producing a lot of noise. Other than this both circuits had little issue performing as expected.

The BJT, while having a larger gain and much less 2nd harmonic distortion, did not have the required cutoff frequency to meet the specification for the optical link project, thus the NMOS CS amplifier was chosen for it's ability to meet specification.

One of the biggest challenges of this lab was the mathematical assumptions and operations used to solve for the transistor values in simulation. When dealing with such devices the assumptions used can sometimes give wildly incorrect values and lead to repetition of calculations until correct. Fortunately simulations help greatly with reducing the time it takes to get to the correct solution.

The final circuits fell well within specifications and operated correctly after minor component alterations.

5 Conclusion

The design, simulation, and construction of experiments to measure the performance of feedback to the op amp. The FINAL VALUES GO HERE. This circuit will help the circuit achieve and maintain stability of the operational amplifier in task 6. An important lesson learned during this lab was that achieving a gain too high over specification is not helpful when trying to measure values and achieving stability, which is as important as the final gain value(ADD TO / CHANGE THIS).

References

- [1] D.E. Kotecki Lab.(2017) Lab #5 Voltage Amplifier [Online]. Available: $http://davidkotecki.com/ECE342/labs/ECE342_2017_Lab5.pdf$
- [2] ON Semiconductor. (2017) 2N7000 [Online]. Available: http://www.onsemi.com/PowerSolutions/supportDoc.do?type=models&rpn=2N7000