Recap: Data

Inputs: \mathbf{x}_i

Labels: \mathbf{y}_i

Dataset: $\mathcal{D} = \{(\mathbf{x}_1, \mathbf{y}_1), ..., (\mathbf{x}_N, \mathbf{y}_N)\}$

Pink Primrose

Canterbury Bells

Recap: Model

Deep network

$$f_{ heta}: \mathbf{R}^n o \mathbf{R}^C$$

- layers of computation
- parameters θ
- differentiable computation graph

Recap: Loss

Loss function:

$$l(heta|\mathbf{x}_i,\mathbf{y}_i)$$

Expected loss:

$$L(heta|\mathcal{D}) = \mathbb{E}_{(\mathbf{x},\mathbf{y})\sim\mathcal{D}}[l(heta|\mathbf{x},\mathbf{y})]$$

Recap: Training

Find

$$heta^* = rg\min_{ heta} L(heta|\mathcal{D})$$

- lacksquare Deep network $f_{ heta}: \mathbf{R}^n
 ightarrow \mathbf{R}^C$
- $\bullet \quad \mathsf{Dataset} \ \mathcal{D} = \{(\mathbf{x}_1, \mathbf{y}_1), ..., (\mathbf{x}_N, \mathbf{y}_N)\}$
- lacksquare Expected loss $L(heta|\mathcal{D}) = \mathbb{E}_{(\mathbf{x},\mathbf{y})\sim\mathcal{D}}[l(heta|\mathbf{x},\mathbf{y})]$

Recap: Gradient Descent

Update rule:

$$heta' = heta - \epsilon \left[
abla_{ heta} L(heta)
ight]^{ op}$$

Pseudocode

```
\theta \sim Init for iteration in range(n): J = \nabla L(\theta) \\ \theta = \theta - \varepsilon * J.mT
```

Gradient Descent Issues

Slow to compute gradient (in deep networks)

- more parameters
- more data

$$rac{\partial L(heta|\mathcal{D})}{\partial heta} = \mathbb{E}_{(\mathbf{x},\mathbf{y})\sim\mathcal{D}}\left[rac{\partial l(heta|\mathbf{x},\mathbf{y})}{\partial heta}
ight]$$

Pseudocode

```
\theta \sim Init
for epoch in range(n):
J = s\theta
for (x, y) in dataset:
J += \nabla l(\theta | x, y)
\theta = \theta - \varepsilon * J.mT
```

Stochastic Gradient Descent

Vanilla gradient descent uses the expected loss:

$$\mathbb{E}_{(\mathbf{x},\mathbf{y})\sim\mathcal{D}}[l(heta|\mathbf{x},\mathbf{y})]$$

Pseudocode

```
\theta \sim Init
for epoch in range(n):
  for (x, y) in dataset:
    J = \nabla l(\theta | x, y)
    \theta = \theta - \epsilon * J.mT
```

What if we computed gradients with the partial loss?

$$l(\theta|x,y)$$

Gradient Descent vs. Stochastic Gradient Descent

Gradient Descent

```
\theta \sim Init
for epoch in range(n):
J = s\theta
for (x, y) in dataset:
J += \nabla l(\theta | x, y)
\theta = \theta - \epsilon * J.mT
```

- Convergence guarantees
- Smooth loss

```
\theta \sim Init
for epoch in range(n):
for (x, y) in dataset:
J = \nabla l(\theta | x, y)
\theta = \theta - \epsilon * J.mT
```

- Faster convergence empirically
- More chaotic convergence

Learning Curves

Gradient Descent

Learning Curves Comparison

Why does the learning curve fluctuate?

- Loss at each step is evaluated on a single example
- Gradient might be wrong

Pseudocode: Stochastic Gradient Descent

```
\theta \sim Init
for epoch in range(n):
  for (x, y) in dataset:
    J = \nabla l(\theta|x,y)
    \theta = \theta - \epsilon * J.mT
```


A 1D Example of Optimization

Gradient Descent

How Fast Does SGD Converge?

Case 1:
$$rac{\partial}{\partial heta} l(heta|x_i,y_i) pprox rac{\partial}{\partial heta} l(heta|x_j,y_j)$$

- SGD is equivalent to GD
- Faster

Case 2 (reality):
$$rac{\partial}{\partial heta} l(heta|x_i,y_i)
eq rac{\partial}{\partial heta} l(heta|x_j,y_j)$$

 Convergences speed depends on variance of SGD¹.

$$egin{aligned} \mathbb{E}_{\mathbf{x},\mathbf{y}\sim\mathcal{D}} \left[\left(rac{\partial l(heta|\mathbf{x},\mathbf{y})}{\partial heta} - rac{\partial L(heta|\mathcal{D})}{\partial heta}
ight)^2
ight] \ = \mathbb{E}_{\mathbf{x},\mathbf{y}\sim\mathcal{D}} \left[\left(rac{\partial l(heta|\mathbf{x},\mathbf{y})}{\partial heta}
ight)^2
ight] - \left(rac{\partial L(heta|\mathcal{D})}{\partial heta}
ight)^2 \end{aligned}$$

Stochastic Gradient Descent - TL;DR

We use stochastic gradient descent (SGD) to optimize deep networks

SGD runs more efficiently but has **higher variance** than GD