Interrogation écrite Legique Durée 1 heure

Correction Prénom:

NOM:

Groupe:

Cocher les bonnes réponses sur la feuille (+0.5 par réponse juste -0.5 par réponse fausse). Laquelle des propositions suivantes est valide ?
\boxtimes Si $\models \beta$ alors $\Gamma \models \beta$.
\square Si Γ = β alors = β .
Si $\alpha = \beta$ alors $\neg \alpha = \neg \beta$.
그런 그들은 사람들이 그들을 하는 것이 되었다. 그는 사람들은 사람들은 사람들은 사람들은 사람들은 사람들은 사람들은 사람들은
\square Si $\Gamma \models \beta_1 \land \beta_2$ alors $\Gamma \cup \{\neg \beta_1\}$ non satisfiable et $\Gamma \cup \{\neg \beta_2\}$ non satisfiable. \square Si un ensemble de formules est satisfiable alors chacune de ses formules est satisfiable.
\square Si chacune des formules de Γ est satisfiable, alors Γ est satisfiable.
\boxtimes Si $\Gamma = \{\alpha_1, \alpha_2,, \alpha_m\}$ satisfiable alors:
Il existe I et v tq I = $(\alpha_I)_v$ et il existe I et v tq I = $(\alpha_2)_v$ et et il existe I et v tq I = $(\alpha_m)_v$
\boxtimes Si $\Gamma = \{\alpha_1, \alpha_2,, \alpha_m\}$ est non satisfiable alors:
Il existe I et v tq $I = (\neg \alpha_I)_v$ et il existe I et v tq $I = (\neg \alpha_2)_v$ et et il existe I et v tq $I = (\neg \alpha_m)_v$
\square Si $\Gamma = \{\alpha_1, \alpha_2,, \alpha_m\}$ est non satisfiable alors :
Quelles que soient I et v , on a $I = (\neg \alpha_I)_v$ et $I = (\neg \alpha_2)_v$ et et $I = (\neg \alpha_m)_v$
☐ Si un ensemble de formules est non satisfiable alors chacune de ses formules est non satisfiable.
\square Si $\Gamma = \{\alpha_1, \alpha_2,, \alpha_m\}$ est satisfiable alors:
Il existe I et v telles que : $I = \alpha_{Iv}$ ou $I = \alpha_{2v}$ ou ou $I = \alpha_{mv}$
\boxtimes Si $\Gamma = \{\alpha_1, \alpha_2,, \alpha_m\}$ est non satisfiable alors:
Quelles que soient I et v , on a $I \models \neg \alpha_{Iv}$ ou $I \models \neg \alpha_{2v}$ ou ou $I \models \neg \alpha_{mv}$
\square Si $\Gamma = \{\alpha_1, \alpha_2,, \alpha_m\}$ est satisfiable, alors $\Gamma' = \{\neg \alpha_1, \neg \alpha_2,, \neg \alpha_m\}$ est non satisfiable.
Si un ensemble S de clauses est non satisfiable alors il existe un sous ensemble non satisfiable d'instances de base des clauses de S.
☐ Si un ensemble de formules est satisfiable alors la négation de chacune de ses formules est non
satisfiable.
\bowtie Si = β alors $\neg \beta$ non satisfiable.
\boxtimes Si $\models \beta$ alors $(\neg \beta)_S$ non satisfiable.
\square Si $(\neg \beta)_S$ non satisfiable alors $ =\beta_S $
Si un ensemble S de clauses est satisfiable alors l'ensemble formé des instances de base de chacune de ses clauses est satisfiable.
\square Toute interprétation I_h qui satisfait une instance de base d'une clause c satisfait c .
\boxtimes Si une interprétation I_h falsifie S alors I_h falsifie au moins une instance de base d'une clause de S.
☑ Un arbre sémantique complet pour un ensemble S de clauses contient autant de branches que S peur avoir d'interprétations de Herbrand.