#01. 주성분 분석 개요

차원 축소 (Dimensionality Reduction)

주성분 분석(PCA)

#01. 작업준비

패키지 참조

데이터 가져오기

#02. 데이터 전처리

독립변수 컬럼만 추출

추출된 독립변수를 표준화

표준화 결과를 데이터프레임으로 재구성

#02. Sklearn을 사용한 PCA 분석

결과 확인

#03. pca 패키지를 사용한 분석 (추천)

생성된 주성분에 사용된 필드 확 이

#04. 주성분 분석 결과를 토대로 회 귀분석 수행

원본 데이터프레임으로 분석

결과 비교하기

주성분 분석 (PCA 분석)

#01. 주성분 분석 개요

차원 축소 (Dimensionality Reduction)

데이터의 전반적인 특성을 보존하면서 데이터의 변수 수를 줄이는 방법

크기가 10행 7열인 dataframe의 차원은 (10x7)

변수 3개를 제거하면 10행 4열로 바뀜. 이때의 차 원은 (10x4)

방법	종류
특성	가장 중요한 특성들만 선택하여 기존
선택	의 데이터를 표현
특성	기존 특성들을 사용하여 새로운 특성
추출	들을 만들어내는 방법

주성분 분석(PCA)

데이터의 가장 큰 분산을 가진 방향으로 차원을 축소 하여 데이터를 표현하는 방법

이를 통해 데이터를 가장 잘 설명하는 주요 특성들을 찾을 수 있다.

데이터의 복잡성을 줄여주어 다양한 분야에서 활용되며, 머신러닝, 패턴 인식, 시각화, 데이터 압축 등 다양한 분야에서 중요한 기술로 사용

#01. 작업준비

패키지 참조

scikit-learn, pca 패키지의 설치가 필요하다

#01. 주성분 분석 개요

차원 축소 (Dimensionality Reduction)

주성분 분석(PCA)

#01. 작업준비

패키지 참조

데이터 가져오기

#02. 데이터 전처리

독립변수 컬럼만 추출

추출된 독립변수를 표준화

표준화 결과를 데이터프레임으로 재구성

#02. Sklearn을 사용한 PCA 분석

결과 확인

#03. pca 패키지를 사용한 분석 (추 천)

생성된 주성분에 사용된 필드 확 이

#04. 주성분 분석 결과를 토대로 회 귀분석 수행

원본 데이터프레임으로 분석

결과 비교하기

```
# 주성분 분석용 패키지
from sklearn.decomposition import PCA
# 주성분 분석 결과를 DataFrame으로 확인할
from pca import pca
# 표준화 처리 패키지
from sklearn.preprocessing import Star
from pandas import read_excel, DataFra
from matplotlib import pyplot as plt
import seaborn as sb
import sys
import os
sys.path.append(os.path.dirname(os.pat
from helper import my_ols
```

데이터 가져오기

df = read_excel("https://data.hossam.l
df.drop('CAT. MEDV', axis=1, inplace="
df.head()

	CRIM	ZN	INDUS	CHAS	NOX
0	0.00632	18.0	2.31	0	0.538
1	0.02731	0.0	7.07	0	0.469
2	0.02729	0.0	7.07	0	0.469
3	0.03237	0.0	2.18	0	0.458
4	0.06905	0.0	2.18	0	0.458
4)

#02. 데이터 전처리

독립변수 컬럼만 추출

06-주성분분석(PCA).ipynb

주성분 분석 (PCA 분석)

#01. 주성분 분석 개요

차원 축소 (Dimensionality Reduction)

주성분 분석(PCA)

#01. 작업준비

패키지 참조

데이터 가져오기

#02. 데이터 전처리

독립변수 컬럼만 추출

추출된 독립변수를 표준화

표준화 결과를 데이터프레임으로 재구성

#02. Sklearn을 사용한 PCA 분석

결과 확인

#03. pca 패키지를 사용한 분석 (추천)

생성된 주성분에 사용된 필드 확 인

#04. 주성분 분석 결과를 토대로 회 귀분석 수행

원본 데이터프레임으로 분석

결과 비교하기

x_train = df.drop("MEDV", axis=1)
x_train

	CRIM	ZN	INDUS	CHAS	NC
0	0.00632	18.0	2.31	0	0.53
1	0.02731	0.0	7.07	0	0.46
2	0.02729	0.0	7.07	0	0.46
3	0.03237	0.0	2.18	0	0.45
4	0.06905	0.0	2.18	0	0.45
•••					
501	0.06263	0.0	11.93	0	0.57
502	0.04527	0.0	11.93	0	0.57
503	0.06076	0.0	11.93	0	0.57
504	0.10959	0.0	11.93	0	0.57
505	0.04741	0.0	11.93	0	0.57
4)

506 rows × 13 columns

추출된 독립변수를 표준화

scaler = StandardScaler()
x_train_std = scaler.fit_transform(x_t
x_train_std

```
array([[-0.41978194, 0.28482986, -1.2

0.44105193, -1.0755623],

[-0.41733926, -0.48772236, -0.5

0.44105193, -0.49243937],

[-0.41734159, -0.48772236, -0.5

0.39642699, -1.2087274],

...,

[-0.41344658, -0.48772236, 0.2

0.44105193, -0.98304761],
```

#01. 주성분 분석 개요

차원 축소 (Dimensionality Reduction)

주성분 분석(PCA)

#01. 작업준비

패키지 참조

데이터 가져오기

#02. 데이터 전처리

독립변수 컬럼만 추출

추출된 독립변수를 표준화

표준화 결과를 데이터프레임으로 재구성

#02. Sklearn을 사용한 PCA 분석

결과 확인

#03. pca 패키지를 사용한 분석 (추 천)

생성된 주성분에 사용된 필드 확 인

#04. 주성분 분석 결과를 토대로 회 귀분석 수행

원본 데이터프레임으로 분석

결과 비교하기

06-주성분분석(PCA).ipynb

[-0.40776407, -0.48772236, 0.1 0.4032249, -0.86530163], [-0.41500016, -0.48772236, 0.1 0.44105193, -0.66905833]])

표준화 결과를 데이터프레임으로 재구성

std_df = DataFrame(x_train_std, column
std_df.head()

CRIM ZN **INDUS** 0 -0.419782 0.284830 -1.287909 -0.271 -0.417339 -0.487722 -0.593381 -0.272 -0.417342 -0.487722 -0.593381 -0.273 -0.416750 -0.487722 -1.306878 -0.274 -0.412482 -0.487722 -1.306878 -0.27

#02. Sklearn을 사용한 PCA 분석

주성분 분석 객체 생성 (n_components: 주 model = PCA(n_components=5) fit = model.fit_transform(std_df) fit

```
array([[-2.09829747, 0.77311275, 0.3

[-1.45725167, 0.59198521, -0.6

[-2.07459756, 0.5996394, 0.3

...,

[-0.31236047, 1.15524644, -0.4

[-0.27051907, 1.04136158, -0.5

[-0.12580322, 0.76197805, -1.2
```

#01. 주성분 분석 개요

차원 축소 (Dimensionality Reduction)

주성분 분석(PCA)

#01. 작업준비

패키지 참조

데이터 가져오기

#02. 데이터 전처리

독립변수 컬럼만 추출

추출된 독립변수를 표준화

표준화 결과를 데이터프레임으로 재구성

#02. Sklearn을 사용한 PCA 분석

결과 확인

#03. pca 패키지를 사용한 분석 (추천)

생성된 주성분에 사용된 필드 확 인

#04. 주성분 분석 결과를 토대로 회 귀분석 수행

원본 데이터프레임으로 분석

결과 비교하기

결과 확인

sklearn 의 PCA 분석은 기존의 변수들을 토대로 n_component 수 만큼의 새로운 변수를 생성한다.

대부분 머신러닝의 학습 데이터를 생성하는 용도

pca_df = DataFrame(fit)
pca_df

	0	1	2	
0	-2.098297	0.773113	0.342943	-0
1	-1.457252	0.591985	-0.695199	-0
2	-2.074598	0.599639	0.167122	-0
3	-2.611504	-0.006871	-0.100284	-0
4	-2.458185	0.097712	-0.075348	-0
•••				
501	-0.314968	0.724285	-0.860896	-0
502	-0.110513	0.759308	-1.255979	-0
503	-0.312360	1.155246	-0.408598	-0
504	-0.270519	1.041362	-0.585454	-0
505	-0.125803	0.761978	-1.294882	-0
1				•

506 rows × 5 columns

#03. pca 패키지를 사용한 분석 (추 천)

주성분 분석의 대상 컬럼 수를 독립변수의 전 model = pca(n_components=len(std_df.cc # 표준화 결과를 활용하여 주성분 분석 수행

#01. 주성분 분석 개요

차원 축소 (Dimensionality Reduction)

주성분 분석(PCA)

#01. 작업준비

패키지 참조

데이터 가져오기

#02. 데이터 전처리

독립변수 컬럼만 추출

추출된 독립변수를 표준화

표준화 결과를 데이터프레임으로 재구성

#02. Sklearn을 사용한 PCA 분석

결과 확인

#03. pca 패키지를 사용한 분석 (추 천)

생성된 주성분에 사용된 필드 확

#04. 주성분 분석 결과를 토대로 회 귀분석 수행

원본 데이터프레임으로 분석

결과 비교하기

06-주성분분석(PCA).ipynb

```
fit = model.fit_transform(std_df)
fit
```

```
[pca] >Extracting column labels from (
[pca] >Extracting row labels from data
[pca] >The PCA reduction is performed
[pca] >Fit using PCA.
[pca] >Compute loadings and PCs.
[pca] >Compute explained variance.
[pca] >Outlier detection using Hotell:
[pca] >Multiple test correction applied
[pca] >Outlier detection using SPE/Dmc
```

CRIM

ZN

```
{'loadings':
 PC1
      0.250951 -0.256315
                          0.346672
 PC2
     -0.315252 -0.323313
                          0.112493
 PC3
      0.246566 0.295858 -0.015946
      0.061771 0.128712
 PC4
                          0.017146
      0.082157 0.320617 -0.007811
 PC5
 PC6
     -0.219660 - 0.323388 - 0.076138
 PC7
      0.777607 -0.274996 -0.339576
 PC8
      0.153350 -0.402680 0.173932 -0
 PC9
      0.260390 0.358137
                          0.644416 -(
 PC10
      0.019369 0.267527 -0.363532 -0
PC11 -0.109644 0.262756 -0.303169
      0.086761 -0.071425 -0.113200 -0
 PC12
 PC13
      0.045952 -0.080919 -0.251077
           DTS
                     RAD
                               TAX
     -0.321544 0.319793
                          0.338469
 PC1
 PC2
     PC3
     -0.049736 0.287255
                          0.220744 - 0
 PC4
      0.215436 0.132350
                          0.103335
 PC5
      0.098592 -0.204132 -0.130461 -0
 PC6
      0.023439 -0.143194 -0.192934
 PC7
     -0.103900 -0.137943 -0.314887
 PC8
     -0.121812 0.080358 0.082774 -0.121812
 PC9
     -0.153291 - 0.470891 - 0.176563
 PC10 -0.171213 0.021909 -0.035168
 PC11 -0.695693 0.036544 -0.104836
 PC12
      0.390941 - 0.107026 - 0.215191
 PC13 -0.018299 -0.633490
                          0.720233
```

06-주성분분석(PCA).ipynb

주성분 분석 (PCA 분석)

#01. 주성분 분석 개요

차원 축소 (Dimensionality Reduction)

주성분 분석(PCA)

#01. 작업준비

패키지 참조

데이터 가져오기

#02. 데이터 전처리

독립변수 컬럼만 추출

추출된 독립변수를 표준화

표준화 결과를 데이터프레임으로 재구성

#02. Sklearn을 사용한 PCA 분석

결과 확인

#03. pca 패키지를 사용한 분석 (추 천)

생성된 주성분에 사용된 필드 확 인

#04. 주성분 분석 결과를 토대로 회 귀분석 수행

원본 데이터프레임으로 분석

결과 비교하기

06-	주성분분석(PCA).ip	oynb		
'PC	':	PC1	PC2	F
0	-2.098297	0.773113	0.342943	-0
1	-1.457252	0.591985	-0.695199	-0
2	-2.074598	0.599639	0.167122	-0
3	-2.611504	-0.006871	-0.100284	-0
4	-2.458185	0.097712	-0.075348	-0
••	•••	•••	•••	
501	-0.314968	0.724285	-0.860896	-0
502	-0.110513	0.759308	-1.255979	-0
503	-0.312360	1.155246	-0.408598	-0
504	-0.270519	1.041362	-0.585454	-0
505	-0.125803	0.761978	-1.294882	-0
	PC8	PC9	PC10	
0	0.295832	-0.424937	0.640206	-0
1	-0.223670	-0.166962	0.084236	-0
2	0.105166	0.069775	-0.180380	-0
3	0.255941	-0.342246	0.045901	-0
4	-0.134524	-0.417668	-0.140880	-0
••	•••	•••	•••	
501	-0.249896	0.877036	0.183086	0
502	-0.146502	0.853628	0.631847	0
503	-0.638660	0.981032	0.589670	0
504	-0.579344	0.936755	0.594610	0
505	-0.133382	0.854689	0.823404	0
[506	5 rows x 1	.3 columns]	,	
'exp	olained_va	ır': array([0.47129606	, (
	0.8578	8876 , 0.89	906884, 0.9	29!
	0.9820	9137, 0.99	511467, 1.	
'vaı	riance_rat	io': array	([0.4712960	6,
	0.0505	6978, 0.04	118124, 0.0	304
	0.0143	088 , 0.01	302331, 0.0	048
'mod	del': PCA(n_componen	ts=13),	
'sca	aler': Non	ıe,		
'pcr	o': 1.0,			
'tor	ofeat':	PC fe	ature loa	dir
		NDUS 0.34	6672 best	
	PC2	CHAS 0.45		
	PC3	RM 0.59		
	PC4	CHAS 0.81		
		ATIO -0.58		
	PC6	B -0.80		
		CRIM 0.77		
7	PC8	AGE -0.60		
•		,.SL 0.00	5525 5656	

#01. 주성분 분석 개요

차원 축소 (Dimensionality Reduction)

주성분 분석(PCA)

#01. 작업준비

패키지 참조

데이터 가져오기

#02. 데이터 전처리

독립변수 컬럼만 추출

추출된 독립변수를 표준화

표준화 결과를 데이터프레임으로 재구성

#02. Sklearn을 사용한 PCA 분석

결과 확인

#03. pca 패키지를 사용한 분석 (추 천)

생성된 주성분에 사용된 필드 확 인

#04. 주성분 분석 결과를 토대로 회 귀분석 수행

원본 데이터프레임으로 분석

결과 비교하기

06-주성분분석(PCA).ipynb

00-	1 8 2 2 7 (1 0	t).ipyrib			
8	PC9	INDUS	0.644	416	best
9	PC10	LSTAT	-0.600	711	best
10	PC11	DIS	-0.695	693	best
11	PC12	NOX	0.804	323	best
12	PC13	TAX	0.720	233	best
13	PC8	ZN	-0.402	680	weak
14	PC13	RAD	-0.633	490	weak,
'out	liers':		y_prob	a	p_raw
0	0.99997	77 0.9	930684	16.	223114
1	0.99997	77 0.9	992463	11.	756468
2	0.99997	77 0.9	952796	15.	239485
3	0.99997	77 0.8	865636	18.	272488
4	0.99997	77 0.8	882745	17.	805197
••	• •	• •	•••		•••
501	0.99997	77 0.9	979935	13.	414755
502	0.99997	77 0.9	982736	13.	134686
503	0.99997	77 0.9	905283	17.	124208
504	0.99997	77 0.9	940977	15.	796442
505	0.99997	77 0.9	981559	13.	256252

[506 rows x 6 columns],

'outliers_params': {'paramT2': (0.0, 'paramSPE': (array([4.45131415e-16, array([[6.13898120e+00, 1.75595512e-14, 1.43611329e-14])

생성된 주성분에 사용된 필드 확인

topfit = fit['topfeat']
topfit

	PC	feature	loading	type
0	PC1	INDUS	0.346672	best
1	PC2	CHAS	0.454829	best
2	PC3	RM	0.593961	best
3	PC4	CHAS	0.815941	best
4	PC5	PTRATIO	-0.584002	best
5	PC6	В	-0.803455	best

#01. 주성분 분석 개요

차원 축소 (Dimensionality Reduction)

주성분 분석(PCA)

#01. 작업준비

패키지 참조

데이터 가져오기

#02. 데이터 전처리

독립변수 컬럼만 추출

추출된 독립변수를 표준화

표준화 결과를 데이터프레임으로 재구성

#02. Sklearn을 사용한 PCA 분석

결과 확인

#03. pca 패키지를 사용한 분석 (추 천)

생성된 주성분에 사용된 필드 확 인

#04. 주성분 분석 결과를 토대로 회 귀분석 수행

원본 데이터프레임으로 분석

결과 비교하기

06-주성분분석(PCA).ipynb

	PC	feature	loading	type
6	PC7	CRIM	0.777607	best
7	PC8	AGE	-0.600823	best
8	PC9	INDUS	0.644416	best
9	PC10	LSTAT	-0.600711	best
10	PC11	DIS	-0.695693	best
11	PC12	NOX	0.804323	best
12	PC13	TAX	0.720233	best
13	PC8	ZN	-0.402680	weak
14	PC13	RAD	-0.633490	weak

#04. 주성분 분석 결과를 토대로 회 귀분석 수행

원본 데이터프레임으로 분석

```
best = topfit.query("type='best'")
feature = list(set(list(best['feature
feature
```

```
['TAX',
'B',
'CHAS',
'PTRATIO',
'CRIM',
'NOX',
'RM',
'INDUS',
'LSTAT',
'AGE',
'DIS']
```

ols = my_ols(df, "MEDV", feature)

06-주성분분석(PCA).ipynb 서 (PCA 부서) Ols.summary

주성분 분석 (PCA 분석)

#01. 주성분 분석 개요

차원 축소 (Dimensionality Reduction)

주성분 분석(PCA)

#01. 작업준비

패키지 참조

데이터 가져오기

#02. 데이터 전처리

독립변수 컬럼만 추출

추출된 독립변수를 표준화

표준화 결과를 데이터프레임으로 재구성

#02. Sklearn을 사용한 PCA 분석 결과 확인

#03. pca 패키지를 사용한 분석 (추 천)

생성된 주성분에 사용된 필드 확 인

#04. 주성분 분석 결과를 토대로 회 귀분석 수행

원본 데이터프레임으로 분석

결과 비교하기

OLS Regression Results

o Es regression results			
Dep. Variable:	MEDV	R-squared:	0.72
Model:	OLS	Adj. R- squared:	0.71
Method:	Least Squares	F-statistic:	118.
Date:	Wed, 26 Jul 2023	Prob (F- statistic):	9.42
Time:	11:22:15	Log- Likelihood:	-151
No. Observations:	506	AIC:	3051
Df Residuals:	494	BIC:	3102
Df Model:	11		
Covariance Type:	nonrobust		
4			•

	coef	std err	t	P> t
Intercept	30.5585	5.020	6.087	0.000
TAX	0.0029	0.002	1.240	0.216
В	0.0086	0.003	3.112	0.002
CHAS	3.1229	0.880	3.548	0.000
PTRATIO	-0.9655	0.124	-7.774	0.000
CRIM	-0.0619	0.032	-1.905	0.057
NOX	-15.8300	3.880	-4.079	0.000
RM	4.2847	0.420	10.206	0.000
INDUS	-0.0722	0.061	-1.194	0.233
LSTAT	-0.5091	0.052	-9.786	0.000

#01. 주성분 분석 개요

차원 축소 (Dimensionality Reduction)

주성분 분석(PCA)

#01. 작업준비

패키지 참조

데이터 가져오기

#02. 데이터 전처리

독립변수 컬럼만 추출

추출된 독립변수를 표준화

표준화 결과를 데이터프레임으로 재구성

#02. Sklearn을 사용한 PCA 분석

결과 확인

#03. pca 패키지를 사용한 분석 (추 천)

생성된 주성분에 사용된 필드 확 인

#04. 주성분 분석 결과를 토대로 회 귀분석 수행

원본 데이터프레임으로 분석

결과 비교하기

06-주성분분석(PCA).ipynb

AGE	-0.0083	0.013	-0.616	0.538
DIS	-1.2542	0.187	-6.698	0.000

Omnibus:	192.416	Durbin- Watson:	1.043
Prob(Omnibus):	0.000	Jarque- Bera (JB):	944.67
Skew:	1.617	Prob(JB):	7.36e- 206
Kurtosis:	8.861	Cond. No.	1.45e+
1			

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

[2] The condition number is large, 1.45e+04. This might indicate that there are strong multicollinearity or other numerical problems.

ols.table

		В	표준 오차	β	
종속 변수	독립변 수				
MEDV	TAX	0.0029	0.002	0	1
	В	0.0086	0.003	0	3
	CHAS	3.1229	0.880	0	3
	PTRATIO	-0.9655	0.124	0	-7
	CRIM	-0.0619	0.032	0	
	NOX	-15.8300	3.880	0	-4

06-주성분분석(PCA).ipynb

주성분 분석 (PCA 분석)

#01. 주성분 분석 개요

차원 축소 (Dimensionality Reduction)

주성분 분석(PCA)

#01. 작업준비

패키지 참조

데이터 가져오기

#02. 데이터 전처리

독립변수 컬럼만 추출

추출된 독립변수를 표준화

표준화 결과를 데이터프레임으로 재구성

#02. Sklearn을 사용한 PCA 분석

결과 확인

#03. pca 패키지를 사용한 분석 (추천)

생성된 주성분에 사용된 필드 확 인

#04. 주성분 분석 결과를 토대로 회 귀분석 수행

원본 데이터프레임으로 분석

결과 비교하기

		В	표준 오차	β	
종속 변수	독립변 수				
	RM	4.2847	0.420	0	1
	INDUS	-0.0722	0.061	0	
	LSTAT	-0.5091	0.052	0	_9
	AGE	-0.0083	0.013	0	-(
	DIS	-1.2542	0.187	0	-(

결과 비교하기

실제집값 = df["MEDV"]

실제집값

예측집값 = ols.fit.predict(df.filter(fe 예측집값

0 31.319245

1 25.506274

2 31.493779

23. 7. 26. 오전 11:28

주성분 분석 (PCA 분석)

#01. 주성분 분석 개요

차원 축소 (Dimensionality Reduction)

주성분 분석(PCA)

#01. 작업준비

패키지 참조

데이터 가져오기

#02. 데이터 전처리

독립변수 컬럼만 추출

추출된 독립변수를 표준화

표준화 결과를 데이터프레임으로 재구성

#02. Sklearn을 사용한 PCA 분석

결과 확인

#03. pca 패키지를 사용한 분석 (추 천)

생성된 주성분에 사용된 필드 확 인

#04. 주성분 분석 결과를 토대로 회 귀분석 수행

원본 데이터프레임으로 분석

결과 비교하기

06-주성분분석(PCA).ipynb

29.616826

3

4 28.986126 ... 501 24.133272 502 22.626843 503 28.076938 504 26.573324 505 22.545271

Length: 506, dtype: float64

```
result_df = DataFrame({
 "실제집값":실제집값,
 "예측집값":예측집값
})
result_df
```

	실제집값	예측집값
0	24.0	31.319245
1	21.6	25.506274
2	34.7	31.493779
3	33.4	29.616826
4	36.2	28.986126
•••		
501	22.4	24.133272
502	20.6	22.626843
503	23.9	28.076938
504	22.0	26.573324
505	11.9	22.545271

506 rows × 2 columns

```
plt.rcParams["font.family"] = 'AppleGo
plt.rcParams["font.size"] = 12
plt.rcParams["figure.figsize"] = (20,
plt.rcParams["axes.unicode_minus"] = 1
```

#01. 주성분 분석 개요

차원 축소 (Dimensionality Reduction)

주성분 분석(PCA)

#01. 작업준비

패키지 참조

데이터 가져오기

#02. 데이터 전처리

독립변수 컬럼만 추출

추출된 독립변수를 표준화

표준화 결과를 데이터프레임으로 재구성

#02. Sklearn을 사용한 PCA 분석

결과 확인

#03. pca 패키지를 사용한 분석 (추 천)

생성된 주성분에 사용된 필드 확 인

#04. 주성분 분석 결과를 토대로 회 귀분석 수행

원본 데이터프레임으로 분석

결과 비교하기

06-주성분분석(PCA).ipynb

