

(1) Publication number:

0 510 773 A1

(B)

(j

13:

EUROPEAN PATENT APPLICATION

- 21) Application number: 92201136.6
- ② Date of filing: 22.04.92

(51) Int. Cl.⁵: **C12N** 15/50, A61K 39/215, G01N 33/569, C07K 15/00

- Priority: 25.04.91 EP 91303737
- Date of publication of application:28.10.92 Bulletin 92/44
- Designated Contracting States:

 AT BE CH DE DK ES FR GB GR IT LI LU MC

 NL PT SE
- 71 Applicant: AKZO N.V.
 Velperweg 76
 NL-6824 BM Arnhem(NL)
- Inventor: Brown, Thomas David Kay
 The Ferns, 8 High Street, Needingworth
 Huntingdon, Cambs. PE 1735A(GB)
 Inventor: Horsburgh, Brian Colin
 c/o Darwin College, Silver Street
 Cambridge CB3 9EV(GB)
- Representative: Hermans, Franciscus G.M. et al P.O. Box 20 NL-5340 BH Oss(NL)
- (54) Canine coronavirus subunit vaccine.
- The invention is related to a nucleic acid sequence encoding a Canine coronavirus (CCV) spike protein. Such a protein can be used for the immunization of dogs against CCV infection. The nucleic acid sequence encoding the CCV spike protein can be applied for the preparation of the spike protein by means of genetic engineering techniques or can be applied for the preparation of vector vaccines.

The present invention is concerned with a nucleic acid sequence encoding a CCV spike protein, a recombinant vector or recombinant vector virus comprising such a nucleic acid sequence, a host cell transformed with such a recombinant vector or infected with the recombinant vector virus, as well as a vaccine against CCV infection in dogs.

Canine coronavirus (CCV) is a member of the distinct viral family of Coronavirus. Viruses belonging to this genus are known to infect a variety of animal species including man. They cause diverse diseases, such as gastro-enteritis (in swine, turkeys, mice, calves, dogs, cats and man), salivary gland infection (in rodents), respiratory disease (in man, swine, avians and dogs) and encephalitis (in young swine).

CCV was first isolated from military dogs in Germany in 1971 and has found to be highly contagious and it spreads rapidly among susceptible dogs. Usually, the CCV is ingested on materials contaminated by infectious feces. Oral infection leads to viral replication in epithelial cells of the small intestine and CCV has also been found in the intestinal lymph nodes.

The signs of the disease can develop 1-3 days following infection and include vomiting, diarrhoea, anorexia, depression and dehydration. The persistence and severity of signs is often related to stress and the presence of other viruses, parasites or bacteria. Whereas the enteric symptoms are dominant, respiratory signs including nasal and ocular discharge have also been reported.

Dogs are the only known host of the CCV. Although CCV inoculation of cats and pigs results in infection, no clinical disease will be caused by CCV in these species. There is no evidence that humans, cattle and mice are susceptible to CCV.

Cross protection studies have shown that the Coronaviruses induce little or no immunity to each other. For example, experimental infection of dogs with transmissible gastro-enteritis virus (TGEV) of pigs or feline infectious peritonitis virus (FIPV) of cat does not protect them against the effects of a subsequent CCV infection.

Coronaviruses consist of a group of enveloped viruses containing a genome consisting of a single-stranded RNA of about 30 kb. This genome encodes inter alia three important structural proteins: a spike protein (S), a membrane protein (M) and a nucleocapsid protein (N). The glycosylated spike protein S₀ is cleaved to form S₁ and S₂ in some coronaviruses. Two or three copies of each of S₁ and S₂ form a characteristic CCV surface structure, the spike or peplomer. The spike protein and its constituent polypeptides thereof play an important role in inducing a virus neutralizing immune response in infected animals.

Conventional CCV vaccines comprise chemically inactivated virus vaccines or modified live-virus vaccines. However, inactivated vaccines require additional immunizations, disadvantageously contain adjuvants and are expensive to produce. Further, some infectious virus particles may survive the inactivation process and may cause disease after administration to the animal.

In general, attenuated live virus vaccines are preferred because they evoke an immune response often based on both humoral and cellular reactions. Up to now, such vaccines based on CCV strains can only be prepared by serial passage of virulent strains in tissue culture. However, because of this treatment uncontrolled mutations are introduced into the viral genome, resulting in a population of virus particles heterogeneous in their virulence and immunizing properties. In addition it is well known that such traditional attenuated live virus vaccines can revert to virulence resulting in disease of the inoculated animals and the possible spread of the pathogen to other animals.

Improved vaccines might be constructed, based on recombinant DNA technology, which only contain the necessary and relevant CCV immunogenic material capable of eliciting an immune response against the CCV pathogens, or which contain the genetic information encoding said material, and do not display abovementioned disadvantages of the live or inactivated vaccines.

According to the present invention, an isolated and purified nucleic acid sequence encoding a polypeptide having one or more immunogenic determinants of a CCV spike protein is provided which can be applied for the preparation of a vaccine for the immunization of dogs against CCV infection.

"Nucleic acid sequence" as used herein refers to a polymeric form of nucleotides of any length, both to ribonucleic acid sequences and to deoxy ribonucleic acid sequences. In principle, this term refers to the primary structure of the molecule. Thus, this term includes double and single stranded DNA, as well as double and single stranded RNA, and modifications thereof.

In general, the term "polypeptide" refers to a molecular chain of amino acids with a biological activity, does not refer to a specific length of the product and if required can be modified in vivo or in vitro, for example by glycosylation, amidation, carboxylation or phosphorylation; thus inter alia, peptides, oligopeptides and proteins are included.

The term "polypeptide having one or more immunogenic determinants of a CCV spike protein" refers to a polypeptide having one or more epitopes capable of eliciting a protective immune response in a dog against CCV infection or disease.

5

20

30

45

In particular, the present invention provides a nucleic acid sequence encoding a polypeptide having one or more immunogenic determinants of the CCV spike protein which has an amino acid sequence shown in SEQ ID NO: 2, 4 or 6.

Also included within the scope of the present invention are nucleic acid sequences encoding a functional variant of the polypeptide shown in SEQ ID NO: 2, 4 or 6. These functional variants are polypeptides having an amino acid sequence derived from the amino acid sequence specifically disclosed in SEQ ID NO: 2, 4 or 6 but retain one or more immunogenic determinants of a CCV spike protein, i.e. said variants having one or more epitopes capable of eliciting a protective immune response in a dog against CCV infection or disease.

It will be understood that for the particular polypeptide embraced herein, derived from the CCV-6, Insavc-1 or Liverpool C54 strain, natural variations can exist between individual viruses or strains of canine coronaviruses. These variations may be demonstrated by (an) amino acid difference(s) in the overall sequence or by deletions, substitutions, insertions, inversions or additions of (an) amino acid(s) in said sequence. Amino acid substitutions from which can be expected that they do not essentially alter biological and immunological activities, have been described. Amino acid replacements between related amino acids or replacements which have occurred frequently in evolution are, inter alia Ser/Ala, Ser/Gly, Asp/Gly, Asp/Asn, Ile/Val (see Dayhof, M.D., Atlas of protein sequence and structure, Nat. Biomed. Res. Found., Washington D.C., 1978, vol. 5, suppl. 3). Based on this information Lipman and Pearson developed a method for rapid and sensitive protein comparison (Science 227, 1435-1441, 1985) and determining the functional similarity between homologous polypeptides. Nucleic acid sequences encoding such homologous functional variants are included within the scope of this invention. Moreover, the potential exists to use recombinant DNA technology for the preparation of nucleic acid sequences encoding these various.

Nucleic acid sequences according to the invention may be derived from isolates of CCV strains such as CCV-6, Insavc-1 (EP 396,193), CCV 1-71 (ATCC VR-809) or CCV TN449 (ATCC VR-2068).

In another aspect of the invention nucleic acid sequences described above are provided which can be used for the preparation of a vaccine to protect cats against FIPV infection.

The information provided in SEQ ID NO: 1-6 allows a person skilled in the art to isolate and identify the: nucleic acid sequences encoding the various functional variant polypeptidec mentioned-above having corresponding immunological characteristics with the CCV spike protein specifically disclosed herein. The generally applied Southern blotting technique or colony hybridization can be used for that purpose (Experiments in Molecular Biology, ed. R.J. Slater, Clifton, U.S.A., 1986; Singer-Sam, J. et al., Proc. Natl. Acad. Sci. 80, 802-806, 1983; Maniatis T. et al., Molecular Cloning, A laboratory Manual, second edition, Cold Spring Harbor Laboratory Press, USA, 1989). For example, RNA or cDNA derived from a specific CCV strain is electrophoresed and transferred, or "blotted" thereafter onto a piece of nitrocellulose filter. It is now possible to identify CCV spike protein nucleic acid sequences on the filter by hybridization to a defined labeled DNA fragment or "probe", i.e. a (synthetic) poly- or oligonucleotide sequence fragment of the nucleic acid sequence shown in SEQ ID NO: 1, 3 or 5 which under specific conditions of salt concentration and temperature hybridizes to the homologous nucleic acid sequences present on the filter. After washing the filter, hybridized material may be detected by autoradiography. The corresponding DNA fragment can now be eluted from the agarose gel and used to direct the synthesis of a functional variant of the polypeptide disclosed in SEQ ID NO: 2, 4 or 6.

Therefore, a preferred functional variant according to the invention is a polypeptide comprising one or more immunogenic determinants of a CCV spike protein and is encoded by a nucleic acid sequence which hybridizes to the DNA sequence shown in SEQ ID NO: 1, 3 or 5.

In another way CCV cDNA may be cloned into a kgt11 phage as described by Huynh et al. (In: D. Glover (ed.), DNA Cloning: A Practical Approach, IRL Press Oxford, 49-78, 1985) and expressed in a bacterial host. Recombinant phages can then be screened with polyclonal serum raised against the purified CCV spike protein disclosed in SEQ ID NO: 2, 4 or 6 determining the presence of corresponding immunological regions of the variant polypeptide. The production of the polyclonal serum to be used herein elicited against the CCV spike protein is described below.

As is well known in the art, the degeneracy of the genetic code permits substitution of bases in a codon resulting in an other codon but still coding for the same amino acid, e.g. the codon for the amino acid glutamic acid is both GAT and GAA. Consequently, it is clear that for the expression of a polypeptide with the amino acid sequence shown in SEQ ID NO: 2, 4 or 6 use can be made of a derivate nucleic acid sequence with such an alternative codon composition different from the nucleic acid sequence shown in SEQ ID NO: 1, 3 or 5, respectively.

Furthermore, also fragments of the nucleic acid sequences encoding the specifically disclosed CCV

0

Ю

spike protein or functional variants thereof as mentioned above are included in the present invention.

The term "fragment" as used herein means a DNA or amino acid sequence comprising a subsequence of the nucleic acid sequence or polypeptide of the Invention. Said fragment is or encodes a polypeptide having one or more immunogenic determinants of a CCV spike protein, i.e. has one or more epitopes which are capable of eliciting a protective immune response in a dog. Methods for determining usable polypeptide fragments are outlined below. Fragments can inter alia be produced by enzymatic cleavage of precursor molecules, using restriction endonucleases for the DNA and proteases for the polypeptides. Other methods include chemical synthesis of the fragments or the expression of polypeptide fragments by DNA fragments.

Typical sequences encoding the CCV spike protein precursor are shown in SEQ ID NO: 1, 3 and 5. These cDNA sequences are about 4328, 4352 and 4358 nucleotides in length, respectively, and encode a polypeptide of 1443, 1451 and 1453 amino acids, respectively.

A preferred nucleic acid sequence according to the invention is characterized in that said sequence contains at least part of the DNA sequence disclosed in SEQ ID NO: 1, 3 or 5.

A nucleic acid sequence according to the invention may be isolated from a particular CCV strain and multiplied by recombinant DNA techniques including polymerase chain reaction (PCR) technology or may be chemically synthesized in vitro by techniques known in the art.

All modifications resulting in the above-mentioned functional variants of the specifically exemplified polypeptide are included within the scope of the present invention for as long as the resulting polypeptides retain one or more immunogenic determinants of a CCV spike protein.

A nucleic acid sequence according to the present invention can be ligated to various replication effecting DNA sequences with which it is not associated or linked in nature resulting in a so called recombinant vector molecule which can be used for the transformation of a suitable host. Useful recombinant vector molecules, are preferably derived from, for example plasmids, bacteriophages, cosmids or viruses.

Specific vectors or cloning vehicles which can be used to clone nucleic acid sequences according to the invention are known in the art and include inter alia plasmid vectors such as pBR322, the various pUC, pGEM and Bluescript plasmids, bacteriophages, e.g. kgt-Wes, Charon 28 and the M13 derived phages or viral vectors such as SV40, adenovirus or polyoma virus (see also Rodriquez, R.L. and D.T. Denhardt, ed., Vectors: A survey of molecular cloning vectors and their uses, Butterworths, 1988; Lenstra, J.A. et al., Arch. Virol. 110, 1-24, 1990). The methods to be used for the construction of a recombinant vector molecule according to the invention are known to those of ordinary skill in the art and are inter alia set forth in Maniatis, T. et al. (Molecular Cloning A Laboratory Manual, second edition; Cold Spring Harbor Laboratory, 1989).

For example, the insertion of the nucleic acid sequence according to the invention into a cloning vector can easily be achieved when both the genes and the desired cloning vehicle have been cut with the same restriction enzyme(s) as complementary DNA termini are thereby produced.

Alternatively, it may be necessary to modify the restriction sites that are produced into blunt ends either by digesting the single-stranded DNA or by filling in the single-stranded termini with an appropriate DNA polymerase. Subsequently, blunt end ligation with an enzyme such as T4 DNA ligase may be carried out.

If desired, any restriction site may be produced by ligating linkers onto the DNA termini. Such linkers may comprise specific eligonucleotide sequences that encode restriction site sequences. The restriction enzyme cleaved vector and nucleic acid sequence may also be modified by homopolymeric tailing.

"Transformation", as used herein, refers to the introduction of a heterologous nucleic acid sequence into a host cell, irrespective of the method used, for example direct uptake or transduction. The heterologous nucleic acid sequence may be maintained through autonomous replication or alternatively, may be integrated into the host genome. If desired, the recombinant vector molecules are provided with appropriate control sequences compatible with the designated host which can regulate the expression of the inserted nucleic acid sequence. In addition to microorganisms, culture of cells derived from multicellular organisms may also be used as hosts.

The recombinant vector molecules according to the invention preferably contain one or more marker activities that may be used to select for desired transformants, such as ampicillin and tetracycline resistance in pBR322, ampicillin resistance and β -galactosidase activity in pUC8.

A suitable host cell is a microorganism or cell which can be transformed by a nucleic acid sequence encoding a polypeptide or by a recombinant vector molecule comprising such a nucleic acid sequence and which can if desired be used to express said polypeptide encoded by said nucleic acid sequence. The host cell can be of procaryotic origin, e.g. bacteria such as Escherichia coli, Bacillus subtilis and Pseudomonas species; or of eucaryotic origin such as yeasts, e.g. Saccharomyces cerevisiae or higher eucaryotic cells such as insect, plant or mammalian cells, including HeLa cells and Chinese hamster ovary (CHO) cells.

20

25

40

Insect cells include the Sf9 cell line of Spodoptera frugiperda (Luckow et al., Bio-technology 6, 47-55, 1988). Information with respect to the cloning and expression of the nucleic acid sequence of the present invention in eucaryotic cloning systems can be found in Esser, K. et al. (Plasmids of Eukaryotes, Springer-Verlag, 1986).

In general, prokaryotes are preferred for the construction of the recombinant vector molecules useful in the invention. For example E.coli K12 strains are particularly useful such as DH5 α or JM101.

For expression nucleic acid sequences of the present invention are introduced into an expression vector, i.e. said sequences are operably linked to expression control sequences. Such control sequences may comprise promoters, enhancers, operators, inducers, ribosome binding sites etc. Therefore, the present invention provides a recombinant vector molecule comprising a nucleic acid sequence encoding the CCV spike protein operably linked to expression control sequences, capable of expressing the DNA sequences contained therein in (a) transformed host cell(s).

It should, of course, be understood that the nucleotide sequences inserted at the selected site of the cloning vector may include nucleotides which are not part of the actual structural gene for the desired polypeptide or may include only a fragment of the complete structural gene for the desired protein as long as transformed host will produce a polypeptide having at least one or more immunogenic determinants of a CCV spike protein.

When the host cells are bacteria, illustrative useful expression control sequences include the Trp promoter and operator (Goeddel, et al., Nucl. Acids Res. 8, 4057, 1980); the lac promoter and operator (Chang, et al., Nature 275, 615, 1978); the outer membrane protein promoter (Nakamura, K. and Inouge; Μκ, EMBO J. 1, 771-775, 1982); the bacteriophage k promoters and operators (Remaut, E. et al., Nucl. Acids Res. 11, 4677-4688, 1983); the α-amylase (B. subtilis) promoter and operator, termination sequence and other expression enhancement and control sequences compatible with the selected host cell. When the host cell is yeast, illustrative useful expression control sequences include, e.g., α-mating factor. For insect cells the polyhedrin or p10 promoters of baculoviruses can be used (Smith, G.E. et al., Mol. Cell. Biol. 3, 2156-65, 1983). When the host cell is of mammalian origin illustrative useful expression control sequences include, e.g., the SV-40 promoter (Berman, P.W. et al., Science 222, 524-527, 1983) or, e.g. the metallothionein promoter (Brinster, R.L., Nature 296, 39-42, 1982) or a heat shock promoter (Voellmy et al., Proc. Natl. Acad. Sci. USA 82, 4949-53, 1985). For maximizing gene expression, see also Roberts and Lauer (Methods in Enzymology 68, 473, 1979).

Therefore, the invention also comprises (a) host cell(s) transformed with a nucleic acid sequence or recombinant expression vector molecule described above, capable of producing the CCV spike protein by expression of the nucleic acid sequence.

The present invention also provides a process for the preparation of a purified polypeptide displaying immunological characteristics of a CCV spike protein, i.e. the polypeptide has one or more immunogenic determinants of a CCV spike protein, essentially free from whole viruses or other protein with which it is ordinarily associated.

More particularly, the invention provides a process for the preparation of a polypeptide comprising at least part of the amino acid sequence shown in SEQ ID NO: 2, 4 or 6 or a functional variant thereof.

In addition a polypeptide substantially comprising an immunogenic fragment of the CCV spike protein which can be used for immunization of dogs against CCV infection or diagnostic purposes, is prepared in the present invention. Various methods are known for detecting such usable immunogenic fragments within an amino acid sequence.

Suitable immunochemically active polypeptide fragments of a polypeptide according to the invention containing (an) epitope(s) can be found by means of the method described in Patent Application WO 86/06487, Geysen, H.M. et al. (Prod. Natl. Acad. Sci. 81, 3998-4002, 1984), Geysen, H.M. et al. (J. Immunol. Meth. 102, 259-274, 1987) based on the so-called pep-scan method, wherein a series of partially overlapping peptides corresponding with partial sequences of the complete polypeptide under consideration, are synthesized and their reactivity with antibodies is investigated.

In addition, a number of regions of the polypeptide, with the stated amino acid sequence, can be designated epitopes on the basis of theoretical considerations and structural agreement with epitopes which are now known. The determination of these regions is based on a combination of the hydrophilicity criteria according to Hopp and Woods (Proc. Natl. Acad. Sci. 78, 3824-3828, 1981) and the secondary structure aspects according to Chou and Fasman (Advances in Enzymology 47, 45-148, 1987).

T-cell epitopes which may be necessary can likewise be derived on theoretical grounds, e.g. with the aid of Berzofsky's amphiphilicity criterion (Science 235, 1059-62, 1987).

In another embodiment of the invention a polypeptide having an amino acid sequence encoded by a nucleic acid sequence mentioned above is used.

55

17

Immunization of dogs against CCV infection can, for example be achieved by administering to the animals a polypeptide prepared according to the process mentioned above in an immunologically relevant context as a so-called subunit vaccine. The subunit vaccine according to the invention may comprise a polypeptide in a pure form, optionally in the presence of a pharmaceutically acceptable carrier. The polypeptide can optionally be covalently bound to a non-related protein, which, for example can be of advantage in the purification of the fusion product. Examples are β -galactosidase, protein A, prochymosine, blood clotting factor Xa, etc.

In some cases the ability to raise neutralizing antibodies against these polypeptides per se may be low. Small fragments are preferably conjugated to carrier molecules in order to raise their immunogenicity. Suitable carriers for this purpose are macromolecules, such as natural polymers (proteins like key hole limpet hemocyanin, albumin, toxins), synthetic polymers like polyamino acids (polylysine, polyalanine), or micelles of amphiphilic compounds like saponins. Alternatively these fragments may be provided as polymers thereof, preferably linear polymers.

Polypeptides to be used in such subunit vaccines can be prepared by methods known in the art, e.g. by isolating said polypeptides from CCV, by recombinant DNA techniques or by chemical synthesis.

If required these polypeptides to be used in a vaccine can be modified in vitro or in vivo, for example by glycosylation, amidation, carboxylation or phosphorylation.

An alternative to subunit vaccines are live vector vaccines. A nucleic acid sequence according to the invention is introduced by recombinant DNA techniques into a micro-organism (e.g. a bacterium or virus) in such a way that the recombinant micro-organism is still able to replicate thereby expressing a polypeptide coded by the inserted nucleic acid sequence and eliciting an immune response in the infected host animal.

A preferred embodiment of the present invention is a recombinant vector virus comprising a heterologous nucleic acid sequence described above, capable of expressing the DNA sequence in (a) host cell(s) or host animal infected with the recombinant vector virus. The term "heterologous" indicates that the nucleic acid sequence according to the invention is not normally present in nature in the vector virus.

Furthermore, the invention also comprises (a) host cell(s) or cell culture infected with the recombinant vector virus, capable of producing the CCV protein by expression of the nucleic acid sequence.

For example the well known technique of in vivo homologous recombination can be used to introduce a heterologous nucleic acid sequence, e.g. a nucleic acid sequence according to the invention into the genome of the vector virus.

First, a DNA fragment corresponding with an insertion region of the vector genome, i.e. a region which can be used for the incorporation of a heterologous sequence without disrupting essential functions of the vector such as those necessary for infection or replication, is inserted into a cloning vector according to standard recDNA techniques. Insertion-regions have been reported for a large number of micro-organisms (e.g. EP 80,806, EP 110,385, EP 83,286, US 4,769,330 and US 4,722,848).

Second, if desired, a deletion can be introduced into the insertion region present in the recombinant vector molecule obtained from the first step. This can be achieved for example by appropriate exonuclease III digestion or restriction enzyme treatment of the recombinant vector molecule from the first step.

Third, the heterologous nucleic acid sequence is inserted into the insertion-region present in the recombinant vector molecule of the first step or in place of the DNA deleted from said recombinant vector molecule. The insertion region DNA sequence should be of appropriate length as to allow homologous recombination with the vector genome to occur. Thereafter, suitable cells can be infected with wild-type vector virus or transformed with vector genomic DNA in the presence of the recombinant vector molecule containing the insertion flanked by appropriate vector DNA sequences whereby recombination occurs between the corresponding regions in the recombinant vector molecule and the vector genome. Recombinant vector progeny can now be produced in cell culture and can be selected for example genotypically or phenotypically, e.g. by hybridization, detecting enzyme activity encoded by a gene co-integrated along with the heterologous nucleic acid sequence, or detecting the antigenic heterologous polypeptide expressed by the recombinant vector immunologically.

Next, this recombinant micro-organism can be administered to the dogs for immunization whereafter it maintains itself for some time, or even replicates in the body of the inoculated animal, expressing in vivo a polypeptide coded for by the inserted nucleic acid sequence according to the invention resulting in the stimulation of the immune system of the inoculated animal. Suitable vectors for the incorporation of a nucleic acid sequence according to the invention can be derived from viruses such as pox viruses, e.g. vaccinia virus (EP 110,385, EP 83,286, US 4,769,330 and US 4,722,848), herpes viruses such as Feline Herpes virus, (canine) adeno virus (WO 91/11525) or influenza virus, or bacteria such as E. coli or specific Salmonella species. With recombinant microorganisms of this type, the polypeptide synthesized in the host can be exposed as a cell surface antigen. In this context fusion of the said polypeptide with OMP proteins,

or pilus proteins of for example E. coli or synthetic provision of signal and anchor sequences which are recognized by the organism are conceivable. It is also possible that the sald immunogenic polypeptide, if desired as part of a larger whole, is released inside the animal to be immunized. In all of these cases it is also possible that one or more immunogenic products will find expression which generate protection against various pathogens and/or against various antigens of a given pathogen.

A vaccine according to the invention can be prepared by culturing a host cell infected with a recombinant vector virus comprising a nucleic acid sequence according to the invention, whereafter virus containing cells and/or recombinant vector viruses grown in the cells can be collected, optionally in a pure form, and formed to a vaccine optionally in a lyophilized form.

Host cells transformed with a recombinant vector molecule according to the invention can also be cultured under conditions which are favourable for the expression of a polypeptide coded by said nucleic acid sequence. Vaccines may be prepared using samples of the crude culture, host cell lysates or host cell extracts, although in another embodiment more purified polypeptides according to the invention are formed to a vaccine, depending on its intended use. In order to purify the polypeptides produced, host cells transformed with a recombinant vector according to the invention are cultured in an adequate volume and the polypeptides produced are isolated from such cells or from the medium if the protein is excreted. Polypeptides excreted into the medium can be isolated and purified by standard techniques, e.g. salt fractionation, centrifugation, ultrafiltration, chromatography, gel filtration or immuno affinity chromatography, whereas intra cellular polypeptides can be isolated by first collecting said cells, disrupting the cells, for example by sonication or by other mechanically disruptive means such as French press followed by separation of the polypeptides from the other intra cellular components and forming the polypeptides to a vaccine. Cell disruption could also be accomplished by chemical (e.g. EDTA treatment) or enzymatic means.

The vaccine according to the invention can be administered in a convential active immunization scheme; single or repeated administration in a manner compatible with the dosage formulation and in such amount as will be prophylactically and/or therapeutically effective and immunogenic, i.e. the amount of immunizing antigen or recombinant micro-organism capable of expressing said antigen that will induce immunity in a dog against challenge by a virulent CCV. Immunity is defined as the induction of a significant level of protection in a population of dogs after vaccination compared to an unvaccinated group.

For live viral vector vaccines the dose rate per dog may range from 10^5 - 10^8 pfu.

A typical subunit vaccine according to the invention comprises 10 µg - 1 mg of the polypeptide according to the invention.

The administration of the vaccine can be done, e.g. intradermally, subcutaneously, intramuscularly, intraperitonially, intravenously, orally or intranasally.

Additionally the vaccine may also contain an aqueous medium or a water containing suspension, often mixed with other constituents, e.g. in order to increase the activity and/or shelf life. These constituents may be salts, pH buffers, stabilizers (such as skimmed milk or casein hydrolysate), emulsifiers adjuvants to improve the immune response (e.g. oils, muramyl dipeptide, aluminiumhydroxide, saponin, polyanions and amphipatic substances) and preservatives.

It is clear that a vaccine according to the invention may also contain immunogens related to other pathogens of dogs or may contain nucleic acid sequences encoding these immunogens, like antigens of Canine parvovirus (CPV), Canine Distemper virus, Canine Adenovirus I, Canine Adenovirus II, Canine Parainfluenza virus, Canine Rotavirus or Leptospira canicola to produce a multivalent vaccine.

Example 1

35

45

50

55

0

ů

10

A.

1. Preparation of genomic viral RNA of CCV-6 and Liverpool C54 strain

Confluent A-72 cells grown in plastic tissue culture flasks using the Wellcome modification of minimal Eagle's medium (MEM) and 10% foetal bovine serum were infected with CCV (NVSL Challenge virus CCV-6 from the National Veterinary Service Laboratory, PO Box 844, Ames, Iowa 50010, USA) at a multiplicity of infection (MOI) of approximately 0.1. After 24 h the culture supernatant was harvested, chilled to 4 °C and cell debris removed by centrifugation at 3000 x g for 15 min. Virus was pelletted from the supernatant at 53.000 x g for 2 h in a Beckman type 19 rotor. The pellet was resuspended in 5 ml of TNE (10 mM Tris-Cl, 100 mM NaCl, 1 mM EDTA, pH 7.5) using a Dounce homogeniser and layered onto a 32 ml linear 20-60% gradient of sucrose in TNE. The virus was banded isopycnically by overnight centrifugation at 100.000 x g in a Beckman SW28 rotor. The gradient was fractionated and the A280's and densities of the fractions determined. A peak was identified at the characteristic

density of 1.18 g/cc. The peak fractions were pooled, diluted in TNE and the putative virus pelletted by centrifugation at 100.000 x g for 2 h in the Beckman SW28 rotor. RNA was isolated from the virus pellet using two approaches:

A. The pellet was resuspended in 0.1 M Tris-Cl pH 8.0 containing 0.1% SDS and digested for 3 h at 50 °C with 20 µg/ml of proteinase K. The mixture was deproteinised using phenol:chloroform:isoamyl alcohol (50:49:1) saturated with TE (10 mM Tris-Cl 1 mM EDTA) and the nucleic acid recovered by precipitation with 2.5 volumes of ethanol/0.3 M sodium acetate pH 5.2. The preparation was analysed on a Tris-borate EDTA 1% agarose gel containing 0.1% SDS; a high molecular weight RNA band was identified with the characteristic mobility of coronavirus genomic RNA.

B. The virus pellet was homogenised in 6 M guanidinium isothiocyanate/5 mM sodium citrate (pH 7.0)/0.1 M mercaptoethanol/0.5% N-lauroyl sarcosinate and 1 g/ml of CsCl added to each 2.5 ml of the homogenate. The mixture was then layered onto a 5.7 M CsCl/0.1 M EDTA pad and centrifuged at 108.000 x g for 12 h at 20 °C. The pellet of RNA was dissolved in TE containing 0.1% SDS. The preparation was analysed as described above.

2. cDNA cloning of CCV genomic RNA

First strand synthesis from 2 µg of CCV genomic RNA prepared as described in 1A above was primed with 1 ng of a specific oligonucleotide (5' TTTTCAAATTGTCTTCTACTT 3') using 40 units of AMV reverse transcriptase in a reaction volume of 25 µl containing 20 mM Tris-Cl (pH 8.3 at 42 °C), 0.14 M KCl, 10 mM MgCl₂, 1 mM dNTP's, 4 mM dithiothreitol, 25 units of human placental ribonuclease inhibitor. The reaction mixture was incubated for 1 h at 42 °C. Second strand synthesis was achieved by addition of 46 μl of a reaction mixture containing 7.6 mM MgCl₂, 0.109 M Tris-Cl pH 7.4, 16.3 mM (NH₄)₂SO₄, 1000 units/ml RNaseH, 10.000 units/ml E, coli DNA polymerase 1 to the first strand reaction and incubation at 12 °C for 1 h followed by incubation at 22 °C for a further 1 h. The reaction products were deproteinised by two extractions with phenol:chloroform:isoamyl alcohol (50:49:1) saturated with TE and precipitated with 2 volumes of ethanol/0.3 M sodium acetate pH 5.2. The cDNA was tailed with C residues using terminal deoxynucleotidyl transferase using the buffer and conditions supplied by the manufacturer (Bethesda Research Laboratories, Gaithersburg, Maryland 20877, USA). It was then size fractionated on a 2 ml Sephacryl S-1000 column and cDNA of size greater than 500 base pairs pooled, ethanol precipitated and dissolved in TE. 50 ng of this cDNA was annealed with 250 ng of dG-tailed Pstl cut pUC119. The mixture was transformed into E. coli TG-1. Ampicillin resistant transformants were picked and screened for CCV cDNA inserts using a cDNA probe produced by random priming of reverse transcription from CCV genomic RNA. Positive colonies were screened for size of cDNA inserts by Pstl digestion of mini-prep DNA. The relationships between inserts were established by restriction enzyme analysis. The clone pBHI was selected for sequence analysis. The size of the pBHI insert (4.0 kb) was insufficient to cover the complete CCV spike coding region and a further round of cDNA synthesis and cloning was carried out using another specific primer (5' CTAGGTAGTAACAC 3'). The RNA used was isolated as described in 1B above. cDNA synthesis was achieved using a Boehringer Mannheim (Boehringer Mannheim UK, Bell Lane, Lewes, East Sussex BN7 1LG) cDNA synthesis kit according to the manufacturer's instructions. In summary first strand synthesis was again achieved using AMV reverse transcriptase, second strand synthesis by the action of E. coli DNA polymerase 1 and RNaseH. The cDNA was blunt ended by the action of T4 DNA polymerase. The cDNA was ligated into Smal-cut phosphatased pUC18 using T4 DNA ligase and the DNA transformed into E. coli TG1. Ampicillin resistant clones were initially screened for inserts using blue/white selection on X-gal (5-bromo-4-chloro-3-indolyl-\beta-Dgalactopyranoside) plates. White colonies were picked and screened for the presence of CCV cDNA inserts as described above. Clone pBH2 (size 2.8 kb) was selected for sequence analysis. The same strategy as outlined in Example 1.1.B. and 1.2. for CCV strain CCV6 was carried out for the isolation of the spike gene of the CCV C54 strain. Three overlapping clones, pBH3, pBH4 and pBH11 covered the spike gene to the blunt end.

3. DNA sequencing The cDNA inserts from clones pBH1, pBH2, and pBH3, pBH4 and pBH11 were sequenced using the Sanger dideoxy chain termination method. This shotgun approach was supplemented as necessary with sequencing from specific oligonucleotide primers on double stranded plasmid DNA templates. For the shotgun analysis insert DNA was excised from the vector sequences, circularised, sonicated, size selected on agarose gels and cloned into Smal-cut, phosphatased M13mp8. Shotgun sequence data were assembled using the DBUTIL and DBAUTO programs of Staden and analysed using the ANALYSEQ/NIP packages of Staden. A VAX 8350 and micro VAX 3100 (Digital Equipment Corporation) were used. The sequence data are presented in SEQ ID NO: 1

5

10

15

20

25

30

35

40

45

50

and 5.

B.

5

10

15

20

25

30

35

40

45

55

å

*

1. Preparation of genomic viral RNA of Insavc-1 strain

Confluent A-72 cells grown in plastic tissue culture flasks using the Wellcome modification of minimal Eagle's medium (MEM) and 10% F.C.S. were infected with CCV strain Insavc-1 (Bert) (Intervet Labs.) at a m.o.i. of approximately 0.1. After 48 hours the culture supernatant was harvested, chilled to 4° and cell debris removed by centrifugation at 3000xg for 15 minutes. Virus was pelleted from the supernatant at 53000xg for 2 hrs in a Beckman type 19 rotor. The virus pellet was homogenized in 3.5 mls of 6M guanidinium isothiocyanate/5mM sodium citrate (pH 7.0), 0.1M mercaptoethanol, 0.5% N-lauroyl sarcosinate.

The homogenate was layered onto a 5.7 M CsCl pad (1 ml) and centrifuged at 108000 g for 18 hours at 18 °C. The pellet of RNA was dissolved in TE containing 0.1% SDS, then precipitated twice with 2.5 volumes of ethanol/0.3M NaOAc pH 5.2. The preparation was analysed as a Tris-borate EDTA 1% agarose gel containing 0.1% SDS, high molecular weight RNA band was identified with the characteristic mobility of coronavirus genomic RNA.

2. cDNA and PCR cloning of CCV genomic RNA

First and second strand synthesis from 2 µg of CCV genomic RNA prepared as aforementioned was primed with oligo dT and random pentanucleotides from the Boehringer cDNA synthesis kit under the conditions specified by the manufacturers protocol.

The resultant blunt ended cDNA produced from this reaction was ligated into Sma1-cute phosphatased pUC 119 using T4 DNA ligase and the DNA transformed into E. coli TG-1. Ampicillin resistant clones were initially screened for inserts using blue/white selection on x-gal (5-bromo-4-standard) plates. White colonies were picked and screened for the presence of CCV cDNA inserts using randomly primed CCV RNA as a probe. Five positive clones were identified.

Plasmid pBH6 was generated using the polymerase chain reaction (PCR). Sequence information from the ends of pBH5 and pBH7 allowed the design of primers BH7 and BH8. A Not 1 site was incorporated into the oligo's to facilitate cloning. Briefly, approximately 1 ng of first-strand reaction as described previously was deproteinized by two extractions with phenol:chloroform:Isoramyl alcohol (50:49:1) saturated with TE, passed down a G50 spin column and precipitated with two volumes of ethanol/0.3 M sodium acetate pH 5.2. The DNA:RNA hybrids were resuspended in 15 μ l TE. The PCR reaction was carried out with the Techne programmable Dri-block PHC-1.

The generated fragment was phenol/chloroform ethanol precipitated as before and resuspended in 20 µl of TE. The DNA was cleaved with Not 1 under conditions recommended by the enzyme manufacturer, and gel eluted. The Not 1 fragment was then ligated to Not 1 cut phosphatased vector using T4 DNA ligase and the DNA transformed into E. coli TG-1. Clones containing inserts were identified as previously described.

3. DNA sequencing

The cDNA inserts from clones pBH5, pBH7, pBH8, pBH9, pBH10 and the PCR insert pBH6, were sequenced using the Sanger dideoxy chain terminations method as described by Barrell and Bankier (Methods in Enzymology 155, 51-93, 1987). This shotgun approach was supplemented as necessary with sequencing from specific oligonucleotide primers on double stranded or single stranded (f1 origin pUC 119) plasmid DNA.

For shotgun analyses, insert DNA was excised from the vector sequences, selfligated, sonicated, end-repaired, size selected on 1% agarose gels, cloned into Sma 1-cut phosphatased M13mp18. Shotgun sequence data were assembled and analysed using the SAP programmes of Standen. A Vax 8350 and MicroVax 3100 (Digital Equipment Corporations) were used. The sequence data are presented SEQ ID NO.: 3.

50 Example 2

2.1. Generation of vaccinia virus Vac4b-C6

2.1.1. Assembly of CCV6 full length spike protein gene.

The full length coding region of the S gene of CCV6 was reconstructed from 2 overlapping cDNA clones, BH1 and BH2. The cloning strategy is illustrated in figure 1. The 3.0 kb insert from pBH1 has identity to S and 1b. In order to express S, the polymerase coding sequence had to be removed. The

3

sequence immediately 5' of the initiating methlonine, CTAAACTTTGGTAATCACTTGG TTAATGTGCC ATG was modified by site directed mutagenesis. Four bases, ATCC were looped in between the TGG and TTA bases to create a unique BamHI site, GGATCC. Mutants were screened by restriction enzyme digestion. Positive clones were sequenced across this site as the Klenow fragment of E. coli DNA polymerase used in the mutagenesis reaction can introduce unspecified mutations at a very low frequency. A mutant which had the introduced BamHI site was selected and designated pBHI-bam. This plasmid overlapped pBH2 by approximately 300 bp. A unique AfIII site was located in this region of overlap. The proximal S coding sequence was isolated from pBH1-bam as a 1.5 kb Af1II-SphI fragment and ligated into Af1II-SphI digested pBH2 generating pCCV6. The full length S coding sequence was isolated as a 4.4 kb BamH1 fragment then ligated into the BamH1 site of the transfer vector RK19 to form pRKCCV6. Correct orientation of the gene was confirmed by restriction enzyme digestion. Thus, the plasmid RKCCV6 contains the CCV6 S gene downstream of the 4b promoter and flanked by TK coding sequences.

2.1.2. Isolation of recombinant virus

15

25

Recombinant vaccinia viruses were constructed by established procedures (Mackett & Smith, J.Gen.Virol. 67, 2067-2082, 1986). pRKCCV6 was transfected into vaccinia virus infected cells and recombinant viruses identified by dot-blot hybridisation using random primed ³²P labelled CCV6 spike gene as a probe Plaque purification and screening were repeated 3 times before stocks were prepared. The recombinant derived from pRKCCV6 was named Vac4b-C6.

2.2. Generation of vaccinia virus Vac4b-IN

2.2.1. Assembly of CCV Insavc-1 full length spike protein gene

The Insavc-1 (Bert) S gene was assembled from 3 overlapping cDNA clones BH8, BH9 and BH10. The cloning strategy is illustrated in figure 2. Digesting pBH8, which spans the middle of the S gene with Pvull and HindIII yielded a 1.4 kb fragment. This fragment was ligated into a Pvull-HindIII cut vector, pING14.2 forming pINGMS. This plasmid was linearized with HindIII, phosphatased then get eluted. The 3' S gene coding sequence isolated as a 1.1 kb HindIII fragment from pBH10, was subcloned into HindIII cut pINGMS generating pINGM3'S. Correct orientation of the cloned HindIII fragment was confirmed by restriction enzyme digestion. Before the remaining coding sequence was excised from pBH9 a unique BamHI site was introduced 10bps upstream of the peplomer AUG start codon by site-directed mutagenesis (figure 2). The 5' coding sequence of the S gene was isolated as a 1.9 kb Pvull fragment and the remaining S gene coding sequence, which was isolated as a 2.5 kb Pvull partial-EcoRI fragment from pING3'S, were ligated in a two fragment ligation to BamHI-EcoRI digested pUC118. The complete S protein gene coding sequence was isolated as a 4.4 kb BamH1 fragment and subcloned into the BamH1 cut transfer vector pRK19, generating pRKINSAVC-1. Correct orientation of the gene was confirmed by restriction enzyme digestion. Thus the plasmid RKINSAVC-1 contains the CCV-INSAVC-1 S gene downstream of the vaccinia 4b promoter and flanked by TK coding sequences.

2.2.2. Isolation of recombinant vaccinia virus

Plasmid RKINSAVC-1 was used to introduce the S gene coding sequence into vaccinia virus by transfection and selection for TK⁻ recombinants was as described by Mackett and Smith, (1986, ibid). Recombinant virus isolates identified by dot blot hybridisation with a ³²P labelled CCV6 S DNA probe were subjected to three rounds of plaque purification and virus stocks prepared. The recombinant derived from RKINSAVC-1 was named Vac4b-IN.

50 2.3. Generation of vaccinia virus Vac4b-C54

2.3.1. Assembly of CCV C54 full length S protein gene

The C54 S gene coding sequence was assembled from the 3 overlapping clones pBH3, pBH4 and pBH11. A unique BamH1 site was created 10 bps upstream of the peplomer AUG start codon by site-directed mutagenesis in the proximal clone, pBH3 generating pBH3-bam (figure 3). A 2.0 kb AfIII-EcoRI fragment was isolated from this plasmid and ligated to AfIII-EcoRI digested pBH4 forming pBH5'MS. This plasmid was cleaved with HindIII, phosphatased and get eluted. The 3' coding sequence was excised as a

1.1 kb HindIII fragment from pBH11, then ligated to the HindIII digested pBH5'MS generating pBHC54. The correct orientation of the subcloned HindIII fragment was determined by restriction enzyme digestion. The full length C54 S gene was excised by digestion with BamH1 from pBHC54 and ligated into the BamH1 cut transfer vector RK19, forming pRKC54. Similarly, the orientation of the S gene was determined by restriction enzyme digestion. Thus the plasmid RKC54 contains the CCV C54 S gene downstream of the 4b promoter and flanked by TK coding sequences. The cloning strategy is illustrated in figure 3.

2.3.2. Isolation of recombinant vaccinia virus

Plasmid RKC54 was transfected into vaccinia virus infected cells. TK⁻ recombinants were selected using BUdR (Mackett and Smith, 1986, ibid). Recombinant virus isolates were identified by dot-blot hybridisation and subjected to three rounds of plaque purification before stocks were made. The recombinant derived from pRKC54 was named Vac4b-C54.

15 Example 3

Immunization experiments with live recombinant Vaccinia vaccine

3.1. Immunization

20

25

30

4

4,10

Cats were vaccinated with the following vaccines (10⁷ pfu/cat):

- (a) 4 cats Vac4b-IN
- (b) 4 cats Vac4b-C6
- (c) 2 cats Vac4b-gB

(Vac4b-gB is recombinant Vaccinia virus which expresses the Cytomegalovirus glycoprotein gB under control of the 4b promoter)

(d) 2 cats - unvaccinated.

All cats were bled prior to vaccination (Bleed A). 3 weeks after vaccination the cats were bled again (Bleed B) and subsequently re-vaccinated as above.

2 weeks after re-vaccination all cats were bled (Bleed C).

3.2. Immuno-precipitation

Canine A72 cells were infected at a m.o.i. of about 10 with the recombinant viruses or mock-infected, incubated for 16 hours and starved of methionine for 1 hour. Infected cells were labelled with ³⁵S methionine and incubated for 30 min., washed and subsequently lysed in R.1.P.A. buffer. 1 μ l cat antiserum (Bleed C) was added to the radiolabelled lysate and incubated on ice for 60 min. Protein G is added and incubated on ice for 60 min. After washing the protein G in R.1.P.A. buffer and PBS buffer, the bound proteins are recovered with 2% SDS 2% 2-mercapto-ethanol. The proteins are separated on 10% SDS polyacrylamide gel.

Sera from Bleed C precipitated the spike protein in the case of cats given Vac4b-C6 and Vac4b-IN. Thus, the cats immunized with the Vaccinia recombinant virus containing the spike genes responded with antibodies to the spike genes.

45 Legends to the Figures

Figure 1: shows the cloning strategy for the construction of plasmid pRKCCV6 from plasmids pBH1 and pBH2.

Fugure 2: shows the cloning strategy for the construction of plasmid pRKINSAVC-1 from plasmids pBH8, pBH10 and pBH9.

Figure 3: shows the cloning strategy for the construction of plasmid pRKC54 from plasmids pBH3, pBH4 and pBH11.

55

SEQUENCE LISTING

5	(1) GENERAL INFORMATION:
10	(i) APPLICANT: (A) NAME: AKZO N.V. (B) STREET: Velperweg 76 (C) CITY: Arnhem (E) COUNTRY: the Netherlands (F) POSTAL CODE (ZIP): 6824 BM
	(ii) TITLE OF INVENTION: CANINE CORONAVIRUS SUBUNIT VACCINE
	(iii) NUMBER OF SEQUENCES: 6
15	 (v) COMPUTER READABLE FORM: (A) MEDIUM TYPE: Floppy disk (B) COMPUTER: IBM PC compatible (C) OPERATING SYSTEM: PC-DOS/MS-DOS (D) SOFTWARE: PatentIn Release #1.0, Version #1.25
20	<pre>(vii) PRIOR APPLICATION DATA: (A) APPLICATION NUMBER: EP 91.303.737.0 (B) FILING DATE: 25-Apr-1991 (C) CLASSIFICATION:</pre>
25	(2) INFORMATION FOR SEQ ID NO:1:
3 0	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 4500 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
	(ii) MOLECULE TYPE: CDNA
35	(vi) ORIGINAL SOURCE:(A) ORGANISM: Canine corona virus(B) STRAIN: CCV-6
10	<pre>(ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 654393 (D) OTHER INFORMATION: /label= CCV6_Spikegene</pre>
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:
ıc	GTAAGTTGCT CATTAGAAAC AATGGAAAAC TACTAAACTT TGGTAATCAC TTGGTTAATG 60
! 5	TGCC ATG ATT GTG CTA ATA TTG TGC CTC CTC TTG TTT TCG TAC AAT AGT Met Ile Val Leu Ile Leu Cys Leu Leu Phe Ser Tyr Asn Ser 1 5 10 15
0	

12

		TGT Cys		-									157
5		GGC Gly											205
10		GAA Glu 50			Val						_	_	253
		AAC Asn											301
15		ATA Ile	_					_		_			349
20		AAT Asn							_	_			3'97
		AGT Ser										_	445
25		TTG Leu 130						•					493
30		GCA Ala											541
		TCT											589
35		AAT Asn										_	637
40	_	AAC Asn											685
		TCA Ser 210		_	_								733
45		GTT Val											781

50

5	TTC Leu 240	Lys	AGC Ser	TAT Tyr	GAA Glu	TTG Leu 245	Cys	GAA Glu	GAT Asp	TAT Tyr	GAA Glu 250	Tyr	TGC Cys	ACT Thr	GGC Gly	TAT Tyr 255	829
3	GCT Ala	ACC Thr	AAC Asn	GTA Val	TTT Phe 260	Ala	CCG Pro	ACA Thr	GTG Val	GGC Gly 265	Gly	TAT	ATA Ile	CCT Pro	GAT Asp 270	GGC Gly	877
10	TTC Phe	AGT Ser	TTT Phe	AAC Asn 275	Asn	TGG	TTT Phe	ATG Met	CTT Leu 280	ACA Thr	AAC Asn	AGT Ser	TCC Ser	ACG Thr 285	TTT Phe	G TT Val	925
15	Ser	Gly	Arg 290	Phe	Val	Thr	Asn	Gln 295	Pro	Leu	Leu	GTT Val	Asn 300	Cys	Leu	Trp	973
	Pro	Val 305	Pro	Ser	Phe	Gly	Val 310	Ala	Ala	Gln	Glu	TTT Phe 315	Cys	Phe	Glu	Gly	1021
20	Ala 320	Gln	Phe	Ser	Gln	Cys 325	Asn	Gly	Val	Ser	Leu 330	AAC Asn	Asn	Thr	Val	Asp 335	1069
25	Val	Ile	Arg	Phe	Asn 340	Leu	Asn	Phe	Thr	Thr 345	Asp	GTA Val	Gln	Ser	Gly 350	Met	1117
	Gly	Ala	Ile	Val 355	Phe	Ser	Leu	Asn	Thr 360	Thr	Gly	GGT Gly	Val	Ile 365	Leu	Glu	1165
30	Ile	Ser	Cys 370	Tyr	Asn	Asp	Thr	Val 375	Ser	Glu	Ser	AGT Ser	Phe 380	Tyr	Ser	Tyr	1213
<i>3</i> 5	GIÀ	Glu 385	Ile	Ser	Ile	Gly	Val 390	Thr	qaƙ	Gly	Pro	CGT Arg 395	Tyr	Cys	Tyr	Ala	1261
	Leu 400	Tyr	Asn	Gly	Gln	Ala 405	Leu	Lys	Cys	Leu	Gly 410	ACA Thr	Leu	Pro	Pro	Ser 415	1309
40	Val	Lys	Glu	Ile	Ala 420	Ile	Ser	Lys	Trp	Gly 425	His	TTT Phe	Tyr	Ile	Asn 430	Gly	1357
45	TAC Tyr	AAT Asn	TTC Phe	TTT Phe 435	AGC Ser	ACT Thr	TTT Phe	CCT Pro	ATT Ile 440	GAT Asp	TGT Cys	ATA Ile	TCT Ser	TTT Phe 445	AAT Asn	TTA Leu	1405
	ACC Thr	Thr	GGT Gly 450	GAT Asp	AGT Ser	GGA (Ala	TTT Phe 455	TGG Trp	ACA Thr	ATT Ile	Ala	TAC Tyr 460	ACA Thr	TCG Ser	TAC Tyr	1453

50

													AAG Lys			1501
5		Cys											CTT Leu			1549
10					Phe								GTT Val			1597
													CAT His 525			1645
15													ATG Met			1693
20													GAT Asp			1741
													TAC Tyr		_	1789
25													TCC Ser			1837
30													ACT Thr 605			1885
													AAG Lys			1933
35													GTT Val			1981
40													GTA Val	_		2029
				Asn	Ile	Ala	Gly	Val	Pro	Ser	Asp	Asn	AGT Ser	Gly		2077
45	(1) <u>-</u>					_							TAT Tyr 685			2125

50

				Thr										Ser		CTA Leu	2173
5			Gly													TTT Phe	2221
10		Asn			Asp							ACG Thr				GTA Val 735	2269
												GTT Val					2317
15												TGG Trp					2365
20												AAT Asn					2413
												GAA Glu 795					2461
25										Gly		TTG Leu					2509
<i>30</i>												AGC Ser					2557
												GTT Val					2605
35												AGG Arg					2653
40												TAC Tyr 875					2701
												AGA Arg					2749
45	GAG Glu	ATT Ile	GAT Asp	TCC Ser	ATG Met 900	TTG Leu	TTT Phe	GTT Val	TCG Ser	GAA Glu 905	AAT Asn	GCC Ala	CTT Leu	Lys	TTG Leu 910	GCA Ala	2797

50

					TTA Leu												2845
5					GGT Gly												2893
10	CCA Pro	TCT Ser 945	CAC His	AAC Asn	AGC Ser	AAA Lys	CGT Arg 950	AAG Lys	TAC Tyr	CGG Arg	TCG Ser	GCT Ala 955	ATA Ile	GAA Glu	GAT Asp	TTG Leu	2941
					GTT Val												2989
16					ACA Thr 980												3037
20					GGC Gly					Pro					Asp		3085
				Met	TAC Tyr				Leu					Thr			3133a
25			Gly		GGC Gly			Ser					Ile			CAA Gln	3181
30		Arg			TAT Tyr		Ala					Val					3229
					GCT Ala 1060	Asn					Ala						3277
35	CAG Gln	GCA Ala	TTT Phe	GGT Gly 1075	AAG Lys	GTT Val	AAT Asn	GAT Asp	GCT Ala 1080	Ile	CAT His	CAA Gln	ACG Thr	TCA Ser 108	Gln	GGT Gly	3325
40				Val	GCT Ala				Ala					Val			3373
_			Gly		GCT Ala			His					Leu				3421
45		Gln					Ser					Tyr				GAT Asp 1135	3469

50 _.

				GCT Ala		Ala					Leu						3517
5				AAT Asn 115	Ala					Thr					Ala		3565
10				AGC Ser O					Lys					Glu			3613
	AGG Arg	TCT Ser 118	Gln	TCT Ser	CAG Gln	AGA Arg	TTT Phe 1190	Gly	TTC Phe	TGT Cys	GGT Gly	AAT Asn 119	Gly	ACA Thr	CAT	TTA Leu	3661
15		Ser		GCA Ala			Ala					Ile					3709
20				CCA Pro		Ala					Thr					Ile	3757
				GAT Asp 1235	Gly					Gly					Asp		3805
25	CAG Gln	TTG Leu	ACG Thr 1250	CTG Leu)	TTT Phe	CGC Arg	AAT Asn	CTA Leu 1255	Asp	GAC Asp	AAA Lys	TTC Phe	TAT Tyr 1260	Leu	ACT Thr	CCC Pro	3853
30	AGA Arg	ACT Thr 1265	Met	TAT Tyr	CAG Gln	CCT Pro	AGA Arg 1270	Val	GCA Ala	ACT Thr	AGT Ser	TCT Ser 1275	Asp	TTT Phe	GTT Val	CAA Gln	3901
a 5	ATT Ile 1280	Glu	GGA Gly	TGT Cys	Asp	GTĢ Val 1285	Leu	TTT Phe	GTT Val	Asn	GCA Ala 1290	Thr	GTA Val	ATT Ile	GAC Asp	TTG Leu 1295	3949
35	CCT Pro	AGT Ser	ATT Ile	ATA Ile	CCT Pro 1300	Asp	TAT Tyr	ATT Ile	GAT Asp	ATT Ile 1305	Așn	CAA Gln	ACT Thr	GTT Val	CAG Gln 1310	Asp	3997
40	ATA Ile	TTA Leu	GAA Glu	AAT Asn 1315	Phe	AGA Arg	CCA Pro	AAT Asn	TGG Trp 1320	Thr	GTA Val	CCT Pro	GAG Glu	TTG Leu 1325	Pro	CTT Leu	4045
	GAC Asp	ATT Ile	TTC Phe 1330	TAA Asn	GCA Ala	ACC Thr	Tyr	TTA Leu 1335	Asn	CTG Leu	ACT Thr	GGT Gly	GAA Glu 1340	Ile	AAG Lys	TGC Cys	4093
45	TTA Leu	GAA Glu 1345	Phe	AGG Arg	TCA Ser	Glu	AAG Lys 1350	Leu	CAT His	AAC Asn	Thr	ACA Thr 1355	Val	GAA Glu	CTT Leu	GCT Ala	4141

50

	ATT CTC ATT GAT AAT ATT AAT AAC ACA TTA TCA ATC TTA ATG CTC AAT Ile Leu Ile Asp Asn Ile Asn Asn Thr Leu Ser Ile Leu Met Leu Asn 1360 1375	4189
5	AGA ATT GAA ACT TAT GTA AAA TGG CCT TGG TAT GTG TGG CTA CTA ATT Arg Ile Glu Thr Tyr Val Lys Trp Pro Trp Tyr Val Trp Leu Leu Ile 1380 1385 1390	4237
10	GGA TTA GTA GTA ATA TTC TGC ATA CCC ATA TTG CTA TTT TGT TGT TGT Gly Leu Val Val Ile Phe Cys Ile Pro Ile Leu Leu Phe Cys Cys 1395 1400 1405	4285
	AGT ACT GGT TGT TGT GGA TGT ATT GGG TGT TTA GGA AGC TGT TGT CAT Ser Thr Gly Cys Cys Gly Cys Ile Gly Cys Leu Gly Ser Cys Cys His 1410 1415 1420	4333
15	TCC ATA TGT AGA AGG CAA TTT GAA AGT TAT GAA CCA ATT GAA AAA Ser Ile Cys Ser Arg Arg Gln Phe Glu Ser Tyr Glu Pro Ile Glu Lys 1425 1430 1435	4381
20	GTT CAT GTT CAC TGAATTCAAA ATGTTAAGTC TACTATTTTA ATTACACCCG Val His Val His 1440	4433
20	TGGCCACACA AGTTATATAA TGGTGCTGTC GTAAGTTCGA TACCAGTCAA CTATTAGCAT	4493
	ТААТААА	4500
25	(2) INFORMATION FOR SEQ ID NO:2:	
30	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1443 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
35	 (ii) MOLECULE TYPE: protein (vi) ORIGINAL SOURCE: (A) ORGANISM: Canina corona virus (B) STRAIN: CCV-6 	
40	<pre>(ix) FEATURE: (A) NAME/KEY: Protein (B) LOCATION: 11443 (D) OTHER INFORMATION: /label= CCV6_Spike</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:	
4 5	Met Ile Val Leu Ile Leu Cys Leu Leu Phe Ser Tyr Asn Ser Va 1 5 10 15	1

50

	Ile	Cys	Thr	Ser 20	Asn	Asn	Asp	Суѕ	Val 25	Gln	Val	Asn	Val	Thr 30	Gln	Leu
5	Pro	Gly	Asn 35	Glu	Asn	Ile	Ile	Lys 40	Asp	Phe	Leu	Phe	His 45	Thr	Phe	Lys
	Glu	Glu 50	Gly	Ser	Val	Val	Val 55	Gly	Gly	Tyr	Tyr	Pro 60	Thr	Glu	Val	Trp
10	Tyr 65	Asn	Cys	Ser	Arg	Ser 70	Ala	Thr	Thr	Thr	Ala 75	Tyr	Lys	Asp	Phe	Ser 80
	Asn	Ile	His	Ala	Phe 85	Tyr	Phe	Asp	Met	Glu 90	Asp	Met	Glu	Lys	Ser 95	Thr
15	Gly	Asn	Ala	Arg 100	Gly	Lys	Pro	Leu	Leu 105	Val	His	Val	His	Gly 110	Gly	Pro
	Val	Ser	Ile 115	Ile	Ile	Ile	Cys	Ala 120	Arg	Lys	Ala	Ser	Leu 125	Lys	His	Gly
20	Leu	Leu 130	Cys	Ile	Thr	Lys	Asn 135	Lys	Ile	Ile	Asp	Tyr 140	Asn	Thr	Phe	Thr
	Ser 145	Ala	Gln	Trp	Ser	Ala 150	Ile	Cys	Leu	Gly	Asp 155	Asp	Arg	Lys	Ile	Pro 160
25	Phe	Ser	Val	Ile	Pro 165	Thr	Asp	Asn	Gly	Thr 170	Lys	Ile	Phe	Gly	Leu 175	Glu
	Trp	Asn	Asp	Asp 180	Tyr	Val	Thr	Ala	Tyr 185	Ile	Ser	Asp	Arg	Ser 190	His	His
30	Leu	Asn	Ile 195	Asn	Asn	Asn	Trp	Phe 200	Asn	Asn	Val	Thr	Ile 205	Leu	Tyr	Ser
	Arg	Ser 210	Ser	Thr	Ala	Thr	Trp 215	Gln	Lys	ser	Ala	Ala 220	Tyr	Val	Tyr	Gln
35	Gly 225	Val	Ser	Asn	Phe	Thr 230	Tyr	Tyr	Lys	Leu	Asn 235	Asn	Thr	Asn	Gly	Leu 240
	Lys	Ser	Tyr	Glu	Leu 245	Cys	Glu	Asp	Tyr	Glu 250	Tyr	Cys	Thr	Gly	Tyr 255	Ala
40	Thr	Asn	Val	Phe 260	Ala	Pro	Thr	Val	Gly 265	Gly	Tyr	Ile	Pro	Asp 270	Gly	Phe
10	Ser	Phe	Asn 275	Asn	Trp	Phe	Met	Leu 280	Thr	Asn	Ser	Ser	Thr 285	Phe	Val	Ser
AE.	Gly	Arg 290	Phe	Val	Thr	Asn	Gln 295	Pro	Leu	Leu	Val	Asn 300	Cys	Leu	Trp	Pro
45	Val 305	Pro	Ser	Phe	Gly	Val 310	Ala	Ala	Gln	Glu	Phe 315	Cys	Phe	Glu	Gly	Ala 320

55 .

	Gln	Phe	Ser	Gln	Cys 325	Asn	Gly	Val	Ser	Leu 330	Asn	Asn	Thr	Val	Asp 335	Val
5	Ile	Arg	Phe	Asn 340	Leu	Asn	Phe	Thr	Thr 345	Asp	Val	Gln	Ser	Gly 350	Met	Gly
	Ala	Ile	Val 355	Phe	Ser	Leu	Asn	Thr 360	Thr	Gly	Gly	Val	11e 365	Leu	Glu	Ile
10	Ser	Cys 370	Tyr	Asn	Asp	Thr	Val 375	Ser	Glu	Ser	Ser	Phe 380	Tyr	Ser	Tyr	Gly
	Glu 385	Ile	Ser	Ile	Gly	Val 390	Thr	Asp	Gly	Pro	Arg 395	Tyr	Cys	Tyr	Ala	Leu 400
15	Tyr	Asn	Gly	Gln	Ala 405	Leu	Lys	Cys	Leu	Gly 410	Thr	Leu	Pro	Pro	Ser 415	Val
20	Lys	Glu	Ile	Ala 420	Ile	Ser	Lys	Trp	Gly 425	His	Phe	Tyr	Ile	Asn 430	Gly	Tyr
	Asn	Phe	Phe 435	Ser	Thr	Phe	Pro	Ile 440	Asp	Cys	Ile	Ser	Phe 445	Asn	Leu	Thr
2 5	Thr	Gly 450	Asp	Ser	Gly	Ala	Phe 455	Trp	Thr	Ile	Ala	Tyr 460	Thr	Ser	Tyr	Thr
	Asp 465	Ala	Leu	Val	Gln	Val 470	Glu	Asn	Thr	Ala	Ile 475	Lys	Lys	Val	Thr	Tyr 480
30	Cys	Asn	Ser	His	Ile 485	Asn	Asn	Ile	Lys	Cys 490	Ser	Gln	Leu	Thr	Ala 495	Asn
	Leu	Gln	Asn	Gly 500	Phe	Tyr	Pro	Val	Ala 505	Ser	Ser	Glu	Val	Gly 510	Leu	Val
35	Asn	Lys	Ser 515	Val	Val	Leu	Leu	Pro 520	Ser	Phe	Tyr	Ser	His 525	Thr	Ser	Val
40	Asn	Ile 530	Thr	Ile	Asp	Leu	Gly 535	Met	Lys	Arg	Ser	Val 540	Met	Val	Thr	Ile
40	Ala 545	Ser	Thr	Leu	Ser	Asn 550	Ile	Thr	Leu	Pro	Met 555	Gln	Asp	Asn	Asn	Thr 560
<i>4</i> 5	Asp	Val	Tyr	Cys	Ile 565	Arg	Ser	Asn	Gln	Phe 570	Ser	Val	Tyr	Val	His 575	Ser
•	Thr	Cys	Lys	Ser 580	Ser	Leu	Trp	Asp	Asp 585	Val	Phe	Asn	Ser	Asp 590	Cys	Thr
50	Asp	Val	Leu 595	Tyr	Ala	Thr	Ala	Val 600	Ile	Lys	Thr	Gly	Thr 605	Cys	Pro	Phe

	Ser	Phe 610		Lys	Leu	Asn	Asn 615	Tyr	Leu	Thr	Phe	Asn 620	-	Phe	Cys	Leu
5	Ser 625		Asn	Pro	Val	Gly 630	Ala	Asn	Cys	Lys	Phe 635	Asp	Val	Ala	Ala	Arg 640
	Thr	Arg	Thr	Asn	Glu 645	Gln	Val	Val	Arg	Ser 650		Tyr	Va1	Ile	Tyr 655	
10	Glu	Gly	Asp	Asn 660	Ile	Ala	Gly	Val	Pro 665	Ser	Asp	Asn	Ser	Gly 670	Leu	His
	Asp	Leu	Ser 675	Val	Leu	His	Leu	Asp 680	Ser	Cys	Thr	Asp	Tyr 685	Asn	Ile	Tyr
15	Gly	Arg 690	Thr	Gly	Val	Gly	Ile 695	Ile	Arg	Gln	Thr	Asn 700	Ser	Thr	Leu	Leu
	Ser 705	Gly	Leu	Tyr	Tyr	Thr 710	Ser	Leu	Ser	Gly	Asp 715	Leu	Leu	Gly	Phe	Lys 720
20	Asn	Val	Ser	Asp	Gly 725	Val	Ile	Tyr	Ser	Val 730	Thr	Pro	Cys	Asp	Val 735	Ser
	Val	Gln	Ala	Ala 740	Val	Ile	Asp	Gly	Ala 745	Ile	Val	Gly	Ala	Met 750	Thr	Ser
25	Ile	Asn	Ser 755	Glu	Leu	Leu	Gly	Leu 760	Thr	His	Trp	Thr	Thr 765	Thr	Pro	Asn
	Phe	Tyr 770	Tyr	Tyr	Ser	Ile	Tyr. 775	Asn	Tyr	Thr	Asn.	Glu 780	Arģ	Thr	Arg	Gly
30	Thr 785	Ala	Ile	qzA	Ser	Asn 790	Asp	Val	qaA	Cys	Glu 795	Pro	Ile	Ile	Thr	Tyr 800
	Ser	Asn	Ile	Gly	Val 805	Cys	Lys	Asn	Gly	Ala 810	Leu	Val	Phe	Ile	Asn 815	Val
35	Thr	His	Ser	Asp 820	Gly	Asp	Val	Gln	Pro 825	Ile	Ser	Thr	Gly	Asn 830	Val	Thr
	Ile	Pro	Thr 835	Asn	Phe	Thr	Ile	Ser 840	Val	Gln	Val	Glu	Tyr 845	Ile	Gln	Val
40	Tyr	Thr 850	Thr	Pro	Val	Ser	Ile 855	Asp	Cys	Ser	Arg	Tyr 860	Val	Cys	Asn	Gly
	Asn 865	Pro	Arg	Cys	Asn	Lys 870	Leu	Leu	Thr	Gln	Tyr 875	Val	Ser	Ala	Cys	Gln 880
45	Thr	Ile	Glu	Gln	Ala 885	Leu	Ala	Met	Gly	Ala 890	Arg	Leu	Glu	Asn	Met 895	Glu
	Ile	Asp	Ser	Met 900	Leu	Phe	Val	Ser	Glu 905	Asn	Ala	Leu	Lys	Leu 910	Ala	Ser
																•

50

	Val	Glu	Ala 915	Leu	Ile	Val	Gly	Asn 920	Leu	Asp	Pro	Ile	Tyr 925	Lys	Glu	Trp
5	Pro	Asn 930	Ile	Gly	Gly	Ser	Trp 935	Leu	Gly	Gly	Leu	Lys 940	Asp	Ile	Leu	Pro
	Ser 945	His	Asn	Ser	Lys	Arg 950	Lys	Tyr	Arg	Ser	Ala 955	Ile	Glu	Asp	Leu	Leu 960
10	Phe	Asp	Lys		Val 965	Thr	Ser	Gly	Leu	Gly 970	Thr	Val	Asp	Glu	Asp 975	Tyr
	Lys	Arg	Cys	Thr 980	GJA	Gly	Tyr	Asp	Ile 985	Ala	Asp	Leu	Val	C ys 990	Ala	Gln
15	Tyr	Tyr	Asn 995	Gly	Ile	Met	Val	Leu 1000		Gly	Val	Ala	Asn 1005		Asp	Lys
	Met	Ala 1010		Tyr	Thr	Ala	Ser 1015		Ala	Gly	Gly	Ile 1020		Leu	Gly	Ala
20	Leu 1029	_	Gly	Gly	Ala	Val 1030		Ile	Pro	Phe	Ala 1035		Ala	Val	Gln	Ala 1040
	Arg	Leu	Asn	Tyr	Val 1045		Leu	Gln	Thr	Asp 1050		Leu	Asn	Lys	Asn 1055	
25	Gln	Ile	Leu	Ala 1060		Ala	Phe	Asn	Gln 1065		Ile	Gly	Asn	Ile 1070	Thr	Gln
	Ala	Phe	Gly 1075	_	Val	Asn	Asp	Ala 1080		His	Gln	Thr	Ser 1085		Gly	Leu
			107.					1000	,							
30	Ala	Thr 1090	Val		Lys	Ala	Leu 1095	Ala		Val	Gln	Asp 1100			Asn	Thr
30		1090 Gly	Val	Ala	_		1095 His	Ala	Lys			1100)	Val	Asn Asn	
	Gln 110	1090 Gly	Val O Gln	Ala Ala	Leu	Ser 1110	1095 His	Ala Leu	Lys Thr	Val	Gln 1115 Tyr	1100 Leu	Gln	Val Asn		Phe 1120 Glu
•	Gln 1105 Gln	1090 Gly 5 Ala	Val Gln Ile	Ala Ala	Leu Ser 1125	Ser 1110 Ser	1095 His) Ile	Ala Leu Ser	Lys Thr Asp	Val Ile 1130	Gln 1115 Tyr)	1100 Leu Asn	Gln Arg	Val Asn Leu	Asn Asp 1135	Phe 1120 Glu
•	Gln 1109 Gln Leu	Gly Ala Ser	Val Gln Ile Ala	Ala Ala Ser Asp 1140 Ala	Leu Ser 1125 Ala	Ser 1110 Ser Gln	1095 His Ile Val	Ala Leu Ser Asp	Lys Thr Asp Arg 1145	Val Ile 1130 Leu	Gln 1115 Tyr)	1100 Leu Asn Thr	Gln Arg Gly	Val Asn Leu Arg 1150 Ala	Asn Asp 1135	Phe 1120 Glu Thr
35	Gln 1109 Gln Leu Ala	Gly Sala Ser Leu	Val Gln Ile Ala Asn 115	Ala Ser Asp 1140 Ala	Leu Ser 1129 Ala	Ser 1110 Ser Gln Val	1095 His Ile Val Ser	Ala Leu Ser Asp Gln 1160	Lys Thr Asp Arg 1145	Val Ile 1130 Leu	Gln 1115 Tyr Ile	Leu Asn Thr	Gln Arg Gly Gln 1169	Val Asn Leu Arg 1150 Ala	Asp 113: Leu	Phe 1120 Glu Thr

50

		Ser	Leu	Ala	Asn	Ala 120		Pro	Asn	Gly	Met 121		Phe	Phe	His	Thr 121	
5		Leu	Leu	Pro	Thr 1220		Tyr	Glu	Thr	Val 1225		Ala	Trp	Ser	Gly 123		Cys
		Ala	Ser	Asp 123	Gly 5	Asp	Arg	Thr	Phe 1240		Leu	Val	Val	Lys 1249	-	Val	Gln
10		Leu	Thr 1250		Phe	Arg	Asn	Leu 1255		Asp	Lys	Phe	Tyr 1260		Thr	Pro	Arg
		Thr 1265		Tyr	Gln	Pro	Arg 1270		Ala	Thr	Ser	Ser 1275	_	Phe	Val	Gln	Ile 1280
15		Glu	Gly	Cys	Asp	Val 1285		Phe	Val	Asn	Ala 1290		Val	Ile	Asp	Leu 1295	
		Ser	Ile	Ile	Pro 1300		Tyr	Ile	Asp	Ile 1305		Gln	Thr	Val	Gln 1310	_	Ile
20		Leu	Glu	Asn 1315	Phe	Arg	Pro	Asn	Trp 1320		Val	Pro	Glu	Leu 1325		Leu	Asp
		Ile	Phe 1330		Ala	Thr	Tyr	Leu 1335		Leu	Thr	Gly	Glu 1340		Lys	Cys	Leu
25		Glu 1345		Arg	Ser	Glu	Lys 1350		His	Asn	Thr	Thr 1355		Glu	Leu	Ala	Ile 1360
		Leu	Ile	qaƙ	Asn	Ile 1365		Asn	Thr	Leu	Ser 1370	•	Leu	Met	Leu	Asn 1375	_
30		Ile	Glu	Thr	Tyr 1380		Lys	Trp	Pro	Trp 1385		Val	Trp	Leu	Leu 1390		Gly
		Leu	Val	Val 1395	Ile	Phe	Cys	Ile	Pro 1400		Leu	Leu	Phe	Cys ⁻ 1405	•	Cys	Ser
35		Thr	Gly 1410		Cys	Gly	Cys	Ile 1415		Cys	Leu	Gly	Ser 1420		Cys	His	Ser
		Ile 1425		Ser	Arg	Arg	Gln 1430		Glu	Ser	Tyr	Glu 1435		Ile	Glu	Lys	Val 1440
40		His	Val	His													
	(2)	INFOR	MATI	ON F	OR S	EQ I	D NO	:3:									
45		(i)	(A) (B) (C)	LEN TYP STR	CHA GTH: E: n ANDE OLOG	442 ucle DNES	9 ba ic a S: s	se p cid ingl	airs	;							

24

50

(ii) MOLECULE TYPE: cDNA

5		(vi)	(2	A) OF	RGANI	OURCE ISM: I: CC	Cani			na vi	irus						
		(ix)	(<i>I</i>	B) LC	ME/F CATI CHER	ŒY: ON: INFO	60			abel=	= CCV	/Ins <i>l</i>	VC-1	_Spi	.kege	ene	
10					• • •	•											
		(xi)	SEC	DUENC	E DE	ESCRI	PTIC	N: S	SEQ I	D NO):3:						
	TTGO	CTCAT	AT'	DAAAG	AATO	G TA	AACI	PACTA	AAC	CTTT	GTA	ATCA	CTTC	GT I	'AATC	TGCC	59
15						TTG Leu											107
20						AAT Asn											155
						ATT Ile											203
25	GAA Glu	GAA Glu 50	GGA Gly	AGT Ser	TTA Leu	GTT Val	GTT Val 55	GGT Gly	GGT Gly	TAT Tyr	TAC Tyr	CCC Pro 60	ACA Thr	GAG Glu	GTG Val	TGG Trp	251
30	TAT Tyr 65	AAC Asn	TGT Cys	TCC Ser	ACA Thr	ACT Thr 70	CAA Gln	CAA Gln	ACT Thr	ACC Thr	GCT Ala 75	TAT Tyr	AAG Lys	TAT Tyr	TTT Phe	AGT Ser 80	299
						TAT Tyr											347
35																CCT Pro	395
40						TAC Tyr										TTT Phe	443
			Leu										Lys			ACC Thr	491
45						TTT Phe 150								_		TTG Leu 160	539

25

50

	GAC Asp		Ile					Gly	587
5	AAA Lys								635
10	AGT Ser								683
	GTT Val 210								731
15	GCT Ala								779
20	 AAT Asn								827
	TAC Tyr				 		 	 	875
25	TAT Tyr								923
30	AGC Ser 290								971
	 GTT Val								1019
35	TTT Phe								1067
40	AAT Asn								1115
	GTA Val								1163
45	GGT Gly 370								1211

50

	=			TAT Tyr 390						GGA Gly 400	1259
5				GTA Val							1307
10				AGT Ser						GGA Gly	1355
				GGT Gly					_		1403
15				TTA Leu						ACA Thr	1451
20				TAC Tyr 470							1499
				ACG Thr					_		1547
25				GCT Ala						•	1595
30				CTT Leu							1643
				AGT Ser							1691
35				ACC Thr 550							1739
40				AAC Asn							1787
				CAT His							1835
45				TGT Cys			_		_	_	1883

50

			Gly			CCT Pro							Asn			TTA Leu	1931
5						TG T Cys 630										TGT Cys 640	1979
10						GCC Ala											2027
	AGT Ser	TTA Leu	TAT Tyr	GTA Val 660	ATA Ile	TAT	GAA Glu	GAA Glu	GGA Gly 665	GAC Asp	AAC Asn	ATA Ile	GTG Val	GGT Gly 670	GTA Val	CCG Pro	2075
15	TCT Ser	GAT Asp	AAT Asn 675	AGT Ser	GGT Gly	TTG Leu	CAC His	GAT Asp 680	TTG Leu	TCA Ser	GTG Val	TTG Leu	CAC His 685	TTA Leu	GAC Asp	TCT Ser	2123
20						ATA Ile											2171
						CTA Leu 710											2219
25						TTT Phe											2267
30						GTA Val											2315
	ATA Ile	GTT Val	GGA Gly 755	GCT Ala	ATG Met	ACT Thr	TCC Ser	ATT Ile 760	AAT Asn	AGT Ser	GAA Glu	CTG Leu	TTA Leu 765	ggt Gly	CTA Leu	ACT Thr	2363
35	CAT His	TGG Trp 770	ACA Thr	ACA Thr	ACA Thr	CCT Pro	AAT Asn 775	TTT Phe	TAT Tyr	TAC Tyr	TAC Tyr	TCC Ser 780	ATA Ile	TAT Tyr	AAT Asn	TAT Tyr	2411
40	ACA Thr 785	AAT Asn	GTG Val	ATG Met	AAT Asn	CGT Arg 790	GGC Gly	ACG Thr	GCA Ala	ATT Ile	GAT Asp 795	AAT Asn	GAT Asp	ATT Ile	GAT Asp	TGT Cys 800	2459
	GAA Glu								Ile								2507
45	TTG Leu	GTT Val	Phe	ATT Ile 820	AAC Asn	GTC Val	ACA Thr	His	TCT Ser 825	GAT Asp	GGA Gly	GAC Asp	GTT Val	CAA Gln 830	CCA Pro	ATT Ile	2555

50

	ACC Thr													2603
5	GAA Glu 850													2651
10	TAC Tyr			Asn										2699
45	GTT Val													2747
15	CTT Leu													2795
20	CTT Leu													2843
25	CCT Pro 930													2891
25	TTA Leu							_						2939
30	GCT Ala	_	_			•			_	_	_			2987
	ACA Thr													3035
35	GAC Asp							Tyr				Val		3083
40	GTA Val 1010	Ala					Met			_	Ala			3131
	GGT Gly	_	_			Ala				Ala				3179
45	GCA Ala				Gln				Tyr				Thr	3227

50

			n Lys As			GCT AAT GCT Ala Asn Ala		
5					Phe Gly	AAG GTT AAT Lys Val Asr 108	a Asp Ala	
10		Thr Ser				GCT AAA GCA Ala Lys Ala 1100		
				n Thr Gln		GCT TTA AGO Ala Leu Ser 1115		
15						AGC AGT TCI Ser Ser Ser O		Asp
20	_		Leu Ası			GAT GCA CAA Asp Ala Gln		
					Leu Asn	GCA TTT GTG Ala Phe Val 116	Ser Gln	
25	TTA ACC Leu Thr 1170	Arg Gln	GCA GAO	GTT AGG Val Arg 1175	GCT AGT Ala Ser	AGA CAA CTT Arg Gln Leu 1180	GCT AAA Ala Lys	GAC 3611 Asp
30				. Arg Ser		CAG AGA TTT Gln Arg Phe 1195		
	GGT AAT Gly Asn	GGT ACA Gly Thr	CAT TTO His Lev 1205	TTT TCA	CTT GCA Leu Ala 121(AAT GCG GCA Asn Ala Ala	CCA AAT Pro Asn 1215	Gly
35			His Th			ACA GCT TAT Thr Ala Tyr		
40	ACG GCC Thr Ala	TGG TCA Trp Ser 1235	GGT ATT	TGT GCG Cys Ala 124	Ser Asp	GGC AGT CGC Gly Ser Arg 124	Thr Phe	GGA 3803 Gly
	CTT GTT Leu Val 1250	Val Glu	GAT GTO Asp Val	CAG CTG Gln Leu 1255	ACG CTA Thr Leu	TTT CGC AAT Phe Arg Asn 1260	TTA GAT Leu Asp	GAA 3851 Glu
45	AAA TTT Lys Phe 1265	TAT TTG Tyr Leu	ACG CCC Thr Pro	Arg Thr	ATG TAT Met Tyr	CAG CCC AGA Gln Pro Arg 1275	GTT GCA Val Ala	ACT 3899 Thr 1280

50

	AGT Ser	TCT Ser	GAT Asp	TTT	GTT Val 1285	Gln	ATA Ile	GAA Glu	GGC	TGT Cys 1290	Asp	GTG Val	TTG Leu	TTT Phe	GTT Val 1295	Asn	3947
5	GGA Gly	ACT Thr	GTA Val	ATT Ile 1300	Glu	TTG Leu	CCT Pro	AGT Ser	ATC Ile 1305	Ile	CCT Pro	GAC Asp	TAT Tyr	ATC Ile 1310	Asp	ATT Ile	3995
10	AAT Asn	CAA Gln	ACT Thr 1315	Val	CAG Gln	GAC Asp	ATA Ile	TTA Leu 1320	GAA Glu	AAT Asn	TTC Phe	AGA Arg	CCA Pro 1325	Asn	TGG Trp	ACT Thr	4043
	GTA Val	CCC Pro 1330	Glu	TTG Leu	CCA Pro	CTT Leu	GAC Asp 1335	Ile	TTT Phe	CAT His	GCA Ala	ACC Thr 1340	Tyr	TTA Leu	AAC Asn	CTG Leu	4091
75	ACT Thr 1345	Gly	GAA Glu	ATT Ile	AAT Asn	GAC Asp 1350	Leu	GAA Glu	TTT Phe	AGG Arg	TCA Ser 1355	Glu	AAG Lys	TTA Leu	CAT His	AAC Asn 1360	4139
20	ACC Thr	ACA Thr	GTA Val	GAA Glu	CTT Leu 1365	Ala	ATT	CTC Leu	ATT Ile	GAT Asp 1370	Asn	ATT Ile	AAT Asn	AAC Asn	ACA Thr 1375	Leu	4187
	GTC Val	AAT Asn	CTT Leu	GAA Glu 1380	Trp	CTC Leu	AAC Asn	AGA Arg	ATT Ile 1385	Glu	ACT Thr	TAT Tyr	GTA Val	AAA Lys 1390	\mathtt{Trp}	CCT Pro	4235
25	TGG Trp	TAT Tyr	GTT Val 1395	Trp	CTA Leu	CTA Leu	ATT	GGA Gly 1400	TTA Leu	GTA Val	GTA Val	ATA Ile	TTC Phe 1405	Cys	ATA Ile	CCC Pro	4283
30	ATA Ile	TTG Leu 1410	Leu	TTT Phe	TGT Cys	TGT Cys	TGT Cys 1415	Ser	ACT Thr	GGT Gly	TGT Cys	TGT Cys 1420	Gly	TGT Cys	ATC Ile	GJÅ GGG	4331
	TGT Cys 1425	Leu	GGA Gly	AGC Ser	TGT Cys	TGT Cys 1430	His	TCC Ser	ATA Ile	TGT Cys	AGT Ser 143	Arg	GGC	CAA Gln	TTT Phe	GAA Glu 1440	4379
35						Glu			CAT His		His	TGA	ATTC!	AAA I	ATGT:	raa	4429

(2) INFORMATION FOR SEQ ID NO:4:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1451 amino acids
 (B) TYPE: amino acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

50

40

45

	(V1)) OR	GANI	SM:	: Cani: VInS			a vi	rus						
5	(ix)	(A)) LO	ME/KI	ON:	Prote 11 RMAT	451	/lai	bel=	ccv:	InSA	VC-1 _.	_Spi	ke		
10	(xi)	SEQ	JENC!	E DES	SCRI	PTIO	N: S	EQ I	D NO	:4:						
	Met 1	Ile	Val	Leu	Thr 5	Leu	Cys	Leu	Phe	Leu 10	Phe	Leu	Tyr	Ser	Ser 15	Val
15	Ser	Cys	Thr	Ser 20	Asn	Asn	Asp	Cys	Val 25	Gln	Val	Asn	Val	Thr 30	Gln	Leu
	Pro	Gly	Asn 35	Glu	Asn	Ile	Ile	Lys 40	Asp	Phe	Leu	Phe	Gln 45	Asn	Phe	Lys
20	Glu	Glu 50	Gly	Ser	Leu	Val	Val 55	G] y	Gly	Tyr	Tyr	Pro 60	Thr	Glu	Va1	Trp
	Tyr 65	Asn	Cys	Ser	Thr	Thr 70	Gln	Gln	Thr	Thr	Ala 75	Tyr	Lys	Tyr	Phe	Ser 80
25	Asn	Ile	His	Ala	Phe 85	Tyr	Phe	Asp	Met	Glu 90	Ala	Met	Glu	Asn	Ser 95	Thr
	GJA	Asn	Ala	Arg 100	Gly	Lys	Pro	Leu	Leu 105	Val	His	Val	His	Gly 110	Asn	Pro
30	Val	Ser	Ile 115	Ile	Val	Tyr		Ser 120	Ala	Tyr	Arg	Asp	Asp 125	Val	Gln	Phe
	Arg	Pro 130	Leu	Leu	Lys	His	Gly 135	Leu	Leu	Cys	Ile	Thr 140	Lys	Asn	Asp	Thr
35	Val 145	Asp	Tyr	Asn	Ser	Phe 150	Thr	Ile	Asn	Gln	Trp 155	Arg	Asp	Ile	Cys	Leu 160
	Gly	Asp	Asp	Arg	Lys 165	Ile	Pro	Phe	Ser	Val 170	Val	Pro	Thr	Asp	Asn 175	Gly
<i>10</i>	Thr	Lys	Leu	Phe 180	Gly	Leu	Glu	Trp	Asn 185	Asp	Asp	Tyr	Val	Thr 190	Ala	Tyr
٠	Ile	Ser	Asp 195	Glu	Ser	His	Arg	Leu 200	Asn	Ile	Asn	Asn	Asn 205	Trp	Phe	Asn
25	Asn	Val 210	Thr	Leu	Leu	Tyr	Ser 215	Arg	Thr	Ser	Thr	Ala 220	Thr	Trp	Gln	His

32

50

	Ser 225	Ala	Ala	Туг	Val	Tyr 230	Gln	Gly	Val	Ser	Asn 235	Phe	Thr	Tyr	Tyr	Lys 240
5 ,	Leu	Asn	Lys	Thr	Ala 245	Gly	Leu	Lys	Ser	Tyr 250	Glu	Leu	Cys	Glu	Asp 255	Tyr
	Glu	Tyr	Cys	Thr 260	Gly	Tyr	Ala	Thr	Asn 265	Val	Phe	Ala	Pro	Thr 270	Ser	Gly
10	Gly	Tyr	Ile 275	Pro	Asp	Gly	Phe	Ser 280	Phe	Asn	Asn	Trp	Phe 285	Met	Leu	Thr
	Asn	Ser 290	Ser	Thr	Phe	Val	Ser 295	Gly	Arg	Phe	Val	Thr 300	Asn	Gln	Pro	Leu
15	Leu 305	Val	Asn	Cys	Leu	Trp 310	Pro	Val	Pro	Ser	Phe 315	Gly	Val	Ala	Ala	Gln 320
	Glu	Phe	Cys	Phe	Glu 325	Gly	Ala	Gln	Phe	Ser 330	Gln	Cys	Asn	Gly	Val 335	Ser
20				340					345	Phe				350		
	Asp	Val	Gln 355	Ser	Gly	Met	Gly	Ala 360	Thr	Val	Phe	Ser	Leu 365	Asn	Thr	Thr
25	Gly	Gly 370	Val	Ile	Leu	Glu	11e 375	Ser	Cys	Tyr	Asn	Asp 380	Thr	Val	Ser	Glu
	385			_		390	-			Pro	395	_				400
<i>3</i> 0		_	_	_	405					Gly 410					415	
	_			420					425	Ile				430		
35			435	·		_	_	440					445			Asp
	_	450					455					460				Thr
40	465		-			470					475				_	Thr 480
	Ala	Ile	Lys	Lys	Val 485	Thr	Tyr	Cys	Asn	Ser 490	His	Ile	Asn	Asn	11e 495	Lys
4 5	_			500					505		_		_	510		Ala
	Ser	Ser	Glu 515	Val	Gly	Leu	Val	Asn 520	Lys	Ser	Val	Val	Leu 525	Leu	Pro	Ser

50

	Phe	Tyr 530		His	Thr	Ser	Val 535	Asn	Ile	Thr	Ile	Asp 540	Leu	Gly	Met	Lys
5	Arg 545	Ser	Val	Thr	Val	Thr 550	Ile	Ala	Ser	Pro	Leu 555	Ser	Asn	Ile	Thr	Leu 560
	Pro	Met	Gln	Asp	Asn 565	Asn	Ile	Asp	Val	Tyr 570	Cys	Ile	Arg	Ser	Asn 575	Gln
10	Phe	Ser	Val	Tyr 580	Val	His	Ser	Thr	Cys 585	Lys	Ser	Ser	Leu	Trp 590	Asp	Asn
	Asn	Phe	A≤n 595	Ser	Ala	Cys	Thr	Asp 600	Val	Leu	Asp	Ala	Thr 605	Ala	Va1	Ile
15	Lys	Thr 610	Gly	Thr	Cys	Pro	Phe 615	Ser	Phe	Asp	Lys	Leu 620	Asn	Asn	Tyr	Leu
	Thr 625	Phe	Asn	Lys	Phe	Cys 630	Leu	Ser	Leu	Asn	Pro 635	Val	Gly	Ala	Asn	Cys 640
20	Lys	Leu	Asp	Val	Ala 645	Ala	Arg	Thr	Arg	Thr 650	Asn	Glu	Gln	Val	Phe 655	Gly
	Ser	Leu	Tyr	Val 660	Ile	Tyr	Glu	Glu	Gly 665	Asp	Asn	Ile	Val	Gly 670	Val	Pro
25	Ser	Asp	Asn 675	Ser	Gly	Leu	His	Asp 680	Leu	Ser	Val	Leu	His 685	Leu	Ąsp	Ser
	Cys	Thr 690	Ążp	Tyr	Asn	Ile	Tyr 695	Glÿ	Arg	Thr	Glý	Val 700	Gly	Ile	Ile	Arg
30	Lys 705	Thr	Asn	Ser	Thr	Leu 710	Leu	Ser	Gly	Leu	Tyr 715	Tyr	Thr	Ser	Leu	Ser 720
	Gly	Asp	Leu	Leu	Gly 725	Phe	Lys	Asn	Val	Ser 730	Asp	Gly	Val	Val	Tyr 735	Ser
35	Val	Thr	Pro	Cys 740	Asp	Val	Ser	Ala	Gln 745	Ala	Ala	Val	Ile	Asp 750	Gly	Ala
	Ile	Val	Gly 755	Ala	Met	Thr	Ser	Ile 760	Asn	Ser	Glu	Leu	Leu 765	Ġly	Leu	Thr
40	His	Trp 770	Thr	Thr	Thr	Pro	Asn 775	Phe	Tyr	Tyr	Tyr	Ser 780	Ile	Tyr	Asn	Tyr
	Thr 785	Asn	Val	Met	Asn	Arg 790	Gly	Thr	Ala	Ile	Asp 795	Asn	Asp	Ile	Asp	Cvន 800
45	Glu	Pro	Ile		Thr 805	Tyr	Ser	Asn	Ile	Gly 810	Val	Cys	Lys	Asn	Gly 815	Ala

50

	Leu	Val	Phe	Ile 820	Asn	Val	Thr	His	Ser 825	Asp	Gly	Asp	Val	Gln 830	Pro	Ile
5	Ser	Thr	Gly 835	Asn	Val	Thr	Ile	Pro 840	Thr	Asn	Phe	Thr	Ile 845	Ser	Val	Gln
	Val	Glu 850	Tyr	Ile	Gln	Val	Tyr 855	Thr	Thr	Pro	Val	Ser 860	Ile	Asp	Cys	Ala
10	Arg 865	Tyr	Val	Cys	Asn	Gly 870	Asn	Pro	Arg	Cys	Asn 875	Lys	Leu	Leu	Thr	Gln 880
	Tyr	Val	Ser	Ala	Cys 885	Gln	Thr	Ile	Glu	Gln 890	Ala	Leu	Ala	Met	Gly 895	Ala
15	Arg	Leu	Glu	Asn 900	Met	Glu	Ile	Asp	Ser 905	Met	Leu	Phe	Val	Ser 910	Glu	Asn
	Ala	Leu	Lys 915	Leu	Ala	Ser	Val	Glu 920	Ala	Phe	Asn	Ser	Thr 925	Glu	Asn	Leu
20		930		_	•		935		Asn			940				
	Gly 945	Leu	Lys	Asp	Ile	Leu 950	Pro	Ser	His	Asn	<u>Ser</u> 955	Lys	Arg	Lys	Tyr	Arg 960
25	Ser	Ala	Ile	Glu	Asp 965	Leu	Leu	Phe	Asp	Lys 970	Val	Val	Thr	Ser	Gly 975	Leu
	Gly	Thr	Val	Asp 980	Glu	Asp	Tyr	Lys	Arg 985	Ser	Ala	Gly	Gly	Tyr 990	_	Ile
30	Ala	Asp	Leu 995	Val	Cys	Ala	Arg	Tyr 1000	Tyr	Asn	Gly	Ile	Met 1005		Leu	Pro
	Gly	Val 1010		Asn	Asp	Asp	Lys 1015		Thr	Met	Tyr	Thr 1020		ser	Leu	Thr
35	Gly 1025	_	Ile	Thr	Leu	Gly 1030		Leu	Ser	Gly	Gly 1035		Val	Ala	Ile	Pro 104
	Phe	Ala	Val	Ala	Val 1045		Ala	Arg	Leu	Asn 1050	_	Val	Ala	Leu	Gln 1055	
40	Asp	Val	Leu	Asn 1060	-	Asn	Gln	Gln	11e 1065		Ala	Asn	Ala	Phe 1070		Gln
	Ala	Ile	Gly 1075		Ile	Thr	Gln		Phe)		Lys	Val	Asn 1085	_	Ala	Ile
45	His	Gln 1090		Ser	Lys	Gly	Leu 1095		Thr	Val	Ala	Lys 1100		Leu	Ala	Lys
	Val 1105		Asp	Val	Val	Asn 1110		Gln	Gly	Gln	Ala 1115		Ser	His	Leu	Thr 112

50

	Val	Gln	Leu	Gln	Asn 112		Phe	Gln	Ala	Ile 113		Ser	Ser	Ile	Ser 113	_
5	Ile	Tyr	Asn	Arg 1140		Asp	Glu	Leu	Ser 114		Asp	Ala	Gln	Val 1150		Arg
	Leu	Ile	Thr 1155		Arg	Leu	Thr	Ala 1160		Asn	Ala	Phe	Val 116		Gln	Thr
10	Leu	Thr 1170	Arg)	Gln	Ala	Glu	Val 1175		Ala	Ser	Arg	Gln 118		Ala	Lys	Asp
	Lys 118	Val	Asn	Glu	Cys	Val 1190		Ser	Gln	Ser	Gln 1195	-	Phe	Gly	Phe	Cys 120
15	Gly	Asn	Gly	Thr	His 1205		Phe	Ser	Leu	Ala 1210		Ala	Ala	Pro	Asn 1215	
	Met	Ile	Phe	Phe 1220		Thr	Val	Leu	Leu 1225		Thr	Ala	Tyr	Glu 1230		Val
20	Thr	Ala	Trp 1235	Ser	Gly	Ile	Cys	Ala 1240		Asp	Gly	Ser	Arg 1245		Phe	Gly
	Leu	Val 1250	Val	Glu	Asp	Val	Gln 1255		Thr	Leu	Phe	Arg 1260		Leu	Asp	Glu
25	Lys 1265	Phe	Tyr	Leu	Thr	Pro 1270		Thr	Met	Tyr	Gln 1275		Arg	Val	Ala	Thr 128
•	Ser	Ser	Asp	Phe	Val 1285		Ile	Glu	Gly	Cys 1290		Val	Leu	Phe	Val 1295	-
30	Gly	Thr	Val	Ile 1300		Leu	Pro	Ser	Ile 1305		Pro	Asp	Tyr	Ile 1310		Ile
	Asn	Gln	Thr 1315	Val	Gln	Asp	Ile	Leu 1320		Asn	Phe	Arg	Pro 1325		Trp	Thr
35	Val	Pro 1330	Glu	Leu	Pro		Asp 1335		Phe	His	Ala	Thr 1340		Leu	Asn	Leu
	Thr 1345	Gly	Glu	Ile		Asp 1350		Glu	Phe	Arg	Ser 1355		Lys	Leu	His	Asn 136
40	Thr	Thr	Val	Glu	Leu 1365	Ala	Ile	Leu	Ile	Asp 1370		Ile	Asn	Asn	Thr 1375	
	Val	Asn		Glu 1380		Leu	Asn	Arg	Ile 1385		Thr	Tyr	Val	Lys 1390	_	Pro
45	Trp	Tyr	Val 1395	Trp	Leu	Leu	Ile	Gly 1400		Val	Val	Ile	Phe 1405		Ile	Pro

50

		Ίle	141		Phe	e Cys	s Cys	Cys 141		thi:	c Gly	y Cys	142		y Cys	s Ile	Gly	
5		Cys 142		g Gly	sei	Cys	5 Cys		Ser	: Ile	e Cys	s Ser 143	•	g Gly	y Glr	n Phe	Glu 144	
		Ser	туг	: Glu	Pro	144		i Lys	Val	. His	3 Val 145		5					
10	(2)	INFC	RMAT	ION	FOR	·SEQ	ID N	10:5:										
15		(i)	(E) LE) TY !) ST	NGTI PE: RANI	i: 44 nuc] EDNI	TERI 135 b leic ESS: line	ase acid sing	pair	:s								
		(ii)	MOL	•														
20		(vi)	_) OR	GANI	SM:	E: Cani :V-V5		oror	na vi	irus							
25		(ix)	(E) NA	ME/F	ON:	CDS 60			bel=	= CCV	7-C54	_Spi	.kege	ene			
25		(vi)	SEQ	NATI	יר אי	rscri	י דידים	N• 5	EO I	ר אר)·5·							
	TTG	•										ATCA	CTT	GT 1	PAATO	TGCC		59
30		ATT Ile					· ·											107
35		TGT Cys																155
		GGC Gly																203
40		GAA Glu 50																251
45		AAC Asn											_					299
50																		

37

	AAC Asn	ATA Ile	CAT His	GCA Ala	TTT Phe 85	Tyr	TTT Phe	GAT Asp	ATG Met	GAA Glu 90	Ala	ATG Met	GCG Ala	AAT Asn	AGT Ser 95	ACT Thr	347
5																CCT Pro	395
10	GTT Val	AGT Ser	ATC Ile 115	ATT Ile	GTT Val	TAC Tyr	ATA Ile	TCA Ser 120	GCC Ala	TAT Tyr	AGA Arg	GAT Asp	GAT Asp 125	GTG Val	CAA Gln	AAT Asn	443
	AGG Arg	CCG Pro 130	CTC Leu	TTA Leu	AAA Lys	CAT His	GGT Gly 135	TTG Leu	TTG Leu	TGT Cys	ATA Ile	ACT Thr 140	AAA Lys	AAC Asn	AGC Ser	ACC Thr	491
15	ATT Ile 145	Asp	TAT Tyr	AAC Asn	AGT Ser	TTT Phe 150	ACC Thr	TCT Ser	GCT Ala	CAG Gln	TGG Trp 155	CGT Arg	GAC Asp	ATA Ile	TGT Cys	TTG Leu 160	539
20						ATA Ile										GGC Gly	587
	ACA Thr	AAA Lys	CTA Leu	TTT Phe 180	GGT Gly	CTT Leu	GAG Glu	TGG Trp	ACT Thr 185	GAT Asp	GAC Asp	TAT Tyr	GTT Val	ACA Thr 190	GCC Ala	TAT Tyr	635
25	ATT	AGT Ser	GAT Asp 195	GAT Asp	TCC Ser	CAC His	CGT Arg	TTG Leu 200	AAT Asn	ATC Ile	AAT Asn	ACT Thr	AAT Asn 205	TGG Trp	TTT Phe	AAC Asn	683
30						TAC Tyr					Thr						731
	AGT Ser 225	GCC Ala	GCA Ala	TAT Tyr	GTT Val	TAT Tyr 230	CAA Gln	GGT Gly	GTT Val	TCA Ser	AAT Asn 235	TTT Phe	ACG Thr	TAT Tyr	TAT Tyr	AAG Lys 240	779
35	TTA Leu	AAC Asn	AAC Asn	ACC Thr	AAT Asn 245	GGC Gly	TTA Leu	AAA Lys	AGC Ser	TAT Tyr 250	GAA Glu	TTG Leu	TGT Cys	GAA Glu	GAT Asp 255	TAT Tyr	827
40	GAA Glu	TAC Tyr	TGC Cys	ACT Thr 260	GĞĈ Gly	TAT Tyr	GCC Ala	ACC Thr	AAT Asn 265	GTG Val	TTT Phe	GCT Ala	CCG Pro	ACA Thr 270	TCA Ser	GGT Gly	875
	GGT Gly	TAC Tyr	ATA Ile 275	CCT Pro	GAT Asp	GGA Gly	TTC Phe	AGT Ser 280	TTT Phe	AAC Asn	AAT Asn	TGG Trp	TTT Phe 285	ATG Met	CTT Leu	ACA Thr	923
45						GTT Val											971

50

			TGC Cys						•			1019
5	-		TTT Phe									1067
70			ACA Thr 340	Asp						-		1115
			TCT Ser									1163
75			ATT Ile	•						_		1211
20			TAC Tyr			-						1259
			TGT Cys									1307
25			CCA Pro 420									1355.
30	_		ATT Ile									1403
			TTT Phe									1451
<i>3</i> 5			ACA Thr		•							1499
40			AAG Lys					_			_	1547
			CTT Leu 500									1595
45			GTT Val									1643

50

			Ser							AAG Lys	1691
5		Ser			CAA Gln 550					ACA Thr 560	1739
10	_				AAT Asn						1787
					GTG Val						1835
15					GAC Asp						1883
20					TGT Cys						1931
					TTC Phe 630						1979
25					GCC Ala						2027
30					ATG Met						2075
					GGT Gly						2123
35					AAT Asn						2171
40					ACA Thr 710						2219
					GGT Gly						2267
45					GAT Asp						2315

50

						AGC Ser			_	CTA Leu	2363
5	_					TAT Tyr					2411
10						ATT Ile 795					2459
						ATA Ile					2507
15						TCT Ser	Gly				2555
20						ACA Thr	_	_	_		2603
						ACA Thr					2651
25						AGA Arg 875					2699
30						GAG Glu			_		2747
						TCC Ser					2795
35						GCA Ala					2843
40		 				AAT Asn					2891
	Gly		_			CAT His 955					2939
45						GAT Asp					2987

60

				ACA Thr 980													3035
5		_		GAC Asp					Gln					Ile			3083
10			Gly	GTA Val				Asp					Tyr				3131
		Ala		GGT Gly			Leu					Gly					3179
15				GCA Ala		Ala					Leu					Leu	3227
20				GTA Val 1060	Leu					Gln					Ala		3275
				ATT Ile					Gln					Val			3323
25	GCA Ala	ATA Ile 1090	His	CAA Gln	ACA Thr	TCA Ser	CAA Gln 1095	Gly	CTT Leu	GCC Ala	ACT Thr	GTT Val 1100	Ala	AAA Lys	GCA Ala	TTG Leu	3371
30		Lys		CAA Gln			Val					Gln					3419
				CAA Gln		Gln					Ala					Ile	3467
35				TAC Tyr 1140	Asn					Leu					Gln		3515
40				ATT					Thr			Asn		Phe			3563
	Gln	ACT Thr 1170	Leu	ACC Thr	AGA Arg	CAA Gln	GCA Ala 1175	Glu	GTT Val	AGG Arg	GCT Ala	AGT Ser 1180	Arg	CAA Gln	CTT Leu	GCT Ala	3611
45	AAA Lys 1185	Asp	AAA Lys	GTT Val	AAT Asn	GAA Glu 1190	Cys	GTT Val	AGG Arg	TCT Ser	CAA Gln 1195	ser	CAG Gln	AGA Arg	TTT Phe	GGA Gly 1200	3659

50

	TTC Phe	TGT Cys	GGT Gly	AAT Asn	GGT Gly 1205	Thr	CAT His	TTG Leu	TTT Phe	TCA Ser 1210	Leu	GCA Ala	AAT Asn	GCA Ala	GCA Ala 1215		3707
5					TTC Phe	ŢŢŢ		Thr		Leu			ACA Thr		Tyr	GAA Glu	3755
70				Ala					Cys				GGC Gly 1245	Asp			3803
			Leu					Val					TTT Phe				3851
75		Asp					Thr					Tyr	CAG Gln				3899
20						Phe					Gly		GAT Asp			Phe	3947
					Val					Ser			CCT Pro		Tyr		3995
25				Gln					Ile				TTT Phe 1325	Arg			4043
30			Val					Leu					GCA Ala)				4091
		Leu					Asn					Arg	TCG Ser			TTA Leu 1360	4139
35						Glu					Ile		AAT Asn			Asn	4187
40					Leu					Arg			ACT Thr		Val	AAA Lys	4235
				Tyr					Ile				GTA Val 140	Ile			4283
45			Leu					Cys					TGC Cys O				4331

50

	ATA GGT Ile Gly 1425	TGC Cys	TTA Leu	GGA Gly	AGT Ser 1430	Cys	TGT Cys	CAC His	TCT Ser	ATG Met 1435	Cys	AGT Ser	AGA Arg	AGA Arg	CAA Gln 1440	ı	4379
5	TTT GAA Phe Glu	AGT Ser	TAT Tyr	GAA Glu 1445	Pro	ACC Thr	GAA Glu	AAA Lys	GTG Val 1450	His	GTC Val	CAC His	TAAF	ATTC	LAA		4428
	ACTAATA																4435
10																	
	(2) INFO	RMAT	ION	FOR		ID N	10:6:										
15	(i)	(B (C) LE) TY) ST	E CH NGTH PE: RAND POLO	: 14 amin EDNE	53 a o ac SS:	mino id sing	aci	ds								
	(ii)	MOL	ECUL	E TY	PE:	prot	ein										
20	(vi)	(A)) OR	L SO GANI RAIN	SM:	Cani		oron	a vi	rus							
25	(ix)	FEA! (A) (B)) NA) LO	: ME/K CATIO HER	ON:	11	453	/la	bel=	ccv-	-C54 _.	_spi	ke				
	(xi)	SEQ	JENC:	E DE	SCRI	PTIO	n: s	EQ I	D NO	:6:							
30	Met 1	Ile	Val	Leu	Thr 5	Leu	Cys	Leu	Leu	Leu 10	Phe	Ser	Tyr	Asn	Ser 15	Val	
	Ile	Cys	Thr	Ser 20	Asn	Asn	Asp	Cys	Val 25	Gln	Val	Asn	Val	Thr 30	Gln	Leu	
35	Pro	Gly	Asn 35	Gļu	Asn	Ile	Ile	Lys 40	Asp	Phe	Leu	Phe	Gln 45	Asn	Phe	Lys	
	Glu	Glu 50	Gly	Ser	Val	Val	Val 55	Gly	Gly	Tyr	Tyr	Pro 60	Thr	Glu	Val	Trp	
40	Tyr 65	Asn	Cys	Ser	Arg	Thr 70	Ala	Thr	Thr	Thr	Ala 75	Tyr	His	Tyr	Phe	Ser 80	
	Asn	Ile	His	Ala	Phe 85	Tyr	Phe	Asp		Glu 90	Ala	Met	Ala	Asn	Ser 95	Thr	
45	Gly	Asn	Ala	Arg 100	Gly	Lys	Pro	Leu	Leu 105	Val	His	Val	His	Gly 110	Ser	Pro	
50									-								
			•														

	Val	Ser	Ile 115	Ile	Val	Tyr	Ile	Ser 120	Ala	Tyr	Arg	Asp	Asp 125	Val	Gln	Asn
5	Arg	Pro 130	Leu	Leu	Lys	His	Gly 135	Leu	Leu	Cys	Ile	Thr 140	Lys	Asn	Ser	Thr
	11e 145	Asp	Tyr	Asn	Ser	Phe 150	Thr	Ser	Ala	Gln	Trp 155	Arg	Asp	Ile ·	Cys	Leu 160
10	Gly	Thr	Asp	Arg	Lys 165	Ile	Pro	Phe	Ser	Val 170	Val	Pro	Thr	Asp	Asn 175	Gly
	Thr	Lys	Leu	Phe 180	Gly	Leu	Glu	Trp	Thr 185	Asp	Asp	Tyr	Val	Thr 190	Ala	Tyr
15	Ile	Ser	Asp 195	Asp	Ser	His	Arg	Leu 200	Asn	Ile	Asn	Thr	Asn 205	Trp	Phe	Asn
	Asn	Val 210	Thr	Ile	Leu	Tyr	Ser 215	Arg	Ser	Ser	Thr	Ala 220	Thr	Trp	Gln	Lys
20	Ser 225	Ala	Ala	Tyr	Val	Tyr 230	Gln	Gly	Val	Ser	Asn 235	Phe	Thr	Tyr	Tyr	Lys 240
	Leu	Asn	Asn	Thr	Asn 245	Gly	Leu	Lys	Ser	Tyr 250	Glu	Leu	Cys	Glu	Asp 255	Tyr
25	Glu	Tyr	Cys	Thr 260	Gly	Tyr	Ala	Thr	Asn 265	Val	Phe	Ala	Pro	Thr 270	Ser	Gly
	Gly	Tyr	Ile 275	Pro	Asp	Gly	Phe	Ser 280	Phe	Asn	Asn	Trp	Phe 285	Met	Leu	Thr
30	Asn	Ser 290	Ser	Thr	Phe	Val	Ser 295	Gly	Arg	Phe	Val	Thr 300	Asn	Gln	Pro	Leu
	Leu 305	Val	Asn	Cys	Leu	Val 310	Pro	Val	Pro	Ser	Phe 315	Gly	Val	Ala	Ala	Gln 320
35	Glu	Phe	Cys	Phe	Glu 325	Gly	Ala	Gln	Phe	Ser 330	Gln	Cys	Asn	Gly	Val 335	Ser
	Leu	Asn	Asn	Thr 340	Val	Asp	Val	Ile	Arg 345	Phe	Asn	Leu	Asn	Phe 350	Thr	Thr
40	Asn	Val	Gln 355	Ser	Gly	Met	Gly	Ala 360	Thr	Val	Phe	Ser	Leu 365	Asn	Thr	Thr
	Gly	Gly 370	Val	Ile	Leu	Glu	Ile 375	Ser	Cys	Tyr	Asn	Asp 380	Thr	Val	Ser	Glu
45	Ser 385	Ser	Phe	Tyr	Ser	Tyr 390	Gly	Glu	Ile	Pro	Phe 395	Gly	Val	Thr	Asp	Gly 400
	Pro	Arg	Tyr	Cys	Tyr 405	Val	Leu	Tyr	Asn	Gly 410	Thr	Ala	Leu	Lys	Tyr 415	Leu

55

	Gly	Thr	. Leu	Pro 420	Pro	Ser	. Val	Lys	Glu 425		Ala	Ile	Ser	Lys 430	_	Gly
5	His	Phe	Tyr 435	lle	Asn	Gly	Tyr	Asn 440		Phe	Ser	Thr	Phe 445		Ile	Asp
	Суѕ	450	Ser	Phe	Asn	Leu	Thr 455		Gly	Asp	Ser	Gly 460		Phe	Trp	Thr
10	Ile 465	Ala	Tyr	Thr	Ser	Tyr 470	Thr	Glu	Ala	Leu	Val 475	Gln	Val	Glu	Asn	Thr 480
	Ala	Ile	Lys	Lys	Val 485	Thr	Tyr	Cys	Asn	Ser 490	His	Ile	Asn	Asn	Ile 495	Lys
15	Cys	Ser	Gln	Leu 500	Thr	Ala	Asn	Leu	Gln 505	Asn	Gly	Phe	Tyr	Pro 510	Val	Ala
	Ser	Ser	Glu 515	Val	Gly	Leu	Val	Asn 520	Lys	Ser	Val	Val	Leu 525	Leu	Pro	Ser
20	Phe	Tyr 530	Ser	His	Thr	Ser	Val 535	Asn	Ile	Thr	Ile	Asp 540	Leu	Gly	Met	Lys
	Arg 545	Ser	Gly	Tyr	Gly	Gln 550	Pro	Ile	Ala	Ser	Thr 555	Leu	Ser	Asn	Ile	Thr 560
25	Leu	Pro	Met	Gln	Asp 565	Asn	Asn	Thr	Asp	Val 570	Tyr	Cys	Ile	Arg	Ser 575	Asn
	Gln	Phe	Ser	Val 580	Tyr	Val	His	Ser	Thr 585	Cys	Lys	Ser	Ser	Leu 590	Trp	Asp
30	Asn	Ile	Phe 595	Asn	Ser	Asp	Cys	Thr 600	Asp	Val	Leu	His	Ala 605	Thr	Ala	Val
	Ile	Lys 610	Thr	Gly	Thr	Cys	Pro 615	Phe	Ser	Phe	Asp	Lys 620	Leu	Asn	Asn	Tyr
35	Leu 625	Thr	Phë	Asn	Lys	Phe ⁻ 630	Cys	Leu	Ser	Leu	Aŝn 635	Pro	Val	Gly	Ala	Asn 640
	Cys	Lys	Phe	Asp	Val 645	Ala	Ala	Arg	Thr	Arg 650	Thr	Asn	Glu	Gln	Val 655	Val.
40	Arg	Ser	Leu	Tyr 660	Val	Met	Тут	Glu	Glu 665	Gly	Asp	Asn	Ile	Ala 670	Gly	Asp
	Arg	Pro	Asp 675	Asn	Ser	Gly	Leu	His 680	Asp	Leu	Ser		Leu 685	His	Leu	Asp
45	Ser	Cys 690	Thr	Asp	Tyr	Asn	Ile 695	Tyr	Gly	Arg		Gly 700	Val	Gly	Ile	Ile

50

	Arg 705	Gln	Thr	Asn	Ser	Thr 710	Ile	Phe	Ser	Gly	Leu 715	Tyr	Tyr	Thr	Ser	Leu 720
5	Ser	Gly	Asp	Leu	Leu 725	Gly	Phe	Lys	Asn	Val 730	Ser	Asp	Gly	Val	Val 735	Tyr
	Ser	Val	Thr	Pro 740	Cys	Asp	Val	Ser	Ala 745	Gln	Ala	Ala	Val	11e 750	Asp	Gly
10	Ala	Ile	Val 755	Gly	Ala	Met	Thr	Ser 760	Ile	Asn	Ser	Glu	Leu 765	Leu	Gly	Leu
	Thr	His 770	Trp	Thr	Thr	Thr	Pro 775	Asn	Phe	Tyr	Tyr	Tyr 780	Ser	Ile	Tyr	Asn
15	Tyr 785	Thr	Ser	Val	Arg	Thr 790	Arg	Gl.y	Thr	Ala	Ile 795	Asp	Ser	Asn	qaA	Val 800
	Asp	Cys	Glu	Pro	Ile 805	Ile	Thr	Tyr	Ser	Asn 810	Ile	Gly	Val	Cys	Lys 815	Asn
20	Gly	Ala	Leu	Val 820	Phe	Ile	Asn	Val	Thr 825	His	Ser	Asp	Gly	Asp 830	Val	Gln
	Pro	Ile	Ser 835	Thr	Gly	Asn	Val	Thr 840	Ile	Pro	Thr	Asn	Phe 845	Thr	Ile	ser
25	Val	Gln 850	Val	Glu	Tyr	Ile	Gln 855	Val	Tyr	Thr	Thr	Pro 860	Val	Ser	Ile	Asp
	Cys 865	Ala	Arg	Tyr	Val	Cys 870	Asn	Gly	Asn	Pro	Arg 875	Cys	Asn	Lys	Leu	Leu 880
30	Thr	Gln	Tyr	Val	Ser 885	Ala	Cys	Gln	Thr	Ile 890	Glu	Gln	Ala	Leu	Ala 895	Met
	Gly	Ala	Arg	Leu 900	Glu	Asn	Met	Glu	Ile 905	Asp	Ser	Met	Leu	Phe 910	Val	Ser
35	Glu	Asn	Ala 915	Leu	Lys	Leu	Ala	Ser 920	Val	Glu	Ala	Phe	Asn 925	Ser	Thr	Glu
	Thr	Leu 930	Asp	Pro	Ile	Tyr	Lys 935	Glu	Trp	Pro	Asn	Ile 940	Gly	Gly	Ser	Trp
40	Leu 945	Gly	Gly	Leu	Lys	Asp 950	Ile	Leu	Pro	Ser	His 955	Asn	Ser	Lys	Arg	Lys 960
	Tyr	Arg	Ser	Ala	11e 965		Asp	Leu	Leu	Phe 970		Lys	Val	Val	Thr 975	Ser
45	Gly	Leu	Gly	Thr 980	Val	Asp	Glu	Asp	Tyr 985	Lys	Arg	Cys	Thr	Gly 990	Gly	Tyr
	Asp	Ile	Ala 995	Asp	Leu	Val	Cys	Ala 1000		Tyr	Tyr	Asn	Gly 1009		Met	Val

50

	Leu	Pro 101	Gly O	Val	Ala	Asn	Asp 101		Lys	Met	Ala	Met 102		Thr	Ala	Ser
5	Leu 102	Ala 5	Gly	Gly	Ile	Thr 103	Leu O	Gly	Ala	Leu	Gly 103		Gly	Ala	Val	Ala 1040
	Ile	Pro	Phe	Ala	Val 104	Ala 5	Val	Gln	Ala	Arg 105		Asn	Tyr	Val	Ala 105	
10	Gln	Thr	Asp	Val 106	Leu 0	Asn	Lys	Asn	Gln 106		Ile	Leu	Ala	Asn 107		Phe
	Asn	Gln	Ala 107!	Ile 5	Gly	Asn	Ile	Thr 108		Ala	Phe	Gly	Lys 108		Asn	Asp
15	Ala	11e	His O	Gln	Thr	Ser	Gln 1099	Gly	Leu	Ala	Thr	Val 1100		Lys	Ala	Leu
	Ala 110	Lys 5	Val	Gln	Asp	Val 1110	Val	Asn	Thr	Gln	Gly 1115		Ala	Leu	Ser	His 1120
20	Leu	Thr	Val	Gln	Leu 1125	Gln 5	Asn	Asn	Phe	Gln 1130		Ile	Ser	Ser	Ser 1135	
	Ser	Asp	Ile	Tyr 1140	Asn)	Arg	Leu	Asp	Glu 1145		Ser	Ala	qaA	Ala 1150		Val
25	Asp	Arg	Leu 1155	Ile	Thr	Gly	Arg	Leu 1160		Ala	Leu	Asn	Ala 1165		Val	ser
	Gln	Thr 1170	Leu)	Thr	Arg	Gln	Àla 1175		Val	Arg		Ser 1180		Gln	Leu	Ala
30	Lys 1185	Asp	Lys	Val	Asn	Glu 1190	Cys	Val	Arg	Ser	Gln 1195		Gln	Arg	Phe	Gly 1200
	Phe	Cys	Gly	Asn	Gly 1205	Thr	His	Leu	Phe	Ser 1210		Ala	Asn	Ala	Ala 1215	
35	Asn	Gly	Met	lle 1220	Phē	Phe	His	Thr	Val 1225		Leu	Pro	Thr	Ala 1230		Glu
	Thr	Val	Thr 1235	Ala	Trp	Ser	Gly	Ile 1240	Cys	Àla	Ser		Gly 1245		Arg	Thr
40	Phe	Gly 1250	Leu	Val	Val		Asp 1255		Gln	Leu		Leu 1260		Arg	Asn	Leu
	Asp 1265	Asp	Lys	Phe		Leu 1270		Pro	Arg		Met 1275			Pro	Arg	Val 1280
45	Ala	Thr	Ser	Ser	Asp 1285	Phe	Val	Gln		Glu 1290		Cys	Asp	Val	Leu 1295	

50

	Val	Asn	Ala	Thr 1300		Ile	Asp	Leu	Pro 1305		Ile	Ile	Pro	Asp 1310		Ile
5	Asp	Ile	Asn 1315		Thr	Val	Gln	Asp 1320		Leu	Glu	Asn	Phe 1325		Pro	Asn
	Trp	Thr 1330		Pro	Glu	Leu	Thr 1335		Asp	Ile	Phe	Asn 1340	Ala	Thr	Tyr	Leu
10	Asn 1345		Thr	Gly	Glu	Ile 1350		Asp	Ļeu	Glu	Phe 1355		Ser	Glu	Lys	Leu 1360
	His	Asn	Thr		Val 1365		Leu	Ala	Val	Leu 1370		Asp	Asn	Ile	Asn 1375	
15	Thr	Leu	Val	Asn 1380		Glu	Trp	Leu	Asn 1385		Ile	Glu	Thr	Tyr 1390		Lys
	Trp	Pro	Trp 1395	•	Val	Trp	Leu	Leu 1400		Gly	Leu	Val	Val 1405		Phe	Cys
20	Ile	Pro 1410		Leu	Leu	Phe	Cys 1415		Cys	Ser	Thr	Gly 1420	Cys	Cys	Gly	Cys
	Ile 1425		Cys	Leu	Gly	Ser 1430		Cys	His	Ser	Met 1435		Ser	Arg	Arg	Gln 1440
25	Phe	Glu	Ser	Tyr	Glu 1445		Thr	Glu	Lys	Val 1450		Val	His			

Claims

- 1. A nucleic acid sequence encoding a polypeptide having one or more immunogenic determinants of a CCV spike protein.
- 2. A nucleic acid sequence according to claim 1, characterized in that the spike protein has an amino acid sequence shown in SEQ ID NO: 2, 4 or 6 or is a functional variant thereof.
 - 3. A nucleic acid sequence according to claim 2, characterized in that the nucleic acid sequence contains at least part of the DNA sequence shown in SEQ ID NO: 1, 3 or 5.
- 40 4. A recombinant vector molecule comprising a nucleic acid sequence according to claims 1-3.
 - 5. A recombinant vector molecule according to claim 4, characterized in that the nucleic acid sequence is operably linked to expression control sequences.
- 45 6. A recombinant vector virus harbouring the heterologous nucleic acid sequence according to claims 1-3.
 - 7. A host cell transformed with a nucleic acid sequence according to claims 1-3 or with a recombinant vector molecule according to claim 4 or 5, or infected with a recombinant vector virus according to claim 6.
 - 8. A process for the preparation of a polypeptide having one or more immunogenic determinants of a CCV spike protein which process comprises:
 - (a) culturing host cells according to claim 7 under conditions in which the nucleic acid sequence is expressed, and
 - (b) isolating the polypeptide from the culture.
 - 9. A vaccine for the protection of dogs against CCV infection or disease, characterized in that it comprises a recombinant vector virus according to claim 6, a host cell according to claim 7, or a polypeptide

50

prepared by the process according to claim 8, together with an acceptable carrier.

- 10. A process for the preparation of a CCV vaccine comprising the steps of culturing an infected host cell according to claim 7, collecting recombinant vector virus material, and formulating the material to a pharmaceutical preparation with immunizing activity.
- 11. A process for the preparation of a CCV vaccine comprising formulating a polypeptide prepared to the process of claim 8 according to a pharmaceutical preparation with immunizing activity.
- 10 12. A process for the protection of dogs against CCV infection comprising administering a vaccine according to claim 9 to a dog.

Figure 1

6 U

Figure 2a

Figure 2b

Figure 3

EP 92 20 1136

	The state of the s	DERED TO BE RELEVAN	Relevant	CLASSIFICATION OF THE		
ategory	Citation of document with in of relevant pas	diention, where appropriate,	to claim	APPLICATION (Int. Cl.5)		
,	EP-A-0 295 057 (NORDEN	LABORATORIES, INC.)	1-12	C12N15/50		
	* Whole document, in par	rticular page 3, lines		A61K39/215		
Ì	50-51, page 5 lines 51-			G01N33/569		
		_		C07K15/00		
r	EP-A-0 376 744 (CALIFOR	NIA BIOTECHNOLOGY, INC)	1-12			
.	* Whole document *					
		- YAMEDMATTONIAI DESEADEU	1,4,7,			
^	EP-A-0 138 242 (DUPHAR	THIENWITHE VESTION	9-10	1		
	B.V.) * Whole document *					
	- AUD 16 ODCOMENT	-				
	JOURNAL OF CLINICAL MIC	ROBIOLOGY	1-5,7-12			
	vol. 29, no. I, January					
	I. BAE ET AL.: 'Differs	entiation of transmissible				
	gastroenteritis virus 1	rom porcine respiratory				
	coronavirus and other a	ntigenically related				
	coronaviruses by using	cDNA probes specific for				
	the 5' region of the S	glycoprotein gene'				
	* Whole article *					
i •	EP-A-0 278 541 (DUPHAR	TNTF PNATTONAL RESEARCH	1-5.7-12	TECHNICAL FIELDS		
Y	B. V.)	Titi Fida (1 2 m.) — . — —		SEARCHED (Int. Cl.5)		
	* Whole document *	•				
		-		C12N		
A	EP-A-0 344 872 (AMERICA	N HOME PRODUCTS	1	A61K		
	CORPORATION)			C07K		
	* Whole document *		1			
		-	1,4,6-12			
P,X,	WO-A-9 111 525 (THE UNI	YERSITY COURT OF THE	. 2,3,5 22			
D	UNIVERSITY OF GLASGOW)					
	* Whole document *					
			•			
			7			
	The present search report has i					
Place of search		Date of completion of the search	4114	Examiner YA D		
	BERLIN	07 JULY 1992	101			
	CATEGORY OF CITED DOCUME	NTS T: theory or print	iple underlying th	e investion		
V	estendardy relevant if taken alone	e: carner patent	r date			
Y : 24	rticularly relevant if combined with an		d in the application of the street of the st)D		
do A : to	cument of the same category chnological background					
48 4 4	on-written disclosure	& : member of the	e came patent fam	ily, corresponding		

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
SKEWED/SLANTED IMAGES
COLOR OR BLACK AND WHITE PHOTOGRAPHS
GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.