Управление цифровыми входами и выходами

Проверка связи

Если у вас нет звука:

- убедитесь, что на вашем устройстве и на колонках включён звук
- обновите страницу вебинара (или закройте страницу и заново присоединитесь к вебинару)
- откройте вебинар в другом браузере
- перезагрузите компьютер (ноутбук) и заново попытайтесь зайти

Поставьте в чат:

- 🕂 если меня видно и слышно
- если нет

Вопрос: Какая микросхема лежит в основе

большинства плат Arduino?

Вопрос: Какая микросхема лежит в основе

большинства плат Arduino?

Ответ: Микроконтроллер AVR

Bonpoc: Какие обязательные функции должна содержать программа для Arduino?

Bonpoc: Какие обязательные функции должна содержать программа для Arduino?

Ответ: setup() и loop()

Вопрос: Какая функция останавливает выполнение программы на заданное число миллисекунд?

Вопрос: Какая функция останавливает выполнение программы на заданное число миллисекунд?

OTBET: delay(ms)

Цели занятия

- Узнаем, как устроены порты ввода/вывода микроконтроллера
- Познакомимся с эффектом дребезга контактов кнопки
- Узнаем, как управлять яркостью светодиодов с помощью ШИМ
- Научимся создавать собственную библиотеку

План занятия

- (1) Как устроены порты ввода/вывода в микроконтроллере
- (2) Как обрабатывать сигнал от кнопки
- з Как управлять яркостью светодиода
- (4) Как создать свою библиотеку
- б

Как устроены порты ввода/вывода в микроконтроллере

Структура порта ввода/вывода

С внешними элементами микроконтроллер взаимодействует через порты ввода/вывода. Выводы объединяются в группы, которые называют портами. Для управления портами используются регистры (х - имя порта):

- DDRx направление данных
- PORTx управление состоянием вывода
- PINx состояние на выводе

Упрощенная структура порта ввода/вывода

Порт содержит:

- схему защиты от статического напряжения (1)
- паразитную емкость (2)
- схему включения подтягивающего резистора (3)
- схему задания логического уровня (4)

Режим высокоимпеданстного входа

Значение регистров (х - имя порта, n - номер разряда):

- DDRxn = 0
- PORTxn = 0

Режим входа с подтяжкой к лог. 1

Значение регистров (х - имя порта, n - номер разряда):

- DDRxn = 0
- PORTxn = 1

Режим выхода лог. О

Значение регистров (х - имя порта, n - номер разряда):

- DDRxn = 1
- PORTxn = 0

Режим выхода лог. 1

Значение регистров (x - имя порта, n - номер разряда):

- DDRxn = 1
- PORTxn = 1

Как функции цифрового ввода/вывода связаны с регистрами

void pinMode(uint8_t pin, uint8_t mode) — модифицирует значение в соответствующем регистре **DDRx**

digitalWrite(uint8_t pin, uint8_t value) — модифицирует значение в соответствующем регистре **PORTx**

int digitalRead(uint8_t pin) — считывает значение из соответствующего регистра PINx

Как обрабатывать сигнал от кнопки

Тактовая кнопка

Правильное название: тактильная кнопка (Tactile Button)

Кнопка без фиксации, т.е. после нажатия кнопка возвращается в исходное состояние. Тактильность подразумевает наличие тактильной обратной связи в виде ощущения порога срабатывания кнопки. Также момент срабатывания кнопки может сопровождаться характерным звуковым щелчком.

Источник

Дребезг контактов

Сухие контакты реальных кнопок ни когда не замыкаются и не размыкаются мгновенно. Происходит многократные кратковременные замыкания и размыкания

Аппаратное подавление дребезга контактов

Самый простой способ борьбы с дребезгом контактов, это подключение параллельно кнопки керамического конденсатора обычно до 1 мкФ.

Программное подавление дребезга контактов

Принцип программного подавления дребезга контактов - введение задержки между считыванием состояния линии при первом изменении этого состояния:

```
const int led = 9; //светодиод подключен к контакту 9
const int button = 2; //кнопка подключена к контакту 2
int lastButton = LOW;
                        //предыдущее состояние кнопки
int curButton = LOW; //Текущее состояние кнопки
int ledOn = LOW;
                 //Текущее состояние светодиода
/*Функция подавления дребезга
last - предыдущее состояние кнопки*/
int debounce (int last)
 int current = digitalRead(button);
 if(last != current) //если состояние изменилось
   delay(5);
   current = digitalRead(button);
  return current;
```

Программное подавление дребезга контактов

Программа изменения состояния светодиода по каждому нажатию кнопки:

```
void setup()
 pinMode(led, OUTPUT); //контакт светодиода - выход
 digitalWrite(led, LOW); //на выходе лог. 0
 pinMode(button, INPUT); //контакт кнопки - вход
 digitalWrite(button, HIGH); //подтягивающий резистор на входе
void loop()
 curButton = debounce (lastButton);
 if(lastButton == HIGH && curButton == LOW) //условие нажатия
   ledOn = !ledOn;
   digitalWrite(led, ledOn);
  lastButton = curButton;
```

Практическое задание N°1

Практика: подавление дребезга контактов

Задание:

- 1) соберите схему в симуляторе WOKWI, подключив светодиод к выводу 9, а кнопку к выводу 2;
- 2) создайте скетч с текстом, приведенным выше;
- 3) проведите моделирование работы

Как выполнять: напишите в чат об удачной работе схемы

Время выполнения: 5 минут

Как управлять яркостью светодиода

Таймеры микроконтроллера

Таймером называется средство микроконтроллера, служащее для измерения времени и реализации задержек. Основой таймера служит суммирующий счетчик, который считает количество входных импульсов

Широтно-импульсная модуляция

- Широтно-импульсная модуляция (ШИМ) импульсный сигнал постоянной частоты и переменной скважности.
- **Скважность** отношения периода следования импульса к длительности импульса. С помощью задания скважности (длительности импульсов) можно менять среднее напряжение на выходе ШИМ.
- Обратная величина, то есть отношение длительности импульса к периоду, называется **коэффициентом заполнения**.

Быстрый ШИМ

Период ШИМ определяется максимальным значением, до которого считает счетчик. В этот момент ШИМ-сигнал устанавливается в «1». При достижении счетчиком значения, поданного на второй вход цифрового компаратора, осуществляется сброс выходного ШИМ-сигнала.

Фазовый ШИМ

В данном режиме счетчик работает как суммирующий и считает от 0 до максимального значения, а при достижении максимального значения работает как вычитающий, считая до 0.

Изменение скважности ШИМ сигнала

Если сигнал ШИМ пропустить через фильтр низких частот (ФНЧ), то на выходе фильтра мы получим аналоговый сигнал, напряжение которого пропорционально коэффициенту заполнения ШИМ.

Функция формирования сигнала с ШИМ

void analogWrite(uint8_t pin, int val) — формирует ШИМ сигнал на порте ввода/вывода. После вызова analogWrite() на выходе будет генерироваться периодический сигнал с частотой примерно 490 Гц с заданной шириной импульса до следующего вызова analogWrite() (или вызова digitalWrite() или digitalRead() на том же порту вход/выхода)

Параметры:

- pin: номер вход/выхода(pin), допустимые значения для польшинства плат: 3, 5, 6, 9, 10, 11
- value: период рабочего цикла значение между 0 (полностью выключено) and 255 (сигнал подан постоянно)

Возвращаемое значение: нет

Плавное изменение яркости светодиода

Человеческий глаз выступает как ФНЧ для поступающего на него светового потока, поэтому яркость светодиода можно задавать с помощью ШИМ:

```
const int led = 9; //светодиод подключен к контакту 9
void setup()
 pinMode(led, OUTPUT); //контакт светодиода - выход
 digitalWrite(led, LOW); //на выходе лог. 0
void loop()
 for(int i = 0; i < 256; i++)
   analogWrite(led,i);
   delay(10);
 for(int i = 255; i >= 0; i--)
   analogWrite(led,i);
   delay(10);
```

Практическое задание N°2

Практика: подавление дребезга контактов

Задание:

- соберите схему в симуляторе WOKWI, подключив светодиод к выводу
 9;
- 2) создайте скетч с текстом, приведенным выше;
- 3) проведите моделирование работы

Как выполнять: напишите в чат об удачной работе схемы

Время выполнения: 5 минут

Как создать свою библиотеку

Библиотека – это набор текстовых файлов с кодом, который можно подключить в свой скетч и использовать имеющиеся там команды.

Библиотека может иметь несколько файлов или даже папок с файлами, но подключается всегда один – главный заголовочный файл с расширением .h,

а он в свою очередь подтягивает остальные необходимые файлы.

Библиотека для Arduino

В общем случае библиотека имеет такую структуру (название библиотеки testLib):

- testLib папка библиотеки
 - examples папка с примерами (необязательно)
 - testLib.h заголовочный файл
 - testLib.cpp файл реализации
 - keywords.txt карта подсветки синтаксиса (необязательно)

Пример преобразования кода в библиотеку

Скетч, воспроизводящий код Морзе:

```
int pin = 13; //встроенный светодиод
void setup()
 pinMode(pin, OUTPUT);
void loop()
 dot(); dot();
 dash(); dash();
 dot(); dot();
 delay(3000);
```

```
/*Функция формирования точки с помощью светодиода*/
void dot()
 digitalWrite(pin, HIGH);
 delay(250);
 digitalWrite(pin, LOW);
 delay(250);
/*Функция формирования тире с помощью светодиода*/
void dash()
 digitalWrite(pin, HIGH);
 delay(1000);
 digitalWrite(pin, LOW);
 delay(250);
```

Содержимое заголовочного файла

Заголовочный файл содержит класс, в котором объявляются функций и используемые переменные:

```
/*
  Morse.h - Библиотека для формирования кода Морзе на светодиоде
*/
#ifndef Morse_h
#define Morse_h
#include "WProgram.h"
class Morse
  public:
    Morse(int pin);
    void dot();
    void dash();
  private:
    int _pin;
};
#endif
```

Содержимое файла реализации библиотеки

Файл реализации библиотеки содержит описание конструктора, деструктора (при необходимости) и методов класса:

```
/*
  Morse.cpp - Библиотека для формирования кода Морзе на
светодиоде
*/
#include "WProgram.h"
                         //стандартные типы для Arduino
#include "Morse.h"
                         //заголовочный файл самой библиотеки
Morse::Morse(int pin)
  pinMode(pin, OUTPUT);
  _pin = pin;
```

```
void Morse::dot()
  digitalWrite(_pin, HIGH);
 delay(250);
 digitalWrite(_pin, LOW);
 delay(250);
void Morse::dash()
 digitalWrite(_pin, HIGH);
 delay(1000);
 digitalWrite(_pin, LOW);
  delay(250);
```

Использование библиотеки

Изначальный скетч, переписанный с использованием созданной библиотеки:

```
#include <Morse.h>
Morse morse(13);
void setup()
void loop()
 morse.dot(); morse.dot();
 morse.dash(); morse.dash();
 morse.dot(); morse.dot();
 delay(3000);
```

Практическое задание N°3

Практика: мигаем светодиодом в симуляторе

Задание:

- 1) создайте библиотеку Morse в виде двух файлов .h и .cpp, помещенных в папку **Morse**
- 2) разместите эту папку в папке libraries Arduino IDE.
- 3) создайте новый скетч с текстом программы, приведенным на предыдущем слайде и выполните его компиляцию.

Как выполнять: напишите в чат о результатах компиляции

Время выполнения: 10 минут

Итоги

Итоги занятия

Сегодня мы

- 1 Узнали устройство портом ввода/вывода микроконтроллера
- (2) Научились подавлять дребезг контактов от кнопки
- Научились управлять яркостью светодиода с помощью ШИМ
- 4 Создали собственную библиотеку

Домашнее задание

Давайте посмотрим ваше домашнее задание.

- (1) Вопросы по домашней работе задавайте в чате группы
- (2) Задачи можно сдавать по частям
- (з) Зачёт по домашней работе ставят после того, как приняты все задачи

Задавайте вопросы и пишите отзыв о лекции

