```
# Column Non-Null Count

0 sepal_length 150 non-null float64
1 sepal_width 150 non-null float64
2 petal_length 150 non-null float64
3 petal_width 150 non-null float64
4 species 150 non-null float64
4 species 150 non-null object dtypes: float64(4), object(1)
memory usage: 6.0+ KB

In []: H #check for all null values
df.isna().sum()

In []: H df.describe()

In []: H sns.pairplot(df)

In []: H sns.heatmap(df.corr(),annot=True)

In []: H df.corr()
```

Data columns (total 5 columns):

petal_width 0 species 0 dtype: int64

In [*]: # df.describe()

Out[6]:

	sepal_length	sepal_width	petal_length	petal_width
count	150.000000	150.000000	150.000000	150.000000
mean	5.843333	3.054000	3.758667	1.198667
std	0.828066	0.433594	1.764420	0.763161
min	4.300000	2.000000	1.000000	0.100000
25%	5,100000	2.800000	1,600000	0.300000
50%	5.800000	3.000000	4.350000	1.300000
75%	6.400000	3,300000	5,100000	1.800000
max	7.900000	4,400000	6.900000	2.500000

In []: # sns.pairplot(df)

In []. N ene heatman(df corn() annot-True)

```
25%
                      5.100000
                                 2.800000
                                            1.600000
                                                       0.300000
                                            4.35000C
                      5.800000
                                 3.000000
                                                       1.300000
              50%
                                            5.100000
                                                       1.800000
                      6.400000
                                 3.300000
              75%
                                                       2.500000
                      7.900000
                                 4.400000
                                             6.900000
              max
In [*]: H sns.pairplot(df)
   Out[7]: cseaborn.axisgrid.PairGrid at 0x2bada6a0be0>
In [ ]: M sns.heatmap(df.corr(),annot=True)
In [ ]: H df.corr()
In [ ]: ► #feature selection
             x=df.drop(['species'],axis=1)
             y=df['species']
 In [ ]: M print(x)
```

0.763161

std

min

0.828066

4.300000

0.433594

2.000000

1.764420

out[/]: <seaborn.axisgrid.PairGrid at 0x2bada6a0be0>

x, y, train_size=0.7, test_size=0.3)

0.96

-0.36

-0.356544

0.962757

1.000000

-0.109369

0.871754

0.817954

sepal_width petal_length

petal_width

In []: M #Use KNN Classifier

In []: N #Train KNN classifier

1.000000

-0.420516

-0.356544

from sklearn.neighbors import KNeighborsClassifier

Knn = KNeighborsClassifier(n_neighbors = 3)

-0.420516

1.000000

```
petal_width
                           0.817954
                                      -0.356544
                                                 0.962757
                                                           1.0000000
In [10]:
          M #feature selection
             x=df.drop(['species'],axis=1)
            y=df['species']
                                 Ι
In [ ]: H print(x)
In [ ]: H print(y)
In [ ]: M from sklearn.model_selection import train_test_split
            X_train, X_test, Y_train, Y_test = train_test_split(
             x, y, train_size=0.7, test_size=0.3)
In [ ]:
         H #Use KNN Classifier
             from sklearn.neighbors import KNeighborsClassifier
             Knn = KNeighborsClassifier(n_neighbors = 3)
```

-0.356544

0.962757

sepal_width

petal_length

In [1: M #Train KNN classifier

-0.109369

0.871754

1,000000

-0.420516

-0.420516

```
1
                         4.9
                                      3.0
                                                   1.4
                                                                0.2
           2
                         4.7
                                      3.2
                                                   1.3
                                                                0.2
           3
                         4.6
                                     3.1
                                                   1.5
                                                                0.2
           4
                         5.0
                                     3.6
                                                   1.4
                                                                0.2
                         . . .
                                     • • •
                                                   ...
                                                                ...
           145
                         6.7
                                     3.0
                                                   5.2
                                                                2.3
           146
                                     2.5
                         6.3
                                                   5.0
                                                                1.9
           147
                         6.5
                                     3.0
                                                   5.2
                                                                2.0
           148
                                     3.4
                         6.2
                                                   5.4
                                                                2.3
           149
                         5.9
                                     3.0
                                                   5.1
                                                                1.8
           [150 rows x 4 columns]
In [ ]: H print(y)
```

1.4

sepal_length sepal_width petal_length petal_width

3.5

In [10]: H #feature selection

In [11]: H print(x)

ø

y=df['species']

x=df.drop(['species'],axis=1)

149 5.9 3.0 5.1 1.8

[150 rows x 4 columns]

In []: H print(y)

- In []: #Use KNN Classifier
 from sklearn.neighbors import KNeighborsClassifier
 Knn = KNeighborsClassifier(n_neighbors = 3)

- In []: M #check accuracy Score
 from sklearn.metrics import accuracy_score