Uogólnione modele liniowe

Laboratorium nr 1

- 1.1 Rozważamy dwa zbiory danych pochodzących z rozkładu dwumianowego, z n=25 i y=10 oraz n=50 i y=20 odpowiednio (y oznacza liczbę sukcesów).
 - (a) Narysować na jednym wykresie znormalizowane log-wiarogodności (jako funkcje od p, czyli prawdopodobieństwa sukcesu) odpowiadające badanym zbiorom (normalizacja ma polegać na odjęciu od funkcji log-wiarogodności tej samej funkcji, ale obliczonej w wartości estymatora NW). Zauważyć różnicę w krzywiźnie związaną z liczbą obserwacji w zbiorze. Jaka jest interpretacja statystyczna krzywizny funkcji log-wiarogodności?
 - (b) Użyć instrukcji nlm do numerycznego znalezienia maksimum (nieznormalizowanej) funkcji log-wiarogodności. (Uwaga: nlm znajduje minima, a nie maksima funkcji.) Eksperymentować z różnymi wartościami początkowymi.
 - (c) Porównać wartość odwrotności hesjanu w maksimum z wartością obserwowanej informacji w tym punkcie i ze standardowym estymatorem wariancji.
- 1.2 Dopasować do danych ze zbioru bliss

conc	dead	number
0	2	30
1	8	30
2	15	30
3	23	30
4	27	30

model logistyczny $y \sim \text{conc.}$ Jak zmienia się szansa zgonu przy zwiększeniu conc o 1?

- 1.3 Utworzyć rozwiniętą kopię zbioru **bliss** (w postaci danych niegrupowanych), na przykład za pomocą instrukcji **rep**. Dopasować model logistyczny. Porównać współczynniki z uzyskanymi w punkcie 1.
- 1.4 Zaprogramować procedurę iteracyjnej estymacji parametrów na przykładzie zbioru **bliss**. Wypisać kolejne przybliżenia parametrów β_1 , β_2 , dopasowane wartości $\hat{y_i} = n_i \hat{\pi_i}$, kolejne przybliżenia macierzy informacji Fishera oraz dewiacji dla kilku pierwszych iteracji. Eksperymentować z różnymi wartościami początkowymi.