ALL-ORDER UNIFORM MOMENTUM BOUNDS

FOR THE MASSLESS ϕ^4 THEORY

IN FOUR DIMENSIONAL EUCLIDEAN SPACE

Riccardo Guida¹ and Christoph Kopper²

Abstract: A panoramic overview is given, of a theorem [1] establishing physical and uniform bounds on the Fourier-transformed Schwinger functions of a massless ϕ^4 theory in four Euclidean dimensions, at any loop order in perturbation theory. (Talk given by RG at the Oberwolfach workshop "The Renormalization Group", March 13th - March 19th, 2011.)

¹Institut de Physique Théorique, CEA, IPhT, F-91191 Gif-sur-Yvette, France CNRS, URA 2306, F-91191 Gif-sur-Yvette, France email: riccardo . guida @ cea . fr

2Centre de Physique Théorique de l'Ecole Polytechnique, CNRS, UMR 7644 F-91128 Palaiseau, France. email: kopper @ cpht . polytechnique . fr

Preprint IPhT-T11/044, CPHT-RR010.0311 To be published in *Oberwolfach Reports*

All–order uniform momentum bounds for the massless ϕ^4 theory in four dimensional Euclidean space

RICCARDO GUIDA

(joint work with Christoph Kopper,[1])

A panoramic overview is given, of a theorem [1] establishing physical and uniform bounds on the Fourier-transformed Schwinger functions of a massless ϕ^4 theory in four Euclidean dimensions, at any loop order in perturbation theory.

The first step to set up the perturbative framework is to specify a free quantum theory describing a massless scalar field by fixing a centered Gaussian measure on $\mathcal{S}'(\mathbb{R}^4)$, $\mu_{\hbar C_R^{\Lambda,\Lambda_0}}$, whose covariance $\hbar C_R^{\Lambda,\Lambda_0}(x,y) := \hbar \chi_R(x) \, \chi_R(y) \, C^{\Lambda,\Lambda_0}(x-y)$ is assumed to be a distribution in $\mathcal{S}'(\mathbb{R}^8)$ acting as a positive bilinear form on test functions. $\hbar>0$ denotes the variable of the formal perturbative series. The short–distance behavior (smoothness) of $C^{\Lambda,\Lambda_0}(x)$ as a function is controlled by $\Lambda_0>0$ (known as ultra–violet, UV, cutoff), while the long–distance regularity is controlled by $0<\Lambda \leq \Lambda_0$ (infra–red, IR, cutoff). C^{Λ_0,Λ_0} vanishes. When Λ_0 tends to infinity and Λ tends to zero, $C^{\Lambda,\Lambda_0}(x)$ approaches the standard free propagator $\langle x \, | \, \partial^{-2} \, | \, 0 \rangle$. For any R>0, the non–negative function $\chi_R \in \mathcal{C}_c^{\infty}$ (\mathbb{R}^4) satisfies the "finite–volume" constraint $\chi_R(x)=1$ for any $|x|\leq R$.

For any $N \in \mathbb{N},$ and any $L \in \mathbb{N}_0$ the Schwinger functions in momentum space are defined by

$$(1) \ \hat{\mathcal{L}}_{\mathtt{N},\mathtt{L}}^{\mathtt{\Lambda},\mathtt{\Lambda}_{0}}(p_{[\mathtt{N}-1]}) := \lim_{R \to \infty} \left(\left(\frac{1}{\mathtt{L}!} \frac{\partial^{\mathtt{L}}}{\partial \hbar^{\mathtt{L}}} \right)_{\hbar=0} \left(\frac{\delta}{\delta \varphi(0)} \ \prod_{e=1}^{\mathtt{N}-1} \int \mathrm{d}^{4}x_{e} \ e^{-\mathrm{i}x_{e}p_{e}} \frac{\delta}{\delta \varphi(x_{e})} \right)_{\varphi=0} \right. \\ \left. \left(-\hbar \log \left(\int \mathrm{d}\mu_{\hbar C_{R}^{\mathtt{\Lambda},\mathtt{\Lambda}_{0}}}(\phi) e^{-\frac{1}{\hbar}S^{\mathrm{int}}(\phi+\varphi)} / \int \mathrm{d}\mu_{\hbar C_{R}^{\mathtt{\Lambda},\mathtt{\Lambda}_{0}}}(\phi) e^{-\frac{1}{\hbar}S^{\mathrm{int}}(\phi)} \right) \right) \right),$$

where: $[a] := [1:b], [a:b] := \{n \in \mathbb{Z} | a \le n \le b\}, \text{ and } p_{[n]} := (p_1, \dots, p_n).$ In (1), the interaction action $S^{\text{int}}(\varphi)$ is defined by

(2)
$$S^{\text{int}}(\varphi) := \int d^4x \left(A(\hbar) \frac{(\partial \varphi(x))^2}{2} + B_2(\hbar) \frac{\varphi(x)^2}{2} + B_4(\hbar) \frac{\varphi(x)^4}{4!} \right),$$

where A, B_2, B_4 are formal series in \hbar , whose coefficients are fixed order by order by appropriate renormalization conditions, in such a way that the "UV+IR limit" $\lim_{\Lambda_0 \to \infty} \lim_{\Lambda \to 0^+} \hat{\mathcal{L}}_{N,L}^{\Lambda,\Lambda_0}$ exists in $\mathcal{S}'(\mathbb{R}^{4(\mathbb{N}-1)})$ for all N, L. In particular, it turns out for a massless theory that A, B_2 are of order $O(\hbar)$, while $B_4 = g_0 + O(\hbar)$. From (1) and (2) it follows that $\hat{\mathcal{L}}_{2,0}^{\Lambda,\Lambda_0}$ and all $\hat{\mathcal{L}}_{N,L}^{\Lambda,\Lambda_0}$ with odd N vanish.

The UV+IR limit of $\hat{\mathcal{L}}_{N,L}^{\Lambda,\Lambda_0}$ is a regular function only at non–exceptional mo-

The UV+IR limit of $\mathcal{L}_{N,L}^{\Lambda,\Lambda_0}$ is a regular function only at non-exceptional momenta, see e.g. [2]. (A collection of four vectors $p_{[N-1]}$ is said exceptional iff it exists a non-empty $\mathbb{S} \subseteq [N-1]$ such that $\sum_{e \in \mathbb{S}} p_e = 0$.)

exists a non-empty $\mathbb{S} \subseteq [\mathbb{N}-1]$ such that $\sum_{e\in\mathbb{S}} p_e = 0$.) Any Schwinger function $\hat{\mathcal{L}}_{\mathbb{N},\mathbb{L}}^{\Lambda,\Lambda_0}$ defined in (1) can be computed from the standard weighted sum of all Feynman amplitudes proportional to $\hbar^{\mathbb{L}}$, obtained via Feynman rules from an appropriate set of connected amputated graphs with \mathbb{N} external lines. Each such set includes all graphs with vertices of coordination number 4 and loop number L. The word "amputated" means that Feynman rules do not associate any factor to the external lines.

Schwinger functions satisfy the "Polchinski" renormalization group (RG) flow equations, [3] (see [4] for an introduction), which in their perturbative form read:

$$(3) \ \partial_{\Lambda} \hat{\mathcal{L}}_{\mathtt{N},\mathtt{L}}^{\Lambda,\Lambda_{0}} \left(p_{[\mathtt{N}-1]} \right) = \mathcal{F}_{\mathtt{N},\mathtt{L},w}^{\Lambda,\Lambda_{0}} := \left(\frac{1}{2} \int \frac{\mathrm{d}^{4}\ell}{(2\pi)^{4}} \, \partial_{\Lambda} \hat{C}^{\Lambda,\Lambda_{0}} \left(\ell \right) \, \hat{\mathcal{L}}_{\mathtt{N}+2,\mathtt{L}-1}^{\Lambda,\Lambda_{0}} \left(p_{[\mathtt{N}-1]}, -\ell, \ell \right) \right. \\ \left. - \frac{1}{2} \sum_{\substack{\mathcal{E}' \uplus \, \mathcal{E}'' = [0:\mathtt{N}-1] \\ \mathtt{L}' + \mathtt{L}'' = \mathtt{L}}} \partial_{\Lambda} \hat{C}^{\Lambda,\Lambda_{0}} \left(\sum_{e \in \mathcal{E}'} p_{e} \right) \, \hat{\mathcal{L}}_{\mathtt{N}',\mathtt{L}'}^{\Lambda,\Lambda_{0}} \left(p_{\mathcal{E}'} \right) \, \hat{\mathcal{L}}_{\mathtt{N}'',\mathtt{L}''}^{\Lambda,\Lambda_{0}} \left(p_{\mathcal{E}''} \right) \right),$$

where $N' := |\mathcal{E}'| + 1$, $N'' := |\mathcal{E}''| + 1$, $p_0 := -\sum_{e \in [N-1]} p_e$, and the sum on the r.h.s. of (3) runs over all disjoint (possibly empty) sets $\mathcal{E}', \mathcal{E}''$ whose union gives [0:N-1], as well as over all non-negative integers L', L'' whose sum gives L.

When the field has a mass m > 0, it is not difficult to use the RG equations to bound Schwinger functions in momentum space (see e.g. [4]). Such bounds are simple but clearly unphysical because they depend polynomially on external momenta; moreover, they diverge when the mass vanishes and the IR limit is taken. More physical bounds have been proved in the massive case, [5].

The goal of the "existence and boundedness theorem" in [1] is to extend the ideas in [5] to obtain physical, uniform bounds for the massless case. The theorem assumes that the Fourier–transformed covariance $\hat{C}^{\Lambda,\Lambda_0}(p)$ is O(4) invariant, smooth in some sense, and such that $\Lambda^3 \partial_{\Lambda} \hat{C}^{\Lambda,\Lambda_0}(p)$ and $\Lambda_0^2 \Lambda^2 \partial_{\Lambda} \partial_{\Lambda_0} \hat{C}^{\Lambda,\Lambda_0}(p)$ (together will all necessary derivatives w.r.t. p) are exponentially decreasing when $|p|/\Lambda \to \infty$. The main result of the theorem is that for any N, L and any multi–index $w \in \mathbb{N}_0^{4(N-1)}$, there exist a polynomial \mathcal{P}_L of degree $\leq L$ and with non–negative coefficients, as well as a set of weighted trees $\mathcal{T}_{N,2L,w}$, such that (when e.g. $\mathbb{N} \geq 4$)

$$(4) \quad \left|\partial_{p}^{w} \hat{\mathcal{L}}_{N\geq4,L}^{\Lambda,\Lambda_{0}}\left(p_{[N-1]}\right)\right| \leq \mathcal{P}_{L}\left(\log_{+}\left(\frac{|p_{[N-1]}|_{\mu}}{\kappa}\right),\log_{+}\frac{\Lambda}{\mu}\right) \sum_{T\in\mathcal{T}_{N,2L,m}} \prod_{i\in\mathcal{I}(T)} |k_{i}|_{\Lambda}^{-\theta(i)}$$

for any $\Lambda_0 > 0$, $0 < \Lambda \le \Lambda_0$ and $p_{[\mathbb{N}-1]} \in \mathbb{R}^{4(\mathbb{N}-1)}$. In (4), $\mu > 0$ is the renormalization scale; $|p_{[\mathbb{N}-1]}| := \sup_e |p_e|$; $|p|_{\Lambda} := \sup(\Lambda, |p|)$; $\log_+ x := \log\sup(1, x)$. $\kappa := \sup(\Lambda, \inf(\eta(p_{[\mathbb{N}-1]}), \mu)) > 0$ is defined in terms of a "dynamical IR cutoff" $\eta(p_{[\mathbb{N}-1]}) := \inf_{\emptyset \neq \mathbb{S} \subseteq [\mathbb{N}-1]} |\sum_{e \in \mathbb{S}} p_e|$ (positive for non–exceptional momenta). $\mathcal{I}(T)$ is the set of internal lines of the weighted tree T; k_i is the momentum flowing through the internal line i, and $\theta(i) > 0$ is the total weight associated to i.

The sets $\mathcal{T}_{N,R,w}$ ($R \in \mathbb{N}_0$) satisfy two properties; nestedness: $\mathcal{T}_{N,R,w} \subseteq \mathcal{T}_{N,R+1,w}$; saturation: $\mathcal{T}_{N,R,w} = \mathcal{T}_{N,3N-2,w}$ for any $R \geq 3N-2$. The set $\mathcal{T}_{N,R,w=0}$ (corresponding to the absence of derivatives w.r.t. external momenta) is defined as the set of all $T = (\tau, \rho)$ in which τ is a tree and $\rho : \mathcal{I}(T) \to \{1, 2\}$ is a line weight, such that: a) τ has \mathbb{N} external lines and vertices of coordination number in $\{3, 4\}$; b) the number of vertices with coordination 3 is $\leq \mathbb{R}$; c) $\sum_{i \in \mathcal{I}(T)} \rho(i) = \mathbb{N} - 4$; d) there is a bijection among the vertices of coordination number 3 and the internal lines with $\rho = 1$. In the case w = 0 one has $\theta(i) = \rho(i)$.

As an example, for any L > 0 the set $\mathcal{T}_{N=6,R=2L,w=0}$ contains only the trees

and the trees derived from them by non–trivial permutations of the external momenta $p_{[0:5]}$. (Other trees with N external lines and vertices of coordination numbers 3,4 exist but do not satisfy to the defining conditions.) Correspondingly, in this case the bound (4) reads for any L > 0

$$|\hat{\mathcal{L}}_{6,L}^{\Lambda,\Lambda_0}(p_{[5]})| \leq (|p_1+p_2+p_3|_{\Lambda}^{-2}+|p_1+p_2+p_3|_{\Lambda}^{-1}|p_4+p_5|_{\Lambda}^{-1}+|p_1+p_2|_{\Lambda}^{-1}|p_3+p_4|_{\Lambda}^{-1}+\text{perms.}) \mathcal{P}_L,$$
 where \mathcal{P}_L has been introduced in (4).

The proof of the theorem is based on the recursive structure of the perturbative RG equations (3) (see e.g. [4]). The main difficulty is to wisely deal with spurious exceptional momenta, in order to keep the bound finite in the IR limit.

In the flow $\mathcal{F}_{N,L,w}^{\Lambda,\Lambda_0}$, see (3), the term quadratic in Schwinger functions acts as a junction of the weighted trees T',T'' in the bounds, respectively, of $\hat{\mathcal{L}}_{N',L'}^{\Lambda,\Lambda_0}$, $\hat{\mathcal{L}}_{N'',L''}^{\Lambda,\Lambda_0}$. Now, the junction of two weighted trees happens to be a weighted tree of the appropriate class and the inductive bound for $\hat{\mathcal{L}}_{N,L}^{\Lambda,\Lambda_0}$ is then reproduced.

The linear term in $\mathcal{F}_{N,L,w}^{\Lambda,\Lambda_0}$ is more problematic, because it contains a loop integration.

The linear term in $\mathcal{F}_{N,L,w}^{\Lambda,\Lambda_0}$ is more problematic, because it contains a loop integration which tends to destroy the tree structure of the bounds. The exponential fall-off in ℓ/Λ of the covariance allows to prove ([5],[1]) bounds of the form

(5)
$$\int d^4 \ell |\partial_{\Lambda} \hat{C}^{\Lambda,\Lambda_0}(\ell)| \prod_{j=1}^{n} |\ell + k_j|_{\Lambda}^{-\theta_j} \leq c \Lambda \prod_{j=1}^{n} |k_j|_{\Lambda}^{-\theta_j},$$

which, roughly speaking, amount to "cut the loop" and to set $\ell=0$ by deleting two external lines for each tree. This property makes the linear part of the flow more "tree friendly". The elimination of the unwanted Λ factor in (5) (using the bound $\Lambda \leq |k_{j'}|_{\Lambda}$ for some j'), and the integration over Λ (to recover Schwinger functions from the flow) are taken into account by eliminating the factors $|k_{j'}|_{\Lambda}^{-1}, |k_{j''}|_{\Lambda}^{-1}$ for each tree in the original bound of $\hat{\mathcal{L}}_{N+2,L-1}^{\Lambda,\Lambda_0}$, which amounts to consider a subtraction of two units in the original weights: this procedure can be consistently implemented as a mapping among our classes of weighted trees.

The logarithms in (4) originate from the Λ integration of the flow for marginal and irrelevant Schwinger functions, as well as from the integral interpolating marginal Schwinger functions from the renormalization point to a generic one.

REFERENCES

- [1] R. Guida, C. Kopper, in preparation.
- [2] G. Keller, C. Kopper, Commun. Math. Phys. **161** (1994) 515-532.
- [3] J. Polchinski, Nucl. Phys. B231 (1984) 269-295.
- [4] V. F. Müller, Rev. Math. Phys. 15 (2003) 491. [hep-th/0208211].
- [5] C. Kopper, F. Meunier, Annales Henri Poincaré 3 (2002) 435-449. [hep-th/0110120].