Hypothesis Testing (VIMP) Part 1

IMP for Interviews

Hypothesis Testing

- **Hypothesis testing** is a formal procedure used in statistics to decide whether there is enough evidence in a sample of data to infer that a certain condition holds for the entire population.
- It is a method of making statistical decisions using experimental data.

Null Hypothesis (H_0)

- The default assumption (e.g., "no effect," "no difference").
- Example: The new drug has no effect on blood pressure.
- Null hypothesis says nothing new is happening.

Failing to reject the null hypothesis doesn't necessarily mean that the null hypothesis is true;

Alternative Hypothesis (H_1 or H_a)

- The claim we aim to support (e.g., "there is an effect").
- Example: The new drug lowers blood pressure.

1-Tailed vs 2-Tailed test

- In a **two-tailed test**, you check for the possibility of the effect in both directions:
 - The sample mean could be significantly lower than 13 (one tail), or
 - It could be significantly higher than 13 (the other tail).
- Because H₁ states "not equal" (which covers both possibilities), this test is called two-tailed.
- 1-Tailed → < or >
- 2-Tailed → ≠

Significance Level (α)

- The probability of rejecting H_0 when it is true (**Type I Error**).
- Common choices: α =0.05 (5%) or α =0.01 (1%).

Test Statistic

• A value calculated from sample data (e.g., t, z, χ^2) to compare against a critical value or p-value.

p-value:

If $p < \alpha$, \rightarrow reject H_0

p-value calculation in python:

```
p_value = (1 - stats.t.cdf(t_stat, df))
```

• Do 2 * for 2-tailed test

Critical value (t*) calculation in python:

Calculating the t-Statistic:

$$t=\frac{\bar{x}-\mu_0}{s/\sqrt{n}}$$

• This measures how many standard errors the sample mean is from the hypothesized mean.

Type I vs. Type II Errors

- Type I Error: Rejecting H_0 when it is true (false positive).
- Type II Error: Failing to reject H_0 when it is false (false negative)

Steps in Hypothesis Testing

- 1. State the Hypotheses:
 - H_0 : Null hypothesis.
 - H_1 : Alternative hypothesis.
- 2. Choose Significance Level (a):
 - Typically $\alpha = 0.05$
- 3. Select the Appropriate Test:
 - **Z-test**: For large samples ($n \ge 30$) with known population variance.
 - **t-test**: For small samples (*n*<30) with unknown variance.
 - Chi-square test: For categorical data.
 - ANOVA: For comparing multiple groups.
- 4. Calculate the Test Statistic:

Example for a **t-test**:

$$t=rac{ar{x}-\mu_0}{s/\sqrt{n}}$$

- ullet $ar{x}$: Sample mean.
- μ_0 : Hypothesized population mean.
- s: Sample standard deviation.
- n: Sample size.

5. **Determine the p-value or Critical Value**:

• Compare the test statistic to a critical value from tables (e.g., t-table) or calculate the p-value.

6. Make a Decision:

- **Reject** H_0 if $p < \alpha$ or the test statistic exceeds the critical value.
- Fail to reject H_0 otherwise.

7. Interpret the Result:

• Example: There is sufficient evidence to conclude that the new drug lowers blood pressure.

Common Tests and When to Use Them

Test	Use Case	Example
One-Sample t- test	Compare sample mean to a known value.	Is the average height different from 5.8 ft?
Two-Sample t- test	Compare means of two independent groups.	Do men and women earn different salaries?
Paired t-test	Compare means of the same group before/after.	Did a training program improve test scores?
Chi-square Test	Test relationships between categorical variables.	Is there a link between gender and voting preference?

Rejection Region Approach/Critical Value Approach

- It involves defining a range of values (the rejection region) for the test statistic.
- If the computed test statistic falls within this region, we reject the null hypothesis (H_o); otherwise, we do not reject H_o.
- 1. Formulating hypotheses.
- 2. Choosing the significance level. (α =0.05)
- 3. Select the Appropriate Test and Compute Degrees of Freedom (e.g., t-test, z-test).
 - df=n−1
- 4. Determine the Critical Value(s) (from t-table or Python)
 - t*=stats.t.ppf(1- α /2,df)
- 5. Computing the **test statistic**

$$t=rac{ar{x}-\mu_0}{s/\sqrt{n}}$$

- 6. Determining the critical value.
- 7. Comparing the test statistic to the critical value.
- 8. Making a decision (reject or fail to reject H_o).

Test Statistic Approach	P-Value Approach
State H ₀ and H ₁	State H ₀ and H ₁
Determine test size α and find	Determine test size α
the critical value (CV)	
Compute a test statistic (TS)	Compute a test statistic and its p-
	value
Reject H_0 if $TS > CV$	Reject H_0 if p-value $\leq \alpha$
Substantive interpretation	Substantive interpretation

Step	Test Statistic Approach	P-Value Approach	Confidence Interval Approach	
1	State H ₀ and H ₁	State H ₀ and H ₁	State H ₀ and H ₁	
2	Determine test size α and find	Determine test size α	Determine test size α or 1- α , and a	
2	the critical value (CV)		hypothesized value	
3	Compute a test statistic (TS)	Compute a test statistic and its p-	Construct the $(1-\alpha)100\%$	
3		value	confidence interval (CI)	
4	Reject H_0 if $TS > CV$	Reject H_0 if p-value $< \alpha$	Reject H ₀ if a hypothesized value	
4			does not exist in CI	
5	Substantive interpretation	Substantive interpretation	Substantive interpretation	


```
| then reject H₀. Otherwise, do not reject H₀.

| p-value Approach
| Compute the p-value = 2 * P(T ≥ |t_statistic|)
| Decision: If p-value < α, reject H₀; else, do not reject
```

Hypothesis Testing

Reject H₀

Reject H₀-

EXAMPLE

Reject Ho

Q. Suppose a company is evaluating the impact of a new training program on the productivity of its employees. The company has data on the average productivity of its employees before implementing the training program.

The average productivity was **50 units per day with a known population standard deviation of 5 units**. After implementing the training program, the company measures the productivity of a random sample of **30 employees**. The

sample has an **average productivity of 53 units per day.** The company wants to know if the new training program has significantly increased productivity.

Here,

$$H_0 = \mu = 50$$

 $\sigma = 5$

$$\alpha = 0.05 \rightarrow 95\%$$

n = 30

 $\bar{x} = 53$

We have population SD, therefore we'll use Z-test

Z Test Statistics Formula

$$Z = (53 - 50)/(5/\sqrt{30}) = 3.28$$

Z Critical values for 95% Ci = 1.65

STANDARD NORMAL DISTRIBUTION: Table Values Represent AREA to the LEFT of the Z score.										
Z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.50000	.50399	.50798	.51197	.51595	.51994	.52392	.52790	.53188	.53586
0.1	.53983	.54380	.54776	.55172	.55567	.55962	.56356	.56749	.57142	.57535
0.2	.57926	.58317	.58706	.59095	.59483	.59871	.60257	.60642	.61026	.61409
0.3	.61791	.62172	.62552	.62930	.63307	.63683	.64058	.64431	.64803	.65173
0.4	.65542	.65910	.66276	.66640	.67003	.67364	.67724	.68082	.68439	.68793
0.5	.69146	.69497	.69847	.70194	.70540	.70884	.71226	.71566	.71904	.72240
0.6	.72575	.72907	.73237	.73565	.73891	.74215	.74537	.74857	.75175	.75490
0.7	.75804	.76115	.76424	.76730	.77035	.77337	.77637	.77935	.78230	.78524
0.8	.78814	.79103	.79389	.79673	.79955	.80234	.80511	.80785	.81057	.81327
0.9	.81594	.81859	.82121	.82381	.82639	.82894	.83147	.83398	.83646	.83891
1.0	.84134	.84375	.84614	.84849	.85083	.85314	.85543	.85769	.85993	.86214
1.1	.86433	.86650	.86864	.87076	.87286	.87493	.87698	.87900	.88100	.88298
1.2	.88493	.88686	.88877	.89065	.89251	.89435	.89617	.89796	.89973	.90147
1.3	.90320	.90490	.90658	.90824	.90988	.91149	.91309	.91466	.91621	.91774
1.4	.91924	.92073	.92220	.92364	.92507	.92647	.92785	.92922	.93056	.93189
1.5	.93319	.93448	.93574	.93699	.93822	.93943	.94062	.94179	.94295	.94408
1.6	.94520	.94630	.94738	.94845	.94950	.95053	.95154	.95254	.95352	.95449
1.7	.95543	.95637	.95728	.95818	.95907	.95994	.96080	.96164	.96246	.96327
1.8	.96407	.96485	.96562	.96638	.96712	.96784	.96856	.96926	.96995	.97062
1.9	.97128	.97193	.97257	.97320	.97381	.97441	.97500	.97558	.97615	.97670
2.0	.97725	.97778	.97831	.97882	.97932	.97982	.98030	.98077	.98124	.98169
2.1	.98214	.98257	.98300	.98341	.98382	.98422	.98461	.98500	.98537	.98574
2.2	.98610	.98645	.98679	.98713	.98745	.98778	.98809	.98840	.98870	.98899

- As it's a 1-tailed test, we didn't divide it by 2
 - o Otherwise, for 2-tailed, z would have been 1.96

3.28 > 1.65 ... Therefore, we **reject the** H_0

Q. Suppose a snack food company claims that their Lays wafer packets contain an average weight of 50 grams per packet. To verify this claim, a consumer watchdog organization decides to test a random sample of Lays wafer packets. The organization wants to determine whether the actual average weight differs significantly from the claimed 50 grams. The organization collects a random sample of 40 Lays wafer packets and measures their weights. They find that the sample has an average weight of 49 grams, with a known population standard deviation of 4 grams.

THIS APPROACH IS NOT USUALLY PREFERRED BECAUSE IT DOES NOT TELL YOU THE STRENGTH OF THE REJECTION.

- i.e. It cannot differentiate between z=2 & z=15
- Therefore, we use **p-value approach**

With p-value approach:

- We calculate the p-value
- We can measure strength

Type 1 vs Type 2 Error- VVVIMP for Interviews

Type I Error (False Positive)

- Definition: Occurs when you reject the null hypothesis (H_o) when it is actually true.
- FALSE ALARM
- **Interpretation:** You claim there is an effect or difference when, in fact, there isn't one.
- The probability of committing a Type I error is denoted by α (alpha), which is also the significance level of the test.
- **Example:** In a medical trial, concluding that a new drug is effective when it actually has no effect is a Type I error.
- Set a lower significance level (α), e.g., α =0.01 to reduce the Type-1 Error.

Type II Error (False Negative)

• **Definition:**Occurs when you **fail to reject the null hypothesis (H_o)** when the alternative hypothesis (H₁) is actually **true**.

- **Interpretation:**You claim there is no effect or difference when, in fact, there is one.
- Notation: The probability of committing a Type II error is denoted by β (beta).
 - The power of the test is 1- β , which indicates the probability of correctly detecting an effect.
 - We can decrease Type-2 error by increasing power of the test.
- **Example:**In the same medical trial, concluding that the new drug is not effective when it actually works is a Type II error.

Actual Truth	Decision Made	Error Type
H _o is True	Reject H _o	Type I Error (α)
H _o is True	Fail to Reject Ho	Correct Decision
H₀ is False (H₁ True)	Reject Ho	Correct Decision

Actual Truth	Decision Made	Error Type
H₀ is False (H₁ True)	Fail to Reject Ho	Type II Error (β)

Ex.

H0 = Person is innocent.

H1= Person is not innocent.

Type-1 Error → The person is innocent. But still they are being punished.

Type-2 Error → We are acquitting the person. But that person is not innocent.

1-Tailed vs 2-Tailed test

- In a **two-tailed test**, you check for the possibility of the effect in both directions:
 - The sample mean could be significantly lower than 13 (one tail), or
 - It could be significantly higher than 13 (the other tail).
- Because H₁ states "not equal" (which covers both possibilities), this test is called two-tailed.
- 1-Tailed → < or >
- 2-Tailed → ≠

Where can be Hypothesis Testing Applied?

Medicine and Healthcare

- Test the effectiveness of a new drug or treatment.
- Compare patient outcomes between different therapies.

Business and Marketing

- Evaluate the impact of a new marketing campaign.
- Test whether a new product feature increases customer satisfaction.

Social Sciences

• Determine if there's a relationship between education level and income.

Test the effectiveness of a new teaching method.

Quality Control

- Check if a manufacturing process meets quality standards.
- Compare the performance of two production lines.

Finance

- Test if a new investment strategy yields higher returns.
- Compare the risk profiles of different portfolios.

Machine Learning Applications of Hypothesis Testing

A. Model Evaluation

1. Compare Model Performance:

- Test if one model (e.g., Random Forest) performs significantly better than another (e.g., Logistic Regression) on a dataset.
- Example: Use a paired t-test to compare cross-validation scores of two models.

2. Statistical Significance of Metrics:

- Test if the accuracy, precision, or recall of a model is significantly better than a baseline.
- Example: Use a z-test to compare classification accuracy to a random guess.

B. Feature Selection

1. Test Feature Importance:

 Determine if a feature significantly contributes to the model's performance. Example: Use a chi-square test for categorical features or ANOVA for continuous features.

2. Correlation Testing:

- Test if a feature is significantly correlated with the target variable.
- Example: Use Pearson's correlation test for linear relationships.

C. A/B Testing in ML Systems

1. Model Deployment:

- Test if a new model performs better than the current one in production.
- Example: Use a **two-sample t-test** to compare key metrics (e.g., click-through rates) between the two models.

2. Hyperparameter Tuning:

- Test if a specific hyperparameter setting leads to significantly better performance.
- Example: Use a **paired t-test** to compare validation scores across different hyperparameter configurations.

D. Data Drift Detection

1. Test for Distribution Shifts:

- Detect if the input data distribution has changed over time (e.g., due to concept drift).
- Example: Use the **Kolmogorov-Smirnov test** to compare training and test data distributions.

2. Feature Drift:

- Test if the distribution of a specific feature has changed.
- Example: Use a chi-square test for categorical features or t-test for continuous features.

E. Bias and Fairness Testing

1. Test for Bias:

- Check if a model's predictions are biased against a specific group (e.g., gender, race).
- Example: Use a chi-square test to compare prediction outcomes across groups.

2. Fairness Metrics:

- Test if fairness metrics (e.g., equal opportunity, demographic parity) are significantly different across groups.
- Example: Use a **t-test** to compare fairness metrics.

F. Anomaly Detection

1. Test for Outliers:

- Determine if a data point is significantly different from the rest.
- Example: Use a **Grubbs' test** or **Z-score test** for outlier detection.

G. Hypothesis Testing in Deep Learning

1. Test for Overfitting:

- Compare training and validation performance to detect overfitting.
- Example: Use a **paired t-test** to compare training and validation losses.

2. Test for Model Stability:

- Check if a model's performance is consistent across different random seeds.
- Example: Use an ANOVA test to compare performance across multiple runs.

Key Hypothesis Tests in ML

t-test	Compare means of two groups.	Compare model accuracy on two datasets.
ANOVA	Compare means of three or more groups.	Compare performance of multiple models.
Chi-square Test	Test relationships between categorical variables.	Test if a feature is independent of the target.
Kolmogorov- Smirnov	Compare two distributions.	Detect data drift between training and test sets.
Mann-Whitney U Test	Compare medians of two groups (non-parametric).	Compare model performance on skewed data.

```
Machine Learning Applications
                             //
                              //
     | Feature |
                               | Model
     |Selection|
                              |Comparison|
                               +---+
                            | Test if performance|
| Test if Feature|
is significant |
                            | improvements are
 (t-test, chi-
                            | statistically
 square, etc.)
                            | significant (A/B
                            | testing, etc.)
     +----+
                               +----+
     | Validate|
                               | Detect |
     |Assumptions|
                               | Drift (Feature/
     | (Normality,|
                               | Concept Drift)
```