Selecting eigenvectors by inspection

6/6 points (100%)

Practice Quiz, 6 questions

Next Item

1/1 points

6/6 points (100%)

In the following diagram, the dark green vector is given by $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$, the purple vector by $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and the brown vector by $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

The transformation $T=\begin{bmatrix}2&0\\0&2\end{bmatrix}$ is applied, which sends the three vectors to the light green vector $\begin{bmatrix}2\\0\end{bmatrix}$, the magenta vector $\begin{bmatrix}2\\2\end{bmatrix}$ and the orange vector $\begin{bmatrix}0\\2\end{bmatrix}$, respectively.

Which of the three original vectors are eigenvectors of the linear transformation T?

Correct

This eigenvector has eigenvalue 2, which means that it stays in the same direction but doubles in size.

$\begin{tabular}{c} \begin{tabular}{c} \begin{tabu$

6/6 points (100%)

Practice Quiz, 6 question **Correct**

This eigenvector has eigenvalue 2, which means that it stays in the same direction but doubles in size.

Correct

This eigenvector has eigenvalue 2, which means that it stays in the same direction but doubles in size.

None of the above.

Un-selected is correct

1/1 points

6/6 points (100%)

In the following diagram, the dark green vector is given by $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$, the purple vector by $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and the brown vector by $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

The transformation $T=\begin{bmatrix}3&0\\0&2\end{bmatrix}$ is applied, which sends the three vectors to the light green vector $\begin{bmatrix}3\\0\end{bmatrix}$, the magenta vector $\begin{bmatrix}3\\2\end{bmatrix}$ and the orange vector $\begin{bmatrix}0\\2\end{bmatrix}$, respectively.

Which of the three original vectors are eigenvectors of the linear transformation T?

Correct

This eigenvector has eigenvalue 3, which means that it stays in the same direction but triples in size.

$\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ Selecting eigenvectors by inspection

6/6 points (100%)

Practice Quiz, 6 question In-selected is correct

Correct

This eigenvector has eigenvalue 2, which means that it stays in the same direction but doubles in size.

None of the above.

Un-selected is correct

1/1 points

6/6 points (100%)

In the following diagram, the dark green vector is given by $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$, the purple vector by $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and the brown vector by $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

The transformation $T=\begin{bmatrix}1&2\\0&1\end{bmatrix}$ is applied, which sends the three vectors to the light green vector $\begin{bmatrix}1\\0\end{bmatrix}$, the magenta vector $\begin{bmatrix}3\\1\end{bmatrix}$ and the orange vector $\begin{bmatrix}2\\1\end{bmatrix}$, respectively.

Which of the three original vectors are eigenvectors of the linear transformation T?

Correct

Well done! This eigenvector has eigenvalue 1 - which means that it is unchanged by this transformation.

points

6/6 points (100%)

Practice Quiz, 6 question In-selected is correct

	$\begin{bmatrix} 0 \\ 1 \end{bmatrix}$
Un-se	elected is correct
	None of the above.
Un-se	elected is correct
	1/1

6/6 points (100%)

In the following diagram, the dark green vector is given by $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$, the purple vector by $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and the brown vector by $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

The transformation $T=\begin{bmatrix}0&-1\\1&0\end{bmatrix}$ is applied, which sends the three vectors to the light green vector $\begin{bmatrix}0\\1\end{bmatrix}$, the magenta vector $\begin{bmatrix}-1\\1\end{bmatrix}$ and the orange vector $\begin{bmatrix}-1\\0\end{bmatrix}$, respectively.

Which of the three original vectors are eigenvectors of the linear transformation T? Select all correct answers.

Un-selected is correct

Selecting eigenvectors by inspection

6/6 points (100%)

Practice Quiz, 6 questions

Un-selected is correct

None of the above.

Correct

None of the three original vectors remain on the same span after the linear transformation. In fact, this linear transformation has no eigenvectors in the plane.

1/1 points

6/6 points (100%)

In the following diagram, the dark green vector is given by $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$, the purple vector by $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and the brown vector by $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

The transformation $T=\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$ is applied, which sends the three vectors to the light green vector $\begin{bmatrix} -1 \\ 0 \end{bmatrix}$, the magenta vector $\begin{bmatrix} -1 \\ -1 \end{bmatrix}$ and the orange vector $\begin{bmatrix} 0 \\ -1 \end{bmatrix}$, respectively.

Which of the three original vectors are eigenvectors of the linear transformation T?

Correct

This eigenvector has eigenvalue -1, which means that it reverses direction but has the same size.

$\begin{tabular}{c} \begin{tabular}{c} \begin{tabu$

6/6 points (100%)

Practice Quiz, 6 question **Correct**

This eigenvector has eigenvalue -1, which means that it reverses direction but has the same size.

Correct

This eigenvector has eigenvalue -1, which means that it reverses direction but has the same size.

None of the above

Un-selected is correct

1/1 points

6/6 points (100%)

In the following diagram, the dark green vector is given by $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$, the purple vector by $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and the brown vector by $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

The transformation $T=\begin{bmatrix}2&1\\0&2\end{bmatrix}$ is applied, which sends the three vectors to the light green vector $\begin{bmatrix}2\\0\end{bmatrix}$, the magenta vector $\begin{bmatrix}3\\2\end{bmatrix}$ and the orange vector $\begin{bmatrix}1\\2\end{bmatrix}$, respectively.

Which of the three original vectors are eigenvectors of the linear transformation T?

Correct

This eigenvector has eigenvalue 2, which means that it stays in the same direction but doubles in size.

6/6 points (100%)

Practice Quiz, 6 question In-selected is correct

Un-se	$egin{bmatrix} 0 \ 1 \end{bmatrix}$ elected is correct	
	None of the above.	
Un-selected is correct		