Information Retrieval

Buzzword Bingo

- Information Retrieval (IR)
 - finding material (usually documents) of an unstructured nature (usually text) that satisfies an information need of users from within large collections of documents (usually stored on computers).
- IR Process
 - Data -> Create Document Representation -> Index Docs -> Ready
 - Done beforehand
 - User query -> create query representation -> Search Indexed Docs -> Order
- Retrieval Model
 - Quality of a retrieval model depends on how well it matches user needs!
 - Determines
 - the structure of the document representation
 - the structure of the query representation
 - the similarity matching function
- Query
 - what users look for
 - list of words or phrases
- Document
 - o Data
 - o Bag of words
- Corpus/Collection
 - Set of documents
- Index
 - o representation of information to make querying easier
 - Manual Indexing
 - Pro: Human indexers can establish relationships and concepts between seemingly different topics that can be very useful to future readers
 - Con: Slow and expensive
 - Automatic Indexing
 - Inverted Index
 - map terms to docs
 - finds docs matching query

Inverted Indexes

Document 1 (ID=1) Terms The bright blue butterfly hangs on the breeze. best 0 1 blue o breeze 1 o bright 1 o Document 2 (ID=2) butterfly It's best to forget the forget o 1 great sky and to retire great from every wind. hangs needs o o retire 1 Document 3 (ID=3) o search O sky o 1 Under blue sky one wind needs not search around.

Stopword

List

and

around

every

it

from

one

the

to

under

- Indexing with Controlled Vocabulary
 - Find synonyms
 - describe concepts with lists of terms
 - e.g. Vehicle, Car, Mercedes, Taxi all describe the same concept
 - can increase performance
- Vector Space Models
 - map docs to terms
 - find docs matching query
 - ranks docs for best match
- Controlled Vocabulary
 - relationship between terms
 - find synonyms
 - List
 - e.g. alphabetical list
 - Ring
 - set of X terms
 - used in search engines
 - Taxonomy
 - hiarchical classification system
 - each term has one or more broader terms except the top term
 - each term has one or more narrower terms except the bottom terms
 - Thesaurus
 - taxonomy + additional relationships
- Boolean Queries
 - o OR
 - AND
 - o BUT
 - Ranking hard => yes, no answer
 - Relevance feedback hard => no ranking

- all matched docs are returned
- o complex requests hard to write
- Union
 - everything in A + everything in B = OR
- Intersection
 - What's in both = AND
 - o performance -> start with smallest set then keep ANDing
- Difference
 - (A OR B) (A AND B) = BUT
- Term
 - word/concept in document or query
 - weighting
 - too frequent
 - significant
 - too rare
 - document with 10 occurences of a term is more important than a document with 1 occurance BUT not 10 times as important => weighting becasue relevance doesn't increase proportionally
- Dictionary
 - o sorted list of terms used by the index
- Document Processing Pipeline / Normalization
 - Text
 - remove properties and formatting
 - o parse
 - o remove stopwords
 - stemming or lemmatization
 - synonym matching
 - indexing
- Token
 - o small unit of meaningful text
- Tokenization
 - break into tokens on whitespaces
- Tokenization Problems
 - Specific domains like biomedical texts have lots of unusual symbols/special terms that should be interpreted correctly
 - Semantic meaning could be lost
- Lemmatization/Stemming
 - Stem = cut off
 - walk, walked, walking => walk => walk(ed | ing)
 - Lemmatizaton = get words like in dictionary through morphological analysis
- Morphology
 - knowledge how words are morphed => write, wrote, written = write
- Stop Word removal
 - Stop Word
 - small/no semantic content
 - the, a, an, is

- Ranked Retrieval
 - o more relevant = higher up
 - Jaccard Coefficinet
 - CONS:
 - term frequency doesn't matter
 - but rare terms are more informative than frequent ones
 - Statistical Models
 - vector space model
 - statistical info used for ranking => term frequency
 - Ranked based on similarity to query
 - similarity based on frequency of keywords
- Vector Space Model
 - Docs and queries are represente as N-dimensional vectors
 - Terms get a weight
 - Terms = Axes of the Vector Space
 - Documents are points or vectors in the vector space
 - o Document collection can be represented as term-document matrix
 - Entry = Weight of term in a document
 - Term Frequnecy = frequenzy / most commont term
 - Document frequency
 - number of documents containing the term
 - Inverse Document Frequency
 - Terms that appear in many different documents are less
 - CONS
 - missing semantic info
 - missing syntactic info
 - assumption of term independenc (ignores synonyms)
 - Lacks the control of a Boolean model (e.g., indicative of overall topic
 - Term Frequency + Inverse Document Frequency:
 - TF-IDF Weighting
 - most common term weighting approach (vector-space model)
 - A term occurring frequently in the document but rarely in the rest of the collection is given high weight
- Similarity
 - Euclidean distance
 - Vector Product
 - Cosine similarity

Clustering Classification

Buzzword Bingo

- Clustering
 - o infers groups based on clustered objects
 - the process of grouping a set of objects (documents) into classes of similar objects (documents)

- most common form of unspervised learning
- o Docs in same cluster behave similar with respect to relevance to information needs
- Applications
 - Speed up vector space retrieval
 - imporved recall => better search results
- Requirements

Some requirements and problems

- Fast
 - Immediate response to query
- Flexible
 - Web content changes constantly
- User-oriented
 - Main goal is to aid the user in finding sought information
- Online or offline clustering?
- What to use as input
 - Entire documents
 - Structure information (links)
 - Other data (i.e. click-through)
 - Use stop word lists, stemming, etc.
- How to define similarity?
 - Content (vector-space model)
 - Link analysis
 - Usage statistics
- How to group similar documents?
 - What does similarity mean semantically?
 - Statistical vs. semantical proximity?
- How to label the groups?
- Problems

Main issues for clustering

Representation for clustering

- Document representation
 - Vector space? Vectors are sparsely filled. Length: ~ 10000 terms
 - · Normalization? Centroids are not length normalized
- Need a notion of similarity/distance; Distance: Comparison is time intensive and not very effective
- How many clusters?
 - Fixed a priori?
 - Completely data driven?
 - Avoid trivial clusters too large or too small
 - If a cluster's too large, then for navigation purposes you have wasted an extra user click without whittling down the set of documents much.
 - How to find the optimal number of clusters?
- Flat or hierarchical?
- Overlapping? Hard or soft?
- Incremental?
- o Documents within a cluster should be similar
- o Documents from different clusters should be dissimilar
- Algos
 - Distance Based
 - K Means
 - single-pass
 - Hirarchical
 - Bottom Up
 - Top Down
 - Other
 - Suffix Tree Clustering
- Pipeline
 - Partitioning Algo
 - create k clusters
- K-Means
 - o clusters based on centroids
 - Reassignment of instances to clusters is based on distance to the current cluster centroids
- Hard Clustering
 - o one doc => one cluster
 - K-means
- Soft Clustering
 - one doc => set of clusters
 - gives a probability that a doc belongs to a specific cluster
 - Sum of possibilties = 1
 - Types

- Fuzzy Clustering (pattern recognition)
- soft K-means
- Naive Bayes Model

Naïve Bayes Model – Example Play Tennis?

- Example: <Outlk=sun, Temp=cool, Humid=high, Wind=strong>
- Estimatet parameters θ

```
• P(yes) = 9/14
```

- P(no) = 5/14
- P(Wind=strong|yes) = 3/9
- P(Wind=strong|no) = 3/5
- ...
- We compute

•
$$P(no) P(sun|no) P(cool|no) P(high|no) P(strong|no) = 5/14 * 3/5 * 1/5 * 4/5 * 3/5 = 0.021$$

- Therefore this new example is classified to "no"
- Expectation Maximization Algo
 - o uses bayes model
 - Expectation
 - Use naive bayes to compute probability => soft label
 - Maximization
 - use standard naives bayes training to learn to re-estimate params
- Hirarchical clustering HAC

Clustering Examples Hirachical Clustering

Clustering obtained by cutting the dendrogram at a desired level:

Each connected component forms a cluster.

0

Clustering Examples Hirachical Agglomerative Clustering (HAC)

- Starts with each doc in a separate cluster
 - Then repeatedly joins the closest pair of clusters, until there is only one cluster.
- The history of merging forms a binary tree or hierarchy.
 - Start with all instances in their own cluster.
 - 2. Until there is only one cluster:
 - Among the current clusters, determine the two clusters, c_i and c_i, that are most similar.
 - Replace c_i and c_j with a single cluster $c_i \cup c_j$

0

- Buckshot Algo
 - HAC + K-means
- When is clustering good?
 - nodes in a cluster similar (intra-calss similarity = high)
 - nodes in other clusters different (inter-class similarity = low)
- Cluster Quality Evaluation
 - purity

- ratio of dominant class and the size of the cluster
- entropy of classes
 - mutual information
- Silhouette Values
 - Good clusters have the property that cluster members are close to each other and far from members of other clusters

•

- Classification
 - o assigns objects to predefined groups
 - Rocchio Method
 - tf-idf weights
 - assign to the closest centroid
 - o k Nearest Neighbor kNN

Information Extraction

- Identify specific pieces of information (data) in a unstructured or semi structured textual document.
- Transform unstructured information of a corpus of documents or web pages into a structured database
- processing human language documents utilizing natural language processing (NLP)
- current approaches to IE focus on narrowly restricted domains: sports, medicine, business
- Extraction of
 - Entities => e.g. Person => You
 - Generic => Person, Organization, ...
 - Custom => domain specific e.g. Drugs, Deseases
 - Numeric => Time, Date, Numbers
 - Attributes => e.g. Title of a Person => BSc
 - Facts => relations between entities => Suckerberg works at Facebook
 - Events => activity or occurance => NSA terroristic acts, ABC merges with BBC etc.
- NER Named Entity Recognition
 - o mark each element which represents
 - person
 - company
 - country
 - **.**..
 - NER involves identification of proper names in texts, and classification into a set of predefined categories of interest

NER-Pipeline

- Extract Content
 - remove irrelevant content = junk
 - Pictures
 - Tables
 - Diagrams
 - Adds
- Tokenization
 - extract tokens
 - Problems
 - symbols like (. , : "" " ...)
- Sentence Segmentation
 - Nomen est Omen
- POS Tagging
 - Assign types to words
 - Noun
 - Adjective
 - Verb
 - **.**..
 - Problem: ambiguity
 - Rule based approach
 - analyze word, word before, word after etc.
 - analyze surrounding context
 - Probabilistic Approach
 - How common is it that this type of word is after such a type of word
 - Unigram Tagger
 - assign most likely tag to token
 - Stochastic / N-gram / HMM
 - N-gram
 - generalization of unigram tagger
 - look at sequences of words and assign tags
 - consider all possible combination and take the most likely one
 - HMM-based tagging

 (Informally) Markov models are the class of probabilistic models that assume we can predict the future without taking too much account of the past

- Bigram Tagger
 - assign tags to groups of two words
- Phrase Structure
 - identify syntactical froups within a sentence
 - Noun Phrase
 - Verb Phrase
 - Chunking (Partial Parsing)
 - divide sentence in prase chunks
- Recognize Entities
 - find named entities
 - 1. Segmentation
 - 2. Classification
- Morphology
 - get root form of a word
- Sequence Labeling
 - Local: the previous label
 - o Global: lable by maximizing on the whole sentence
- TE Tempalte Element Task
 - o generic object with attributes
 - o draws evidence from everywhere in the text
- TR Tempalte Realtion
 - find the relationship
 - o e.g. employee_of, product_of, location_of
- ST Scenario Template Task
 - extract specific event information
 - relate info to organization/person/artifact
- CO Coreference Task
 - o ???
- Examples of IE
 - Disaster Events
- Components of an IE system
 - 1. Tokenization
 - split input into parts = tokes
 - 2. Morphological and lexical analysis
 - Part of Speech POS Tagging

- assign type to word (verb, noun, adjective, ...)
- disambiguating the sense of ambigous words
 - words that are written the same but have different meanings
 - flies => the flies sit on a pile of shit, or a bird flies
- 3. Syntactic analysis
 - connection between parts of a sentence
- 4. Domain analysis
 - combine all info from the steps before
 - describes relationship between entities
 - CO COreference Resolution Anaphora Resolution
 - match indirect references
 - e.g. they in the next sentence refers to an entity from the privioud one
- 5. Integration
 - Merge results with oter IE systems (Onthologies)
- Evaluation
 - o Precision
 - probability that retrieved doc is relevant
 - o Recall
 - probability that relevant doc is retreived in a search
 - F-measure
 - combines precision and recall

Web Search & Crawling

- User Needs
 - Informational
 - Navigational
 - o Transactional
- Result Quality
 - Relevance not enough
 - Trustworthy?
- Precision vs Recall
 - Precision
 - o Recall: not relevant in Web
- Crawler Operations
 - o begin with known URLs
 - o fetch and parse them
 - extract URLs
 - Place extracted URL on queue
 - Fetch each URL on the queue and repeat
- Crawler Props
 - DISTRIBUTED SYSTEM => one crawler not feasible
 - Malicious pages
 - SPAM

- Spider Traps
- Non Malicious
 - Latency can be an issue
 - How deep should you crawl a sites URL hierarchy?
 - Duplicate pages
- What Crawlers must do
 - o be polite
 - only allowed pages
 - be robust
 - spider traps etc.
- What Crawlers should do
 - distribute operations
 - o be scalable
 - o perfomance
 - high quality pages first
 - o continous operations
 - check sites in cycles
 - o Extensible
 - new data formats
- Crawling steps
 - o pick URL
 - o fetch document at URL
 - o parse URL
 - link extraction
 - Check if URL has content already seen
 - if not add indices
 - For each extracted URL
 - pass URL filter test
 - check if it is in frontier

Basic crawler architecture

- 0 02.10.2010
- URL Frontier
 - multiple pages from the same host possible
 - o avoid fetching them all at the same time
 - try to keep crawling threads busy
- DNS
 - o get IP to URL
 - use DNS caching (lookups can take seconds)
 - Batch DNS requests
- Parsing URL Normalization
 - o some extracted links are relative URLs
 - solution
 - expand URLs => absolute path
- Content already seen?
 - duplication widespread
 - o if a page is in the index do not process it
 - o verify with
 - doc fingerprint e.g. Hash
 - shingles = compare text parts (Shingle)
- Duplicate URL Eliminator
 - o one-shot crawl => just once not continuous

Link Analysis

- The Web is a directed graph
- Indexing anchor text
 - o can score anchor text with a weight depending on the authority of the anchor page's website
- Citation Analysis

- citation frequency
- Co-citation coupling frequency
- Citation Indexing
- Pagerank preview
- · Query independent ordering
 - count links
 - undirected = inlink + outlink
 - directed = inlink
- Page Rank
- Topic specific Page Rank
- HITS
 - hub page
 - authority page
- High-level scheme

Semantic Knowledge Models, Semantic Web Stack

- Semantics = study of meaning
- common languages
 - Index = common terms and symbols
 - Glossary = their meaning => vocabulary in a domain with definitions for terms
 - Taxonomy = classification of concepts
 - hierarchical classification
 - classes of objects and relations between them
 - NO description or definition of objects
 - Thesaurus = Associations between concepts
 - is unambigious UNLIKE NATURAL LANGUAGE
 - It is a model that attempts to describe and represent a topic exactly
 - a systematically ordered collection of concepts
 - controlled vocabulary => (attribute, value, range)
 - manages synonyms, broader/narrower and related terms
 - Map
 - spatial visualization of the structure
 - representation) provides information on the semantic meaning of what is shown
 - content
 - ideas and knowledge
 - information and resources
 - Topic Map
 - is the collection of knowledge on subjects
 - TAO
 - Topic = concept => person
 - Association = realtionship between concepts e.g. mother
 - Occurence = representation of information resources on a specific topic
 - Onthology = Rules and knowledge about which crosslinks are permitted
 - explicit specification of a conceptualization
 - agreement among people with a common motive of sharing

- defines a common vocabulary for info sharing in a domain
- purpose
 - structuring
 - communication
 - interoperability
 - data exchange
 - systems engineering, reliability, reusability, ...
- Components
 - concepts
 - types
 - individuals
 - properties
 - inheritance
 - axioms
 - a truth that's not questioned anymore
 - desribes a segment of the world in a given domain
 - Things = concepts
 - classes
 - individuals
 - concepts have
 - props
 - follow restrictions
 - relationships
 - follow restrictions
- Folksonomy
 - Social network => social tagging in social software
 - generated by machines
 - no
- hierarchy
- quality control
- sound theory
- Web 2.0
 - users are now prosumers (producer + consumer)
 - o users create and edit content themselves
 - wikis, blog, sharing (youtube), social networks
- Web 3.0
 - o extension of the current web
 - o give content meaning and connect content
 - o improves machine-human interaction
 - o based on RDF
 - is a common framework for information sharing
 - W3C
 - Semantic Web Stack

Semantic Web Stack des W3C

- Character Set
 - Unicode
 - basic coding standard
 - URI
 - Unambigous identification of resources
 - only ASCII chars
 - URIs are the standard for the identification of (online) resources
 - Resources are objects
 - IRI
- uses UNICODE character set > ASCII
- XML
 - extended markup language
 - syntax basis
 - Namespaces
 - allows usage of the same tag in different contexts
- RDF
 - assigns specific URIs to its individual fields
 - RDF
 - provides assertion
 - is machine processable
 - is defined by a set of triplets
 - Resources are identified by URIs
 - Predicates are defined by the RDF vocab

- namespaces shorten URIs
- RDFS
 - RDF Schema
 - onthology language
 - allows the creation of vocabs
 - classes, properties, domains, ranges, inheritance (class and property), containers
 - meaningless statements can be prevented through the use of classes
 - e.g. only authors can write books
 - e.g. only books can be written
- OWL Web Onthology Language
 - based on RDF
 - higher expressiveness than RDF
 - allows complex relationships
- Rule SWRL und RIF
 - SWRL
 - OWL + Rule markup language
 - RIF
 - Rule Interchange Format
 - translation between rule languages
- SPARQL
 - RDF query language
- Logic Framework
 - inference engine
 - draw conclusions
 - derive new knowledge
 - proof is hard
 - apply rules and draw conclusions
- Trust
 - required to check the validity of information
 - trustworthiness of the source
 - authenticity of the source
 - digital signatures => to ensure
- Cryptography
 - ensure data security
- User Interface & Applications
 - use semantic web applications
 - Tools

Knowledge Engineering & Onthology Description

- Kowledge Engineering
 - Knowledge Base
 - facts
 - rules

- o Inference Engine
 - Brain
 - new knowledge generated by inference
- User Interface
 - Fill KB
 - Query
 - inference results
 - update knowledge
- Knowledge Aquisition
 - get expert knowledge
- Formalization
- Knowledge Processing
 - for problem solving
 - e.g. inference
- Knowledge Representation
 - UI
- Phases
 - indentify task
 - LOOP
 - Knowledge acquisition
 - ontohology => specify vocabulary
 - formalization => Axioms and instances
 - inference procedure => Evaluate + Test
 - implementation, maintenance
 - END LOOP
 - Phase 1 Problem Description
 - identify task
 - specify domain
 - elect experts => Competence questions
 - Phase 2 Knowledge Acquisition
 - gather knowledge
 - direct
 - expert does it
 - indirect
 - knowledge engineer uses KM methods with experts
 - autoamted
 - machine learning
 - model-based
 - KM models
 - list important concepts
 - wine
 - grape type
 - color
 - taste
 - **...**
 - documentation

- Phase 3 Conceptualization
 - specify the vocabulary
 - onthology
 - cognitive to representation level
 - consisten representation of knowledge
 - define classes and the hierarchy
 - Taxonomy = Hierarchy:
 - Wine
 - Red
 - Cabernet Franc
 - Pinot Noir
 - **.** ..
 - White
 - Rose
 - **.**..
- Phase 4 Formalization
 - Instances
 - Axioms
 - Inheritance
 - Disjunction
 - Constraints
 - cardinality
 - transitivity
 - symmetry
 - DEFINE
 - relationships
 - properties / slots
 - values / facts
- Phase 5 Evaluation
 - Inference
 - Validate acquired knowledge
 - completeness
 - reliability
 - Iterate if necessary => continue with Phase 2
- Phase 6 Implementation and Maintenance
 - Implementation
 - UI
- query
- explanation/visualizaton component
- manipulation component

Onthology description language

- Why?
 - o base for data and knowledge sharing
 - o common vocab

- o same understanding of terms
- Automation (Reasoning)
 - derive implicit knowledge
 - identify inconsistency
 - determine concept hierarchies
- Onthologies
 - o set of concepts
 - o and relationships between them
 - includes
 - description and definition of terms/concepts
 - properties
 - relationships
 - limitations
 - inference and integrity rules
 - individuals
- RDF
 - o basic onthology language
 - SPO Triples
 - (subject, predicate, object)
 - o (resource, property, property value)
 - o (kasperl, hasFriend, Pezi)
 - o resource = object
 - o resource identified with URI
- RDFS
 - o classes, properties and hierarchies
 - inheritance => subclassOf
- OWL
 - Domains and Ranges are AXIOMS not constraints
 - Object property = link to individual
 - inverse
 - hasPartent/isParent
 - functional
 - exactly one individual is in relation with this property
 - hasBirthmothe
 - inverse functional
 - the inverse property is functional
 - isBirthmotherOf
 - transitiv
 - has ancestor
 - symmetric
 - hasSibling
 - asymmetric
 - hasChild
 - reflexive
 - must relate to self
 - knows

- irreflexive
 - relates a and b
 - a and b cannot be the same individual
 - isMotherOf
- Datatype Property
 - functional = only one value allowed
 - else = multiple values allowed
- Datatype property = link to XML schema/datatype value or rdf literal
- Annotation properties
 - add info
- Describe a detail of the world:
 - What things are there?
 - What is the relation of these things?
 - What characteristics do these things and the relationships with each other have?
- Ontology description = Syntax
- Ontology rules = Semantics
- Types
 - Named class
 - disjoint
 - union
 - complementary
 - anonymous
 - enumeration
- Anonymous class
 - pattern matching
 - classification
 - limited on properties
 - e.g. all elements which have a hasFriend relationship
- Primitive Classes
 - A member of a named class must satisfy the conditions
 - o An individual which satisfies the conditions is not necessarily an element from the named class
- Defined Class
 - Elements of the defined class satisfy the conditions
 - o if an element satisfies the conditions it is also the defined class
- Necessary vs . Necessary and Sufficient Conditions
- Partial vs . Complete Definitions
- Open World
 - All that's not explicitly marked as impossible can exist
 - o OWL
- Closed World
 - All that's not explicitly allowed is impossible
 - Database
- Rules SWRL
 - o more powerful deductive reasoning
 - o body -> head
 - body and head = conjunction of atoms

- o atom = (arg1, arg2, ..., argN)
- o Class Atom
 - Person(?p)
- o Individual Property Atoms
 - hasBrother(?x, ?y)
- Data Valued Property Atoms
 - hasAge(?x, ?age)
- o Different and Same Individuals
 - differentFrom(?x, ?y)

0

SPARQL

- Queries
 - SELECT
 - get
 - ASK
 - true/false
 - CONSTRUCT
 - get RDF Graph
 - DESCRIBE
 - get RDF graph describing resources
 - not important
- SQL like
- not XML like

•