Einführung in die Geometrie und Topologie Blatt 1

Jendrik Stelzner

18. April 2014

Aufgabe 1.1:

Da in der Aufgabenstellung nicht angegeben ist, bezüglich welcher Topologien die Räume betrachtet werden sollen, gehen wir davon aus, dass die durch die euklidische Norm $\|\cdot\|$ induzierte Topologie gemeint ist.

Wir definieren

$$f: \operatorname{inn}\left(D^2\right) \to \operatorname{inn}\left(D^2\right), x \mapsto \begin{pmatrix} \cos\frac{1}{1-\|x\|} & -\sin\frac{1}{1-\|x\|} \\ \sin\frac{1}{1-\|x\|} & \cos\frac{1}{1-\|x\|} \end{pmatrix} \cdot x.$$

f ist wohldefiniert, denn

$$\operatorname{inn}(D^2) = \{ x \in \mathbb{R}^2 : ||x|| < 1 \}.$$

und ||f(x)|| = ||x|| für alle $x \in \text{inn}(D^2)$, da Rotationsmatrizen orthogonal sind.

Wir behaupten, dass f ein Homöomorphismus von inn (D^2) ist.

Zum Nachweis der Bijektivität definieren wir

$$g:\operatorname{inn}\left(D^2\right)\to\operatorname{inn}\left(D^2\right), x\mapsto\begin{pmatrix} \cos\frac{1}{1-\|x\|} & \sin\frac{1}{1-\|x\|} \\ -\sin\frac{1}{1-\|x\|} & \cos\frac{1}{1-\|x\|} \end{pmatrix}\cdot x.$$

Die Wohldefiniertheit von g ergibt sich analog zu der von f. Da $\|f(x)\| = \|x\|$ für alle $x \in \text{inn}\left(D^2\right)$ sieht man, dass (fg)(x) = x und (gf)(x) = x für alle $x \in \text{inn}\left(D^2\right)$, also $fg = gf = \text{id}_{\text{inn}(D^2)}$. Das zeigt, dass f bijektiv ist mit $g = f^{-1}$.

Die Stetigkeit von f und g ergibt sich direkt daraus, dass sie Verknüpfung stetiger Funktionen sind. Das zeigt, dass f ein Homöomorphismus ist.

Wir behaupten weiter, dass sich f nicht zu einer stetigen Abbildung $D^2 \to D^2$ fortsetzen lässt. Angenommen, es gebe eine solche stetige Fortsetzung F von f. Wir betrachten die Folge $(a_n)_{n\geq 1}$ auf D^2 mit

$$a_n = \begin{pmatrix} 1 - \frac{1}{n\pi} \\ 0 \end{pmatrix} \text{ für alle } n \geq 1.$$

Offenbar gilt $a_n \to e_1 = (1,0)^T$ für $n \to \infty$ in D^2 . Aufgrund der Folgenstetigkeit von F (in metrischen Räumen ist Folgenstetigkeit äquivalent zu Stetigkeit) ist daher auch $F(a_n) \to F(e_1)$ für $n \to \infty$ in D^2 . Da $a_n \in \operatorname{inn}(D^2)$ für alle $n \ge 1$ ist jedoch

$$F(a_n) = f(a_n) = \begin{pmatrix} \cos{(n\pi)} & -\sin{(n\pi)} \\ \sin{(n\pi)} & \cos{(n\pi)} \end{pmatrix} a_n = (-1)^n a_n \text{ für alle } n \geq 1,$$

und die Folge $((-1)^n a_n)_{n\geq 1}$ konvergiert in D^2 offensichtlich nicht. Dieser Widerspruch zeigt, dass f keine stetige Fortsetzung $D^2\to D^2$ besitzt.

Aufgabe 1.2:

(a)

Angenommen [0,1] ist nicht zusammenhängend. Dann gibt es $U,V\subseteq [0,1]$ mit $U,V\neq\emptyset$ und $[0,1]=U\cup V$, so dass U und V offen in [0,1] sind. Dabei können wir o.B.d.A. davon ausgehen, dass $1\in V$.

Wir bemerken, dass für jede Folge $(a_n)_{n\in\mathbb{N}}$ auf U mit $a_n\to a$ in \mathbb{R} auch $a\in U$ ist: Da V offen in [0,1] ist gibt es $W\subseteq\mathbb{R}$ offen, so dass $V=[0,1]\cap W$. Es ist daher $U=[0,1]\cap(\mathbb{R}-W)$ abgeschlossen in \mathbb{R} , und deshalb $a\in U$. (Aus der Analysis ist bereits bekannt, dass eine Menge $A\subseteq\mathbb{R}$ genau dann abgeschlossen ist, wenn für jede Folge $(a_n)_{n\in\mathbb{N}}$ auf A mit $a_n\to a$ in \mathbb{R} auch $a\in A$.) Analog ergibt sich, dass für jede Folge $(b_n)_{n\in\mathbb{N}}$ auf V mit $b_n\to b$ in \mathbb{R} schon $b\in V$.

Sei nun $c=\sup U$. Da $\emptyset \neq U \subseteq [0,1]$ ist $c\in [0,1]$, also entweder $c\in U$ oder $c\in V$. Da es nach Definition von c eine Folge $(a_n)_{n\in\mathbb{N}}$ in U mit $a_n\to c$ in \mathbb{R} gibt, muss $c\in U$. Inbesondere ist daher $c\not\in V$ und c<1.

Da $(c,1] \subseteq V$ gibt es eine Folge $(b_n)_{n \in \mathbb{N}}$ auf V mit $b_n \to c$ in \mathbb{R} . Daher muss $c \in V$, was im Widerspruch zu $c \notin V$ steht.

Das zeigt, dass es keine solchen Mengen U und V geben kann. Also muss [0,1] zusammenhängend sein.

(b)

Sei X ein wegzusammenhängender topologischer Raum. Angenommen, X wäre nicht zusammenhängend. Dann gibt es offene Mengen $U,V\subseteq X$ mit $U,V\neq\emptyset$, so dass $X=U\cup V$. Es sei $x\in U$ und $y\in V$.

Da X wegzusammenhängend ist gibt es eine stetige Abbildung $\lambda:[0,1]\to X$ mit $\lambda(0)=x$ und $\lambda(1)=y$. Es ist daher

$$[0,1] = \lambda^{-1}(X) = \lambda^{-1}(U \cup V) = \lambda^{-1}(U) \cup \lambda^{-1}(V),$$

mit $\lambda^{-1}(U) \neq \emptyset$ da $0 \in \lambda^{-1}(U)$ und $\lambda^{-1}(V) \neq \emptyset$ da $1 \in \lambda^{-1}(V)$. Da U, V offen in X sind und λ stetig ist, sind $\lambda^{-1}(U), \lambda^{-1}(V)$ offen in [0,1]. Es folgt, dass [0,1] nicht zusammenhängend ist, was falsch ist.

Das zeigt, dass es keine solchen Mengen U und V gibt. Also ist X zusammenhängend.

Aufgabe 1.4:

(a)

Für alle $x, y \in X$ ist

$$d'(x,y) = 0 \Leftrightarrow \frac{d(x,y)}{d(x,y)+1} = 0 \Leftrightarrow d(x,y) = 0 \Leftrightarrow x = y$$

und

$$d'(x,y) = \frac{d(x,y)}{d(x,y)+1} = \frac{d(y,x)}{d(y,x)+1} = d'(y,x),$$

da d eine Metrik auf X ist. Die Dreiecksungleichung für d' ergibt sich aus der Dreiecksungleichung für d durch

$$d'(x,z) = \frac{d(x,z)}{d(x,z)+1} = 1 - \frac{1}{d(x,z)+1} \le 1 - \frac{1}{d(x,y)+d(y,z)+1}$$

$$= \frac{d(x,y)+d(y,z)}{1+d(x,y)+d(y,z)} = \frac{d(x,y)}{1+d(x,y)+d(y,z)} + \frac{d(y,z)}{1+d(x,y)+d(y,z)}$$

$$\le \frac{d(x,y)}{1+d(x,y)} + \frac{d(y,z)}{1+d(y,z)} = d'(x,y) + d'(y,z)$$

für alle $x, y, z \in X$. Das zeigt, dass d'' eine Metrik auf X ist.

(b)

Für alle $x, y \in X$ ist

$$d''(x,y) = 0 \Leftrightarrow \min\{d(x,y), 1\} = 0 \Leftrightarrow d(x,y) = 0 \Leftrightarrow x = y$$

und

$$d''(x,y) = \min\{d(x,y), 1\} = \min\{d(y,x), 1\} = d''(y,x),$$

da deine Metrik auf Xist. Die Dreiecksungleichung für $d^{\prime\prime}$ ergibt sich aus der Dreiecksungleichung für d durch

$$d''(x,z) = \min\{d(x,z),1\} \le \min\{d(x,y) + d(y,z),1\}$$

$$\le \min\{d(x,y),1\} + \min\{d(y,z),1\} = d''(x,y) + d''(y,z)$$

für alle $x, y, z \in X$. Dabei haben wir genutzt, dass

$$\min\{a+b,c\} \le \min\{a+b,a+c,c+b,2c\} = \min\{a,c\} + \min\{b,c\}$$

für alle $a,b,c\geq 0$.

(c)

Es ist klar, dass d und d'' die gleich Topologie induzieren, denn für eine Teilmenge $U\subseteq X$ und einen Punkt $x\in U$ gibt es genau dann ein $\varepsilon>0$ mit $B_{\varepsilon}(x)\subseteq U$, wenn es ein $0<\varepsilon'\le 1$ mit $B_{\varepsilon'}(x)\subseteq U$ gibt. (Existiert ein solches ε' , so kann man $\varepsilon=\varepsilon'$ wählen; existiert ein solches ε , so kann man $\varepsilon'=\min\{\varepsilon,1\}$ wählen.)

d' und d'' induzieren die gleiche Topologie auf X, da

$$d'(x,y) \le d''(x,y) \le 2d'(x,y)$$
 für alle $x,y \in X$,

was sich aus

$$\frac{a}{a+1} \le \min\{a,1\} \le \frac{2a}{a+1}$$
 für alle $a \ge 0$.

ergibt

Der erste Teil der Ungleichung folgt daraus, dass für alle $a \geq 0$

$$\frac{a}{a+1} \le a \text{ und } \frac{a}{a+1} \le 1$$

und damit

$$\frac{a}{a+1} \le \min\{a,1\}.$$

Der zweite Teil der Ungleichung ergibt sich wegen

$$\min\{a,1\} \leq \frac{2a}{a+1} \Leftrightarrow (a+1)\min\{a,1\} \leq 2a \text{ für alle } a \geq 0$$

durch eine einfache Fallunterscheidung: Für $0 \leq a < 1$ ist

$$(a+1)a \le 2a \Leftrightarrow a(1-a) \ge 0,$$

was offenbar gilt, und für $a \geq 1$ ist

$$a+1 \le 2a \Leftrightarrow a \ge 1$$
.

Das zeigt, dass auch d' und d'' die gleiche Topologie induzieren.