OLABISI ONABANJO UNIVERSITY, AGO-IWOYE DEPARTMENT OF MATHEMATICAL SCIENCES B.So. DEGREE EXAMINATIONS (200LEVEL) RAIN SEMESTER 2013/2014

MAT202: ELEMENTARY DIFFERENTIAL EQUATIONS

INSTRUCTION: ANSWER ALL QUESTIONS. TIME	ALLOWED: 2HRS
MATRIC. NO. YOUR DEPARTMENT.	***************************************
SURNAME OTHER NAMES	
O LIIDIC IVILIDIO	

- 1. What is "order" of a differential equation?
- 2. Write an example of a nonlinear ordinary differential equation.
- 3. Find the differential equation satisfied by $y = e^x(c_1 + c_2x)$ by differentiating twice and eliminating the constants c_1 and c_2 .
 - 4. Given one solution of $x^2y'' + xy' 4y = 0$ as $y_1 = x^2$, find a second solution y_2 such that $y_2 = v(x)y_1$.
 - 5. Let $y_1 = e^x \sin x$ and $y_2 = \cos x$ be two solutions of a second order ordinary differential equation. Find the Wronskian.
 - 6. Solve the equation $\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^2 = 0$

Hamdal at

Solve the differential equations 7 - 11; say the method used in each case

7.
$$(1-y^2)dx + (1-x^2)dy = 0$$

$$8. x \frac{dy}{dx} + (1-x)y = xe^{x}.$$

9.
$$(3x^2y + y^2 + 1)dx + (x^2 + 2xy - 1)dy$$
.

10.
$$(x + y)dy = (x - y)dx$$

11.
$$xy' + y = x$$
; $y(1) = 2$

72. Find the general solution of y'' - 2y' + 3y = 0.

13. Solve
$$y'' - 6y' + 9y = 0$$
, $y(0) = 2$, $y'(0) = 4$

14. Use the method of undetermined coefficients to find the complete solution of $y'' - 3y' + 2y = e^x + x$

15. Solve $y'' + y' - 2y = 3e^{\pm}$ by methode of variation of parameters.

16.
$$\frac{d^2y}{dx^2} + \lambda^2 y = 0$$
; $y(0) = 0$, $y(\pi) = 0$,

17. Find the solution of the set of equations

$$2\frac{dx}{dt} = 3x - y$$

$$2\frac{dy}{dt} = 3y - x$$

18. By substituting $y = u/\sqrt{x}$ in the equation $x^2y'' + xy' + (x^2 - n^2) = 0$ obtain the equation u'' + q(x)u = 0. What is q(x) as $x \to \infty$?

19. Change the variable $z = 1/y^2$ in the equation $xy' + y = x^4y^3$. Hence obtain the solution.

20. The gradient of a curve at any point (x,y) on the curve is directly proportional to the product of x and y. The curve passes through the point (1,1) and at this point the gradient of the curve is 4. Form the differential equation in x and y and solve this equation to express y in trems of x.