

February 6, 2021 Naman Gupta

Overview

Prerequisites -

- Basics of Machine Learning Regression, Classification, Gradient Descent
- Vanilla Neural Networks
- Familiarity with Python
- Enthusiasm to explore stuff yourself

What will we cover?

- Basics of Deep Neural Networks
- Handling Datasets
- Debugging DL models Measuring model performance
- Leveraging State of the Art research
- Transfer Learning
- Model Ensembling

Introduction

• What is Computer Vision?

CV is defined as a field of study that seeks to develop techniques to help computers "see" and understand the content of digital images such as photographs and videos.

• Why do we need it?

Automation - Human Resource is expensive

Challenges?

Complexity of the visual world

Introduction

A non-exhaustive list of tasks solved using Computer Vision and Deep Learning -

- Image Classification
- Object Detection
- Semantic Segmentation
- Instance Segmentation
- Human Pose Estimation
- Super Resolution
- Image Generation
- Image Captioning

Object Detection + Instance Segmentation

Introduction

Human Pose Estimation

Image Generation
Faces generated by StyleGAN2

thispersondoesnotexist.com

Introduction - History

Refresher - Neural Networks

Summary: the equations of backpropagation

$$\delta^L = \nabla_a C \odot \sigma'(z^L) \tag{BP1}$$

$$\delta^{l} = ((w^{l+1})^{T} \delta^{l+1}) \odot \sigma'(z^{l})$$
 (BP2)

$$\frac{\partial C}{\partial b_j^l} = \delta_j^l \tag{BP3}$$

$$\frac{\partial C}{\partial w_{jk}^l} = a_k^{l-1} \delta_j^l \tag{BP4}$$

Resources:

http://neuralnetworksanddeeplearning.com/ Neural networks - 3Blue1Brown

Neural Networks - Layers

Neural Networks - Convolutions

2D Convolution Zero padding

2D Convolution Same Padding

Transposed 2D Convolution

Dilated Convolution

Neural Networks - Layers

- Normalization Reducing internal variance
 - o Batch Norm
 - Layer Norm
 - o Group Norm
 - Instance Norm
- Dropout
- SoftMax
- MaxPool vs Strided Convolutions
- Transposed Convolutions
- Dilated Convolutions

Neural Networks - Activation Functions

- Sigmoid
- Tanh
- ReLU
- Leaky ReLU
- Hardswish
- Many others...

What should I use?

There's no correct answer. Avoid Sigmoid and Tanh unless necessary. Why? Go with ReLU or one of its variants.

Neural Networks - Loss Functions

Depends on the task at hand.

- Classification: Cross Entropy Loss, Focal Loss
- Regression: L2 (Mean Squared Error), L1, Smooth L1
- Detection: Multi Objective Loss mIoU + CLS + REG
- Semantic Segmentation : Cross Entropy, Dice Loss

General Tips -

- Check if your dataset is imbalanced
- For multi objective loss functions it is important to tune the relative weightage of individual losses
- Loss is not a metric (More on this later)

Neural Networks - Optimizers

- SGD
- RMSProp
- Adam
- RAdam
- AdamW
- LookAhead

Is one optimizer better than other?

Datasets

- Why do DNN require a lot of data? Is there a way out?
- Exploratory Data Analysis Why is it important?
- Dataset Splits Train, Validation and Test
 - Why is it needed and what's the correct way?
 - o k-fold Cross Validation
- How to handle imbalanced data?
 - Oversampling
 - Undersampling
 - SMOTE
 - Using weighted loss functions
 - Getting more data!

Datasets - Augmentation

What type of augmentation do I use? Depends on the specific use case.

Some general augmentation techniques -

- Horizontal / Vertical Flip
- Shift Scale Rotate
- Noise, Blur
- Brightness / Contrast , Hue Saturation

Some other non-trivial augmentation techniques -

- CutMix, Mixup, Mosaic, CutOut
- AutoAugment

Can GANs help in augmentation?

Debugging Models - Tracking Loss

- Is training loss sufficient?
- Interpreting loss across epochs
 - Learning Rate
 - Warmup
 - Decay Cosine Annealing, Step Scheduler
 - Underfitting / Overfitting
- Measuring a model's performance Loss vs Metric

Debugging Models - Bias vs Variance

High Bias - Underfitting

- Decrease Regularization
- Use larger models (Naively adding more layers doesn't always work!)

High Variance - Overfitting

- Increase Regularization
 - Weight Decay L2
 - Dropout
 - BatchNorm! has regularizing properties
- Early Stopping
- Data Augmentation
- Get more data!

Metrics are important!

- Classification Accuracy isn't a good measure
 - Confusion Matrix Precision, Recall and F1 Score
 - AUC Curve TPR vs FPR
- Detection
 - Mean Average Precision (mAP): Area under the PR curve
- Segmentation
 - Mean Intersection over Union (mIoU)
 - Dice coefficient
- GANs
 - Frechet Inception Distance (FID)
- Super Resolution
 - Peak Signal to Noise Ratio (PSNR)

Transfer Learning

- Pretrained weights are generally better than random initialization.
- How do you use a pre-trained model?
 - Replace the head with a randomly initialized one.
 - Freeze parameters in initial layersHow many layers to freeze?
 - Or even train the whole model with your dataset
 Will converge faster than a randomly initialized model
- Examples?
 - Use any pre-trained model on ImageNet, finetune on your specific dataset
 - StyleGAN2-ADA: Train a GAN with your own data with less than 1000 examples!

SoTA Review - Classification

- Benchmark Datasets
 - ImageNet One dataset to rule them all!
- Popular Breakthroughs

0	AlexNet - Deep Learning Era begins	2012
0	VGG-19 - Neural Networks go deeper	2014
0	ResNet - Skip Connections, More than 100 Layers	2015
0	MobileNetV2 - Inverted Residuals	2018
0	EfficientNet - AutoML and Model Scaling	2019
0	ViT, DeiT - Transformers in Computer Vision	2020

Do you need these complex architectures for your two class dataset? No.

SoTA Review - Detection

- Benchmark Datasets
 - o MS COCO
 - Pascal VOC
- Popular Breakthroughs

0	FasterRCNN	2016
0	MaskRCNN	2017
0	YOLO	2016-20
0	EfficientDet	2020

SoTA Review - Semantic Segmentation

- Benchmark Datasets
 - Cityscapes
 - Pascal VOC
- Popular Breakthroughs

0	DeepLab	2016-18
0	UNet - Medical Images	2015-18
\circ	PSPNet	2017

Ensembling and TTA

Ensembling

- Training multiple models, combining their predictions
 - Simple Mean / Weighted Mean
- Should be used as a last resort to squeeze that last percent of accuracy

Test Time Augmentation (TTA)

 Augmenting the test image to get multiple images, passing each augmented image to the model and combining all the predictions

Some Practical Tips for the Hackathon

- Do a thorough Data Analysis before going into modelling
 - In case of imbalanced datasets use weighted loss functions
 Example Focal Loss / Weighted Cross Entropy for Classification
 - Check if there are inherent labelling errors in the data
- Always use a cross validation set
- Don't use complex models blindly: With great models comes great responsibility!
 - Example Using EfficientNet for MNIST
- Leverage transfer learning and SoTA models as much as possible, but don't push too hard for latest research.
- Look for open source implementations before getting into your own code implementation
- Don't forget data augmentation!
- Look for related datasets if any Google Dataset Search
- Use Ensembling and TTA if necessary

What happened in 2020?

Except Covid-19

- Transformers in Computer Vision
 - Vision Transformer achieves SoTA in ImageNet
 - o DeiT
 - OpenAI CLIP : Connecting Images with Text
 - OpenAI Dall-E: Generating Images from Text
- YOLOv4
- EfficientDet
- ResNeSt

PyTorch example

```
import torch.nn as nn
import torch.nn.functional as F
class Net(nn.Module):
    def init (self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(3, 6, 5)
        self.pool = nn.MaxPool2d(2, 2)
        self.conv2 = nn.Conv2d(6, 16, 5)
        self.fc1 = nn.Linear(16 * 5 * 5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)
    def forward(self, x):
        x = self.pool(F.relu(self.conv1(x)))
       x = self.pool(F.relu(self.conv2(x)))
       x = x.view(-1, 16 * 5 * 5)
       x = F.relu(self.fc1(x))
       x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x
net = Net()
```

```
for epoch in range(2): # loop over the dataset multiple times
    running_loss = 0.0
    for i, data in enumerate(trainloader, 0):
        # get the inputs; data is a list of [inputs, labels]
        inputs, labels = data
        # zero the parameter gradients
        optimizer.zero grad()
        # forward + backward + optimize
        outputs = net(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()
        # print statistics
        running loss += loss.item()
        if i % 2000 == 1999:
                               # print every 2000 mini-batches
            print('[%d, %5d] loss: %.3f' %
                  (epoch + 1, i + 1, running loss / 2000))
            running loss = 0.0
print('Finished Training')
```

Conclusion

Don't get intimidated! - A lot was covered in the previous slides and you do not need to know everything.

Deep Learning as a field is progressing every day at a very fast pace. Hence keeping track of everything is not practically possible neither needed. Nevertheless keep exploring, we all are learning together!

Additional Resources

- Deep Learning Specialization Coursera
- CS231n by Stanford University Lectures available on YouTube
- Kaggle Competitions and Datasets
- paperswithcode.com Search SoTA architectures and their code implementations
- arxiv-sanity.com See what's trending in research

Awesome repositories related to Computer Vision

- https://github.com/rwightman/pytorch-image-models
- https://github.com/albumentations-team/albumentations/
- https://github.com/rwightman/efficientdet-pytorch
- https://github.com/pytorch/vision

Contact Me

Naman Gupta Facebook - naman.iitk Email - namangup@iitk.ac.in

