

STEI - Institut Teknologi Bandung

Modul 3

Integer

Representasi dan Operasi

EL3011 Arsitektur Sistem Komputer

Contents

- 1. Integer Representation
- 2. Conversion and Casting
- 3. Expanding and Truncating
- 4. Integer Addition, Negation, Multiplication and Shifting
- 5. Summary

This module adopted from 15-213 Introduction to Computer Systems Lecture, Carnegie Mellon University, 2020

STEI - Institut Teknologi Bandung

Modul 3. Integer

3.1. Integer Representation

EL3011 Arsitektur Sistem Komputer

Encoding Integers

Unsigned

$$B2U(X) = \sum_{i=0}^{w-1} x_i \cdot 2^i$$

Two's Complement

$$B2T(X) = -x_{w-1} \cdot 2^{w-1} + \sum_{i=0}^{w-2} x_i \cdot 2^i$$

Sign Bit

short int
$$x = 15213$$
;
short int $y = -15213$;

- C does not mandate using two's complement
 - But, most machines do, and we will assume so
- C short 2 bytes long

	Decimal	Hex	Binary	
x	15213	3B 6D	00111011 01101101	
У	-15213	C4 93	11000100 10010011	

- Sign Bit
 - For 2's complement, most significant bit indicates sign
 - 0 for nonnegative
 - 1 for negative

Two-complement: Simple Example

$$-16$$
 8 4 2 1 $10 = 0$ 1 0 1 0 $8+2 = 10$

$$-16$$
 8 4 2 1 -10 = 1 0 1 0 $-16+4+2$ = -10

Two-complement Encoding Example (Cont.)

x = 15213: 00111011 01101101y = -15213: 11000100 10010011

Weight	152	13	-152	213
1	1	1	1	1
2	0	0	1	2
4	1	4	0	0
8	1	8	0	0
16	0	0	1	16
32	1	32	0	0
64	1	64	0	0
128	0	0	1	128
256	1	256	0	0
512	1	512	0	0
1024	0	0	1	1024
2048	1	2048	0	0
4096	1	4096	0	0
8192	1	8192	0	0
16384	0	0	1	16384
-32768	0	0	1	-32768
Sum		15213		-15213

Numeric Ranges

Unsigned Values

•
$$UMax = 2^{w} - 1$$
111...1

• Two's Complement Values

•
$$TMin = -2^{w-1}$$
100...0

•
$$TMax = 2^{w-1} - 1$$

Values for W = 16

	Decimal	Hex	Binary
UMax	65535	FF FF	11111111 11111111
TMax	32767	7F FF	01111111 11111111
TMin	-32768	80 00	10000000 00000000
-1	-1	FF FF	11111111 11111111
0	0	00 00	00000000 00000000

Values for Different Word Sizes

	W			
	8	16	32	64
UMax	255	65,535	4,294,967,295	18,446,744,073,709,551,615
TMax	127	32,767	2,147,483,647	9,223,372,036,854,775,807
TMin	-128	-32,768	-2,147,483,648	-9,223,372,036,854,775,808

Observations

- |TMin| = TMax + 1
 - Asymmetric range
- UMax = 2 * TMax + 1
- Question: abs(TMin)?

C Programming

- #include limits.h>
- Declares constants, e.g.,
 - ULONG_MAX
 - LONG_MAX
 - LONG_MIN
- Values platform specific

Unsigned & Signed Numeric Values

Χ	B2U(<i>X</i>)	B2T(<i>X</i>)
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	8	-8
1001	9	- 7
1010	10	-6
1011	11	- 5
1100	12	-4
1101	13	– 3
1110	14	-2
1111	15	-1

- Equivalence
 - Same encodings for nonnegative values
- Uniqueness
 - Every bit pattern represents unique integer value
 - Each representable integer has unique bit encoding
- ⇒ Can Invert Mappings
 - $U2B(x) = B2U^{-1}(x)$
 - Bit pattern for unsigned integer
 - $\bullet \ \mathsf{T2B}(x) = \mathsf{B2T}^{-1}(x)$
 - Bit pattern for two's comp integer

STEI - Institut Teknologi Bandung

Modul 3. Integer

3.2. Conversion and Casting

EL3011 Arsitektur Sistem Komputer

Mapping Between Signed & Unsigned

Mappings between unsigned and two's complement numbers:
 Keep bit representations and reinterpret

Mapping Signed ↔ Unsigned

Bits
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Signed	
0	
1	
2	
3	
4	
5	→ T2U
6	
7	← U2T ←
-8	
-7	
-6	
-5	
-4	
-3	
-2	
-1	

Unsigned
0
1
2
3
4
5
6 7
7
8
9
10
11
12
13
14
15

Mapping Signed ↔ Unsigned

Bits
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Signed		Unsigned
0		0
1		1
2		2
3	_ = .	3
4	←	4
5		5
6		6
7		7
-8		8
-7		9
-6	./ 16	10
-5	+/- 16	11
-4		12
-3		13
-2		14
-1		15

Relation between Signed & Unsigned

Maintain Same Bit Pattern

Large negative weight becomes

Large positive weight

Conversion Visualized

Signed vs. Unsigned in C

- Constants
 - By default are considered to be signed integers
 - Unsigned if have "U" as suffix
 00, 42949672590
- Casting
 - Explicit casting between signed & unsigned same as U2T and T2U

```
int tx, ty;
unsigned ux, uy;
tx = (int) ux;
uy = (unsigned) ty;
```

• Implicit casting also occurs via assignments and procedure calls

```
tx = ux;
uy = ty;
int fun(unsigned u);
uy = fun(tx);
```


Casting Surprises

- Expression Evaluation
 - If there is a mix of unsigned and signed in single expression, signed values implicitly cast to unsigned
 - Including comparison operations <, >, ==, <=, >=
 - Examples for W = 32: TMIN = -2,147,483,648, TMAX = 2,147,483,647

 Constant₁ 	Constant ₂	Relation	Evaluation
0	0U	==	unsigned
-1	0	<	signed
-1	0U	>	unsigned
2147483647	-2147483647-1	>	signed
2147483647U	-2147483647-1	<	unsigned
-1	-2	>	signed
(unsigned)-1	-2	>	unsigned
2147483647	2147483648U	<	unsigned
2147483647	(int) 2147483648U	>	signed

Summary Casting Signed ←→ Unsigned: Basic Rules

- Bit pattern is maintained
- But reinterpreted
- Can have unexpected effects: adding or subtracting
 2^w
- Expression containing signed and unsigned int
 - int is cast to unsigned!!

STEI - Institut Teknologi Bandung

Modul 3. Integer

3.3. Expanding and Truncating

EL3011 Arsitektur Sistem Komputer

Sign Extension

- Task:
 - Given w-bit signed integer x
 - Convert it to w+k-bit integer with same value
- Rule:
 - Make *k* copies of sign bit:

•
$$X' = X_{w-1}, ..., X_{w-1}, X_{w-1}, X_{w-2}, ..., X_0$$

Sign Extension: Simple Example

10 =

Positive number

Negative number

Larger Sign Extension Example

```
short int x = 15213;

int ix = (int) x;

short int y = -15213;

int iy = (int) y;
```

	Decimal	Нех	Binary
X	15213	3B 6D	00111011 01101101
ix	15213	00 00 3B 6D	00000000 00000000 00111011 01101101
У	-15213	C4 93	11000100 10010011
iy	-15213	FF FF C4 93	11111111 11111111 11000100 10010011

- Converting from smaller to larger integer data type
- C automatically performs sign extension

Truncation

- Task:
 - Given k+w-bit signed or unsigned integer X
 - Convert it to w-bit integer X' with same value for "small enough" X
- Rule:
 - Drop top *k* bits:
 - $X' = x_{w-1}, x_{w-2}, ..., x_0$

Truncation: Simple Example

No sign change

$$-16$$
 8 4 2 1 -6 = 1 1 0 1 0

$$-8$$
 4 2 1 -6 = 1 0 1 0

 $-6 \mod 16 = 26U \mod 16 = 10U = -6$

Sign change

$$-8$$
 4 2 1 -6 = 1 0 1 0

 $10 \mod 16 = 10U \mod 16 = 10U = -6$

$$-16$$
 8 4 2 1 -10 = 1 0 1 1 0

 $-10 \mod 16 = 22U \mod 16 = 6U = 6$

Summary: Expanding, Truncating: Basic Rules

- Expanding (e.g., short int to int)
 - Unsigned: zeros added
 - Signed: sign extension
 - Both yield expected result
- Truncating (e.g., unsigned to unsigned short)
 - Unsigned/signed: bits are truncated
 - Result reinterpreted
 - Unsigned: mod operation
 - Signed: similar to mod
 - For small (in magnitude) numbers yields expected behavior

STEI - Institut Teknologi Bandung

Modul 3. Integer

3.4. Addition, Negation, Multiplication, Shifting

EL3011 Arsitektur Sistem Komputer

Unsigned Addition

Operands: w bits

True Sum: w+1 bits

Discard Carry: w bits

- Standard Addition Function
 - Ignores carry output
- Implements Modular Arithmetic

$$s = UAdd_w(u, v) = u + v \mod 2^w$$

unsigned char		1110 10		E9	223
	+	1101 01	01 + 1	<u> </u>	213

Hex Decimal Binary

0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
A	10	1010
В	11	1011
С	12	1100
D	13	1101
E	14	1110
F	15	1111

Unsigned Addition

Operands: w bits

True Sum: w+1 bits

Discard Carry: w bits

- Standard Addition Function
 - Ignores carry output
- Implements Modular Arithmetic

$$s = UAdd_w(u, v) = u + v \mod 2^w$$

unsigned char	1110	1001	E 9	223
	+ 1101	0101	+ D5	+ 213
	1 1011	1110	1BE	446
	1011	1110	BE	190

Hex Decimal Binar

0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
A	10	1010
В	11	1011
С	12	1100
D	13	1101
E	14	1110
F	15	1111

Visualizing (Mathematical) Integer Addition

- Integer Addition
 - 4-bit integers *u*, *v*
 - Compute true sum
 Add₄(u, v)
 - Values increase linearly with u and v
 - Forms planar surface

Visualizing Unsigned Addition

- Wraps Around
 - If true sum $\geq 2^w$
 - At most once

Two's Complement Addition

- TAdd and UAdd have Identical Bit-Level Behavior
 - Signed vs. unsigned addition in C:

```
int s, t, u, v;
 s = (int) ((unsigned) u + (unsigned) v);
 t = u + v
• Will give s == t
                             1110 1001
                                             E9
                                                      -23
                            1101 0101
                                           + D5
                                                    + -43
                                                      -66
                          1 1011 1110
                                            1BE
                                                      -66
                             1011 1110
                                             BE
```


TAdd Overflow

Functionality

- True sum requires w+1 bits
- Drop off MSB
- Treat remaining bits as 2's comp. integer

Visualizing 2's Complement Addition

NegOver

- Values
 - 4-bit two's comp.
 - Range from -8 to +7
- Wraps Around
 - If sum $\geq 2^{w-1}$
 - Becomes negative
 - At most once
 - If sum $< -2^{w-1}$
 - Becomes positive
 - At most once

Characterizing TAdd

- Functionality
 - True sum requires w+1 bits
 - Drop off MSB
 - Treat remaining bits as 2's comp. integer

$$TAdd_{w}(u,v) = \begin{cases} u+v+2^{w} & u+v < TMin_{w} \text{ (NegOver)} \\ u+v & TMin_{w} \le u+v \le TMax_{w} \\ u+v-2^{w} & TMax_{w} < u+v \text{ (PosOver)} \end{cases}$$

Multiplication

- Goal: Computing Product of w-bit numbers x, y
 - Either signed or unsigned
- But, exact results can be bigger than w bits
 - Unsigned: up to 2w bits
 - Result range: $0 \le x * y \le (2^w 1)^2 = 2^{2w} 2^{w+1} + 1$
 - Two's complement min (negative): Up to 2w-1 bits
 - Result range: $x * y \ge (-2^{w-1})*(2^{w-1}-1) = -2^{2w-2} + 2^{w-1}$
 - Two's complement max (positive): Up to 2w bits, but only for $(TMin_w)^2$
 - Result range: $x * y \le (-2^{w-1})^2 = 2^{2w-2}$
- So, maintaining exact results...
 - would need to keep expanding word size with each product computed
 - is done in software, if needed
 - e.g., by "arbitrary precision" arithmetic packages

Unsigned Multiplication in C

- Standard Multiplication Function
 - Ignores high order w bits
- Implements Modular Arithmetic $UMult_w(u, v) = u \cdot v \mod 2^w$

Signed Multiplication in C

Discard w bits: w bits

- Standard Multiplication Function
 - Ignores high order w bits
 - Some of which are different for signed vs. unsigned multiplication
 - Lower bits are the same

Power-of-2 Multiply with Shift

- Operation
 - $\mathbf{u} \ll \mathbf{k}$ gives $\mathbf{u} * \mathbf{2}^k$
 - Both signed and unsigned

 $TMult_w(u, 2^k)$

- Examples
 - $\cdot u << 3 == u * 8$
 - (u << 5) (u << 3) == u * 24
 - Most machines shift and add faster than multiply
 - Compiler generates this code automatically

Important Lession:
Trust Your Compiler!

k

Multiplication

- Goal: Computing Product of w-bit numbers x, y
 - Either signed or unsigned
- But, exact results can be bigger than w bits
 - Unsigned: up to 2w bits
 - Result range: $0 \le x * y \le (2^w 1)^2 = 2^{2w} 2^{w+1} + 1$
 - Two's complement min (negative): Up to 2w-1 bits
 - Result range: $x * y \ge (-2^{w-1})*(2^{w-1}-1) = -2^{2w-2} + 2^{w-1}$
 - Two's complement max (positive): Up to 2w bits, but only for $(TMin_w)^2$
 - Result range: $x * y \le (-2^{w-1})^2 = 2^{2w-2}$
- So, maintaining exact results...
 - would need to keep expanding word size with each product computed
 - is done in software, if needed
 - e.g., by "arbitrary precision" arithmetic packages

Unsigned Power-of-2 Divide with Shift

- Quotient of Unsigned by Power of 2
 - $\mathbf{u} \gg \mathbf{k}$ gives $\lfloor \mathbf{u} / 2^k \rfloor$
 - Uses logical shift

	Division	Computed	Hex	Binary
x	15213	15213	3B 6D	00111011 01101101
x >> 1	7606.5	7606	1D B6	00011101 10110110
x >> 4	950.8125	950	03 B6	00000011 10110110
x >> 8	59.4257813	59	00 3B	00000000 00111011

Signed Power-of-2 Divide with Shift

- Quotient of Signed by Power of 2
 - $x \gg k$ gives $\lfloor x / 2^k \rfloor$
 - Uses arithmetic shift
 - Rounds wrong direction when u < 0

	Division	Computed	Hex	Binary
У	-15213	-15213	C4 93	11000100 10010011
y >> 1	-7606.5	-7607	E2 49	1 1100010 01001001
y >> 4	-950.8125	-951	FC 49	1111 1100 01001001
y >> 8	-59.4257813	-60	FF C4	1111111 11000100

Correct Power-of-2 Divide

- Quotient of Negative Number by Power of 2
 - Want $\lceil \mathbf{x} \mid \mathbf{2}^k \rceil$ (Round Toward 0)
 - Compute as $\lfloor (x+2^k-1)/2^k \rfloor$
 - In C: (x + (1 << k) -1) >> k
 - Biases dividend toward 0

Biasing has no effect

Correct Power-of-2 Divide (Cont.)

Case 2: Rounding

Biasing adds 1 to final result

Negation: Complement & Increment

Negate through complement and increase

$$\sim x + 1 == -x$$

• Example

$$x = 15213$$

	Decimal	Hex	Binary
x	15213	3B 6D	00111011 01101101
~x	-15214	C4 92	11000100 10010010
~x+1	-15213	C4 93	11000100 10010011
У	-15213	C4 93	11000100 10010011

Complement & Increment Examples

x = 0

	Decimal	Hex	Binary	
0	0	00 00	00000000 00000000	
~0	-1	FF FF	11111111 11111111	
~0+1	0	00 00	00000000 00000000	

x = TMin

	Decimal	Hex	Binary
x	-32768	80 00	10000000 00000000
~x	32767	7F FF	01111111 11111111
~x+1	-32768	80 00	10000000 00000000

Canonical counter example

STEI - Institut Teknologi Bandung

Modul 3. Integer

3.5. Integer Summary

EL3011 Arsitektur Sistem Komputer

Arithmetic: Basic Rules

• Addition:

- Unsigned/signed: Normal addition followed by truncate, same operation on bit level
- Unsigned: addition mod 2^w
 - Mathematical addition + possible subtraction of 2^w
- Signed: modified addition mod 2^w (result in proper range)
 - Mathematical addition + possible addition or subtraction of 2^w

Multiplication:

- Unsigned/signed: Normal multiplication followed by truncate, same operation on bit level
- Unsigned: multiplication mod 2^w
- Signed: modified multiplication mod 2^w (result in proper range)

Why Should I Use Unsigned?

- *Don't* use without understanding implications
 - Easy to make mistakes

```
unsigned i;
for (i = cnt-2; i >= 0; i--)
a[i] += a[i+1];
```

• Can be very subtle

```
#define DELTA sizeof(int)
int i;
for (i = CNT; i-DELTA >= 0; i-= DELTA)
. . .
```


Counting Down with Unsigned

Proper way to use unsigned as loop index

```
unsigned i;
for (i = cnt-2; i < cnt; i--)
   a[i] += a[i+1];</pre>
```

- See Robert Seacord, Secure Coding in C and C++
 - C Standard guarantees that unsigned addition will behave like modular arithmetic
 - $0-1 \rightarrow UMax$
- Even better

```
size_t i;
for (i = cnt-2; i < cnt; i--)
   a[i] += a[i+1];</pre>
```

• Data type **size_t** defined as unsigned value with length = word size

Why Should I Use Unsigned? (cont.)

- Do Use When Performing Modular Arithmetic
 - Multiprecision arithmetic
- Do Use When Using Bits to Represent Sets
 - Logical right shift, no sign extension
- Do Use In System Programming
 - Bit masks, device commands,...

- Misunderstanding integers can lead to the end of the world as we know it!
- Thule (Qaanaaq), Greenland
- US DoD "Site J" Ballistic Missile Early Warning System (BMEWS)
- 10/5/60: world nearly ends
- Missile radar echo: 1/8s
- BMEWS reports: 75s echo(!)
- 1000s of objects reported
- NORAD alert level 5:
 - Immediate incoming nuclear attack!!!!

- Kruschev was in NYC 10/5/60 (weird time to attack)
 - someone in Qaanaaq said "why not go check outside?"
- "Missiles" were actually THE MOON RISING OVER NORWAY
- Expected max distance: 3000 mi; Moon distance: .25M miles!
- .25M miles % sizeof(distance) = 2200mi.
- Overflow of distance nearly caused nuclear apocalypse!!

