SFWR ENG 4003

Kemal Ahmed Dr. Deza Fall 2015

Contents

inear	
Converting constraints to equalities	
e.g.)	
Graphical Method	
Simplex Method	
Phase Simplex	

Linear

Linear Program: an optimization problem in which the objective function is linear and each constraint is a linear inequality or equality

Decision variables: describe our choices that are under our control

Objective function: describes a criterion that we wish to max/minimize; doesn't have an in/equality e.g. max 40x + 30y

Constraints: describe the limitations that restrict our choices for our decision variables, always *inequalities*.

Converting constraints to equalities

Slack variable: equation variable greater than constraint, added **Surplus variable**: equation variable less than constraint, subtracted

Hyperplane: a hyperplane in R^x is a shape in R^{x-1} , e.g. line in R^2

Feasible Solution: Optimal Solution:

Standard form: when you take inequalities and use slack variables to turn them into equalities.

- Note: all variables need to be ≥ 0.
- All remaining constraints are expressed as equality constraints.

e.g.)

$$2x_1 + 4x_2 - x_3 - x_4 \ge 1$$

 $2x_1 + 4x_2 - x_3 - x_4 + s = 1$

Graphical Method

- 1. Sketch the region corresponding to the system of constraints. The points inside or on the boundary of the region are the feasible solutions.
- 2. Find the vertices of the region.

3. Test the objective function at each of the vertices and select the values of the variables that optimize the objective function. For a bounded region, both a minimum and maximum value will exist. For an unbounded region, if an optimal solution exists, then it will occur at a vertex.

Simplex Method

Simplex Method: useful for solving linear optimization problems cheaply

- Cannot be done with **strict inequalities**, i.e. when there is no possibility of being equal
- Can only work if your objective function is in *standard form*

Simplex Tableau: visual representation of stuff

Phase Simplex

When the origin is not part of your basic solution