disruptors onto which all of such genes are immobilized can be prepared.

As described above, for example, a gene for a nuclear receptor in a cell and genes related to the downstream signal transduction pathway can be detected in vitro, rapidly and with high sensitivity by using the method and the DNA array of the present invention. Thus, the presence or the absence of a substance that potentially causes endocrine disruption can be substantially and readily judged.

The following examples further illustrate the present invention in detail but are not to be construed to limit the scope thereof.

Example 1

Genes that are potentially influenced by endocrine disruptors are shown in Table 3.

Table 3

Agent (Gene product)	GenBank accession no.
1. Nuclear receptor or nuclear receptor transcriptional	
coupling	
p300/CBP	U47741
SRC-1	U40396
N-CoR/SMRT	AF044209/U37146
ACTR	AF036892
RIP140	X84373
TRIP1	L38810
TIF2	X97674
Smad3	AB004924
efp	D21205
lactoferrin	X53961
progesteron receptor	M15716
cathepsin G	J04990
pS2 protein	X52003
prolactin	E02152
ARA70	L49399
vitamin D receptor	J03258
2. Kinase-type signal transduction	
p38	L35253
p38 gamma	U66243
JNK1	L26318
JNK2	U09759
JNK3	AA992006
ERK1	м76585
BMK α, β, γ	U29725-U29727

Agent (Gene product)	GenBank accession no.
3. Gonad differentiation	
DAX1	U31929
SOX9	Z46629
WT1	X51630
SRY	L10101
Ad4BP/SF-1	D84206-D84209
EMX2	X68880
4. Oncogenes	
c-Fos	K00650/M16287
с-Мус	J00120/K01908
Bcl-2	M13994-M13995
Вах α, β, γ	L22473-L22475
Вах б	U19599
Bcl-x	U72398
5. Receptor-type kinase	
NGF receptor	M14764
FGF receptor	M34641
VEGF receptor	AF016050
PDGF receptor	M21616
CSF1 receptor	M33208-M33210
EGF receptor	M29366
insulin receptor	M10051

Fragments of about 1 ${\tt kb}$ that contain the 3'-untranslated regions of cDNAs for these genes were prepared as follows.

Briefly, cDNA fragments of interest were amplified by reverse transcription PCR (RT-PCR) using mRNAs from cells or tissues derived from humans or mice (Clontech) as templates. The amplified cDNAs were

5