INELE DE POLINOAME

Pe parcursul acestui capitol inelele vor fi comutative şi unitare iar morfismele de inele vor fi unitare.

1. Inele de polinoame într-o nedeterminată

Fie R un inel comutativ şi unitar. Notăm cu $R^{(\mathbb{N})}$ mulţimea şirurilor $(a_n)_{n\in\mathbb{N}}$ cu elemente din R şi care au doar un număr finit de termeni nenuli. Pe $R^{(\mathbb{N})}$ definim două operații algebrice:

$$(a_n)_{n\in\mathbb{N}} + (b_n)_{n\in\mathbb{N}} = (a_n + b_n)_{n\in\mathbb{N}},$$

$$(a_n)_{n\in\mathbb{N}} \cdot (b_n)_{n\in\mathbb{N}} = (c_n)_{n\in\mathbb{N}},$$

unde $c_n = \sum_{i+j=n} a_i b_j$.

Propoziția 1.1. $(R^{(\mathbb{N})}, +, \cdot)$ este inel comutativ și unitar.

Definim un morfism injectiv de inele unitare $\varepsilon: R \to R^{(\mathbb{N})}$, $\varepsilon(a) = (a, 0, 0, ...)$ care ne permite să-l identificăm pe R cu un subinel al lui $R^{(\mathbb{N})}$. Vom nota cu X şirul (0, 1, 0, 0, ...) şi-l vom numi nedeterminată. Observăm că

$$X^n = (\underbrace{0, \dots, 0}_{n \text{ termeni}}, 1, 0, 0, \dots)$$

pentru orice $n \in \mathbb{N}^*$. Ca de obicei, considerăm X^0 ca fiind egal cu elementul unitate. Se observă că $(a_0, a_1, \ldots, a_n, 0, 0, \ldots) = \varepsilon(a_0) + \varepsilon(a_1)X + \cdots + \varepsilon(a_n)X^n$ iar prin identificarea lui R cu un subinel al lui $R^{(\mathbb{N})}$ dată de ε putem scrie

$$(a_0, a_1, \dots, a_n, 0, 0, \dots) = a_0 + a_1 X + \dots + a_n X^n.$$

Definiția 1.2. Inelul $R^{(\mathbb{N})}$ se notează cu R[X] și se numește inelul polinoamelor în nedeterminata X cu coeficienți în R.

Dacă $f \in R[X]$, atunci $f = a_0 + a_1X + \cdots + a_nX^n$, $a_i \in R$ şi f se numeşte polinom în nedeterminata X. Polinoamele X^n , $n \in \mathbb{N}$ se numesc monoame în nedeterminata X. Aşadar orice polinom este în mod unic o combinație liniară de monoame cu coeficienți în R. Polinoamele a_iX^i cu $a_i \neq 0$ se numesc termeni ai lui f, iar $a_i \neq 0$ coeficienți. Definim $\deg f = \max\{i : a_i \neq 0\}$ şi-l numim gradul lui f. Dacă $n = \deg f$, atunci a_n se numeşte coeficientul dominant al lui f. Polinoamele al căror coeficient dominant este 1 se numesc polinoame monice.

În cele ce urmează vom face următoarea convenție: $deg 0 = -\infty$.

Propoziția 1.3. Fie $f, g \in R[X]$. Atunci:

- (i) $\deg(f+g) \le \max(\deg f, \deg g)$.
- (ii) $\deg(fg) \leq \deg f + \deg g$, cu egalitate dacă și numai dacă produsul coeficienților dominanți ai lui f și g este nenul.

Corolarul 1.4. Fie R un inel integru. Atunci $\deg(fg) = \deg f + \deg g$ pentru orice $f, g \in R[X]$. Mai mult, R[X] este, de asemenea, inel integru.

Corolarul 1.5. Fie R un inel integru. Atunci U(R[X]) = U(R).

Remarca 1.6. Proprietatea de mai sus nu mai rămâne adevărată dacă R nu este inel integru. Fie $R = \mathbb{Z}/4\mathbb{Z}$ și $f = \widehat{1} + \widehat{2}X \in R[X]$. Avem $f^2 = \widehat{1}$, deci $f \in U(R[X])$, dar $f \notin U(R)$.

Exercițiul 1.7. Fie R un inel comutativ unitar și $f = a_0 + a_1 X + \cdots + a_n X^n \in R[X]$. Să se arate că:

- (i) f este nilpotent dacă și numai dacă a_i este nilpotent pentru orice $0 \le i \le n$.
- (ii) f este inversabil dacă și numai dacă a_0 este inversabil și a_i este nilpotent pentru orice $1 \le i \le n$.

Reamintim că există un morfism (canonic) de inele unitare $\varepsilon: R \to R[X]$ dat prin $\varepsilon(a) = a$ pentru orice $a \in R$.

Teorema 1.8. (Proprietatea de universalitate a inelelor de polinoame într-o nedeterminată) $Fie \ \varphi : R \to S \ un \ morfism \ de inele comutative unitare <math> is s \in S$. Atunci există un morfism unitar $\overline{\varphi} : R[X] \to S \ unic \ cu \ proprietatea \ că \ \overline{\varphi} \circ \varepsilon = \varphi \ si \ \overline{\varphi}(X) = s$.

Proof. Să vizualizăm această proprietate cu ajutorul următoarei diagrame:

Definim $\overline{\varphi}(a_0 + a_1X + \cdots + a_nX^n) = \varphi(a_0) + \varphi(a_1)s + \cdots + \varphi(a_n)s^n$. Se arată uşor că $\overline{\varphi}$ este morfism unitar de inele care satisface cele două proprietăți. Mai mult, acesta este unic, deoarece $\overline{\varphi}(X) = s$ conduce la $\overline{\varphi}(X^i) = s^i$ pentru orice $i \geq 1$ iar $\overline{\varphi} \circ \varepsilon = \varphi$ este echivalent cu $\overline{\varphi}(a) = \varphi(a)$ pentru orice $a \in R$.

1.1. Funcții polinomiale. Rădăcini. Fie S un inel comutativ și unitar, $R \subseteq S$ un subinel și $i: R \to S$ morfismul incluziune. Fie $s \in S$. Din proprietatea de universalitate a inelelor de polinoame într-o nedeterminată există un morfism unitar $\bar{i}_s: R[X] \to S$ unic cu proprietatea că $\bar{i}_s \circ \varepsilon = i$ și $\bar{i}_s(X) = s$.

$$R \xrightarrow{\varepsilon} R[X]$$

$$i \qquad \qquad \downarrow \tilde{i}_s$$

$$S$$

Dacă $f \in R[X]$, $f = a_0 + a_1X + \cdots + a_nX^n$, atunci $\bar{i}_s(f) = a_0 + a_1s + \cdots + a_ns^n$. Notăm $a_0 + a_1s + \cdots + a_ns^n$ cu f(s) și avem $\bar{i}_s(f) = f(s)$.

Definiția 1.9. Un element $s \in S$ cu proprietatea că f(s) = 0 se numește rădăcină a lui f.

Pentru orice polinom $f \in R[X]$ putem defini o funcție $\widetilde{f}: S \to S$ prin $\widetilde{f}(s) = f(s)$ pentru orice $s \in S$.

Definiția 1.10. Funcția $\widetilde{f}:S\to S$ definită mai sus se numește funcția polinomială pe S asociată lui f. $C\hat{a}nd$ S=R, funcția $\widetilde{f}:R\to R$ se numește funcția polinomială asociată lui f.

Remarca 1.11. Polinoame diferite pot avea funcții polinomiale egale. De exemplu, $f, g \in \mathbb{Z}_2[X], f = X$ și $g = X^2$. Avem că $\widetilde{f}, \widetilde{g} : \mathbb{Z}_2 \to \mathbb{Z}_2, \ \widetilde{f}(\widehat{0}) = \widetilde{g}(\widehat{0}) = \widehat{0}$ și $\widetilde{f}(\widehat{1}) = \widetilde{g}(\widehat{1}) = \widehat{1}$.

Vom vedea însă că acest lucru nu mai este posibil dacă $f, g \in R[X]$, unde R este un domeniu de integritate *infinit*.

2. Teorema de împărțire cu rest pentru polinoame într-o nedeterminată

Teorema 2.1. (Teorema de împărțire cu rest) Fie R un inel, $f, g \in R[X]$, $g \neq 0$ iar coeficientul dominant al lui g este inversabil. Atunci există $q, r \in R[X]$ unice cu proprietatea că f = gq + r și $\deg r < \deg g$.

Proof. Dacă $\deg f < \deg g$, atunci scriem $f = g \cdot 0 + f$. În cazul în care $\deg f \ge \deg g$ facem inducție după $\deg f$.

Unicitatea rezultă imediat folosind Propoziția 1.3(ii).

Corolarul 2.2. Fie R un inel, $f \in R[X]$ şi $\alpha \in R$. Atunci există $q \in R[X]$ şi $r \in R$ unice cu proprietatea că $f = (X - \alpha)q + r$.

Corolarul 2.3. (Bézout) Fie R un inel, $f \in R[X]$ şi $\alpha \in R$. Atunci $X - \alpha \mid f$ dacă şi numai dacă $f(\alpha) = 0$.

Exercițiul 2.4. Fie R inel comutativ unitar și $\alpha \in R$. Atunci $R[X]/(X-\alpha) \simeq R$.

Exercițiul 2.5. Arătați că:

- (i) $\mathbb{R}[X]/(X^2+1) \simeq \mathbb{C}$.
- (ii) $\mathbb{Z}[X]/(X^2-2) \simeq \mathbb{Z}[\sqrt{2}].$

Exercițiul 2.6. Să se arate că $R = \mathbb{Z}[X]/(2, X^2 + 1)$ este un inel cu 4 elemente, dar R nu este izomorf cu $\mathbb{Z}_2 \times \mathbb{Z}_2$.

Exercițiul 2.7. Considerăm idealul $I = (3, X^3 - X^2 + 2X + 1)$ în $\mathbb{Z}[X]$. Să se arate că I nu este ideal principal și că $\mathbb{Z}[X]/I$ nu este inel integru.

Exercitiul 2.8. Aflați inversul lui $\widehat{4X+3}$ în inelul factor $\mathbb{Z}_{11}[X]/(X^2+1)$.

Propoziția 2.9. Fie R un inel integru și $f \in R[X]$, $\deg f = n$. Atunci f are cel mult n rădăcini distincte în R.

Proof. Fie $\alpha_1, \ldots, \alpha_m \in R$ distincte cu proprietatea că $f(\alpha_i) = 0$ pentru orice $i = 1, \ldots, m$. Vom demonstra prin inducție după m că $(X - \alpha_1) \cdots (X - \alpha_m) \mid f$. Cazul m = 1 rezultă din corolarul 2.3. Dacă m > 1, atunci, din ipoteza de inducție $(X - \alpha_1) \cdots (X - \alpha_{m-1}) \mid f$ și putem scrie $f = (X - \alpha_1) \cdots (X - \alpha_{m-1})g$ cu $g \in R[X]$. Din $f(\alpha_m) = 0$ obținem $(\alpha_m - \alpha_1) \cdots (\alpha_m - \alpha_{m-1})g(\alpha_m) = 0$. Dar cum R este integru și $\alpha_i \neq \alpha_m$ pentru orice $i \neq m$ rezultă $g(\alpha_m) = 0$ și din corolarul 2.3 deducem că $X - \alpha_m \mid g$.

În concluzie, $n = \deg f \ge m$.

Remarca 2.10. Dacă R nu este integru, atunci proprietatea de mai sus este falsă. De exemplu, polinomul $f \in \mathbb{Z}_6[X]$, $f = X^3 - X$ are șase rădăcini distincte în \mathbb{Z}_6 .

Corolarul 2.11. Fie R un inel integru infinit şi $f, g \in R[X]$. Dacă $\widetilde{f} = \widetilde{g}$, atunci f = g.

Proof. Fie h = f - g. Deoarece $\widetilde{f} = \widetilde{g}$ avem $\widetilde{h} = 0$, adică $h(\alpha) = 0$ pentru orice $\alpha \in R$. Din propoziția 2.9 rezultă h = 0.

Propoziția 2.12. (Relațiile lui Viète) Fie R un inel integru, $f \in R[X]$, $f = a_0 + a_1X + \cdots + a_nX^n$, $a_n \neq 0$. Presupunem că f are n rădăcini $\alpha_1, \ldots, \alpha_n \in R$. Atunci au loc relațiile:

$$\sum_{i=1}^{n} \alpha_i = -\frac{a_{n-1}}{a_n}$$

$$\sum_{1 \le i < j \le n}^{n} \alpha_i \alpha_j = \frac{a_{n-2}}{a_n}$$

$$\vdots$$

$$\vdots$$

$$\prod_{i=1}^{n} \alpha_i = (-1)^n \frac{a_0}{a_n}$$

Proof. Arătăm prin inducție după n că $f = a_n(X - \alpha_1) \cdots (X - \alpha_n)$ și apoi identificăm coeficienții.