

Collectif francophone pour l'enseignement libre de l'informatique

Théorie et modèles relationnels

Introduction

TMR 01

Christina KHNAISSER (christina.khnaisser@usherbrooke.ca)

Luc LAVOIE (luc.lavoie@usherbrooke.ca)

(les auteurs sont cités en ordre alphabétique nominal)

CoFELI/Scriptorum/TMR_01-Introduction (v105), version 1.0.0.b, en date du 2024-09-02

— document de travail, ne pas citer —

Plan

Introduction	3
1. L'information, les données et leur traitement	4
2. Principe d'adéquation informatique	7
3. Caractérisation d'un problème $\dots \dots \dots$	1
Conclusion	4
Références 2	5

Introduction

Le présent document a pour but de présenter une vue générale de la discipline « Modélisation, conception et exploitation de données » et, plus particulièrement, de la situer relativement à la science (l'informatique) et aux technologies de l'information.

1. L'information, les données et leur traitement

1.1. Données et information

- Des données représentent un fait à propos d'une entité.
- L'information est une interprétation des données selon un domaine d'application.

Par exemple, l'ensemble des personnes étudiantes inscrites à une activité peut être représentées par les données suivantes, la signification précise de chacune des données et les liens entre elles (l'information) devant être précisée, par ailleurs, à l'aide de prédicats — d'où l'importance qui sera accordée aux prédicats dans la suite du module.

Tableau 1. Étudiant

matricule	nom	ville
15113150	Paul	>৯'তጋ'৬
15112354	Éliane	Blanc-Sablon
15113870	Mohamed	Tadoussac
15110132	Sergeï	Chandler

1.2. Traitement

L'informatique est la science du traitement rationnel et automatique de l'information. Son objet est donc l'information et son traitement.

- Mais pourquoi rationnel?
- Pourquoi automatique?
- Pourquoi restreindre le traitement à l'intersection de ces deux caractéristiques?

2. Principe d'adéquation informatique

En regard d'exigences exprimées en termes d'un modèle bien fondé (c'est-à-dire reposant sur un cadre théorique convenu et documenté), un artéfact informatique est adéquat s'il répond aux huit propriétés suivantes:

Propriétés absolues

Les propriétés absolues découlent des exigences fonctionnelles. L'artéfact doit être

1. valide

° conforme à la théorie soutenant le modèle à l'aide duquel les exigences sont formulées (les solutions apportées sont correctes);

2. efficace

° conforme aux traitements requis par les exigences ;

3. cohérent

° ne pas comporter pas de contradiction (ne permet pas d'en induire).

Propriétés relatives

Les propriétés relatives découlent des exigences *non* fonctionnelles et sont subordonnées aux propriétés absolues. L'artéfact doit être

4. complet

° offrir une couverture «suffisante» du problème;

5. efficient

° utiliser «bien » les ressources;

6. évolutif

° être «aisément» adaptable aux changements.

Méta-propriété

Les méta-propriétés découlent de l'épistémologie et de l'éthique. L'artéfact doit être

7. réfutable

° apte à permettre l'invalidation;

8. acceptable

° conforme aux principes et règles de conduite propres à une société humaine de référence.

3. Caractérisation d'un problème

3.1. Besoins

Les organisations humaines ont besoin de traiter, de conserver et d'analyser de (très) grandes quantités de données dans tous les domaines, par exemple:

- gouvernements (recensement, impôts, santé...);
- recherche scientifique (astronomie, chimie, génétique...);
- télécommunications;
- banques et assurances;
- secteurs de production (énergétique, industriel, manufacturier...);
- grande distribution;
- agences de propagande et de marketing.

3.2. Comment parler du problème?

Comment caractériser les problèmes de traitement de données afin de déterminer les solutions les plus adéquates?

- L'approche descriptive des 8V
- La hiérarchisation des modèles

3.3. L'approche descriptive des 8 V

Les quatre critères classiques

volume

° quantité de données devant être stockées;

variété

° diversité et complexité des types utilisés par le modèle;

vélocité

° caractérisation du débit de données entrantes et sortantes ;

véracité

° caractérisation, voire évaluation, de l'incertitude.

Les quatre critères supplémentaires

valeur

° richesse analytique des données, mais aussi valeur économique, politique, sociale ou sociétale;

variabilité

° relativité des données: temps, espace, agent;

virtualité

° distribution des sources de données;

• vertu

° gouvernance des données, rendre compte des lois et règlements quant à la protection et l'utilisation éthique des données.

Figure 1. Illustration des 4V selon IBM (2013)

3.4. La hiérarchisation des modèles

Avec l'approche tri-schématique:

- · Modèle physique
- Modèle logique
- Modèle conceptuel

Figure 2. Illustration de l'approche tri-schématique (tradition)

3.4.1. Modèle conceptuel

Le modèle «conceptuel» (ou modèle d'information) est la représentation de la portion intéressante de l'univers (de la réalité).

Les caractéristiques généralement souhaitables sont:

- la conformité à un méta-modèle conceptuel: entité-association (étendu), UML, Merise, etc.
- la capacité d'induire (automatiquement, quasi-automatique et quasi-complète d'un modèle logique.

3.4.2. Modèle logique

Le modèle logique est une représentation intermédiaire permettant de découpler la réalité de la représentation opératoire.

Les caractéristiques généralement souhaitables sont:

- un fondement mathématique solide permettant de formuler et de démontrer certaines propriétés, dont l'intégrité;
- la conformité à un méta-modèle logique : relationnel, objet, graphe, etc.
- la capacité d'induire (automatiquement) un modèle physique « raisonnable ».

3.4.3. Modèle physique

Le modèle «physique» détermine le choix des représentations opératoires en regard d'un automate particulier (un ordinateur).

Les structures d'accès:

- · Adressage dispersé
- Arbre de recherche (B-Tree), etc.

Les techniques de stockages:

- Stockage horizontal
- Stockage vertical
- Stockage mixte, etc.

3.4.4. Modèle de connaissances

Beaucoup de chercheurs estiment aujourd'hui qu'un quatrième niveau est nécessaire : celui des modèles de connaissances.

- Le modèle de connaissances est plus souvent informel; il est dans la tête des experts et des parties prenantes, au mieux dispersé dans une collection de documents non totalement répertoriés, pas forcément à jour, ni cohérents entre eux.
- Les ontologies appliquées ont connu de très beaux succès dans le domaine scientifique.
- Il vaut toujours mieux un modèle (formel), même mauvais, que pas de modèle!

Figure 3. Illustration de l'approche tri-schématique (tendance)

3.5. Tendances

Intégrer différents types de données

- Structurées
- Semi-structurées
- Non structurées

Intégrer différentes sources de données

- Internet des objets
- · Médias sociaux

Conclusion

Une base de données est un modèle d'un domaine d'application. C'est une solution pour conserver et traiter une (très) grande quantité de données pour produire de l'information.

Références

[Date2014a]

Chris J. DATE, Hugh DARWEN, Nikos A. LORENTZOS; Time and Relational Theory: Temporal Databases in the Relational Model and SOL: Morgan Kaufmann, Waltham (MA, US), 2014; ISBN 978-0-12-800631-3.

[DoD2010a]

Deputy Chief Information Officer; DoDAF — DoD Architecture Framework:

Version 2.02, U. S. Department of Defense, 2010;

http://dodcio.defense.gov/Library/DoD-Architecture-Framework/ (consulté le 2024-05-30).

[Elmasri2016]

Ramez ELMASRI et Shamkant B. NAVATHE:

Fundamentals of database systems;

7th Edition, Pearson, Hoboken (NJ, US), 2016;

ISBN 978-0-13-397077-7.

Produit le 2025-01-07 11:03:05 UTC

Collectif francophone pour l'enseignement libre de l'informatique