

Prise en main de Pyplot

PyPlot est une sous-bibliothèque de **MatPlotLib** permettant de représenter graphiquement des données.

La bibliothèque MatPlotLib est intégrée à EduPython.

Import de la bibliothèque

• import matplotlib.pyplot

ou <u>import matplotlib.pyplot as plt</u>

Allège le code... Par exemple matplotlib.pyplot.plot(2,1,'ko')

devient plt. .plot(2,1,'ko')

Dans tout ce document la bibliothèque matplotlib.pyplot est renommée plt.

Instruction: import matplotlib.pyplot as plt.

La fonction plot

Par défaut, le repère s'adapte à l'ensemble des points construits.

Placer un point de coordonnées (x, y) dans un repère

Exemple:

import matplotlib.pyplot as plt
plt.plot(2,3,'ko')
plt.show()

- couleurs usuelles: b (bleu), g (vert), r (rouge), c (cyan), m (magenta), y (jaune), k (noir), w (blanc).
- styles de marqueurs :

".	"	" "	"o"	"+"	"x"	" "	"_"	"X"	"*"	"v"	"^"	"<"	">"	"s"	"p"	"P"	"D"	"d"
•			•	+	×		_	*	*	•	•	•	•		•	+	•	•

Exemple : 'ko' pour un cercle noir ● ou 'bs' pour un carré bleu ■.

Tracer une courbe point par point

Tracer la représentation graphique d'une fonction sur un intervalle

Principe:

- Générer un tableau de nombres couvrant l'intervalle considéré (tableau des abscisses : x)
- Calculer les images des abscisses par la fonction à représenter (tableau des ordonnées : y)
- Placer l'ensemble de des points donc les coordonnées sont dans les deux tableaux précédents.

Les abscisses et ordonnées des points sont données dans des tableaux numpy (numpy.array).

- np.linspace(-2,2,100): génère le tableau (de type numpy.array) des abscisses contenant 100 réels répartis dans l'intervalle [-2; 2] avec un espacement fixe.
- **x**2** et **np.sin(x)** génère également des tableaux de nombres numpy.array. (on utilise les fonction numpy opérant sur les tableaux *numpy.array*).

Rque: sin() opère sur les réels, np.sin() opère sur les réels mais aussi sur les tableaux numpy.

Paramètrer la figure et les axes

Paramétrer	Exemples						
Ajouter un titre à la figure	plt. title ("Titre de la figure")						
Ajouter une légende à une courbe	plt.plot(x , y ,label=" f(x) ") plt.legend()						
Modifier l'épaisseur de trait	plt.plot(x,y,linewith = 2)						
Ajouter un titre aux axes de coordonnées	plt. xlabel ('axe des abscisses') plt. ylabel ('axe des ordonnées')						
Limiter les axes	plt. xlim ((x_min , x_max)) plt. ylim ((y_min , y_max))						
Travailler en repère orthonormé	plt.axis('equal')						
Intersection des axes de coordonnées à l'origine du repère :	axes = plt.gca() axes.spines['right'].set_color('none') axes.spines['top'].set_color('none') axes.spines['bottom'].set_position('zero') axes.spines['left'].set_position('zero')						
Ajouter du texte sur la figure	plt. text (x_text,y_text, 'texte')						
Etiquettes des axes	plt. xticks (range(-4,5)) plt. yticks ([-1, 0,+1]) plt. xticks ([-np.pi, 0, np.pi], [r'\$-\pi\$', r'\$0\$', r'\$+\pi\$']) 3 graduations $x=-\pi$, $x=0$ et $x=\pi$ Les étiquettes respectives sont données en LaTeX						

La fonction hist (histogramme)

Histogramme simple:

Exemple: plt.hist([8,15,22,27,32,37,47,51,58,62,71,99], bins = 5, color = 'green', edgecolor = 'black')

Quelques paramètres pour les histogrammes :

	Exemples
Couleur des barres	color = 'green'
Couleur des contours des rectangles	edgecolor = 'black'
Tailles de classes inégales	plt.hist(x, bins = [0, 30, 40, 50, 60, 70, 80, 100])
Histogramme à valeurs pondérées	plt.hist(x , weights=liste_ponderations)
Histogramme des fréquences	normed = True
Diagramme en bâtons	histtype = 'step'
Histogramme horizontal	orientation = 'horizontal'
Réduire la largeur des rectangles	rwidth = 0.5 (Largeur réduite à 50%).
Ajouter des hachures	hatch = '/'
Ajouter des flactiules	Valeurs possibles : '/', '\', ' ', '-', '+', 'x', 'o', 'O', '.', '*'
Doubles séries	plt.hist([x1, x2], color = ['blue', 'green'], label = ['x1', 'x2'],)

Remarque:

L'ajout de titres ou légendes est possible avec une syntaxe identique à celle des figures obtenues avec la fonction *plot*. Par exemples :

- plt.xlabel('valeurs')
- plt.ylabel('effectifs')
- plt.title('HISTOGRAMME')
- plt.hist(x, bins=5, label='série1')
 plt.legend()