1N-18 4783 P-206

NASA Technical Memorandum

NASA TM - 108452

VULNERABILITY OF MANNED SPACECRAFT TO CREW LOSS FROM ORBITAL DEBRIS PENETRATION

By J.E. Williamsen

Structures and Dynamics Laboratory Science and Engineering Directorate

April 1994

(NASA-TM-108452) VULNERABILITY OF MANNED SPACECRAFT TO CREW LOSS FROM ORBITAL DEBRIS PENETRATION (NASA-Marshall Space Flight Center) 206 p

N94-30161

Unclas

G3/18 0004783

National Aeronautics and Space Administration

George C. Marshall Space Flight Center

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden. To Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE				
4. TITLE AND SUBTITLE	April 1994		Memorandum FUNDING NUMBERS		
Vulnerability of Manned Spa		FUNDING NUMBERS			
Debris Penetration					
6. AUTHOR(S)					
J.E. Williamsen					
7. PERFORMING ORGANIZATION NAME	(S) AND ADDRESS(ES)	8.	PERFORMING ORGANIZATION		
			REPORT NUMBER		
George C. Marshall Space Fli	•				
Marshall Space Flight Center	, Alabama 35812				
9. SPONSORING/MONITORING AGENCY	NAME(S) AND ADDRESS(ES)	10). SPONSORING / MONITORING AGENCY REPORT NUMBER		
National Aeronautics and Spa	ace Administration		NASA my 100/50		
Washington, DC 20546			NASA TM - 108452		
11. SUPPLEMENTARY NOTES					
Prepared by Structures and D)vnamics Laboratory Sci	ence and Engineerin	ng Directorate		
Tropated by Sauctures and E	rynamics Edoordiory, Ser	ence and Engineerin	ig Directorate.		
12a. DISTRIBUTION / AVAILABILITY STAT	EMENT	12	b. DISTRIBUTION CODE		
Unclassified—Unlimited					
			·		
13. ABSTRACT (Maximum 200 words)					
Orbital debris growth	threatens the survival of sp	acecraft systems from	impact-induced failures.		
Whereas the probability of deb parameter of great interest to s	aris impact and spacecraft personal states of the probability of the p	enetration may curren ability that debris pen	itly be calculated, another		
spacecraft or crew loss. Quanti	fying the likelihood of crev	v loss following a pen	etration allows spacecraft		
designers to identify those designers		onal protocols that offer	r the highest improvement		
in crew safety for available reso Within this study, a	Manned Spacecraft Crew	Survivability (MSCS	Surv) computer model is		
developed that quantifies the co	onditional probability of losi	ng one or more crew n	nembers, $\hat{P}_{loss/nem}$, following		
the remote likelihood of an orb	ital debris penetration into a	in eight module space	station. Contributions to		
$P_{\text{loss/pen}}$ are quantified from three significant penetration-induced hazards: pressure wall rupture (explosive decompression), fragment-induced injury and "slow" depressurization. Sensitivity analyses are performed					
using alternate assumptions for hazard-generating functions, crew vulnerability thresholds, and selected					
spacecraft design and crew operations parameters. These results are then used to recommend modifications					
to the spacecraft design and expected crew operations that quantitatively increase crew safety from orbital debris impacts.					
•					
14. SUBJECT TERMS			15. NUMBER OF PAGES 231		
orbital debris, vulnerability, system survivability, manned spacecraft, astronaut					
safety, spacecraft safety, Monte		NTIS			

SECURITY CLASSIFICATION OF THIS PAGE

Unclassified

Unclassified

17. SECURITY CLASSIFICATION OF REPORT

20. LIMITATION OF ABSTRACT

SECURITY CLASSIFICATION OF ABSTRACT

Unclassified

gan weggeni (ligal).	ing Spiriters and in	e Population (17 mag)	

TABLE OF CONTENTS

		Page
I.	INTRODUCTION	. 1
	A. Background	1
	B. Research Statement	1
	C. Research Objectives and Novelty of the Approach	2
П.	QUANTITATIVE RISK ESTIMATION METHODS	3
	A. Orbital Debris Environment	3
	B. Spacecraft Orbital Debris Penetration Protection	6
	C. Military System Survivability/Vulnerability Assessment	11
III.	PENETRATION EFFECTS	12
	A. Meteoroid Penetration Effects Into Spacecraft Cabins	13
		13
	B. Military Data on Hypervelocity Penetration Effects	15
IV.	MODEL FORMULATION	20
	A . TIL . N. (C.C.) . TM I	22
	A. The MSCSurv TM Impact Model	22
	B. The MSCSurv™ Penetration and Damage Model	31
	C. The MSCSurv TM Crew Loss Model	40
V.	BASELINE AND SENSITIVITY ANALYSES	44
	A. Single Factor Sensitivity Analyses	46
	B. Multiple Factor Sensitivity Analysis	55
	C. Validation and Verification of Results	59
	D. Summary of Design and Operational Alternatives	62
VI.	CONCLUSIONS AND RECOMMENDATIONS	66
	A. Conclusions	66
	B. Recommendations for Future Work	68
	C. Example Using $P_{\text{loss/pen}}$ to Minimize System Costs	69
REFE	RENCES	73
APPE	NDIX A – MSCSurv™ Computer Program Listing	77
APPE	NDIX B – PROBDIA.DAT Data File	113
APPE	NDIX C – VELSTA.DAT Data File	117

TABLE OF CONTENTS (Continued)

	Page
APPENDIX D – PROBMOD.DAT Data File	121
APPENDIX E – LAB.DAT Data File	125
APPENDIX F – HAB.DAT Data File	135
APPENDIX G – JLAB.DAT Data File	145
APPENDIX H – ESA.DAT Data File	149
APPENDIX I – NODE2.DAT Data File	159
APPENDIX J – NODE1.DAT Data File	165
APPENDIX K – PLOG.DAT Data File	171
APPENDIX L – AL.DAT Data File	179
APPENDIX M – Basis for Oblique Hole Size Distribution	185
APPENDIX N – SHIELD.DAT Data File	197
APPENDIX O – PCREWMOD.DAT Data File	205
APPENDIX P – POSITION.DAT Data File	209
APPENDIX Q – Alternative Data File PCREWMO2.DAT	213
APPENDIX R – MSCSury™ Program Input and Output Files for Baseline Study Parameters	217

LIST OF ILLUSTRATIONS

Figure	Title	Page
1.	Comparison of meteoroid and orbital debris flux	4
2.	Orbital debris velocity distribution	5
3.	S.S. Freedom module configuration	8
4.	"Typical" Whipple shield configuration	8
5.	Ballistic limit curve for "typical" Whipple shield	9
6.	Graphical BUMPER™ output, probability of penetration	10
7.	Hypervelocity penetration effects	13
8.	Probability of crew loss from decompression	17
9.	Flowchart for MSCSurv™ simulation	21
10.	Spacecraft geometry for study example: eight module cluster	23
11.	Element numbering scheme for each module (isotropic view)	24
12.	Element numbering scheme for each module (port side view)	24
13.	Element numbering scheme for each module (front view)	25
14.	Element numbering scheme for each module (starboard view)	25
15.	Element numbering scheme for each module (top view)	26
16.	Oblique hole size as a function of debris diameter and velocity at 0° and 60° obliquity	33
17.	Crack size as a function of hole size	34
18.	Crack length versus total impact energy	35
19.	"Typical" interior module equipment layout	37
20.	Example of proposed equipment rack layout with S.S. Freedom laboratory module	38
21.	"Typical" space station internal equipment	39

LIST OF ILLUSTRATIONS (Continued)

Figure	Title	Page
22.	$P_{\text{loss/pen}}$ for module 1 (U.S. Lab) versus pressure wall critical crack length	47
23.	P _{loss/pen} for six module spacecraft cluster versus pressure wall critical crack length	47

LIST OF TABLES

Table	Title	Page
1.	Selected probability of no penetration requirements	7
2.	PNP table—space station manned modules	10
3.	Fragment energy required for specified casualty level	15
4.	Failure modes and probability of loss	16
5.	Penetration hazards, critical levels, and sensitivities modeled within MSCSurv™	19
6.	Distribution of orbital debris approach angles and velocities	27
7.	Example of "angles and areas" spreadsheet program for calculating exposed areas and obliquities	28
8.	Exposed areas for eight module cluster by approach direction	30
9.	Distribution of "effective" and "major" hole diameters for eight module cluster	36
10.	Module total air volume (empty)	42
11.	Summary of baseline/alternative simulation assumptions	45
12.	"Baseline" probability of crew loss given a penetration, $P_{\rm loss/pen}$, for eight modules	46
13.	Probability of crew loss due to orbital debris impact for eight module spacecraft, baseline assumptions (1 year)	46
14.	Probability of crew loss given a penetration ($P_{loss/pen}$), alternative assumptions with 7-in critical crack, six module cluster	49
15.	Probability of crew loss given a penetration ($P_{loss/pen}$), alternative assumptions with 12-in critical crack, six module cluster	50
16.	Probability of crew loss given a penetration ($P_{loss/pen}$), alternative assumptions with 24-in critical crack, six module cluster	51
17.	Taguchi analysis for interaction between five major factors	56
18.	Taguchi analysis for interaction between multiple input factors, 24-in critical crack assumption	58

LIST OF TAL

Table	Title	
19.	Exposed area and probability of no penetration comparison and BUMPER™	
20.	Summary of design and operational alternatives reducing $P_{loss/pen}$ of mandules by orbital debris	
21.	"Improved" probability of crew loss (one or more) given a penetration, $P_{loss/pen}$, for six modules, 12-in critical crack length	
22.	"Improved" probability of crew loss (one or more) given a penetration, $P_{\text{loss/pen}}$, for six modules, 24-in critical crack length	6
23.	Example problem—trade study for improved Lab module shielding	7:

TECHNICAL MEMORANDUM

VULNERABILITY OF MANNED SPACECRAFT TO CREW LOSS FROM ORBITAL DEBRIS PENETRATION

I. INTRODUCTION

A. Background

For much of its history, the National Aeronautics and Space Administration (NASA) has employed a qualitative approach utilizing failure modes and effects analysis (FMEA) as the principal building block of their risk analysis program. One area of exception has been the design of spacecraft meteoroid protection systems. Since the 1960's, NASA managers have established a strong structural design requirement for preventing meteoroid penetration into inhabited spacecraft. Since the meteoroid environment was considered to be well understood, this requirement was probabilistic in nature. For example, the structural design requirement for space shuttle cabin walls and windows was a 0.95 probability of no penetration by a meteoroid in 500 "typical" missions.

Inherent to the establishment of this type of requirement was the conservative assumption that any penetration of these small manned volumes would cause a loss of the spacecraft and its crew. Thus, the probability of crew loss from meteoroid impact was considered roughly equal to the probability of spacecraft penetration, and a meteoroid "safety" analysis amounted to a structural and statistical analysis of the probability of no penetration. In general, these "probabilistic" meteoroid protection requirements were easy to meet, since the probability of impact by meteoroids on a small, short-lived spacecraft was very low.

In the late 1970's, NASA began to detect a new threat to manned space operations in the form of impact with orbital debris—small particles from the breakup of satellites in low Earth orbit (LEO). Recognizing this threat, NASA space station managers included orbital debris when formulating meteoroid penetration protection requirements for initial space station elements. However, because of the proliferation of orbital debris (space junk) in LEO, danger of spacecraft collision with orbital debris particles now far surpasses the danger from meteoroids. It is a serious, growing threat to the survivability of human operations in an Earth-orbiting space station over its long (as much as 30 years) design life.

B. Research Statement

The sudden and dramatic growth of orbital debris in LEO places many spacecraft designers in a difficult position. Resource (time, cost, and weight) constraints on the design and placement of manned spacecraft in orbit are often critical. There is an obvious limit to the amount of initial orbital debris shielding that can be offered to human inhabitants of a space station module. The preliminary (conservative) assumption that loss of a spacecraft "always" occurs following a meteoroid/orbital debris penetration drives the spacecraft designer to choose shielding designs that may be over-designed for preventing actual catastrophic failure (crew or spacecraft loss).

However, today's large manned spacecraft, such as Space Station Freedom (S.S. Freedom), are being designed as compartmented vehicles consisting of separated manned modules, with heavy internal structure, connected by independent hatches. This construction challenges the assumption of "automatic" spacecraft (or crew) loss given a penetration. In reality, the probability of spacecraft or crew loss from meteoroid/debris (M/D) penetration is not only due to the probability of penetration, but also depends upon the magnitude and internal effects of that penetration. It can be thought of as the product of (1) the probability of penetration and (2) the conditional probability that this penetration causes a loss of the spacecraft or crew, as suggested by the second term of the following equation:

P [spacecraft or crew loss due to M/D penetration] = P [penetration] $\times P$ [loss/penetration],

or,

$$P_{\text{M/D loss}} = P_{\text{pen}} \times P_{\text{loss/pen}} . \tag{1}$$

One can further define station or crew "safety" as:

"Safety" =
$$1 - P_{\text{M/D loss}}$$
 (2)

To restate, the second term on the right side of equation (1), $P_{loss/pen}$, was conservatively assumed to be equal to unity for small spacecraft. However, this term can be quantified through additional analyses of actual penetration effects on spacecraft survivability. A lower "second term" indicates a lower probability of overall crew or spacecraft loss, and a higher overall spacecraft "safety" for a particular shield design.

To the spacecraft designer, quantifying the $P_{\rm loss/pen}$ allows a lower expenditure of resources for orbital debris shielding to provide required safety levels to the spacecraft and crew. This expanded probabilistic analysis can also be used to identify internal design configurations that further increase spacecraft and crew safety from the damaging effects of M/D impacts. Further, quantifying this "second term" opens the option of improving orbital debris safety for existing spacecraft through adding internal (rather than external) shielding. Because internal shielding may often be placed on existing spacecraft without costly extravehicular activity (EVA), quantifying the probability of spacecraft loss following an orbital debris penetration may be used to lengthen the orbital "life" of existing spacecraft at lower cost than augmenting external orbital debris shields.

Thus, quantifying actual crew safety from meteoroid and orbital debris penetration is important not only to determine whether existing spacecraft shielding is sufficient, but also to determine the extent to which future shielding should be added, and where. For these reasons, it is the general objective of this report to quantify crew safety from "significant" orbital debris penetration effects into large manned spacecraft, and discuss how this procedure could be extended to other penetration effects and spacecraft types. The next sections detail the objectives and approach of this report.

C. Research Objectives and Novelty of the Approach

The objectives of this report are to:

(1) Conduct research into methods for estimating quantitative risk that are applicable to the manned spacecraft orbital debris impact problem.

- (2) Identify penetration-induced failure modes that induce spacecraft or crew loss and those internal design and/or operational factors that most affect these failure modes (hazard sensitivity factors).
- (3) Summarize baseline assumptions from above studies and develop a detailed probabilistic model and simulation tool for computing loss of crew from "significant" orbital debris penetration failure modes considering a significant number of operational/design variables.
- (4) Perform baseline and sensitivity studies on probability of crew loss from orbital debris penetration for spacecraft manned modules. Perform validation and verification of developed simulation tool. Identify operational modes and design alternatives that increase crew safety and possible roadblocks to their implementation.
- (5) Outline how this detailed model for spacecraft manned modules might be expanded to a general probabilistic model for loss of spacecraft or crew from orbital debris impacts, considering all failure modes and operational factors described in (2).

This report is the first application of a quantitative, "military-style" survivability/vulnerability analysis technique to the civil space program. It differs from other past/proposed analyses by its use of the orbital debris environment as the primary random variable for Monte Carlo "probability of crew loss" analyses, using S.S. *Freedom* program inputs of expected crew position as secondary random input variables where necessary. It develops a model for oblique hole size and initial crack size based on limited penetration data. It quantifies baseline input values for operational factors (crew escape time, sleep position, etc.) and phenomenological factors (depressurization through a hole, internal equipment resistance, etc.) that affect the probability of crew loss, quoting values where available, and generating them where information is unavailable. It includes a sensitivity analysis for the effects of alternative input assumptions where baseline input assumptions are uncertain. Finally, it identifies quantitative increases in crew safety possible through implementing design changes and operational protocols.

II. QUANTITATIVE RISK ESTIMATION METHODS

This section of the report reviews how quantitative "probability of penetration" analyses are performed at NASA, and gives a short summary of quantitative meteoroid/orbital debris performance requirements for various space projects. It also describes quantitative risk analysis procedures used within government and industry for estimating system safety. This discussion concentrates primarily on military system survivability analysis procedures as outlined by the Joint Technical Coordinating Group for Munitions Effectiveness (JTCG/ME) that are applicable to this problem.

A. Orbital Debris Environment

In the late 1970's, NASA began to detect a new threat to manned space operations in the form of potential impact with orbital debris—small particles from the breakup of satellites in Earth orbit. The first models of the orbital debris population were developed by Donald Kessler of NASA'S Johnson Space Center, still one of the world's foremost experts in the study of the orbital debris

population. In 1978, Kessler and Cour-Palais published their first article on orbital debris entitled "Collision Frequency of Artificial Satellites: The Creation of a Debris Belt." Since that time, Kessler has produced increasingly more detailed descriptions of the orbital debris environment using sophisticated optical and radar systems to gather supporting data.²

The orbital debris environment is similar to the meteoroid environment in that the probability density functions for particle velocity and particle diameter are independent of one another. Both models contain equations describing the flux (number) of particles of a particular diameter or larger that are expected to impact a square meter of randomly tumbling spacecraft surface in a year's time (fig. 1).

Figure 1. Comparison of meteoroid and orbital debris flux.

However, orbital debris particles have far surpassed meteoroids in number of large particles "dangerous" to manned spacecraft. Figure 1 shows that the orbital debris flux exceeds the meteoroid flux above 1 mm and is significantly higher than the meteoroid flux above 1 cm. Because spacecraft shielding can generally defeat particles up to 1 cm in diameter, the probability of orbital debris penetration is far greater than meteoroid penetration; so much so, in fact, that meteoroid/ orbital debris protection analyses for large, long-lived spacecraft can usually omit meteoroid analyses altogether with only marginal (less than 1 percent) error.

Orbital debris also differs from meteoroids in their density distribution. According to "Space Station Program Natural Environment Definition for Design," orbital debris consists largely of aluminum (65 percent), with the remaining volume fraction consisting largely of epoxy-glass, rubber, titanium, copper, and steel. Because of the preponderance of aluminum and its comparatively "median" density, the density of orbital debris is usually equated to that of aluminum (2.8 gr/cm²). Conversely, meteoroids generally consist of either ice or stony or ferritic materials bound loosely together with ice. As such, the average density of meteoroids is placed as approximately 0.5 gr/cm².

Another major difference between meteoroids and orbital debris is the directionality and velocity of the particles. Because of their interplanetary origin, meteoric particles travel at speeds up to 72 km/s. Orbital debris moves in roughly circular orbits around the Earth, and generally impacts at speeds less than 20 km/s (relative to spacecraft velocity). Whereas the meteoroid environment is roughly "omnidirectional" relative to spacecraft surfaces, orbital debris impacts are highly directional in nature (due to their circular orbits), approaching the spacecraft from its "front," "port," and "starboard" sides only (fig. 2).

Debris Velocity Relative to Spacecraft (km/s)

Figure 2. Orbital debris velocity distribution.

The expected orbital debris particle flux varies with altitude, solar flux, and year of operation. As shown in figure 2, the relative velocity and direction of debris impacts are directly related to one another (i.e., particles "coming" from one relative direction always travel at the same velocity relative to the spacecraft), and are themselves determined by the altitude and inclination of spacecraft orbit.

Using the Kessler model for flux, the probability of the spacecraft colliding with an orbital debris particle of a diameter greater than a critical value can be determined. This "probability of impact" function has been described by Horn and Avans⁴ (among others) as:

$$P[d>Dcrit] = 1 - e^{-fat} , (3)$$

where

f = debris flux, number of particles per square meter-year of diameter d or larger

a = effective area of spacecraft (spacecraft incremental area multiplied by incremental probability of orbital debris approaching from this direction), square meters

t =time in space, years.

Alternative models for the orbital debris population have also been formed. In particular, the European Space Agency⁵ and Nicolas Johnson of KAMAN⁶ have each proposed independent models for the number of debris particles expected to impact spacecraft as a function of similar orbital parameters. One area of strong difference between these models is the projected increase in debris population with time. While Kessler projects a 2- to 5-percent increase in the number of debris particles per year, Johnson predicts a constant (or decreasing) number of debris particles with time.

Stochastic models of space particle impingements on the surfaces of spacecraft as a function of time have also been developed. Howell describes the time-dependent impact of meteoroids on the Hubble space telescope (HST) in a 1986 paper entitled "A Stochastic Model for Particle Impingements on Orbiting Spacecraft." Recently, Mog⁸ used this work as a springboard for the simulation of orbital debris impacts on the exterior of the S.S. *Freedom* manned modules. In this work, Mog generates probability distributions of expected debris particle sizes and directions from the Kessler flux equations. Using these, he draws random numbers to simulate the inter arrival time, size, and direction of orbital debris particles emanating from a large "cylinder" surrounding a computer model of the S.S. *Freedom* module cluster. He then uses an existing target description code (FASTGEN) to calculate the relative angle of impact between the generated particle and the surface of the S.S. *Freedom* modules. This relative impact angle can then be used to calculate the probability of penetration. This report approach uses a strategy similar to Mog's for simulating orbital debris particle velocities, directions, and sizes, but a somewhat different approach for computing impact placement on spacecraft surfaces and relative orbital debris impact angles with these surfaces.

B. Spacecraft Orbital Debris Penetration Protection

Beginning with the Mercury program in the 1960's, NASA managers have established a structural design requirement for preventing meteoroid penetration into inhabited spacecraft. Since the meteoroid population was considered to be well understood, this requirement was probabilistic in nature. Table 1 summarizes the structural "probability of no meteoroid penetration" (PNP) requirements for a number of past NASA programs. In general, these "probabilistic" meteoroid protection requirements were easy to meet, since the probability of meteoroid impact on a small, short-lived spacecraft was very low.

Table 1. Selected probability of no penetration requirements.

Manned Spacecraft	Environment	Requirement
Gemini/Mercury	Unknown	Unknown
Apollo Command	Meteoroid	0.996 PNP per Module 8.3-Day Mission
Skylab Workshop	Meteoroid	0.995 PNP per 8 Months
STS Orbiter Cabin	Meteoroid	0.95 PNP per 500 Missions
Space Lab Module	Meteoroid	0.9990 PNP per Mission (Approx. 7 Days)
HST	Meteoroid and Debris	0.95 Probability of No Mission Failure in 2 Years (15-Year Life)
S.S. Freedom	Meteoroid and Debris	0.9955 Probability of No Critical Failure per Critical Element in 10 Years

However, with the growing threat of orbital debris impact, NASA space station managers included orbital debris when formulating meteoroid penetration protection requirements for initial space station elements (fig. 3). According to the "Space Station Freedom Preliminary Design Requirements Document," 10 all pressurized volumes (including the nodes, habitation, laboratory, and logistics modules) are considered as "critical space station core elements." As such, they shall "have a minimum probability value of 0.9955 of experiencing no failure due to meteoroid impact that would endanger the crew or space station survivability for the [10 year] life of the station." Further, the "penetration of a pressure vessel shall be deemed a critical failure" that would endanger the crew. Thus, the practical design requirement for space station module walls became a 0.9955 minimum probability of no meteoroid/orbital debris penetration for 10 years.

The S.S. *Freedom* manned modules have a dual wall design for preventing meteoroid/orbital debris penetration, shown in figure 4. During an impact, the outer wall (bumper) breaks the debris particle into a fine cloud of particles. The inner, pressure-bearing wall (hopefully) stops the cloud of particles from penetrating into the crew cabin area.

Meteoroids impact at velocities above 20 km/s, and usually vaporize upon impact with the bumper. Lower, testable velocities often create more damaging liquid or solid cloud fragments. Thus, previous programs responsible for exceeding a "worst-case" probability of no penetration usually amounted to finding the single particle size that just penetrated the final wall at a "worst-case" test velocity, from 3 to 7 km/s. The probability of no penetration was then equated to the probability of being impacted by a particle of this size or smaller.

Today, orbital debris is at least 10 times more likely to penetrate a spacecraft than a meteoroid, and can impact at velocities ranging from 2 to 15 km/s. Thus, the precise effect of debris impact parameters on penetration are more important than on previous programs. The effect of debris diameter, velocity, and obliquity in determining the performance of this type of dual wall shield is

Figure 3. S.S. Freedom module configuration.

Figure 4. "Typical" Whipple shield configuration.

often described through the use of a ballistic limit curve, shown in figure 5.12 In a ballistic limit curve, all diameter/obliquity/velocity (dov) combinations "above" the curve are those that would penetrate into the interior of the spacecraft; all those dov combinations "below" the curve would not penetrate.

The computation of the probability of spacecraft penetration from orbital debris computation is thus a significantly more complex task than meteoroid penetration of small spacecraft. In 1987, NASA and Boeing developed a computer program, BUMPERTM, 13 that performs this calculation given a specific protection design (ballistic limit curve) and spacecraft geometry (in the form of a finite element model). BUMPERTM compares the impact probability of each diameter, velocity, and

Figure 5. Ballistic limit curve for "typical" Whipple shield.

impact obliquity possible from the debris environment to the "pass/fail" criteria of the shield design's ballistic limit curve, and sums up the "no failure" cases for each discrete area of the finite element model. The result is the total probability of no penetration for the spacecraft, or for each module, as shown in table 2¹⁴ for S.S. *Freedom*. Figure 6¹⁵ is another type of graphical BUMPER™ output showing the probability of penetration per square meter of area for the existing S.S. *Freedom* manned module configuration. This output confirms that a higher number of penetrations are expected on the "sides" of the module facing the orbital debris relative velocity vector.

The ballistic limit curve relating penetration damage to environmental parameters is the linchpin of NASA's current probabilistic meteoroid/debris impact safety analysis technique. This curve is typically formulated around test data performed with spherical aluminum particles to represent orbital debris of specified environmental diameters into unpressurized wall samples. These assumptions have facilitated easier testing, limited the number of tests required to formulate curves,

Table 2. PNP table—space station manned modules.

Module	Exposed Area (m ²)	Probability of No Pene- tration
U.S. Lab	21.226	0.9980
U.S. Hab	21.226	0.9980
Japanese Module	14.889	0.9976
Columbus Module	18.356	0.9973
Node 2	5.197	0.9995
Node 1	5.197	0.9995
Logistics Module	25.340	0.9975
Airlock	9.095	0.9991

Year 2000, solar flux = 70, altitude 398 km, zero pitch

Figure 6. Graphical BUMPER™ output, probability of penetration.

and are thought to reasonably simulate the "typical" particle and wall interaction process. Boeing¹² has performed the majority of ballistic limit testing and regression in the 3- to 7-km/s regime. Additional testing (Piekutowski¹⁶) and analysis (Jolly/Williamsen¹⁷) have also been performed.

Although Boeing ballistic limit curves are based upon test data in the 3- to 7-km/s regime, these relationships rely on a modification of the Wilkinson equation to model impact in the 7- to

15-km/s regime. 12 Penetration data are difficult to gather for this regime, but may be collected via velocity scaling 16 or hydrocode analysis. 18 Actual penetration data in this regime have recently been collected by Sandia National Laboratory. 19

Finally, limited data on the hole size and crack size resulting from penetration of the pressure wall have been gathered by Boeing. 12 20 The configuration of the wall and the multilayer insulation (MLI) between the bumper and wall appears to be important to the resulting hole and crack sizes reported. Norman Elfer of Martin Marietta performed initial research into the critical length of crack that would cause "unzipping" (unstopped crack growth) in the pressurized module wall. 21 Unzipping is expected to cause explosive decompression and loss of all crew exposed to its effects. Further discussion of this important failure mode is detailed in following sections.

C. Military System Survivability/Vulnerability Assessment

Methods for determining the quantitative risk associated with the survival of systems from external threats (system survivability) have been in use since the mid-1960's within military circles. In "Aircraft Combat Survivability," 22 Ball summarizes Army, Navy, and Air Force requirements to assess and increase system survivability. In this work, Ball describes aircraft vulnerability as the "inability (of the aircraft) to withstand one or more hits by damage mechanisms." Further, "the systematic description, delineation, and quantification of the vulnerability of . . . the total aircraft is known as a vulnerability assessment." This quantitative vulnerability assessment concept is central to military system design from external threats, and forms a natural extension to space station "probability of loss given a penetration" ($P_{loss/pen}$) analyses described herein.

Because of the need for coordination (and sometimes competition) between service branches, a tri-service organization was formed in 1971 for disseminating information on "accepted" methods for assessing military system survivability/vulnerability. Specifically, the Joint Technical Coordinating Groups on Aircraft Survivability (JTCG/AS) and on Munitions Effectiveness (JTCG/ME) have published a number of reports on "acceptable" methods for vulnerability assessment. ^{23–25} A major contributor to this group is the U.S. Army Ballistics Research Laboratory (BRL) of Aberdeen, MD. Dietz²⁶ ²⁷ summarizes the current BRL methods used in military systems vulnerability assessment.

Taken as a whole, these references describe over 20 separate, lengthy, and sophisticated computer tools developed over the last 25 years for use in computing the vulnerability of Army, Navy, and Air Force weapon systems to external threats (munitions). Among these codes, VAREA and MAGIC are the oldest (dating to 1965), while the state-of-the-art is well-represented by the FASTGEN II and COVART II family.²⁶ In general, these codes consist of:

- (1) A geometry section that generates a three-dimensional model of the external skin and critical internal components on aircraft or ground targets
- (2) A Monte Carlo threat simulation section that generates projectiles from a variety of threat approach angles
- (3) A shotline generator that computes all possible shotlines from each external component to each internal component

(4) An endgame program that computes whether a critical component is "killed" given a particular shotline and munitions type, and sums up the final probability of kill.

These previously derived codes are incompatible with the computation of spacecraft vulnerability to orbital debris impacts because the external threats described within these codes utilize penetration mechanisms that operate at velocities far below orbital impact velocities. As such, these codes contain deeply embedded assumptions concerning penetration effects that are fundamentally incorrect for application to the space debris impact problem. Given time, it might have been possible to alter one or more of these existing codes to perform the desired task. However, the computing resources required far exceeded those accessible by this researcher, and the "learning curve" for proper application of even the simplest of these tools is extreme. It was anticipated that the time investment required to remove erroneous assumptions from the codes and implace "reasonable" ones would rival the time needed to develop an "application-specific" simulation tool.

Despite their shortcomings, the vulnerability assessment methods surveyed contain a number of common and important methodologies that can be applied to the problem of assessing crew loss due to orbital debris penetration:

- (1) Damage Modes and Effects Analysis—identifies and documents all possible damage modes of a component or subsystem and determines the effects of each damage mode upon the capability of the system (spacecraft) or subsystem (crew) to perform its essential functions.
- (2) Threat Description—summarizes the direction of origin and magnitudes of external threats and their relative likelihoods of occurrence.
- (3) Relation Between Threat and Damage Mode—relates expected system and subsystem damage to threat characteristics.
- (4) Description of the System Geometry—must be provided to determine the likelihood of impact of external threats on critical external and internal system components.
- (5) Simulation of External Impact and Internal Shotlines—computes the likelihood of critical damage modes occurring as individual external impacts are simulated.

Thus, although existing JTCG and BRL derived codes were not used per se, many of their underlying assumptions and methodologies were applied and extended within this report approach.

III. PENETRATION EFFECTS

This section discusses orbital debris impact phenomenology. Specifically, it describes short-term failure modes which can lead to immediate loss of spacecraft or crew from orbital debris penetration. These failure modes include rapid decompression, fragment, overpressure, temperature, flash, and critical crack propagation hazards. A discussion of the hazard levels expected to cause crew loss follows, along with a brief summary of the hazard levels measured within orbital debris impact testing to date.

This task also includes a summary of space station design factors and operational modes that are anticipated to mitigate crew hazards. These factors and modes include shield design, crew presence in each module, crew escape rate, module air volume, and internal equipment layout.

A. Meteoroid Penetration Effects Into Spacecraft Cabins

Since the 1960's, NASA has supported a number of studies into the general effects of meteoroid penetration on small space vehicle interiors. In his technical proposal of 1966, Ray²⁸ summarizes the energy release processes associated with hypervelocity penetration into spacecraft cabins as shown in figure 7. The damage effects from these combustion processes are depressurization, fragments, overpressure, blast heat, and light flash.

Burch's 1967 report²⁹ details the results from 13 tests at velocities up to 7 km/s into "typical" capsule wall configurations and pressurized oxygen and oxygen/nitrogen atmospheres. Measurements were taken of the intense light flash, shock waves, and heat fluxes formed by the penetration process. Long and Hammitt³⁰ reported on the results from 10 similar tests conducted in 1969. One important conclusion was that the observed magnitude of fragment, overpressure, light flash, and temperature effects was especially sensitive to the pressure wall design in the test configuration. These reports represent the first attempts to quantify the effect of small spacecraft cabin design on interior penetration effects. However, no attempt was made to model the variation of these effects with impact angle, velocity, and diameter.

Figure 7. Hypervelocity penetration effects.

Of all these effects, decompression appears to have garnered the greatest attention. Bancroft's³¹ 1969 study indicates that an astronaut cannot be expected to survive more than 10 s when subjected to instantaneous decompression. For larger capsules where the likelihood of rapid decompression is slight, Von Beckh³² reports that the decompression rate and atmospheric composition of the capsule just prior to decompression may be related to the length of time that an astronaut can be expected to survive.

During the 1980's, a number of papers on the general interior effects of meteoroid and orbital debris penetration were released in anticipation of the U.S. space station design effort. At a 1984 Marshall Space Flight Center (MSFC) sponsored "Space Debris and Meteoroid Technology Workshop," Engler³³ summarized the "Physiological and Safety Aspects of Penetration," including limited data gathered in the 1960's by GM and Lockheed. Bauer³⁴ also discussed general internal penetration effects in his 1987 paper "Meteoroid and Orbital Debris Protection Concepts," including the variation of depressurization rates from manned modules with hole size. "Orbital Debris Risk Analysis and Survivability Enhancement for Freedom Station Manned Modules"³⁵ also summarizes the results of many of these studies.

The development of S.S. *Freedom* and the growing threat of orbital debris encouraged NASA to conduct a limited study on penetration effects into space station manned modules. In a 1987 study, Boeing¹³ reported limited success in 20 tests to measure the flash and overpressure associated with the penetration of the space station module wall design.

B. Military Data on Hypervelocity Penetration Effects

The available literature on hypervelocity penetration effects is broad, dating from prior to World War II to the present. "Hypervelocity" penetration may be loosely defined as a penetration event occurring near or above the speed of sound within the penetrator or target material. Considerable penetration data are available from military sources, such as the "Penetrations Equation Handbook for Kinetic Energy Penetrators" published by the JTCG/ME.³⁶ This reference describes the depth of penetration and fragment sizes to be expected from rods, fragments, and spheres impacting into thin-walled targets (such as the manned spacecraft walls). Considerable classified data on depth of penetration into specific military targets also exist, but are unavailable to this researcher.

Of primary concern to the survivability analyst is the effect of fragments on crewmen. The JTCG/ME has developed extensive criteria for the probability of "incapacitation" based upon the speed and mass of fragments projected at prone and standing soldiers. According to "Evaluation of Wound Data and Effectiveness of Munitions," this term refers to the ability of the soldier to carry out commands within a specified tactical situation. The tactical situation most comparable to space-craft crew appears to be the "assault <30 s" scenario. In this case, the soldier is expected to be able to "engage in the maximum type of physical activity" within 30 s of being hit by fragments of the described energy level.

Additional data on the effect of fragments on crew have been compiled in Zaker's "Fragmentation Hazard Study"³⁸ and in "Criteria for Incapacitating Soldiers With Fragments and Fragments and Fletchettes"³⁹ and "Ballistic Limits of Tissue and Clothing."⁴⁰ Table 3 summarizes some commonly used values for fragment energy require for fatality levels of 10, 50, and 90 percent. In general, these energy levels are quite low compared to typical orbital debris impact energies.

Table 3. Fragment energy required for specified casualty level.³⁸

PENETRATION:	
Injury level	Energy (ft-lb)
Threshold	11
90 percent injury (10 percent fatal)	40
50 percent injury (50 percent fatal)	58
10 percent injury (90 percent fatal)	85
CRUSHING:	
Injury level	Momentum (ft-lb/s)
Threshold	100

The effects of depressurization on air crews have also been studied extensively by military sources. In 1961, Bryan⁴¹ found that rapid depressurization beyond 35,000 ft (4 lb/in²) in oxygen/nitrogen atmospheres led to immediate dizziness and probable unconsciousness in human subjects. Ernsting⁴² reported similar effects, but noted the importance of rate of depressurization and atmospheric makeup in his results.

Blast effects on humans have also been the subject of numerous studies since the 1940's. A classic work on the subject was published by the Defense Atomic Support Agency in 1968.⁴³ In "Estimate of Man's Tolerance to the Direct Effect of Air Blast," Bowen outlined the probability of human survival as a function of overpressure and human body position. Specifically, overpressures above 10 lb/in² are predicted to cause lung damage and decreasing probability of human survival; overpressures below this level might cause hearing loss, but not loss of life. Severin reported the effects of light flash on humans in his 1962 work, "A Study of Photostress and Flash Blindness."⁴⁴

C. S.S. Freedom Orbital Debris Survivability

As outlined in the introduction, the tremendous growth of orbital debris is causing NASA to reevaluate its orbital debris protection design for the S.S. *Freedom*. A 1992 Government Accounting Office (GAO) study states that there is a 36-percent probability of penetrating a critical element of the space station (including a manned module) over the 30-year life of the station.⁴⁵ This probability of penetration is often equated to "crew safety" within the GAO report, but NASA has responded that "a pinprick in the module could go unnoticed for some time, and not cause problems."

For some time, NASA has been studying the consequences of module depressurization without quantifying the probability of its occurrence. In 1985, Boeing produced a memo entitled "Space Station Module Blowdown from Debris Puncture" in which both isentropic and isothermal blowdown models for module pressure loss through circular holes are discussed. Subsequent references 47 48 have concentrated on the isentropic blowdown model as the most reliable. In NASA's

"Space Station *Freedom* Contingency Operations Scenarios,"⁴⁹ a relation between time available for crew egress and hole size for the space station module cluster is developed. Within this report, 8.3 lb/in² absolute is established as the minimum limit for cabin pressure, below which the crew's physical impairment is "severe."

Given the increase in program weight and cost to be expected from increasing penetration protection, the study of quantitative crew safety following a meteoroid or debris strike has recently become the subject of intensive study at NASA. At a recent American Institute of Aeronautics and Astronautics (AIAA) Space Programs and Technologies Symposium held in March of 1992, Christiansen³⁵ discusses how the probability of penetration of external elements and manned modules may be computed, and how the survivability of these elements may be qualitatively enhanced through internal spall liners (fragment-stopping blanket materials).

At the same symposium, Williamsen presented the paper "Orbital Debris Risk Analysis and Survivability Enhancement for Freedom Station Manned Modules." This paper summarized the failure modes and hazard mitigating factors associated with orbital debris penetration of manned modules, as shown in table 4, and listed thrust loading from spacecraft decompression as a new mode of possible spacecraft loss from orbital debris penetration. It was the first published work to define and derive quantitative crew "safety" values from space particle impact. In an example problem, it computed a preliminary value for probability of crew survival from slow decompression and its sensitivity to the single operating mode of individual module hatch status (open or closed), as shown in figure 8.

Table 4. Failure modes and probability of loss. 14

PENETRATION HAZARDS AND FAILURE MODES Wall Breech Hazards	CRITICAL HAMARD LEVEL (Preliminary estimates where available)	HAZARD MITIGATION Design Factors and Operating Modes	CRITICAL IMPACT CONDITIONS Observed/Expected to Cause Critical Hazard Levels	PROBABILITY OF LOSS Due to Described Hazard
o Internal Depressurization o Crew unable to ecape prior to unconsciousness o Critical failure of equipment	o 14.7 to 9 psi in 180 seconds or less (11). o 1/3 bar loss in 120 seconds or less (12). o All internal equipment designed to withstand depressurisation without hazard (13).	o Hatches open between modules increases air & crew escape time, endangers crew in connecting module. o Crew presence in each module varies with time.	(i.e., hatch status). Small volumes provide less crew time to escape prior to reaching critical threshold (decreasing crew safety), less thrust from outgassing F	P[crew loss] = P[hole ≥ crit size 1] x P[crew in module]. Crit size 1 (depress) = f(available volume, crew escape time). P[specific hole size] = P[d,o,v impacts module]
o External Atmospheric Outgassing o Thrust from air	o Critical control moment not yet established.	o Batches closed between modules decreases thrust, increasing safety.	obliquity, velocity (d,o,v) conditions and MLI placement P	P[station loss] = P[hole ≥ crit size 2]. P[specific hole size] = P[d,o,v impacts module]
loss exceeds station control margin, loss of station or equip	o Most equipment designed for stowed launch loads. Thrust load resistance not known, not regrmnt.	o Placement of MLI farther from wall decreases created hole size.	o For 0.375*, 7 km/sec, 0 deg	Crit size 2 (outgas) = f(available volume, critical thrust).
o Critical Cracking of Pressure Module Wall o Unstopped growth	o Exact initial crack size for unstopped growth is unknown, estimated from a 7" (14) to a 15" (15) initial crack length.	o Placement of MLI farther from wall decreases critical crack length.	No MLI => 6" wall crack, MLI on wall => 13" crack. P	P[station loss] = P[crack \(\geq \) crit size]. P[specific crack size]= P[d,o,v impacts module]
Fragment Hazards o Crew injury hinders escape, crew loss, crit equipment damage	o Fragment effects on crew not established. Any injury hinders crew. o Fragments penetrating critical racks, lines.	o Rack structure slows or prevents propagation of fragments, may prevent injury to crew/equipment.	penetrate over five 0.020*	P[crew loss] = P[d,o,v penetrates] R P[fragments penetrate racks into aisle] R P[crew is in aisle].
Atmospheric Hazards o Overpressure, Sound, Shock. o Crew injury or equipment loss	o Known magnitude/time/ distance relations for crew injury, loss (16) o Unknown equipment resistance level (not design requirement)	o Rack structure slows propagation of overpressure & sound effects, may prevent injury to crew.	feet into aisle if no rack	P[crew loss] = P[d,o,v penetrates] t P[shock overcomes rack structure] t P[crew is in aisle].
o Temperature (Blast Heat) o Injury from fire or blast heat, equipment loss	o 120 deg F. minimum, time dependent (17). O Fire resistance required of all internal hardware & varies w/design (13)	o Rack structure slows propagation of blast heat into aisle, may prevent injury to crew.		P[crew loss] = P[d,o,v penetrates] x { P[heat > rack] x P[crew in aisle] + P[rack fire] x P[crew near] }.
o Flash (Light) o Crew hindered by blindness	o Temporary blindness at 100 Lamberts (8), retinal burns at 2.5 cal per sq. steradian/sec (18).	o Rack structure stops propagation of flash into aisle.		P[crew loss] = P[d,o,v penetrates] P[flash penetrates] x P[crew observes].

CREWOF 8	НАВ	LAB	NODES	COLLIMBUS	JEM
TOTAL HOURS PER DAY (OCCUPIED)	133	17	8	17	17
NUMBEROF	5.52	2/	1/	2	2/
CREW		8.5	4	8.5	8.5
MEMBERS	AVQ.	HRS EA	HRS EA	HRS EA	HRS EA
PERCENT TIME OCCUPIED	100%	35%	33%	35%	35%
PERCENT TIME EMPTY	0%	65%	67%	65%	65%
TOTAL HOURS PER DAY (EMPTY)	0	15.5	16	15.5	15.5

TOTAL MANHOURS PER DAY (24x8) 192 HOURS

Case	Hatch Condition	Probability that crew is		
		lost given a penetration		
1	All hatches open 100 percent of time	22.6 percent of all module penetrations		
2	All hatches closed 100 percent of time	21.7 percent of all module penetrations		
3	Hatch 2 closed (Hab) 100 percent of time	16.8 percent of all module penetrations		
4	Hatch 1,7 closed (Airlock, P-Log) 100 percent of time	19.8 percent of all module penetrations		
5	Hatch 1,2,7 closed (A/L, P-Log, Hab) 100 percent of time	15.6 percent of all module penetrations		
6	Hatch 1,7 closed 35 percent of time. All hatches closed rest of time (65%)	13.0 percent of all module penetrations		
7	All hatches closed 100 percent of time 3 min escape	20.8 percent of all module penetrations		
8	All hatches closed 100 percent of time Alter crew model	23.8 percent of all module penetrations		

Figure 8. Probability of crew loss from decompression.¹⁴

On May 22, 1992, NASA directed the Space Station Engineering Integration Contractor (SSEIC) to develop and implement a Meteoroid/Orbital Debris Forward Action Plan (FAP). The objective of this FAP was to "determine which S.S. *Freedom* critical elements are in compliance with program requirements and to identify those items which may need additional protection." An integral part of this identification process is the development and implementation of an "integrated, probabilistic station-level test and analysis program to determine the likelihood that S.S. *Freedom* could experience a catastrophic failure." This term is defined within the body of the SSEIC forward action plan as "any event which endangers (not "could" endanger, as in the case of critical failure, previously defined) crew or station safety." 1

Thus, the S.S. *Freedom* program has initiated an assessment of the actual probability of crew or station loss (catastrophic failure) from meteoroid/space debris impact. Their main objective behind this is similar to that outlined herein: to identify which elements should receive augmented shielding from orbital debris penetration, and to minimize the amount of that shielding in meeting stated safety levels. Task 4.1.2 of the FAP⁵¹ is to perform an integrated risk assessment of the manned module.

Many of the stated objectives within the FAP have been achieved. The FAP has been instrumental in identifying preliminary decompression levels and critical crack lengths in the module skins that produce crew or station loss through slow or explosive decompression. The October 1992 SSEIC FAP Task One Report⁵² and "Interim Report"⁵³ give preliminary evidence to support a 7.5-lb/in² decompression limit prior to onset of hypoxia if no oxygen masks are available to spacecraft crew, or a 3-lb/in² decompression limit if oxygen masks are donned prior to reaching a 7.5-lb/in² level of cabin atmosphere (both from a 14.7-lb/in² original cabin level).

Citing preliminary evidence gathered from a special NASA formed panel of U.S. fracture experts (including Elfer²³) called the Fracture Control Working Group, SSEIC states that a critical tip-to-tip crack length of 7 in must be created in a 0.125-in 2219-T87 Al manned module pressure wall by the penetration process prior to "unzipping" (unstopped crack propagation) of the module structure. "Unzipping" is the most catastrophic of orbital debris-induced failure modes, and is assumed to cause explosive decompression of the module structure and subsequent loss of the entire crew and station complex. Though it may be possible to stop critical crack propagation through integral ribs and stiffeners in the wall, SSEIC outlines a more effective possible countermeasure to be a uniform thickening of the rear wall. This design alternative delays the onset of "unzipping" by requiring a larger impact-induced critical crack length prior to critical crack propagation. For example, uniformly thickening the 2219-T87 Al module wall to 0.188 in would raise the critical tip-to-tip crack length from 7 to 12 in.

The FAP utilizes a BASIC computer simulation entitled CREW™ to compute the probability of crew loss for manned modules. The random variables within this simulation are selected from "lookup tables" that assume values for the individual probabilities of module impact, hole size, number of crew within each module, impact proximity to crew members, interior blockage, and crew injury. Because CREW™ lacks a geometric model and the orbital debris environment as a primary input variable, it cannot calculate internal penetration effects as a function of internal equipment location or crew proximity to each penetration location. Further, CREW™ is limited to calculating the magnitude of the internal effects within the FAP based on the magnitude of the hole size associated with each "penetration" instead of impact parameters of particle diameter, velocity, and obliquity. Unfortunately, large holes do not necessarily result in significant internal penetration hazard levels; likewise, small holes can often result in significant internal penetration depths and associated hazard levels. Given these observations, the accuracy of the SSEIC model results for injury-related crew loss is somewhat suspect.

Obviously, with a valuable national project such as the space station, cooperation to achieve a realistic value for the probability of spacecraft or crew loss following orbital debris penetration was important to NASA. A good deal of technical interaction continues to take place between the SSEIC team and this researcher on the "correct" orbital debris-induced hazard levels causing loss of the station or crew. Many of the previously baselined SSEIC/FAP values for expected hole size distributions, crack size distributions, and crew injury/decompression levels have improved due in part to this interaction. Throughout the FAP, the simulation tools, inputs, and outputs from this report approach have served the important dual purposes of (1) providing important input parameters to the larger SSEIC effort and (2) providing an independent "top-to-bottom" check on the validity of the SSEIC outputs for the probability of station or crew loss from orbital debris.

Table 5 summarizes important, near-term crew penetration hazards discussed within this report that are included within its associated simulation, Manned Spacecraft Crew Survivability (MSCSurvTM). Other "late-time" hazards exist (secondary fires, failure to repair damage,

long-term crack growth, air-borne contamination, etc.) that could also cause crew loss. These failure modes were omitted from this discussion due to the assumed existence of assured crew rescue vehicles on large spacecraft (such as the S.S. *Freedom*) and their capability to remove crew prior to experiencing the damaging effects of these hazards.

Table 5. Penetration hazards, critical levels, and sensitivities modeled within MSCSurv™.

Penetration Hazards	Hazard Sensitivities		
Unstopped Crack Propagation (Module "Unzipping") Critical Hazard Level:	 Hole size following penetration (Hole size and energy models) Critical crack uncertainties (1- to 24-in lengths) 		
7-in critical crack for a 0.125-in 2219-T87 Al wall			
12-in critical crack for a 0.188-in 2219-T87 Al wall			
Injury (Due to fragments and blast)	 Spread of internal debris cloud (1 to 3 racks wide) "Equivalent" density of internal equipment 		
Critical Hazard Level:	(0 to 0.7 gr/cm ²) • Lethality of crew exposure to debris cloud		
58 ft-lb impact energy	(0 to 100 percent)		
Decompression	• Crew distribution among modules (asleep and		
(from 14.7 lb/in ²)	awake) *		
Cuitical Howard Lavale	• Crew distribution within modules (uniform and triangular) *		
Critical Hazard Level:	• Crew escape time (1 to 3 min)		
7.5 lb/in ² (baseline)	Hatch position (open, closed, mixed models)		
3.0 lb/in ² (w/oxygen masks)	• Ratio of free air to total module volume (70 to		
9.5 lb/in ² (equipment failure)	95 percent)		
	• Hole size model (Oblique and Burch models)		
	• Hole shape (C _d , isentropic depressurization		
	discharge coefficient, varies from 0.7 to 0.9)		

^{*} This mitigating parameter also affects crew injury.

IV. MODEL FORMULATION

In this section, a Monte Carlo simulation model is developed that generates random debris particles (from the NASA environment model) and models the space debris particle arrival process, the impact placement on spacecraft manned modules, the amount of damage (hole size and internal penetration) from each impact, the presence of crew in the module, and the final probability of crew loss given a penetration ($P_{loss/pen}$) averaged over thousands of simulated penetrations. This model will be referred to as MSCSurvTM. Figure 9 shows an outline of the basic flowchart for MSCSurvTM.

Figure 9. Flowchart for MSCSurv™ simulation.

Microsoft FORTRAN was used to generate and execute the algorithms described. The $MSCSurv^{TM}$ program is listed in its entirety in appendix A.

The first section of the MSCSurv[™] computer program draws random numbers to simulate orbital debris impact parameters of diameter, velocity, approach angle, spacecraft impact location, and relative obliquity of impact with spacecraft. It then passes this information along to the second section of the program to determine how many of these particles actually penetrate the spacecraft. For those particles that penetrate the spacecraft, MSCSurv[™] computes the number of penetrations that produce at least one crew loss. The expected probability of crew loss then is the total number of penetrations resulting in one or more crew losses divided by the total number of penetrations simulated.

Notice that this "probability of loss" parameter does not differentiate between losing one, two, three, or four crew members. Defining the loss parameter in such a way as to disregard the actual number of crew lost is consistent with current NASA safety philosophy, where the loss of even one crew member is considered to be as severe as the loss of the entire crew.

MSCSurvTM is used to derive the second and third terms of equation (4):

		"First Term"		"Second Term"		"Third Term"	
Probability of Crew Loss From Impact in Time (t)	=	Probability of an Impact in Time (t)	×	Probability of Penetration Following Impact	×	Probability of Loss Following Penetration	(4)
computed by		Equation (3)		Sections 1 and 2 MSCSurv TM		Section 3 MSCSurv TM	
equal to		e ^{–Fat}		No. Penetrations No. Impacts		No. Penetrations <u>Causing Crew Loss</u> No. Penetrations	
Note:		"First term" of Equation (3)				"Second term" of Equation (3)	

As shown above, the first term of equation (4) is calculated from the standard "probability of impact" relation described in equation (3). Note that this is the only term in which the element of time need be addressed (the second and third terms are time independent). Equation (3) shows that this term requires knowledge of the duration of spacecraft time in orbit (t), the flux impinging on the spacecraft (f), and the "exposed area" of the spacecraft to orbital debris (a). The next section will discuss how the "exposed area" of the spacecraft can be derived from the geometry of the spacecraft and the distribution of orbital debris approach angles.

The "second term" in equation (4), the probability of penetration given an impact, $P_{\text{pen/impact}}$, is computed by dividing the total number of penetrations observed by the total number of impacts simulated. By the law of large numbers, 54 "the relative frequency of the event is almost sure to be close to the (actual) probability of the event when the number of trials is large." Thus, as the total number of penetrations is increased, the second term computed by MSCSurvTM should converge to a central value representing the "mean" $P_{\text{pen/impact}}$. In a similar fashion the third term in equation (4), the probability of loss given a penetration, $P_{\text{loss/pen}}$, is computed by dividing the total number of penetrations where one or more crew is lost by the total number of penetrations observed. Over a sufficiently large sample size, its value should also converge to a mean $P_{\text{loss/pen}}$. Unless there is something inherently unstable in the model, the overall probability of crew or spacecraft loss should also converge to a central value.

As stated earlier, the primary objective of this report is a discussion of the probability of crew or spacecraft loss following a penetration by orbital debris; given this, the term of real interest to this investigator is the $P_{\rm loss/pen}$. However, the first two terms in equation (4) can be verified through use of other NASA computer models (such as BUMPERTM), and are expected to influence the absolute value for $P_{\rm loss/pen}$. Verification of the correct absolute values for the $P_{\rm impact}$ and the $P_{\rm pen/impact}$ from MSCSurvTM will lend confidence to the overall value for $P_{\rm loss/pen}$. Thus, the first and second terms of equation (4) will be computed using MSCSurvTM as a separate exercise and discussed under the "Validation and Verification of Results" section.

A. The MSCSurvTM Impact Model

The first section of the MSCSurv™ computer program (appendix A) draws random numbers to simulate orbital debris impact parameters of diameter, velocity, approach angle, spacecraft impact location, and relative obliquity of impact with spacecraft. This is accomplished by comparing the drawn random numbers with cumulative distributions for debris sizes between 0.3 and 3 cm, 37 approach angles, and exposed (line-of-sight) areas of the spacecraft to each approach angle.

1. Probability Distribution for Debris Diameter

The relative probability distribution of orbital debris diameters impinging on a spacecraft can be determined directly from the Kessler equations (equation (4) and (5)). Since the distribution of debris sizes is dependent upon spacecraft altitude, orbital inclination, and solar flux, some assumption for these parameters is required prior to assembly of the diameter distribution function. For this problem, the spacecraft altitude is assumed to be 398 km, the orbital inclination is assumed as 28.5°, year of operation as 2000, and the solar flux as 70 Janskys ("standard" U.S. LEO values).

Figure 1 shows that a spacecraft is far likelier to be hit by a "small" (less than 1-mm diameter) orbital debris particle than a "large" particle. Experience with the design and reaction of typical spacecraft structures indicates that there is a lower limit on the size of debris particle that can (at worst case) penetrate the spacecraft interior. In order to limit the total number of random numbers drawn to simulate "dangerous" debris to a reasonable value, it is advantageous to limit the program's cumulative distribution for debris to those debris sizes that could possibly penetrate the spacecraft. In a similar fashion, there is an upper limit to the size of large debris that can be "reasonably" expected to impact the spacecraft during its lifetime. An upper limit on debris diameter of less than around 0.01-percent probability of impact during the spacecraft lifetime appears to be a reasonable value on which to base a cumulative distribution function range.

The shield performance for this study example is assumed to be equal to the ballistic limit curve shown in figure 5. This results in a lower debris limit of 0.3-cm diameter. An upper debris diameter limit of 3.0 cm is assumed based on the low probability of this sized particle (or larger) impacting a large, long-lived spacecraft.

Based on these assumptions, a cumulative probability distribution for debris diameters between 0.3 and 3.0 cm has been formulated from the Kessler debris equations as data file "PROBDIA.DAT," shown in appendix B. The first column in PROBDIA.DAT represents the diameter of the impacting particle in centimeters; the second is its cumulative probability of occurrence. This data file is read into the simulation program in lines 11 through 20 of MSCSurv TM (appendix A).

2. Forming the Geometric Model

The spacecraft geometry chosen for this study is based on NASA's (1992) S.S. *Freedom* manned module configuration (fig. 10). This eight module cluster is expected to begin operation as a "Permanently Manned Configuration" (PMC) in the year 2000. For this study, the modules are assumed to be flying in a stable, 0° pitch, roll, and yaw flight mode with respect to the velocity vector (close to the expected S.S. *Freedom* flight mode). Based on NASA's orbital debris environment model, orbital debris

will approach the modules in a roughly 180° arc stretching from the +X to the -X axis within the "X-Y" plane. That is, the orbital debris will appear to approach the manned module cluster from the "front," "port," and "starboard" sides only, not the "back" or the "top" of the cluster. The spacecraft velocity vector is parallel to the +Y axis (long axis of the U.S. Lab, Hab, JEM, and ESA modules).

Figure 10. Spacecraft geometry for study example: eight module cluster.

Although the spacecraft modules are (in reality) cylinders with truncated endcones, the construction of a particle impingement model necessitates a simplification of this geometry. The smooth cylinder sides are modeled by a series of 12 joined flat plates, and 5 to 9 flat plates form the endcones. Each of these flat plates is called an element, and is given an associated number within each module; each module has no more than 100 associated elements. Figures 11 through 15 show the numbering scheme for these elements. Note that each element contains roughly the same surface area; they are identically the same on the cylinder sides. Note also that the width of the cylindrical elements are all 42 in (along the axis of the cylinder). This is an important consideration, because all of the manned modules are lined with internal equipment racks, usually of 42-in individual lengths.

Thus, by choosing the exterior geometry with care, it is possible to associate not only individual external shield configurations, but also discrete individual internal equipment "thicknesses" with each element area. This model feature is attractive in the large degree of flexibility it allows in examining the effects of alternate internal equipment configurations on $P_{\rm loss/pen}$.

Note from figures 11 through 15 that certain module areas are not numbered by elements. Specifically, the endcones and the "inboard" sides of the JEM (module 3) and ESA (module 4) and the endcones of the PLM (module 7) and Airlock (module 8) are not numbered. This is because these areas are completely "shadowed" (or nearly so) from direct impact due to adjoining modules or by their individual orientation to the highly directional debris flux.

Figure 11. Element numbering scheme for each module (isotropic view).

Figure 12. Element numbering scheme for each module (port side view).

Figure 13. Element numbering scheme for each module (front view).

Figure 14. Element numbering scheme for each module (starboard view).

Figure 15. Element numbering scheme for each module (top view).

3. Exposed Areas and Orbital Debris Velocity Distribution

Having established a physical geometry for each of the spacecraft manned modules, the next step is to compute the exposed area of each element "visible" to orbital debris coming from individual (discrete) directions over a 180° arc. The average exposed area for each module is the product of the exposed area of each element times the relative probability of orbital debris coming from that direction, summed over all of the possible approach directions and elements, as described in equation (4):

Average Exposed Area = SUM {SUM Area
$$(i,j) \times \text{Prob}(j)$$
},
 $j=1$ $i=1$ (5)

where

Area(i,j) = exposed area of element i "visible" to orbital debris approaching from direction j

Prob(j) = relative probability of orbital debris approaching from direction j

N = number of elements for each module

A = Number of directions from which orbital debris can arrive (37, in this case).

Of course, many elements within each module present "zero" exposed area to certain incoming debris directions. For example, figure 15 shows that only elements 1 through 48 of the U.S. Lab (module 1) show exposed area to orbital debris arriving from the +X (port) direction; elements 49 through 100 do not show exposed area to debris approaching from this direction.

For this study, the 180° arc over which orbital debris may approach the spacecraft is divided into 37 discrete angular increments of 5° each (0°, 5°, 10°, etc. to 180°). Each discrete approach direction is assigned a relative probability of orbital debris "occurrence" based upon the Kessler flux equations described in references 2 and 3. As discussed in section II, a constant orbital debris approach velocity (relative to the spacecraft) is associated with each discrete approach angle. Table 6 lists the relative probability, cumulative probability, and constant relative velocity associated with each of the approach directions for the orbital altitude and inclination associated with this example problem.

Table 6. Distribution of orbital debris approach angles and velocities.

Approach	Approach Angle	Velocity	Relative	Cumulative
Direction	from $+X$ (°)	(km/s)	Probability	Probability
1	0 (+X)	0.33	0.0000	0.0000
2	5	1.34	0.0000	0.0000
3	10	2.67	0.0037	0.0037
4	15	4.00	0.0097	0.0134
5	20	5.25	0.0213	0.0347
6	25	6.50	0.0372	0.0719
7	30	7.70	0.0507	0.1226
8	35	8.83	0.0540	0.1766
9	40	9.90	0.0582	0.2348
10	45	10.90	0.0544	0.2892
11	50	11.80	0.0575	0.3467
12	55	12.61	0.0611	0.4078
13	60	13.34	0.0543	0.4621
14	65	13.95	0.0322	0.4943
15	70	14.47	0.0044	0.4987
16	75	14.87	0.0013	0.5000
17	80	15.17	0.0000	0.5000
18	85	15.34	0.0000	0.5000
19	90 (+Y)	15.40	0.0000	0.5000
20	95	15.34	0.0000	0.5000
21	100	15.17	0.0000	0.5000
22	105	14.87	0.0013	0.5013
23	110	14.47	0.0044	0.5057
24	115	13.95	0.0322	0.5379
25	120	13.34	0.0543	0.5922
26	125	12.61	0.0611	0.6533
27	130	11.80	0.0575	0.7108
28	135	10.90	0.0544	0.7652
29	140	9.90	0.0582	0.8234
30	145	8.83	0.0540	0.8774
31	150	7.70	0.0507	0.9281
32	155	6.50	0.0372	0.9653
33	160	5.25	0.0213	0.9866
34	165	4.00	0.0097	0.9963
35	170	2.67	0.0037	1.0000
36	175	1.34	0.0000	1.0000
37	180 (-X)	0.33	0.0000	1.0000

A spreadsheet program was utilized to calculate the individual exposed areas for each module and element by approach direction. Table 7 shows an example of this spreadsheet input for calculating exposed areas for the airlock module and approach direction 1.

Table 7. Example of "angles and areas" spreadsheet program for calculating exposed areas and obliquities.

Angles and Areas

Approach angle from X axis 5° Rad = 0.0873 Approach angle from Y axis 85° Rad = 1.4835 Approach angle from Z axis 90° Rad = 1.5708

FULL CYLINDRICAL ELEMENT AREA=1.178768

AIRLOCK ELEMENTS 1 TO 36 TOTAL OF ALL ELEMENTS = 27.22785

Element	Alpha-x	Beta-y	Gamma-z	Percent Shadow	Obliquity	Exp. Area
1	75	165	90	0	79.99980	0.204736
2	45	135	90	0	49.99981	0.757850
3	15	105	90	0	19.99983	1.107898
4	15	75	90	0	10.00027	1.161087
5	45	45	90	0	40.00020	0.903164
6	75	15	90	0	70.00019	0.403239
7	105	15	90	1	100.0001	0
8	135	45	90	1	130.0001	0
9	165	75	90	1	160.0001	0
10	165	105	90	1	169.9995	0
11	135	135	90	1	139.9997	0
12	115	165	90	1	120.3441	0
13	75	165	90	0	79,99980	0.204736
14	45	135	90	0	49.99981	0.757850
15	15	105	90	0	19.99983	1.107898
16	15	75	90	0	10.00025	1.161087
17	45	45	90	0	40.00020	0.903164
18	75	15	90	0	70.00019	0.403239
19	105	15	90	1	100.0001	0
20	135	45	90	1	130.0001	0
21	165	75	90	1	160.0001	0
22	165	105	90	1	169.9995	0
23	135	135	90	1	139.9997	0
24	115	165	90	1	120.3441	0
25	75	165	90	0	79.99980	0.204736
26	45	135	90	0	49.99981	0.757850
27	15	105	90	0	19.99983	1.107898
28	15	75	90	0	10.00025	1.161087
29	45	45	90	0	40.00020	0.903164
30	75	15	90	0 .	70.00019	0.403239
31	105	15	90	1	100.0001	0
32	135	45	90	1	130.0001	0
33	165	75	90	1	160.0001	0
34	165	105	90	1	169.9995	0
35	135	135	90	1	139.9997	0
36	115	165	90	1	120.3441	0

An integral part of calculating the exposed area of each element is to determine the relative angle between its normal surface vector and the approach vector of the incoming debris. This relative angle of impact is commonly referred to as the obliquity. It is computed by the following formula (equation (5)):

Obliquity =
$$ACOS \{(COS X1 \times COS X2) + (COS Y1 \times COS Y2) + (COS Z1 \times COS Z2)\}$$
, (6)

where

X1 = angle between X axis and angle 1 (approach vector)

X2 = angle between X axis and angle 2 (surface normal)

Y1 = angle between Y axis and angle 1 (approach vector)

Y2 = angle between Y axis and angle 2 (surface normal)

Z1 =angle between Z axis and angle 1 (approach vector)

Z2 =angle between Z axis and angle 2 (surface normal).

The exposed element area for each approach direction is computed through multiplying the full element surface area by the cosine of the obliquity. The obliquity value is itself of great importance in the later computation of whether or not individually generated particles penetrate the modules, as will be discussed later.

Table 8 lists the exposed areas calculated for each of the eight modules by approach direction and in total. This incremental module area (by approach direction) may be divided by the total eight module area (for this approach direction) to determine the relative probability of each module being impacted by a debris particle approaching from this direction. In the same way, the relative exposed area of each element can be divided by the total exposed area for each module to calculate the relative probability of element impact by a debris particle approaching from a particular direction.

The probability of debris impact on the overall module cluster by approach direction is not simply a function of the distribution of debris particles by approach direction i (this would only be true if the module cluster had the same exposed area to every individual approach angle). Rather, it is a function of the product of the exposed area of the module cluster for each approach direction and the relative probability of debris approaching from this angle, as shown in equation (6):

$$Pimpact_{i} = \frac{[Area_{i}] \times [Papproach_{i}]}{\left\{ \begin{array}{c} S_{i=1}^{i=37} \\ \text{SUM} \end{array} \right. Area_{i}/37 \right\}}, \tag{7}$$

where

Pimpact_i = probability that debris impacts from approach direction i

Area_i = module cluster exposed area for approach direction i

 $Papproach_i = probability$ that debris approaches from direction i

i = 37

SUM Area_i / 37 = module cluster exposed area averaged over all 37 approach directions. $_{i=1}$

Table 8. Exposed areas for eight module cluster by approach direction. Exposed area of eight modules (m^2)

Approach									Total
Direction	LAB	HAB	JEM	ESA	NODE 2	NODE 1	PLOG	A/L	Area
						0.0	27.0	10.6	1 4 1 5
1 1	36.4	0.0	36.4	18.2	9.4	0.0	27.3	13.6	141.5
2	37.2	2.1	36.2	15.4	10.7	0.2	27.2	13.6	142.9
2 3 4 5	37.7	4.2	35.8	13.4	11.4	0.5	26.9	13.4	143.6
4	37.9	6.1	35.1	10.1	11.5	0.2	26.3	13.1	140.8
	37.8	8.4	34.2	7.7	11.7	0.0	26.9	13.4	140.3
6	37.5	10.1	33.0	4.5	11.5	0.0	27.2	13.6	137.6
6 7 8 9	36.8	11.9	31.5	1.5	11.3	0.0	27.3	13.6	134.2
8	35.9	14.2	29.8	0.0	10.9	0.0	27.2	13.6	131.9
	34.7	15.9	27.9	0.0	10.4	0.0	26.9	13.4	129.4
10	33.2	17.3	25.7	0.0	10.0	0.0	26.3	13.1	125.9
11	31.5	18.7	23.4	0.0	9.4	0.0	26.9	13.4	123.5
12	29.5	20.5	20.8	0.0	8.7	0.0	27.2	13.6	120.6
13	27.4	21.0	18.2	0.0	7.8	0.1	27.3	13.6	115.6
14	25.0	21.2	15.3	0.0	6.9	0.8	27.2	13.6	110.4
15	22.4	21.0	12.4	0.0	5.9	2.2	26.9	13.4	104.5
16	19.6	19.6	9.4	0.0	4.9	6.2	26.3	13.1	99.5
17	16.7	16.7	6.3	0.0	4.6	6.3	26.9	13.4	91.2
18	13.7	13.7	3.1	0.0	6.3	7.3	27.2	13.6	85.1
19	10.6	10.6	0.0	0.0	6.5	6.5	27.3	13.6	75.3
20	13.7	13.7	0.0	4.7	7.3	6.3	27.2	13.6	86.7
21	16.7	16.7	0.0	9.4	6.3	4.6	26.9	13.4	94.4
22	19.6	19.6	0.0	14.1	6.2	4.9	26.3	13.1	104.2
23	21.0	22.4	0.0	18.6	2.2	5.9	26.9	13.4	110.8
24	21.2	25.0	0.0	23.0	0.8	6.9	27.2	13.6	118.1
25	21.0	27.4	0.0	27.3	0.1	7.8	27.3	13.6	124.7
26	20.5	29.5	0.0	31.3	0.0	8.7	27.2	13.6	131.0
27	18.7	31.5	0.0	35.1	0.0	9.4	26.9	13.4	135.2
28	17.3	33.2	0.0	38.6	0.0	10.0	26.3	13.1	138.8
29	15.9	34.7	0.0	41.8	0.0	10.4	26.9	13.4	143.3
30	14.2	35.9	0.0	44.7	0.0	10.9	27.2	13.6	146.8
31	11.9	36.8	0.0	47.3	0.0	11.3	27.3	13.6	148.5
32	10.1	37.5	0.0	49.5	0.0	11.5	27.2	13.6	149.5
33	8.4	37.8	0.0	51.3	0.0	11.7	26.9	13.4	149.7
34	6.1	37.9	0.0	52.7	0.2	11.5	26.3	13.1	148.2
35	4.2	37.7	0.0	53.8	0.5	11.4	26.9	13.4	148.0
36	2.1	37.2	0.0	54.4	0.2	10.7	27.2	13.6	145.6
37	0.0	36.4	0.0	54.6	0.0	9.4	27.3	13.6	141.5
Average	21.8	21.8	11.8	19.6	5.3	5.3	27.0	13.5	
Exposed									
Area								1	

Average eight module exposed area = 126.0 m^2

From these relationships, one can develop a strategy for simulating random particle impacts on the module cluster:

- (1) Draw a random number to simulate particle approach angle (and associated particle velocity)
- (2) Draw another number to simulate which module is impacted
- (3) Draw another number to simulate which element is impacted.

This strategy for drawing random numbers to simulate individual module impacts is reflected in the "MSCSurvTM" program as shown in appendix A. Appendix C shows the contents from a data file entitled "VELSTA.DAT," describing the cumulative probability of particle impact on the eight module cluster by approach direction and the corresponding relative velocity of debris particles associated with each direction. This distribution is based on equation (6) given the environment distribution shown in table 6 and the total exposed area for the module cluster shown in table 8. Lines 6 to 10 of MSCSurvTM read VELSTA.DAT, and go on to use these data in lines 220 through 225 to select the particle approach direction and velocity for each simulated impact.

Appendix D shows the contents from a data file entitled "PROBMOD.DAT" that describes the cumulative probability of each module being impacted for each of 37 approach directions. MSCSurvTM reads PROBMOD.DAT (lines 181 to 186), and uses these data in lines 250 through 265 to select the module for each simulated orbital debris impact. Note that the module will only be selected if the minimum possible diameter for penetrating the module shields is exceeded. In this way, computer run time is conserved through avoiding unnecessary calculations.

Appendices E through L show eight data files entitled LAB.DAT, HAB.DAT, ESA.DAT, JEM.DAT, NODE2.DAT, NODE1.DAT, PLOG.DAT, and ALOCK.DAT. The first column of each of these data files lists the cumulative probability of individual element impact for each of 37 approach directions within each of the eight modules in the example problem. In the second column, these files list the corresponding relative obliquity that impacting debris particles make with the individual element for each direction. MSCSurvTM reads these files in lines 22 through 180, and uses these data in lines 260 through 265 to select the impacted element within the module and the corresponding relative obliquity between element and incoming debris particle for each simulated impact. Note that all of the data files make use of a cumulative (not relative) probability distribution. This allows one to employ a conveniently short algorithm for association of random numbers with these orbital debris impact parameters.

B. The MSCSurvTM Penetration and Damage Model

The second section of MSCSurv™ determines whether or not the simulated particles impacting on the module cluster penetrate, and if so, it calculates the hole sizes made and depth of penetration into the module interior. This information is then passed along to section 3.F MSCSurv™ (crèw loss model) to determine the likelihood of crew loss given a penetration.

As stated earlier, a ballistic limit curve describes the combinations of impact parameters (particle diameter, obliquity, velocity) that penetrate the module. Each shield typically has a unique ballistic limit curve. For this study case, all of the spacecraft surfaces are assumed to be covered with shields identical to that shown in figure 4. This Whipple shield has the general ballistic limit curve performance described in figure 5. This curve uses the Boeing interpolation ballistic limit curve for debris velocities

below 7 km/s and the "Modified Wilkinson" ballistic limit relation above 7 km/s. The basis for these baseline ballistic limit relations is described in detail in reference 12. An important assumption within both of these ballistic limit relations is that all impact obliquities greater than 60° act as if the obliquity were identical to 60°. Without this assumption, the form of the relations would allow the critical diameter to approach infinity as the obliquity approached 90° from the target normal.

In lines 266 through 289, MSCSurvTM uses the impact parameters of velocity and obliquity for each simulated particle to calculate the critical diameter that would just penetrate the module pressure wall using the ballistic limit relations described above. If the simulated impact particle has a larger diameter than this critical diameter, the number of penetrations is incremented by one. If the selected diameter is less than the critical diameter for its associated velocity and obliquity, the program begins the selection process for a new impact particle.

Immediately following a "penetration," MSCSurv™ calculates the hole size resulting in the pressure wall. In doing this, MSCSurv™ uses a preliminary relation for oblique hole size given impact properties of particle diameter, velocity, and obliquity that appears in appendix M and in lines 290 through 305 of the program in appendix A. This oblique hole size relation was derived through collaboration between SSEIC and MSFC scientists, and is based in part on empirical data and in part on an expectation of Whipple shield penetration phenomenology in the nontestable (greater than 7 km/s) regime. The baselined oblique hole size relation listed in lines 290 through 305 of MSCSurv™ computes both a "major" (long axis) hole diameter and an "equivalent" hole diameter. This equivalent hole diameter may be thought of as the "circular average" of the major and minor hole diameters, and is used to find the equivalent hole area.

Figure 16 shows the "equivalent" hole diameters resulting from a variety of debris diameters and velocities impacting simple Whipple shields at 0° and 60° obliquity. MSCSurvTM uses independent regressions based on figure 16 for each of 14 possible discrete velocities in order to increase the precision of the hole size predictor (R² greater than 0.98 for each regression detailed in lines 290 through 305).

Because of the lack of hole size data, this oblique hole size relation is extremely preliminary in nature, and is used here primarily because of the lack of other comprehensive hole size models suitable for use throughout the wide velocity range (2 to 15 km/s), diameter range (0.3 to 3 cm), and obliquity range (0° to 90°) associated with orbital debris impacts. It is likely that the hole size (and crack size) resulting in a test sample is somewhat different than that resulting in an actual pressurized module wall (where wall curvature, stress, and other local structure may affect the resulting wall damage). However, it may be argued that the high energy nature of the penetration phenomena "dwarfs" these local effects to the extent that it is reasonable to ignore them.

To determine the sensitivity of the $P_{loss/pen}$ term to the hole size model chosen, an alternative hole size relation (the Burch D_{90} model¹¹) was also used to compute hole size following a penetration. Note that the Burch hole size predictor, located in lines 305 through 310 of MSCSurvTM, has no term to account for particle obliquity. While his "Multiplate Damage Study" noted that the obliquity of the impact did indeed affect the hole size, he made no attempt to incorporate the complex phenomena associated with oblique impacts into his empirical hole size model. A more comprehensive test program to determine a more accurate oblique hole size predictor is highly recommended.

Figure 16. Oblique hole size as a function of debris diameter and velocity at 0° and 60° obliquity.

MSCSurvTM follows the calculation of hole size with a calculation of maximum crack size following a penetration. This calculation is integral to determining whether unstopped crack propagation occurs in the module wall. Data for crack size following a module wall penetration are also extremely limited. Crack size data from a variety of tests made at MSFC, at the University of Alabama in Huntsville, and by Boeing Aerospace at the University of Dayton Research Facility are summarized in figure 17 as a function of observed hole diameter. Note that the crack size can vary significantly for a given hole size.

A comprehensive, independent (and accurate) model for the maximum tip-to-tip crack size that results from a penetration is of equal importance to an accurate hole size model for determining the likelihood of crew loss given a penetration. This relation should ideally use the parameters of debris diameter, velocity, and obliquity as direct inputs. However, because figure 17 shows that maximum crack size generally increases with hole size, a preliminary dependent model for crack size could be generated using the independent hole size model as its direct input. Given the sparsity of data required to form an independent crack size model, MSCSurvTM uses a crack size model that uses hole size as its input parameter.

Figure 17. Crack size as a function of hole size.

Between lines 211 and 220, MSCSurvTM queries the user for a hole size crack "multiplier"—a constant factor (based on data shown in fig. 17) that is multiplied by hole size to obtain crack size for each simulated impact. If the user selects the unique input of "0.3," MSCSurvTM randomly selects a constant multiplier between the maximum and minimum observed crack size (fig. 17) for each individual hole size generated. For example, if a 2-in hole is randomly generated, MSCSurvTM may select a corresponding tip-to-tip crack size anywhere between 2 to 9 in.

In order to check the sensitivity of the $P_{\rm loss/pen}$ result due to this important hazard, MSCSurvTM offers an alternative crack formation model based on the total impact energy impinging on the module exterior. Figure 18 shows that a 7-in critical crack may be formed with total impact energies varying from 28,000 to 70,000 ft-lb; a 12-in crack could be formed with energies varying from 60,000 to 100,000 ft-lb.

This "energy" model was based largely on limited data from a modified, "advanced" Whipple shield design employing a Nextel/Kevlar blanket between the bumper and pressure wall. Because this design is so closely associated with the formation of the energy model, it is probably more properly applied to this advanced shield design than the "baseline" Whipple bumper. Despite the somewhat low confidence in this model's fidelity, it should be useful in estimating the sensitivity of $P_{\rm loss/pen}$ to the critical crack model chosen.

Figure 18. Crack length versus total impact energy.

By the law of large numbers⁵⁴ if a "sufficient" number of impacts are generated, a converging hole size and crack size distribution for each module will result. A hole size distribution for each of the eight modules is shown in table 9. Following its formation, this distribution was adopted by the space station engineering integration contractor as its baseline for its independent calculation of probability of crew loss following a S.S. *Freedom* manned module perforation in April 1993. As mentioned in section III, SSEIC uses these hole size distributions for determining the number of unzipping cases, the depressurization rate, and internal hazard levels following individually simulated penetrations.

Finally, MSCSurvTM computes the penetration depth of the randomly simulated particles into the interior of the eight spacecraft manned modules. To accomplish this, a simple method to describe the amount of and penetration resistance of interior equipment located behind each of the individual module exterior elements was required. Hypervelocity test experience tells one that the interior resistance to penetration following wall perforation is dependent upon the medium through which the fragments travel as well as the energy and composition of the fragment debris cloud. Figure 19 55 shows an artist's sketch for a possible interior equipment layout for the U.S. Laboratory module within S.S. *Freedom*. Figure 20 56 shows just one of the many proposed layouts of the individual equipment racks within the S.S. *Freedom*. As of the date of this study, the interior layout of the S.S. *Freedom* manned modules has not yet been finalized.

Table 9. Distribution of "effective" and "major" hole diameters for eight module cluster.

Oblique Hole Size Distribution (Williamsen, 3/25/93)

Effective Diameter = ((Minor Dia/Cos Obl)*(Minor Dia))**.5

Hole Size (in)	LAB	HAB	ESA	JEM	N2	N1	PLM	A/L
0 to 1	0.15	0.15	0.19	0.21	0.14	0.18	0.16	0.16
1 to 2	0.10	0.10	0.12	0.12	0.11	0.13	0.11	0.11
2 to 3	0.10	0.10	0.10	0.11	0.08	0.11	0.12	0.12
3 to 4	0.11	0.11	0.11	0.10	0.08	0.10	0.12	0.12
4 to 5	0.09	0.09	0.09	0.09	0.08	0.10	0.12	0.12
5 to 6	0.19	0.19	0.11	0.10	0.10	0.12	0.26	0.26
6 to 7	0.13	0.13	0.13	0.13	0.15	0.15	0.07	0.07
7 to 8	0.13	0.13	0.15	0.15	0.08	0.12	0.04	0.04
Over 20	0	0	0	0	0.18	0	0	0

Distribution of Major Diameters for Oblique Holes

Basis for Crack Size Distribution (Williamsen, 3/25/93)

Hole Size (in)	LAB	HAB	ESA	JEM	N2	N1	PLM	A/L
0 to 1	0.12	0.12	0.17	0.17	0.16	0.16	0.14	0.14
1 to 2	0.09	0.09	0.12	0.12	0.13	0.13	0.11	0.11
2 to 3	0.09	0.09	0.07	0.07	0.07	0.07	0.11	0.11
3 to 4	0.09	0.09	0.08	0.08	0.09	0.09	0.12	0.12
4 to 5	0.08	0.08	0.06	0.06	0.09	0.09	0.10	0.10
5 to 6	0.11	0.11	0.09	0.09	0.09	0.09	0.22	0.22
6 to 7	0.13	0.13	0.07	0.07	0.08	0.08	0.07	0.07
7 to 8	0.08	0.08	0.06	0.06	0.07	0.07	0.05	0.05
8 to 9	0.05	0.05	0.06	0.06	0.08	0.08	0.03	0.03
9 to 10	0.06	0.06	0.07	0.07	0.06	0.06	0.02	0.02
10 to 11	0.10	0.10	0.13	0.13	0.08	0.08	0.03	0.03

Unfortunately, penetration equations have simply not been derived to cover even a portion of the probable combinations of material types, thicknesses, and distributions of equipment expected to exist within these complex spacecraft walls. Figure 19 indicates that these materials can include wiring, electronic components, utility lines (cabin air, water, etc.), graphite and/or aluminum support structure, food, uniforms, and other stores.

However, a number of penetration equations have been derived that predict with some confidence the number of equally spaced, equally thick aluminum plates that are penetrated by aluminum impact particles. One empirical model that appears to give good results in this area is the Burch equation. Given the input parameters of particle velocity and diameter, target bumper thickness, standoff, and rear wall thickness, the Burch equation predicts the number of spaced aluminum plates equal in thickness to the rear wall that are expected to be penetrated by the impacting particle.

Figure 19. "Typical" interior module equipment layout.55

Figure 20. Example of proposed equipment rack layout within S.S. Freedom laboratory module.⁵⁶

For this exercise, the measure of local interior resistance to penetration following wall perforation will be stated in terms of an "equivalent areal density" of spaced aluminum plates. As with many other portions of this exercise, this simplifying assumption obviously requires some "judgment" as it is applied to individual equipment locations along the spacecraft's interior walls. A precise description of individual equipment locations along S.S. Freedom walls does not yet exist, and makes a model based upon this configuration impossible to create at this time. Additionally, an overestimate of the amount of interior equipment will add to the optimistic nature of what must already be an incomplete analysis of $P_{loss/pen}$.

Because of these uncertainties, the baseline model includes no interior equipment resistance. However, the sensitivity analyses will include a model for interior penetration resistance using an areal equivalent of two 0.125-in plates behind each external element. This alternative assumption is largely based upon the existing design of the interior equipment for the S.S. *Freedom*, shown in figure 21.^{57 58} A secondary reason for choosing the 0.125-in equivalent plate thickness was to be consistent with the Burch interior penetration equation, which describes the number of interior plates penetrated in terms of the pressure wall thickness (0.125-in aluminum, in this study case).

MSCSurvTM's capability to correlate an individual internal equipment "thickness" with each of its external geometric elements opens up the possibility of placing "thicker" internal equipment racks in positions that will increase shielding of spacecraft occupants from internal fragment hazards. It also offers the capability to compute the improvement in crew safety offered by such military innovations as internal spall liners. By carefully positioning equipment racks and/or spall liners where debris is more likely to penetrate the spacecraft, spacecraft designers should be capable of identifying large reductions in crew injury through the use of MSCSurvTM.

Figure 21. "Typical" space station internal equipment.^{57 58}

This interior equipment assumption can be easily modified by changing the input file describing the number of interior "equivalent plates" behind each exterior element, if desired. The description of the individual equipment behind each exterior element is given in the data file SHIELD.DAT, found in appendix N. The first and second columns of this file list the module and exterior element number. The third column lists the interior "station number" corresponding to this element (discussed in the following section). The fourth column lists the type of shield that is located on the "exterior" of the spacecraft element (all the same for this study case). The fifth column of this data file lists the number of "equivalent" 0.125-in plates located behind the module exterior elements. These data are read into MSCSurv™ lines 187 through 193. The actual depth of penetration for each simulated debris perforation is computed in lines 361 through 365.

C. The MSCSurvTM Crew Loss Model

The remainder of MSCSurvTM is devoted to calculating the probability of crew loss following a simulated orbital debris penetration. For each penetration, this is accomplished through (1) determining which of the simulated hazards in the spacecraft (wall crack size, hole size, and internal penetration depth) exceed established critical levels, and if so, (2) seeing which of the crew members are physically near enough to the penetration for these hazards to cause their loss. Accurate assumptions for critical hazard levels, crew position, and escape time are essential.

Previous sections have detailed how the levels of three hazards associated with each penetration (wall crack size, hole size, and internal penetration depth) are derived from individual orbital debris particle and spacecraft impact characteristics. Each hazard can cause a unique mode of crew loss if it exceeds a critical level:

- (1) Pressure wall cracking causes loss of the entire crew (and spacecraft) by explosive decompression if the crack exceeds a critical level and propagates unstopped.
- (2) Internal penetration causes crew loss due to direct injury by fragments if the internal equipment is penetrated and the crew is near the penetrated area.
- (3) Pressure wall hole size causes slow decompression and eventual crew loss of one or more crew members if the hole size causes hazardous loss of air prior to the crew's ability to escape and close the hatch on the depressurizing module. Note that crew members can be lost in modules other than the penetrated module if they fail to close the hatch on their own module in time.

The critical levels causing crew loss for each hazard were derived in earlier sections and are summarized in table 9.

MSCSurvTM operates in a "cascading" mode in determining overall $P_{loss/pen}$, as shown in figure 9. It first determines whether the initial crack created by impact is sufficient in size to propagate unstopped. If it is, then the loss of the entire crew is assumed for this penetration, and MSCSurvTM goes on to simulate a new debris impact. If the critical crack size is not exceeded, then MSCSurvTM checks to see if (and how many) crewmen are lost due to injury. For those crew not lost due to injury, MSCSurvTM checks to see if (and how many) crewmen are lost due to slow decompression. MSCSurvTM then sums the number of crew lost for each simulated penetration (if any) from these two sources and goes on to

simulate a new debris impact. The $P_{\text{loss/pen}}$ is then taken as the total number of penetrations where one or more crew is lost divided by the total number of penetrations.

The critical crack hazard level is assumed to be 7 in for a 0.125-in wall and a 12-in crack for a 0.188-in wall.^{52 53} Figure 18 shows that a 7-in critical crack may be formed with total impact energies varying from 28,000 to 70,000 ft-lb, and a 12-in crack could be formed with total impact energies varying from 60,000 to 100,000 ft-lb. In lines 351 through 360, MSCSurv™ compares the user-defined crack size or energy-based critical hazard level to either of these simulated penetration hazards, and sums those cases where a critical crack length or energy is exceeded.

The two remaining crew loss modes of "injury" and "slow decompression" (henceforth referred to as "decompression") both require a model for crew position versus time to be generated. MSCSurv™ randomly generates crew position versus time for each simulated penetration using two data files, PCREWMOD.DAT and POSITION.DAT, located in appendices O and P. Columns 2 through 5 of PCREWMOD.DAT list the module that each of the four crew members inhabits for each of the 24 h of the crew day. Column 1 lists the cumulative probability that the debris strike will happen during each of the 24 h (equal probability each hour). PCREWMOD.DAT is read into MSCSurv™ in lines 199 through 203 of MSCSurv™.

Column 3 of POSITION.DAT lists the cumulative probability that a crew member is at a particular station number (column 2) when he is located in a particular module (column 1). Each station number is a discrete 42-in increment of distance from the exit hatch of the module closest to the center of gravity of the eight module cluster, and corresponds to a cylindrical "segment" of the module. Columns 1 through 3 of SHIELD.DAT in appendix N relate module station numbers to element numbers for each of the eight modules in this study. POSITION.DAT is read into MSCSurvTM in lines 194 through 198.

The baseline crew distribution among modules given in PCREWMOD.DAT was formulated by SSEIC 52 through brief discussions with the NASA Johnson Space Center Operations Integration Office, and, as such, should be considered as the best available today (superior to that used by this author 14). Because the factor of crew sleep position was identified as a large driver of overall crew safety, an alternate sleep position model (where all the crew members sleep in Node 1) will be studied to obtain the sensitivity of $P_{\text{loss/pen}}$ to this factor. This alternative data file, PCREWMO2.DAT, is located in appendix Q.

The position of each crew member within each module is assumed to be uniformly distributed among all of the module's stations over time for the baseline model (described within the data file POSITION.DAT). During sleep, the crew may be located in any of the stations within modules 1 and 2 (Lab and Hab modules). Two alternative models are offered here for sensitivity studies. The first uses a triangular distribution for crew station location over time, with each crew member being more likely to be close to the hatch (where inter-module travel would be most likely to "concentrate"). The second sensitivity model assumes that a crewman's position is uniformly distributed among module stations as in POSITION.DAT except when sleeping, when the crewman is located next to a hatch (for quick egress). This model assumption is described in line 405 of MSCSurvTM.

Once the positions of each of the four crew members is selected for each impact, MSCSurvTM goes on to compute whether any crew are injured through exposure to the debris fragment spray. Note from table 9 that the critical level of fragment energy that is assumed to cause serious crew injury is quite low (58 ft-lb)³⁸ compared to the energy magnitudes of impacting debris particles (on the order of thousands of ft-lb, fig. 18). For this reason, MSCSurvTM assumes that any fragment cloud penetrating the

internal equipment will have sufficient energy present to seriously injure the crew. MSCSurv™ also assumes that the internal module debris spray will spread laterally into equipment one station either side of the penetrated station (three stations, total). This assumption was derived from limited observations of the debris cloud spray angle (angle between edge of debris cloud and debris approach vector) following bumper penetration. This means that any crew member located at or next to a station number where the internal equipment is penetrated is automatically assumed to be injured. However, it is possible that the crew may survive the initial exposure to the debris spray, depending on the spread of the debris cloud, the level of energy remaining in the cloud and the severity of the crew's injuries. Additional test data is needed to determine these energy levels, spread angles, and the crew's exposure.

Given these uncertainties, several alternatives are examined within the sensitivity analyses:

- (1) The internal debris cloud is contained within the penetrated crew station number (i.e., the internal debris spread is only one equipment rack wide).
- (2) The crew is injured less than 100 percent of the time when exposed to the initial debris spray, and escape at an slower rate than uninjured crew. However, a percentage of these injuries later prove to be serious, causing loss of the crew.

In order to determine the probability of individual crew loss due to (slow) depressurization, several additional pieces of information must be input into MSCSurvTM by the user. The volume of air available prior to penetration for each crewman to breathe is a function of the total volume available to the individual crew member (i.e., hatch position) and the amount of spacecraft interior volume that is not occupied already by equipment (free air ratio).

The baseline model assumes that all hatches are open except those to modules 7 and 8 (the airlock and P-Log), so the total module volume of air available to the crew is the sum of the volume of modules one through six (22,469 ft³) times the free air volume. An alternative assumption is that all of the hatches operate closed (and must be opened prior to crew escape from penetrated hatches. Each module's volume is listed in table 10. A second alternative assumption examined within this study was a "mixed" mode of hatch operation with hatches open during the crew members' "day" cycle and hatches closed during their sleep cycle (8 h). This operating mode was shown to increase crew safety considerably in reference 14 (fig. 8). The "free air ratio" is baselined as 70 percent, but may be as high as 95 percent. Both cases are examined in following sections.

Module	Volume	Module	Volume
1 - LAB	3,882 ft ³	5 - NODE 2	2,206 ft ³
2 - HAB	3,882 ft ³	6 - NODE 1	2,097 ft ³
3 - JEM	5,127 ft ³	.7 - P-LOG	2,991 ft ³
4 - ESA	5,170 ft ³	8 - AIRLOCK	1,165 ft ³

Table 10. Module total air volume (empty).

When a module is penetrated, a "race" is begun between the slow depressurization of the module (and any connecting modules) and the crew's ability to "escape" the depressurizing area. In this case, the term "escape" refers to either the action of physically leaving the damaged module and closing the hatch on it (if the crew member is occupying the damaged module) or moving to the end of an undamaged

module and closing the hatch on it (if the crew member is in an undamaged module). In the latter case, the trapped crew would be safe for only a limited time, requiring rescue or an alternate method of escape prior to losing the remaining oxygen in their separated module. MSCSurvTM does not include this possibility of "late" loss in its simulation.

The time required for the crew to escape is comprised of several discrete elements, including a delay time for discovering the leak and initiating movement, time to move to the hatch, and time to operate the hatch. Of course, these actions will be performed by weightless crew members that are likely to be in a state of confusion (at the very least). As such, the specific time values associated with each of these actions are difficult to obtain without an accurate crew simulation in the absence of gravity. Future studies to determine these values have been proposed by the NASA Safety and Mission Assurance Office using the NASA KC-135 aircraft. For the present, however, these values must be estimated. For this exercise, preliminary values for each of the components of escape time were arrived at through consultation with members of the MSFC Safety and Mission Assurance Office, the NASA Level 2 Program Office, and the Space Station Engineering and Integration Contractor.⁵⁹ These assumed escape time components are:

- (1) Delay time to discover leak and initiate escape. When the crew is awake, this is baselined as 35 s; when the crew is asleep, the baseline is assumed to be 100 s. The longer delay time during the crew sleep period is due primarily to the extra time required to egress their sleeping restraints.
- (2) Time to move to the hatch and begin closure. This is baselined as 30 s average for each module for a healthy crew member. For an injured crew that is conscious and capable of movement, the baselined time for movement to the hatch is increased to 60 s. Likewise, penetrations taking place between any crew member and the escape hatch is assumed to increase this crew member's movement time to 60 s (due to "hindrance" caused by possible equipment strewn into the aisle).
- (3) Time to close the hatch. This is baselined at a maximum of 30 s. For the S.S. *Freedom*, this was an actual requirement levied against the hatch design, and as such has a higher degree of confidence associated with it than the other two components of escape time. As a corollary, the time required for the crew to open a closed hatch is also baselined at 30 s.

Because the baselined values for delay time and movement time are somewhat arbitrary, it is important to vary them in the sensitivity analyses in order to determine their effect on $P_{loss/pen}$. Accordingly, the operator may vary any of these "operational" assumptions by direct input as MSCSurvTM is initialized. Within the sensitivity analysis, the delay and movement times are cut approximately in half: the delay time is changed from 100 to 50 s, and the movement time is halved to 15 s (normal status) and 30 s (injured/hindered status).

Alternatively, the operator may input the rate of crew movement (in feet per second) for normal, injured, and hindered crew members. MSCSurvTM calculates individual crew movement time from these rates given the distance of each crew member from the hatch and the condition of the crew following each penetration. A rate of 0.5 ft/s equates roughly to our "nominal" escape time of 30 s for a 30-ft lab module (15 ft "average" escape distance/0.5 ft/s = 30 s); a rate of 0.25 ft/s equates roughly to 60-s escape time. These escape rates will be used within the sensitivity analyses to determine the effect of rate-based crew movement on $P_{loss/pen}$.

The time required for the modules to reach a critical depressurization limit is calculated using an isentropic "blowdown" equation described by Boeing, 46 and is listed in its entirety in line 405 of MSCSurvTM. This equation assumes as a baseline that the temperature of the module air is 70 °F, the discharge coefficient is 0.9, the initial operating pressure is 14.7 lb/in², and the final pressure is 7.5 lb/in². The discharge coefficient reflects the shape of the hole, and may vary somewhat with hole shape and petal size. As such, it is varied to a $C_d = 0.7$ within the sensitivity analyses. As shown in table 10, the final pressure following blowdown required prior to crew loss due to slow decompression could range as high as 9.5 lb/in² or as low as 3.0 lb/in², and is also varied within the following sensitivity analyses.

V. BASELINE AND SENSITIVITY ANALYSES

This section uses the MSCSurvTM simulation tool to compute the baseline probability of (one or more) crew loss given a spacecraft penetration ($P_{\rm loss/pen}$), and determine its sensitivity to choice of input parameter(s). In "one-way" sensitivity analyses, each assumption and/or design parameter identified in the previous section will be varied individually to observe its effect on the final $P_{\rm loss/pen}$. Following this, selected parameters will be grouped together to observe their interactions in determining $P_{\rm loss/pen}$. Validation and verification of the developed simulation model and software tool will be discussed. At the conclusion of this task, those design and operational factors most effective in reducing $P_{\rm loss/pen}$ will be identified.

Table 11 summarizes the baseline and alternative assumptions developed in the previous section. Each alternative assumption has a corresponding <number> highlighted in the table from <1> to <20>. Note that with a few exceptions, most alternative assumptions are more "optimistic" than the baseline (that is, can be expected to lower the overall $P_{\rm loss/pen}$). Using "conservative" assumptions to form the baseline safety analysis is in keeping with NASA's general hazard analysis methodology.

The probability of (one or more) crew loss given an orbital debris penetration for the described eight module cluster is given in table 12 as 0.74. That is, a penetrating orbital debris particle could be expected to cause loss of at least one crew member in 74 of every 100 debris penetrations of the module cluster as a whole. Note that the $P_{\rm loss/pen}$ values for each module vary from the total cluster value. The U.S. Lab module has the highest incidence of expected crew loss (0.83); the ESA module has a lower value (0.69); the P-Log and airlock have the lowest $P_{\rm loss/pen}$ (0.66). This is due primarily to the lack of crew members in modules 7 and 8, where injury and slow depressurization losses amount to zero. Because modules 7 and 8 are unoccupied to such a large extent (and are, as such, not representation of "manned" spacecraft), the $P_{\rm loss/pen}$ values reported hereafter will include the average of only modules 1 through 6. Given this footnote, the "baseline" $P_{\rm loss/pen}$ value referred to throughout this study is 0.76 (table 12).

Recalling equation (4), one must multiply the $P_{loss/pen}$ by the probability of penetration given an impact ($P_{pen/impact}$) and the probability of impact (P_{impact}) to determine the actual probability of crew loss (P_{loss}) in a 10-year period. Table 13 reports these P_{loss} values, using the effective area values reported in table 8. Note that the P_{impact} of particles larger than 3 cm must be added to the P_{loss} output by MSCSurvTM to compute the total P_{loss} . This is because MSCSurvTM simulation is limited to particles from 0.3 to 3 cm in diameter (see appendix B). While they are scarce, it is clear from examination of the ballistic limit for this shield design (fig. 5) and the hole size relation (fig. 16) that debris particle impacts above 3-cm diameter can be reasonably expected to cause "automatic" loss of the crew. Thus, in these cases, the P[loss from 3-cm particles] = P[impact of 3-cm particles].

Table 11. Summary of baseline/alternative simulation assumptions.

	Baseline Assumptions	Alternative Assumptions	
		[
Critical crack	7-in critical crack prior	• 12-in critical crack	<1>
length	to module unzipping	• 24-in critical crack	<2>
Hole size model	Oblique hole model	Burch hole model	<3>
Crack formation	Crack size based on	Crack size based on "normal"	<4>
model	hole size	impact energy	
Internal debris	Three crew stations	One crew station (rack) wide	<5>
cloud spread	(racks) wide		
Lethality of	Crew lost 100 percent	• 50-percent loss w/50-percent	<6>
debris cloud	of time if exposed to	"late" loss	<7>
	debris cloud	• 10-percent loss w/10-percent	
		"late" loss	
Structure of	No internal equipment	Internal equipment with ave.	<8>
internal		areal density of 0.7 g/cm ²	
equipment			
Crew	SSEIC model (60)	Node 2 sleep position	<9>
distribution			
among modules		77 1 1 1 4 1 4	10
Crew position	Uniform distribution	• Triangular distribution	<10>
within modules	Tradalas and anishing	Stationary sleep position	<11>
Hatch position	Hatches open within	Hatches normally closed Hetches closed at right	<12> <13>
Cross management	six module cluster	• Hatches closed at night • 0.5 ft/s (normal) 0.25 ft/s	<14>
Crew movement to hatch	30 s (normal), 60 s (hindered or	(hindered or injured)	<14>
	injured)	• 15 s (normal), 30 s (hindered	
	mjureu) 	or injured)	<15>
Crew reaction	35 s (awake), 100 s	15 s (awake), 50 s (asleep)	<16>
time prior to	(asleep)	15 5 (awake), 50 8 (asicep)	\10/
escape	(woroop)		
Critical pressure	7.5 lb/in ²	• 9.5 lb/in ² (equip. failure)	<17>
prior to blackout		• 3.0 lb/in ² (w/O ² masks)	<18>
Ratio of "free"	70-percent free air	95-percent free air ratio	<19>
air to total	ratio	r r	
volume			
Hole shape	$C_d = 0.9$	$C_d = 0.7$	<20>
(discharge		_	
coefficient)			

Table 12. "Baseline" probability of crew loss given a penetration, $P_{loss/pen}$, for eight modules.

	Crack	Injury	Slow Depress	Total
Module 1 (U.S. Lab)	0.73	0.09	0.01	0.83
Module 2 (U.S. Hab)	0.73	0.09	0.01	0.83
Module 3 (JEM)	0.71	0.01	0.00	0.72
Module 4 (ESA)	0.67	0.02	0.00	0.69
Module 5 (Node 2)	0.73	0.05	0.01	0.79
Module 6 (Node 1)	0.71	0.02	0.01	0.74
Module 7 (P-Log)	0.66	0.00	0.00	0.66
Module 8 (Airlock)	0.66	0.00	0.00	0.66
Total (1 through 8)	0.69	0.04	0.01	0.74
Ì			1	
Total (1 through 6)	0.70	0.05	0.01	0.76

Table 13. Probability of crew loss due to orbital debris impact for eight module spacecraft, baseline assumptions (1 year).

	<	0.3	to 3 cm	diame	eter>		>3 cm		
Module	Pimpact	×	P _{pen/imp}	×	P _{loss/pen}	+	P_{impact}	=	P_{loss}
1.	0.012291	×	0.167	×	0.83	+	0.000202	=	0.00190
2	0.012291	×	0.167	×	0.83	+	0.000202	=	0.00190
3	0.006672	×	0.166	×	0.72	+	0.000109	=	0.00090
4	0.011057	×	0.166	×	0.69	+	0.000182	=	0.00150
5	0.003002	×	0.167	×	0.79	+	0.000049	=	0.00044
6	0.003002	×	0.167	×	0.74	+	0.000049	=	0.00044
7	0.015199	×	0.190	×	0.66	+	0.000251	=	0.00215
8	0.007600	×	0.190	×	0.66	+	0.000126	=	0.00107
1 – 8	0.068966	×	0.174	×	0.74	+	0.001173	=	0.00888
1 – 6	0.047370	×	0.167	×	0.76	+	0.000796	=	0.00680

A. Single Factor Sensitivity Analyses

Table 11 lists 20 alternative input parameters for the MSCSurvTM simulation of $P_{loss/pen}$. This section details how the $P_{loss/pen}$ changes with the change in input parameters.

Figure 22 shows how the $P_{\rm loss/pen}$ changes with critical crack length assumption for module 1 (U.S. Lab), and figure 23 shows this relationship for the six module cluster. As the "inherent" critical crack length causing module wall "unzipping" increases, the ratio of unzipping failure

Figure 22. $P_{loss/pen}$ for module 1 (U.S. Lab) versus pressure wall critical crack length.

Figure 23. $P_{\text{loss/pen}}$ for six module spacecraft cluster versus pressure wall critical crack length.

decreases, as does the overall $P_{\rm loss/pen}$. As the unzipping ratio decreases with larger critical crack lengths in the module pressure wall, the slow depressurization loss ratio and injury ratio increases (somewhat), until a lower asymptote is reached in overall $P_{\rm loss/pen}$ for large critical crack lengths at around 0.58 for the six module cluster.

For the baseline case (7-in critical crack length), unzipping is the predominant mode of crew loss, with 0.70 out of a total 0.76 $P_{\rm loss/pen}$. Unzipping is reduced considerably for alternate <1>, a 12-in critical crack length, but still predominates the injury and depressurization loss modes. In alternate <2>, a 24-in critical crack length appears to have little or no unzipping loss, whereas depressurization has become the predominant loss factor. As stated earlier, increasing the thickness of the pressure wall and/or adding integral stiffeners to the wall design are both effective methods of increasing the "inherent" length at which penetration-induced cracks will propagate unstopped (unzip). Thus, if a 0.188-in pressure wall thickness can increase the critical crack parameter from 7 to 12 in (as theorized in reference 53), figure 23 shows that this increased wall thickness decreases the overall $P_{\rm loss/pen}$ by nearly 20 percent (from 0.76 to 0.63).

Unzipping is an independent loss mode from the cases of crew injury or slow depressurization, and obviously predominates the other two modes in the baseline (7-in critical crack) case. As they can only affect 6 percent of the 76-percent total $P_{\rm loss/pen}$ value for the baseline case, even relatively large changes in the input assumptions affecting depressurization and injury losses will have little total effect on the overall $P_{\rm loss/pen}$ ratio. However, for the 12- and 24-in critical crack assumptions, injury and depressurization losses grow as a proportion of the total $P_{\rm loss/pen}$. As such, input assumptions affecting depressurization and injury losses should increasingly affect the $P_{\rm loss/pen}$ for these cases. To test this hypothesis, the single parameter sensitivity analyses reported in table 14 for the 7-in critical crack assumption are repeated in tables 15 and 16 using 12- and 24-in critical crack assumptions, respectively.

Alternate assumption <3> involved using the Burch D_{90} hole model¹¹ instead of the baselined oblique hole model (appendix M). In general, the Burch hole model predicts smaller holes for the same parameters of diameter and velocity than the oblique model. Tables 14 through 16 show that the Burch hole model predicts slightly less "unzipping" loss than the baselined model for the 7-in critical crack length, and considerably less unzipping loss for the 12- and 24-in cases. Note that both the unzipping loss and the total $P_{\rm loss/pen}$ falls much more rapidly for increasing critical crack lengths when using the Burch hole model than when using the baseline model. Note also that the overall $P_{\rm loss/pen}$ seems to remain approximately 0.200 lower than the baseline oblique hole model for the 12- and 24-in critical crack lengths, appearing to parallel the $P_{\rm loss/pen}$ asymptote shown for the baseline assumptions in figure 23.

As noted earlier, as the unzipping loss goes down, the slow depressurization and injury losses rise somewhat. This is because the number of penetrations with sufficient energy to exceed the 12- and 24-in critical crack lengths are fewer, but are still sufficient in penetration energy to make large holes (causing depressurization losses) and deep penetrations (causing injury losses). The baseline assumptions of relatively slow crew escape time and lack of rack protection appear to couple with the Burch model for the 7-in crack case in the same way as they did with the oblique hole model for the 12- and 24-in case, lowering the unzipping loss and raising the depressurization/injury losses. From table 14, one concludes that the overall $P_{\rm loss/pen}$ is relatively insensitive to the hole size model chosen for the 7-in critical crack length, but has a large effect at the 12- and 24-in

Table 14. Probability of crew loss given a penetration ($P_{loss/pen}$), alternative assumptions with 7-in critical crack, six module cluster.

Single Factor Sensitivity Analysis 7-in Critical Crack Length

 $\{ \} = Rank$

		Unzip	Injury	Depress	Total	Delta from Baseline
"Raseli	ne" Assumptions	0.698	0.060	0.003	0.761	
Sascin	Burch Hole Model	0.659	0.071	0.029	0.760	-0.001
<4>	Energy-Based Crack Size	0.380	0.133	0.093	0.606	-0.155 {1}
<5>	Narrow Debris Spread	0.698	0.028	0.003	0.729	-0.032 {4}
<6>	Crew Exposed to Debris 50-percent Lost + 50-	0.698	0.049	0.003	0.750	-0.011
	percent Late Loss					
<7>	Crew Exposed to Debris 10-percent Lost + 10- percent Late Loss	0.698	0.013	0.003	0.715	-0.046 {3}
<8>	Internal Equipment with 0.7 g/cm ² Areal Density	0.698	0.006	0.003	0.707	-0.054 {2}
<9>	Crew Sleeps in Node 2	0.698	0.038	0.003	0.739	-0.022 {5}
<10>	"Triangular" Crew Distance Within Module	0.698	0.071	0.003	0.772	+0.011
<11>	Crew Sleeps Near Hatch	0.698	0.060	0.003	0.761	-0.000
<12>	Hatches Closed	0.698	0.060	0.021	0.779	+0.018
<13>	Hatches Closed (Night)	0.698	0.060	0.011	0.769	+0.010
<14>	Rate-Based Crew Movement	0.698	0.060	0.001	0.759	-0.002
<15>	Fast Crew Movement	0.698	0.060	0.001	0.759	-0.002
<16>	Fast Crew Reaction Time	0.698	0.060	0.001	0.759	-0.002
<17>	9.5 lb/in ² Crit Depress	0.698	0.060	0.006	0.764	+0.003
<18>	3.0 lb/in ² Crit Depress	0.698	0.060	0.001	0.759	-0.002
<19>	95-percent Free Air Ratio	0.698	0.060	0.001	0.759	-0.002
<20>	$C_d = 0.7$	0.698	0.060	0.001	0.759	-0.002

Table 15. Probability of crew loss given a penetration ($P_{loss/pen}$), alternative assumptions with 12-in critical crack, six module cluster.

Single Parameter Sensitivity Analysis 12-in Critical Crack Length <1>

 $\{ \} = Rank$

		Unzip	Injury	Depress	Total	Delta from Baseline
"Baseli	ne" Assumptions	0.438	0.119	0.068	0.625	
<3>	Burch Hole Model	0.110	0.191	0.122	0.423	-0.202 {1}
<4>	Energy-Based Crack Size	0.243	0.163	0.192	0.598	-0.027
<5>	Narrow Debris Spread	0.438	0.055	0.080	0.571	-0.054 {5}
<6>	Crew Exposed to Debris 50-percent Lost + 50-percent Late Loss	0.438	0.094	0.074	0.609	-0.016
<7>	Crew Exposed to Debris 10-percent Lost + 10-percent Late Loss	0.438	0.029	0.090	0.556	-0.069 {3}
<8>	Internal Equipment with 0.7 g/cm ² Areal Density	0.438	0.013	0.083	0.534	-0.091 {2}
<9>	Crew Sleeps in Node 2	0.438	0.077	0.075	0.590	-0.035
<10>	"Triangular" Crew Distance Within Module	0.438	0.137	0.062	0.633	+0.016
<11>	Crew Sleeps Near Hatch	0.438	0.119	0.069	0.626	+0.001
<12>	Hatches Closed	0.438	0.119	0.078	0.635	+0.010
<13>	Hatches Closed (Night)	0.438	0.119	0.066	0.623	-0.002
<14>	Rate-Based Crew Movement	0.438	0.119	0.031	0.589	-0.036
<15>	Fast Crew Movement	0.438	0.119	0.050	0.607	-0.018
<16>	Fast Crew Reaction Time	0.438	0.119	0.040	0.597	-0.028
<17>	9.5 lb/in ² Crit Depress	0.438	0.119	0.112	0.669	+0.044
<18>	3.0 lb/in ² Crit Depress	0.438	0.119	0.007	0.562	-0.063 {4}
<19>	95-percent Free Air Ratio	0.438	0.119	0.038	0.595	-0.030
<20>	$C_d = 0.7$	0.438	0.119	0.044	0.601	-0.024

Table 16. Probability of crew loss given a penetration ($P_{loss/pen}$), alternative assumptions with 24-in critical crack, six module cluster.

Single Parameter Sensitivity Analysis 24-in Critical Crack Length <2>

 $\{ \} = Rank$

		Unzip	Injury	Depress	Total	Delta from Baseline
"Baseli	ne" Assumptions	0.027	0.210	0.344	0.581	
<3>	Burch Hole Model	0.010	0.212	0.151	0.373	-0.208 {2}
<4>	Energy-Based Crack Size	0.158	0.182	0.255	0.595	+0.014
<5>	Narrow Debris Spread	0.027	0.095	0.408	0.530	-0.051
<6>	Crew Exposed to Debris 50-percent Lost + 50-percent Late Loss	0.027	0.167	0.372	0.566	-0.015
<7>	Crew Exposed to Debris 10-percent Lost + 10-percent Late Loss	0.027	0.048	0.435	0.510	-0.071
<8>	Internal Equipment with 0.7 g/cm ² Areal Density	0.027	0.027	0.428	0.482	-0.099 {4}
<9>	Crew Sleeps in Node 2	0.027	0.142	0.380	0.549	-0.032
<10>	"Triangular" Crew Distance Within Module	0.027	0.244	0.325	0.596	+0.015
<11>	Crew Sleeps Near Hatch	0.027	0.210	0.344	0.581	+0.000
<12>	Hatches Closed	0.027	0.210	0.166	0.403	-0.178 {3}
<13>	Hatches Closed (Night)	0.027	0.210	0.277	0.514	-0.067
<14>	Rate-Based Crew Movement	0.027	0.210	0.250	0.487	-0.094 {5}
<15>	Fast Crew Movement	0.027	0.210	0.306	0.543	-0.038
<16>	Fast Crew Reaction Time	0.027	0.210	0.286	0.525	-0.056
<17>	9.5 lb/in ² Crit Depress	0.027	0.210	0.417	0.654	+0.073
<18>	3.0 lb/in ² Crit Depress	0.027	0.210	0.085	0.322	-0.259 {1}
<19>	95-percent Free Air Ratio	0.027	0.210	0.268	0.505	-0.076
<20>	$C_d = 0.7$	0.027	0.212	0.287	0.526	-0.055

critical crack level. These results are consistent with the Burch model's tendency to predict fewer large holes, and therefore fewer large cracks to exceed 12- and 24-in lengths.

The effect of implementing an energy-based crack formation model is examined as alternative <4> in tables 14 through 16. As previously discussed, this alternative basis for crack formation is considered to be conjectural, but within the realm of possibility given the extreme lack of data on the crack formation process itself. This model uses 48,000 ft-lb as the impact energy required to produce 7-in cracks, 82,000 ft-lb to produce 12-in cracks, and 132,000 ft-lb to produce 24-in cracks (fig. 9). Table 14 shows that the unzipping loss predicted by this model is less than that predicted by the baseline model for the 7-in critical crack assumption. For the 12-in case, table 15 shows that this alternative produces less unzipping than it did in the 7-in case and less than the baseline case for a 12-in critical crack. However, for the 24-in case, while producing still less unzipping loss than the 12-in case, the energy-based crack size produces more unzipping loss reduction between 7, 12, and 24 in for the energy-based versus hole-based crack size assumptions shows that the energy-based assumption is less sensitive to increasing critical crack length than the hole-based assumption.

Assumptions <5> through <10> have an effect on injury and depressurization losses, but do not affect the proportion of unzipping loss. Close examination of the injury and depressurization losses in tables 14 through 16 shows that as the injury loss decreases, the depressurization loss shows a slight increase; as the injury loss increases, the depressurization loss decreases somewhat. The reason for this is similar to that described earlier for the unzipping/injury relationship: an increase in the number of penetrations causing injury means that there are fewer large holes "available" that can additionally cause loss of crew to decompression. Recall that the $P_{\text{loss/pen}}$ denotes the probability of losing at least one crewmember (that is, one or more) following a penetration. Once a single crewmember is lost to unzipping, that penetration is "counted" solely as an unzipping-related loss when calculating the $P_{\text{loss/pen}}$ ratio, and is not "double-booked" by MSCSurvTM as an injury or depressurization loss (fig. 9). The same is true for injury-inducing penetrations; they cannot additionally contribute to the depressurization loss ratio, even though the hole size may be sufficiently large to cause loss of one or more crewmembers in addition to the injury-related loss.

Given this "cascading" fashion of determining overall probability of a single crew loss, it is clear that assumptions <5> through <10> directly affect the ratio of crew losses due to injury; the change in the decompression loss ratio is merely a side-effect of the change in the injury loss ratio. Tables 14 through 16 show that the spread of the interior debris cloud (assumption <5>) appears to be important in its direct effect on crew injury. For any of the three (7-, 12-, or 24-in) critical crack levels, changing the baselined assumption of a three-rack wide internal debris fragment spread to a one-rack wide spread of fragments inside the module appears to cut the amount of crew injury roughly in half. This makes sense in that a smaller proportion of crew would be exposed to the penetrating internal debris fragment cloud, resulting in fewer injuries. As expected, this effect becomes more important as the injury loss ratio grows in proportion to the overall $P_{loss/pen}$ ratio.

In a similar fashion to alternate assumption <5>, the assumptions <6> and <7> on the likelihood of crew injury following exposure to the debris cloud directly reduces the overall injury loss ratio. A 50-percent immediate plus a 50-percent "late" loss reduces the overall injury loss ratio by 25 percent for all critical crack levels; a 10-percent immediate plus a 10-percent "late" loss assumption similarly reduces the injury loss ratio by 80 percent. The injury loss ratio appears to vary in a roughly linear fashion with the percentages assumed here.

Internal equipment has the effect of reducing the injury ratio by reducing the exposure of the crew to the fragmenting internal debris cloud. As shown under assumption <8> in tables 14 through 16, this factor can be one of the most important in reducing crew injury, though its reduction in overall $P_{\text{loss/pen}}$ reaches an asymptote with increasing critical crack lengths (above 12 in).

The two final factors that appear to directly affect crew injury appear as alternatives <9> and <10>. In <9>, all four crew members sleep in node 2 instead of two in the Lab and two in the Hab (the baseline case). For this alternative, the injury loss seems to decrease only slightly, but becomes a more measurable effect as the critical crack length increases. In alternative <10>, the distribution of the crew within the modules is changed from a uniform distribution between all stations to a triangular distribution, where the individual crew members (if present within a module) are much more likely to be near the exit than near the opposite bulkhead. This assumption tends to increase the injury loss ratio somewhat, though the overall effect is very small. From this information, one can conclude that the overall $P_{loss/pen}$ appears to be relatively insensitive to the postulated changes in crew distribution throughout the modules during awake or asleep periods (when operating with hatches open).

Alternative input assumptions <11> through <20> appear to solely affect the ratio of crew loss due to depressurization following a penetration of the six module cluster, as shown in column 3 of tables 14 through 16. All 10 alternatives have an increasing effect on the total $P_{\rm loss/pen}$ as the critical crack length increases from 7 to 24 in.

Alternatives <11> through <13> detail three operational modes that may be incorporated within the three module cluster with little or no cost. In alternative <11>, the four crewmembers sleep near the hatch for quicker escape during the crew sleep period. However, tables 14 through 16 indicate that this alternative has no effect on the depressurization loss. This is probably because the crew movement time from the module to the hatch is baselined as constant; that is, no matter how far away from the hatch a crewmember is, he/she still takes 30 s to move to the hatch. In following sections, this alternative will be combined with a position-dependent (i.e., rate-based) crew movement time to see if it is significant when applied in such a fashion.

'Alternatives <12> and <13> apply two different hatch closure conditions to the baseline model. In alternative <12>, the hatches are closed during normal crew operations and during the sleep period (except when a crew member is traversing through them when crossing from module to module). This alternative shows increased depressurization losses at the 7- and 12-in critical crack levels, but a significantly reduced depressurization loss ratio at the 24-in critical crack level. Note that as the critical crack length increases, the depressurization loss (and $P_{\rm loss/pen}$) appears to decrease dramatically after a 12-in critical length.

In alternative <13>, the hatches are closed at night only. This operational mode shows slightly increased decompression loss for the 7-in critical crack length, but decreased decompression loss for the 12- and 24-in critical crack cases. As with alternative <12>, the depressurization loss (and $P_{\rm loss/pen}$) appears to decrease dramatically after a 12-in critical length.

The $P_{\rm loss/pen}$ should be considered as relatively sensitive to these hatch position factors, but may be somewhat dependent upon the baselined hole size model and crew escape time from the module. In reference 14, a different hole size model and crew escape time was used to determine the depressurization loss ratio (without unzipping or injury losses included, similar to the 24-in critical

crack length alternative). It showed that the open hatch and closed hatch operational models provided approximately the same level of $P_{\rm loss/pen}$, but that the "hatches closed at night" model produced significantly less $P_{\rm loss/pen}$ than either of these alternatives.

Alternatives <14> through <16> change selected portions of the baselined crew escape parameters. Alternative <14> changes the crew movement model from a constant time to a rate-based movement time, based on crew position within the module. This alternative assumes that the crew moves at 0.5 ft/s when escaping in a healthy condition, at 0.25 ft/s when escaping in a hindered or injured status. Alternative <15> reduces the baselined constant crew movement from 30 to 15 s when healthy and from 60 to 30 s when injured. Alternative <16> reduces the baselined crew reaction time (prior to initiating movement) from 35 to 15 s when awake and from 100 to 50 s when asleep. Each of these three factors (when acting on their own) only appears to become significant at the 24-in critical crack length. However, it is highly possible that these factors, when combined, would cause a strong reduction in depressurization loss, since the total escape time would be reduced by over 75 percent. If the baselined crew injury rate after "immediate" exposure to the debris cloud were dropped from 100 percent to say 50 percent, the injured crew members would also benefit from these faster reaction and movement times. As it is, however, the baselined "100 percent loss if injured" assumption limits the benefit of the reduced reaction and movement times to healthy or hindered crew members.

Alternatives <17> and <18> change the baselined critical (lowest) level of crew depressurization resistance prior to unconsciousness and eventual loss from 7.5 to 9.5 lb/in² and 3.0 lb/in², respectively. The 9.5-lb/in² alternative raises the depressurization loss ratio from 0.003 to 0.073 higher than the baseline for increasing critical crack lengths. Conversely, the 3.0-lb/in² depressurization limit alternative is one of the five most significant factors that reduce $P_{\rm loss/pen}$ for the 12-in critical crack length and is the largest single factor in reducing $P_{\rm loss/pen}$ for the 24-in critical crack assumption. This alternative corresponds to oxygen masks being immediately available to the crew following a module penetration. The crew would need to be trained extensively on the correct emergency procedure following a penetration to receive the benefit of this lowered $P_{\rm loss/pen}$.

Alternative <19> increases the free air ratio from 70 percent of the total interior volume of the modules to 95 percent. By increasing the volume of air available to the crew members, the crew has more time to escape the module prior to losing consciousness. As expected, this alternative decreases the $P_{\rm loss/pen}$ (up to 0.076 for the 24-in critical crack length), but does not appear to be one of the more significant factors affecting the probability of crew loss following a penetration.

Alternative <20> reduces the coefficient of discharge in the module depressurization equation (line 407 of MSCSurvTM), effectively lowering the rate at which the module depressurizes. This alternative has much the same effect on $P_{loss/pen}$ as increasing the free air ratio (alternative <20>), measurably lowering the depressurization ratio for the 24-in critical crack length (table 16).

To summarize, the probability of crew loss (one or more) following a module penetration can vary significantly from the baselined ratio of $0.76\ P_{\rm loss/pen}$, depending on the input parameters chosen. The largest factor affecting the total $P_{\rm loss/pen}$ is the critical crack length causing module "unzipping" (uncontrolled crack growth) and explosive decompression. Increasing the module wall thickness can conceivably increase the critical crack length from 7 to 24 in, reducing the $P_{\rm loss/pen}$ from 0.76 to 0.58. As the critical crack size increases, the $P_{\rm loss/pen}$ is made up increasingly of injury-related and slow depressurization-related losses.

The other input factors affecting the overall $P_{\rm loss/pen}$ vary in importance, depending on the critical crack length within the module pressure wall. For the baselined 7-in critical crack length, table 14 shows the $P_{\rm loss/pen}$ to be most sensitive to crack size model chosen, but is also affected to a lesser extent by such injury-related factors as amount and location of internal equipment, spread of the debris cloud within the modules, and likelihood of crew injury when exposed to the debris cloud. For the 12-in critical crack length, the same injury-related factors are drivers in reducing $P_{\rm loss/pen}$ as in the 7-in case, but the most important factor appears to be choice of the hole size model due to its effect in further reducing unzipping losses. For the 24-in critical crack length, the most important factors appear to be those that affect depressurization losses, including crew depressurization limit, hole size model, hatch position, and speed of the crew's movement following penetration.

So far, this sensitivity analysis includes the effects of altering the critical crack length assumption in conjunction with other factors, one at a time. The next section examines the sensitivity of the $P_{\rm loss/pen}$ value to altering multiple selected factors.

B. Multiple Factor Sensitivity Analysis

This section examines the interaction between major factors identified by MSCSurvTM in the previous section to have measurable effects on the overall probability of crew loss (one or more) following an orbital debris penetration of a six-manned module cluster. In a second case, a limited set of "interesting" variables in the 24-in crack case is examined for interactions that might lower the $P_{loss/pen}$ further than they otherwise might by acting singly. Within this section, a "Taguchi" technique (L_{16} orthogonal array) is employed to determine two-way interactions between five selected factors for the two cases.

Although it would be desirable to identify the level of $P_{loss/pen}$ associated with interaction of all variables (henceforth referred to as factors) and levels identified in table 11, time and space limitations render this impractical here. Therefore, five factors that appear to have large effects on $P_{loss/pen}$ are chosen from tables 14 through 16 for further interaction analysis. The five major factors chosen for interaction analysis are shown in table 17, and include (A) critical crack length, (B) internal equipment, (C) critical decompression level, (D) injury loss ratio, and (E) hatch position. Table 17 shows that each of these factors is set at two levels—level "1" was generally associated with "low" $P_{loss/pen}$ values and level "2" with "high" $P_{loss/pen}$ values.

The type of Taguchi analysis chosen for this examination of two factor interactions involves use of the L_{16} orthogonal array pattern. According to "Hands-On Taguchi," this analysis allows the user to rank the significance of up to five single input factors and 10 two-factor combinations in determining the measurable output of a process or system (in this case, the total $P_{loss/pen}$ within the six module cluster). The L_{16} pattern requires 16 separate experimental "runs" using a specific combination of high and low levels for each of the five factors in order to establish the ranking of which factors are most important.

Following this, a "level average" analysis is performed using the output of the 16 runs. This analysis essentially computes the "delta" in average $P_{\text{loss/pen}}$ between all runs where the factor was

Table 17. Taguchi analysis for interaction between five major factors.

	Factor	Level 1	Level 2
Α	Critical Crack Length Prior to Unzipping	24 in	7 in
В	Internal Equipment	Yes—Two Plates of 0.125-in Aluminum	No Internal Equipment
С	Critical Level of Depressurization	3.0 lb/in ²	9.5 lb/in ²
D	Rate of Loss Following Injury	10-percent Initial Loss; 10-percent Late Loss	100-percent Loss
Е	Hatch Position	Closed	Open

Factor and Level Combinations

			4						1 5			·				
			Α		Α	В	D		Α	В	C	C	В	Α		
			· × B		X	×	×	-	×	×	×	×	×	×		
Run	Α	В	В	C	C	C	E	D	D	D	E	D	E	E	E	Result
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0.317
2	1	1	1	î	1	1	1	2	2	$\overline{2}$	2	2	2	2	2	0.150
3	1	1	1	2	2	2	2	1	1	1	1	2	2	2	2	0.561
4	1	1	1	$\tilde{2}$	2	2	$\tilde{2}$	2	2	2	2	1	$\overline{1}$	1	<u>-</u> 1	0.381
5	1	2	2	1	1	2	2	1	1	$\bar{2}$	$\frac{1}{2}$	1	1	2	2	0.196
6	1	2		1	1	2	2	2	2	1	1	2	2	1	1	0.382
7	1	2	2 2 2	2	2	1	2	1	1	2	2	2	$\tilde{2}$	1	1	0.391
8	1	2 2	2	2 2	2	1	1	2	2	1	1	1	1	2	2	0.659
9	2	1	2	1	2	1	2	1	2	1	2	1	2	1	$\overline{2}$	0.701
10	2	1	2	1	2	1	2	2	1	2	1	2	1	2	1	0.721
11	2	1	2	2	1	2	1	1	2	1	2	2	1	2	1	0.746
12	2	1	2	2	1	2	1	2	1	2	1	1	2	1	2	0.717
13	2	2	1	1	2	2	1	1	2	2	1	1	2	2	1	0.721
14	2 2 2	2	1	1	2	2	1	2	1	1	2	2	1	1	2	0.757
15	2	2	1	2	1	1	2	1	2	2	1	2	1	1	2	0.725
16	2 2	2	1	2	1	1	2	2	1	1	2	1	2	2	1	0.723
10	2	2	1	2	1	1	2		1	1	2	1	2	2	1	0.702
Delta (×10 ⁻³)	354	40	15	126	115	2	1	24	4	112	86	4	12	21	4	
Rank	1	6		2	3					4	5				•••	

maintained at level 1 and all runs where the factor was maintained at level 2. A higher average $P_{\text{loss/pen}}$ delta between levels indicates a higher importance of this factor or combinations of factors. Although sometimes criticized for lacking sufficient statistical strength, this type of Taguchi analysis is useful because of its ease of applicability and consistent ability to identify the most important factors and interactions governing a process.

Table 17 confirms the observations shown in figures 22 and 23, that the critical crack length is by far the most important factor in determining overall $P_{\rm loss/pen}$. The second most important factor appears to be the decompression level, followed by the interaction between the critical crack length and the decompression level. This is consistent with the information shown in tables 14 through 16: the decompression level grows in overall effect on $P_{\rm loss/pen}$ as the critical crack length grows. The third most important factor is the interaction between the first and second most important factors. The fourth most important factor is the interaction between internal equipment and injury loss rate. Notice that both of these factors affect injury, but each are much less effective on overall $P_{\rm loss/pen}$ when acting alone. The fifth most important factor is the interaction between decompression level and hatch position. Note that the hatch position is relatively ineffective when acting alone.

Table 16 lists a number of additional variables that showed promise of interacting to measurably lower the probability of (one or more) crew loss given a penetration, $P_{loss/pen}$. The factors identified for this analysis include (A) the crew movement model, (B) the crew distribution within each module (awake), (C) the crew sleep position within the cluster, (D) the crew sleep distribution within each module, and (E) the hatch closure position. Each of these factors has two levels (table 11). The first of these levels produced a lower $P_{loss/pen}$, and the second level (in this case, always the one associated with the baseline) produces a higher $P_{loss/pen}$.

Table 18 shows the results of the level average analysis for the L_{16} Taguchi pattern using the five selected factors at the 24-in critical crack length. This analysis indicates that of these five factors and 10 interactions, the three most important are factor E (hatch position), factor A (crew movement to hatch), and factor C (sleep position within cluster). The fourth most important factor from the Taguchi analysis appears to be the interaction between factor C and factor E, although it is not as strong as the action of the main factors.

This result and the magnitude of the delta associated with each of the main factors differs somewhat from the single factor analysis within table 16, where the more important of the factors was factor A (rate-based crew movement), not factor E (hatches closed at night). However, one clue identifying the reason for this difference might lie in the apparent interaction between factor E and factor C (crew sleep position). Taguchi analysis has the disadvantage of sometimes attributing interactions between factors to the main factors themselves. The explicitly examined interaction between factors E and A indicates that factor E may have a "tendency" to reduce $P_{loss/pen}$ through interactions with other factors. It is possible that some three-way interactions between these five factors that include factor E (hatch closure position) have been lumped under the single factor E, thus increasing its importance beyond what was seen in the single factor analysis (table 16). This type of clue should be followed up in subsequent analyses to determine the precise interactions of factor E with other input variables.

Apparently, the rate-based crew movement (level 1, factor A) does not interact significantly with either the triangular crew distribution (level 1, factor B) or the sleep position near the hatch (level 1, factor D) to lower the overall $P_{\rm loss/pen}$. This result was somewhat unexpected. However, it is still possible that these factors interact when placed in conjunction with a faster crew movement

rate or reaction time. Further analysis of the interaction between these variables also appears merited.

Table 18. Taguchi analysis for interaction between multiple input factors, 24-in critical crack assumption.

	Factor	Level 1 (Low)	Level 2 (High)
Α	Crew Movement To	Rate-Based Crew Movement	Constant Movement Time
В	Crew Position Within Modules (Awake)	Triangular Distribution	Uniform Distribution
С	Sleep Position Within Cluster	In Node 2	In Hab and Lab
D	Sleep Position Within Module	Near Hatch	Variable
E	Hatch Position	Closed at Night	Open

Factor and Level Combinations

	t to the		Α		Α	В	D		A	В	C	С	В	A		
			×		×	×	×		×	×	×	×	×	×		
Run	Α	В	В	C	C	C	E	D	D	D	E	D	E	E	E	Result
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0.353
2	1	1	1	1	1	1	1	2	2	2	2	2	2	2	2	0.333
3	1	1	1	2	2	2	2	1	1	1	1	2	2	2	2	0.484
4	1	1	1	2	2	2	2	2	2	2	2	1	1	1	1	0.307
5	1	2	2	1	1	2	2	1	1	2	2	1	1	2	2	0.444
6	1	2	2	1	1	2	2	2	2	1	1		2			
7		2	2	2			1		1			2 2		1	1	0.343
8	1	2	2	2	2	1		1		2	2		2	1	1	0.427
9	1				2	1	1	2	2	1	1	1	1	2	2	0.486
	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	0.579
10	2	1	2	1	2	1	2	2	1	2	1	2	1	2	1	0.436
11	2	1	2	2	1	2	1	1	2	1	2	2	1	2	1	0.529
12	2	1	2	2	1	2	1	2	1	2	1	1	2	1	2	0.594
13	2	2	1	1	2	2	1	1	2	2	1	1	2	2	1	0.429
14	2 2	2 2 2	1	1	2	2	1	2	1	1	2	2	1	1	2	0.564
15	2	2	1	2	1	1	2	1	2	2	1	2	1	1	2	0.587
16	2	2	1	2	1	1	2	2	1	1	2	1	2	2	1	0.520
Delta	90	8	2	58	2	6	8	2	4	4	30	4	6	2	10	
$(\times 10^{-3})$	70	3	2	50	~	3	0	2	-1	7	50	7	J	2	4	
	•															
Rank	2			3							4				1	

C. Validation and Verification of Results

This section briefly discusses the steps taken to validate the performance of the MSCSurv™ software tool and to verify the correctness of the model's input assumptions and output for accurate results.

Verification of a software tool generally requires proving that the tool performs all of its functions as designed. These functions include generating correct distributions for input variables, reading input files, writing output files, and assuring that the program operates in the proper sequence. In this case, most of the software verification occurred during the writing and debugging of the MSCSurvTM program. Many of the verification exercises undertaken are still present within the MSCSurvTM program as "comment" statements (FORTRAN statements preceded by a "C"), as shown in appendix A. The verification exercises generally included adding write statements (to the screen and to a printer) that designated when input, output, and "handoff" functions were performed by MSCSurvTM, and (by their absence) when these functions did not occur. Through running MSCSurvTM with low numbers of repetitions (under 100 or so), sufficient data were generated and sent to the printer. Although time consuming, these data were examined at length and eventually served to verify that the computer program was functioning as designed.

An important verification exercise included ensuring that the output of MSCSurvTM reached convergence. As a rule, Monte Carlo analysis results can be considered "well-behaved" if the results are within $1/N^{1/2}$ of the mean, where N is the number of total runs (or in this case, the total number of penetrations into the manned module cluster). MSCSurvTM results for overall $P_{loss/pen}$ using 10,000 penetrations never varied more than 0.01 in value from the mean result $(1/10,000^{1/2})$. In a similar fashion, $P_{loss/pen}$ values derived from 100,000 penetrations varied less than 0.003 in relative difference from one another. As such, this program can be considered to reach satisfactory convergence for any total (six module) $P_{loss/pen}$ value derived from 10,000 total penetrations or more. However, in order to assure accuracy in the "unzipping," "injury," and "depressurization" suballocations, all $P_{loss/pen}$ values reported were derived from runs using 100,000 penetrations or more unless otherwise noted.

Validation of the accuracy of the model output is a more difficult task. As stated earlier, all of the input assumptions have associated uncertainties. The most important assumptions to the final value of $P_{\text{loss/pen}}$ appear to be the hole size model, crack size model, and depth of penetration model selected. Sensitivity analyses (in the previous section) using alternative assumptions were designed to bound the accuracy of the final results. These analyses showed that the absolute value of $P_{\text{loss/pen}}$ could vary significantly depending on input assumptions used. True validation of the value of $P_{\text{loss/pen}}$ cannot be accomplished until the "correctness" of these input assumptions are established. In most cases, this requires additional test data to be generated (this is discussed in section VI).

Many of the verification exercises for MSCSurv™ also served to validate that the MSCSurv™ outputs were accurate (that is, as accurate as possible, given the uncertainty in input variables). Many of these validation exercises are also still included in the MSCSurv™ program as "comment" statements, and include:

- (1) Writing the debris diameter, velocity, and obliquity after their generation, comparing these distributions to the original environment for correctness
- (2) Writing the combinations of debris diameters, obliquities, and velocities (dov) that penetrate the shields, comparing them to the ballistic limit curve for accuracy

- (3) Writing out the hole and crack sizes following a penetration along with the corresponding dov input combinations, comparing them with the oblique (or Burch) hole size models and crack models for accuracy
- (4) Writing out the module and element numbers impacted by each simulated debris strike, comparing this distribution to other locations on comparable modules that should receive equal numbers of hits
- (5) Writing out the location of the injured crewman following a penetration to assure that this distribution is consistent with the input distribution
- (6) Writing out the hour of the debris strike, assuring that this distribution was uniform and accurate in comparison to crew location following penetration
- (7) Writing out the penetration depth with input dov combinations to assure consistency with penetration depth equation
- (8) Writing out the depressurization time corresponding with each hole size, assuring consistency with the isentropic blowdown equation.

Of course, the most convincing validation of program accuracy is from comparable sources of information. In this case, two resources existed that could independently produce part of the same information that MSCSurvTM produces, and their outputs were compared to MSCSurvTM to assure MSCSurvTM accuracy. The BUMPERTM program was used to generate a finite element model similar in geometry to the MSCSurvTM model, and the exposed area and PNP outputs for each of the eight modules produced by both models were compared. Table 19 compares the similarities in output data from each of these completely independent sources.

With the exception of the JEM, MSCSurvTM appears to slightly underpredict the PNP of each module in comparison to the BUMPERTM results. This is compatible with the slightly larger exposed area prediction by MSCSurvTM (recall that larger exposed areas lead directly to lower PNP's due to the corresponding increase in the number of orbital debris impacts). Comparison of the MSCSurvTM model geometry in figure 10 with the BUMPERTM model geometry in figure 6 yields several insights into the slight differences in output between the two models. Note that the number of exterior elements are far fewer within the MSCSurvTM geometry model for any particular manned module; that is, the element sizes are much larger in the MSCSurvTM modules than in the BUMPERTM modules. BUMPERTM runs using otherwise identical input models with differing element sizes indicate that models with larger element sizes consistently show a measurable increase in exposed area and lower PNP when compared to models with smaller element sizes.¹³ If this element size is an important factor within the BUMPERTM model, it is reasonable to assume that it may account for at least part of the slight difference between MSCSurvTM and BUMPERTM results.

In addition to the differences in element size, the MSCSurv™ model differs somewhat in exterior dimensions from the BUMPER™ model. For example, the MSCSurv™ model does not include conical endcones or inter-module tunnels (called berthing mechanisms); the BUMPER™ Lab module is 174 inches in diameter versus MSCSurv™'s 168-in diameter. These model differences were

Table 19. Exposed area and probability of no penetration comparison between MSCSurv™ and BUMPER™.

	Lab	Hab	Node 2	Node 1	JEM	ESA	Plog	A/L
MSCSurv™ Exposed Area (m²)	21.8	21.8	5.3	5.3	11.8	19.6	27.0	13.5
BUMPER™ Exposed Area (m²)	21.2	21.2	5.2	5.2	14.9	18.3	25.3	9.1
MSCSurv™ PNP	0.9975	0.9975	0.9995	0.9995	0.9987	0.9980	0.9969	0.9984
BUMPER™ PNP	0.9980	0.9980	0.9995	0.9995	0.9986	0.9982	0.9975	0.9991

Conditions Used:

- SSP30000 Rev A1 Debris Environment
- · Constant Debris Density
- Exposure Period—Year 2000
- · Attitude—Zero Roll, Pitch, and Yaw
- Altitude—398 km
- Inclination—28.5°
- Constant Solar Flux—70 Janskys
- Boeing Penetration Equations
- Bumper Material—0.050-in 6061T6 Aluminum
- Back Wall Material—0.125-in 2219T87 Aluminum
- Standoff—4 in (All Elements).

driven by the desire to make all $MSCSurv^{TM}$ modules the same diameter, and therefore simplify the geometry inputs within $MSCSurv^{TM}$.

Essentially, examination of the MSCSurvTM and BUMPERTM results gives confidence that the penetration portion of MSCSurvTM appears to be producing accurate results for the input geometry selected. Although the PNP portion of MSCSurvTM is not the area of greatest interest here ($P_{loss/pen}$ is), it nevertheless indicates that the "exterior" variables of debris dov are being input correctly into MSCSurvTM's $P_{loss/pen}$ model. Because these inputs are at the very heart of calculating the magnitude of the hole size, crack size, and interior penetration (and as such, the crew loss following a penetration) within the module, this PNP result lends confidence to the $P_{loss/pen}$ result by direct extension.

One additional source was used to directly validate MSCSurv $^{\text{TM}}$ $P_{\text{loss/pen}}$ results. Recall from section II that SSEIC was tasked in May 1992 by the Level 2 Space Station Program Office to initiate a similar study on the probability of crew or station loss following penetration of S.S. Freedom critical elements, including the module cluster. The information in this report (initiated in September 1991) was developed roughly in parallel to the broader SSEIC study, and served as an independent check on the accuracy of the SSEIC results concerning $P_{loss/pen}$ of the manned module cluster. Because the SSEIC program (CREW) models only depressurization and injury losses, unzipping losses had to be computed separately for the SSEIC results and added in after each model. At the suggestion of the NASA Safety and Mission Assurance (S&MA) Office, input conditions of crew escape time, depressurization limit, and hole size distribution identical to those developed within this study were eventually baselined within the SSEIC model, and results were compared for accuracy. Despite the differences in construction, results from the two models were similar. At last comparison, the MSCSurvTM model was computing approximately 5 percent higher probability of crew loss for each module than the SSEIC model at the 7-in critical crack length, mostly due to increased crew injury (9 percent versus approximately 4 percent). Part of the difference in results may lie in the SSEIC model's inclusion of a rescue algorithm within their baselined model; MSCSurvTM currently assumes (as a baseline) that all injured crew are lost. Other basic model differences are detailed in section II.C (S.S. Freedom Orbital Debris Survivability).

To summarize, a considerable effort was undertaken within this study to validate the values obtained for the probability of (one or more) crew loss following an orbital debris penetration and to verify the software model that produced them. However, the real value of this type of analysis is not necessarily the absolute value of the $P_{\rm loss/pen}$ achieved, but the identification of operational and design variables that measurably reduce this value. Regardless of the absolute value of $P_{\rm loss/pen}$, an ability to measure the relative decrease in the $P_{\rm loss/pen}$ value associated with individual improvements in spacecraft design and crew operations allows managers to pursue those safety improvements that offer highest reduction in $P_{\rm loss/pen}$ for available resources. Only when trading against such parameters as reduced shielding (and PNP) to avoid exceeding a targeted overall probability of crew loss does the absolute accuracy of $P_{\rm loss/pen}$ become critically important.

D. Summary of Design and Operational Alternatives

As stated in the previous section, one of the real values in performing a quantitative analysis of the probability of (one or more) crew loss following a spacecraft orbital debris penetration $(P_{\rm loss/pen})$ is the opportunity to identify the relative importance of alternative design and operational factors in reducing overall probability of crew loss. This allows managers to pursue those safety improvements that offer highest reduction in $P_{\rm loss/pen}$ for available resources.

Eight design and operational alternatives listed in tables 14 through 16 were shown to measurably increase the safety of astronaut crew members from the hazardous effects of orbital debris penetration. Each of these alternatives is listed in table 20, along with a brief discussion of its advantages and possible difficulties in application.

Increasing the critical crack length within the spacecraft pressure wall prior to initiating unstopped crack propagation (unzipping) was found to be the single most important parameter in decreasing $P_{\rm loss/pen}$ from the baseline configuration and assumptions. Raising the critical crack length within a module pressure wall from 7 to 12 in was shown to decrease the probability of crew loss following a penetration from an average of 0.76 to 0.62 for a six module cluster; raising the critical

Table 20. Summary of design and operational alternatives reducing $P_{\rm loss/pen}$ of manned modules by orbital debris.

Alternative	Advantages	Implementation		
Increase Critical Crack Length in Pressure Wall From 7-in Baselined Critical Length	Decreases $P_{\text{loss/pen}}$ from 0.76 to 0.58 for Increase from 7- to 24-in Critical Crack Length by Lowering Probability of Unzipping	Increase Wall Thickness from 0.125 to 0.188 in for 12-in Critical Length or Add Integral Wall Stiffeners		
Increase Internal Areal Density in Areas Vulnerable to Debris Penetration	Decreases $P_{\text{loss/pen}}$ from 0.58 to 0.48 for 24-in Critical Length by Lowering Probability of Injury	Place Internal Equipment or Additional Spallation Blankets Along Interior Pressure Walls		
Crew Sleeps in Module Least Likely To Be Penetrated	Decreases $P_{\text{loss/pen}}$ from 0.58 to 0.57 for 24-in Critical Length by Lowering Probability of Injury	Crew Sleeps in Node 1 or Node 2, Since Both Minimize Crew Exposure to Debris Penetration		
Lower Critical Limit of Crew Tolerance to Depressurization to 3.0 lb/in ² from 7.0 lb/in ²	Decreases $P_{\text{loss/pen}}$ from 0.58 to 0.32 for 24-in Critical Length by Lowering Probability of Depressurization	Add Portable Oxygen System; Keep Near Crew Members, Especially During Sleep Period		
Close Intermodule Hatches, Limiting Depress Hazards from Other Modules	Decreases $P_{\text{loss/pen}}$ from 0.58 to 0.51 for 24-in Critical Length by Lowering Probability of Depressurization	Close Hatches During Crew Sleep Period; Assure Crew Has Egress Plan in Case of Module Penetration		
Reduce Crew Reaction Time to Penetration and Depressurization	Decreases $P_{\text{loss/pen}}$ from 0.58 to 0.52 for 24-in Critical Length By Lowering Probability of Depressurization	Train Crew to Egress Work and Sleep Stations Rapidly; Install Alarm System for Penetrations		
Reduce Crew Movement Time to Hatches (add Rate-Based Movement Assumption)	Decreases $P_{\text{loss/pen}}$ from 0.58 to 0.49 for 24-in Critical Length By Lowering Probability of Depressurization	Train Crew to Move Rapidly in Zero Gravity, (in KC-135?) Against Simulated Air Flow		
Crew Sleeps Near Egress Location	No Measurable Decrease in $P_{ m loss/pen}$	Crew Sleeps Near Hatch; Only Implement if Later Proven Helpful		

crack length to 24 in was shown to almost eliminate the unzipping hazard, lowering the $P_{\rm loss/pen}$ to 0.58 from the baselined 0.76 value. A SSEIC study released in March 1993⁵³ reported that the 7-in critical crack length within a 0.125-in 2219T87 aluminum pressure wall could be raised to 12 in by thickening the pressure wall to 0.188 in. These reported levels require additional testing on the nature of impact-generated dynamic crack growth in pressurized aluminum skins to increase confidence in their absolute values. However, increasing pressure wall thickness is certainly a "good investment" in quantitatively increasing crew safety from the explosive decompression hazard that accompanies penetration-induced rupture of the spacecraft wall. "Unzipping" is the most costly form of penetration-related hazard to the spacecraft and crew, usually causing loss of the entire spacecraft and crew due to explosive decompression. Therefore, investment in design solutions that increase the critical crack length should result in a larger "expected value" cost savings (cost of a penetration hazard times reduction in probable occurrence) to the program over its life than any of the other hazard-mitigating features discussed here.

Adding internal equipment to those areas where debris is most likely to penetrate (such as the "sides" of the laboratory module) was found to be the second most important of the "controllable" design factors in decreasing $P_{\rm loss/pen}$. This factor directly decreased the probability of crew injury losses due to fragments, and probably also decreases other secondary hazards to the crew such as light flash, pressure pulse, and temperature rise (although these factors were not explicitly examined within this study). Any increase in the resistance to "incoming" debris fragments would serve to decrease this crew hazard. As such, this design solution could be implemented by moving equipment racks to the "sides" of the modules facing the debris threat, or by adding internal blankets that reduce the spallation hazard on-orbit to increase crew safety. This type of design solution would probably be easier to implement than increasing external shielding to prevent orbital debris penetration. Similarly, sleeping in Node 2 would provide increased injury protection to the crew during their sleeping period (since the nodes are one of the least likely locations for penetration).

The remaining six identified alternatives describe operational factors that were shown to reduce the probability of crew loss due to slow depressurization (resulting from smaller penetration-induced holes). Two of these factors involved crew operations during the crew's sleep period, when the crew's reaction time to a depressurizing module was most affected. Closing the hatches during the sleep period appears to increase crew safety from depressurizations that may occur in other modules if they are penetrated. However, this solution would likely be less attractive if the MSCSurvTM program included probable "long-term" losses associated with crew being unable to escape a module if separated from the rest of the station by a vacuum. No significant advantage was shown for the crew to sleep near the escape hatch, although it may prove marginally effective when combined with a faster reaction or movement time.

A decrease in the baselined crew reaction time (time required to discover, locate, and initiate escape from a penetrated module) provides a measurable reduction in crew loss due to decompression. This might be brought about by training the crew to egress their workstations, exercise stations, sleeping restraints, etc., in a faster fashion. The reaction time could also be decreased through implementing an effective impact-detection and leak-location and warning system aboard the spacecraft. A faster (position-based) crew movement to the hatches to escape or to close off the penetrated module also measurably reduced the $P_{\rm loss/pen}$. It would also require crew training to implement.

One of the most effective methods in reducing the probability of crew loss due to depressurization following a penetration was to extend the depressurization limit of the crew members from 7.5 lb/in² down to 3.0 lb/in², primarily by the crew donning oxygen masks immediately following a penetration. However, several important factors must be considered prior to realizing this possible increase in crew safety. The system must be completely portable; it must be within reach at all times; the existing oxygen mask/bottle combination must be capable of functioning at this low pressure level. Perhaps a realistic compromise would be a system that hangs near the crew member during his/her sleep period for easy access during this critical period, with additional systems stored in easily accessible locations throughout the modules.

To underline the points made above, these eight "controllable" design and operational alternatives were combined together in two analyses to determine the "minimum" $P_{\rm loss/pen}$ possible if all eight factors are adopted. In this case, the critical crack length was increased to 12 and 24 in by increasing the rear wall thickness to 0.188 and 0.250 in, respectively. The results of these analyses appear in tables 21 and 22. Note that the $P_{\rm loss/pen}$ has fallen from 0.76 to 0.46 for the 12-in critical crack length; injury losses due to fragments and slow depressurization have fallen to almost zero.

Table 21. "Improved" probability of crew loss (one or more) given a penetration, $P_{loss/pen}$, for six modules, 12-in critical crack length.

	Crack	Injury	Slow Depress	Total
Module 1 (U.S. Lab)	0.45	0.01	0.00	0.46
Module 2 (U.S. Hab)	0.46	0.01	0.01	0.48
Module 3 (JEM)	0.43	0.00	0.00	0.43
Module 4 (ESA)	0.42	0.02	0.04	0.48
Module 5 (Node 2)	0.46	0.01	0.06	0.53
Module 6 (Node 1)	0.40	0.01	0.00	0.41
Module 7 (P-Log)	0.30	0.00	0.00	0.30
Module 8 (Airlock)	0.33	0.00	0.00	0.33
Total (1 through 6)	0.44	0.01	0.01	0.46

"Improved" Controllable Design and Operational Assumptions Employed:

- 12-in Critical Crack Length (0.188-in Rear Wall)
- Internal Equipment (0.7 g/cm²) Along Inner Pressure Wall
- 3.0 lb/in² Critical Depressurization Limit
- Crew Sleeps in Node 2
- · Close Hatches During Crew Sleep Period
- · Fast Crew Reaction Time
- Fast (Rate-Based) Crew Movement Assumption
- · Crew Sleeps Near Egress Location

Table 22. "Improved" probability of crew loss (one or more) given a penetration, $P_{\text{loss/pen}}$, for six modules, 24-in critical crack length.

	Crack	Injury	Slow Depress	Total
Module 1 (U.S. Lab)	0.016	0.022	0.000	0.038
Module 2 (U.S. Hab)	0.017	0.025	0.024	0.067
Module 3 (JEM)	0.018	0.001	0.001	0.020
Module 4 (ESA)	0.017	0.007	0.000	0.023
Module 5 (Node 2)	0.193	0.025	0.000	0.218
Module 6 (Node 1)	0.012	0.049	0.161	0.222
Module 7 (P-Log)	0.005	0.000	0.000	0.005
Module 8 (Airlock)	0.005	0.000	0.000	0.005
Total (1 through 6)	0.026	0.019	0.015	0.060

[&]quot;Improved" Controllable Design and Operational Assumptions Employed:

- 24-in Critical Crack Length (0.250-in Rear Wall)
- Internal Equipment (0.7 g/cm²) Along Inner Pressure Wall
- 3.0 lb/in² Critical Depressurization Limit
- Crew Sleeps in Node 2
- · Close Hatches During Crew Sleep Period
- · Fast Crew Reaction Time
- Fast (Rate-Based) Crew Movement Assumption
- Crew Sleeps Near Egress Location

Table 22 shows that the $P_{\rm loss/pen}$ for a 24-in critical length with "improved" controllable design and operational alternatives has fallen from 0.76 to 0.06. Note that most of these losses occur in nodes 1 and 2, where the crew sleeps. Recall that this analysis includes only three of the seven identified modes of crew loss (table 4); however, this large drop in expected $P_{\rm loss/pen}$ highlights the magnitude of benefit possible from employing improved design and operational alternatives in lowering the likelihood of crew loss due to orbital debris penetration in manned spacecraft.

VI. CONCLUSIONS AND RECOMMENDATIONS

A. Conclusions

The following objectives were established in section I and met within the body of this report:

(1) Conducted research into methods for estimating quantitative risk that were applicable to the manned spacecraft orbital debris impact problem (section II).

- (2) Identified penetration-induced failure modes that induce spacecraft or crew loss and those internal design and/or operational factors that most affect these failure modes (section III).
- (3) Summarized baseline assumptions from above studies, and developed a detailed probabilistic model and simulation tool (MSCSurv™) for computing loss of crew from three "significant" orbital debris penetration failure modes considering eight alternative operational/design variables and twelve alternative hazard input variables (section IV).
- (4) Performed baseline research and sensitivity studies on probability of crew loss from orbital debris penetration for spacecraft manned modules (sections V.A and V.B). Performed validation and verification of developed simulation tool (section V.C). Identified operational modes and design alternatives that increase crew safety, and possible roadblocks to their implementation (section V.D).

This report shows that it is possible to quantify the probability of the loss of one or more crew members from orbital debris penetration into manned spacecraft. This is due primarily to the unique nature of the orbital debris threat, which has been shown through NASA studies to possess predictable probability density functions (PDF's) for debris velocity, direction, and mass. Through a Monte Carlo simulation, these orbital debris PDF's can be coupled with knowledge of the hazard levels generated following hypervelocity orbital debris impact and hazard thresholds associated with crew loss to derive the expected probability of crew loss following a spacecraft penetration, $P_{\rm loss/pen}$.

Section V shows that the absolute $P_{loss/pen}$ value is highly dependent on the magnitude of the hazard levels (hole sizes, crack sizes, penetration depth, etc.) associated with the impact process. It is also quite sensitive to the hazard levels assumed to result in crew loss (fragment energy, crew depressurization levels, etc.). Tables 14 through 16 describe some of these $P_{loss/pen}$ sensitivities.

A measurable relative increase in crew safety (decrease in the $P_{\rm loss/pen}$) can be achieved through modifying selected spacecraft design factors and/or crew operations. Comparison of table 13 to table 20 shows that adoption of eight design and operational alternatives can cut the $P_{\rm loss/pen}$ for the baselined six module spacecraft cluster almost in half (from 0.76 to 0.46). Adoption of a pressure wall even more resistant to critical cracking (24-in critical crack length) could reduce this even further (table 22).

The clearest benefit in calculating the probability of crew loss from orbital debris penetrations is an ability to identify highly effective design and operational safety improvements. Quantifying the relative decrease in $P_{\rm loss/pen}$ associated with a variety of design/operational alternatives allows the system engineer to identify and "rank" those alternatives that most measurably reduce the probability of crew loss. With this information, managers may pursue those safety improvements that offer highest reduction in $P_{\rm loss/pen}$ for available resources. Table 19 shows the relative decrease in $P_{\rm loss/pen}$ possible from each of eight individual design factors. These results indicate that increasing the critical crack resistance in the spacecraft pressure wall, the protective capability of the internal equipment, and crew access to oxygen following penetration are most effective in reducing the probability of crew loss from orbital debris penetration. These solutions are even more effective when combined with customized operational protocols for module hatch closure and crew sleep position.

B. Recommendations for Future Work

This study must be expanded in order to completely quantify the probability of crew loss (one or more) given a spacecraft penetration by orbital debris. As detailed in section III, the $P_{\rm loss/pen}$ reported herein was limited to only three manned module failure modes—explosive decompression due to critical crack propagation ("unzipping"), crew injury due to interior fragments, and "slow" depressurization. Although these three failure modes are considered by this researcher to be the largest contributors leading to crew loss following manned spacecraft penetration by orbital debris, other failure modes leading to crew or spacecraft loss are listed in table 5. These failure modes could be added to the MSCSurvTM code developed herein, or added through separate analysis, as required. Briefly, these failure modes include:

- (A) Crew Loss from External Atmospheric Outgassing. In this failure mode, the thrust from air loss through the module pressure wall causes the spacecraft to tumble out of control. Additional data required here is the control authority of the spacecraft (i.e., the moment-resisting capability of spacecraft thrusters, gyroscopes, etc.), the mass and center of gravity of the spacecraft, the location of the strike, the size of the hole, and the volume of air behind the hole prior to the initiation of module depressurization. Because MSCSurvTM already calculates the location of the hole and size of the strike, it should be fairly easy to add a control moment "threshold" and a calculation subroutine to check if individual penetrations (wherever they occur on the spacecraft) exceed this threshold. If so, a crew/station loss could be registered.
- (B) Crew Loss from Overpressure, Temperature, or Flash. In these failure modes (generally referred to as "secondary" or "atmospheric" hazards), part of the energy of the debris cloud impinging into the spacecraft cabin atmosphere causes damaging waves of heat, light, and pressure to travel through it, injuring crew members if the magnitude exceeds established limits of human endurance. Unfortunately, the relative amount of penetration energy that is transformed into each of these damage mechanisms is still unknown, although it is reasonable to assume that their magnitude is somehow related to the total amount of penetration energy entering the module. As such, the magnitude of the atmospheric hazard energy should be able to be related to the familiar impact energy parameters of debris mass dov. It is also almost assuredly related to the target parameters of shield type and amount and type of equipment behind the shield. Since MSCSurv™ already generates and contains inputs for all of these parameters, all that appears lacking for inclusion of this failure mode is a relationship between impact energy and its resulting atmospheric hazard magnitudes, considering each target type. It seems clear that these failure modes will require extensive test data prior to their inclusion.
- (C) Crew Loss from Internal Equipment Failure. Internal equipment racks could contain hazardous materials, utility lines, or other equipment whose failures could cause loss of station or crew if penetrated. A clearer definition of the design of internal equipment would allow expansion of MSCSurv™ to include an additional possibility of crew loss to occur following a penetration in these areas.

In addition to expanding the types of failure modes considered within this analysis, a number of simplifying assumptions used to develop the $P_{loss/pen}$ values for the three failure modes included herein require additional verification or expansion to increase the accuracy and confidence in their results. Some of the more important areas include:

- (1) Development of independent models for hole size and crack length created within pressure wall following hypervelocity penetration. The baselined model for crack size contained herein is dependent on hole size; the hole size model in itself remains preliminary and empirical in nature. While some relationship may exist between hole size and crack size, both of these output parameters require a better understanding of their dynamic formation under a variety of test conditions.
- (2) Verification of internal penetration model and spacecraft geometry. This study assumed that the depth of internal spacecraft penetration could be related to the average internal areal density of interior spacecraft equipment. Other qualities of the interior equipment (geometry, material strength, shock impedance, etc.) will almost certainly affect both the depth of penetration and the amount of energy that remains in the debris cloud upon exit. Both a more sophisticated penetration model and a more defined spacecraft interior equipment layout are required to enhance our confidence in the existing results for overall $P_{\text{loss/pen}}$.
- (3) The crew's capability to rescue stricken comrades could significantly lower the probability of crew loss due to depressurization or injury. However, this advantage would be offset somewhat by the possibility of additional crew loss. In either case, additional data on the speed of crew reaction and movement while healthy, hindered, or injured in a zero gravity environment is definitely required.
- (4) The effect of advanced shielding should be examined to see if "heavier" shields, when penetrated, cause more interior damage (and thus a higher $P_{loss/pen}$ value) than the baselined shields. This factor was not included in the study, and must be added if we desire to examine the tradeoffs in the cost of external shielding versus the "savings" in expected internal penetration costs resulting from their use.

Finally, although MSCSurvTM addresses the probability of losing one or more crew members given an orbital debris penetration, MSCSurvTM could be modified slightly to also compute the average number of crew members lost following a penetration. Although current NASA philosophy makes no distinction between losing one crew member versus losing more than one crew member, this information could be valuable if two competing designs produced the same $P_{loss/pen}$.

C. Example Using $P_{\text{loss/pen}}$ to Minimize System Costs

In concluding this study, it seems reasonable to include an example illustrating how information on the $P_{\rm loss/pen}$ might be used to minimize the overall system costs associated with meeting established orbital debris safety requirements. In this example, the manufacturer of a laboratory module similar in baseline design to module 1 wishes to meet an improved probability of no crew loss (PNCL) of 0.9995 per year. The current module design (with its 0.125-in pressure wall) maintains a 0.9975 PNP, or a 0.0025 probability of penetration per year. Using the results of the baseline analysis presented here for the manned module cluster (where $P_{\rm loss/pen=0.76}$), the manufacturer

discovers that his existing design already offers a $0.0019\,P_{\rm loss}$, or a $0.9981\,PNCL$. Because this value is far short of the desired safety level of $0.9995\,$ per year, the manufacturer decides that he must upgrade the meteoroid/debris protection system.

Alternative 1 is to switch out the external bumper for one that offers a 0.99935 PNP. The cost for this system is \$5 million in development costs and 1,800 lb (\$18 million in launch costs), for a subtotal of \$23 million. The manufacturer makes the preliminary assumption that the new shield offers the same $P_{\rm loss/pen}$ as the baseline shield (0.76). Alternative 1 then offers a $P_{\rm loss}$ of 0.00049, or a PNCL of 0.99951, exceeding the stated PNCL requirements.

In alternative 2, by spending an additional \$5 million for development and 1,200 lb of weight (equivalent to \$12 million in launch costs at \$10,000 per lb), the manufacturer could install a lighter, redesigned bumper and a 0.188-in rear wall and increase his probability of no penetration to 0.99890. Using the study results shown in table 15 for the baseline assumptions and a 12-in critical crack length, the manufacturer computes that the $P_{\rm loss/pen}$ for alternative 2 is 0.62, and offers a PNCL of 0.99932 for a subtotal of \$17 million. Alternative 2 appears to fall short of the stated PNCL requirement of 0.9995 per year.

However, if the manufacturer moves several equipment racks to positions that prevent debris penetration into the aisles, adds oxygen bottles, initiates training of the crew to decrease reaction time, etc., he can reduce the $P_{\text{loss/pen}}$ of alternative 2 to 0.47 (as shown in table 20). Alternative 2a would then offer a P_{loss} of $\{1-[(1-0.9989)\times(0.47)]\}=0.9995$, just reaching the PNCL requirement. However, alternative 2a would cost an additional \$5 million to implement over alternative 2, for a total of \$22 million in "implementation" costs, \$1 million less than option 1.

This cost/benefit analysis would indicate option 2a to be the most cost effective solution to meeting the stated safety requirements, despite the higher cost of equipment relocation and crew training in option 2a. However, the manufacturer chooses to run one additional tradeoff to include the expected cost of a penetration for both option 1 and option 2a. Through intensive analysis, the manufacturer has determined that any penetration will cause repair costs of \$10 million. Penetrations causing a crew injury will result in at least \$100 million in costs to repair the module and to bring the crewmember home for emergency medical treatment. However, those penetrations causing unzipping of the module wall will result in loss of the utility of the entire module, at least \$10 billion (this figure also includes the cost of bringing surviving crewmembers back to Earth).

Multiplying the probability of the different types of penetration effects by their expected ratios of occurrence leads to an expected overall penetration cost of \$4.6046 million for alternative 1 and \$4.8026 million for alternative 2a. This is primarily due to the slightly higher overall probability of unzipping for alternative 2a (despite the fact that alternative 2a has a lower probability of unzipping following a penetration, offset due to its larger probability of penetration). However, table 23 shows that the total costs including both expected penetration costs and implementation costs is still \$800,000 lower for alternative 2a than for alternative 1. Given this information, alternative 2a should be pursued by the manufacturer.

Of course, this analysis neglects a number of indirect and/or incalculable costs that are also associated with meteoroid and orbital debris penetrations. For example, recall that the overall probability of unzipping was slightly higher for the alternative 2a than for alternative 1. Not reflected in the cost analysis is the fact that more crew members can be expected to be lost (on average) during unzipping failures. Given this, alternative 2a can be expected to produce a slightly higher number of

crew members lost (on average) for a penetration than alternative 1. Although NASA does not apparently differentiate between one crew loss and more than one crew loss, information on the difference in average expected numbers of crew lost between competing designs that are otherwise so evenly matched might be a deciding factor to program safety engineers. Also neglected here is the incalculable cost to an organization associated with hardware failure and loss (or near loss) of a crew member. Given that alternative 2a has a 40-percent higher probability of a penetration, this might be viewed by some as a 40-percent higher probability of "bad press," thus rendering the slightly more expensive option 1 as the more palatable choice.

This study highlights the fundamental utility of quantitative risk assessment: to pinpoint those areas of a system's design that drive its overall safety, and to offer solutions that may increase system safety while lowering its cost. It is likely that future spacecraft designers will increasingly require the flexibility in design solutions offered by quantitative risk assessment if the orbital debris environment grows as predicted.

Table 23. Example problem—trade study for improved Lab module shielding.

	Alternative 1	Alternative 2	Alternative 2a
Shield Type	Bumper Upgrade	Thicker Rear Wall	Thicker Rear Wall
Delta Weight	1,800 lb	1,200 lb	1,200 lb
Launch Costs	1,800 × \$10K/lb = \$18 Million	1,200 × \$10K/lb = \$12 Million	1,200 × \$10K/lb = \$12 Million
Dev Costs	\$5 Million	\$5 Million	\$5 Million
Additional Costs			\$5 Million (Move Racks, Provide O ₂ Train Crew)
Total Cost of Implementation	\$23 Million	\$17 Million	\$22 Million
P[penetration]	0.00065	0.00110	0.00110
P _{loss/pen}	0.76	0.62	0.47
$P_{ m loss}$	0.00049 (Meets Requirement)	0.00068 (Misses Requirement)	0.00050 (Meets Requirement)
$P_{ m Unzip\ loss}$	$(0.72/0.76)\times(.00049) = 0.00046$		$(0.45/0.47)\times(0.00050)$ = 0.00048
$P_{ m Injury\ loss}$	0.00003		0.00002
$P_{\rm pen}$ - $P_{\rm loss}$	0.00016		0.00060
Expected Cost of Unzipping	(0.00046)×(\$10 Billion) = \$4.6 Million		(0.00048)×(\$10 Billion) = \$4.8 Million
Expected Cost of Injury	$(0.00003) \times (\$100$ Million) = $\$0.003$ Million		(0.00002)×(\$100 Million) = \$0.002 Million
Expected Cost of Penetration	(0.00016)×(\$10 Million) = \$0.0016 Million		(0.00060)×(\$10 Million) = \$0.006 Million
Total Expected Penetration Costs	\$4.6046 Million		\$4.808 Million
Total Penetration + Implementation Costs	\$27.6 Million		\$26.8 Million

REFERENCES

- 1. Kessler, D.J., and Cour-Palais, B.G.: "Collision Frequency of Artificial Satellites: The Creation of a Debris Belt." Journal of Geophysical Research, vol. 63, 1978.
- 2. Kessler, D.J., et al.: "Orbital Debris Environment for Spacecraft Designed to Operate in Low Earth Orbit." NASA Technical Memorandum 100-471, 1989.
- 3. Space Station *Freedom* Program Office: "Space Station Program Natural Environment Definition for Design." NASA SSP 30425, revision A, 1991.
- 4. Horn, et al.: "Analysis Procedures for Meteoroid/ Debris Protection of Space Structures." Fifth Technical and Business Exhibition/Symposium, Huntsville, AL, 1989.
- 5. European Space Agency: "Space Debris." ESA Report No. SP-1109, 1988.
- 6. McKnight, D., and Johnson, N.: "Debris Growth: Isolating Sources and Effects." AIAA Space Programs and Technologies Conference, AIAA-92-1284, 1992.
- 7. Howell, L. W.: "A Stochastic Model for Particle Impingements on Orbiting Spacecraft." The Journal of Astronautical Sciences, vol. 34, No. 4, 1986.
- 8. Mog, R.: "Optimization Techniques Applied to Passive Measures for In-Orbit Spacecraft Survivability." Final report on contract NAS8-37378, 1992.
- 9. Horn, J., and Williamsen, J., Briefing Material to NASA Space Station *Freedom* WP01 Chief Engineer's Office, 1989.
- 10. NASA SSP 30000, Revision H. 1990. Space Station *Freedom* Preliminary Design Requirements Document, paragraph 3.1.1.
- 11. Burch, G.T.: "Multiplate Damage Study." Air Force Systems Command Report AFATL-TR-67-116, 1967.
- 12. Bjorkman, M.: "Preliminary Results of the Ballistic Limit Testing of Aluminum Meteoroid/Debris Shields." Boeing Contract No. NAS8-50000, Preliminary, 1990.
- 13. Coronado, A. R., et al.: "Space Station Integrated Wall Design and Penetration Damage Control." Final report D180-30550-1, NASA contract No. NAS8-36426, 1987.
- 14. Williamsen, J.E.: "Orbital Debris Risk Analysis and Survivability Enhancement for *Freedom* Station Manned Modules." AIAA Space Programs and Technologies Conference, AIAA-92-1410, 1992.
- 15. Huntsman, D.: "Space Station *Freedom*—Status of Meteoroid and Orbital Debris Design Requirements." NASA briefing to Level 2 Space Station *Freedom* Program Office, 1991.

- 16. Piekutowski, A.J.: "Characteristics of Debris Clouds Produced By Hypervelocity Impact of Aluminum Spheres With Thin Aluminum Plates." Hypervelocity Impact Symposium, HVIS 049-G1, 1992.
- 17. Jolly, W., and Williamsen, J.: "Ballistic Limit Curve Regression for *Freedom* Station Orbital Debris Shields." AIAA Space Programs and Technologies Conference, AIAA-92-1463, 1992.
- 18. Tipton, J., and Williamsen, J.: "Hydrocode Analysis for *Freedom* Station Orbital Debris Penetration Protection." AIAA Space Programs and Technologies Conference, AIAA-90-2773, 1990.
- 19. Chhabldis, L., and Hertel, E.: "Hypervelocity Impact Tests of Whipple Shield Concepts at Velocities Between 8 and 12 km/s." 1992 AIAA Space Programs and Technologies Conference, AIAA-92-1587, 1992.
- 20. Bjorkman, M.: "Biaxially-Stressed Ballistic Limit Testing of Aluminum Plates." Boeing Contract No. NAS8- 50000, preliminary, 1990, p. 21.
- 21. Elfer, N.: "Structural Damage Prediction and Analysis for Hypervelocity Impacts." NASA-Marshall Space Flight Center contract No. NAS8-38856, preliminary, 1992.
- 22. Ball, R.E.: "Aircraft Combat Survivability." AIAA Press, Inc., 1985.
- 23. Thompson, R.S., et al.: "Vulnerability Analysis of the Soviet HIND-A/D Helicopters to Single and Multiple Fragment Impacts and to External Blast (U)." Ballistic Research Laboratory technical report ARBRL-TR- 02395, 1982.
- 24. Joint Technical Coordinating Group for Munitions Effectiveness: "Methodology Report." Report No. 61A1-3-6, 5, 1974.
- 25. Joint Technical Coordinating Group for Munitions Effectiveness: "Derivation of JMEM/AS Open End Methods." Report No. 61JTCG/ME-3-7, 1990.
- 26. Dietz, Paul, et al.: "Current Simulation Methods in Military Systems Vulnerability Assessment." Ballistic Research Laboratory Memorandum Report BRL-MR-3880, 1990.
- 27. Deitz, Paul H., et al.: "An Integrated Environment for Army, Navy and Air Force Target Description Support." Ballistic Research Laboratory Memorandum Report BRL-MR- 3754, 1989.
- 28. Ray, J.V.: "Technical Proposal—Cabin Hazards Due To Meteoroid Penetration." LTV report No. 00.852, 1966.
- 29. Burch, G.T.: "Hypervelocity Particle Penetration Into Manned Spacecraft Atmospheres." Boeing report D2- 24149-1, 1967.
- 30. Long, L., and Hammitt, R.: "Meteoroid Perforation Effects on Space Cabin Design." AIAA Hypervelocity Impact Conference, Cincinnati, OH, 1969.

- 31. Bancroft, R.W.: "Comments and Review of Decompression Hazards in Manned Orbiting Systems." Proceedings of Orbital International Laboratory and Space Science Conference, report No. A70-43626 22-30, 1969.
- 32. Von Beckh, H.J.: "Protective Measures Against Accidental Decompression in Space and Atmospheric Flight." 6571st Aeromedical Research Laboratory Report No. ARL-TR- 70-4, 1970.
- 33. Engler, E.E.: "Physiological and Safety Aspects of Penetration." Space Debris and Meteoroid Technology Workshop, Marshall Space Flight Center, 1984.
- 34. Bauer, E.: "Meteoroid and Orbital Debris Protection Concepts." MBB/Erno Report No. A87-16081, 1987.
- 35. Christiansen, E.: "Survivability of Space Station *Freedom* External Elements in the Meteoroid/Debris Environment." AIAA Space Program and Technologies Conference, AIAA-92-1409, 1992.
- 36. Joint Technical Coordinating Group for Munitions Effectiveness: "Penetration Equations Handbook for Kinetic Energy Penetrators." Report No. 61JTCG/ME-77-1, 1991.
- 37. Joint Technical Coordinating Group for Munitions Effectiveness: "Evaluation of Wound Data and Effectiveness of Munitions." Report No. 61JTCG/ME-75-11-3, 3, 1975.
- 38. Zaker, T.A., et al.: "Fragmentation Hazard Study." Phases I and II, final report, contract DAHC-04-69-C-0056, 1970.
- 39. Sperrazza, J., and Kolkanis, W.: "Criteria for Incapacitating Soldiers With Fragments and Fletchettes." Ballistics Research Laboratory report 1269, 1965.
- 40. Sperrazza, J., and Kolkanis, W.: "Ballistic Limits of Tissue and Clothing." Ballistics Research Laboratory technical note 1645, 1967.
- 41. Bryan, A.C., et al.: "Aircrew Oxygen Requirements in High Altitude Transport Aircraft." Aerospace Medicine, vol. 31, 1961, pp. 30–34.
- 42. Ernsting, et al.: "Hypoxia Induced by Rapid Decompression—The Influence of Rate of Decompression." Royal Air Force Institute of Aviation Medicine, report AD-A009-006, 1973.
- 43. Bowen, I.G., et al.: "Estimate of Man's Tolerance to the Direct Effect of Air Blast." NASA report No. 2113, 1968.
- 44. Severin, et al.: "A Study of Photostress and Flash Blindness." TDR-62-144, USAF School of Aviation Medicine, San Antonio, TX, 1962.
- 45. Isbell, D.: "Space Debris Growth a Concern for Space Station." Space News, June 1991.

- 46. Concepcion, J.C.: "Space Station Module Blowdown From Debris Puncture." Boeing Memo 2-8285-JCC-085, 1985.
- 47. Concha, S.R.: "Manual Versus Powered Hatch Considerations: Safety Implications and Trade Study." Boeing report No. 2-H881, 1988.
- 48. Dickinson, R.L.: "Space Station *Freedom* Program Element Volumes." Boeing Memo 2-H8HD-RBP/RD-91099, 1991.
- 49. NASA: "Space Station *Freedom* Contingency Operations Scenarios." Johnson Space Center Operations Integration Office, preliminary, 1990.
- 50. Smylie, E.: "Request for Improved Orbital Debris Data." Grumman Memo GSS-011-LR92, 1992.
- 51. Chipman, R., et al.: "Space Station *Freedom* Program Meteoroid and Orbital Debris Forward Action Plan." Grumman Space Station Engineering and Integration Contractor (SSEIC), 1992.
- 52. NASA Level 2 Forward Action Team: "Integrated Meteoroid and Orbital Debris Assessment—Task One Report." Grumman SSEIC activity report GSS-310-M093-001, 1992.
- 53. NASA Level 2 Forward Action Team: "Integrated Meteoroid and Orbital Debris Assessment—Interim Report." Grumman SSEIC activity report GSS-310-M093-084, 1993.
- 54. Sokolnikoff, I.S., and Redhoffer, R.M.: "Mathematics of Physics and Modern Engineering." McGraw-Hill, NY, 1958.
- 55. Boeing Aerospace Corporation promotional literature, 1992.
- 56. NASA Space Station *Freedom* Utilization and Operations Office. Space Station *Freedom* Program Utilization Sequence Databook. Revision 1, October, 1991.
- 57. Boeing Aerospace Corporation: "General Arrangement, X2 Standoff, Lab." Boeing drawing No. SK683-55535, 1990.
- 58. Boeing Aerospace Corporation promotional literature, 1993.
- 59. Williamsen, J., et al.: Meeting Notes, MSFC/SSEIC Review of Forward Action Plan Results. April 30, 1993.
- 60. Peace, G.S.: "Hands-On Taguchi." Wesley-Addison Publishing, 1993, p. 236.

APPENDIX A

 $MSCSurv^{TM}$ Computer Program Listing

					\ \
					\$ 2. .8
					7 2 8
					: : :
					3 2 2 2 2
					1 2 2
					;
					:
				•	
er je	かさいた。 HRP車が置き込むが、また。	em deutografia o a la compagna en el compaño de tra	en i vojika komo kilo		eataine in Mulin

```
C
             JOEL WILLIAMSEN
C
          DOCTORAL DISSERTATION 1993
C
        INDUSTRIAL AND SYSTEMS ENGNEERING DEPARTMENT
C
C DIMENSION ALL VARIABLE ARRAYS
    1 DIMENSION PROBDIA(110), PROBVEL(37), PROBELEM(8,100,37)
      DIMENSION ANGELEM(8,100,37), PROBSTA(8,12)
      DIMENSION NUMPEN(8,100), NCRIT(8), NUMINJ(8,100), PROBMOD(8,37)
      DIMENSION NSTATION(8,100), NSHLDTYP(8,100)
      DIMENSION NPENIN(8), NPENAT(8), NPENOUT(8), AREALDEN(8,100)
      DIMENSION NPENNOCR(8), NUMHOLE1(8), NUMHOLE2(8)
      DIMENSION NUMHOLE4(8), NUMHOLE5(8), NUMHOLE6(8), NUMPENS(8)
      DIMENSION NUMHOLE7(8), NUMHOLE8(8), NUMHOLE9(8), NUMHOL10(8)
      DIMENSION NUMHOL11(8), NUMHOL12(8), NUMHOL20(8)
      DIMENSION NUMHO1(8), NUMHO2(8), NUMHO3(8)
      DIMENSION NUMHO4(8), NUMHO5(8), NUMHO6(8)
      DIMENSION NUMHO7(8), NUMHO8(8), NUMHO9(8), NUMHO10(8)
      DIMENSION NUMHO11(8), NUMHO12(8), NUMHO20(8)
      DIMENSION NUMHOLE3(8), VELPART(37), DIAPART(110), NUMIMPS(8)
      DIMENSION NPEN1CRW(8), NPEN2CRW(8), NPEN3CRW(8), NPEN4CRW(8)
      DIMENSION NUMODULE(24,4), NCREWSTA(4), ESCTIME(4), NINJCRIT(8)
      DIMENSION CRITTIME(4), NUMCRIT(8,100), NINJ(8), VOLAVAIL(8)
      DIMENSION NPENCRIT(8), NPENCRAC(8), NPENINJ(8), PHOUR(24)
      DIMENSION RATTOT(8), RATDEP(8), RATINJ(8), RATCRAC(8)
C PROBDIA = CUMULATIVE PROBABILITY OF DIAMETER (CM) HITTING STATION (.3 TO 3 CM)
C PROBVEL = CUMULATIVE PROBABILITY OF VELOCITY (K/S) OF IMPACT (2 TO 14.5 K/S)
C VELPART = ANGLE (1 THROUGH 37) THAT PARTICLE IS COMING FROM
C PROBMOD = CUMULATIVE PROBABILITY OF MODULE X BEING IMPACTED GIVEN ANGLE Y
C ANGELEM = ANGLE OF IMPACT FOR GIVEN (MODULE, ELEMENT, ANGLE)
C PROBELEM = CUMULATIVE PROBABILITY OF ELEMENT X BEING IMPACTED
C
       GIVEN (MODULE, ANGLE)
C PROBSTA = CUMULATVE PROBABILITY THAT CREWMAN IS AT STATION X IN MODULE Y
C NSTATION = CREW "STATION NUMBER" (1 - 12) WITHIN MODULE X FOR ELEMENT Y
C NSHLDTYP = TYPE OF SHIELD FOR MODULE X AND ELEMENT Y
C AREALDEN = AREAL DENSITY OF RACK MATERIAL BEHIND MODULE X AND ELEMENT Y
C NUMPEN = NUMBER OF PENETRATIONS AT MODULE X AND ELEMENT Y
C NUMINJ = NUMBER OF INJURY LOSSES OCCURRING DUE TO PENETRATION
      "AT" MODULE I AND STATION J
C NUMCRIT = NUMBER OF DEPRESS LOSSES OCCURRING DUE TO PENETRATION OF MODULE I
      AND STATION J
C NUMPENS = NUMBER OF PENETRATIONS IN MODULE I
C NCRIT = NUMBER OF CRITICAL DEPRESS LOSSES OCURRING IN MODULE I
C NINJ = NUMBER OF INJURIES OCCURRING IN MODULE I
C NPENIN = NUMBER OF PENETRATIONS FOR MODULE X WHERE PENETRATION WAS NEAR
HATCH
C NPENAT = NUMBER OF PENETRATIONS FOR MODULE X WHERE PENETRATION WAS NEAR
CREW
C NPENOUT = NUMBER OF PENETRATIONS FOR MODULE X WHERE CREW WAS NEARER
HATCH
C NPENNOCR = NUMBER OF PENETRATIONS OCCURRING IN MODULE WITH NO CREW
C NUMHOLE1 = NUMBER OF HOLES IN MODULE I 0 TO 1 INCHES IN DIAMETER
```

PROGRAM TO COMPUTE PROBABILITY OF CREW INJURY

5、1、60000 TO 60000 15.500000

C

```
C NUMHOLE2 = NUMBER OF HOLES IN MODULE I 1 TO 2 INCHES IN DIAMETER
C NUMHOLE3 = NUMBER OF HOLES IN MODULE I 2 TO 3 INCHES IN DIAMETER
C NUMHOLE4 = NUMBER OF HOLES IN MODULE I 3 TO 4 INCHES IN DIAMETER
C NUMHOLE5 = NUMBER OF HOLES IN MODULE I 4 TO 5 INCHES IN DIAMETER
C NUMHOLE6 = NUMBER OF HOLES IN MODULE I 5 TO 6 INCHES IN DIAMETER
C NUMHOLE7 = NUMBER OF HOLES IN MODULE I 6 TO 7 INCHES IN DIAMETER
C NUMHOLE8 = NUMBER OF HOLES IN MODULE I 7 TO 8 INCHES IN DIAMETER
C NUMHOLE9 = NUMBER OF HOLES IN MODULE I 8 TO 9 INCHES IN DIAMETER
C NUMHO1 = NUMBER OF CRACKS IN MODULE I 0 TO 1 INCHES IN DIAMETER
C NUMHO2 = NUMBER OF CRACKS IN MODULE I 1 TO 2 INCHES IN DIAMETER
C NUMHO3 = NUMBER OF CRACKS IN MODULE I 2 TO 3 INCHES IN DIAMETER
C NUMHO4 = NUMBER OF CRACKS IN MODULE I 3 TO 4 INCHES IN DIAMETER
C NUMHO5 = NUMBER OF CRACKS IN MODULE I 4 TO 5 INCHES IN DIAMETER
C NUMHO6 = NUMBER OF CRACKS IN MODULE I 5 TO 6 INCHES IN DIAMETER
C NUMHO7 = NUMBER OF CRACKS IN MODULE I 6 TO 7 INCHES IN DIAMETER
C NUMHO8 = NUMBER OF CRACKS IN MODULE I 7 TO 8 INCHES IN DIAMETER
C NUMHO9 = NUMBER OF CRACKS IN MODULE I 8 TO 9 INCHES IN DIAMETER
C NUMIMPS = NUMBER OF IMPACTS FOR MODULE I
C NUMODULE = MODULE THAT CREWMAN J IS IN DURING HOUR I
C PHOUR = PROBABILITY THAT DEBRIS HITS DURING HOUR I
C NCREWSTA = STATION THAT CREWMAN I IS AT
C ESCTIME = REQUIRED ESCAPE TIME FOR CREWMAN I FROM MODULE HE IS IN
C CRITTIME = TIME ALLOWABLE BEFORE LOSS OF CONSCIOUSNESS
C VOLAVAIL = VOLUME AVAILABLE TO CREW IN MODULE I
C NPENCRAC = NUMBER OF PENETRATIONS IN MODULE I WHERE ENERGY EXCEEDS
C NPENCRIT = NUMBER OF PENETRATIONS WHERE ONE OR MORE DEPRESSURIZATION
LOSSES
      OCCUR
C NPENINI = NUMBER OF PENETRATIONS WHERE ONE OR MORE INJURIES OCCUR
C NINJCRIT = NUMBER OF PENETRATIONS WHERE ONE OR MORE INJURIES OR DEPRESSES
      OCCUR
C RATCRAC = RATIO OF CRITICAL CRACKS WITHIN MODULE TO TOTAL PENETRATIONS
C RATINJ = RATIO OF CRITICAL INJURIES WITHIN MODULE TO TOTAL PENETRATIONS
C RATDEP = RATIO OF CRITCAL DEPRESSURIZATIONS WITHIN MODULE TO PENETRATIONS
C RATTOT = RATIO OF TOTAL CRITICAL LOSSES WITHIN MODULE TO PENETRATIONS
C
C SET INTEGER VALUES
   5 INTEGER SEEDVAL, ANGLE, ELEMENT
     REAL INJTIME
     REAL INJRATE
\mathbf{C}
C OPEN DATA FILE VELSTA.DAT
   WRITE (*,*) 'READING IN VELSTA.DAT'
\mathbf{C}
   6 OPEN (21, FILE='VELSTA.DAT')
C READ DATA FROM VELSTA.DAT
   7 DO 10 I = 1,37
   8 READ (21, '( 2F9.4)' ) VELPART(I), PROBVEL(I)
  10 CONTINUE
```

```
C OPEN DATA FILE PROBDIA.DAT
   WRITE(*, *) 'READING IN PROBDIA.DAT'
C
   11 OPEN (22, FILE='PROBDIA.DAT')
C
C READ DATA FROM PROBDIA.DAT
   12 DO 20 I = 1, 110
   13 READ (22, '( 2F9.4)' ) PROBDIA(I), DIAPART(I)
   20 CONTINUE
C
C OPEN DATA FILE LAB.DAT
   WRITE(*, *) 'READING IN LAB.DAT'
C
  21 OPEN (23, FILE='LAB.DAT')
C READ DATA FROM LAB.DAT
C
  22 DO 40 J = 1, 37
  23 DO 30 I = 1,100
  24 READ (23, '(2F9.4)') ANGELEM(1,I,J), PROBELEM(1,I,J)
      NUMPEN(1,I)=0
      NUMINJ(1,I)=0
   30 CONTINUE
   40 CONTINUE
C OPEN DATA FILE HAB.DAT
   WRITE(*, *) 'READING IN HAB.DAT'
  41 OPEN (24, FILE='HAB.DAT')
C
C READ DATA FROM HAB.DAT
  42 DO 60 J = 1,37
  43 DO 50 I = 1,100
  44 READ (24, '(2F9.4)') ANGELEM(2,I,J), PROBELEM(2,I,J)
      NUMPEN(2,I)=0
      NUMINJ(2,I)=0
  50 CONTINUE
  60 CONTINUE
C OPEN DATA FILE JLAB.DAT
   WRITE(*, *) 'READING IN JLAB.DAT'
C
  61 OPEN (25, FILE='JLAB.DAT')
C READ DATA FROM JLAB.DAT
C
      62DO 70 J = 1, 18
```

```
63 DO 65 I = 1,48
  64 READ (25, '( 2F9.4)' ) ANGELEM(3,I,J), PROBELEM(3,I,J)
      NUMPEN(3,I)=0
      NUMINJ(3,I)=0
  65 CONTINUE
  70 CONTINUE
C READ IN JLAB ANGLES 19 THROUGH 37
C
  71 DO 80 J = 19, 37
  72 DO 75 I = 1,48
  73 ANGELEM(3,I,J)=0.0
  74 PROBELEM(3,I,J)=0.0
      NUMPEN(3,I)=0
      NUMINJ(3,I)=0
  75 CONTINUE
  80 CONTINUE
C OPEN DATA FILE ESA.DAT
C
   WRITE(*, *) 'READING IN ESA.DAT'
C
  81 OPEN (26, FILE='ESA.DAT')
C READ IN DATA FROM ESA.DAT
  82 DO 100 J = 1,37
  83 DO 90 I = 1, 100
  84 READ (26, '( 2F9.4)' ) ANGELEM(4,I,J), PROBELEM(4,I,J)
      NUMPEN(4,I)=0
      NUMINJ(4,I)=0
  90 CONTINUE
  100 CONTINUE
C
C OPEN DATA FILE NODE2.DAT
C
   WRITE(*, *) 'READING IN NODE2.DAT'
C
  101 OPEN (27, FILE='NODE2.DAT')
C READ IN DATA FROM NODE2.DAT
  102 DO 120 J = 1,37
  103 DO 110 I = 1, 39
  104 READ (27, '( 2F9.4)' ) ANGELEM(5,I,J), PROBELEM(5,I,J)
      NUMPEN(5,I)=0
      NUMINJ(5,I)=0
  110 CONTINUE
  120 CONTINUE
C OPEN DATA FILE NODE1.DAT
C
   WRITE(*, *) 'READING IN NODE1.DAT'
C
```

```
121 OPEN (28, FILE='NODE1.DAT')
C
C READ IN DATA FROM NODE1.DAT
 122 DO 140 J = 1.37
 123 DO 130 I = 1, 39
 124 READ (28, '( 2F9.4)' ) ANGELEM(6,I,J), PROBELEM(6,I,J)
      NUMPEN(6,I)=0
      NUMINJ(6,I)=0
 130 CONTINUE
 140 CONTINUE
\mathbf{C}
C OPEN DATA FILE PLOG.DAT
   WRITE(*, *) 'READING IN PLOG.DAT'
C
 141 OPEN (29, FILE='PLOG.DAT')
C
C READ IN DATA FROM PLOG.DAT
 142 DO 160 J = 1, 37
 143 DO 150 I = 1, 72
 144 READ (29, '( 2F9.4)' ) ANGELEM(7,I,J), PROBELEM(7,I,J)
      NUMPEN(7,I)=0
      NUMINJ(7,I)=0
 150 CONTINUE
 160 CONTINUE
C OPEN DATA FILE ALOCK.DAT
   WRITE(*, *) 'READING IN ALOCK.DAT'
C
  161 OPEN (30, FILE='ALOCK.DAT')
C READ IN DATA FROM ALOCK.DAT
 162 DO 180 J = 1, 37
  163 DO 170 I = 1, 36
  164 READ (30, '(2F9.4)') ANGELEM(8,I,J), PROBELEM(8,I,J)
      NUMPEN(8,I)=0
      NUMINJ(8,I)=0
  170 CONTINUE
  180 CONTINUE
C OPEN DATA FILE PROBMOD.DAT
   WRITE(*, *) 'READING IN PROBMOD.DAT'
  181 OPEN (31, FILE='PROBMOD.DAT')
C READ DATA FROM FILE PROBMOD.DAT
  182 DO 186 J = 1, 37
 183 DO 185 I = 1, 8
```

```
184 READ (31, '(F9.4)') PROBMOD(I,J)
  185 CONTINUE
  186 CONTINUE
C OPEN DATA FILE SHIELD.DAT
C
   WRITE(*, *) 'READING IN SHIELD.DAT'
C
  187 OPEN (32, FILE='SHIELD.DAT')
C READ IN CREW STATION-TO-ELEMENT AND SHIELD TYPE-TO-ELEMENT CORRELATION
C
  188 DO 193 I= 1,530
  189 READ (32, '(419, F9.4)') NMOD, NELEM, NSTA, NSTYP, DENS
  190 NSTATION(NMOD, NELEM)=NSTA
  191 NSHLDTYP(NMOD, NELEM)=NSTYP
  192 AREALDEN(NMOD, NELEM)=DENS
  193 CONTINUE
C
C OPEN DATA FILE POSITION.DAT
C
   WRITE(*, *) 'READING IN POSITION.DAT'
C
  194 OPEN (33, FILE='POSITION.DAT')
C READ IN PROBABILITY OF CREW BEING AT THIS STATION
  195 DO 198 I = 1, 55
  196 READ (33, '( 219, F9.4)' ) NMOD, NSTA, STAPROB
  197 PROBSTA(NMOD, NSTA)=STAPROB
  198 CONTINUE
C OPEN DATA FILE PCREWMOD.DAT
   WRITE(*, *) 'READING IN PCREWMOD.DAT'
C
  199 OPEN (34, FILE="PCREWMOD.DAT")
\mathbf{C}
C READ IN PROBABILITY OF HOUR I AND NUMBER OF CREW IN MODULE J AT HOUR I
  200 DO 203 I = 1, 24
  201 READ (34, '(F9.4, 4I9)') P,M1,M2,M3,M4
  202 PHOUR(I)=P
      NUMODULE(I,1)=M1
      NUMODULE(I,2)=M2
      NUMODULE(I,3)=M3
      NUMODULE(I,4)=M4
  203 CONTINUE
C SET ALL NEEDED VARIABLES TO ZERO
  204 WRITE (*,*) ' INITIALIZING'
      WRITE (*,*) ' '
      WRITE (*,*) 'HOW MANY PENETRATIONS IN THIS MODEL RUN?'
```

READ (*, '(18)') NEND

207 NPEN=0

NTRY=0

NNN=1000

208 RANVAL=0.

CALL GETTIM (IHR, IMIN, ISEC, I100TH)

SEEDVAL=ISEC

DO 210 I = 1.8

NPEN1CRW(I)=0

NPEN2CRW(I)=0

NPEN3CRW(I)=0

NPEN4CRW(I)=0

NPENINJ(I)=0

NPENCRAC(I)=0

NPENIN(I)=0

NPENOUT(I)=0

NPENAT(I)=0

NPENNOCR(I)=0

NUMPENS(I)=0

NPENCRIT(I)=0

NINJCRIT(I)=0

NCRIT(I)=0 NINJ(I)=0

NUMIMPS(I)=0

NUMHOLE1(I)=0

NUMHOLE2(I)=0

NUMHOLE3(I)=0

NUMHOLE4(I)=0

NUMHOLE5(I)=0

NUMHOLE6(I)=0

NUMHOLE7(I)=0 NUMHOLE8(I)=0

NUMHOLE9(I)=0

NUMHOL10(I)=0

NUMHOL11(I)=0

NOMINOLIT(I)=0

NUMHOL12(I)=0

NUMHOL20(I)=0

NUMHO1(I)=0

NUMHO2(I)=0

NUMHO3(I)=0

NUMHO4(I)=0

NUMHO5(I)=0

NUMHO6(I)=0

NUMHO7(I)=0

NUMHO8(I)=0

NUMHO9(I)=0

NUMHO10(I)=0

NUMHO11(I)=0

NUMHO12(I)=0

NUMHO20(I)=0

IHSM=0

RATCRAC(I)=0

RATINJ(I)=0

RATDEP(I)=0

```
RATTOT(I)=0
      HACHTIME=30.
 210 CONTINUE
C SET A NEW SEED FOR ALL RANDOM VARIABLES TO BE DRAWN
 211 CALL SEED(SEEDVAL)
C
C DRAW RANDOM NUMBER FOR "ANGLE" AND "VELOCITY"
C
C OUERY FOR CRITICAL VALUES
C
      WRITE (*,*)''
      WRITE (*,*) ' INPUT CRITICAL LENGTH OF CRACK OR "0." FOR ENERGY MO
      CDEL.'
      WRITE (*,*)''
      READ (*, '(F10.4)') CRITCRAC
      IF (CRITCRAC .NE. 0.) THEN
      ENERCRIT=0.
      WRITE (*,*) ' '
      WRITE (*,*) 'INPUT HOLE SIZE CRACK MULTIPLIER, 0.3 FOR AVERAGE.'
      WRITE (*,*)''
      READ (*, '(F10.4)') HMULT
      END IF
C
      IF (CRITCRAC .EQ. 0.) THEN
      WRITE (*,*)''
      WRITE (*,*) ' INPUT CRITICAL IMPACT ENERGY.'
      WRITE (*,*)''
      WRITE (*,*) ' NOTE: THIS CRITICAL CRACK RELATION IS MORE APPLICACBLE TO '
      WRITE (*,*) '
                       ADVANCED (B2) SHIELD.'
      WRITE (*,*)''
      READ (*, '(F14.6)') ENERCRIT
      WRITE (*,*)''
      WRITE (*,*) 'TYPE "1" FOR TOTAL ENERGY MODEL, "2" FOR OBLIQUE.'
      WRITE (*,*)''
      READ (*, '(I4)') NOB
      END IF
  213 WRITE (*,*)''
      WRITE (*,*) ' INPUT "1." FOR BASELINE SHIELD OR "2." FOR ADVANCED
      CSHIELD.'
      WRITE (*,*)''
      READ (*, '(F10.4)') SHIELD
C
      WRITE (*,*)''
      WRITE (*,*) ' INPUT MINIMUM CREW ESCAPE TIME (SECS) OR "0." FOR RA
      CTE-BASED ESCAPE RELATION.'
      WRITE (*,*)''
      READ (*, '(F10.4)') ET
      WRITE (*,*)''
      WRITE (*,*) ' INPUT DELAY PRIOR TO INITIATING MOVEMENT IF AWAKE.'
      WRITE (*,*) ' '
      READ (*, '(F10.4)') WAITTIME
```

the becoming a state gap to install a

```
WRITE (*,*)''
WRITE (*,*) ' INPUT DELAY TO WAKE AND EXIT RESTRAINTS IF ASLEEP.'
WRITE (*,*) ' '
READ (*, '(F10.4)') WAKETIME
IF (ET .NE. 0.) THEN
WRITE (*,*)''
WRITE (*,*) ' "1" TO MODEL HINDERED/INJURED TIMES; "2" FOR NO.'
WRITE (*,*) ' '
READ (*, '(I10)') INJHIND
IF (INJHIND .EQ. 1) THEN
WRITE (*,*)''
WRITE (*,*) ' INPUT HINDERED CREW ESCAPE TIME FROM MODULE.'
WRITE (*,*)''
READ (*, '(F10.4)') HINDTIME
WRITE (*,*)''
WRITE (*,*) ' INPUT (CONSCIOUS) INJURED CREW ESCAPE TIME FROM MODU
CLE.
WRITE (*,*)''
READ (*, '(F10.4)') INJTIME
END IF
IF (INJHIND .EQ. 2) THEN
HINDTIME=ET
INJTIME=ET
END IF
END IF
IF (ET .EQ. 0.) THEN
WRITE (*,*)''
WRITE (*,*) ' INPUT UNHINDERED CREW ESCAPE RATE IN FT/SEC.'
WRITE (*,*) ' '
READ (*, '(F10.4)') GOODRATE
WRITE (*,*)''
WRITE (*,*) ' INPUT HINDERED CREW ESCAPE RATE IN FT/SEC.'
WRITE (*,*)''
READ (*, '(F10.4)') HINDRATE
WRITE (*.*) ' '
WRITE (*,*) ' INPUT (CONSCIOUS) INJURED CREW ESCAPE RATE IN FT/SEC
C.'
WRITE (*,*)''
READ (*, '(F10.4)') INJRATE
END IF
WRITE (*,*)''
WRITE (*,*) ' INPUT PROBABILITY THAT INJURED PERSON IS IMMEDIATELY
C LOST.
WRITE (*,*)''
READ (*, '(F10.4)') PROBLOST
IF (PROBLOST .NE. 1.0) THEN
WRITE (*,*)''
WRITE (*,*) ' INPUT PROBABILITY THAT INJURED PERSON, IF SAVED, IS
CLATER LOST.
WRITE (*,*)''
READ (*, '(F10.4)') PBADINJ
END IF
IF (PROBLOST .EQ. 1.0) THEN
PROBSTOP=1.0
```

```
PBADINJ=1.0
      END IF
      WRITE (*,*)''
      WRITE (*,*) 'TYPE "1" IF CREW SLEEPS NEAR HATCH, "2" IF NO.'
      WRITE (*,*)''
      READ (*, '(I10)') ISLEEP
      WRITE (*,*)''
      WRITE (*,*) ' INCLUDE RACK FACTORS? TYPE 1 FOR YES, 2 FOR NO.'
      WRITE (*,*)''
      READ (*, '(110)') IPEN
      WRITE (*,*)''
WRITE (*,*)' TYPE 1 FOR WIDE DEBRIS CLOUD, 2 FOR NARROW.'
      WRITE (*,*)''
      READ (*, '(I10)') IWIDE
      WRITE (*,*)''
      WRITE (*,*) ' INPUT CRITICAL DEPRESSURIZATION LIMIT (PSI).'
      WRITE (*,*)''
      READ (*, '(F10.4)') CRITPRES
      WRITE (*,*)''
      WRITE (*,*) ' INPUT PERCENTAGE OF MODULE FREE AIR (0, TO 1.0).'
      WRITE (*,*) ' '
      READ (*, '(F10.4)') FREE
C VOLUME DESIGNATION
   WRITE (*,*)''
   WRITE (*,*) ' TYPE "1" FOR OPEN HATCHES, "2" FOR CLOSED HATCHES,'
   WRITE (*,*) ' "3" FOR HATCHES CLOSED AT NIGHT.'
   WRITE (*,*) ' '
   READ (*, '(I10)') IVOLUME
   IF (IVOLUME.EQ.1) THEN
   VOLAVAIL(1)=22469*FREE
   VOLAVAIL(2)=22469*FREE
   VOLAVAIL(3)=22469*FREE
   VOLAVAIL(4)=22469*FREE
   VOLAVAIL(5)=22469*FREE
   VOLAVAIL(6)=22469*FREE
   VOLAVAIL(7)=22469*FREE
   VOLAVAIL(8)=22469*FREE
  WRITE (*,*) '
   WRITE (*,*) '
                NOTE: HATCH CLOSURE TIME IS ASSUMED TO BE 30 SECO
  CNDS.'
  END IF
   IF (IVOLUME .EO. 2) THEN
   VOLAVAIL(1)=3882*FREE
   VOLAVAIL(2)=3882*FREE
   VOLAVAIL(3)=5127*FREE
   VOLAVAIL(4)=5170*FREE
   VOLAVAIL(5)=2206*FREE
   VOLAVAIL(6)=2097*FREE
   VOLAVAIL(7)=2991*FREE
   VOLAVAIL(8)=1165*FREE
  HACHTIME=60.
  WRITE (*,*) '
```

```
WRITE (*,*)' NOTE: HATCH OPENING AND CLOSURE TIME IS ASSUMED T
  CO BE 60 SECONDS (TOTAL).'
   END IF
   IF (IVOLUME .EQ. 3) THEN
   VOLAVAIL(1)=22469*FREE
   VOLAVAIL(2)=22469*FREE
   VOLAVAIL(3)=22469*FREE
   VOLAVAIL(4)=22469*FREE
   VOLAVAIL(5)=22469*FREE
   VOLAVAIL(6)=22469*FREE
   VOLAVAIL(7)=22469*FREE
   VOLAVAIL(8)=22469*FREE
   WRITE (*,*)''
   WRITE (*,*)' NOTE: HATCH CLOSURE TIME IS ASSUMED TO BE 30 SECO
  CNDS DURING DAY,'
                    AND 60 SECONDS AT NIGHT (OPENING AND CLOSUR
   WRITE (*,*)'
  CE).'
   END IF
\mathbf{C}
   WRITE (*,*)''
   WRITE (*,*) 'INPUT CD, 0.9 OR 0.7. '
   WRITE (*,*)''
   READ (*, '(F10.4)') CD
C
   WRITE (*,*)''
   WRITE (*,*) 'TYPE "1" FOR OBLIQUE HOLE MODEL, "2" FOR BURCH.'
   WRITE (*,*) ' '
   READ (*, '(I10)') IHSM
   WRITE (*,*)''
C
    ALTERNATE CREW SLEEP AND INTERNAL MODULE POSITION DISTRIBUTION
   WRITE (*,*)''
   WRITE (*,*) ' TYPE "1" FOR SSEIC CREW MODEL, "2" IF CREW SLEEPS IN
   C NODE 2.
   WRITE (*,*)''
   READ (*, '(110)') INODE
C
   IF (INODE .EO. 2) THEN
C
C
    OPEN DATA FILE PCREWMO2.DAT
C
   WRITE(*, *) 'READING IN PCREWMO2.DAT'
C
   OPEN (35, FILE="PCREWMO2.DAT")
C
    READ IN PROBABILITY OF HOUR I AND NUMBER OF CREW IN MODULE J AT HOUR I
C
\mathbf{C}
   DO 703 I = 1, 24
   READ (35, '(F9.4, 419)') P,M1,M2,M3,M4
   PHOUR(I)=P
   NUMODULE(I,1)=M1
   NUMODULE(I,2)=M2
   NUMODULE(I,3)=M3
```

```
NUMODULE(I,4)=M4
 703 CONTINUE
   END IF
   WRITE (*,*)''
   WRITE (*,*) ' TYPE "1" FOR UNIFORM CREW DISTRIBUTION BETWEEN MODUL
   CE STATIONS,
   WRITE (*,*) ' TYPE "2" FOR TRIANGULAR DISTRIBUTION.'
   WRITE (*,*)''
   READ (*, '(I10)') ITRI
   IF (ITRI .EQ. 2) THEN
C
C
    OPEN DATA FILE POSIT2.DAT
   WRITE(*, *) 'READING IN POSIT2.DAT'
C
   OPEN (36, FILE='POSIT2.DAT')
C
    READ IN PROBABILITY OF CREW BEING AT THIS STATION
C
C
   DO 798 I = 1,55
   READ (36, '(219, F9.4)') NMOD, NSTA, STAPROB
   PROBSTA(NMOD,NSTA)=STAPROB
 798 CONTINUE
   END IF
   WRITE (*,*)''
C START SIMULATION BY DRAWING RANDOM NUMBER FOR DEBRIS DIRECTION
C
 220 CALL RANDOM(RANVAL)
 221 ANGLE=1
 222 IF (RANVAL .LT. PROBVEL(ANGLE)) GO TO 225
 223 ANGLE=ANGLE+1
 224 GO TO 222
 225 VELOCITY=VELPART(ANGLE)
C DRAW RANDOM NUMBER FOR "DIAMETER"
 230 CALL RANDOM(RANVAL)
 231 NDIA=1
 232 IF (RANVAL .LT. PROBDIA(NDIA)) GO TO 235
 233 NDIA=NDIA+1
 234 GO TO 232
 235 DIAMETER=DIAPART(NDIA)
C NOW COMPARE TO LOWEST BLC IN HIGH VELOCITY REGIME FOR A FIRST SCREEN
C
 240 IF (DIAMETER .LE. 0.55) THEN
      IF (VELOCITY .GE. 7.0) THEN
   WRITE (*,241) NTRY
```

```
C 241 FORMAT ('NO HV PENETRATION OCCURRED ON DRAW NUMBER', I10)
     NTRY=NTRY+1
 242 GO TO 220
     END IF
     END IF
C
C
      IF (NPEN .EQ. NNN) THEN
      WRITE (*,*) ' '
      WRITE (*,431) NPEN
 431 FORMAT (I10, 'PENETRATIONS')
      NNN=NNN+20000
     END IF
C NOW SELECT "MODULE" THAT IS IMPACTED
  250 CALL RANDOM(RANVAL)
  251 MODULE=1
  252 IF (RANVAL .LT. PROBMOD(MODULE, ANGLE)) GO TO 259
  253 MODULE=MODULE+1
  254 GO TO 252
  259 NUMIMPS(MODULE)=NUMIMPS(MODULE)+1
C SELECT "ELEMENT" IMPACTED WITHIN MODULE AND "OBLIQITY"
  260 CALL RANDOM(RANVAL)
  261 ELEMENT=1
  262 IF (RANVAL .LT. PROBELEM(MODULE, ELEMENT, ANGLE)) GO TO 265
  263 ELEMENT=ELEMENT+1
  264 GO TO 262
  265 OBLIQITY=ANGELEM(MODULE,ELEMENT,ANGLE)
C INSTALLING THE 60 DEGREE CUTOFF ASSUMPTION
  266 IF (OBLIQITY .GT. 60.) THEN
  267 OBLIOITY=60.
  268 END IF
      OBL=OBLIQITY*3.14/180.
      WRITE (*,271) OBLIQITY, MODULE, ELEMENT, ANGLE
C 271 FORMAT ('OBLIQUITY = ', F9.4, I8, I8, I8)
C NOW SEE IF THE CHOSEN OBLIQITY, VELOCITY, AND DIAMETER PENETRATE THE MODULE
   IF (VELOCITY .GE. 7.0) THEN
   DCRIT=1.0523*(VELOCITY*COS(OBL))**(-.25)
   END IF
C
C BOEING INTERPOLATION VALUES FOR VELOCITIES LESS THAN 7.0 KM/SEC
C NOTE: ONLY WORKS WITH 60 DEGREE CUTOFF ASSUMPTION!
   IF (VELOCITY .EQ. 2.67) THEN
   IF (OBLIQITY .LE. 45.) THEN
    DCRIT=.383+(.563-.383)*((1-COS(OBL))/(1-.7071))
```

```
END IF
   IF (OBLIQITY .GT. 45.) THEN
    DCRIT=.563+(.620-.563)*((.7071-COS(OBL))/(.7071-.4226))
   END IF
   END IF
   IF (VELOCITY .EQ. 4.00) THEN
   IF (OBLIQITY .LE. 45.) THEN
    DCRIT=.452+(.563-.452)*((1-COS(OBL))/(1-.7071))
   END IF
   IF (OBLIQITY .GT. 45.) THEN
    DCRIT=.563+(.622-.563)*((.7071-COS(OBL))/(.7071-.4226))
   END IF
   END IF
   IF (VELOCITY .EQ. 5.25) THEN
   IF (OBLIQITY .LE. 45.) THEN
    DCRIT=.491+(.563-.491)*((1-COS(OBL))/(1-.7071))
   END IF
   IF (OBLIQITY .GT. 45.) THEN
    DCRIT=.563+(.684-.563)*((.7071-COS(OBL))/(.7071-.4226))
   END IF
   END IF
   IF (VELOCITY .EQ. 6.5) THEN
   IF (OBLIQITY .LE. 45.) THEN
    DCRIT=.593+(.584-.593)*((1-COS(OBL))/(1-.7071))
   END IF
   IF (OBLIQITY .GT. 45.) THEN
    DCRIT=.584+(.786-.584)*((.7071-COS(OBL))/(.7071-.4226))
   END IF
   END IF
C THE ORIGINAL INTERPOLATION EQUATION I USED FOR VELOCITIES < 7 KM/SEC.
    DCRIT=0.6729+(.03494*VELOCITY)-.359*COS(OBL)
C
C FOR B2 SHIELDS, THE BALLISTIC LIMIT IS APPROXIMATELY TWICE AS HIGH
C
   DCRIT=DCRIT*SHIELD
C
C CHECK TO SEE IF DIAMETER EXCEEDS DCRIT
C
C
 272 IF (DIAMETER .LE. DCRIT) THEN
 285 NTRY=NTRY+1
C WRITE (*,286) NTRY
C 286 FORMAT ('NO PENETRATION HAS OCCURRED ON DRAW', I8)
 287 GO TO 220
   END IF
C
C
      IF (DIAMETER .GT. DCRIT) THEN
 280 NPEN=NPEN+1
 281 NUMPEN(MODULE, ELEMENT) = NUMPEN(MODULE, ELEMENT) + 1
```

```
NUMPENS(MODULE)=NUMPENS(MODULE)+1
      NTRY=NTRY
      WRITE (*,289) NTRY
C 289 FORMAT ('PENETRATION HAS OCCURRED ON DRAW', 18)
   END IF
C
\mathbf{C}
C FIND THE HOLE DIAMETER USING "MODIFIED GOODWIN"
C
C NORMAL ASSUMPTION
C
    DIA=DIAMETER
\mathbf{C}
 290 IF (IHSM .EQ. 1) THEN
 291 IF (VELOCITY .EQ. 2.67) THEN
   DIA=DIAMETER-DCRIT+.383
   HOLE=2.57387658
   *-4.20884931E1*DIA
  *+1.86661675E2*DIA**2.
  *-3.45057685E2*DIA**3.
  *+2.63809498E2*DIA**4.
  *+3.66829688E1*DIA**5.
  *-2.08245025E2*DIA**6.
  *+1.28594043E2*DIA**7.
  *-7.93818497*DIA**8.
  *-2.01099825E1*DIA**9.
  *+4.58038075*DIA**10.
  *+2.20788123*DIA**11.
   *-9.60467073E-1*DIA**12.
  *+2.17589538E-2*DIA**13.
  *+3.38436888E-2*DIA**14.
  *+3.28086909E-3*DIA**15.
  *-5.53900357E-3*DIA**16.
  *+5.80017150E-4*DIA**17.
  *-5.52943824E-5*DIA**18.
  *+2.23013284E-4*DIA**19.
  *+2.68222388E-5*DIA**20.
  *-2.35994882E-5*DIA**21.
  *-3.36683013E-6*DIA**22.
  *-1.02402698E-6*DIA**23.
  *+3.23097004E-7*DIA**24.
  *-2.08222373E-8*DIA**25.
  *-7.69741812E-8*DIA**26.
  *+6.08010755E-8*DIA**27.
  *+1.88267383E-8*DIA**28.
  *-7.01177885E-9*DIA**29.
  *-6.08360969E-10*DIA**30.
  *-6.27388429E-11*DIA**31
  *-1.26888528E-10*DIA**32.
  *+5.90442523E-11*DIA**33.
  *-1.35954610E-11*DIA**34.
  *+3.55958018E-12*DIA**35.
  *+1.70799452E-13*DIA**36.
  *-9.37784118E-14*DIA**37.
```

```
*+2.08928715E-13*DIA**38.
   *-4.81879371E-14*DIA**39.
   *-7.74699537E-15*DIA**40.
   *-1.52101706E-15*DIA**41.
   *+8.23421407E-16*DIA**42.
   HOLEMAJ=HOLE/COS(OBL)
\mathbf{C}
    THIS EQUATION CALCULATES THE EFFECTIVE HOLE DIAMETER
\mathbf{C}
\mathbf{C}
    HOLE=((HOLE/COS(OBL))*HOLE)**.5
C THIS EQUATION CALCULATES THE MAJOR HOLE DIAMETER
\mathbf{C}
    HOLE=HOLE/COS(OBL)
C
   END IF
 292 IF (VELOCITY .EQ. 4.0) THEN
   DIA=DIAMETER-DCRIT+.452
   HOLE=-4.75950138E1
  *+4.10900448E2*DIA
   *-1.51994125E3*DIA**2.
  *+3.09322566E3*DIA**3.
  *-3.72775989E3*DIA**4.
  *+2.71796055E3*DIA**5.
   *-1.14516088E3*DIA**6.
  *+2.15394383E2*DIA**7.
  *+1.28504688E1*DIA**8.
   *-4.22489232E-1*DIA**9.
   *-1.19297884E1*DIA**10.
  *+6.35987112*DIA**11.
   *-1.54945845*DIA**12.
   *+1.92565376E-1*DIA**13.
   *-9.93817150E-3*DIA**14.
   HOLEMAJ=HOLE/COS(OBL)
C
C
    THIS EQUATION CALCULATES THE EFFECTIVE HOLE DIAMETER
C
    HOLE=((HOLE/COS(OBL))*HOLE)**.5
C THIS EQUATION CALCULATES THE MAJOR HOLE DIAMETER
C
\mathbf{C}
    HOLE=HOLE/COS(OBL)
   END IF
 293 IF (VELOCITY .EQ. 5.25) THEN
   DIA=DIAMETER-DCRIT+.491
   HOLE=-5.96488093E1
  *+4.79489455E2*DIA
   *-1.69690114E3*DIA**2.
  *+3.39700029E3*DIA**3.
   *-4.17436362E3*DIA**4.
  *+3.29518338E3*DIA**5.
   *-1.70412960E3*DIA**6.
   *+5.74206585E2*DIA**7.
```

```
*-1.21382539E2*DIA**8.
  *+1.46094536E1*DIA**9.
   *-7.63370717E-1*DIA**10.
   HOLEMAJ=HOLE/COS(OBL)
\mathbf{C}
    THIS EQUATION CALCULATES THE EFFECTIVE HOLE DIAMETER
    HOLE=((HOLE/COS(OBL))*HOLE)**.5
C THIS EQUATION CALCULATES THE MAJOR HOLE DIAMETER
C
    HOLE=HOLE/COS(OBL)
C
   END IF
 294 IF (VELOCITY .EQ. 6.5) THEN
   DIA=DIAMETER-DCRIT+.593
   HOLE=-3.46235980E1
   *+2.63836076E2*DIA
   *-1.09938748E3*DIA**2.
   *+2,93222256E3*DIA**3.
   *-5.07574942E3*DIA**4.
   *+5.69149648E3*DIA**5.
   *-3.93364886E3*DIA**6.
   *+1.38906444E3*DIA**7.
   *+1.30719100E1*DIA**8.
   *-1.86550361E2*DIA**9.
   *+3.22096671E1*DIA**10.
   *+1.74840804E1*DIA**11.
   *-5.67089732*DIA**12.
   *-5.44113789E-1*DIA**13.
   *+1.07608079E-1*DIA**14.
   *+1.99524760E-1*DIA**15.
   *-7.60855698E-2*DIA**16.
   *+1.04142358E-2*DIA**17.
   *-4.93898019E-4*DIA**18.
   HOLEMAJ=HOLE/COS(OBL)
C
    THIS EQUATION CALCULATES THE EFFECTIVE HOLE DIAMETER
C
\mathbf{C}
    HOLE=((HOLE/COS(OBL))*HOLE)**.5
C THIS EQUATION CALCULATES THE MAJOR HOLE DIAMETER
C
C
    HOLE=HOLE/COS(OBL)
C
   END IF
 295 IF (VELOCITY .EQ. 7.7) THEN
    DIA=(DIAMETER-DCRIT+.632)
   HOLE=+5.22918089E1
   *-2.39257296E2*DIA
   *+1.32038009E2*DIA**2.
   *+1.18040264E3*DIA**3.
   *-3,34306638E3*DIA**4.
   *+4,36277626E3*DIA**5.
```

```
*-3.16959888E3*DIA**6.
  *+1.13165036E3*DIA**7.
  *+1.31664781E1*DIA**8.
  *-1.49737846E2*DIA**9.
  *+2.25330600E1*DIA**10.
  *+1.54623419E1*DIA**11.
  *-4.49773717*DIA**12.
   *-5.23952561E-1*DIA**13.
   *+5.86830826E-2*DIA**14.
   *+1.72688480E-1*DIA**15.
   *-5.89833872E-2*DIA**16.
   *+7.05050230E-3*DIA**17.
   *-2.56042679E-4*DIA**18.
   HOLEMAJ=HOLE/COS(OBL)
C
\mathbf{C}
    THIS EQUATION CALCULATES THE EFFECTIVE HOLE DIAMETER
C
    HOLE=((HOLE/COS(OBL))*HOLE)**.5
C THIS EQUATION CALCULATES THE MAJOR HOLE DIAMETER
C
    HOLE=HOLE/COS(OBL)
\mathbf{C}
   END IF
 296 IF (VELOCITY .EQ. 8.83) THEN
   DIA=DIAMETER-DCRIT+.610
   HOLE=8.11895940E1
   *-5.48453870E2*DIA
  *+1.47717597E3*DIA**2.
  *-2.20407921E3*DIA**3.
  *+2.21610856E3*DIA**4.
  *-1.68462888E3*DIA**5.
  *+9.57500728E2*DIA**6.
  *-3.28300768E2*DIA**7.
  *+6.61456248*DIA**8.
  *+4.54816621E1*DIA**9.
   *-1.30438251E1*DIA**10.
  *-2.38433091*DIA**11.
  *+1.46956258*DIA**12.
   *+6.61543310E-2*DIA**13.
   *-6.68227276E-2*DIA**14.
   *-3.85086059E-2*DIA**15.
   *+2.18913523E-2*DIA**16.
   *-3.85192100E-3*DIA**17.
   *+2.38511457E-4*DIA**18.
   HOLEMAJ=HOLE/COS(OBL)
C
    THIS EQUATION CALCULATES THE EFFECTIVE HOLE DIAMETER
C
    HOLE=((HOLE/COS(OBL))*HOLE)**.5
C THIS EQUATION CALCULATES THE MAJOR HOLE DIAMETER
C
\mathbf{C}
    HOLE=HOLE/COS(OBL)
```

```
C
   END IF
 297 IF (VELOCITY .EQ. 9.9) THEN
   DIA=DIAMETER-DCRIT+.593
   HOLE=7.371453E2
  *-5,43012431E3*DIA
  *+1.69881424E4*DIA**2.
  *-2.99361596E4*DIA**3.
  *+3.31895031E4*DIA**4.
  *-2.43296508E4*DIA**5.
  *+1,19926412E4*DIA**6.
  *-3.93783485E3*DIA**7.
  *+8.26494804E2*DIA**8.
  *-1.00349605E2*DIA**9.
  *+5.36255763*DIA**10.
   HOLEMAJ=HOLE/COS(OBL)
    THIS EQUATION CALCULATES THE EFFECTIVE HOLE DIAMETER
C
C
    HOLE=((HOLE/COS(OBL))*HOLE)**.5
C THIS EQUATION CALCULATES THE MAJOR HOLE DIAMETER
C
\mathbf{C}
    HOLE=HOLE/COS(OBL)
C
   END IF
 298 IF (VELOCITY .EQ. 10.9) THEN
   DIA=DIAMETER-DCRIT+.579
   HOLE=6.23580373E2
   *-4.79852921E3*DIA
  *+1.55503020E4*DIA**2.
   *-2.81659773E4*DIA**3.
  *+3.18970189E4*DIA**4.
  *-2.37655861E4*DIA**5.
  *+1.18610628E4*DIA**6.
   *-3.93194396E3*DIA**7.
  *+8.31398354E2*DIA**8.
   *-1.01541662E2*DIA**9.
  *+5.452594*DIA**10.
   HOLEMAJ=HOLE/COS(OBL)
    THIS EQUATION CALCULATES THE EFFECTIVE HOLE DIAMETER
C
C
    HOLE=((HOLE/COS(OBL))*HOLE)**.5
C
C THIS EQUATION CALCULATES THE MAJOR HOLE DIAMETER
C
C
    HOLE=HOLE/COS(OBL)
C
   END IF
299 IF (VELOCITY .EQ. 11.8) THEN
   DIA=DIAMETER-DCRIT+.568
   HOLE=4.30261674E2
   *-3.58366461E3*DIA
```

```
*+1.23391038E4*DIA**2.
  *-2.34547792E4*DIA**3.
  *+2.76599824E4*DIA**4.
  *-2.13459369E4*DIA**5.
  *+1.09903177E4*DIA**6.
  *-3.74645752E3*DIA**7.
  *+8.12420833E2*DIA**8.
  *-1.01521985E2*DIA**9.
  *+5.56624705*DIA**10.
   HOLEMAJ=HOLE/COS(OBL)
C
    THIS EQUATION CALCULATES THE EFFECTIVE HOLE DIAMETER
\mathbf{C}
    HOLE=((HOLE/COS(OBL))*HOLE)**.5
C
C THIS EQUATION CALCULATES THE MAJOR HOLE DIAMETER
C
C
    HOLE=HOLE/COS(OBL)
C
   END IF
300 IF (VELOCITY .EQ. 12.61) THEN
   DIA=DIAMETER-DCRIT+.558
   HOLE=1.52954665E1
   *-6.80677076E2*DIA
  *+3.61072700E3*DIA**2.
   *-8.52322071E3*DIA**3.
  *+1.14977623E4*DIA**4.
   *-9.73910272E3*DIA**5.
  *+5.37300884E3*DIA**6.
  *-1.93277029E3*DIA**7.
  *+4.37697829E2*DIA**8.
   *-5.66979239E1*DIA**9.
  *+3.20479012*DIA**10.
   HOLEMAJ=HOLE/COS(OBL)
C
    THIS EQUATION CALCULATES THE EFFECTIVE HOLE DIAMETER
C
    HOLE=((HOLE/COS(OBL))*HOLE)**.5
C THIS EQUATION CALCULATES THE MAJOR HOLE DIAMETER
\mathbf{C}
\mathbf{C}
    HOLE=HOLE/COS(OBL)
   END IF
 301 IF (VELOCITY .EQ. 13.34) THEN
   DIA=DIAMETER-DCRIT+.558
   HOLE=4.19935057E2
   *-3.41255760E3*DIA
   *+1.12177754E4*DIA**2.
   *-1.93407257E4*DIA**3.
   *+1.85717187E4*DIA**4.
   *-8.82601180E3*DIA**5.
   *+1.17017417E2*DIA**6.
   *+2.02939046E3*DIA**7.
```

```
*-8.29205903E2*DIA**8.
  *+6.42408328*DIA**9.
  *+5.13641047E1*DIA**10.
  *+6.56674327*DIA**11.
  *-6.29038429*DIA**12.
  *-1.11772779*DIA**13.
  *+1.16672455*DIA**14.
   *-2.47704197E-1*DIA**15.
  *+1.77586595E-02*DIA**16.
   HOLEMAJ=HOLE/COS(OBL)
C
\mathbf{C}
    THIS EQUATION CALCULATES THE EFFECTIVE HOLE DIAMETER
C
   HOLE=((HOLE/COS(OBL))*HOLE)**.5
C THIS EQUATION CALCULATES THE MAJOR HOLE DIAMETER
\mathbf{C}
    HOLE=HOLE/COS(OBL)
   END IF
 302 IF (VELOCITY .EQ. 13.95) THEN
   DIA=DIAMETER-DCRIT+.544
   HOLE=6.09863183E2
  *-5.10483012E3*DIA
  *+1.78856376E4*DIA**2.
  *-3.48097873E4*DIA**3.
  *+4.21131642E4*DIA**4.
  *-3.33397339E4*DIA**5.
  *+1.75916811E4*DIA**6.
  *-6.13689147E3*DIA**7.
  *+1.35973999E3*DIA**8.
  *-1.73342154E2*DIA**9.
  *+9.68141004*DIA**10.
   HOLEMAJ=HOLE/COS(OBL)
    THIS EQUATION CALCULATES THE EFFECTIVE HOLE DIAMETER
C
\mathbf{C}
   HOLE=((HOLE/COS(OBL))*HOLE)**.5
C THIS EQUATION CALCULATES THE MAJOR HOLE DIAMETER
C
    HOLE=HOLE/COS(OBL)
C
   END IF
 303 IF (VELOCITY .EQ. 14.47) THEN
   DIA=DIAMETER-DCRIT+.54
   HOLE=5.67578377E2
  *-4.82168904E3*DIA
  *+1.70936351E4*DIA**2.
  *-3.35891200E4*DIA**3.
  *+4.09682872E4*DIA**4.
  *-3.26629411E4*DIA**5.
  *+1.73415791E4*DIA**6.
  *-6.08276881E3*DIA**7.
```

```
*+1.35426814E3*DIA**8.
  *-1.73382631E2*DIA**9.
  *+9.72024231*DIA**10.
   HOLEMAJ=HOLE/COS(OBL)
C
C
   THIS EQUATION CALCULATES THE EFFECTIVE HOLE DIAMETER
   HOLE=((HOLE/COS(OBL))*HOLE)**.5
C THIS EQUATION CALCULATES THE MAJOR HOLE DIAMETER
    HOLE=HOLE/COS(OBL)
   END IF
 304 IF (VELOCITY .EQ. 14.87) THEN
   DIA=DIAMETER-DCRIT+.536
  HOLE=4.25065119E2
  *-3.76861667E3*DIA
  *+1.37632775E4*DIA**2.
  *-2.76189904E4*DIA**3.
  *+3.42193227E4*DIA**4.
  *-2.76165053E4*DIA**5.
  *+1.48055951E4*DIA**6.
  *-5.23461714E3*DIA**7.
  *+1.17313770E3*DIA**8.
  *-1.51028170E2*DIA**9.
  *+8.50707621*DIA**10.
   HOLEMAJ=HOLE/COS(OBL)
   THIS EQUATION CALCULATES THE EFFECTIVE HOLE DIAMETER
   HOLE=((HOLE/COS(OBL))*HOLE)**.5
C THIS EQUATION CALCULATES THE MAJOR HOLE DIAMETER
C
C
    HOLE=HOLE/COS(OBL)
C
   END IF
C IF THE PENETRATION OCCURS AT THE CUPOLA, THERE IS A 20 INCH HOLE
 305 IF (MODULE .EQ. 5) THEN
   IF (ELEMENT .EQ. 39) THEN
   HOLE=20.
   HOLEMAJ=20.
   END IF
   END IF
   END IF
C ALTERNATE HOLE SIZE EQUATION (BURCH)
 306 IF (IHSM .EQ. 2) THEN
```

```
IF (VELOCITY .LT. 5.00) THEN
 307 HOLE=((.127/DIAMÉTER)**.25)*((10.668/DIAMETER)**.5)*DIAMETER*(5.55
      **VELOCITY/5.076-2.53)/2.54
      END IF
   IF (VELOCITY .GT. 5.00) THEN
 308 HOLE=((.127/DIAMETER)**.25)*((10.668/DIAMETER)**.5)*DIAMETER*(1.56
      **VELOCITY/5.076+1.66)/2.54
      END IF
      HOLEMAJ=HOLE
C IF THE PENETRATION OCCURS AT THE CUPOLA, THERE IS A 20 INCH HOLE
  309 IF (MODULE .EQ. 5) THEN
      IF (ELEMENT .EQ. 39) THEN
      HOLE=20.
      HOLEMAJ=20.
      END IF
      END IF
  310 END IF
C COUNT UP THE NUMBER OF HOLES FROM 0-1, 1-2, ETC., FOR EACH MODULE
C
    HOL=HOLE
C
    IF (HOL .LT. 1.0) THEN
    NUMHOLE1(MODULE)=NUMHOLE1(MODULE)+1
C
C
    END IF
C
    IF (HOL .GE. 1.0) THEN
C
    IF (HOL .LT. 2.0) THEN
    NUMHOLE2(MODULE)=NUMHOLE2(MODULE)+1
\mathbf{C}
\mathbf{C}
    END IF
\mathbf{C}
    END IF
    IF (HOL .GE. 2.0) THEN
 C
    IF (HOL .LT. 3.0) THEN
 C
    NUMHOLE3(MODULE)=NUMHOLE3(MODULE)+1
 C
 C
    END IF
 C
    END IF
 C
    IF (HOL .GE. 3.0) THEN
 C
    IF (HOL .LT. 4.0) THEN
    NUMHOLE4(MODULE)=NUMHOLE4(MODULE)+1
 C
 C
    END IF
 C
    END IF
 C
    IF (HOL .GE. 4.0) THEN
 C
    IF (HOL .LT. 5.0) THEN
     NUMHOLE5(MODULE)=NUMHOLE5(MODULE)+1
 Ċ
 C
    END IF
 Ċ
    END IF
 \mathbf{C}
     IF (HOL .GE. 5.0) THEN
 \mathbf{C}
     IF (HOL .LT. 6.0) THEN
     NUMHOLE6(MODULE)=NUMHOLE6(MODULE)+1
 C
 C
     END IF
 \mathsf{C}
     END IF
 C
     IF (HOL .GE, 6.0) THEN
```

```
C
   IF (HOL .LT. 7.0) THEN
   NUMHOLE7(MODULE)=NUMHOLE7(MODULE)+1
   END IF
   END IF
\mathbf{C}
   IF (HOL .GE. 7.0) THEN
   IF (HOL .LT. 8.0) THEN
   NUMHOLE8(MODULE)=NUMHOLE8(MODULE)+1
\mathbf{C}
\mathbf{C}
   END IF
\mathbf{C}
   END IF
\mathbf{C}
   IF (HOL .GE. 8.0) THEN
\mathbf{C}
   IF (HOL .LT. 9.0) THEN
\mathbf{C}
   NUMHOLE9(MODULE)=NUMHOLE9(MODULE)+1
C
   END IF
C
   END IF
C
   IF (HOL .GE. 9.0) THEN
\mathbf{C}
   IF (HOL .LT. 10.) THEN
   NUMHOL10(MODULE)=NUMHOL10(MODULE)+1
\mathbf{C}
C
    END IF
C
   END IF
\mathbf{C}
   IF (HOL .GE. 10.) THEN
\mathbf{C}
   IF (HOL .LT. 11.) THEN
    NUMHOL11(MODULE)=NUMHOL11(MODULE)+1
C
C
   END IF
\mathbf{C}
   END IF
C
    IF (HOL .GE. 11.) THEN
    IF (HOL .LT. 12.) THEN
\mathbf{C}
    NUMHOL12(MODULE)=NUMHOL12(MODULE)+1
C
\mathbf{C}
    END IF
\mathbf{C}
    END IF
C
    IF (HOL .GE. 12.) THEN
    NUMHOL20(MODULE)=NUMHOL20(MODULE)+1
C
C
    END IF
C
C
C IF ENERGY OR CRACK EXCEEDS CRITICAL LEVEL, COUNT AS NPENCRAC
    ENERGY=540.*(DIAMETER**3.)*(VELOCITY**2.)
    IF (NOB .EO. 2) THEN
    ENERGY=COS(OBL)**2.*ENERGY
    END IF
    IF (ENERCRIT .GT. 0.) THEN
    IF (ENERGY .GT. ENERCRIT) THEN
    NPENCRAC(MODULE)=NPENCRAC(MODULE)+1
    IF (NPEN .EQ. NEND) GO TO 465
    GO TO 220
    END IF
    END IF
C
C CALCULATE SIZE OF CRACK FOR THIS PENETRATION
C
    CRACK=HOLEMAJ*HMULT
    IF (HMULT .EQ. .3) THEN
    HMIN=(1.48*HOLEMAJ)-.88
```

```
IF (HMIN .LE. 0.) THEN
    HMIN=0.
    END IF
    HMAX=(1.94*HOLEMAJ)+5.5
    CALL RANDOM(RANVAL)
    CRACK=(HMAX-HMIN)*RANVAL+HMIN
    END IF
C
C COUNT UP THE NUMBER OF CRACKS FROM 0-1, 1-2, ETC., FOR EACH MODULE
\mathbf{C}
    HO=CRACK
\mathbf{C}
    IF (HO .LT. 1.0) THEN
    NUMHO1(MODULE)=NUMHO1(MODULE)+1
\mathbf{C}
    END IF
\mathbf{C}
    IF (HO .GE. 1.0) THEN
C
   IF (HO .LT. 2.0) THEN
\mathbf{C}
    NUMHO2(MODULE)=NUMHO2(MODULE)+1
\mathbf{C}
    END IF
C
    END IF
\mathbf{C}
    IF (HO .GE. 2.0) THEN
\mathbf{C}
    IF (HO .LT. 3.0) THEN
\mathbf{C}
    NUMHO3(MODULE)=NUMHO3(MODULE)+1
\mathbf{C}
   END IF
\mathbf{C}
   END IF
C
    IF (HO .GE. 3.0) THEN
C
   IF (HO .LT. 4.0) THEN
C
    NUMHO4(MODULE)=NUMHO4(MODULE)+1
\mathbf{C}
    END IF
\mathbf{C}
    END IF
\mathbf{C}
   IF (HO .GE. 4.0) THEN
\mathsf{C}
   IF (HO .LT. 5.0) THEN
C
    NUMHO5(MODULE)=NUMHO5(MODULE)+1
C
    END IF
C
    END IF
C
    IF (HO .GE. 5.0) THEN
C
    IF (HO .LT. 6.0) THEN
C
    NUMHO6(MODULE)=NUMHO6(MODULE)+1
C
    END IF
C
    END IF
C
    IF (HO .GE. 6.0) THEN
C
    IF (HO .LT. 7.0) THEN
C
    NUMHO7(MODULE)=NUMHO7(MODULE)+1
C
    END IF
C
    END IF
C
    IF (HO .GE. 7.0) THEN
\mathbf{C}
    IF (HO .LT. 8.0) THEN
C
    NUMHO8(MODULE)=NUMHO8(MODULE)+1
C
    END IF
C
    END IF
C
    IF (HO .GE. 8.0) THEN
    IF (HO .LT. 9.0) THEN
C
    NUMHO9(MODULE)=NUMHO9(MODULE)+1
```

 \mathbf{C}

END IF

```
C
   IF (HO .GE. 9.0) THEN
\mathbf{C}
   IF (HO .LT. 10.) THEN
   NUMHO10(MODULE)=NUMHO10(MODULE)+1
\mathbf{C}
\mathbf{C}
   END IF
C
   END IF
C
   IF (HO .GE. 10.) THEN
C
   IF (HO .LT. 11.) THEN
C
   NUMHO11(MODULE)=NUMHO11(MODULE)+1
C
   END IF
C
   END IF
\mathbf{C}
   IF (HO .GE. 11.) THEN
\mathbf{C}
   IF (HO .LT. 12.) THEN
C
   NUMHO12(MODULE)=NUMHO12(MODULE)+1
C
   END IF
C
   END IF
C
   IF (HO .GE. 12.) THEN
C
   NUMHO20(MODULE)=NUMHO20(MODULE)+1
C
   END IF
C
\mathbf{C}
C COMPARE CRACK SIZE TO CRITICAL CRACK SIZE
    IF (CRITCRAC .GT. 0.) THEN
    IF (CRACK .GT. CRITCRAC) THEN
    NPENCRAC(MODULE)=NPENCRAC(MODULE)+1
    IF (NPEN .EQ. NEND) GO TO 465
    GO TO 220
    END IF
    END IF
C
C COMPUTE THE DEPTH OF PENETRATION (NUMBER OF .125" EQUIVALENT PLATES)
    IF (IPEN .EQ. 1) THEN
    CHI=(TAN(OBL)-.5)
    F1=(0.5-1.87*.05*2.54/DIAMETER)+(5*.05*2.54/DIAMETER)*CHI**3.
    F2=(1.7-12*.05*2.54/DIAMETER)*CHI
    F=F1+F2
    EFF=2.42*(2.54*.05/DIAMETER)**(-.333)
    EFF=EFF+(4.26*(2.54*.05/DIAMETER)**.333)-4.18
    P=(EFF+0.63*F)*(VELOCITY/5.076)**(-1.333)
    PENDEPTH=P*(2.54*.125/DIAMETER)**(-.583)*(11.43/DIAMETER)**(-.416)
    END IF
    IF (IPEN .EQ. 2) THEN
    PENDEPTH=10.
    END IF
C
C FIND THE HOUR OF THE "DAY" THAT THE PENETRATION OCCURS IN
  390 CALL RANDOM(RANVAL)
  391 NHOUR=1
  392 IF (RANVAL .LT. PHOUR(NHOUR)) GO TO 395
  393 NHOUR=NHOUR+1
```

```
394 GO TO 392
C FIND THE NUMBER AND POSITION OF CREW IN THE PENETRATED MODULE (NCREW)
 395 NCR=0
     NIN=0
     WAKETIM=0.
     IF (NHOUR .GE. 17) THEN
     WAKETIM=WAKETIME
C
C NODE 2 ALTERNATIVE CREW MODEL
     IF (IVOLUME .EQ. 3) THEN
     VOLAVAIL(1)=3882*FREE
     VOLAVAIL(2)=3882*FREE
     VOLAVAIL(3)=5127*FREE
     VOLAVAIL(4)=5170*FREE
     VOLAVAIL(5)=2206*FREE
     VOLAVAIL(6)=2097*FREE
     VOLAVAIL(7)=2991*FREE
     VOLAVAIL(8)=1165*FREE
     HACHTIME=60.
     END IF
C
     END IF
\mathbf{C}
     IF (NHOUR .LT. 17) THEN
     IF (IVOLUME .EQ. 3) THEN
     VOLAVAIL(1)=22469*FREE
     VOLAVAIL(2)=22469*FREE
     VOLAVAIL(3)=22469*FREE
     VOLAVAIL(4)=22469*FREE
     VOLAVAIL(5)=22469*FREE
     VOLAVAIL(6)=22469*FREE
     VOLAVAIL(7)=22469*FREE
     VOLAVAIL(8)=22469*FREE
     HACHTIME=30.
     END IF
     END IF
C
C SURVIVABILITY "DO LOOP"
  DO 410 I = 1, 4
   NMOD=NUMODULE(NHOUR,I)
C FIND STATION NUMBER FOR EACH CREW MEMBER
  NSTA=1
   CALL RANDOM(RANVAL)
 399 IF(RANVAL .LT. PROBSTA(NMOD,NSTA)) GO TO 400
  NSTA=NSTA+1
  GO TO 399
 400 NCREWSTA(I)=NSTA
```

```
C FOR 'SLEEP NEAR HATCH' MODEL:
C
     IF (ISLEEP .EQ. 1) THEN
     IF (NHOUR .GE. 17) THEN
     NCREWSTA(1)=1
     NCREWSTA(2)=1
     NCREWSTA(3)=1
     NCREWSTA(4)=1
     END IF
     END IF
C THIS SECTION CALCULATES CREW LOSSES WITHIN PENETRATED MODULE
 405 IF(NMOD .EQ. MODULE) THEN
     NH=NSTA+1
     NL=NSTA-1
     IF(IWIDE .EQ. 2) THEN
     NH=NSTA
     NL=NSTA
     END IF
C
C
C THIS SECTION INVOLVES CREW BEYOND THE IMPACT REGION
\mathbf{C}
     IF (NL .GT. NSTATION(MODULE, ELEMENT)) THEN
     NPENIN(MODULE)=NPENIN(MODULE)+1
     IF (PENDEPTH .GE. AREALDEN(MODULE, ELEMENT)) THEN
     IF (ET .EQ. 0.) THEN
     ESCTIME(I)=WAITTIME+WAKETIM+HACHTIME+(HINDRATE*REAL(NSTA))
     END IF
     IF (ET .NE. 0.) THEN
     ESCTIME(I)=WAITTIME+WAKETIM+HACHTIME+HINDTIME
     END IF
     END IF
     IF(PENDEPTH .LT. AREALDEN(MODULE, ELEMENT)) THEN
     IF (ET .EO. 0.) THEN
     ESCTIME(I)=WAITTIME+WAKETIM+HACHTIME+(GOODRATE*REAL(NSTA))
     END IF
     IF (ET .NE. 0.) THEN
     ESCTIME(I)=WAITTIME+WAKETIM+HACHTIME+ET
     END IF
     END IF
     END IF
     IF(NH .LT. NSTATION(MODULE, ELEMENT)) THEN
     NPENOUT(MODULE)=NPENOUT(MODULE)+1
     IF (ET .EQ. 0.) THEN
     ESCTIME(I)=WAITTIME+WAKETIM+HACHTIME+(GOODRATE*REAL(NSTA))
     END IF
     IF (ET .NE. 0.) THEN
     ESCTIME(I)=WAITTIME+WAKETIM+HACHTIME+ET
     END IF
     END IF
   NN=0
```

```
C
C
\mathbf{C}
      DO 9882 \text{ III} = \text{NL}, \text{NH}
      IF(III .EQ. NSTATION(MODULE, ELEMENT)) THEN
      NPENAT(MODULE)=NPENAT(MODULE)+1
      IF(PENDEPTH .GE. AREALDEN(MODULE, ELEMENT)) THEN
      CALL RANDOM(RANVAL)
      IF(RANVAL .LT. PROBLOST) THEN
      NUMINJ(NMOD,NSTA)=NUMINJ(NMOD,NSTA)+1
      NINJ(NMOD)=NINJ(NMOD)+1
      NIN=1
      NN=1
      END IF
      IF(RANVAL .GE. PROBLOST) THEN
      CALL RANDOM(RAN)
      IF (RAN .LT. PBADINJ) THEN
      NUMINJ(NMOD, NSTA)=NUMINJ(NMOD, NSTA)+1
      NINJ(NMOD)=NINJ(NMOD)+1
      NIN=1
      NN=1
      END IF
      IF (RAN .GT. PBADINJ) THEN
      IF (ET .EO. 0.) THEN
      ESCTIME(I)=WAITTIME+WAKETIM+HACHTIME+(INJRATE*REAL(NSTA))
      END IF
      IF (ET .NE. 0.) THEN
      ESCTIME(I)=WAITTIME+WAKETIM+HACHTIME+INJTIME
      END IF
      END IF
      END IF
      END IF
      IF(PENDEPTH .LT. AREALDEN(MODULE, ELEMENT)) THEN
      IF (ET .EO. 0.) THEN
      ESCTIME(I)=WAITTIME+WAKETIM+HACHTIME+(GOODRATE*REAL(NSTA))
      END IF
      IF (ET .NE. 0.) THEN
      ESCTIME(I)=WAITTIME+WAKETIM+HACHTIME+ET
      END IF
      END IF
      END IF
9882
     CONTINUE
     END IF
C THIS SECTION CALCULATES CREW ESCAPE TIME IN NON-PENETRATED MODULES
   IF (NMOD .NE. MODULE) THEN
   IF (IVOLUME .EQ. 2) THEN
   GO TO 410
   END IF
```

IF (IVOLUME .EQ. 3) THEN IF (NHOUR .GE. 17) THEN

GO TO 410 END IF

```
END IF
   IF (ET .EQ. 0.) THEN
   ESCTIME(I)=WAITTIME+WAKETIM+HACHTIME+(GOODRATE*REAL(NSTA))
   END IF
   IF (ET .NE. 0.) THEN
   ESCTIME(I)=WAITTIME+WAKETIM+HACHTIME+ET
   END IF
   END IF
C
C
C CALCULATE CRITICAL DEPRESSURIZATION LIMIT
   ELAMBDA=(((CRITPRES/14.7)**(-.143))-1)*144/5.676
 407 CRITTIME(I)=ELAMBDA*VOLAVAIL(NMOD)/(CD*HOLE*HOLE*3.14159*.25*23.)
C CALCULATE CREW DEPRESSURIZATION LOSSES
   IF(ESCTIME(I) .GT. CRITTIME(I)) THEN
   NUMCRIT(NMOD, NSTA)=NUMCRIT(NMOD, NSTA)+1
   IF (NMOD .NE. MODULE) THEN
   NCRIT(NMOD)=NCRIT(NMOD)+1
   END IF
   IF (NMOD .EQ. MODULE) THEN
   IF (NN .EO. 0) THEN
   NCRIT(NMOD)=NCRIT(NMOD)+1
   END IF
   END IF
   NCR=1
   END IF
C
410 CONTINUE
\mathbf{C}
C
   IF (NCR .EQ. 0) THEN
   IF (NIN .EQ. 0) THEN
   GO TO 430
   WRITE (*,*) ' NONE '
C
   END IF
   END IF
   IF (NCR .EQ. 1) THEN
   NPENCRIT(MODULE)=NPENCRIT(MODULE)+1
   NINJCRIT(MODULE)=NINJCRIT(MODULE)+1
   WRITE (*,*) ' CR '
   IF (NIN .EQ. 1) THEN
   NPENINJ(MODULE)=NPENINJ(MODULE)+1
   WRITE (*,*) ' CRINJ '
   GO TO 430
   END IF
   END IF
   IF (NCR .EQ. 0) THEN
   IF (NIN .EQ. 1) THEN
   NPENINJ(MODULE)=NPENINJ(MODULE)+1
   NINJCRIT(MODULE)=NINJCRIT(MODULE)+1
```

```
WRITE (*,*) ' INJ'
          END IF
          END IF
C
C
  430 MODULE=MODULE
           WRITE (*, 440) DIAMETER, VELOCITY, OBLIQITY, HOLE, NPEN, MODULE, E
       *LEMENT, ANGLE
C 440 FORMAT ('DIAMETER = ', F7.4,' VELOCITY = ', F7.4, 'OBLIQUITY = '
          *, F7.4, 'HOLE SIZE = ', F7.4, 'FOR PENETRATION NUMBER', I8,
       *' MODULE =', I3, ' ELEMENT =', I3, ' ANGLE =', I3)
          WRITE (*,*)''
   450 IF (NPEN .EQ. NEND) GO TO 465
        NTRY=NTRY+1
        GO TO 220
C
C PRINT OUT RESULTS
 C
   465 NSUM1=0
        NSUM2=0
         NSUM3=0
         NSUM4=0
         NSUM5=0
 C
 C
 C
         DO 485 I = 1, 8
 C THIS SECTION CALCULATES RATIO FOR TOTAL OF SIX MODULES
 C
          IF (I.LE. 6) THEN
           NSUM1=NPENCRAC(I)+NINJCRIT(I)+NSUM1
          NSUM2=NUMPENS(I)+NSUM2
           NSUM3=NPENCRAC(I)+NSUM3
          NSUM4=NPENINJ(I)+NSUM4
           NSUM5=NINJCRIT(I)-NPENINJ(I)+NSUM5
          END IF
  C THIS SECTION CALCULATES RATIO FOR EACH MODULE
             RATCRAC(I) = REAL(NPENCRAC(I)) / REAL(NUMPENS(I))
             RATINJ(I)=REAL(NPENINJ(I))/REAL(NUMPENS(I))
              RATTOT(I) = (REAL(NINJCRIT(I)) + REAL(NPENCRAC(I))) / REAL(NUMPENS(I)) + REAL(NINJCRIT(I)) + REAL(NPENCRAC(I))) / REAL(NUMPENS(I)) + REAL(NPENCRAC(I)) / REAL(NPENCRAC(I
             RATDEP(I)=RATTOT(I)-RATCRAC(I)-RATINJ(I)
           WRITE (*,*)''
  C
           WRITE (*,*) ' '
           WRITE (*,*)''
           WRITE (*, 466) I, NUMPENS(I)
     466 FORMAT (' FOR MODULE', I8, ' PENS = ', I8)
           WRITE (*,*) '
           WRITE (*, 467) NUMIMPS(I)
     467 FORMAT (' NUMBER OF IMPACTS BETWEEN .3 AND 3 CM = ', I8)
```

```
WRITE (*,*)''
   WRITE (*,468) NINJ(I),NCRIT(I),NPENCRAC(I)
 468 FORMAT ('INJURIES = ', I8, 'DEPRESS = ', I8, 'CRACKS = ', I8)
   WRITE (*,*) ' '
   WRITE (*,469) NPENINJ(I), NPENCRIT(I)
 469 FORMAT ('PENS WITH INJURIES = ', 18, 'PENS WITH DEPRESS = ', 18)
   WRITE (*,*) '
   WRITE (*,1470) NINJCRIT(I)
1470 FORMAT ('PENS WITH AT LEAST ONE INJURY OR CRIT LOSS = ', I8)
   WRITE (*,*) '
C 470 WRITE (*, 471) NPENIN(I)
C 471 FORMAT (' NUMBER OF PENETRATIONS NEARER TO HATCH THAN CREW = ', I8
  *)
C
C
    WRITE(*,*)''
C
    WRITE (*, 472) NPENOUT(I)
C 472 FORMAT (' NUMBER OF PENETRATIONS FARTHER FROM HATCH THAN CREW = ',
\mathbf{C}
    WRITE (*,*)''
\mathbf{C}
    WRITE (*, 473) NPENAT(I)
C 473 FORMAT (' NUMBER OF PENETRATIONS AT CREW LOCATION = ', I8)
C
    WRITE (*,*)
C
    WRITE (*, 474) NPENNOCR(I)
C 474 FORMAT ('NUMBER OF PENETRATIONS WITH NO CREW IN MODULE = ', I8)
    WRITE (*,*)''
C
    WRITE (*, 475) NPEN1CRW(I)
C 475 FORMAT (' NUMBER OF PENETRATIONS WITH ONE CREW IN MODULE = ', I8)
   WRITE (*,*) '
    WRITE (*, 1475) NPEN2CRW(I)
C1475 FORMAT ('NUMBER OF PENETRATIONS WITH TWO CREW IN MODULE = ', I8)
    WRITE (*,*)'
C
    WRITE (*, 1476) NPEN3CRW(I)
C
C1476 FORMAT (' NUMBER OF PENETRATIONS WITH 3 CREW IN MODULE = ', I8)
    WRITE (*,*)
    WRITE (*, 1477) NPEN4CRW(I)
C1477 FORMAT (' NUMBER OF PENETRATIONS WITH 4 CREW IN MODULE = ', I8)
   WRITE (*,*)
C 476 WRITE (*, 477) NUMHOLE1(I)
C 477 FORMAT (' NUMBER OF HOLES 0 TO 1 INCH IN DIAMETER = ', I8)
\mathbf{C}
    WRITE (*,*)''
    WRITE (*, 478) NUMHOLE2(I)
C 478 FORMAT ('NUMBER OF HOLES 1 TO 2 INCHES IN DIAMETER = ', I8)
    WRITE (*,*)
    WRITE (*, 479) NUMHOLE3(I)
C 479 FORMAT ('NUMBER OF HOLES 2 TO 3 INCHES IN DIAMETER = ', I8)
    WRITE (*,*)''
C
    WRITE (*, 480) NUMHOLE4(I)
C 480 FORMAT (' NUMBER OF HOLES 3 TO 4 INCHES IN DIAMETER = ', I8)
    WRITE (*,*)
C
    WRITE (*, 481) NUMHOLE5(I)
C 481 FORMAT ('NUMBER OF HOLES 4 TO 5 INCHES IN DIAMETER = ', I8)
   WRITE (*,*) '
    WRITE (*, 482) NUMHOLE6(I)
C 482 FORMAT ('NUMBER OF HOLES 5 TO 6 INCHES IN DIAMETER = ', I8)
    WRITE (*,*)''
```

```
C
    WRITE (*, 483) NUMHOLE7(I)
C 483 FORMAT ('NUMBER OF HOLES 6 TO 7 INCHES IN DIAMETER = ', I8)
    WRITE (*,*)
C
C
    WRITE (*, 484) NUMHOLE8(I)
C 484 FORMAT ('NUMBER OF HOLES 7 TO 8 INCHES IN DIAMETER = ', 18)
C
    WRITE (*,*)''
C
    WRITE (*, 1484) NUMHOLE9(I)
C1484 FORMAT ('NUMBER OF HOLES 8 TO 9 INCHES IN DIAMETER = ', 18)
    WRITE (*,*)''
C
C
    WRITE (*, 1483) NUMHOL10(I)
C1483 FORMAT (' NUMBER OF HOLES 9 TO 10 INCHES IN DIAMETER = ', I8)
C
    WRITE (*,*)'
C
    WRITE (*, 2484) NUMHOL11(I)
C2484 FORMAT ('NUMBER OF HOLES 10 TO 11 INCHES IN DIAMETER = ', I8)
C
    WRITE (*,*) '
C
    WRITE (*, 3484) NUMHOL12(I)
C3484 FORMAT ('NUMBER OF HOLES 11 TO 12 INCHES IN DIAMETER = ', I8)
C
    WRITE (*,*)
C
    WRITE (*, 1485) NUMHOL20(I)
C1485 FORMAT (' NUMBER OF HOLES > 20 INCHES IN DIAMETER = ', 18)
    WRITE (*,*)''
C 676 WRITE (*, 677) NUMHO1(I)
C 677 FORMAT ('NUMBER OF CRACKS 0 TO 1 INCH IN DIAMETER = ', 18)
    WRITE (*,*) '
C
    WRITE (*, 678) NUMHO2(I)
C 678 FORMAT (' NUMBER OF CRACKS 1 TO 2 INCHES IN DIAMETER = ', I8)
    WRITE (*,*)'
C
C
    WRITE (*, 679) NUMHO3(I)
C 679 FORMAT (' NUMBER OF CRACKS 2 TO 3 INCHES IN DIAMETER = ', I8)
    WRITE (*,*) ' '
    WRITE (*, 680) NUMHO4(I)
C
C 680 FORMAT (' NUMBER OF CRACKS 3 TO 4 INCHES IN DIAMETER = ', I8)
    WRITE (*,*) '
C
    WRITE (*, 681) NUMHO5(I)
C 681 FORMAT ('NUMBER OF CRACKS 4 TO 5 INCHES IN DIAMETER = ', 18)
\mathbf{C}
    WRITE (*,*) ' '
    WRITE (*, 682) NUMHO6(I)
C 682 FORMAT (' NUMBER OF CRACKS 5 TO 6 INCHES IN DIAMETER = ', 18)
C
    WRITE (*,*)'
\mathbf{C}
    WRITE (*, 683) NUMHO7(I)
C 683 FORMAT (' NUMBER OF CRACKS 6 TO 7 INCHES IN DIAMETER = ', 18)
    WRITE (*,*)''
C
    WRITE (*, 684) NUMHO8(I)
C 684 FORMAT (' NUMBER OF CRACKS 7 TO 8 INCHES IN DIAMETER = ', I8)
    WRITE (*,*) '
    WRITE (*, 1684) NUMHO9(I)
C1684 FORMAT (' NUMBER OF CRACKS 8 TO 9 INCHES IN DIAMETER = ', I8)
    WRITE (*,*)
    WRITE (*, 1683) NUMHO10(I)
C1683 FORMAT (' NUMBER OF CRACKS 9 TO 10 INCHES IN DIAMETER = ', I8)
```

C2684 FORMAT ('NUMBER OF CRACKS 10 TO 11 INCHES IN DIAMETER = ', I8)

WRITE (*,*)''

WRITE (*,*) '

WRITE (*, 2684) NUMHO11(I)

C

111

```
WRITE (*, 3684) NUMHO12(I)
C3684 FORMAT ('NUMBER OF CRACKS 11 TO 12 INCHES IN DIAMETER = ', I8)
    WRITE (*,*)''
    WRITE (*, 1685) NUMHO20(I)
C
C1685 FORMAT (' NUMBER OF CRACKS > 12 INCHES IN DIAMETER = ', I8)
485 CONTINUE
C
C
   RATIOTOT=REAL(NSUM1)/REAL(NSUM2)
   RATIOCRC=REAL(NSUM3)/REAL(NSUM2)
   RATIOINJ=REAL(NSUM4)/REAL(NSUM2)
   RATIODEP=REAL(NSUM5)/REAL(NSUM2)
\mathbf{C}
   WRITE (*,*)''
   WRITE (*,*) ' MODULE: TOTAL RATIO = CRACK + INJURY + DEPRESS'
   IEEE=6
   IF (IVOLUME .EQ. 3) THEN
   IEEE=8
   END IF
   DO 9942 \text{ IE} = 1, 8
   WRITE (*,*)''
    WRITE (*,9943) IE, RATTOT(IE), RATCRAC(IE), RATINJ(IE), RATDEP(IE)
9943 FORMAT (I8, F13.4, F8.4, F9.4, F10.4)
9942 CONTINUE
   WRITE (*,*) ' '
   WRITE (*,*)''
   WRITE (*,9927) RATIOTOT, RATIOCRC, RATIOINJ, RATIODEP
9927 FORMAT (' TOTAL =', F13.4, F8.4, F9.4, F10.4)
   WRITE (*,*) ' (1 TO 6)'
C
   WRITE (*,*)''
   WRITE (*,*)''
   WRITE (*,*) ' PERFORM ANOTHER ANALYSIS? TYPE 1 FOR YES, 2 FOR NO.'
   READ (*, '(12)') NQUIT
   IF (INODE .EQ. 2) THEN
   NQUIT=2
   END IF
   IF (ITRI .EQ. 2) THEN
   NQUIT=2
   END IF
   IF (NQUIT .EQ. 1) GO TO 204
 500 END
```

APPENDIX B PROBDIA.DAT Data File

Cum.	Dia.		8952	0.77			0.996	2.3
Prob.	(cm)		8984	0.78			0.9964	2.35
		0.	9015	0.79			0.9968	2.4
0.0731	0.31	0.	9045	0.8			0.9972	2.45
0.1392	0.32	0.	9073	0.81			0.9975	2.5
0.1989	0.33	0.	9101	0.82			0.9978	2.55
0.2531	0.34	0.	9127	0.83			0.9982	2.6
0.3023	0.35	0.	9152	0.84			0.9984	2.65
0.3472	0.36		9177	0.85			0.9987	2.7
0.3882	0.37		92	0.86			0.999	2.75
0.4257	0.38	0.	9222	0.87			0.9992	2.8
0.4601	0.39		9244	0.88			0.9994	2.85
0.4916	0.4		9265	0.89			0.9996	2.9
0.5207	0.41		9285	0.9			0.9998	2.95
0.5475	0.42		9304	0.91			1	3
0.5722	0.43		9323	0.92			_	_
0.5951	0.44		9341	0.93				
0.6164	0.45		9358	0.94				
0.636	0.45		9374	0.95				
0.6544	0.40		9391	0.96				
0.6714	0.47		9406	0.97				
	0.46		9421	0.98				
0.6873	0.49		9436	0.99				•
0.7021			945	1				
0.716	0.51			1.05				
0.7289	0.52		9513					
0.7412	0.53		9567	1.1				
0.7525	0.54		9614	1.15				
0.7632	0.55		9654	1.2				
0.7733	0.56		.969	1.25				
0.7827	0.57		.972	1.3				
0.7917	0.58		9748	1.35				
0.8001	0.59		.9772	1.4				
0.808	0.6		.9793	1.45				
0.8156	0.61	= :	.9812	1.5				
0.8227	0.62		.9829	1.55				
0.8294	0.63		.9845	1.6				
0.8358	0.64		.9858	1.65				
0.8418	0.65	0.	.9871	1.7				
0.8476	0.66	0.	.9882	1.75				
0.853	0.67	0.	.9893	1.8				
0.8582	0.68	0.	.9902	1.85				
0.8631	0.69	0.	.9911	1.9				
0.8678	0.7	0.	.9919	1.95				
0.8678	0.71	0.	.9926	2				
0.8766	0.72		.9933	2.05				
0.8806	0.73		.9939	2.1				
0.8845	0.74		.9945	2.15				
0.8882	0.75		.995	2.2				
0.8832	0.76		.9955	2.25				
0.0210	0.70	· •	.,,,,,	د. د. د. د. د				

						· .	
							:
							,
				·	4		

APPENDIX C VELSTA.DAT Data File

·		

Velocity (km/s)	Cum. Prob.
0.3300	0.0000
1.3400	0.0000
2.6700	0.0040
4.0000	0.0143
5.2500	0.0369
6.5000	0.0756
7.7000	0.1271
8.8300	0.1809
9.9000	0.2378
10.9000	0.2897
11.8000	0.3433
12.6100	0.3991
13.3400	0.4465
13.9500	0.4734
14.4700	0.4769
14.8700	0.4778
15.1700	0.4778
15.3400	0.4778
15.4000	0.4778
15.3400	0.4778
15.1700	0.4778
14.8700	0.4789
14.4700	0.4826
13.9500	0.5113
13.3400	0.5625
12.6100	0.6230
11.8000	0.6818
10.9000	0.7389
9.9000	0.8020
8.8300	0.8619
7.7000	0.9188
6.5000	0.9609
5.2500	0.9850
4.0000	0.9959
2.6700	1.0000
1.3400	1.0000
0.3300	1.0000

· w
· tr
· w
· tr
· v.
ů.
ů.
î.
ā.
ž.
\$. .V
19
Ť.

APPENDIX D PROBMOD.DAT Data File

				: " \$
				•
				*1. ₹.,
				19 13 5
				20 1 1 1
				:
				:
				<u>:</u>
				· · ·
				2.
				•
				;
en en la companya de la social de la companya de l	en e	e de la companya de	eries este outre Solarie et	
도로 보다는 사람들이 되었다. 그들이 그리아 바로 그들은 경우 (1921년) 10 시간 12 교육 12 1일 10 대한 12 1일				
그리는 그는 그 이 한 문화를 가는 처음을 살아왔다. 그 얼마가 화장 사람이 들어 있는 것을 하는데 하다. 그는 그는				

Cum.	0.9011	1.0000	0.1409
Prob.	1.0000	0.2370	0.2819
	0.2745	0.4189	0.2819
0.2575	0.3635	0.5764	0.2819
0.2575	0.5985	0.5764	0.3690
0.5149	0.6103	0.6442	0.4561
0.6437	0.6947	0.6456	0.8187
0.7103	0.6947	0.8819	1.0000
0.7103	0.8982	1.0000	0.1586
0.9034	1.0000	0.2018	0.3171
1.0000	0.2725	0.3734	0.3171
0.2605	0.3809	0.4976	0.3720
0.2753	0.6072	0.4976	0.4563
0.5294	0.6072	0.5539	0.5293
0.6373	0.6904	0.5610	0.8431
0.7124	0.6904	0.7805	1.0000
0.7142	0.8968	1.0000	0.1778
0.9047	1.0000	0.2146	0.3556
1.0000	0.2684	0.4161	0.3556
0.2628	0.3919	0.5353	0.4561
0.2921	0.6076	0.5353	0.5236
0.5420	0.6076	0.5924	0.5724
0.6357	0.6881	0.6139	0.8575
	0.6881	0.8713	1.0000
0.7151	0.8960	1.0000	0.1889
0.7188	1.0000	0.1979	0.3778
0.9063		0.3957	0.3778
1.0000	0.2641	0.4905	0.5135
0.2695	0.4017		0.5731
0.3130	0.6062	0.4905	0.6201
0.5629	0.6062	0.5397	0.8734
0.6348	0.6858	0.6021	
0.7168	0.6858	0.8674	1.0000
0.7188	0.8953	1.0000	0.1901
0.9063	1.0000	0.1840	0.3927
1.0000	0.2554	0.3679	0.3927
0.2698	0.4075	0.4373	0.5614
0.3302	0.5971	0.4373	0.5817
0.5741	0.5971	0.4878	0.6356
0.6290	0.6732	0.5576	0.8785
0.7124	0.6732	0.8525	1.0000
0.7124	0.8911	1.0000	0.1803
0.9041	1.0000	0.1615	0.3921
1.0000	0.2453	0.3230	0.3921
0.2726	0.4159	0.3603	0.5877
0.3463	0.5892	0.3603	0.5952
0.5863	0.5892	0.4347	0.6543
0.6193	0.6615	0.5205	0.8848
0.7033	0.6615	0.8402	1.0000
0.7033	0.8872	1.0000	0.1686

0.3883	0.3288	0.6437
0.3883	0.6475	0.6437
0.6073	0.6475	0.7103
0.6086	0.7239	0.9034
0.6715	0.9080	1.0000
0.8905	1.0000	1.0000
1.0000	0.0678	
0.1570	0.3186	
0.3828	0.3186	
0.3828		
0.6219	0.6498	
	0.6498	
0.6219	0.7270	
0.6885	0.9090	
0.8962	1.0000	
1.0000	0.0566	
0.1389	0.3094	
0.3722	0.3094	
0.3722	0.6523	
0.6320	0.6523	
0.6320	0.7305	
0.7015	0.9102	
0.9005	1.0000	
1.0000	0.0413	
0.1249	0.2972	
0.3645	0.2972	
0.3645	0.6532	
0.6427	0.6551	
0.6427	0.7330	
0.7149	0.9110	
0.9050	1.0000	
1.0000	0.0284	
0.1115	0.2832	
0.3538	0.2832	
0.3538	0.6468	
0.6458	0.6503	
0.6458	0.7273	
0.7185	0.9091	
0.9062	1.0000	
1.0000	0.0146	
0.0973	0.2702	
0.3421	0.2702	
0.3421	0.6441	
0.6471	0.6459	
0.6471	0.7196	
0.7218	0.9065	
0.9073	1.0000	
1.0000	0.0000	
0.0805	0.0000	
0.3288	0.2575	
U.J400	V.4J J	

APPENDIX E LAB.DAT Data File

		·	

	_			404.044	0.0551	45.0640	0.00.40	21 0007	0.42.40	24 01 41	0.0565
Obliquity	Cum.		1.0000	104.9417	0.9751 0.9751	45.8642 75.2333	0.8243	21.0907 46.9207	0.4348 0.4560	24.8141 24.8145	0.0363
(degrees)	Prob.	134.9997 164.9997	1.0000	104.9413 134.7821	0.9751	75.2329	0.8323	75.5227	0.4638	48.3590	
74,9998	0.0084	165.0002	1.0000	164.2065	0.9751	45.8638	0.8620	75.5223	0.4715	75.9241	0.1130
44.9998	0.00312	135.0002	1.0000	164.2069	0.9751	17.9637	0.8917	46.9203	0.4928	75.9237	
14.9998	0.0625	105.0002	1.0000	134.7825	0.9751	17.9640		21.0904	0.5217	48.3586	
15.0001	0.0937	104.9997	1.0000	104.9417	0.9751	45.8642	0.9432	21.0907	0.5507	24.8141	0.1695
45.0002	0.1166		1.0000	104.9413	0.9751	75.2333	0.9512	46.9207	0.5720	24.8143	0.1978
75.0002	0.1250	164.9997	1.0000	134.7821	0.9751	104.7666	0.9512	75.5227	0.5797	48.3590	
74.9998	0.1334	165.0002	1.0000	164.2065	0.9751	134.1358	0.9512	75.5223	0.5875	75.9241	
44.9998	0.1562	135.0002	1.0000	164.2069	0.9751	162.0359	0.9512	46.9203	0.6087	75.9237	
14.9998	0.1875	105.0002	1.0000	134.7825	0.9751	162.0362	0.9512	21.0904	0.6377	48.3586	
	0.2187	104.9997	1.0000	104.9417	0.9751	134.1362	0.9512	21.0907	0.6667	24.8141	0.2825
45.0002		134.9997		104.9413	0.9751	104.7670	0.9512	46.9207	0.6879	24.8143	
	0.2500	164.9997	1.0000	134.7821	0.9751	104.7666	0.9512	75.5227	0.6957	48.3590	0.3313
	0.2584	165.0002	1.0000	164.2065	0.9751	134.1358	0.9512 0.9512	75.5223 46.9203	0.7034 0.7246	75.9241 75.9237	
44.9998		135.0002	1.0000	164.2069 134.7825	0.9751 0.9751	162.0359 162.0362		21.0904	0.7536	48.3586	
14.9998 15.0002	0.3125 0.3437	105.0002 90.0002	1.0000	104.9417	0.9751	134,1362	0.9512	21.0907	0.7826	24.8141	0.3955
45.0002	0.3666	90.0002		104.9413	0.9751	104.7670	0.9512	46.9207	0.8038	24.8143	
75.0002	0.3750		1.0000	134.7821	0.9751	104.7666		75.5227	0.8116	48.3590	
74.9998	0.3834		1.0000	164.2065	0.9751	134.1358	0.9512	75.5223	0.8194	75.9241	0.4520
44.9998	0.4062	75.0582	0.0082	164.2069	0.9751	162.0359	0.9512	46.9203	0.8406	75.9237	0.4596
14.9998	0.4375	45.2174	0.0305	134.7825	0.9751	162.0362	0.9512	21.0904	0.8696	48.3586	0.4803
15,0002	0.4687	15.7930	0.0609	104.9417	0.9751	134.1362	0.9512	21.0907	0.8986	24.8141	0.5085
45.0002	0.4916	15.7934	0.0914	104.9413	0.9751	104.7670	0.9512	46.9207	0.9198	24.8143	
75.0002	0.5000	45.2178	0.1137	134.7821	0.9751	104.7666		75.5227		48.3590	
74.9998	0.5084	75.0586	0.1219	164.2065	0.9751	134.1358	0.9512	104.4772	0.9276	75.9241	0.5650
44.9998	0.5312	75.0582		164.2069	0.9751	162.0359	0.9512	133.0792	0.9276	75.9237	
14.9998	0.5625	45.2174	0.1524	134.7825	0.9751	162.0362	0.9512	158.9092	0.9276	48.3586	
15.0002	0.5937	15.7930	0.1828	104.9417	0.9751	134.1362	0.9512	158.9095	0.9276	24.8141	
45.0002	0.6166	15.7934		104.9413	0.9751	104.7670	0.9512	133.0796	0.9276 0.9276	24.8143 48.3590	
75.0002	0.6250	45.2178	0.2356	134.7821	0.9751	104.7666 134.1358	0.9512 0.9512	104.4777 104.4772	0.9276	75.9241	0.6781
74.9998	0.6334	75.0586 75.0582	0.2438 0.2519	164.2065 164.2069	0.9751 0.9751	162.0359	0.9512	133.0792	0.9276	75.9237	
44.9998 14.9998	0.6562 0.6875	45.2174	0.2319	134.7825	0.9751	162.0362		158.9092	0.9276	48.3586	
15.0002	0.7187	15.7930	0.3047	104.9417	0.9751	134:1362	0.9512	158.9095	0.9276	24.8141	0.7346
45.0002	0.7416	15.7934	0.3352	85.0002		104.7670		133.0796	0.9276	24.8143	
75.0002	0.7500	45.2178	0.3575	85.0002	0.9875	104.7666		104.4777	0.9276	48.3590	
74.9998	0.7584	75.0586	0.3657	85.0002		134.1358	0.9512	104.4772	0.9276	75.9241	0.7911
44.9998		75.0582	0.3738	85.0002	1.0000	162.0359	0.9512	133.0792	0.9276	75.9237	0.7986
14.9998	0.8125	45.2174	0.3961	75.2329	0.0080	162.0362	0.9512	158.9092	0.9276	48.3586	0.8193
15.0002	0.8437	15.7930	0.4266	45.8638	0.0297	134.1362	0.9512	158.9095	0.9276	24.8141	
45.0002	0.8666	15.7934	0.4571	17.9637	0.0594	104.7670		133.0796	0.9276	24.8143	
75.0002	0.8750	45.2178	0.4794	17.9641	0.0892	104.7666		104.4777	0.9276	48.3590	
74.9998	0.8834	75.0586	0.4876	45.8642	0.1109	134.1358	0.9512	104.4772	0.9276	75.9241	
44.9998	0.9062	75.0582	0.4957	75.2333		162.0359	0.9512	133.0792	0.9276	104.0758	0.9041
14.9998	0.9375	45.2174	0.5180	75.2329	0.1269	162.0362	0.9512	158.9092	0.9276	131.6409	0.9041
15.0002	0.9687	15.7930	0.5485	45.8638	0.1486	134.1362	0.9512	158.9095	0.9276 0.9276	155.1856	0.9041 0.9041
45.0002	0.9916	15.7934		17.9637		104.7670	0.9512 0.9512	133.0796 104.4777	0.9276	155.1858 131.6413	0.9041
75.0002	1.0000	45.2178	0.6013	17.9640 45.8642	0.2081	104.7666 134.1358	0.9512	104.4777	0.9276	104.0762	0.9041
104.9997	1.0000	75.0586 75.0582	0.6094 0.6176	75.2333		162.0359	0.9512	133.0792	0.9276	104.0758	0.9041
134.9997 164.9997	1.0000	45.2174	0.6399	75.2329	0.2458	162.0362	0.9512	158.9092	0.9276	131.6409	0.9041
165.0002	1.0000	15.7930	0.6704	45.8638		134.1362	0.9512	158.9095	0.9276	155.1856	
135.0002	1.0000	15.7934		17.9637		104.7670	20540	133.0796	0.0077	155.1858	
105.0002	1.0000	45.2178		17.9640	0.3270		0.9674	104.4777		131.6413	0.9041
104.9997	1.0000	75.0586		45.8642	0.3487	80.0002	0.9756	104.4772	0.9276	104.0762	
134.9997		75.0582	0.7395	75.2333	0.3567	80.0002	0.9919	133.0792		104.0758	
164.9997	1.0000	45.2174		75.2329	0.3646		1.0000	158.9092		131.6409	
165.0002	1.0000	15.7930	0.7923	45.8638		75.5223		158.9095		155.1856	
135.0002		15.7934		17.9637		46.9203		133.0796		155.1858	
105.0002	1.0000	45.2178		17.9640		21.0904		104.4777		131.6413	
104.9997		75.0586		45.8642	0.46/6	21.0908		104.4772		104.0762 104.0758	
134.9997		75.0582		75.2333	0.4/30	46.9207		133.0792 158.9092		131.6409	
164.9997		45.2174		75.2329		75.5227 75.5223		158.9092		155.1856	
165.0002		15.7930		45.8638 17.9637		46.9203		133.0796		155.1858	
135.0002	1.0000	15.7934 45.2178	0.9446	17.9640	0.3330 0.5647		0.1739	104.4777		131.6413	
105.0002 104.9997	1.0000	75.0586	0.9669	45.8642	0.5865	21.0904		104.4772		104.0762	
134.9997		104.9413	0.9751	75.2333	0.5945	46,9207		133.0792		104.0758	
164.9997		134.7821	0.9751	75.2329		75.5227		158.9092			
165.0002		164.2065	0.9751	45.8638		75.5223		158.9095	0.9276	155.1856	0.9041
135.0002	1.0000	164.2069	0.9751	17.9637		46.9203	0.2609	133.0796	0.9276	155.1858	0.9041
105.0002	1,0000	134.7825	0.9751	17.9640	0.6836	21.0904	0.2899	104.4777			
104.9997	1.0000	104.9417	0.9751	45.8642			0.3188	75.0002		104.0762	
134.9997		104.9413	0.9751		0.7134		0.3401		0.9638	104.0758	
164.9997		134.7821	0.9751		0.7213	75.5227			0.9879	131.6409	
165.0002		164.2065	0.9751		0.7431	75.5223	0.3556	75.0002		155.1856	
135.0002		164.2069	0.9751		0.7728		0.3768		0.0076		
105.0002	1.0000	134.7825	0.9751	17.9640	0.8025	21.0904	0.4058	48.3386	0.0283	131.6413	0.9041

								5 7.0004		400 0000	0.0005
	0.9041		0.8803	33.2261		37.6984		57.2021		122.7978	0.8035
104.0758	0.9041	103.5664	0.8803	52.2389	0.8488	37.6986		42.2735	0.1506	101.4357	0.8035
131.6409	0.9041	103.5660	0.8803	77.0476	0.8559	54.6039	0.5121	42.2736	0.1758	101.4353	0.8035
155.1856	0.9041	129.8554	0.8803	102.9522	0.8559	77.7599	0.5191	57.2024	0.1941	122.7974	0.8035
155.1858	0.9041	151.0952	0.8803	127.7609	0.8559		0.5260	78.5646	0.2009	137.7263	0.8035
131.6413	0.9041	151.0955	0.8803	146.7738	0.8559	54.6036		78.5641	0.2076	137.7264	0.8035
104.0762	0.9041	129.8558	0.8803	146.7740	0.8559	37.6984	0.5710	57.2021	0.2260	122.7978	0.8035
104.0758	0.9041	103.5664	0.8803	127.7613	0.8559	37.6986	0.5969	42.2735	0.2511	101.4357	0.8035
131.6409	0.9041		0.8803	102.9527	0.8559	54.6039	0.6159	42.2736	0.2762	50.0001	0.8690
155.1856	0.9041	129.8554	0.8803	102.9522	0.8559	77.7599	0.6229	57.2024	0.2946	50.0001	0.9017
155.1858	0.9041	151.0952	0.8803	127.7609	0.8559		0.6298	78.5646	0.3013	50.0001	0.9672
131.6413	0.9041	151.0955	0.8803	146.7738	0.8559	54.6036		78.5641	0.3080		1.0000
104.0762	0.9041	129.8558	0.8803	146.7740	0.8559	37.6984		57.2021	0.3264	79.4545	
70.0001	0.9360	103.5664	0.8803	127.7613	0.8559	37.6986		42.2735		59.9999	
70.0001		103.5660		102.9527	0.8559	54.6039		42.2736		46,9205	
	0.9840	129.8554	0.8803	102.9522	0.8559		0.7267	57.2024		46.9207	
	1.0000	151.0952	0.8803	127.7609	0.8559	77.7595		78.5646	0.4017	60.0002	
	0.0074	151.0955	0.8803	146.7738	0.8559	54.6036		78.5641	0.4085	79.4549	0.0968
50.1441	0.0275	129.8558	0.8803	146.7740	0.8559	37.6984	0.7786	57.2021	0.4268	79.4545	0.1033
28,9044	0.0550	103.5664	0.8803	127.7613	0.8559	37.6986		42.2735	0.4519	59.9999	0.1210
28.9048	0.0825	103.5660		102.9527	0.8559	54.6039		42,2736		46.9205	
50.1445	0.1027	129.8554	0.8803	102.9522	0.8559	77.7599	0.8305	57.2024	0.4954	46.9206	0.1694
76.4339	0.1100	151.0952	0.8803	127.7609	0.8559	102.2400		78.5646		60.0002	
76.4335		151.0955	0.8803	146.7738	0.8559	125.3960		78.5641	0.5089	79.4549	0.1936
50.1441		129.8558	0.8803	146.7740	0.8559	142.3013		57.2021	0.5273	79.4545	0.2001
28.9044	0.1651	103.5664	0.8803	127.7613	0.8559		0.8305	42.2735	0.5524	59,9999	
		103.5660		102.9527	0.8559	125.3963		42.2736		46.9205	
50.1445	0.2127	129.8554	0.8803	102.9522	0.8559	102.2404		57.2024	0.5959	46.9206	
76.4339	0.2201	151.0952	0.8803	127.7609	0.8559	102.2400		78.5646	0.6026	60.0002	
	0.2275	151.0955	0.8803	146.7738	0.8559	125.3960		78.5641	0.6093	79.4549	
	0.2476	129.8558	0.8803	146.7740	0.8559	142.3013	0.8305	57.2021	0.6277	79.4545	0.2968
28,9044	0.2751		0.8803	127.7613	0.8559	142.3015	0.8305	42.2735	0.6528	59.9999	
28.9047		65.0001		102.9527	0.8559		0.8305	42.2736		46.9205	
50.1445	0.3228	65.0001		102.9522	0.8559	102.2404		57.2024	0.6963	46.9206	
76.4339	0.3301	65.0001		127.7609	0.8559		0.8305	78.5646	0.7030	60.0002	
76.4335		65.0001		146,7738	0.8559	125.3960		78.5641		79.4549	
	0.3576	77.0472	0.0072	146.7740	0.8559		0.8305	57.2021	0.7281	79,4545	
	0.3851	52.2386	0.0267	127.7613	0.8559		0.8305	42.2735	0.7532	59,9999	
28,9047		33.2259	0.0535	102.9527	0.8559		0.8305	42.2736		46.9205	
50.1445	0.4328	33.2262	0.0802	102.9522	0.8559	102.2404		57.2024	0.7967	46.9206	0.4597
76.4339	0.4402	52.2389	0.0998	127.7609	0.8559	102.2400		78.5646	0.8035	60.0002	
76,4335		77.0476		146.7738	0.8559	125.3960		101.4353	0.8035	79.4549	
50.1441	0.4677	77.0472	0.1142	146.7740	0.8559		0.8305	122.7974	0.8035	79.4545	0.4904
28.9044	0.4952		0.1337	127.7613	0.8559	142.3015		137.7263	0.8035	59.9999	0.5081
28.9047		33.2259		102.9527	0.8559	125.3963		137.7264	0.8035	46.9205	
50.1445	0.5428	33.2261	0.1872	102.9522	0.8559		0.8305	122.7978	0.8035	46.9206	0.5565
76.4339	0.5502	52.2389	0.2068	127.7609	0.8559	102.2400		101.4357	0.8035	60.0002	
76,4335	0.5576	77.0476		146.7738	0.8559	125.3960		101.4353	0.8035	79.4549	
50.1441	0.5777	77.0472	0.2212	146.7740	0.8559	142.3013	0.8305	122.7974	0.8035	79.4545	0.5872
28.9044	0.6052	52.2386	0.2407	127.7613	0.8559	142.3015		137.7263	0.8035	59.9999	0.6049
28.9047	0.6327	33.2259		102.9527	0.8559	125.3963	0.8305	137.7264	0.8035	46.9205	0.6291
50.1445	0.6529	33.2261	0.2942	60.0001	0.9040	102.2404	0.8305	122.7978	0.8035	46.9206	0.6533
76.4339	0.6602	52.2389	0.3138	60.0001	0.9280		0.8305	101.4357	0.8035	60.0002	0.6710
76.4335	0.6676	77.0476		60.0001		125.3960		101.4353	0.8035	79.4549	0.6775
50.1441	0.6878	77.0472		60.0001		142.3013	0.8305	122.7974	0.8035	79.4545	
28.9044		52.2386		77.7595		142.3015		137.7263		59.9999	
28.9047		33.2259		54.6036		125,3963		137.7264	0.8035	46.9205	
		33.2261		37.6984		102.2404		122.7978	0.8035	46.9206	
	0.7703	52.2389		37.6987	0.0779	102.2400		101.4357	0.8035	60.0002	
76.4335		77.0476		54.6039		125.3960		101.4353	0.8035	79.4549	
50.1441	0.7978	77.0472		77.7599	0.1038	142.3013	0.8305	122.7974	0.8035	100.5450	0.7743
28.9044		52.2386	0.4547	77.7595	0.1108	142.3015		137.7263	0.8035	119.9997	
28.9047		33.2259	0.4815	54.6036	0.1298	125.3963		137.7264		133.0793	0.7743
50.1445	0.8730	33.2261		37.6984		102.2404	0.8305	122.7978	0.8035	133.0794	0.7743
76.4339	0.8803	52.2389	0.5278	37.6986		102.2400	0.8305	101.4357	0.8035	120.0000	
103.5660	0.8803	77.0476	0.5350	54.6039	0.2007	125.3960	0.8305	101.4353	0.8035	100.5454	0.7743
129.8554	0.8803	77.0472	0.5421	77.7599	0.2076	142.3013	0.8305	122,7974	0.8035	100.5450	
151.0952	0.8803	52.2386	0.5617	77.7595		142.3015	0.8305	137.7263	0.8035	119.9997	0.7743
151.0955		33.2259	0.5885	54.6036	0.2336	125.3963	0.8305	137.7264	0.8035	133.0793	0.7743
129.8558	0.8803	33.2261	0.6152	37.6984	0.2595	102.2404		122.7978	0.8035	133.0794	
103.5664		52.2389	0.6348	37.6986	0.2855	55.0001		101.4357	0.8035	120.0000	
103.5660	0.8803	77.0476	0.6420	54.6039	0.3045	55.0001		101.4353	0.8035	100.5454	0.7743
	0.8803	77.0472		77.7599	0.3114	55.0001	0.9718	122.7974	0.8035	100.5450	
151.0952		52.2386	0.6687	77.7595	0.3184	55.0001		137.7263	0.8035	119.9997	
151.0955		33.2259	0.6955	54.6036		78.5641		137.7264	0.8035	133.0793	0.7743
		33.2261	0.7222	37.6984	0.3633	57.2021	0.0251	122.7978	0.8035	133.0794	
103.5664		52.2389	0.7418	37.6986	0.3893	42.2735		101.4357	0.8035	120.0000	
103.5660		77.0476		54.6039		42.2738		101.4353	0.8035	100.5454	
129.8554		77.0472	0.7561	77.7599	0.4153	57.2024	0.0937	122.7974	0.8035	100.5450	0.7743
151.0952		52.2386		77.7595		78.5646		137.7263	0.8035	119.9997	0.7743
151.0955	0.8803	33.2259	0.8025	54.6036	0.4412	78.5641	0.1072	137.7264	0.8035	133.0793	0.7743

133.0794 0.7743	128.3806 0.7422	66.0724 0.4634	82.5643 0.1717	118.8790 0.6645	114.0927 0.6154
120.0000 0.7743	128.3807 0.7422	56.3559 0.4854	69.2951 0.1869	110.7048 0.6645	114.0928 0.6154
100.5454 0.7743	117.0340 0.7422	56.3561 0.5075	61.1210 0.2077	97.4356 0.6645	107.3877 0.6154
100.5450 0.7743	99.5767 0.7422	66.0728 0.5237	61.1211 0.2284	30.0000 0.7763	96.2798 0.6154
119.9997 0.7743	99.5763 0.7422	81.4629 0.5296	69.2954 0.2436	30.0000 0.8323	96.2794 0.6154
133.0793 0.7743	117.0337 0.7422	81.4625 0.5355	82.5647 0.2492	30.0000 0.9441	107.3874 0.6154
133.0794 0.7743	128.3806 0.7422	66.0724 0.5516	82.5643 0.2548	30.0000 1.0000	114.0927 0.6154
120.0000 0.7743	128.3807 0.7422	56.3559 0.5737	69.2951 0.2700	83.7201 0.0052	114.0928 0.6154
100.5454 0.7743	117.0340 0.7422	56.3561 0.5958	61.1210 0.2907	72.6122 0.0192	107.3877 0.6154
100.5450 0.7743	99.5767 0.7422	66.0728 0.6119	61.1211 0.3115	65.9071 0.0385	96.2798 0.6154
119.9997 0.7743	99.5763 0.7422	81.4629 0.6178	69.2954 0.3267	65.9073 0.0577	96.2794 0.6154
			82.5647 0.3323	72.6125 0.0718	107.3874 0.6154
133.0793 0.7743	117.0337 0.7422	81.4625 0.6238 66.0724 0.6399		83.7205 0.0769	114.0927 0.6154
133.0794 0.7743	128.3806 0.7422			83.7201 0.0821	114.0927 0.0154
120.0000 0.7743	128.3807 0.7422		69.2951 0.3530	72.6122 0.0062	
100.5454 0.7743	117.0340 0.7422	56.3561 0.6840	61.1210 0.3738	72.6122 0.0962	107.3877 0.6154
100.5450 0.7743	99.5767 0.7422	66.0728 0.7002	61.1211 0.3946	65.9071 0.1154	96.2798 0.6154
119.9997 0.7743	99.5763 0.7422	81.4629 .0.7061	69.2954 0.4098	65.9072 0.1346	96.2794 0.6154
133.0793 0.7743	117.0337 0.7422	98.5370 0.7061	82.5647 0.4153	72.6125 0.1487	107.3874 0.6154
133.0794 0.7743	128.3806 0.7422	113.9271 0.7061	82.5643 0.4209	83.7205 0.1538	114.0927 0.6154
120.0000 0.7743	128.3807 0.7422	123.6439 0.7061	69.2951 0.4361	83.7201 0.1590	114.0928 0.6154
100.5454 0.7743	117.0340 0.7422	123.6440 0.7061	61.1210 0.4569	72.6122 0.1731	107.3877 0.6154
100.5450 0.7743	99.5767 0.7422	113.9275 0.7061	61.1211 0.4776	65.9071 0.1923	96.2798 0.6154
119.9997 0.7743	99.5763 0.7422	98.5374 0.7061	69.2954 0.4928	65.9072 0.2115	25.0000 0.7436
133.0793 0.7743	117.0337 0.7422	98.5370 0.7061	82.5647 0.4984	72.6125 0.2256	25.0000 0.8077
133.0794 0.7743	128.3806 0.7422	113.9271 0.7061	82.5643 0.5040	83.7205 0.2308	25.0000 0.9359
120.0000 0.7743	128.3807 0.7422	123.6439 0.7061	69.2951 0.5192	83.7201 0.2359	25.0000 1.0000
100.5454 0.7743	117.0340 0.7422	123.6440 0.7061	61.1210 0.5399	72.6122 0.2500	84.9213 0.0047
45.0001 0.8495	99.5767 0.7422	113.9275 0.7061	61.1211 0.5607	65.9071 0.2692	76.0045 0.0174
45.0001 0.8871	99.5763 0.7422	98.5374 0.7061	69.2954 0.5759	65.9072 0.2885	70.7091 0.0347
45.0001 0.9624	117.0337 0.7422	98.5370 0.7061	82.5647 0.5815	72.6125 0.3025	70.7093 0.0521
45.0001 0.9024	128.3806 0.7422	113.9271 0.7061	82.5643 0.5870	83.7205 0.3077	76.0048 0.0648
80.4232 0.0062	128.3807 0.7422	123.6439 0.7061	69.2951 0.6022	83.7201 0.3128	84.9217 0.0694
62.9659 0.0232	117.0340 0.7422	123.6440 0.7061	61.1210 0.6230	72.6122 0.3269	84.9213 0.0741
					76.0045 0.0868
51.6192 0.0464	99.5767 0.7422	113.9275 0.7061	61.1211 0.6438	65.9071 0.3461	
51.6195 0.0696	99.5763 0.7422	98.5374 0.7061	69.2954 0.6590	65.9072 0.3654	70.7091 0.1041
62.9662 0.0866	117.0337 0.7422	98.5370 0.7061	82.5647 0.6645	72.6125 0.3795	70.7092 0.1215
80.4236 0.0928	128.3806 0.7422	113.9271 0.7061	97.4352 0.6645	83.7205 0.3846	76.0048 0.1342
80.4232 0.0990	128.3807 0.7422	123.6439 0.7061	110.7045 0.6645	83.7201 0.3898	84.9217 0.1388
62.9659 0.1160	117.0340 0.7422	123.6440 0.7061	118.8789 0.6645	72.6122 0.4038	84.9213 0.1435
51.6192 0.1392	99.5767 0.7422	113.9275 0.7061	118.8790 0.6645	65.9071 0.4231	76.0045 0.1562
51.6193 0.1624	99.5763 0.7422	98.5374 0.7061	110.7048 0.6645	65.9072 0.4423	70.7091 0.1735
62.9662 0.1793	117.0337 0.7422	98.5370 0.7061	97.4356 0.6645	72.6125 0.4564	70.7092 0.1909
80.4236 0.1856	128.3806 0.7422	113.9271 0.7061	97.4352 0.6645	83.7205 0.4615	76.0048 0.2036
80.4232 0.1918	128.3807 0.7422	123.6439 0.7061	110.7045 0.6645	83.7201 0.4667	84.9217 0.2082
62.9659 0.2087	117.0340 0.7422	123.6440 0.7061	118.8789 0.6645	72.6122 0.4808	84.9213 0.2129
51.6192 0.2319	99.5767 0.7422	113.9275 0.7061	118.8790 0.6645	65.9071 0.5000	76.0045 0.2256
51.6193 0.2551	40.0001 0.8281	98.5374 0.7061	110,7048 0.6645	65.9072 0.5192	70.7091 0.2429
62.9662 0.2721	40.0001 0.8711	98.5370 0.7061	97.4356 0.6645	72.6125 0.5333	70.7092 0.2603
80.4236 0.2783	40.0001 0.9571	113.9271 0.7061	97.4352 0.6645	83.7205 0.5384	76.0048 0.2730
80.4232 0.2845	40.0001 1.0000	123.6439 0.7061	110.7045 0.6645	83.7201 0.5436	84.9217 0.2777
62.9659 0.3015	81.4625 0.0059	123.6440 0.7061	118.8789 0.6645	72.6122 0.5577	84.9213 0.2823
51.6192 0.3247	66.0724 0.0221	113.9275 0.7061	118.8790 0.6645	65.9071 0.5769	76.0045 0.2950
51.6193 0.3479	56.3559 0.0441	98.5374 0.7061	110.7048 0.6645	65.9072 0.5961	70.7091 0.3124
62.9662 0.3649	56.3562 0.0662	98.5374 0.7061	97.4356 0.6645	72.6125 0.6102	70.7091 0.3124
			97.4352 0.6645	83.7205 0.6154	76.0048 0.3424
80.4236 0.3711		113.9271 0.7061	110.7045 0.6645	96.2794 0.6154	84.9217 0.3471
80.4232 0.3773	81.4629 0.0883	123.6439 0.7061	110.7043 0.0043		
62.9659 0.3943	81.4625 0.0942	123.6440 0.7061	118.8789 0.6645	107.3874 0.6154	84.9213 0.3517
51.6192 0.4175	66.0724 0.1103	113.9275 0.7061	118.8790 0.6645	114.0927 0.6154	76.0045 0.3644
51.6193 0.4407	56.3559 0.1324	98.5374 0.7061	110.7048 0.6645	114.0928 0.6154	70.7091 0.3818
62.9662 0.4577	56.3561 0.1545	98.5370 0.7061	97.4356 0.6645	107.3877 0.6154	70.7092 0.3991
80.4236 0.4639	66.0728 0.1706	113.9271 0.7061	97.4352 0.6645	96.2798 0.6154	76.0048 0.4118
80.4232 0.4701	81.4629 0.1765	123.6439 0.7061	110.7045 0.6645	96.2794 0.6154	84.9217 0.4165
62.9659 0.4871	81.4625 0.1824	123.6440 0.7061	118.8789 0.6645	107.3874 0.6154	84.9213 0.4211
51.6192 0.5103	66.0724 0.1986	113.9275 0.7061	118.8790 0.6645	114.0927 0.6154	76.0045 0.4338
51.6193 0.5335	56.3559 0.2207	98.5374 0.7061	110.7048 0.6645	114.0928 0.6154	70.7091 0.4512
62.9662 0.5504	56.3561 0.2427	35.0000 0.8041	97.4356 0.6645	107.3877 0.6154	70.7092 0.4685
80.4236 0.5567	66.0728 0.2589	35.0000 0.8531	97.4352 0.6645	96.2798 0.6154	76.0048 0.4812
80.4232 0.5629	81.4629 0.2648	35.0000 0.9510	110.7045 0.6645	96.2794 0.6154	84.9217 0.4859
62.9659 0.5798	81.4625 0.2707	35.0000 1.0000	118.8789 0.6645	107.3874 0.6154	84.9213 0.4905
51.6192 0.6030	66.0724 0.2869	82.5643 0.0056	118.8790 0.6645	114.0927 0.6154	76.0045 0.5032
51.6193 0.6262	56.3559 0.3089	69.2951 0.0208	110.7048 0.6645	114.0928 0.6154	70.7091 0.5206
62.9662 0.6432	56.3561 0.3310	61.1210 0.0415	97.4356 0.6645	107.3877 0.6154	70.7092 0.5380
80.4236 0.6494	66.0728 0.3471	61.1212 0.0623	97.4352 0.6645	96.2798 0.6154	76.0048 0.5507
80.4232 0.6556	81.4629 0.3531	69.2954 0.0775	110.7045 0.6645	96.2794 0.6154	84.9217 0.5553
62.9659 0.6726	81.4625 0.3590	82.5647 0.0831	118.8789 0.6645	107.3874 0.6154	95.0783 0.5553
51.6192 0.6958	66.0724 0.3751	82.5643 0.0886	118.8790 0.6645	114.0927 0.6154	103.9951 0.5553
51.6193 0.7190	56.3559 0.3972	69.2951 0.1038	110.7048 0.6645	114.0928 0.6154	109,2907 0.5553
62.9662 0.7360	56.3561 0.4193	61.1210 0.1246	97.4356 0.6645	107.3877 0.6154	109.2909 0.5553
80.4236 0.7422	66.0728 0.4354	61.1211 0.1454	97.4352 0.6645	96.2798 0.6154	103.9954 0.5553
99.5763 0.7422	81.4629 0.4413	69.2954 0.1606	110.7045 0.6645	96.2794 0.6154	95.0787 0.5553
117.0337 0.7422	81.4625 0.4472	82.5647 0.1661	118.8789 0.6645	107.3874 0.6154	95.0783 0.5553
111.0001 0.1422	01.4023 0.4472	04.50 7 / 0.1001	110.0.07 0.0040	10110017 UNIUT	2010100 010000

103.9951		86.1589	0.3633	87.4243		10.0000		93.5330		89.9997	
109.2907	0.5553	79.4547	0.3742	87.4239	0.1445		1.0000	94.8290	0.2308		
109.2909	0.5553	75.5226	0.3892	82.9469			0.0019	94.8291		89.9997	
103.9954	0.5553	75.5227	0.4041	80.3442		86.4667	0.0072	93.5333	0.2308	89.9999	0.0000
95.0787	0.5553	79.4550	0.4151	80.3443		85.1709	0.0144	91.2927	0.2308	90.0000	
95.0783	0.5553	86.1593	0.4191	82.9472		85.1710	0.0216	91.2923	0.2308	90.0001	0.0000
103.9951	0.5553	86.1589	0.4231	87.4243	0.1884	86.4670	0.0269	93.5330	0.2308	89.9997	0.0000
109.2907	0.5553	79.4547	0.4341	87.4239	0.1916	88.7077	0.0288	94.8290	0.2308	89.9997	0.0000
	0.5553	75.5226	0.4490	82.9469		88.7073	0.0308	94.8291	0.2308	89.9997	0.0000
103.9954	0.5553	75.5227	0.4640	80.3442		86.4667	0.0361	93.5333	0.2308	89.9999	0.0000
95.0787	0.5553	79,4550	0.4750	80.3443		85.1709	0.0433	91.2927	0.2308	90.0000	
95.0783		86,1593	0.4790	82.9472		85.1710		91.2923		90.0001	
103.9951	0.5553	93.8407	0.4790	87.4243			0.0558	93.5330	0.2308	89.9997	0.0000
109.2907	0.5553	100.5450	0.4790	87.4239	0.2387		0.0577	94.8290	0.2308	89.9997	
109.2909		104.4772	0.4790	82.9469		88.7073		94.8291	0.2308	89.9997	
	0.5553	104.4774	0.4790	80.3442		86.4667	0.0649	93.5333	0.2308	89.9999	0.0000
95.0787		100.5453	0.4790	80.3443			0.0049	91.2927	0.2308	90.0000	
95.0783		93.8411		82.9472		85.1710		4.9999			
			0.4790					4.9999			
103.9951	0.5553	93.8407	0.4790	87.4243			0.0846		0.6153		
109.2907	0.5553	100.5450	0.4790	87.4239			0.0865	4.9999			
109.2909		104.4772	0.4790	82.9469		88.7073		4.9999			
103.9954	0.5553	104.4774	0.4790	80.3442		86.4667	0.0938	89.9999	0.0000		0.0000
95.0787	0.5553	100.5453	0.4790	80.3443			0.1010	90.0000	0.0000		
95.0783		93.8411	0.4790	82.9472		85.1710		90.0001	0.0000		
103.9951	0.5553	93.8407	0.4790	87.4243			0.1135	90.0003	0.0000		0.0000
109.2907	0.5553	100.5450	0.4790	87.4239	0.3329		0.1154	90.0003	0.0000		
109.2909	0.5553	104.4772	0.4790	82.9469	0.3416	88.7073	0.1173	90.0003	0.0000	89.9997	0.0000
103.9954	0.5553	104.4774	0.4790	80.3442	0.3533	86.4667	0.1226	89.9999	0.0000	89.9999	0.0000
95.0787	0.5553	100.5453	0.4790	80.3443	0.3651	85.1709	0.1298	90.0000	0.0000	90.0000	0.0000
95.0783		93.8411	0.4790	82.9472		85.1710	0.1370	90.0001	0.0000		0.0000
103.9951	0.5553	93.8407	0.4790	87.4243			0.1423	90.0003	0.0000	89.9997	0.0000
109.2907	0.5553	100.5450	0.4790	92,5757			0.1442	90.0003	0.0000		
109.2909	0.5553	104.4772	0.4790	97.0527		88.7073		90.0003	0.0000		
103.9954	0.5553	104.4774	0.4790	99.6557		86.4667	0.1514	89.9999	0.0000	89.9999	0.0000
95.0787	0.5553	100.5453	0.4790	99.6558			0.1587	90.0000			
95.0783		93.8411	0.4790	97.0530		85.1710		90.0001	0.0000		
103.9951	0.5553	93.8407	0.4790	92.5761		86.4670	0.1712	90.0003	0.0000		0.3333
109.2907	0.5553	100.5450	0.4790	92.5757			0.1712	90.0003	0.0000		0.5000
109.2909	0.5553	104.4772	0.4790	97.0527		88.7073		90.0003	0.0000		0.8333
103.9954	0.5553	104.4774	0.4790	99.6557		86.4667	0.1803	89.9999	0.0000	0.0003	1.0000
95.0787		100.5453	0.4790	99.6558		85.1709	0.1875	90.0000		91.2924	
20.0000		93.8411	0.4790	97.0530		85.1710		90.0001			
20.0000		93.8407	0.4790	92.5761		86.4670	0.2000	90.0003	0.0000	94.8294	0.0000
20.0000		100.5450	0.4790	92.5757		88.7077	0.2019	90.0003	0.0000	94.8295	0.0000
20.0000		104.4772	0.4790	97.0527		88.7073		90.0003	0.0000	93.5336	
86.1589	0.0040	104.4774	0.4790	99.6557		86.4667	0.2091	89.9999	0.0000	91.2928	0.0000
79.4547		100.5453	0.4790	99.6558		85.1709	0.2164	90.0000	0.0000	91.2924	0.0000
75.5226		93.8411	0.4790	97.0530		85.1710		90.0001		93.5333	0.0000
75.5227	0.0449	93.8407	0.4790	92.5761		86.4670	0.2288	90.0003	0.0000	94.8294	0.0000
79.4550	0.0559	100.5450	0.4790	92.5757	0.3769	88.7077	0.2308	90.0003	0.0000	94.8295	0.0000
86.1593	0.0599	104.4772	0.4790	97.0527	0.3769		0.2308	90.0003	0.0000	93.5336	0.0000
86.1589	0.0639	104.4774	0.4790	99.6557	0.3769	93.5330	0.2308	89.9999	0.0000	91.2928	0.0000
79.4547	0.0748	100.5453	0.4790	99.6558		94.8290	0.2308	90.0000	0.0000	91.2924	0.0000
75.5226	0.0898	93.8411	0.4790	97.0530	0.3769	94.8291	0.2308	90.0001		93.5333	0.0000
75.5227		93.8407		92.5761		93.5333		90.0003	0.0000	94.8294	0.0000
79.4550		100.5450		92.5757		91.2927		90.0003		94.8295	0.0000
86.1593			0.4790	97.0527		91.2923		90.0003		93.5336	0.0000
86.1589		104.4774	0.4790	99.6557		93.5330		89.9999			0.0000
79.4547		100.5453	0.4790	99.6558		94.8290		90.0000			
75.5226		93.8411		97.0530		94.8291		90.0001		93.5333	
75.5227			0.6527	92.5761		93.5333		90.0001	0.0000	94.8294	0.0000
79.4550		15.0000		92.5757		91.2927	0.2300	90.0003	0.0000	94.8294	
86.1593		15.0000		97.0527		91.2923		90.0003		93.5336	
86.1589		15.0000		99.6557		93.5330	0.2300	89.9999	0.0000	93.5336	
70.4547	0.1630					93,3330	0.2308	90,0000		91.2920	0.0000
79.4547		87.4239		99.6558		94.8290		90.0000		91.2924	
75.5226		82.9469		97.0530		94.8291				93.5333	
75.5227		80.3442 80.3443		92.5761	0.3769	93.5333		90.0003	0.0000	94.8294	0.0000
79.4550				92.5757		91.2927		90.0003		94.8295	
86.1593		82.9472		97.0527		91.2923		90.0003		93.5336	
86.1589			0.0471	99.6557		93.5330		89.9997	0.0000	91.2928	0.0000
79.4547		87.4239		99.6558		94.8290		89.9997		91.2924	
75.5226		82.9469		97.0530		94.8291		89.9997		93.5333	
75.5227			0.0707	92.5761		93.5333	0.2308	89.9999		94.8294	
79.4550		80.3443	0.0824	92.5757		91.2927		90.0000		94.8295	
86.1593		82.9472		97.0527		91.2923		90.0001	0.0000	93.5336	
86.1589		87.4243	0.0942	99.6557		93.5330		89.9997		91.2928	0.0000
79.4547		87.4239		99.6558		94.8290		89.9997		91.2924	0.0000
75.5226		82.9469		97.0530		94.8291	0.2308	89.9997		93.5333	0.0000
75.5227		80.3442		92.5761		93.5333	0.2308	89.9999		94.8294	0.0000
79.4550		80.3443		10.0000		91.2927	0.2308	90.0000		94.8295	
86.1593		82.9472		10.0000		91.2923		90.0001		93.5336	
	· · · · · · · ·	7-11 17 -								,,,,,,,,	

				404.4555	0.0000	07.1500	0.2622	04.0016	0.2210	107.3880	0.0000
91.2928		97.0533		104.4777		86.1588		84.9216			
	0.0000	92.5762	0.0000	100.5456		79.4544		84.9212		96.2800	
93.5333	0.0000	92.5758	0.0000	93.8413		75.5222		76.0042		83.7201	
	0.0000	97.0530	0.0000	93.8408			0.4041	70.7087	0.2589	72.6120	
	0.0000	99.6561	0.0000	100.5453	0.0000	79.4547		70.7088	0.2774	65.9067	
93.5336	0.0000		0.0000	104.4777	0.0000	86.1592		76.0046	0.2909	65.9069	
91.2928	0.0000	97.0533	0.0000	104.4778	0.0000	86.1588		84.9216	0.2959	72.6123	
88.7072	0.0019		0.0000	100.5456	0.0000	79.4544		84.9212		83.7205	
86.4664	0.0072	92.5758	0.0000	93.8413		75.5222	0.4490	76.0042		83.7201	
	0.0144		0.0000	93.8408	0.0000	75.5223	0,4640	70.7087	0.3328	72.6120	
	0.0216	99.6561	0.0000	100.5453	0.0000	79.4547	0.4750	70.7088		65.9067	
86.4667	0.0269	99.6562		104.4777		86.1592	0.4790	76.0046	0.3649	65.9069	0.1582
	0.0289	97.0533	0.0000	104.4778	0.0000	15.0001	0.6527	84.9216 84.9212	0.3698	72.6123	0.1748
	0.0308	92.5762	0.0000	100.5456	0.0000	15.0001	0.7395	84.9212	0.3748	83.7205	0.1808
86.4664		92.5758		93.8413		15.0001		76.0042	0.3883	83.7201	0.1869
85.1705	0.0333		0.0000	93.8408	0.0000	15.0001	1,0000	70.7087	0.4050	72.6120	
		99.6561	0.0000	100.5453	0.0000	95.0784	0.0000	70.7088	0.4216	65.9067	
	0.0505	99.6562		100.5455	0.0000	103.9954		76.0046		65,9069	
86.4667					0.0000	109.2912		84.9216	0.4351	72.6123	
88.7076		97.0533	0.0000	104.4778	0.0000	109.2912		84.9212	0.4450	83.7205	
88.7072	0.0596	92.5762		100.5456				76.0042	0.4586	83.7201	
86.4664		92.5758	0.0000	93.8413		103.9957		70.0042		72.6120	0.2773
	0.0721	97.0530		93.8408	0.0000		0.0000	70.7087	0.4660	65.9067	0.2936
85.1706	0.0794	99.6561	0.0000	100.5453	0.0000	95.0784		70.7088			
86.4667		99.6562		104.4777	0.0000	103.9954		76.0046	0.4869	65.9069	
88.7076	0.0866	97.0533		104.4778	0.0000	109.2912		84.9216	0.4919	72.6123	
88.7072	0.0885	92.5762		100.5456	0.0000	109.2913		84.9212		83.7205	0.3616
86.4664	0.0938	87.4238	0.0032			103.9957		76.0042	0.5090	83.7201	
85.1705	0.1010	82.9467	0.0118	93.8408	0.0000	95.0788	0.0000	70.7087	0.5090	72.6120	
85.1706	0.1082	80.3438	0.0236	100.5453	0.0000	95.0784	0.0000	70.7088		65.9067	
86,4667		80.3439	0.0353	104.4777	0.0000	103.9954	0.0000	76.0046	0.5212	65.9069	
88.7076		82.9470	0.0440	104.4778	0.0000	109.2912	0.0000	84.9216	0.5261	72.6123	
88.7072		87.4242		100.5456	0.0000	109.2913	0.0000	20.0001	0.6841	83.7205	0.4520
86.4664		87.4238		93.8413		103.9957	0.0000	20.0001	0.7631	83.7201	0.4581
85.1705		82.9467	0.0589	93.8408	0.0000	95.0788		20.0001		72.6120	
85.1706		80.3438	0.0707	100.5453	0.0000	95.0784		20.0001	1.0000	65,9067	
86.4667		80.3439		104.4777	0.0000	103.9954		96.2796	0.0000	65.9069	
		82.9470		104.4778	0.0000	109.2912	0.0000		0.0000	72.6123	
88.7076					0.0000	109.2913	0.0000	114.0931		83.7205	
		87.4242		100.5456				114.0932	0.0000	83.7201	
86.4664	0.1515	87.4238		93.8413		103.9957		107.3880	0.0000	72.6120	
85.1705	0.1587	82.9467		93.8408	0.0000	95.0788	0.0000	107.3880		65.9067	
85.1706		80.3438		100.5453	0.0000	95.0784	0.0000	96.2800			
86,4667		80.3439		104.4777	0.0000	103.9954	0.0000	96.2796		65.9069	0.5099
88.7076		82.9470		104.4778	0.0000	109.2912		107.3877	0.0000	72.6123	0.5198
88.7072	0.1751	87.4242		100.5456	0.0000	109.2913		114.0931		83.7205	
86.4664	0.1803	87.4238		93.8413	0.0000	103.9957		114.0932	0.0000	83.7201	
85.1705	0.1876	82.9467	0.1531	86.1588	0.0040	95.0788	0.0000	107.3880	0.0000	72.6120	
85.1706	0.1948	80.3438	0.1649	79.4544	0.0150	95.0784		96.2800		65.9067	
86.4667		80.3439	0.1767	75.5222	0.0299	103.9954		96.2796		65.9069	
88.7076		82.9470	0.1853	75.5223	0.0449	109.2912	0.0000	107.3877	0.0000	72.6123	
88.7072	0.2039	87.4242	0.1884	79.4547	0.0559	109.2913	0.0000	114.0931	0.0000		
86.4664		87.4238		86.1592		103.9957	0.0000	114.0932	0.0000	25.0002	
85.1705		82.9467		86.1588		95.0788	0.0000	107.3880	0.0000	25.0002	
85.1706		80.3438		79.4544		95.0784	0.0000	96.2800	0.0000	25.0002	0.9246
86.4667		80.3439				103.9954		96.2796			1.0000
88.7076		82.9470		75.5223		109.2912		107.3877			0.0000
		87.4242		79.4547		109.2913	0.0000	114.0931			
	0.4872	87.4238	0.2330	86.1592		103.9957		114.0932	0.0000	118.8793	0.0000
	0.6154 0.8718	82.9467		86.1588		95.0788		107.3880			0.0000
5,0001	1.0000	80.3438		79.4544		95.0784	0.0000	96 2800	0.0000		
02.5750	1,0000	80.3439		75.5222		103.9954			0.0000		
92.5758				75.5223		109.2912		107.3877			
97.0530		82.9470		79.4547		109.2912		114.0931			
99.6561		87.4242				103.9957		114.0931			
99.6562		87.4238	0.2838	86.1592		95.0788		107.3880	0.0000	118.8794	
97.0533			0.2944	86.1588				107.368U	0.0000	110.7051	
92.5762		80.3438	0.3062	79.4544	0.1940		0.0050	90.2800	0.0000	97.4358	
			0.3180	15.5222	0.2096		0.0185	90.2790	0.0000		0.0000
97.0530			0.3266	75.5223	0.2245	70.7087		107.3877			
99.6561		87.4242		79.4547			0.0555	114.0931			
99.6562			0.3329	86.1592			0.0690	114.0932		118.8793	
97.0533			0.3416	86.1588	0.2435		0.0740	107.3880	0.0000		0.0000
92.5762		80.3438		79.4544			0.0789	96.2800	0.0000	110.7051	
92.5758			0.3651		0.2694		0.0925		0.0000		0.0000
97.0530		82.9470	0.3737	75.5223	0.2844	70.7087		107.3877		97.4354	0.0000
99.6561			0.3769	79,4547	0.2954	70.7088	0.1294	114.0931			
99.6562		10.0001	0.5846	86.1592	0.2994		0.1430	114.0932			
97.0533		10.0001	0.6884		0.3034	84.9216	0.1479	107.3880	0.0000	118.8794	
92.5762			0.8961	79.4544	0.3143	84.9212	0.1529	96.2800	0.0000	110.7051	
92.5758			1.0000	75.5222	0.3293		0.1664	96.2796	0.0000	97.4358	0.0000
97.0530	0.0000		0.0000	75.5223		70.7087		107.3877	0.0000	97.4354	0.0000
	0.0000	100.5453			0.3552		0.2034	114.0931	0.0000		
	0.0000	104.4777			0.3592		0.2169	114.0932			
	5.0000	10		23.1272						•	

				1. file							
118.8794	0.0000	123.6443	0.0000	81.4629	0.5688	62.9660		46.9203	0.1392	137.7267	0.0000
110.7051	0.0000	123.6444	0.0000	81.4625	0.5731	80.4236	0.5049	60.0000	0.1732	137.7269	0.0000
97.4358	0.0000	113.9278	0.0000	66.0722	0.5731	80.4232	0.5154	79.4549	0.1857	122.7981	0.0000
97.4354	0.0000	98.5376		56.3556	0.5731	62.9657	0.5239	79.4545	0.1981	101.4359	0.0000
110.7048	0.0000	98.5372	0.0000	56.3557	0.5731	51.6188	0.5239	59.9997	0.2321	101.4355	0.0000
118.8793	0.0000	113.9275	0.0000	66.0726	0.5731	51.6190		46.9201	0.2785	122.7978	0.0000
118.8794	0.0000	123.6443	0.0000	81.4629	0.5773	62.9660	0.5325	46.9203	0.3249	137.7267	0.0000
110.7051	0.0000	123.6444	0.0000	35.0002	0.7182	80.4236	0.5429	60.0000	0.3589	137.7269	0.0000
97.4358	0.0000	113.9278	0.0000	35.0002	0.7887	80.4232		79.4549	0.3713	122.7981	0.0000
97.4354	0.0000	98.5376	0.0000	35.0002	0.9296	62.9657	0.5502	79.4545	0.3837	101.4359	0.0000
110.7048	0.0000	98.5372	0.0000	35.0002	1.0000	51.6188	0.5502	59.9997	0.4143	101.4355	0.0000
118.8793	0.0000	113.9275	0.0000	99.5765	0.0000	51.6190 62.9660		46.9201 46.9203	0.4282	122.7978	0.0000
118.8794 110.7051	0.0000	123.6443 123.6444	0.0000	117.0340 128.3810	0.0000	80.4236		60.0000	0.4422 0.4727	137.7267 137.7269	0.0000
97.4358	0.0000	113.9278	0.0000	128.3810	0.0000	80.4232		79.4549	0.4727	122.7981	0.0000
97.4354	0.0000	98.5376		117.0344	0.0000	62.9657	0.5596	79.4545	0.4832	101.4359	0.0000
110.7048	0.0000		0.0000	99.5769	0.0000	51.6188	0.5596	59.9997	0.4970		0.0000
118.8793	0.0000	113.9275	0.0000	99.5765	0.0000	51.6190		46.9201		57.2020	
118.8794	0.0000	123.6443	0.0000	117.0340	0.0000	62.9660	0.5596	46.9203	0.5112	42.2731	0.1091
110.7051	0.0000	123.6444	0.0000	128.3810	0.0000	80.4236	0.5617	60.0000	0.5248	42.2733	0.1636
97.4358	0.0000	113.9278	0.0000	128.3811	0.0000	80.4232	0.5617	79.4549	0.5372	57.2023	
82.5643	0.0072	98.5376	0.0000	117.0344	0.0000	62.9657	0.5617	79.4545	0.5472	78.5646	0.2181
69.2949	0.0271	98.5372	0.0000	99.5769	0.0000	51.6188	0.5617	59.9997	0.5472	78.5642	0.2327
61.1206		113.9275	0.0000	99.5765	0.0000	51.6190		46.9201	0.5472	57.2020	
61.1207	0.0812	123.6443	0.0000	117.0340	0.0000	62.9660	0.5617	46.9203	0.5472	42.2731	0.3272
69.2952	0.1010	123.6444	0.0000	128.3810	0.0000	80.4236	0.5669	60.0000	0.5472	42.2733	0.3817
82.5647		113.9278		128.3811	0.0000		0.7113	79.4549	0.5571	57.2023	
82.5643	0.1155		0.0000	117.0344	0.0000	40.0002	0.7835	79.4545	0.5621	78.5646	0.4363
69.2949	0.1353	98.5372		99.5769	0.0000		0.9278	59.9997	0.5621		0.4509
61.1206		113.9275	0.0000	99.5765	0.0000		1.0000	46.9201	0.5621	57.2020	0.4788
61.1207	0.1895	123.6443	0.0000	117.0340	0.0000	100.5452	0.0000	46.9203	0.5621	42.2731	0.4788
69.2952	0.2093	123.6444	0.0000	128.3810	0.0000	120.0000	0.0000	60.0000	0.5621	42.2733	0.4788
82.5647	0.2165	113.9278	0.0000	128.3811	0.0000	133.0797	0.0000	79.4549	0.5671		0.5068
82.5643	0.2238	98.5376	0.0000	117.0344	0.0000	133.0797	0.0000	79.4545	0.5671	78.5646	0.5214
69.2949	0.2436	98.5372	0.0000	99.5769	0.0000	120.0004	0.0000	59.9997	0.5671	78.5642	0.5360
61.1206	0.2706	113.9275	0.0000	99.5765	0.0000	100.5456	0.0000	46.9201	0.5671	57.2020	0.5400
61.1207	0.2977	123.6443	0.0000	117.0340	0.0000	100.5452	0.0000	46.9203	0.5671	42.2731	0.5400
69.2952	0.3175	123.6444	0.0000	128.3810	0.0000	120.0000	0.0000	60.0000	0.5671	42.2733	0.5400
82.5647		113.9278		128.3811	0.0000	133.0797		79.4549	0.5671	57.2023	0.5440
82.5643	0.3320	98.5376		117.0344	0.0000	133.0799	0.0000	79.4545	0.5671	78.5646	0.5586
69.2949	0.3518	81.4625	0.0085	99,5769	0.0000	120.0004	0.0000	59.9997	0.5671	78.5642	
61.1206	0.3789	66.0722		99.5765	0.0000		0.0000	46.9201	0.5671		0.5659
61.1207	0.4060	56.3556		117.0340	0.0000	100.5452	0.0000	46.9203	0.5671	42.2731	0.5659
69.2952	0.4258	56.3557	0.0952	128.3810	0.0000	120.0000	0.0000	60.0000	0.5671	42.2733	0.5659
82.5647	0.4330	66.0726		128.3811	0.0000	133.0797	0.0000	79.4549	0.5671	57.2023	0.5659
82.5643	0.4403	81.4629	0.1269	117.0344	0.0000	133.0799	0.0000	45.0002	0.7114	78.5646	0.5732
69.2949	0.4601	81.4625	0.1354	99.5769	0.0000	120.0004	0.0000	45.0002	0.7835	78.5642	
61.1206	0.4601	66.0722	0.1587 0.1904		0.0000	100.5456	0.0000	45.0002	0.9278	57.2020	
61.1207		56.3556		117.0340	0.0000	100.5452	0.0000	45.0002 101.4355	1.0000	42.2731 42.2733	0.5732
69.2952 82.5647	0.4799 0.4872	56.3557	0.2221	128.3810	0.0000	120.0000 133.0797	0.0000	122.7978	0.0000		0.5732
82.5647 82.5643	0.4872	66.0726 81.4629	0.2539	128.3811 117.0344	0.0000	133.0799	0.0000	137.7267	0.0000	57.2023 78.5646	0.5732 0.5732
69.2949	0.5063	81.4625	0.2624	99.5769	0.0000	120.0004	0.0000	137.7267	0.0000	78.5642	0.5732
61.1206		66.0722	0.2856	99.5765	0.0000	100.5456	0.0000	122.7981	0.0000	57.2020	0.5732
61.1207		56.3556			0.0000	100.5452	0.0000	101.4359	0.0000	42.2731	
69.2952		56.3557	0.0101	128.3810		120.0000		101.4355		42.2733	0.5000
82.5647		66.0726		128.3811	0.0000	133.0797	0.0000	122.7978		57.2023	
82.5643		81.4629	0.3808	117.0344	0.0000	133.0799		137.7267			
69.2949		81.4625		99.5769		120.0004		137.7269		78.5642	
61.1206		66.0722		80.4232	0.0104	100.5456		122.7981		57.2020	
61.1207		56.3556		62.9657		100.5452		101.4359		42.2731	
69.2952		56.3557	0.4443	51.6188	0.0779	120.0000	0.0000	101.4355		42.2733	0.5732
82.5647	0.5518	66.0726		51.6190	0.1169	133.0797	0.0000		0.0000	57.2023	0.5732
82.5643	0.5591	81.4629		62.9660		133.0799	0.0000	137.7267		78.5646	
69.2949	0.5591	81.4625		80.4236		120.0004		137.7269	0.0000	50.0002	0.7155
61.1206		66.0722	0.4984	80.4232	0.1663	100.5456	0.0000	122.7981	0.0000	50.0002	0.7866
61.1207		56.3556		62.9657	0.1948	100.5452	0.0000	101.4359	0.0000	50.0002	0.9289
69.2952		56.3557		51.6188	0.2338	120.0000		101.4355		50.0002	
82.5647		66.0726		51.6190		133.0797	0.0000		0.0000	102.2402	
30.0002		81.4629		62.9660		133.0799		137.7267		125.3963	
30.0002		81.4625		80.4236		120.0004		137.7269		142.3018	
30.0002		66.0722		80.4232		100.5456		122.7981		142.3018	
30.0002		56.3556		62.9657		100.5452		101.4359	0.0000	125.3966	
98.5372		56.3557		51.6188		120.0000		101.4355		102.2406	
113.9275		66.0726		51.6190		133.0797	0.0000	122.7978	0.0000	102.2402	
123.6443		81.4629		62.9660		133.0799	0.0000	137.7267		125.3963	
123.6443		81.4625		80.4236		120.0004		137.7269		142.3018	
113.9278	0.0000	66.0722		80.4232		100.5456		122.7981		142.3020	
98.5376 98.5372		56.3556 56.3557		62.9657 51.6188	0.4/45	79.4545 59.9997		101.4359		125.3966	
113.9275		66.0726		51.6190	0.4/43	39.9997 46.9201		101.4355 122.7978	0.0000	102.2406 102.2402	0.0000
113.74/3	0.0000	00.0720	0.5003	31.0190	0.4/43	40.9201	0.0720	144.1710	0.0000	102.2402	0.0000

			00.0040 0.4712	131.6411 0.0000	104.4774 0.0000
125.3963 0.0000	54.6038 0.5737	33.2257 0.5557	28.9042 0.4713	155.1860 0.0000	133.0795 0.0000
142.3018 0.0000	77.7600 0.5737	52.2389 0.5557	28.9044 0.4713	155.1862 0.0000	158.9096 0.0000
142.3020 0.0000	55.0003 0.7158	77.0477 0.5557	50.1444 0.5086		158.9099 0.0000
125,3966 0.0000	55.0003 0.7869	77.0473 0.5557	76.4340 0.5358		133.0799 0.0000
102.2406 0.0000	55,0003 0.9290	52.2385 0.5557	76.4336 0.5467	104.0764 0.0000	104.4778 0.0000
102.2402 0.0000	55.0003 1.0000	33.2255 0.5557	50.1441 0.5467	104.0760 0.0000	104.4774 0.0000
125.3963 0.0000	102.9524 0.0000	33.2257 0.5557	28.9042 0.5467	131.6411 0.0000	133.0795 0.0000
142.3018 0.0000	127.7613 0.0000	52.2389 0.5557	28.9044 0.5467	155.1860 0.0000	
142.3020 0.0000	146.7743 0.0000	77.0477 0.5557	50.1444 0.5467	155.1862 0.0000	
125.3966 0.0000	146,7743 0.0000	77.0473 0.5557	76.4340 0.5576	131.6415 0.0000	158.9099 0.0000
102.2406 0.0000	127.7616 0.0000	52.2385 0.5557	76.4336 0.5576	104.0764 0.0000	133.0799 0.0000
	102.9528 0.0000	33.2255 0.5557	50.1441 0.5576	75.9238 0.0338	104.4778 0.0000
102.2402 0.0000 125.3963 0.0000	102.9524 0.0000	33.2257 0.5557	28,9042 0.5576	48.3586 0.1263	104.4774 0.0000
	127.7613 0.0000	52.2389 0.5557	28.9044 0.5576	24.8138 0.2274	133.0795 0.0000
	146.7743 0.0000	77.0477 0.5557	50.1444 0.5576	24.8141 0.3285	158.9096 0.0000
142.3020 0.0000	146.7745 0.0000	77.0473 0.5557	76.4340 0.5576	48.3590 0.4209	158.9099 0.0000
125.3966 0.0000	127.7616 0.0000	52.2385 0.5557	76.4336 0.5576	75.9242 0.4548	133.0799 0.0000
102.2406 0.0000	102.9528 0.0000	33.2255 0.5557	50.1441 0.5576	75.9238 0.4852	104.4778 0.0000
102.2402 0.0000	102.9528 0.0000	33.2257 0.5557	28.9042 0.5576	48.3586 0.5130	104.4774 0.0000
125.3963 0.0000	102.9524 0.0000	52.2389 0.5557	28,9044 0.5576	24.8138 0.5130	133.0795 0.0000
142.3018 0.0000	127.7613 0.0000	77.0477 0.5557	50.1444 0.5576	24.8141 0.5130	158.9096 0.0000
142.3020 0.0000	146.7743 0.0000	60,0003 0.7038	76.4340 0.5576	48.3590 0.5407	158,9099 0.0000
125.3966 0.0000	146.7745 0.0000		76.4336 0.5576	75.9242 0.5712	133.0799 0.0000
102.2406 0.0000	127.7616 0.0000	60.0003 0.7779	50.1441 0.5576	75.9238 0.5712	104.4778 0.0000
102.2402 0.0000	102.9528 0.0000	60.0003 0.9260	28.9042 0.5576	48.3586 0.5712	104.4774 0.0000
125.3963 0.0000	102.9524 0.0000	60.0003 1.0000		24.8138 0.5712	133.0795 0.0000
142.3018 0.0000	127.7613 0.0000	103.5662 0.0000	28.9044 0.5576	24.8141 0.5712	158.9096 0.0000
142.3020 0.0000	146.7743 0.0000	129.8557 0.0000	50.1444 0.5576	48.3590 0.5712	158.9099 0.0000
125.3966 0.0000	146.7745 0.0000	151.0957 0.0000	76.4340 0.5576		133.0799 0.0000
102.2406 0.0000	127.7616 0.0000	151.0957 0.0000	76.4336 0.5576	75.9242 0.5712	104.4778 0.0000
102.2402 0.0000	102.9528 0.0000	129.8561 0.0000	50.1441 0.5576	75.9238 0.5712	75.5224 0.0481
125,3963 0.0000	102.9524 0.0000	103.5666 0.0000	28.9042 0.5576	48.3586 0.5712	46.9203 0.1533
142.3018 0.0000	127.7613 0.0000	103.5662 0.0000	28.9044 0.5576	24.8138 0.5712	
142.3020 0.0000	146.7743 0.0000	129.8557 0.0000	50.1444 0.5576	24.8141 0.5712	
125.3966 0.0000	146.7745 0.0000	151.0957 0.0000	76.4340 0.5576	48.3590 0.5712	
102.2406 0.0000	127.7616 0.0000	151.0959 0.0000	76.4336 0.5576	75.9242 0.5712	46.9207 0.4741
77.7595 0.0175	102.9528 0.0000	129.8561 0.0000	50.1441 0.5576	75.9238 0.5712	75.5228 0.5222
54.6035 0.0653	102.9524 0.0000	103.5666 0.0000	28.9042 0.5576	48.3586 0.5712	75.5224 0.5366
37.6981 0.1305	127.7613 0.0000	103.5662 0.0000	28.9044 0.5576	24.8138 0.5712	46.9203 0.5366
37.6982 0.1958	146.7743 0.0000	129.8557 0.0000	50.1444 0.5576	24.8141 0.5712	21.0902 0.5366
	146.7745 0.0000	151.0957 0.0000	76.4340 0.5576	48.3590 0.5712	21.0905 0.5366
54,6038 0.2436 77,7600 0.2611	127.7616 0.0000	151.0959 0.0000	65.0003 0.7051	75.9242 0.5712	46.9207 0.5366
	102.9528 0.0000	129.8561 0.0000	65.0003 0.7788	75.9238 0.5712	75.5228 0.5511
	102.9524 0.0000	103.5666 0.0000	65.0003 0.9263	48.3586 0.5712	75.5224 0.5511
54.6035 0.3264	127.7613 0.0000	103.5662 0.0000	65.0003 1.0000	24.8138 0.5712	46.9203 0.5511
37.6981 0.3721	146.7743 0.0000	129.8557 0.0000	104.0760 0.0000	24.8141 0.5712	21.0902 0.5511
37.6982 0.4177	146.7745 0.0000	151.0957 0.0000	131.6411 0.0000	48.3590 0.5712	21.0905 0.5511
54.6038 0.4655		151.0959 0.0000	155.1860 0.0000	75.9242 0.5712	46.9207 0.5511
77.7600 0.4830	127.7616 0.0000	129.8561 0.0000	155.1860 0.0000	75.9238 0.5712	75.5228 0.5511
77.7595 0.5005	102.9528 0.0000	103.5666 0.0000	131.6415 0.0000	48.3586 0.5712	75.5224 0.5511
54.6035 0.5196	102.9524 0.0000		104.0764 0.0000	24.8138 0.5712	46.9203 0.5511
37.6981 0.5196	127.7613 0.0000	103.5662 0.0000 129.8557 0.0000	104.0760 0.0000	24.8141 0.5712	21.0902 0.5511
37.6982 0.5196	146.7743 0.0000		131.6411 0.0000	48.3590 0.5712	21.0905 0.5511
54.6038 0.5387	146.7745 0.0000		155.1860 0.0000	75.9242 0.5712	46.9207 0.5511
77.7600 0.5562	127.7616 0.0000	151.0959 0.0000	155.1862 0.0000	75.9238 0.5712	75.5228 0.5511
77.7595 0.5650	102.9528 0.0000	129.8561 0.0000	131.6415 0.0000	48.3586 \0.5712	75.5224 0.5511
54.6035 0.5650	77.0473 0.0221	103.5666 0.0000		24.8138 0.5712	46.9203 0.5511
37.6981 0.5650	52.2385 0.0825	103.5662 0.0000	104.0764 0.0000	24.8141 0.5712	21.0902 0.5511
37.6982 0.5650	33.2255 0.1650	129.8557 0.0000	104.0760 0.0000	48.3590 0.5712	21.0905 0.5511
54.6038 0.5650	33.2257 0.2475	151.0957 0.0000	131.6411 0.0000	75.9242 0.5712	46.9207 0.5511
77.7600 0.5737	52.2389 0.3079	151.0959 0.0000	155.1860 0.0000	70.0003 0.7141	75.5228 0.5511
77.7595 0.5737	77.0477 0.3300	129.8561 0.0000	155.1862 0.0000	70.0003 0.7141	75.5224 0.5511
54.6035 0.5737	77.0473 0.3521	103.5666 0.0000	131.6415 0.0000		46.9203 0.5511
37.6981 0.5737	52.2385 0.3944	103,5662 0.0000	104.0764 0.0000	70.0003 0.9285	21.0902 0.5511
37.6982 0.5737	33.2255 0.4191	129.8557 0.0000	104.0760 0.0000	70.0003 1.0000	21.0902 0.5511
54.6038 0.5737	33.2257 0.4439	151.0957 0.0000	131.6411 0.0000	104.4774 0.0000	46 0207 0 5511
77.7600 0.5737	52.2389 0.4862	151.0959 0.0000	155.1860 0.0000	133.0795 0.0000	46.9207 0.5511
77.7595 0.5737	77.0477 0.5083	129.8561 0.0000	155,1862 0.0000	158.9096 0.0000	75.5228 0.5511
54.6035 0.5737	77.0473 0.5260	103.5666 0.0000	131.6415 0.0000	158.9096 0.0000	75.5224 0.5511
37.6981 0.5737	52.2385 0.5320	103,5662 0.0000	104.0764 0.0000	133.0799 0.0000	46.9203 0.5511
37.6982 0.5737	33.2255 0.5320	129.8557 0.0000	104.0760 0.0000	104.4778 0.0000	21.0902 0.5511
54.6038 0.5737	33.2257 0.5320	151.0957 0.0000	131.6411 0.0000	104.4774 0.0000	21.0905 0.5511
77.7600 0.5737	52.2389 0.5380	151.0959 0.0000	155.1860 0.0000	133.0795 0.0000	46.9207 0.5511
77.7595 0.5737	77.0477 0.5557	129.8561 0.0000	155.1862 0.0000	158.9096 0.0000	75.5228 0.5511
54.6035 0.5737	77.0477 0.5557	103.5666 0.0000	131.6415 0.0000	158.9099 0.0000	75.5224 0.5511
37.6981 0.5737	52.2385 0.5557	76.4336 0.0273	104.0764 0.0000	133.0799 0.0000	46.9203 0.5511
37.6981 0.5737	33.2255 0.5557	50.1441 0.1017	104.0760 0.0000	104.4778 0.0000	21.0902 0.5511
	33.2257 0.5557	28.9042 0.2034	131.6411 0.0000	104.4774 0.0000	21.0905 0.5511
54.6038 0.5737 77.7600 0.5737	52.2389 0.5557	28.9044 0.3051	155.1860 0.0000	133.0795 0.0000	46.9207 0.5511
//./OUU U.3/3/	77.0477 0.5557	50.1444 0.3796	155.1862 0.0000	158,9096 0.0000	75.5228 0.5511
77.7595 0.5737	77.0477 0.5557	76.4340 0.4068	131.6415 0.0000	158.9099 0.0000	75.0003 0.7007
54.6035 0.5737	52.2385 0.5557	76.4336 0.4341	104.0764 0.0000	133.0799 0.0000	75.0003 0.7755
37.6981 0.5737		50.1441 0.4713	104.0760 0.0000	104.4778 0.0000	75.0003 0.9252
37.6982 0.5737	33.2255 0.5557	30.1441 0.4/13	10 110 100 010000		

75.0003	1.0000	17.9636	0.5616	45.2175 0.563	6 0.0000	0.0000
104.7668	0.0000	17.9639	0.5616	15.7930 0.563		0.0000
134.1360	0.0000	45.8642	0.5616	15.7934 0.563		0.0000
162.0362	0.0000	75.2334	0.5616	45.2179 0.563		0.0000
162.0363	0.0000	75.2330	0.5616	75.0588 0.563		0.0000
134.1364	0.0000	45.8638	0.5616	75.0583 0.563		0.0000
104.7672	0.0000	17.9636	0.5616	45.2175 0.563		0.0000
	0.0000		0.5616	15.7930 0.563		0.0000
104.7668		17.9639	and the second second			0.0000
134.1360	0.0000	45.8642	0.5616	15.7934 0.563		
162.0362	0.0000	75.2334	0.5616	45.2179 0.563		0.0000
162.0366	0.0000	75.2330	0.5616	75.0588 0.563		0.0000
134.1364	0.0000	45.8638	0.5616	75.0583 0.563		0.0000
104.7672	0.0000	17.9636	0.5616	45.2175 0.563		0.0000
104.7668	0.0000	17.9639	0.5616	15.7930 0.563		0.0000
134.1360	0.0000	45.8642	0.5616	15.7934 0.563		0.0000
162.0362	0.0000	75.2334	0.5616	45.2179 0.563		0.0000
162.0366	0.0000	80.0003	0.7078	75.0588 0.563	6 0.0000	0.0000
134.1364	0.0000	80.0003	0.7808	75.0583 0.563	6 0.0000	0.0000
104.7672	0.0000	80.0003	0.9269	45.2175 0.563	6 0.0000	0.0000
104.7668	0.0000	80.0003	1.0000	15.7930 0.563	6 0.0000	0.0000
134.1360	0.0000	104.9415	0.0000	15.7934 0.563		0.0000
162.0362	0.0000	134.7823	0.0000	45.2179 0.563		0.0000
162.0366	0.0000	164.2068	0.0000	75.0588 0.563		0.0000
134.1364	0.0000	164.2068	0.0000	75.0583 0.563		0.0000
104.7672	0.0000	134.7827	0.0000	45.2175 0.563		0.0000
104.7668	0.0000	104.9419	0.0000	15.7930 0.563		0.0000
134.1360	0.0000	104.9415	0.0000	15.7934 0.563		0.0000
162.0362	0.0000	134.7823	0.0000	45.2179 0.563		0.0000
162.0366	0.0000	164.2068	0.0000	75.0588 0.563		0.0000
						0.0000
134.1364	0.0000	164.2072	0.0000	75.0583 0.563		0.0000
104.7672	0.0000	134.7827	0.0000	45.2175 0.563 15.7930 0.563		0.0000
104.7668	0.0000	104.9419	0.0000			
134.1360	0.0000	104.9415	0.0000	15.7934 0.563		0.0000
162.0362	0.0000	134.7823	0.0000	45.2179 0.563	6 0.0000	0.0000
162.0366	0.0000	164.2068	0.0000	75.0588 0.563		0.0000
134.1364	0.0000	164.2072	0.0000	85.0003 0.709		0.0000
104.7672	0.0000	134.7827	0.0000	85,0003 0.781		0.0000
104.7668	0.0000	104.9419	0.0000	85.0003 0.927		0.0000
134.1360	0.0000	104.9415	0.0000	85.0003 1.000		0.0000
162.0362	0.0000	134.7823	0.0000	0.0000 0.000		0.0000
162.0366	0.0000	164.2068	0.0000	0.0000 0.000		0.0000
134.1364	0.0000	164.2072	0.0000	0.0000 0.000	0.0000	0.0000
104.7672	0.0000	134.7827	0.0000	0.0000 0.000		0.0000
104.7668	0.0000	104.9419	0.0000	0.0000 0.000	0.0000	0.0000
134.1360	0.0000	104.9415	0.0000	0.0000 0.000	0.0000	0.0000
162.0362	0.0000	134.7823	0.0000	0.0000 0.000	0.0000	0.0000
162.0366	0.0000	164.2068	0.0000	0.0000 0.000	0.0000	0.0000
134.1364	0.0000	164.2072	0.0000	0.0000 0.000	0.0000	0.0000
104.7672	0.0000	134.7827	0.0000	0.0000 0.000	0.0000	0.0000
75.2330	0.0571	104.9419	0.0000	0.0000 0.000		0.0000
45.8638	0.1742	104.9415	0.0000	0.0000 0.000		0.0000
17.9636	0.2808	134.7823	0.0000	0.0000 0.000		0.0000
17.9639	0.3874	164.2068	0.0000	0.0000 0.000		0.0000
45.8642	0.5045	164.2072	0.0000	0.0000 0.000		0.0000
75.2334	0.5616	134.7827	0.0000	0.0000 0.000		0.0000
75.2330	0.5616	104.9419	0.0000	0.0000 0.000		0.0000
45.8638	0.5616	104.9415	0.0000	0.0000 0.000		0.0000
17.9636						
17.9639	0.5616 0.5616	134.7823	0.0000	0.0000 0.0000		0.0000
45.8642	0.5616	164.2068 164.2072	0.0000	0.0000 0.000		
75.2334	0.5616	134.7827	0.0000	0.0000 0.000		
75.2330	0.5616	104.9419	0.0000	0.0000 0.000		
45.8638	0.5616	104.9415	0.0000	0.0000 0.000		
17.9636	0.5616	134.7823	0.0000	0.0000 0.000		
17.9639	0.5616	164.2068	0.0000	0.0000 0.000		
45.8642	0.5616	164.2072	0.0000	0.0000 0.000		
75.2334	0.5616	134.7827	0.0000	0.0000 0.000		
75.2330	0.5616	104.9419	0.0000	0.0000 0.000		
45.8638	0.5616	75.0583	0.0573	0.0000 0.000		
17.9636	0.5616	45.2175	0.1748	0.0000 0.0000		
17.9639	0.5616	15.7930	0.2818	0.0000 0.0000	O	
45.8642	0.5616	15.7934	0.3888	0.0000 0.0000)	
75.2334	0.5616	45.2179	0.5063	0.0000 0.000)	
75.2330	0.5616	75.0588	0.5636	0.0000 0.000		
45.8638	0.5616	75.0583	0.5636	0.0000 0.0000		
17.9636	0.5616	45.2175	0.5636	0.0000 0.000		
17.9639	0.5616	15.7930	0.5636	0.0000 0.0000		
45.8642	0.5616	15.7934	0.5636	0.0000 0.0000		
75.2334	0.5616	45.2179	0.5636	0.0000 0.0000		
75.2330	0.5616	75.0588	0.5636	0.0000 0.0000		
	0.5616	75.0583	0.5636	0.0000 0.0000		
45.8638						

APPENDIX F HAB.DAT Data File

Obliquity	Cum.	0.0000	0.0000	75.0583	0.5636	75.2334	0.5616	133.0799	0.0000	155.1862	0.0000
(degrees)	Prob.	0.0000	0.0000	45.2175	0.5636	75.2330		104.4778	0.0000	131.6415	0.0000
0.0000	0.0000	0.0000 104.9415	0.0000	15.7930 15.7934	0.5636	45.8638 17.9636	0.5616	104.4774 133.0795	0.0000		0.0000
0.0000		134.7823	0.0000	45.2179	0.5636	17.9639	0.5616	158.9096	0.0000	131.6411	0.0000
0.0000	0.0000	164.2068	0.0000	75.0588		45.8642	0.5616	158.9099	0.0000		0.0000
0.0000	0.0000	164.2068 134.7827	0.0000	75.0583 45.2175	0.5636	75.2334 75.2330	0.5616	133.0799 104.4778	0.0000 0.0000	155.1862 131.6415	0.0000
	0.0000	104.9419	0.0000	15.7930	0.5636	45.8638	0.5616	75.5224	0.0481		0.0000
0.0000	0.0000	104.9415	0.0000	15.7934	0.5636	17.9636	0.5616	46.9203	0.1533	104.0760	
0.0000		134.7823	0.0000	45.2179	0.5636	17.9639	0.5616	21.0902 21.0905	0.2611 0.3689	131.6411 155.1860	0.0000
	0.0000	164.2068 164.2072	0.0000	75.0588 75.0583		45.8642 75.2334		46.9207	0.3089		0.0000
	0.0000	134.7827	0.0000	45.2175	0.5636	75.2330	0.5616	75.5228	0.5222	131.6415	0.0000
	0.0000	104.9419	0.0000	15.7930	0.5636	45.8638	0.5616	75.5224	0.5366		0.0000
0.0000	0.0000	104.9415 134.7823	0.0000	15.7934 45.2179	0.5636	17.9636 17.9639	0.5616	46.9203 21.0902	0.5366	104.0760 131.6411	0.0000
	0.0000	164.2068	0.0000	75.0588		45.8642	0.5616	21.0905	0.5366	155.1860	0.0000
0.0000	0.0000	164.2072	0.0000	85.0003	0.7091	75.2334	0.5616	46.9207	0.5366	155.1862	0.0000
0.0000		134.7827	0.0000		0.7819 0.9273	75.2330 45.8638	0.5616	75.5228 75.5224	0.5511	131.6415 104.0764	0.0000
0.0000	0.0000	104.9419 104.9415	0.0000	85.0003	1.0001	17.9636		46.9203	0.5511		0.0000
0.0000	0.0000	134.7823	0.0000	104.7668	0.0000	17.9639	0.5616	21.0902	0.5511	131.6411	0.0000
	0.0000	164.2068	0.0000		0.0000	45.8642 75.2334	0.5616	21.0905 46.9207	0.5511	155.1860 155.1862	0.0000
0.0000	0.0000	164.2072 134.7827	0.0000	162.0362 162.0363	0.0000	75.2334 75.2330	0.5616	75.5228	0.5511	131.6415	0.0000
	0.0000	104.9419	0.0000	134.1364	0.0000	45.8638	0.5616	75.5224	0.5511	104.0764	0.0000
	0.0000	104.9415	0.0000	104.7672	0.0000	17.9636	0.5616	46.9203	0.5511	75.9238	0.0338
	0.0000	134.7823 164.2068	0.0000	104.7668 134.1360	0.0000	17.9639 45.8642		21.0902 21.0905	0.5511 0.5511	48.3586 24.8138	0.1203
0.0000		164.2072	0.0000	162.0362	0.0000	75.2334	0.5616	46.9207	0.5511	24.8141	0.3285
0.0000	0.0000	134.7827	0.0000	162.0366	0.0000	75.2330	0.5616	75.5228	0.5511	48.3590	0.4209
	0.0000	104.9419	0.0000		0.0000	45.8638	0.5616	75.5224 46.9203	0.5511	75.9242 75.9238	
0.0000	0.0000	104.9415 134.7823	0.0000	104.7672 104.7668	0.0000	17.9636 17.9639	0.5616	21.0902	0.5511	48.3586	
	0.0000	164.2068	0.0000	134.1360	0.0000	45.8642	0.5616	21.0905	0.5511	24.8138	0.5130
	0.0000	164.2072	0.0000		0.0000	75.2334	0.5616	46.9207	0.5511	24.8141	0.5130
	0.0000	134.7827 104.9419	0.0000	162.0366 134.1364	0.0000	80.0003 80.0003	0.7078	75.5228 75.5224	0.5511	48.3590 75.9242	0.5712
	0.0000	104.9415	0.0000	104.7672	0.0000	80.0003	0.9269	46.9203	0.5511	75.9238	0.5712
0.0000		134.7823	0.0000	104.7668	0.0000	80.0003	1.0000	21.0902		48.3586	0.5712
0.0000	0.0000	164.2068 164.2072	0.0000	134.1360 162.0362	0.0000	104.4774 133.0795	0.0000	21.0905 46.9207	0.5511	24.8138 24.8141	0.5712
0.0000		134.7827	0.0000	162,0366	0.0000	158.9096		75.5228	0.5511	48.3590	
0.0000	0.0000	104.9419	0.0000	134.1364	0.0000	158.9096	0.0000	75.5224	0.5511	75.9242	
	0.0000	104.9415 134.7823	0.0000	104.7672	0.0000	133.0799 104.4778	0.0000	46.9203 21.0902	0.5511 0.5511	75.9238 48.3586	0.5712
	0.0000	164.2068	0.0000	104.7668 134.1360	0.0000	104.4774	0.0000	21.0902	0.5511	24.8138	0.5712
0.0000		164.2072	0.0000	162.0362	0.0000	133.0795	0.0000	46.9207	0.5511	24.8141	0.5712
	0.0000	134.7827	0.0000		0.0000	158.9096 158.9099	0.0000	75.5228 75.5224	0.5511	48.3590 75.9242	0.5712
	0.0000	104.9419 75.0583	0.0000 0.0573	134.1364 104.7672	0.0000	133.0799		46.9203	0.5511	75.9238	0.5712
	0.0000	45.2175	0.1748	104.7668	0.0000	104.4778	0.0000	21.0902	0.5511	48.3586	0.5712
	0.0000	15.7930	0.2818	134.1360	0.0000	104.4774		21.0905		24.8138	
	0.0000	15.7934 45.2179	0.3888	162.0362 162.0366	0.0000	133.0795 158.9096	0.0000	46.9207 75.5228		24.8141 48.3590	
0.0000	0.0000	75.0588	0.5636	134.1364		158.9099	0.0000	75.0003		75.9242	0.5712
0.0000	0.0000	75.0583	0.5636	104.7672		133.0799		75.0003		75.9238	0.5712
	0.0000	45.2175 15.7930		104.7668 134.1360	0.0000	104.4778 104.4774		75.0003 75.0003		48.3586 24.8138	
	0.0000	15.7934		162.0362	0.0000	133.0795	0.0000	104.0760			
0.0000	0.0000	45.2179	0.5636	162.0366	0.0000	158.9096	0.0000	131.6411		48.3590	0.5712
	0.0000	75.0588		134.1364	0.0000	158.9099 133.0799	0.0000	155.1860 155.1860		75.9242 75.9238	
	0.0000	75.0583 45.2175		104.7672 104.7668	0.0000	104.4778		131.6415			
0.0000	0.0000	15.7930	0.5636	134.1360	0.0000	104.4774	0.0000	104.0764	0.0000	24.8138	0.5712
	0.0000	15.7934	0.5636	162.0362	0.0000	133.0795		104.0760			
	0.0000	45.2179 75.0588		162.0366 134.1364	0.0000	158.9096 158.9099		131.6411 155.1860		48.3590 75.9242	
0.0000	0.0000	75.0583	0.5636	104.7672	0.0000	133.0799	0.0000	155.1862	0.0000	75.9238	0.5712
	0.0000	45.2175		75.2330	0.0571	104.4778		131.6415			
	0.0000	15.7930 15.7934		45.8638 17.9636		104.4774 133.0795	0.0000	104.0764 104.0760			
	0.0000	45.2179	0.5636	17.9639	0.3874	158.9096	0.0000	131.6411		48.3590	0.5712
0.0000	0.0000	75.0588	0.5636	45.8642	0.5045	158.9099	0.0000	155.1860	0.0000	75.9242	0.5712
	0.0000	75.0583 45.2175		75.2334 75.2330	0.5616	133.0799 104.4778		155.1862 131.6415			
	0.0000	15.7930		45.8638		104.4774		104.0764		70.0003	
0.0000	0.0000	15.7934	0.5636	17.9636	0.5616	133.0795	0.0000	104.0760	0.0000	70.0003	1.0000
	0.0000	45.2179	0.5636	17.9639		158.9096		131.6411			
0.0000	0.0000	75.0588	0.5636	45.8642	0.3010	158.9099	0.0000	155.1860	0.0000	129.8557	0.0000

151.0957		76.4340		52.2389		142.3020		137.7267	0.0000	120.0000	0.0000
151.0957	0.0000	76.4336		77.0477	0.5557	125.3966	0.0000	137.7269	0.0000	133.0797	0.0000
129.8561	0.0000	50.1441	0.5576	77.0473	0.5557	102.2406	0.0000	122.7981	0.0000	133.0799	0.0000
103.5666	0.0000	28.9042	0.5576	52.2385	0.5557	77.7595	0.0175	101.4359	0.0000	120.0004	0.0000
103.5662	0.0000	28.9044	0.5576	33.2255	0.5557	54.6035	0.0653	101.4355	0.0000	100.5456	0.0000
129.8557	0.0000	50.1444	0.5576	33.2257	0.5557	37.6981	0.1305	122.7978	0.0000	100.5452	0.0000
151.0957	0.0000	76.4340		52.2389	0.5557	37.6982	0.1958	137.7267	0.0000	120.0000	0.0000
	0.0000	76.4336		77.0477	0.5557	54.6038	0.2436	137.7269	0.0000	133.0797	0.0000
129.8561	0.0000	50.1441	0.5576	77.0473	0.5557	77.7600	0.2611	122.7981	0.0000	133.0799	0.0000
103.5666	0.0000	28.9042	0.5576	52.2385	0.5557	77.7595	0.2786	101.4359	0.0000	120.0004	0.0000
103.5662	0.0000	28.9044		33.2255	0.5557	54.6035	0.3264	101.4355	0.0000	100.5456	0.0000
129.8557	0.0000	50.1444		33.2257	0.5557	37.6981	0.3721	122.7978	0.0000	100.5452	0.0000
151.0957	0.0000	76,4340		52.2389	0.5557	37.6982	0.4177	137.7267	0.0000	120.0000	0.0000
	0.0000	65.0003	0.7051	77.0477	0.5557	54.6038	0.4655	137.7269	0.0000	133.0797	0.0000
129.8561	0.0000	65.0003	0.7788	77.0473	0.5557	77.7600		122.7981	0.0000	133.0799	0.0000
103.5666	0.0000	65.0003		52.2385	0.5557	77.7595	0.5005	101.4359	0.0000	120.0004	0.0000
103.5662	0.0000	65.0003	1.0000	33.2255		54.6035	0.5196	101.4355	0.0000	100.5456	0.0000
129.8557	0.0000	102.9524	0.0000	33.2257	0.5557	37.6981	0.5196	122.7978	0.0000	100.5452	0.0000
151.0957	0.0000	127.7613	0.0000	52.2389	0.5557	37.6982	0.5196	137.7267	0.0000	120.0000	0.0000
151.0959	0.0000	146.7743	0.0000	77.0477	0.5557	54.6038	0.5387	137.7269	0.0000	133.0797	0.0000
129.8561	0.0000	146.7743	0.0000	77.0473	0.5557	77.7600		122.7981	0.0000	133.0799	0.0000
103.5666	0.0000	127.7616	0.0000	52.2385	0.5557	77.7595	0.5650	101.4359	0.0000	120.0004	0.0000
103.5662	0.0000	102.9528	0.0000	33.2255	0.5557	54.6035	0.5650	78.5642	0.0146		0.0000
129.8557	0.0000	102.9524	0.0000	33.2257	0.5557	37.6981	0.5650	57.2020	0.0545	100.5452	0.0000
151.0957	0.0000	102.9324	0.0000	52.2389	0.5557	37.6982	0.5650	42.2731	0.1091	120.0000	0.0000
	0.0000		0.0000	77.0477		54.6038	0.5650	42.2733	0.1636	133.0797	0.0000
151.0959		146.7743			0.5557	77.7600	0.5737	57.2023	0.1035	133.0799	0.0000
129.8561	0.0000	146.7745	0.0000	77.0473		77.7595	0.5737	78.5646	0.2033	120.0004	0.0000
103.5666	0.0000	127.7616	0.0000	52.2385	0.5557	54.6035	0.5737	78.5642	0.2327	100.5456	0.0000
103.5662	0.0000	102.9528	0.0000	33.2255	0.5557				0.2327	100.5452	0.0000
129.8557	0.0000	102.9524	0.0000	33.2257	0.5557	37.6981	0.5737 0.5737	57.2020			0.0000
151.0957	0.0000	127.7613	0.0000	52.2389	0.5557	37.6982		42.2731	0.3272	120.0000	
151.0959	0.0000	146.7743	0.0000	77.0477	0.5557	54.6038	0.5737	42.2733	0.3817	133.0797	0.0000
129.8561	0.0000	146.7745	0.0000	60.0003	0.7038	77.7600		57.2023	0.4216		0.0000
103.5666	0.0000	127.7616	0.0000	60.0003	0.7779	77.7595	0.5737	78.5646	0.4363	120.0004	0.0000
103.5662	0.0000	102.9528	0.0000	60.0003	0.9260	54.6035	0.5737	78.5642	0.4509	100.5456	0.0000
129.8557	0.0000	102.9524	0.0000	60.0003	1.0000	37.6981	0.5737	57.2020	0.4788	100.5452	0.0000
151.0957	0.0000	127.7613	0.0000	102.2402	0.0000	37.6982	0.5737	42.2731	0.4788	120.0000	0.0000
151.0959	0.0000	146.7743	0.0000	125.3963	0.0000	54.6038	0.5737	42.2733	0.4788	133.0797	0.0000
129.8561	0.0000	146.7745	0.0000	142.3018	0.0000	77.7600	0.5737	57.2023	0.5068	133.0799	0.0000
103.5666	0.0000	127.7616	0.0000	142.3018	0.0000	77.7595	0.5737	78.5646	0.5214	120.0004	0.0000
103.5662	0.0000	102.9528	0.0000	125.3966	0.0000	54.6035		78.5642	0.5360	100.5456	0.0000
129.8557	0.0000	102.9524	0.0000	102.2406	0.0000	37.6981	0.5737	57.2020	0.5400		0.0124
151.0957	0.0000	127.7613	0.0000	102.2402	0.0000	37.6982	0.5737	42.2731	0.5400		
151.0959	0.0000	146.7743	0.0000	125.3963	0.0000	54.6038	0.5737	42.2733	0.5400		0.0928
129.8561	0.0000	146.7745	0.0000	142.3018	0.0000	77.7600	0.5737	57.2023	0.5440	46.9203	0.1392
103.5666	0.0000	127.7616	0.0000	142.3020	0.0000	77.7595	0.5737	78.5646	0.5586	60.0000	0.1732
76.4336	0.0273	102.9528	0.0000	125.3966	0.0000	54.6035	0.5737	78.5642	0.5659	79.4549	
50.1441	0.1017	102.9524	0.0000	102.2406	0.0000	37.6981	0.5737	57.2020	0.5659	79.4545	0.1981
28.9042	0.2034	127.7613	0.0000	102.2402	0.0000	37.6982	0.5737	42.2731	0.5659	59.9997	0.2321
28.9044		146.7743	0.0000	125.3963	0.0000	54.6038	0.5737	42.2733	0.5659	46.9201	0.2785
50.1444	0.3796	146,7745	0.0000	142.3018	0.0000	77.7600	0.5737	57.2023	0.5659	46,9203	0.3249
76.4340	0.4068	127.7616	0.0000	142.3020	0.0000	55.0003	0.7158	78.5646	0.5732		0.3589
	0.4341	102.9528	0.0000	125.3966	0.0000	55.0003	0.7869	78.5642	0.5732	79.4549	0.3713
50.1441	0.4713	102.9524	0.0000	102.2406	0.0000	55.0003	0.9290	57.2020	0.5732	79.4545	0.3837
	0.4713	127.7613	0.0000	102.2402	0.0000	55.0003	1.0000	42.2731	0.5732	59,9997	
28.9044		146.7743			0.0000	101.4355		42.2733		46.9201	
50.1444		146.7745	0.0000	142.3018	0.0000	122.7978	0.0000	57.2023	0.5732		0.4422
76.4340		127.7616		142.3020		137.7267	0.0000	78.5646	0.5732		0.4727
76.4336		102.9528	0.0000	125.3966		137.7267		78.5642			
50.1441		102.9524		102.2406	0.0000	122.7981	0.0000	57.2020	0.5732	79.4545	
28.9042		127.7613	0.0000	102.2402	0.0000	101.4359		42.2731			
28.9044		146.7743		125.3963	0.0000	101.4355		42.2733			
50.1444		146.7745	0.0000	142.3018	0.0000	122.7978	0.0000	57.2023			
76.4340		127.7616		142.3020	0.0000	137.7267	0.0000	78.5646	0.5732	60.0000	0.5248
76.4336		102.9528			0.0000	137.7269		78.5642			
50.1441		77.0473		102.2406	0.0000	122.7981		57.2020			0.5472
28.9042		52.2385	0.0221	102.2402	0.0000	101.4359		42.2731			
28.9042		33.2255	0.0023	125.3963	0.0000	101.4355	0.0000	42.2733	0.5732		
50.1444		33.2257	0.1030	142.3018	0.0000	122.7978		57.2023			
76.4340	0.3370 0.5576	52.2389	0.3079	142.3020	0.0000	137.7267	0.0000	78.5646	0.5732	60.0000	
		52.2389 77.0477	0.3079	125.3966		137.7269		50.0002			
76.4336					0.0000	122.7981		50.0002			
50.1441		77.0473		102.2406							
28.9042		52.2385		102.2402	0.0000	101.4359		50.0002			
28.9044		33.2255	0.4191	125.3963	0.0000	101.4355		50.0002			
50.1444		33.2257	0.4439	142.3018	0.0000	122.7978	0.0000	100.5452			
76.4340		52.2389	0.4862	142.3020	0.0000	137.7267	0.0000	120.0000	0.0000		
76.4336		77.0477			0.0000	137.7269	0.0000	133.0797			
	0.5576	77.0473	0.5260	102.2406	0.0000	122.7981	0.0000	133.0797	0.0000		
28.9042		52.2385	0.5320	102.2402	0.0000	101.4359	0.0000	120.0004			
28.9044		33.2255	0.5320	125.3963		101.4355	0.0000	100.5456			
50.1444	0.5576	33.2257	0.5320	142.3018	0.0000	122.7978	0.0000	100.5452	0.0000	46.9203	0.5671

											0 70 40
60.0000		51.6190		56.3556		110.7048		96.2796			
79.4549	0.5671	62.9660	0.4945	56.3557			0.0000	107.3877	0.0000		
79.4545	0.5671	80.4236	0.5049	66.0726	0.1184	118.8794	0.0000	114.0931	0.0000	83.7205	
59.9997	0.5671	80.4232	0.5154	81.4629	0.1269	110.7051	0.0000	114.0932	0.0000	25.0002	0.6986
46.9201		62.9657		81.4625		97.4358	0.0000	107.3880	0.0000		
46.9203		51.6188		66.0722		97.4354		96.2800	0.0000		
60.0000		51.6190		56.3556			0.0000	96.2796	0.0000		
79.4549		62.9660		56.3557			0.0000	107.3877	0.0000		
45.0002		80.4236	0.5429	66.0726	0.2454		0.0000	114.0931	0.0000		
45.0002		80.4232		81.4629		110.7051	0.0000	114.0932	0.0000		
45.0002		62.9657		81.4625			0.0000	107.3880	0.0000		
45.0002	1.0000	51.6188		66.0722	0.2856	97.4354	0.0000	96.2800	0.0000		0.0000
99.5765	0.0000	51.6190	0.5502	56.3556	0.3173	110.7048	0.0000	96.2796	0.0000	95.0788	0.0000
117.0340	0.0000	62.9660		56.3557		118.8793	0.0000	107.3877	0.0000	95.0784	0.0000
128.3810		80.4236		66.0726		118.8794		114.0931	0.0000		
128.3810		80.4232	0.5506	81.4629		110.7051	0.0000	114.0932	0.0000		
117.0344		62.9657		81.4625	0.3000	97.4358		107.3880	0.0000		
99.5769		51.6188				82.5643		96.2800	0.0000		
				66.0722		69.2949	0.0072				
99.5765		51.6190	0.5590	56.3556				96.2796	0.0000		0.0000
117.0340		62.9660		56.3557		61.1206		107.3877	0.0000		
128.3810		80.4236		66.0726		61.1207		114.0931	0.0000		
128.3811		80.4232		81.4629		69.2952	0.1010	114.0932	0.0000		
117.0344	0.0000	62.9657		81.4625		82.5647		107.3880	0.0000		0.0000
99.5769	0.0000	51.6188	0.5617	66.0722	0.4984	82.5643	0.1155	96.2800	0.0000	103.9957	0.0000
99.5765	0.0000	51.6190	0.5617	56.3556	0.4984	69.2949	0.1353	96.2796	0.0000	95.0788	0.0000
117.0340		62.9660		56.3557		61.1206		107.3877	0.0000		0.0000
128.3810		80.4236		66.0726		61.1207		114.0931	0.0000		
128.3811		40.0002	0.3003	81.4629	0.5104	69.2952		114.0932	0.0000		
117.0344		40.0002	0.7113	81.4625		82.5647	0.2165	107.3880	0.0000		0.0000
99.5769		40.0002								103.2913	
				66.0722		82.5643	0.2238	96.2800	0.0000		0.0000
99.5765		40.0002	1.0000	56.3556		69.2949	0.2430	96.2796	0.0000		
117.0340		98.5372		56.3557		61.1206		107.3877	0.0000		
128.3810		113.9275	0.0000	66.0726		61.1207	0.2977	114.0931	0.0000	103.9954	0.0000
128.3811	0.0000	123.6443	0.0000	81.4629	0.5518	69.2952	0.3175	114.0932	0.0000	109.2912	0.0000
117.0344	0.0000	123.6443	0.0000	81.4625		82,5647	0.3248	107.3880	0.0000	109.2913	0.0000
99.5769		113.9278	0.0000	66.0722		82.5643	0.3320	96.2800	0.0000	103,9957	0.0000
99.5765		98.5376	0.0000	56.3556	0.5603	69.2949	0.3518	83.7201	0.0061	95.0788	
117.0340		98.5372	0.0000	56.3557		61.1206		72.6120	0.0226		
128.3810		113.9275	0.0000	66.0726		61.1207		65.9067	0.0452	103.9954	
		113.9413									
128.3811		123.6443	0.0000	81.4629	0.5088	69.2952	0.4238	65.9069	0.0678	109.2912	0.0000
117.0344		123.6444	0.0000	81.4625		82.5647		72.6123	0.0844		0.0000
99.5769		113.9278	0.0000	66.0722	0.5731		0.4403	83.7205	0.0904		
99.5765		98.5376	0.0000	56.3556		69.2949		83.7201	0.0965	95.0788	
117.0340	0.0000	98.5372	0.0000	56.3557		61.1206	0.4601	72.6120	. 0.1130	95.0784	0.0000
128.3810	0.0000	113.9275	0.0000	66.0726	0.5731	61.1207	0.4601	65.9067	0.1356	103.9954	0.0000
128.3811	0.0000	123.6443	0.0000	81.4629		69.2952	0.4799	65.9069	0.1582	109.2912	0.0000
117.0344		123.6444	0.0000	35.0002		82.5647	0.4872	72.6123	0.1748	109.2913	0.0000
99.5769		113.9278	0.0000	35.0002			0.4944	83.7205	0.1808	103.9957	
	0.0000	98.5376	0.0000	35.0002		69.2949		83.7201	0.1869	95.0788	
		96.3370	0.0000			61.1206		72.6120			
117.0340		98.5372		35.0002					0.2034		
128.3810		113.9275	0.0000	97.4354		61.1207		65.9067	0.2260	103.9954	
	0.0000	123.6443	0.0000		0.0000	69.2952	0.5182	65.9069	0.2486		
117.0344	0.0000	123.6444	0.0000	118.8793		82.5647		72.6123	0.2652	109.2913	0.0000
99.5769	0.0000	113.9278	0.0000	118.8793	0.0000	82.5643		83.7205		103.9957	
99.5765	0.0000	98.5376	0.0000	110.7051	0.0000	69.2949	0.5386	83.7201	0.2773	95.0788	0.0000
117.0340	0.0000	98.5372	0.0000	97.4358	0.0000	61.1206	0.5386	72.6120	0.2938	84.9212	0.0050
128.3810		113.9275	0.0000	97.4354	0.0000	61.1207	0.5386	65.9067		76.0042	0.0185
128.3811		123.6443	0.0000	110.7048		69.2952	0.5446	65.9069			0.0370
117.0344		123.6444		118.8793		82.5647		72.6123		70,7088	0.0555
99.5769		113.9278		118.8794		82.5643		83.7205		76.0046	
80.4232		98.5376	0.0000	110.7051		69.2949		83.7201		84.9216	
62.9657		98.5372		97.4358		61.1206		72.6120		84.9212	
51.6188		113.9275		97.4354		61.1207		65.9067		76.0042	
51.6190		123.6443	0.0000	110.7048		69.2952		65.9069		70.7087	
62.9660		123.6444		118.8793		82.5647		72.6123			
80.4236	0.1558	113.9278	0.0000	118.8794	0.0000	30.0002		83.7205	0.4520	76.0046	0.1430
80.4232	0.1663	98.5376	0.0000	110.7051	0.0000	30.0002	0.7849	83.7201		84.9216	0.1479
62.9657		98.5372		97.4358		30.0002	0.9307	72.6120	0.4730		
51.6188		113.9275		97.4354		30.0002		65.9067		76.0042	
51.6190		123.6443	0.0000	110.7048			0.0000	65.9069		70.7087	
62.9660		123.6444		118.8793		107.3877		72.6123		70.7088	
80.4236		113.9278		118.8794		114.0931		83.7205		76.0046	
80.4232		98.5376	0.0000	110.7051		114.0932	0.0000	83.7201		84.9216	
62.9657		98.5372		97.4358		107.3880		72.6120		84.9212	
51.6188		113.9275		97.4354		96.2800		65.9067		76.0042	
51.6190		123.6443	0.0000	110.7048			0.0000	65.9069	0.5099	70.7087	
62.9660		123.6444	0.0000	118.8793		107.3877		72.6123		70.7088	
80.4236		113.9278		118.8794	0.0000	114.0931	0.0000	83.7205		76.0046	
80.4232	0.4546	98.5376		110,7051	0.0000	114.0932	0.0000	83.7201	0.5319	84.9216	0.2959
62.9657		81.4625		97.4358	0,0000	107.3880		72.6120		84.9212	0.3008
51.6188		66.0722		97.4354		96.2800		65.9067		76.0042	
2.0100		J. J	J. J. J.	J111007	5.000	20.2000		02.7007	0.000	, 0.00 12	0.0 Z .0

70 7007	0.2220	79,4544	0.0749	92.5758	0.0000	91.2928	0.0000	5.0001	0.8718	89.9997	0.0000
70.7087 70.7088	0.3513	75.5222	0.0748	97.0530		91.2924	0.0000	5.0001	1.0000	89.9997	
	0.3649	75.5223	0.1048	99.6561	0.0000	93.5333	0.0000	89.9999	0.0000	89.9999	
84.9216	0.3698	79.4547	0.1157	99.6562	0.0000	94.8294	0.0000	90.0000		90.0000	
84.9212	0.3748	86.1592	0.1197	97.0533	0.0000	94.8295	0.0000	90.0001	0.0000	90.0001 89.9997	
76.0042	0.3883	86.1588		92.5762	0.0000	93.5336 91.2928	0.0000	90.0003 90.0003	0.0000	89.9997 89.9997	
70.7087	0.4050	79.4544 75.5222	0.1347	92.5758 97.0530	0.0000	91.2924	0.0000	90.0003	0.0000	89.9997	
70.7088 76.0046	0.4216	75.5222 75.5223	0.1497	99.6561	0.0000	93.5333	0.0000		0.0000	89.9999	
84.9216	0.4331	79.4547		99.6562	0.0000	94.8294		90.0000		90.0000	
84.9212	0.4450	86.1592		97.0533		94.8295	0.0000		0.0000	90.0001	0.0000
76.0042		86.1588		92.5762		93.5336		90.0003	0.0000	89.9997	
70.7087	0.4660	79.4544		87.4238	0.0032	91.2928 91.2924	0.0000	90.0003 90.0003	0.0000	89.9997 89.9997	
70,7088	0.4734	75.5222	0.2096	82.9467 80.3438		91.2924	0.0000	89.9999	0.0000	89.9999	
76.0046 84.9216	0.4869	75.5223 79.4547	0.2245 0.2355	80.3439		94.8294		90.0000		90.0000	
84.9212		86.1592		82.9470	0.0440	94.8295	0.0000	90,0001	0.0000	90.0001	
76.0042		86.1588		87.4242	0.0471	93.5336	0.0000	90.0003	0.0000		0.3333
70.7087	0.5090	79.4544		87.4238		91.2928	0.0000	90.0003	0.0000	0.0003	0.5000 0.8333
70.7088	0.5090	75.5222	0.2694	82.9467	0.0589	91.2924 93.5333	0.0000	90.0003 89.9999	0.0000	0.0003 0.0003	1.0000
76.0046		75.5223 79.4547		80.3438 80.3439	0.0707 0.0824	94.8294	0.0000	90.0000		88.7073	
84.9216 20.0001		86.1592		82.9470		94.8295	0.0000	90.0001	0.0000	86.4667	
20.0001		86.1588		87.4242				90.0003	0.0000	85.1709	
20.0001		79.4544		87.4238		91.2928	0.0000	90.0003	0.0000	85.1710	0.0216
20.0001		75.5222	0.3293	82.9467		91.2924	0.0000	90.0003	0.0000	86.4670	
93.8408		75.5223	0.3443	80.3438		93.5333	0.0000	89.9999 90.0000	0.0000	88.7077 88.7073	0.0288
100.5453	0.0000	79.4547		80.3439 82.9470		94.8294 94.8295	0.0000	90.0001	0.0000	86.4667	
104.4777 104.4777	0.0000	86.1592 86.1588		87.4242				90.0001	0.0000	85.1709	
	0.0000	79.4544		87.4238		91.2928	0.0000	90.0003	0.0000	85.1710	0.0505
93.8413	0.0000	75.5222	0.3892		0.1531	88.7072	0.0019	90.0003	0.0000	86.4670	
	0.0000	75.5223	0.4041		0.1649	86.4664		89.9999	0.0000	88.7077	
100.5453	0.0000	79.4547		80.3439		85.1705	0.0144	90.0000		88.7073 86.4667	
104.4777	0.0000	86.1592		82.9470 87.4242		85.1706 86.4667		90.0001 90.0003	0.0000	85.1709	
104.4778 100.5456	0.0000	86.1588 79.4544		87.4242 87.4238	0.1004	88.7076		90.0003		85.1710	
93.8413	0.0000	75.5222			0.2002	88.7072		90.0003	0.0000	86.4670	0.0846
93.8408	0.0000	75.5223	0.4640	80.3438	0.2120	86.4664		89.9999		88.7077	
100.5453	0.0000	79.4547	0.4750	80.3439		85.1705	0.0433	90.0000		88.7073	
104.4777	0.0000	86.1592			0.2324	85.1706		90,0001 90,0003	0.0000	86.4667 85.1709	
104.4778	0.0000	15.0001		87.4242 87.4238	0.2356	86.4667 88.7076		90.0003		85.1710 85.1710	
100.5456 93.8413	0.0000	15.0001 15.0001			0.2387	88.7072		90.0003		86.4670	
93.8408		15.0001		80.3438		86.4664		89.9999		88.7077	0.1154
100.5453	0.0000	92.5758		80.3439	0.2709	85.1705	0.0721	90.0000			
104.4777	0.0000	97.0530			0.2795	85.1706		90.0001		86.4667	
104.4778	0.0000	99.6561			0.2827	86.4667		90.0003			
100.5456	0.0000	99.6562	0.0000	87.4238	0.2858 0.2944	88.7076 88.7072		90.0003 90.0003	0.0000		0.1370
93.8413 93.8408	0.0000	97.0533 92.5762	0.0000		0.2944	86.4664		89.9997	0.0000		
100.5453	0.0000	92.5758		80.3439	0.3180	85.1705		89.9997	0.0000	88.7073	0.1462
104.4777	0.0000	97.0530	0.0000	82.9470	0.3266	85.1706	0.1082	89.9997	0.0000		
104.4778	0.0000	99.6561			0.3298		0.1135	89.9999			
100.5456	0.0000	99.6562	0.0000		0.3329	88.7076 88.7072	0.1154	90.0000 90.0001			
93.8413 93.8408		97.0533 92.5762	0.0000		0.3416 0.3533	86.7072 86.4664	0.1174	89.9997			0.1712
100.5453	0.0000	92.5758			0.3651	85.1705	0.1298			88.7073	0.1750
104.4777	0.0000		0.0000	82.9470	0.3737		0.1371	89.9997		86.4667	
104.4778	0.0000	99.6561			0.3769		0.1423	89.9999			
100.5456		99.6562			0.5846		0.1443	90.0000			0.1947 0.2000
93.8413		97.0533			0.6884 0.8961		0.1462 0.1515	90.0001 89.9997			0.2019
93.8408 100.5453	0.0000	92.5758 92.5758	0.0000	10.0001	1.0000		0.1513	89.9997			0.2039
100.3433			0.0000	91.2924	0.0000		0.1659				
104.4778	0.0000		0.0000	93.5333	0.0000	86.4667	0.1712	89.9999	0.0000	85.1709	0.2164
100.5456	0.0000	99.6562		94.8294	0.0000		0.1731	90.0000		85.1710	0.2236
93.8413		97.0533			0.0000		0.1751				0.2288 0.2308
93.8408		92.5762	0.0000		0.0000	86.4664 85.1705	0.1803 0.1876		0.0000		0.2308
100.5453 104.4777	0.0000	92.5758 97.0530	0.0000	91.2928 91.2924	0.0000		0.1948			93.5330	0.2308
104.4778			0.0000		0.0000	86,4667	0.2000	89.9999	0.0000	94.8290	0.2308
100.5456		99.6562	0.0000	94.8294	0.0000	88.7076	0.2020	90.0000	0.0000	94.8291	0.2308
93.8413	0.0000	97.0533	0.0000	94.8295	0.0000		0.2039			93.5333	0.2308
86.1588			0.0000	93.5336	0.0000		0.2092				0.2308 0.2308
79.4544		92.5758	0.0000		0.0000	85.1705 85.1706	0.2164 0.2236			91.2923	0.2308
75.5222 75.5223		99.6561		91,2924	0.0000		0.2289			94.8290	0.2308
79.4547		99.6562		94.8294	0.0000	88.7076	0.2308	90.0000	0.0000	94.8291	0.2308
86.1592	0.0599	97.0533	0.0000	94.8295	0.0000	5.0001	0.4872	90.0001			0.2308
86.1588	0.0639	92.5762	0.0000	93.5336	0.0000	5.0001	0.6154	89.9997	0.0000	91.2927	0.2308

91.2923		87.4243	0.3298	79.4550	0.2355	70.7093	0.0521	95.0783	0.5553	96.2798	
93.5330	0.2308	87.4239	0.3329	86.1593	0.2395	76.0048	0.0648	103.9951	0.5553	96.2794	0.6154
94.8290	0.2308	82,9469	0.3416	86.1589	0.2435	84.9217	0.0694	109.2907	0.5553	107.3874	0.6154
94.8291	0.2308	80.3442	0.3533	79.4547		84.9213		109.2909	0.5553	114.0927	0.6154
93.5333	0.2308	80.3443	0.3651	75.5226		76.0045		103.9954	0.5553	114.0928	0.6154
		82.9472		75.5227		70.7091		95.0787		107.3877	
91.2923	0.2308	87.4243	0.3769	79.4550	0.2044	70.7091		95.0783	0.5553		
93.5330		92.5757				76.0048				96.2798 96.2794	0.0154
				86.1593				103.9951			
94.8290		97.0527		86.1589		84.9217		109.2907	0.5553	107.3874	
94.8291	0.2308	99.6557		79.4547		84.9213		109.2909		114.0927	
93.5333	0.2308	99.6558		75.5226		76.0045		103.9954		114.0928	0.6154
91.2927		97.0530		75.5227	0.3443	70.7091		95.0787	0.5553	107.3877	0.6154
91.2923	0.2308	92.5761	0.3769	79.4550	0.3552	70.7092	0.1909	20.0000	0.7035	96.2798	0.6154
93.5330	0.2308	92.5757	0.3769	86.1593		76.0048	0.2036	20.0000		96.2794	0.6154
94.8290		97.0527		86.1589		84.9217		20.0000		107.3874	
94.8291	0.2308	99.6557		79.4547		84.9213	0.2129	20.0000		114.0927	
93.5333	0.2308	99.6558		75.5226		76.0045		83.7201		114.0928	0.6154
91.2927		97.0530		75.5227		70.7091		72.6122	0.0052	107.3877	0.6154
91.2923	0.2308	92.5761		79.4550		70.7091		65.9071	0.0192		0.6154
93.5330	0.2308	92.5757		86.1593	0.4191	76.0048		65.9073		96.2794	
94.8290									0.0577		
		97.0527		86.1589		84.9217		72.6125		107.3874	
94.8291	0.2308	99.6557	0.3769	79.4547		84.9213		83.7205	0.0769	114.0927	0.6154
93.5333	0.2308	99.6558		75.5226		76.0045		83.7201		114.0928	0.6154
91.2927		97.0530		75.5227		70.7091	0.3124	72.6122		107.3877	0.6154
91.2923	0.2308	92.5761		79.4550		70.7092	0.3297	65.9071			0.6154
93.5330	0.2308	92.5757	0.3769	86.1593	0.4790	76.0048	0.3424	65.9072		96.2794	0.6154
94.8290	0.2308	97.0527	0.3769	93.8407	0.4790	84.9217	0.3471	72.6125	0.1487	107.3874	0.6154
94.8291	0.2308	99.6557		100.5450	0.4790	84.9213		83.7205		114.0927	0.6154
93.5333	0.2308	99.6558		104.4772	0.4790	76.0045		83.7201		114.0928	0.6154
91.2927		97.0530		104,4774	0.4790	70.7091		72.6122		107.3877	0.6154
91.2923	0.2308	92.5761		100.5453	0.4790	70.7092		65.9071			0.6154
93.5330	0.2308	92.5757		93.8411							
						76.0048		65.9072		25.0000	
94.8290		97.0527		93.8407		84.9217		72.6125	0.2256	25.0000	
94.8291		99.6557		100.5450	0.4790	84.9213	0.4211	83.7205		25.0000	
93.5333	0.2308	99.6558		104.4772		76.0045		83.7201		25.0000	1.0000
91.2927		97.0530		104.4774		70.7091		72.6122		82.5643	0.0056
4.9999	0.4872	92.5761		100.5453	0.4790	70.7092		65.9071	0.2692	69.2951	0.0208
4.9999	0.6153	92.5757	0.3769	93.8411	0.4790	76.0048	0.4812	65.9072	0.2885	61.1210	0.0415
4.9999	0.8717	97.0527		93.8407		84.9217		72.6125		61.1212	
4.9999	0.9999	99.6557		100.5450	0.4790	84.9213		83.7205		69.2954	0.0775
87.4239	0.0032	99.6558			0.4790	76.0045		83.7201	0.3178	82.5647	0.0831
82.9469	0.0032	97.0530		104.4774		70.7091		72.6122		82.5643	
80.3442	0.0116	92.5761		100.5453	0.4790	70.7091	0.5200	65.9071			
80.3443						70.7092	0.3360			69.2951	
	0.0353	92.5757		93.8411		76.0048		65.9072		61.1210	
82.9472	0.0440	97.0527		93.8407		84.9217		72.6125		61.1211	
87.4243	0.0471	99.6557		100.5450	0.4790	95.0783	0.5553	83.7205	0.3846	69.2954	
87.4239	0.0503	99.6558			0.4790	103.9951		83.7201		82.5647	
82.9469	0.0589	97.0530		104.4774	0.4790	109.2907	0.5553	72.6122	0.4038	82.5643	0.1717
80.3442	0.0707	92.5761	0.3769	100.5453	0.4790	109.2909	0.5553	65.9071	0.4231	69.2951	0.1869
80.3443	0.0824	92.5757	0.3769	93.8411	0.4790	103.9954	0.5553	65.9072		61.1210	
82.9472	0.0911	97,0527		93.8407		95.0787		72.6125	0.4564	61.1211	
87,4243	0.0942	99.6557			0.4790	95.0783		83.7205	0.4615		0.2436
87.4239	0.0974	99.6558			0.4790	103.9951		83.7201	0.4667	82.5647	0.2492
82.9469	0.1060	97.0530		104.4774		109.2907		72.6122		82.5643	
80.3442		92.5761		100.5453		109.2909		65.9071			
80.3443		10.0000		93.8411		103.9954				69.2951	
								65.9072		61.1210	
82.9472		10.0000		93.8407		95.0787		72.6125		61.1211	
87.4243	0.1413	10.0000		100.5450		95.0783		83.7205		69.2954	
87.4239		10.0000		104.4772		103.9951		83.7201		82.5647	
82.9469		86.1589		104.4774		109.2907		72.6122		82.5643	
80.3442		79.4547	0.0150	100.5453		109.2909	0.5553	65.9071		69.2951	0.3530
80.3443		75.5226		93.8411		103.9954		65.9072		61.1210	
82.9472		75.5227	0.0449	93.8407		95.0787	0.5553	72.6125		61.1211	
87.4243		79.4550	0.0559	100.5450		95.0783	0.5553	83.7205	0.6154	69.2954	
87.4239		86.1593	0.0599	104.4772		103.9951		96.2794	0.6154	82.5647	
82.9469		86.1589		104.4774		109.2907		107.3874		82.5643	
80.3442		79.4547		100.5453	0.4790	109.2909		114.0927		69.2951	
80.3443		75.5226		93.8411		103.9954		114.0928	0.6154	61.1210	
82.9472		75.5227		93.8407		95.0787		107.3877	0.6154	61.1211	
87.4243		79.4550		100.5450		95.0783					
87.4239		86.1593		100.3430	0.4700			96.2798		69.2954	
				104.4772		103.9951		96.2794		82.5647	
82.9469		86.1589		104.4774		109.2907		107.3874	0.6154	82.5643	
80.3442		79.4547		100.5453		109.2909		114.0927	0.6154	69.2951	
80.3443		75.5226		93.8411		103.9954		114.0928	0.6154	61.1210	
82.9472		75.5227		15.0000		95.0787		107.3877	0.6154	61.1211	
87.4243		79.4550		15.0000		95.0783		96.2798		69.2954	
87.4239		86.1593		15.0000	0.9132	103.9951			0.6154	82.5647	
82.9469		86.1589		15.0000	1.0000	109.2907	0.5553	107.3874	0.6154	82.5643	
80.3442	0.3062	79.4547	0.1946	84.9213	0.0047	109.2909		114.0927	0.6154	69.2951	
80.3443	0.3180	75.5226		76.0045	0.0174	103.9954		114.0928	0.6154	61.1210	
82.9472		75.5227		70.7091		95.0787		107.3877		61.1211	
										~ 	

									105 5011	0.0005
69.2954 0.63			1.6192		99.5767		120.0000		137.7264	0.8035
82.5647 0.66				0.1624	99.5763	0.7422	100.5454	0.7743 0.7743	122.7978 101.4357	0.8035 0.8035
97.4352 0.66			52.9662 30.4236		117.0337 128.3806	0.7422 0.7422	100.5450 119.9997		101.4353	0.8035
110.7045 0.66 118.8789 0.66			30.4230 30.4232		128.3807	0.7422	133.0793		122.7974	0.8035
118.8790 0.6					117.0340	0.7422	133.0794		137.7263	0.8035
110.7048 0.6			1.6192		99.5767	0.7422	120.0000	0.7743	137.7264	0.8035
97,4356 0.6			1.6193		40.0001	0.8281	100.5454	0.7743	122.7978	0.8035
97.4352 0.6		0.5296	52.9662		40.0001	0.8711	100.5450	0.7743	101.4357	0.8035
110.7045 0.6			30.4236		40.0001	0.9571	119.9997	0.7743	101.4353	0.8035
118.8789 0.6			30.4232			1.0000	133.0793	0.7743	122.7974	0.8035
118.8790 0.6			52.9659		79.4545	0.0065	133.0794	0.7743	137.7263 137.7264	0.8035 0.8035
110.7048 0.6			51.6192		59.9999 46.9205	0.0242 0.0484	120.0000 100.5454	0.7743 0.7743	122.7978	0.8035
97.4356 0.66 97.4352 0.66			51.6193 52.9662		46.9207	0.0726	100.5450	0.7743	101.4357	0.8035
110.7045 0.6			30.4236		60.0002	0.0903	119.9997	0.7743	101.4353	0.8035
118.8789 0.6			30.4232		79.4549	0.0968	133.0793	0.7743	122.7974	0.8035
118.8790 0.6		0.6620	52.9659	0.3943	79.4545	0.1033	133.0794	0.7743	137.7263	0.8035
110.7048 0.6		0.6840	51.6192	0.4175	59.9999	0.1210	120.0000	0.7743	137.7264	0.8035
97.4356 0.6			51.6193		46.9205	0.1452	100.5454	0.7743	122.7978	0.8035
97.4352 0.6			52.9662		46.9206	0.1694	100.5450	0.7743	101.4357 101.4353	0.8035 0.8035
110.7045 0.6				0.4639	60.0002 79.4549	0.1871 0.1936	119.9997 133.0793	0.7743 0.7743	122.7974	0.8035
118.8789 0.6 118.8790 0.6			30.4232 52.9659		79.4545	0.1930	133.0794	0.7743	137.7263	0.8035
110.7048 0.6			51.6192		59.9999	0.2178	120.0000	0.7743	137.7264	0.8035
97.4356 0.6				0.5335	46.9205	0.2420	100.5454	0.7743	122.7978	0.8035
97.4352 0.6			52.9662		46.9206	0.2662	45.0001	0.8495	101.4357	0.8035
110.7045 0.6	645 98.5370	0.7061	30.4236		60.0002	0.2839	45.0001	0.8871	101.4353	0.8035
118.8789 0.6	645 113.9271	0.7061	80.4232		79.4549	0.2904	45.0001	0.9624	122.7974	0.8035
118.8790 0.6		0.7061	52.9659	0.5798	79.4545	0.2968	45.0001	1.0000	137.7263	0.8035
110.7048 0.6			51.6192		59.9999 46.9205	0.3146	78.5641 57.2021	0.0067 0.0251	137.7264 122.7978	0.8035 0.8035
97.4356 0.6 97.4352 0.6	645 113.9275 645 98.5374		51.6193 52.9662	0.6432	46.9206	0.3388 0.3630	42.2735	0.0502	101.4357	0.8035
110.7045 0.6		0.7061		0.6494	60.0002	0.3807	42.2738	0.0753	101.4353	0.8035
118.8789 0.6			80.4232		79.4549	0.3871	57.2024	0.0937	122.7974	0.8035
118.8790 0.6		0.7061		0.6726	79.4545	0.3936	78.5646	0.1004	137.7263	0.8035
	645 123.6440		51.6192		59,9999	0.4113	78.5641	0.1072	137.7264	0.8035
97.4356 0.6			51.6193		46.9205	0.4355	57.2021	0.1255	122.7978	0.8035 0.8035
97.4352 0.6	645 98.5374 645 98.5370			0.7360 0.7422	46.9206 60.0002	0.4597 0.4775	42.2735 42.2736	0.1506 0.1758	101.4357 101.4353	0.8035
	645 113.9271	0.7061		0.7422	79.4549	0.4839	57.2024	0.1941	122.7974	0.8035
118.8790 0.6				0.7422	79.4545	0.4904	78.5646	0.2009	137.7263	0.8035
	645 123.6440			0.7422	59.9999	0.5081	78.5641	0.2076	137.7264	0.8035
97.4356 0.6				0.7422	46.9205	0.5323	57.2021	0.2260	122.7978	0.8035
	645 98.5374			0.7422	46.9206	0.5565	42.2735	0.2511	101.4357	0.8035
	645 98.5370 645 113.9271			0.7422 0.7422	60.0002 79.4549	0.5742 0.5807	42.2736 57.2024	0.2762 0.2946	50.0001 50.0001	0.8690
118.8789 0.6 118.8790 0.6				0.7422	79.4545	0.5872	78.5646	0.3013	50.0001	0.9672
	645 123.6440			0.7422	59.9999	0.6049	78.5641	0.3080	50.0001	1.0000
97.4356 0.6				0.7422	46.9205	0.6291	57.2021	0.3264	77.7595	0.0070
30.0000 0.7	763 98.5374			0.7422	46.9206	0.6533	42.2735	0.3515	54.6036	0.0260
30.0000 0.8				0.7422	60.0002	0.6710	42.2736	0.3766	37.6984	0.0519
30.0000 0.9				0.7422	79.4549 79.4545	0.6775	57.2024 78.5646	0.3950 0.4017	37.6987 54.6039	0.0779
30.0000 1.0 81.4625 0.0				0.7422 0.7422	59.9999	0.6840 0.7017		0.4017	77.7599	0.1038
66.0724 0.0			28.3807		46.9205		57.2021		77.7595	
56.3559 0.0		0.7061 11	17.0340		46.9206		42.2735		54.6036	
56.3562 0.0	662 98.5370	0.7061	99.5767	0.7422	60.0002	0.7678		0.4771	37.6984	
66.0728 0.0	824 113.9271	0.7061	99.5763	0.7422	79.4549	0.7743	57.2024		37.6986	
81.4629 0.0		0.7061 11	17.0337	0.7422	100.5450	0.7743	78.5646		54.6039	
81.4625 0.0	942 123.6440	0.7061 17	28.3806	0.7422	119.9997 133.0793	0.7743	78.5641 57.2021		77.7599 77.7595	
66.0724 0.1 56.3559 0.1			28.3807 17.0340		133.0794	0.7743	42.2735		54.6036	
56.3561 0.1			99.5767		120.0000	0.7743	42.2736	0.5775	37.6984	
66.0728 0.1		0.7061	99.5763		100.5454		57.2024		37.6986	
81.4629 0.1		0.7061 11	17.0337	0.7422	100.5450	0.7743	78.5646		54.6039	
81.4625 0.1			28.3806	0.7422	119.9997		78.5641		77.7599	
66.0724 0.1			28.3807		133.0793		57.2021		77.7595	
56.3559 0.2	207 98.5374		17.0340 99.5767		133.0794 120.0000		42.2735 42.2736	0.6528 0.6779	54.6036 37.6984	0.3374
56.3561 0.2 66.0728 0.2	427 35.0000 589 35.0000		99.5767 99.5763		100.5454		57.2024	0.6963	37.6986	
81.4629 0.2			17.0337		100.5450	0.7743	78.5646		54.6039	0.4083
81.4625 0.2	707 35.0000	1.0000 12	28.3806	0.7422	119.9997	0.7743	78.5641	0.7098	77.7599	0.4153
66.0724 0.2	869 80.4232	0.0062	28.3807	0.7422	133.0793	0.7743	57.2021		77.7595	
56.3559 0.3		0.0232	17.0340	0.7422	133.0794		42.2735		54.6036	
56.3561 0.3	310 51.6192	0.0404	99.5767	0.7422	120.0000 100.5454	0.7743	42.2736 57.2024		37.6984 37.6986	
66.0728 0.3 81.4629 0.3			99.5763 17.0337		100.5454	0.7743	78.5646		54.6039	
81.4625 0.3 81.4625 0.3	590 80.4236	0.0928	28.3806	0.7422	119.9997	0.7743	101.4353	0.8035	77.7599	
66.0724 0.3			28.3807	0.7422	133.0793	0.7743	122.7974	0.8035	77.7595	0.5260
56.3559 0.3			17.0340	0.7422	133.0794			0.8035	54.6036	0.5450

				155 105 0001	46.9203 0.7246
37.6984 0.5710	52.2386 0.2407	127.7613 0.8559	151.0955 0.8803	155.1856 0.9041	
37.6986 0.5969	33.2259 0.2675	102.9527 0.8559	129.8558 0.8803	155.1858 0.9041	21.0904 0.7536
54.6039 0.6159	33.2261 0.2942	60.0001 0.9040	103.5664 0.8803	131.6413 0.9041	21.0907 0.7826
77.7599 0.6229	52.2389 0.3138	60,0001 0.9280	103.5660 0.8803	104.0762 0.9041	46.9207 0.8038
77.7595 0.6298	77.0476 0.3210	60.0001 0.9760	129.8554 0.8803	104.0758 0.9041	75.5227 0.8116
	77.0472 0.3281	60.0001 1.0000	151.0952 0.8803	131.6409 0.9041	75.5223 0.8194
54.6036 0.6488		76.4335 0.0074	151.0955 0.8803	155.1856 0.9041	46.9203 0.8406
37.6984 0.6748		50.1441 0.0275	129.8558 0.8803	155.1858 0.9041	21.0904 0.8696
37.6986 0.7007	33.2259 0.3745			131.6413 0.9041	21.0907 0.8986
54.6039 0.7197	33.2261 0.4012	28.9044 0.0550		104.0762 0.9041	46.9207 0.9198
77.7599 0.7267	52.2389 0.4208	28.9048 0.0825	103.5660 0.8803		75.5227 0.9276
77.7595 0.7336	77.0476 0.4280	50.1445 0.1027	129.8554 0.8803	104.0758 0.9041	
54.6036 0.7526	77.0472 0.4351	76.4339 0.1100	151.0952 0.8803	131.6409 0.9041	
37.6984 0.7786	52.2386 0.4547	76.4335 0.1174	151.0955 0.8803	155.1856 0.9041	133.0792 0.9276
37,6986 0.8046	33.2259 0.4815	50.1441 0.1376	129.8558 0.8803	155.1858 0.9041	158.9092 0.9276
54.6039 0.8236	33.2261 0.5082	28.9044 0.1651	103.5664 0.8803	131.6413 0.9041	158.9095 0.9276
77.7599 0.8305	52.2389 0.5278	28.9047 0.1926	103.5660 0.8803	104.0762 0.9041	133.0796 0.9276
102.2400 0.8305	77.0476 0.5350	50.1445 0.2127	129.8554 0.8803	104.0758 0.9041	104.4777 0.9276
125.3960 0.8305	77.0472 0.5421	76.4339 0.2201	151.0952 0.8803	131.6409 0.9041	104.4772 0.9276
	52.2386 0.5617	76.4335 0.2275	151.0955 0.8803	155.1856 0.9041	133.0792 0.9276
142.3013 0.8305		50.1441 0.2476	129.8558 0.8803	155.1858 0.9041	158.9092 0.9276
142.3015 0.8305	33.2259 0.5885	28.9044 0.2751	103.5664 0.8803	131.6413 0.9041	158.9095 0.9276
125.3963 0.8305	33.2261 0.6152	20.9044 0.2731	65.0001 0.9202	104.0762 0.9041	133.0796 0.9276
102.2404 0.8305	52.2389 0.6348	28.9047 0.3026	65.0001 0.9402	104.0758 0.9041	104.4777 0.9276
102.2400 0.8305	77.0476 0.6420	50.1445 0.3228	65,0001 0.9402		104.4772 0.9276
125.3960 0.8305	77.0472 0.6491	76.4339 0.3301	65.0001 0.9800	131.6409 0.9041	133.0792 0.9276
142.3013 0.8305	52.2386 0.6687	76.4335 0.3375	65.0001 1.0000	155.1856 0.9041	
142.3015 0.8305	33.2259 0.6955	50.1441 0.3576	75.9237 0.0076	155.1858 0.9041	158.9092 0.9276
125,3963 0,8305	33.2261 0.7222	28.9044 0.3851	48.3586 0.0283	131.6413 0.9041	158.9095 0.9276
102.2404 0.8305	52.2389 0.7418	28.9047 0.4127	24.8141 0.0565	104.0762 0.9041	133.0796 0.9276
102.2400 0.8305	77.0476 0.7490	50.1445 0.4328	24.8145 0.0848	104.0758 0.9041	104.4777 0.9276
125.3960 0.8305	77.0472 0.7561	76.4339 0.4402	48.3590 0.1054	131.6409 0.9041	104.4772 0.9276
142.3013 0.8305	52.2386 0.7757	76.4335 0.4475	75.9241 0.1130	155.1856 0.9041	133.0792 0.9276
	33.2259 0.8025	50.1441 0.4677	75.9237 0.1206	155.1858 0.9041	158.9092 0.9276
142.3015 0.8305		28.9044 0.4952	48.3586 0.1413	131.6413 0.9041	158.9095 0.9276
125.3963 0.8305	33.2261 0.8292		24.8141 0.1695	104.0762 0.9041	133.0796 0.9276
102.2404 0.8305	52.2389 0.8488	28.9047 0.5227	24.0141 0.1093	104.0758 0.9041	104.4777 0.9276
102.2400 0.8305	77.0476 0.8559	50.1445 0.5428	24.8143 0.1978		104.4772 0.9276
125.3960 0.8305	102.9522 0.8559	76.4339 0.5502	48.3590 0.2184	131.6409 0.9041	
142.3013 0.8305	127.7609 0.8559	76.4335 0.5576	75.9241 0.2260	155.1856 0.9041	
142.3015 0.8305	146.7738 0.8559	50.1441 0.5777	75.9237 0.2336	155.1858 0.9041	
125.3963 0.8305	146,7740 0.8559	28.9044 0.6052	48.3586 0.2543	131.6413 0.9041	158.9095 0.9276
102.2404 0.8305	127.7613 0.8559	28.9047 0.6327	24.8141 0.2825	104.0762 0.9041	133.0796 0.9276
102.2400 0.8305	102.9527 0.8559	50.1445 0.6529	24.8143 0.3108	70.0001 0.9360	104.4777 0.9276
125.3960 0.8305	102.9522 0.8559	76.4339 0.6602	48.3590 0.3315	70.0001 0.9520	104.4772 0.9276
	127.7609 0.8559	76.4335 0.6676	75.9241 0.3390	70.0001 0.9840	133.0792 0.9276
142.3013 0.8305		50.1441 0.6878	75.9237 0.3466	70.0001 1.0000	158.9092 0.9276
142.3015 0.8305		28.9044 0.7153	48.3586 0.3673	75.5223 0.0078	158.9095 0.9276
125.3963 0.8305	146.7740 0.8559		24.8141 0.3955	46.9203 0.0290	133.0796 0.9276
102.2404 0.8305	127.7613 0.8559	28.9047 0.7428	24.8143 0.4238	21.0904 0.0580	104.4777 0.9276
102.2400 0.8305	102.9527 0.8559	50.1445 0.7629			104.4772 0.9276
125.3960 0.8305	102.9522 0.8559	76.4339 0.7703	48.3590 0.4445		133.0792 0.9276
142.3013 0.8305	127.7609 0.8559	76.4335 0.7777	75.9241 0.4520	46.9207 0.1082	
142,3015 0.8305	146.7738 0.8559	50.1441 0.7978	75.9237 0.4596	75.5227 0.1159	158.9092 0.9276
125.3963 0.8305	146.7740 0.8559	28.9044 0.8253	48.3586 0.4803	75.5223 0.1237	158.9095 0.9276
102.2404 0.8305	127.7613 0.8559	28.9047 0.8528	24.8141 0.5085	46.9203 0.1449	133.0796 0.9276
102.2400 0.8305	102.9527 0.8559	50.1445 0.8730	24.8143 0.5368	21.0904 0.1739	104.4777 0.9276
125.3960 0.8305	102.9522 0.8559	76.4339 0.8803	48.3590 0.5575	21.0907 0.2029	104.4772 0.9276
142.3013 0.8305	127.7609 0.8559	103.5660 0.8803	75.9241 0.5650	46.9207 0.2241	133.0792 0.9276
	146.7738 0.8559	129.8554 0.8803	75.9237 0.5726	75.5227 0.2319	158.9092 0.9276
142.3015 0.8305	146.7740 0.8559	151.0952 0.8803	48.3586 0.5933	75.5223 0.2397	158.9095 0.9276
125.3963 0.8305	127.7613 0.8559	151.0955 0.8803	24.8141 0.6216	46.9203 0.2609	133.0796 0.9276
102.2404 0.8305	102.9527 0.8559	129.8558 0.8803	24.8143 0.6498	21.0904 0.2899	104,4777 0.9276
102.2400 0.8305		102 5664 A 9902	48.3590 0.6705	21.0907 0.3188	75.0002 0.9517
125.3960 0.8305	102.9522 0.8559	103.5664 0.8803	75.9241 0.6781	46.9207 0.3401	75.0002 0.9638
142.3013 0.8305	127.7609 0.8559	103.5660 0.8803	75,9237 0.6856	75.5227 0.3478	75.0002 0.9879
142.3015 0.8305	146.7738 0.8559	129.8554 0.8803		75.5223 0.3556	75.0002 0.9879
125.3963 0.8305	146.7740 0.8559	151.0952 0.8803	48.3586 0.7063		75.2329 0.0080
102.2404 0.8305	127.7613 0.8559	151.0955 0.8803	24.8141 0.7346	46.9203 0.3768	45.8638 0.0297
55.0001 0.8870	102.9527 0.8559	129.8558 0.8803	24.8143 0.7628	21.0904 0.4058	
55.0001 0.9153	102.9522 0.8559	103.5664 0.8803	48.3590 0.7835	21.0907 0.4348	17.9637 0.0594
55.0001 0.9718	127.7609 0.8559	103.5660 0.8803	75.9241 0.7911	46.9207 0.4560	17.9641 0.0892
55.0001 1.0000	146.7738 0.8559	129.8554 0.8803	75.9237 0.7986	75.5227 0.4638	45.8642 0.1109
77.0472 0.0072	146.7740 0.8559	151.0952 0.8803	48.3586 0.8193	75.5223 0.4715	75.2333 0.1189
52.2386 0.0267	127.7613 0.8559	151.0955 0.8803	24.8141 0.8476	46.9203 0.4928	75.2329 0.1269
33.2259 0.0535	102.9527 0.8559	129.8558 0.8803	24.8143 0.8758	21.0904 0.5217	45.8638 0.1486
33.2262 0.0802	102.9527 0.8559	103.5664 0.8803	48.3590 0.8965	21.0907 0.5507	17.9637 0.1783
53.4404 U.U6U4 53.3300 0.0000		103.5660 0.8803	75.9241 0.9041	46.9207 0.5720	17.9640 0.2081
52.2389 0.0998		129.8554 0.8803	104.0758 0.9041	75.5227 0.5797	45.8642 0.2298
77.0476 0.1070	146.7738 0.8559	151 0052 0 0002	131.6409 0.9041	75.5223 0.5875	75.2333 0.2378
77.0472 0.1142	146.7740 0.8559	151.0952 0.8803	155.1856 0.9041	46.9203 0.6087	75.2329 0.2458
52.2386 0.1337	127.7613 0.8559	151.0955 0.8803		21.0904 0.6377	45.8638 0.2675
33.2259 0.1605	102.9527 0.8559	129.8558 0.8803	155.1858 0.9041		17.9637 0.2972
33.2261 0.1872	102.9522 0.8559	103.5664 0.8803	131.6413 0.9041		17.0640 0.2370
52.2389 0.2068	127.7609 0.8559	103.5660 0.8803	104.0762 0.9041	46.9207 0.6879	17.9640 0.3270
77.0476 0.2140	146.7738 0.8559	129.8554 0.8803	104.0758 0.9041	75.5227 0.6957	45.8642 0.3487
77.0472 0.2212	146.7740 0.8559	151.0952 0.8803	131.6409 0.9041	75.5223 0.7034	75.2333 0.3567

75.2329	0.3646	80,0002	1.0000	164.2065 0.9751	134.9997 1.0000
45.8638	0.3864	75.0582	0.0082	164.2069 0.9751	164.9997 1.0000
17.9637	0.4161	45.2174	0.0305	134,7825 0.9751	165.0002 1.0000
17.9640	0.4459	15.7930	0.0609	104.9417 0.9751	135.0002 1.0000
45.8642	0.4676	15.7934	0.0914	104.9413 0.9751	105.0002 1.0000
75.2333	0.4756	45.2178	0.1137	134.7821 0.9751	104.9997 1.0000
75.2329	0.4730	75.0586	0.1219	164,2065 0.9751	134,9997 1.0000
45.8638		75.0582	0.1301	164.2069 0.9751	164,9997 1.0000
	0.5053	45.2174	0.1524	134.7825 0.9751	165.0002 1.0000
17.9637	0.5350		0.1324	104.9417 0.9751	135.0002 1.0000
17.9640	0.5647	15.7930		104.9417 0.9751	105.0002 1.0000
45.8642	0.5865	15.7934	0.2133	134.7821 0.9751	104.9997 1.0000
75.2333	0.5945	45.2178	0.2356		134.9997 1.0000
75.2329	0.6024	75.0586	0.2438	164.2065 0.9751	164.9997 1.0000
45.8638	0.6242	75.0582	0.2519	164.2069 0.9751	165,0002 1.0000
17.9637	0.6539	45.2174	0.2742	134.7825 0.9751	
17.9640	0.6836	15.7930	0.3047	104,9417 0.9751	135.0002 1.0000
45.8642	0.7054	15.7934	0.3352	85.0002 0.9834	105.0002 1.0000
75.2333	0.7134	45.2178	0.3575	85.0002 0.9875	104.9997 1.0000
75.2329	0.7213	75.0586	0.3657	85.0002 0.9958	134.9997 1.0000
45.8638	0.7431	75.0582	0.3738	85.0002 1.0000	164.9997 1.0000
17.9637	0.7728	45.2174	0.3961	74.9998 0.0084	165.0002 1.0000
17.9640	0.8025	15.7930	0.4266	44.9998 0.0312	135.0002 1.0000
45.8642	0.8243	15.7934	0.4571	14.9998 0.0625	105.0002 1.0000
75.2333	0.8323	45.2178	0.4794	15.0001 0.0937	104.9997 1.0000
75.2329	0.8402	75.0586	0.4876	45.0002 0.1166	134.9997 1.0000
45.8638	0.8620	75.0582	0.4957	75.0002 0.1250	164.9997 1.0000
17.9637	0.8917	45.2174	0.5180	74.9998 0.1334	165.0002 1.0000
17.9640	0.9214	15.7930	0.5485	44.9998 0.1562	135.0002 1.0000
45.8642	0.9432	15.7934	0.5790	14.9998 0.1875	105.0002 1.0000
75.2333	0.9512	45.2178	0.6013	15.0002 0.2187	104,9997 1,0000
104.7666	0.9512	75.0586	0.6094	45.0002 0.2416	134.9997 1.0000
134.1358	0.9512	75.0582	0.6176	75.0002 0.2500	164.9997 1.0000
162.0359	0.9512	45.2174	0.6399	74.9998 0.2584	165,0002 1.0000
162.0362	0.9512	15.7930	0.6704	44.9998 0.2812	135.0002 1.0000
134.1362	0.9512	15.7934	0.7009	14.9998 0.3125	105.0002 1.0000
104.7670	0.9512	45.2178	0.7232	15.0002 0.3437	90.0002 1.0000
		75.0586	0.7313	45.0002 0.3666	90.0002 1.0000
104.7666	0.9512	75.0582	0.7315	75.0002 0.3750	90.0002 1.0000
134.1358	0.9512	45.2174	0.7618	74,9998 0.3834	90.0002 1.0000
162.0359	0.9512			44.9998 0.4062	70.000 2 1.000
162.0362	0.9512	15.7930	0.7923	14.9998 0.4375	
134.1362	0.9512	15.7934	0.8228		
104.7670	0.9512	45.2178	0.8451	15.0002 0.4687	
104.7666	0.9512	75.0586	0.8532	45.0002 0.4916	
134.1358	0.9512	75.0582	0.8614	75.0002 0.5000	
162.0359	0.9512	45.2174		74.9998 0.5084	
162.0362	0.9512	15.7930		44.9998 0.5312	
134.1362	0.9512	15.7934		14.9998 0.5625	
104.7670	0.9512	45.2178	0.9669	15.0002 0.5937	
104.7666	0.9512	75.0586		45.0002 0.6166	
134.1358	0.9512	104.9413	0.9751	75.0002 0.6250	
162.0359	0.9512	134.7821	0.9751	74.9998 0.6334	
162.0362	0.9512	164.2065	0.9751	44.9998 0.6562	
134.1362	0.9512	164.2069	0.9751	14.9998 0.6875	
104.7670	0.9512	134.7825	0.9751	15.0002 0.7187	
104.7666	0.9512	104.9417	0.9751	45.0002 0.7416	
134.1358	0.9512	104.9413	0.9751	75.0002 0.7500	
162.0359	0.9512	134.7821	0.9751	74.9998 0.7584	
162.0362	0.9512	164.2065		44.9998 0.7812	
134.1362		164.2069		14.9998 0.8125	
104.7670		134.7825		15.0002 0.8437	
104.7666		104.9417		45.0002 0.8666	
134.1358		104.9413		75,0002 0.8750	
162.0359		134.7821	0.9751	74.9998 0.8834	
162.0362		164.2065		44.9998 0.9062	
134.1362		164.2069		14.9998 0.9375	
104.7670		134.7825		15.0002 0.9687	
104.7666		104.9417		45.0002 0.9916	
134.1358		104.9417		75.0002 1.0000	
162.0359		134.7821		104.9997 1.0000	
162.0359		164.2065		134.9997 1.0000	
134.1362		164.2069		164.9997 1.0000	
134.1362		134.7825		165.0002 1.0000	
104.7676		104.9417		135.0002 1.0000	
134.1358		104.9417		105,0002 1.0000	
		134.7821		104.9997 1.0000	
162.0359		164.2065		134,9997 1.0000	
162.0362				164.9997 1.0000	
134.1362		164.2069			
104.7670		134.7825		165.0002 1.0000 135.0002 1.0000	
80.0002		104.9417		105.0002 1.0000	
80.0002		104.9413			
80.0002	2 0.9919	134.7821	0.9751	104.9997 1.0000	

APPENDIX G JLAB.DAT Data File

Obliquity	Cum	75.0582	0.6224	21.0907	0.2427	76.4335	0.0084	33.2261	0.7188	78.5641	0.3833
(degrees)	Cum. Prob.	45.2174		46.9207	0.3666	50.1441	0.0312	52.2389	0.7417	57.2021	0.4062
. •		15.7930	0.6875	75.5227	0.3749	28.9044		77.0476		42.2735	0.4375
74.9998		15.7934	0.7188	75.5223	0.3834	28.9048	0.0937	77.0472 52.2386	0.7584 0.7813	42.2736 57.2024	0.4687 0.4916
	0.0312 0.0625	45.2178 75.0586	0.7417	46.9203 21.0904	0.4062 0.4375	50.1445 76.4339		33.2259	0.7813	78.5646	
	0.0937	75.0582	0.7584	21.0907	0.4687	76.4335	0.1334	33.2261	0.8438		0.5084
	0.1166	45.2174	0.7813	46.9207	0.4916	50.1441	0.1563	52.2389	0.8667	57.2021	0.5312
	0.1250	15.7930		75.5227	0.5000	28.9044	0.1875	77.0476		42.2735	0.5624
	0.1334	15.7934 45.2178	0.8438	75.5223 46.9203	0.5083	28.9047 50.1445		77.0472 52.2386	0.8834 0.9063	42.2736 57.2024	0.5938 0.6166
	0.1562 0.1875	75.0586	0.8667	21.0904	0.5313 0.5624	76.4339		33.2259		78.5646	
	0.2187	75.0582	0.8834	21.0907	0.5937	76.4335		33.2261	0.9688		0.6334
	0.2416	45.2174	0.9063	46.9207	0.6166	50.1441		52.2389	0.9917	57.2021	0.6563
	0.2500	15.7930		75.5227	0.6249 0.6334	28.9044 28.9047		77.0476 77.7595	1.0000 0.0084	42.2735 42.2736	0.6875 0.7187
	0.2584 0.2812	15.7934 45.2178	0.9687 0.9916	75.5223 46.9203	0.6562	50.1445		54.6036		57.2024	0.7416
14.9998		75.0586			0.6875	76.4339		37.6984	0.0625	78.5646	
15.0002	0.3437	75.2329	0.0084	21.0907	0.7187	76.4335		37.6987	0.0938	78.5641	0.7583
	0.3666	45.8638	0.0312	46.9207	0.7416	50.1441		54.6039 77.7599	0.1167	57.2021 42.2735	0.7812 0.8124
	0.3750 0.3834	17.9637 17.9641	0.0624 0.0938	75.5227 75.5223	0.7500 0.7583	28.9044 28.9047		77.7595	0.1250 0.1334	42.2736	0.8124
	0.4062	45.8642	0.1166	46.9203	0.7812	50.1445		54.6036		57.2024	0.8666
	0.4375	75.2333	0.1250	21.0904	0.8124	76.4339		37.6984	0.1875		0.8749
	0.4687	75.2329	0.1334	21.0907	0.8437	76.4335		37.6986	0.2188	78.5641	0.8834
	0.4916 0.5000	45.8638 17.9637	0.1562 0.1874	46.9207 75.5227	0.8665 0.8749	50.1441 28.9044		54.6039 77.7599	0.2417 0.2500	57.2021 42.2735	0.9062 0.9374
	0.5084	17.9640	0.1874	75.5223	0.8834	28.9047		77.7595	0.2584		0.9688
	0.5312	45.8642	0.2416	46.9203	0.9062	50.1445		54.6036		57.2024	0.9915
14.9998		75.2333	0.2500	21.0904	0.9375	76.4339		37.6984	0.3125		1.0000
	0.5937	75.2329	0.2584	21.0907	0.9687	76.4335	0.6334	37.6986	0.3438	79.4545	0.0084
	0.6166 0.6250	45.8638 17.9637	0.2812 0.3124	46.9207 75.5227	0.9916 1.0000	50.1441 28.9044	0.6563 0.6875	54.6039 77.7599	0.3666 0.3750	59.9999 46.9205	0.0313 \ 0.0625
	0.6334	17.9640	0.3438	75.9237	0.0084	28.9047	0.7187	77.7595	0.3834	46.9207	0.0938
44.9998	0.6562	45.8642	0.3666	48.3586	0.0313	50.1445	0.7417	54.6036	0.4063	60.0002	0.1166
	0.6875	75.2333	0.3750	24.8141	0.0625	76.4339		37.6984	0.4374	79.4549	0.1250
	0.7187 0.7416	75.2329 45.8638	0.3833 0.4062	24.8145 48.3590	0.0938 0.1166	76.4335 50.1441		37.6986 54.6039	0.4688 0.4916	79.4545 59.9999	0.1334 0.1563
	0.7500	17.9637			0.1150	28.9044		77.7599	0.5001	46.9205	0.1875
	0.7584	17.9640	0.4688	75.9237	0.1334	28.9047	0.8438	77.7595	0.5084	46.9206	0.2188
	0.7812	45.8642	0.4916		0.1563	50.1445		54.6036	0.5312	60.0002	0.2416
	0.8125	75.2333	0.5000	24.8141	0.1875	76.4339 76.4335		37.6984 37.6986	0.5626 0.5937	79.4549 79.4545	0.2500 0.2584
	0.8437 0.8666	75.2329 45.8638	0.5083 0.5312	24.8143 48.3590	0.2188 0.2416	50.1441	0.9063	54.6039	0.6166	59.9999	0.2364
	0.8750	17.9637	0.5624	75.9241	0.2500	28.9044		77.7599	0.6250	46.9205	0.3125
	0.8834	17.9640	0.5937	75.9237	0.2584	28.9047	0.9688	77.7595	0.6334	46.9206	0.3438
	0.9062	45.8642	0.6166		0.2813	50.1445		54.6036	0.6562	60.0002	0.3667
	0.9375 0.9687	75.2333 75.2329	0.6250 0.6333	24.8141 24.8143	0.3125 0.3438	76.4339 77.0472		37.6984 37.6986	0.6875 0.7187	79.4549 79.4545	0.3750 0.3833
	0.9916	45.8638	0.6562	48.3590	0.3667	52.2386		54.6039	0.7416	59.9999	0.4063
75.0002	1.0000	17.9637	0.6874	75.9241	0.3750	33.2259	0.0625	77.7599	0.7500	46.9205	0.4376
	0.0084	17.9640	0.7187	75.9237	0.3834	33.2262	0.0937	77.7595	0.7583	46.9206	0.4688
45.2174 15.7930	0.0313	45.8642 75.2333	0.7416 0.7500	48.3586 24.8141	0.4063 0.4375	52.2389 77.0476	0.1166	54.6036 37.6984	0.7812 0.8125	60.0002 79.4549	0.4917 0.4999
	0.0023	75.2329	0.7583		0.4688	77.0472		37.6986	0.8437	79.4545	0.5083
45.2178		45.8638		48.3590		52.2386	0.1562	54.6039	0.8666	59.9999	0.5312
75.0586		17.9637		75.9241		33.2259		77.7599		46.9205	
75.0582 45.2174		17.9640 45.8642	0.8437 0.8666	75.9237 48.3586	U.DU84 0.5312	33.2261 52.2389	0.2187 0.2416	77.7595 54.6036		46.9206 60.0002	
15.7930		75.2333		24.8141		77.0476	0.2500	37.6984		79.4549	
15.7934	0.2187	75.2329	0.8833	24.8143	0.5937	77.0472	0.2584	37.6986	0.9688	79.4545	0.6333
45.2178		45.8638		48.3590		52.2386	0.2812	54.6039		59.9999	
75.0586		17.9637		75.9241		33.2259 33.2261	0.3125	77.7599 78.5641		46.9205 46.9206	0.6875
75.0582 45.2174		17.9640 45.8642		75.9237 48.3586		52.2389	0.3666	57.2021		60.0002	
15.7930		75.2333		24.8141		77.0476		42.2735	0.0625	79.4549	
15.7934	0.3438	75.5223	0.0084	24.8143	0.7187	77.0472	0.3833	42.2738	0.0937	79.4545	
45.2178		46.9203		48.3590		52.2386	0.4062	57.2024		59.9999 46.9205	
75.0586 75.0582		21.0904 21.0908		75.9241 75.9237		33.2259 33.2261	0.4570	78.5646 78.5641			0.8123
45.2174		46.9207		48.3586	0.7812	52.2389	0.4916	57.2021		60.0002	
15.7930	0.4375	75.5227	0.1249	24.8141	0.8125	77.0476	0.5001	42.2735	0.1874	79.4549	0.8750
15.7934		75.5223	0.1334	24.8143	0.8437	77.0472		42.2736		79.4545	
45.2178 75.0586		46.9203 21.0904		48.3590 75.9241		52.2386 33.2259	0.5515 0.5626	57.2024 78.5646		59.9999 46.9205	
75.0586 75.0582		21.0904		75.9241 75.9237		33.2261	0.5938	78.5641			0.9575
45.2174		46.9207	0.2416	48.3586	0.9062	52.2389	0.6167	57.2021	0.2813	60.0002	0.9916
15.7930		75.5227	0.2500	24.8141	0.9375	77.0476	0.6251	42.2735		79.4549	
15.7934		75.5223		24.8143 48.3590	0.9687	77.0472 52.2386		42.2736 57.2024		80.4232 62.9659	
45.2178 75.0586		46.9203 21.0904		48.3590 75.9241		33.2259		78.5646		51.6192	
, 5.0500	J.0200	#1.UJUT	5.51 2 5	, , , , , , , , , , , ,	~~~	JU MUJ					

F1 /10F	0.0000	81.4625	0.7504	65,9072	0.4600	86.1589	0.1224	80.3443	0.8437
51.6195									
62.9662		66.0724		72.6125		79.4547		82.9472	0.6003
80.4236	0.1250	56.3559		83.7205		75.5226		87.4243	
80.4232	0.1334	56.3561	0.8438	83.7201		75.5227	0.2188	87.4239	0.8833
62.9659		66.0728		72.6122	0.5312	79.4550	0.2415	82.9469	0.9063
51.6192		81.4629		65.9071		86.1593			0.9374
		81.4625		65.9072		86.1589	0.2585		0.9687
51.6193								92 0472	0.7007
62.9662		66.0724		72.6125		79.4547		82.9472	0.9915
80.4236	0.2501	56.3559		83.7205		75.5226	0.3125	87.4243	1.0000
80.4232	0.2584	56.3561	0.9687	83.7201	0.6334	75.5227	0.3438	88.7073	0.0082
62.9659		66.0728		72.6122		79.4550	0.3666	86.4667	0.0312
51.6192		81.4625		65.9071		86.1593		85.1709	
		82.5643		65.9072		86.1589	0.3743	85.1710	
51.6193		62.3043	0.0004	72.6125		79.4547		86.4670	
62.9662		69.2951						88.7077	
80.4236		61.1210		83.7205	0.7499	75.5226	0.4370		
80.4232	0.3833	61.1212		83.7201		75.5227	0.4687	88.7073	
62.9659	0.4062	69.2954	0.1166	72.6122	0.7813	79.4550	0.4916	86.4667	
51.6192	0.4375	82.5647		65.9071	0.8125	86.1593	0.5000	85.1709	0.1876
51.6193		82.5643		65.9072		86.1589	0.5084	85.1710	
62.9662		69.2951		72.6125		79.4547		86.4670	
								88.7077	
80.4236		61.1210		83.7205		75.5226	0.3024		
80.4232		61.1211		83.7201		75.5227		88.7073	
62.9659	0.5313	69.2954	0.2417	72.6122		79.4550		86.4667	
51.6192	0.5625	82.5647	0.2500	65.9071	0.9374	86.1593	0.6251	85.1709	0.3124
51.6193		82.5643		65.9072		86.1589	0.6334	85.1710	0.3436
62.9662		69.2951		72.6125		79.4547		86.4670	
								88.7077	
80.4236		61.1210	0.3120	83.7205		75.5226	0.00/3		
80.4232		61.1211	0.3437	84.9213		75.5227		88.7073	
62.9659	0.6563	69.2954	0.3666	76.0045	0.0313	79.4550		86.4667	
51.6192	0.6876	82.5647	0.3750	70.7091	0.0625	86.1593		85.1709	0.4376
51.6193		82.5643		70.7093	0.0938	86.1589	0.7585	85.1710	0.4688
62.9662		69.2951		76.0048		79.4547		86.4670	
						75.5226	0.7012	88.7077	0.4710
80.4236		61.1210		84.9217		13.3220	0.0123		
80.4232		61.1211		84.9213		75.5227		88.7073	
62.9659	0.7812	69.2954	0.4916	76.0045	0.1563	79.4550		86.4667	
51.6192	0.8124	82.5647	0.5001	70.7091	0.1875	86.1593	0.8749	85.1709	0.5624
51.6193		82.5643		70.7092		86.1589	0.8833	85.1710	0.5936
62.9662		69.2951		76.0048		79.4547		86.4670	
80.4236		61.1210		84.9217		75.5226		88.7077	
				04.9217	0.2300	75.5227	0.9374		0.6334
80.4232		61.1211		84.9213					
62.9659		69.2954		76.0045		79.4550		86.4667	
51.6192	0.9375	82.5647		70.7091	0.3124	86.1593		85.1709	
51.6193	0.9687	82.5643	0.6334	70.7092	0.3438	87.4239	0.0085	85.1710	0.7188
62.9662		69.2951		76.0048		82.9469	0.0313	86.4670	0.7418
80.4236		61.1210		84.9217		80.3442		88.7077	
						80.3443			0.7582
81.4625		61.1211		84.9213					
66.0724		69.2954		76.0045		82.9472		86.4667	
56.3559	0.0625	82.5647	0.7500	70.7091		87.4243		85.1709	
56.3562	0.0938	82.5643	0.7585	70.7092	0.4688	87.4239		85.1710	0.8436
66.0728	0.1167	69.2951	0.7813	76.0048	0.4916	82.9469	0.1563	86,4670	0.8666
81.4629		61.1210		84.9217		80.3442		00 7077	0.8748
81.4625		61.1211						XX./U//	
					D SHXA	80 3443	0.2186	88.7077 88.7073	
66.0724		09.29.34		84.9213	0.5084	80.3443		88.7073	0.8834
56.3559	0.1875		0.8667	76.0045	0.5312	82.9472	0.2417	88.7073 86.4667	0.8834 0.9060
		82.5647	0.8751	76.0045 70.7091	0.5312 0.5626	82.9472 87.4243	0.2417 0.2499	88.7073 86.4667 85.1709	0.8834 0.9060 0.9376
	0.2188	82.5647 82.5643	0.8751 0.8834	76.0045 70.7091 70.7092	0.5312 0.5626 0.5937	82.9472 87.4243 87.4239	0.2417 0.2499 0.2584	88.7073 86.4667 85.1709 85.1710	0.8834 0.9060 0.9376 0.9688
	0.2416	82.5647	0.8751 0.8834	76.0045 70.7091	0.5312 0.5626 0.5937 0.6166	82.9472 87.4243 87.4239 82.9469	0.2417 0.2499 0.2584 0.2812	88.7073 86.4667 85.1709	0.8834 0.9060 0.9376 0.9688
	0.2416	82.5647 82.5643 69.2951 61.1210	0.8751 0.8834 0.9062	76.0045 70.7091 70.7092	0.5312 0.5626 0.5937 0.6166 0.6251	82.9472 87.4243 87.4239 82.9469 80.3442	0.2417 0.2499 0.2584 0.2812 0.3125	88.7073 86.4667 85.1709 85.1710	0.8834 0.9060 0.9376 0.9688 0.9913
81.4629	0.2416 0.2500	82.5647 82.5643 69.2951 61.1210	0.8751 0.8834 0.9062 0.9375	76.0045 70.7091 70.7092 76.0048 84.9217	0.5312 0.5626 0.5937 0.6166 0.6251	82.9472 87.4243 87.4239 82.9469 80.3442	0.2417 0.2499 0.2584 0.2812	88.7073 86.4667 85.1709 85.1710 86.4670	0.8834 0.9060 0.9376 0.9688 0.9913
81.4629 81.4625	0.2416 0.2500 0.2583	82.5647 82.5643 69.2951 61.1210 61.1211	0.8751 0.8834 0.9062 0.9375 0.9688	76.0045 70.7091 70.7092 76.0048 84.9217 84.9213	0.5312 0.5626 0.5937 0.6166 0.6251 0.6334	82.9472 87.4243 87.4239 82.9469 80.3442 80.3443	0.2417 0.2499 0.2584 0.2812 0.3125 0.3439	88.7073 86.4667 85.1709 85.1710 86.4670	0.8834 0.9060 0.9376 0.9688 0.9913
81.4629 81.4625 66.0724	0.2416 0.2500 0.2583 0.2813	82.5647 82.5643 69.2951 61.1210 61.1211 69.2954	0.8751 0.8834 0.9062 0.9375 0.9688 0.9917	76.0045 70.7091 70.7092 76.0048 84.9217 84.9213 76.0045	0.5312 0.5626 0.5937 0.6166 0.6251 0.6334 0.6562	82.9472 87.4243 87.4239 82.9469 80.3442 80.3443 82.9472	0.2417 0.2499 0.2584 0.2812 0.3125 0.3439 0.3667	88.7073 86.4667 85.1709 85.1710 86.4670	0.8834 0.9060 0.9376 0.9688 0.9913
81.4629 81.4625 66.0724 56.3559	0.2416 0.2500 0.2583 0.2813 0.3126	82.5647 82.5643 69.2951 61.1210 61.1211 69.2954 82.5647	0.8751 0.8834 0.9062 0.9375 0.9688 0.9917 1.0000	76.0045 70.7091 70.7092 76.0048 84.9217 84.9213 76.0045 70.7091	0.5312 0.5626 0.5937 0.6166 0.6251 0.6334 0.6562 0.6876	82.9472 87.4243 87.4239 82.9469 80.3442 80.3443 82.9472 87.4243	0.2417 0.2499 0.2584 0.2812 0.3125 0.3439 0.3667 0.3749	88.7073 86.4667 85.1709 85.1710 86.4670	0.8834 0.9060 0.9376 0.9688 0.9913
81.4629 81.4625 66.0724 56.3559 56.3561	0.2416 0.2500 0.2583 0.2813 0.3126 0.3437	82.5647 82.5643 69.2951 61.1210 61.1211 69.2954 82.5647 83.7201	0.8751 0.8834 0.9062 0.9375 0.9688 0.9917 1.0000 0.0084	76.0045 70.7091 70.7092 76.0048 84.9217 84.9213 76.0045 70.7091 70.7092	0.5312 0.5626 0.5937 0.6166 0.6251 0.6334 0.6562 0.6876 0.7187	82.9472 87.4243 87.4239 82.9469 80.3442 80.3443 82.9472 87.4243 87.4239	0.2417 0.2499 0.2584 0.2812 0.3125 0.3439 0.3667 0.3749 0.3834	88.7073 86.4667 85.1709 85.1710 86.4670	0.8834 0.9060 0.9376 0.9688 0.9913
81.4629 81.4625 66.0724 56.3559 56.3561 66.0728	0.2416 0.2500 0.2583 0.2813 0.3126 0.3437 0.3667	82.5647 82.5643 69.2951 61.1210 61.1211 69.2954 82.5647 83.7201 72.6122	0.8751 0.8834 0.9062 0.9375 0.9688 0.9917 1.0000 0.0084 0.0312	76.0045 70.7091 70.7092 76.0048 84.9217 84.9213 76.0045 70.7091 70.7092 76.0048	0.5312 0.5626 0.5937 0.6166 0.6251 0.6334 0.6562 0.6876 0.7187 0.7416	82.9472 87.4243 87.4239 82.9469 80.3442 80.3443 82.9472 87.4243 87.4239 82.9469	0.2417 0.2499 0.2584 0.2812 0.3125 0.3439 0.3667 0.3749 0.3834 0.4062	88.7073 86.4667 85.1709 85.1710 86.4670	0.8834 0.9060 0.9376 0.9688 0.9913
81.4629 81.4625 66.0724 56.3559 56.3561 66.0728 81.4629	0.2416 0.2500 0.2583 0.2813 0.3126 0.3437 0.3667 0.3750	82.5647 82.5643 69.2951 61.1210 61.1211 69.2954 82.5647 83.7201 72.6122 65.9071	0.8751 0.8834 0.9062 0.9375 0.9688 0.9917 1.0000 0.0084 0.0312 0.0626	76.0045 70.7091 70.7092 76.0048 84.9217 84.9213 76.0045 70.7091 70.7092 76.0048 84.9217	0.5312 0.5626 0.5937 0.6166 0.6251 0.6334 0.6562 0.6876 0.7187 0.7416 0.7500	82.9472 87.4243 87.4239 82.9469 80.3442 80.3443 82.9472 87.4243 87.4239 82.9469 80.3442	0.2417 0.2499 0.2584 0.2812 0.3125 0.3439 0.3667 0.3749 0.3834 0.4062 0.4375	88.7073 86.4667 85.1709 85.1710 86.4670	0.8834 0.9060 0.9376 0.9688 0.9913
81.4629 81.4625 66.0724 56.3559 56.3561 66.0728 81.4629 81.4625	0.2416 0.2500 0.2583 0.2813 0.3126 0.3437 0.3667 0.3750	82.5647 82.5643 69.2951 61.1210 61.1211 69.2954 82.5647 83.7201 72.6122 65.9071 65.9073	0.8751 0.8834 0.9062 0.9375 0.9688 0.9917 1.0000 0.0084 0.0312	76.0045 70.7091 70.7092 76.0048 84.9217 84.9213 76.0045 70.7091 70.7092 76.0048	0.5312 0.5626 0.5937 0.6166 0.6251 0.6334 0.6562 0.6876 0.7187 0.7416	82.9472 87.4243 87.4239 82.9469 80.3442 80.3443 82.9472 87.4243 87.4239 82.9469 80.3442 80.3443	0.2417 0.2499 0.2584 0.2812 0.3125 0.3439 0.3667 0.3749 0.3834 0.4062 0.4375 0.4688	88.7073 86.4667 85.1709 85.1710 86.4670	0.8834 0.9060 0.9376 0.9688 0.9913
81.4629 81.4625 66.0724 56.3559 56.3561 66.0728 81.4629 81.4625	0.2416 0.2500 0.2583 0.2813 0.3126 0.3437 0.3667 0.3750	82.5647 82.5643 69.2951 61.1210 61.1211 69.2954 82.5647 83.7201 72.6122 65.9071 65.9073	0.8751 0.8834 0.9062 0.9375 0.9688 0.9917 1.0000 0.0084 0.0312 0.0626	76.0045 70.7091 70.7092 76.0048 84.9217 84.9213 76.0045 70.7091 70.7092 76.0048 84.9217	0.5312 0.5626 0.5937 0.6166 0.6251 0.6334 0.6562 0.6876 0.7187 0.7416 0.7500	82.9472 87.4243 87.4239 82.9469 80.3442 80.3443 82.9472 87.4243 87.4239 82.9469 80.3442	0.2417 0.2499 0.2584 0.2812 0.3125 0.3439 0.3667 0.3749 0.3834 0.4062 0.4375	88.7073 86.4667 85.1709 85.1710 86.4670	0.8834 0.9060 0.9376 0.9688 0.9913
81.4629 81.4625 66.0724 56.3559 56.3561 66.0728 81.4629 81.4625 66.0724	0.2416 0.2500 0.2583 0.2813 0.3126 0.3437 0.3667 0.3750 0.3834 0.4063	82.5647 82.5643 69.2951 61.1210 61.1211 69.2954 82.5647 83.7201 72.6122 65.9071 65.9073 72.6125	0.8751 0.8834 0.9062 0.9375 0.9688 0.9917 1.0000 0.0084 0.0312 0.0626 0.0938 0.1167	76.0045 70.7091 70.7092 76.0048 84.9217 84.9213 76.0045 70.7091 70.7092 76.0048 84.9217 84.9213 76.0045	0.5312 0.5626 0.5937 0.6166 0.6251 0.6334 0.6562 0.6876 0.7187 0.7416 0.7500 0.7583 0.7812	82.9472 87.4243 87.4239 82.9469 80.3442 80.3443 82.9472 87.4243 87.4239 82.9469 80.3442 80.3442 80.3442	0.2417 0.2499 0.2584 0.2812 0.3125 0.3439 0.3667 0.3749 0.3834 0.4062 0.4375 0.4688 0.4916	88.7073 86.4667 85.1709 85.1710 86.4670	0.8834 0.9060 0.9376 0.9688 0.9913
81.4629 81.4625 66.0724 56.3559 56.3561 66.0728 81.4629 81.4625 66.0724 56.3559	0.2416 0.2500 0.2583 0.2813 0.3126 0.3437 0.3667 0.3750 0.3834 0.4063 0.4375	82.5647 82.5643 69.2951 61.1210 61.1211 69.2954 82.5647 83.7201 72.6122 65.9071 72.6125 83.7205	0.8751 0.8834 0.9062 0.9375 0.9688 0.9917 1.0000 0.0084 0.0312 0.0626 0.0938 0.1167 0.1250	76.0045 70.7091 70.7092 76.0048 84.9217 84.9213 76.0045 70.7091 70.7092 76.0048 84.9217 76.0045 70.7091	0.5312 0.5626 0.5937 0.6166 0.6251 0.6334 0.6562 0.6876 0.7187 0.7416 0.7500 0.7583 0.7812 0.8125	82.9472 87.4243 87.4239 82.9469 80.3442 80.3443 82.9472 87.4243 87.4239 82.9469 80.3442 80.3443 82.9472 87.4243	0.2417 0.2499 0.2584 0.2812 0.3125 0.3439 0.3667 0.3749 0.3834 0.4062 0.4375 0.4688 0.4916 0.4999	88.7073 86.4667 85.1709 85.1710 86.4670	0.8834 0.9060 0.9376 0.9688 0.9913
81.4629 81.4625 66.0724 56.3559 56.3561 66.0728 81.4629 81.4625 66.0724 56.3559 56.3561	0.2416 0.2500 0.2583 0.2813 0.3126 0.3437 0.3667 0.3750 0.3834 0.4063 0.4375 0.4688	82.5647 82.5643 69.2951 61.1210 61.1211 69.2954 82.5647 83.7201 72.6122 65.9071 65.9073 72.6125 83.7205 83.7205	0.8751 0.8834 0.9062 0.9375 0.9688 0.9917 1.0000 0.0084 0.0312 0.0626 0.0938 0.1167 0.1250 0.1334	76.0045 70.7091 70.7092 76.0048 84.9217 84.9213 76.0045 70.7091 70.7092 76.0048 84.9217 84.9213 76.0045 70.7091 70.7091 70.7092	0.5312 0.5626 0.5937 0.6166 0.6251 0.6334 0.6562 0.6876 0.7187 0.7416 0.7500 0.7583 0.7812 0.8125 0.8437	82.9472 87.4243 87.4239 82.9469 80.3442 80.3443 82.9472 87.4243 80.3442 80.3443 82.9472 87.4243 87.4239	0.2417 0.2499 0.2584 0.2812 0.3125 0.3439 0.3667 0.3749 0.3834 0.4062 0.4375 0.4688 0.4916 0.4999 0.5084	88.7073 86.4667 85.1709 85.1710 86.4670	0.8834 0.9060 0.9376 0.9688 0.9913
81.4629 81.4625 66.0724 56.3559 56.3561 66.0728 81.4629 81.4625 66.0724 56.3559 56.3561 66.0728	0.2416 0.2500 0.2583 0.2813 0.3126 0.3437 0.3667 0.3750 0.3834 0.4063 0.4375 0.4688 0.4916	82.5647 82.5643 69.2951 61.1210 61.1211 69.2954 82.5647 83.7201 72.6122 65.9071 65.9073 72.6125 83.7205 83.7201 72.6122	0.8751 0.8834 0.9062 0.9375 0.9688 0.9917 1.0000 0.0084 0.0312 0.0626 0.0938 0.1167 0.1250 0.1334 0.1563	76.0045 70.7091 70.7092 76.0048 84.9217 84.9213 76.0045 70.7091 76.0048 84.9217 84.9213 76.0045 70.7091 70.7092 76.0048	0.5312 0.5626 0.5937 0.6166 0.6251 0.6334 0.6562 0.6876 0.7187 0.7416 0.7500 0.7583 0.7812 0.8437 0.8666	82.9472 87.4243 87.4239 82.9469 80.3442 80.3443 82.9472 87.4243 87.4243 87.4243 87.4243 87.4243 87.4239 82.9469	0.2417 0.2499 0.2584 0.2812 0.3125 0.3439 0.3667 0.3749 0.3834 0.4062 0.4375 0.4688 0.4916 0.4999 0.5084 0.5312	88.7073 86.4667 85.1709 85.1710 86.4670	0.8834 0.9060 0.9376 0.9688 0.9913
81.4629 81.4625 66.0724 56.3559 56.3551 66.0728 81.4629 81.4625 66.0724 56.3559 56.3561 66.0728 81.4629	0.2416 0.2500 0.2583 0.2813 0.3126 0.3437 0.3667 0.3750 0.3834 0.4063 0.4375 0.4688 0.4916 0.5001	82.5647 82.5643 69.2951 61.1210 69.2954 82.5647 83.7201 72.6122 65.9073 72.6125 83.7205 83.7201 72.6122 65.9071	0.8751 0.8834 0.9062 0.9375 0.9688 0.9917 1.0000 0.0084 0.00312 0.0626 0.0938 0.1167 0.1250 0.1334 0.1563 0.1875	76.0045 70.7091 70.7092 76.0048 84.9217 84.9213 76.0045 70.7091 76.0048 84.9217 84.9213 76.0045 70.7091 70.7092 76.0048 84.9217	0.5312 0.5626 0.5937 0.6166 0.6251 0.6334 0.6562 0.6876 0.7187 0.7416 0.7500 0.7583 0.7812 0.8125 0.8437 0.8666 0.8750	82.9472 87.4239 82.9469 80.3442 80.3443 82.9472 87.4239 82.9469 80.3443 82.9472 87.4243 87.4239 87.4243 87.4239 87.4243 87.4239 87.4243	0.2417 0.2499 0.2584 0.2812 0.3125 0.3439 0.3667 0.3749 0.3834 0.4062 0.4375 0.4688 0.4916 0.4999 0.5084 0.5312 0.5625	88.7073 86.4667 85.1709 85.1710 86.4670	0.8834 0.9060 0.9376 0.9688 0.9913
81.4629 81.4625 66.0724 56.3559 56.3561 66.0728 81.4625 56.3559 56.3551 66.0728 81.4628 81.4629	0.2416 0.2500 0.2583 0.2813 0.3126 0.3437 0.3667 0.3750 0.3834 0.4063 0.4375 0.4688 0.4916 0.5001 0.5084	82.5647 82.5643 69.2951 61.1210 61.1211 69.2954 82.5647 83.7201 72.6122 65.9071 65.9073 72.6125 83.7201 72.6122 65.9071 65.9072	0.8751 0.8834 0.9062 0.9375 0.9688 0.9917 1.0000 0.0084 0.0312 0.0626 0.0938 0.1167 0.1250 0.1334 0.1563 0.1875 0.2187	76.0045 70.7091 70.7092 76.0048 84.9217 84.9213 76.0045 70.7091 70.7092 76.0048 84.9217 84.9213 76.0045 70.7091 70.7092 76.0048 84.9217 84.9213	0.5312 0.5626 0.5937 0.6166 0.6251 0.6334 0.6562 0.6876 0.7187 0.7416 0.7500 0.7583 0.7812 0.8125 0.8437 0.8666 0.8750 0.8833	82.9472 87.4243 87.4239 82.9469 80.3442 80.3443 87.4243 87.4239 82.9469 80.3442 87.4239 82.9469 80.3442 87.4239 82.9469 80.3442 87.4239 82.9469 80.3443	0.2417 0.2499 0.2584 0.2812 0.3125 0.3439 0.3667 0.3749 0.3834 0.4062 0.4375 0.4916 0.4999 0.5084 0.5312 0.5625 0.5938	88.7073 86.4667 85.1709 85.1710 86.4670	0.8834 0.9060 0.9376 0.9688 0.9913
81.4629 81.4625 66.0724 56.3559 56.3561 66.0728 81.4625 66.0724 56.3559 56.3561 66.0728 81.4625 66.0724	0.2416 0.2500 0.2583 0.2813 0.3126 0.3437 0.3667 0.3750 0.3834 0.4063 0.4375 0.4688 0.4916 0.5001 0.5001	82.5647 82.5643 69.2951 61.1210 61.1211 69.2954 82.5647 72.6122 65.9071 65.9073 72.6125 83.7201 72.6122 65.9071 72.6122 72.6125	0.8751 0.8834 0.9062 0.9375 0.9688 0.9917 1.0000 0.0084 0.0312 0.0626 0.0938 0.1167 0.1250 0.1334 0.1563 0.1875 0.2187 0.2416	76.0045 70.7091 70.7092 76.0048 84.9217 84.9213 76.0045 70.7091 70.7092 76.0048 84.9217 84.9213 76.0045 70.7091 70.7092 76.0048 84.9217 84.9213 76.0045	0.5312 0.5626 0.5937 0.6166 0.6251 0.6334 0.6562 0.6876 0.7187 0.7416 0.7500 0.7583 0.7812 0.8125 0.8437 0.8666 0.8750 0.8833 0.9062	82.9472 87.4243 87.4239 82.9469 80.3442 80.3443 87.4243 87.4243 82.9469 80.3442 87.4243 87.424	0.2417 0.2499 0.2584 0.2812 0.3125 0.3439 0.3667 0.3749 0.3834 0.4062 0.4375 0.4688 0.4916 0.4999 0.5084 0.5312 0.5625 0.5938 0.6166	88.7073 86.4667 85.1709 85.1710 86.4670	0.8834 0.9060 0.9376 0.9688 0.9913
81.4629 81.4625 66.0724 56.3559 56.3561 66.0728 81.4625 66.0724 56.3559 56.3561 66.0728 81.4625 66.0724	0.2416 0.2500 0.2583 0.2813 0.3126 0.3437 0.3667 0.3750 0.3834 0.4063 0.4375 0.4688 0.4916 0.5001 0.5084	82.5647 82.5643 69.2951 61.1210 61.1211 69.2954 82.5647 83.7201 72.6122 65.9071 65.9073 72.6125 83.7205 83.7201 72.6122 65.9071 65.9072 72.6125 83.7205 83.7205	0.8751 0.8834 0.9062 0.9375 0.9688 0.9917 1.0000 0.0084 0.0312 0.0626 0.0938 0.1167 0.1250 0.1334 0.1563 0.1875 0.2416 0.2499	76.0045 70.7091 70.7092 76.0048 84.9217 84.9213 76.0045 70.7091 70.7092 76.0048 84.9217 84.9213 76.0045 70.7091 70.7092 76.0048 84.9217 84.9213	0.5312 0.5626 0.5937 0.6166 0.6251 0.6334 0.6562 0.6876 0.7187 0.7416 0.7500 0.7583 0.7812 0.8125 0.8437 0.8666 0.8750 0.8833	82.9472 87.4239 82.9469 80.3442 80.3443 82.9472 87.4243 87.4239 80.3442 80.3443 87.4239 87.4243 87.4239 87.4243 87.4243 87.4239 87.4243	0.2417 0.2499 0.2584 0.2812 0.3125 0.3439 0.3667 0.3749 0.3834 0.4062 0.4375 0.4688 0.4916 0.4999 0.5084 0.5312 0.5625 0.5938 0.6166 0.6251	88.7073 86.4667 85.1709 85.1710 86.4670	0.8834 0.9060 0.9376 0.9688 0.9913
81.4629 81.4625 66.0724 56.3559 56.3561 66.0728 81.4625 66.0724 56.3559 56.3561 66.0728 81.4625 66.0724 56.3559	0.2416 0.2500 0.2583 0.2813 0.3126 0.3437 0.3667 0.3750 0.3834 0.4063 0.4375 0.4688 0.4916 0.5001 0.5001 0.5084 0.5312 0.5625	82.5647 82.5643 69.2951 61.1210 61.1211 69.2954 82.5647 83.7201 72.6122 65.9071 65.9073 72.6125 83.7205 83.7201 72.6122 65.9071 65.9072 72.6125 83.7205 83.7205	0.8751 0.8834 0.9062 0.9375 0.9688 0.9917 1.0000 0.0084 0.0312 0.0626 0.0938 0.1167 0.1250 0.1334 0.1563 0.1875 0.2416 0.2499	76.0045 70.7091 70.7092 76.0048 84.9217 84.9213 76.0045 70.7091 70.7092 76.0048 84.9217 84.9213 76.0045 70.7091 70.7092 76.0048 84.9217 84.9213 76.0045 70.7091	0.5312 0.5626 0.5937 0.6166 0.6251 0.6334 0.6562 0.6876 0.7187 0.7416 0.7500 0.7583 0.7812 0.8125 0.8437 0.8666 0.8750 0.8833 0.9062 0.9375	82.9472 87.4243 87.4239 82.9469 80.3442 80.3443 87.4243 87.4243 82.9469 80.3442 87.4243 87.424	0.2417 0.2499 0.2584 0.2812 0.3125 0.3439 0.3667 0.3749 0.3834 0.4062 0.4375 0.4688 0.4916 0.4999 0.5084 0.5312 0.5625 0.5938 0.6166	88.7073 86.4667 85.1709 85.1710 86.4670	0.8834 0.9060 0.9376 0.9688 0.9913
81.4629 81.4625 66.0724 56.3559 56.3561 66.0728 81.4625 66.0724 56.3559 56.3561 66.0728 81.4629 81.4625 66.0724 56.3559 56.3561	0.2416 0.2500 0.2583 0.2813 0.3126 0.3437 0.3667 0.3750 0.3834 0.4063 0.4375 0.4688 0.4916 0.5001 0.5084 0.5012 0.5025 0.5938	82.5647 82.5643 69.2951 61.1210 61.1211 69.2954 82.5647 83.7201 72.6122 65.9071 65.9073 72.6125 83.7205 83.7201 72.6122 65.9071 65.9072 72.6125 83.7205 83.7205 83.7205	0.8751 0.8834 0.9062 0.9375 0.9688 0.9917 1.0000 0.0084 0.0312 0.0626 0.0938 0.1167 0.1250 0.1334 0.1563 0.1875 0.2187 0.2416 0.2446 0.2499 0.2584	76.0045 70.7091 70.7092 84.9213 76.0045 70.7091 70.7092 76.0048 84.9217 84.9213 76.0045 70.7091 70.7092 76.0048 84.9217 84.9213 76.0045 70.7091 70.7092 76.0045	0.5312 0.5626 0.5937 0.6166 0.6251 0.6334 0.6562 0.6876 0.7187 0.7416 0.7500 0.7583 0.7812 0.8125 0.8437 0.8666 0.8750 0.8833 0.9062 0.9375 0.9688	82.9472 87.4238 87.4239 80.3442 80.3443 82.9472 87.4243 87.4239 80.3442 80.3443 82.9472 87.4243 87.4239 82.9469 80.3442 80.3443 82.9472 87.4243 87.4239	0.2417 0.2499 0.2584 0.2812 0.3125 0.3439 0.3667 0.3749 0.3834 0.4062 0.4375 0.4688 0.4916 0.4999 0.5084 0.5312 0.5625 0.9938 0.6166 0.6251 0.6333	88.7073 86.4667 85.1709 85.1710 86.4670	0.8834 0.9060 0.9376 0.9688 0.9913
81.4629 81.4625 66.0724 56.3559 56.3561 66.0728 81.4625 66.0724 56.3559 81.4629 81.4625 66.0724 56.3559 56.3561 66.0728	0.2416 0.2500 0.2583 0.2813 0.3126 0.3437 0.3667 0.3750 0.3834 0.4063 0.4375 0.4688 0.4916 0.5001 0.5084 0.5312 0.5625 0.5938 0.6166	82.5647 82.5643 69.2951 61.1211 69.2954 82.5647 83.7201 72.6122 65.9071 65.9073 72.6125 83.7201 72.6125 83.7201 72.6125 83.7201 72.6125 83.7201 72.6122 72.6125 83.7205 83.7201 72.6125	0.8751 0.8834 0.9062 0.9375 0.9688 0.9917 1.0000 0.0084 0.0312 0.0626 0.0938 0.1167 0.1250 0.1334 0.1563 0.1875 0.2187 0.2416 0.2416 0.2499 0.2584 0.2813	76.0045 70.7091 70.7092 76.0048 84.9217 84.9213 76.0045 70.7091 70.7092 76.0048 84.9217 84.9213 76.0045 70.7091 70.7092 76.0048 70.7091 70.7092 76.0048	0.5312 0.5626 0.5937 0.6166 0.6251 0.6334 0.6562 0.6876 0.7187 0.7416 0.7500 0.7583 0.7812 0.8125 0.8437 0.8666 0.8750 0.8833 0.9062 0.9375 0.9688 0.9917	82.9472 87.4243 87.4239 80.3442 80.3443 82.9472 87.4243 87.4239 82.9469 80.3442 87.4239 82.9469 80.3443 82.9472 87.4239 82.9469 80.3443 82.9472 87.4243 87.4239 87.4249	0.2417 0.2499 0.2584 0.2812 0.3125 0.3439 0.3667 0.3749 0.3834 0.4062 0.4375 0.4688 0.4916 0.4999 0.5084 0.5312 0.5625 0.5938 0.6166 0.6251 0.6333 0.6561	88.7073 86.4667 85.1709 85.1710 86.4670	0.8834 0.9060 0.9376 0.9688 0.9913
81.4629 81.4625 66.0724 56.3559 56.3561 66.0728 81.4629 81.4625 56.3559 56.3561 66.0728 81.4629 56.3559 56.3559 56.3561 66.0728 81.4625	0.2416 0.2500 0.2583 0.2813 0.3126 0.3437 0.3667 0.3750 0.3834 0.4063 0.4375 0.4688 0.4916 0.5001 0.5084 0.5312 0.5625 0.5938 0.6166 0.6250	82.5647 82.5643 69.2951 61.1210 61.1211 69.2954 82.5647 83.7201 72.6122 65.9071 65.9073 72.6125 83.7205 83.7201 72.6125 83.7205 83.7201 72.6125 83.7205 83.7201 72.6125 83.7201 72.6125	0.8751 0.8834 0.9062 0.9375 0.9688 0.9917 1.0000 0.0084 0.0312 0.0626 0.0938 0.1167 0.1250 0.1334 0.1563 0.1875 0.2187 0.2416 0.2499 0.2584 0.2813 0.3125	76.0045 70.7091 70.7092 76.0048 84.9217 84.9213 76.0045 70.7091 70.7092 76.0048 84.9217 84.9213 76.0045 70.7091 70.7092 76.0048 84.9217 70.7092 76.0048 84.9217	0.5312 0.5626 0.5937 0.6166 0.6251 0.6334 0.6562 0.6876 0.7187 0.7416 0.7500 0.7583 0.7812 0.8125 0.8437 0.8666 0.8750 0.8833 0.9062 0.9375 0.9917 1.0000	82.9472 87.4243 87.4239 82.9469 80.3442 80.3443 87.4239 82.9469 80.3442 87.4243 87.4239 82.9469 80.3444 87.4239 82.9469 80.3442 87.4243 87.4243 87.4243 87.4243 87.4243 87.4243 87.4243	0.2417 0.2499 0.2584 0.2812 0.3125 0.3439 0.3667 0.3749 0.3834 0.4062 0.4375 0.4688 0.4916 0.4999 0.5084 0.5312 0.5625 0.5938 0.6166 0.6251 0.6333 0.6561 0.6875	88.7073 86.4667 85.1709 85.1710 86.4670	0.8834 0.9060 0.9376 0.9688 0.9913
81.4629 81.4625 66.0724 56.3559 56.3561 66.0728 81.4629 81.4625 66.0728 81.4629 81.4625 66.0728 81.4625 56.3559 56.3561 66.0728 81.4629 81.4629	0.2416 0.2500 0.2583 0.2813 0.3126 0.3437 0.3667 0.3750 0.3834 0.4063 0.4375 0.4688 0.4916 0.5001 0.5001 0.5084 0.5312 0.5625 0.5938 0.6166 0.6250 0.6333	82.5647 82.5643 69.2951 61.1210 61.1211 69.2954 82.5647 83.7201 72.6122 65.9071 65.9073 72.6125 83.7205 83.7205 83.7205 83.7205 83.7205 83.7201 72.6122 65.9072 72.6125 83.7201 72.6122 65.9071 65.9072	0.8751 0.8834 0.9062 0.9375 0.9688 0.9917 1.0000 0.0084 0.0312 0.0626 0.0938 0.1167 0.1250 0.1334 0.1563 0.1875 0.2187 0.2416 0.2499 0.2584 0.2813 0.3125 0.3437	76.0045 70.7091 70.7092 76.0048 84.9217 84.9213 76.0045 70.7091 70.7092 76.0048 84.9217 84.9213 76.0045 70.7091 70.7092 76.0048 84.9217 84.9213 76.0045 70.7091 70.7092 76.0048 84.9217 84.9217 84.9213 76.0045 70.7091 70.7092 76.0048 84.9217 84.9217 84.9217 86.1589	0.5312 0.5626 0.5937 0.6166 0.6251 0.6334 0.6562 0.6876 0.7187 0.7416 0.7500 0.7583 0.7812 0.8125 0.8437 0.8666 0.8750 0.8833 0.9062 0.9375 0.9688 0.9917 1.0000 0.0084	82.9472 87.4243 87.4239 80.3443 82.9472 87.4243 87.4239 80.3442 80.3443 87.4239 82.9469 80.3442 87.4243 87.4239 82.9469 80.3442 87.4243 87.4239 82.9469 80.3442 87.4243 87.4239 82.9469 80.3442 87.4243 87.4243 87.4243 87.4243	0.2417 0.2499 0.2584 0.2812 0.3125 0.3439 0.3667 0.3749 0.3834 0.4062 0.4375 0.4688 0.4916 0.4999 0.5084 0.5312 0.5625 0.5938 0.6166 0.6251 0.6333 0.6561 0.6875 0.7188	88.7073 86.4667 85.1709 85.1710 86.4670	0.8834 0.9060 0.9376 0.9688 0.9913
81.4629 81.4625 66.0724 56.3559 81.4629 81.4625 66.0724 56.3559 56.3561 66.0728 81.4629 81.4625 66.0724 56.3559 56.3561 66.0728 81.4629 81.4625 66.0724	0.2416 0.2500 0.2583 0.2813 0.3126 0.3437 0.3667 0.3750 0.3834 0.4063 0.4375 0.4688 0.4916 0.5001 0.5084 0.5312 0.5625 0.5938 0.6166 0.6250 0.6333 0.6563	82.5647 82.5643 69.2951 61.1210 61.1211 69.2954 82.5647 72.6122 65.9071 65.9073 72.6125 83.7201 72.6122 65.9071 65.9072 72.6125 83.7201 72.6122 65.9071 65.9072 72.6122	0.8751 0.8834 0.9062 0.9375 0.9688 0.9917 1.0000 0.0084 0.0312 0.0626 0.0938 0.1167 0.1250 0.1334 0.1563 0.1875 0.2187 0.2416 0.2499 0.2584 0.2813 0.3125 0.3437 0.3666	76.0045 70.7091 70.7092 76.0048 84.9217 84.9213 76.0045 70.7091 70.7092 76.0048 84.9217 84.9213 76.0045 70.7091 70.7092 76.0048 84.9217 84.9213 76.0045 70.7091 70.7092 76.0048 84.9217 84.9217 84.9213 76.0045 70.7091 70.7092 76.0048 84.9217	0.5312 0.5626 0.5937 0.6166 0.6251 0.6334 0.6562 0.6876 0.7187 0.7416 0.7500 0.7583 0.7812 0.8125 0.8437 0.8666 0.8750 0.8833 0.9062 0.9375 0.9688 0.9917 1.0000 0.0084 0.0313	82.9472 87.4243 87.4239 80.3442 80.3443 82.9472 87.4243 87.4243 87.4239 82.9472 87.4243 87.4239 82.9469 80.3442 87.4239 82.9469 80.3443 87.4239 82.9469 80.3443 87.4239 82.9469 80.3443 87.4239 87.4243 87.4239 87.4243 87.4239 87.4243 87.4239 87.4243 87.4243 87.4239 87.4243 87.4239 87.4243 87.4239 87.4243 87.4239 87.4243 87.4239 87.4243 87.4239 87.4243 87.4239 87.4243 87.4239 87.4243 87.4239 87.4243 87.4239 87.4243 87.4239 87.4243 87.4239 87.4243 87.4239 87.4243 87.4239 87.4243 87.4239 87.4243 87.424	0.2417 0.2499 0.2584 0.2812 0.3125 0.3439 0.3667 0.3749 0.3834 0.4062 0.4375 0.4688 0.4916 0.4999 0.5084 0.5312 0.5625 0.5938 0.6166 0.6251 0.6333 0.6561 0.6875 0.7188 0.7416	88.7073 86.4667 85.1709 85.1710 86.4670	0.8834 0.9060 0.9376 0.9688 0.9913
81.4629 81.4625 66.0724 56.3559 56.3561 66.0728 81.4625 66.0724 56.3559 56.3561 66.0728 81.4625 66.0728 81.4629 81.4629 81.4625 66.0724 56.3559	0.2416 0.2500 0.2583 0.2813 0.3126 0.3437 0.3667 0.3750 0.3834 0.4063 0.4375 0.4688 0.4916 0.5001 0.5084 0.50312 0.5625 0.5938 0.6166 0.6250 0.6333 0.6563 0.6874	82.5647 82.5643 69.2951 61.1210 61.1211 69.2954 82.5647 83.7201 72.6122 65.9071 65.9073 72.6125 83.7201 72.6122 65.9071 65.9072 72.6125 83.7201 72.6122 65.9071 65.9072 72.6125 83.7205 83.7205	0.8751 0.8834 0.9062 0.9375 0.9688 0.9917 1.0000 0.0084 0.0312 0.0626 0.0938 0.1167 0.1250 0.1334 0.1563 0.1875 0.2187 0.2416 0.24416 0.24416 0.24416 0.24416 0.2433 0.3125 0.3437 0.3666 0.3750	76.0045 70.7091 70.7092 76.0048 84.9217 84.9213 76.0045 70.7091 70.7092 76.0048 84.9217 84.9213 76.0045 70.7091 70.7092 76.0048 84.9217 84.9217 86.1589 79.4547 75.5226	0.5312 0.5626 0.5937 0.6166 0.6251 0.6334 0.6562 0.6876 0.7187 0.7416 0.7500 0.7583 0.7812 0.8125 0.8437 0.8666 0.8750 0.8833 0.9062 0.9375 0.9688 0.9917 1.0000 0.0084 0.0313 0.0624	82.9472 87.4243 87.4239 82.9469 80.3442 87.4243 87.4243 87.4239 82.9469 80.3442 87.4239 82.9469 80.3443 82.9472 87.4243 87.4239 82.9469 80.3442 87.4243 87.4239 87.4243 87.4239 87.4243	0.2417 0.2499 0.2584 0.2812 0.3125 0.3439 0.3667 0.3749 0.3834 0.4062 0.4375 0.4688 0.4916 0.4999 0.5084 0.5312 0.5625 0.5938 0.6166 0.6251 0.6333 0.6561 0.6875 0.7188 0.7416 0.7501	88.7073 86.4667 85.1709 85.1710 86.4670	0.8834 0.9060 0.9376 0.9688 0.9913
81.4629 81.4625 66.0724 56.3559 81.4629 81.4625 66.0724 56.3559 56.3561 66.0728 81.4629 81.4625 66.0724 56.3559 56.3561 66.0728 81.4629 81.4625 66.0724	0.2416 0.2500 0.2583 0.2813 0.3126 0.3437 0.3667 0.3750 0.3834 0.4063 0.4375 0.4688 0.4916 0.5001 0.5084 0.5312 0.5625 0.5938 0.6166 0.6250 0.6333 0.6563	82.5647 82.5643 69.2951 61.1210 61.1211 69.2954 82.5647 83.7201 72.6122 65.9071 65.9072 72.6125 83.7205 83.7201 72.6125 83.7205 83.7201 72.6125 83.7201 72.6125 83.7201 72.6125 83.7201 72.6125 83.7201 83.7201 83.7201 83.7201 83.7205 83.7201	0.8751 0.8834 0.9062 0.9375 0.9688 0.9917 1.0000 0.0084 0.0312 0.0626 0.0938 0.1167 0.1250 0.1334 0.1563 0.1875 0.2187 0.2416 0.2499 0.2584 0.2813 0.3125 0.3437 0.3666	76.0045 70.7091 70.7092 76.0048 84.9217 84.9213 76.0045 70.7091 70.7092 76.0048 84.9217 84.9213 76.0045 70.7091 70.7092 76.0048 84.9217 86.1589 79.4547 75.5226 75.5227	0.5312 0.5626 0.5937 0.6166 0.6251 0.6334 0.6562 0.6876 0.7187 0.7416 0.7500 0.7583 0.7812 0.8125 0.8437 0.8666 0.8750 0.8833 0.9062 0.9375 0.9688 0.9917 1.0000 0.0084 0.0313 0.0624 0.0937	82.9472 87.4243 87.4239 80.3442 80.3443 82.9472 87.4243 87.4243 87.4239 82.9472 87.4243 87.4239 82.9469 80.3442 87.4239 82.9469 80.3443 87.4239 82.9469 80.3443 87.4239 82.9469 80.3443 87.4239 87.4243 87.4239 87.4243 87.4239 87.4243 87.4239 87.4243 87.4243 87.4239 87.4243 87.4239 87.4243 87.4239 87.4243 87.4239 87.4243 87.4239 87.4243 87.4239 87.4243 87.4239 87.4243 87.4239 87.4243 87.4239 87.4243 87.4239 87.4243 87.4239 87.4243 87.4239 87.4243 87.4239 87.4243 87.4239 87.4243 87.4239 87.4243 87.424	0.2417 0.2499 0.2584 0.2812 0.3125 0.3439 0.3667 0.3749 0.3834 0.4062 0.4375 0.4688 0.4916 0.4999 0.5084 0.5312 0.5625 0.5938 0.6166 0.6251 0.6333 0.6561 0.6875 0.7188 0.7416	88.7073 86.4667 85.1709 85.1710 86.4670	0.8834 0.9060 0.9376 0.9688 0.9913
81.4629 81.4625 66.0724 56.3559 56.3561 66.0728 81.4625 66.0724 56.3559 56.3561 66.0728 81.4625 66.0728 81.4629 81.4629 81.4625 66.0724 56.3559	0.2416 0.2500 0.2583 0.2813 0.3126 0.3437 0.3667 0.3750 0.3834 0.4063 0.4375 0.4688 0.4916 0.5001 0.5084 0.50312 0.5625 0.5938 0.6166 0.6250 0.6333 0.6563 0.6874	82.5647 82.5643 69.2951 61.1210 61.1211 69.2954 82.5647 83.7201 72.6122 65.9071 65.9073 72.6125 83.7201 72.6122 65.9071 65.9072 72.6125 83.7201 72.6122 65.9071 65.9072 72.6125 83.7205 83.7205	0.8751 0.8834 0.9062 0.9375 0.9688 0.9917 1.0000 0.0084 0.0312 0.0626 0.0938 0.1167 0.1250 0.1334 0.1563 0.1875 0.2187 0.2416 0.24416 0.24416 0.24416 0.24416 0.2433 0.3125 0.3437 0.3666 0.3750	76.0045 70.7091 70.7092 76.0048 84.9217 84.9213 76.0045 70.7091 70.7092 76.0048 84.9217 84.9213 76.0045 70.7091 70.7092 76.0048 84.9217 84.9217 86.1589 79.4547 75.5226	0.5312 0.5626 0.5937 0.6166 0.6251 0.6334 0.6562 0.6876 0.7187 0.7416 0.7500 0.7583 0.7812 0.8125 0.8437 0.8666 0.8750 0.8833 0.9062 0.9375 0.9688 0.9917 1.0000 0.0084 0.0313 0.0624	82.9472 87.4243 87.4239 82.9469 80.3442 80.3443 87.4239 82.9469 80.3442 87.4243 87.4239 82.9469 80.3443 82.9472 87.4243 87.4243 87.4243 87.4239 87.4243 87.4243 87.4243 87.4243	0.2417 0.2499 0.2584 0.2812 0.3125 0.3439 0.3667 0.3749 0.3834 0.4062 0.4375 0.4688 0.4916 0.4999 0.5084 0.5312 0.5625 0.5938 0.6166 0.6251 0.6333 0.6561 0.6875 0.7188 0.7416 0.7501	88.7073 86.4667 85.1709 85.1710 86.4670	0.8834 0.9060 0.9376 0.9688 0.9913
81.4629 81.4625 66.0724 56.3559 56.3561 66.0728 81.4625 56.3559 56.3561 66.0724 56.3559 56.3561 66.0724 56.3559 56.3561 66.0728 81.4629 81.4629 81.4629 81.4625 66.0728 81.4629 81.4625	0.2416 0.2500 0.2583 0.2813 0.3126 0.3437 0.3667 0.3750 0.3834 0.4063 0.4375 0.4688 0.4916 0.5001 0.5084 0.5312 0.5625 0.5938 0.6166 0.6250 0.6333 0.6563 0.6563 0.674 0.7187	82.5647 82.5643 69.2951 61.1210 61.1211 69.2954 82.5647 83.7201 72.6122 65.9071 65.9072 72.6125 83.7205 83.7201 72.6125 83.7205 83.7201 72.6125 83.7201 72.6125 83.7201 72.6125 83.7201 72.6125 83.7201 83.7201 83.7201 83.7201 83.7205 83.7201	0.8751 0.8834 0.9062 0.9375 0.9688 0.9917 1.0000 0.0084 0.0312 0.0626 0.0938 0.1167 0.1250 0.1334 0.1563 0.1875 0.2187 0.2416 0.2499 0.2584 0.2813 0.3125 0.3437 0.3666 0.3750 0.3833 0.4062	76.0045 70.7091 70.7092 76.0048 84.9217 84.9213 76.0045 70.7091 70.7092 76.0048 84.9217 84.9213 76.0045 70.7091 70.7092 76.0048 84.9217 86.1589 79.4547 75.5226 75.5227	0.5312 0.5626 0.5937 0.6166 0.6251 0.6334 0.6562 0.6876 0.7187 0.7416 0.7500 0.7583 0.7812 0.8125 0.8437 0.8666 0.8750 0.8833 0.9062 0.9375 0.9688 0.9917 1.0000 0.0084 0.0313 0.0624 0.0937	82.9472 87.4243 87.4239 82.9469 80.3442 80.3443 87.4239 82.9469 80.3442 87.4243 87.4239 82.9469 80.3443 82.9472 87.4243 87.4243 87.4243 87.4239 87.4243 87.4243 87.4243 87.4243	0.2417 0.2499 0.2584 0.2812 0.3125 0.3439 0.3667 0.3749 0.3834 0.4062 0.4375 0.4688 0.4916 0.4999 0.5084 0.5312 0.5625 0.5938 0.6166 0.6251 0.6333 0.6561 0.6875 0.7188 0.7416 0.7501 0.7583 0.7814	88.7073 86.4667 85.1709 85.1710 86.4670	0.8834 0.9060 0.9376 0.9688 0.9913

APPENDIX H ESA.DAT Data File

3.33			
At a line			
porta filo			
经 计图像			
i sairt sairt			
337 10 15			
23 A T			
engan sebesah di di Perangan Sebesah di di			
en Sagara			
11			
1.5			
Jack Jack			

Obliquity (degrees)	Cum. Prob.	74.9998 44.9998	0.3125	0.0000 0.0000	0.0000		0.0000		0.0000		0.0000
	0.0000	14.9998	0.3750	0.0000		0.0000	0.0000	0.0000		0.0000	0.0000
0.0000		15.0002 45.0002	0.4375 0.4833	0.0000		0.0000		0.0000		0.0000	0.0000
	0.0000	75.0002	0.5000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.0000	0.0000	74.9998	0.5167	0.0000			0.0000	0.0000		0,0000	0.0000
0.0000		44.9998	0.5625	0.0000		0.0000		0.0000		0.0000	
0.0000	0.0000	14.9998 15.0002	0.6250 0.6875	0.0000			0.0000	0.0000		0.0000	
0.0000		5.0002	0.7333	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	
0.0000	0.0000	75.0002	0.7500	0.0000	0.0000	0.0000			0.0000	0.0000	
	0.0000	74.9998	0.7667	0.0000 75.0582	0.0000		0.0000		0.0000	0.0000	0.0000
0.0000	0.0000	44.9998 14.9998	0.8125 0.8750	45.2174	0.0079	0.0000			0.0000	0.0000	
	0.0000	15.0002	0.9375	15.7930	0.0588	0.0000	0.0000		0.0000	0.0000	
0.0000		45.0002	0.9833	15.7934		0.0000	0.0000		0.0000	0.0000	0.0000
	0.0000	75.0002	1.0000	45.2178 75.0586	0.1098 0.1176	0.0000	0.0000		0.0000	0.0000	0.0000
	0.0000		1.0000	75.0582	0.1373		0.0000	0.0000	0.0000	0.0000	
0.0000	0.0000		1.0000	45.2174	0.1912		0.0000		0.0000	0.0000	0.0000
	0.0000	0.0000	1.0000	15.7930 15.7934	0.2647 0.3382	0.0000	0.0000		0.0000	0.0000	
0.0000	0.0000	0.0000	0.0000	45.2178	0.3921		0.0000		0.0000	0.0000	
	0.0000	0.0000	0.0000	75.0586	0.4118	0.0000	0.0000		0.0000	0.0000	0.0000
	0.0000	0.0000	0.0000	75.0582	0.4315		0.0000		0.0000	0.0000	0.0000
	0.0000	0.0000	0.0000	45.2174 15.7930	0.4853 0.5588		0.0000		0.0000	0.0000	
	0.0000	0.0000	0.0000	15.7934	0.6324	0.0000	0.0000	0.0000	0.0000	0.0000	
	0.0000		0.0000	45.2178	0.6862	0.0000	0.0000	0.0000	0.0000	0.0000	
	0.0000	0.0000	0.0000	75.0586 75.0582	0.7059 0.7256	0.0000	0.0000	0.0000	0.0000	0.0000	
0.0000	0.0000	0.0000	0.0000	45.2174	0.7794		0.0000		0.0000	0.0000	
	0.0000	0.0000	0.0000	15.7930	0.8529	45.8638	0.0000	0.0000			0.0000
	0.0000	0.0000	0.0000	15.7934	0.9265	17.9637 17.9641	0.0000		0.0000	0.0000	0.0000
0.0000	0.0000		0.0000	45.2178 75.0586	0.9803	45.8642	0.0000		0.0000	0.0000	0.0000
	0.0000	0.0000	0.0000	0.0000	1.0000	75.2333	0.0000	0.0000	0.0000	0.0000	
0.0000	0.0000	0.0000	0.0000		1.0000	75.2329			0.0000		0.0000
0.0000	0.0000	0.0000	0.0000		1.0000	45.8638 17.9637	0.0833 0.1667		0.0000		0.0000
0.0000	0.0000	0.0000	0.0000		0.0000	17.9640		0.0000	0.0000	0.0000	0.0000
0.0000	0.0000	0.0000	0.0000		0.0000	45.8642	0.3110	0.0000		0.0000	0.0000
0.0000	0.0000	0.0000	0.0000		0.0000	75.2333 75.2329	0.3333 0.3557	0.0000	0.0000	0.0000	0.0000
0.0000	0.0000				0.0000	45.8638	0.4167	0.0000	0.0000	0.0000	0.0000
	0.0000	0.0000		0.0000	0.0000	17.9637	0.5000	0.0000	0.0000	0.0000	0.0000
0.0000	0.0000				0.0000	17.9640 45.8642	0.5833 0.6443	0.0000	0.0000	0.0000 0.0000	0.0000
0.0000	0.0000			0.0000	0.0000	75.2333	0.6667	0.0000	0.0000	0.0000	0.0000
0.0000	0.0000		0.0000		0.0000	75.2329	0.6890	0.0000	0.0000	0.0000	0.0000
0.0000	0.0000			0.0000	0.0000	45.8638	0.7500	75.5223 46.9203	0.0000	0.0000	0.0000
0.0000	0.0000	0.0000	0.0000		0.0000	17.9637 17.9640	0.8333	21.0904	0.0000	0.0000	0.0000
0.0000	0.0000		0.0000		0.0000	45.8642	0.9777	21.0908	0.0000	0.0000	0.0000
0.0000	0.0000	0.0000	0.0000		0.0000	75.2333	1.0000	46.9207	0.0000	0.0000	0.0000
0.0000			0.0000	0.0000	0.0000	0.0000	1.0000 1.0000	75.5227 75.5223	0.0000		0.0000
0.0000			0.0000	0.0000	0.0000	0.0000	1.0000	46.9203	0.0326	0.0000	0.0000
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		1.0000	21.0904			0.0000
0.0000			0.0000	0.0000	0.0000		0.0000	21.0907 46.9207	0.0978		0.0000
0.0000			0.0000		0.0000		0.0000	75.5227			0.0000
0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	75.5223	0.1595		0.0000
0.0000			0.0000	0.0000	0.0000		0.0000	46.9203 21.0904	0.2391		0.0000
0.0000			0.0000		0.0000	0.0000	0.0000	21.0904	0.4565	0.0000	
0.0000			0.0000	0.0000	0.0000	0.0000	0.0000	46.9207	0.5361	0.0000	0.0000
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	75.5227	0.5652		0.0000
0.0000			0.0000		0.0000		0.0000	75.5223 46.9203	0.5943 0.6739	0.0000 75.9237	0.0000
0.0000			0.0000		0.0000	0.0000	0.0000	21.0904	0.7826	48.3586	0.0000
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	21.0907	0.8913	24.8141	0.0000
	0.0000		0.0000		0.0000		0.0000	46.9207 75.5227		24.8145 48.3590	0.0000
0.0000 74.9998	0.0000 0.0167		0.0000	0.0000	0.0000		0.0000	0.0000	1.0000	75.9241	0.0000
44.9998	0.0625	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	1.0000	75.9237	0.0000
14.9998	0.1250		0.0000		0.0000	0.0000	0.0000		1.0000 1.0000	48.3586 24.8141	0.0000
15.0001 45.0002	0.1875 0.2333		0.0000	0.0000	0.0000	0.0000	0.0000		0.0000		0.0000
75.0002			0.0000	0.0000	0.0000		0,0000		0.0000		0.0000

75.9241	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
75.9237	0.0298		0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	
48.3586		0,0000	0.0000	0.0000			0.0000		0.0000	0.0000	
24.8141	0.2222	0.0000	0.0000	0.0000			0.0000		0.0000	0.0000	
24.8143	0.3333	0.0000		0.0000			0.0000	0.0000	0.0000	0.0000	
48.3590 75.9241	0.4147 0.4444	0,0000	0.0000	0.0000			0.0000		0.0000	0.0000	
75.9241	0.4444	0.0000	0.0000	0.0000			0.0000		0.0000	0.0000	0.0000
48.3586		76.4335		0.0000			0.0000		0.0000	0.0000	0.0000
24.8141		50.1441		0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	
24.8143	0.8611	28.9044	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	
48.3590		28.9048			0.0000	0.0000	0.0000		0.0000	0.0000 0.0000	0.0000
75.9241		50.1445		0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	
	1.0000	76.4339 76.4335	0.0000		0.0000	0.0000	0.0000		0.0000	0.0000	
	1.0000	50.1441	0.0000		0.0000		0.0000		0,0000	0.0000	0.0000
	1.0000	28.9044	0.0000		0.0000	0,0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.0000	0.0000	28.9047	0.0000		0.0000		0.0000		0.0000	0.0000	
	0.0000	50.1445	0.0000		0.0000	0.0000	0.0000		0.0000	0.0000	
	0.0000	76.4339	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000
	0.0000	76.4335 50.1441			0.0000		0.0000		0.0000		0.0000
	0.0000	28.9044			0.0000		0.0000		0.0000		0.0000
	0.0000	28.9047		0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000
	0.0000	50.1445	0.0848	0.0000	0.0000	0.0000	0.0000		0.0000		0.0000
0.0000	0.0000	76.4339	0.0909		0.0000	0.0000	0.0000		0.0000		0.0000
	0.0000	76.4335	0.1518	0.0000		0.0000	0.0000		0.0000	0.0000	
	0.0000	50.1441		77.0472	0.0000	0.0000	0.0000		0.0000		0.0000
	0.0000	28.9044 28.9047	0.5454	52.2386	0.0000	0.0000	0.0000		0.0000	0.0000	
	0.0000	28.9047 50.1445		33.2259 33.2262	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000
	0.0000	76.4339	1.0000	52.2389	0.0000	0.0000	0.0000		0.0000		0.0000
	0.0000	0.0000	1.0000	77.0476	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000
	0.0000	0.0000	1.0000	77.0472	0.0000	0.0000	0.0000		0.0000		0.0000
	0.0000	0.0000	1.0000	52.2386	0.0000	0.0000	0.0000		0.0000		0.0000
	0.0000	0.0000	1.0000	33.2259	0.0000		0.0000		0.0000		0.0000
	0.0000	0.0000	0.0000	33.2261 52.2389	0.0000	0.0000	0.0000		0,0000	0.0000	0.0000
	0.0000	0.0000	0.0000	77.0476		0.0000	0.0000		0.0000		0.0000
	0.0000	0.0000	0.0000	77.0472	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000
	0.0000	0.0000	0.0000	52.2386	0.0000	0.0000	0.0000		0.0000		0.0000
	0.0000	0.0000	0.0000	33.2259	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000
	0.0000	0.0000	0.0000	33.2261			0.0000		0.0000	0.0000	0.0000
	0.0000	0.0000	0.0000	52.2389	0.0000	0.0000	0.0000		0.0000		0.0000
	0.0000		0.0000	77.0476 77.0472			0.0000		0.0000		0.0000
	0.0000	0.0000	0.0000	52.2386	0.2500		0.0000		0.0000		0.0000
	0.0000	0.0000	0.0000	33.2259	0.5000	0.0000	0.0000		0.0000	0.0000	0.0000
	0.0000	0.0000	0.0000	33.2261	0.7500	0.0000	0.0000		0.0000		0.0000
	0.0000	0.0000	0.0000	52.2389	0.9330	0.0000	0.0000		0.0000	0.0000	0.0000
	0.0000	0.0000	0.0000	77.0476			0.0000		0.0000		0.0000
	0.0000	0.0000	0.0000	0,000,0	1.0000		0.0000		0.0000		0.0000
	0.0000	0.0000	0.0000		1.0000	0.0000	0.0000		0.0000		0.0000
	0.0000		0.0000		1.0000		0.0000		0.0000		0.0000
	0.0000		0.0000	0.0000			0.0000		0.0000	0.0000	0.0000
0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000		0.0000
	0.0000		0.0000		0.0000	0.0000	0.0000		0.0000		0.0000
	0.0000		0.0000		0.0000		0.0000		0.0000		0.0000
	0.0000		0.0000		0.0000		0.0000		0.0000		0.0000
	0.0000		0.0000		0.0000		0.0000		0.0000		0.0000
	0.0000		0.0000		0.0000	0.0000	0.0000		0.0000		0.0000
	0.0000		0.0000		0.0000		0.0000		0.0000		0.0000
	0.0000	0.0000			0.0000		0.0000		0.0000		0.0000
	0.0000		0.0000		0.0000		0.0000		0.0000		0.0000
	0.0000		0.0000		0.0000		0.0000		0.0000		0.0000
	0.0000		0.0000		0.0000		0.0000		0.0000		0.0000
	0.0000		0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000		0.0000
0.0000	0.0000		0.0000		0.0000		0.0000		0.0000		0.0000
	0.0000		0.0000		0.0000		0.0000		0.0000		0.0000
	0.0000		0.0000		0.0000		0.0000		0.0000		0.0000
	0.0000		0.0000		0.0000		0.0000		0.0000		0.0000
	0.0000		0.0000		0.0000		0.0000		0.0000	0.0000	0.0000
	0.0000		0.0000		0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000		0.0000		0.0000
	0.0000		0.0000		0.0000		0.0000		0.0000		
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0,0000	0.0000

		0.0000	0.0000	. 0 0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.0000			0.0000	0.0000		0.0000			0.0000	0.0000	
0.0000			0.0000		0.0000	0.0000			0.0000		0.0000
0.0000			0.0000	0.0000		0.0000			0.0000		0.0000
0.0000			0.0000		0.0000	0.0000			0.0000		0.0000
0.0000			0.0000		0.0000	0.0000			0.0000	0.0000	0.0000
0.0000			0.0000		0.0000	0.0000			0.0000		0.0000
0.0000		0.0000	0.0000		0.0000	0.0000			0.0000	0.0000	0.0000
0.0000			0.0000		0.0000		0.0000		0.0000		0.0000
	0.0000		0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	
	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
	0.0000		0.0000		0.0000	0.0000			0.0000		0.0000
	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000		0.0000		0.0000
0.0000	0.0000		0.0000		0.0000	0.0000			0.0000		0.0000
0.0000	0.0000		0.0000		0.0000	0.0000			0.0000		0.0000
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000
	0.0000		0.0000		0.0000	0.0000			0.0000		0.0000
	0.0000	0.0000	0.0000		0.0000		0.0000		0.0000		0.0000
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000			0.0000		0.0000
	0.0000		0.0000			0.0000			0.0000		0.0000
	0.0000		0.0000		0.0000		0.0000		0.0000		0.0000
	0.0000		0.0000		0.0000	0.0000			0.0000		0.0000
	0.0000		0.0000		0.0000		0.0000		0.0000		0.0000
	0.0000		0.0000		0.0000	0.0000	0.0000		0.0000		0.0000
	0.0000		0.0000		0.0000	0.0000	0.0000		0.0000		0.0000
	0.0000		0.0000		0.0000		0.0000		0.0000		0.0000
	0.0000		0.0000		0.0000		0.0000	0.0000	0.0000		0.0000
	0.0000		0.0000		0.0000	0.0000	0.0000		0.0000		0.0000
	0.0000		0.0000		0.0000		0.0000		0.0000		0.0000
0.0000	0.0000		0.0000		0.0000		0.0000		0.0000		0.0000
	0.0000		0.0000		0.0000		0.0000		0.0000		0.0000
	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000		0.0000
	0.0000	0.0000	0.0000		0.0000		0.0000	0.0000	0.0000		0.0000
	0.0000		0.0000		0.0000		0.0000		0.0000		0.0000
	0.0000		0.0000		0.0000		0.0000		0.0000		0.0000
	0.0000	0.0000	0.0000		0.0000		0.0000		0.0000		0.0000
	0.0000		0.0000		0.0000		0.0000		0.0000		0.0000
	0.0000		0.0000	0.0000	0.0000		0.0000		0.0000		0.0000
	0.0000	0.0000	0.0000		0.0000		0.0000		0.0000		0.0000
	0.0000		0.0000		0.0000		0.0000		0.0000		0.0000
	0.0000		0.0000		0.0000		0.0000		0.0000		0.0000
	0.0000		0.0000		0.0000		0.0000		0.0000	0.0000	0.0000
	0.0000		0.0000		0.0000		0.0000		0.0000		0.0000
	0.0000		0.0000		0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
	0.0000		0.0000		0.0000	0.0000	0.0000		0.0000		0.0000
	0.0000		0.0000		0.0000		0.0000		0.0000		0.0000
0.0000	0.0000	0.0000	0.0000		0.0000		0.0000		0.0000		0.0000
0.0000	0.0000		0.0000		0,0000		0.0000		0.0000		0.0000
	0.0000		0.0000		0.0000		0.0000		0.0000		0.0000
0.0000		0.0000	0.0000		0.0000		0.0000		0.0000		0.0000
	0.0000	0.0000	0.0000		0.0000		0.0000		0.0000		0.0000
	0.0000		0.0000		0.0000		0.0000		0.0000		0.0000
	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000			0.0000
	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000		0.0000		0.0000
	0.0000	0.0000	0.0000		0.0000		0.0000		0.0000		0.0000
	0.0000		0.0000		0.0000		0.0000		0.0000		
	0.0000		0.0000		0.0000		0.0000		0.0000		0.0000
	0.0000		0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	0.0000		0.0000		0.0000	0.0000	0.0000	0.0000	0.0000		
0.0000	0.0000	0.0000	0.0000		0.0000		0.0000		0.0000		0.0000
0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000		0.0000
	0.0000		0.0000		0.0000		0.0000		0.0000		
	0.0000		0.0000		0.0000		0.0000		0.0000		0.0000
	0.0000		0.0000		0.0000	0.0000	0.0000	0.0000	0.0000		0.0000
	0.0000		0.0000		0.0000		0.0000		0.0000		0.0000
	0.0000		0.0000		0.0000		0.0000		0.0000		0.0000
	0.0000		0.0000		0.0000		0.0000		0.0000		0.0000
	0.0000		0.0000		0.0000		0.0000		0.0000		0.0000
	0.0000		0.0000		0.0000		0.0000		0.0000		0.0000
	0.0000		0.0000		0.0000		0.0000		0.0000		0.0000
	0.0000		0.0000		0.0000		0.0000		0.0000		0.0000
	0.0000	0.0000			0.0000		0.0000		0.0000		0.0000
	0.0000		0.0000		0.0000		0.0000	0.0000	0.0000		
	0.0000		0.0000		0.0000		0.0000		0.0000		
	0.0000	0.0000			0.0000		0.0000		0.0000	0.0000	0.0000
	0.0000		0.0000		0.0000		0.0000	0.0000	0.0000	0.0000	
	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

0.0000			0.0000		0.0000	0.0000			0.0000		
0.0000			0.0000		0.0000	0,0000			0.0000		
0.0000			0.0000		0.0000	0.0000		0.0000		0.0000	
0.0000			0.0000		0.0000	0.0000		0.0000		0.0000	
0.0000	0.0000		0.0000	0.0000		0.0000			0.0000		
0.0000	0.0000		0.0000		0.0000	0.0000		0.0000			
0.0000	0.0000		0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000			0.0000
0.0000		0.0000	0.0000	0.0000		0.0000			0.0000		0.0000
0.0000			0.0000	0.0000		0.0000		0.0000			
0.0000		0.0000		0.0000	0.0000	0.0000		0.0000			
0.0000		0.0000	0.0000	0.0000		0.0000		0.0000			
0.0000			0.0000	0.0000		0.0000		0.0000		0.0000	
0.0000			0.0000	0.0000		0.0000		0.0000			
0.0000		0.0000	0.0000	0.0000	0.0000	0.0000			0.0000		
0.0000			0.0000	0.0000		0.0000		0.0000			
0.0000			0.0000	0.0000		0.0000		0.0000			
0.0000			0.0000	0.0000	0.0000	0.0000			0.0000		
0.0000				0.0000		0.0000			0.0000		
			0.0000			0.0000		0.0000			
0.0000			0.0000	0.0000							
0.0000			0.0000		0.0000	0.0000		0.0000			
0.0000			0.0000	0.0000		0.0000		0.0000		0.0000	
0.0000			0.0000	0.0000		0.0000		0.0000			
0.0000			0.0000		0.0000	0.0000			0.0000		
0.0000			0.0000		0.0000		0.0000	0.0000		0.0000	
0.0000			0.0000	0.0000		0.0000		0.0000	0.0000	0.0000	
0.0000			0.0000	0.0000		0.0000		0.0000			
0.0000			0.0000		0.0000	0.0000			0.0000		
0.0000			0.0000	0.0000		0.0000		0.0000			
0.0000			0.0000		0.0000	0.0000			0.0000		
0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000		0.0000	
0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.0000	0.0000	0.0000	0.0000	0.0000		0.0000		0.0000	0.0000		
0.0000			0.0000	0.0000		0.0000		0.0000			
0.0000			0.0000		0.0000	0.0000			0.0000		
0.0000			0.0000	0.0000		0.0000			0.0000		0.0056
0.0000			0.0000		0.0000	0.0000		0.0000			
0.0000			0.0000	0.0000		0.0000			0.0000		
0.0000			0.0000	0.0000		0.0000			0.0000	85.1710	0.0625
0.0000			0.0000		0.0000	0.0000			0.0000		
0.0000			0.0000		0.0000	0.0000			0.0000		0.0833
0.0000			0.0000		0.0000	0.0000			0.0000		0.0889
0.0000			0.0000		0.0000	0.0000			0.0000		
0.0000						0.0000					0.1041
			0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	03.1709 05.1710	
0.0000											
0.0000			0.0000	0.0000		0.0000		0.0000			
0.0000			0.0000	0.0000		0.0000		0.0000	0.0000	88.7077	0.1666
0.0000		0.0000		0.0000		0.0000		0.0000			0.1722
0.0000			0.0000	0.0000		0.0000		0.0000		86.4667	
0.0000	0.0000	0.0000		0.0000		0.0000		0.0000		85.1709	0.2083
0.0000		0.0000		0.0000		0.0000		0.0000			
0.0000			0.0000		0.0000	0.0000			0.0000	86.4670	
	0.0000		0.0000		0.0000	0.0000			0.0000		0.2499
	0.0000		0.0000		0.0000	0.0000			0.0000	88.7073	0.2555
0.0000			0.0000		0.0000	0.0000			0.0000	86.4667	0.2708
0.0000			0.0000		0.0000	0.0000			0.0000	85.1709	0.2916
0.0000			0.0000		0.0000	0.0000			0.0000	85.1710	
0.0000			0.0000		0.0000	0.0000			0.0000		0.3277
0.0000			0.0000		0.0000	0.0000			0.0000	88.7077	0.3332
0.0000			0.0000		0.0000	0.0000			0.0000	88.7073	0.3388
0.0000	0.0000		0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	86.4667	0.3541
0.0000			0.0000		0.0000	0.0000			0.0000	85.1709	0.3749
0.0000			0.0000		0.0000	0.0000			0.0000	85.1710	0.3957
0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	86.4670	0.4110
0.0000	0.0000		0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	88.7077	0.4165
0.0000			0.0000		0.0000	0.0000			0.0000	88.7073	0.4221
0.0000			0.0000		0.0000	0.0000			0.0000	86.4667	0.4374
0.0000			0.0000		0.0000	0.0000			0.0000	85.1709	0.4582
0.0000			0.0000		0.0000	0.0000			0.0000		0.4790
0.0000			0.0000		0.0000	0.0000			0.0000		0.4943
0.0000			0.0000		0.0000	0.0000			0.0000	88.7077	0.4999
0.0000			0.0000	0.0000	0.0000	0.0000			0.0000	88.7073	0.5054
0.0000			0.0000		0.0000	0.0000			0.0000	86.4667	0.5207
	0.0000		0.0000		0.0000	0.0000		0.0000		85.1709	0.5415
0.0000			0.0000		0.0000	0.0000			0.0000	85.1710	
0.0000			0.0000		0.0000	0.0000			0.0000	86.4670	
0.000	310000	0.0000	2.2200	V.VVV		0.0000		0.0000		00,7070	3.0 / / 0

						0.0000	1 0000	0.0000	0.0167	72.6125	0.6611
88.7077	0.5832	82.9472		75.5227		0.0000	1.0000		0.9167		
88,7073	0.5887	87.4243	0.3333			0.0000	1.0000		0.9223	83.7205	0.6667
86.4667	0.6040	87.4239	0.3389	86.1593	0.0833	0.0000	1.0000		0.9375	83.7201	0.6723
85.1709	0.6248		0.3542	86.1589	0.0889	0.0000		0.0000	0.9584	72.6122	0.6875
	0.6456		0.3750	79.4547		0.0000	1.0000	0.0000	0.9792	65.9071	0.7084
	0.6609		0.3958		0.1250	0.0000		0.0000	0.9944	65.9072	0.7292
			0.4111	75.5227	0.1458	0.0000	1.0000	0.0000	1.0000	72.6125	0.7444
88.7077	0.6665		0.4111	79.4550		0.0000	1,0000	0.0000	1.0000	83.7205	0.7500
88.7073	0.6721					0.0000	1.0000	0.0000	1.0000	83.7201	
86.4667	0.6873		0.4222	86.1593	0.1667				1.0000	72.6122	
85.1709	0.7081		0.4375	86.1589	0.1723	0.0000		0.0000	1.0000		
85.1710	0.7290	80.3442	0.4583	79.4547	0.1875	0.0000			1.0000	65.9071	
	0.7442	80.3443	0.4791	75.5226	0.2083	0.0000	1.0000		1.0000	65.9072	
88.7077	0.7498	82.9472	0.4944	75.5227	0.2292	0.0000	1.0000		1.0000	72.6125	0.8278
88.7073	0.7554		0.5000	79.4550		0.0000	1.0000	0.0000	1.0000	83.7205	0.8334
	0.7706		0.5056	86.1593	0.2500	0.0000	1.0000	0.0000	1.0000	83.7201	0.8389
				86.1589	0.2556	0.0000	1,0000	0.0000	1.0000	72.6122	0.8542
85.1709	0.7914	82.9469	0.5208	79.4547		84.9213	0.0056		1.0000	65.9071	
85.1710	0.8123		0.5416			76.0045		0.0000	1.0000	65.9072	
	0.8275	80.3443	0.5625	75.5226	0.2917			0.0000	1.0000	72.6125	0.9111
88.7077	0.8331	82.9472	0.5777	75.5227	0.3125	70.7091					0.9167
88.7073	0.8387	87.4243	0.5833	79.4550	0.3278	70.7093	0.0625		1.0000	83.7205	
86,4667	0.8539	87.4239	0.5889	86.1593	0.3333	76.0048			1.0000	83.7201	
85.1709	0.8747	82.9469	0.6041	86.1589	0.3389	84.9217	0.0833		1.0000	72.6122	0.9375
	0.8956		0.6250	79.4547	0.3542	84.9213	0.0889		1.0000	65.9071	0.9584
86.4670		80.3443	0.6458	75.5226	0.3750	76.0045	0.1042	0.0000	1.0000	65.9072	0.9792
88.7077	0.9164	82.9472	0.6611	75.5227	0.3959	70.7091			1.0000	72.6125	0.9944
		87.4243	0.6666			70.7092			1.0000	83.7205	1.0000
88.7073	0.9220					76.0048			1.0000		1.0000
86.4667		87.4239	0.6722	86.1593	0.4167				1.0000		1.0000
85.1709	0.9581	82.9469	0.6875	86.1589	0.4223	84.9217	0.1007				
85.1710	0.9789	80.3442	0.7083	79.4547		84.9213			1.0000		1.0000
86,4670	0.9941	80.3443	0.7291	75.5226	0.4584	76.0045		0.0000	1.0000		1.0000
88.7077	0.9997		0.7444	75.5227	0.4792	70.7091		0.0000	1.0000	0.0000	1.0000
0.0000		87.4243	0.7500	79,4550		70.7092	0.2292	0.0000	1.0000		1.0000
0.0000		87.4239		86.1593	0.5000	76.0048		0.0000	1.0000	0.0000	1.0000
				86.1589	0.5056	84.9217		0.0000	1.0000	0.0000	1.0000
0.0000		80.3442		79.4547	0.5209	84.9213	0.2556	0.0000	1.0000	0.0000	1.0000
0.0000						76.0045		83.7201	0.0056		1.0000
0.0000		80.3443		75.5226	0.5417			72.6122			1.0000
0.0000		82.9472		75.5227	0.5625	70.7091				0.0000	1.0000
0.0000	0.9997	87.4243	0.8333	79.4550		70.7092		65.9071	0.0417		
0.0000	0.9997	87.4239	0.8389	86.1593	0.5834	76.0048		65.9073	0.0625		1.0000
0.0000	0.9997	82.9469	0.8541	86.1589	0.5889	84.9217	0.3333	72.6125	0.0778	0.0000	1.0000
0.0000		80.3442		79.4547	0.6042	84.9213	0.3389	83.7205	0.0833		1.0000
	0.9997	80.3443		75.5226		76.0045	0.3542	83.7201	0.0889	0.0000	1.0000
	0.9997	82.9472		75.5227	0.6459	70.7091		72.6122	0.1042	0.0000	1.0000
		87.4243	0.9166	79.4550	0.6611	70.7092		65.9071	0.1250	0.0000	1.0000
	0.9997	07.4243			0.6667	76.0048		65.9072			1.0000
	0.9997	87.4239	0.9222	86.1593		84.9217		72.6125	0.1430		1.0000
	0.9997		0.9375	86.1589	0.6723	04.9217	0.4107	83.7205			1.0000
0.0000	0.9997	80.3442		79.4547		84.9213	0.4223	83.7203	0.1667		
	0.9997	80.3443	0.9791	75.5226	0.7084	76.0045		83.7201	0.1723		1.0000
0.0000	0.9997	82.9472		75.5227	0.7292	70.7091	0.4583	72.6122			1.0000
	0.9997	87.4243	1.0000	79.4550	0.7444	70.7092	0.4792	65.9071	0.2083		1.0000
	0.9997	0.0000	1.0000	86.1593	0.7500	76.0048	0.4944		0.2292		1.0000
	0.9997	0.0000		86.1589	0.7556	84.9217	0.5000	72.6125	0.2444	0.0000	1.0000
	0.9997	0.0000			0.7709	84.9213		83.7205		0.0000	1.0000
						76.0045		83 7201	0.2556		1.0000
	0.9997	0.0000		75.3220	0.7917	70.7091			0.2708		0.0056
	0.9997		1.0000	75.5227	0.8123			65.9071			0.0208
	0.9997	0.0000		79.4550	0.8278	70.7092	0.3023	03.90/1 4f 0070	0.2917	61.1210	
0.0000	0.9997		1.0000		0.8334	76.0048	0.5/18				
	0.9997		1.0000	86.1589		84.9217	0.5833	/2.0125	0.3278	01.1212	0.0625
	0.9997	0.0000	1.0000		0.8542	84.9213		83.7205	0.3333	69.2954	0.0778
87.4239		0.0000	1.0000		0.8750	76.0045	0.6042		0.3389		0.0833
82.9469	0.0208		1.0000	75.5227		70.7091	0.6250		0.3542		0.0889
	0.0417		1.0000		0.9111	70.7092			0.3750		0.1042
80.3443			1.0000	86.1593		76.0048			0.3958	61.1210	0.1250
82.9472		0.0000	1.0000	86.1589		84.9217			0.4111	61.1211	0.1458
			1.0000	70 1517	0.9375		0.6723		0.4167		0.1611
87.4243	0.0833			17.4341 7E E994	0.9584		0.6875		0.4223		0.1667
87.4239			1.0000	13.3420	0.7304		0.7084		0.4223		0.1722
82.9469			1.0000	75.5227	0.9792	0.0000	0.7004				0.1722
80.3442			1.0000		0.9945	0.0000	0.7292		0.4583		0.1873
80.3443			1.0000	86.1593	1.0000	0.0000	0.7444		0.4792		
82.9472	0.1611		1.0000	0.0000	1.0000	0.0000	0.7500		0.4944	61.1211	0.2292
87.4243	0.1667		1.0000	0.0000	1.0000	0.0000	0.7556		0.5000		0.2444
87.4239			1.0000		1.0000	0.0000	0.7709	83.7201		82.5647	0.2500
82.9469	0.1875		1.0000		1.0000	0.0000	0.7917		0.5208	82.5643	0.2556
80.3442		0.0000	1.0000	0.0000	1.0000		0.8125				0.2708
					1.0000		0.8278	65.9072			0.2917
80.3443			1.0000	0.0000	1.0000		0.8334				0.3125
82.9472	0.2444	0.0000	1.0000	0.0000	1.0000						0.3123
87.4243	0.2500		1.0000	0.0000	1.0000		0.8389				0.3278
87.4239			1.0000	0.0000	1.0000		0.8542	83.7201			
82.9469	0.2708	86.1589		0.0000	1.0000		0.8750				0.3389
80.3442	0.2917	79.4547	0.0208		1.0000		0.8959				0.3542
80.3443		75.5226		0.0000	1.0000	0.0000	0.9111	65.9072	0.6459	61.1210	0.3750

				0.0000	1 0001	62,9662	0.0044	46.9206	0.7202	42.2735	0.4583
61.1211		56.3559			1.0001 1.0001	80.4236		60.0002	0.7444	42.2736	0.4792
69.2954	0.4111	56.3561	0.1458		1.0001		1.0000	79.4549	0.7500		0.4944
82.5647	0.4167	66.0728 81.4629	0.1611 0.1667		1.0001		1.0000	79.4545	0.7556		0.5000
82.5643 69.2951	0.4223 0.4375	81.4625	0.1723		1.0001		1.0000	59.9999		78.5641	0.5056
61.1210	0.4583	66.0724			1.0001		1.0000	46.9205			0.5208
61.1211	0.4792	56.3559	0.2083		1.0001	0.0000	1.0000	46.9206	0.8125		0.5417
69.2954	0.4944	56.3561	0.2292		1.0001		1.0000	60.0002	0.8277	42.2736	
82.5647	0.5000	66.0728	0.2444	0.0000	1.0001	0.0000	1.0000	79.4549		57.2024	
82.5643	0.5056	81.4629	0.2500		1.0001	0.0000	1.0000	79.4545		78.5646	
69.2951	0.5208	81.4625	0.2556		1.0001		1.0000	59.9999	0.8542	78.5641	
61.1210	0.5417	66.0724	0.2708	80.4232			1.0000	46.9205		57.2021 42.2735	0.6042
61.1211	0.5625	56.3559		62.9659	0.0208	0,0000	1.0000	46.9206 60.0002	0.8938		0.6250 0.6458
69.2954	0.5778	56.3561	0.3125	51.6192		0.0000	1.0000	79,4549			0.6611
82.5647	0.5833	66.0728	0.3278	51.6195	0.0625	0.0000	1.0000	79.4545		78,5646	
82.5643	0.5889	81.4629	0.3334	62.9662 80.4236	0.0778 0.0833	0,0000	1.0000	59.9999		78.5641	
69.2951	0.6042	81.4625 66.0724	0.3389 0.3542	80.4232			1.0000	46.9205	0.9583	57.2021	
61.1210 61.1211	0.6250 0.6458	56.3559	0.3750	62.9659	0.1042	0.0000	1.0000	46.9206		42.2735	
69.2954	0.6611	56.3561	0.3959	51.6192			1.0000	60.0002		42.2736	
82.5647	0.6667	66.0728	0.4111	51.6193	0.1458		1.0000	79.4549		57.2024	
82.5643	0.6723	81.4629	0.4167			0.0000	1.0000	0.0000	1.0000	78.5646	
69.2951	0.6875	81.4625	0.4223	80.4236	0.1667	0.0000	1.0000		1.0000	78.5641	
61.1210	0.7083	66.0724	0.4375	80.4232		0.0000	1.0000		1.0000	57.2021	
61.1212	0.7292	56.3559	0.4584	62.9659			1.0000		1.0000	42.2735	
69.2954		56.3561	0.4792	51.6192			1.0000		1.0000	42.2736 57.2024	0.8123
82.5647	0.7500	66.0728	0.4944	51.6193			1.0000		1.0000		
82.5643		81.4629	0.5000				1.0000		1.0000	78.5646 78.5641	
69.2951	0.7708	81.4625	0.5056	80.4236		0.0000	1.0000		1.0000 1.0000		0.8542
61.1210		66.0724		80.4232		79.4545	1.0000		1.0000	42.2735	
61.1211	0.8125	56.3559 56.3561	0.5417	62.9659 51.6192		59.9999	0.0030		1.0000	42.2736	
69.2954		66.0728	0.5625 0.5778	51.6192		46.9205			1.0000	57.2024	
82.5647 82.5643	0.8333 0.8389	81.4629	0.5834				0.0625		1.0000		
69.2951	0.8542	81.4625	0.5889	80.4236			0.0778		1.0000	78.5641	
61.1210		66.0724		80.4232		79.4549			1.0000	57.2021	0.9375
61.1211	0.8958	56.3559		62.9659				0.0000	1.0000	42.2735	0.9583
69.2954		56.3561	0.6459	51.6192		59.9999	0.1042		1.0000		
82.5647		66.0728	0.6611	51.6193		46.9205			1.0000	57.2024	
82.5643		81.4629	0.6667	62.9662		46.9206			1.0000		
69.2951	0.9375	81.4625	0.6723	80.4236			0.1611		1.0000		
61.1210	0.9583	66.0724		80.4232		79.4549			1.0000		
61.1211		56.3559		62.9659	0.4375				1.0000		
69.2954		56.3561	0.7292	51.6192		59.9999			1.0000		
82.5647		66.0728		51.6193		46.9205 46.9206			1.0000		
	1.0000	81.4629	0.7500	62.9662 80.4236		60.0002			1.0000		
	1.0000	81.4625 66.0724			0.5056	79.4549			1.0000		
	1.0000	56.3559		62.9659					1.0000		
	1.0000	56.3561	0.7317	51.6192			0.2708		0.0056		
	1.0000	66.0728		51.6193		46.9205		57.2021	0.0208	0.0000	1.0000
	1.0000	81.4629	0.8334	62.9662		46.9206		42.2735	0.0417		1.0000
	1.0000	81.4625	0.8390	80.4236	0.5833	60,0002	0.3278	42.2738	0.0625		1.0000
	1.0000	66.0724	0.8542	80.4232	0.5889	79.4549		57.2024			1.0000
0.0000	1.0000	56.3559	0.8751		0.6042	79.4545		78.5646			1.0000
	1.0000		0.8959	51.6192	0.6250	59.9999	0.3542	78.5641			1.0000
	1.0000	66.0728			0.6458	46.9205	0.3750		0.1042		1.0000 1.0000
	1.0000	81.4629		62.9662			0.3958		0.1250		1.0000
	1.0000	81.4625	0.9223 0.9376	80.4236 80.4232			0.4111	42.2736 57.2024	0.1438		1.0000
	1.0000	00.0724 56.2550	0.9584	62.9659			0.4222		0.1667		1.0000
0.0000	1.0000		0.9792	51.6192			0.4375	78.5641	0.1722		1.0000
	1.0000	66 0728	0.9945	51.6193				57.2021		0.0000	1.0000
	1.0000		1.0001	62.9662		46.9206	0.4792	42.2735	0.2083	0.0000	1.0000
	1.0000		1.0001	80.4236			0.4944	42.2736	0.2292	0.0000	1.0000
	1.0000		1.0001	80.4232	0.7556		0.5000	57.2024	0.2444		1.0000
	1.0000		1.0001	62.9659		79.4545	0.5056		0.2500		1.0000
0.0000	1.0000		1.0001	51.6192			0.5208		0.2556		1.0000
	1.0000		1.0001	51.6193	0.8125		0.5417	57.2021		77.7595	
	1.0000		1.0001	62.9662			0.5625		0.2917		
	1.0000		1.0001	80.4236			0.5777		0.3125 0.3277		0.0417
0.0000	1.0000		1.0001	80.4232	0.8389	19.4549	0.5833 0.5889	57.2024 78.5646			0.0023
0.0000	1.0000		1.0001	62.9659 51.6102		/9.4343 50 0000	0.5889		0.3389		0.0778
	0.0056		1.0001	51.6192 51.6193			0.6250	57.2021			
66.0724 56.3559			1.0001	62.9662		46.9206	0.6458	42.2735			
	0.0625		1.0001	80.4236			0.6611	42.2736	0.3958		
66.0728			1.0001	80.4232		79.4549	0.6667	57.2024	0.4111	37.6986	0.1458
81.4629			1.0001	62.9659	0.9375	79.4545	0.6722	78.5646	0.4167		0.1611
	0.0889		1.0001	51.6192	0.9583	59.9999	0.6875		0.4222		
	0.1042		1.0001	51.6193	0.9792	46.9205	0.7083	57.2021	0.4375	77.7595	0.1723

546006	0.4005	0.0000	4 0000		4 0000	20.0044	0.5045	10.050			
54.6036			1.0000	0.0000			0.7917	48.3586			
37.6984	0.2083		1.0000		1.0000		0.8125	24.8141			
37.6986	0.2292		1.0000		1.0000	50.1445		24.8143			
54.6039	0.2444		1.0000		1.0000	76.4339		48.3590			
77.7599	0.2500		1.0000		1.0000	76.4335		75.9241			
77.7595	0.2556		1.0000		1.0000	50.1441	0.8542	75.9237	0.5889	75.5227	
54.6036	0.2708	77.0472		0.0000	1.0000	28.9044		48.3586	0.6042	75.5223	0.3389
37.6984	0.2917	52.2386	0.0208	0.0000	1.0000	28.9047	0.8958	24.8141			0.3542
37.6986	0.3125		0.0417		1.0000	50.1445		24.8143		21.0904	0.3750
54.6039	0.3278	33.2262		0.0000	1.0000	76.4339	0.9167	48.3590	0.6611	21.0908	0.3958
77.7599	0.3333	52.2389	0.0778	0.0000	1.0000	76.4335	0.9222	75.9241	0.6667		
77.7595	0.3389	77.0476	0.0833	0.0000	1.0000	50.1441		75.9237		75.5227	0.4167
54.6036	0.3542	77.0472		0.0000	1.0000	28.9044	0.9583	48.3586	0.6875	75.5223	0.4223
37.6984	0.3750	52.2386	0.1042	0.0000	1.0000	28.9047	0.9792	24.8141	0.7083	46,9203	0.4375
37.6986	0.3958	33.2259		0.0000	1.0000	50.1445	0.9944	24.8145	0.7292	21.0904	0.4583
54.6039	0.4111	33.2261	0.1458	0.0000	1.0000	76.4339	1.0000	48.3590	0.7444	21.0907	0.4792
77.7599	0.4167		0.1611	0,0000	1.0000		1.0000	75.9241	0.7500	46.9207	0.4944
77.7595	0.4223	77.0476	0.1667		1.0000	0.0000	1.0000	75.9237	0.7556	75.5227	0.5000
54.6036		77.0472			1.0000	0.0000	1.0000	48.3586	0.7708	75.5223	0.5056
37.6984	0.4583		0.1875	0.0000	1.0000	0.0000	1.0000	24.8141	0.7917	46.9203	0.5208
37.6986	0.4792	33.2259	0.2083	0.0000	1.0000	0.0000	1.0000	24.8143	0.8125	21.0904	0.5417
54.6039	0.4944	33.2261	0.2292		1.0000	0.0000	1.0000	48.3590		21.0907	0.5625
77.7599	0.5000		0.2444	0.0000		0.0000	1.0000	75.9241	0.8333	46.9207	0.5778
77.7595		77.0476		0.0000			1.0000	75.9237	0.8389	75.5227	0.5833
54.6036		77.0472		0.0000	1.0000		1.0000	48.3586	0.8542	75.5223	0.5889
37.6984		52.2386		76.4335	0.0056	0.0000	1.0000	24.8141	0.8750	46.9203	0.6042
37.6986	0.5625	33.2259	0.2917	50.1441	0.0208		1.0000	24.8143	0.8958	21.0904	0.6250
54.6039	0.5778	33.2261		28.9044		0.0000	1.0000	48.3590	0.9111	21.0907	0.6458
77.7599	0.5833	52.2389		28.9048	0.0625	0.0000	1.0000	75.9241	0.9167	46.9207	0.6611
77.7595	0.5889	77.0476	0.3333	50.1445	0.0777	0.0000	1.0000	75.9237	0.9222	75.5227	0.6667
54.6036	0.6042	77.0472		76.4339	0.0833	0.0000	1.0000	48.3586	0.9375	75.5223	0.6723
37.6984	0.6250	52.2386	0.3542	76.4335	0.0889	0.0000	1.0000	24.8141	0.9583	46.9203	
37.6986	0.6458	33.2259	0.3750	50.1441	0.1042	0.0000	1.0000	24.8143		21.0904	
54.6039	0.6611	33.2261	0.3958	28.9044	0.1250		1.0000	48.3590	0.9944	21.0907	0.7292
77.7599	0.6667	52.2389	0.4111	28.9047	0.1458	0.0000	1.0000	75.9241	1.0000	46.9207	
77.7595	0.6723	77.0476	0.4167	50.1445	0.1611	0.0000	1.0000	0.0000	1.0000	75.5227	0.7500
54.6036	0.6875	77.0472	0.4223	76.4339	0.1667	0.0000	1.0000		1.0000		0.7556
37.6984	0.7083	52.2386	0.4375	76.4335			1.0000		1.0000	46.9203	
37.6986	0.7292	33.2259	0.4583	50.1441			1.0000		1.0000	21.0904	
54.6039	0.7444	33.2261	0.4792	28.9044	0.2083	0.0000	1.0000		1.0000	21.0907	
77.7599	0.7500	52.2389	0.4944	28.9047	0.2292		1.0000		1.0000	46.9207	
77.7595	0.7556	77.0476	0.5000	50.1445	0.2444	0.0000	1.0000		1.0000	75.5227	0.8333
54.6036	0.7708	77.0472		76.4339	0.2500	0.0000	1.0000		1.0000		0.8389
37.6984	0.7917	52.2386		76.4335	0.2556	0.0000	1.0000		1.0000	46.9203	0.8542
37.6986	0.8125	33.2259	0.5417	50.1441		75.9237		0.0000	1.0000		0.8750
54.6039	0.8278	33.2261	0.5625	28.9044	0.2917	48.3586	0.0208	0.0000	1.0000	21.0907	0.8958
77.7599	0.8333		0.5778	28.9047	0.3125	24.8141	0.0417		1.0000	46.9207	0.9111
77.7595	0.8389	77.0476	0.5833	50.1445	0.3277	24.8145	0.0625	0.0000	1.0000	75.5227	0.9167
54.6036	0.8542	77.0472		76.4339	0.3333	48.3590	0.0777	0.0000	1.0000	75.5223	0.9223
37.6984	0.8750	52.2386	0.6042	76.4335	0.3389	75.9241			1.0000	46.9203	
37.6986	0.8958	33.2259	0.6250	50.1441	0.3542	75.9237	0.0889		1.0000	21.0904	0.9583
54.6039	0.9111	33.2261	0.6458	28.9044	0.3750	48.3586			1.0000	21.0907	
77.7599	0.9167	52.2389	0.6611	28.9047	0.3958	24.8141	0.1250		1.0000	46.9207	
77.7595	0.9223	77.0476	0.6667	50.1445	0.4111	24.8143	0.1458	0.0000	1.0000	75.5227	
54.6036		77.0472	0.6723	76.4339		48.3590	0.1611	0.0000	1.0000	0.0000	
37.6984		52.2386	0.6875	76.4335		75.9241	0.1667	0.0000	1.0000	0.0000	1.0000
37.6986		33.2259	0.7083	50.1441		75.9237			1.0000	0.0000	
54.6039		33.2261		28.9044		48.3586	0.1875		1.0000	0.0000	
77.7599		52.2389		28.9047		24.8141			1.0000	0.0000	
0.0000		77.0476		50.1445		24.8143			1.0000	0.0000	
0.0000		77.0472		76.4339		48.3590	0.2444		1.0000	0.0000	
0.0000		52.2386		76.4335		75.9241			1.0000	0.0000	
0.0000		33.2259			0.5208	75.9237			1.0000	0.0000	
0.0000		33.2261		28.9044		48.3586		75.5223		0.0000	
0.0000		52.2389		28.9047	0.5625	24.8141		46.9203		0.0000	
0.0000		77.0476		50.1445	0.5777	24.8143		21.0904		0.0000	
0.0000		77.0472		76.4339		48.3590		21.0908	0.0625	0.0000	
0.0000		52.2386	0.8542	76.4335		75.9241		46.9207		0.0000	
0.0000		33.2259	0.8750		0.6042	75.9237		75.5227		0.0000	
0.0000		33.2261			0.6250	48.3586		75.5223	0.0889	0.0000	
0.0000		52.2389		28.9047		24.8141		46.9203		0.0000	
0.0000		77.0476		50.1445		24.8143		21.0904		0.0000	
0.0000		77.0472			0.6667	48.3590		21.0907	0.1458	0.0000	
0.0000		52.2386		76.4335		75.9241		46.9207		0.0000	
0.0000		33.2259		50.1441		75.9237		75.5227		0.0000	
0.0000		33.2261	0.9792	28.9044		48.3586		75.5223	0.1723	0.0000	
0.0000		52.2389		28.9047		24.8141			0.1875	0.0000	
0.0000		77.0476		50.1445	0.7444	24.8143			0.2083	0.0000	
0.0000		0.0000		76.4339		48.3590		21.0907	0.2292	0.0000	
0.0000		0.0000		76.4335		75.9241		46.9207		0.0000	
0.0000	1.0000	0.0000	1.0000	50.1441	0.7708	75.9237	0.5056	75.5227	0.2500	0.0000	1.0000

0.0000	1.0000	0.0000	1.0001		3542 74.9998	0.5889
75.2329	0.0056	0.0000	1.0001	15.7930 0.8	3750 44.9998	0.6042
45.8638	0.0208	0.0000	1.0001	15.7934 0.8	3958 14.9998	0.6250
17.9637	0.0417	0.0000	1.0001		111 15.0002	0.6458
17.9641	0.0625	0.0000	1.0001		166 45.0002	0.6611
45.8642	0.0778	0.0000	1.0001	75.0582 0.9	75.0002	0.6667
75.2333	0.0833	0.0000	1.0001	45.2174 0.9	9375 74.9998	0.6723
75.2329	0.0889	0.0000	1.0001		583 44.9998	0.6875
45.8638	0.1042	0.0000	1.0001		791 14.9998	0.7083
17.9637	0.1250	0.0000	1.0001		944 15.0001	0.7292
17.9640	0.1458	0.0000	1.0001	75.0586 1.0	0000 45.0002	0.7444
45.8642	0.1611	0.0000	1.0001	0.0000 1.6	0000 75.0002	0.7500
75.2333	0.1667	0.0000	1.0001		74.9998	0.7556
75.2329	0.1723	0.0000	1.0001		0000 44.9998	0.7708
45.8638	0.1875	0.0000	1.0001	0.0000 1.0	0000 14.9998	0.7917
17.9637	0.2083	0.0000	1.0001	0.0000 1.0	0000 15.0002	0.8125
17.9640	0.2292	0.0000	1.0001		0000 45.0002	0.8278
45.8642	0.2444	0.0000				0.8333
			1.0001		75.0002	
75.2333	0.2500	0.0000	1.0001	0.0000 1.0	0000 74.9998	0.8389
75.2329	0.2556	0.0000	1.0001	0.0000 1.0	0000 44.9998	0.8542
45.8638	0.2708	75.0582	0.0056		0000 14.9998	0.8750
17.9637	0.2917	45.2174	0.0208		0000 15.0002	0.8958
17.9640	0.3125	15.7930	0.0417	0.0000 1.0	0000 45.0002	0.9111
45.8642	0.3278	15.7934	0.0625	0.0000 1.0	0000 75.0002	0.9167
75.2333	0.3334	45.2178	0.0778		0000 74.9998	0.9223
75.2329	0.3389	75.0586	0.0833		0000 44,9998	0.9375
45.8638	0.3542	75.0582	0.0889		0000 14.9998	0.9583
17.9637	0.3750	45.2174	0.1042		15.0002	0.9792
17.9640	0.3959	15.7930	0.1250	0.0000 1.0	0000 45.0002	0.9944
45.8642	0.4111	15.7934	0.1458		0000 75.0002	1.0000
75.2333	0.4167	45.2178	0.1611		0.0000	1.0000
75.2329	0.4223	75.0586	0.1667	0.0000 1.0	0000,0	1.0000
45.8638	0.4375	75.0582	0.1722	0.0000 1.0	0.0000	1.0000
17.9637	0.4584	45.2174	0.1875		0.0000	1.0000
17.9640	0.4792	15.7930	0.2083			
						1.0000
45.8642	0.4944	15.7934	0.2292		0.0000	1.0000
75.2333	0.5000	45.2178	0.2444	0.0000 1.0	0.0000	1.0000
75.2329	0.5056	75.0586	0.2500		0.0000	1.0000
45.8638	0.5209		0.2556		0.0000	1.0000
17.9637	0.5417	45.2174	0.2708		0.0000	1.0000
17.9640	0.5625	15.7930	0.2917	44.9998 0.0	208 0.0000	1.0000
45.8642	0.5778	15.7934	0.3125	14.9998 0.0	417 0.0000	1.0000
75.2333	0.5834		0.3277		625 0.0000	1.0000
75.2329	0.5889		0.3333			
					778 0.0000	1.0000
45.8638	0.6042		0.3389		0.0000	1.0000
17.9637	0.6250	45.2174	0.3542	74.9998 0.0	0.0000	1.0000
17.9640	0.6459	15.7930	0.3750	44.9998 0.1	0.0000	1.0000
45.8642	0.6611		0.3958		250 0.0000	1.0000
75.2333	0.6667		0.4111		458 0.0000	1.0000
75.2329	0.6723	75.0586	0.4167		611 0.0000	1.0000
45.8638	0.6875	75.0582	0.4222	75.0002 0.1	667 0.0000	1.0000
17.9637	0.7084		0.4375		723 0.0000	1.0000
17.9641	0.7292		0.4583		875 0.0000	1.0000
45.8642	0.7445		0.4792		0.0000	
75.2333	0.7500		0.4944		292 0.0000	1.0000
75.2329	0.7556	75.0586	0.5000	45.0002 0.2	444 0.0000	1.0000
45.8638	0.7709	75.0582	0.5056		500 0.0000	1.0000
17.9637	0.7917		0.5208			
				74.9998 0.2	556 0.0000	1.0000
17.9640	0.8125		0.5417		708	
45.8642	0.8278		0.5625		917	
75.2333	0.8334	45.2178	0.5777		125	
75.2329	0.8390		0.5833		278	
45.8638	0.8542		0.5889		333	
17.9637	0.8750		0.6042		389	
17.9640	0.8959		0.6250		542	
45.8642	0.9111	15.7934	0.6458	14.9998 0.3	750	
75.2333	0.9167		0.6611		958	
75.2329	0.9223					
			0.6667		111	
45.8638	0.9375		0.6722		167	
17.9637	0.9584		0.6875		223	
17.9640	0.9792		0.7083		375	
45.8642	0.9945		0.7292		583	
75.2333	1.0001		0.7444		792	
0.0000	4 000-	75.0586	0.7500	45.0002 0.4	944	
	1.0001				000	
0.0000	1.0001 1.0001		0.7556			
0.0000	1.0001	75.0582		74 0002 0.5	056	
$0.0000 \\ 0.0000$	1.0001 1.0001	75.0582 45.2174	0.7708	74.9998 0.5	056	
0.0000 0.0000 0.0000	1.0001 1.0001 1.0001	75.0582 45.2174 15.7930	0.7708 0.7917	74.9998 0.5 44.9998 0.5	056 208	
0.0000 0.0000 0.0000 0.0000	1.0001 1.0001 1.0001 1.0001	75.0582 45.2174 15.7930 15.7934	0.7708 0.7917 0.8125	74.9998 0.5 44.9998 0.5 14.9998 0.5	056 208 417	
0.0000 0.0000 0.0000 0.0000 0.0000	1.0001 1.0001 1.0001 1.0001 1.0001	75.0582 45.2174 15.7930 15.7934	0.7708 0.7917	74.9998 0.5 44.9998 0.5 14.9998 0.5	056 208	
0.0000 0.0000 0.0000 0.0000	1.0001 1.0001 1.0001 1.0001 1.0001	75.0582 45.2174 15.7930 15.7934 45.2178	0.7708 0.7917 0.8125 0.8277	74.9998 0.5 44.9998 0.5 14.9998 0.5 15.0002 0.5	056 208 417 625	
0.0000 0.0000 0.0000 0.0000 0.0000	1.0001 1.0001 1.0001 1.0001	75.0582 45.2174 15.7930 15.7934 45.2178 75.0586	0.7708 0.7917 0.8125	74.9998 0.5 44.9998 0.5 14.9998 0.5 15.0002 0.5 45.0002 0.5	056 208 417	

APPENDIX I NODE2.DAT Data File

		n sana synnamia sa sa na sa

								CO 0 C FO	0.1000	40.0705	0.1501
Obliquity	Cum.	87.4239	0.0046	84.9213	0.0348	69.2951	0.0538	62.9659	0.1289	42.2735	0.1501
(degrees)	Prob.	87.4239	0.0093	84.9213	0.0437	69.2951	0.0611	51.6192	0.1289	42.2735	0.1501
_		87.4239	0.0139	76.0045	0.0437	69.2951	0.0832	51.6192	0.1289	42.2735	0.1779
89.9999	0.0000	87.4239	0.0186	76.0045	0.0486	69.2951	0.1199	51.6192	0.1289	42.2736	0.1779
	0.0000	87.4239	0.0232	76.0045	0.0608	61.1210		51.6192	0.1289	42.2736	0.1779
	0.0000	82.9469	0.0296	76.0045	0.0802	61.1210	0.1199	51.6192	0.1535	42.2736	0.1779
89.9999	0.0000	82.9469	0.0385	76.0045	0.1046	61.1210		51.6193	0.1535	42.2736	0.1779
	0.0000	82.9469	0.0499	70.7091	0.1046	61.1210		51.6193	0.1535	42.2736	0.2057
90.0000	0.0000	82.9469	0.0626	70.7091	0.1046	61.1210	0.1400	51.6193	0.1535	57.2024	0.2057
	0.0000	82.9469	0.0753	70.7091	0.1046	61.1211	0.1400	51.6193	0.1535	57.2024	0.2057
	0.0000	80.3442	0.0753	70.7091	0.1046	61.1211	0.1400	51.6193	0.1780	57.2024	0.2057
	0.0000	80.3442	0.0753	70,7091	0.1213	61.1211	0.1400	62.9662	0.1780	57.2024	0.2260
	0.0000	80.3442	0.0753	70.7092	0.1213	61.1211	0.1400	62.9662	0.1780	57.2024	0.2837
	0.0000	80.3442	0.0788	70.7092	0.1213	61.1211	0.1601	62.9662	0.1780	78.5646	0.2837
	0.0000	80.3442	0.0926	70.7092	0.1213	69.2954	0.1601	62.9662	0.1986	78 .5 646	0.2887
	0.0000	80.3443	0.0926	70.7092	0.1213	69.2954	0.1601	62.9662	0.2448	78.5646	0.3061
	0.0000	80.3443	0.0926	70.7092	0.1379	69.2954	0.1674	80.4236	0.2448	78.5646	0.3309
	0.0000	80.3443	0.0926	76.0048	0.1379	69.2954	0.1894	80.4236	0.2524	78.5646	0.3557
	0.0000	80.3443	0.0961	76.0048	0.1428	69.2954	0.2262	80.4236	0.2693	50.0001	0.4161
	0.0000	80.3443	0.1100	76.0048	0.1549	82.5647	0.2316	80.4236	0.2881	50.0001	0.4765
	0.0000	82.9472	0.1163	76.0048	0.1744	82.5647	0.2396	80.4236	0.3069	50.0001	0.5369
	0.0000	82.9472	0.1252	76.0048	0.1988	82.5647	0.2531	40.0001	0.3719	50.0001	0.5973
	0.0000	82.9472	0.1366	84.9217	0.2068	82.5647	0.2665	40.0001	0.4368	50.0001	0.6576
	0.0000	82.9472	0.1493	84.9217	0.2157	82.5647	0.2800	40.0001	0.5018	50.0001	0.7180
	0.0000	82.9472	0.1620	84.9217	0.2247		0.3475	40.0001	0.5668	50.0001	0.7784
		87.4243	0.1667	84.9217	0.2336	30.0000		40.0001	0.6317	50.0001	0.8388
	0.0000	87.4243	0.1713	84.9217	0.2425	30.0000		40.0001	0.6967	50.0001	1.0000
	0.0000			20.0000	0.2423	30.0000	0.5499	40.0001	0.7616	77.7595	0.0000
	0.0000	87.4243	0.1760		0.3133	30.0000		40.0001	0.8266	77.7595	0.0029
	0.0000	87.4243	0.1806	20.0000				40.0001	1.0000	77.7595	0.0200
	0.0000	87.4243	0.1853	20.0000	0.4555	30.0000 30.0000	0.7524	79.4545	0.0000	77.7595	0.0487
	0.0000	10.0000	0.2616	20.0000	0.5265			79.4545	0.0065	77.7595	0.0773
	0.0000	10.0000	0.3380	20.0000	0.5975	30.0000	0.8198	79.4545	0.0003	54.6036	0.0773
	0.0000	10.0000		20.0000	0.6685	30.0000	1.0000			54.6036	0.0773
	0.0937	10.0000	0.4907	20.0000	0.7395	81.4625	0.0016	79.4545	0.0452	54.6036	0.0773
	0.1875	10.0000	0.5671	20.0000	0.8105	81.4625	0.0096	79.4545	0.0667	54.6036	
	0.2812	10.0000		20.0000	1.0000	81.4625	0.0255	59.9999	0.0667		0.1008
	0.3749	10.0000	0.7198	83.7201	0.0078	81.4625	0.0415	59.9999	0.0667	54.6036	0.1634
	0.4686	10.0000	0.7961	83.7201	0.0190	81.4625	0.0574	59.9999	0.0667	37.6984	0.1634
	0.5623	10.0000	1.0000	83.7201	0.0301	66.0724	0.0574	59.9999	0.0903	37.6984	0.1634
0.0003	0.6561	86.1589	0.0068	83.7201	0.0413	66.0724	0.0574	59.9999	0.1432	37.6984	0.1634
	0.7498	86.1589	0.0137	83.7201	0.0524	66.0724	0.0618	46.9205	0.1432	37.6984	0.1634
0.0003	1.0000	86.1589	0.0205	72.6122	0.0524	66.0724	0.0836	46.9205	0.1432	37.6984	0.1901
88.7073	0.0025	86.1589	0.0274	72.6122	0.0524	66.0724	0.1271	46.9205	0.1432	37.6986	0.1901
88.7073	0.0050	86.1589	0.0342	72.6122	0.0616	56.3559	0.1271	46.9205	0.1432	37.6986	0.1901
88.7073	0.0074	79.4547	0.0361	72.6122	0.0829	56.3559	0.1271	46.9205	0.1673	37.6986	0.1901
88.7073	0.0099	79.4547	0.0435	72.6122	0.1134	56.3559	0.1271	46.9206	0.1673	37.6986	0.1901
88.7073	0.0124	79.4547	0.0547	65.9071	0.1134	56.3559	0.1271	46.9206	0.1673	37.6986	0.2168
86.4667	0.0185	79.4547	0.0716	65.9071	0.1134	56.3559	0.1480	46.9206	0.1673	54.6039	0.2168
86.4667	0.0249	79.4547	0.0902	65.9071	0.1134	56.3561	0.1480	46.9206	0.1673	54.6039	0.2168
86.4667	0.0317	75.5226	0.0902	65.9071	0.1134	56.3561		46.9206	0.1914	54.6039	0.2168
86,4667	0.0385	75.5226	0.0902	65.9071	0.1301	56.3561	0.1480	60.0002	0.1914	54.6039	0.2403
86,4667	0.0453	75.5226	0.0902	65.9072	0.1301	56.3561	0.1480	60.0002	0.1914	54.6039	0.3028
85.1709	0.0453	75.5226	0.0902	65.9072	0.1301	56,3561		60.0002	0.1914	77.7599	0.3028
85.1709	0.0453	75.5226	0.1055	65.9072	0.1301	66.0728	0.1688	60.0002	0.2149	77.7599	0.3057
	0.0480	75.5227	0.1055	65.9072	0.1301	66.0728	0.1688	60.0002	0.2678	77.7599	0.3229
85.1709		75.5227		65.9072		66.0728		79.4549	0.2678	77.7599	0.3515
85.1709		75.5227	0.1055		0.1467	66.0728	0.1949	79.4549		77.7599	0.3802
85.1709 85.1710		75.5227	0.1055	72.6125		66.0728		79.4549		55.0001	0.4382
85.1710 85.1710		75.5227	0.1000		0.1559	81.4629		79.4549		55.0001	0.4963
85.1710		79.4550			0.1772	81.4629		79.4549		55.0001	
85.1710 85.1710	0.0047	79.4550		72.6125		81.4629	0.2640	45.0001		55.0001	
85.1710 85.1710		79.4550	0.1302	12.0123 92 7205	0.2155	81.4629	0.2800	45.0001		55.0001	
				83.7205	0.2133	81.4629	0.2050	45.0001		55,0001	
86.4670		79.4550 79.4550			0.2267	35.0000	0.2539	45.0001		55.0001	
86.4670		79.4550	0.1709	83.7203	0.2376	35.0000		45.0001		55.0001	
86.4670		86.1593			0.2490	35.0000	0.4279	45.0001	0.0404	55.0001	
86.4670		86.1593		85.7205	0.2602	35.0000	0.4939 0.6600	45.0001		77.0472	
86.4670		86.1593	0.1974	25.0000	0.3295	33.0000	0.3399				
88.7077		86.1593		25.0000	0.3988	35.0000		45.0001 45.0001		77.0472 77.0472	
88.7077		86.1593		25,0000	0.4682	35.0000	0.0918	45.0001 78.5641		77.0472	
88.7077		15.0000	0.2850	25.0000	0.5375	35.0000	0.7378			77.0472	0.04/1
88.7077	0.1213	15.0000			0.6069	35.0000	0.8238	78.5641		77.0472	
88.7077		15.0000	0.4329		0.6762	35.0000	1.0000	78.5641	0.0224	52.2386	0.0808
4.9999		15.0000	0.5068	25.0000	0.7455	80.4232	0.0000	78.5641		52.2386	0.0808
4.9999		15.0000			0.8149	80.4232	0.0075	78.5641		52.2386 52.2386	0.0000
4.9999		15.0000	0.6547	25.0000	1.0000	80.4232	0.0245	57.2021		52.2386	0.0992
	0.4523	15.0000	0.7287	82.5643	0.0054	80.4232	0.0433	57.2021	0.0720	52.2386	0.1082
	0.5344	15.0000			0.0134	80.4232	0.0621	57.2021		33.2259	
4.9999		15.0000	1.0000	82.5643	0.0269	62.9659	0.0621	57.2021	0.0924	33.2259	0.1682
4.9999	0.6986	84.9213	0.0080	82.5643	0.0403	62.9659		57.2021	0.1501	33.2259	0.1682
4.9999	0.7808	84.9213	0.0169	82.5643	0.0538	62.9659		42.2735		33.2259	
4.9999		84.9213			0.0538	62.9659	0.0826	42.2735	0.1501	33.2259	0.1996
								•			

22 2261	0.1006	24 01 42	0.2201	AE 0.C.40	0.2045		45.0002	Λ 01 41	75.2333	1 0000	110 0002	1 0000
33.2261		24.8143		45.8642			75.0002		75.2333 75.2333		110.0002	
33.2261 33.2261		24.8143 48.3590		45.8642 45.8642			75.0002		75.2333 75.2333	1.0000	110.0002 110.0002	
33.2261		48.3590		45.8642			75.0002		100.0002	1.0000	110.0002	
33.2261		48.3590		75.2333			75.0002		100.0002	1,0000	110.0002	
52.2389		48.3590		75.2333			75.0002		100.0002		110.0002	
	0.2310	48.3590		75.2333	0.5469		90.0002		100.0002	1,0000	110.0002	
52.2389		75.9241		75.2333			90.0002	1.0000	100.0002	1.0000	110.0002	
52.2389		75.9241		75.2333			90.0002		100.0002		110.0002	
		75.9241		80.0002			90.0002	1.0000	100.0002		76.4336	
77.0476		75.9241	0.4122	80.0002			90.0002	1.0000	100.0002	1.0000	76,4336	
77.0476	0.3184	75.9241		80.0002	0.7446		90.0002		100.0002	1.0000	76.4336	0.2813
77.0476	0.3352	70.0001	0.5107	80.0002	0.7779		90.0002	1.0000	75.5223	0.0380	76.4336	0.3438
77.0476	0.3655	70.0001		80.0002			90.0002	1.0000	75.5223	0.0855	76.4336	0.3438
77.0476		70.0001	0.6119	80.0002	0.8445		90.0002		75.5223	0.1187	50.1442	
60.0001		70.0001		80.0002			75.0582	0.0416	75.5223	0.1187	50.1442	
60.0001		70.0001		80.0002			75.0582		75.5223		50.1442	
60.0001		70.0001		80.0002			75.0582			0.1836	50.1442	
60.0001		70.0001		75.0582	0.0480		75.0582	0.1040	46.9203	0.2744	50.1442	
60.0001		70.0001		75.0582			75.0582	0.1206	46.9203	0.28/4	28.9046	0.3438
60.0001 60.0001		/0.0001		75.0582 75.0582			45.2174		46.9203 46.9203		28.9046 28.9046	0.3438
60.0001		75.5223 75.5223	0.0000	75.0582			45.2174 45.2174	0.3138	21.0905		28.9046	
		75.5223	0.0060	45.2174			45.2174	0.3138	21.0905	0.4040	28.9046	
76.4335			0.0421	45.2174			45.2174		21.0905		28.9048	
76.4335		75.5223	0.1022	45.2174			15.7931	0.4690	21.0905		28.9048	
76.4335		46.9203	0.1022	45.2174			15.7931	0.5000	21.0905		28.9048	
76.4335		46.9203	0.1022	45.2174			15.7931	0.5000	21.0908		28.9048	
76.4335		46.9203		15.7930			15.7931		21.0908		28.9048	
50.1441		46.9203	0.1187	15.7930		,	15.7931	0.5000	21.0908	0.7127	50.1446	
50.1441		46.9203		15.7930		,	15.7935	0.6552	21.0908		50.1446	
50.1441	0.0872	21.0904	0.2172	15.7930	0.4172		15.7935	0.6862	21.0908	0.7127	50.1446	0.3438
50.1441	0.1089	21.0904	0.2172	15.7930	0.4351		15.7935	0.6862	46.9207		50.1446	0.3438
50.1441		21.0904		15.7934	0.5247		15.7935	0.6862	46.9207	0.8683	50.1446	
28.9044		21.0904		15.7934			15.7935	0.6862	46.9207	0.8813	76.4340	
28.9044		21.0904		15.7934			45.2178		46.9207		76.4340	
28.9044		21.0907		15.7934			45.2178		46.9207	0.8813	76.4340	
28.9044		21.0907		15.7934			45.2178		75.5227	0.9193	76.4340	
28.9044		21.0907		45.2178			45.2178		75.5227	0.9668	76.4340	
28.9047		21.0907		45.2178			45.2178		75.5227	1.0000	115.0002	
28.9047		21.0907		45.2178			75.0586		75.5227	1.0000	115.0002	
28.9047 28.9047		46.9207 46.9207		45.2178 45.2178			75.0586 75.0586		75.5227 105.0002	1.0000	115.0002 115.0002	
28.9047		46.9207		75.0586			75.0586		105.0002	1.0000	115.0002	
	0.2439	46.9207		75.0586			75.0586		105.0002	1,0000	115.0002	
50.1445		46.9207		75.0586			95.0002		105.0002		115.0002	
50.1445		75.5227		75.0586			95.0002		105.0002		115.0002	
50.1445		75.5227		75.0586			95.0002		105.0002	1.0000	115.0002	
50.1445		75.5227		85.0002			95.0002		105.0002		77.0473	
76.4339		75.5227		85.0002			95.0002		105.0002		77.0473	
76.4339		75.5227		85.0002			95.0002		105.0002		77.0473	
76,4339		75.0002		85.0002			95.0002		75,9237	0.0000	77.0473	
76.4339		75.0002	0.5952	85.0002			95.0002		75.9237 75.9237	0.1278	77.0473	
76.4339		75.0002	0.6419	85.0002			95.0002	1.0000	75.9237	0.2300	52.2387	
65.0001	0.4821	75.0002	0.6886	85.0002			75.2329	0.0472	75.9237	0.2556	52.2387	0.5000
65.0001	0.5357	75.0002	0.7353	85.0002	0.9675		75.2329	0.0943	75.9237	0.2556	52.2387	0.5000
65.0001		75.0002		85.0002			75.2329	0.1226	48.3587	0.2556	52,2387	0.5000
65.0001		75.0002		74.9998			75.2329	0.1226	48.3587		52.2387	0.5000
65.0001		75.0002		74.9998			75.2329		48.3587		33.2260	
65.0001		75.0002		74.9998	0.1162		45.8638		48.3587		33.2260	0.5000
65.0001		75.2329	0.0456	74.9998			45.8638		48.3587	0.5000	33.2260	
65.0001		75.2329	0.0456	74.9998			45.8638		24.8142		33.2260	
65.0001		75.2329	0.0456	44.9998			45.8638		24.8142		33.2260	0.5000
75.9237 75.9237		75.2329		44.9998			45.8638		24.8142	0.5000	33.2262	0.5000
75.9237		75.2329 45.8638	0.1434	44.9998 44.9998			17.9637 17.9637		24.8142 24.8142		33.2262 33.2262	
75.9237		45.8638		44.9998							33.2202	0.3000
75.9237		45.8638		14.9998			17.9637 17.9637	0.5000	24.8145 24.8145	0.5000	33.2262 33.2262	0.5000
48.3586		45.8638		14.9998			17.9637		24.8145		52.2390	0.5000
48.3586		45.8638		14.9998			17.9641		24.8145		52.2390	0.5000
48.3586		17.9637		14.9998	0.4827		17.9641		24.8145	0.5000	52.2390	0.5000
48.3586		17.9637		14.9998			17.9641		48.3591		52.2390	
48.3586		17.9637		15.0002			17.9641		48.3591		52.2390	0.5000
24.8141		17.9637		15.0002			17.9641		48.3591		77.0477	
24.8141		17.9637		15.0002			45.8642		48.3591		77.0477	
24.8141		17.9640		15.0002	0.5174		45.8642		48.3591		77.0477	
24.8141		17.9640	0.3223	15.0002			45.8642		75.9242	0.7444	77.0477	
24.8141	0.2301	17.9640	0.3223	45.0002	0.6617		45.8642	0.8774	75.9242	0.8722	77.0477	
24.8143		17.9640		45.0002			45.8642		75.9242	0.9744	120.0003	1.0000
24.8143		17.9640		45.0002	0.7379		75.2333	0.9246	75.9242	1.0000	120.0003	1.0000
24.8143	0.2301	45.8642	0.3945	45.0002	0.7379	`.	75.2333	0.9717	75.9242	1.0000	120.0003	1.0000

120.0003		125.0003	0.0000	77.7596		77.7596		79.4548		86.4669	
120.0003	1.0000	125.0003	0.0000	77.7596	0.0000	77.7596	0.0000	79.4548	0.5000	85.1711	0.5001
120,0003	1.0000	130.0003	0.0000	77.7596	0.0000	54.6037	0.0000	79.4548	0.5000	85.1711	0.5001
120.0003		77.7596	0.0000	77.7596		54.6037		79.4548	0.5000	85.1711	
120.0003		77.7596	0.0000	77.7596		54.6037		75.5227	0.5000	85.1711	
				11.1390	0.0000			13.3441			
120.0003		77.7596	0.0000	54.6037	0.0000	54.6037		75.5227	0.5000	85.1711	
77.7596		77.7596	0.0000	54.6037		54.6037	0.0000	75.5227	0.5000	85.1712	
77.7596	0.0000	77.7596	0.0000	54.6037		37.6985	0.0000	75.5227	0.5000	85.1712	0.5001
77.7596	0.0000	54,6037	0.0000	54.6037	0.0000	37.6985	0.0000	75.5227	0.5000	85.1712	0.5001
77.7596		54.6037		54.6037		37.6985	0.0000	75.5229	0.5000	85.1712	0.5001
77.7596		54.6037	0.0000	37.6985		37.6985	0.0000	75.5229		85.1712	
								13.3229			
54.6037		54.6037		37.6985		37.6985		75.5229	0.5000	86.4671	
54.6037		54.6037		37.6985		37.6987		75.5229	0.5000	86.4671	
54.6037		37.6985	0.0000	37.6985	0.0000	37.6987	0.0000	75.5229	0.5000	86.4671	0.5001
54.6037	0.0000	37.6985	0.0000	37.6985	0.0000	37.6987	0.0000	79.4551	0.5000	86.4671	0.5001
54.6037	0.0000	37.6985		37.6987		37.6987	0.0000	79.4551	0.5000	86.4671	0.5001
37.6985		37.6985	0.0000	37.6987		37.6987		79.4551		88.7078	
37.6985		37.6985		37.6987		54.6040			0.5000	88.7078	
37.6985		37.6987		37.6987	0.0000	54.6040		79.4551	0.5000	88.7078	
37.6985	0.0000	37.6987		37.6987		54.6040		86.1594		88.7078	
37.6985	0.0000	37.6987	0.0000	54.6040	0.0000	54.6040		86.1594	0.9167	88.7078	
37.6987	0.0000	37.6987	0.0000	54.6040	0.0000	54.6040	0.0000	86.1594	1.0000	175,0004	1.0000
37.6987		37.6987		54.6040		77.7600		86.1594	1.0000	175.0004	
37.6987	0.0000	54,6040		54.6040		77.7600		86.1594	1,0000	175.0004	
37.6987		54.6040		54.6040		77.7600		165.0004	1.0000		1.0000
37.6987		54.6040		77.7600		77.7600		165.0004		175.0004	
54.6040		54.6040		77.7600		77.7600		165.0004			1.0000
54.6040	0.0000	54.6040		77.7600	0.0000	125.0003	0.0000	165.0004	1.0000	175.0004	1.0000
54.6040	0.0000	77.7600	0.0000	77.7600	0.0000	125.0003	0.0000	165.0004	1.0000	175.0004	1.0000
54.6040		77.7600	0.0000	77.7600		125.0003		165.0004	1,0000	175.0004	
54.6040		77.7600		125.0003	0.0000	125.0003		165.0004		89.9999	
						125.0005	0.0000				
77.7600		77.7600	0.0000		0.0000	125.0003		165.0004		89.9999	
77.7600					0.0000	125.0003		165.0004		89.9999	
77.7600	0.0000	125.0003	0.0000	125.0003	0.0000	125.0003	0.0000	87.4240	0.1000	89.9999	0.0000
77.7600	0.0000	125.0003	0.0000	125.0003	0.0000	125.0003	0.0000	87.4240	0.2000	89.9999	0.0000
77.7600		125.0003	0.0000		0.0000		0.0000	87.4240		90.0000	
125.0003	0.0000	125.0003	0.0000	125.0003	0.0000	77.7596		87.4240		90.0000	
		125,0003				77.750	0.0000	07.4240	0.4000		
125.0003	0.0000	125.0003	0.0000	125.0003	0.0000	77.7596	0.0000	87.4240		90.0000	
	0.0000	125.0003	0.0000		0.0000	77.7596			0.5000	90.0000	
125.0003	0.0000	125.0003	0.0000	77.7596		77.7596	0.0000	82.9471		90.0000	
125.0003	0.0000	125.0003	0.0000	77.7596	0.0000	77.7596	0.0000	82.9471	0.5000	90.0001	0.0000
125.0003	0.0000	135.0003	0.0000	77.7596	0.0000	54.6037	0.0000	82.9471	0.5000	90.0001	0.0000
125.0003	0.0000	77.7596		77.7596		54.6037		82.9471		90.0001	
125.0003	0.0000	77.7596	0.0000	77.7596		54.6037		80.3443	0.5000	90.0001	
		77.750	0.0000			54.6037					
125.0003		77.7596	0.0000	54.6037					0.5000	90.0001	
77.7596		77.7596		54.6037		54.6037			0.5000	90.0003	
77.7596	0.0000	77.7596	0.0000	54.6037	0.0000	37.6985	0.0000	80.3443	0.5000	90.0003	0.0000
77.7596	0.0000	54.6037	0.0000	54.6037	0.0000	37.6985	0.0000	80.3443	0.5000	90.0003	0.0000
77.7596	0.0000	54.6037	0.0000	54.6037	0.0000	37.6985	0.0000	80.3444	0.5000	90.0003	0.0000
77.7596		54.6037		37.6985		37.6985		80.3444	0.5000	90.0003	
54.6037		54.6037	0.0000	37.6985		37.6985		80.3444		90.0003	
54.6037		54.6037		37.6985		37.6987		80.3444		90.0003	
54.6037		37.6985	0.0000	37.6985		37.6987		80.3444	0.5000	90.0003	
54.6037		37.6985		37.6985		37.6987		82.9474	0.5000	90.0003	
54.6037		37.6985		37.6987		37.6987		82.9474		90.0003	
37.6985	0.0000	37.6985	0.0000	37.6987	0.0000	37.6987	0.0000	82.9474	0.5000	90.0003	0.0000
37.6985	0.0000	37.6985	0.0000	37.6987		54.6040		82.9474	0.5000	90.0003	
37.6985		37.6987		37.6987		54.6040		82.9474	0.5000	90.0003	
37.6985		37.6987		37.6987		54.6040		87.4245	0.6000	90.0003	
37.6985		37.6987		54.6040		54.6040		87.4245 87.4245		90.0003	
37.6987		37.6987		54.6040	0.0000	54.6040	0.0000	87.4245			0.0000
37.6987		37.6987		54.6040		77.7600		87.4245			0.0000
37.6987		54.6040		54.6040	0.0000	77.7600		87.4245			0.0000
37.6987		54.6040		54.6040	0.0000	77,7600	0.0000	170.0004	1.0000	0.0003	0.0000
37.6987		54,6040		77.7600		77.7600		170.0004			0.0000
54.6040		54.6040		77.7600		77.7600		170.0004			0.0000
54.6040		54.6040		77.7600		125.0003		170.0004			0.0000
						123,0003	0.0000				
54.6040		77.7600		77.7600		125.0003		170.0004			0.0000
54.6040		77.7600	0.0000	77.7600		125.0003		170.0004		180.0252	0.0000
54.6040		77.7600		125.0003		125.0003		170.0004		•	
77.7600	0.0000	77.7600		125.0003	0.0000	125.0003		170.0004	1.0000		
77.7600		77.7600		125.0003		125.0003		170.0004			
77.7600		125.0003		125.0003	0.0000	125.0003		88.7074			
77.7600		125.0003	0.0000	125.0003		125.0003		88.7074			
77.7600		125.0003	0.0000	125.0003		160.0003		88.7074			
125.0003		125.0003		125.0003	0.0000	86.1590		88.7074			
125.0003		125.0003		125.0003		86.1590		88.7074			
125.0003		125.0003		150.0003	0.0000	86.1590	0.5000	86.4669	0.5001		
125.0003	0.0000	125.0003		77.7596	0.0000	86.1590	0.5000	86.4669	0.5001		
125.0003		125.0003		77.7596	0.0000	86.1590		86.4669			
125.0003		140.0003		77.7596		79.4548		86.4669			
	~.~~~	1-10.0003	J.JJJJ	11.1330	0.0000	1217370	0.5000	00.4009	0.0001		

APPENDIX J NODE1.DAT Data File

		196 196 197 197 197 197 197

						<u>_</u>					
Obliquity	Cum.	87.4240		77.7596		54.6037	0.0000	54.6037	0.0000	37.6985	0.0000
(degrees)	Prob.	87.4240	0.2000	77.7596 54.6037	0.0000	54.6037 54.6037	0.0000	37.6985 37.6985	0.0000	37.6985 37.6985	0.0000
89.9999	0.0000	87.4240 87.4240	0.3000	54.6037	0.0000	54.6037	0.0000	37.6985	0.0000	37.6987	0.0000
89.9999	0.0000	87.4240		54.6037	0.0000	37.6985	0.0000	37.6985	0.0000	37,6987	0.0000
89.9999	0.0000	82.9471	0.5000	54.6037	0.0000	37.6985	0.0000	37.6985	0.0000	37.6987	0.0000
89.9999	0.0000	82.9471	0.5000	54.6037	0.0000	37.6985	0.0000	37.6987	0.0000	37.6987	0.0000
89.9999	0.0000	82.9471	0.5000	37.6985	0.0000	37.6985	0.0000	37.6987	0.0000	37.6987	0.0000
90.0000	0.0000	82.9471	0.5000	37.6985	0.0000	37.6985	0.0000	37.6987	0.0000	54.6040	0.0000
90.0000	0.0000	82.9471	0.5000	37.6985	0.0000	37.6987 37.6987	0.0000	37.6987 37.6987	0.0000	54.6040 54.6040	0.0000
90.0000	0.0000	80.3443 80.3443	0.5000	37.6985 37.6985	0.0000	37.6987	0.0000	54.6040	0.0000	54.6040	0.0000
90.0000	0.0000	80.3443	0.5000	37.6987	0.0000	37.6987	0.0000	54.6040	0.0000	54.6040	0.0000
90.0001	0.0000	80.3443	0.5000	37.6987	0.0000	37.6987	0.0000	54.6040	0.0000	77.7600	0.0000
90.0001	0.0000	80.3443	0.5000	37.6987	0.0000	54.6040	0.0000	54.6040	0.0000	77.7600	0.0000
90.0001	0.0000	80.3444	0.5000	37.6987	0.0000	54.6040	0.0000	54.6040	0.0000	77.7600	0.0000
90.0001	0.0000	80.3444	0.5000	37.6987	0.0000	54.6040	0.0000	77.7600	0.0000	77.7600	0.0000
90.0001	0.0000	80.3444	0.5000	54.6040	0.0000	54.6040		77.7600 77.7600	0.0000	77.7600 125.0003	0.0000
90.0003 90.0003	0.0000	80.3444 80.3444	0.5000 0.5000	54.6040 54.6040	0.0000	54.6040 77.7600	0.0000	77.7600	0.0000	125.0003	0.0000
90.0003	0.0000	82.9474	0.5000	54.6040	0.0000	77.7600		77.7600	0.0000	125.0003	0.0000
90.0003	0.0000	82.9474	0.5000	54.6040		77.7600	0.0000	125.0003	0.0000	125.0003	0.0000
90.0003	0.0000	82.9474	0.5000	77.7600		77.7600	0.0000	125.0003	0.0000	125.0003	0.0000
90.0003	0.0000	82.9474	0.5000	77,7600		77.7600	0.0000	125.0003	0.0000	125.0003	0.0000
90.0003	0.0000	82.9474	0.5000	77.7600	0.0000	125.0003	0.0000	125.0003	0.0000	125.0003	0.0000
90.0003	0.0000	87.4245	0.6000	77.7600		125.0003	0.0000	125.0003	0.0000	125.0003	0.0000
90.0003	0.0000	87.4245	0.7000	77.7600	0.0000	125.0003	0.0000	125.0003 125.0003	0.0000	130.0003 77.7596	0.0000
90.0003 90.0003	0.0000	87.4245 87.4245	0.9000	125.0003 125.0003	0.0000	125.0003 125.0003	0.0000	125.0003	0.0000	77.7596	0.0000
90.0003	0.0000	87.4245	1.0000	125.0003	0.0000	125.0003	0.0000	140.0003	0.0000	77.7596	0.0000
90.0003	0.0000	170.0004	1.0000	125.0003	0.0000	125.0003	0.0000	77.7596	0.0000	77.7596	0.0000
90.0003	0.0000	170.0004	1.0000	125.0003	0.0000	125.0003	0.0000	77.7596	0.0000	77.7596	0.0000
90.0003	0.0000	170.0004	1.0000	125.0003	0.0000	150.0003	0.0000	77.7596	0.0000	54.6037	0.0000
0.0003	0.0000	170.0004	1.0000	125.0003	0.0000	77.7596	0.0000	77.7596	0.0000	54.6037	0.0000
0.0003	0.0000	170.0004	1.0000	125.0003	0.0000	77.7596	0.0000	77.7596	0.0000	54.6037 54.6037	0.0000
0.0003 0.0003	0.0000	170.0004 170.0004	1.0000	160.0003 77.7596	0.0000	77.7596 77.7596	0.0000	54.6037 54.6037	0.0000	54.6037	0.0000
0.0003	0.0000	170.0004	1.0000	77.7596		77.7596	0.0000	54.6037	0.0000	37.6985	0.0000
0.0003	0.0000	170.0004	1.0000	77.7596	0.0000	54.6037	0.0000	54.6037	0.0000	37.6985	0.0000
0.0003	0.0000	86.1590		77.7596	0.0000	54.6037	0.0000	54.6037	0.0000	37.6985	0.0000
0.0003	0.0000	86.1590		77.7596		54.6037	0.0000	37.6985	0.0000	37.6985	0.0000
180.0252	0.0000	86.1590		54.6037	0.0000	54.6037	0.0000	37.6985	0.0000	37.6985	0.0000
88.7074	0.1000	86.1590		54.6037	0.0000	54.6037	0.0000	37.6985	0.0000	37.6987 37.6987	0.0000
88.7074 88.7074	0.2000	86.1590 79.4548	0.5000 0.5000	54.6037 54.6037	0.0000	37.6985 37.6985	0.0000	37.6985 37.6985	0.0000	37.6987	0.0000
88.7074	0.4001	79,4548	0.5000	54.6037	0.0000	37.6985	0.0000	37.6987	0.0000	37.6987	0.0000
88.7074	0.5001	79.4548	0.5000	37.6985	0.0000	37.6985	0.0000	37.6987	0.0000	37.6987	0.0000
86.4669	0.5001	79.4548	0.5000	37.6985	0.0000	37.6985	0.0000	37.6987	0.0000	54.6040	0.0000
86.4669	0.5001	79.4548	0.5000	37.6985	0.0000	37.6987	0.0000	37.6987	0.0000	54.6040	0.0000
86.4669	0.5001	75.5227	0.5000	37.6985	0.0000	37.6987	0.0000	37.6987	0.0000	54.6040	0.0000
86.4669	0.5001	75.5227	0.5000	37.6985	0.0000	37.6987	0.0000	54.6040	0.0000	54.6040 54.6040	0.0000
86.4669 85.1711	0.5001 0.5001	75.5227 75.5227	0.5000	37.6987 37.6987	0.0000	37.6987 37.6987	0.0000	54.6040 54.6040	0.0000	77.7600	0.0000
85.1711	0.5001	75.5227	0.5000	37.6987	0.0000	54.6040	0.0000	54.6040	0.0000	77.7600	0.0000
85.1711	0.5001	75.5229	0.5000	37.6987	0.0000	54.6040	0.0000	54.6040	0.0000	77.7600	0.0000
85.1711		75.5229		37.6987	0.0000	54.6040		77,7600	0.0000	77.7600	0.0000
85.1711		75.5229	0.5000	54.6040	0.0000	54.6040		77.7600		77.7600	
85.1712	0.5001	75.5229	0.5000	54.6040		54.6040		77.7600		125.0003	0.0000
85.1712		75.5229		54.6040	0.0000	77.7600 77.7600		77.7600 77.7600		125.0003 125.0003	0.0000
85.1712 85.1712		79.4551 79.4551		54.6040 54.6040		77.7600		125.0003	0.0000	125.0003	0.0000
85.1712		79.4551		77.7600		77.7600		125.0003	0.0000	125.0003	0.0000
86.4671		79.4551		77.7600	0.0000	77.7600		125.0003	0.0000	125.0003	0.0000
86.4671		79.4551	0.5000	77.7600	0.0000	125.0003	0,0000	125.0003	0.0000	125.0003	0.0000
86.4671	0.5001	86.1594		77.7600	0.0000	125.0003		125.0003	0.0000	125.0003	0.0000
86.4671		86.1594		77.7600		125.0003		125.0003	0.0000	125.0003	0.0000
86.4671		86.1594		125.0003	0.0000	125.0003		125.0003	0.0000	77.0473	0.0000
88.7078		86.1594		125.0003	0.0000	125.0003		125.0003	0.0000	77.0473 77.0473	
88.7078 88.7078		86.1594 165.0004		125.0003 125.0003	0.0000	125.0003 125.0003	0.0000	135.0003 77.7596		77.0473	0.5000
88.7078		165.0004		125.0003	0.0000	125.0003		77.7596	0.0000	77.0473	
88.7078		165.0004		125.0003	0.0000	145.0003		77.7596		52.2387	0.5000
175.0004		165.0004	1.0000	125.0003	0.0000	77.7596	0.0000	77.7596	0.0000	52.2387	0.5000
175.0004	1.0000	165.0004	1.0000	125.0003	0.0000	77.7596	0.0000	77.7596		52.2387	0.5000
175.0004		165.0004		155.0003	0.0000	77.7596	0.0000	54.6037		52.2387	
175.0004		165.0004		77.7596		77.7596		54.6037		52.2387	
175.0004		165.0004		77.7596		77.7596 54.6037		54.6037 54.6037		33.2260 33.2260	0.3000
175.0004 175.0004	1,0000	165.0004 77.7596	1.0000	77.7596 77.7596	0.0000	54.603 <i>1</i> 54.603 <i>7</i>	0.0000	54.603 <i>1</i> 54.603 <i>7</i>		33.2260	0.5000
175.0004		77.7596	0.0000	77.7596		54.6037		37.6985		33.2260	0.5000
175.0004		77.7596		54.6037		54.6037		37.6985		33.2260	0.5000
•											

33.2262	0.5000	24.8145	0.5000	45.8642		45.0002	0.8141		0.5469	70.0001	0.5107
33.2262	0.5000	24.8145	0.5000	45.8642	0.8774	75.0002	0.8606	75,2333	0.5795	70.0001	0.5613
	0.5000	48.3591		45.8642			0.9070	75.2333		70.0001	
		48.3591		45.8642		75.0002		80.0002	0.6780	70.0001	
33.2262		48.3591		75.2333		75.0002		80.0002	0.0760	70.0001	
	0.5000	48.3591		75.2333		75.0002			0.7446		
52.2390		48.3591		75.2333	1.0000	90.0002		80.0002		70.0001	
	0.5000	75.9242		75.2333	1.0000	90.0002			0.8112		
52.2390	0.5000	75.9242	0.8722	75.2333	1.0000	90.0002		80.0002	0.8445	70.0001	1.0000
52.2390	0.5000	75.9242	0.9744	100.0002	1.0000	90.0002	1.0000	80.0002	0.8778	76.4335	0.0000
77.0477	0.5000	75.9242		100.0002	1.0000	90.0002		80.0002		76.4335	
77.0477		75.9242		100.0002		90.0002		80.0002			
77.0477		110.0002	1,0000	100,0002	1.0000	90.0002		75.5223		76.4335	
77.0477		110.0002			1.0000	90.0002		75.5223	0.0000		
77.0477		110.0002		100.0002		90.0002		75.5223	0.0000		
	1.0000	110.0002		100.0002		75.0582		75.5225			
					1.0000			75.5223	0.0421	50.1441	
120.0003		110.0002			1.0000	75.0582		75.5223	0.1022	50.1441	
120.0003		110.0002		100.0002		75.0582		46.9203		50.1441	
	1.0000	110.0002				75.0582		46.9203	0.1022	50.1441	
	1.0000	110.0002		75.0582		75.0582		46.9203	0.1022	28.9044	
120.0003		110.0002		75.0582		45.2174		46.9203		28.9044	
	1.0000	75.5223	0.0380	75.0582	0.1040	45.2174		46.9203	0.2172	28.9044	0.1847
120.0003		75.5223	0.0855	75.0582	0.1206	45.2174		21.0904	0.2172	28.9044	0.1847
120.0003	1.0000	75.5223	0.1187	45.2174	0.2342	45.2174	0.2489	21.0904	0.2172	28.9044	0.2143
76.4336	0.0000	75.5223	0.1187	45.2174	0.3138	45.2174				28.9047	0.2143
76.4336	0.0000	75.5223	0.1187	45.2174	0.3138	15.7930		21.0904	0.2172	28.9047	0.2143
76.4336		46.9203		45.2174		15.7930		21.0904		28.9047	
76.4336		46.9203	0.2744	45.2174		15.7930	0.4172	21.0907	0.2500	28.9047	0.2143
76.4336		46.9203	0.2744	15.7931		15.7930	0.4172	21.0907	0.2509	28.9047	0.2143
50.1442		46.9203		15.7931		15.7930					
50.1442		46.9203						21.0907		50.1445	
				15.7931		15.7934		21.0907		50.1445	
50.1442		21.0905		15.7931		15.7934		21.0907		50.1445	
50.1442		21.0905	0.5000	15.7931		15.7934	0.5247	46.9207		50.1445	
50.1442		21.0905		15.7935		15.7934	0.5247	46.9207	0.2846	50.1445	0.3413
28.9046		21.0905		15.7935		15.7934		46.9207	0.2846	76.4339	0.3413
28.9046		21.0905	0.5000	15.7935	0.6862	45.2178	0.6475	46.9207	0.3010	76,4339	0.3413
28.9046	0.3438	21.0908	0.6772	15.7935	0.6862	45.2178	0.6475	46.9207	0.3996	76.4339	0.3572
28.9046	0.3438	21.0908	0.7127	15.7935		45.2178		75.5227	0.3996	76.4339	
28.9046	0.3438	21.0908		45.2178		45.2178		75.5227	0.3996	76.4339	
28.9048		21.0908		45.2178	0.8794		0.7262			65.0001	
28,9048		21.0908		45.2178		75.0586	0.7202	75.5227	0.4030	65.0001	
28.9048		46.9207		45.2178		75.0586		75.5227	0.4417	65.0001	
28.9048		46.9207		45.2178							
28.9048		46.9207		43.4170	0.0794	75.0586		75.0002		65.0001	
				75.0586		75.0586		75.0002		65.0001	
	0.3438	46.9207		75.0586		75.0586		75.0002		65.0001	
50.1446		46.9207		75.0586		85.0002		75.0002		65.0001	
50.1446		75.5227		75.0586		85.0002		75.0002		65.0001	0.8570
50.1446		75.5227		75.0586		85.0002		75.0002		65.0001	1.0000
50.1446	0.3438	75.5227	1.0000	95.0002	1.0000	85.0002	0.9188	75.0002	0.8287	77.0472	0.0000
76.4340		75.5227		95.0002	1.0000	85.0002	0.9310	75.0002	0.8753	77.0472	0.0000
76.4340		75.5227	1.0000	95.0002	1.0000	85.0002	0.9432	75,0002		77.0472	
76.4340	0.9375	105.0002	1.0000	95.0002		85.0002	0.9553	75.9237		77.0472	
76,4340			1.0000	95.0002		85.0002	0.9675	75.9237	0.0000	77.0472	
76.4340	1.0000	105.0002		95.0002		85.0002	1.0000	75.9237	0.0000	52.2386	
115.0002			1.0000	95.0002		75.2329		75.9237		52.2386	
115.0002		105.0002		95.0002		75.2329	0.0456	75.9237	0.0460	52.2386	
115.0002		105.0002	1.0000	95.0002		75.2329		48.3586			
115.0002			1.0000							52.2386	0.0992
115.0002		105.0002		74.9998 74.9998		75.2329 75.2329	0.0762	48.3586		52.2386	
115.0002		105.0002				75.2329		48.3586		33.2259	0.1082
		75.0002		74.9998	0.1102	45.8638		48.3586		33.2259	0.1682
	1.0000		0.0472	74.9998	0.1394	45.8638		48.3586		33.2259	0.1682
115.0002	1.0000	75.2329		74.9998		45.8638		24.8141		33.2259	0.1682
115.0002	1.0000	75.2329		44.9998	0.3129	45.8638		24.8141		33.2259	0.1996
75.9237	0.0000		0.1226	44.9998	0.3891	45.8638	0.2859	24.8141		33.2261	0.1996
75.9237	0.1278	75.2329		44.9998		17.9637	0.2859	24.8141	0.1943	33.2261	0.1996
75.9237	0.2300	45.8638		44.9998		17.9637	0.2859	24.8141	0.2301	33.2261	0.1996
75.9237		45.8638		44.9998	0.4653	17.9637	0.2859	24.8143	0.2301	33.2261	
75.9237		45.8638		14.9998	0.4827	17.9637	0.2859	24.8143	0.2301	33.2261	
48.3587		45.8638	0.3416	14.9998	0.4827	17.9637		24.8143		52.2389	
48.3587		45.8638	0.3416	14.9998		17.9640		24.8143		52.2389	0.2310
48.3587		17.9637		14.9998		17.9640		24.8143		52.2389	
48.3587		17.9637		14.9998		17.9640		48.3590		52.2389	
48.3587		17.9637		15.0002		17.9640		48.3590		52.2389	
24.8142		17.9637		15.0002		17.9640		48.3590		77.0476	
24.8142		17.9637		15.0002		45.8642		48.3590			
24.8142		17.9637		15.0002		45.8642 45.8642				77.0476	
24.8142		17.9641						48.3590		77.0476	
				15.0002		45.8642		75.9241		77.0476	
24.8142		17.9641		45.0002		45.8642		75.9241		77.0476	
24.8145		17.9641		45.0002		45.8642		75.9241	0.3786	60.0001	
24.8145		17.9641		45.0002		75.2333		75.9241		60.0001	
24.8145	0.5000	45.8642	0.7872	45.0002	0.7379	75.2333	0.5469	75.9241	0.4601	60.0001	0.5681

60.0001		50.0001		81.4625		83.7201		79.4547		86.4667	
60.0001	0.6807	50.0001	0.8388	81.4625		83.7201		79.4547	0.0547	85.1709	0.0453
60.0001	0.7370	50.0001	1.0000	81.4625	0.0255	72.6122	0.0524	79.4547	0.0716	85.1709	
60.0001	0.7933	79.4545	0.0000	81.4625	0.0415	72.6122		79.4547	0.0902	85.1709	0.0480
60.0001	0.8497	79.4545	0.0065	81.4625	0.0574	72.6122	0.0616	75.5226	0.0902	85.1709	0.0536
60.0001	1.0000	79.4545	0.0237	66.0724	0.0574	72.6122	0.0829	75.5226	0.0902	85.1709	0.0619
77.7595		79.4545	0.0452	66.0724		72.6122		75.5226	0.0902	85.1710	
77.7595		79.4545	0.0667	66.0724		65.9071		75.5226	0.0902	85.1710	
77.7595		59.9999		66.0724		65.9071		75 5226	0.055	85.1710	
77.7595		59.9999	0.0667	66.0724		65.9071		75.5226 75.5227	0.1055	85.1710	
77.7595		59.9999	0.0007	56.3559		65.9071		75.5227	0.1055	85.1710	
54.6036		59,9999		56.3559		65.9071		75.5227	0.1055	86.4670	
54.6036		59.9999				65.9072	0.1301	75.5227 75.5227	0.1055	86,4670	
		46.9205		56.3559 56.3559		65.9072		75.5227 75.5227	0.1000		
54.6036						65,9072	0.1301	13.3441	0.1209	86.4670	
54.6036		46.9205		56.3559		65.9072		79.4550		86.4670	
54.6036		46.9205		56.3561		65.9072		79.4550	0.1302	86.4670	
37.6984		46.9205		56.3561		65.9072		79.4550		88.7077	
37.6984		46.9205		56.3561	0.1480	72.6125		79.4550		88.7077	
37.6984	0.1634	46.9206		56.3561	0.1480	72.6125	0.1467	79.4550		88.7077	
37.6984		46.9206		56.3561		72.6125		86.1593		88.7077	
37.6984		46.9206		66.0728		72.6125		86.1593		88.7077	
	0.1901	46.9206	0.1673		0.1688		0.2077	86.1593	0.1974	4.9999	
37.6986	0.1901	46.9206	0.1914	66.0728	0.1731	83.7205		86.1593	0.2042	4.9999	
37.6986		60.0002	0.1914	66.0728	0.1949	83.7205	0.2267	86.1593	0.2111	4.9999	
37.6986	0.1901	60.0002	0.1914	66.0728	0.2385	83.7205	0.2378	15.0000	0.2850	4.9999	0.4523
37.6986	0.2168	60.0002	0.1914	81.4629	0.2401	83.7205	0.2490	15.0000	0.3590		0.5344
54.6039		60.0002		81.4629		83.7205		15.0000		4.9999	0.6165
54.6039		60.0002		81.4629	0.2640	25.0000	0.3295	15.0000		4.9999	0.6986
54.6039		79.4549		81.4629		25.0000		15.0000		4.9999	
54.6039		79.4549		81.4629		25.0000		15.0000		4.9999	
54.6039		79.4549	0.2015	35.0000	0.3610	25.0000		15.0000		89.9999	0.0000
77.7599		79.4549	0.23130	35.0000		25.0000	0.5575	15.0000		89.9999	
77.7599		79.4549		35.0000		25.0000	0.6762	15.0000		89.9999	
77.7599		45.0001		35.0000		25.0000	0.0702	87.4239		89.9999	
		45.0001		35.0000				87.4239 87.4239	0.0040		
77.7599						25.0000	0.8149			89,9999	
77.7599		45.0001		35.0000		25.0000	1.0000	87.4239		90.0000	
55.0001		45.0001		35.0000		84.9213	0.0080	87.4239	0.0186	90.0000	
55.0001		45.0001		35.0000		84.9213		87.4239	0.0232	90.0000	
55.0001		45.0001		35.0000		84.9213	0.0259	82.9469	0.0296	90.0000	
55.0001		45.0001		82.5643		84.9213		82.9469	0.0385	90.0000	
55.0001		45.0001		82.5643		84.9213		82.9469		90.0001	
55.0001	0.7287	45.0001		82.5643		76.0045		82.9469	0.0626	90.0001	0.0000
55.0001	0.7868	80.4232	0.0000	82.5643	0.0403	76.0045	0.0486	82,9469	0.0753	90.0001	0.0000
55.0001	0.8449	80.4232	0.0075	82.5643	0.0538	76.0045	0.0608	80.3442		90.0001	0.0000
55.0001	1.0000	80.4232	0.0245	69.2951	0.0538	76.0045	0.0802	80.3442	0.0753	90.0001	0.0000
78.5641	0.0000	80,4232	0.0433	69.2951		76.0045	0.1046	80.3442	0.0753	90.0003	0.0000
78.5641		80.4232		69.2951		70,7091		80.3442		90.0003	
78.5641		62.9659		69.2951		70.7091		80.3442		90.0003	
78.5641		62.9659		69.2951		70.7091		80.3443	0.0926	90.0003	
78.5641		62.9659		61.1210		70.7091		80.3443		90.0003	
57.2021		62.9659		61.1210		70.7091		80.3443		90.0003	
57.2021		62.9659		61.1210	0.1100	70.7092		80.3443		90.0003	
57.2021		51.6192		61.1210		70.7092		80.3443	0.0901	90.0003	
		51.6192				70.7092		82.9472		90.0003	
57.2021 57.2021		51.6192		61.1210		70.7092		82.9472 82.9472		90.0003	
42.2735		51.6192		61.1211		70.7092	0.1213	82.9472 82.9472	0.1232	90.0003	
42.2733	0.1301	51.0194	0.1409	61.1211	0.1400	76.7092	0.1379	04.9474	0.1300	90,0003	0.0000
42.2735		51.6192	0.1333	61.1211	0.1400	76.0048		82.9472		90.0003	
42.2735		51.6193	0.1535	61.1211		76.0048		82.9472		90.0003	
42.2735		51.6193		61.1211		76.0048		87.4243			
42.2735		51.6193	V.1333	69.2954		76.0048		87.4243		90.0003	
42.2736		51.6193		69.2954	0.1001	76.0048		87.4243		0.0003	
42.2736		51.6193		69.2954		84.9217		87.4243		0.0003	
42.2736		62.9662		69.2954		84.9217	0.2157	87.4243		0.0003	
42.2736		62.9662		69.2954	0.2262	84.9217	0.2247	10.0000			0.3749
42.2736		62.9662		82.5647		84.9217		10.0000		0.0003	
57.2024		62.9662		82.5647		84.9217		10.0000		0.0003	0.5623
57.2024		62.9662		82.5647		20.0000		10.0000		0.0003	
57.2024		80.4236		82.5647	0.2665	20.0000		10.0000		0.0003	
57.2024		80.4236		82.5647		20.0000		10.0000		0.0003	1.0000
57.2024	0.2837	80.4236		30.0000	0.3475	20.0000	0.5265	10.0000	0.7198		
78.5646		80.4236		30.0000		20.0000		10.0000			
78.5646		80.4236		30.0000	0.4824	20.0000		10.0000			
78.5646		40.0001		30.0000	0.5499	20.0000		88.7073			
78.5646		40.0001		30.0000		20.0000		88.7073			
78.5646		40.0001		30.0000		20.0000		88.7073			
50.0001		40.0001		30.0000	0.7524	86.1589		88.7073			
50.0001		40.0001		30.0000		86.1589	0.0137	88.7073			
50.0001		40.0001		30.0000		86.1589		86.4667			
50.0001		40.0001		83.7201		86.1589		86.4667			
50.0001		40.0001		83.7201		86.1589		86.4667			
50.0001		40.0001		83.7201 83.7201		79.4547		86,4667			
20.0001	V.7 10V	70.0001	1.0000	03.7401	0.0501	17.4341	0.0301	00.400/	0.0363		

APPENDIX K PLOG.DAT Data File

			14 15
			e.
			3
			; ;:-5

Ohlianien	Com	100.0001	0.1667	5.0004	0.2789	89.9998	0.3333	174,9987	0.5000	80.0001	0.6667
Obliquity (degrees)	Cum. Prob.	130.0001	0.1667		0.3148	59.9999	0.3557	154.9996	0.5000	110.0000	0.6667
(degrees)	1100.	160.0001	0.1667	65.0002		29.9999	0.3943	124.9998	0.5000	140.0000	0.6667
74.9998	0.0112	169.9995	0.1667	95.0002		0.0621	0.4390	94.9999	0.5000	169.9994	0.6667
44.9998	0.0417	139.9997	0.1667	125.0001	0.3333	30.0002	0.4777	64.9999	0.5185	159.9994	0.6667
14.9998	0.0833	109.9997	0.1667	155.0001	0.3333	60.0002	0.5000	34.9999	0.5544	129.9998	0.6667
15.0001	0.1250	79.9998	0.1742	174.9989		90.0002	0.5000	5.0004	0.5980	99.9999	0.6667
45.0002	0.1555	49.9998	0.2020	144.9997	0.3333	120.0001	0.5000	25.0002	0.6377	69.9999	0.6815
	0.1667	19.9998	0.2427	114.9997	0.3333	150.0000	0.5000	55.0002	0.6628	40.0000	
105.0002	0.1667	10.0003	0.2854	84.9998		179.8880		85.0001	0.6667	10.0002	0.7573
135.0002	0.1667	40.0002	0.3185	54.9998		149.9996	0.5000	115.0001	0.6667	20.0002	
165.0002	0.1667	70.0002	0.3333	24.9999	0.4020 0.4456	119.9998 89.9998	0.5000 0.5000	145.0000 174.9987	0.6667 0.6667	50.0002 80.0001	
164.9997 134.9997	0.1667 0.1667	100.0001 130.0001	0.3333 0.3333	35.0004 35.0002		59.9999	0.5223	154.9996	0.6667	110.0000	0.8333
104.9997	0.1667	160.0001	0.3333	65.0002		29.9999		124.9998	0.6667	140.0000	0.8333
	0.1778	169.9995	0.3333		0.5000	0.0621	0.6057	94.9999	0.6667	169.9994	0.8333
44.9998	0.2083	139.9997	0.3333	125.0001		30.0002	0.6443	64.9999	0.6852	159.9994	0.8333
	0.2500	109.9997	0.3333	155.0001	0.5000	60.0002		34,9999	0.7211	129.9998	0.8333
15.0002	0.2917	79.9998	0.3409	174.9989	0.5000	90.0002		5.0004		99.9999	0.8333
45.0002	0.3222	49.9998	0.3687	144.9997	0.5000	120.0001	0.6667	25.0002	0.8044	69.9999	
75.0002	0.3333	19.9998	0.4094	114.9997		150.0000		55.0002	0.8295	40.0000	
	0.3333	10.0003	0.4520	84.9998		179.8880	0.6667	85.0001	0.8333	10.0002	
135.0002	0.3333	40.0002	0.4852	54.9998		149.9996	0.6667	115.0001	0.8333	20.0002	
165.0002	0.3333	70.0002	0.5000	24.9999		119.9998	0.6667	145.0000	0.8333	50.0002	
	0.3333	100.0001	0.5000	5.0004		89.9998	0.6667	174.9987	0.8333	80.0001	
134.9997	0.3333	130.0001	0.5000	35.0002		59.9999	0.6890	154.9996	0.8333	110.0000 140.0000	1.0000
	0.3333	160.0001	0.5000	65.0002		29.9999		124.9998 94.9999	0.8333 0.8333	169.9994	1.0000 1.0000
74.9998 44.9998	0.3445	169.9995 139.9997	0.5000 0.5000	95.0002 125.0001	0.6667 0.6667	0.0621 30.0002	0.7723 0.8110	64.9999	0.8518	159.9994	1.0000
	0.3750 0.4167	109.9997	0.5000	155.0001	0.6667	60.0002		34.9999	0.8877	129.9998	1.0000
	0.4167	79.9998	0.5075	174.9989				5.0004	0.9314	104.9999	0.0000
45.0002	0.4888	49.9998	0.5354	144.9997	0.6667	120.0001	0.8333	25.0002	0.9711	74.9999	
	0.5000	19.9998	0.5760	114.9997		150.0000		55.0002		45.0000	
	0.5000	10.0003	0.6187	84.9998		179.8880		85.0001	1.0000	15.0005	0.0833
	0.5000	40.0002	0.6519	54.9998		149.9996	0.8333	115.0001	1.0000	15.0003	0.1250
165.0002	0.5000	70.0002	0.6667	24.9999		119.9998	0.8333	145.0000	1.0000		0.1555
164.9997	0.5000	100.0001	0.6667	5.0004	0.7789	89.9998	0.8333	174.9987	1.0000		0.1667
134.9997	0.5000	130.0001	0.6667		0.8148	59.9999	0.8557	154.9996	1.0000	105.0000	0.1667
	0.5000	160.0001	0.6667	65.0002	0.8333	29.9999		124.9998	1.0000	135.0000	0.1667
	0.5112	169.9995	0.6667	95.0002	0.8333	0.0621	0.9390	99.9999	0.0000	164.9996	0.1667
44.9998	0.5417	139.9997	0.6667			30.0002		69.9999	0.0148 0.0480	164.9992 134.9998	0.1667 0.1667
14.9998	0.5833	109.9997	0.6667	155.0001	0.8333 0.8333	60.0002 90.0002		40.0000 10.0007	0.0480	104.9999	0.1667
15.0002 45.0002	0.6555	79.9998 49.9998	0.6742 0.7020	174.9989 144.9997	0.8333	120.0001	1.0000	20.0002	0.0900	74.9999	0.1778
75.0002	0.6667	19.9998	0.7427	114.9997		150.0000		50.0002		45.0000	
105.0002	0.6667	10.0003	0.7854		0.8372	179.8880		80.0001	0.1667	15.0001	0.2500
135.0002	0.6667	40.0002	0.8185		0.8623	149.9996	1.0000	110.0000	0.1667	15.0003	
165.0002	0.6667	70.0002	0.8333	24.9999		119.9998	1.0000	140.0000	0.1667		0.3222
164.9997	0.6667	100.0001	0.8333		0.9456	94.9999	0.0000	169.9994	0.1667		0.3333
134.9997	0.6667	130.0001	0.8333	35,0002	0.9815	64.9999	0.0185	159.9994	0.1667	105.0000	
104.9997	0.6667	160.0001	0.8333		1.0000	34.9999		129.9998	0.1667	135.0000	0.3333
74.9998	0.6778	169.9995	0.8333		1.0000		0.0980	99.9999	0.1667	164.9996	0.3333
44.9998	0.7083	139.9997	0.8333			25.0002		69.9999	0.1815	164.9992	0.3333
14.9998	0.7500	109.9997	0.8333	155.0001	1.0000	55.0002		40.0000		134.9998	0.3333
15.0002	0.7917	79.9998	0.8409	174.9989		85.0001		10.0002	0.2573	104.9999 74.9999	0.3333
45.0002 75.0002		49.9998 19.9998	0.8687	144.9997 114.9997		115.0001 145.0000		20.0002 50.0002	0.2960	45.0000	
105.0002		10.0003	0.9520	80 0008	0.0000	174.9987	0.1667	80.0001		15.0001	
	0.8333	40.0002	0.9852		0.0223	154.9996		110.0000		15.0003	
165.0002		70.0002			0.0610	124.9998	0.1667	140.0000		45.0001	
164.9997		100.0001	1.0000		0.1057	94.9999		169.9994		75.0001	
	0.8333	130.0001	1.0000		0.1443			159.9994	0.3333	105.0000	
	0.8333	160.0001	1.0000		0.1667	34.9999	0.2211	129.9998	0.3333	135.0000	0.5000
74.9998	0.8445	169.9995	1.0000	90.0002	0.1667	5.0004	0.2647	99.9999			0.5000
	0.8750	139.9997	1.0000	120.0001		25.0002	0.3044	69.9999		164.9992	0.5000
	0.9167	109.9997	1.0000	150.0000		55.0002		40,0000		134.9998	0.5000
15.0002		84.9998	0.0038	179.8880		85.0001	0.3333	10.0002		104.9999	0.5000
45.0002	0.9888	54.9998	0.0289	149.9996		115.0001		20.0002		74.9999 45.0000	
75.0002 105.0002		24.9999		119.9998	0.1667	145.0000 174.9987		50.0002 80.0001		45.0000 15.0001	
135.0002		5.0007 35.0002		67,7778 50,0000	0.1890	154.9987		110.0000		15.0001	
165.0002		65.0002	0.1462		0.1890	124.9998	0.3333	140.0000		45.0001	
164.9997		95.0002	0.1667	0.0621	0.2723	94.9999		169.9994	0.5000	75.0001	
134.9997		125.0001	0.1667	30.0002	0.3110	64.9999		159.9994	0.5000	105.0000	
104.9997		155.0001	0.1667	60,0002	0.3333	34.9999		129.9998	0.5000	135.0000	0.6667
79.9998	0.0075	174.9989	0.1667	90.0002	0.3333	5.0004	0.4314	99.9999	0.5000	164.9996	0.6667
49.9998		144.9997	0.1667	120.0001	0.3333	25.0002		69.9999	0.5148	164.9992	0.6667
19.9998	0.0760	114.9997	0.1667	150.0000	0.3333	55.0002		40.0000		134.9998	0.6667
10.0003		84.9998	0.1705	179.8880	0.3333	85.0001		10.0002		104.9999	0.6667
40.0002		54.9998	0.1956	149.9996		115.0001		20.0002		74.9999	0.6778
70.0002	0.1667	24.9999	0.2353	119.9998	0.3333	145.0000	0.5000	50.0002	0.6591	45.0000	0.7083

15.0001		109.9997			1.0000	55.0000		40.0001		135.0000	
15.0003	0.7917	79.9998	0.8409	174.9989	1.0000	85.0000		10.0004		105.0000	0.3333
45.0001		49.9998	0.8687	144.9997	1.0000	114.9999	0.1667	20.0001		75.0001	
75.0001		19.9998	0.9094	119.9999	0.0000	144.9997	0.1667	50.0000		45.0001	
105.0000	0.8333	10.0003	0.9520	90,0000		174.9976	0.1667	80,0000		15.0003	0.4167
135.0000	0.8333	40.0002	0.9852	60.0000		154.9997	0.1667	109.9999	0.3333	15.0001	
	0.8333	70.0002		30.0003	0.0610	124.9999	0.1667	139.9997		45.0000	0.4888
164.9992	0.8333		1.0000	0.0878	0.1057	95.0000		169.9988	0.3333	74.9999	0.5000
134.9998	0.8333	130.0001	1.0000	30.0001	0.1443	65.0001	0.1852	159.9996	0.3333	104.9999	0.5000
104.9999	0.8333	160.0001	1.0000	60.0000	0.1667	35.0001		130.0000	0.3333	134.9998	0.5000
74.9999	0.8445	169.9995	1.0000	90,0000	0.1667	5.0008	0.2647	100.0000	0.3333	164.9992	0.5000
45.0000	0.8750	139.9997	1.0000	119.9999	0.1667	25.0001	0.3044	70.0001	0.3481	164.9996	0.5000
15.0001	0.9167	114.9997	0.0000	149.9997	0.1667	55.0000	0.3295	40.0001	0.3813	135.0000	0.5000
15.0003	0.9583	84.9998	0.0038	179.8416	0.1667	85.0000	0.3333	10.0004	0.4240	105.0000	0.5000
45.0001	0.9888	54.9998	0.0289	149.9997	0.1667	114.9999		20.0001	0.4646	75.0001	0.5112
75.0001	1.0000	24.9999	0.0686	119.9999	0.1667	144.9997	0.3333	50.0000		45.0001	0.5417
105.0000	1.0000	5.0007	0.1123	90.0000	0.1667	174.9976	0.3333	80.0000		15.0003	0.5833
135.0000	1.0000	35.0002		60.0000	0.1890	154.9997	0.3333	109.9999	0.5000	15.0001	0.6250
164.9996	1.0000	65.0002	0.1667	30.0001	0.2277	124.9999	0.3333	139.9997	0.5000	45.0000	0.6555
164.9992	1.0000		0.1667	0.0878	0.2723	95.0000		169.9988	0.5000	74,9999	0.6667
	1.0000	125.0001			0.3110	65.0001		159.9996		104.9999	0.6667
109.9997	0.0000	155.0001	0.1667	60.0000		35.0001	0.3877	130.0000		134.9998	0.6667
79.9998	0.0075	174.9989	0.1667	90.0000			0.4314	100.0000		164.9992	0.6667
49.9998		144.9997		119.9999	0.3333	25.0001		70.0001		164.9996	0.6667
19.9998	0.0760	114.9997		149,9997	0.3333	55.0000	0.4962	40.0001		135.0000	0.6667
10.0003	0.1187		0.1705	179.8416	0.3333	85.0000	0.5000	10.0004		105.0000	0.6667
40.0002		54,9998		149.9997	0.3333	114.9999	0.5000	20.0001	0.6313	75.0001	
70.0002	0.1667	24.9999	0.2353	119.9999	0.3333	144.9997	0.5000	50.0001			0.7083
100.0001	0.1667	5.0004		90.0000		174.9976	0.5000	80.0000		15.0003	0.7500
130.0001		35.0002		60.0000		154.9997		109.9999	0.6667	15.0001	
160.0001	0.1667		0.3333	30.0001	0.3943	124.9999	0.5000	139.9997	0.6667	45.0001	
169.9995	0.1667	95.0002	0.3333	0.0878	0.4390	95.0000		169.9988	0.6667	74.9999	
139.9997	0.1667	125.0002		30.0001		65.0001		159.9996	0.6667		0.8333
109.9997		155.0001					0.5544			104.9999	0.8333
79.9998	0.1667	174.9989	0.3333	60.0000 90.0000		35.0001		130.0000	0.6667	134.9998	0.8333
49.9998	0.1742		0.3333			5.0008		100.0000	0.6667	164.9992	0.8333
19.9998	0.2020	144.9997		119.9999	0.5000	25.0001		70.0001	0.6815	164.9996	0.8333
	0.2427	114.9997	0.3333	149.9997	0.5000	55.0000	0.6628	40.0001	0.7146	135.0000	0.8333
10.0003	0.2854		0.3372	179.8416	0.5000	85.0000	0.6667	10.0004		105.0000	0.8333
40.0002		54.9998		149.9997	0.5000	114.9999	0.6667	20.0001	0.7980	75.0001	
	0.3333	24.9999	0.4020	119.9999	0.5000	144.9997	0.6667	50.0000		45.0001	
100.0001		5.0004		90.0000	0.5000	174.9976	0.6667	80.0000		15.0003	0.9167
130.0001		35.0002		60.0000		154.9997	0.6667	109.9999	0.8333		0.9583
160.0001	0.3333		0.5000		0.5610	124.9999	0.6667	139.9997	0.8333	45.0000	
169.9995	0.3333	95.0002		0.0878	0.6057	95.0000	0.6667	169.9988	0.8333		1.0000
	0.3333	125.0001			0.6443	65.0001		159.9996	0.8333	104.9999	1.0000
109.9997	0.3333	155.0001	0.5000	60.0000	0.6667	35.0001		130.0000	0.8333	134.9998	1.0000
79.9998	0.3409	174.9989	0.5000	90.0000	0.6667		0.7647	100.0000	0.8333	164.9992	1.0000
49.9998	0.3687	144.9997		119.9999	0.6667	25.0001		70.0001	0.8481		1.0000
19.9998	0.4094	114.9997	0.5000	149.9997	0.6667		0.8295	40.0001	0.8813	140.0000	0.0000
10.0003	0.4520	84.9998	0.5038	179.8416	0.6667	85.0000	0.8333	10.0004	0.9240	110.0000	0.0000
40.0002	0.4852	54.9998	0.5289	149.9997	0.6667	114.9999	0.8333	20.0001	0.9646	80.0001	0.0075
70.0002	0.5000	24.9999	0.5686	119.9999	0.6667	144.9997	0.8333	50.0000		50.0003	0.0354
100.0001	0.5000	5.0004	0.6123	90.0000	0.6667	174.9976	0.8333	80.0000	1.0000	20.0002	0.0760
130.0001	0.5000	35.0002	0.6482	60.0000	0.6890	154.9997		109.9999	1.0000	10.0002	0.1187
160.0001	0.5000	65.0002	0.6667	30.0001	0.7277	124.9999		139.9997	1.0000	40.0000	0.1519
169.9995		95.0002		0.0878		95.0000	0.8333	169.9988		69.9999	0.1667
139.9997		125.0001	0.6667	30.0001		65.0001	0.8518	159.9996	1.0000	99.9999	0.1667
109.9997	0.5000	155.0001	0.6667	60.0000		35.0001		135.0000		129.9998	0.1667
79.9998	0.5075	174.9989	0.6667	90.0000		5.0008		105.0000		159.9994	0.1667
49.9998	0.5354	144.9997	0.6667	119.9999		25.0001		75.0001	0.0112	169.9994	0.1667
19.9998	0.5760	114.9997	0.6667	149.9997	0.8333	55.0000		45.0003	0.0417	140.0000	0.1667
10.0003	0.6187	84.9998	0.6705		0.8333	85.0000		15.0003		110.0000	0.1667
40.0002	0.6519	54.9998	0.6956	149.9997		114.9999	1.0000	15.0001	0.1250	80.0001	0.1742
70.0002	0.6667	24.9999	0.7353	119.9999	0.8333	144.9997	1.0000	45.0000	0.1555	50.0002	0.2020
100.0001	0.6667	5.0004	0.7789	90.0000	0.8333	174.9976	1.0000	74.9999	0.1667	20.0002	0.2427
130.0001	0.6667	35.0002	0.8148	60.0000		154.9997	1.0000	104.9999	0.1667	10.0002	0.2854
160.0001	0.6667	65.0002		30.0001	0.8943	130.0000	0.0000	134.9998	0.1667	40.0000	
169.9995	0.6667	95.0002	0.8333	0.0878		100.0000		164.9992	0.1667	69.9999	
139.9997	0.6667	125.0001	0.8333	30.0001	0.9777	70.0001	0.0148		0.1667	99.9999	
109.9997	0.6667	155.0001	0.8333	60.0000	1.0000	40.0003		135.0000	0.1667		0.3333
79.9998	0.6742	174.9989	0.8333	90.0000	1.0000	10.0004		105.0000	0.1667		0.3333
49.9998	0.7020	144.9997	0.8333	119.9999	1.0000	20.0001		75.0001		169.9994	
19.9998	0.7427	114.9997	0.8333	149.9997	1.0000	50.0000		45.0001		140.0000	
10.0003	0.7854	84.9998	0.8372		1.0000	80.0000		15.0003		110.0000	
40.0002	0.8185	54.9998	0.8623	149.9997		109.9999		15.0001		80.0001	
70.0002	0.8333	24.9999	0.9020	124.9999		139.9997		45.0000		50.0002	
	0.8333		0.9456	95.0000			0.1667	74.9999		20.0002	
130.0001	0.8333	35.0002		65.0001		159.9996			0.3333	10.0002	
160.0001	0.8333	65.0002		35.0003		130.0000		134.9998		40.0000	
169.9995	0.8333	95.0002		5.0008		100.0000		164.9992		69.9999	
139.9997		125.0001		25.0001		70.0001		164.9996		99.9999	
					· ·				2.2233	22.223	3.2000

						155,0001	0.0000	100 0007	1 0000	9,9997	0.1197
129.9998		34.9999	0.6482	60.0002		155.0001 125.0001		109.9997 139.9997	1.0000	39.9998	0.1107
	0.5000	64.9999	0.6667	30.0002		95.0002	0.6333	169.9995	1.0000	69.9998	0.1667
	0.5000	94.9999	0.6667	0.0621 29.9999	0.7723	65.0002		165.0002	0.0000	99,9998	0.1667
	0.5000	124.9998 154.9996	0.6667 0.6667	59.9999 59.9999	0.8333	35.0002		135.0002	0.0000	129,9998	0.1667
110.0000		174.9987	0.6667	89.9998		5.0004		105.0002		159.9998	0.1667
	0.5075 0.5354	145.0000	0.6667	119.9998	0.8333		0.9711	75.0002		170.0002	0.1667
20.0002		115.0001	0.6667	149.9996	0.8333	54,9998		45.0002		140.0002	0.1667
	0.6187		0.6705	179.8880			1.0000	15.0002		110.0002	0.1667
	0.6519	55.0002		150.0000	0.8333	114,9997	1.0000		0.1250	80.0002	
	0.6667	25.0002		120.0001	0.8333	144.9997	1.0000	44.9998	0.1555	50.0002	0.2020
99,9999	0.6667	5.0004		90.0002	0.8333	174.9989	1.0000		0.1667	20.0002	
	0.6667	34.9999	0.8148	60.0002		160.0001		104.9997		9.9997	
159.9994	0.6667	64.9999	0.8333	30.0002		130.0001		134.9997	0.1667		0.3185
169.9994	0.6667	94,9999			0.9390	100.0001		164.9997	0.1667	69.9998	0.3333
140.0000	0.6667	124.9998	0.8333	29.9999		70.0002		165.0002		99.9998 129.9998	0.3333
	0.6667	154.9996	0.8333	59.9999		40.0002		135.0002	0.1667	159.9998	0.3333
80.0001		174.9987		89.9998		10.0003 19.9998		105.0002 75.0002	0.1667	170.0002	
	0.7020	145.0000		119.9998	1.0000	49.9998	0.1313		0.2083		0.3333
20.0002			0.8333	149.9996 179.8880	1.0000		0.1391	15.0002		110.0002	
10.0002		85.0001 55.0002		155.0001	0.0000	109.9997		14.9998		80.0002	
40.0000 69.9999	0.8185 0.8333	25.0002		125.0001		139.9997	0.1667	44.9998	0.3222	50.0002	0.3687
99,9999			0.9456	95.0002				74.9998	0.3333	20.0002	0.4094
129,9998		34.9999	0.9815	65.0002		160.0001		104.9997	0.3333	9.9997	0.4520
159.9994		64.9999			0.0544	130.0001	0.1667	134.9997	0.3333	39.9998	0.4852
169.9994		94,9999	1.0000	5.0004	0.0980	100.0001	0.1667	164.9997			0.5000
140,0000		124.9998	1.0000	24.9999		70.0002		165.0002		99.9998	
110.0000		154.9996	1.0000	54.9998	0.1628	40.0002	0.2146	135.0002	0.3333	129.9998	0.5000
80.0001		174.9987	1.0000	84.9998		10.0003		105.0002	0.3333	159.9998	0.5000
50.0002	0.8687	150.0000		114.9997	0.1667	19.9998	0.2980	75.0002		170.0002	
20.0002	0.9094	120.0001		144.9997		49.9998	0.3258	45.0002		140.0002	0.5000
10.0002		90.0002		174.9989		79.9998		15.0002		110.0002	
		60.0002		155.0001	0.1667	109.9997	0.3333	14.9998		80.0002 50.0002	0.5075
	1.0000	30.0002		125.0001		139.9997		44.9998 74.9998	0.4888	20.0002	
99.9999			0.1057		0.1667	169.9995 160.0001		104.9997		9.9997	
	1.0000	29.9999		65.0002		130.0001		134.9997	0.5000	39.9998	0.6519
	1.0000	59.9999			0.2211 0.2647	100.0001		164.9997	0.5000	69,9998	0.6667
169.9994		89.9998 119.9998	0.1667		0.3044	70.0002		165.0002	0.5000	99,9998	0.6667
145.0000 115.0001		149.9996			0.3295	40.0002		135.0002	0.5000	129.9998	0.6667
85.0001		179.8880		84.9998		10.0003		105.0002	0.5000	159.9998	0.6667
55.0001	0.0036	150.0000		114.9997		19.9998		75.0002	0.5112	170.0002	0.6667
	0.0686	120,0001		144.9997		49.9998	0.4925	45.0002	0.5417	140.0002	0.6667
5.0004		90.0002		174.9989		79.9998			0.5833	110.0002	
34,9999	0.1482		0.1890	155.0001	0.3333	109.9997		14.9998		80.0002	
64.9999	0.1667		0.2277	125.0001	0.3333	139.9997		44.9998		50.0002	
94.9999	0.1667		0.2723	95.0002		169.9995		74.9998	0.6667	20.0002	
124.9998	0.1667		0.3110		0.3518	160.0001		104.9997	0.6667		0.7854
154.9996	0.1667		0.3333	35.0002		130.0001		134.9997	0.6667	39.9998 69.9998	
		89.9998		5.0004		100.0001		164.9997	0.6667 0.6667	99,9998	
145.0000	0.1667	119.9998		24.9999			0.5148 0.5480	165.0002 135.0002	0.6667	129.9998	0.8333
	0.1667	149.9996		54.9998			0.5906	105.0002		159,9998	
85.0001		179.8880		84.9998 114.9997			0.5900		0.6778	170,0002	0.8333
55.0002 25.0002		150.0000 120.0001		144.9997	0.5000	49.9998			0.7083	140.0002	
5.0004	0.2333		0.3333	174.9989	0.5000	79.9998	0.6667		0.7500	110.0002	
34.9999	0.2769	60,0002	0.3557	155.0001		109.9997			0.7917	80.0002	0.8409
			0.3943	125.0001		139.9997		44.9998	0.8222	50.0002	0.8687
94.9999			0.4390	95.0002	0.5000	169.9995		74.9998	0.8333		0.9094
124.9998	0.3333	29.9999	0.4777	65.0002	0.5185	160.0001		104.9997			0.9520
		59.9999	0.5000	35.0002	0.5544	130.0001		134.9997			0.9852
174.9987			0.5000	5.0004	0.5980	100.0001		164.9997		69.9998	
145.0000	0.3333	119.9998		24.9999	0.6377		0.6815	165.0002		99.9998	
115.0001		149.9996	0.5000		0.6628			135.0002	0.8333	129.9998	
85.0001		179.8880		84.9998		10.0003		105.0002		159.9998 175.0005	
55.0002		150.0000		114.9997		19.9998	0.7980		0.8445	145.0002	
25.0002		120.0001		144.9997		49.9998 79.9998	0.8258		0.8750 0.9167	115.0002	
	0.4456		0.5000			109,9997			0.9187		0.0038
34.9999			0.5223	155.0001	0.6667 0.6667				0.9888		0.0289
64.9999			0.5610		0.6667	169.9995			1.0000		0.0686
94.9999		0.0621 29.9999	0.6057	93.0002 65.0002	0.6852			104.9997			0.1123
124.9998 154.9996	0.5000	29.9999 59.9999			0.0832	130.0001		134.9997			0.1482
174.9996		89.9998			0.7647	100.0001		164.9997			0.1667
145.0000		119.9998			0.8044		0.8481	170.0002			
115.0001		149.9996		54.9998	0.8295	40.0002		140.0002	0.0000	124.9998	0.1667
	0.5038	179.8880		84.9998	0.8333	10.0003				154.9999	
55.0002		150.0000		114.9997	0.8333	19.9998	0.9646	80.0002	0.0075	175.0005	
25.0002	0.5686	120.0001		144.9997	0.8333	49.9998	0.9925		0.0354		
	0.6123		0.6667		0.8333		1.0000	20.0002	0.0760	115.0002	0.1667

85.0002	0.1705	179.8764	0.3333	85.0004	0.5000	10.0010	0.5906	104.9996	0.6667	159.9997	0.8333
55.0002			0.3333	115.0003	0.5000	20.0010	0.6313	74.9998	0.6778	169.9979	0.8333
25.0002		119,9995		145.0002	0.5000	50.0005		45,0000	0.7083		0.8333
	0.2789	89.9996		174.9985	0.5000	80.0004		15.0007		109.9996	
34.9997	0.3148	59.9997		154.9992		110.0003		15.0013		79.9998	
64,9998	0.3333	29,9999	0.3943	124.9995	0.5000	140.0002	0.6667	45.0006	0.8222	50.0000	0.8687
94.9998	0.3333	0.1237	0.4390	94.9996	0.5000	169.9993	0.6667		0.8333	20.0006	0.9094
		30.0006		64.9997		159.9990	0.6667	105.0003		10.0020	
	0.3333										
	0.3333	60.0005		34.9999		129.9994			0.8333	40.0006	
175.0005	0.3333	90.0004	0.5000	5.0017	0.5980	99.9996		164.9995	0.8333	70.0004	1.0000
145.0002		120.0003	0.5000	25.0007		69.9997	0.6815	164.9986		100.0003	1.0000
115.0002			0.5000	55.0005		39.9999	0.7146		0.8333		1.0000
		130.0002	0.5000	33.0003	0.0026						
85.0002		179.8764		85.0004		10.0010	0.7573		0.8333	154.9995	
55.0002	0.3623	149.9993	0.5000	115.0003	0.6667	20.0010		74.9998	0.8445	174.9958	0.0000
25.0002	0.4020	119.9995	0.5000	145.0002	0.6667	50.0005	0.8258	45.0000	0.8750	144,9993	0.0000
	0.4456	89.9996		174.9985	0.6667	80.0004		15.0007		114.9994	
				174,3303				15.0007	0.5107	84.9998	
34.9997		59.9997		154.9992		110.0003		15.0013			
64.9998	0.5000	29.9999		124.9995	0.6667	140.0002		45.0006		55.0000	
94.9998	0.5000	0.1237	0.6057	94,9996	0.6667	169.9993	0.8333	75.0004	1.0000	25.0005	0.0686
124.9998	0.5000	30.0006		64,9997	0.6852	159.9990	0.8333	105.0003	1.0000	5.0041	0.1123
154.9999	0.5000		0.6667	34.9999		129.9994	0.0333		1.0000	35.0007	
	0.5000	90.0004		5.0017		99.9996			0.0000	65.0004	
145.0002	0.5000	120.0003	0.6667	25.0007	0.8044	69.9997	0.8481		0.0000	95.0003	0.1667
115.0002	0.5000	150.0002	0.6667	55.0005	0.8295	39.9999	0.8813	139.9993	0.0000	125.0001	0.1667
85.0002	0.5038	179.8764		85.0004		10.0010			0.0000	154.9997	
55.0002		149.9993	0.6667	115.0003		20.0010		79.9998		174.9958	
25.0002	0.5686		0.6667	145.0002		50.0005			0.0354		0.1667
4.9995	0.6123	89.9996	0.6667	174.9985	0.8333	80.0004	1.0000	20.0006	0.0760	114.9996	0.1667
34.9997	0.6482	59.9997		154.9992		110.0003	1.0000	10.0020		84.9998	
64.9998	0.6667	29.9999		124.9995		140.0002		40.0006		55.0000	
94.9998	0.6667	0.1237	0.7723	94.9996	0.8333	164.9995	0.0000	70.0004	0.1667	25.0005	0.2353
124.9998	0.6667	30.0006	0.8110	64.9997	0.8518	164.9986	0.0000	100.0003	0.1667	5.0041	0.2789
154.9999	0.6667	60.0005		34,9999		134.9994		130.0002	0.1667	35.0007	
		90.0004		5.0017		104.9995		159.9997		65.0004	
175.0005	0.6667										
145.0002	0.6667	120.0003		25.0007		74.9998		169.9979	0.1667	95.0003	
115.0002	0.6667	150.0002	0.8333	55.0005	0.9962	45.0000	0.0417	139.9993	0.1667	125.0001	0.3333
85.0002	0.6705	179.8764	0.8333	85.0004		15.0007	0.0833	109.9996	0.1667	154.9997	
55.0002		149.9993		115.0003	1.0000	15.0013		79.9998		174.9958	
25.0002			0.8333	145.0002	1.0000	45.0006	0.1555		0.2020	144.9993	
4.9995	0.7789	89.9996	0.8333	169.9995	0.0000	75,0004	0.1667	20.0006		114.9996	0.3333
34.9997	0.8148	59.9997	0.8557	159.9990	0.0000	105.0003	0.1667	10.0020	0.2854	84.9998	0.3371
64,9998	0.8333	29.9999		129.9994	0.0000	135.0002		40,0006		55.0000	
94.9998	0.8333	0.1237				164.9995		70.0004		25.0005	
				99.9995	0.0000						
124.9998	0.8333	30.0006		69.9997		164.9986			0.3333	5.0041	0.4456
154.9999	0.8333	60.0005	1.0000	39.9999	0.0480	134.9994	0.1667	130.0002	0.3333	35.0007	0.4815
	0.8333	90.0004		10.0010		104.9996				65.0004	
	0.8333		1.0000	20.0010		74.9998		169.9979		95.0003	
115.0002	0.8333		1.0000	50.0005	0.1591	45.0000	0.2083	139.9993	0.3333	125.0001	0.5000
85.0002	0.8372	174.9994	0.0000	80.0004	0.1667	15.0007	0.2500	109,9996	0.3333	154.9997	0.5000
55.0002		154,9992		110.0003	0.1667	15.0013		79.9998		174,9958	
25.0002		124,9995			0.1667	45.0006		50.0000			
				140.0002		45.0000	0.3222			144.9993	
	0.9456		0.0000	169.9993	0.1667	75.0004			0.4094	114.9996	
34.9997	0.9815	64.9997	0.0185	159.9990	0.1667	105.0003	0.3333	10.0020	0.4520	84.9998	0.5038
64.9998	1.0000	34,9999	0.0544	129,9994	0.1667	135.0002	0.3333	40.0006	0.4852	55.0000	0.5289
	1.0000	5.0017		99,9996		164.9995		70.0004		25.0005	
124.9998		25.0007	0.0300	69.9997		164.9986		100.0003	0.5000		
124.9996	1.0000									5.0041	
154.9999		55.0005		39.9999		134.9994		130.0002		35.0007	
179.9836		85.0004		10.0010	0.2573	104.9996		159.9997	0.5000	65.0004	0.6667
149.9993	0.0000	115.0003	0.1667	20.0010	0.2980	74.9998	0.3445	169.9979		95.0003	
119.9995			0.1667	50.0005		45.0000		139.9993		125.0001	
89.9996		174.9985	0.1667	80.0004		15.0007		109.9996	0.5000	154.9997	
59.9997		154.9992		110.0003		15.0013		79.9998		174.9958	
29.9999			0.1667	140.0002		45.0006		50.0000		144.9993	0.6667
0.1237		94.9996		169.9993		75.0004		20.0006		114.9996	
30.0006		64,9997		159.9990		105.0003		10.0020		84.9998	
60.0005		34,9999									
				129.9994		135.0002	0.3000	40.0006		55.0000	
90.0004		5.0017		99.9996		164.9995		70.0004		25.0005	
120.0003	0.1667	25.0007	0.3044	69.9997	0.3481	164.9986		100.0003	0.6667	5.0041	0.7789
	0.1667	55.0005		39.9999		134.9994		130.0002		35.0007	
179.8764	0.1667	85.0004		10.0010		104.9996		159.9997			
										65.0004	
149.9993	0.1667	115.0003		20.0010		74.9998		169.9979		95.0003	
119.9995	0.1667		0.3333	50.0005		45.0000	0.5417	139.9993	0.6667	125.0001	0.8333
89.9996			0.3333	80.0004		15.0007		109.9996		154.9997	
59.9997		154.9992		110.0003		15.0013		79.9998		174.9958	
29.9999			0.3333	140.0002		45.0006		50.0000		144.9993	
0.1237		94.9996		169.9993	0.5000	75.0004		20.0006		114.9996	
30.0006	0.3110	64.9997	0.3518	159.9990	0.5000	105.0003	0.6667	10.0020	0.7853	84.9998	0.8371
60.0005		34.9999		129.9994		135.0002		40.0006		55.0000	
90.0004		5.0017		99.9996		164.9995		70.0004	0.0103		
										25.0005	
120.0003		25.0007		69.9997		164.9986		100.0003		5,0041	
150.0002	0.3333	55.0005	0.4962	39.9999	0.5480	134.9994	0.6667	130.0002	0.8333	35.0007	0.9815

				400 0004		1010000	0.0000	40.0004	0.4050	55,0004	0.5000
63.0004		35.0005		129.9996		134.9998	0.3333	40.0004		55.0004	
95.0003			0.0980	99,9999		164.9989		70.0002		25.0008	
125.0001		25.0009	0.1377	70.0001		164.9987	0.3333	100.0000	0.5000	5.0031	
149.9995		55.0004		40.0004		134.9997		129.9998	0.5000	35.0003	
	0.0000	85.0003	0.1667	10.0021		104.9999		159.9992	0.5000	65.0002	
149.9992		115.0001	0.1667	20.0010		75.0002		169.9982	0.5000	95.0001	
119.9994	0.0000	144.9998	0.1667	50.0004	0.3258	45.0004	0.3750	139.9997	0.5000	124.9999	
89.9999	0.0000	174.9961	0.1667	80.0003		15.0014		110.0000	0.5000	154.9994	0.6667
60.0001	0.0223	154.9991	0.1667	110.0001	0.3333	15.0013	0.4583	80.0002	0.5075	174.9969	0.6667
30.0005	0.0610	124.9996	0.1667	139.9998	0.3333	45.0004	0.4888	50.0004	0.5353	144.9997	0.6667
0.2038	0.1057	94.9999	0.1667	169.9982	0.3333	75.0002	0.5000	20.0010	0.5760	115.0000	0.6667
30.0008	0.1443	65.0001		159.9989	0.3333	105.0001	0.5000	10.0017	0.6187	85.0002	0.6705
60.0004	0.1667	35.0005	0.2211	129.9996	0.3333	134.9998	0.5000	40.0004	0.6519	55.0004	0.6956
90.0003		5.0042	0.2647	99,9999		164.9989	0.5000	70.0002		25.0008	0.7353
120.0001		25.0009	0.3044	70.0001		164,9987		100.0000	0.6667	5.0031	0.7789
149,9998		55.0004		40,0004	0.3813	134.9997		129.9998	0.6667	35.0003	0.8148
	0.1667	85.0003	0.3333	10.0021	0.4240	104.9999	0.5000	159.9992	0.6667	65.0002	
149.9992	0.1667	115.0001	0.3333	20.0010	0.4646	75.0002	0.5112	169.9982	0.6667	95.0001	0.8333
119.9996	0.1667	144.9998	0.3333	50.0004		45.0004	0.5417	139.9997	0.6667	124.9999	
89.9999	0.1667	174.9961	0.3333	80.0003	0.5000	15.0014	0.5833	110.0000	0.6667	154.9994	0.8333
60.0001	0.1890	154.9991	0.3333	110.0001	0.5000	15.0013	0.6250	80.0002	0.6742	174.9969	0.8333
30.0005	0.2277	124.9996	0.3333	139,9998	0.5000	45.0004	0.6555	50.0004	0.7020	144.9997	0.8333
0.2038	0.2723	94.9999	0.3333	169.9982	0.5000	75.0002	0.6667	20.0010	0.7427	115.0000	0.8333
30.0008	0.3110	65.0001	0.3518	159.9989		105.0001	0.6667	10.0017	0.7853	85.0002	0.8371
60.0004	0.3333	35.0005	0.3877	129.9996	0.5000	134.9998	0.6667	40.0004	0.8185	55.0004	0.8623
90.0003	0.3333	5.0042	0.4314	99.9999	0.5000	164.9989	0.6667	70.0002	0.8333	25.0008	0.9020
120.0001	0.3333	25.0009	0.4711	70.0001	0.5148	164.9987	0.6667	100.0000	0.8333	5.0031	0.9456
149.9998	0.3333	55.0004	0.4962	40.0004	0.5480	134.9997	0.6667	129.9998	0.8333	35.0003	0.9815
179.7963	0.3333	85.0003	0.5000	10.0021	0.5906	104.9999	0.6667	159.9992	0.8333	65.0002	1.0000
149.9992	0.3333	115.0001	0.5000	20.0010	0.6313	75.0002	0.6778	169.9982	0.8333	95.0001	1.0000
119.9996	0.3333	144.9998	0.5000	50.0004		45.0004	0.7083	139.9997	0.8333	119.9995	0.0000
89.9999	0.3333	174.9961	0.5000	80.0003		15.0014	0.7500	110.0000	0.8333	149.9996	0.0000
60.0001		154.9991	0.5000	110.0001		15.0013		80.0002	0.8408	179.8381	0.0000
30.0005	0.3943	124.9996	0.5000	139.9998		45.0004		50.0004	0.8687	149.9995	0.0000
0.2038		94.9999	0.5000	169.9982	0.6667	75.0002		20.0010		120.0001	0.0000
30.0008		65.0001	0.5185	159.9989	0.6667	105.0001		10.0017		90.0003	0.0000
60.0004		35.0005	0.5544	129.9996		134.9998		40.0004	0.9852	60.0004	
90.0003		5.0042	0.5980	99,9999		164.9989		70.0002		30.0007	
120.0001		25.0009	0.6377	70.0001		164.9987		100.0000		0.1620	
149.9998		55.0004		40.0004		134.9997		124.9995		30.0003	
	0.5000	85.0003	0.6667	10.0021		104.9999		154.9994	0.0000	60.0001	
149.9992		115.0001	0.6667	20.0010		75.0002		174.9969	0.0000	90.0000	0.1667
119.9996		144.9998	0.6667	50.0004		45.0004		144.9994		119.9999	
89,9999		174.9961	0.6667	80.0003		15.0014		115.0000	0.0000	149.9996	
60.0001		154.9991	0.6667	110.0001		15.0013		85.0002			0.1667
	0.5610	124.9996	0.6667	139.9998		45.0004				149.9998	0.1667
	0.6057	94.9999	0.6667	169.9982		75.0002	1.0000	25.0008			0.1667
	0.6443	65.0001	0.6852	159,9989	0.8333	105.0001	1.0000		0.1123	90.0003	0.1667
60.0004		35.0005	0.7211	129.9996		129.9995		35,0003	0.1482	60.0004	
	0.6667	5.0042	0.7647	99.9999		159.9992	0.0000	65.0002	0.1667	30.0007	
120.0001		25.0009	0.8044	70,0001		169.9982		95.0001	0.1667	0.1620	
	0.6667	55.0004		40,0004		139.9994		124.9999	0.1667	30.0003	
	0.6667	85.0003	0.8333	10.0021	0.9240	110.0000		154.9994	0.1667	60.0001	0.3333
	0.6667	115.0001	0.8333	20.0010	0.9646	80.0002		174,9969	0.1667	90.0000	0.3333
119.9996	0.6667	144.9998	0.8333	50.0004		50.0004	0.0354	144.9997	0.1667	119.9999	0.3333
89.9999		174.9961	0.8333	80.0003		20.0010	0.0760	115.0000	0.1667	149.9996	0.3333
60.0001	0.6890	154.9991		110.0001	1.0000	10.0017	0.1187	85.0002	0.1705	179.8381	0.3333
30.0005	0.7277	124.9996	0.8333	134.9995	0.0000	40.0004		55.0004	0.1956	149.9998	0.3333
0.2038		94.9999	0.8333	164.9989	0.0000	70.0002	0.1667	25.0008		120.0001	0.3333
30.0008		65.0001	0.8518	164.9987		100,0000		5.0031		90.0003	
60.0004	0.8333	35.0005	0.8877	134.9994	0.0000	129.9998		35.0003		60.0004	
90.0003		5.0042	0.9314	104.9999		159.9992		65.0002		30.0007	
120.0001	0.8333	25.0009	0.9711	75.0002	0.0112	169.9982		95.0001	0.3333	0.1620	0.4390
149.9998		55.0004	0.9962	45.0004	0.0417	139.9997		124.9999	0.3333	30.0003	0.4777
	0.8333	85.0003	1.0000	15.0014	0.0833	110.0000	0.1667	154.9994	0.3333	60.0001	0.5000
149.9992	0.8333	115.0001	1.0000	15.0013	0.1250	80.0002		174.9969	0.3333	90.0000	
119.9996	0.8333	139.9995	0.0000	45.0004	0.1555	50.0004	0.2020	144.9997	0.3333	119.9999	
89.9999		169.9982	0.0000	75.0002	0.1667	20.0010	0.2427	115.0000	0.3333	149.9996	
60.0001		159.9989	0.0000	105.0001	0.1667	10.0017	0.2854	85.0002		179.8381	0.5000
30.0005		129.9994	0.0000	134.9998		40.0004	0.3185	55.0004	0.3623	149.9998	
0.2038	0.9390	99.9999	0.0000	164.9989	0.1667	70.0002		25.0008	0.4020	120.0001	0.5000
30.0008		70.0001		164.9987		100.0000		5.0031		90.0003	
60.0004		40.0004		134.9997		129.9998	0.3333	35.0003	0.4815	60.0004	
90.0003	1.0000	10.0021	0.0906	104.9999	0.1667	159.9992	0.3333	65.0002		30.0007	
120.0001		20.0010	0.1313	75.0002	0.1778	169.9982	0.3333	95.0001		0.1620	0.6057
144.9995		50.0004		45.0004	0.2083	139.9997	0.3333	124.9999		30.0003	
174.9961	0.0000	80.0003		15.0014	0.2500	110.0000	0.3333	154.9994		60.0001	
	0.0000	110.0001	0.1667	15.0013	0.2917	80.0002		174.9969	0.5000	90.0000	
124.9994		139.9998	0.1667	45.0004	0.3222	50.0004	0.3687	144.9997		119.9999	
94.9999	0.0000	169.9982	0.1667	75.0002	0.3333	20.0010		115.0000		149.9996	0.6667
65.0001	0.0185	159.9989	0.1667	105.0001		10.0017	0.4520	85.0002	0.5038	179.8381	0.6667

149.9998	0.6667	114.9999	0.8333	20.0001	0.9646
120.0001	0.6667	144.9997	0.8333	50.0000	0.9925
90.0003	0.6667	174.9981	0.8333	80.0000	1.0000
60.0004	0.6890	154,9999	0.8333	104.9996	0.0000
				134.9999	0.0000
30.0007	0.7277	125.0001	0.8333		
0.1620	0.7723	95.0003	0.8333	164.9999	0.0000
30.0003	0.8110	65.0004	0.8518	164.9998	0.0000
60.0001	0.8333	35.0005	0.8877	135.0003	0.0000
90,0000	0.8333	5.0022	0.9314	105.0003	0.0000
119.9999	0.8333	25.0002	0.9711	75.0004	0.0112
149.9996	0.8333	55.0001	0.9962	45.0004	0.0417
179.8381	0.8333	85.0000	1.0000	15.0004	0.0833
149.9998	0.8333	109.9995	0.0000	14.9999	0.1250
120.0001	0.8333	139,9998	0.0000	44,9999	0.1555
90.0003	0.8333	169,9994	0.0000	74,9999	0.1667
60.0004	0.8557	159.9996	0.0000	104,9999	0.1667
30.0007	0.8943	130.0002	0.0000	134.9999	0.1667
0.1620	0.9390	100.0003	0.0000	164.9999	0.1667
30.0003	0.9777	70.0004	0.0148	165.0003	0.1667
60.0001	1.0000	40.0004	0.0480	135.0003	0.1667
90.0000	1.0000	10.0008	0.0906	105,0003	0.1667
114.9995	0.0000	20.0001	0.1313	75.0004	0.1778
144.9997	0.0000	50.0000	0.1591	45.0004	0.2083
174.9981	0.0000	80.0000	0.1667	15.0004	0.2500
154.9995	0.0000	109.9999	0.1667	14.9999	0.2917
125.0001	0.0000	139.9998	0.1667	44.9999	0.3222
95,0003	0.0000	169,9994	0.1667	74,9999	0.3333
	0.0085	160.0001	0.1667	104.9999	0.3333
65.0004					
35.0005	0.0544	130.0002	0.1667	134.9999	0.3333
5.0022	0.0980	100.0003	0.1667	164.9999	0.3333
25.0002	0.1377	70.0004	0.1815	165.0003	0.3333
55.0001	0.1628	40.0004	0.2146	135.0003	0.3333
85.0000	0.1667	10.0008	0.2573	105.0003	0.3333
		20,0001	0.2980	75.0004	0.3445
114.9999	0.1667				
144.9997	0.1667	50.0000	0.3258	45.0004	0.3750
174.9981	0.1667	80.0000	0.3333	15.0004	0.4167
154,9999	0.1667	109.9999	0.3333	14.9999	0.4583
125.0001	0.1667	139.9998	0.3333	44.9999	0.4888
95.0003	0.1667	169.9994	0.3333	74,9999	0.5000
				104,9999	0.5000
65.0004	0.1852	160.0001	0.3333		
35.0005	0.2211	130.0002	0.3333	134.9999	0.5000
5.0022	0.2647	100.0003	0.3333	164.9999	0.5000
25.0002	0.3044	70.0004	0.3481	165.0003	0.5000
55.0001	0.3295	40.0004	0.3813	135.0003	0.5000
85.0000	0.3333	10.0008	0.4240	105.0003	0.5000
				75.0004	0.5112
114.9999	0.3333	20.0001	0.4646		
144.9997	0.3333	50.0000	0.4925	45.0004	0.5417
174.9981	0.3333	80.0000	0.5000	15.0004	0.5833
154.9999	0.3333	109.9999	0.5000	14.9999	0.6250
125.0001	0.3333	139.9998	0.5000	44.9999	0.6555
95.0003	0.3333	169.9994	0.5000	74.9999	0.6667
65.0004	0.3518	160.0001	0.5000	104.9999	0.6667
				134.9999	0.6667
35.0005	0.3877	130.0002	0.5000		
5.0022	0.4314	100.0003	0.5000	164.9999	0.6667
25.0002	0.4711	70.0004	0.5148	165.0003	0.6667
55.0001	0.4962	40.0004	0.5480	135.0003	0.6667
85.0000	0.5000	10.0008	0.5906	105.0003	0.6667
114.9999	0.5000	20.0001	0.6313	75.0004	0.6778
144.9997	0.5000	50.0000	0.6591	45.0004	0.7083
				15.0004	
174.9981	0.5000	80.0000	0.6667		0.7500
154.9999	0.5000	109.9999	0.6667	14.9999	0.7917
125.0001	0.5000	139.9998	0.6667	44.9999	0.8222
95.0003	0.5000	169.9994	0.6667	74.9999	0.8333
65.0004	0.5185	160.0001	0.6667	104.9999	0.8333
35.0005	0.5544	130.0002	0.6667	134.9999	0.8333
5.0022	0.5980	100.0002	0.6667	164.9999	0.8333
			0.6815	165.0003	0.8333
25.0002	0.6377	70.0004			
55.0001	0.6628	40.0004	0.7146	135.0003	0.8333
85.0000	0.6667	10.0008	0.7573	105.0003	0.8333
114.9999	0.6667	20.0001	0.7980	75.0004	0.8445
144.9997	0.6667	50.0000	0.8258	45.0004	0.8750
174.9981	0.6667	80.0000	0.8333	15.0004	0.9167
154.9999	0.6667	109.9999	0.8333	14.9999	0.9583
125.0001	0.6667	139.9998	0.8333	44.9999	0.9888
95.0003	0.6667	169.9994	0.8333	74.9999	1.0000
65.0004	0.6852	160.0001	0.8333		
35.0005	0.7211	130.0002	0.8333		
5.0022	0.7647	100.0003	0.8333		
25.0002	0.8044	70.0004	0.8481		
			0.8813		
55.0001	0.8295	40.0004			
85.0000	0.8333	10.0008	0.9240		

APPENDIX L AL.DAT Data File

0111	C	05 0000	0 2222	5 0004	0.5294	104,9999	0.6667	155.0001	1.0000	50,0000	0.3183
Obliquity (degrees)	Cum.	95.0002 125.0001	0.3333	25.0004		74.9999		174.9989	1.0000	80.0000	0.3333
(deglees)	Prob.	155.0001	0.3333	55.0002		45,0000		144.9997	1.0000	109.9999	0.3333
74,9998	0.0223	174.9989	0.3333	85.0001		15.0001		119,9999	0.0000	139.9997	0.3333
44.9998	0.0833	144.9997	0.3333	115.0001	0.6667	15.0003		90.0000	0.0000	169.9988	0.3333
	0.1667	114.9997	0.3333	145.0000	0.6667	45.0001	0.9777	60.0000	0.0447		0.3333
15,0001	0.2500	84.9998	0.3410	174.9987	0.6667	75.0001	1.0000	30,0003	0.1220	130.0000	
45.0002	0.3110	54.9998	0.3912	154.9996	0.6667	105.0000		0.0878	0.2113	100.0000	0.3333
75.0002	0.3333	24.9999	0.4706	124.9998	0.6667	135.0000		30.0001	0.2887	70.0001	
	0.3333	5.0004	0.5579	94.9999		164.9996	1.0000	60.0000	0.3333	40.0001	
	0.3333	35.0002		64.9999		164.9992	1.0000	90.0000	0.3333	10.0004	0.5146
	0.3333	65.0002	0.6667	34.9999		134.9998	1.0000	119.9999	0.3333	20.0001	0.5960
	0.3333	95.0002		5.0004	0.8627	109.9997		149.9997	0.3333 0.3333	50.0000 80.0000	0.6667
	0.3333	125.0001	0.6667	25.0002	0.9421	79.9998	0.0150	179.8416 149.9997	0.3333	109.9999	0.6667
104.9997	0.3333	155.0001	0.6667	55.0002	1.0000	49.9998 19.9998	0.0707 0.1521	119.9999	0.3333	139.9997	0.6667
	0.3557	174.9989 144.9997	0.6667	85.0001	1.0000	10.0003	0.1321	90.0000		169.9988	0.6667
44.9998 14.9998	0.4167 0.5000	114.9997	0.6667 0.6667	115.0001 145.0000	1.0000	40.0002		60.0000	0.3333	159.9996	0.6667
15.0002	0.5833	84.9998	0.6743	174.9987	1.0000	70.0002		30.0001	0.4553	130.0000	0.6667
45.0002	0.6443	54.9998	0.7246	154.9996	1.0000	100.0001	0.3333		0.5447	100.0000	0.6667
75.0002	0.6667	24.9999	0.8039	124.9998	1.0000	130.0001	0.3333		0.6220	70.0001	0.6963
105.0002	0.6667	5.0004	0.8912	99.9999		160.0001	0.3333	60.0000	0.6667	40.0001	0.7626
135.0002	0.6667	35.0002		69.9999		169.9995	0.3333	90.0000	0.6667	10,0004	0.8479
165.0002	0.6667	65.0002		40.0000	0.0960	139.9997		119.9999	0.6667	20.0001	
164.9997	0.6667	95.0002		10.0007	0.1812	109.9997		149.9997	0.6667	50.0000	0.9850
134.9997	0.6667	125.0001	1.0000	20.0002	0.2626	79.9998		179.8416	0.6667	80,0000	1.0000
104.9997	0.6667	155.0001	1.0000	50.0002	0.3183	49.9998	0.4040	149.9997	0.6667	109.9999	1.0000
74.9998	0.6890	174.9989	1.0000	80.0001		19.9998		119.9999	0.6667	139.9997	1.0000
44.9998	0.7500	144.9997	1.0000	110.0000		10.0003	0.5707	90.0000		169.9988	1.0000
14.9998	0.8333	114.9997	1.0000	140.0000		40.0002		60.0000		159.9996	1.0000
15.0002	0.9167	89.9998		169.9994		70.0002		30.0001	0.7887	135.0000	0.0000
45.0002	0.9777	59.9999		159.9994		100.0001	0.6667	0.0878	0.8780	105.0000 75.0001	0.0000
	1.0000	29.9999		129.9998	0.3333	130.0001	0.6667	30.0001 60.0000	0.9553	45.0003	0.0223
	1.0000	0.0966		99,9999		160.0001 169.9995	0.6667 0.6667	90.0000		15.0003	0.0655
	1.0000	30.0002		69.9999	0.3630	139.9997	0.6667	119.9999	1.0000	15.0001	
	1.0000	60.0002 90.0002			0.4293	109.9997		149.9997	1.0000	45.0000	0.3110
	1.0000	120.0001	0.3333		0.5960	79.9998	0.6817	179.8416	1.0000	74.9999	0.3333
104.9997	1.0000	150.0001	0.3333		0.6516	49.9998	0.7374	149.9997	1.0000	104.9999	0.3333
79.9998	0.0150	179.8880			0.6667	19.9998		124.9999		134.9998	0.3333
49.9998	0.0707	149.9996	0.3333	110.0000		10.0003		95.0000		164.9992	0.3333
19.9998	0.1521	119.9998	0.3333	140,0000		40.0002	0.9704	65.0001	0.0370		0.3333
10.0003	0.2374	89.9998		169.9994		70.0002	1.0000	35.0003	0.1088		0.3333
	0.3037	59.9999		159.9994		100.0001	1.0000	5.0008	0.1961		0.3333
	0.3333	29.9999	0.4553	129.9998	0.6667	130.0001	1.0000	25.0001	0.2755	75.0001	
100.0001	0.3333	0.0621	0.5447	99.9999		160.0001	1.0000	55.0000	0.3257	45.0001	0.4167
130.0001	0.3333	30.0002		69.9999		169.9995	1.0000	85.0000		15.0003	0.5000
160.0001	0.3333	60.0002		40.0000		139.9997	1.0000	114.9999	0.3333	15.0001	
169.9995	0.3333	90.0002		10.0002		114.9997		144.9997		45.0000	0.6443
139.9997	0.3333	120.0001	0.6667	20.0002	0.9293	84.9998		174.9976	0.3333	74.9999	0.6667 0.6667
109.9997	0.3333	150.0000	0.6667	50.0002	0.9850	54.9998	0.0579	154.9997 124.9999	0.3333	104.9999	
79.9998	0.3484	179.8880	0.6667		1.0000	24.9999	0.1373 0.2246	95.0000	0.3333 0.3333	134.9998 164.9992	0.6667 0.6667
49.9998	0.4040	149.9996		110.0000		5.0007 35.0002		65.0001	0.3333	164.9996	0.6667
19.9998	0.4854	119.9998	0.6667	140.0000 169.9994		65.0002		35.0001		135.0000	0.6667
10.0003	0.5707 0.6370	89,9998 59,9999		159.9994		95.0002			0.5294	105.0000	
40.0002 70.0002	0.6570		0.7113	129.9998	1.0000	125.0001		25.0001		75.0001	
100.0001	0.6667		0.8780	104.9999		155.0001			0.6590	45.0001	
130.0001	0.6667	30.0002	0.9553	74.9999	0.0223	174.9989			0.6667	15.0003	0.8333
160.0001	0.6667		1.0000		0.0833	144.9997		114.9999		15.0001	
169.9995	0.6667		1.0000	15.0005	0.1667	114.9997	0.3333	144.9997	0.6667	45.0000	0.9777
139.9997		120.0001		15.0003	0.2500	84,9998	0.3410	174.9976	0.6667	74.9999	1.0000
109.9997	0.6667	150.0000	1.0000	45.0001	0.3110	54.9998	0.3912	154.9997	0.6667	104.9999	
79.9998		179.8880	1.0000	75.0001	0.3333	24.9999	0.4706	124.9999		134.9998	
49.9998	0.7374	149.9996		105.0000	0.3333		0.5579	95.0000		164.9992	
	0.8188	119.9998		135.0000			0.6296	65.0001		164.9996	
10.0003	0.9040		0.0000	164.9996		65.0002		35.0001		140.0000	
40.0002			0.0370	164.9992		95.0002			0.8627	110.0000	
70.0002			0.1088	134.9998		125.0001		25.0001	0.9421	80.0001	
100.0001			0.1961	104.9999	0.3333	155.0001			0.9924	50.0003 20.0002	
130.0001			0.2755		0.3557	174.9989			1.0000	10.0002	
	1.0000	55.0002			0.4167			114.9999 144.9997	1.0000	40.0002	
	1.0000	85.0001	0.3333		0.5000 0.5833	114.9997 84.9998		174.9997	1,0000	69.9999	0.3037 0.3333
139.9997 109.9997	1.0000	115.0001 145.0000			0.5855		0.0743	154.9997	1,0000	99,9999	
84.9998		174.9987			0.6667		0.7240	130.0000	0.0000	129.9998	
54.9998 54.9998		154.9987		105.0001			0.8912	100.0000		159.9994	
24.9999		124.9998		135.0000		35,0007	0.9630		0.0296	169.9994	
5.0007		94.9999		164.9996		65.0002	1.0000		0.0960	140.0000	0.3333
35.0002			0.3704	164.9992	0.6667		1.0000		0.1812	110.0000	
65.0002			0.4421	134.9998		125.0001			0.2626	80,0001	
				== *******							

181

50,0000	0.4040	150 0000	0.000	100 0007	1 0000	4.0005	0.0045	040000	0.0000	1640005	0.000
50.0002 20.0002	0.4040	150.0000 120.0001	0.6667	109.9997 139.9997		4.9995 34.9997	0.2245 0.2963	94.9996 64.9997	0.3333 0.3704		0.6667 0.6667
10.0002		90.0002		169.9995		64.9998		34,9999		134.9994	0.6667
40.0000	0.6370	60.0002		165.0002		94,9998	0.3333	5.0017		104.9996	0.6667
69.9999	0.6667	30.0002		135.0002		124.9998	0.3333	25.0007	0.6088	74.9998	0.6890
	0.6667	0.0621		105.0002		154.9999		55.0005			
129.9998	0.6667	29.9999		75.0002		175.0005	0.3333	85.0004		15.0007	
159.9994 169.9994	0.6667	59.9999 89.9998	1.0000	45.0002 15.0002	0.0833	145.0002 115.0002	0.3333	115.0003 145.0002		15.0013 45.0006	
140.0000	0.6667	119.9998	1.0000	14,9998		85.0002		174.9985	0.6667 0.6667	75.0004	
110.0000	0.6667	149.9996	1.0000	44.9998		55.0002		154.9992		105.0003	1.0000
80.0001	0.6817	179.8880			0.3333	25.0002	0.4706	124.9995	0.6667	135.0002	
	0.7374	155.0001	0.0000	104.9997		4.9995	0.5579	94.9996		159.9995	0.0000
	0.8188	125.0001	0.0000	134.9997		34.9997		64.9997		169.9979	0.0000
10.0002 40.0000	0.9040 0.9704	95.0002 65.0002	0.0000	164.9997		64.9998 94.9998	0.6667 0.6667	34.9999			0.0000
	1.0000	35.0002		165.0002 135.0002		124.9998	0.6667	5.0017 25.0007		109.9994 79.9998	0.0000 0.0150
99,9999		5,0004		105.0002		154.9999		55.0005			
	1.0000	24.9999	0.2755		0.3557	175.0005	0.6667	85.0004	1.0000		
	1.0000	54.9998	0.3257		0.4167	145.0002	0.6667				
169.9994		84.9998			0.5000	115.0002		145.0002			
145.0000 115.0001	0.0000	114.9997 144.9997	0.3333 0.3333	14.9998 44.9998		85.0002 55.0002		169.9995 159.9990	0.0000		
	0.0076	174.9989		74.9998		25.0002		129.9990		100.0003 130.0002	0.3333
	0.0579	155,0001		104.9997	0.6667	4.9995	0.8912	99.9995	0.0000	159.9997	0.3333
25.0002		125.0001	0.3333	134.9997	0.6667	34.9997		69.9997	0.0296	169.9979	0.3333
5.0004		95.0002		164.9997		64.9998	1.0000	39.9999		139.9993	0.3333
	0.2963	65.0002	0.3704	165.0002	0.6667	94.9998	1.0000	10.0010	0.1812	109.9996	0.3333
64.9999 94.9999		35.0002 5.0004		135.0002	0.6667	124.9998	1.0000	20.0010		79.9998	
	0.3333	24.9999	0.5294	105.0002 75.0002		154.9999 179.9836	1.0000	50,0005 80,0004		50.0000 20.0006	
154.9996		54.9998	0.6590	45.0002		149.9993	0.0000	110.0003	0.3333	10.0020	
174.9987		84.9998		15.0002		119.9995		140.0002		40.0006	
145.0000		114.9997	0.6667	14.9998		89.9996	0.0000	169.9993	0.3333	70.0004	0.6667
115.0001		144.9997	0.6667	44.9998		59.9997	0.0447	159.9990	0.3333	100.0003	0.6667
85.0001 55.0002		174.9989	0.6667 0.6667	74.9998		29.9999		129.9994	0.3333	130.0002	0.6667
25.0002		155.0001 125.0001	0.6667	104.9997 134.9997	1.0000 1.0000	0.1237 30.0006		99.9996 69.9997		159.9997 169.9979	0.6667 0.6667
5.0004		95.0002		164.9997	1.0000	60.0005		39.9999		139.9993	0.6667
34.9999	0.6296	65.0002	0.7037	170.0002	0.0000	90.0004	0.3333	10.0010		109.9996	0.6667
	0.6667		0.7755	140.0002	0.0000	120.0003	0.3333	20.0010		79.9998	0.6817
94.9999	0.6667	5.0004		110.0002	0.0000	150.0002		50.0005		50.0000	
124.9998 154.9996	0.6667 0.6667	24.9999 54.9998	0.9421 0.9924	80.0002		179.8764	0.3333	80.0004	0.6667	20.0006	
174.9987			1.0000	50.0002 20.0002		149.9993 119.9995	0.3333	110.0003 140.0002	0.6667 0.6667	10.0020 40.0006	
145.0000	0.6667	114.9997	1.0000	9.9997			0.3333	169,9993	0.6667	70.0004	
	0.6667	144.9997	1.0000	39.9998		59.9997	0.3780	159,9990	0.6667		1.0000
85.0001		174.9989				29.9999		129.9994	0.6667		1.0000
55.0002	0.7246	160.0001		99.9998	0.3333	0.1237		99.9996	0.6667	154.9995	0.0000
	0.8039 0.8912	130.0001	0.0000	129.9998	0.3333		0.6220	69.9997	0.6963	174.9958	0.0000
34.9999	0.9630	100.0001 70.0002	0.0296	159.9998 170.0002	0.3333 0.3333	60.0005 90.0004	0.6667	39.9999 10.0010	0.7626 0.8479	144.9993 114.9994	0.0000
	1.0000	40.0002		140.0002	0.3333	120.0003	0.6667	20.0010		84.9998	0.0076
	1.0000	10.0003	0.1812	110.0002	0.3333	150.0002			0.9850		0.0579
	1.0000	19.9998	0.2626	80.0002		179.8764	0.6667	80.0004		25.0005	
154.9996		49.9998		50.0002	0.4040	149.9993		110.0003	1.0000	5.0041	0.2245
174.9987 150.0000		79.9998 109.9997		20.0002 9.9997		119.9995 89.9996		140.0002	1.0000	35.0007	0.2963
120.0001		139.9997		39.9998	0.5707	59,9997		164.9995 164.9986	0.0000	65.0004 95.0003	
90.0002		169.9995		69,9998		29.9999		134.9994		125.0001	
60.0002		160.0001	0.3333	99.9998	0.6667	0.1237	0.8780	104.9995	0.0000	154.9997	
30.0002		130.0001		129.9998	0.6667	30.0006		74.9998	0.0223		0.3333
0.0621		100.0001		159.9998	0.6667	60.0005	1.0000	45.0000		144.9993	
29.9999 59.9999	0.2887	70,0002 40,0002		170.0002 140.0002	0.6667 0.6667	90.0004 120.0003		15.0007		114.9996	
89.9998		10.0002		110.0002		150.0003		15.0013 45.0006		84.9998 55.0000	
	0.3333	19.9998		80.0002		174.9994	0.0000	75.0004		25.0005	
149.9996	0.3333	49.9998	0.6516	50.0002		154.9992			0.3333	5.0041	
179.8880		79.9998		20.0002		124.9995		135.0002	0.3333	35.0007	
150.0000 120.0001	0.3333	109.9997	0.6667	9.9997	0.9040	94.9995		164.9995	0.3333	65.0004	
90.0001		139.9997 169.9995	0.6667 0.6667	39.9998 69.9998		64.9997 34.9999			0.3333	95.0003	
60.0002		160.0001	0.6667		1.0000	5.0017		134.9994 104.9996	0.5555	125.0001 154,9997	0.6667
30.0002		130.0001	0.6667	129.9998	1.0000	25.0007		74.9998			0.6667
0.0621	0.5447	100.0001	0.6667	159.9998	1.0000	55.0005	0.3257	45.0000	0.4167		0.6667
	0.6220		0.6963	175.0005	0.0000	85.0004	0.3333	15.0007	0.5000	114.9996	0.6667
	0.6667	40.0002		145.0002		115.0003		15.0013	0.5833	84.9998	
	0.6667 0.6667		0.8479 0.9293	115.0002 85.0002		145.0002		45.0006 75.0004		55.0000	
	0.6667		0.9293	55.0002		174.9985 154.9992		75.0004 105.0003		25.0005 5.0041	
179.8880		79.9998		25.0002		124.9995		135.0002		35.0007	
											•

65,0004	1.0000	40,0004	0.0960	139.9997	0.3333	119.9999	0.6667	2 5
95.0003	1.0000	10.0021	0.1812	110.0000	0.3333	149,9996	0.6667	
125.0001	1.0000	20.0010	0.2626	80.0002	0.3484	179.8381	0.6667	8
	0.0000	50.0004	0.3183	50.0004	0.4040	149.9998	0.6667	•
149.9995	0.0000	80.0003	0.3333	20.0010	0.4854	120.0001	0.6667	
179.7963	0.0000	110.0001	0.3333	10.0017	0.5707	90.0003	0.6667	
149.9992 119.9994	0.0000	139.9998	0.3333	40.0004	0.6370	60.0004	0.7113	
	0.0000	169.9982	0.3333	70.0002	0.6667	30.0007	0.7887	
89.9999	0.0447	159.9989	0.3333	100.0000	0.6667	0.1620	0.8780	
60.0001	0.1220	129.9996	0.3333	129.9998	0.6667	30.0003	0.9553	
30.0005		99,9999	0.3333	159.9992	0.6667	60.0001	1.0000	
0.2038	0.2113			169.9982	0.6667	90,0000	1.0000	
30.0008	0.2887	70.0001 40.0004		139.9997	0.6667	114.9995	0.0000	
60.0004	0.3333		0.4293	110.0000	0.6667	144.9997	0.0000	
90.0003	0.3333	10.0021		80.0002	0.6817	174.9981	0.0000	
120.0001	0.3333	20.0010		50.0002		154.9995	0.0000	
149.9998	0.3333	50.0004		20.0010		125.0001	0.0000	
179.7963	0.3333	80.0003		10.0017	0.9040	95.0003	0.0000	
149.9992	0.3333	110.0001	0.6667	40.0004		65,0004		
119.9996	0.3333	139.9998	0.6667	70.0002	1.0000	35.0005	0.1088	
89.9999	0.3333	169.9982	0.6667	100.0000	1.0000	5.0022	0.1961	
60.0001	0.3780	159.9989	0.6667	124.9995	0.0000	25.0002	0.2754	
30.0005	0.4553	129.9996	0.6667	154.9994	0.0000	55.0001	0.3257	
0.2038	0.5447	99.9999			0.0000	85.0001		
30.0008	0.6220	70.0001	0.6963	174.9969	0.0000	114.9999	0.3333	
60.0004	0.6667	40.0004		144.9994		144.9997	0.3333	
90.0003	0.6667	10.0021		115.0000	0.0000	174.9981	0.3333	
120.0001	0.6667	20.0010		85.0002	0.0076		0.3333	
149.9998	0.6667	50.0004		55.0004		154.9999		
179.7963	0.6667	80.0003		25.0008		125.0001	0.3333	
149.9992	0.6667	110.0001	1.0000	5.0031	0.2245	95.0003	0.3333	
119.9996	0.6667	134.9995		35.0003		65.0004		
89.9999	0.6667	164.9989		65.0002		35.0005	0.4421	
60.0001	0.7113	164.9987		95.0001	0.3333	5.0022	0.5294	
30.0005	0.7887	134.9994	0.0000	124.9999	0.3333	25.0002		
0.2038	0.8780	104.9999	0.0000	154.9994	0.3333	55.0001	0.6590	
30.0008	0.9553	75.0002	0.0223	174.9969	0.3333	85.0000		
60.0004	1.0000	45.0004		144.9997	0.3333	114.9999		
90.0003	1.0000		0.1667	115.0000	0.3333	144.9997		
120.0001	1.0000	15.0013		85.0002	0.3410	174.9981	0.6667	
144.9995	0.0000	45.0004		55.0004	0.3912	154.9999	0.6667	
174.9961	0.0000	75.0002		25.0008		125.0001	0.6667	
154.9991	0.0000	105.0001		5.0031	0.5579	95.0003	0.6667	
124.9994		134.9998		35.0003		65.0004	0.7037	
94,9999		164.9989	0.3333	65.0002		35.0005	0.7754	
65.0001		164.9987		95.0001		5.0022	0.8627	
35.0005		134.9997		124.9999		25.0002	0.9421	
5.0042	0.1961	104.9999		154.9994	0.6667	55.0001		
		75.0002		174.9969	0.6667	85.0000		
25.0009		45.0004		144.9997		109,9995	0.0000	
55.0004		15.0014		115.0000		139.9998	0.0000	
85.0003				85.0002		169.9994		
115.0001		15.0013 45.0004		55.0004	0.7245	159.9996		
144.9998		75.0002		25.0008	0.8039	130.0002	0.0000	
174.9961		105,0002	0.0007	5.0031	0.8033	100.0003		
154.9991		105.0001	0.6667	35.0003		70.0004		
124.9996		134.9998			1.0000	40.0004		
94.9999			0.6667	95.0001	1.0000	10.0008	0.1812	
65.0001	0.3704	164.9987		119.9995	0.0000	20.0001		
35.0005		134.9997				50.0000		
5.0042		104.9999		149.9996	0.0000	80.0000		
25.0009		75.0002		179.8381	0.0000	109.9999		
55.0004		45.0004		149.9995	0.0000	139.9998		
85.0003		15.0014		120.0001		169.9994		
115.0001		15.0013		90.0003		160.0001		
144.9998		45.0004		60.0004		130.0001		
174.9961		75.0002		30.0007				
154.9991		105.0001		0.1620		100.0003		
124.9996		129.9995		30.0003	0.2887	70.0004		
94.9999		159.9992		60.0001		40.0004		
65.0001		169.9982		90.0000		10.0008		
35.0005		139.9994		119.9999		20.0001		
5.0042	0.8627	110.0000		149.9996		50.0000		
25.0009		80.0002		179.8381		80.0000		
55.0004		50.000		149.9998		109.9999		
85.0003		20.001	0 0.1521	120.0001		139.9998		
115.0001		10.001	7 0.2374	90.0003		169.9994		
139.9995		40.000	4 0.3037	60.0004		160.0001		
169.9982		70.000		30.0007		130.0002		
159.9989		100.000		0.1620		100.0003		
129.9994		129.999		30.0003		70.000		
99.9999		159.999		60.0001		40.000		
70.0001		169.998		90.0000		10,000	8 0.8479	
, 0.0001								

20.0001 0.9293 50.0000 0.9850 80.0000 1.0000

APPENDIX M

Basis for Oblique Hole Size Distribution

		; ;
		:
		· :
		·

George C. Marshall Space Flight Center Marshall Space Flight Center, Alabama 35812 AC(205)544-2121

APR 2 7 1993

Renty to Attn of:

ED52(93-21)

TO:

Space Station Freedom Program Office

Attn: MSS/Acting Manager System Engineering Office

FROM:

ED52/Joel Williamsen

SUBJECT:

Meteoroid/Orbital Debris Oblique Hole Size

Distribution for Space Station Freedom

On March 24-25, Structural Development Branch/ED52 personnel attended a briefing by the Space Station Level II Program Office and the Space Station Engineering Integration Contractor (SSEIC) on their approach for meeting probability of no catastrophic failure (PNCF) requirements. A critical portion of the Level II/SSEIC approach is its assumption of the hole size distribution for orbital debris that penetrates the manned modules.

SSEIC currently uses the Level II developed Goodwin "normal" hole size model (enclosure 1) and Kessler's orbital debris distribution to form a probability distribution of hole sizes for a laboratory module following a penetration (enclosure 2). This distribution assumes (incorrectly) that all penetrations occur normal to the surface of the manned modules; in fact, almost all impacts on the manned modules will occur at oblique angles (enclosure 3). Further, the Goodwin "normal" model largely assumes the size of the hole to be dependent upon the area of the debris cloud impact on the rear wall. Following this logic, one can expect an oblique penetration to produce a larger elliptical "footprint" on the rear wall, and thus a larger hole following a penetration (enclosure 4). Therefore, because oblique penetrations occur more often and would produce (by the logic of the Goodwin model) larger holes following a penetration, an increasing number of holes above 6 inches in diameter should be expected from a hole size model that includes the important effect of obliquity.

Over the last several months, ED52 worked to modify the Goodwin hole size model and distribution to account for the effects of penetration obliquity. In modifying the Goodwin "normal" model to account for obliquity, the following assumptions were made:

pada **(So** aprovious di beava

- a. Oblique impacts produce elliptical holes with a minor axis and a major axis dimension (as shown in enclosure 4).
- b. At each specific velocity, the rate at which the minor axis of the hole grows with change in diameter above the oblique ballistic limit (hole size gradient) is based on the rate of change of hole size with change in diameter in the normal model (i.e., the dHole/dDia is constant), as shown in enclosure 5.
- c. The major axis of the elliptical hole is equal to the minor axis divided by the cosine of the impact angle (obliquity).
- d. The major axis of the hole stops growing with increasing obliquity above 60 degrees.

This model and its underlying assumptions should be viewed as optimistic in nature. That is, more conservative assumptions are possible that can dramatically increase the size of the oblique holes following a penetration. For example, in assumption "b," if the existing Goodwin hole size gradient was viewed as dependent on change in penetrating energy (not diameter), a much steeper increase in minor axis hole dimension could be expected for the oblique case (since penetrating energy increases with the cube of the penetrating diameter). In assumption "c," if the major axis dimension of the oblique hole was based upon the actual length of module wall impacted by the expanding debris cloud "footprint" cited in the Goodwin normal model, this dimension of the elliptical hole would generally be much larger than that produced by a simple division of the minor axis dimension by the cosine of impact angle (see enclosure 4). Finally, there is little basis for the "60-degree cutoff" assumption made here other than a desire to be consistent with existing MSFC and JSC ballistic limit equations for simple Whipple bumpers.

Using these assumptions, a new hole size model for oblique impacts was formed at MSFC based on Goodwin's normal model assumptions and input into a simulation routine to generate the distribution of hole sizes for each of 8 modules. This simulation routine (called MAGIC) selects random numbers to simulate orbital impact conditions of diameter, obliquity, and velocity based upon the Kessler orbital debris flux equations and the geometry of Freedom Station's permanently manned configuration. It then compares the ballistic limit of the Freedom Station manned modules (considering obliquity) to thousands of possible Kessler and geometry-based impact conditions and finds the corresponding hole size for all those impact conditions that penetrate the wall. Further information on the assumptions and construction of this simulation program is available from this office.

The oblique "effective" hole size and "major axis" probability distributions are given in enclosure 6. Note that there are no holes expected to be greater than 8 inches in effective diameter except for Node 2, where a penetration of the cupola windows would cause a 20-in hole. Because the major axis of the oblique holes is generally aligned with the long axis of the modules (and thus with the grain direction of the manned modules), the "major diameter" distribution should be used to perform critical crack "r" ratio analyses.

This oblique hole size model and distribution, while representing today's "best guess," is obviously very thin in supporting data. Much of the uncertainty in this model can be traced to its basis in the Goodwin "normal" distribution, which itself lacks supporting data. Obviously, additional test data on the relationship between hole size and penetration parameters is desperately needed in order to achieve measurable confidence in the results of either the normal or oblique model. Further, both the normal and oblique hole size models were formulated for a baseline Work Package 1 aluminum Whipple shield; any application of these distributions to other than this shield configuration will obviously subtract from the already low level of confidence in both models.

The aim of this exercise was to extend the existing SSEIC hole size model and distribution in a logical fashion to include oblique penetrations. As shown, even optimistic assumptions on the effect of obliquity on the existing SSEIC Goodwin hole size distribution will dramatically increase the proportion of holes above 6 inches in diameter. Considering the important effect of the manned module hole size distribution on the PNCF calculation, we strongly recommend that Level II allocate a significant proportion of its Forward Action Plan resources to a comprehensive test and analysis program supporting the formation of a verified hole size model.

Joel E. Williamsen Aerospace Engineer

CONCURRENCE:

Richard E. Dotson

Chief

Structural Design Division

6 enclosures

HOLE DIA. AROBABILITY DISTRIBUTION - NORMAK IMPACT.

251.\E'A\20:

FREEDOM

Relative Frequency of Debris Hits on a Common Module

ENCLOSURE 5

Oblique Hole Size Distribution (Williamsen, 3/25/93)

Effective Diameter = ((Minor Dia/Cos Obl)*(Minor Dia))**.5

<u> Hole Size</u>	LAB	HAB	ESA	JEM	N2	N1	PLM	A/L
0" to 1"	. 15	.15	. 19	.21	. 14	.18	.16	.16
1" to 2"	.10	.10	.12	.12	.11	. 13	.11	.11
2" to 3"	.10	.10	.10	.11	.08	.11	.12	.12
3" to 4"	.11	.11	. 11	.10	.08	.10	.12	.12
4" to 5"	.09	.09	.09	.09	.08	.10	.12	.12
5" to 6"	. 19	.19	.11	.10	.10	.12	.26	. 26
6" to 7"	.13	. 13	. 13	.13	. 15	. 15	.07	.07
7" to 8"	.13	.13	.15	. 15	.08	.12	.04	.04
Over 20"	0	0	0	0	.18	0	0	0

Distribution of Major Diameters for Oblique Holes

Basis for Crack Size Distribution (Williamsen, 3/25/93)

Hole Size	LAB	HAB	ESA	JEM	N2	N1	PLM	A/L
0" to 1"	.12	. 12	. 17	. 17	.16	.16	.14	. 14
1" to 2"	. 09	.09	.12	.12	.13	.13	.11	.11
2" to 3"	.09	.09	. 07	.07	.07	.07	.11	.11
3" to 4"	.09	.09	.08	.08	.09	.09	.12	.12
4" to 5"	.08	.08	.06	.06	.09	.09	.10	.10
5" to 6"	.11	.11	.09	.09	.09	.09	. 22	.22
6" to 7"	. 13	.13	.07	.07	.08	.08	.07	.07
7" to 8"	.08	.08	.06	.06	.07	.07	. 05	. 05
8" to 9"	.05	. 05	.06	.06	.08	.08	.03	.03
9" to 10"	. 06	.06	.07	.07	.06	.06	.02	.02
10" to 11"	.10	.10	. 13	.13	.08	.08	.03	.03

ENCLOSURE 6.

·				
				1

APPENDIX N SHIELD.DAT Data File

		· · · · · · · · · · · · · · · · · · ·

Mod	Elem	Station	Shield	# 0.125" Equipment	1 1	48 49	8 1	1 2.0000 1 2.0000
1	1	1	1	2 0000	ī	50	1	1 2.0000
1	1	1	1	2.0000	i	51	1	1 2.0000
1	2	1	1	2.0000	1	52	î	1 2.0000
1	3	1	1	2.0000	1	53	1	1 2.0000
1	4	1	1	2.0000	1	54	1	1 2.0000
1	5	1	1	2.0000	1	55	2	1 2.0000
1	6	1	1	2.0000	1	56	2	1 2.0000
1	7	2	1	2.0000				
. 1	8	2	1	2.0000	1	57	2	
1	9	2	1	2.0000	1	58	2	1 2.0000
1	10	2	1	2.0000	1	59	2	1 2.0000
1	11	2	1	2.0000	1	60	2	1 2.0000
1	12	2	1	2.0000	1	61	3	1 2.0000
1	13	3	1	2.0000	1	62	3	1 2.0000
1	14	3	1	2.0000	1	63	3	1 2.0000
1	15	3	1	2.0000	1	64	3	1 2.0000
1	16	3	1	2.0000	1	65	3	1 2.0000
1	17	3	1	2.0000	1	66	3	1 2.0000
1	18	3	1	2.0000	1	67	4	1 2.0000
1	19	4	1	2.0000	1	68	4	1 2.0000
1	20	4	ĩ	2.0000	1	69	4	1 2.0000
ī	21	4	1	2.0000	1	70	4	1 2.0000
1	22	4	1	2.0000	1	7 1	4	1 2.0000
1	23	4	1	2.0000	1	72	4	1 2.0000
1	24	4	1	2.0000	1	73	5	1 2.0000
1	25	5	1	2.0000	1	74	5	1 2.0000
1	26	5	1	2.0000	1	75	5	1 2.0000
1	27	5	1	2.0000	1	76	5	1 2.0000
1	28	5	1	2.0000	1	77	5	1 2.0000
1	29	5	1	2.0000	1	78	5	1 2.0000
	30	5	1	2.0000	1	79	6	1 2.0000
1					$\overline{1}$	80	6	1 2.0000
1	31 32	6	1	2.0000	1		6	1 2.0000
1		6	1	2.0000	1	82	6	1 2.0000
1	33	6	1	2.0000	1	83	6	1 2.0000
1	34	6	1	2.0000	1	84	6	1 2.0000
1	35	6	1	2.0000	1	85	7	1 2.0000
1	36	6	1	2.0000	1	86	7	1 2.0000
1	37	7	1	2.0000	1	87	7	1 2.0000
1	38	7	1	2.0000	1	88	7	1 2.0000
1	39	7	1	2.0000	1	89	7	1 2.0000
1	40	7	1	2.0000			7	1 2.0000
1	41	7	1	2.0000	1	90		
1	42	7	1	2.0000	1	91	8	
1	43	8	1	2.0000	1	92	8	1 2.0000
1	44	8	1	2.0000	1	93	8	1 2.0000
1	45	8	1	2.0000	1	94	8	1 2.0000
1	46	8	1	2.0000	1	95	8	1 2.0000
1	47	8	1	2.0000	1	96	8	1 2.0000

						_		_	_	• • • • • •
1	97	1	1	2.0000		2	46	8	1	2.0000
1	98	1	1	2.0000		2	47	8	1	2.0000
1	99	1	1	2.0000		2	48	8	1	2.0000
1	100	1	1	2.0000		2	49	1	1	2.0000
2	1	1	1	2.0000		2	50	1	1	2.0000
							51	1	1	2.0000
2 2 2	2	1	1	2.0000		2 2 2				
2	3	1	1	2.0000		2	52	1	1	2.0000
2	4	1	1	2.0000			53	1	1	2.0000
2	5	1	1	2.0000		2	54	1	1	2.0000
2	6	1	1	2.0000		2	55	2	1	2.0000
	7	2	1	2.0000		2	56	2	1	2.0000
2	8	2	1	2.0000			57	2	1	2.0000
2 2 2	9	2	1	2.0000		2	58	2	1	2.0000
2	10	2	1	2.0000		2 2 2	59	2	1	2.0000
2	11	2	1	2.0000		2	60		1	2.0000
2		2				2		2 3		
2	12	2	1	2.0000		2	61		1	2.0000
2	13	3	1	2.0000		2	62	3	1	2.0000
2 2	14	3	1	2.0000		2	63	3	1	2.0000
	15	3	1	2.0000		2 ⁻ 2	64	3	1	2.0000
2	16	3	1	2.0000		2	65	3	1	2.0000
2	17	3	1	2.0000		2	66	3	1	2.0000
2	18	3	1	2.0000		2	67	4	1	2.0000
2	19	4	1	2.0000		2	68	4	1	2.0000
2	20	4		2.0000		2	69	4	1	2.0000
			1							
2	21	4	1	2.0000		2	70	4	1	2.0000
2	22	4	1	2.0000		2	71	4	1	2.0000
2 2	23	4	1	2.0000		2	72	4	1	2.0000
	24	4	1	2.0000		2	73	5	1	2.0000
2	25	5	1	2.0000		2	74	5	1	2.0000
2 2	26	5	1	2.0000		2	75	5	1	2.0000
2	27	5	1	2.0000		2	76	5	1	2.0000
2	28	5	1	2.0000		2	77	5	1	2.0000
2	29	5	1	2.0000		2	78	5	1	2.0000
2	30	5	1	2.0000		2	79	6	1	2.0000
2	31	6	1	2.0000		2	80	6	1	2.0000
2	32	6	1	2.0000		2	81	6	1	2.0000
2	33	6	1	2.0000		2	82	6	1	2.0000
2	34	6	1	2.0000		2	83	6	1	2.0000
2	35	6	1	2.0000		2	84	6	1	2.0000
2	36	6	1	2.0000		2	85	7	1	2.0000
2	37	7	1	2.0000		2	86	7	1	2.0000
2	38	7	1	2.0000		2	87	7	1	2.0000
2 2 2 2 2	39	7	1	2.0000		2	88	7	1	2.0000
2	40	7	1	2.0000		2	89	7	1	2.0000
2 2										
	41	7	1	2.0000		2	90	7	1	2.0000
2 2 2	42	7	1	2.0000		2	91	8	1	2.0000
2	43	8	1	2.0000		2	92	8	1	2.0000
	44	8	. 1	2.0000		2	93	8	1	2.0000
2	45	8	1	2.0000		2	94	8	1	2.0000

2	95	8	1	2.0000		3	44	1	1	2.0000
	96	8	1	2.0000		3	45	1	1	2.0000
2						2			1	2.0000
2	97	1	1	2.0000		3	46	1		
2	98	1	1	2.0000		3	47	1	1	2.0000
2	99	1	1	2.0000		3	48	1	1	2.0000
2	100	1	1	2.0000		4	1	12	1	2.0000
2				2.0000		4	2	12	1	2.0000
3 3 3 3	1	8	1							
3	2 3 4	8	1	2.0000		4	3	12	1	2.0000
3	3	8	1	2.0000		4	4	12	1	2.0000
3	4	8	1	2.0000		4	5	12	1	2.0000
3	5	8	1	2.0000		4	6	12	1	2.0000
	6			2.0000		4	7	11	1	2.0000
3		8	1							
3	7	7	1	2.0000		4	8	11	1	2.0000
3	8	7	1	2.0000		4	9	11	1	2.0000
3	9	7	1	2.0000		4	10	11	1	2.0000
3	10	7	1	2.0000		4	11	11	1	2.0000
3 3 3 3 3	11	7	1	2.0000		4	12	11	1	2.0000
								10	1	2.0000
3 3 3	12	7	1	2.0000		4	13			
3	13	6	1	2.0000		4	14	10	1	2.0000
3	14	6	1	2.0000		4	15	10	1	2.0000
3	15	6	1	2.0000		4	16	10	1	2.0000
3	16	6	1	2.0000		4	17	10	1	2.0000
2						4	18	10	1	2.0000
3	17	6	1	2.0000						
3	18	6	1	2.0000		4	19	9	1	2.0000
3 3 3	19	5	1	2.0000		4	20	9	1	2.0000
3	20	5	1	2.0000		4	21	9	1	2.0000
3	21	5	1	2.0000		4	22	9	1	2.0000
3	22	5	1	2.0000		4	23	9	1	2.0000
3		2				4	24	9	1	2.0000
3	23	5	1	2.0000						
3	24	5	1	2.0000		4	25	8	1	2.0000
3	25	4	1	2.0000		4	26	8	1	2.0000
3 3 3	26	4	1	2.0000		4	27	8	1	2.0000
3	27	4	1	2.0000		4	28	8	1	2.0000
3	28	4	1	2.0000		4	29	8	1	2.0000
						4				2.0000
3	29	4	1	2.0000			30	8	1	
3	30	4	1	2.0000		4	31	7	1	2.0000
3	31	3	1	2.0000		4	32	7	1	2.0000
3	32	3	1	2.0000		4	33	7	1	2.0000
3	33	3	1	2.0000		4	34	7	1	2.0000
2	34	3	1	2.0000		4	35	7	1	2.0000
2		2				4	36	7	1	2.0000
3	35	3	1	2.0000						
3	36	3	1	2.0000		4	37	6	1	2.0000
3	37	2	1	2.0000		4	38	6	1	2.0000
3	38	2	1	2.0000		4	39	6	1	2.0000
3 3 3 3 3 3 3 3 3 3 3 3 3	39	2	1	2.0000		4.	40	6	1	2.0000
3	40	2	1	2.0000		4	41	6	1	2.0000
っ		2		2.0000		4	42	6	1	2.0000
3	41		1							2.0000
3	42	2	1	2.0000		4	43	5	1	
3	43	1	1	2.0000		4	44	5	1	2.0000

4	45	5	1	2.0000	2		1	1	2.0000
4	46	5	1	2.0000	4	95	1	1	2.0000
4	47	5	1	2.0000	2	96	1	1	2.0000
4	48	5	1	2.0000	5		5	1	2.0000
4	49	4	1	2.0000	5		4	1	2.0000
4	50	4	1	2.0000	5		3	1	2.0000
4	51	4	1	2.0000	5		2	1	2.0000
4	52	4	1	2.0000	5		1	1	2.0000
4	53	4	1	2.0000	5	6	5	1	2.0000
4	54	4	1	2.0000	5		4	1	2.0000
4	55	3	1	2.0000	5		3	1	2.0000
4	56	3	1	2.0000	5		2	1	2.0000
4	57	3	1	2.0000	5		1	1	2.0000
4	58	3	1	2.0000	5		5	1	2.0000
4	59	3	1	2.0000	5	12	4	1	2.0000
4	60	3	1	2.0000	5	13	3	1	2.0000
4	61	2	1	2.0000	5		2	1	2.0000
4	62	2	1	2.0000	5		1	1	2.0000
4	63	2	1	2.0000	5		5	1	2.0000
4	64	2 2	1	2.0000	5		4	1	2.0000
4	65	2	1	2.0000	5		3	1	2.0000
4	66	2	1	2.0000	5		2	1	2.0000
4	67	1	1	2.0000	5		1	1	2.0000
4	68	1	1	2.0000	5		5	1	2.0000
4	69	1	1	2.0000	5		4	1	2.0000
4	70	1	1	2.0000	5		3	1	2.0000
4	71	1	1	2.0000	5	24	2	1	2.0000
4	72	1	1	2.0000	5		1	1	2.0000
4	73	4	1	2.0000	5		5	1	2.0000
4	74	4	1	2.0000	5		4	1	2.0000
4	75	4	1	2.0000	5	28	3	1	2.0000
4	76	4	1	2.0000	5	29	2	1	2.0000
4	77	4	1	2.0000	5		1	1	2.0000
4	78	4	1	2.0000	5		1	1	2.0000
4	79	3	1	2.0000	5		1	1	2.0000
4	80	3	1	2.0000	5		1	1	2.0000
4	81	3	1	2.0000	5	34	1	1	2.0000
4	82	3	1	2.0000	5		1	1	2.0000
4	83	3	1	2.0000	. 5		1	1	2.0000
		2							
4	84	3	1	2.0000	5		1	1	2.0000
4	85	2	1	2.0000	5		1	1	2.0000
4	86	2 2	1	2.0000	5		1	1	2.0000
4	87	2	1	2.0000	6		5	1	2.0000
4	88	2	1	2.0000	6		4	1	2.0000
4	89	2	1	2.0000	6		3	1	2.0000
4	90	2	1	2.0000	6		2	1	2.0000
4	91	1	1	2.0000	6		1	1	2.0000
4	92	1	1	2.0000	6		5	1	2.0000
4	93	1	1	2.0000	6	7	4	1	2.0000

_	_		_	• • • • •		_	4.0	_	_	• • • • • •
6	8	3	1	2.0000		7	18	5	1	2.0000
6	9	2	1	2.0000		7	19	5	1	2.0000
6	10	1	1	2.0000		7	20	5	1	2.0000
6	11	5	1	2.0000		7	21	5	1	2.0000
6	12	4	1	2.0000		7	22	5	1	2.0000
6	13	3	1	2.0000		7	23	5	1	2.0000
6	14	2	1	2.0000		7	24	5	1	2.0000
6	15	1	1	2.0000		7	25	4	1	2.0000
6	16	5	1	2.0000		7	26	4	1	2.0000
6	17	4	1	2.0000		7	27	4	1	2.0000
6	18	3	1	2.0000		7	28	4	1	2.0000
6	19	2	1	2.0000		7	29	4	1	2.0000
6	20	1	1	2.0000		7	30	4	1	2.0000
6	21	5	1	2.0000		7	31	4	1	2.0000
6	22	4	1	2.0000		7	32	4	1	2.0000
6	23	3	1	2.0000		7	33	4	1	2.0000
6	24	2	1	2.0000		7	34	4	1	2.0000
6	25	1	1	2.0000		7	35	4	1	2.0000
6	26	5	1	2.0000		7	36	4	1	2.0000
6	27	4	1	2.0000		7	37	3	1	2.0000
6	28	3	1	2.0000		7	38	3 3 3	1	2.0000
6	29	2	1	2.0000		7	39	3	1	2.0000
6	30	1	1	2.0000		7	40	3	1	2.0000
6	31	1	1	2.0000		7	41	3	1	2.0000
6	32	1	1	2.0000		7	42	3	1	2.0000
6	33	1	1	2.0000		7	43	3	1	2.0000
6	34	1	1	2.0000		7	44	3	1	2.0000
6	35	1	1	2.0000		7	45	3	1	2.0000
6	36	1	1	2.0000		7	46	3	1	2.0000
						7	47	3	1	2.0000
6	37	1	1	2.0000						
6	38	1	1	2.0000		7	48	3	1	2.0000
6	39	1	1	2.0000		7	49	2	1	2.0000
7	1	6	1	2.0000		7	50	2	1	2.0000
7	2	6	1	2.0000		7	51	2	1	2.0000
7	3	6	1	2.0000		7	52	2	1	2.0000
7	4	6	1	2.0000		7	53	2	1	2.0000
7	5	6	1	2.0000		7	54	2	1	2.0000
7	6	6	1	2.0000		7	55	2	1	2.0000
7	7	6	1	2.0000		7	56		1	2.0000
7	8	6	1	2.0000		7	57	2 2	1	2.0000
7	9	6	1	2.0000		7	58	$\overline{2}$	1	2.0000
7	10	6	1	2.0000		7	5 9	2	1	2.0000
7						7	60	2		2.0000
	11	6	1	2.0000					1	
7	12	6	1	2.0000		7	61	1	1	2.0000
7	13	5	1	2.0000		7	62	1	1	2.0000
7	14	5	1	2.0000		7	63	1	1	2.0000
7	15	5	1	2.0000		7	64	1	1	2.0000
7	16	5	1	2.0000		7	65	1	1	2.0000
7	17	5	1	2.0000		7	66	1	1	2.0000

7	67	1	1 2.0000
7	68	1	1 2.0000
7	60	1	1 2.0000
7	70	1	1 2.0000
7	70	1	1 2.0000
7	71		1 2.0000 1 2.0000
0	68 69 70 71 72	1 1	1 2.0000
ð	1		1 2.0000
7 7 7 7 7 8 8 8 8 8 8 8 8	2 3 4 5 6 7 8	1	1 2.0000
8	3	1	1 2.0000
8	4	1	1 2.0000
8	5	1	1 2.0000
8	6	1	1 2.0000
8	7	1	1 2.0000
8	8	1	1 2.0000
8	9	1	1 2.0000
8	10	1	1 2.0000
8	11	1	1 2.0000
8	12	1	1 2.0000
8	11 12 13 14 15 16 17	2	1 2.0000
8	14	2	1 2.0000
8	15	2	1 2.0000
8	16	2	1 2.0000
8	17	2	1 2.0000
8	18	2	1 2.0000
8	19	2	1 2.0000
8 8 8	20	$\frac{\overline{2}}{2}$	1 2.0000
8	19 20 21 22 23 24 25 26 27 28	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3	1 2 0000
8	22	$\bar{2}$	1 2.0000 1 2.0000 1 2.0000
8	23	$\bar{2}$	1 2.0000
8	24	2	1 2.0000
8	25	3	1 2.0000
8	26	3	1 2.0000 1 2.0000 1 2.0000
8	20	3	1 2.0000
8	27	<i>3</i>	1 2.0000
			1 2.0000
8	29	2	
8	30	3	1 2.0000
8	31	3 3 3 3 3 3	1 2.0000
8	32	3	1 2.0000
8	33	3	1 2.0000
8	34	3	1 2.0000
8	35	3	1 2.0000
8	36	3	1 2.0000

APPENDIX O PCREWMOD.DAT Data File

Module That Each Crew Member Is Present In at Hour (i)

	Pro	esent In	at Hou	r (i)	
Cum.	Crew	Crew	Crew	Crew	Hour (i)
Prob.	#1	#2	#3	#4	
0.0417	2	2	6	6	1
0.0833	6	6	2	2	2
0.1250	2	2	2	2	3
0.1667	5	1	1	5	4
0.2083	5	1	1	5	5
0.2500	5	1	1	5	6
0.2917	5	1	1	5	7
0.3333	5	1	1	5	8
0.3750	6	1	1	5	9
0.4167	2	2	2	2	10
0.4583	2	1	4	5	11
0.5000	1	1	4	5	12
0.5417	4	1	4	5	13
0.5833	3	1	4	5	14
0.6250	6	6	2	2	15
0.6667	2	2	6	6	16
0.7083	2	2	2	2	17
0.7500	2	2	1	1	18
0.7917	2	2 2	1	1	19
0.8333	2	2	1	1	20
0.8750	2	2	1	1	21
0.9167	2	2	1	1	22
0.9583	2	2 2	1	1	23
1.0000	2	2	1	1	24

	e Sy
	5
	: :
	:
	1
	į
	:

APPENDIX P **POSITION.DAT Data File**

		e ^c
		*
,		

Мос	dule	Station	Cum.			7	1	0.1667
			Prob.			7 7	2 3	0.3333 0.5000
	1	1	0.1250			7	4	0.6667
	1		0.2500			7	5	0.8333
	1	2 3	0.3750			7	6	1.0000
	1	4	0.5000			8	1	0.3330
	1	5	0.6250			8	$\tilde{2}$	0.6670
	1	6	0.7500			8	3	1.0000
	1	7	0.8750		•			2,0000
	1	8	1.0000					
		1	0.1250					
	2 2 2 2 2 2 2 2 2 3 3 3	2	0.2500					
	$\bar{2}$	3	0.3750					
	2	4	0.5000					
	2	5	0.6250					
	2	6	0.7500					
	2	7	0.7500					
	2	8	1.0000					
	3	1	0.1250					
	3	2	0.1230					
	3	3	0.2300					
•	3	4	0.5000					
	3	5	0.6250					
	3	6	0.0230					
J	3	7	0.7300					
	3	8	1.0000					
	<i>3</i>	1	0.0833					
	4	2	0.0633					
	4	3	0.1007					
	4	4	0.2300					
	4	5	0.3333					
	4	6	0.5000					
	4	7	0.5833					
	4	8	0.6667					
•	4	9	0.7500					
	4	10	0.7300					
	4	10	0.8333					
	4	12	1.0000					
			0.2000					
	5	1						
	5	2 3	0.4000					
	5		0.6000					
	5 5 5 5 5	4 5	0.8000					
			1.0000					
	6	1	0.2000					
	6	2	0.4000					
	6	3	0.6000					
	6	4	0.8000					
	6	5	1.0000					

•		*
		:
		20 44 5
		· · · · · · · · · · · · · · · · · · ·
		:
		: :
		:

APPENDIX Q Alternative Data File PCREWMO2.DAT

Module That Each Crew Member Is Present In at Hour (i)

	Pro	esent In	at Hou	r (i)	
Cum.	Crew	Crew	Crew	Crew	Hour (i)
Prob.	#1	#2	#3	#4	
0.0417	2	2	6	6	1
0.0833	6	6	2	2	2
0.1250	2	2	2	2	3
0.1667	5	1	1	5	4
0.2083	5	1	1	5	5
0.2500	5	1	1	5	6
0.2917	5	1	1	5	7
0.3333	5	1	1	5	8
0.3750	6	1	1	5	9
0.4167	2	2	2	2	10
0.4583	2	1	4	5	11
0.5000	1	1	4	5	12
0.5417	4	1	4	5	13
0.5833	3	1	4	5	14
0.6250	6	6	2	2	15
0.6667	2	2	6	6	16
0.7083	2	2	2	2	17
0.7500	6	6	6	6	18
0.7917	6	6	6	6	19
0.8333	6	6	6	6	20
0.8750	6	6	6	6	21
0.9167	6	6	6	6	22
0.9583	6	6	6	6	23
1.0000	6	6	6	6	24

		ý

APPENDIX R

 $\begin{array}{c} \textbf{MSCSurv}^{\text{\tiny{TM}}} \ \textbf{Program Input and Output Files for} \\ \textbf{Baseline Study Parameters} \end{array}$

		•	

Manned Spacecraft Crew Survivability (MSCSurv) Program Copywrite 1993 Joel Williamsen

Marshall Space Flight Center National Aeronautics and Space Administration

READING IN VELSTA.DAT
READING IN PROBDIA.DAT
READING IN LAB.DAT
READING IN HAB.DAT
READING IN JLAB.DAT
READING IN SA.DAT
READING IN NODE2.DAT
READING IN NODE1.DAT
READING IN PLOG.DAT
READING IN PLOG.DAT
READING IN PROBMOD.DAT
READING IN SHIELD.DAT
READING IN PROBMOD.DAT
READING IN POSITION.DAT
READING IN PCREWMOD.DAT

HOW MANY PENETRATIONS IN THIS MODEL RUN ? 10000

INPUT CRITICAL LENGTH OF CRACK OR "O." FOR ENERGY MODEL.

7.

INPUT HOLE SIZE CRACK MULTIPLIER, 0.3 FOR AVERAGE.

3

INPUT "1." FOR BASELINE SHIELD OR "2." FOR ADVANCED SHIELD.

1.

INPUT MINIMUM CREW ESCAPE TIME (SECS) OR "0." FOR RATE-BASED ESCAPE RELATION

INPUT DELAY PRIOR TO INITIATING MOVEMENT IF AWAKE.

35.

INPUT DELAY TO WAKE AND EXIT RESTRAINTS IF ASLEEP.

100.

"1" TO MODEL HINDERED/INJURED TIMES; "2" FOR NO.

1

INPUT HINDERED CREW ESCAPE TIME FROM MODULE.

60.

INPUT (CONSCIOUS) INJURED CREW ESCAPE TIME FROM MODULE.

60.

INPUT PROBABILITY THAT INJURED PERSON IS IMMEDIATELY LOST.

1.0.

PAGE 2/8 INTENTIONALLY BLANK

```
TYPE "1" IF CREW SLEEPS NEAR HATCH, "2" IF NO.
INCLUDE RACK FACTORS? TYPE 1 FOR YES, 2 FOR NO.
TYPE 1 FOR WIDE DEBRIS CLOUD, 2 FOR NARROW.
INPUT CRITICAL DEPRESSURIZATION LIMIT (PSI).
INPUT PERCENTAGE OF MODULE FREE AIR (0. TO 1.0).
.70
TYPE "1" FOR OPEN HATCHES, "2" FOR CLOSED HATCHES,
 "3" FOR HATCHES CLOSED AT NIGHT.
1
   NOTE: HATCH CLOSURE TIME IS ASSUMED TO BE 30 SECONDS.
INPUT CD, 0.9 OR 0.7.
TYPE "1" FOR OBLIQUE HOLE MODEL, "2" FOR BURCH.
TYPE "1" FOR SSEIC CREW MODEL, "2" IF CREW SLEEPS IN NODE 2.
 TYPE "1" FOR UNIFORM CREW DISTRIBUTION BETWEEN MODULE STATIONS,
 TYPE "2" FOR TRIANGULAR DISTRIBUTION.
     1000 PENETRATIONS
 FOR MODULE
                   1 \text{ PENS} = 1745
NUMBER OF IMPACTS BETWEEN .3 AND 3 CM =
                                          3571
INJURIES =
                177 DEPRESS =
                                   90 CRACKS =
                                                    1299
PENS WITH INJURIES =
                        153 PENS WITH DEPRESS =
                                                        12
```

PENS WITH AT LEAST ONE INJURY OR CRIT LOSS = 158

FOR MODULE 2 PENS = NUMBER OF IMPACTS BETWEEN .3 AND 3 CM = 3605 INJURIES = 241 DEPRESS = 121 CRACKS = PENS WITH INJURIES = 174 PENS WITH DEPRESS = PENS WITH AT LEAST ONE INJURY OR CRIT LOSS = 177

FOR MODULE 3 PENS = 963 NUMBER OF IMPACTS BETWEEN .3 AND 3 CM = 2122 INJURIES = 1 DEPRESS = 0 CRACKS = 651 PENS WITH INJURIES = 1 PENS WITH DEPRESS = 5 PENS WITH AT LEAST ONE INJURY OR CRIT LOSS = 6 FOR MODULE 4 PENS = 1390NUMBER OF IMPACTS BETWEEN .3 AND 3 CM = INJURIES = 24 DEPRESS = 0 CRACKS = 932 PENS WITH INJURIES = 24 PENS WITH DEPRESS = PENS WITH AT LEAST ONE INJURY OR CRIT LOSS = FOR MODULE 5 PENS = 372 NUMBER OF IMPACTS BETWEEN .3 AND 3 CM = 782 INJURIES = 19 DEPRESS = 2 CRACKS = PENS WITH INJURIES = 16 PENS WITH DEPRESS = PENS WITH AT LEAST ONE INJURY OR CRIT LOSS = 16 FOR MODULE 6 PENS = 375NUMBER OF IMPACTS BETWEEN .3 AND 3 CM = 777 INJURIES = 20 DEPRESS = 2 CRACKS = PENS WITH INJURIES = 17 PENS WITH DEPRESS = 2 PENS WITH AT LEAST ONE INJURY OR CRIT LOSS = 18 FOR MODULE 7 PENS = 2217 NUMBER OF IMPACTS BETWEEN .3 AND 3 CM = 3987 O DEPRESS = O CRACKS = 1455 INJURIES = PENS WITH INJURIES = 0 PENS WITH DEPRESS = PENS WITH AT LEAST ONE INJURY OR CRIT LOSS = 15 FOR MODULE 8 PENS = 1167 NUMBER OF IMPACTS BETWEEN .3 AND 3 CM = 2046 INJURIES = 0 DEPRESS = 0 CRACKS = PENS WITH INJURIES = 0 PENS WITH DEPRESS = 17

PENS WITH AT LEAST ONE INJURY OR CRIT LOSS = 17

MODULE:	TOTAL RATIO	= CRACK	+ INJURY	+ DEPRESS
1	.8350	.7444	.0877	.0029
2	.8300	.7301	.0982	.0017
3	.6822	.6760	.0010	.0052
4	.6914	.6705	.0173	.0036
5	.7957	.7527	.0430	.0000
6	.6880	.6400	.0453	.0027
7	.6631	.6563	.0000	.0068
8	.6812	.6667	.0000	.0146
TOTAL = (1 TO 6)	.7707	.7096	.0582	.0029

PERFORM ANOTHER ANALYSIS? TYPE 1 FOR YES, 2 FOR NO. 1 $\,$

APPROVAL

VULNERABILITY OF MANNED SPACECRAFT TO CREW LOSS FROM ORBITAL DEBRIS PENETRATION

By J.E. Williamsen

The information in this report has been reviewed for technical content. Review of any information concerning Department of Defense or nuclear energy activities or programs has been made by the MSFC Security Classification Officer. This report, in its entirety, has been determined to be unclassified.

J.C. BLAIR

Director, Structures and Dynamics Laboratory

\$\times US. GOVERNMENTPRINTING OFFICE 1994-533-108 ,00049