Parametrizations in MGCAMB

Zhuangfei Wang¹

¹Department of Physics, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada

I. MG MODELS

A. Pure MG models (MG_flag = 1)

- 1. μ , γ parametrization (pure_MG_flag = 1)
 - mugamma_par = 1: BZ parametrization

$$\mu = \frac{1 + \alpha_1 k^2 a^s}{1 + \alpha_2 k^2 a^s} \qquad \gamma = \frac{1 + \beta_1 k^2 a^s}{1 + \beta_2 k^2 a^s}, \tag{1}$$

with $\alpha_1 = B_1 \lambda_{1,2}$, $\alpha_2 = \lambda_{1,2}$, $\beta_1 = B_2 \lambda_{2,2}$, $\beta_2 = \lambda_{2,2}$.

• mugamma_par = 2: Planck parametrization

$$\mu = 1 + E_{11}\Omega_{DE}(a)$$
 $\gamma = 1 + E_{22}\Omega_{DE}(a),$ (2)

- 2. μ , Σ parametrization (pure_MG_flag = 2)
 - musigma_par = 1 : DES parametrization

$$\mu = 1 + \mu_0 \frac{\Omega_{\rm DE}(a)}{\Omega_{\rm DE,0}} \qquad \qquad \Sigma = 1 + \Sigma_0 \frac{\Omega_{\rm DE}(a)}{\Omega_{\rm DE,0}}, \tag{3}$$

- 3. Q,R parametrization (pure_MG_flag = 3)
 - $QR_par = 1: (Q,R)$

$$Q = Q_{\text{fix}} R = R_{\text{fix}}, (4)$$

• $QR_{par} = 2: (Q_0, R_0, s)$

$$Q = 1 + (Q_0 - 1)a^s, R = 1 + (R_0 - 1)a^s, (5)$$

B. Alternative MG models (MG_flag = 2)

1. Linder's γ_L parametrization (alt_MG_flag = 1)

$$\mu = \frac{2}{3}\widetilde{\Omega}_m^{\gamma_L} \left[\widetilde{\Omega}_m^{\gamma_L} + 2 - 3\gamma_L + 3(\gamma_L - 0.5)\widetilde{\Omega}_m \right] \qquad \gamma = 1,$$
 (6)

where $\widetilde{\Omega}_m = (\Omega_b + \Omega_c)/[\Omega_b + \Omega_c + (1 - \Omega_b - \Omega_c)a^3].$

C. QSA models of Universal coupling (MG_flag = 3)

1. f(R) (QSA_flag = 1)

$$\mu(a,k) = \frac{1}{1 - 1.4 \times 10^{-8} \lambda_{1.2} a^3} \frac{1 + B_1 \lambda_{1.2} k^2 a^s}{1 + \lambda_{1.2} k^2 a^s} \qquad \gamma(a,k) = \frac{1 + B_2 \lambda_{2.2} k^2 a^s}{1 + \lambda_{2.2} k^2 a^s}, \tag{7}$$

where $\lambda_{1,2} = \frac{B_0}{2} \frac{c^2}{H_0^2}$, $\lambda_{2,2} = B_1 \lambda_{1,2}$, with $B_1 = \frac{4}{3}$, $B_2 = 0.5$, s = 4, c is the speed of light.

2. scalar-tensor theories (QSA_flag = 2,3,4)

$$\mu = \left(1 + \frac{2k^2\beta^2}{k^2 + m^2a^2}\right) \qquad \gamma = \left(\frac{1 - \frac{2k^2\beta^2}{k^2 + m^2a^2}}{1 + \frac{2k^2\beta^2}{k^2 + m^2a^2}}\right),\tag{8}$$

where β and m are two phenomenological functions.

• symmetron model (QSA_flag = 2)

$$\beta = \beta_{\star} \sqrt{1 - \left(\frac{a_{\star}}{a}\right)^3} \qquad m = \frac{H_0}{c} \frac{1}{\xi_{\star}} \sqrt{1 - \left(\frac{a_{\star}}{a}\right)^3} \tag{9}$$

• dilaton model (QSA_flag = 3)

$$\beta = \beta_0 \exp\left(S/(2R - 3)(a^{2R - 3} - 1)\right) \qquad m = \frac{H_0}{c} \frac{1}{\xi_0} a^{-R}, \tag{10}$$

• Hu-Sawicki f(R) model (QSA_flag = 4)

$$\beta = \beta_0 \qquad m = m_0 \left(\frac{4\Omega_{\Lambda} + \Omega_m a^{-3}}{4\Omega_{\Lambda} + \Omega_m} \right)^{(n+2)/2} \tag{11}$$

where $\beta_0 = \frac{1}{6}$, and $m_0 = H_0 \sqrt{\frac{4\Omega_{\Lambda} + \Omega_m}{(n+1)f_{R_0}}}$.

D. QSA models of CDM-only coupling (MG_flag = 4, CDM_flag = 1)

The functional forms of β and m are the same as those in IC.

- 1. symmetron model (QSA_flag = 2)
- 2. dilaton model (QSA_flag = 3)
- 3. Hu-Sawicki $f(R) \mod (QSA_flag = 4)$

E. direct $\mu - \Sigma$ parametrization (MG_flag = 5)

The model options in this way of parametrization are the same as those in the other corresponding cases in this version release.

- 1. pure MG models (muSigma_flag = 1)
- 2. alternative MG models (muSigma_flag = 2)
- 3. QSA models of Universal coupling (muSigma_flag = 3)
- 4. cubic-spline method for μ and Σ with $\mu \Sigma$ parametrization (muSigma_flag = 4)

F. cubic-spline method for μ and Σ with $\mu - \gamma$ parametrization (MG_flag = 6)

For both MG functions μ and Σ , 10 input nodes are uniformly distributed in the redshift range: $z \in [0,3]$, i.e. (MGCAMB_Mu_idx(2) ... MGCAMB_Mu_idx(11); MGCAMB_Sigma_idx(2) ... MGCAMB_Sigma_idx(11)), and one input node is set at z = 4 (MGCAMB_Mu_idx(1), MGCAMB_Sigma_idx(1)).

II. DE MODELS

- 1. $\Lambda CDM (DE_flag = 0)$
- 2. wCDM (DE_flag = 1)
- 3. (w_0, w_a) CDM (DE_flag = 2)
- 4. cubic-spline method for Ω_x (DE_flag = 3): 9 input nodes are uniformly distributed in the redshift range: $z \in (0,3]$, i.e. (Funcofw(2) ... Funcofw(10)), and one input node is set at z=4 (Funcofw(1)). Besides, the last node at z=0 (Funcofw(11)) is internally fixed by $\Omega_{\rm DE}$ in the code, i.e. the DE density fraction today.