

Data Visualization

Rimini – 25/10/2021

Alessia Angeli

Studente di dottorato in Data Science and Computation

Dipartimento di Informatica – Scienza e Ingegneria

VARLAB: VIRTUAL AND AUGMENTED REALITY LAB

Contatti

Data Visualization – Space & Attributes

Alessia Angeli

Studente di dottorato in Data Science and Computation

Dipartimento di Informatica – Scienza e Ingegneria

Attributes: Keys and Values

- Attribute Key: un attributo viene definito chiave quando identifica <u>univocamente</u> (in modo unico) un item (elemento);
- Attribute Value: un attibuto se non è una chiave viene definito valore.

Space & Quantitative Attributes

Esprimere il valore con la posizione;

• Scegliere il modo più efficace per disegnare gli assi.

Space & Qualitative Attributes

Codificare categorical key(s) in regioni separate;

Scegliere un allineamento appropriato;

Scegliere un ordine appropriato.

Attenzione alle visualizzazioni 3D!

3D... Senza valide ragioni? Anche no.

Data Visualization – Plots/Graphs

Alessia Angeli

Studente di dottorato in Data Science and Computation

Dipartimento di Informatica – Scienza e Ingegneria

Quantitative Attributes

Scatter plot
Histogram
Scatter plot matrix
Box plot
Violin plot
Radar chart

• • •

Scatter plot

What?

• 2 quantitative attributes;

Why?

- Visualizzare correlazioni e distribuzioni;
- Identificare outliers, patterns e clusters;

- Fino a ~100 items;
- Colore e dimesione possono essere usati per codificare categorical attributes aggiuntivi (bubble plot).

Definizione

DISTRIBUZIONE DI PROBABILITA': Una distribuzione di probabilità è un modello matematico che associa ai valori (possibili) di una variabile aleatoria (continua o discreta) le probabilità che tali valori possano essere assunti da tale variabile. Formalmente le distribuzioni vengono espresse da funzioni matematiche, **funzione densità di probabilità** e **funzione di probabilità**, rispettivamente per variabili aleatorie continue e discrete.

ESEMPIO

Si lanciano 2 dadi e si considera come variabile aleatoria la somma risultante.

Somma	# Combinazioni		Probabilità	
2	1		0.03	
3	2		0.06	
4	3		0.08	
5	4		0.11	
6	5		0.14	
7	6		0.17	
8	5		0.14	
9	4		0.11	
10	3		0.08	
11	2	T 26	0.06	∇ 1
12	1	Σ 36	0.03	$\Sigma 1$

Histogram

What?

1 quantitative attribute;

Why?

- Visualizzare distribuzioni;
- Identificare patterns e range;

- Una linea (o un'area) può essere visualizzata per mostrare la funzione di densità calcolata;
- Gli items possono essere visualizzati con dei punti.

Definizione

MATRICE: una matrice è una tabella ordinata. Le righe orizzontali vengono chiamate *righe* della matrice e le righe verticali colonne della matrice.

Generalmente una matrice si indica con una lettera maiuscola e viene scritta nel modo seguente:

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

dove i pedici di ogni elemento della matrice indicano, rispettivamente, la riga e la colonna in cui l'elemento è posizionato.

Quindi a_{ij} è l'elemento della matrice A che si trova nella riga i-esima e nella colonna j-esima.

Scatter plot matrix

What?

N quantitative attributes;

Why?

- Visualizzare correlazioni e distribuzioni;
- Identificare outliers, patterns e clusters;

- Fino a ~12 attributi e ~100 items;
- E' possibile visualizzare solo la parte triangolare inferiore della matrice.

Statistica descrittiva – alcune definizioni

Considerando un insieme di dati numerici si definiscono:

5 7 4 6 5

MEDIA (MEDIA ARITMETICA): rapporto tra la somma dei dati e il numero dei dati.

MODA: il valore del dato che si presenta con maggiore frequenza (possono essere presenti più valori di moda).

5 – dato con massima frequenza (2)

MEDIANA: è il valore centrale tra i dati ordinati in modo crescente o decrescente. Se l'insieme contiene un numero di dati dispari c'è un unico valore centrale e questo è la mediana. Se l'insieme contiene un numero di dati pari, invece, ci sono due valori centrali e di solito come mediana viene considerata la media aritmetica di questi.

5 – è il valore centrale in 4 5 5 6 7

Statistica descrittiva – alcune definizioni

Oltre alla mediana, che divide a metà un insieme di dati ordinati, vengono usati anche altri indici che dividono tale insieme in determinate percentuali detti quantili, quartili e percentili.

PERCENTILI: sono un caso particolare dei quantili e, come si intuisce dal nome, dividono l'insieme di dati ordinati in 100 parti.

- il 1° percentile lascia alla sua sinistra un centesimo (1%) degli elementi dell'insieme ordinato;
- il 10° percentile lascia alla sua sinistra il 10% degli elementi;
- il 50° percentile (che coincide con la mediana) lascia alla sua sinistra il 50% degli elementi;
- •

QUARTILI: questi si ottengono dividendo l'insieme di dati ordinati in 4 parti uguali.

- il primo quartile (che coincide con il 25-esimo percentile) è il valore che lascia alla sua sinistra il 25% degli elementi;
- il secondo quartile (che coincide con la mediana e con il 50-esimo percentile) è il valore che lascia alla sua sinistra il 50% dei dati;
- il **terzo quartile** (che coincide con il 75-esimo percentile) è il valore che lascia il 75% degli elementi a sinistra e il 25% a destra.

Box plot

What?

 N quantitative attributes (oppure 1 quantitative attribute ed 1 categorical key);

Why?

- Visualizzare distribuzioni;
- Identificare outliers, valori estremi, range etc.;

- Il colore può codificare un categorical attribute aggiuntivo;
- Possibile effettuare raggruppamenti.

Violin plot

What?

 N quantitative attributes (oppure 1 quantitative attribute ed 1 categorical key);

Why?

- Visualizzare distribuzioni;
- Identificare range;

Remarks

 Il colore può codificare un categorical attribute aggiuntivo (è possibile effettuare anche uno split se i dati lo consentono).

Violin plot

Radar chart

Charactertistics of Iris Species

What?

N quantitative attributes;

Why?

- Identificare patterns;
- Confrontare valori;

Remarks

- Fino a ~12 attributi;
- Il colore può codificare una categorical key aggiuntiva (fino a 3-4 valori).

Species
setosa
versicolor

virginica

Qualitative Attributes

Bar plot
Multi-set bar plot
Pie chart
Word Cloud

• • •

Bar plot

What?

- 1 quantitative attribute;
- 1 categorical key;

Why?

- Confrontare/evidenziare valori;
- Identificare valori estremi;

- Fino a ~100 barre;
- Keys vs valori ordinati;
- Non adatto per visualizzare trends.

Top 5 Directors - Netflix

Top 5 Actors - Netflix

Multi-set bar plot

What?

- 1 quantitative attribute;
- 2 categorical keys;

Why?

- Confrontare valori;
- Identificare patterns;

Remarks

- Visualizzare fino a ~100 barre;
- Riuscire a raggruppare/confrontare items, patterns.

Sentiment of contents - Netflix

Distribution of Content Ratings - Netflix

Pie chart

What?

- 1 quantitative attribute;
- 1 categorical key;

Why?

 Evidenziare una parte rispetto al tutto;

- Meno dettagliato ed accurato rispetto al layout lineare;
- L'area centrale può essere rimossa (donut chart).

What?

- 1 categorical attribute -> testo;
- 1 quantitative attribute -> frequenza;

Why?

- Visualizzare distribuzione di parole;
- Visualizzare un sommario;

- Scarsa accuratezza;
- Bias dovuto alla lunghezza e alla struttura delle parole.

2 Categorical Keys

Heatmap

• • •

Definizione

MATRICE DI CONFUSIONE: è un metodo per visualizzare le performance di un algoritmo rispetto ad un problema di classificazione dove gli outputs possono essere due o più classi.

Nel caso di problema di classificazione binario (due classi in outputs) la matrice di confusione sarà composta da quattro elementi: True Positive (TP), False Positive (FP), False Negative (FN), True Negative (TN).

Actual Values

Inoltre, la matrice di confusione è estremamente comoda per calcolare *Precision*, *Recall*, *Accuratezza*, ... (se ne parlerà nelle prossime lezioni).

Heatmap

What?

- 2 categorical key;
- 1 quantitative attribute;

Why?

- Visualizzare correlazioni;
- Identificare patterns, outliers;
- Confusion matrix for classification result visualization;

Remarks

- Fino a ~1M di items;
- L'ordine delle keys influisce la visibilità dei patterns.

Quantity of contents produced over the years - Netflix

For dealing with time

Line graph Stacked area graph

• • •

Line graph

What?

- 1 ordered key -> time;
- 1 quantitative attribute;

Why?

Identificare e confrontare trends;

- Fino a 10-20 linee;
- Il colore può codificare un categorical attribute additivo.

Trend of content produced over the years - Netflix

- 1 ordered key -> time;
- 1 categorical attribute;

Why?

- Visualizzare trends;
- Evidenziare una parte rispetto al tutto;
- Confrontare valori;

Remarks

Fino a pochi valori.

ATTENZIONE ALLA BASE DI RIFERIMENTO DELLE AREE COLORATE

Hands-On – Caso Studio – Visualizzazione Dati NETFLIX

Notebook 6 – Caso Studio Netflix

Cloropeth map e Bubble map

Node-link diagram e Arc diagram

Arc Diagram of Star Wars Characters that Interacted in The Force Awakens

https://plotly.com/python/network-graphs/

Isocontour plot e Tree map

Visualizzazione Interattiva e Visualizzazione AR

Alessia Angeli

Studente di dottorato in Data Science and Computation

Dipartimento di Informatica – Scienza e Ingegneria

Visualizzazione interattiva

L'utente ha la possibilità di:

Cambiare

- Codifica (tipo di grafico)
- Parametri (colore, dimensioni, aggiungere elementi al grafico)
- Organizzazione (allineamento colonne/righe)
- Ordine
- Tipo di aggregazione

Selezionare

- Items
- Tooltips per ulteriori informazioni

Navigare

- Tra items
- Tra attributi

Visualizzazione interattiva - VANTAGGI

- Tipo di visualizzazione flessibile, potente, intuitivo.
- L'analisi esplorativa dei dati può cambiare durante lo stesso processo di analisi.
- Possibile cambio di attività fluido attraverso codifiche visive diverse a supporto di attività diverse.
- Le transizioni animate possono fornire un supporto eccellente alla visualizzazione.
- C'è un'evidenza empirica che le transizioni animate aiutino le persone a rimanere concentrate.

Visualizzazione interattiva - SVANTAGGI

- L'interazione ha un costo in termini di tempo (variabile, a volte significativo)
- L'interazione impone un carico cognitivo.
- I controlli per l'interazione potrebbero richiedere molto spazio sullo schermo.
- Gli utenti potrebbero non interagire come pianificato dal designer (e.g., i registri del NYTimes mostrano che circa il 90% degli utenti non interagisce oltre lo scrollytelling (Aisch, 2016)).

Visualizzazione e Augmented Reality (AR)

Visualizzazione e Augmenter Reality (AR) – alcuni nostri progetti

Stacchio, L., Angeli, A., Hajahmadi, S., Marfia, G. (2021). Revive Family Photo Albums through a Collaborative Environment Exploiting the HoloLens 2. In Proceedings of the 2021 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct), to appear.

Stacchio, L., Hajahmadi, S., & Marfia, G. (2021, March). Preserving Family Album Photos with the HoloLens 2. In 2021 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW) (pp. 643-644). IEEE.

Stacchio, L., Angeli, A., & Marfia, G. (2021, September). Empowering Locksmith Crafts via Mobile Augmented Reality. In *Proceedings of the Conference on Information Technology for Social Good* (pp. 305-308).

Solo una parte...

Alessia Angeli

Studente di dottorato in Data Science and Computation

Dipartimento di Informatica – Scienza e Ingegneria

Solo una parte...

La visualizzazione dati non è solo quello visto in queste lezioni, è molto di più...

Una parte fondamentale è analizzare/selezionare i dati/risultati da mostrare. Spesso questa parte è una delle più complesse sia per analizzare i dati con l'obiettivo di costruire un modello (feature selection e feature extraction) sia con l'obiettivo di visualizzare dati e/o risultati (analisi esplorativa).

Ricordando poi, come già detto in precedenza, che come prima operazione i dati vanno controllati: dati mancanti, dati oggettivamente non corretti (e.g., età di uomini con valori negativi, prezzi di articoli con valori negativi), ...

un pezzo alla volta...5

Data Visualization – Quindi...

Alessia Angeli

Studente di dottorato in Data Science and Computation

Dipartimento di Informatica – Scienza e Ingegneria

Visualizzazione efficace?

Come abbiamo visto, ci sono molti modi per definire l'efficacia ma... quello che conta di più è il fatto che i vostri utenti o lettori siano in grado di **estrarre informazioni dai dati visualizzati**:

- In modo accurato;
- Con uno sforzo ragionevole;
- Con grande sicurezza.

Il test è l'acquisizione di conoscenza:

- Se i vostri utenti <u>non</u> imparano niente di nuovo... c'è qualcosa che <u>non</u> va!
- L'acquisizione di conoscenza deve essere il vostro metro di valutazione.

GUAI IN VISTA... Quando?

Il problema

Non capire di che cosa hanno bisogno gli utenti.

Dal problema alla visualizzazione

Mostrare agli utenti le cose sbagliate.

Il tipo di visualizzazione

 La strada che si ha intrapreso per visualizzare i dati non funziona.

L'algoritmo

• Il codice è lento.

Quindi... PER CERCARE DI NON FINIRE NEI GUAI!

Il problema

- Capire chi sono i vostri utenti (e.g., studenti scuole superiori, operai, impiegati);
- Capire quale problema devono risolvere con (i loro) dati;
- Raccogliere una serie di obiettivi e/o azioni che gli utenti vorrebbero raggiungere/eseguire con (i loro) dati.

Dal problema alla visualizzazione

- Dopo avere compreso il problema, capire che cosa gli utenti devono visualizzare e per quali attività;
- Se si fallisce qui significa che non si sta mostrando le cose giuste.

Il tipo di visualizzazione

- Pianificare visualizzazioni efficaci per i dati e per le attività identificate;
- È qui che si deve sapere come scartare alternative scadenti e ideare buoni progetti.

L'algoritmo

Assicurarsi che l'algoritmo sia veloce, accurato ed efficace.

Un consiglio

«Sbagliando si impara...» (?) — in Data Visualization sì!

La maggior parte delle codifiche non è subito ottimale e si continua ad imparare a crearne di migliori fallendo. Più fallisci, più la tua codifica migliora. Non smettere di ripetere. Non accontentarti della prima visualizzazione che ti viene in mente! Genera e confronta alternative.

Riferimenti

Corso «Data and Results Visualization», Daniele Loiacono, Politecnico di Milano (2019).

Corso Coursera (online) "Visualization for Data Journalism", Margaret Yee Man Ng, University of Illinois at Urbana-Champaign (2021).

Sitografia presente slide per slide.

Alessia Angeli

Dipartimento di Informatica – Scienza e Ingegneria

alessia.angeli2@unibo.it

www.unibo.it