Chap 1 - Expérience aléatoire et probabilité

 σ -algèbre Une famille \mathcal{F} de sous ensembles de Ω vérifiant

- i) $\Omega \in \mathcal{F}$
- ii) Si $A \in \mathcal{F}$, alors $A^c \in \mathcal{F}$
- iii) Si $(A_n)_{n>1} \subset \mathcal{F}$ alors $\bigcup_n A_n \in \mathcal{F}$

Probabilité sur (Ω, \mathcal{F}) . Une application \mathbb{P} de \mathcal{F} dans \mathbb{R} tq

- i) $\mathbb{P}(\Omega) = 1$
- ii) $\mathbb{P}(A) \geq 0$ pour tout $A \in \mathcal{F}$
- iii) Si $(A_n)_{n\geq 1}\subset \mathcal{F}$, deux à deux disjoints, alors $\mathbb{P}(\bigcup_n A_n)=\sum_n \mathbb{P}(A_n)$

Combinatoire

nb de *Permutations* de *n* éléments : *n*!

nb de *Permutations r-distinctes* de n éléments : $\frac{n!}{n_1!...n_r!}$

nb d'*Arrangements* de *p* parmi $n: A_n^p = \frac{n!}{(n-p)!}$

nb de *Combinaisons* de p parmi $n: C_n^p = \frac{n!}{p!(n-p)!}$ (pas d'ordre)

Chap 2 - Formules remarquables

Probabilités totales $\mathbb{P}(A) = \sum_{n \in I} \mathbb{P}(A|A_n) \mathbb{P}(A_n)$

Formule de Bayes $\mathbb{P}(A_n|A) = \frac{\mathbb{P}(A|A_n)\mathbb{P}(A_n)}{\sum_{i \in I} \mathbb{P}(A|A_i)\mathbb{P}(A_i)}$

Formule de Poincaré $\mathbb{P}(\bigcup_{i=1}^n A_i) = \sum_{i=1}^n \mathbb{P}(A_i) - \sum_{i < j} \mathbb{P}(A_i \cap A_j) + \cdots + (-1)^{n-1} \mathbb{P}(\bigcap_{i=1}^n A_i)$

Formule des produits disjoints $\mathbb{P}(\bigcup_{i=1}^n A_i) = \mathbb{P}(A_1) + \mathbb{P}(A_1^c A_2) + \mathbb{P}(A_1^c A_2^c A_3) + \cdots + \mathbb{P}(A_1^c A_2^c \dots A_{n-1}^c A_n)$

Chap 3 - Variable aléatoire discrète

Espérance mathématique et moments : définitions

espérance : $\mathbb{E}[X] = \sum_{x} x \mathbb{P}(X = x) \text{ si } \sum_{x} |x| \mathbb{P}(X = x) < \infty$

moment d'ordre $n : \mathbb{E}[X^n] = \sum_x x^n \mathbb{P}(X = x)$

variance: $\operatorname{Var}(X) = \mathbb{E}\left[(X - \mathbb{E}[X])^2\right] = \mathbb{E}[X^2] - (\mathbb{E}[X])^2$

moment centré d'ordre $r: \mu_r = \mathbb{E}\left[(X - \mathbb{E}[X])^r \right]$

Propriétés (également valables pour les v.a réelles)

 $\mathbb{E}[aX + bY] = a\mathbb{E}[X] + b\mathbb{E}[Y]$

 $\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$ si X, Y indépendants

 $Var(aX + b) = a^2Var(X)$

 $Var(\sum_i X_i) = \sum_i Var(X_i)$ si les X_i sont indépendants

Somme de deux v.a.d indépendantes

Produit de convolution $c_n = (a_n) * (b_n) = \sum_{k=0}^n a_k b_{n-k}$ Somme de deux v.a. $\mathbb{P}(X + Y = n) = (p_X * p_Y)(n)$

Fonctions génératrices

 $g(s) = \mathbb{E}[s^X] = \sum_{i \in \mathbb{N}} p_i s^i$ $\mathbb{E}[X] = g'(1); Var(X) = g''(1) + g'(1) - (g'(1))^2$

Lois	$\mathbb{P}(X=k)$	$\mathbb{E}[X]$	Var[X]	g(s)
B(p)	$\mathbb{P}(X=1)=p$	p	p(1-p)	1-p+ps
b(n,p)	$C_n^k p^k (1-p)^{n-k}$	пр	np(1-p)	$(1-p+ps)^n$
$\mathcal{P}(\lambda)$	$e^{-\lambda} \frac{\lambda^k}{k!}$	λ	λ	$\exp(-\lambda + \lambda s)$
G(p)	$p(1-p)^{k-1}$	1/p	$(1-p)/p^2$	ps/(1-s+ps)

FIGURE 1 – Caractéristiques des lois discrètes usuelles

Chap 4 - Variable aléatoire réelle

Propriétés essentielles

Fonction de répartition $F_X(x) = \mathbb{P}(X \le x)$

Espérance $\mathbb{E}[X] = \int_{\mathbb{R}} x dF_X(x) = \int_{\mathbb{R}} x f_X(x) dx$ si abs. continue.

Médiane $M \in \mathbb{R}$ satisfaisant $\mathbb{P}(X \ge M) \ge \frac{1}{2}$ et $\mathbb{P}(X \le M) \ge \frac{1}{2}$

X abs. continue $\Leftrightarrow \forall \phi$ borélienne : $\mathbb{E}[\phi \circ X] = \int_{\mathbb{R}} \phi(x) f_X(x) dx$

Fonction génératrice des moments

 $M(t) = \mathbb{E}[\exp(tX)] = \int_{\mathbb{R}} \exp(tx) f_X(x) dx$

 $M^{(n)}(0) = \mathbb{E}[X^n]$

Si M est définie sur]-a,a[,a>0:

— X possède des moments finis de tous ordres

 $- M(t) = \sum_{k=0}^{+\infty} \frac{t^k}{k!} \mathbb{E}[X^k]$

Lois	f_X	$\mathbb{E}[X]$	Var[X]	M(t)
unif.	$\frac{1}{b-a}\mathbb{1}_{[a,b]}(x)$	$\frac{a+b}{2}$	$\frac{(a-b)^2}{12}$	$\frac{e^{tb} - e^{ta}}{t(b-a)}$
normale	$\frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}$	μ	σ^2	$\exp\{\mu t + \frac{t^2\sigma^2}{2}\}$
exp.	$\lambda e^{-\lambda \hat{x}} \mathbb{1}_{\mathbb{R}^+}$	$1/\lambda$	$1/\lambda^2$	$\lambda/(\lambda-t)$
gamma	$\frac{(\lambda x)^{\alpha-1}}{\Gamma(\alpha)} \lambda e^{-\lambda x} \mathbb{1}_{\mathbb{R}^+}(x)$	α/λ	α/λ^2	$(\lambda/(\lambda-t))^{\alpha}$

FIGURE 2 – Caractéristiques de quelques variables continues

Loi normale ou de Gauss

Si $Y \sim N(\mu, \sigma^2)$ alors $X = \frac{Y - \mu}{\sigma} \sim N(0, 1)$

Si $X \sim N(\mu_1, \sigma_1^2)$ et $Y \sim N(\mu_2, \sigma_2^2)$ sont indépendantes alors $X + Y \sim N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$

Inégalités

Bienaymé-Tchebichev $\mathbb{P}(|X - \mathbb{E}[X]| \ge \varepsilon) \le \frac{\operatorname{Var}(X)}{c^2}$

Cauchy-Schwarz $(\mathbb{E}[XY])^2 \leq \mathbb{E}[X^2]\mathbb{E}[Y^2]$

Jensen $\mathbb{E}[\varphi(X)] \ge \varphi(\mathbb{E}[(X)])$ si φ est convexe sur \mathbb{R}

Chap 5 - Variable aléatoire vectorielle

Covariance - définition et propriétés

Covariance $Cov(X, Y) = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])]$

- $\operatorname{Cov}(X, Y) = \mathbb{E}[XY] \mathbb{E}[X]\mathbb{E}[Y]$
- $--\operatorname{Cov}(X,X) = \operatorname{Var}(X)$
- -- Cov(X, Y) = Cov(Y, X)
- $-\operatorname{Cov}(aX + bY, Z) = a\operatorname{Cov}(X, Z) + b\operatorname{Cov}(Y, Z)$
- Si X et Y indépendants, alors Cov(X, Y) = 0
- Var(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y)

coefficient de corrélation linéaire $\rho_{X,Y} = \frac{\text{Cov}(X,Y)}{\sqrt{Var(X)Var(Y)}}$

- |*ρ*_{*X,Y*}| ≤ 1

Lois, densités, fonctions de répartition

Soient $\mathbf{X} = (X_1, \dots, X_d) \in \mathbb{R}^d$ une v.a. vectorielle et $\mathbf{x} =$ $(x_1,\ldots,x_d)\in\mathbb{R}^d$ f. de répartition $F(\mathbf{x}) = \mathbb{P}(X_1 \leq x_1, \dots X_d \leq x_d)$ f. de densité $f(\mathbf{x}) = \frac{\partial^d F(\mathbf{x})}{\partial x_1...\partial x_d}$ relation densité/f.d.r $F(\mathbf{x}) = \int_{-\infty}^{x_1} \dots \int_{-\infty}^{x_d} f(x_1, \dots, x_d) dx_1 \dots dx_d$ f. de répartition marginale $F_i(x) = F(\infty, ..., \infty, x, \infty, ..., \infty)$ densité marginale pour calculer $f_i(x)$ on fixe x et on intègre $f(x_1, \ldots, x_d)$ par rapport aux autres variables.

Espérance et matrice de covariance

espérance
$$\mathbb{E}[\mathbf{X}] = (\mathbb{E}[X_1], \dots, \mathbb{E}[X_d])'$$
 matrice de covariance $K = (K_{ij})_{i,j=1,\dots,d} = (\operatorname{Cov}(X_i, X_j))_{i,j=1,\dots,d}$

Transformation d'une v.a Soit Y = g(X), on a $f_Y(y) = f_X \circ g^{-1}(y) |\frac{\mathrm{d}g^{-1}}{\mathrm{d}v}| \mathbb{1}_F(y)$

Transformation vectorielle Soit
$$\mathbf{Y} = \mathbf{g}(\mathbf{X})$$
 de \mathbb{R}^d , on a $f_{\mathbf{Y}}(y) = f_{\mathbf{X}} \circ \mathbf{g}^{-1}(y) |DJ_{\mathbf{g}^{-1}}(y)| \mathbb{1}_F(y)$ avec $DJ_{\mathbf{g}^{-1}} = (DJ_{\mathbf{g}})^{-1}$

$$DJ_{\mathbf{g}} = \det \begin{pmatrix} \frac{\partial g_1}{\partial x_1} & \cdots & \frac{\partial g_1}{\partial x_d} \\ \vdots & & \vdots \\ \frac{\partial g_d}{\partial x_1} & \cdots & \frac{\partial g_d}{\partial x_d} \end{pmatrix}$$

Vecteur aléatoire gaussien

Définition La v.a.v. **X** de \mathbb{R}^d est dite gaussienne si la v.a. $a_1X_1 +$ $\cdots + a_d X_d$ est gaussienne pour tout $\mathbf{a} \in \mathbb{R}^d$ fixé. chacun des X_i est gaussien;

 $\mathbf{g} \circ \mathbf{X}$ est gaussienne si \mathbf{g} est affine de \mathbb{R}^d dans \mathbb{R}^m ;

Si
$$\mathbf{Y} = B\mathbf{X} + b$$
, alors $K_{\mathbf{Y}} = BK_{\mathbf{X}}B'$;

Si les X_i sont gaussiens et indépendantes, X est gaussien.

Si **X** est un vecteur gaussien, $K_{\mathbf{X}}$ est non-singulière \Leftrightarrow

$$f(\mathbf{x}) = (2\pi)^{-d/2} (\det K_{\mathbf{X}})^{-1/2} \exp\{-\frac{1}{2} (\mathbf{x} - \mu)' K_{\mathbf{X}}^{-1} (\mathbf{x} - \mu)\}\$$

Chap 6 - Indépendance et conditionnement

Indépendance de n v.a. X_1, \ldots, X_n

v.a. discrètes
$$p(x_1, ..., x_n) = p_1(x_1) \times \cdots \times p_n(x_n)$$

v.a. continues $F(x_1, ..., x_n) = F_1(x_1) \times \cdots \times F_n(x_n)$
v.a. à densité $f(x_1, ..., x_n) = f_1(x_1) \times \cdots \times f_n(x_n)$
n'importe $\mathbb{E}[h_1(X_1) \times \cdots \times h_n(X_n)] = \prod_{i=1}^n \mathbb{E}[h_i(X_i)]$

Somme de deux v.a.r indépendantes

$$-F_{X+Y}(u) = \int_{\mathbb{R}} F_X(u-y) dF_Y(y) = \int_{\mathbb{R}} F_Y(u-x) dF_X(x)$$

$$-M_{X_1+X_2+...+X_n}(t) = M_{X_1}(t) M_{X_2}(t) \dots M_{X_n}(t)$$

Loi conditionnelle

discret $\mathbb{E}[Y|X=x] = \sum_{y \in E} y \mathbb{P}(Y=y|X=x) = \sum_{y \in E} y p_x(y)$ *continu* Soit f(x, y) la densité jointe du couple,

$$\begin{split} F_{Y|X}(y|x) &= \frac{1}{f_X(x)} \int_{-\infty}^y f(x,v) dv \\ f_{Y|X}(y|x) &= \frac{f(x,y)}{f_X(x)} = \frac{f(x,y)}{\int_R f(x,v) dv} \\ espérance & \mathbb{E}[Y|X=x] = \int_{\mathbb{R}} y f_{Y|X}(y|x) \, dy \\ variance & \operatorname{Var}[Y|X=x] = \int_{\mathbb{R}} y^2 f_{Y|X}(y|x) \, dy - (\mathbb{E}[Y|X=x])^2 \end{split}$$

Espérance conditionnelle

linéarité $\mathbb{E}[aX + bY|Z] = a\mathbb{E}[X|Z] + b\mathbb{E}[Y|Z]$.

indépendance $\mathbb{E}[Y|X] = \mathbb{E}[Y]$ si X et Y sont ind. (réciproque

théorème de l'espérance totale $\mathbb{E}[\mathbb{E}[Y|X]] = \mathbb{E}[Y]$

$$\mathbb{E}[h(X)Y|X] = h(X)\mathbb{E}[Y|X]$$

$$\mathbb{E}[\mathbb{E}[Y|X,Z,V]|X,Z] = \mathbb{E}[\mathbb{E}[Y|X,Z]].$$

Lemme de Wald $\mathbb{E}[S_N] = \mathbb{E}[N]\mathbb{E}[X_1]$ où $S_N = \sum_{i=1}^N X_i, \, N \in \mathbb{N}^*$ et X_i iid

Variance conditionnelle

$$Var(Y|X) = \mathbb{E}[(Y - \mathbb{E}(Y|X))^2|X] = \mathbb{E}(Y^2|X) - [E(Y|X)]^2$$
$$Var(Y) = \mathbb{E}[Var(Y|X)] + Var[\mathbb{E}(Y|X)]$$

Chap 7 - Convergence stochastique

Convergence presque-sure Si $\mathbb{P}\left(\omega: X_n(\omega) \xrightarrow{n\to\infty} X(\omega)\right) =$ 1, X_n converge presque sûrement vers X et on note $X_n \xrightarrow{p.s.} X$

Convergence en moyenne quadratique Soient $\mathbb{E}|X_n|^2 < \infty$ et $\mathbb{E}|X|^2 < \infty$, si $\mathbb{E}\left[|X_n - X|^2\right] \xrightarrow{n \to \infty} 0$, X_n converge en moyenne quadratique vers X et on note $X_n \xrightarrow{m.q.} X$.

Convergence en probabilité Si $\forall \varepsilon > 0$, $\lim_{n \to +\infty} \mathbb{P}(|X_n - X_n|) = 0$ $|X| \geq \varepsilon$) = 0, $|X_n|$ converge en probabilité vers |X| et on note

Convergence en loi Si $F_n \to F$ en tout point de continuité de F, X_n converge en loi vers X et on note $X_n \xrightarrow{\mathcal{L}} X$.

Loi faible des grands nombres Soient les X_i i.i.d. tels que $\mathbb{E}|X_1| < \infty$. Soit $S_n = \frac{1}{n} \sum_{i=1}^n X_i$, alors $S_n \xrightarrow[n \to \infty]{p} \mathbb{E}(X_1)$

Loi forte des grands nombres Soient les X_i i.i.d. et $S_n = \sum_{i=1}^n \frac{X_i}{n}$. On a $\mathbb{E}|X_1| < \infty \Leftrightarrow S_n \xrightarrow[n \to \infty]{p.s.} \mathbb{E}(X_1)$

Théorème de la limite centrale Soient les X_i i.i.d. de moyenne μ et de variance σ^2 , alors $\frac{S_n - \mathbb{E}(S_n)}{\sqrt{\operatorname{Var}(Sn)}} = \sqrt{n} \left(\frac{S_n - \mu}{\sigma} \right) \xrightarrow{\mathcal{L}} N(0,1)$

Fonction caractéristique d'une v.a.r : $\varphi_X(t) = \mathbb{E}[\exp(itX)]$

- si
$$Y = aX + b$$
, alors $\varphi_Y(t) = \exp(itb)\varphi_X(at)$

$$-\varphi_X(0)=1, |\varphi_X(t)| \leq 1, \varphi(-t)=\overline{\varphi}(t)$$

Lois	Fct caractéristiques		
Bernoulli $B(p)$	$pe^{it} + (1-p)$		
Binomiale $b(n, p)$	$(pe^{it} + (1-p))^n$		
Poisson $\mathcal{P}(\lambda)$	$\exp(-\lambda(1-\exp it))$		
Uniforme sur [0,1]	$(\exp it - 1)/it$		
Normale $N(\mu, \sigma^2)$	$\exp(it\mu - \sigma^2t^2/2)$		
Exponentielle $E(\lambda)$	$\lambda/(\lambda-it)$		