The Multiplication Rule

- (1) If A and B are two events with $P(B) \neq 0$, then $P(A \cap B) = P(B) \cdot P(A|B)$.
- (2) If A and B are two events with $P(A) \neq 0$, then $P(A \cap B) = P(A) \cdot P(B|A)$.

If $P(A) \neq 0$ and $P(B) \neq 0$, then equations (1) and (2) above both hold.

When two events are independent, then P(A|B) = P(A) and P(B|A) = P(B) and we have the following:

If A and B are independent events, then $P(A \cap B) = P(A) \cdot P(B)$.

This result can be extended to any number of events. If $A_1, A_2, ..., A_n$ are independent events, then for each collection $A_{j1}, ..., A_{jm}$ of events

$$P(A_{j1} \cap A_{j2} \cap \cdots \cap A_{jm}) = P(A_{j1}) P(A_{j2}) \cdots P(A_{jm})$$

In particular,

$$P(A_1\cap A_2\cap \cdots \cap A_n)=P(A_1)\,P(A_2)\cdots\,P(A_n)$$