Friday, August 30, 2019 10:19

 $A \subset P(X)$ algebra.

- $\bigcirc \quad \text{ } \quad \text{$
- () If $\text{HE}_n \in A$ then $\mu_o(\text{HE}_n) = \sum \mu_o(\epsilon_n)$

Properties: (1) firste additivity

- 1 monetonicity
- ② Countable subadditivity: M. (UEn) = ZM.(En)
 if VEn∈ A.
- (2) if EEA and (ENCA s.l. ECUEntun M. (E) & \(\sum_{n} \) (\(\xi_{n} \)).

 M_0 on A M^* on P(A) by

Lenne: Mx | A = Mo

Lenne: ACMX

of Suppose EEA and FCX.

 $\omega TS: \mu^*(F) > \mu^*(F \cap E) + \mu^*(F \setminus E).$

Let
$$\varepsilon>0$$
. Pick (F_n) $\subset A$ s.t. F $\subset UF_n$ and $\sum \mu_o(F_n) \leq \mu^*(F) + \varepsilon$. Since μ_o is additive on A , $\mu^*(F) + \varepsilon \geq \sum \mu_o(F_n) = \sum \mu_o(F_n \cap E) + \mu_o(F_n \setminus E)$

$$= \mu^*(F_n \in E) + \mu^*(F_n \in E)$$

Get a (complete) mensure $M := M^* |_{M^*}$ on M^* .

if M = M(A) Then $M \subset M^*$ and $\mu |_M$ is a measure s.t. $\mu |_A = M_0$.

Theorem If y is a measure on M(A) s.t. $y|_{A} = \mu_0$, then $y(E) \leq \mu(E)$ $\forall E \in M$ with equality when $\mu(E) < \infty$.

£ Suppose E∈M and E⊂UEn while EneA & ∑Mo(En) ≤ μ(En) + ε.

Thum $V(E) \leq \sum \mu(E_n) = \sum \mu_n(E_n) \leq \mu^*(E) + E = \mu(E) + E$.

So $V(E) \leq \mu(E)$ as E was arbitrary.

If $\mu(E)$ is finite, Then $0 \quad \mu((UE_n) \setminus E) \leq E.$

(2) by continuity from below for $v \in u$, $u(V \in n) = \lim_{N} u(\overset{N}{V} \in n)$ $= \lim_{N} u_{\delta}(\overset{N}{V} \in n)$

So
$$\mu(E) \in \mu(UE_n) = \mathcal{V}(UE_n) = \mathcal{V}(E) + \mathcal{V}(UE_n) \setminus E$$

 $\leq \mathcal{V}(E) + \mu(UE_n) \setminus E$ by (0)
 $\leq \mathcal{V}(E) + E$ by (1)
 $\leq \mathcal{V}(E) \leq \mathcal{V}(E)$

Cor: If M_0 is σ -finite $\left[X=\coprod X_n \ \text{w/} \ X_n \in A \ \text{s.} \ M_0(X_n) < \infty \ \text{Vn}\right]$. Then M is the unique extension of M_0 to M(A).

 \Box

If For any other V extending M_0 and $E \in M(A)$, $V(E) = V(E \cap X) = V(E \cap \coprod X_n) = V(\coprod (X_n \cap E))$ $= \overline{Z} V(E \cap X_n) = \overline{Z} M(E \cap X_n) = \cdots = M(E).$

Construction of Lobesque-Stieltjes measures in R.

Def: $f = \{ \emptyset \} \cup \{ (a,b] \mid -\infty \le a < b < \infty \} \cup \{ (a,\infty) \mid -\infty \le a < \infty \}.$ ore called h-intervals.

 $A = \{ \text{ finite disjoint unions of elts of } \} \}$ $By \ \underline{HW3}, \ A \text{ is an algebra.}$ $M(A) = B_R.$

$$F: \mathbb{R} \to \mathbb{R}$$
 non-decreasing $(S \leq t \Rightarrow F(S) \leq F(t))$
and right-continuous $(a_n) = a \Rightarrow F(a_n) \to F(a)$

Extend
$$F$$
 to $F: (-\infty, \infty) \longrightarrow [-\infty, \infty]$ by

$$F(-\infty) = \lim_{\alpha \to -\infty} F(\alpha)$$
, $F(\infty) = \lim_{\alpha \to \infty} F(\alpha)$.

$$\bigcap_{(-\infty, \infty)} (-\infty, \infty)$$

Define: Mo: H -> [0,00] by

$$\mathcal{M}_{o}(\phi)=0$$

•
$$\mu_0((\alpha,\infty)) = F(\infty) - F(\alpha)$$

Goal: Extend M. to A, show it's a premoasure.

Step 1: If
$$(a,b) = \prod_{i=1}^{n} (a_{i},b_{i})$$
 then $\mu_{o}((a,b)) = \sum_{i=1}^{n} \mu_{o}(a_{i},b_{i})$

A after reindexing, we may assume

$$a = a_1 < b_1 = a_2 < b_2 = \cdots < b_n = b$$
.

Thun
$$\mu_o(a,b] = F(b) - F(a)$$

$$= \sum_{i}^{n} F(b_{i}) - F(a_{j})$$

$$= \sum_{i}^{n} \mu_o(a_{j},b_{j})$$

Step 2: If
$$(a, \infty) = (a_0, \infty) \cup \prod_{j=1}^{n} (a_{j}, b_{j})$$
, then
$$\mathcal{M}_{0}(a_{j}, \infty) = \mathcal{M}_{0}(a_{0}, \infty) + \sum_{j=1}^{n} \mathcal{M}_{0}(a_{j}, b_{j}).$$
If $sum_{j} = \mathcal{M}_{0}(a_{0}, \infty) + \sum_{j=1}^{n} \mathcal{M}_{0}(a_{j}, b_{j})$.

Step 3: If
$$E_1, ..., E_n \in \mathcal{H}$$
 are disgraint and $F \in \mathcal{H}$ s.t. $F \subset \stackrel{n}{\coprod} E_i$, then $M_0(F) = \stackrel{n}{\sum} M_0(E_i \cap F)$

If we way remove E_i if $E_i \cap F = \emptyset$. So we may assume $E_i \cap F$ $\forall i$. Then $F = \coprod_{i=1}^{n} E_i \cap F$. Use $Step \ 1 \ a \ 2$. \square

Step 4: If $(E_i)^m$ 4 $(F_j)^n$ are two solve of disjoint h-intervals Sit. $\prod_{i=1}^{m} E_i = \prod_{j=1}^{m} F_j$, Then $\sum_{j=1}^{m} M_o(F_j) = \sum_{j=1}^{m} M_o(F_j)$

hence μ_0 extends to a well-defined function from $A \longrightarrow [0, \infty]$ by $\mu_0(\tilde{\mathbb{I}}_{E_i}) = \tilde{\mathbb{I}}_{\mu_0(E_i)}$.

Ef by step 3,

$$\sum_{i=1}^{m} \mathcal{M}_{\delta}(E_{i}) = \sum_{i=1}^{m} \sum_{j=1}^{n} \mathcal{M}_{\delta}(E_{i} \wedge F_{j}) = \sum_{j=1}^{n} \mathcal{M}_{\delta}(F_{j}).$$