1	1913 - Enrique Areyan - Fall 2013 - HW3 Follow
(1413 - Enrique Areyan - Fall 2013 - HW3 (1) Let Ins be a non-increasing sequence of non-empty closed intervals of IR
	trove that (1 in + 1)
1	Prove that $\bigcap In \neq \emptyset$ Prove that $\bigcap In \neq \emptyset$ Prove that $\bigcap In = [an, bn]$. By hypothesis $an \leq bn$. and $\{bn > bn + \epsilon > \cdots\}$ Prove $In = [an, bn]$. By hypothesis $an \leq bn$ and $\{bn > bn + \epsilon > \cdots\}$ Prove $In = [an, bn]$. By hypothesis $an \leq bn$ and $\{bn > bn + \epsilon > \cdots\}$
(Consider the set 5= 1 an is set is bounded above since by man to
	In # of for any n. A150, this set is the x=sup S. Therefore, 5 has a least upper bound let x=sup S. (x7 any for all not be that x7 any for all not be the x3 any for all not x3 and x3 an
	therefore, I have an upper bound we have that we take
	Herefore, 5 has a upper bound we have that we set x is the By properties of being an upper bound we have that But x is the Moreover, since brizan for all n, but is an upper bound. But x is the Reast upper bound so brizze. Combining these two inequalities we set least upper bound so brizze. Combining these two inequalities we set as the least upper bound so brizze.
	Reast upper bound so britis. constitution of the any n.
	an Exercise Director
	therefore, $x \in AIn$ and so $AIn \neq \overline{\Phi}$. $\overline{\Phi}$
	2) Prove that a set A is infinite iff there exists a proper subset B of such that BrA.
	such that B-A.
	Such that $B \sim A$. Pt: (\Leftarrow) Suppose that there exists a proper subset B of A s.t. $B \sim A$. Also, suppose for a contradiction that A is finite with $ A = n$. Also, suppose for a contradiction that A is finite with $ A = n$.
	Since Ball We know of the
	Now, since A is finite and B is a proper subset of H, we can always of the image of B is finite. Let $1B1 = m \le n-1$. Then, consider the cardinality of the image of
	n = A = Img(f) = f(bi), f(bz),, f(bm)f = m < n-1
	n = H = (1mg(+)) = 12100015
	Since fis 1-1, the set (f(b),f(br),f(bm)) contains distinct elements (bi,bz \in B: f(bi) = f(bz) =) bi = bz, conversely bi \dip bz =) f(bi) \dip f(bz). (bi,bz \in B: f(bi) = f(bz) =) bi = bz, conversely bi \dip bz =) f(bi) \dip f(bz).
	(bisbzEB: f(bi)=f(bz)=) bi=bz, conversely bi+bz=) f(constrained) contradictions But f is onto and so every element of A has a pre image under f. But f is onto and so every element of A has a pre image under f.
	But I is onto and so every every but this loads to a creat
	This ibstites our recognition
	Therefore, A is not a finite set, which means that A is infinite
	(countable or uncontable).

⇒) Suppose that A is infinite. laim: A contains a countable infinite subset. Pt (claim): Since A is infinite and not empty, Pick a & (any element). low that you have as, pick another element are A has. there is another lement to pick since A is infinite. Proceed inductively by picking the next lement ax from Allana, ..., axis then the subset han, an, ..., ax, ... is early countable by the mapping f:200,01,...,ak,...} > IN given by f(ai) = i. lend of claim) y previous claim, since A is infinite, it has a countable infinite subset. t Ao= {ao, a1, az, ... } be such that AoCA. Now, we can prove that A is vivalent to Ala, 93, 95,...}, which is clearly a proper subset of A. msider the 1-1, onto mapping f: A > A/201, 93, 95, ... I given by: $f(x) = \begin{cases} a_{zi} & \text{if } x = a_{i}, \text{ for } i = 0,1,2,... \text{ (this maps } a_{o} \Rightarrow a_{o}, a_{i} \Rightarrow a_{z}, a_{z} \Rightarrow a_{y},...) \\ x & \text{otherwise (for all other elements use the identity).} \end{cases}$ us is clearly a one-to-one and onto mapping. this is obvious when we Re the identity map. For all other elements of maps integers indices to Jen integer indices (f(ai)=azi), a map which we proved in class to be 1-1 and only erefore, f is a bijection from A to Alhanas, ag, ... I which is a proper subset A, showing that A-Alhanas, as, ... } Exhibit explicit 1-1, onto functions figst: f:(0,1) >(0,1) ond 9:(0,1) >12. ution: First, consider the function 9:(0,1) -> 12 given by $g(x) = ton((x+\frac{1}{2})\pi)$ trigonometric properties of the tangent function, tank) is a 1-1 and to function from (空里) to IR. By taking ton((x+之)用), we have shifted and Hed the function to be a bijection from (OII) TO IR. An alternative 1/2->(0,1) is g(x) = arcton(x) + 1/2, which is also a bijection for similar reasons mally, let us show 9 is 1-1: Let xiy ∈ (On) be such that 9(x)=9(y) (\$ $m((x+\frac{1}{2})\pi) = tan((y+\frac{1}{2})\pi)$; apply arctan to both sides = $cn(ton((x+\frac{1}{2})\pi)) = o(x(ton((y+\frac{1}{2})\pi)) = (x+\frac{1}{2})\pi = (y+\frac{1}{2})\pi =$ gisono: Let y & 12. take x = arcton(y) -1. then, $0) = 9\left(\frac{\operatorname{arcton}(y)}{\pi} - \frac{1}{z}\right) = \operatorname{tan}\left(\left(\frac{\operatorname{arcton}(y)}{\pi} - \frac{1}{z} + \frac{1}{z}\right)\pi\right) = \operatorname{tan}\left(\operatorname{arcton}(y)\right) = y.$

Second, for a function f: (0,1) > [0,1], consider the following:

Since (0,11) is an infinite set, we know from (2) that it is equivalent to some proper subset BC[0,1]. In fact, [0,1]~ (0,1). To prove this claim; use the fact proved in class that a is countable. Since (011) na Dit in ne INS is infinite and (0,1) na Ca, by theorem proved in class we know that is countable. Therefore, we can list its elements (0,11) nd=\(\tau_{11}, \tau_{2}, \tau_{3},..., \tau_{n} \).

Now consider the mapping f: [011] - (011) given by:

 $f(o)=r_1, f(i)=r_2, f(r_i)=r_3, f(r_2)=r_4, f(r_5)=r_5, \dots, f(r_i)=r_{i+2}, i=1,2,3,\dots$ f(x)=x for all other irrational numbers.

this map is clearly 1-1 and enter, therefore [0,1]~(0,1).

this shows the result we wanted but in an implicit form. However, we can use this idea to develop the following explicit, 1-1 and onto mapping f: [0,17 -> (0,1

Let $\chi \in [011]$. Then, $f(\chi) = \begin{cases} 1/2 & \text{if } \chi = 0 \\ 1/3 & \text{if } \chi = 1 \\ 1/042 & \text{if } \chi = \frac{1}{N}, n \neq 1 \end{cases}$

claim: this is a 1-1, onto mapping, clearly, when facts as the identity,

1-1: take xiy \ [011] with f(x) \ \ x and f(y) \ \ y (nothing to show there). the map is 1-1, onto. For other cases:

Suppose f(x)=f(y). Hen, eithe x=y=0 or x=y=1 or f(x)=f(y) (=) f(\frac{1}{n})=f(\frac{1}{nn}) 1 n, m > 1 (=) \frac{1}{n+2} = \frac{1}{m+2} (=) n= \frac{1}{n+2} = \frac{1}{m+2} (=) n= \frac{1}{n+2} = \frac{1}{m+2} (=) n= \frac{1}{n+2} (=) n= \frac{

Hence, f is 1-1.

where Let $y \in (0,1)$. If $y \neq \frac{1}{n+2}$, $n \neq 1$ then take x = y to get f(x) = f(y) = y. Therewise, if $y = \frac{1}{n+2}$, $n \neq 1$ take $x = \frac{1}{n}$ then $f(x) = f(\frac{1}{n}) = \frac{1}{n+2} = y$. Let $y \in (0,1)$. If $y \neq \frac{1}{n+2}$, $n \neq 1$ take $x = \frac{1}{n}$ then $f(x) = f(\frac{1}{n}) = \frac{1}{n+2} = y$. Let $y \in (0,1)$. Then f(x) = f(x) = f(x) = f(x) = y.

Pince f is 1-1 and onto where $f:[0]] \to (0]$; f is a bijection and so we know of the existence of $f^{-1}:(0]) \to [0]$. In this case the inverse easily stated as:

$$f'(x) = \begin{cases} x = 1/3 \\ x = 1/3 \\ x = 1/3 \end{cases}$$

$$f'(x) = \begin{cases} x = 1/3 \\ x = 1/3 \\ x = 1/3 \end{cases}$$

$$f'(x) = \begin{cases} x = 1/3 \\ x = 1/3 \\ x = 1/3 \end{cases}$$

nd this is the function we wanted.

he whole point here was to take a countable sequence out of (011), shift it y 2 to make room for 0 and 1, and send all others outside the sequence to remselves]