Wersja:	Numer indeksu:		$Grupa^1$:	1		I
A			s. 4	s. 5	s. 103	s. 104
			s. 105	s. 139	s. 140	s. 141
	Logika dla in	formatyków	,			
	Sprawdzian nr 1, 1 Czas pisania:					
w prostokąt p	(2 punkty). Jeśli zbiór klauzul {¬ poniżej wpisz rezolucyjny dowód sprz ne wartościowanie spełniające ten zb	zeczności teg		-		
dzi od angie	(2 punkty). Rozważmy taki trójar elskich słów if-then-else), że dla dowartościowania σ zmiennych zdaniow	wolnych forn	nuł φ_1, φ_2			
	$\hat{\sigma}(ite(\varphi_1, \varphi_2, \varphi_3)) = \begin{cases} \hat{\sigma}(\hat{\sigma}(\hat{\sigma}(\hat{\sigma}(\hat{\sigma}(\hat{\sigma}(\hat{\sigma}(\hat{\sigma}($	(φ_2) , jeśli $\hat{\alpha}$ (φ_3) , wpp.	$\hat{\sigma}(arphi_1) = T$,		
T /11 1 1 1	C 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1	1 / .		· ·

Jeśli istnieje formuła zbudowana tylko ze zmiennych zdaniowych i spójników ite, \top, \bot (i nawiasów), równoważna formule $q \Rightarrow (\neg q \lor p)$, to w prostokąt poniżej wpisz dowolną taką formułę. W przeciwnym przypadku wpisz słowo "NIE".

ite(q,p, op)

 $^{^{1}\}mathrm{Prosz}$ ę zakreślić właściwą grupę ćwiczeniową.

Zadanie 4 (2 punkty). Powiemy że formuła φ jest uproszczeniem formuły ψ jeśli obie formuły są równoważne oraz w φ występuje mniej spójników logicznych niż w ψ . W prostokąt poniżej wpisz formułę będącą uproszczeniem formuły $(p \lor q \lor r) \land (p \lor \neg q \lor r)$ lub słowo "NIE", jeśli taka formuła nie istnieje.

Zadanie 5 (2 punkty). Wpisz słowo "TAK" w te prostokąty, które odpowiadają formułom równoważnym formule $p \Rightarrow \neg q$. W pozostałe prostokąty wpisz słowo "NIE".

Wei	rsja
	_

Numer in	ndeksu:	

Grupa ⁺ :						
	s. 4	s. 5	s. 103	s. 104		
	105	120	1.40	1 / 1		

Zadanie 6 (5 punktów). Rozważmy taki trójargumentowy spójnik logiczny maj (nazwa pochodzi od angielskiego słowa majority), że dla dowolnych formuł $\varphi_1, \varphi_2, \varphi_3$ rachunku zdań oraz dowolnego wartościowania σ zmiennych zdaniowych $\hat{\sigma}(maj(\varphi_1, \varphi_2, \varphi_3)) = \mathsf{T}$ wtedy i tylko wtedy, gdy większość (tzn. 2 lub 3) z argumentów $\varphi_1, \varphi_2, \varphi_3$ ma wartość T przy wartościowaniu σ .

- (a) Sformułuj zasadę indukcji w takiej wersji, żeby można było z niej skorzystać w punkcie (b).
- (b) Udowodnij indukcyjnie, że dla dowolnej formuły zbudowanej ze zmiennych zdaniowych i spójników \neg , \wedge istnieje równoważna formuła zbudowana ze zmiennych zdaniowych i spójników maj, \bot , \neg . Oczywiście w zapisie wszystkich formuł można używać nawiasów.

Zadanie 7 (5 punktów).

- (a) Sformułuj zasadę indukcji w takiej wersji, żeby można było z niej skorzystać w punkcie (b).
- (b) Niech $f:\mathbb{N}\to\mathbb{N}$ będzie funkcją spełniającą następujące zależności rekurencyjne:

$$f(0) = 0, (*)$$

$$f(n+1) = f(n) + 2 \cdot 3^n$$
 dla wszystkich $n \in \mathbb{N}$. (**)

Udowodnij indukcyjnie, że $f(n) = 3^n - 1$ dla wszystkich liczb $n \in \mathbb{N}$.

Zadanie 8 (5 punktów). Które z następujących dwóch stwierdzeń są prawdziwe? Uzasadnij odpowiedź.

- (a) Dla dowolnych formuł φ, ψ rachunku zdań, jeśli formuła $\varphi \Leftrightarrow \psi$ jest spełnialna a ψ jest tautologią, to φ jest spełnialna.
- (b) Dla dowolnych formuł φ, ψ rachunku zdań, jeśli formuły $\varphi \Leftrightarrow \psi$ oraz ψ są spełnialne, to φ jest spełnialna.

¹Proszę zakreślić właściwą grupę ćwiczeniową.

Wersja:	Numer indeksu:		Grupa ¹ :				
			s. 4	s. 5	s. 103	s. 104	
			s. 105	s. 139	s. 140	s. 141	
	Logika dla info	rmatykóv	V				
	Sprawdzian nr 1, 16 listopada 2018 Czas pisania: 30+60 minut						
Zadanie 1 (2 punkty). Rozważmy taki trójargumentowy spójnik logiczny <i>ite</i> (nazwa pochodzi od angielskich słów if-then-else), że dla dowolnych formuł $\varphi_1, \varphi_2, \varphi_3$ rachunku zdań oraz dowolnego wartościowania σ zmiennych zdaniowych zachodzi							
$\hat{\sigma}(ite(\varphi_1, \varphi_2, \varphi_3)) = \begin{cases} \hat{\sigma}(\varphi_2), & \text{jeśli } \hat{\sigma}(\varphi_1) = T, \\ \hat{\sigma}(\varphi_3), & \text{wpp.} \end{cases}$							
Jeśli istnieje formuła zbudowana tylko ze zmiennych zdaniowych i spójników ite, \top, \bot (i nawiasów), równoważna formule $\neg(p \Rightarrow \neg q)$, to w prostokąt poniżej wpisz dowolną taką formułę. W przeciwnym przypadku wpisz słowo "NIE".							

$ite(q,p,\perp)$

Zadanie 2 (2 punkty). Powiemy że formuła φ jest uproszczeniem formuły ψ jeśli obie formuły są równoważne oraz w φ występuje mniej spójników logicznych niż w ψ . W prostokąt poniżej wpisz formułę będącą uproszczeniem formuły $(p \lor q \lor r) \land (p \lor q \lor \neg r)$ lub słowo "NIE", jeśli taka formuła nie istnieje.

p ee q

 $^{^{1}\}mathrm{Proszę}$ zakreślić właściwą grupę ćwiczeniową.

Wersja

Numer indeksu:				

$Grupa^1$:

s. 4	s. 5	s. 103	s. 104
s. 105	s. 139	s. 140	s. 141

Zadanie 6 (5 punktów).

- (a) Sformułuj zasadę indukcji w takiej wersji, żeby można było z niej skorzystać w punkcie (b).
- (b) Niech $g: \mathbb{N} \to \mathbb{N}$ będzie funkcją spełniającą następujące zależności rekurencyjne:

$$g(0) = 2, (*)$$

$$g(n+1) = 2 \cdot g(n) + 3^n - 1$$
 dla wszystkich $n \in \mathbb{N}$. (**)

Udowodnij indukcyjnie, że $g(n) = 3^n + 1$ dla wszystkich liczb $n \in \mathbb{N}$.

Zadanie 7 (5 punktów). Rozważmy taki trójargumentowy spójnik logiczny min (nazwa pochodzi od angielskiego słowa minority), że dla dowolnych formuł $\varphi_1, \varphi_2, \varphi_3$ rachunku zdań oraz dowolnego wartościowania σ zmiennych zdaniowych $\hat{\sigma}(min(\varphi_1, \varphi_2, \varphi_3)) = \mathsf{T}$ wtedy i tylko wtedy, gdy mniejszość (tzn. 0 lub 1) z argumentów $\varphi_1, \varphi_2, \varphi_3$ ma wartość T przy wartościowaniu σ .

Na ćwiczeniach zdefiniowaliśmy taki binarny spójnik logiczny \uparrow (znany również pod nazwą nand), że dla dowolnych formuł φ_1, φ_2 rachunku zdań oraz dowolnego wartościowania σ zmiennych zdaniowych $\hat{\sigma}(\varphi_1 \uparrow \varphi_2) = \mathsf{F}$ wtedy i tylko wtedy, gdy $\hat{\sigma}(\varphi_1) = \mathsf{T}$ i $\hat{\sigma}(\varphi_2) = \mathsf{T}$.

- (a) Sformułuj zasadę indukcji w takiej wersji, żeby można było z niej skorzystać w punkcie (b).
- (b) Udowodnij indukcyjnie, że dla dowolnej formuły zbudowanej ze zmiennych zdaniowych i spójnika \uparrow istnieje równoważna formuła zbudowana ze zmiennych zdaniowych i spójników min, \bot . Oczywiście w zapisie wszystkich formuł można używać nawiasów.

Zadanie 8 (5 punktów). Które z następujących dwóch stwierdzeń są prawdziwe? Uzasadnij odpowiedź.

- (a) Dla dowolnych formuł φ, ψ rachunku zdań, jeśli formuła $\varphi \Leftrightarrow \psi$ jest sprzeczna a ψ jest tautologia, to φ jest sprzeczna.
- (b) Dla dowolnych formuł φ, ψ rachunku zdań, jeśli formuła $\varphi \Leftrightarrow \psi$ jest sprzeczna a ψ jest spełnialna, to φ jest spełnialna.

¹Proszę zakreślić właściwą grupę ćwiczeniową.