Relatório de Análise de Algoritmos de Ordenação

A comparação entre os algoritmos de ordenação Bubble Sort, Insertion Sort e Quick Sort mostra como cada um deles lida de forma diferente com os dados, o que afeta o tempo de processamento dependendo do tipo de conjunto de dados.

- 1. Bubble Sort: Este é o método de ordenação mais lento entre os três. No caso de dados desordenados ou decrescentes, ele demora muito para organizar os elementos, já que verifica e troca cada elemento várias vezes. Quando os dados já estão em ordem crescente, ele se torna um pouco mais rápido, mas ainda é menos eficiente que os outros algoritmos.
- 2. Insertion Sort: Embora seja mais rápido que o Bubble Sort, o Insertion Sort também não é muito eficiente com grandes volumes de dados desordenados. No entanto, ele lida melhor com conjuntos que já estão ordenados o que reduz o número de passos necessários para completar a ordenação. Assim, ele se torna mais eficiente em cenários onde os dados estão próximos da ordem desejada.
- 3. Quick Sort: Este é o algoritmo mais rápido dos três e é muito eficiente para lidar com grandes volumes de dados. Ele tem um desempenho consistente e superior, independentemente do tipo de ordenação inicial (aleatório, crescente ou decrescente). Isso se deve ao fato de ele dividir o conjunto de dados e ordenar partes menores, o que diminui o tempo necessário para processar cada conjunto de dados

EXECUÇÃO DO CÓDIGO:

*Tela Inicial

Comparação de Algoritmos de O	- 🗆 X		
	Bubble Sort Ins	ertion Sort Quick Sort	
Tipo de Conjunto de Dados	BubbleSort (ms)	InsertionSort (ms)	QuickSort (ms)
Aleatório 100 Registros			
Aleatório 1000 Registros			
Aleatório 10000 Registros			
Crescente 100 Registros			
Crescente 1000 Registros			
Crescente 10000 Registros			
Decrescente 100 Registros			
Decrescente 1000 Registros			
Decrescente 10000 Registros			

*Processamento Bubble Sort

Comparação de Algoritmos de	– 🗆 X				
Bubble Sort Insertion Sort Quick Sort					
Tipo de Conjunto de Dados		BubbleSort (ms)	InsertionSort (ms)	QuickSort (ms)	
Aleatório 100 Registros	0,241				
Aleatório 1000 Registros	2,571				
Aleatório 10000 Registros	79,837				
Crescente 100 Registros	0,004				
Crescente 1000 Registros	0,099				
Crescente 10000 Registros	9,083				
Decrescente 100 Registros	0,006				
Decrescente 1000 Registros	0,719				
Decrescente 10000 Registros	57,485				

*Processamento Insertion Sort

*Processamento Quick Sort

Os resultados mostram que o Quick Sort é o algoritmo mais rápido e eficiente para ordenar dados de diferentes tamanhos e tipos (aleatórios, crescentes e decrescentes), destacando-se especialmente em conjuntos grandes. O Insertion Sort é eficiente com dados já ordenados, mas perde desempenho em conjuntos maiores e desordenados. O Bubble Sort é o mais lento em todos os cenários, sendo menos eficiente, especialmente em dados aleatórios e grandes.