Archived Soil Incubations Project

J. Beem-Miller 21 Apr 2020

Notes:

- This workbook is intended to load and prepare the key data for analysis for the archive incubation project.
- in general, this is an updated version of script "./src/arc_inc_master.R"
- all code chunk options are set to "echo = FALSE"; see raw .Rmd file for data wrangling code.

CO₂ fluxes and soil data

- 1. Load flux data from air-dry + storage (experiment 1) and storage duration (experiment 3) control samples, and convert from "wide" to "long" format so as to match other data.
- 2. Load flux data from air-dry + storage samples and from air-dry experiment (ctl & treatment), C & N data for all the Exploratories samples (measured in 2011), and soil mass and moisture data for all experiments.
- 3. Combine and summarize data in long format to calculate respiration rates and plot over time.
- 4. Plots of CO_2 fluxes over time. The final measurement points for a few samples which took >18 days to reach CO_2 targets are excluded for display reasons. Respiration rates for those samples remained flat. Notes:
- Daily measurements for the pre-incubation period were not taken for the 2011 control samples, leading to an apparent delay in the timing of the rewetting pulse (Fig 1).

• Plot pre-incubation period as average rate for the first four days for comparability (Fig. 2).

Isotope data

- 1. Read in isotope data from various sources. First load helper function 'read_jena_ams_results.R"
- 2. Next read in data from the appropriate directories in 'data/raw'.
- 3. Create a "tidy" style template for the data, i.e. variables in columns.
- Key variables are as follows:
 - SampleName (incorporates lab rep and treatment, e.g. "HEG10-1_dry")
 - ID (plot IDs, e.g. for "HEG10" for Exploratory samples)
 - Treatment (3 treatments: air-dry, air-dry + storage, storage duration; + controls)
 - Type (2 levels: F = forest, G = grassland)
 - Period (incubation period, 2 levels: pre = preincubation, inc = equilibrium incubation)
 - Experiment (3 levels: arc = air-dry + storage, rewet = air-dry/rewet, time = storage duration)
- Observational columns include:
 - $d14c (\Delta^{14}C-CO_2)$
 - $d13c (\delta^{13}C-CO_2)$
 - C_g_kg (C content)
 - dw_g (dry weight)
 - mgCO2.C_gS (mg CO₂-C respired g⁻¹ soil Period⁻¹)
 - time d (days in incubation period prior to measurement)
 - dH2O_grav (percent change in gravimetric water content due to laboratory moisture adjustment)
 - dH2O who (percent change in water holding capacity due to laboratory moisture adjustment)
- 4. Summarize observational data from timeseries data by unique IDs (SampleName).

- 5. Create helper functions for decay correction, converting Δ^{14} C to fraction modern, and cleaning up extraneous values in raw 14 C data. Archived sample Δ^{14} C data should to be corrected for decay since the year of collection. (Although the correction is very small and likely insignificant, I will do it anyway).
- decay correction formula is:

$$1000 \cdot \left(\left(FM \cdot e^{\frac{-year_{sampled} + 1950}{8267}} \right) - 1 \right)$$

- 6. Clean up ¹⁴C data and add external data points (tme experiment, Xplr control samples)
- 7. Combine data.
- 8. Count number of ¹⁴C observations for checking plots.
- 9. Plot pre-incubation period $\Delta^{14}{\rm C}$ against equilibrium respiration period $\Delta^{14}{\rm C}.$
- Points are means of duplicate lab reps and error bars are min and max (except for the 2011 control samples, which were not replicated)
- Pre-incubation Δ^{14} C was not measured for the 2011 control samples.
- Relative outlier point is the very negative (mean = -51.1‰) HEW22 pre-incubation control samples from the 2019 air-dry experiment.
- Samples from three of the forest plots of the 2011 treatment samples failed to accumulate enough $\rm CO_2$ to measure $^{14}\rm C$.

- 10. Plot Δ^{14} C against proportion of soil C respired by experiment, land cover, and sampling period.
- Note that data are first shown averaged by plot (Fig. 1), and then averaged by land use and treatment within sampling periods (Fig. 2)
- Pre-incubation Δ^{14} C was not measured for the 2011 control samples.

- \bullet Limits exclude outlier point (HEW22 control pre-incubation) for improved legibility
- Code for plot with outlier data is in second code chunk below, but not is currently included in report

- 12. Show treatment effects on observed equilibrium period $^{14}\mathrm{C}.$
- Fig. 1 shows the direction of mean treatment effects over time in reference to the atmosphere (gray line). Points are means (n=12 for 2011 treatment points, n=9 for 2011 control points; n=6 for all 2019 points); error bars = 2x std. err. of the mean.
- Fig. 2 shows treatment effects as means with inferential error bars (2x SE) [Sue and Alison suggest to display this info in tabular form]

- 15. Show overall effect of treatment on whole data set.
 - Control data shown on x-axis, treatment data shown on y-axis
- Solid line is 1:1, dashed line is a 20 per mille offset, and dot-dash line is a 40 per mille offset (roughly equivalent to the atmospheric decline over five and 10 years respectively for the period 2000 to 2020)
- Note that the difference between control and treatment points is within a 5 year range for the majority of points
- Data from all three experiments conducted in this study are shown, as well as a handful of additional data points for which both control and treatment (i.e. after air-drying + storage) incubations were conducted in another laboratory (Harvard points)
- Only A horizon data are shown here, as only three samples were analyzed for organic and B horizons (respectively) owing to sample availability

16. Show the effect of storage duration by plotting the difference between control and treatment ¹⁴C as a function of storage duration.