Álgebra lineal I, Grado en Matemáticas

Segunda PEC, Sistemas Lineales y Espacios Vectoriales.

19 de diciembre de 2023

En las preguntas 1 a 4 determine cuál es la opción correcta y justifique por qué. Todas las respuestas y resultados de los ejercicios tienen que estar suficientemente justificados. Si utiliza operaciones elementales en la resolución de los ejercicios indique explícitamente cuáles.

- 1. (1 punto) Sea AX = B es un sistema lineal de m > 3 ecuaciones y n incógnitas. Denotamos por $C_i(A)$ a la columna i-ésima de A. Si la forma de Hermite por filas de (A|B) tiene exactamente dos filas nulas, entonces
 - (a) el número de incógnitas del sistema es mayor que m-2.
 - (b) una condición necesaria para que sea compatible es $B = a_1 C_1(A) + \cdots + a_{n-1} C_{n-1}(A)$.
 - (c) si $B = C_1(A) + C_n(A)$ y n = m 2 el sistema es compatible determinado.
- 2. (1 punto) Sea $S = \{v_1, \ldots, v_m\}$ un conjunto de vectores linealmente dependientes de un espacio vectorial V de dimensión mayor que 0. Entonces, la afirmación "suprimiendo algún vector de S se puede encontrar un subconjunto $\mathcal{B} \subset S$ que es una base de V" es
 - (a) cierta pues todo conjunto de vectores linealmente dependiente contiene un subconjunto linealmente independiente.
 - (b) cierta sólo si $m > \dim(V)$.
 - (c) es falsa salvo el caso en que S sea un sistema generador de V.
- 3. (1 punto) Si U y W son dos subespacios de un subespacio vectorial V tales que el número de ecuaciones implícitas de U es p y el de W es q, con $p < \dim(V)$ y $q < \dim(V)$; se cumple que
 - (a) si $p + q < \dim(V)$, entonces $U \cap W \neq \{0\}$
 - (b) si $p + q = \dim(V)$, entonces U + W = V
 - (c) Si U y W son suplementarios en V, entonces $p+q > \dim(V)$
- 4. (1 punto) Sea P el plano de \mathbb{K}^4 de ecuaciones $\{x_1 + x_2 = 0, x_3 + x_4 = 0\}$ y \mathbb{K}^4/P el subespacio vectorial cociente \mathbb{K}^4 módulo P. Entonces, una base de \mathbb{K}^4/P es
 - (a) $\{(1,1,0,0)+P,(0,1,0,0)+P\}$
 - (b) $\{(1,1,0,0)+P,(0,0,1,1)+P\}$
 - (c) $\{(1,0,0,0)+P,(0,1,0,0)+P\}$

Ejercicio 1.(2.5 puntos) Discutir y resolver el sistema lineal AX = B para los distintos valores de los parámetros $a, b \in \mathbb{K}$, siendo

$$(A|B) = \begin{pmatrix} 1 & 2 & 0 & -1 & b \\ 3 & a & -5 & 2 & 3 \\ 1 & 0 & -5 & a & b \end{pmatrix}$$

Ejercicio 2. (2 puntos) Sean $\mathcal{B} = \{v_1, \dots, v_6\}$ una base de \mathbb{K}^6 y $S = \{u_1, \dots, u_6\}$ un conjunto de vectores de \mathbb{K}^6 cuya matriz de coordenadas por columnas respecto de \mathcal{B} es la matriz A de orden 6 con entradas

$$a_{ii} = 0$$
, $a_{ij} = 1$ si $i < j$, $a_{ij} = -1$ si $i > j$; para $i, j \in \{1, \dots, 6\}$.

Sabiendo que S es otra base de V, determine las coordenadas del vector $v_1 + \cdots + v_6$ respecto de S.

Ejercicio 3. (1.5 puntos) En el espacio vectorial \mathbb{K}^4 se consideran los subespacios U = L((1,0,1,1), (1,2,0,0)) y W = L((0,1,-1,0), (1,1,-1,2)). Determine una base y unas ecuaciones implícitas de los subespacios U + W y $U \cap W$.