

VLSI数字系统设计

课程介绍和要求

□课时:56学时,其中理论40学时,实验16学时

□参考教材

- ▶数字电子技术基础(第6版),阎石,清华大学电子学教研组 编,高等教育出版社【理论课】
- ▶Verilog 数字系统设计教程(第4版),夏宇闻,北京航空航天 大学出版社【实验课】
- ▶自编实验指导手册【实验课】
- ▶计算机系统要素——从零开始构建现代计算机【推荐阅读】

教学团队

□ 主讲教师:

- ▶邓岳, <u>ydeng@buaa.edu.cn</u>
- ▶李家军, jiajunli@buaa.edu.cn
- ▶李洪珏, <u>lihongjue@buaa.edu.cn</u>

□助教:

➤顾祚亚

√微信号: gzy18630751636

✓ 邮箱: zuoyagu@buaa.edu.cn

✓地址:沙河主楼D座5层

□微信群:

考核方式及成绩评定

□考核内容

- ▶课堂点名与提问
- ▶平时作业
- ▶实验
- ▶期末考试

□评分方法

- ▶平时成绩20%
- ▶实验报告30%
- ▶考试50%

什么是数字系统?

> 模拟电子与数字电子

> 数字量和模拟量

- ・数字量:在时间上和数量上都是<mark>离散、不连续的。(存在一个最小数量单位△)</mark>
- ・ 模拟量:数字量以外的物理量

□ 以下哪些物理量是连续的?

- ▶颜色
- ▶光的强度
- ▶车
- ▶声音
- ▶高度和重量
- ≽狗
- ▶英文字母

现实世界大部分物理量都是模拟量

> 数字系统和模拟系统

- ・工作信号、研究的对象、分析/ 设计方法以及所用的数学工具 都有显著的不同
- · 用数字信号完成对数字量进行 算术运算和逻辑运算的电路称 为数字电路,或数字系统 ₅

一般 无处不在的数字电子系统

消费电子

汽车

通信设施

无人机

卫星

数据中心

数字电子系统构成

数字电子系统发展历史

- □ 早期计算机和数字系统(1940s 1950s)
- □ 集成电路的崛起(1960s 1970s)
- □ 微处理器和个人计算机时代(1980s 1990s)
- □ 嵌入式系统和移动计算(2000s 至今)

早期计算机和数字系统 (1940s - 1950s)

- □电子管为基本电子器件
- □使用机器语言和汇编语言
- □主要应用于国防和科学计算,运算速度每秒几千次至几万次

各式各样的电子管

第一台量产商用电子计算机-UNIVAC 中国第一台电子管计算机—103计算机 (1964年) (1951年)

集成电路的崛起(1960s - 1970s)

- □1960年,Jack Kilby和Robert Noyce分别独立发明了集成电路,IC技术的出现极大地减小了电子元件的体积并提高了性能。
- □TTL(Transistor-Transistor Logic)等数字逻辑门系列问世,为数字电子系统的设计提供了更多选择。
- □通用计算机进一步发展,如IBM System/360系列(1964年),其采用模块化设计,使得硬件和软件得以分离。

IBM System/360系列(1964年)

超大规模集成电路计算机

- □超大规模集成电路(Very Large Scale Integration Circuit, VLSI)
- □将大量晶体管组合到单一芯片的集成电路
- □在一块芯片上集成的元件数超过10万个,或门电路数超过万门的集成电路
- □通常采用电子设计自动化(Electronic Design Automation)的方式进行,已经成为计算机工程的重要分支之一
 - ▶借助计算机自动地完成数字电子系统设计(逻辑编译、化简、分割、综合、优化、布局、布线和仿真)
 - ▶电子设计与制造技术发展中的核心

已经生效!美国正式断供EDA软件,中国企业传感器设计...

以美国为例,在我国发展的过程当中,有很多科技型的产品都是从美国进口的,而在我国发展得越来越好的情况下,美国却做出了一些限制...

网易 13小时前

已经生效!美国已正式断供EDA软件,中国企业不能设计传感器了

设计传感器、芯片,所使用的的主流软件就是EDA软件。我国中高端传感器芯片有80%都是来自进口,而传感器设计软件则全是依赖于国外产品。在美国断供EDA软件之后,我国并没有国产...

网易 昨天20:20

微处理器和个人计算机时代 (1980s - 1990s)

- □1971年, Intel推出了第一款商用微处理器Intel 4004, 开创 了微处理器时代。
- □个人计算机的兴起,如IBM PC(1981年)等,普及了数字 电子系统的应用,推动了微处理器和集成电路技术的迅猛发 展。
- □图形界面、图像和声音处理等数字技术的发展, 为多媒体应 用提供了支持。

Intel 4004 (1971年)

嵌入式系统和移动计算 (2000s - 至今)

- □嵌入式系统的广泛应用,如智能手机、平板电脑、智能家居等,将数字电子系统融入了各个领域的日常生活。
- □物联网(Internet of Things, IoT)的概念兴起,数字电子系统连接了更多设备和物体,实现了大规模的数据采集与处理。
- □FPGA(Field-Programmable Gate Array)等可编程逻辑器件的广泛应用,使得数字电子系统在硬件设计领域更加灵活和高效。

嵌入式系统

FPGA

摩尔定律

- □摩尔定律(Moore's Law)是集成电路领域的一个重要观察和预测
- □英特尔公司的共同创始人之一戈登·摩尔(Gordon Moore) 在1965年提出
- □该定律预测了集成电路的发展趋势,尤其是晶体管数量与芯 片尺寸的关系。
- □摩尔定律:集成电路上可以容纳的晶体管数目在大约每经过 18个月到24个月便会增加一倍。换言之,处理器的性能大约 每两年翻一倍,同时价格下降为之前的一半。

单个芯片上的晶体管数量

Moore's Law – The number of transistors on integrated circuit chips (1971-2018)

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years. This advancement is important as other aspects of technological progress – such as processing speed or the price of electronic products – are linked to Moore's law.

Data source: Wikipedia (https://en.wikipedia.org/wiki/Transistor_count)
The data visualization is available at OurWorldinData.org. There you find more visualizations and research on this topic.

学iPhone 的计算能力是阿波罗11号登月 导航计算机计算能力的1.2亿倍

迎课程目标

□总体目标

- ▶掌握数字电子技术的基本原理、基础理论和基本知识
- >具备一定数字系统设计能力,具有较强的实验技能
- ▶认识数字电子技术对现代科学技术的重大影响和各种应用,了解并适当涉及正在发展的学科前沿

□具体目标

- ▶掌握常用计数进制和BCD码
- ▶掌握逻辑函数及其化简
- ▶掌握TTL门电路、CMOS门电路的特点和常用参数
- ▶掌握常用组合逻辑电路的原理及功能
- ▶掌握常用时序逻辑电路的原理及功能
- ▶掌握常用触发器的工作原理
- ▶掌握硬件描述语言及数字系统设计方法

VLSI数字系统设计

第一部分 数电基础知识

(一) 信息与编码

第一部分 数电基础知识

- □ 信息与编码
- □基本逻辑运算
- □逻辑代数基础
- □逻辑函数的表示与化简

伊 什么是信息?

□信息的定义

- ▶指音讯、消息、通讯系统传输和处理的对象,泛指人类社会传播的一切内容。 --《新华词典》
- ➤Information resolves uncertainty(信息的本质就是消除不确定性)。 --Claude Shannon, 信息论之父
- ▶信息就是无法被预测的内容。消息越不可预测,传达的信息量 就越大!

如何度量信息?

□假设你面临N个同等可能的选择,而我给你一个能够将其缩 小至M个选择的事实。那么你得到的信息量是多少?

$\log_2(N/M)$ bits of information

Information is measured in bits (binary digits) = number of 0/1's required to encode choice(s)

□例子:

- ▶二进制表达抛一次硬币的结果: $\log_2(2/1)=1$ bit
- ▶投掷一枚骰子的结果: $\log_2(6/1) = \sim 2.6$ bits
- ▶投掷两枚筛子的结果: log₂(36/1) = ~ 5.2 bits

1952 1952 1952

信息的编码 (Encoding)

□编码是对信息进行表征的过程

- ▶ "国足赢了!"
- "Chinese National Football Team Won!"
- **>**00110000 00010101 00101010 01011100

□ 编码方式直接影响

- ➤ Mechanism (devices, # of components used)
- ➤ Efficiency (bits used)
- ➤ Reliability (noise)
- ➤ Security (encryption)

□ 编码"10006"代表什么?

- >一个五位数
- ▶高校代码:北京航空航天大学

数制与码制

□编码"10006"与"10003"

- ▶表示数量时,可以比较大小,10006>10003,
- ▶表示高校代码时,10006→北京航空航天大学,10003→清华大学,无法比较大小

□数制:表示数量的规则(对数进行编码)

▶ "计数"就是用数字表示事物的数量,人类计数的各种方法统称 为数制

□码制:表示事物的规则(对事物进行编码)

- ▶对符号、文字等的编码方案及其采取的规则统称为码制
- ▶二进制数形式的编码是表示各种符号、文字等信息最普遍的方法

常用数制

- □进位计数制是最常用的数制
 - ▶每一位的构成
 - ▶从低位向高位的进位规则
- □最常用的进位计数指包括十进制、二进制、八进制和十六进制,可以统称为"R进制",R被称为进位基数,即每个数位可以出现的数码个数,也就是"逢R进一"

	数制				
数制系统	基数 (base)	数码 (digits)			
二进制 (<mark>B</mark> inary)	2	0,1			
八进制 (Octal)	8	0,1,2,3,4,5,6,7			
十进制(Decimal)	10	0,1,2,3,4,5,6,7,8,9			
十六进制(Hexadecimal)	16	0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F			

□R进制数

$$(N)_R = a_{n-1}a_{n-2}\cdots a_2a_1a_0.a_{-1}a_{-2}\dots a_{-m}$$
 进位基数 n位整数 小数点 m位小数

- **□**例子: (1001)₂, (42)₈, (1239)₁₀, (1A)₁₆
- □数值大小

$$(N)_{R} = an_{-1}R^{n-1} + a_{n-2}R^{n-2} + \cdots + a_{2}R^{2} + a_{1}R^{1} + a_{0}R^{0} + a_{-1}R^{-1} + a_{-2}R^{-2} + \cdots + a_{-m}R^{-m}$$

$$= \sum_{i=-m}^{n-1} a_{i}R^{i}$$

□十进制数 (Decimal)

$$(12345.67)_{10} = 1 \times 10^{4} + 2 \times 10^{3} + 3 \times 10^{2} + 4 \times 10^{1} + 5 \times 10^{0} + 6 \times 10^{-1} + 7 \times 10^{-2}$$

 $(2642.186)_{D} = 2 \times 10^{3} + 6 \times 10^{2} + 4 \times 10^{1} + 2 \times 10^{0} + 1 \times 10^{-1} + 8 \times 10^{-2} + 6 \times 10^{-3}$

□二进制数 (Binary)

$$(1101)_2 = 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = (13)_{10}$$

$$(1101.1001)_B = 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 + 1 \times 2^{-1} + 0 \times 2^{-2} + 0 \times 2^{-3} + 1 \times 2^{-4}$$

□八进制数(Octal)

$$(125)_8 = 1 \times 8^2 + 2 \times 8^1 + 5 \times 8^0 = (85)_{10}$$

 $(125.6)_0 = 1 \times 8^2 + 2 \times 8^1 + 5 \times 8^0 + 6 \times 8^{-1}$
 $= (85.75)_D$

□十六进制数(Hexadecimal)

$$(2B. 6E)_{16} = 2 \times 16^{1} + 11 \times 16^{0} + 6 \times 16^{-1} + 14 \times 16^{-2}$$

= $(43. 4296875)_{10}$

十进制	二进制	八进制	十六进制
0	0	0	0
1	1	1	1
2	10	2	2
3	11	3	3
4	100	4	4
5	101	5	5
6	110	6	6
7	111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	Α
11	1011	13	В
12	1100	14	O
13	1101	15	D
14	1110	16	Е
15	1111	17	F
16	10000	csdn 20 t/yhy	7791 69 750

□二进制、八进制、十六进制——十进制转换

▶按权对位展开相加

$$(N)_R = a_{n-1}a_{n-2}\cdots a_2a_1a_0. a_{-1}a_{-2}\dots a_{-m}$$

$$=a_{n-1}R^{n-1}+a_{n-2}R^{n-2}+\cdots a_2R^2+a_1R^1+a_0R^0+a_{-1}R^{-1}+a_{-2}R^{-2}+\cdots +a_{-m}R^{-m}$$

□例子

$$(1101. \ 1001)_{2} = 1 \times 2^{3} + 1 \times 2^{2} + 0 \times 2^{1} + 1 \times 2^{0} + 1 \times 2^{-1} + 0 \times 2^{-2} + 0 \times 2^{-3} + 1 \times 2^{-4}$$

$$= (13. \ 5625)_{10}$$

$$(246. \ 15)_{8} = 2 \times 8^{2} + 4 \times 8^{1} + 6 \times 8^{0} + 1 \times 8^{-1} + 5 \times 8^{-2}$$

$$= 128 + 32 + 6 + 0. \ 125 + 0. \ 078125$$

$$= (166. \ 203125)_{10}$$

$$(2A. \ 6C)_{16} = 2 \times 16^{1} + 10 \times 16^{0} + 6 \times 16^{-1} + 12 \times 16^{-2}$$

$$= 32 + 10 + 0. \ 375 + 0. \ 046875$$

$$= (42. \ 421875)_{10}$$

$$27$$

□十进制——二进制转换:分为整数的转换和纯小数的转换

- > 整数的转换:整数连除,取余逆序
 - · 1) 将N除以2, 记下所得的商和余数
 - · 2) 将得到的商继续除以2, 记下每次 得到的商和余数, 如此重复进行, 直 到商为0
 - · 3) 将所有余数按照与运算过程相反 的顺序排列,即为二进制数结果

例子:将(11)10转换为二进制数

- > 纯小数的转换: 小数连乘, 取整顺序
 - 1) 将M乘以2, 记下结果的整数部分和小 数部分
 - 2) 将得到的小数部分继续乘以2, 记下每次得到的整数部分和小数部分, 如此重复进行, 直到小数部分为0或满足精度要求
 - · 3) 将所得的整数部分顺序排列,即为二进制数结果

例子: 将(0.825)10转换为二进制数

0.825×2=1.65·····整数1
0.65×2=1.3·····整数1
0.3×2=0.6······整数 0
0.6×2=1.2······整数1
0.2×2=0.4·····整数 0
0.4×2=0.8······整数0
0.8×2=1.6·····整数1
0.6×2=1.2······整数1
循环
$(0.8125)_{10} = (0.11010011001\cdots)_{2}$

□十进制——八进制、十六进制转换:与十进制——二进制转 换方法一

➢ 例子: 将(35.8125)₁₀转换为八进制数和十六进制数

得到 $(35.8125)_{10} = (43.64)_{8}$ (注意结果数位的排列顺序)

得到 (35.8125)10 = (23.D)16(注意结果数位的排列顺序)

□二进制——八进制的转换

- ➤ 3位二进制从000到111, 一共8种 状态, 其表达范围刚好相当于1位 八进制数
- ▶ 1) 以二进制数的小数点为起点, 整数部分向左,小数部分向右, 每三位分一组。不足部分补0
- ▶ 2) 每一组3位二进制数转换成1位 八进制数,顺序不变
- ▶ 例子: 将(10011010.111101)₂转 换为八进制数

□八进制——二进制的转换

- ▶ 与二进制-八进制转化类似
- ▶ 分组对位转化,将1位八进制数转换成一组3位二进制数
- ▶ 例子: 将(316.54)8转换为二进制数

$$(3 \quad 1 \quad 6. \quad 5 \quad 4)_{8}$$

 $\downarrow \quad \downarrow \quad \downarrow \quad \downarrow$
 $(011 \quad 001 \quad 110. \quad 101 \quad 100)_{2}$
 $(316.54)_{8} = (11001110. \quad 1011)_{2}$

□二进制——十六进制的相互转换

- ▶与二进制-八进制类似
- ▶4位为一组

- > 八进制——十六进制的相互转换
 - 以二进制为中介,先转换为二进制数,再转换为对应的进制数

19.2 de c

二进制数的运算

□算术运算

- ▶二进制数的0/1可以表示数量,进行加减乘除等运算
- ▶无符号数的加减乘除运算规则与十进制类似

加法运算 0111 7 + 0101 → + 5 1100 → 12 减法运算 0111 7

0101

1952 1952 1952

二进制数的运算

□带符号数的运算规则

□如何表示负数?

- ▶二进制数的正、负号可以用1位编码, 0/1表示
- ▶在定点运算中,最高位为符号位(0为正,1为负)
- **>**如 +5=0 0101, -5=1 0101

□正数与负数的运算

- >5 + (-5) = 0
- \triangleright 0 0101 + 1 0101 = 1 1010 ?
- ▶符号位为码制,后面4位为数制,码制不能用数制的规则进行 运算

19. 2 de 1

原码、反码和补码

- □原码:符号位在前,0表示正数,1表示负数,数值位跟随符号位
 - **>**(+5)₁₀=(0 0101)_{原码}
 - **>**(-5)₁₀=(1 0101)_{原码}
- □反码:正数的反码为其本身,负数的反码通过其数值位逐位 取反得到
 - **>**(+5)₁₀=(0 0101)_{反码}
 - **>**(-5)₁₀=(1 1010)_{反码}
- □补码:正数的补码为其本身,负数的补码为其反码的数值位加1得到
 - \rightarrow (+5)₁₀=($^{\circ}$ 0101)_{反码}=($^{\circ}$ 0101)_{补码}
 - ► (-5)₁₀=(1 1010)_{反码}=(1 1011)_{补码}

19.2 dt 4

二进制数的运算

- □数字计算机中,二进制数的运算常常使用的是补码系统
- □用补码表示有符号数,则可以用加法运算来实现减法运算, 同时不影响运算的正确性

两个正数的减法

$$(+7)_{10} = (0 \ 0111)_{\text{APP}}$$

 $(-5)_{10} = (1 \ 1011)_{\text{APP}}$

两个负数的加法

两个正数的减法

$$(+5)_{10} = (0\ 0101)_{\text{APG}}$$

 $(-7)_{10} = (1\ 1001)_{\text{APG}}$

两个负数的减法

□二-十进制码,即用二进制码元来表示十进制数的代码,也称为十进制码,BCD(Binary Coded Decimal)码

十进制数	8421 码	余3码	2421 码	5421 码	格雷码
0	0000	0011, 71	0000	0000	0000
1	0001	0100	0001	0001	0001
3 4 5	0010	0101	0010	0010	0011
	0011	0110	0011	0011	0010
	0100	0111	0100	0100	0110
	0101	1000	1011	1000	0111
6	0110	1001	1100	1001	0101
7 0111 8 1000 9 1001	0111	1010	1101	1010	0100
	1000	1011	1110	1011 - A	1100
	1001	1100	1111	1100	1000

例子 $(19)_{10} = (0001 \ 1001)_{8421}$

BCD码不是二进制数

□ASCII (American Standard Code for Information Interchange): 美国信息交换标准代码是基于拉丁字母的一套电脑编码系统

□使用7位二进制数(剩下的1位二进制为0)来表示所有的大 写和小写字母,数字0到9、标点符号,以及在美式英语中使

用的特殊控制字

□思考:如下语句的

输出是什么?

char a,b; a='a'; b='b'; printf("%d",b-a);

ASCII值	十六进制	控制字符	ASCII值	十六进制	控制字符	ASCII值	十六进制	控制字符	ASCII值	十六进制	控制字符
0	0	NUT	32	20	(space)	64	40	@	96	60	
1	1	SOH	33	21	1	65	41	A	97	61	a
2	2	STX	34	22	,,	66	42	В	98	62	ь
3	3	ETX	35	23	#	67	43	С	99	63	С
4	4	EOT	36	24	\$	68	44	D	100	64	d
5	5	ENQ	37	25	%	69	45	E	101	65	е
6	6	ACK	38	26	&	70	46	F	102	66	f
7	7	BEL	39	27	. 3	71	47	G	103	67	g
8	8	BS	40	28	(72	48	Н	104	68	h
9	9	HT	41	29)	73	49	I	105	69	i
10	A	LF	42	2A	水	74	4A	J	106	6A	j
11	В	VT	43	2B	+	75	4B	K	107	6B	k
12	С	FF	44	2C	,	76	4C	L	108	6C	1
13	D	CR	45	2D	<u> </u>	77	4D	M	109	6D	m
14	E	SO SO	46	2E	2 2 *	78	4E	N	110	6E	n
15	F	SI	47	2F	1	79	4F	0	111	6F	0
16	10	DLE	48	30	0	80	50	P	112	70	р
17	11	DCI	49	31	1	81	51	Q	113	71	q
18	12	DC2	50	32	2	82	52	R	114	72	r
19	13	DC3	51	33	3	83	53	S	115	73	s
20	14	DC4	52	34	4	84	54	T	116	74	t
21	15	NAK	53	35	5	85	55	U	117	75	u
22	16	SYN	54	36	6	86	56	V	118	76	v
23	17	TB	55	37	7	87	57	W	119	77	w
24	18	CAN	56	38	8	88	58	X	120	78	x
25	19	EM	57	39	9	89	59	Y	121	79	у
26	1A	SUB	58	3A		90	5A	Z	122	7A	Z
27	1B	ESC	59	3B	į.	91	5B	E	123	7B	{
28	1C	FS	60	3C	<	92	5C	1	124	7C	
29	1D	GS	61	3D		93	5D	1	125	7D	}
30	1E	RS	62	3E	>	94	5E	~	126	7E	~
31	1F	US	63	3F	?	95	5F	2 2-0 2	127	7F	DEL

数制与码制小节

□二进制数、十进制数、八进制数、十六进制数和BCD码的含义

□数制和码制的结构关系

□数制之间的转换,数制和BCD码之间的转换

□二进制数的运算规则

《数字电子技术基础》(阎石,第6版)

- □习题 1.2, 1.4, 1.7, 1.9, 1.11
- □习题 1.13 (1) (3) (5) (7)

作业

[题 1.2] 将下列二	进制整数转换为等值的十进	注制数。	
(1) (01101) ₂ ;	(2) (10100) ₂ ;	(3) (10010111) ₂ ;	(4) (1101101) ₂ °
[题 1.4] 将下列二进	性制数转换为等值的十进制	数。	
(1) (101.011) ₂ ;	(2) (110.101) ₂ ;	(3) (1111.1111) ₂ ;	$(4) (1001.0101)_{20}$
[题 1.7] 将下列	一十进制数转换为等值的二进	 制数和十六进制数。	
(1) (17) ₁₀ ;	(2) (127) ₁₀ ;	(3) (79) ₁₀ ;	(4) (255) _{10°}
[题 1.9] 将下列十分	进制数转换为等值的二进制	数和十六进制数。要求二进制	引数保留小数点以后 4 位有
效数字。			
(1) (25.7) ₁₀ ;	(2) (188.875) ₁₀ ;	(3) (107.39) ₁₀ ;	(4) (174.06) _{10°}
[題 1.11] 写出下列	带符号位二进制数(最高	位为符号位)的反码和补码	0
(1) (011011) ₂ ;	$(2) (001010)_2;$	(3) (111011) ₂ ;	$(4) (101010)_{20}$
[题 1.13] 计算下	下列用补码表示的二进制数	的代数和。如果和为负数,请	求出负数的绝对值。
(1) 01001101+001	00110;	(2) 00011101+01001	100;
(3) 00110010+100	00011;	(4) 00011110+10011	100;
(5) 11011101+010	01011;	(6) 10011101+01100	110;
(7) 11100111+110	11011;	(8) 11111001+10001	000 _o

VLSI数字系统设计

第一部分 数电基础知识

(二) 基本逻辑运算

逻辑运算:与、或、非

> "与"运算也称为逻辑乘、逻辑与

表达式 F=A-B=AB

真值表

-	A	В	F
	0	0	0
	0	1	0
	1	0	0
	1	1	1

〉"或"运算也称为逻辑加

A	В	F
0	0	0
0	1	1
1	0	1
1	1	1

~"非"运算也称为逻辑反

表达式
$$F = \overline{A}$$
或 $F = A'$

真值表

A	F
0	1
1	0

逻辑符号

常用复合逻辑: 与非、或非

□与非

$$Z = \overline{X \cdot Y}$$

True if NOT ALL inputs are true

□或非

$$Z = \overline{X + Y}$$

True if NOT ANY input is true

常用复合逻辑: 异或、同或

□异或

▶取值相异,输出为1

□同或

▶取值相同,输出为1

XOR

$$F = X \oplus Y$$

		与 AND	或 OR	与非 NAND	或非 NOR	异或 XOR	同或 XNOR
X	Υ	F=XY	F=X+Y	$F = \overline{XY}$	$F = \overline{X + Y}$	F = X ⊕ Y	F=X⊙Y
0	0	0	0	1	1	0	1
0	1	0	1	1	0	1	0
1	0	0	1	1	0	1	0
1	1	1	1	0	0	0	1

VLSI数字系统设计

第一部分 数电基础知识

(三)逻辑代数基础

布尔代数基本公式

序号	公 式	序号	公 式
1	$0 \cdot A = 0$	10	1' = 0 $0' = 1$
2	$1 \cdot A = A$	11	1+A=1
3	$A \cdot A = A$	12	0 + A = A
4	$A \cdot A' = 0$	13	A + A = A
5	$A \cdot B = B \cdot A$	14	A + A' = 1
6	$A \cdot (B \cdot C) = (A \cdot B) \cdot C$	15	A+B=B+A
7	$A \cdot (B+C) = A \cdot B + A \cdot C$	16	A + (B+C) = (A+B) + C
8	$(A \cdot B)' = A' + B'$	17	$A + B \cdot C = (A + B) \cdot (A + C)$
9	(A')' = A	18	$(A+B)'=A'\cdot B'$

常量与变量之间的基本逻辑关系

□1. 关于变量与常数关系的定理

$$A \cdot 0 = 0$$
 $A + 0 = A$
 $A \cdot 1 = A$ $A + 1 = 1$

≻如何证明这些公式?

- ・真值表判定法
- ・公式推导法

□2. 交换律、结合律、分配律

a. 交换律: AB= BA A + B=B + A

b. 结合律: A (BC) = (AB) C A+(B+C) = (A+B) + C

c. 分配律: A(B+C) = AB + ACA+BC = (A+B)(A+C)

逻辑函数的化简公式

名称	公式1	公式2006年300	化简目的
吸收定律1	$(A+B)(A+\overline{B})=A$	$AB + A\overline{B} = A$	消相邻项
吸收定律2	A(A+B)=A	A + AB = A	消多余项
吸收定律3	$A(\overline{A} + B) = AB$	$A + \overline{A}B = A + B$	消多余因子
多余项定律	$(A+B)(\overline{A}+C)(B+C) = (A+B)(\overline{A}+C)$	$AB + \overline{A}C + BC = AB + \overline{A}C$	消多余项

廖 摩根定律 (反演律、求反律)

$$\frac{\overline{A \cdot B} = \overline{A} + \overline{B}}{\overline{A} + B} = \overline{A} \cdot \overline{B}$$

A	В	$\overline{A \cdot B}$	$\overline{A} + \overline{B}$	$\overline{A+B}$	$\overline{A} \cdot \overline{B}$
0	0	1	1	1	1
0	1	1	1	0	0
1	0	1	1	0	0
1	1	0	0	0	0