Lezione 10 Algebra I

Federico De Sisti2024-11-02

Numeri primi e aritmetica 1

Definizione 1 (Numero primo)

Un intero $\rho > 1$ si dice primo se $\forall a, b\mathbb{Z}$

 $\rho|ab \rightarrow \rho|a \ oppure \ \rho|b.$

Definizione 2 (Numero irriducibile)

Un intero $\rho > 1$ si dice irriducibile se i suoi unici divisori positivi sono 1 e ρ

Esercizio:

Dimostrare che ρ è primo \Leftrightarrow è irriducibile

Teorema 1 (Fondamentale dell'aritmetica)

n > 1 intero. Allora n si scrive in modo unico come

$$n = \rho_1^{k_1} \cdot \ldots \cdot \rho_r^{k_r}$$
 (forma canonica)

dove $k_i > 0 \ \forall i \in \{1, \dots, r\}$

 $e \rho_1 < \rho_2 < \ldots < \rho_r$

 $e \rho_i \ \dot{e} \ primo \ \forall i \in \{1, \dots, r\}$

Teorema 2

 ρ primo. Allora

 $\sqrt{\rho} \ \dot{e} \ irrazionale \ (ovvero \ \sqrt{\rho} \ni \mathbb{Q})$

Dimostrazione (Per assurdo)

 $\exists a, b \in \mathbb{Z} \ t.c. \ \sqrt{\rho} = \frac{a}{b} \ con \ MCD(a, b) = 1$

Allora:

$$(a) + (b) = (MCD(a, b)) = (1)$$

$$\to 1 \in (a)) + (b)$$

 $\exists r, s, \in$, t.c. 1 = ra + sb (identità di Bezout)

ora:
$$\begin{cases} a = \sqrt{\rho}b \\ b\rho = a\sqrt{\rho} \end{cases}$$

Quindi: $\sqrt{\rho} = \rho \cdot 1 = \sqrt{\rho} \cdot (ra + sb)$

$$(\sqrt{\rho}a)r + (\sqrt{\rho}b)s$$

$$= \rho br + as \in \mathbb{Z}$$

 $\Rightarrow \sqrt{\rho} \in \mathbb{Z}$ quindi $\sqrt{\rho}$ è un intero che divide ρ e $1 < \sqrt{\rho} < \rho$

Teorema 3 (Euclide)

Esistono infiniti numeri primi

Dimostrazione

Supponiamo per assurdo che \exists un numero finito di primi ρ_1, \ldots, ρ_r Definiamo: $N := (\rho_1 \cdot \ldots \cdot \rho_r) + 1 > 1$ $\Rightarrow \exists \rho_k \ primo \ tale \ che \ \rho_k | N$

$$\Rightarrow \exists \rho_k \ primo \ tale \ che \ \rho_k \mid N$$

$$\Rightarrow \begin{cases} \rho_k | N \\ \rho_k | N - 1 \end{cases} \Rightarrow \rho_k | N - (N - 1) \Rightarrow \rho_k | 1, \text{ assurdo}$$

Definizione 3 (Numero di Euclide)

 $Sia \rho primo$

$$\rho^{\#} := \left(\prod_{q \in \rho, q \ primo} q \right) + 1.$$

 $\rho^{\#} + 1$ si dice numero di Euclide