Relacional e Dimensional

Integridade Referencial

ACID

Minimizar Redundância

Objetivo: Operação

Dimensional – OLAP

Focado em Negócio

Maior Redundância

Pré-calculado

Objetivo: Análises

DW Clássico

- Idealizado nos anos 90
- Focado em Negócio: Fatos
- Fácil modelagem
- Fácil sumarização de fatos (medidas)
- Custo de Armazenamento
 - Apenas informação estritamente necessária
 - Dados Limpos
- Otimização baseada em Índices
- On-premise

Modelo Dimensional Hoje

- Custo de Armazenamento é quase insignificante
- Custo de Processamento baixou: Calcular Dimensões e Medidas sob demanda pode ser melhor do que tratar e armazenar dados em um modelo "Star"
- Uma tabela desmoralizada é muito mais fácil de ser compreendida e consultada do que um modelo "Star"
- Dados não tratados podem ser carregados
- Um modelo em desuso, mas estarão ativos por décadas!

DataWarehouse Moderno

- Otimizados para Processar Grandes Volumes de Dados
- Desacoplados
- Baseados nos princípios do modelo relacional:
 - Tabelas
 - Colunas 3548621
 - PK e FK
 - Sem integridade referencial
- Menor custo
- Nuvem
- Propósito: Analítico

Redshift, Snowflake, Hive, Bigquery

Armazéns de Dados Clássicos

Formatos Proprietários

Desacoplados

Desacoplados

Nuvem

- 1. Empresas focam em seu negócio
- 2. Aplicação na nuvem prove:
 - 1. Segurança
 - 1. Autenticação e Autorização
 - 2. VPN
 - 3. Criptografia
 - 4. Log
 - 5. Monitoramento
 - 2. Disponibilidade
 - 3. Atualizações
 - 4. Backups
- 3. Escalável!
- 4. Custo menor

