Unit -3

LAPLACE TRANSFORMS

LAPLACE TRANSFORM

Definition:

Let f(t) be a function of t, defined ∀ t≥0. If the integral

 ∞^{-st} f(t) dt exists, then it is called the Laplace Transform of

 $_{0}$? e

f(t) and it is denoted by L(f(t)) or f(s).

Here s is parameter, real or complex.L is called Laplace Transform operator.

www.android:universityapdates:in | www.aniversityapdates:in | kttps://telegram.me/jntua

$$L\{f(t)\} = \boxed{e}^{\infty} e^{-st} f(t) dt$$

Def: Piece-wise Continuous Function:

Afunction is said to be piece-wise continuous (or) Sectionally Continuous) over the closed interval [a,b] if it is defined on that interval and is such that the interval can be divided into a finite number of sub intervals, in each of which f(t) is continuous and both right and left hand limits at every end point if the sub intervals.

Def:Functions of Exponential Order:

A function f(t) is said to be of exponential order as
$$t \to \infty$$
 if $\lim_{t \to \infty} (e)^{-at} f(t) = finite quantity$ (or)

If for a given positive integer T, \ni a positive number M Such that $|f(t)| < Me^{at} \quad \forall \ t \ge T$,

Sufficient Conditions for existence of Laplace Transform are 1

- f(t) is Piece-wise Continuous Function in [a, b] where a>0, 2)
- f(t) is of Exponential Order function.

Linear Property:

Theorem: If c_1 , c_2 are constants and f_1 , f_2 are functions of t, then

$$L[c_1 f_1(t) + c_2 f_2(t)] = c_1 L[f_1(t)] + c_2 L[f_2(t)]$$

Proof: The definition of Laplace Transform is

$$L[f(t)] = \int_0^\infty e^{-st} f(t) dt$$
 ----(1)

By definition

$$L[c_1 f_1(t) + c_2 f_2(t)] = \int_0^\infty e^{-st} [c_1 f_1(t) + c_2 f_2(t)] dt$$

$$= \overline{\int}_0^\infty e^{-st} \int_0^\infty e^{-st} f_1(t) dt + c_2 \int_0^\infty e^{-st} f_2(t) dt$$

$$= \overline{\int}_0^\infty e^{-st} \int_0^\infty e^{-st} f_1(t) dt + c_2 \int_0^\infty e^{-st} f_2(t) dt$$

$$= \overline{\int}_0^\infty e^{-st} \int_0^\infty e^{-st} f_1(t) dt + c_2 \int_0^\infty e^{-st} f_2(t) dt$$

<u>Laplace Transform (L.T) of some Standard Functions:</u>

Solution: By definition of L.T L[f(t)]= f(t)
$$\int_0^\infty e^{-st}$$
Put f(t)=1 o.b.s L[1] =
$$\int_0^\infty e^{-st}$$
 .1. dt

- L[c] = L[c.1] = c. L[1] = c.(1/s) = c/s2)
- Show that $L[e^{at}] = \frac{1}{s-a}$

Solution: By definition of L.T, L[f(t

$$|f| = \int_0^\infty e^{-st} f(t) dt - (1)$$

$$|e|^{at}| = \left[\int_0^\infty e^{-st} e^{at} dt \right] = \left[\int_0^\infty e^{-(s-a)T} dt \right]$$

$$|e|^{at}| = \left[\frac{e^{-(s-a)t}}{-(s-a)} \right]$$

Put $f(t) = e^{at}$ o.b.s in (1) L[

Note:
$$L[e^{-at}] = \frac{1}{s+a}$$

Show that L[Cos at] = $\overline{s^2+a^2}$ and L[Sin at] = $\overline{s^2+a^2}$

 \boldsymbol{a}

W.k.t $e^{i\theta} = \cos \theta + i \sin \theta$ Solution:

 e^{iat} = cos at + i sin at

 $L[e^{iat}] = L[\cos at + i \sin at]$

 $L[\cos at + i \sin at] = L[e^{iat}]$

$$= \frac{1}{s-ia} \qquad (L [e^{at}] = \frac{1}{s-a})$$

$$= \frac{s+ia}{(s-ia)(s+ia)}$$

$$= \frac{s+ia}{s^2+a^2}$$

$$= \frac{s}{s^2+a^2} + i \frac{a}{s^2+a^2}$$

Equte real and imaginary parts we get

L[Cos at] =
$$\frac{s}{s^2+a^2}$$
 and L[Sin at] = $=\frac{a}{s^2+a^2}$

Find L [Sin hat] 5)

Solution: L [Sin hat] = L [
$$\frac{1}{s-a} - \frac{1}{s+a}$$
] = ½ [L { e^{at} } -L { e^{-at} }]

$$= \frac{1}{2} \left[\frac{\frac{s+a-s+a}{s^2-a^2}}{\frac{a}{s^2-a^2}} \right]$$

6) Find L [Cos hat]

Solution: L [Cos hat] = L[] =
$$\frac{e}{2}$$
 [L { e^{at} } +L { e^{-at} }]
$$= \frac{1}{s-a} + \frac{1}{s+a}$$
]

$$= \frac{s+a+s-a}{s^2-a^2} = \frac{s^2-a^2}{s^2-a^2}$$

S

7) Show that (i)) L [
$$t^n$$
] = ρ (n+1)/ s^{n+1} , n>-1

(ii)
$$L[t^n] = n!/s^{n+1}$$
, n is +ve integer

Solution: By definition of L.T

$$L[f(t)] = \int_0^\infty e^{-st} f(t) dt -----(1)$$

$$L[t^n] = \int_0^\infty e^{-st} t^n dt \qquad \text{put st = x i.e t = x/s}$$

$$= \int_0^\infty e^{-x} (\frac{x}{s})^n \frac{dx}{s} \qquad dt = \frac{dx}{s}$$

$$= \frac{1}{s^{n+1}} \int_0^\infty e^{-x} x^n dx$$

$$= \frac{1}{s^{n+1}} \rho_{(n+1)}, \quad \text{for (n+1) > 0}$$

$$L[t^n] = \rho_{(n+1)/s^{n+1}}, \quad n>-1$$

L [t^n] = $n!/s^{n+1}$, n is +ve integer

1

3)
$$L^{e^{at}} = \frac{1}{s-a} [$$
 , $L[e-at] = s+1a$

4) L[Cos at]=
$$\overline{s^2 + a^2}$$

5) L[Sin at]
$$\frac{s^2+a^2}{s^2-a^2} =$$
6) L[Sin hat] $\frac{s}{s} =$
7) L[Cos $\frac{s^2-a^2}{s^2-a^2}$ hat]=

6) L[Sin hat]
$$s =$$

7) L[Cos
$$s^2-a^2$$
 hat]=

8)
$$L(t^n)=\rho(n+1)/s^{n+1}$$
, $n>-1$

9)
$$L(t^n)=n!/s^{n+1}$$
, n is +ve integer PROBLEMS

1. Find the Laplace Transformation (L.T) of $t^2 + 2t + 3$

Solution: L [
$$t^2 + 2t + 3$$
] = L[t^2] + 2 $L[t] + L[3]$
= $\frac{!}{s^3} + 2 \cdot \frac{!}{s^2} + \frac{!}{s^2} \cdot \frac{!}{s^2} = \frac{!}{s^2} \cdot \frac$

t² +4] www.android.universityupdates.in | www.universityupdates.in | https://telegram.me/jntua
2. Find
5

Solution:
$$L[t^{2} + 4] = L[t^{2}] + L[4]$$

$$e^{3t} + 3e^{-2t}$$

$$= \frac{\rho(\frac{7}{2})}{s^{7/2}} + \frac{4}{s}$$
3.

3. Find L[

Solution: $L[e^{3t}+3e^{-2t}]=L[e^{3t}]+$

 $3L[e^{-2t}]$

$$= \frac{1}{s-3} + 3\frac{1}{s+2}$$

4. Find L[Sin 3t + $Cos^2 2t$]

Solution: L[Sin 3t +
$$Cos^2 2t$$
]=L[Sin 3t] + L[$Cos^2 2t$]
= $\frac{1}{s^2+9}$ + L[$\frac{1}{2}$ 3 1 $Cos 4t$

$$= \frac{3}{s^2+9} + \frac{1}{2} \{ L[1] + L[\cos 4t] \}$$

$$= \frac{3}{s^2+9} + \frac{1}{2} \left[\frac{1}{s} + \frac{s}{s^2+16} \right]$$

5.Find L[f(t)] if
$$f(t)=0$$
, $0 < t < 2$
= 3, $t > 2$

Solution: By definition of L.T

www.android.universityupdates.in | www.universityupdates.in | https://telegram.me/jntua ∞^{-st} f(t) dt

$$L[f(t)] = _{0} 2 e$$

$$= \int_{0}^{2} e^{-st} \qquad \infty^{-st} f(t) dt$$

$$f(t) \qquad dt \qquad + _{2} 2 e$$

$$= 0 + 2 e^{-st} .3. dt$$

$$= 3 e^{-st}$$

$$= 2 e^{-2s}$$

$$= 3$$

$$s$$

First shifting Theorem (F.S.T):

If L[f(t)]=f(s) then $L[e^{at}f(t)]=f(s-a)$

Proof: By definition of L.T

$$L[f(t)] = \int_{0}^{\infty} e^{-st} f(t) dt = f(s) - (1)$$

$$L[e^{at}f(t)] = \int_{0}^{\infty} e^{-st} e^{at} f(t) dt$$

$$= \int_{0}^{\infty} e^{-(s-a)t} f(t) dt Put s-a=p = \int_{0}^{\infty} e^{-pt} f(t) dt$$

$$= f(p) = f(s-a)$$

Note: $L[e^{-at}f(t)] = f(s+a)$

Problems:

1) Find L[$t^3 e^{-3t}$]

Solution: let
$$f(t) = t^3$$

$$L[f(t)] = L[t^3] = \frac{3!}{s^{3+1}} = \frac{6}{s^4} = f(s)$$
By F.S.T, $L[e^{-at}f(t)] = f(s+a)$

$$f(t)] = f(s+3)$$

$$L[e^{-3t}t^3] = \frac{6}{(s+3)^4}$$

2) Find L $[e^{-t}(3 \sin 2t - 5 \cosh 2t)]$

Solution : Let f(t) = (3 sin 2t - 5 cosh 2t) L
[f(t)] = L[(3 sin 2t - 5 cosh 2t)]
=
$$3\frac{2}{s^2+4}$$
 - $5\frac{s}{s^2-4}$ = f(s)

Second Shifting Theorem (S.S.T)

STATEMENT:- If L[f(t)]=f(s) and g(t)=f(t-a), t>a
$$= 0, \quad \text{t$$

PROOF:- By definition of L.T

L[f(t)]=
$$\int_0^\infty e^{-st}$$
 f(t) dt = f(s)-----(1)
 $\int_0^\infty e^{-st}$ L[g(t)]= g(t) dt = $\int_0^a e^{-st}$ g(t)
dt $+\int_a^\infty e^{-st}$ g(t) dt
= $0 + \int_a^\infty e^{-st}$ f(t -a) dt put t-a=x = $\int_0^\infty e^{-s(a+x)}$ f(x) dx
t=a+x
= $e^{-as} \int_0^\infty e^{-sx}$ f(x) dx dt=dx, (x=0 to ∞)

Example:

Find Laplace Transform of
$$g(t) = \frac{\cos(t - \frac{2\pi}{3})}{3}, \text{ if } t > \underline{\qquad}$$

$$= 0, \qquad \qquad \text{if } t < \underline{\qquad}$$

$$= \frac{2\pi}{3}$$
Solution: Let $f(t) = \cos t$, $a = \underline{\qquad}$

.android.universityupdates.in | www.universityupdates.in | https://telegram.me/jntua

$$f(t-a) = \cos\left(\frac{2\pi}{3}\right) = \cos\left(t - \frac{2\pi}{3}\right)$$

$$\cos t = \frac{s}{s^2+1} = f(s)$$

$$L[f(t)] = L$$

By S.S.T L [g(t)] =
$$e^{-as}$$
 f(s)
= $(e^{-\frac{2\pi}{3}s})\frac{s}{s^2+1}$

Change of scale property:

If L[f(t)] = f(s) then L [f(at)] =
$$\frac{1}{a}$$
 f($\frac{s}{a}$)

NOTE: L [f($\frac{t}{a}$)] = a f(as)

Example: If $L[f(t)] = \frac{9s^2 - 12s + 15}{(s-1)^3}$ then find L[f(3t)]

scale property, L [f(at)]

$$\frac{9s^2 - 12s + 15}{(s-1)^3} = f(s)$$

$$\frac{1}{a} f(\frac{s}{a})$$

$$L [f(3t)] = \frac{1}{3} f(\frac{s}{3})$$

$$= \frac{1}{3} \left[\frac{9(\frac{s}{3})^2 - 12(\frac{s}{3}) + 15}{(\frac{s}{3} - 1)^3} \right]$$

$$= \frac{1}{3} \left[\frac{s^2 - 4s + 15}{(s - 3)^3 / 27} \right]$$

$$= \frac{9(s^2 - 4s + 15)}{(s - 3)^3}$$

Laplace transform of the derivative of f(t)

 \square If f(t)is continous for all t \square and f (t) is piecewise continous, then

 $L\{f(t)\}e$ sists, provided $\lim e^{st}f(t)$ and \lim

$$L\{f(t)\}\ sL\{f(t)\}-f(0)\ sf(s)-f(0)$$

$$L\{f^{n}(t)\} \square^{n}f(s)-s^{n-1}f(0)-s^{n-2}f(0)....f^{n-1}(0)$$

Example Derivelaplace transform of sin at

Let f(t) sinat then $f'(t) = a \cos at$ and f''(t) -a sinat Also f(0) = 0, f'(0) = a from this also f''(0) = 0, also from this By derivative formula,

L[f"(t)] =
$$s^2$$
 L[f(t)] - s f(0) - f'(0)-----(1)
L{- a^2 sinat} G^2 L(sin at)-a
(- a^2) L(Sin at) + $a = s^2$ L(sin at) a =
($s^2 + a^2$) L(sin at)
L(sin at) = $\frac{a}{s^2 + a^2}$

Laplace transform of the integration of f(t)

If L[f(t)]=f(s) then L[
$$\int_0^t f(t)dt$$
] = $\frac{f(s)}{s}$
Example:

Find L.T. of $\int_0^t \sin at \ dt$ Solution:

Let
$$L[f(t)] = L[\sin at] = \frac{a}{s^2 + a^2} f(t) = \int_0^t f(t) dt] = \frac{f(s)}{s}$$

$$= f(s)$$

$$L[
\int_0^t \sin at \ dt = \frac{1}{s} \left(\frac{a}{s^2 + a^2} \right)$$

Multiplication by t:

If L[f(t)]=f(s) then L[t f(t)]
$$L[t^{2} f(t)] = (-1)^{2} \frac{d}{ds^{2}} [f(s)] = (-1)^{n} \frac{d^{n}}{ds^{n}} [f(s)]$$

$$L[t^{n} f(t)] = (-1)^{n} \frac{d^{n}}{ds^{n}} [f(s)]$$

Solution: Let
$$sin^{2}t] = L\left[\frac{1-cos\ 2t}{2}\right]$$
let
$$\frac{1}{2}\left(L[1] - L[\cos\ 2t]\right) = \frac{1}{2}\left(\frac{1}{s} - \frac{s}{s^{2}+4}\right) = \frac{2}{s(s^{2}+4)} = f(s)$$

$$= -\frac{d}{ds}\left[f(s)\right]$$

$$= -\frac{d}{ds}\left[\frac{2}{s(s^{2}+4)}\right]$$

$$= -2\left[\frac{-1}{\{s(s^{2}+4)\}^{2}}\right]\frac{d}{ds}(s(s^{2}+4))$$

$$= \left[\frac{2}{\{s(s^{2}+4)\}^{2}}\right]\frac{d}{ds}(s^{3}+4s)$$

By theorem L[t f(t)]
$$= \left[\frac{2}{2} \right]$$

=
$$\left[\frac{2}{\{s(s^2+4)\}^2}\right]$$

= $\frac{6s^2+8}{s^2(s^2+4)^2}$] (3s²+4) Division

If L[f(t)]=f(s) then L[
$$\frac{f(t)}{t}$$
] = $\int_{s}^{\infty} f(s)ds$, provided $\lim_{t\to 0} \frac{f(t)}{t}$ exists.

Problems: (1) Find

Problems: (1) Find

니

Solution: Let $f(t) = e^{-3t} - e^{-4t}$

$$L[f(t)] = L[e^{-3t} - e^{-4t}] = \frac{1}{s+3} - \frac{1}{s+4} = f(s)_{w.k.t}$$

$$, L[\frac{f(t)}{t}] = \int_{s}^{\infty} f(s) ds$$

$$\frac{e^{-} - e^{-}}{t}] = \int_{s}^{\infty} (\frac{1}{s+3} - \frac{1}{s+4}) ds$$

$$L[\frac{f(t)}{s+3}] = \int_{s}^{\infty} f(s) ds$$

$$L[\frac{f(t)}{s+3}] = \int_{s}^{\infty} f(s) ds$$

$$L[\frac{f(t)}{s+4}] = f(s)_{w.k.t}$$

$$= \log (s+3) - \log (s+4)$$

$$= \log (s+4) - \log (s+4)$$

(2). Find L.T of
$$\frac{\cos at - \cos b}{t}$$

Solution: Let $f(t) = \cos at - \cos bt$

 ∞

$$L[f(t)] = L[\cos at - \cos bt]$$

$$f(s) = \frac{s}{s^2 + a^2} - \frac{s}{s^2 + b^2}$$
w.k.t, $L[\frac{f(t)}{t}] = \int_{s}^{\infty} f(s) ds$

$$\frac{\cos at - \cos bt}{t}] = \int_{s}^{\infty} (\frac{s}{s^2 + a^2} - \frac{s}{s^2 + b^2}) ds$$

$$= [\log (s^{2} + a^{2}) - \log (s^{2} + b^{2})]$$

$$= [\log (s^{2} + a^{2}) - \log (s^{2} + b^{2})]$$

$$1 = s\underline{s} 2^{2} + \underline{a}b^{2} 2$$

$$\log (2)$$

$$= \frac{1}{2} \log \left(\frac{s^2 + b^2}{s^2 + a^2} \right)$$

Evaluation of

$$\int_0^\infty \left[\frac{e^{-e}}{t} \right]^t$$
 (1). Using L.T. Evaluate [1] dt

Solution: First we will find $L\left[\frac{e^{-t}-e^{-2t}}{t}\right]$ let

$$f(t) = e_{-t} - e_{-2t}$$

=

$$L[f(t)] = L[e^{-t} - e^{-2t}]$$

$$= \frac{1}{S+1} - \frac{1}{S+2} = f(s)$$

w.k.t,
$$L\left[\frac{f(t)}{t}\right] = \int_{s}^{\infty} f(s)ds$$
,
 $L\left[\frac{e^{-t} - e^{-2t}}{t}\right] = \int_{s}^{\infty} \left(\frac{1}{s+1} - \frac{1}{s+2}\right) ds$

$$\log (s+1) - \log (s+2) = \log (s+2)$$

$$\frac{s+1}{S+2}$$

S

 ∞

www.android.universityupdates.in | www.universityupdates.in | https://telegram.me/jntua

$$\frac{s(1+\frac{1}{s})}{s(1+\frac{1}{s})} = \log 1 - \log \left(\frac{s+1}{s+2}\right)$$

$$= \frac{s(1+\frac{1}{s})}{s+1} = \log \left(\frac{s+1}{s+2}\right)$$

$$= \frac{e^{-} - e^{-}}{t}$$

$$= \log \left(\frac{s+1}{s+2}\right)$$

$$= \frac{s+1}{s+2}$$

$$= \frac{s+2}{s+1}$$

therefore, L[

The definition of Laplace Transform is

$$L[f(t)] = \int_0^\infty e^{-st} f(t) dt$$

$$L\begin{bmatrix} \frac{e}{e} & -e \\ t \end{bmatrix} = \int_0^\infty e^{-st} \left[\frac{e^{-t} - e^{-2t}}{t} \right] dt = \log \left(\frac{s+2}{s+1} \right)$$

Put s=0 on both sides

$$\int_{0}^{\infty} 1 \left[\frac{e^{-t} - e^{-2t}}{t} \right] dt = \log \left(\frac{2}{1} \right) = \log 2$$

$$\int_{0}^{\infty} \left(\frac{\cos at - \cos bt}{t} \right) dt$$

$$\frac{\cos at - \cos bt}{t}$$

$$t$$

$$L[]$$

2. Using LT find

Solution: First we find

: Let f(t) = cos at - cos bt

L[f(t)] = L [cos at - cos bt] f(s)
=
$$\frac{s}{s^2+a^2} - \frac{s}{s^2+b^2}$$

w.k.t,
$$\frac{f(t)}{t} = \int_{s}^{\infty} f(s) ds$$

$$L \begin{bmatrix} \frac{\cos at - \cos bt}{t}}{t} \end{bmatrix} = \int_{s}^{\infty} \left(\frac{s}{s^{2} + a^{2}} - \frac{s}{s^{2} + b^{2}} \right) ds$$

$$= \frac{1}{2} \left[\log \left(s \right) \right]$$

$$= \frac{1}{2} \log \left(\frac{s^{2} + a^{2}}{s^{2} + b^{2}} \right) \log \left(\frac{s^{2} + b^{2}}{s^{2} + b^{2}} \right)$$

$$= \frac{1}{2} \log \left(\frac{s^{2} + a^{2}}{s^{2} + b^{2}} \right) \log \left(\frac{s^{2} + b^{2}}{s^{2} + a^{2}} \right)$$
By definition of LT,
$$\int_{0}^{\infty} e^{-st} \left(\frac{\cos at - \cos bt}{t} \right) dt = \frac{1}{2} \log \left(\frac{s^{2} + b^{2}}{s^{2} + a^{2}} \right)$$

$$= \log \sqrt{\left(\frac{b^{2}}{a^{2}} \right)} = \log \left(b/a \right)$$
3. ST
$$\int_{0}^{\infty} \left(\frac{\cos 5t - \cos 3t}{t} \right) dt = \log \left(3/5 \right)$$
Note: put a=5, b=3 in above problem

Laplace Transform of Periodic Function:

<u>Definition</u>: A function f(t) is said to be periodic with period T, if $\forall t$, f(t+T) = f(t) where T is positive constant.

The least value of T > 0 is called the periodic function of f(t).

Example: $\sin t = \sin (2\pi + t) = \sin (4\pi + t) = --- - Here$ sint is periodic function with period 2π .

Formula :- If f(t) is periodic function with period $T \forall t \ then$

$$L[f(t)] = \frac{1}{1 - e^{-st}} \int_0^T e^{-st} f(t) dt$$

Problem : Find the L. T of the function $f(t) = e^t$, 0 < t < 5 and f(t) = f(t+5)

$$\frac{1}{1-e^{-s5}} \int_{0}^{5} e^{-st} f(t) dt$$

$$= \frac{1}{1-e^{-s5}} \int_{0}^{5} e^{-st} e^{t} dt$$

$$= \frac{1}{1-e^{-s5}} \int_{0}^{5} e^{-st} e^{t} dt$$
Solution: Here T=5 $L[f(t)] = \frac{1}{1-e^{-5s}} \left[\frac{e^{(1-s)t}}{1-s} \right] = \frac{1}{1-e^{-5s}} \left[\frac{e^{5(1-s)}}{1-s} \right]$

The unit step function or Heaviside's unit function:

e-as

S

It is denoted by u(t-a) or H(t-a) and is defined as H(t-a) = 0, t < a=1, t>a L.T.

of unit step function:

Inverse Laplace Transform:

Definition: If f(s) is the Laplace Transform of f(t) then f(t) is called the inverse Laplace Transform of f(s) and is denoted by $L^{-1}f(s)$. i.e., $f(t) = L^{-1}f(s)$

 L^{-1} is called inverse Laplace Transform operator, but not reciprocal.

Example : If
$$L^{e^{at}} = \frac{1}{s-a}[$$
 then $e^{at} = L^{-1}[\frac{1}{s-a}]$

<u>Linear Property:</u>

If $f_1(s)$ and $f_2(s)$ are L.T. of $f_1(t)$ and $f_2(t)$ respectively then

$$L^{-1}[c_1 \ f_1(s) + c_2 \ f_2(s)] = c_1 L^{-1}[f_1(s)] + c_2 L^{-1}[f_2(s)] \ \text{where } c_1$$
 , c_2 constants.

<u> Standard Formulae :</u>

$$1 \Rightarrow L^{-1}\left[\frac{1}{s}\right] = 1$$

$$(2) + \left[e^{at}\right] - \frac{1}{s} \qquad (1) + \left[e^{at}\right] - \frac{1}{s} = 1$$

(2)
$$L[e^{at}] = \frac{1}{s-a}$$
 (1) $L[e^{at}] = \frac{1}{s-a}$ [1] $= E^{at}$ (3) $L[e^{-at}] = \frac{1}{s+a}$ $\Rightarrow L^{-1}[\frac{1}{s+a}] = e^{-at}$

(4) L [sin at] =
$$\frac{1}{s^2 + a^2}$$
 $\Rightarrow L^{-1} \left[\frac{1}{s^2 + a^2} \right] = \frac{1}{a} \sin at$

(5) L [
$$\cos \frac{s}{s^2+a^2}$$
 at $\Rightarrow L^{-1}\left[\frac{s}{s^2+a^2}\right] = \cos$ at]=

(5) L [
$$\cos s^2 + a^2$$
 at $\frac{a}{s^2 - a^2}$ $\Rightarrow L^{-1}[\frac{1}{s^2 - a^2}] = \frac{1}{a} \sinh = at$

6) L [$\cos \frac{s^2 + a^2}{s^2 - a^2}$ $\Rightarrow L^{-1}[\frac{s}{s^2 - a^2}] = \frac{1}{a} \sinh = at$

6) L [Cos
$$\frac{\overline{s^2-a^2}}{s^2-a^2}$$
 $\Rightarrow L^{-1}\left[\frac{\overline{s^2-a^2}}{s^2-a^2}\right]$ hat]=] = cosh at

7)
$$L(t^n) = \rho(n+1)/s^{n+1}$$
, n > -1 $\Rightarrow L^{-1}[\frac{1}{s^{n+1}}] = \frac{https://telegram.me/jntua}{\rho(n+1)}$

8)
$$L(t^n)=n!/s^{n+1}$$
, n is +ve integer $\Rightarrow L^{-1}\left[\frac{1}{s^{n+1}}\right]=\frac{t}{n!}$ Problems:

(1)
$$L^{-1}\left[\frac{1}{s^2} + \frac{1}{s+4} + \frac{1}{s^2+4} + \frac{s}{s^2-9}\right]$$
 Find without the sum of the sum

solution:

$$= t + e^{-4t} + \frac{1}{2} \sin 2t + \cosh 3t.$$

$$L^{-1} \left[\frac{1}{s^2 + 25} \right]$$

$$L^{-1} \left[\frac{1}{s^2 + 25} \right] = L^{-1} \left[\frac{1}{s^2 + 5^2} \right] = \frac{1}{5} \sin 5t$$

$$L^{-1} \left[\frac{1}{2s - 5} \right]$$

(2)Find solution

(3) Find

 $L^{-1}\left[\frac{1}{2s-5}\right] = \frac{1}{2}L^{-1}\left[\frac{1}{s-5/2}\right] = \frac{1}{2}e^{\frac{1}{2}t} \quad \text{solution}$

$$L^{-1}\left[\frac{2s+1}{s(s+1)}\right]$$

(4) Find

$$L^{-1}\left[\frac{2s+1}{s(s+1)}\right] = L^{-1}\left[\frac{s+s+1}{s(s+1)}\right] = L^{-1}\left[\frac{1}{s+1} + \frac{1}{s}\right] = e^{-t} + 1$$

(5) Find
$$L^{-1}\left[\frac{3s-8}{4s^2+25}\right]$$

Solution: $L^{-1}\left[\frac{3s-8}{4s^2+25}\right] = \frac{1}{4}L^{-1}\left[\frac{3s-58}{s^2+25/4}\right]^{-} = \frac{3}{4}Cos$ $= \frac{1}{4}\left\{3L^{-1}\left[\frac{5}{2s^2+(5/2)^2}\right] - 8L^{-1}\left[\frac{1}{s^2+(5/2)^2}\right] - 8L^{-1}\left[\frac{1}{s^2+(5/2)^2}\right]^{-1}$

Sin 5

25

= 34 Cos 4/5 Sin t

2

FIRST SHIFTING THEOREM OF INVERSE L.T:

If
$$L^{-1}[f(s)] = f(t)$$
 then $L^{-1}[f(s-a)] = e^{at} f(t)$
= $e^{at} L^{-1}[f(s)]$

PROOF:

By definition of L.T

$$\int_{0}^{\infty} e^{-st} f(t) dt = f(s) ------(1) L[f(t)] = \int_{0}^{\infty} e^{-st} e^{at} f(t) dt = \int_{0}^{\infty} e^{-(s-a)t}$$

L[eat

$$f(t) dt Put s-a=p = \int_0^\infty e^{-pt} f(t)$$

$$dt$$

$$= f(p) = f(s-a)$$

$$L[e^{at}f(t)] = f(s-a)$$

$$\Rightarrow L^{-1}[f(s-a)] = e^{at} f(t) \quad (or) L^{-1}[f(s-a)] = e^{at} L^{-1}[f(s)]$$

$$Note: L^{-1}[f(s+a)] = e^{-at} L^{-1}[f(s)]$$

PROBLEMS

$$L^{-1}\left[\frac{s+3}{(s+3)^2+8^2}\right] = e^{-3t} L^{-1}\left[\frac{s}{s^2+8^2}\right] = e^{-3t} L^{-1}\left[\frac{s}{s^2+8^2}\right] = e^{-3t} L^{-1}\left[\frac{s}{s^2+8^2}\right] = e^{-3t} L^{-1}\left[\frac{s}{s^2+8^2}\right] = e^{-3t} L^{-1}\left[\frac{1}{s^2+2s+5}\right] = L^{-1}\left[\frac{1}{(s+1)^2+4}\right] = e^{-t} L^{-1}\left[\frac{1}{s^2+2^2}\right] = e^{-t} L^{-1}\left[\frac{1}{(s+1)^2}\right] = L^{-1}\left[\frac{1}{(s+1)^2}\right] = L^{-1}\left[\frac{1}{(s+1)^2}\right] = e^{-t} L^{-1}\left[\frac{1}{s^2}\right] = e^{-t} L^{-1}$$

2) Find

Solution:

3) Find

Solution:

4) Find Inverse L.T of
$$L^{-1}\left[\frac{s}{(s+3)^2}\right] = L^{-1}\left[\frac{s+3-3}{(s+3)^2}\right] = e^{-3t} L^{-1}\left[\frac{s-3}{s^2}\right]$$
 Solution :
$$= e^{-3t} \left\{ L^{-1}\left[\frac{1}{s}\right] - 3 L^{-1}\left[\frac{1}{s^2}\right] \right\} = e^{-3t} (1-3t)$$

$$L^{-1}\left[\frac{s+3}{s^2-10s+29}\right]$$

$$L^{-1}\left[\frac{s+3}{s^2-10s+29}\right] = L^{-1}\left[\frac{s+3}{(s-5)^2+4}\right] = L^{-1}\left[\frac{(s-5)+5+3}{(s-5)^2+4}\right]$$

$$= e^{5t} L^{-1}\left[\frac{s+8}{s^2+4}\right]$$

$$= e^{5t} \left\{ L^{-1}\left[\frac{s}{s^2+4}\right] + 8 L^{-1}\left[\frac{1}{s^2+4}\right] \right\}$$

$$= e^{5t} \left\{ L^{-1}\left[\frac{s}{s^2+2^2}\right] + 8 L^{-1}\left[\frac{1}{s^2+2^2}\right] \right\}$$

5) Find

Solution:

(By F.S.T)

$$=e^{5t}$$

SECOND SHIFTING THEOREM:

[Cos 2t + 4 Sin 2t]

If
$$L^{-1}[f(s)] = f(t)$$
 then $L^{-1}[e^{-as}f(s)] = g^{(t)}$ where $g(t) = f(t-a)$, $t>a$

=0, t<a

Proof: By S.S.T of L.T,
$$L[g(t)] = e^{-as} f(s)$$
 (write proof of SST)

$$\Rightarrow L^{-1}[e^{-as} f(s)] = g t^{(-)}$$

$$\Rightarrow L^{-1}[e^{-as} f(s)] = f(t-a), t>a$$

$$= 0, \qquad t < a \ Note:$$

We can also written as $L^{-1}[e^{-as}f(s)] = f(t-a)H(t-a)$

Problem:

Find
$$L^{-1}\left[\frac{e^{-\pi s}}{s^2+1}\right]$$

$$L^{-1}\left[\frac{e^{-}}{s^2+1}\right] = L^{-1}\left[e^{-\pi s}\frac{1}{s^2+1}\right]_{\pi s}$$

Solution:

Let
$$f(s) = \frac{1}{s^2 + 1}$$

 $L^{-1}[f(s)] = \frac{L^{-1}[\frac{1}{s^2 + 1}]}{1} = Sin t = f(t)$

by S.S.T $L^{-1}[e^{-as}f(s)] = f(t-a)$, t>a=0, t<a

So
$$L^{-1}[e^{-\pi s}f(s)] = f(t-\pi), t>\pi$$

=0, $t<\pi$
 $L^{-1}[e^{-\pi s}\frac{1}{s^2+1}] = Sin(t-\pi), t>\pi=0,$
 $t<\pi$

Chang of scale property:

If
$$L^{-1}[f(s)] = f(t)$$
 then $L^{-1}[f(\frac{s}{a})] = a f(at)$
(or) $L^{-1}[f(as)] = \frac{1}{a} f(\frac{t}{a})$

Proof: By the change of scale property,

$$L[f(at)] = \frac{1}{a} f(\frac{s}{a})$$

$$\Rightarrow L^{-1}[f(\frac{s}{a})] = a f(at)$$

www.android.universityupdates.in | www.universityupdates.in | https://telegram.me/jntua $L^{-1}[f(as)] = \frac{1}{a} f(\frac{t}{a})$ Problem(1): If $L^{-1}[\frac{s^2-1}{(s^2+1)^2}] = t \cos t$, then find $L^{-1}[\frac{9s^2-1}{(9s^2+1)^2}]$ Solution: Given $L^{-1}\left[\frac{s-1}{(s^2+1)^2}\right] = t \cos t$ i.e., $L^{-1}[f(s)] = f(t)$, Here $f(s) = \frac{s^2-1}{(s^2+1)^2}$ $f(t) = t \cos t$ $L^{-1}\left[\frac{9s^2-1}{(9s^2+1)^2}\right]$ Now $= L^{-1}\left[\frac{(3s)^2-1}{\{(3s)^2+1\}^2}\right]$ = $L^{-1}[f(3s)]$ By change of scale property, $=\frac{1}{2}f(\frac{t}{2})$ $L^{-1}[f(as)] = \frac{1}{a}f(\frac{t}{a}) = \frac{1}{3}\frac{t}{3}\cos\frac{t}{3}$ a = 3

Inverse Laplace Transform of partial fractions:

Therefore $(1) \Rightarrow f(s) = \frac{-6}{s-1} + \frac{7}{s-2}$ $L^{-1}[f(s)] = L^{-1}[\frac{-6}{s-1} + \frac{7}{s-2}] = -6e^t + 7e^{2t}$

Inverse Laplace Transform of derivatives:-

log

If
$$L^{-1}[f(s)] = f(t)$$

$$L^{-1}\left[\frac{d}{ds^n} \right]^n$$
 then $f(s) = (-1)^n t^n f(t)$

$$11f'(s) =$$

 $L[t^n f(t)]$ L.T. $(-1)^n \frac{d}{ds^n} = f(s)$ $\Rightarrow L^{-1}\left[\frac{d^n}{ds^n}f(s)\right] = (-1)^n$ $t^n f(t) \text{ Note:- } L^{-1}[f'(s)] =$ t f(t)

(s+4)

 $www.universityupdates.in \mid www.universityupdates.in \mid https://telegram.me/jntuas+3 s+4$

$$L^{-1}[f'(s)] = L^{-1}\left[\frac{1}{s+3} - \frac{1}{s+4}\right]$$
$$= e-3t - e-4t$$

$$L^{-1}[\log{(\frac{s+1}{s-1})}]$$
 By theorem, $-t \ f(t) = e^{-3t} - \frac{e^{-3t} - e^{-}}{-t} e^{-4t} \ \text{H.W. Find}$ $\frac{e^{t} - e^{-}}{t}$ $f(t) = \text{Ans: } L^{-1}[f(s)] =$

[replace 3 by
$$\Rightarrow L^{-1}[f(s)] = \frac{e^{-4t} - e^{-3t}}{t}$$
 1 and 4 by (-1)]
$$L^{-1}[\frac{s}{(s^2 + a^2)^2}]$$
(2) Find $L^{-1}[\frac{1}{(s^2 + a^2)}] = \frac{1}{a} \sin at$
Solution: W.K.T

Solution: W.K.T
$$L^{-1}[\frac{1}{(s^2+a^2)}] = \frac{1}{a} \sin at$$

i.e
$$L^{-1}[f(s)] = f(t)$$
 1 Let $f(s)$
= , $f(t) \frac{1}{(s^2+a^2)} - = \sin at$

We have
$$L^{-1}[f'(s)] = -t f(t)$$

$$L^{-1}\left[\frac{d}{ds}\left(\frac{1}{(s^2+a^2)}\right)\right] = -t \frac{1}{a} \sin at$$

$$L^{-1}\left[\frac{-2s}{(s^2+a^2)^2}\right] = -\frac{t}{a} \sin at$$

$$\Rightarrow L^{-1}\left[\frac{s}{(s^2+a^2)^2}\right] = \frac{t}{2a} \sin at$$

Inverse L.T. of integrals :-

If
$$L^{-1}[f(s)] = f(t)$$
 then $L^{-1}[\int_{s}^{\infty} f(s) ds] = \frac{f(t)}{t}$

Proof: We have $L\left[\frac{f(t)}{t}\right] = \int_{s}^{\infty} f(s) ds$ provided exist

$$\Rightarrow L^{-1}\left[\int_{s}^{\infty} f(s) ds\right] = \frac{f(t)}{t}$$

Multiplication by powers of s :

If $L^{-1}[f(s)] = f(t)$ and f(0) = 0, then $L^{-1}[s f(s)] = f'(t)$ Proof:

W.K.T.
$$L[f'(t)] = s L[f(t)] - f(0)$$

$$= s f(s) - 0$$

$$\Rightarrow L^{-1}[s f(s)] = f'(t)$$

In general we have, $\Rightarrow L^{-1}[s^n f(s)] = f^n(t)$ if $= f^n(0) = 0$

Problems:

$$L^{-1}\left[\frac{s^2}{(s^2+a^2)^2}\right]$$
(1) Find
$$L^{-1}\left[\frac{s}{(s^2+a^2)^2}\right] = L^{-1}\left[s.\frac{s}{(s^2+a^2)^2}\right]$$

solution:

Let f(s) =

$$L^{-1}[f(s)] = \frac{(s^2 + a^2)^2}{f(t)} = f'(t) = \frac{1}{2a} \left[\sin \frac{L^{-1} \left[\frac{s}{(s^2 + a^2)^2} \right]}{(s^2 + a^2)^2} \right] \text{ at + t a cos at } \right]$$

We have $L^{-1}[s f(s)] = f'(t)$

$$\Rightarrow L^{-1}\left[\frac{s^2}{(s^2+a^2)^2}\right] = \frac{1}{2a}$$

(2) Find
$$L^{-1}\left[\frac{s^2}{(s-1)^4}\right]$$
 (sin at + at cos at)

Solution
$$\overline{(s-1)^4}$$
: $[f(s)] = L^{-1} \left[\frac{s}{(s-1)^4} \right]$
: $= L^{-1} \left[\frac{s-1+1}{(s-1)^4} \right]$

$$= e^t L^{-1} \left[\frac{s+1}{s^4} \right]$$

$$= e^t L^{-1} \left[\frac{1}{s^3} + \frac{1}{s^4} \right]$$

$$= e^t \left(\frac{t^2}{2} + \frac{t^3}{6} \right) = f(t)$$
Let $f(s) = L_{-1}$

$$e^{t}\left(\frac{t^{2}}{2}+\frac{t^{3}}{6}\right)+e^{t}\left(t+\frac{t^{2}}{2}\right)$$
Now $f'(t)==e^{t}\left(t+t^{2}+\frac{t^{3}}{6}\right)$
By theorem $L^{-1}[s\ f(s)]=f'(t)$

$$L^{-1}[s\ \frac{s}{(s-1)^{4}}]=e^{t}\left(t+t^{2}+\frac{t^{3}}{6}\right)$$
Division
by power of $S:$

$$\frac{Theorem:}{f(s)} \text{ if } L^{-1}f\ s\ [\text{ ()]} \text{ ()} \qquad =f\ t\ , then } L^{-1}f^{-$$

Prof: we have by LT,

$$\int_{0}^{t} f_{(t) dt} = \frac{f(s)}{s} ds \text{ in www.universityupdates.in www.universityupdates.in https://telegram.me/jntua$$

$$\Rightarrow L-1 \begin{bmatrix} \frac{f(s)}{s} \end{bmatrix} = 6 \ 2 \ f \ t \ dt$$

$$-1 \begin{bmatrix} \frac{f(s)}{s^2} \end{bmatrix} \quad t \quad t \quad \frac{\text{Note:}}{L = 0 \ 2 \ [0 \ 2 \ f \ t \ dt]} \text{dt} \quad \frac{\text{Problem:}}{\text{Problem:}}$$

1) Find
$$L^{-1}[\frac{1}{s(s+3)}]$$

solution: Let f (s) =
$$\frac{1}{s+3}$$

 $L^{-1}[f(s)] = L^{-1}[\frac{1}{s+3}] = e^{-3t} = f(t)$

By theorem,
$$L^{-1} \left[{}^{4}s \cdot f(s) \right] = {}_{0} \mathbb{Z}^{t} f(t) dt$$

$$\Rightarrow L^{-1} \left[{}^{4}s \cdot f(s) \right] = \int_{0}^{t} e^{-3t} dt = \frac{e^{-3t}}{-3} \left[\int_{0}^{t} e^{-3t} dt \right] = \frac{1 - e^{-3t}}{3}$$

2) Find
$$L^{-1}\left[\frac{1}{s(s^2+a^2)}\right]$$

Solution: let f(s)
$$\frac{\frac{1}{s^2+a^2}}{}, L^{-1}$$
 = [f(s)] = sinat = f(t)

www.android.universityupdates.in | www.universityupdates.in | https://telegram.me/jntua
$$L^{-1} \begin{bmatrix} \frac{1}{s} & f(s) \end{bmatrix} = \int_{0}^{t} f(t) dt$$

$$\Rightarrow L^{-1} \begin{bmatrix} \frac{1}{s(s^{2}+a^{2})} \end{bmatrix} = \int_{0}^{t} \frac{1}{a} sinat = \frac{1}{a} \left(-\frac{cosat}{a} \right)$$

$$= \frac{1}{a^{2}} (1 - \cos at)$$

3) Find
$$L^{-1}\left[\frac{1}{s^2(s^2+a^2)}\right]$$

$$\frac{1}{s^2+a^2}$$
1 1 solution : let f(s)
= , f(t) = _ sin at

 $\int_0^t \int_0^t f(t) dt = \mathbb{Z}_0^t \left[\mathbb{Z}_0 \right]_0^a \sin at \, dt \, dt$ $= \int_0^t \frac{1}{a^2} (1 - \cos \frac{1}{a^2} (t - \frac{\sin at}{a}))^t$

theorem,
$$L^{-1}[\frac{1}{s^2} \ f(s)] =$$

 \boldsymbol{a}

Convolution: -

If f(t) and g(t) are two functions defined for $t \ge 0$, then the convolution of f(t) and g(t) is defined as, $f(t) * g(t) = \int_0^t f(u) \ g(t-u) du$

f(t) * g(t) can also be written as (f * g)(t). Note:- The convolution operation is commutation

i.e.,
$$(f * g)(t) = (g * t)(t)$$

$$\Rightarrow \int_0^t f(u) g(t - u) du = \int_0^t f(t - u) g(u) du$$

Convolution theorem :-

So, L[(f*g)(t)] = f(s).g(s)
Corollary:-
$$L^{-1}$$
[f(s).g(s)] = (f*g)t
= $\int_0^t f(u) g(t-u) du$
= $\int_0^t f(t-u) g(u) du$

Problems:

(1). Find $L^{-1}\left[\frac{1}{(s-2)(s^2+1)}\right]$ by using convolution theorem.

$$\overline{s-2}$$
, g(s) = $\overline{s^2+1}$
$$L^{-1}[f(s)] = L^{-1}[\frac{1}{s-2}] = e^{2t}$$
, $L^{-1}[g(s)] = L^{-1}[\frac{1}{s^2+1}] = \sin t$

By convolution theorem,

$$L^{-1}[f(s). g(s)] = \int_0^t f(t-u) g(u) du$$

$$\Rightarrow L^{-1}[\frac{1}{(s-2)(s^2+1)}] = \int_0^t e^{2(t-u)} \sin u \, du$$

$$= e^{2t} \int_0^t e^{-2u} \sin u \, du$$

$$= e^{2t} \left[\frac{e^{-2u}}{(-2)^2+1^2} \right] (-\frac{1}{(-2)^2+1^2}) (-\frac{1}{(-$$

www.androjd.universityupdates.in | www.universityupdates.in | https://telegram.me/jntua = $\frac{1}{5}[e^{2t} - 2 \sin t - \cos t]$ 2) Find $L^{-1}[\frac{1}{s(s^2 - a^2)}]$ by convolution theorem

Solution: Let f(s) = -1, $g(s) = \frac{1}{s^2 - a^2}$ $L^{-1}[f(s)] = L^{-1}[\frac{1}{s}] = 1 = f(t), \quad L^{-1}[g(s)] = L^{-1}[\frac{1}{s^2 - a^2}]$

$$L^{-1}[f(s)] = L^{-1}[\frac{1}{s^{2}}] = 1 = f(t), \quad L^{-1}[g(s)] = L^{-1}[\frac{1}{s^{2}-a^{2}}]$$

$$= \frac{1}{a} \sinh \atop at = g(t) \text{ By convolution theorem },$$

$$L^{-1}[f(s). g(s)] = \int_{0}^{t} f(t-u) g(u) du$$

$$\Rightarrow L^{-1}[\frac{1}{s(s^{2}-a^{2})}] = \int_{0}^{t} 1 \frac{1}{a} \sinh au \, du$$

$$= \frac{1}{a} \left[\frac{\cosh au}{a} \right], \text{ (apply limits o to t)}$$

$$= \frac{1}{a^{2}} \left(\cosh at - 1 \right)$$

Application of L. T to Ordinary Differential Equations:

The L.T method is easier, time — saving and excellent tool for solving O.D.Es

Working rule for finding solution of D . E by L . T:

- 1) Write down the given equation and apply L.T O.B.S
- 2) Use the given conditions
- Re arrange the given equation to given transformation of the solution
- 4) Take inverse L.T O. B. S to obtain the desireds obesve Sali stying the given conditions

The formulae to be used in this process are:

L [
$$f^1$$
 (t)] = s f (s) – f(0)
L [f^{11} (t)] = s^2 f (s) – s f(0)- f^1 (0)
L [f^{111} (t)] = s^3 f (s) - s^2 f(0) – sf (0) – f^{11} (0)
Note : let f(t) = y (t) and f (s) = y (s) Problems :

1) Solve
$$4y^{11} + \pi^2 y = 0$$
, $y(0) = 2$, $y^1(0) = 0$

Solution: Here y = y(t)

Given D. E
$$4y^{11}(t) + \pi^2 y(t) = 0$$
 Let L. T O.B.S
 $4L[y^{11}(t)] + \pi$ $^2L[y(t)]$
 $\Rightarrow 4[s^2L(y)] - sy(0) - y^1(0)] + \pi] = L[0]^2$
 $\Rightarrow L[y][4s^2 + \pi^2] - L[y] = 0$
 $\Rightarrow L[y] = \frac{8s}{4s^2 + \pi^2}$ $4s(2) - 0 = 0$

gven D.E

3) Solve $y^{111}+2y^{11}-y^1-2y=0$ with $y(0)=y^1(0)=0$, $y^{11}(0)=6$ Solution : given D . E

Let L.T On Both Sides

$$L[y^{111}] + 2 L[y^{11}] - L[y^{1}] - 2 L[y] = 0$$

$$- sy(0)$$

$$y^1(0)$$

$$-sL[y]-y(0)-2L[y]=0$$

$$\Rightarrow$$
 L [y] (s³ + 2 s² - s - 2) - 6 = 0

$$\Rightarrow L[y] = \frac{6}{s^3 + 2s^2 - s - 2}$$

$$\Rightarrow$$
 s³ L [y]s² y (0)s y 1 (0)y 11 (0) + 2 [s² L [y]

L [y] =
$$\frac{6}{(s-1)(s+1)(s+2)} = \frac{A}{s-1} + \frac{B}{s+1} + \frac{C}{s+2}$$
 ____ (1)

_(2) Put
$$s = 1$$
 in ___ (2) $6 = A(2)(3) \Rightarrow A = 1$

Put s = -1 in (2)

$$\Rightarrow$$
 6 = B (-2) (1) \Rightarrow B = -3

Put
$$s = -2 \text{ in } (2)$$

$$\Rightarrow$$
6 = C (-3) (-1) \Rightarrow C = 2

Substitute A , B , C in (1)

$$\Rightarrow L[y] = \frac{1}{S-1} - \frac{3}{S+1} + \frac{2}{S+2}$$

 \Rightarrow y = $L^{-1} \left[\frac{1}{s-1} - \frac{3}{s+1} + \frac{2}{s+2} \right]$

 \Rightarrow y(t) = $e^t - 3e^{-t} + 2e^{-2t}$

is the solution of given D.E

Ans: y(t) = 3 (sin t – 2 sin 2t)

HW: Solve the D.E $\frac{d^2y}{dt^2}$ + 2 $\frac{dy}{dt}$ + 5y = e^{-t} sin t

Substitute A, B, C in (1)

$$\frac{\text{Substitute A, B, C in (1)}}{\text{Substitute A, B, C in (1)}}$$