《数字电路与逻辑设计B》期末

心(乏)			工打刀	Gaz.		24 C	ī		Ld. 1-7		
院(系)_	, ,		班	纵		_ 子气	<u> </u>		_ 姓名_		
题号			Ξ	四四	五	六	七	八	九	总	分
得分				:							
数 F = A 4. 4. 4. 5. 4. 6. 为 CP 由 一 有 的 A 7. 8 时 A 8 A . 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2	得分 一、填空选择题(每空 1 分,共 20 分) 1.(123.125)10=(7月.										
9. 在 A/D 则最大 10. 在 AD 分量 f _{imax} J	C 电路	差为 中,为保	上山。					·			
A. $f_s \ge j$	f i max	В.	$f_{i\max} \geq$	$2f_s$	C.	$f_s \leq 2j$	i max	D. <i>j</i>	$f_s \ge 2f_i$	max	
C.可以 13 将 1	D/A 转抄 存储器 R 能读出码 随机读 K×4Re	快器 OM 的马 字储器的 出或存 <i>)</i> OM 扩展	B.不包 功能是(]内容, \信息	含比较。 A)。 且掉电 D.只 < 8ROM	器 C.包 后仍保护 比读出 [需用]	.含 D/A 寺 B. 存储器I	只能将你 的内容,	信息写 <i>)</i> 且掉电	\存储器	中	

14 已知 Intel 2114 是 1K×4 位的 RAM 集成电路芯片,它有地址线_条,数据线

15 在下列器件中,不属于 PLD 的器件是 D. A.PROM B.EPROM C.SRAM D.PLA

得 分

得分.

二、己知 $F_1(A,B,C) = A \oplus B \oplus C, F_2(A,B,C) = \sum m(0,1,4,5)$, 求:

 $F_1 \oplus F_2$ 的最简与或表达式。提示:采用卡诺图。(12分)

 $F, \partial F_2 = \overline{AC} + \overline{AC} = 1$

三、试用 74138 实现下列函数: F(A,B,C)=A B+ AC+C (8分)

得分

四、设 ABCD 是一个 8421BCD 码, 试用最少与非门设计一个能判断该 8421BCD 码是否大于等于 5 的电路, 该数大于等于 5, F= 1; 否则为 0。(要求采用卡诺图化简法进行化简)。(10分)

英值的

F(A,B,C,D) = \(\S,6,7,8,9)

南线

《数字电路与逻辑设计B》试卷(A) 第 2 页 共 4 页

0 111

得 分

八、试写出图示电路中 74194 输出端 Q0 处的序列信号。(10分)

得 分

九、由 PROM 构成的电路如下, 试分析电路, 列出真值表, 填写功能。 (10分)

1、xyz的真值表为:

Α	В	x	у	Z
0	0	0.	J	C
0	1	0	0	
1	0	1	V	0
1	1	0)	. 0

2、该电路的逻辑功能是__

三位跑吗对

《数字电路与逻辑设计B》

院(系)	班级			学号_			姓名_	
题号 一 二 三	四	五	六	七	八	九	+	总分
得分				•				
得分 一、填空题(每2	空1分,	共 16 %	分)				1	
1. 十进制数(25)。	对应的二	二进制	数是		,对应的	力人进制	数是_	
 用 8421BCD 码表)84	21BCD o	
2. 逻辑函数 $F = A + B + \overline{C}$	$+\overline{D+E}$	的反	函数 \overline{F}		-		,对	偶函数
F' =	•				0		• .	
3. 任意两个最小项的乘积恒				小项之和	和恒等于	F	0	
4. 任意时刻的输出仅仅取决								和輸出
状态无关,这就是								177
5. 同步触发器在一个 CP 的					两次或	两次以	上的变	· 化。
称为现象。								.107
6. 构成 2048 x 8 位的存储器	需要		片 256:	x 4 位的	的芯片。			
7. 组合逻辑电路中,按照产								和
两两				,		***************************************		
8. 由四级 DFF 构成的环形记		现的计	-数模值	为	. 4	中 加绍	DEE 构	成的知
环形计数器实现的计数模					***************************************	11 - J	D. A. 173	WH1 III
9. 当一片 RAM 不能满足存化	-		可以将名	多个忠 !	-	2本171土	ご保 方な	*
扩展的方法有两种:							AZTTI	47里,
得分 二、选择题(每是						0		
1. 在以下单元电路				能的具				•
A.运算放大器						o 10/2	*	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
器器	4 D.	加工人工	nt.	C. 1	几门电	岭	D.	译码
DHI GHE								

A. RS=00 B. RS=01 C. RS=10 D. RS=11

3. 在 A/D 转换器中,已知△是量化单位,若采用"舍尾法"划分量化电平,则最大 量化误差为 △。

A. 1/4 B. 2 C. 1 D. 1/2

4. 信息可随时读出或写入,断电后信息立即全部消失的存储器是

- A. ROM B.-RAM C. PROM D. Flash Memory
- 5. 用触发器设计一个 17 进制的计数器, 至少需要

A. 3 B. 4 C. 5 D. 6

6. 同步计数器是指 的计数器。

A.由同类型的触发器构成 B.各触发器时钟端连在一起,统一由系统时钟控制

C.可用前级的输出做后级触发器的时钟 D.可用后级的输出做前级触发器的时钟

得 分

三、用卡诺图法化简下列表达式为最简与或表达式。(6分)

$$\begin{cases} F(A, B, C, D) = \sum m(0,2,6,8) \\ AB + AC = 0 \end{cases}$$

得分:

四、写出下图所示的触发器电路的特征方程 Q^{rt1},此电路完成的是哪一种 触发器的逻辑功能? 并画出 Q 端的波形 (初态为 "0")。(6分)

《数字电路与逻辑设计 B》试卷(A) 第 2 页 共 7 页

得 分

五、请用74138加上若干与非门电路设计一个一位全减器。其中A、B、C、 F_1 、 F_2 分别表示被减数、减数、来自低位的借位、本位差、本位向高位的借位。(要求列出真值表,画出完整的电路设计图。)(10分)

А	В	С	F_1	F ₂
				,
	٠.		,	
		:		
•		直右	直表	

·得分

六、设 ABC 为三位二进制数,用 PROM 设计以下电路: (1)是否能被 3 整除,若能被 3 整除,则输出 F_1 =1。(2)是否大于 6,若大于 6,则输出 F_2 =1。 (10 分)

真值表

状态转移表

	Q ₀	Qı	\mathbb{Q}_2	Q3	Y
	,			,	•
				. مددد	
				: ',	E.
<i>-</i>	n kaj imilitati in deposit	4 F (6) 4 (12 5 7)	a graphic to		
	•		٠		
			•	neme side bolicousti transporante	

得 分

八、请分析如图所示的电路,写出每个触发器的次态方程,说明该电路是同步还是异步时序电路,是 Moore 型电路还是 Mealy 型电路,是几进制计数器,并画出其完整的状态转移图。(12 分)

得 分

九、用 74LS161 组成的电路如图所示, 画出状态转移表, 判断其模长 M=? (10 分)

状态转移表

得分

十、请给出下图中 F (A, B, C) 的卡诺图, 并用卡诺图法进行化简得到该函数的最简与或表达式。(8分)

《数字电路与逻辑设计 B》试卷(A) 第 6 页 共 7 页

《 数字电路与逻辑设计 B 》

一、填空题(每空1分,共16分)

1. (11001)₂ (31)₈

0101 0101

 $\overline{A} \cdot \overline{B} \cdot C \cdot \overline{\overline{D} \cdot \overline{E}}$

 $\overline{A \cdot B \cdot \overline{C} \cdot \overline{D} \cdot E}$

3. 0 1

4. 组合逻辑

5. 空翻

6.16

7. 逻辑冒险 功能冒险

8.4 8

9. 字扩展 位扩展

二、选择题(每题2分,共12分)

1.B 2.B 3.C 4.B 5.C 6.B

三、共6分

卡诺图填写正确 2 分,卡诺圈正确 2 分,最简与或式正确 2 分。

$$F = \overline{BD} + C\overline{D}$$

四、共6分

$$Q^{n+1} = D = A \oplus Q^{n} = A\overline{Q}^{n} + \overline{A}Q^{n} \qquad 2 \, \mathcal{G}$$

T型触发器的逻辑功能或翻转触发器 TFF 的逻辑功能。1分 波形图如下: 3分

五、共10分

真值表填写正确5分,设计图正确5分。

,	**************************************			,
Α	В	Ċ	F,	F ₂
0	0	.0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	. 1	0	0
1	1	0	0	0
1	. 1	1	1	1

六、共10分 真值表填写正确5分,设计图正确5分(符号用圆点或×均算对)。

		THE RESERVE THE PROPERTY OF THE PARTY OF THE	mm.		
j	A	В	С	F ₁	F ₂
	0	0	0.	1	0
	0	<u> </u>	. 1	0	0
-	0	1	0	0	0
-	0	1	1	1	0
ĺ	1	0	0.	0	0
	1	0	1	0	0
	1	1	0	1	0
	1	1	1	0	1
					~

七、共 10 分 状态转移表正确得 7 分,序列信号正确得 3 分。

A_0	A_1	A_2		
Q_0	Q_1	Q_2	$Q_3(Z)$	$D_{SR} = \underline{Y} = D_i$
0	0	0	0	$1 (D_0 = 1)$
1	0	0	0 ←	$0 (D_1=0)$
0	1	0	0	1 $(D_2 = \overline{Q_3^n} = 1)$
1	0	1	0	1 $(D_5 = \overline{Q_3^n} = 1)$
1	1	0	1	$1 (D_3 = Q_3^n = 1)$
70	1	. 1	0	$0 (D_7 = 0)$
0	1	1	1	$1 (D_6 = 1)$
1	0	. 1	1	$0 (D_5 = \underline{\underline{Q_3^n}} = 0)$
0.	1	0	1	$0 \ (D_2 = \overline{Q_3^n} = 0)$
0	0	1	0	$0 (D_4 = 0)$
0	0	. 0	1—	$1 (D_0 = 1)$
1	0	0	0	

结论:输出序列信号为0001011101。

八、共12分

次态方程: 3分

$$Q_1^{n+1} = \overline{Q}_3^n$$
 $Q_2^{n+1} = Q_1^n$ $Q_3^{n+1} = Q_2^n$

状态转移图: 5分

同步(1分) Moore型(1分)时序电路, 六进制计数器(2分)。

九、共10分

状态转移表正确得 5 分,模长的结论正确得 5 分。 考虑到数据端口和输出端口的排序问题,以下三种答案均算对。 答案一:

	Q_3	\mathbb{Q}_2	Q_1	Q_0		$\overline{L}_{\!\scriptscriptstyle D}$
	0	0	0	0	,	0
\$4400000000000000000000000000000000000	0	1	0	0		1
orientiano de la compania del compania del compania de la compania del la compania de la compania dela compania del la compania de la compania del la compania del la compania del la comp	0	1	0	1		1
Ministration and an experience of the control of th	0	1	1	0		1
Methodologica St.	0	1	- Same	1		1
in production of the second	1	0	0	0		0
одинальный рек	1	1	0	0		1
and a particular of the second	1	1	0	1		1
electronica de la companione de la compa	1	1	1	0		posed.
	1	1	1	1		1

该计数器的模长为10。

答案二:

_	Q_3	Q_2	$Q_{\mathbf{i}}$	Q_0	$\overline{L}_{\!\scriptscriptstyle D}$
	0	0	0	0	0
	0	0	1	0	0
Commission	0	0	1	0	0

该计数器的模长为1。

答案三:

	Q_3	Q_2	Q_1	Q_0		$\overline{L}_{\!\scriptscriptstyle D}$
	0	0	0	0	,	0
	0	0	1	0		1
Colorest Assessed	0	0	1	1		1
Consumence	0	1	0	Ó		0

该计数器的模长为3。

十、共8分

卡诺图填写正确 3 分, 圈法正确 2 分, 表达式正确 3 分。

B		01	11	10
0	0	0	0	0
1		0	(1	(<u>1</u>)
	Printer and Control	Becommon and a second	No-retro-municipality and	humanamaranati

 $F = AB + A\overline{C}$

《 数字电路与逻辑设计 B 》期末

院(系)_			班	级		_ 学与	<u> </u>		姓名	
题号	_		Ξ	四四	五	六	七	八	九	总分
得分		•	,		•			,		

得 分

一、填空选择题(每空1分)

1. (110111101.10101)₂=(675.52)₈,(100)₁₀=(144)₈ 用 8421BCD 码表示二进制数(110111)₂=(01010101)_{8421BCD}.。

2. 逻辑函数 $F = A + B + \overline{C} + \overline{D + E}$ 的反函数 $\overline{F} = \overline{A \cdot B \cdot C \cdot D \cdot E}$, 对偶函

D. RS=11

数 $F' = A \cdot B \cdot \overline{C} \cdot \overline{D \cdot E}$ 。

- 3. $F = ABC + \overline{A} + \overline{B} + \overline{C}$ 的最简与或表达式为: $\overline{A} + \overline{B}$ 。
- 4. 任意两个最小项的乘积恒等于 0 , 全部最小项之和恒等于 1
- 5. 在几个信号同时输入时,只对优先级别最高的进行编码叫<u>优先编码</u>器;两个同位的数字和来自低位的进位三者相加叫做 全加器。
- 6. 由与非门构成的基本 RS 触发器的约束条件是 R+S=1。
- 7. 为了使由与非门构成的钟控 RS 触发器的次态为 1, RS 的取值应为(B)。

A. RS=00

B. RS=01 C. RS=10

8. 若一个 8 位二进制 D/A 转换器的满刻度输出电压为 10.20V,当输入为 $(10100110)_2$ 时,输出电压为 DV。

- A. 2.56 B. 7.12 C. 7.08 D. 6.64
- 9 在 A/D 转换器电路中,若输入信号的最大频率为 10kHz,则取样脉冲的频率至少应大于 C KHz。
- A.5 B.10 C.20 D.30
- 10. 在 A/D 转换器中,已知 $^{\Delta}$ 是量化单位,若采用"舍尾法"划分量化电平,则最大量化误差为 C $^{\Delta}$ 。
- A. 1/4 B. 2 C. 1 D. 1/2
- 11. 衡量 A/D 和 D/A 转换器性能优劣的主要指标是 D
- A.分解度 B.线性度 C.功率消耗 D.转换精度和转换速度
- 12. 一种只能被编程一次但能被多次读出的存储器件是_A____
- A.PROM B.PLA C.PAL D.CPLD E.FPGA
- 13. .在下列电路中,不属于时序逻辑电路的器件是__D___

A.计数器 B.移位寄存器 C.半导体随机存储器 RAM D.半导体只读存储器 ROM

14 一片 8K×8 位的 ROM 存储器有 8K 个字,字长为 8 位。

二、用卡诺图法化简 $F(A, B, C, D) = \sum m(3,4,5,7,9,13,14,15)$ 为最简与或表 达式。

 $F = \overline{ACD} + \overline{ABC} + \overline{ACD} + \overline{ABC}$

CD AB	00	.01	11	10
00			1	,
01		1]	1	
11				1
10		1		

三、试用 74138 设计一个多输出组合网络, 它的输入是 4 位二进制码 ABCD,

输出为:

F₁: ABCD 是 4 的倍数。

F₂: ABCD 比 2 大。

解:由题意,F1是4变量函数,故须将74138扩展为4-16线译码器,让A、

B、C、D 分别接 4-16 线译码器的地址端 A3 、A2 、A1 、A0 ,可写出各函

数的表达式如下:

$$F_{1}(A,B,C,D) = \sum_{m_{0}+m_{4}+m_{8}+m_{12}} m(0,4,8,12) = \overline{m_{0}+m_{4}+m_{8}+m_{12}}$$

$$= \overline{m_{0} \cdot m_{4} \cdot m_{8} \cdot m_{12}} = \overline{\overline{Y}_{0} \cdot \overline{Y}_{4} \cdot \overline{Y}_{8} \cdot \overline{Y}_{12}}$$

可用两片 74138 和一片 4 输入的与非门实现。

 $F_2 = \overline{\sum_{(m_0, m_1, m_2)}} = \overline{m_0} \cdot \overline{m_1} \cdot \overline{m_2} = \overline{Y_0} \cdot \overline{Y_1} \cdot \overline{Y_2}$ 可用一片 74138 和一片三输入的 与门实现。

四、分析如图所示电路的逻辑功能。(要求写出函数表达式、画出真值表、确 定逻辑功能)

解:(1)从输入端开始,逐级推导出函数表达式

 $F1 = A \oplus B \oplus C$

 $F2 = \overline{A}(B \oplus C) + BC$

A	В	С	F1	F2
0	0	Ó	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	. 0	0	0
1	1	1	1	1

假设变量 A、B、C 和函数 F1、F2 均表示一位二进制数,那么,由真值表可知,该电路实现了全减器的功能。

得分 五试画出所示电路中Q1、Q2的波形(要求对应已知信号的时序作图)。

得 分

六、图示时序逻辑电路,写出各触发器的状态方程,画出电路的状态转换图。A 为输入逻辑变量。

7

得 分

七、74LS161 电路如图所示 (1)列出状态转移关系; (2)指出其模值。

A-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1				
CP 1	Q3	Q2	Q1	Q0
0	0	0	0	0
1	0	0	. 0	1
2	0	0	1	0
3	0	0	1	1
·: 4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	. 1	0	0	0
9	1	0	0	1

《数字电路与逻辑设计 B》试卷(A) 第 4 页 共 6 页

10	1	0	1	0
11	1	0	1	1
12	1	1	0	0
13	0	0	0	0

答: M=13

得 分

八、写出下图中 74161 输出端的状态编码表及 74151 输出端产生的序列 信 号

F	γ		7	***********
CP 1	$Q_3Q_2Q_1$	Q_0		
	A_2A_1A	0)		
0	000	0		
1	000	1		
2	001	0		
3	001	1		
4	010	0		
5	010	1		
.6	011_	0		
7	011	1		•
. 8	100	0		
9	100	1		
10	101	0		

F=__11110001101

得 分

九、ROM 的阵列如图所示,试列出真值表,并说明其功能。 ①该阵列的真值表为:

	A	В	С	$\mathbf{F}_{\mathbf{I}}$	F ₂
	0	0	0	0	0
	0	0	1	1	0
	0	1	.0	1	0
	0	1	1	0	1
	1	0	0	1	0
	1	0	1	0	1
The second	1	1	0	0	1
-	1	1	1	1	1
٠					

②该阵列实现的逻辑功能是 一位全加器

《 数字电路与逻辑设计 B 》

	院(系)_		班	级		_ 学号	<u> </u>		姓名		
	题号	_ "-	- [<u>=</u>	63	五	六	七	入	九	总分]
á	得分							•			
党 遵 装	得分	一、填空选			•						
考 订		1. 计算(10									•
以 线	· 数F =	 逻辑函数 A·B·($\langle F = A + C + Q \rangle$	· B + Cl	D的反i	函数 F _三	= A:B	·{C+D)	, 对偶函	
ずず	3.F(A,B,C)	$C,D,\stackrel{\frown}{E} = A$	$+A\overline{BC}+A$	ICD 的量	最简与或	表达式	为:	A+CD		. •	
要更		';各级触发	器均接成	TE	_形式,	其中 T	<u></u>	. T.=0), T3=(2,02 1	
答题	5. 若个 8 时,输b	位二进制) 出电压为	D/A 转换器 C v。	器的满刻	度输出	电压为	10.20V, ⊅om <u>Vo.</u> Von	当输入		G0 (100)2	/ ₁ .
7.2	A. 2.56 6. 在 A/D:	B. 7.12	C. 7.2	D. 5				- (小量化	rii SV	
	则最大量	量化误差为_	Δ.		., .13 A	W 1	一八八百)] (ZX)	の遅れ	лет».	*
	A. 1/4 7. 信息可随	B. 2 C. 时读出或写			加全部	消失的	存储器:	是 B			
	A. ROM	B. RA	M C.	PROM	D. I	Tash Mo	mory	٦٥.			ماء تحداد
***************************************	8. 存储器容 扩展为 1	量的扩展有 6KXL6.的 R	<u> </u>	和一门	<u>E</u> 扩/ 片 R A	医两种方 M2114	方式。如 和一个	把 1K×4 4	4 容量的 建设	りRAM.上 を記器。し	1KXK
	—9. 在四变量·	卡诺图中,	逻辑上还相	目的的一	组最小	项为	- B	D.		The Date of the	
	————————————————————————————————————	m_3 \mathfrak{B}'					m_0	m_{10}		.*.	
	11.在以下单元	元电路中,	具有"记忆	了"功能	的单元	电路是	B				
	へみ 运算	放大器]	3. 触发器	§ (: m	门他路	, 10°	D. 译	码器	蓝彩.	
	用十六进	×8容量的 制书写它们	,应从	0000	.似地址 H至	线,可以 3F	<u>₩</u>	163	地正中	兀, 右	
	13. GAL16V8 端。	的与阵列。	总共可实现	<u>r 64</u>			每个与广	门有	lb.	个输入	•
	14.把 2 片计数	文器 <u>74161</u> 道 すり	ETREE IN	接成的	计数器	,其最为	大模值是	<u>.</u>	tb		
		《数与	2电路与逻辑	设计 B)	试卷(B)	第1	页共4	页			v.

 γl

《数字电路与逻辑设计 B》 试卷(B) 第 4 页 共 4 页

《数字电路与逻辑设计B》

院(系)	•		班级_			学号_		!	性名		
题号 一		三】	四	五	ホ	七	· . 八	九	· +	总	分
得分											
AL				,			•.		I		
一. 单项选择						>41-,/	4-d 216L.	• •			
1. 表示任意 A. 6	71 У. Л. Т В. Т						刊致。				
2. 余3码10											
A. 01010	101	B. 100	00010	1				D. 1110	01011		
3. 补码 1. 10	000的真	〔值是	(.)。							
A. +1.0)111 ·	В.	-1.0	111	C.	-0.10	001	D.	-0. 1	000	•
4. 标准或-与 A. 与项	八定田	p @)科団	如影響	章表达 C	式。 是上~	ida I	ς.		•	
5. 根据反演规	ny mi F=	ъ. д Б. + С).(C+1	DE) ^ナ E UES	 خط ت=	取入少	(相与	D. 9	蚁坝相	与	
5. 化加及换水 F=	[AC+C(i	<u>.</u> <u>.</u>	, (o .)		的风毯	■ 数刃	().	· **			
\cdot C. $\overline{F} =$	$(AC+\overline{CD}$:		В. г.	- AC+((D+E)	. = .			
6. 下列四种	生刑的 逻	7年7月	do n	rel m	1). F	=AU+	これも)・E ナーニー 644	r	ø	
A. 4	で至いた 写门	-441 J	1, 4	1 62/11	B. :	夹奶。 或门	二个个在	华赵昇	- o		,
С. Е		•			D. 3	与非门					
7. 将 D 触发	器改造	成T鮑	业发 器	,图1	所示电	路中的	的虚线	框内应	是()。	
			-			y					
or the second			1.	· ·	<u> </u>	I.I =	•				
		٠.		· A	PC.						
e te La companya di salah		T		<u> </u>	D	├- Q					ele. Albe
	1. i			- w. 8 1931	4	-4		•			
E√a A	崖门	R	与非	图	1	导动色		ר ו	1=#- N=1		
•••		D.	-7-11-1	. 1	· ;	77-501		υ. _[F]	1以[]		W-1.
8. 实现两个	四位二进	制数	相乘的	组合品	电路,)	应有(·) .	个输出	函数。		
A. 8		В.	9		C. 10) .]	D. 11			
9. 要使 JK 触	发器在国	讨钟作	用下I	的次态	与现态	和反,	JK 端	取值应	Z为()。	,
A. JK=00) . ma /	B.	JK=01	103 15 H	C	JK=10		D.	JK=11		
10. 设计一个	-四位_	进制和	当的句	祸位发	文生器	(假定	米用偶	检验码	4),需	要()
	• • •	R	3	٠.	c i		n	c			
个异或门。				٠.	C 4		n				

二. 判断题(判断各题正误,正确的在括号内记"V",错误的在括号内记"×",
并在划线处改正。每题 2 分,共 10 分)
1. 原码和补码均可实现将减法运算转化为加法运算。 ()
2. 逻辑函数 $F(A,B,C) = \prod M(1,3,4,6,7)$, 则 $\overline{F}(A,B,C) = \sum m(0,2,5)$ 。 ()
3. 化简完全确定状态表时, <u>最大等效类的数目即最简状态表中的状态数目。(</u>)
4. 并行加法器采用先行进位(并行进位)的目的是 <u>简化电路结构</u> 。 () 5. 图 2 所示是一个 <u>具有两条反馈回路</u> 的电平异步时序逻辑电路。 ()
R Q Q Q
图 2 三 多项选择题(从各题的四个备选答案中选出两个或两个以上正确答案,并将
四. 函数化简题 (10分)
1. 用代数法求函数 $F(A,B,C) = AB + AC + \overline{B} \cdot \overline{C} + \overline{A} \cdot \overline{B}$ 的最简 "与一或"表达式。(4分)

2. 用卡诺图化简逻辑函数

 $F(A, B, C, D) = \sum m(2, 3, 9, 11, 12) + \sum d(5, 6, 7, 8, 10, 13)$ 求出最简 "与-或"表达式和最简 "或-与"表达式。(6分)

五。设计一个将一位十进制数的余3码转换成二进制数的组合电路,电路框图如

要求:

1. 填写表1所示真值表;

表 1

~~ ×			
ABCD	WXYZ	ABCD	WXYZ
0000		1000	
0001		1001	
0010		1010	
0011		1011	
0100		1100	·
0101		1101	:
0110		1110	
0111		1111	
	ABCD 0000 0001 0010 0011 0100 0101 0110	ABCD WXYZ 0000 0001 0010 0011 0100 0101 0110	ABCD WXYZ ABCD 0000 1000 0001 1001 0010 1010 0011 1011 0100 1100 0101 1101 0110 1110

2. 利用图 4 所示卡诺图, 求出输出函数最简与-或表达式;

- 3. 画出用 PLA 实现给定功能的阵列逻辑图。
- 4. 若采用 PROM 实现给定功能,要求 PROM 的容量为多大?
- 六、分析与设计(15分)。 某同步时序逻辑电路如图 5 所示。

(1) 写出该电路激励函数和输出函数;

(2) 填写表 2 所示次态真值表; 表 2

	输入、 X	现态 Q ₂ Q ₁	激励函数 J ₂ K ₂ J ₁ K ₁	次态 Q ₂ ⁽ⁿ⁺¹⁾ Q ₁ ⁽ⁿ⁺¹⁾	·输 出 Z
			,		
-			٠		

(3) 填写表 3 所示电路状态表; 表 3

	1)	100 At 1 (As	1
	现态	次态 Q₂	n+1) Q 1 (n+1)	- 输出
	Q 2 Q 1	X=0	X=1	Z
	00			
-	01			
l	10			
	11			

(4) 设各触发器的初态均为 0, 试画出图 6 中 Q₁、Q₂和 Z 的输出波形。

图 6

(5) 改用 T 触发器作为存储元件,填写图 7 中激励函数 T_z 、 T_1 卡诺图,求出最简表达式。

七. 分析与设计 (15分)

某电平异步时序逻辑电路的结构框图 如图 8 所示。图中:

$$Y_{2} = x_{1}y_{2} + x_{2}y_{2} + x_{2}x_{1}y_{1}$$

$$Y_{1} = x_{1}y_{2}y_{1} + x_{2}x_{1} + x_{2}x_{1}y_{2}$$

$$Z = x_{2}x_{1}y_{2}$$

要求:

1. 根据给出的激励函数和输出函数表之一, 50% 4///3/2011年

表 4

二次状态		激励状态	Y ₂ Y ₁ /输出 Z	
y ₂ y ₁	$X_2X_1=00$	$x_2x_1=01$	x ₂ x ₁ =11	x ₂ x ₁ =10
0 0				
0 1		İ		
1 1				
1 0				

2. 判断以下结论是否正确,并说明理由。

- ① 该电路中存在非临界竞争;
- ② 该电路中存在临界竞争:
- 3. 将所得流程表 4 中的 00 和 01 互换,填写出新的流程表 5,试问新流程 表对应的电路是否存在非临界竞争或临界竞争? 表 5

二次状态		激励状态	Y ₂ Y ₁ /输出 Z	
y ₂ y ₁	$x_2x_1=00$	$x_2x_1=01$	$x_2x_1=11$	$x_2x_1=10$
0 0				
0 1				
1 1				-
1 0			<u> </u>	

八. 分析与设计(15分)

某组合逻辑电路的芯片引脚图如图 9 所示。

2. 假定用四路数据选择器实现图 9 所示电路的逻辑功能,请确定图 10 所示逻辑电路中各数据输入端的值,完善逻辑电路。

3. 假定用 EPROM 实现图 9 所示电路的逻辑功能,请画出阵列逻辑图。

《数字电路与逻辑设计B

答案

一。单项选择题(每题1分,共10分)

1. B; 2. C; 3. D;

6. D: 7. D; 8. A; 4. B : 5. A :

9. D; 10. B. 二. 判断题(判断各题正误,正确的在括号内记"V",错误的在括号内记"X",并在划线处改正。

每题2分,共10分)

1. <u>反码和补码均可</u>实现将减法运算转化为加法运算。

- 2. 逻辑函数 $F(A,B,C) = \prod M(1,3,4,6,7),$ $p(A,B,C) = \sum m(1,3,4,6,7)$
- 3. 化简完全确定状态表时,<u>最大等效类的数目即最简状态表中的状态数目</u>。(\/)
- 4. 并行加法器采用先行进位(并行进位)的目的是提高运算速度。(×)
- 5. 图 2 所示是一个具有一条反馈回路的电平异步时序逻辑电路。
- 三。多项选择题(从各题的四个备选答案中选出两个或两个以上正确答案,并将其代号填写 在题后的括号内, 每题 2 分, 共 10 分)
 - 1. AD; 2. ABD; 3. AC; 4. ABC; 5. AC .
- 四. 函数化简题(10分)
 - 1. 代数化简 (4分)

2. 卡诺图化简 (共6分)

最简"与一或"表达式为:

最简"或-与"表达式为:

 $F = (A + C) \cdot (B + C)$ (3分)

- 五. 设计(共15分)
 - 1. 填写表1所示真值表; (4分)

表 1 真值表

ABCD WXYZ **ABCD**

WXY7.

dddd	1000	0101
1		0110
]		0111
		1000
	1	1000
	1	dddd
		dddd
1 .		dddd
	dddd dddd dddd 0000 0001 0010 0011	dddd 1001 dddd 1010 0000 1011 0001 1100 0010 1101 0011 1110

3. 画出用 PLA 实现给定功能的阵列逻辑图如下: (5分)

4. 若采用 PROM 实现给定功能, 要求 PROM 的容量为: (2分)

六、分析与设计(15分)

(1) 写出该电路激励函数和输出函数; (3分)

(2) 填写次态真值表; (3分)

输入X	现态	激励函数	次态	输出
	Q ₂ Q ₁	J ₂ K ₂ J ₁ K ₁	Q ₂ ⁽ⁿ⁺¹⁾ Q ₁ ⁽ⁿ⁺¹⁾	Z
0 0 0 0 1 1 1	00 01 10 11 00 01 10	0 1 0 1 1 0 0 1 0 1 0 1 1 0 0 1 0 1 1 0 1 0 1 0	0 0 . 1 0 0 0 1 0 0 1 1 1 0 1	0 1 0 0 0 1

(3) 填写如下所示电路状态表: (3分)

1 1/1/1/2	四70元次; (3)	<i>T</i> T)	
现态	次态 Q ₂	(n+1) Q 1 (n+1)	输出
Q 2 Q 1	X=0	X=1	Z
00	· . 00	01	0
01	10	11	1
10	- 00	01	0
11	10	11	0

(4) 设各触发器的初态均为 0, 根据给定波形画出 Q_1 、 Q_2 和 Z 的输出波形。 (3分)

(5) 改用 T 触发器作为存储元件,填写激励函数 T_2 、 T_1 卡诺图,求出最简表达式。(3分)

最简表达式为:

·七. 分析与设计(15分)

1. 根据给出的激励函数和输出函数表达式,填流程表; (5分)

	二次	状态		激励状态	Y₂Y₁/输出 Z	
L	y ₂ y ₁		$x_2x_1=00$	$x_2x_1=01$	$x_2x_1=11$	$x_2x_1=10$
L	0	0	00/0	00/0	01/0	00/0
	0	1	00/0	00/0	01/0	10/0
	1	1	11/0	00/0	11/1	10/0
L	1	0	11/0	01/0	11/1	10/0

- 2. 判断以下结论是否正确,并说明理由。(6分)
- ① 该电路中存在非临界竞争;

正确。因为处在稳定总态(00,11),输入由00变为01或者处在稳定总态(11,11),输入由11变为01时,均引起两个状态变量同时改变,会发生反馈回路间的竞争,但由于所到达的列只有一个稳定总态,所以属于非临界竞争。

② 该电路中存在临界竞争;

正确。因为处在稳定总态(11,01),输入由11变为10时,引起两个状态

变量同时改变,会发生反馈回路间的竞争,且由于所到达的列有两个稳定总态,所以属于非临界竞争。

3. 将所得流程表 3 中的 00 和 01 互换,填写出新的流程表,试问新流程表对应的电路是否存在非临界竞争或临界竞争? (4 分) 新的流程表如下:

二次状态 激励状态 Y ₂ Y ₁ /输			·Yi/输出 Z	
y ₂ y ₁	$x_2x_1=00$	$x_2x_1=01$	$x_2x_1=11$	$x_2x_1=10$
0 0	01/0	01/0	00/0	10/0
0 1	01/0	01/0	00/0	01/0
1 1	11/0	01/0	11/1	10/0
1 0	11/0	00/0	11/1	10/0

新流程表对应的电路不存在非临界竞争或临界竞争。

八. 分析与设计(15分)

1. 写出电路输出函数 F₁、F₂的逻辑表达式,并说明该电路功能。(4分)

该电路实现全减器的功能功能。(1分)

2. 假定用四路数据选择器实现该电路的逻辑功能,请确定给定逻辑电路中各数据输入端的值,完善逻辑电路。(5分)

3. 假定用 EPROM 实现原电路的逻辑功能,可画出阵列逻辑图如下: (5分)

《 数字电路与逻辑设计 B 》

(系) <u>···</u>			班级_		- 10	学号	•	_ 姓名_	·
 号. 一		=	. 29	£	六	-6.	总分	450	••
	,		1				1 . 1		400 6

一、填空题 (1分×17)

1. $(3AB6)_{15} = (35266)_8$ 2: $(73.26)_{16} = (0111\ 0011.0010\ 0110\)_{8421BCD}$

3. (0011 1001 1000)_{5421BCD}=(365)₁₀ 4. (27.4)₁₀=(11011_0110)₂

5. 奇校验码的任意一个码组中,1 的个数总是<u>奇数</u>个:它可以检测<u>奇数</u>位错误。

- 6. 逻辑代数的基本逻辑运算是与、或和非。
- 7. 把代码的特定含义翻译出来的过程叫译码; n 位二进制译码器有 n 个输入,有2"个输出,工作时译 码器只有上个输出有效。
- 8. 两个 1 位二进制数相加叫做半加: 两个同位的数字和来自低位的进位三者相加叫做全加。
- 9. 当输入信号改变状态时,输出端可能出现短暂错误电平的现象叫冒险。
- 10. 一个二进制编码器对 12 个输入信号进行编码,则至少需采用 4 位二进制代码。

二、选择题 (2分×8分)

1. 已知 XY + YZ + XZ = XY + Z, 判断等式 (X + Y)(Y + Z)(X + Z) = (X + Y)Z 成立的最 简单方法是依据 B。

- A.代入规则 B.对偶规则 C.反演规则 D.互补规则
- .2. 逻辑函数 $F = A \oplus B = G = A \odot B$ 满足 \underline{A} 关系。
- A.互非 B.对偶 C.相等 D.无任何关系
- 3.在下列逻辑函数中,F恒为 0 的是 C。
- A. $F(ABC) \equiv m_0 \cdot m_1 \cdot m_5$ B. $F(ABC) = m_0 + m_1 + m_5$
- C. $F(ABC) = m_0 \cdot m_2 \cdot m_5$
- D. $F(ABC) = m_0 + m_2 + m_5$
- 4. n个变量可以构成 C 个最小项。
- A. $n \ B. 2 \times n \ C. 2^n \ D. \ 2^n 1$
- 5: 标准与或式是由 <u>D</u> 构成的逻辑表达式。.
- A.最大项之积 B.最小项之积 C. 最大项之和 D. 最小项之和
- 6. $ABC + \overline{AD} + \overline{BD} + CD$ 的多余项是 C。
- $A \overline{B}D$ $B \overline{AD}$
- C CD
- D ABC
- 7. 要求 JK 触发器状态由 0→1,其激励输入端 JK 应为 B。
- A. $JK=0\times$ B. $JK=1\times$
- C. $JK = \times 0$
- 8.当集成维持一阻塞 D 型触发器的异步置 0 端 $\overline{R}_{D}=0$ 时,则触发器的次态 \underline{B}_{o}

B.与CP和D无关 C.只与CP有关 D.只与D有关 三、(25分)

1. $(4 \, \mathcal{G})$ 直接写出函数 $F = A(B + C) + \overline{ABC}$ 的反函数及对偶函数表达式 反函数 $\overline{F} = (\overline{A} + \overline{BC})(\overline{A} + \overline{B} + \overline{C})$ 2分

对偶函数 $F' = (A+B\overline{C})(\overline{A}+B+C)$

2. (5分)用卡诺图判别函数 Z和 Y有何关系? $Z = AB + \overline{B} \, \overline{C} + C\overline{A}$; $Y = \overline{A} \, \overline{B} + BC + \overline{C}A$

BC 00 01 11 10

3.(4分)写出图中逻辑电路的函数式并化简。

 $Y = (A \oplus B) + B(A \oplus A) + B(A \oplus B) + B(A \oplus$

4.(4分)将函数 $Y(A,B,C) = \overline{ABC} + \overline{AC} + \overline{BC}$ 化为最小项之和的形式。

$Y_{\bullet}(A,B,\widetilde{C})=\sum_{i}\widetilde{m}(i,3,5,7)$

 $5.(5\, \mathcal{G})$ 用卡诺图化简函数 $F(A,B,C)=\sum m(0,1,3,7)+\sum \phi(2,5)$ 为最简与或式。

6. (3 分)乘积项 ABC 的逻辑相邻项有哪些?

四、(10分)分析下图所示电路的逻辑功能。

①从输入依次写出:

$$L_1 = \overline{AB}$$
 $L_2 = A + B^ L_3 = \overline{L_2 \cdot C}$ $F = \overline{L_1 \cdot L_3} = \overline{\overline{AB} \cdot \overline{(A+B) \cdot C}}$

②列出逻辑函数真值表,如下表所示。

	Particular Section Control	-	m-i		
	A	В	C	F	Constitution of the last
- Control	0	0	0	0	-decon-
Name of Street	0	0	1	0	Companie
. 0770000	0	1	. 0	0	ŀ
Trotten.	0	1	··I	1	ŀ
0000	. 1	0	0	0	
-	1	0	1	1	
*dayaga	1	1	0	1	
L	1	1	1	1 '	

③由逻辑函数真值表可以看出,该电路具有多数表决的功能。3分

L	得	分	
			•

五、(15分)

1. (5 分)设 B、F均为三位二进制数, B 为输入, F 为输出, 要求二者之间有下述关系: $2 \le B \le 5$ 时,F = B + 2; 当B < 2时,F = 1; 当B > 5时,F = 0。试列出真值表。

۰,					
1	$B_2 B$	B_0	F	$_{2}F_{1}$	F_0
L	0	0	0	0	1
0	0	1	0	0	1
0	1	0	1	0	0
0	1	1	1	0	Ì
1	0	Ó.	1	1	0
1	.0	1	1	-1	1
4.	1	0 -	0 -	0	0
1	. 1	1	0	0	0
				~~~~	

2. (10 分)用 3一8 译码器 74138 和与非门实现下列多输出函数:

$$F_1 = AB + \overline{A} \ \overline{B} \ \overline{C}$$
,  $F_2 = A + B + \overline{C}$ ,  $F_3 = \overline{A}B + A\overline{B}$ 

 $F_1(A,B,C) = AB + \overline{A} \cdot \overline{B} \cdot \overline{C} = \sum m(0,6,7)$ 

 $F_2(A, B, C) = A + B + \overline{C} = \overline{m}_1$  $F_3(A, B, C) = \overline{A}B + A\overline{B} = \sum m(2,3,4,5)$ 

则 诚 信 考 要 试 绝 不·题 作





得分 六、(9分)判断下图所示的电路是否存在逻辑冒险?若存在,原表达式应如何修改以消除逻辑冒险;当 ABCD 从 0110 向 1111 变化时,是否会出现功能冒险?若会出现,试用加取样脉冲法避免冒险。(须写出判断过程)





- (1)  $F = ACD + B\overline{D}$  , ACD 和  $B\overline{D}$  所对应的卡诺圈部分相切,且相切部分没有被一个卡诺圈包围,所以存在逻辑冒险。应增加多余项 ABC 以消除逻辑冒险,即  $F = ACD + B\overline{D} + ABC$  。 2分 2分
- (2) F(0,1,1,0) = F(1,1,1,1); 有 2 个变量同时变化;不变变量构成的乘积项 BC 所对应的卡诺圈中有 0 也有 1,所以存在功能冒险。取样脉冲加法如上图所示。3 分 2 分

得分 七、(8分) K 触发器及 CP、A、B、C 的波形如图所示,设 Q 的初始态为 0。(1)写出电路的次态方程; (2)画出 Q 端的波形。



C=0时, $Q^{n+1}=0$ 。C=1时, $Q^{n+1}=[A\overline{Q}^n+\overline{B}Q^n]\cdot CP$ 个

附表 3-8 线译码器 74138 的功能表

输入 输出 $E_1$ $\overline{E_{24}} + \overline{E_{28}}$ $A_2$ $A_1$ $A_0$ $\overline{Y_0}$ $\overline{Y_1}$ $\overline{Y_2}$ $\overline{Y_3}$ $\overline{Y_4}$ $\overline{Y_5}$ $\overline{Y_6}$ $\overline{Y_7}$														
$E_1$ $\overline{E_{12}}$	-						489	LA.	•					
	()	.P-< - 1	E. A $E$	A ₂	$A_1$	A ₀	V	V	Υ,	v		V.	Ϋ́.	$\overline{r}$

3分

第4页共5页

	ſ		- Congression							,				
	φ	1 . 1 .	Ι. φ	φ.	ф	Ti	Ť. 1	Ti	1	: :[.:]		7	4	
	0	ф.	φ.	ф	ф.	$\uparrow_{1}$	1,	1	T .			4.1		Chi farmers
	.1	0 .	0	0	0.	0	1	+-	1	1				* Contractor of
1	1	0 -	. 0	0	1	1.1	0	1.	<u> </u>	<u> </u>	1			Service Comment
1	. 1	0 .	0	1	0.	1-1	1	0.	1		1	4	J. L.	and a first stage of
1	_1	0	0	υ <b>.]</b>	1	1	1		0	1	1.1			
	1	0 :	1	0 .	.0	. 1	1.		Y.		1		111	
1	. 1.	0	- 1	0	1	1	1	1.	1	-0 :	l			
L	. 1	0	· 1.	1	0	1.	1 -	1.	1		0			
L	i	0	1	1	1	1		-	1	1	1	10		
	•				1			.ا	- 1			1 .	0 [	

# 《数字电路与逻辑设计B》

装

订

(で)								
院(系)	班:	级		_ 学長	<del>]</del>	,	_ 姓名	
题号 —	<del>-</del>   =	四	£.	六	七		九	总分
得分					-			
1. 计算 2. 逻辑数 $F' = \overline{A \cdot B \cdot L}$ 3. $F(A,B,C,D,E$ 4. 以下各电路中 A. 触发器 B. 5. 若一个 8 位二, 时,输出电压为_ A. 2.56 B. 7.12 6. 在 A/D 转换器	)=A+ABC+AG (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)	D0100.00 B+CD  CD+(C++++++++++++++++++++++++++++++	11)84218 的反逐 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)20 (2)2	的最简单的是压力。[102]	ラ或表立 の表立 D. 计数 10.20V,	大式为: 数器 当输》	At O) †	,对偶 _图 <u>F。</u> (0110) ₂
量化误差为 6 A. 1/4 B. 2 C 7. 信息可随时读出	. 1 D. 1/2		•	•				×1-42,7(
A. KOM B.	KAM C. Pi	G = MOS	Flacia	Mamia			0	<u> </u>
8. 口知呆仔储器心	片有地址线 12	条,数据:	维4条	用的液	左供职的	的存储器	字量是 1	3. 位。
A ROZTA D	· 4090 A 4 C.	2048 X 8	n	4006	Z 9			
9. 在四变量卡诺图 4. <i>m</i> ., <i>m</i> .	17	1邻的一组	最小」	页为		•		•
A. $m_1, m_3$ B.	- APA - P	ли ₅ , ли В=	9/	D. $m$	$n_0, m_2$			
10. 逻辑函数"一	$A \cup (A \cup D) =$	B		•			i	*
11.在以下单元电路 A 运算放大器	中,具有"记忆 D. 做失题	"功能的	是	<u>B</u>				
12. 逻辑代数的三	B. 触发器 个重要抑刷具 /	C.	TTL i	り电路		D. 译征	码器	
13. 消豚克爭盲险!	付万法有 加加	ほん	٠	11 70	h 12	١	2	o .
41410000	~~	AN 11/4/1	775 1 M/s. 44	ff riting	マウクしんり.	_L_	•	等。
15. GALI6V8 的与 端	阵列总共可实现		少少. 个乖	延附入	部分组) こヘヒト	火。		.4.A. 5
भेति .			_ 1 250	ハイ火・「紅	+   -3 .	月	161	输入

《数字电路与逻辑设计 B》试卷(A) 第 1 页 共 4 页

二、用卡诺图法化简  $F_r(A,B,C,D)=\sum_m(0,1,4,7,8,9,13) + \sum_{\phi}(2,5,10,12,15);$ 得 分  $F_2(A,B,C,D) = \overline{ACD} + \overline{ABCD}$ ,且 CD=0 为最简与或表达式。(12 分) ABOUT ABOD TABOD





$$F_1 = \overline{c} + BD + \overline{B} \overline{b}$$

三、在图 1 所示电路中用%74153 实现函 数 $F(A,B,C,D) = \sum m(1,2,4,7,15) \cdot (8 分)$ F= ABCO T ABC D TABCO T ABCO TABCO D = AB (LDD) TAB(LDD) TABOD 三将 随着华地 姓传

日 183-01 新出CODD

图 1

得 分

□、基产品有点、B、 田旭川, 新出 CD D 四项质量指标, A 为主要指标。检验合格品时, 每件产品如果有包含主要指标 A 在内的三项或三项以上质量指标合格则为正 品,否则即为次品。试用与非门设计 一个最简的正品检验机。(10分)





《数字电路与逻辑设计 B》试卷(A) 第 2 页 共 4 页



得 分

八、试分析图 5 电路,完成要求 1 和要求 2。(10 分)

1、74194的状态转移表为:





2、F端输出的序列信号为:

P= 10111000

得分

九、ROM 的阵列如图 6 所示, 试列出真值表,并说明其功能。(10 分) ①该阵列的真值表为:

`	,				
	A	В	C	F ₁	F ₂
	0	0	0	0	0
	0	0.	1	1	0
-	0	-1	0	. 1.	0
	0	ī	1.	0	
	1	0	0	1	0
	1	0	1	0	i
	1	1	0	0	1
	1	1	1	- 1	,
٠				l	



> AB为 加极 搬 加枝 C为货货对 本任心典行 后为本任 对

F. 为本位 对高位 的过位 《数字电路与逻辑设计 B》试卷(A) 第 4 页 共 4 页

## 《 数字电路与逻辑设计 B 》

死(示)_			梦	性级	<del></del>	学	울号	· · · · · · · · · · · · · · · · · · ·	姓	名	
题号		=	Ξ	29	五	六	七:	入	九	T+	总分
得分	·			•		•			, <u>,                                  </u>		

得 分

一、填空、选择题 (20分)。

1.  $(101.01)_2 = (5.25)_{10} = (5.2)_8 = (5.4)_{16}$ 

2.  $(125)_{10}$ = $(0001 0010 0101)_{8421BCD}$ = $(0001 0010 1000)_{5421BCD}$ 

- 3、(17.39)10=(10001.0110001)2, 要求保持原精度。
- 4、若F(A, B, C)=A⊕B⊕C, 则F=∑m(1,2,4,7)。
- 5、若 F (A, B, C) =∑m (0,1,2,4,7),则对偶式 F'=∑m (1,2,4)。
- 6. 1 @ 1 @ 1 @ 0 @ 1 @ 0 @ 0 @ I = 1 ; 1 © 0 © 1 © 0 © 1 © 0 © 0 © I = 1
- 7、二进制数 0000~1111 可以表示 <u>16</u> 个数。
- 8、十进制数 7、8、9 对应的四位循环码分别为 <u>0100</u>、<u>1100</u>、<u>1101</u>。
- 9、在下列逻辑函数中, F 恒为 0 的是 <u>C</u>。
  - A.  $F(ABC) = \overline{m_0 \cdot m_2 \cdot m_5}$
- B.  $F(ABC) = m_0 + m_2 + m_5$
- C.  $F(ABC) = m_0 \cdot m_2 \cdot m_5$  D.  $F(ABC) = \frac{1}{m_0} + \frac{1}{m_2} + \frac{1}{m_5}$
- 10、表示任意两位十进制数,至少需要 7 位二进制数。
- 11、一个 16 选一的数据选择器有 4 根地址线、16 根数据输入线、1 根数据输出线。
- 12、函数 $F = \overline{D} + \overline{(A + \overline{B})C}$ , 由反演规则可直接得其反函数 $\overline{F} = \overline{D} \cdot \overline{A} \cdot \overline{B} \cdot \overline{C}$ 。

二、按要求完成下列各题 (10分)。

1、用公式法将逻辑函数 $F = \overline{AC + \overline{ABC} + \overline{BC}} + ABCDE$ 化简为最简与或

 $F = \overline{AC + \overline{ABC} + \overline{BC}} + ABCDB$ 式。

- $= \overline{AC + BC + \overline{B}C + ABCDE}$
- $C(A+B+\overline{B})+ABCDE$
- $\overline{C(A+1)} + ABCDE$
- $\overline{C}$  + ABCDE

第1页(共4页)

2、用公式法将逻辑函数 $F = (A \oplus B)C + ABC + \overline{ABC}$  化简为最简与或式。

$$F = (A \oplus B)C + ABC + \overline{AB}C$$

$$= (A \oplus B)C + (AB + \overline{AB})C$$

$$= (A \oplus B)C + \overline{(A \oplus B)}C$$

$$= ((A \oplus B) + \overline{(A \oplus B)})C$$

得 分

三、试用卡诺图法将下列逻辑函数化简为最简与或表达式(要有图解过程,否则不得分)(10分)。

1. 
$$F_1(A, B, C) = \sum_{in} (0,2,5,7)$$



2、 $F_2 = \overline{AD} + \overline{BCD}$ , 约束条件为 $\overline{BCD} = 0$ .



得分

四、已知逻辑函数  $F_1(A,B,C,D) = \sum_{m} (0,3,4,5,7,9,10,13,14,15)$ ,

 $F_2(A,B,C,D) = \sum_{m} (2,3,5,6,7,8,9,12,13,15)$ ,试求  $F = F_1 \cdot F_2$  的最简与或

式。(10分)

A B	00	01	11	10
00	1	년 1	1	
01	1	1	1	
11		1	1	1
10		1		1
		$F_{\underline{i}}$		

					*				
A B 00	00	01	11	10					
00			1	1					
01		1	1	1	İ				
11	1	1	1						
10	1	1							
٠		$F_2$							
$F = BD + \overline{A}CD + A\overline{C}D$									



### ④确定功能

由真值表分析可知:本电路是一个完成一位二进制数相减的电路,即:一位二进制全减器。







解: 当 B2B2B1B0> (9) 10 时, B3B2B1B0+0110 进行十进制调整。 当 B3B2B1B0≤ (9) 10 时, B3B2B1B0+0000。 本电路完成 4 位二进制数转换成两位 8421BCD 码的功能。

第3页(共4页)

得 分

八、A、B、C、D四人在同一实验室工作。若A只要到实验室就有自己的工作做;B必须C到实验室以后才能有工作可做;C除了为B创造工作的条件外,到实验室是从来不干工作的;D只有A在实验室时,才干工作。请问:在什么情况下,实验室中没有人干工作?请用逻辑函数来描述。并用一片

74138 和一片 8 输入与非门实现。(10 分)



解:①列真值表



②写出 G 的逻辑函数:

$$G = \frac{m_0 + m_1 + m_2 + m_3 + m_4 + m_5}{= \frac{\overline{m_0} \ \overline{m_1} \ \overline{m_2} \ \overline{m_3} \ \overline{m_4} \ \overline{m_5}}{= \frac{\overline{y_0} \ \overline{y_1} \ \overline{y_2} \ \overline{y_3} \ \overline{y_4} \ \overline{y_5}}$$

得 分

九、试用两片 74283(此题不提供任何附加门)设计一个组合逻辑电路,将(A₃A₂A₁A₀)8421BCD 转换为(Y₃Y₂Y₁Y₀)5421BCD (5 分)。

解: ①列表和分析

-2	8421BCD -	5421BCD
	0000	0000
	0001	0001
,	0010	0010
	0011	0011
,	0100	0100
.]	0101	1000
ĺ	0110	1001
-	0111	1010
1	1000	1011
Petronocou	1001	1100

- 1) 0000~0100 两者是相同的。即: 8421BCD=5421BCD
- 2) 当 8421BCD 码等于 0101 时,5421BCD 码等于 1000。两者相差·0011。即: 8421BCD+0011=5421BCD
- ①当 8421BCD=0000 ~ 0100 时, 使 (I) 片的 CO=0, II片为 0000+8421BCD。
- ②当 8421BCD ≥ 0101 时,使(I)片的 CO=1(即: 10000-0101=1011),II片为 0011+8421BCD。



得分

- 十、己知两级门电路如图 3 所示 (10 分)。
- 1、当信号 ABCD 作 0111→1101 变化时会产生<u>功能和逻辑冒险</u> 冒险 (逻辑冒险、功能冒险),当信号 ABCD 作 0111→1110 变化时会产生<u>逻辑冒险</u>冒险 (逻辑冒险、功能冒险)。
- 2、 试用增加多余项法消除该电路的逻辑冒险 (须在电路图上增加逻辑门)。

3、试用脉冲取样法避免冒险(须在电路图上标出取样脉冲所加的位置和极处)





附录表

3-8 线译码器 74138 的功能表

F				•	4.5									
侵	<b>拒絕入</b>		输	λ.	T			有	ì		H	 	-	
E	$\overline{E}_{2A}$ + $\overline{E}_{2B}$	A	2 A	À ₀	T	¥.	Ÿ	Ÿ	γ̈	, ¥	Y	- -, }	7, ¥,	Option of the last
Ø	- 1	Ø	·ø	Ø	$\dagger$	7		1	1	1				1
0	e e	Ø	Ø	Ø	T	1	1	1	1	1	1	- 1		1
1	0	0	0	0.	Ť	0	1	1					<u> </u>	-
1	0	0	0	1	T	1	0	1	-	1	1	1	1	-
1	Ø	0	1	0	T	1	1	0	1	1	1	1	1	- Carried
1	0	0	1	1	Γ	1	X	1	0	1	1		1	and and
1_	0	1	0	0	Γ	1	1	1	1	0	1	1	1	openio o
1	0	1	0	1.	•	1	1	1	1	1	0	1	1	The second
1	0	1	1	0		1	1	1	1	1	ļ	0	1	grammay
	0	1	1	1		1	1	1	1	1	1	1	0	

4 位数值比较器 7485 功能表

1	12 AL VIBO 30 180 A										
ŀ			输_		<u> </u>	. 9		1	á	出	~
1	A ₃ B		A ₁ B	$A_0 B_0$	(A>B)	(A <b)< td=""><td>(A=B)</td><td>FA</td><td>_B F_{A&lt;}</td><td>F_{A=E}</td><td>-</td></b)<>	(A=B)	FA	_B F _{A&lt;}	F _{A=E}	-
- Tr	$A_3>E$		00	ØØ	Ø	, Ø	Ø	1	0	0	
· j~	A ₃ <b< td=""><td></td><td></td><td>ØØ</td><td>Ø</td><td>Ø</td><td>Ø</td><td>0</td><td>1</td><td>0</td><td>-</td></b<>			ØØ	Ø	Ø	Ø	0	1	0	-
1	A ₃ =B	3 A ₂ >B	2 00	00	Ø	Ø	Ø	1	0	0	-
		3 A ₂ <b< td=""><td></td><td>ØØ</td><td>Ø</td><td>· Ø.</td><td>Ø</td><td>0</td><td>1</td><td>0</td><td>-</td></b<>		ØØ	Ø	· Ø.	Ø	0	1	0	-
1	4 ₃ =B	3 A2=B	$A_1>B_1$	00	Ø	Ø	Ø	1	0	0	and and
1	13=B	A ₂ =B ₂	$A_i < B_i$	00	Ø	Ø	Ø	0	1	o o	on the second
A	1 ₃ =B ₃	A ₂ =B ₂	$A_i = B_i$	$A_0>B_0$	Ø	Ø	ø	. 1	0	0	and and
			A ₁ =B ₁		Ø	Ø	ø	0	1	0	and the same
			A _i =B _i		1	0	0	1	0		Design Color
A	₃=B ₃	A2=B2	A ₁ =B ₁	A ₀ =B ₀	0	1	٥	0		0	Distriction of the last
			A ₁ =B ₁		0	0			1	0	
			A _i =B _i		0	0	1	0	0	1.	
			A ₁ =B ₁		0	***************************************		1	1	0	
			$A_i = B_i$			1		j):	0	1	
					<u> </u>	<u>i)</u>		i; .	· !) .	<u> </u>	
			$A_l = B_1$		1	ı	0	Û	0	0	
A3	-B3	A ₂ =B ₂	$A_1=B_1$	$A_0=B_0$		1		:	:-	;	

四位全加器 74283 的功能表示

 $A_4A_3A_2A_1$ 

 $B_4B_3B_2B_1$ 

+ CI

CO S4S,S2S1

第6页(共4页)

## 《 数字电路与逻辑设计 B 》

院(系)	班级	•	W D	•		٠.	
			学号		奖	性名	
题号   -	二月三日	五六	七		九	+	总
得分						1	105 7
得分一、填	空、选择题 (15 分)。			Water.			<del></del>
	$10 = (100000)_2 = ($						
	4)(		)3=(	20	)16		
	10.8 $10.8$ $10.8$ $10.8$ $10.8$	)10 000ts					
4. (10011.0011) =	( 23.140	000) 5421BCD					
5、一个 10 位的二i	进制数最大可表示的十	)8,安米年 L:洪忠忠 目	<b>专</b> 换精度	不低于	1%.	*	
6、表示一个最大的	I两位十进制数,至少	「	102	23 )。 	.,		
7、信息码 1100 的3	奇校验码是( 1100)	加女( /	) <u>1</u> 9	进制	汉。		
8、任意两个最小项	的乘积恒等于0	1 ).	•				
9、逻辑函数F的卡	诺图若全为 1 格,对	_° 応 <i>忠</i> = :					
10、函数 F = A⊕ A	$B = G = A \odot B$ 的关	系为 D	°	•			•
A.仅互非 B.仅2	对偶 C.相等 D. 既互	北∇对偶	a		•		
11、n个变量可以构	成C个最小项。	Ann	2 v n . c	2" 5	0 <i>8</i> s	,	
12、下列各式中,	C 是三变量 A、B、C	こ的最小面	2011	~4 D.	Z -1	l n = .	
得分 二、按要	求完成下列各题(10	分)。	3 C. C. (1)	C U.ATI	oc c.A	BC d. A	/BC
	写出 <i>F = A(B+C</i> )+						
	71.4.5	·ADC 的反	.凶奴表:	达式。			
F = (A - A)	$+\overline{BC}$ )(A+B+C)						
2、直接写出 $F=A$	$B + \overline{BC} + \overline{CD}$ 的对得	国数表达式	Ç.		and the		
$F' = (A+B)\overline{(B+\overline{C})}$	$\overline{C})\overline{C+D}$			987).			
3、用公式法将逻辑	函数 $F = A\overline{B} + \overline{A}CD$	$0+B+\overline{D}+$	- ( ) ( ) ( )	) 为最简:	与或式	0.	
	A				4224.	•	

 $F = A + \overline{A}CD + B + \overline{D} + \overline{C} = A + CD + B + \overline{D} + \overline{C} = A + C + B + \overline{D} + \overline{C} = 1$ 

得分

三、试用卡诺图法将下列逻辑函数化简为最简与或表达式(要有图解过程,否则不得分)(10分)。

1. 
$$F(A,B,C) = \sum_{i=1}^{n} m(0,2,4,5)$$



 $F(A,B,C) = \overline{AC} + A\overline{B}$ 

2、
$$L = \overline{AD} + \overline{BCD} + \overline{ABCD}$$
, 约束条件为  $AB + AC = 0$ .

C	D 0	n		) 1	4	7 1	n
AB0		Ù	11	1	Î	ſ	Ĭ
01		I	1	1			S. Contract
11	. X		X	X	П	X	
10		I	$\overline{D}$	X		X	

 $F(A,B,C) = \overline{BC} + D$ 

得 分

四、用卡诺图判别函数 Z和 Y有何关系? (5分)。

$$Z = \overline{AC} + \overline{B}$$
;  $Y = AB + \overline{ABC}$ 

, ,	$c_{00}$	01	11	10
A 0	1	1	1	
l l	1	1		·
		Z	r	



因此Z和Y互为反函数

得分

五、某汽车驾驶员培训班进行结业考试,有三名评判员,其中 A 为主评判员, B 和 C 为副评判员。在评判时按照少数服从多数原则通过,但只要主评判员 认为合格就算通过,在双轨输入条件下用最少与非门实现该电路(10分)。

A	В	С	Y
1	Ф	Φ	1
0	1	1	1
0	1	0	0
0	.0	1	0
0	0	0	0

$$F(A,B,C) = A + BC = \overline{A \cdot BC}$$







- 得分 八、已知两级门电路如图 2 所示 (10 分)。
  - 1、当信号 ABCD 作 0100 ↔ 1101 变化时会产生 <u>功能</u> 冒险 (逻辑冒险、功能冒险),当信号 ABCD 作 0111 ↔ 1110 变化时会产生 逻辑 冒险 (逻辑冒险、功能冒险)。
- 2、 试用增加多余项法消除该电路的逻辑冒险 (须在电路图上增加逻辑门)。
- 3、试用脉冲取样法避免冒险(须在电路图上标出取样脉冲所加的位置和极性)。



得 分

九、由与非门构成的基本 SR 触发器的逻辑符号、输入波形如图 3 所示,根据  $\overline{S}_{D}$  、  $\overline{R}_{D}$  输入波形画出 Q 、  $\overline{Q}$  的波形。设触发器的初态为 0 (10 分)。



 $\overline{S}_{\mathbf{D}}$   $\overline{R}_{\mathbf{D}}$   $\overline{Q}$ 

. 得 分

十、写出上升沿触发的边沿 JK 触发器和边沿 D 触发器的次态方程,并用边沿 JK 触发器构成边沿 D 触发器。要求写出变换关系,画出电路图 (10分)。



JK 触发器的次态方程:

$$Q^{n+1} = \left| J \overline{Q^n} + \overline{K} Q^n \right| CP \uparrow$$

D 触发器的次态方程:

$$Q^{m+1} = [D]CP\uparrow = D\overline{Q''} + DQ'' CP\uparrow$$

$$J = D, K = \overline{D}$$

图 3

-1.7							
院(系)	班级。	学号			名		,
题号 —	一三四五	六七	·.	龙	+]	+	- \&
得分			,				分
2、(10 3、(36 4、(1. 何分二、试 (10分 1、F ₁	用公式法把下列逻辑函数 $(A,B,C,D) = AB\overline{D} + A\overline{BC}$ $A,B,(AD) = AB\overline{D} + A\overline{BC}$ $A,B,(AD) = AB\overline{D} + A\overline{BC}$ $A \setminus BD + AB\overline{C}$ $A \setminus BD + AB\overline{C}$ $A \setminus BD + AB\overline{C}$	)。)。( 72 5 3. )。=( m 0110, ) sa2186 求保持原精度) 流筒为最简与或 +ACD+A(BC) +ACD+BC) +CD+BC) =	28 克 麦达式 ( 更C) 夏C † AB	) ₁₆ 没有过 で すごせ	上程不存 □ + βc	<b>子</b> 分)	1. 经整件工作
0.0	$= ABCDEF + \overline{C(A + \overline{AB} + \overline{C})} = ABCOEF + \overline{C}$	+ (A+AB+B)	=ACC		3+0):		tD
	$=\overline{c} (HABDEF) = \overline{c} + \overline{AH} = \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + \overline{c} + c$	$f A+B+\overline{B}$ $f = \overline{C}+0=\overline{C}$	)			-11	
	卡诺图法将下列逻辑函数(( 分) (10 分)。 ,B,C,D)=∑ _∞ (3,4,5,7,9,13,		表达式(	要有图	目解过和	Œ,	
	197	$(u) = \overline{A}B\overline{C}$	t ABC+	A 00-	+ ÃCO		

· 自 觉 遵 馶 4 ij 考 试 线 规 则 内

诚信 不 考要

试、绝不作

作

答

2 210 21 8-15100

和 BCO 移断预况性

AB 170	FIMB, (1)) =	ABOT ABON	ATOTA
	•		
" INOD	•		
"LWI			

第1页共4页





```
得分 六、 試写出下图电路输出函数 F_1和 F_2的最小项表达式 (10分) F_1(A,B,C,D) = \sum_{m} (1,3,5,7,9)  F_2(A,B,C,D) = \sum_{m} (24,6,14,15,15)
```

《数字电路与逻辑设计》试卷 第 2 页 共 4 页



七、下图所示数据选择器 MUX 的输出方程为  $Y = EN(\overline{A_AD_0} + \overline{A_AD_1} + A_{A_0D_1} + A_{A_0D_1})$ 。 试用该 MUX (不提供其它元器 件)构成检测电路。判断四位自然二进制码 ABCD(ABCD 的位权依次分别 为 8421) 是否是 8421BCD 码非法码 (若是, 输出 F=1, 否则 F=0) (10 分)。[10]

2.46.411







- ĉ
- 八、己知两级与非门电路如下图所示。(10分)。 1、当信号ABCD作0011 ↔ 1011变化时会产生逻辑 冒险(逻辑冒险、 功能冒险),当信号ABCD作1100 ↔ 0101变化时会产生 11轮、 (逻辑冒险、功能冒险)。
- 2、 试用增加多余项法消除该电路的逻辑冒险(须作出逻辑电路)。
- 3、 试用脉冲取样法避免冒险(须在逻辑电路中标出取性脉冲所加的位置和极性)。



= ADT ACO TAB TBD



十、AB 触发器和 CD 触发器的功能如下表所示。若将 AB 触发器转换成 CD 触发器,试用列综合表法导出转换函数的最简与或表达式(10分)。 AB 触发器的功能表

CD 触发器的功能表

A	B	One I	Tentania de
0	0	$\bar{\varrho}^{\circ}$	Walley or the last
0	1	0	
1.1	0	1	
	1:	₫°	

			en in a skill	H.
٠	C	D.D	Quil	Continue of the last
	0	0	Q*	
Comment	0	1	$ar{ar{arrho}}$ °	
- 1	1	.0	$\overline{Q}^{r}$	
	1.	1	or	
			The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	

十一、试用一个下图所示的3-8线译码器和一个写面组成一个译码电路。该 译码电路的输入为8位地址码A,一A。L当输入地址分别为(A8)。一(AF)。时, 相应输出端了。一下,输出低电平。面出该译码电路的逻辑电路(5分)。

: Commence	(金沙)。
Ao Ye O	Ao .
The Tibe	is AF
74138 To b	8 ×16 410×16 8x
	118 175
0	2111

(数字电路与逻辑设计) 试卷

1001 01

Ú É 遵。鞍

偼

为奖

. 绝 不 題 11:

100101000