INTRODUÇÃO AO DESEMPENHO DE AERONAVES PARTE 03

As curvas da P_R em altitude podem ser obtidas efetuando-se o cálculo para cada altitude a ser considerada, variando-se a densidade (ρ)

Entretanto, uma vez determinada a curva da P_R ao nível do mar, as demais curvas para quaisquer altitudes podem ser rapidamente obtidas através de correlações Ao nível do mar:

$$V_0 = \sqrt{\frac{2W}{\rho_0 SC_L}}$$

$$P_{R,0} = \sqrt{\frac{2W^3C_D^2}{\rho_0 S C_L^3}}$$

Numa altitude qualquer:

$$V_{\rm alt} = \sqrt{\frac{2W}{\rho SC_L}}$$

$$P_{R,\,\text{alt}} = \sqrt{\frac{2W^3C_D^2}{\rho SC_L^3}}$$

EFEITOS DA ALTITUDE NA P_A E NA P_R

Para simplificar o cálculo, considera-se C_L e, portanto o C_D , fixos em relação a variação da densidade

Na prática, C_L e C_D variam com a H_P (em particular nas grandes altitudes) devido a variação de Re e M

Obtém-se então:

$$V_{\rm alt} = V_0 \left(\frac{\rho_0}{\rho}\right)^{1/2}$$

$$P_{R,\text{alt}} = P_{R,0} \left(\frac{\rho_0}{\rho}\right)^{1/2}$$

Multiplicando-se um ponto da curva P_{R0} x V_0 pela relação $(\rho_0/\rho)^{1/2}$ obtém-se um novo ponto no mesmo C_L mas na altitude considerada

A curva em H_P move-se para a direita e para cima e tem uma leve rotação em relação a curva no SL

EFEITOS DA ALTITUDE NA P_A E NA P_R

A P_A disponível pelo GMP reduz com a H_P, tanto para motores a pistão quanto para motores a jato

Para simplificar o cálculo considera-se que a redução da P_A é linear

Na caso de motores a pistão superalimentados (turbo), a P_A é mantida cte em uma faixa de altitude, normalmente entre o SL e 10.000 ft

Portanto:

$$T_{A, \text{ alt}} = \frac{\rho}{\rho_0} T_{A, 0}$$

$$hp_{A,alt} = \frac{\rho}{\rho_0} hp_{A,0}$$

Introdução ao Desempenho de Aeronaves - Prof. Dr. Rogério F. F. Coimbra

EFEITOS DA ALTITUDE NA P_A E NA P_R

Nota-se que V_{MAX} sofre alteração em função da altitude Nota-se tb que, em altitude, o limite de V_{MIN} , antes definido pela V_{S} , passa a ser determinado por P_{A}

A P_A foi tão reduzida que, nas vel. próximas ao estol, P_R excede P_A e, portanto, a V_S não pode ser alcançada em vôo reto e nivelado

Razão de subida (R/C) é a velocidade vertical da aeronave

Considerando uma aeronave em vôo ascendente e uniforme, tem-se

Sendo a sustentação (L) perpendicular a direção de vôo (DV), o arrasto (D) e a tração (T) paralelos a DV e o peso (W) sempre na vertical, nota-se que T passa a sustentar parte do peso da anv

Resultante das forças paralelas a DV:

$$T = D + W \sin \theta$$

Resultante das forças perpendiculares a DV:

$$L = W \cos \theta$$

Se parte da T sustenta o W da anv, então L pode ser menor que W

Multiplicando a primeira equação por V∞, tem-se

$$TV_{\infty} = DV_{\infty} + WV_{\infty} \sin \theta$$

$$\frac{TV_{\infty} - DV_{\infty}}{W} = V_{\infty} \sin \theta$$

Examinando a equação acima, verifica-se que

$$R/C = V_{\infty}$$
 . $sen\theta$

e

$$T.V_{\infty} = P_{\Delta}$$
 – potência disponível

Entretanto, para vôo em subida, D.V_∞ não é preciso o suficiente para ser considerado como a potência requerida, uma vez que se deve acrescentar a potência necessária para compensar a componente do peso na direção de vôo

Mas, para a maioria das aeronaves civis, o ângulo de subida (θ) não é superior a 20°, o que permite desconsiderar o efeito do peso e considerar a mesma curva da potência requerida para vôo nivelado

Portanto

$$TV_{\infty} - DV_{\infty} = \text{excess power}$$
 $R/C = \frac{\text{excess power}}{W}$

Introdução ao Desempenho de Aeronaves - Prof. Dr. Rogério F. F. Coimbra

Deve-se reforçar que as curvas P_R utilizadas são aquelas construídas para vôo nivelado

Assim, o resultado apresentado é uma aproximação muito razoável se considerar-se ângulos de subida inferiores à 20°

MOTIVO:

A P_R para vôo em subida é menor que a P_R para o vôo nivelado, uma vez que parte do peso da aeronave (W) é sustentado pela potência disponível (PA)

Assim, a sustentação necessária em subida é menor que no vôo nivelado, o que reduz o arrasto induzido e portanto, o arrasto total da anv

Deve-se lembrar que as curvas plotadas são para uma única altitude

Nota-se tb que o excesso de potência é diferente para cada V_∞

Assim, existe uma V_{∞} onde o excesso de potência é máximo e portanto, a R/C é máxima

Uma vez determinado a R/C para cada velocidade de vôo, pode-se plotar a curva R/C x V_∞

Nesta curva, determina-se a R/C_{MAX} através de uma linha horizontal tangente a ela

Pode-se tb traçar uma linha através da origem e que intercepta a curva R/C x V_{∞}

A inclinação desta linha representa o ângulo θ e varia com V_∞

Portanto há uma V_{∞} na linha que tangencia a curva e nesse pto, θ é máximo, sendo o máximo ângulo de subida da anv

 $V_{0} = R/C$ $V_{0} = R/C$

Nota-se que uma anv possui duas velocidades fundamentais durante o vôo de subida

- Vel. de máxima razão de subida: V_{R/C MAX} ou V_Y
- Vel. de máximo ângulo de subida: V_{θ MAX} ou V_X

Anvs a hélice apresentam essas vel. próximas a $V_{\rm S}$ o que garante uma margem de segurança em operações de decolagem e em arremetidas pois o excesso de potência é máxima em velocidades reduzidas

Anvs a jato de alto desempenho são capazes de subir na vertical e acelerando, sendo que algumas ultrapassam Mach 1 nessa condição

Neste caso, a metodologia apresentada não se aplica e emprega-se o método da energia, a ser apresentado posteriormente

CURVA TÍPICA DE ANV A HÉLICE

Introdução ao Desempenho de Aeronaves - Prof. Dr. Rogério F. F. Coimbra

CURVA TÍPICA DE ANV A JATO

Introdução ao Desempenho de Aeronaves - Prof. Dr. Rogério F. F. Coimbra

EXERCÍCIO DE APLICAÇÃO

Plote as curvas da P_R , da P_A e da R/C x V_∞ para as seguintes altitudes:

SL, 10.000 ft, 15.000 ft e 20.000 ft

Determine a máxima R/C, o ângulo máximo de subida e as velocidades em que elas ocorrem para cada altitude de vôo acima

DÚVIDAS??

Introdução ao Desempenho de Aeronaves - Prof. Dr. Rogério F. F. Coimbra