Лабораторная работа № 1

МЕТОДИКА РАСЧЁТА САМОХОДНЫХ АГРЕГАТОВ. РАСЧЁТ СКОРОСТИ ЗЕРНОУБОРОЧНОГО КОМБАЙНА КЗС-10К ПРИ УБОРКЕ ПРЯМЫМ КОМБАЙНИРОВАНИЕМ

Цель работы: рассчитать скорость зерноуборочного комбайна КЗС-10К при уборке прямым комбайнированием.

Теоретическая часть

Навесной тяговый агрегат рассчитывается с учётом следующих особенностей. Эксплуатационный вес трактора увеличивается за счёт догрузки его навесной машиной или сцепкой, т.е. в этом случае увеличивается сопротивление перемещению Pf трактора:

$$P_f = G_{\rm TD} (1+\lambda) f$$

где λ_1 — коэффициент, учитывающий величину догрузки трактора (при пахоте λ_1 = 0,5...1,0; при культивации λ_1 = 1,0...1,5; при глубоком рыхлении λ_1 = 1,6...2,0).

Увеличивается также и сила сцепления трактора с почвой:

$$F_{\rm cu} = G_{\rm Tp} (1+\lambda) \mu$$
.

В то же время удельное сопротивление навесной рабочей машины несколько уменьшается:

$$K_0^{\rm H} = K_0 \lambda_2$$
,

где λ_2 — коэффициент, учитывающий уменьшения удельного сопротивления навесной машины ($\lambda_2 = 0.8...0.85$).

Расчёт тягово-приводных агрегатов

При расчёте тягово-приводных агрегатов следует учитывать, что на привод рабочих органов расходуется часть касательной силы, поэтому дополнительные тяговое сопротивление рабочей машины с приводом от ВОМ будет составлять величину $R_{\rm BOM} = \Delta P_{\rm K}$

$$R_{\text{BOM}} = \frac{0.159 N_{\text{BOM}} \eta_{\text{Tp}} i_{\text{Tp}}}{r_{\text{k}} n_{\text{m}} \eta_{\text{BOM}}},$$

где N_{BOM} – мощность, расходуемая на привод рабочих органов, кВт.

Суммарное сопротивление одной рабочей машины в этом случае будет равно

$$\sum R_{\rm M} = K_0 b + R_{\rm BOM} = (K_0 + R_{\rm BOM}/b)$$

или

$$\sum R_{\rm M} = K_0^{\rm \pi p 1},$$

					Лабораторная работа №1					
Изм.	Лист	№ докум.	Подпись	Дата						
Разр	аб.				Методика расчёта самоходных	Лит.	Лист	Листов		
Пров	ер.				агрегатов. Расчёт скорости зер-		1	6		
					· · · · · ·		/ им. П.С гр. ЗС-).Сухого, 31с		

где $K_0^{\text{пр}} = (K_0 + R_{\text{BOM}} / b)$ — приведённое удельное сопротивление, кН/м (определяется расчётным путём).

Максимальная ширина захвата агрегата будет равна

$$B_{\mathrm{max}} = \frac{P_{T_H} \xi_{P_T}}{K_0^{\mathrm{np}}}.$$

С учётом подъёмов и уклонов:

$$B_{\text{max}} = \frac{\left(P_{T_H} \pm G_{\text{Tp}} \frac{i}{100}\right) \xi_{P_T}}{K_0^{\text{np}} \pm g_M \frac{i}{100}}.$$

В большинстве случаев состав агрегатов известен и по-другому скомплектован быть не может. В этих случаях приводится расчёт скоростных режимов работы. Особенность расчёта заключается в том, что определяются три значения скорости движения: агротехнически допустимая $v_p^{\rm arp}$, максимально допустимая по пропускной способности рабочих органов $v_p^{\rm np}$ и максимально допустимая скорость движения по мощности двигателя $v_p^{N_e}$. Скорость движения $v_p^{\rm np}$ определяется по формуле

$$v_{\rm p}^{\rm np} = \frac{10 \cdot q_{\rm H}}{B_{\rm p} H},$$

где $q_{\rm H}$ – номинальная пропускная способность рабочей машины, кг/с; $B_{\rm p}$ – рабочая ширина захвата, м; H – норма внесения материалов или урожайность культур, т/га.

Урожайность культур включает в себя как основную, так и побочную продукцию (например, зерно и солома, свёкла и ботва и т.д.).

Далее необходимо рассчитать значения мощности двигателя $N_{\rm ep}$ необходимой для работы агрегата со скоростью $v_{\rm p}^{\rm np}$.

Для тягово-приводного агрегата

$$N_{e_p} = \frac{(R_M + P_f + P_\alpha)V_P^{\text{np}}}{\eta_{\text{Mr}}\eta_{\text{f}}} + \frac{N_{\text{BOM}}}{\eta_{\text{BOM}}}$$
.

Для самоходного агрегата

$$N_{e_p} = \frac{(R_M + V_P^{\text{np}})}{\eta_{\text{MF}} \eta_{\text{pn}} \eta_{\text{rn}}} + \frac{N_{\text{BOM}}}{\eta_{\text{BOM}}}$$

где $\eta_{p\pi}$ – к.п.д. клиноременной передачи; $\eta_{r\pi}$ – к.п.д. гидропривода; η_{BOM} – к.п.д. BOM (0,94...0,96).

Если рассчитанное значение $N_{\rm ep} < N_{\rm eh}$, агрегат работает на скорости не более $v_{\rm p}^{\rm np}$. Если же $N_{\rm ep} > N_{\rm eh}$, то агрегат, естественно, должен работать на меньшей скорости с учётом возможностей двигателя. В этом случае значения скорости $v_{\rm p}^{\rm np}$ подсчитываются по следующим формулам.

Для тягово-приводных агрегатов

Изм.	Лист	№ докум.	Подпись	Дата

$$v_p^{Ne} = \frac{\left(N_{e_{\text{H}}} \xi_{Ne} - \frac{N_{\text{BOM}}}{\eta_{\text{BOM}}}\right) \eta_{\text{MF}} \eta_6}{R_M + G_{\text{Tp}} (f_{\text{Tp}} + \frac{i}{100})}$$
.

Для самоходных агрегатов

$$v_p^{Ne} = \left(N_{e_{\scriptscriptstyle \mathrm{H}}} \xi_{Ne} - \frac{N_{\scriptscriptstyle \mathrm{BOM}}}{\eta_{\scriptscriptstyle \mathrm{BOM}}}\right) \eta_{\scriptscriptstyle \mathrm{M}\Gamma} \eta_{\scriptscriptstyle \mathrm{f}} \; ,$$

где ξ_{Ne} — допустимый коэффициент загрузки двигателя; η_{Mr} — к.п.д. трансмиссии (для гусеничных тракторов $\eta_{Mr} = 0.76...0.8$, для колёсных $\eta_{Mr} = 0.78...0.82$).

Мощность, затрачиваемая на привод ВОМ, подсчитывается по формуле

 $N_{\text{BOM}} = N_{\text{BOM}p} + N_{\text{BOM}x} + N_{\text{BOM}g}$

или

 $N_{\text{BOM}} = N_{\text{уд}}g_{\text{H}} + N_{\text{BOM}x} + N_{\text{BOM}g}$

где $N_{\rm уд}$ — затраты мощности на технологический процесс, кВт/кг/с; $N_{\rm BOMx}$ — мощность, расходуемая на холостое вращение рабочих органов, кВт; $N_{\rm BOMg}$ — мощность, расходуемая на привод дополнительных механизмов (ориентировочно 2...5 кВт для зерноуборочных и кормоуборочных комбайнов), кВт.

Расчёт транспортных тракторных агрегатов

К особенностям расчёта транспортных тракторных агрегатов относится то, что вместо рабочих машин в агрегате используются тракторные прицепные тележки.

Суть расчёта сводится в основном к определению количества прицепов в транспортном агрегате. Полное тяговое сопротивление транспортного агрегата определяется по формул

$$R_{a_T} = G_{\Pi p}^{\Pi} n_{\Pi p} (f_{\Pi p} \pm \frac{i}{100}) ,$$

где $G_{\rm np}^{\scriptscriptstyle \Pi}$ — общий вес гружёного прицепа, кH; $n_{\rm np}$ — количество прицепов в агрегате, шт.; $f_{\rm np}$ — коэффициент сопротивления качению прицепа.

Для выбранных по дорожным условиям транспортных передач и с учётом угла склона или подъёма и повышенного сопротивления при трогании с места определяется максимальный прицепной вес

$$G_{\text{пр}}^{max} = \frac{P_{T_H} \xi_{P_T} - G_{\text{тр}}(f(a_{\text{тр}} - 1) \pm \frac{i}{100})}{f a_{\text{пр}} \pm \frac{i}{100}},$$

где $a_{\rm rp}$ и $a_{\rm np}$ — коэффициенты повышения сопротивления движению соответственно трактора и прицепа при трогании с места.

Количество прицепов в агрегате можно подсчитать по формуле

$$n_{\rm np} = \frac{G_{\rm np}^{max}}{G_{\rm np}^{\rm n}},$$

где $G_{\rm np}^{\scriptscriptstyle \Pi}$ – вес пустого прицепа.

Режимы работы агрегатов

Пользуясь графиками тяговой характеристики тракторов (рисунок 1), достаточно определить действительный режим работы агрегата – его рабочую ско-

Изм.	Лист	№ докум.	Подпись	Дата

рость $v_{\rm p}$. Исходным условием при определении действительных значений $v_{\rm p}$ является соотношение

$$(P_{T_H} \pm G_{\rm Tp} \frac{i}{100}) \xi_{P_T} \ge R_a$$
.

Методика определения $v_{\rm p}$ в этом случае состоит в следующем. Зная общее сопротивление агрегата $R_{\rm a}$, можно выбрать передачу трактора, для которой соотношение соблюдается.

Поскольку масштаб графика тяговой характеристики на оси абсцисс одинаков для $P_{\rm T}$ и $R_{\rm a}$, полученное расчётом сопротивление $R_{\rm a}$ откладывается на оси абсцисс, а затем на графике $v_{\rm p}$ выбранной передачи определяется действительное значение рабочей скорости движения агрегата (см. рисунок 1).

Следует помнить, что в практике расчётов могут встречаться случаи, когда определённое таким образом значение $v_{\rm p}$ выходит за пределы интервала допустимых скоростей. В этих случаях рекомендуется использовать переход на пониженный скоростной режим без изменения передачи. При этом рабочая скорость агрегата войдёт в интервал допустимых скоростей, а часовой расход топлива $G_{\rm T}$ даже уменьшится.

Рисунок 1. Определение рабочей скорости агрегата

Практическая часть

Таблица 1. Исходные данные

Номер	<i>v</i> _{агр} ,	$B_{\rm p}$,	K_3	K_{w}	К п	h,	$\delta_{\rm c}$	$\eta_{\scriptscriptstyle{\mathrm{M}\Gamma}}$	ηрп	$\eta_{ m rn}$	η _{BOM}
варианта	км/ч	M				т/га					
1	11,1	6,18	0,98	1,8	0,758	3	1,28	0,8	0,95	1	0,95
2	9,2	5,58	0,98	1,8	0,758	4	1,28	0,8	0,95	1	0,95
3	11,3	5,12	0,98	1,8	0,758	3	1,28	0,8	0,95	1	0,95
4	10,2	5,80	0,98	1,8	0,758	3	1,28	0,8	0,95	1	0,95
5	9,6	5,96	0,98	1,8	0,758	3	1,28	0,8	0,95	1	0,95
6	9,2	5,52	0,98	1,8	0,758	4	1,28	0,8	0,95	1	0,95
7	9,1	5,66	0,98	1,8	0,758	4	1,28	0,8	0,95	1	0,95
8	9,8	5,90	0,98	1,8	0,758	3	1,28	0,8	0,95	1	0,95
9	10,4	6,22	0,98	1,8	0,758	3	1,28	0,8	0,95	1	0,95
10	9,6	5,54	0,98	1,8	0,758	4	1,28	0,8	0,95	1	0,95

						Лист
					Лабораторная работа №1	4
Изм.	Лист	№ докум.	Подпись	Дата		4

11	9,8	5,92	0,98	1,8	0,758	3	1,28	0,8	0,95	1	0,95
12	9,2	5,54	0,98	1,8	0,758	4	1,28	0,8	0,95	1	0,95
13	10,6	5,84	0,98	1,8	0,758	3	1,28	0,8	0,95	1	0,95
14	11,2	6,36	0,98	1,8	0,758	3	1,28	0,8	0,95	1	0,95
15	10,6	6,20	0,98	1,8	0,758	3	1,28	0,8	0,95	1	0,95
16	9,2	5,76	0,98	1,8	0,758	3	1,28	0,8	0,95	1	0,95
17	9,2	5,58	0,98	1,8	0,758	4	1,28	0,8	0,95	1	0,95
18	11,1	6,10	0,98	1,8	0,758	3	1,28	0,8	0,95	1	0,95
19	11,2	6,20	0,98	1,8	0,758	3	1,28	0,8	0,95	1	0,95
20	9,6	5,52	0,98	1,8	0,758	4	1,28	0,8	0,95	1	0,95

1. Определяем рабочую скорость комбайна КЗС-10К по агротехническим требованиям. Максимально допустимая скорость по агротехническим требованиям

$$v_{\text{arp}} = 11,1 \text{ KM/} \cdot 4.$$

$$v_{\text{arp}} = \frac{v_{\text{arp}} \cdot 1000}{3600} = 3,083 \text{ M/c}.$$

2. Максимально допустимая скорость движения комбайна по пропускной способности определяется по формуле

$$v_{\rm np} = \frac{10q_{\rm m}}{B_{\rm p}H},$$

где $q_{\rm H}$ — номинальная пропускная способность рабочей машины, кг/с; $B_{\rm p}$ — рабочая ширина захвата, м; H — норма внесения материалов или урожайность культур, т/га.

Урожайность культур включает в себя как основную, так и побочную продукцию (например, зерно и солома, свёкла и ботва и т. д.).

$$h = \frac{h \cdot 1000}{10000} = \frac{3 \cdot 1000}{10000} = 0,3 \text{ kg/m}^2$$

$$H = h \cdot (1 + \delta_c) = 0,3 \cdot (1 + 1,28) = 0,684 \text{ kg/m}^2.$$

$$K_c = 0,6 \cdot \frac{(1 + \delta_c)}{\delta_c} = 0,6 \cdot \frac{(1 + 1,28)}{1,28} = 1,069.$$

Допустимая пропускная способность комбайна определяется по формуле $q_{\pi} = B_{\rm p} \cdot v_{\rm arp} \cdot H = 6.18 \cdot 3.083 \cdot 0.684 = 13.034 \ {\rm kg/c}$.

3. Определяем значения мощности двигателя, необходимой для работы комбайна со скоростью $v_{\rm np}$, по формуле

$$N_{\rm ep} = \frac{R_{\scriptscriptstyle m} \cdot \nu_{\scriptscriptstyle \rm \PiP}}{\eta_{\scriptscriptstyle \rm MT} \eta_{\scriptscriptstyle \rm PB} \eta_{\scriptscriptstyle \rm FB}} + \frac{N_{\scriptscriptstyle \rm BOM}}{\eta_{\scriptscriptstyle \rm BOM}} \; .$$

Сопротивление передвижению комбайна подсчитывается при значениях

$$G_m = 78,4 \text{ kH},$$

 $f_m = 0,09.$

Тогда

$$R_m = G_m \cdot f_m = 78, 4 \cdot 0,09 = 7,056 \text{ кH}.$$

						Лис
					Лабораторная работа №1	5
Изм.	Лист	№ докум.	Подпись	Дата)

Величину N_{BOM} подсчитывают по формуле

$$N_{\mathrm{BOM}} = N_{\mathrm{BOM}p} + N_{\mathrm{BOM}x} + N_{\mathrm{BOM}g} = N_{\mathrm{y}_{\mathrm{A}}} \cdot q_{\mathrm{A}} + N_{\mathrm{BOM}x} + N_{\mathrm{BOM}g},$$

где
$$N_{\rm yg} = 10 \; \frac{\kappa {
m BT}}{\kappa \Gamma \cdot {
m c}} \; , \; N_{{
m BOM}x} = 12 \; \kappa {
m BT} \; , \; N_{{
m BOM}g} = 4 \; \kappa {
m BT} \; .$$

Тогда

$$N_{\text{BOM}} = 10.13,034 + 12 + 4 = 146,3 \text{ kBT}$$

С учетом полученных значений мощность двигателя

$$N_{\rm ep} = \frac{R_{\rm m} \cdot v_{\rm arp}}{\eta_{\rm mr} \cdot \eta_{\rm prr} \cdot \eta_{\rm rrr}} + \frac{N_{\rm BOM}}{\eta_{\rm BOM}} = \frac{7,056 \cdot 3,083}{0,8 \cdot 0,95 \cdot 1} + \frac{146,3}{0,95} = 182,664 \, \text{kBt} \, .$$

В связи с тем, что номинальная мощность комбайна КЗС-10К $N_{\rm eh}=184$ кВт, то есть $N_{\rm ep} < N_{\rm eh}$, то комбайн может работать на данной скорости. При этом указанная скорость лежит в пределах, допустимых по агротребованиям к скоростям движения.

Вывод: анализ результатов показывает, что комбайн КЗС-10К может работать на данной скорости, в связи с тем, что номинальная мощность комбайна 184 кВт.

Изм.	Лист	№ докум.	Подпись	Дата