Analysis: ATM Queue

Firstly, denote K_i as the number of times a person will use the ATM. Formally, $K_i = \lceil \mathbf{A_i} \mid \mathbf{X} \rceil$.

Test Set 1

We can directly simulate the process using a queue.

Assume that i-th person, that wants to withdraw $\mathbf{A_i}$, is first in the queue. There are two possibilites:

- A_i ≤ X. In that case, this person withdraws A_i and leaves the queue. We can add i to the
 answer.
- A_i > X. In that case, this person withdraws X (thus setting A_i to A_i X) and goes back to
 the end of the queue.

Time complexity of this simulation is $O(\Sigma K_i)$.

In the worst case, when $\mathbf{X} = 1$, $K_i = \mathbf{A_i}$. Since $\mathbf{A_i} \le 100$, the worst time complexity is $O(\mathbf{N} \times 100)$, which easily fits into the time limit.

Test Set 2

In the second test set, K_i can be as big as 10^9 , so direct simulation is too slow.

Let's look at two people i and j. When will i-th person leave the queue before j-th person? There are two cases:

- K_i < K_j. Since i-th person will use the ATM fewer times than j-th person, they will leave the
 queue earlier.
- K_i = K_j and i < j. If they both use the ATM the same amount of times, the person earlier in the queue in the initial configuration will leave first.

This observation is enough to form a full solution. Sort people first in ascending order of K_i , and in case of ties in ascending order of their number. After sorting, this is our answer.

Time complexity of this solution is $O(N \log N)$.