Netspeak

Ein Assistent zum Verfassen fremdsprachiger Texte

Martin Trenkmann

Bauhaus Universität Weimar
Web Technology & Information Systems

11. Juli 2008

Gliederung

- 1 Motivation
- 2 Der Netspeak Web Service
 - Die Idee zu Netspeak
 - Der Retrieval Prozess
- 3 Indizierung großer Datenmengen
 - Invertierte Liste
 - Implementierung
- 4 Demonstration

Motivation: Szenario

- Studenten und Wissenschaftler verfassen oft englische Texte.
- Viele Menschen haben eine andere Muttersprache als Englisch.
- Schwierigkeiten treten auf ...
 - ... beim Finden des richtigen Wortes (z.B. Präpositionen).
 - ... bei der Wahl des gebräuchlichsten Synonyms (z.B. Adjektive).
 - ... bei der Beschreibung konkreter Sachverhalte (z.B. Adverbien).
- Eine Orientierung an phonetisch ähnlichen Worten bei der Wahl der Übersetzung ist dabei oft nicht richtig.

Motivation: Beispiel 1

Ich bin ein Student, der ...

- ... an Informatik interessiert ist.
- ... sich für Informatik interessiert.

I am a student, who is interested ...

- × ... at computer science.
- × ... on computer science.
- × ... for computer science.
- $\sqrt{\dots}$ in computer science.

Welche ist die richtige Präposition?

Motivation: Beispiel 2

Das hängt hauptsächlich von ihrem Können ab.

```
It depends ...
```

```
√ ... largely on your skill.
√ ... heavily on your skill.
√ ... primarily on your skill.
√ ... greatly on your skill.
```

Welches ist das gebräuchliste Synonym?

Motivation: Beispiel 3

Ich parke mein Auto vor dem Gebäude.

- × I park my car **before** the building.
- \sqrt{I} park my car **in front of** the building.
 - before beschreibt einen zeitlichen Vorgang
 - in front of beschreibt eine physikalische Gegebenheit

Motivation: Bisherige Lösungsversuche

- Anfragen an **Online-Wörterbücher** wie *LEO* oder *dict.cc*
- + Übersetzungen einzelner Worte (evtl. mit Verwendungsbeispielen)
- Keine Suche nach Phrasen mit mehreren Worten möglich
- Anfragen an Internet-Suchmaschinen wie Google
- + Suche nach Phrasen möglich (Überprüfung der Richtigkeit)
- + Wildcards erlauben die Vervollständigung von Phrasen (Suche nach fehlenden Worten, evtl. auch Synonymsuche)
- Das Suchergebnis ist nach Dokumenten und nicht nach den Häufigkeiten der Phrasen gerankt
- Fazit:
 - Manuelle Suche und Bewertung von Formulierungen ist sehr zeitaufwändig.
 - Eine Automatisierung dieses Prozesses könnte viel Zeit sparen und die Qualität der Texte verbessern.

Die Idee zu Netspeak

Netspeak

- Netspeak ist ein Web-Informationssystem, das die Gebräuchlichkeit von kurzen Textphrasen in der englischen Sprache feststellt.
- Datenbasis: Das World Wide Web
- Autoren der meisten Web-Dokumente: Native-Speaker
- Annahme:
 - Häufigkeit einer Formulierung → Gebräuchlichkeit (Richtigkeit)
 - Gilt nicht für grammatikalische Korrektheit (Umgangssprache)

Google-N-Gramm-Kollektion

- Google stellt das Web in Form einer Kollektion von N-Grammen zur Verfügung.
- Ein N-Gramm ist in diesem Zusammenhang eine Folge von N Worten.
- Die Google-N-Gramm-Kollektion umfaßt die Menge der 1-, 2-, 3-, 4und 5-Gramme aller indizierten englischsprachigen Web-Dokumente.
- Für Netspeak wurde der 5-Gramm-Korpus mit einer speziellen Implementierung eines invertierten Index indiziert.

	Anzahl	Dateien	komprimierte Größe	unkomprimierte Größe
Sätze	95.119.665.584			
1-Gramme	13.588.391	1	70,2 Megabyte	177,00 Megabyte
2-Gramme	314.843.401	32	1,6 Gigabyte	5,0 Gigabyte
3-Gramme	977.069.902	98	5,5 Gigabyte	19,0 Gigabyte
4-Gramme	1.313.818.354	132	8,4 Gigabyte	30,5 Gigabyte
5-Gramme	1.176.470.663	118	8,8 Gigabyte	32,1 Gigabyte

Netspeak-Retrieval: Anfragesprache

Beispiel Query: it depends * ~skill

Drei spezielle Wildcards werden unterstützt:

- * steht f
 ür null bis beliebig viele Worte
- ? steht für genau ein einzufügendes Wort
- ~ markiert ein Wort für eine Synonymsuche

vereinfachte Query Grammatik:

```
QUERY = { WORD | SYNWORD | '?' | '*'
SYNWORD = '~' WORD;
WORD = LETTER { LETTER };
LETTER = 'a' ... 'z' | 'A' ... 'Z';
```

Netspeak-Retrieval: Rechtschreibkorrektur

Vorschläge zur Rechtschreibkorrektur werden auf der Antwortseite eingeblendet.

- Fehlerhafte Query:
 - intristed ? compjuter scienz
- Korrekturvorschlag:
 - interested ? computer science

Netspeak-Retrieval: Synonymsuche

Vorschläge zur Rechtschreibkorrektur werden auf der Antwortseite eingeblendet.

■ Fehlerhafte Query:

intristed ? compjuter scienz

■ Korrekturvorschlag:

interested ? computer science

Für entsprechend gekennzeichnete Worte werden Synonyme gesucht und weitere Queries generiert.

- Query: it depends * ~skill
- Generierte Queries:
 - it depends * skill
 - it depends * accomplishment
 - it depends * acquirement
 - it depends * acquisition
 - it depends * attainment

Netspeak-Retrieval: Mustersuche im 5-Gramm-Index

Netspeak-Retrieval: Mustersuche im 5-Gramm-Index

Netspeak-Retrieval: Zusammenfassen von Duplikaten

- Alle 5-Gramme aus der Mustersuche erfüllen die eingegebene Query.
- Allerdings befinden sich darunter viele gleiche Übereinstimmungen:
 - it depends on your skill
 - lacktriangle depends on your skill and
- Diese Duplikate müssen zusammengefaßt werden.
- Die Häufigkeitswerte der N-Gramme werden summiert.

Netspeak-Retrieval: Ranking

- Die ermittelten N-Gramme werden nach ihren Häufigkeiten gerankt.
- D.h., die Liste der N-Gramme wird absteigend sortiert.
- Es werden zwei Rankings unterschieden:
 - **1** Ein **absolute** Ranking auf Grundlage der absoluten N-Gramm-Häufigkeiten.
 - Meherere relative Rankings der N-Gramme bezüglich der absoluten Häufigkeit eines bestimmten Wortes aus der Query.

Netspeak-Retrieval: Visualisierung

Indizierung: Prinzip eines Index

Ein Index ...

- ist eine (verteilte) Datenstruktur.
- ermöglicht effizienten Zugriff auf eine große Menge von Daten.
- enthält nicht die eigentlichen Nutzdaten sondern Metadaten.
- ist eine Abbildung von Schlüsseln auf Metadaten (Referenzen).

Abbildung von Schlagworten auf ...

Seitenzahlen (Texte)

Internetadressen (Webseiten)

GNGramPointer (N-Gramme)

Indizierung: Invertierte Liste

Vokabular	Postlisten
$Wort_{1}$	Referenz ₁₁ , Referenz ₁₂ , Referenz ₁₃ ,
Wort ₂	Referenz ₂₁ , Referenz ₂₂ ,
Wort ₃	Referenz ₃₁ , Referenz ₃₂ ,
$Wort_{\mathbf{n}}$	$Referenz_{n1},Referenz_{n2},Referenz_{n3},$

- Vokabular (Indexterme):
 - Enthält alle Worte für die der Index Daten indiziert hat
 - Evtl. Unterscheidung von Groß-/Kleinschreibung
 - Evtl. Entfernung von Stoppworten (Artikel, Präpositionen)
 - Evtl. Reduktion auf den Wortstamm (Entfernung von Affixen)
- Postlisten: Jedem Wort ist eine Liste mit Referenzen auf Nutzdaten zugewiesen.
- Herausforderung: Implementierung einer Datenstruktur, die bei wenig
 Speicherverbrauch einen schnellen Zugriff auf eine invertierte Liste gewährt.

C++ Implementierung: Komponenten

- DataSource parst eine zu indizierende Kollektion oder (pseudo-) invertierte Textdateien und erzeugt daraus Dataltems
- HashFunction dient der Zuweisung von Dataltems auf GenericPostlists.
- DataStorage implementiert eine Strategie zur Vorhaltung bzw. Bereitstellung von GenericPostlists (interner oder externer Speicher oder Cache).

C++ Implementierung: Java Anbindung

- Aufbau in 3 Schichten nach Repräsentation der Daten:
 - Interpreted Index Data Layer: Daten werden zum Parsen exakt interpretiert (Strings, Integer).
 - Uninterpreted User Data Layer: Postlisten enthalten (neutrale) Byte-Arrays
 - Interpreted User Data Layer: Byte-Arrays werden wieder exakt interpretiert (Strings, Integer).
- Generische Schnittstelle zu Java (JNI): Postlisten werden als Byte-Arrays übertragen.

C++ Implementierung: Minimale Perfekte Hashfunktion

Der Index verwendet eine minimale perfekte Hashfunktion (MPHF) um jeden Indexterm aus dem Vokabular auf einen Ganzzahlenwert abzubilden.

Anwendung:

- Indizierung: Einsortierung der zu indizierenden Daten in Postlisten
- Suche im Index: Bereitstellung der Postliste eines gesuchtes Wort

Eigenschaften:

- Eine Hashfunktion ist *perfekt*, wenn sie keine Kollisionen erzeugt.
- Eine Hashfunktion ist *minimal perfekt*, wenn sie *n* Indexterme auf das halboffene Intervall [0,n) ohne Kollisionen abbildet.

Vorteile einer MPHF:

- Optimaler Speicherverbrauch der Hashtabelle, da keine leeren Slots
- Keine Kollisionsbehandlung notwendig

Der Index kann eine MPHF einsetzen, da das Vokabular im Vorhinein bekannt ist.

C++ Implementierung: Fakten

Limitierungen:

- Größe einer Postliste: Maximale Dateigröße des Dateisystems (FAT32: 4 GB, NTFS/Ext3/ReiserFS: Festplattengröße)
- Größe eines Index: Festplattengröße
- Größe des Vokabulars: Maximaler signed Integer (2.147.483.647)

Netspeak Index:

- Größte Postliste: Wort "the" mit 1,7 GB und 156 Mio. Einträgen
- Gesamte Indexgröße: rund 30 GB
- Speicherverbrauch zur Laufzeit: 200 MB
- Größe des Vokabulars: rund 3 Mio. Worte

Demonstration

http://Netspeak.webis.de

Ende

Danke für Ihre Aufmerksamkeit

Fragen?