CS7545, Spring 2023: Machine Learning Theory - Solutions #1

Jacob Abernethy, Zihao Hu, Guanghui Wang, Yeojoon Youn

Due: Tuesday, January 31 at 11:59 p.m.

1) **Norm.** We will prove a generic statement which implies (a)-(d).

Let $p > q \ge 1$, and r be a number such that $\frac{1}{p} + \frac{1}{r} = \frac{1}{q}$. Then, q < p, r and $(\frac{p}{q}, \frac{r}{q})$ is a conjugate norm pair. Let $\mathbf{a} \in \mathbb{R}^N$ such that $a_i = |x_i|^q$, and let $\mathbf{y} = (1, \dots, 1) \in \mathbb{R}^N$. Now we use Holder's inequality:

$$\mathbf{a}^{\top}\mathbf{y} = \sum_{i=1}^{N} |x_i|^q \le \|\mathbf{a}\|_{\frac{p}{q}} \|\mathbf{y}\|_{\frac{r}{q}} = \left(\sum_{i=1}^{N} |x_i|^p\right)^{\frac{q}{p}} n^{\frac{q}{r}}.$$

By exponentiating each side with 1/q, we get

$$\|\mathbf{x}\|_{q} \leq \|\mathbf{x}\|_{p} n^{\frac{1}{r}} = \|\mathbf{x}\|_{p} n^{\frac{1}{q} - \frac{1}{p}}$$

Also note that

$$\|\mathbf{x}\|_q^p = \left(\sum_{i=1}^N |x_i|^q\right)^{\frac{p}{q}} \ge \sum_{i=1}^N |x_i|^p = \|\mathbf{x}\|_p^p$$

which implies $\|\mathbf{x}\|_q \ge \|\mathbf{x}\|_p$. The inequality follows since $(\sum |x_i|)^{\alpha} \ge \sum |x_i|^{\alpha}$ whenever $\alpha \ge 1$.

2) Hölder.

(a) Let p > 1 such that $\frac{1}{p} + \frac{1}{q} = 1$. Consider the following two vectors:

$$\mathbf{x}, \mathbf{y} \in \mathbb{R}^N : x_i = p_i^{\frac{1}{q}-1}, y_i = p_i^{\frac{1}{p}},$$

then by Hölder's Inequality,

$$\|\mathbf{x}\|_q \|\mathbf{y}\|_p \ge \mathbf{x}^T \mathbf{y} = \sum_i p_i^{\frac{1}{p} + \frac{1}{q} - 1} = N.$$

where $\|\mathbf{x}\|_q = (\sum_i p_i^{1-q})^{\frac{1}{q}}$ and $\|\mathbf{y}\|_p = 1$. Therefore

$$\sum_i \left(\sum_i \frac{1}{p_i^{q-1}}\right)^{\frac{1}{q}} \geq N \Rightarrow \sum_i \frac{1}{p_i^{q-1}} \geq N^q.$$

Remark. You can also use Jensen's inequality. Consider the function $f(p) = \frac{1}{p^q}$ and note that $f(\sum_{i=1}^N p_i p_i) \leq \sum_{i=1}^N p_i f(p_i)$.

(b) By Jensen's Inequality,

$$\sum_{i} p_i^2 \ge \sum_{i} \frac{p_i}{N} = \frac{1}{N}.$$

Therefore, we have

$$\sum_{i} \left(\frac{1}{p_i} + p_i\right)^2 = \sum_{i} p_i^2 + \sum_{i} 2 + \sum_{i} \frac{1}{p_i^2} \ge \frac{1}{N} + 2N + N^3.$$

Remark. You can use 1(a) to show that $\sum_i p_i^2 = \|\mathbf{p}\|_2^2 \ge \frac{\|\mathbf{p}\|_1^2}{N}$.

3) Projection.

(a) If $x \in \mathcal{K}$, the projection of x is obviously x. Suppose that for some point $x \notin \mathcal{K}$, the projection $\Pi_{\mathcal{K}}(x) > 1$ (we know $\Pi_{\mathcal{K}} > 0$ because the set is non-empty and closed). Let y_1 and y_2 be two points in $\Pi_{\mathcal{K}}(x)$ and let $||y_1 - x||_2 = ||y_2 - x||_2 = d$. Let $z = \alpha y_1 + (1 - \alpha)y_2$ for $\alpha \in (0, 1)$, so z is on the line between y_1 and y_2 . Then by the triangle inequality:

$$||x - z||_2 = ||x - \alpha y_1 - (1 - \alpha)y_2||_2 \tag{1}$$

$$\leq \alpha ||x - y_1||_2 + (1 - \alpha) ||x - y_2||_2$$
 (2)

$$=d$$
 (3)

Since y_1 and y_2 are projections of x, we know $||x-z||_2 \ge d$, so the triangle inequality holds with equality. This can only occur when $x-y_1$ is collinear with $x-y_2$, which means either $y_1=y_2$ or x is on the line between y_1 and y_2 , which would imply $x \in \mathcal{K}$ by convexity. Both of these would cause a contradiction.

Alternately, consider a ball of radius d around x, which must intersect \mathcal{K} at y_1 and y_2 . The line between y_1 and y_2 lies inside this ball, which means every point between y_1 and y_2 is strictly closer to x than y_1 and y_2 .

(b) We need to show that if \mathcal{K} is non-convex, there is a point x that has a non-unique projection. Assume for contradiction that all points have unique projections. For non-convex \mathcal{K} , we know there are two points $y_1, y_2 \in \mathcal{K}$ such that for some $\alpha \in (0, 1)$, $z = \alpha y_1 + (1 - \alpha)y_2$ is not in \mathcal{K} . If z has a non-unique projection, we are done. Else, let x_0 be the unique projection of z. Then every point on the ray from x_0 in the direction of z must also uniquely project to x_0 (otherwise there'd be some point that projected to two points in \mathcal{K}). Take a point z_t at distance t from x_0 on the ray from x_0 towards z. Then by definition of projection of z_t :

$$t = ||z_t - x_0||_2 < ||z_t - y_1||_2 \tag{4}$$

However, for sufficiently large t, $z_t - x_0$ and $z_t - y_0$ will be approximately collinear, and we will have $||z_t - y_1||_2 < ||z_t - x_0||_2$ or $||z_t - y_2||_2 < ||z_t - z_0||_2$, which contradicts the fact that z_t projects to x_0 .

4) Fenchel.

(a) The conjugate of f_{α} is defined as

$$f_{\alpha}^{*}(\theta) = \sup_{\mathbf{x}} \mathbf{x}^{T} \theta - f_{\alpha}(\mathbf{x}) = \alpha \left(\sup_{\mathbf{x}} \mathbf{x}^{T} \frac{\theta}{\alpha} - f(\mathbf{x}) \right) = \alpha g \left(\frac{1}{\alpha} \theta \right).$$

(b) The conjugate of f is defined as

$$f^*(\theta) = \sup_{x} x\theta - \sqrt{1 + x^2}.$$

Let $h(x,\theta) = x\theta - \sqrt{1+x^2}$. As h is strictly concave in x, $\frac{\partial h(x,\theta)}{\partial x}$ has at most one zero for a fixed θ . We have

$$\frac{\partial h(x,\theta)}{\partial x} = \theta - \frac{x}{\sqrt{1+x^2}}.$$

As $\left|\frac{x}{\sqrt{1+x^2}}\right| < 1$ for all $x \in \mathbb{R}$, consider the three cases:

• $|\theta| > 1$, then $h(x, \theta)$ is monotonic in x since $\left| \frac{\partial h(x, \theta)}{\partial x} \right| > |\theta| - 1 > 0$. Therefore $f^*(\theta)$ is not defined.

- $|\theta| < 1$, then the supremum is achieved where the gradient is zero, i.e., $x = \frac{\theta}{\sqrt{1-\theta^2}}$. Therefore we have $f^*(\theta) = -\sqrt{1-\theta^2}$.
- $|\theta| = 1$. For $\theta = 1$ the gradient approaches 0 as x goes to infinity, and hence

$$f^*(\theta) = \lim_{x \to \infty} x - \sqrt{1 + x^2} = 0.$$

Similarly, we have $f^*(-1) = 0$.

To summerize, we have $f^*(\theta) = -\sqrt{1-\theta^2}, \theta \in [0,1]$.

5) Hoeffding.

(a) By Markov's Inequality, $\Pr[X \ge t] \le \Pr[e^{\lambda X} \ge e^{\lambda t}] \le \frac{\mathbb{E}[e^{\lambda X}]}{e^{\lambda t}}$ for all $\lambda \ge 0$. Therefore

$$\Pr[X \ge t] \le \inf_{\lambda \ge 0} e^{-\lambda t + \log \mathbb{E}[e^{\lambda X}]} = \exp\{-\sup_{\lambda > 0} \lambda t - \log \mathbb{E}[e^{\lambda X}]\}$$

It suffices to prove that $\sup_{\lambda \geq 0} \lambda t - \log \mathbb{E}[e^{\lambda X}] = \sup_{\lambda} \lambda t - \log \mathbb{E}[e^{\lambda X}] = f^*(t)$ given that $t > \mathbb{E}[X]$.

We first prove that $\lambda t - \log \mathbb{E}[e^{\lambda X}] \leq 0 \cdot t - \log \mathbb{E}[e^{0 \cdot X}] = 0$ for all $\lambda \leq 0$. We have

$$\lambda t - \log \mathbb{E}[e^{\lambda X}] \le \lambda \mathbb{E}[X] - \log \mathbb{E}[e^{\lambda X}] = \log \frac{e^{\lambda \mathbb{E}[X]}}{\mathbb{E}[e^{\lambda X}]}.$$

As $f(x) = e^{\lambda x}$ is convex, by Jensen's inequality we have $0 \le e^{\lambda \mathbb{E}[X]} \le \mathbb{E}[e^{\lambda X}]$, therefore $\log \frac{e^{\lambda \mathbb{E}[X]}}{\mathbb{E}[e^{\lambda X}]} \le 0$, which means that $\sup_{\lambda \le 0} \lambda t - \log \mathbb{E}[e^{\lambda X}] \le 0 \le \sup_{\lambda \ge 0} \lambda t - \log \mathbb{E}[e^{\lambda X}] \Rightarrow \sup_{\lambda \ge 0} \lambda t - \log \mathbb{E}[e^{\lambda X}] = \sup_{\lambda} \lambda t - \log \mathbb{E}[e^{\lambda X}]$.

Remark. You want to prove for every t, not every λ . Nowhere in the statement does λ actually appear; it appears as a *dummy variable* inside the definition of convex conjugate. Showing the statement separetely for positive and negative λ doesn't work here.

(b) Let $X_i^{(j)}$ be the random variable denoting the result of the j-th toss of the i-th coin (1 for a head and 0 for a tail). For notational convenience, we assume the first coin is the special one.

Define $Y^{(j)} = \frac{X_1^{(j)} - X_2^{(j)} + 1}{2}$, which is a random variable taking values in [0, 1]. Note that

$$\mathbb{E}[Y^{(j)}] = \frac{1+\rho}{2}$$

and that

$$\sum_{i=1}^{n} X_1^{(j)} \ge \sum_{i=1}^{n} X_2^{(j)} \text{ if and only if } \frac{1}{n} \sum_{i=1}^{n} Y^{(j)} \ge \frac{1}{2}.$$

So, we can bound the probability that the coin 2 came up heads more frequently than the coin 1 did, using Hoeffding's lemma:

$$\Pr\left[\frac{1}{n}\sum_{j=1}^{n}Y^{(j)} \le \frac{1}{2}\right] = \Pr\left[\frac{1}{n}\sum_{j=1}^{n}Y^{(j)} - \frac{1+\rho}{2} \le -\frac{\rho}{2}\right] \le \exp\left(-\frac{n\rho^2}{2}\right).$$

Since all the coins except the speical one is i.i.d., we can apply the union bound and conclude that

$$\Pr\left[\exists i \neq 1 : \sum_{j=1}^{n} (X_i^{(j)} - X_1^{(j)}) \ge 0\right] \le (m-1) \exp\left(-\frac{n\rho^2}{2}\right).$$

So, the speical coin has the most heads with probability at least $1 - m \exp\left(-\frac{n\rho^2}{2}\right)$.

Remark. You can also show that the probability of the biased coin coming up with most heads is lower bounded by the probability that the biased coin gets at least $\frac{1+\rho}{2}n$ heads and the rest gets at most $\frac{1+\rho}{2}n$ heads. If you do this, you get a bound that looks like $\left(1-\exp\left(-\frac{n\rho^2}{2}\right)\right)^m$, which for a small enough ρ is escentially the same as the above bound.

A common mistake is to consider Z_i , the difference between the number of heads between the biased coin and the non-biased coin i, and assume independence among Z_i 's. Although you get the same $\left(1 - \exp\left(-\frac{n\rho^2}{2}\right)\right)^m$ bound, this argument is wrong.

- (c) It suffices to choose n such that $m \exp(-\frac{1}{2}n\rho^2) \leq \delta$, or equivalently, $n \geq 2\rho^{-2} \log \frac{m}{\delta}$ to ensure that the probability of failure is upper bounded by δ .
- 6) Shannon.
- (a) Let $h(\boldsymbol{\theta}) = \langle \mathbf{x}, \boldsymbol{\theta} \rangle g(\boldsymbol{\theta})$. The supremum of h is achieved when $\nabla g(\boldsymbol{\theta}) = \mathbf{x}$. The i-th coordinate of the gradient of g is $\frac{\exp(\theta_i)}{\sum_{j=1}^n \exp(\theta_j)}$. If $\theta_i = \log x_i$, $\nabla g(\boldsymbol{\theta}) = \frac{x_i}{\sum_{j=1}^n x_j} = x_i$. So, $g^*(\mathbf{x}) = \langle \mathbf{x}, \log \mathbf{x} \rangle g(\log \mathbf{x}) = \langle \mathbf{x}, \log \mathbf{x} \rangle$ because $g(\log \mathbf{x}) = \log(\sum x_i) = 0$ for any $\mathbf{x} \in \Delta^N$.

It remains to show that the domain of g is Δ^N . Suppose $x_k < 0$. Then, h grows unboundedly by setting $\theta_k = -t$ and $\theta_i = 0$ for all $i \neq k$, as t goes to infinity. Now suppose $x_i \geq 0$ for every i. Consider $\boldsymbol{\theta} = (t, \dots, t)$. Then,

$$h(\boldsymbol{\theta}) = t \sum x_i - t - \log n.$$

Setting $t = +\infty$ if $\sum x_i > 1$ and $t = -\infty$ if $\sum x_i < 1$ shows h is unbounded.

Remark. You can skip the part that shows the domain of g^* is indeed Δ^N , if you prove the other duality, i.e., $f^* = g$. Note that generally speaking, for any convex function h, $h(x) = \infty$ for all $x \notin \text{dom}(h)$. (which makes sense considering the definition of convex conjugate.)

(b) The bregman divergence of the negative entropy function is exactly the KL divergence. Let $\mathbf{x} = (p, 1-p)$ and $\mathbf{y} = (q, 1-q)$. Without loss of generality, we assume that $p \geq q$. Note $\|\mathbf{x} - \mathbf{y}\|_1 = 2(p-q)$ Define $h_p(q) = D_f(\mathbf{x}, \mathbf{y}) - \frac{1}{2} \|\mathbf{x} - \mathbf{y}\|_1^2$, and differentiate it:

$$\begin{split} \frac{\partial h_p}{\partial q} &= \frac{\partial \left(p \log \frac{p}{q} + (1-p) \log \frac{1-p}{1-q} - 2(p-q)^2 \right)}{\partial q} \\ &= -\frac{p}{q} + \frac{1-p}{1-q} + 4(p-q) \\ &= \frac{q-p}{q(1-q)} + 4(p-q) \\ &= (p-q) \left(4 - \frac{1}{q(1-q)} \right). \end{split}$$

Since $p \ge q$ and $\frac{1}{q(1-q)} \ge 4$, the derivative is non-positive. Therefore, h_p is minimized at the boundary p = q, where h_p is exactly 0. This proves the 1-strong convexity of the negative entropy function.

(c) For general Δ_n , note that $\|\mathbf{x} - \mathbf{y}\|_1 = \sum_{i:x_i \leq y_i} (y_i - x_i) + \sum_{i:x_i > y_i} (x_i - y_i)$. Consider the following two vectors in Δ_2 :

$$\mathbf{x}_A = \left(\sum_{i \in A} x_i, \sum_{i \notin A} x_i\right) \text{ and } \mathbf{y}_A = \left(\sum_{i \in A} y_i, \sum_{i \notin A} y_i\right)$$

where $A = \{i : x_i > y_i\}$. Then, we have $\|\mathbf{x} - \mathbf{y}\|_1 = \|\mathbf{x}_A - \mathbf{y}_A\|_1$. We certainly have $D(\mathbf{x}_A \|\mathbf{y}_A) \ge \frac{1}{2} \|\mathbf{x} - \mathbf{y}\|_1$ by (b) and $D(\mathbf{x}\|\mathbf{y}) \ge D(\mathbf{x}_A\|\mathbf{y}_A)$ by data-processing inequality; therefore the 1-strong convexity hold for general Δ_n .

7) Bregman.

(a) By definition,

$$D_f(\mathbf{x}, \mathbf{y}) + D_f(\mathbf{y}, \mathbf{z}) - D_f(\mathbf{x}, \mathbf{z})$$

$$= f(\mathbf{x}) - f(\mathbf{y}) - \langle \nabla f(\mathbf{y}), \mathbf{x} - \mathbf{y} \rangle + f(\mathbf{y}) - f(\mathbf{z}) - \langle \nabla f(\mathbf{z}), \mathbf{y} - \mathbf{z} \rangle - f(\mathbf{x}) + f(\mathbf{z}) + \langle \nabla f(\mathbf{z}), \mathbf{x} - \mathbf{z} \rangle$$

$$= \langle \nabla f(\mathbf{z}) - \nabla f(\mathbf{y}), \mathbf{x} - \mathbf{y} \rangle.$$

(b) Take $\mathbf{z} = \mathbf{x}$ in the equation above, we have

$$D_f(\mathbf{y}, \mathbf{x}) + D_f(\mathbf{x}, \mathbf{y}) = \langle \nabla f(\mathbf{x}) - \nabla f(\mathbf{y}), \mathbf{x} - \mathbf{y} \rangle.$$

Strong convexity indicates that

$$D_f(\mathbf{y}, \mathbf{x}) + D_f(\mathbf{x}, \mathbf{y}) \ge \frac{1}{2} \|\mathbf{x} - \mathbf{y}\|^2 + \frac{1}{2} \|\mathbf{x} - \mathbf{y}\|^2 = \|\mathbf{x} - \mathbf{y}\|^2;$$

on the other hand, by Hölder's inequality we have $\langle \nabla f(\mathbf{x}) - \nabla f(\mathbf{y}), \mathbf{x} - \mathbf{y} \rangle \leq \|\nabla f(\mathbf{x}) - \nabla f(\mathbf{y})\|_* \|\mathbf{x} - \mathbf{y}\|$. Concatenating these two inequalities we have

$$\|\nabla f(\mathbf{x}) - \nabla f(\mathbf{y})\|_* \ge \|\mathbf{x} - \mathbf{y}\|,$$

which still holds for the special case $\|\mathbf{x} - \mathbf{y}\| = 0 \Leftrightarrow \mathbf{x} = \mathbf{y}$.

(c) Denote f^* the Fenchel duality of f. By the properties of Fenchel duality, we have

$$D_f(\mathbf{x}, \mathbf{y}) = D_{f^*}(\nabla f(\mathbf{y}), \nabla f(\mathbf{x})).$$

Also, f is 1-strongly convex with respect to $\|\cdot\|$ if and only if f^* is 1-strongly smooth with respect to $\|\cdot\|_*$. Therefore we only need to prove the latter proposition. Fenchel duality tells us that

$$\nabla f^*(\nabla f(\mathbf{x})) = \mathbf{x}.$$

As $\nabla f^*(\theta) = \nabla f^{-1}(\theta)$, by $\forall \mathbf{x}, \mathbf{y}, ||\mathbf{x} - \mathbf{y}|| \le ||\nabla f(\mathbf{x}) - \nabla f(\mathbf{y})||_*$ we have

$$\|\nabla f^*(\psi) - \nabla f^*(\varphi)\| \le \|\psi - \varphi\|_*.$$

For arbitrarily fixed φ , θ , consider the function $g(\alpha) = D_{f^*}(\varphi + \alpha\theta, \varphi) = f^*(\varphi + \alpha\theta) - f^*(\varphi) - \alpha \nabla f^*(\varphi)^T \theta$. It suffices to prove that $g(\alpha) \leq \frac{1}{2}\alpha^2 \|\theta\|_*^2$. Apparently,

$$g(0) = 0, g'(\alpha) = \langle \nabla f^*(\varphi + \alpha \theta) - \nabla f^*(\varphi), \theta \rangle \leq \alpha \|\theta\|_*^2$$

therefore $g(\alpha) = \int_0^{\alpha} g'(\beta) d\beta \le \|\theta\|_*^2 \int_0^{\alpha} \beta d\beta = \frac{1}{2}\alpha^2 \|\theta\|_*^2$. Therefore f^* is 1-strongly smooth and f is 1-strongly convex.

With the stronger condition $\forall \mathbf{x}, \mathbf{y}, \langle \mathbf{x} - \mathbf{y}, \nabla f(\mathbf{x}) - \nabla f(\mathbf{y}) \geq \|\mathbf{x} - \mathbf{y}\|_2^2$, however, the proof can be much easier as we can get rid of Cauchy Schwarz. Use the method above, for fixed \mathbf{y}, \mathbf{z} let $h(\alpha) = D_f(\mathbf{y} + \alpha \mathbf{z}, \mathbf{y})$. We only need to prove that $h(\alpha) \geq \frac{1}{2}\alpha^2 \|\mathbf{z}\|^2$ for all α . Apparently,

$$h'(\alpha) = \langle \nabla f(\mathbf{y} + \alpha \mathbf{z}) - \nabla f(\mathbf{y}), \mathbf{z} \rangle \ge \alpha \|\mathbf{z}\|^2.$$

Also by h(0) = 0 we conclude $h(\alpha) \ge \int_0^\beta \alpha \|\mathbf{z}\|^2 d\beta = \frac{1}{2}\alpha^2 \|\mathbf{z}\|^2$, finishing the proof.