UFV- CCE - DET

EST 105 - 3^a avaliação - 2^0 semestre de 2019 - $30/\mathrm{nov}/19$

Nome:								Matrícula:			
Assinatura:								Favor apresentar documento com foto.			
					ário em _I INICIAR	_	nas numerada	s de 1 a	8, total de 40 pontos, FAVOR		
	TEN PIEN	_	Assiı	nale (X)	em qual	turı	na está matric	ulado (sua	a nota será divulgada no sistema		
		 ΓURMA			HORÁRIO				PROFESSOR		
							8-10				
()	T2	2 <u>ª</u>	16-18		5 <u>a</u>	14-16	PVB310	Carol/Moysés		
()	Т3	2 ª	08-10	PVB109	4 <u>a</u>	10-12	PVB208	Paulo Emiliano		
()	T4	3 <u>a</u>	16-18		6 <u>a</u>	14-16	PVB310	Camila		
()	T5	2 <u>a</u>	14-16		4 <u>a</u>	16-18	PVB107	Carol		
()	Т6	4 <u>ª</u>	08-10		6 <u>a</u>	10-12	PVB305	CHOS - coordenador		
()	T7	3 <u>a</u>	18:30-	-20:10	5 <u>a</u>	20:30-22:10	PVB302	Eduardo		
()	T8	3 <u>a</u>	10-12	PVB300	6 <u>a</u>	08-10	PVB307	Paulo Cecon		

- Interpretar corretamente as questões é parte da avaliação, portanto não é permitido questionamentos durante a prova!
- É OBRIGATÓRIO APRESENTAR OS CÁLCULOS organizadamente, para ter direito à revisão.
- PODE UTILIZAR A CALCULADORA, porém mostre os valores utilizados na fórmula.
- BOA SORTE e BOA PROVA!!!

FORMULÁRIO

Para
$$k = 1, 2, ..., n < \infty$$
 $E(X^k) = \sum_x x^k P(x)$ ou $E(X^k) = \int x^k f(x) dx$
$$E(XY) = \sum_x \sum_y xy P(x, y) \text{ ou } E(XY) = \int \int xy f(x, y) dx dy$$

$$Cov(X, Y) = E(XY) - E(X)E(Y) \qquad V(X) = E(X^2) - [E(X)]^2$$

Para a, b e c constantes finitas, X, Y e Z variáveis aleatórias,

$$E(aX-bY+cZ)=aE(X)-bE(Y)+cE(Z)$$

$$V(aX-bY+cZ)=a^2V(X)+b^2V(Y)+c^2V(Z)-2abCov(X,Y)+2acCov(X,Z)-2bcCov(Y,Z)$$

$$P(X = x) = \binom{N}{x} p^x (1 - p)^{N - x} \quad E(X) = Np \quad V(X) = Np(1 - p) \quad \binom{N}{x} = \frac{N!}{x!(N - x)!}$$

$$P(X = x) = \frac{e^{-m}m^x}{x!} \qquad E(X) = V(X) = m$$

Para N grande e p pequeno, com Np constante, pode-se aproximar

$$X \sim \text{Binomial}(N, p) \quad \text{por} \quad X \sim \text{Poisson}(m = Np)$$

$$X \sim N\left(\mu; \sigma^2\right) \implies Z = \frac{X - \mu}{\sigma} \sim N(0, 1)$$

$$\overline{X} \sim N\left(\mu; \frac{\sigma^2}{n}\right) \implies Z = \frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}}$$

$$\overline{X} = \frac{\sum_{i=1}^{n} X_i}{n}$$

$$S_X^2 = \frac{\sum_{i=1}^{n} X_i^2 - \frac{\left(\sum_{i=1}^{n} X_i\right)^2}{n}}{n-1}$$

$$t_{\nu} = \frac{\overline{X}_1 - \overline{X}_2}{\sqrt{s^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$

$$s^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$$

 $\nu = \text{Graus de liberdade} = n_1 + n_2 - 2$

Tabela 1: Áreas de uma distribuição normal padrão entre z=0 e um valor positivo de z. As

áreas para os valores de z negativos são obtidas por simetria.

\overline{z}	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,0	0,0000	0,0040	0,0080	0,0120	0,0160	0,0199	0,0239	0,0279	0,0319	0,0359
0,1	0,0398	0,0438	0,0478	0,0517	0,0557	0,0596	0,0636	0,0675	0,0714	0,0753
0,2	0,0793	0,0832	0,0871	0,0910	0,0948	0,0987	0,1026	0,1064	0,1103	0,1141
0,3	0,1179	0,1217	0,1255	0,1293	0,1331	$0,\!1368$	0,1406	0,1443	0,1480	$0,\!1517$
0,4	0,1554	$0,\!1591$	0,1628	0,1664	0,1700	$0,\!1736$	0,1772	0,1808	0,1844	$0,\!1879$
0,5	0,1915	0,1950	0,1985	0,2019	0,2054	0,2088	0,2123	0,2157	0,2190	$0,\!2224$
0,6	0,2257	0,2291	0,2324	0,2357	0,2389	0,2422	0,2454	0,2486	$0,\!2517$	$0,\!2549$
0,7	0,2580	0,2611	0,2642	0,2673	$0,\!2703$	$0,\!2734$	$0,\!2764$	$0,\!2794$	0,2823	$0,\!2852$
0,8	0,2881	0,2910	0,2939	$0,\!2967$	0,2995	0,3023	0,3051	0,3078	0,3106	0,3133
0,9	0,3159	0,3186	0,3212	0,3238	$0,\!3264$	0,3289	0,3315	0,3340	0,3365	0,3389
1,0	0,3413	0,3438	0,3461	0,3485	$0,\!3508$	0,3531	0,3554	$0,\!3577$	$0,\!3599$	0,3621
1,1	0,3643	0,3665	0,3686	$0,\!3708$	0,3729	0,3749	0,3770	$0,\!3790$	0,3810	0,3830
1,2	0,3849	0,3869	0,3888	$0,\!3907$	0,3925	0,3944	$0,\!3962$	$0,\!3980$	0,3997	$0,\!4015$
1,3	0,4032	0,4049	0,4066	0,4082	0,4099	0,4115	0,4131	$0,\!4147$	$0,\!4162$	$0,\!4177$
1,4	0,4192	$0,\!4207$	$0,\!4222$	$0,\!4236$	$0,\!4251$	$0,\!4265$	$0,\!4279$	$0,\!4292$	0,4006	$0,\!4319$
1,5	0,4332	0,4345	$0,\!4357$	$0,\!4370$	$0,\!4382$	0,4394	0,4406	0,4418	0,4429	$0,\!4441$
1,6	0,4452	0,4463	0,4474	0,4484	0,4495	$0,\!4505$	$0,\!4515$	$0,\!4525$	$0,\!4535$	$0,\!4545$
1,7	0,4554	$0,\!4564$	0,4573	$0,\!4582$	$0,\!4591$	$0,\!4599$	0,4608	0,4616	0,4625	$0,\!4633$
1,8	0,4641	0,4649	0,4656	0,4664	0,4671	0,4678	$0,\!4686$	0,4693	0,4699	$0,\!4706$
1,9	0,4713	0,4719	0,4726	0,4732	0,4738	0,4744	0,4750	0,4756	0,4761	$0,\!4767$
2,0	0,4772	0,4778	0,4783	0,4788	0,4793	0,4798	$0,\!4803$	$0,\!4808$	$0,\!4812$	$0,\!4817$
2,1	0,4821	$0,\!4826$	$0,\!4830$	$0,\!4834$	$0,\!4838$	$0,\!4842$	$0,\!4846$	$0,\!4850$	$0,\!4854$	$0,\!4857$
2,2	0,4861	$0,\!4864$	$0,\!4868$	0,4871	$0,\!4875$	$0,\!4878$	$0,\!4881$	$0,\!4884$	$0,\!4887$	$0,\!4890$
2,3	0,4893	$0,\!4896$	$0,\!4898$	0,4901	0,4904	0,4906	0,4909	0,4911	0,4913	$0,\!4916$
2,4	0,4918	0,4920	0,4922	0,4925	0,4927	0,4929	0,4931	0,4932	0,4934	0,4936
2,5	0,4938	0,4940	0,4941	0,4943	0,4945	0,4946	0,4948	0,4949	0,4951	0,4952
2,6	0,4953	0,4955	0,4956	0,4957	0,4959	0,4960	0,4961	0,4962	0,4963	0,4964
2,7	0,4965	0,4966	0,4967	0,4968	0,4969	0,4970	0,4971	0,4972	0,4973	0,4974
2,8	0,4974	0,4975	0,4976	0,4977	0,4977	0,4978	0,4979	0,4979	0,4980	0,4981
2,9	0,4981	0,4982	0,4982	0,4983	0,4984	0,4984	0,4985	0,4985	0,4986	0,4986
3,0	0,4987	0,4987	0,4987	0,4988	0,4988	0,4989	0,4989	0,4989	0,4990	0,4990

Tabela 2: Valores positivos t na distribuição t_n de Student com n graus de liberdade em níveis de 10% a 0,1% de probabilidade = $2 \times P(t_n \ge t)$, tabela bilateral.

$\frac{\text{nível de probabilidade bilateral}}{\text{nível de probabilidade bilateral}}$							
	1007						
$\frac{n}{n}$	10%	5%	2%	1%	0,5%	0,1%	
1	6,31	12,71	31,82	63,66	127,32	636,62	
2	2,92	4,30	6,97	9,92	14,09	31,60	
3	2,35	3,18	4,54	5,84	7,45	12,94	
4	2,13	2,78	3,75	4,60	5,60	8,61	
5	2,02	$2,\!57$	$3,\!37$	4,03	4,77	$6,\!86$	
6	1,94	$2,\!45$	$3,\!14$	3,71	$4,\!32$	5,96	
7	1,90	$2,\!36$	3,10	$3,\!50$	4,03	5,41	
8	1,86	2,31	2,90	3,36	$3,\!83$	5,04	
9	1,83	$2,\!26$	2,82	$3,\!25$	3,69	4,78	
10	1,81	$2,\!23$	2,76	3,17	$3,\!58$	$4,\!59$	
11	1,80	2,20	2,72	3,11	3,50	$4,\!44$	
12	1,78	2,18	2,68	3,06	3,43	4,32	
13	1,77	2,16	2,65	3,01	$3,\!37$	$4,\!22$	
14	1,76	2,14	2,62	2,98	3,33	4,14	
15	1,75	2,13	2,60	2,95	$3,\!29$	4,07	
16	1,75	2,12	$2,\!58$	2,92	$3,\!25$	4,02	
17	1,74	2,11	$2,\!57$	2,90	$3,\!22$	3,97	
18	1,73	2,10	$2,\!55$	2,88	3,20	3,92	
19	1,73	2,09	$2,\!54$	2,86	$3,\!17$	3,88	
20	1,73	2,09	$2,\!53$	2,84	$3,\!15$	$3,\!85$	
21	1,72	2,08	$2,\!52$	2,83	3,14	3,82	
22	1,72	2,07	2,51	2,82	3,12	3,79	
23	1,71	2,07	2,50	2,81	3,10	3,77	
24	1,71	2,06	2,49	2,80	3,09	3,75	
25	1,71	2,06	2,49	2,79	3,08	3,73	
26	1,71	2,06	2,48	2,78	3,07	3,71	
27	1,70	2,05	2,47	2,77	3,06	3,69	
28	1,70	2,05	2,47	2,76	3,05	3,67	
29	1,70	2,04	2,46	2,76	3,04	3,66	
30	1,70	2,04	2,46	2,75	3,03	3,65	
40	1,68	2,02	2,42	2,70	2,97	3,55	
60	1,67	2,00	2,39	2,66	2,92	3,46	
120	1,65	1,98	2,36	2,62	2,86	3,37	
$+\infty$	1,65	1,96	2,33	2,58	2,81	3,29	

1.(10 pontos) Sejam Y_1, Y_2 e Y_3 variáveis aleatórias com os seguintes valores esperados e variâncias,

$$E(Y_1) = 1$$
 $E(Y_2) = 2$ $E(Y_3) = -1$ $V(Y_1) = 1$ $V(Y_2) = 3$ $V(Y_3) = 5$

e com as seguintes covariâncias,

$$cov(Y_1, Y_2) = -0.4$$
 $cov(Y_1, Y_3) = 0.5$ $cov(Y_2, Y_3) = 2.$

Sejam U e W variáveis aleatórias dadas por,

$$U = Y_1 - 2Y_2 + Y_3$$
 $W = 3Y_1 + Y_2$.

Pede-se:

 $\mathbf{a.(2 pt)}$ O valor esperado ou médio de U.

$$E(U) = E(Y_1) - 2E(Y_2) + E(Y_3)$$

= 1 - 4 - 1
= -4

 $\mathbf{b.(4 pt)}$ A variância de U.

$$var(U) = var(Y_1) + 4 var(Y_2) + var(Y_3) + 2 [cov(Y_1, -2Y_2) + cov(Y_1, Y_3) - 2 cov(Y_2, Y_3)]$$

$$= 1 + 12 + 5 + 2 [-2(-0, 4) + 0, 5 - 2(2)]$$

$$= 18 + 2(-2, 7) = 18 - 5, 4$$

$$= 12.6$$

 $\mathbf{c.(4 pt)}$ A covariância entre $U \in W$, $\operatorname{cov}(U, W)$.

$$\begin{array}{lll} {\mathop{\rm cov}} \left({V,W} \right) & = & {\mathop{\rm cov}} \left({{Y_1} - 2{Y_2} + {Y_3},3{Y_1} + {Y_2}} \right)\\ & = & 3\mathop{\rm cov} \left({{Y_1},{Y_1}} \right) + \mathop{\rm cov} \left({{Y_1},{Y_2}} \right) - 6\mathop{\rm cov} \left({{Y_1},{Y_2}} \right) - 2\mathop{\rm cov} \left({{Y_2},{Y_2}} \right)\\ & + & 3\mathop{\rm cov} \left({{Y_1},{Y_3}} \right) + \mathop{\rm cov} \left({{Y_2},{Y_3}} \right)\\ & = & 3\mathop{\rm var} \left({{Y_1}} \right) + \mathop{\rm cov} \left({{Y_1},{Y_2}} \right) - 6\mathop{\rm cov} \left({{Y_1},{Y_2}} \right) - 2\mathop{\rm var} \left({{Y_2}} \right)\\ & + & 3\mathop{\rm cov} \left({{Y_1},{Y_3}} \right) + \mathop{\rm cov} \left({{Y_2},{Y_3}} \right)\\ & = & 3(1) + (-0,4) - 6(-0,4) - 2(3) + 3(0,5) + 2\\ & = & 2,50 \end{array}$$

2.(10 pontos) Se $X \sim \text{Binomial}(n,p)$ com np < 10, $n \geq 20$ e $p \leq 0,05$, o cálculo de probabilidades com o modelo Binomial pode ser bem aproximado com o modelo Poisson, $X \sim \text{Poisson}(m)$. Para ilustrar este resultado, admita que 2% das pessoas sejam do grupo sanguíneo AB e considere uma amostra aleatória de 60 pessoas. Pede-se: Calcule a probabilidade de no mínimo três ($X \geq 3$) amostrados serem do tipo sanguíneo AB

a.(5 pt) Utilize o modelo Binomial.

Seja X: "número de pessoas que pertencem ao grupo sanguíneo AB". Temos que $S_X = \{0,1,\cdots,60\},\ N=60,\ p=0,02\ q=0,98$ e $P(X=x)=\binom{N}{x}p^x(1-p)^{N-x}$. Pelo complemento podemos calcular

$$P(X \ge 3) = 1 - P(X < 3) = 1 - (P(X = 0) + P(X = 1) + P(X = 2))$$

$$= 1 - \left[\binom{60}{0} \times 0,02^{0} \times 0,98^{60} + \binom{60}{1} \times 0,02^{1} \times 0,98^{59} + \binom{60}{2} \times 0,02^{2} \times 0,98^{58} \right]$$

$$= 1 - [1 \times 1 \times 0,2976 + 60 \times 0,02 \times 0,3036 + 1770 \times 0,0004 \times 0,3098]$$

$$= 1 - (0,2976 + 0,3644 + 0,2194)$$

$$= 0.1186$$

b.(5 pt) Utilize o modelo de Poisson.

$$m = Np = 60 \times 0,02 = 1,2 \text{ e } P(X = x) = \frac{e^{-m}m^x}{x!}. \text{ Temos pelo complemento que}$$

$$P(X \ge 3) = 1 - P(X < 3) = 1 - (P(X = 0) + P(X = 1) + P(X = 2))$$

$$= 1 - \left(\frac{e^{-1,2}1,2^0}{0!} + \frac{e^{-1,2}1,2^1}{1!} + \frac{e^{-1,2}1,2^2}{2!}\right)$$

$$= 1 - e^{-1,2} \left(1 + 1,2 + \frac{1,2^2}{2}\right)$$

$$= 1 - e^{-1,2} \cdot 2,92$$

= 1 - 0.8795 = 0.1205

3.(10 pontos) O departamento de vendas de uma grande empresa foi informado de que os seus vendedores realizam em média 15 contatos de venda por semana. Suspeita-se que essa informação esteja incorreta, que o verdadeiro valor médio (μ) seja maior do que 15. Para avaliar essa informação foram selecionados aleatoriamente n=36 vendedores e verificou-se nessa amostra um valor médio igual a 16,4 contatos de venda por semana. Admita desvio padrão $\sigma=9$ contatos por semana. Pede-se: Realize um teste de hipóteses conforme os itens a seguir:

a.(2 pt) Hipóteses estatísticas.

$$\left\{ \begin{array}{ll} H_0: & \mu=15 \\ H_1: & \mu>15 \end{array} \right.$$

b.(3 pt) Valor calculado (estatística do teste).

$$z_0 = z_{\text{cal}} = \frac{16, 4 - 15}{9/\sqrt{36}} \cong 0,93$$

c.(3 pt) Calcule o valor-p (faça um desenho ilustrativo).

valor
$$-p = P(\bar{X} \ge 16, 4) = P(Z \ge 0, 93)$$

= $0, 5 - P(0 \le Z \le 0, 93) = 0, 5 - 0, 3238$
 $\cong 0, 1762 \quad (17, 62\%)$

d.(2 pt) Informe a decisão do teste com base no valor-p para um nível de significância igual a 1%. Explique.

valor-p >
$$\alpha \Rightarrow NRH_0$$

0,1762 > 0,01

Não se rejeita H_0 ao nível de 1% de significância, pois valor-p> α logo os valores de $\bar{x} = 16, 4$ ou z = 0, 93 não pertencem a região crítica do teste.

4.(10 pontos) Em um estudo conduzido pela Florida Game and Fish Commission, avaliouse a quantidade de resíduos químicos de DDT em tecidos do cérebro de Pelicanos Marrons. Amostras de tecidos de aves juvenis e filhotes foram obtidas (valores expressos em partes por milhão, PPM) e os dados estão apresentados na tabela abaixo.

Juvenis	Filhotes
$n_1 = 10$	$n_2 = 13$
$\overline{Y}_1 = 0,041$	$\overline{Y}_2 = 0,026$
$S_1 = 0,017$	$S_2 = 0,006$

Pede-se: Adote $\alpha = 5\%$ e realize um teste de hipóteses para testar a hipótese de igualdade dos teores médios de DDT, contra uma alternativa de que as aves juvenis apresentam em média uma maior quantidade de resíduos de DDT.

a.(2 pt) Hipóteses estatísticas.

$$\begin{cases} H_0: & \mu_J = \mu_F \\ H_1: & \mu_J > \mu_F \end{cases}$$

b.(2 pt) Valor tabelado.

$$t_{\text{tab}} = t_{(21;5\%)} = 1,72$$
 (olhar 10% na tabela bilateral)

c.(4 pt) Valor calculado.

$$t_0 = t_{\text{cal}} = \frac{0,041 - 0,026}{\sqrt{0,00014\left(\frac{1}{10} + \frac{1}{13}\right)}} = \frac{0,015}{0,005054} \cong 2,97$$
$$S_c^2 = \frac{9 \cdot (0,017)^2 + 12 \cdot (0,006)^2}{21} = \frac{0,003033}{21} \cong 0,0001444$$

d.(2 pt) Decisão do teste e conclusão.

 RH_0 , ao nível de significância de 5%, pois $t_{cal} \in RC$. Logo, há evidências para afirmar que aves juvenis apresentam em média uma quantidade maior de resíduos de DDT.