Abstract Algebra

- 1. $(1968, B-2)^*$ A is a subset of a finite group G (with group operation called multiplication), and A contains more than one half of the elements of G. Prove that each element of G is the product of two elements of A.
- 2. (1969, B-2)* Show that a finite group can not be the union of two of its proper subgroups. Does the statement remain true if "two" is replaced by "three"?
- 3. (1971, B-1)* Let S be a set and let \circ be a binary operation on S satisfying the two laws

$$x \circ x = x$$
 for all x in S , and $(x \circ y) \circ z = (y \circ z) \circ x$ for all x, y, z , in S .

Show that \circ is associative and commutative.

4. (1972, A-2) Let S be a set and let * be a binary operation on S satisfying the laws

$$x * (x * y) = y$$
 for all x, y in S ,
 $(y * x) * x = y$ for all x, y in S .

Show that * is commutative but not necessarily associative.

- 5. (1972, B-3)** Let A and B be two elements in a group such that $ABA = BA^2B$, $A^3 = 1$ and $B^{2n-1} = 1$ for some positive integer n. Prove B = 1.
- 6. $(1975, B-1)^*$ In the additive group of ordered pairs of integers (m, n) [with addition defined componentwise: (m, n) + (m', n') = (m + m', n + n')] consider the subgroup H generated by the three elements (3, 8), (4, -1), (5, 4). Then H has another set of generators of the form (1, b), (0, a) for some integers a, b with a > 0. Find a.

[Elements g_1, \ldots, g_k are said to generate a subgroup H if (i) each $g_i \in H$, and (ii) every $h \in H$ can written as a sum $h = n_1 g_1 + \cdots + n_k g_k$ where the n_i are integers (and where, for example, $3g_1 - 2g_2$ means $g_1 + g_1 + g_1 - g_2 - g_2$).]

- 7. (1976, B-2)** Suppose that G is a group generated by elements A and B, that is, every element of G can be written as a finite "word" $A^{n_1}B^{n_2}A^{n_3}\cdots B^{n_k}$, where n_1,\ldots,n_k are any integers, and $A^0=B^0=1$ as usual. Also, suppose that $A^4=B^7=ABA^{-1}B=1$, $A^2\neq 1$, and $B\neq 1$.
 - (a) How many elements of G are of the form C^2 with C in G?
 - (b) Write each such square as a word in A and B.
- 8. (1979, B-3)** Let F be a finite field having an odd number m of elements. Let p(x) be an irreducible (i.e., nonfactorable) polynomial over F of the form

$$x^2 + bx + c, \qquad b, c \in F.$$

For how many elements k in F is p(x) + k irreducible over F?

9. $(1984, B-3)^{***}$ Prove or disprove the following statement: If F is a finite set with two or more elements, then there exists a binary operation * on F such that for all x, y, z in F.

1

- (a) x * z = y * z implies x = y (right cancellation holds), and
- (b) $x * (y * z) \neq (x * y) * z$ (no case of associativity holds).

Hints:

- 1. Consider the multiplication table of the group and use that each row contains each element of the group exactly once.
 - 2. Consider the cardinality of a proper subgroup.
- 3. Note that the second condition has a third equal expression by cyclically shifting x, y, and z. To show commutativity consider the expression $(x \circ y) \circ (x \circ y)$, then use commutativity to show associativity.
- 4. To show commutativity, multiply the first equation by x * y from the right and use the second equation. Swap the roles of x and y in the result to get an alternate form of the LHS of the first equation, then multiply it by x from the left. To get a counterexample for associativity, try to find it on a set of three elements.
 - 5. Show that both A and B can be expressed as powers of BA^2 , so they commute.
 - 6. Find the smallest positive a such that (0, a) is generated by the given three elements.
- 7. Using the property $ABA^{-1}B = 1$, show that every element of the group can be written as A^nB^k and find how to multiply two elements of that form.
- 8. Show that there are (m-1)/2 squares in F, and use the fact that a quadratic polynomial is irreducible iff it has no roots.
 - 9. Try to find examples for small number of elements, then generalize it.