Lic.^a Eng. Informática da FCTUC

Duração: 45m

Nome completo:

Número de estudante:

Este teste tem 3 questões. Responda apenas ao que lhe é pedido nos lugares indicados para o efeito. Nas questões 2 e 3, uma resposta certa terá a cotação máxima que lhe for atribuída, e uma resposta errada terá o valor negativo da metade dessa cotação.

1. (a) Use o método de Quine para mostrar que a fórmula

$$((p \to q) \to p) \to (q \to (q \to p))$$

é uma tautologia.

(b) Encontre uma fórmula logicamente equivalente a $\neg (p \land q) \lor r$ que contenha apenas os conectivos \neg e \rightarrow . Justifique a resposta

(a) Se $p\equiv V$, o valor lógico do lado direito da implicação é $q\to (q\to V)\equiv q\to V\equiv V$. Então a fórmula é verdadeira.

Se $p \equiv F$, o valor lógico do lado esquerdo da implicação é $(F \to q) \to F \equiv V \to F \equiv F$, e a fórmula é também verdadeira.

$$(b) \ \neg (p \wedge q) \vee r \equiv (p \wedge q) \rightarrow r \equiv \neg (p \rightarrow \neg q) \rightarrow r.$$

2. Indique se os seguintes argumentos estão correctos: (S: sim, N: não)

S N

(a) Verifica-se a ou a negação de c. Além disso, a é uma condição suficiente para b. Logo, se b não se verifica, c também não.

S

Usando regras de inferências

- 1. $a \vee \neg c$ premissa
- 2. $a \rightarrow b$ premissa
- 3. $1 \equiv c \rightarrow a$
- 4. $c \to b$, (1,3) S.H.
- 5. $4 \equiv \neg b \rightarrow \neg c$.

Em alternativa, verificar que $(a \vee \neg c) \wedge (a \rightarrow b) \rightarrow (\neg b \rightarrow \neg c)$ é uma tautologia.

(b) Vou ao teatro se estudar tudo. Não fui ao teatro. Logo, estudei tudo.

N

Denotemos as proposições "Vou ao teatro." por t e "Estudo tudo." por e.

O argumento $(e \to t) \land \neg t \to e$ não é uma tautologia.

Se $t \equiv F$ e $e \equiv F$ temos $(F \to F) \land V \to F \equiv V \land V \to F \equiv F$.

$$p \rightarrow q$$

 $q \rightarrow r$ (c)

- 1. $p \rightarrow q$ premissa
- 2. $q \rightarrow r$ premissa
- $3. \neg r$ premissa
- (2,3), M.T. $4. \neg q$
- (1,4), MT.5. $\neg p$

Em alternativa, verificar que $(p \to q) \land (q \to r) \land \neg r \to \neg p$ é uma tautologia.

3. Indique o valor lógico (V: verdade ; F: falso) das seguintes sentenças nos mundos A e B em baixo.

Sentenças	A	В
$Large(a) \leftrightarrow BackOf(a,d)$	F	V
$\exists x (Tet(x) \land RightOf(x, a)) \land \neg [\exists x (Between(x, c, a))]$	V	V
$\forall x \forall y \ (SameShape(x,y) \land SameRow(x,y) \rightarrow SameSize(x,y))$	F	V
$\forall x \Big(Tet(x) \to \exists y \ \big(Dodec(y) \land BackOf(x, y) \big) \Big)$	V	F

- Tetraedro Pequeno
 - Tetraedro Médio
- Tetraedro Grande
- Cubo Pequeno
- Cubo Médio
 - Cubo Grande
- Dodecaedro Pequeno
- Dodecaedro Médio
- Dodecaedro Grande