Due date: Thursday 9:00am, Oct. 22, 2020

Please do not use the function/library/API of OpenCV to solve the homework problem.

- Zooming and Shrinking (C/C++) (30%)
 Using C/C++ to perform the following tests on *lena 256.raw*
 - Zooming the eyes area of Lena in lena_256.raw with the zooming raito 2:1. (Figure, 3%; Discussion, 5%)

- (2) Shrinking the image with ratio 1:2 raw-column deletion. (Figure, 3%; Discussion, 5%)
- (3) Use Xnview to blur the *lena_256.raw*. Compare ↑2.5↓2 and ↓2↑2.5 and ↑1.25 with nearest neighbor, bilinear and bicubic (study yourself) interpolation approaches. Please discuss the difference in execution time, image quality and any other issues. Explain the difference with reason (Figure, 9%; Discussion, 5%)
- 2. Gray-level resolution(C/C++) (20%; Figure, 10%; Discussion, 10%)
 - (1) Using C/C++ to quantize the gray-level resolution of lena_256.raw and baboon_256.raw from 8 bits to 1 bit. Show the results of these quantize images and the corresponding with MSE (Mean Square Error, study yourself) and PSNR value. Discuss the bit rate saving.
- 3. Isopreference test on gray-level resolution(C/C++)(10%, Figure, 5%; Discussion, 5%)
 - (1) Test the isopreference on *lena_256.raw* and *baboon_256.raw* images using the programs written in Problems 1 and 2.
- 4. Bit Plane(C/C++) (25%; Figure, 10%; Discussion, 15%)
 - (1) Hide your student ID number and name in baboon_256.raw (more than 2 bit-planes).

 Before doing this, you need to first create two binary images of size 256x256 pixels for your student ID number and name, respectively(You can use the functions (e.g. drawing api) of OpenCV). Explain your method (Figure, 3%; Discussion,5%)
 - (2) Hide baboon_256.raw in lena_256.raw and save the file as lena_with_baboon.raw. Explain your method. Try not to visually alter baboon_256.raw and lena_256.raw as much as you can. Show your results of lena_with_baboon.raw. Calculate MSE and PNSR of your lena_with_baboon.raw with respect to the original lena_256.raw. The PSNR value should be as high as possible. (Figure, 3%; Discussion,5%)
 - (3) Extract your modified baboon_256.raw from lena_with_baboon.raw. Calculate MSE and PNSR of your extracted baboon_256.raw with respect to the original baboon_256.raw. The PSNR value should be as high as possible. (Figure, 4%; Discussion,5%)

- 5. Distance and Path (C/C++) (15%; Figure, 10%; Discussion, 5%) (renew the map)
 Given an image *map.raw* of size 20x20 pixels as below. Find out the distance values from (0,0)
 [the upper left corner] to (19,19) [the lower right corner] using D4, D8 and Dm distance, and show their corresponding shortest paths in the images (Don't use ad hoc method to build the path).
 - (1) Gray-value of the road {80}.
 - (2) Gray-value of the road {80,160}.
 - (3) Gray-value of the road {80,160,255}.

