Nonparametric statistics

Jason G. Fleischer, Ph.D.

Asst. Teaching Professor Department of Cognitive Science, UC San Diego

@jasongfleischer

https://jgfleischer.com

Non-parametric Statistics

Non-parametric Statistics: What if your distribution looks like this?

Non-parametric Statistics: ...or like this?

Parameters (like mean and variance) cannot fully and accurately capture this distribution!

Hence, we require non-parametric statistics.

When to turn to non-parametric statistics...

When underlying distributions are non-normal, skewed, or cannot be parameterized simply.

Like	Like Somewhat	Neutral	Dislike Somewhat	Dislike
1	2	3	4	5

Non-parametric Statistics: distribution-free

Myth: Non-parametric statistics does not use parameters.

Fact: Non-parametric statistics does not make *assumptions about /* parametrize the underlying distribution generating the data.

"Distribution-Free" statistics Meaning, it does not assume data-generating process (like heights) result in, *e.g.*, normally-distributed data

Resampling statistics: The What

Empirical null distribution (Monte Carlo)

Rank Statistics (Mann Whitney U)

Kolmogorov-Smirnoff Test

Non-parametric prediction models

1) Monte Carlo

 How can we build a more realistic "null distribution" for the sample estimate without knowing the population it's drawn from?

Monte Carlo

Monte Carlo

Monte Carlo techniques

- Build a null distribution through a simulation of what things would look like under the null through random number generation
- Examples:
 - What if things are spatially random? Throw darts at the map, i.e. draw locations under uniform random sampling. Compare to empirical distribution
 - What if events are at random time? Take inter-event intervals as fixed, but shuffle the intervals. Compare with the timing of empirical data.

2) Rank Statistics

- •We rank things in the real world all the time!
- International rankings (economics, happiness, government performance)
- Sports (teams, players, leagues)
- Search Engines
- Academic Journals' prestige
- Reviews online (1-4 stars)

Rank Statistics

quantitative data ordinal data

Data are transformed from their quantitative value to their rank.

Ordinal data - categorical, where the variables have a natural order

Particularly helpful when data have a ranking but no clear numerical interpretation (i.e. movie reviews)

Which of the following variables contains ordinal data?

https://forms.gle/UUbbQd9nyz8tgzVh6

Wilcoxon rank-sum test (Mann Whitney U test)

- Determine whether two independent samples were selected from the same populations, having the same distribution
- Similar to t-test (but does not require normal distributions) & tests median
- •Assumptions:
- Observations in each group are independent of one another
- Responses are ordinal
- •H_o: distributions of both populations are equal
- •Ha: distributions are *not* equal

Mann-Whitney U: question example

•In a clinical trial, is there a difference in the number of episodes of shortness of breath between placebo and treatment?

- •Step 1: Participants record number of episodes they have.
- •Step 2: Episodes from both groups are combined, sorted, and ranked
- •Step 2: Resort the ranks into separate samples (placebo vs. treatment)
- Step 3: Carry out statistical test

Number of Episodes

http://sphweb.bumc.bu.edu/otlt/mph-modules/bs/bs704_nonparametric/BS704_Nonparametric4.html

Sum of ranks: Placebo = 37

New Drug = 18

		Total Sample (Ordered Smallest to Largest)	Ranks
Placebo	New Drug		
7	3		
5	6		
6	4		
4	2		
12	1		

http://sphweb.bumc.bu.edu/otlt/mph-modules/bs/bs704_i

Mann-Whitney U

Ho: low and high scores are approximately evenly distributed in the two groups

$$U_{A} = \begin{bmatrix} n_{a}(n_{a}+1) \\ n_{a}n_{b} + \frac{1}{2} \end{bmatrix} - \begin{bmatrix} T_{A} \\ T_{A} \end{bmatrix}$$

Ha: low and high scores are NOT evenly distributed in the two groups (U <= 2)

The max possible value of TA

The observed sum of ranks for sample A

$$U_{Placebo} = 3$$

$$0 < U < n_1*n$$

$$n_b$$
 = number of elements in group B

$$U_{treatment} = 22$$

Complete separation → no separation

We reject the null if U is small.

3) Kolmogorov-Smirnov (KS) test

 Given (limited) samples from two populations, how do we quantify whether they come from the same distribution?

Kolmogorov-Smirnov (KS) test

Comparing cumulative distributions empirically

Tests:

- whether a sample is drawn from a given distribution
- Whether two samples are drawn from the same distribution

Find the maximum difference between the CDFs.

Kolmogorov-Smirnov (KS) test

Kolmogorov-Smirnov (KS) test

gamma vs. normal1: p = 0.0106803628411 normal1 vs. normal2: p = 0.550735998243

4) Non-parametric prediction models

- When you have lots of data and no prior knowledge
- When you're not focused/worried about choosing the right features
- Goal: fit training data while being able to generalize to unseen data
- Examples:
 - KNN (K-Nearest Neighbors)
 - Decision Trees and Decision Tree Regressions (CART)
 - Quantile regression

Why do we even teach/use parametric statistics anyway?

- Parametric approaches:
- Lots of data follow expected patterns
- Require less data
- More sensitive
- Quicker to run/train/predict
- More resistant to overfitting