Exercício Programa 2 Métodos iterativos para sistemas lineares: Gradientes Conjugados

Lucas Magno 7994983

Introdução

Este EP consiste em implementar a resolução de sistemas lineares na forma

Ax = b

onde

 $\mathbf{A} \in \mathbf{R}^{n \times n}$, simétrica, definida positiva e esparsa $\mathbf{x}, \mathbf{b} \in \mathbf{R}^{n}$, densos

através do método de Gradientes Conjugados.

Motivação

Por que utilizar matrizes esparsas? A necessidade de matrizes esparsas fica mais clara quando se lida com matrizes gigantes, de forma que armanezar a matriz toda na memória não é uma possibilidade. No entanto, em diversas aplicações (diferenças finitas para resolução de equações diferenciais, por exemplo) surgem matrizes bem estruturadas, com apenas alguns elementos nãonulos. Assim, guardando apenas estes elementos, se torna possível manipular matrizes ordens de grandezas maiores do que caberia na memória de um computador.

Por outro lado, embora economizem muita memória dependendo da densidade de elementos não nulos, geralmente o acesso aos elementos de uma matriz esparsa é muito mais caro do que aos de uma densa (que é O(1)), já que estes são armazenados utilizando estruturas que não permitem o acesso direto a um elemento (como uma lista ligada). Este acesso pode ser feito barato, a custo da eficiência de se iterar sobre as linhas ou colunas da matriz, sendo difícil conciliar o desempenho dessas duas operações.

Por esses motivos, os métodos padrões de resolução de sistemas lineares (LU, Cholesky) não são eficazes para matrizes esparsas, pois além de acessarem diretamente elementos da matriz, também podem estragar sua esparsidade ao decompô-la em outras matrizes.

É aí que entra o método de Gradientes Conjugados, uma vez que ele depende somente do produto matriz-vetor entre a matriz esparsa e vetores densos, o que pode ser feito eficaz facilmente, escolhendo uma estrutura adequada. Além disso, como não altera a matriz original, nem a decompõe em novas, não altera sua esparsidade, mantendo a eficiência de seu uso.

Matrizes Esparsas

Há diversas implementações comuns de matrizes esparsas, com suas vantagens e desvantagens, mas aqui vamos focar nas duas utilizadas neste EP.

Coordinate List (COO)

É uma forma simples de matriz esparsa, composta por uma cadeia ordenada de tuplas na forma (linha, coluna, valor). Neste trabalho foi implementada utilizando uma lista ligada, tornando simples a inserção de elementos novos mantendo a ordenação escolhida (por colunas e então por linhas). Entretanto, obter uma coluna específica de uma matriz neste formato não é muito eficiente, então ele foi utilizado somente para construção da matriz esparsa e então traduzido para um formato mais adequado.

Compressed Sparse Column (CSC)

Mais complexo do que o formato COO, o CSC é composto principalmente por três vetores

- nzval: contém os valores de todos os elementos não-nulos, ordenados por coluna e então por linha
- rowval: contém os valores dos índices de linha de cada elemento correspondente em nzval
- colptr: contém os índices de nzval em que se encontram os primeiros elementos de cada coluna da matriz. Por exemplo, nzval(colptr(j)) representa o valor do primeiro elemento da coluna j na matriz.

Vale notar que nzval e rowval são obtidos diretamente a partir de uma matriz no formato COO, sendo necessário apenas o cálculo de colptr. A vantagem de se utilizar este formato está na facilidade de se obter uma coluna da matriz (a coluna j são os elementos em nzval entre colptr(j) e colptr(j+1)-1), o que torna barato o produto matriz-vetor orientado a colunas, mais especificamente, da ordem do número do elementos não nulos da matriz, já que basta iterar sobre nzval.

Gradientes Conjugados

Como $\mathbf{A} \in \mathbf{R}^{n \times n}$ é uma matriz definida positiva, vale que

$$\mathbf{x}^{\mathbf{T}}\mathbf{A}\mathbf{x} \ge \mathbf{0}$$

onde a igualdade vale se e somente se $\mathbf{x}=\mathbf{0}$. Assim, \mathbf{A} define uma norma e portanto um produto interno. Podemos então definir que dois vetores \mathbf{u} e \mathbf{v} são ortogonais se e somente se

$$\mathbf{u^T}\mathbf{A}\mathbf{v} = \mathbf{0}$$

Tendo isso, podemos pegar um conjunto P de n vetores $\mathbf{p_i}$ ortogonais entre si, que então formam uma base do \mathbf{R}^n e podemos escrever qualquer vetor $\mathbf{x} \in \mathbf{R}^n$ como uma combinação linear dos $\mathbf{p_i}$

$$\mathbf{x} = \sum_{i} \alpha_i \mathbf{p_i}$$

onde os α_i são as projeções de \mathbf{x} em $\mathbf{p_i}$:

$$\alpha_i = \frac{\mathbf{p_i} \mathbf{A} \mathbf{x}}{\mathbf{p_i^T} \mathbf{A} \mathbf{p_i}} = \frac{\mathbf{p_i} \mathbf{b}}{\mathbf{p_i^T} \mathbf{A} \mathbf{p_i}}$$

Então bastaria escolher os $\mathbf{p_i}$ e calcular as projeções. No entanto, mesmo isso pode ser custoso, pois estamos lidando com n muito grande. Na verdade, podemos escolher os $\mathbf{p_i}$ de forma que apenas alguns deles sejam necessários para uma boa aproximação de \mathbf{x} , então é possível construir um algoritmo iterativo, que se aproxima da solução verdadeira e a alcançaria em n passos, se fosse utilizada precisão infitita, uma vez que isso representa a soma de todas as projeções, que é a identidade.

Definindo \mathbf{x}_{\star} como a solução de $\mathbf{A}\mathbf{x}_{\star} = \mathbf{b}$, queremos então minimizar o erro definido por

$$e = x_{\star} - x$$

mas não temos como calcular \mathbf{e} , pois não possuímos \mathbf{x}_{\star} . Entretanto, vale que

$$\|\mathbf{e}\|_A \propto \frac{1}{2}\mathbf{x^T}\mathbf{A}\mathbf{x} - \mathbf{x^T}\mathbf{b}$$

Como queremos minimizar essa função, poderíamos escolher as projeções (que podem ser vistas como direções de passo) no sentido contrário de seu gradiente (que é $\mathbf{A}\mathbf{x} - \mathbf{b}$), mas também queremos manter os $\mathbf{p_i}$ ortogonais entre si. Logo, se definirmos $\mathbf{r_i} = \mathbf{b} - \mathbf{A}\mathbf{x_i}$ (o resíduo no passo i), podemos definir

$$p_i = r_i - \sum_{k < i} \frac{p_k^T A r_i}{p_k^T A p_k} p_k$$

Explorando as ortogonalidades entre \mathbf{p} , \mathbf{r} e \mathbf{x} , pode-se mostrar que

$$\mathbf{x_{i+1}} = \mathbf{x_i} + \alpha_i \mathbf{p_i}$$
$$\mathbf{r_{i+1}} = \mathbf{r_i} - \alpha_i \mathbf{Ap_i}$$
$$\mathbf{p_{i+1}} = \mathbf{r_i} + \beta_i \mathbf{p_i}$$

onde

$$\alpha_i = \frac{\mathbf{r_i^T r_i}}{\mathbf{p_i^T A p_i}}$$
$$\beta_i = \frac{\mathbf{r_{i+1}^T r_{i+1}}}{\mathbf{r_i^T r_i}}$$

Portanto, o algoritmo fica

Algorithm 1 Gradientes Conjugados

```
1: \mathbf{r_0} \leftarrow \mathbf{b} - \mathbf{A}\mathbf{x_0}
   2: \mathbf{p_0} \leftarrow \mathbf{r_0}
  3: i \leftarrow 0
   4: loop
                          \begin{array}{l} \alpha_i \leftarrow \frac{\mathbf{r_i} \cdot \mathbf{r_i}}{\mathbf{p_i} \cdot \mathbf{Ap_i}} \\ \mathbf{x_{i+1}} \leftarrow \mathbf{x_i} + \alpha_i \mathbf{p_i} \end{array}
   6:
                          \mathbf{r_{i+1}} \leftarrow \mathbf{r_i} - \alpha_i \mathbf{Ap_i}
                          if \sqrt{\mathbf{r_{i+1}} \cdot \mathbf{r_{i+1}}} < \epsilon then
                          end if
  9:
                         \beta_{i} \leftarrow \frac{\mathbf{r}_{i+1} \cdot \mathbf{r}_{i+1}}{\mathbf{r}_{i} \cdot \mathbf{r}_{i}}\mathbf{p}_{i+1} \leftarrow \mathbf{r}_{i+1} + \beta_{i} \mathbf{p}_{i}
10:
11:
                          k \leftarrow k + 1
12:
13: end loop
                               return x_{i+1}
```

em que a matriz A só aparece em um produto matriz-vetor.

O Programa

Para testar o algoritmo, foram geradas matrizes esparsas aleatórias utilizando o método descrito em [1], variando-se o tamanho das matrizes e sua densidade desejada τ . Como esse método não garante que a matriz gerada seja definida positiva, foram utilizados os módulos do EP1 (Cholesky e resolução de sistema tridiagonal) para verificar isso, além de resolver novamente o sistema a fim de comparação.

Resultados

Os sistemas foram resolvidos para matrizes com lado $n=2,4,\ldots,4096$ e densidades $\tau=0.001,0.01,0.05,0.1,0.2.$

Definindo como os resultados de cada experimento:

• Valores

- -n: tamanho do lado da matriz
- $-\tau$: densidade aproximada de elementos não-nulos
- diff: norma-2 da diferença entre os resultados obtidos pelo método dos Gradientes Conjugados e Cholesky
- posdef: se a matriz é definida positiva ou não, resultado obtido pelo método de Cholesky
- Tempos de execução (em segundos)
 - sprand: geração da matriz aleatória
 - to csc: conversão da matriz esparsa do formato COO para CSC
 - CG: resolução do sistema pelo método de Gradientes Conjugados
 - full: conversão da matriz esparsa do formato CSC para denso
 - Cholesky: resolução do sistema pelo método de Cholesky

Esses dados de todos os exemplos rodados foram gravados em um arquivo de saída (output), cujas últimas entradas são mostradas na tabela seguinte:

Tabela 1: Resultados para matrizes com $n \geq 512$

n	au	sprand	to_csc	CG	full	Cholesky	diff	posdef
512	0.001	0.0026	0.0000	0.0008	0.0006	0.0902	0.23E-29	Τ
512	0.010	0.0156	0.0000	0.0028	0.0006	0.0912	0.64E-28	${ m T}$
512	0.050	0.3414	0.0001	0.0173	0.0003	0.0913	0.23E-27	Τ
512	0.100	1.5874	0.0003	0.0790	0.0006	0.0925	0.10E-26	${ m T}$
512	0.200	7.1077	0.0005	0.1714	0.0013	0.0397	$0.21\mathrm{E}{+05}$	\mathbf{F}
1024	0.001	0.0135	0.0000	0.0021	0.0015	0.7289	0.58E-29	Τ
1024	0.010	0.2452	0.0001	0.0089	0.0016	0.7242	0.47E-27	${ m T}$
1024	0.050	7.1698	0.0006	0.0781	0.0019	0.7305	0.11E-26	${ m T}$
1024	0.100	29.6642	0.0012	0.6813	0.0033	0.7023	$0.37\mathrm{E}{+07}$	\mathbf{F}
1024	0.200	147.0778	0.0039	1.4032	0.0059	0.2001	$0.79\mathrm{E}{+05}$	\mathbf{F}
2048	0.001	0.0902	0.0001	0.0050	0.0124	5.7556	0.21E-28	${ m T}$
2048	0.010	4.6022	0.0004	0.0314	0.0053	5.7290	0.39E-26	${ m T}$
2048	0.050	153.1841	0.0029	0.4040	0.0096	5.7582	0.60E-26	${ m T}$
2048	0.100	1046.5856	0.0066	5.2566	0.0177	4.2694	$0.66\mathrm{E}{+06}$	\mathbf{F}
2048	0.200	5413.2395	0.0114	10.3974	0.0217	0.7222	$0.33\mathrm{E}{+07}$	\mathbf{F}
4096	0.001	1.0146	0.0002	0.0137	0.0902	45.5266	0.20E-27	${ m T}$
4096	0.010	88.4795	0.0025	0.1262	0.0726	45.5512	0.19E-25	${ m T}$
4096	0.050	5447.2776	0.0118	2.7504	0.0856	45.3957	0.48E-25	${ m T}$

Observa-se que o dominante é a geração de matrizes aleatórias, já que o algoritmo depende da inserção de elementos novos da matriz, cujo custo aumenta linearmente com o número de elementos não-nulo já existentes na matriz, então um algoritmo mais eficiente permitiria resolver sistemas maiores.

Entretanto, utilizando matrizes com baixíssimas densidades, o custo do algoritmo cai drasticamente, fazendo com que a resolução por Cholesky domine o tempo de execução, enquanto que a por Gradientes Conjugados se mantém desprezível em comparação, como visto na tabela a seguir.¹

Tabela 2: Resultados para matrizes com $\tau = 0.001$

n	au	sprand	to_csc	CG	full	Cholesky	diff	posdef
512	0.001	0.0024	0.0000	0.0010	0.0008	0.1185	0.22E-29	T
1024	0.001	0.0135	0.0000	0.0023	0.0021	0.9198	0.73E-29	${ m T}$
2048	0.001	0.1031	0.0001	0.0053	0.0228	7.6763	0.24E-28	${ m T}$
4096	0.001	1.1619	0.0003	0.0156	0.0735	59.7550	0.21E-27	${ m T}$
8192	0.001	17.2613	0.0011	0.0466	0.2843	470.6166	0.43E-26	${ m T}$
16384	0.001	490.3682	0.0085	0.1629				

Ainda assim, a matriz com o maior tamanho testado, n=16384, utilizando precisão dupla ocuparia

$$\frac{n^2 8 \text{ bytes}}{1024^3 \frac{\text{bytes}}{\text{gigabyte}}} = \frac{2^{31}}{2^{30}} \text{ gigabytes} = 2 \text{ gigabytes}$$

o que ainda cabe na memória.

Portanto, considerando apenas as matrizes positivas definidas, enquanto que o método de Cholesky mostra desempenho aproximadamente constante (não importanto a densidade de elementos não-nulos), o método de Gradientes Conjugados é ordens de grandeza mais rápido, embora dependa um pouco dessa densidade.

Também foram gravados a norma do resíduo em cada passo do algoritmo de Gradientes Conjugados, a fim de se analisar a taxa de convergência. Por exemplo, para uma matriz 512×512 (similar ao exemplo em [1]), temos

Figura 1: Convergências para n = 512

em que se observa que a taxa de convergência (que pode ser aproximada pela inclinação das retas) cai rapidamente com a densidade da matriz, até o caso $\tau=0.20$, em que a taxa de convergência é nula (linha horizontal). De fato, a matriz em questão não é definida positiva e, portanto, o método não tem convergência garantido.

¹Alguns valores estão faltando pois não foi utilizado o método de Cholesky naquele caso, pelo custo de sua execução ser muito alto.

No entanto, é estranho encontrar resultados na ordem de 10^{-160} em algoritmos em geral. Esse número vem de uma raiz quadrada, logo antes deveria ser da ordem de 10^{-320} o que praticamente o limite *floats* com 64bits ($\approx 10^{-323}$ com números subnormais), indicando uma estabilidade impressionante do algoritmo em relação a operações entre valores de ordem similares (evitando underflow), uma vez que concorda com os resultados do método de Cholesky.

Podemos inverter a situação e plotar as taxas de convergência para matrizes de diversos tamanhos com a mesma densidade, e obtemos

Figura 2: Convergências para $\tau=0.01$

Ambos tipos de gráficos são bem similares, e indicam que a taxa de convergência cai com a densidade e com o tamanho da matriz, além de permitir identificar matrizes não definidas positivas.

Conclusão

Portanto, ao explorar as vantagens apresentadas pelas matrizes esparsas e por ser um algoritmo iterativo de rápida convergência, o método de Gradientes Conjugados é o indicado para resolução de sistemas lineares com matrizes de coeficientes grandes, esparsas, simétricas e definidas positivas, pois apresenta desempenho ordens de grandeza maior que o método padrão, o de Cholesky.

A desvantagem é a perda de um método direto para determinar se a matriz é realmente positiva definida, como Cholesky faz, mas ainda é possível fazer inferências a partir da taxa de convergência.

Além disso, seria interessante utilizar um algoritmo de geração de matrizes esparsas aleatórias mais eficiente, que permitisse testar matrizes que não coubessem na memória do computador em sua forma densa, já que uma matriz com o maior tamanho testado ainda caberia na memória de um computador comum.

Referências

[1] Lloyd N. Trefethen David Bau, *Numerical Linear Algebra*, Society for Industrial and Applied Mathematics, 1997.