8.13 grande base = AB = L petite base = CD = L $\cos(\alpha)$ base moyenne = $\frac{1}{2}$ L $(1 + \cos(\alpha))$ hauteur = AD = L $\sin(\alpha)$ aire du trapèze = $\frac{1}{2}$ L² $\sin(\alpha)$ $(1 + \cos(\alpha))$ = $f(\alpha)$

$$f'(\alpha) = \left(\frac{1}{2}L^2 \sin(\alpha) \left(1 + \cos(\alpha)\right)\right)' = \frac{1}{2}L^2 \left(\sin(\alpha) \left(1 + \cos(\alpha)\right)\right)'$$

$$= \frac{1}{2}L^2 \left(\sin'(\alpha) \left(1 + \cos(\alpha)\right) + \sin(\alpha) \left(1 + \cos(\alpha)\right)'\right)$$

$$= \frac{1}{2}L^2 \left(\cos(\alpha) \left(1 + \cos(\alpha)\right) + \sin(\alpha) \left(-\sin(\alpha)\right)\right)$$

$$= \frac{1}{2}L^2 \left(\cos(\alpha) + \cos^2(\alpha) - \sin^2(\alpha)\right)$$

$$= \frac{1}{2}L^2 \left(\cos(\alpha) + \cos^2(\alpha) - \left(1 - \cos^2(\alpha)\right)\right)$$

$$= \frac{1}{2}L^2 \left(2\cos^2(\alpha) + \cos(\alpha) - 1\right)$$

$$= \frac{1}{2}L^2 \left(2\cos(\alpha) - 1\right) \left(\cos(\alpha) + 1\right)$$

- 1) $2\cos(\alpha)-1=0$ donne $\cos(\alpha)=\frac{1}{2},$ d'où $\alpha=\pm\frac{\pi}{3}+2\,k\,\pi$ où $k\in\mathbb{Z}$
- 2) $\cos(\alpha) + 1 = 0$ entraı̂ne $\cos(\alpha) = -1$, d'où $\alpha = \pi + 2k\pi$ où $k \in \mathbb{Z}$

Mais la donnée du problème requiert $\alpha \in [0; \frac{\pi}{2}]$.

$$\begin{array}{c|c}
0 & \frac{\pi}{3} & \frac{\pi}{2} \\
f' & + 0 & - \\
f & & \end{array}$$

Ainsi l'aire du trapèze est maximale si $\alpha = \frac{\pi}{3}$.

Elle vaut alors $f(\frac{\pi}{3}) = \frac{1}{2} L^2 \sin(\frac{\pi}{3}) \left(1 + \cos(\frac{\pi}{3})\right) = \frac{1}{2} L^2 \frac{\sqrt{3}}{2} \left(1 + \frac{1}{2}\right) = \frac{3\sqrt{3}}{8} L^2$