MATEMATIKA DISKRIT

Universitas Multimedia Nusantara 2020/2021

HIMPUNAN

Pengertian

- Himpunan: sekumpulan obyek yang berbeda-beda
 - Obyek dapat dinyatakan dalam urutan acak

$${1, 6, 7, 2, 9} = {6, 7, 1, 2, 9}$$

Obyek yang sama cukup disebutkan satu kali

$$\{a, a, d, d, e, e, 1, 2, 3\} = \{a, d, e, 1, 2, 3\}$$

Cara Penulisan

1. Enumerasi

Setiap anggota himpunan didaftarkan secara rinci.

- Himpunan empat bilangan asli pertama: A = {1, 2, 3, 4}.
- C = {kucing, a, Amir, 10, paku}
- R = { a, b, {a, b, c}, {a, c} }
- Himpunan 100 buah bilangan asli pertama: {1, 2, ..., 100 }
- Himpunan bilangan bulat: {..., -2, -1, 0, 1, 2, ...}

2. Simbol-simbol Baku

```
N = natural numbers = \{0,1,2,3....\}
```

$$Z = integers numbers = {...,-3,-2,-1,0,1,2,3,...}$$

$$Z^+$$
 = positive integers = $\{1,2,3,....\}$

Q = rational numbers =
$$\{p/q \mid p,q \in Z, \text{ and } q \neq 0\}$$

 \mathbf{R} = real numbers

R⁺ = positive real numbers

C = complex numbers

Himpunan semesta (universal), disimbolkan dengan U

Misalkan: $U = \{1, 2, 3, 4, 5\}$

A adalah himpunan bagian dari U, dengan $A = \{1, 3, 5\}$

3. Notasi Pembentuk Himpunan

Notasi: { x | syarat yang harus dipenuhi oleh x }

Contoh:

A adalah himpunan bilangan bulat positif kecil dari 5

 $A = \{x \mid x \text{ bilangan bulat positif lebih kecil dari 5}\}$

atau A =
$$\{x \mid x \in Z^+, x < 5\}$$
,

ekivalen dengan $A = \{1, 2, 3, 4\}$

• $M = \{x \mid x \text{ adalah mahasiswa mengambil kuliah Matdis}\}$

4. Diagram Venn

Misalkan:

$$U = \{1, 2, ..., 7, 8\}$$

$$A = \{1, 2, 3, 5\}$$

$$B = \{2, 5, 6, 8\}$$

Diagram Venn:

Keanggotaan

- $x \in A : x merupakan anggota himpunan A$
- x ∉ A : x bukan merupakan anggota himpunan A

Misalkan:

```
• A = \{1, 2, 3, 4\}
```

- R = { a, b, {a, b, c}, {a, c} }
- $K = \{\{\}\}$

maka

```
3 \in A; 5 \notin A

a \in R; \{a, b, c\} \in R; \{a, b\} \notin R; c \notin R; \{\} \notin R

\{\} \in K
```

Kardinalitas

Jumlah elemen di dalam A disebut kardinal dari himpunan A

Notasi: n (A) atau | A |

- B = { x | x adalah bilangan prima lebih kecil dari 20 },
 atau B = {2, 3, 5, 7, 11, 13, 17, 19}, maka | B | = 8
- $T = \{kucing, a, Amir, 10, paku\}, maka |T| = 5$
- $A = \{a, \{a\}, \{\{a\}\}\}, \text{ maka } |A| = 3$

Himpunan Kosong (null set)

- Himpunan dengan kardinal = 0 disebut himpunan kosong
- Notasi: Ø atau {}
- Himpunan {{ }} dapat juga ditulis sebagai {∅}
- {∅} bukan himpunan kosong karena ia memuat satu elemen yaitu himpunan kosong

- $E = \{x \mid x < x\}$, maka n(E) = 0
- P = {orang Indonesia yang pernah ke bulan}, maka n(P) = 0
- A = $\{x \mid x \text{ adalah akar persamaan kuadrat } x^2 + 1 = 0\}$, n(A) = 0

Himpunan Bagian (Subset)

- Himpunan A dikatakan himpunan bagian dari himpunan B, jika dan hanya jika setiap elemen A merupakan elemen dari B. "every element of A is also in B" or $\forall x ((x \in A) \rightarrow (x \in B))$
- Dalam hal ini, B dikatakan superset dari A
- Notasi: A ⊆ B
- Untuk setiap himpunan A: $\emptyset \subseteq A$ dan $A \subseteq A$
- Diagram Venn:

Contoh:

- $\{1, 2, 3\} \subseteq \{1, 2, 3, 4, 5\}$
- $\{1, 2, 3\} \subseteq \{1, 2, 3\}$
- $N \subseteq Z \subseteq R \subseteq C$

TEOREMA 1.

Untuk sembarang himpunan A berlaku hal-hal sebagai berikut:

- (a) A adalah himpunan bagian dari A itu sendiri: $A \subseteq A$.
- (b) Himpunan kosong merupakan himpunan bagian dari A: $\emptyset \subseteq A$
- (c) Jika $A \subseteq B$ dan $B \subseteq C$, maka $A \subseteq C$

$A \subset B$ berbeda dengan $A \subseteq B$

A ⊂ B: A adalah himpunan bagian (subset) dari B, namun A ≠ B.
 A adalah himpunan bagian sebenarnya (proper subset) dari B.
 Contoh:

{1} dan {2, 3} adalah proper subset dari {1, 2, 3}

■ $A \subseteq B$: A adalah himpunan bagian (subset) dari B, memungkinkan A = B.

Himpunan Sama

- A = B, jika dan hanya jika setiap elemen A merupakan elemen B dan sebaliknya setiap elemen B merupakan elemen A.
- A = B, jika dan hanya jika A adalah himpunan bagian dari B dan sebaliknya B adalah himpunan bagian dari A
- Notasi : $A = B \leftrightarrow A \subseteq B \text{ dan } B \subseteq A$

- Jika $A = \{ 0, 1 \} dan B = \{ x \mid x (x 1) = 0 \}, maka A = B$
- Jika A = { 3, 5, 8, 5 } dan B = {5, 3, 8 }, maka A = B
- Jika $A = \{3, 5, 8, 5\}$ dan $B = \{3, 8\}$, maka $A \neq B$

Himpunan Ekivalen

- Himpunan A dikatakan ekivalen dengan himpunan B, jika dan hanya jika kardinal dari kedua himpunan tersebut sama.
- Notasi : $A \sim B \leftrightarrow |A| = |B|$

A =
$$\{ 1, 3, 5, 7 \}$$
 dan B = $\{ a, b, c, d \}$,
maka A ~ B, karena $|A| = |B| = 4$

Himpunan Saling Lepas

- Dua himpunan A dan B dikatakan saling lepas (disjoint), jika keduanya tidak memiliki elemen yang sama, atau A \cap B = \emptyset
- Notasi: A // B
- Diagram Venn:

- Jika A = $\{x \mid x \in P, x < 8\}$ dan B = $\{10, 20, 30, ...\}$, maka A // B
- Jika A = { 1, 2, 3 }, B = { 9, 10 }, C = { 2, 9 }, maka A dan B
 dikatakan saling lepas, sedangkan A dan C tidak saling lepas

Himpunan Kuasa

- Himpunan kuasa (power set) dari himpunan A adalah suatu himpunan yang elemennya merupakan semua himpunan bagian dari A, termasuk himpunan kosong dan himpunan A sendiri.
- Notasi : P(A) atau 2^A
- Jika | A | = m, maka | P(A) | = 2m

- Jika A = { 1, 2 }, maka P(A) = { Ø, { 1 }, { 2 }, { 1, 2 }}
- Himpunan kuasa dari himpunan kosong adalah $P(\emptyset) = \{\emptyset\}$
- Himpunan kuasa dari himpunan $\{\emptyset\}$ adalah $P(\{\emptyset\}) = \{\emptyset, \{\emptyset\}\}$

Gabungan (Union)

Gabungan dari himpunan A dan B adalah

$$A \cup B = \{ x \mid x \in A \text{ atau } x \in B \}$$

$$A = \{ 1, 2, 3 \} dan B = \{ 1, 6 \},$$

$$A \cup B = \{1, 2, 3, 6\}$$

Irisan (Intersection)

Irisan dari himpunan A dan B adalah

$$A \cap B = \{ x \mid x \in A \text{ dan } x \in B \}$$

$$A = \{ 1, 2, 3 \} dan B = \{ 1, 6 \}$$

$$A \cap B = \{1\}$$

Komplemen (Complement)

Komplemen dari himpunan adalah

$$\overline{A} = \{ x \mid x \in U, x \notin A \}$$

Catatan:

$$\overline{\varnothing} = U$$

Contoh:

 $A = \{x \in N \mid x \text{ adalah bilangan ganjil}\}$

 $\overline{A} = \{x \in \mathbb{N} \mid x \text{ adalah bilangan genap}\}$

Selisih (Difference)

Selisih dari himpunan A dan B adalah:

$$A - B = \{ x \mid x \in A \text{ dan } x \notin B \}$$

Contoh:

$$A = \{ 2, 3, 4, 5 \} dan B = \{ 3, 4, 7, 9 \}$$

$$A - B = \{ 2, 5 \}$$

$$A - B \neq B - A$$

$$B - A = \{ 7, 9 \}$$

Tidak komutatif

Beda Setangkup (Symmetric Difference)

Beda setangkup dari himpunan A dan B adalah:

$$A \oplus B = \{ x \mid (x \in A \text{ dan } x \notin B) \text{ atau } (x \in B \text{ dan } x \notin A) \}$$

$$A = \{2, 3, 4, 5\} dan B = \{3, 4, 7, 9\}$$

$$A \oplus B = (A - B) \cup (B - A) = \{ 2, 5, 7, 9 \}$$

Perkalian Kartesian (Cartesian Product)

Perkalian kartesian dari himpunan A dan B adalah:

$$A \times B = \{ (a, b) \mid a \in A \text{ dan } b \in B \}$$

Contoh:

$$A \times B = \{ (a, 1), (a, 2), (b, 1), (b, 2) \}$$

$$B \times A = \{ (1, a), (1, b), (2, a), (2, b) \}$$

$$A \times B \neq B \times A$$

Tidak komutatif

Pada umumnya,

$$A_1 \times A_2 \times ... \times A_n = \{(a_1, a_2, ..., a_n) \mid a_1 \in A_1, a_2 \in A_2, ..., a_n \in A_n\}$$

$$| A_1 \times A_2 \times ... \times A_n | = | A_1 | \times | A_2 | \times ... \times | A_n |$$

Prinsip Inklusi - Eksklusi

Berapakah kardinalitas dari A \cup B ?

$$|A \cup B| = |A| + |B| - |A \cap B|$$

A =
$$\{1, 2, 3\}$$
 dan B = $\{1, 6\}$
A \cup B = $\{1, 2, 3, 6\}$
A \cap B = $\{1\}$
 $|A \cup B| = |A| + |B| - |A \cap B|$
 $= 3 + 2 - 1 = 4$

Untuk tiga buah himpunan A, B, dan C, berlaku

$$|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C|$$

Untuk himpunan A₁, A₂, ..., A_r, berlaku:

$$\begin{vmatrix} A_1 \cup A_2 \cup ... \cup A_r \end{vmatrix} = \sum_{i} \begin{vmatrix} A_i \end{vmatrix} - \sum_{1 \le i \le j \le r} \begin{vmatrix} A_i \cap A_j \end{vmatrix} + \dots + \sum_{1 \le i \le j \le k \le r} \begin{vmatrix} A_i \cap A_j \cap A_k \end{vmatrix} + \dots + (-1)^{r-1} \begin{vmatrix} A_1 \cap A_2 \cap ... \cap A_r \end{vmatrix}$$

Latihan Soal

1. Berapa banyaknya bilangan bulat antara 1 dan 100 yang habis dibagi 3 atau 5?

2. Berapa banyaknya bilangan bulat antara 1 dan 1000 yang habis dibagi 3 atau 5 atau 7?

Hukum-Hukum Himpunan

TABLE 1 Set Identities.						
Identity	Name					
$A \cap U = A$ $A \cup \emptyset = A$	Identity laws					
$A \cup U = U$ $A \cap \emptyset = \emptyset$	Domination laws					
$A \cup A = A$ $A \cap A = A$	Idempotent laws					
$\overline{(\overline{A})} = A$	Complementation law					
$A \cup B = B \cup A$ $A \cap B = B \cap A$	Commutative laws					
$A \cup (B \cup C) = (A \cup B) \cup C$ $A \cap (B \cap C) = (A \cap B) \cap C$	Associative laws					
$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	Distributive laws					
$\overline{A \cap B} = \overline{A} \cup \overline{B}$ $\overline{A \cup B} = \overline{A} \cap \overline{B}$	De Morgan's laws					
$A \cup (A \cap B) = A$ $A \cap (A \cup B) = A$	Absorption laws					
$A \cup \overline{A} = U$ $A \cap \overline{A} = \emptyset$	Complement laws					

Pembuktian Persamaan Himpunan

1. Pembuktian dengan menggunakan diagram Venn

Misalkan A, B, dan C adalah himpunan.

Buktikan bahwa $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ dengan diagram Venn.

Kedua diagram Venn memberikan area arsiran yang sama.

Terbukti bahwa $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

2. Pembuktikan dengan menggunakan tabel keanggotaan

Misalkan A, B, dan C adalah himpunan.

Buktikan bahwa $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

Α	В	С	$B \cup C$	$A \cap (B \cup C)$	$A \cap B$	$A \cap C$	$(A \cap B) \cup (A \cap C)$
0	0	0	0	0	0	0	0
0	0	1	1	0	0	0	0
0	1	0	1	0	0	0	0
0	1	1	1	0	0	0	0
1	0	0	0	0	0	0	0
1	0	1	1	1	0	1	1
1	1	0	1	1	1	0	1
1	1	1	1	1	1	1	1

Karena kolom $A \cap (B \cup C)$ dan kolom $(A \cap B) \cup (A \cap C)$ sama,

maka
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

3. Pembuktian dengan menggunakan aljabar himpunan

Misalkan A dan B himpunan.

Buktikan bahwa
$$A \cup (B - A) = A \cup B$$

$$A \cup (B - A) = A \cup (B \cap \overline{A})$$
 (Definisi operasi selisih)
= $(A \cup B) \cap (A \cup \overline{A})$ (Hukum distributif)
= $(A \cup B) \cap U$ (Hukum komplemen)

$$= A \cup B$$
 (Hukum identitas)

Referensi:

- 1. Johnsonbaugh. 2005. *Discrete Mathematics. New Jersey: Pearson Education Inc.*
- Kenneth H. Rosen. 2005. Basic Structures: Sets, Functions,
 Sequences and Sums. Discrete Mathematics & its Applications. 6th edition. Mc Graw-Hill.
- Rinaldi Munir. Himpunan. Bahan kuliah IF2091 Struktur Diskrit.
 Program Studi Teknik Informatika. STEI ITB.