so the image of AA^+ is indeed the range of A. It is also clear that $Ker(A) \subseteq Ker(A^+A)$, and since $AA^+A = A$, we also have $Ker(A^+A) \subseteq Ker(A)$, and so

$$Ker(A^+A) = Ker(A).$$

Since A^+A is symmetric, range $(A^+A) = \operatorname{range}((A^+A)^\top) = \operatorname{Ker}(A^+A)^\perp = \operatorname{Ker}(A)^\perp$, as claimed.

Proposition 23.5. The set range(A) = range(AA⁺) consists of all vectors $y \in \mathbb{R}^m$ such that

$$V^{\top}y = \begin{pmatrix} z \\ 0 \end{pmatrix},$$

with $z \in \mathbb{R}^r$.

Proof. Indeed, if y = Ax, then

$$V^{\top}y = V^{\top}Ax = V^{\top}V\Sigma U^{\top}x = \Sigma U^{\top}x = \begin{pmatrix} \Sigma_r & 0\\ 0 & 0_{m-r} \end{pmatrix} U^{\top}x = \begin{pmatrix} z\\ 0 \end{pmatrix},$$

where Σ_r is the $r \times r$ diagonal matrix $\operatorname{diag}(\sigma_1, \ldots, \sigma_r)$. Conversely, if $V^\top y = \binom{z}{0}$, then $y = V \binom{z}{0}$, and

$$AA^{+}y = V \begin{pmatrix} I_{r} & 0 \\ 0 & 0_{m-r} \end{pmatrix} V^{\top}y$$

$$= V \begin{pmatrix} I_{r} & 0 \\ 0 & 0_{m-r} \end{pmatrix} V^{\top}V \begin{pmatrix} z \\ 0 \end{pmatrix}$$

$$= V \begin{pmatrix} I_{r} & 0 \\ 0 & 0_{m-r} \end{pmatrix} \begin{pmatrix} z \\ 0 \end{pmatrix}$$

$$= V \begin{pmatrix} z \\ 0 \end{pmatrix} = y,$$

which shows that y belongs to the range of A.

Similarly, we have the following result.

Proposition 23.6. The set range $(A^+A) = \operatorname{Ker}(A)^{\perp}$ consists of all vectors $y \in \mathbb{R}^n$ such that

$$U^{\top}y = \begin{pmatrix} z \\ 0 \end{pmatrix},$$

with $z \in \mathbb{R}^r$.