9.1 (p325)

 $\alpha = 1000 \text{ s}^{-1}$ and $\omega_0 = 800 \text{ rad/s}$, with $R = 100 \Omega$.

(a)
$$\alpha = \frac{1}{2RC}$$
 so $C = \frac{1}{2R\alpha} = 5 \mu F$

(b)
$$\omega_o = \frac{1}{\sqrt{LC}}$$
 so $L = \frac{1}{C\omega_o^2} = 312.5 \text{ mH}$

(c)
$$s_1 = -\alpha + \sqrt{\alpha^2 - \omega_o^2} = -400 \text{ s}^{-1}$$

(d)
$$s_2 = -\alpha - \sqrt{\alpha^2 - \omega_o^2} = -1600 \text{ s}^{-1}$$

9.2 (p329)

(a)
$$i_L(0^-) = 3 \times \frac{24}{24 + 48} = 1$$
 A

(b)
$$v_C(0^-) = 48i_L(0^-) = \underline{48 \text{ V}}$$

- (c) Since the capacitor voltage cannot change in zero time, $v_C(0^+) = v_C(0^-) = 48 \text{ V}$. Thus, $i_R(0^+) = \frac{48}{24} = 2 \text{ A}$
- (d) $i_L(0^+) = i_L(0^-)$. With the source off at $t = 0^+$, $i_C(0^+) + i_L(0^+) + i_R(0^+) = 0$ so $i_C(0^+) = -1 2 = -3$ A

(e)
$$\alpha = \frac{1}{2RC} = 5 \text{ s}^{-1} \text{ (48-}\Omega \text{ ohm resistor shorted)} \text{ and } \omega_o = \frac{1}{\sqrt{LC}} = 4.899 \text{ rad/s}$$

$$v_C(t) = A_1 e^{s_1 t} + A_2 e^{s_2 t}$$
 [1]

where
$$s_1 = -4 \,\mathrm{s}^{-1}$$
 and $s_2 = -6 \,\mathrm{s}^{-1}$

$$i_C(t) = C \frac{dv_c}{dt} = C \left[A_1 s_1 e^{s_1 t} + A_2 s_2 e^{s_2 t} \right]$$
$$= \frac{1}{240} \left[-4 A_1 e^{-4t} - 6 A_2 e^{-6t} \right]$$

$$i_C(0^+) = -3 = \frac{1}{240}(-4A_1 - 6A_2)$$
 [2]

also, from Eq. [1]

$$v_C(0^+) = 48 = A_1 + A_2$$
 [3]

Solving Eqns. [2] and [3], we find that $A_1 = -216 \text{ V}$ and $A_2 = 264 \text{ V}$

so
$$v_C(t) = -216e^{-4t} + 264e^{-6t}$$
 V and hence $v_C(0.2) = -17.54$ V

9.3 (p331)

We have a parallel RLC circuit with

$$\alpha = \frac{1}{2RC} = 41.67 \times 10^9 \text{ s}^{-1} \text{ and } \omega_0 = \frac{1}{\sqrt{LC}} = 20 \times 10^9 \text{ rad/s}.$$

Since $\alpha > \omega_0$, the circuit is overdamped, so we compute $s_1 = -5.113 \times 10^9 \text{ s}^{-1}$ and $s_2 = -78.23 \times 10^9 \text{ s}^{-1}$.

Thus, we expect a resistor current $i_R(t) = Ae^{s_1t} + Be^{s_2t} = Ae^{-5.113 \times 10^9 t} + Be^{-78.23 \times 10^9 t}$ A.

Noting that $v_C = 3i_R$ and $v_C(0) = 0$, we can write 3A + 3B = 0.

Define ic as flowing out of the top node. Then,

noting that $i_C(0^+) = -i_R(0^+) - i_L(0^+) = 0/3 + 6 = 6$ and

that
$$i_C(0^+) = C \frac{dv}{dt}\Big|_{t=0^+} = 4 \times 10^{-12} \left[3As_1 e^{s_1 t} + 3Bs_2 e^{s_2 t} \right]_{t=0^+} = 4 \times 10^{-12} \left[3As_1 + 3Bs_2 \right] = -6$$
 [2]

we can solve these two equations for A = 6.838 and B = -A.

Therefore,
$$i_R(t) = 6.838 \left(e^{-78.23 \times 10^9 t} - e^{-5.113 \times 10^9 t} \right)$$
 amperes.

9.4 (p333)

(a) We begin by sketching the two terms independently, then adding graphically, as shown below (the total is drawn in a solid line).

- (b) The maximum value of this function is 544.3 mV (see part (c), or estimate from graph). Solving using MATLAB for the time at which this value drops to 5.443 mV, >>solve('2*exp(-ts) 4*exp(-3*ts) = 5.443e-3') from which the only sensible answer is 5.906 s.
- (c) Using MATLAB, we find the time at which the maximum occurs by setting the derivative of the function equal to zero:

$$>>$$
solve('-2*exp(-t) + 12*exp(-3*t) = 0','t')

ans =

0.8959

$$>> 2*exp(-1/2*log(6))-4*exp(-3*1/2*log(6))$$

ans =

0.5443

So the maximum value of 544.3 mV occurs at t = 895.9 ms.

9.5 (p338)

(a) At t = 0, resistor R_2 is shorted.

$$\omega_o = \frac{1}{\sqrt{LC}} = 500 \text{ rad/s}.$$

$$\alpha = \frac{1}{2RC} = 500 \text{ s}^{-1}$$
, so $R_1 = \underline{1000 \Omega}$

(b) The voltage across the capacitor cannot change in zero time, so $v(0^+) = v(0^-)$.

Looking at the circuit for $t = 0^-$, $v(0^-) = 0.5 \frac{(1000)}{1000 + R_2} R_2 = 100$

Solving, $R_2 = 250 \Omega$

(c) $v(t) = e^{-500t} (At + B)$. Define i_C, i_{R_1}, i_L flowing downwards.

$$v(0^+) = v(0^-) = 100 = B$$
, so $v(t) = e^{-500t} (At + 100)$

$$i_L(0^-) = 0.5 \frac{1000}{1000 + 250} = 0.4 \text{ amperes} = i_L(0^+)$$

 $i_{R_1}(0^+) = \frac{100}{1000} = 0.1$ amperes so $i_C(0^+) = -0.4 - 0.1 = -0.5$ amperes

$$i_C(t) = C \frac{dv}{dt} = 10^{-6} \left[(-500)e^{-500t} (At + 100) + Ae^{-500t} \right]$$

$$i_C(0^+) = -0.5 = 10^{-6} [(-500)(100) + A]$$

so
$$A = -450\ 000\ \text{V} \cdot \text{s}^{-1}$$

Thus,
$$v(t) = e^{-500t} (-4.5 \times 10^5 t + 100)$$

and
$$v(0.1) = -212.3 \text{ V}$$

9.6 (p344)

$$\alpha = \frac{1}{2RC} = 100 \,\text{s}^{-1}$$
, $\omega_o = \frac{1}{\sqrt{LC}} = 224 \,\text{rad/s}$, so $\omega_d = 200 \,\text{rad/s}$

For
$$t < 0$$
, $v = 3 \left(\frac{100}{100 + 50} \right) = 2 \text{ V} = v(0^-) = v(0^+)$

For the inductor, defining i_L as flowing downward, $i_L(0^-) = \frac{5}{500} = 0.01 \text{ A} = i_L(0^+)$

(a) For
$$t > 0$$
, $i_C = C \frac{dv}{dt}$
where $v(t) = e^{-100t} (A \cos 200t + B \sin 200t)$
 $v(0^+) = 2 = A$

Define i_C and i_R flowing downward. Then $i_C + i_L + i_R = 0$

At
$$t = 0^+$$
, $i_C(0^+) = -i_L(0^+) - i_R(0^+)$
= $-0.01 - \frac{v(0^+)}{500}$
= $-0.01 - \frac{2}{500} = -0.014 \text{ A}$

$$\begin{split} i_C(t) &= C \frac{dv}{dt} \\ &= 10 \times 10^{-6} \left[-100 \, e^{-100t} \left(2\cos 200t + B\sin 200t \right) + e^{-100t} \left(-400\sin 200t + 200B\cos 200t \right) \right] \\ i_C(0^+) &= -0.014 = 10 \times 10^{-6} \left[-100(2) + (200B) \right] \\ \text{Solving, } B &= -6 \end{split}$$

Thus,
$$\frac{dv}{dt}\Big|_{t=0^{+}} = \frac{-0.014}{10 \times 10^{-6}} = -1400 \frac{V}{s}$$

- (b) $v(t) = e^{-100t} (2\cos 200t 6\sin 200t)$ so v(1 ms) = 0.695 V
- (c) These are several ways to solve this, including graphically. Using the iterative routine on a calculator, we find that t = 1.609 ms is the first zero for t > 0. $t = \frac{1}{200} \tan^{-1} \left(\frac{1}{3}\right)$ exactly
- 9.7 (p349)

(a)
$$\alpha = \frac{R}{2L} = 100 \text{ s}^{-1}$$

- (b) $\omega_o = \frac{1}{\sqrt{LC}} = \frac{223.6 \text{ rad/s}}{\sqrt{LC}}$: underdamped with $\omega_d = 200 \text{ rad/s}$
- (c) $i(0^-) = 1 \text{ A}$ since $i(0^+) = i(0^-)$, $i(0^+) = 1 \text{ A}$
- (d) define v_C , v_L with '+' on top. $v_C(0^+) = v_C(0^-) = 100 \times 1 = 100 \text{ V}$

$$v_L(0^+) = v_C(0^+) - 100i(0^+) = 100 - 100 = 0.$$
 Since $v_L = L \frac{di}{dt}, \frac{di}{dt}\Big|_{t=0^+} = \underline{0}$

(e)
$$i(t) = e^{-100t} (A\cos 200t + B\sin 200t)$$

 $i(0) = 1 = A$

$$\frac{di}{dt} = e^{-100t} (-200A \sin 200t + 200B \cos 200t) - 100e^{-100t} (A \cos 200t + B \sin 200t)$$

$$\frac{di}{dt}\Big|_{t=0^+} = (200B) - 100A = 0$$
 so $B = \frac{100}{200} = 0.5$

Thus, $i(t) = e^{-100t} (\cos 200t + 0.5 \sin 200t)$ and i(12 ms) = -120.4 mA

9.8 (p351)

We're given a hint that "plug and chug" might not be a good route to try here, so instead let's simply note that as we have a series circuit, the inductor current (the quantity of interest) flows through each element. Further, $i_L = i_C = -3v_C$ (the last term coming from the dependent source).

Armed with the knowledge that $i_C = C \frac{dv_C}{dt}$, we can then write $C \frac{dv_C}{dt} = -3v_C$. Rewriting,

 $0.01 \frac{dv_C}{dt} + 3v_C = 0$ or $\frac{dv_C}{dt} + 300v_C = 0$, which as a solution of the form $v_C = v_C(0^+)e^{-300t} = 10e^{-300t}$ V, t > 0. Since we can obtain $i_C(t)$ by differentiation and multiplying by C, $i_L = i_C = -30e^{-300t}$ A, t > 0.

9.9 (p355)

(a)
$$i_r(0^+) = i_r(0^-) = \underline{10 \text{ A}}$$
 $(i_s = 10 \text{ A}, t < 0)$

(b)
$$v_C(0^+) = v_C(0^-) = 20 (10) = \underline{200 \text{ V}}$$

(c) Since the inductor current cannot change in zero time, $v_R(0^+) = 20(10) = 200 \text{ V}$

(d)
$$i_L(\infty) = -20 \text{ A}$$
 due to $i_s \rightarrow -20 \text{ A}$

(e)
$$\alpha = \frac{R}{2L} = 10\ 000\,\text{s}^{-1}$$
 and $\omega_o = \sqrt[1]{LC} = 10\ 000\ \text{rad/s}$

: circuit is critically damped. So,

$$i_L(t) = e^{-10^4 t} (A_1 t + A_2) - 20$$

Applying initial conditions,

$$i_L(0^+) = 10 = A_2 - 20$$
 [1]

and so $A_2 = 30$

$$\frac{di_L}{dt} = -10^4 e^{-10^4 t} (A_1 t + A_2) + A_1 e^{-10^4 t}$$

$$\frac{di_L}{dt}\bigg|_{t=0^+} = -10^4 A_2 + A_1 = \frac{1}{L} \Big[v_C(0^+) - v_R(0^+) \Big]$$

or
$$A_1 - 30 \times 10^4 = 10^3 (200 - 200)$$

so
$$A_1 = 30 \times 10^4$$

Thus,
$$i_L(t) = e^{-10^4 t} (30 \times 10^4 t + 30) - 20$$

= 2.073 A

9.10 (p359)

(a)
$$i_L(0^+) = i_L(0^-) = \frac{10}{50} = \underline{0.2 \text{ A}} \quad (v_S = 10 \text{ V}, t < 0)$$

(b)
$$v_C(0^+) = v_C(0^-) = 50 \times \frac{10}{50} = \underline{10 \text{ V}}$$

(c)
$$i_L(\infty) = \frac{30}{50} = \underline{0.6 \text{ A}}$$
 $(v_S \to 30 \text{ V})$

(d)
$$\alpha = \frac{1}{2RC} = 10 \text{ s}^{-1}$$
 and $\omega_o = \frac{1}{\sqrt{LC}} = 8 \text{ rad/s}$

Thus, the circuit is overdamped and

$$i_L(t) = Ae^{s_1t} + Be^{s_2t} + 0.6$$

where $s_1 = -4s^{-1}$ and $s_2 = -16s^{-1}$

$$i_L(0) = 0.2 = A + B + 0.6$$
 [1]

$$\frac{di_L}{dt} = -4Ae^{-4t} - 16Be^{-16t}$$

so
$$\frac{di_L}{dt}\Big|_{t=0^+} = -4A - 16B = \frac{1}{L} \left[-v_C(0) + 30 \right]$$
 or $-4A - 16B = \frac{20}{15.625}$ [2]

Solving Eqns. [1] and [2] simultaneously, A = -0.4267 and B = 0.02667

so that
$$i_L(t) = -426.7e^{-4t} + 26.67e^{-16t} + 600 \text{ mA}$$

Thus,
$$i_L(0.1) = 319.4 \text{ mA}$$

9.11 (p361)

$$i_L(0^-) = \frac{12}{1+5} = 2 \text{ A}$$
 $= i_L(0^+)$

$$v(0^-) = 12 \frac{5}{1+5} = 10 \text{ V}$$
 $= v(0^+)$

• define *i* flowing out of "+" reference of v(t).

$$v = L \frac{di}{dt}$$
 and $i = -C \frac{dv}{dt}$ Thus, $v = -LC \frac{d^2v}{dt^2}$ or $\frac{d^2v}{dt^2} = -25v$

$$\frac{dv}{dt}\Big|_{t=0^+} = \frac{-i_L(0^+)}{C} = \frac{-2}{0.005} = -400 \text{ V}$$

so an initial voltage of $\pm 400 \text{ V}$ is required where -6 V was needed previously. At the v(t) node, an initial voltage of $\pm 10 \text{ V}$ is required where 0 V was previously needed. Previously a gain of -9 W was obtained using $R_1 = 10 \text{ k}\Omega$ and $R_f = 90 \text{ k}\Omega$. Now we require a gain of -25, so replace R_f with $250 \text{ k}\Omega$.

