Problem Statement or Requirement:

A client's requirement is, he wants to predict the insurance charges based on the several parameters. The Client has provided the dataset of the same.

As a data scientist, you must develop a model which will predict the insurance charges.

- 1. Identify your problem statement
 - Insurance changes to be predicted and create model based on age, sex, bmi, children and smoking habits.
- 2. Tell basic info about the dataset (Total number of rows, columns)
 - o 1338 rows × 6 columns, in that two nominal data columns
- 3. Mention the pre-processing method if you're doing any (like converting string to number nominal data)
 - Used get_dummies function to convert string to number. two columns converted (sex, smoke) to nominal data columns
- 4. Develop a good model with r2_score. You can use any machine learning algorithm; you can create many models. Have used following machine learning algorithm
 - o MultiLinear
 - Support Vector Machine
 - o Decision Tree
 - Random Forest
- 5. All the research values (r2_score of the models) should be documented. (You can make tabulation or screenshot of the results.)

Regression Type		R Score	
MultiLinear			0.789479035
Support Vector Machine	KernelType		R Score
	rbf		0.390601625
	linear		0.635950358
	poly		0.750819225
	sigmoid		0.527560378
Decision Tree	criterion	splitter	R Score
	squared_error	best	0.679640893
	squared_error	random	0.724727807
	friedman_mse	best	0.691758478
	friedman_mse	random	0.695108231
	absolute_error	best	0.659744801
	absolute_error	random	0.6900408
	poisson	best	0.735565995
	poisson	random	0.706167131
Random Forest	criterion	splitter	R Score
	squared_error		0.855811989
	absolute_error		0.854289766
	friedman_mse		0.853340077
	poisson		0.853100238

- 6. Mention your final model, justify why u have chosen the same
 - o Choosing Random Forest method as close fit model.