Logica — 29-1-2019

Tutte le risposte devono essere adeguatamente giustificate

1.	Per ognuna	delle seguenti	domande segnare	TUTTE le	risposte corrette

- (a) Sia Pla formula proposizionale $A \wedge (\neg A \to B) \to \neg A$
 - \square P è soddisfacibile.
 - $\square \neg P$ è soddisfacibile.
 - \square P è vera se e solo se B è vera.
 - \square Il valore di verità di P non dipende dal valore di verità di B.
- (b) Sia $L = \{U, f, c\}$, con U simbolo relazionale unario, f simbolo funzionale binario, c simbolo di costante. Sia

$$\varphi: \exists t (\forall y U(f(t,y)) \land (U(c) \rightarrow f(c,c) = c))$$

- $\square \varphi$ è una L-formula.
- $\square \varphi$ contiene variabili libere.
- $\Box ht(\varphi) = 3.$
- \square Nell'argomento di $\forall y$ compare il simbolo c.

2. Si considerino le formule proposizionali

$$P: \neg A \rightarrow \neg B, \quad Q: \neg B \rightarrow \neg A, \quad R: \neg A \wedge \neg B$$

Si determini se:

- (a) $P,Q \models R$
- (b) $Q, R \models P$
- (c) $P \wedge R \equiv Q$
- 3. Sia $\mathcal{L} = \{S, A\}$ un linguaggio del prim'ordine, dove S è simbolo relazionale unario e A è simbolo relazionale binario. Si consideri la seguenze interpretazione di \mathcal{L} :
 - -S(x): x è uno studente.
 - -A(x,y): x è amico di y.

Si formalizzino in \mathcal{L} le seguenti frasi:

1. Ogni studente è amico di qualche studente.

- 2. Ogni studente è amico di qualche altro studente.
- 3. C'è uno studente che è amico di ogni altro studente.
- 4. Sia $\mathcal{L}=\{R,f\}$ un linguaggio del prim'ordine, dove R è un simbolo relazionale binario e f è un simbolo funzionale binario. Sia

$$\varphi: \forall t \exists w R(f(t, w), u)$$

Si considerino le strutture

$$\mathcal{A}=(\mathbb{N},\leq,+),\qquad \mathcal{B}=(\mathbb{Z},\geq,\cdot)$$

- Determinare quali sono le occorrenze libere di variabili in φ .
- Determinare se $\mathcal{A} \models \varphi[t/2, w/5, u/0]$.
- Determinare l'insieme di verità $\varphi(\mathcal{B})$.

Svolgimento

- 1. (a) $\star P$ è soddisfacibile.
 - $\star \neg P$ è soddisfacibile.
 - \star Il valore di verità di Pnon dipende dal valore di verità di B.
 - (b) $\star \varphi$ è una *L*-formula.
 - $\star ht(\varphi) = 3.$
- **2.** (a) $P,Q \not\models R$. Infatti, se A e B sono entrambe vere, allora P e Q sono entrambe vere, ma R è falsa.
 - (b) $Q, R \models P$. Infatti, dalla verità di R segue che $\neg B$ è vera, quindi P è vera.
 - (c) $P \wedge R \not\equiv Q$. Infatti, se A e B sono entrambe vere, allora $\neg A$ e $\neg B$ sono entrambe false, quindi Q è vera, ma R è falsa e pertanto anche $P \wedge R$ è falsa.
- 3. 1. $\forall x(S(x) \to \exists y(S(y) \land A(x,y)))$
 - 2. $\forall x(S(x) \to \exists y(S(y) \land y \neq x \land A(x,y)))$
 - 3. $\exists x (S(x) \land \forall y (S(y) \land y \neq x \rightarrow A(x,y)))$
- 4. L'unica occorrenza libera di variabile in φ è l'unica occorrenza di
 - $-\mathcal{A} \not\models \varphi[t/2, w/5, u/0]$, perché non è vero che per ogni numero naturale t esiste un numero naturale w tale che $t + w \leq 0$.
 - $-\varphi(\mathcal{B}) = \{u \in \mathbb{Z} \mid u \leq 0\}.$ Infatti:
 - * se $u \leq 0$, dato un qualunque $t \in \mathbb{Z}$, si considerino due casi: Se t = 0, allora tw = 0 per ogni $w \in \mathbb{Z}$ e quindi $tw \geq u$. Se $t \neq 0$, preso w concorde con t si ha $tw \geq 0$, e quindi $tw \geq u$. Quindi $u \in \varphi(\mathcal{B})$.
 - * se invece u > 0, preso t = 0, si ha tw = 0 per ogni w, quindi $tw \ngeq u$.