Software Compensation for AHCAL optimisation

Huong Lan Tran

FLC Long Talk - November 30, 2015

Outlines

- Discussion about overall size of ILD and cost
 - HCAL cell sizes, HCAL thickness, different granularities @ different depth
- Intensive work on-going to re-optimise HCAL
 - New version of Pandora shows better resolution
 - Impact of energy reconstruction

In this talk: Software compensation for AHCAL optimisation

- Why compensation?
- Methods to achieve compensation
- Software compensation (SC)
 - Idea & Definitions
 - Implementation in Particle Flow Algorithm
 - Towards a common SC technique for different types of HCAL

• ILD calorimeters are *non-compensating*

Typical hadronic shower

• ILD calorimeters are *non-compensating*

Detected via energy loss of electrons and photons in active medium

• ILD calorimeters are *non-compensating*

Detected via energy loss of electrons and photons in active medium

Hadronic components:

- Energy loss of charged hadrons, photons, neutrons...
- Invisible energy: nuclear binding energy or target recoil
- Smaller calorimeter response for this part

• ILD calorimeters are *non-compensating*

Detected via energy loss of electrons and photons in active medium

Hadronic components:

- Energy loss of charged hadrons, photons, neutrons...
- Invisible energy: nuclear binding energy or target recoil
- Smaller calorimeter response for this part

> Consequences:

- Higher detector response for electromagnetic compared to hadronic showers $\frac{e}{h} > 1$
- Non-linearity for hadronic calorimeter response
- Degradation of energy resolution

Methods to achieve Compensation

- Reducing electromagnetic response
- Increasing hadronic response

Methods to achieve Compensation

- Reducing electromagnetic response
- Increasing hadronic response

ZEUS Uranium-Scintillator calorimeter

Achievable with detector design

- Increase nuclear fission with absorber material
 - Example: ZEUS detector using 238U
- Manipulating response to (slow) neutrons
- Sampling fractions
- ...

ZEUS e/h response ratio =1 within 1% for E > 3GeV

Methods to achieve Compensation

- Reducing electromagnetic response
- Increasing hadronic response
- "Offline" compensation: Software Compensation
 - Electromagnetic showers denser than hadronic showers > energy of hits inside electromagnetic sub-showers are typically higher compared to hits inside hadronic sub-showers.
 - > Cut out high energy hits to reduce EM response *
 - > Applying different weights for hits of different energy densities

Software Compensation Idea & Implementation

Software Compensation in AHCAL optimisation

- Dependence of jet energy resolution on HCAL cell size apparently reduced compared to results from LoI:
 - HCAL cell energy truncation degrades resolution at high energy for higher cell size
 - But: improve energy resolution at smaller cell sizes
- > Cell energy truncation mimics software compensation
- > Software compensation can do better and must be applied properly

- Software compensation applied to test beam data from CALICE-AHCAL physics prototype:
 - Improvement of hadronic energy resolution by 20% for single hadrons from 10 to 80 GeV

Software Compensation

- *Idea*: Applying different weights for hits of different energy densities
- *Weight* defined as:

$$\omega(\rho) = p_1.exp(p_2.\rho) + p_3$$

where ρ is hit energy density, p_1, p_2, p_3 are beam energy dependent parameters

• Energy of cluster then computed in software compensation method as:

$$E_{SC} = \sum_{hits} E_{ECAL} + \sum_{hits} (E_{HCAL}.\omega(\rho))$$

• Weights determined through minimising a χ^2 function:

$$\chi^2 = \sum_{events} (E_{SC} - E_{beam})^2$$

• In following slides: Results on standard ILD detector (with 3x3 cm2 AHCAL)

Hit Energy Density and Weights

Samples:

- Kaon0L and neutrons from 10 to 95 GeV generated from IP, targeted only to barrel part
- Select only events with 1 cluster
 - Events where hadronic showers started already in EM calorimeter: only HCAL hits are weighted
 - Cluster with no hit in muon chamber

Weight determination:

- Through χ^2 minimisation
- For each beam energy weights are defined with three parameters p_1, p_2, p_3 given by χ^2

$$\omega(\rho) = p_1.exp(p_2.\rho) + p_3$$

• For each of p_1, p_2, p_3 obtain 10 values at 10 energies \succ fit as function of energy

Weight parameters

$$\omega(\rho) = p_1.exp(p_2.\rho) + p_3$$

Fitting p_1, p_2, p_3 provides continuous energy dependence \triangleright For any particle's energy a weight can be assigned

Implementation into Pandora

- Software compensation can help at different stages of Particle Flow Algorithm:
 - Re-clustering: Cluster-Track compatibility
 - Partile Flow Object creation: Correction of neutral hadrons energy

• Flag in MarlinPandora steering to apply software compensation:

```
<parameter name="ApplySoftwareCompensation" type="bool"> false </parameter>
  <parameter name="SoftwareCompensationParameters" type="FloatVec"> 2.54231 -0.0470912 ...
```

NEW

Implementation into Pandora

- Correction of neutral hadron PFOs energy
- Initial estimation of cluster's energy used for determination of weights
- Apply to set of Kaon0L and neutron samples from 10 to 95 GeV

- Improvement of mean reconstructed energy
- RMS significantly reduced

Single Particle Energy Reconstruction

- Improves linearity in whole range
- Improves resolution by ~20% (similar to results obtained for physics prototype)

Single Particle Energy Reconstruction

- Improves linearity in whole range
- Improves resolution by ~20% (similar to results obtained for physics prototype)

- Testbeam results reproduced
- Overall slightly worse because of missing tail catcher

Jet Energy Resolution

- Software compensation applied for jets
 - Only for neutral hadrons, after clustering and re-clustering step
 - Only hits in HCAL are weighted as explained previously

- Reconstructed energy distribution closer to simulated energy and width of distribution smaller
- Improves jet energy resolution in whole range

Jet Energy Resolution for Different Cell Sizes

• For similar cell sizes still expect improvement using weights defined with $3 \times 3 \ cm^2$

- Proper weights to be done, especially for very small or very large granularities
- SC could also help at re-clustering stage of Pandora
 - At the moment degrades JER, under investigation

Towards a common SC technique for different types of HCAL

- Semi-digital reconstruction is particularly successful at low energies
 - Counting hits at 3 thresholds N_1, N_2, N_3

• Reconstructed energy: $E_{SD} = \sum_{bins} \alpha_i.N_i$

or

$$E_{SD} = \sum_{hits} \alpha_j \cdot \frac{E_j}{E_j} = \sum_{hits} \omega_j \cdot E_j \text{ with } \omega_j = \frac{\alpha_j}{E_j}$$

- Both reconstruction methods in same formalism
- Understand differences and learn from each other

- Semi-digital reconstruction is particularly successful at low energies
 - Counting hits at 3 thresholds N_1, N_2, N_3

• Reconstructed energy: $E_{SD} = \sum_{bins} \alpha_i.N_i$

or

$$E_{SD} = \sum_{hits} \alpha_j \cdot \frac{E_j}{E_j} = \sum_{hits} \omega_j \cdot E_j \text{ with } \omega_j = \frac{\alpha_j}{E_j}$$

Both reconstruction methods in same formalism

Semi-Digital and Software Compensation

- Semi-Digital: weight optimised as a function of *particle energy E*
- Software Compensation: weight optimised as a function of *hit energy density* ρ

Software Compensation in S-D style

- New procedure defined:
 - No longer enforce weight to follow exponential behaviour

• Weights determined for each bin of hit energy as a function of beam energy (all-at-one fit)

Single particle level:

- Better compared to previous results
- Improves linearity in whole range
- Improves resolution $\sim 20\%$ For higher energies $\sim 30\%$

Software Compensation in S-D style

- New procedure defined:
 - No longer enforce weight to follow exponential behaviour

• Weights determined for each bin of hit energy as a function of beam energy (all-at-one fit)

 At jet level gives more or less the same result as previously

Outlook

Towards cost optimisation

- Look at jet energy resolution as a function of number of channels
- Plot shows that 3x3 cm2 cell size is still a very reasonable choice with latest Pandora
- Software compensation to be applied

Latest results from Steven
To be updated with
software compensation

Summary & Outlook

- Software compensation and cell size optimisation:
 - Software compensation implemented in Pandora
 - To be put official
 - *Improves* single particle and jet energy resolution
 - Re-clustering step to be investigated
- Towards a common SC technique for different types of HCAL
- Final goal: HCAL cell size and sampling optimisation (3D granularity) as a function of depth and for different detector radii
- Third week of December in Cambridge (if visa procedure makes it)

Back-up slides

Outlook - Using my numbers

Towards cost optimisation

- Look at jet energy resolution as a function of number of channels
- Plot shows clear preference for 3x3 cm2 cell size
- Software compensation to be applied

- Semi-digital reconstruction:
 - Counting hits at 3 thresholds N1, N2, N3
 - Ntot = N1 + N2 + N3
 - EnergySD = alpha*N1 + beta*N2 + gamma*N3

where:

```
alpha = alpha1 + alpha2*N + alpha3*N*N

beta = beta1 + beta2*N + beta3*N*N

gamma = gamma1 + gamma2*N + gamma3*N*N
```

Software compensation mimics Semi-Digital:

- Define bin
- Energy total = Sum_bin (weight_bin * SumEnergy_bin)
- weight bin = a + b*E + c*E*E

