1 Organizační úvod

Přesun nebyl odhlasován.

Poznámka (Literatura)

- Engelking: General Topology (spíš taková příručka, hodně obtížná)
- Čech: Bodová topologie
- Kelley: General Topology
- Willard: General Topology

Doporučené jsou poslední dvě.

Poznámka (Podmíny zakončení) Zkouška (ústní) + úkoly ze cvičení (a účast na cvičení)

2 Úvod

Poznámka (Historie)

- Euler: mosty ve městě Královec (7 mostů, Eulerovský tah)
- Listing (1847): pojem topologie (bez rigorózních definic)
- Poincaré (1895): Analysis Situs (Poincarého hypotéza)
- Fréchet (1906): definuje metrický prostor (až dodnes)
- Hausdorff (1914): tzv. Hausdorffův TP
- Kuratowski (1922): TP, jak jej známe dnes (formálně)

Poznámka (TOPOSYM)

V Praze se každých 5 let koná významná konference topologů – TOPOSYM.

3 Základní pojmy

Topos = umístění (řečtina).

3.1 Topologický prostor, báze, subbáze, váha, charakter

Definice 3.1 (Topologický prostor (TP))

Uspořádaná dvojice (\mathbb{X}, τ) se nazývá topologický prostor, pokud \mathbb{X} je množina, $\tau \subseteq \mathcal{P}(\mathbb{X})$ a platí:

(T1) \emptyset , $\mathbb{X} \in \tau$

(T2) jsou-li $\mathbb{U},\mathbb{V}\in\tau,$ pak $\mathbb{U}\cap\mathbb{V}\in\tau$

(T3) je-li $\mathcal{U} \in \tau$, pak $\bigcup \mathcal{U} \in \tau$.

Definice 3.2 (Topologie)

Systém τ se nazývají body. Prvky množiny $\mathbb X$ se nazývají body. Prvky τ se nazývají otevřené množiny.

Definice 3.3 (Okolí bodu)

Množina $\mathbb{V} \subseteq \mathbb{X}$ se nazývá okolí bodu x, pokud existuje $\mathbb{U} \in \tau$, že $x \in \mathbb{U} \subseteq \mathbb{V}$. Množina všech okolí bodu x značíme $\mathcal{U}(x) = \mathcal{U}_{\tau}(x)$.

Definice 3.4 (Báze a subbáze)

Soubor množin $\mathcal{B} \subseteq \tau$ se nazývá báze topologie τ , pokud pro každé $\mathbb{U} \in \tau$ existuje $\mathcal{U} \subseteq \mathbb{B} : \bigcup \mathcal{U} = \mathbb{U}$. Soubor $\mathcal{S} \subseteq \tau$ se nazývá subbáze topologie τ , pokud $\{\bigcap \mathcal{F} : \mathcal{F} \subseteq \mathcal{S} \text{konečná}\}$ je báze topologie τ .

Tvrzení 3.1 (Charakterizace otevřené množiny pomocí okolí)

 $At\left(\mathbb{X},\tau\right)\,je\,\,TP\,\,a\,\,\mathbb{U}\in\mathbb{X}.\,\,Pak\,\,\mathbb{U}\in\tau,\,pr\acute{a}v\check{e}\,\,kdy\check{z}\,\,\forall x\in\mathbb{U}\exists\mathbb{V}\in\mathcal{U}(x):\mathbb{V}\subseteq\mathbb{U}$

 $D\mathring{u}kaz$

Důkaz (\Longrightarrow) vidíme $\mathbb{U} = \mathbb{V}$.

Opačně víme $\forall x \in \mathbb{U} \exists \mathbb{V}_x \in \mathcal{U}(x) : \mathbb{V}_x \subseteq \mathbb{U}. \exists \mathbb{W}_x \in \tau : x \in \mathbb{W}_x \subseteq \mathbb{U}_x. \mathbb{U} = \bigcup_{x \in \mathbb{U}} \mathbb{W}_x \in \tau. \text{ Tedy } \mathbb{U} \in \tau.$

$P\check{r}iklad$

Je-li (\mathbb{X}, ϱ) metrický prostor (MP), pak soubor všech ϱ -otevřených množin tvoří topologii na množině \mathbb{X} .

Definice 3.5 (Metrizovatelný TP)

TP (X, τ) se nazývá metrizovatelný, pokud na množině X existuje metrika ϱ tak, že topologie odvozené z (X, ϱ) splývá s topologií τ .

Příklad

Je-li (X, ϱ) MP, pak systém všech otevřených koulí tvoří bázi topologie τ_{ϱ} .

Například

Všechny otevřené intervaly tvoří bázi topologie na $\mathbb R$.

Systém $\{(-\infty,b),(a,\infty):a,b\in\mathbb{R}\}$ je subbáze topologie na \mathbb{R} .

Příklad (Diskrétní a indiskrétní TP)

Je-li $\mathbb X$ množina, pak $(\mathbb X, \mathcal P(\mathbb X))$ je TP, nazývá se diskrétní TP (a vždy je metrizovatelný). Naopak $(\mathbb X, \{\emptyset, \mathbb X\})$ se nazývá indiskrétní TP. (Pokud $|\mathbb X| \geq 2$, pak indiskrétní TP není metrizovatelný.)

Tvrzení 3.2 (Vlastnosti báze)

Je- $li(X, \tau)$ TP a \mathcal{B} jeho báze, pak

 $(B1) \ \forall \mathbb{U}, \mathbb{V} \in \mathcal{B} \forall x \in \mathbb{U} \cap \mathbb{V} \exists \mathbb{W} \in \mathbb{B} : x \in \mathbb{W} \subseteq \mathbb{U} \cap \mathbb{V},$

 $(B2) \cup \mathcal{B} = \mathbb{X}.$

Je-li \mathbb{X} libovolná množina a $\mathcal{B} \subseteq \mathbb{P}(\mathbb{X})$ splňuje podmínky (B1), (B2), pak na \mathbb{X} existuje jediná topologie, jejíž báze je \mathbb{B} .

 $D\mathring{u}kaz$

První část je snadná (průnik 2 množin báze je otevřený, tj. prvkem topologie, tedy se dá zapsat jako sjednocení podmnožiny báze).

Druhá část: Mějme tedy \mathbb{X} a \mathcal{B} z věty splňující obě podmínky. Definujme $\tau := \{\bigcup \mathcal{U} : \mathcal{U} \subseteq \mathcal{B}\}. \ \tau$ je topologie na \mathbb{X} (ověříme, že τ splňuje podmínky topologie).

Zároveň volba τ je jediná množná, jelikož každý její prvek se musí dát vyjádřit jako sjednocení báze a opačně. \Box

```
\begin{array}{c} \textit{Důsledek} \\ \textit{Je-li} \; \mathbb{X} \; \; \text{množina}, \; \mathcal{S} \subseteq \mathcal{P}(\mathbb{X}) \; \text{a} \; \bigcup \mathcal{S} = \mathbb{X}, \; \text{pak} \; \mathcal{S} \; \text{je subbáze jednoznačně určené topologie} \\ \text{na} \; \mathbb{X} \; . \\ \hline \textit{Důkaz} \\ \mathcal{B} = \{ \cap \mathcal{F} : \mathcal{F} \subseteq \mathcal{S} \text{konečná} \} \; \text{splňuje podmínky (B1) a (B2) předchozího tvrzení (B2 definice} \; \mathcal{S} \; , \; \text{B1 protože} \; \mathbb{U}, \mathbb{V} \in \mathcal{B}, \mathbb{U} = \bigcup \mathcal{F}_1, \mathbb{V} = \bigcap \mathcal{F}_2, \mathcal{F}_1, \mathcal{F}_2 \subseteq \mathcal{S} \text{konečné}. \; \mathbb{U} \cap \mathbb{V} = \bigcap (\mathcal{F}_1 \cup \mathcal{F}_2) \in \mathcal{B}. \; \text{(Dokonce celý průnik je prvkem} \; \mathcal{B} \; , \; \text{nejenom pro každý prvek existuje} \\ \text{množina, která ho obsahuje, je podmnožinou průniku a je v} \; \mathcal{B} \; \text{)}. \\ \hline \\ \Box
```

```
Tvrzení 3.3 (Vlastnosti systému všech okolí)
```

Definice 3.6 (Báze okolí)

At (X, τ) je TP. Systém množin $\mathcal{B}(x) \subseteq \mathcal{P}(X)$ se nazývá báze okolí v bodě x, pokud $\mathcal{B}(x) \subseteq \mathcal{U}_{\tau}(x)$ a pro každé $V \in \mathcal{U}_{\tau}(x)$ existuje $U \in \mathcal{B}(x)$, že $U \in V$???. Indexovaný soubor $\{\mathcal{B}(x) : x \in X\}$ se nazývá báze okolí prostoru X, pokud $\forall x \in X$: $\mathcal{B}(x)$ je báze okolí v bodě x.

Tvrzení 3.4 (Vlastnosti báze okolí)

```
Je-li (\mathbb{X}, \tau) TP a \{\mathcal{B}(x) : x \in \mathbb{X}\} báze okolí, pak

(O1) \mathcal{B}(x) \neq \emptyset, x \in \bigcap \mathcal{B}(x), x \in \mathbb{X},

(O2) \forall \mathbb{U}, \mathbb{V} \in \mathcal{B}(x) \exists \mathbb{W} \in \mathcal{B}(x) : \mathbb{W} \subseteq \mathbb{U} \cap \mathbb{V},

(O3) \forall \mathbb{U} \in \mathcal{B}(x) \exists \mathcal{B}(x) \forall y \in \mathbb{V} \exists \mathbb{W} \in \mathcal{B}(y) : \mathbb{W} \subseteq \mathbb{U}.
```

Je-li \mathbb{X} množina a $\mathcal{B}(x) \subseteq \mathcal{P}(\mathbb{X}), x \in \mathbb{X}$ soubory splňující (O1), (O2), (O3), pak na množině \mathbb{X} existuje jediná topologie, jejíž báze okolí je $\{\mathcal{B}(x) : x \in \mathbb{X}\}.$

```
\begin{array}{c} D\mathring{u}kaz\\ \text{První část je snadná.} \\ \\ \text{Položme }\mathcal{U}(x) = \left\{\mathbb{U} \in \mathcal{P}(x): \exists \mathbb{B} \in \mathcal{B}(x): \mathbb{B} \subseteq \mathbb{U}\right\}, x \in \mathbb{X}. \text{ Ověříme, že splňuje (U1--4). (U1) z (O1). (U2) z definice }\mathcal{U}. \text{ (U3) z (O2), (U4) z (O3).} \end{array}
```

Definice 3.7 (Váha prostoru)

```
At (X, \tau) je TP. Pak váha prostoru (X, \tau) je nejmenší mohutnost báze prostoru (X, \tau). Značíme ji w(X) = w(X, \tau)
```

Charakter v bodě x je nejmenší mohutnost báze okolí bodu x. Značíme ho $\chi(x, \mathbb{X})$.

Charakter prostoru \mathbb{X} je sup $\{\chi(x, \mathbb{X}) : x \in \mathbb{X}\}.$

```
\begin{array}{l} \begin{tabular}{l} Například \\ \mathbf{w}(\mathbb{R}) = \omega \ (\mathbb{R} \ \text{má spočetnou bázi}). \\ \\ \mathbf{w}(\mathbb{X}, \mathcal{P}(\mathbb{X})) = |\mathbb{X}| \ (\{\{x\}: x \in \mathbb{X}\} \ \text{je báze} \ (\mathbb{X}, \mathcal{P}(\mathbb{X}))) \\ \\ \mathbf{w}(\mathbb{X}, \{\emptyset, \{\mathbb{X}\}\}) = 1 \\ \\ \begin{tabular}{l} Například \\ \begin{tabular}{l} Je-li \ (\mathbb{X}, \tau) \ \text{metrizovatelný, pak} \ \chi(x, \mathbb{X}) \leq \omega \\ \end{tabular}
```

Tvrzení 3.5

3.2 Vnitřek, Uzávěr, hranice

Definice 3.8 (Uzavřená množina)

At (X, τ) je TP. Množina $\mathbb{F} \subseteq X$ se nazývá uzavřená, pokud její doplněk je otevřená množina (neboli $x \setminus \mathbb{F} \in \tau$).

Definice 3.9 (Obojetná množina (clopen set))

Množina se nazývá obojetná, pokud je uzavřená a otevřená zároveň.

Definice 3.10 (Uzávěr)

Je-li $\mathbb{A} \subseteq \mathbb{X}$, pak uzávěr \mathbb{A} je $\operatorname{cl}(\mathbb{A}) = \overline{\mathbb{A}} = \bigcap \{ \mathbb{F} \subseteq \mathbb{X}, \mathbb{A} \subseteq \mathbb{F}, \mathbb{F}$ je uzavřená $\}$.

Definice 3.11 (Vnitřek množiny)

Vnitřek množiny \mathbb{A} je Int $\mathbb{A} = \mathbb{A}^0 = \bigcup \{ \mathbb{U} \in \tau : \mathbb{U} \subseteq \mathbb{A} \}.$

Definice 3.12 (Hranice množiny)

Hranice množiny \mathbb{A} je $\delta \mathbb{A} = \overline{\mathbb{A}} \cap \overline{\mathbb{X} \setminus \mathbb{A}}$

Tvrzení 3.6 (Vztah vnitřku a uzávěru)

 $At(X, \tau) \ je \ TP, \ A \subseteq X, \ pak \ X \setminus \overline{A} = Int(X \setminus A) \ a \ X \setminus Int \ A = \overline{X \setminus A}.$

 $D\mathring{u}kaz$

 $\backslash \overline{\mathbb{A}}$ je otevřená, navíc $\mathbb{X} \setminus \overline{\mathbb{A}} \subseteq \mathbb{X} \setminus \mathbb{A}$. Tedy $\mathbb{X} \setminus \overline{\mathbb{A}} \subseteq \operatorname{Int}(\mathbb{X} \setminus \mathbb{A})$. Int $(\mathbb{X} \setminus \mathbb{A})\mathbb{X} \setminus \mathbb{A}$, přechodem k doplňku $\mathbb{A} \subseteq \mathbb{X} \setminus \operatorname{Int}(\mathbb{X} \setminus \mathbb{A})$. Tedy $\overline{\mathbb{A}} \subseteq \mathbb{X} \setminus \operatorname{Int}(\mathbb{X})$???. Přechodem k doplňku: $\operatorname{Int}(\mathbb{X} \setminus \mathbb{A}) \subseteq \mathbb{X} \setminus \overline{\mathbb{A}}$.

Druhou část můžeme dokázat přechodem k doplňku a převedením na první část. \qed

Tvrzení 3.7 (Charakterizace uzávěru)

 $Bud(X,\tau)$ TP, $x \in X$, $A \subseteq X$ a B(x) báze okolí v bodě x. Pak následující podmínky jsou ekvivalentní

- 1) $x \in \overline{\mathbb{A}}$,
- 2) $\forall \mathbb{U} \in \mathcal{U}(x) : \mathbb{U} \cap \mathbb{A} \neq \emptyset$,
- 3) $\forall \mathbb{U} \in \mathcal{B}(x) : \mathbb{U} \cap \mathbb{A} \neq \emptyset$.

 $D\mathring{u}kaz$

- 1) -> 2) sporem: Kdyby pro nějaké $\mathbb{U} \in \mathcal{U}(x) : \mathbb{U} \cap \mathbb{A} = \emptyset$, pak existuje \mathbb{V} otevřené: $x \in \mathbb{V} \subseteq \mathbb{U}$. $\mathbb{V} \cap \mathbb{A} = \emptyset$. $\mathbb{X} \setminus \mathbb{V}$ je uzavřená a $\mathbb{A} \subseteq \mathbb{X} \setminus \mathbb{V}$. Pak $x \in \overline{\mathbb{A}} \subseteq \mathbb{X} \setminus \mathbb{V}$, neobsahuje x. .
 - 2) -> 3) triviální
- 3) -> 1) sporem: $x \notin \overline{\mathbb{A}}$ pak $x \in \mathbb{X} \setminus \overline{\mathbb{A}}$. Pak existuje $\mathbb{U} \in \mathcal{B}(x) : x \in \mathbb{U} \subseteq \mathbb{X} \setminus \overline{\mathbb{A}}$. Pak ????