Format I			00 opcode i1:r1 i2:r2 / qdata
If i1 then $opr1 = M_{(r1)}$ else $opr1 = r1$; If i2 then $opr2 = M_{(r1)}$ else $opr2 = r2$;			6 bits 6 bits 6 bits
Instruct	Instruction Opc		Operation
mov	opr1,opr2	0000	opr1 ← (opr2);
add	opr1,opr2	0001	opr1 ← (opr1) + (opr2);
sub	opr1,opr2	0010	opr1 ← (opr1) - (opr2);
and	opr1,opr2	0011	opr1 ← (opr1) ^ (opr2);
or	opr1,opr2	0100	opr1 ← (opr1) V (opr2);
xor	opr1,opr2	0101	$opr1 \leftarrow (opr1) xor (opr2);$
swap	opr1,opr2	0110	opr1 ⇔ (opr2);
addq	opr1,Qdata	0111	opr1 ← (opr1) + qdata;
subq	opr1,Qdata	1000	opr1 ← (opr1) - qdata;
movq	opr1,Qdata	1001	opr1 ← qdata;

Format II				010 opcode	r
				7 bits	5 bits
Instructi	ion	Opcode	Operation		
jmp	r	0000	PC	-	
inc	r	0001	r ⇐ (r) + 1;		
dec	r	0010	r ← (r) - 1;		
clr	r	0011	r		
not	r	0100	r ← not (r);		
neg	r	0101	r		

یک کامپیوتر دو آدرسه دارای حافظهای به گنجایش ۲^{۲۴} واحد آدرس پذیر ۶ بیتی، طول کلمه ۲۴ بیتی و ۳۲ ثبات همهمنظوره R31 تا R31 میباشد. شیوههای نشانیدهی ماشین شامل ثباتی (مستقیم و غیرمستقیم)، بلافاصله و حافظهای (مستقیم و غیرمستقیم)، و شیوه نمایش اعداد مکمل ۲ است. در این سیستم آدرس بازگشت به سیستم عامل در ثبات R31 دخیره میشود. دستورات این ماشین در چهار قالب (طبق جداول زیر) کد میشوند.

Format III		11 opcode	r	addr
	_	7 bits	5 bits	24 bits
Instruction	Opcode	Operation	1	
mov r, addr	0000	r	addr);	
mov addr,r	0001	$M_{addr} \leftarrow$	(r);	
mov r, (addr)	0010	r	M_addr));
mov (addr),r	0011	$M_{(M_add)}$	_{r)} ⇔ (r));
jnz r, addr	0100	if (r) ≠ (then	PC ← addr;
jz r, addr	0101	if(r) = 0	then	PC ← addr;
jneg r, addr	0110	if $(r) < 0$) ther	n PC ← addr;
jpos r, addr	0111	if $(r) \ge 0$) then	PC ← addr;
loop r, addr	1000	r⇔(r)-1	; if (r)	≠0 then PC⇔addr;
jmp+ r, addr	1001	r⇔(r)+1	L; PC¢	⊐addr;
call r, addr	1010	r⇔(PC)	; PC¢	⊐addr;

Form	nat V		1 r	data
			5 bits	24 bits
Instruction		Opcode	Operation	
mov	r,#data	1	r ← data;	

- ۱- طول تمامی ثباتهای ماشین را تعیین کنید. (۱ نمره)
- ۲- برنامهای به زبان اسمبلی بنویسید که آرایه صد کلمهای A را به صورت صعودی مرتب کند. (*) نمره
 - ۳- برنامه زیر چه می کند؟ مقادیر اولیه ثباتها مثبت است. (۳ نمره)

```
org 0
                                                                       org 0
                                                                       mov R1,#100
000000
               mov R1,#100
               mov R0,#array
                                                                       mov R0,#array
000005
00000A
               dw 41006h
                                  0000 0100 0001 0000 0000 0110
                                                                       add R1,R0
                                 100001 1000 0000 0111 0000 0000 0100
00000E
               mov R1,#807004h
                                                                       swap (R1),(R0) addq R0,4
               subq R1,4
000013 loop:
                                                                loop:
                                                                       subq R1,4
000016
               mov R2,R0
                                                                       mov R2,R0
000019
               sub R2,R1
                                                                       sub R2,R1
               jneg R2,loop-6
00002C
                                                                       jneg R2,loop-6
000022
               jmp R31
                                                                       jmp R31
                   100 dup(?)
                                                                array: dw 100 dup(?)
000024
         array: dw
                                                                      end
               end
```

۴- برنامه سوال ۳ را به کد ماشین ترجمه کنید. (۲ نمره)