

 $.HCOOH_{(l)}$ مع حمض الميثانويك CH_3COO^- مع حمض الميثانويك نريد در اسة التفاعل بين شوار د الإيثانوات

من أجل ذلك نضع في بيشر يحتوي على 500mL من الماء المقطر ، 0,10mol من إيثانوات الصوديوم، 0,10mol من من أجل ذلك نضع في بيشر يحتوي على 0,10mol من الميثانويك .

1. اكتب معادلة التفاعل الحادث و بين أنه تفاعل حمض ـ أساس .

- 2.قدم جدو لا لتقدم التفاعل.
- Q_{n} عين كسر التفاعل الإبتدائي 3
- 4. عين عبارة كسر التفاعل النهائي (عند التوازن) بدلالة النسبة النهائية لتقدم التفاعل au_{t}
- . علما أن ثابت التوازن الموافق لمعادلة هذا التفاعل K=13 استنتج النسبة النهائية للتقدم au_f في هذه التجربة K=13
 - . كيف يمكن تحسين قيمة au_f لهذا التفاعل .

تمرین 2

نضع في حوجلة عيارية سعتها 100m كتلة m من حمض الميثانويك ثم نكمل الحجم إلى خط العيار بواسطة الماء المقطر ، بعد الرج نحصل على محلول S_0 تركيزه المولي $C_0=10^{-2}mol/l$.

- أ أحسب الكتلة m
- بْ) أكتب معادلة تفاعل حمض الميثانويك مع الماء ، ثم قدم جدو لا لتقدم التفاعل .
 - . C_0 عبر عن النسبة النهائية للتقدم بدلالة $\left[H_3^+O\right]_f$ و

$$Q_{rf} = \frac{\left[{H_3}^+ O\right]_f^2}{C_0 - \left[{H_3}^+ O\right]_f}$$
: ن) أعط عبارة Q_{rf} لكسر التفاعل النهائي ثم بين أن

- 2.أعط عبارة الناقلية النوعية σ للمحلول عند حالة التوازن بدلالة الناقليات النوعية المولية للشوارد المتواجدة فيه و $|H_3^+O|_{\epsilon}$.
 - 25^0c عند $\sigma=0.05s/m$ أعطى S_0 أعطى الناقلية النوعية للمحلول و S_0 أعطى . G=0.05s/m عين G=0.05s/m مع ثابت الحموضة G=0.05s/m عين G=0.05s/m مع ثابت الحموضة G=0.05s/m عين G=0.05s/m
 - $C_1 = 0,\!10mol/l$ ينحقق نفس الدراسة السابقة ولكن باستعمال محلول S_1 لحمض الميثانويك تركيزه المولي 4. $\sigma = 0,\!10mol/l$. $\sigma = 0,\!17s/m$ ، $Q_{rf} = 1,\!8.10^{-4}$: لنحصل على النتائج
 - أ) هل يؤثر التركيز المولي للمحلول على النسبة النهائية للتقدم au_f برر .
 - ب) هل يؤثر التركيز المولي للمحلول على Q_{rf} عند حالة التوازن ؟ برر .

يعطى :
$$K_{_A}=1{,}8.10^{-4}$$
 : يعطى : $\lambda_{_{HCOO^{^-}}}=5{,}46ms.m^2.mol^{-1}$. $\lambda_{_{\left(H_3^{^+}O\right)}}=35ms.m^2.mol^{-1}$.

تمرین 3

75.E

. نحضر محلولا لحمض الإيثانويك و ذلك بإذابة $10^{-3} \, mol$ من الحمض في 1L من الماء المقطر .

1. أكتب معادلة التفاعل لحمض الإيثانويك مع الماء .

- 2. إن قياس الناقلية النوعية للمحلول يعطي $\sigma_1 = 4.9 ms.m^{-1}$. استنتج النسبة النهائية لتقدم التفاعل
 - 3. نأخذ 10ml من هذا المحلول في حوجلة سعتها 100ml ثم نكمل الحجم بواسطة الماء المقطر . أ/ بافتراض حدوث عملية التمديد فقط ، عين $[CH_3COOH]$.
 - . $\sigma_2 = 1,53 ms.m^{-1}$ فنجد فنجد النوقية النوعية للمحلول الجديد فنجد
 - . عين $\left[CH_{3}COO^{-}
 ight]$ في المحلول
 - ج/ عين النسبة النهائية للتقدم في هذه الحالة .

4. قارن النسبة النهائية للتقدم في المحلولين الابتدائي و الممدد .

 $\lambda_{CH,COO^{-}} = 4.1 mS.m^{2}.mol^{-1}$ $\lambda_{H_{3}O^{+}} = 35 mS.m^{2}.mol^{-1}$:

تمرین 4

M.E

 $C_1 = 0,10 mol.L^{-1}$ تركيزه المولي تركيزه الصوديوم $\left(2Na^+ + SO_3^{2-}
ight)$ تركيزه المولي $V_1 = 30 mL$ نمز جحجما $V_2 = 0,10 mol.L^{-1}$ من محلول حمض الإيثانويك تركيزه المولي $V_2 = 30 mL$ وحجما

1. أكتب معادلة التفاعل الحادث.

2.قدم جدو لا لتقدم التفاعل.

 Q_{ri} أحسب.

بدلالة au (عند حالة التوازن) . 4. عبر عن Q_{rf}

K = 251 أن ثابت التوازن الموافق للتفاعل أن ثابت

_ استنتج τ في الشروط التجريبية .

المعطيات:

 $\left(HSO_3^-/SO_3^{2-}\right) \cdot \left(CH_3COOH/CH_3COO^-\right)$

تمرین 5

نعتبر محلولین (S_1) و (S_2) لهما نفس الترکیز المولی (S_1) و نعتبر محلولین المولین (S_1)

 $CH_2CICOOH$ محلول لحمض أحادي كلور الإيثانويك (S_1) -

 $CHCl_{2}COOH$ محلول لحض ثنائى كلور الإيثانويك (S_{2}) -

 $\sigma_2 = 0.330 S.m^{-1}$ ، $\sigma_1 = 0.121 S.m^{-1}$ الناقلية النوعية عند $\sigma_2 = 0.330 S.m^{-1}$ الناقلية النوعية عند كانتها المحلولين على الترتيب

1. أكتب معادلات التفاعلات بين كل حمض و الماء .

2. عين التركيز المولي للشوارد في كل محلول.

3 استنتج النسبة النهائية للتقدم لكل تفاعل .

. أحسب ثوابت التوازن K_1 و K_2 الموافقة للتفاعلين .

5. هل النسبة النهائية للتقدم تتعلق بثابت التوازن ؟

: $25^{\circ}C$ अंद : चांप्रक्यां

تمرین 6

 $C_1=0,15mol.L^{-1}$ نمز ج حجما $Na^++HCO_3^-$ تركيزه المولي كربونات الصوديوم $V_1=30mL$ تركيزه المولي $V_1=30mL$ تركيزه المولي . $C_2=0,10mol.L^{-1}$ تركيزه المولي $V_2=20mL$

1.أكتب معادلة التفاعل الحادث.

2. قدم جدو لا لتقدم التفاعل.

. Q_{ri} كسر التفاعل الإبتدائي 3

. عبر عن Q_{rf} في حالة التوازن بدلالة النسبة النهائية للتقدم 4.

 $K=7,9.10^{-2}$ ليفاعل التوازن الموافق للتفاعل ثابت التوازن الموافق الموافق التفاعل ثابت التوازن الموافق

استنتج τ في الشروط التجريبية .

لمعطيات:

 $(HCO_3^-/CO_3^{2-}) \cdot (NH_4^+/NH_3)$

. $Ke = 10^{-14}$ حيث $25^{0}c$ حيث عند الدرجة

 $pKa(HCOOH/HCOO^{-}) = 3.8$ ، $Ka(HCOOH/HCOO^{-}) = 1.78 \times 10^{-4}$: يعطى

. pH=2,9 وله $C_{_A}$ تركيزه HCOOH أنعتبر محلولا مائيا $(S_{_A})$ لحمض الميثانويك

أ/ أكتِب معادلة تفاعل HCOOH مع الماء و بين الثنائيتين أساس / حمض المشاركتين في التفاعل.

ب/ أنشئ جدول التقدم للتفاعل.

ج/ بين أن نسبة التقدم النهائي au للتفاعل تكتب بالشكل :

$$\tau = \frac{1}{1 + 10^{pK_a - pH}}$$

auأحسب قيمة au

د/ استنتج تركيز المحلول ($S_{\scriptscriptstyle A}$) .

2. لتحديد تركيز المحلول (S_A) بواسطة المعايرة ، نأخذ حجما $V_A=10ml$ من المحلول ونعايره $C_B=1,0.10^{-2}\,mol/l$ بمحلول (S_A) لهيدروكسيد الصوديوم تركيزه

. $pH=f(V_B)$ يمثل البيان المقابل (شكل -5) تغير ات pH بدلالة حجم الأساس المضاف V_B أي $pH=f(V_B)$ أ أكتب معادلة تفاعل المعايرة .

. $\left(V_{BE}\,,\,pH_{E}\,\right)$ برا حدد إحداثيات نقطة التكافؤ

ج/ استنتج التركيز $_{A}$ للمحلول $^{'}$ $^{'}$ $^{'}$ $^{'}$ هذه النتيجة توافق ما توصلت له في الجزء 1 ؟

د/ أحسب كمية مادة شوارد الهيدروكسيد (OH^-) في الخليط عند إضافة $V_B = 5ml$ من المحلول الأساسي ثم قيمة التقدم النهائي τ للتفاعل . ماذا تستنتج ؟

ه pH = 3.8 م حدد الأفراد المتواجدة في الخليط ، و احسب تراكيزها من أجل

تمرین 8

75.E

 $(mol.L^{-1})$ محلول مائي لحمض الإيثانويك CH_3COOH تركيزه C مقدرا بالوحدة

1 اكتب معادلة التفاعل الكيميائي المنمذج للتحول الكيميائي الحاصل بين حمض الإيثانويك و الماء .

2. أنشئ جدو لا لتقدم التفاعل الكيميائي السابق .

اً بدلالة τ ، τ (نسبة تقدم التفاعل). H_3O^+ أو جد عبارة

4. بين أنه يمكن كتابة عبارة ثابت الحموضة (K_a) للثنائية (CH_3COOH/CH_3COO^-) على الشكل

$$K_a = \frac{\tau^2.C}{1-\tau}$$

5. نحدد قيمة au للتحول من أجل تراكيز مولية مختلفة (C) و ندون النتائج في الجدول أدناه :

$C(mol.L^{-1})\times 10^{-2}$	17,8	8,77	1,78	1,08
$\tau (\times 10^{-2})$	1,0	1,4	3,1	4,0
$A = 1/C(L.mol^{-1})$				
$B = \tau^2 / 1 - \tau$				

أ/ أكمل الجدول السابق.

A = f(B) ب/ مثل البيان

 (CH_3COOH/CH_3COO^-) ج/ استنتج ثابت الحموضة K_a للثنائية

N. F

تمرین 9

V = 100ml وحجمه $C_0 = 2.9.10^{-4} \, mol. l^{-1}$ وحجمه الكاشف ملون مجهول ، تركيزه $C_0 = 2.9.10^{-4} \, mol. l^{-1}$. pH = 4.18 فنجده pH المحلول pH

 $oxedsymbol{I}$. $oxedsymbol{S}$. أحسب التركيز $oxedsymbol{H_3O^+}$ في المحلول

2. نرمز للثنائية أساس/حمض لهذا الكاشف في الماء بالرمز I_{m} . أكتب معادلة تفاعل الكاشف مع الماء .

3. حدد نسبة التقدم النهائي au_f للتفاعل الحادث ، هل هذا التفاعل تام ؟ علل ذلك ؟

 $K_i=1.99.10^{-5}$ وبين أنه يساوي au_i للثنائية HIn/In بدلالة C_i وبين أنه يساوي $K_i=1.99.10^{-5}$

5. اعتمادا على الجدول التالي: _ تعرف على هذا الكاشف.

ነ ታሮ	y
TO THE	.Ç

pK_i	مجال التغير اللوني	لون الحمض	الكاشف الملون
3.7	3.1 – 4.4	أصفر برتقالي	الهليانتين
4.7	3.8 – 5.4	أصفر	أخضر البروموكريزول
7.0	6.0 - 7.6	أصفر	أزرق البروموتيمول
9.4	8.2 – 10	عديم اللون	الفينو لفتالين

ال نعتبر محلول تجاري مركز S' لحمض كلور الماء تركيزه C. نخفف المحلول التجاري S' مرة فنحصل على C_a محلول S_1 ترکیزه

 $\left(N_a^{\ +}+OH^ight)$. نأخذ حجما $V_a=10ml$ من المحلول S_1 ونضيف له بواسطة سحاحة محلول لهيدر وكسيد الصوديوم $V_a=10ml$ $pH=f(V_b)$ ونرسم المنحنى البياني ، V_b ونرسم المنحنى البياني ، pH المزيج بعد كل إضافة للحجم ، ونرسم المنحنى البياني ، pHأ/ أكتب معادلة تفاعل المعايرة.

E بانيا إحداثي نقطة التكافؤ E

ج/ هل الكاشف الملون الذي تعرفت عليه في الجزء (١) مناسب لهذه المعايرة ؟

_ إذا كان الجواب بالنفى ، حدد إذا الكاشف الملون المناسب مع التعليل.

2. أحسب التركيز C، ثم استنتج التركيز C للمحلول التجاري (المحلول الأم).

: ننمذج التحول الكيميائي المحدود لحمض الإيثانويك (حمض الخل) مع الماء بتفاعل كيميائي معادلته : $CH_3COOH_{(aq)} + H_2O_{(l)} = CH_3COO^-_{(aq)} + H_3O^+$

1. أعط تعريفا للحمض وفق نظرية برونشتد .

2. اكتب الثنائيتين (أساس/ حمض) الداخلتين في التفاعل الحاصل .

Kاكتب عبارة ثابت التوازن K الموافق للتفاعل الكيميائي السابق.

، $C=2.7\times 10^{-3}\,mol\,/\,L$ وتركيزه المولي ، V=100mL حجمه الإيثانويك حجمه V=100m وقيمة الـ بالمولي الدرجة V=100m تساوي V=100m تساوي الدرجة V=100m

1. استنتج التركيز المولى النهائي لشوارد الهيدرونيوم في محلول حمض الإيثانويك .

 x_{max} و التقدم التفاعل ، ثم الحسب كلا من التقدم النهائي و التقدم الأعظمي . x_{max}

3. احسب قيمة النسبة النهائية (au_{f}) لتقدم التفاعل . ماذا تستنتج

 (CH_3COOH) و (CH_3COO^-) و (CH_3COO^-) و (CH_3COOH)

ب/ قيمة pK_a الثنائية (CH_3COOH/CH_3COO^-) ، واستنتج النوع الكيميائي المتغلب في

المحلول الحمضي . برر إجابتك .

تمرین 11

TO.E

 $Ke = 10^{-14}$ حيث $25^{\circ}C$ عند الدرجة

 $pK_a(NH_4^+/NH_3) = 9.2$: $pK_a(NH_4^+/NH_3) = 9.2$

. pH=11 غاز يعطي عند انحلاله في الماء محلو لا أساسيا تركيزه NH_3 وله NH_3 الامونياك (النشادر)

1. أ/ أعط تعريفا للأساس وفق نظرية برونشتد .

ب/ أكتب معادلة التفاعل و انشئ جدول التقدم.

. (نسبة التقدم النهائي) ج $_b$ عبر عن $_b$ $_b$ ال $_a$ ال $_b$ الكالة $_b$ بدلالة $_b$ و $_b$ النهائي $_b$

د/ بين أن نسبة التقدم النهائي au للتفاعل تكتب على الشكل : $au=rac{1}{1+10^{pH-pK_a}}= au$ و احسب قيمته.

. C_b استنتج التركيز ه/

و/ أحسب الناقلية النوعية σ للمحلول (يهمل التشرد الذاتي للماء) .

 $\left(H_{3}O^{+}+Cl^{-}\right)$ من المحلول السّابق بواسطة محلول حمض كلور الماء $V_{b}=20ml$ من المحلول السّابق بواسطة محلول حمض كلور الماء . $C_{a}=2/15mol/l$ تركيزه المولي

أ/ أكتب المعادلة الكيميائية المنمذجة للتفاعل الحادث.

ب/ ماهو الحجم اللازم إضافته من محلول حمض كلور الماء حتى يحدث التكافؤ؟

ج/ بين أنه عند إضافة 5ml من محلول حمض كلور الماء لمحلول الأمونياك، نجد pH المزيج يساوي 9,2

 $\lambda_{_{NH.^{^{+}}}}=7,4ms.m^{2}.mol^{-1}$ ، $\lambda_{_{OH^{^{-}}}}=19,2ms.m^{2}.mol^{-1}$: يعطى

تمرین 12

 $C_b = 0.02 mol/l$ تركيزه $(K^+ + OH^-)$ تركيزه البوتاس ($K^+ + OH^-$) تركيزه V = 40 ml تعاير حجما معايرة V = 40 ml مترية ، تمكننا من رسم المنحنى البياني المبين بالشكل V = 40 ml .

- 1. عين احداثيات نقطة التكافؤ .
- 2. استنتج تركيز حمض الإيثانويك وبين أنه حمض ضعيف.
 - . (CH_3COOH/CH_3COO^-) عين الـ pK_A للثنائية 3.
 - 4. أكتب معادلة تفاعل المعايرة .

5. أحسب ثابت التوازن K لهذا التفاعل .

$$K_e = 10^{-14} = |H_3^+O| = [OH^-]$$
: يعطى

- . pH=5 حيث $\left(K^{+}+OH^{-}\right)$ من محلول من عند سكب عند سكب عند سكب من محلول .
 - _ أحسب نسبة التقدم النهائي لتفاعل المعايرة مقدرة بنسبة مئوية (%) .
 - _ ماذا يمكنك قوله عن هذا التفاعل ؟
 - 7. في غياب الـ pH ـ متر ، ماهو الكاشف المناسب لهذا النوع من المعايرة ؟ علل .

الشكل -1)

يعطى:

أحمر المثيل	هیلیانتین	فينو لفتالين	أزرق البروموتيمول	كاشف ملون
6.2 – 4.2	4.4 – 3.1	10 – 8.2	7.6 – 6.0	مجال التغير اللوني

تمرین 13

75.E

بالتعريف: الخل ذو الدرجة الدرجة n يعني أن n(g) منه تحتوي على n(g) من الحمض النقي .

 $V_s=20ml$ من أجل التحقق من درجة الخل التجاري ، نحضر محلولا S) ممدا إلى S0 ممدا إلى عاير حجما التجاري ، نحضر محلول منه بواسطة محلول الصودا ذي التركيز S10 محلول ، S2 فنحصل على المنحنى S3 محلول الصودا ذي التركيز S4 حجم محلول الصودا المضاف .

- 1. هل البيان يدل على أن الحمض المستعمل ضعيف ؟ علل.
 - 2. أ) أكتب معادلة التفاعل بين الحمض و الأساس.
 - ب) أحسب كسر التفاعل Q_r عند التوازن
 - 3. بالاعتماد على البيان:
 - أ) حدد إحداثي نقطة التكافؤ
- ب) استنتج تركير الحمض C_{S} في المحلول (S) والتركيز C للخل المدروس.
 - ج) استنتج كمية مادة الحمض في 100g من الخل التجاري .
 - د) أحسب درجة الخل التجاري ؟

تعطى : الكتلة الحجمية للخل النقي

 $\rho = 1.02.10^3 g/l$

 $C=1,0.10^{-2}\ mol/L$ و تركيزه المولي V=100mL حجمه V=100mL فكانت النتيجة نقيس الناقلية $G=1,2.10^{-2}$ فكانت النتيجة فكانت النتيجة $G=1,2.10^{-2}$ فكانت النتيجة . $G=1,92.10^{-2}$.

. احسب كتلة الحمض النقى المنحلة في الحجم au من المحلول au

2. أكتب معادلة التفاعل المنمَّذج لإنحلالٌ حمض الإيثانويك في الماء .

. V و عبر عنه بدلالة C للمحلول وحجمه $X_{
m max}$ و عبر عنه بدلالة C للمحلول وحجمه $X_{
m max}$

4.أ/ أعط عبارة الناقلية النوعية σ للمحلول :

بدلالة الناقلية G للمحلول و الثابت k للخلية .

بدلالة التركيز المولي لشوارد الهيدرونيوم $[H_3O^+]$ ، و الناقلية المولية الشاردية $\lambda_{H_3O^+}$ و الناقلية المولية الشاردية $\lambda_{CH_3COO^-}$ (نهمل التشرد الذاتي للماء).

. $\lambda_{CH_3COO^-}$ ، $\lambda_{H_3O^+}$ ، k ، G التوازن) بدلالة $[H_3O^+]_f$ في الحالة النهائية (حالة التوازن) بدلالة الخالة المائية (حالة النهائية)

ج/ استنتج قيمة pH المحلول .

5. أوجد عبارة كسر التفاعل Q_{rf} في الحالة النهائية (حالة التوازن) بدلالة $[H_3O^+]_f$ و التركيز Q_{rf} للمحلول. ماذا يمثل Q_{rf} في هذه الحالة ؟

. (CH_3COOH/CH_3COO^-) الثنائية pK_a أحسب.

تمرین 15

TO.S.

نحضر محلو (S) لحمض الإيثانويك (CH_3COOH) لهذا الغرض نحل كتلة m في حجم قدره (S) من الماء المقطر .

نقيس pH المحلول (S) بواسطة مقياس الـ pH متر عند الدرجة $25^{\circ}C$ فكانت قيمته pH

1. اكتب معادلة التفاعل المنمذج للتحول الكيميائي الحادث.

2. أ/ أنشئ جدو لا لتقدم التفاعل الكيميائي .

 x_f اوجد قيمة التقدم النهائي

m جراذا علمت أن نسبة التقدم النهائي $\sigma_f=0.039$ بين أن قيمة التركيز المولي $C=10^{-2}\,mol/L$ ثم استنتج قيمة الكتلة المنحلة في المحلول $\sigma_f=0.039$ ثم استنتج

? احسب كسر التفاعل الابتدائي Q_{ri} و كسر التفاعل عند التوازن Q_{rf} ماهي جهة تطور الجملة الكيميائية

4. بهدف التأكد من قيمة التركيز المولي C للمحلول C للمحلول C منه بواسطة محلول أساسي للمحلوف التأكد من قيمة التركيز المولي $C_b = 4,0.10^{-3} \, mol.L^{-1}$ فيحدث التكافؤ عند إضافة $C_b = 4,0.10^{-3} \, mol.L^{-1}$ من المحلول الأساسي .

أ/ أذكر البروتوكول التجريبي لهذه المعايرة.

ب/ اكتب معادلة التفاعل المنمذج لهذا التحول.

ج/ احسب قيمة التركيز المولي C للمحلول C). قارنها مع القيمة المعطاة سابقا .

د/ ما هي قيمة pH المزيج لحظة إضافة 12,5m من محلول هيدروكسيد الصوديوم ؟ $M(O) = 16g.mol^{-1}$ ، $M(C) = 12g.mol^{-1}$ ، $M(H) = 1g.mol^{-1}$: يعطى

 $pK_{a(CH_3COOH/CH_3COO^-)} = 4,8$

المحاليل المائية مأخوذة في الدرجة $25^{\circ}C$ المحاليل

لأجل تعيين قيمة التركيز المولي لمحلول مائي (S_0) لحمض الميثانويك $HCOOH_{(aq)}$ نحقق التجربتين التاليتين : التجربة الأولى : نأخذ حجما $V_0 = 20m$ من المحلول $V_0 = 20m$ من المحلول الماء المقطر) لنحصل على محلول $V_0 = 20m$ المقطر) لنحصل على محلول $V_0 = 20m$

التجربة الثانية : نأخذ حجما $V_1=20m$ من المحلول الممدد S_1 و نعايره بمحلول مائي لهيدروكسيد الصوديوم $V_1=20m$ تركيزه المولى . $C=0.02mol.L^{-1}$ تركيزه المولى $(Na^+_{(aq)}+HO^-_{(aq)})$

أعطت المعايرة البيان (الشكل -1) .

- (S_0) اشرح باختصار كيفية تمديد المحلول وما هي الزجاجيات الضرورية لذلك ?
 - أكتب معادلة التفاعل المنمذج للتحول الكيميائي الحادث أثناء المعايرة
- 3. عين بيانيا إحداثي نقطة التكافؤ، و استنتج التركيز المولي للمحلول الممدد (S_1) .
- 4. اوجد بالاعتماد على البيان القيمة التقريبية لثابت الحموضة ${}_{K_A}$ للثنائية $\left(HCOOH_{(aq)}/HCOO^{-}_{(aq)}\right)$.
 - 5. استنتج قيمة التركيز المولي للمحلول الأصلي (S_0) .

TO.S

تمرین 17

بغرض تحضير محلول (S_1) لغاز النشادر $NH_{3(g)}$ ، نحل $NH_{3(g)}$ من الماء المقطر.

 $V_M = 24L.mol^{-1}$. المحاول C_1 علما أن الحجم المولي في شروط التجربة C_1 للمحلول المحادلة الكيميائية للتفاعل المنمذج للتحول الكيميائي الحاصل .

 (S_1) المحلول (S_1) في (S_1) أعطى القيمة (S_1)

أ/ أنشئ جدو لا لتقدم التفاعل.

ب/ احسب نسبة التقدم النهائي au_{1f} . ماذا تستنتج ؟

و تركيزه V=50mL حجمه (S_2) حجمه الأعمال المخبرية فوج من التلاميذ لتحضير محلولا (S_1) حجمه V=50mL المولي (S_1) انطلاقا من المحلول (S_1) .

أ/ ما هي الخطوات العملية المتبعة لتحضير المحلول (S_2) ?

.10,8 يا المحفول (S_2) المحضر تساوي pH أن قيمة

احسب قيمة نسبة التقدم النهائي au_{2f} للتفاعل .

ج/ ما تأثير الحالة الابتدائية للجملة على نسبة التقدم النهائي للتفاعل ؟

 $(NH_4^+_{(aq)}/NH_{3(aq)})$ الثنائية $(NH_4^+_{(aq)}/NH_{3(aq)})$. الحسب قيمة ثابت الحموضة