ЮЖНО-УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

На правах рукописи *Подпись*

Хохлова Татьяна Наилевна

Устойчивость моделей нейронных сетей кольцевой и линейной конфигураций с запаздывающими взаимодействиями

05.13.18 — математическое моделирование, численные методы и комплексы программ

АВТОРЕФЕРАТ

диссертации на соискание учёной степени кандидата физико-математических наук Работа выполнена в Южно-Уральском Государственном Университете.

доктор физико-математических наук,
$npo \phi eccop,$
$Kunнuc\ Muxau$ л $Mapкoвu$ ч
учёная степень,
учёное звание,
фамилия имя отчество
учёная степень,
учёное звание,
фамилия имя отчество
название организации
2012 г. в часов на заседании диссертаци-
азвание организации, при которой создан совет, распо-
ься в библиотеке название организации.
2012 г.
рату в двух экземплярах, заверенные печатью, просьба
есу на имя учёного секретаря диссертационного совета.

Учёный секретарь диссертационного совета, учёная степень, учёное звание

фамилия и. о.

Общая характеристика работы

Актуальность работы. Всюду, где в математических моделях имеются узлы и связи между ними, есть основания рассматривать их как нейронные сети. В многочисленных теориях узлы (нейроны) представляют личности, организации, блоки компьютерных систем, природные объекты, и, наконец, собственно нейроны в живых организмах или искусственных нейронных сетях. Взаимодействие узлов в нейронной сети зависит от архитектуры и свойств ее связей. Важной характеристикой сети является запаздывание во взаимодействии нейронов. Первые исследователи нервных систем живых организмов были удивлены, узнав, как мала скорость движения электрохимических импульсов по нервным волокнам. Поэтому учет запаздываний в моделях нейронных сетей требует применения теории дифференциальных уравнений с запаздываниями (функционально-дифференциальных уравнений (ФДУ)). Инструментарий ФДУ создали Н.В. Азбелев, В.П. Максимов и Л.Ф. Рахматуллина, Н.В. Азбелев и П.М. Симонов, Р. Беллман и К. Кук, А.В. Ким и В.Г. Пименов, Н.Н. Красовский, В.Б. Колмановский и В.Р. Носов, А.Д. Мышкис, Дж. Хейл, Л.Э. Эльсгольц и С.Б. Норкин.

Изучение моделей нейронных сетей посредством дифференциальных уравнений с запаздываниями проведено в монографиях L. O. Chua (1998), L. O. Chua и T. Roska (2004), K. Gu, V. Kharitonov и J. Chen (2003), J. Wu (2001). Особенно много работ посвящено кольцевым конфигурациям нейронных сетей: S. Guo и L. Huang (2003, 2007), Y. Horikawa и H. Kitajima (2009), C. Huang с соавторами (2008), X. Lu и S. Guo (2008), X. Xu (2008).

Кольцевые конфигурации нейронов обычны как в искусственных нейронных сетях, так и в биологических. Нейронные кольца обнаружены, например, у нематоды С. elegans.

Устойчивость нейронных сетей является их важной характеристикой. Глобальная устойчивость изучалась, например, в работах L. Idels и M. Kipnis¹, Kaslik и Balint², но глобальная устойчивость не всегда желательна в нейронных сетях (например, она неестественна в нейронных сетях, используемых в качестве памяти). В отличие от неё локальная устойчивость, по-видимому, всегда требуется. Локальная устойчивость моделей нейрон-

¹ Idels L., Kipnis M. Stability criteria for a nonlinear nonautonomous system with delays // Applied Mathematical Modelling. 2009. Vol. 33 (5). Pp. 2293–2297.

² Kaslik E., Balint S. Complex and chaotic dynamics in a discrete-time-delayed Hopfield neural network with ring architecture // Neural Networks. 2009. Vol. 22 (10). Pp. 1411–1418.

ных сетей изучалась в работах І. Györi и F. Hartung³, X. Lu и S. Guo⁴, J. Wei и S. Ruan⁵, W. Yu и J. Cao⁶, Y. Yuan и S. A. Campbell⁷.

В указанной группе работ нет ответа на естественные вопросы, возникающие при исследовании устойчивости моделей нейронных сетей вообще, а также кольцевых и линейных сетей в частности. Это следующие вопросы. Есть ли значения параметров нейронной сети, при которых сеть остается устойчивой при любом увеличении количества нейронов и сохранении общей архитектуры сети? Каковы эти значения? Каковы значения параметров нейронных сетей, гарантирующих устойчивость сети при любом запаздывании во взаимодействии нейронов (delay-independent stability)? Положительно ли влияет на устойчивость разрыв в кольцевой нейронной сети? Как строить области устойчивости в пространстве параметров? Эти вопросы рассматриваются в настоящей диссертации.

Цель диссертационной работы. Целью работы является изучение проблемы устойчивости математических моделей кольцевых и линейных нейронных сетей. Мы намерены:

разработать метод построения областей устойчивости в пространстве параметров указанных моделей и выявить динамику областей устойчивости при изменении количества нейронов в сети и изменении запаздывания во взаимодействии нейронов;

найти области устойчивости в пространстве параметров, гарантирующие устойчивость независимо от величины запаздывания;

выяснить асимптотику поведения областей устойчивости при запаздывании, стремящемся к нулю и бесконечности;

указать предельные области устойчивости, когда количество нейронов в кольцевой или линейной конфигурации неограничено;

сравнить области устойчивости моделей кольцевой сети и линейной сети, полученной в результате ее разрыва;

провести численное моделирование переходного процесса разрыва нейронного кольца и превращения его в линию с точки зрения устойчивости.

Методы исследования. Поставленные задачи решены в диссертации методом конуса устойчивости, разработанным автором вместе с научным руководителем и В.В. Малыгиной. Конус устойчивости это поверхность в \mathbb{R}^3 , построенная для анализа устойчивости систем линейных матричных дифференциальных уравнений произвольного порядка с запаздыванием. На основе метода в диссертации построены алгоритмы для поиска зна-

 $^{^3}$ Györi I., Hartung F. Stability analysis of a single neuron model with delay // Journal of Computational and Applied Mathematics. 2003. Vol. 157 (1). Pp. 73–92.

 $^{^4}$ Lu X., Guo S. Complete classification and stability of equilibrium in a delayed ring network // Electronic Journal of Differential Equations. 2008. Vol. 2008(85). P. 1–12.

 $^{^5}$ Wei J., Ruan S. Stability and bifurcation in a neural network model with two delays // Physica D. 1999. Pp. 255–272.

⁶ Yu W., Cao J. Stability and Hopf bifurcations on a two-neuron system with time delay in the frequency domain // Int. J. of Bifurcation and Chaos. 2007. Vol. 17 (4). Pp. 1355–1366.

 $^{^7}$ Yuan Y., Campbell S. Stability and sinchronization ring of identical cells with delayed coupling // J. of Dynamics and differential equations. 2004. Vol. 16. Pp. 709–744.

чений запаздываний, гарантирующих устойчивость системы. В свою очередь, алгоритмы реализованы в виде программ для анализа устойчивости как для общих систем, так и для специальных систем, описывающих модели кольцевых и линейных нейронные сетей с запаздываниями во взаимодействии соседних нейронов.

Научная новизна. В диссертации разработан новый метод конуса устойчивости, применимый к анализу класса матричных дифференциальных уравнений, более широкому в сравнении с классами, рассмотренными в работах В. Cahlon и D. Schmidt⁸, а также Н. Matsunaga⁹ и S. Sakata¹⁰. На основе этого метода разработаны новые алгоритмы и комплексы программ для построения области устойчивости в пространстве параметров указанного класса уравнений. Построены модификации алгоритмов и программ для анализа устойчивости математических моделей кольцевых и линейных нейронных сетей. Впервые указаны области в пространстве параметров указанных моделей, гарантирующие устойчивость независимо от величины запаздывания во взаимодействии нейронов. Получены новые данные об областях устойчивости в пространстве параметров математических моделей кольцевых и линейных нейронных сетей, включая класс сетей с неограниченным количеством нейронов. Поставлен и решен новый вопрос о влиянии разрыва на устойчивость кольцевой нейронной сети. Впервые изучена динамика области устойчивости в процессе разрыва кольцевой нейронной сети.

Практическая значимость. Созданные программные продукты и исследования областей устойчивости позволяют анализировать устойчивость нейронных сетей кольцевой и линейной конфигураций, выявлять диапазоны запаздываний, в которых они приобретают и теряют устойчивость, регулировать коэффициенты моделей нейронных сетей с целью стабилизации их работы.

Апробация работы. Основные результаты, изложенные в диссертации, докладывались на седьмой Всероссийской конференции с международным участием «Математическое моделирование и краевые задачи» (Самара, 2010 г.), второй и четвёртой научных конференциях аспирантов и докторантов (Челябинск, 2010 г. и 2012 г.), Всероссийской конференции «Статистика. Моделирование. Оптимизация» (Челябинск, 2011 г.), ІІ Международной научно-практической конференции студентов и аспирантов «Математика и её приложения в современной науке и практике» (Курск, 2012г.), Всероссийской научно-практической конференции «Физико-математические науки и образование» (Магнитогорск, 2012 г.), на семинаре профессора М. М. Кипниса в Челябинском государственном педагогическом университете.

Личный вклад автора. Все представленные в диссертации результаты получены лично автором. В совместных работах автора с М.М. Кипнисом и В.В. Малыгиной автору

⁸ Cahlon B., Schmidt D. On stability of systems of delay differential equations // Journal of Computational and Applied Mathematics. 2000. Vol. 117 (2). Pp. 137–158.

⁹ Matsunaga H. Exact stability criteria for delay differential and difference equations // Applied Mathematics Letters. 2007. Vol. 20 (2). Pp. 183–188.

¹⁰ Sakata S. Asymptotic stability for a linear system of differential-difference equations // Funkcialaj Equacioj. 1998. Vol. 41. Pp. 435–449.

принадлежат все конкретные результаты, а научному руководителю и В.В. Малыгиной — общий замысел работы, постановка задачи и общее руководство. В совместной работе с А.Д. Хохловым алгоритмы и программы принадлежат автору диссертации, соавтор А. Хохлов осуществлял техническую поддержку работы.

Структура и объём диссертации. Диссертация состоит из введения, трёх глав, списка литературы и четырёх приложений. Общий объём работы 167 страниц. Работа содержит 36 рисунков, список литературы содержит 75 наименований.

Содержание диссертации

Во введении приводится постановка задачи, излагается история исследуемого вопроса, ставятся цели диссертационного исследования, обосновывается актуальность и научная новизна работы. Кроме того, приводятся публикации по теме диссертации, описывается структура работы и ее краткое содержание.

Первая глава посвящена описанию и обоснованию метода конуса устойчивости для диагностирования устойчивости уравнения

$$\dot{x}(t) + Ax(t) + Bx(t - \tau) = 0 \tag{1}$$

с совместно триангулируемыми матрицами A, B. Метод разработан автором диссертации под руководством научного руководителя по замыслу В. Малыгиной. Как обычно, мы называем линейное уравнение устойчивым, если его нулевое решение устойчиво. В этой же главе излагается алгоритм исследования устойчивости уравнения (1) и описывается программа для его реализации.

В разделе 1.1 приведены актуальные на сегодняшний день модели, описывающие взаимодействие нейронов в нейронных сетях с помощью матричных дифференциальных уравнений, обосновано введение запаздывания и показано, что во многих случаях исследование устойчивости различных моделей нейронных сетей сводится к изучению поведения решений уравнения (1). Также в этом разделе приведены примеры нейронных сетей, описываемых уравнением (1), отмечены особенности входящих в уравнение матриц A, B. Элементы A суть интенсивности мгновенных взаимодействий нейронов в сети, а элементы B суть интенсивности взаимодействий, происходящих с запаздыванием.

В этой главе конус устойчивости вводится постепенно. Вначале (раздел 1.2) дается определение устойчивости и вводятся овалы устойчивости для скалярного уравнения вида (1)

$$\dot{x}(t) + ax(t) + bx(t - \tau) = 0, \quad \tau > 0$$
 (2)

с действительным коэффициентом a и комплексным b. Здесь же формулируется и с помощью метода D-разбиений доказывается теорема об устойчивости такого уравнения в терминах овала устойчивости. Затем, в разделе 1.3, дается ключевое определение конуса устойчивости для скалярного уравнения (2) с комплексными коэффициентами a, b, которое будет использоваться также и для матричного уравнения (1).

Определение 1. Конусом устойчивости для уравнений (2), (1) назовём множество точек $M = (u_1, u_2, u_3) \in \mathbb{R}^3$, таких, что

$$\begin{cases} u_1 = -h\cos\omega + \omega\sin\omega, \\ u_2 = h\sin\omega + \omega\cos\omega, \\ u_3 = h, \end{cases}$$
 (3)

где действительные параметры h, ω подчинены ограничениям

$$\begin{cases}
h \geqslant -\frac{\omega}{\operatorname{tg}\omega}, \\
-\pi < \omega < \pi.
\end{cases}$$
(4)

Овалами устойчивости в диссертации называются сечения конуса устойчивости плоскостью $u_3 = h$. В терминах конуса устойчивости формулируются и доказываются теоремы об устойчивости уравнения (2) с действительным коэффициентом a и комплексным b, а затем с двумя комплексными коэффициентами a, b.

В основном разделе 1.4 доказывается теорема о конусе устойчивости для матричного уравнения (1), которая будет теоретической основой для алгоритмов диагностирования устойчивости нейронных сетей и их программных реализаций.

Теорема 1. Пусть $A, B, S \in \mathbb{R}^{m \times m}$ и $S^{-1}AS = A_T$ и $S^{-1}BS = B_T$, где A_T и B_T — нижение треугольные матрицы с элементами соответственно $\lambda_{j\,s}, \mu_{j\,s}$ $(1 \leqslant j, \, s \leqslant m)$. Построим систему точек $M_j = (u_{1j}, u_{2j}, u_{3j}), \ (1 \leqslant j \leqslant m), \ mak, \ umo$

$$u_{1j} = \tau \operatorname{Re}(\mu_{jj} \exp(i\tau \operatorname{Im} \lambda_{jj})),$$

$$u_{2j} = \tau \operatorname{Im}(\mu_{jj} \exp(i\tau \operatorname{Im} \lambda_{jj})),$$

$$u_{3j} = \tau \operatorname{Re} \lambda_{jj}.$$
(5)

Уравнение (1) асимптотически устойчиво тогда и только тогда, когда все точки M_j $(1\leqslant j\leqslant m)$ находятся внутри конуса устойчивости. Если хотя бы одна точка M_j $(1\leqslant j\leqslant m)$ лежит вне конуса устойчивости, то уравнение (1) неустойчиво.

Эта теорема является главным результатом первой главы и дает возможность исследования устойчивости широкого класса уравнений вида (1) с совместно триангулируемыми матрицами произвольного порядка.

В этом же разделе получено необходимое и достаточное условие на собственные числа матриц A, B, обеспечивающее устойчивость основного уравнения (1) при всех значениях запаздывания:

Теорема 2. Пусть $A, B, S \in \mathbb{R}^{m \times m}$ и $S^{-1}AS = A_T$ и $S^{-1}BS = B_T$, где A_T и B_T — нижние треугольные матрицы с элементами соответственно $\lambda_{j\,s}, \mu_{j\,s} \ (1 \leqslant j, \ s \leqslant m)$. Для того, чтобы уравнение (1) было асимптотически устойчивым при любом запаздывании $\tau \geqslant 0$, необходимо и достаточно выполнение условия $(1 \leqslant j \leqslant m)$

$$|\mu_{jj}| < \operatorname{Re} \lambda_{jj}. \tag{6}$$

В разделах 1.3, 1.4 также приведены примеры применения полученных критериев для анализа устойчивости уравнений (2), (1). Примеры снабжены графическим представлением конуса устойчивости и точек M_j , фигурирующих в формулировке основной теоремы 1.

Раздел 1.5 посвящен алгоритму определения значений запаздываний, гарантирующих устойчивость уравнения (1) при фиксированных матрицах A и B, и его программной реализации. Алгоритм основан на методе конусов устойчивости (теорема 1), но при этом он содержит только аналитические выкладки и позволяет избежать геометрических построений при анализе устойчивости рассматриваемого уравнения.

Пусть матрицы A и B приведены к треугольному виду A_T , B_T одним преобразованием. Пусть $\lambda_{j\,j}, \mu_{j\,j}, \ 1\leqslant j\leqslant n$ собственные числа матриц A и B в том порядке, в котором они расположены на диагоналях матриц $A_T, \ B_T$. Для каждого $j, \ 1\leqslant j\leqslant n$ составим множество T_j по следующему алгоритму.

Если для некоторого j выполнено $\operatorname{Re}\lambda_{j\,j}>|\mu_{j\,j}|,$ то $T_j=(0,+\infty).$ В противном случае находим числа

$$\tau_j^m = \frac{\arg\left(\pm iQ - \operatorname{Re}\lambda_{jj}\right) - \arg\mu_{jj} + 2\pi m}{\operatorname{Im}\lambda_{jj} \pm Q}, \quad m \in \mathbb{Z},$$

$$Q = \sqrt{|\mu_{jj}|^2 - (\operatorname{Re}\lambda_{jj})^2}. \quad (7)$$

Из чисел τ_i^m выбираем такие, для которых

$$0 < \tau_j^m \le \pi/Q$$
 и $\operatorname{Re} \lambda_{jj} \geqslant -\frac{Q}{\operatorname{tg}(Q\,\tau_i^m)},$ (8)

и сортируем по возрастанию, исключая повторения. Обозначим $\tau_{1j}, \tau_{2j}, \ldots, \tau_{sj}$ полученные числа. Составим множество T_j следующим образом. Пусть $T_j = (0, \tau_{1j}) \cup (\tau_{2j}, \tau_{3j}) \cup \ldots$ в следующих случаях:

1. $\operatorname{Re} \lambda_{jj} > 0$ и выполнено хотя бы одно условие

а)
$$\arg \mu_{jj} \in (-\pi/2, \pi/2)$$
 или б) $\frac{\operatorname{Re} \lambda_{jj}}{|\operatorname{Re} \mu_{jj}|} > 1.$ (9)

2.

$$\operatorname{Re} \lambda_{jj} < 0, \quad \left| \frac{\operatorname{Re} \lambda_{jj}}{\operatorname{Re} \mu_{jj}} \right| < 1 \quad \text{и} \quad \arg \mu_{jj} \in (-\pi/2, \pi/2).$$
 (10)

В остальных случаях $T_j = (\tau_{1j}, \tau_{2j}) \cup (\tau_{3j}, \tau_{4j}) \cup \dots$

Последним интервалом в T_j может быть (τ_{s-1j}, τ_{sj}) или $(\tau_{sj}, +\infty)$. Если для некоторого j множество $(\tau_{1j}, \tau_{2j}, \dots, \tau_{sj})$ пусто и выполнено (9) или (10), то $T_j = (0, +\infty)$.

Теорема 3. Пусть множества $T_j, 1 \leq j \leq n$ составлены согласно описанному алгоритму. Тогда уравнение (1) асимптотически устойчиво если и только если $\tau \in T = \bigcap_j T_j$.

В разделе 1.6 описана программа «Анализ устойчивости», разработанная в программном пакете МАТLAB 7.11.0 (R2010b). Программа реализует алгоритм, описанный в разделе 1.5. По заданным матрицам A, B программа возвращает объединение интервалов значений запаздывания T, обеспечивающих устойчивость уравнения (1), или пустое множество в случае неустойчивости уравнения при всех значениях запаздывания. Здесь же приводятся скриншоты интерфейса программы (Рис. 1), примеры двух способов введения исходных данных, необходимые пояснения к работе программы.

В разделе 1.7 результаты первой главы сравниваются с известными результатами. Указано, что идейным источником метода конуса устойчивости является давняя работа

Рис. 1. Главное окно программы «Анализ устойчивости» при задании собственных чисел матриц вручную.

3. Рехлицкого¹¹ . Упомянуты работы I. Levitskaya (2006) о диференциальных уравнениях с двумя запаздываниями, а также серия работ Е. Kaslik (2009), М. М. Кірпіs, V. V. Malygina (2011), S. A. Ivanov, М. М. Кірпіs, V. V. Malygina (2011), S. A. Ivanov, М. М. Кірпіs (2012), в которых появлялись овалы и конусы устойчивости для разностных матричных уравнений с применениями к анализу дискретных моделей нейронных сетей. Указано, что А. И. Кирьянен и К. В. Галуновой¹² изучали устойчивость скалярных дифференциальных уравнений с запаздываниями с комплексными коэффициентами. Далее в разделе 1.7 результаты главы 1 сравниваются с работой В. Cahlon, D. Schmidt (см. сноску ⁸), в которой рассматривалась задача об устойчивости класса уравнений вида $\dot{x}(t) = \alpha Ax(t) + (1-\alpha)Ax(t-\tau b), 0 \leqslant \alpha \leqslant 1$ с 2×2 матрицей A. Годом позднее те же авторы¹³ усилили свой результат,

¹¹ Рехлицкий З. И. Об устойчивости решений некоторых линейных дифференциальных уравнений в банаховом пространстве // Изв. АН СССР. 1956. Т. 111. С. 29–32.

 $^{^{12}}$ Кирьянен А. И., Галунова К. В. Устойчивость уравнения $dx/dt = \alpha x(t-h) + \beta x(t)$ с комплексными коэффициентами // Уравнения в частных производных. 1989. С. 65–72.

 $^{^{13}}$ Cahlon B., Schmidt D. Asymptotic stability of linear delay differential equations // Dynam. Systems Appl. 2001. Vol. 10. Pp. 63–87.

рассматривая уравнение $\dot{x}(t) = \alpha Ax(t) + \beta Ax(t-\tau)$ с произвольными действительными α, β , и снова для 2×2 матрицы A. Поскольку матрицы αA и βA с действительными α и β , очевидно, приводятся совместно к треугольному виду, делается заключение, что результаты главы 1 диссертации сильнее результатов этих статей как по размерности рассматриваемых задач, так и по охвату изучаемых уравнений, даже если ограничиться 2×2 матрицами. Обсуждены результаты H. Matsunaga (см. сноску ⁹), давшего критерий устойчивости уравнения $\dot{x}(t) = Ax(t-\tau)$ с 2×2 матрицей A в терминах следа и детерминанта матрицы А. Показано, что эти результаты легко вытекают из результатов диссертации и даже из результатов Рехлицкого 50-летней давности. Мы заключаем, что метод конуса устойчивости применим к значительно более широкому классу уравнений, чем рассматриваемые в работе S. Sakata (см. сноску 10) уравнения вида $\dot{x}(t) = \alpha x(t) + B x(t-\tau)$ с 2×2 матрицей B и действительным α . B этом же разделе обсуждены условия, данные в работе J. Chen, H. Latchman ¹⁴, гарантирующие устойчивость уравнения (1) независимо от запаздывания (delay-independent stability). Условие Чена-Латчмена в терминах теоремы 2 таково: для всех j = 1, 2 ... n верны неравенства $\text{Re } \lambda_{jj} > 0$ и $\max_{s \in \mathbb{R}} |(is - \lambda_{jj})^{-1} \mu_{jj}| < 1$. Мы заключаем, что наше условие (6) по существу совпадает с условием Чена-Латчмана, но проще проверяется и имеет естественное геометрическое объяснение. Далее мы констатируем, что алгоритм и программа разделов 1.5, 1.6 не имеют аналогов в литературе.

Во второй главе решается задача диагностирования устойчивости моделей кольцевых и линейных нейронных сетей с неограниченным количеством нейронов с помощью результатов первой главы диссертации.

Рис. 2. Кольцевая и линейная система нейронов.

В разделе 2.1 вводятся две модели кольцевых нейронных сетей из n нейронов, являющиеся основным объектом изучения второй главы $(1 \le j \le n)$:

$$\dot{x}_j(t) + x_j(t) + a \, x_{j-1}(t) + b \, x_{j+1}(t-\tau) = 0 \qquad (j \bmod n), \tag{11}$$

$$\dot{x}_j(t) + x_j(t) + a \, x_{j-1}(t-\tau) + b \, x_{j+1}(t-\tau) = 0 \qquad (j \bmod n). \tag{12}$$

В уравнениях (11), (12) n количество нейронов в кольце, действительные коэффициенты a и b характеризуют интенсивности взаимодействия нейрона с правым и левым

 $^{^{14}}$ Chen J., Latchman H. Frequency sweeping tests for stability independent of delay // IEEE Trans. Autom. Control. 1995. Vol. 40 (9). Pp. 1640–1645.

соседними нейронами соответственно, τ запаздывание во взаимодействии нейрона с соседними нейронами. Уравнения (11), (12) вместе с вышеуказанными интерпретациями параметров a,b,τ,n мы называем моделями кольцевой сети, имея в виду, что они получаются в результате линеаризации известных нелинейных моделей Хопфилда-Маркуса-Вестервельта 15 16 или Коэна-Гроссберга 17 или Чуа-Янга-Роска 18 19 вокруг некоторого решения. Уравнение (11) соответствует малым запаздываниям взаимодействия нейронов с правыми соседними нейронами (сети с односторонним запаздыванием), а (12) — близким запаздываниям взаимодействия нейронов с правыми и левыми соседями (сети с двусторонним запаздыванием). Данные уравнения принадлежат классу систем вида (1) и могут быть исследованы с помощью разработанных автором методов. В этом же разделе описана модификация алгоритма диагностирования устойчивости уравнений вида (1) для случая специфических матриц, входящих в модели кольцевых сетей, и неограниченного количества нейронов в сети. Суть изменений заключается в явном нахождении собственных чисел входящих в уравнение матриц и введении вместо дискретной системы точек M_j (5) непрерывной замкнутой кривой $M'(t) = (u'_1(t), u'_2(t), u'_3(t))$ для уравнения (11):

$$u_{1}'(t) + iu_{2}'(t) = \tau b \exp(i(-t + a\tau\sin t)), \quad u_{3}'(t) = \tau(1 + a\cos t), \quad 0 \leqslant t \leqslant 2\pi.$$
 (13)

и $M^{''}(t)=(u_1^{''}(t),u_2^{''}(t),u_3^{''}(t))$ для уравнения (12):

$$u_1''(t) + iu_2''(t) = \tau(a \exp(it) + b \exp(-it)), \quad u_3''(t) = \tau, \quad 0 \leqslant t \leqslant 2\pi.$$
 (14)

Для рассмотренных систем критерий устойчивости принимает следующий вид. Если все точки кривой (13) лежат внутри конуса устойчивости, то уравнение (11) устойчиво при любом n, а если хотя бы одна точка кривой (13) лежат вне конуса устойчивости, то уравнение (11) неустойчиво при всех достаточно больших значениях n. Аналогично изучается поведение системы (12). Идея критерия проиллюстрирована рисунком 3.

В разделе 2.2 описан программный продукт «Устойчивость нейронных сетей», предназначенный для исследования устойчивости систем (11), (12) с неограниченным количеством нейронов. Продукт разработан автором на основе модификации алгоритма, описанной в разделе 2.1, и позволяет быстро по ввёденным коэффициентам диагностировать устойчивость конкретной модели нейронной сети и получить геометрическую интерпретацию результатов. В этом разделе представлены скриншоты интерфейса программы с

¹⁵ Hopfield J. J. Neuron with graded response have collective computational properties like those of two-stage neurons // Proc. Nat. Acad. Sci. USA. 1984. Vol. 81. Pp. 3088–3092.

 $^{^{16}}$ Marcus C. M., Westervelt R. M. Stability of analog neural networks with delay // Phys. Rev. A. 1989. Vol. 39. Pp. 347–359.

 $^{^{17}}$ Cohen M., Grossberg S. Absolute stability and global formation and parallel memory storage by competitive neural networks // IEEE Trans.on Systems, Man, and Cybernetics, SMC. 1983. Vol. 13(5). Pp. 815–825.

 $^{^{18}}$ Chua L., Yang L. Cellular neural networks: Theory // IEEE Trans. Circuits and Systems I. 1988. Vol. 35. P. 1257–1272.

¹⁹ Chua L., Roska T. Cellular neural networks and visual computing, Foundation and applications. Cambridge University Press, 2004.

Рис. 3. Конус устойчивости и две кривые (13). Одна кривая для $\tau = 1.5$, a = -1.4, b = 0.7, находится частично вне конуса устойчивости, следовательно, система (11) неустойчива при достаточно больших n. Вторая кривая для $\tau = 2$, a = 0.5, b = -0.2, находится полностью внутри конуса устойчивости, следовательно, система (11) устойчива при любом n.

примерами ее работы, необходимые пояснения. В разделе 2.3 изложены результаты теоретического и численного исследования границ областей устойчивости уравнений (11), (12) в плоскости параметров (a,b) в случае неограниченного количества нейронов.

Теорема 4. Если |a+b| > 1, то системы (11) и (12) неустойчивы при любом $\tau > 0$, если п достаточно велико.

При помощи программы «Устойчивость нейронных сетей» для различных значений запаздывания построены границы областей устойчивости D_{τ} уравнений (11), (12) в тех частях плоскости (a,b), которые не охватываются теоремой 4 и ранее известным фактом об устойчивости исследуемых моделей при |a|+|b|<1 для любого n и любого $\tau\geqslant 0$. Полученные результаты для системы (11) отражены на рисунке 4. Аналогичные графические иллюстрации даны для системы (12). Для обеих систем (11) и (12) важна прямая a=-b в плоскости (a,b), в окрестности которой сконцентрированы точки устойчивости систем. Поэтому естественно вводятся следующие две системы уравнений:

$$\dot{x}_j(t) + x_j(t) + a\left(x_{j-1}(t) - x_{j+1}(t-\tau)\right) = 0 \qquad (j \bmod n), \tag{15}$$

$$\dot{x}_j(t) + x_j(t) + a\left(x_{j-1}(t-\tau) - x_{j+1}(t-\tau)\right) = 0 \qquad (j \bmod n).$$
(16)

Определение 2. Границей устойчивости системы (15) для больших n назовём такое число $a_1(\tau) \in \mathbb{R}$, что если $|a| < a_1(\tau)$, то (15) устойчива при любом n, а если $|a| > a_1(\tau)$,

Рис. 4. Области устойчивости для системы (11) с неограниченным числом нейронов.

то (15) неустойчива при всех достаточно больших n. Аналогично определим $a_2(\tau)$ как границу устойчивости (16) для больших n.

Очевидно, $\lim_{\tau\to\infty} a_1(\tau) = \lim_{\tau\to\infty} a_2(\tau) = 1/2$. Не столь очевидно поведение систем (15), (16) при $\tau\to 0$, которое рассматривается в следующей теореме.

Теорема 5.

$$\lim_{\tau \to 0} a_1(\tau) \sqrt{2\tau} = \lim_{\tau \to 0} a_2(\tau) 2\sqrt{\tau} = 1. \tag{17}$$

В разделе 2.4 рассматривается вопрос устойчивости моделей кольцевых нейронных сетей с неединичным коэффициентом демпфирования на примере аналога системы (11) с $\gamma \in \mathbb{R}$:

$$\dot{x}_j(t) + \gamma \, x_j(t) + a \, x_{j-1}(t) + b \, x_{j+1}(t-\tau) = 0 \qquad (j \bmod n). \tag{18}$$

Указаны замена переменных, сводящая это уравнение к уравнению вида (11), и способы диагностирования устойчивости уравнения (18) при ограниченном и неограниченном количестве нейронов. Приведены границы областей устойчивости уравнений (18), (11) в плоскости параметров (a,b), структура которых не содержит принципиальных различий. Данный раздел призван продемонстрировать целесообразность рассмотрения именно уравнения (11) с единичным коэффициентом при $x_j(t)$ и возможность применения полученных для него результатов к некоторым более общим уравнениям. Раздел 2.5 посвящен устойчивости моделей нейронных сетей линейной конфигурации, взаимодействие в которых описывается уравнением (1) с матрицами специального вида. Основным объектом изучения данного раздела является уравнение

$$\dot{x}(t) + I x(t) + D x(t - \tau) = 0, \tag{19}$$

где I есть единичная $n \times n$ матрица, а $n \times n$ матрица D имеет вид

$$D = \begin{pmatrix} 0 & b & 0 & \dots & 0 & 0 \\ a & 0 & b & \dots & 0 & 0 \\ 0 & a & 0 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 0 & b \\ 0 & 0 & 0 & \dots & a & 0 \end{pmatrix}.$$

$$(20)$$

Уравнение (19),(20) моделирует линейную нейронную сеть с двусторонним запаздыванием, полученную из кольцевой (12) посредством разрыва одной из связей между нейронами. Следующий результат дает возможность отвечать на вопрос об устойчивости системы (19), (20) при любых a, b, если число нейронов n достаточно велико. Пусть функция $F(\tau)$ от запаздывания $\tau \in (0, \infty)$ определяется следующим образом:

$$F(\tau) = \frac{1}{4\sin^2 \omega(\tau)},\tag{21}$$

где $\omega(\tau)$ есть наименьший положительный корень уравнения

$$\tau = \omega \operatorname{tg} \omega. \tag{22}$$

Тогда справедлива теорема.

Теорема 6. 1. Если $0 \le ab < \frac{1}{4}$, то система (19), (20) асимптотически устойчива при любом n и любом $\tau \ge 0$.

- 2. Если $ab > \frac{1}{4}$, то система (19), (20) неустойчива при любом $\tau \geqslant 0$, если п достаточно велико.
- 3. Если ab < 0 и $|ab| < F(\tau)$, то система (19), (20) асимптотически устойчива при любом n.
- 4. Если ab < 0 и $|ab| > F(\tau)$, то система (19), (20) неустойчива, если n достаточно велико.

В разделе имеется рисунок, на котором в плоскости (a,b) изображены границы областей устойчивости системы (19), (20), полученные с помощью теоремы (6). Следующая теорема сравнивает области устойчивости модели кольцевой сети нейронов (12) с достаточно большим количеством нейронов и образованной при ее разрыве нейронной сети линейной конфигурации (19), (20). Предварительно заметим, что система (12) в матричном виде имеет вид

$$\dot{x}(t) + I x(t) + B x(t - \tau) = 0, \quad t > 0, \tag{23}$$

где циркулянтная матрица B такова:

$$B = \begin{pmatrix} 0 & b & 0 & \dots & 0 & a \\ a & 0 & b & \dots & 0 & 0 \\ 0 & a & 0 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 0 & b \\ b & 0 & 0 & \dots & a & 0 \end{pmatrix}.$$

$$(24)$$

Теорема 7. Для любых действительных значений параметров $a, b, \tau > 0$ найдется такое n_0 , что для всех $n > n_0$ верно утверждение: либо система (23), (24) для кольца нейронов неустойчива, либо система (19), (20) для сети с линейной конфигурацией нейронов асимптотически устойчива.

Из Теоремы 7 следует, что устойчивость кольца с большим количеством нейронов влечет устойчивость линейной конфигурации, полученной при его разрыве, если параметры систем не меняются и количество нейронов достаточно велико. Теорема 7 дает твердые основания к заключению, что разрыв кольца нейронов расширяет область устойчивости сети при большом количестве нейронов в сети. Раздел 2.6 содержит доказательства теорем второй главы. В разделе 2.7 приведено сравнение результатов данной главы с известными результатами. Отмечено, что, насколько известно автору, модели кольцевых нейронных сетей с неопределенно большим количеством нейронов не рассматривались в литературе до работы автора диссертации. Показано, что из работы Y. Yuan, S. Campbell (см. сноску ⁷) и других работ S. Campbell с соавторами невозможно извлечь информацию об устойчивости кольцевых сетей при достаточно большом количестве нейронов в сети. Мы констатируем, что предпринятое во второй главе изучение устойчивости моделей нейронных сетей линейной конфигурации не встречается в литературе (кроме работ автора диссертации), хотя вообще публикации по линейным нейронным сетям имеются. Установлено, что область устойчивости линейной конфигурации нейронов, независимой от запаздывания, очерченная пунктами 1, 3 Теоремы 6, шире области, гарантированной результатом Мори с соавторами²⁰. Указано, что алгоритмы и программы для анализа устойчивости моделей кольцевых и линейных сетей с неограниченным количеством нейронов в известной автору литературе отсутствуют.

Третья глава посвящена построению границ областей устойчивости моделей кольцевых и линейных нейронных сетей с ограниченным количеством нейронов в плоскости параметров (a,b). Основными объектами изучения данной главы служат уравнения кольцевых нейронных сетей (11) и (12) и линейных нейронных сетей (19), (20). Раздел 3.1 посвящен описанию алгоритма и программы построения границ областей устойчивости исследуемых уравнений. Подраздел 3.1.1 содержит общую схему построения замкнутой кривой,

²⁰ Mori T., Fukuma N., Kuwahara M. Simple stability criteria for single and composite linear systems with time delay // Int. J. Control. 1981. Vol. 34. Pp. 1175–1184.

состоящей из равномерного массива точек и соответствующей границе области устойчивости кольцевых нейронных сетей (11) и (12). Для осуществления этой схемы требуется проверять большое количество точек плоскости (a, b) на устойчивость при фиксированном значении запаздывания. В подразделе 3.1.2 указан новый алгоритм, предназначенный для этой цели, а также подробно описана работа реализующей его функции straightStabAnalizer(код функции помещен в приложение В). Алгоритм решает частную задачу определения устойчивости системы при данных a, b, τ в отличие от более общей задачи определения всех значений запаздывания, гарантирующих устойчивость исследуемого уравнения при фиксированных коэффициентах, решенной в разделах 1.5 и 1.6. В связи с этим данный алгоритм выигрывает во времени и хорошо подходит для многократного применения в общей схеме построения границы области устойчивости, изложенной в подразделе 3.1.1. В подразделе 3.1.3 указаны функциональное назначение и область применения программы «Построение областей устойчивости круговых нейронных сетей», реализующей алгоритмы подразделов 3.1.1, 3.1.2. Примеры использования программы, скриншоты ее работы приведены в подразделе 3.1.4. В разделе 3.2 представлены результаты построения границ областей устойчивости модели кольцевой нейронной сети (11), полученные с помощью данной программы. Приведенные серии графиков соответствуют различным значениям запаздывания и различному количеству нейронов в сети. На графиках отмечена граница области устойчивости, гарантированной для любого n, что позволяет проследить асимптотику найденных кривых с увеличением количества нейронов в сети. Одна из серий графиков представлена на рисунке 5.

В разделе 3.3 аналогичные построения проведены для модели (12). В разделе 3.4 дается полное описание области устойчивости для модели (19), (20) линейной системы из n нейронов. Эти области, естественно, зависят от n, в то время как область устойчивости модели линейной сети с неограниченным количеством нейронов в разделе 2.5 не зависела от величины n. Определим функцию $F1(\tau, n)$ (ср. с формулой (21)) от запаздывания $\tau \in (0, \infty)$ и количества нейронов в сети $n \in \mathbb{N}$:

$$F1(\tau, n) = \frac{1}{4\sin^2 \omega(\tau) \cos^2 \frac{\pi}{n+1}},$$
 (25)

где $\omega(\tau)$ есть наименьший положительный корень уравнения (22). Следующая теорема (ср. с Теоремой 6) дает полное описание области устойчивости модели линейной конфигурации n нейронов.

Теорема 8. 1. Если $0 \leqslant ab < \frac{1}{4\cos^2\frac{\pi}{n+1}}$, то система (19), (20) асимптотически устойчива при любом $\tau \geqslant 0$.

- 2. Если $ab > \frac{1}{4\cos^2\frac{\pi}{n+1}}$, то система (19), (20) неустойчива при любом $\tau \geqslant 0$.
- 3. Если ab < 0 и $|ab|^n < F1(\tau,n)$, то система (19), (20) асимптотически устойчива.
- 4. Если ab < 0 и $|ab| > F1(\tau, n)$, то система (19), (20) неустойчива.

Теорему 8 иллюстрирует рисунок 6. В этом же разделе сравниваются области устойчивости моделей кольцевой и линейной нейронной сети с ограниченным количеством нейронов. В разделе 2.5 было показано, что разрыв кольцевой сети может только улучшить

Рис. 5. Границы областей устойчивости для системы (11) для $\tau=0.5$ и значений n от 3 до 8 показаны кружками. Сплошная линия — граница области устойчивости, гарантированной для любого n.

ее устойчивость, если количество нейронов в сети достаточно велико (Теорема 6). Наши численные исследования с помощью программ показывают, что это же явление, за некоторыми исключениями, имеет место и при небольшом количестве нейронов (рис. 7).

Область тех значений параметров (a,b), при которых кольцевая система нейронов устойчива, а линейная с теми же параметрами неустойчива, мы называем парадоксальной областью при данных τ , n. Таким образом, парадоксальная область это область значений параметров, в которых нарушается принцип «разрыв кольца благоприятен для устойчивости». На рисунке 7 показано, что при $\tau=0.5$ парадоксальная область заметна в модели сети с количеством нейронов n=3, отсутствует при n=4,6 и весьма мала при n=5,7. В результате численных экспериментов выяснилось, что в моделях сетей с n>7 парадоксальная область либо отсутствует, либо пренебрежимо мала.

В разделе 3.5 показана динамика области устойчивости модели кольцевой нейронной сети в процессе постепенного разрыва одной из связей в кольце и превращения сети в линейную. Рассматривается модель кольцевой сети с двусторонним запаздыванием из шести нейронов. Интенсивности взаимодействия между всеми нейронами, кроме первого и

Рис. 6. Границы областей устойчивости для линейной конфигурации нейронов (система (19), (20)). На рисунке слева: запаздывание фиксировано, количество нейронов меняется. Справа: количество нейронов фиксировано, запаздывание меняется.

шестого, равны a и b (как в модели (12)), а интенсивности воздействия шестого нейрона на первый и первого нейрона на шестой равны соответственно ac и bc, где c – некоторый неотрицательный параметр. Тогда взаимодействие нейронов в описанной модели задается уравнением (1) с матрицами

$$A = I, \quad B = \begin{pmatrix} 0 & b & 0 & 0 & 0 & ac \\ a & 0 & b & 0 & 0 & 0 \\ 0 & a & 0 & b & 0 & 0 \\ 0 & 0 & a & 0 & b & 0 \\ 0 & 0 & 0 & a & 0 & b \\ bc & 0 & 0 & 0 & a & 0 \end{pmatrix}. \tag{26}$$

При c=1 система (1), (26) описывает кольцевую сеть (12) с двусторонним запаздыванием. С изменением c от единицы до нуля интенсивность взаимодействия между первым и шестым нейронами в системе (1), (26) постепенно ослабевает, и при c=0 кольцо нейронов размыкается. На рисунке 8 построены области устойчивости и неустойчивости рассматриваемой сети при различных значениях параметра c. С уменьшением c границы областей устойчивости вытягиваются в четырех концах и при полном разрыве связи переходят в гиперболы с асимптотами a=0 и b=0 (см. последний график в серии рисунков 8). Как показывает рис. 8, ослабление одной связи между нейронами в кольцевой сети из 6 нейронов расширяет область устойчивости всей системы.

В разделе 3.6 результаты главы 3 сравниваются с известными в литературе. Констатируется, что в большинстве работ по устойчивости кольцевых нейронных сетей рассматривается задача об устойчивости сети из двух, трёх или четырёх нейронов. Указаны преимущества рассматриваемых в диссертации моделей кольца нейронов в сравнении с

Рис. 7. Границы областей устойчивости для кольцевой (система (12), границы очерчены кружоч-ками) и линейной (система (19), (20), сплошные линии) конфигураций нейронов, $\tau = 0.5$. Для n = 5 дополнительно парадоксальная область показана в увеличении.

моделью работы Юан и Кемпбелл (см. сноску ⁷), в которой рассматривались кольцевые системы с произвольным количеством нейронов. Отмечено, что проблема устойчивости линейных конфигураций нейронов не была исследована никем. Предпринятое в главе 3 сравнение областей устойчивости кольцевой и линейной конфигураций с сопоставимыми параметрами в литературе отсутствует. Указано, что алгоритмы и программы для построения области устойчивости нейронных сетей, описанные в главе 3, не имеют аналогов в известной автору литературе.

В заключении суммируются все полученные в диссертации результаты.

В приложениях приводятся исходные коды программных продуктов, разработанных в программном пакете MATLAB 7.11.0 (R2010b) и описанных в разделах 1.6, 2.2 и 3.1 диссертации. Код программы «Анализ устойчивости» находится в приложении А, код программы «Устойчивость нейронных сетей» — в приложении Б, код программы «Построение областей устойчивости круговых нейронных сетей» — в приложении В. Во избежание повторений те функции, которые используются в работе всех программ (функция построения конуса устойчивости, функция нахождения значений запаздывания, обеспечивающих

Рис. 8. Динамика области устойчивости в процессе разрыва нейронного кольца. Границы областей устойчивости для системы (1), (26) для $\tau = 0.1$ и c = 1, c = 0.5, c = 0.1, c = 0.01, c = 0.001, c = 0.001

устойчивость исследуемого уравнения при фиксированных коэффициентах, и др.), вынесены в отдельное приложение Γ .

Основные результаты диссертационной работы

На защиту выносятся следующие новые научные результаты.

Разработан метод конуса устойчивости для анализа устойчивости широкого класса матричных дифференциальных уравнений с запаздываниями.

Построены алгоритмы и программы для анализа устойчивости математических моделей нейронных сетей кольцевой и линейной конфигурации с неограниченным количеством нейронов.

Постановлена и решена задача об области устойчивости математической модели линейной конфигурации нейронов с неограниченным количеством нейронов.

Доказано, что область устойчивости кольца с большим количеством нейронов расширяется в случае его разрыва.

Построены алгоритмы и программы для анализа устойчивости математических моделей нейронных сетей кольцевой и линейной конфигурации с ограниченным количеством нейронов.

Обнаружены «парадоксальные» области в пространстве параметров некоторых моделей кольцевых сетей с ограниченным количеством нейронов, в которых нарушается принцип «разрыв кольца увеличивает область устойчивости».

Численно промоделирована динамика областей устойчивости в процессе постепенного разрыва кольцевой нейронной сети.

Работы автора по теме диссертации

Статьи в журналах, рекомендованных ВАК

- 1. Khokhlova T., Kipnis M., Malygina V. The stability cone for a delay differential matrix equation // Applied Mathematics Letters. 2011. Vol. 24. Pp. 742–745.
- 2. Khokhlova T., Kipnis M. Numerical and qualitative stability analysis of ring and linear neural networks with a large number of neurons // International J. of Pure and Applied Mathematics. 2012. Vol. 76 (3). Pp. 403–419.
- 3. Хохлова Т. Н. Устойчивость полносвязной и звездной структур нейронных сетей // Вестник ЮУрГУ. Математика. Механика. Физика. 2012. Т. ? С. ??-??

Другие публикации

- 4. Хохлова Т. Н. Устойчивость нейронных сетей Хопфилда с запаздыванием // Научный поиск: материалы второй научной конференции аспирантов и докторантов. Естественные науки. Челябинск: Изд. центр ЮУрГУ, 2010. С. 72–75.
- 5. Хохлова Т. Н. Анализ устойчивости // Хроники ОФЭРНиО. 2011. Т. 2 (21). С. 22–23. Номер свидетельства о регистрации 16759 от 28.02.2011.
 URL: http://ofernio.ru/portal/newspaper/ofernio/2011/2.doc. 15.
- 6. Хохлова Т. Н. Устойчивость нейронных сетей // Хроники ОФЭРНиО. 2011. Т. 7 (26).
 С. 35–36. Номер свидетельства о регистрации 17346 от 01.08.2011.
 URL: http://ofernio.ru/portal/newspaper/ofernio/2011/7.doc.
- 7. Хохлова Т. Н. Построение областей устойчивости круговых нейронных сетей // Хроники ОФЭРНиО. 2012. Т. 1 (32). С. 4–5. Номер свидетельства о регистрации 17779 от 10.01.2012. URL: http://ofernio.ru/portal/newspaper/ofernio/2012/1.doc.
- 8. Хохлова Т. Н. Устойчивость нейронных сетей Хопфилда с запаздыванием // Труды седьмой Всероссийской научной конференции с международным участием «Математическое моделирование и краевые задачи». Самара: 2010. С. 277–279.
- 9. Хохлова Т. Н. Устойчивость нейронных сетей стандартных конфигураций // Статистика. Моделирование. Оптимизация . Сборник трудов Всероссийской конференции. Челябинск: 2011. С. 331–335.

- 10. Хохлова Т. Н. Устойчивость двухслойного соединения нейронов с запаздыванием // II Международная научно-практическая конференция студентов и аспирантов «Математика и её приложения в современной науке и практике». Курск: 2012. С. 191–194.
- 11. Хохлова Т. Н., Хохлов А. Д. Алгоритм и программа для диагностирования устойчивости больших нейронных сетей // Статистика. Моделирование. Оптимизация. Сб. трудов Всероссийской конференции. Челябинск: 2011. С. 328–331.
- 12. Хохлова Т. Н. Динамика области устойчивости в процессе разрыва кольцевой сети нейронов // Вестник МАГУ. Т. ?? 2012. С. ??—??.