Veryl で作る RISC-V CPU

— 基本編 —

[著] kanataso

技術書典 11 (2024 年秋) 新刊 2024 年 11 月 2 日 ver 1.0

1

■免責

本書は情報の提供のみを目的としています。

本書の内容を実行・適用・運用したことで何が起きようとも、それは実行・適用・運用した人自身の責任であり、著者や関係者はいかなる責任も負いません。

■商標

本書に登場するシステム名や製品名は、関係各社の商標または登録商標です。 また本書では、 $^{\text{\tiny TM}}$ 、 (\mathbf{R}) 、 (\mathbf{C}) などのマークは省略しています。

まえがき / はじめに

本書を手に取っていただき、ありがとうございます。

本書は、OS を実行できる程度の機能を持った RISC-V の CPU を、新しめのハードウェア記述言語である Veryl で記述する方法について解説した本です。本書は無料で、pdf 版は https://github.com/nananapo/veryl-riscv-book で入手することができます。

本書の対象読者

本書はコンピュータアーキテクチャに興味があり、何らかのプログラミング言語を習得している 人を対象としています。

前提とする知識

未定

問い合わせ先

本書に関する質問やお問い合わせは、以下のリポジトリに issue を立てて行ってください。

• URL: https://github.com/nananapo/veryl-riscv-book/issues

斜鸫

本書は XXXX 氏と XXXX 氏にレビューしていただきました。この場を借りて感謝します。ありがとうございました。

凡例

本書では、プログラムコードを次のように表示します。太字は強調を表します。

print("Hello, world!\n"); ←太字は強調

プログラムコードの差分を表示する場合は、追加されたコードを太字で、削除されたコードを取り消し線で表します。

print("Hello, world!\n"); ←取り消し線は削除したコード print("Hello, "+name+"!\n"); ←太字は追加したコード

長い行が右端で折り返されると、折り返されたことを表す小さな記号がつきます。

123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_

ターミナル画面は、次のように表示します。行頭の「 \$ 」はプロンプトを表し、ユーザが入力するコマンドには薄い下線を引いています。

\$ echo Hello ←行頭の「**\$**」はプロンプト、それ以降がユーザ入力

本文に対する補足情報や注意・警告は、次のようなノートや囲み枠で表示します。

•••••

ノートタイトル

タイトル

本文に対する補足情報です。

タイトル

本文に対する注意・警告です。

Introduction

TODO 大幅に書き換える

こんにちは! あなたは CPU を作成したことがありますか? 作成したことがあってもなくても大歓迎、この本は CPU 自作の面白さを世に広めるために執筆されました。実装を始める前に、まずは RISC-V や使用する言語、本書の構成について簡単に解説します。RISC-V や Veryl のことを知っているという方は、本書の構成だけ読んでいただければ OK です。それでは始めましょう。

RISC-V

RISC-V はカリフォルニア大学バークレー校で開発された RISC の ISA(命令セットアーキテクチャ)です。ISA としての歴史はまだ浅く、仕様書の初版は 2011 年に公開されました。それにも関わらず、RISC-V は仕様がオープンでカスタマイズ可能であるという特徴もあって、研究目的で利用されたり既に何種類もマイコンが市販されているなど、着実に広まっていっています。

インターネット上には多くの RISC-V の実装が公開されています。例として、rocket-chip(Chisel による実装)、Shakti(Bluespec SV による実装)、rsd(SystemVerilog による実装) が挙げられます。これらを参考にして実装するのもいいと思います。

本書では、RISC-V のバージョン riscv-isa-release-87edab7-2024-05-04 を利用します。RISC-V の最新の仕様については、riscv/riscv-isa-manual (https://github.com/riscv/riscv-isa-manual/) で確認することができます。

RISC-V には基本整数命令セットとして RV32I, RV64I, RV32E, RV64E が定義されています。 RV の後ろにつく数字はレジスタの長さ (XLEN) が何ビットかです。数字の後ろにつく文字が I の場合、XLEN ビットのレジスタが 32 個存在します。E の場合はレジスタの数が 16 個になります。

基本整数命令セットには最低限の命令しか定義されていません。その代わり、RISC-V ではかけ 算や割り算,不可分操作, CSR などの追加の命令や機能が拡張として定義されています。CPU が 何を実装しているかを示す表現に ISA String というものがあり、例えばかけ算と割り算,不可分操 作ができる RV32I の CPU は RV32IMA と表現されます。

本書では、まず RV32I の CPU を作成し、これを RV64IMACFD_Zicond_Zicsr_Zifencei に進化させることを目標に実装を進めます。

使用する言語

本書では、CPU の実装に Veryl というハードウェア記述言語を使用します。Veryl は SystemVerilog の構文を書きやすくしたような言語で、Veryl のプログラムは SystemVerilog に変換することができます。構文や機能はほとんど SystemVerilog と変わらないため、SystemVerilog が分かる人は殆どノータイムで Veryl を書けるようになると思います。Veryl の詳細については、「2.1 あああ」(p.3) で解説します。なお、SystemVerilog の書き方については本書では解説しません。

Introduction 本書の構成

他にはシミュレーションやテストのために C++, Python を利用します。プログラムがどのような意味かについては解説しますが、SystemVerilog と同じように基本的な書き方については解説しません。

本書の構成

本書では、単純な RISC-V のパイプライン処理の CPU を高速化, 高機能化するために実装を進めていきます。まず OS を実行できる程度に CPU を高機能化したら、高速にアプリケーションを実行できるように CPU を高速化します。そのため、本書は大きく分けて高機能化編と高速化編の2 つで構成されています。

高機能化編では、CPU で xv6 と Linux を実行できるようにします。OS を実行するために、かけ算, 不可分操作, 圧縮命令, 例外, 割り込み, ページングなどの機能を実装します (表 1)。

章	実装する機能
あ	あ
あ	あ
あ	あ
あ	あ
あ	あ
あ	あ

▼表 1: 実装する機能: 高機能化編

高速化編では、CPU に様々な高速化手法を取り入れます。具体的には、分岐予測, TLB, キャッシュ, マルチコア化, アウトオブオーダー実行などです (表 2)。

▼ 表 2.	宝装す	る機能	高速化編

章	実装する機能
あ	あ
あ	あ
あ	あ
あ	あ
あ	あ
あ	あ
あ	あ
あ	あ

本書では、筆者が作成したパイプライン処理の RV32I の参考実装 (bluecore) に機能を追加し、テストを記述し実行するという方法で解説を行っています。テストはシミュレーションと実機 (FPGA) で行います。本書で使用している FPGA は、Gowin 社の TangMega 138K というボードです。これは 3 万円程度で AliExpress で購入することができます。ただし、実機がなくても実

Introduction 本書の構成

装を進めることができるので所有していなくても構いません。

目次

まえがき	・/ はじめに	İ
Introdu	ction	iii
RISC-	·V	iii
使用す	·る言語	iii
本書の	構成	iv
第Ⅰ部	基本編	1
第1章	環境構築	2
1.1	Veryl	2
1.2	Verilator	2
1.3	riscv-gnu-toolchain	2
第2章	ハードウェア記述言語 Veryl	3
2.1	あああ	3
第3章	RV32I の実装	4
3.1	CPU は何をやっているのか?	4
3.2	プロジェクトの作成	5
3.3	定数の定義	6
3.4	メモリ	7
	3.4.1 メモリのインターフェースの定義	7
	3.4.2 メモリの実装	8
3.5	top モジュールの作成	10
3.6	命令フェッチ	11
	3.6.1 命令フェッチの実装	11
	3.6.2 命令フェッチのテスト	12
	3.6.3 フェッチした命令を FIFO に格納する	17
3.7	命令のデコードと即値の生成	
	3.7.1 デコード用の定数、構造体の定義	
3.8	レジスタの定義と読み込み...................................	
3.9	ALU	25
3.10	ロード、ストア命令	25

9

	3.10.1 LW, SW 命令	5
	3.10.2 LH[U], LB[U], SH, SB 命令	6
3.11	レジスタに値を書き込む	6
	3.11.1 ライトバックの実装	6
		6
3.12	分岐, ジャンプ	6
	,	6
	3.12.2 分岐命令	7
3.13	riscv-tests でテストする	7
		7
		7
	3.13.3 テストの実行	8
第4章	RV64I の実装 2	9
4.1	メモリの幅を広げる 2	9
4.2	LW, LWU, LD 命令の実装	0
4.3	SD 命令の実装	0
4.4	LUI, AUIPC 命令の実装	0
4.5	ADDW, ADDIW, SUBW 命令の実装 3	0
4.6	シフト命令の実装 3	0
4.7	riscv-tests	0
第Ⅱ部	基本的な拡張とトラップの実装 3	1
第5章	M 拡張の実装 3	2
5.1	MUL[W] 命令	2
5.2	MULH 命令	2
5.3	MULHU 命令	2
5.4	MULHSU 命令	2
5.5	DIV[W] 命令	
5.6	DIVU[W] 命令	
5.7	REM[W] 命令	
5.8	REMU[W] 命令	
第6章	例外の実装 3	
6.1	例外とは何か? 3	
6.2	illegal instruction	4
6.3	メモリのアドレスのやつ	4

第7章	A拡張の実装	35
7.1	概要	35
7.2	AMO系	35
7.3	LR/SC	35
7.4	例外	35
第8章	C拡張の実装	36
8.1	概要	36
8.2	実装方針	36
8.3	圧縮命令の変換	36
第9章	MMIO の実装	37
9.1	概要	37
9.2	実装方針	37
第 10 章	割り込みの実装	38
10.1	概要	38
10.2	UART RX	38
10.3	タイマ割り込み	38
第Ⅲ部	privilege mode の実装	39
第 11 章	M-mode の実装	40
第 12 章	S-mode の実装	41
第 13 章	ページングの実装	42
13.1	ページングとは何か	42
13.2	PTW の実装	42
13.3	Sv32	42
13.4	Sv39	42
13.5	Sv48	42
13.6	Sv54	42
筆 IV 部	OS を動かす	43

1

第 14 章	virtio の実装	44
第 15 章	xv6 の実行	45
あとがき	/ おわりに	46

第Ⅰ部

基本編

第1章

環境構築

1.1 Veryl

rustup cargo vscode の拡張

Veryl には、verylup という toolchain が用意されており、これを利用することで veryl をインストールすることができます。

▼ リスト 1.1: verylup のインストール

```
$ cargo install verylup ← verylupのインストール
$ verylup setup ← verylupのセットアップ
[INFO ] downloading toolchain: latest
[INFO ] installing toolchain: latest
[INFO ] creating hardlink: veryl
[INFO ] creating hardlink: veryl-ls
```

▼ リスト 1.2: veryl がインストールされているかの確認

```
$ veryl --version
veryl 0.12.0
```

1.2 Verilator

インストールするだけ

1.3 riscv-gnu-toolchain

clone

第2章 ハードウェア記述言語 Veryl

2.1 あああ

あああ パッケージパラメータ使い方

第3章

RV32I の実装

本章では、RISC-V の基本整数命令セットである RV32I を実装します。基本整数命令という名前の通り、整数の足し引きやビット演算、ジャンプ、分岐命令などの最小限の命令しか実装されていません。また、32 ビット幅の汎用レジスタが 32 個定義されています。ただし、0 番目のレジスタの値は常に 0 です。RISC-V は基本整数命令セットに新しい命令を拡張として実装します。複雑な機能を持つ CPU を実装する前に、まずは最小の機能を持つ CPU を実装しましょう。

3.1 CPU は何をやっているのか?

上に書かれている文章の意味が分からなくても大丈夫。詳しく説明します。

CPU を実装するには何が必要でしょうか? まずは CPU がどのような動作をするかについて考えてみます。一般的に、汎用のプログラムを実行する CPU は次の手順でプログラムを実行していきます。

- 1. メモリからプログラムを読み込む
- 2. プログラムを実行する
- 3. 1, 2 の繰り返し

メモリからプログラムを読み込んで実行するのが CPU の仕事ということが分かりました。これをもう少し掘り下げます。

まず、プログラムをメモリから読み込むためには、メモリのどこを読み込みたいのかという情報 (アドレス)をメモリに与える必要があります。また、当然ながらメモリが必要です。

CPU はプログラムを実行しますが、一気にすべてのプログラムを読み込んだり実行するわけで

第3章 RV32Iの実装 3.2 プロジェクトの作成

はなく、プログラムの最小単位である「命令」を一つずつ読み込んで実行します。命令をメモリに 要求、取得することを、命令をフェッチするといいます。

命令が CPU に供給されると、CPU は命令のビット列がどのような意味を持っていて何をすればいいかを判定します。このことを、命令をデコードするといいます。

命令をデコードすると、いよいよ計算やメモリアクセスを行います。しかし、例えば足し算を計算するにも何と何を足し合わせればいいのか分かりません。この計算に使うデータは、次のように指定されます。

- レジスタ (= CPU に存在する小さなメモリ) の番号
- 即値 (= 命令のビット列から生成される数値)

計算対象のデータにレジスタと即値のどれを使うかは命令によって異なります。レジスタの番号は命令のビット列の中に含まれています。

計算やメモリアクセスが終わると、その結果をレジスタに格納します。例えば足し算を行う命令なら足し算の結果が、メモリから値を読み込む命令なら読み込まれた値が格納されます。

これで命令の実行は終わりですが、CPU は次の命令を実行する必要があります。今現在実行している命令のアドレスを格納しているメモリのことをプログラムカウンタ (PC) と言い、CPU は PC の値をメモリに渡すことで命令をフェッチしています。CPU は次の命令を実行するために、PC の値を次の命令のアドレスに設定します。ジャンプ命令の場合は、PC の値をジャンプ先のアドレスに設定します。分岐命令の場合は、分岐の成否を計算で判定し、分岐が成立する場合は分岐先のアドレスを PC に設定します。分岐が成立しない場合は、通常の命令と同じように次の命令のアドレスを PC に設定します。

ここまでの話をまとめると、CPU の動作は次のようになります。

- PC に格納されたアドレスにある命令をフェッチする
- 命令を取得したらデコードする
- 計算で使用するデータを取得する (レジスタの値を取得したり、即値を生成する)
- 計算する命令の場合、計算を行う
- メモリにアクセスする命令の場合、メモリ操作を行う
- 計算やメモリアクセスの結果をレジスタに格納する
- PC の値を次に実行する命令に設定する

CPU が何をするものなのかが分かりましたか? 実装を始めましょう。

3.2 プロジェクトの作成

まず、Veryl のプロジェクトを作成します。ここでは適当に core という名前にしています。

第3章 RV32Iの実装 3.3 定数の定義

▼リスト 3.1: 新規プロジェクトの作成

```
$ veryl new core
[INFO ] Created "core" project
```

すると、プロジェクト名のフォルダと、その中に Veryl.toml が作成されます。 TODO ソースマップがいらないので消す

▼リスト 3.2: 作成された Veryl.toml

```
[project]
name = "core"
version = "0.1.0"
```

Veryl のプログラムを格納するために、プロジェクトのフォルダ内に src フォルダを作成しておいてください。

```
$ cd_core
$ mkdir src
```

3.3 定数の定義

いよいよプログラムを記述していきます。まず、CPU 内で何度も使用する定数や型を記述するパッケージを作成します。

src/eei.veryl を作成し、次のように記述します。

▼リスト 3.3: eei.veryl

```
package eei {
   const XLEN: u32 = 32;
   const ILEN: u32 = 32;

   type UIntX = logic<XLEN>;
   type UInt32 = logic<32> ;
   type UInt64 = logic<64> ;
   type Inst = logic<ILEN>;
   type Addr = logic<XLEN>;
}
```

EEI とは、RISC-V execution environment interface の略です。RISC-V のプログラムの実行環境とインターフェースという広い意味があり、ISA の定義も EEI に含まれているため名前を使用しています。

eei パッケージには、次のパラメータを定義します。

XLEN

XLEN は、RISC-V において整数レジスタの長さを示す数字として定義されています。 RV32I のレジスタの長さは 32 ビットであるため、値を 32 にしています。 第 3 章 RV32I の実装 3.4 メモリ

ILEN

ILEN は、RISC-V において CPU の実装がサポートする命令の最大の幅を示す値として 定義されています。RISC-V の命令の幅は、後の章で説明する圧縮命令を除けばすべて 32 ビットです。そのため、値を 32 にしています。

また、何度も使用することになる型に別名を付けています。

UIntX, UInt32, UInt64

幅がそれぞれ XLEN, 32,64 の符号なし整数型

Inst

命令のビット列を格納するための型

Addr

メモリのアドレスを格納するための型。RISC-Vで使用できるメモリ空間の幅は XLEN なので UIntX でもいいですが、アドレスであることを明示するために別名を定義しています。

3.4 メモリ

CPU はメモリに格納された命令を実行します。よって、CPU の実装のためにはメモリの実装が必要です。RV32I において命令の幅は 32 ビットです。また、メモリからのロード命令、ストア命令の最大の幅も 32 ビットです。

これを実現するために、次のような要件のメモリを実装します。

- 読み書きの単位は32ビット
- クロックに同期してメモリアクセスの要求を受け取る
- 要求を受け取った次のクロックで結果を返す

3.4.1 メモリのインターフェースの定義

このメモリモジュールには、クロックとリセット信号の他に 7 個のポートを定義する必要があります (表 3.1)。これを一つ一つ定義、接続するのは面倒なため、次のような interface を定義します。

src/membus_if.veryl を作成し、次のように記述します。

▼リスト 3.4: インターフェースの定義 (membus if.veryl)

```
import eei::*;

interface membus_if {
   var valid : logic ;
   var ready : logic ;
   var addr : Addr ;
   var wen : logic ;
```

第3章 RV32Iの実装 3.4 メモリ

```
var wdata : UInt32;
    var rvalid: logic;
    var rdata : UInt32;
    modport master {
        valid : output,
        ready : input ,
        addr : output,
        wen : output,
        wdata : output,
        rvalid: input ,
        rdata : input ,
    }
    modport slave {
        valid : input ,
        ready : output,
        addr : input ,
        wen : input ,
        wdata : input ,
        rvalid: output,
        rdata : output,
    }
}
```

▼表 3.1: メモリモジュールに必要なポート

ポート名	型	向き	意味
clk	clock	input	クロック信号
rst	reset	input	リセット信号
valid	logic	input	メモリアクセスを要求しているかどうか
ready	logic	output	メモリアクセスを受容するかどうか
addr	Addr	input	アクセスするアドレス
wen	logic	input	書き込みかどうか (1 なら書き込み)
wdata	UInt32	input	書き込むデータ
rvalid	logic	output	受容した要求の処理が終了したかどうか
rdata	UInt32	output	受容した読み込み命令の結果

interface を利用することで、レジスタやワイヤの定義が不要になり、さらにポートの相互接続を 簡潔にすることができます。

3.4.2 メモリの実装

メモリを作る準備が整いました。 src/memory.veryl を作成し、その中にメモリモジュールを記述します。

第 3 章 RV32I の実装 3.4 メモリ

▼リスト 3.5: memory.veryl

```
import eei::*;
module memory #(
   param MEMORY_WIDTH: u32 = 20, // メモリのサイズ
) (
    clk
           : input clock
           : input reset
   rst
    membus : modport membus_if::slave,
    FILE_PATH: input string , // メモリの初期値が格納されたファイルのパス
) {
    var mem: UInt32 [2 ** MEMORY_WIDTH];
   // Addrをmemのインデックスに変換する関数
    function addr_to_memaddr (
       addr: input Addr
    ) -> logic<MEMORY_WIDTH> {
       return addr[MEMORY_WIDTH - 1 + 2:2];
    }
    initial {
       // memをFILE_PATHに格納されているデータで初期化
       if FILE_PATH != "" {
           $readmemh(FILE_PATH, mem);
       }
    }
    always_comb {
       membus.ready = 1;
    always_ff {
       membus.rvalid = membus.valid;
       membus.rdata = mem[addr_to_memaddr(membus.addr)];
       if membus.valid && membus.wen {
           mem[addr_to_memaddr(membus.addr)] = membus.wdata;
   }
}
```

memory モジュールには次のパラメータが定義されています。

MEMORY WIDTH

メモリのサイズを指定するためのパラメータです。メモリのサイズは 32 ビット * $(2^{**}$ MEMORY WIDTH) になります。

FILE PATH

メモリの初期値が格納されたファイルのパスです。指定しない場合は""になり初期化されません。初期化は\$readmemh システムタスクで行います。

読み込み、書き込み時の動作は次の通りです。

読み込み

読み込みが要求されるとき、 membus.valid が 1 、 membus.wen が 0 、 membus.addr が対象 アドレスになっています。次のクロックで、 membus.rvalid が 1 になり、 membus.rdata はメモリのデータになります。

書き込み

読み込みが要求されるとき、 membus.valid が 1 、 membus.wen が 1 、 membus.addr が 対象アドレスになっています。 always_ff ブロックでは、 membus.wen が 1 であることを確認し、 1 の場合は対象アドレスに membus.wdata を書き込みます。次のクロックで membus.rvalid が 1 になります。

Addr 型では 1 バイト単位でアドレスを指定しますが、mem レジスタは 32 ビット (=4 バイト) 単位でデータを整列しています。そのため、Addr 型のアドレスをそのまま mem レジスタのイン デックスとして利用することはできません。 $addr_to_memaddr$ 関数は、1 バイト単位のアドレスの下位 2 ビットを切り詰めることによって、mem レジスタにおけるインデックスに変換しています。

3.5 top モジュールの作成

次に、最上位のモジュールを定義します。

▼リスト 3.6: top.veryl

先ほど作った memory モジュールをインスタンス化しています。また、memory モジュールのポートに接続するための membus if インターフェースもインスタンス化しています。

第 3 章 RV32I の実装 3.6 命令フェッチ

3.6 命令フェッチ

メモリを作成したため、命令フェッチ処理を作る準備が整いました。いよいよ CPU のメイン部分を作成していきます。

3.6.1 命令フェッチの実装

src/core.veryl を作成し、次のように記述します。

▼リスト 3.7: core.veryl

```
import eei::*;
module core (
    clk : input clock
    rst : input reset
    membus: modport membus_if::master,
) {
    var if_pc
                      : Addr ;
    var if_is_requested: logic; // フェッチ中かどうか
    var if_pc_requested: Addr ; // 要求したアドレス
    let if_pc_next: Addr = if_pc + 4;
    // 命令フェッチ処理
    always_comb {
        membus.valid = 1;
        membus.addr = if_pc;
        membus.wen = 0;
        membus.wdata = 'x; // wdataは使用しない
    }
    always_ff {
        if_reset {
            if_pc
            if_is_requested = 0;
            if_pc_requested = 0;
        } else {
            if if_is_requested {
                if membus.rvalid {
                    if_is_requested = membus.ready;
                    if membus.ready {
                        if_pc
                                       = if_pc_next;
                        if_pc_requested = if_pc;
                    }
                }
            } else {
                if membus.ready {
                    if_is_requested = 1;
                    if_pc
                                  = if_pc_next;
```

第3章 RV32I の実装 3.6 命令フェッチ

if_pc レジスタは PC(プログラムカウンタ) です。ここで if_ という prefix は instruction fetch の略です。 if_is_requested で現在フェッチ中かどうかを管理しており、フェッチ中のアドレスを if_pc_requested に格納しています。

always_comb ブロックでは、常にメモリにアドレス if_pc にある命令を要求しています。命令フェッチではメモリの読み込みしか行わないため、 membus.wen は 0 になっています。

上から 1 つめの always_ff ブロックでは、フェッチ中かどうか、メモリは ready(要求を受け入れる) 状態かどうかによって、 if_pc , if_is_requested , if_pc_requested の値を変更しています。メモリに新しくフェッチを要求する時、 if_pc を次の命令のアドレス (4 を足したアドレス) に、 if_is_requested を 1 に変更しています。フェッチ中かつ membus.rvalid が 1 のときは命令フェッチが完了しています。その場合は、メモリが ready ならすぐに次の命令フェッチを開始します。

これにより、0,4,8,c,10,... という順番のアドレスの命令を次々にフェッチするようになっています。

上から 2 つめの always_ff ブロックはデバッグ用のプログラムです。命令フェッチが完了したときにその結果を \$display システムタスクによって出力します。

次に、top モジュールで core モジュールをインスタンス化し、membus_if インターフェースを接続します。これによって、メモリと CPU が接続されました。

▼リスト 3.8: top.veryl 内で core モジュールをインスタンス化する

```
inst c: core (
    clk  ,
    rst  ,
    membus ,
);
```

3.6.2 命令フェッチのテスト

ここまでのプログラムが正しく動くかを検証します。

Veryl で記述されたプログラムは veryl build コマンドで SystemVerilog のプログラムに変換 することができます。変換されたプログラムをオープンソースの Verilog シミュレータである

第3章 RV32Iの実装 3.6 命令フェッチ

Verilator で実行することで、命令フェッチが正しく動いていることを確認します。 まず、プログラムをビルドします。

▼ リスト 3.9: Veryl プログラムのビルド

```
$ veryl fmt ←フォーマットする
$ veryl build ←ビルドする
```

上記のコマンドを実行すると、veryl プログラムと同名の .sv ファイルと core.f ファイルが生成されます。 core.f は生成された SystemVerilog のプログラムファイルのリストです。これをシミュレータのビルドに利用します。

シミュレータのビルドには Verilator を利用します。Verilator は与えられた SystemVerilog プログラムを C++ プログラムに変換することでシミュレータを生成します。verilator を利用するために、次のような C++ プログラムを書く必要があります。

src/tb_verilator.cpp を作成し、次のように記述します。

▼リスト 3.10: tb verilator.cpp

```
#include <iostream>
#include <filesystem>
#include <verilated.h>
#include "Vcore_top.h"
namespace fs = std::filesystem;
int main(int argc, char** argv) {
    Verilated::commandArgs(argc, argv);
    if (argc < 2) {
        std::cout << "Usage: " << argv[0] << " MEMORY_FILE_PATH [CYCLE]" << std::endl;</pre>
        return 1;
    // メモリの初期値を格納しているファイル名
    std::string memory_file_path = argv[1];
    try {
        // 絶対パスに変換する
        fs::path absolutePath = fs::absolute(memory_file_path);
        memory_file_path = absolutePath.string();
    } catch (const std::exception& e) {
        std::cerr << "Invalid memory file path : " << e.what() << std::endl;</pre>
        return 1;
    }
    // シミュレーションを実行するクロックサイクル数
    unsigned long long cycles = 0;
    if (argc >= 3) {
        std::string cycles_string = argv[2];
        try {
             cycles = stoull(cycles_string);
        } catch (const std::exception& e) {
```

第3章 RV32I の実装 3.6 命令フェッチ

```
std::cerr << "Invalid number: " << argv[2] << std::endl;</pre>
              return 1:
         }
    }
    Vcore_top *dut = new Vcore_top();
    dut->MEM_FILE_PATH = memory_file_path;
    // reset
    dut->clk = 0;
    dut->rst = 1;
    dut->eval();
    dut->rst = 0;
    dut->eval();
    // loop
    dut \rightarrow rst = 1:
    for (long long i=0; cycles == 0 || i / 2 < cycles; i++) {
         dut->clk = !dut->clk;
         dut->eval();
    }
    dut->final();
}
```

この C++ プログラムは top モジュール (プログラム中では Vtop_core クラス) をインスタンス 化し、そのクロックを反転して実行するのを繰り返しています。

このプログラムはコマンドライン引数として次の2つの値を受け取ります。

MEMORY FILE PATH

メモリの初期値のファイルへのパス。実行時に top モジュールの MEM_FILE_PATH パラメータに渡されます。

CYCLE

何クロックで実行を終了するかを表す値。0 のときは終了しません。デフォルト値は0 です。

Verilator によるシミュレーションは、トップモジュールのクロック信号を変更して eval 関数を呼び出すことにより実行します。プログラムでは clk を反転させて eval するループの前に top モジュールをリセットする必要があるため、top モジュールの rst を 1 にして eval を実行し、rst を 0 にしてまた eval を実行し、rst を 1 にもどしてから clk を反転しています。

シミュレータのビルド

verilator コマンドを実行し、シミュレータをビルドします。

▼リスト 3.11: シミュレータのビルド

```
$ verilator --cc -f core.f --exe src/tb_verialtor.cpp --top-module top --Mdir obj_dir
$ make -C obj_dir -f Vcore_top.mk ←シミュレータをビルドする
```

第 3 章 RV32I の実装 3.6 命令フェッチ

\$ mv obj_dir/Vcore_top obj_dir/sim ←シミュレータの名前をsimに変更する

verilator --cc コマンドに次のコマンドライン引数を渡して実行することで、シミュレータを 生成するためのプログラムが obj_dir に生成されます。

-f

SystemVerilog プログラムのファイルリストを指定します。今回は core.f を指定しています。

--exe

実行可能なシミュレータの生成に使用する、main 関数が含まれた C_{++} プログラムを指定します。今回は $src/tb_verilator.cpp$ を指定しています。

--top-module

トップモジュールを指定します。今回は top モジュールを指定しています。

--Mdir

成果物の生成先を指定します。今回は obj_dir フォルダに指定しています。

上記のコマンドの実行により、シミュレータが obj_dir/sim に生成されました。

メモリの初期化用ファイルの作成

シミュレータを実行する前にメモリの初期値となるファイルを作成します。 src/sample.hex を 作成し、次のように記述します。

▼リスト 3.12: sample.hex

01234567 89abcdef deadbeef cafebebe ←必ず末尾に改行をいれてください

値は 16 進数で 4 バイトずつ記述されています。シミュレーションを実行すると、このファイルは memory モジュールの readmemh システムタスクによって読み込ます。それにより、メモリは次のように初期化されます。

▼表 3.2: sample.hex によって設定されるメモリの初期値

アドレス	値
00000000	01234567
00000004	89abcdef
8000000	deadbeef
0000000c	cafebebe
00000010~	不定

第3章 RV32I の実装 3.6 命令フェッチ

シミュレータの実行

生成されたシミュレータを実行し、アドレスが0, 4, 8, cのデータが正しくフェッチされていることを確認します。

▼ リスト 3.13: 命令フェッチの動作チェック

```
$ obj_dir/sim src/sample.hex 4
00000000 : 01234567
00000004 : 89abcdef
00000008 : deadbeef
0000000c : cafebebe
```

メモリファイルのデータが4バイトずつ読み込まれていることが確認できます。

Makefile の作成

ビルド、シミュレータのビルドのために一々コマンドを打つのは面倒です。これらの作業を一つのコマンドで済ますために、 Makefile を作成し、次のように記述します。

▼リスト 3.14: Makefile

```
PROJECT = core
FILELIST = $(PROJECT).f
TOP_MODULE = top
TB_PROGRAM = src/tb_verilator.cpp
OBJ_DIR = obj_dir/
SIM_NAME = sim
build:
         veryl fmt
         veryl build
clean:
         veryl clean
         rm -f src/*.sv.map
         rm -rf $(OBJ_DIR)
sim:
         verilator --cc -f $(FILELIST) --exe $(TB_PROGRAM) --top-module $(PROJECT)_$(TOP_MODULE) >
--Mdir $(OBJ_DIR)
         make -C $(OBJ_DIR) -f V$(PROJECT)_$(TOP_MODULE).mk
         mv $(OBJ_DIR)/V$(PROJECT)_$(TOP_MODULE) $(OBJ_DIR)/$(SIM_NAME)
```

これ以降、次のようにビルドやシミュレータのビルドができるようになります。

▼リスト 3.15: Makefile によって追加されたコマンド

```
$ make_build ← Verylプログラムのビルド
$ make_sim ←シミュレータのビルド
$ make_clean ←ビルドした成果物の削除
```

第3章 RV32Iの実装 3.6 命令フェッチ

3.6.3 フェッチした命令を FIFO に格納する

FIFO の作成

フェッチした命令は次々に実行されますが、その命令が何クロックで実行されるかは分かりません。命令が常に1クロックで実行される場合は現状の常にフェッチし続けるようなコードで問題ありませんが、例えばメモリにアクセスする命令は実行に何クロックかかるか分からないため、フェッチされた次の命令を保持しておくバッファを用意しておく必要があります。

そこで、FIFO を作成して、フェッチした命令を格納します。 src/fifo.veryl を作成し、次のように記述します。

▼ リスト 3.16: fifo.veryl

```
module fifo #(
    param DATA_TYPE: type = logic,
    param WIDTH : u32 = 2
) (
    clk : input clock
    rst : input reset
    wready: output logic
    wvalid: input logic
    wdata : input DATA_TYPE,
    rready: input logic
    rvalid: output logic
    rdata : output DATA_TYPE,
) {
    type Ptr = logic<WIDTH>;
    var mem : DATA_TYPE [2 ** WIDTH];
    var head: Ptr
    var tail: Ptr
    let tail_plus1: Ptr = tail + 1;
    always_comb {
        rvalid = head != tail;
        rdata = mem[head];
        wready = tail_plus1 != head;
    always_ff {
        if wready && wvalid {
            mem[tail] = wdata;
            tail
                    = tail + 1;
        if rready && rvalid {
            head = head + 1;
        }
    }
}
```

fifo モジュールは、 DATA_TYPE 型のデータを 2 ** WIDTH - 1 個格納することができる FIFO で

第3章 RV32I の実装 3.6 命令フェッチ

す。操作は次のように行います。

データを追加する

wready が 1 のとき、データを追加することができます。データを追加するためには、追加したいデータを wdata に格納し、 wvalid を 1 にします。追加したデータは次のクロック以降に取り出すことができます。

データを取り出す

rready が 1 のとき、データを取り出すことができます。データを取り出すことができるとき、 rdata にデータが出力されています。 rvalid を 1 にすることで、FIFO にデータを取り出したことを通知することができます。

head レジスタと tail レジスタによってデータの格納状況を管理しています。データを書き込むとき、つまり wready && wvalid のとき、 tail = tail + 1 しています。データを取り出すとき、つまり rready && rvalid のとき、 head = head + 1 しています。

データを書き込める状況とは、 tail に 1 を足しても head を超えない、つまり、 tail が指す場所が一周してしまわないときです。この制限から、FIFO には最大でも 2 ** WIDTH - 1 個しかデータを格納することができません。データを取り出せる状況とは、 head と tail の指す場所が違うときです。

命令フェッチ処理の変更

fifo モジュールを使って、次のように命令フェッチ処理を変更します。 まず、fifo モジュールをインスタンス化します。

▼ リスト 3.17: fifo モジュールのインスタンス化

```
// ifのFIFOのデータ型
struct if_fifo_type {
    addr: Addr,
    bits: Inst,
}
// FIF0の制御用レジスタ
var if_fifo_wready: logic
var if_fifo_wvalid: logic
var if_fifo_wdata : if_fifo_type;
var if_fifo_rready: logic
var if_fifo_rvalid: logic
var if_fifo_rdata : if_fifo_type;
// フェッチした命令を格納するFIF0
inst if_fifo: fifo #(
    DATA_TYPE: if_fifo_type,
    WIDTH : 3
) (
    clk
    rst
    wready: if_fifo_wready,
```

第3章 RV32Iの実装 3.6 命令フェッチ

```
wvalid: if_fifo_wvalid,
  wdata : if_fifo_wdata ,
  rready: if_fifo_rready,
  rvalid: if_fifo_rvalid,
  rdata : if_fifo_rdata ,
);
```

まず、FIFO に入れるデータの型として if_fifo_type という構造体を定義します。 if_fifo_type には、命令のアドレス (addr) と命令のビット列 (bits) を格納するためのメンバーが含まれています。

次に、fifo モジュールとデータの受け渡しをするための変数を定義し、fifo モジュールを if_fifo という名前でインスタンス化しています。 DATA_TYPE パラメータに if_fifo_type を 渡すことでアドレスと命令のペアを格納することができるようにし、 WIDTH に 3 と指定することで、サイズを 2**3-1=7 にしています。このサイズは適当です。

fifo モジュールを用意したので、メモリへフェッチ指令を送る処理を変更します。

▼リスト 3.18: フェッチ処理の変更

```
// 命令フェッチ処理
always_comb {
    // FIFOに空きがあるとき、命令をフェッチする
    membus.valid = if_fifo_wready; ← 1をif_fifo_wreadyに変更
    membus.addr = if_pc;
    membus.wen = 0;
    membus.wdata = 'x; // wdataは使用しない
    // 常にFIFOから命令を受け取る
    if_fifo_rready = 1;
}
```

上のコードでは、メモリに命令フェッチを要求する条件を FIFO に空きがあるという条件に変更 しています。これにより、FIFO があふれてしまうことがなくなります。また、とりあえず FIFO から常にデータを取り出すようにしています。

次に、命令をフェッチできたら FIFO に格納するようにします。

▼リスト 3.19: FIFO へのデータの格納

上のコードを $always_ff$ ブロックの中に追加します。また、 if_fifo_wvalid と if_fifo_wdata を if_reset 内で0に初期化してください。

フェッチができた時、 if_fifo_wvalid レジスタの値を 1 にして、 if_fifo_wdata レジスタに フェッチした命令とアドレスを格納します。これにより、次のクロック以降の FIFO に空きがある タイミングでデータが追加されます。

それ以外の時、FIFO にデータを格納しようとしていて FIFO に空きがあるとき、 if fifo wvalid を 0 にすることでデータの追加を完了します。

命令フェッチは FIFO に空きがあるときにのみ行うため、まだ追加されていないデータが if_fifo_wdata レジスタに格納されていても別のデータに上書きされてしまうことはありません。

▼ リスト 3.20: 命令を表示する

```
let inst_pc : Addr = if_fifo_rdata.addr;
let inst_bits: Inst = if_fifo_rdata.bits;

always_ff {
    if if_fifo_rvalid {
        $display("%h : %h", inst_pc, inst_bits);
    }
}
```

命令を表示するコードを上のように変更し、シミュレータを実行しましょう。FIFO に格納して取り出すクロック分だけ命令が表示されるまでに遅延があることに注意してください。

▼ リスト 3.21: FIFO をテストする

```
$ make build sim
$ obj_dir/sim src/sample.hex 6 ← TODO クロック数
000000000 : 01234567
000000004 : 89abcdef
00000008 : deadbeef
0000000c : cafebebe
```

3.7 命令のデコードと即値の生成

命令をフェッチすることができたら、フェッチした命令がどのような意味を持つかをチェックし、CPU が何をすればいいかを判断するためのフラグや値を生成します。この作業のことを、命令のデコードと呼びます。

RISC-V にはいくつかの命令の形式がありますが、RV32I には R, I, S, B, U, J の 6 つの形式の命令が存在しています。

R形式

ソースレジスタ (rs1, rs2) が 2 つ、デスティネーションレジスタ (rd) が 1 つの命令形式で

▲図 3.1: RISC-V の命令形式 (引用元: The RISC-V Instruction Set Manual Volume I: Unprivileged Architecture version 20240411 2.3. Immediate Encoding Variants)

す。2つのソースレジスタの値を使って計算し、その結果をデスティネーションレジスタに 格納します。例えば ADD, SUB 命令に使用されています。

I形式

ソースレジスタ (rs1) が 1 つ、デスティネーションレジスタ (rd) が 1 つの命令形式です。 12 ビットの即値 (imm[11:0]) が命令中に含まれており、これと rs1 を使って計算し、その 結果をデスティネーションレジスタに格納します。例えば ADDI, SUBI 命令に使用されて います。

S形式

ソースレジスタ (rs1, rs2) が 2 つ、デスティネーションレジスタ (rd) が 1 つの命令形式です。12 ビットの即値 $(imm\{11:5], imm[4:0])$ が命令中に含まれており、これとソースレジスタを使って計算やメモリにアクセスし、その結果をデスティネーションレジスタに格納します。例えば SW 命令 (メモリにデータを格納する命令) に使用されています。

B 形式

ソースレジスタ (rs1, rs2) が 2 つの命令形式です。12 ビットの即値 (imm[12], imm[11], imm[10:5], imm[4:1]) が命令中に含まれています。分岐命令に使用されており、ソースレジスタの計算の結果が分岐を成立させる場合、即値を使ってジャンプします。

U形式

デスティネーションレジスタ (rd) が 1 つの命令形式です。20 ビットの即値 (imm[31:12])

が命令中に含まれています。例えば LUI 命令 (レジスタの上位 20 ビットを設定する命令) に使用されています。

J形式

デスティネーションレジスタ (rd) が 1 つの命令形式です。20 ビットの即値 (imm[20], imm[19:12], imm[11], imm[10:1]) が命令中に含まれています。例えば JAL 命令 (ジャンプ命令) に使用されており、PC に即値を足した相対位置にジャンプします。

全ての命令形式には opcode が共通して存在しています。命令の判別には opcode 、 funct3 、 funct7 を利用します。

3.7.1 デコード用の定数、構造体の定義

デコード処理を書く前に、デコードに利用する定数や構造体を定義します。 src/corectrl.veryl を作成し、次のように記述します。

▼リスト 3.22: corectrl.veryl

```
import eei::*;
package corectrl {
   // 命令形式を表す列挙型
   enum InstType: logic<6> {
       X = 6'b000000.
       R = 6'b000001,
       I = 6'b000010,
       S = 6'b000100,
       B = 6'b001000.
       U = 6'b010000,
       J = 6'b100000,
   // 制御に使うフラグ用の構造体
   struct InstCtrl {
       itype : InstType , // 命令の形式
       rwb_en : logic , // レジスタに書き込むかどうか
       is_lui : logic , // LUI命令である
is_aluop : logic , // ALUを利用する命令である
is_jump : logic , // ジャンプ命令である
                          , // LUI命令である
                          , // ロード命令である
       is_load : logic
                           , // CSR命令である
       is_system: logic
                           , // フェンス命令である
       is_fence : logic
       funct3 : logic <3>, // 命令のfunct3フィールド
       funct7 : logic <7>, // 命令のfunct7フィールド
   }
}
```

▼ リスト 3.23: eei.veryl に追加記述

```
// opcode
const OP_OP_IMM : logic<7> = 7'b0010011;
```

```
const OP_LUI : logic<7> = 7'b0110111;
const OP_AUIPC : logic<7> = 7'b0010111;
const OP_OP : logic<7> = 7'b0110011;
const OP_JAL : logic<7> = 7'b1100111;
const OP_JALR : logic<7> = 7'b1100111;
const OP_BRANCH : logic<7> = 7'b1100011;
const OP_LOAD : logic<7> = 7'b10000011;
const OP_STORE : logic<7> = 7'b0100011;
const OP_STORE : logic<7> = 7'b01000111;
const OP_SYSTEM : logic<7> = 7'b00001111;
```

まず、形式を示す enum を作成します。

次に、命令がどのような操作を行うかを示す構造体を作成します。

追加で、構造体を引数にとって、それがどのような命令であるかを判別する関数を作成しておきます。

それでは、命令のデコード処理を書きます。デコーダとして、 src/inst_decoder.veryl を定義します。

▼リスト 3.24: inst decoder.veryl

```
import eei::*;
import corectrl::*;
module inst decoder (
    bits: input Inst
    ctrl: output InstCtrl,
    imm : output UIntX
) {
    // 即値の生成
    let imm_i_g: logic<12> = bits[31:20];
    let imm_s_g: logic<12> = {bits[31:25], bits[11:7]};
    let imm_b_g: logic<12> = {bits[31], bits[7], bits[30:25], bits[11:8]};
    let imm_u_g: logic<20> = bits[31:12];
    let imm_j_g: logic<20> = {bits[31], bits[19:12], bits[20], bits[30:21]};
    let imm_z_g: logic<17> = bits[31:15]; // {csr address, uimm}
    let imm_i: UIntX = {imm_i_g[msb] repeat XLEN - $bits(imm_i_g), imm_i_g};
    let imm_s: UIntX = {imm_s_g[msb] repeat XLEN - $bits(imm_s_g), imm_s_g};
    let imm_b: UIntX = {imm_b_g[msb] repeat XLEN - $bits(imm_b_g) - 1, imm_b_g, 1'b0};
    let imm_u: UIntX = {imm_u_g[msb] repeat XLEN - $bits(imm_u_g) - 12, imm_u_g, 12'b0};
    let imm_j: UIntX = {imm_j_g[msb] repeat XLEN - $bits(imm_j_g) - 1, imm_j_g, 1'b0};
    let imm_z: UIntX = {1'b0 repeat XLEN - $bits(imm_z_g), imm_z_g};
    let op: logic<7> = bits[6:0];
    let f7: logic<7> = bits[31:25];
    let f3: logic<3> = bits[14:12];
    const T: logic = 1'b1;
    const F: logic = 1'b0;
    always_comb {
```

```
imm = case op {
            OP_LUI, OP_AUIPC
                                                      : imm u.
            OP_JAL
                                                       : imm_j,
            OP_JALR, OP_LOAD, OP_OP_IMM, OP_MISC_MEM: imm_i,
            OP_BRANCH
                                                       : imm_b,
            OP STORE
                                                       : imm_s,
            OP_SYSTEM
                                                       : imm_z,
                                                       : 'x,
            default
        };
        ctrl = {case op {
            OP_LUI
                       : {InstType::U, T, T, F, F, F, F, F},
                       : {InstType::U, T, F, F, F, F, F, F},
            OP AUIPC
            OP_JAL
                       : {InstType::J, T, F, F, T, F, F},
            OP_JALR
                       : {InstType::I, T, F, F, T, F, F},
            OP_BRANCH : {InstType::B, F, F, F, F, F, F, F},
                       : {InstType::I, T, F, F, F, T, F, F},
            OP_LOAD
            OP_STORE : {InstType::S, F, F, F, F, F, F, F},
            OP_OP
                       : {InstType::R, T, F, T, F, F, F, F},
            OP_OP_IMM : {InstType::I, T, F, T, F, F, F, F},
            OP_MISC_MEM: {InstType::I, F, F, F, F, F, T},
            OP_SYSTEM : {InstType::I, T, F, F, F, F, T, F},
                       : {InstType::X, F, F, F, F, F, F, F},
        }, f3, f7};
   }
}
```

decode モジュールでは、受け取った命令の OP ビットを確認し、その値によって InstType, InstCtrl, 即値を設定しています。処理の振り分けには case 文を使用しています。

decode モジュールを core モジュールでインスタンス化します。命令のデコード結果を表示し、次のように表示されているか確認してください。

3.8 レジスタの定義と読み込み

最初に説明した通り、RV32I では 32 ビット幅のレジスタが 32 個用意されています。0 番目のレジスタの値は常に 0 です。

core モジュールに、レジスタを定義します。初期値を 0 に設定しておきます。

RV32I の命令は、最大で 2 個のレジスタの値を同時に読み出します。命令の中のレジスタのアドレスを示すビットの場所は共通で、rs1, rs2, rd で示されています。このうち、rs1, rs2 はソースレジスタ、rd はデスティネーションレジスタ (結果の書き込み先)です。

簡単のために、命令がレジスタを使用するか否かにかかわらず、常にレジスタの値を読み出すことにします。0番目のレジスタが指定されたときは、レジスタを読み込まずに0を読み込んでいます。

第3章 RV32Iの実装 3.9 ALU

3.9 ALU

ALU とは、Arithmetic Logic Unit の略で、CPU の計算を行う部分です。ALU は足し算や引き算、シフト命令などの計算を行います。ALU でどの計算を行うかは、funct3, funct5 によって判別します。

alu.veryl を作成し、次のように記述します。

プログラム

ポート定義

core モジュールで alu モジュールをインスタンス化します。

3.10 ロード、ストア命令

3.10.1 LW, SW 命令

RISC-V にはメモリのデータを読み込む/書き込む命令として次の命令があります。

表

これらの命令で指定するメモリのアドレスは足し算です。先ほど作った ALU は、ALU を使用する命令ではない場合は常に足し算を行うため、ALU の結果をアドレスとして利用できます。

まず32ビット単位で読み書きを行うLW,SW命令を実装します。

メモリ操作を行うモジュールを memunit.veryl に定義します。

プログラム

memunit モジュールでは、命令がメモリ命令の時、ALU から受け取ったアドレスをメモリに渡して操作を実行します。書き込み命令の時は、書き込む値を memif.wdata に設定し、memif.wenを 1 に設定します。

memunit モジュールを core モジュールにインスタンス化します。ここで、memunit モジュールとメモリの接続は、命令フェッチ用のインターフェースとは別にしなくてはいけません。そのため、core モジュールに新しく memif data を定義し、これを memunit モジュールと接続します。

これで top モジュールにはロードストア命令と命令フェッチのインターフェースが 2 つ存在します。しかし、メモリは同時に 1 つの読み込みまたは書き込みしかできないため、これを調停する必要があります。

top モジュールに、ロードストアと命令フェッチが同時に要求した場合は、ロードストアを優先するプログラムを記述します。

ロードストアには複数クロックかかるため、これが完了していないことを示すワイヤがあります。これを見て、core は処理を進めます。

アラインの例外について注記を入れる

3.10.2 LH[U], LB[U], SH, SB 命令

ロード、ストア命令には、2 バイト単位, 1 バイト単位での読み書きを行う命令も存在します。 まずロード命令を実装します。ロード命令は 32bit 単位での読み込みをしたものの一部を切り 取ってあげればよさそうです。

プログラム

次に、ストア命令を実装します。ここで 32 ビット単位で読み込んだ後に一部を書き換えて書き 込んであげる方法、またはメモリモジュール側で一部のみを書き込む操作をサポートする方法が考 えられます。本書では後者を採用します。

memif インターフェースに、どこの書き込みを行うかをバイト単位で示すワイヤを追加します。 プログラム

これを利用して、読み込みして加工して書き込みという操作をサポートさせます。 プログラム

3.11 レジスタに値を書き込む

CPU はレジスタから値を読み込み、これを計算して、レジスタに結果の値を書き戻します。レジスタに値を書き戻すことを、ライトバックと言います。

3.11.1 ライトバックの実装

計算やメモリアクセスが終わったら、その結果をレジスタに書き込みます。書き込む対象のレジスタは rd 番目のレジスタです。書き込むかどうかは InstCtrl.reg_wen で表されます。 プログラム

3.11.2 ライトバックのテスト

ここで、プログラムをテストしましょう。

メモリに格納されている命令は~なので、結果が~になることを確認できます。

3.12 分岐, ジャンプ

まだ、重要な命令を実装できていません。分岐命令とジャンプ命令を実装します。

3.12.1 JAL, JALR 命令

JAL(Jump And Link) 命令は相対アドレスでジャンプ先を指定し、ジャンプします。ジャンプ命令である場合は PC の次の値を PC + 即値に設定するようにします。Link とあるように、rd レジスタに現在の PC+4 を格納します。

プログラム

JALR(Jump And Link Register) 命令は、レジスタに格納されたジャンプ先にジャンプします。レジスタの値と即値を加算し、次の PC に設定します。JAL 命令と同様に、rd レジスタに現在の PC+4 を格納します。

プログラム

3.12.2 分岐命令

分岐命令には次の種類があります。全ての分岐命令は相対アドレスで分岐先を指定します。 分岐するかどうかの判定を行うモジュールを作成します。

プログラム

alubr モジュールの*が 1 かつ、分岐命令である場合、PC を PC+ 即値に指定します。分岐しない場合はそのままです。

3.13 riscv-tests でテストする

古いのを appendix にする。

riscv-tests は、RISC-V の CPU が正しく動くかどうかを検証するためのテストセットです。これを実行することで CPU が正しく動いていることを確認します。

riscv-tests のビルド方法については付録を参考にしてください。

3.13.1 最小限の CSR 命令の実装

riscv-tests を実行するためには、いくつかの制御用のレジスタ (CSR) と、それを読み書きする命令 (CSR 命令) が必要になります。それぞれの命令やレジスタについて、本章では深く立ち入りません。

mtvec

ecall 命令

mret 命令

3.13.2 終了検知

riscv-tests が終了したことを検知し、それが成功か失敗かどうかを報告する必要があります。 riscv-tests は終了したことを示すためにメモリのあああ番地に値を書き込みます。この値が 1 のとき、riscv-tests が正常に終了したことを示します。それ以外の時は、riscv-tests が失敗したことを示します。

riscv-tests の終了の検知処理を top モジュールに記述します。

プログラム

3.13.3 テストの実行

試しに add のテストを実行してみましょう。add 命令のテストは rv32ui-p-add.bin.hex に格納されています。これを、メモリの readmemh で読み込むファイルに指定します。

プログラム

ビルドして実行し、正常に動くことを確認します。

複数のテストを自動で実行する

add 以外の命令もテストしたいですが、そのために readmemh を書き換えるのは大変です。これを簡単にするために、readmemh にはマクロで指定する定数を渡します。

プログラム

自動でテストを実行し、その結果を報告するプログラムを作成します。

プログラム

この Python プログラムは、riscv-tests フォルダにある hex ファイルについてテストを実行し、 結果を報告します。引数に対象としたいプログラムの名前の一部を指定することができます。

今回は RV32I のテストを実行したいので、riscv-tests の RV32I 向けのテストの接頭辞である rv32ui-p-引数に指定すると、次のように表示されます。

第4章

RV64I の実装

前章では RISC-V の 32bit 環境である RV32I の CPU を実装しました。RISC-V には 64bit 環境の基本整数命令セットとして RV64I が用意されています。本章では RV32I の CPU を RV64I にアップグレードします。

では、具体的に RV32I と RV64I は何が違うのでしょうか? RV64I では、レジスタの幅が 32bit から 64bit に変わり、各種演算命令の演算の幅も 64 ビットになります。

それに伴い、次の命令が追加で定義されます。

これらの命令は 32 ビット幅での演算を行うものか、64 ビット幅でロードストアする命令です。 本章では、ロードストア命令を実装した後、それ以外の命令を実装します。

命令を実装したら、riscv-tests を実行することで、rv32ui-p-が正常に動くことを検証してください。64 ビット向けのテストは rv64i-p-から始まるテストです。命令を実装するたびにテストを実行することで、命令が正しく実行できていることを確認してください。

4.1 メモリの幅を広げる

ロードストア命令を実装するにあたって、メモリの幅を広げます。現在のメモリの幅は 32 ビットですが、このままだと 64 ビットでロードストアを行う場合に最低 2 回のメモリアクセスが必要になってしまいます。これを 1 回のメモリアクセスで済ませるために、メモリ幅を 32 ビットから 64 ビットに広げます。

プログラム

命令フェッチ部では、64 ビットの読み出しデータの上位 32 ビット,下位 32 ビットを PC の下位 3 ビットで選択します。 PC[2:0] が 0 のときは下位 32 ビット、4 のときは上位 32 ビットになります。

プログラム

メモリ命令を処理する部分では、LW 命令に新たに rdata の選択処理を追加します。LB[U], LH[U] については上位 32 ビットの場合について追加します。ストア命令では、マスクを変更し、アドレスに合わせて wdata を変更します。

プログラム

4.2 LW, LWU, LD 命令の実装

LW 命令は、符号拡張するように変更します。LWU 命令は、LHU, LBU 命令と同様に 0 拡張すればよいです。LD 命令は、メモリの rdata をそのまま結果に格納します。

4.3 SD 命令の実装

SD 命令は、マスクをすべて1で埋めて、wdataをレジスタの値をそのままにします。

4.4 LUI, AUIPC 命令の実装

なんか変わったっけ???

4.5 ADDW, ADDIW, SUBW 命令の実装

32 ビット単位で足し算、引き算をする命令が追加されています。 これに対応するために ALU を変更します。

結果は符号拡張する必要があります。

4.6 シフト命令の実装

 ${\tt SLLIW,\,SRLIW,\,SRAIW,\,SLL,\,SRL,\,SRA,\,SLLW,\,SRLW,\,SRAW}$

32 ビット単位に対してシフトする命令が追加されています。これに対応するために ALU を変更します。

4.7 riscv-tests

RV64Iのテストがすべて正常に実行できることを確認してください。

第Ⅱ部

基本的な拡張とトラップの実装

第5章

M 拡張の実装

前章では RV64I を実装しました。RV64I は 64 ビットの基本整数命令セットであり、基本的な 演算しか実装されていません。M 拡張はこれにかけ算と割り算の命令を実装します。

M 拡張には、かけ算をおこなう MUL 命令、割り算をおこなう DIV 命令、剰余を求める REM 命令があります。これらの計算は Veryl に用意されている*, /, % 演算子で実装することができますが、これによって自動で実装される回路は 1 クロックで計算を完了させる非常に大きなものになってしまい、CPU の最大周波数を大幅に低下させてしまいます。これを回避するために、複数クロックでゆっくり計算を行うモジュールを作成します。

- 5.1 MUL[W] 命令
- 5.2 MULH 命令
- 5.3 MULHU 命令
- 5.4 MULHSU 命令

第5章 M 拡張の実装 5.5 DIV[W] 命令

5.5 DIV[W] 命令

引き放し法でやる

5.6 DIVU[W] 命令

5.7 REM[W] 命令

5.8 REMU[W] 命令

第6章 例外の実装

- 6.1 例外とは何か?
- 6.2 illegal instruction
- 6.3 メモリのアドレスのやつ

いまのところこれだけ?

第7章

A 拡張の実装

7.1 概要

シングルコアなので超簡単テストを通すことだけを考える

- 7.2 AMO系
- 7.3 LR / SC
- 7.4 例外

_第8_章 C 拡張の実装

8.1 概要

8.2 実装方針

フロントエンド

8.3 圧縮命令の変換

_第9_章 MMIO の実装

9.1 概要

UART TX/RX を作ります

9.2 実装方針

_第 10 章 割り込みの実装

10.1 概要

10.2 UART RX

10.3 タイマ割り込み

第Ⅲ部 privilege mode の実装

_第 11 章 M-mode の実装

_第 12 章 S-mode の実装

第 13 章 ページングの実装

- 13.1 ページングとは何か
- 13.2 PTW の実装
- 13.3 Sv32
- 13.4 Sv39
- 13.5 Sv48
- 13.6 Sv54

第 IV 部 OS を動かす

_第 14 章 virtio の実装

どうするか

_第 15 章 xv6 の実行

あとがき / おわりに

いかがだったでしょうか。感想や質問は随時受けつけています。

著者紹介

ここに自己紹介を書きます

Veryl で作る RISC-V CPU

基本編

2024年11月2日 ver 1.0 (技術書典11)

著 者 kanataso

印刷所 日光企画

ⓒ 2024 カウプラン機関極東支部