Задание 1. Гигантомания

П	Cawanyayyya	Dears	Dages	Голга	Orvayr		1
Пункт	Содержание	Всего за	Всего за	Баллы	Оценки		
		часть	пункт				
Залача	1.1 Падение камушка	10	Пупкт				
1.1.1.a		10	2				
1.1.1.4	Результат (2): формула, численное		_	2		2	2
	значение					<u> </u>	
1.1.2 a			2				
	Результат (4): формула, численное			2		2	2
	значение						
1.1.1б			4				
	Движутся два тела			1		1	1
	Ускорения равны д			1		0	1
	Результат (4): формула, численное			2		0	0
	значение						
1.1.26			2				
	Результат (5): формула, численное			2		0	2
	значение						
	1.2 Космический корабль	8	_				
1.2.1a			3				
	Закон Ньютона (1)			1		1	1
	Результат (3): формула и численное			2		0	1
1.2.16	значение		-				
1.2.10	TI TIM		5	1		1	1
	Движение вокруг ЦМ			1		1	1
	Радиус траектории $-R/2$			1		0	1
	Уравнение (5)			1		0	1
	Результат (7): формула и численное			2		0	1
Золоно	значение 1.3 Эталон часа	12					
3 адача 1.3	1.5 Эталон часа	12	12				
1.3	Dominio 1119 110111		12	2		0	1
	Формула для периода мат. маятника не применима			2		0	1
	Рисунок (указаны силы или						
	моменты сил)						
	Приближение малых углов			3		2	3
	отклонения						
	- траектория горизонтальна;						
	- модуль силы тяжести не						
	изменяется; - синус угла равен углу;						
	Уравнение (4) (или равносильное)			3		0	3
3	Уравнение (6)			2		0	2
	Результат (7): формула и численное			2		0	0
	значение						

За неправильное округление (-1)				
ВСЕГО за Задание 1	30		9	23

Задание 2. Магнитное динамо

Пункт	Содержание	Всего	Всего	Баллы	Оценки		
-	_	за	за				
		часть	пункт				
Часть 1. Поле в слое		15					
1.1	Направления векторов		4				
	вектор \vec{v}			1		1	1
	вектор $ec{E}$			1		1	1
	вектор \vec{B}			2		0	2
1.2	Магнитное поле		4				
	плотность тока (1)			2		0	2
	Формула (2)			2		0	0
1.3			2				
	Направления сил 1x2			2		0	1
1.4	1		5				
	Модуль электрической силы (3)			2		1	2
	Модуль магнитной силы (4)			3		1	3
Часть 2	2. Заряды и токи	25					
2.1	Формула для силы тока (5)	23	10	1			
2.1	Формула для «напряжения» (6)		10	3			
	Формула для «напряжения» (о) Формула для сопротивления (7)			1		1	1
	Закон Ома			1		1	1
				4			
2.2	Уравнение (9)		-				
2.2	Идея: производная должна быть положительна		5	2		0	0
	Выражение для скорости (10)			1		0	0
	Численное значение (11)			2		0	0
2.3	Результат: формула (13),		3	2		0	0
2.3	численное значение		3	1		U	U
2.4	Приближение (15)		7	2		0	0
	с численным обоснованием			1			
	Формулы для оценки времени (16)			3		0	0
	Численное значение			1		0	0
Часть 3	3. Спасает ли модель масса	10					
электр							
3.1	Учет центробежной силы		5	1		0	0
	Уравнение стационарности (17)			2		0	0
	Плотность заряда (18)			2		0	0
3.2	Индукция магнитного поля		4			0	0
	формула,			1			
2.2	численное значение		1	3			
3.3	Отрицательный ответ		1	1		0	0
	За неправильное округление (-1)						
	ВСЕГО за задание 2	50				5	13

Задание 3. Таутохронизм и принцип Ферма

Пункт	Содержание	Всего за часть	Всего за пункт	Баллы	Оценки		
Часть	1. Математическое введение.	3					
1.1	Разложение (1)		1	1		1	1
1.2	Уравнение окружности		2	1		1	1
	Разложение (3)			1		1	1
Часть 2. Таутохронизм							
	«Традиционные выводы известных	ц формул	не оцени	Ваются.	!		
Задача		10	,		13		
2.1	Основная идея – постоянство			2		2	2
	времени						
	Рисунок: ход луча;			1		0	2
	- указание геометрических			1			
	параметров y, f			2			
	Формула для пути луча (4)			2		2	2
	Разложение (5)			2		0	2
	Функция поверхности (6)			1		0	1
	Формула для фокусного расстояния			1		0	1
Задача		10			23		
2.2	Рисунок: ход луча;			1		0	2
	- указание геометрических			1			
	параметров y, f			1		1	1
	Время движения в среде (9)			1		1	1
	Равенство (10)			2		2	2
	Разложение (11)			2		0	2
	Функция поверхности (12)			1		0	1
	Формула для фокусного расстояния (14)			2		2	2
Задача	2.3	10			33		
2.3.1	Рисунок: ход луча;		9	1		0	9
	- указание геометрических			1			
	параметров у, f			2			
	Равенство (15)			2		0	
	Разложение (16) - (17)			3		0	
	Формула (19)			1		0	
2.2.2	Вывод: есть постоянство времени		4	1			
2.3.2	Формула (20)	_	1	1	4.0		
Задача		7			40		
2.4.1	Предложение считать		2	2		2	2
2.4.2	«расстояния» отрицательными			1			
2.4.2	Рисунок: ход луча;		5	1		0	2
	- указание геометрических параметров y, f			1			
	Равенство (20)			1		0	1
	` /			1		0	
	Разложение (21)			1		U	1

	Формула (22)			1		1	1
2.4.3	Обоснование принципа:		5				
	- волновая природа света;			2		1	2
	- интерференция волн;			2		0	2
	- все волны в одной фазе, поэтому			1		1	1
	максимум!					_	
Часть	3. Принцип Ферма						
Задача	3.1	10			55		
3.1	Рисунок с указанием всех			2		0	2
	параметров						
	Идея: время должно быть			2		0	2
	минимальным						
	Выражение для времени			2		0	2
	распространения (23)						
	Выражение для производной (24)			2		0	2
	Геометрические соотношения (25)			1		1	1
	Закон преломления (26)			1		1	1
Задача	3.2	10			65		
3.2.1	Формула для длины хорды (27)		8	1		1	1
	Формула для длины пути (28)			3		1	3
	Схематический график:					0	0
	- две ветви синусоиды;			1			
	- первая ниже второй;			1			
	- два максимума с правильным						
	указанием координат			2			
3.2.2	Правильные значения точек		2	2		2	2
	отражения						
Задача	3.3	5					
3.3.1	Формулировка: время движение			2		1	2
	экстремально или стационарно						
3.3.2	Обоснование:					0	3
	- вблизи «стационарной» точки						
	время распространения света по						
	близким траекториям почти						
	одинаково;			1			
	- различие времен имеет второй						
	порядок малости;			1			
	- максимум интерференции	= 0				24	(5
	ИТОГО за Задание 3	70				24	65

Итоговая ведомость

Кол	работы	
	Dawy i Di	

	Задание 1	Задание 2	Задание 3	Всего за ТТ
Оценки после				
проверки				
Подпись				
проверяющего				
Изменения				
после				
ознакомления				

Итоговые баллы		
Подпись участника		
Подпись члена жюри		