数学物理方法(上)第一次作业

北京大学物理学院 2400011418 姓名:李天笑*

2025年3月3日

题 1. 证明

$$|\sinh y| \le |\cos(x+iy)| \le \cosh y, \quad x, y \in \mathbb{R}$$

解.

$$\cos(x+iy) = \cos(x)\cos(iy) - \sin(x)\sin(iy) = \cos(x)\cosh(y) - i\sin(x)\sinh(y)$$
$$|\cos(x+iy)| = \sqrt{\cos^2(x)\cosh^2(y) + \sin^2(x)\sinh^2(y)}$$

又有

$$\sinh^2(y) \le \cosh^2(y)$$

故

$$|\sinh y| \le |\cos(x+iy)| \le \cosh y$$

题 2. 求 tan(2-i) 的实部和虚部。

解.

$$\tan(x+iy) = \frac{\sin(x+iy)}{\cos(x+iy)}$$

$$= \frac{\sin(x)\cos(iy) + \cos(x)\sin(iy)}{\cos(x)\cos(iy) - \sin(x)\sin(iy)}$$

$$= \frac{\sin(x)\cosh(y) + i\cos(x)\sinh(y)}{\cos(x)\cosh(y) - i\sin(x)\sinh(y)}$$

$$= \frac{\sin(x)\cos(x) + i\sinh(y)\cosh(y)}{\cos^2(x)\cosh^2(y) + \sin^2(x)\sinh^2(y)}$$

$$= \frac{\sin(2x) + i\sinh(2y)}{\cos(2x) + \cosh(2y)}$$

故

$$\tan(2-i) = \frac{\sin(4) - i\sinh(2)}{\cos(4) + \cosh(2)}$$

^{*2400011418@}stu.pku.edu.cn

$$\operatorname{Re}(\tan(2-i)) = \frac{\sin(4)}{\cos(4) + \cosh(2)}$$

$$\operatorname{Im}(\tan(2-i)) = -\frac{\sinh(2)}{\cos(4) + \cosh(2)}$$

题 3. 求解方程 $\cos z = 4$

解.

$$e^{iz} + e^{-iz} = 8$$

$$u^2 - 8u + 1 = 0$$

解得

$$u=4\pm\sqrt{15}=e^{iz}$$

故

$$z = 2k\pi \pm i \ln(4 + \sqrt{15})$$
 $k = 0, \pm 1, \pm 2 \cdots$

题 4. 判断 $\ln(\sin(iz))$ 是否是多值函数。

解. 取 $z = \epsilon e^{i(\theta + 2k\pi)}$,则

$$\ln(\sin(iz)) = \ln\left(\sin(\epsilon e^{i(\theta + \frac{\pi}{2} + 2k\pi)})\right)$$

 ϵ 趋于 0 时,

$$\ln(\sin(iz)) = \ln(\epsilon \sin(\theta + \frac{\pi}{2} + 2k\pi)) = \ln r + i(\theta + \frac{\pi}{2} + 2k\pi)$$

即当z绕原点转一圈时,函数值发生变化,故 $\ln(\sin(iz))$ 是多值函数。

题 5. 找出 $\sqrt[3]{(z-a)(z-b)}$ 的支点,并讨论绕其中任意一个支点,任意两个支点,任意三个支点移动一周回到原处后多值函数的变化。画出割线。

显然 z = a, z = b 为支点,令 $z = \frac{1}{t}$,

$$\sqrt[3]{(z-a)(z-b)} = \sqrt[3]{\frac{(1-at)(1-bt)}{t^2}}$$

取 $t = \epsilon e^{i\theta}$, t 绕原点转一圈, 函数分母值不变, 分子相位改变 $\frac{4\pi}{3}$

故 t=0 为支点, 即无穷远点是 $\sqrt[3]{(z-a)(z-b)}$ 的支点。

综上,函数 $\sqrt[3]{(z-a)(z-b)}$ 的支点为 a, b, ∞ , 割线取作 $(-\infty,a) \cup (b,\infty)$ 。

图 1: 割线

绕一个支点移动一周,函数值辐角变化 $\frac{2\pi}{3}$ 绕两个支点移动一周,函数值辐角变化 $\frac{4\pi}{3}$ 绕三个支点移动一周,函数值辐角变化 2π ,函数值还原。

解.

题 6. 找出 $\sqrt{\tan z}$ 的所有支点并画出割线。

解. 函数 $\sqrt{\tan z}$ 的零点为 $z=n\pi$, $k=0,\pm 1,\pm 2,\cdots$, 奇点为 $z=(2n+1)\frac{\pi}{2}$, $k=0,\pm 1,\pm 2,\cdots$ 。

对于 $z=n\pi$, $k=0,\pm 1,\pm 2,\cdots$, 取 $z=n\pi+\epsilon e^{i(\theta+2k\pi)}$, ϵ 趋于 0 时,

$$\sqrt{\tan z} = \sqrt{\tan\left(n\pi + \epsilon e^{i\theta}\right)} = \sqrt{\epsilon} e^{i\left(\frac{\theta}{2} + k\pi\right)}$$

故 z 绕 $n\pi$ 转一圈,函数值发生变化,故 $z=n\pi$ 为支点。

对于 $z=(2n+1)\frac{\pi}{2}$, $k=0,\pm 1,\pm 2,\cdots$, 取 $z=(2n+1)\frac{\pi}{2}+\epsilon e^{i(\theta+2k\pi)}$, ϵ 趋于 0 时,

$$\sqrt{\tan z} = \sqrt{\tan\left((2n+1)\frac{\pi}{2} + \epsilon e^{i\theta}\right)} = \sqrt{\frac{1}{\epsilon}}e^{i(\frac{\theta}{2} + k\pi)}$$

故 z 绕 $(2n+1)\frac{\pi}{2}$ 转一圈,函数值发生变化,故 $z=(2n+1)\frac{\pi}{2}$ 为支点。 综上,函数 $\sqrt{\tan z}$ 的支点为 $z=n\pi$, $z=(2n+1)\frac{\pi}{2}$,割线取作 $(n\pi,\frac{\pi}{2}+n\pi)$ 。

图 2: 割线

题 7. 已知多值函数 $f(z)=z^p(1-z)^{-p}$, p 为实数。若在实轴上沿 0 到 1 作割线,规定在割线上岸 $\arg z=\arg(1-z)=0$ 。求 $f(\pm i)$ 和 $f(\infty)$ 。

解. 在割线上岸 $\arg z = \arg(1-z) = 0$

(1)z 从 z=0 在上方连续的变到 z=i, $\arg z$ 从 0 变到 $\frac{\pi}{2}$, 故

$$z = e^{i\frac{\pi}{2}} = i$$

1-z 从 1-z=1 连续的变到 1-z=1-i, $\arg(1-z)$ 从 0 变到 $-\frac{\pi}{4}$,故

$$1-z=\sqrt{2}e^{-i\frac{\pi}{4}}$$

$$f(i) = i^p (1-i)^{-p} = e^{i\frac{\pi}{2}p} \left(\sqrt{2}e^{-i\frac{\pi}{4}}\right)^{-p} = 2^{-\frac{p}{2}}e^{i\frac{3\pi}{4}p}$$

(2)z 从 z=0 在上方连续的变到 z=-i, $\arg z$ 从 0 变到 $\frac{3\pi}{2}$,故

$$z = e^{-i\frac{\pi}{2}} = -i$$

1-z 从 1-z=1 连续的变到 1-z=1+i, $\arg(1-z)$ 从 0 变到 $\frac{\pi}{4}$, 故

$$1 - z = \sqrt{2}e^{i\frac{\pi}{4}}$$

$$f(-i) = i^p (1-i)^{-p} = e^{i\frac{3\pi}{2}p} \left(\sqrt{2}e^{i\frac{\pi}{4}}\right)^{-p} = 2^{-\frac{p}{2}}e^{i\frac{5\pi}{4}p}$$

(3) 在无穷远点,

z 从 0 变到无穷远点, $\arg z$ 从 0 变到 θ 1 – z 从 1 变到 (1 – z), $\arg(1-z)$ 从 0 变到 $-\pi+\theta$

$$f(z) = \frac{z^p}{(1-z)^p} = e^{i\theta p} e^{-i(-\pi+\theta)p} = e^{i\pi p}$$

题 8. 证明莫比乌斯变换 $f(z)=rac{az+b}{cz+d}$ 一般来说将圆映射成圆。

令 $w = \frac{az+b}{cz+d}$ 为莫比乌斯变换,其逆变换为

$$z = \frac{dw - b}{-cw + a} forbc - ad \neq 0$$

若 z 在圆上,满足 $|z-z_0|=r$,则

$$\left| \frac{dw - b}{-cw + a} - z_0 \right| = r$$

$$\frac{|(d+cz_0)w - (b+az_0)|}{|-cw+a|} = r$$

 $\Leftrightarrow A = d + cz_0, B = b + az_0, M$

$$|Aw - B| = r |cw - a|$$

$$\left| w - \frac{B}{A} \right| = r \left| \frac{c}{A} \right| \left| w - \frac{a}{c} \right|$$

由阿波罗尼斯圆定理,w 仍然满足圆方程,w 仍然满足圆方程,故莫比乌斯变换将圆映射成圆。

另解:

将莫比乌斯变换写成 $f = f_1 \circ f_2 \circ f_3 \circ f_4$ 的形式。其中

$$f_1(z) = z + \frac{d}{c}$$

$$f_2(z) = \frac{1}{z}$$

$$f_3(z) = \frac{bc - ad}{c^2}z$$

$$f_4(z) = z + \frac{a}{c}$$

 f_1 是平移, f_2 是倒数, f_3 是缩放, f_4 是平移,故 f 是圆映射成圆。显然 f_1 , f_3 , f_4 都是圆映射,下面说明 f_2 是圆映射。 设 $w=\frac{1}{z}$,则 $z=\frac{1}{n}$. 设 z 在圆上,满足 $|z-z_0|=r$,则

$$\left| \frac{1}{w} - z_0 \right| = r$$

$$\left| w - \frac{1}{z_0} \right| = \frac{r}{|z_0|} |w|$$

w 仍然满足圆方程, 故 f_2 是圆映射。故莫比乌斯变换将圆映射成圆。

解.

题 9. 令 $f(z) = z^{\Delta}$, 其中 $\Delta > 0$ 。取割线为 0 到 $-\infty$ 。 在一个单值分支内计算

$$\lim_{\epsilon \to 0_+} \left(f(-1 - i\epsilon) - f(-1 + i\epsilon) \right)$$

极限表示 ϵ 是无穷小正整数. 结果用三角函数表示。

 $\mathbf{m}.\ f(z)=z^{\Delta}=e^{\Delta\ln z}$,取割线为 0 到 $-\infty$,则在一个单值分支内,有 $\arg z\in (-\pi+2k\pi,\pi+2k\pi)$,故

$$-1 - i\epsilon = \sqrt{1 + \epsilon^2} e^{-i(\pi - \arcsin \epsilon) + i2k\pi}$$
$$-1 + i\epsilon = \sqrt{1 + \epsilon^2} e^{i(\pi - \arcsin \epsilon) + i2k\pi}$$

$$f(-1 - i\epsilon) - f(-1 + i\epsilon) = e^{\Delta(\ln(\sqrt{1 + \epsilon^2}) - i(\pi - \arcsin\epsilon) + i2k\pi)} - e^{\Delta(\ln(\sqrt{1 + \epsilon^2}) + i(\pi - \arcsin\epsilon) + i2k\pi)}$$

$$= e^{\Delta(\ln(\sqrt{1 + \epsilon^2}) + i2k\pi)} \left(e^{-i\Delta(\pi - \arcsin\epsilon)} - e^{i\Delta(\pi - \arcsin\epsilon)} \right)$$

$$= -2ie^{\Delta(\ln(\sqrt{1 + \epsilon^2}) + i2k\pi)} \sin(\Delta(\pi - \arcsin\epsilon))$$

$$\lim_{\epsilon \to 0_+} (f(-1 - i\epsilon) - f(-1 + i\epsilon)) = -2ie^{i2\Delta k\pi} \sin(\Delta \pi)$$

$$\not \pm \psi \ k = 0, \pm 1, \pm 2, \cdots$$

题 10. 寻找一个支点在 $\pm a$ 的函数 f(z), 割线取作 (-a,a), 要求在单值分支内满足:

$$\lim_{\epsilon \to 0_+} (f(x+i\epsilon) - f(x-i\epsilon)) = \begin{cases} e^x & |x| < a \\ 0 & |x| > a \end{cases}$$

解. 先考察 $f(z) = e^z \ln \left(\frac{z+a}{z-a} \right)$ 。

$$f(x+i\epsilon) = e^x \ln\left(\frac{x+a+i\epsilon}{x-a+i\epsilon}\right), \ f(x-i\epsilon) = e^x \ln\left(\frac{x+a-i\epsilon}{x-a-i\epsilon}\right)$$

在一个单值分支内,对于 |x| < a,有

$$x + a + i\epsilon = x + a, \quad x - a + i\epsilon = (a - x)e^{i\pi}$$

$$x + a - i\epsilon = (x + a)e^{i2\pi}, \quad x - a - i\epsilon = (a - x)e^{i\pi}$$

$$f(x + i\epsilon) = e^x \ln\left(\frac{x + a}{a - x}\right) - i\pi e^x, \quad f(x - i\epsilon) = e^x \ln\left(\frac{x + a}{a - x}\right) + i\pi e^x$$

$$\lim_{\epsilon \to 0_+} (f(x + i\epsilon) - f(x - i\epsilon)) = -2i\pi e^x$$

对于 |x| > a,有

$$x + a + i\epsilon = x + a, \quad x - a + i\epsilon = x - a$$

$$x + a - i\epsilon = (x + a)e^{i2\pi}, \quad x - a - i\epsilon = (x - a)e^{i2\pi}$$

$$f(x + i\epsilon) = e^x \ln\left(\frac{x + a}{x - a}\right), \quad f(x - i\epsilon) = e^x \ln\left(\frac{x + a}{x - a}\right)$$

$$\lim_{\epsilon \to 0_+} (f(x + i\epsilon) - f(x - i\epsilon)) = 0$$

为满足题目条件,取 $f(z) = \frac{i}{2\pi}e^z \ln\left(\frac{z+a}{z-a}\right)$,此时有在一个单值分支内

$$\lim_{\epsilon \to 0_+} (f(x+i\epsilon) - f(x-i\epsilon)) = \begin{cases} e^x & |x| < a \\ 0 & |x| > a \end{cases}$$

题 11. (选做) 比较课上讲过的各种复变函数可视化方式, 哪种更容易帮助找到多值函数的支点? 如何画出 \sqrt{z} 的黎曼面?

解.

- (1)domain coloring 更容易帮助找到多值函数的支点,可以通过图形的颜色变换看出来函数的支点
 - (2) 若要画出函数 \sqrt{z} 的黎曼面,先找到 \sqrt{z} 的支点以及单值分支 支点为 z = 0, $z = \infty$,两个单值分支上函数的形式分别为

$$f(z) = \sqrt{r}e^{i\frac{\theta}{2}}$$
, $f(z) = \sqrt{r}e^{i\frac{\theta}{2} + i\pi}$

可以将 $f(z)=\sqrt{z}$ 的两个分支分别绘制在三维空间中的不同高度上,从而形成一个完整的黎曼面。