Vorkurs Mathematik 2019 | Aufgaben zum Thema

Beweistechniken II

Aufgabe 1: Kontraposition I

Verwende einen Beweis durch Kontraposition, um folgenden Satz zu zeigen.

Satz I

Ist für $x, y \in \mathbb{R}$ das Produkt xy irrational, so muss eine der Zahlen x oder y irrational sein.

Aufgabe 2: Kontraposition II

Verwende einen Beweis durch Kontraposition, um folgenden Satz zu zeigen.

Satz II

Ist n eine ganze Zahl und n^2 gerade, so ist n gerade.

Aufgabe 3: Quadratwurzel

- (a) Sei $a \in \mathbb{R}, a \geq 0$. Definiere formal das Symbol \sqrt{a} für die Quadratwurzel von a.
- !(b) Beweise Satz III!

Satz III

Die Quadratwurzel aus 2 ist irrational.

Hinweis: Verwende einen Widerspruchsbeweis und stelle $\sqrt{2}$ als gekürzten Bruch dar. Benutze Satz II, um mehr über diesen Bruch herauszufinden.

Aufgabe 4: Größte natürliche Zahl

Finde den Fehler in folgendem falschen Beweis:

Behauptung: 1 ist die größte natürliche Zahl.

Beweis: Sei N die größte natürliche Zahl. Angenommen, $N \neq 1$. Dann ist N > 1. Dann ist aber $N^2 > N$, also N nicht die größte natürliche Zahl, ein Widerspruch. Also muss 1 die größte natürliche Zahl sein.

! Aufgabe 5: Primzahlen

Beweise folgenden Satz über Primzahlen.

Satz IV

Jede natürliche Zahl größer als 1 hat einen Primteiler.

Hierbei helfen folgende Definitionen:

Definition V

Seien $a, n \in \mathbb{Z}$. a heißt ein **Teiler** von n, falls es eine ganze Zahl q gibt mit n = qa.

Die dafür übliche Schreibweise lautet a|n. In Worten: a teilt n.

Definition VI

Sei $p \in \mathbb{N}$ und p > 1. p heißt eine **Primzahl**, falls 1 und p die einzigen natürlichen Zahlen sind, die p teilen. Ansonsten heißt p zusammengesetzt.

Definition VII

Seien $p, n \in \mathbb{N}$ und n > 1. p heißt ein **Primteiler** von n, falls p eine Primzahl ist und n teilt.

