Recalibration of Predicted Probabilities Using the "Logit Shift": Why does it work, and when can it be expected to work well?

Evan T. R. Rosenman, † Cory McCartan, & Santiago Olivella

[†]Harvard University Data Science Initiative

January 10, 2023

Today's Talk

- Introduce the "logit shift," a widely-used heuristic technique for recalibrating probabilities
- Characterize the logit shift via connections to information theory and a Bayesian update procedure
- 4 Highlight drawbacks of the logit shift in practice

Outline

- 1 What is the logit shift?
- Characterizations of the logit shift
- 3 Logit Shift Limitations
 - Heterogeneity and Target Aggregation Levels
 - Limits to What Can Be Learned From a Total

The Recalibration Problem

• Problem: calibrating probabilities to observed totals

The Recalibration Problem

- Problem: calibrating probabilities to observed totals
- Example: have scores $p_i \in (0,1)$, i = 1,...,N predicting prob. that each voter in a precinct supports Dem candidate
 - After election, observe total Dem votes D, cast by subset $\mathcal{V} \subset \{1,\dots,N\}$ of registered voters who participated
 - Absent perfect prediction, we will find

$$\sum_{i\in\mathcal{V}}p_i\neq D$$

The Recalibration Problem

- Problem: calibrating probabilities to observed totals
- Example: have scores $p_i \in (0,1)$, i = 1,...,N predicting prob. that each voter in a precinct supports Dem candidate
 - After election, observe total Dem votes D, cast by subset $\mathcal{V} \subset \{1, \dots, N\}$ of registered voters who participated
 - Absent perfect prediction, we will find

$$\sum_{i\in\mathcal{V}}p_i\neq D$$

• How to compute recalibrated scores, \tilde{p}_i , incorporating information about the realized electoral outcome?

A Heuristic Solution: the Logit Shift!

Intuition: suppose p_i are generated by a logistic regression. Shift model *intercept* until recalibrated scores \tilde{p}_i satisfy

$$\sum_{i\in\mathcal{V}}\tilde{p}_i=D.$$

A Heuristic Solution: the Logit Shift!

Intuition: suppose p_i are generated by a logistic regression. Shift model *intercept* until recalibrated scores \tilde{p}_i satisfy

$$\sum_{i\in\mathcal{V}}\tilde{p}_i=D.$$

Can be used even if scores p_i not generated by logistic regression.

- Idea: apply logit function; adjust scores until they sum to D
- Binary search → computationally efficient

A Heuristic Solution: the Logit Shift!

Intuition: suppose p_i are generated by a logistic regression. Shift model *intercept* until recalibrated scores \tilde{p}_i satisfy

$$\sum_{i\in\mathcal{V}}\tilde{p}_i=D.$$

Can be used even if scores p_i not generated by logistic regression.

- Idea: apply logit function; adjust scores until they sum to D
- Binary search → computationally efficient

Why should we care about the logit shift?

Academic research: used in many research problems involving racially polarized voting, subgroup electoral preferences, etc. (Ghitza and Gelman, 2020; Kuriwaki et al., 2022)

Electioneering: frequently requires adjusting voter scores to target totals (e.g. election simulation, conditional voter scores, etc.)

Outline

- What is the logit shift?
- 2 Characterizations of the logit shift
- 3 Logit Shift Limitations
 - Heterogeneity and Target Aggregation Levels
 - Limits to What Can Be Learned From a Total

A simple characterization from information theory

Can derive the logit shift from **information theory**.

A simple characterization from information theory

Can derive the logit shift from information theory.

Logit-shifted $\{\tilde{p}_i\}$ solve the problem

$$\begin{array}{ll} \text{minimize} & \sum_{i} \mathcal{D}_{\textit{KL}} \left(\tilde{p}_{i} \mid\mid p_{i} \right) \\ \\ \text{subject to} & \sum_{i} \tilde{p}_{i} = D, \end{array}$$

i.e. minimize the summed **KL divergence** with the original $\{p_i\}$ among all sets of probabilities summing to D.

Alternative procedure: Bayesian updating

Define $W_i \in \{0,1\}$ as vote choice (1 = Dem, 0 = Rep).

Model $W_i \sim \text{Bern}(p_i)$ where p_i are prior Dem support probability.

Alternative procedure: Bayesian updating

Define $W_i \in \{0,1\}$ as vote choice (1 = Dem, 0 = Rep).

Model $W_i \sim \text{Bern}(p_i)$ where p_i are prior Dem support probability. Posterior update conditional on observed votes D:

$$\begin{aligned} p_i^* &= \mathbb{P}\left(W_i = 1 \left| \sum_{j \in \mathcal{V}} W_j = D \right) = \frac{\mathbb{P}\left(W_i = 1, \sum_{j \in \mathcal{V}} W_j = D\right)}{\mathbb{P}\left(\sum_{j \in \mathcal{V}} W_j = D\right)} \\ &= p_i \times \frac{\mathbb{P}\left(\sum_{j \neq i} W_j = D - 1\right)}{\mathbb{P}\left(\sum_{j \in \mathcal{V}} W_j = D\right)}. \end{aligned}$$

Observe $\sum_{i \in \mathcal{V}} p_i^* = D$ automatically.

Posterior update procedure: the problem

Define $W_i \in \{0,1\}$ as vote choice (1 = Dem, 0 = Rep).

uh oh!

Model $W_i \sim \text{Bern}(p_i)$ where p_i are prior Dem support probability. Posterior update conditional on observed votes D:

$$\begin{split} p_i^{\star} &= \mathbb{P}\left(W_i = 1 \left| \sum_{j \in \mathcal{V}} W_j = D \right. \right) = \frac{\mathbb{P}\left(W_i = 1, \sum_{j \in \mathcal{V}} W_j = D \right)}{\mathbb{P}\left(\sum_{j \in \mathcal{V}} W_j = D \right)} \\ &= p_i \times \underbrace{\frac{\mathbb{P}\left(\sum_{j \neq i} W_j = D - 1 \right)}{\mathbb{P}\left(\sum_{j \in \mathcal{V}} W_j = D \right)}}_{\text{Poisson-Binomial probabilities}} \,. \end{split}$$

Poisson-Binomial Distribution

A **Poisson-Binomial** random variable is the sum of independent but not identically distributed Bernoulli random variables.

PMF now involves **combinatoric sums** ⇒ Despite recent advances (Olivella and Shiraito, 2017; Junge, 2020), still computationally demanding to compute.

Implication: not feasible to compute p_i^* at even modest sample sizes (e.g. tens of precincts).

Main Results

Posterior updated probabilities $\{p_i^{\star}\}$ not computable in practice \Rightarrow But logit shifted scores $\{\tilde{p}_i\}$ are a good approximation!

Theorem (Error Bounds)

For large sample sizes, we obtain

$$ilde{p}_i = p_i^\star + \mathcal{O}\left(rac{1}{|\mathcal{V}|}
ight)\,.$$

Simulations: Probability Distributions

Figure 1: The distributions used for sampling p_i in simulations. Drawn from Biscarri et al. (2018).

Simulations: Procedure

Sample the initial scores p_i from the distribution.

Simulations: Procedure

Compute both the logit shifted scores $\{\tilde{p}_i\}$ and the posterior updated scores $\{p_i^{\star}\}$, with $D = 0.8 \times \sum_i p_i$.

Simulations: Procedure

Compare the logit shifted scores $\{\tilde{p}_i\}$ vs. the posterior updated scores $\{p_i^{\star}\}$.

Simulation Results

p _i Setting	Sample Size	$1 - R^2$
Uniform	100	5.81×10^{-5}
Uniform	1000	5.51×10^{-7}
Close to 0	100	1.06×10^{-2}
Close to 0	1000	3.11×10^{-5}
Close to 1	100	1.12×10^{-4}
Close to 1	1000	1.12×10^{-6}
Extremal	100	1.16×10^{-6}
Extremal	1000	1.19×10^{-6}
Central	100	7.66×10^{-5}
Central	1000	7.16×10^{-7}
Bimodal	100	6.72×10^{-5}
Bimodal	1000	6.77×10^{-7}

Table 1: Discrepancy between between logit shift and exact Poisson-Binomial probabilities. Observed D is equal to $0.8 \times \sum_{i} p_{i}$.

Outline

- 1 What is the logit shift?
- 2 Characterizations of the logit shift
- 3 Logit Shift Limitations
 - Heterogeneity and Target Aggregation Levels
 - Limits to What Can Be Learned From a Total

Outline

- 1 What is the logit shift?
- 2 Characterizations of the logit shift
- 3 Logit Shift Limitations
 - Heterogeneity and Target Aggregation Levels
 - Limits to What Can Be Learned From a Total

Heterogeneous Groups

Logit shift is **rank-preserving** \Rightarrow But what if errors vary by subgroup?

Heterogeneous Groups

Logit shift is **rank-preserving** \Rightarrow But what if errors vary by subgroup?

Simple example:

- Suppose two groups of voters: Black and White
 - Black voters: $p_i = 0.7$ but $p_i^{\text{true}} = 0.8$
 - White voters: $p_i = 0.3$ but $p_i^{\text{true}} = 0.2$
- Run logit shift; suppose population is heavily White

Heterogeneous Groups

Logit shift is **rank-preserving** \Rightarrow But what if errors vary by subgroup?

Simple example:

- Suppose two groups of voters: Black and White
 - Black voters: $p_i = 0.7$ but $p_i^{\text{true}} = 0.8$
 - White voters: $p_i = 0.3$ but $p_i^{\text{true}} = 0.2$
- Run logit shift; suppose population is heavily White
- ullet This will yield a big downward adjustment to the scores \Rightarrow
 - \tilde{p}_i more accurate for White voters, but...
 - less accurate for Black voters!

Implications in Practice

- Logit shift is most performant if conducted in groupings with more homogeneous voters
- Recommend conducting logit shift at finest available level of aggregation (e.g. voting precincts)
 - Populations typically more homogenous at finer aggregations.
 - 2020 Census data on race/ethnicity: 39.8% of voting-age population was in the minority nationwide, but only 12.9% within Census block (U.S. Census Bureau, 2021).

If subgroup-specific prediction errors are highly variable, may need a richer model than the logit shift!

Outline

- 1 What is the logit shift?
- Characterizations of the logit shift
- 3 Logit Shift Limitations
 - Heterogeneity and Target Aggregation Levels
 - Limits to What Can Be Learned From a Total

Same Total, Different Distributions

Recall: can only observe how the original predictions p_i differ from true p_i^{true} via discrepancy in their sum

Same Total, Different Distributions

Recall: can only observe how the original predictions p_i differ from true p_i^{true} via discrepancy in their sum

But distribution carries much more info than its mean!

Same Total, Different Distributions

Recall: can only observe how the original predictions p_i differ from true p_i^{true} via discrepancy in their sum

But distribution carries much more info than its mean!

Implication: logit shift cannot correct for errors in *shape* of scores p_i distribution, only errors in the *location* of the distribution.

Thanks!

Thanks to my co-authors, Cory and Santiago!

Paper draft available at arXiv 2112.06674.

Full paper available now in **Political Analysis**.

References (I)

- Biscarri, W., Zhao, S. D., and Brunner, R. J. (2018). A simple and fast method for computing the poisson binomial distribution function. Computational Statistics & Data Analysis, 122:92–100.
- Ghitza, Y. and Gelman, A. (2020). Voter registration databases and mrp: Toward the use of large-scale databases in public opinion research. *Political Analysis*, 28(4):507–531.
- Junge, F. (2020). Package 'poissonbinomial'. Computational Statistics & Data Analysis, 59:41-51.
- Kuriwaki, S., Ansolabehere, S., Dagonel, A., and Yamauchi, S. (2022). The geography of racially polarized voting: Calibrating surveys at the district level. OSF Preprints.
- Olivella, S. and Shiraito, Y. (2017). poisbinom: A faster implementation of the poisson-binomial distribution. r package version 1.0. 1.
- Siripraparat, T. and Neammanee, K. (2021). A local limit theorem for Poisson Binomial random variables. Sci. Asia. https://doi. org/10.2306/scienceasia1513-1874.2021, 6.
- U.S. Census Bureau (2021). 2020 census. U.S. Department of Commerce.

Logit Shift Computation

• Define $\alpha \in [0, \infty)$ s.t. its log is equal to the intercept shift,

$$logit(\tilde{p}_i) = logit(p_i) - log(\alpha),$$

where logit(z) = log(z/(1-z)).

• Define summed, recalibrated probabilities as function of α ,

$$h(\alpha) = \sum_{i \in \mathcal{V}} \tilde{p}_i = \sum_{i \in \mathcal{V}} \sigma\left(\operatorname{logit}(p_i) - \operatorname{log}(\alpha)\right)$$

where $\sigma(z) = \exp(z)/(1 + \exp(z))$

• Solve for α' satisfying $h(\alpha') = D$ via binary search. Then

$$\tilde{p}_i = \sigma\left(\mathsf{logit}(p_i) - \mathsf{log}(\alpha')\right)$$

Proof Sketch (I): Preliminaries

Recall that $f(p, \alpha)$ shifts a score p by $\log(\alpha)$ on the logit scale:

$$f(p, alpha) = \sigma\left(\operatorname{logit}(p) + \operatorname{log}(\alpha)\right) = \frac{1}{1 + \frac{1-p}{p}(\alpha)}.$$

Define also the unit-specific quantity

$$\phi_i = \frac{\mathbb{P}\left(\sum_{j\neq i} W_j = D\right)}{\mathbb{P}\left(\sum_{j\neq i} W_j = D - 1\right)}.$$

Proof Sketch (II): Taking p_i to p_i^* using ϕ_i

$$f(p_i, \phi_i) = \frac{1}{1 + \frac{1 - p_i}{p_i} \phi_i} = \frac{1}{1 + \frac{1 - p_i}{p_i} \frac{\mathbb{P}(\sum_{j \neq i} W_j = D)}{\mathbb{P}(\sum_{j \neq i} W_j = D - 1)}}$$

$$= \frac{p_i \times \mathbb{P}\left(\sum_{j \neq i} W_j = D - 1\right)}{p_i \times \mathbb{P}\left(\sum_{j \neq i} W_j = D - 1\right) + (1 - p_i) \times \mathbb{P}\left(\sum_{j \neq i} W_j = D\right)}$$

$$= \frac{\mathbb{P}\left(W_i = 1, \sum_{i \in \mathcal{V}} W_i = D\right)}{\mathbb{P}\left(\sum_{i \in \mathcal{V}} W_i = D\right)} = p_i^{\star}.$$

Idea: ϕ_i is precisely the (unit-specific) adjustment that turns each p_i into the desired p_i^* using the function f.

The logit shift uses a constant α to approximate each entry in the vector of unit-specific adjustments $\{\phi_i\}_{i\in\mathcal{V}}$.

Proof Sketch (III): Helpful Poisson-Binomial Properties

TODO: Show that the single value of α used by the logit shift is a very good approximation of ϕ_i for all values of i.

Theorem (Poisson-Binomial Properties)

The value of α used by the logit shift satisfies:

$$\min_i \frac{\mathbb{P}\left(\sum_{j\neq i} W_j = D\right)}{\mathbb{P}\left(\sum_{j\neq i} W_j = D - 1\right)} \leq \alpha \leq \max_i \frac{\mathbb{P}\left(\sum_{j\neq i} W_j = D\right)}{\mathbb{P}\left(\sum_{j\neq i} W_j = D - 1\right)}.$$

Moreover, for any choice of $i \in V$, we have

$$\frac{\mathbb{P}\left(\sum_{j \in \mathcal{V}} W_j = D + 1\right)}{\mathbb{P}\left(\sum_{j \in \mathcal{V}} W_j = D\right)} \leq \frac{\mathbb{P}\left(\sum_{j \neq i} W_j = D\right)}{\mathbb{P}\left(\sum_{j \neq i} W_j = D - 1\right)} \leq \frac{\mathbb{P}\left(\sum_{j \in \mathcal{V}} W_j = D\right)}{\mathbb{P}\left(\sum_{j \in \mathcal{V}} W_j = D - 1\right)}.$$

Proof Sketch (IV): Combining Bounds Approximating

We can combine the two prior results to observe

$$\begin{split} \frac{\mathbb{P}\left(\sum_{j \in \mathcal{V}} W_j = D + 1\right)}{\mathbb{P}\left(\sum_{j \in \mathcal{V}} W_j = D\right)} &\leq \min_i \frac{\mathbb{P}\left(\sum_{j \neq i} W_j = D\right)}{\mathbb{P}\left(\sum_{j \neq i} W_j = D - 1\right)} \leq \alpha \\ &\leq \max_i \frac{\mathbb{P}\left(\sum_{j \neq i} W_j = D\right)}{\mathbb{P}\left(\sum_{j \neq i} W_j = D - 1\right)} \leq \frac{\mathbb{P}\left(\sum_{j \in \mathcal{V}} W_j = D\right)}{\mathbb{P}\left(\sum_{j \in \mathcal{V}} W_j = D - 1\right)}. \end{split}$$

Lastly, apply normal approximation bounds to the outermost Poisson-Binomial expressions (Siripraparat and Neammanee, 2021) to obtain the result.

Simulation Results

p _i Setting	Sample Size	RMSE	$1 - R^2$	KLD
Uniform	100	0.00195	5.81×10^{-5}	1.21×10^{-3}
Uniform	1000	0.00021	5.51×10^{-7}	1.43×10^{-4}
Close to 0	100	0.00772	1.06×10^{-2}	1.68×10^{-2}
Close to 0	1000	0.00043	3.11×10^{-5}	5.24×10^{-4}
Close to 1	100	0.00369	1.12×10^{-4}	6.38×10^{-3}
Close to 1	1000	0.00034	1.12×10^{-6}	5.13×10^{-4}
Extremal	100	0.00496	1.16×10^{-6}	1.22×10^{-2}
Extremal	1000	0.00050	1.19×10^{-6}	1.05×10^{-3}
Central	100	0.00161	7.66×10^{-5}	7.04×10^{-4}
Central	1000	0.00016	7.16×10^{-7}	6.63×10^{-5}
Bimodal	100	0.00227	6.72×10^{-5}	1.74×10^{-3}
Bimodal	1000	0.00023	6.77×10^{-7}	1.93×10^{-4}

Table 2: Discrepancy between between logit shift and exact Poisson-Binomial probabilities. Observed D is equal to $0.8 \times \sum_{i} p_{i}$

Proof Sketch (I): Preliminaries

Recall the shift function $f(p, \alpha)$. Adjusts a score p by $log(\alpha)$ on the logit scale:

$$f(p, \alpha) = \sigma(\operatorname{logit}(p) + \log(\alpha)) = \frac{1}{1 + \frac{1-p}{p}(\alpha)}.$$

Define also the unit-specific Poisson-Binomial ratio:

$$\phi_i = rac{\mathbb{P}\left(\sum_{j \neq i} W_j = D\right)}{\mathbb{P}\left(\sum_{j \neq i} W_j = D - 1\right)}.$$

Proof Sketch (II): Taking p_i to p_i^* using a shift by ϕ_i

$$f(p_i, \phi_i) = \frac{1}{1 + \frac{1 - p_i}{p_i} \phi_i} = \frac{1}{1 + \frac{1 - p_i}{p_i} \frac{\mathbb{P}(\sum_{j \neq i} W_j = D)}{\mathbb{P}(\sum_{j \neq i} W_j = D - 1)}}$$

$$= \frac{p_i \times \mathbb{P}\left(\sum_{j \neq i} W_j = D - 1\right)}{p_i \times \mathbb{P}\left(\sum_{j \neq i} W_j = D - 1\right) + (1 - p_i) \times \mathbb{P}\left(\sum_{j \neq i} W_j = D\right)}$$

$$= \frac{\mathbb{P}\left(W_i = 1, \sum_{i \in \mathcal{V}} W_i = D\right)}{\mathbb{P}\left(\sum_{i \in \mathcal{V}} W_i = D\right)} = p_i^*$$

where on the last line we have used the recursion

$$\mathbb{P}\left(\sum_{j}W_{j}=D
ight)=p_{i} imes\mathbb{P}\left(\sum_{j
eq i}W_{j}=D-1
ight)+(1-p_{i}) imes\mathbb{P}\left(\sum_{j
eq i}W_{j}=D
ight).$$

Proof Sketch (III): Final Steps

We have shown: ϕ_i is the *unit-specific* adjustment that turns each p_i into the desired p_i^* :

$$f(p_i, \phi_i) = p_i^*$$
.

Recall: the logit shift uses a *precinct-specific* adjustment α to update the probabilities via

$$f(p_i,\alpha)=\tilde{p}_i.$$

Final proof step: show that the α used in the logit shift, found by solving $\sum_{i \in \mathcal{V}} f(p_i, \alpha) = D$, satisfies

 $\alpha \approx \phi_i$ for all values of i.

Future Work

Natural extension is to consider a more expressive update model that includes covariates, e.g.

$$\tilde{p}_i = \frac{1}{1 + \frac{1 - p_i}{p_i} \exp(\beta^T X_i)}.$$

Need to learn coefficient β from the data. Achievable via:

- Approximating Poisson-Binomial likelihood with a Gaussian (Siripraparat and Neammanee, 2021).
- Training model via gradient descent

Principled way to update the model to, e.g., account for Hispanic Republican swing in 2020 elections.

Can then apply logit shift as a final "clean-up" step.

Properties of the Logit Shift

- Original scores needn't be generated by a logistic regression
- Rank-preserving:

$$p_i < p_j \implies \tilde{p}_i < \tilde{p}_j$$

• The $\{\tilde{p}_i\}$ minimize the summed **KL divergence** with the $\{p_i\}$ among all sets of probabilities summing to D.

Logit Shift Computation

• Denote as $f(p, \alpha)$ the "shift" function:

$$f(p, \alpha) = \sigma(\operatorname{logit}(p) + \operatorname{log}(\alpha)) = \frac{1}{1 + \frac{1-p}{p}(\alpha)}.$$

Returns "shifted" probability, adjusted on logit scale

Logit Shift Computation

• Denote as $f(p, \alpha)$ the "shift" function:

$$f(p, \alpha) = \sigma(\operatorname{logit}(p) + \operatorname{log}(\alpha)) = \frac{1}{1 + \frac{1-p}{p}(\alpha)}.$$

Returns "shifted" probability, adjusted on logit scale

ullet Define summed, recalibrated probabilities as function of lpha,

$$h(\alpha) = \sum_{i \in \mathcal{V}} f(p_i, \alpha) = \sum_{i \in \mathcal{V}} \sigma(\operatorname{logit}(p_i) - \operatorname{log}(\alpha))$$

Logit Shift Computation

• Denote as $f(p, \alpha)$ the "shift" function:

$$f(p, \alpha) = \sigma(\operatorname{logit}(p) + \operatorname{log}(\alpha)) = \frac{1}{1 + \frac{1-p}{p}(\alpha)}.$$

Returns "shifted" probability, adjusted on logit scale

ullet Define summed, recalibrated probabilities as function of lpha,

$$h(\alpha) = \sum_{i \in \mathcal{V}} f(p_i, \alpha) = \sum_{i \in \mathcal{V}} \sigma(\operatorname{logit}(p_i) - \operatorname{log}(\alpha))$$

• Solve for α' satisfying $h(\alpha') = D$ via binary search. Then

$$\tilde{p}_i = f(p_i, \alpha') = \sigma \left(\operatorname{logit}(p_i) - \operatorname{log}(\alpha') \right).$$

Simulation Results

- Simulate the two-group situation with n = 1,000 voters.
- Draw p_i from each distribution, but p_i^{true} are 10% higher for White voters and 10% lower for Black voters
- Sample the outcomes; conduct logit shift to obtain \tilde{p}_i . Report value of $\frac{\text{cor}(\tilde{p}_i, p_i^{\text{true}}) \text{cor}(p_i, p_i^{\text{true}})}{\text{cor}(p_i, p_i^{\text{true}})}$.

	70% W/30% B			80% W/20% B			90% W/10% B		
Initial Score Dist	w	В	AII	w	В	AII	w	В	All
Uniform	0.01	-0.02	0.00	0.01	-0.02	0.01	0.01	-0.03	0.01
Close to 0	0.07	-0.06	0.01	0.13	-0.11	0.04	0.25	-0.37	0.16
Close to 1	0.04	-0.07	0.02	0.07	-0.18	0.04	0.07	-0.21	0.05
Extremal	0.04	-0.05	0.02	0.08	-0.12	0.04	0.09	-0.08	0.08
Central	0.02	-0.01	0.00	0.00	-0.01	0.00	0.00	-0.00	0.00
Bimodal	0.00	-0.01	0.00	0.00	-0.01	0.00	0.01	-0.01	0.00

Simulation Results

- Sample 1,000 voters such that p_i^{true} and p_i follow each possible pair of distributions among the 36 pairs.
- Sample the outcomes; conduct logit shift to obtain \tilde{p}_i . Report value of $\frac{\text{cor}(\tilde{p}_i, p_i^{\text{true}}) \text{cor}(p_i, p_i^{\text{true}})}{\text{cor}(p_i, p_i^{\text{true}})}$.

	Initial Prediction Distribution (p_i)						
		Unif.	≈ 0	pprox 1	Extremal	Central	Bimodal
True Distr. (p_i^{true})	Unif.	0.00	0.65	0.84	0.00	0.00	0.00
	≈ 0	0.65	0.00	4.61	1.68	0.46	0.89
	pprox 1	0.68	2.36	0.00	1.46	0.46	0.91
	Extremal	0.00	1.15	1.13	0.00	0.00	0.00
	Central	0.00	0.55	0.49	0.00	0.00	0.00
	Bimodal	0.00	0.72	0.84	0.00	0.00	0.00