## ОПРЕДЕЛЕНИЯ, ОБОЗНАЧЕНИЯ И СОКРА-ЩЕНИЯ

БД – Базы данных

СУБД – Система Управления Базами Данных

План выполнения SQL запроса – конкретный набор операций, которые необходимо выполнить для получения результата запроса.

Планировщик SQL запросов в реляционной СУБД – часть СУБД, которая отвечает за создание итогового плана выполнения запроса.

# Содержание

| 1                | Аналитический раздел |                   |           |      |       |     |          |  | 5 |  |   |    |
|------------------|----------------------|-------------------|-----------|------|-------|-----|----------|--|---|--|---|----|
|                  | 1.1                  | Выбор СУБД        |           |      |       |     |          |  |   |  |   | 5  |
|                  | 1.2                  | Этапы обработки S | QL-запрос | ca   |       |     |          |  |   |  |   | 5  |
|                  | 1.3                  | План выполнения з | апроса .  |      |       |     |          |  |   |  |   | 7  |
|                  | 1.4                  | Выбор БД          |           |      |       |     |          |  |   |  | • | 8  |
|                  |                      | 1.4.1 AdventureWo | orks      |      |       |     |          |  |   |  |   | 8  |
|                  |                      | 1.4.2 Northwind . |           |      |       |     |          |  |   |  |   | 9  |
|                  |                      | 1.4.3 Chinook     |           |      |       |     |          |  |   |  |   | 9  |
| <b>2</b>         | Кон                  | иструкторский раз | здел      |      |       |     |          |  |   |  |   | 10 |
|                  | 2.1                  | Алгоритм построен | ия запрос | авРо | ostgr | eS( | $^{2}$ L |  |   |  |   | 10 |
| $\mathbf{C}_{1}$ | писо                 | к литературы      |           |      |       |     |          |  |   |  |   | 12 |
| П                | РИЛ                  | ОЖЕНИЕ А          |           |      |       |     |          |  |   |  |   | 13 |
| Π                | РИЛ                  | ОЖЕНИЕ А          |           |      |       |     |          |  |   |  |   | 14 |
| Π                | РИЛ                  | ОЖЕНИЕ Б          |           |      |       |     |          |  |   |  |   | 15 |
| П                | РИЛ                  | ОЖЕНИЕ В          |           |      |       |     |          |  |   |  |   | 16 |

## 1 Аналитический раздел

## 1.1 Выбор СУБД

В современном мире при нынешних обстоятельствах на фоне политических конфликтов необходимо ПО с открытым исходным кодом. К таким относятся: PostgreSQL, MySql. Сравнение основных характеристик приводится в таблице 1.1 [2].

Таблица 1.1 – Сравнение основных характеристик СУБД

| СУБД       | Open<br>source | ACID | RDBMS | Cloud-<br>only | OLTP | In-<br>memory | SQL |
|------------|----------------|------|-------|----------------|------|---------------|-----|
| PostgreSQL | +              | +    | +     | -              | +    | -             | +   |
| Oracle     | -              | +    | +     | _              | +    | -             | +   |
| MySQL      | +              | +    | +     | -              | +    | -             | +   |
| MariaDB    | +              | +    | +     | -              | +    | -             | +   |
| MongoDB    | +              | +    | -     | -              | +    | -             | -   |
| SQLite     | +              | +    | +     | _              | +    | -             | +   |
| Cassandra  | +              | -    | _     | -              | +    | -             | -   |
| Redis      | +              | _    | -     | -              | +    | +             | -   |

PostgreSQL является стабильной СУБД, имеет хорошо структурированные данные, поэтому именно она и выбирается в качестве основной.

## 1.2 Этапы обработки SQL-запроса

Подход к выполнению запроса СУБД на примере PostgreSQL представлен на рисунке 1.1.



Рисунок 1.1 – Выполнение запроса в PostgreSQL.

Основными шагами, которые выполняются при выполнении SQL-запроса в реляционных СУБД являются следующие [4].

- 1. Лексический и синтаксический анализ. На данном этапе входная строка пользователя обрабатывается лексическим и синтаксическим анализаторами; в результате строится дерево запроса.
- 2. Семантический анализ. Полученное на предыдущей стадии дерево запроса дополняется различного рода метаинформацией: системными идентификаторами таблиц, типами и порядковыми номерами запрашиваемых полей, перечнем соединяемых таблиц и т.д.
- 3. Обработка системой правил. Далее выполняется поиск в системных каталогах правил, применимых к дереву запроса, и при обнаружении подходящих выполняются преобразования, которые описаны в теле найденного правила. Примером такого преобразования является замена представлений (виртуальных таблиц) на обращение к базовым таблицам из определения представления.
- 4. Планирование и оптимизация. На вход планировщику поступает структура с деревом запроса (приложение ??). Осуществляется вы-

бор наиболее эффективного пути выполнения этого запроса с точки зрения имеющихся оценок затрат и статической информации на момент выполнения. После выбора оптимального метода доступа к данным, конечный вариант преобразуется в полноценный план запроса и передается исполнителю.

5. Выполнение итогового плана запроса. Исполнителем осуществляется рекурсивный обход по дереву плана: *сканируются отношения*, выполняется *сортировка* и *соединения*, вычисляет *условия фильтра* и др. После выполненных этапов возвращается результирующее множество строк.

#### 1.3 План выполнения запроса

План выполнения запроса действует как дерево инструкций, которым должен следовать механизм выполнения запроса для получения результатов. Он показывает, как будут сканироваться таблицы; если необходимо связывание нескольких таблиц, то какой алгоритм будет выбран для объединения считанных строк.

Ha примере PostgreSQL работа планировщика запросов для одной таблицы выглядит следующим образом [3].

- 1. Выполнение предварительной обработки.
- 2. Оценка всевозможных путей доступа к данным. Оцениваются затраты на последовательный доступ ( $seq\ scan$ ), сканирование индексов ( $index\ scan$ ),  $bitmap\ scan$ ; затем выполняется сортировка (sort) или присоединение данных (join).
- 3. Выбор кратчайшего пути по затратам.

При увеличении числа таблиц, участвующих в запросе, к основному алгоритму добавляются шаги.

• Уровень 1. Найти кратчайший путь выполнения запроса для каждой таблицы.

- Уровень 2. Получить самый кратчайший путь для каждой комбинации, в которой которой выбирается две таблицы из всех.
- Уровень 3. Продолжить ту же обработку, пока в результате число таблиц не станет равным текущему уровню.

Процесс получения «дешевого» доступа к данным приведен на рисунке 1.2.



Рисунок 1.2 – Получение «дешевого» доступа к данным.

min({A, {B, C}}, {B, {A, C}}, {C, {A, B}})

Для получения оптимального дерева плана запроса, планировщик должен рассмотреть комбинации всех индексов и возможности методов объединения. При увеличении числа используемых таблиц может наступить «комбинаторный взрыв». Таким образом, при количестве таблиц, большем 12, используются генетические алгоритмы.

### 1.4 Выбор БД

#### 1.4.1 AdventureWorks

В качестве базы данных была выбрана «Adventure Works Cycles» – фиктивная компания, разработанная Microsoft для моделирования бизнес-

процесса [5]. Данная фирма «является» крупной и многонациональной, которая производит и продает металлические и композитные велосипеды на коммерческих рынках Северной Америки, Европы, Азии.

По своей структуре база данных «AdventureWorks» является сложной: состоит из множества схем отношений, соединенных друг с другом различными связями. Диаграмма базы данных этой компании приведена в приложении А.

#### 1.4.2 Northwind

База данных Northwind содержит данные о продажах фиктивной компании под названием "Northwind Traders", которая импортирует и экспортирует специальные продукты питания со всего мира [6]. Диаграмма БД этой компании приведена в приложении Б.

#### 1.4.3 Chinook

Модель данных Chinook представляет собой хранилище цифровых медиа, включая таблицы для исполнителей, альбомов, медиадорожек, счетов-фактур и клиентов [7]. Диаграмма БД этой компании приведена в приложении В.

## 2 Конструкторский раздел

#### 2.1 Алгоритм построения запроса в PostgreSQL

В аналитическом разделе была рассмотрена работа планировщика запросов на верхнем уровне. Теперь же стоит заглянуть более детально в каждый из разделов и выяснить, как обрабатывается запрос, содержащий простые операторы SELECT, FROM, WHERE. Алгоритм построения запроса в PostgreSQL представлен следующим образом: на рисунке 2.1 рассмотрен верхнеуровневый процесс, рисунок 2.2 – более подробно описаны шаги выполнения, необходимы для основного анализа; рисунок 2.3 отражает этапы создания основного плана запроса; рисунок 2.4 – представляет непосредственно базисные функции для выбора оптимального пути [8, 9].



Рисунок 2.1 – Выполнение запроса в PostgreSQL (Верхний уровень).



Сформированный наиболее оптимальный

Рисунок 2.4 – Обработка процессом 1.5

Создание оптимального плана

запроса

 $\leftarrow$ 

Выбрать наилучший план соединения

Выбрать наилучший план выполнения

Оценить размеры задействованных

Сопоставить внешние ключи по критериям

Предобработанный запрос

3.1

3.2

таблиц

3.3

scan

результатов

План выполнения join

> выполнения scan

План

## Список литературы

- 1. PostgreSQL 14.2 Documentation [Электронный ресурс]. URL: https://www.postgresql.org/docs/14/index.html (дата обращения: 20.03.2022)
- 2. DB-Engines Ranking [Электронный ресурс]. URL: https://db-engines.com/en/ranking (дата обращения: 21.03.2022)
- 3. The Internals of PostgreSQL : Chapter 3 Query Processing [Электронный ресурс]. URL: https://www.interdb.jp/pg/pgsql03.html
- Пантилимонов М. В., Бучацкий Р. А., Жуйков Р. А. Кэширование машинного кода в динамическом компиляторе SQL-запросов для СУБД PostgreSQL //Труды Института системного программирования РАН. – 2020. – Т. 32. – №. 1. – С. 205-220.
- 5. Adventure Works Cycles Business Scenarios [Электронный ресурс]. URL: https://docs.microsoft.com/en-us/previous-versions/sql/sql-server-2008/ms124825(v=sql.100) (дата обращения: 28.03.2022)
- 6. Northwind Database [Электронный ресурс]. URL: https://github.com/pthom/northwind\_psql (дата обращения: 28.03.2022)
- 7. Chinook Database [Электронный ресурс]. URL: https://github.com/lerocha/chinook-database (дата обращения: 28.03.2022)
- 8. PostgreSQL Source Code [Электронный ресурс]. URL: https://doxygen.postgresql.org/postgres\_8c.html# a7908e75bd9f9494fdb8c4b47f01a9de9 (дата обращения: 11.04.2022)
- 9. How Postgres Chooses Which Index To Use For A Query [Электронный ресурс]. URL: https://pganalyze.com/blog/how-postgres-chooses-index (дата обращения: 22.04.2022)

### ПРИЛОЖЕНИЕ А



Рисунок 2.5 — Дерево запроса, полученное после этапов 1-3 составлении плана.

#### ПРИЛОЖЕНИЕ А



Рисунок 6 – Диаграмма БД «AdventureWorks»

### ПРИЛОЖЕНИЕ Б



Рисунок 7 — Диаграмма БД «Northwind»

#### ПРИЛОЖЕНИЕ В



Рисунок 8 – Диаграмма БД «Chinook»