Microprocessors

and

Assembly

Little Mu Computer

Mailbones (XX) Ace inpot 2250 es, to screen acconstation (for addition a suptration) ACC Program Counter -> starts at zero, increments priga to eich instructor, but may be over written by the motor etim, (Next instruction taken from address) in PC) Stores data and program, Mail boxes ;

LMC Instruction Set

lxx	A00	Add value in mail box XX to accomplate
ZXX	2 03	Subtract value "
3 x x	STA	Store contents of Acc into muilbox XX.
5 XX	400	Load contents of XX Mts
6 xx 7xx	BRA BRZ	set of to milbox XX If
8 X X	BRP	Ach is zero or positive
901	INO	load input to Acc
902	OUT	Send Acc to Ost
000	COB	Coffee Breck

Adder (A+B) Example; INP 901 FIRST STA 350 INP 901 ADD FIRST 1.50 OUT 902 COB FIRST DAT 000 Subtrator (A-B) Example INP 901 STA FIRST 350 INP 901 STA SECOND 351 FIRST LDA 550 SECOVO SUB 251 OUT 902 COB 000

Example Multiplier

00	901	INP input "a"
01	320	STA A store ""
02	901	INP
03	351	STA B store b"
04	7-11	LUOP BRZ DONE
05	552	LOA SUM
06	150	A 00 A
07	352	STA SUM
08	551	LDA B
09	253	SUB ONE
10	604	BRA LOOP
	552	DONE LOA SUM
12	902	OUT
13	000	Cog
- ~		
50		A DAT
51		13 DAT
52	0	SUM DAT O
53		ONE DAT 1

			integer	ع زرزو	17/3
6	3	-7	2		
5	3	->			
7	3	-	2		

Compatur

A > 3

A B CMA 0011 AB NANO 0000 A +B OR Are stre 0 100 110

YOR TO

XNOR TO

001001001

For the minmalists.... NANO and NOR are each functionally complete --- you can construct all legic from enough at either, Man tricks, in wet! 151000 GND: OR:

OR:

OR:

B - Do

Half Adder

Full Adder

(7 - 1 - 1) = 11 = 3 is bis part no over possible $(2 = 1) = 3 \times 20$

A O

00

1 1

10

Multiple xing

MUK

OEMUX, Tri-State Buffer

DENUX

A	S	C	0	
0	0	0	0	
0	0	0	0	
1	(0	1	

iη

in

3-5:4:

As	9	0,	0,	סי	03
0	ට		0	0	0
0	1	0	(0	0
1	٥	0	0	Į.	\bigcirc
1	1	0	0	0	1
	•				

Multiplexer N. Number of imports " Nunder of ostpato Number of address bits: NA 2NA = Ni /No ey, 9

Mux es Garcia Losia Configurable Coxic

いなり Often, we might want to associate m-bits with a porticular address (Accordator in LMC requires 105its 51024)
and Mailboxes -> 10 6.4 at address 0x3 106:4, 4:1 105+1 4.201xP mout 2645 2 5:43 N. 6.7,

RS later

D-type Flip-Flop E=0 => R=5=1 => @ constant E= 1 > R= D S= D = Q= D Q= D Note: R=S=0 is not possible

out to NOT at (*) (Btw: that O = -EDO for NAND construction 5 NANDS per Off) Symbol

Menory Symbol

Phobits

Menory

20 x m bits

Synchronous Accomulator Pior B - (rest of circut) CLK CLK X B _ 1/ B , X B. 11 B. 11 B2 Bo XB2 (3, B 8. As long as we feed B & cycle about, accordistor hardles one new input per cycle.

es-porte 0241 asynch-ones

c c - 03

 $C \times X \times$

Edge - Trissered O- Flip Flop Q1 0 Q P Q CLK _ CLK Q: 0, * Work see new value atil Next Clock Cycle Syn 5013 D Q D

)	Fixed Program Complex
	Early completes applied a fixed set of steps to variable in put data
	C, 00 Known Known C, 00 Designer
)	R1 ? ? ? ? ?
	First computers had a hard-wired colon to change it.
224	Turing / Von Weumin / Zuse developed idea to
	Store Instructions in Menory, Incredity poweful:
~	Medical Purpose Computer Medical Property Possible Manda for Street of Conditional Street

Control Unit fetch instruction ward from memory at current address in program counter (IR) increment program counter (PC++) of IR contains both OP code, and address, a fixed set of steps that tile olice. CLIK Courter 1 2 3 4 5 6 0 2 000 0 0 3 3 7 3 0 101011 CY / / / U / 1 Key point ! the control operations can ey, change program counter, providing flow control, and conditional execution,

CU m ROM

Mensiy

Counter

Counter

That's really it

except for literally Trilling of & invested to improve performance:

Microsoft - \$500 B

Apple - \$700 B

Gossle - \$534 B

Annzon - \$3773 B