MAS331 위상수학 Notes

한승우

May 29, 2023

CONTENTS

CHAPTER	COUNTABILITY AND SEPARATION AXIOMS	Page 2
1.1	The Countability Axioms	2
1.2	Separation Axioms	5

Chapter 1

Countability and Separation Axioms

1.1 The Countability Axioms

Definition 1.1.1: First Countability Axiom

A topological space X is said to have a *countable basis at* x if there is a countable collection \mathcal{B} of neighborhoods of x in X such that, for each neighborhood U of x, there exists $B \in \mathcal{B}$ with $B \subseteq U$. A space that has a countable basis at each point is said to satisfy the *first countability axiom*, or to be *first-countable*.

Note:-

This definition was already given in ??. Recall the lemmas ?? and ??.

Definition 1.1.2: Second Countability Axiom

If a topological space X has a countable basis for its topology, then X is said to satisfy the *second countability axiom*, or to be *second-countable*.

Example 1.1.1

 \mathbb{R}^J endowed with the product topology with a countable set J is second-countable;

$$S \triangleq \bigcup_{\alpha \in J} \left\{ \left. \pi_{\alpha}^{-1} \big((a, b) \big) \, \right| \, a, b \in \mathbb{Q} \text{ and } a < b \right\}$$

is a countable subbasis for \mathbb{R}^{J} , which induces a countable basis for \mathbb{R}^{J} .

Note:-

If a topological space X is second-countable with a countable basis $\mathcal{B} = \{B_n\}_{n \in \mathbb{Z}_+}$ and a subspace $A \subseteq X$ with the discrete topology. Then, A must be countable.

Otherwise, for each $a \in A$, there exists $B_a \in \mathcal{B}$ such that $B_a \cap A = \{a\}$. This induces an injection $A \hookrightarrow \mathcal{B}$. Hence, A is countable.

Example 1.1.2 (Uniform Topology and Countability Axioms)

In the uniform topology, \mathbb{R}^{ω} is first-countable by ??. Let \mathcal{B} be a basis of \mathbb{R}^{ω} . Let

$$A \triangleq \{(x_i)_{i \in \mathbb{Z}_+} \in \mathbb{R}^\omega \mid \forall i \in \mathbb{Z}_+, x_i \in \{0, 1\} \}.$$

Then, A has the discrete topology but A is uncountable. Therefore, \mathbb{R}^{ω} with the uniform

topology is not second-countable.

Theorem 1.1.1

Let *X* be a topological space and *A* be a subspace of *X*.

- If *X* is first-countable, then *A* is first-countable.
- If *X* is second-countable, then *A* is second-countable.

Proof.

- Let $a \in A$. Let \mathcal{B} be a countable basis of X at a. Then, $\{B \cap A \mid B \in \mathcal{B}\}$ is a countable basis for the subspace A at a. \checkmark
- Let \mathcal{B} be a countable basis of X. Then, $\{B \cap A \mid B \in \mathcal{B}\}$ is a countable basis for the subspace A. \checkmark

Theorem 1.1.2

Let $\{X_{\alpha}\}_{\alpha\in J}$ be a countable family of topological spaces.

- If each X_i is first-countable, then $\prod_{\alpha \in J} X_\alpha$ in the product topology is first-countable.
- If each X_i is second-countable, then $\prod_{\alpha \in J} X_\alpha$ in the product topology is second-countable.

Proof.

- Let $(x_{\alpha})_{\alpha \in J} \in \prod_{\alpha \in J} X_{\alpha}$. Then, for each $\alpha \in J$, there exists a countable basis \mathcal{B}_{α} of X_{α} at x_{α} . Then, $\left\{\prod_{\alpha \in J} B_{\alpha} \mid \forall \alpha \in J, B_{\alpha} \in \mathcal{B}_{\alpha}\right\}$ is a countable basis at $(x_{\alpha})_{\alpha \in J}$.
- For each $\alpha \in J$, there exists a countable basis \mathcal{B}_{α} of X_{α} . Then, $\left\{ \prod_{\alpha \in J} B_{\alpha} \mid \forall \alpha \in J, B_{\alpha} \in \mathcal{B}_{\alpha} \right\}$ is a countable basis of $\prod_{\alpha \in J} X_{\alpha}$.

Definition 1.1.3: Lindelöf Space

A topological space X is called a *Lindelöf space* if, for every open covering of X, there is a countable subcovering.

Definition 1.1.4: Dense Subset

A subset *A* of a topological space *X* is said to be *dense* in *X* if $\overline{A} = X$.

Definition 1.1.5: Separable Space

A topological space *X* is said to be *separable* if there is a countable dense subset of *X*.

Note:-

Obvious facts:

- Every compact space is a Lindelöf space.
- The box and product topologies on an finite product of separable spaces is separable. (??)
- Every topology on a countable set is Lindelöf and separable.

Theorem 1.1.3

Let *X* be a second-countable space. Then,

- *X* is a Lindelöf space.
- *X* is separable.

Proof. Let $\mathcal{B} = \{B_n\}_{n \in \mathbb{Z}_+}$ be a countable basis for X.

- Let \mathcal{A} be an open covering of X. For each $n \in \mathbb{Z}_+$, there exists $A_n \in \mathcal{A}$ such that $B_n \subseteq A_n$. Then, $\mathcal{A}' \triangleq \{A_n \mid n \in \mathbb{Z}_+\}$ is a countable subcovering of X as \mathcal{B} covers X. \checkmark
- For each $n \in \mathbb{Z}_+$, choose $x_n \in B_n$. Let $D \triangleq \{x_n \mid n \in \mathbb{Z}_+\}$. Then, for all $x \in X$, every basis element that contains x intersects D; $\overline{D} = X$ by ??. \checkmark

Example 1.1.3 (\mathbb{R}_{ℓ} and Countability Axioms)

- Given $x \in \mathbb{R}_{\ell}$, $\{[x, x+1/n) \mid n \in \mathbb{Z}_{+}\}$ is a countable basis at x. \mathbb{R}_{ℓ} is first-countable.
- $\overline{\mathbb{Q}} = \mathbb{R}_{\ell}$. \mathbb{R}_{ℓ} is separable.
- Let \mathcal{B} be a basis for \mathbb{R}_{ℓ} . Choose, for each $x \in \mathbb{R}_{\ell}$, an element $B_x \in \mathcal{B}$ such that $x \in B_x \subseteq [x, x+1)$. If $x \neq y$, then $B_x \neq B_y$. Hence $x \mapsto B_x$ is an injection; \mathcal{B} is uncountable. Therefore, \mathbb{R}_{ℓ} is not second-countable.

We now prove \mathbb{R}_{ℓ} is Lindelöf. Thanks to ??, we only have to prove that, for any open covering \mathcal{A} of \mathbb{R}_{ℓ} by the basis elements, there is a countable subcovering.

Let $\mathcal{A} = \{[a_\alpha, b_\alpha) \mid \alpha \in J\}$ be an open covering of \mathbb{R}_ℓ . Let $C \triangleq \bigcup_{\alpha \in J} (a_\alpha, b_\alpha)$. We now claim that $\mathbb{R} \setminus C$ is countable. Let $x \in \mathbb{R} \setminus C$. Then $x = a_\beta$ for some $\beta \in J$. Choose $q_x \in \mathbb{Q}$ such that $q_x \in (a_\beta, b_\beta)$. If $x, y \in \mathbb{R} \setminus C$ and x < y, then $q_x < q_y$. Hence $x \mapsto q_x$ defines an injection $\mathbb{R} \setminus C \hookrightarrow \mathbb{Q}$. Therefore, $\mathbb{R} \setminus C$ is countable.

Now, let \mathcal{A}' be a countable subcollection of \mathcal{A} that covers $\mathbb{R} \setminus C$. Now, note that $\{(a_{\alpha},b_{\alpha}) \mid \alpha \in J\}$ is an open covering of C as a subspace of \mathbb{R} (with the standard topology). Since \mathbb{R} is second-countable, there exists a finite subcollection $\{(a_{\alpha_1},b_{\alpha_1}),\cdots,(a_{\alpha_n},b_{\alpha_n})\}$ covers C. Let $\mathcal{A}'' \triangleq \{[a_{\alpha_1},b_{\alpha_1}),\cdots,[a_{\alpha_n},b_{\alpha_n})\}$. Then, $\mathcal{A}' \cup \mathcal{A}''$ is a countble subcovering of \mathbb{R}_{ℓ} .

Example 1.1.4 (The Product of Two Lindelöf Spaces Need Not Be Lindelöf)

Although \mathbb{R}_{ℓ} is Lindelöf, $\mathbb{R}_{\ell} \times \mathbb{R}_{\ell}$ is not. Consider the subspace $L \triangleq \{x \times (-x) \mid x \in \mathbb{R}_{\ell}\}$. Then, L has the discrete topology as $([x, x+1) \times [-x, -x+1)) \cap L = \{x \times (-x)\}$. Hence, L is not Lindelöf; \mathbb{R}_{ℓ}^2 is not Lindelöf.

Example 1.1.5 (A Subspace of a Lindelöf Space Need Not Be Lindelöf)

The ordered square I_o^2 is compact (??) and thus is Lindelöf. However, the subspace $A = I \times (0,1)$ is not Lindelöf as an open covering $\{\{x\} \times (0,1) \mid x \in I\}$ does not allow a countable subcovering.

Note:- 🛉

Here is the diagram that represents the relations between spaces.

Counterexamples:

- (---) $X = \{0,1\}$ with $\mathcal{T} = \{\emptyset, X, \{0\}\}$ is second-countable but not Hausdorff, thus not metrizable.
- (---) \mathbb{R}^{ω} with the uniform topology is metrizable but not second-countable. (Example 1.1.2)
- (---) \mathbb{R}_{ℓ} (\mathbb{R} with the lower limit topology) is first-countable, Lindelöf, and separable; but it is neither second-countable nor metrizable. (Example 1.1.3)
- (---) $\mathbb{R}_{\ell} \times \mathbb{R}_{\ell}$ is first countable and separable, but it is not Lindelöf. (Example 1.1.4)
- (---) ℝ with the discrete topology is first-countable and metrizable; but it is not second-countable, separable, or Lindelöf.
- (-→) ℝ with the finite complement topology is separable and Lindelöf; but it is neither first-countable nor metrizable.
- (\longrightarrow) \mathbb{R} with the countable complement topology is Lindelöf; but it is not first-countable, metrizable, or separable.

1.2 Separation Axioms

Definition 1.2.1: Regular and Normal Space

Let *X* be a topological space that $\{x\}$ is closed for every $x \in X$. In other words, *X* is T_1 .

- X is said to be T_2 if it is Hausdorff.
- *X* is said to be *regular*, or T_3 , if, for each $x \in X$ and a closed set *B* disjoint from x, there exist disjoint open sets U and V such that $x \in U$ and $B \subseteq V$.
- *X* is said to be *normal*, or T_4 , if, for each pair *A*, *B* of disjoint closed sets in *X*, there exist disjoint open sets *U* and *V* such that $A \subseteq U$ and $B \subseteq V$.

Note:-

$$T_1 \supseteq T_2 \supseteq T_3 \supseteq T_4$$

Example 1.2.1 (T_2 Does Not Imply T_3)

The space \mathbb{R}_K is T_2 as it is finer than the standard topology. The set $K = \{1/n \mid n \in \mathbb{Z}_+\}$ is closed in \mathbb{R}_K and $0 \notin K$. Suppose there are disjoint open sets U and V such that $0 \in U$ and $K \subseteq V$. Let B be a basis element that $0 \in B \subseteq U$. Then, $B = (a, b) \setminus K$ since any

open interval containing 0 intersects K. (It must be a < 0 < b.) Let $n \in \mathbb{Z}_+$ such that 1/n < b. Then, $1/n \in K \subseteq V$. Let B' be a basis element such that $1/n \in B' \subseteq V$. Then, B' = (c,d) for some c < d. Let $\max\{c,1/(n+1)\} < z < 1/n$. Then, $z \in B \cap B' \subseteq U \cap V$. Hence, \mathbb{R}_K is not T_3 , #.

Lemma 1.2.1 Another Formulation

Let X be a T_1 space.

- (i) X is T_3 if and only if, for each $x \in U$ and a neighborhood U of x, there exists a neighborhood V of x such that $\overline{V} \subseteq U$.
- (ii) X is T_4 if and only if, for each closed set A and an open set U containing A, there exists an open set V such that $A \subseteq V$ and $\overline{V} \subseteq U$.

Proof.

- (i) (\Rightarrow) $B \triangleq X \setminus U$ is a closed set and $x \notin B$; there exist disjoint open sets V and W such that $x \in V$ and $B \subseteq W$. Then, \overline{V} does not intersect B, i.e., $\overline{V} \subseteq U$. \checkmark
 - (⇐) Let $x \in X$ and $B \subseteq X$ be a closed set with $x \notin B$. Then, $X \setminus B$ is a neighborhood of x; there exists a neighborhood V of x such that $\overline{V} \subseteq X \setminus B$. Then, V and $X \setminus \overline{V}$ are disjoint open sets that contain x and B, respectively. \checkmark
- (ii) (\Rightarrow) $B \triangleq X \setminus U$ is a closed set and $A \cap B = \emptyset$; there exist disjoint open sets V and W such that $A \subseteq V$ and $B \subseteq W$. Then, \overline{V} does not intersect B, i.e., $\overline{V} \subseteq U$. \checkmark
 - (⇐) Let $A, B \subseteq X$ be disjoint closed sets in X. Then, $X \setminus B$ is an open set that contains A; there exists an open set V such that $A \subseteq V$ and $\overline{V} \subseteq X \setminus B$. Then, V and $X \setminus \overline{V}$ are disjoint open sets that contain A and B, respectively. \checkmark

Theorem 1.2.1

Let *X* be a topological space and $Y \subseteq X$ be a subspace of *X*.

- (i) If X is T_1 , then Y is T_1 .
- (ii) If X is T_2 , then Y is T_2 .
- (iii) If X is T_3 , then Y is T_3 .

Proof.

- (i) For each $x \in Y$, $\{x\} \cap Y = \{x\}$ is closed.
- (ii) Let $x, y \in Y$ with $x \neq y$. Then, there exist disjoint neighborhoods U and V of x and y, respectively, in X. Then, $U \cap Y$ and $V \cap Y$ are disjoint neighborhoods of x and y in Y, respectively.
- (iii) \underline{Y} is already T_1 by (i). Let $x \in Y$ and B be a closed set in Y disjoint from x. Then, $\overline{B} \cap Y = B$ by ??. Hence, $x \notin \overline{B}$; there are disjoint open sets U and V in X such that $X \in U$ and $\overline{B} \subseteq V$. Then, $U \cap Y$ and $V \cap Y$ are disjoint open sets and $X \in U \cap Y$ and $X \subseteq U \cap Y$.

Theorem 1.2.2

Let $\{X_{\alpha}\}_{{\alpha}\in J}$ be a family of topological spaces. Let $X\triangleq \prod_{{\alpha}\in J} X_{\alpha}$ be endowed with either box or product toplogy.

- (i) X is T_1 if and only if each X_α is T_1 .
- (ii) X is T_2 if and only if each X_α is T_2 .
- (iii) X is T_3 if and only if each X_a is T_3 .

Г

6

Proof. Let $\mathbf{x} = (x_{\alpha})_{\alpha \in J} \in X$. Supopse X is T_1 (, T_2 , or T_3). Then, For each $\alpha_0 \in J$, X_{α_0} is homeomorphic with the subspace

$$Y \triangleq \{ \mathbf{y} \in X \mid \forall \alpha \in J \setminus \{\alpha_0\}, \ y_\alpha = x_\alpha \}.$$

Hence, X_{α_0} is T_1 (, T_2 , or T_3).

- (i) (\Leftarrow) Let $\mathbf{x} = (x_{\alpha})_{\alpha \in J} \in X$. Then, $\{\mathbf{x}\} = \bigcap_{\alpha \in J} \pi_{\alpha}^{-1}(\{x_{\alpha}\})$ is closed. (ii) (\Leftarrow) Let $\mathbf{x}, \mathbf{y} \in X$ with $\mathbf{x} \neq \mathbf{y}$. Then, there exists $\alpha_0 \in J$ such that $x_{\alpha_0} \neq y_{\alpha_0}$; there are disjoint neighborhoods $U_{\underline{\alpha_0}}$ and $V_{\underline{\alpha_0}}$ of $x_{\underline{\alpha_0}}$ and $y_{\underline{\alpha_0}}$ in $X_{\underline{\alpha_0}}$. Then, If we define $U, V \subseteq X$ by $U \triangleq \prod_{\alpha \in J} U_{\alpha}$ and $V \triangleq \prod_{\alpha \in J} V_{\alpha}$ where

$$U_{\alpha} \triangleq \begin{cases} U_{\alpha_0} & \text{if } \alpha = \alpha_0 \\ X_{\alpha} & \text{otherwise} \end{cases} \quad \text{and} \quad V_{\alpha} \triangleq \begin{cases} V_{\alpha_0} & \text{if } \alpha = \alpha_0 \\ X_{\alpha} & \text{otherwise,} \end{cases}$$

we find that U and V are disjoint neighborhoods of \mathbf{x} and \mathbf{y} in X.

(iii) (\Leftarrow) Let $\mathbf{x} \in X$ and let U be a neighborhood of \mathbf{x} in X. Choose a basis element B = $\prod_{\alpha \in J} U_{\alpha}$ so that $\mathbf{x} \in B \subseteq U$. For each $\alpha \in J$, let $V_{\alpha} = X_{\alpha}$ if $U_{\alpha} = X_{\alpha}$. Otherwise, by Lemma 1.2.1, let V_{α} be a neighborhood of x_{α} in X such that $\overline{V_{\alpha}} \subseteq U_{\alpha}$. Then, $V = \prod_{\alpha \in J} V_{\alpha}$ is a neighborhood of **x** and $\overline{V} = \prod_{\alpha \in I} \overline{V_{\alpha}} \subseteq B \subseteq U$. By Lemma 1.2.1, X is T_3 .

Example 1.2.2 (\mathbb{R}_{ℓ} Is T_4)

 \mathbb{R}_{ℓ} is T_1 as it is finer than the standard topology. Suppose A and B are disjoint closed sets in \mathbb{R}_{ℓ} . For each $a \in A$ choose a basis element $[a, x_a)$ not intersecting B. This is possible since $\mathbb{R} \setminus B$ is open in \mathbb{R}_{ℓ} . Similarly, for each $b \in B$, choose a basis element $[b, x_b)$ not intersecting A. Then,

$$U \triangleq \bigcup_{a \in A} [a, x_a)$$
 and $V \triangleq \bigcup_{b \in B} [b, x_b)$

are disjoint open sets such that $A \subseteq U$ and $B \subseteq V$.

Example 1.2.3 (\mathbb{R}^2_ℓ is not T_4)

The space \mathbb{R}_{ℓ} is T_3 ; hence \mathbb{R}_{ℓ}^2 is T_3 by Theorem 1.2.2.

Suppose \mathbb{R}^2_ℓ is normal for the sake of contradiction. Let L be a subspace of \mathbb{R}^2_ℓ where $L \triangleq \{x \times (-x) \in \mathbb{R}^2 \mid x \in \mathbb{R} \}$. Here are some facts:

- *L* has the discrete topology. Thus, every subset of *L* is closed in *L*, especially.
- L is closed in \mathbb{R}^2_{ℓ} as it is closed in \mathbb{R}^2 , which is coarser than \mathbb{R}^2_{ℓ} .
- Every subset A of L is closed in \mathbb{R}^2_{ℓ} .
- For every $\emptyset \neq A \subsetneq L$, there are disjoint open sets U_A and V_A in \mathbb{R}^2_ℓ containing Aand $L \setminus A$, respectively.

Here, we define a function $\theta: \mathcal{P}(L) \to \mathcal{P}(\mathbb{Q}^2)$ by

$$A \mapsto \begin{cases} \mathbb{Q}^2 \cap U_A & \text{if } \varnothing \subsetneq A \subsetneq L \\ \varnothing & \text{if } A = \varnothing \\ \mathbb{Q}^2 & \text{if } A = L. \end{cases}$$

To show θ is injective, let $\emptyset \subsetneq A, B \subsetneq L$ with $A \neq B$. WLOG, $A \not\subseteq B$; let $x \in A \setminus B$. Then, since $x \in L \setminus B$, $x \in U_A \cap V_B$. Since \mathbb{Q}^2 is dense in \mathbb{R}^2_{ℓ} and $U_A \cap V_B$ is open and nonempty, there exists $q \in \mathbb{Q}^2 \cap U_A \cap V_B$. Hence, $\mathbb{Q}^2 \cap U_A \nsubseteq \mathbb{Q}^2 \cap U_B$. Therefore, θ is injective.

Also, the map $\psi \colon \mathcal{P}(\mathbb{Z}_+) \to \mathbb{R}$ defined by

$$S \mapsto \sum_{i=1}^{\infty} \frac{a_i}{10^i}$$

is injective where $a_i = 1$ if $i \in S$ and $a_i = 0$ if $i \notin S$. Thus, there exists an injective map $\psi' \colon \mathcal{P}(\mathbb{Q}^2) \to L$. Then, $\psi' \circ \theta$ is an injective map from $\mathcal{P}(L)$ to L, #. (??)

This shows that

- (i) A product of T_4 spaces need not be T_4 .
- (ii) A T_3 space need not be T_4 .

Note:-

$$T_1 \supsetneq T_2 \supsetneq T_3 \supsetneq T_4$$