

MixMo: Mixing Multiple Inputs for Multiple Outputs via Deep Subnetworks

MLA THALES Valeo.ai

Alexandre Ramé^{†*}, Rémy Sun^{*} and Matthieu Cord

Github: alexrame/mixmo-pytorch

1 Towards cheaper ensembling

3 Masking improves MixMo mixing

Our mixing block can use many methods:

Binary masking methods (e.g. CutMix [2]) perform better in our mixing block than linear interpolations (e.g. MixUp).

Learning different subnetworks for ensembling by mixing multiple inputs

MixMo keeps computational costs fixed by finding subnetworks within a large base network:

- 1. 2 encoders embed 2 pictures (*e.g.*, a cat and a dog) into a shared feature space, where they are mixed.
- 2. A core network processes the mixed representation.
- 3. 2 classifiers each predict the label of one input (*e.g.*, the label cat and the label dog).

At inference, we consider two copies of the same input and ensemble the two predictions like MIMO [1].

Leveraging over-parametrization in wide networks yields state of the art performances

Approach	#Params	WRN-28-10		ResNet-18-3
		CIFAR100	CIFAR10	TinyImageNet
Vanilla	1.0	81.63	96.34	65.78
CutMix	1.0	84.05	97.23	68.95
Deep Ens.	2.0	83.17	96.67	68.38
MIMO	1.002	83.06	96.74	68.48
Cut-MixMo	1.002	$\bf 85.40$	97.51	$\boldsymbol{70.24}$

While wide over-parametrized models often fail to use all their filters, MixMo models fully leverage theirs to obtain state of the art results.

References

[1] MIMO: Havasi et al. Training independent subnetworks for robust prediction. ICL [2] CutMix: Yun et al. Regularization strategy to train strong classifiers with localizable features. CVPR 2019.