НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО Факультет систем управления и робототехники

Электроника и схемотехника

Лабораторная работа №2 Исследование характеристик биполярного транзистора и расчёт усилительного каскада

Вариант 2

Выполнили студенты: Кирбаба Д.Д. R3338 Курчавый В.В. R3338

Преподаватель: Николаев Н.А.

г. Санкт-Петербург 2023

Цель работы

- Получение входной характеристики и семейства выходных характеристик биполярного транзистора в схеме с общим эмиттером;
- Расчёт усилительного каскада с заданием рабочей точки транзистора с помощью отрицательной обратной связи по току.

Ход работы

Вариант 2: транзистор 2N2369, $E_C = 15 \ V$.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit	
Collector-Emitter Voltage	VCEO	15	Vdc	
Collector-Emitter Voltage	V _{CES}	40	Vdc	
Collector-Base Voltage	V _{CBO}	40	Vdc	
Emitter-Base Voltage	V _{EBO}	4.5	Vdc	
Collector Current (10 μs pulse)	IC(Peak)	500	mA	
Collector Current — Continuous	IC	200	mA	
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	0.36 2.06	Watt mW/°C	
Total Device Dissipation @ T _C = 100°C Derate above 100°C	PD	0.68 6.85	Watts mW/°C	
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200	°C	

Рис. 1: Характеристики транзистора 1.

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted) (Continued)

Characteristic		Symbol	Min	Max	Unit
ON CHARACTERISTICS					
DC Current Gain(1) (I _C = 10 mAdc, V _{CE} = 1.0 Vdc)	2N2369 2N2369A	hFE	40 —	120 120	_
(I _C = 10 mAdc, V_{CE} = 1.0 Vdc, T_A = -55°C)	2N2369		20	_	
$(I_C = 10 \text{ mAdc}, V_{CE} = 0.35 \text{ Vdc}, T_A = -55^{\circ}\text{C})$ $(I_C = 30 \text{ mAdc}, V_{CE} = 0.4 \text{ Vdc})$	2N2369A 2N2369A		20 30	_	
$(I_C = 100 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc})$	2N2369A		20	_	
$(I_C = 100 \text{ mAdc}, V_{CE} = 2.0 \text{ Vdc})$	2N2369		20	_	
Collector-Emitter Saturation Voltage(1) (I _C = 10 mAdc, I _B = 1.0 mAdc)	2N2369 2N2369A	VCE(sat)		0.25 0.20	Vdc
(I _C = 10 mAdc, I _B = 1.0 mAdc, T_A = +125°C) (I _C = 30 mAdc, I _B = 3.0 mAdc)	2N2369A 2N2369A		_	0.30 0.25	
(I _C = 100 mAdc, I _B = 10 mAdc)	2N2369A		_	0.50	
Base-Emitter Saturation Voltage(1) (I _C = 10 mAdc, I _B = 1.0 mAdc) (I _C = 10 mAdc, I _B = 1.0 mAdc, T _A = +125°C) (I _C = 10 mAdc, I _B = 1.0 mAdc, T _A = -55°C) (I _C = 30 mAdc, I _B = 3.0 mAdc)	All Types 2N2369A 2N2369A 2N2369A	VBE(sat)	0.70 0.59 — —	0.85 — 1.02 1.15	Vdc
(I _C = 100 mAdc, I _B = 10 mAdc)	2N2369A		_	1.60	

Рис. 2: Характеристики транзистора 2.

Максимальный ток коллектора: $I_{C_{peak}} = 0.2 \ A$.

Максимальное напряжение коллектор-эмиттер: $U_{CEO} = 15 \ V$.

Коэффициент усиления по току: $h_{FE} = [40; 120].$

Максимальная рассеиваемая мощность: $P_D = 0.36 \ W.$

Получение входной характеристики биполярного транзистора

Построим входную харатеристику транзистора (шаг напряжения $0.001\ V$).

Рис. 3: Схема для моделирования входной характеристики транзистора.

Рис. 4: Входная характеристика.

Рассчитаем дифференциальное входное сопротивление транзистора:

$$r_{in} = \frac{\delta U_{BE}}{\delta I_B} = \frac{984.67 - 859.8}{18.096 - 7.805} = 12.134 \text{ Ohm}$$

Получение семейства выходных характеристик биполярного транзистора

Рис. 5: Схема для получения семейства выходных характеристик транзистора.

Рис. 6: Семейство выходных характеристик.

Определим для каждой полученной выходной характеристики значение тока коллектора, соответствующее напряжению коллектор-эмиттер $U_{KE}=5\ V$ (нумерация выходных характеристик сверху-вниз):

$$I_{C1} = 0.02186 \ A$$

 $I_{C2} = 0.4074 \ A$
 $I_{C3} = 0.7417 \ A$
 $I_{C4} = 0.9978 \ A$
 $I_{C5} = 1.2114 \ A$

Рассчитаем коэффициент передачи тока:

$$\beta_{AC} = \frac{\delta I_C}{\delta I_B} = \frac{1.2114 - 0.02186}{0.06625 - 0.0003} = 18.037$$

Задание рабочей точки с помощью отрицательной обратной связи по току

Определим рабочий диапазон транзистора, зная что его ограничения:

$$I_{C_{peak}} = 0.2 A, \ U_{CEO} = 15 \ V, \ P_D = 0.36 \ W.$$

Рис. 7: Линия максимальной мощности на семействе ВАХ.

Рабочий диапазон транзистора будет находиться под данной линией мощности, а также ограничен прямыми $I=I_{C_{veak}}=0.2~A,~U=U_{CEO}=15~V.$

Так как пиковое значение коллектора $0.2\ A$, а почти все построенные выходные характеристики соответствуют большему значению, то построим семейство с меньшими силами тока на базе, а следовательно с меньшими силами тока на коллекторе:

Рис. 8: Семейство ВАХ с меньшими силами тока на базе.

Построим нагрузочную линию (учитывая что $E_k=15\ V$). Она должна проходить через $(E_k,\ 0).$ И выберем рабочую точку.

Рис. 9: Нагрузочная прямая и рабочая точка на семействе ВАХ.

Координаты точки $A = (6 \ V, \ 47.062 \ mA).$

Точка лежит на линии выходной характеристики с $I_{B_A}=690~\mu A.$

Рис. 10: Схема с ООС по току.

Для расчета транзистора по постоянному току необходимо определить номинальные значения резисторов, которые задают рабочую точку транзистора.

Резисторы служат для задания рабочей точки, конденсатор большой емкости (примерно $1 \text{ мк}\Phi$) выполняет роль гальванической развязки по постоянному току. В данном случае необходимо найти величины сопротивлений $R_C,\ R_1,\ R_2,\ R_E.$

По нагрузочной прямой найдем максимальное значение тока насыщения транзистора I_{CS} - это ток в точке пересечения нагрузочной прямой и оси тока, то есть

$$I_{CS} = 78 \ mA$$

Величина сопротивления резистора в цепи коллектора:

$$R_C = \frac{E_C}{I_{CS}} = 192.30 \ Ohm = |E192| = 193 \ Ohm$$

По величине тока базы в точке А, определим падение напряжения на базе:

Рис. 11: Входная характеристика.

$$U_{BE_A} = 725.1 \ mV$$

Ток эмиттера является суммой токов коллектора и базы:

$$I_{E_A} = I_{B_A} + I_{C_A} = 0.047752 A$$

Уравнение равновесия напряжений по второму закону Кирхгофа для цепи эмиттер-коллектор имеет вид:

$$E_C = I_{C_A} R_C + U_{CE} + I_{E_A} * R_E$$

Для входной цепи по второму закону Кирхгофа можно составить два уравнения равновесия напряжений:

$$E_C = I_1 R_1 + I_2 R_2$$

$$E_C = I_1 R_1 + U_{BE_A} + U_{R_E} = I_1 R_1 + U_{BE_A} + I_{E_A} R_E$$

Следовательно:

$$U_{R_2} = I_2 R_2 = U_{R_E} + U_{BE_A} = I_{E_A} R_E + U_{BE_A}$$

Сопротивление R_E осуществляет отрицательную обратную связь по току. Падение напряжения на нём должно быть небольшим, поэтому обычно из практических соображений выбирают:

$$U_{R_E} = (0.1/0.3)E_C$$

Учитывая это соотношение, можно найти значение сопротивления в цепи эмиттера:

$$R_E = \frac{U_{R_E}}{I_{E_A}} = \frac{(0.1/0.3)E_C}{I_{E_A}} = 104.708 \ Ohm = |E192| = 105 \ Ohm$$

Падение напряжения на эмиттерном сопротивлении будет равно:

$$U_{R_E} = I_{E_A} * R_E = 5.01396 V$$

Теперь U_{R_2} может быть рассчитано:

$$U_{R_2} = U_{R_E} + U_{BE_A} = 5.73906 V$$

Для расчета сопротивления R_2 необходимо знать величину тока I_2 . Из практических соображений значение тока I_1 равно:

$$I_1 = 5I_{B_A} = 3.45 \ mA$$

Тогда:

$$I_2 = I_1 - I_{B_A} = 2.76 \ mA$$

Теперь можно рассчитать величину сопротивления резистора R_2 :

$$R_2 = \frac{U_{R_2}}{I_2} = 2079.34 \ Ohm = |E192| = 2080 \ Ohm$$

И величина сопротивления резистора R_1 :

$$R_1 = \frac{E_C - U_{R_2}}{I_1} = 2684.33 \ Ohm = |E192| = 2670 \ Ohm$$

Рис. 12: Схема усилителя с биполярным транзистором.

Произведем моделирование работы схемы при постоянном входном сигнале $U_i n = 0.1 V$.

Рис. 13: Осциллограммы входных и выходных тока и напряжения при постоянном сигнале.

Выбранная рабочая точка была $A=(6\ V,\ 47.062\ mA)$, выходные ток и напряжение достаточно близки к данным значениям, а именно $I_{out}=46.866\ mA,\ U_{out}=5.955\ V.$

Произведем теперь моделирование работы схемы при гармоническом входном сигнале $0.1 \sin 1000 U$:

Рис. 14: Осциллограммы входных и выходных тока и напряжения при гармоническом сигнале.

Опять убеждаемся, что выходные характеристики соответсвуют заданной рабочей точ-

ке.

Рассчитаем коэффициенты усиления по напряжению и току:

$$k_I = \frac{46.866 \cdot 10^{-3}}{723 \cdot 10^{-6}} = 64.822$$

Данное значение попадает в интервал, данный производителем.

$$k_U = \frac{5.955}{0.1} = 59.55$$

Проведем частотный анализ схемы:

Рис. 15: Частотная характеристика.

Выводы

В данной лабораторной работе был исследован биполярный транзистор. В начале было проведено моделирование работы транзистора в активном режиме с общим эмиттером. Были построены входные и выходные характеристики транзистора, а также некоторые числовые характеристики. Стоит отметить, что значения этих характеристик зависят от схемы включения транзистора.

Во второй части была задана рабочая точка транзистора и затем, с помощью отрицательной обратной связи по току была построена схема функционирования (перед этим были рассчитаны параметры резисторов, включенных в схему).

В результате, по осциллограммам было определено, что расчеты сделаны верно и транзистор действительно усиливает сигнал до определенных значений.

Затем была построена частотная характеристика и можно было убедиться в том, что чем выше частота сигнала, поступающего на вход транзисторного каскада, тем меньше коэффициент усиления по току.