Diagonalisation

Theorem Let $S = (x_1 x_2 ... x_n)$, where x_i are the nxn linearly independent eigenvectors of A. Then $S^{-1}AS = A = diag(\lambda, \lambda_2 ... \lambda_n)$.

Naturally, AS = SA and $A = SAS^{-1}$. This has a remarkable consequence:

 $A^{k} = A \cdot A \cdot ... \cdot A = S \Delta S^{-1} S \Delta S^{-1} ... S \Delta S^{-1}$ $= S \Delta^{k} S^{-1}$

But, when exactly are the eigenvectors linearly independent? Theorem If (λ_i, v_i) are the eigenpairs of A and $\lambda_i \neq \lambda_j$.

i+j, then {vi} are linearly independent.

If A has n such eigenvalues, it is diagonalisable.

Proof i) C, V, + C2 V2 = 0

$$\begin{cases} c_{1} A v_{1} + c_{2} A v_{2} = 0 \\ c_{1} \lambda_{2} v_{1} + c_{2} \lambda_{2} v_{2} = 0 \end{cases} \iff \begin{cases} c_{1} \lambda_{1} v_{1} + c_{2} \lambda_{2} v_{2} = 0 \\ c_{1} \lambda_{2} v_{1} + c_{2} \lambda_{2} v_{2} = 0 \end{cases}$$

=> $c_1(\lambda_1 - \lambda_2) v_1 = 0$ => $c_1 = 0$ Similarly $c_2 = 0$. Hence $\{v_1, v_2\}$ are linearly independent.

(ii) $\sum_{i=1}^{4} C_i V_i = 0$; Using the same trick as above $C_1 \left(\frac{\lambda_1 - \lambda_2}{\lambda_1 - \lambda_2} \right) \left(\frac{\lambda_1 - \lambda_3}{\lambda_2} \right) \dots \left(\frac{\lambda_1 - \lambda_j}{\lambda_j} \right) V_1 = 0$ That is, $S = \left(V_1 \ V_2 \dots V_n \right)$ can be constructed. \square

Example
$$A = \begin{pmatrix} 0.8 & 0.3 \\ 0.2 & 0.7 \end{pmatrix}$$
; $\lambda_1 = 1$, $\lambda_2 = 0.5$

$$A = 5 \Lambda S^{-1} = \begin{pmatrix} 0.6 & 1 \\ 0.4 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0.5 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0.4 & -0.6 \end{pmatrix}$$

Remember to maintain the order of 2;5 and x;5!

$$A^{k} = S \Lambda^{k} S^{-1} \implies \lim_{k \to \infty} A^{k} = S \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} S^{-1} = \begin{pmatrix} 0.6 & 0.6 \\ 0.4 & 0.4 \end{pmatrix}$$

Side note: Ak 1000, if 12:1<1 for all i=1,...,n.

Example
$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
; $\lambda_{1,2} = 1$, $x_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$

dim N(A - 1.I) = 1 (geometric order)

 $\lambda = 1$ is a double eigenvalue (algebraic order)

- Orders do not natch, A is defective.

Example
$$A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 4 & 0 \\ 1 & 0 & 2 \end{pmatrix}$$
, $B = \begin{pmatrix} 2 & 0 & 0 \\ -1 & 4 & 0 \\ -3 & 6 & 2 \end{pmatrix}$

Same eigenvalues : i.e. the same spectra.

However, dim $N(A-2I) = 1 \implies A$ defective dim $N(B-2I) = 2 \implies B$ diagonalisable

Symmetric Matrices

Theorem Spectral Theorem

Every symmetric matrix is diagonalisable: $A = Q \Lambda Q^T$, $\lambda \in \mathbb{R}$, Q orthogonal.

Theorems :

- (A) The eigenvalues of a real symmetric matrix ove real.
- (B) If $\lambda_i \neq \lambda_j$, $i \neq j$, then corresponding eigenvectors are orthogonal.
- Not (c) The algeraic and geometric orders are equal for all λ_i .
- Proof (A) $\lambda \in \mathbb{C}$. $Ax = \lambda x$ or $A\overline{x} = \overline{\lambda} \overline{x}$ or transposed $\overline{x}^T A = \overline{x}^T \overline{\lambda}$.

Inner products: $\begin{cases} \overline{X}^T A \times = \overline{X}^T A \times \\ \overline{X}^T A \times = \overline{X}^T \overline{A} \times \end{cases} \Rightarrow \lambda \overline{X}^T \times = \overline{\lambda} \overline{X}^T \times \frac{1}{\|X\|^2}$

=> Jm \(\lambda = 0 \)

(B) Let Ax = \(\lambda_1 \times \and Ay = \lambda_2 \gamma\); A = A^T, \(\lambda_i \neq \lambda_2\).

 $(\lambda_1 \times)^T y = (A \times)^T y = X^T A^T y = X^T A y = X^T (\lambda_2 y)$

Singular Value Decomposition (SVD)

A = UEVT; I diagonal, U, V orthogonal

Left singular vectors: $AA^{T} = U\Sigma V^{T}V \Sigma U^{T} = U\Sigma^{2}U^{T}$ $\Rightarrow (AA^{T})U = U\Sigma^{2}$

Right singular vectors: ATA = V SUTU EVT = V EVT

=> (ATA)V = V E2

Multiply by A: AATAV = JAM;

Seigenvector of AAT

ViTATAV = diviTV => ||Avill2 = di

Therefore we get a unit eigenvector Av; /o; = u;

We conclude with a remarkable identity:

AV=UE

Compression: A = U \(\subseteq \subseteq \tau \) = U \(\subseteq \subseteq \subseteq \subseteq \tau \) where \(\tau \) is the man man man man man man man man rank.

= \sum_{i=1}^C \sigma_i \mu_i \v_i^T

If $\sigma_1 \geq \sigma_2 \geq \ldots$ decreases rapidly, then the sum can be a reasonable approximation even with a small number of terms.