EXERCICE N°1 (Le corrigé)

On se place dans un plan muni d'un repère orthonormé $(O; \vec{i}; \vec{j})$.

Déterminer une équation cartésienne de la droite d passant par A(6; -2) et de vecteur directeur $\vec{u} \begin{pmatrix} -1 \\ 2 \end{pmatrix}$

On va utiliser la propriété n°3

On sait qu'une équation cartésienne de d peut s'écrire ax+by+c=0 avec a=2; b=1

Il nous reste à déterminer c

Comme $A \in d$ $2 \times x_A + y_A + c = 0$ ou encore $2 \times 6 - 2 + c = 0$

On en déduit que c=-10

Ainsi une équation cartésienne de d est 2x+y-10=0

EXERCICE N°2 (Le corrigé)

On se place dans un plan muni d'un repère orthonormé $\left(O\;\;;\;\vec{i}\;\;;\;\vec{j}\;\right)\;\;.$

On donne les points A(2; 4); B(-1; 5) et C(3; 1).

1)

1.a) Calculer les coordonnées d'un vecteur directeur de la droite (AC)

Il nous suffit de calculer les coordonnées du vecteur \overrightarrow{AC} qui dirige évidemment la droite (AC)

$$\overrightarrow{AC} \begin{pmatrix} x_C - x_A \\ y_C - y_A \end{pmatrix}$$
 soit $\overrightarrow{AC} \begin{pmatrix} 3 - 2 \\ 1 - 4 \end{pmatrix}$ ou encore $\overrightarrow{AC} \begin{pmatrix} 1 \\ -3 \end{pmatrix}$

1.b) En déduire une équation cartésienne de la droite (AC)

On sait qu'une équation cartésienne de AC peut s'écrire ax+by+c=0 avec a=-3; b=-1

Il nous reste à déterminer c

Comme $A \in d$ $-3 \times x_A - y_A + c = 0$ ou encore $-3 \times 2 - 4 + c = 0$

On en déduit que c=10

Ainsi une équation cartésienne de (AC) est -3x-y+10=0

2) Déterminer une équation cartésienne de la droite (BC)

On nous a détaillé la marche à suivre à la question précédente, on va procéder de la même façon.

Un vecteur directeur de la droite (BC) est bien sûr le vecteur \overline{BC} .

Et:
$$\overrightarrow{BC} \begin{pmatrix} x_C - x_B \\ y_C - y_B \end{pmatrix}$$
 soit $\overrightarrow{BC} \begin{pmatrix} 3 - (-1) \\ 1 - 5 \end{pmatrix}$ ou encore $\overrightarrow{BC} \begin{pmatrix} 4 \\ -4 \end{pmatrix}$

On sait alors qu'une équation de (BC) peut s'écrire ax+by+c=0 avec

$$a=-4$$
; $b=-4$

Il nous reste à déterminer c

Comme $C \in d$ $-4 \times x_C - 4 \times y_C + c = 0$ ou encore $-4 \times 3 - 4 + c = 0$

On en déduit que c=16

Ainsi une équation cartésienne de (BC) est -4x-4y+16=0

Remarques:

- C'est bien <u>une</u> équation cartésienne et pas <u>l'</u>équation cartésienne, en effet x+y-4=0 est aussi une équation cartésienne de (BC)
- N'hésitez pas à utiliser Geogebra pour vérifier vos résultats.

B=(-1,5)

C=(3,1)

-4x-4y+16=0

Avec ces trois commandes, vous avez placé les points B et C ainsi que la droite dont vous avez trouvé une équation. Vous pouvez vérifier qu'elle passe bien par les points B et C.

EXERCICE N°3

(Le corrigé)

On se place dans un plan muni d'un repère orthonormé $(O; \vec{i}; \vec{j})$.

Déterminer une équation cartésienne de chacune des droites représentées ci-dessous.

Pour la droite d_1

On choisit deux points de la droite dont la lecture des coordonnées est « facile » puis on procède comme à l'exercice précédent.

Les points A(-1; 3) et B(0; 4) appartiennent à la droite d_1 .

Un autre nom de la droite d_1 est donc : (AB)

Un vecteur directeur de la droite (AB) est bien sûr le vecteur \overrightarrow{AB} .

Et:
$$\overrightarrow{AB} \begin{pmatrix} x_B - x_A \\ y_B - y_A \end{pmatrix}$$
 soit $\overrightarrow{AB} \begin{pmatrix} 0 - (-1) \\ 4 - 3 \end{pmatrix}$ ou encore $\overrightarrow{AB} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$

On sait alors qu'une équation de (AB) peut s'écrire ax+by+c=0 avec

a = -1; b = 1

Il nous reste à déterminer c

Comme $B \in d$ $-x_B + y_B + c = 0$ ou encore 4 + c = 0

On en déduit que c=-4

Ainsi une équation cartésienne de (AB) est -x+y-4=0

EXERCICE N°4 (Le corrigé)

On se place dans un plan muni d'un repère orthonormé $(O; \vec{i}; \vec{j})$.

1) Représenter:

1.a) la droite d d'équation 2x+3y-4=0

Le point de coordonnées $\left(0;\frac{4}{3}\right)$ appartient à d mais n'est pas pratique à placer, on en cherche donc un autre.

On remarque que $2 \times 2 + 3 \times 0 - 4 = 0$ On choisit donc le point B(2; 0)

On note B(2; 0) qui appartient à d car $2 \times 2 + 3 \times 0 - 4 = 0$

On note $\vec{u} \begin{pmatrix} -3 \\ 2 \end{pmatrix}$

On se place dans un plan muni d'un repère orthonormé $(O; \vec{i}; \vec{j})$.

1.b) et la droite d' d'équation x-y+5=0

(On omettra souvent le mot « cartésienne », il sera sous-entendu)

On note C(0; 5) qui appartient à d' car 0-5+5=0

On note $\vec{v} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$

2) le point A(-3; 2) appartient-il à l'une de ces droites ?

 $A \notin d$ car $2 \times (-3) + 3 \times 2 - 4 \neq 0$

 $A \in d' \text{ car } -3-2+5=0$

EXERCICE N°1

On se place dans un plan muni d'un repère orthonormé $(O; \vec{i}; \vec{j})$.

Déterminer une équation cartésienne de la droite d passant par A(6;-2) et de vecteur directeur $\vec{u} \begin{pmatrix} -1 \\ 2 \end{pmatrix}$

EXERCICE N°2

On se place dans un plan muni d'un repère orthonormé $\left(O~;~\vec{i}~;~\vec{j}\right)~.$

On donne les points A(2;4); B(-1;5) et C(3;1).

1)

- **1.a)** Calculer les coordonnées d'un vecteur directeur de la droite (AC)
- **1.b)** En déduire une équation cartésienne de la droite (AC)
- 2) Déterminer une équation cartésienne de la droite (BC)

EXERCICE N°3

On se place dans un plan muni d'un repère orthonormé $(O; \vec{i}; \vec{j})$.

Déterminer une équation cartésienne de chacune des droites représentées ci-dessous.

EXERCICE N°4

On se place dans un plan muni d'un repère orthonormé $(O;\vec{i};\vec{j})$.

- 1) Représenter:
- **1.a)** la droite d d'équation 2x+3y-4=0
- **1.b)** et la droite d' d'équation x-y+5=0

(On omettra souvent le mot « cartésienne », il sera sous-entendu)

2) le point A(-3; 2) appartient-il à l'une de ces droites ?