1	2	3	4	5

APELLIDO Y NOMBRE:

No. de libreta:

Carrera:

ALGEBRA - FINAL (8/3/02)

1.— Sea $f: \mathbb{N} \to \mathbb{N}$ una función que cumple que cualquiera sea $n \in \mathbb{N}$, n y f(n) son coprimos. Se define la siguiente relación \Re en \mathbb{N} :

$$n \Re m \iff n f(m) \le m f(n).$$

Probar que \Re es reflexiva, antisimétrica y transitiva (es decir es una relación de orden).

2.— Sea $m \in \mathbb{N}$ fijado. Probar por inducción que para todo $n \geq m$ vale

$$\sum_{i=m}^{n} \binom{i}{m} = \binom{n+1}{m+1}.$$

- **3.** Determinar todos los valores de $n \in \mathbb{N}$ para los cuales $5 \mid n \cdot 2^n 3 \cdot n^5$.
- 4. Sea w una raíz quinceava primitiva de la unidad. Calcular

$$w^{159} + \overline{w}^{27} - w^{27} + w^6 + 2w^{-3}$$
.

5.— Sea $n \in \mathbb{N}$. Determinar todos los $a \in \mathbb{C}$ para los cuales el polinomio

$$4X^{2n} - aX^n + 9$$

tiene una raíz múltiple en \mathbb{C} , y para cada valor de a hallado, determinar la multiplicidad de cada raíz del polinomio correspondiente.

Se considerarán sólo las respuestas bien justificadas.