

Silicon Institute of Technology

Silicon Hills, Bhubaneswar An Autonomous Institute

1st Semester B.Tech. End Term Examination 2019-2020 BASIC ELECTRONICS ENGINEERING(18ES1T01)

Duration: 03:00

Full Marks: 60

l

1

l

ı

3

3

1 Answer All

- a How many valence electrons does a silicon atom have?
 a. 0; b. 1; c. 2; d. 4.
- b Find the values of I and V in the circuit shown below.

1 \$\frac{1}{2.5K}\$

- c Why fixed bias is so called? Justify.
- d Derive the relation between α , β ?
- e Write the differences between a BJT and an FET amplifier?
- f Given $I_{DSS} = 10$ mA and $V_P = 4$ V, determine I_D when: (a) $V_{GS} = 1.2$ V; (b) $V_{GS} = 2$ V.
- g Write the gain of a non-inverting OpAmp configuration.
- h The output voltage of a certain op-amp circuit changes by 20V in 4μs. What is the slew rate?
- State the effect of voltage amplifier on input and output impedance.
- The open-loop gain of an amplifier is 50 and its bandwidth is 20KHz. When negative feedback is employed, its bandwidth is increased by 5%. Calculate the feedback ratio.

2 Answer any One

- ^a A full-wave bridge rectifier with a 120V RMS sinusoidal input has a load resistor of $1K\Omega$.
 - a) If silicon diodes are applied, what is the d.c. voltage available at the load?
 - b) Determine the PIV rating of each diode.
- b For the given circuits and input waveform, determine the output waveform.

[P. T. O]

3 Answer any One

^a Given the information provided in the figure shown below, determine V_C , I_C , and V_{CC} .

3

b From the given figure, determine the required values of V_{CC} , R_C , and R_B for a fixed-bias configuration.

3

4 Answer any One

^a Calculate the voltage gain for each stage of this amplifier circuit (both as a ratio and in units of decibels), then calculate the overall voltage gain:

3

b Determine the output voltage when $V_1 = V_2 = 1 \text{ V}$.

3

[P. T. O.]

5 Answer any One

- a Given a Q-point of $I_{DQ} = 3$ mA and $V_{GS,Q} = 3$ V, determine the value of I_{DSS} if $V_P = 6$ V.
- 3
- b An N- Channel depletion MOSFET has the following two points on its V_{GS} I_D curve.
- 3

- (i) $V_{GS} = 0$ at $I_D = 12$ mA and (ii) $V_{GS} = -6$ V at $I_D = 0$.
- Find out the I_{DSS} and V_{P} . What is the value of I_{D} when V_{GS} = -3V.

6 Answer any One

a Explain the principle of an oscillator circuit. Mention the requirements to be satisfied to build an oscillator circuit.

3

b Explain how input impedance, output impedance, voltage gain, and bandwidth changes when negative feedback is introduced in an amplifier circuit.

3

7 Answer any Two

6

Discuss the above circuit with sinusoidal input of peak to peak voltage of 10V, $V_{R1} = 2V$, V_{R2} = 1V, $R = 1\Omega$, and the diodes are silicon diodes.

b A crystal diode having an internal resistance of $r_f = 20\Omega$ is used for full-wave rectification. If the applied voltage is $V = 50 \sin 2t$ and the load resistance is $R_L = 800\Omega$, determine the following

6

- a) I_m, I_{dc}, I_{rms} of output.
- b) Ripple factor

6

- ^c A full-wave center tap rectifier uses two crystal diodes each having a forward resistance of 22 ohms. The RMS value of secondary voltage fed between center tap to each end of secondary is 52V and the load resistance is 2.2 k Ω . Find

- (i) mean load current (ii) d.c.output voltage (iii) d.c. output power
- (iv) rectification efficiency (v) peak inverse voltage

8 Answer any One

a Determine the following for the fixed-bias configuration with Vcc=12V, C=2.2K, $R_B=240K$ $\beta=50$.

6

- (a) I_{BO} and I_{CO} ;
- (b) V_{CEO} ;
- (c) V_B and V_{C} :
- (d) V_{BC}

[P. T. O]

b Determine V_C and V_B for the circuit shown below.

9 Answer any One

- a Explain CMOS as an INVERTER with a suitable diagram. Implement NOT gate using CMOS and describe its operation.
- b Determine the following parameter for the network given below using the graphical method. Given that R_1 =2.1M Ω , R_2 =270K Ω , R_D =2.4K Ω , R_S =1.5K Ω , I_{DSS} =8mA, VP=-4V, V_{DD} =16V.
 - (a) I_{DQ} and V_{GSQ} ,(b) V_{D} ,(c) V_{S} ,(d) V_{DS} ,(e) V_{DG}

10 Answer any One

^a What do you mean by Op-amp? Determine the output voltage in terms of V_1 and V_2 .

[P. T. O]

6

6

6

5

5

11 Answer any One

- Discuss the voltage series feedback amplifier with a suitable diagram. What are the advantages of a Negative Feedback Amplifier?
- b What is the condition for oscillation? Derive the expression of frequency of oscillation and also the condition for oscillation in an RC phase shift oscillator
