分子の振動・回転と赤外分光

徳島大学理工学部・応用化学システムコース

岡村 英一

分子(物質)による光の吸収

透過率
$$T(\nu) = \frac{I(\nu)}{I_0(\nu)}$$

- 分子の基準振動数を中心に 光が吸収される
- 吸収の幅、強度→多くの情報
 - 強度→ 分子数、遷移強度、など
 - 幅→ 乱れ、寿命、など

分子振動による光吸収の例:トルエン

様々な現象と特徴的振動数

赤外分光 vs ラマン分光

赤外分光

(光源は白色光)

ラマン分光

(光源は単色レーザー光)

試料

近赤外

散乱

(Stokes過程

では $v_s < v_i$)

気体分子の例: CO₂, H₂O

電気双極子(正負の電荷対)が振動 →その振動数で赤外線を吸収 (アンテナの役割をする)

空気中の H_2O , CO_2 による赤外吸収 [O_2 , N_2 , Arは見えない(赤外を吸収しない)]

真空中なので空気分子による吸収は見えない。

空気中の H_2O , CO_2 による赤外吸収 $[O_2, N_2, Arは見えない(赤外を吸収しない)]$

- H₂Oの細かい構造→分子の回転
- CO₂の方がスペクトルが単純→直線分子で対称性が高いため
- 赤外分光実験→乾燥空気、N₂ガスによるパージや真空排気が望ましい

-

分子の振動・回転エネルギー

- 量子力学では量子化される。
- 振動エネルギー、回転エネルギーとも離散的な (とびとびの)値を取る。

• 振動エネルギー:
$$\epsilon_v = \left(v + \frac{1}{2}\right)\hbar\omega \ (v = 0, 1, 2, ...)$$

• 回転エネルギー:
$$\epsilon_J = \frac{J(J+1)\hbar\omega}{2J} \ (J=0,1,2,...)$$

(v) は振動の量子数、(v) は回転の量子数、(v) は分子の慣性モーメント)

回転準位の影響

■ 多数の鋭い吸収線→それぞれが異なる 回転量子数Jに対応 岡村、未出版 データ

大気による太陽光の吸収(南極での観測)

南極・昭和基地で測定された、大気による太陽光の赤外吸収スペクトル。 異なる色のスペクトルは、異なる太陽高度での観測結果を示す。 (2007年春。国立環境研究所のウェブサイトより引用)

気体の赤外分光→環境科学への応用

- オゾンの観測
- 工場の排気、自動車の排ガスなど
- 大気中に残留する有害物質などの検出、 モニター
 - NOx (NO, NO₂, N₂O, N₂O₃, etc)
 - SOx (SO₂, etc)

有機物の分子振動数→分子の「指紋」

- 異なる分子振動、化学結合、化学基は固有の 振動数を持っている。
 - 分子や化学結合の「指紋」と考えられる。
 - 700-2000 cm⁻¹領域は特に多くの特徴的振動数が 密集しており、「指紋領域」と呼ばれる。
 - 膨大な数の分子、結合などの赤外データベースが 構築されている。(自動検索可能!)
 - ウェブ上で無料で使えるデータベース。
 - 分子の同定、定量に用いられる。

分子振動スペクトルのデータベース 産業技術総合研究所(AIST)ウェブサイトより

AIST:Spectral Databa ×			
← → C 介 ① 保護されていません sdbs.db.aist.go.jp/sdbs/cgi-bin/direct	_frame_top.cgi		☆ % % font 🐎 🔍 ;
有機化合物のスペクトルデータベース	English 概要	免責 ヘルブ コ	iンタクト 最新情報 RIO-DB FAQ リンク
SDBS	LIIgii3II 小M 会	元月 707 -	IDADI BRAITIN NO-DO TAG 700
SDRS	化合物・スク	らかし ルム (なっと)	
3003	10日初-人	トプトルが、	术
化合物名(英語名·日本語名):	元素数:		スペクトル:
toluene 部分一致 ▼	C(炭素)	~	ほしいスペクトルでチェック
英語名称は半角英数字、日本語名称は全角文字で入	H(水素)	~	■ MS ■ IR
力。 日本語名称検索では右のnをチェック。	N(窒素)	~	□ ¹³ C NMR □ Raman
日本語名称機器とは石の口をナエック。	O(酸素)	~	□ ¹H NMR □ ESR
分子式:	F(フッ素)	~	IR ピ ーク波数値 (cm ⁻¹): 範囲
半角英数字,C, Hに続き他は元素記号の	Cl(塩素)	~	± 10
千角突数子,C, Fic 続き回は九条6500 アルファベット順,ワイルドカード(%,*)	Br(臭素)	~	コンマ、ま/こはス/ヘース区 切り。 軋曲は - "。
分子量:	l(ヨウ素)	~	(例) 550-750,1650,3000 Transmittance < 80 %
~	S(イオウ)	~	
半角英数字,小数点第一位まで,左の箱以上右の箱以下	P(リン)	~	13C NMR シフト(ppm): 範囲 ±2.0
CAS登録番号:	Si (ケイ素)	~	
半角英数字,ワイルドカード(%,*)	半角数字,左の箱	以上右の箱以下	129.3,18.4,…
SDBS番号:			シフト無し領域: 2 つの値をスペースではさむ:(例) 110
半角英数字,ワイルドカード(%,*)			78,···
			¹ H NMR シフト(ppm): 範囲
			40.2

4

スペクトル検索の例(トルエン)

振動数チャートの例(1)

振動数チャート(2)

0 870 850 0
870 850
870 850
850
850
0 .
0
0
or
or
or
0

振動数チャートの例(3)

-

ポリマーの分子振動スペクトルの例

白川英樹、ノーベル賞講演(2000) ←Nobel財団ウェブサイトで、映像もPDFも見られます。

まとめ

- 様々な分子の振動・回転状態は、赤外分光やラマン分光で調べられる。
 - 異なる分子振動は異なる基準振動数を持つ
 - 分子の「指紋振動数」ともよばれる。(英語では "Finger-print frequency"とよぶ)
- 来年度の学生実験「赤外分光測定」で、実際に H₂O, CO₂, C₂H₅OHなどの分子振動を、赤外分光 で調べます。
 - 楽しみにしていてください。