Hackathon Project Phases Template

Project Title:

Couture AI: Clothing Image Generator Using Stable Diffusion Pipeline.

Team Name:

InnoQuads

Team Members:

- Nithya Jogannagari
- Sania
- Sowmya Medipelly
- Vaishnavi P

Phase-1: Brainstorming & Ideation

Objective:

CoutureAI generates realistic clothing images from structured text descriptions using Generative AI. It helps users visualize and refine their fashion ideas before purchase or tailoring. This tool enhances personalization and bridges the gap between imagination and reality in fashion.

Key Points:

1. Problem Statement:

- Finding custom clothing that matches personal style can be challenging, as traditional shopping lacks visualization
- CoutureAl solves this by generating realistic outfit images from text descriptions, helping users see their designs before purchase or tailoring.

2. Proposed Solution:

 CoutureAl generates realistic clothing images from text descriptions using Generative AI. This helps users visualize and refine their fashion ideas before purchase or tailoring.

3. Target users:

- Fashion Enthusiasts Individuals who want to visualize and refine their custom clothing ideas.
- Designers & Tailors Professionals seeking Al-generated references for bespoke creations.
- E-commerce & Retailers Online stores looking to offer personalized fashion previews.
- Fashion Startups Businesses aiming to integrate Al-driven customization into their services.

4. Expected Outcome:

 CoutureAl generates realistic clothing images based on structured text descriptions provided in the prompt. This enables users to visualize, customize, and refine their fashion ideas before purchase or tailoring.

Phase-2: Requirement Analysis

Objective:

Define the technical and functional requirements for the CoutureAl App.

Key Points:

1. Technical Requirements:

- o Programming Language: Python
- Backend: Google Colab, Diffusers' Stable Diffusion Pipeline, Torch & Transformers
- Frontend: IPython Display
- Database: No traditional database required since images are generated on demand.

2. Functional Requirements:

 Generate realistic clothing images from text descriptions using Generative AI.

- Allow users to prompt detailed information to refine and customize designs.
- Allow Support multiple fashion styles and customization options (e.g., color, fabric, fit)
- o Enable users to save, compare, and download generated outfits.

3. Constraints & Challenges:

- Ensuring high-quality and realistic image generation within a reasonable time frame.
- Optimizing computational resources for Stable Diffusion to run efficiently on Google Colab.
- Handling user input variations (e.g., vague descriptions, conflicting style requests).
- Providing a streamlined interaction experience using Google Colab's
 IPython Display for seamless output presentation.

Phase-3: Project Design

Objective:

Develop the architecture and user flow of the application.

Key Points:

1. System Architecture:

User enter a clothing description.

- o The system extracts key attributes from the text for Al inference.
- The AI model generates a realistic clothing image based on input prompts.
- The generated clothing image is displayed for user interaction, modifications, or downloads.
- Generated images and queries are stored in a cloud database for future access.

2. User Flow:

- Step 1: User Input The user enters a clothing description (e.g., "A blue denim jacket with embroidered patterns").
- Step 2: Al Processing The backend processes the input and sends it to the Stable Diffusion model for image generation.
- Step 3: Image Generation & Display The AI model generates a realistic clothing image, which is displayed on the IPython Display for user review and refinement.

3. UI/UX Considerations:

- User-Friendly Interface A clean, intuitive design for seamless navigation and effortless interaction.
- Users can filter generated images by selecting fabric, colour, style, and patterns.
- Dark & light mode for better user experience.

Phase-4: Project Planning

Objective:

Break down development tasks for efficient completion.

	Sprin t	Task	Priorit y	Duratio n	Deadlin e	Assigned To		Expected Outcome
١	Sprin t 1	Environment Setup &	High	8 hours (Day 1)	End of Day 1	ISania	Diffusers, Stable	Al model integrated & ready to

	Model Integration				Jogannag ari		process inputs
Sprin t 1	Frontend IPython display Developmen t	Mediu m	3 hours (Day 2)	Mid-Day 2	Nithya Jogannag ari	Image generation API response format finalized	Basic IPython Display with input fields.
Sprin t 2	Text-to- Image Generation	• High	4 hours (Day 1)	Mid-Day 2	Vaishnavi P	Al model setup,compone nts ready	Generate realistic outfit images from descriptions
Sprin t 2	Error Handling & Debugging	High	1.5 hours (Day 2)	Mid-Day 2	Sowmya Medipelly	API logs, IPython Display inputs	Improved stability, reduced model errors
Sprin t 3	Testing & UI Enhancemen ts	Mediu m	1.5 hours (Day 2)	Mid-Day 2	Sowmya Medipelly	Al model responses, IPython Display layout completed	Responsiv e IPython Display smoother user experience
Sprin t 3	Final Presentation & Deployment	Low	1 hour (Day 2)	Mid-Day 2	Nithya Jogannag ari	Working prototype	Demo- ready project

Sprint Planning with Priorities

Sprint 1 – Setup & Integration (Day 1)

(High Priority) Set up the environment & install dependencies.

(High Priority) Model Integration

(Medium Priority) Build a basic UI with input fields.

Sprint 2 – Core Features & Debugging (Day 2)

- (High Priority) Implement Text-to-Image Generation.
- (High Priority) Debug API issues & handle errors in queries.

Sprint 3 – Testing, Enhancements & Submission (Day 2)

- (Medium Priority) Test API responses, refine, debug.
- (Low Priority) Final demo preparation & deployment.

Phase-5: Project Development

Objective:

Implement core features of the CoutureAI App.

Key Points:

1. Technology Stack Used:

- Frontend: IPython Display (used in Google Colab to show images)
- Backend: Google Colab (Jupyter Notebook environment)
 Diffusers' Stable Diffusion Pipeline (for AI-based image generation)
 Torch & Transformers (for deep learning & model execution)
- Programming Language: Python

2. Development Process:

- o Implement AI model integration using Stable Diffusion via Diffusers.
- o Develop text-to-image generation logic for realistic fashion visualization.
- Enable customization options (e.g., modify fabric, color, fit) in generated designs.
- Optimize AI processing to ensure quick and high-quality image generation.
- Enhance IPython Display for seamless user interaction with input fields and result display.

3. Challenges & Fixes:

o **Challenge:** Slow image generation time.

Fix: Optimize model parameters and use Google Colab's GPU acceleration.

o Challenge: Inconsistent or inaccurate clothing designs.

Fix: Fine-tune input prompts and enhance text preprocessing for better Al interpretation.

Challenge: High computational load during multiple requests.
 Fix: Implement request queuing and optimize Stable Diffusion model execution.

Phase-6: Functional & Performance Testing

Objective:

Ensure that the CoutureAl App works as expected.

Test			From a set of		
Case ID	Category	Test Scenario	Expected Outcome	Status	Tester
		Input: "Generate a	A realistic red evening gown		
		red evening gown	with floral		
TC-	Functional	with floral	patterns is	~	Sowmya
001	Testing	patterns.""	generated.	Passed	Medipelly
TC-	Functional	Upload a reference image and modify	The AI generates a similar outfit	✓	
002	Testing	color to "blue."	with a blue color.	Passed	Vaishnavi P
TC-	Performance	Image generation time under 10	Al should generate images within the	<u> </u>	
003	Testing	seconds.	expected time.	Passed	VaishnaviP
TC- 004	Bug Fixes & Improvements	Fix inaccurate outputs for vague descriptions	Al should generate more relevant images	✓ Fixed	Nithya Jogannagari & Sania
TC- 005	Final Validation	Ensure UI works across devices	IPython Display should be fully responsive.	✓ Passed	Nithya Jogannagari & Sania

		(mobile & desktop)			
			The app should		
TC-	Deployment	Host the app using	be accessible	Working	Sowmya
006	Testing	Google Colab	online.	on it.	Medipelly

Final Submission

- 1. Project Report Based on the templates
- 2. Demo Video (3-5 Minutes)
- 3. GitHub/Code Repository Link
- 4. Presentation