

Applicant: J. Bradford Cole
For: METHOD AND SYSTEM OF CHARACTERIZING A DEVICE
UNDER TEST

1 1. A method of characterizing a device under test, the method comprising:
2 injecting a signal into the device under test;
3 measuring the response to the injected signal to determine the impedance
4 of the device under test in the frequency domain;
5 converting the impedance of the device under test to a time domain; and
6 calculating the voltage noise of the device under test based on the
7 impedance in the time domain.

1 2. The method of claim 1 in which the step of measuring the response
2 includes constructing an s-parameter matrix and calculating the real and imaginary
3 portions of the impedance of the device under test as a function of frequency based on the
4 s-parameter matrix.

1 3. The method of claim 2 in which the step of construction the s-parameter
2 matrix includes establishing calibration data, generating an uncorrected s-parameter
3 matrix based on the measured impedance of the device under test, and applying the
4 calibration data to the uncorrected s-parameter matrix to produce a corrected s-parameter
5 matrix.

1 4. The method of claim 1 in which converting includes performing an

2 inverse Fourier transform on the impedance in the frequency domain.

1 5. The method of claim 1 in which calculating the voltage noise of the device
2 under test includes convolving the impedance in the time domain with a predetermined
3 current in the time domain.

1 6. The method of claim 1 in which the impedance determined is self-
2 impedance.

1 7. The method of claim 6 in which the step of determining the impedance of
2 the device under test includes measuring, at a terminal pair of the device under test using
3 one test port of an analyzer, the response to a signal input to the terminal pair from a
4 different test port of the analyzer.

1 8. The method of claim 1 in which the impedance determined is the transfer
2 impedance.

1 9. The method of claim 8 in which the step of determining the impedance of
2 the device under test includes measuring, at one terminal pair of the device under test
3 using one test port of an analyzer, the response to a signal input to a different terminal
4 pair of the device under test from a different test port of the analyzer.

1 10. The method of claim 1 in which the voltage noise calculated is the

2 simultaneous switching noise.

1 11. The method of claim 10 in which the step of determining the impedance of
2 the device under test includes injecting an input signal to a plurality of terminal pairs of
3 the device under test.

1 12. The method of claim 11 in which the voltage noise at a particular terminal
2 pair of interest on the device under test is calculated and the simultaneous switching noise
3 is the sum of all voltage noise signals.

1 13. The method of claim 1 in which the device under test has multiple
2 terminal pairs and the timing of calculated voltage noise of each terminal pair is adjusted
3 until a maximum total voltage noise is achieved to determine a worst case scenario
4 concerning timing of the signal input to each terminal pair and the resulting total voltage
5 noise.

1 14. The method of claim 1 further including the step of determining the
2 spectral response of the device under test.

1 15. The method of claim 14 in which the step of determining the spectral
2 response of the device under test includes performing a Fourier transform on the
3 calculated voltage noise of the device under test.

1 16. The method of claim 1 in which the device under test is a printed circuit
2 board.

1 17. The method of claim 1 in which the device under test is an integrated
2 circuit package.

1 18. The method of claim 1 in which the device under test is an interconnect
2 component.

1 19. The method of claim 1 in which the device under test is a digital
2 representation of a physical device and the injected signal and measured response are
3 simulated.

1 20. A method of characterizing a device under test, the method comprising:
2 determining the impedance of the device under test in the frequency
3 domain by constructing an s-parameter matrix and calculating the real and imaginary
4 portions of the impedance based on the s-parameter matrix;
5 converting the frequency domain impedance of the device under test to a
6 time domain by performing an inverse Fourier transform on the determined complex
7 impedance; and
8 calculating the voltage noise of the device under test by convolving the
9 time domain impedance with a predetermined current in the time domain.

1 21. The method of claim 20 in which determining the impedance includes
2 injecting a signal into the device from one or more test ports of an analyzer and
3 measuring the response of the device.

1 22. The method of claim 20 in which the predetermined current is a current
2 specified for the device under test.

1 23. The method of claim 20 in which the step of constructing the s-parameter
2 matrix includes establishing calibration data, generating an uncorrected s-parameter
3 matrix based on the measured impedance of the device under test, and applying the
4 calibration data to the uncorrected s-parameter matrix to produce a corrected s-parameter
5 matrix.

1 24. The method of claim 20 in which the impedance determined is self-
2 impedance.

1 25. The method of claim 20 in which the step of determining the impedance of
2 the device under test includes measuring, at a terminal pair of the device under test using
3 one test port of an analyzer, the response to a signal input to the terminal pair from a
4 different test port of the analyzer.

1 26. The method of claim 20 in which the impedance determined is the transfer
2 impedance.

1 27. The method of claim 26 in which the step of determining the impedance of
2 the device under test includes measuring, at one terminal pair of the device under test
3 using one test port of an analyzer, the response to a signal input to a different terminal
4 pair of the device under test from a different test port of the analyzer.

1 28. The method of claim 20 in which the voltage noise calculated is the
2 simultaneous switching noise.

1 29. The method of claim 28 in which the step of determining the impedance of
2 the device under test includes measuring the response of a plurality of terminal pairs of
3 the device under test.

1 30. The method of claim 29 in which the voltage noise of each terminal pair of
2 the device under test is calculated and the simultaneous switching noise is the sum of the
3 voltage noise of each terminal of the device under test.

1 31. The method of claim 20 in which the device under test has multiple
2 terminal pairs, a signal is input to each terminal pair, and the calculated voltage noise of
3 each terminal pair is adjusted until a maximum total voltage noise is achieved to
4 determine a worst case scenario concerning timing of the signal input to each terminal
5 pair and a resulting total voltage noise.

1 32. The method of claim 20 further including the step of determining the
2 spectral response of the device under test.

1 33. The method of claim 32 in which the step of determining the spectral
2 response of the device under test includes performing a Fourier transform on the
3 calculated voltage noise of the device under test.

1 34. The method of claim 20 in which the device under test is a printed circuit
2 board.

1 35. The method of claim 20 in which the device under test is an integrated
2 circuit package.

1 36. The method of claim 20 in which the device under test is an interconnect
2 component.

1 37. The method of claim 20 in which the device under test is a digital
2 representation of a physical device.

1 38. A system for characterizing a device under test, the system comprising:
2 an input subsystem configured to inject a signal into the device under test
3 and measure the response of the device under test;
4 a routine responsive to the input subsystem for characterizing the
5 frequency domain impedance of the device under test;
6 a routine configured to convert the frequency domain impedance to a time
7 domain impedance; and
8 a routine configured to calculate the voltage noise of the device under test
9 based on the time domain impedance.

1 39. The system of claim 38 in which the input subsystem includes a network
2 analyzer.

1 40. The system of claim 39 in which the network analyzer includes a plurality
2 of test ports connectable to the device under test for injecting a signal into the device
3 under test and receiving a response from the device under test.

1 41. The system of claim 38 further including an output device for outputting
2 the calculated voltage noise of the device.

1 42. The system of claim 38 further including a user interface for inputting a
2 current specified for the device under test.

1 43. The system of claim 38 in which the routine for characterizing the
2 frequency domain impedance is configured to construct an s-parameter matrix and to
3 calculate the real and imaginary portions of the impedance based on the s-parameter
4 matrix.

1 44. The system of claim 43 further including a calibration routine for
2 establishing calibration data, an uncorrected s-parameter matrix is based on the measured
3 impedances of the device under test, and the calibration data is applied to the uncorrected
4 s-parameter matrix to produce a corrected s-parameter matrix.

1 45. The system of claim 38 in which the routine configured to convert the
2 frequency domain impedance to a time domain impedance performs an inverse Fourier
3 transform on the frequency domain impedance.

1 46. The system of claim 38 in which the routine for calculating the voltage
2 noise of the device under test convolves the time domain impedance with a
3 predetermined current.

1 47. The system of claim 38 in which the impedance determined is self-
2 impedance.

1 48. The system of claim 38 in which the input subsystem is configured to
2 measure, at a terminal pair of the device under test using one test port of the input

3 subsystem, the response to a signal input to the terminal pair from a different test port of
4 the input subsystem.

1 49. The system of claim 38 in which the impedance determined is the transfer
2 impedance.

1 50. The system of claim 49 in which the input subsystem is configured to
2 measure, at one terminal pair of the device under test using one test port of the input
3 subsystem, the response to a signal input to a different terminal pair of the device under
4 test from a different test port of the input subsystem.

1 51. The system of claim 38 in which the voltage noise calculated is the
2 simultaneous switching noise.

1 52. The system of claim 51 in which the input subsystem is configured to
2 input a signal to a plurality of terminal pairs of the device under test.

1 53. The system of claim 52 in which the voltage noise at a particular terminal
2 pair of interest on the device under test is calculated and the simultaneous switching noise
3 is calculated as the sum of all voltage noise signals.

1 54. The system of claim 38 in which the device under test has multiple
2 terminal pairs, a signal is input to each terminal pair by the input subsystem, and the

3 voltage noise at a particular terminal pair of interest is calculated and the timing of the
4 input signals is adjusted until a maximum total voltage noise is achieved to determine a
5 worst case scenario concerning timing of the signal inputs to each terminal pair and a
6 resulting total voltage noise.

1 55. The system of claim 38 further including a routine for determining the
2 spectral response of the device under test.

1 56. The system of claim 55 in which the routine for determining the spectral
2 response of the device under test performs a Fourier transform on the calculated voltage
3 noise of the device under test.

1 57. The system of claim 38 in which the device under test is a printed circuit
2 board.

1 58. The system of claim 38 in which the device under test is an integrated
2 circuit package.

1 59. The system of claim 38 in which the device under test is an interconnect
2 component.

1 60. The system of claim 38 in which the device under test is a digital
2 representation of a physical device and the input subsystem simulates an injected signal

3 and a response.

1 61. A system for characterizing a device under test, the system comprising:
2 a routine for determining the frequency domain impedance of the device
3 under test by constructing an s-parameter matrix and calculating the real and imaginary
4 portions of the impedance based on the s-parameter matrix;
5 a routine for converting the frequency domain impedance to a time
6 domain impedance by performing an inverse Fourier transform on the complex
7 impedance; and
8 a routine for calculating the voltage noise of the device under test by
9 convolving the time domain impedance with a predetermined current.

1 62. The system of claim 61 in which further including an analyzer configured
2 to inject a signal into the device from one or more test ports and to measure the response
3 of the device.

1 63. The system of claim 61 in which the predetermined current is a current
2 specified for the device under test.

1 64. A system for characterizing a device under test, the system comprising:
2 an input subsystem configured to inject a signal into the device under test
3 and to measure the response of the device under test; and
4 a routine for automatically determining the frequency domain impedance
5 of the device under test by constructing an s-parameter matrix and calculating the real
6 and imaginary portions of the impedance based on the s-parameter matrix.

1 65. The system of claim 64 further including a routine for converting the
2 frequency domain impedance to a time domain impedance by performing an inverse
3 Fourier transform on the complex impedance.

1 66. The system of claim 65 further including a routine for calculating the
2 voltage noise of the device under test by convolving the time domain impedance with a
3 predetermined current.