Instructor: Alex Brodsky

Midterm Examination

10:00 – 11:30am, Wednesday, June 19, 2018

Name:	
Student Number:	
Student Signature:	

Duration: 75 minutes **Aids allowed:** None

- 1. Place your student card on the table beside you. An invigilator will check your ID and register you during the exam.
- 2. This examination has 12 pages. Ensure that you have a complete paper.
- 3. The use of calculators, computers, books, papers, memoranda, cell phones, or any other electronic device is strictly prohibited.
- 4. Place your book-bags, coats, and books at the front of the room.
- 5. You may not reenter the examination once you leave.
- 6. You may not leave the examination after 65 minutes into the exam.
- 7. You must hand in the exam. You may not remove the exam from the room
- 8. You may not ask questions of invigilators, except in cases of supposed errors or ambiguities in examination questions.
- 9. Answer the multiple choice questions on the bubble sheet and on your paper. (just in case)
- 10. Answer the short answer questions directly on the exam
- 11. No smoking is permitted.
- 12. Write legibly and neatly.
- 13. Complete as much of the exam as you can.
- 14. Good Luck!

Question	Value
1	/25
2	/10
Total	/35

Part 1

1. Suppose the Java compiler reported an error on the following statement:

At which phase of the compilation process would this occur?

- (a) Intermediate code generation
- (b) Syntax analysis
- (c) Lexical analysis
- (d) Semantic analysis
- 2. Suppose you were asked to create a French version of Java, where all the keywords and operators were in the French language instead of English. Which phase of the Java compiler would you need to modify?
 - (a) Scanner
 - (b) Parser
 - (c) Semantic Analyzer
 - (d) Code Generator
- 3. Which of the following regular expressions specifies the language of all nonempty binary strings that have have exactly three 1s? E.g., 10101, 011100, 0100010010
 - (a) (0*)1(0*)1(0*)1(0*)
 - (b) 0(1*)0(1*)0(1*)0
 - (c) (0*)(1*)(0*)1*)(0*)(1*)(0*)
 - (d) $(0*)(\epsilon|1)(0*)(\epsilon|1)(0*)(\epsilon|1)(0*)$
- 4. What language does the following DFA recognize?

- (a) All strings over the alphabet a, b that have three a's
- (b) All strings over the alphabet a, b that have four a's
- (c) All strings over the alphabet a, b that have no adjacent b's
- (d) All strings over the alphabet a, b that have three adjacent a's

5. Which of the following components differs between DFAs and NFAs?
 (a) Q: The set of states (b) Σ: The alphabet (c) q₀: the initial state (d) δ: the transition function (e) F: the set of final states
6. Under which of the following conditions will an NFA M accept a string σ ?
I. There is no path such that M ends up in a final state after reading σ . II. There is one path such that M ends up in a final state after reading σ . III. There are a finite number of paths such that M ends up in a final state after reading σ . IV. There are an infinite number of paths such that M ends up in a final state after reading σ .
(a) I (b) II (c) II or III (d) II, III or IV (e) II or IV
7. Which of the following statements are true?
I. For each regular language L , there are many NFAs that recognize L . II. For each NFA M , there are many regular languages that M recognizes. III. For each regular language L , there are many regular expressions that specify L . IV. For each regular expression R , there are many regular languages that R can specify.
 (a) I and III (b) I and IV (c) 1, II, and IV (d) II and III (e) II and IV

8. Suppose state r was removed from the following GNFA as part of the procedure to generate a regular expression from an NFA. What would be the regular expression for the transition from q to t?

- (a) 1 | (01)
- (b) 1 | (001)
- (c) $1 \mid (00*1)$
- (d) $1 \mid (00*1*)$
- (e) 00*1*)
- 9. Which of the following statements are true?
 - **I.** Each regular expression specifies exactly one regular language.
 - II. Each regular language is recognized by exactly one DFA.
 - III. Each NFA recognizes eactly one regular language.
 - **IV.** Each regular language is specified by exactly one regular expression.
 - (a) I and II
 - (b) I and III
 - (c) II and IV
 - (d) I, II, and III
 - (e) I, II, III, and IV

10. Suppose a DFA M was constructed from the following NFA using standard subset construction as discussed in class. What would be the initial state of M?

- (a) q_0
- (b) $\{q_0\}$
- (c) $\{q_0, q_1\}$
- (d) $\{q_0, q_1, q_2\}$
- (e) $\{q_0, q_1, q_3\}$
- 11. Suppose a DFA M was constructed from the NFA in the preceding question, using standard subset construction as discussed in class. Which of the following would be final states of M?
 - **I.** $\{q_2, q_4\}$
 - **II.** $\{q_1, q_3\}$
 - **III.** $\{q_0, q_1, q_3\}$
 - **IV.** $\{q_0, q_1\}$
 - (a) I
 - (b) II and III
 - (c) II, III, and IV
 - (d) II and IV
 - (e) III
- 12. Suppose that you were told that $L=L_1\cup L_2$ was not a regular language. We can then conclude that
 - (a) L_1 and L_2 must be nonregular languages
 - (b) L_1 or L_2 must be nonregular languages
 - (c) L_1 or L_2 must be regular languages
 - (d) None of the above.

13.	Suppose you were minimizing a DFA that initially had 10 states and the alphabet $\{0,1\}$. In	the
	worst case, how many equivalence classes will be created as a result of the minimization proce	ess?

- (a) 2
- (b) 8
- (c) 10
- (d) 12
- (e) 20

14. Which of the following methods is can be used for showing that a language is nonregular.

- **I.** The Pumping Lemma
- II. Closure properties of regular languages
- III. Constructing an NFA
- IV. Constructing a Regular Expression
 - (a) I
 - (b) I and II
 - (c) II
 - (d) II, III, and IV
 - (e) I, II, III, and IV

15. When using the Pumping Lemma, which of the following does the prover (you) get to choose?

- **I.** The value of n
- II. The word σ
- **III.** The partition of the word σ into $\alpha\beta\gamma$
- **IV.** The power k of β , i.e., β^k .
 - (a) I and II
 - (b) I, II, and IV
 - (c) II and IV
 - (d) II, III, and IV

16. Suppose you were using the Pumping Lemma to prove that the language $L = \{ \sigma \in a, b^* \mid |\sigma|_a > |\sigma|_b \}$ was not regular. What would be the best choice for σ ?

(a)
$$\sigma = a^{n+1}b^n$$

- (b) $\sigma = a^n b^n$
- (c) $\sigma = a^n$
- (d) $\sigma = b^{n+1}a^n$

17.	Given the grammar below,	how many	derivations	does it take	e to derive	the	string	"abac"?	the
	grammar being ambiguous'	?							

$$S \rightarrow SS$$

$$S \rightarrow AB$$

$$S \rightarrow AC$$

$$A \rightarrow Aa$$

$$A \ \to \ \mathtt{a}$$

$$B \rightarrow bB$$

$$B \rightarrow b$$

$$C \ \to \ C \mathsf{c}$$

$$C \rightarrow \epsilon$$

- (a) 4
- (b) 5
- (c) 6
- (d) 7
- (e) 8

- I. Internal nodes are labeled by variables (nonterminals)
- II. Internal nodes are labeled by variables (nonterminals) or terminals
- III. Leaf nodes are labeled by variables (nonterminals) or terminals
- IV. Leaf nodes are labeled by terminals
 - (a) I and III
 - (b) I and IV
 - (c) II and III
 - (d) II and IV

19. Consider the following grammar.

$$\begin{array}{ccc} S & \rightarrow & SS \\ S & \rightarrow & 0S1 \\ S & \rightarrow & 1S0 \\ S & \rightarrow & 01 \\ S & \rightarrow & 10 \end{array}$$

Which of the following inputs would indicate that this grammar is ambiguous?

- (a) 0011
- (b) 1010
- (c) 1001
- (d) 1100

20. What is the purpose of the stack in a top-down (LL(1)) parser?

- (a) To store the input that has been read by the parser.
- (b) To store the input that will be read by the parser.
- (c) To store the current partial sentential form.
- (d) To store the derivations that have been performed.

21. Consider the following PREDICT table.

	Production	Predictor Set
1	$S \to Atoms$	$\{\epsilon,(,',\mathtt{id},\mathtt{int}\}$
2	$Atoms \rightarrow \epsilon$	$\{\epsilon,)\}$
3	$Atoms \rightarrow Atom\ Atoms$	$\{(,',\mathtt{id},\mathtt{int}\}$
4	$Atom \rightarrow 'Atom$	{'}
5	$Atom \rightarrow (Atoms)$	{(}
6	$Atom ightarrow exttt{id}$	$\{id\}$
7	$Atom o \mathtt{int}$	$\{ exttt{int} \}$

Which statement is most accurate in regards to this grammar?

- (a) This grammar is not LL(1) because of productions 1, 2, and 3.
- (b) This grammar is not LL(1) because of productions 1 and 3.
- (c) This grammar is not LL(1) because of productions 2 and 3.
- (d) This grammar is LL(1)

22.	When computing the PREDICT table, which of the following productions in the table in	ques-
	tion 21 require us to compute the FOLLOW table?	
	(a) Production 1	
	(b) Production 2	
	(c) Productions 1 and 2	
	(d) Productions 1, 2, and 3	

23. What is the most accurate statement about the following grammar?

$$\begin{array}{ccc} E & \rightarrow & E+T \\ E & \rightarrow & T \\ T & \rightarrow & T*F \\ T & \rightarrow & \text{int} \end{array}$$

- (a) This grammar is ambiguous.
- (b) This grammar has left recursion.
- (c) This grammar has a common prefix.
- (d) This grammar is LL(1)
- 24. A recursive descent parser implements a function for each
 - (a) Terminal
 - (b) Variable
 - (c) Production
 - (d) Right hand side (RHS) of a production
- 25. A Push-Down Automata can recognize
 - I. Regular languages
 - II. Languages that have an LL(k) grammar
 - III. Languages that have an LR(k) grammar
 - IV. Context free languages
 - (a) I
 - (b) I and II
 - (c) I, II, and III
 - (d) I, II, III, and IV
 - (e) II, III, and IV

Part 2

1. [5] Give a DFA that recognizes the language over the alphabet $\Sigma = \{x, y, z\}$ of all words whose length is divisable by 4. For example, ϵ , yyzx, and xxxyyyyzzzzz.

2. [5] Using the grammar on the last page of this test (Figure 1), give a parse tree for the input

```
struct complex {
  float real;
  float img;
}
```



```
Type \rightarrow Primitive
                                                                                             (1)
      Type \rightarrow Struct
                                                                                             (2)
    Struct \rightarrow `struct' id `\{'Field Fields `\}'
                                                                                             (3)
    Fields \rightarrow Field \ Fields
                                                                                             (4)
    Fields \rightarrow \epsilon
                                                                                             (5)
     Field \rightarrow Type id Array ';'
                                                                                             (6)
     Array \rightarrow \epsilon
                                                                                             (7)
     Array \rightarrow ``[' int `]' Array
                                                                                             (8)
\textit{Primitive} \ \rightarrow \ \text{`int'}
                                                                                             (9)
Primitive \rightarrow \text{`float'}
                                                                                           (10)
Primitive \rightarrow \text{`char'}
                                                                                           (11)
```

Figure 1: A simple grammar for C types, with start symbol *Type*.

completely 000 **EXAMPLES** WRONG RIGHT **600** (2) 0 GENERAL PURPOSE

IDENTIFICATION NUMBER

SECTION

COURSE

O

ш

Ш O

O

0000000000

0000000

S	S
DIRECTIONS	ANSWERS
0	ш
$\underline{\circ}$	2
-	-
C	60
Ш	<
0	V
-	617
	9
IMPORTANT	FOR MARKING
>	
-	0
1	1
~	4
-	>
Q	
0_	
5	0
	L.

- Use a HB pencil only.
- Do NOT use ink or ballpoint pens.
- Make heavy black marks that fill the circle
- Erase cleanly any answer you wish to change.
- Make no stray marks on the answer sheet.

B C	A B C	A B C D 13 (1) (2) (3) (4)	A B C	A B C	A B C	A B C	A B C	B C	B C
B C D	B C D	A B C D E 3 (1) (2) (3) (4) (5)	B C D	B C D	B C D	B C D	B C D	B C D	B C D

A B C D E	B C D	B C D	B C D	B C D	B C D	B C D	B C D	B C D	B C D

ш () ш ()

@**Q**@@@@=9999889N 00 m m 0 = - 9 × 4 = 2 0 m 0 m 6 + 9 > 3