- 10. 甲烷选择性氧化制备甲醇是一种原子利用率高的方法。回答下列问题:
- (1) 已知下列反应的热化学方程式:

(1)
$$3O_2(g) = 2O_3(g)$$
 K_1 $\Delta H_1 = 285 \text{kJ} \cdot \text{mol}^{-1}$

②
$$2CH_4(g) + O_2(g) = 2CH_3OH(1)$$
 $K_2 \Delta H_2 = -329kJ \cdot mol^{-1}$

反应③
$$CH_4(g) + O_3(g) = CH_3OH(l) + O_2(g)$$
的 $\Delta H_3 = ____kJ \cdot mol^{-1}$,平衡常数 $K_3 = ____(用 K_1 \cdot K_2$ 表示)。

(2)电喷雾电离等方法得到的 M^+ (Fe $^+$ 、Co $^+$ 、Ni $^+$ 等)与 O_3 反应可得 MO^+ 。 MO^+ 与 CH_4 反应能高选择性地生成甲醇。分别在300K 和310K 下(其他反应条件相同)进行反应

 $MO^+ + CH_4 = M^+ + CH_3OH$, 结果如下图所示。图中 300K 的曲线是_____(填"a"或"b"。

300K、60s时 MO+的转化率为 (列出算式)。

(3) MO^+ 分别与 CH_4 、 CD_4 反应,体系的能量随反应进程的变化如下图所示(两者历程相似,图中以 CH_4 示例)。

- (i)步骤I和II中涉及氢原子成键变化的是____(填"I"或"II")。
- (ii)直接参与化学键变化的元素被替换为更重的同位素时,反应速率会变慢,则 MO^+ 与 CD_4

反应的能量变化应为图中曲线(填"c"或"d")。
(iii) MO^+ 与 CH_2D_2 反应,氘代甲醇的产量 CH_2DOD CHD $_2OH$ (填">""<"或"=")。
若 MO^+ 与 CHD_3 反应,生成的氘代甲醇有种。
[化学——选修 3: 物质结构与性质]