طراحي الگوريتم ها

روش برنامه ریزی پویا

استاد درس: مهدی جبل عاملی

سرى فيبوناچى 👡 13 ع ع 3 ا 1 ا

سرى فيبوناچى مى 13 ھى 5 ھى 15 1

number Fib(n) {

if $n \leqslant 2$ return 1;

return Fib(n-1) + Fib(n-2); }

● الگوريتم باز گشتى

سرى فيبوناچى مى 13 ھى 13 مى 1 1 1

• الگوريتم بازگشتي

number Fib(n) {

if $n \leq 2$ return 1;

return Fib(n-1) + Fib(n-2); }

n (sup itil =) \ \ T(n) = T(n-1) + T(n-2) + 1

T(1) = T(2) = 0

سرى فيبوناچى مى 3 5 8 13 سرى فيبوناچى

number Fib (n) } if n < 2 return 1; return Fib (n-1) + Fib (n-2); }

• الگوريتم بازگشتي

• محاسبات تكرارى !!!!!

• رفع مشکل: • برنامه ریزی (برنامه نویسی) پویا Dynamic Programming

Filt 1 1 2 3 5 8 13 ...

Filt 1 1 2 3 5 8 13 ...

number
$$Fib-Dyn(n)$$
 }
$$F(1)=F(2)=1;$$
Sor $i=3$ to n do
$$F[i]=F[i-1]+F[i-2];$$
return $F[n]$;

• الگوریتم سری فیبوناچی به روش برنامه نویسی پویا

Filt 1 1 2 3 5 8 13 ···

number
$$Fib-Dyn(n)$$
 }
$$F(1)=F(2)=1;$$
Sor $i=3$ to n do
$$F[i]=F[i-1]+F[i-2];$$
return $F[n]$; 3

 الگوریتم سری فیبوناچی به روش برنامه نویسی پویا

Jelob => T(n) = n-2

Fill 1 1 2 3 5 8 13 ...

number
$$Fib-Dgn(n)$$
 }

 $F(1)=F(2)=1$;

Sor $i=3$ to n do

 $F[i]=F[i-1]+F[i-2]$;

return $F[n]$; γ

• الگوریتم سری فیبوناچی به روش برنامه نویسی پویا

Joloh =) T (n) = n-2

مصرف حافظه؟؟؟

1 1 2 3 5 8 13 p c 3 p c 3

بهبود مصرف حافظه

1 1 2 3 5 8 13

$$P \subset 3$$
 $P \subset 3$
 $P \subset 3$

number Fib - Dyn (n) {

 $P = C - 1;$

Sor $i = 3$ to n do

 $8 = P + C;$
 $P = C;$
 $C = 3;$
 $return C;$
 q

بهبود مصرف حافظه

بهبود مصرف حافظه

number
$$Fib - Dyn(n)$$
 {

 $P = C - 1;$
 $Sor i = 3 to n do$
 $8 = P + C;$
 $P = C;$
 $C = 5;$
 $return C;$
 q

تمرين

• برنامه سری فیبوناچی به صورت بازگشتی را به گونه ای بازنویسی کنید که تعداد محاسبات تکراری(اضافه) برای محاسبه جمله n ام را چاپ کند.

5 50 5 5 15

15 18 LK is product K 5 25

5 50 5 (5) 15 2 15 (3)

O [i,j]

کوتاه ترین مسیرها در گراف

15 1 8 1 milion on x 1 3 1 2 1 5 15

5 (5) 5 (5) 15

کوتاه ترین مسیرها در گراف

15 1 8 1 milion on x 1 3 1 2 1 5 15

5 (50) 5 (5) 15

کوتاه ترین مسیرها در گراف

15 Jolk is prober 1 K 1 20

o' [i,j]

k to from the jet i the comment of the

$$D = \begin{bmatrix} 0 & 5 & 20 & 20 \\ 50 & 0 & 15 & 5 \\ 30 & 35 & 0 & 15 \\ 15 & 20 & 5 & 0 \end{bmatrix}$$

$$D = \begin{bmatrix} 0 & 5 & 20 & 20 \\ 50 & 0 & 15 & 5 \\ 30 & 35 & 0 & 15 \\ 15 & 20 & 5 & 0 \end{bmatrix}$$

$$D^{3} = \begin{bmatrix} 0 & 5 & 20 & 10 \\ 45 & 0 & 15 & 5 \\ 30 & 35 & 0 & 15 \\ 15 & 20 & 5 & 0 \end{bmatrix}$$

$$D = \begin{bmatrix} 0 & 5 & 20 & 20 \\ 50 & 0 & 15 & 5 \\ 30 & 35 & 0 & 15 \\ 15 & 20 & 5 & 0 \end{bmatrix}$$

$$D^{3} = \begin{bmatrix} 0 & 5 & 20 & 10 \\ 45 & 0 & 15 & 5 \\ 30 & 35 & 0 & 15 \\ 15 & 20 & 5 & 0 \end{bmatrix}$$

$$D = \begin{bmatrix} 0 & 5 & 20 & 20 \\ 50 & 0 & 15 & 5 \\ 30 & 35 & 0 & 15 \\ 15 & 20 & 5 & 0 \end{bmatrix}$$

$$D^{3} = \begin{bmatrix} 0 & 5 & 20 & 10 \\ 45 & 0 & 15 & 5 \\ 30 & 35 & 0 & 15 \\ 15 & 20 & 5 & 0 \end{bmatrix}$$

$$D = \begin{bmatrix} 0 & 5 & 20 & 20 \\ 50 & 0 & 15 & 5 \\ 30 & 35 & 0 & 15 \\ 15 & 20 & 5 & 0 \end{bmatrix}$$

$$D^{2} = \begin{bmatrix} 0 & 5 & 20 & 20 \\ 50 & 0 & 15 & 5 \\ 30 & 35 & 0 & 15 \\ 15 & 20 & 5 & 0 \end{bmatrix}$$

Matrix Floyd (n, 1[100n, 100n]) } for k=1 to n do for i=1 to n do for j=1 to n do D*[i,j]=Min {D*-1[i,k]+0 [k,j], D [i,j]} return p"; }

Matrix Floyd (n, 1[100n, 100n]) for k=1 to n do -> /2 1 1 T(n) = n for j=1 to n do D* [i,j] = Min { D*-1 [i,k]+0 [k,j], D [i,j]} return D"; }

Matrix Floyd (n, 1[1...n]) for k=1 to n do -> /2011: T(n)=n for j=1 to n do D* [i,j] = Min { D*-1 [i,k]+0 [k,j], D [i,j]}

• مصرف حافظه فعلى: (n+1)n²

Matrix Floyd (n, 1[100n, 100n]) } for k=1 to n do -> /20 = 7(n) = n for j=1 to n do D [i,j]=Min {D [i,k]+D [k,j], D [i,j]} return D; 3

• مصرف حافظه كاهش يافته: •

Matrix Floyd (n, 1[100n, 100n]) for k=1 to n do for j=1 to n do D [i,j]=Min {D [i,k]+D [k,j], D [i,j]} return D;

- مصرف حافظه كاهش يافته: °n
- از کدام مسیر باید عبور کنیم؟؟؟؟؟

$$D = \begin{bmatrix} 0 & 5 & 20 & 20 \\ 50 & 0 & 15 & 5 \\ 30 & 35 & 0 & 15 \\ 15 & 20 & 5 & 0 \end{bmatrix}$$

$$D^{3} = \begin{bmatrix} 0 & 5 & 20 & 10 \\ 45 & 0 & 15 & 5 \\ 30 & 35 & 0 & 15 \\ 15 & 20 & 5 & 0 \end{bmatrix}$$

$$D = \begin{bmatrix} 0 & 5 & 20 & 20 \\ 50 & 0 & 15 & 5 \\ 30 & 35 & 0 & 15 \\ 15 & 20 & 5 & 0 \end{bmatrix}$$

$$D^{3} = \begin{bmatrix} 0 & 5 & 20 & 10 \\ 45 & 0 & 15 & 5 \\ 30 & 35 & 0 & 15 \\ 15 & 20 & 5 & 0 \end{bmatrix}$$

$$D = \begin{bmatrix} 0 & 5 & 20 & 20 \\ 50 & 0 & 15 & 5 \\ 30 & 35 & 0 & 15 \\ 15 & 20 & 5 & 0 \end{bmatrix}$$

$$D = \begin{bmatrix} 0 & 5 & 20 & 20 \\ 50 & 0 & 15 & 5 \\ 30 & 35 & 0 & 15 \\ 15 & 20 & 5 & 0 \end{bmatrix}$$

$$D^{3} = \begin{bmatrix} 0 & 5 & 20 & 10 \\ 45 & 0 & 15 & 5 \\ 30 & 35 & 0 & 15 \\ 15 & 20 & 5 & 0 \end{bmatrix}$$

$$D = \begin{bmatrix} 0 & 5 & 20 & 20 \\ 50 & 0 & 15 & 5 \\ 30 & 35 & 0 & 15 \\ 15 & 20 & 5 & 0 \end{bmatrix}$$

$$D^{3} = \begin{bmatrix} 0 & 5 & 20 & 10 \\ 45 & 0 & 15 & 5 \\ 30 & 35 & 0 & 15 \\ 15 & 20 & 5 & 0 \end{bmatrix}$$

• مسیر ۱ به ۳

$$D = \begin{bmatrix} 0 & 5 & 20 & 20 \\ 50 & 0 & 15 & 5 \\ 30 & 35 & 0 & 15 \\ 15 & 20 & 5 & 0 \end{bmatrix}$$

$$D^{3} = \begin{bmatrix} 0 & 5 & 20 & 10 \\ 45 & 0 & 15 & 5 \\ 30 & 35 & 0 & 15 \\ 15 & 20 & 5 & 0 \end{bmatrix}$$

• مسیر ۱ به ۳

$$D = \begin{bmatrix} 0 & 5 & 20 & 20 \\ 50 & 0 & 15 & 5 \\ 30 & 35 & 0 & 15 \\ 15 & 20 & 5 & 0 \end{bmatrix}$$

$$D^{3} = \begin{bmatrix} 0 & 5 & 20 & 10 \\ 45 & 0 & 15 & 5 \\ 30 & 35 & 0 & 15 \\ 15 & 20 & 5 & 0 \end{bmatrix}$$

• مسیر ۱ به ۳

Floyd (n, L[1..n, 1..n]) For k=1 to n do for i=1 to n do for 3=1 to n do is DEink]+D[k,j] < DEinj] O[i,j]=D[i,k]+D[k,j] P[677]=k= & return D.P

تمرين:

• الگوریتم فلوید را برای یک گراف دلخواه با α راس اجرا نمایید و ماتریس های P و P را در هر مرحله مشخص نمایید. در پایان، از ماتریس P، مسیر بین دو راس دلخواه را پیدا کنید.

پایان