S.C.No.—M/22/2001113

B. A. EXAMINATION, 2022

(First Semester) (Re-appear) MATHEMATICS

Calculus

Time: 3 Hours

Maximum Marks: 27

P.T.O.

Note: Attempt *Five* questions in all. All questions carry equal marks.

कुल **पाँच** प्रश्नों के उत्तर दीजिए । सभी प्रश्नों के अंक समान हैं ।

Section I

खण्ड ।

1. (a) Prove that f(x) = |x| is continuous but not derivable at x = 0.

सिद्ध कीजिए कि f(x) = |x| सतत है लेकिन x = 0 पर व्युत्पत्ति विषयक नहीं है ।

(b) If $y = e^{a\sin^{-1}x}$, prove that :

$$(1-x^{2})y_{n+2} - (2n+1)xy_{n+1}$$
$$-(n^{2} + a^{2})y_{n} = 0. 5.4$$

यदि $y = e^{a\sin^{-1}x}$ है, तो सिद्ध कीजिए कि : $(1-x^2)y_{n+2} - (2n+1)xy_{n+1}$

$$-\left(n^2+a^2\right)y_n=0\,.$$

Lagrange's form of remainder after 'n' terms.

'n' पदों के बाद लैग्रांजे के शेषफल के रूप के साथ टेलर की प्रमेय को सिद्ध कर वर्णन कीजिए।

(b) If $f(x) = x^3 + 2x^2 - 5x + 11$, find the value of $f(\frac{9}{10})$ with the help of Taylor's series for f(x+h). 5.4

यदि $f(x) = x^3 + 2x^2 - 5x + 11$ हो, तो f(x+h) के लिए टेलर श्रेणी की सहायता से $f\left(\frac{9}{10}\right)$ का मान ज्ञात कीजिए ।

Section II

खण्ड II

3. (a) Find the asymptotes of the curve :

$$x^2y - xy^2 + xy + y^2 + x - y = 0$$

and show that they cut the curve in three points on the straight line x + y = 0.

वक्र $x^2y - xy^2 + xy + y^2 + x - y = 0$ की स्पर्शोन्मुखी ज्ञात कीजिए तथा दर्शाइए कि वे सरल रेखा x + y = 0 पर तीन बिन्दुओं में वक्र को काटते हैं ।

(b) Find the radius of curvature for the curve $r^n = a^n \cos n\theta$. 5.4 वक्र $r^n = a^n \cos n\theta$ के लिए वक्रता की किज्या ज्ञात कीजिए ।

P.T.O.

(a) The tangents at two points P, Q on the cycloid $x = a(\theta + \sin \theta)$: $y = a(1 - \cos \theta)$ are at right angles. Show that if ρ_1 , ρ_2 are the radii of curvature at these points then $\rho_1^2 + \rho_2^2 = 16a^2$.

चक्रज $x = a(\theta + \sin \theta)$: $y = a(1 - \cos \theta)$ पर दो बिन्दु P, Q पर समकोण पर स्पर्श रेखाएँ हैं । दर्शाइए कि यदि ρ_1 , ρ_2 इन बिन्दुओं पर वक्रता की त्रिज्याएँ हैं, तो $\rho_1^2 + \rho_2^2 = 16a^2$ ।

(b) Show that:

$$y^5 - ay^3x - ay^2x + a^2x^2 = 0$$

has a point of Oscul-inflexion at the origin.

5.4

दर्शाइए कि उत्पत्ति पर :

$$y^5 - ay^3x - ay^2x + a^2x^2 = 0$$

में ओस्कल-मोड़ बिन्दु हैं ।

Section III

खण्ड III

5. (a) Trace the curve :

$$x^{2}(x^{2}+y^{2})=a^{2}(x^{2}-y^{2}).$$

वक्र $x^{2}(x^{2}+y^{2})=a^{2}(x^{2}-y^{2})$ ट्रेस कीजिए।

(b) Evaluate:

$$\int_{0}^{\pi} \sin^4 x \cdot \frac{\sqrt{1 - \cos x}}{\left(1 + \cos x\right)^2} \, dx \, . \tag{5.4}$$

मूल्यांकन कीजिए :

$$\int_{0}^{\pi} \sin^4 x \cdot \frac{\sqrt{1-\cos x}}{\left(1+\cos x\right)^2} dx.$$

6. (a) Find the intrinsic equation of the cardioid $r = a(1 - \cos \theta).$

कार्डियोड $r = a(1-\cos\theta)$ का आन्तरिक समीकरण ज्ञात कीजिए ।

(b) If $I_n = \int_0^{\pi/4} \tan^n \theta \ d\theta$, where *n* is a positive integer; prove that $n(I_{n-1} + I_{n+1}) = 1.$ 5.4

यदि $I_n=\int\limits_0^{\pi/4} \tan^n\theta \ d\theta$, जहाँ n एक धनात्मक पूर्णांक है, सिद्ध कीजिए कि $n(I_{n-1}+I_{n+1})=1$ ।

Section IV

खण्ड IV

- 7. (a) Find the area common to the circle $x^2+y^2=4$ and the ellipse $x^2+4y^2=9$. वृत्त $x^2+y^2=4$ तथा दीर्घवृत्त $x^2+4y^2=9$ के लिए सामान्य क्षेत्र ज्ञात कीजिए ।
 - (b) Find the area of a loop of the curve r = acos 2θ and hence find the total area of the curve.
 5.4
 वक्र r = acos 2θ के लूप का क्षेत्र ज्ञात कीजिए तथा वक्र का कुल क्षेत्र ज्ञात कीजिए।

- 8. (a) Find the volume of the solid generated by revolving the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ about the x-axis.
 - x-अक्ष के परितः दीर्घवृत्त $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ के परिक्रमण द्वारा उत्पन्न ठोस का आयतन ज्ञात कीजिए ।
 - (b) Find the surface area of the solid generated by revolving one arc of the curve $x = a(\theta \sin \theta)$; $y = a(1 \cos \theta)$ about x-axis. 5.4 x-34 के परित: वक्र $x = a(\theta \sin \theta)$, $y = a(1 \cos \theta)$ के एक चाप परिक्रमण द्वारा उत्पन्न ठोस का सतह क्षेत्र ज्ञात कीजिए।

Section V

खण्ड V

9. (a) Evaluate
$$\int_{0}^{\pi/2} \sin^{6} \theta \ d\theta$$
. 0.9

मूल्यांकन कीजिए
$$\int\limits_0^{\pi/2} \sin^6 \theta \ d\theta$$
 ।

- (b) Define Asymptotes. **0.9** स्पर्शोन्मुखी को परिभाषित कीजिए ।
- (c) If $y = ae^{mx} + be^{-mx}$, prove that $y_2 m^2 y = 0$. 0.9 यदि $y = ae^{mx} + be^{-mx}$ है, तो सिद्ध कीजिए कि $y_2 m^2 y = 0$
- (d) Discuss the nature of the origin for the curve $y^3 = x^3 + ax^2$. 0.9 वक्र $y^3 = x^3 + ax^2$ के लिए उत्पत्ति की प्रकृति का वर्णन कीजिए ।
- (e) Define Node and Cusp.0.9Node और Cusp की परिभाषा दीजिए ।
- (f) Find ρ , if $s = \log(\sec \psi + \tan \psi)$. 0.9

 यदि ρ है, तो $s = \log(\sec \psi + \tan \psi)$ ज्ञात
 कीजिए ।