Gradient Descent

Wednesday, 19 February 2025 11:05

Ophimization also used to find min'm of a funch.

 $\chi_{\text{new}} = \chi_{\text{old}} - \chi \nabla + \chi_{\text{old}}$ Learning rate (step size)

Epoch = One full bans over the entire dataset.

Batch = A small subset of dataset used in one step of topining

Iteration = One update of the model using a batch.

ex: 1000 samples; batch size = loo

leboch = 10 iterations (1000 / 100 = 10)

	Batch GD	Stochastic (nD	Mini-batch (1)
Batch Size =		1 sample	Small batch
Updates per epoch =	1 update ben eboch	Many updates	Medium updates
Speed =	Slow	Fast	Balanced
Stability =	High	dow (noisy)	Balanced
· ·	•		

https://colab.research.google.com/drive/1PKOoRT76HTA-5WrbDY6jAiH87c5KVw_t?authuser=2#scrollTo=q3zASsyttNsN_(For code and visualization purpose)

J code of all 5 optimizer, we shalled.

SGD with Momentum

Wednesday, 19 February 2025

Why we need momentum? non-convex cost funcin.

A saddle point is a point where in one direction the surface goes in the upward direction and in another direction it goes downwards

From < https://paperswithcode.com/method/sgd-with-momentum>

Speed + Stability

Analogy destination storting cut first know in which disetim to move but 4 points suggest towards B than we go faster towards

EWMA (Expo Wt Moving Aug)

Tech used to find trends in time-series data.

" oclority"

$$\theta_{t} = \beta \theta_{t-1} + (\beta) \theta_{t}$$

where $\beta \theta_{t-1} + (\beta) \theta_{t}$

where $\beta \theta_{t-1} + (\beta) \theta_{t}$

where $\beta \theta_{t-1} + (\beta) \theta_{t}$
 $\beta \theta_{t} + (\beta) \theta_{t}$
 $\delta \theta_{t} + (\beta) \theta_{t}$
 $\delta \theta_{t} + (\beta) \theta_{t}$
 $\delta \theta_{t} + (\beta) \theta_{t}$

if $\beta = 0.5$ then

calc. avg was from previous 2 readings.

Wigh B

Avg of more part data.

SGD without momentum

SGD with momentum

Advantages:

D. Faster convergence.
D. Escaping docal minima (goal -) global minima)

Adagrad adapts the learning rate individually for each parameter
Wednesday, 19 February 2025 11:57 based on fast gradients. Let, $E = 10^{-8}$ (to avoid div. by zero) let element-wise sq. of squared gradi ends grad vec Initial learning rate = 0t-1 Adaptive term the learning rate. Large gradients => Small l.r. =) large l.r. ηľ Small * (nood for sparse data.

Wednesday, 19 February 2025

11:54

Instead of accumulating all past squared gradients (which causes the learning rate to decay too much), RMSProp uses a moving average of squared gradients. This makes it more suitable for non-convex optimization problems, such as training deep neural networks.

expo dec. any \Rightarrow More wt. to recent gradients.

Tribialize θ_0 ; $E[g^2]_0 = 0$ "Moving any of sq gradients" $Y \rightarrow \exp 0$ decay factor (Typically, 0.9) $E[g^2]_t = YE[g^2]_{t-1} + (I-Y)g_t^2$ $\theta_t = \theta_{t-1} - y$ q_t

ADAM = Mom + RMs prop (Adaphive Moment Estimation) * ADAM was 2 moving averages: @ mom term (m*) g_{+} = quadient g_{+} sin g_{+} bisted for a small g_{+} in each g_{+} g_{+}

Optimizers Page 6