Statistics 452: Statistical Learning and Prediction

Chapter 6, Part 1: Linear Model Selection

Brad McNeney

Introduction

Alternatives to Least Squares

We have used least squares to fit the linear model

$$Y = \beta_0 + \beta_1 X_1 + \ldots + \beta_p X_p + \epsilon. \tag{1}$$

- ▶ In this chapter we consider alternative methods of fitting the model, with the goal of better prediction accuracy and model interpretability when *p* is large.
 - ▶ Prediction accuracy: Unless n is much larger than p there is a tendancy to overfit, leading to poor predictions on the test set. In case p > n there is no unique least squares solution.
 - Model interpretability: It is often the case that only a small subset of the predictors is truly associated with the response. The model is more interpretable without irrelevant variables.

Approaches in this Chapter

- ► Each of the following can be thought of as a strategy to reduce variance, with (hopefully) minimal increase in bias.
- ▶ Subset selection: Forward, backward, stepwise and all subsets selection to identify truly associated model terms.
- Shrinkage (regularization): Shrink estimated coefficients toward zero.
- Dimension reduction: Find a low-dimension representation of the predictors, and use these as predictors.

Subset Selection

Best (All) Subset Selection

- ▶ Straightforward idea: Consider all 2^p possible models (p with one predictor, $\binom{p}{2} = p(p-1)/2$ with two predictors, etc.) and choose the one with the best estimated test set error.
 - Can use cross validation to estimate test set error, or computationally cheaper alternatives (C_p, BIC – to be discussed).
- Break the exhaustive search for the best of all models into two steps:
 - (a) Fit all $\binom{p}{k}$ models with k predictors and select the one, call it \mathcal{M}_k , with the smallest RSS.
 - (b) Select the best model from $\mathcal{M}_0, \dots, \mathcal{M}_p$ based on estimated test set error.
- See Algorithm 6.1 in text for a complete algorithm.

Drawback of All Subsets

 \triangleright Computational: 2^p becomes very large as p increases.

```
p<-10; 2^p
## [1] 1024
p<-20; 2^p
```

[1] 1048576

Example of All Subsets

```
uu <- url("http://faculty.marshall.usc.edu/gareth-james/ISL/Credit.csv")</pre>
Credit <- read.csv(uu,row.names=1)</pre>
head(Credit.n=3)
     Income Limit Rating Cards Age Education Gender Student Married
##
## 1
     14.891 3606
                     283
                             2 34
                                          11
                                               Male
                                                         Nο
                                                                Yes
## 2 106.025 6645 483
                                          15 Female
                             3 82
                                                        Yes
                                                                Yes
## 3 104.593 7075 514
                             4 71
                                          11
                                               Male
                                                         Nο
                                                                 Nο
    Ethnicity Balance
##
## 1 Caucasian
                  333
        Asian
                  903
## 2
## 3
        Asian
                  580
library(leaps) # contains regsubsets()
cfits <- regsubsets(Balance ~ ., data=Credit,nvmax=11)</pre>
cfits.sum <- summary(cfits)</pre>
```

cfits.sum\$which

##		(Intercept)	Income	Limit	Rating	Cards	Age	${\tt Education}$	${\tt GenderMale}$
##	1	TRUE	FALSE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE
##	2	TRUE	TRUE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE
##	3	TRUE	TRUE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE
##	4	TRUE	TRUE	TRUE	FALSE	TRUE	FALSE	FALSE	FALSE
##	5	TRUE	TRUE	TRUE	TRUE	TRUE	FALSE	FALSE	FALSE
##	6	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	FALSE	FALSE
##	7	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	FALSE	TRUE
##	8	TRUE		TRUE			TRUE		TRUE
##		TRUE		TRUE			TRUE		
	10	TRUE		TRUE			TRUE		
##		TRUE							
##		StudentYes 1					Ethnic		
##	1	FALSE	FAI	LSE	1	FALSE		FALS	SE
##		FALSE				FALSE		FALS	
##		TRUE				FALSE		FALS	
##		TRUE	FALSE					FALSE	
##		TRUE						FALSE	
##	6	TRUE	FALSE		FALSE		FALSE		
##		TRUE			FALSE		FALSE		
##		TRUE			TRUE		FALSE		
##		TRUE			TRUE			FALSE	
	10	TRUE		RUE		TRUE		TRU	
##	11	TRUE	TF	RUE		TRUE		TRU	JE

```
## [1] 21435122 10532541 4227219 3915058 3866091 3821620 3810759
   [8] 3804746 3798367 3791345 3786730
##
cfits.sum$rsq
##
   [1] 0.7458484 0.8751179 0.9498788 0.9535800 0.9541606 0.9546879 0.9548167
    [8] 0.9548880 0.9549636 0.9550468 0.9551016
```

##	[1]	1800.308406	685.196514	41.133867	11.148910	8.131573
##	[6]	5.574883	6.462042	7.845931	9.192355	10.472883
##	[11]	12 000000				

cfits.sum\$rss

cfits.sum\$cp

RSS and R^2 for Model Selection

- RSS always decreases when we add predictors, even if the added predictors are, in fact, unrelated to the response.
 - ▶ k predictors: Least squares finds the coefficients $\hat{\beta}_0, \ldots, \hat{\beta}_k$ that minimize RSS.
 - ▶ k+1 predictors: Least squares can reduce RSS compared to coefficients $\hat{\beta}_0, \dots, \hat{\beta}_k, 0$.
- ▶ Similarly, $R^2 = 1 RSS/TSS$ always increases.
- Neither is useful for comparing models of different size.
 - ightharpoonup Will define C_p and other measures soon.

Forward Selection

- Select the best model of each size through the following restricted search:
 - ▶ Start with the null model, \mathcal{M}_0 , that contains no predictors.
 - ▶ Consider the best model, \mathcal{M}_1 with 1 predictor.
 - ▶ Consider the best model, \mathcal{M}_2 obtained by adding one of the p-1 terms **not** in \mathcal{M}_1 .
 - ▶ Consider the best model, \mathcal{M}_3 obtained by adding one of the p-2 terms **not** in \mathcal{M}_2 .
 - And so on.
- ▶ Then use the estimated test set error to select the best from $\mathcal{M}_0, \dots, \mathcal{M}_p$.
- See Algorithm 6.2.

Example Forward Selection

Advantages and Disadvantages of Forward Selection

- Advantages:
 - Far less computation. Can show forward selection only fits 1 + p(p+1)/2 models. With p = 20, $2^p = 1048686$ while 1+p(p+1)/2 = 211.
 - ▶ Can be applied even when p > n.
- Disadvantage:
 - Not guaranteed to find the best model.

Backward Selection

- Reverse of forward selection: Start with the largest model and remove the least predictive predictor one at a time.
 - ▶ Start with the full model \mathcal{M}_p .
 - ▶ Consider the best model, \mathcal{M}_{p-1} , obtained by removing one of the p terms in \mathcal{M}_p .
 - ▶ Consider the best model, \mathcal{M}_{p-2} obtained by removing one of the p-1 terms in \mathcal{M}_{p-1} .
 - And so on.
- ▶ Then use the estimated test set error to select the best from $\mathcal{M}_0, \dots, \mathcal{M}_p$.
- See Algorithm 6.3.

Advantages and Disadvantages of Backward Selection

- Advantage:
 - Same computation as forward selection. Only fits 1 + p(p+1)/2 models.
- Disadvantage:
 - Not guaranteed to find the best model.

Hybrid Stepwise Selection

Iterate between adding and deleting model terms in the search for a best model.

Model Comparisons and Estimated Test Error

- ▶ Estimated test error is a basis for model comparison.
- Methods for estimating test error are classified as indirect or direct.
- ▶ Indirect methods estimate the "optimism", which is roughly the difference between the test and training errors.
 - ► That is, test error = training error + optimism and estimated test error = training error + estimated optimism
- Direct methods use validation or cross-validation.

Indirect methods

- $ightharpoonup C_p$, AIC and BIC are in this class.
- $ightharpoonup C_p$ for a model with d (subset of p) predictors is defined as

$$C_p = \frac{1}{n} (RSS + 2d\hat{\sigma}^2)$$

or (Mallow's definition)

$$C_p' = \frac{\text{RSS}}{\hat{\sigma}^2} + 2d - n$$

where $\hat{\sigma}^2$ is an estimate of σ^2 from a low-bias model.

▶ Ignoring scalings and constants that are the same for all models being compared, C_p is essentially RSS plus a penalty that increases with d.

AIC

- ▶ AIC stands for Akaike Information Criterion.
- ▶ AIC can be defined for many models fit by maximum likelihood.
- For linear regression with Gaussian errors AIC is essentially C'_p up to scale and constant factors.
 - A difference is that $\hat{\sigma}^2$ in AIC is usually taken to be the estimate from the current model, rather than a fixed low-bias model.
 - ▶ For model selection with models fit by least squares, we usually report C_p (or C'_p).

BIC

- BIC stands for Bayesian Information Criterion and is a.k.a Schwartz's criterion.
- BIC is defined in the text as

$$BIC = \frac{1}{n} (RSS + \log_{e}(n) d\hat{\sigma}^{2})$$

to highlight similarities with their definition of C_p .

- ▶ For BIC, replace the factor 2 by log(n) in the penalty term of C_p .
- What matters is that BIC is essentially RSS plus a penalty that depends on d and grows faster with d because of the log(n).
- ▶ $\log_e(n) > 2$ for N > 7.

Aside: AIC and BIC in R

[1] 275.1043

set.seed(1); x <- 1:100; y <- x + rnorm(100)

- ▶ R uses the formulas $AIC = -2\ell(\hat{\beta}, \hat{\sigma}^2) + 2p$ and $BIC = -2\ell(\hat{\beta}, \hat{\sigma}^2) + \log_e(n)p$, where ℓ is the log-likelihood.
 - ► The likelihood is the probability of the data, considered as a function of the parameters.
 - p is the number of model parameters that have been estimated, including σ^2 .

```
ff <- lm(y~x)
logLik(ff)

## 'log Lik.' -130.6444 (df=3)
AIC(ff) # -2*logLik(ff) + 2*3

## [1] 267.2888
BIC(ff) # -2*logLik(ff) + log(100)*3</pre>
```

Direct Methods

- Can use validation or cross-validation to directly estimate the test error.
 - ▶ Takes a little programming see week 6 exercises.