Title

• Stuff I often get wrong:

Fundamental sets whoms.

$$-x^{-2} \neq \int x^{-1} = \int \frac{1}{x} = \ln x$$

$$-\frac{1}{x} \neq \int \ln x = x \ln x - x$$

$$-\int x^{-k} = \frac{1}{-k+1} x^{-k+1} \neq \frac{1}{-(k+1)} x^{-(k+1)}$$

$$\Leftrightarrow \text{e.g. } \int x^{-2} = -x^{-1} \neq -\frac{1}{3} x^{-3}$$

$$-\lim_{n \to \infty} \frac{n}{n+1} = 1 \neq 0$$
•
$$\frac{\partial}{\partial x} a^x = \frac{\partial}{\partial x} e^{x \ln a} = e^{x \ln a} \ln a = a^x \ln a.$$
• Exponentials: when in doubt, write $a^b = e^{b \ln a}$
•
$$\frac{\partial}{\partial x} x^{f(x)} = ?$$
•
$$\frac{\partial}{\partial x} x^{f(x)} = ?$$

- $\sum_{k=0}^{\infty} x^k = \frac{1}{1-x} \neq \frac{1}{1+x} = \sum_{k=0}^{\infty} (-1)^k x^k$

	sin	cos	tan
0	$\frac{\sqrt{0}}{2}$	$\frac{\sqrt{4}}{2}$	0
$\frac{\pi}{6}$	$rac{\sqrt{1}}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{3}}$
$rac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1
$rac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{1}}{2}$	$\frac{\sqrt{3}}{1}$
$rac{\pi}{2}$	$\frac{\sqrt{4}}{2}$	$\frac{\sqrt{0}}{2}$	∞

$a^2 + b^2 + 2ab$	$(a+b)^2 =$
$a^2 + b^2 - 2ab$	$(a-b)^2 =$
$(a+b)^2 + 2ab$	$a^2 + b^2 =$
(a+b)(a-b)	$a^2 - b^2 =$
$a^3 + b^3 + 3(a^2b + ab^2)$	$(a+b)^3 =$
$a^3 - b^3 + 3(-a^2b + ab^2)$	$(a-b)^3 =$
$(a+b)(a^2+b^2-ab)$	$a^3 + b^3 =$
$(a-b)(a^2+b^2+ab)$	$a^3 - b^3 =$
$a+b+2\sqrt{ab}$	$(\sqrt{a} + \sqrt{b})^2 =$
$a+b-2\sqrt{ab}$	$(\sqrt{a} - \sqrt{b})^2 =$
$a^2 - b$	$(a+\sqrt{b})(a-\sqrt{b}) =$
$a^2 + b$	$(a+i\sqrt{b})(a-i\sqrt{b}) =$
$a^2 + b^2$	(a+b)(a-b) =

$$p(y)y' = q(x)$$
 separable

$$y' + p(x)y = q(x)$$
 integrating factor

$$y' = f(x, y), f(tx, ty) = f(x, y)$$
 $y = xV(x)$ COV reduces to separable

$$y' + p(x)y = q(x)y^n$$
 Bernoulli, divide by y^n and COV $u = y^{1-n}$

$$M(x,y)dx + N(x,y)dy = 0$$
 $M_y = N_x : \varphi(x,y) = c(\varphi_x = M, \varphi_y = N)$

$$P(D)y = f(x,y)$$
 $x^k e^{rx}$ for each root