# **HPL09S001N**

### N-Channel Enhancement-Mode MOSFET

Designed for handheld two-way radio applications with frequencies from 136 to 941 MHz. The high gain, ruggedness and Broadband performance of this device make it ideal for large-signal, common-source amplifier applications in handheld radio equipment.

136–941 MHz, 1.0W, 3.7 V BROADBAND RF POWER TRANSISTOR

**Typical Broadband EVB Performance** (I<sub>DO</sub>=200mA, T<sub>A</sub> = 25 °C, CW)

| VDD | Freq. | Po    | Gmax    |      |
|-----|-------|-------|---------|------|
| [V] | [MHz] | [dBm] | [Watts] | [dB] |
|     | 400   | 31.2  | 1.3     | 18.9 |
| 3.7 | 440   | 31.1  | 1.3     | 19.1 |
| 3.7 | 460   | 31.1  | 1.3     | 18.5 |
|     | 480   | 31.0  | 1.3     | 18.2 |

**Typical Narrowband EVB Performance** (I<sub>DO</sub>=200mA, T<sub>A</sub> = 25 °C, CW)

| VDD | Freq. | Pout  |         | PAE  |
|-----|-------|-------|---------|------|
| [V] | [MHz] | [dBm] | [Watts] | [%]  |
|     | 430   | 32.1  | 1.6     | 53.4 |
| 3.7 | 450   | 32.7  | 1.8     | 57.2 |
|     | 470   | 32.6  | 1.8     | 62.3 |

Capable of Handling 20:1 VSWR@6.0Vdc, 2.0Watts, CW





Figure 1. Pin Connections

#### **Features**

Characterized for Operation from 136 to 941 MHz

Unmatched Input and Output Allowing Broad Frequency Range Utilization

Integrated ESD Protection

Broadband - Full Power Across the Band

**Exceptional Thermal Performance** 

Extreme Ruggedness

# **Typical Applications**

Output Stage VHF Band Handheld Radio

Output Stage UHF Band Handheld Radio

Output Stage for 700-800 MHz Handheld Radio

Driver for 10-1000 MHz Applications

### **Table1. Maximum Ratings**

| Rating                         | Symbol   | Value       | Unit       |
|--------------------------------|----------|-------------|------------|
| Drain-Source Voltage           | DSS      | -0.5, +20   | Vdc        |
| Gate-Source Voltage            | GS       | -5.0, +8    | Vdc        |
| Operating Voltage              | V<br>DD  | 0, +6       | Vdc        |
| Storage Temperature Range      | I<br>stg | -65 to +150 | $^{\circ}$ |
| Case Operating Temperature     | Тс       | -40 to +150 | $^{\circ}$ |
| Operating Junction Temperature | Tı       | -40 to +150 | $^{\circ}$ |
| Power Dissipation @TC=25°C     | PD       | 5           | W          |

#### **Table2. ESD Protection Characteristic**

| Test Methodology                     | Class             |
|--------------------------------------|-------------------|
| Human Body Model (per JESD22A114)    | 2, passes 2500 V  |
| Machine Model (per EIA/JESD22A115)   | A, passes 100 V   |
| Charge Device Model (per JESD22C101) | IV, passes 2000 V |

## **Table3. Electrical Characteristics** (T<sub>A</sub>=25 °C unless otherwise noted)

| Characteristic                                                                           | Symbol   | Min | Тур. | Max | Unit |
|------------------------------------------------------------------------------------------|----------|-----|------|-----|------|
| Off Characteristics                                                                      |          |     |      |     |      |
| Gate-Source Leakage Current (Vgs=5Vdc, Vds=0Vdc)                                         | I<br>GSS | -   | -    | 1   | uAdc |
| Zero Gate Voltage Drain Leakage Current (VDs=16Vdc, VGs=0Vdc)                            | I        | -   | -    | 2   | μAdc |
| Zero Gate Voltage Drain Leakage Current (V <sub>DS</sub> =3.7Vdc, V <sub>GS</sub> =0Vdc) | I        | -   |      | 1   | μAdc |

#### **On Characteristics**

| Gate Threshold Voltage (VDS=3.7Vdc, ID=1mA)                               | V<br>GS(th)                           | 1.2 | 1.5  | 1.8 | Vdc |
|---------------------------------------------------------------------------|---------------------------------------|-----|------|-----|-----|
| Gate Quiescent Voltage (VDD=3.7Vdc, ID=200mA Measured in Functional Test) | $\displaystyle \mathop{V}_{_{GS(Q)}}$ | 1.3 | 2.0  | 2.7 | Vdc |
| Drain-Source On-Voltage (VGS=5Vdc, ID=200mA)                              | V<br>DS(ON)                           | ı   | 0.09 | 1   | Vdc |

### **Dynamic Characteristics**

|                               |      | T . |      |   |    |
|-------------------------------|------|-----|------|---|----|
| Reverse Transfer Capacitance  | Cons |     | 2.4  |   | F  |
| (VDG=3.7V, Level=30mVac@1MHz) | Crss | -   | 2.4  | • | pF |
| Output Capacitance            |      |     |      |   |    |
| (VDS=3.7V, Level=30mVac@1MHz) | Coss | -   | 9.1  | - | pF |
| Input Capacitance             |      |     |      |   |    |
| (VGS=5V, Level=30mVac@1MHz)   | Ciss | -   | 32.0 | - | pF |

### Typical Performances (In DuSemi Narrowband Test DEMO, 50 Ohm system)

Frequency=450MHz, VDS=3.7Vdc, IDQ=200mA, TA=25  $^{\circ}\mathrm{C}$ 

| Power Gain       | G<br>PS | - | 19 | - | dB  |
|------------------|---------|---|----|---|-----|
| Output Power     | Pout    | 1 | 31 | - | dBm |
| Drain Efficiency | ηD      | - | 60 | - | %   |

# Broad Band Evaluation Circuit (@VDD = 3.7V, f = 440 MHz)



Test Circuit Component Layout

Table4. Test Circuit Component Designations and Value

| Part            | Description                                | Part Number       | Manufacturer |
|-----------------|--------------------------------------------|-------------------|--------------|
| R1              | 1KOhm                                      | _                 | _            |
| L2,L3           | 1nH                                        | _                 | _            |
| L1              | 8 Turns D: 0.5 mm,<br>φ 2.4 mm Enamel Wire | _                 | _            |
| C1, C3,C4,C6,C9 | 100pF Chip Capacitors                      | GQM21P5C1H101JB01 | Murata       |
| C2, C5          | 10pF Chip Capacitors                       | GRM1885C1H201JA01 | Murata       |
| C7,C10          | 1000pF Chip Capacitors                     | GRM1885C1H102JA01 | Murata       |
| C8,C11          | 10uF,10VChip Capacitors                    | _                 | _            |
| C12             | 18pF Chip Capacitors                       | _                 | Murata       |
| PCB             | FR-4 ,0.030",E <sub>r</sub> 4.5            | _                 | _            |

### TYPICAL CHARACTERISTICS





## PACKAGE Unit: mm



PCB Pad Layout for SOT-89



**Bottom View** 

## **PACKAGE DIMENSIONS**





### **REVISION HISTORY**

The following table summarizes revisions to this document.

| Revision | Date     | Description                   |
|----------|----------|-------------------------------|
| 1.0      | May 2018 | Initial Release of Data Sheet |