

SAMGPT: Text-free Graph Foundation Model for

Multi-domain Pre-training and Cross-domain Adaptation

Xingtong Yu, Zechuan Gong, Chang Zhou, Yuan Fang, Hui Zhang

Motivation

Problem

 How to build foundation models has emerged as an important question, paving a plausible path toward artificial general intelligence.

Challenges

• Different domains exhibit various structural characteristics

C1: How do we harmonize structural variance across multiple domains during pre-training?

C2: How do we adapt multi-domain prior structural knowledge to cross-domain downstream tasks?

Figure 1: Motivation of SAMGPT.

Multi-domain pre-training

Dimension alignment

 $\tilde{\mathbf{X}}_i = \mathsf{DAL}_{S_i}(\mathbf{X}_i),$

Feature alignment

$$\mathbf{H}^{\mathsf{FAL}} = \mathsf{GE}(\mathsf{FAL}(\mathcal{G}_S, \tilde{\mathcal{X}}_S; \Psi); \Theta),$$

$$\tilde{\mathcal{X}}_S = {\{\tilde{\mathbf{X}}_i : G_i \in \mathcal{G}_S\}}$$

Structure alignment

Pretext tokens

$$\mathcal{T}_{S_i} = \{ \mathbf{t}_{S_i}^l : l \in \{1, \dots, L\} \}$$

Add token to each layer of graph encoder, guiding structure-based aggregation

$$\mathbf{h}_v^l = \operatorname{Aggr}(\mathbf{h}_v^{l-1}, \{\mathbf{t}_{S_i}^l \odot \mathbf{h}_u^{l-1} : u \in \mathcal{N}_v\}; \theta^l),$$

 $\forall v \in V_i$,

Structure-aligned embedding matrix

$$\mathbf{H}^{\mathsf{SAL}} = \mathsf{Stack}(\mathbf{H}_1^{\mathsf{SAL}}, \dots, \mathbf{H}_K^{\mathsf{SAL}})$$

Overall embedding

$$\mathbf{H}^{\mathsf{AL}} = \mathbf{H}^{\mathsf{FAL}} + \alpha \mathbf{H}^{\mathsf{SAL}}$$

Figure 2: Overall framework of SAMGPT.

Prompt tuning

Feature adaptation

$$\mathbf{H}^{\mathsf{FAD}} = \mathsf{GE}(\mathsf{FAD}(G, \tilde{\mathbf{X}}; \Gamma); \Theta_{\mathsf{pre}})$$

Holistic prompts $\mathcal{P}_{hol} = \{\mathbf{p}_{hol}^1, \dots, \mathbf{p}_{hol}^L\}$ Specific prompts $\mathcal{P}_{hol} = \{\mathbf{p}_{hol}^1, \dots, \mathbf{p}_{hol}^L\}$

Proposed Method: SAMGPT

$$\mathcal{P}_{\text{spe}} = \{\mathbf{p}_{\text{spe}}^{1}, \dots, \mathbf{p}_{\text{spe}}^{L}\}$$
$$\mathbf{p}_{\text{spe}}^{l} = \sum_{i=1}^{K} \lambda_{i}^{l} \mathbf{t}_{S_{i}}^{l}$$

Prompt modification $\begin{aligned} \mathbf{h}_v^l &= \mathsf{Aggr}(\mathbf{h}_v^{l-1}, \{\mathbf{p}_{\text{hol}}^l \odot \mathbf{h}_u^{l-1} : u \in \mathcal{N}_v\}; \theta_{\text{pre}}^l), \ \ \forall v \in V \\ \text{Fuse embeddings} \\ \mathbf{H}^{\text{SAD}} &= \mathbf{H}^{\text{hol}} + \beta \mathbf{H}^{\text{spe}} \end{aligned}$

Overall embedding
$$\mathbf{H}^{\mathsf{AD}} = \mathbf{H}^{\mathsf{FAD}} + \alpha \mathbf{H}^{\mathsf{SAD}}$$

Experiment

Table 2: Accuracy (%) of one-shot *node classification* with standard deviations. Each column represents a target domain, using other columns as source domains. The best method in each column is bolded, and the runner-up is underlined.

Method \ Target domain Facebook LastFM Photo Computers Cora Citeseer Pubmed GCN 23.32 ± 11.56 29.53 ± 7.56 26.29 ± 6.50 26.96 ± 12.94 24.40 ± 5.62 20.45 ± 5.62 9.21 ± 3.11 23.03 ± 12.12 29.27 ± 6.47 **GAT** 24.27 ± 9.26 21.56 ± 8.09 22.28 ± 9.76 17.85 ± 10.22 9.01 ± 2.61 25.75 ± 12.45 34.36 ± 9.57 DGI 33.40 ± 10.48 25.80 ± 8.27 47.22 ± 9.50 30.89 ± 10.54 14.14 ± 6.31 35.02 ± 8.46 48.89 ± 9.03 27.72 ± 9.37 34.78 ± 11.56 23.79 ± 12.28 34.85 ± 7.07 **GRAPHCL** 18.93 ± 7.32 **GPPT** 39.82 ± 8.79 20.98 ± 3.98 27.18 ± 4.88 25.90 ± 4.68 31.58 ± 10.27 19.94 ± 9.61 34.73 ± 3.99 **GRAPHPROMPT** 28.26 ± 12.68 47.47 ± 9.15 48.11 ± 9.89 42.82 ± 11.67 40.44 ± 9.68 19.84 ± 7.23 32.51 ± 8.73 32.17 ± 6.56 36.79 ± 7.70 47.47 ± 8.19 GPF 41.28 ± 8.14 35.75 ± 7.12 27.26 ± 5.50 40.45 ± 6.34 33.35 ± 6.93 39.87 ± 8.16 48.48 ± 7.07 39.99 ± 7.91 37.70 ± 5.79 33.66 ± 7.24 27.16 ± 4.94 Hassani 38.33 ± 9.28 45.38 ± 9.87 40.63 ± 8.50 35.62 ± 11.93 52.87 ± 9.19 45.65 ± 10.69 28.84 ± 7.59 **GCOPE** 58.71 ± 8.69 SAMGPT 47.80 ± 11.88 36.38 ± 9.10 50.25 ± 10.43 48.22 ± 8.17 42.70 ± 8.73 33.36 ± 8.11 Table 3: Accuracy (%) of one-shot graph classification with standard deviations. Each column represents a target domain, using other columns as source domains. The best method in each column is bolded, and the runner-up is underlined.

Method \ Target domain	Cora	Citeseer	Pubmed	Photo	Computers	Facebook	LastFM
GCN GAT	30.64 ± 10.31 27.80 ± 7.85	26.90 ± 7.15 27.50 ± 7.13	38.84 ± 11.82 21.66 ± 8.70	15.60 ± 8.77 15.74 ± 7.62	21.94 ± 14.51 16.02 ± 13.46	31.33 ± 9.47 21.20 ± 7.31	28.83 ± 9.60 27.80 ± 7.85
InfoGraph GraphCL GraphPrompt GPF	34.98 ± 10.15 42.70 ± 10.64 37.38 ± 14.03 39.62 ± 8.52	35.87 ± 9.84 36.66 ± 8.67 36.66 ± 9.19 36.73 ± 7.66	48.67 ± 12.29 47.53 ± 11.52 49.55 ± 10.25 45.08 ± 10.36	25.70 ± 11.73 33.07 ± 12.31 50.79 ± 12.31 47.57 ± 10.16	19.02 ± 14.09 16.02 ± 13.47 43.09 ± 11.45 35.70 ± 8.71	31.26 ± 9.65 21.99 ± 13.00 41.71 ± 10.61 34.84 ± 5.14	23.29 ± 7.99 21.30 ± 10.45 32.62 ± 8.54 34.31 ± 7.05
Hassani	36.86 ± 10.74	35.78 ± 8.80	43.97 ± 13.27	41.55 ± 13.08	29.49 ± 13.86	35.57 ± 9.00	25.39 ± 8.14
GCOPE SAMGPT	38.85 ± 10.99 55.35 ± 13.62	39.93 ± 9.82 38.75 ± 9.40	47.05 ± 11.74 48.69 ± 10.16	$\frac{53.93}{58.75} \pm 9.74$ 58.75 ± 11.67	$\frac{45.60 \pm 10.96}{48.72 \pm 11.18}$	40.26 ± 9.53 43.71 ± 9.54	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Table 5: Model ablation study on key components of SAMGPT.

Methods	Structure Holistic Specific			Target domain for node classification			Target domain for graph classification		
Methods	tokens	prompts	prompts	Cora	Photo	Facebook	Cora	Photo	Facebook
VARIANT 1	×	×	×	36.36 ± 12.71	49.10 ± 9.94	35.36 ± 9.06	45.44 ± 13.47	52.45 ± 12.37	38.74 ± 10.20
Variant 2	×	×	✓	40.62 ± 11.79	56.23 ± 9.04	39.80 ± 10.39	45.63 ± 13.52	57.78 ± 11.64	42.22 ± 10.93
Variant 3	✓	×	×	44.26 ± 10.92	56.61 ± 10.14	41.11 ± 8.34	52.88 ± 12.25	58.14 ± 12.01	43.12 ± 9.76
Variant 4	✓	\checkmark	×	46.10 ± 12.02	57.76 ± 10.00	40.46 ± 8.89	54.52 ± 14.32	58.12 ± 12.30	43.15 ± 10.1
SAMGPT	✓	✓	✓	47.80 ± 11.88	58.71 ± 8.69	42.70 ± 8.73	55.35 ± 13.62	58.75 ± 11.67	43.71 ± 9.5

Table 4: Data ablation study with an increasing number of source domains, while fixing *Cora* as the target domain.

Method	1	Number of so	urce domain	S
Method	1	2	3	4
GRAPHPROMPT	35.53±12.06	37.13±11.79	36.90±11.23	38.54±11.84
GCOPE	39.47±12.14	36.63± 9.46	35.28±11.99	38.61±12.74
SAMGPT	40.43±11.00	41.97 ± 11.01	42.30 ±11.56	45.95 ±12.96