

Namn eller kod Name or Code					Grupp Group		
Personnummer Civic registration	n number			Program <i>Programme</i>	Antagningsår <i>Admis</i>	ssion year	
Skriftlig tentamen i Written examination in				Kurskod Course code			
Datum <i>Date</i>					Skrivtid Examinati	ion timo	
- Dalum bale					Skrivila Examinan	Orrilline	
Lärare Teacher							
Tillåtna hjälpmedel <i>Permitted aid</i>							
Övrigt Further information							
Uppgift Question	Poäng <i>Points</i>	Resultat <i>Result</i>]	Inlämningstid Submi	t time		
1717 3			_				
			_	Legitimation ID			
			_				
			-	Antal inlämnade bla	d No. of submitted she	eets	
			_	Kontrollerat av studer	nt Checked by student		
			_	iterimoneral av stader	iii cheeked by traderiii		
				Kontrollerat av skrivvakt Checked by invigilator			
			-				
			-	Betygsgränser <i>Grade</i>	limits	ECTS	
			-	G Pass		A	
				VG Pass w Distinction	4	В	
			-		5	С	
			-			D	
			_			E	
					L		
			1				
Max poäng <i>Max no of points</i>			-	Utkvitterad Received	1		
Summa <i>Sum</i>			_	Darking Date			
Betyg <i>Grade</i>			-	Datum <i>Date</i>			

Question 1

Logic

- a) Show that $((p \wedge r) \vee (\sim p \wedge r)) \wedge \sim (r \vee (\sim q \wedge r))$ is a contradiction.
- **b)** Show that $(p \to (q \to r))$ is logically equivalent to $(p \land q) \to r$.
- c) Use the laws of logic to simplify the expression $(p \land \sim q) \to q$. You have to note which law you used in each step to get points.

Question 2

Number representation and digital logic circuits

- a) Perform the following computations in binary arithmetic (Show how you perform the computations):
 - i. $01010101_2 + 10010010_2$
 - ii. $11001000_2 01100101_2$
- b) Use 8-bit two's complements to compute the following expressions:
 - i. 27 45
 - ii. -36 + 21
- c) Consider the input/output table below.
 - i. Construct a Boolean expression with this table as its truth table.
 - ii. Simplify the Boolean expression as much as possible and Design a digital logic circuit for the simplified Boolean expression.

P	Q	R	S (Output)
1	1	1	1
1	1	0	0
1	0	1	1
1	0	0	0
0	1	1	0
0	1	0	0
0	0	1	0
0	0	0	0

Question 3

Sets and relations

- a) Let $A = \{1, \{1, 2\}, 3, \{4\}\}$. Determine, and explain in your own words, which of the following statements are true:
 - i. $\{4\} \subseteq A$
 - ii. $\{1\} \in A$
 - iii. $\{1,3\} \subseteq A$
 - iv. $4 \in A$
- **b)** Illustrate the set, $((A \cap B)^c \cap C) \cup (B \cap C^c)$ using a series of Venn diagram. (Note! C^c is the complement of C).
- c) Use the properties of Sets to show that $(A^c \cup B)^c \cup B = A \cup B$. You need to explain each step.

Question 4

Relations and Functions

- a) Let $A = \{1, 2, 3, 4\}$ and $B = \{1, 2, 3, 4\}$ and define a relation R from A to B as follows: Given any $(x, y) \in A \times B$, $(x, y) \in R$ means that $|x y| \le 1$.
 - i. State explicitly which ordered pairs are in R.
 - ii. Draw an arrow diagram for R.
- **b)** Let A be the following set $A = \{1, 2, 3, 4, 5, 6\}$. A relation S on A is defined as follows: For every $x, y \in A$, x is related to y if y is a multiple of x. (y = kx) for some integer k)

Determine if the relation S as defined above is:

- i. reflexive
- ii. symmetric
- iii. transitive

Hint:

- (a) R is reflexive if, and only if, for every $x \in A$, xRx.
- (b) R is symmetric if, and only if, for every $x, y \in A$, if xRy then yRx.
- (c) R is transitive if, and only if, for every $x, y, z \in A$, if xRy and yRz then xRz.
- c) Let A be the set $A = \{1, 4, 9, 16\}$ and B be the set $B = \{-2, -1, 0, 1, 2\}$. A function f is defined as follows $f: A \to B, f(x) = (\sqrt{x} 3)$.
 - i. Is f well-defined?
 - ii. Is f one-to-one?
 - iii. Is f onto?

Motivate your answers!

Question 5

Number theory and Cryptography

- a) Let GCD(a, b) be the greatest common divisor of a and b. What is GCD(5985, 3315)?
- **b)** You have been given the following public key of an RSA public key system, n = 143, e = 7. Encrypt the message m = 20. (Hint! $c = m^e \mod n$). Show all calculations.
- c) Given the same RSA public key system as in b) find the decryption key d and decrypt the ciphertext c=2. (Hint! $ed \mod (p-1)(q-1)=1$.)

Högskolan Kristianstad

APPENDIX – Formulas and laws

Laws of logic

Law(s)		Name
$p \Leftrightarrow q \equiv (p \to q) \land (q \to q)$	→ <i>p</i>)	Equivalence law
$p \to q \equiv \neg p \vee q$		Implication law
$\neg \neg p \equiv p$		Double negation law
$p \land p \equiv p$	$p \lor p \equiv p$	Idempotent laws
$p \land q \equiv q \land p$	$p \lor q \equiv q \lor p$	Commutative laws
$(p \land q) \land r \equiv p \land (q \land r)$	$) (p \lor q) \lor r \equiv p \lor (q \lor r)$	Associative laws
$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$	$p \lor (q \land r) \equiv $ $(p \lor q) \land (p \lor r)$	Distributive laws
$\neg (p \land q) \equiv \neg p \lor \neg q$	$\neg (p \lor q) \equiv \neg p \land \neg q$	de Morgan's laws
$p \wedge T \equiv p$	$p \vee F \equiv p$	Identity laws
$p \wedge F \equiv F$	$p \vee T \equiv T$	Annihilation laws
$p \land \neg p \equiv F$	$p \lor \neg p \equiv T$	Inverse laws
$p \land (p \lor q) \equiv p$	$p \lor (p \land q) \equiv p$	Absorption laws

Boolean axioms

x + y = y + x	$x \times y = y \times x$	commutative axioms
	$x \times (y \times z) = (x \times y) \times z$	associative axioms
$x + (y \times z) = (x + y) \times (x + z)$	$x \times (y + z) = (x \times y) + (x \times z)$	distributive axioms
x + 0 = x	$x \times 1 = x$	identity axioms
x + x' = 1	$x \times x' = 0$	inverse axioms

The operations +, \times and ' are called *addition*, *multiplication* and complementation respectively.

Högskolan Kristianstad

Boolean laws

x'' = x

x + x = x

 $(x+y)' = x' \times y'$

x+1=1

 $> x + (x \times y) = x$

0' = 1

 $x \times x = x$

 $(x \times y)' = x' + y'$

 $x \times 0 = 0$

 $x \times (x + y) = x$

1' = 0

double complement law

idempotent laws

de Morgan's laws

annihilation laws

absorption laws

complement laws