LP3 Assignment 2

Decision Tree Classifier

41323 Gayatri Dhekane.

In [23]:

```
import pandas as pd
import numpy as np
```

In [24]:

```
#reading Dataset
dataset=pd.read_csv("dataset.csv")
```

In [25]:

```
dataset.head(5)
```

Out[25]:

	ID	Age	Income	Gender	Marital Status	Buys
0	1	<21	High	Male	Single	No
1	2	<21	High	Male	Married	No
2	3	21-35	High	Male	Single	Yes
3	4	>35	Medium	Male	Single	Yes
4	5	>35	Low	Female	Single	Yes

In [26]:

```
X=dataset.iloc[:,:-1]
y=dataset.iloc[:,5]
```

In [27]:

```
#Perform Label encoding
from sklearn.preprocessing import LabelEncoder
le=LabelEncoder()
```

```
In [28]:
```

```
X=X.apply(le.fit_transform)
print("X",X)
```

Χ	ID	Age	Income	Gender	Marital Status
0	0	1	0	1	1
1	1	1	0	1	0
2	2	0	0	1	1
3	3	2	2	1	1
4	4	2	1	0	1
5	5	2	1	0	0
6	6	0	1	0	0
7	7	1	2	1	1
8	8	1	1	0	0
9	9	2	2	0	1
10	10	1	2	0	0
11	11	0	2	1	0
12	12	0	0	0	1
13	13	2	2	1	0

In [29]:

```
from sklearn.tree import DecisionTreeClassifier
regressor=DecisionTreeClassifier()
regressor.fit(X.iloc[:,1:5],y)
```

Out[29]:

DecisionTreeClassifier()

In [31]:

```
#Predict value for the given Expression
X_in=np.array([0,0,1,1])
y_pred=regressor.predict([[0,0,1,1]])
print("Prediction:", y_pred)
```

Prediction: ['Yes']

In []:

```
from six import StringIO
from IPython.display import Image
from sklearn.tree import export_graphviz
import pydotplus
```

In []:

```
dot_data=StringIO()
```

In []:

export_graphviz(regressor,out_file=dot_data,filled=True,rounded=True,special_characters=Tru

```
In [ ]:
graph=pydotplus.graph_from_dot_data(dot_data.getvalue())

In [ ]:
graph.write_png('d_tree.png')

In [ ]:
from IPython.display import Image
Image(filename='d_tree.png')

In [ ]:
```