Berechnung der Fluchtgeschwindigkeit

Michael Kopp

7. November 2008

Um eine Fluchtgeschwindigkeit – also die Geschwindigkeit, mit der ein Objekt von der Oberfläche eines Himmelskörpers abgeschossen wird, sodass er das Schwerefled des Körpers vollständig überwindet – auszurechnen, kann man sich des Energiesatzes bedienen.

Dabei gilt, dass ein Körper, der mit der Geschwindigkeit v_0 abgeschossen wird, die Kinetische Energie

$$E_k = \frac{1}{2} \cdot m \cdot v_0^2 \tag{1}$$

hat.

Um zu berechnen, wie viel Energie er im Schwerefeld eines Himmelskörpers "verliert", berechnet man im Prinzip nach der Formel $E=F(s)\cdot s$. Dazu verwendet man ein Integral

$$E_g = \int_{R_M}^{\infty} dr \ G \cdot \frac{m_M \cdot m}{r^2} \tag{2}$$

wobei R_M Der Mondradius ist (es wird ja von der Mondoberfläche aus geschossen) und $G \cdot \frac{m_M \cdot m}{r^2}$ die Formel zur Berechnung von Gravitationskräften zwischen zwei Körpern – hier Mond (m_M) und dem Projektil (m).

Um nun die Fluchtgeschwindigkeit zu ermitteln, setzt man die beiden Energien gleich; E_k "bekommt" der Körper beim Abschuss und E_g "verliert" er bei seiner Reise durch's Schwerefeld.

So ergibt sich

$$\frac{1}{2} \cdot m \cdot v_0^2 = \int_{R_M}^{\infty} dr \ G \cdot \frac{m_M \cdot m}{r^2} = \left[-G \cdot \frac{m_M \cdot m}{r} \right]_{R_M}^{\infty} = G \cdot \frac{m_M \cdot m}{R_M}$$
(3)

und schließlich

$$v_0 = \sqrt{G \cdot \frac{2 \cdot m_M}{R_M}} \tag{4}$$