Notes for MAT1341A Fall 2023 Part I

Chapter 2 - Vector Geometry MAT 1341

Let \mathbb{R} be the set of real numbers. We can represent it on a line, sometimes called real line.

 \mathbb{R}^2 represents the 2-dimensional plane. A point in \mathbb{R}^2 is represented by 2 coordinates, let's say (a,b), where $a,b\in\mathbb{R}$.

 \mathbb{R}^3 is the 3-dimensional space. A point in \mathbb{R}^3 is represented by (a,b,c) where $a,b,c\in\mathbb{R}$.

For any integer $n \geq 1$, we have the "n-space", denoted by \mathbb{R}^n . An element in \mathbb{R}^n is represented by $(x_1, x_2, ..., x_n)$, where $x_i \in \mathbb{R}$ for i = 1, 2, ..., n.

C belongs to / 75 an element of

A **vector** in \mathbb{R}^n represents the displacement between two points.

2ⁿ a y b

We write $\mathbf{u} = (x_1, ..., x_n)$ to represent a vector going from (0, 0, ..., 0) to $(x_1, ..., x_n)$. We can also use the notation

$$\mathbf{u} = (x_1, \dots, x_n) = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} x_1 & \dots & x_n \end{bmatrix}^{\top} \qquad (\top = \text{transpose})$$

(0,0,.-,0)

Sometimes we write \vec{u} (instead of \mathbf{u}) to emphasize that the vector encodes a direction.

The **magnitude** (or **length**, or **norm**) of a vector is defined by

$$||\mathbf{u}|| = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$$
 where $\mathbf{u} = (x_1, \dots, x_n)$

Alternative notation:

[E.g.] Find the magnitude of $\mathbf{u} = (3, 4)$.

$$11\sqrt{31} = \sqrt{3^2 + 4^2}$$

$$= 5$$

Special elements

We always have the **zero vector** (null vector) $\vec{0} = (0, 0, \dots, 0)$

- In \mathbb{R}^2 , we have $\hat{i} = (1,0), \ \hat{j} = (0,1)$
- In \mathbb{R}^3 , we have $\hat{i} = (1, 0, 0), \ \hat{j} = (0, 1, 0), \ \hat{k} = (0, 0, 1)$

The notation means a unit vector, i.e. it's length is one.

In
$$\mathbb{R}^n$$
, we have $Q_1 = (1, 0, 0, ..., 0)$
 $Q_2 = (0, 1, 0, ..., 0)$
 $Q_3 = (0, 0, ..., 1)$

Manipulation of vector

Let $\mathbf{u} = (x_1, \dots, x_n), \mathbf{v} = (y_1, \dots, y_n).$ We can add them

$$\mathbf{u} + \mathbf{v} = (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n)$$

[E.g.] Find $\mathbf{u} + \mathbf{v}$, where $\mathbf{u} = (3, 4)$, $\mathbf{v} = (-4, 0)$.

$$\vec{u} + \vec{v} = (3 - 4, 4 + 0)$$

= $(-1, 4)$

Multiply a vector by a scalar (an element $\mathbf{c} \in \mathbb{R}$)

$$c\mathbf{u} = (cx_1, cx_2, \dots, cx_n)$$

When $c = -1, -\mathbf{u} = (-x_1, \dots, -x_n)$, this is the opposite of \mathbf{u} (this reversed the direction of \mathbf{u})

[E.g.] Find $2\mathbf{u}$ and $-\mathbf{u}$, where $\mathbf{u} = (1, 2)$.

$$2 \vec{u} = 2(1,2) = (2,4)$$

$$-\vec{u} = -(1,2) = (-1,-2)$$

$$\frac{1}{100} + (-\frac{1}{100}) = \frac{1}{100}$$

If $c, d \in \mathbb{R}$, we can from a linear combination of **u** and **v**:

Scalars
$$c\mathbf{u} + d\mathbf{v} = (cx_1 + dy_1, cx_2 + dy_2, \dots, cx_n + dy_n)$$

If $\mathbf{u}_1, \dots, \mathbf{u}_m$ are m vectors in \mathbb{R}^n , then we can from a linear combination

$$c_1\mathbf{u}_1 + c_2\mathbf{u}_2 + \ldots + c_m\mathbf{u}_m$$
 where $c_i \in \mathbb{R}$

[E.g.] $\mathbf{u} = (1, -1)$ and $\mathbf{v} = (2, 1)$. Find $\mathbf{u} - \mathbf{v}$ and $2\mathbf{u} + \mathbf{v}$.

$$= (-1, -2)$$

$$= (-1, -2)$$

= (4, -1)

27

the two vectors

Fact. Every element in \mathbb{R}^2 is a linear combination of \hat{i} and \hat{j} . If $(a,b) \in \mathbb{R}^2$, then

$$(a,b) = (a,0) + (0,b)$$

= $a(1,0) + b(0,1)$
= $a\hat{i} + b\hat{j}$

In R3, (a,b,c)

= aî +bî+ck

Every element of R3

St ? I and E

Similarly, in \mathbb{R}^3 , every element is a linear combination of \hat{i}, \hat{j} and \hat{k} .

[*E.g.*] Show that
$$\mathbf{u} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
 is **not** a linear combination of $\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$ and $\begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix}$.

Suppose is is a linear combanation of [6] and [-1]

a=1, b=-2, a+b=3 |+(-2)=3, which is a contradiction So u is not a linear combination of [-1] and [-1]

Basic properties

For any $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^n$

•
$$\mathbf{u} + \vec{0} = \vec{0} + \mathbf{u} = \mathbf{u}$$

$$\bullet \ \mathbf{u} + (-\mathbf{u}) = \vec{0}$$

•
$$(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$$
 [associativity]

•
$$(cc')\mathbf{u} = c(c'\mathbf{u})$$
, where $c, c \in \mathbb{R}$

•
$$c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$$
, $(c + c')\mathbf{u} = c\mathbf{u} + c'\mathbf{u}$ [distributivity]

$$\vec{c} \cdot \vec{c} + \vec{c} = \vec{c} \cdot \vec{c}$$
 [commutativity]

Dot products (inner products)

We can take $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$, and form the dot product $\mathbf{u} \cdot \mathbf{v}$ which is given by the following formula:

If
$$\mathbf{u} = (x_1, x_2, \dots, x_n)$$
 and $\mathbf{v} = (y_1, y_2, \dots, y_n)$
Then $\mathbf{u} \cdot \mathbf{v} = x_1 y_1 + x_2 y_2 + \dots + x_n y_n \in \mathbb{R}$ Alternative notation $\begin{bmatrix} E.g. \end{bmatrix} \mathbf{u} = (1, -2, 1), \mathbf{v} = (-3, 0, 5).$ Find $\mathbf{u} \cdot \mathbf{v}$
$$\begin{bmatrix} (1, -2, 1) \cdot (-3, 0, 5) \\ -3, (-2) \cdot (-3, 0, 5) \end{bmatrix}$$

$$= |\mathbf{v}(-3)| + (-2) \cdot \mathbf{v} + (\mathbf{v} \cdot \mathbf{v})$$

$$= 2$$
If $\mathbf{u} = \mathbf{v}$, then $\mathbf{u} \cdot \mathbf{u} = ||\mathbf{u}||^2$

$$\mathbf{u} \cdot \mathbf{v} = |\mathbf{x}_1| + |\mathbf{x}_2|^2 + \dots + |\mathbf{x}_n|^2 + \dots + |\mathbf$$

Notice that

- $\mathbf{u} = \vec{0}$ if and only if $\mathbf{u} \cdot \mathbf{u} = 0$.
- $\mathbf{u} \cdot \mathbf{u}$ is always ≥ 0 , and it is 0 if and only if $x_i = 0$ for all i.

U.U =
$$x_1^2 + \cdots + x_n^2 > 0$$

This is 0 if and only if $x_1 = \cdots = x_n = 0$

$Basic\ properties$

- (i) If $c \in \mathbb{R}$, $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$, we have $(c\mathbf{u}) \cdot \mathbf{v} = \mathbf{u} \cdot (c\mathbf{v}) = c(\mathbf{u} \cdot \mathbf{v})$ (ii) $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$ (commutativity)

 $||\mathbf{u} - \mathbf{v}||$ tells you the distance between the two end points of \mathbf{u} and \mathbf{v} .

Orthogonality

We say that two vectors in \mathbb{R}^n are **orthogonal** (or perpendicular) if their dot product is 0. right-angle getween two vectors

More generally, $\mathbf{u} \cdot \mathbf{v} = ||\mathbf{u}|| ||\mathbf{v}|| \cos \theta$.

If $\mathbf{u} \cdot \mathbf{v} = 0$ and $||\mathbf{u}||, ||\mathbf{v}|| \neq 0$, then $\cos \theta = 0$, so $\theta = \frac{\pi}{2}$.

[E.g.] Find the angle between $\mathbf{u} = (3,4)$ and $\mathbf{v} = (1,1)$.

$$\cos \theta = \frac{U \cdot V}{\| u \| \| \| V \|} = \frac{(3,4) \cdot (1,1)}{\| (3,4) \| \| \| (1,1) \|}$$

$$= \frac{3+4}{\sqrt{3^2+4^2}} \sqrt{1^2+1^2}$$

$$= \frac{7}{\sqrt{5}} \qquad \theta = \cos^{-1}(\frac{7}{5\sqrt{5}})$$

Theorem (2.7.1 Cauchy-Schwartz inequality). For all $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$, then

Textbook
$$|\mathbf{u}\cdot\mathbf{v}| \leq ||\mathbf{u}||\cdot||\mathbf{v}||$$

$$\mathbf{u} = (1,1), \mathbf{v} = (-1,-1)$$

We have equality in this example.

Corollary (Triangle inequality). $||\mathbf{u}+\mathbf{v}|| \le ||\mathbf{u}|| + ||\mathbf{v}||$ for all $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$

Proof.

$$||u+v||^2 = (u+v) \cdot (u+v)$$
 $= u \cdot u + u \cdot v + v \cdot u + v \cdot v$
 $= ||u||^2 + u \cdot v + u \cdot v + ||v||^2$
 $= ||u||^2 + 2 u \cdot v + ||v||^2$
 $\leq ||u||^2 + 2 ||u \cdot v|| + ||v||^2$
 $\leq ||u||^2 + 2 ||u \cdot v|| + ||v||^2$
 $\leq ||u||^2 + 2 ||u \cdot v|| + ||v||^2$
 $= (||u|| + ||v||)^2$
 $= (||u|| + ||v||)^2$

(by Cauchy - Schwerz inequality)

Take square roots: $||u+v|| \leq ||u|| + ||v||$.

$Orthogonal\ projection$

Let **u** be a non-zero vector in \mathbb{R}^n . If **v** is a vector in \mathbb{R}^n , we define the orthogonal projection of **v** onto **u**, denoted

$$\mathrm{proj}_{\mathbf{u}}(\mathbf{v})$$

is the unique vector which satisfies

- $proj_{\mathbf{u}}(\mathbf{v})$ is parallel to \mathbf{u}
- $\mathbf{v} \text{proj}_{\mathbf{u}}(\mathbf{v}) \perp \mathbf{u}$ (is orthogonal to \mathbf{u})

We decompose \mathbf{v} as a sum

$$\mathbf{v} = (\mathbf{v} - \mathrm{proj}_{\mathbf{u}}(\mathbf{v})) + \mathrm{proj}_{\mathbf{u}}(\mathbf{v})$$

Using either trigonometry, or just solving directly from the above two conditions, we get:

 $\mathrm{proj}_{\mathbf{u}}(\mathbf{v}) = \frac{\mathbf{v} \cdot \mathbf{u}}{||\mathbf{u}||^2} \mathbf{u}$

Proof.

 $[E.g.] \ \mathrm{If} \ \mathbf{u} = (1,2), \mathbf{v} = (3,-1). \ \mathrm{Find} \ \mathrm{proj}_{\mathbf{u}}(\mathbf{v}) \ \mathrm{and} \ \mathrm{proj}_{\mathbf{v}}(\mathbf{u}).$

Chapter 3 - Lines and Planes

In \mathbb{R}^n , we can describe a line using parametric equations. A line L going through the tip of \mathbf{v}_0 and such that \mathbf{d} is a vector parallel to the direction of L can be described as the set

Any point on this line L can be written as $\mathbf{v}_0 + t\mathbf{d}$, where $t \in \mathbb{R}$

[E.g.] Find the parametric equation of the line in \mathbb{R}^2 passing through P=(1,2) and Q=(3,-2)

A line in \mathbb{R}^2 can be described by a Cartesian equation as well.

[E.g.] Find the intersection of $L_1=\{(1,2)+t(-1,1))|t\in\mathbb{R}\}$ and $L_2:y=2x-1$

In \mathbb{R}^2 , two distinct line, they are either parallel or have an intersection.

In \mathbb{R}^3 , two distinct lines can be parallel to each other, or they can have an intersection, or they are skewed (they are not parallel and lie in two planes).

[E.g.]

A plane in \mathbb{R}^3 has a **Cartesian equation** of the form

$$ax + by + cz = d$$

where $a, b, c, d \in \mathbb{R}$

There is a vector in \mathbb{R}^3 that is \perp to the plane. We call this a **normal** vector of the plane. If the plane passes through \mathbf{v}_0 .

Given another point $\mathbf{v}=(x,y,z)$, then $\mathbf{v}-\mathbf{v}_0\perp\mathbf{n}$. We have

$$(\mathbf{v} - \mathbf{v}_0) \cdot \mathbf{n} = 0$$
$$\mathbf{v} \cdot \mathbf{n} - \mathbf{v}_0 \cdot \mathbf{n} = 0$$
$$\mathbf{v} \cdot \mathbf{n} = \mathbf{v}_0 \cdot \mathbf{n}$$

So if $\mathbf{n} = (a, b, c)$, then

$$(x, y, z) \cdot (a, b, c) = \mathbf{v}_0 \cdot \mathbf{n}$$

 $ax + by + cz = \mathbf{v}_0 \cdot \mathbf{n}$

[E.g.] Find the Cartesian of the plane passes $\mathbf{v}_0=(0,1,0)$ with normal vector $\mathbf{n}=(-1,2,2).$

Suppose we are given a point \mathbf{v}_0 in the plane and two vectors \mathbf{u} and \mathbf{v} that are parallel to the plane. Then, we may describe the plane parametrically:

[E.g.] Find a parametric equation for the plane 2x + y - z = 5.

$Cross\ products$

Given $\mathbf{u} = (a, b, c)$ and $\mathbf{v} = (x, y, z)$ in \mathbb{R}^3 , the **cross product** of \mathbf{u} and \mathbf{v} is denoted by

$$\mathbf{u} \times \mathbf{v} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a & b & c \\ x & y & z \end{vmatrix} = \hat{i}(bz - cy) - \hat{j}(az - cx) + \hat{k}(ay - bx)$$
$$= (bz - cy, cx - az, ay - bx)$$

Recall
$$\hat{i} = (1,0,0), \hat{j} = (0,1,0), \hat{k} = (0,0,1).$$
 We have:
$$\hat{i} \times \hat{j} = \hat{k}, \hat{j} \times \hat{k} = \hat{i}, \hat{k} \times \hat{i} = \hat{j}.$$

Important properties of the cross product:

- $\bullet \ \mathbf{u} \times \mathbf{v} = -\mathbf{v} \times \mathbf{u}.$
- $\bullet \ (\mathbf{u} \times \mathbf{v}) \cdot \mathbf{u} = (\mathbf{u} \times \mathbf{v}) \cdot \mathbf{v} =$
- $\bullet \ (\mathbf{u}+\mathbf{v})\times \mathbf{w} = \mathbf{u}\times \mathbf{w} + \mathbf{v}\times \mathbf{w}.$

What about associativity?

$$[E.g.] \ \ \mathrm{Find} \ (1,0,2) \times (1,2,-1).$$

 $\mathbf{u} \times \mathbf{v}$ will give us a vector \perp to \mathbf{u} and \mathbf{v} . So $\mathbf{u} \times \mathbf{v}$ gives a normal vector of the plane parallel to \mathbf{u} and \mathbf{v} .

[E.g.] If a plane W passes through P=(1,2,3), Q=(-3,2,1) and R=(2,4,5). Find a normal vector of W.

Another useful fact:

$$||\mathbf{u} \times \mathbf{v}|| = ||\mathbf{u}|| \ ||\mathbf{v}|| \sin \theta$$

where $0 \le \theta \le \pi$ is the angle between **u** and **v**.

In particular, we can find the area of the triangle formed by ${\bf u}$ and ${\bf v}$ via

$$S = \frac{1}{2}||\mathbf{u} \times \mathbf{v}||$$

 $[E.g.] \;$ Find the area of the triangle formed by A=(1,1,0), B=(2,1,2), and C=(2,-1,1).

Theorem (3.7.1). The volume of the parallelepiped with sides $\mathbf{u}, \mathbf{v},$ and \mathbf{w} in \mathbb{R}^3 is given by

$$|(\mathbf{u}\times\mathbf{v})\cdot\mathbf{w}|$$

[E.g.] Find the volume of the parallelepiped formed by $\mathbf{u}=(1,2,3)$, $\mathbf{v}=(1,3,2)$, and $\mathbf{w}=(1,2,2)$.

[E.g.] Find the distance form P = (1, 2, 2) to the plane -x + 2y + 2z = 4.