Universidade Federal de Uberlândia

Aluno: Henrique Santos de Lima - 11811ETE016

Professor: Wellington Maycon Santos Bernardes

Universidade Federal de Uberlândia

Relatório de Experimental de Circuitos Elétricos

2

CIRCUITOS TRIFÁSICOS EQUILIBRADOS

Aluno: Henrique Santos de Lima - 11811ETE016

Professor: Wellington Maycon Santos Bernardes

Conteúdo

1	Obj	etivos											2
2	Intr	odução											2
3	Prep	paração											3
	3.1	Materia	ais e ferramentas	 	 							 	3
	3.2	Montag	gem	 	 							 , .	3
		3.2.1	Ligação em Estrela	 	 							 	3
		3.2.2	Ligação em Delta .	 	 					•		 	4
4	Aná	lise sobi	re segurança										5
5	Aná	lise											6
	5.1	Dados		 	 	•						 	6
		5.1.1	Ligação em estrela	 	 	•		 •				 	6
		5.1.2	Ligação em delta .	 	 							 	6
	5.2	Questõ	es	 	 	•		 •		•	 •	 	7
6	Sim	ulação											10
	6.1	Estrela		 	 							 	10
	6.2	Delta .		 	 							 	12
7	Con	clusão											14

1 Objetivos

Montar um circuito trifásico equilibrado em configuração delta e estrela, realizar as possíveis medições elétricas para compara-los com os valores teóricos. Verificar as relações de tensão de fase e tensão de linha, assim como para corrente de fase e corrente de linha.

2 Introdução

A geração e transmissão de energia por meio de circuitos trifásicos tem mostrado vantagens em relação a transmissão monofásica, por transmitirem a mesma potência VA com menor custo em relação a monofásica.

Existe dois tipos de ligação para as cargas alimentadas pelo gerador, ligação em estrela e ligação em delta. Em que na configuração delta a tensão de linha é a mesma que a tensão de fase e neutro, porem a corrente de linha é $\sqrt{3}$ maior que a corrente de fase. Para configuração estrela a corrente de linha é a mesma que a corrente de fase porem a tensão de linha é $\sqrt{3}$ maior que a tensão de fase. Independente da configuração a potencia VA fornecida é a mesma.

A potência trifásica é soma das potencias de cada fase que matematicamente é: Potencia Aparente:

$$S = \sqrt{3} \times V_L \times I_L$$

Potência ativa:

$$P = \sqrt{3} \times V_L \times I_L \times \cos(\theta)$$

Potência reativa:

$$Q = \sqrt{3} \times V_L \times I_L \times \sin(\theta)$$

Diz que um circuito trifásico é equilibrado quando as cargas de cada fase, e as tensões do gerador possuem a mesma amplitude com angulo de defasamento de 120°. Quando um circuito trifásico está equilibrado e em ligação em estrela a corrente que retorna para o neutro é nula, matematicamente a soma dos fasores de corrente se anulam.

3 Preparação

3.1 Materiais e ferramentas

- Regulador de tensão(Varivolt)
- Resistores de 50Ω
- Indutor de 160 mH
- Medidor Trifásico Kron Mult-K
- Amperímetro analógico AC

3.2 Montagem

3.2.1 Ligação em Estrela

Figura 1: circuito em estrela a ser montado

Para realizar a montagem deve seguir a figura 1, antes de iniciar a montagem certifique-se que o circuito esteja desligado.

3.2.2 Ligação em Delta

Figura 2: circuito em estrela a ser montado

Para realizar a montagem deve seguir a figura 2, antes de iniciar a montagem certifique-se que o circuito esteja desligado.

4 Análise sobre segurança

Antes de montar o experimento é importante o uso de equipamentos de proteção, estar com calça, sapatos fechados, sem acessórios metálicos e se o cabelo for grande, este deve estar preso.

A bancada deve estar desenergizada durante a montagem. Durante o experimento não ter contato com nenhum fio ou elemento energizado do circuito além do risco de choque elétrico. Certifique-se de que os equipamentos estão na escala adequada para realizar as medições.

Para movimentar os indutores pegue pela parte inferior evitando riscos de que se desprenda e caia, assim evitando lesões e dano ao dispositivo.

Realizar as medidas em um tempo curto evitando que o circuito fique energizado por um longo período de tempo, pois os resistores estarão dissipando potência assim esquentando.

Deve-se manter uma distância segura do circuito quando o mesmo está energizado assim evitando queimaduras e choque elétrico.

5 Análise

5.1 Dados

5.1.1 Ligação em estrela

fase	$V_F[V]$	$V_L[V]$	$I_L[A]$	$I_N[A]$	fp	P[W]	Q[Var]	S[VA]
a	56.87	99.50	0.511	0	0.565	16.43	25.00	29.06
b	58.27	100	0.495	0	0.548	15.75	25.00	28.75
С	58.34	99.6	0.553	0	0.585	18.37	26.04	31.80
total	-	-	-	-	-	50.82	73.95	89.30

Tabela 1: 1Medidas obtidas com neutro conectado (TL = 0000)

fase	Vf[V]	$V_L[V]$	$I_L[A]$	fp	P[W]	Q[Var]	S[VA]
a	56.94	99.90	0.523	0.537	15.98	25.13	29.70
b	58.44	101.40	0.506	0.573	16.78	24.24	29.43
С	58.45	99.64	0.534	0.587	18.10	25.16	30.96
total	-	-	-	-	51.14	74.51	90.13

Tabela 2: Medidas obtidas com neutro desconectado (TL = 0000)

fase	$V_L[V]$	$I_L[A]$	$P_T[W]$	$Q_T[Var]$	$S_T[VA]$
AB	100.1	0.627	22.53	28.367	36.1
BC	100.1	0.627	22.53	28.366	36.1
CA	100.1	0.627	22.53	28.366	36.1
total	-	-	67.59	85.10	108.3

Tabela 3: Medidas obtidas com neutro conectado(TL = 0003)

fase	$V_L[V]$	$I_L[A]$	$P_T[W]$	$Q_T[Var]$	$S_T[VA]$
A	100.1	0.627	22.53	28.33	36.2
В	100.1	-	22.53	28.33	36.2
С	100.1	-	22.53	28.33	36.2
total	-	-	67.59	84.99	108.6

Tabela 4: Medidas obtidas com neutro desconectado (TL = 0003)

5.1.2 Ligação em delta

fase	$V_L[V]$	$V_f[V]$	$I_L[A]$	I_f	fp	P[W]	Q[Var]	S[VA]
a	99.50	100.1	1.564	0.9	0.549	49.87	75.97	90.74
b	100	100.1	1.543	-	0.556	49.30	72.60	87.46
С	99.6	100.1	1.512	-	0.555	50.18	75.49	90.52
total	-	-	-	-	-	149.50	223.4	268.4

Tabela 5: Medidas obtidas com neutro conectado(TL = 0048)

fase	$V_L[V]$	$V_f[V]$	$I_L[A]$	I_f	fp	P[W]	Q[Var]	S[VA]
a	101.9	100.9	1.599	0.92	0.589	52.26	78.62	95.60
b	103.0	-	1.670	-	0.533	50.78	75.52	92.03
С	100.7	-	1.607	-	0.555	52.14	78.44	95.32
total	-	-	-	-	-	155.1	237.7	282.8

Tabela 6: Medidas obtidas com neutro desconectado(TL = 0049)

Figura 3: Dados linearizados

5.2 Questões

A relação entre V_F e V_L da tabela 1 é: $V_L = \sqrt{3} \times V_F$.

A soma das correntes no neutro foi muito próxima de zero, sendo menor que a precisão do aparelho utilizado o qual indicou 0[A]. Isso ocorre devido ao fato das impedâncias vista pela fonte serem igual e como as tensões aplicadas estão defasadas de 120° a soma é igual a 0.

Se somar fasorialmente as correntes de linhas a soma devera ser iguais a 0 em virtude da Segunda lei de Kirchhoff a qual diz: "a soma das correntes em um nó é igual a zero". Logo $I_{neutro} = I_{L1} + I_{L2} + I_{L3}$.

Ao interromper a conexão com o neutro as medidas não foram alteradas pela interrupção, os valores foram diferentes pelo fato da tensão disponibilizada pelo varivolt não ser exatamente a mesma que no experimento com neutro conectado.

Se desconectasse o neutro e um voltímetro fosse colocado a tensão medida deve ser igual a 0, pois:

$$V_F - V_{cargas} = V_N$$
 $V_F = V_{cargas}$ $V_N = 0$

A relação $V_L = \sqrt{3} \times V_F$ para ligação em estrela foi comprovada com um erro menor que 1%. A tabela abaixo mostra o erro entre o valor esperado e o valor medido.

fase	$V_F[V]$	$V_L[V]$ (medido)	$V_L[V]$ (esperado)	erro [%]
a	56.87	99.50	98.50	1.01
b	58.27	100.00	100.93	0.92
c	58.34	99.6	101.05	1.43

Tabela 7: Relação V_L e V_F

A relação $I_L = \sqrt{3} \times I_F$ para ligação em delta foi comprovada com um erro menor que 3%. A tabela abaixo mostra o erro entre o valor esperado e o valor medido.

fase	I_f	$I_L[A]$ (medido)	$I_L[A]$ (esperad)	erros [%]
a	0.9	1.564	1.559	0.32
b	-	1.543	1.559	1.03
С	-	1.512	1.559	3.01

Tabela 8: Medidas obtidas com neutro conectado

A Tabela abaixo mostra a comparação da potência medida e da potência calculada para encontrar.

Ligação	$V_L[V]$	$I_L[A]$	$oldsymbol{ heta}[^{\circ}]$	P_T (medida)[W]	P_T (calculada)[W]	$Q_T[Var]$	Q_T (calculado)[Var]
estrela	101.40	0.495	56.77	50.82	47.64	73.95	72.72
delta	100	1.543	56.22	149.50	148.6	223.4	222.14

Tabela 9: Potências calculadas e medidas

As medições foram realizadas corretamente, as potencias foram diferentes pois os circuitos possuem a mesma tensão de Linha (V_L) porém correntes de Linhas diferente. A relação de potências é : $P_{delta} = 3 \times P_{estrela}$, para transformar um circuito em delta para um equivalente em estrela deve-se dividir as impedâncias por 3.

$$Z_{\Delta} = 3 \times Z_{Y}$$

Ao passar a montagem para ligação em delta usou-se as mesmas impedâncias, assim não sendo um equivalente. Isso explica o fato das potencias terem sido diferentes.

As pequenas diferenças entre as tensões e correntes se dão pelo fato de que as impedâncias não possuem exatamente o mesmo valor, vai da construção de cada uma onde são projetadas para admitirem um pequeno erro nos seus valores. Portando se as impedâncias são diferentes então a defasagem das tensões e correntes podem não ficar exatamente 120° e com isso a corrente no Neutro apresenta um valor diferente de zero.

Quando o medidor Kron esta configurado para TL = 0003 ele encontra as demais medidas com as seguintes expressões as quais são validas para ligação em estrela:

$$V_{AN} = V_{BN} = V_{CN}$$
 $V_{AB} = V_{BC} = V_{CA} = \sqrt{3} \times V_{AN}$
 $P_T = 3 \times V_{AN} \times I_L \times \cos(\theta)$
 $Q_T = 3 \times V_{AN} \times I_L \times \sin(\theta)$
 $S_T = 3 \times V_{AN} \times I_L$

A vantagem é de com o acesso em uma única fase obter dados do circuito inteiro.

A tensão informada é a tensão de Linha pois $S = \sqrt{3} \times V_{informado} \times I_L$. Deve-se tomar cuidado para não medir tensão de linha no lugar de tensão de fase.

É incorreto pois a corrente no I_N deve ser zero em um circuito equilibrado, assim está não serve para indicar se o circuito está em curto.

Para a corrente em I_N crescer o circuito pode estar em curto com o neutro ou o circuito é desequilibrado(que não é o caso deste experimento) ou o mais provável neste experimento é que uma das fases não estão conectadas assim a corrente em I_N será $I_1 + I_2$.

6 Simulação

Para simulação foi usado o software Multisim, abaixo a figura do circuito a ser simulado.

6.1 Estrela

Figura 4: Circuito estrela

Figura 5: gráfico para obter as medidas

Fases	$V_F[V]$	$V_L[V]$	$I_L[A]$	$I_N[A]$	P[W]	Q[Var]	S[W]
a	57.735	100	0.737	0	23.62	35.40	42.55
b	57.735	100	0.737	-	23.62	35.40	42.55
С	57.735	100	0.737	-	23.62	35.40	42.55
total	-	-	-	-	70.85	106.19	127.65

Tabela 10: simulação em estrela

Os dados são semelhantes aos obtidos experimentalmente. Todos são iguais pois na simulação as fontes e impedâncias são exatamente iguais .

6.2 Delta

Figura 6: circuito em delta

Figura 7: gráfico para obter as medidas

Fases	VL[V]	$I_L[A]$	P[W]	Q[Var]	S[W]
a	100.00	2.24	71.68	107.44	129.15
b	100.00	2.24	71.68	107.44	129.15
С	100.00	2.24	71.68	107.44	129.15
total	-	-	215.04	322.31	387.46

Tabela 11: simulção em estrela

7 Conclusão

Foi comprovado neste experimento as relações de tensão e de corrente para circuitos trifásicos equilibrados. Foi visto que a corrente no neutro é praticamente 0[A] devido a soma fasorial das correntes.

Por ser um circuito equilibrado as medições eram para ser as mesmas, porém, além de que é impossível ter uma precisão exata na confecção dos dispositivos existe o erro do aparelho para realizar a medição e a impedância varia com a temperatura do dispositivo.

A simulação apresentou dados ideais e que as medidas eram simétricas, isso acontece pois o software utiliza as equações teóricas e aproximações para determinar os valores. É importante simular um circuito pois além de confrontar os cálculos analíticos, da uma noção maior do que esperado no circuito.

Referencias

ALEXANDER, C.K.; SADIKU, M.N. Fundamentos de Circuitos Elétricos. 5ª ed. Porto

Alegre: Mc Graw-Hill, 2015

Multisim https://www.multisim.com/ - simulação