

KONKURS CHEMICZNY DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH WOJEWÓDZTWA MAZOWIECKIEGO

ETAP SZKOLNY

9 października 2023 r. godz. 9:00

Uczennico/Uczniu:

- 1. Arkusz składa się z 18 zadań, na rozwiązanie których masz 90 minut.
- 2. Pisz długopisem/piórem dozwolony czarny lub niebieski kolor tuszu.
- 3. Nie używaj ołówka ani korektora. Jeżeli się pomylisz, przekreśl błąd i napisz inną odpowiedź.
- 4. Pisz czytelnie i zamieszczaj odpowiedzi w miejscu do tego przeznaczonym.
- 5. W rozwiązaniach zadań otwartych przedstawiaj swój tok rozumowania za napisanie samej odpowiedzi nie otrzymasz maksymalnej liczby punktów.
- 6. Pamietaj, że zapisy w brudnopisie nie podlegają ocenie.

Życzymy powodzenia!

Maksymalna liczba punktów	40	100%
Uzyskana liczba punktów		%
Podpis Przewodniczącej/-ego SKK		

Zadanie 1. (0-3)

Poniższe zdjęcie przedstawia uczennicę, ogrzewającą porcję łatwopalnej cieczy w probówce. Ta uczennica nie zastosowała się do zasad bezpieczeństwa i higieny pracy obowiązujących w laboratorium chemicznym, popełniając wiele błędów, które mogły doprowadzić do wystąpienia sytuacji zagrażających jej zdrowiu, a także bezpieczeństwu osób postronnych.

Wskaż i opisz <u>trzy</u> błędy uczennicy przedstawione na zdjęciu. <u>Wyjaśnij, dlaczego moga stanowić potencjalne zagrożenie</u> dla uczennicy i osób postronnych przebywających w laboratorium.

Błąd popełniony przez uczennicę	Wyjaśnienie potencjalnego zagrożenia
1	1
2	2
3	3

Zadanie 2.

c)

Na poniższym zdjęciu przedstawiono świetlówkę kompaktową, zwaną popularnie "żarówką energooszczędną". Lampy te zawierają niewielkie ilości rtęci. Obecnie są one wypierane z rynku przez żarówki typu LED.

Zdjęcie świetlówki kompaktowej E-27 13W 8000H HALF SPIRAL T2 marki *SpectrumLED*

Zadanie 2.1. (0-1) Zaznacz dokończenie zdania, wybierając właściwe informacje spośród A.-B. i 1.-3. Rtęć jest metalem, który w warunkach pokojowych 1. gazem (temperatura 21 °C) jest В. niemetalem, 2. cieczą **3.** ciałem stałym **Zadanie 2.2.** (0-3) Poniżej przedstawiona została etykieta znajdująca się na opakowaniu zawierającym rtęć. P260 Nie wdychać mgły/par/rozpylonej cieczy P273 Unikać uwolnienia do środowiska Rtęć P304+P340 W PRZYPADKU DOSTANIA SIĘ DO DRÓG ODDECHOWYCH: wyprowadzić Нg lub wynieść poszkodowanego na świeże powietrze i zapewnić mu warunki do swobodnego oddychania cz. d. a. P310 Natychmiast skontaktować się z OŚRODKIEM ZATRUĆ/lekarzem nr katalogowy: 98/342 nr serii: 3756-090 P405 Przechowywać pod zamknięciem Podaj, co oznaczają piktogramy zamieszczone na etykiecie. a) b)

Zadanie 2.3. (0-1)

Jedna żarówka energooszczędna zawiera około trzech miligramów rtęci. Za dawkę toksyczną tego pierwiastka uznaje się 2 miligramy rtęci na kilogram masy ciała zdrowego człowieka.

Oblicz liczbę stłuczonych żarówek energooszczędnych zawierających rtęć, jaka może spowodować zatrucie tym metalem dziecka ważącego 15 kilogramów. Załóż całkowite wchłonięcie rtęci pochodzącej z żarówek do organizmu.

Zadanie 3. (0-1)

Definicja jednostki masy atomowej zmieniała się w czasie. Współcześnie, 1 jednostkę masy atomowej (1 u) definiujemy jako $\frac{1}{12}$ masy atomu izotopu węgla $^{12}_{6}$ C. Pierwotnie, w roku 1803, John Dalton przyjął za podstawę jednostki masy atomowej masę jednego atomu wodoru. Jednak w 1818 roku inny słynny chemik, Jöns Jacob Berzelius, opracował własną skalę mas atomowych przyjmując masę atomu tlenu za 100 jednostek.

Atom siarki jest **32 razy cięższy** od atomu wodoru (H=1), więc w skali "wodorowej" (Dalton) waży **32·1 = 32 jednostki**

Atom siarki jest **2 razy cięższy** od atomu tlenu (O=100), więc w skali "tlenowej" (Berzelius) waży **2·100 = 200 jednostek**

Wyraź masę cząsteczkową tlenku siarki
(IV) ${\rm SO}_2$ w skali opracowanej przez Berzeliusa. Zaznacz poprawną odpowiedź.

A. 64 jednostek

B. 250 jednostek

C. 400 jednostek

D. 600 jednostek

Zadanie 4.

Poniżej przedstawiono rysunek będący schematem układu okresowego pierwiastków chemicznych. Na tym rysunku wyróżniono kilka pierwiastków chemicznych.

Zadanie 4.1. (0-1)

A. Ag

Zaznacz poprawne dokończenie zdania:

B. **Ag** oraz **I**

Pierwiastkiem, którego atom (w stanie podstawowym) posiada 5 powłok elektronowych jest:

Zadanie 4.2. (0-1)		

C. F oraz I

D. **N**

Zaznacz poprawne dokończenie zdania:

Niemetalem należącym do pierwszej grupy układu okresowego pierwiastków jest:

A. Ag B. H C. N D. Na

Zadanie 4.3. (0-1)

Zaznacz poprawne dokończenie zdania:

Pierwiastkiem, którego atom ma 4 elektrony walencyjne na powłoce M jest:

A. Na B. Pb C. Si D. S

Zadanie 4.4. (0-1)

Zaznacz poprawne dokończenie zdania:

Niemetalem tworzącym trwałe dwuujemne jony X²⁻ jest:

A. **Si** B. **S** C. **N** D. **F**

Zadanie 4.5. (0-1)

Zaznacz poprawne dokończenie zdania:

Pierwiastkiem posiadającym najbardziej zbliżone do fluoru właściwości chemiczne jest:

A. I B. Si C. N D. Na

Zadanie 5. (0-1)

Kofeina to substancja zawarta m.in. w kawie oraz herbacie. Cząsteczka kofeiny zbudowana jest z atomów węgla, wodoru, azotu i tlenu. Stosunki liczb atomów tych pierwiastków w jednej cząsteczce kofeiny wynoszą: C: N = 2:1, O: H = 1:5, N: O = 2:1. W każdej cząsteczce kofeiny występują 4 atomy azotu.

Zaznacz prawidłowy wzór cząsteczkowy kofeiny.

A. $C_4H_5N_2O$ B. $C_2H_{10}N_4O_8$ C. $C_{10}H_5N_4O_2$ D. $C_8H_{10}N_4O_2$

Zadanie 6. (0-1)

Zaznacz poprawne dokończenie zdania:

Tlenek węgla(IV) jest klasyfikowany jako związek chemiczny, ponieważ:

A. jest zbudowany z cząsteczek.

B. jego cząsteczka złożona jest z trzech atomów.

C. jego cząsteczka złożona jest z atomów dwóch różnych pierwiastków chemicznych.

D. jest gazem w warunkach normalnych.

Zadanie 7. (0-1)

Fluorek litu to związek jonowy o wzorze LiF.

Wskaż schemat, który poprawnie przedstawia budowę elektronową drobin tworzących ten związek. Zaznacz poprawną odpowiedź.

– jądro atomowe

• ,**★** – elektrony

Zadanie 8. (0-1)

Siarczek żelaza(II) reaguje z tlenem. Produktami tej reakcji są tlenek siarki(IV) i tlenek żelaza(III).

Wskaż poprawnie zapisane i zbilansowane równanie tej reakcji. Zaznacz poprawną odpowiedź.

A. $4\text{FeS}_2 + 19\text{O}_2 \rightarrow 2\text{Fe}_2\text{O}_3 + 8\text{SO}_4$ B. $2\text{FeS} + 5\text{O}_2 \rightarrow 2\text{FeO}_3 + 2\text{SO}_3$

C. $4\text{FeS} + 7\text{O}_2 \longrightarrow 2\text{Fe}_2\text{O}_3 + 4\text{SO}_2$ D. $2\text{FeS} + 5\text{O}_2 \longrightarrow \text{Fe}_2\text{O}_3 + 2\text{SO}_2$

Zadaı	nie 9. (0-2)				
	•	. •	`	D.) dotyczące budowy jąder atomowy	
_				zi (1.–4.) ułożone w losowej kolejnoś	ści.
Oopas	suj wszystkie odpowiedzi (s	pośród	1.–4.)	do odpowiednich pytań (A–D.).	
	Pytanie			Odpowiedź	
A.	Co to są nuklidy?		1.	Izotopy promieniotwórcze.	
В.	Co to są radioizotopy?		2.	Zaburzona równowaga między liczbą neutronów i protonów w jądrze.	
C.	Co to znaczy, że pierwiaste jest promieniotwórczy?	ek	3.	Atomy charakteryzujące się daną wartością liczby atomowej oraz masowe	ej.
D.	Co powoduje niestabilność jąder atomowych?		4.	Niektóre izotopy tego pierwiastka są niestabilne.	
	A: B:			C: D:	
Zada ı	nie 10. (0-2)				
J zup e	ełnij poniższy tekst. Wył	oierz i	podkr	reśl jedną odpowiedź spośród podany	ch
v każ	dym nawiasie, aby każde z	danie za	awiera	ło prawdziwą informację.	
Miesz	aniny substancji chemicznycl	n można	rozdzie	elić metodami fizycznymi, wykorzystujący	/mi
óżnic	eę we właściwościach skład	dników	miesza	aniny. Metodą, która wykorzystuje różn	ice
v te	mperaturze wrzenia subst	ancji t	worząc	cych ciekłą mieszaninę jednorodną j	est
des	tylacja • sublimacja • eks	strakcja). Jeśl	li dwie ciecze nie mieszają się ze sobą, jak	na
rzykł	ad woda z olejem, można je	rozdzieli	ć korzy	ystając z (rozdzielacza • sączka • sita	ı).
Iiesz	aninę piasku z opiłkami żela	za najła	twiej r	ozdzielić korzystając z (sita • magnesu	u •
∍dyn	nentatora) . Z kolei mieszan	inę piasl	ku z cu	ıkrem można rozdzielić wykorzystując różn	nicę
				uszczalności w wodzie) piasku i cukru.	
	•		•		
Zadaı	nie 11. (0-2)				
Carat	jest jednostką niewystępują	cą w uk	kładzie	SI, stosowaną do określania masy kamie	eni
zlach	etnych. 1 karat (1 ct) to 0,2	g. Gęstos	ść dian	nentu wynosi $3,51 \frac{g}{cm^3}$.	
Oblica	z objętość trzykaratowego	diament	u. Wy	nik podaj w cm³, z dokładnością do dwó	sch
niejso	c po przecinku.				
Oblid	czenia:				

☐ Informacja do zadań 14. – 17.

Zadanie 14. (0-2)

Uczennica przeprowadziła doświadczenie, którego celem było wyznaczenie wzoru empirycznego siarczku miedzi powstającego w reakcji miedzi z siarką. Poniżej przedstawiono schemat doświadczenia oraz zanotowane przez uczennicę obserwacje.

W opisanym doświadczenia	u, oprócz prze	biegającej reakc	ji chemicznej,	zachodziło	wiele
zjawisk fizycznych. Wymie ń	dwa z nich. P	amiętaj o zastos	owaniu popra	wnego słown	ictwa
naukowego.					
1					
	•••••••••	•••••	•••••	•••••••	••••••
1					

Zadanie 15. (0-1)												
W stanie gazowym	siarka wy	stępuje v	v formie	dwuatom	owych cz	ząsteczek	S_2 , o analog	icznej				
budowie do cząstec	zek tlenu (O ₂ . Nary	ysuj <u>wz</u> ć	<u>ór struktu</u>	<u>ıralny</u> cz	ąsteczki s	siarki S ₂ .					
Wzór:												
	W ZOI.											
Zadanie 16.1. (0-2)		. ,	• 147		,	1 " 4	•					
Oblicz masę siarki	oraz mas	sę miedz	ı, ktore	przereag	owały w	reakcji tv	vorzenia op	ısanego				
siarczku miedzi.												
Obliczenia:												
Masa mied	zi, która j	przereag	<u>gowała</u>	Masa siarki, która <u>przereagowała</u>								
Zadanie 16.2. (0-1))											
Oblicz masową za	wartość p	orocento	wą siar	ki w otrz	ymanym	w doświ	adczeniu si	arczku				
miedzi.												
Obliczenia:												
Obliczenia.												
Zadanie 16.3. (0-2)												
Wyznacz wzór er	npiryczny	y (najpr	ostszy)	siarczku	miedzi	otrzyma	nego w op	isanym				
doświadczeniu.												
Obliczenia:												

Oce	danie 17. (0-1) eń, czy podane poniżej informacje są praw wdziwa, albo F – jeśli jest fałszywa.	vdziwe. Zaznacz P, jeśli infori	nacja	jest							
1.	Reakcja miedzi z siarką jest procesem endotermicznym.										
2.	Reakcja miedzi z siarką jest reakcją syntezy.										
Na bud	danie 18. (0-3) podstawie położenia selenu w układzie okre lowę oraz właściwości fizykochemiczne atomu upełnij poniższą metryczkę.		ych o	kreśl							
	Symbol pierwias Nazwa pierwias Informacje na temat atomu selenu: Liczba protonów w jądrze atomowym: Liczba elektronów krążących wokół jądra atomowego: Liczba elektronów walencyjnych: Pełna konfiguracja elektronowa: Maksymalna wartościowość przyjmowana w związku z tlenem: Symbol helowca, do którego konfiguracji										
	elektronowej dąży atom selenu:	5. 40		~							
4	- Summer	min of									

Brudnopis

(nie podlega ocenie)

	1	1			•	T1 1 1	01		D.	• .1							ı	18	I
1	₁ H wodór 1,0				(Jkład	Okre	sowy	Pierw	/1astk	ów C	hemic	znycl	1				² He hel 4,0	1
	2,2	2	13 14 15 16 17 LL symbol chemiczny D C N O F																
2	3 Li lit 7,0 1,0	4Be beryl 9,0 1,5			liczba at		Wo	0	pierwias		owa, u		5B bor 10,8 2,0	6C wegiel 12,0 2,6	7N azot 14,0 3,0	8O tlen 16,0 3,4	9F fluor 19,0 4,0	neon 20,2	2
3	11Na sód 23,0 0.9	12Mg magnez 24,3 1,3	3	4	5	6	7	 8	9	10	11	12	13Al glin 27,0 1,6	14 Si krzem 28,1 1,9	15P fosfor 31,0 2,2	16S siarka 32,1 2,6	17Cl chlor 35,5 3,2	18Ar argon 40,0	3
4	19 K potas 39,1 0,8	20Ca wapń 40,1 1,0	21Sc skand 45,0 1,4	22 Ti tytan 47,9 1,5	23 V wanad 51,0 1,6	24 Cr chrom 52,0 1,7	25 Mn mangan 54,9 1,6	26Fe żelazo 55,9 1,8	27C0 kobalt 58,9 1,9	28 Ni nikiel 58,7 1,9	29Cu miedź 63,6 1,9	30Zn cynk 65,4 1,7	31Ga gal 69,7 1,8	32Ge german 72,6 2,0	33 As arsen 74,9 2,0	34 Se selen 79,0 2,6	35Br brom 79,9 3,0	36Kr krypton 83,8	4
5	37 Rb rubid 85,5 0,8	38 S r stront 87,6 1,0	39 Y itr 88,9 1,2	40Zr cyrkon 91,2 1,3	41Nb niob 92,9 1,6	42 Mo molibden 96,0 2,2	43Tc technet 97,9 2,1	44Ru ruten 101,1 2,2	45Rh rod 102,9 2,3	46Pd pallad 106,4 2,2	47Ag srebro 107,9 1,9	48Cd kadm 112,4 1,7	49 In ind 114,8 1,8	50Sn cyna 118,7 2,0	51Sb antymon 121,8 2,1	52Te tellur 127,6 2,1	53 I jod 126,9 2,7	54Xe ksenon 131,3	5
6	55 C S cez 132,9 0,8	56Ba bar 137,3 0,9	†	72Hf hafn 178,5 1,3	73Ta tantal 181,0 1,5	74 W wolfram 183,8 1,7	75Re ren 186,2 1,9	76Os osm 190,2 2,2	77 Ir iryd 192,2 2,2	78Pt platyna 195,1 2,2	79Au złoto 197,0 2,4	80Hg rtęć 200,6 1,9	81Tl tal 204,4 1,8	82Pb ołów 207,2 1,8	83Bi bizmut 209,0 1,9	84Po polon 209,0 2,0	85At astat 210,0 2,2	86Rn radon 222,0	6
7	87 Fr frans 233,0 0,7	88Ra rad 226,0 0,9	*	104Rf rutherford 267,1	105Db dubn 268,1	106 S g seaborg 271,1	107 Bh bohr 272,14	108Hs has 270,1	109Mt meitner 276,2	110Ds darmsztadt (281)	111Rg rentgen (282)	112Cn kopernik (285)	113Nh nihon (286)	114 F 1 flerow (289)	115Mc moskow (290)	116LV liwermor (293)	117 Ts tenes (294)	118Og oganeson (294)	7
			_		5	37.1		a	-	G 1			**		-	¥ 71	•	Ī	
	† Lanta	nowce	57La lantan 138,9	58Ce cer 140,1	59Pr prazeodym 140,9	60Nd neodym 144,2	61Pm promet 144,9	62 Sm samar 150,4	63 Eu europ 152,0	64Gd gadolin 157,3	65 Tb terb 158,9	66Dy dysproz 162,5	67Ho holm 164,9	68 Er erb 167,3	69Tm tul 168,9	70 Yb iterb 173,0	71 Lu lutet 175,0		
	‡ Akty	nowce	89Ac aktyn 227,0	90Th tor 232,0	91Pa protaktyn 231,0	92 U uran 238,0	93Np neptun 237,1	94Pu pluton 244,1	95 Am ameryk 243,1	96 Cm kiur 247,1	97 Bk berkel 247,1	98Cf kaliforn 251,1	99 Es einstein 252,1	100Fm ferm 257,1	101Md mendelew 258,1	102No nobel 259,1	103 Lr lorens 262,1		