Algebraic Geometry 1 Week 2 Exercise Sheet Solutions

So Murata

2024/2025 Winter Semester - Uni Bonn

Exercise 8

Let (X, \mathcal{T}) be a topological space and $\mathcal{F} \in Sh_{\mathscr{A}}(X)$ be a sheaf. We define

$$|\mathscr{F}| = \coprod_{x \in X} \mathscr{F}_x.$$

We first prove that $\mathscr{B} = \{\overline{s}(U) \mid U \in \mathscr{T}, \overline{s} : X \to |\mathscr{F}|\}$ defines a basis of the desired strongest topology on $|\mathscr{F}|$. In order to do so, we need $\overline{s}^{-1} \circ \overline{s}(U) = U$ and \mathscr{B} is indeed a basis of a topological space. $\overline{s}^{-1} \circ \overline{s}(U) \supseteq U$ is obvious. Therefore, we will prove the other direction of inclusion.

If $\overline{s}(x) = \overline{s}(y)$, then for any open set which contains x also contains y. In particular, $y \in U$. Thus we have the equality $\overline{s}^{-1} \circ \overline{s}(U) = U$. And for any $s_x \in \overline{s}(U) \cap \overline{s}(V)$, then $s_x \in \overline{s}(U \cap V)$. Therefore \mathscr{B} is a basis. We denote such topology as \mathscr{T}_M .

We now show that there is an isomorphism between the sheaf of continuous functions $f:U\to |\mathscr{F}|$ and \mathscr{F}^+ .

First for any $s \in \mathscr{F}(U)$, $x \mapsto s_x$ defines a continuous map on the topology \mathscr{T}_M . Let $V \in \mathscr{T}_M$ then V is of the form,

$$V = \bigcup_{\lambda \in \Lambda} \overline{s}_{\lambda}(U_{\lambda}),$$

where \overline{s}_{λ} is a map induced by $s \in \mathscr{F}(U_{\lambda})$. Thus it is enough to check for some map $\overline{t}: V \to |\mathscr{F}|$, $\overline{s}^{-1}(\overline{t}(V))$ is open.

Indeed let $W=\{x\mid x,y\in U\cap V,s_x=t_y\}$, then this is an open map. This follows that take W_x to be an open set such that $x\in W_x,s|_{W_x}=t|_{W_x}$. This is justified by the construction of stalks and germs in abelian groups. Then

$$W = \bigcup_{x \in W} W_x.$$

And this W is exactly equal to $\overline{s}^{-1}(t(U))$.

On the other hand, we prove that for any continuous section $f: U \to |\mathscr{F}|$, there is $s \in \mathscr{F}(U)$ such that $f(x) = s_x$. Take (t, V) to be such that $t \in \mathscr{F}(V)$, $x \in V, t_x = f(x)$. Then $V_x = f^{-1}(t(V))$ is an open set. This means for any $y \in V_x$, $f(y) = t_y, y \in V$. Since $(V_x)_{x \in U}$ is an open covering and every pair of terms $((t_y)_{y \in U_x})_{x \in U}$ coincide on the intersection of its domains, we can glue this to some $(s_x)_{x \in U}$.

For each
$$(s_x)_{x\in U}$$
, $(t_x)_{x\in U}\in \mathscr{F}^+(U)$,
$$\overline{s+t}(x)=(s+t)_x=s_x+t_x,$$

since restriction maps are group homomorphisms. This shows that $\mathscr{F}^+(U) \ni s \mapsto \overline{s}$ is a group homomorphism which has an inverse. Thus we have proven the statement.