```
In [2]: from bs4 import BeautifulSoup as bs
   import pandas as pd
   import requests
   import selenium
   import time
```

```
In [3]: #importing web driver , keys and by
        from selenium import webdriver
        from selenium.webdriver.common.keys import Keys
        from selenium.webdriver.common.by import By
        #actual address
        root address = "https://coinmarketcap.com/"
        driver = webdriver.Chrome()
        #for next page
        pages = []
        for page_number in range(1,3):
            pages.append(root_address + '?page=' + str(page_number))
        #for storing data
        name_list = []
        price_list = []
        marketcap_list = []
        volume24h_list = []
        _1h_list = []
        _24h_list = []
        _7d_list = []
        #highlight button
        for address in pages:
            driver.get(address)
            time.sleep(1)
            if address == 'https://coinmarketcap.com/?page=1':
                button = driver.find element(By.XPATH, "//label[@id='1'][@class='yuf3hb-1
                button.click()
            #scrolling through the page
              link = driver.current url
            element = driver.find_element(By.TAG_NAME , 'body')
            element.send keys(Keys.PAGE DOWN)
            if page number < 3:</pre>
                t=0
                while t <= 18 :
                     element.send keys(Keys.PAGE DOWN)
                    time.sleep(2)
                    t += 1
              page = requests.get(link)
            #names
            for i in range(1,101):
                path="//*[@id='__next']/div/div[1]/div[2]/div/div[1]/div[5]/table/tbody/t
                path=path+f"[{i}]/td[3]/div/a/div/div/p"
                name = driver.find_element(By.XPATH , path).text
                name_list.append(name)
            #price
            for i in range(1,101):
                path="//*[@id='__next']/div/div[1]/div[2]/div/div[1]/div[5]/table/tbody/t
                path=path+f"[{i}]/td[4]/div/a/span"
                price = driver.find_element(By.XPATH , path).text
```

```
price_list.append(price)
#1h%
for i in range(1,101):
    path="//*[@id=' next']/div/div[1]/div[2]/div/div[1]/div[5]/table/tbody/t
    path=path+f"[{i}]/td[5]/span"
    _1h = driver.find_element(By.XPATH , path).text
    _1h_list.append(_1h)
#24%
for i in range(1,101):
    path="//*[@id='__next']/div/div[1]/div[2]/div/div[1]/div[5]/table/tbody/t
    path=path+f"[{i}]/td[6]/span"
    _24h = driver.find_element(By.XPATH , path).text
    _24h_list.append(_24h)
#7d
for i in range(1,101):
    path="//*[@id='__next']/div/div[1]/div[2]/div/div[1]/div[5]/table/tbody/t
    path=path+f"[{i}]/td[7]/span"
    _7d = driver.find_element(By.XPATH , path).text
    _7d_list.append(_7d)
#marketcap
for i in range(1,101):
    path="//*[@id='__next']/div/div[1]/div[2]/div/div[1]/div[5]/table/tbody/t
    path=path+f"[{i}]/td[8]/p/span[2]"
    marketcap = driver.find element(By.XPATH , path).text
    marketcap list.append(marketcap)
#volume(24h)
for i in range(1,101):
    path="//*[@id='__next']/div/div[1]/div[2]/div/div[1]/div[5]/table/tbody/t
    path=path+f"[{i}]/td[9]/div/a/p"
    volume24h = driver.find element(By.XPATH , path).text
    volume24h list.append(volume24h)
#tabular form
df=pd.DataFrame()
df['Name'] = name_list
df['Price'] = price list
df['1h %'] = _1h_list
df['24h %'] = _24h_list
df['7d %'] = 7d list
df['Market Cap'] = marketcap_list
df['Volume(24h)'] = volume24h_list
print(df)
```

In [4]: df

Out[4]:

	Name	Price	1h %	24h %	7d %	Market Cap	Volume(24h)
0	Bitcoin	\$19,216.77	0.07%	1.61%	0.35%	\$368,641,950,043	\$28,858,716,266
1	Ethereum	\$1,300.07	0.01%	1.65%	0.14%	\$159,094,634,229	\$9,927,523,673
2	Tether	\$1.00	0.00%	0.01%	0.02%	\$68,465,144,584	\$38,291,269,595
3	USD Coin	\$1	0.00%	0.00%	0.01%	\$44,547,450,805	\$2,840,240,577
4	BNB	\$271.79	0.08%	0.21%	0.34%	\$43,692,182,566	\$558,635,078
195	Nano	\$0.7278	0.18%	2.03%	5.50%	\$97,234,379	\$1,517,033
196	Velas	\$0.04156	0.95%	1.87%	8.03%	\$97,000,824	\$1,083,422
197	ConstitutionDAO	\$0.01873	0.53%	4.34%	14.61%	\$94,730,567	\$24,985,239
198	Status	\$0.02725	0.02%	3.59%	2.58%	\$94,444,585	\$6,907,903
199	Phala Network	\$0.2325	0.26%	8.76%	188.98%	\$94,358,727	\$208,544,042

200 rows × 7 columns

In [10]: print(len(name_list),len(price_list),len(marketcap_list),len(volume24h_list),len(
200 200 200 200 200 200

In []: