

AGENDA

- Linear Regression
- Terminology & Assumptions
- Polynomial Regression
- Outliers
- Balancing Bias And Variance
- Data Transformation
- Splitting Data
- Performance Metrics

01

Linear Regression

Hierarchy - Reminder

Machine Learning Branches - Reminder

Machine Learning Algorithms

Regression: for What?

Used when predicting a continuous dependent variable from number of independent variables.

Insights on consumer behavior

Understanding business

Evaluating market trends

Examples from Finance Sector:

- Income Prediction
- Customized Interest Rate
- Customized Insurance Pricing

Regression Methods

Model Representation

Univariate Linear Regression: Model Representation

Linear Regression

Linear Regression is a model that allows to estimate the value of a **quantitative** (numerical) variable as a linear function of the input variables or predictors.

$$\hat{y} = \beta_0 + \beta_1 x$$

where

 \hat{y} : model estimate for the variable y

x: the input variable or predictor

 β_0 : the model estimate when x = 0

 β_1 : variable weight (slope)

Multivariate Linear Regression: Model Representation

Linear Regression

Linear Regression is a model that allows to estimate the value of a **quantitative** (numerical) variable as a linear function of the input variables or predictors.

$$\hat{y} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \dots$$

where

 \hat{y} : model estimate for the variable y

 x_i : the input variables or predictors

 β_0 : the model estimate when x = 0

 β_i : variable weights

Objective of Model

Objective Function; Define anything that we are optimizing.

- Cost for a company
- Total profit

That function is optimal at a specific points X1, X2 etc.

What we do:

• Finding X1, X2 for which $h\theta(x)$ is **minimum** or **maximum**.

Objective of Model

Linear Regression

- Intercept(β_0)
- Slope(β_x)

$$\hat{y} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \dots$$

Two main methods in finding regression parameters:

1) OLS(Ordinary Least Square)

- Non iterative
- Analytical solution (mathematical operations)

2) Gradient Descent

- Iterative
- Optimization method

Objective of Model

Linear Regression

Maximizing the similarity means **minimizing** difference.

Our goal is to develop the model that minimize the distance between actual and predicted output.

$$SS_{residual}: \sum_{i=1}^{n} (\hat{y}_i - y_i)^2$$

 r_i : residuals

Regression Model (Residuals & Error)

Linear Regression

Regression Model Optimization

Linear Regression(OLS)

The method of least squares chooses the values for β_0 , and β_1 to minimize the sum of squared errors:

$$SS_{residual} = \sum_{i=1}^{m} (\hat{y}_i - y_i)^2 = \sum_{i=1}^{m} (\beta_0 + \beta_1 x_i) - y_i)^2$$

Using calculus, we obtain estimating formulas for β_0 , and β_1 :

$$\beta_1 = \frac{\sum_{i=1}^{m} (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^{m} (x_i - \overline{x}_i)^2}$$
 Covariance Variance

$$\beta_0 = \overline{y} - \beta_1 \overline{x}$$

Regression Model Optimization

Linear Regression - Whaf if we use *Gradient Descent*?

Cost Function:

$$J(\beta_0, \beta_1) = \frac{1}{2m} \sum_{i=1}^{m} (\widehat{y}_i - y_i)^2 = \frac{1}{2m} \sum_{i=1}^{m} (\beta_0 + \beta_1 x_i - y_i)^2$$

regardless

 r_i : residuals

02

Terminology & Assumptions

Correlation

Covariance

Terminology Covariance

BIST 100

The metric evaluates how much the variables change together.

- Positive covariance: Tend to move in the same direction.
- Negative covariance: Tend to move in inverse directions.
- Covariance (-Inf, + Inf)

Cov(X, Y) = 9280

$$Cov(X,Y) = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{n-1}$$
 $Cov(X,Y) = -56$

Pearson Correlation

How *linearly* 2 numerical variables behave

It shows the **direction of movement** of the variables and the **strength** of the relationship.

Pearson Correlation [-1 to 1]

$$Corr(X,Y) = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2 \sum_{i=1}^{n} (y_i - \bar{y})^2}}$$

It does not give cause-effect relationship!

Covariance - Correlation

$$Cov(X,Y) = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{n-1}$$

$$Cov1 = X:TL, Y:USD$$

$$Cov2 = X:TL, Y:kg$$

Can not be comparable!

$$Corr(X,Y) = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2 \sum_{i=1}^{n} (y_i - \bar{y})^2}}$$

Independent from units.

Correlation is just normalized covariance.

Can be comparable!

Spearman's Rank Correlation

Spearman's correlation coefficient is a statistical measure of the **strength of a monotonic relationship** between paired data ([-1 to 1]).

No Normality assumption anymore!

Example:

X=[10, 20, 30, 40, 1000] $\rightarrow [1.0, 2.0, 3.0, 4.0, 5.0]$ Y=[-70, -1000, -50, -10, -20] $\rightarrow [2.0, 1.0, 3.0, 5.0, 4.0]$

t prior written consen

Potential Problems with the Model

Linear Regression is a *simple regression* model which offers certain **advantages**:

- Results interpretability
- Ease of use
- Low computational cost

Limitations of Linear Regression:

Simplistic in some cases

Not great data that has not a linear relationship between Y and X.

Sensitivity to outliers

Observation that is away from the major cluster of points have a squared impact.

Prone to poor performance

Due to the various assumption, hard to capture structure of data.

Hard to tune in complex models

Too complex with many parameters and less data.

Assumptions of Linear Regression – Y and X

Assumption: Linear Relationship

There is a linear relationship between the independent variable X, and the independent variable y.

How to determine if this assumption is met:

Linear relationship

Apply a nonlinear transformation to the independent and/or dependent variable.

Relationship, but not linear

Assumptions - Linear functional form

- There should be a linear and additive relationship between dependent (response)
 variable and independent (predictor) variable(s).
- A linear relationship suggests that a change in response Y due to one unit change in X is constant, regardless of the value of X.
- An additive relationship suggests that the effect of X on Y is independent of other variables.

Ambient_Temp	-0.948128
Exhaust_Volume	-0.869780
Ambient Pressure	0.518429
Relative Humidity	0.389794
Power Output	1.000000
Name: Power Output,	dtype: float64

Assumptions - Residuals

The residuals are asumed to

- be approximately normally distributed (with a mean of zero)
- have a constant variance (homoscedasticity)
- be independent of one another (no autocorrelation)

Assumptions - Residuals

The residuals are asumed to

- be approximately normally distributed (with a mean of zero)
- have a constant variance (homoscedasticity)
- be independent of one another (no autocorrelation)

Copyright 2014. Laerd Statistics.

Assumptions of Linear Regression - Residuals

Assumption : Equal Variances (Homoscedasticity)

Residuals have constant variance at every level of **X** known as homoscedasticity. When this is not the case, it is called as heteroscedasticity.

Example:

Family Income (X)

Luxury Spending (Y)

Low Family Income; Error variation is low.

High Family Income; Error variation is high

Assumptions - Residuals

The residuals are asumed to

- be approximately normally distributed (with a mean of zero)
- have a constant variance (homoscedasticity)
- be independent of one another (no autocorrelation)

03

Polynomial Regression

Polynomial Regression: Model Representation

The behavior of the hypothesis function can be changed to represent our data better. We can create additional features based on x:

Quadratic Function:
$$\hat{y} = \theta_0 + \theta_1 x_1 + \theta_2 x_1^2$$

Cubic Function:
$$\hat{y} = \theta_0 + \theta_1 x_1 + \theta_2 x_1^2 + \theta_3 x_1^3$$

Square Root Function:
$$\hat{y} = \theta_0 + \theta_1 x_1 + \theta_2 \sqrt{x_1}$$

Polynomial Regression

Underfit High Bias Low Variance

Correct Fit Low Bias Low Variance

Overfit Low Bias High Variance

Polynomial Regression Optimization

Polynomial Regression & Logarithmic Data

04

Outliers

Data discrepancies

Strange values

We may find values in a dataset that just don't "fit«

It may be because they are outside acceptable or admissible values

Atypical values or **Outliers**

Outliers

Ozone reading across months

Ozone reading for days of week

Outliers

05

Balancing Bias And Variance

Bias vs. Variance

Bias: An error caused by the difference between the model prediction and the correct value.

➤ It is minimized by increasing the model coplexity.

Variance: An error caused by the sensitivity of the model to minor variations in the training data.

➤ It is minimized by decreasing the complexity of the model.

Regression Models

Bias vs. Variance

Bias: An error caused by the difference between the model prediction and the correct value.

Variance: An error caused by the sensitivity of the model to minor variations in the training data.

A problem inherent to the modeling process

All the models must balance the bias and the variance

The predictions made with the model have a combined error of:

Bias + Variance + Irreducible error

- A bias error occurs because the model is too simple.
- A variance error occurs because the model is too complex.
- Balanced model = minimizes the sum of bias and variance errors

06

Data Transformation

Normalization vs. Standardization

Standardization

$$z = \frac{x - \mu}{\sigma}$$

Mean

$$\mu = \frac{1}{N} \sum_{i=1}^{N} (x_i)$$

Standard Deviation

$$\sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2}$$

Min-Max Scaling

$$X_{norm} = \frac{X - X_{min}}{X_{max} - X_{min}}$$

Normalization

$$X_{norm} = \frac{X - X_{min}}{X_{max} - X_{min}}$$

Standardization

$$z = \frac{x - \mu}{\sigma}$$

Normalization or Standardization

Capping Data

Handle Missing Values

- 1. Deleting Rows with missing values
- 2.Impute missing values for continuous variable (Mean, Mode, Median)
- 3.Impute missing values for categorical variable (Mode or New)
- 4. Prediction of missing values

m						
IVI	ISS	In	gv	a	U	es
			0 .		-	

PassengerId	Survived	Pclass	Sex	Age	SibSp	Parch	ricket	Fare	Cabin	Embarked
1	0	3	male	22	1	0	A/5 21171	7.15		s
2	1	1	female	38	1	9	PC 17599	71.2033	C85	С
3	1	3	female	26	0	0	STON/02. 3101282	7.925		s
4	1	1	female	35	1	0	113803	53.1	C123	s
5	0	3	male	35	0	0	373450	8.05		s
6	0	3	male	-	0	0	330877	8.4583		Q

and should not be used and distributed without prior written conse

Handle Categorical Data

One Hot Encoding			Labe	I Encoding
Gender	Is_Male	Is_Female	Tree	Type
	\Rightarrow 0	1		
O	\Rightarrow 0	1	4 —	2
		0		
O	⇒ 0	1		2
B —		0		⇒ 3

Handle Categorical Data

Label & One Hot Encoding

Label Encoding

Food Name	Categorical #	Calories
Apple	1	95
Chicken	2	231
Broccoli	3	50

One Hot Encoding

Apple	Chicken	Broccoli	Calories
1	0	0	95
0	1	0	231
0	0	1	50

BRIDGE-TYPE	BRIDGE-TYPE
(TEXT)	(NUMERICAL)
Arch	0
Beam	1
Truss	2
Cantilever	3
Tied Arch	4
Suspension	5
Cable	6

Handle Categorical Data One Hot Encoding Example 1

BRIDGE-TYPE	BRIDGE-TYPE	BRIDGE-TYPE	BRIDGE-TYPE	BRIDGE-TYPE	BRIDGE-TYPE	BRIDGE-TYPE	BRIDGE-TYPE
(TEXT)	(Arch)	(Beam)	(Truss)	(Cantilever)	(Tied Arch)	(Suspension)	(Cable)
Arch	1	0	0	0	0	0	0
Beam	0	1	0	0	0	0	0
Truss	0	0	1	0	0	0	0
Cantilever	0	0	0	1	0	0	0
Tied Arch	0	0	0	0	1	0	0
Suspension	0	0	0	0	0	1	0
Cable	0	0	0	0	0	0	1

Handle Categorical Data

One Hot Encoding Example 2

SAFETY-LEVEL	SAFETY-LEVEL
(TEXT)	(NUMERICAL)
None	0
Low	1
Medium	2
High	3
Very-High	4

SAFETY-LEVEL	SAFETY-LEVEL	SAFETY-LEVEL	SAFETY-LEVEL	SAFETY-LEVEL	SAFETY-LEVEL
(TEXT)	(None)	(Low)	(Medium)	(High)	(Very High)
None	1	0	0	0	0
Low	0	1	0	0	0
Medium	0	0	1	0	0
High	0	0	0	1	0
Very-High	0	0	0	0	1

07

Splitting Data: Train & Test

Split Data (Train & Test) – K-Fold

08

Performance Metrics

R² And Adjusted R²Calculation

R² And Adjusted R²Calculation

The Formula for R-Squared Is

$$R^2 = 1 - \frac{\text{Explained Variation}}{\text{Total Variation}}$$

$$R^{2} = 1 - \frac{SS_{RES}}{SS_{TOT}} = 1 - \frac{\sum_{i} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i} (y_{i} - \overline{y})^{2}}$$

Adjusted
$$R^2$$
: $R^2 - (1 - R^2) \frac{p}{n - p - 1}$

Regression Models Metrics

Mean squared error	$\text{MSE} = \frac{1}{n} \sum_{t=1}^n e_t^2$
Root mean squared error	$\text{RMSE} = \sqrt{\frac{1}{n} \sum_{t=1}^{n} e_t^2}$
Mean absolute error	$\mathrm{MAE} = \frac{1}{n} \sum_{t=1}^n e_t $
Mean absolute percentage error	$ ext{MAPE} = rac{100\%}{n} \sum_{t=1}^n \left rac{e_t}{y_t} ight $

Örnekler

https://www.kaggle.com/mihirhalai/sydney-house-prices

https://www.kaggle.com/hellbuoy/car-price-prediction

Teşekkürler

09

Relationship Between Variables

Chi Square

How homogeneous the relationship is between 2 categorical variables

To determine if there is a significant difference between the expected and observed requencies in one or more categorical variables.

$$x^{2} = \sum \frac{(Obs\ Freq\ - Exp\ Freq)^{2}}{Exp\ Freq}$$

We establish a **critical probability** (alpha=0.05) and **we compare the probability associated with our chi^2 in the Chi Square distribution**, for (n - 1)*(m - 1) degrees of freedom.

- if P(alpha) >= P(chi), there is no significant difference
- if P(alpha) < P(chi), there is a significant difference

Age Group/Sex	F	M	Total
Young	2	3	5
Adult	2	1	3
Old	3	0	3
Total	7	4	11

Age Group/Sex	F	M	Total
Young	3,18	1,81	5
Adult	1,90	1,09	3
Old	1,90	1,09	3
Total	7	4	11

Compare distribution of data with known values

- Are there 2 datasets with common distributions?
- Do the distributions of 2 sets have the same form?
- Do they behave the same at extreme values?
- Is their distribution normal (or like another distribution type)?

Comparisons are done with quantile to quantile

Correlation Map

Relationship between numerical values at a glance

3 or more numerical variables

"Drawing a square matrix with as many rows as numerical values, representing the correlation of each pair with a color scale from -1 to 1"

Distributions and dispersions

Teşekkürler

