Az Rⁿ vektortér

- 1. Legyen $\underline{a} = (2, -1, 4)$, $\underline{b} = (0, 5, -2)$, $\underline{c} = (1, 6, -4)$. Számítsa ki az alábbi vektorokat! $\underline{a} + \underline{b}$, $\underline{a} \underline{b}$, $3\underline{a}$, $-2\underline{c}$, $\underline{a} + 3\underline{b} + (-2)\underline{c}$
- 2. Legyen $\underline{a} = \begin{pmatrix} -1 \\ 4 \end{pmatrix}$, $\underline{b} = \begin{pmatrix} 0 \\ 5 \end{pmatrix}$.

Számítsa ki az <u>a</u> és a <u>b</u> vektorok 5 és -2 skalárokkal vett lineáris kombinációját!

- 3. a, Fejezze ki a $3\underline{x} + 2\underline{a} = 4\underline{b}$ vektoregyenletből az \underline{x} vektort! b, Fejezze ki a $2\underline{x} + 5\underline{a} = 4\underline{b} - \underline{a} + 4\underline{x}$ vektoregyenletből az \underline{x} vektort!
- 4. Legyen $\underline{a} = (-1, 5)$, $\underline{b} = (1, 1)$. Határozza meg azt az \underline{x} vektort, amelyre $2\underline{x} \underline{a} = 5\underline{b}$.
- 5. Mennyi az a_1 , a_2 , a_3 , vektorkomponensek értéke, ha $2(a_1, a_2, a_3) + 3(2, 5, -1) = (8, 15, -11)$?
- 6. Legyen $\underline{a} = (2, -3)$, $\underline{b} = (0, 5)$. Előállítható-e az \underline{a} és \underline{b} vektorok lineáris kombinációjával a $\underline{c} = (-2, 23)$ vektor?
- 7. Legyen $\underline{a} = (1, -2)$, $\underline{b} = (-2, 4)$. Előállítható-e az \underline{a} és \underline{b} vektorok lineáris kombinációjával a $\underline{c} = (1, 0)$ vektor?
- 8. Legyen $\underline{a} = (5, 4, -2, 3), \underline{b} = (2, 0, -1, 5), \underline{c} = (3, 0, 4, -6).$
 - a, Végezze el az alábbi műveleteket! a+b -2c -a+3b+c

$$\underline{a} + \underline{b}, \quad -2\underline{c}, \quad -\underline{a} + 3\underline{b} + \underline{c}$$

- b, Adja meg azt a vektort, amely az <u>a</u>, <u>b</u> és <u>c</u> vektorok 3, -1, 4 skalárokkal vett lineáris kombinációja!
- c, Előállítható-e az \underline{a} , \underline{b} és \underline{c} vektorok lineáris kombinációjával az $\underline{x} = (6, 4, 0, 19)$ vektor?
- 9. Legyen $\underline{a} = (-1, 2, 0), \underline{b} = (3, 5, 2), \underline{c} = (-2, 1, 4).$
 - a, Állítsa elő a $2\underline{a}$ -3 \underline{b} - \underline{c} lineáris kombinációt!
 - b, Legyen $H = \{\underline{a}, \underline{b}, \underline{c}\}$. Hogyan állítható elő a H vektorhalmaz elemeiből az R^3 vektortér nullvektora? Lineárisan független, vagy lineárisan összefüggő a H vektorhalmaz?
 - c, Legyen $\underline{x} = (1, 9, 2)$, $\underline{y} = (0, -3, 4)$. Előállítható-e az \underline{a} és \underline{b} vektorok lineáris kombinációjával az \underline{x} illetve az \underline{y} vektor? Geometriailag is értékelje az eredményt!
- 10. Legyen $\underline{a}_1 = (1, 3, 2)$, $\underline{a}_2 = (2, 1, 5)$, $\underline{a}_3 = (3, 4, 2)$. Bázist alkotnak-e az R^3 térben az \underline{a}_1 , \underline{a}_2 és \underline{a}_3 vektorok? Ha igen, akkor határozza meg a $\underline{v} = (14, 17, 18)$ vektor rájuk vonatkozó koordinátáit!

1

- 11. Legyen $\underline{a} = (5, 2, 4)$, $\underline{b} = (-1, 0, 3)$, $\underline{c} = (6, -4, 5)$, $\underline{d} = (3, 2, 10)$.
 - a, Hogyan állítható elő az a, b és c vektorokból az R^3 vektortér nullvektora?
 - b, Hogyan állítható elő az \underline{a} , \underline{b} és \underline{d} vektorokból az R^3 vektortér nullvektora?
 - c, Megadható-e olyan $\underline{x} \in R^3$ vektor, amely nem állítható elő az $\underline{a}, \underline{b}$ és \underline{c} (illetve az $\underline{a}, \underline{b}$ és \underline{d}) vektorok lineáris kombinációjaként?
 - d, Bázist alkotnak-e az R^3 térben az \underline{a} , \underline{b} és \underline{c} (illetve az \underline{a} , \underline{b} és \underline{d}) vektorok? Ha igen, akkor határozza meg a \underline{v} = (16, 0, 13) vektor rájuk vonatkozó koordinátáit!
- 12. Legyen $\underline{a}_1 = (1, 2, 0)$, $\underline{a}_2 = (0, 1, 1)$, $\underline{a}_3 = (2, 2, -2)$. Megadható-e olyan $\underline{x} \in R^3$ vektor, amely az $\underline{a}_1, \underline{a}_2$ és \underline{a}_3 vektorok lineáris kombinációjával nem fejezhető ki? Ha igen, akkor adjon példát ilyen vektorra!
- 13. Legyen $H_1 = \{ (1, 1, 1), (1, 1, 0) \},$ $H_2 = \{ (1, 1, 1), (1, 1, 0), (1, 0, 0) \},$ $H_3 = \{ (1, 1, 1), (1, 1, 0), (1, 0, 0), (0, 1, 1) \}.$

A fenti vektorhalmazokra mi illik az alábbi felsorolásokból?

- lineárisan független,
- lineárisan összefüggő,
- bázis
- a vektorhalmaz vektoraiból lineáris kombinációval előállítható az R³ vektortér összes vektora.
- 14. Legyen $\underline{a}_1 = (1, 2, 4)$, $\underline{a}_2 = (-3, 1, 2)$, $\underline{a}_3 = (-2, 3, 6)$, $\underline{a}_4 = (-1, 5, 10)$, $\underline{a}_5 = (4, 1, 2)$, $\underline{a}_$
- 15. Legyen $\underline{a}_1 = (1, 2, -1, 0)$, $\underline{a}_2 = (-1, -3, -1, 3)$, $\underline{a}_3 = (3, 7, -1, -3)$, $\underline{a}_4 = (2, 5, 0, -3)$, $\underline{a}_5 = (0, 1, 2, -3)$. $H = \{\underline{a}_1, \underline{a}_2, \underline{a}_3, \underline{a}_4, \underline{a}_5\}$.
 - a, Mennyi a *H* vektorhalmaz rangja?
 - b, Adjon meg olyan $\underline{a} \neq \underline{o}$ vektort, amelyet a H vektorhalmazhoz csatolva nem növeli a vektorhalmaz rangját!
- 16. Legyen $\underline{a}_1 = (1, 2, 2, -1), \quad \underline{a}_2 = (0, -1, 1, -1), \quad \underline{a}_3 = (2, 5, 3, -1), \quad \underline{a}_4 = (1, 3, 1, 0), \\ \underline{a}_5 = (1, 4, 0, 1). \quad H = \{\underline{a}_1, \underline{a}_2, \underline{a}_3, \underline{a}_4, \underline{a}_5\}.$
 - a, Mennyi a *H* vektorhalmaz rangja?
 - b, Adjon meg olyan $\underline{a} \in \mathbb{R}^4$ vektort, amely nem állítható elő a H vektorhalmaz vektorainak lineáris kombinációjaként!
- 17. Legyen $\underline{a}_1 = (-3, 4, 2)$, $\underline{a}_2 = (1, 0, 0)$, $\underline{a}_3 = (1, 2, -1)$, $\underline{a}_4 = (-5, 0, 7)$, $H = \{\underline{a}_1, \underline{a}_2, \underline{a}_3, \underline{a}_4, \}$.
 - a, Mennyi a *H* vektorhalmaz rangja?
 - b, Előállítható-e az \underline{a}_1 vektor az \underline{a}_3 és \underline{a}_4 vektorok lineáris kombinációjaként?
 - c, Előállítható-e az a_2 vektor az a_3 és a_4 vektorok lineáris kombinációjaként?

- 18. Legyen a = (-2, 1) és b = (5, 3).
 - a, Számítsa ki az alábbiakat: $\underline{a} \cdot \underline{a}$, $\underline{a} \cdot \underline{b}$, $\underline{a} \cdot (\underline{a} + \underline{b})$.
 - b, Ellenőrizze, hogy $\underline{a} \cdot (\underline{a} + \underline{b}) = \underline{a} \cdot \underline{a} + \underline{a} \cdot \underline{b}$.
 - c, Számítsa ki az <u>a</u> és a <u>b</u> vektorok hosszát!
 - d, Számítsa ki az <u>a</u> és <u>b</u> vektorok által bezárt szöget!
- 19. Legyen a = (1, -2, -4), b = (-1, 0, 3), c = (2, -1, 1).
 - a, Ellenőrizze a skaláris szorzatra vonatkozó tulajdonságokat a fenti vektorok esetén!
 - b, Számítsa ki a következő normákat! $\|\underline{a}\|$, $\|\underline{b}\|$, $\|\underline{c}\|$
 - c, Ellenőrizze a Cauchy- Schwarz-egyenlőtlenséget az a és b illetve a b és c vektorokra!
 - d, Számítsa ki az a és b illetve a b és c vektorok szögét!
- 20. Az alábbi vektorok közül melyek ortogonálisak?
 - (-4, 2) és (1, 2),
 - (2, 0, -3) és (3, 5, -1),
 - (0, 4, -5) és (6, 10, 8),
 - (1, -1, 0, 1) és (1, 0, 6, -1),
 - (2, 4, -3, 0) és (1, -5, 1, 1).
- 21. x mely értékeire lesznek ortogonálisak az alábbi vektorok?
 - (x, 0, -3, 2x) és (4, 5, 2, 1),
 - (x, 4, 1) és (x, -x, 3),
 - (2, 3x, 2) és (5, -2, 3x).
- 22. Az *A* vállalat négyféle termékből rendre 8, 5, 6 és 3 egységnyi mennyiséget rendelt. A *B* vállalat rendelése ugyanezen termékekre: 5, 0, 10 és 4 egység. A négyféle termék egységára: 12, 8, 15, 10 eFt. Legyenek <u>x</u>_A és <u>x</u>_B az *A* illetve *B* vállalatok által rendelt termékmennyiségeket tartalmazó vektorok. Legyen <u>p</u> = (12, 8, 15, 10) az árvektor. Ezen vektorok felhasználásával adja meg az alábbiakat!
 - Mennyi az A és B vállalat együttes rendelése? Összesen mennyi a két vállalat rendelésének az összértéke?
 - Mennyi a rendelés értéke külön-külön a két vállalatnál?
- 23. Egy vállalat termelése 5 féle termékből 12, 8, 5, 9 és 10 egység, míg a felhasználása ugyanezen termékekből 5, 10, 4, 11 és 6. A termékek egységára rendre 2, 5, 7, 4 és 8 eFt.
 - a, A termeléseket és a felhasználásokat tartalmazó vektorok , valamint az árvektor segítségével adja meg a nettó kibocsátás vektorát!
 - b, Számítsa ki a cég bevételét és kiadását!
 - c, Mutassa meg, hogy a vállalat profitját a $\underline{p} \cdot \underline{z}$ skaláris szorzat adja, ahol \underline{p} az árvektor, \underline{z} pedig a nettó kibocsátások vektora! Mit jelent az, ha a $\underline{p} \cdot \underline{z}$ skaláris szorzat negatív?

- 24. Az alábbi vektorhalmazok közül melyek alterek az R^3 térben?
 - $H_1 = \{ \lambda_1 \cdot (1, 0, 0) + \lambda_2 \cdot (0, 1, 0) \mid \lambda_1, \lambda_2 \in R \},$
 - $H_2 = \{ \lambda \cdot (1, 2, -5) \mid \lambda \in \mathbb{R}^+ \},$
 - $H_3 = \{ \lambda \cdot (1, 2, -5) \mid \lambda \in R \},$
 - $H_4 = \{ (x_1, x_2, x_3) \in \mathbb{R}^3 \mid x_1, x_2, x_3 < 0 \}$
 - $H_5 = \{ \lambda \cdot (3, -4, 2) \mid \lambda \in R \},$
 - $H_6 = \{ \lambda \cdot (3, -4, 2) + (1, 1, 1) \mid \lambda \in R \},$
 - $H_7 = \{ \lambda_1 \cdot (3, -4, 2) + \lambda_2 \cdot (1, 1, 1) \mid \lambda_1, \lambda_2 \in R \},$
 - $H_8 = \{ (\lambda, 0, 0) \mid \lambda \in R \}.$
- 25. Adja meg annak az egyenesnek a paraméteres vektoregyenletét ill. paraméteres egyenletrendszerét, amely
 - a, áthalad az $\underline{a} = (2, -3, 4)$ és a $\underline{b} = (5, 0.1)$ pontokon!
 - b, áthalad az $\underline{a} = (3, 5, -1)$ ponton és irányvektora $\underline{v} = (2, -1, 3)$!
- 26. Egy egyenes paraméteres egyenletrendszere:

$$x_1 = 2 + 3t$$

$$x_2 = 4t$$

$$x_3 = 1 - 2t$$

- a, Adja meg az egyenes néhány pontját és egy irányvektorát!
- b, Illeszkedik-e az egyenesre a (8, 8, -3) és a (2, 4. 0) pont?
- 27. Adja meg annak a síknak az egyenletét, amely illeszkedik az \underline{a} = (2, 0, 5) pontra és normálvektora \underline{p} = (2, -1, 4).
- 28. Adja meg annak a síknak az egyenletét, amely illeszkedik az $\underline{a} = (4, 1, 5), \ \underline{b} = (6, 0, 3)$ és $\underline{c} = (3, 3, 6)$ pontokra!
- 29. Egy sík egyenlete: $2x_1 + 3x_2 x_3 = 10$.
 - a, Adjon meg néhány, a síkra illeszkedő pontot! Adja meg a sík egy normálvektorát!
 - b, Illeszkednek-e a síkra az alábbi pontok?

$$(1, 1, 1), (6, 0, 2), (1, 1, -5).$$

30. Egy egyenes paraméteres egyenletrendszere:

$$x_1 = 5 + t$$

$$x_2 = -2 + 4t$$

$$x_3 = 3 - 2t$$

Adja meg annak a síknak az egyenletét, amely merőleges a fenti egyenesre és áthalad az a = (2, 0, 3) ponton!

31. Egy sík egyenlete $4x_1 - 2x_2 + x_3 = 8$.

Adja meg annak az egyenesnek a paraméteres egyenletrendszerét, amely merőleges a fenti síkra és áthalad az $\underline{a} = (2, -1, 5)$ ponton!