Measure Theory

1 σ -Algebras

Definition 1.1. A σ -algebra \mathcal{A} on a set X is a family of subsets of X such that:

- 1. $X \in \mathcal{A}$,
- 2. If $A \in \mathcal{A}$, then $A^c \in \mathcal{A}$,
- 3. If $(A_n)_{n\in\mathbb{N}}\subseteq\mathcal{A}$, then $\bigcup_{n\in\mathbb{N}}A_n\in\mathcal{A}$.

A set $A \in \mathcal{A}$ is said to be measurable or \mathcal{A} -measurable.

Example 1.1.

- 1. $\mathcal{P}(X)$ is a σ -algebra (the maximal σ -algebra on X).
- 2. $\{\emptyset, X\}$ is a σ -algebra (the minimal σ -algebra on X).
- 3. $A:=\{A\subseteq X: \#A<\infty \text{ or } \#A^c<\infty\}$ is a σ -algebra.
- 4. (Trace σ -algebra) Let $E\subseteq X$ be any set and let $\mathcal A$ be a σ -algebra on X. Then

$$\mathcal{A}_E := \{ E \cap A : A \in \mathcal{A} \}$$

is a σ -algebra on E.

Proof. We verify the three defining properties of a σ -algebra on E:

(a) Since $X \in \mathcal{A}$, we have

$$E = E \cap X \in \mathcal{A}_E$$
.

(b) If $E \cap A \in \mathcal{A}_E$, then

$$E \setminus (E \cap A) = E \cap A^c$$
,

and since $A^c \in \mathcal{A}$, it follows that

$$E \cap A^c \in \mathcal{A}_E$$
.

(c) If $(E \cap A_n)_{n \in \mathbb{N}}$ is a sequence in \mathcal{A}_E , then

$$\bigcup_{n} (E \cap A_n) = E \cap \bigcup_{n} A_n,$$

and since $\bigcup_n A_n \in \mathcal{A}$, we conclude that

$$\bigcup_{n} (E \cap A_n) \in \mathcal{A}_E.$$

Hence, A_E is a σ -algebra on E.

5. (Pre-image σ -algebra) Let $f:X\to X'$ be a function and let \mathcal{A}' be a σ -algebra on X'. Then

$$A := \{ f^{-1}(A') : A' \in A' \}$$

is a σ -algebra on X.

Theorem 1.1. Let X be a set and let $\{A_i : i \in I\}$ be a family of σ -algebras on X. Define

$$\mathcal{A} := \bigcap_{i \in I} \mathcal{A}_i = \{ A \subseteq X : A \in \mathcal{A}_i \text{ for all } i \in I \}.$$

Then, \mathcal{A} is a σ -algebra on X.

Proof. We verify the σ -algebra properties for \mathcal{A} :

- 1. Since $X \in \mathcal{A}_i$ for all $i \in I$, we have $X \in \mathcal{A}$.
- 2. If $A \in \mathcal{A}$, then $A \in \mathcal{A}_i$ for all $i \in I$, so

$$A^c = X \setminus A \in \mathcal{A}_i \quad \forall i \in I,$$

hence $A^c \in \mathcal{A}$.

3. If $(A_n)_{n\in\mathbb{N}}\subseteq\mathcal{A}$, then for all n and i,

$$A_n \in \mathcal{A}_i$$
,

so by closure of each A_i under countable unions,

$$\bigcup_{n=0}^{\infty} A_n \in \mathcal{A}_i \quad \forall i \in I,$$

and thus

$$\bigcup_{n=0}^{\infty} A_n \in \mathcal{A}.$$

Therefore, \mathcal{A} is a σ -algebra on X.

Definition 1.2. Let X be a set and let $\mathcal{E} \subseteq \mathcal{P}(X)$ be a collection of subsets of X. The σ -algebra generated by \mathcal{E} , denoted by $\sigma(\mathcal{E})$, is the smallest σ -algebra on X containing all sets in \mathcal{E} . That is,

$$\sigma(\mathcal{E}) := \bigcap \big\{ \mathcal{A} \subseteq \mathcal{P}(X) : \mathcal{A} \text{ is a } \sigma\text{-algebra on } X, \ \mathcal{E} \subseteq \mathcal{A} \big\}.$$

Remark 1.1 (Generated σ -algebras).

- 1. If \mathcal{A} is a σ -algebra, then $\sigma(\mathcal{A}) = \mathcal{A}$.
- 2. For $A \subseteq X$, we have $\sigma(\{A\}) = \{\emptyset, A, A^c, X\}$.
- 3. If $\mathcal{F} \subseteq \mathcal{G} \subseteq \mathcal{A}$, then $\sigma(\mathcal{F}) \subseteq \sigma(\mathcal{G}) \subseteq \sigma(\mathcal{A})$.

Definition 1.3 (Topological Space). A topological space is a pair (X, \mathcal{T}) where X is a set and $\mathcal{T} \subseteq \mathcal{P}(X)$ is a collection of subsets of X, called open sets, satisfying the following properties:

- 1. $\emptyset \in \mathcal{T}$ and $X \in \mathcal{T}$,
- 2. If $\{U_{\alpha} \in \mathcal{T} : \alpha \in I\}$ is an arbitrary collection of open sets, then the union $\bigcup_{\alpha \in I} U_{\alpha} \in \mathcal{T}$,
- 3. If $\{U_i \in \mathcal{T} : i = 1, ..., N\}$ is a finite collection of open sets, then the intersection $\bigcap_{i=1}^{N} U_i \in \mathcal{T}$.

The collection \mathcal{T} is called a *topology* on X. The complement of an open set is called a *closed set*.

Remark 1.2 (Standard Topology on \mathbb{R}^n). A subset $U \subseteq \mathbb{R}^n$ is called *open* if for every point $x \in U$, there exists an $\varepsilon > 0$ such that the open ball

$$B_{\varepsilon}(x) := \{ y \in \mathbb{R}^n : ||x - y|| < \varepsilon \},$$

where $\|\cdot\|$ denotes the Euclidean norm, is contained in U; that is, $B_{\varepsilon}(x) \subseteq U$. The collection of all such open sets is denoted by $\mathcal{O} = \mathcal{O}_{\mathbb{R}^n}$ and forms the standard topology on \mathbb{R}^n .

Definition 1.4 (Borel σ -algebra). The σ -algebra $\sigma(\mathcal{O})$ generated by the collection of open sets $\mathcal{O} = \mathcal{O}_{\mathbb{R}^n}$ of \mathbb{R}^n is called the *Borel* σ -algebra on \mathbb{R}^n .

Its elements are called *Borel sets* or *Borel measurable sets*. We denote the Borel σ -algebra by $\mathcal{B}(\mathbb{R}^n)$.