${\tt C:/Users/torsten/GitHub/colore/ontologies/simple_features/sfc_fol.} \\ {\tt clif}$

1.
$$\forall x \ \forall y \ \left[\left[\text{sf_geometry}(x) \leftrightarrow S(x) \right] \right]$$

$$2. \ \forall x \ \forall y \ \left[\left[\text{sf_relate}(x,y) \leftrightarrow \left(\text{sf_intersects}(x,y) \lor \text{sf_disjoint}(x,y) \right) \right] \right]$$

3.
$$\forall x \ \forall y \ \left[\left[SC(x,y) \to C(x,y) \right] \right]$$

4.
$$\forall x \ \forall y \ \left[\left[\mathrm{SC}(x,y) \to \neg \exists z \ \left[\left(\mathrm{Cont}(z,x) \land \mathrm{P}(z,y) \right) \right] \right] \right]$$

5.
$$\forall x \ \forall y \ \left[\left[\mathrm{SC}(x,y) \to \neg \exists z \ \left[\left(\mathrm{P}(z,x) \wedge \mathrm{Cont}(z,y) \right) \right] \right] \right]$$

6.
$$\forall x \ \forall y \ \left[\left(\mathrm{C}(x,y) \land \forall z \ \left[\left(\neg \left(\mathrm{Cont}(z,x) \right) \lor \neg \left(\mathrm{Cont}(z,y) \right) \lor \left(\neg \left(\mathrm{P}(z,x) \right) \land \neg \left(\mathrm{P}(z,y) \right) \right) \right) \right] \right) \to \mathrm{SC}(x,y) \right]$$

7.
$$\forall x \left[\neg \left(SC(x, x) \right) \right]$$

8.
$$\forall x \ \forall y \ \left[\left[SC(x,y) \to SC(y,x) \right] \right]$$

9.
$$\forall x \ \forall y \ \left[\left[\mathrm{SC}(x,y) \to \exists z \ \left[\left(\mathrm{lt}(z,x) \wedge \mathrm{lt}(z,y) \wedge \mathrm{Cont}(z,x) \wedge \mathrm{Cont}(z,y) \right) \right] \right] \right]$$

10.
$$\forall x \ \forall y \ \left[\operatorname{SC}(x,y) \leftrightarrow \left(\exists z \ \left[\left(\operatorname{Cont}(z,x) \wedge \operatorname{Cont}(z,y) \right) \right] \wedge \forall z \ \left[\left[\left(\operatorname{Cont}(z,x) \wedge \operatorname{Cont}(z,y) \right) \rightarrow \left(\operatorname{leq}(z,x) \wedge \operatorname{Cont}(z,y) \right) \right] \right] \right]$$

11.
$$\forall x \ \forall y \ \left[\left[\operatorname{EqDim}(x,y) \leftrightarrow \left(\operatorname{leq}(x,y) \land \operatorname{leq}(y,x) \right) \right] \right]$$

12.
$$\forall x \ \forall y \ \left[\left[\operatorname{leq}(x, y) \to \operatorname{S}(x) \right] \right]$$

13.
$$\forall x \ \forall y \ \left[\left[\operatorname{leq}(x, y) \to \operatorname{S}(y) \right] \right]$$

14.
$$\forall x \left[\left[ZEX(x) \to S(x) \right] \right]$$

15.
$$\forall x \left[\left[S(x) \to leq(x, x) \right] \right]$$

16.
$$\forall x \ \forall y \ \forall z \ \left[\left[\left(\operatorname{leq}(x,y) \land \operatorname{leq}(y,z) \right) \rightarrow \operatorname{leq}(x,z) \right] \right]$$

17.
$$\forall x \, \forall y \, \left[\left[\left(\operatorname{ZEX}(x) \wedge \operatorname{ZEX}(y) \right) \to =(x,y) \right] \right]$$

18.
$$\forall x \ \forall y \ \left[\left[\left(\operatorname{ZEX}(x) \wedge \operatorname{S}(y) \right) \to \operatorname{leq}(x, y) \right] \right]$$

19.
$$\forall x \ \forall y \ \left[\left[\text{Cont}(x,y) \to \text{leq}(x,y) \right] \right]$$

20.
$$\exists x \ [MinDim(x)]$$

21.
$$\forall x \left[\left[\operatorname{MaxDim}(x) \leftrightarrow \left(\operatorname{S}(x) \land \neg \left(\operatorname{ZEX}(x) \right) \land \forall y \left[\left[\left[\operatorname{S}(y) \rightarrow \operatorname{leq}(y, x) \right] \right] \right) \right] \right]$$

22.
$$\forall x \left[\left[\operatorname{MinDim}(x) \leftrightarrow \left(\operatorname{S}(x) \land \neg \left(\operatorname{ZEX}(x) \right) \land \forall y \left[\left[\left(\operatorname{S}(y) \land \neg \left(\operatorname{ZEX}(y) \right) \right) \rightarrow \operatorname{leq}(x, y) \right] \right] \right) \right] \right]$$

23.
$$\forall x \left[\left[\left(S(x) \land \neg \left(ZEX(x) \right) \right) \leftrightarrow Cont(x, x) \right] \right]$$

24.
$$\forall x \ \forall y \ \left[\left[\left(\operatorname{Cont}(x,y) \wedge \operatorname{Cont}(y,x) \right) \to =(x,y) \right] \right]$$

25.
$$\forall x \ \forall y \ \forall z \ \left[\left[\left(\mathrm{Cont}(x,y) \wedge \mathrm{Cont}(y,z) \right) \to \mathrm{Cont}(x,z) \right] \right]$$

26.
$$\forall x \ \forall y \ \left[\left[\operatorname{ZEX}(x) \to \left(\operatorname{S}(x) \land \neg \left(\operatorname{Cont}(y, x) \right) \land \neg \left(\operatorname{Cont}(x, y) \right) \right) \right] \right]$$

27.
$$\forall x \ \forall y \ \left[\left[\left(\operatorname{ZEX}(x) \land \operatorname{ZEX}(y) \right) \to = (x, y) \right] \right]$$

28.
$$\forall x \ \forall y \ \left[\left[P(x,y) \leftrightarrow \left(\mathrm{Cont}(x,y) \land \mathrm{EqDim}(x,y) \right) \right] \right]$$

29.
$$\forall x \ \forall y \ \left[\left[\mathrm{C}(x,y) \leftrightarrow \exists z \ \left[\left(\mathrm{Cont}(z,x) \land \mathrm{Cont}(z,y) \right) \right] \right] \right]$$

30.
$$\forall x \left[\neg \left(\operatorname{Inc}(x, x) \right) \right]$$

31.
$$\forall x \ \forall y \ \left[\left[\operatorname{Inc}(x,y) \to \operatorname{Inc}(y,x) \right] \right]$$

32.
$$\forall x \ \forall y \ \left[\left[\operatorname{EqDim}(x, y) \to \neg \left(\operatorname{Inc}(x, y) \right) \right] \right]$$

33.
$$\forall x \ \forall y \ \left[\left[\operatorname{Inc}(x,y) \to \left(\operatorname{lt}(x,y) \lor \operatorname{lt}(y,x) \right) \right] \right]$$

34.
$$\forall x \ \forall y \ \left[\left[\left(\operatorname{Cont}(x,y) \wedge \operatorname{lt}(x,y) \right) \to \operatorname{Inc}(x,y) \right] \right]$$

35.
$$\forall x \ \forall y \ \forall z \ \left[\left[\left(\operatorname{Inc}(x,y) \wedge \mathrm{P}(y,z) \right) \to \operatorname{Inc}(x,z) \right] \right]$$

36.
$$\forall x \ \forall y \ \left[\operatorname{Inc}(x,y) \leftrightarrow \left(\exists z \ \left[\left(\operatorname{leq}(z,x) \land \neg \left(\operatorname{EqDim}(z,x) \right) \land \operatorname{Cont}(z,x) \land \operatorname{P}(z,y) \right) \right] \lor \exists z \ \left[\left(\operatorname{leq}(z,y) \land \neg \left(\operatorname{EqDim}(z,x) \land \operatorname{P}(z,y) \right) \right) \right] \lor \exists z \ \left[\left(\operatorname{leq}(z,y) \land \neg \left(\operatorname{EqDim}(z,x) \land \operatorname{P}(z,y) \right) \right) \right] \lor \exists z \ \left[\left(\operatorname{leq}(z,y) \land \neg \left(\operatorname{EqDim}(z,x) \land \operatorname{P}(z,y) \right) \right) \right] \lor \exists z \ \left[\left(\operatorname{leq}(z,y) \land \neg \left(\operatorname{EqDim}(z,x) \land \operatorname{P}(z,y) \right) \right) \right] \lor \exists z \ \left[\left(\operatorname{leq}(z,y) \land \neg \left(\operatorname{EqDim}(z,x) \land \operatorname{P}(z,y) \right) \right) \right] \lor \exists z \ \left[\left(\operatorname{leq}(z,y) \land \neg \left(\operatorname{EqDim}(z,y) \land \neg \left($$

37.
$$\forall x \left[\left[\left(S(x) \land \neg \left(ZEX(x) \right) \right) \rightarrow PO(x, x) \right] \right]$$

38.
$$\forall x \ \forall y \ \left[\left[PO(x, y) \to PO(y, x) \right] \right]$$

39.
$$\forall x \ \forall y \ \left[\left[PO(x, y) \to EqDim(x, y) \right] \right]$$

40.
$$\forall x \ \forall y \ \left[\left[\operatorname{PO}(x,y) \leftrightarrow \exists z \ \left[\left(\operatorname{P}(z,x) \land \operatorname{P}(z,y) \right) \right] \right] \right]$$

41.
$$\forall x \left[\left[\operatorname{Max}(x) \leftrightarrow \left(\operatorname{S}(x) \land \neg \left(\operatorname{ZEX}(x) \right) \land \forall y \left[\neg \left(\operatorname{PP}(x, y) \right) \right] \right) \right] \right]$$

42.
$$\forall x \left[\left[\operatorname{Min}(x) \leftrightarrow \left(\operatorname{S}(x) \land \neg \left(\operatorname{ZEX}(x) \right) \land \forall y \left[\neg \left(\operatorname{PP}(y, x) \right) \right] \right) \right] \right]$$

43.
$$\forall x \ \forall y \ \left[\left[PP(x,y) \leftrightarrow \left(P(x,y) \land \neg \left(=(x,y) \right) \right) \right] \right]$$

44.
$$\forall x \ \forall y \ \left[\left[\operatorname{BCont}(x,y) \to \left(\operatorname{Cont}(x,y) \land \neg \left(\operatorname{EqDim}(x,y) \right) \right) \right] \right]$$

45.
$$\forall x \ \forall y \ \forall v \ \forall z \ \left[\left[\left(\mathrm{SC}(x,y) \land \mathrm{Min}(x) \land \mathrm{P}(x,v) \land \mathrm{Cont}(y,v) \land \mathrm{Cont}(z,x) \land \mathrm{Cont}(z,y) \right) \rightarrow \mathrm{BCont}(z,x) \right] \right]$$

46.
$$\forall x \ \forall y \ \forall z \ \forall v \ \left[\left[\left(\mathrm{SC}(x,y) \land \mathrm{P}(x,v) \land \mathrm{P}(y,v) \land \mathrm{Cont}(z,x) \land \mathrm{Cont}(z,y) \land \mathrm{Covers}(v,z) \right) \rightarrow \neg \left(\mathrm{BCont}(z,v) \right) \right] \right]$$

47.
$$\forall x \ \forall y \ \forall z \ \left[\left[\left(\operatorname{BCont}(x,y) \land \operatorname{P}(y,z) \land \forall v \ \forall w \ \left[\left[\left(\operatorname{P}(v,z) \land \neg \left(\operatorname{PO}(v,y) \right) \land \operatorname{P}(w,x) \right) \rightarrow \neg \left(\operatorname{Cont}(w,v) \right) \right] \right] \right] \right] \right]$$

48.
$$\forall x \ \forall y \ \forall z \ \left[\left[\left(\mathrm{BCont}(x,y) \wedge \mathrm{Cont}(z,x) \right) \to \mathrm{BCont}(z,y) \right] \right]$$

49.
$$\forall x \ \forall y \ \left[\left[\text{Covers}(x,y) \leftrightarrow \left(\text{lt}(y,x) \land \forall z \ \left[\left[\text{S}(z) \rightarrow \neg \left(\text{lt}(y,z) \land \text{lt}(z,x) \right) \right] \right] \right) \right] \right]$$

50.
$$\forall x \, \forall y \, \left[\left[\operatorname{gt}(x, y) \leftrightarrow \operatorname{lt}(y, x) \right] \right]$$

51.
$$\forall x \ \forall y \ \left[\left[\gcd(x,y) \leftrightarrow \deg(y,x) \right] \right]$$

52.
$$\forall x \ \forall y \ \left[\left[\operatorname{lt}(x,y) \leftrightarrow \left(\operatorname{leq}(x,y) \land \neg \left(\operatorname{EqDim}(x,y) \right) \right) \right] \right]$$

53.
$$\forall x \left[\left[\text{Closed}(x) \leftrightarrow \forall y \left[\neg \left(\text{BCont}(y, x) \right) \right] \right] \right]$$

54.
$$\forall x \ \forall y \ \left[\left[\text{sf_contains}(x,y) \leftrightarrow \left(\text{sf_geometry}(x) \land \text{sf_geometry}(y) \land \text{Cont}(x,y) \right) \right] \right]$$

55.
$$\forall x \ \left[[\text{sf_multi_polygon}(x) \rightarrow \text{sf_multi_surface}(x)] \right]$$

56.
$$\forall x \left[\left[\text{sf_geometry_collection}(x) \rightarrow \left(\neg \left(\text{sf_point}(x) \right) \land \neg \left(\text{sf_curve}(x) \right) \land \neg \left(\text{sf_surface}(x) \right) \right) \right] \right]$$

57.
$$\forall x \ \left[\left[\text{sf_geometry_collection}(x) \leftrightarrow \left(\text{sf_multi_point}(x) \lor \text{sf_multi_curve}(x) \lor \text{sf_multi_surface}(x) \right) \right] \right]$$

58.
$$\forall x \left[\left[\text{sf_point}(x) \to \left(\neg \left(\text{sf_curve}(x) \right) \land \neg \left(\text{sf_surface}(x) \right) \land \neg \left(\text{sf_geometry_collection}(x) \right) \right) \right] \right]$$

59.
$$\forall x \left[\left[\text{sf_geometry}(x) \leftrightarrow \left(\text{sf_point}(x) \lor \text{sf_curve}(x) \lor \text{sf_surface}(x) \lor \text{sf_geometry_collection}(x) \right) \right] \right]$$

60.
$$\forall x \left[\text{sf_surface}(x) \to \left(\neg \left(\text{sf_point}(x) \right) \land \neg \left(\text{sf_curve}(x) \right) \land \neg \left(\text{sf_geometry_collection}(x) \right) \right) \right] \right]$$

61.
$$\forall x \left[\left[\text{sf_curve}(x) \to \left(\neg \left(\text{sf_point}(x) \right) \land \neg \left(\text{sf_surface}(x) \right) \land \neg \left(\text{sf_geometry_collection}(x) \right) \right) \right] \right]$$

62.
$$\forall x \left[[\text{sf_multi_line_string}(x) \rightarrow \text{sf_multi_curve}(x)] \right]$$

63.
$$\forall x \left[\left[\text{sf_triangle}(x) \leftrightarrow \left(\text{sf_polygon}(x) \land \text{sf_tin}(x) \right) \right] \right]$$

64.
$$\forall x \left[\left[\text{sf_tin}(x) \to \text{sf_polyhedral_surface}(x) \right] \right]$$

65.
$$\forall x \left[[\text{sf_polyhedral_surface}(x) \rightarrow \text{sf_surface}(x)] \right]$$

66.
$$\forall x \left[[\text{sf_polygon}(x) \rightarrow \text{sf_polyhedral_surface}(x)] \right]$$

67.
$$\forall x \left[[\text{sf_linear_ring}(x) \rightarrow \text{sf_line_string}(x)] \right]$$

68.
$$\forall x \left[\left[\text{sf_line_string}(x) \to \text{sf_curve}(x) \right] \right]$$

69.
$$\forall x \ \left[[\text{sf_line}(x) \to \text{sf_line_string}(x)] \right]$$

70.
$$\forall x \ \forall y \ \left[\left[\text{sf_overlaps}(x,y) \leftrightarrow \left(\text{sf_geometry}(x) \land \text{sf_geometry}(y) \land \text{PO}(x,y) \land \neg \left(\text{P}(x,y) \right) \land \neg \left(\text{P}(y,x) \right) \right) \right] \right]$$

71.
$$\forall x \ \forall y \ \left[\left[\text{sf_within}(y, x) \leftrightarrow \text{sf_contains}(x, y) \right] \right]$$

72.
$$\forall x \ \forall y \ \left[\left[\text{sf_contains}(x,y) \leftrightarrow \left(\text{sf_geometry}(x) \land \text{sf_geometry}(y) \land \text{Cont}(x,y) \right) \right] \right]$$

73.
$$\forall x \ \forall y \ \left[\text{sf_crosses}(x,y) \leftrightarrow \left(\text{sf_geometry}(x) \land \text{sf_geometry}(y) \land \left(\left(\text{Inc}(x,y) \land \neg \left(\text{Cont}(x,y) \right) \land \neg \left(\text{Co$$

74.
$$\forall x \left[\left[\text{Curve}(x) \leftrightarrow \left(\neg \left(\text{ZEX}(x) \right) \land \neg \left(\text{MinDim}(x) \right) \land \forall y \left[\left[\text{MinDim}(y) \leftrightarrow \text{Covers}(x,y) \right] \right] \right) \right] \right]$$

75.
$$\forall x \ \forall y \ \left[\left[\text{sf_touches}(x,y) \leftrightarrow \left(\text{sf_geometry}(x) \land \text{sf_geometry}(y) \land \left(\text{SC}(x,y) \lor \text{BCont}(x,y) \lor \text{BCont}(y,x) \right) \right) \right] \right]$$

76.
$$\forall x \ \forall y \ \left[\left[\text{sf_equals}(x,y) \leftrightarrow \left(\text{sf_contains}(x,y) \land \text{sf_within}(x,y) \right) \right] \right]$$

77.
$$\forall x \ \forall y \ \left[\left[\text{sf_intersects}(x, y) \leftrightarrow \left(\text{sf_geometry}(x) \land \text{sf_geometry}(y) \land \neg \left(\text{sf_disjoint}(x, y) \right) \right) \right] \right]$$

78.
$$\forall x \ \forall y \ \left[\left[\text{sf_disjoint}(x,y) \rightarrow \left(\text{sf_geometry}(x) \land \text{sf_geometry}(y) \land \neg \left(C(x,y) \right) \right) \right] \right]$$

79.
$$\forall x \left[\left[\text{sf_geometry_collection}(x) \to \left(\text{Multipart_S}(x) \lor \text{Branched_S}(x) \right) \right] \right]$$

80.
$$\forall x \left[\left[\text{sf_multi_polygon}(x) \leftrightarrow \left(\text{sf_multi_surface}(x) \land \forall y \left[\left[\left(P(y, x) \land \text{Min}(y) \right) \rightarrow \text{sf_polygon}(y) \right] \right] \right) \right] \right]$$

81.
$$\forall x \ \left[[sf_polygon(x) \rightarrow Simple_ArealRegion(x)] \right]$$

82.
$$\forall x \left[\left[\text{sf_polygon}(x) \to \exists y \ \exists z \ \left[\left(\text{sf_linear_ring}(y) \land \text{BCont}(y, x) \land = \left(\text{boundary}(z), y \right) \land \text{P}(x, z) \right) \right] \right] \right]$$

83.
$$\forall x \left[\left[\text{sf_polygon}(x) \to \forall v \left[\left[\text{BCont}(v, x) \to \exists w \left[\left(\text{P}(v, w) \land \text{BCont}(w, x) \land \text{sf_linear_ring}(w) \right) \right] \right] \right] \right] \right]$$

84.
$$\forall x \ \forall y \ \left[\left[\mathrm{Cont}(x, \mathrm{boundary}(y)) \leftrightarrow \mathrm{BCont}(x, y) \right] \right]$$

85.
$$\forall x \left[\left[\text{Simple_ArealRegion}(x) \leftrightarrow \left(\text{ArealRegion}(x) \land \text{Simple_S}(x) \right) \right] \right]$$

86.
$$\forall x \left[\left[\text{Simple_S}(x) \leftrightarrow \left(\text{Connected_S}(x) \land \neg \left(\text{Branched_S}(x) \right) \right) \right] \right]$$

87.
$$\forall x \mid \left[\text{Branched_S}(x) \leftrightarrow \left(\text{Connected_S}(x) \land \exists p \exists q \exists r \exists s \left[\left(\text{PP}(p, x) \land \text{PP}(q, x) \land \text{PP}(r, x) \land \neg \left(\text{PO}(p, q) \right) \right] \right] \right] \right]$$

88.
$$\forall x \left[\left[\text{Connected_S}(x) \leftrightarrow \left(\text{S}(x) \land \forall y \left[\left[\text{PP}(y, x) \rightarrow \text{SC}(y, \text{difference}(x, y)) \right] \right] \right) \right] \right]$$

89.
$$\forall x \ \forall y \ \left[\left[\left(S(x) \land S(y) \land \neg \left(C(x,y) \right) \right) \leftrightarrow ZEX(intersection(x,y)) \right] \right]$$

90.
$$\forall x \ \forall y \ \left[\left[\left(\mathbf{S}(x) \land \mathbf{S}(y) \land \neg \left(\mathbf{ZEX}(\mathbf{intersection}(x,y)) \right) \right) \rightarrow \mathbf{Cont}(\mathbf{intersection}(x,y),x) \right] \right]$$

91.
$$\forall x \ \forall y \ \forall z \ \left[\left[\left(\operatorname{Cont}(z, x) \wedge \operatorname{Cont}(z, y) \right) \to \operatorname{leq}(z, \operatorname{intersection}(x, y)) \right] \right]$$

92.
$$\forall x \ \forall y \ \forall z \ \left[\left[\left(\operatorname{Cont}(z, x) \wedge \operatorname{Cont}(z, y) \wedge \operatorname{EqDim}(z, \operatorname{intersection}(x, y)) \right) \leftrightarrow \operatorname{P}(z, \operatorname{intersection}(x, y)) \right] \right]$$

93.
$$\forall x \ \forall y \ \left[\left[\left(S(x) \land S(y) \land \neg \left(ZEX(difference(x,y)) \right) \right) \rightarrow EqDim(x,difference(x,y)) \right] \right]$$

94.
$$\forall x \ \forall y \ \left[\left[\mathrm{lt}(y,x) \to = (x, \mathrm{difference}(x,y)) \right] \right]$$

95.
$$\forall x \ \forall y \ \forall z \ \left[\left[\left(\operatorname{leq}(x,y) \wedge \operatorname{Cont}(z,x) \wedge \operatorname{lt}(\operatorname{intersection}(z,y),z) \right) \rightarrow \operatorname{Cont}(z,\operatorname{difference}(x,y)) \right] \right]$$

96.
$$\forall x \ \forall y \ \forall z \ \left[\left[\left(\operatorname{leq}(x,y) \land \operatorname{Cont}(z,\operatorname{difference}(x,y)) \right) \rightarrow \operatorname{Cont}(z,x) \right] \right]$$

97.
$$\forall x \ \forall y \ \forall z \ \left[\left[\left(\operatorname{leq}(x,y) \land \operatorname{P}(z,\operatorname{difference}(x,y)) \right) \rightarrow \operatorname{lt}(\operatorname{intersection}(z,y),z) \right] \right]$$

98.
$$\forall x \ \forall y \ \left[\left[\text{ZEX}(\text{difference}(x,y)) \leftrightarrow \left(\text{ZEX}(x) \lor \text{Cont}(x,y) \right) \right] \right]$$

99.
$$\forall x \left[\left[\text{ArealRegion}(x) \leftrightarrow \forall y \left[\left[\text{Curve}(y) \to \text{Covers}(x, y) \right] \right] \right] \right]$$

100.
$$\forall x \left[\left[\text{sf_multi_surface}(x) \rightarrow \text{Multipart_ArealRegion}(x) \right] \right]$$

101.
$$\forall x \left[\left[\text{Multipart_ArealRegion}(x) \leftrightarrow \left(\text{ArealRegion}(x) \land \text{Multipart_S}(x) \right) \right] \right]$$

102.
$$\forall x \left[\left[\text{Multipart_S}(x) \leftrightarrow \left(\text{S}(x) \land \neg \left(\text{Connected_S}(x) \right) \right) \right] \right]$$

103.
$$\forall x \left[\left[\text{sf_multi_line_string}(x) \leftrightarrow \left(\text{sf_multi_curve}(x) \land \forall y \left[\left[\left(P(y, x) \land \text{Min}(y) \right) \rightarrow \text{sf_line_string}(y) \right] \right] \right) \right] \right]$$

104.
$$\forall x \left[\left[\text{sf_multi_curve}(x) \to \text{Multipart_Curve}(x) \right] \right]$$

105.
$$\forall x \left[\left[\text{Multipart_Curve}(x) \leftrightarrow \left(\text{Curve}(x) \land \text{Multipart_S}(x) \right) \right] \right]$$

106.
$$\forall x \left[\left[\text{sf_multi_point}(x) \leftrightarrow \left(\text{PointRegion}(x) \land \neg \left(\text{Point}(x) \right) \right) \right] \right]$$

107.
$$\forall x \left[\left[\text{Point}(x) \leftrightarrow \left(\text{MinDim}(x) \land \forall y \left[\left[\text{Cont}(y, x) \rightarrow =(y, x) \right] \right] \right) \right] \right]$$

108. $\forall x \ \Big[\big[\mathrm{PointRegion}(x) \leftrightarrow \mathrm{MinDim}(x) \big] \Big]$