Review Questions of McKeague Content: Dec 2/4 (content from Nov 4 to 29)

SCIENTIST: I just boiled water

ME: solid

SCIENTIST: no

ME: I just mean that's cool SCIENTIST: WRONG AGAIN

Keep an eye on mycourses "announcements"!

Exam: Datasheet provided

Bring your pen(cils); calculator; molecular model kit (or other model)

Slightly more than 50% McKeague content

Practice Exams: posted

Office Hours: See announcements

QR code for Mercury Course Evaluations! 1% bonus if >75% of class does them!!!

Section 001

Q1: Draw the following molecules using skeletal structures.

6-chloro-1-fluorocyclooct-1-ene

(E)-4,4-dichlorooct-2-en-6-yne

(S)-2-bromo-5-methylhexane

Note these are examples. You are the artist so many ways to draw these same molecules ©

Q2: Calculate the units of unsaturation and identify functional groups (specify primary, asymmetric etc) in 3-((3-(cyclobut-2-en-1-yl)-2-((5-(2,7a-dihydro-1H-inden-1-yl)-2-ethyl-3-oxoheptyl)oxy)propyl)amino)propanenitrile, shown below. Indicate if the starred* carbons are primary, secondary, tertiary.

Chem 110

Q3: Draw (S)-2-chlorobutane as corresponding Sawhorse diagrams and Newman diagrams in a stable conformation and an unstable conformation. What do we call unstable conformations?

Stable (staggered)

Not stable (eclipsed!)

Sawhorse

Draw in the "eye" or write "eye" to show perspective and make sure your Newman matches that perspective.

Newman

Note I said an example, so a few answers possible here ©

Q4: Identify chiral centers, then label as R or S (show your work)!

No chiral center here because there are not 4 different groups!

Clockwise = R

2 HO 4 Br

Redraw so lowest is in the back

counterclockwise = S

Q5: Show the product of the following arrow pushing. Indicate charge.

Chem 110

Q5: Show the product of the following arrow pushing. Indicate charge.

Formal charge on Oxygen = 6-7 = -1!

Remember that the overall charge has to be the same on both sides of the "equation"

Chem 110

Q6: Which complex is likely low spin? Which is more likely to absorb blue light? Show using d orbital splitting: [Fe(CN)₆]³⁻ or [Fe(H₂O)₆]Cl₂

[Fe(CN)₆]³⁻Equation:

What is the oxidation state?

What do you know?

- Overall bracket = -3
- CN is -1 O.N. each

Fe + 6(CN) = -3

$$x + 6(-1) = -3$$

$$x - 6 = -3$$

$$x = -3 + 6$$

$$x = +3$$

$[Fe(H_2O)_6]Cl_2$

What do you know?

- Overall bracket balanced with Cl₂
- Cl = -1, so overall bracket must be 2+ $[Fe(H_2O)_6]^{2+}$ and 2 x Cl⁻
- Water (aqua) is neutral (zero) O.N.

Equation:

Fe + $6(H_2O)$ =+2

x + 6(0) = +2

x = +2

How many d electrons?

Fe⁰ (neutral) [Ar]4s² 3d⁶

Take away 3 electrons [Ar]45² 3d⁶ 3d⁵

Take away 2 electrons 3d⁶

Splitting?

Spectrochemical Series (of Ligands)

Stronger field ligand; more splitting!

Large ΔE absorbed, means short wavelength absorbed (violet, blue).

Weaker field ligand; less splitting!

4 unpaired electrons; so high spin!

Small ΔE absorbed, means long wavelength absorbed (red).

Color?

Please fill out Mercury Evaluations 1% bonus is >75% of class fills it out!

https://www.mcgill.ca/mercury/students

Good luck on exams. Focus, but "relax". You can do it ©

Thank you for your enthusiasm, patience, and participation!