第四章 连续时间信号和系统的复频域分析

2025年5月5日

拉普拉斯正变换: $F_{(s)}=\int_{-\infty}^{+\infty}f(t)\cdot\mathrm{e}^{-st}\,\mathrm{d}t$, $(s=\sigma+j\omega)$, s:复频率,F(s): 复频谱

拉普拉斯反变换: $f(t) = \frac{1}{2\pi j} \int_{\sigma - j\infty}^{\sigma + j\infty} F(s) \cdot e^{st} ds$

计算拉普拉斯反变换方法: ①部分分式展开法 ②留数定理

部分分式展开法:
$$F(s) = \frac{B(s)}{A(s)} = \frac{b_m(s-z_1)(s-z_2)\cdots(s-z_m)}{a_n(s-p_1)(s-p_2)\cdots(s-p_n)}$$

零点: z_1, z_2, \cdots, z_m ; 极点: p_1, p_2, \cdots, p_n 极点为单阶极点: $F(s) = \frac{k_1}{s-p_1} + \frac{k_2}{s-p_2} + \cdots + \frac{k_n}{s-p_n}$

 $\begin{aligned} k_i &= F(s) \cdot \left(s - p_i\right) \Big|_{s = p_i}; \\ f(t) &= \left(k_1 \cdot \mathrm{e}^{p_1 t} + k_2 \cdot \mathrm{e}^{p_2 t} + \dots + k_n \mathrm{e}^{p_n t}\right) \cdot u(t) \\ \text{极点为r阶极点} \colon F(s) &= \frac{B(s)}{(s - p_1)^r \cdot \dots \cdot (s - p_n)} = \frac{k_{11}}{(s - p_1)^r} + \frac{k_{12}}{(s - p_1)^{r - 1}} + \dots + \frac{k_{1}r}{s - p_1} + \dots \end{aligned}$

单边拉普拉斯变换:从0开始

存在条件: 求收敛域,即找出满足 $\lim f(t) \cdot e^{-\sigma t} = 0$ 的 σ 取值范围

双边拉普拉斯变换:看成两个单边拉普拉斯变换的叠加

存在条件: 两部分收敛域有公共部分

常用信号的单边拉氏变换:

$$e^{-\lambda t} \cdot u(t) \to \frac{1}{s+\lambda}$$

$$e^{-j\omega_0 t} \cdot u(t) \to \frac{1}{s + j\omega_0}$$

 $\cos \omega_0 t \cdot u(t) \to \frac{1}{s}$

$$\cos \omega_0 t \cdot u(t) \to \frac{s}{s^2 + \omega_0^2}$$
$$\sin \omega_0 t \cdot u(t) \to \frac{\omega_0}{s^2 + \omega_0^2}$$

$$\sin \omega_0 t \cdot u(t) \to \frac{s}{s^2 + \omega}$$

$$\delta^{(n)}(t) \to s^n$$
$$u(t) \to \frac{1}{s}$$

$$u(t) \to \frac{1}{s}$$

$$t^n \cdot u(t) \to \frac{n!}{s^{n+1}}$$

$$t \cdot e^{-\lambda t} \cdot u(t) \to \frac{1}{(s+\lambda)^2}$$

拉普拉斯变换与傅里叶变换的关系:

收敛域包含虚轴时(或收敛边界在虚轴上), 拉普拉斯变换和傅里叶变换均存在

收敛域不包含虚轴时, 拉普拉斯变换存在, 傅里叶变换不存在

拉普拉斯变换的性质:

线性特性

时移特性: $f(t) \rightarrow F(s) \Rightarrow f(t-t_0) \cdot u(t-t_0) \rightarrow e^{-st_0} \cdot F(s)$

复频移特性: $f(t) \to F(s) \Rightarrow e^{-s_0t} \cdot f(t) \to F(s+s_0)$ 即: 时间函数乘 e^{-s_0t} ,相当于变换式在s域内左移 s_0

尺度特性: $f(t) \to F(s) \Rightarrow f(at) \to \frac{1}{a} F\left(\frac{s}{a}\right)$

卷积特性: $f_1(t) \rightarrow F_1(s), f_2(t) \rightarrow F_2(s) \Rightarrow f_1(t) * f_2(t) \rightarrow F_1(s) \cdot F_2(s)$

$$f_1(t) \to F_1(s), f_2(t) \to F_2(s) \Rightarrow f_1(t) \cdot f_2(t) \to \frac{1}{2\pi j} [F_1(s) * F_2(s)]$$

时域微分特性: $f(t) \to F(s) \Rightarrow \frac{\mathrm{d}f(t)}{\mathrm{d}t} \to s \cdot F(s) - f(0^-)$

$$f(t) \to F(s) \Rightarrow \frac{\mathrm{d}^2 f(t)}{\mathrm{d}t^2} \to s^2 F(s) - s \cdot f(0^-) - f'(0^-)$$

$$f(t) \to F(s) \Rightarrow \frac{d^2 f(t)}{dt^2} \to s^2 F(s) - s \cdot f(0^-) - f'(0^-)$$

时域积分特性: $f(t) \to F(s) \Rightarrow \int_{-\infty}^{t} f(\tau) d\tau \to \frac{F(s)}{s} + \frac{f^{(-1)}(0^{-})}{s}$

复频域微分特性: $f(t) \to F(s) \Rightarrow -t \cdot f(t) \to \frac{s}{ds}$

初值定理: $f(t) \to F(s) \Rightarrow f(0^+) = \lim_{t \to 0^+} f(t) = \lim_{s \to +\infty} s \cdot F(s)$

适用条件: F(s)必须为真分式

终值定理: $f(t) \to F(s) \Rightarrow f(\infty) = \lim_{t \to +\infty} f(t) = \lim_{s \to 0} F(s)$

适用条件: $\lim_{t\to\infty} f(t)$ 必须存在,即复频域中,F(s)的极点都位于s平面的左半平面,若极点在原点则仅能为单阶极点

傅里叶变换的基本性质	拉普拉斯变换的性质
线性特性	线性特性
对称特性: $f(t) \to F(\omega) \Rightarrow F(t) \to 2\pi f(-\omega)$	x
尺度特性: $f(t) \to F(\omega) \Rightarrow f(at) \to \frac{1}{ a } F\left(\frac{\omega}{a}\right)$	$f(t) \to F(s) \Rightarrow f(at) \to \frac{1}{a}F\left(\frac{s}{a}\right)$
时移特性: $f(t) \to F(\omega) \Rightarrow f(t+t_0) \to F(\omega) \cdot e^{j\omega t_0}$	$f(t) \to F(s) \Rightarrow f(t - t_0) \cdot u(t - t_0) \to e^{-st_0} \cdot F(s)$
频移特性: $f(t) \to F(\omega) \Rightarrow f(t) \cdot e^{\pm j\omega_0 t} \to F(\omega \mp \omega_0)$	$f(t) \to F(s) \Rightarrow e^{-s_0 t} \cdot f(t) \to F(s + s_0)$
时域微分特性: $f(t) \to F(\omega) \Rightarrow \frac{d^n f(t)}{dt^n} \to (j\omega)^n \cdot F(\omega)$	$f(t) \to F(s) \Rightarrow \frac{\mathrm{d}^2 f(t)}{\mathrm{d}t^2} \to s^2 F(s) - s \cdot f(0^-) - f'(0^-)$
积分特性: $f(t) \to F(\omega) \Rightarrow \int_{-\infty}^{t} f(\tau) d\tau \to \frac{1}{j\omega} F(\omega) + \pi \cdot F(0) \cdot \delta(\omega)$	$f(t) \to F(s) \Rightarrow \int_{-\infty}^{t} f(\tau) d\tau \to \frac{F(s)}{s} + \frac{f^{(-1)}(0^{-})}{s}$
频域微分特性: $f(t) \to F(\omega) \Rightarrow (-jt)^n \cdot f(t) \to \frac{\mathrm{d}F^n(\omega)}{\mathrm{d}\omega^n}$	$f(t) \to F(s) \Rightarrow -t \cdot f(t) \to \frac{dF(s)}{ds}$
时域卷积特性: $f_1(t) \to F_1(\omega), f_2(t) \to F_2(\omega) \Rightarrow f_1(t) * f_2(t) \to F_1(\omega) \cdot F_2(\omega)$	$f_1(t) \to F_1(s), f_2(t) \to F_2(s) \Rightarrow f_1(t) * f_2(t) \to F_1(s) \cdot F_2(s)$
频域卷积特性: $f_1(t) \to F_1(\omega), f_2(t) \to F_2(\omega) \Rightarrow f_1(t) \cdot f_2(t) \to \frac{1}{2\pi} [F_1(\omega) * F_2(\omega)]$	$f_1(t) \to F_1(s), f_2(t) \to F_2(s) \Rightarrow f_1(t) \cdot f_2(t) \to \frac{1}{2\pi j} [F_1(s) * F_2(s)]$

$$R_{zs}(s) = H(s) \cdot E(s), \ H(s) = \frac{\mathcal{L}\big[r_{zs}(t)\big]}{\mathcal{L}[e(t)]}$$

零极点分布图:

零点:只影响时域函数的幅度和相移,不影响振荡频率