Tarea 04	Circuitos Eléctricos II	Calificación:
Fecha de entrega 11/12/23	Martínez Buenrostro Jorge Rafael	N.L. 09

Primero pasamos el circuito del dominio del tiempo al dominio de Laplace

Ahora por medio del análisis de nodos obtenemos las siguientes expresiones

$$V_{1} = V_{g} = \frac{325}{s}$$

$$V_{0} = V_{1} - V_{3}$$

$$Nodo 2 : \frac{V_{2} - V_{1}}{250} + \frac{V_{2}}{500} + \frac{V_{2} - V_{3}}{250} = 0$$

$$Nodo 3 : \frac{V_{3}}{s * L} + \frac{V_{3} - V_{2}}{250} + \frac{V_{3} - V_{1}}{\frac{1}{s * C}} = 0$$

Utilizando maxima resolvemos el sistema de ecuaciones

(%o15)
$$\left[V1 = \frac{325}{s}, V2 = \frac{260 \ s + 130000}{s^2 + 1000 \ s}, V3 = \frac{325}{s + 1000} \right]$$

Tarea 04	Circuitos Eléctricos II	Calificación:
Fecha de entrega 11/12/23	Martínez Buenrostro Jorge Rafael	N.L. 09

Declaramos la siguiente ecuación $V_0 = V_1 - V_3$ en máxima

(%i28) V0(s):=325000/(s^2+1000·s);
(%o28) V0(s):=
$$\frac{325000}{s^2+1000 s}$$

Para obtener I_o podemos usar la Ley de Ohm de tal forma que $I_o=\frac{V_3}{s*L}$, declaramos esta igualdad en máxima

(%i31) IO(s):=
$$\frac{520}{(s \cdot (s+1000))}$$
;
(%o31) IO(s):= $\frac{520}{s(s+1000)}$

Para obtener $v_0(t)$ y $i_0(t)$ aplicamos la transformada inversa de Laplace a V_0 y I_0

(%i35)
$$v0(t):=ilt(V0(s),s,t);$$
 (%i37) $i0(t):=ilt(I0(s),s,t);$ (%o35) $v0(t):=ilt(V0(s),s,t)$ (%o37) $i0(t):=ilt(I0(s),s,t)$ (%i38) $i0(t);$ (%i38) $i0(t);$ (%o36) $325-325$ %e^{-1000 t} (%o38) $\frac{13}{25} - \frac{13 \% e^{-1000 t}}{25}$

Tarea 04	Circuitos Eléctricos II	Calificación:
Fecha de entrega 11/12/23	Martínez Buenrostro Jorge Rafael	N.L. 09

- a) Encontrar $I_1(s)$ y $I_2(s)$
- Encontrar $i_1(t)$ y $i_2(t)$

Primero pasamos el circuito del dominio del tiempo al dominio de Laplace

Ahora por medio del análisis de nodos obtenemos las siguientes expresiones

Nodo 1:
$$-\frac{10}{s} + \frac{V_1 - V_2}{s * L} + \frac{V_1 - V_3}{100} = 0$$

Nodo 2: $\frac{V_2 - V_1}{s * L} + \frac{V_2}{50} + \frac{V_2 - V_3}{\frac{1}{s * C}} = 0$
Nodo 3: $V_3 = \frac{375}{s}$

Utilizando máxima resolvemos el sistema de ecuaciones

(%i44)solve([n1(s), n2(s), n3(s)], [V1, V2, V3]);

$$\left[V1 = \frac{1375 \text{ s}^2 + 143750 \text{ s} + 6875000}{\text{s}^3 + 250 \text{ s}^2 + 15000 \text{ s}}, V2 = \frac{375 \text{ s}^2 + 75000 \text{ s} + 6875000}{\text{s}^3 + 250 \text{ s}^2 + 15000 \text{ s}}, V3 = \frac{375}{\text{s}} \right]$$

Tarea 04	Circuitos Eléctricos II	Calificación:
Fecha de entrega 11/12/23	Martínez Buenrostro Jorge Rafael	N.L. 09

Para obtener el valor de I_1 podemos usar la Ley de Ohm de tal forma que $I_1=rac{V_1-V_3}{100}$, declaramos esta expresión en máxima para obtener el siguiente resultado

$$(\%i51) I1(s) := (V1(s)-V3(s))/100;$$

(%o51) I1(s):=
$$\frac{10 s^2 + 500 s + 12500}{s^3 + 250 s^2 + 15000 s}$$

Para poder obtener el valor de I_2 usamos la Ley de Corrientes de Kirchhoff, pero nos hace falta el valor de la corriente del capacitor que nombraremos I_c . Mediante Ley de Ohm obtenemos que

$$I_c = \frac{V_3 - V_2}{\frac{1}{s * C}}$$

Agregamos la expresión de I_c en maxima y obtenemos el siguiente resultado

(%i62) Ic(s):=(V3(s)-V2(s))/(1/(s·C));
(%o62) Ic(s):=
$$\frac{15 s - 1000}{2 s^2 + 500 s + 30000}$$

Con las expresiones de I_c e I_1 podemos usar la Ley de Corrientes de Kirchhoff para obtener que

$$I_2 = I_c + I_1$$

Declaramos esta expresión en maxima para obtener el siguiente resultado

(%i68) I2(s):=Ic(s) + I1(s);
(%o68) I2(s):=
$$\frac{35 s^2 + 25000}{2 s^3 + 500 s^2 + 30000 s}$$

Para obtener $i_1(t)$ y $i_2(t)$ aplicamos la transformada inversa de Laplace a I_1 y I_2

(%i69) i1(t):=ilt(I1(s),s,t); (%i71) i2(t):=ilt(I2(s),s,t); (%o69) i1(t):=ilt(I1(s),s,t) (%o71) i2(t):=ilt(I2(s),s,t) (%o70) i1(t); (%i70) i1(t); (%i72) i2(t); (%o70)
$$-\frac{25 \% e^{-100 t}}{2} + \frac{65 \% e^{-150 t}}{3} + \frac{5}{6}$$
 (%o72)
$$-\frac{75 \% e^{-100 t}}{2} + \frac{325 \% e^{-150 t}}{6} + \frac{5}{6}$$

Tarea 04	Circuitos Eléctricos II	Calificación:
Fecha de entrega 11/12/23	Martínez Buenrostro Jorge Rafael	N.L. 09

- a) Encuentra el equivalente de Thévenin entre los puntos a y b en el dominio de Laplace
- b) Encuentra la expresión de la corriente en la resistencia de carga de 2Ω en el dominio de Laplace

Primero pasamos el circuito del dominio del tiempo al dominio de Laplace

Para encontrar el equivalente de Thévenin, el primer paso es encontrar V_{Th}

Del circuito podemos obtener las siguientes ecuaciones

$$-\frac{20}{s} - 0.2V_x + V_{Th} = 0 \implies V_{Th} = \frac{20}{s} + 0.2V_x \implies Ec. 1$$
$$-\frac{20}{s} + V_x = 0 \implies V_x = \frac{20}{s} \implies Ec. 2$$

Sustituyendo Ec.2 en Ec.1

$$V_{Th} = \frac{20}{s} + 0.2V_x = \frac{20}{s} + 0.2 * \frac{20}{s} = \frac{24}{s}$$

Tarea 04	Circuitos Eléctricos II	Calificación:
Fecha de entrega 11/12/23	Martínez Buenrostro Jorge Rafael	N.L. 09

Para obtener el valor de R_{Th} colocamos una fuente voltaje con un valor de 1V, y quitamos la fuente de voltaje independiente

De este circuito obtenemos las siguientes ecuaciones

$$-V_x - 0.2V_x + i + 1 = 0 \implies Ec. 1$$
$$V_x = 5i \implies Ec. 2$$

Sustituyendo Ec.2 en Ec.1 y despejando i

$$i = \frac{1}{5}$$

$$R_{Th} = \frac{1}{i} = \frac{1}{\frac{1}{5}} = 5\Omega$$

Para encontrar la expresión de la corriente usamos la Ley de Voltaje de Kirchhoff

$$-\frac{24}{s} + 5I + 2I + sLI = 0 \iff 5I + 2I + sLI = \frac{24}{s} \iff I(5 + 2 + sL) = \frac{24}{s}$$

$$I = \frac{24}{s^2L + 7s}$$