Lecture 16

The Real Business Cycle Model

Part 3: Competitive Equilibrium

Hui-Jun Chen

The Ohio State University

July 14, 2022

Overview

- Recall that in Lecture 13, there is no production in dynamic model.
- The following 5 lectures is for **Real Business Cycle** (RBC) model:
 - Lecture 14: consumer
 - Lecture 15: firm
 - Lecture 16: competitive equilibrium
 - Lecture 17: formal example
 - Lecture 18: application to bring RBC to data

Review: Consumer's Problem

Taken $\{w,w',r,T,T',\pi,\pi'\}$ as given, a representative consumer chooses

Taken $\{w,w',r,T,T',\pi,\pi'\}$ as given, a representative consumer chooses $\{C',N_S,N_S'\}$ to solve

$$\max_{C',N_S,N_S'} u\left(wN_S + \pi - T + \frac{w'N_S' + \pi' - T' - C'}{1+r}\right), \qquad (1)$$

$$-v(N_S) + u(C') - v(N_S')$$

which we can back out C, S, l, l'.

Review: Firm's Problem

Taken (w. w/ w) as siven a represent

Taken $\{w,w',r\}$ as given, a representative firm chooses $\{N_D,N_D',\underline{K'}\}$ to solve

$$\max_{N_{D},N'_{D},K'} zF(K,N_{D}) - wN_{D} - [K' - (1-\delta)K] + \frac{z'F(K',N'_{D}) - w'N'_{D} + (1-\delta)K'}{1+r},$$
(2)

which we can back out Y,Y',π,π',I

$$Y = ZF(K, N_0)$$

 $Y' = Z'F(K', N_0')$
 T, T'
 $I = K' - (I-J)K$.

Government Budget Constraint

Government behaves exactly the same in two-period model:

- current budget constraint: G = T + B
- future budget constraint: $G' + (1+r)B = T' \neq B' = \frac{1}{1+r} = \frac{1}{1+r}$
- lifetime budget constraint: $G + \frac{G'}{1+r} = T + \frac{T'}{1+r}$

Taken $\{r\}$ as given, government satisfy lifetime budget constraint by choosing $\{T, T', B\}$.

Market Clear

There are three markets to clear:

- 1 labor markets clear at each date determines wage:
 - find w such that $N_S = N_D$
 - find $\widehat{w'}$ such that $N'_S = N'_D$. Wa las ' law.

- 2 goods markets clear at each date determines consumption and Run need to clear investment:
 - $\underline{\mathsf{date}\ 0}$ (today): Y = C + I + G
 - date 1 (tomorrow): Y' = C' + I' + G'
- **3** bonds market clears at date 0 determines real interest rate:
 - find r such that S = B r domain the credit

Competitive Equilibrium: RBC Model

Given exogenous quantities $\{G, G', z, z', \underline{K}\}$, a **competitive equilibrium** is a set of

consumer choices

$$\{C, \underline{C', N_S, N_S', l, l', S},$$

2 firm choices

$$\{Y, Y', \pi, \pi', N_D, N'_D, I, K'\}$$

- 3 government choices $\{T, T', B\}$, and
- prices $\{w, w', r\}$

such that

- \bullet consumer solves problems in (1),
- 2 firm solves problems in (2),
- government balances its budget, and
- 4 all three markets clear.

$$W \rightarrow N_S = N_D \qquad Y \rightarrow S = B$$

 $W' \rightarrow N_S' = N_D'$

Plan to analyze the Model

In the following slides, we are going to use graphical analysis on two markets in current period:

- current labor market: interaction of firm and consumer today
 - similar to static model: labor supply and labor demand curves
 - what's new: both curves reflect the dynamic tradeoff through interest rate labor demand & labor supply
- 2 current goods market: interaction of firm, consumer and government today
 - new: construct and analyze output supply and output demand curves

Hui-Jun Chen (OSU) Lecture 16 July 14, 2022 8 / 19

The Current Labor Market

Figure 11.14 Determination of Equilibrium in the Labor Market Given the Real Interest Rate $\it r$

- consumer optimality: ceteris paribus, N^s in w
 - N1: $\frac{dN^S}{dw} > 0$, substitution dominates income effect
- firm optimality: $N^d \downarrow$ in w
 - MPN = w, : diminishing MPN
 - account for multiple markets: intersect at $N^*(r)$
 - \bullet note: top figure is given r,π
 - labor mkt clearing w is $w^*(r)$

The Current Labor Market (Cont.)

Figure 11.14 Determination of Equilibrium in the Labor Market Given the Real Interest Rate $\it r$

- r increases?
- N2 (consumer): $N^s(r) \uparrow$ in $r \uparrow$ $N^s(r) \uparrow$ in $r \uparrow$
 - firm: :: MPN = w, same
 - consumer wealth increases?
 - **N3** (consumer): $N^s(r) \downarrow \Rightarrow w \uparrow, N^*(r) \downarrow$
 - firm: nothing
 - Bottom chart: $N^*(r) \rightarrow Y^*(r)$, output supply!

The Current Labor Market (Cont.)

Figure 11.14 Determination of Equilibrium in the Labor Market Given the Real Interest Rate $\it r$

ret worth 1 > Y+1.

- r increases?
 - **N2** (consumer): $N^s(r) \uparrow$ in $r \Rightarrow w \downarrow$, $N^*(r) \uparrow$
 - firm: :: MPN = w, same
- consumer wealth increases?
 - N3 (consumer): $N^s(r) \downarrow \Rightarrow w \uparrow, N^*(r) \downarrow$
 - firm: nothing
- Bottom chart: $N^*(r) \rightarrow Y^*(r)$, output supply!

The Output Supply Curve

Using our insight from labor market, we can repeat out analysis for any real interest rate r

- Top: each r implies a different "labor market equilibrium", i.e., w & N
- Middle: each N(r) yields production $Y^S(r)$
- Buttom: combined to show $\frac{dY^S}{dr} > 0$

Hui-Jun Chen (OSU)

Lecture 16

July 14, 2022

Shifts in the Output Supply Curve

K: endowment K: firm's chore.

How do changes in exogenous variables shift $Y^S(r)$? Consider 2 cases:

- shift in lifetime wealth (for example, by gov't spending or taxation)
- 2 change in total factor productivity (TFP) or capital stock
 - ullet recall static model: with K fixed, these have the same effect

In each case, we can start our analysis with the current labor market.

Wealth and Output Supply

Complete the Model $WC = W \cdot N_S + TC - T'$ $WC' = W' \cdot N_S' + TC - T'$ $WC' = W' \cdot N_S' + TC - T'$

Suppose $G \uparrow \text{ or } G' \uparrow = G + \frac{G'}{1+r}$.

- **gov.** budget: $T \uparrow$ or $T' \uparrow$
- consumer budget: $we \downarrow$
- N3: $dN^S/d(we) < 0$, $N^S(r) \uparrow$ (shift to the right, top panel)
- Middle: $N \uparrow \Rightarrow Y^S \uparrow$
- bottom: combine, get rightward shift in output supply

G1 = we J= Y51

14 / 19

TFP / Capital and Output Supply

Suppose TFP $\underline{z} \uparrow$.

■ firm optimality:

 $w^* \uparrow N^* \uparrow$

$$MPN = 2D_NF(\cdot) \uparrow \Rightarrow N^d \uparrow$$

 $=z_2F(K,N)$ Top: N^d shifts out \Rightarrow

Middle: production fcn shifts up, $\because z \uparrow$

Bottom: combine, outward shift in output supply

Summary: Current Labor Market

We have constructed most of the model!

- labor market clearing, conditional on the interest rate
- trace through production function to get output supply curve

Now we need to determine the equilibrium interest rate, r^* .

- pair the output supply curve with the **output demand curve**
- who demands goods today, and how much?
 - consumer: consumption $C^d(r,Y)$
 - firm: investment $I^d(r)$
 - government: expenditures G
 - use GDP accounting to get aggregate demand for goods

Figure 11.18 The Demand for Current Goods

Complete the Model

- plot(D(r, Y)) on y-axis, Y on x-axis
- depends on wealth: $we = \frac{w'N' + \pi' T'}{1 + r}$, which depends on income.
- Not true for I and G
 - MPC < 1: flatter than 45° line
 - MPC diminishing: concave
 - combine: cross 45° line at $Y^d(r)$

Work with Model

Constructing Output Demand

 $C^{d}(r_{1}) + I^{d}(r_{1}) + G$ 45° Y_2 $C^d(r_2) + I^d(r_2) + G$ r_2 V^d Y_1

How different r affect output demand? $MPK_{>}' < MPK_{>}'$

- $\underline{C2}$ (consumer): $\underline{C^d(r)}$ if \underline{r} \uparrow (substitution effect dominates)
- **firm**: optimal investment schedule $(\underline{r} = MPK' \delta)$, $(\underline{r} \uparrow)$ $\Rightarrow MPK' \uparrow \Rightarrow I^d \downarrow$
- **gov**: no change, G exogenous
- Combine:

Constructing Output Demand (Cont.)

- $\textbf{1} \text{ intersection with } 45^{\circ} \downarrow$
- $\begin{tabular}{ll} \textbf{2} & \textbf{output demand curve} \ Y^d \\ & \textbf{downward sloping} \\ \end{tabular}$

 $\underline{Y^d(r)}$ shift to the right if $\top + \overline{\top + r}$

- 2 future income $\uparrow \Rightarrow C^d \uparrow$

Other changes (e.g., current TFP)

are ambiguous in general!

Competitive Equilibrium

Figure 11.21 The Complete Real Intertemporal Model

