

Cesar Acosta Ph.D.

Department of Industrial and Systems Engineering University of Southern California

Regression vs Classification

Regression vs Classification

Response is numeric in Regression problems

Regression vs Classification

Response is categorical in Classification problems

Classification problems - Example

- Response product choice (product A, product B, product C)
- Predictors
- age group
- gender
- location
- o ses
- student
- married

Classification problems - Example

- Response product choice (product A, product B, product C)
- Predictors
- age group
- gender
- location
- o ses
- student
- married

Response is categorical with 3 categories

Logistic Regression models are used in classification problems where the response has two categories

Predict if an English citizen agrees with Brexit

X: years of working experience

Y: Agrees (A)

Disagrees (D)

Х	Υ
33	А
27	А
12	D
41	Α
19	D

Predict if an English citizen agrees with Brexit

X: years of working experience

Y: Agrees (1)

Disagrees (0)

Х	Υ
33	1
27	1
12	0
41	1
19	0

- Odds of random event
- Indicator random variable
- Bernoulli random variable
- Logistic distribution function

Odds of a random event

A random event 'A' may be observed with probability π

Odds of a random event

A random event 'A' may be observed with probability π

The odds of event A

$$Odds [A] = \frac{\pi}{1 - \pi}$$

Odds of a random event

A random event 'A' may be observed with probability π

The odds of event A

$$Odds [A] = \frac{\pi}{1 - \pi}$$

how much likely is that A occurs than it is that A does not occur

Odds of a random event - Example

Assume that 2/3 of voters are in favor of candidate A and 1/3 in favor of candidate B

Odds of a random event - Example

Assume that 2/3 of voters are in favor of candidate A and 1/3 in favor of candidate B

The odds of candidate A

Odds [A] =
$$\frac{\pi}{1-\pi} = \frac{2/3}{1-2/3} = \frac{2}{1}$$

Odds of a random event - Example

Assume that 2/3 of voters are in favor of candidate A and 1/3 in favor of candidate B

The odds of candidate A

Odds [A] =
$$\frac{\pi}{1-\pi} = \frac{2/3}{1-2/3} = \frac{2}{1}$$

The probability of voting for A is twice the probability of voting for candidate B

Indicator random variable

Definition: The indicator r.v. of event A has pdf

$$y = \begin{cases} 1 & if event A occurs \\ 0 & otherwise \end{cases}$$

where
$$P[A] = \pi$$

Definition: A r.v. Y is called Bernoulli if its pdf is

Definition: A r.v. Y is called Bernoulli if its pdf is

$$y$$

$$\begin{cases}
1 & \text{with probability} & \pi \\
0 & \text{with probability} & 1-\pi
\end{cases}$$
 $E[Y] = 1 P[Y=1] + 0 P[Y=0]$
 $= 1 \quad \pi + 0 \quad (1-\pi)$
 $= \pi$

Definition: A r.v. Y is called Bernoulli if its pdf is

$$E[Y] = P[Y = 1]$$

Definition: A r.v. Y is called Bernoulli if its pdf is

$$y = \left[egin{array}{lll} 1 & ext{with probability} & \pi \ 0 & ext{with probability} & 1-\pi \end{array}
ight.$$

with pdf

$$P[Y = y] = \pi^{y} (1-\pi)^{1-y}$$

Bernoulli random variable - Example

A Bernoulli r.v. is defined for customer gender as

$$y = \left[egin{array}{lll} 1 & \emph{if category male} & \emph{wp.} & \pi \ 0 & \emph{if category female} & \emph{wp.} & 1-\pi \ \end{array}
ight]$$

$$\frac{P[Y=1]}{P[Y=0]} = \frac{\pi}{1-\pi}$$

Bernoulli random variable - Example

A Bernoulli r.v. is defined for customer gender as

$$y = \left[egin{array}{lll} 1 & \emph{if category male} & \emph{wp.} & \pi \ 0 & \emph{if category female} & \emph{wp.} & 1-\pi \ \end{array}
ight]$$

$$\frac{P[Y=1]}{P[Y=0]} = \frac{\pi}{1-\pi}$$
 the odds of a male customer

Bernoulli random variable - Example

A Bernoulli r.v. is defined for customer gender as

$$y = \left[egin{array}{lll} 1 & \emph{if category male} & \emph{wp.} & \pi \ 0 & \emph{if category female} & \emph{wp.} & 1-\pi \end{array}
ight]$$

$$\frac{P[Y=1]}{P[Y=0]} = \frac{\pi}{1-\pi}$$

how much likely is it a customer male, than is it a female

Bernoulli probability function

$$f(y) = P[Y = y]$$

= $\pi^{y} (1-\pi)^{1-y}$

$$y = 0,1$$

Three Bernoulli probability functions

Is there a relation between Y and X?

Three Bernoulli probability functions

Linear regression

Is there a relation between E[Y] and X?

Is there a relation between π and X?

Logistic random variable

A r.v. X is called Logistic with mean μ

$$pdf f(x) = \frac{1}{\beta} \frac{e^{-(\frac{x-\mu}{\beta})}}{\left[1 + e^{-(\frac{x-\mu}{\beta})}\right]^2} -\infty < x < \infty$$

cdf
$$F(x) = \frac{e^{(\frac{x-\mu}{\beta})}}{1+e^{(\frac{x-\mu}{\beta})}} = \frac{1}{1+e^{-(\frac{x-\mu}{\beta})}}$$

Logistic distribution

Logistic distribution

$$F(x) = \frac{e^{(\frac{x-\mu}{\beta})}}{1+e^{(\frac{x-\mu}{\beta})}} = \frac{1}{1+e^{-(\frac{x-\mu}{\beta})}}$$

$$F(x) = \frac{e^{\beta_0 + \beta_1 x}}{1 + e^{\beta_0 + \beta_1 x}} = \frac{1}{1 + e^{-\beta_0 - \beta_1 x}}$$

Logistic distributions

Logistic regression -relation

As x increases, π varies along the logistic cdf

$$\pi = \frac{e^{\beta_0 + \beta_1 x}}{1 + e^{\beta_0 + \beta_1 x}} = \frac{1}{1 + e^{-\beta_0 - \beta_1 x}}$$

Logistic regression -relation

As x increases, π varies along the logistic cdf

$$\pi = \frac{e^{\beta_0 + \beta_1 x}}{1 + e^{\beta_0 + \beta_1 x}} = \frac{1}{1 + e^{-\beta_0 - \beta_1 x}}$$

For arbitrary x_i

$$\pi_i = \frac{e^{\beta_0 + \beta_1 x_i}}{1 + e^{\beta_0 + \beta_1 x_i}} = \frac{1}{1 + e^{-\beta_0 - \beta_1 x_i}}$$

Logistic regression -assumption

This relation between π_i and x_i

$$\pi_i = \frac{e^{\beta_0 + \beta_1 x_i}}{1 + e^{\beta_0 + \beta_1 x_i}} = \frac{1}{1 + e^{-\beta_0 - \beta_1 x_i}}$$

Logistic regression -assumption

This relation between π_i and x_i

$$\pi_i = \frac{e^{\beta_0 + \beta_1 x_i}}{1 + e^{\beta_0 + \beta_1 x_i}} = \frac{1}{1 + e^{-\beta_0 - \beta_1 x_i}}$$

is estimated by

$$\hat{\pi_i} = \frac{1}{1 + e^{-b_0 - b_1 x_i}}$$

Logistic regression -predictions

Probabilities are predicted by

$$\hat{\pi_i} = \frac{1}{1 + e^{-b_0 - b_1 x_i}}$$

- Category of the response is predicted by
 - \circ if $\hat{\pi_i} \geq 0.5$ predict $\hat{y} = 1$
 - \circ . $\hat{\pi_i}$ < 0.5 predict $\hat{y} = 0$

Logistic regression -assumptions

- π_i changes with x_i (not linearly)
- As x increases π varies, moving along an S shape curve (logistic cdf is the shape curve)
- Standard regression assumptions do not apply
- For different X, the Y variables are independent

What is the meaning of β_1 ?

What is β_1 ?

Define for category 1

odds

when
$$X = x_1$$

$$\pi_1 = P[Y=1]$$

$$O_1 = \frac{\pi_1}{1 - \pi_1}$$

when
$$X = x_2$$

$$\pi_2 = P[Y=1]$$

$$O_2 = \frac{\pi_2}{1 - \pi_2}$$

$$\pi = \frac{1}{1 + e^{-\beta_0 - \beta_1 x}}$$

$$\pi = \frac{1}{1 + e^{-\beta_0 - \beta_1 x}}$$

$$\frac{1}{\pi} = 1 + e^{-\beta_0 - \beta_1 x}$$

$$\pi = \frac{1}{1 + e^{-\beta_0 - \beta_1 x}}$$

$$\frac{1}{\pi} = 1 + e^{-\beta_0 - \beta_1 x}$$

$$\frac{1}{\pi} - 1 = e^{-\beta_0 - \beta_1 x}$$

$$\pi = \frac{1}{1 + e^{-\beta_0 - \beta_1 x}}$$

$$\frac{1}{\pi} = 1 + e^{-\beta_0 - \beta_1 x}$$

$$\frac{1}{\pi} - 1 = e^{-\beta_0 - \beta_1 x}$$

$$\frac{1-\pi}{\pi} = e^{-\beta_0 - \beta_1 x}$$

$$\frac{\pi}{1-\pi} = e^{\beta_0 + \beta_1 x}$$

$$\frac{\pi}{1-\pi} = e^{\beta_0 + \beta_1 x}$$

$$O = e^{\beta_0 + \beta_1 x}$$

the odds of category 1 as a function of x

$$\ln O = \beta_0 + \beta_1 x$$

the log odds of category 1 is a linear function of x

Compare the odds of category 1, when X changes from x_1 to x_2

$$O_1 = e^{\beta_0} e^{\beta_1 x_1}$$

$$O_1 = e^{\beta_0} e^{\beta_1 x_1}$$
 $O_2 = e^{\beta_0} e^{\beta_1 x_2}$

Compare the odds of category 1, when X changes from x_1 to x_2

$$O_1 = e^{\beta_0} e^{\beta_1 x_1}$$

$$O_2 = e^{\beta_0} e^{\beta_1 x_2}$$

$$O_1 = e^{\beta_0} e^{\beta_1 x_1}$$
 $O_2 = e^{\beta_0} e^{\beta_1 x_2}$
 $\frac{O_2}{O_1} = e^{\beta_1 (x_2 - x_1)}$

Compare the odds of category 1, when X changes from x_1 to x_2

$$O_1 = e^{\beta_0} e^{\beta_1 x_1}$$

$$O_2 = e^{\beta_0} e^{\beta_1 x_2}$$

$$\frac{O_2}{O_1} = e^{\beta_1 (x_2 - x_1)}$$

If
$$x_2 - x_1 = 1$$

$$\ln \left(\frac{O_2}{O_1}\right) = \beta$$

$$\ln \left(\frac{O_2}{O_1}\right) = \beta_1$$

$$\frac{O_2}{O_1} = e^{\beta_1}$$

 β_1 is difference of log odds

 e^{β_1} is the ratio of the odds

when x increases one unit

Logistic regression -cross validation

K-fold cross validation for classification problems

Logistic regression –cross validation

- There is a proportion for each category in the dataset
- Split the data into k-folds, such that the proportions between categories are similar across all folds, and as they are in the whole dataset
- kfold = Kfold(n_splits,shuffle=True,random_state=)

Logistic regression –cross validation

- There is a proportion for each category in the dataset
- Split the data into k-folds, such that the proportions between categories are similar across all folds, and as they are in the whole dataset
- kfold = KFold(n_splits,shuffle=True,random_state=)

Logistic Regression

Multinomial Regression models are used in classification problems where the response has more than two categories

Logistic regression – multiple categories

Use

LogisticRegression(multi_class='multinomial',...)