Tutorium 7

Funktionentheorie

16. & 17. Juni 2025

Theorem

Ist f in einer offenen Menge Ω , welche einen (positiv orientierten) Kreis C (oder allgemeiner eine toy contour C) enthält, holomorph bis auf Polstellen^a z_1,\ldots,z_N innerhalb von C, so gilt

$$\int_C f(z) dz = 2\pi i \sum_{k=1}^N \operatorname{res}_{z_k} f.$$

^aDie Definition dieser kommt später.

Theorem

Ist f in einer offenen Menge Ω , welche einen (positiv orientierten) Kreis C (oder allgemeiner eine toy contour C) enthält, holomorph bis auf Polstellen^a z_1, \ldots, z_N innerhalb von C, so gilt

$$\int_C f(z) dz = 2\pi i \sum_{k=1}^N \operatorname{res}_{z_k} f.$$

^aDie Definition dieser kommt später.

Hierbei bezeichnet $\operatorname{res}_{z_k} f$ das $\operatorname{Residuum}$ von f bei z_k , welches, falls z_k eine Polstelle der Ordnung n ist, wie folgt berechnet werden kann:

$$\operatorname{res}_{z_k} f = \lim_{z \to z_k} \frac{1}{(n-1)!} \left(\frac{\partial}{\partial z} \right)^{n-1} ((z-z_k)^n f(z)).$$

Theorem

Ist f in einer offenen Menge Ω , welche einen (positiv orientierten) Kreis C (oder allgemeiner eine toy contour C) enthält, holomorph bis auf Polstellen^a z_1, \ldots, z_N innerhalb von C, so gilt

$$\int_C f(z) dz = 2\pi i \sum_{k=1}^N \operatorname{res}_{z_k} f.$$

^aDie Definition dieser kommt später.

Hierbei bezeichnet $\operatorname{res}_{z_k} f$ das $\operatorname{Residuum}$ von f bei z_k , welches, falls z_k eine Polstelle der Ordnung n ist, wie folgt berechnet werden kann:

$$\operatorname{res}_{z_k} f = \lim_{z \to z_k} \frac{1}{(n-1)!} \left(\frac{\partial}{\partial z} \right)^{n-1} ((z-z_k)^n f(z)).$$

Definiert ist dieses als Koeffizient a_{-1} in der Entwicklung

$$f(z) = a_{-n}(z - z_k)^{-n} + \cdots + a_{-1}(z - z_k)^{-1} + G(z)$$

mit G holomorph in einer Umgebung von z_k (für die Existenz einer solchen Entwicklung, s. Lemma 3.2).

Nullstellen holomorpher Funktionen

Seien $\Omega \subset \mathbb{C}$ offen, $f:\Omega \to \mathbb{C}$ holomorph mit $\not\equiv 0$ und $z_0 \in \Omega$ eine Nullstelle von f, d.h. $f(z_0)=0$. Dann existieren eine offene Umgebung $U\subset \Omega$ von z_0 , eine holomorphe Funktion $g:U\to \mathbb{C}$ mit $g(z_0)\not=0$ und ein eindeutiges $n\in \mathbb{N}$, sodass

$$f(z) = (z - z_0)^n g(z) \qquad \forall z \in U.$$

n heißt Ordnung (auch Vielfachheit) der Nullstelle z₀.

Seien $\Omega \subset \mathbb{C}$ offen, $z_0 \in \Omega$ und $f : \Omega \setminus \{z_0\} \to \mathbb{C}$ holomorph.

Seien $\Omega \subset \mathbb{C}$ offen, $z_0 \in \Omega$ und $f : \Omega \setminus \{z_0\} \to \mathbb{C}$ holomorph.

• Existiert $w \in \mathbb{C}$, sodass $\tilde{f}(z) = \begin{cases} f(z) & \text{falls } z \neq z_0, \\ w & \text{falls } z = z_0 \end{cases}$ holomorph in Ω ist, d.h. existiert eine holomorphe Fortsetzung von f, so heißt z_0 hebbare Singularität.

Seien $\Omega \subset \mathbb{C}$ offen, $z_0 \in \Omega$ und $f : \Omega \setminus \{z_0\} \to \mathbb{C}$ holomorph.

- Existiert $w \in \mathbb{C}$, sodass $\tilde{f}(z) = \begin{cases} f(z) & \text{falls } z \neq z_0, \\ w & \text{falls } z = z_0 \end{cases}$ holomorph in Ω ist, d.h. existiert eine holomorphe Fortsetzung von f, so heißt z_0 hebbare Singularität.
- Verschwindet f in einer Umgebung von z_0 nicht und ist die Funktion $\frac{1}{f}$, wenn sie durch Null bei z_0 fortgesetzt wird, holomorph, so heißt z_0 *Polstelle* von f. Die *Ordnung* (auch *Vielfachheit*) der Polstelle ist die Ordnung der Nullstelle der derart fortgesetzten Funktion $\frac{1}{f}$.

Seien $\Omega \subset \mathbb{C}$ offen, $z_0 \in \Omega$ und $f : \Omega \setminus \{z_0\} \to \mathbb{C}$ holomorph.

- Existiert $w \in \mathbb{C}$, sodass $\tilde{f}(z) = \begin{cases} f(z) & \text{falls } z \neq z_0, \\ w & \text{falls } z = z_0 \end{cases}$ holomorph in Ω ist, d.h. existiert eine holomorphe Fortsetzung von f, so heißt z_0 hebbare Singularität.
- Verschwindet f in einer Umgebung von z_0 nicht und ist die Funktion $\frac{1}{f}$, wenn sie durch Null bei z_0 fortgesetzt wird, holomorph, so heißt z_0 *Polstelle* von f. Die *Ordnung* (auch *Vielfachheit*) der Polstelle ist die Ordnung der Nullstelle der derart fortgesetzten Funktion $\frac{1}{f}$.
- Ist z_0 weder eine hebbare Singularität, noch eine Polstelle, so heißt z_0 wesentliche Singularität von f.

Seien $\Omega \subset \mathbb{C}$ offen, $z_0 \in \Omega$ und $f : \Omega \setminus \{z_0\} \to \mathbb{C}$ holomorph.

- Existiert $w \in \mathbb{C}$, sodass $\tilde{f}(z) = \begin{cases} f(z) & \text{falls } z \neq z_0, \\ w & \text{falls } z = z_0 \end{cases}$ holomorph in Ω ist, d.h. existiert eine holomorphe Fortsetzung von f, so heißt z_0 hebbare Singularität.
- Verschwindet f in einer Umgebung von z_0 nicht und ist die Funktion $\frac{1}{f}$, wenn sie durch Null bei z_0 fortgesetzt wird, holomorph, so heißt z_0 Polstelle von f. Die Ordnung (auch Vielfachheit) der Polstelle ist die Ordnung der Nullstelle der derart fortgesetzten Funktion $\frac{1}{f}$.
- Ist z_0 weder eine hebbare Singularität, noch eine Polstelle, so heißt z_0 wesentliche Singularität von f.

Ist $(z_n)_{n\in\mathbb{N}}\subset\Omega$ eine Folge ohne Häufungspunkt in Ω und $g:\Omega\setminus\{z_n:n\in\mathbb{N}\}\to\mathbb{C}$ holomorph mit Polstellen bei den z_n , so heißt g meromorph.

Im Folgenden seien Ω , z_0 und f wie auf der vorherigen Folie.

Im Folgenden seien Ω , z_0 und f wie auf der vorherigen Folie.

Theorem (Riemannscher Hebbarkeitssatz)

Ist f beschränkt (in einer Umgebung von z_0), so ist z_0 eine hebbare Singularität.

Im Folgenden seien Ω , z_0 und f wie auf der vorherigen Folie.

Theorem (Riemannscher Hebbarkeitssatz)

Ist f beschränkt (in einer Umgebung von z_0), so ist z_0 eine hebbare Singularität.

Hingegen ist z_0 genau dann eine Polstelle von f, wenn $|f(z)| \to \infty$ für $z \to z_0$ gilt.

Im Folgenden seien Ω , z_0 und f wie auf der vorherigen Folie.

Theorem (Riemannscher Hebbarkeitssatz)

Ist f beschränkt (in einer Umgebung von z_0), so ist z_0 eine hebbare Singularität.

Hingegen ist z_0 genau dann eine Polstelle von f, wenn $|f(z)| \to \infty$ für $z \to z_0$ gilt.

Theorem (Casorati-Weierstraß)

Ist $f: D_r(z_0) \setminus \{z_0\} \to \mathbb{C}$ holomorph und z_0 eine wesentliche Singularität, so ist $f(D_r(z_0) \setminus \{z_0\})$ dicht in \mathbb{C} .