MA8020 Tekniska beräkningar

Något om numerisk derivering

Mikael Hindgren

14 november 2024

Exempel 1

En bil färdas mellan två platser och vi har information om hur långt den kört vid ett antal tidpunkter $t_0, t_1, ..., t_n$. Hur ska vi uppskatta bilens fart vid t ex $t = t_3$?

Allmänt: Antag att vi kan känner ett antal funktionsvärden för en funktion f(x) vid $x = x_0, x_1, ..., x_n$ men vi har ingen information om derivatan f'(x).

Hur ska vi uppskatta f'(x)?

Definition 1

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Differensapproximationer

Om $h = x_{i+1} - x_i$ är ett (litet) positivt tal kan vi göra följande approximationer:

$$f'(x) \approx D_{\rm f}(h) = \frac{f(x+h)-f(x)}{h} \leftarrow {\sf Fram åtdifferens}$$
 $f'(x) \approx D_{\rm b}(h) = \frac{f(x)-f(x-h)}{h} \leftarrow {\sf Bak åtdifferens}$
 $f'(x) \approx D_{\rm c}(h) = \frac{f(x+h)-f(x-h)}{2h} \leftarrow {\sf Central differens}$

$$f'(x) \approx D_b(h) = \frac{f(x) - f(x - h)}{h} \leftarrow Bakåtdifferens$$

$$f'(x) \approx D_c(h) = \frac{f(x+h) - f(x-h)}{2h} \leftarrow Central differen$$

Differensapproximationer

Sats 1 (Taylors formel)

Om f har kontinuerliga derivator av ordning $\leq n + 1$ kring x så är

$$\begin{array}{ll} f(x_1) & = & f(x) + f'(x)(x_1 - x) + \frac{f''(x)}{2}(x_1 - x)^2 + \frac{f^{(3)}(x)}{3!}(x_1 - x)^3 + \cdots \\ & + & \frac{f^{(n)}(x)}{n!}(x_1 - x)^n + \frac{f^{(n+1)}(\xi)}{(n+1)!}(x_1 - x)^{n+1} \quad \text{där ξ ligger mellan x och x_1.} \end{array}$$

Med $x_1 = x \pm h \Leftrightarrow h = \pm (x_1 - x)$ är ξ mellan x och $x \pm h$ och vi får

$$f(x+h) = f(x) + f'(x)h + \frac{f''(x)}{2}h^2 + \frac{f^{(3)}(x)}{3!}h^3 + \cdots$$

$$f(x-h) = f(x) - f'(x)h + \frac{f''(x)}{2}h^2 - \frac{f^{(3)}(x)}{3!}h^3 + \cdots$$

Addition av dessa uttryck ger direkt en approximation för f''(x):

$$f''(x) \approx \frac{f(x+h) - 2f(x) + f(x-h)}{h^2}$$

Exempel 2

Bestäm approximationer för f'(3) och f''(3) med framåt-, bakåt- och centraldifferenser och följande funktionsvärden:

Х	1	2	3	4	5	
f(x)	1	3	2	5	5	

Resultat:

$$f'(3) \approx \begin{cases} D_{f}(1) & = \frac{f(3+1)-f(3)}{1} = \frac{5-2}{1} = 3\\ D_{b}(1) & = \frac{f(3)-f(3-1)}{1} = \frac{2-3}{1} = -1\\ D_{c}(1) & = \frac{f(3+1)-f(3-1)}{2\cdot 1} = \frac{5-3}{2\cdot 1} = 1 \end{cases}$$

$$f''(3) \approx \frac{f(3+1)-2f(3)+f(3-1)}{1^{2}} = \frac{5-2\cdot 2+3}{1^{2}} = 4$$

Felet vid differensapproximationer

Med Taylorutveckling kan vi uppskatta felet vid framåt-, bakåt och centraldifferens:

$$f(x \pm h) = f(x) \pm f'(x)h + \frac{f''(x)}{2}h^2 \pm \frac{f^{(3)}(x)}{3!}h^3 + \frac{f^{(4)}(x)}{4!}h^4 + \cdots$$

$$\Rightarrow f'(x) = \frac{f(x+h) - f(x)}{h} + \mathcal{O}(h) \leftarrow \text{Framåtdifferens}$$

$$f'(x) = \frac{f(x) - f(x-h)}{h} + \mathcal{O}(h) \leftarrow \text{Bakåtdifferens}$$

$$f'(x) = \frac{f(x+h) - f(x-h)}{2h} + \mathcal{O}(h^2) \leftarrow \text{Centraldifferens}$$

$$f''(x) = \frac{f(x+h) - 2f(x) + f(x-h)}{h^2} + \mathcal{O}(h^2) \leftarrow \text{Centraldifferens}$$

Vi kan alltså normalt förvänta oss betydligt högre noggrannhet om vi använder centraldifferens.

Derivering via interpolation

Man kan förstås också gå vägen via polynominterpolation:

Ansatsen $p_n(x) = c_0 + c_1 x + c_2 x^2 + \cdots + c_n x^n$ och villkoren $p(x_i) = f(x_i)$ ger ekvationssystemet

$$\begin{pmatrix} 1 & x_0 & x_0^2 & \dots & x_0^n \\ 1 & x_1 & x_1^2 & \dots & x_1^n \\ & & & \vdots & \\ 1 & x_n & x_n^2 & \dots & x_n^n \end{pmatrix} \begin{pmatrix} c_0 \\ c_1 \\ \vdots \\ c_n \end{pmatrix} = \begin{pmatrix} f(x_0) \\ f(x_1) \\ \vdots \\ f(x_n) \end{pmatrix} \Leftrightarrow A\mathbf{c} = \mathbf{f}$$

För att bestämma approximationer till f:s derivator behöver vi bara derivera $p_n(x)$.

Anm:

- Ofta används $p_2(x)$ vilket ger fel av $\mathcal{O}(h^2)$ i derivatan.
- Derivering med lokal polynominterpolation är inte känslig för om vi har ekvidistanta x-värden (dvs konstant h) vilket differensapproximationerna är.

Derivering via interpolation

Exempel 3

Uppskatta f'(3) och f''(3) genom att först bestämma ett interpolationspolynom av grad 2 med hjälp av tabellen:

Х	1	2	3	4	5	
f(x)	1	3	2	5	5	

Ansats $p_2(x) = c_0 + c_1x + c_2x^2$ och centrering kring x = 3:

$$\begin{pmatrix} 1 & 2 & 2^2 \\ 1 & 3 & 3^2 \\ 1 & 4 & 4^2 \end{pmatrix} \begin{pmatrix} c_0 \\ c_1 \\ c_2 \end{pmatrix} = \begin{pmatrix} f(2) \\ f(3) \\ f(4) \end{pmatrix} = \begin{pmatrix} 3 \\ 2 \\ 5 \end{pmatrix} \Leftrightarrow \begin{pmatrix} c_0 \\ c_1 \\ c_2 \end{pmatrix} = \begin{pmatrix} 17 \\ -11 \\ 2 \end{pmatrix}$$

⇒
$$p_2(x)$$
 = 17 - 11x + 2x²
⇒ $p'_2(x)$ = -11 + 4x ⇒ $p'_2(3)$ = 1
⇒ $p''_2(x)$ = 4

OBS! Samma resultat som centraldiff.approx.

Richardsonextrapolation

Taylors formel igen:

$$f(x \pm h) = f(x) \pm f'(x)h + \frac{f''(x)}{2}h^2 \pm \frac{f^{(3)}(x)}{3!}h^3 + \frac{f^{(4)}(x)}{4!}h^4 + \cdots$$

= $f(x) \pm f'(x)h + a_2h^2 \pm a_3h^3 + a_4h^4 + \cdots$

där a_2 , a_3 , a_4 , ... beror på x men inte på h.

Centraldifferensapproximationen kan nu skriva som:

$$f'(x) = \underbrace{\frac{f(x+h) - f(x-h)}{2h}}_{=F_2(h)} + \underbrace{\frac{2a_3}{b}}_{=b} h^2 + \mathcal{O}(h^4) = F_2(h) + bh^2 + \mathcal{O}(h^4)$$
$$= F_2(h) + \mathcal{O}(h^2)$$

Genom att beräkna $F_2(h)$ för h och 2h och sedan kombinera resultaten kan vi bestämma en approximation till f'(x) med mindre trunkeringsfel än $F_2(h)$.

Anm:
$$\mathcal{O}(h^n) \pm \mathcal{O}(h^n) = \mathcal{O}(h^n)$$
 och om k är ett fixt tal så är $\mathcal{O}((kh)^n) = \mathcal{O}(h^n)$

HÖGSKOLAN I HALNSTAD

Richardsonextrapolation

Vi får:

$$F_{2}(h) = \frac{f(x+h) - f(x-h)}{2h} = f'(x) - bh^{2} + \mathcal{O}(h^{4})$$

$$F_{2}(2h) = \frac{f(x+2h) - f(x-2h)}{4h} = f'(x) - b(2h)^{2} + \mathcal{O}(h^{4})$$

$$\Rightarrow \frac{F_{2}(2h) - F_{2}(h)}{3} = -bh^{2} + \mathcal{O}(h^{4}) = F_{2}(h) - f'(x) + \mathcal{O}(h^{4})$$

$$\Leftrightarrow f'(x) = \frac{4F_{2}(h) - F_{2}(2h)}{3} + \mathcal{O}(h^{4}) = F_{4}(h) + \mathcal{O}(h^{4})$$

Processen kan upprepas och $F_k(h)$ och f'(x) kan bestämmas rekursivt genom

$$F_k(h) = \frac{2^{k-2}F_{k-2}(h) - F_{k-2}(2h)}{2^{k-2} - 1} \Rightarrow f'(x) = F_k(h) + \mathcal{O}(h^k), \ k = 2, 4, 6, ...$$

Anm: Lewis Richardson (1881-1953) var en engelsk matematiker.

Numerisk derivering Richardsonextrapolation

Exempel 4

Uppskatta f'(0.5) med hjälp av $F_2(h)$ och $F_4(h)$, h = 0.1, och funktionsvärdena:

ſ	Χ	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
	f(x)	0.99500	0.98007	0.95534	0.92106	0.87758	0.82534	0.76484	0.69671	0.62161

$$F_{2}(0.1) = \frac{f(0.5 + 0.1) - f(0.5 - 0.1)}{2 \cdot 0.1} = \frac{0.82534 - 0.92106}{0.2} = -0.47860$$

$$F_{4}(0.1) = \frac{4F_{2}(0.1) - F_{2}(2 \cdot 0.1)}{3}$$

$$= \frac{1}{3} \left(4 \frac{f(0.5 + 0.1) - f(0.5 - 0.1)}{2 \cdot 0.1} - \frac{f(0.5 + 0.2) - f(0.5 - 0.2)}{2 \cdot 0.2} \right)$$

$$= \frac{1}{3} \left(4 \frac{0.82534 - 0.92106}{0.2} - \frac{0.76484 - 0.95534}{0.4} \right) = -0.47938$$

$$\Rightarrow f'(0.5) = -0.47860 + \mathcal{O}(h^{2}) \text{ respektive } f'(0.5) = -0.47938 + \mathcal{O}(h^{4})$$

Anm: I tabellen ovan är $f(x) = \cos x \Rightarrow f'(0.5) = -\sin 0.5 = -0.47942...$