考研高数习题集

枫聆

2021年8月27日

目录

1	极限	具相关	3
	1.1	1 [∞] 类型极限	3
	1.2	10 类型极限	3
	1.3	夹逼准则应用	4
	1.4	级数相关的极限	5
	1.5	去除根式的尴尬	7
	1.6	换元取极限	8
	1.7	递归求极限	8
	1.8	等价无穷小的替换	8
	1.9	中值定理	8
	1.10	含积分的极限	9
2	导数		9
	2.1	导数定义相关的	9
3	不定	这积分	9
	3.1	多项式分式	9
	3.2	分母带根号 1	0
	3.3	換元法	1
	3.4	高次	1
	3.5	分部积分 1	1
	3.6	三角有理式 1	1
	3.7	被积函数含不常见函数形式 1	2

4	定积分	14
	4.1 参数积分求导	
	4.2 奇怪的定积分	14
5	反常积分	15
	5.1 含有 e^x 的被积函数	15
	5.2 待定参数	15
6	微分方程	17
	6.1 线性微分方程解的结构	17
	6.2 带积分的微分方程	17
7	多元函数	18
	7.1 带不等式的条件极值	18
		18 19
	7.1 带不等式的条件极值	19
	7.1 带不等式的条件极值	19
8	7.1 带不等式的条件极值 二重积分 8.1 交换次序 8.2 化极坐标 级数	19 19 19
8	7.1 带不等式的条件极值 二重积分 8.1 交换次序 8.2 化极坐标	19 19 19
8	7.1 带不等式的条件极值 二重积分 8.1 交换次序 8.2 化极坐标 级数	19 19 19

极限相关

1^{∞} 类型极限

Example 1.1. 若 $\lim \alpha(x) = 0$, $\lim \beta(x) = \infty$, 且 $\lim \alpha(x)\beta(x) = A$, 其中 A 是一个常数,则

$$\lim \left[1 + \alpha(x)\right]^{\beta(x)} = e^A.$$

hints 带指数形式的表达式,第一想法是把指数拿下来

$$\lim [1 + \alpha(x)]^{\beta(x)} = \lim e^{\beta(x)\ln(1+\alpha(x))} = \lim e^{\beta(x)\alpha(x)} = e^A.$$

Example 1.2. 求极限

$$\lim_{x \to \infty} \left[\frac{x^2}{(x-a)(x+b)} \right]^x.$$

hints

$$\left[\frac{x^2}{(x-a)(x+b)}\right]^x = \left(\frac{x}{x-a}\right)^x \cdot \left(\frac{x}{x+b}\right)^x = \left(1 + \frac{a}{x-a}\right)^x \cdot \left(1 - \frac{b}{x+b}\right)^x = e^{a-b}.$$

Example 1.3. 求极限

$$\lim_{n\to\infty} \left(\frac{\sqrt[n]{a}+\sqrt[n]{b}+\sqrt[n]{c}}{3}\right)^n.$$

hints 往 $(1+\alpha(x))^{\beta(x)}$ 上凑

$$\left(\frac{\sqrt[n]{a} + \sqrt[n]{b} + \sqrt[n]{c}}{3}\right)^{n} = \left(1 + \frac{\sqrt[n]{a} + \sqrt[n]{b} + \sqrt[n]{c} - 3}{3}\right)^{n}$$

考虑 $\alpha(x)\beta(x)$

$$\frac{(\sqrt[n]{a}-1)+(\sqrt[n]{b}-1)+(\sqrt[n]{c}-1)}{3}\cdot n = \frac{1}{3}\left(\frac{\sqrt[n]{a}-1}{\frac{1}{n}}+\frac{\sqrt[n]{b}-1}{\frac{1}{n}}+\frac{\sqrt[n]{c}-1}{\frac{1}{n}}\right)$$

10 类型极限

Example 1.4. 若 $\lim \alpha(x) = 0$, $\lim \beta(x)\alpha(x) = 0$, 则

$$(1 + \alpha(x))^{\beta(x)} - 1 \sim \alpha(x)\beta(x).$$

hints 取对数

$$e^{\beta(x)\ln(1+\alpha(x))} - 1 \sim e^{\beta(x)\alpha(x)} - 1 \sim \beta(x)\alpha(x).$$

夹逼准则应用

Example 1.5. 求极限

hints

Example 1.6. 求极限

hints

Example 1.7. 求极限

hints

$$\lim_{n\to\infty} \left(\frac{n}{n^2+1} + \frac{n}{n^2+2} + \dots + \frac{n}{n^2+n} \right).$$

$$\frac{n^2}{n^2+n} \le s \le \frac{n^2}{n^2+1}.$$

$$\lim_{n \to 0^+} x \left[\frac{1}{x} \right].$$

$$x - 1 \le [x] \le x$$

$$\lim_{n\to\infty}\frac{2^n}{n!}.$$

$$\left(\frac{2}{1}\right) \times \frac{2}{2} \times \frac{2}{3} \times \dots \times \frac{2}{n}.$$

级数相关的极限

Example 1.8. $\lim_{n\to\infty} a_n = A$, \mathbb{N}

$$\lim_{n \to \infty} \frac{a_1 + a_2 + \dots + a_n}{n} = A.$$

hints 直接考察

$$\left| \frac{a_1 + a_2 + \dots + a_n}{n} - A \right| = \left| \frac{(a_1 - A) + (a_2 - A) + \dots + (a_n - A)}{n} \right|$$

用极限的定义等式右边分成两部分,即对任意的 $\varepsilon > 0$,可以找到一个 n_1 ,使得 $n > n_1$ 时有 $|x_n - A| < \varepsilon$,那么

$$\left| \frac{(a_1 - A) + (a_2 - A) + \dots + (a_{n_1} - A)}{n} + \frac{(a_{n_1 + 1} - A) + (a_{n_1 + 2} - A) + \dots + (a_n - A)}{n} \right| \\ \leq \frac{|a_1 - A| + |a_2 - A| + \dots + |a_{n_1} - A|}{n} + \frac{|a_{n_1 + 2} - A| + |a_{n_1 + 1} - A| + \dots + |a_n - A|}{n}$$

上述不等式右边第一项,形如 $\frac{C}{n}$,因为先对任意 $n>n_1$ 都有上述不等式成立,那么只需要让 n 取的大一点,就能使得 $\frac{C}{n}<\varepsilon$ (阿基米德公理). 右边第二项显然小于 $\frac{n-n_1}{n}\varepsilon$,于是综上

$$\left| \frac{a_1 + a_2 + \dots + a_n}{n} - A \right| < \varepsilon + \frac{n - n_1}{n} \varepsilon < 2\varepsilon.$$

如果题目中没有直接给出极限的具体值,我们可以用 O.Stolz 定理先猜出来,然后用初等方法来验证,再根据极限的唯一性,就得到了答案. 把 a_n 换成形式,例如

$$\lim_{n \to \infty} \frac{1 + \sqrt[2]{2} + \dots + \sqrt[n]{n}}{n} = \lim_{n \to \infty} \sqrt[n]{n} = 1.$$

Example 1.9. 求极限

$$x_n = \frac{1^k + 2^k + \dots + n^k}{n^{k+1}}.$$

hints 用 O.Stolz 定理考虑

$$\lim_{n\to\infty}\frac{n^k}{n^{k+1}-(n-1)^{k+1}}$$

分母二项式展开合并极有 $\lim \frac{n^k}{(k+1)n^k+\cdots} = \frac{1}{k+1}$. 这道题初等方法似乎不能很好的把握,用和式的方法写出来其实就是黎曼积分的定义

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{k} \frac{k}{n} = \int_{0}^{1} x^{k} = \frac{1}{k+1}.$$

级数相关的问题往往可以尝试考虑用定积分的思路来解决. 下面是 $1^k+2^k+\cdots+n^k$ 的转换思路

$$\sum_{i=1}^{n} i^{k} = n^{k+1} \frac{1}{n} \sum_{i=1}^{n} \left(\frac{i}{n}\right)^{k} \sim_{\infty} n^{k+1} \int_{0}^{1} x^{k} dx = \frac{n^{k+1}}{k+1}$$

$$\lim_{n \to \infty} \ln \sqrt[n]{a_1 a_2 \cdots a_n} = \ln a.$$

hints

$$\ln \sqrt[n]{a_1 a_2 \cdots a_n} = \frac{\ln a_1 + \ln a_2 + \cdots + \ln a_n}{n} = \ln a.$$

因为 $\ln x$ 的连续性, 所以 $\lim \ln a_n = \ln a$, 再根据 1.8.

$$\lim_{n \to \infty} \sqrt[n]{a_1 a_2 \cdots a_n} = a.$$

hints 取对数再根据1.10

$$\sqrt[n]{a_1 a_2 \cdots a_n} = e^{\ln \sqrt[n]{a_1 a_2 \cdots a_n}} = e^{\ln a} = a.$$

Example 1.12. 求极限

$$\lim_{n\to\infty} \frac{\sqrt[n]{n!}}{n}.$$

hints 由 1.11 可知 a_n 和 $b_n = \sqrt[n]{a_1 a_2 \cdots a_n}$ 的极限是相同的 (假设 a_n 的极限存在). 那么有一个推论,对于数列

$$a_1, \frac{a_2}{a_1}, \frac{a_3}{a_2}, \cdots, \frac{a_{n+1}}{a_n}, \cdots$$

则 $\lim \sqrt[n]{a_n} = \lim \frac{a_{n+1}}{a_n}$,只要等式右边的极限存在就行. 在这里我们只要设 $a_n = \frac{n!}{n^n}$ 即可,那么

$$\lim \frac{(n+1)!}{(n+1)^{n+1}} \cdot \frac{n^n}{n!} = \lim \frac{n^n}{(n+1)^n} = \frac{1}{(1+\frac{1}{n})^n} = \frac{1}{e}.$$

去除根式的尴尬

Example 1.13. 求极限

$$\lim_{x \to +\infty} \left[\sqrt[k]{(x+a_1)(x+a_2)\cdots(x+a_k)} - x \right].$$

hints

$$(x + a_1)(x + a_2) \cdots (x + a_k) = x^k \left(1 + \frac{a_1 + a_2 + \cdots + a_k}{x} + \mathcal{O}\left(\frac{1}{x^2}\right) \right)$$

那么

$$x\left(1+\frac{a_1+a_2+\cdots+a_k}{x}+\mathcal{O}\left(\frac{1}{x^2}\right)\right)^{\frac{1}{n}}=x\left(1+\frac{a_1+a_2+\cdots+a_n}{nx}+\mathcal{O}\left(\frac{1}{x^2}\right)\right)=x+\frac{a_1+a_2+\cdots+a_n}{nx}+\mathcal{O}\left(\frac{1}{x}\right),$$

这里第一个等号右边对 $(1+x)^p$ 在 x=0 处用了一下泰勒展开得到 $(1+qx+\mathcal{O}(x^2))$,这个 \mathcal{O} 表示最高次的多项式.

还有一种升次的方法, 即下面的恒等式

$$y-z = \frac{y^k - z^k}{y^{k-1} + y^{k-2}z + \dots + z^{k-1}}.$$

这里我们使得 $y = \sqrt[k]{(x+a_1)(x+a_2)\cdots(x+a_k)}$ 及 z=x, 那么原式就变成了

$$=\frac{(x+a_1)(x+a_2)\cdots(x+a_k)-x^k}{\left[\sqrt[k]{(x+a_1)(x+a_2)\cdots(x+a_k)}\right]^{k-1}+\left[\sqrt[k]{(x+a_1)(x+a_2)\cdots(x+a_k)}\right]^{k-2}x+\cdots+x^{k-1}}\\ =\frac{a_1+a_2+\cdots+a_k+\mathcal{O}(\frac{1}{x})}{\left[\sqrt[k]{(1+\frac{a_1}{x})(1+\frac{a_2}{x})\cdots(1+\frac{a_k}{x})}\right]^{k-1}+\left[\sqrt[k]{(1+\frac{a_1}{x})(1+\frac{a_2}{x})\cdots(1+\frac{a_k}{x})}\right]^{k-2}x+\cdots+1}}\quad \text{ LTFM } x^{k-1}$$

分母中 $\sqrt[k]{(1+\frac{\alpha_1}{x})(1+\frac{\alpha_2}{x})\cdots(1+\frac{\alpha_k}{x})}$ 是趋于 1 的,再用一下函数 $x^{\frac{m}{n}}$ 的连续性,取其函数值也是等于 1,所以 分母就有 $k\cdot 1$.

Example 1.14. 求极限

$$\lim_{n\to\infty} \sqrt[n]{n} = 1.$$

hints 取对数应用 e^x 的连续性

$$\lim e^{\frac{\ln n}{n}} = e^{\lim \frac{\ln n}{n}} = 1.$$

也可以使用一下10.1的伯努利不等式来证明,这里设 $\sqrt[n]{n} = 1 + h$,那么

$$n = (1+h)^n = 1 + nh + \frac{n(n-1)}{2}h^2 + \cdots$$

$$\Rightarrow n \ge \frac{n(n-1)}{2}h^2$$

$$\Rightarrow h^2 \le \frac{2}{n-1}.$$

当 $n \to \infty$ 时, $h \to 0$, 即 $\sqrt[n]{n} - 1 \to 0$, 所以 $\lim \sqrt[n]{n} = 1$.

换元取极限

Example 1.15. 求极限

$$\lim_{x \to 0} \frac{\sqrt[m]{x+1} - 1}{x}, \ m \in \mathbb{N}.$$

hints 设 $y=\sqrt[m]{x+1}-1$,显然 y 在 x=0 处连续,所以当 $x\to 0$ 时有 $y\to 0$,那么此时的极限就变成了

$$\lim_{y \to 0} \frac{y}{(y+1)^m - 1} = \frac{1}{m}.$$

这样上下都变成我们熟悉的多项式, 分母二项式展开.

Example 1.16. 求极限

$$\lim_{x \to 0} \frac{(x+1)^{\frac{n}{m}} - 1}{x}.$$

hints 还是使得 $y = (x+1)^{\frac{1}{m}} - 1$, 那么就变成了

$$\lim_{y \to 0} \frac{(1+y)^n - 1}{(1+y)^m - 1} = \lim_{y \to 0} \frac{(1+y)^n - 1}{y} \frac{y}{(1+y)m - 1} = \frac{n}{m}.$$

递归求极限

Example 1.17. 1.7 单调数列求极限

hints 考虑递归式

$$x_{n+1} = x_n \cdot \frac{2}{n+1},$$

等式两边同时取极限则有

$$a = a \cdot 0 \Rightarrow a = 0.$$

等价无穷小的替换

中值定理

Example 1.18. 求极限

$$\lim_{x \to +\infty} \frac{1}{2} x^2 [\ln \arctan(x+1) - \ln \arctan x].$$

hints 对连续函数 ln arctan x 应用中值定理

$$\lim_{x \to +\infty} \frac{1}{2} x^2 \frac{1}{[1 + (\theta + x)^2] \arctan(\theta + x)},$$

其中 $0 < \theta < 1$. 那么即有

$$\lim_{x\to +\infty}\frac{1}{2}\frac{x^2}{1+(\theta+x)^2}\frac{1}{\arctan(\theta+x)}=\frac{1}{\pi}.$$

含积分的极限

Example 1.19. 求极限

$$\lim_{x \to 0^+} \frac{\int_0^x \sqrt{x - t} e^t dt}{\sqrt{x^3}}$$

hints 这样的含参数积分最好的办法就是洛必达,但是这里首先需要换元一下,令 u = x - t,则

$$\int_0^x \sqrt{x-t}e^t dt = \int_0^x \sqrt{u}e^{x-u} du = e^x \sqrt{u}e^{-u} du.$$

再用洛必达

$$\lim_{x \to 0^+} = \frac{e^x \sqrt{u} e^{-u} du}{x^{\frac{3}{2}}} = \lim_{x \to 0^+} \frac{\left(\int_0^x \sqrt{u} e^{-u} du\right)'}{\left(x^{\frac{3}{2}}\right)'} = \frac{x^{\frac{1}{2}} e^{-x}}{\frac{3}{2} x^{\frac{1}{2}}} = \frac{2}{3}.$$

导数

导数定义相关的

Example 2.1. 已知 $f'(x_0) = -1$, 求

$$\lim_{x \to 0} \frac{x}{f(x_0 - 2x) - f(x_0 - x)}.$$

hints直觉上就是想办法凑导数的定义出来

$$\lim_{x \to 0} \frac{f(x_0 - 2x) - f(x_0)}{-2x} = -1$$
$$\lim_{x \to 0} \frac{f(x_0 - x) - f(x_0)}{-x} = -1$$

求出需要 $\lim_{x\to 0} \frac{f(x_0-2x)-f(x_0)}{x}$ 和 $\lim_{x\to 0} \frac{f(x_0-x)-f(x_0)}{x}$,两项相减再取倒.

不定积分

多项式分式

Example 3.1. 求

$$\int \frac{x^4 - x^2}{1 + x^2} dx.$$

hints 还是得部分分式

$$\frac{x^4 - x^2}{1 + x^2} = \frac{(x^4 - 1) - (x^2 + 1) + 2}{1 + x^2} = x^2 + \frac{2}{1 + x^2} - 2.$$

因此原函数为

$$\frac{x^3}{3} + 2\arctan x - 2x + C,$$

Example 3.2. 求

$$\int \frac{x+5}{x^2-6x+13} dx.$$

hints观察分子多项式次数小于分母的,且只小一次,所以我们考虑这样部分分式

$$\frac{1}{2} \int \frac{2x-6}{x^2-6x+13} dx + 8 \int \frac{1}{x^2-6x+13} dx = \frac{1}{2} \int \frac{1}{x^2-6x+13} d(x^2-6x+13) + 8 \int \frac{1}{4+(x-3)^2} dx,$$

因此原函数为

$$\frac{1}{2}\ln(x^2 - 6x + 13) + 4\arctan\frac{x-3}{2} + C.$$

Example 3.3. 求

$$\int \frac{x}{x^4 + 2x^2 + 5} dx$$

hints 观察分子多项式次数小于分母,且小两次,所以我们考虑这样部分分式

$$\int \frac{x}{4 + (x^2 + 1)^2} dx = \frac{1}{2} \int \frac{1}{4 + (x^2 + 1)^2} d(x^2 + 1) = \frac{1}{4} \arctan \frac{x^2 + 1}{2} + C$$

分母带根号

Example 3.4. 求

$$\int \frac{dx}{\sqrt{x(4-x)}}.$$

hints根号下凑平方

$$\int \frac{1}{\sqrt{4 - (x - 2)^2}} d(x - 2) = \arcsin \frac{x - 2}{2} + C$$

Example 3.5. 求

$$\int \frac{2-x}{\sqrt{3+2x-x^2}} dx.$$

hints 先分式把分子变成常数 1

$$\int \frac{2-x}{\sqrt{3+2x-x^2}} dx = \int \frac{1-x}{\sqrt{3+2x-x^2}} dx + \int \frac{1}{\sqrt{3+2x-x^2}} dx = \frac{1}{2} \int \frac{1}{\sqrt{3+2x-x^2}} d(3+2x-x^2) + \int \frac{1}{\sqrt{4-(x-1)^2}} dx,$$

因此原函数为

$$\sqrt{3+2x-x^2} + \arcsin\frac{x-1}{2} + C$$

Example 3.6. 求

$$\int \frac{x^2}{\sqrt{a^2 - x^2}} dx$$

hints 考虑第二类换元, 令 $x = a \sin t$, 则

$$\int \frac{a^2 \sin^2 t}{a \cos t} \cdot a \cos t dt = \frac{a^2}{2} \int 1 - \cos 2t dt = \frac{a^2 t}{2} - \frac{a^2}{4} \sin 2t.$$

把 t 变成 x 也有一点技巧,第二项可以变成 $\frac{1}{2}(a\sin t)(a\cos t)$,其中 $a\sin t = x, a\cos t = \sqrt{a^2-x^2}$,这样会方便一点

$$\frac{a^2\arcsin\frac{x}{a}}{2} - \frac{x}{2}\sqrt{a^2 - x^2} + C$$

换元法

Example 3.7. 求

$$\int \sqrt{1+e^x} dx$$

hints考虑第二类换元, 令 $x = \ln(t^2 - 1)$, 则

$$\int t \cdot \frac{2t}{t^2 - 1} dt = 2 \int 1 + \frac{1}{t^2 - 1} dt = 2t + \ln\left|\frac{t - 1}{t + 1}\right| + C$$

带入 $t = \sqrt{e^x + 1}$, 即得

$$2\sqrt{e^x+1} + \ln \frac{\sqrt{e^x+1}-1}{\sqrt{e^x+1}+1} + C$$

高次

分部积分

三角有理式

Example 3.8. 求

$$\int \frac{dx}{\cos x (1 + \sin x)}.$$

hints 这里有一个非常巧妙的第二类换元, 令 $x = \arcsin u$, 则

$$\int \frac{1}{\sqrt{1-u^2}(1+u)} \frac{1}{\sqrt{1-u^2}} du = \int \frac{1}{(1+u)(1-u^2)} du.$$

再把有理式拆开, 这过程使用待定系数的方法

$$\int \frac{1}{(1+u)(1-u^2)} du = \frac{1}{2} \int \frac{1}{1-u^2} + \frac{1}{(1+u)^2} du = -\frac{1}{4} \ln \left| \frac{1-u}{1+u} \right| - \frac{1}{2} \frac{1}{(1+u)}.$$

最后即有

$$-\frac{1}{4}\ln\left|\frac{1-\sin x}{1+\sin x}\right| - \frac{1}{2}\frac{1}{1+\sin x} + C.$$

Example 3.9. 求

$$\int \frac{dx}{\sin x(\sin x + \cos x)}.$$

hints 考虑第二类换元, 令 $x = \operatorname{arccot} u$, 则有

$$-\int \frac{1}{\frac{1}{\sqrt{1+u^2}}(\frac{1}{\sqrt{1+u^2}} + \frac{u}{\sqrt{1+u^2}})} \frac{1}{1+u^2} du = -\int \frac{1}{1+u} du = -\ln|u| + C = -\ln|1 + \cot x| + C.$$

被积函数含不常见函数形式

Example 3.10. 求

$$\int \frac{\arcsin e^x}{e^x} dx.$$

hints 必须得想办法吧 $\arcsin e^x$ 提出来,因为我们没有已知原函数导数为反三角的,这里自然地就要使用部分积分了

$$-\int \arcsin e^x d(e^{-x}) = -\frac{\arcsin e^x}{e^x} + \int e^{-x} \frac{e^x}{\sqrt{1 - e^{2x}}} dx = \int \frac{1}{\sqrt{1 - e^{2x}}} dx.$$

这里令 $t = \sqrt{1-e^{2x}}$,那么 $x = \frac{\ln(1-t^2)}{2}, dx = \frac{-t}{1-t^2}dt$,于是

$$\int \frac{1}{t} \frac{-t}{1-t^2} dt = \int \frac{1}{t^2-1} dt = \frac{1}{2} \ln \left| \frac{t-1}{t+1} \right| + C = \frac{1}{2} \ln \frac{\sqrt{1-e^{2x}}-1}{\sqrt{1-e^{2x}}+1} + C.$$

因此

$$\int \frac{\arcsin e^x}{e^x} dx = -\frac{\arcsin e^x}{e^x} + \frac{1}{2} \ln \frac{\sqrt{1 - e^{2x}} - 1}{\sqrt{1 - e^{2x}} + 1} + C$$

Example 3.11. 求

$$\int \ln\left(1+\sqrt{\frac{1+x}{x}}\right)dx, x>0$$

hints 首选分部积分,但是为了为了能部分积分,我们必须先第一类换元,令 $t=\sqrt{\frac{1+x}{x}}$,那么 $x=\frac{1}{t^2-1}$,于是

$$\int \ln(1+t)d\left(\frac{1}{t^2-1}\right) = \frac{\ln(1+t)}{t^2-1} - \int \frac{1}{(1+t)^2(t-1)},$$

其中

$$\int \frac{1}{(1+t)^2(t-1)} = \frac{1}{2} \int \frac{(t+1)-(t-1)}{(1+t)^2(t-1)} = \frac{1}{2} \int \frac{1}{t^2-1} - \frac{1}{(1+t)^2} = \frac{1}{4} \ln \left| \frac{t-1}{t+1} \right| + \frac{1}{2(1+t)} + C.$$

因此

$$\int \ln\left(1+\sqrt{\frac{1+x}{x}}\right)dx = \frac{\ln(1+t)}{t^2-1} + \frac{1}{4}\ln\left|\frac{t-1}{t+1}\right| + \frac{1}{2(1+t)} + C.$$

定积分

参数积分求导

Example 4.1. 设 f(x) 连续,求

$$\frac{d}{dx} \int_0^x t f(x^2 - t^2) dt.$$

hints 对于这种第二类的参数积分,对于有比较简洁的结果的,首先应该换元试试,令 $u=x^2-t^2$,那么即有

$$-\frac{1}{2} \int_{x^2}^0 f(u) du = \frac{1}{2} \int_0^{x^2} f(u) du$$

因此

$$\frac{1}{2}\frac{d}{dx}\int_0^{x^2} f(u)du = xf(x^2).$$

奇怪的定积分

hints 可以用分部积分

$$\int_0^{\pi} f(x)dx = xf(x)\big|_0^{\pi} - \int_0^{\pi} xf'(x)dx = \pi \int_0^{\pi} \frac{\sin x}{\pi - x}dx - \int_0^{\pi} \frac{\sin x}{\pi - x}dx = \int_0^{\pi} \sin x dx = 2.$$

反常积分

含有 e^x 的被积函数

Example 5.1. 讨论下述积分的收敛性

$$\int_{a}^{+\infty} x^{\mu} e^{-ax} dx \ (\mu, a > 0).$$

hints比较审敛法,取任意的 $\lambda > 1$, 即 $\frac{1}{x^{\lambda}}$ 是收敛的,于是

$$\lim_{x \to +\infty} \frac{x^{\mu}e^{-ax}}{\frac{1}{x^{\lambda}}} = \frac{x^{u+\lambda}}{e^{ax}} = 0,$$

因此原无穷积分也是收敛的.

Example 5.2. 讨论下述积分的收敛性

$$\int_0^{+\infty} \frac{x dx}{\sqrt{e^{2x} - 1}}.$$

hints这里需要注意两个上下积分限都需要考察,我们可以将上述积分划分为

$$\int_0^{+\infty} \frac{x dx}{\sqrt{e^{2x} - 1}} = \int_0^A \frac{x dx}{\sqrt{e^{2x} - 1}} + \int_A^{+\infty} \frac{x dx}{\sqrt{e^{2x} - 1}},$$

其中 $A \in (0, +\infty)$. 当 $x \to 0$ 时,取 $0 < \lambda < 1$,于是

$$\lim_{x \to 0} \frac{\frac{x}{\sqrt{e^{2x} - 1}}}{\frac{1}{x}^{\lambda}} = \frac{x^{1+\lambda}}{\sqrt{e^{2x} - 1}} = 0,$$

即积分 $\int_0^A \frac{xdx}{\sqrt{e^{2x}-1}}$ 是收敛的. 当 $x \to \infty$ 时,取 $\lambda > 1$,于是

$$\lim_{x \to \infty} \frac{\frac{x}{\sqrt{e^{2x} - 1}}}{\frac{1}{x}} = \frac{1}{\sqrt{e^{2x} \cdot x^{-(2\lambda + 2) - x^{-(2\lambda + 2)}}}} = 0,$$

待定参数

Example 5.3. 反常积分

$$\int_0^{+\infty} \frac{1}{x^a (1+x)^b} dx$$

收敛, 求 a,b.

hints 这道题还是用柯西审敛法,注意要同时考虑积分上下限. 当 $x\to +\infty$,那么就要和 $\frac{1}{x^\lambda}(\lambda>1)$ 比较,于是有

$$\lim_{x \to \infty} \frac{\frac{1}{x^a(1+x)^b}}{\frac{1}{x^{\lambda}}} = \frac{x^{\lambda - (a+b)}}{(\frac{1}{x} + 1)^b},$$

其中分母是趋于 0,为保证分子不趋于无穷,则需要 $\lambda<(a+b)$,即 a+b>1. 当 $x\to 0$ 时,那么就要和 $\frac{1}{x^\lambda}(\lambda<1)$ 比较,于是有

$$\lim_{x \to \infty} \frac{\frac{1}{x^a(1+x)^b}}{\frac{1}{x^{\lambda}}} = \frac{1}{x^{a-\lambda}(1+x)^b},$$

其中 $(1+x)^b \rightarrow 0$, 则 $a < \lambda$, 即 a < 1.

微分方程

线性微分方程解的结构

Example 6.1. 已知 $y_1 = e^{3x} - xe^{2x}$, $y_2 = e^x - xe^{2x}$, $y_3 = -xe^{2x}$ 是某二阶常系数非齐次线性微分方程的 3 个解, 求该方程的通解.

hints 这题考察线性微分方程解结构的一个非常典型的题,这里用到两个非齐次方程的解的差是齐次方程的解,则

$$y_2 - y_3 = e^x, y_1 - y_3 = e^{3x}.$$

它们是两个线性无关的解,因此它们是原方程导出的齐次方程的通解,我们再求一个特解即可,即 $y_1 - e^{3x} = -xe^{2x}$,则原方程的通解为

$$y = C_1 e^x + C_2 e^{3x} - x e^{2x}.$$

带积分的微分方程

Example 6.2. 设函数 f(x) 连续,且满足

$$\int_0^x f(x-t)dt = \int_0^x (x-t)f(t)dt + e^{-x} - 1$$

求 f(x).

hints 尝试去掉积分符号,去导前做一些变换,

$$\int_0^x f(u)du = x \int_0^x f(t)dt - \int_0^x t f(t)dt + e^{-x} - 1$$

$$f(x) = \int_0^x f(t)dt + x f(x) - x f(x) - e^{-x}$$

注意这里有 f(0) = -1(要善于发现这样的条件),设 $y = \int_0^x f(t)dt$,于是

$$y' - y = -e^{-x},$$

根据一阶线性方程的通解我们有

$$y = Ce^x + \frac{e^{-x}}{2},$$

则 $f(x) = Ce^x - \frac{e^{-x}}{2}$. 由于 f(0) = -1,因此 $C = -\frac{1}{2}$,最终 $f(x) = -\frac{e^x + e^{-x}}{2}$.

多元函数

带不等式的条件极值

Example 7.1. 求函数 $z = f(x,y) = x^2 - y^2 + 2$ 在椭圆域 $D = \{(x,y)|x^2 + y^2 \le 1\}$ 上的最大值和最小值. hints 这个不等式的取值范围是一个闭连通域,我们只需要分别考虑它里面点构成的区域和边界上的点即可. 在这个椭圆里面唯一的驻点是 (0,0),其对应的函数值为 2; 在椭圆上的点满足 $y = 4 - 4^x$,则 f(x) 可以改写为

$$z = x^2 - (4 - 4^x) + 22 = 5x^2 - 2$$
,

其中 $-1 \le x \le 1$, 那么其最大值为 3, 最小值为 -2. 三个驻点比较得出最终结果.

二重积分

交换次序

Example 8.1. 求积分

$$\int_0^1 dy \int_y^1 \frac{\tan x}{x} dx.$$

hints 明显这个被积函数对 dx 是不好积的,于是考虑交换积分次序. 交换次序可以考虑画图来做,于是有

$$\int_0^1 dx \int_0^x \frac{\tan x}{x} dy = \int_0^1 \tan x dx = -\ln \cos x |_0^1 = -\ln \cos x.$$

化极坐标

Example 8.2. 求积分

$$\int_0^2 dx \int_0^{\sqrt{2x-x^2}} \sqrt{x^2 + y^2} dy.$$

hints 被积函数出现 x^2+y^2 ,考虑化极坐标. 首先把极坐标方程写出来,确定 θ 变限在 $[0,\frac{\pi}{2}]$,当固定一点 x 时,此时 $0 \le y \le \sqrt{2x-x^2}$,那么考虑这个积分域的边界就有

$$x^2 + y^2 = \rho^2 = 2\rho\cos\theta \Rightarrow \rho = 2\cos\theta.$$

于是原积分为

$$\int_0^{\frac{\pi}{2}} d\theta \int_0^{2\cos\theta} \rho^2 d\rho = \int_0^{\frac{\pi}{2}} \frac{8\cos^3\theta}{3} d\theta = \frac{8}{3} \int_0^{\frac{\pi}{2}} (1 - \sin^2\theta) d\sin\theta = \frac{8}{3} (\sin\theta - \frac{\sin^3\theta}{3}) \Big|_0^{\frac{\pi}{2}} = \frac{16}{9}.$$

级数

不标准的幂级数

Example 9.1. 求幂级数

$$\sum_{n=1}^{\infty} \frac{n}{2^n + (-3)^n} x^{2n-1}$$

的收敛半径. hints这是一个不标准的幂级数,无法直接用结论. 所以先化标准的形式 $a_n x^n$. 先考虑积分,消掉指数的常数,即有

$$\sum_{n=1}^{\infty} \int_{0}^{x} \frac{n}{2^{n} + (-3)^{n}} x^{2n-1} = \sum_{n=1}^{\infty} \frac{1}{2(2^{n} + (-3)^{n})} x^{2n}.$$

再令 $u=x^2$,求 $\sum_{n=1}^{\infty} \frac{1}{2(2^n+(-3)^n)} u^n$ 的收敛半径,根据结论有

$$\lim_{n \to \infty} \left| \frac{2^n + (-3)^n}{2^{n+1} + (-3)^{n+1}} \right| = \frac{1}{3},$$

因此其收敛半径为 3,所以 $|x| < \sqrt{3}$,即原级数的收敛半径为 $\sqrt{3}$.

\mathbf{tricks}

一些有趣的不等式

Proposition 10.1.

$$a^{\frac{1}{n}} - 1 < \frac{a-1}{n}, \ a > 1.$$

hints 伯努利不等式.

$$(1+x)^n \le 1 + nx, \ n \ge 0, x \le -1.$$

使得 $(1+x) = a^{\frac{1}{n}}$, 即可得到上式.