

December 2015 Final Evaluation

Timothy Mitchell Thompkins

Diagnosis of Rolling Mill Cycloconverters Using Time-Frequency Signature Analysis

Advisor: Dr. Yong-June Shin

Yonsei University 역세대학교

Overview

01 Introduction

- Project goals and motivation
- Current Techniques

02 Theory Overview

- Cycloconverter Operation
- Time-Frequency Analysis
- Feature Identification
- Modeling

03 Operating Status Decision Boundary

- Error Analysis Technique
- Loaded Motor Error Statistical Analysis
- Unloaded Motor Statistical Analysis
- Error Decision Boundary Thresholds

04 Conclusion and Continued Research

- Next Steps
- Closing Remarks

Introduction

- <u>01</u> Project goals and motivation
- 02 Benchmarks

Introduction

Project Goals and Motivation

- Reduce gauge of steel in a controlled and reliable manner
 - Minimize damage to equipment and time down
- Confirm or call into question failure status of cycloconverter

Current Techniques

Benchmarking – Time Domain Analysis

Damaged cycloconverter input current of concern

Loss of blocking capability in specific SCR [2]

Attempt to identify faults in time domain [1]

[1] V. Guerrero, J. Pontt, J. Dixon, and J. Rebolledo, "A novel noninvasive failure-detection system for high-power converters based on SCRs," *IEEE Trans. Ind. Electron.*, vol. 60, no. 2, pp. 450 - 458, Feb. 2013.
[2] J. Pontt, J. Rodríguez, E. Cáceres, I. Illanes and J. Rebolledo, "Cycloconverter behavior for a grinding mill drive under firing pulses fault conditions," in *Industry Applications Conf.*, *Hong Kong*, 2005, pp. 645-649

Current Techniques

Benchmarking – TF Domain Analysis

Attempt to characterize the motor in the time-frequency domain [3]

Gabor transform to quickly identify motor faults [4]

Acoustic analysis of motor [5]

[3] Eduardo Cabal-Yepez, Armando G. Garcia-Ramirez, Rened J. Romero-Tronosco, Artuo Garcia-Perez, and Roque A. Osornio-Rios, "Reconfigurable Monitoring System for Time-Frequency Analysis on Industrial Equipm ent Through STFT and DWT," IEEE Trans. Ind. Informat., vol. 9, no. 2, pp. 760-771, May 2013.

[4] M. Riera-Guasp, M. Pineda-Sanchez, J. Perez-Cruz, R. Puche-Panadero, J. Roger-Folch, and J. A. Antonino-Daviu, "Diagnosis of induction motor faults via gabor analysis of the current in transient regime," IEEE Trans. Instrum. Meas., vol. 61, no. 6, pp. 1583-1596, Jun. 2012.

[5] M. Blödt, M. Chabert, J. Regnier and J. Faucher, "Mechanical load fault detection in induction motors by stator current time-frequency analysis," IEEE Trans. Ind. Appl., vol. 42, no. 6, pp. 1454-1463, Nov./Dec. 2006.

- <u>01</u> Cycloconverter Operation
- <u>02</u> Time-Frequency Analysis
- 03 Feature Identification
- 04 Modeling

Cycloconverter Operation – General

$$\alpha = f(\theta_o) = \sin^{-1} r \sin \theta_o$$

 $\alpha = Firing Angle$

r = DC Voltage Ratio

$$\theta_o = 2\pi f_o t$$

 $f_o = output frequency$

Phase Modulation Term

$$i_A = \hat{I}_o \sin(\theta_o + \phi_o) \cdot F_1 \left(\theta_i - \frac{\pi}{2} + f(\theta_0)\right) \cdot F_P(\theta_o)$$
$$+ \hat{I}_o \sin(\theta_o + \phi_o) \cdot F_1 \left(\theta_i + \frac{\pi}{2} - f(\theta_0)\right) \cdot F_N(\theta_o)$$

 $\alpha = Firing Angle$

 $F_1 = Thyristor Switching Function$

 $F_{N \ or \ P}(\theta_o) = Negative \ and \ Postive \ Converter$

Relevant Voltage Waveforms

Cycloconverter Operation – Input Current Harmonics

$$f_H = |[kq \pm 1]f_i \pm 6nf_o|$$

 $f_H = Harmonic Freq$

 $f_i = Input Freq$

 $f_o = Output Freq$

q = drive pulse number

 $k = any int from 1 to \infty$

 $n = any int from 0 to \infty$

Predominant harmonic frequencies present in the input current for a 6-pulse cycloconverter

Sample

Theory Overview

Time-Frequency Analysis – General

- Features of Interest
 - Frequency Centers of Chirps
 - Harmonic Slopes in the Time-Frequency Domain

$$C(t,\omega) = \left| \frac{1}{\sqrt{2\pi}} \int e^{-j\omega t} s(\tau) h(\tau - t) d\tau \right|^2$$

Feature Identification – Frequency Centers

White Lines = Frequency Centers of Chirps

$$\langle \omega \rangle = \int \omega |S(\omega)|^2 d\omega$$

Feature Identification – Frequency Centers

- Unloaded motor frequency centers rise linearly
- Loaded motor frequency centers do not change

Feature Identification – Harmonic Slopes

Feature Identification – Harmonic Slopes

- 2nd order polynomial fit to harmonic slope data for 5th, 11th, and 17th harmonics
 - Unknown behavior for higher ratios
 - Represented by $\beta\left(\gamma\left(\frac{f_0}{f_i}\right)\right)$ in modeling equation

Modeling – Modeling Equation

Modeling - Frequency Modulation Term

Frequency Modulation Function

$$\phi(t) = \beta \left(\gamma_h \left(\frac{f_o}{f_i} \right) \right) |\sin(2\pi f_o t)|$$

$$\beta\left(\gamma_{h}\left(\frac{f_{o}}{f_{i}}\right)\right) = \frac{\gamma_{h}\left(\frac{f_{o}}{f_{i}}\right)}{4 \pi^{2} f_{o}\left(2\delta\left(\sin\left(\frac{\pi}{2}\right)\right)\cos\left(\frac{\pi}{2}\right)^{2} - \operatorname{sgn}\left(\sin\left(\frac{\pi}{2}\right)\right)\right)}$$

= input freq.

 f_o = output freq.

Modeling – Model Block Diagram

- 1. Given inputs develop a model in the time domain and convert to time-frequency domain
- 2. Filter real input current data and time domain model
 - a. Normalize both signals
- 3. Convert to time-frequency domain with spectrogram
- 4. Compare reference window in phase to real data
 - a. Characterize cycloconverter as in normal or abnormal operation

<u>01</u> Error Analysis Technique

<u>02</u> Loaded Motor Error Statistical Analysis

03 Unloaded Motor Error Statistical Analysis

<u>04</u> Error Decision Boundary Thresholds

Error Analysis Technique

- Slide reference window through spectrogram
- Find error for each iteration, calculate MSE

$$MSE = rac{1}{N \cdot M} \sum_{n=1}^{N} \sum_{m=1}^{M} \left| C_{reference}[n,m] - C_{real}[n,m] \right|^{2}$$

Error Analysis Technique

Damaged Loaded

Undamaged Loaded

Undamaged Unloaded

Loaded Motor Error Statistical Analysis – MSE

Fund. Freq (Hz)	60																					
Output Frequency (Hz)	Notes	fo/fi	Mean	Std.							Lo	aded M	lotor Lo	cal Mir	ima M	SE						
3.1250	F6	0.0521	0.0681	0.0033	0.065	0.071	0.065	0.072	\times	\times	$\supset \subset$	\times	\times	\times	\times	\times	\times		\times	\times	\times	\times
4.6875	Damaged F1	0.0781	0.1029	0.0505	0.132	0.055	0.084	0.211	0.098	0.056	0.084	\times	\times	\times	\times	\times	\times	\supset	\times	\times	\times	\supset
5.0781	F6	0.0846	0.0836	0.0048	0.085	0.079	0.08	0.083	0.088	0.079	0.082	0.094	\times	\times	\times	\times	\times	><	\times	\times	\times	>
5.0781	F1	0.0846	0.0360	0.0035	0.031	0.035	0.034	0.032	0.038	0.041	0.04	\times	\times	\times	\times	\times	\times	\geq	\times	\times	\times	$\supset $
5.8594	F1	0.0977	0.0966	0.0057	0.098	0.081	0.1	0.1	0.092	0.098	0.098	0.101	0.096	0.101	\times	\times	\times		\times	\times	\times	\times
6.2500	F6	0.1042	0.0634	0.0033	0.066	0.066	0.065	0.062	0.069	0.065	0.061	0.063	0.061	0.056	> <	\times	\times		\times	\times	\times	>
7.4219	F6	0.1237	0.1385	0.0066	0.124	0.132	0.138	0.138	0.134	0.139	0.137	0.137	0.146	0.152	0.145	0.141	0.137	$\supset <$	\times	\times	\times	\times
8.5938	F6	0.1432	0.1373	0.0140	0.137	0.138	0.15	0.146	0.149	0.142	0.152	0.145	0.152	0.139	0.137	0.13	0.129	0.109	0.104	\times	\times	\supset
9.7656	F2	0.1628	0.1651	0.0081	0.16	0.161	0.17	0.154	0.156	0.172	0.163	0.168	0.172	0.173	0.152	0.154	0.177	0.178	0.169	0.159	0.16	0.174
10.1563	F2	0.1693	0.1141	0.0037	0.119	0.113	0.104	0.111	0.113	0.118	0.121	0.117	0.115	0.113	0.116	0.112	0.11	0.113	0.115	0.117	0.115	0.112

Loaded Motor Error Statistical Analysis – MSE

Loaded Motor Error Statistical Analysis – MSE Differences

Fund. Freq (Hz)	60																					
Output Frequency (Hz)	Notes	f_o/f_i	Mean	Std.							Lo	aded M	lotor K o	cal Mir	ima M	SE						
3.1250	F6	0.0521	0.0681	0.0033	0.065	0.071	0.065	0.072	\geq	\times	\times	\times	\times	\times	\times	\times	$> \!\!\! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	\supset	\times	\times	\times	\times
4.6875	Damaged F1	0.0781	0.1029	0.0505	0.132	0.055	0.084	0.211	0.098	0.056	0.084	\times	\times	\times	\times	\geq	$> \!\!\! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	\supset	\geq	\geq	\times	\geq
5.0781	F6	0.0846	0.0836	0.0048	0.085	0.079	0.08	0.083	0.088	0.079	0.082	0.094	\times	\times	\times	\times	$> \!\!\! <$	\supset	><	\times	\times	\times
5.0781	F1	0.0846	0.0360	0.0035	0.031	0.035	0.034	0.032	0.038	0.041	0.04	\times	\times	\times	><	\times	$> \!\!\! <$	$\supset \!\!\!\! <$	\geq	\times	\times	\supset
5.8594	F1	0.0977	0.0966	0.0057	0.098	0.081	0.1	0.1	0.092	0.098	0.098	0.101	0.096	0.101	\times	\times	$> \!\!\! <$	$\supset \!\!\!\! \smallsetminus$	><	\times	\times	>
6.2500	F6	0.1042	0.0634	0.0033	0.066	0.066	0.065	0.062	0.069	0.065	0.061	0.063	0.061	0.056	\times	\times	$> \!\!\! <$	\supset	><	\times	\times	\supset
7.4219	F6	0.1237	0.1385	0.0066	0.124	0.132	0.138	0.138	0.134	0.139	0.137	0.137	0.146	0.152	0.145	0.141	0.137	$'$ \bigcirc	\times	\times	\times	\times
8.5938	F6	0.1432	0.1373	0.0140	0.137	0.138	0.15	0.146	0.149	0.142	0.152	0.145	0.152	0.139	0.137	0.13	0.129	0.109	0.104	\geq	\times	\geq
9.7656	F2	0.1628	0.1651	0.0081	0.16	0.161	0.17	0.154	0.156	0.172	0.163	0.168	0.172	0.173	0.152	0.154	0.17	0.178	0.169	0.159	0.16	0.174
10.1563	F2	0.1693	0.1141	0.0037	0.119	0.113	0.104	0.111	0.113	0.118	0.121	0.117	0.115	0.113	0.116	0.112	0.11	0.113	0.115	0.117	0.115	0.112

Fund. Freq (Hz)	60																				
Output Frequency (Hz)	Notes	f_o/f_i	Mean	Std.						Load	led Mot	tor Loca	l Minin	na MSE	Differe	nces	Ψ				
3.1250	F6	0.0521	0.0066	0.0002	0.006	0.006	0.007	\times	\geq	><	\times	\geq	\times								
4.6875	Damaged F1	0.0781	0.0694	0.0394	0.077	0.029	0.127	0.113	0.042	0.028	\times		\times	\geq							
5.0781	F6	0.0846	0.0054	0.0038	0.006	8E-04	0.003	0.005	0.009	0.002	0.013	$\supset <$	\times	\times	\times	\times	\times	\times	><	\times	><
5.0781	F1	0.0846	0.0029	0.0016	0.004	0.001	0.002	0.006	0.003	0.002	\geq		><	\times	\times	><	\times	><	\geq	\times	> 1
5.8594	F1	0.0977	0.0069	0.0063	0.017	0.019	3E-04	0.008	0.006	9E-05	0.003	0.005	0.005	\times	\times	\times	\times	\times	><	\times	><
6.2500	F6	0.1042	0.0030	0.0022	3E-04	0.001	0.003	0.007	0.005	0.003	0.001	0.001	0.005	\times	\times	\times	\times	\times	><	\times	\supset
7.4219	F6	0.1237	0.0045	0.0026	0.007	0.006	3E-04	0.004	0.005	0.002	3E-04	0.009	0.006	0.007	0.005	0.003	\times	\times	\times	\times	>
8.5938	F6	0.1432	0.0071	0.0051	4E-04	0.012	0.005	0.004	0.007	0.01	0.007	0.007	0.012	0.003	0.007	1E-03	0.02	0.004	\times	\times	\supset
9.7656	F2	0.1628	0.0084	0.0069	1E-03	0.009	0.015	0.002	0.016	0.009	0.005	0.004	0.001	0.021	0.002	0.022	0.001	0.009	0.01	9E-04	0.013
10.1563	F2	0.1693	0.0035	0.0021	0.005	0.009	0.007	0.001	0.006	0.003	0.004	0.003	0.001	0.003	0.004	0.002	0.004	0.001	0.002	0.002	0.003

Loaded Motor Error Statistical Analysis – MSE Differences

Unloaded Motor Error Statistical Analysis – MSE

Fund. Freq (Hz)	60																		
Output Frequency (Hz)	Notes	f_o/f_i	Mean	Std.		Unloaded Motor Local Minima MSE													
2.7344	F1	0.0456	0.1676	0.0040	0.171	0.164	0.172	0.163				\geq	\geq	\times	\times	\geq	\times	\times	\searrow
2.7344	F2	0.0456	0.1328	0.0015	0.132	0.135	0.131	\geq				\geq	\geq	\times	\times	\geq	\times	\times	\boxtimes
3.1250	F6	0.0521	0.1824	0.0059	0.175	0.19	0.182	\geq				\geq	\geq	\times	\times	><	\times	\times	\searrow
4.6875	F1	0.0781	0.2185	0.0113	0.232	0.228	0.214	0.233	0.212	0.203	0.208	\geq	\geq	\times	\times	\geq	\times	\times	\boxtimes
5.0781	F6	0.0846	0.2468	0.0172	0.242	0.222	0.237	0.265	0.267			><	\geq	\times	\times	><	\times	\times	\searrow
6.2500	F6	0.1042	0.2233	0.0097	0.223	0.22	0.239	0.212	\geq			\geq	\geq	\times	\times	\geq	\times	\times	\boxtimes
7.0313	F6	0.1172	0.2051	0.0058	0.203	0.202	0.21	0.197	0.213			><	><	><	\times	><	\times	\times	\searrow
7.8125	F2	0.1302	0.1620	0.0118	0.18	0.167	0.145	0.167	0.181	0.163	0.167	0.154	0.139	0.157	0.156	0.158	0.172	\times	\boxtimes
8.5938	F6	0.1432	0.1904	0.0172	0.178	0.164	0.192	0.179	0.202	0.184	0.238	0.19	0.202	0.205	0.203	0.184	0.185	0.176	0.176
9.375	F6	0.1563	0.1947	0.0157	0.196	0.18	0.161	0.166	0.212	0.207	0.206	0.204	0.208	0.189	0.205	0.198	0.201	\geq	\boxtimes

Unloaded Motor Error Statistical Analysis - MSE

Loaded Data for Comparison

Error Decision Boundary Thresholds

Error Type	State	PDF μ	PDF σ	Standard Deviatinon Threshold
In Dhace MCF	Loaded	Equation (3-3) with Table 3-2	Equation (3-3) with Table 3-2	10
In-Phase MSE	Unloaded	Equation (3-3) with Table 3-4	Equation (3-3) with Table 3-4	10
In-Phase MSE Differences	Loaded	0.0053	0.002	3
III-Priase wise Differences	Unloaded	N/A	N/A	N/A

Conclusion and Continued Research

<u>01</u> Next Steps<u>02</u> Closing Statements

Conclusion and Continued Research

Next Steps

- Summary of work
 - Identified characteristics used to diagnosis cycloconverter status
 - Developed model that uses these characteristics to find an error value
 - Defined decision boundaries based on said error
 - Strong foundation on which further research can evolve
- Improvements
 - Consider other frequency modulation terms
 - Improved harmonic slope estimator
 - Improved output frequency estimator
- Next Steps
 - Modify current algorithms for real time system

