Language Models are Unsupervised Multitask Learners

Improving Language Understanding by Generative Pre-Training

Sentemova Olga

Plan

- GPT-1
 - Setting up the framework
 - Task-specific transformation
 - Experiments
 - Results
- GPT-2
 - Approach
 - Training dataset
 - Input transformation and representation
 - Model
 - Experiments
 - Determine and reducing effect from the overlap from the test and train sets

GPT-1: Framework

Unsupervised pre-training

Supervised fine-tuning

$$L_1(\mathcal{U}) = \sum \log P(u_i|u_{i-k},\ldots,u_{i-1};\Theta)$$

$$P(y|x^1,\ldots,x^m) = \mathtt{softmax}(h_l^m W_y).$$

$$h_0 = UW_e + W_p$$

$$L_2(\mathcal{C}) = \sum_{i=1}^{n} \log P(y|x^1, \dots, x^m).$$

 $h_l = exttt{transformer_block}(h_{l-1}) orall i \in [1,n]$

$$P(u) = \mathtt{softmax}(h_n W_e^T)$$

Transformer architecture

Fine tuning input transformations

Experiments: Unsupervised pre-training

- Dataset
 - BooksCorpus
- Model parameters:
 - Byte Pair Encoding (40000)
 - 12 layer
 - 768 dimensional states
 - 12 attention heads
 - Positional-wise 3072 dimensional inner states
 - Adam optimisation with max learning rate 2.5*e-4
 - o 100 epochs
 - o mini batches 64 randomly chosen samples
 - GELU
 - ftfy for cleaning
 - spaCy to tokenize

Experiments: fine tuning

- Model parameters:
 - Hyperparameters are the same as for unsupervised learning
 - o dropout 0.1
 - o 3 epochs
 - learning rate 6.25e-5

Comparison to another methods: NLI

Method	MNLI-m	MNLI-mm	SNLI	SciTail	QNLI

80.2

80.6

78.7

71.4

72.2

82.1

89.3

89.3

88.5

89.9

83.3

88.3

82.3

82.1

88.1

79.0

80.1

77.9

71.3

72.1

81.4

RTE

59.2

61.7

56.0

MNLI-m

Stochastic Answer Network [35] (3x)

Multi-task BiLSTM + Attn [64]

Finetuned Transformer LM (ours)

ESIM + ELMo [44] (5x)

CAFE [58] (5x)

CAFE [58]

GenSen [64]

Comparison to another methods: questions answering

Story Cloze

76.5

77.6

86.5

RACE-m

55.6

60.2

62.9

RACE-h

49.4

50.3

57.4

RACE

51.2

53.3

59.0

Method

val-LS-skip [55]

Hidden Coherence Model [7]

Dynamic Fusion Net [67] (9x)

Finetuned Transformer LM (ours)

BiAttention MRU [59] (9x)

Comparison to another methods: Classification

ECNU (mixed ensemble) [60]

Finetuned Transformer LM (ours)

Single-task BiLSTM + ELMo + Attn [64]

Multi-task BiLSTM + ELMo + Attn [64]

Method	Classifi	cation	Seman	tic Simil	GLUE	
	CoLA (mc)	SST2 (acc)	MRPC (F1)	STSB (pc)	QQP (F1)	
Sparse byte mLSTM [16]	-	93.2	-	-	-	-
TF-KLD [23]	_	-	86.0	_	-	_

35.0

18.9

45.4

90.2

91.6

91.3

80.2

83.5

82.3

81.0

55.5

72.8

82.0

66.1

63.3

70.3

64.8

68.9

72.8

Analysis: pre-train stage

Analysis: fine tuning

GPT-2 vs GPT-1: Task conditioning

p(output|input)

p(output|input, task).

before GPT-2

GPT-2

GPT-2 vs GPT-1: Zero Shot Learning and Zero Short Task Transfer

GPT-1:

Model understands the task based on the input format

GPT-2:

 Model understands the task based on the task text -> it can solve unknown tasks

Dataset

- Common crawl
 - Huge dataset
 - Has quality issues
- -> WebText (Reddit)
 - o 8 mln documents

Input representation

BTE

Model specification

- Architecture is the same as GPT-1
- Residual layers were scaled with coef

Parameters	Layers	d_{model}
117 M	12	768
345M	24	1024
762M	36	1280
1542M	48	1600

vv	cigins	
1	$/\sqrt{N}$	

Experiments

- Language modeling
- Children's book test
- LAMBADA
- Winograd schema challenge
- The conversation comprehension
- TLDR
- Translation
- Question answering

Experiments results

Language Models are Unsupervised Multitask Learners

	LAMBADA (PPL)	LAMBADA (ACC)	CBT-CN (ACC)	CBT-NE (ACC)	WikiText2 (PPL)	PTB (PPL)	enwik8 (BPB)	text8 (BPC)	WikiText103 (PPL)	1BW (PPL)
SOTA	99.8	59.23	85.7	82.3	39.14	46.54	0.99	1.08	18.3	21.8
117M 345M 762M 1542M	35.13 15.60 10.87 8.63	45.99 55.48 60.12 63.24	87.65 92.35 93.45 93.30	83.4 87.1 88.0 89.05	29.41 22.76 19.93 18.34	65.85 47.33 40.31 35.76	1.16 1.01 0.97 0.93	1.17 1.06 1.02 0.98	37.50 26.37 22.05 17.48	75.20 55.72 44.575 42.16

What about overlap between test and train?

- Bloom filters (8-grams)
- Result: mostly everything is fine

Links

- <u>GPT-1</u>
- <u>GPT-2</u>

Questions

- What classes of tasks can be solved with GPT-1. Name 3.
- What architecture is used for unsupervised pre-training GPT-1?
- What is Byte Pair Encoding?
- What are the main differences between GPT-1 и GPT-2?