Function Spaces

Cloudifold

February 3, 2022

0 Notations

Category of sets : Set Category of topological spaces : Top Category of (one-point-)based topological spaces $: Top_*$ Category of pairs (X, A) of space X and subspace A $: \mathbf{Top}(2)$ Topological space X with topology \mathcal{T} $: X_{\mathcal{T}}$ Euclidean space of dimension n $: \mathbb{R}^n$ $: I^n$ Unit cube of dimension nBoundary of I^n $: \partial I^n$ $: I = I^1$ Unit interval IUnit cell of dimension n $: \mathbb{D}^n$ Unit disk of dimension n $: \mathbb{S}^{n-1}$ Unit sphere of dimension n-1Inclusion or Embedding Monomorphsim **Epimorphsim** Hom functor of category C: $\operatorname{Hom}_{\mathcal{C}}(-,-)$ Limit (inverse limit) (projective limit) : lim Colimit (direct limit) (inductive limit) : lim

1 Function Spaces

1.0 Introduction

Function spaces, are origins of many important constructions such as Loop spaces, Path spaces and so on. The duality between function spaces and product spaces will [todo]

1.1 Admissible Topology

Definition 1.1. A topology on $\operatorname{Hom}_{\mathbf{Top}}(X,Y)$ is admissible if the evaluation function ev is continuous. Where ev is defined by :

$$ev : \operatorname{Hom}_{\mathbf{Top}}(X, Y) \times X \to Y$$

 $(f, x) \mapsto f(x)$

Note. It is possible that $\operatorname{Hom}_{\mathbf{Top}}(X,Y)$ have **no** admissible topology.

1.2 Compact-Open Topology

Definition 1.2. The **compact-open** topology on $\operatorname{Hom}_{\mathbf{Top}}(X,Y)$ is generated by subbase $\{O^K\}$ where K varies on all compact subsets of X, O varies on all open subsets of Y. The definition of O^K is :

$$O^K := \{ f \in \operatorname{Hom}_{\mathbf{Top}}(X, Y) \mid f(K) \subseteq O \}$$

We note the compact-open topology by \mathcal{T}_{co}

Proposition 1.1. Property of compact-open topology: The compact-open topology is coarser than any admissible topology. (That is, for any admissible topology \mathcal{T} , $\mathcal{T}_{co} \subseteq \mathcal{T}$)

Proof. We have to show that any open set in \mathcal{T}_{co} is open in \mathcal{T} if \mathcal{T} is admissible. It suffices to show that every $O^K \in \mathcal{T}$. By definition, we have:

$$ev: \operatorname{Hom}_{\mathbf{Top}}(X,Y)_{\mathcal{T}} \times X \to Y$$

is continuous. Take $k \in K$ and $f \in O^K$ (That is, $f(K) \in O$).

By ev is continuous, $ev(f, k) = f(k) \in O$ and the property of the base of finite product topology, we have

$$\exists V_{f,k}, W_k \ . \ f \in V_{f,k} \in \mathcal{T} \ \text{and} \ k \in W_k \in \mathcal{T}_Y \ \text{and} \ ev(V_{f,k} \times W_k) \subseteq O$$

The family $\{W_k\}_{k\in K}$ is an open cover of K. By compactness of K, There exists a finite subcover $\{W_{k_i}\}_{i=1,\dots,n}$ ($k_i\in K$). Put $V_f:=\bigcap\{V_{f,k_i}\}_{i=1,\dots,n}$ (with $ev(V_{f,k_i}\times W_{k_i})\subseteq O$), we have $f\in V_f$ and V_f is open in $\operatorname{Hom}_{\mathbf{Top}}(X,Y)_{\mathcal{T}}$.

Then we have $V_f \subseteq O^K$, since

$$\frac{k \in K}{\exists k_i \in K : k \in W_{k_i}} \quad g \in V_f \\ g(k) \in O \quad \text{r1} \Rightarrow \frac{g \in V_f}{g(K) \subseteq O}$$

r1 :
$$g(k) = ev(g, k) \in ev(V_f \times W_{k_i}) \subseteq ev(V_{f,k_i} \times W_{k_i}) \subseteq O$$

So, $O^K = \bigcup \{V_f\}_{f \in O^K}$, which is a union of open sets in $\operatorname{Hom}_{\mathbf{Top}}(X,Y)_{\mathcal{T}}$. That is, $O^K \in \mathcal{T}$. \square Now we denote $\operatorname{Hom}_{\mathbf{Top}}(X,Y)_{\mathcal{T}_{co}}$ simply by $\operatorname{Map}_{\mathbf{Top}}(X,Y)$.

Proposition 1.2. If X is locally compact and Hausdorff, then the **compact-open** topology is admissible.

Proof. We have to show $ev: \operatorname{Hom}_{\mathbf{Top}}(X,Y)_{\mathcal{T}_{co}} \times X \to Y$ is continuous. That is $V \in \mathcal{T}_Y \to ev^{-1}(V) \in \mathcal{T}_{\operatorname{Hom}_{\mathbf{Top}}(X,Y) \times X}$. By definition, $ev^{-1}(V) = \{(f,x) \mid f(x) \in V\}$, We take $(f,x) \in ev^{-1}(V)$ for the next step.

By continity of f, we have $f^{-1}(V)$ is open in X. By locally compactness of X and X is Hausdorff, there exist $O_{(f,x)} \in \mathcal{T}_X$ such that $x \in O_{(f,x)} \subseteq \overline{O_{(f,x)}} \subseteq V$ and $\overline{O_{(f,x)}}$ is compact. Put $K_{(f,x)} := \overline{O_{(f,x)}}$

Now we have $(f,x) \in V^{K_{(f,x)}} \times O_{(f,x)} \subseteq ev^{-1}(V)$, that means

$$ev^{-1}(V) = \bigcup \{V^{K_{(f,x)}} \times O_{(f,x)}\}_{(f,x) \in ev^{-1}(V)}$$

is a union of open sets. That is, $ev^{-1}(V)$ is open.

2 Compactly Generated Spaces

2.0 Introduction

A **compactly generated** space (in a certain sense) is such a space that the continuous images in it of all **compact Hausdorff** spaces tell you everything about its topology.

Why **compact Hausdorff**? Maybe the reason is that **compact** implies existance of limit(1), and **Hausdorff** implies the uniqueness of limit(1).

2.1 Related Definitios

Definition 2.1. A function $f: X \to Y$ between the underlying set of topological spaces is k-continuous if for all **compact Hausdorff** spaces C and continuous functions $t: C \to X$, $f \circ t: C \to Y$ is continuous.

Definition 2.2. A topological space X is a k-space if for all $f: X \to Y$ (in **Set**), f is continuous $\Leftrightarrow f$ is k-continuous

Note. Equivalent definitions of k-space

2.2 Category of Compactly Generated Spaces