Name:	_ Tutorial group:				
Matriculation number:					

20 September 2020 MH1812 Test 1 60 minutes

QUESTION 1. (30 marks)

Use mathematical induction to show that

$$1^{2} - 2^{2} + 3^{2} - \dots + (-1)^{n-1}n^{2} = (-1)^{n-1} \cdot \frac{n(n+1)}{2}$$

whenever n is a positive integer.

[Proof:

Base case: when n = 1, the left-hand side is $1^2 = 1$ and the right-hand side is $(-1)^0 \cdot \frac{1 \cdot 2}{2} = 1$. The equality holds.

Inductive step: Suppose that the equality holds for n = k, and we shall show that it holds for n = k + 1, that is, we shall show that

$$1^{2} - 2^{2} + 3^{2} - \dots + (-1)^{k-1}k^{2} + (-1)^{k}(k+1)^{2} = (-1)^{k}\frac{(k+1)(k+2)}{2}.$$
 (1)

By induction hypothesis, the LHS of (1) equals

$$(-1)^{k-1} \cdot \frac{k(k+1)}{2} + (-1)^k(k+1)^2 = (-1)^k(k+1) \cdot \left(-\frac{k}{2} + k + 1\right) = (-1)^k(k+1)\frac{k+2}{2},$$

which is exactly the RHS of (1). This completes the proof of the inductive step.

Therefore, by mathematical induction, the original equality holds for all integers n > 1.

[Grading rules:] The base case is worth 5 points. In the inductive step, stating the equality holds for n = k and stating the corresponding equation is worth 10 points. Alternatively, a correct application of the induction hypothesis is worth 10 points. The rest of the derivation is worth 15 points.

For graders only	Question	1	2(a)	2(b)	3(a)	3(b)	Bonus	Total
roi graders omy	Marks							

QUESTION 2. (30 marks)

(a) (10 points) What is $2020^{1812} \mod 30$?

[Solution:] First, we have 2020 mod 30 = 10. Observe that $10^2 \mod 30 = 10$, we know that $10^n \mod 30 = 10$ for all n > 1. Therefore $2020^{1812} \mod 30 = 10^{1812} \mod 30 = 10$.

[Grading rules:] Getting $2020 \mod 30 = 10$ is worth 4 points and reducing $2020^{1812} \mod 30$ to $10^{1812} \mod 30$ is worth another 1 point. The rest is worth 5 points. Note that a direct claim $10^{1812} \mod 30 = 10$ without any reasoning is not an acceptable argument.

- (b) Let \mathbb{R} denote the set of reals. For $x, y \in \mathbb{R}$, let P(x, y) denote the predicate " $x^2 x + 2020y \ge 0$ ". What are the truth values of these statements?
- (i) (10 points) $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, P(x, y).$
- (ii) (10 points) $\exists x \in \mathbb{R}, \forall y \in \mathbb{R}, P(x, y).$

[Solution:]

- (i) The statement is true. One can just choose $y = -(x^2 x)/2020$.
- (ii) The statement is false. For any $x \in \mathbb{R}$, let $y = -(x^2 x)/2020 1$, then P(x, y) is false.

[Grading rules:] For each subquestion, stating correctly its truth value is worth 3 points and the reason is worth another 7 points.

QUESTION 3. (40 marks)

(a) (20 points) Show that $q \land \neg (p \rightarrow q)$ is a contradiction.

[Proof:]

$$q \land \neg (p \to q) \equiv q \land \neg (\neg p \lor q)$$
$$\equiv q \land (p \land \neg q)$$
$$\equiv (q \land \neg q) \land p$$
$$\equiv F \land p$$
$$\equiv F$$

[Grading rules:] Each equality above is worth 4 points. For a truth table of 2 variables and 4 rows, each row is worth 5 points and no partial credits are given for an incorrect row.

(b) (20 points) Determine whether the following argument is valid¹.

$$\begin{aligned} (p \wedge q) &\to (r \vee s); \\ \neg r; \\ p &\to q; \\ p; \\ \therefore s. \end{aligned}$$

[Solution:] The argument is valid, as shown by the following inference table.

Step	Formula	Reason
(1)	$p \rightarrow q$	Premise
(2)	$\mid p \mid$	Premise
(3)	$\mid q$	(1)+(2), modus ponens
(4)	$p \wedge q$	(2)+(3), conjunctive addition
(5)	$(p \land q) \to (r \lor s)$	Premise
(6)	$r \vee s$	(4)+(5), modus ponens
(7)	$\neg r$	Premise
(8)	s	(6)+(7), disjunctive syllogism

[Grading rules:] One needs to apply the inference rules four times. Each application is worth 5 points. A correct argument based on the truth table is also acceptable (for which one may assume that p is true and r is false and have only two variables q and s in the table).

2

BONUS QUESTION. (10 marks)

[Points will be given to fully correct solutions only. The total mark of this test is capped at 100 marks.]

Prove that there are no integers x and y such that $x^2 + y^2 = 444444443$.

[Proof:] Note that $n^2 \equiv 0, 1 \pmod{4}$ for any integer n (this can be readily verified by calculating $n^2 \mod 4$ for n = 0, 1, 2, 3). Observe that the right-hand side is congruent to 3 modulo 4, therefore it cannot be written as a sum of two squares.

[Grading rules:] This is an all-or-nothing question. The marks given should be either 0 or 10 marks.

¹The inference rules you may use are: modus ponens, modus tollens, conjunctive simplification, conjunctive addition, disjunctive addition, disjunctive syllogism, rule of contradiction and disjunction elimination.