МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшего образования

«САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ»

	КАФЕДРА №51	
ОТЧЕТ ЗАЩИЩЕН С ОЦЕН	НКОЙ <u></u>	
ПРЕПОДАВАТЕЛЬ		
ассистент		М.Н.Исаева
должность, уч. степень, звание	подпись, дата	инициалы, фамилия

ОТЧЕТ О ЛАБОРАТОРНОЙ РАБОТЕ №1 ИСТОРИЧЕСКИЕ ШИФРЫ. АФФИННЫЙ ШИФР.

по курсу: КРИПТОГРАФИЧЕСКИЕ МЕТОДЫ ЗАЩИТЫ ИНОФРМАЦИИ

СТУДЕНТ ГР. №	5912		И.К. Лобач
_	номер группы	подпись, дата	инициалы, фамилия

1 Цель работы: реализация подстановочного аффинного шифра в режимах шифрования и дешифрования, проведение частотного анализа, нахождение расстояния единственности и анализ криптостойкости алгоритма.

2 Описание работы

Подстановочный аффинный шифр реализуется следующим образом: каждой букве алфавита размера N с порядковым номером x ставится в соответствие новая буква с порядковым номером, вычисленным согласно функции шифрования E(x):

$$E(x) = (ax + b) \mod N$$

где E(x) – порядковый номер новой буквы, заменяющей старую в шифротексте, a, b - ключи шифра. Чтобы шифротекст возможно было расшифровать, a и N должны быть взаимнопростыми числами.

Для дешифрования каждой букве шифротекста с порядковым номером x ставится в соответствие буква, порядковый номер которой вычисляется согласно функции расшифрования D(x):

$$D(x) = a^{-1}(x - b) \bmod N$$

где a^{-1} – обратное число к a по модулю N. Иначе говоря, $1 \equiv aa^{-1} \mod N$.

3 Описание реализации

Исходный текст считывается из файла "In.txt". Ключи a, b вводятся пользователем. Предусмотрена и псевдослучайная генерация ключей. Затем проверяется выполнение условия взаимной простоты мощности алфавита N и ключа a. Проверка осуществляется по алгоритму Евклида. В случае нарушения выполнения программа аварийно завершается.

Затем происходит посимвольное чтение файла. Каждый символ с ключами передается в функцию шифрования. Полученному номеру сопоставляется буква алфавита (по умолчанию в программе используется английский алфавит с N=26) и выводится в файл "Result.txt". Знаки препинания, разделители и цифры не шифруются и сохраняются в шифротексте. Заглавные буквы шифруются в заглавные, строчные в строчные.

При чтении файла осуществляется подсчет количества букв для частотного анализа. Эти данные затем выводятся в виде гистограммы в отдельном файле.

Аналогично осуществляется процедура расшифрования.

4 Пример работы программы Продемонстрируем работу алгоритма.

При запуске программы пользователю предложено ввести два ключа (см.ниже).

```
C:\Users\iyush\source\repos\Affine_cipher_01\Release\Affine_cipher_01.exe — X

Type a_key: 3

Type b_key: 4
```

Рисунок 1 - Ввод ключей

Если ввести ключи, не удовлетворяющие условию, то программа завершит свое выполнение (см. ниже). В данном случае $HOД(26,2) = 13 \neq 1$, следовательно, ввод некорректный.

Рисунок 2 - Некорректный ввод ключей

Пусть файл с исходным текстом выглядит следующим образом (см. ниже).

Рисунок 3 - Исходный текст

В файле "Out.txt" мы увидим следующее (см. ниже).

Рисунок 4 – Шифротекст

Если этот файл подать на вход функции расшифрования, то мы увидим следующее (см. ниже).

Рисунок 5 - Расшифрованный текст

Отсюда, можно сделать вывод о корректной реализации алгоритма, т.к. дешифрованный текст полностью совпадает с исходным.

5 Результаты исследования

Проведем частотный анализ исходного текста и шифротекста, построим гистограммы.

Рисунок 6 - Частотный анализ исходного текста

Рисунок 7 - Частотный анализ шифротекста

Расстояние единственности - это минимальная длина шифрованного текста, необходимого для однозначного восстановления истинного ключа шифра. Нахождение расстояния единственности *L* осуществляется по формуле:

$$L \ge \frac{\log_2 |K|}{D \log_2 N}$$

где |K| - количество ключей шифра, D — избыточность языка (для английского алфавита $D \approx 0.68$).

Определим количество ключей: ключ a – всевозможные значения в интервале $0, 1 \dots N-1$, взаимнопростых с N. Таких чисел, согласно функции Эйлера, $\varphi(N) = \varphi(26) = 12$. Ключ b принимает значения $0, 1 \dots N-1$.

Отсюда, |K| = 12 * 26 = 312 возможных ключей. Таким образом, $L \ge 2,6$

6 Вывод:

В ходе выполнения работы реализовала подстановочный аффинный шифр в режимах шифрования и дешифрования, провела частотный анализ, определила расстояние единственности.

На основе данных исследований проведем анализ криптостойкости: ограниченное количество ключей (всего их 312) приводит к тому, что система крайне не криптостойка. Основная уязвимость шифра заключается в том, что криптоаналитик может выяснить (путём частотного анализа, полного

перебора, угадывания или каким-либо другим способом) соответствие между двумя любыми буквами исходного текста и шифротекста. Тогда ключ может быть найден путём решения простой системы уравнений. Кроме того, условие взаимной простоты N и a существенно уменьшает количество проверяемых ключей.

Используемые источники.

- 1. А.А. Овчинников «Исторический шифры»
- 2. С.А. Сушко Практическая криптология, лекция 4
- 3. В.С. Пилиди «Криптография. Вводные главы»