Содержание

Введение	3
1 Общая часть	4
1.1 Первая задача	4
1.2 Вторая задача	4
1.3 Третья задача	5
1.4 Четвертая задача	5
1.5 Выводы по общей части	6
2 Индивидуальная часть	7
2.1 Формулировка решаемой задачи	7
2.2 Подходы к решению и результаты	7
2.3 Выводы по индивидуальной части	8
Заключение	9

Введение

Данный документ представляет собой отчет о прохождении учебной практики, предусмотренной образовательной программой «Программное и аппаратное обеспечение вычислительной техники», реализуемой в ФГБОУ ВО «Вятский государственный университет».

Место прохождения практики — $\Phi\Gamma$ БОУ ВО «Вятский государственный университет». Сроки прохождения практики — с 28.06.2021 по 11.07.2021.

Практика включала в себя две части: общую и выполняемую в рамках индивидуального задания.

1 Общая часть

В данном разделе рассматриваются вопросы, связанные с прохождением общей для всех обучающихся части практики.

1.1 Квадраты

В заданном графическом файле содержится рисунок с некоторым количеством черных квадратов. Известна следующая информация.

- 1. Размер каждого квадрата 20 на 20 пикселей.
- 2. Расположение квадратов носит псевдослучайный характер.
- 3. При добавлении очередного (кроме первого) квадрата выполнялось условие: расположение должно быть выбрано так, чтобы площадь пересечения с уже существующими квадратами не превосходила 30% от площади располагаемого квадрата (120 пикселей).
 - 4. Изображение может содержать искажения и шумы.

Задача

Ваша задача – как можно точнее определить число квадратов на рисунке.

Решение

- 1. в графическом редакторе сокращаем количество шумов до возможного минимума.
- 2. Считываем полученное изображение;
- 3. Попиксельно пробегаем по изображению и считаем количество черных пикселей;
- 4. Полученное число делим на размер квадрата.

1.2 Неизвестный алгоритм

Пусть имеется программа, реализующая некоторый алгоритм. Длительность работы программы зависит от поданного на вход набора аргументов (нескольких целых чисел).

Задача

Ваша задача — максимально точно определить среднюю асимптотическую оценку временной сложности реализованного в программе алгоритма.

Решение

- 1. Определяем время выполнения программы, подавая разные входные данные;
- 2. На основе полученных данных выясняем влияние каждого на время работы;
- 3. Опираясь на выявленные зависимости, находим функцию.

1.3 Делители

Задача

Ваша задача — найти как можно больше положительных делителей заданного числа

Решение

- 1. Разбиваем число на простые делители и находим их максимальные степени.
- 2. Количество положительных делителей будет равно $\tau(n) = (e_1 + 1)(e_2 + 1)(e_3 + 1)...(e_k + 1).$ где e_1 , e_2 , e_3 , e_k это максимальные степени простых делителей. Например, 4200 это $2^3*3^1*5^2*7^1$, поэтому у него (3 + 1)*(1 + 1)*(2 + 1)*(1 + 1) = 48 положительных делителей.
- 3. Далее путем перебора различных комбинаций степеней простых делителей находим сами делители заданного числа.

1.4 Несвязное множество

Пусть задан некоторый неориентированный вершинно-взвешенный граф G=<V,E>, состоящий из |V| вершин и |E| ребер, при этом каждая вершина характеризуется натуральным числом из множества $\{1,2,3,...,20\}$, соответствующим «ценности» вершины.

Смежными называются вершины, имеющие общее ребро.

Несвязным множеством вершин называется такое подмножество вершин $V' \subseteq V$, что никакие две вершины из этого множества не являются смежными.

Ценностью множества вершин называется сумма ценностей всех вершин, входящих в это множество.

Задача

Ваша задача — выбрать из заданного графа несвязное множество вершин таким образом, чтобы ценность данного множества была как можно больше.

Решение

- 1. Строим матрицу смежности;
- 2. Заносим в массив 1 вершину и берем за основу 2;
- 3. Далее проверяем связность 2 с 1, если связи нет, от добавляем 2 и за основу берем 3;
- 4. Проверяем связность 3 вершины со 2 и 1, если связи не, то добавляем 3 и берем за основу 4 и так далее.

1.5 Выводы по общей части

При выполнении заданий общей части практики были закреплены знания и навыки программирования на языке Pascal. Данные задания помогаю развить умение решать сложные и нестандартные проблемы, что обязательно пригодиться в будущем.

2 Индивидуальная часть

В данном разделе рассматриваются вопросы, связанные с выполнением индивидуального задания, выданного руководителем в рамках практики.

2.1 Формулировка решаемой задачи

- 1) Разработать 3-х полосную игру-раннер, целью которой является набрать как можно больше очков.
- 2) Реализовать случайное появление преград.

2.2 Подходы к решению и результаты

- 1) В игре имеются 3 полосы, по каждой из которых игрок может свободно передвигаться, управляя машинкой.
- 2) Был создан массив преград, в программе случайным образом задается координата X, после чего флаг, отвечающий за появление стены включается. Теперь стена появляется вверху и начинает движение вниз. Когда он доходит до нижнего края, флаг выключается, что позволяет поменять координату X случайным образом и снова включить флаг. Также вместе с обновлением координаты X обнуляется координата Y, чтобы стена появилась сверху.
- 3) Кроме того, было реализовано звуковое сопровождение с помощью модуля MMSystem.
- 4) Управление реализовано с помощью нажатий на стрелки, а клавиша «Р» отвечает за приостановку, то есть ставит игру на паузу.

Рис 1. Главное меню

Рис 2. Игровой процесс

2.3 Выводы по индивидуальной части

В процессе выполнения индивидуальной части практики были получены базовые навыки разработки графического приложения, а именно игры.

Заключение

Все поставленные задачи были решены. Для их выполнения потребовалось применить умение оптимизировать алгоритм таким образом, чтобы он выполнялся за как можно меньшее время. Также пригодились навыки работы с языком программирования Pascal. Таким образом, учебная практика, предусмотренная образовательной программой «Программное и аппаратное обеспечение вычислительной техники», реализуемая в ФГБОУ ВО «Вятский государственный университет», была пройдена.