Física Quântica II

Teste 16/12/2022 - Correção

Exercício 1: Adição de dois momentos angulares

Um momento angular orbital caracterizado por l=1 é adicionado a um spin, caracterizado por s=1/2.

a) Com base na teoria de adição de dois momentos angulares, sabemos que j, o número quântico que caracteriza o momento angular total do sistema, pode assumir os valores inteiros ou semi-inteiros tais que $|l-s| \le j \le l+s$. Como l=1 e $s=1/2, 1/2 \le j \le 3/2$, ou seja, j pode tomar dois valores possíveis, $j_{\max}=3/2$ e $j_{\min}=1/2$, como afirmado. O multipleto j=3/2 é constituído por $2j_{\max}+1=4$ estados, a saber $|3/23/2,11/2\rangle$, $|3/21/2,11/2\rangle$, $|3/2-1/2,11/2\rangle$ e $|3/2-3/2,11/2\rangle$, enquanto que o multipleto j=1/2 é constituído por $2j_{\min}+1=2$ estados, a saber $|1/21/2,11/2\rangle$ e $|1/2-1/2,11/2\rangle$. (3 valores)

b) Genericamente, podemos escrever

$$|3/2 m_j, 11/2\rangle = \sum_{m_l + m_s = m_j} a_{m_l m_s}^{11/2} (3/2, m_j) |1 m_l 1/2 m_s\rangle,$$
 (1)

em que $a_{m_l\,m_s}^{1\,1/2}(3/2,m_j)$ são os coeficientes de Clebsch-Gordan. No entanto, a soma estende-se apenas aos estados $|1\,m_l\,1/2\,m_s\rangle$ tais que $m_j=m_l+m_s$. Se $m_j=j_{\rm max}=3/2$, há apenas um estado que satisfaz esta condição, a saber, o estado com $m_l=1$ e $m_s=1/2$. Como todos os estados estão por definição normalizados, temos que ter

$$|3/2\,3/2,\,1\,1/2\rangle = |1\,1\,1/2\,1/2\rangle\,,$$
 ou, se se quiser, $a_{1\,1/2}^{1\,1/2}(3/2,3/2)=1.$ (1 valor)

c) Aplicando o operador \hat{J}_{-} a |3/2|3/2, $|11/2\rangle$, obtemos

$$\hat{J}_{-}|3/2\,3/2,\,1\,1/2\rangle = \hbar\sqrt{\frac{3}{2}\left(\frac{3}{2}+1\right)-\frac{3}{2}\left(\frac{3}{2}-1\right)}|3/2\,1/2,\,1\,1/2\rangle$$

$$= \sqrt{3}\hbar\,|3/2\,1/2,\,1\,1/2\rangle. \tag{2}$$

Mas isto é igual a

$$(\hat{L}_{-} + \hat{S}_{-}) |111/21/2\rangle = \hbar \sqrt{1(1+1) - 1(1-1)} |101/21/2\rangle + \hbar |111/2 - 1/2\rangle$$

= $\hbar \sqrt{2} |101/21/2\rangle + \hbar |111/2 - 1/2\rangle$, (3)

onde aplicamos \hat{L}_- e \hat{S}_- , respetivamente, a $|1\,1\rangle$ e $|1/2\,1/2\rangle$ (note que $|1\,1\,1/2\,1/2\rangle = |1\,1\rangle \otimes |1/2\,1/2\rangle$). Igualando as duas partes, obtemos

$$|3/2 \, 1/2, \, 1 \, 1/2\rangle = \frac{1}{\sqrt{3}} \cdot \left(\sqrt{2} \, |1 \, 0 \, 1/2 \, 1/2\rangle + |1 \, 1 \, 1/2 \, - 1/2\rangle\right),$$

cqd. (2 valores)

d) Tal como na equação (1), temos

$$|1/2 \, 1/2, \, 1 \, 1/2\rangle = \sum_{m_l + m_s = m_j} a_{m_l \, m_s}^{1 \, 1/2} (1/2, m_j) \, |1 \, m_l \, 1/2 \, m_s\rangle.$$
 (4)

Mas, para $m_j=1/2$, ou $m_l=0$ e $m_s=1/2$, ou $m_l=1$ e $m_s=-1/2$. Assim, podemos escrever

$$|1/2 1/2, 11/2\rangle = \alpha |101/21/2\rangle + \beta |111/2 - 1/2\rangle,$$
 (5)

em que α e β são os únicos coeficientes de Clebsch-Gordan não nulos neste caso, com $|\alpha|^2 + |\beta|^2 = 1$, já que o estado está normalizado.

Mas, $\langle 3/2\,1/2,\,1\,1/2\,|1/2\,1/2,\,1\,1/2\rangle=0$, uma vez que estes estados são forçosamente ortogonais, já que são estados próprios de $\hat{\boldsymbol{J}}^2$, com valores próprios distintos. Assim, $\sqrt{2}\alpha+\beta=0$, pelo que

$$|1/2 \, 1/2, \, 1 \, 1/2\rangle = \frac{1}{\sqrt{3}} \cdot \left(|1 \, 0 \, 1/2 \, 1/2\rangle - \sqrt{2} \, |1 \, 1 \, 1/2 \, - 1/2\rangle \right),$$

que está devidamente normalizado.

(1 valor)

Exercício 2: Teoria de perturbações independentes do tempo

Consideramos um oscilador harmónico bi-dimensional isotrópico, cuja dinâmica é descrita por um Hamiltoniano $\hat{H}_0 = \hbar \omega_0 (\hat{a}_x^\dagger \hat{a}_x + \hat{a}_y^\dagger \hat{a}_y + 1)$, em que os operadores de destruição de criação são dados por $\hat{a}_x = \left(\sqrt{\frac{m\omega_0}{2\hbar}}\,\hat{x} + i\sqrt{\frac{1}{2\hbar m\omega_0}}\,\hat{p}_x\right)$, $\hat{a}_x^\dagger = \left(\sqrt{\frac{m\omega_0}{2\hbar}}\,\hat{x} - i\sqrt{\frac{1}{2\hbar m\omega_0}}\,\hat{p}_x\right)$, $\hat{a}_y = \left(\sqrt{\frac{m\omega_0}{2\hbar}}\,\hat{y} + i\sqrt{\frac{1}{2\hbar m\omega_0}}\,\hat{p}_y\right)$, $\hat{a}_y^\dagger = \left(\sqrt{\frac{m\omega_0}{2\hbar}}\,\hat{y} - i\sqrt{\frac{1}{2\hbar m\omega_0}}\,\hat{p}_y\right)$.

Aqui \hat{x} , \hat{p}_x , \hat{y} e \hat{p}_y são os operadores de posição e momento nas direções cartesianas de x e y. Dadas as relações de comutação entre estes operadores, resulta que $[\hat{a}_x, \hat{a}_x^{\dagger}] = \hat{1}$ e $[\hat{a}_y, \hat{a}_y^{\dagger}] = \hat{1}$, sendo que os restantes comutadores que envolvem operadores de criação e destruição são nulos.

Consideramos a perturbação $\hat{H}_1 = -\mathcal{K}\hat{x}\hat{y}$. Convenientemente, iremos representá-la em termos dos operadores de criação e destruição. Para tal basta representar os operadores \hat{x} e \hat{y} em termos desses operadores. Utilizando as expressões dadas acima, e adicionando \hat{a}_x a \hat{a}_x^{\dagger} e \hat{a}_y a \hat{a}_y^{\dagger} , facilmente concluímos que $\hat{x} = \sqrt{\frac{\hbar}{2m\omega_0}}(\hat{a}_x + \hat{a}_x^{\dagger})$, e que $\hat{y} = \sqrt{\frac{\hbar}{2m\omega_0}}(\hat{a}_y + \hat{a}_y^{\dagger})$, pelo que obtemos

$$\hat{H}_1 = -\frac{\hbar \mathcal{K}}{2m\omega_0} (\hat{a}_x + \hat{a}_x^{\dagger})(\hat{a}_y + \hat{a}_y^{\dagger}). \tag{6}$$

- a) Temos $E^1_{0,0}=\langle 0,0|\,\hat{H}_1\,|0,0\rangle$. Ora, o único produto de operadores presente na equação (6) que não destrói o estado fundamental é o termo que envolve $\hat{a}^\dagger_x\hat{a}^\dagger_y$. Mas, $\hat{a}^\dagger_x\hat{a}^\dagger_y\,|0,0\rangle=|1,1\rangle$, utilizando as regras para a ação dos operadores de criação nos estados dadas no formulário, e portanto, $\langle 0,0|\,\hat{a}^\dagger_x\hat{a}^\dagger_y\,|0,0\rangle=\langle 0,0\,|1,1\rangle=0$, já que os dois estados são ortogonais, pelo que $E^1_{0,0}=0$. (2 valores)
- **b)** Temos $E_{0,0}^2 = \sum_{n_x \neq 0 \ \forall \ n_y \neq 0} \frac{|\langle n_x, n_y | \hat{H}_1 | 0, 0 \rangle|^2}{E_{0,0} E_{n_x,n_y}}$. Como vimos, $\hat{H}_1 | 0, 0 \rangle = -\frac{\hbar \mathcal{K}}{2m\omega_0} \hat{a}_x^\dagger \hat{a}_y^\dagger | 0, 0 \rangle = -\frac{\hbar \mathcal{K}}{2m\omega_0} |1, 1 \rangle$, pelo que

$$E_{0,0}^{2} = \frac{\hbar^{2} \mathcal{K}^{2}}{4m^{2} \omega_{0}^{2}} \sum_{n_{x} \neq 0 \,\vee\, n_{y} \neq 0} \frac{|\langle n_{x}, n_{y} \,| 1, 1 \rangle\,|^{2}}{E_{0,0} - E_{n_{x},n_{y}}}.$$
 (7)

Dada a ortogonalidade dos estados, o único termo nesta soma que sobrevive é o termo em que $n_x=1$ e $n_y=1$. Como $E_{0,0}=\hbar\omega_0$ e $E_{1,1}=3\hbar\omega_0$, obtemos finalmente $E_{0,0}^2=-\frac{\hbar\mathcal{K}^2}{8m^2\omega_0^3}$. (2 valores)

c) Os primeiros estados excitados deste sistema são degenerados e são naturalmente o estado em que $n_x=1$ e $n_y=0$, ou seja $|1,0\rangle$, e o estado em que $n_x=0$ e $n_y=1$, ou seja $|0,1\rangle$, com energia $E_{1,0}=E_{0,1}=2\hbar\omega_0$. Como é sabido, para encontrar as correções de primeira ordem da energia em teoria de perturbações para estados degenerados, devemos diagonalizar a perturbação no subespaço dos níveis de energia degenerados. Temos $\langle 1,0|\,\hat{H}_1\,|1,0\rangle=0,\,\langle 0,1|\,\hat{H}_1\,|0,1\rangle=0,\,\langle 0,1|\,\hat{H}_1\,|1,0\rangle=-\frac{\hbar\mathcal{K}}{2m\omega_0}\,\langle 0,1|\,\hat{a}_y^\dagger\hat{a}_x\,|1,0\rangle=-\frac{\hbar\mathcal{K}}{2m\omega_0}$ e $\langle 1,0|\,\hat{H}_1\,|0,1\rangle=-\frac{\hbar\mathcal{K}}{2m\omega_0}\,\langle 1,0|\,\hat{a}_x^\dagger\hat{a}_y\,|0,1\rangle=-\frac{\hbar\mathcal{K}}{2m\omega_0}$, utilizando as regras para a ação dos operadores de criação e destruição dadas no formulário (o operador $\hat{a}_x^\dagger\hat{a}_y^\dagger$ levanos para fora deste subespaço, enquanto que o operador $\hat{a}_y\hat{a}_x$ destrói ambos os estados). Somos pois levados a diagonalizar uma matriz 2×2 , o que implica que a seguinte equação secular deve ser satisfeita

$$\begin{vmatrix}
-E & -\frac{\hbar\mathcal{K}}{2m\omega_0} \\
-\frac{\hbar\mathcal{K}}{2m\omega_0} & -E
\end{vmatrix} = 0,$$
(8)

ou seja, $E^2 - \frac{\hbar^2 \mathcal{K}^2}{4m^2 \omega_0^2} = 0$, com soluções $E = \pm \frac{\hbar \mathcal{K}}{2m\omega_0}$, que são as correções desejadas. Os vetores próprios dessa matriz são os estados naturais para se prosseguir a análise de teoria de perturbações e encontrar as correções às funções de onda em primeira ordem na perturbação, mas não eram aqui pedidos. (3 valores)

Exercício 3: Teoria de perturbações dependentes do tempo

Um spin 1/2 interage com um campo magnético estático, sendo o Hamiltoniano que descreve a sua dinâmica dado por $\hat{H}_0 = -\frac{\hbar\omega_0}{2}\hat{\sigma}_x$, em que $\hat{\sigma}_x$ é a correspondente matriz de Pauli (ver abaixo).

O sistema encontra-se no seu estado fundamental a t=0, passando a partir desse momento a interagir igualmente com um campo magnético dependente do tempo, que trataremos como uma perturbação, descrita pelo Hamiltoniano $\hat{H}_1(t)=-\frac{\epsilon\hbar\omega_0t}{2T}\hat{\sigma}_z$, em que $\epsilon\ll 1$ é um fator adimensional. Desejamos calcular a probabilidade de transição para o estado excitado do sistema não perturbado a t=T.

O estado fundamental de \hat{H}_0 é naturalmente $|+,\hat{\mathbf{x}}\rangle = \frac{1}{\sqrt{2}}(|+\rangle + |-\rangle)$, com energia $-\frac{\hbar\omega_0}{2}$, enquanto que o estado excitado é $|-,\hat{\mathbf{x}}\rangle = \frac{1}{\sqrt{2}}(|+\rangle - |-\rangle)$, com energia $\frac{\hbar\omega_0}{2}$. A equação para a amplitude de transição é dada genericamente por

$$\gamma_{n \to m}^{1}(t) = -\frac{i}{\hbar} \int_{t_0}^{t} du \, \langle m | \, \hat{H}_1(u) | n \rangle \, e^{-i\omega_{nm}(u - t_0)} \,, \tag{9}$$

em que $\omega_{nm}=\frac{E_n-E_m}{\hbar}$ e t_0 é o momento em que a perturbação é aplicada. Neste caso, $t_0=0$, $t=T,\ |n\rangle=|+,\hat{\mathbf{x}}\rangle,\ |m\rangle=|-,\hat{\mathbf{x}}\rangle$ e $\omega_{nm}=-\omega_0$, pelo que temos que calcular a seguinte quantidade

$$\gamma_{+\to-}^{1}(T) = \frac{i\epsilon\omega_{0}}{2T} \langle -, \hat{\mathbf{x}} | \hat{\sigma}_{z} | +, \hat{\mathbf{x}} \rangle \int_{0}^{T} du \, u \, e^{i\omega_{0}u}$$

$$= \frac{i\epsilon}{2\omega_{0}T} \langle -, \hat{\mathbf{x}} | \hat{\sigma}_{z} | +, \hat{\mathbf{x}} \rangle \int_{0}^{\omega_{0}T} dv \, v \, e^{iv}, \qquad (10)$$

após a substituição de variável $v=\omega_0 u$ no penúltimo integral. Desenvolvendo agora $e^{iv}=\cos v+i\sin v$ no integral, e notando que $\langle -,\hat{\mathbf{x}}|\,\hat{\sigma}_z\,|+,\hat{\mathbf{x}}\rangle=1$, podemos utilizar os integrais dados no formulário, obtendo

$$\gamma_{+\to-}^{1}(T) = \frac{i\epsilon}{2} \left[\left(\sin(\omega_0 T) - \frac{1 - \cos(\omega_0 T)}{\omega_0 T} \right) - i \left(\cos(\omega_0 T) - \frac{\sin(\omega_0 T)}{\omega_0 T} \right) \right]. \quad (11)$$

A probabilidade de transição procurada é simplesmente o módulo quadrado desta expressão, pelo que obtemos, após o desenvolvimento dos quadrados da parte real e da parte imaginária, o resultado

$$p_{+\to-}^{1}(T) = \frac{\epsilon^{2}}{4} \left(1 - \frac{2\sin(\omega_{0}T)}{\omega_{0}T} + \frac{4\sin^{2}(\omega_{0}T/2)}{\omega_{0}^{2}T^{2}} \right). \tag{12}$$

Note que esta probabilidade satura para $T\to\infty$, que corresponde ao limite de uma perturbação em rampa que varia entre 0 e $-\frac{\epsilon\hbar\omega_0}{2}$ e atua durante um tempo infinito. (3 valores)

Exercício 4: Estado ligado para o potencial delta de Dirac em 1d

Mostramos na aula teórico-prática que a equação de Schrödinger para os estados ligados de uma partícula em 1d se pode escrever na forma integral como

$$\psi(x) = -\frac{m}{\hbar^2 \kappa} \int_{-\infty}^{+\infty} dx' \, e^{-\kappa |x - x'|} V(x') \psi(x'), \tag{13}$$

em que V(x) é o potencial que atua sobre a partícula, sendo a energia da partícula dada por $E=-\frac{\hbar^2\kappa^2}{2m}$. Consideramos o potencial delta de Dirac $V(x)=-V_0\delta(x)$, em que $V_0>0$, ou seja, lidamos com um potencial atrativo.

a) Substituímos $V(x)=-V_0\delta(x)$ na equação (13) e executamos a integração em x', que é trivial, obtendo $\psi(x)=\frac{mV_0}{\hbar^2\kappa}\,\psi(0)\,e^{-\kappa|x|}$, pelo que concluímos que $C_\kappa=\frac{mV_0}{\hbar^2\kappa}\,\psi(0)$ e que a fumção de onda tem a forma dada no enunciado.

Ao mesmo tempo, esta equação é válida para x=0, pelo que obtemos $C_\kappa=\frac{mV_0}{\hbar^2\kappa}\,C_\kappa$. Uma vez que $C_\kappa\neq 0$, $\kappa=\frac{mV_0}{\hbar^2}$, como pedido. Tal não era pedido, mas a energia do estado ligado é dada por $E=-\frac{\hbar^2\kappa^2}{2m}=-\frac{mV_0^2}{2\hbar^2}$. (2 valores)

b) A constante C_{κ} determina-se exigindo que o módulo quadrado da função de onda, integrado entre $-\infty$ e $+\infty$, dê como resultado 1 (condição de normalização da probabilidade). Assim, temos $\int_{-\infty}^{+\infty} dx \, |\psi(x)|^2 = 2|C_k|^2 \int_0^{+\infty} dx \, e^{-2\kappa x} = 1$, de onde resulta $C_{\kappa} = \sqrt{\kappa}$, a menos de um factor de fase irrelevante. (1 valor)

Exercício 5*: Aproximação de Born em 1d

Foi igualmente mostrado que a equação de Schrödinger para os estados de energia positiva de uma partícula em 1d se pode escrever na forma integral como

$$\psi(x) = e^{ikx} + \frac{m}{i\hbar^2 k} \int_{-\infty}^{+\infty} dx' \, e^{ik|x-x'|} V(x') \psi(x'), \tag{14}$$

em que a energia da partícula é dada por $E = \frac{\hbar^2 k^2}{2m}$.

Consideramos de novo o potencial delta de Dirac $V(x) = -V_0\delta(x)$, em que $V_0 > 0$. Para obter a amplitude de transmissão t(k) na primeira aproximação de Born utilizando a equação (14), basta notar que para $x \ge 0$, podemos escrever |x - x'| = x - x' na equação acima (o potencial só atua em x' = 0), de onde resulta

$$\psi(x) = e^{ikx} + \frac{m}{i\hbar^2 k} \int_{-\infty}^{+\infty} dx' \, e^{ik(x-x')} V(x') \psi(x'). \tag{15}$$

Agora, a forma mais simples de fazer o exercício é simplesmente substituir $\psi(x') \approx e^{ikx'}$ no integral acima, dado que é esta a primeira aproximação de Born. Efectuando o integral, obtemos $\psi(x) \approx \left(1 + \frac{imV_0}{\hbar^2 k}\right) e^{ikx}$ para $x \geq 0$, pelo que $t(k) \approx 1 + \frac{imV_0}{\hbar^2 k}$.

A segunda possibilidade é substituir $\psi(x)=t(k)e^{ikx}$ para $x\geq 0$ em ambos os lados da equação (15), obtendo a equação $t(k)=1+\frac{imV_0}{\hbar^2k}t(k)$, que tem como solução exata $t(k)=\frac{1}{1-\frac{imV_0}{\hbar^2k}}$. Esta solução, só por si, não constituiria uma resposta ao problema. Temos ainda que notar que a primeira aproximação de Born corresponde ao desenvolvimento em série da solução até à primeira ordem em V_0 , pelo que, recorrendo à série geométrica, obtemos $t(k)\approx 1+\frac{imV_0}{\hbar^2k}$, como acima. (2 valores extra)

Formulário:

Exercício 1:

A ação dos operadores escada do momento angular orbital nos auto-estados de $\hat{\boldsymbol{L}}^2$ e \hat{L}_z é dada por

$$\hat{L}_{\pm} | l m \rangle = \hbar \sqrt{l(l+1) - m(m \pm 1)} | l m \pm 1 \rangle, \tag{16}$$

sendo que equações análogas são válidas para os operadores \hat{J}_{\pm} e \hat{S}_{\pm} e respetivos auto-estados.

Exercício 2:

Recorde que
$$\hat{a}_x | n_x, n_y \rangle = \sqrt{n_x} | n_x - 1, n_y \rangle$$
, $\hat{a}_x^\dagger | n_x, n_y \rangle = \sqrt{n_x + 1} | n_x + 1, n_y \rangle$, $\hat{a}_y | n_x, n_y \rangle = \sqrt{n_y} | n_x, n_y - 1 \rangle$, $\hat{a}_y^\dagger | n_x, n_y \rangle = \sqrt{n_y + 1} | n_x, n_y + 1 \rangle$.

Exercício 3:

Os seguintes integrais poderão ser-lhe úteis

$$\int_0^x dv \, v \cos v = x \sin x + \cos x - 1.$$

$$\int_0^x dv \, v \sin v = \sin x - x \cos x.$$

Exercício 4:

Recorde que a função delta de Dirac está definida como $\int_{-\infty}^{+\infty} dx' \, f(x') \delta(x'-a) = f(a)$, em que f(x) é uma função pelo menos contínua em x=a.