extender a una base $\{\mathbf{u}_1, \mathbf{v}_2, \mathbf{v}_3, \dots, \mathbf{v}_n\}$ para \mathbb{R}^n , y mediante el proceso de Gram-Schmidt esto se puede convertir en una base ortonormal $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n\}$. Sea Q la matriz ortogonal cuyas columnas son \mathbf{u}_1 , $\mathbf{u}_2, \dots, \mathbf{u}_n$. Por conveniencia de notación se escribe $Q = (\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n)$. Ahora bien, Q es invertible y $Q^T = Q^{-1}$, de manera que A es semejante a $Q^T A Q$, y por el teorema 8.3.1, $Q^T A Q$ y A tienen el mismo polinomio característico: $|Q^T A Q - \lambda I| = |A - \lambda I|$. Entonces

$$Q^{\mathsf{T}} = \begin{pmatrix} \mathbf{u}_1^{\mathsf{T}} \\ \mathbf{u}_2^{\mathsf{T}} \\ \vdots \\ \mathbf{u}_n^{\mathsf{T}} \end{pmatrix}$$

de manera que

$$Q^{\mathsf{T}}AQ = \begin{pmatrix} \mathbf{u}_1^{\mathsf{T}} \\ \mathbf{u}_2^{\mathsf{T}} \\ \vdots \\ \mathbf{u}_n^{\mathsf{T}} \end{pmatrix} A(\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n) = \begin{pmatrix} \mathbf{u}_1^{\mathsf{T}} \\ \mathbf{u}_2^{\mathsf{T}} \\ \vdots \\ \mathbf{u}_n^{\mathsf{T}} \end{pmatrix} (A\mathbf{u}_1, A\mathbf{u}_2, \dots, A\mathbf{u}_n)$$

$$= \begin{pmatrix} \mathbf{u}_{1}^{\mathsf{T}} \\ \mathbf{u}_{2}^{\mathsf{T}} \\ \vdots \\ \mathbf{u}_{n}^{\mathsf{T}} \end{pmatrix} (\lambda_{1}\mathbf{u}_{1}, A\mathbf{u}_{2}, \dots, A\mathbf{u}_{n}) = \begin{pmatrix} \lambda_{1} & \mathbf{u}_{1}^{\mathsf{T}}A\mathbf{u}_{2} & \cdots & \mathbf{u}_{1}^{\mathsf{T}}A\mathbf{u}_{n} \\ 0 & \mathbf{u}_{2}^{\mathsf{T}}A\mathbf{u}_{2} & \cdots & \mathbf{u}_{2}^{\mathsf{T}}A\mathbf{u}_{n} \\ \vdots & \vdots & & \vdots \\ 0 & \mathbf{u}_{n}^{\mathsf{T}}A\mathbf{u}_{2} & \cdots & \mathbf{u}_{n}^{\mathsf{T}}A\mathbf{u}_{n} \end{pmatrix}$$

Los ceros aparecen porque $\mathbf{u}_1^{\mathsf{T}} \mathbf{u}_j = \mathbf{u}_1 \cdot \mathbf{u}_j = 0$ si $j \neq 1$. Por otro lado, $[Q^{\mathsf{T}} A Q]^{\mathsf{T}} = Q^{\mathsf{T}} A^{\mathsf{T}} (Q^{\mathsf{T}})^{\mathsf{T}} = Q^{\mathsf{T}} A Q$. Así, $Q^{\mathsf{T}} A Q$ es simétrica, lo que significa que debe haber ceros en el primer renglón de $Q^{\mathsf{T}} A Q$ que concuerden con los ceros de la primera columna. Entonces

$$Q^{\mathsf{T}}AQ = \begin{pmatrix} \lambda_1 & 0 & 0 & \cdots & 0 \\ 0 & q_{22} & q_{23} & \cdots & q_{2n} \\ 0 & q_{32} & q_{33} & \cdots & q_{3n} \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & q_{n2} & q_{n2} & \cdots & q_{nn} \end{pmatrix}$$

У

$$|Q^{T}AQ - \lambda I| = \begin{vmatrix} \lambda_{1} - \lambda & 0 & 0 & \cdots & 0 \\ 0 & q_{22} - \lambda & q_{23} & \cdots & q_{2n} \\ 0 & q_{32} & q_{33} - \lambda & \cdots & q_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & q_{n2} & q_{n2} & \cdots & q_{nn} - \lambda \end{vmatrix}$$

$$= (\lambda_1 - \lambda) \begin{vmatrix} q_{22} - \lambda & q_{23} & \cdots & q_{2n} \\ q_{32} & q_{33} - \lambda & \cdots & q_{3n} \\ \vdots & \vdots & & \vdots \\ q_{n2} & q_{n2} & \cdots & q_{nn} - \lambda \end{vmatrix} = (\lambda - \lambda_1) |(M_{11}\lambda)|$$

donde $M_{11}(\lambda)$ es el menor 1,1 de $Q^TAQ - \lambda I$. Si k=1, no hay nada que demostrar. Si k>1, entonces $|A-\lambda I|$ contiene el factor $(\lambda-\lambda_1)^2$, y por lo tanto $|Q^TAQ - \lambda I|$ también contiene el factor $(\lambda-\lambda_1)^2$. Entonces $|M_{11}(\lambda)|$ contiene el factor $\lambda-\lambda_1$, lo que significa que $|M_{11}(\lambda)|=0$. Esto significa que las últimas n-1 columnas de $Q^TAQ - \lambda_1 I$ son linealmente dependientes. Como la primera columna de