

Theory of Evolutionary Algorithms

Martin Krejca

Mathematical Optimization

$$g(x,y,z) = (x,y,z) \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

Black-box Optimization

Evolutionary Algorithms

Theory Benchmarks

$$\{0,1\}^n \to \mathbb{R}$$

One $\operatorname{Max}_n : x \mapsto \sum_{i=1}^n x_i$

$$\Pr[\text{flipping exactly one bit}] = \left(1 - \frac{1}{n}\right)^{n-1} \ge \frac{1}{e}$$

Theorem: The (1+1) EA optimizes OneMax_n in $\Theta(n \log n)$ iterations in expectation.

Theorem: The (1+1) EA optimizes $OneMax_n$ in $O(n \log n)$ iterations in expectation.

- Coupon collector
- Drift theory

