MOSFET-Gleichungen

Sperrbereich

$$I_{Dn/p} = 0 \qquad \qquad \text{wenn } U_{GSn} - U_{Tn} \leq 0 \text{ beim n-MOSFET}$$
 wenn $U_{GSp} - U_{Tp} \geq 0 \text{ beim p-MOSFET}$

Widerstandsbereich

$$I_{Dn/p} = \pm \beta_{n/p} \left[(U_{GSn/p} - U_{Tn/p}) U_{DSn/p} - \frac{U_{DSn/p}^2}{2} \right] (1 \pm \lambda_{n/p} \ U_{DSn/p})$$

wenn $0 < U_{DSn} < U_{GSn} - U_{Tn}$ und $\lambda_n > 0$ beim n-MOSFET (+) wenn $U_{GSp} - U_{Tp} < U_{DSp} < 0$ und $\lambda_p > 0$ beim p-MOSFET (-)

Sättigungsbereich

$$I_{Dn/p} = \pm \frac{1}{2} \beta_{n/p} \left(U_{GSn/p} - U_{Tn/p} \right)^2 \left(1 \pm \lambda_{n/p} \ U_{DSn/p} \right)$$

wenn $U_{DSn} \ge U_{GSn} - U_{Tn} > 0$ und $\lambda_n > 0$ beim n-MOSFET (+) wenn $U_{DSp} \le U_{GSp} - U_{Tp} < 0$ und $\lambda_p > 0$ beim p-MOSFET (-)

3D-Plot n-Kanal-MOSFET

3D-Plot p-Kanal-MOSFET

Prozessparameter

β / k / C

Prozessverstärkungsfaktor (transconductance coefficient)

$$\beta_n = k_n \frac{W}{L_{eff}}$$

$$\beta_p = k_p \frac{W}{L_{eff}}$$

$$k_n = \mu_n C'_{ox} = \frac{\mu_n \varepsilon_0 \varepsilon_{SiO_2}}{d_{ox}} \stackrel{typ.}{=} 30 \dots 200 \frac{\mu A}{V^2}$$

$$k_p = \mu_p C'_{ox} = \frac{\mu_p \varepsilon_0 \varepsilon_{SiO_2}}{d_{ox}} \stackrel{typ.}{=} 15 \dots 100 \frac{\mu A}{V^2}$$

Parasitäre Kapazitäten

Mit
$$C_G = C'_{ox} W L$$
:

 $C_{GS}=C_G$ Gate-Source-Kapazität $C_j=\frac{2}{3}$ C_G Drain/Source-Bulk-Sperrschichtkapazität (junction) $C_{GD}=\frac{2}{3}$ C_G Gate-Drain-Kapazität

Störabstände (noise margins)

Für symmetrische Dimensionierung $\frac{\beta_n}{\beta_p}=1$ gilt:

$$U_{IL} = \frac{3 \; U_{DD} - 3 \; |U_{Tp}| + 5 \; U_{Tn}}{8} \quad \Longrightarrow \quad NM_L \approx U_{IL} \; \text{ für } \; U_{OL} \approx 0$$

$$U_{IH} = \frac{5 \; U_{DD} - 5 \; |U_{Tp}| + 3 \; U_{Tn}}{8} \quad \Longrightarrow \quad NM_H \approx U_{DD} - U_{IH} \; \text{ für } \; U_{OH} \approx U_{DD}$$

Verzögerungszeiten

Laden / Entladen einer Kapazität

$$i(t) = -C_L \frac{\mathrm{d}u_c(t)}{\mathrm{d}t}$$

Problem: Finde t, stelle also um:

$$\mathrm{d}t = -\frac{C_L}{i(t)} \; \mathrm{d}u_c$$

Wobei i(t) durch die Gleichung des entsprechendes MOSFETs bestimmt wird, d.h. nur von u_c abhängt. Die Gesamtzeit ergibt sich dann durch Integration:

$$t_{charge} = \pm \int_{U_{\text{start}}}^{U_{\text{end}}} \frac{C_L}{i(u_c)} \, \mathrm{d}u_c$$

Mit "+" ...laden, "-" ... entladen und Pfeilung so, dass i > 0. Als Endwert sollte nicht die vollständige Umladung (also z.B. U_{DD} oder 0V) verwendet werden, da dieser Wert mathematisch nie erreicht wird.

Häufig auftretende Integrale:

$$\int_{U_{\text{start}}}^{U_{\text{end}}} \frac{1}{(a-u)^2} \, du = \left[\frac{1}{a-u}\right]_{U_{\text{start}}}^{U_{\text{end}}}$$

$$\int_{U_{\rm start}}^{U_{\rm end}} \frac{1}{b \; u - u^2/2} \; \mathrm{d}u = \left[\frac{1}{b} \; \ln \left(\frac{u}{u - 2b}\right)\right]_{U_{\rm start}}^{U_{\rm end}}$$

Kapazität über NMOS entladen

Abfallzeit:

$$t_{HL} \approx 4 \; \frac{C_L}{\beta_n \; U_{DD}}$$

Kapazität über PMOS laden

Startspannung $U_{start} = 0V$ Threshold-Spannung $U_{Tn} = -0.2 U_{DD}$ Kanallängenmodulation vernachlässigt, $\lambda = 0$

Zielspannung $U_{end} = 0.9 \ U_{DD}$

Anstiegszeit:

$$t_{LH} \approx 4 \; \frac{C_L}{\beta_p \; U_{DD}}$$

Kapazität über NMOS laden

Startspannung $U_{start} = 0V$ Threshold-Spannung egal (immer Sättigung) Kanallängenmodulation vernachlässigt, $\lambda = 0$

Zielspannung $U_{end} = 0.9 (U_{DD} - U_{Tn})$

 t_p / t_{LH}

Anstiegszeit:

$$t_{LH} \approx 18 \; \frac{C_L}{\beta_n \; (U_{DD} - U_{Tn})}$$

Über NMOS geladene Kapazität wieder mit NMOS entladen

Startspannung $U_{start} = U_{DD} - U_{Tn}$ (!!!)

Abfallzeit:

$$t_{HL} \approx 3 \; \frac{C_L}{\beta_n \; (U_{DD} - U_{Tn})}$$

Durchschnittliche Verzögerungszeit t_p

Die Durchschnittliche Verzögerungszeit t_p gibt die durchschnittliche Zeit an, die verstreicht zwischen dem Moment, an dem das Eingangssignal den Schaltpunkt 50% U_{DD} erreicht und dem Moment, an dem das Ausgangssignal ebenfalls den Schaltpunkt überstreicht. Es wird zwischen Anstiegs- und Abfallzeit gemittelt, $t_p = \frac{t_{pHL} + t_{pLH}}{2}$.

Sei Eingangssignal ideal (rechteckförmig) und Umladung erfolgt linear. Dann ist $50\%~U_{DD}$ schon nach der Hälfte der Anstiegs- / Abfallzeit erreicht, d.h. $t_{pHL} = \frac{1}{2} t_{HL}, t_{pLH} = \frac{1}{2} t_{LH}$. Somit:

$$t_p = \frac{t_{HL} + t_{LH}}{4}$$

Für den CMOS-Inverter oder Schaltungen mit äquivalenten Transistoren gilt bei symmetrischer Dimensionierung ($\beta_p = \beta_n$): Die Flanken sind symmetrisch und die Verzögerungszeit ist

$$t_p \approx \frac{2 \ C_L}{\beta_n \ U_{DD}}$$

Entladung durch Leckstrom

Für konstanten Leckstrom I_{leck} entlädt sich C von U_{start} auf U_{end} in

$$t_{\rm dis} = C_L \; rac{U_{
m start} - U_{
m end}}{I_{
m leck}}$$

Dimensionierung und Gateweiten

Effektive Gateweite bestimmen

- Bestimmen, welche FETs im gegebenen Fall (z.B. Worst-Case) leiten
- Nicht leitende FETs erhalten Gateweite 0, andere erhalten physikalische Gateweite
- Mit Gateweiten (nächerungsweise) wie mit Leitwerten rechnen und Schrittweise zusammenfassen

Parallelschaltung:
$$W_{\parallel}=W_1+W_2+\ldots$$
 Reihenschaltung: $W_{ges}=\frac{1}{\frac{1}{W_1}+\frac{1}{W_2}+\frac{1}{\ldots}}$

Dimens.

• Effektive Gateweite ist Ergebnis für die gesamte betrachete Schaltung (z.B. n-Kanal-Zweig)

Dimensionierung auf symmetrische Schaltflanken im Worst-Case

• Effektive Gateweite des Zweiges bestimmen, für symmetrische Schaltflanken muss gelten

$$W_{P,\text{eff}} \stackrel{!}{=} \beta_R \ W_{N,\text{eff}} \stackrel{\text{typ.}}{=} 2 \ W_{N,\text{eff}}$$

ullet Längste MOSFET-Kette im zu dimensionierenden Kanalzweig mit Länge N erhält

$$W_1 = W_2 = \ldots = W_N = N \ W_{\text{eff}}$$

• Parallele Kettenschaltungen auf gleiche effektive Gateweite dimensionieren

Schaltschwelle des CMOS-Inverters

$$U_e = \frac{U_{DD} + \sqrt{\beta_n/\beta_p} \ U_{Tn} - |U_{Tp}|}{1 + \sqrt{\beta_n/\beta_p}}$$

Verlustleistung

Allgemein setzt sich die Verlustleistung einer CMOS-Schaltung aus drei Teilleistungen zusammen:

- \bullet P_{stat} : Statische Verlustleistung, wenn dauerhaft über Transistoren ein Strom fließt
- P_{dynC} : Dynamische Verlustleistung zum Laden der Gate-Kapazitäten
- P_{dynQ} : Dynamischen Verlustleistung durch Querstrom, der beim Umschalten eines Inverters fließt, während beide Transistoren leiten

$$P = P_{stat} + P_{dynC} + P_{dynQ}$$

Bei CMOS beläuft sich die statische Verlustleistung P_{stat} im wesentlichen auf die Drain-Leckstöme $I_{Si}\approx 10^{-10}A$

$$P_{stat} = U_{DD} \sum_{n} I_{Si,n}$$

Die dynamische Verlustleistung, die durch die Lade- und Entladevorgänge abgegeben wird, berechnet sich durch $P_{dynC} = \frac{1}{T} \int_T u(t) \ i(t) \ dt$.

Für den Umschaltvorgang von 0 auf U_{DD} und zurück bei der Frequenz $f_C=1/T$ und der Schaltwahrscheinlichkeit p gilt:

$$P_{dynC} = p \ f_C \ C_L \ U_{DD}^2$$

Beim Umschalten leiten alle Transistoren kurz, woraus ein dynamischer Querstrom von max. $I_{DQ} \approx \frac{\beta_n}{2} \left(\frac{U_{DD}}{2} - U_{Tn} \right)^2$ folgt. Worst-Case-Abschätzung:

- \bullet Im Mittel fließt halber max. dynamischer Querstrom während Umschaltzeit: $I=I_{DQ}/2$
- $t_{LH}=t_{HL},\;immer\;2$ Umschaltvorgänge pro Taktperiode T (z.B. Taktverteilnetzwerk)

$$P_{dynQ} = U_{DD} I \frac{t_{HL} + t_{LH}}{T} = U_{DD} I_{DQ} \frac{t_{HL}}{T}$$

Power-Delay-Product

 ${\bf Power\text{-}Delay\text{-}Product:} \qquad \qquad {\bf Energy\text{-}Delay\text{-}Product:}$

Power-Energy-Product:

$$\boxed{W_{PDP} = P \cdot t_p}$$

$$\boxed{W_{EDP} = P \cdot t_p^2}$$

$$W_{PEP} = P^2 \cdot t_p$$

Leistung

Schmitt

Schmitt-Trigger

Bei steigendem $U_e = 0V \rightarrow U_{DD}$ beginnt N_1 beim Überschreiten von $U_e = U_{Tn}$ im Sättigungsbereich zu leiten. N_3 leitet ständig an der Grenze zwischen Sperr- und Sättigungsbereich $(U_{GSN3} = U_{DSN3} = U_{DD} - U_X) \implies U_X \text{ fällt.}$ Sobald $U_{GSN2} = U_e - U_X > U_{Tn}$ kippt der Schmitt-Trigger.

Bei fallendem $U_e = U_{DD} \rightarrow 0V$ beginnt P_1 beim Unterschreiten von $U_e = U_{DD} + U_{Tp}$ im Sättigungsbereich zu leiten. P_3 leitet ständig an der Grenze zwischen Sperr- und Sättigungsbereich (U_{GSP3} = $U_{DSP3} = U_{DD} - U_Y$ \Longrightarrow U_Y steigt. Sobald $U_{GSP2} = U_e - U_Y < U_{Tp}$ kippt der Schmitt-Trigger.

Schaltschwellen

Für $\beta_{n/p} = k_{n/p} \frac{W_{n/p}}{L}$ und Näherung $I_{DN2} \approx 0$ bzw. $I_{DP2} \approx 0$ kurz vor dem Schaltzeitpunkt folgt für die obere Schwelle U_{M+} und für die untere Schwelle U_{M-} :

$$U_{M+} = \frac{\sqrt{W_{N3}/W_{N1}}}{\sqrt{W_{N3}/W_{N1}}} \frac{U_{DD} + U_{Tn}}{1}$$

$$U_{M-} = \frac{U_{DD} + U_{Tp}}{\sqrt{W_{P3}/W_{P1}} + 1}$$

$$U_{M-} = \frac{U_{DD} + U_{Tp}}{\sqrt{W_{P3}/W_{P1}} + 1}$$

Obere und untere Schwelle können unabhängig voneinander durch Dimensionierung von N_1 / N_3 bzw. P_1 / P_3 konfiguriert werden.

Ansatz beispielhaft für NMOS

Schaltung kippt, sobald N_2 leitet, d.h. $U_{GSN2} = U_e - U_X > U_{Tn}$, Schaltpunkt also bei $U_X = U_e - U_{Tn}$. Bestimme U_e für Kipppunkt.

Ansatz: $I_{DN3} = I_{DN1}$ mit N_3 ... Sättigung, N_1 ... Grenze linear / Sättigung, einfacher Sättigung.

$$\frac{1}{2}\beta_{N3} (U_{GSN3} - U_{Tn})^2 = \frac{1}{2}\beta_{N1} (U_{GSN1} - U_{Tn})^2$$

Mit $U_{GSN3} = U_{DD} - U_X$ und $U_{GSN1} = U_e$ folgt:

$$\beta_{N3} (U_{DD} - U_X - U_{Tn})^2 = \beta_{N1} (U_e - U_{Tn})^2$$

Setze $U_X = U_e - U_{Tn}$ ein:

$$\beta_{N3} (U_{DD} - U_e)^2 = \beta_{N1} (U_e - U_{Tn})^2$$

$$\sqrt{\frac{\beta_{N3}}{\beta_{N1}}} \left(U_{DD} - U_e \right) = U_e - U_{Tn}$$

Umformen nach $U_{M+} = U_e$ führt mit $\beta \sim W$ zur obigen Gleichung.