Math2033 TA note 8

Yang Yunfei, Chen Yipei, Liu Ping March 31, 2019

1 CONTINUITY

Example 1. Give an example of a function $f : \mathbb{R} \to \mathbb{R}$ that is continuous at $x \in \mathbb{Z}$, but discontinuous at every $x \notin \mathbb{Z}$.

Solution: Let $g: \mathbb{R} \to \mathbb{R}$ be a continuous function such that g(x) = 0 for every $x \in \mathbb{Z}$ and $g(x) \neq 0$ for every $x \notin \mathbb{Z}$. For example, take $g(x) = \sin \pi x$. Define f(x) = g(x) if $x \in \mathbb{Q}$ and f(x) = 0 if $x \notin \mathbb{Q}$. Then for every $m \in \mathbb{Z}$, $|f(x)| \leq |g(x)| \to 0$ as $x \to m$. Therefore, f is continuous at every $m \in \mathbb{Z}$. For every $x_0 \notin \mathbb{Z}$, let $a_n \in \mathbb{Q}$ and $b_n \notin \mathbb{Q}$ be sequences such that $\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = x_0$. Then $\lim_{n \to \infty} f(a_n) = g(x_0) \neq 0 = \lim_{n \to \infty} f(b_n)$. So f is not continuous at x_0 by the sequential continuity theorem

Example 2. Let $f : \mathbb{R} \to \mathbb{R}$ be continuous such that $|f(x) - f(y)| \le \frac{1}{2}|x - y|$ for every $x, y \in \mathbb{R}$.

- (a) Let $x_1 \in \mathbb{R}$. Define $x_{n+1} = f(x_n)$ for $n \in \mathbb{N}$. Show that $\{x_n\}$ is a Cauchy sequence.
- *(b)* Show that there is $x \in \mathbb{R}$ such that f(x) = x.

Solution: (a) Observe that $|x_{k+1}-x_k|=|f(x_k)-f(x_{k-1})|\leq \frac{1}{2}|x_k-x_{k-1}|$. Repeating this, we have

$$|x_{k+1} - x_k| \le \frac{1}{2}|x_k - x_{k-1}| \le \frac{1}{2^2}|x_{k-1} - x_{k-2}| \le \dots \le \frac{1}{2^{k-1}}|x_2 - x_1|.$$

Thus, for m > n, we have

$$\begin{aligned} |x_m - x_n| &\leq |(x_m - x_{m-1}) + (x_{m-1} - x_{m-2}) + \dots + (x_{n+1} - x_n)| \\ &\leq |x_m - x_{m-1}| + |x_{m-1} - x_{m-2}| + \dots + |x_{n+1} - x_n| \\ &\leq \left(\frac{1}{2^{m-2}} + \frac{1}{2^{m-3}} + \dots + \frac{1}{2^{n-1}}\right) |x_2 - x_1| \\ &\leq \sum_{j=n-1}^{\infty} \frac{1}{2^j} |x_2 - x_1| = \frac{1}{2^{n-2}} |x_2 - x_1|. \end{aligned}$$

If $x_1 = x_2$ then $x_m = x_n$ for all m, n. So $\{x_n\}$ is a Cauchy sequence. If $x_1 \neq x_2$, then for every $\epsilon > 0$, let $K \in \mathbb{N}$ such that $K > 2 - \log_2 \frac{\epsilon}{|x_2 - x_1|}$, then for all m, n > K, we have $|x_m - x_n| \leq \frac{1}{2^{K-2}}|x_2 - x_1| < \epsilon$. Therefore, $\{x_n\}$ is a Cauchy sequence.

(b) Define $\{x_n\}$ as in (a), then $\{x_n\}$ is a Cauchy sequence. So $\{x_n\}$ converges to some $x \in \mathbb{R}$. We have

$$x = \lim_{n \to \infty} x_{n+1} = \lim_{n \to \infty} f(x_n) = f(\lim_{n \to \infty} x_n) = f(x).$$

Example 3. Show that there is no continuous function $f : \mathbb{R} \to \mathbb{R}$ such that for every $c \in \mathbb{R}$, f(x) = c has exactly 2 solutions.

Solution: We proof by assuming the opposite. Suppose such a function exists. Let a, b be the solutions of f(x) = 0 with a < b.

<u>Case I:</u> $\max_{x \in [a,b]} f(x) = f(x_0) \neq 0$. Let y_0 be another solution of $f(y_0) = f(x_0)$.

If $y_0 \notin [a, b]$, then by the intermediate value theorem, there will be 3 solutions of $f(x) = \frac{1}{2}f(x_0)$, one in (a, x_0) , one in (x_0, b) and one between the closer endpoint of [a, b] to y_0 .

If $y_0 \in [a, b]$, without loss of generality, let $x_0 < y_0$ and $f(z_0) = \min_{z \in [x_0, y_0]} f(x)$. Let $w = \max\{f(z_0), 0\}$,

then by the intermediate value theorem, there are at least 3 solutions of f(z) = w, one in (a, x_0) , one in (x_0, y_0) , one in (y_0, b) .

Thus, whether $y_0 \notin [a, b]$ or $y_0 \in [a, b]$ will lead to a contradiction.

<u>Case II:</u> $\min_{x \in [a,b]} f(x) \neq 0$. Let g(x) = -f(x), from case I we know this will lead to a contradiction as well.

<u>Case III:</u> $\max_{x \in [a,b]} f(x) = 0 = \min_{x \in [a,b]} f(x)$. Then $f(x) \equiv 0$ on [a,b], a contradiction.

Example 4. .

- (a) State the intermediate value theorem.
- (b) Let $f:[0,2] \to \mathbb{R}$ be continuous and f(0) = f(2). Show that there exists $c \in [0,1]$ such that f(c) = f(c+1).
- (c) Show that there is a nonzero continuous function $g : \mathbb{R} \to \mathbb{R}$ such that g(t) + g(2t) + g(3t) = g(4t) + g(5t) for every $t \in \mathbb{R}$.

Solution:.

- (a) If a continuous function $f : [a,b] \to \mathbb{R}$ takes values f(a) and f(b) at each end of the interval, then it also takes any value between f(a) and f(b) at some point within the interval.
- (b) Define g(x) = f(x) f(x+1). Then g(0) + g(1) = f(0) f(2) = 0. If g(0) = 0 or g(1) = 0, we find the c such that

$$g(c) = 0 \implies f(c) = f(c+1).$$

Otherwise, g(0), g(1) has different signs which means $\exists c \in [0,1]$ s.t g(c) = 0 by intermediate theorem. So

$$\exists c \in [0,1], \quad f(c) = f(c+1).$$

(c) suppose $g = t^r$ for some r, by the constraint we have

$$t^r + 2^r t^r + 3^r t^r = 4^r t^r + 5^r t^r$$
.

That is

$$1 + 2^r + 3^r = 4^r + 5^r$$
.

Define $f(r) = 1 + 2^r + 3^r - (4^r + 5^r)$, and we have

$$f(0) = 1$$
 $f(1) = -3$.

By intermediate value theorem, $\exists r_0 \in [0,1], f(r_0) = 0$. So

$$g(x) = t^{r_0}$$

which satisfies the constraint.