Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут» Факультет інформатики та обчислювальної техніки Кафедра обчислювальної техніки

Комп'ютерна арифметика Розрахункова робота по курсу «КЛ-2»

Виконав: студент групи IO-82 Матвійчук Б. В.

Керівник: Жабін В.І.

Обгрунтування варіанту

Номер залікової книжки: $9108_{10} = 10001110010100_2$

$$X_2 = -11111001,1001100$$

$$Y_2 = +11111,0011001001$$

Виконання роботи

Завдання 1

В прямому коді:

 X_2 :

$$3H.P P=+8_{10}$$

$$M = -,1111110011001100$$

 Y_2 :

$$3H.P P=+5_{10}$$

$$M = +,1111110011001001$$

Завдання 2

1. Операція множення чисел.

 $Z=Y\times X$, де Y-множене, X-множник.

1.1 Перший спосіб множення.

1.1.1 Теоретичне обгрунтування.

Числа множаться у прямих кодах, знакові та основні розряди обробляються окремо. Для визначення знака добутку здійснюють підсумування по модулю 2 цифр, що розміщуються в знакових розрядах співмножників.

Множення мантис першим способом здійснюється з молодших розрядів множника, сума часткових добутків зсувається вправо, а множене залишається нерухомим. Тоді добуток двох чисел представляється у вигляді:

$$\begin{split} Z &= Y \cdot x_n \cdot 2^{-n+99} + Y \cdot x_{n-1} \cdot 2^{-n+1} + \dots + Y \cdot x_1 \cdot 2^{-1}, \quad \text{що рівносильно} \\ Z &= \left(\left(\dots \left((0 + Y \cdot x_n) \cdot 2^{-1} + Y \cdot x_{n-1} \right) \cdot 2^{-1} \dots \right) + Y \cdot x_1 \right) \cdot 2^{-1} = \sum_{i=1}^n ((Z_{i-1} + Y \cdot x_{n-i+1}) \cdot 2^{-1}). \end{split}$$

Отже, сума часткових добутків в i-му циклі, де $i=\overline{1,n}$, зводиться до обчислення виразу:

$$Z_i = (Z_{i-1} + Y \cdot x_{n-i+1}) \cdot 2^{-1}.$$

1.1.2 Операційна схема.

Рисунок 1.1- Операційна схема.

1.1.3 Змістовний мікроалгоритм.

Рисунок 1.2- Змістовний мікроалгоритм.

1.1.4 Таблиця станів регістрів. Таблиця 1.1-Таблиця станів регістрів.

ş	$n_{1,1}$	гиолиця станів регіс	лирив.		
	№ ц.	RG1	RG2	RG3	CT
	П.С.	00000000000000000	011111001100110	0111110011001001	1111
	1 >	00000000000000000	001111100110011		1110
ĺ	2				
		00000000000000000			
	\rightarrow		001111100110011		1101
	3	0011111001100100			
			1001111110011001		1100
	4 →	+0111110011001001			
		1011101100101101			
		0101110110010110	1100111111001100		1011
	5 →	0010111011001011	011001111100110		1010
	6 →	0001011101100101	101100111110011		1001
	7	+0111110011001001			
		1001010000101110			
	\rightarrow	0100101000010111	010110011111001		1000
ŀ	8	. 01111110011001001	010110011111001		1000
	0	+0111110011001001 1100011011100000			
	\rightarrow	01100011011100000	001011001111100		0111
ļ	9 >	00110001101110000	000101100111110		0111
ŀ	9 7 10→	00011000110111000	00010110011111		0110
ŀ	$10 \rightarrow$	+0111110011001001	1000010110011111		0101
	117	10010101101001001	1000010111001111		
		0100101010100101			0100
ŀ	12	+0111110011001001			0100
	12	1100011110011011			
	\rightarrow	01100011110011011	110000101100111		0011
ŀ	13 >	+0111110011001001	011000010110011		0011
	15 /	1110000010010110	011000010110011		
		0111000001001011			0010
Ì	14 >	+0111110011001001	001100001011001		
		1110110100010100			
		0111011010001010			0001
	15	+0111110011001001			
		1111001101010011			
	\rightarrow	0,0111100110101001	100110000101100		0000
			•	•	•

1.1.5 Функціональна схема з відображенням управляючих сигналів.

1.1.6 Закодований мікроалгоритм.

Таблиця 1.2-Таблиця кодування операцій і логічних умов.

F.	
Таблиця кодування мік	рооперацій
MO	УС
G1:=0	R
RG2:=X	W2
RG3:=Y	W3
CT:=15	W_{CT}
RG1:=RG1+RG3	W1
RG1:=0.r(RG1)	ShR1
RG2:=RG1[0].r(RG2)	ShR2
CT:=CT-1	dec

Таблиця кодування логічних умов							
ЛУ	Позначення						
RG2[0]	X1						
CT=0	X2						

Рисунок 1.4-Закодований мікроалгоритм.

1.1.7 Граф управляючого автомата Мура з кодами вершин.

 $\overline{X2}$, $\overline{X1}$

Рисунок 1.5-Граф автомата Мура

1.1.8 Обробка порядків і нормалізація

$$P_z = P_x + P_y = 8 + 5 = 13_{10} = 1101_2.$$

Нормалізація мантиси.

$$\begin{aligned} M_{Z}&\text{= , 0,111100110101001} \leftarrow \text{, } P_{z} \coloneqq P_{z}-1. \\ &\text{, 111100110101001} \qquad P_{z}=1100. \end{aligned}$$

Знак мантиси: $1 \oplus 0 = 1$.

1.1.9 Форма запису нормалізованого результату з плаваючою комою в пам'ять

3н.Р			P=	=+1	2_{10}			`	3н.М	1							M							
0.	0	0	0	1	1	0	0		0,	1	1	1	1	0	0	1	1	0	1	0	1	0	0	1

1.2 Другий спосіб множення

1.2.1 Теоретичне обгрунтування

Числа множаться у прямих кодах, знакові та основні розряди обробляються окремо. Визначення знака добутку здійснюють підсумування по модулю 2 цифр, що розміщуються в знакових розрядах співмножників.

Множення мантис другим способом здійснюється з молодших розрядів, множене зсувається вліво, а сума часткових добутків залишається нерухомою. Вираз

$$Z = Y \cdot x_n \cdot 2^{-n} + Y \cdot x_{n-1} \cdot 2^{-n+1} + \dots + Y \cdot x_1 \cdot 2^{-1}$$
, подамо у вигляді $Z = \left(\left(\dots \left((0 + Y \cdot 2^{5n} \cdot x_n) + Y \cdot 2^{-n+1} \cdot x_{n-1} \right) + \dots \right) + Y \cdot 2^{-1} x_1 \right)$.

Отже, сума часткових добутків в і-му циклі, де $i = \overline{1,n}$, зводиться до обчислення виразу:

$$Z_i = Z_{i-1} + 2Y_{i-1} \cdot x_{n-i+1}.$$
 з початковими умовами $Z_0 = 0$, $Y_0 = Y2^{-n}$, $i = 1$.

1.2.2 Операційна схема

Рисунок 1.6-Операційна схема

1.2.3 Змістовний мікроалгоритм

1.2.4 Таблиця станів регістрів

Таблиця 1.3- Таблиця станів регістрів

Ŋ <u>o</u>	RG1	RG3 ←	RG2 →
ц.			
П.С.	000000000000000000000000000000000000000	00000000000000111110011001001	1111100110010010
1	000000000000000000000000000000000000000	00000000000001111100110010010	011111001100110
2	000000000000000000000000000000000000000	00000000000011111001100100100	001111100110011
3	000000000000011111001100100100	00000000000111110011001001000	000111110011001
4	+00000000000111110011001001000	00000000001111100110010010000	
	000000000001011101100101101100		000011111001100
5	000000000001011101100101101100	00000000011111001100100100000	000001111100110
6	000000000001011101100101101100	00000000111110011001001000000	000000111110011
7	+00000000111110011001001000000		000000011111001
	000000001001010000101110101100	000000001111100110010010000000	
8	+00000001111100110010010000000	000000011111001100100100000000	000000001111100
	000000011000110111000000101100		
9	000000011000110111000000101100	000000111110011001001000000000	000000000111110
10	000000011000110111000000101100	000001111100110010010000000000	000000000011111
11	+0000011111001100100100000000000	0000111110011001001000000000000	000000000001111
	000010010101101001010000101100		
12	+00001111100110010010000000000000000000	0001111100110010010000000000000	000000000000111
	000110001111001101110000101100		
13	+00011111001100100100000000000000000000	0011111001100100100000000000000	000000000000011
	001110000010010110110000101100		
14	+00111110011001001000000000000000000000	011111001100100100000000000000000000000	0000000000000001
	011101101000101000110000101100		
15	+01111100110010010000000000000000000000		000000000000000
	111100110101001100110000101100	111110011001001000000000000000000000000	

1.2.5 Функціональна схема з відображенням управляючих сигналів

1.2.6 Закодований мікроалгоритм

Таблиця 1.4 — Таблиця кодування мікрооперацій.

Таблиця кодування мікрооперацій							
MO	УС						
RG1:=0	R						
RG2:=X	W2						
RG3:=Y	W3						
RG1:=RG1+RG3	W1						
RG2:=0.r(PG2)	ShR						
RG3:=l(RG3).0	ShL						

Таблиця кодування логічних умов								
ЛУ	Позначення							
RG2[0]	X1							
RG2=0	X2							

Рисунок 1.9- Закодований мікроалгоритм.

1.2.7 Граф управляючого автомата Мура з кодами вершин

Рисунок 1.10- Граф автомата Мура

1.2.8 Обробка порядків і нормалізація

$$P_z = P_x + P_y = 8 + 5 = 13_{10} = 1101_2$$

Нормалізація мантиси.

$$\begin{aligned} M_{Z}&\text{= , 0,111100110101001} \leftarrow \text{, } P_{z} \coloneqq P_{z}-1.\\ &\text{, 111100110101001} \qquad P_{z}=1100. \end{aligned}$$

Знак мантиси: $1 \oplus 0 = 1$

1.2.9 Форма запису нормалізованого результату з плаваючою комою в пам'ять

Зн	ı.P		P=	=+1	210			3	н.М							ľ	M							
0.	0	0	0	1	1	0	0		0,	1	1	1	1	0	0	1	1	0	1	0	1	0	0	1

1.3 Третій спосіб множення

1.3.1 Теоретичне обгрунтування

Числа множаться у прямих кодах, знакові та основні розряди обробляються окремо. Визначення знака добутку здійснюють підсумування по модулю 2 цифр, що розміщуються в знакових розрядах співмножників.

Множення мантис третім способом здійснюється зі старших розрядів множника, сума часткових добутків і множник зсуваються вліво, а множене нерухоме.

Вираз

$$\begin{split} Z &= Y \cdot x_n \cdot 2^{-n} + Y \cdot x_{n-1} \cdot 2^{-n+1} + \dots + Y \cdot x_1 \cdot 2^{-1}, \ \text{ подамо у вигляд} i \\ Z &= \Big(\Big(\dots \Big((0 + Y \cdot 2^{-n} \cdot x_1) \cdot 2 + Y \cdot 2^{-n} \cdot x_2 \Big) \cdot 2 + \dots + Y \cdot 2^{-n} x_k \Big) \cdot 2 + \dots + Y \cdot 2^{-n} x_n \Big). \end{split}$$

Отже, сума часткових добутків в i-му циклі, де $i = \overline{1,n}$, зводиться до обчислення виразу:

$$Z_i = 2Z_{i-1} + Y \cdot x_i \cdot 2^{-n}.$$

з початковими умовами Z_0 =0, i=1.

1.3.2 Операційна схема

Рисунок 1.11-Операційна схема

1.3.3 Змістовний мікроалгоритм

Рисунок 1.12-Змістовний мікроалгоритм

1.3.4 Таблиця станів регістрів

Таблиця 1.5- Таблиця станів регістрів

№ ц.	RG1	RG3	RG2	CT
П.С.	000000000000000000000000000000000000000	101000011000101	111110011001100	1111
1	000000000000001111100110010010		111100110011000	1110
2	+00000000000000111110011001001 000000000		111001100110000	1101
3	+00000000000000111110011001001 000000000		110011001100000	1100
4	+000000000000000111110011001001 00000000		100110011000000	1011
5	+000000000000000111110011001001 00000000		001100110000000	1010
6	00000001111000111000101011100		011001100000000	1001
7	0000000111100011100010101111000		110011000000000	1000
8	+000000000000000111110011001001 0000001111001010111111		1001100000000000	0111
9	+000000000000000111110011001001 000000111100110011101111001011 000001111001100111011110010110		0011000000000000	0110
10	000011110011001110111100101100		0110000000000000	0101
11	000111100110011101111001011000		1100000000000000	0100
12	+000000000000000111110011001001 00011110011010010		10000000000000000	0011

13	+00000000000000111110011001001		
	001111001101010011001100001011		
	011110011010100110011000010110	000000000000000	0010
14			
	111100110101001100110000101100		
		0 00000000000000000000000000000000000	0001
15	111001101010011001100001011000	000000000000000	0000

1.3.5 Функціональна схема з відображенням управляючих сигналів

Рисунок 1.13-Функціональна схема

1.3.6 Закодований мікроалгоритм

Таблиця 1.6- Таблиця кодування мікрооперацій

Таблиця кодування мікрооперацій									
MO	УС								
RG1:=0	R								
RG2:=X	W2								
RG3:=Y	W3								
CT:=15	W_{CT}								
RG1:=RG1+RG3	W1								
RG1:=l(RG1).0	ShL1								
RG2:=l(RG2).0	ShL2								
CT:=CT-1	dec								

Таблиц	Таблиця кодування логічних умов							
ЛУ	Позначення							
RG2[n-1]	X1							
CT=0	X2							

Рисунок 1.14- Закодований мікроалгоритм

1.3.7 Граф управляючого автомата Мура з кодами вершин

Рисунок 1.15- Граф автомата Мура

1.3.8 Обробка порядків і нормалізація

$$P_z = P_x + P_y = 8 + 5 = 13_{10} = 1101_2.$$

Нормалізація мантиси.

$$\begin{array}{c} M_{Z}\!\!=,0,\!111100110101001 \; \mbox{\Large\ensuremath{\longleftarrow}} \; , \; P_{z} \coloneqq P_{z} - 1. \\ , \; 111100110101001 \; \qquad P_{z} = 1100. \end{array}$$

Знак мантиси: $1 \oplus 0 = 1$.

1.3.9 Форма запису нормалізованого результату з плаваючою комою в пам'ять

3н	.P	10						7		M													
0.	0	0	0	1	1	0	0	0,	1	1	1	1	0	0	1	1	0	1	0	1	0	0	1

1.4 Четвертий спосіб множення

1.4.1 Теоретичне обгрунтування

Числа множаться у прямих кодах, знакові та основні розряди обробляються окремо. Визначення знака добутку здійснюють підсумування по модулю 2 цифр, що розміщуються в знакових розрядах співмножників.

Множення здійснюється зі старших розрядів множника, сума часткових добутків залишається нерухомою, множене зсувається праворуч, множник ліворуч.

Вираз

$$Z = Y \cdot x_n \cdot 2^{-n} + Y \cdot x_{n-1} \cdot 2^{-n+1} + \dots + Y \cdot x_1 \cdot 2^{-1}, \quad no дамо \ y \ виглядi$$

$$Z = \left(\left(\dots \left((0 + Y \cdot 2^{-1} \cdot x_1) + Y \cdot 2^{-2} \cdot x_2 \right) + \dots + Y \cdot 2^{-k} x_k \right) + \dots + Y \cdot 2^{-n} x_n \right).$$

Отже, сума часткових добутків в i-му циклі, де $i = \overline{1,n}$, зводиться до обчислення виразу:

$$Z_i = Z_{i-1} + 2^{-1}Y_{i-1} \cdot x_i$$
.
з початковими значеннями i=1, $Y_0 = 2^{-1}Y$, $Z_0 = 0$.

1.4.2 Операційна схема

Рисунок 1.16-Операційна схема

1.4.3 Змістовний мікроалгоритм

Рисунок 1.17-Змістовний мікроалгоритм

1.4.4 Таблиця станів регістрів

Таблиця 1.7- Таблиця станів регістрів

№ ц.	RG1	RG3	RG2
П.С.	000000000000000000000000000000000000000	011111001100100100000000000000000000000	111110011001100
1	011111001100100100000000000000000000000	001111100110010010000000000000000000000	111100110011000
2	+00111110011001001000000000000000000000	000111110011001001000000000000000000000	11100110011000
_	101110110010110110000000000000000000000	000111110011001001000000000000000000000	11100110011000
3	+00011111001100100100000000000000000000	00001111100110010010000000000000	110011001100000
	110110100101111111100000000000000	000011111001100100100000000000000000000	11001100110000
4	+00001111100110010010000000000000000000	0000011111001100100100000000000	100110011000000
	11101001111111000111000000000000		
5	+0000011111001100100100000000000	000000111110011001001000000000	0 01100011000000
	1111000111000101011110000000000		
6	1111000111000101011110000000000	00000011111001100100100000000	0 11000110000000
7	1111000111000101011110000000000	00000001111100110010010000000	1 10001100000000
8	+0000000111110011001001000000	00000000111110011001001000000	1 00011000000000
	1111001010111111100000010000000		
9	+00000000111110011001001000000	00000000011111001100100100000	0 001100000000000
	1111001100111011111001011000000		
10	1111001100111011111001011000000	00000000001111100110010010000	1100000000000000
11	1111001100111011111001011000000	00000000000111110011001001000	1000000000000000
12	+00000000000111110011001001000	00000000000011111001100100100	0000000000000000
	111100110100101101100100001000		
13	+00000000000011111001100100100	00000000000001111100110010010	0000000000000000
	111100110101001100110000101100		
14	111100110101001100110000101100	00000000000000111110011001001	0000000000000000
14		000000000000000111110011001001	000000000000

1.4.5 Функціональна схема з відображенням управляючих сигналів

Рисунок 1.18-Функціональна схема

1.4.6 Закодований мікроалгоритм

Таблиця 1.8- Таблиця кодування мікрооперацій

Таблиця кодув	вання мікрооперацій
MO	УС
RG1:=0	R
RG2:=X	W2
RG3:=Y	W3
RG1:=RG1+RG3	W1
RG3:=0.r(RG3)	ShR
RG2:=l(RG2).0	ShL

Таблиця кодуванн	я логічних умов
ЛУ	Позначення
RG2[n-1]	X1
RG2=0	X2

Рисунок 1.19- Закодований мікроалгоритм

1.4.7 Граф управляючого автомата Мура з кодами вершин

Рисунок 1.20- Граф автомата Мура

1.4.8 Обробка порядків і нормалізація

$$P_z = P_x + P_y = 8 + 5 = 13_{10} = 1101_2.$$

Нормалізація мантиси.

$$\begin{aligned} M_{Z}&=\text{, 0,111100110101001} \leftarrow \text{, } P_{z} \coloneqq P_{z}-1.\\ &\text{, 111100110101001} \qquad P_{z}=1100. \end{aligned}$$

Знак мантиси: $1 \oplus 0 = 1$.

1.4.9 Форма запису нормалізованого результату з плаваючою комою в пам'ять

2. Операція ділення чисел

Z=X: Y, X-ділене, Y – дільник.

2.1 Перший спосіб ділення (з відновленням від'ємного залишку)

2.1.1 Теоретичне обгрунтування

Нехай ділене X і дільник Y є n-розрядними правильними дробами, поданими в прямому коді. В цьому випадку знакові й основні розряди операндів обробляються окремо. Знак результату визначається шляхом підсумовування по модулю 2 цифр, записаних в знакових розрядах.

При реалізації ділення за першим методом здійснюється зсув вліво залишку при нерухомому дільнику. Черговий залишок формується в регістрі Р2 (у вихідному стані в цьому регістрі записаний X). Виходи Р2 підключені до входів СМ безпосередньо, тобто ланцюги видачі коду з Р2 не потрібні. Час для підключення n+1 цифри частки визначається виразом t=(n+1)(tt+tc), де tt - тривалість виконання мікрооперації додавання-віднімання; tc - тривалість виконання мікрооперації зсуву.

2.1.2 Операційна схема

Рисунок 2.1-Операційна схема

Рисунок 2.2-Змістовний мікроалгоритм

2.1.4 Таблиця станів регістрів

Таблиця 2.1- Таблиця станів регістрів

№ ц.	RG3	RG2	RG1	MO
П.С.			$00111110011001100_{\Pi K}$	ПС
	00000000000000000	00111110011001100	$11000001100110111_{\pi K}$	
1	00000000000000000000 <u>1</u>	01111100110011000		← RG2←RG3
	_	+11000001100110111		RG2:=RG2-
		00111110011001111		RG1
2	000000000000000 <u>1</u> 1	01111100110011110		← RG2←RG3
		+11000001100110111		RG2:=RG2-
		00111110011010101		RG1
3	00000000000000 <u>1</u> 11	01111100110101010		← RG2←RG3
		+11000001100110111		RG2:=RG2-
		00111110011100001		RG1
4	0000000000000 <u>1</u> 1111	01111100111000010		← RG2←RG3
		+11000001100110111		RG2:=RG2-
		001111100111111001		RG1
5		011111001111110010		← RG2←RG3
	0000000000011111	+11000001100110111		RG2:=RG2-
		00111110100101001		RG1
6	0000000000111111	01111101001010010		← RG2←RG3
		+11000001100110111		RG2:=RG2-
_		00111110110001001		RG1
7	0000000001111111	01111101100010010		← RG2←RG3
		+11000001100110111		RG2:=RG2-
0	0000000011111111	00111111001001001		RG1
8	0000000011111111	01111110010010010		← RG2←RG3
		+11000001100110111 00111111111001001		RG2:=RG2- RG1
9	0000000111111111	0111111111001001		← RG2←RG3
9	00000001111111111	+11000001100110111		RG2:=RG2-
		01000001100110111		RG2.=RG2-
10	0000001111111111	1000001011001001		← RG2←RG3
10	0000001111111111	+001111100110010010		RG2:=RG2-
		11000001001011011		RG1
11	0000011111111110	10000010010110110		← RG2←RG3
	000001111111111	+00111110011001001		RG2:=RG2-
		11000000101111111		RG1
12	0000111111111100	100000010111111110		← RG2←RG3
		+00111110011001001		RG2:=RG2-
		101111111111000111		RG1
13	00011111111111000	011111111110001110		← RG2←RG3
		+11000001100110111		RG2:=RG2-
		01000001011000101		RG1
14	00111111111110001	10000010110001010		← RG2←RG3
		+00111110011001001		RG2:=RG2-
		11000001001010011		RG1
15	01111111111100010	10000010010100110		← RG2←RG3
		+00111110011001001		RG2:=RG2-
		11000000101101111		RG1
16	<u>1,1111111111000100</u>	10000001011011110		← RG2←RG3
		+00111110011001001		RG2:=RG2-
		101111111110100111		RG1

2.1.5 Функціональна схема з відображенням управляючих сигналів

Рисунок 2.3-Функціональна схема

2.1.6 Закодований мікроалгоритм

Таблиця 2.2- Таблиця кодування мікрооперацій

Таблиця кодування мік	рооперацій
MO	УС
RG3:=0	W3
RG2:=X;	W2
RG1:=Y;	W1
$RG3:=l(RG3).\overline{RG2[n+1]}$	ShL1
RG2:=l(RG2).0	ShL2
$RG2:=RG2+\overline{RG1}+1$	W4
RG2:=RG2+RG1	W5

Таблиця кодування л	югічних умов
ЛУ	Позначення
RG2[n+1]	X1
RG3[n+1]	X2

Рисунок 2.4- Закодований мікроалгоритм

2.1.7 Граф управляючого автомата Мура з кодами вершин

Рисунок 2.5- Граф автомата Мура

2.1.8 Обробка порядків і нормалізація

$$P_z = P_x - P_y = 8 - 5 = 3_{10} = 11_2.$$

Нормалізація мантиси не потрібна.

 M_Z =, 11111111111000100.

Знак мантиси: $1 \oplus 0 = 1$.

2.1.9 Форма запису нормалізованого результату з плаваючою комою в пам'ять

Зн	3н.Р P=+12 ₁₀						Зн.М					M												
0.	0	0	0	0	0	1	1		1,	1	1	1	1	1	1	1	1	1	0	0	0	1	0	0

2.2 Другий спосіб ділення (без відновлення остачі)

2.2.1 Теоретичне обгрунтування

Нехай ділене X і дільник Y є n-розрядними правильними дробами, поданими в прямому коді. В цьому випадку знакові й основні розряди операндів обробляються окремо. Знак результату визначається шляхом підсумовування по модулю 2 цифр, записаних в знакових розрядах.

Остача нерухома, дільник зсувається праворуч. Як і при множенні з нерухомою сумою часткових добутків можна водночає виконувати підсумування і віднімання, зсув в регістрах Y,Z. Тобто 1 цикл може складатися з 1 такту, це дає прискорення відносно 1-го способу.

2.2.2 Операційна схема

Рисунок 2.6-Операційна схема

2.2.3 Змістовний мікроалгоритм

Рисунок 2.7-Змістовний мікроалгоритм

2.2.4 Таблиця станів регістрів

Таблиця 2.3- Таблиця станів регістрів

№ ц.	RG3	RG2	RG1
П.С.			$00111110011001001000000000000000_{IIK}$
	00000000000000000000 <u>1</u>	01111100110011000000000000000000	$110000011001101110000000000000000000_{1K}$
1	_		
		+110000011001101110000000000000000	
	000000000000000 <u>1</u> 1	001111100110011111000000000000000	0001111100110010010000000000000
2		+11100000110011011100000000000000000000	
	00000000000000 <u>1</u> 11	00011111001101010100000000000000	0000111110011001001000000000000
3		+1111000001100110111000000000000	0000011111001100100100000000000
	0000000000000 <u>1</u> 1111	0000111110011100001000000000000	
4		+1111100000110011011100000000000	
	00000000000 <u>1</u> 1111	0000011111001111100100000000000	0000001111100110010010000000000
5		+111111000001100110111000000000	000000011111001100100100000000
	00000000000 <u>1</u> 111111	0000001111101001010010000000000	
6		+111111100000110011011100000000	000000001111100110010010000000
	000000000 <u>1</u> 111111	000000011111011000100100000000	
7		+111111110000011001101110000000	
	00000000 <u>1</u> 11111111	000000001111110010010010000000	00000000111110011001001000000
8		+111111111000001100110111000000	00000000011111001100100100000
	0000000 <u>1</u> 111111111	000000001111111111001001000000	
9		+1111111111100000110011011100000	00000000001111100110010010000
	000000 <u>1</u> 111111111	00000000100000101100100100000	
10		+11111111111100000110011011110000	00000000000111110011001001000
	00000 <u>1</u> 1111111111	00000000010001000110010010000	
11		+1111111111111000001100110111000	00000000000011111001100100100
	0000 <u>1</u> 111111111111	00000000001001010011001001000	
12		+1111111111111100000110011011100	00000000000001111100110010010
	000 <u>1</u> 1111111111111	00000000000101011001100100100	
13		+11111111111111100000110011011110	00000000000000111110011001001
	00 <u>1</u> 11111111111111	00000000000011011100110010010	
14		+1111111111111111000001100110111	00000000000000011111001100100
	0 <u>1</u> 111111111111111	000000000000010011110011001001	
15	<u>1</u> ,111111111111111	+1111111111111111100000110011100	00000000000000001111100110010
		00000000000001111111001100101	

2.2.5 Функціональна схема з відображенням управляючих сигналів

2.2.6 Закодований мікроалгоритм

Таблиця 2.4- Таблиця кодування мікрооперацій

<u> 1 αθλιάζει 2.4 - 1 αθλιάζει κ</u>	обувания микрооне
Таблиця кодування	мікрооперацій
MO	УС
RG3:=0;	R
RG1:=Y;	W1
RG2:=X	W2
RG2:=RG2+RG1	W3
RG1:=0.r(RG1)	ShR
RG3:=l(RG3).SM(p)	ShL
$RG2:=RG2+\overline{RG1}+1$	W4

Таблиця кодування	я логічних умов
ЛУ	Позначення
RG2[2n+1]	X1
RG3[n]	X2

Рисунок 2.9- Закодований мікроалгоритм

2.2.7 Граф управляючого автомата Мура з кодами вершин

2.2.8 Обробка порядків і нормалізація

$$P_z = P_x - P_y = 8 - 5 = 3_{10} = 11_2$$

Нормалізація мантиси не потрібна.

$$M_Z$$
=, 111111111111000100.

Знак мантиси: $1 \oplus 0 = 1$

2.2.9 Форма запису нормалізованого результату з плаваючою комою в пам'ять

3н	.P		P=	=+3	10			3н.М										M						
0.	0	0	0	0	0	1	1	1,	1	1	1	1	1	1	1	1	1	0	0	0	1	0	0	

3. Операція додавання чисел

Z=X+Y.

3.1 Теоретичне обгрунтування способу

В пам'яті числа зберігаються у ПК. На першому етапі додавання чисел з плаваючою комою виконують вирівнювання порядків до числа із старшим порядком. На другому етапі виконують додавання мантис. Додавання мантис виконується у доповню вальних кодах, при необхідності числа у ДК переводяться в АЛП. Додавання виконується порозрядно на п-розрядному суматорі з переносом. Останній етап — нормалізація результату. Виконується за допомогою зсуву мантиси результату і коригування порядку результату. Порушення нормалізації можливо вліво і вправо, на 1 розряд вліво і на прозрядів вправо.

Виконання етапів вирівнювання порядків і додавання мантис:

1. Порівняння порядків.

$$P_x > P_y \rightarrow P_z = P_x = +8_{10} = +1000_2,$$

 $\Delta = P_x - P_y = 8 - 5 = 3_{10} = 11_2.$

2. Вирівнювання порядків.

Робимо зсув вправо мантиси числа Y, зменшуючи Δ на кожному кроці, доки Δ стане 0.

Таблиця 3.1- Таблиця зсуву мантиси на етапі вирівнювання порядків

M_Y	Δ	Мікрооперація
0.111110011001001	11	П.С.
0.011111001100100	01	$M_Y \rightarrow \Delta := \Delta - 1$
0. 001111100110010	00	$M_Y \rightarrow \Delta := \Delta - 1$

3. Додавання мантис у модифікованому ДК.

Таблиця 3.2-Додавання мантис

111110011001100

1	1,	1	1	1	1	1	0	0	1	1	0	0	1	1	0	0
0	0,	0	0	1	1	1	1	1	0	0	1	1	0	0	1	0
0	0,	0	0	1	1	0	1	1	1	1	1	1	1	1	1	0

 $M_{\chi} = 11,111110011001100_{IIK} = 11,000001100110100_{IK}$

 $M_y = 00,0011111100110010_{IIK} = 00,0011111100110010_{IJK}$

 $M_z = 00,001101111111111111_{JK} = 00,00110111111111111_{JK}$

4. Нормалізація результату (В ПК).

3.2 Операційна схема

m-кількість розрядів мантиси n-кількість розрядів порядку q= $llog_2m$ [

Рисунок 3.1-Операційна схема

Виконаємо синтез КС для визначення порушення нормалізації.

Таблиця 3.3-Визначення порушення нормалізації

Po31	эяди	регістру	Значення					
RGZ	Z		функцій					
Z' ₀	Z_0	Z_1	L	R				
0	0	0	0	1				
0	0	1	0	0				
0	1	0	1	1				
0	1	1	1	0				

$$L=Z_0$$
, $R=\overline{Z_1}$.

Результат беремо по модулю, знак встановлюємо за Z'0 до нормалізації.

3.3 Змістовний мікроалгоритм

Рисунок 3.2-Змістовний мікроалгоритм

3.4 Таблиця станів регістрів

Таблиця 3.4- Таблиця станів регістрів

№ такту	RGPZ	RGZ	ЛПН(L)	ППН(R)	CT	Мікрооперація
ПС	001000	00.111110011001001	0	1	100	
1	000111	00.111100110010010 00.111001100100100	0	0	011	$Z'_0 Z_0 := \overline{Z'_0 Z_0}$ RGZ := l(RGZ).0 RGPZ := RGPZ-1 CT := CT-1

3.5 Функціональна схема з відображенням управляючих сигналів

Рисунок 3.3-Функціональна схема

3.6 Закодований мікроалгоритм

Таблиця 3.5- Таблиця кодування мікрооперацій

Таблиця кодування мікрооперацій											
MO	УС										
CT:=m;	W										
RGZ:=Z;	W1										
$Z'_0 Z_0 := \overline{Z'_0 Z_0}$	W2										
RGZ:=RGZ(m+2).r(RGZ)	ShR										
RGPZ:=RGPZ+1	inc										
RGZ:=l(RGZ).0	ShL										
RGPZ:=RGPZ-1	dec										
CT:=CT-1;	dec										

Таблиця кодування логічних									
умов									
Позначення									
X1									
X2									
X3									
X4									

Рисунок 3.4- Закодований мікроалгоритм

3.7 Граф управляючого автомата Мура з кодами вершин

Рисунок 3.5- Граф автомата Мура

3.8 Обробка порядків

PZ=111.

3.9 Форма запису нормалізованого результату з плаваючою комою в пам'ять

4. Операція добування кореня

$$\mathbb{Z} = \sqrt{|X|}$$

4.1 Теоретичне обгрунтування способу

Аргумент вводиться зі старших розрядів. Порядок результату дорівнює поділеному на два порядку аргумента. З мантиси добувається корінь завдяки нерівностям:

$$Z_{i} \leq \sqrt{X} \leq Z_{i} + 2^{-i} ;$$

$$Z_{i}^{2} \leq X \leq Z_{i}^{2} + 2^{-i}Z_{i} + 2^{-2i};$$

$$0 \leq 2^{i-1}(X - Z_{i}^{2}) \leq Z_{i} + 2^{-i-1}.$$

Виконання операції зводиться до послідовності дій:

1. Одержання остачі.

$$R_{i+1}' = 2R_i - Z_i - 2^{-i-2};$$

- 2. Якщо $R_{i+1} \ge 0$, то $Z_{i+1} = 1$, $R_{i+1} = R_{i+1}$.
- 3. Якщо R_{i+1} < 0, то $Z_{i+1} = 0$, $R_{i+1} = R_{i+1} + Z_i 2^{-i-2}$. Відновлення остачі додає зайвий такт, але можна зробити інакше:

 $R_{i+2} = 2R_{i+1}^{'} + Z_i + 2^{-i-2} + 2^{-i-3}$, тоді корінь добувається без відновлення залишку.

Для цього R_i зсувається на 2 розряди ліворуч, а Z_i - на 1 розряд ліворуч, і формується як при діленні.

4.2 Операційна схема

Рисунок 4.1-Операційна схема

4.3 Змістовний мікроалгоритм

Рисунок 4.2-Змістовний мікроалгоритм

4.4 Таблиця станів регістрів Таблиця 4.1- Таблиця станів регістрів

costolegse i	.1 1 a Ostatyst Circuit	io peciempio		
№ ц.	RZ	RR	RX	CT
П.С.		00000000000000000		1111
Пзсув	0000000000000000	00000000000000011	111110011001100	
1		+111111111111111111		1110
		000000000000000000000000000000000000000		
	000000000000000000001	00000000000001011	011111001100110	
2		+11111111111111111111111111111111111111		1101
_		00000000000000110		1101
	000000000000011	00000000000011010	001111100110011	
3		+11111111111110011		1100
		00000000000001101		
	000000000000111	00000000000110101	000111110011001	
4		+11111111111100011		1011
		00000000000011000		
	000000000001111	00000000001100010	000011111001100	
5		+111111111111000011		1010
		00000000000100101		
	000000000011111	00000000010010101	000001111100110	
6	000000000111111	+111111111110000011		1001
		0000000000011000		
		00000000001100010	000000111110011	
7	000000001111110	+11111111100000011	000000011111001	1000
		111111111101100101		
		111111110110010100		
8	000000011111100	+00000000111111011	000000001111100	0111
		111111111110001111		
		1111111110001111100		
9	000000111111001	+00000001111110011	000000000111110	0110
		00000001000101111		
		00000100010111100		
10	000001111110011	+11111100000011011	00000000011111	0101
		00000000011010111		
		00000001101011100		
11	0000111111100110	+11111000000110011	00000000001111	0100
		11111001110001111		
		11100111000111100		
12	000111111001100	+00001111110011011	000000000000111	0011
		11110110111010111		
		11011011101011100		
13	001111110011000	+000111111100110011	000000000000011	0010
		11111011010001111		
		11101101000111100		
14	0111111100110001	+001111111001100011	000000000000001	0001
		00101100010011111		
		101100010011111100		
15	111111001100011	+01111110011000111	0000000000000000	0000
		001011111101000011		

4.5 Функціональна схема з відображенням управляючих сигналів

Рисунок 4.3-Функціональна схема

4.6 Закодований мікроалгоритм

Таблиця 4.2- Таблиця кодування мікрооперацій

Таблиця кодування мікрооперацій											
MO	УС										
RX:=X;	WX										
RR:=0;	R										
RZ:=0	R1										
CT:=15	WCT										
RR:=RR+RZ.11	W1										
RR:=RR+ \overline{RZ} .11	W2										
RR=LL(RR).RX(n-1;n-2)	ShLL										
RX:=LL(RX).00	ShLL0										
$RZ:=L(RZ).\overline{RR(n+1)}$	ShL										
CT:=CT-1	dec										

Таблиця кодування логічних									
умов									
ЛУ	Позначення								
RR[n+1]	X1								
RZ[n]	X2								

Рисунок 4.4- Закодований мікроалгоритм

4.7 Граф управляючого автомата Мура з кодами вершин

Рисунок 4.5- Граф автомата Мура

4.8 Обробка порядків

PZ=PX:2=8:2=4₁₀=100₂.

4.9 Форма запису нормалізованого результату з плаваючою комою в пам'ять

Зн.Р Р=+4 ₁₀								,	Зн.	M							M					
0. 0	0	0	0	1	0	0	0,	1	1	1	1	1	1	0	0	1	1	0	0	0	1	1

5. Синтез управляючого автомату для операційного пристрою множення третім способом.

 $x_3x_2x_1+1=101=5$ — операція множення третім способом.

5.1 Таблиця співвідношення управляючих входів операційного автомата і виходів управляючого автомата

За закодованим мікроалгоритмом (Рис. 1.14) складемо таблицю: Таблиця 5.1 Таблиця кодування сигналів

Входи операційного автомата	Виходи управляючого автомата
$R,W2,W3,W_{CT}$	Y1
W1	Y2
ShL1,ShL2,dec	Y3

5.2 Мікроалгоритм в термінах управляючого автомата

Зробимо автомат Мура циклічним задля зменшення кількості вершин.

Рисунок 5.1- Закодований мікроалгоритм

Рисунок 5.2- Граф автомата Мура

5.3 Структурна таблиця автомата

За графом автомата мура складаємо структурну таблицю автомата. Значення функцій збудження тригерів визначаються відповідно до графічної схеми переходів ЈК-тригера.

Таблиия 5.2-Структурна таблиия автомата

	1 /	<u> </u>						
Перехід	Q_2Q_1	Q_2Q_1	x_1x_2	$y_1y_2y_3$	J_2	K_2	J_1	\mathbf{K}_1
$z_1 \rightarrow z_2$	00	01		000	0	-	1	-
$z_2 \rightarrow z_3$	01	11	1-	100	1	-	-	0
$z_2 \rightarrow z_4$	01	10	0-	100	1	-	-	1
$z_3 \rightarrow z_4$	11	10		010	-	0	-	1
$z_4 \rightarrow z_3$	10	11	10	001	-	0	1	-
$z_4 \rightarrow z_1$	10	00	-1	001	-	1	0	_
$z_4 \rightarrow z_4$	10	10	00	001	-	0	0	-

ЈК-тригер:

5.4 Синтез функцій виходів і переходів

$$Y_1 = \overline{Q_2}Q_1$$

$$Y_2 = Q_2Q_1$$

$$Y_3 = Q_2\overline{Q_1}$$

Рисунок 5.3- Діаграми Вейча

$$J_2 = Q_1$$

$$K_2 = \overline{Q_1}X_2$$

$$J_1 = \overline{Q_1} \cup X_1\overline{X_2}$$

$$K_1 = Q_2 \vee \overline{X_1}$$

5.5 Функціональна схема пристрою (виходи управляючого автомата підключені до входів операційного автомата)

Рисунок 5.5- Функціональна схема пристрою