BBM 205 - Discrete Structures: Quiz 4 - Solutions Date: 7.11.2018

Name:

Student ID:

1. (10 points) Use the extended Euclid algorithm to find integers x and y that satisfy

$$x \cdot 30 + y \cdot 22 = \gcd(30, 22).$$

Solution:

30 = 22 + 8 rem(30, 22) = 8 = 30 - 22.

 $22 = 2 \cdot 8 + 6$ $rem(22, 8) = 6 = 22 - 2 \cdot (30 - 22) = -2 \cdot 30 + 3 \cdot 22$

8 = 6 + 2 $rem(8, 6) = 2 = 8 - 6 = (30 - 22) - (-2 \cdot 30 + 3 \cdot 22) = 3 \cdot 30 - 4 \cdot 22.$

 $6 = 3 \cdot 2$ rem(6, 2) = 0.

By this algorithm, x = 3 and y = -4 given in the question.

2. (10 points) Prove that $gcd(a^5, b^5) = (gcd(a, b))^5$ for every $a, b \in \mathbb{Z}$.

Solution:

The two claims below show that the statement is true.

Claim 1: $(gcd(a,b))^5 \le gcd(a^5,b^5)$

Proof of Claim 1:

Let k = gcd(a, b) such that a = kx and b = ky. Since $a^5 = k^5x^5$ and $b^5 = k^5y^5$, we see that k^5 is a common divisor of both a^5 and b^5 . Therefore, $k^5|gcd(a^5, b^5)$, so the claim is true.

Claim 2: $(gcd(a,b))^5 \ge gcd(a^5,b^5)$

Proof of Claim 2: (by contradiction)

Again, let k = gcd(a, b) such that a = kx and b = ky. By the observation above, $k^5|gcd(a^5, b^5)$. Assume that the negation of the claim is true, that is $(gcd(a, b))^5 = k^5 < gcd(a^5, b^5) = gcd(k^5x^5, k^5y^5)$. Since k^5 is a common divisor of a^5 and b^5 , $gcd(a^5, b^5) = k^5 \cdot z$ for some integer z > 1. Let p be a prime divisor of p. Since p is prime and divides p, we have p|x and p|y. However, this means p is a common divisor of p and p but greater that p is a contradiction. The claim is true.