Data set used: - cars89.dta

1. Report sample mean and sample std.dev of variables – Price, weight, horsepower, seating and engine displacement

-	sum price	weight	horsepower	seating	displacement		
	Variable	:	Obs	Mean	Std. Dev.	Min	Max
	price	:	107	16800.64	9527.994	5666	57183
	weight	:	107	2828.093	552.4292	1713	4209
	horsepower	:	107	124.6729	40.45094	53	245
	seating	ī	107	5.037383	1.11529	2	8
d	isplacement	;	107	159.4393	66.13126	61	350

2. Hypothesis test, Population mean price = 19000

Null Hypothesis: H0: Bj =19000

Alternative Hypothesis: H1: Bj <> 19000

Calculate t-stat

. sum price

Variable	Obs	Mean	Std. Dev.	Min	Max
price	107	16800.64	9527.994	5666	57183

```
. di (r(mean)-19000)/(r(sd)/sqrt(r(N)))
-2.3877433
```

Calculate p-Value

```
. di 2*ttail(106,2.3877)
.0187245
```

As central limit theorem(CLT) implies, sample is greater than 30 which is a normal distribution, so considering the critical value 1.65(90%), 1.96(95%) and 2.58(99%).

Reject in 90% and 95% as population mean price is 19000 and Fail to reject in 99%.

```
. ttest price==19000
One-sample t test
Variable
                        Mean
                              Std. Err. Std. Dev. [95% Conf. Interval]
              Obs
  price
              107
                    16800.64
                                921.1059
                                           9527.994
                                                       14974.45
                                                                  18626.82
   mean = mean(price)
                                                               t = -2.3877
Ho: mean = 19000
                                              degrees of freedom =
                                                                       106
 Ha: mean < 19000
                             Ha: mean != 19000
                                                         Ha: mean > 19000
Pr(T < t) = 0.0094
                         Pr(|T| > |t|) = 0.0187
                                                       Pr(T > t) = 0.9906
```

3. Generated variable "Imported" with dummy values 1 for imported and 0 for local manufactured, (Based on information from Google)

```
gen imported=1 if make=="Audi"
 replace imported=0 if make=="Acura"
 replace imported=0 if make=="BMW"
 replace imported=0 if make=="Buick"
 replace imported=0 if make=="Volkswagen"
 replace imported=0 if make=="Toyota"
 replace imported=0 if make=="Subaru"
 replace imported=0 if make=="Nissan"
 replace imported=0 if make=="Mercedes"
 replace imported=0 if make=="Lincoln"
 replace imported=0 if make=="Hyundai"
 replace imported=0 if make=="Honda"
 replace imported=0 if make=="Ford"
 replace imported=0 if make=="Dodge"
 replace imported=0 if make=="Chevrolet"
 replace imported=0 if make=="Cadillac"
 replace imported=1 if make=="Volvo"
 replace imported=1 if make=="Sterling"
 replace imported=1 if make=="Saab"
 replace imported=1 if make=="Pontiac"
 replace imported=1 if make=="Peugot"
 replace imported=1 if make=="Oldsmobile"
 replace imported=1 if make=="Mitsubishi"
 replace imported=1 if make=="Merkur"
 replace imported=1 if make=="Mercury"
 replace imported=1 if make=="Mazda"
 replace imported=1 if make=="Isuzu"
 replace imported=1 if make=="Geo"
 replace imported=1 if make=="Eagle"
 replace imported=1 if make=="Daihatsu"
replace imported=1 if make=="Chrvsler"
```

Estimate treatment effect is the difference of average outcome from treated and average outcome from non-treated group,

. ****Calculat					
Variable	Obs	Mean	Std. Dev.	Min	Max
price	36	15247.17	5491.535	6397	28030
. sum price i	f imported==0				
Variable	Obs	Mean	Std. Dev.	Min	Max
price	71	17588.31	10978.25	5666	57183
. di 15247.17	-17588.31				

4. Using the means difference to determine the statistical significance of average treatment effect of a car being imported,

Null Hypothesis,

H0 : Bj = 0

Alternative Hypothesis,

H1: Bj <> 0

Using the summary statistic from question-3, calculate t-stat for average treatment effect,

- . *** Calculate t-stat from summary statistic obtained in Q.3 **** di ((15247.17-17588.31)-0)/sqrt((5491.535)^2/36+(10978.25)^2/71)
- -1.470356
- . *** t-stat = -1.47 < 1.65,1.96 or 2.58- Fail to reject in 90%, 95% or 99%
- . ttest price, by(imported) unequal

Two-sample t test with unequal variances

Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
0	71 36	17588.31 15247.17	1302.879 915.2558	10978.25 5491.535	14989.8 13389.1	20186.82 17105.23
combined	107	16800.64	921.1059	9527.994	14974.45	18626.82

	diff	2341.143	1592.227	-815.9499	5498.236
	diff =	mean(0) - mean(1)		t	1.4704
io:	diff =	• 0	Satterthwaite's	degrees of freedom :	= 104.996

As central limit theorem(CLT) implies, sample is greater than 30 which is a normal distribution, so considering the critical value 1.65(90%), 1.96(95%) and 2.58(99%).

Fail to reject in 90%, 95% or 99%.

5. Estimate the equation,

$$price = \beta_0 + \beta_1 weight + \beta_2 horsepower + \varepsilon$$

. reg price weight horsepower

Source	SS	df	MS	Number of	obs =	107
				F(2, 104)	=	00.55
Model	5.4850e+09	2	2.7425e+09	Prob > F	=	0.0000
Residual	4.1380e+09	104	39788428.5	R-squared	=	0.5700
				Adj R-squar	red =	0.5617
Total	9.6230e+09	106	90782666.9	Root MSE	=	6307.8
price	Coef.	Std. Err.	t	P> t [95	Conf.	Interval]
weight	5.767519	1.648051	3.50	0.001 2.49	99372	9.035667
horsepower	111.4845	22.50706	4.95	0.000 66.8	35213	156.1168
_cons	-13409.54	3258.986	-4.11	0.000 -1987	72.23	-6946.849

6. Test hypothesis increase of one horsepower correspondence with a price increase of \$70

*** Not sure about this, if I got the hypothesis rt ***

Null Hypothesis,

H0: Bj = 70

Alternative Hypothesis,

H1: Bj <> 70

- . *** Calculate t-stat ***
- . di (111.4845-70)/22.50706
- 1.8431772

Reject in 90%, Fail to reject in 95% and 99%

```
. *** Calculate p-value ***
```

- . di 2*ttail(107,1.8431772)
- .06807101
- . *** p-value = .0681 < 0.10, but > 0.05 and 0.01, Reject in 90%, but fail to
- . *** reject in 95% and 99%

7. Estimate the equation,

 $price = \beta_0 + \beta_1 weight + \beta_2 horsepower + \beta_3 displacement + \beta_4 seating + \beta_5 imported + \varepsilon$

. reg price weight horsepower displacement seating imported

Source	SS	df	MS	Numb	er of obs	B =	107
				F(5,	101)	-	42.62
Model	6.5286e+09	5	1.3057e+09	Prob	> F	-	0.0000
Residual	3.0944e+09	101	30637243.9	R-sq	uared	=	0.6784
				Adj	R-squared	i =	0.6625
Total	9.6230e+09	106	90782666.9	Root	MSE	=	5535.1
price	Coef.	Std. Err.	t	P> t	[95% (Conf.	Interval]
weight	14.75433	2.115436	6.97	0.000	10.557	788	18.95079
horsepower	94.77561	26.29188	3.60	0.000	42.619	959	146.9316
displacement	-66.10356	16.17708	-4.09	0.000	-98.194	454	-34.01259
seating	-2456.172	627.9554	-3.91	0.000	-3701.8	867	-1210.478
imported	-880.0065	1170.044	-0.75	0.454	-3201.0	058	1441.045
_cons	-13533.69	3678.084	-3.68	0.000	-20830	.02	-6237.358

All the variables are statistically significant (p<0.05), For every lb. of weight the price goes up by \$14.75, For every increment of horsepower the price increase by \$94.76, For engine displacement and every seating the price gets decreased as in coefficient, and since imported is a dummy variable, non-imported is baseline-constant and the difference of _cons and imported coefficient is the value impact if the car is imported.

8. Predict the price,

Car model -Mercedes Benz, considered to be local manufactured.

Engine displacement – 180.8 cubic inches

Seating-5

Horsepower - 178

```
Weight - 3131 lb
```

Using the estimate coefficient from Q.7,

```
. di -13533.69+(3131*14.75433)+(178*94.77561)+(180.8*(-66.10356))+(5*(-2456.172

> ))+(0*(-880.0065))
=$25,299.792
```

9. Assumption #3: - Error term has mean zero and no correlation between the explanatory variable, Above assumption need to be true to use the model from Q.8 to make an active prediction.

Yes, above is a reasonable assumption for active prediciton because there is some omitted variable that impact the price and are highly correlated with explanatory variable weights, horsepower, etc. that is in error terms, Example of omitted variables – "mpgcity" City mileage per gallon.