- Let the random variables Y1 and Y2 be distributed bivariate normal with $E(Y1) = \mu_1$, $E(Y2) = \mu_2$, $var(Y1) = \sigma_1^2$ and σ_2^2
- Correlation coefficient $-1 < \rho < 1$.
- Of particular interest are tests of the unconditional marginal hypotheses (equal means and equal variances) and tests of the joint hypothesis (simultaneous test)
- Casewise sums and differences: The random variables D = Y1 Y2 and S = Y1 + Y2 are bivariate normal with expectations $E(D) = mu_D = \mu_1 \mu_2$, and $E(S) = mu_S = \mu_1 + \mu_2$;
- We show that the test procedure for H_J advanced by Bradley and Blackwood (1989) **additively** decomposes into independent tests of H_3 and the conditional marginal hypothesis $H_2: \mu_1 = \mu_2$; assuming the additional restriction of equal variance
- Section 2.1 Pitman-Morgan Test