Autômatos finitos

Linguagens Formais e Autômatos

Prof. Daniel Saad Nogueira Nunes

IFB – Instituto Federal de Brasília, Campus Taguatinga Introdução D

Sumário

Introdução

Introdução

- Autômatos finitos são mecanismos extremamente úteis para identificação de padrões, viabilizando uma série de aplicações como:
 - Busca em texto.
 - Reconhecimento de voz.
 - OCR.

Autômato finito: exemplo

Considere o seguinte autômato finito:

- Ele possui três estados: q_1 , q_2 e q_3 .
- O estado inicial, q_1 é indicado através de uma seta rotulada com "início".
- q₂ é um estado de aceitação, representado por dois círculo concêntricos.
- As setas que v\u00e3o de um estado para outro s\u00e3o chamadas de transi\u00e7\u00f3es.

Autômato finito: exemplo

Considere o seguinte autômato finito:

- Quando o autômato recebe uma string como 1101, ele processará a string e produz uma saída, que pode ser: aceita ou rejeita.
- Ele processa símbolo a símbolo, seguindo as transições e: ao final da string, se terminou em um estado de aceitação: ele aceita.
 Caso contrário, rejeita.

Autômato finito: exemplo

Considere o seguinte autômato finito:

- Para o exemplo 1101 ele: começará no estado q_1 .
- Ao ler 1, transiciona de q_1 para q_2 .
- Ao ler 1, transiciona de q_2 para q_2 .
- Ao ler 0, transiciona de q_2 para q_3 .
- Ao ler 1, transiciona de q_3 para q_2 .
- aceita, pois terminou em um estado de aceitação.

Sumário

- Para iniciar os estudos sobre os autômatos finitos determinísticos, precisamos defini-los formalmente.
- A intuição através de diagramas é interessante para uma primeira apresentação, contudo, ela deixa algumas lacunas a respeito do que se pode ou o que não se pode fazer nesse modelo computacional.
- Por exemplo: é possível ter 0 estados de aceitação? Podemos ter dois estados iniciais? Podemos ter mais de uma transição com o mesmo símbolo saindo de um estado?
- A definição formal nos ajudará a estudar esses objetos com precisão.

Definição

Um autômato finito determinístico (DFA em inglês) é uma 5-tupla $(Q, \Sigma, \delta, q_0, F)$, em que:

- Q é um conjunto finito de estados,
- Σ é o alfabeto de entrada,
- $\delta: Q \times \Sigma \to Q$ é a função de transição,
- $q_0 \in Q$ é o estado inicial,
- $F \subseteq Q$ é o conjunto de estados de aceitação.

Para o exemplo anterior:

O autômato em questão é a 5-tupla $(\{q_1,q_2,q_3\},\Sigma,\delta,q_1,\{q_2\})$

Para o exemplo anterior:

 $Q = \{q_1, q_2, q_3\}$ é o conjunto de estados

Para o exemplo anterior:

 $\Sigma = \{0,1\}$ é o alfabeto de entrada

Para o exemplo anterior:

 $\delta:Q\times\Sigma\to Q$ é a função de transição, com:

$$\delta(q_1, 0) = q_1$$

$$\delta(q_1, 1) = q_2$$

$$\delta(q_2, 0) = q_3$$

$$\delta(q_2, 1) = q_2$$

$$\delta(q_3, 0) = q_2$$

$$\delta(q_3, 1) = q_2$$

Para o exemplo anterior:

 q_1 é o estado inicial

Para o exemplo anterior:

 $F = \{q_2\}$ é o conjunto de estados de aceitação.

- Também temos a intuição de como um DFA computa uma entrada, aceitando-a ou rejeitando-a.
- Também é importante definir formalmente como é feita a computação de uma entrada $w \in \Sigma^*$ qualquer sob um DFA.

Autômatos finitos determinísticos: computação

Definição (Computação em um DFA)

Seja $M=(Q,\Sigma,\delta,q_0,F)$ um DFA e $w=w_1\dots w_n\in\Sigma^*$ uma string. M aceita w se e somente se existe uma sequência de estados r_0,r_1,\dots,r_n em Q com as seguintes condições:

- $r_0 = q_0$.
- $\delta(r_i, w_{i+1}) = r_{i+1}, \ 0 \le i < n.$
- \bullet $r_n \in F$.

DFA como reconhecedores

Definição (Reconhecimento de Linguagens)

Dizemos que um DFA M reconhece uma linguagem L quando:

$$L = \{w|w \text{ \'e aceito por } M\}$$

Linguagem de um DFA

Definição (Linguagem de um DFA)

A linguagem de um DFA M, denotado por L(M) é definida como:

$$L(M) = \{w | M \text{ aceita } w\}$$

Isto é, ${\cal L}(M)$ corresponde ao conjunto de palavras que são aceitas por ${\cal M}.$

Linguagens regulares

Definição

Linguagens Regulares Uma linguagem L é dita ${\bf regular}$ se existe algum DFA M que a reconhece.