

Archive

About

Contact

RSS

Type Inference: Algorithm W and Algorithm U

by Yinyanghu on March 13, 2014

Tagged as: Algorithm, Lambda Calculus, Type Inference, Logic, Polymorphism, Type System, Hindley-Milner, Programming Language.

Type Substitution

A type substitution σ maps type variables to types or type variables.

- $\sigma(X) = T$, if $(X \to T) \in \sigma$
- otherwise, $\sigma(X) = X$

The composition of two substitutions is

 $\sigma \circ \gamma = \{X \to \sigma(T) \mid (X \to T) \in \gamma\} \cup \{X \to T \mid (X \to T) \in \sigma, X \notin domain(\gamma)\}$

When apply the substitution σ to term T, σT is $[X_i \to \sigma(X_i)]T$, where X_i denotes the variables in T.

Similarly, when apply the substitution σ to context Γ , $\sigma\Gamma$ is $\{\sigma T_i\}$, where $T_i \in \Gamma$.

Algorithm W

This is the original type inference algorithm of Damas and Miller.

- The input to the algorithm is an expression and a typing environment (context) which is a set of assumptions, i.e. bindings of type variables to type expressions.
- The output of the algorithm is a type for the given expression, and a substitution of type expressions for types which results in the overall type.

 $W(\Gamma, expr) = (\sigma, T)$, where

- ullet Γ is the context • expr is the expression to be typed
- ullet σ is the substitution of type expressions for type variables which gives the value of T
- T is the type of expr

Several cases:

if expr is a variable, say x, then

 $W(\Gamma, expr) = (\emptyset, instantiate(x)), where$

 \circ instantiate(x) = $[a_1 \rightarrow b_1][a_2 \rightarrow b_2] \cdots [a_n \rightarrow b_n]T_x$, $\circ x : (\forall a_1, a_2, \cdots, a_n) T_x \in \Gamma$ \circ and b_1, b_2, \cdots, b_n are fresh variables

if expr is an abstraction (λ expression), say $\lambda x.f$, then

 $W(\Gamma, expr) = (\sigma_1, \sigma_1 X \to T_f)$, where $\circ W(\Gamma \cup \{x:X\},f) = (\sigma_1,T_f),$

- \circ and X is a fresh variable
- if expr is an **application**, say expr = fg, then

 $W(\Gamma, expr) = (\sigma_3 \circ \sigma_2 \circ \sigma_1, \sigma_3 X)$, where

- $\circ W(\Gamma, f) = (\sigma_1, T_f),$
- $\circ W(\sigma_1\Gamma,g)=(\sigma_2,T_g),$
- $\circ \ U(\sigma_2 T_f, T_g \to X) = \sigma_3,$ \circ and X is a fresh variable

if expr is a **conditional**, say if cond then f else g, then

 $W(\Gamma, expr) = (\sigma_5 \circ \sigma_4 \circ \sigma_3 \circ \sigma_2 \circ \sigma_1, \sigma_5 T_g)$, where

- $\circ W(\Gamma, cond) = (\sigma_1, T_{cond}),$
- $\circ \ U(T_{cond}, Bool) = \sigma_2$,
- $\circ W(\sigma_2\sigma_1\Gamma,f)=(\sigma_3,T_f),$
- $\circ W(\sigma_3\sigma_2\sigma_1\Gamma,g)=(\sigma_4,T_g),$
- \circ and $U(\sigma_4 T_f, T_g) = \sigma_5$
- if expr is a fix-point expression, say fix x.f, then

 $W(\Gamma, expr) = (\sigma_2 \circ \sigma_1, \sigma_2 \circ \sigma_1 \circ X)$, where

- $\circ W(\Gamma \cup \{x:X\},f) = (\sigma_1,T_f),$
- $\circ \ U(\sigma_1 X, T_f) = \sigma_2,$ \circ and X is a fresh variable
- if expr is a **let expression**, say let x = f in g, then

 $W(\Gamma, expr) = (\sigma_2 \circ \sigma_1, T_g)$, where

- $\circ W(\Gamma, f) = (\sigma_1, T_f),$
- $\circ W(\sigma_1\Gamma \cup \{x: poly(T_f)\}, g) = (\sigma_2, T_g)$, where $poly(T_f) = (\forall x_1, x_2, \cdots, x_n)T_f$, and x_1, x_2, \cdots, x_n are the free variables in T_f which do not appear in $\sigma_1\Gamma$.

Algorithm U

- Algorithm U solves unification which is what we need to complete our description of Algorithm W. The input to the algorithm is two type expressions.
- The output of the algorithm is a substitution or an error if we cannot find an unification.

 $U(T_1, T_2) = \sigma$, where

- \bullet T_1 , T_2 are the type expressions to be unified ullet σ is the substitution if we find an unification of T_1 and T_2
- Also several cases:

- if both T_1 and T_2 are base type, then $\circ \ U(T_1, T_2) = \emptyset$, if $T_1 = T_2$
 - o otherwise, we find an error
- if both T_1 and T_2 are type variables, then $\circ \ U(T_1, T_2) = \emptyset$, if $T_1 = T_2$
 - \circ if T_1 occurs in T_2 , or T_2 occurs in T_1 , then we find an error: circularity (e.g. $\lambda x. xx$) \circ otherwise, $U(T_1, T_2) = \{T_1 \rightarrow T_2\}$
- if T_1 and T_2 have the same type constructor C, i.e. $T_1=C(A_1,A_2,\cdots,A_k)$ and $T_2=C(B_1,B_2,\cdots,B_k)$, then $U(T_1, T_2) = \sigma_k \circ \sigma_{k-1} \circ \cdots \sigma_1$, where $\sigma_i = U(A_i, B_i)$

otherwise, we find an error

- According to Cardelli(1985), the order of type inference does NOT affect the final result and it solves the system of type constraints.

Damas and Milner proved that Algorithm W computes the principal type scheme for a given expression and context.

- This version taken from Field and Harrison, also treats expressions involving the fix-point operator fix.

Algorithm W

Reference

- Wikipedia: Hindley-Milner type system
- University of Waterloo, CS442 Lecture Note
- Lecture 22: Type Inference and Unification Lecture 26: Type Inference and Unification
- Yinyanghu, 2014
- Yinyanghu's Blog **0 Comments**

f Share **Solution Favorite** Tweet

Subscribe

Start the discussion...

Disqus' Privacy Policy

DISQUS

This work is licensed under a <u>Creative Commons Attribution-ShareAlike 3.0 Unported License</u>. © 2018 • Yinyanghu - Site proudly generated by Hakyll. The entire source code of this website is available at Github.

Be the first to comment.

1 Login ▼

Sort by Best ▼

 Add Disqus to your site **A** Do Not Sell My Data