

PRÉSENTATION PROJET OPTI-MISATION

Lanceur spatial

11 janvier 2023

Bailin CAI Mohamed SOUANE Ricardo PACHECO

Table des matières

- Introduction
- 2 Algorithme du SQP
 - Implémentation du SQP
 - Test et le résultat pour SQP
- 3 Solution analytique problème d'étagement
- 4 Lanceur
 - Description
 - Problème d'étagement
 - Problème de trajectoire
 - Résultat

Table de matière

- 1 Introduction
- 2 Algorithme du SQP
 - Implémentation du SQP
 - Test et le résultat pour SQP
- 3 Solution analytique problème d'étagement
- 4 Lanceur
 - Description
 - Problème d'étagement
 - Problème de trajectoire
 - Résultat

Introduction

L'objectif de ce projet est d'implémentassions l'algorithme SQP (Sequential Quadratic Programming). L'algorithme SQP est un algorithme de résolution d'un problème d'optimisation non linéaire. Un tel problème consiste à déterminer des paramètres qui minimisent une fonction, tout en respectant des contraintes d'égalité et d'inégalité sur ces paramètres. Elle s'appuie principalement sur la méthode de Newton et sur le théorème de KKT (Karush-Kuhn-Tucker).

Partir de cet optimiseur, de trouver le lanceur le plus léger possible permettant ramener un satellite de masse 1750kg donnée sur une orbite 250km.

Table de matière

- 1 Introduction
- 2 Algorithme du SQP
 - Implémentation du SQP
 - Test et le résultat pour SQP
- 3 Solution analytique problème d'étagement
- 4 Lanceur
 - Description
 - Problème d'étagement
 - Problème de trajectoire
 - Résultat

Organigramme

Gradient

■ Approximer le gradient par la différence finie

Hessien

- Formule BFGS :matrice hessienne définie positive automatiquement.
- Formule SR1 :matrice hessienne pas forcémment définie positive.
- Modifiction hessien :remplacement de la matrice hessienne par une matrice définie positive.

Probléme quadratique

■ Cette fonction résout les conditions KKT d'un problème de minimisation.

Fonction mérite

Nous avons choisit comme fonction mérite.

$$F(x) = f(x) + \rho ||c(x)||_1.$$

La pénalisation ρ doit être adaptée pour que les contraintes soient respectées avec la précision voulue à la fin des itérations. Si ce n'est pas le cas on tente de trouver un nouveau point par la méthode d'Armijo.

Le problème se donné comme dessous :

$$\underset{x_1,x_2,x_3,x_4,x_5}{\text{Min}} (x_1-1)^2 + (x_1-x_3)^2 + (x_2-x_3)^3 + (x_3-x_4)^4 + (x_4-x_5)^4$$
 s.c.

$$c_1(x_1, x_2, x_3, x_4, x_5) = x_1 + x_2^2 + x_3^2 - 3\sqrt{2} - 2$$

$$c_2(x_1, x_2, x_3, x_4, x_5) = x_2 + x_3^2 + x_4 - 2\sqrt{2} + 2$$

$$c_3(x_1, x_2, x_3, x_4, x_5) = x_1x_5$$

$$-2 < x_1 < 0.1 < x_2 < 3.0 < x_3 < 2.-3 < x_4 < 0.-3 < x_5 < -1$$

Initialisation:

$$(x_1, x_2, x_3, x_4, x_5) = (-1; 2; 1; -2; -2)$$
 alors $f = 95$.

Après 25 itérations nous avons comme solution :

$$(x_1, x_2, x_3, x_4, x_5) = (-1.2369; 2.4620; 1.11908; -0.2157; -16169)$$
 et $f(x^*) = 28.5087$

Résultat du test MHW4D

lter	Nb Appel	x_1	<i>x</i> ₂	<i>X</i> ₃	<i>x</i> ₄	<i>X</i> 5	f(x)	$c_1(x)$	$c_2(x)$	c ₃ (x)	λ_1	λ_2	λ_3	$ \nabla L $
1	8	-1.0000	2.0000	1.0000	-2.0000	-2.0000	95.0000	-2.2426	-1.8284	0.0000	1.0000	1.0000	1.0000	150.9702
2	19	-0.8613	1.6427	1.6803	-0.2249	-2.2774	40.6578	-1.5820	-2.2342	-0.0385	-12.1902	51.1953	-8.8761	196.7853
3	28	-1.7214	1.7045	1.9346	0.8472	-0.0088	21.0663	-1.3158	-2.0196	-1.9848	-5.5247	12.6289	-9.7787	69.8461
4	35	-0.8045	2.0519	1.5617	0.0665	-0.5900	16.7161	-0.3981	-1.1489	-1.5253	-3.5244	5.5519	-13.1443	20.3069
5	36	-0.8045	2.0519	1.5617	0.0665	-0.5900	16.7161	-0.3981	-1.1489	-1.5253	-0.9410	-3.1815	-13.1101	20.3069
6	37	-0.8045	2.0519	1.5617	0.0665	-0.5900	16.7161	-0.3981	-1.1489	-1.5253	-0.9410	-3.1815	-13.1101	20.3069
7	38	-0.8045	2.0519	1.5617	0.0665	-0.5900	16.7161	-0.3981	-1.1489	-1.5253	-0.9410	-3.1815	-13.1101	20.3069
8	39	-0.8045	2.0519	1.5617	0.0665	-0.5900	16.7161	-0.3981	-1.1489	-1.5253	-0.9410	-3.1815	-13.1101	20.3069
9	40	-0.8045	2.0519	1.5617	0.0665	-0.5900	16.7161	-0.3981	-1.1489	-1.5253	-0.9410	-3.1815	-13.1101	20.3069
10	41	-0.8045	2.0519	1.5617	0.0665	-0.5900	16.7161	-0.3981	-1.1489	-1.5253	-0.9410	-3.1815	-13.1101	20.3069
11	42	-0.8045	2.0519	1.5617	0.0665	-0.5900	16.7161	-0.3981	-1.1489	-1.5253	-0.9410	-3.1815	-13.1101	20.3069
12	43	-0.8045	2.0519	1.5617	0.0665	-0.5900	16.7161	-0.3981	-1.1489	-1.5253	-0.9410	-3.1815	-13.1101	20.3069
13	44	-0.8045	2.0519	1.5617	0.0665	-0.5900	16.7161	-0.3981	-1.1489	-1.5253	-0.9410	-3.1815	-13.1101	20.3069
14	45	-0.8045	2.0519	1.5617	0.0665	-0.5900	16.7161	-0.3981	-1.1489	-1.5253	-0.9410	-3.1815	-13.1101	20.3069
15	46	-0.8045	2.0519	1.5617	0.0665	-0.5900	16.7161	-0.3981	-1.1489	-1.5253	-0.9410	-3.1815	-13.1101	20.3069
16	47	-0.8045	2.0519	1.5617	0.0665	-0.5900	16.7161	-0.3981	-1.1489	-1.5253	-0.9410	-3.1815	-13.1101	20.3069
17	48	-0.8045	2.0519	1.5617	0.0665	-0.5900	16.7161	-0.3981	-1.1489	-1.5253	-0.9410	-3.1815	-13.1101	20.3069
18	51	-0.8045	2.0519	1.5617	0.0665	-0.5900	16.7161	-0.3981	-1.1489	-1.5253	-0.9410	-3.1815	-13.1101	20.3069
19	64	-1.2639	2.3773	1.3449	-0.3617	-1.2011	28.4622	-0.0461	-0.6214	-0.4819	-0.9410	-3.1815	-13.1101	34.0973
20	72	-1.0707	2.2787	1.4479	0.0336	-1.3966	24.2654	-0.0243	-0.6126	-0.5046	-2.5636	4.8646	-6.8212	14.7028
21	80	-1.5551	2.4705	1.3218	0.0892	-1.2361	29.6429	0.0527	-0.0159	-0.0777	-2.2549	1.2408	-9.8240	9.6294
22	88	-1.1929	2.4564	1.1911	-0.2263	-1.5740	27.4872	0.0173	-0.0171	-0.1224	-2.2246	0.9059	-9.7224	3.2805
23	96	-1.2350	2.4582	1.1979	-0.1948	-1.6211	28.5366	0.0000	-0.0000	0.0020	-2.4423	0.0069	-8.9753	1.0198
24	104	-1.2372	2.4618	1.1915	-0.2138	-1.6165	28.5088	0.0001	-0.0000	-0.0000	-2.4920	0.1130	-8.9338	0.1359
25	110	-1.2369	2.4620	1.1908	-0.2157	-1.6169	28.5087	0.0000	-0.0000	-0.0000	-2.5120	0.1242	-8.8963	0.0021

Le probléme à résoudre est :

 $\min_{m_{e1},m_{e2},m_{e3}} M_0$ sous $\Delta V = \Delta V_{requis}$ Calcul de la masse totale M_0 en partant de la charge utile $M_{i,4} = m_u$

$$\begin{cases} m_{sj} = k_j m_{ej} \\ M_{f,j} = M_{i,j+1} + m_{sj} \\ M_{i,j} = M_{f,j} + m_{ej} \end{cases}$$

Calule du $\Delta V: \Delta V = \sum_{j=1,3} \Delta V_j = \sum_{j=1,3} v_{ej} \ln \frac{M_{i,j}}{M_{f}}$

Données:

$$\begin{cases} k_1 = 0.1101 \\ k_2 = 0.1532 \\ k_3 = 0.2154 \end{cases}$$

$$\begin{cases} k_1 = 0.1101 \\ k_2 = 0.1532 \\ k_3 = 0.2154 \end{cases} \begin{cases} v_{e1} = 2647.2 \text{m/s} \\ v_{e2} = 2922.4 \text{m/s} \\ v_{e3} = 4344.3 \text{m/s} \end{cases} \begin{cases} \Delta V_{\text{requis}} = 11527 \text{m/s} \\ m_u = 1700 \text{kg} \end{cases}$$

$$egin{cases} \Delta V_{\mathsf{requis}} = 11527 \mathsf{m/s} \ m_u = 1700 \mathsf{kg} \end{cases}$$

Résultat du test Ariane1

lter	Nb Appel	m_{e1}	m_{e2}	m_{e3}	M_0	c(x)	λ	$ \nabla L $
1	3	250000.0000	100000.0000	50000.0000	455315.0000	-2.7918	1.0000	2.0018
2	9	250020.2214	100019.4188	49895.1652	455232.4253	0.0099	-4188.5827	109.2550
3	15	250018.8902	100018.0547	49895.0223	455229.2007	-0.0001	43.0818	1.8939
4	21	249991.9643	99990.2281	49884.7027	455154.6782	-0.0194	-258.6380	7.6183
5	27	249695.4126	99684.1200	49762.0222	454323.3665	-0.0064	-70.9574	3.1961
6	33	249451.4339	99432.3033	49664.7628	453643.9217	-0.0878	-22.5210	2.2896
7	39	248205.6351	98146.4640	49165.9451	450171.8674	-0.4617	9.3990	1.9393
8	45	247598.9778	97520.1041	48897.3740	448449.6777	-0.0063	-190.1228	5.9936
9	51	246438.2409	96321.9439	48418.5064	445197.4097	-0.0237	288.1850	7.1466
10	57	245210.2995	95054.4649	47918.4914	441764.8969	-0.2274	68.7100	2.1716

Résultat du test Ariane1

Iter	Nb Appel	m_{e1}	m _{e2}	m _{e3}	<i>M</i> ₀	c(x)	λ	$ \nabla L $
258	1455	145998.7397	30738.7088	7873.1153	208790.0643	0.0000	-112.0168	0.0622
259	1461	145998.4503	30738.7457	7873.3360	208790.0538	0.0000	-118.2129	0.0550
260	1467	145998.0268	30738.7896	7873.6575	208790.0251	-0.0000	-120.6485	0.1277
261	1473	145974.9281	30741.5696	7891.0821	208788.7668	-0.0027	-57.7158	1.0023
262	1479	145969.8487	30742.1353	7895.3445	208788.9612	0.0001	-167.4406	0.9322
263	1485	145959.3778	30743.3846	7903.3779	208788.5419	-0.0021	-131.7607	0.2919
264	1491	145953.5670	30744.0516	7908.1418	208788.6505	-0.0009	-152.1162	0.6299
265	1516	145951.7856	30744.2689	7909.6397	208788.7441	-0.0001	-121.7977	0.1050
266	1537	145951.7856	30744.2689	7909.6397	208788.7441	-0.0001	-114.1853	0.1050
267	1558	145951.7856	30744.2689	7909.6397	208788.7441	-0.0001	-114.1853	0.1050
268	1579	145951.7856	30744.2689	7909.6397	208788.7441	-0.0001	-114.1853	0.1050

Table de matière

- 1 Introduction
- 2 Algorithme du SQP
 - Implémentation du SQP
 - Test et le résultat pour SQP
- 3 Solution analytique problème d'étagement
- 4 Lanceur
 - Description
 - Problème d'étagement
 - Problème de trajectoire
 - Résultat

Reformuler le problème

- On pose : $x_j = \frac{M_{i,j}}{M_{f,i}}$

■ Ecrire le critère de performance J comme :
$$J = \frac{m_u}{M_0} = \frac{M_{i,4}}{M_{i,1}} = \frac{M_{i,4}}{M_{i,3}} \times \frac{M_{i,3}}{M_{i,2}} \times \frac{M_{i,2}}{M_{i,1}}$$

L'objectif

■ On exprime $\frac{M_{i,j+1}}{M_{i,i}}$ en fonction de x_j en utilisant les relations entre les masses et les indice

$$\begin{cases} m_{sj} &= k_{j} m_{ej} \\ M_{f,j} &= M_{i,j+1} + m_{sj} \\ M_{i,j} &= M_{f,j} + m_{ej} \end{cases}$$

On a:
$$\frac{M_{i,2}}{M_{i,1}} = \frac{M_{i,1+1}}{M_{i,1}} = \frac{M_{f,1} - m_{s,1}}{M_{i,1}} = \frac{M_{f,1}}{M_{i,1}} - \frac{k_1}{M_{i,1}} (M_{i,1} - M_{f,1}) = \frac{\frac{M_{f,1}}{M_{i,1}}}{\frac{M_{f,1}}{M_{i,1}}} - k_1 (1 - \frac{M_{f,1}}{M_{i,1}}) = \frac{\frac{1+k_1}{M_{i,1}}}{\frac{M_{f,1}}{M_{f,1}}} - k_1$$

$$\begin{cases} \frac{M_{i,2}}{M_{i,1}} = \frac{1+k_1}{x_1} - k_1 \\ \frac{M_{i,3}}{M_{i,2}} = \frac{1+k_2}{x_2} - k_2 \\ \frac{M_{i,4}}{M_{i,3}} = \frac{1+k_3}{x_3} - k_3 \end{cases}$$

$$J = (\frac{1+k_1}{x_1} - k_1)(\frac{1+k_2}{x_2} - k_2)(\frac{1+k_3}{x_3} - k_3)$$

On a alors l'équivalence suivante pour le problème : $\min_{x_1,x_2,x_3} \quad f(x_1,x_2,x_3) \quad \text{sous} \quad c(x_1,x_2,x_3) = 0 \\ \begin{cases} f(x_1,x_2,x_3) = -(\frac{1+k_1}{x_1}-k_1)(\frac{1+k_2}{x_2}-k_2)(\frac{1+k_3}{x_3}-k_3) \\ c(x_1,x_2,x_3) = v_{e1}\ln(x_1) + v_{e2}\ln(x_2) + v_{e3}\ln(x_3) - V_p \end{cases}$

Conditions nécessaires d'optimalité d'ordre 1

$$\begin{cases} \frac{\delta f}{\delta x_1} = \frac{1+k_1}{x_1^2} \left(\frac{1+k_2}{x_2} - k_2\right) \left(\frac{1+k_3}{x_3} - k_3\right) \\ \frac{\delta f}{\delta x_2} = \frac{1+k_2}{x_2^2} \left(\frac{1+k_1}{x_1} - k_1\right) \left(\frac{1+k_3}{x_3} - k_3\right) \\ \frac{\delta f}{\delta x_3} = \frac{1+k_3}{x_3^2} \left(\frac{1+k_1}{x_1} - k_1\right) \left(\frac{1+k_2}{x_2} - k_2\right) \\ \\ \iff \begin{cases} \frac{\delta f}{\delta x_1} = -\frac{f(x_1, x_2, x_3)}{y_1} \frac{1+k_1}{x_1^2} \\ \frac{\delta f}{\delta x_2} = -\frac{f(x_1, x_2, x_3)}{y_2} \frac{1+k_2}{x_2^2} \\ \frac{\delta f}{\delta x_3} = -\frac{f(x_1, x_2, x_3)}{y_3} \frac{1+k_3}{x_3^2} \end{cases}$$

Conditions nécessaires d'optimalité d'ordre 1

Les conditions KKT sont données par :

$$L(x,z) = f(x_1, x_2, x_3) + zc(x_1, x_2, x_3)$$

$$\Delta L(x,z) = 0$$

$$\frac{\delta f}{\delta x_1} + \frac{zv_{e_1}}{x_1} = 0$$

$$\frac{\delta f}{\delta x_2} + \frac{zv_{e_2}}{x_2} = 0$$

$$\frac{\delta f}{\delta x_3} + \frac{zv_{e_3}}{x_3} = 0$$

$$v_{e_1} \ln(x_1) + v_{e_2} \ln(x_2) + v_{e_3} \ln(x_3) - V_p = 0$$

$$\frac{\delta f}{\delta x_i} + \frac{zv_{e_i}}{x_i} = 0$$

pour tout i=1,2,3

$$-\frac{f(x_1, x_2, x_3)}{y_i} \frac{1 + k_1}{x_i^2} + \frac{zv_{e_i}}{x_i} = 0$$

$$-\frac{f(x_1, x_2, x_3)}{y_i} \frac{1 + k_1}{x_i} \frac{1}{x_i} + \frac{zv_{e_i}}{x_i} = 0$$

$$-f(x_1, x_2, x_3) \frac{y_i + k_i}{y_i} + zve_i = 0$$

$$\frac{f(x_1, x_2, x_3)}{z} = ve_i \frac{y_i}{k_i + y_i} = ve_i (1 - \frac{k_i}{1 + k_i} x_i) = ve_i (1 - \Omega_i x_i)$$

$$\begin{cases} ve_1(1-\Omega_1x_1) = cst \\ ve_2(1-\Omega_2x_2) = cst \\ ve_3(1-\Omega_3x_3) = cst \end{cases} \Rightarrow \begin{cases} x_1 = \frac{1}{\Omega_1}[1-\frac{ve_2}{ve_1}(1-\Omega_2x_2)] \\ x_2 = \frac{1}{\Omega_2}[1-\frac{ve_3}{ve_2}(1-\Omega_3x_3)] \end{cases}$$

$$x_1 = \frac{1}{\Omega_1}[1-\frac{ve_2}{ve_1}(1-\Omega_2\frac{1}{\Omega_2}[1-\frac{ve_3}{ve_2}(1-\Omega_3x_3)])]$$
 D'ou on a :
$$h(x_3) = v_{e1}\ln(\frac{1}{\Omega_1}[1-\frac{ve_2}{ve_1}(1-\Omega_2\frac{1}{\Omega_2}[1-\frac{ve_3}{ve_2}(1-\Omega_3x_3)])] + v_{e2}\ln(\frac{1}{\Omega_2}[1-\frac{ve_3}{ve_2}(1-\Omega_3x_3)]) + v_{e3}\ln(x_3) - V_p$$

$$h'(x_3) = \frac{\Omega_3v_{e3}}{[1-\frac{ve_3}{ve_1}(1-\Omega_3x_3)])} + \frac{\Omega_3v_{e3}}{[1-\frac{ve_3}{ve_2}(1-\Omega_3x_3)]} + \frac{v_{e3}}{x_3}$$

On remarque le résultat obtenue par la méthode de Newton est très proche de celui qu'on a calculé par l'optimisateur SQP.

 \mathbf{M}_0 : 208.778, 5888kg

 $\mathbf{m}_{e,1}: 145.400, 8500 kg$

 $\mathbf{m}_{e,2}: 31.238, 5395 kg$

 $\mathbf{m}_{e,3}: 7.935, 5121kg$

Table de matière

- 1 Introduction
- 2 Algorithme du SQP
 - Implémentation du SQP
 - Test et le résultat pour SQP
- 3 Solution analytique problème d'étagement
- 4 Lanceur
 - Description
 - Problème d'étagement
 - Problème de trajectoire
 - Résultat

La mission d'un lanceur spatial est d'amener un satellite en orbite. La mise en orbite est définie en termes d'altitude et de vitesse à atteindre. L'objectif de cette partie est de trouver le lanceur le plus léger possible permettant d'amener un satellite de masse donnée sur une orbite donnée. Dans notre cas, la masse du satellite est 1750kg et la hauteur du orbite est 250km.

- La Terre est sphérique de rayon $R_t = 6378137$ m
- L'orbite visée est circulaire à l'altitude $H_c = 250000m$.
- La vitesse sur l'orbite est $V_c = \sqrt{\frac{\mu}{R_c}}$ où μ est la constante gravitationnelle terrestre $\mu = 3.986 \times 10^{14} \text{m}^3/\text{s}^2$

L'optimisation simultanée de la configuration du lanceur et de sa trajectoire étant difficile (optimisation multidisciplinaire), on adopte une approche itérative en découplant les deux problèmes.

- Le problème d'étagement détermine la configuration pour une vitesse propulsive V_p donnée, en utilisant un modèle simplifié du lanceur.
- Le problème de trajectoire détermine la vitesse réelle V_r que peut atteindre la configuration, en utilisant un simulateur de la trajectoire.

Algorithm 1 Schéma pour le problème d'étagement

while $\delta V \neq 0$ do

$$V_p = V_p + \delta V$$

Problème d'étagement (Modèle simplifié)

Configuration pour les masses, poussées, durées

Problème de trajectoire (simulation)

Vitesse réelle :
$$V_r$$
, $\delta V = V_c - V_r$

end while
$$\delta V = 0$$

Le problème d'étagement se formule comme des problèmes d'optimisation non linéaire sous contraintes.

Formulation

- Critère : Maximiser le rapport entre la masse m_u du satellite et la masse M_0 du lanceur
- Fournir un accroissement de vitesse V_p au satellite
- Les masses d'ergols m_{e1} , m_{e2} , m_{e3} des 3 étages

Formulation

$$\min_{m_{e1}, m_{e2}, m_{e3}} -J = -\frac{m_u}{M_0}$$

sous
$$V = V_p$$

$$V = v_{e1} \log \frac{M_{i,1}}{M_{f,1}} + v_{e2} \log \frac{M_{i,2}}{M_{f,2}} + v_{e3} \log \frac{M_{i,3}}{M_{f,3}}$$

Le lanceur décolle de la surface terrestre et doit amener le satellite sur l'orbite circulaire demandée.

Constantes et variables

- Le rayon du terre : $R_t = 6378137$ m
- Constante gravitationnelle : $\mu = 3.986 \times 10^{14} \ m^3/s^2$
- Coefficient de trainée du lanceur : $c_x = 0.1$
- densité au sol : $\rho_0 = 1.225 \text{ kg/}m^3$
- facteur d'échelle : H = 7000m
- densité de l'atmosphère : $\rho = \rho_0 e^{-\frac{R-R_t}{H}}$ où $R = ||\vec{R}||, \ \vec{R}$ est la position

EDO à résoudre

On consiste à résoudre l'équation différentielle suivante :

$$\dot{\vec{V}} = \overrightarrow{T} + \overrightarrow{W} + \overrightarrow{D}$$

$$\dot{M} = -q(\text{d\'ebit massique})$$

Expression des forces

$$\begin{cases} \vec{W} = -\mu \frac{\vec{R}}{R^3} M \\ \vec{D} = -c_x \rho V \vec{V} \\ \vec{T} = T \vec{u} \\ q = \frac{T}{v_c} \end{cases}$$

Variables

- masse du lanceur à l'allumage de l'étage j : $M_{i,j}$
- lacksquare accélération demandée à l'allumage de l'étage lacksquare : $lpha_i$
- **p**oussée de l'étage $\mathbf{j}: j = \alpha M_{i,j}$
- vitesse d'éjection de l'étage j : v_{ej}
- masse d'ergols de l'étage j : mei
- lacksquare durée de combustion de l'étage j : $t_{ej}=rac{m_{ej}}{q_i}$

Dirction de poussée

Figure 5 : Direction de poussée

Les composantes du vecteur \vec{u} dans Oxy sont calculées à partir de la position \vec{R} et la vitesse \vec{V} .

$$\vec{R} = \begin{pmatrix} x \\ y \end{pmatrix} \Longrightarrow R = \sqrt{x^2 + y^2}$$

$$\vec{V} = \begin{pmatrix} x \\ y \end{pmatrix} \Longrightarrow V = \sqrt{x^2 + y^2}$$

À partir de la position, on définit les vecteurs unitaire $\vec{e_r}$ et $\vec{e_h}$

$$\vec{e_r} = \frac{1}{R} \begin{pmatrix} x \\ y \end{pmatrix}, \vec{e_h} = \frac{1}{R} \begin{pmatrix} -y \\ x \end{pmatrix}$$

À partir de la position et la vitesse, on calcule la pente γ de la vitesse.

$$\sin \gamma = \frac{\vec{R}.\vec{V}}{RV}, -90 \le \gamma \le 90$$

L'angle d'incidence θ étant donné, en en déduit $\vec{u} = \vec{e}_h \cos \gamma + \theta + \vec{e}_e \sin \gamma + \theta$

La trajectoire du lanceur est découpée en 3 séquences correspondant au fonctionnement successif des étages propulsifs. Lorsqu'un étage a brûlé tous ses ergols, il est séparé avant l'allumage de l'étage suivant. La séparation est supposée instantanée. La figure suivante représente les séquences du vol.

Schéma pour le problème d'étagement

Algorithm 2 Schéma pour le problème d'étagement

```
t_0 = 0, [\vec{R}(t_0), \vec{V}(t_0), M(t_0) = M_0] for j = 1 to 3 do
      Allumage étage j : T_i, q_i, \theta_i, t_{ci}
      calculer (t_{i-1}), \vec{V}(t_{i-1}, M(t_{i-1}))
Intégration de t-1 à t_i = t_{i-1} + t_{ci}
calculer (t_{i-1}), \vec{V}(t_{i-1}, M(t_{i-1}))
Séparation étage j: M(t_i) = M(t_i) - m_{si}
   end for=0
```

On cherche à atteindre l'altitude de l'orbite en maximisant la vitesse fournie au satellite.

Ce problème d'optimisation se formule en termes de critère, contraintes, varialbes.

- lacktriangle critère : Maximiser la vitesse finale $V(t_f)$.
- Atteindre l'orbite de rayon R_c avec une vitesse horizontale
- Les angles $\theta_0, \theta_1, \theta_2, \theta_3$ orientent la vitesse initiale et la poussée du lanceur pour chaque étage

Formulation

$$\min_{\theta_0,\theta_1,\theta_2,\theta_3} -V(t_f)$$

$$sous R(t_f) = R_c$$

$$\vec{R}(t_f).\vec{V}(t_f)=0$$

- masse optimales : [31561.138056; 14843.017828; 6439.140708]
- theta optimal: [37.348178; 18.677726; 20.807989; 4.314580]
- $\delta V = 0.695948$
- $||\vec{R}_{t-f}|| R_c = -0.000015$
- $\vec{R}(t_f).\vec{V}(t_f) = -0.010143$

Conclusion

Notre algorithme SQP qui permet de résoudre de façon assez efficace un problème d'optimisation non linéaire avec contraintes, nous avons essayer de trouver le lancer le plus léger possible qui nous permettrait de lanceur notre satellite de masse 1750 kg donnée sur une orbite située à une distance 750 km de la surface de la terre. Nous avons presque obtenu les bonnes valeurs après avoir fait les test sur la fonction d'Ariane1 et MHW4D avec notre algorithme SQP. Nous avons aussi obtenu ces résultats par la résolution analytique.