

Maria Isabel Arango

Isabella Montoya

Andrés Agudelo

Simón Marín

Mauricio Toro

How we felt doing the project?

When theoretically the LZ77 took less time to compress but it spends twice as much as Huffman

Livestock products contribute 33% of the human diet

Precision livestock farming

Training Process

Tested Compression Algorithms

Tested Lossy-Compression Algorithms

Nearest Neighbor

Fast Fourier Transform

Singular Value Decomposition

We compressed the image in a 95% using the three algorithms mentioned above. Also, the graphics represent the relation between a specific column of the matrix and the values of the color it can takes being deep black the lowest and deep white the highest.

Lossy-Compression Algorithm Design

FAST FOURIER TRANSFORM (FFT)

Tested Lossless-Compression Algorithms

LZ77

LZW

С	Output	Dictionary	Buffer	Uncompres Input
			0	100110101
	0	2(0,1)	0	100110101
	01	3(1,0)	1	00110101
	010	4(0,0)	Ō	0110101
	010		0	110101
	0102	5(0,1,1)	2	10101
	0102		1	0101
	01023	6(1,0,1)	3	101
	01023		1	01
	01023		3	1
Г	010236		6	

Huffman Coding

Lossless-Compression Algorithm Design

HUFFMAN CODING

Encode the next set of pixels using Huffman the Coding

Image compression and decompression with FFT and Huffman Coding

Compression Algorithm Complexity

	Time Complexity	Memory Complexity
Image compression	O(N*M*log(N*M))	O(N*M)
Image decompression	O(N*M*log(N*M))	O(N*M)

 Where N is the total number of rows and M is the total number of columns of a picture

Time and Memory Consumption

Memory Consumption

Average Compression Ratio

Compression Ratio				
Healthy Cattle	4 : 1			
Sick Cattle	4 : 1			

Average compression ratio for Healthy Cattle and Sick Cattle.

Report Accepted on OSF

A.Agudelo Ortega, M. Arango Palacio, I. Montoya Henao and M Toro.

Compression Algorithms to optimize battery consumption in precision livestock farming. OSF, May. 2021. Available at: https://osf.io/2vw8t/

THANK YOU!