

74LS147

- Encode 10-Line Decimal to 4-Line BCD
- Applications Include:
 - Keyboard Encoding
 - Range Selection

74LS147 (TOP VIEW)

74LS148

- Encode 8 Data Lines to 3-Line Binary (Octal)
- Applications Include:
 - n-Bit Encoding
 - Code Converters and Generators

74LS148

TYPE	TYPICAL DATA DELAY	TYPICAL POWER DISSIPATION
'147	10 ns	225 mW
'148	10 ns	190 mW
'LS147	15 ns	60 mW
'LS148	15 ns	60 mW

description/ordering information

These TTL encoders feature priority decoding of the inputs to ensure that only the highest-order data line is encoded. The 74LS147 devices encode nine data lines to four-line (8-4-2-1) BCD. The implied decimal zero condition requires no input condition, as zero is encoded when all nine data lines are at a high logic level. The '148 and 'LS148 devices encode eight data lines to three-line (4-2-1) binary (octal). Cascading circuitry (enable input EI and enable output EO) has been provided to allow octal expansion without the need for external circuitry. For all types, data inputs and outputs are active at the low logic level. All inputs are buffered to represent one normalized Series 54/74 or 54/74LS load, respectively.

ORDERING INFORMATION

TA	PACKAC	3E†	ORDERABLE PART NUMBER	TOP-SIDE MARKING
	PDIP – N	Tube	74LS148	74LS148
	0010 D	Tube	74LS148	74LS148
0°C to 70°C	SOIC - D	Tape and reel	74LS148	7413146
	SOP - NS	Tape and reel	74LS148	74LS148

FUNCTION TABLE - 74LS147

				INPUTS						OUTI	PUTS	
1	2	3	4	5	6	7	8	9	D	С	В	Α
Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
Х	Χ	Χ	Χ	Χ	Χ	Χ	Χ	L	L	Н	Н	L
Х	Χ	Χ	Χ	Χ	Χ	Χ	L	Н	L	Н	Н	Н
Х	Χ	Χ	Χ	Χ	Χ	L	Н	Н	Н	L	L	L
Х	Χ	Χ	Χ	Χ	L	Н	Н	Н	Н	L	L	Н
Х	Χ	Χ	Χ	L	Н	Н	Н	Н	Н	L	Н	L
Х	Χ	Χ	L	Н	Н	Н	Н	Н	Н	L	Н	Н
Х	Χ	L	Н	Н	Н	Н	Н	Н	Н	Н	L	L
Х	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	L	Н
L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L

H = high logic level, L = low logic level, X = irrelevant

FUNCTION TABLE - 74LS148

				INPUTS	i					C	UTPUT	S	
EI	0	1	2	3	4	5	6	7	A2	A 1	A0	GS	EO
Н	Х	Χ	Χ	Χ	Χ	Χ	Χ	Х	Н	Н	Н	Н	Н
L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L
L	X	X	X	Χ	X	X	X	L	L	L	L	L	Н
L	Х	Χ	Χ	Χ	Χ	Χ	L	Н	L	L	Н	L	Н
L	Х	Χ	Χ	Χ	Χ	L	Н	Н	L	Н	L	L	Н
L	Х	Χ	Χ	Χ	L	Н	Н	Н	L	Н	Н	L	Н
L	Χ	Χ	Χ	L	Н	Н	Н	Н	Н	L	L	L	Н
L	Х	Χ	L	Н	Н	Н	Н	Н	Н	L	Н	L	Н
L	Х	L	Н	Н	Н	Н	Н	Н	Н	Н	L	L	Н
L	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L	Н

H = high logic level, L = low logic level, X = irrelevant

74LS147 logic diagram (positive logic)

Pin numbers shown are for D, J, N, and W packages.

74LS148 logic diagram (positive logic)

Pin numbers shown are for D, J, N, NS, and W packages.

schematics of inputs and outputs

74LS148/74LS148

'LS147, 'LS148

XL74LS148 SOP16 / XD74LS148 DIP16 / XD74LS147 DIP16

absolute maximum ratings over operating free-air temperature (unless otherwise noted)†

Supply voltage, V _{CC} (see Note 1)		
Input voltage, V _I :74LS147,74LS148		5.5 V
74LS147,74LS148		
Inter-emitter voltage: '148 only (see Note 2) .		5.5 V
Package thermal impedance θ_{JA} (see Note 3):	D package	
	N package	67°C/W
	NS package	64°C/W
Storage temperature range, T _{sta}		

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. Voltage values, except inter-emitter voltage, are with respect to the network ground terminal.
 - 2. This is the voltage between two emitters of a multiple-emitter transistor. For 74LS148 circuits, this rating applies between any two of the eight data lines, 0 through 7.
 - 3. The package thermal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions (see Note 4)

			74LS		74LS		74LS		74LS			UNIT		
		MIN	NOM	MAX	MIN	NOM	MAX	MIN	NOM	MAX	MIN	NOM	MAX	UNII
VCC	Supply voltage	4.5	5	5.5	4.75	5	5.25	4.5	5	5.5	4.75	5	5.25	V
IOH	High-level output current			-800			-800			-400			-400	μΑ
lOL	Low-level output current			16			16			4			8	mA
TA	Operating free-air temperature	-55		125	0		70	-55		125	0		70	°C

NOTE 4: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

XL74LS148 SOP16 / XD74LS148 DIP16 / XD74LS147 DIP16

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	545445			unizionet		74LS14	17		74LS14	48	LINUT
	PARAME	TER	TEST CO	NDITIONS [†]	MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT
VIH	High-level input ve	oltage			2			2			V
V_{IL}	Low-level input voltage						0.8			0.8	V
V_{IK}	Input clamp voltage		$V_{CC} = MIN,$	$I_{ } = -12 \text{ mA}$			-1.5			-1.5	V
Vон	High-level output voltage		V _{CC} = MIN, V _{IL} = 0.8 V,	$V_{IH} = 2 V$, $I_{OH} = -800 \mu A$	2.4	3.3		2.4	3.3		V
VOL	Low-level output voltage		V _{CC} = MIN, V _{IL} = 0.8 V,	V _{IH} = 2 V, I _{OL} = 16 mA		0.2	0.4		0.2	0.4	V
IJ	Input current at m voltage	aximum input	V _{CC} = MIN,	V _I = 5.5 V			1			1	mA
	High-level input	0 input		\\ 0.4\\						40	
lН	current	Any input except 0	$V_{CC} = MAX$,	V _I = 2.4 V			40			80	μΑ
	Low-level input	0 input	V MAY	V 04V						-1.6	A
ll	current	Any input except 0	$V_{CC} = MAX$,	$V_{I} = 0.4 V$			-1.6			-3.2	mA
los	Short-circuit output current§		$V_{CC} = MAX$		-35		-85	-35		-85	mA
loo		V _{CC} = MAX	Condition 1		50	70		40	60	mA	
ICC		(See Note 5) Condition 2			42	62	·	35	55	IIIA	

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

NOTE 5: For 74LS147, I_{CC} (Condition 1) is measured with input 7 grounded, other inputs and outputs open; I_{CC} (Condition 2) is measured with all inputs and outputs open. For 74LS148 I_{CC} (Condition 1) is measured with inputs 7 and EI grounded, other inputs and outputs open; I_{CC} (Condition 2) is measured with all inputs and outputs open.

74LS147 switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$ (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	WAVEFORM	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{PLH}	A	A	la abasa sutaut			9	14	
t _{PHL}	Any	Any	In-phase output	$C_L = 15 pF$,		7	11	ns
t _{PLH}	Anv	Any	Out-of-phase output	$R_L = 400 \Omega$		13	19	20
^t PHL	Any	Any	Out-or-priase output			12	19	ns

[‡] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

[§] Not more than one output should be shorted at a time.

74LS148 switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$ (see Figure 1)

PARAMETER†	FROM (INPUT)	TO (OUTPUT)	WAVEFORM	TEST CONDITIONS	MIN	TYP	MAX	UNIT
^t PLH	4.7	AO A4 a AO	la phase sutput			10	15	
^t PHL	1–7	A0, A1, or A2	In-phase output			9	14	ns
^t PLH	1–7	AO A4 a AO	Out of phase submit			13	19	
t _{PHL}	1-7	A0, A1, or A2	Out-of-phase output			12	19	ns
^t PLH	0.7	F0	Out of phase submut]		6	10	
t _{PHL}	0–7	EO	Out-of-phase output			14	25	ns
^t PLH	0.7	00	la shaaa aytayt	$C_L = 15 pF$,		18	30	
^t PHL	0–7	GS	In-phase output	$R_L = 400 \Omega$		14	25	ns
t _{PLH}	E.	AO A4 AO	la abasa sutaut]		10	15	
t _{PHL}	EI	A0, A1, or A2	In-phase output			10	15	ns
t _{PLH}	F.	00	la abasa sutaut]		8	12	
t _{PHL}	EI GS In-phase output EI EO In-phase output			10	15	ns		
^t PLH		In phase output	1		10	15	ns	
t _{PHL}		LO	in-priase output			17	30	115

 $[\]dagger$ tpLH = propagation delay time, low-to-high-level output.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	242445			DITIONST		74LS			74LS		
	PARAME	IER	TEST CON	DITIONS	MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT
VIH	High-level input vo	oltage			2			2			V
VIL	Low-level input vo	Itage					0.7			0.8	V
VIK	Input clamp voltage		V _{CC} = MIN,	I _I = -18 mA			-1.5			-1.5	V
Vон	High-level output voltage		V _{CC} = MIN, V _{IL} = 0.8 V,	$V_{IH} = 2 V$, $I_{OH} = -400 \mu A$	2.5	3.4		2.7	3.4		V
,,			V _{CC} = MIN,	I _{OL} = 4 mA		0.25	0.4		0.25	0.4	.,
VOL	L Low-level output voltage		V _{IH} = 2 V, V _{IL} = V _{IL} MAX	I _{OL} = 8 mA					0.35	0.5	V
	Input current at	74LS148 inputs 1–7				0.2			0.2		
11	maximum input voltage	All other inputs	$V_{CC} = MAX,$	V _I = 7 V			0.1			0.1	mA
	High-level input	74LS148 inputs 1-7	.,				40			40	
Ιн	current	All other inputs	$V_{CC} = MAX,$	$V_{I} = 2.7 V$			20			20	μΑ
Γ.	Low-level input	74LS148 inputs 1-7					-0.8			-0.8	
IIL	current	All other inputs	$V_{CC} = MAX,$	$V_I = 0.4 V$			-0.4			-0.4	mA
los	Short-circuit output	t current§	$V_{CC} = MAX$		-20		-100	-20		-100	mA
loo	C Supply current	Supply ourront V	V _{CC} = MAX	Condition 1		12	20		12	20	mA
Icc		aniv current	(See Note 6)	Condition 2		10	17		10	17	IIIA

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

NOTE 6: For 74LS147, I_{CC}(Condition 1) is measured with input 7 grounded, other inputs and outputs open; I_{CC} (Condition 2) is measured with all inputs and outputs open. For 74LS148, I_{CC} (Condition 1) is measured with inputs 7 and EI grounded, other inputs and outputs open; I_{CC} (Condition 2) is measured with all inputs and outputs open.

tpHL = propagation delay time, high-to-low-level output.

[‡] All typical values are at V_{CC} = 5 V, T_A = 25°C.

[§] Not more than one output should be shorted at a time.

XL74LS148 SOP16 / XD74LS148 DIP16 / XD74LS147 DIP16

74LS147 switching characteristics, V_{CC} = 5 V, T_A = 25°C (see Figure 2)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	WAVEFORM	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{PLH}	A	A	la abasa sutaut			12	18	
t _{PHL}	Any	Any	In-phase output	C _L = 15 pF,		12	18	ns
t _{PLH}	Any	Any	Out-of-phase output	$R_L = 2 k\Omega$		21	33	20
^t PHL	Any	Any	Out-or-priase output			15	23	ns

74LS148 switching characteristics, V $_{CC}$ = 5 V, T_A = 25°C (see Figure 2)

PARAMETER†	FROM (INPUT)	TO (OUTPUT)	WAVEFORM	TEST CONDITIONS	MIN	TYP	MAX	UNIT
^t PLH	4 7	AO A4 or A0	In phase cutout			14	18	20
^t PHL	1–7	A0, A1, or A2	In-phase output			15	25	ns
^t PLH	1–7	AO A4 or A2	Out of phase cutput			20	36	20
t _{PHL}	1-7	A0, A1, or A2	Out-of-phase output			16	29	ns
^t PLH	0.7	50	Out of phase subject			7	18	
t _{PHL}	0–7	EO	Out-of-phase output			25	40	ns
t _{PLH}	0.7	00	la abasa sutaut	$C_L = 15 pF$,		35	55	
t _{PHL}	0–7	GS	In-phase output	$R_L = 2 k\Omega$		9	21	ns
t _{PLH}	F.	AO A4 AO	la abasa sutaut	1		16	25	
t _{PHL}	EI	A0, A1, or A2	In-phase output			12	25	ns
^t PLH	F1	00	In about outside	1		12	17	
^t PHL	EI	GS	In-phase output		·	14	36	ns
t _{PLH}	EI	EO	In phase output]		12	21	200
^t PHL		E0	In-phase output			23	35	ns

[†] tp_{LH} = propagation delay time, low-to-high-level output tp_{HL} = propagation delay time, high-to-low-level output

PARAMETER MEASUREMENT INFORMATION SERIES 54/74 DEVICES

- NOTES: A. C_L includes probe and jig capacitance.
 - B. All diodes are 1N3064 or equivalent.
 - C. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
 - D. S1 and S2 are closed for tpLH, tpHL, tpHZ, and tpLZ; S1 is open, and S2 is closed for tpZH; S1 is closed, and S2 is open for tpZL.
 - E. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, $Z_O \approx 50 \Omega$; t_f and $t_f \leq$ 7 ns for Series 54/74 devices and t_r and $t_f \leq$ 2.5 ns for Series 74LS devices.
 - F. The outputs are measured one at a time, with one input transition per measurement.

Figure 1. Load Circuits and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION SERIES 74LS DEVICES

- NOTES: A. C_L includes probe and jig capacitance.
 - B. All diodes are 1N3064 or equivalent.
 - C. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
 - D. S1 and S2 are closed for tpLH, tpHL, tpHZ, and tpLZ; S1 is open, and S2 is closed for tpZH; S1 is closed, and S2 is open for tpZL.
 - E. Phase relationships between inputs and outputs have been chosen arbitrarily for these examples.
 - F. All input pulses are supplied by generators having the following characteristics: PRR ≤ 1 MHz, Z_O ≈ 50 Ω, t_f ≤ 1.5 ns, t_f ≤ 2.6 ns.
 - G. The outputs are measured one at a time, with one input transition per measurement.

Figure 2. Load Circuits and Voltage Waveforms

APPLICATION INFORMATION

Figure 3. Priority Encoder for 16 Bits

Because the 74LS147 and 74LS148 devices are combinational logic circuits, wrong addresses can appear during input transients. Moreover, for the 74LS148 devices, a change from high to low at EI can cause a transient low on GS when all inputs are high. This must be considered when strobing the outputs.

以上信息仅供参考. 如需帮助联系客服人员。谢谢 XINLUDA