Jiayang Ren

Portfolio: jiayang.site

Linkedin: linkedin.com/jiayang-ren Google Scholar: V3QBv3cAAAAJ

EDUCATION

University of British Columbia

Ph.D. in Chemical Engineering, Advisor: Dr. Yankai Cao, GPA:98.0/100

Vancouver, Canada Sep 2021 - Current

Zhejiang University

M.S. in Control Engineering, Advisor: Dr. Dong Ni, GPA: 88.9/100

Hangzhou, China Sep 2018 – June 2021

Email: rjy12307@outlook.com

Zhejiang University

B.A. in Automation, GPA: 3.80/4.0

Hangzhou, China Sep 2014 – June 2018

RESEARCH INTERESTS

- Advancing Interpretable Artificial Intelligence (AI) for process modeling and control
- Developing advanced optimization algorithms for large-scale Interpretable AI models.
- Pursuing trust-worthy and responsible data-driven methods in high-stake domains such as energy and food Systems.

JOURNAL ARTICLES & PATENTS

- [Optimization]: Ren, J., Hua, K. and Cao, Y. (2025). A Global Optimization Algorithm for K-Center Clustering of One Billion Samples. *Management Science*. Accepted
- [Optimization]: Ren, J. and Cao, Y. (2025). GO-Clustering.Jl: A Julia Package for Global Optimal Centroid-Based Clustering. Informs Journal on Computing. In Preparation for Informs Journal on Computing.
- [Optimization]: Ren, J., Valentín, O. and Cao, Y. (2025). A GPU-Accelerated Moving-Horizon Algorithm for Training Deep Classification Trees on Large Datasets. *Informs Journal on Computing*. Under Review
- [Control]: Ren, J., Mao, Q., Zhao, T., and Cao, Y. (2025). Learning Model Predictive Control Laws using Interpretable Oblique Decision Trees with robust considerations. Submitted to *Automatica*.
- [Control]: Li*, C., Ren*, J., Chen, Y., Zhang, X., Fang, Z. and Cao, Y. (2025). Hierarchical model predictive control for energy consumption regulation of industrial-scale circulation counter-flow paddy drying process. *Energy.* 321, 135431. (*co-first author)
- [Control]: Okamoto, M., Ren, J., Mao, Q., Liu, J., and Cao, Y. (2024). Deep Learning-Based Approximation of Model Predictive Control Laws Using Mixture Networks. *IEEE Transactions on Automation Science and Engineering*. vol. 22: 2909-2922.
- [Control]: Li, Y., Wang, Y., Chen, Y., Lu, Y., Hua, K., Ren, J., ... and Cao, Y. (2022) Deep-Learning-Based Predictive Control of Battery Management for Frequency Regulation. *Industrial & Engineering Chemistry Research*. 61(24): 8432-8442
- [Process Engineering]: Ren, J., and Ni, D. (2021) A Real-Time Monitoring Framework for Wafer Fabrication Processes With Run-to-Run Variations. *IEEE Transactions on Semiconductor Manufacturing*. 34(4): 483-492.
- [Process Engineering]: Ren, J., and Ni, D. (2020) A batch-wise LSTM-encoder decoder network for batch process monitoring. Chemical Engineering Research and Design. 164. 102-112
- [PATENT]: Ni, D., Zhu, F. and Ren, J. (2018) Plasma components spatial distribution method for real-time measurement and its device based on light spectrum image-forming.

Computer Science Conference Proceedings

- [Machine Learning]: Mao, Q., Ren, J., Wang, Y., Zou, C., Zheng, J., Cao, Y. (2025). Differentiable Decision Tree via "ReLU+Argmin" Reformulation. Advances in Neural Information Processing Systems (NeurIPS). Under Review.
- [Machine Learning]: Zou, C, Ren, J., Mao, Q., Liu, J., Lai, M., Cao, Y. (2025). A Moving-Horizon Approximate Branch-and-Reduce Method for Deep Classification Trees. Advances in Neural Information Processing Systems (NeurIPS). Under Review.
- [Machine Learning]: Liu, P., Hao, Z., Ren, X., Yuan, H., Ren, J., & Ni, D. (2024). PAPM: A Physics-aware Proxy Model for Process Systems. International Conference on Machine Learning (ICML) 2024. pp. 31080-31105

- [Machine Learning]: Ren, J., Hua, K. and Cao, Y. (2022). Global Optimal K-Medoids Clustering of One Million Samples. Advances in Neural Information Processing Systems (NeurIPS). 35: 982-994.
- [Machine Learning]: Hua, K., Ren, J. and Cao, Y. (2022). A Scalable Deterministic Global Optimization Algorithm for Training Optimal Decision Tree. Advances in Neural Information Processing Systems (NeurIPS). 35: 8347-8359.
- [Machine Learning]: Shi, M., Hua, K., Ren, J., and Cao, Y. (2022). Global Optimization of K-Center Clustering. International Conference on Machine Learning (ICML) 2022. pp. 19956-19966.

Engineering Conference Proceedings

- [Control]: Ren, J., Mao, Q., Zhao, T., and Cao, Y. (2025). Exact Learning of Model Predictive Control Laws using Oblique Decision Trees with Linear Predictions. Conference on Decision and Control (CDC) 2025. Accepted.
- [Machine Learning]: Wang, Y., Kumar, A., Ren, J., You, P., Seth, A., Gopaluni, R.B. and Cao, Y. (2024). Interpretable Data-Driven Capacity Estimation of Lithium-ion Batteries. IFAC-PapersOnLine. 58(14), pp.139-144.
- [Machine Learning]: Ren, J., Hua, K., Trajano, H., and Cao, Y. (2023). Global Optimal Explainable Models for Biorefining. Computer Aided Chemical Engineering. 52: 1339-1346.
- [Process Engineering]: Ren, J., and Ni, D. (2019) Real-time Fault Detection System for Multiphase Plasma Etching Process using OES, Two-Step Division and Change Stage Alignment Method. 2019 Chinese Automation Congress (CAC). pp. 599-604.

RESEARCH EXPERIENCE

Learning Optimal Control Laws via Interpretable Machine Learning Models

Vancouver, Canada

Research Assistant, PhD Student Advisor: Dr. Yankai Cao

Aug 2024 - Present

- o Developed learning-based Model Predictive Control (MPC) laws using oblique decision trees with linear predictions at the leaf nodes.
- Achieved control performance competitive with both traditional MPC and neural networks based controllers.
- Delivered significant online speedups: over 1,000x faster than MPC and 10x faster than neural network equivalents.

Large-Scale Optimization Algorithms for Interpretable Machine Learning Models Research Assistant, PhD Student Advisor: Dr. Yankai Cao

Vancouver, Canada Sep 2021 - Present

- o Designed global optimization algorithms for large-scale interpretable machine learning tasks (e.g., K-Means, K-Medoids, K-Center clustering, and Decision Trees) with datasets containing up to one billion samples.
- Developed reduced-space spatial branch-and-bound algorithms with customized lower bounding strategies, scenario relaxations, problem-specific bound tightening, and sample reduction techniques.
- o Accelerated solution processes using hybrid CPU-GPU parallel computing to fully utilize modern hardware

Real-Time Fault Detection and Diagnosis for Batch Processes

Hangzhou, China

Research Assistant, Master's Student Advisor: Dr. Dong Ni

Sep 2018 - Jun 2021

- o Applied multivariate statistical analysis (e.g., PCA) and time-series models (e.g., SARIMA, LSTM) to model variable dependencies in industrial batch processes.
- Developed a SARIMA-based drift compensation framework and a differential weighted distance-based phase alignment method, improving fault detection rates by 50% and reducing model complexity by 10 fold.
- Designed an LSTM Encoder-Decoder architecture for real-time monitoring of nonlinear behaviors in batch processes, doubling the fault detection rate without increasing the false alarm rate.

Dynamic Spectral Feature Extraction for Plasma Etch Processes

Hangzhou, China

Research Assistant, Undergraduate Student Advisor: Dr. Dong Ni

Oct 2017 - Jun 2018

- Extracted dynamic behavior using PCA and spectral peak information via wavelet decomposition.
- Combined temporal and spectral information to derive dynamic spectral features for process monitoring.
- Validated the method on optical emission spectra from plasma etching, enabling real-time process state detection aligned with underlying chemical mechanisms.

Work Experience

BC Hydro and Power Authority

Vancouver, Canada

Intern Research Engineer

Aug 2023 - April 2024

• Hydro resource scheduling: developed scalable optimization techniques (e.g., Mesh Adaptive Direct Search) to determine the optimal value of water storage for hydro resource planning.

Samsung (China) Research and Development Co., Ltd

Hangzhou, China

Intern Software Engineer

Apr 2017 - Sept 2017

• Ported the device tree seeking and reading API from the Linux kernel to U-Boot using C language.

TEACHING EXPERIENCE

• Teaching Assistant: UBC CHBE366 Chemical Engineering Lab (Data Analysis Lab, 200 students)	01/2023 - 05/2025
• Mentor: Mitacs Globalink Program - Deep learning-based Control (2 student)	05/2023 - $08/2025$
\bullet Mentor: Mitacs Globalink Program - Global Optimization for Clustering Models (1 student)	07/2024 - $10/2024$
Honors & Awards	
• AICHE CAST Director's Student Presentation Award Finalists	2025
• Westcoast Energy Inc Jack Davis Scholarship in Energy Studies	2024-2025
• Josephine T Berthier Fellowship	2023-2024
• Petrov Family Graduate Scholarship in Chemical and Biological Engineering	2022-2023
• University of British Columbia Affiliate Fellowship	2022-2023
• NeurIPS 2022 Scholar Award	2022
\bullet 17th Informs Annual Conference, Data Mining Workshop - Best Theoretical Paper	2022
• Zhejiang University Scholarship for Outstanding Students	2018-2021

PROFESSIONAL SERVICES

- Senssion Chair: Canadian Chemical Engineering Conference 2022 Artificial Intelligence and Machine Learning in Process Systems Engineering Session
- Poster Presentation: TrustML Workshop 2023, NeurIPS 2022, ICML 2022
- Oral Presentation: AICHE 2024, BCUSC 2024, ADCHEM 2024, CCEC 2022, INFORMS 2022
- Journal Reviewer: IEEE Transactions on Industrial Informatics, IEEE Transactions on Automation Science and Engineering
- Conference Reviewer: CDC 2025, ICLR 2025, BigData 2024, ACMMM 2024, CIKM 2024, ICLR 2024, CIKM 2023, NeurIPS 2023, ICML 2022
- Others: IET Cyber-Systems and Robotics, Blog Writer for General Audience

SKILLS & INTERESTS

• Knowledge:	Optimization, Machine learning, Control theory and application
• Programming:	Julia, Python, MPI and GPU Parallel Programming, CPLEX, Gurobi, Matlab, C, SQL
• Hobbies:	Photography, Cooking, Aerobic Sports (e.g., hiking, jogging, swimming, cycling, etc.)