Dichiarazione Cognome: Nome: Dichiaro che lo svolgimento di questa esercitazione è frutto del mio lavoro. Data: Firma: Indicazioni Questa pagina va stampata e le risposte vanno scritte a mano nello spazio a disposizione sotto ogni domanda. Non si può superare lo spazio a disposizione. Riferimenti Domanda 1 Scrivere le definizioni del prodotto scalare e del prodotto vettoriale. Risposta:

omanda 2	
ano ${f a}$ e ${f b}$ due vettori non nulli. Dimostrare che se ${f a} imes {f b} = 0$ allora ${f a}$ è parallelo a ${f b}$.	
lisposta:	
iisposta.	

Domanda 3 – Problema: Corpo soggetto a due forze

Dimostrare che un sistema costituito da due forze applicate

$$\mathcal{S} = \{(P_1, \mathbf{F}_1), (P_2, \mathbf{F}_2)\}$$

ha risultante e momento risultante nulli se e solo se le due forze hanno la stessa retta d'azione ed intensità opposta. Dedurre che se un corpo è in equilibrio sotto l'azione di un sistema di due forze, allora queste due forze sono disposte sulla stessa retta d'azione.

Risposta:	

Domanda 4 Dimostrare che se un sistema di forze ha risultante nulla, allora il momento risultante non

dipende dal polo. Risposta:

Domanda 5

n uno spazio euclideo tridimensionale, siano dati tre punti $P,$ e R tra loro non allineati. Sia $$	il
piano passante per tali punti. Dimostrare che se	

$$(P-R) \times (-R) \cdot \mathbf{v} = 0$$

allora il vettore ${\bf v}$ è parallelo al piano .

Risposta:		

Domanda 6 – Problema: Corpo soggetto a tre forze (caso generale)

$$\mathcal{S} = \{(P_1, \mathbf{F}_1), (P_2, \mathbf{F}_2), (P, \mathbf{F})\}.$$

Si dimostri che tre forze sono parallele al piano passante per P_1 , P_2 e P, e che le loro rette d'azione concorrono in un unico punto. Concludere che, se un corpo rigido è in equilibrio sotto l'azione di tre forze, allora le rette di applicazione delle tre forze sono concorrenti (oppure parallele).

Risposta:	