REAL ANALYSIS

SECTION-I

- 1. (a) Prove that the set of real numbers x such that $0 \le x \le 1$ is not countable.
 - (b) Define Least upper bound of a set. Prove that least upper bound of a set, if exists, is unique.
 2+8
- (a) Prove that a set A is a neighbourhood of \(\xi\) iff there exists n
 ∈ N such that

$$\left(\xi - \frac{1}{n}, \xi + \frac{1}{n}\right) \subseteq A$$

- (b) Define Closed set. A is a closed set iff A contains all its limit points.

 1+9
- (a) If a sequence of non-negative terms converges to a, then prove that a is also non-negative.
 - (b) Show that a sequence is convergent if and only if and only if it is a cauchy sequence.
- 4. (a) $\sum_{n=1}^{\infty} a_n$ is convergent, then prove that $\lim_{n\to\infty} a_n = 0$. Is the converse also true?
 - (b) Test the series

$$1 + \frac{x^2}{2} + \frac{x^4}{4} + \frac{x^6}{6} + \dots$$

for convergence for x>0.

10

SECTION - II

5. (a) If for |x| < 1, the series

 $a_0 + a_1x + a_2x^2 + \dots + a_nx^n + \dots$ is absolutely convergent to A (x), then show that

$$(1-x)^{-1}(A(x)) = \sum_{n=0}^{\infty} S_n x^n$$

		where $S_n = a_0 + a_1 + \dots + a_n$.	10
	(b)	Show that every absolutely convergent infinit	e product i
	, s y	Examine the continuity of the function $f(x) = \frac{1}{2}$	$x- x x\neq 0$
6.	(a)	Examine the continuity of the function $f(x) = 0$	x = 0
	(b)	at the origin. Define uniform continuity of a function.	10
		Prove that $f: R \to R$ defubed by $f(x) = x^2$,	Hac D:
		uniform continuous.	VAERE
7.	(a)	State and prove Rolle's theorem.	10
		Use Lagrangian mean value theorem to prove	
	SI AN	$1+x0$	10
		SECTION - III	
8.	(a)	Show by Riemann integration that $\int f(x)dx$	=6 where
		f(x) = 2x + 3	, where
	(b)	I(x) = 2x + 3 State and prove Fundamental theorem of Integr	ral calculus
		6	
9.	(a)	Show that the integral $\int_0^{x^{n-1}} e^{-x} dx$ is convergen	t if and only
		if $n > 0$.	10
	(b)	If a sequence of continuous functions <f> is convergent to a function f on [a,b] then sho</f>	w that f is
10	(a)	continuous in [a,b]. Define Beta and Gamma functions. Establish	10
	(-)	between these functions.	1+1+8
	(b)	Prove that	
		$\int_{0}^{\frac{\pi}{2}} \log \left(\alpha^{2} \cos^{2} \theta + \beta^{2} \sin^{2} \theta \right) d\theta = \pi \log \left(\frac{\alpha + \beta}{2} \right), \alpha$	> 0, \beta > 0