知经纬度计算两点精确距离

韩忠民

吉林省延边地震台,吉林延吉

133003

摘 要本文阐述了用程序计算在已知两点经纬度情况下,精确计算两点之间距离的方法,达到日常地震资料分析中准确定位、减少工作量的目的。

关键词经度;纬度;地震资料

中图分类号 P315

文献标识码 A

0 引言

地震分析中很多时候需要计算地球上两点之间的精确距离, 而这两点之间距离计算公式比较复杂,而且容易出错。

根据这些问题,用《Visual Basic》编写了《知经纬度计算两点精确距离》程序,使两点之间距离计算变得简单,为地震分析提供了方便而快捷的计算工具。

1 计算公式

国家地震局地球物理所编制的《近震分析》中可以知道,在 地面上计算两点距离的一般方法有:

1)在大比例地图上直接测量

在地图上根据比例直接换算距离,方法比较简单。

2)已知两点的大地坐标计算距离

设两点大地坐标值为(x,,y,),(x,,y,)则:

 $\Delta = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$

式中 Δ 是两点之间距离,单位是公里。用此公式计算时,要注意两点是否在同一个坐标系内。如果两点不在同一个坐标系内,就须将其中的一点经坐标平移变换到另一点所在的坐标系内。平移公式为,

x = x' + a、y = y' + b式中 a, b 是原坐标的原点在新坐标系中的坐标值。

3) 知两点的经纬度计算两点距离的近似公式

设定 A 点 (纬度 φ_1 , 经度 λ_1)和 B 点 (纬度 φ_2 , 经度 λ_2)则

$$\Delta = 111.199 \left| (\varphi - \varphi)^2 + (\lambda_1 - \lambda_2)^2 \cos^2(\frac{\varphi_1 + \varphi_2}{2}) \right|^2$$

式中 Δ 是两点之间距离,单位是度而不是弧度。

4) 知两点经纬度计算两点距离的精确公式

设定 A 点 (纬度 φ_1 , 经度 λ_1)和 B 点 (纬度 φ_2 , 经度 λ_2)则 $\cos \Delta = A1 \cdot A2 + B1 \cdot B2 + C1 \cdot C2$

#:

A1 = $\cos \varphi_1 \cdot \sin \lambda_1$, B1 = $\cos \varphi_1 \cdot \cos \lambda_1$, C1 = $\sin \varphi_1$ A2 = $\cos \varphi_2 \cdot \sin \lambda_2$, B2 = $\cos \varphi_2 \cdot \cos \lambda_1$, C2 = $\sin \varphi_2$

或者改写成 $\cos \Delta = A (B + C) + D$

其中

A= $\cos \varphi_1 \cdot \cos \varphi_2$, B = $\cos \lambda_1 \cdot \cos \lambda_2$,

 $C = \sin \, \lambda_{_1} \, \cdot \, \sin \, \lambda_{_2} \ , \quad D = \sin \, \varphi_1 \, \cdot \, \sin \, \varphi_2$

这4种方法互相比较有如下特点:

第1种方法,直观易行,也是常用方法。即使要采用其他方法计算,也常常先直接测量一下大小,以便检查计算中因有效位数不够引起的计算误差或计算错误。

第2种方法,比起第一种方法还比较精确,计算也简单,但 往往因查不到大地坐标值或坐标变换的数值而无法使用。

第3种方法,在书本上使用的较多。

第4种方法,计算较繁,特别是要求计算中的有效位数必须在六位以上,否则,计算误差影响很严重。但是,这种方法的原理不仅适用于近震,也适用于远震。

文章编号 1674-6708 (2011) 44-0196-02

从上述 4 种方法的比较中可以知道,第 4 种方法虽然有计算 繁、有效位数必须在六位以上等缺点,但非常适合地震分析中使用。 此计算方法的缺点,完全可以用程序来克服。因此本程序编程采 用了此计算方法。

2 使用说明

在 Windows 环境下运行《知经纬度计算两点精确距离》程序,则强出加图 1 画面。

程序中设计了 A 点和 B 点两个已知经纬度的输入栏。因在地震分析资料中经纬度单位是度或度、分来表示,所以设计了 < 度 为单位 > 、 < 度、分为单位 > 两个输入栏。计算时根据给定单位的经纬度来输入即可,不必进行单位转换。

输入栏相应位置输入已知两点的经纬度之后,点击<计算>按钮,即可计算出两点之间距离,非常方便实用。

图 1 程序界面

例如,已知 A 点纬度为 34.06° 即 34° 3.6′, 经度为 140.12° 即 140° 7.2′; B 点纬度为 38.18° 即 38° 10.8′, 经度为 21.98° 即 21° 58.8′。则相应输入栏里输入数据后,点击 < 计算 > 按钮,则计算结果如图 1。计算结果中可以看出以 < 度为单位 > 和 < 度、分为单位 > 计算结果一样,说明编程中单位转换是正确的。

3 几点说明

- 1)本程序运行需要安装《Visual Basic》程序;
- 2)程序中有两个<计算>按钮,可以分别进行不同单位的经 纬度计算;
- 3)如果重新输入数据或计算下一个,点击<清空>按钮,则 清空相应位置栏里所有数据,以便输入新的数据;
- 4)程序中有<合并清空>按钮,用于清空两个输入栏里所有数据:
- 5)输入栏中所有项必须有数据,如果缺一项,则程序不进行 计算;
- 6)输入数据时,可以按 <Tab> 键把光标移动到下一个栏里, 避免频繁使用鼠标;
 - 7) 计算结果以度和公里为单位显示,便于地震分析中使用;
 - 8) < 计算结果 > 栏是显示计算结果的地方,该处只能显示结

(下转第174页)

从电压对比图中可以看出,通过卷积计算的雷电压波形与标 准的雷电流作用下的响应电压波形完全吻合,从而在 Matlab 仿真 4 上证明了卷积变换计算理论的可行性。

5 测量的数据比较

测量山石土壤(雷击区)、水田土壤、水田沙石混合型土壤的 输电线路杆塔冲击接地电阻。比较工频电阻仪的测量值与运用卷 积理论所得测量出的冲击接地电阻值,显然,通过模拟冲击电流 注入大地,再运用卷积计算方法,所测量出的接地电阻值更有效。 测量数据列表如下:

名称	土壤	工频电阻值	模拟冲击电阻值
110kV14 号杆塔	山石土壤(雷区)	27.0 (Ω)	超量程(45Ω)
110kV13 号杆塔	山石土壤(雷区)	9.0 (Ω)	超量程(45Ω)
110kV10 号杆塔	山石土壤(雷区)	11.0 (Ω)	超量程(45Ω)
110kV50 号杆塔	水田土壤	6.89 (Ω)	3.1 (Ω)
110kV97 号杆塔	水田土壤	8.6 (Ω)	4.81 (Ω)
	水田沙石混合土壤		2.08 (Ω)
110kV41 号杆塔	水田沙石混合土壤	12.0 (Ω)	3.90 (Ω)

6 结论

从实验结果中可以看出,在水田土壤以及水田沙石混合型土

壤中,用模拟雷电流及转换计算法所测冲击接地电阻值都小于工 频接地电阻值,大体上是工频接地电阻的0.2~0.6倍,小于工频电 阻转换成冲击接地电阻的转换系数,这与水田土壤导电性强的实 际情况一致。在山石土壤(雷击区)中,冲击电阻值都超量程(此 测量电阻仪的量程为 $0\Omega\sim45\Omega$), 可以判断山石土壤由于土壤电阻 率太高,而导致冲击接地电阻的过大,这一结果也正好与这里的 电线塔跳闸频繁的实际情况相吻合。用模拟冲击电流注入大地, 经过卷积计算,现场直接测量的冲击接地电阻是有效的,测量的 结果和工频接地电阻相比,更符合实际情况,为杆塔输电线路的 防雷,提供了真实可靠的数据依据。

極文多参

- [1]何金良,曾嵘,陈水明.输电线路杆塔冲击接地电阻特性 的模拟实验研究.清华大学电机工程与应用电子技术系.
- [2] 夏长征, 文习山, 王建国. 伸长接地体冲击接地电阻计算 [M]. 武汉大学电气工程学院.
- [3] 穆明,辛立敏. 防雷装置冲击接地电阻值的确认哈尔滨市 计量检定测试所,
- [4] 陈亚勇, 等. MATLAB信号处理详解[M]. 北京: 人民邮电出 版社, 2001.

(上接第196页)

果,无法输入数据。

4 计算结果验证

本程序计算结果的精度在地震分析或其他工程领域都很重要。 从计算公式中可以知道,要求计算中的有效位数必须在六位以上, 而实际程序中使用的有效位数达到了14位,完全符合要求。为了 验证本程序编程是否正确、计算精度是否达到要求,首先,用计 算器计算并且有效位数在六位以上,然后与程序计算结果相互比 较。计算结果相差几乎零,说明本程序编程是正确的,精度也达 到了要求,完全可以在地震分析中使用。

5 结论

因本程序距离计算不仅适用于近震, 也适用于远震, 地震分 析中可以不受限制的使用。同时也可以用于其他需要已知经纬度 的情况下求两点之间距离的领域。从试用情况来看该程序具有操 作简单、运行稳定、精度高等特点。由于该程序是日常数据处理 软件,在使用中还需不断的改进和完善。

参考文献

- [1] 国家地震局地球物理研究所. 近震分析[M]. 北京: 地震出 版社 1978
- [2] 王新民, 于翔志. Visual Basic程序设计 [M]. 北京: 电子工 业出版社, 2006.
- [3]时振梁,张少泉,赵荣国,吴开统,陆其鹤,张敏政.地 震工作手册[M].北京:地震出版社,1992.
- [4] 刘克骧,孙自刚,等. 2006. 单台测震分析辅助软件的设计 及实现[J]. 地震地磁观测与研究.
- [5] 邓存华,李雷,等. 2006. CDSN日常分析工作辅助软件设计 [J]. 地震地磁观测与研究.

(上接第205页)

型等离子体天线实验系统。该系统能够方便的测量等离子体天线 的辐射方向图、天线效率及等离子体电导率等重要参数,并可与 金属天线的测量结果进行对比。这为今后实现等离子体天线的应 用打下了基础。

参考文献

[1] J. P. Rayner, A. P. Whichello, A D. Cheetham, "Physical Characteristics of Plasma Antennas", IEEE Trans. On Plasma Science, 2004, 32(1): 269-281.

[2] EN 55011 "Limits and methods of measurement of radio disturbance characteristics of industrial, scientific and medical (ISM) radio frequency equipment.

[3] R. R. Collin "Foundations for microwave engineering" McGraw-Hill Ed, 1992.

(上接第211页)

3 结论

通过以上对 3 个危险的编程错误和 TCP 的安全性分析,可以 看出因特网的安全问题是一个需要不断研究探讨和改进的重要问 题。对于现今的因特网安全性问题,其中一部分可以找到恰当的 解决方案,但仍有许多安全问题需要研究者在将来不断的发掘和 解决。

参考文献

- [1] Randalll. A. TowardaMoreSecureInternet. COMPUTER, 1997, 30(1).
- [2]谢希仁. 计算机网络[M]. 大连: 大连理工大学出版社, 2004.
- [3] J. Postel. Transmission Control Protocol. IETF RFC 793, 1981, 9.