Математический анализ Лекция 3

Емельянов Д.П., Никитин А.А.

МГУ им. М.В. Ломоносова, факультет ВМК Кафедра общей математики

Онлайн-курс «Математике в Data Science» 11 марта, 2021г.

Определение

Отображение $f: X \longrightarrow Y$ называется инъективным, если

$$\forall x_1, x_2 \in X, x_1 \neq x_2 \implies f(x_1) \neq f(x_2).$$

Определение

Отображение $f:X\longrightarrow Y$ называется сюрьективным, если

$$\forall y \in Y \ \exists x \in X : f(x) = y.$$

Определение

Отображение $f: X \longrightarrow Y$ называется биективным (взаимно однозначным), если оно одновременно инъективно и сюрьективно.

Обозначение: $f: X \longleftrightarrow Y$.

Определение

Пусть задано $f: X \longrightarrow Y$.

Отображение $f^{-1}:Y\longrightarrow X$ называется *обратным* к f, если:

- 1. $\forall x \in X \implies f^{-1}(f(x)) = x$,
- $2. \ \forall y \in Y \implies f(f^{-1}(y)) = y.$

ПРИМЕРЫ

- 1. $f(x) = x^2, x \in [0,2] \implies f^{-1}(y) = \sqrt{y}, y \in [0,4].$
- 2. $f(x) = x^2, x \in [-2, 2]$ не обратима (на данном множестве).

Теорема

Отображение $f:X\longrightarrow Y$ является биективным тогда и только тогда, когда существует обратное отображение $f^{-1}:Y\longrightarrow X$. При этом f^{-1} будет также биективным.

Доказательство. І. Пусть f обратима. Тогда:

- 1. $\forall y \in Y \ \exists x = f^{-1}(y) \in X : f(x) = y \implies f$ сюрьективна.
- 2. Пусть f не инъективна. Тогда найдётся пара

 $x_1 \neq x_2 : f(x_1) = f(x_2)$. Но тогда применим к обеим частям равенства $f^{-1} : f^{-1}(f(x_1)) = f^{-1}(f(x_2)) \implies x_1 = x_2$ противоречие, следовательно f инъективна, следовательно – биективна.

II. Пусть f биективна. Тогда у любого $y \in Y$ существует ровно один прообраз $x \in X$: f(x) = y. Положим по построению $f^{-1}(y) = x$. Тогда f^{-1} – по построению обратная функция к f. III. f является обратной функцией для f^{-1} , следовательно, f^{-1} биективна (пункт I). Теорема полностью доказана.

Пример 2

$$y = egin{cases} \sinrac{1}{x}, & ext{если } x
eq 0; \ 0, & ext{если } x = 0. \end{cases}$$

Функция Дирихле

$$D(x) = egin{cases} 1, & ext{ecли } x \in \mathbb{Q}; \ 0, & ext{ecли } x \in \mathbb{R} \setminus \mathbb{Q}. \end{cases}$$

Функция Римана

$$R(x) = egin{cases} 1/n, & ext{если } x = rac{m}{n}, \ ext{HOД}(m,n) = 1, & m \in \mathbb{Z}, n \in \mathbb{N}, \ 0, & ext{если } x$$
 - иррациональное число.

Определение

 δ – окрестностью точки x_0 называется интервал $(x_0-\delta,x_0+\delta)$. Обозначение: $U_\delta(x_0)$.

Определение

Левой δ – полуокрестностью точки x_0 называется полуинтервал $(x_0-\delta,x_0].$

Определение

Правой δ — полуокрестностью точки x_0 называется полуинтервал $[x_0, x_0 + \delta)$.

Определение

 δ — окрестностью точки ∞ называется множество $(-\infty, -\delta) \cup (\delta, +\infty)$.

Определение

 δ – окрестностью точки $+\infty$ называется множество $(+\delta,\infty)$.

Определение

 δ – окрестностью точки $-\infty$ называется множество $(-\infty, -\delta)$.

Определение

Проколотой δ – окрестностью точки x_0 называется множество $U_\delta(x_0)\setminus\{x_0\}.$

 $U_{\delta}(x_0)\setminus\{x_0\}.$ Обозначение: $\stackrel{\circ}{U}_{\delta}(x_0).$

О. Коши

Предел Функции по Коши

Пусть для области определения числовой функции $f:\mathbb{R}\longrightarrow\mathbb{R}$ точка x_0 является предельной. Число b называется *пределом* функции f при x стремящемся к x_0 , если

$$\forall \varepsilon > 0 \ \exists \delta(\varepsilon) > 0 : \forall x \in U_{\delta}(x_0) : x \in \text{dom } f, x \neq x_0$$

$$\implies |f(x) - b| < \varepsilon.$$

Обозначение:
$$b = \lim_{x \to x_0} f(x)$$
.

Э. Гейне

Предел Функции по Гейне

Пусть для области определения числовой функции $f: \mathbb{R} \longrightarrow \mathbb{R}$ точка x_0 является предельной. Число b называется *пределом* функции f при x стремящемся к x_0 , если

$$\forall \{x_n\} : \lim_{n \to +\infty} x_n = x_0, \forall n : x_n \in \text{dom } f, x_n \neq x_0$$

$$\implies \lim_{n \to +\infty} f(x_n) = b.$$

Обозначение:
$$b = \lim_{x \to x_0} f(x)$$
.

Эквивалентность определений по Коши и по Гейне

 ${$ extrm{ iny TBEPЖДЕНИЕ:}$}$ Определения предела функции по Коши и по Гейне равносильны.

Замечание

Эта теорема показывает, что функция f может иметь в точке a только один предел. В самом деле, для определения предела функции по Гейне это вытекает из единственности предела числовой последовательности $\{f(x_n)\}$, а для определения предела функции по Коши — из эквивалентности этого предела пределу функции по Гейне.

Доказательство. І. Пусть b – предел f(x) по Коши.

$$\forall \varepsilon > 0 \,\, \exists \delta(\varepsilon) > 0 : \forall x \in U_{\delta}(x_0) : x \in \mathrm{dom}\, f, x \neq x_0 \implies |f(x) - b| < \varepsilon.$$

Пусть $x_n \in \mathrm{dom}\, f, x_n \neq x_0$ и $x_n \to x_0$. Тогда для любого $\delta(\varepsilon) > 0$ найдётся номер $N(\delta(\varepsilon)) = N(\varepsilon)$ такой, что $|x_n - x_0| < \delta(\varepsilon)$ при $n \geqslant N$, то есть $x_n \in U_\delta(x_0)$, следовательно из определения по Коши, $|f(x_n) - b| < \varepsilon$, то есть $f(x_n) \to b$. II. Пусть b — предел f(x) по Гейне. Предположим, что b не является пределом по Коши.

$$\exists \varepsilon > 0 : \forall \delta > 0 \ \exists x(\delta) \in U_\delta(x_0) : x \in \mathrm{dom}\, f, x \neq x_0 : |f(x) - b| \geqslant \varepsilon.$$

Пусть $\delta=1/n$, обозначим $x_n=x(\delta)$. $x_n\in U_\delta(x_0)\Longrightarrow x_n\to x_0$, следовательно, из определения предела по Гейне, $f(x_n)\to b$. Но, из выбора x_n имеем $|f(x_n)-b|\geqslant \varepsilon$, следовательно, $f(x_n)\not\to b$. Получено противоречие, следовательно b — предел f(x) по Коши. Теорема доказана.

Определение как одностороннего предела в конечной точке, так и предела при $x \to \infty$ может быть получено заменой используемой в определении по Коши окрестности.

 $\lim_{x \to x_0 = 0} f(x)$ — левый предел (используется левая полуокрестность),

 $\lim_{x\to x_0+0}f(x)$ — правый предел (используется правая полуокрестность),

 $\lim_{x \to \infty} f(x)$ — предел в бесконечности (используется окрестность бесконечности)ю

Определение по Коши

 $\underbrace{\text{Определение:}}_{a \text{ по Коши, если}}$ Число b называется левым пределом функции f в точке \underbrace{a}_{n} по Коши, если

$$\forall \varepsilon > 0 \ \exists \delta(\varepsilon) > 0 : \forall x \in (x_0 - \delta, x_0) : x \in \text{dom } f \implies |f(x) - b| < \varepsilon.$$

y = sgn(x)

$$y = sgn(x) = egin{cases} -1, & ext{если } x < 0; \ 0, & ext{если } x = 0; \ 1, & ext{если } x > 0 \end{cases}$$

Эта функция имеет в точке a=0 как правый, так и левый пределы, причём sgn(0+0)=1, sgn(0-0)=-1. Действительно,

$$\forall \varepsilon > 0 \; \exists \delta = 1 \; : \; \forall x, \; 0 < x < 1 \; \; (-1 < x < 0)$$

$$\Rightarrow |1-1|=0<\varepsilon \ (|-1+1|=0<\varepsilon).$$

ТЕОРЕМА

Пусть две функции f и g заданы на одном и том же множестве X, и имеют в точке a пределы, соответственно равные B и C. Тогда функции $f\pm g$, $f\cdot g$ и $\frac{f}{g}$ (в случае частного требуется, чтобы функция g не принимала нулевые значения на множестве X) имеют в точке a пределы, соответственно равные: $B\pm C$, $B\cdot C$, $\frac{B}{C}$ (в случае частного требуем, чтобы $C\neq 0$).

Доказательство.

Данная теорема немедленно следует из определения предела функции в точке a по Гейне и соответствующей теоремы об арифметических операциях над числовыми последовательностями.

Теорема (предельный переход и неравенства):

1. Пусть $f:X o\mathbb{R}$, $g:X o\mathbb{R}$ таковы, что $\lim_{x o a}f(x)=B$,

 $\lim_{x o a} g(x) = C$ и B < C. Тогда $\exists \stackrel{\circ}{U}(a)$ такая, что

$$\forall x \in \overset{\circ}{U}(a) \Rightarrow f(x) < g(x);$$

- 2. Пусть $f:X\to\mathbb{R},\ g:X\to\mathbb{R},\ h:X\to\mathbb{R}$ таковы, что $\forall x\in X$ выполнено: $f(x)\leqslant g(x)\leqslant h(x)$, и $\lim_{x\to a}f(x)=\lim_{x\to a}h(x)=B$, то
- $\exists \lim_{x \to a} g(x) = B.$

Доказательство. 1. Возьмём число $\gamma: B < \gamma < C$. По определению предела существуют такие проколотые окрестности точки $a, \stackrel{\circ}{U_1}(a), \stackrel{\circ}{U_2}(a),$ что

$$\forall x \in \overset{\circ}{U_1}(a) \Rightarrow |f(x) - B| < \gamma - B, \quad \forall x \in \overset{\circ}{U_2}(a) \Rightarrow |g(x) - C| < C - \gamma.$$

Тогда $\forall x \in \overset{\circ}{U_1}(a) \cap \overset{\circ}{U_2}(a)$ имеем:

$$f(x) < B - \gamma - B = \gamma = C - C + \gamma < g(x).$$

2. Если $\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = B$, то по $\forall \varepsilon > 0$ найдём окрестности

$$\overset{\circ}{U_1}(a),\overset{\circ}{U_2}(a)$$
 такие, что $orall x \in \overset{\circ}{U_1}(a) \Rightarrow B - arepsilon < f(x),$

 $orall x \in \overset{\circ}{U_2}\!(a) \Rightarrow h(x) < B + arepsilon$. Поэтому при $orall x \in \overset{\circ}{U_1}\!(a) \cap \overset{\circ}{U_2}\!(a)$ выполнено:

$$B - \varepsilon < f(x) \le g(x) \le h(x) < B + \varepsilon \iff |g(x) - B| < \varepsilon.$$

Следствие:

Пусть $\lim_{\substack{x\to a\\ \text{выполнено}:}} f(x) = B, \lim_{\substack{x\to a\\ \text{отр}}} g(x) = C.$ Если в некоторой окрестности $\overset{\circ}{U}(a)$

- 1. f(x) > g(x), to $B \ge C$;
- 2. $f(x) \geqslant g(x)$, to $B \geqslant C$;
- 3. f(x) > C, to $B \ge C$;
- 4. $f(x) \geqslant C$, to $B \geqslant C$;

Доказательство.

Утверждения 1) и 2) получаются из теоремы о предельном переходе в неравенствах доказательством от противного. Утверждения 3) и 4) – частные случаи 1) и 2), получающиеся при $g(x)\equiv C$.

Критерий Коши

Определение

Будем говорить, что функция $f:X \to \mathbb{R}$ удовлетворяет в точке a условию Коши, если

$$\begin{split} \forall \varepsilon > 0 \, \exists \delta(\varepsilon) > 0 \, : \, \forall x', x'' \in X, \, 0 < |x' - a| < \delta, \, 0 < |x'' - a| < \delta \Rightarrow \\ \Rightarrow \, |f(x') - f(x'')| < \varepsilon. \end{split}$$

Критерий Коши

Для того, чтобы функция f имела в точке a конечный предел, необходимо и достаточно, чтобы эта функция удовлетворяла в точке a условию Коши.

Определение

Определение: Пусть $f,g:X\to\mathbb{R}, x_0$ – предельная точка множества X и существуют функция $\varphi:X\to\mathbb{R}$ и окрестность $U(x_0)$ точки x_0 такие, что: $f(x)=\varphi(x)\cdot g(x), \ \forall x\in \overset{\circ}{U}(x_0)\cap X.$ Тогда:

- 1. Если φ ограничена на $\overset{\circ}{U}(x_0)\cap X$, то говорят, что функция f ограничена по сравнению с g при $x\to x_0$. Обозначение: $f(x)=\underline{O}(g(x)), x\to x_0$.
- 2. Если $\varphi(x) \to 0$, при $x \to x_0$, то говорят, что функция f бесконечно малая по сравнению с g при $x \to x_0$. Обозначение: $f(x) = \overline{o}\big(g(x)\big)$, $x \to x_0$.
- 3. Если $\varphi(x) \to 1$, при $x \to x_0$, то говорят, что функции f и g эквивалентны или асимптотически равны при $x \to x_0$. Обозначение: $f(x) \sim g(x), \, x \to x_0$.

ПРИМЕРЫ

- 1. $\frac{1}{x} = \underline{O}\left(\frac{1}{x^2}\right), x \to 0$, т.к. $\left|\frac{1}{x}\right| \leqslant \left|\frac{1}{x^2}\right|$ при $|x| \leqslant 1$;
- 2. $\frac{1}{x^2} = \underline{O}(\frac{1}{x}), x \to \infty$, т.к. $|\frac{1}{x^2}| \leqslant |\frac{1}{x}|$ при $|x| \geqslant 1$; 3. $x^2 = \overline{o}(x)$, при $x \to 0$;
- 4. $\frac{x^6}{1+x^4} \sim x^6$, при $x \to 0$; 5. $\frac{x^6}{1+x^4} \sim x^2$, при $x \to \infty$.

Первый замечательный предел

Первый замечательный предел

$$\exists \lim_{x \to 0} \frac{\sin x}{x} = 1;$$

При $0 < x < \frac{\pi}{2}$ Выполнено: $0 < \sin x < x < \lg x$ (см. рис.). Откуда получаем

$$1 < \frac{x}{\sin x} < \frac{1}{\cos x} \iff \cos x < \frac{\sin x}{x} < 1.$$

Далее, т.к. функции $\cos x$, $\frac{\sin x}{x}$, 1 — чётные, то это неравенство справедливо на $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)\setminus\{0\}$. Остаётся воспользоваться теоремой о двух милиционерах.

Первый замечательный предел

Следствия из первого замечательного предела

$$\begin{split} \lim_{x \to 0} \frac{1 - \cos x}{x^2} &= \frac{1}{2} \cdot \lim_{x \to 0} \frac{\sin^2\left(\frac{x}{2}\right)}{\left(\frac{x}{2}\right)^2} = \frac{1}{2}; \\ \lim_{x \to 0} \frac{\operatorname{tg} x}{x} &= \lim_{x \to 0} \frac{\sin x}{x} \cdot \lim_{x \to 0} \frac{1}{\cos x} = 1; \\ \lim_{x \to 0} \frac{\arcsin x}{x} &= \lim_{t \to 0} \frac{\arcsin \sin t}{\sin t} = 1; \\ \lim_{x \to 0} \frac{\operatorname{arctg} x}{x} &= 1; \end{split}$$

Второй замечательный предел

Второй замечательный предел

$$\exists \lim_{x \to 0} (1+x)^{1/x} = \lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x = e;$$

Рассмотрим последовательность $\{x_k\}:\lim_{k o\infty}x_k=0+0$. Покажем, что

$$\lim_{k\to\infty} (1+x_k)^{1/x_k} = e.$$

He ограничивая общности считаем, что $x_k < 1$. Найдём такой номер n_k , что:

$$n_k \leqslant \frac{1}{x_k} \leqslant n_k + 1 \Leftrightarrow \frac{1}{n_k + 1} < x_k \leqslant \frac{1}{n_k}.$$

Откуда,
$$\left(1+rac{1}{n_k+1}
ight)^{n_k}<(1+x_k)^{1/x_k}<\left(1+rac{1}{n_k}
ight)^{n_k+1}$$
, и $\lim_{k o\infty}(1+x_k)^{1/x_k}=e$.

Далее, т.к. $\{x_k\}$ – это произвольная числовая последовательность, удовлетворяющая условию: $x_k \to 0+0$, то тем самым доказано, что

$$\lim_{x \to 0+0} (1+x)^{1/x} = e.$$

Доказательство факта, что $\lim_{x\to 0-0} (1+x)^{1/x} = e$ проводится аналогично.

Второй замечательный предел

Следствия – «Квази-замечательные» пределы

$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1;$$

$$\lim_{x \to 0} \frac{\log_a(1+x)}{x} = \frac{1}{\ln a}, \quad 0 < a \neq 1;$$

$$\lim_{x \to 0} \frac{a^x - 1}{x} = \ln a, \quad 0 < a \neq 1;$$

$$\lim_{x \to 0} \frac{(1+x)^a - 1}{x} = a, \quad 0 < a \neq 1.$$

(Доказать самостоятельно.)

Следствия из замечательных пределов

При $x \to 0$ выполнено:

$$\sin x \sim \operatorname{tg} x \sim \arcsin x \sim \ln (1+x) \sim x;$$

$$1 - \cos x \sim \frac{x^2}{2}$$
, $e^x - 1 \sim x$, $(1 + x)^a - 1 \sim ax$.

Теорема о замене эквивалентных сомножителей

Пусть $f \sim g$ при $x \to a$. Тогда для любой функции φ одновременно существуют или не существуют пределы:

$$\lim_{x \to a} f(x)\varphi(x) \text{ u } \lim_{x \to a} g(x)\varphi(x),$$

причём если пределы существуют, то они равны. Тоже самое справедливо для пределов

$$\lim_{x\to a}\frac{\varphi(x)}{f(x)}\,\,\mathsf{u}\,\,\lim_{x\to a}\frac{\varphi(x)}{g(x)}.$$

Доказательство.

$$f(x) \sim g(x) \implies f(x) = g(x) + \bar{o}(g(x)).$$

Предположим, что существует предел $L=\lim_{x o a}g(x)arphi(x)$. Тогда

$$\lim_{x \to a} f(x)\varphi(x) = \lim_{x \to a} (g(x) + \bar{o}(g(x)))\varphi(x) = \lim_{x \to a} g(x)\varphi(x) + \lim_{x \to a} \bar{o}(g(x))\varphi(x) =$$

$$= \lim_{x \to a} g(x)\varphi(x) + \lim_{x \to a} \frac{\bar{o}(g(x))}{g(x)} \cdot \lim_{x \to a} g(x)\varphi(x) = L + 0 \cdot L = L.$$

Аналогично проверяется возможность замены на эквивалентную функцию в знаменателе. Теорема доказана.

<u>Рекомендуемые задачи для решения</u>

«Листочки» — 9.3, 9.6, 9.8(аг), 9.12, 10.1(вг), 10.4, 10.5, 10.6, 10.7, 11.1(аб), 11.4.