▼ P VAISHNAVI

DATA SCIENCE AND BUSINESS ANALYTICS

INTERN @ THE SPARKS FOUNDATION

DATASET: SAMPLESUPERSTORE.CSV (https://bit.ly/3i4rbWl)

EXPLORATORY DATA ANALYSIS - RETAIL

Task-1:

- 1. Perform 'Exploratory Data Analysis' on dataset 'SampleSuperstore'.
- 2. As a business manager, try to find out the weak areas where you can work to make more profit.

	Ship Mode	Segment	Country	City	State	Postal Code	Region	Category	Ca [.]
0	Second Class	Consumer	United States	Henderson	Kentucky	42420	South	Furniture	Воо
1	Second Class	Consumer	United States	Henderson	Kentucky	42420	South	Furniture	
2	Second Class	Corporate	United States	Los Angeles	California	90036	West	Office Supplies	
3	Standard Class	Consumer	United States	Fort Lauderdale	Florida	33311	South	Furniture	
4	Standard Class	Consumer	United States	Fort Lauderdale	Florida	33311	South	Office Supplies	5
							•••		
9989	Second Class	Consumer	United States	Miami	Florida	33180	South	Furniture	Furn
9990	Standard Class	Consumer	United States	Costa Mesa	California	92627	West	Furniture	Furn

data.head(5)

	Ship Mode	Segment	Country	City	State	Postal Code	Region	Category	Sub- Category
0	Second Class	Consumer	United States	Henderson	Kentucky	42420	South	Furniture	Bookcases
1	Second Class	Consumer	United States	Henderson	Kentucky	42420	South	Furniture	Chairs
2	Second Class	Corporate	United States	Los Angeles	California	90036	West	Office Supplies	Labels
3	Standard Class	Consumer	United States	Fort Lauderdale	Florida	33311	South	Furniture	Tables
4	Standard Class	Consumer	United States	Fort Lauderdale	Florida	33311	South	Office Supplies	Storage

data.tail(5)

	Ship Mode	Segment	Country	City	State	Postal Code	Region	Category	Ca [.]
9989	Second Class	Consumer	United States	Miami	Florida	33180	South	Furniture	Furn
9990	Standard Class	Consumer	United States	Costa Mesa	California	92627	West	Furniture	Furn

data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 9994 entries, 0 to 9993
Data columns (total 13 columns):

#	Column	Non-Null Count	Dtype
0	Ship Mode	9994 non-null	object
1	Segment	9994 non-null	object
2	Country	9994 non-null	object
3	City	9994 non-null	object
4	State	9994 non-null	object
5	Postal Code	9994 non-null	int64
6	Region	9994 non-null	object
7	Category	9994 non-null	object
8	Sub-Category	9994 non-null	object
9	Sales	9994 non-null	float64
10	Quantity	9994 non-null	int64
11	Discount	9994 non-null	float64
12	Profit	9994 non-null	float64
d+vn	oc. float64(2)	in+64(2) objo	c+(0)

dtypes: float64(3), int64(2), object(8)

memory usage: 1015.1+ KB

data.describe()

	Postal Code	Sales	Quantity	Discount	Profit
count	9994.000000	9994.000000	9994.000000	9994.000000	9994.000000
mean	55190.379428	229.858001	3.789574	0.156203	28.656896
std	32063.693350	623.245101	2.225110	0.206452	234.260108
min	1040.000000	0.444000	1.000000	0.000000	-6599.978000
25%	23223.000000	17.280000	2.000000	0.000000	1.728750
50%	56430.500000	54.490000	3.000000	0.200000	8.666500
75%	90008.000000	209.940000	5.000000	0.200000	29.364000
max	99301.000000	22638.480000	14.000000	0.800000	8399.976000

#detecting missing values in the dataset
data.isnull().sum()

```
Ship Mode
                0
Segment
                0
Country
                0
City
                0
State
Postal Code
                0
Region
                0
Category
                0
Sub-Category
                0
Sales
Quantity
                0
Discount
                0
Profit
                0
dtype: int64
```

data.isna().sum()

```
Ship Mode
Segment
                0
Country
                0
City
                0
State
                0
Postal Code
                0
                0
Region
Category
                0
Sub-Category
                0
Sales
Quantity
                0
Discount
                0
Profit
                0
dtype: int64
```

sales_data = data.groupby('Category', as_index=False)['Sales'].sum()
subcat_data = data.groupby(['Category','Sub-Category'])['Sales'].sum()
subcat_data['Sales']=map(int,subcat_data)
sales data

	Category	Sales
0	Furniture	741999.7953
1	Office Supplies	719047.0320
2	Technology	836154.0330

data.columns

```
RangeIndex(start=0, stop=9994, step=1)
```

```
data.nunique()
```

Ship Mode	4
Segment	3
Country	1
City	531
State	49
Region	4
Category	3
Sub-Category	17
Sales	5825
Quantity	14
Discount	12
Profit	7287
dtype: int64	

▼ Exploratory Data Analysis

```
data.plot(x='Quantity',y='Sales',style='.')
plt.title('Quantity vs Sales')
plt.xlabel('Quantity')
plt.ylabel('Sales')
plt.grid()
plt.show()
```



```
data.plot(x='Discount',y='Profit',style='.')
plt.title('Discount vs Profit')
plt.xlabel('Discount')
plt.ylabel('Profit')
plt.grid()
```

plt.show()

sb.pairplot(data)

sb.pairplot(data,hue='Category',diag_kind='hist')

sb.countplot(x=data['Category'])

<matplotlib.axes._subplots.AxesSubplot at 0x7fde90382450>

data.corr()

	Sales	Quantity	Discount	Profit
Sales	1.000000	0.200795	-0.028190	0.479064
Quantity	0.200795	1.000000	0.008623	0.066253
Discount	-0.028190	0.008623	1.000000	-0.219487
Profit	0.479064	0.066253	-0.219487	1.000000

sb.heatmap(data.corr(), annot=True)

<matplotlib.axes._subplots.AxesSubplot at 0x7fde8d752810>


```
plt.title('Region')
plt.pie(data['Region'].value_counts(),labels=data['Region'].value_counts().index,autopct='%1.
plt.show()
```


plt.title('Ship Mode')
plt.pie(data['Ship Mode'].value_counts(),labels=data['Ship Mode'].value_counts().index,autopc
plt.show()

data.groupby('Segment')['Profit'].sum().sort_values().plot.bar()
plt.title("Profits on various Segments")

Text(0.5, 1.0, 'Profits on various Segments')

data.groupby('Region')['Profit'].sum().sort_values().plot.bar()
plt.title("Profits on various Regions")

Text(0.5, 1.0, 'Profits on various Regions')

plt.figure(figsize=(14,6))
data.groupby('State')['Profit'].sum().sort_values().plot.bar()
plt.title("Profits on various States")

plt.show()

```
Text(0.5, 1.0, 'Profits on various States')
```

```
Profits on various States

80000 -
```

```
Statewise Deal Analysis
data['Country'].value counts()
     United States
                      9994
     Name: Country, dtype: int64
          data1 = data['State'].value_counts()
data1.head(10)
     California
                       2001
     New York
                       1128
     Texas
                        985
     Pennsylvania
                        587
     Washington
                        506
     Illinois
                        492
     Ohio
                        469
     Florida
                        383
     Michigan
                        255
     North Carolina
                        249
     Name: State, dtype: int64
data1.plot(kind='bar',figsize=(15,5))
plt.ylabel('Frequency / Number of deals')
plt.xlabel('States')
plt.title('State Wise Dealings', fontsize = 20)
```

State Wise Dealings

Here is top 3 state where deals are Highest.

Califonia

New York

Texas

Wyoming: Lowest Number of deal

data['State'].value_counts().mean()

203.9591836734694

ÖİS