Introduction à la trigonométrie

Mesure des angles : unités et conversions

Le degré

Par définition, un degré (symbole °) correspond au 1/360ème d'un angle plein.

Les sous-unités du degré sont :

- La **minute** (symbole ') : 1° = 60'
- La **seconde** (symbole "): 1' = 60", $1^{\circ} = 3600$ "

La notation d'un angle sous forme décimale peut être utilisée : $90^{\circ} \div 4 = 22,5^{\circ}$.

On peut convertir la notation décimale en celle en degré/minute/seconde et vice versa en faisant un produit en croix :

1

degré	minute		
1	60		
0,5	?		

$$0.5^{\circ} = \left(\frac{0.5 \times 60}{1}\right)^{\circ} = 30'$$
 . Donc 22,5°=22° 30'.

Exemple 1: Convertir en notation degré/minute/seconde l'angle 25,32°.

degré	minute		
1	60		
0,32	?		

$$0.32 = \left(\frac{0.32 \times 60}{1}\right)^{1} = 19.2$$
'. Donc $25.32 = 25$ ° 19.2 '.

Pour obtenir les secondes, on a besoin d'un autre produit en croix :

$$19,2'=19'+0,2'$$

minute	seconde	
1	60	
0,2	?	

$$0,2' = \left(\frac{0,2 \times 60}{1}\right)^{"} = 12"$$
 . Donc 25,32°=25° 19' 12" .

Exemple 2: Convertir en notation décimale l'angle 83° 15′ 36″.

degré	minute
1	60
?	15

$$15' = \left(\frac{15 \times 1}{60}\right)^{\circ} = 0,25^{\circ}$$
.

degré	seconde	
1	3600	
?	36	

$$36" = \left(\frac{36 \times 1}{3600}\right)^{\circ} = 0.01^{\circ}$$
. Donc 83° $15'$ $36" = (83 + 0.25 + 0.01)^{\circ} = 83.26^{\circ}$.

Exemple 3: Calculer la différence 180°-83° 22′ 30″ .

On écrit : $180^{\circ} = 179^{\circ} + 1^{\circ} = 179^{\circ} 60' = 179^{\circ} 59' 60''$.

Donc $180^{\circ} - 83^{\circ} 22' 30'' = 179^{\circ} 59' 60'' - 83^{\circ} 22' 30'' = 96^{\circ} 37' 30''$.

Exercices

Ex 1 : Convertir en notation degré/minute/seconde les angles

Ex 2 : Convertir en notation décimale les angles

Ex 3: Calculer la différence 113° 15′ 21″ – 66° 44′ 39″.

Ex 4: Du point O appartenant au segment AB sortent, dans le même demi-plan, les demi-droites OC et OD de manière à former les angles $B\hat{O}C$, $C\hat{O}D$, $D\hat{O}A$ égaux entre eux et la demi-droite OE perpendiculaire à AB.

Quelle est la mesure de l'angle $D\hat{O}A$? Démontrer que OE est bissectrice de l'angle $C\hat{O}D$.

Ex 5: On considère un angle obtus $X\hat{O}Y$. Construire la demi-droites OX' à l'intérieur de l'angle $X\hat{O}Y$ perpendiculaire à OX. Construire ensuite la demi-droites OY', à l'intérieur de l'angle $X\hat{O}Y$ perpendiculaire à OY.

Montrer que les angles $X\hat{O}Y'$ et $X'\hat{O}Y$ sont égaux, et que $XOY+X'OY'=180^{\circ}$.

Le radian

Le radian (symbole rad) se défini par rapport au nombre π (pi). Un tour complet vaut 2π .

La relation entre la longueur $\,L\,$ d'un arc de cercle de rayon $\,r\,$ et l'angle associé $\,\alpha\,$ exprimé en radians est :

- **Angle plein** : $\alpha = 2\pi$ rad . ($L = 2\pi r$)
- **Angle plat**: $\alpha = \pi$ rad. $(L = \frac{2\pi r}{2} = \pi r)$
- Angle droit : $\alpha = \frac{\pi}{2}$ rad . $(L = \frac{2\pi r}{4} = \frac{\pi r}{2})$
- **Angle nul** : α =0 rad. (L=0)

Exemple 1 : Convertir 15° en radians.

degré	radian		
360	2π		
15	?		

Donc:
$$15^{\circ} = \frac{15 \times 2 \pi}{360} = \frac{15}{180} \pi = \frac{1}{12} \pi = \frac{\pi}{12}$$
 rad.

Exemple 2 : Convertir $\frac{3}{5}\pi$ en degrés.

degré	radian
360	2π
?	$\frac{3}{5}\pi$

Donc:
$$\frac{3}{5}\pi = \frac{3}{5}\pi \times \frac{360}{2\pi} = 108^{\circ}$$
.

« Le **cercle trigonométrique** est le cercle de **centre O** et de **rayon 1** sur lequel on choisit un sens d'orientation ou sens direct ou sens positif, c'est-à-dire le sens contraire des aiguilles d'une

Exercices

Ex 1: Convertir les angles suivants en radians

Ex 2 : Convertir les angles suivants en degrés

$$\frac{7}{12}\pi$$
 $\frac{6}{5}\pi$ $\frac{3}{4}\pi$ $\frac{3}{2}\pi$ $\frac{\pi}{2}$ $\frac{5}{6}\pi$ $\frac{\pi}{6}$ $\frac{\pi}{4}$ $\frac{8}{5}\pi$.

Ex 3 : Compléter le tableau de proportionnalité suivant :

Angle en degré	180°		72°		120°	
Angle en radian	π	$\frac{\pi}{2}$		$\frac{3}{4}\pi$		$\frac{\pi}{6}$

Ex 4: Sur le cercle trigonométrique ci-contre placer les valeurs suivantes, correspondants aux mesures des angles en radians, représentant :

$$0 , \frac{\pi}{6} , \frac{\pi}{4} , \frac{\pi}{3} , \frac{\pi}{2} , \frac{2}{3}\pi , \frac{3}{4}\pi , \frac{5}{6}\pi , \pi$$

$$\frac{7}{6}\pi , \frac{5}{4}\pi , \frac{4}{3}\pi , \frac{3}{2}\pi , \frac{5}{3}\pi , \frac{7}{4}\pi , \frac{11}{6}\pi , 2\pi .$$

θ	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\cos \theta$					
$\sin \theta$					
an heta					