Produto de matrizes

Cálculo do produto de uma sequência de matrizes (Matrix-chain multiplication)

Problema

Dada uma sequência de matrizes a multiplicar

$$A_1 A_2 \dots A_n, \quad n > 0$$

com dimensões

$$p_0 \times p_1 \quad p_1 \times p_2 \quad \dots \quad p_{n-1} \times p_n$$

por que ordem efectuar os produtos de modo a minimizar o número de multiplicações entre elementos das matrizes?

(NOTA: A matriz A_i tem dimensão $p_{i-1} \times p_i$) (NOTA: O produto de matrizes é uma operação associativa.)

Produto de matrizes

Cálculo do produto de duas matrizes (1)

$$A(p \times q)$$
 \times $B(q \times r)$ $=$ $C(p \times r)$
 $i \begin{bmatrix} j \\ b_{1j} \\ b_{2j} \\ \vdots \\ b_{qj} \end{bmatrix}$ $=$ $i \begin{bmatrix} j \\ c_{ij} \\ \vdots \\ c_{ij} \end{bmatrix}$

$$c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \ldots + a_{iq}b_{qj} = \sum_{k=1}^{q} a_{ik}b_{kj}$$

No cálculo de cada elemento de C, são efectuadas q multiplicações (escalares)

Produto de matrizes

Cálculo do produto de duas matrizes (2)

```
MATRIX-MULTIPLY(A[1..p, 1..q], B[1..q, 1..r])

1 let C[1..p,1..r] be a new matrix

2 for i <- 1 to p do

3 for j <- 1 to r do

4 C[i,j] <- 0

5 for k <- 1 to q do

6 C[i,j] <- C[i,j] + A[i,k] * B[k,j]

7 return C
```

Número de multiplicações

Se A e B são matrizes com dimensões $p \times q$ e $q \times r$, respectivamente, no cálculo de C = AB, o número de multiplicações efectuadas entre elementos das matrizes é

$$p \times q \times r$$

(C tem $p \times r$ elementos e são efectuadas q multiplicações para o cálculo de cada um)

Produto de uma sequência de matrizes Exemplo

Sejam A_1 , A_2 e A_3 matrizes com dimensões

$$10 \times 100$$
, 100×5 e 5×50

Ordens de avaliação possíveis para o produto $A_1A_2A_3$

$$(A_1A_2)A_3$$
$$A_1(A_2A_3)$$

Número de multiplicações

$$(A_1A_2)A_3$$

 $10 \times 100 \times 5 + 10 \times 5 \times 50 = 5000 + 2500 = 7500$
 $A_1(A_2A_3)$
 $100 \times 5 \times 50 + 10 \times 100 \times 50 = 25000 + 50000 = 75000$

Colocação de parêntesis

Formulação alternativa

Como colocar parêntesis no produto $A_1A_2...A_n$ de modo a realizar o menor número de multiplicações possível?

Número de colocações de parêntesis distintas

$$\Omega\left(\frac{4^n}{n^{\frac{3}{2}}}\right)$$

Caracterização de uma solução óptima (1)

O produto $A_1 A_2 \dots A_n$ será calculado de uma das formas

$$A_{1}(A_{2}...A_{n})$$
 $(A_{1}A_{2})(A_{3}...A_{n})$
 $(A_{1}...A_{3})(A_{4}...A_{n})$
 \vdots
 $(A_{1}...A_{n-2})(A_{n-1}A_{n})$
 $(A_{1}...A_{n-1})A_{n}$

O número n-mult de multiplicações a efectuar para o cálculo de

$$(A_1 \ldots A_k) (A_{k+1} \ldots A_n)$$

para qualquer $1 \le k < n$, será

$$\operatorname{n-mult}(A_1 \dots A_k) + \operatorname{n-mult}(A_{k+1} \dots A_n) + p_0 p_k p_n$$

Caracterização de uma solução óptima (2)

Procura-se o valor mínimo de

$$\operatorname{n-mult}(A_1 \dots A_n)$$

que depende do valor mínimo de

$$\operatorname{n-mult}(A_1 \dots A_k)$$
 e de $\operatorname{n-mult}(A_{k+1} \dots A_n)$

para algum valor de k

O número mínimo m de multiplicações a efectuar será obtido para o valor de k que minimiza

$$m(A_1 \ldots A_k) + m(A_{k+1} \ldots A_n) + p_0 p_k p_n$$

Função recursiva

Sequência de matrizes a multiplicar

$$A_1 A_2 \dots A_n, \quad n > 0$$

Dimensões das matrizes: $P = (p_0 p_1 \dots p_n)$

 $m_P[1..n, 1..n]$: $m_P[i,j]$ é o menor número de multiplicações a fazer para o cálculo do produto $A_i ... A_j$

$$m_{P}[i,j] = \begin{cases} 0 & \text{se } i = j \\ \min_{i \le k < j} \{ m_{P}[i,k] + m_{P}[k+1,j] + p_{i-1}p_{k}p_{j} \} & \text{se } i < j \end{cases}$$

Número mínimo de multiplicações (chamada inicial): $m_P[1, n]$

Cálculo de m[i, j]

	m							
	1	2	3	4	5			
1	0	m_{12}	m ₁₃	m ₁₄	m_{15}			
2		0	m_{23}	m ₂₄	m_{25}			
3			0	m ₃₄	m_{35}			
4				0	m_{45}			
5					0			

Ordem de cálculo

- ① Sequências de comprimento 1: m_{11} , m_{22} , m_{33} , m_{44} , m_{55} (Caso base)
- 2 Sequências de comprimento 2: m_{12} , m_{23} , m_{34} , m_{45}
- 3 Sequências de comprimento 3: m_{13} , m_{24} , m_{35}
- 4 Sequências de comprimento 4: m_{14} , m_{25}
- **5** Sequências de comprimento 5: m_{15}

Cálculo iterativo de m[1, n]

```
MATRIX-CHAIN-ORDER(p)
 1 n <- |p| - 1
                      // p[0..n]
2 let m[1..n,1..n] be a new table
 3 for i < -1 to n do
 4 	 m[i, i] <- 0
 5 for 1 <- 2 to n do // l is the chain length
 6
       for i < -1 to n - 1 + 1 do
           j <- i + 1 - 1
          m[i, j] \leftarrow +\infty
           for k \leftarrow i to j - 1 do
                q \leftarrow m[i, k] + m[k + 1, j] +
10
                    p[i - 1] * p[k] * p[j]
11
                if q < m[i, j] then
                    m[i, j] \leftarrow q
12
13 return m[1, n]
```

Complexidade de MATRIX-CHAIN-ORDER $(p_0 p_1 \dots p_n)$

Ciclo 3–4 é executado *n* vezes

Ciclo 5–12 é executado n-1 vezes (variável l)

Ciclo 6–12 é executado n - l + 1 vezes (variável i)

Ciclo 9–12 é executado l-1 vezes (variável k)

$$\sum_{l=2}^{n} \sum_{i=1}^{n-l+1} \sum_{k=i}^{i+l-2} 1 = \sum_{l=2}^{n} \sum_{i=1}^{n-l+1} l - 1 = \sum_{l=2}^{n} (n - (l-1))(l-1) = \sum_{l=1}^{n-1} (n-l)l =$$

$$n \sum_{l=1}^{n-1} l - \sum_{l=1}^{n-1} l^2 = n \frac{(n-1)n}{2} - \frac{(n-1)n(2n-1)}{6} = \frac{n^3 - n}{6} = \Theta(n^3)$$

Complexidade temporal $\Theta(n^3)$

Complexidade espacial $\Theta(n^2)$

Construção da solução

```
MATRIX-CHAIN-ORDER(p)
1 n < -|p| - 1
                       // p[0..n]
2 let m[1..n,1..n] and s[1..n-1,2..n] be new tables
3 for i < -1 to n do
4 \quad m[i, i] < 0
5 for 1 <- 2 to n do // l is the chain length
       for i < -1 \text{ to } n - 1 + 1 \text{ do}
6
           i <- i + 1 - 1
8
           m[i, j] \leftarrow +\infty
           for k < -i to j - 1 do
                q \leftarrow m[i, k] + m[k + 1, j] +
10
                     p[i - 1] * p[k] * p[j]
11
                if q < m[i, j] then
12
                    m[i, j] \leftarrow q
13
                    s[i, j] <- k // break at matrix k
14 return m and s
```

Solução calculada

$$p = 10 \quad 100 \quad 5 \quad 50 \quad 3$$

Matriz m (multiplicações)

	1	2	3	4
1	0	5000	7500	5250
2		0	25000	2250
3			0	750
4				0

Número mínimo de multiplicações para calcular . . .

$$A_1A_2 = 5000$$

 $A_2A_3 = 25000$
 $A_1A_2A_3 = 7500$
 $A_2A_3A_4 = 2250$
 $A_1A_2A_3A_4 = 5250$

Matriz s (separação)

	2	3	4
1	1	2	1
2		2	2
3			3

Separação dos produtos

$$A_1 \dots A_2 = (A_1)(A_2)$$

 $A_1 \dots A_3 = (A_1A_2)(A_3)$
 $A_2 \dots A_4 = (A_2)(A_3A_4)$
 $A_1 \dots A_4 = (A_1)(A_2 \dots A_4)$
 $= (A_1)(A_2(A_3A_4))$

Melhor colocação de parêntesis

```
s[1..n-1,2..n]: s[i,j] é a posição onde a sequência A_i ... A_i é
                  dividida: (A_i \dots A_{s[i,i]})(A_{s[i,i]+1} \dots A_i)
PRINT-OPTIMAL-PARENS(s, i, j)
 1 \text{ if } i = j \text{ then}
 2 print "A"<sub>i</sub>
 3 else
   print "("
 4
 5 PRINT-OPTIMAL-PARENS(s, i, s[i, j])
 6 PRINT-OPTIMAL-PARENS(s, s[i, j] + 1, j)
    print ")"
```

Sequências e subsequências

Seja x a sequência

$$x_1 x_2 \ldots x_m, m \geq 0$$

A sequência $z = z_1 z_2 \dots z_k$ é uma subsequência de x se

$$z_j = x_{i_j}$$
, $j = 1, \ldots, k$ e $i_j < i_{j+1}$

Exemplo

$$x = A B C B D A B$$

São subsequências:

Não são subsequências:

AAA DC E

Subsequências comuns

Sejam x e y as sequências

$$x_1 x_2 ... x_m$$
 e $y_1 y_2 ... y_n$, $m, n \ge 0$

A sequência z é uma subsequência comum a x e y se

- ▶ z é uma subsequência de x e
- z é uma subsequência de y

Exemplo

$$x = A B C B D A B$$

 $y = B D C A B A$

Subsequências comuns a x e a y

A AB CBA ...

Maiores subsequências comuns a x e a y

BCAB BCBA BDAB

Maior subsequência comum

Longest common subsequence

Problema

Dadas duas sequências x e y

$$x_1 x_2 \dots x_m$$
 e $y_1 y_2 \dots y_n$, $m, n \ge 0$

determinar uma maior subsequência comum a x e a y

Número de subsequências de uma sequência de comprimento m

 2^{m}

Maior subsequência comum

Caracterização de uma solução óptima

$$x = x_1 x_2 ... x_m$$
 e $y = y_1 y_2 ... y_n$, $m, n > 0$

$$\bullet$$
 $x_m = y_n$

Uma maior subsequência comum a x e y será uma maior subsequência comum a

$$x_1 x_2 \dots x_{m-1}$$
 e $y_1 y_2 \dots y_{n-1}$

acrescida de x_m

•
$$x_m \neq y_n$$

Uma maior subsequência comum a x e y será uma maior de entre as maiores subsequências comuns a

$$x_1 x_2 ... x_m$$
 e $y_1 y_2 ... y_{n-1}$

e as maiores subsequências comuns a

$$X_1 X_2 \dots X_{m-1}$$
 e $y_1 y_2 \dots y_n$

Maior subsequência comum

Função recursiva

Comprimento de uma maior subsequência comum às sequências

$$x = x_1 x_2 \dots x_m$$
 e $y = y_1 y_2 \dots y_n$, $m, n > 0$

 $c_{xy}[0..m, 0..n]$: $c_{xy}[i,j]$ é o comprimento das maiores subsequências comuns a $x_1 \dots x_i$ e $y_1 \dots y_j$

$$c_{xy}[i,j] = \begin{cases} 0 & \text{se } i = 0 \lor j = 0 \\ 1 + c_{xy}[i-1,j-1] & \text{se } i,j > 0 \land x_i = y_j \\ \max \{c_{xy}[i-1,j], c_{xy}[i,j-1]\} & \text{se } i,j > 0 \land x_i \neq y_j \end{cases}$$

Comprimento de uma maior subsequência comum a x e y: $c_{xy}[m, n]$