Student name: Roja Kamble [11454258]

Assignment: Regression

Part 1: Data Wrangling

You have to write code to answer the questions below

- · Import pandas library
- Read the data stored in your local machine https://www.kaggle.com/datasets/nancyalaswad90/diamonds-prices
 (https://www.kaggle.com/datasets/nancyalaswad90/diamonds-prices)

Read the excel and print the values

```
import pandas as pd
from sklearn.preprocessing import OneHotEncoder
from sklearn.preprocessing import OrdinalEncoder
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error
import sys, threading
sys.setrecursionlimit(10**7) # max depth of recursion
```

Out[71]:

	Unnamed: 0	carat	cut	color	clarity	depth	table	price	x	У	z
0	1	0.23	Ideal	Е	SI2	61.5	55.0	326	3.95	3.98	2.43
1	2	0.21	Premium	Е	SI1	59.8	61.0	326	3.89	3.84	2.31
2	3	0.23	Good	Е	VS1	56.9	65.0	327	4.05	4.07	2.31
3	4	0.29	Premium	1	VS2	62.4	58.0	334	4.20	4.23	2.63
4	5	0.31	Good	J	SI2	63.3	58.0	335	4.34	4.35	2.75
•••											
53938	53939	0.86	Premium	Н	SI2	61.0	58.0	2757	6.15	6.12	3.74
53939	53940	0.75	Ideal	D	SI2	62.2	55.0	2757	5.83	5.87	3.64
53940	53941	0.71	Premium	Е	SI1	60.5	55.0	2756	5.79	5.74	3.49
53941	53942	0.71	Premium	F	SI1	59.8	62.0	2756	5.74	5.73	3.43
53942	53943	0.70	Very Good	Е	VS2	60.5	59.0	2757	5.71	5.76	3.47

53943 rows × 11 columns

Drop the first column: Unnamed: 0 and show the new dataset

```
In [72]: # inplace = false means it will copy in new file, otherwise it will copy in same file.

new_data = dataframe1.drop(dataframe1.columns[0], axis=1, inplace=False)

new_data
```

Out[72]:

	carat	cut	color	clarity	depth	table	price	x	у	z
0	0.23	Ideal	Е	SI2	61.5	55.0	326	3.95	3.98	2.43
1	0.21	Premium	Е	SI1	59.8	61.0	326	3.89	3.84	2.31
2	0.23	Good	Е	VS1	56.9	65.0	327	4.05	4.07	2.31
3	0.29	Premium	1	VS2	62.4	58.0	334	4.20	4.23	2.63
4	0.31	Good	J	SI2	63.3	58.0	335	4.34	4.35	2.75
53938	0.86	Premium	Н	SI2	61.0	58.0	2757	6.15	6.12	3.74
53939	0.75	Ideal	D	SI2	62.2	55.0	2757	5.83	5.87	3.64
53940	0.71	Premium	Е	SI1	60.5	55.0	2756	5.79	5.74	3.49
53941	0.71	Premium	F	SI1	59.8	62.0	2756	5.74	5.73	3.43
53942	0.70	Very Good	Е	VS2	60.5	59.0	2757	5.71	5.76	3.47

53943 rows × 10 columns

Show information about the dataset such as number of columns and data types, memory usage, any null values, etc.

```
In [73]: # Display the file information
    dataframe1.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 53943 entries, 0 to 53942
Data columns (total 11 columns):
     Column
                 Non-Null Count Dtype
 0
     Unnamed: 0 53943 non-null int64
                 53943 non-null float64
 1
     carat
 2
     cut
                 53943 non-null object
 3
     color
                 53943 non-null object
 4
     clarity
                 53943 non-null object
 5
     depth
                 53943 non-null float64
 6
     table
                 53943 non-null float64
 7
     price
                 53943 non-null int64
 8
                 53943 non-null float64
     х
 9
                 53943 non-null float64
     У
 10
                 53943 non-null float64
dtypes: float64(6), int64(2), object(3)
memory usage: 4.5+ MB
```

Show unique values of column that are of object type

Reference: https://stackoverflow.com/questions/25039626/how-do-i-find-numeric-columns-in-pandas

(https://stackoverflow.com/questions/25039626/how-do-i-find-numeric-columns-in-pandas)

Note: You may need to use the flag exclude='number' instead of "include"

```
In [74]: # First add the d_types which you want to exclude

d_type = ['float64', 'int64']

# dataframe1.select_dtypes(exclude = d_type).columns.tolist()

object_type = new_data.select_dtypes(exclude = d_type)

object_type
```

Out[74]:

	cut	color	clarity
0	Ideal	Е	SI2
1	Premium	Е	SI1
2	Good	Е	VS1
3	Premium	1	VS2
4	Good	J	SI2
53938	Premium	Н	SI2
53939	Ideal	D	SI2
53940	Premium	Е	SI1
53941	Premium	F	SI1
53942	Very Good	Е	VS2

53943 rows × 3 columns

```
In [75]: # printing unique values

types =["int64","float64"]

df1 = new_data.select_dtypes(exclude=types)

for j in df1:
    print("column "+j+":")
    print(df1[j].unique())
```

```
column cut:
['Ideal' 'Premium' 'Good' 'Very Good' 'Fair']
column color:
['E' 'I' 'J' 'H' 'F' 'G' 'D']
column clarity:
['SI2' 'SI1' 'VS1' 'VS2' 'VVS2' 'VVS1' 'I1' 'IF']
```

Ordinally encode the column(s) of which values are ordinal. For those of which values are still categorical but not ordered, one-hot-encode them

Reference (you may need incognito mode to browse the pages):

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OrdinalEncoder.html (https://scikit-

learn.org/stable/modules/generated/sklearn.preprocessing.OrdinalEncoder.html)

https://towardsdatascience.com/guide-to-encoding-categorical-features-using-scikit-learn-for-machine-learning-5048997a5c79

(https://towardsdatascience.com/guide-to-encoding-categorical-features-using-scikit-learn-for-machine-learning-5048997a5c79)

https://stackoverflow.com/guestions/56502864/using-ordinalencoder-to-transform-categorical-values

(https://stackoverflow.com/questions/56502864/using-ordinalencoder-to-transform-categorical-values)

https://stackoverflow.com/questions/37292872/how-can-i-one-hot-encode-in-python

(https://stackoverflow.com/questions/37292872/how-can-i-one-hot-encode-in-python)

https://pandas.pydata.org/docs/reference/api/pandas.get_dummies.html

(https://pandas.pydata.org/docs/reference/api/pandas.get_dummies.html)

```
In [76]:
    df1 = new_data
    enc = OrdinalEncoder()
    r = enc.fit_transform(df1[['cut']])
    df1['cut'] = r
    df1
```

Out[76]:

	carat	cut	color	clarity	depth	table	price	X	У	Z
0	0.23	2.0	Е	SI2	61.5	55.0	326	3.95	3.98	2.43
1	0.21	3.0	Е	SI1	59.8	61.0	326	3.89	3.84	2.31
2	0.23	1.0	Е	VS1	56.9	65.0	327	4.05	4.07	2.31
3	0.29	3.0	1	VS2	62.4	58.0	334	4.20	4.23	2.63
4	0.31	1.0	J	SI2	63.3	58.0	335	4.34	4.35	2.75
53938	0.86	3.0	Н	SI2	61.0	58.0	2757	6.15	6.12	3.74
53939	0.75	2.0	D	SI2	62.2	55.0	2757	5.83	5.87	3.64
53940	0.71	3.0	Е	SI1	60.5	55.0	2756	5.79	5.74	3.49
53941	0.71	3.0	F	SI1	59.8	62.0	2756	5.74	5.73	3.43
53942	0.70	4.0	Е	VS2	60.5	59.0	2757	5.71	5.76	3.47

53943 rows × 10 columns

Out[77]:

	carat	cut	depth	table	price	x	У	z	D	E	 I	J	l1	IF	SI1	SI2	VS1	VS2	VVS1	VVS2
0	0.23	2.0	61.5	55.0	326	3.95	3.98	2.43	0	1	 0	0	0	0	0	1	0	0	0	0
1	0.21	3.0	59.8	61.0	326	3.89	3.84	2.31	0	1	 0	0	0	0	1	0	0	0	0	0
2	0.23	1.0	56.9	65.0	327	4.05	4.07	2.31	0	1	 0	0	0	0	0	0	1	0	0	0
3	0.29	3.0	62.4	58.0	334	4.20	4.23	2.63	0	0	 1	0	0	0	0	0	0	1	0	0
4	0.31	1.0	63.3	58.0	335	4.34	4.35	2.75	0	0	 0	1	0	0	0	1	0	0	0	0
53938	0.86	3.0	61.0	58.0	2757	6.15	6.12	3.74	0	0	 0	0	0	0	0	1	0	0	0	0
53939	0.75	2.0	62.2	55.0	2757	5.83	5.87	3.64	1	0	 0	0	0	0	0	1	0	0	0	0
53940	0.71	3.0	60.5	55.0	2756	5.79	5.74	3.49	0	1	 0	0	0	0	1	0	0	0	0	0
53941	0.71	3.0	59.8	62.0	2756	5.74	5.73	3.43	0	0	 0	0	0	0	1	0	0	0	0	0
53942	0.70	4.0	60.5	59.0	2757	5.71	5.76	3.47	0	1	 0	0	0	0	0	0	0	1	0	0

53943 rows × 23 columns

Show the last 10 rows

```
In [78]: # Getting last 3 rows from df
data_last_10 = df1.tail(10)

# Printing df_last_3
data_last_10
```

Out[78]:

	carat	cut	depth	table	price	X	У	Z	D	Е	 I	J	l1	IF	SI1	SI2	VS1	VS2	VVS1	VVS2
53933	0.70	4.0	61.2	59.0	2757	5.69	5.72	3.49	0	1	 0	0	0	0	0	0	0	1	0	0
53934	0.72	3.0	62.7	59.0	2757	5.69	5.73	3.58	1	0	 0	0	0	0	1	0	0	0	0	0
53935	0.72	2.0	60.8	57.0	2757	5.75	5.76	3.50	1	0	 0	0	0	0	1	0	0	0	0	0
53936	0.72	1.0	63.1	55.0	2757	5.69	5.75	3.61	1	0	 0	0	0	0	1	0	0	0	0	0
53937	0.70	4.0	62.8	60.0	2757	5.66	5.68	3.56	1	0	 0	0	0	0	1	0	0	0	0	0
53938	0.86	3.0	61.0	58.0	2757	6.15	6.12	3.74	0	0	 0	0	0	0	0	1	0	0	0	0
53939	0.75	2.0	62.2	55.0	2757	5.83	5.87	3.64	1	0	 0	0	0	0	0	1	0	0	0	0
53940	0.71	3.0	60.5	55.0	2756	5.79	5.74	3.49	0	1	 0	0	0	0	1	0	0	0	0	0
53941	0.71	3.0	59.8	62.0	2756	5.74	5.73	3.43	0	0	 0	0	0	0	1	0	0	0	0	0
53942	0.70	4.0	60.5	59.0	2757	5.71	5.76	3.47	0	1	 0	0	0	0	0	0	0	1	0	0

10 rows × 23 columns

Reset the index such that it starts from 1 (instead of 0) and print the first five rows

```
In [79]: dataframel.reset_index()
    dataframel.index = dataframel.index+1
    dataframel[:5]
```

Out[79]:

	Unnamed: 0	carat	cut	color	clarity	depth	table	price	x	У	z
1	1	0.23	Ideal	Е	SI2	61.5	55.0	326	3.95	3.98	2.43
2	2	0.21	Premium	Е	SI1	59.8	61.0	326	3.89	3.84	2.31
3	3	0.23	Good	Е	VS1	56.9	65.0	327	4.05	4.07	2.31
4	4	0.29	Premium	1	VS2	62.4	58.0	334	4.20	4.23	2.63
5	5	0.31	Good	J	SI2	63.3	58.0	335	4.34	4.35	2.75

Lowercase all columns and name the dataset df

```
In [80]: lower = df1.applymap(lambda l: 1.lower() if type(l) == str else l)
lower
```

Out[80]:

	carat	cut	depth	table	price	x	у	z	D	Ε	 ı	J	l1	IF	SI1	SI2	VS1	VS2	VVS1	VVS2
0	0.23	2.0	61.5	55.0	326	3.95	3.98	2.43	0	1	 0	0	0	0	0	1	0	0	0	0
1	0.21	3.0	59.8	61.0	326	3.89	3.84	2.31	0	1	 0	0	0	0	1	0	0	0	0	0
2	0.23	1.0	56.9	65.0	327	4.05	4.07	2.31	0	1	 0	0	0	0	0	0	1	0	0	0
3	0.29	3.0	62.4	58.0	334	4.20	4.23	2.63	0	0	 1	0	0	0	0	0	0	1	0	0
4	0.31	1.0	63.3	58.0	335	4.34	4.35	2.75	0	0	 0	1	0	0	0	1	0	0	0	0
53938	0.86	3.0	61.0	58.0	2757	6.15	6.12	3.74	0	0	 0	0	0	0	0	1	0	0	0	0
53939	0.75	2.0	62.2	55.0	2757	5.83	5.87	3.64	1	0	 0	0	0	0	0	1	0	0	0	0
53940	0.71	3.0	60.5	55.0	2756	5.79	5.74	3.49	0	1	 0	0	0	0	1	0	0	0	0	0
53941	0.71	3.0	59.8	62.0	2756	5.74	5.73	3.43	0	0	 0	0	0	0	1	0	0	0	0	0
53942	0.70	4.0	60.5	59.0	2757	5.71	5.76	3.47	0	1	 0	0	0	0	0	0	0	1	0	0

53943 rows × 23 columns

Return a boolean value indicating whether the dataset has missing values. Do not overwrite df.

```
In [81]: # creating bool series True for NaN values - partial execution
bool_data = df1.isnull()

# filtering data and displaying data only with Gender = NaN
bool_data
```

Out[81]:

	carat	cut	depth	table	price	x	у	z	D	E	 I	J	I1	IF	SI1	SI2	VS1	VS2	VVS1	١
0	False	 False	False																	
1	False	 False	False	1																
2	False	 False	False	1																
3	False	 False	False																	
4	False	 False	False	1																
53938	False	 False	False	1																
53939	False	 False	False																	
53940	False	 False	False	1																
53941	False	 False	False	1																
53942	False	 False	False																	

53943 rows × 23 columns

Show average of all columns grouped by "cut" in a same DataFrame table. Do not overwrite df.

```
In [82]: # compute avg and groupy - partial exceution notb applying to all columns
    avg = df1.groupby(['cut']).mean()
    avg
```

Out[82]:

	carat	depth	table	price	x	У	z	D	E	F	•••	I	J	
cut														
0.0	1.046137	64.041677	59.053789	4358.757764	6.246894	6.182652	3.982770	0.101242	0.139130	0.193789		0.108696	0.073913	0.1
1.0	0.849185	62.365879	58.694639	3928.864452	5.838785	5.850744	3.639507	0.134937	0.190175	0.185283		0.106400	0.062576	0.0
2.0	0.702837	61.709401	55.951668	3457.541970	5.507451	5.520080	3.401448	0.131502	0.181105	0.177532		0.097118	0.041576	0.0
3.0	0.891929	61.264511	58.746060	4583.992605	5.973857	5.944848	3.647097	0.116218	0.169506	0.169071		0.103531	0.058580	0.0
4.0	0.806373	61.818166	57.956236	3981.658529	5.740694	5.770025	3.559794	0.125217	0.198709	0.179095		0.099644	0.056112	0.0

5 rows × 22 columns

Show the sum of carat and mean of price grouped by "cut" in a same DataFrame table. Do not overwrite df.

```
In [83]: # sum and mean of carat and cut columns
         sum_cut = df1.groupby(['cut']).sum()
         new = sum_cut['carat'], avg['price']
         new
Out[83]: (cut
          0.0
                  1684.28
          1.0
                  4166.10
          2.0
                 15146.84
          3.0
                 12302.37
          4.0
                  9743.40
          Name: carat, dtype: float64,
          cut
                 4358.757764
          0.0
          1.0
                 3928.864452
          2.0
                 3457.541970
          3.0
                 4583.992605
                 3981.658529
          4.0
          Name: price, dtype: float64)
```

Print the (filtered) dataset such that (column x < 6 and cut is even). Do not overwrite df.

```
In [84]: filtered_df = df1[(df1.x < 6) & (df1.cut%2 ==0)]
filtered_df</pre>
```

Out[84]:

	carat	cut	depth	table	price	x	У	z	D	E	 I	J	l1	IF	SI1	SI2	VS1	VS2	VVS1	VVS2
0	0.23	2.0	61.5	55.0	326	3.95	3.98	2.43	0	1	 0	0	0	0	0	1	0	0	0	0
5	0.24	4.0	62.8	57.0	336	3.94	3.96	2.48	0	0	 0	1	0	0	0	0	0	0	0	1
6	0.24	4.0	62.3	57.0	336	3.95	3.98	2.47	0	0	 1	0	0	0	0	0	0	0	1	0
7	0.26	4.0	61.9	55.0	337	4.07	4.11	2.53	0	0	 0	0	0	0	1	0	0	0	0	0
8	0.22	0.0	65.1	61.0	337	3.87	3.78	2.49	0	1	 0	0	0	0	0	0	0	1	0	0
53933	0.70	4.0	61.2	59.0	2757	5.69	5.72	3.49	0	1	 0	0	0	0	0	0	0	1	0	0
53935	0.72	2.0	60.8	57.0	2757	5.75	5.76	3.50	1	0	 0	0	0	0	1	0	0	0	0	0
53937	0.70	4.0	62.8	60.0	2757	5.66	5.68	3.56	1	0	 0	0	0	0	1	0	0	0	0	0
53939	0.75	2.0	62.2	55.0	2757	5.83	5.87	3.64	1	0	 0	0	0	0	0	1	0	0	0	0
53942	0.70	4.0	60.5	59.0	2757	5.71	5.76	3.47	0	1	 0	0	0	0	0	0	0	1	0	0

22383 rows × 23 columns

Part 2: Regression

Assign X to be the whole df without column price and y to be the column price. Split X and y into X_train, X_test, y_train, and y_test with random_state=1 and test_size=0.2.

Reference: https://scikit-learn.org/stable/modules/generated/sklearn.model-selection.train-test-split.html)

```
In [85]:
    X = df1.loc[:, df1.columns!='price'].values
    y = df1['price'].values

from sklearn.preprocessing import StandardScaler
    sc = StandardScaler()
    X = sc.fit_transform(X)

X_train, X_test, y_train, y_test = train_test_split(X,y, test_size=0.2, random_state=1)
```

Write a class My_LinearR that implements LinearRegression algorithm. You are required to have the following attributes

- Method:
 - fit
 - predict

Reference: https://scikit-learn.org/stable/modules/generated/sklearn.linear-model.LinearRegression.html (https://scikit-learn.org/stable/modules/generated/sklearn.linear-model.LinearRegression.html)

Using a pre-built library yields no credit. You have to write everything from scratch

```
In [86]: class My LinearR:
         # x - input, b - bias, y - output, w - weight
         # epoch - Value to start with can be any, on this bases further calculations are made for every weights
             def Cost(self,x,y,w,b):
                 cost = np.sum((((x.dot(w) + b) - y) ** 2) / (2*len(y)))
                 return cost
             def fit(self,x, y):
                 w = np.zeros(X train.shape[1])
                 b = 0
                 epoch = 10000
                 cost_list = [0]*10000
                 for e in range(0,epoch):
                     h = x.dot(w) + b
                     loss = h - y
                     l = len(y)
                     weight = x.T.dot(loss) / 1
                     bias = np.sum(loss) / 1
                     w = w - 0.002*weight
                     b = b - 0.002*bias
                     cost = self.Cost(x, y, w, b)
                     cost list[e] = cost
                     if (e^{2}(epoch/10)==0):
                         print("Cost of the model at the epoch number "+ str(e) +" is:",cost)
                 return w, b, cost list
             def predict(self,x,w,b):
```

```
return x.dot(w) + b
pass
```

```
In [87]: # Run the code
    reg = My_LinearR()
    w,b,c = reg.fit(X_train,y_train)
    y_pred = reg.predict(X_test,w,b)

Cost of the model at the epoch number 0 is: 15576889.319478331
    Cost of the model at the epoch number 1000 is: 1228486.0267718357
    Cost of the model at the epoch number 2000 is: 987562.553648995
    Cost of the model at the epoch number 3000 is: 929208.2128888781
    Cost of the model at the epoch number 4000 is: 84437.092900087
    Cost of the model at the epoch number 5000 is: 847618.3185756484
    Cost of the model at the epoch number 6000 is: 817214.6288517416
    Cost of the model at the epoch number 7000 is: 792062.0554145807
    Cost of the model at the epoch number 8000 is: 771213.7849361943
    Cost of the model at the epoch number 9000 is: 753896.5123140505
```

Part 3: Metric

Use three of regression metrics in https://scikit-learn.org/stable/modules/classes.html#module-sklearn.metrics) to compute errors between y_test and y_pred

```
In [90]: from sklearn.metrics import r2_score
    r2_score(y_test, y_pred)
```

Out[90]: 0.907009830825203

Which one do you think is the best metric of the three? Explain.

Answer:

Answer:

I guess, score R2 is much better than having a fixed boundary which yields understanding the system accuracy.

In []: