

A MAGNETIC LATCHING APPARATUS FOR USE IN A HARD DISC DRIVE

BACKGROUND OF THE INVENTION

1. Field of the Invention.

The present invention relates to a hard disk drive(HDD),
and more particularly to a magnetic latching apparatus for use
in a hard disk drive, in which it is facilitated to operate an
actuator with a simple construction, it is possible to reduce
a consumption of an electric current, and even if the actuator
is repeatedly operated, the actuator can be prevented from
malfunctioning so that a reliance on products can be improved.

2. Description of the Related Art

Generally, computers include an auxiliary memory which is
used to support a main memory for storing lots of data which
exceeds a storage capacity of the main memory. A magnetic
disk, a magnetic tape, a magnetic drum, a floppy disk and an
optical disk are used as auxiliary memories. A hard disk drive
having at least one magnetic disk is widely used as an
auxiliary memory in a personal computer.

Hereinafter, a hard disk drive according to an embodiment
of the convention art will be described with reference to
attached drawings.

As shown in Figs. 1 and 2, at least one magnetic disk 2

is mounted to be rotated by a spindle motor (not shown) at one side in main body 1. It is possible to read or record information on both sides of the magnetic disk 2.

An actuator is installed on the other side in the main
5 body 1. The actuator includes an arm 4 which is rotatably supported by a pivot bearing 3, a suspension 5 which is connected to an end of the arm 4 in parallel to the magnetic disk 2, a pair of magnetic heads 6 which is supported by a leading end of the suspension 5 to face with each other, and a voice coil motor which is provided with a coil 7 and a magnet
10 8 and 8'.

The coil 7 consisting in the voice coil motor is attached to an upper surface of an outer end of the arm 4 and the magnets 8 and 8' are mounted to be opposite to each other in a magnetic housing 9 which is installed on an edge in the main
15 body 1.

The pivot bearing 3 is a center portion around which the actuator rotates when the pair of the magnetic heads 6 come into contact with each surface of the magnetic disks 2. The
20 rotation force of the actuator is generated by the voice coil motor.

The magnetic heads 6 are respectively provided with a slider raised by the rotation force of the magnetic disk 2 and

a magnetic circuit which is integrated with the slider, for recording and reading information on the magnetic disks 2.

Moreover, the hard disk drive includes an actuator latching apparatus which is automatically positioned at a parking zone in the magnetic disk 2 according to information inputted in a system, for preventing an actuator 10 from being vibrated due to an outside impact.

Hereinafter, the actuator latching apparatus according to the present invention will be described with reference to the attached drawings.

As shown in Figs. 1 and 2, the actuator latching apparatus includes a latching arm 21 extending from an end of the voice coil motor, a latching plate 22 attached to an end of the latching arm 21, and a magnetic latching element 20 disposed at a desired portion of the main body 1. The magnetic latching element 20 is provided with a core 23 made of ferromagnetic material, a coil 24 wound on the core 23, a case 24 enclosing the core 23. The core 23 is made to have a nature of a permanent magnet when an electric current is applied to the coil 24 in a forward direction. To the contrary, the core 23 loses the nature of the permanent magnet when the electric current is applied to the coil 24 in a reverse direction.

In the hard disk drive as constructed above, when the

electric current is applied to the hard disk drive, the
spindle motor rotates along with the magnetic disk 2 connected
to the spindle motor. Thus, the magnetic heads 6 mounted on
the suspension 5 of the arm 4 are raised at a predetermined
height by a pneumatic pressure due to a rotation of the
magnetic disk 2 and then moves to a desired position according
to the signal from the system. At that time, the electric
current is applied to the magnetic latching element 20 so that
the latching plate 22 is unlocked.

That is, when the electric current is applied to the coil
24 of the magnetic latching element 20 in the reverse
direction, the latching plate 22 is unlocked as the core 23
does not have the nature of the permanent magnet any more. The
magnetic head 6 is moved to the desired position as the arm 4
has the rotation force proportional to an intensity of the
electric current applied to the coil 7 of the voice coil
motor. When the electric current applied to the voice coil
motor is interrupted after the electric current is applied to
the coil 24 in the forward direction so that the core 23 has
the nature of the permanent magnet again, the magnetic head 6
is moved to the desired position so as to read or record the
information on the magnetic disk 2 as the electric current is
applied to the voice coil motor.

On the other hand, when the electric current applied to
the hard disk drive is interrupted, the spindle motor stops
the rotation thereof and the magnetic disk 2 also stops the
rotation thereof. Accordingly, the magnetic head 6 loses a
5 rising force and automatically moves to the parking zone given
in the magnetic disk 2 according to the signal from the
system. At the same time, when the electric current is applied
to the coil 24 of the magnetic latching element 20 in the
forward direction, the core 23 has the nature of the permanent
10 magnet again to lock the latching plate 22 of the latching arm
21 by means of the magnetic force, thereby preventing the
magnetic head 6 from moving to the data zone of the magnetic
disk 2 due to an impact or vibration applied to the hard disk
drive.

15 In the actuator latching apparatus for use in the hard
disk drive according to the conventional art as described
above, however, there is a technical difficulty in that the
electric current applied to the coil 24 of the magnetic
latching element 20 must be controlled in the forward or
20 reverse direction in order to lock the actuator 10.
Furthermore, there is an advantage in that a consumption of
the electric current is increased. This causes products to
have a low competitive power.

When the electric current is at a short time interval applied to the hard disk drive, this makes the coil 24 wound on the core 23 to have heat generated thereon. Accordingly, there is a problem in that when the heat generated on the coil 5 24 increases at a temperature more than the curie point of the ferromagnetic material, the core 23 loses the nature of the magnet so as not to perform the locking of the actuator 10, thereby degrading a reliance on the products.

100 **SUMMARY OF THE INVENTION**

The present invention has been made to overcome the above described problems of the prior art.

It is an object of the present invention to provide a magnetic latching apparatus for use in a hard disk drive which is capable of facilitating to lock an actuator in a simple manner.

It is another object of the present invention to provide a magnetic latching apparatus for use in a hard disk drive, capable of reducing a spending of an electric current remarkably.

20 It is still another object of the present invention to provide a magnetic latching apparatus for use in a hard disk drive, capable of preventing a malfunction of an actuator even

if the actuator is used to lock an arm repeatedly, thereby improving a reliance of the hard disk drive.

To accomplish the above objects of the present invention, there is provided a magnetic latching apparatus for use in a
5 hard disk drive, in which a magnetic head is automatically positioned at a parking zone of a magnetic disk as an arm returns back at an initial position when an electric current applied to the hard disk drive is interrupted, comprising:

100 permanent magnets disposed on a predetermined portion at an outer end of the arm; and

105 means for locking and unlocking the arm by means of a magnetic force of the permanent magnets, the means providing the permanent magnets with a repulsive force as the electric current is applied to the hard disk drive.

150 The permanent magnets are arranged such that polarities thereof are alternated with each other in a horizontal direction.

The means for locking and unlocking the arm includes a core having flanges which respectively are formed at each end
20 thereof and have polarities opposite to those of the permanent magnets and a coil wound on the core.

The permanent magnets are arranged such that polarities thereof are alternated with each other in a vertical

direction.

The means for locking and unlocking the arm includes a core having connectors which respectively are formed at each end thereof and have the same polarities as those of the permanent magnets, a bobbin combined with the core to be in parallel to the permanent magnets, and a coil wound on the core.

The means for locking and unlocking the arm includes a pair of bobbins which respectively have flanges formed at each end thereof and have polarities opposite to those of the permanent magnet when the electric current is applied to the hard disk drive, the pair of bobbins being disposed to be spaced at a predetermined apart from each other, and coils respectively wound on each bobbin.

The pair of the bobbins are connected with each other by means of a nonconductor, for example a synthetic resin, fixed to one ends of the bobbins.

The core extend through each bobbin and have nonconductors connected to one ends of the core and connectors formed on the other ends of the core, to which the permanent magnets can be detachably connected.

A fixing part extends from a predetermined portion at the outer end of the arm and has a damping member as a buffer,

attached thereto, to which the permanent magnet is fixed.

Preferably, the permanent magnet has a magnetic force equal to and more than 50 gf.

5 The core to which the permanent magnet is connected is provided with a hinge assembly at an end thereof so as to ensure a connection of the core to the permanent magnet.

10 Preferably, the hinge assembly includes a first hinge portion formed on a surface of the outer end of the core and a second hinge portion which is rotatably combined by a hinge pin to the first hinge portion and faces the permanent magnet in a surface to surface connecting manner.

15 Preferably, the means for locking and unlocking the arm is received in a case, except for a portion of the core to which the permanent magnet is locked.

The means for locking and unlocking the arm interrupts the electric current supplied to the coil at the same time that the arm is unlocked, thereby reducing a spending of the electric current.

20 **BRIEF DESCRIPTION OF THE DRAWINGS**

The above objects and other advantages of the present invention will become more apparent by describing in detail the preferred embodiment thereof with reference to the

attached drawings, in which:

Fig. 1 is a plan view of a hard disk drive including an actuator locking device according to the conventional art;

5 Fig. 2 is a perspective view showing a construction of the hard disk drive including the actuator locking device according to the conventional invention;

Fig. 3 is a plan view of a hard disk drive including a magnetic latching apparatus according to an embodiment of the present invention;

10 Fig. 4 is a plan views showing a construction of the magnetic latching apparatus according to the embodiment of the present invention;

Fig. 5 is a partially enlarged view of an A portion marked in a circle in Fig. 4;

15 Figs. 6A and 6B show a magnetic latching apparatus according to the embodiment of the present invention, in which Fig. 6A is a plan view of the magnetic latching apparatus including magnets respectively having magnetic polarities S and N in a horizontal direction and in which a direct current is applied to a coil and Fig. 6B is a plan view of the magnetic latching apparatus including magnets respectively having magnetic polarities N and S in the horizontal direction;

Fig. 7 is a plan view of the magnetic latching apparatus in Fig. 6A, in which the direct current supplied to the coil is interrupted;

Figs. 8 and 9 show a magnetic latching apparatus
5 according to another embodiment of the present invention, in which Fig. 8 is a perspective view of the magnetic latching apparatus and Fig. 9 is a plan view of the magnetic latching apparatus;

Figs. 10 and 11 show a magnetic latching apparatus
10 according to is a sectional view of an actuator of a latching apparatus according to still another embodiment of the present invention, in which Fig. 10 is a plan view of the magnetic latching apparatus in which a direct current supplied to a coil is interrupted and Fig. 11 is a plan view of the magnetic latching apparatus in which the direct current is applied to
15 the coil;

Figs. 12 and 13 show a magnetic latching apparatus
according to still another embodiment of the present
invention, in which Fig. 12 is a plan view of the magnetic
20 latching apparatus in which a direct current supplied to a coil is interrupted and Fig. 13 is a plan view of the magnetic latching apparatus in which the direct current is applied to the coil;

Figs. 14 and 15 are graphs showing a change of a magnetic force of the permanent magnet which is one of structures in the magnetic latching apparatus according to the present invention, in which Fig. 14 is a graph showing the change of 5 the magnetic force of the permanent magnet in which the polarities are arranged in the horizontal direction and Fig. 15 is a graph showing the change of the magnetic force of the permanent magnet in which the polarities are arranged in the vertical direction.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Hereinafter, a magnetic latching apparatus for use in a hard disk drive according to the present invention will be described in detail with reference to the accompanying drawings.

As shown in the drawings, the magnetic latching apparatus for use in the hard disk drive according to the present invention is used for a hard disk drive in which at least one magnetic disk 32 is rotatably supported by a spindle motor at 20 one side of an inner portion of a frame 31 and an actuator 30 is mounted at the other side of the inner portion of the frame 31.

The actuator 30 includes an arm 34 rotatably supported by

a pivot bearing 33, a suspension 35 which is fixed to an end
of the arm 34 so as to be in parallel to a magnetic disk 32, a
pair of magnetic heads 36 which is disposed at a leading end
of the suspension 35, and a voice coil motor having a coil 37
5 and a magnet 38.

The magnetic latching apparatus for use in the hard disk
drive according to the present invention includes a magnet 50
disposed at a predetermined portion on an outer end of the arm
34 and an actuator locking and unlocking element 60 which is
10 mounted on a bottom portion of a frame 31 corresponding to the
magnet 50, for providing the magnet with a repulsive force or
locking an actuator 30 by means of a magnetic force of the
magnet when an electric current is applied to the hard disk
drive.

15 The actuator locking and unlocking element 60 includes a
core 63 having flanges 61 and 62 respectively formed at
opposite ends thereof and a coil 64 wound on the core 63. The
flanges respectively have a larger diameter than that of the
core 63.

20 The core 63 preferably is made of a pure iron material,
of which a peripheral surface is coated with isolating agent.
Then, the coil 64 is wound on the core 63, of which both ends
respectively are connected in serial to an electric wire. The

core 63 acts as an electromagnet when the direct current is applied to both ends of the coil 64.

The core 63 is held to be exposed to atmosphere. As shown in Fig. 5, however, the core 63 is preferably received in a
5 separate case 65.

Further, the magnet 50 provided to the arm 34 is integrally fixed to a fixing portion 51 extending from the predetermined portion on the outer end of the arm 34.

Alternatively, a damping member 52 as a buffer, for example rubber and the like, is attached to the fixing portion 51 of the arm 34, to which the magnet 50 in turn is fixed to the damping member 52. Thereby, when the magnet 50 becomes in contact with the core 63, the damping member 52 absorbs an impact.

It is preferably that the permanent magnet 50 has a magnetic force of about 50 gf, more preferably that the permanent magnet 50 has a magnetic force of about 100 gf. When the direct current is applied to the coil 64 as one parts of the actuator locking and unlocking element 60, the repulsive force is equal to or more than the magnetic force of the permanent magnet 50.
20

Furthermore, the permanent magnet 50 may have polarities S and N, or N and S in the horizontal direction as shown in

Figs. 6A and 6B. When the direct current is applied to the coil 64 of the actuator locking and unlocking element 60, the flanges 61 and 62 of the core 63 have polarities N and S or S and N opposite to polarities S and N or N and S of the permanent magnet 50 so as to react the polarities of the permanent magnet 50. When the direct current applied to the coil 64 is interrupted as shown in Fig. 7, the flanges 61 and 62 of the core 63 do not generate the magnetic force so that the permanent magnet 50 is attached to one flange of the core 63 due to the magnetic force of the permanent magnet 50.

Hereinafter, an operation of the magnetic latching apparatus for use in the hard disk drive according to the present invention as constructed above will be described in detail.

When the electric current is applied to the hard disk drive, a spindle motor drives to rotate the magnetic disk 32.

The magnetic head 36 is risen at a predetermined height by a pneumatic pressure generated due to the rotation of the magnetic disk 32 as the magnetic disk 32 rotates. On the other hand, the magnetic head 36 is shifted to a designed position, according to a signal of a system. At that time, the arm 34 is unlocked, in such a manner that the direct current is applied to the coil 64 of the actuator locking and unlocking element

60 so that the core 63 is made to be the electromagnet.

That is, in the state that the electric current applied to the hard disk drive is interrupted, the permanent magnet 50 is held to be attached to the core 63 by means of the magnetic force thereof. When the direct current is applied to the coil 64, however, the core 63 is made to be the electromagnet so as to have the same polarity as that of the permanent magnet 50 to generate the repulsive force. As a result, the core 63 repulses the permanent magnet 50 by using the magnetic force thereof, so that the arm 34 freely rotates.

As described above, since the arm 34 is unlocked and the electric current applied to the coil 64 is interrupted simultaneously, the core 63 does not have a magnetism any more. Thus, the arm 34 rotates depending on an intensity of the electric current applied to the voice coil motor to move the magnetic head 36 to the desired position. The magnetic head 36 records or reads data on or from the magnetic disk 32 at the desired position.

On the other hand, when the electric current applied to the hard disk drive is interrupted, the spindle motor stops the rotation thereof. Thus, the magnetic disk 32 also stops the rotation thereof. As a result, the magnetic head 36 loses its raising force and is positioned at a parking zone in the

inner side of the magnetic disk according to the signal of the system. At that time, as shown in Fig. 7, since the electric current applied to the core 63 is interrupted so that the core 63 does not have the magnetism, the permanent magnet 50 is attached to one 61 of the flanges of the core 63 by means of the magnetic force thereof. Accordingly, the actuator 30, having the arm 34 is automatically unlocked.

While an impact force is present between the core 63 and the permanent magnet 50 when the arm 34 is repeatedly locked and unlocked as described above, the damping member 52 made of a soft material such as a rubber and the like, is disposed between the permanent magnet 50 and the fixing portion of the arm 34 to relieve the impact force by means of the permanent magnet 50. Thus, it is possible to prevent the impact force from being transferred through the arm 34 to the magnetic head 36, thereby preventing a damage of the magnetic disk 32 due to the magnetic head 36.

A locking force of the arm 34 is subjected to the magnetic force of the permanent magnet 50 and makes the magnetic head 36 not to be present in the data zone of the magnetic disk 32 even though the impact force or a vibration is applied to the hard disk drive.

Figs. 8 and 9 are views of the magnetic latching

apparatus for use in the hard disk drive according to another embodiment of the present invention. As shown in Figs. 8 and 9, a hinge structure 70 is formed on one 61 of the flanges 61 and 62 of the core 63 so that the permanent magnet 50 and the 5 core 63 have the same contact area as each other when the actuator 30 is assembled and the permanent magnet 50 is always locked to the core 63 with an uniformly magnetic force.

In the hinge structure 70 as will be described below, a first hinge portion 71 is formed on the flange 61 of the core 63 and a second hinge portion 73 as a hinge pin 72 is connected to the first hinge portion 71 so that the permanent magnet 50 is locked and unlocked to/from the second hinge portion 73.

According to the embodiment of the present invention as described above, when the electric current is applied to the coil 64 in the hard disk drive and the core 63 is made to be the electromagnet, the first and second hinge portions 71 and 73 of the hinge structure 70 are also made to be electromagnets. Accordingly, the second hinge portion 73 has the same polarity as that of the permanent magnet 50, resulting in unlocking the arm 34 from the core 63. To the contrary, when the electric current applied to the hard disk drive is interrupted, as shown in Fig. 9, the second hinge

portion 73 of the core 63 does not have the magnetism any more, so that the permanent magnet 50 is attached to the second hinge portion 73 of the core 63 by means of the magnetic force thereof.

5 On the other hand, Figs. 10, 11, 12 and 13 show the magnetic latching apparatus according to still another embodiment of the present invention. In the magnetic latching apparatus, the permanent magnet 50' has polarities N and S or S and N in a vertical direction in order that a magnetic force of a permanent magnet 50' applied to an identity zone of the magnetic disk 32 is minimized. Thereby, it is facilitated to servo control the magnetic latching apparatus and to enlarge the data zone.

10 As will be described in detail below, a change of the magnetic force is sluggish in the state that the polarities of the permanent magnet 50 are arranged in the horizontal direction as shown in Figs. 6A and 6B rather than in the vertical direction as shown in Figs. 10 to 13.

15 Therefore, in the case of arranging the polarities of the permanent magnet 50 in the horizontal direction, the intensity of the magnetic force of the magnet 50 is enhanced as the magnetic head 36 is adjacent to the identity zone of the magnetic disk 32. As a result, it is difficult to control the

magnetic latching apparatus. Accordingly, the parking zone of the magnetic disk 32 is enlarged unnecessarily while the data zone of the magnetic disk 32 is reduced. This may cause a storage capacity of the magnetic disk 32 to be small (see Fig.

5 14).

According to still another embodiment of the present invention, however, the magnetic force of the magnet 50' relatively becomes small in the identity zone when the polarities of the permanent magnet 50' are arranged in the horizontal direction, resulting in facilitating to control the magnetic latching apparatus. Furthermore, the data zone of the magnetic disk 32 is enlarged to increase the storage capacity of the magnetic disk 32 (see Fig. 15).

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
25910
25911
25912
25913
25914
25915
25916
25917
25918
25919
25920
25921
25922
25923
25924
25925
25926
25927
25928
25929
25930
25931
25932
25933
25934
25935
25936
25937
25938
25939
25940
25941
25942
25943
25944
25945
25946
25947
25948
25949
25950
25951
25952
25953
25954
25955
25956
25957
25958
25959
25960
25961
25962
25963
25964
25965
25966
25967
25968
25969
25970
25971
25972
25973
25974
25975
25976
25977
25978
25979
25980
25981
25982
25983
25984
25985
25986
25987
25988
25989
25990
25991
25992
25993
25994
25995
25996
25997
25998
25999
259100
259101
259102
259103
259104
259105
259106
259107
259108
259109
259110
259111
259112
259113
259114
259115
259116
259117
259118
259119
259120
259121
259122
259123
259124
259125
259126
259127
259128
259129
259130
259131
259132
259133
259134
259135
259136
259137
259138
259139
259140
259141
259142
259143
259144
259145
259146
259147
259148
259149
259150
259151
259152
259153
259154
259155
259156
259157
259158
259159
259160
259161
259162
259163
259164
259165
259166
259167
259168
259169
259170
259171
259172
259173
259174
259175
259176
259177
259178
259179
259180
259181
259182
259183
259184
259185
259186
259187
259188
259189
259190
259191
259192
259193
259194
259195
259196
259197
259198
259199
259200
259201
259202
259203
259204
259205
259206
259207
259208
259209
259210
259211
259212
259213
259214
259215
259216
259217
259218
259219
259220
259221
259222
259223
259224
259225
259226
259227
259228
259229
259230
259231
259232
259233
259234
259235
259236
259237
259238
259239
259240
259241
259242
259243
259244
259245
259246
259247
259248
259249
259250
259251
259252
259253
259254
259255
259256
259257
259258
259259
259260
259261
259262
259263
259264
259265
259266
259267
259268
259269
259270
259271
259272
259273
259274
259275
259276
259277
259278
259279
259280
259281
259282
259283
259284
259285
259286
259287
259288
259289
259290
259291
259292
259293
259294
259295
259296
259297
259298
259299
259300
259301
259302
259303
259304
259305
259306
259307
259308
259309
259310
259311
259312
259313
259314
259315
259316
259317
259318
259319
259320
259321
259322
259323
259324
259325
259326
259327
259328
259329
259330
259331
259332
259333
259334
259335
259336
259337
259338
259339
259340
259341
259342
259343
259344
259345
259346
259347
259348
259349
259350
259351
259352
259353
259354
259355
259356
259357
259358
259359
259360
259361
259362
259363
259364
259365
259366
259367
259368
259369
259370
259371
259372
259373
259374
259375
259376
259377
259378
259379
259380
259381
259382
259383
259384
259385
259386
259387
259388
259389
259390
259391
259392
259393
259394
259395
259396
259397
259398
259399
259400
259401
259402
259403
259404
259405
259406
259407
259408
259409
259410
259411
259412
259413
259414
259415
259416
259417
259418
259419
259420
259421
259422
259423
259424
259425
259426
259427
259428
259429
259430
259431
259432
259433
259434
259435
259436
259437
259438
259439
259440
259441
259442
259443
259444
259445
259446
259447
259448
259449
259450
259451
259452
259453
259454
259455
259456
259457
259458
259459
259460
259461
259462
259463
259464
259465
259466
259467
259468
259469
259470
259471
259472
259473
259474
259475
259476
259477
259478
259479
259480
259481
259482
259483
259484
259485
259486
259487
259488
259489
259490
259491
259492
259493
259494
259495
259496
259497
259498
259499
259500
259501
259502
259503
259504
259505
259506
259507
259508
259509
259510
259511
259512
259513
259514
259515
259516
259517
259518
259519
259520
259521
259522
259523
259524
259525
259526
259527
259528
259529
259530
259531
259532
259533
259534
259535
259536
259537
259538
259539
259540
259541
259542
259543
259544
259545
259546
259547
259548
259549
259550
259551
259552
259553
259554
259555
259556
259557
259558
259559
259560
259561
259562
259563
259564
259565
259566
259567
259568
259569
259570
259571
259572
259573
259574
259575
259576
259577
259578
259579
259580
259581
259582
259583
259584
259585
259586
259587
259588
259589
259590
259591
259592
259593
259594
259595
259596
259597
259598
259599
2595100
2595101
2595102
2595103
2595104
2595105
2595106
2595107
2595108
2595109
2595110
2595111
2595112
2595113
2595114
2595115
2595116
2595117
2595118
2595119
2595120
2595121
2595122
2595123
2595124
2595125
2595126
2595127
2595128
2595129
2595130
2595131
2595132
2595133
2595134
2595135
2595136
2595137
2595138
2595139
2595140
2595141
2595142
2595143
2595144
2595145
2595146
2595147
2595148
2595149
2595150
2595151
2595152
2595153
2595154
2595155
2595156
2595157
2595158
2595159
2595160
2595161
2595162
2595163
2595164
2595165
2595166
2595167
2595168
2595169
2595170
2595171
2595172
2595173
2595174
2595175
2595176
2595177
2595178
2595179
2595180
2595181
2595182
2595183
2595184
2595185
2595186
2595187
2595188
2595189
2595190
2595191
2595192
2595193
2595194
2595195
2595196
2595197
2595198
2595199
2595200
2595201
2595202
2595203
2595204
2595205
2595206
2595207
2595208
2595209
2595210
2595211
2595212
2595213
2595214
2595215
2595216
2595217
2595218
2595219
2595220
2595221
2595222
2595223
2595224
2595225
2595226
2595227
2595228
2595229
2595230
2595231
2595232
2595233
2595234
2595235
2595236
2595237
2595238
2595239
2595240
2595241
2595242
2595243
2595244
2595245
2595246
2595247
2595248
2595249
2595250
2595251
2595252
2595253
2595254
2595255
2595256
2595257
2595258
2595259
2595260
2595261
2595262
2595263
2595264
2595265
2595266
2595267
2595268
2595269
2595270
2595271
2595272
2595273
2595274
2595275
2595276
2595277
2595278
2595279
2595280
2595281
2595282
2595283
2595284
2595285
2595286
2595287
2595288
2595289
2595290
2595291
2595292
2595293
2595294
2595295
2595296
2595297
2595298
2595299
2595300
2595301
2595302
2595303
2595304
2595305
2595306
2595307
2595308
2595309
2595310
2595311
2595312
2595313
2595314
2595315
2595316
2595317
2595318
2595319
2595320
2595321
2595322
2595323
2595324
2595325
2595326
2595327
2595328
2595329
2595330
2595331
2595332
2595333
2595334
2595335
2595336
2595337
2595338
2595339
2595340
2595341
2595342
2595343
2595344
2595345
2595346
2595347
2595348
2595349
2595350
2595351
2595352
2595353
2595354
2595355
2595356
2595357
2595358
2595359
2595360
2595361
2595362
2595363
2595364
2595365
2595366
2595367
2595368
2595369
2595370
2595371
2595372
2595373
2595374
2595375
2595376
2595377
2595378
2595379
2595380
2595381
2595382
2595383
2595384
2595385
2595386
2595387
2595388
2595389
2595390
2595391
2595392
2595393
2595394
2595395
2595396
2595397
2595398
2595399
2595400
2595401
2595402
2595403
2595404
2595405
2595406
2595407
2595408
2595409
2595410
2595411
2595412
2595413
2595414
2595415
2595416
2595417
2595418
2595419
2595420
2595421
2595422
2595423
2595424
2595425
2595426
2595427
2595428
2595429
2595430
2595431
2595432
2595433
2595434
2595435
2595436
2595437
2595438
2595439
2595440
2595441
2595442
2595443
2595444
2595445
2595446
2595447
2595448
2595449
2595450
2595451
2595452
2595453
2595454
2595455
2595456
2595457
2595458
2595459
2595460
2595461
2595462
2595463
2595464
2595465
2595466
2595467
2595468
2595469
2595470
2595471
2595472
2595473
2595474
2595475
2595476
2595477
2595478
2595479
2595480
2595481
2595482
2595483
2595484
2595485
2595486
2595487
2595488
2595489
2595490
2595491
2595492
2595493
2595494
2595495
2595496
2595497
2595498
2595499
2595500
2595501
2595502
2595503
2595504
2595505
2595506
2595507
2595508
2595509
2595510
2595511
2595512
2595513
2595514
2595515
2595516
2595517
2595518
2595519
2595520
2595521
2595522
2595523
2595524
2595525
2595526
2595527
2595528
2595529
2595530
2595531
2595532
2595533
2595534
2595535
2595536
2595537
2595538
2595539
2595540
2595541
2595542
2595543
2595544
2595545
2595546
2595547
2595548
2595549
2595550
2595551
2595552
2595553
2595554
2595555
2595556
2595557
2595558
2595559
2595560
2595561
2595562
2595563
2595564
2595565
2595566
2595567
2595568
2595569
2595570
2595571
2595572
2595573
2595574
2595575
2595576
2595577
2595578
2595579
2595580
2595581
2595582
2595583
2595584
2595585
2595586
2595587
2595588
2595589
2595590
2595591
2595592
2595593
2595594
2595595
2595596
2595597
2595598
2595599
2595600
2595601
2595602
2595603
2595604
2595605
2595606
2595607
2595608
2595609
2595610
2595611
2595612
2595613
2595614
2595615
2595616
2595617
2595618
2595619
2595620
2595621
2595622
2595623
2595624
2595625
2595626
2595627
2595628
2595629
2595630
2595631
2595632
2595633
2595634
2595635
2595636
2595637
2595638
2595639
2595640
2595641
2595642
2595643
2595644
2595645
2595646
2595647
2595648
2595649
2595650
2595651
2595652
2595653
2595654
2595655
2595656
2595657
2595658
2595659
2595660
2595661
2595662
2595663
2595664
2595665
2595666
2595667
2595668
2595669
2595670
2595671
2595672
2595673
2595674
2595675
2595676
2595677
2595678
2595679
2595680
2595681
2595682
2595683
2595684
2595685
2595686
2595687
2595688
2595689
2595690
2595691
2595692
2595693
2595694
2595695
2595696
2595697
2595698
2595699
2595700
2595701
2595702
2595703
2595704
2595705
2595706
2595707
2595708
2595709
2595710
2595711
2595712
2595713
2595714
2595715
2595716
2595717
2595718
2595719
2595720
2595721
2595722
2595723
2595724
2595725
2595726
2595727
2595728
2595729
2595730
2595731
2595732
2595733
2595734
2595735
2595736
2595737
2595738
2595739
2595740
2595741
2595742
2595743
2595744
2595745
2595746
2595747
2595748
2595749
2595750
2595751
2595752
2595753
2595754
2595755
2595756
2595757
2595758
2595759
2595760
2595761
2595762
2595763
2595764
2595765
2595766
2595767
2595768
2595769
2595770
2595771
2595772
2595773
2595774
2595775
2595776
2595777
2595778
2595779
2595780
2595781
25957

50' is locked to the connecting portions 81 and 82 by means of
the magnetic force of the permanent magnet 50'. To the
contrary, when the electric current is applied to the coil 64,
the cores 80 are made to be electromagnets and respectively
5 have opposite polarities at the connecting portions thereof so
that the permanent magnet 50' is unlocked from the cores 80.

As shown in Figs. 12 and 13, moreover, cores 91 and 91'
are disposed in such a manner as parallel to each other at a
predetermined distance. Then, bobbins 63A and 63A' having
10 coils wound thereon are respectively assembled with each of
the cores 91 and 91' while nonconductors 90 such as synthetic
resin are respectively attached to one end of each cores 91
and 91'. Furthermore, connecting portions 92 and 92'
respectively are formed at the other end of each cores 91 and
91', which face with each polarity of the permanent magnet
15 50'.

In the magnetic latching apparatus for use in the hard
disk drive according to the still another embodiment of the
present invention as described above, when the electric
20 currents applied to the coils 64 and 64' are interrupted, the
permanent magnet 50' is locked to the connecting portions 92
and 92' of the cores 91 and 91' by means of the magnetic force
of the permanent magnet 50'. To the contrary, when the

electric currents are applied to the coils 64 and 64', the core 91 and 91' are made to be electromagnets having polarities opposite to each other at each connecting portions 92 and 92' so that the permanent magnet 50' is unlocked from
5 the connecting portions 92 and 92'.

The magnetic latching apparatus for use in the hard disk drive according to the present invention is not limited to the embodiments as described herein and shown in drawings.

In the magnetic latching apparatus for use in the hard disk drive, as described above, the arm is rotated at an initial position so that the magnetic head is automatically positioned at the parking zone of the magnetic disk as the electric current applied to the hard disk drive. The magnetic latching apparatus is provided with the permanent magnet disposed at a desired portion on the outer end of the arm and the actuator locking and unlocking element for providing the repulsive force to the permanent magnet or locking the arm by means of the magnetic force of the permanent magnet according to the application of the electric current to the hard disk
10 drive.
15

Accordingly, there are advantages in that it is facilitated to lock the actuator to the permanent magnet and it is possible to reduce a consumption of the electric
20

current. There is further advantage in that even if the actuator is repeatedly operated, the actuator can be prevented from malfunctioning so that a reliance on products can be improved.

5 While the present invention has been particularly shown and described with reference to particular embodiments thereof, it will be understood by those skilled in the art that various changes in form and detail may be effected therein without departing from the scope of the invention as defined by the appended claims.