ЛЕКЦИЯ 4 Глава 3. МЕТОДЫ ДЛЯ ЗАДАЧ БЕЗУСЛОВНОЙ ОПТИМИЗАЦИИ И НЕЛИНЕЙНЫХ УРАВНЕНИЙ

Содержание лекции

- 1 Методы спуска
 - Общая схема методов спуска

Задача безусловной оптимизации

Задача

$$f(x) \to \min, \quad x \in \mathbb{R}^n,$$
 (1)

где $f:\mathbb{R}^n o \mathbb{R}$ — заданная функция.

Идея методов спуска

- Определяется направление, при движении по которому из текущего приближения функция f убывает.
- Делается шаг некоторой длины по этому направлению.
- Для полученного таким образом нового приближения процедура повторяется, и т.д.

Направления убывания

Определение 1

Вектор $d \in \mathbb{R}^n$ называется направлением убывания функции $f: \mathbb{R}^n \to \mathbb{R}$ в точке $\widetilde{x} \in \mathbb{R}^n$, если для любого достаточно малого t > 0 имеет место неравенство $f(\widetilde{x} + td) < f(\widetilde{x})$.

 $\mathcal{D}_f(\widetilde{x})$ — множество направлений убывания функции f в точке $\widetilde{x} \in \mathbb{R}^n$ (всегда конус).

Лемма 1

Пусть функция $f: \mathbb{R}^n \to \mathbb{R}$ дифференцируема в точке $\widetilde{x} \in \mathbb{R}^n$ по направлению $d \in \mathbb{R}^n$, т.е. $f'(\widetilde{x}; d)$ существует и конечна. Тогда:

- ullet если $d \in \mathcal{D}_f(\widetilde{x})$, то $f'(\widetilde{x}; d) \leqslant 0$;
- ullet если $d \in \mathbb{R}^n$ удовлетворяет условию $f'(\widetilde{x}; d) < 0$, то $d \in \mathcal{D}_f(\widetilde{x})$.

Направления убывания

Общая схема методов спуска

Методы спуска

$$x^{k+1} = x^k + \alpha_k d^k, \quad d^k \in \mathcal{D}_f(x^k), \quad k = 0, 1, \dots,$$
 (2)

где параметры длины шага $lpha_k>0$ выбираются так, чтобы выполнялось по крайней мере

$$f(x^{k+1}) < f(x^k). \tag{3}$$

Если $\mathcal{D}_f(x^k) = \emptyset$, или если не представляется возможным найти $d^k \in \mathcal{D}_f(x^k)$, то процесс останавливают. Если $d^k \in \mathcal{D}_f(x^k)$, то (3) выполняется для любого достаточно малого $\alpha_k > 0$.

Общая схема методов спуска

Конкретный метод спуска характеризуется:

- способом выбора направлений убывания d^k (с использованием некоторой приближенной модели функции f);
- процедурой одномерного поиска для выбора параметров длины шага
 (с использованием сужения самой функции f на луч, исходящий из точки x^k в направлении вектора d^k).

Выбор направления убывания

Согласно лемме 1, если f дифференцируема в точке x^k и $f'(x^k) \neq 0$, то $d^k = -f'(x^k) \in \mathcal{D}_f(x^k)$. Обычно методы с таким выбором направления убывания крайне неэффективны: это «последнее средство», когда более изощренные способы выбора не срабатывают.

Значительно большее практическое значение имеет выбор $d^k = -Q_k f'(x^k)$, где симметричная матрица $Q_k \in \mathbb{R}(n, n)$ задается «умными» способами.

Согласно лемме 1, если матрица Q_k положительно определена и $f'(x^k) \neq 0$, то $d^k = -Q_k f'(x^k) \in \mathcal{D}_f(x^k)$, поскольку

$$\langle f'(x^k), d^k \rangle = -\langle Q_k f'(x^k), f'(x^k) \rangle < 0.$$

Правило одномерной минимизации

Параметр $\alpha_k > 0$ выбирается из условия

$$f(x^k + \alpha_k d^k) = \min_{\alpha \geqslant 0} f(x^k + \alpha d^k),$$

т.е. как решение одномерной задачи оптимизации

$$\varphi_k(\alpha) \to \min, \quad \alpha \in \mathbb{R}_+,$$
 (4)

где

$$\varphi_k : \mathbb{R}_+ \to \mathbb{R}, \quad \varphi_k(\alpha) = f(x^k + \alpha d^k).$$

Если f дифференцируема в точке x^{k+1} , то

$$0 = \varphi'_k(\alpha_k) = \langle f'(x^k + \alpha_k d^k), d^k \rangle = \langle f'(x^{k+1}), d^k \rangle.$$
 (5)

Для квадратичной функции

$$f(x) = \langle Bx, x \rangle + \langle a, x \rangle, \quad x \in \mathbb{R}^n,$$

где $B \in \mathbb{R}(n, n)$ — симметричная положительно определенная, $a \in \mathbb{R}^n$, одномерный минимум дается явной формулой:

$$\alpha_k = -\frac{\langle 2Bx^k + a, d^k \rangle}{2\langle Bd^k, d^k \rangle},$$

поскольку

$$\varphi_k(\alpha) = \langle Bd^k, d^k \rangle \alpha^2 + \langle 2Bx^k + a, d^k \rangle \alpha + \langle Bx^k, x^k \rangle + \langle a, x^k \rangle.$$

В общем же случае этот способ определения α_k неоправданно трудоемок.

Часто задачу (4) заменяют задачей

$$\varphi_k(\alpha) \to \min, \quad \alpha \in [0, \widehat{\alpha}],$$

где $\widehat{\alpha} > 0$ — фиксированный параметр (выбор $\widehat{\alpha} = +\infty$ соответствует задаче (4)).

Правило Армихо (предполагает дифференцируемость f в точке x^k)

Фиксируем параметры $\widehat{\alpha} > 0$, ε , $\theta \in (0, 1)$. Полагаем $\alpha = \widehat{\alpha}$.

Проверяем неравенство

$$f(x^k + \alpha d^k) \le f(x^k) + \varepsilon \alpha \langle f'(x^k), d^k \rangle.$$
 (6)

② Если (6) не выполнено, то заменяем α на $\theta \alpha$ и переходим к п. 1. Иначе полагаем $\alpha_{\pmb{k}} = \alpha$.

Неравенство Армихо (6) означает, что реальное убывание значения целевой функции при шаге длины α по направлению d^k должно составлять как минимум заданную (определяемую выбором параметра ε) долю от «предсказанного» линейной моделью целевой функции убывания $\alpha \langle f'(x^k), d^k \rangle$. Параметр α_k вычисляется как первое из обладающих этим свойством чисел α , получаемых в результате дробления начального значения $\widehat{\alpha}$.

Лемма 2

Пусть функция $f:\mathbb{R}^n \to \mathbb{R}$ дифференцируема в точке $x^k \in \mathbb{R}^n$. Тогда если элемент $d^k \in \mathbb{R}^n$ удовлетворяет

$$\langle f'(x^k), d^k \rangle < 0,$$
 (7)

то неравенство Армихо (6) имеет место для любого достаточно малого $\alpha>0$.

Доказательство

Для достаточно малого lpha>0

$$f(x^k + \alpha d^k) - f(x^k) = \langle f'(x^k), \alpha d^k \rangle + o(\alpha) =$$

$$= \varepsilon \alpha \langle f'(x^k), d^k \rangle + (1 - \varepsilon) \alpha \langle f'(x^k), d^k \rangle + o(\alpha) =$$

$$= \varepsilon \alpha \langle f'(x^k), d^k \rangle + \alpha \left((1 - \varepsilon) \langle f'(x^k), d^k \rangle + \frac{o(\alpha)}{\alpha} \right) \leqslant$$

$$\leq \varepsilon \alpha \langle f'(x^k), d^k \rangle$$

(поскольку второе слагаемое в предпоследней строке отрицательно), а это и есть требуемое.

При выполнении (7) выбор α_k по правилу Армихо гарантирует выполнение условия монотонного убывания значения целевой функции (3).

Более того, неравенство (6) при $\alpha = \alpha_k$ дает количественную характеристику того, насколько $f(x^{k+1})$ должно быть меньше $f(x^k)$, чтобы можно было обосновать сходимость.

Доказательство сходимости существенно упрощается, когда удается установить, что количество дроблений для определения α_k конечно равномерно по k.

Лемма 3

Пусть функция $f: \mathbb{R}^n \to \mathbb{R}$ дифференцируема на \mathbb{R}^n , и ее производная липшицева на \mathbb{R}^n с константой $\ell > 0$. Тогда если для некоторых x^k , $d^k \in \mathbb{R}^n$ выполнено (7), то неравенство (6) имеет место для любого $\alpha \in (0, \bar{\alpha}_k]$, где

$$\bar{\alpha}_k = -\frac{2(1-\varepsilon)\langle f'(x^k), d^k \rangle}{\ell \|d^k\|^2} > 0.$$
 (8)

Если удается оценить сверху константу Липшица ℓ, то формула (8) может использоваться для явного вычисления подходящих параметров длины шага.

Доказательство

По формуле Ньютона–Лейбница для любого lpha>0

$$f(x^k + \alpha d^k) - f(x^k) - \langle f'(x^k), \alpha d^k \rangle =$$

$$= \int_0^1 \langle f'(x^k + t\alpha d^k) - f'(x^k), \, \alpha d^k \rangle \, dt \leqslant$$

$$\leq \alpha \|d^k\| \int_0^1 \|f'(x^k + t\alpha d^k) - f'(x^k)\| dt \leq$$

$$\leq \ell \alpha^2 \|d^k\|^2 \int_0^1 t \, dt = \frac{\ell}{2} \alpha^2 \|d^k\|^2.$$

Доказательство (завершение)

Тогда для любого $\alpha \in (0, \bar{\alpha}_k]$

$$f(x^k + \alpha d^k) - f(x^k) \leq \langle f'(x^k), \alpha d^k \rangle + \frac{\ell}{2} \alpha^2 ||d^k||^2 =$$

$$=\alpha\left(\langle f'(x^k),\,d^k\rangle+\frac{\ell}{2}\alpha\|d^k\|^2\right)\leqslant\varepsilon\alpha\langle f'(x^k),\,d^k\rangle,$$

а это и есть требуемое.

Если в предположениях этой леммы

$$\frac{\langle f'(x^k), d^k \rangle}{\|d^k\|^2} \leqslant \delta \tag{9}$$

при некотором $\delta < 0$, не зависящем от k, то

$$\bar{\alpha}_k \geqslant -\frac{2}{\ell}(1-\varepsilon)\delta,$$

а значит,

$$\alpha_k \geqslant \check{\alpha}$$

при некотором $\check{\alpha}>0$, не зависящем от k.

Если $d^k = -f'(x^k)$, то (9) выполняется автоматически при $\delta = -1$.

Правило постоянного параметра

Фиксируем не зависящее от k число $\bar{\alpha}>0$, и полагаем $\alpha_k=\bar{\alpha}$.

Это правило не может быть эффективным (отсутствует адаптация длины шага) и применяется только в тех случаях, когда вычисление значений целевой функции очень трудоемко.

Теоретический анализ методов с достаточно малым постоянным параметром длины шага сводится к анализу методов, использующих правило Армихо.

Существуют более изощренные практические правила выбора параметра длины шага.

Правило Голдстейна

Параметр $\alpha_k > 0$ выбирается из условия

$$\varepsilon_1 \leqslant \frac{f(x^k + \alpha d^k) - f(x^k)}{\alpha \langle f'(x^k), d^k \rangle} \leqslant \varepsilon_2$$
(10)

при фиксированных $\varepsilon_1, \, \varepsilon_2 \in (0, \, 1), \, \varepsilon_1 < \varepsilon_2$.

Левое неравенство — неравенство Армихо (6) при $\varepsilon = \varepsilon_1$; оно обеспечивает достаточное убывание значения целевой функции.

Правое неравенство препятствует выбору слишком малых параметров длины шага.

Другая реализация той же идеи:

Правило Вулфа

Параметр $\alpha_{\pmb{k}} > 0$ выбирается из условий

$$f(x^k + \alpha d^k) \leq f(x^k) + \varepsilon_1 \alpha \langle f'(x^k), d^k \rangle,$$
 (11)

$$\langle f'(x^k + \alpha d^k), d^k \rangle \geqslant \varepsilon_2 \langle f'(x^k), d^k \rangle.$$
 (12)

Левая часть (12) равна $\varphi'_k(\alpha)$, поэтому при выполнении (7) условие (12) означает, что величина $\varphi'_k(\alpha)$ не должна быть «слишком отрицательной».

Любой локальный минимум $arphi_{m k}$ на \mathbb{R}_+ удовлетворяет (12).

Если вычисление градиента функции f не слишком трудоемко, правило Вулфа признается наиболее эффективным известным правилом одномерного поиска.

Важное свойство этого правила связано с квазиньютоновскими методами.

Ключ к реализации: нарушение (11) говорит о том, что текущее пробное значение α нужно уменьшать, а нарушение (12) — что увеличивать.

Реализация правила Вулфа

Фиксируем параметры ε_1 , $\varepsilon_2 \in (0, 1)$, $\varepsilon_1 < \varepsilon_2$. Полагаем $\check{\alpha} = \widehat{\alpha} = 0$. Выбираем начальное пробное значение $\alpha > 0$.

- Проверяем выполнение неравенств (11) и (12). Если оба они выполнены, то переходим к п. б.
- ② Если нарушено (11), то полагаем $\widehat{\alpha} = \alpha$ и переходим к п. 5.
- \odot Если нарушено (12), то полагаем $\check{\alpha}=\alpha$.
- ① Если $\widehat{\alpha}=0$, то выбираем новое пробное значение $\alpha>\check{\alpha}$ («экстраполяция») и переходим к п. 1.
- **5** Выбираем новое пробное значение $\alpha \in (\check{\alpha}, \widehat{\alpha})$ («интерполяция») и переходим к п. 1.
- $\mathbf{0}$ Полагаем $\alpha_k = \alpha$.

Сначала реализуются шаги «экстраполяции», пока $\widehat{\alpha}$ не станет положительным.

Затем выполняются шаги «интерполяции»; при этом $\widehat{\alpha}$ может только уменьшаться, оставаясь положительным, а $\check{\alpha}$ — только увеличиваться, оставаясь меньше $\widehat{\alpha}$.

В отличие от правила Армихо, здесь начальное пробное значение α может увеличиваться.

Возможная реализация «экстраполяции» и «интерполяции»

Фиксируем параметры $\theta_1 > 1$, $\theta_2 \in (0, 1)$.

При «экстраполяции» заменяем α на $\theta_1 \alpha$, а при «интерполяции» полагаем $\alpha = (1 - \theta_2)\check{\alpha} + \theta_2\widehat{\alpha}$.

Лемма 4

Пусть функция $f: \mathbb{R}^n \to \mathbb{R}$ непрерывно дифференцируема и ограничена снизу на \mathbb{R}^n .

Тогда если для некоторых x^k , $d^k \in \mathbb{R}^n$ выполнено (7), то реализующая правило Вулфа процедура, в которой $\check{\alpha} \to +\infty$ в случае бесконечного числа шагов «экстраполяции», и $(\widehat{\alpha} - \check{\alpha}) \to 0$ в случае бесконечного числа шагов «интерполяции», будет конечной.

Методы спуска

В последнее время часто используются на практике

Методы с немонотонным одномерным поиском

При выборе α_k значение $f(x^k + \alpha_k d^k)$ сравнивается не с $f(x^k)$, а с максимальным (либо средним) значением функции f за некоторое фиксированное число предшествующих итераций.

Позволяют делать более длинные шаги, допуская даже увеличение значения целевой функции на некоторых итерациях.