Computer-Aided VLSI System Design Midterm Examination 2021. 11. 30

Instructions

This is a <u>CLOSED</u> book exam. The exam is to be completed in 180 minutes. If you need scratch paper, just use the blank parts of these pages; show all of your work on these pages. Before you start writing, please check if you have all 22 pages of the exam. Note that your raw score of this exam will be normalized to 100 points.

Score Board (to be filled by TAs)

100	Points	Score		Points	Score
Problem 1	24	23	Problem 6	22	22
Problem 2	10	10	Problem 7	12	12
Problem 3	12	12	Problem 8	26	25
Problem 4	12	12			
Problem 5	12	9	Total	130	125

1. Verilog (24pts)

1. You are given a different files and part of them are shown below. All of them represent a 7-bit adder design with 3 input 'in_1', 'in_2', 'clk' and an output 'out'. Determine the level of the following files. (Each block contains only one answer) (3pts)

	Register transfer level	Soft macro level	Gate level
ile number)	3	

File 1:

```
DFFQX1 out_reg_0_ ( .D(N0), .CK(c1k), .Q(out[0]) );
ADDFXL U8 ( .A(in_1[2]), .B(in_2[2]), .CI(n11), .CO(add_x_1_n2), .S(N2) );
```

```
File 2:
 always @(posedge clk) out <= in_1 + in_2;
```

File 3:

```
( .clear(1'b0), .preset(1'b0), .next_state(NO), .clocked_on(clk), .data_in(
1'b0), .enable(1'b0), .Q(out[0]), .synch_clear(1'b0), .synch_preset(1'b0),
.synch_toggle(1'b0), .synch_enable(1'b1));
ADD_UNS_OP add_6_S2 ( .A(in_1), .B(in_2), .Z({N3, N2, N1, N0}) );
```

2. Please complete the following table for different unsigned representation <size>'<base format><number>. (5pts)

	size	base format	number
7'5001 1010	17	d	26
16'hx1	16	ь	XXXXXXXXXXXXXX
9,0666	9	d	438
13	37	0	15
19'hbeaf	19	ь	000 1011 1/10 1010 1111

Please write down the corresponding Verilog odd (in whiteft call in according to the register array description (in the right column) (3pts)

Verilog code	4	description
A register array named MEM0 1byte words	with 2048 reg	[7:0] MEMO [0:2047
A register array named MEM1 1bit words	/18	IEM 1 [0:255];
Define a net named A_w whose byte. Etch a word in MEMO whose add	1	[7:0] A-w;
and assign the value to A_w.	dress is ASSIGN	AW= MEMO[349]

4. Please explain the definitions of 1ns and 100ps in the following Verilog code.

`timescale 1ns/100ps

100的最小的時間指揮使即最小的一單位為100ps NTU GIEE Computer-Aided VLSI System Design, Fall 2021 Simulation Period

Which of the following codes are synthesizable? Fill T if synthesizable or F if not. (5pts)

Codes	Synthesizable
wire [7:0] A; wire [2:0] B,C; assign A = B * (C + 1'b1);	T
reg [3:0] A; initial begin A = 4'd3; end	F
reg [2:0] A,B; always @(posedge clk) begin #(5) B = ~A; end	F
reg [2:0] A,B; always @(*) begin B = A << 2; end	T
wire [2:0] A; reg B; always @(*) begin B = &A	T
end	

6. What kinds of the data type of the variables in the following Verilog code be? You can ONLY answer with reg, wire or reg/wire. (2pts)

```
// variable declaration
... A;
... B;
... C;
... D;
assign A = B;
always @ (*) begin
    C = D;
end
```

A: WIFE

```
always @ (*) begin
C = D;
end
```

 The following codes are implementing a signed adder with a 4-bit signed input, 3-bit signed input and an 8-bit signed output. Please complete the two coding styles below. (2pts)

```
Explicit sign extension

wire [3:0] A; 4 bits

wire [2:0] B; 5 bits

wire [7:0] C; 8 bits

assign C = { [A[3]]], A} + { [558]]], B};

$signed()

wire [3:0] A;

wire [2:0] B;

wire [7:0] C;

assign C = 45 gwd (A) 4 gwd (B);
```

8. Please complete the according to the

module MI

 Please complete the module instantiation of the following Verilog code according to the specified port declaration method and description of the circuit behavior. (2pts)

```
module M1 (in2, in1, out);
input [1:0] in1;
input [1:0] in2;
output [3:0] out;

assign out = (in1 * 2) + in2;
endmodule
```


2. Finite State Machine and Simulation (10pts)

Given a Finite-State-Machine (FSM) as below. 50 out = 0in = 051 52 out = 0out = 1 0

(a) Please complete the Verilog code below according to the FSM in the above figure. Your code should be synthesizable and the inferred latch is not allowed. (8pts)

module FSM (clk, rst_n, in, out); input clk, rst_n, in; output out; parameter S0 = 2'b00, S1 = 2'b01, S2 = 2'b10; reg [1:0] state_r, state_w; // (1) next state logic always @ (*) begin case (state_r) So: Degin if (in) state- $w = S_2$; else state- $w = S_1$; end S1: begin

if (in) state-w= 5;

else state-w= 5; and

endcase else state-w= 51;

endcase else state-w= 51; default: state-w= 50% end

NTU GIEE Computer-Aided VLSI System Design, Fall 2021

8/22

11 (2) 01

assign (

(b) Please show the waveform for the circuit in part A. Suppose that the signal value state_r is reset to "S0" in the beginning and all the syntax error and functionality are correct. Use "xx" to indicate values that cannot be determined given the provided information. (2pts)

3. Translating RTL to Circuits (12 pts)

Please draw the corresponding circuits (in the right column) according to the section of the right column). You can use AND, OR, NAND, NOR, XOR Please draw the corresponding circuits (in the left column). You can use AND, OR, NAND, NOR, XOR, XNOR, XNOR NOT, MUX, D Flip-Flop, Latch, Shifter, Adder, Multiplier in the circuit diagram.

Please specify the input, output, and clock if DFF is used. And the input, output and enable if Latch is used. For example:

(c) Verilog Code

1f(rst)

e150

always

begin

TRATE COMMAND MOR THE CITCHER OF THE CHARLES OF THE

(c) Verilog Code (3pts)	Circuit Diagram
always @(posedge clk) begin if(rst) begin D <= 0; else begin if (E) D <= A * B + C; end end	E IN OR
(d) Verilog Code (3pts)	Circuit Diagram
always @(posedge clk) begin A <= D ~^ C; B <= ~(A & C); C <= B ^ A; D <= D + C; end	XNOR
DEF A DO	Din Duty B DFF DFF
	11/2

4. Architecture Improvement (12pts) Pipelining and Parallelizing are commonly used design techniques to improve

the throughput of the circuit. As shown in the figure below:

A. Please determine the latency and throughput for (a) Original, (b) Pipelining and (c) Parallelizing (Assuming 6 - 200 MAU-) (10mts) & MS

Latency	
(a) Original: cycles or O ns (b) Pipelining: cycles or 2 ns	
(c) Parallellain (f	
Throughput cycles or ns	
(a) Original: Ops/cycle 600 Monday 100	
ODS/CVCIP I VIOLE A COM	
c) Parallelizing (total output = {output1,output2}):	
Ops/cycle, 1200 MOps or 800 Mb/s	

B. Briefly explain the overhead of Pipelining and Parallelizing to improve the

Pipeline: to	首 pipeline	register area latency I
avalleling: I	曾加 area	

5. Formal Verification (12pts)

o inglos

Consider 3 properties and 4 patterns below. Please identify the patterns which are violated for each assertion.

- (a) assert_0: assert property (@(posedge clk) GntA == 0 (-> iBusy);
- (b) assert_1: assert property (@(posedge clk) GntA || GntB |-> ##[8:2] Busy); /
- (c) cov_0: cover property (@(posedge clk) GntA && (GntB); only A=1, B=3
- (d) cov_1: cover property (@(posedge clk) GntA && GntB |=> ffusy);

人出明不过

Fill in Pass/Fail in each block. (12pts)

	Pattern1	Pattern2	Pattern3	Pattern4
(a)	Pail	Fail	Pass	FOIT!
(b)	Pass	Pass	Puss	Fail
(c)	Fail	Fail	fait	Fait
(d)	Pass	Fail	PUSS	Fail

Consider the circuit and the delay information below. Answer the following questions.

Operation	\oplus	\otimes	
Min Delay (ns)	0.5	3.0	0.2
Max Delay (ns)	1.0	4.0	0.5

A. List all timing path under the corresponding type. (e.g. A -> S1/D) (5pts)

Type1: primary input to register

Type2: primary input to primary output

Type4: register to primary output

Following the circuit in 6.A, the registers' timing diagrams are shown below. $T_{co} = 0.5$ ns, and $T_{clkx} = 0.3$ ns are the same for every register. Assuming that T_{setup} (Setup Time) = 0.4ns, T_{hold} (Hold Time) = 0.1ns, and $D_A = D_B = 1.5$ ns (Input Delay), $D_c = D_0 = 1.5$ ns (Output Delay). The circuit operates at the clock frequency of 100MHz.

B. Check that whether there are setup time violations or not by showing if the related inequalities of each paths are satisfied. If setup time violation(s) occur, identify the violated path(s). (5pts)

occur, identify the violated path(s). (5pts)	AT
(Met) A > 51/D 10+0.3 -0.4 (Met) A > 51/D 10+0.3 -0.4 (Met) B > 54/D 10+0.3 -0.4 (Met) B > 54/D 10+0.3 -0.4 (Met) S/6/k > 54/D 10+0.3 -0.4 (Met) S/6/k > 51/D 10+0.3 -0.4 (Met) S/6/k > 51/D 10+0.3 -0.4 (Met) S/6/k > 6/D 10+1.3 -0.4 (Met) S/6/k > 6/D 10-1.5 (Met) S/6/c/c > D 10-1.5	7 1.5 7
No setyp vinktis	the state of the s

-55/0 -5	AT	hs are satisfied. (5pts)	hether there path	check that w
0.3+0.1 2 1.5+0.5 0.3+0.1 2 1.5+0.2+0.5 +3+0.5 0.3+0.1 2 1.5+0.2+0.5 +3+0.5 0.3+0.1 2 0.3+0.5 +0.5 0.3+0.1 2 0.3+0.5 +0.5 +3+0.5 0.3+0.1 2 0.3+0.5 +0.5 0.3+0.5 +0.5 +0.5 0.3+0.5 +0.5			y the violated paths	related inequ
03+0.1 0.3+0.1 0.3+0.1 0.3+0.5 0.3+0.5 0.3+0.5 0.3+0.5 0.3+0.5 0.3+0.5 0.3+0.5 0.3+0.5 0.3+0.5 0.3+0.5 0.3+0.5 0.3+0.5 0.3+0.5 0.3+0.5	1x + 3+ 0.5		0.3+0.1	occui, io
03+0.1 0.3+0.1 0.3+0.1 0.3+0.5 0.3+0.5 0.3+0.5 0.3+0.5 0.3+0.5 0.3+0.5 0.3+0.5 0.3+0.5 0.3+0.5 0.3+0.5 0.3+0.5 0.3+0.5	1.5+0.2+0.5+3+0.3		0.3 +3.1	(Mex) A79/0
0.3+0.1 2 0.3+0.5 +0.5 ->540 0.3+0.1 2 0.3+0.5 +0.5 +3+0.5 ->540 0.3+0.1 2 0.3+0.5 +0.5 ->540 0.3+0.1 2 0.3+0.5 +0.5 ->540 0.3+0.5 +0.5	15+1.2+0.5	1/		11/1/1991
-52/0 0.3+0.1 2 0.3+0.5+3+0.5 -52/0 0.3+0.1 2 0.3+0.5+0.5 -52/0 0.3+0.1 2 0.3+0.5	22+05+0.5	7	0.340.1	111111111111111111111111111111111111111
-55/0 0.3+3.1 2 0.3+3.5 + 3.5 -55/0 0.3+6.1 2 0.3+3.5 -1.5 2 0.3+3.5	0.710.7 (0)	16	0.3+0.	(May) B-7 >70
75% 0.340.5 + 0.5 75% 0.340.5 70 -1.5 2 0.340.5	0.340.5 + 0.5 + 570.5	(-	Mad / 5/6/16 -> >>/D
75×0 -1.5 2 0.3+0.5	0.3+0.5+0.5	ż		Ner) 9/1/2 -> 5/D
	0.3+8.5	2	and the same of th	11 8/1k 75/0
	0.3+0.5+0.2+0.5	,		el Stak > C -
-14	0.3+8.5	2	0.346.1	Ner) 8/1k -> 5/D Ner) 8/1k -> 5/D Ner) 8/1k -> C Ner) 8/1k -> C Ner) 8/1k -> D

D. If the circuit operates at the clock frequency of 125MHz, and other conditions are remained the same. Explain if there are timing violations in this circuit. If yes, identify the violated path(s). (7pts)

-> ons clock > =)	Set up time INT A
8+0-3-0.4	
	1.5+4+1
840.3-0.6 7	1.540.5+1+4+1
8+0.3-0.x x	1.5+3.5+1
J+0.3-0.4 7	0.3+0.5+1
8+0.3-0.16 7	0.3+0.5+1+4+1
8+0.3-0.4 7	0.3+0.5+1
8/15 7	0.3+0.5
8-1.5 7	0.3+0.5+1
8-1.5 7	0.3+0.5+1
	8+0·3-0.4 7 8+0·3-0.4 7 8+0·3-0.4 7 8+0·3-0.4 7 8+0·3-0.4 7 8-1.5 7

B 952/b violate set up time violation, no hold time violation 16/22

ans

7. Slack graph (12pts)

The figure below shows a combinational circuit with primary inputs. The delay of each input is 0.2ns and the delay of every gate is given on the gate (unit: ns). Assume the wire is ideal (no delay).

(a) Given the required time for all outputs are 4.0ns, fill the blanks on the form with corresponding arrival time, required time, and slack of every node.(10pts)

AT = Arrival Time, RT = Required Time

	AT = A	rrival Time, RT		(A)	(5)
Node	(1)	(2)	(3)	(4)	
AT (ns)	0.2	0.2	0.7	0.7	1.4
RT (ns)	1.5	0.7	1.	1.3	ns
Slack (ns)	1.1	0.5	5.9	1.1	1.1
Node	(6)	(7)	(8)	(9)	(10)
AT (ns)	0.6	2.0	0.6	3.5	29.
RT (ns)	1.1	25	1.7	4	4
lack (ns)	0.5	10.5	1.1	0.5	1.1

(b) Please indicate the critical path and show its slack values. (2pts)

ease indicate the critical part and
$$(7) \rightarrow (6) \rightarrow (7) \rightarrow (9)$$

$$4|ac|c \neq 0.5(ns)$$

8. Synthesis (26pts)

1. Please explain what is PVT condition considered in the synthesis. (1pt)

1.	please explain what is protection to the cell 的 速度	
	1 7 E Et mixes, Voltage, temperature,	
- I	在不同的解的設定之 Candition (PVT), 告訴 DC	
	FIDI OF THE OF THE STATE OF THE	١
1	現在信成的 operation condition	

2. For synthesis, designers are supposed to consider different PVT conditions. Assuming under the same P, please choose the corresponding V and T states for slow and fast corners, respectively. (2pts)

Condition	V L	T
Slow	High (Low)	High / Low
Fast	High / Low	High Low

3. Please explain why synthesis is constraint-driven and what is the meaning of the tradeoff between area and speed according to the following image. (1pt)

constraint-driven是指結定製程下、樣 designer要 area 或timing或power優先,告知DC, DC會往此設定進行后成 結定製程下, 速度越快, 面積越大, 速度越慢, 面積越小 18/22

4. What is the problem we may encounter when performing logic synthesis for the following circuit? (1pt) and how to avoid this situation? (1pt)

 Clock gating is a common measure for reducing dynamic power dissipation. Please explain what is the function of the <u>LATCH</u> in the following circuit figure. (1pt) And also <u>plot the waveforms of ENL and</u> <u>GCLK right on the figure</u>. (2pts)

EN是combinential/20p2 output,故可能會在 運算時產生glitch,而使用反向clk的latch,可以過源 EN,使這種不想要的glitch 消除,以免 GCLK有glitch

10/22

fast

- 6. Synopsys Design Constraints File (.sdc) specifies the design rule and Synopsys Design design of the following synthesis. Please write the commands might be optimization constraints for synthesis. Please write the commands might be optimization considered in the .sdc file to meet the following specification. The default unit for time is <u>ns</u>, for capacitance is <u>pf</u>. (13pts)
 - A. The operating condition for synthesis should include both slow and fast library for
 - B. The longest time to drive a pin and change its value is 0.2 ns (1pt) max and min condition (1pt)
 - C. The maximum capacitive load that an output pin can drive is 0.3 pf (1pt)
- D. This design is an ALU with a clock port clk_in with 50 MHz operating frequency (1pt)
- E. The delay information is considered as the following figure (2pts)

F. The clock has the property as the following figure (1pt)

- G. All flip-flops should meet the hold-time constraints (1pt)
- H. Clock tree synthesis will be built in the place and route stage, so the clock network cannot be re-buffered (1pt)
- I. Clock tree synthesis will be built in the place and route stage, so the clock network is considered with no delay (1pt)
- J. The clock latency is considered as 0.02*clock_cycle (1pt)
- K. The clock skew and jitter are considered as 0.2 ns and 0.3 ns (1pt)
- L. The optimization goal is to reduce the area as small as possible (1pt)

These are only example commands you may use, please choose the correct ones and modify them to meet the abovementioned specification. (you do not have to consider the commands for including library)

- 1. set period 10.0
- set_operating_conditions -max_library slow -max slow
- 3. create_clock -name clk -period 10.0
- set_dont_touch_network [get_clocks clk]
- S. set_ideal_network [get_clocks clk]
- 8. set fix hold [get_clocks clk]
- Z) set_clock_latency 0.5 [get_clocks clk]
- 8. set_clock_transition 0.1 [get_clocks clk]
- 9. set_max_transition 0.1
- 10. set_max_capacitance 0.1
- 11. set_input_delay 0.5 -clock clk [all_inputs]
- 12. set_output_delay 0.5 -clock clk [all_outputs]
- 13. set_clock_uncertainty 0.1 [get_ports clk]
- 14. set_load 0.5 [all_outputs]
- 15. set_drive 0.5 [all_inputs]
- 16. set_false_path -from {A} -through {C} -to {OUT}
- 17. set_max_delay 1 from [all_inputs] -to [all_outputs]
- 18. set_max_area 10
- A. St-operating-anditions-max-library slow-max slow-min-library fast -min fast
- B. Set_max-transition 0.2
- c. set_max_capacitance o.s
- D. create-clock -name clk_TN period zo.o
- E. Set_input_delay D.S clock olk_in [all-inputs] set-output-delay 1.25 -clock dk-in [all-shtputs]
- F. set-clock-transition 0.3 [get-clocks clk-in]
- G. get-fix-hold [get-clocks olk-in]
- H. set dont touch network [get chocks olle-in]
- I. set -ideal -nethork [get -clocks dkan]
- J. set-clock-latency 0.4 [get-clocks olk-m]
- K. Set_clock-uncertainty 0.5 [get-ports clk-in]
- L. set_max_avea

7. Please explain the meaning of standard delay file (.sdf) (1pt), and why we should add the following code into the testbench when performing gate level simulation. (1pt)

#sdf_annotate ("SDF_FILE_NAME", top_module_instance_name);

Soft 為 后成後,你的RTL design 的 gote level 槽的 時間資訊(、sdf是timing檔,对核在上) 因要把正確 timing juto 加入 simulation 才正確, 否

則他會拿tsmc、以的timing,但tsnc、、的timing都是default, 8. In synthesis stage for low power circuit design, we will use the following command to include both HVT (high-threshold voltage) and RVT (regularthreshold voltage) cells, please explain the advantage for this process. (2pts)

set_target_library "rvt.db hvt.db"

hvt.db ->使non-critical path power 无以少 rvt·db > 用在 critical path,使timing跨較快 design Est

timing