<pre>#Scalarer Optimierer mit Brent-Algo. res=optimize.minimize_scalar(f_1) print(res)> Gibt gleiches Ergebniss aus """ #Minimierung mithilfe von "Brent"</pre>	
minimizer_brent_f_1 = optimize.brent(f_1, brack=(-10,10), full_output= True) $\#Brack$ minimizer_brent_f_2 = optimize.brent(f_2, brack=(-10,10), full_output= True) $\#Brack$ $\#Output : (a,b,c,d)$ $mit = xmin$, $b=f(xmin)$, $c=Anzahl$ $der Iterationen$, $d=Anzahl$ $print(f'Minimierung der Funktion f_1(x) mithilfe von "Brent"-Algrithmus: Optimum print(f'Minimierung der Funktion f_2(x) mithilfe von "Brent"-Algrithmus: Optimum$	
<pre>#Minimierung mithilfe von "BFGS" minimizer_BFGS_f_1= optimize.minimize(f_1, x_0, method='BFGS') #Startwert x_0 minimizer_BFGS_f_2= optimize.minimize(f_2, x_0, method='BFGS') #Startwert x_0 #Ausgabe f_1 Ausgabe_BFGS_f_1=minimizer_BFGS_f_1 Ausgabe_BFGS_f_1=x_wert= str(Ausgabe_BFGS_f_1.x).strip('[]')</pre>	
<pre>Ausgabe_BFGS_f_1_f_werte=Ausgabe_BFGS_f_1.fun #Ausgabe f_2 Ausgabe_BFGS_f_2=minimizer_BFGS_f_2 Ausgabe_BFGS_f_2_x_wert= str(Ausgabe_BFGS_f_2.x).strip('[]') Ausgabe_BFGS_f_2_f_werte=Ausgabe_BFGS_f_2.fun</pre>	
<pre>print(f'Minimierung der Funktion f_2(x) mithilfe von "BFGS"-Algrithmus: Optimum b ''' Erklärungsabschnitt zum eigenen Verständnis über BFGS:</pre>	bei x={Ausgabe_BFGS_f_1_x_wert} und dem Funktionswert f(x)={Ausgabe_BFGS_f_1.fun}') beix={Ausgabe_BFGS_f_2_x_wert} und dem Funktionswert f(x)={Ausgabe_BFGS_f_2.fun}') rix> (n x n) - Näherungen gespeichert mit n=Anzahl Variablen , Line-Search in bestimmte Richtung
<pre>#Minimierung mithilfe von "L-BFGS-B" minimizer_L_BFGS_B_f_1= optimize.minimize(f_1,x_0,method='L-BFGS-B') #Startwert minimizer_L_BFGS_B_f_2= optimize.minimize(f_2,x_0,method='L-BFGS-B') #Startwert #Ausgabe Ausgabe_L_BFGS_f_1=minimizer_L_BFGS_B_f_1</pre>	
Ausgabe_L_BFGS_f_1_x_wert= str(Ausgabe_L_BFGS_f_1.x).strip('[]') Ausgabe_L_BFGS_f_2=minimizer_L_BFGS_B_f_2 Ausgabe_L_BFGS_f_2_x_wert= str(Ausgabe_L_BFGS_f_2.x).strip('[]') print(f'Minimierung der Funktion f_1(x) mithilfe von "L-BFGS-B"-Algrithmus: Optim	<pre>mum bei x={Ausgabe_L_BFGS_f_1_x_wert} und dem Funktionswert f(x)={Ausgabe_L_BFGS_f_1.fun}') mum bei x={Ausgabe_L_BFGS_f_2_x_wert} und dem Funktionswert f(x)={Ausgabe_L_BFGS_f_2.fun}') #Wert unterschiedlich ?</pre>
#Erklärungsabschnitt zum eigenen Verständnis über L-BFGS-B: #Limited-memory BFGS: Analog zu BFGS> Mithilfe von Inverser Hesse-Matrix> N	
Minimierung der Funktion $f_1(x)$ mithilfe von "Brent"-Algrithmus: Optimum bei x=-5. Minimierung der Funktion $f_2(x)$ mithilfe von "Brent"-Algrithmus: Optimum bei x=-2. Minimierung der Funktion $f_1(x)$ mithilfe von "BFGS"-Algrithmus: Optimum bei x=-5.0 Minimierung der Funktion $f_2(x)$ mithilfe von "BFGS"-Algrithmus: Optimum beix=-2.52 Minimierung der Funktion $f_1(x)$ mithilfe von "L-BFGS-B"-Algrithmus: Optimum bei x= Minimierung der Funktion $f_2(x)$ mithilfe von "L-BFGS-B"-Algrithmus: Optimum bei x=	.5209409400751377 und dem Funktionswert f(x)=-4.766829111587686 00000003 und dem Funktionswert f(x)=6.914540208852864e-16 2094096 und dem Funktionswert f(x)=-4.766829111587682 =-4.9999954 und dem Funktionswert f(x)=2.0772310584811207e-13
Brent-Algorithmus ist zur Bestimmung der Nullstelle, mithilfe einer Bisektion (Iterationssverfahren). BFGS ist ein Abstiegsverfahren, welches die 2.Ableitungen nutzt, um ein Optimum zu finden. Dabei	Erklärung wird die inverse Hesse-Matrix gelöst, um eine initalen Start zu ermöglichen. \$\$ L-BFGS-B ist ein Speicher limitierder Algorithmus basierend auf BFGS, sodass dieser ein unterschiedliches Ergebniss
<pre>produzieren kann. So ist die Minimierung von Funktion f_1(x) fast gleich, jedoch nicht für Funktion f_ from matplotlib import ticker #Werte für BFGS und L_BFGS-B als int abspeichern (dabei leider gerundet): x_BFGS_f_1_round= int(float(Ausgabe_BFGS_f_1_x_wert))</pre>	_2(x).
<pre>f_BFGS_f_1_round=int(float(Ausgabe_L_BFGS_f_1.fun)) x_BFGS_f_2_round= int(float(Ausgabe_BFGS_f_2_x_wert)) f_BFGS_f_2_round=int(float(Ausgabe_BFGS_f_2.fun)) x_L_BFGS_f_1_round= int(float(Ausgabe_L_BFGS_f_1_x_wert))</pre>	
<pre>f_L_BFGS_f_1_round=int(float(Ausgabe_L_BFGS_f_1.fun)) x_L_BFGS_f_2_round= int(float(Ausgabe_L_BFGS_f_2_x_wert)) f_L_BFGS_f_2_round=int(float(Ausgabe_L_BFGS_f_2.fun)) fig, (ax1,ax2) = plt.subplots(2,1, layout= "constrained")</pre>	
<pre>#Graph für Funktion f_1(x) ax1.set_title("Funktion f\$_{1}\$(x)") ax1.set_xlabel("x") ax1.set_ylabel("f(x)") #setup(ax1, title="StrMethodFormatter('{x:.3f}')")</pre>	
	Minimum des Brent-Algorithmus Minimum des BFGS-Algorithmus Minimum des L-BFGS-B-Algorithmus
#Graph für Funktion $f_2(x)$ ax2.set_title("Funktion $f_2(x)$ ") ax2.set_xlabel("x") ax2.set_ylabel("f(x)") ax2.plot(x, $f_2(x)$, label=r" $(x+3)^{2}$ - $(x+$	#Minimum des Brent-Algorithmus #Minimum des BFGS-Algorithmus
	#Minimum des BFGS-B-Algorithmus #Minimum des L-BFGS-B-Algorithmus
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
-10.0000 -7.5000 -5.0000 -2.5000 0.0000 2.5000 5.0000 7.5000 10.0000	
Funktion $f_2(x)$ 150 - $(x+3)^2 - 5\cos(5x)$ Brent $BFGS$ $L - BFGS - B$	
50 - 10.0 -7.5 -5.0 -2.5 0.0 2.5 5.0 7.5 10.0 x	
	Aufgabe 2.2 a = Faktor zwischen (0,1)> s(k+1)=theta * s(k) : d = Richtung mit : Es existiert mindestens ein d aus D D = Einheitsvektoren (positiv/negativ) für n Dimensionen
<pre>'Funktionen definieren' def f_a(x): return (x+5)**2</pre>	
<pre>def f_b(x): return (x+3)**2 - 5*np.cos(5*x) def f_c(x,y): return x**2 + y**2</pre>	
<pre>d=np.concatenate((np.identity(dim), np.negative(np.identity(dim))))</pre>	ahl der Iterationen zu printen, und getpath um ein Array des Weges zurückzugeben
<pre>if dim==1: #Dimensionen unterschiedlich definiert, da es sonst sp path=[[x0,s0,f(x0)]] for k in range(0,iters): #Definition der Kompasssuche f_old=f(x0) for d0 in d: f_current=f(x0 + s0 * d0)</pre>	päter beim Plotten Schwierigkeiten gab
<pre>if f_current< f_old:</pre>	
<pre>print("Iterationen: " + str(len(path)-1)+ ", \t Abstand zum Optimum: if getpath: return path else: return x0 else:</pre>	", end = " ")
<pre>path=[[x0,s0,f(x0[0],x0[1])]] for k in range(0,iters): f_old=f(x0[0],x0[1]) for d0 in d: x1=x0 + s0 * d0 f_current=f(x1[0],x1[1]) if f_current < f_old:</pre>	
<pre>x0=x0+s0*d0 path.append([x0,s0,f_current]) break if all(d0 == d[-1]): s0=theta*s0 if showit:</pre>	
<pre>print("Iterationen: " + str(len(path)-1)+ ", \t Abstand zum Optimum: if getpath: return path else: return x0</pre>	", end = " ")
'Betrachte alle möglichen Kombinationen aller Parameter' print(-5-kompasssuche(f_a,3,0.5,0.3,20,True)) print(-5-kompasssuche(f_a,9,0.5,0.3,20,True)) print(-5-kompasssuche(f_a,3,4,0.3,20,True)) print(-5-kompasssuche(f_a,9,4,0.3,20,True)) print(-5-kompasssuche(f_a,3,0.5,0.8,20,True))	
<pre>print(-5-kompasssuche(f_a,9,0.5,0.8,20,True)) print(-5-kompasssuche(f_a,3,4,0.8,20,True)) print(-5-kompasssuche(f_a,9,4,0.8,20,True)) print("Wähle für f_a die Parameter 3, 4, 0.3 für jeweils x0, s0 und theta \n") # print(2.521-kompasssuche(f_b,3,0.5,0.3,20,True)) print(2.521-kompasssuche(f_b,9,0.5,0.3,20,True))</pre>	#Auswahl aufgrund vom Abstand zum Optimum und Iterationsanzahl
<pre>print(2.521-kompasssuche(f_b,3,4,0.3,20,True)) print(2.521-kompasssuche(f_b,9,4,0.3,20,True)) print(2.521-kompasssuche(f_b,3,0.5,0.8,20,True)) print(2.521-kompasssuche(f_b,9,0.5,0.8,20,True)) print(2.521-kompasssuche(f_b,3,4,0.8,20,True)) print(2.521-kompasssuche(f_b,9,4,0.8,20,True))</pre>	
<pre>print("Wähle für f_b die Parameter 3, 0.5, 0.8 für jeweils x0, s0 und theta \n") print(np.linalg.norm(kompasssuche(f_c,[3,3],0.5,0.3,20,True))) print(np.linalg.norm(kompasssuche(f_c,[9,9],0.5,0.3,20,True))) print(np.linalg.norm(kompasssuche(f_c,[3,3],4,0.3,20,True))) print(np.linalg.norm(kompasssuche(f_c,[9,9],4,0.3,20,True))) print(np.linalg.norm(kompasssuche(f_c,[3,3],0.5,0.8,20,True)))</pre>	
<pre>print(np.linalg.norm(kompasssuche(f_c,[9,9],0.5,0.8,20,True))) print(np.linalg.norm(kompasssuche(f_c,[3,3],4,0.8,20,True))) print(np.linalg.norm(kompasssuche(f_c,[9,9],4,0.8,20,True))) print("Wähle für f_c die Parameter (3,3), 0.5, 0.3 für jeweils x0, s0 und theta \ print(np.linalg.norm(kompasssuche(f_d,[3,3],0.5,0.3,20,True)-(4.71,0)))</pre>	\n")
$ \begin{array}{l} \text{print}(\text{np.linalg.norm}(\text{kompasssuche}(f_d,[9,9],0.5,0.3,20,\text{True})-(4.71,0))) \\ \text{print}(\text{np.linalg.norm}(\text{kompasssuche}(f_d,[3,3],4,0.3,20,\text{True})-(4.71,0))) \\ \text{print}(\text{np.linalg.norm}(\text{kompasssuche}(f_d,[9,9],4,0.3,20,\text{True})-(4.71,0))) \\ \text{print}(\text{np.linalg.norm}(\text{kompasssuche}(f_d,[3,3],0.5,0.8,20,\text{True})-(4.71,0))) \\ \text{print}(\text{np.linalg.norm}(\text{kompasssuche}(f_d,[9,9],0.5,0.8,20,\text{True})-(4.71,0))) \\ \text{print}(\text{np.linalg.norm}(\text{kompasssuche}(f_d,[3,3],4,0.8,20,\text{True})-(4.71,0))) \\ \text{print}(\text{np.linalg.norm}(\text{kompasssuche}(f_d,[9,9],4,0.8,20,\text{True})-(4.71,0))) \\ \end{array} $	
print("Wähle für f_d die Parameter (3,3), 0.5, 0.8 für jeweils x0, s0 und theta \ Iterationen: 16,	vn")
Iterationen: 20, Abstand zum Optimum: [-4.] Iterationen: 2, Abstand zum Optimum: [0.] Iterationen: 10, Abstand zum Optimum: [0.21116662] Wähle für f_a die Parameter 3, 4, 0.3 für jeweils x0, s0 und theta Iterationen: 10, Abstand zum Optimum: [0.097487]	
Iterationen: 13, Abstand zum Optimum: [-2.3690995] Iterationen: 10, Abstand zum Optimum: [5.04195037] Iterationen: 11, Abstand zum Optimum: [5.04197655] Iterationen: 7, Abstand zum Optimum: [0.08428534] Iterationen: 12, Abstand zum Optimum: [-2.4118256] Iterationen: 4, Abstand zum Optimum: [6.27172] Iterationen: 5, Abstand zum Optimum: [6.25828]	
Wähle für f_b die Parameter 3, 0.5, 0.8 für jeweils x0, s0 und theta Iterationen: 12, Abstand zum Optimum: 0.0 Iterationen: 20, Abstand zum Optimum: 8.0 Iterationen: 14, Abstand zum Optimum: 0.004355777772109083 Iterationen: 15, Abstand zum Optimum: 0.013165348457219006	
Iterationen: 12, Abstand zum Optimum: 0.0 Iterationen: 20, Abstand zum Optimum: 8.0 Iterationen: 10, Abstand zum Optimum: 0.23841390591264072 Iterationen: 10, Abstand zum Optimum: 0.36898619408256955 Wähle für f_c die Parameter (3,3), 0.5, 0.3 für jeweils x0, s0 und theta Iterationen: 15, Abstand zum Optimum: 0.20376499999999975	
Iterationen: 20, Abstand zum Optimum: 6.368995211177349 Iterationen: 14, Abstand zum Optimum: 0.20225945242682733 Iterationen: 14, Abstand zum Optimum: 0.20176406665211793 Iterationen: 13, Abstand zum Optimum: 0.15237439999999935 Iterationen: 20, Abstand zum Optimum: 6.368995211177349 Iterationen: 11, Abstand zum Optimum: 0.5485688868323073	
Iterationen: 8, Abstand zum Optimum: 0.3088662746328251 Wähle für f_d die Parameter (3,3), 0.5, 0.8 für jeweils x0, s0 und theta 'Plotten aller Funktionen mit dem jeweiligen Weg der ausgewählten Kompasssuche'	
<pre>x=np.linspace(-10,10) y=np.linspace(-10,10) fig, (ax1,ax2) = plt.subplots(2,1, layout= "constrained") #Graph für Funktion f_a(x)</pre>	
ax1.set_title("Funktion $f_{a}^{(x)}(x)$ ") ax1.set_xlabel("x") ax1.set_ylabel("f_a(x)") #setup(ax1, title="StrMethodFormatter(' $\{x:.3f\}'$)") ax1.xaxis.set_major_formatter(ticker.StrMethodFormatter(" $\{x:.4f\}$ ")) ax1.plot(x, f_a(x), label=r" $\{x+5\}^{2}$ "); path_a=kompasssuche(f_a,3,4,0.3,20,False,True)	
k=0 print(path_a) for j in path_a: ax1.plot(j[0],j[2],"o"); ax1.text(j[0],j[2]+10,"x{}".format(k)) k=k+1	
<pre>ax1.legend() #Graph für Funktion f_2(x) x=np.linspace(2.2,3) ax2.set_title("Funktion f\$_{b}^{x}(x)") ax2.set_xlabel("x") ax2.set_xlabel("x")</pre>	
<pre>ax2.set_ylabel("f_b(x)") ax2.plot(x, f_b(x), label=r"\$(x+3)^{2} - 5\cos(5x)\$"); path_b=kompasssuche(f_b,3,0.5,0.8,20,False,True) k=0 for j in path_b: ax2.plot(j[0],j[2],"o"); ax2.text(j[0],j[2]+10,"x{}".format(k))</pre>	
<pre>k=k+1 ax2.legend() # Gitter zum Auswerten der Funktion erzeugen x = np.linspace(-5, 5, 101) y = np.linspace(-5, 5, 101)</pre>	
<pre>X, Y = np.meshgrid(x, y) Z = f_c(X,Y) # 3D-Plot erzeugen: Out[87]: In [88]: In [89]: fig = plt.figure() ax3 = plt.axes(projection='3d') ax3.set_title("Funktion f\$_{c}\$(x)") ax3.plot_surface(X, Y, Z)</pre>	
<pre>path_c=kompasssuche(f_c,[3,3],0.5,0.3,20,False,True) k=0 for j in path_c: ax3.plot(j[0][0],j[0][1],j[2],"o"); ax3.text(j[0][0],j[0][1],j[2]+10,"{}".format(k)) k=k+1</pre>	
<pre># Gitter zum Auswerten der Funktion erzeugen x = np.linspace(-6, 6, 101) y = np.linspace(-5, 5, 101) X, Y = np.meshgrid(x, y) Z = f_d(X,Y) # 3D-Plot erzeugen: Out[87]: In [88]: In [89]:</pre>	
<pre># 3D-Plot erzeugen: Out[87]: In [88]: In [89]: fig = plt.figure() ax4 = plt.axes(projection='3d') ax4.set_title("Funktion f\$_{d}\$(x)") ax4.plot_surface(X, Y, Z) path_d=kompasssuche(f_d,[3,3],0.5,0.8,20,False,True) k=0 for i in path d:</pre>	
<pre>for j in path_d: ax4.plot(j[0][0],j[0][1],j[2],"o"); ax4.text(j[0][0],j[0][1],j[2]+10,"{}".format(k)) k=k+1 plt.show()</pre>	
[[3, 4, 64], [array([-1.]), 4, array([16.])], [array([-5.]), 4, array([0.])]] Funktion f _a (x) 200 - (x+5) ²	
-10.0000 -7.5000 -5.0000 -2.5000 0.0000 2.5000 5.0000 7.5000 10.0000	
Funktion $f_b(x)$	
$ \begin{array}{c} (x+3)^2 - 5\cos(5x) \\ \hline \times 2x4x6x85x3x1 \end{array} $	
25 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 \times	
50	
40 30 20 10	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
60	
0 ₁₂₃₄	
2 4 6	

Blatt 02 - Praktische Optimierung - Adrian Lentz, Robert

\newline

\newline

Aufgabe 2.1

Lösungen und Erklärungen für Blatt 02.

Adrian Lentz - Matrikelnummer: 258882

In [3]: #Pakete importieren

In [4]: x=np.linspace(-10,10)

def f_1(x):
 return (x+5)**2

x_0=0

Robert Schönewald - Matrikelnummer: 188252

import numpy as np
import matplotlib.pyplot as plt
from scipy import optimize
from inspect import signature
import plotly.graph_objects as go

def f_2(x): #Def
 return (x+3)**2 - 5*np.cos(5*x)

#Startwert

#Definiert Funktion $f_1(x)$

#Definiert Funktion $f_2(x)$

Interpretation der Ergebnisse:

In der ersten Funktion wurden Parameter zufälligerweise sehr passend gewählt, sodass die Kompasssuche schnell vorbei war. Die zweite Funktion war deutlich schwieriger zu optimieren, da der gesuchte Wert nicht rational war. Im Weg der dritten Funktion sieht man, welche Achse zuerst betrachtet wurde. Nachdem auf dieser jedoch keine Verbesserung in positiver Richtung möglich war, wurde auf der nächsten Achse weitergesucht, bis schließlich das Optimum gefunden wurde. In der vierten Funktion sieht man sehr ähnliches Verhalten, es gibt wieder einen "Knick" in eine andere Richtung, nachdem dies nötig wurde.