IR Final Project

Yossip

R03725009 楊天怡 R03725031 施岱伶 R03725032 廖書菅 R03725039 林劭軒

1.Purpose

從前想要知道大眾對於名人的評 價可能要透過電話訪問,或是問卷調 查,也就是說想要得到大眾的回饋, 必須要主動去蒐集資訊、透過比較麻 煩的手段,耗費人力及時間才有辦法 做到。然而現今由於網路社群日益發 達,許多熱門的平台都提供大眾留言 評論的功能,可以藉由網路直接接觸 大眾對某個人事物真正想法及喜好程 度。所以我們希望藉由抽取部分社群 網站的評論,獲得第一手大眾對於名 人的評價及印象,以作為名人行銷時 的輔助工具。舉例來說,在歌手發行 新專輯、播出新 MV、或是電影偶像劇 推出時,製作商或經紀公司也許會想 要了解聽眾、觀眾對於該影片或影集 的評價,根據結果來決定下一步如何 進行行銷。

目前先將目標鎖定在歌手,而一個歌手的形象多半來自於他所發行的歌曲,所以我們選定 Youtube 作為分析的平台,藉由網友對影片的評論,來找出大眾對於該影片或該歌手的喜好程度,並了解他們在網友心目中的形象。尤其在發行 MV 新歌時,我們觀察到在 MV 底下引起熱議的留言多半精確地點出該歌曲或歌手的特色。

當然評論中也有很多和歌曲無關的評論,尤其是具爭議性的國內外歌手,例如蔡依林的新專輯中,評論包含兩岸議題、藍綠議題、以及中韓問題、釣魚台問題等等,當然也包括一些和她形象相近歌手的比較。因而發現一首歌、一位歌手可以牽涉這麼多層面的討論,對此我們將其視為未來可以列入考量的特色:各個不同歌手的特性與背景,會延伸出甚麼不同的問題?當一位歌手下方留言出現很多次另一位歌手的名子,是否兩位歌手之間有關聯?

2. Solution

從前段得知我們這次 project 的兩個目 標:

- 1. 找出明星在網友心目中的形象
- 2. 找出明星在網友中的喜好程度 而我們實作上的呈現方式為:
- (1) 找出關鍵字製作關鍵字雲

高點閱率影片會有較多網友參與評論,而做出來的結果也會較準確。因此我們選擇一些知名的國內外歌手,並挑選這些歌手在 Youtube 上高點閱率影片作為探討對象。我們的做法是擷取影片中的評論,經中英文不同的斷字方式後,利用 tf

來判斷該關鍵字的權重,製作成關鍵字雲。

※關鍵字權重不用 tf-idf 的原因在於 df 在這裡指得是在多少個影片評論出現,高的 df 值對於描述一位歌手是有利的;若是分析單一影片的話,也許 tf-idf 就是較適合的選擇。

(2) 分辨正負項評論

要找出喜好程度,除了使用者本身rating 外,我們希望能將留言分為正向評論及反向評論,然後計算出這個明星的評論正負值,以了解該明星在大眾心目中的聲望以及支持度。若是 Positive 指數很高,則代表大眾對於高明星的印象普遍較佳;若 Negative 指數很高,則代表有著較不好的印象與評價;若是分數趨近於 0,則可能是大眾對於該明星沒有特別的喜好程度,或是該明星是個具有爭議性的人物,導致每個人對他的觀感好壞差距甚遠。

Detail implementation

● 擷取評論(Python)

我們透過 Youtube 提供的 API,根據使用者給予的歌手名、前幾個搜尋結果和前幾個評論數值,用相對的 URL 得到 Youtube 產生的 Json。

※意思為從 Youtube 上挑選出搜尋某明星會跳出的前 n 個影片, 擷取影片下前 n 個受歡迎的評論 (n 由使用者決定)。

● 斷詞 (Python)

我們將中英文的歌手分開處理, 若為中文名字則自動使用中文方 式擷取;若歌手為英文名字則判 斷以英文的方式擷取評論。

中文斷詞:Jieba 組件,因為大陸 人開發,簡繁體都可以使用。 中文 stopword:選擇通用詞庫並 自行增加台灣較常使用的詞彙。 英文斷詞:根據空格擷取 terms, 但因關鍵字完整性未做 stemming。

英文 stopword:使用老師提供的 stopword,手動加入某些單字。

● **關鍵字雲(Javascript、Python)** 擷取評論後,後端 python 利用斷 字組件找出 terms,並刪除沒有意 義的 stopword,使用 tf 為指標排 序 terms 的重要性。

由後端將關鍵字 dictionary 丟置前端,經過排列的關鍵字由 d3.js (javascript 的 library)中的 d3-cloud 來接收 keyword list 並根據不同權重畫出對應的文字雲。

● 建立網頁介面

使用 Python 語言來撰寫 web 介面, 運用 Django 框架建 web。在使用 者 query 後會產生三個頁面: 關鍵 字雲、重要評論關鍵字及評論正 反分類。

● 留言分類

利用 Chinese corpus 正反面詞庫,並加入自行訓練的一些常用語言,判斷留言對於歌手是正面或反面的評價。中英文分別判斷。若留言中出現一次正片詞彙,則視為+1,一個負面詞彙則為-1,總和在除上留言總字數。依此判斷出該則留言的正負面分數總和。

Bubble chart

由 static json file 讀入已事先分析 過的部分歌手資訊,加入使用者 搜尋的歌手後,並利用 d3.js 套件 來製作 bubble chart。目前設定舊 有對照組是該歌手前 20 個影片的 所有評論。

● 建立行動版 APP

希望能夠建立一個更方便使用者 操作的介面。

使用 java android 來撰寫 APP,接收網頁端產生的圖。使用如下query:(q為歌手名,v為影片數,c為評論數,c=all 代表全部評論)http://ourIP/IRproject/forApp/?=q="nicki+minaj"&v=10&c=10

3. System outcomes

(1)網頁版

使用者可以自行輸入想要查詢的明星,並且可以設定想要搜尋的影片個數,以及留言個數。可以瀏覽關鍵字雲、 關鍵字權重以及留言分類。

關鍵字雲:權重大的關鍵字會比例較大,反之不重要的則越小

like	14	108	3.236
people	12	77	7.4621
just	11	56	7.5431
love	12	44	4264
don	11	43	5.792
make	10	38	6.6915
songs	10	34	5.9871
know	11	34	45798

query = nicki minaj, 15 videos, with each 20 comments.

留言分類:以長條圖呈現正面反面評論的比例,並以左右兩欄分別顯示分數前幾高的正面評論以及反面評論。

➤ Bubble chart:不同的歌手各自是一個 bubble, bubble 的大小代表該名歌手前 n 部影片的平均觀看次數(已存成靜態 JSON 檔供程式讀取),而 bubble 左右半圓分別按照比例顯示正反面評論數。可以比較搜尋的歌手與其他在線歌手的熱門和受歡迎程度。

(2) 行動版

使用者可以自行輸入想要查詢的明星,並且可以設定想要搜尋的影片個數, 以及留言個數。可瀏覽關鍵字雲,並 查看之前所查詢的紀錄。

起始介面

過去檢索 List View

Loading Animation

新增雲頁面

Word cloud

4. Conclusions

我們建立的這個系統,可以讓使 用者可以輕易地了解大眾對於明星的 印象,使用關鍵字雲可以一目了然甚 麼是對於明星最顯著的評價,不僅有 娛樂效果,也可以具有商業上的用 處。

在商業上,我們認為有以下幾個 運用及延伸

- ➤ 唱片公司的角度:一個歌手在發行唱片時最希望的就是能夠及時掌握大眾的喜好程度,本程式可以在 MV 放上 youtube 後,及時對於評論做出一個統計,並找出關鍵字,了解多數人對於新歌的想法。藉此可以找出後續的主打歌,或是調整 MV 的拍攝方式。
- 經紀公司的角度:可以透過此關鍵字雲或是評論分類,來判斷他們為此歌手打造的形象,是否有深植到大眾的心,或是是否討觀

- 眾的喜愛。若發現主打的形象與 評論中大眾口中的形象相差甚遠, 可以考慮是否要轉型,或是在該 方面做更多的包裝宣傳。
- 公司找產品代言人:即可利用本程式來了解該藝人在大眾心目中的形象,藉此來考量是否符合該產品想要給大眾的印象,此一人是否與產品的概念有所差距。
- 明星自我評估:藉此了解網路上對於他的評價如何,或是粉絲期待他的走向如何,可以依此做一些改善或調整,或是做為未來發展方向的一個參考。

Issue

- (1) 受限於斷字和中文本身文法問題, 我們對於中文的正反面判斷還無 法達到很好的精準度。而不論中英 文,反面評論的判斷誤判率比正面 高很多,例如:This song make me cry.會被分成反面評論,但實際上 並不是。
- (2) 選取關鍵字的方式單純從tf判斷可能不足,如何對關鍵字作排序可以根據分析的對象而有不同的方式。
- (3) 因 Youtube API 只顯示評論而未顯 示回覆評論的評論,在收集資訊上 可能因此漏掉一些資訊,另外排序 是按照評論回應數(但我們認為評 論本身按讚數也很重要)。

Future Work

(1) 根據中文邏輯讓中文斷字更加精 準,而英文考量到評論有些有趣的 片語型關鍵字,也應嘗試除了空格 外的斷字方法。

- (2) 目前都沒有針對關鍵字詞性作分析,如果能夠判斷每個字的詞性,不管是正反面詞彙的記分和尋找關鍵字都會有幫助。正反面詞彙可能因為前面的副詞而有更多的權重,或是根據該字出現的位置記分也可能有所不同。(如:doping as f*ck 這類的評論會被歸為負面)
- (3) 因考量到使用者的某些用字習慣, 評論使用的字通常都是流行語,有 很多反諷的用法,或者該字已經演 變成別的意思,這種情況下字典必 須有所調整。
- (4) 歌手常常被互相比較,Youtube 下方的評論很容易成為"戰場",當某位歌手一直在另一位歌手影片下方出現,代表兩位歌手可能有相似之處(或誹聞),這對於分析某位歌手也是個有利的資訊。(可以用cosine similarity 之類的方法來分析相似度)
- (5) 未使用資料庫存取資料而是等使 用者下query後才去分析JSON檔, 可能較不穩定且速度較慢(但訊息 即時)。為了增加效能,除了修改 程式外也可以嘗試透過其他方式 存取資料。

5. Member's workload

廖書萱	App 圖片設計、字庫分類、上台報告
林劭軒	擷取評論、關鍵字雲、評論分類、網 頁技術
楊天怡	文件、語意字庫分類整理、上台報告
施岱伶	Android APP 製作、App Demo

6. References

[1] Jieba, https://github.com/fxsjy/jieba
[2] Word_cloud,

https://github.com/amueller/word_cloud
[3]D3-cloud,

https://github.com/jasondavies/d3-cloud [4]D3 bubble chart,

http://bl.ocks.org/mbostock/4063269

[5]D3 bubble chart example,

http://www.nytimes.com/interactive/201 2/09/06/us/politics/convention-word-counts.html?_r=0

[6] Chinese corpus, sentiment analysis' data

https://github.com/chagge/chinese-corpus/tree/master/emotion-dic/sentiment

[7] English corpus, twitter sentiment analysis' data

https://github.com/jeffreybreen/twitter-s entiment-analysis-tutorial-201107/tree/m aster/data/opinion-lexicon-English

[8] Django Girls 學習指南,

http://djangogirlstaipei.gitbooks.io/djang o-girls-taipei-tutorial/content/

[9] Android github:

https://github.com/iLanguage/iLanguage/eCloud