Bi-invariant metric on compact Lie groups

Shing Tak Lam

July 10, 2023

1 Metrics on Lie groups

Let G be a Lie group, g be a metric on G.

Definition 1.1 ({left, right, bi-} invariant)

g is left invariant if $\ell_a^*g=g$ for all $a\in G$. That is, for all $a,b\in G$, $u,v\in T_bG$,

$$g_b(u, v) = g_{ab}(d_b\ell_a(u), d_b\ell_a(v))$$

We can define right invariant similarly. q is bi-invariant if it is both left and right invariant.

Proposition 1.2. There is a 1-1 correspondence

{left invariant metrics on G} \leftrightarrow {inner products on \mathfrak{g} }

Proof. Any left invariant metric must satisfy

$$g_a(u, v) = g_e(d_a \ell_{a^{-1}}(u), d_a \ell_{a^{-1}}(v))$$

Conversely, given an inner product g_e on \mathfrak{g} , the above formula defines a left invariant metric on G.

2 Bi-invariant metrics

Recall the adjoint representation of a Lie group is Ad : $G \to GL(\mathfrak{g})$, defined by

$$\mathsf{Ad}_a = \mathsf{d}_e(r_{a^{-1}} \circ \ell_a) = \mathsf{d}_a r_{a^{-1}} \circ \mathsf{d}_e \ell_a$$

Definition 2.1 (Ad-invariant)

An inner product on \mathfrak{g} is Ad-invariant if Ad_a is an isometry for all $a \in G$. That is,

$$\langle \operatorname{Ad}_a(u), \operatorname{Ad}_a(v) \rangle = \langle u, v \rangle$$

Proposition 2.2. There is a 1-1 correspondence

 $\{bi-invariant metrics on G\} \leftrightarrow \{Ad-invariant inner products on \mathfrak{g}\}$

Proof. It is clear that any bi-invariant metric g will give an Ad-invariant inner product g_e on \mathfrak{g} . Conversely, suppose g_e is an Ad-invariant inner product on \mathfrak{g} . Define g as in the left invariant case. Then it is easy to check that g is also right invariant.

3 Haar measure and Weyl's unitary trick

This section is all from Part II Representation Theory.

Theorem 3.1 (Haar measure). Let G be a compact group, then there exists a unquie regular Borel measure μ which is

- (i) translation invariant, i.e. $\mu(qX) = \mu(X) = \mu(Xq)$ for any measurable set X,
- (ii) regular, i.e.

$$\mu(X) = \inf \{ \mu(U) \mid X \subseteq U, U \text{ open} \} = \sup \{ \mu(K) \mid K \subseteq X, K \text{ compact} \}$$

(iii) normalised, i.e. $\mu(G) = 1$.

In the remainder of this section, G is a compact Lie group, μ is the Haar measure on G.

Corollary 3.2. In particular, for $y \in G$, $f \in L^1(\mu)$,

$$\int_{G} f(\gamma x) d\mu(x) = \int_{G} f(x) d\mu(x) = \int_{G} f(x\gamma) d\mu(x)$$

Recall that if $\rho: G \to \operatorname{GL}(V)$ is a representation, an inner product on V is G-invariant if $\langle \rho(\gamma)x, \rho(\gamma)y \rangle = \langle x, y \rangle$ for all $x, y \in V$, $\gamma \in G$.

Theorem 3.3 (Weyl's unitary trick). Let G be a compact Lie group. Then for every representation $\rho: G \to GL(V)$, there exists a G-invariant inner product on V.

Proof. First, fix any inner product (\cdot, \cdot) on V. Now define

$$\langle u, v \rangle = \int_C (\rho(\gamma)u, \rho(\gamma)v) d\mu(\gamma)$$

Using translation invariance of the integral, it follows that $\langle \cdot, \cdot \rangle$ is *G*-invariant.

4 Bi-invariant metrics on compact Lie groups

Theorem 4.1. Let $\rho: G \to \operatorname{GL}(V)$ be a representation of G. Then there exists a G-invariant inner product on V if and only if $\overline{\rho(G)} \subseteq \operatorname{GL}(V)$ is compact.

Proof. If there exists a G-invarant inner product, then each $\rho(\gamma)$ is an isometry. Hence we have that $\rho(G) \subseteq O(V, \langle \cdot, \cdot \rangle)$. As $O(V, \langle \cdot, \cdot \rangle)$ is compact, we have that $\overline{\rho(G)}$ is compact.

Conversely, if $H = \rho(G)$ is compact, then it is a compact subgroup of GL(V). Consider the inclusion representation $H \hookrightarrow GL(V)$. Therefore, we have an H-invariant inner product on V. But if $f = \rho(\gamma) \in H$, then

$$\langle \rho(\gamma)u, \rho(\gamma)v \rangle = \langle f(u), f(v) \rangle = \langle u, v \rangle$$

So $\langle \cdot, \cdot \rangle$ is *G*-invariant.

Corollary 4.2. Let G be a Lie group. Then an inner product $\langle \cdot, \cdot \rangle$ on \mathfrak{g} induces a bi-invariant metric on G if and only if $\overline{\mathrm{Ad}(G)}$ is compact. In particular, every compact Lie group admits a bi-invariant metric.

Finally, recall the adjoint representation of \mathfrak{g} is ad : $\mathfrak{g} \to \mathfrak{gl}(\mathfrak{g})$, ad = d_e Ad. More explicitly, ad_x(y) = [x, y]. Then we have the following:

Proposition 4.3. An inner product $\langle \cdot, \cdot \rangle$ on \mathfrak{g} induces a bi-invariant metric on G if and only if for all $u, v, w \in \mathfrak{g}$,

$$\langle \operatorname{ad}_{u}(v), w \rangle = - \langle v, \operatorname{ad}_{u}(w) \rangle$$

if and only if

$$\langle [x, y], z \rangle = \langle x, [y, z] \rangle$$

for all $x, y, z \in \mathfrak{g}$.

Lemma 4.4. A Lie group is simple if and only if the adjoint representation Ad : $G \to GL(\mathfrak{g})$ is irreducible.

Proposition 4.5. Suppose G is a simple Lie group, then the bi-invariant metric on G is unique up to scaling, if it exists.

Proof. By Schur's lemma?