

Association Rule Mining

Association Rule Mining

- Association Rules and Frequent Patterns
- Frequent Pattern Mining Algorithms
 - Apriori
 - FP-growth
- Correlation Analysis

Association Rules

- A Frequent pattern is a pattern (a set of items) that occurs frequently in a data set.
- Motivation: Finding inherent regularities (associations) in data.
- Forms the foundation for many essential data mining tasks:
 - Association, correlation, and causality analysis
 - Classification: associative classification
 - Cluster analysis: frequent pattern-based clustering
- Extended to many different problems: graph mining, sequential pattern mining, times series pattern mining, text mining...

Association Rules

- An item (*I*) is:
 - For market basket data: *I* is an item in the store, e.g. milk.
 - For relational data: *I* is an attribute-value pair (numeric attributes should be discretized), e.g. salary=high, gender=male.
- A pattern (P) is a conjunction of items: $P = I_1 \wedge I_2 \wedge ... I_n$ (itemset)
- Pattern P' is subpattern of P if $P' \subset P$
- A rule R is $A \Rightarrow B$ where A and B are disjoint patterns.
- Support $(A \Rightarrow B) = P(A \cup B)$
- Confidence $(A \Rightarrow B) = P(B|A) = \text{posterior probability}$

Association Rules

- Framework: find all the rules that satisfy both a minimum support (min_sup) and a minimum confidence (min_conf) thresholds.
- Association rule mining:
 - Find all frequent patterns (with support \geq min_sup).
 - Generate strong rules from the frequent patterns.
- The second step is straightforward:
 - For each frequent pattern p, generate all nonempty subsets.
 - For every non-empty subset s, output the rule $s \Rightarrow (p s)$ if conf = $\sup(p)/\sup(s) \ge \min_\text{conf}$.
- The first step is much more difficult. Hence, we focus on frequent pattern mining.

Example for market basket data

- Items = A,B,C,D,E,F
- Transactions:

Transaction-id	Items bought
10	A, B, D
20	A, C, D
30	A, D, E
40	B, E, F
50	B, C, D, E, F

Let

$$min_sup = 60\% (3 txn)$$

 $min_conf = 50\%$

$$A \rightarrow D (60\%, 100\%)$$

$$D \rightarrow A (60\%, 75\%)$$

Example for relational data

- 1. Dataset: 200 patients
- 2. Smoking = T: subpatterb = super-group
- 3. Smoking = $T \land Family history = T$ (100 patients)
- 4. Smoke = T ∧ Family history = T ⇒ Lung cancer (60 patients)

Rule: Smoke = $T \land Family history = T \Rightarrow Lung cancer = T$

- sup (Smoke = T \wedge Family history = T \wedge Lung cancer = T) = 60/200 = 30%
- conf (Smoke = T \land Family history = T \Rightarrow Lung cancer = T) = 60/100 = 60%

Frequent Pattern Mining

Scalable mining methods: Three major approaches:

- Apriori [Agrawal & Srikant 1994]
- Frequent pattern growth (FP-growth) [Han, Pei & Yin 2000]
- Vertical data format approach [Zaki 2000]

- The Apriori property:
 - Any subset of a frequent pattern must be frequent.
 - If {beer, chips, nuts} is frequent, so is {beer, chips},
 i.e., every transaction having {beer, chips, nuts} also contains {beer, chips}.
- Apriori pruning principle: If there is any pattern which is infrequent, its superset should not be generated/tested!
- Method (level-wise search):
 - Initially, scan DB once to get frequent 1-itemset
 - For each level k:
 - * Generate length (k+1) candidates from length k frequent patterns
 - * Scan DB and remove the infrequent candidates
- Terminate when no candidate set can be generated

$min_sup = 2$

1. Database		
Tid	Items	
10	A, C, D	
20	B, C, E	
30	A, B, C, E	
40	B, E	

2. <i>C</i> ₁	
Itemset	sup
{A}	2
{B}	3
{C}	3
$\{D\}$	1
{E}	3

3. <i>L</i> ₁		_
Itemset	sup	
{A}	2	
{B}	3	
{C}	3	
{E}	3	

4. C_2
Itemset
$\overline{\{A, B\}}$
{A, C}
{A, E}
{B, C}
$\{B, E\}$
{C, E}

5. C_2	
Itemset	sup
{A, B}	1
$\{A, C\}$	2
$\{A, E\}$	1
$\{B, C\}$	2
$\{B, E\}$	3
{C, E}	2

6. L ₂	
Itemset	sup
{A, C}	2
{B, C}	2
$\{B, E\}$	3
{C, E}	2

7. <i>L</i> ₃	
Itemset	sup
{B, C, E}	2

\rightarrow	8. <i>C</i> ₃	
	Itemset	
	{B, C, E}	

- Candidate generation: Assume we are generating k+1 candidates at level k
 - Step 1: self-joining two frequent k-patterns if they have the same k-1 prefix
 - Step 2: pruning: remove a candidate if it contains any infrequent *k*-pattern.
- Example: $L_3 = \{abc, abd, acd, ace, bcd\}$
 - Self-joining: $L_3 \times L_3$
 - * abc and $abd \Rightarrow abcd$
 - * acd and $ace \Rightarrow acde$
 - Pruning:
 - * acde is removed because ade is not in L_3
 - $C_4 = \{abcd\}$

The bottleneck of *Apriori*:

- Huge candidate sets:
 - To discover a frequent 100-pattern, e.g., $\{a_1, a_2, \dots, 100\}$, one needs to generate $\binom{100}{1} + \binom{100}{2} + \dots + \binom{100}{100} \approx 10^{30}$ candidates!
- Multiple scans of database:
 - Needs (n + 1) scans, n is the length of the longest pattern.

Can we avoid candidate generation?

FP-growth

- The FP-growth algorithm: mining frequent patterns without candidate generation [Han, Pei & Yin 2000]
- Compress a large database into a compact Frequent-Pattern tree (FP- tree) structure
 - highly condensed, but complete for frequent pattern mining
 - avoid costly database scans
- Develop an efficient, FP-tree-based frequent pattern mining method
 - A divide-and-conquer methodology: decompose mining tasks into smaller ones
 - Avoid candidate generation: sub-database test only!

FP-growth

- FP-growth is faster than Apriori because:
 - No candidate generation, no candidate test
 - Use compact data structure
 - Eliminate repeated database scan
 - Basic operation is counting and FP-tree building (no pattern matching)
- Disadvantage: FP-tree may not fit in main memory!

Correlation analysis

- Association rule mining often generates a huge number of rules, but a majority of them either are redundant or do not reflect the true correlation relationship among data objects.
- Some strong association rules (based on support and confidence) can be misleading.
- Correlation analysis can reveal which strong association rules are interesting and useful.

Correlation analysis

Contingency table

	Basketball	Not basketball	Sum (row)
Cereal	2000 (40%)	1750 (35%)	3750 (75%)
Not cereal	1000 (20%)	250 (5%)	1250 (25%)
Sum(col.)	3000 (60%)	2000 (40%)	5000 (100%)

- play basketball \Rightarrow eat cereal [40%, 66.7%] is misleading
 - The overall % of students eating cereal is 75% > 66.7%.
- *play basketball* ⇒ *not eat cereal* [20%, 33.3%] is more accurate, although with lower support and confidence

$$lift(A \Rightarrow B) = \frac{P(A \cup B)}{P(A)P(B)} = \frac{P(B|A)}{P(B)}$$

Correlation analysis: Lift score

- Lift = $1 \Rightarrow A \& B$ are independent
- Lift $> 1 \Rightarrow A \& B$ are positively correlated
- Lift $< 1 \Rightarrow A \& B$ are negatively correlated

	Basketball	Not basketball	Sum (row)
Cereal	2000 (40%)	1750 (35%)	3750 (75%)
Not cereal	1000 (20%)	250 (5%)	1250 (25%)
Sum(col.)	3000 (60%)	2000 (40%)	5000 (100%)

lift(basketball
$$\Rightarrow$$
 cereal) = $\frac{2000/5000}{3000/5000 \times 3750/5000} = 0.89$
lift(basketball $\Rightarrow \neg \text{cereal}$) = $\frac{1000/5000}{3000/5000 \times 1250/5000} = 0.89$

Correlation analysis: χ^2 test

- Lift calculates the correlation value, but we could not tell whether the value is statistically significant.
- Pearson Chi-square is the most common test for significance of the relationship between categorical variables

$$\chi^2 = \sum \frac{(O(r) - E(r))^2}{E(r)}$$

• If this value is larger than a cutoff value at a significance level (e.g. at 95% significance level), then we say all the variables are dependent (correlated), else we say all the variables are independent.

Correlation Analysis disadvantages

Problem: Evaluate each rule individually!

- Coronary heart disease: Pr(CHD)=30%
- R2: Family history = yes ∧ Race = Caucasian ⇒ CHD [sup=20%, conf=55%]
- R2 is interesting!
- R1: Family history = yes \Rightarrow CHD [sup=50%, conf=60%]
- R2 is not interesting!

We should consider the nested structure of the rules!

Constraint-based Mining

- Finding all the patterns in a database autonomously? unrealistic!
 - The patterns could be too many but not focused!
- Data mining should be an interactive process
 - User directs what to be mined using a data mining query language (or a graphical user interface).
- Constraint-based mining
 - User flexibility: provides constraints on what to be mined
- Specify the task relevant data, the relevant attributes, rule templates, additional constraints ...
 - System optimization: explores such constraints for efficient mining constraint-based mining.

Constraint-based Mining

- Anti-monotonic constraints are very important because they can greatly speed up the mining process.
- Anti-monotonicity exhibit an Apriori-like property:
 - When a pattern violates the constraint, so does any of its superset
 - $sum(S.Price) \le v$ is anti-monotone
 - sum(S.Price) *ge* v is not anti-monotone
- Some constraints can be converted into anti-monotone constraints by properly ordering items
 - Example : $avg(S.profit) \ge 25$
- Order items in value-descending order, it becomes anti-monotone!