Préparation de données pour le ML en Spark

Mohamed-Amine Baazizi

mohamed-amine.baazizi@lip6.fr

December 2024

The data journey

Big data meets Machine learning

Sculley et al. Hidden. Technical Debt in Machine Learning Systems. NIPS 2015

A typical ML pipeline

Why a Spark-based solution?

- Streamlined integration with data-prep pipeline
- Distributed processing
 - Manage large datasets
 - Parallel training large set of parameters
- Native Stream processing
 - Prediction in continuous for unseen data
- Main-memory and caching capabilities
- Existence of High-level APIs (e.g. Dataset)
 - backed with highly efficient lower API e.g. RDD

Spark Machine Learning Library

- Largely inspired by / relying on existing centralized libraries
 - Feature extraction, transformation and selection from Sikcit-Learn
 - Natlib library ...
- Two layers
 - A Dataset-based library exposed to the end-user
 - An RDD-based library encapsulating major alogrithm
- Model selection and tuning
 - Grid search, cross validation

Feature extraction, transformation and selection

- Real data uses a rich set of types
 - text, number, booleans, timestamps, ...
- ML algorithms expect numeric data
 - Ex. libsym
- Encoding real data may be challenging
 - Fixing/cleaning dirty data, deal with missing values, outliers
 - Collect additional data
 - Decide whether a feature is categorical or continuous
- Model inference (and prediction) quality relies on the data quality
 - Recall the garbage-in garbage-out principle

Spark ML main ingredients

- Transformer
- Transformer
- Create features or perform prediction (using a trained model)
- Invoke transform()
- Ex. feature transformation:
 - Input: Dataframe with n columns of numbers -> a dataframe with one column of ndimensional vectors
- Ex. prediction
 - Input: Dataframe with a features vector -> the input dataframe augmented with predictions column
- Estimator

- trains an ML model on the data (ex. logistic regression)
- Invoke fit()

Spark ML main ingredients

Parameter

- A uniform class for describing parameters passed to an estimator or extracted from a transformer
- Ex. for decision tree inference: the number of nodes, the selection criterion (info gain or Gini index), ..

Pipeline

- Sequence of stages performing a specific ML algorithm
- A stage = either an estimator or a transformer
- Usually Linear, DAG are also possible (specified using a topological order)

• Evaluator

• Several metrics (MAE, RMSE, ...)

Spark ML Data model

- Builds on the Dataset
 - Basic types: boolean, numeric (integer, decimal, ...), String, null, timestamp
 - Complex types: arrays, structures, maps
 - User-defined types
- Support for the Vector type
 - Part of the org.apache.spark.ml.linalg package
 - Seen as a UDT
 - An n-dimensional structure of *Doubles*
 - Possibility to use the **dense** or the **sparse** variant
 - And to convert dense to spare or vice versa

Dense vs Sparse Vectors

- Dense
 - Sequence of values [v1, v2,]
 - E.g [0,1,3,0]
- Sparse
 - Optimized storage by storing non-0 values only!
 - Only interesting when the ratio of 0-values is very high
 - Tuple (s, I, V) indicating
 - s = the vector size
 - I = a sequence indicating the indices of non-0 values as per a dense vector
 - V = the sequence of non-0 values
 - E.g (4, [1,2], [1,3]) encodes [0,1,3,0]

Spark ML algorithms

- Common algorithms for supervised and unsupervised learning
- Classification
 - Tree-based family: decision tree, random forest, gradient-boosted
 - Linear SVM, logistic regression, ...
- Regression
 - Linear regression
 - Tree-based (same as above for regression)
- Clustering
 - K-means, LDA, ..
- Frequent pattern mining

Case study: decision tree inference

Original data

				_
age	income	student	credit_rating	buys_computer
young	high	no	fair	no
young	high	no	excellent	no
middle	high	no	fair	yes
senior	medium	no	fair	yes
senior	low	yes	fair	yes
senior	low	yes	excellent	no
middle	low	yes	excellent	yes
young	medium	no	fair	no
young	low	yes	fair	yes
senior	medium	yes	fair	yes
young	medium	yes	excellent	yes
middle	medium	no	excellent	yes
middle	high	yes	fair	yes
senior	medium	no	excellent	no

Training data set: Who buys computer?

Adapted from
Data Mining: concepts and techniques by

J.Han, M. Kamber et J. Pei

Case study: decision tree inference

Original data

age	income	student	credit_rating	buys_computer
young	high	no	fair	no
young	high	no	excellent	no
middle	high	no	fair	yes
senior	medium	no	fair	yes
senior	low	yes	fair	yes
senior	low	yes	excellent	no
middle	low	yes	excellent	yes
young	medium	no	fair	no
young	low	yes	fair	yes
senior	medium	yes	fair	yes
young	medium	yes	excellent	yes
middle	medium	no	excellent	yes
middle	high	yes	fair	yes
senior	medium	no	excellent	no

Encoded features (what Spark ML expects)

```
-- features: vector (nullable = true)
 |-- indexed_label: double (nullable = false)
         features | indexed_label |
[[1.0,1.0,0.0,0.0]]
                           1.0
[[1.0,1.0,0.0,1.0]]
                        1.0
[2.0,1.0,0.0,0.0]
                           0.0
       (4,[],[])
                           0.0
[0.0,2.0,1.0,0.0]
                           0.0
[0.0,2.0,1.0,1.0]
                           1.0
[2.0,2.0,1.0,1.0]
                           0.0
   (4,[0],[1.0])|
                           1.0
[[1.0,2.0,1.0,0.0]]
                           0.0
   (4,[2],[1.0])
                           0.0
[[1.0,0.0,1.0,1.0]]
                           0.0
[2.0,0.0,0.0,1.0]
                           0.0
[2.0,1.0,1.0,0.0]
                           0.0
    (4,[3],[1.0])
                                            13
```

Case study: decision tree inference rector (nullable = true)

String Indexer

- Maps a column of strings to a column of longs corresponding to indices from [0, numLabels[
- 4 ordering options:
 - Descending or ascending combined with frequency or alphabetical
- 3 possible outcomes for unseen labels:
 - Raise exception (default)
 - Skip row
 - Keep row with label = numLabels
- Behavior with missing values
 - to setHandleInvalid()

String Indexer illustrated

age	income	student	credit_rating	buys_computer
young	high	no	fair	no
young	high	no	excellent	no
middle	high	no	fair	yes
senior	medium	no	fair	yes
senior	low	yes	fair	yes
senior	low	yes	excellent	no
middle	low	yes	excellent	yes
young	medium	no	fair	no
young	low	yes	fair	yes
senior	medium	yes	fair	yes
young	medium	yes	excellent	yes
middle	medium	no	excellent	yes
middle	high	yes	fair	yes
saninr	medium	- 00	avrellent	no

data.csv

train an estimator based on the frequencies

age: string income: string student: string

credit_rating: string

label: string

schema

age	Count(*)	Label
Senior	5	0.0
Young	5	1.0
Middle	4	2.0

age i	ncome st	udent cr	edit_rating	label	indexed_age
young	high	no	fair	no	1.0
young	high	no	excellent	no	1.0
middle	high	no	fair	yes	2.0
senior me	edium	no	fair	yes	0.0
senior	low	yes	fair	yes	0.0
senior	low	yes	excellent	no	0.0
middle	low	yes	excellent	yes	2.0
young me	edium	no	fair	no	1.0
young	low	yes	fair	yes	1.0
senior me	edium	yes	fair	yes	0.0
young me	edium	yes	excellent	yes	1.0
middle me	edium	no	excellent	yes	2.0
middle	high	yes	fair	yes	2.0
senior me	edium	no	excellent	no	0.0
+	+		+		

age: string
income: string
student: string

credit_rating: string

label: string

indexed_age: double

schema

IndexToString

- Retrieves the original labels from a string indexed column
- Helps in explaining the inferred models
- No training, simply back-transformation

+	-+		+
age -	l inde	xed_age or	iginalAge
++-	-+		+
young	o	1.0	young
young	2	1.0	young
middle	5	2.0	middle
senior r	5	0.0	senior
senior	s	0.0	senior
senior	o	0.0	senior
middle	5	2.0	middle
young r	o	1.0	young
young	5	1.0	young
senior r	5	0.0	senior
young r	5	1.0	young
middle r	s	2.0	middle
middle	s	2.0	middle
senior r	o	0.0	senior
+	-+		+

OneHot Encoder

- Maps categorical features to a binary vector indicating the presence of a value for a given feature
- Useful for algorithms requiring continuous features like Logistic Regression
- It is possible to merge several *oneHotEncoded* features using VectorAssembler
- Pre-requisite: index categorical features using *StringIndexer*

OneHot Encoder illustrated

indexed_age	cat_age
1.0	(3,[1],[1.0])
1.0	(3,[1],[1.0])
2.0	(3,[2],[1.0])
0.0	(3,[0],[1.0])
0.0	(3,[0],[1.0])
0.0	(3,[0],[1.0])
2.0	(3,[2],[1.0])
1.0	(3,[1],[1.0])
1.0	(3,[1],[1.0])
0.0	(3,[0],[1.0])
1.0	(3,[1],[1.0])
2.0	(3,[2],[1.0])
2.0	(3,[2],[1.0])
0.0	(3,[0],[1.0])

Vector assembler/slicer

- Assembler
 - Combines a list of columns C1,..., Cn into a single column of vectors obtained by concatenating values/vectors in C_i
- Slicer
 - Restricts to a set of columns, indicated by their coordinates

Vector assembler

	+
indexed_age indexe	d_income
	+
1.0	1.0
1.0	1.0
2.0	1.0
0.0	0.0
0.0	2.0
0.0	2.0
2.0	2.0
1.0	0.0
1.0	2.0
0.0	0.0
1.0	0.0
2.0	0.0
2.0	1.0
0.0	0.0
	+

|ageIncomeVec|
+-----+
| [1.0,1.0]|
| [1.0,1.0]|
| [2.0,1.0]|
| [2.0,2.0]|
| [0.0,2.0]|
| [0.0,2.0]|
| [1.0,0.0]|
| [1.0,0.0]|
| [1.0,0.0]|
| [2.0,0.0]|
| [2.0,0.0]|
| [2.0,1.0]|
| (2,[],[])|

Vector Indexer

- Discriminate categorical from continuous features in a vector
- Index categorical features using 0-based indexes
- Input: col: Vector, maxCategories: int
- Set the maxCategories parameter
- If # d-values() <= maxCategories
 - then the feature is categorical
 - Otherwise, the feature is continuous

Vector Indexer Illustrated

```
| input_vec|
+-----+
|[1.0,1.0,18.0]|
|[0.0,2.0,20.0]|
|[1.0,0.0,18.0]|
|[2.0,3.0,11.0]|
```


Pipelines

- Inspired by SickitLearn pipeline
- Used for combining several algorithms into one workflow
 - setStages(Array[<: PipelineStage])
- Each algorithm is either a transformer or an estimator
- P = op1, op2, ..., opn
- Invoking fit() for P
 - Sequential processing of opi s
 - if opi is an estimator then invoke fit() for opi
 - Else // opi is a transformer
 - invoke transform()

Pipelines illustrated


```
-- features: vector (nullable = true)
 |-- indexed_label: double (nullable = false)
         features|indexed_label|
[[1.0,1.0,0.0,0.0]]
                            1.0
[[1.0,1.0,0.0,1.0]]
                            1.0
[2.0,1.0,0.0,0.0]
                            0.0
        (4,[],[])
                            0.0
|[0.0,2.0,1.0,0.0]|
                            0.0
[0.0,2.0,1.0,1.0]
                            1.0
[2.0,2.0,1.0,1.0]
                            0.0
    (4,[0],[1.0])
                            1.0
|[1.0,2.0,1.0,0.0]|
                            0.0
    (4,[2],[1.0])|
                            0.0
|[1.0,0.0,1.0,1.0]|
                            0.0
[[2.0,0.0,0.0,1.0]]
                            0.0
|[2.0,1.0,1.0,0.0]|
                            0.0
    (4,[3],[1.0])|
```

Decision Tree inference

- Expects a DF with
 - label column (target variable)
 - Features column (vector of indexed values)
- Exploits existing metadata :
 - maxCategories of the indexed vector to decide how to deal with features
 - Two kinds of conditions
 - Categorical features -> value equality
 - Continuous features -> interval comparison
- Multi-class/multi-label
- The inferred tree is binary, used for prediction

Decision Tree inference illustrated

Model Selection and Tuning

- To derive the best model:
 - experiment several hyper-parameters
 - split data in several manners
- Grid Search class
 - trying different combinations of pre-set parameters
- CrossValidator class
 - Build different (train, test) candidates
- Use default evaluation metrics (e.g. areaUnderROC for classif)
- Extract the best model w.r.t. the defined metrics

Planning

- Seance 1: Decision Tree inference for classification on synthetic data
- Seance 2 : same as 1, real-data, model selection and tuning
- Seance 3: Regression tree on synthetic and real data.

Closing remarks

Pros

- Efficiency thanks to the distributed evaluation
- Static typing facilitates examining and reusing the pipeline
- Metadata collection

Cons

- No fine-grained control on how to define categorical features
- Impute of missing values limited to number (not possible for textual values)

Possible extensions

- Impute text values by using advanced NLP techniques (word2vec,...)
- Parallel exploration of the search space to identify sub-set of relevant features
- AutoML: automatic feature extraction, model selection and hyper-parameter search

+	+
outlook temp hu	umidity windy hours
	+
rainy hot	high FALSE 25.0
rainy hot	high TRUE 30.0
overcast hot	high FALSE 46.0
sunny mild	high FALSE 45.0
sunny cool	normal FALSE 52.0
sunny cool	normal TRUE 23.0
overcast cool	normal TRUE 43.0
rainy mild	high FALSE 35.0
rainy cool	normal FALSE 38.0
sunny mild	normal FALSE 46.0
rainy mild	normal TRUE 48.0
overcast mild	high TRUE 52.0
overcast hot	normal FALSE 44.0
sunny mild	high TRUE 30.0
+	+

Outline

- Decision tree induction
 - Recall of the feature encoding
 - Computation of info gain
- Ensemble methods: random forest and boosting

Decision Tree Induction: An Example

□ Decision tree construction:

 A top-down, recursive, divide-andconquer process

Training data set: Play Golf?

Outlook	Temp	Humidity	Windy	Play Golf
Rainy	Hot	High	False	No
Rainy	Hot	High	True	No
Overcast	Hot	High	False	Yes
Sunny	Mild	High	False	Yes
Sunny	Cool	Normal	False	Yes
Sunny	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Rainy	Mild	High	False	No
Rainy	Cool	Normal	False	Yes
Sunny	Mild	Normal	False	Yes
Rainy	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Sunny	Mild	High	True	No

https://www.saedsayad.com/decision_tree.htm

Decision Tree Induction: Algorithm

- Basic algorithm
 - Tree is constructed in a top-down, recursive, divide-and-conquer manner
 - At start, all the training examples are at the root
 - Examples are partitioned recursively based on selected attributes
 - On each node, attributes are selected based on the training examples on that node, and a heuristic or statistical measure (e.g., **information gain, Gini index**)

Decision Tree Induction: Algorithm

- Conditions for stopping partitioning
 - All samples for a given node belong to the same class
 - There are no remaining attributes for further partitioning
 - There are no samples left
- Prediction
 - Majority voting is employed for classifying the leaf

How to Handle Continuous-Valued Attributes?

- Method 1: Discretize continuous values and treat them as categorical values
 - E.g., age: < 20, 20..30, 30..40, 40..50, > 50
- Method 2: Determine the best split point for continuous-valued attribute A
 - Sort:, e.g. 15, 18, 21, 22, 24, 25, 29, 31, ...
 - Possible split point: (a_i+a_{i+1})/2
 - e.g., (15+18)/2 = 16.5, 19.5, 21.5, 23, 24.5, 27, 30, ...
 - The point with the maximum information gain for A is selected as the splitpoint for A
- Split: Based on split point P
 - The set of tuples in D satisfying A ≤ P vs. those with A > P

Splitting Measures: Information Gain

- Entropy (Information Theory)
 - A measure of uncertainty associated with a random number
 - Calculation: For a discrete random variable Y taking m distinct values $\{y_1, y_2, ..., y_m\}$

$$H(Y) = -\sum_{i=1}^{m} p_i \log(p_i) \text{ where } p_i = P(Y = y_i)$$

- Interpretation
 - Higher entropy → higher uncertainty
 - Lower entropy → lower uncertainty
- Conditional entropy

$$H(Y|X) = \sum_{x} p(x)H(Y|X = x)$$

Information Gain: An Attribute Selection Measure

- Select the attribute with the highest information gain (used in typical decision tree induction algorithm: ID3/C4.5)
- Let p_i be the probability that an arbitrary tuple in D belongs to class C_i , estimated by $|C_{i,D}|/|D|$
- Expected information (entropy) needed to classify a tuple in D:

$$Info(D) = -\sum_{i=1}^{m} p_i \log_2(p_i)$$

□ Information needed (after using A to split D into v partitions) to classify D:

$$Info_{A}(D) = \sum_{j=1}^{v} \frac{|D_{j}|}{|D|} \times Info(D_{j})$$

Information gained by branching on attribute A

$$Gain(A) = Info(D) - Info_A(D)$$

Example: Attribute Selection with Information Gain

Outlook	Temp	Humidity	Windy	Play Golf
Rainy	Hot	High	False	No
Rainy	Hot	High	True	No
Overcast	Hot	High	False	Yes
Sunny	Mild	High	False	Yes
Sunny	Cool	Normal	False	Yes
Sunny	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Rainy	Mild	High	False	No
Rainy	Cool	Normal	False	Yes
Sunny	Mild	Normal	False	Yes
Rainy	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Sunny	Mild	High	True	No

outlook	yes	no	l(yes, no)
rainy	2	3	0.971
overcast	4	0	0
sunny	3	2	0.971

Sunny Rainy Overcast $Info(D) = I(9,5) = -\frac{9}{14}\log_2(\frac{9}{14}) - \frac{5}{14}\log_2(\frac{5}{14}) = 0.940$ $Info(D) = -\sum_{i=1}^{m} I_i$

outlook?

$$Info_{outlook}(D) = \frac{5}{14}I(2,3) + \frac{4}{14}I(4,0) + \frac{5}{14}I(3,2) = 0.694$$

 $\frac{5}{14}I(2,3)$ means "outlook=rainy" has 5 out of 14 samples, with 2

yes'es and 3 no's. Hence $Gain(outlook) = Info(D) - Info_{outlook}(D) = 0.246$

$$Info_{A}(D) = \sum_{j=1}^{v} \frac{|D_{j}|}{|D|} \times Info(D_{j})$$

Example: Attribute Selection with Information Gain

Outlook	Temp	Humidity	Windy	Play Golf
Rainy	Hot	High	False	No
Rainy	Hot	High	True	No
Overcast	Hot	High	False	Yes
Sunny	Mild	High	False	Yes
Sunny	Cool	Normal	False	Yes
Sunny	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Rainy	Mild	High	False	No
Rainy	Cool	Normal	False	Yes
Sunny	Mild	Normal	False	Yes
Rainy	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Sunny	Mild	High	True	No

Temp	Yes	No	I(Yes, No)
Hot	2	2	?
Mild	4	2	?
Cool	3	1	?

Windy	Yes	No	I(Yes, No)
True	?	?	?
False	?	?	?

Humidity	Yes	No	I(Yes, No)
Normal	6	1	?
High	3	4	?

Similarly, we can get Gain(Temp) = 0.029, Gain(humidity) = 0.151, Gain(Windy) = 0.048 Gain(outlook) = 0.246

Outlook	Temp	Humidity	Windy	Play Golf	
Rainy	Hot	High	False	No	
Rainy	Hot	High	True	No	
Overcast	Hot	High	False	Yes	
Sunny	Mild	High	False	Yes	
Sunny	Cool	Normal	False	Yes	outlook?
Sunny	Cool	Normal	True	No	outlook.
Overcast	Cool	Normal	True	Yes	
Rainy	Mild	High	False	No	
Rainy	Cool	Normal	False	Yes	
Sunny	Mild	Normal	False	Yes	
Rainy	Mild	Normal	True	Yes	
Overcast	Mild	High	True	Yes	
Overcast	Hot	Normal	False	Yes	
Sunny	Mild	High	True	No	

Outlook	Temp	Humidity	Windy	Play Golf
Rainy	Hot	High	False	No
Rainy	Hot	High	True	No
Rainy	Mild	High	False	No
Rainy	Cool	Normal	False	Yes
Rainy	Mild	Normal	True	Yes

windy?

Outlook	Temp	Humidity	Windy	Play Golf
Sunny	Mild	High	False	Yes
Sunny	Cool	Normal	False	Yes
Sunny	Cool	Normal	True	No
Sunny	Mild	Normal	False	Yes
Sunny	Mild	High	True	No

humidity?

Branche overcast

Gain Ratio: A Refined Measure for Attribute Selection

- Information gain measure is biased towards attributes with a large number of values (e.g. ID)
- Gain ratio: Overcomes the problem (as a normalization to information gain) $SplitInfo_A(D) = -\sum_{i=1}^{v} \frac{|D_j|}{|D|} \times \log_2(\frac{|D_j|}{|D|})$

- The attribute with the maximum gain ratio is selected as the splitting attribute
- Gain ratio is used in a popular algorithm C4.5 (a successor of ID3) by R. Quinlan
- Example
 - SplitInfo_{temp}(D) = $-\frac{4}{14}\log_2\frac{4}{14} \frac{6}{14}\log_2\frac{6}{14} \frac{4}{14}\log_2\frac{4}{14} = 1.557$
 - GainRatio(temp) = 0.029/1.557 = 0.019

Regression Trees

Outlook	Temp	Humidity	Windy	Hour s
Rainy	Hot	High	False	25
Rainy	Hot	High	True	30
Overcast	Hot	High	False	46
Sunny	Mild	High	False	45
Sunny	Cool	Normal	False	52
Sunny	Cool	Normal	True	23
Overcast	Cool	Normal	True	43
Rainy	Mild	High	False	35
Rainy	Cool	Normal	False	38
Sunny	Mild	Normal	False	48
Rainy	Mild	Normal	True	48
Overcast	Mild	High	True	52
Overcast	Hot	Normal	False	44
Sunny	Mild	High	True	30

Tree induction

Hours

Replace Information Gain with Standard Deviation (écart-type) Reduction partition the data into subsets that contain instances with similar values (homogenous)

If the numerical sample is completely homogeneous its standard deviation is zero

Standard deviation for one attribute:

$$Count = n = 14$$

$$Average = \bar{x} = \frac{\sum x}{n} = 39.8$$

Standard Deviation =
$$S = \sqrt{\frac{\sum (x - \overline{x})^2}{n}} = 9.32$$

Coeffeicient of Variation =
$$CV = \frac{S}{\bar{x}} * 100\% = 23\%$$

for tree building (branching)

used to decide when to stop branching

Standard deviation for two attributes (target and predictor):

$$S(T,X) = \sum_{c \in X} P(c)S(c)$$

		Hours Played (StDev)	Count
	Overcast	3.49	4
Outlook	Rainy	7.78	5
	Sunny	10.87	5
			14

$$S(Hours, Outlook) = P(Sunny)*S(Sunny) + P(Overcast)*S(Overcast) + P(Rainy)*S(Rainy)$$

= $(4/14)*3.49 + (5/14)*7.78 + (5/14)*10.87$
= 7.66

Standard Deviation Reduction
the decrease in standard deviation after a dataset is split on an attribute
Build the tree =
find attribute that returns the highest standard deviation reduction (i.e., the most homogeneous branches)

Step 1: The standard deviation of the target is calculated SD (Hours Played) = 9.32

Step 2: The dataset is then split on the different attributes. The standard deviation for each branch is calculated. The resulting standard deviation is subtracted from the standard deviation before the split.

The result is the standard deviation reduction.

Step 3: The attribute with the largest standard deviation reduction is chosen for the decision node.

		Hours Played (StDev)
Outlook	Overcast	3.49
	Rainy	7.78
	Sunny	10.87
	SDR=1.66	

		Hours Played (StDev)		
Temp.	Cool	10.51		
	Hot	8.95		
	Mild	7.65		
SDR= 0.48				

	Hours Played (StDev)			
Humidity	High	9.36		
numaty	Normal	8.37		
SDR=0.28				

			Hours Played (StDev)
	Windy	False	7.87
		True	10.59
		SDR=0.29	

$$SDR(T, X) = S(T) - S(T, X)$$

Step 4a: The dataset is divided based on the values of the selected attribute. This process is run recursively on the non-leaf branches, until all data is processed.

		Outlook	Temp	Humidity	Windy	Hours Played
		Sunny	Mild	High	FALSE	45
	Sunny	Sunny	Cool	Normal	FALSE	52
		Sunny	Cool	Normal	TRUE	23
	S	Sunny	Mild	Normal	FALSE	46
Outlook		Sunny	Mild	High	TRUE	30
	ᅜ	Overcast	Hot	High	FALSE	46
	3	Overcast	Cool	Normal	TRUE	43
玉	ē	Overcast	Mild	High	TRUE	52
ō	Overcast	Overcast	Hot	Normal	FALSE	44
		Rainy	Hot	High	FALSE	25
	<u>></u>	Rainy	Hot	High	TRUE	30
	Rainy	Rainy	Mild	High	FALSE	35
	~	Rainy	Cool	Normal	FALSE	38
		Rainy	Mild	Normal	TRUE	48

termination criteria: when coefficient of deviation (CV) for a branch becomes smaller than a certain threshold (e.g., 10%) and/or when too few instances (n) remain in the branch (e.g., 3).

Pro's and Con's

- Pro's
 - Easy to explain (even for non-expert)
 - Easy to implement (many software)
 - Efficient
 - Can tolerant missing data
 - White box
 - No need to normalize data
 - Non-parametric: No assumption on data distribution, no assumption on attribute independency
 - Can work on various attribute types

Con's

- Con's
 - Unstable. Sensitive to noise
 - Accuracy may be not good enough (depending on your data)
 - The optimal splitting is NP. Greedy algorithms are used
 - Overfitting

Random forests

combine the decisions of multiple trees can lead to improved overall performance

create multiple smaller subtrees, each subtree uses a random subset of all the features the final decision is made by either majority voting (for classification) or averaging (for regression)

Pro's

improved accuracy by combining predictions of multiple trees reduce overfitting by introducing randomness support parallel processing f

Con's

reduced interpretability compared to decision trees longer training and prediction times need for hyperparameter tuning

Gradient boosting

sequentially aggregates results from different trees each learner tree corrects the errors of the previous tree offers more hyperparameters to fine-tune allows for custom loss functions handles imbalanced datasets but no parallelization \rightarrow slower in training less interpretable

Many implementations: XGBoost, LightGBM

Data-centric Al vs. Model-centric Al

Zha, Daochen, et al. "Data-centric Artificial Intelligence: A Survey." https://github.com/daochenzha/data-centric-Al

Which solutions

- Data profiling, quality assessment
 - Deequ (Amazon)[2], Delta Lake (Databricks), ...
- Continuous data validation
 - Delta Lake, TFX validation [1]
- Manual approach
 - Error prone, costly, not always scalable
- Semantic type detection [3]
 - Use ML to classify column types
 - Extract richer information about types (date, location, name, ... vs basic types like text/numbers/...)
- [1] Breck et al. Data validation for machine learning. In Proceedings of SysML, 2019.
- [2] Schelter et al. Automating large-scale data quality verification. VLDB 2018
- [3] Shah et al. Towards benchmarking feature type inference for automl platforms. SIGMOD 2021

Data quality: overview

- Context
 - Data integrated from different sources
 - often produced w/o schema nor quality guarantees
- Improving data quality impacts all applications
 - Business intelligence: avoid wrong decision
 - Machine learning: improve model performance
 - Pipelines: prevent glitches (null values, type mis match...)
- Manually checking DQ may be complex
 - data volume and dynamicity
 - user-defined code: cumbersome and error prone
- Automation for quality check

Data quality dimensions

- Standard classification, extensive literature
- Dimensions
 - Completeness
 - degree to which an entity reflects the real-world
 - general: column with missing (null) values
 - contextualized: absence of value means not-applicable
 - Consistency
 - adherence to semantic rules: categorical column, referential constraints (foreign key)
 - Accuracy
 - syntactic: column value adheres to its type
 - semantic: domain-specific
- Several associated metrics

The Deequ approach

- Declarative specification and verification of DQ metrics
- Draws inspiration from software engineering: unit tests, cont. testing
- Features
 - A rich set of useful metrics
 - Suggested based on confidence score or verified upon user request
 - Use: enforce constraints upon ingestion, non valid data is quarantined
 - Low overhead: automatic optimization of the metric computation
 - Incremental maintenance: cope with data dynamicity
 - Deployed on Apache Spark and operational on AWS suite
 - Open source implementation (py)Deequ

Schelter et al. Automating large-scale data quality verification. VLDB 2018

Metrics computation

Completeness
$$|\{d \in D \mid d(col) \neq \text{null}\}|/N$$

Compliance $|\{d \in D \mid p(d)\}|/N$ ratio of records sat. predicate p

Uniqueness $|\{v \in V \mid c_v = 1\}|/|V|$ ratio of unique values, c_v card of v

Distinctness $|V|/N$ Entropy $-\sum_v \frac{c_v}{N} \log \frac{c_v}{N}$

Mutual Information $\sum_{v_1} \sum_{v_2} \frac{c_{v_1 v_2}}{N} \log \frac{c_{v_1 v_2}}{c_{v_1} c_{v_2}}$ v1 and v2 refer to different columns

ApproxQuantile and ApproxCountDistinct: SOTA algorithms (refer to the paper)

Predictability: predict column from other columns - max. a posteriori decision rule

Incremental computation

Goal: avoid batch computation which may be costly!

Assumption: append-only updates

batch metrics computation

incremental metrics computation

notation newly added records ΔD . ΔV denote all unique values

general formulae
$$S^{(t)} = f(\Delta D^{(t)}, S^{(t-1)})$$

Compliance
$$\frac{|\{d \in D \mid p(d)\}| + |\{d \in \Delta D \mid p(d)\}|}{N + \Delta N}$$

other formulas in the paper

Uniqueness
$$\frac{|\{v \in V \cup \Delta V \mid c_v + \Delta c_v = 1\}|}{|V \cup \Delta V|}$$

Architecture and typical scenario

User

- runs analyses,
- requests profiles or suggestions
- enforces constraints

