CRISP-DM E2 - Entendimiento de la data

amanos alva

19 de noviembre de 2018

Descripción del problea

Los modelos analíticos para el manejo de los seguros de accidentes se están usando por muchas instituciones y están dando resultados exitosos en todo el mundo. Los modelos analíticos de se pueden definir como un conjunto de métodos y técnicas cuantitativas usados para predecir la probabilidad de que un cliente falle (Sea siniestroso) y en consecuencia no se recupere el rédito otorgado por alguna institución.

Reto

Identifique los clientes que tienen una alta probabilidad de siniestro.

1. Instalación y activación de librerías necesarias:

```
#install.packages('DataExplorer', dependencies = T)
library(mlr)
library(dplyr)
library(DataExplorer)
```

2. Ingesta de la data

```
train <- read.csv("train_seguros.csv", header = T)</pre>
```

3. Análisis exploratorio

Graficando los valores faltantes para una mejor visión global:

PlotMissing(train)

En caso de querer saber los valores exactos de los NA:

summarizeColumns(train)

```
##
                     name
                              type
                                     na
                                                 mean
                                                              disp
                                                                        median
## 1
               Cliente_ID integer
                                      0 3.967334e+05 2.302859e+05 403865.000
##
        Antiguedad_Maxima integer
                                    587 4.984711e+01 4.705053e+01
                                                                        34.000
## 3
              edad_Maxima integer
                                    273 1.071286e+00 1.158293e+00
                                                                         1.000
##
  4
           Nivel Ingresos numeric
                                      0 3.240984e+03 6.157723e+03
                                                                      1100.315
## 5
          Saldo Pendiente integer
                                      0 1.993103e-01 6.790026e-01
                                                                         0.000
## 6
       Puntaje_Morosidad1 integer
                                    186 2.434984e-01 8.912083e-01
                                                                         0.000
## 7
       Puntaje_Morosidad2 integer
                                    256 2.202381e-01 8.424607e-01
                                                                         0.000
       Puntaje_Morosidad3 integer
                                    340 1.935897e-01 7.810702e-01
##
  8
                                                                         0.000
##
  9
       Puntaje_Morosidad4 integer
                                    403 1.854734e-01 7.443064e-01
                                                                         0.000
##
   10
       Puntaje_Morosidad5 integer
                                    476 1.722389e-01 7.073136e-01
                                                                         0.000
##
       Puntaje_Morosidad6 numeric
                                      0 4.970516e+03 2.201641e+04
                                                                         0.000
##
   12
      Saldo_Pendiente_Seg integer
                                      0 7.837931e-01 4.890399e+00
                                                                         0.000
  13
##
              Siniestros1 integer
                                      0 6.960345e-01 4.746389e+00
                                                                         0.000
                                      0 6.458621e-01 4.661810e+00
## 14
                                                                         0.000
              Siniestros2 integer
## 15
              Siniestros3 integer
                                      0 5.943103e-01 4.575560e+00
                                                                         0.000
##
  16
                                      0 5.456897e-01 4.484610e+00
                                                                         0.000
              Siniestros4 integer
##
  17
              Siniestros5 integer
                                      0 5.044828e-01 4.401709e+00
                                                                         0.000
                                                   NA 2.696552e-01
##
  18
              Siniestros6 factor
                                                                            NA
##
   19
         Estado_Siniestro logical 5800
                                                   NA
                                                                NaN
                                                                            NA
##
                            max nlevs
              mad min
      300364.3818 185 790771.0
  1
## 2
          37.0650
                    0
                          255.0
                                    0
```

```
## 3
            1.4826
                              5.0
                                       0
## 4
         1453.3335
                      0 124102.1
                                       0
## 5
            0.0000
                      0
                              6.0
                                       0
                              7.0
## 6
            0.0000
                                       0
                      0
## 7
            0.0000
                      0
                              7.0
                                       0
## 8
            0.0000
                              7.0
                      0
                                       0
## 9
            0.0000
                              7.0
                                       0
                              7.0
## 10
            0.0000
                      0
                                       0
## 11
            0.0000
                      0 442334.8
                                       0
## 12
            0.0000
                      0
                            289.0
                                       0
## 13
            0.0000
                      0
                            289.0
                                       0
            0.0000
                            289.0
                                       0
## 14
                      0
## 15
            0.0000
                      0
                            289.0
                                       0
            0.0000
## 16
                            289.0
                                       0
## 17
            0.0000
                      0
                            288.0
                                       0
## 18
                NA 496
                           4236.0
                                       3
## 19
                NA Inf
                             -Inf
                                       0
```

Las siguientes columnas tienen valores NA: Antiguedad_Maxima - 587 edad_Maxima - 273 Puntaje_MorosidadX, donde 1 <= x <= 5

Viendo la estructura de la data

PlotStr(train)

Curiosamente vemos que la variable "Siniestro6" tiene tres niveles: "", "si", "no". Ese espacio en blanco debe ser considerado como ata faltante? Habría que ver su proporción o influencia.

```
levels(train$Siniestros6)
```

```
## [1] "" "no" "si"
```

Distribuciones

Viendo las distribuciones numéricas:

Separamos solo los numéricos

```
train_numericos <- select_if(train, is.numeric)
names(train_numericos)</pre>
```

```
##
    [1] "Cliente_ID"
                               "Antiguedad_Maxima"
                                                      "edad_Maxima"
    [4] "Nivel_Ingresos"
                               "Saldo_Pendiente"
                                                      "Puntaje_Morosidad1"
##
    [7] "Puntaje_Morosidad2"
                               "Puntaje_Morosidad3"
                                                      "Puntaje_Morosidad4"
##
## [10] "Puntaje_Morosidad5"
                               "Puntaje_Morosidad6"
                                                      "Saldo_Pendiente_Seg"
## [13] "Siniestros1"
                               "Siniestros2"
                                                      "Siniestros3"
## [16] "Siniestros4"
                               "Siniestros5"
```

 $Graficamos\ histogramas:$

```
HistogramContinuous(train_numericos[1:9])
```


HistogramContinuous(train_numericos[10:length(train_numericos)])

Viendo las distribuciones categóricas:

 $Separamos\ solo\ categ\'oricos$

```
train_factores <- select_if(train, is.factor)
names(train_factores)</pre>
```

[1] "Siniestros6"

 $Graficamos\ barras:$

BarDiscrete(train_factores)

Correlaciones

 $Viendo\ las\ correlaciones\ continuas:$

CorrelationContinuous(train_numericos)

Warning: Removed 182 rows containing missing values (geom_text).

Viendo las correlaciones discretas:

CorrelationDiscrete(train_factores)

