$$\Delta G^{\circ} = -n\mathcal{F}\Delta\varepsilon^{\circ\prime}$$

$$F = 96 \ kJ \cdot mol^{-1} \cdot V^{-1}$$

Location in ETC	oxidized form		reduced form	n	$\varepsilon^{\circ\prime}$ (V)
Metabolism	$NAD^{+} + H^{+} + 2e^{-}$	\rightarrow	NADH	2	-0.32
Complex I	$Q + 2H^+ + 2e^-$	\rightarrow	QH_2	2	0.04
Complex III	$cytochrome\ b\ (Fe^{3+}) + e^{-}$	\rightarrow	$cytochrome\ b\ (Fe^{2+})$	1	0.08
Cytochrome C	$cytochrome\ c\ (Fe^{3+}) + e^{-}$	\rightarrow	$cytochrome\ c\ (Fe^{2+})$	1	0.24
Complex IV	$\frac{1}{2}O_2 + 2H^+ + 2e^-$	\rightarrow	H_2O	2	0.82

1. What do you notice about $\varepsilon^{\circ\prime}$ along the electron transport chain? Why do you think it is arranged this way?

2. How, energetically, does pumping H^+ across a bilayer "store" energy? Can you think of a macro-scale example that works this way?

3. If you had to guess, which steps transport H^+ across the bilayer? Why?

4. How much energy is released per pair of e^- (in $kJ \cdot mol^{-1}$) in the oxidation of NAD^+ by O_2 ?

5. If it "costs" $30.5~kJ \cdot mol^{-1}$ to catalyze $ADP + P_i \rightarrow ATP$, how many ATP could (theoretically) be produced by this oxidation?