

Accelerated Introduction To Machine Learning

A course offered by the McGill AI Society

1. Introduction

Welcome to the first iteration of MAIS 202: Accelerated Introduction to Machine Learning! Designed by the executive team of the McGill Artificial Intelligence Society, MAIS 202 offers an extensive introduction to machine learning through lectures, assignments, and projects. This course is meant for undergraduates at McGill with basic foundations in mathematics (Calculus, Linear Algebra) and programming (Python). While this course is intended for lower-year undergraduates with an expressed interest in machine learning, upper year students who have been previously unable to take AI related courses (e.g. ECSE 415, COMP 424, COMP 551) are welcome to apply!

2. Instructors + TA's

Your course instructors for MAIS202 are Isaac Chan (<u>isaac.chan@mail.mcgill.ca</u>) and Frank Ye (<u>frank.ye@mail.mcgill.ca</u>). The class will consist of two hours of lectures a week.

Joined by our course lecturers are two Design Project Leaders, Tiffany Wang (tiffany.wang@mail.mcgill.ca) and Daoud Piracha (daoud.piracha@mail.mcgill.ca), and several teaching assistants who will provide homework feedback and hold office hours to answer questions.

3. Pre-requisites

<u>Minimum:</u> Introductory calculus, linear algebra, basic python proficiency, and ability to demonstrate long-term commitment outside of the McGill classroom.

<u>Helpful:</u> Knowledge of basic probability and statistics

<u>*Anti-requisites*</u>: This course is not meant for those who have already taken upper-year coursework in machine learning, computer vision, natural language processing, or artificial intelligence.

4. Course Completion Requirements

To be featured on McGill Al's website and meet industry engineers and recruiters at the conclusion of the course, you must have done the following:

- 1. Attendance to all lectures is mandatory. Since there are only eight lectures, you are allowed to miss one unexcused lecture.
- 2. All assignments are mandatory, and you must pass all of them to pass the course
- 3. You must submit a final project
- 4. A supplemental blog post discussing your final project

5. Takeaways from MAIS 202:

- 1. Theoretical and Hands-On Skills Required for ML Research and Industry
- 2. Real-time mentorship and feedback
- 3. Personal projects to put on your resume
- 4. Networking with a community of ML enthusiasts

6. Schedule

Week #	Lecture Topics	Homework	Project Deliverables
1: Week of January 21st	Introduction to the course Data manipulation + visualization in Python	HW1 Assigned: Python and data visualization; Sklearn pipelines	Final Project Introduction (1-2hrs)
2: Week of January 28th	 Linear and logistic regression Gradient descent 	HW1 Due	Deliverable 1: Project Proposal Due
		HW2 Assigned: Polynomial Regression and Gradient Descent	
3: Week of February 4th	 Feed forward neural nets and backpropagation Bias/variance tradeoff Good training practices 	HW2 Due	
		HW3 Assigned: Pytorch intro & feed-forward NN	
4: Week of February 11th	Dimensionality reduction (PCA, autoencoders, t-SNE) Eature Extraction	HW3 Due	Deliverable 2: Training Report
		HW4 Assigned: Word Embeddings	
5: Week of February 18th	CNNs Computer Vision fundamentals	HW4 Due	
6: Week of February 25th	1. Style transfer	HW5 Assigned: Deep Dream	Deliverable 3: Finalized Training Results + Development Plan
Reading \	Week: Work on final projects.	Adversarial Examples home	ework is optional.
7: Week of March 11th	1. RNNs/LSTM	HW 5 Due	0
8: Week of March 18th	1.Seq2Seq 2.Encoder-Decoder architecture		0
9: Week of March 18th	Final project p	presentations	Deliverable 4: Final Project Presentation

7. Homework and TA Contact Information

Homework 1: Pytho	on + Data Visualisation; Sklearn Pipelines	
Megan Kairiss	megan.kairiss@mail.mcgill.ca	
Aanika Rahman	aanika.rahman@mail.mcgill.ca	
Nabil Chowdhury	nabil.chowdhury@mail.mcgill.ca	
Homework 2: Pytor	ch Intro; Feed-forward NN	
David Tao	ruo.tao@mail.mcgill.ca	
Hisham Hawara	hisham.hawara@mail.mcgill.ca	
Homework 3: Decis	ion Trees	
Tiffany Wang	tiffany.wang@mail.mcgill.ca	
Ketan Rampurkar	ketan.rampurkar@mail.mcgill.ca	
Jenny Long	xiong.long@mail.mcgill.ca	
John Wu	john.wu@mail.mcgill.ca	
Homework 4: Word	Embeddings	
David Tao	ruo.tao@mail.mcgill.ca	
Daoud Piracha	daoud.piracha@mail.mcgill.ca	
Homework 5: Deep	Dream Algorithm	
John Wu	john.wu@mail.mcgill.ca	
Nabil Chowdhury nabil.chowdhury@mail.mcgill.ca		