System Check_Body_750MHz

DUT: D750V3-1012

Communication System: CW; Frequency: 750 MHz; Duty Cycle: 1:1

Medium: MSL_750_190322 Medium parameters used: f = 750 MHz; σ = 0.965 S/m; ϵ_r = 55.193; ρ

Date: 2019/3/22

 $= 1000 \text{ kg/m}^3$

Ambient Temperature: 23.7 °C; Liquid Temperature: 22.7 °C

DASY5 Configuration

- Probe: ES3DV3 SN3270;ConvF(6.29, 6.29, 6.29) ;Calibrated: 2018/9/24
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2018/9/19
- Phantom: ELI V5.0; Type: QD OVA 002 Ax; Serial: 1191
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)

Pin=250mW/Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 2.64 W/kg

Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 51.43 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 3.14 W/kg

SAR(1 g) = 2.23 W/kg; SAR(10 g) = 1.52 W/kgMaximum value of SAR (measured) = 2.57 W/kg

0 dB = 2.57 W/kg = 4.10 dBW/kg

System Check_Body_835MHz

DUT: D835V2-499

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: MSL_850_190319 Medium parameters used: f = 835 MHz; σ = 0.967 S/m; ϵ_r = 55.102; ρ

Date: 2019/3/19

 $= 1000 \text{ kg/m}^3$

Ambient Temperature: 23.7 °C; Liquid Temperature: 22.7 °C

DASY5 Configuration

- Probe: EX3DV4 SN3931;ConvF(9.92, 9.92, 9.92) ;Calibrated: 2018/9/27
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1399; Calibrated: 2018/11/16
- Phantom: ELI V5.0; Type: QD OVA 002 Ax; Serial: 1191
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)

Pin=250mW/Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 3.40 W/kg

Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 61.50 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 3.83 W/kg

SAR(1 g) = 2.54 W/kg; SAR(10 g) = 1.68 W/kg

Maximum value of SAR (measured) = 3.39 W/kg

0 dB = 3.39 W/kg = 5.30 dBW/kg

System Check_Body_835MHz

DUT: D835V2-499

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: MSL_850_190325 Medium parameters used: f = 835 MHz; σ = 0.966 S/m; ϵ_r = 55.844; ρ

Date: 2019/3/25

 $= 1000 \text{ kg/m}^3$

Ambient Temperature: 23.6 °C; Liquid Temperature: 22.6 °C

DASY5 Configuration

- Probe: ES3DV3 SN3270;ConvF(6.11, 6.11, 6.11) ;Calibrated: 2018/9/24
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2018/9/19
- Phantom: ELI V5.0; Type: QD OVA 002 Ax; Serial: 1191
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)

Pin=250mW/Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 2.95 W/kg

Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 56.02 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 3.62 W/kg

SAR(1 g) = 2.54 W/kg; SAR(10 g) = 1.7 W/kg

Maximum value of SAR (measured) = 2.94 W/kg

0 dB = 2.94 W/kg = 4.68 dBW/kg

System Check_Body_1750MHz

DUT: D1750V2-1068

Communication System: CW; Frequency: 1750 MHz; Duty Cycle: 1:1

Medium: MSL 1750 190321 Medium parameters used: f = 1750 MHz; $\sigma = 1.483$ S/m; $\varepsilon_r = 54.475$;

Date: 2019/3/21

 $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.5 °C; Liquid Temperature: 22.5 °C

DASY5 Configuration

- Probe: ES3DV3 SN3270;ConvF(4.97, 4.97, 4.97) ;Calibrated: 2018/9/24
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2018/9/19
- Phantom: ELI V5.0; Type: QD OVA 002 Ax; Serial: 1191
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)

Pin=250mW/Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 11.7 W/kg

Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 89.39 V/m; Power Drift = 0.18 dB

Peak SAR (extrapolated) = 16.1 W/kg

SAR(1 g) = 9.55 W/kg; SAR(10 g) = 5.18 W/kgMaximum value of SAR (measured) = 11.9 W/kg

0 dB = 11.9 W/kg = 10.76 dBW/kg

System Check_Body_1900MHz

DUT: D1900V2-5d041

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: MSL 1900 190321 Medium parameters used: f = 1900 MHz; $\sigma = 1.554$ S/m; $\varepsilon_r = 54.269$;

Date: 2019/3/21

 $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.5 °C; Liquid Temperature: 22.5 °C

DASY5 Configuration

- Probe: ES3DV3 SN3270;ConvF(4.77, 4.77, 4.77) ;Calibrated: 2018/9/24
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2018/9/19
- Phantom: ELI V5.0; Type: QD OVA 002 Ax; Serial: 1191
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)

Pin=250mW/Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 13.4 W/kg

Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 97.73 V/m; Power Drift = -0.17 dB

Peak SAR (extrapolated) = 18.3 W/kg

SAR(1 g) = 10.5 W/kg; SAR(10 g) = 5.51 W/kg

Maximum value of SAR (measured) = 13.2 W/kg

0 dB = 13.4 W/kg = 11.27 dBW/kg

System Check Body 2300MHz

DUT: D2300V2-1006

Communication System: CW; Frequency: 2300 MHz; Duty Cycle: 1:1

Medium: MSL 2300 190324 Medium parameters used: f = 2300 MHz; $\sigma = 1.812$ S/m; $\varepsilon_r = 53.876$; $\rho =$

Date: 2019/3/24

 1000 kg/m^3

Ambient Temperature: 23.5 °C; Liquid Temperature: 22.5 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3976; ConvF(7.79, 7.79, 7.79); Calibrated: 2019/1/29;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1424; Calibrated: 2019/1/24
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1238
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7373)

Pin=250mW/Area Scan (61x61x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 20.1 W/kg

Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 107.6 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 24.4 W/kg

SAR(1 g) = 12.2 W/kg; SAR(10 g) = 5.82 W/kg

Maximum value of SAR (measured) = 19.9 W/kg

0 dB = 19.9 W/kg = 12.99 dBW/kg

System Check Body 2600MHz

DUT: D2600V2-1008

Communication System: CW; Frequency: 2600 MHz; Duty Cycle: 1:1

Medium: MSL 2600 190324 Medium parameters used: f = 2600 MHz; $\sigma = 2.203$ S/m; $\varepsilon_r = 52.846$; $\rho =$

Date: 2019/3/24

 1000 kg/m^3

Ambient Temperature: 23.5 °C; Liquid Temperature: 22.5 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3976; ConvF(7.53, 7.53, 7.53); Calibrated: 2019/1/29;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1424; Calibrated: 2019/1/24
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1238
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7373)

Pin=250mW/Area Scan (61x61x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 25.8 W/kg

Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 111.8 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 30.2 W/kg

SAR(1 g) = 14.1 W/kg; SAR(10 g) = 6.49 W/kg

Maximum value of SAR (measured) = 23.9 W/kg

0 dB = 23.9 W/kg = 13.78 dBW/kg

System Check_Body_2600MHz

DUT: D2600V2-1008

Communication System: CW; Frequency: 2600 MHz; Duty Cycle: 1:1

Medium: MSL 2600 190329 Medium parameters used: f = 2600 MHz; $\sigma = 2.203$ S/m; $\varepsilon_r = 52.224$;

Date: 2019/3/29

 $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.5 °C; Liquid Temperature: 22.5 °C

DASY5 Configuration

- Probe: ES3DV3 SN3270;ConvF(4.24, 4.24, 4.24) ;Calibrated: 2018/9/24
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2018/9/19
- Phantom: ELI V5.0; Type: QD OVA 002 Ax; Serial: 1191
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)

Pin=250mW/Area Scan (71x71x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 19.8 W/kg

Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 96.29 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 30.1 W/kg

SAR(1 g) = 14.2 W/kg; SAR(10 g) = 6.35 W/kgMaximum value of SAR (measured) = 19.0 W/kg

0 dB = 19.0 W/kg = 12.79 dBW/kg