2013-2014 上学期-计算机学院

离散数学 (A卷)

一. 求下列公式的主析取范式和主合取范式: (10')

$$P \rightarrow (Q \rightarrow R)$$

解: 主合取范式: Π (6) $\Leftrightarrow \neg P \lor \neg Q \lor R$

主析取范式: Σ (0, 1, 2, 3, 4, 5, 7) ⇔ (¬P∧¬Q∧¬R) ∨(¬P∧¬Q∧R) \vee ($\neg P \land Q \land \neg R$) \vee ($\neg P \land Q \land R$) \vee ($P \land \neg Q \land \neg R$) \vee ($P \land \neg Q \land R$) \vee ($P \land \neg Q \land R$) $\wedge Q \wedge R$)

- 二.证明下列结论是前提的有效结论(写出证明序列): (7+8=15')
- (1) 前提: P∧Q →R, ¬S→P

结论: ¬R →¬Q∨S

证明: 1) ¬R

附加前提

2) Q

- 附加前提
- 3) $P \wedge Q \rightarrow R$
- 前提
- 4) ¬ R →¬(P∧Q) 3), T 规则
- 5) $\neg (P \land Q)$
- 1),4),MP 规则
- 6) ¬ P∨¬ Q
- 5),T 规则

- 7) ¬ P
- 2),6), 析取三段论
- 8) ¬ S→P
- 前提

9) S

- 7),8), 拒取式
- (2) 前提: $\forall x(P(x) \rightarrow \neg R(x))$, $\neg \exists x(G(x) \land \neg R(x))$

结论: ¬∃x(P(x)∧G(x))

证明: 反证法:

1) $\exists x(P(x) \land G(x))$

否定前提

2) P(a) ∧ G(a)

1), ES 规则

3) ∀x(P(x) → ¬ R(x)) 前提

- 4) $\neg \exists x(G(x) \land \neg R(x))$
- 5) $\forall x (\neg G(x) \lor R(x))$
- 6) $P(a) \rightarrow \neg R(a)$
- 7) \neg G(a) \vee R(a)
- 8) P(a)
- 9) □ R(a)
- 10) G(a)
- 11) R(a)
- 12) F

- 前提
 - 4), T规则
 - 3), US 规则
 - 5), US 规则
 - 2), 化简规则
 - 6),8), MP 规则
 - 2), 化简规则
 - 7),10), 析取三段论
 - 9)11), 合取
- 三. R_1 是集合 S 上的二元关系, R_2 是 T 上的二元关系,定义 S×T 上的关系 R_3 \subseteq $(S\times T)^2$: $\langle s_1, t_1 \rangle$ $R_3 \langle s_2, t_2 \rangle$, iff, $s_1 R_1 s_2 \wedge t_1 R_2 t_2$, 证明下列各题: (7+7=14')
- (1) 若 R₁、R₂为等价关系,则 R₃为等价关系;
- 证明: R_3 为自反的: 对任意<s, t> \in S×T,因为 R_1 、 R_2 为等价关系, R_1 、 R_2 具有自反性,则, $sR_1s \wedge tR_2t$,即<s, t>t>t0, t3, t3, t4, t5, t7, t7, t8, t9, t1, t2, t1, t1, t2, t1, t1, t1, t2, t1, t1, t2, t1,

R₃为对称的: 若<s₁, t₁> R₃<s₂, t₂>,则 s₁R₁s₂ \wedge t₁R₂t₂,因为 R₁、R₂ 为等价 关系,R₁、R₂ 具有对称性,则有 s₂R₁s₁ \wedge t₂R₂t₁,即<s₂, t₂> R₃<s₁, t₁>,则 R₃ 为对称的;

 R_3 为传递的: 若<s₁, t₁> R₃<s₂, t₂>,若<s₂, t₂> R₃<s₃, t₃>,则 s₁R₁s₂ \wedge t₁R₂t₂,且 s₂R₁s₃ \wedge t₂R₂t₃,因为 R₁、R₂ 为等价关系,R₁、R₂ 具有传递性,所以 s₁R₁s₃ \wedge t₁R₂t₃,即<s₁, t₁> R₃<s₃, t₃>,则 R₃ 为传递的;

综上,若 R₁、R₂为等价关系,则 R₃为等价关系;

(2) 若 R₁、R₂为偏序关系,则 R₃为偏序关系;

证明: 若 R_1 、 R_2 为偏序关系, R_1 、 R_2 为自反且传递关系, R_3 也具有自反性、传递性(证明同(1));

R₃为反对称的: 若<s₁, t₁> R₃<s₂, t₂>,且<s₂, t₂> R₃<s₁, t₁>,则 s₁R₁s₂ \wedge t₁R₂t₂,且 s₂R₁s₁ \wedge t₂R₂t₁,因为 R₁、R₂为偏序关系,R₁、R₂具有反对称性,则 s₁=s₂ \wedge t₁=t₂,则<s₁, t₁> =<s₂, t₂>,所以 R₃ 为反对称的。所以若 R₁,R₂ 为偏序关系,R₃ 为偏序关系。

四. 设集合 X={1, 2, 3}, Y={a, b, c}, 定义 f \in Y^X, 其中 f(1)=f(2)=a,f(3)=b,定义函数 g: Y \rightarrow ρ (X),g(y) = f⁻¹({y}) (说明: f⁻¹({y})为集合{y}在函数 f 下的逆像〉,完成下列各题: (4+6+6=16′)

(1) 求函数 g 的值域 ran(g);

解: ran(g)={ {1, 2}, {3}, Ø}.

(2) 分别说明 f、g 是否为单射、满射、双射;

解: f 不是单射、满射、双射; g 是单射, 不是满射、双射。

(3) 证明: ∀B⊆Y, f(f¹(B)) ⊆B, 并说明在什么条件下, f(f¹(B)) = B.

解: $\forall y \in f \ (f^{-1}(B))$,存在 $x \in f^{-1}(B)$,且 f(x) = y,因为 $x \in f^{-1}(B)$,则 $f(x) \in B$,即 $y \in B$. 证毕

当 f 为满射时, f (f⁻¹(B)) = B.

五. 设<G, *>是群,完成下列各题: (4+4+4=12')

(1) 设元素 x ∈ G,且 $x = x^{-1}$,求元素 x 的阶。

解: 若 x 为单位元 e, 也满足条件, x 的阶可为 1.

又若 $x \neq e$,因 $x = x^{-1}$,则 $x*x = x * x^{-1} = e$,即 $x^2 = e$,则 x 的阶为 2.

(2) 证明:在偶数阶群中,阶为2的元素的个数一定是奇数。

证明:对于任意的阶为 k (k>2)的元素 a,因为 $|a|=|a^{-1}|$,且 $a\neq a^{-1}$ (若 $a\neq a^{-1}$,则 a 的阶为 a 的阶为 a 的所为 a 的元素总是成对出现,即 a 和 a^{-1} ,则阶大于 a 的元素个数为偶数,有单位元 a 是阶为 a 的唯一元素,则偶数阶群中阶为 a 的元素个数一定是奇数。

(3) 设元素 a, b∈G, 且 $b*a*b^{-1}=a^2$, 其中 a 不是单位元, b 的阶为 2, 求 a 的阶。

解: |b|=2, b*b=e,则 b=b⁻¹;因为 b*a*b⁻¹= a²,所以 b= a²*b*a⁻¹.则

b*b =
$$(a^{2*}b^*a^{-1})^*(a^{2*}b^*a^{-1})$$

= $a^{2*}(b^*a^*b)^*a^{-1} = a^{2*}(b^*a^*b^{-1})^*a^{-1}$
= $a^{2*}a^{2*}a^{-1} = a^3 = e$,

则 a 的阶为 3.

六. 设<G, *, e_G >和<H, · , e_H >是两个群,h 是群 G 到 H 的同态,完成下列各题: (6+6+3=15')

(1) 证明: 如果 A 是 G 的子群,则 h(A)是 H 的子群;

证明: i) 因 A 是 G 的子群, $e_G \in A$, h 是群同态,则 $e_H = h(e_G) \in h(A)$, h(A)非空;

ii) 对任意 x,y∈h(A),存在 a,b∈A,使得 h(a)=x, h(b)=y, 则 x*y⁻¹=h(a)*(h(b))⁻¹=h(a)*h(b⁻¹)=h(a*b⁻¹),

因 A 是 G 的子群,a*b⁻¹∈A,则 h(a*b⁻¹) ∈h(A),即 x*y⁻¹∈h(A),所以 h(A) 是 H 的子群。

- (2) 证明: 如果 G 和 H 都是有限群,a \in G,则 h(a)的阶是 | G | 和 | H | 的公因子;证:设 | a | = p,则 p 整除 | G |,且(h(a)) P = h(a P) = h(e_G) = e_H,所以 | h(a) | 整除 p,所以 | h(a) | 整除 | G |,同时 h(a) \in H, | h(a) | 整除 | H |,所以 h(a)的阶是 | G | 和 | H | 的公因子。
- (3) <N₅, +₅>到<N₆, +₆>上共有多少个同态? (利用(2)的结果。)证:对任意 $n \in N_5$,同态 h,由上题结果 h(n)的阶是 5 和 6 的公因子,则|h(n)|=1,阶为 1 的元素仅有单位元 0,则 h: $n \to 0$ 。<N₅, +₅>到<N₆, +₆>仅有一个同态, $\forall n \in N_5$, h(n)=0.

七. 设 G(n, m)是简单无向图,其顶点数 $n \ge 11$,证明: G 和 $\bar{G}(G$ 的补图)至少有一个**不是**平面图。(10')

证: 反证法,假设 G(n, m)和 $\bar{G}(n, C_n^2 - m)$ 均为简单平面图,则由欧拉公式: $m \leq 3n - 6, \ C_n^2 - m \leq 3n - 6, \ \mathbb{M}C_n^2 \leq 6n - 12, \mathbb{M}$ $(n-11)(n+2)+2 \geq 0$,与 $n \geq 11$ 矛盾。

八. 简单无向图 G 有 n 个顶点, m 条边,各顶点度数均为 3,且 2n=m+3,试画 出满足条件的所有不同构的图 G. (要求给出解题过程)(8')

解: 3n=2m, 又 2n=m+3, 则 n=6, m=9.

