MATH 3110 HOMEWORK #2

KIRILL CHERNYSHOV

Problem 2.1.3 This can easily be disproven by means of a counterexample. Suppose $a_n = n$, and $b_n = n - 3$, both clearly increasing sequences. Then, $a_n b_n = n(n-4)$, that is, $a_1 b_1 = -3$, $a_2 b_2 = -4$ and $a_3 b_3 = -3$. Thus, $a_n b_n$ is neither increasing nor decreasing.

A better statement is that if $\{a_n\}$ and $\{b_n\}$ are increasing **and** $a_n, b_n > 0 \,\forall n$, then $\{a_nb_n\}$ is increasing.

Proof. Suppose $\{a_n\}$ and $\{b_n\}$ are increasing, that is, $a_{n+1} \ge a_n$ and $b_{n+1} \ge b_n$ for all n. Consider the ratio between two consecutive terms of $\{a_nb_n\}$:

$$\frac{a_{n+1}b_{n+1}}{a_nb_n} = \frac{a_{n+1}}{a_n} \cdot \frac{b_{n+1}}{b_n}$$

Since $\{a_n\}$ and $\{b_n\}$ are increasing with all positive terms, we know that $\frac{a_{n+1}}{a_n} \ge 0$ and $\frac{b_{n+1}}{b_n} \ge 0$. Therefore, $\frac{a_{n+1}b_{n+1}}{a_nb_n} \ge 0$.

Problem 2.4.2 The contrapositive of this statement is as follows: if $|a_i| \leq 1 \,\forall i$, then

$$\left| \sum_{i=1}^{n} a_i \sin(ib) \right| \le n$$

Proof. Assume that $|a_i| \leq 1 \, \forall i$. A fundamental fact is that $|\sin x| \leq 1 \, \forall x \in \mathbb{R}$. Therefore, $|a_i \sin(ib)| \leq 1 \, \forall i$.

By the triangle inequality, $|\sum_{i=1}^n a_i \sin(ib)| \le \sum_{i=1}^n |a_i \sin(ib)|$. Since $|a_i \sin(ib)| \le 1$, $\sum_{i=1}^n |a_i \sin(ib)| \le \sum_{i=1}^n 1 = n$.

Problem 2.6.1 To put this statement formally, there exists $N \in \mathbb{N}$ such that for all $n \geq N$, $\frac{a^{n+1}}{(n+1)!} > \frac{a^n}{n!}$.

Proof. Let N be the smallest integer such that $N \geq a$. Then, consider the ratio between two consecutive terms of the sequence:

$$\frac{a_{n+1}}{a_n} = \frac{a^{n+1}}{(n+1)!} \cdot \frac{n!}{a^n} = \frac{a^{n+1}}{a^n} \cdot \frac{n!}{(n+1)!}$$
$$= a \cdot \frac{1}{n+1} = \frac{a}{n+1}$$

Since $n \ge N \ge a$, n+1 > a, and since a > 0, $0 < \frac{a}{n+1} < 1$. Since the ratio between two consecutive terms is positive but less than 1, the sequence must be monotone strictly decreasing. \square

Problem 2-1

(a)

Proof. Consider the difference between two consecutive terms:

$$b_{n+1} - b_n = \frac{\sum_{i=1}^{n+1} a_i}{n+1} - \frac{\sum_{i=1}^n a_i}{n}$$

$$= \frac{n \sum_{i=1}^{n+1} a_i - (n+1) \sum_{i=1}^n a_i}{n(n+1)}$$

$$= \frac{n a_{n+1} - \sum_{i=1}^n a_i}{n(n+1)}$$

$$= \frac{\sum_{i=1}^n a_{n+1} - \sum_{i=1}^n a_i}{n(n+1)} = \frac{\sum_{i=1}^n (a_{n+1} - a_i)}{n(n+1)}$$

Since it is given that $\{a_n\}$ is increasing, we know that $a_{n+1} \geq a_i \ \forall \ i \leq n$, and therefore, $a_{n+1} - a_i \geq 0 \ \forall \ i \leq n \implies \sum_{i=1}^n (a_{n+1} - a_i) \geq 0$. n > 0, so the denominator is also positive, which means the difference between two consecutive terms is positive, that is, $\{b_n\}$ is increasing. \square

(b)

Proof. We are given that $\{a_n\}$ is bounded above, i.e. there exists $M \in \mathbb{R}$ such that $a_i \leq M \, \forall i$. Consider a term of the sequence $\{b_n\}$: $b_n = \frac{\sum_{i=1}^n a_i}{n}$. Given the former condition, we know that $\sum_{i=1}^n a_i \leq \sum_{i=1}^n M = nM$. Thus, $b_n \leq \frac{nM}{n} = M \, \forall n$, i.e. $\{b_n\}$ is bounded above.

Problem 2-2

Proof. Let L be the smallest upper bound for $\{a_n\}$. Then, $a_i \leq L \, \forall i$, and there is no such number M such that M < L and $a_i \leq M \, \forall i$. Since $\{a_n\}$ is increasing, this means that after a certain point, a_i will get arbitrarily close to L (since every term is greater than or equal to the previous term); that is, there exists N such that if $n \geq N$ then for any $\epsilon > 0$, $L - a_n < \epsilon$.