Exercise 0.1 (1). Let

$$N' \xrightarrow{f} N \xrightarrow{g} N'' \to 0$$

be exact and consider

$$0 \to \operatorname{Hom}_{R}\left(N'',M\right) \overset{g^{*}}{\to} \operatorname{Hom}_{R}\left(N,M\right) \overset{f^{*}}{\to} \operatorname{Hom}_{R}\left(N',M\right).$$

- (1) Show that the induced sequence is exact.
- (2) Show that even though $N' \to N$ is injective, the map $\operatorname{Hom}_R(N,M) \to \operatorname{Hom}_R(N',M)$ may fail to be surjective.
- Proof. (1) Suppose $g^*(k) = g^*(h)$, so kg = hg as maps $N \to M$. For any $n'' \in N''$, there exists $n \in N$ such that g(n) = n'', and so k(n'') = kg(n) = hg(n) = g(n'') for all $n'' \in N''$, hence k = h. Suppose $f^*(h) = 0$, so hf = 0. By injectivity of f, ker $g = \operatorname{im} f \subset \ker h$. This means that h factors through g in the sense that there exists a map $l \colon N'' \to M$ such that h = lg. Thus $h \in \operatorname{im} g^*$.
 - (2) We have $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Q},\mathbb{Q}/\mathbb{Z}) = 0$ and $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Q},\mathbb{Z}) = 0$, so while $0 \to \mathbb{Z} \to \mathbb{Q} \to \mathbb{Q} \to \mathbb{Q} \to 0$ is exact,

$$0 \to 0 \to \operatorname{Hom}_{\mathbb{Z}}(\mathbb{Q}, \mathbb{Q}) \to 0 \to 0$$

cannot be, since $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Q},\mathbb{Q})$ contains $\operatorname{id} \neq 0$, and is thus not isomorphic to the trivial ring.