ON DENSITY, MASS AND MULTIPLE INTEGRALS

SHIBO LIU

Florida Institute of Technology

https://lausb.github.io/

CONTENTS

1.	Mass and double integrals	1
2.	Double integrals and iterated integrals	2
3.	Triple integrals and iterated integrals	3
4	Another iterated triple integral formula	5

1. Mass and double integrals

Let's recall the 1-D case. Consider a thin rod occupying I = [0, a] on the x-axis with 1-D density f(x) (mass per unit length). To find the mass of I, we consider an infinitesimal segment [x, x + dx] at $x \in I$, whose mass is approximately $dM \approx f(x)dx$. Therefore the mass of the rod I is

$$M = \int \mathrm{d}M = \int_0^a f(x) \mathrm{d}x.$$

We get the mass of the whole rod by integrating the *mass element* dM. This is what we have learned as application of definite integral in Calculus 1.

Similar idea applies to higher dimensional problems. For simplicity, it is standard to denote a rectangle

$$R: \quad a \leq x \leq b, c \leq y \leq d$$

by product of intervals $R = [a, b] \times [c, d]$. Similarly, $[a, b] \times [c, d] \times [e, f]$ is a box in 3-D space.

Let $Q \subset \mathbb{R}^2$ be a thin sheet on the xy-plane with 2-D density f(x, y) (mass per unit area). Then the mass of the infinitesimal rectangle

$$dA = [x, x + dx] \times [y, y + dy]$$

based at $(x, y) \in Q$ is approximately

$$dM \approx f(x, y)dA,$$

here we use the same notation dA to denote the area of the small rectangle. Thus the mass of Q is

$$M = \iint dM = \iint_{Q} f(x, y) dA.$$
 (1.1)

This is the simplest interpretation of double integrals. Since dA = dxdy, we also write $\iint_O f dxdy$ for $\iint_O f dA$.

2. Double integrals and iterated integrals

Now we assume that the thin sheet Q is bounded by the curves y = g(x) and $y = h(x), x \in [0, a]$, i.e.,

$$Q = \{(x, y) \mid g(x) \le y \le h(x), x \in [0, a]\}.$$

At $x \in [0, a]$ we consider infinitesimal increment dx. The part of Q above [x, x + dx] is approximately the thin strip (the vertical green region in the picture)

$$dY = [x, x + dx] \times [g(x), h(x)].$$

Since dx is very small, dY can be viewed as a vertical line with 1-D density⁽¹⁾ f(x, y)dx at $y \in [g(x), h(x)]$. Thus its mass is

$$dM = \int_{g(x)}^{h(x)} [f(x, y)dx] dy = \left(\int_{g(x)}^{h(x)} f(x, y)dy\right) dx,$$

here we are integrating with respect to y, so dx is constant and can be moved out of the integral sign.

At this moment, we can already integrate dM against $x \in [0, a]$ to get $\iint_Q f dA$, the mass of Q, thus deduce the equality

$$\int_0^a \left(\int_{g(x)}^{h(x)} f(x, y) \mathrm{d}y \right) \mathrm{d}x = \iint_Q f(x, y) \mathrm{d}A. \tag{2.1}$$

If this does not convince you, read the next paragraph for more details. That paragraph plays the same role explaining why integrating the area of cross section yields the volume in the volume interpretation of the iterated integral formula (2.1).

Imaging that we squeeze Q vertically to the x-axis. Then the squeezed Q becomes the 1-D segment X = [0, a] on the x-axis (the thick red segment lying on the x-axis

⁽¹⁾Multiplying the horizontal width dx to the 2-D density f(x, y), we get the 1-D density in the vertical direction.

in the picture), with **the same mass**. The mass of the small segment (the dotted green segment on X) [x, x + dx] on X equals the mass of dY we obtained above:

$$dM = \left(\int_{g(x)}^{h(x)} f(x, y) dy\right) dx,$$

Thus, the 1-D density of X at $x \in [0, a]$ is

$$\rho(x) = \frac{\mathrm{d}M}{\mathrm{d}x} = \int_{g(x)}^{h(x)} f(x, y) \mathrm{d}y. \tag{2.2}$$

Hence the mass of the squeezed Q (that is the segment X) is

$$\int_0^a \left(\int_{g(x)}^{h(x)} f(x, y) dy \right) dx = \iint_Q f(x, y) dA.$$

The equality here is because: LHS is the mass of X obtained by integrating its 1-D density given in (2.2); RHS is the mass of Q, which equals that of X (the squeezed Q).

3. TRIPLE INTEGRALS AND ITERATED INTEGRALS

Let $D \subset \mathbb{R}^3$ be a solid body in 3-D space, f(x, y, z) be the 3-D density (mass per unit volume) at point $(x, y, z) \in D$. Then the mass of the infinitesimal box

$$dV = [x, x + dx] \times [y, y + dy] \times [z, z + dz]$$

based at $(x, y, z) \in D$ is approximately

$$dM \approx f(x, y, z)dV$$

here we use the same notation dV to denote the volume of the small box. Thus the mass of D is

$$M = \iiint dM = \iiint_D f(x, y, z)dV.$$

Since dV = dxdydz, we also write $\iiint_D f dxdydz$ for the triple integral $\iiint_D f dV$.

Assume that D is bounded by the surfaces z = g(x, y) and z = h(x, y), $(x, y) \in \Omega$, i.e.,

$$D = \{(x, y, z) \mid g(x, y) \le z \le h(x, y), (x, y) \in \Omega\},\$$

see the picture, where the xy-plane is represented as the horizontal axis to avoid a messy 3-D illustration (this trick can be applied to the volume interpretation of (2.1)).

At $(x, y) \in \Omega$ we consider infinitesimal increments dx and dy. The thin vertical bar (the vertical green region in the picture) dZ with base (the dotted green segment on Ω) d $Q = [x, x + dx] \times [y, y + dy]$ can be view as a vertical line bounded by z = g(x, y) and z = h(x, y), with 1-D density f(x, y, z) dx dy; because the portion (the small solid red rectangle) between z and z + dz has mass $dm \approx f(x, y, z) dx dy dz$, dividing the infinitesimal length dz we get the desired 1-D density f(x, y, z) dx dy.

Thus the mass of dZ is

$$dM = \int_{g(x,y)}^{h(x,y)} [f(x,y,z)dxdy] dz = dxdy \int_{g(x,y)}^{h(x,y)} f(x,y,z)dz.$$
 (3.1)

At this moment, we can already integrate dM against $(x, y) \in \Omega$ to get $\iiint_D f dV$, the mass of D, thus deduce

$$\iiint_D f(x, y, z) dx dy dz = \iint_{\Omega} dx dy \int_{g(x, y)}^{h(x, y)} f(x, y, z) dz.$$
 (3.2)

If this does not convince you, read the next paragraph for more details.

We compress D vertically onto Ω , the mass M does not change. Now Ω is a planar region on xy-plane with 2-D density at $(x, y) \in \Omega$

$$\rho(x,y) = \frac{\mathrm{d}M}{\mathrm{d}x\mathrm{d}y} = \int_{g(x,y)}^{h(x,y)} f(x,y,z)\mathrm{d}z,\tag{3.3}$$

because the mass of the infinitesimal rectangle (the dotted green segment on Ω) dQ is the dM given in (3.1) and the area is dxdy.

Therefore we deduce

$$\iiint_{D} f(x, y, z) dV = \iint_{\Omega} \rho(x, y) dx dy$$

$$= \iint_{\Omega} \left(\int_{g(x, y)}^{h(x, y)} f(x, y, z) dz \right) dx dy$$

$$= \iint_{\Omega} dx dy \int_{g(x, y)}^{h(x, y)} f(x, y, z) dz.$$

Here, the first equality is because: the LHS is the mass of D, the RHS is the mass of Ω obtained by integrating its 2-D density given in (3.3); Ω , being the vertical compression of D on the xy-plane, has the same mass as D.

After deducing (3.2), we may further evaluate the outer integral on Ω using iterated integral: Assuming Ω is bounded by two curves $y = \varphi_{\pm}(x)$, $x \in [a, b]$, then

$$\iiint_{D} f(x, y, z) dx dy dz = \iint_{\Omega} dx dy \int_{g(x, y)}^{h(x, y)} f(x, y, z) dz$$
$$= \int_{a}^{b} dx \int_{\varphi_{-}(x)}^{\varphi_{+}(x)} dy \int_{g(x, y)}^{h(x, y)} f(x, y, z) dz. \tag{3.4}$$

4. Another iterated triple integral formula

If D is bounded by z=c and z=d, D_z (the thick blue segment) is the intersection of D and the horizontal plane π_z at level $z\in [c,d]$. Given infinitesimal increment dz, the part dZ (the green region in the picture) of D between π_z and π_{z+dz} can be view as planar region with 2-D density⁽²⁾

$$\rho(x, y) = f(x, y, z)dz, \quad (x, y) \in D(z), \quad (4.1)$$

where D(z) (the thick green segment on the horizontal axis) is the projection of D_z on the xy-plane.

Therefor the mass of dZ is

$$dM = \iint_{D(z)} [f(x, y, z)dz] dxdy = dz \iint_{D(z)} f(x, y, z)dxdy.$$

Imaging that we compress D horizontally onto the z-axis. Then D becomes a thin bar B (the red vertical segment in the picture) on the z-axis with the same mass. The 1-D density of B at z is

$$\varrho(z) = \frac{\mathrm{d}M}{\mathrm{d}z} = \iint_{D(z)} f(x, y, z) \mathrm{d}x \mathrm{d}y.$$

Thus, the mass of B (which equals $\iiint_D f dV$, the mass of D), is

$$\iiint_D f(x, y, z) dV = \int_c^d \varrho(z) dz = \int_c^d dz \iint_{D(z)} f(x, y, z) dx dy.$$
 (4.2)

$$\rho(x, y) = \frac{\mathrm{d}m}{\mathrm{d}x\mathrm{d}y} = f(x, y, z)\mathrm{d}z, \qquad (x, y) \in D(z),$$

where dm = f(x, y, z)dxdydz is the mass of the small box (the red solid rectangle)

$$R = [x, x + dx] \times [y, y + dy] \times [z, z + dz]$$
 based at (x, y, z) .

⁽²⁾To get (4.1) we take infinitesimal increments dx and dy at $(x, y) \in D_z$. Then the 2-D density