FUNZIONI MATLAB© PER LE WAVELET INTERPOLANTI

SILVIA BERTOLUZZA

1. Framework

Le wavelet interpolanti simmetriche hanno l'equazione di dilatazione che può essere scritta nella forma seguente:

$$\theta(x) = \theta(2x) + \sum_{k=1}^{N} a_k (\theta(2x - (2k - 1)) + \theta(2x + (2k - 1))).$$

Sono costruite come autocorrelazione delle funzioni scala φ di Daubechies. I coefficienti a_k verificano la relazione:

2. Strutture dati

base. È una struttura che include tutti i dati che servono per descrivere e manipolare una base di ondine interpolanti:

- base.a: il filtro che compare nell'equazione di dilatazione per la funzione θ :
- base. J: il livello di raffinamento usato per costruire i vettori dei valori della funzione theta e delle sue derivate:
- base.L: $supp(\theta) = [-L, L];$
- base.P: grado dei polinomi riproducibili esattamente
- \bullet base. J
0: $J_0 = \lceil \log_2(L) \rceil$ è il livello minimo richiesto dalle modifiche di bordo
- base.THETA: matrice le cui colonne contengono i valori nei punti diadici della funzione θ e delle sue derivate prima e seconda.

grid. È una struttura dati che descrive un'insieme di punti diadici. In dimensione due abbiamo

- grid.j0: livello coarse della griglia (scalare)
- grid.npoints: numero di punti
- grid.j: $(x,y) = 2^{-j}(k_x, k_y) \to j$
- ullet grid.kx: $(x,y)=2^{-j}(k_x,k_y)
 ightarrow k_x$
- grid.ky: $(x,y)=2^{-j}(k_x,k_y)\to k_y$
- grid.x: $(x,y) = 2^{-j}(k_x,k_y) \rightarrow x$
- grid.y: $(x,y) = 2^{-j}(k_x, k_y) \to y$
- grid.b: 1 if the point is on the boundary, 0 otherwise. NB. It could be used to distinguish different boundary portions.

Remark 2.1. (Nota \times me) non c'è per ora il tipo, perché ho usato solo le funzioni di tipo 2)

Remark 2.2. a meno che $j=j_0$, la coppia (k_x,k_y) non può essere formata da due numeri pari.

Remark 2.3. Grazie alla corrispondenza tra punti e funzioni, la struttura grid viene usata anche per rappresentare lo spazio discreto generato dalle funzioni corrispondenti ai punti.

3. Funzioni

start. Dato nw dispari (indicativo della wavelet di Daubechies di partenza) ed un livello massimo J costruisce una struttura base. Uso:

Remark 3.1.
$$nw > 3 \Rightarrow \theta \in C^2$$
, $nw > 1 \Rightarrow \theta \in C^0$

uniform2d. Costruisce una struttura di tipo grid corrispondente ad una griglia uniforme di passo $2^{-j_{max}}$. La griglia è organizzata in scale multiple, con livello coarse = 2^{-J_0} . Uso:

Remark 3.2. di solito si usa $j_0 = base.J0$.

operator2d. Costruisce la matrice di rigidita' ottenuta tramite metodo di collocazione usando lo spazio generato dalle funzioni di space (struttura di tipo grid) e collocando nei punti della griglia grid per un operatore di tipo

$$Au = \sum_{i=0}^{2} \sum_{j=0}^{2-i} c_{i,j} \partial_x^i \partial_y^j u$$

I coefficienti $c_{i,j}$ sono passati tramite una matrice 3×3 coefs: coefs(i+1,j+1)= $c_{i,j}$. Uso:

Remark 3.3. Esempi di matrici per operatori particolari:

$$u \leftrightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
$$-\triangle u \leftrightarrow \begin{pmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix}$$
$$\beta_x u_x + \beta_y u_y \leftrightarrow \begin{pmatrix} 0 & \beta_x & 0 \\ \beta_y & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

appendbc2d. Data una matrice di rigidità S e un vettore right hand side f costruisce una matrice di rigidità Sb ed un vettore fb modificati in modo che la soluzione del sistema lineare Sb y = fb verifich condizioni al contorno di Dirichlet omogenee. Uso:

12_error. Dati i coefficienti u di una soluzione approssimata e una stringa che individui una function che calcola la soluzione esatta, valuta la norma L^2 della differenza.

```
>> [errl2] = 12_error(u,space,base,truesol);
```

Remark 3.4. Esempio di una funzione soluzione esatta (che deve poter ammettere input multipli)

```
function z=soluzione(x,y);
z = zeros(size(x));
% z=sin(x)+cos(y);
```

adapt. Data una griglia grid e i coefficienti u di una funzione definita sulla griglia, e due tolleranze tolr e tolc, costruisce una nuova griglia newgrid e l'interpolata newu nello spazio corrispondente. Uso

```
>> [newgrid,newu] = adapt(grid,u,tolr,tolc)
```

plot2d. Dati i valori z di una funzione nei punti della griglia grid, plotta la funzione usando una griglia di plottaggio uniforme 10×10 . Uso:

```
>> plot2d(z,grid)
```

Remark 3.5. Dati i coefficienti della funzione sulla griglia grid, i valori nei punti si ottengono moltiplicando per la matrice di massa (costruita con operator2d).

Funzioni ausiliarie. Le funzioni buildcol, convolution, extrapolate, filtro, refine, restriction, valori e wavelet sono funzioni ausiliarie che non vengono mai chiamate direttamente.

Utilities. Le funzioni soluzione, rhs, uno, e zero sono funzioni che prendono in input vettori x e y e ritornano z. Possono essere usate come right hand side, valore al bordo o soluzione vera. Ad esempio per costruire il right hand side si fa

```
>> f = rhs(grid.x,grid.y)
E-mail address: silvia.bertoluzza@imati.cnr.it
```