CIS 606 Machine Learning Spring 2013 Lecture 9 Classification II

Wei Lee Woon and Zeyar Aung

Today's topics

- Perceptron, convergence
 - the prediction game
 - mistakes, margin, and generalization
- Maximum margin classifier -- support vector machine
 - estimation, properties
 - allowing misclassified points

Recall: linear classifiers

• A linear classifier (through origin) with parameters $\underline{\theta}$ divides the space into positive and negative halves

$$f(\underline{x}; \underline{\theta}) = \operatorname{sign}(\underline{\theta} \cdot \underline{x}) = \operatorname{sign}(\underline{\theta_1 x_1 + \ldots + \theta_d x_d})$$

$$= \begin{cases} +1, & \text{if } \underline{\theta} \cdot \underline{x} > 0 \\ -1, & \text{if } \underline{\theta} \cdot \underline{x} \leq 0 \end{cases}$$
 discriminant function

The perceptron algorithm

A sequence of examples and labels

$$(\underline{x}_t, y_t), \quad t = 1, 2, \dots$$

The perceptron algorithm applied to the sequence

Initialize:
$$\underline{\theta} = 0$$

For $t = 1, 2, ...$
if $y_t(\underline{\theta} \cdot \underline{x}_t) \leq 0$ (mistake)
 $\underline{\theta} \leftarrow \underline{\theta} + y_t \underline{x}_t$

 We would like to bound the number of mistakes that the algorithm makes along the (infinite) sequence

Mistakes and margin

Poor separation, many mistakes

The target classifier

 We can quantify how hard the problem is by assuming that there exists a target classifier that achieves a certain margin,

- The geometric margin γ_g is the closest distance to the separating boundary $\,\gamma_g = \min_i \gamma_g(i)\,$
- Our "target" classifier is one that achieves the largest geometric margin (max-margin classifier)

Perceptron mistake guarantee

• If the sequence of examples and labels is such that there exists $\underline{\theta}^*$ with geometric margin γ_g and $||\underline{x}_i|| \leq R$ then the perceptron algorithm makes at most

$$\frac{R^2}{\gamma_g^2}$$

mistakes along the (infinite) sequence!

- Key points
 - large geometric margin relative to the norm of the examples implies few mistakes
 - the result does not depend on the dimension of the examples (the number of parameters)

We show that after k updates (mistakes),

$$\underline{\theta}^{(k)} \cdot \underline{\theta}^* \geq k \gamma_g \|\underline{\theta}^*\|
\|\underline{\theta}^{(k)}\|^2 \leq k R^2$$

We show that after k updates (mistakes),

$$\underline{\theta}^{(k)} \cdot \underline{\theta}^* \geq k \gamma_g \|\underline{\theta}^*\|$$
$$\|\underline{\theta}^{(k)}\|^2 \leq k R^2$$

Let the kth mistake be on the ith example

$$\underline{\theta}^{(k)} \cdot \underline{\theta}^* = [\underline{\theta}^{(k-1)} + y_i \underline{x}_i] \cdot \underline{\theta}^*
= \underline{\theta}^{(k-1)} \cdot \underline{\theta}^* + y_i \underline{x}_i \cdot \underline{\theta}^*
\geq \underline{\theta}^{(k-1)} \cdot \underline{\theta}^* + \gamma_g ||\underline{\theta}^*||$$

We show that after k updates (mistakes),

$$\underline{\theta}^{(k)} \cdot \underline{\theta}^* \geq k \gamma_g \|\underline{\theta}^*\|
\|\underline{\theta}^{(k)}\|^2 \leq k R^2$$

Let the kth mistake be on the ith example

$$\|\underline{\theta}^{(k)}\|^{2} = \|\underline{\theta}^{(k-1)} + y_{i}\underline{x}_{i}\|^{2}$$

$$= \|\underline{\theta}^{(k-1)}\|^{2} + 2y_{i}\underline{\theta} \cdot \underline{x}_{i} + \|\underline{x}_{i}\|^{2}$$

$$\leq \|\underline{\theta}^{(k-1)}\|^{2} + \|\underline{x}_{i}\|^{2}$$

$$\leq \|\underline{\theta}^{(k-1)}\|^{2} + R^{2}$$

We have shown that after k updates (mistakes),

$$\frac{\theta^{(k)} \cdot \underline{\theta}^*}{\|\underline{\theta}^{(k)}\|^2} \leq kR^2$$

• As a result,
$$1 \geq \frac{\underline{\underline{\theta}^{(k)} \cdot \underline{\theta}^*}}{\|\underline{\underline{\theta}^{(k)}}\| \|\underline{\underline{\theta}^*}\|} \geq \frac{k\gamma_g}{\sqrt{k}R}$$

$$\Rightarrow k \le \frac{R^2}{\gamma_g^2}$$

Summary (perceptron)

- By analyzing the simple perceptron algorithm, we were able to relate the number of mistakes, geometric margin, and generalization
- The perceptron algorithm converges to a classifier close to the max-margin target classifier

In cases where we are given a fixed set of training examples, and they are linearly separable, we can find and use the maximum margin classifier directly

maximize γ_g subject to

To find
$$\underline{\theta}^*$$
: $\frac{y_i(\underline{\theta} \cdot \underline{x}_i)}{\|\underline{\theta}\|} \ge \gamma_g, \quad i = 1, \dots, n$

To find
$$\underline{\theta}^*$$
:
$$\frac{\text{maximize } \frac{1}{\|\underline{\theta}\|} \text{ subject to}}{\frac{y_i(\underline{\theta} \cdot \underline{x}_i)}{\|\underline{\theta}\|} \ge \frac{1}{\|\underline{\theta}\|}, \quad i = 1, \dots, n}$$

To find
$$\underline{\theta}^*$$
: $\max_{\underline{\theta}} \frac{1}{\|\underline{\theta}\|}$ subject to $y_i(\underline{\theta} \cdot \underline{x}_i) \geq 1, \quad i = 1, \dots, n$

To find
$$\underline{\theta}^*$$
: minimize $\|\underline{\theta}\|$ subject to $y_i(\underline{\theta} \cdot \underline{x}_i) \geq 1, \quad i = 1, \dots, n$

To find
$$\underline{\theta}^*$$
: minimize $\frac{1}{2} ||\underline{\theta}||^2$ subject to $y_i(\underline{\theta} \cdot \underline{x}_i) \ge 1, \quad i = 1, \dots, n$

- This is a quadratic programming problem (quadratic objective, linear constraints)
- The solution is unique, typically obtained in the dual

Is sparse solution good?

 We can simulate test performance by evaluating Leave-One-Out Cross-Validation error

$$LOOCV(\underline{\theta}^*) \le \frac{\# \text{ of support vectors}}{n}$$

Linear classifiers (with offset)

• A linear classifier with parameters $(\underline{\theta}, \theta_0)$

$$f(\underline{x}; \underline{\theta}, \theta_0) = \operatorname{sign}(\underline{\theta} \cdot \underline{x} + \theta_0)$$

$$= \begin{cases} +1, & \text{if } \underline{\theta} \cdot \underline{x} + \theta_0 > 0 \\ -1, & \text{if } \underline{\theta} \cdot \underline{x} + \theta_0 \le 0 \end{cases}$$

To find
$$\underline{\theta}^*, \theta_0^*$$
: minimize $\frac{1}{2} ||\underline{\theta}||^2$ subject to $y_i(\underline{\theta} \cdot \underline{x}_i + \theta_0) \ge 1, \quad i = 1, \dots, n$

Still a quadratic programming problem (quadratic objective, linear constraints)

The impact of offset

 Adding the offset parameter to the linear classifier can substantially increase the margin

- Several desirable properties
 - maximizes the margin on the training set (pprox good generalization)
 - the solution is unique and sparse (pprox good generalization)
- But...
 - the solution is sensitive to outliers, labeling errors, as they may drastically change the resulting max-margin boundary
 - if the training set is not linearly separable, there's no solution!

Relaxed quadratic optimization problem

penalty for constraint violation

minimize
$$\frac{1}{2} \|\underline{\theta}\|^2 + C \sum_{i=1}^{n} \xi_i$$
 subject to $y_i(\underline{\theta} \cdot \underline{x}_i + \theta_0) \geq 1 - \xi_i, i = 1, \dots, n$ $\xi_i \geq 0, i = 1, \dots, n$

slack variables permit us to violate some of the margin constraints

Relaxed quadratic optimization problem

penalty for constraint violation

minimize
$$\frac{1}{2} \|\underline{\theta}\|^2 + C \sum_{i=1}^{n} \xi_i$$
 subject to $y_i(\underline{\theta} \cdot \underline{x}_i + \theta_0) \geq 1 - \xi_i, i = 1, \dots, n$ $\xi_i \geq 0, i = 1, \dots, n$

large $C \Rightarrow$ few (if any) violations small $C \Rightarrow$ many violations slack variables permit us to violate some of the margin constraints

Relaxed quadratic optimization problem

penalty for constraint violation

minimize
$$\frac{1}{2} \|\underline{\theta}\|^2 + C \sum_{i=1}^{n} \xi_i$$
 subject to $y_i(\underline{\theta} \cdot \underline{x}_i + \theta_0) \geq 1 - \xi_i, i = 1, \dots, n$ $\xi_i \geq 0, i = 1, \dots, n$

large $C \Rightarrow$ few (if any) violations small $C \Rightarrow$ many violations slack variables permit us to violate some of the margin constraints

we can still interpret the margin as $1/\|\underline{\theta}^*\|$

Relaxed quadratic optimization problem

$$\min \frac{1}{2} \|\underline{\theta}\|^2 + C \sum_{i=1}^n \xi_i \text{ subject to}$$

$$y_i(\underline{\theta} \cdot \underline{x}_i + \theta_0) \geq 1 - \xi_i, \quad i = 1, \dots, n$$

$$\xi_i \geq 0, \quad i = 1, \dots, n$$

$$\underbrace{\underline{\theta}^* \cdot \underline{x} + \theta_0^*}_{\underline{\theta}^* \cdot \underline{x} + \theta_0^* = -1}$$

Support vectors and slack

The solution now has three types of support vectors

$$\min \frac{1}{2} \|\underline{\theta}\|^2 + C \sum_{i=1}^n \xi_i \text{ subject to}$$

$$y_i(\underline{\theta} \cdot \underline{x}_i + \theta_0) \geq 1 - \xi_i, \quad i = 1, \dots, n$$

$$\xi_i \geq 0, \quad i = 1, \dots, n$$

$$\xi_i = 0 \text{ constraint is tight but there's no slack}$$

$$\underline{\theta}^* \cdot \underline{x} + \theta_0^* = 1$$

$$\underline{\theta}^* \cdot \underline{x} + \theta_0^* = 0$$

$$\underline{\theta}^* \cdot \underline{x} + \theta_0^* = -1$$

Support vectors and slack

The solution now has three types of support vectors

$$\min \frac{1}{2} \|\underline{\theta}\|^2 + C \sum_{i=1}^n \xi_i \text{ subject to}$$

$$y_i(\underline{\theta} \cdot \underline{x}_i + \theta_0) \geq 1 - \xi_i, \quad i = 1, \dots, n$$

$$\xi_i \geq 0, \quad i = 1, \dots, n$$

$$\xi_i \geq 0, \quad i = 1, \dots, n$$

$$\xi_i = 0 \text{ constraint is tight but there's no slack}$$

$$\underline{\theta}^* \cdot \underline{x} + \theta_0^* = 1$$

$$\underline{\theta}^* \cdot \underline{x} + \theta_0^* = 0$$

$$\underline{\theta}^* \cdot \underline{x} + \theta_0^* = -1$$

Support vectors and slack

The solution now has three types of support vectors

$$\min \operatorname{minimize} \ \frac{1}{2} \|\underline{\theta}\|^2 \ + \ C \sum_{i=1}^n \xi_i \ \operatorname{subject to}$$

$$y_i(\underline{\theta} \cdot \underline{x}_i + \theta_0) \ \geq \ 1 - \xi_i, \ i = 1, \dots, n$$

$$\xi_i \ \geq \ 0, \ i = 1, \dots, n$$

$$\xi_i = 0 \ \text{constraint is tight but there's no slack}$$

$$\underline{\theta}^* \cdot \underline{x} + \theta_0^* = 1$$

$$\underline{\theta}^* \cdot \underline{x} + \theta_0^* = 0$$

$$\underline{\theta}^* \cdot \underline{x} + \theta_0^* = -1$$

• C=100

• C=10

C=I

C=0.1

C potentially affects the solution even in the separable case

C potentially affects the solution even in the separable case

C potentially affects the solution even in the separable case

Original source:

MIT Course 6.867 Machine Learning (Fall 2010) by Prof. Tommi Jaakkola.