Listes d'exercices Module04 Statistiques

21 septembre 2017

Exercice (1)

Soit un véhicule qui avance à 10km/h sur une distance de 20km puis augmente sa vitesse et avance à 120km/h sur une distance de 200km. Calculer la moyenne des vitesses sur l'ensemble du parcours.

Exercice (2.1)

effectifs :	5	5	4	6	2
notes :	9	13	14	17	18

Soit le tableau ci-dessus : notes des étudiants de l'école. Calculer la moyenne, l'écart type et la médiane. Faites un script Python pour effectuer chacun de ces calculs, attention à la médiane, c'est la valeur centrale de la série statistique, donnez son indice par rapport à l'effectif total.

Exercice (2.2 Challenge)

Reprendre l'execice 2.1 et afficher la valeur de la médiane dans la liste de note à l'aide d'un script Python.

Exercice (3)

Soit une entreprise qui vend des cartes réseaux. Le tableau suivant indique le pourcentage de cartes réseaux qui ont une panne au cours des x semestres :

x semestres :	1	2	3	4	5	6	7	8	9	10
y pourcentage :	2	3	4	7	9	11	16	20	23	31

- 1) Représenter graphiquement en Python le nuage de points
- 2) Calculer moyennes, variances et covariances.
- 3) Déterminer/représenter une équation de la droite D, droite de régression linéaire de y en fonction de x.

Exercice (4)

On a mesuré la distance D nécessaire à un voiture éléctrique pour stopper, en fonction de sa vitesse ν :

v (m/s)	13.89	19.44	27.78	33.33
D (m):	30	60	105	160

- 1) Représenter graphiquement en Python le nuage de points
- 2) Les points du nuage associé à la série (v^2, D) étant presque alignés on pose l'ajustement affine suivant : $D = k \times v^2 + \lambda$. Déterminer les valeurs au centième des coefficients k, λ .
- 3) En utilisant ce modèle, estimer les distances d'arrêt d'une voiture roulant respectivement à 90km/h et 150km/h.

Pour ces exercices aidez-vous de Python pour effectuer les calculs.

Fin des exercices sur les statistiques, merci de les avoir suivis.