Paths of analysis*

Synthia

October 11, 2022

1 Analysis parameters

Analysis type: Automatic Retrosynthesis

Rules: none selected

Filters: Tunnels, FGI, FGI with protections

Max. paths returned: 50

Max. iterations: 2000

Commercial:

1. Max. molecular weight - 1000 g/mol

2. Max. price - 1500 \$/g

Published:

- 1. Max. molecular weight 1000 g/mol
- 2. Popularity 5

My Stockroom:

1. Max. molecular weight - 1000 g/mol

Reaction scoring formula: TUNNEL_COEF*FGI_COEF*STEP*20+1000 000*(CONFLICT+NON SELECTIVITY+FILTERS+PROTECT)

Chemical scoring formula: SMALLER^ 3,SMALLER^ 1.5

Min. search width: 400

Max. reactions per product: 60

Strategies: none selected

^{*}The results stated herein were generated using the proprietary platform owned and maintained by Grzybowski Scientific Inventions, Inc., a subsidiary of Merck KGaA, Darmstadt Germany. The results are provided on an as is basis, and shall be used solely in connection with the rights afforded in the license agreement and for no other purpose.

FGI Coeff: 0

Tunnels Coeff: 0

JSON Parameters: {}

2 Paths

5 paths found. Paths are sorted by score. Reactions are sorted in appearance order for each path.

2.1 Path 1

Score: 76.25

Figure 1: Outline of path 1

2.1.1 Suzuki coupling of vinyl bromides with alkenyl boronic acids

Substrates:

- 1. trans-Propenylboronic acid available at Sigma-Aldrich
- 2. 3-bromo-2,5-dihydrofuran-2-one available at Sigma-Aldrich

Products:

 $1. \ C/C=C/C1=CCOC1=O$

 ${\bf Typical\ conditions:}\ {\bf Pd\ catalyst.base.solvent}$

Protections: none

Reference: 10.1021/cr00039a007 and $10.1007/3418_2012_32$ and 10.1021/cr0505268 and 10.1016/j.jfluchem.2016.01.018 and 10.1039/C3CS60197H

Retrosynthesis ID: 24937

2.1.2 Diels-Alder

Substrates:

1. Calcium carbide - available at Sigma-Aldrich

 $2. \ \mathrm{C/C}{=}\mathrm{C/C1}{=}\mathrm{CCOC1}{=}\mathrm{O}$

Products:

 $1. \ \mathrm{CC1C}{=}\mathrm{CC2COC}(=\mathrm{O})\mathrm{C2}{=}\mathrm{C1}$

 $\textbf{Typical conditions:} \ H2O. MeOH. EtOH. is ooct ane$

Protections: none

 $\textbf{Reference:} \ \ 10.1002/1521-3773(20020517)41:10<1668::AID-ANIE1668>3.0.CO; 2-10.1002/1521-3773(20020517)41:10<1668::AID-ANIE1668>3.0.CO; 2-10.1002/1521-3773(20020517)41:10<1668::AID-ANIE1668>3.0.CO; 2-10.1002/1521-3773(20020517)41:10<1668::AID-ANIE1668>3.0.CO; 2-10.1002/1521-3773(20020517)41:10<1668::AID-ANIE1668>3.0.CO; 2-10.1002/1521-3773(20020517)41:10<1668::AID-ANIE1668>3.0.CO; 2-10.1002/1521-3773(20020517)41:10<1668::AID-ANIE1668>3.0.CO; 2-10.1002/1521-3773(20020517)41:10<1668::AID-ANIE1668>3.0.CO; 2-10.1002/1521-3773(20020517)41:10<1668::AID-ANIE1668>3.0.CO; 2-10.1002/1521-3702(20020517)41:10<1668::AID-ANIE1668>3.0.CO; 2-10.1002(20020517)41:10<1668::AID-ANIE1668>3.0.CO; 2-10.1002(20020517)41:10<1668::AID-ANIE1668>3.0.CO; 2-10.1002(20020517)41:10<1668::AID-ANIE1668>3.0.CO; 2-10.1002(20020517)41:10<1668::AID-ANIE1668>3.0.CO; 2-10.1002(20020517)41:10<1668::AID-ANIE1668>3.0.CO; 2-10.1002(20020517)41:10<1668::AID-ANIE1668>3.0.CO; 2-10.1002(20020517)40:1000(20020517)40:100$

Z

2.1.3 Conjugated addition of organocuprate-acylation of enones and enoate esters

Substrates:

- 1. 3-Iodo-1-tosyl-1H-indole available at Sigma-Aldrich
- 2. CC1C=CC2COC(=O)C2=C1
- 3. Acetyl chloride available at Sigma-Aldrich

Products:

 $1. \ \ CC(=O)C12C(=O)OCC1C=CC(C)C2c1cn(S(=O)(=O)c2ccc(C)cc2)c2cccc12$

Typical conditions: 1.RCuLi.2.AcCl.HMPA

Protections: none

Reference: 10.3987/COM-99-S143 AND 10.1021/ja00148a023 AND

10.1016/S0040-4039(01)80891-1

Retrosynthesis ID: 12521

2.2 Path 2

Score: 76.25

Figure 2: Outline of path 2

2.2.1 Condensation of esters with aldehydes

Substrates:

1. 4-ethenyloxolan-2-one - available at Sigma-Aldrich

2. 1-Tosyl-1H-indole-3-carbaldehyde - available at Sigma-Aldrich

Products:

1. C=CC1COC(=O)/C1=C/c1cn(S(=O)(=O)c2ccc(C)cc2)c2cccc12

Typical conditions: 1.LDA.2RCHO

Protections: none

Reference: 10.1021/jo970387x AND 10.1021/jo00076a051 AND 10.1016/S0040-4039(97)10827-9 AND 10.1055/s-2002-25767 AND 10.1039/P19920003277

2.2.2 Conjugated addition of organocuprate-acylation of enones and enoate esters

Substrates:

- 1. Acetyl chloride available at Sigma-Aldrich
- $2. \ C = CC1COC(=O)/C1 = C/c1cn(S(=O)(=O)c2ccc(C)cc2)c2cccc12$
- 3. 3-brom-but-1-en

Products:

 $\textbf{Typical conditions:}\ 1. RCuLi. 2. AcCl. HMPA$

Protections: none

Reference: 10.3987/COM-99-S143 AND 10.1021/ja00148a023 AND

10.1016/S0040-4039(01)80891-1

2.2.3 Ring-Closing Metathesis

Substrates:

Products:

 $1. \ \mathrm{CC}(=\mathrm{O})\mathrm{C12C}(=\mathrm{O})\mathrm{OCC1C} = \mathrm{CC}(\mathrm{C})\mathrm{C2c1cn}(\mathrm{S}(=\mathrm{O})(=\mathrm{O})\mathrm{c2ccc}(\mathrm{C})\mathrm{cc2})\mathrm{c2ccccc12}$

Typical conditions: catalyst e.g. Hoveyda-Grubbs . solvent e.g. CH2Cl2

Protections: none

Reference: DOI: 10.1002/anie.200800693 and 10.1021/acs.orglett.8b04003 and

10.1021/jo0264729 and 10.1021/ja072334v and 10.1002/ejoc.201001102

Retrosynthesis ID: 31014187

2.3 Path 3

Score: 76.25

Figure 3: Outline of path 3

2.3.1 Reaction of alcohols with diketene

Substrates:

1. diketene - available at Sigma-Aldrich

2. sorbic alcohol

Products:

1. CC=CC=CCOC(=O)CC(C)=O

 ${\bf Typical\ conditions:\ DCM.heat}$

Protections: none

Reference: WO2012/31028 A2 (p.39) AND 10.1021/ol051945u AND 10.1021/ol069756 AND 10.1002/adsc.200800532

Retrosynthesis ID: 14881

2.3.2 Knoevenagel Condensation

Substrates:

1. CC=CC=CCOC(=O)CC(C)=O

 $2. \ 1 \hbox{-} Tosyl-1 \hbox{H-indole-3-carbaldehyde} - \\ \qquad \textit{available at Sigma-Aldrich}$

Products:

 $1. \ \ CC=CC=CCOC(=O)C(=Cc1cn(S(=O)(=O)c2ccc(C)cc2)c2cccc12)C(C)=O$

Typical conditions: base e.g.piperidine. solvent

Protections: none

Reference: 10.1002/0471264180.or015.02 and 10.13005/ojc/350154

Retrosynthesis ID: 252

2.3.3 Diels-Alder

Substrates:

 $1. \ \ CC=CC=CCOC(=O)C(=Cc1cn(S(=O)(=O)c2ccc(C)cc2)c2cccc12)C(C)=O$

Products:

 $1. \ \ CC(=O)C12C(=O)OCC1C=CC(C)C2c1cn(S(=O)(=O)c2ccc(C)cc2)c2cccc12$

Typical conditions: Lewis acid or chiral Lewis acid. Solvent.

Protections: none

Reference: DOI: 10.1002/1521-3773(20020517)41:10<1668::AID-

ANIE1668 > 3.0.CO; 2-Z AND 10.1021/ja062508t

Retrosynthesis ID: 18116

2.4 Path 4

Score: 76.25

Figure 4: Outline of path 4

2.4.1 Steglich Esterification

Substrates:

1. Lithium acetoacetate - available at Sigma-Aldrich

2. sorbic alcohol

Products:

1. CC=CC=CCOC(=O)CC(C)=O

 $\textbf{Typical conditions:} \ \, \text{alcohol.DCC.DMAP.DCM} \ \, \text{or thiol.DCC.DMAP.DCM}$

Protections: none

Reference: 10.1002/anie.197805221

2.4.2 Knoevenagel Condensation

Substrates:

- 1. CC=CC=CCOC(=O)CC(C)=O
- 2. 1-Tosyl-1H-indole-3-carbaldehyde available at Sigma-Aldrich

Products:

 $1. \ CC=CC=CCOC(=O)C(=Cc1cn(S(=O)(=O)c2ccc(C)cc2)c2cccc12)C(C)=O$

 ${\bf Typical\ conditions:}\ {\bf base\ e.g.piperidine.\ solvent}$

Protections: none

Reference: 10.1002/0471264180.or015.02 and 10.13005/ojc/350154

Retrosynthesis ID: 252

2.4.3 Diels-Alder

Substrates:

 $1. \ \ CC=CC=CCOC(=O)C(=Cc1cn(S(=O)(=O)c2ccc(C)cc2)c2cccc12)C(C)=O$

Products:

 $1. \ \ CC(=O)C12C(=O)OCC1C=CC(C)C2c1cn(S(=O)(=O)c2ccc(C)cc2)c2cccc12$

Typical conditions: Lewis acid or chiral Lewis acid. Solvent.

Protections: none

Reference: DOI: 10.1002/1521-3773(20020517)41:10<1668::AID-

ANIE1668 > 3.0.CO; 2-Z AND 10.1021/ja062508t

Retrosynthesis ID: 18116

2.5 Path 5

Score: 84.06

Figure 5: Outline of path 5

2.5.1 Aldol Condensation

Substrates:

1. 4-Hydroxy-2-butanone - available at Sigma-Aldrich

2. 1-Tosyl-1H-indole-3-carbaldehyde - available at Sigma-Aldrich

Products:

1. CC(=O)C(=Cc1cn(S(=O)(=O)c2ccc(C)cc2)c2ccccc12)CO

 ${\bf Typical\ conditions:}\ {\bf NaOEt.base}$

Protections: none

Reference: 10.1080/00397911.2016.1206938

Retrosynthesis ID: 10049

2.5.2 Jones Oxidation

Substrates:

1.
$$CC(=O)C(=Cc1cn(S(=O)(=O)c2ccc(C)cc2)c2ccccc12)CO$$

Products:

 $1. \ \mathrm{CC}(=\mathrm{O})\mathrm{C}(=\mathrm{Cc1cn}(\mathrm{S}(=\mathrm{O})(=\mathrm{O})\mathrm{c2ccc}(\mathrm{C})\mathrm{cc2})\mathrm{c2cccc12})\mathrm{C}(=\mathrm{O})\mathrm{O}$

 ${\bf Typical\ conditions:}\ {\bf cromate.sulfate. H2O. acetone}$

Protections: none

Reference: 10.1002/9780470638859.conrr349 and 10.1021/jm00270a004

Retrosynthesis ID: 11160

2.5.3 Appel Reaction

Substrates:

1. sorbic alcohol

Products:

1. 1-brom-hexa-2,4-dien

Typical conditions: PPh3.CBr4

Protections: none

Reference: 10.1021/ja800574m and 10.1016/j.tet.2012.05.010 and

10.1016/j.tet.2004.09.021 (experimental)

2.5.4 Synthesis of esters from alkyl chlorides and carboxylic acids or thioacids

Substrates:

1. 1-brom-hexa-2,4-dien

 $2. \ \mathrm{CC}(=\mathrm{O})\mathrm{C}(=\mathrm{Cc1cn}(\mathrm{S}(=\mathrm{O})(=\mathrm{O})\mathrm{c2ccc}(\mathrm{C})\mathrm{cc2})\mathrm{c2cccc12})\mathrm{C}(=\mathrm{O})\mathrm{O}$

Products:

 $1. \ CC=CC=CCOC(=O)C(=Cc1cn(S(=O)(=O)c2ccc(C)cc2)c2cccc12)C(C)=O$

Typical conditions: K2CO3.DMF

Protections: none

Reference: 10.1016/j.bmcl.2005.08.026 AND 10.1021/ol034655r (SI) AND

10.1039/C3RA41967C AND 10.1016/j.bmcl.2012.03.093

2.5.5 Diels-Alder

Substrates:

 $1. \ \ CC=CC=CCOC(=O)C(=Cc1cn(S(=O)(=O)c2ccc(C)cc2)c2cccc12)C(C)=O$

Products:

 $1. \ \mathrm{CC}(=\mathrm{O})\mathrm{C12C}(=\mathrm{O})\mathrm{OCC1C} = \mathrm{CC}(\mathrm{C})\mathrm{C2c1cn}(\mathrm{S}(=\mathrm{O})(=\mathrm{O})\mathrm{c2ccc}(\mathrm{C})\mathrm{cc2})\mathrm{c2cccc12}$

Typical conditions: Lewis acid or chiral Lewis acid. Solvent.

Protections: none

Reference: DOI: 10.1002/1521-3773(20020517)41:10<1668::AID-

ANIE1668 > 3.0.CO; 2-Z AND 10.1021/ja062508t