Fernando Lozano

Universidad de los Andes

6 de agosto de 2013

• Reconocimiento de patrones o clasificación:

- Reconocimiento de patrones o clasificación:
 - Diagnóstico médico.

- Reconocimiento de patrones o clasificación:
 - Diagnóstico médico.
 - Reconocimiento de caracteres.

- Reconocimiento de patrones o clasificación:
 - Diagnóstico médico.
 - Reconocimiento de caracteres.
 - ► Categorización de texto.

- Reconocimiento de patrones o clasificación:
 - Diagnóstico médico.
 - Reconocimiento de caracteres.
 - Categorización de texto.
- Regresión:

- Reconocimiento de patrones o clasificación:
 - Diagnóstico médico.
 - ▶ Reconocimiento de caracteres.
 - Categorización de texto.
- Regresión:
 - Predicción de series de tiempo.

- Reconocimiento de patrones o clasificación:
 - Diagnóstico médico.
 - Reconocimiento de caracteres.
 - Categorización de texto.
- Regresión:
 - Predicción de series de tiempo.
 - ▶ Identificación de sistemas.

- Reconocimiento de patrones o clasificación:
 - Diagnóstico médico.
 - Reconocimiento de caracteres.
 - Categorización de texto.
- Regresión:
 - Predicción de series de tiempo.
 - ► Identificación de sistemas.
 - Aproximación de funciones.

- Reconocimiento de patrones o clasificación:
 - Diagnóstico médico.
 - Reconocimiento de caracteres.
 - ► Categorización de texto.
- Regresión:
 - Predicción de series de tiempo.
 - ▶ Identificación de sistemas.
 - Aproximación de funciones.
- Ranking

- Reconocimiento de patrones o clasificación:
 - Diagnóstico médico.
 - ▶ Reconocimiento de caracteres.
 - ► Categorización de texto.
- Regresión:
 - Predicción de series de tiempo.
 - ▶ Identificación de sistemas.
 - Aproximación de funciones.
- Ranking
 - Sistema de recomendación.

- Reconocimiento de patrones o clasificación:
 - Diagnóstico médico.
 - Reconocimiento de caracteres.
 - ► Categorización de texto.
- Regresión:
 - Predicción de series de tiempo.
 - Identificación de sistemas.
 - Aproximación de funciones.
- Ranking
 - Sistema de recomendación.
 - Information retrieval.

- Reconocimiento de patrones o clasificación:
 - Diagnóstico médico.
 - Reconocimiento de caracteres.
 - Categorización de texto.
- Regresión:
 - Predicción de series de tiempo.
 - ▶ Identificación de sistemas.
 - Aproximación de funciones.
- Ranking
 - Sistema de recomendación.
 - ► Information retrieval.
- Otros.

• Entrada \mathbf{x} , salida y.

- \bullet Entrada \mathbf{x} , salida y.
- ullet Queremos un sistema que prediga el valor de y a partir de ${\bf x}$.

- Entrada \mathbf{x} , salida y.
- ullet Queremos un sistema que prediga el valor de y a partir de ${\bf x}$.
- Existe un supervisor o maestro que conoce la respuesta correcta para patrones de entrada.

- Entrada \mathbf{x} , salida y.
- Queremos un sistema que prediga el valor de y a partir de \mathbf{x} .
- Existe un supervisor o maestro que conoce la respuesta correcta para patrones de entrada.
- \bullet Conjunto de entrenamiento: $\{\mathbf{x}_i,y_i\}_{i=1}^n$

- Entrada \mathbf{x} , salida y.
- Queremos un sistema que prediga el valor de y a partir de \mathbf{x} .
- Existe un supervisor o maestro que conoce la respuesta correcta para patrones de entrada.
- \bullet Conjunto de entrenamiento: $\{\mathbf{x}_i,y_i\}_{i=1}^n$

 \bullet Queremos modelar S.

- \bullet Queremos modelar S.
- No es fácil obtener un modelo analítico.

- \bullet Queremos modelar S.
- No es fácil obtener un modelo analítico.
- Usar modelo para predecir valores de la salida para nuevas entradas.

- \bullet Queremos modelar S.
- No es fácil obtener un modelo analítico.
- Usar modelo para predecir valores de la salida para nuevas entradas.

Elementos

 \bullet Conjunto de datos de entrenamiento $\{\mathbf{x}_i,y_i\}_{i=1}^n.$

Elementos

- \bullet Conjunto de datos de entrenamiento $\{\mathbf{x}_i,y_i\}_{i=1}^n.$
- Conjunto de modelos a utilizar.

Elementos

- \bullet Conjunto de datos de entrenamiento $\{\mathbf x_i,y_i\}_{i=1}^n.$
- Conjunto de modelos a utilizar.
- Conjunto de datos de prueba $\{\mathbf{x}_i, y_i\}_{i=1}^q$.

Aprendizaje=Construir modelo

• El objetivo es aproximar S.

Aprendizaje=Construir modelo

- El objetivo es aproximar S.
- Cuál es un criterio de error apropiado?

• $(\mathbf{x}, y) \sim \mathcal{D}$

- $(\mathbf{x}, y) \sim \mathcal{D}$
- $\{\mathbf{x}_i, y_i\}_{i=1}^n$ copias independientes e idénticamente distribuidas de (\mathbf{x}, y) .

- $(\mathbf{x}, y) \sim \mathcal{D}$
- $\{\mathbf{x}_i, y_i\}_{i=1}^n$ copias independientes e idénticamente distribuidas de (\mathbf{x}, y) .
- $\{\mathbf{x}_i, y_i\}_{i=1}^q$ copias independientes e idénticamente distribuidas de (\mathbf{x}, y) e independientes de $\{\mathbf{x}_i, y_i\}_{i=1}^n$.

- $(\mathbf{x}, y) \sim \mathcal{D}$
- $\{\mathbf{x}_i, y_i\}_{i=1}^n$ copias independientes e idénticamente distribuidas de (\mathbf{x}, y) .
- $\{\mathbf{x}_i, y_i\}_{i=1}^q$ copias independientes e idénticamente distribuidas de (\mathbf{x}, y) e independientes de $\{\mathbf{x}_i, y_i\}_{i=1}^n$.
- Criterio de error:

- $(\mathbf{x}, y) \sim \mathcal{D}$
- $\{\mathbf{x}_i, y_i\}_{i=1}^n$ copias independientes e idénticamente distribuidas de (\mathbf{x}, y) .
- $\{\mathbf{x}_i, y_i\}_{i=1}^q$ copias independientes e idénticamente distribuidas de (\mathbf{x}, y) e independientes de $\{\mathbf{x}_i, y_i\}_{i=1}^n$.
- Criterio de error:
 - Para clasificación binaria:

$$\mathbf{P}_{\mathcal{D}}\left[\hat{S}(\mathbf{x}) \neq y\right]$$

- $(\mathbf{x}, y) \sim \mathcal{D}$
- $\{\mathbf{x}_i,y_i\}_{i=1}^n$ copias independientes e idénticamente distribuidas de (\mathbf{x},y) .
- $\{\mathbf{x}_i, y_i\}_{i=1}^q$ copias independientes e idénticamente distribuidas de (\mathbf{x}, y) e independientes de $\{\mathbf{x}_i, y_i\}_{i=1}^n$.
- Criterio de error:
 - Para clasificación binaria:

$$\mathbf{P}_{\mathcal{D}}\left[\hat{S}(\mathbf{x}) \neq y\right]$$

Para regresión:

$$\mathbf{E}_{\mathcal{D}} \left[\hat{S}(\mathbf{X}) - y \right]^2$$

Generalización

• Entrenamiento sobre un conjunto de datos.

Generalización

- Entrenamiento sobre un conjunto de datos.
- Es relativamente fácil construir un modelo que no se equivoque en datos de entrenamiento.

Generalización

- Entrenamiento sobre un conjunto de datos.
- Es relativamente fácil construir un modelo que no se equivoque en datos de entrenamiento.
- Queremos un modelo que tenga error pequeño en datos nuevos

Generalización

- Entrenamiento sobre un conjunto de datos.
- Es relativamente fácil construir un modelo que no se equivoque en datos de entrenamiento.
- Queremos un modelo que tenga error pequeño en datos nuevos
- Aprendizaje=generalización.

Existencia: Es posible solucionar en principo el problema usando cualquier modelo? (es decir, está el problema bien definido?).

Existencia: Es posible solucionar en principo el problema usando cualquier modelo? (es decir, está el problema bien definido?).

Capacidad de Representación: Es posible solucionar el problema usando una clase de modelos dada?

Existencia: Es posible solucionar en principo el problema usando cualquier modelo? (es decir, está el problema bien definido?).

Capacidad de Representación: Es posible solucionar el problema usando una clase de modelos dada?

Estimación: Es posible determinar el modelo a partir de un conjunto de datos?

Existencia: Es posible solucionar en principo el problema usando cualquier modelo? (es decir, está el problema bien definido?).

Capacidad de Representación: Es posible solucionar el problema usando una clase de modelos dada?

Estimación: Es posible determinar el modelo a partir de un conjunto de datos?

Computación: Es posible determinar el modelo eficientemente?

- Existencia: Es posible solucionar en principo el problema usando cualquier modelo? (es decir, está el problema bien definido?).
- Capacidad de Representación: Es posible solucionar el problema usando una clase de modelos dada?
- Estimación: Es posible determinar el modelo a partir de un conjunto de datos?
- Computación: Es posible determinar el modelo eficientemente?
- Implementación: Es posible diseñar e implementar el modelo usando precisión finita?

Error de Aproximación

Incrementar complejidad

Error de Estimación

Error Computacional

Dificultades Adicionales

• Modelos altamente no lineales:

Dificultades Adicionales

- Modelos altamente no lineales:
 - ▶ Aprendizaje es lento (comparado por ejemplo con modelos lineales).

- Modelos altamente no lineales:
 - ▶ Aprendizaje es lento (comparado por ejemplo con modelos lineales).
 - Algoritmos más complicados.

- Modelos altamente no lineales:
 - ▶ Aprendizaje es lento (comparado por ejemplo con modelos lineales).
 - ► Algoritmos más complicados.
 - Difícil interpretación.

- Modelos altamente no lineales:
 - ▶ Aprendizaje es lento (comparado por ejemplo con modelos lineales).
 - ► Algoritmos más complicados.
 - Difícil interpretación.
- Dimensionalidad alta de la entrada ("maldición" de la dimensionalidad).

- Modelos altamente no lineales:
 - ▶ Aprendizaje es lento (comparado por ejemplo con modelos lineales).
 - Algoritmos más complicados.
 - Difícil interpretación.
- Dimensionalidad alta de la entrada ("maldición" de la dimensionalidad).
- Usualmente se tienen pocos datos, relativo a la dimensión de la entrada.

• Cuáles?

- Cuáles?

- Cuáles?

 - ▶ Datos de prueba provienen de la misma distribución.

- Cuáles?
 - $\{\mathbf{x}_i, y_i\}_{i=1}^n$ son i.i.d.
 - Datos de prueba provienen de la misma distribución.
 - Otra opción: escoger los datos más "convenientes" (aprendizaje activo).

- Cuáles?
 - $\{\mathbf{x}_i, y_i\}_{i=1}^n$ son i.i.d.
 - Datos de prueba provienen de la misma distribución.
 - Otra opción: escoger los datos más "convenientes" (aprendizaje activo).
- Cuántos?

- Cuáles?
 - $\{x_i, y_i\}_{i=1}^n$ son i.i.d.
 - Datos de prueba provienen de la misma distribución.
 - Otra opción: escoger los datos más "convenientes" (aprendizaje activo).
- Cuántos?
 - Los que se consigan.

- Cuáles?

 - Datos de prueba provienen de la misma distribución.
 - Otra opción: escoger los datos más "convenientes" (aprendizaje activo).
- Cuántos?
 - Los que se consigan.
 - ► Tantos como sea posible.

- Cuáles?
 - $\{x_i, y_i\}_{i=1}^n$ son i.i.d.
 - Datos de prueba provienen de la misma distribución.
 - Otra opción: escoger los datos más "convenientes" (aprendizaje activo).
- Cuántos?
 - Los que se consigan.
 - Tantos como sea posible.
 - ▶ Depende de la complejidad del modelo y de la función a aproximar.

- Cuáles?
 - $\{x_i, y_i\}_{i=1}^n$ son i.i.d.
 - Datos de prueba provienen de la misma distribución.
 - Otra opción: escoger los datos más "convenientes" (aprendizaje activo).
- Cuántos?
 - Los que se consigan.
 - Tantos como sea posible.
 - ▶ Depende de la complejidad del modelo y de la función a aproximar.
 - ▶ Regla práctica: $n_{min} = 10 \times dim$

• Es necesario obtener una representación apropiada del problema.

- Es necesario obtener una representación apropiada del problema.
 - ▶ Con una representación apropiada de las entradas, es probable que muchos algoritmos de aprendizaje funcionen bien.

- Es necesario obtener una representación apropiada del problema.
 - ▶ Con una representación apropiada de las entradas, es probable que muchos algoritmos de aprendizaje funcionen bien.
 - Sin una representación adecuada, es probable que ningún algoritmo funcione bien!

- Es necesario obtener una representación apropiada del problema.
 - ▶ Con una representación apropiada de las entradas, es probable que muchos algoritmos de aprendizaje funcionen bien.
 - Sin una representación adecuada, es probable que ningún algoritmo funcione bien!
- Selección de características útiles.

- Es necesario obtener una representación apropiada del problema.
 - ▶ Con una representación apropiada de las entradas, es probable que muchos algoritmos de aprendizaje funcionen bien.
 - Sin una representación adecuada, es probable que ningún algoritmo funcione bien!
- Selección de características útiles.
- Reducción de dimensionalidad.

- Es necesario obtener una representación apropiada del problema.
 - ▶ Con una representación apropiada de las entradas, es probable que muchos algoritmos de aprendizaje funcionen bien.
 - Sin una representación adecuada, es probable que ningún algoritmo funcione bien!
- Selección de características útiles.
- Reducción de dimensionalidad.
- Ejemplo: Datos MEG para detección de epilepsia:

- Es necesario obtener una representación apropiada del problema.
 - ▶ Con una representación apropiada de las entradas, es probable que muchos algoritmos de aprendizaje funcionen bien.
 - Sin una representación adecuada, es probable que ningún algoritmo funcione bien!
- Selección de características útiles.
- Reducción de dimensionalidad.
- Ejemplo: Datos MEG para detección de epilepsia:
 - ▶ 122 Canales.

- Es necesario obtener una representación apropiada del problema.
 - ▶ Con una representación apropiada de las entradas, es probable que muchos algoritmos de aprendizaje funcionen bien.
 - Sin una representación adecuada, es probable que ningún algoritmo funcione bien!
- Selección de características útiles.
- Reducción de dimensionalidad.
- Ejemplo: Datos MEG para detección de epilepsia:
 - ▶ 122 Canales.
 - Cientos de miles de muestras por canal.

• Recolección de datos

- Recolección de datos
- \bullet Preprocesamiento.

- Recolección de datos
- Preprocesamiento.
- Seleccionar método (redes neuronales, SVM, ...)

- Recolección de datos
- Preprocesamiento.
- Seleccionar método (redes neuronales, SVM, ...)
- Algoritmo de entrenamiento.

- Recolección de datos
- Preprocesamiento.
- Seleccionar método (redes neuronales, SVM, ...)
- Algoritmo de entrenamiento.
- Selección de modelo.

- Recolección de datos
- Preprocesamiento.
- Seleccionar método (redes neuronales, SVM, ...)
- Algoritmo de entrenamiento.
- Selección de modelo.
- Evaluación.

• Par aleatorio $(\mathbf{x}, y) \in \mathcal{S} \times \{0, 1\}.$

- Par aleatorio $(\mathbf{x}, y) \in \mathcal{S} \times \{0, 1\}.$
- Clasificador $C \subseteq \mathcal{S}$.

- Par aleatorio $(\mathbf{x}, y) \in \mathcal{S} \times \{0, 1\}.$
- Clasificador $C \subseteq \mathcal{S}$.
- Función indicadora:

$$I_C(\mathbf{x}) = \begin{cases} 1 & \text{si } \mathbf{x} \in C \\ 0 & \text{si } \mathbf{x} \notin C \end{cases}$$

- Par aleatorio $(\mathbf{x}, y) \in \mathcal{S} \times \{0, 1\}.$
- Clasificador $C \subseteq \mathcal{S}$.
- Función indicadora:

$$I_C(\mathbf{x}) = \left\{ \begin{array}{ll} 1 & \text{si } \mathbf{x} \in C \\ 0 & \text{si } \mathbf{x} \notin C \end{array} \right.$$

• Error de generalización a minimizar:

$$L(C) = \mathbb{P}\{y \neq I_C(\mathbf{x})\}$$

- Par aleatorio $(\mathbf{x}, y) \in \mathcal{S} \times \{0, 1\}.$
- Clasificador $C \subseteq \mathcal{S}$.
- Función indicadora:

$$I_C(\mathbf{x}) = \begin{cases} 1 & \text{si } \mathbf{x} \in C \\ 0 & \text{si } \mathbf{x} \notin C \end{cases}$$

• Error de generalización a minimizar:

$$L(C) = \mathbb{P}\{y \neq I_C(\mathbf{x})\}$$

• Probabilidades a priori de cada clase:

Cuál es el mejor clasificador?

- Par aleatorio $(\mathbf{x}, y) \in \mathcal{S} \times \{0, 1\}.$
- Clasificador $C \subseteq \mathcal{S}$.
- Función indicadora:

$$I_C(\mathbf{x}) = \begin{cases} 1 & \text{si } \mathbf{x} \in C \\ 0 & \text{si } \mathbf{x} \notin C \end{cases}$$

• Error de generalización a minimizar:

$$L(C) = \mathbb{P}\{y \neq I_C(\mathbf{x})\}$$

• Probabilidades a priori de cada clase:

$$\mathbb{P}\{y=1\} = \alpha, \qquad \mathbb{P}\{y=0\} = 1 - \alpha$$

• Probabilidades marginales

Cuál es el mejor clasificador?

- Par aleatorio $(\mathbf{x}, y) \in \mathcal{S} \times \{0, 1\}.$
- Clasificador $C \subseteq \mathcal{S}$.
- Función indicadora:

$$I_C(\mathbf{x}) = \begin{cases} 1 & \text{si } \mathbf{x} \in C \\ 0 & \text{si } \mathbf{x} \notin C \end{cases}$$

• Error de generalización a minimizar:

$$L(C) = \mathbb{P}\{y \neq I_C(\mathbf{x})\}\$$

• Probabilidades a priori de cada clase:

$$\mathbb{P}\{y=1\} = \alpha, \qquad \mathbb{P}\{y=0\} = 1 - \alpha$$

• Probabilidades marginales

$$P[x|y = 1] = p_1(x), P[x|y = 0] = p_0(x)$$

$$L(C) = \mathbb{P}\{y = 1, \mathbf{x} \notin C\} + \mathbb{P}\{y = 0, \mathbf{x} \in C\}$$

$$\begin{split} L(C) &= & \mathbb{P}\{y=1, \mathbf{x} \notin C\} + \mathbb{P}\{y=0, \mathbf{x} \in C\} \\ &= & \mathbb{P}\{\mathbf{x} \notin C | y=1\} \mathbb{P}\{y=1\} + \mathbb{P}\{\mathbf{x} \in C | y=0\} \mathbb{P}\{y=0\} \end{split}$$

$$\begin{split} L(C) &= & \mathbb{P}\{y=1, \mathbf{x} \notin C\} + \mathbb{P}\{y=0, \mathbf{x} \in C\} \\ &= & \mathbb{P}\{\mathbf{x} \notin C | y=1\} \mathbb{P}\{y=1\} + \mathbb{P}\{\mathbf{x} \in C | y=0\} \mathbb{P}\{y=0\} \\ &= & \alpha \int_{\mathcal{S}-C} p_1(\mathbf{x}) d\mathbf{x} + (1-\alpha) \int_C p_0(\mathbf{x}) d\mathbf{x} \end{split}$$

$$L(C) = \mathbb{P}\{y = 1, \mathbf{x} \notin C\} + \mathbb{P}\{y = 0, \mathbf{x} \in C\}$$

$$= \mathbb{P}\{\mathbf{x} \notin C | y = 1\} \mathbb{P}\{y = 1\} + \mathbb{P}\{\mathbf{x} \in C | y = 0\} \mathbb{P}\{y = 0\}$$

$$= \alpha \int_{\mathcal{S}-C} p_1(\mathbf{x}) d\mathbf{x} + (1 - \alpha) \int_C p_0(\mathbf{x}) d\mathbf{x}$$

$$= \alpha \int_{\mathcal{S}} p_1(\mathbf{x}) d\mathbf{x} - \alpha \int_C p_1(\mathbf{x}) d\mathbf{x} + (1 - \alpha) \int_C p_0(\mathbf{x}) d\mathbf{x}$$

$$L(C) = \mathbb{P}\{y = 1, \mathbf{x} \notin C\} + \mathbb{P}\{y = 0, \mathbf{x} \in C\}$$

$$= \mathbb{P}\{\mathbf{x} \notin C | y = 1\} \mathbb{P}\{y = 1\} + \mathbb{P}\{\mathbf{x} \in C | y = 0\} \mathbb{P}\{y = 0\}$$

$$= \alpha \int_{\mathcal{S}-C} p_1(\mathbf{x}) d\mathbf{x} + (1 - \alpha) \int_C p_0(\mathbf{x}) d\mathbf{x}$$

$$= \alpha \int_{\mathcal{S}} p_1(\mathbf{x}) d\mathbf{x} - \alpha \int_C p_1(\mathbf{x}) d\mathbf{x} + (1 - \alpha) \int_C p_0(\mathbf{x}) d\mathbf{x}$$

$$= \alpha + \int_C \left[(1 - \alpha) p_0(\mathbf{x}) - \alpha p_1(\mathbf{x}) \right] d\mathbf{x}$$

$$L(C) = \mathbb{P}\{y = 1, \mathbf{x} \notin C\} + \mathbb{P}\{y = 0, \mathbf{x} \in C\}$$

$$= \mathbb{P}\{\mathbf{x} \notin C | y = 1\} \mathbb{P}\{y = 1\} + \mathbb{P}\{\mathbf{x} \in C | y = 0\} \mathbb{P}\{y = 0\}$$

$$= \alpha \int_{\mathcal{S} - C} p_1(\mathbf{x}) d\mathbf{x} + (1 - \alpha) \int_C p_0(\mathbf{x}) d\mathbf{x}$$

$$= \alpha \int_{\mathcal{S}} p_1(\mathbf{x}) d\mathbf{x} - \alpha \int_C p_1(\mathbf{x}) d\mathbf{x} + (1 - \alpha) \int_C p_0(\mathbf{x}) d\mathbf{x}$$

$$= \alpha + \int_C [(1 - \alpha)p_0(\mathbf{x}) - \alpha p_1(\mathbf{x})] d\mathbf{x}$$

Cómo escogemos el C que minimiza L(C)?

• El clasificador óptimo esta dado por la función indicadora del siguiente conjunto:

• El clasificador óptimo esta dado por la función indicadora del siguiente conjunto:

$$C = \left\{ \mathbf{x} : (1 - \alpha)p_0(\mathbf{x}) \le \alpha p_1(\mathbf{x}) \right\}$$

 El clasificador óptimo esta dado por la función indicadora del siguiente conjunto:

$$C = \left\{ \mathbf{x} : (1 - \alpha)p_0(\mathbf{x}) \le \alpha p_1(\mathbf{x}) \right\}$$
$$= \left\{ \mathbf{x} : \frac{p_0(\mathbf{x})}{p_1(\mathbf{x})} \le \frac{\alpha}{1 - \alpha} \right\}$$

 El clasificador óptimo esta dado por la función indicadora del siguiente conjunto:

$$C = \left\{ \mathbf{x} : (1 - \alpha)p_0(\mathbf{x}) \le \alpha p_1(\mathbf{x}) \right\}$$
$$= \left\{ \mathbf{x} : \frac{p_0(\mathbf{x})}{p_1(\mathbf{x})} \le \frac{\alpha}{1 - \alpha} \right\}$$
$$= \left\{ \mathbf{x} : l(\mathbf{x}) \le \frac{\alpha}{1 - \alpha} \right\}$$

 El clasificador óptimo esta dado por la función indicadora del siguiente conjunto:

$$C = \left\{ \mathbf{x} : (1 - \alpha)p_0(\mathbf{x}) \le \alpha p_1(\mathbf{x}) \right\}$$
$$= \left\{ \mathbf{x} : \frac{p_0(\mathbf{x})}{p_1(\mathbf{x})} \le \frac{\alpha}{1 - \alpha} \right\}$$
$$= \left\{ \mathbf{x} : l(\mathbf{x}) \le \frac{\alpha}{1 - \alpha} \right\}$$

• El clasificador óptimo recibe el nombre de clasificador de Bayes.

 El clasificador óptimo esta dado por la función indicadora del siguiente conjunto:

$$C = \left\{ \mathbf{x} : (1 - \alpha)p_0(\mathbf{x}) \le \alpha p_1(\mathbf{x}) \right\}$$
$$= \left\{ \mathbf{x} : \frac{p_0(\mathbf{x})}{p_1(\mathbf{x})} \le \frac{\alpha}{1 - \alpha} \right\}$$
$$= \left\{ \mathbf{x} : l(\mathbf{x}) \le \frac{\alpha}{1 - \alpha} \right\}$$

- El clasificador óptimo recibe el nombre de clasificador de Bayes.
- $l(\mathbf{x})$ es la razón de verosimilitud.

• Cuando $p_0(\mathbf{x})$ y $p_1(\mathbf{x})$ son gaussianas:

• Cuando $p_0(\mathbf{x})$ y $p_1(\mathbf{x})$ son gaussianas:

$$\frac{p_0(\mathbf{x})}{p_1(\mathbf{x})} = \frac{\frac{1}{(2\pi)^{\frac{d}{2}}\sqrt{|\Sigma_0|}} \exp\left\{-\frac{1}{2}(\mathbf{x} - \mathbf{m}_0)^T \Sigma_0^{-1}(\mathbf{x} - \mathbf{m}_0)\right\}}{\frac{1}{(2\pi)^{\frac{d}{2}}\sqrt{|\Sigma_1|}} \exp\left\{-\frac{1}{2}(\mathbf{x} - \mathbf{m}_1)^T \Sigma_1^{-1}(\mathbf{x} - \mathbf{m}_1)\right\}} \le \frac{\alpha}{1 - \alpha}$$

• Cuando $p_0(\mathbf{x})$ y $p_1(\mathbf{x})$ son gaussianas:

$$\frac{p_0(\mathbf{x})}{p_1(\mathbf{x})} = \frac{\frac{1}{(2\pi)^{\frac{d}{2}}\sqrt{|\Sigma_0|}} \exp\left\{-\frac{1}{2}(\mathbf{x} - \mathbf{m}_0)^T \Sigma_0^{-1}(\mathbf{x} - \mathbf{m}_0)\right\}}{\frac{1}{(2\pi)^{\frac{d}{2}}\sqrt{|\Sigma_1|}} \exp\left\{-\frac{1}{2}(\mathbf{x} - \mathbf{m}_1)^T \Sigma_1^{-1}(\mathbf{x} - \mathbf{m}_1)\right\}} \le \frac{\alpha}{1 - \alpha}$$

• Tomando logaritmos:

• Cuando $p_0(\mathbf{x})$ y $p_1(\mathbf{x})$ son gaussianas:

$$\frac{p_0(\mathbf{x})}{p_1(\mathbf{x})} = \frac{\frac{1}{(2\pi)^{\frac{d}{2}}\sqrt{|\Sigma_0|}} \exp\left\{-\frac{1}{2}(\mathbf{x} - \mathbf{m}_0)^T \Sigma_0^{-1}(\mathbf{x} - \mathbf{m}_0)\right\}}{\frac{1}{(2\pi)^{\frac{d}{2}}\sqrt{|\Sigma_1|}} \exp\left\{-\frac{1}{2}(\mathbf{x} - \mathbf{m}_1)^T \Sigma_1^{-1}(\mathbf{x} - \mathbf{m}_1)\right\}} \le \frac{\alpha}{1 - \alpha}$$

• Tomando logaritmos:

$$\frac{1}{2}(\mathbf{x} - \mathbf{m}_0)^T \Sigma_0^{-1}(\mathbf{x} - \mathbf{m}_0) - \frac{1}{2}(\mathbf{x} - \mathbf{m}_1)^T \Sigma_1^{-1}(\mathbf{x} - \mathbf{m}_1) + \frac{1}{2} \ln \left(\frac{|\Sigma_0|}{|\Sigma_1|} \right) > \ln \left(\frac{1 - \alpha}{\alpha} \right)$$

• Si además $\Sigma_0 = \Sigma_1 = \Sigma$:

$$\mathbf{x}^{T} \Sigma^{-1} \mathbf{x} - 2\mathbf{m}_{0}^{T} \Sigma^{-1} \mathbf{x} + \mathbf{m}_{0}^{T} \Sigma^{-1} \mathbf{m}_{0} - \mathbf{x}^{T} \Sigma^{-1} \mathbf{x}$$
$$+ 2\mathbf{m}_{1}^{T} \Sigma^{-1} \mathbf{x} - \mathbf{m}_{1}^{T} \Sigma^{-1} \mathbf{m}_{1} > 2 \ln \left(\frac{1 - \alpha}{\alpha} \right)$$

• Si además $\Sigma_0 = \Sigma_1 = \Sigma$:

$$\mathbf{x}^{T} \boldsymbol{\Sigma}^{-1} \mathbf{x} - 2\mathbf{m}_{0}^{T} \boldsymbol{\Sigma}^{-1} \mathbf{x} + \mathbf{m}_{0}^{T} \boldsymbol{\Sigma}^{-1} \mathbf{m}_{0} - \mathbf{x}^{T} \boldsymbol{\Sigma}^{-1} \mathbf{x}$$
$$+ 2\mathbf{m}_{1}^{T} \boldsymbol{\Sigma}^{-1} \mathbf{x} - \mathbf{m}_{1}^{T} \boldsymbol{\Sigma}^{-1} \mathbf{m}_{1} > 2 \ln \left(\frac{1 - \alpha}{\alpha} \right)$$

• entonces:

$$\underbrace{(\mathbf{m}_1 - \mathbf{m}_0)^T \Sigma^{-1}}_{\mathbf{w}^T} \mathbf{x} > \underbrace{2 \ln \left(\frac{1 - \alpha}{\alpha} \right) + \frac{1}{2} \left(\mathbf{m}_1^T \Sigma^{-1} \mathbf{m}_1 - \mathbf{m}_0^T \Sigma^{-1} \mathbf{m}_0 \right)}_{-w_0}$$

