

CUSTOMER APPROVAL SHEET

C	Company Name	
	MODEL	A080SN03 V2
	CUSTOMER	Title:
	APPROVED	Name :
		TIONS ONLY (Spec. Ver) TIONS AND ES SAMPLE (Spec. Ver) TIONS AND CS SAMPLE (Spec. Ver)
UO PM : P/N :		
Commen		

 Doc. version :
 0.4

 Total pages :
 28

 Date :
 2011/08/24

Product Specification 8" COLOR TET-LCD MODULE

Model Name: A080SN03 V2

Planned Lifetime:From 2010/May To 2012/JunPhase-out Control:From 2012/Jan To 2012/JunEOL Schedule:2012/Jun

< ◆ >Preliminary Specification

< >Final Specification

Note: The content of this specification is subject to change.

© 2009 AU Optronics All Rights Reserved, Do Not Copy.

Page: 1/28

Record of Revision

Version	Revise Date	Page	Content			
0.0	2010/04/07	All	First Draft.			
0.1	2010/5/12	P9	Add DC Charateristics			
		P10	Modify Gamma Resistor R83 to 1.05Kohm			
		P12~P17	Add Input timing remark for Max. value and PWCK setting.			
		P23	Modify Application Circuit U4 to U3			
0.2	2010/6/22	P10	Update Gamma voltage suggested circuit.			
0.3	2011/5/25	P4	Update HPS TFT-LCD module 2D drawing			
0.4	2011/8/24	P.0	Change the product lifetime and EOL schedule			

Page: 2/28

Contents

Α.	General Information	3
В.	Outline Dimension	4
	1. TFT-LCD Module	4
C.	Electrical Specifications	5
	1. TFT LCD Panel Pin Assignment	5
	2. Backlight Pin Assignment	7
	3. Absolute Maximum Ratings	7
	4. Electrical DC Characteristics	9
	5. Electrical AC Characteristics	12
	6. Serial Interface Characteristics	14
	7. Power On/Off Characteristics	17
D.	Optical Specification	18
Ε.	Reliability Test Items	20
F.	Packing and Marking	21
	1. Packing Form	21
	2. Module/Panel Label Information	22
	3. Carton Label Information	23
G.	Application Note	24
	1. Application Circuit	24
	2. CABC Description	28
Н.	Precautions	29

Page: 3/28

A. General Information

This product is for portable DVD and digital photo frame application.

NO.	Item	Unit	Specification	Remark
1	Screen Size	inch	8(Diagonal)	
2	Display Resolution	dot	800(W)x600RGB(H)	
3	Overall Dimension	mm	170.1(W)x132.3(H)x1.43(D)	Note 1
4	Active Area	mm	162(W)x121.5(H)	
5	Pixel Pitch	mm	0.2025(W)x0.2025(H)	
6	Color Configuration		Tri-Gate	Note 2
7	Color Depth		16.2M Colors	Note 3
8	NTSC Ratio	%	50	
9	Display Mode		Normally White	
10	Panel surface Treatment		Anti-Glare, 3H	
11	Weight	g	68 ±10	
12	Panel Power Consumption	mW	189	Note 4
13	Backlight Power Consumption	W	XX	
14	Viewing direction		6 o'clock (gray inversion)	

Note 1: Not include blacklight cable and FPC. Refer next page to get further information.

Note 2: Below figure shows dot stripe arrangement.

Note 3: The full color display depends on 24-bit data signal (pin 33~40, 42~49, 51~58).

Note 4: Please refer to Electrical Characteristics chapter.

Version:

0.4

Page: 4/28

B. Outline Dimension

ALL RIGHTS STRICTLY RESERVED. ANY PORTION OF THIS PAPER SHALL NOT BE REPRODUCED, COPIED, OR TRANSFORMED TO ANY OTHER FORMS WITHOUT PERMISSION FROM AU OPTRONICS CORP.

Page: 5/28

C. Electrical Specifications

1. TFT LCD Panel Pin Assignment

Recommended connector: XF2M-6015-1AH

NO.	Symbol	I/O	Description	Remark
1	VCOM	I	Common electrode driving voltage	
2	VGL	Р	Negative power supply voltage for Gate driver	
3	VGH	Р	Positive power supply voltage for Gate driver	
4	VGH	Р	Positive power supply voltage for Gate driver	
5	VDPA	Р	Positive power supply voltage for analog power	
6	VDNA	Р	Negative power supply voltage for analog power	
7	GND	Р	Ground	
8	DRV_BLU	0	CABC PWM_SIGNAL output via an output buffer	
9	CABC_EN	I	CABC function enable	
10	U/D	I	Up/Down selection.	Note2
11	R/L	I	Left/Right selection	Note2
12	GRB	I	H/W global reset	Note1
13	V10	I	Gamma correction voltage reference	
14	V9	I	Gamma correction voltage reference	
15	V8	I	Gamma correction voltage reference	
16	V7	I	Gamma correction voltage reference	
17	V6	ı	Gamma correction voltage reference	
18	V5	I	Gamma correction voltage reference	
19	V4	ı	Gamma correction voltage reference	
20	V3	I	Gamma correction voltage reference	
21	V2	ı	Gamma correction voltage reference	
22	V1	I	Gamma correction voltage reference	
23	VDDIO	Р	Digital interface supply voltage of digital	
24	VDDIO	Р	Digital interface supply voltage of digital	
25	CS		Chip select (Low active) of SPI	
26	SDA	9	Data input/output of SPI	
27	SCL	Ι	Clock input of SPI	
28	GND	Р	Ground	
29	DCLK	Ι	Data clock input	
30	GND	Р	Ground	
31	DE	I	Data enable Input (High active)	
32	GND	Р	Ground	
33	DB7	I	Blue data Input (MSB)	
34	DB6	I	Blue data Input	

Page: 6/28

35	DB5	ı	Blue data Input
36	DB4	ı	Blue data Input
37	DB3	·	Blue data Input
38	DB2	·	Blue data Input
	DB2 DB1	' 	· · · · · · · · · · · · · · · · · · ·
39			Blue data Input
40	DB0	I	Blue data Input (LSB)
41	GND	Р	Ground
42	DG7	I	Green data Input (MSB)
43	DG6	I	Green data Input
44	DG5	I	Green data Input
45	DG4	I	Green data Input
46	DG3	ı	Green data Input
47	DG2	- 1	Green data Input
48	DG1	_	Green data Input
49	DG0	_	Green data Input (LSB)
50	GND	Ρ	Ground
51	DR7	ı	Red data Input (MSB)
52	DR6	- 1	Red data Input
53	DR5	_	Red data Input
54	DR4	ı	Red data Input
55	DR3	-	Red data Input
56	DR2	ı	Red data Input
57	DR1	ı	Red data Input
58	DR0	I	Red data Input (LSB)
59	GND	Р	Ground
60	VCOM	I	Common electrode driving voltage

I: Input; P: Power

Note1: Global reset, normally pulled high. Suggest to connecting with an RC (R=10K ohm, C=1uF)reset circuit for stability. Normally pull high.

Note2:

U/D	Direction	L/R	Direction
Н	$D \rightarrow U$	Н	$R \rightarrow L$
L	U→ D	L	L→R

Page: 7/28

2. Backlight Pin Assignment

Recommended connector:

NO.	Symbol	I/O	Description	Remark
1	HI	I	Power supply for backlight unit (High voltage)	
2	GND	-	Ground for backlight unit	

3. Absolute Maximum Ratings

ltem	Symbol	Condition	Min.	Max.	Unit	Remark
	VDDIO	GND=0	-0.5	5	V	
	VDPA	GND=0	-0.5	5.9	V	
Power Voltage	VDNA	GND=0	-5.9	0.5	V	
Power voltage	VGH	GND=0	VDPA		V	
	VGL	GND=0		VDNA	V	
	VGH-VGL		-	32	V	

Page: 8/28

Input signal voltage	Vi	GND=0 -0.3 VDDIO+0.3		VDDIO+0.3	V	Note 1
	VCOM	GND=0	-3.5	0	V	
mpat signal voltage	V1~V5	GND=0	0	VDPA-0.2	V	
	V6~V10	GND=0	VDNA+0.2	0	V	
Operating temperature	Тора				$^{\circ}\!\mathbb{C}$	
Storage temperature	Tstg				$^{\circ}\!\mathbb{C}$	

Note 1: DE, Digital Data.

Note 2: Functional operation should be restricted under ambient temperature (25°C).

Note 3: Maximum ratings are those values beyond which damages to the device may occur. Functional operation should be restricted to the limits in the Electrical Characteristics chapter.

Page: 9/28

4. Electrical DC Characteristics

a. DC Charateristics

Item	1	Symbol	Min.	Тур.	Max.	Unit	Remark
		VDDIO	3	3.3	3.6	V	
		VDPA	4.5	5	5.5	V	
Power su	apply	VDNA	-5.5	-5	-4.5	V	
			12.6	14	15.4	V	
			-15.4	-14	-12.6	V	
VCOI	М	Vcdc	-1.6	-1.9	-2.2	V	
Input signal	H Level	Vih	0.7xVDDIO		VDDIO	V	Note 1
voltage	L Level	Vil	0		0.3xVDDIO	V	Note i
Pull-up/down impedance		Rin		800k			
Input level of V1~V5		Vx	GND		VDPA-0.2	V	Note 2
Input level of	V6~V10	Vx	VDNA+0.2		GND	٧	Note 2

Note 1: DE, Digital Data

Note 2: VDPA > V1 > V2 > V3 > V4 > V5 > V6 > V7 > V8 > V9 > V10 > VDNA

b. Current Consumption (AGND=GND=0V)

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit	Remark
Input current for VDDIO	IVDDIO	VDDIO=3.3V	-	6.45	7	mΑ	Note 1
Input current forVDPA	IVDPA	VDPA=5V	-	5.58	12.9	mΑ	Note 1
Input current for VDNA	IVDNA	VDNA=-5V	-	-5.68	-13.4	mΑ	Note 1
Input current for VGH	IVGH	VGH=14V	-	3.96	5	mA	Note 1
Inpur current for VGL	IVGL	VGL=-14V	-	-4.04	-5	mΑ	Note 1
Input Leakage Current	lin	Digital input pins	1	-	±1	uA	Note 2

Note 1: The test pattern use the following pattern.

Note 2: except for pull-up, pull-down pins.

Page: 10/28

c. Gamma voltage suggested circuit is as follows

V1	4.277
V2	2.882
V3	2.396
V4	1.985
V5	0.994
V6	-0.998
V7	-1.995
V8	-2.409
V9	-2.908
V10	-4.305

Gamma & Vcom : Generate by VDNA SYSTEM and VDPA SYSTEM

Page: 11/28

d. Vcom buffer suggested circuit is as follows

e. Backlight Driving Conditions

This is panel only product without BLU structure.

Page: 12/28

5. Electrical AC Characteristics

a. Signal AC Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit.	Remark
Clock High time	Twcl	8			ns	
Clock Low time	Twch	8			ns	
Data setup time	Tdsu	5			ns	
Data hold time	Tdhd	10			ns	
Data enable set-up time	Tesu	4			ns	

b. Input Timing Setting

Horizontal timing:

Parameter	Symbol	Min.	Тур.	Max.	Unit.	Remark
DCLK frequency	Fdclk	36.7	40	45.1	MHz	
DCLK period	Tdclk	22	25	27	ns	
Hsync period (= Thd + Thbl)	Th	986	1056	1183	DCLK	Note 1,2
Active Area	Thd		800		DCLK	
Horizontal blanking	Thbl	186	256	383	DCLK	

Page: 13/28

Horizontal input timing

Vertical timing:

Parameter	Symbol	Min.	Тур.	Max.	Unit.	Remark
Vsync period (= Tvd + Tvbl)	Tv	620	628	635	Th	
Active lines	Tvd		600		Th	
Vertical blanking	Tvbl	20	28	35	Th	

Vertical timing

Note 1: If input timing operates with Min. to Typ. setting, the PWCK value use default value 1973 (Register R39=0000_0111, Register R40=1011_0101), and no need to change SPI register.

Note 2: If input timing operates with Typ. to Max. setting, the PWCK value must be set to 2025(Register R39=0000_0111, Register R40=1110_1001). Please reference the Serial interface setting table in Page.16 to set SPI Register R39 and R40 value.

Page: 14/28

6. Serial Interface Characteristics

a. Serial Control Interface AC Characteristic

Parameter	Symbol	Min.	Тур.	Max.	Unit.	Remark
Serial clock	Tsck	320			ns	
SCL pulse duty	Tscw	40%	50%	60%	Tsck	
Serial data setup time	Tisu	120			ns	
Serial data hold time	Tihd	120			ns	
Serial clock high/low	Tssw	120			ns	
CS setup time	Tcsu	120			ns	
CS hold time	Tchd	120			ns	
Delay from CS to VSYNC	Tcv	1			us	
Chip select distinguish	Tcd	1			us	

AC serial interface write mode timings

b. Register Bank

A totally 16-bit register includeing 7-bit address D[15:9], 1-bit Read bit D[8], and 8-bit data D[7:0] can be set via 3-wire serial peripheral interface. Beflow figure is for a detail description of the parameters.

Page: 15/28

Figure. Serial interface read sequence

- (1) Each serial command consists of 16bits of data which is loaded one bit a time at the rising edge of serial slock SCL.
- (2) Command loading operation starts from the falling edge of CS and is completed at the next rising edge of CS.
- (3) The serial control block is operational after power on reset, but commands are established by the following rising edge of End Frame. If command is transferred multiple times for the same resgister, the last command before the following rising edge of the End Frame is valid, except for some special registers (ex. GRB, etc.).
- (3) If less the 16 bits of SCL are input while CS is low, the transferred data is ignored. The read operation interrupt.
- (4) If 16 bits or more of SCL are input while CS is low, the first 16 bits of transferred data in the duration of CS="L" are valid data.
- (5) Serial block operates with the SCL clock
- (6) Serial data can be accepted in the standy(power save) mode.
- (7) It is suggested that DE, DCLK always exists in the same time.
- (8) When GRB is activated through the serial interface, all register are cleared, except the GRB value.
- (9) The register setting values are rewritten by the influence of static electricity, a noise, etc. to unsuitable value, incorrect operating may occur. It is suggested that the SPI interface will setup as frequently as possible.

c. Serial Interface Setting Table.

Reg	ADDRESS						R	DATA								
rteg	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
R0	0	0	0	0	0	0	0	0				1 note 1	1 note 1	1 note 1	0	1
R1	0	0	0	0	0	0	1	0	O _{note 1}	O note 1			0	00 00		0
R39	0	1	0	0	1	1	1	0	PW_CK							
R40	0	1	0	1	0	0	0	0	PW_CK							

Note 1: The value of this bit could not be change. Otherwise the Panel will display abnormal.

Page: 16/28

d. Register Description

R0 setting

Address	Bit		Discription					
	7 - 2		AUO internal use	000111				
0000000	1	STB	Standby mode setting	0				
	0	GRB	S/W global reset	1				

Bit 1	STB
0	Nomal operation (default)
1	Standby mode. Register data are kept.

Bit 0	GRB
0	S/W global reset. Reset all register to default value. H/W GRB has higher priority.
1	Normal operation. (default)

R1 Settings

Address	Bit		Default	
	7 - 4		AUO internal use	0000
0000001	3 - 2	CHUD	Vertical scan direction setting	00
	1 - 0	CHLR	Horizontal scan direction setting	00

Bit 3 - 2	CHUD
0x	Accoring to H/W pin U/D setting. (default)
10	Vertical scan direction is from up to down.
11	Vertical scan direction is from down to up.

Bit 1 - 0	CHLR
0x	Accoring to H/W pin L/R setting. (default)
10	Horizontal scan direction is from left to right.
11	Horizontal scan direction is from right to left.

R39 setting

Address	Bit		Default	
	3 - 0	-	AUO PW_CK default value	0111
100111	3 - 0		AUO PW_CK Max value	0111

Page: 17/28

R40 setting

Address	Bit		Default	
	7 - 0		AUO PW_CK default value	1011_0101
101000	7 - 0		AUO PW_CK Max value	1110_1001

7. Power On/Off Characteristics

a. Recommended Power On Sequence

T1 > 0us; T2 \geq 10us ; T3 \geq 0us ; T4 > 0us ; T5 > 0us

b. Power Off Sequence

Page: 18/28

D. Optical Specification

All optical specification is measured under typical condition (Note 1, 2)

ltem	Symbol	Condition	Min.	Тур.	Max.	Unit	Remark
Response Time				4.0			
Rise	Tr	0.00		12	24	ms	Note 1
Fall Tf		θ=0°		18	36	ms	
Contrast ratio	CR	At optimized	400	500			Note 2
Contrast ratio	CR	viewing angle					
Тор		CR≧10	40	60		deg.	Note 3
Botton	n		50	65			
Viewing Angle Left				70			
Right			60	70			
			60				
Transmission	Y_L	θ=0°	4.50	4.88		%	

Note 1: Definition of response time:

The output signals of photo detector are measured when the input signals are changed from "black" to "white" (falling time) and from "white" to "black" (rising time), respectively.

The response time is defined as the time interval between the 10% and 90% of amplitudes. Refer to figure as below.

Note 2.Definition of contrast ratio:

Contrast ratio is calculated with the following formula.

 $\label{eq:contrast ratio} \textbf{(CR)} = \frac{\textbf{Photo detector output when LCD is at "White" status}}{\textbf{Photo detector output when LCD is at "Black" status}}$

Page: 19/28

Note 3. Definition of viewing angle, $\ \theta$, Refer to figure as below.

Page: 20/28

E. Reliability Test Items

No.	Test items	Conditions	Remark	
1	High Temperature Storage	Ta= 70°C	240Hrs	
2	Low Temperature Storage	Ta= -30°C	240Hrs	
3	High Ttemperature Operation	Tp= 60°C	240Hrs	
4	Low Temperature Operation	Ta= -10°C	240Hrs	
5	High Temperature & High Humidity	Tp= 50℃. 80% RH	240Hrs	Operation
6	Heat Shock	-10℃~60℃, 100 cycle,	1Hrs/cycle	Non-operation
7	Vibration (With Carton) Random vibration: 0.015G2/Hz from 5~200Hz		IEC 68-34	
8	Drop (With Carton) Height: 60cm 1 corner, 3 edges, 6 surfaces			

Note 1: Ta: Ambient Temperature. Tp: Panel Surface Temperature

Note 2: In the standard conditions, there is not display function NG issue occurred. All the cosmetic specification is judged before the reliability stress.

Note 3: All the cosmetic specification is judged before the reliability stress.

Note 4. In Reliability test, performance is confirmed after leave in room temperature

Page: 21/28

F. Packing and Marking1. Packing Form

Page: 22/28

2. Module/Panel Label Information

The module/panel (collectively called as the "Product") will be attached with a label of Shipping Number which represents the identification of the Product at a specific location. Refer to the Product outline drawing for

ALL RIGHTS STRICTLY RESERVED. ANY PORTION OF THIS PAPER SHALL NOT BE REPRODUCED, COPIED, OR TRANSFORMED TO ANY OTHER FORMS WITHOUT PERMISSION FROM AU OPTRONICS CORP.

Page: 23/28

detailed location and size of the label. The label is composed of a 22-digit serial number and printed with code 39/128 with the following definition:

ABCDEFGHIJKLMNOPQRSTUV

For internal system usage and production serial numbers.

LAUO Module or Panel factory code, represents the final production factory to complete the Product Product version code, ranging from 0~9 or A~Z (for Version after 9)

·Week Code, the production week when the product is finished at its production process

3. Carton Label Information

The packing carton will be attached with a carton label where packing Q'ty, AUO Model Name, AUO Part Number, Customer Part Number (Optional) and a series of Carton Number in 13 or 14 digits are printed. The Carton Number is apparing in the following format:

ABC-DEFG-HIJK-LMN

DEFG appear after first "-" represents the packing date of the carton.

-Date from 01 to 31

☐Date from 01 to 31☐Month, ranging from 1~9, A~C. A for Oct, B for Nov and C for Dec.

− A.D. year, ranging from 1~9 and 0. The single digit code reprents the last number of the year

Refer to the drawing of packing format for the location and size of the carton label.

Page: 24/28

G. Application Note

1. Application Circuit

Page: 25/28

Page: 26/28

Page: 27/28

2. CABC Description

Version: 0.4

Page: 28/28

Page: 29/28

H. Precautions

- Do not twist or bend the module and prevent the unsuitable external force for display module during assembly.
- 2. Adopt measures for good heat radiation. Be sure to use the module with in the specified temperature.
- 3. Avoid dust or oil mist during assembly.
- 4. Follow the correct power sequence while operating. Do not apply the invalid signal, otherwise, it will cause improper shut down and damage the module.
- 5. Less EMI: it will be more safety and less noise.
- 6. Please operate module in suitable temperature. The response time & brightness will drift by different temperature.
- 7. Avoid to display the fixed pattern (exclude the white pattern) in a long period, otherwise, it will cause image sticking.
- 8. Be sure to turn off the power when connecting or disconnecting the circuit.
- 9. Polarizer scratches easily, please handle it carefully.
- 10. Display surface never likes dirt or stains.
- 11. A dewdrop may lead to destruction. Please wipe off any moisture before using module.
- 12. Sudden temperature changes cause condensation, and it will cause polarizer damaged.
- 13. High temperature and humidity may degrade performance. Please do not expose the module to the direct sunlight and so on.
- 14. Acetic acid or chlorine compounds are not friends with TFT display module.
- 15. Static electricity will damage the module, please do not touch the module without any grounded device.
- 16. Do not disassemble and reassemble the module by self.
- 17. Be careful do not touch the rear side directly.
- 18. No strong vibration or shock. It will cause module broken.
- 19. Storage the modules in suitable environment with regular packing.
- 20. Be careful of injury from a broken display module.
- 21. Please avoid the pressure adding to the surface (front or rear side) of modules, because it will cause the display non-uniformity or other function issue.