Directed topic extraction with side information.

Maria Osipenko¹

14 August, 2023

 $^{^1}$ Hochschule für Wirtschaft und Recht Berlin; osipenko@hwr-berlin.de

Motivation

- Growing interest to sustainable investments
- Investment decisions based not only on expected return considerations but also relying on individual value system
- ► Aligning investments with individual preferences how to quantify sustainability? how to compare investment possibilities?

Motivation

► Environment, social, governance (ESG) ratings diverge:

Figure 1: ESG ratings of different providers against a benchmark. Source: Aggregated confusion. . .

► The weighting systems behind the ratings are partly intransparent and cubersome to understand.

Motivation

- ▶ Another source of information easily available to private investors
 - corporate responsibility reports
 - sustainability reports
 - environmental action reports
- ➤ A systematic e.g. in commonly accepted 17 UN sustainable development goals (SDGs) is at hand.

SUSTAINABLE GOALS

 \rightarrow leverage information from these sources via automatic topic extraction while considering the value system established by the 17 SDGs.

Methods available

- ► Topic analysis: represent each document in a low dimensional latent topic space
 - Specific for topic extraction: Latent (probabilistic) Semantic Analysis, Latent Dirichlet allocation (LDA),...
 - General purpose matrix factorization (MF) methods: Principal component analysis, Non-negativ matrix factorization, probabilistic versions and extensions thereof, . . .

Methods available

- How to embed known structure or side information in the unsupervised techniques?
 - keyword seeded LDA: Watanabe and Zhou (2022) and Eshima, Imai, and Sasaki (2023)
 - graph regularized MF: Rao et al. (2015) and Zhang et al. (2020) (recommendations)
 - common subspace projection/ subspace alignment (Fernando et al. (2013) for domain adaptation)
 - matrix co-factorization (MCF) techniques: Fang and Si (2011) (user communities) and Luo et al. (2019) (recommendations)
- \rightarrow adopt MCF for topic extraction with side information.

Our approach

Decompose two term-document matrices (M sustainability reports and C SDG texts) jointly.

where

- ▶ M is the (weighted) term-document matrix for the corporate reports with dimensions $(p \times n)$, where p is the joint vocabulary.
- ▶ C is the (weighted) term-document matrix for the sustainability goals with dimensions $(p \times m)$, where p is again the joint vocabulary.
- ▶ *U* is the word-topic representation matrix of dimensions $(p \times k)$, where *k* is the number of topics.
- ▶ V/Q is the context-topic representation matrix for the reports/SGDs of dimensions $(k \times n)$.

Our approach

The associated topic extraction problem is then:

$$\min(||M - U^{\top}V||^2 + \lambda ||C - U^{\top}Q||^2)$$

where λ adapts the importance of the loss on the second factorization term.

Because of the non-negativity of the entries in M and C it makes sense to restrict at least U to be non-negative:

s.t. $U, V, Q \ge 0$ elementwise.

Our approach

- why to consider side information? align the topics with a known structure
- why a MCF method? flexible representation in a common low dimensional space
- why Frobenius norm? fast optimization, but other loss specifications are possible.
- why non-negative MCF? enhances the interpretability and sparsity of the resulting topics.

The algorithm

- alternating minimization/ alternating projection
- hierarchical non-negative alternating least squares (HALS) of Cichocki, Zdunek, and Amari (2007)
- with a modification for co-factorization

Algorithm 1 HALS algorithm for MCF

$$\begin{split} & \text{while not converged do} \\ & \text{for } k = 1 \text{ to } K \text{ do} \\ & \text{update } V_k \leftarrow \max\left(\frac{U_k(M-U_{-k}^\top V_{-k})}{U_k U_k^\top}, 0\right) \\ & \text{update } Q_k \leftarrow \max\left(\frac{U_k(C-U_{-k}^\top Q_{-k})}{U_k U_k^\top}, 0\right) \\ & \text{update } U_k^\top \leftarrow \max\left(\frac{(M-U_{-k}^\top V_{-k})V_k^\top + \lambda (C-U_{-k}^\top Q_{-k})Q_k^\top}{V_k^\top V_k + \lambda Q_k^\top Q_k}, 0\right) \\ & \text{end for end while} \end{aligned}$$

 X_k denotes the kth row of the matrix X and X_{-k} denotes the matrix without its kth.

Optimal K and λ

- find the optimal k and λ in a data-driven fashion, via maximizing the average topic coherence
- ▶ mean logratio coherence coh_{Corpus} computed as the mean of logratio coherence defined as: $log(\epsilon + TCM_{x,y}) log(TCM_{y,y})$ for two terms x, y with TCM being the in-sample term co-occurrence matrix.
- ▶ for K = 8, $\lambda = 0$: $coh_{sustainability, eports} = -1.3048$, $coh_{SDGs} = -7.7671$, $\overline{coh} = -4.5359$
- ▶ for K = 8, $\lambda = 350$: $coh_{sustainability, eports} = -2.6230$, $coh_{SDGs} = -0.9374$, $\overline{coh} = -1.7802$

Optimal K and λ

Results: the topics

women social empow infrastructur opportun respon poverti public gender guidelin = employ gender griderin = grifform grifform group inclus women...

ecosystem
sforest
restor gconserv
restor gconserv
respondagi
ocean biodrivland
degrad signif g
pollut
g
marinnatur

chainconsumpt
well poverti
within guidelin
wastrecycl source
materi_sos@in-food
health_supplied on or

Results: the distances

distance matrix

Results: the distances

-parallel coordinate plot

Results: approximation in two dimensions

plot

Results: individual preferences

app or pic

Summary

References

Cichocki, Andrzej, Rafal Zdunek, and Shun-ichi Amari. 2007.

"Hierarchical ALS Algorithms for Nonnegative Matrix and 3D Tensor Factorization." In *Independent Component Analysis and Signal Separation*, edited by Mike E. Davies, Christopher J. James, Samer A. Abdallah, and Mark D. Plumbley, 169–76. Berlin, Heidelberg: Springer Berlin Heidelberg.

Eshima, Shusei, Kosuke Imai, and Tomoya Sasaki. 2023. "Keyword Assisted Topic Models." https://arxiv.org/abs/2004.05964.

Fang, Yi, and Luo Si. 2011. "Matrix Co-Factorization for Recommendation with Rich Side Information and Implicit Feedback." In *Proceedings of the 2nd International Workshop on Information Heterogeneity and Fusion in Recommender Systems*, 65–69. HetRec '11. New York, NY, USA: Association for Computing Machinery. https://doi.org/10.1145/2039320.2039330.

Fernando, Basura, Amaury Habrard, Marc Sebban, and Tinne Tuytelaars. 2013. "Unsupervised Visual Domain Adaptation Using Subspace Alignment." In 2013 IEEE International Conference on Computer Vision, 2960–67. https://doi.org/10.1109/ICCV.2013.368.

Luo, Ling, Haoran Xie, Yanghui Rao, and Fu Lee Wang. 2019. "Personalized Recommendation by Matrix Co-Factorization with Tags and Time Information." *Expert Systems with Applications* 119: