Esercizi slides 1

Riccardo Marchesin, Marco Girardi

September 2020

Disclaimer: questi esercizi sono copiati (a mano) dalle slide del corso; non è escluso che ci siano errori in giro.

- 1. Ipotesi: $p \wedge (q \wedge r)$. Tesi: $r \wedge p$.
- 2. Ipotesi: $p \lor q$. Tesi: $q \lor p$.
- 3. Ipotesi: $(p \land q) \lor (p \land r)$. Tesi: $p \land (q \lor r)$.
- 4. $(p \land q) \Rightarrow (q \land p)$
- 5. $(p \lor q) \Rightarrow (q \lor p)$
- 6. $((p \Rightarrow q) \land (q \Rightarrow r)) \Rightarrow (p \Rightarrow r)$.
- 7. $((p \land q) \Rightarrow r) \Rightarrow (p \Rightarrow (q \Rightarrow r))$
- 8. $(p \Rightarrow (q \Rightarrow r)) \Rightarrow ((p \land q) \Rightarrow r)$
- 9. $((p \lor q) \Rightarrow r) \Rightarrow ((p \Rightarrow r) \land (q \Rightarrow r))$.
- 10. $(p \Rightarrow (q \Rightarrow r)) \Rightarrow ((p \Rightarrow q) \Rightarrow (p \Rightarrow r))$
- 11. $\neg(p \land \neg p)$
- 12. $(p \Rightarrow q) \Rightarrow ((\neg q) \Rightarrow (\neg p))$
- 13. $\neg \neg p \Leftrightarrow p$
- 14. $((\neg q) \Rightarrow (\neg p)) \Rightarrow (p \Rightarrow q)$
- 15. $\neg (p \lor q) \iff (\neg p \land \neg q)$
- 16. $\neg (p \land q) \iff (\neg p \lor \neg q)$
- 17. $(p \Rightarrow q) \iff (\neg p \lor q)$
- 18. $\neg(p \Rightarrow q) \iff (p \land \neg q)$
- 19. $((p \land q) \lor r) \iff ((p \lor r) \land (q \lor r)).$
- 20. $((p \lor q) \land r) \iff ((p \land r) \lor (q \land r))$

- 21. Mostrare che l'uguaglianza è una relazione transitiva (usando le sole regole di introduzione ed eliminazione).
- 22. $(\forall x. \ p(x)) \land q \Rightarrow (\forall x. \ p(x) \land q)$
- 23. $(\forall x. \ p(x) \Rightarrow p(f(x))) \Rightarrow (\forall x. \ p(x) \Rightarrow p(f(f(x))))$

Nei prossimi tre esercizi si possono usare liberamente proprietà note dall'aritmetica, per x,y naturali.

- 24. $\forall x. \exists y. y > x.$
- 25. $\not\exists y. \ \forall x. \ y > x.$
- 26. $\exists y. \forall x. (y = x) \lor (y < x)$
- 27. In un ipotetica dimostrazione di $(\forall x. \ p(x)) \Rightarrow (\forall y. \ q(y))$ come vengono "scelte" la x e la y? E in $(\exists x. \ p(x)) \Rightarrow (\exists y. \ q(y))$.
- 28. Dimostrare che la formula $\forall x,y,z.$ $p(x,y) \land q(y,z) \Rightarrow r(x,y,z)$ si può riscrivere come $\forall x,y.$ $p(x,y) \Rightarrow (\forall z.$ $q(y,z) \Rightarrow r(x,y,z)).$
- 29. Se l'insieme Y appartiene alla famiglia \mathcal{X} , allora $\bigcap \mathcal{X} \subseteq Y \subseteq \bigcup \mathcal{X}$
- 30. Esprimere una biezione tra $A \times B$ e $B \times A$.
- 31. Esprimere una biezione tra $A \times (B \times C)$ e $(A \times B) \times C$
- 32. Esprimere una biezione tra $\mathcal{P}(A)$ e $(A \to \{0,1\})$
- 33. Esprimere una biezione $\operatorname{tra}(A \times \{0\}) \cup (B \times \{1\})$ e $(B \times \{0\}) \cup (A \times \{1\})$.
- 34. Esprimere una biezione tra $A \cup B$ e $(A \times \{0\}) \cup ((B \setminus A) \times \{1\})$
- 35. Sia $f \in (A \to B)$ arbitraria, e f^{-1} la relazione inversa di f. Mostrare che f è iniettiva se e solo se $f^{-1} \in (img(f) \to A)$
- 36. Definire una biezione f, e la sua inversa, tra $(A \cup B) \to C$ e $(A \to C) \times (B \to C)$, supponendo che $A \cap B = \emptyset$.