

Edge iO28 Specifications (Hardware V1.5)

Power Options and Requirements:	
Via Terminal	Power Supply: 24VAC +/- 3% or 24VDC +10%/-10% Consumption 100 mA

Connectivity:	
Ethernet	2x Ethernet (Switch) Ethernet 10/100base-T auto-selection

Communication Options:	
SSH over IP	Edge iO 28 gets IP address via DHCP via default, can be configured as Static
Edge Connect Module	Provides power and breakout for I2C, UART and GPIO add-on modules

Available IO		
Universal Inputs	7	
Digital Inputs	7	
Universal Outputs	7	
Digital Outputs	5	
Relays	2	

Edge Connect Module		
I2C Channels	2	
UART Channels	2	
GPIO	1	
Power	5V DC wired or 24V serial connection	

Input/Output Details

Name	Tolerance	Usage	
Digital Inputs	Dry Contact	Detecting the closing or opening of circuit	
Universal Input	0-10V DC, 4-20ma, 10/20K Resistor	Measuring 0-10V Sensors, Voltage, Temperature and current	
Universal Output	0-12V @ 50ma Max	Controlling voltage variable equipment. Can drive a slim-line relay	
Digital Output	0V - 12V On-Off	Controlling relays, enabling equipment	
Relays	Max 24V/2amp Capable of switching 3.3VDC to 48VDC and VAC	NO dry contact	

Dimensions

Length	159 mm
Width	90 mm
Height	58 mm
Material Type	Plastic (Polycarbonate)
UL Rating	UL94-V0
IP Rating	IP20
Mounting	DIN mount
Weight	335 gms

Computing and Programming

Physical Specs		Processor: AM335x 1GHz ARM® Cortex-A8 512MB DDR3 RAM 4GB 8-bit eMMC on-board flash storage NEON floating-point accelerator 2x PRU 32-bit microcontrollers USB client for power & communications USB host Optional storage of an SD card upto 64Gb
OS Software		Debian based OS
Software	Java	JVM and node-js are default installed on the device
Programming	7	Local Flow Based Programming On-board API Node Red

Universal Input Jumper Settings:

The Universal Inputs of the Edge are used to set the configuration from 10/20K Resistor, 0-10V DC and 4-20ma. There are three settings to configure universal input type, set with a 2-pin **jumper**.

Mode	Purpose	Setting
10/20K Resistor	Connect a thermistor to the input and common.	
4-20 ma	Using 4-20 ma sensitive sensors.	
0-10 VDC	Measuring 0-10 VDC.	5

IP Address

The default IP address is set to DHCP

Edge-IO 28 Inbuilt API

The inbuilt api is a http-rest server. The api lets give you full flex ability to add and update point objects and point values

- Schedules
- Points
- Alerts
- Tags
- Histories

Swagger API

http://192.168.15.151:4000/

See how to test the API

Nube iO Edge 28 API 6) Click on the Authorize

Authorize authorize

Now you can interact with the device API

Rest-API Endpoint

Example to read all points

http://127.0.0.1:4000/points

Read a Point

http://127.0.0.1:4000/points/UI1

Read a Point details

http://127.0.0.1:4000/points/UI1/kind

Read Histoires

http://127.0.0.1:4000/histories/data

http://127.0.0.1:4000/histories/UI1/data

Schedules

http://127.0.0.1:4000/schedules

Alerts

http://127.0.0.1:4000/alerts


```
- UI1: {
     name: "UI1",
     type: "0-10dc",
     scale: "0:10",
     precision: 3,
     offset: 0,
     value: 0,
     pinValue: 0,
     kind: "Number",
     unit: "null",
     tags: [ ],
   - historySettings: {
         type: "periodic",
         schedule: "0 */15 * * * * *",
         size: 672
 },
- UI2: {
     name: "UI2",
     type: "0-10dc",
     scale: "0:10",
     precision: 3,
     offset: 0,
     value: 0,
     pinValue: 0,
     kind: "Number",
     unit: "null",
     tags: [ ],
   - historySettings: {
         type: "periodic",
         schedule: "0 */15 * * * * *",
         size: 672
 },
- UI3: {
     name: "UI3",
     type: "0-10dc",
     scale: "0:10",
     precision: 3,
     offset: 0,
     value: 0,
     pinValue: 0,
     kind: "Number",
     unit: "null",
tags: [],
   - historySettings: {
         type: "periodic",
         schedule: "0 */15 * * * * *",
         size: 672
```


Node-red

Getting Started

Website

https://nodered.org/

Forum

https://discourse.nodered.org/

Default Port for node-red

The default port is 1880, If you're using the USB host the open chrome and go to 192.168.7.2:1880

Basics in node-red

Create a flow

View Debug Messages

Deploy a flow

Node Red Function Code

Boolean Functions

AND, OR, NOT

Logical Operators

Logical operators are used to determine the logic between variables or values.

Given that x = 6 and y = 3, the table below explains the logical operators:

Operator	Description	Example
&&	and	(x < 10 && y > 1) is true
II	or	(x == 5 y == 5) is false
İ	not	!(x == y) is true

Comperserson

https://www.w3schools.com/js/js_comparisons.asp

Operator	Description	Comparing	Returns
==	equal to	x == 8	false
		x == 5	true
		x == "5"	true
===	equal value and equal type	x === 5	true
		x === "5"	false
!=	not equal	x != 8	true
!==	not equal value or not equal type	x !== 5	false
		x !== "5"	true
		x !== 8	true
>	greater than	x > 8	false
<	less than	x < 8	true
>=	greater than or equal to	x >= 8	false

<=	less than or equal to	x <= 8	true

Javascript Functions

```
function myFunction(p1, p2) {
   return p1 * p2;
}
msg.payload = myFunction(4, 4);
return msg;
```

Arithmetic Operators

Operator	Description
+	Addition
-	Subtraction
*	Multiplication
	, i

/	Division
%	Modulus
++	Increment
-	Decrement

Math Functions

https://www.w3schools.com/js/js_math.asp

Math.random()

Example

- 1 is the start number
- 6 is the number of possible results (1 + start (6) end (1))

```
msg.payload = (Math.floor(Math.random() * 6) + 1 ); //(1 + start (6) - end (1)) return msg;
```


Conversions

Converting Strings to Numbers

Method	Description
parseFloat()	Parses a string and returns a floating point number
parseInt()	Parses a string and returns an integer

