C5 : Quantité de matière

1 Masse d'une entité.

Définition

La masse d'une molécule ou d'un ion est égale à la somme des masses des atomes qui le composent.

Masses de quelques atomes :

	1	ı				
Atome	Н	0	С	N	S	
Masse1	,67×102	, 86×10⊦	,99×102	;33×105	;32×10 ⁻	23
(en g)						

2 Nombre d'entités dans un échantillon de matière.

Définition

La masse m d'un échantillon de matière est proportionnelle au nombre N d'entités qu'il contient.

$$(m = N \times m_{entité})$$

<u>3 Quantité de matière.</u>

Définition La mole

Une mole est un ensemble de $6,02 \times 10^{23}$ entités.

Remarque : On écrit « une mole » ou 1 mol où mol est l'unité de la mole.

Définition Quantité de matière

La quantité de matière **n** (mol) d'un échantillon de matière contenant **N** entités est :

le nombre d'Avogadro

Remarques :
• La mole est l'une des 7 unités fondamen-

tales du Système International.

milliards!)

Pourquoi le nombre d'Avogadro est il aussi

grand? (environ six cent mille milliards de

- Sa valeur est adaptée à l'échelle microscopique où le nombre d'entités présentes dans un échantillons de matière est giagntesque.
- est gigantesque!

 On estime que l'Univers observable contient 1 × 10²⁴ étoiles: il y a donc plus de molécules d'eau dans un verre que

d'étoile dans l'Univers.

- Ce qu'il faut savoir faire

 ✓ Déterminer la masse d'une entité à partir de sa formule brute et de la masse
- des atomes qui la composent.

 ✓ Déterminer le nombre d'entités et la quantité de matière (en mol) d'une es-

Lycée Kleber (HW 2025)