Лабораторная работа 2.1 Изучение спектров атомов водорода и йода

Нехаев Александр, гр. 654

18 октября 2018 г.

Содержание

1.	Введение	1
2.	Ход работы	2

1. Введение

1

Цель работы: в работе исследуются спектральные закономерности в оптическом спектре водорода и спектр поглощения йода в видимой области.

Экспериментальная установка. Для измерения длин волн спектральных линий в работе используется стекляннопризменный монохроматор-спектрометр УМ-2, предназначенный для спектральных исследований в диапазоне от 0.38 до 1.00 мкм.

Спектрометр УМ-2 нуждается в предварительной градуировке. Для градуировки в коротковолновой части спектра удобно применять ртутную лампу ПРК-4, а в длинноволоновой и средней — неоновую лампу.

При подготовке УМ-2 к наблюдениям особое внимание следует обращать на тщательную фокусировку, с тем чтобы указатель 10 и спектральные линии имели четкие, ясные границы.

Рис. 1: Схема экспериментальной установки

Основные элементы монохроматора представлены на рис.

- 1) Входная щель 1, снабжённая микрометрическим винтом 9, который позволяет открывать щель на нужную ширину (в диапазоне 0.01-4 мм).
- 2) Коллиматорный объектив 2, снабженный микрометрическим винтом 8. Винт позволяет смещать объектив относительно щели при фокусировки спектральных линий различных цветов.
- 3) Сложная спектральная призма 3, установленная на поворотном столике 6. Призма 3 состоит из 3-х склеенных призм Π_1 , Π_2 и Π_3 . Первые две призмы с преломляющими углами 30° изготовлены из тяжёлого флинта, обладающего большой дисперсией. Промежуточная призма Π_3 сделана из крона. Лучи отражаются от её гипотенузной

грани и поворачиваются на 90°. Благодаря такому устройству дисперсия призм Π_1 и Π_2 складываются.

- 4) Поворотный столик 6, вращающийся вокруг вертикальной оси при помощи микрометрического винта 7 с отсчётным барабаном. На барабан нанесена винтовая дорожка с градусными делениями. Вдоль дорожки скользит указатель барабана. При вращении барабана призма поворачивается, и в центре поля зрения появляются различные участки спектра.
- 5) Зрительная труба, состоящая из объектива 4 и окуляра 5. Объектив дает изображение входной щели 1 различных цветов в своей фокальной плоскости. В этой же плоскости расположено острие указателя 10. Изображение щели рассматривается через окуляр 5. В случае необходимости окуляр может быть заменен выходной щелью, пропускающей всего одну из линий спектра тогда прибор служит монохроматором. В нашей работе выходная щель не применяется, то есть прибор используется как спектрометр.
- 6) Массивный корпус 11, предохраняющий прибор от повреждений и загрязнений.
- 7) Оптическая скамья, на которой могут перемещаться рейтеры с источником света Π и кондесором K, служащим для концентрации света на входной щели. Входная щель спектрометра, конденсор и источник должны быть на одной высоте. Проходящий через входную щель световой пучок хорошо заполняет конденсор и призму, если выполнено соотношение $D_k/b = D_2/f_2 = 1/6$, где D_k диаметр конденсора, b расстояние от конденсора до входной щели, D_2 и f_2 диаметр и фокусное расстояние коллиматорного объектива 2.

Водородная лампа. В опытах по изучению длин волн бальмеровской серии источником света служит водородная трубка H-образной формы, питаемая от источника высокого напряжения. Наибольшая яркость спектра достигается в том случае, когда источником света служит торец горизонтальной части трубки — капилляра (перемычки в букве H).

Для увеличения яркости интересующих нас линий атомарного водорода в состав газа, которым заполняют трубку при её изготовлении, добавляют пары воды. Молекулы воды в электрическом разряде разлагаются, образуя атомарный водород. Трубка заполняется газом до давления 5–10 Торр.

Следует отметить, что в спектре водородной лампы наряду с линиями атомного спектра наблюдается также спектр молекулярного водорода. Однако интенсивность молекулярных линий значительно слабее и отождествление ярких атомных линий на фоне молекулярного спектра не представляет большого труда.

2. Ход работы

1) Проведем градуировку монохроматора. График для зависимости длины волны λ от номера пикселя в матрице фотоаппарата приведен на рис. 2. В таблице 1 приведены параметры аппроксимации функции $\lambda(N)$ по формуле

$$\lambda = A + \frac{C}{N - B} \tag{1}$$

Рис. 2: Зависимость $\lambda = f(N)$

Таблица 1: Параметры аппроксимации

Параметр	Значение
A	2510.01 ± 0.39
В	4937.46 ± 0.42
С	$(-1.01864 \pm 0.00014) \cdot 10^7$

2) Измерим спектр водородной лампы и попытаемся определить положение линий H_{α} , H_{β} , H_{γ} и H_{δ} . Черными точками на графике зависимости интенсивности от длинны волны обозначены указанные в таблице 2 линии спектра. Сравним полученные линии спектра с линиями в серии Бальмера, приведенными в таблице 3.

Рис. 3: График зависимости интенсивности от длинны волны в спектре водорода и фотография полученного спектра водорода

Таблица 2: Полученные линии спектра водорода

	$N_{\overline{0}}$	1	2	3	4	5	6
Ì	λ , Å	4860.5	5328.18	5434.16	6154.2	6450.97	6557.78
	I, a.e.	1918.2	2716.69	1335.84	3363.92	729.517	1112.86

Таблица 3: Серия Бальмера

H_{α}	H_{β}	H_{γ}	H_{δ}	
6563 Å	4861 Å	4340 Å	4102 Å	