Session 4 Quantitative Analysis of Financial Markets Model k and OLS

Christopher Ting

http://www.mysmu.edu/faculty/christophert/

☎: 6828 0364 [⊕]: LKCSB 5036

Nuggets of Statistics

October 29, 2018

Christopher Ting QF 603 October 29, 2018

1/44

Broad Lesson Plan

- Nuggets of Statistics
- 2 Model k

Nuggets of Statistics

•000000

- **3 Ordinary Linear Regression**
- **4 MLR Tutorial**
- Goodness of Fit
- 6 Takeaways

2/44

Nuggets of Statistics

000000

3/44

- The mean estimate $\hat{\mu}$ is a random variable as a result of random sampling.
- Assume that X_i is i.i.d. for each i, i = 1, 2, ...n. With $\mathbb{C}\left(X_i, X_i\right) = 0 \text{ for } i \neq j,$

$$\mathbb{E}\left(\left(\widehat{\mu} - \mu\right)^{2}\right) \equiv \mathbb{V}\left(\widehat{\mu}\right) = \mathbb{V}\left(\sum_{i=1}^{n} \frac{X_{i}}{n}\right) = \sum_{i=1}^{n} \mathbb{V}\left(\frac{X_{i}}{n}\right)$$
$$= \sum_{i=1}^{n} \frac{\mathbb{V}\left(X_{i}\right)}{n^{2}} = \frac{1}{n^{2}} \sum_{i=1}^{n} \mathbb{V}\left(X_{i}\right) = \frac{1}{n^{2}} \cdot n\sigma^{2}$$
$$= \frac{\sigma^{2}}{n}.$$

What is the implication of this result?

Christopher Tina OF 603 October 29, 2018

You think you know basic statistics?

What is the information the following estimator extracts from the sample $\{x_i\}_{i=1}^n$?

$$\widehat{\beth} := \frac{1}{n(n-1)} \sum_{i < j} (x_i - x_j)^2$$

 \forall Sample mean: $\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i$.

Christopher Ting 0F 603 October 29, 2018 4/44

5/44

Answer:

Nuggets of Statistics

0000000

$$\sum_{i < j} (x_i - x_j)^2 = \sum_{j=2}^n \sum_{i=1; i < j}^{n-1} (x_i - x_j)^2 = \sum_{j=2}^n \sum_{i=1; i < j}^{n-1} (x_i^2 + x_j^2 - 2x_i x_j)$$

$$= (n-1) \sum_{i=1}^n x_i^2 - 2 \sum_{j=2}^n \sum_{i=1; i < j}^{n-1} x_i x_j$$

$$= n \sum_{i=1}^n x_i^2 - \sum_{i=1}^n x_i^2 - \sum_{j=1}^n \sum_{i=1; i \neq j}^n x_i x_j = n \sum_{i=1}^n x_i^2 - \sum_{j=1}^n \sum_{i, j=1}^n x_i x_j$$

$$= n \sum_{i=1}^n x_i^2 - \sum_{i=1}^n x_i \sum_{j=1}^n x_j = n \sum_{i=1}^n x_i^2 - n^2 \widehat{\mu}^2$$

Therefore
$$\widehat{\beth} = \frac{1}{n(n-1)}\left(n\sum_{i=1}^n x_i^2 - n^2\widehat{\mu}^2\right) = \frac{\sum_{i=1}^n x_i^2 - n\widehat{\mu}^2}{n-1}$$

Christopher Ting OF 603 October 29, 2018

More on Covariance

Proposition 1

Nuggets of Statistics

0000000

Let X_i and Y_i be random variables. Then

$$\mathbb{C}\left(\mathbf{X}_{i}, \mathbf{Y}_{j}\right) = 0, ifi \neq j.$$

Proof:

- Suppose Y and X are related by a mapping, i.e., $Y_i = f(X_i)$.
- \triangledown The mapping involves the paired copies because each Y_i is independent of Y_i due to random sampling.
- \bigvee Otherwise, if $Y_i = f(X_i, X_i)$, then Y_i may depend on Y_i indirectly since $Y_i = f(X_h, X_i)$.

Christopher Tina OF 603 October 29, 2018

6/44

An Estimator of Covariance

Definition 1: Sample Covariance

Given the paired data, (x_i, y_i) , i = 1, 2, ..., n, the sample covariance is defined as

$$\widehat{\sigma}_{XY} := \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \widehat{\mu}_X) (y_i - \widehat{\mu}_Y).$$

Show that

0000000

$$\sum_{i=1}^{n} (X_i - \widehat{\mu}_X) (Y_i - \widehat{\mu}_Y) = \sum_{i=1}^{n} X_i Y_i - n \overline{X}_n \overline{Y}_n.$$

Use these results to show that the sample covariance is unbiased.

Christopher Tina OF 603 October 29, 2018

7/44

A Problem about Mean Squared Errors

Problem

Prove that, if one predicts a random variable y by a constant a, the constant which gives the best mean squared errors MSE is $a = \mathbb{E}[y]$, and the best MSE one can get is $\mathbb{V}[y]$.

Answer

$$\mathbb{E}[(y-a)^2] = \mathbb{E}[y^2] - 2a \mathbb{E}[y] + a^2$$
. Differentiate with respect to a and set zero to get $a = \mathbb{E}[y]$.

Christopher Ting OF 603 October 29, 2018 8/44

Assumptions

- $\ \ \, \Box$ A total of n sets of observations (x_t, y_t) are given. The observation noise or error term is denoted by $\mathbf{\varepsilon} = \begin{pmatrix} \varepsilon_1 & \varepsilon_2 & \cdots & \varepsilon_n \end{pmatrix}'$.
 - (A1) $\mathbb{E}[\boldsymbol{\varepsilon}_t] = 0$ for every t

Nuggets of Statistics

- (A2) $\mathbb{E}[\boldsymbol{\varepsilon}_t^2] = \sigma_{\boldsymbol{\varepsilon}}^2$ for every t
- (A3) $\mathbb{E}[\boldsymbol{\varepsilon}_t \, \boldsymbol{\varepsilon}_u] = 0$ for every $t \neq u$
- (A4) x_t is non-stochastic "constants".
- ☐ A compact way of representing these assumptions is
 - \star $\mathbb{E}[\boldsymbol{\varepsilon}] = \boldsymbol{o} := \begin{pmatrix} 0 & 0 & \cdots & 0 \end{pmatrix}'$ (the null vector)
 - \star $\mathbb{V}[\boldsymbol{\varepsilon}] = \sigma_{\boldsymbol{\varepsilon}}^2 \boldsymbol{I}$, where \boldsymbol{I} is the n by n identity matrix.

Christopher Ting QF 603 October 29, 2018 9/44

10/44

- \Box Model 0 is the simplest estimation problem with n independent observations y_1, \ldots, y_n from the same distribution, for which mean μ and variance σ_{ϵ}^2 exist.
- \Box Define $\varepsilon_i = y_i \mu$, and the vectors $\mathbf{y} := (y_1 \ y_2 \ \cdots \ y_n)'$ and $\iota = (1 \quad 1 \quad \cdots \quad 1)',$
- Then Model 0 in the vector form is

Nuggets of Statistics

$$y = \iota \mu + \varepsilon, \qquad \varepsilon \sim (o, \sigma_{\varepsilon}^2 I)$$
 (1)

 \square μ is the deterministic part of y_i , and ε_i is the random part.

Christopher Tina OF 603 October 29, 2018

Model 1: Simple Regression

 \Box Each element of y is a constant α plus a constant multiple of the corresponding element of the nonrandom vector x plus a random error term ε_t :

$$y_t = \alpha + x_t \beta + \varepsilon_t, \qquad t = 1, \dots, n.$$

🖒 In vector-matrix form, Model 1 is written as

$$\begin{pmatrix} \mathbf{y}_1 \\ \vdots \\ \mathbf{y}_n \end{pmatrix} = \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix} \alpha + \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \beta + \begin{pmatrix} \boldsymbol{\varepsilon}_1 \\ \vdots \\ \boldsymbol{\varepsilon}_n \end{pmatrix} = \begin{pmatrix} 1 & x_1 \\ \vdots & \vdots \\ 1 & x_n \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \end{pmatrix} + \begin{pmatrix} \boldsymbol{\varepsilon}_1 \\ \vdots \\ \boldsymbol{\varepsilon}_n \end{pmatrix}$$
 (2)

or

Nuggets of Statistics

$$|y = X\beta + \varepsilon, \qquad \varepsilon \sim (o, \sigma_{\varepsilon}^2 I)|$$
 (3)

Christopher Ting QF 603 October 29, 2018 11/44

Model M: Multiple Linear Regression

- \Box If y depends on multiple variables, then we have multiple linear regression, Model k.
- \Box Mathematically, multiple linear regression has the same form (3), except X now it has more than two columns.
- independent.
- \Box Model M has Models 0 and 1 as special cases.
- Summary

Nuggets of Statistics

	observed	unobserved
random	$oldsymbol{y}$	$oldsymbol{arepsilon}$
nonrandom	\boldsymbol{X}	$\beta, \sigma_{\epsilon}^2$

Christopher Ting QF 603 October 29, 2018 12/44

Interchangeability of Inverse and Transpose

Proposition

Nuggets of Statistics

For a square matrix X that has an inverse, the order of transpose and inverse operations is interchangeable.

$$\left(\boldsymbol{X}'\right)^{-1} = \left(\boldsymbol{X}^{-1}\right)'.$$

Proof: By the definition of inverse,

$$\boldsymbol{X}'(\boldsymbol{X}')^{-1} = \boldsymbol{I}.$$

Transpose both sides to yield

$$((X')^{-1})'X = I.$$

Multiply both sides by X^{-1} from the right to yield

$$\left(\left(\boldsymbol{X}'\right)^{-1}\right)' = \boldsymbol{X}^{-1}.$$

Transpose both sides again to yield $(X')^{-1} = (X^{-1})'$ as required.

 Christopher Ting
 QF 603
 October 29, 2018
 13/44

Problem

Nuggets of Statistics

Assume that X has full column rank. Show that $\hat{\varepsilon} = My$ where $M = I - X(X'X)^{-1}X'$. Show that M is symmetric and idempotent.

Answer

$$\stackrel{\square}{\Box} \hat{\boldsymbol{\varepsilon}} = \boldsymbol{y} - \boldsymbol{X} \hat{\boldsymbol{\beta}} = \boldsymbol{y} - \boldsymbol{X} (\boldsymbol{X}' \boldsymbol{X})^{-1} \boldsymbol{X}' \boldsymbol{y} = (\boldsymbol{I} - \boldsymbol{X} (\boldsymbol{X}' \boldsymbol{X})^{-1} \boldsymbol{X}') \boldsymbol{y}.$$

 \Box To prove idempotent, i.e. MM = M, we compute

$$MM = (I - X(X'X)^{-1}X')(I - X(X'X)^{-1}X')$$

$$= I - X(X'X)^{-1}X' - X(X'X)^{-1}X'$$

$$+ X(X'X)^{-1}X'X(X'X)^{-1}X'$$

$$= I - 2X(X'X)^{-1}X' + X(X'X)^{-1}X'$$

$$= I - X(X'X)^{-1}X' = M.$$

 \Box To show symmetric, $M' = I' - (X(X'X)^{-1}X') = M$.

Christopher Ting QF 603 October 29, 2018

Nuggets of Statistics

Matrix Calculus

Let x be a column k-vector. Consider the function

$$g(\mathbf{x}) = g(x_1, x_2, \dots, x_k) : \mathfrak{R}^k \longrightarrow \mathfrak{R}.$$

The vector derivative is

$$\frac{\partial}{\partial \boldsymbol{x}} g(\boldsymbol{x}) = \begin{pmatrix} \frac{\partial}{\partial x_1} g(\boldsymbol{x}) \\ \frac{\partial}{\partial x_2} g(\boldsymbol{x}) \\ \vdots \\ \frac{\partial}{\partial x_k} g(\boldsymbol{x}) \end{pmatrix}.$$

and

$$\frac{\partial}{\partial \boldsymbol{x}'} g(\boldsymbol{x}) = \left(\frac{\partial}{\partial x_1} g(\boldsymbol{x}) \quad \frac{\partial}{\partial x_2} g(\boldsymbol{x}) \quad \cdots \quad \frac{\partial}{\partial x_k} g(\boldsymbol{x}) \right)$$

Christopher Tina OF 603 15/44

For constant vector a and matrix A,

$$rac{\partial}{\partial x}ig(a'xig) = rac{\partial}{\partial x}ig(x'aig) = a, \quad ext{or} \quad rac{\partial}{\partial x'}ig(a'xig) = a'$$

$$\frac{\partial}{\partial x'}(Ax) = A$$

Nuggets of Statistics

$$rac{\partial}{\partial m{x}}m{(x'Am{x})} = m{(A+A')m{x}}, \quad ext{or} \quad rac{\partial}{\partial m{x'}}m{(x'Am{x})} = m{x'}m{(A+A')}$$

$$rac{\partial^2}{\partial m{x} \partial m{x'}}ig(m{x'}m{A}m{x}ig) = m{A} + m{A'}$$

Christopher Ting OF 603 October 29, 2018 16/44

Sum of Squared Errors (SSE) and OLS

In the model $y = X\beta + \epsilon$, where $\epsilon \sim (o, \sigma_{\epsilon}^2 I)$, the OLS-estimate $\hat{\beta}$ is defined to be that value $\beta = \hat{\beta}$ that minimizes

$$SSE = (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})'(\mathbf{y} - \mathbf{X}\boldsymbol{\beta}) = \mathbf{y}'\mathbf{y} - 2\mathbf{y}'\mathbf{X}\boldsymbol{\beta} + \boldsymbol{\beta}'\mathbf{X}'\mathbf{X}\boldsymbol{\beta}.$$
(4)

 \mid Note that X'X is a square symmetric matrix. Hence, the first-order condition is

$$\frac{\partial \text{SSE}}{\partial \beta'} = -2 \mathbf{y}' \mathbf{X} - 2 \hat{\boldsymbol{\beta}}' \mathbf{X}' \mathbf{X} = \mathbf{0}.$$

- eq Applying the transpose operation, we obtain $oldsymbol{X}'oldsymbol{\hat{eta}} = oldsymbol{X}'oldsymbol{y}$
- \exists Due to our assumption that all columns of X are linearly independent, X'X has an inverse and one can premultiply both sides by $(X'X)^{-1}$ to obtain

$$\hat{\boldsymbol{\beta}} = (\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'\boldsymbol{y}.$$

17/44

Christopher Ting QF 603 October 29, 2018

Sample average is "regression" with an intercept only, i.e.,

$$y_t = \alpha + \varepsilon_t. \tag{5}$$

- To see how Model 0 comes from Model k, suppose $X = \iota$.
- Therefore $X'X = \iota'\iota = n$, and $(X'X)^{-1} = \frac{1}{n}$.
- Consequently,

Nuggets of Statistics

$$\widehat{\alpha} = \frac{1}{n} \iota' \mathbf{y} = \frac{1}{n} \sum_{t=1}^{n} \mathbf{y}_{t} =: \overline{\mathbf{y}}.$$

Christopher Tina OF 603 October 29, 2018 18/44 **Nuggets of Statistics**

Reduction to Model 1: Simple Regression

Explanatory variable only, i.e.,

$$y_t = \alpha + \beta x_t + \varepsilon_t.$$
 (6)

 \exists Here $X = (\iota \quad x)$ and $\beta = (\alpha \quad \beta)'$.

$$\boldsymbol{X}'\boldsymbol{X} = \begin{pmatrix} \boldsymbol{\iota}' \\ \boldsymbol{x}' \end{pmatrix} \begin{pmatrix} \boldsymbol{\iota} & \boldsymbol{x} \end{pmatrix} = \begin{pmatrix} \boldsymbol{\iota}'\boldsymbol{\iota} & \boldsymbol{\iota}'\boldsymbol{x} \\ \boldsymbol{x}'\boldsymbol{\iota} & \boldsymbol{x}'\boldsymbol{x} \end{pmatrix} = \begin{pmatrix} n & \sum x_t \\ \sum x_t & \sum x_t^2 \end{pmatrix}$$

$$(\mathbf{X}'\mathbf{X})^{-1} = \frac{1}{n\sum x_t^2 - (\sum x_t)^2} \begin{pmatrix} \sum x_t^2 & -\sum x_t \\ -\sum x_t & n \end{pmatrix}$$

$$m{X'}_{m{y}} = egin{pmatrix} m{\iota'}_{m{y}} \ m{x'}_{m{y}} \end{pmatrix} = egin{pmatrix} \sum y_t \ \sum x_t y_t \end{pmatrix}$$

OLS Estimates for Simple Regression

$$break Therefore $(X'X)^{-1}X'y$ gives $\hat{\beta} = \begin{bmatrix} \hat{\alpha} & \hat{\beta} \end{bmatrix}'$:$$

$$\hat{\boldsymbol{\alpha}} = \frac{\sum x_t^2 \sum \boldsymbol{y}_t - \sum x_t \sum x_t \boldsymbol{y}_t}{n \sum x_t^2 - (\sum x_t)^2}$$
 (7)

$$\hat{\beta} = \frac{n \sum x_t y_t - \sum x_t \sum y_t}{n \sum x_t^2 - (\sum x_t)^2}$$
 (8)

Christopher Ting QF 603 October 29, 2018 20/44

Since $\sum x_i = n\bar{x}$ and $\sum y_i = n\bar{y}$, we have

$$\hat{\boldsymbol{\beta}} = \frac{n\sum x_t \mathbf{y}_t - n^2 \bar{x} \bar{\mathbf{y}}}{n\sum x_t^2 - n^2 \bar{x}^2} = \frac{\sum x_t \mathbf{y}_t - n\bar{x} \bar{\mathbf{y}}}{\sum x_t^2 - n\bar{x}^2}.$$
 (9)

Now, note that

$$\sum_{t=1}^{n} (x_t - \bar{x})(y_t - \bar{y}) = \sum_{t=1}^{n} x_t y_t - n\bar{x}\bar{y}.$$
 (10)

Hence

Nuggets of Statistics

$$\hat{\beta} = \frac{\sum_{t=1}^{n} (x_t - \bar{x})(y_t - \bar{y})}{\sum_{t=1}^{n} (x_t - \bar{x})^2}.$$
 (11)

Christopher Tina OF 603 October 29, 2018 21/44

Formula for the Intercept Estimate

For simple regression $y_t = \alpha + \beta x_t + \varepsilon_t$, or $\varepsilon_t = y_t - \alpha - \beta x_t$, the sum of squared errors can also be written as

$$SSE = \boldsymbol{\varepsilon}^{\top} \boldsymbol{\varepsilon} = \sum_{t=1}^{n} \varepsilon_{t}^{2} = \sum_{t=1}^{n} (y_{t} - \alpha - \beta x_{t})^{2}.$$

$$\frac{\partial \operatorname{SSE}}{\partial \alpha} = -2 \sum_{t=1}^{n} (y_t - \alpha - \beta x_t) = 0.$$

₱ The solution is

Nuggets of Statistics

$$\sum_{t=1}^{n} \hat{\alpha} = \sum_{t=1}^{n} \mathbf{y}_{t} - \hat{\boldsymbol{\beta}} \sum_{t=1}^{n} x_{t} = n\bar{\mathbf{y}} - n\hat{\boldsymbol{\beta}}\bar{x},$$

which is

$$\hat{\alpha} = \bar{y} - \hat{eta}\bar{x}.$$

(12)

Christopher Ting QF 603 October 29, 2018

True Parameter Values of Simple Regression

 \exists If y is predicted by an affine expression of the form a + bx, then the lowest mean squared error MSE is obtained. Moreover,

$$b = \frac{\mathbb{C}[x, y]}{\mathbb{V}[x]}, \qquad a = \mathbb{E}[y] - b \,\mathbb{E}[x].$$

▶ The MSE is variance plus squared bias, therefore

Nuggets of Statistics

$$MSE[a + bx - y] = V[a + bx - y] + (\mathbb{E}[a + bx - y])^{2}$$
$$= V[bx - y] + (a - \mathbb{E}[y] + b \mathbb{E}[x])^{2}. \tag{13}$$

$$\mathbb{V}[bx - y] = b^2 \mathbb{V}[x] - 2b \mathbb{C}[x, y] + \mathbb{V}[y], \tag{14}$$

the first order condition of equation (14) results in b.

Christopher Ting 0F 603 October 29, 2018 23/44

Nuggets of Statistics

Mean Squared Errors

- Plugging the optimal a into (13), annuls the last term of (13) so that the MSE is given by (14).

$$MSE = \left(\frac{\mathbb{C}[x, y]}{\mathbb{V}[x]}\right)^2 \mathbb{V}[x] - 2\frac{\mathbb{C}[x, y]}{\mathbb{V}[x]} \mathbb{C}[x, y] + \mathbb{V}[y]$$

$$(\mathbb{C}[x, y])^2$$
(15)

$$= \mathbb{V}[y] - \frac{(\mathbb{C}[x, y])^2}{\mathbb{V}[x]}.$$
 (16)

brack Since y = a + bx + e where e is the error term, we have

$$\mathbb{C}[x, y - a - bx] = \mathbb{C}[x, y] - b \,\mathbb{C}[x, x] = 0.$$

 Christopher Ting
 QF 603
 October 29, 2018
 24/44

In-Class Exercise

Question in Class

The affine form is y = a + bx + e. Show that the mean square error, equation (16), is the variance of the error e, i.e.,

$$\sigma_{\boldsymbol{e}}^{2} := \mathbb{V}\left[\boldsymbol{e}\right] = \mathrm{MSE}$$
.

Insight!

1 The first-order conditions can be written as

$$oldsymbol{X}'\left(oldsymbol{y}-oldsymbol{X}\widehat{oldsymbol{eta}}
ight)=oldsymbol{0},$$

which is

$$X'\widehat{u}=0. (17)$$

The OLS residuals are orthogonal to X'.

$$\mathbf{1}'\widehat{\boldsymbol{u}} = \sum_{i=1}^n \widehat{u}_i = 0.$$

Christopher Ting 0F 603 October 29, 2018 26/44

Nuggets of Statistics

OLS Algorithm for Model M

- **11** Estimate the model by OLS: $\hat{\beta} = (X'X)^{-1}X'y$
- 2 Compute the fitted values of \hat{y} : \hat{y} $\hat{y} = X\hat{\beta}$
- 3 Compute the residuals or "surprise": $\hat{u} = y \hat{y}$
- 4 Compute the residual sum of squares (RSS)

$$SSE \equiv RSS = \widehat{\boldsymbol{u}}'\widehat{\boldsymbol{u}} = \sum_{i=1}^{n} \widehat{u}_{i}^{2}$$

5 The variance of the residuals is

$$\widehat{\sigma}_u^2 = \frac{1}{n - K} \widehat{\boldsymbol{u}}' \widehat{\boldsymbol{u}}$$

6 Let $\Omega := (X'X)^{-1}$. The variance of $\widehat{\beta}_i$ is

$$\mathbb{V}(\widehat{\beta}_i) = \widehat{\sigma}_{i}^2 \Omega_{ii}.$$

Christopher Tina OF 603 October 29, 2018 27/44

Summary of OLS Regression

- atural The estimates are unbiased, i.e., $\mathbb{E}\left(\widehat{oldsymbol{eta}}\right)=oldsymbol{eta}.$
- The variance of the residuals is unbiased $\mathbb{E}\left(\widehat{\sigma}_{n}^{2}\right)=\sigma_{n}^{2}$.
- □ Conditional normality

Nuggets of Statistics

$$\widehat{\boldsymbol{\beta}}|\boldsymbol{X} \sim \mathcal{N}(\boldsymbol{\beta}, \sigma_u^2(\boldsymbol{X}'\boldsymbol{X})^{-1})$$
 (18)

Christopher Ting QF 603 October 29, 2018 28/44

Statistical Inference

For all j = 1, 2, ..., K, the t test statistic for $\widehat{\beta}_j$ is, given the null-hypothesized value β_j :

$$\frac{\widehat{\beta}_j - \beta_j}{\widehat{\sigma}_u \sqrt{\Omega_{jj}}} \sim t_{n-K}$$
 (19)

 \models The α % significance level for β_i is, assuming two-tail test,

$$\widehat{\beta}_j - q\widehat{\sigma}_u \sqrt{\Omega_{jj}} \le \beta_j \le \widehat{\beta}_j + q\widehat{\sigma}_u \sqrt{\Omega_{jj}},$$

where q is the $(1 - \alpha/2)$ -th quantile of the t_{n-K} distribution.

Christopher Ting QF 603 October 29, 2018 29/44

Confidence Interval for Mean Response

- \exists A given observation \boldsymbol{x} , which is a $K \times 1$ vector, i.e., $\boldsymbol{x} := \begin{bmatrix} 1 & x_2 & x_3 & \cdots & x_K \end{bmatrix}'$
- \exists The in-sample mean response is $\widehat{\boldsymbol{\beta}}'\boldsymbol{x}$.

Nuggets of Statistics

 \exists Given the unbiased estimate $\widehat{\beta}$, the variance of $\widehat{\beta}'x$ is

$$\mathbb{V}\left(\widehat{\boldsymbol{\beta}}'\boldsymbol{x}\right) = \mathbb{V}\left(\boldsymbol{x}'\widehat{\boldsymbol{\beta}}\right) = \boldsymbol{x}'\mathbb{V}\left(\widehat{\boldsymbol{\beta}}\right)\boldsymbol{x} = \sigma_u^2\boldsymbol{x}'\left(\boldsymbol{X}'\boldsymbol{X}\right)^{-1}\boldsymbol{x}.$$
 (20)

 \exists Hence, a $100 \times (1 - \alpha)$ % confidence interval for the in-sample mean response $\hat{\beta}' x$ is, with $q := t_{N-K,1-\alpha/2}$,

$$\widehat{\boldsymbol{\beta}}' \boldsymbol{x} \pm q \sigma_u \sqrt{\boldsymbol{x}' (\boldsymbol{X}' \boldsymbol{X})^{-1} \boldsymbol{x}}$$
 (21)

 Christopher Ting
 QF 603
 October 29, 2018
 30/44

Prediction Interval for a New Observation

Suppose a future observation of x is obtained. Then, by assumption of $u \sim \mathcal{N}(0, \sigma_u^2)$, we have

Nuggets of Statistics

$$\mathbb{V}(y - \widehat{\boldsymbol{\beta}}'\boldsymbol{x}) = \mathbb{V}(u) + \mathbb{V}(\widehat{\boldsymbol{\beta}}'\boldsymbol{x})$$
 (22)

 \models Hence, a $100 \times (1 - \alpha)$ % prediction interval for y is

$$\hat{\boldsymbol{\beta}}' \boldsymbol{x} \pm q \sigma_u \sqrt{1 + \boldsymbol{x}' (\boldsymbol{X}' \boldsymbol{X})^{-1} \boldsymbol{x}}.$$
 (23)

 Christopher Ting
 QF 603
 October 29, 2018
 31/44

Akaike Information Criterion (1973)

For i.i.d. normally distributed errors,

Nuggets of Statistics

$$AIC = T \ln \left(\frac{RSS}{T} \right) + 2K.$$

For small sample sizes $(T/K \le 40)$, use the second-order AIC:

$$\mathsf{AIC}_c = \mathsf{AIC} + \frac{2K(K+1)}{T - K - 1}$$

The smaller AIC is, the better is the model in not over-fitting the data.

Christopher Tina OF 603 October 29, 2018 32/44

Multiple Linear Regression and the Constant Term

% Model
$$M$$
: $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{u}$
For $t = 1, 2, \dots, T$,

Nuggets of Statistics

$$y_t = \beta_1 + \beta_2 X_{2,t} + \beta_3 X_{3,t} + \dots + \beta_K X_{K,t} + u_t,$$

There are K parameters, $\beta_1, \beta_2, \ldots, \beta_K$.

The first parameter is the y-intercept in Model 1. $X_{1,t} = 1$ being a constant for all t.

$$X_1 = \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix}$$

Christopher Ting QF 603 October 29, 2018 33/44

Model 1: Simple Linear Regression

 $*$ If K = 2, we are back to Model 1

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_T \end{bmatrix} = \begin{bmatrix} 1 & x_{2,1} \\ 1 & x_{2,2} \\ \vdots & \vdots \\ 1 & x_{2,T} \end{bmatrix} \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix} + \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_T \end{bmatrix}$$

$$T \times 1 \qquad T \times 2 \qquad 2 \times 1 \qquad T \times 1$$

Notice that the matrices written in this way are conformable.

Christopher Ting QF 603 October 29, 2018 34/44

Numerical Illustration: Data

$$\$$$
 When $K=3$,

Nuggets of Statistics

$$y_t = \beta_1 + \beta_2 x_{2,t} + \beta_3 x_{3,t} + u_t$$

for $t = 1, 2, \dots, 15$.

$$(\mathbf{X}'\mathbf{X})^{-1} = \begin{bmatrix} 2.0 & 3.5 & -1.0 \\ 3.5 & 1.0 & 6.5 \\ -1.0 & 6.5 & 4.3 \end{bmatrix}, \ \mathbf{X}'\mathbf{y} = \begin{bmatrix} -3.0 \\ 2.2 \\ 0.6 \end{bmatrix}$$

* The residual sum of sqauares (RSS) is $\hat{u}'\hat{u} = 10.96$

Christopher Ting QF 603 October 29, 2018 35/44

Nuggets of Statistics

36/44

Calculations in Simple Regression

To calculate the coefficients, just multiply the matrix $(X'X)^{-1}$ by the vector X'y to obtain $(X'X)^{-1}X'y$

$$\begin{bmatrix} 2.0 & 3.5 & -1.0 \\ 3.5 & 1.0 & 6.5 \\ -1.0 & 6.5 & 4.3 \end{bmatrix} \begin{bmatrix} -3.0 \\ 2.2 \\ 0.6 \end{bmatrix} = \begin{bmatrix} 1.10 \\ 4.40 \\ 19.88 \end{bmatrix}$$

leph To calculate the standard errors, we need an estimate of σ_u^2 .

$$s^2 = \frac{\text{RSS}}{T - K} = \frac{10.96}{15 - 3} = 0.91$$

 $\mbox{\$}$ The variance-covariance matrix of $\hat{\beta}$ is given by

$$s^{2}(\mathbf{X}'\mathbf{X})^{-1} = 0.91(\mathbf{X}'\mathbf{X})^{-1} = \begin{bmatrix} 1.82 & 3.19 & -0.91 \\ 3.19 & 0.91 & 5.92 \\ -0.91 & 5.92 & 3.91 \end{bmatrix}$$

Christopher Ting QF 603 October 29, 2018

Standard Errors and Estimated Model

The variances are on the leading diagonal:

$$var(\hat{\beta}_1) = 1.82$$
 $SE(\hat{\beta}_1) = 1.35$
 $var(\hat{\beta}_2) = 0.91 \iff SE(\hat{\beta}_2) = 0.95$
 $var(\hat{\beta}_3) = 3.91$ $SE(\hat{\beta}_3) = 1.98$

We write

Nuggets of Statistics

$$\hat{y} = 1.10 - 4.40x_2 + 19.88x_3$$

(1.35) (0.96) (1.98)

Christopher Tina OF 603 October 29, 2018 37/44 **Nuggets of Statistics**

38/44

Ordinary Least Squares (OLS)'s Goodness of Fit

Explained sum of squares (ESS) is

$$\mathsf{ESS} := \sum_{i=1}^{n} \left(\widehat{y}_i - \overline{y} \right)^2$$

Total sum of squares (TSS) is, with $y_* := y - \overline{y}1$,

TSS :=
$$\mathbf{y}'_{*}\mathbf{y}_{*} = \sum_{i=1}^{n} (y_{i} - \overline{y})^{2} = \sum_{i=1}^{n} (\widehat{y}_{i} - \overline{y})^{2} + \sum_{i=1}^{n} \widehat{u}_{i}^{2}$$
 (24)

$$=$$
 ESS $+$ F

+ RSS. (25)

 $ext{ } ext{ }$ orthogonality: $X'\widehat{u} = 0$.

Christopher Tina OF 603 October 29, 2018

Proof

Nuggets of Statistics

$$\begin{split} \sum_{i=1}^n \left(\widehat{y}_i - \overline{y}\right) \left(y_i - \widehat{y}_i\right) &= \sum_{i=1}^n \left(\widehat{y}_i - \overline{y}\right) \widehat{u}_i \\ &= \sum_{i=1}^n \widehat{y}_i \widehat{u}_i \qquad \left(\text{since } \overline{y} \sum_{i=1}^n \widehat{u}_i = 0\right) \\ &= \sum_{i=1}^n \left(\pmb{X} \widehat{\pmb{\beta}}\right)_i \widehat{u}_i \\ &= \left(\pmb{X} \widehat{\pmb{\beta}}\right)' \widehat{\pmb{u}} = \widehat{\pmb{\beta}}' \pmb{X}' \widehat{\pmb{u}} = 0. \end{split}$$

Christopher Ting QF 603 October 29, 2018 39/44

Takeaways

Coefficient of Determination R^2

In summary,

Model k

Nuggets of Statistics

$$\mathsf{TSS} = \mathsf{ESS} + \mathsf{RSS}$$

$$\sum_t (y_t - \bar{y})^2 = \sum_t (\hat{y}_t - \bar{y})^2 + \sum_t \hat{u}_t^2$$

- II Our goodness of fit statistic is $R^2 = \frac{\mathsf{ESS}}{\mathsf{TSS}}$
- But since TSS = ESS + RSS, we can also write

$$R^2 = \frac{\mathsf{TSS} - \mathsf{RSS}}{\mathsf{TSS}} = 1 - \frac{\mathsf{RSS}}{\mathsf{TSS}}$$

 $\ \ \, \mathbb{U} \ \, \mathbb{R}^2$ must always lie between zero and one. To understand this, consider two extremes

RSS = TSS i.e.
$$ESS = 0$$
 so $R^2 = \frac{ESS}{TSS} = 0$

ESS = TSS i.e. RSS = 0 so
$$R^2 = \frac{ESS}{TSS} = 1$$

 Christopher Ting
 QF 603
 October 29, 2018
 40/44

Problems with R^2 as a Goodness of Fit Measure

Nuggets of Statistics

- 1 \mathbb{R}^2 is defined in terms of variation about the mean of y so that if a model is reparameterised (rearranged) and the dependent variable changes, \mathbb{R}^2 will change.
- ${f 2}$ never falls if more regressors are added. to the regression, e.g. consider:

$$\begin{aligned} & \text{Regression1}: y_t \ = \ \beta_1 + \beta_2 x_{2,t} + \beta_3 x_{3,t} + u_t \\ & \text{Regression2}: y_t \ = \ \beta_1 + \beta_2 x_{2,t} + \beta_3 x_{3,t} + \beta_4 x_{4t} + u_t \end{aligned}$$

 ${f 3}$ R^2 will always be at least as high for regression 2 relative to regression 1.

Christopher Ting QF 603 October 29, 2018 41/44

Solution: Adjusted R^2

 \blacksquare To get around these problems, a modification is made to take into account the loss of degrees of freedom associated with adding extra variables. This modification is known as \overline{R}^2 , or adjusted R^2 :

$$\overline{R}^2 = 1 - \left[\frac{T-1}{T-K} (1 - R^2) \right].$$

- I So if we add an extra regressor, K increases and unless R^2 increases by a more than offsetting amount, \bar{R}^2 will actually fall.

 Christopher Ting
 QF 603
 October 29, 2018
 42/44

R^2 and Adjusted R^2

$$R^2 := \frac{\mathsf{ESS}}{\mathsf{TSS}} = 1 - \frac{\mathsf{RSS}}{\mathsf{TSS}} \tag{26}$$

II Denoted by \overline{R}^2 , the adjusted R^2 is based on the unbiased variances:

$$\overline{R}^2 = 1 - \frac{\frac{\text{RSS}}{n - K}}{\frac{\text{TSS}}{n - 1}}$$
 (27)

Christopher Ting QF 603 October 29, 2018 43/44

Takeaways

- ⟨ Vector-matrix approach is "simpler".
- ⟨ Important concepts

Nuggets of Statistics

- \star Variance-covariance matrix of K-vector $\hat{\beta}$
- \bigstar Diagonal elements of the variance-covariance matrix \Longrightarrow variance of $\widehat{\beta}_i$
- \star Inference by standard error, t statistic, and p value
- ★ Confidence interval
- ★ Adjusted R², AIC
- \Re R^2 increases with K, which is the total number of parameter estimates
- Important to select the model with minimum AIC value for a given data set.

 Christopher Ting
 QF 603
 October 29, 2018
 44/44