Práctica 2: Dinámica de sistemas acoplados

Evelyn G. Coronel Redes Neuronales - Instituto Balseiro

(11 de marzo de 2020)

Soluciones a los ejercicios de la práctica 2 de la materia de Redes Neuronales. En esta práctica se describe la interacción entre neuronas como sistemas dinámicos acoplados.

EJERCICIO 1

Las dos poblaciones de neuronas están descritas por las siguientes ecuaciones:

$$\tau^{df_e/dt} = -f_e + g_{ee}f_e\Theta(f_e) - g_{ei}f_i\Theta(f_i) + I_e \quad (1)$$

$$\tau^{df_i/dt} = -f_i + g_{ie}f_e\Theta(f_e) - g_{ii}f_i\Theta(f_i) + I_i \qquad (2)$$

donde f_i y f_e son las tasas de disparo, g_{ee} y g_{ii} son las conductancias asociadas a la auto-interacción de la neuronas y los términos g_{ie} y g_{ei} son las conductancias de la interacción entre las neuronas.

Sabemos que la solución es estable cuando las derivadas se anulan

$$0 = -f_e + g_{ee}f_e\Theta(f_e) - g_{ei}f_i\Theta(f_i) + I_e$$
 (3)

$$0 = -f_i + g_{ie}f_e\Theta(f_e) - g_{ii}f_i\Theta(f_i) + I_i \tag{4}$$

Considerando que las tasas de disparo f_e y f_i son positivas y las conductancias son mayores o iguales a 0, las condiciones de estabilidad quedan como

$$(1 - g_{ee})f_e = -g_{ei}f_i + I_e \tag{5}$$

$$(1 + g_{ii})f_i = g_{ie}f_e + I_i (6)$$

Por lo que finalmente llegamos a un sistema de ecuaciones lineales para las tasas. Resolviendo este sistema, las tasas son iguales a

$$f_i = (g_{ie}I_e + I_iA)(g_{ei}g_{ie} + AB)^{-1}$$
 (7)

$$f_i = (g_{ei}I_i + I_eB)(g_{ei}g_{ie} + AB)^{-1}$$
 (8)

donde $A = 1 - g_{ee}$ y $B = 1 + g_{ii}$. Como buscamos que las tasas sean positivas, los parámetro deben cumplir las siguiente relaciones:

$$\frac{g_{ie}I_e + I_i - g_{ee}I_i}{1 + g_{ei}g_{ie} - g_{ii}g_{ee} - g_{ee} - g_{ii}} > 0 \tag{9}$$

$$\frac{g_{ie}I_e + I_i - g_{ee}I_i}{1 + g_{ei}g_{ie} - g_{ii}g_{ee} - g_{ee} - g_{ii}} > 0$$

$$\frac{g_{ei}I_i + I_e + g_{ii}I_e}{1 + g_{ei}g_{ie} - g_{ii}g_{ee} - g_{ee} - g_{ii}} > 0.$$
(10)

EJERCICIO 2

Introducción

Las neuronas del tipo Hogdkin-Huxley se basan en las ecuaciones presentadas en [1]. En este trabajo, se agrega

un parámetro s que corresponde a la función inhibitoria [2] usada para modelar la inhibición sináptica. Este parámetro es descrito mediante la siguiente ecuación diferencial,

$$\frac{ds}{dt} = \frac{s_{\infty}(V) - s}{\tau} \tag{11}$$

$$s_{\infty}(V) = 0.5(1 + \tanh(V/5)),$$
 (12)

donde V es el potencial de la neurona y τ es el tiempo característico asociado a la inhibición. En este trabajo se considera $\tau = 3 \, \text{ms}$.

Para estudiar la interacción entre dos neuronas N-1 y N-2 del tipo Hogdkin-Huxley, consideramos que están conectadas simétricamente, es decir, la corriente I(t) para ambas tiene de la forma $I(t) = I_0 + I_{sun}(t)$ con

$$I_{syn}(t) = -g_{syn}s(t)(V - V_{syn}), \tag{13}$$

donde la corriente I_0 es valor tal que las dos neuronas produzcan spikes periódicamente, s(t) es el parámetro descrito anteriormente, g_{syn} es la conductancia asociada con la entrada sináptica y V_{syn} es el potencial sináptico.

Simulaciones

1.
$$Caso\ V_{syn} = 0\ mV\ con\ I_0 = 15\ \mu A$$

En esta sección se varía el parámetro g_{syn} entre 0 y $2 \text{ mS/cm}^2 \text{ con un paso de } \Delta g_{syn} = 0.02 \text{ mS/cm}^2 \text{ para}$ un total 100 iteraciones. En cada interación se mantiene fijo un valor para V_{syn} . La simulación de la evolución temporal de las neuronas utiliza $\Delta t = 0.005 \,\mathrm{ms}$ y realizan 50000 interaciones, para un total de 250 ms. En cada iteración de los valores de g_{syn} , las condiciones iniciales de las neuronas son tales que las mismas no estén en fase. Estás condiciones están dadas en la Tabla I.

Tabla I: Condiciones iniciales las neuronas del tipo Hodgkin-Huxley.

Los parámetros adimensionales m, h v n están asociados a los canales de activación e inactivación de sodio y al canal de potasio respectivamente.

En la Fig. 1 se observan las curvas de la frecuencia y del desfase Θ de las dos neuronas en función de la conductancia g_{syn} . Los valores de la frecuencia y la conductancia se encuentra a la izquierda y derecha de la figura respectivamente. Se observa la disminución de la frecuencia de las neuronas con el aumento del valor de g_{syn} , debido a que la corriente I_{syn} disminuye en media la corriente I(t) dentro de la neurona, esto es consistente con la curva f-I de las neuronas del tipo Hodgkin-Huxley, donde la frecuencia disminuye con la corriente en la neurona.

Fig. 1: Desfase y frecuencia de las neuronas en función de $g_{syn}.$

Analizando la curva del desfase, se observa que este valor disminuye a media que aumenta el valor de g_{syn} . Por lo que aumentando este parámetro se obtiene $\Theta = 0$ s.

2.
$$Caso\ V_{syn}=80\ mV\ con\ I_0=15\ \mu A$$

En esta sección se varía el parámetro g_{syn} de la misma manera que la sección anterior. En la simulación de la evolución temporal se utiliza una variación de tiempo de $\Delta t = 0.01\,\mathrm{ms}$ y realizan 100000 interaciones, para un total de 1000 ms. Para cada iteración de g_{syn} , las condiciones iniciales de las neuronas son tales que las mismas estén ligeramente desfasadas. Estás condiciones iniciales están dadas en la Tabla II.

	V [mV]				\mathbf{s}
N-1	8	0.1	0.4	0.3	0.01
N-2	-8	0.1	0.4	0.1	0.01

Tabla II: Condiciones iniciales las neuronas del tipo Hodgkin-Huxley.

En la Fig. 2 se observa que para valores pequeños de la conductancia g_{syn} las neuronas empiezan con $\Theta=0.06$ ms. A medida que g_{syn} aumenta su valor también aumenta Θ , a diferencia del caso $V_{syn}=0$ mV. Dado que $-T/2<\Theta<T/2$, alrededor de $g_{syn}=1.2\,\mathrm{mS/cm^2}$ se observa una discontinuidad asociada al cambio del signo de Θ . Así como también para otros valores de g_{syn} . Análogo al caso $V_{syn}=0$ mV, la frecuencia disminuye con el g_{syn} , pero en este caso se debe al potencial inhibitorio que ralentiza la frecuencia de spikes de tal manera que los mismos estén desfasados.

Fig. 2: Desfase y frecuencia de las neuronas en función de g_{syn} para $V_{syn} = -80 \,\mathrm{mV}$.

En las Figs. 3 y 4 se observan los spikes de ambas neuronas en función del tiempo para valores de g_{syn} igual a $0.1\,\mathrm{mS/cm^2}$ y $1.2\,\mathrm{mS/cm^2}$ respectivamente. En la Fig. 3 se ve como los spikes están sincronizadas con un desfase despreciable. En cambio en la Fig. 4, para $g_{syn}=1.2\,\mathrm{mS/cm^2}$, los spikes están desfasados.

Fig. 3: Curvas del voltaje y la corriente en función del tiempo para un valor de $g_{syn}=0.1\,\mathrm{mS/cm^2}$

Fig. 4: Curvas del voltaje y la corriente en función del tiempo para un valor de $g_{syn}=1.2\,\mathrm{mS/cm^2}$

- [1] Izhikevich E. M. Capítulo 2. Sección 2.3: Hodgkin-Huxley Model en Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting (2005). The Neurosciences Institute.
- [2] Börgers C, Krupa M, Gielen S. The response of a classical Hodgkin-Huxley neuron to an inhibitory input pulse. J Comput Neurosci. 2010;28(3):509–526. doi:10.1007/s10827-010-0233-8