

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

Факультет: «Информатика и системы управления»

Кафедра: «Программное обеспечение ЭВМ и информационные технологии»

Расчетно-пояснительная записка по НИР на тему:

«Метод распознавания звуков в звучащей речи на Естественном Языке»

Студент: Левушкин И. К.

Группа: ИУ7-72Б

Научный руководитель: Градов В.М.

Содержание

B	веде	ние	3
1	Аналитический раздел		4
	1.1	Классический подход к распознаванию речи	4
	1.2	Входные данные	4
	1.3	Извлечение признаков (Feature Extraction)	5
	1.4	MFCC	6
		1.4.1 Разложение в ряд Фурье	7
		1.4.2 Расчет mel-фильтров	7
	1.5	Применение фильтров, логарифмирование энергии спен	<u>(</u> –
		тра	8
	1.6	Косинусное преобразование	9
	1.7	Акустическая модель	9
2	Koi	нструкторский раздел	10
3	Tex	нологический раздел	11
За	клю	очение	12
Список используемой литературы			13

Введение

Распознавание речи — одна из самых интересных и сложных задач искусственного интеллекта. Здесь задействованы достижения весьма различных областей: от компьютерной лингвистики до цифровой обработки сигналов.

1 Аналитический раздел

1.1 Классический подход к распознаванию речи

Классический подход к распознаванию речи представляет собой последовательность следующих действий (этапов):

- Извлечение признаков (Feature Extraction)
- Построение и обучение акустической модели (Acoustic model)
- Декодер, выбирающий наиболее вероятный путь перехода по HCLG-графу:
 - Н модуль на базе НММ
 - С модуль контекстной зависимости
 - L модуль произношения
 - G модуль языковой модели
- Rescoring перевзвешивание гипотез и выдача окончательного результата

Рисунок 1: Классический подход.

1.2 Входные данные

Для начала нужно понимать, что наша речь - это последовательность звуков. Звук в свою очередь — это суперпозиция (наложение) звуковых колебаний (волн) различных частот. Волна характеризуются двумя атрибутами — амплитудой и частотой.

Рисунок 2: Пример звуковой волны.

Другими словами, наши данные - это записанные дорожки аудиофайлов, которые необходимо далее преобразовать в вектор признаков для обучения модели.

1.3 Извлечение признаков (Feature Extraction)

Для извлечения признаков из звуковой дорожки необходимо разбить ее на мелкие единицы размером около 10 мс - фреймы. Причём фреймы должны идти не строго друг за другом, а «внахлёст». То есть конец одного фрейма должен пересекаться с началом другого.

Фреймы являются более подходящей единицей анализа данных, чем конкретные значения сигнала, так как анализировать волны намного удобней на некотором промежутке, чем в конкретных точках. Расположение же фреймов «внахлёст» позволяет сгладить результаты анализа фреймов, превращая идею фреймов в некоторое «окно», движущееся вдоль исходной функции (значений сигна-

ла).

Разбив дорожку на фреймы, необходимо преобразовать ее в вектор признаков.

Для такой задачи существует множество способов, но наиболее зарекомендовавший себя среди других - это Мел-частотные кепстральные коэффициенты (Mel-frequency cepstral coefficients).

1.4 MFCC

Mel-frequency cepstral coefficients — это представление энергии спектра сигнала, где mel - единица высоты звука, основанная на восприятии этого звука органами слуха человека.

Плюсы его использования:

- Используется спектр сигнала (то есть разложение по базису ортогональных [ко]синусоидальных функций), что позволяет учитывать волновую "природу" сигнала при дальнейшем анализе;
- Спектр проецируется на специальную mel-шкалу, позволяя выделить наиболее значимые для восприятия человеком частоты;
- Количество вычисляемых коэффициентов может быть ограничено любым значением, что позволяет «сжать» фрейм и, как следствие, количество обрабатываемой информации;

Рассмотрим процесс вычисления MFCC коэффициентов для некоторого фрейма.

Представим наш фрейм в виде вектора x[k], 0 <= k < N, где N - размер фрейма.

1.4.1 Разложение в ряд Фурье

Рассчитываем спектр сигнала с помощью дискретного преобразования Фурье.

$$X[k] = \sum_{n=0}^{N-1} x[n] * e^{-2\pi i k \frac{n}{N}}, 0 \le k < N$$

К полученным значениям применяется оконная функция Хэмминга, чтобы «сгладить» значения на границах фреймов.

$$H[k] = 0.54 - 0.46cos(2\pi k/(N-1))$$

В результате будет вектор следующего вида:

$$X[k] = X[k]H[k], 0 <= k < N$$

В результате проведенного преобразования по оси X мы имеем частоту (hz) сигнала, а по оси Y — магнитуду (как способ уйти от комплексных значений):

Рисунок 3

1.4.2 Расчет mel-фильтров

Для того, чтобы рассчитать mel-фильтры, необходимо определить, что такое mel.

Mel — это «психофизическая единица высоты звука», основанная на субъективном восприятии среднестатистическими людьми. Зависит в первую очередь от частоты звука (а так же от громкости и тембра). Другими словами, эта величина, показывающая, на сколько звук определённой частоты «значим» для нас.

Преобразовать частоту в мел можно по следующей формуле

$$M = 1127log(1 + \frac{F}{700})$$

Обратное преобразование выглядит следующим образом

$$F = 700(e^{\frac{M}{1127} - 1})$$

Ниже приведен график зависимости mel от частоты

Рисунок 4

1.5 Применение фильтров, логарифмирование энергии спектра

Применение фильтра заключается в попарном перемножении его значений со значениями спектра. Результатом этой операции является mel-коэффициент.

$$S[m] = log(\sum_{k=0}^{N-1} |X[k]|^2 H_m[k]), 0 \le m \le M$$

Необходимо применить mel-фильтры не к значениям спектра, а к его энергии. После чего прологарифмировать полученные результаты. Считается, что таким образом понижается чувствительность коэффициентов к шумам.

1.6 Косинусное преобразование

Дискретное косинусное преобразование (DCT) используется для того, чтобы получить кепстральные коэффициенты.

Делается это, чтобы пронормировать полученные результаты, повысив значимость первых коэффициентов и уменьшив значимость последних.

Ниже используется DCTII без домножений на scale factor $(\sqrt{\frac{2}{N}})$.

$$C[l] = \sum_{m=0}^{M-1} S[m] cos(\pi l(m + \frac{1}{2})/M), 0 <= l < M$$

На выходе имеем для каждого фрейма набор из М mfcc-коэффициент которые могут быть использованы для дальнейшего анализа.

1.7 Акустическая модель

В акустической модели самыми распространенными подходами являются:

- скрытые марковские модели (СММ);
- глубокие нейронные сети (DNN).

2 Конструкторский раздел

Выводы по конструкторскому разделу

3 Технологический раздел

Выводы по технологическому разделу

Заключение

Список литературы

- [1] Распознавание речи от Яндекса. Под капотом у Yandex.SpeechKit [Электронный ресурс]. Режим доступа: https://m.habr.com/ru/company/yandex/blog/198556/, свободный (20.12.2020)
- [2] Понижаем барьеры на вход в распознавание речи [Электронный ресурс]. Режим доступа: https://m.habr.com/ru/post/494006/, свободный (20.12.2020)
- [3] A Fast, Extensible Toolkit for Sequence Modeling [Электронный ресурс]. Режим доступа: https://arxiv.org/pdf/1904.01038.pdf, свободный (20.12.2020)
- [4] Мел-кепстральные коэффициенты (MFCC) и распознавание речи [Электронный ресурс]. Режим доступа: https://habr.com/ru/post/140828/, свободный (20.12.2020)
- [5] Распознавание речи для чайников [Электронный ресурс]. Режим доступа: https://habr.com/ru/post/226143/, свободный (20.12.2020)