5	(a)	Define	electric	field	strength
9	(a)	Delille	CICCLIIC	IIGIU	Su Grigur.

	[11]

(b) Two parallel metal plates in a vacuum are separated by $0.045 \,\mathrm{m}$. A potential difference V is applied between the plates, as shown in Fig. 5.1.

Fig. 5.1

A proton is initially at rest on the surface of the positive plate. The proton in the uniform electric field takes a time of 1.5×10^{-7} s to reach the negative plate.

(i) Show that the acceleration of the proton is $4.0 \times 10^{12} \, \text{m s}^{-2}$.

[2]

(ii) Calculate the electric force on the proton.

force = N [1]

	(iii)	your answer in (ii) to determine				
	1.	the electric field strength,				
		field strength = NC ⁻¹ [2]				
	2. the potential difference V between the plates.					
		V = V [2]				
(c)	An α pa	rticle is now accelerated between the two metal plates in (b) by the electric field.				
	Calcula	te the ratio				
	acceleration of α particle					
		acceleration of proton				
		ratio =[2]				
		[Total: 10]				