Final

(!) This is a preview of the published version of the quiz

Started: Sep 20 at 9:17pm

Quiz Instructions

Final

Date & Time:

Regular: 10:00AM - 12:15PM, Thu, Aug 10th
Conflict: 3:00PM - 5:15PM, Thu, Aug 10th

Exam Format:

- 120 minutes for the exam + 15 minutes for starting Honorlock
- 30 multiple choice questions
 - 15 MCQs on Part 1: Performance and Part 2: Web and Visualization
 - 15 MCQs on Part 3: Machine Learning (Parallelism inclusive)
- Here's a list of learning objectives corresponding to each topic: https://github.com/yiyins2/CS320-SU23-lecture-notes/blob/main/exams/learning%20objectives.pdf
 (https://github.com/yiyins2/CS320-SU23-lecture-notes/blob/main/exams/learning%20objectives.pdf
- The questions will focus more on lectures and quizzes, and less on labs and projects
- Here're some past exams, and the midterm will be in a similar style: https://github.com/yiyins2/CS320-SU23-lecture-notes/tree/main/exams)
- Feel free to post questions about past exams on Piazza with the semester number and question number as the title

How to take the exam?

- · Five minutes before the exam, I will send you the access code through email
- You can find the exam under Canvas Quizzes
- Here's an online tutorial going through the details on how to use
 Honorlock: https://honorlock.com/wp-content/uploads/2019/09/Canvas_Student_Guide_Accessible.pdf (https://honorlock.com/wp-content/uploads/2019/09/Canvas_Student_Guide_Accessible.pdf)
- You need to scan your Photo ID (e.g., Student ID)
- You can bring TWO double-sided page of notes (8.5x11). Feel free to collaborate with other students on creating your note sheet.
- You can also bring any number of empty scratch papers

- No other computers/smart devices other than the one you are using to take the exam are allowed
- As you cannot ask for clarifications during the exam, please answer all questions to the best of your knowledge. You can email me about questions on the exam after the fact.

Cheating

• Please DO NOT discuss about exam questions or post about them on Piazza before Sun, Aug 13th, as I have conflict exams scheduled before then. Email me if you have any questions.

Illness

Ougstion 2

- If you fall sick right before the exam, please email me immediately
- I'll expect medical documents (doctor's note, test result, etc) within 3 days after the final
- I'll weigh your final using the two midterm (the grade of the final will be the average of the two midterms)

Question 1	1 pts
Which of the following CANNOT be pointed by a git head?	
○ commit	
○ branch	
○ tag	

guestion 2	
What does the following code snippet print? def magic(n):	
if n <= 0: return 0 return magic(n - 1) + 2 * magic(n - 2) + 1	
<pre>print(magic(3))</pre>	

1 nte

○ 3	
○ 5	
4	
Question 3	1 pts
Given that array is an array with Nelements. What is the code snippet?	complexity of the following
<pre>from collections import deque dq = deque([]) idx = 0 for elem in array: if idx % 2 == 0: dq.appendLeft(elem) else: dq.append(elem) idx += 1</pre>	
○ O(N log N)	
○ O(N^2)	
○ O(log N)	
○ O(N)	
Question 4	1 pts

__repr__

 \bigcirc _repr_html

__str__

Question 5 1 pts

Assume obj is an instance of some class and the method call obj.magic("final", 320) succeeds. Which of the following might be the definition line of magic?

- def magic(self, a)
- def magic(a, b, c, d="yeah"):
- def magic(a, b):
- odef magic(self, a, b, c)

Question 6 1 pts

Consider the BST insertion algorithm we learned in class. Given the below BST, which of the following **CANNOT** be the insertion order?

- [34, 40, 85, 16, 21, 11, 37]
- [34, 16, 11, 40, 85, 21, 37]

- [34, 40, 85, 21, 16, 11, 37]
- [34, 40, 16, 37, 21, 11, 85]

Question 7 1 pts

Given the following directed graph. What would be the **visit order** of a **Breadth-First-Search** starting at node 4?

The search stops when it can't reach nodes that haven't been visited.

If there are multiple neighbors, the neighbor with the smaller number will be visited first.

- **4,1,2,5,3**
- 4,1,2,3,6,5
- 4,1,5,2,3,6
- \bigcirc 4,1,5,2,3

Question 8 1 pts

Given the following **directed** graph. What would be the **visit order** of a **Depth-First-Search** starting at node 4?

The search stops when it can't reach nodes that haven't been visited.

If there are multiple neighbors, the neighbor with the smaller number will be visited first.

- **4,1,2,3,5,6**
- 4,1,2,3,5
- 4,1,2,5,3,6
- **4,1,5,2,3**

Question 9 1 pts

If a flask app has the following routes, what does the app print when a user visits project.html of the site? Assume that the client is using a standard browser and the client has never visited this site before.

```
@app.route("/")
def root():
    print("A")
    return "<html><body>Welcome to my website!</body></html>"

@app.route("/graph.svg")
def image():
    print("B")
    return "Not drawn yet"

@app.route("/project.html")
def awesome():
    print("C")
    return "<html><body>This is my graph: <img src="graph.svg"> </body></html>"
```

- A, C, and B
- C and B

Questior	า 10		1 pts
	Click	No-Click	
Version A	80	20	
Version B	40	60	
O.4			
○ 0.6 ○ 0.4			
0.8			
O.2			
Questior	า 11		1 pts
	l omont i	a Selenium WebEleme	ent. Which of the following enables us to
Questior		a Selenium WebEleme	
Assume e		element?	

element.text

 \bigcirc element.attributes.get("text")

Question 12 1 pts

```
text = "10:00PM - 12:15PM"
matches = re.findall("((\\d+):(\\d+)\\s*(AMIPM))", text)

What is len(matches[-1])?

0 2
0 5
0 4
0 1
0 3
0 6
```

Question 13 1 pts

```
What will be returned by re.sub("group_(\d)_row_(\d)", "row_\g<2>_col_\g<1>",
"table_group_7_row_234")?

O "table_row_2_col_734"

O "table_row_7_col_234"

O "table_row_234_col_7"

O "row_2_col_734"
```

Question 14 1 pts

Which of the following coordinate reference system allows me to have the most accurate results when calculating areas of countries?

○ pixels	
○ degrees	
○ lat/long	
○ meters	
Question 15	1 pts
Your figure has only one subplot. The xlim and ylim of the subplot are (0,1), respectively. You are drawing a circle that is located at (0.5, 0.5) and 0.2.	,
<pre>fig, ax = plt.subplots() ax.set_xlim(0, 1.2) ax.set_ylim(0, 1) plt.Circle((0.5, 0.5), 0.2, transform=transformer)</pre>	
Which of the following transformer will give your circle the largest area?)
None	
○ [fig.transFigure]	
O ax.transData	
O ax.transAxes	
Question 16	1 pts
Which of the following is NOT in the column space of	
[[2, 0, 3], [0, -1, 0], [4, 0, 6]]	

Numpy array a has the shape of (90, 20, 60) and numpy array b has the shape of (2, 10). How to reshape b so that it's possible to perform a * b? b.reshape(1, 20) b.reshape(20) b.reshape(20, -1)

Question 18 1 pts

O large mean, large variance	
○ large mean, small variance	
osmall mean, small variance	
○ small mean, large variance	
Question 19	1 pts
<pre>model = LinearRegression() model.fit(train[xcols], train[ycol]) model.score(test[xcols], test[ycol]) Given the above linear regression model, what metr measure its performance?</pre>	ic do we use in the third line to
model.fit(train[xcols], train[ycol]) model.score(test[xcols], test[ycol]) Given the above linear regression model, what metr	ic do we use in the third line to
model.fit(train[xcols], train[ycol]) model.score(test[xcols], test[ycol]) Given the above linear regression model, what metr measure its performance?	ic do we use in the third line to
model.fit(train[xcols], train[ycol]) model.score(test[xcols], test[ycol]) Given the above linear regression model, what metr measure its performance? F1 score	ic do we use in the third line to
model.fit(train[xcols], train[ycol]) model.score(test[xcols], test[ycol]) Given the above linear regression model, what metr neasure its performance? F1 score accuracy score	ic do we use in the third line to

will be produced after we apply the following (custom_transformer)?

(OneHotEncoder(), ["Feature 1", "Feature 2"]),
(PolynomialFeatures(degree=2, include_bias=False), ["Feature 3"]),

custom_transformer = make_column_transformer(

)			
8			
<u> </u>			
7			
O 9			

Question 22 1 pts

Given the following confusion matrix, what is the precision for Mocha? The x-axis represents the model predictions and the y-axis represents the real labels.

	Cappuccino	Mocha	Latte
Cappuccino	40	10	0
Mocha	10	20	0
Latte	0	10	30

○ 3/4	
○ 2/3	
○ 1/3	
○ 1/2	
Question 23	1 pts
<pre>model = LogisticRegression(fit_intercept=False) model.fit(train[xcols], train[ycol]) pred_y = model.predict(test[xcols]) X = test[xcols].values c = model.coef_</pre> Which of the following is the equivalent of the third line in the above	code snippet?
○ pred_y = sigmoid(X @ c)	
<pre>pred_y = X @ c > 0</pre>	
○ pred_y = X @ c	
<pre>pred_y = model.predict_prob(X @ c)</pre>	
Ougation 24	44.
Question 24	1 pts
Which of the following transformation is always recommended for n of Logistic Regression models?	umerical columns
○ OneHotEncoder	
○ PolynomialFeatures	
○ StandardScalar	

Question 25	1 pts
Which of the following ML algorithm will produce a de	ndrogram?
○ KMeans	
○ LogisticRegression	
○ PCA	
 ○ AgglomerativeClustering 	
Question 26	1 pts
Which of the following is the best for KMeans algorith	m?
o small inertia, few clusters	
○ large inertia, few clusters	
○ large inertia, many clusters	
○ small inertia, many clusters	
Question 27	1 pts
Given points [(7, 5), (6, 5), (1, 2), (5, 8)] and starting centroids after the first iteration of assigning points the iterative K-Means Clustering algorithm discussed	s and updating centroids, using
○ [(6.5, 5), (3, 5)]	
○ [(6, 6), (1, 2)]	

[(1, 2), (6, 6)]
(3, 5), (6.5, 5)]

The following is the explained_variance_ratio_ of a PCA model. How many components do we need to explain 90% of the variance of the original data?

array([0.7, 0.15, 0.08, 0.04, 0.02, 0.01])

2

4

6

5

3

1

Question 29	1 pts
df has 15 columns and 200 rows. After applying PCA(6), what is the shape of	of
p.components_?	
<pre>p = PCA(6) p.fit(df)</pre>	
○ (6, 15)	
○ (6, 200)	
○ (200, 6)	

Question 30	1 pts
Which of the following has its own address space?	
○ thread	
○ CPU	
○ process	

(15, 6)

Not saved

Submit Quiz