E3A PC 2019 Mathématiques 1 – Un corrigé

EXERCICE 1

- 1 La série de Riemann $\sum_{n>1} \frac{1}{n^{\alpha}}$ converge si et seulement si $\alpha > 1$.
- 2.1 La suite $(s_p)_{p\in\mathbb{N}}$ est la suite des sommes partielles de la série à termes positifs $\sum_{p\geq 0} \frac{1}{n+p}$

L'équivalent $\frac{1}{n+p} \sim \frac{1}{p}$ nous informe en outre de sa divergence. De ces deux points :

La suite $(s_p)_{p\in\mathbb{N}}$ diverge vers $+\infty$.

- 2.2 Comme $\lim_{p\to +\infty} s_p = +\infty$, on a pour $A=2: \exists N\in \mathbb{N}, \forall p\geq N, s_p\geq 2$. En particulier pour p=N on a $s_p\geq 2>1$.
- 3 Comme $a_n = n + p_n$ on a $a_n \ge n$ d'où $\lim_{n \to +\infty} a_n = +\infty$. La suite $(a_n)_{n \ge 1}$ est donc divergente.
- 4 On a pour $0 \le k \le n-1$, $\frac{1}{n+k} \le \frac{1}{n}$, cette inégalité étant stricte pour k=n-1 (on rappelle que $n \ge 2$ et donc n-1>0). En sommant ces inégalités on obtient donc :

$$\sum_{k=0}^{n-1} \frac{1}{n+k} < \sum_{k=0}^{n-1} \frac{1}{n} = 1.$$

Pour la seconde somme, on procède par récurrence. On appelle HR_n la propriété à démontrer.

- HR_2 signifie $\frac{1}{2} + \frac{1}{3} + \frac{1}{4} > 1$; or $\frac{1}{2} + \frac{1}{3} + \frac{1}{4} = \frac{13}{12} > 1$ donc HR_2 est vraie.
- Soit $n \ge 2$ tel que HR_n soit vraie; ainsi $\sum_{k=0}^{2n-2} \frac{1}{n+k} > 1$ ce qui peut aussi s'écrire:

 $\sum_{k=n}^{3n-2} \frac{1}{k} > 1$. On a alors:

$$\sum_{k=0}^{2n} \frac{1}{n+1+k} = \sum_{k=n+1}^{3n+1} \frac{1}{k} = \sum_{k=n}^{3n-2} \frac{1}{k} - \frac{1}{n} + \frac{1}{3n-1} + \frac{1}{3n} + \frac{1}{3n+1}$$

D'après HR_n on a donc

$$\sum_{k=0}^{2n} \frac{1}{n+1+k} > 1 - \frac{1}{n} + \frac{1}{3n-1} + \frac{1}{3n} + \frac{1}{3n+1} = 1 - \frac{2}{3n} + \frac{6n}{9n^2 - 1}$$

Or $\frac{6n}{9n^2-1} > \frac{6n}{9n^2} = \frac{2}{3n}$ et finalement $\sum_{k=0}^{2n} \frac{1}{n+1+k} > 1$ ce qui établit HR_{n+1} .

1

On vient de prouver par récurrence que pour $n \ge 2$ on a bien $\sum_{k=0}^{2n-2} \frac{1}{n+k} > 1$.

5 — La première des inégalités ci-dessus nous indique que $p_n > n$ et donc $a_n > 2n$, tandis que la seconde nous indique que $p_n \le 2n - 2$ et donc que $a_n \le 3n - 2$. On en déduit l'encadrement :

$$2 < u_n \le \frac{3n-2}{n} \, .$$

Donc si (u_n) a une limite ℓ on a par passage à la limite dans l'inégalité ci-dessus :

$$2 \le \ell \le 3$$

6 – Par définition de a_n on a : $\sum_{k=n}^{a_n} \frac{1}{k} > 1$ et $\sum_{k=n}^{a_n-1} \frac{1}{k} \le 1$.

Donc $\frac{1}{n} + \frac{1}{n+1} + \dots + \frac{1}{a_n} > 1$ et $\frac{1}{n} + \frac{1}{n+1} + \dots + \frac{1}{a_n-1} \le 1$; on déduit de cette dernière inégalité

que $\frac{1}{n} + \frac{1}{n+1} + \dots + \frac{1}{a_n-1} + \frac{1}{a_n} \le 1 + \frac{1}{a_n}$ et on a bien l'encadrement :

$$1 < \frac{1}{n} + \frac{1}{n+1} + \dots + \frac{1}{a_n - 1} + \frac{1}{a_n} \le 1 + \frac{1}{a_n}$$

7 – La fonction $f: t \mapsto \frac{1}{t}$ est continue et décroissante sur $]0, +\infty[$, donc pour $k \ge 1$ et $t \in [k, k+1]$ on a $\frac{1}{k+1} \le f(t) \le \frac{1}{k}$ et en intégrant : $\frac{1}{k+1} \le \int_k^{k+1} f(t) \, \mathrm{d}t \le \frac{1}{k}$. On somme alors ces inégalités pour k entre 1 et $a_n - 1$:

$$\sum_{k=n}^{a_n} \frac{1}{k+1} \le \int_n^{a_n} f(t) dt \le \sum_{k=n}^{a_n-1} \frac{1}{k}$$

Ou de façon plus explicite :

$$\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{a_n} \le \int_n^{a_n} f(t) dt \le \frac{1}{n} + \frac{1}{n+1} + \dots + \frac{1}{a_n-1}$$

Or on a déjà vu (question 6) que par minimalité $\frac{1}{n} + \frac{1}{n+1} + \dots + \frac{1}{a_n-1} \le 1$, et par ailleurs que

 $1 < \frac{1}{n} + \frac{1}{n+1} + \dots + \frac{1}{a_n - 1} + \frac{1}{a_n}$, donc que $1 - \frac{1}{n} < \frac{1}{n+1} + \dots + \frac{1}{a_n - 1} + \frac{1}{a_n}$. On a donc bien :

$$1 - \frac{1}{n} < \frac{1}{n+1} + \dots + \frac{1}{a_n} \le \int_n^{a_n} \frac{dt}{t} \le \frac{1}{n} + \dots + \frac{1}{a_n - 1} \le 1$$

8 – En calculant l'intégrale, on obtient : $1 - \frac{1}{n} \le \ln \left(\frac{a_n}{n} \right) \le 1$. Donc on obtient avec l'appui de la

maréchaussée: $\lim_{n\to+\infty} \ln\left(\frac{a_n}{n}\right) = 1$ c'est-à-dire $\lim_{n\to+\infty} \ln\left(u_n\right) = 1$, puis en composant par

l'exponentielle : $\lim_{n\to +\infty} u_n = e$. En d'autres termes, $a_n \sim ne$.

EXERCICE 2

1 – Vérifions d'abord la linéarité. On se donne $P,Q \in \mathbb{R}_{2n}[X]$ et $\lambda \in \mathbb{R}$. Alors :

$$\phi_a(P + \lambda Q) = \left(\frac{1}{4} - X^2\right)(P + \lambda Q)' + aX(P + \lambda Q)$$

$$= \left(\frac{1}{4} - X^2\right)P' + aXP + \lambda\left(\left(\frac{1}{4} - X^2\right)Q' + aXQ\right)$$

$$= \phi_a(P) + \lambda\phi_a(Q)$$

La linéarité étant établie il reste à montrer que $\mathbb{R}_{2n}[X]$ est stable par ϕ_a ; il suffit pour cela de vérifier l'image des vecteurs de la base canonique \mathfrak{B} est bien dans $\mathbb{R}_{2n}[X]$. On se donne donc $k \in [0,2n]$; on a alors :

$$\phi_a(X^k) = \begin{cases} (a-k)X^{k+1} + \frac{k}{4}X^{k-1} & \text{si } k \neq 0 \\ aX & \text{sinon} \end{cases}$$

Donc sachant $2n \ge 2$ on a pour tout $k \in [0, 2n-1]$: $\phi_a(X^k) \in \mathbb{R}_{2n}[X]$; par ailleurs $\phi_a(X^{2n}) \in \mathbb{R}_{2n}[X] \Leftrightarrow a = 2n$ et on peut conclure :

 ϕ_a est un endomorphisme de $\mathbb{R}_{2n}[X]$ si et seulement si a = 2n.

On suppose désormais conformément à l'énoncé que a = 2n.

 $2-Pour \ \alpha,\beta \in \mathbb{N} \ ^*$ on a :

On peut alors remarquer que cette dernière formule reste vraie même si α ou β est nul. On continue :

$$\phi_a(P) = \left(-\alpha \left(X - \frac{1}{2}\right) - \beta \left(X + \frac{1}{2}\right) + 2nX\right)P$$

$$= \left((2n - \alpha - \beta)X + \frac{\alpha - \beta}{2}\right)P$$

De là on a par identification:

$$\phi_a(P) = \lambda P \Leftrightarrow \begin{cases} \alpha + \beta = 2n \\ \alpha - \beta = 2\lambda \end{cases} \Leftrightarrow \begin{cases} \alpha = n + \lambda \\ \beta = n - \lambda \end{cases}$$

Reste à vérifier que $P \in \mathbb{R}_{2n}[X]$: la condition $\lambda \in [-n,n]$ assure que α et β sont bien des entiers naturels, et que P est un polynôme. On a en outre $\alpha + \beta = 2n$ donc $\deg(P) = 2n$ et $P \in \mathbb{R}_{2n}[X]$. En conclusion :

Pour
$$\lambda \in \llbracket -n, n \rrbracket$$
, et $\alpha, \beta \in \mathbb{N}$, le polynôme $P = \left(X + \frac{1}{2}\right)^{\alpha} \left(X - \frac{1}{2}\right)^{\beta}$ vérifie $\phi_a(P) = \lambda P$ si et seulement si $\begin{cases} \alpha = n + \lambda \\ \beta = n - \lambda \end{cases}$.

3 – On vient de prouver que les entiers $\lambda \in \llbracket -n, n \rrbracket$ sont valeurs propres ; on dispose ainsi de 2n+1 valeurs propres, et ϕ_a est un endomorphisme de $\mathbb{R}_{2n}[X]$ qui est de dimension 2n+1. Donc ϕ_a a au plus 2n+1 valeurs propres et ainsi : $\mathrm{Sp}(\phi_a) = \llbracket -n, n \rrbracket$ et les sous-espaces propres sont des droites. On dispose d'un vecteur non nul de chaque sous-espace propre, qui en constitue donc une base.

Ainsi :
$$\operatorname{Sp}(\phi_a) = \llbracket -n, n \rrbracket$$
 et pour $\lambda \in \llbracket -n, n \rrbracket$ on a : $E_{\lambda}(\phi_a) = \operatorname{Vect}\left(\left(X + \frac{1}{2}\right)^{n+\lambda} \left(X - \frac{1}{2}\right)^{n-\lambda}\right)$

Avec les images calculées à la question 1, la matrice M de ϕ_a dans la base canonique est :

$$M = \begin{pmatrix} 0 & 1/4 \\ 2n & 0 & 2/4 \\ & 2n-1 & \ddots & \ddots \\ & & \ddots & \ddots & 2n/4 \\ & & & 1 & 0 \end{pmatrix}$$

Et le spectre de M est $\llbracket -n,n \rrbracket$. De là si on pose $B=M+nI_{2n}$ on a alors pour $\lambda \in \mathbb{R}$: $\lambda \in \operatorname{Sp}(B) \Leftrightarrow \det(B-\lambda I_{2n}) = 0 \Leftrightarrow \det(M-(\lambda-n)I_{2n}) = 0 \Leftrightarrow \lambda-n \in \operatorname{Sp}(M) \Leftrightarrow \lambda-n \in \llbracket -n,n \rrbracket$ Donc $\operatorname{Sp}(B) = \llbracket 0,2n \rrbracket$ et les coefficients diagonaux de B sont tous égaux à n.

5 – On a ainsi $\operatorname{Sp}(\phi_a + n \operatorname{Id}) = [0, 2n]$.

Or si f est un endomorphisme d'un espace E, λ une valeur propre de f et si x est un vecteur propre associé, on a $f^2(x) = f(\lambda x) = \lambda f(x) = \lambda^2 x$ ce qui montre que λ^2 est valeur propre de f^2 .

Donc en considérant l'endomorphisme $(\phi_a + n \operatorname{Id})^2$, cet endomorphisme a pour valeur propres 0, 1, 4, 9,..., $(2n)^2$ (et il n'y en a pas d'autre : on vient de trouver 2n+1 valeurs propres distinctes pour un endomorphisme d'un espace de dimension 2n+1).

EXERCICE 3

1.1 – Pour
$$(a,b,c) \in \mathbb{R}^3$$
 et $u = (u_n)_{n \in \mathbb{N}} \in \mathcal{E}$ on a $\Phi(u) = (a,b,c) \Leftrightarrow \begin{cases} u_0 = a \\ u_1 = b \end{cases}$. Or il existe une $u_2 = c$

seule suite u vérifiant la relation de récurrence d'ordre 3 définissant \mathcal{E} et ayant trois conditions initiales fixées. En d'autres termes, Φ est bijective, et on a explicitement :

$$\Phi^{-1}(a,b,c) = u \text{ où } u \text{ est la suite définie par } \forall n \in \mathbb{N}, u_n = \begin{cases} a \text{ si } n = 0 \text{ [3]} \\ b \text{ si } n = 1 \text{ [3]} \\ c \text{ si } n = 2 \text{ [3]} \end{cases}$$

- 1.2Φ est par ailleurs clairement linéaire et constitue donc un isomorphisme de \mathcal{E} dans \mathbb{R}^3 . Par suite on a dim $(\mathcal{E}) = 3$.
- 2.1 Comme Φ^{-1} est un isomorphisme de \mathbb{R}^3 dans \mathcal{E} , l'image par Φ^{-1} d'une base de \mathbb{R}^3 est une base de \mathcal{E} . Donc (e_1, e_2, e_3) est une base de \mathcal{E} .
- 2.2 Avec la caractérisation de $\Phi^{-1}(a,b,c)$ énoncée lors de la question 1.1, on peut dire en posant $e_1 = (u_n)_{n \in \mathbb{N}}$, $e_2 = (v_n)_{n \in \mathbb{N}}$ et $e_3 = (w_n)_{n \in \mathbb{N}}$ qu'on a pour tout entier naturel n:

$$u_{n} = \begin{cases} 1 \text{ si } n \equiv 0 \text{ [3]} \\ 0 \text{ si } n \equiv 1 \text{ [3]} \text{ , } v_{n} = \begin{cases} 0 \text{ si } n \equiv 0 \text{ [3]} \\ 1 \text{ si } n \equiv 1 \text{ [3]} \text{ et } w_{n} = \begin{cases} 0 \text{ si } n \equiv 0 \text{ [3]} \\ 0 \text{ si } n \equiv 2 \text{ [3]} \end{cases} \\ 0 \text{ si } n \equiv 2 \text{ [3]} \end{cases}$$

- 3 Appelons $\langle . | . \rangle$ le produit scalaire canonique dans \mathbb{R}^3 . On remarque ainsi que pour $u,v\in \mathcal{E}$ on a : $(u|v)=\langle \Phi(u)|\Phi(v)\rangle$. Il résulte alors de la bilinéarité de Φ et du fait que $\langle . | . \rangle$ soit un produit scalaire que (. | .) est une forme bilinéaire positive. Reste à montrer qu'elle est définie. On se donne donc $u\in \mathcal{E}$ telle que (u|u)=0. On a alors $\langle \Phi(u)|\Phi(u)\rangle=0$ et donc $\Phi(u)=0$, et par injectivité de Φ on en déduit alors u=0, ce qui achève la preuve : (. | .) est bien un produit scalaire sur \mathcal{E} .
- 4 Pour $i, j \in [1,3]$ on a: $(\varepsilon_i | \varepsilon_j) = \langle \Phi(\varepsilon_i) | \Phi(\varepsilon_j) \rangle = (e_i | e_j) = \delta_{i,j}$ (on rappelle que la base canonique de \mathbb{R}^3 est orthonormale pour le produit scalaire canonique). On a prouvé que \mathfrak{B} est une famille orthonormale de \mathfrak{E} et à ce titre elle est libre. Comme $\dim(\mathfrak{E}) = 3$ c'est donc une base, et ainsi : \mathfrak{B} est une base orthonormale de \mathfrak{E} .
- 5.1 Montrons d'abord la linéarité : on se donne $u, v \in \mathcal{E}$, $\lambda \in \mathbb{R}$, et on pose a = d(u), b = d(v) et $c = d(u + \lambda v)$.

On a alors pour tout n: $c_n = u_{n+1} + \lambda v_{n+1} = a_n + \lambda b_n$, et donc $c = a + \lambda b$ d'où : $d(u + \lambda v) = d(u) + \lambda d(v)$: d est bien linéaire.

Soit maintenant $u \in \mathcal{E}$ et w = d(u). On a alors pour tout $n : w_{n+3} = u_{n+4} = u_{n+1} = w_n$, donc $w \in \mathcal{E}$ Il résulte de ces deux points que d est bien un endomorphisme de \mathcal{E} .

5.2 – Les quatre premiers termes de ε_1 sont : (1,0,0,1) et donc les trois premiers de $d(\varepsilon_1)$ sont (0,0,1). Ainsi $\Phi(d(\varepsilon_1)) = \Phi(\varepsilon_3)$ et par injectivité : $d(\varepsilon_1) = \varepsilon_3$.

On établit de même que $d(\varepsilon_2) = \varepsilon_1$ et $d(\varepsilon_3) = \varepsilon_2$. Donc la matrice M de d dans \Re est :

$$M = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$

$$5.3 - \text{Pour } \lambda \in \mathbb{R} \text{ on a } \chi_{M}(\lambda) = - \begin{vmatrix} -\lambda & 1 & 0 \\ 0 & -\lambda & 1 \\ 1 & 0 & -\lambda \end{vmatrix} \underset{L_{3} \leftarrow L_{1} + L_{2} + L_{3}}{=} (\lambda - 1) \begin{vmatrix} -\lambda & 1 & 0 \\ 0 & -\lambda & 1 \\ 1 & 1 & 1 \end{vmatrix}.$$

On retranche L_3 à L_2 et on obtient :

$$\chi_{M}(\lambda) = (\lambda - 1)\begin{vmatrix} -\lambda & 1 & 0 \\ -1 & -\lambda - 1 & 0 \\ 1 & 1 & 1 \end{vmatrix} = (\lambda - 1)\begin{vmatrix} -\lambda & 1 \\ -1 & -\lambda - 1 \end{vmatrix}$$

Et finalement : $\chi_M(\lambda) = (\lambda - 1)(\lambda^2 + \lambda + 1)$. Le discriminant du trinôme $\lambda^2 + \lambda + 1$ étant < 0, χ_M n'est pas scindé et M n'est pas diagonalisable. Par suite, d n'est pas diagonalisable.

- 5.4 On remarque que comme 1 est valeur propre simple de M et donc de d, alors l'ensemble $\mathfrak D$ des invariants est une droite. Or la suite constante à 1 est visiblement invariante par d, donc $\mathfrak D$ est la droite engendrée par la suite constante à 1. Concrètement, $\mathfrak D$ est donc l'ensemble des suites constantes.
- 5.5 La matrice M de d dans la base orthonormale $\mathfrak B$ est visiblement une matrice orthogonale (ses colonnes forment une base orthonormale de $\mathbb R^3$). De ce fait, d est une isométrie de $\mathbb B$. Pour $u \in \mathcal B$ on pose $v = d^3(u)$; on a alors $\forall n \in \mathbb N, v_n = u_{n+3} = u_n$, donc v = u et ce pour tout $u \in \mathcal B$; donc $d^3 = \operatorname{Id}$.
- 5.6 Appelons U la suite constante égale à 1. On a pour $u \in H$:

$$(d(u)|U) = (d(u)|d(U)) = (u|U) = 0$$

(la première égalité car U est invariant, la seconde car d est une isométrie, la dernière car H est l'orthogonale de $\mathfrak{D} = \mathrm{Vect}(U)$). Donc $d(u) \perp U$ et ainsi $d(u) \in H$. On a bien montré que H est stable par d.

5.7 – Soit \tilde{d} l'endomorphisme induit par d sur H. Si on considère une base $\mathfrak{B}_H = (V, W)$ de H, alors (U, V, W) est une base \mathfrak{B}_0 de \mathcal{E} dans laquelle la matrice de d a la décomposition par bloc :

$$\mathfrak{N}_{\mathfrak{B}_{0}}\left(d\right) = \begin{pmatrix} 1 & 0_{1,2} \\ 0_{2,1} & A \end{pmatrix}$$
, où $A = \mathfrak{N}_{\mathfrak{B}_{H}}\left(\widetilde{d}\right)$

De là $\det(d) = \det(A) = \det(\tilde{d})$. Or avec le 5.3 : $\det(d) = -\chi_M(0) = 1$, donc $\det(\tilde{d}) = 1$. Ainsi \tilde{d} est une isométrie (car restriction d'une isométrie) positive du plan H, donc \tilde{d} est une rotation.

Soit θ l'angle de cette rotation (en supposant avoir orienté préalablement H). On déduit de $d^3 = \operatorname{Id}_{\varepsilon}$ que $\tilde{d}^3 = \operatorname{Id}_H$ et donc que $3\theta = 0 \left[2\pi \right]$, puis que $\theta = 0 \left[\frac{2\pi}{3} \right]$. Ainsi l'angle de cette rotation peut être 0, $\frac{2\pi}{3}$ ou $-\frac{2\pi}{3}$ modulo 2π . $\theta = 0$ est à rejeter car sinon les restrictions de d aux espaces supplémentaires $\mathfrak D$ et H seraient l'identité, ce qui amènerait $d = \operatorname{Id}$ ce qui n'est pas le cas. Il reste donc $\theta = \pm \frac{2\pi}{3}$, le signe étant lié à l'orientation choisie sur H.

Il serait possible d'aller plus loin en choisissant une base de H comme directe, et de déterminer le signe de θ pour ce choix d'orientation, mais cela ne me semble pas dans l'esprit du programme.

EXERCICE 4

1 – On a pour $z \in \mathbb{C}$: $\exp(z) = \sum_{n=0}^{\infty} \frac{z^n}{n!}$; le rayon de convergence de cette série entière est $+\infty$.

2 – Soient M et N deux matrices semblables de $\mathfrak{M}_d(\mathbb{K})$, et f l'endomorphisme associé à M. Si on appelle \mathfrak{B} la base canonique de \mathbb{K}^d on a alors $\mathfrak{M}_{\mathfrak{B}}(f)=M$. On sait qu'il existe alors une base \mathfrak{B}_1 de \mathbb{K}^d telle que $\mathfrak{M}_{\mathfrak{B}_1}(f)=N$.

Par suite: $\mathfrak{N}_{\mathfrak{B}}(f^p) = M^p$ et $\mathfrak{N}_{\mathfrak{B}_1}(f^p) = N^p$. M^p et N^p apparaissant ainsi comme deux matrices d'un même endomorphisme, elles sont alors semblables.

Complétons ce résultat pour la suite : si P est une matrice inversible telle que $P^{-1}MP = N$, alors P est la matrice de passage de \mathfrak{B} à \mathfrak{B}_1 , et en appliquant la formule de changement de base sur les matrices de f^p on obtient $P^{-1}M^pP = N^p$.

 $3.1 - \text{Pour } z \in \mathbb{C} \text{ on a}$:

$$s(z) = \frac{1}{2i} \left(\sum_{n=0}^{\infty} \frac{(iz)^n}{n!} - \sum_{n=0}^{\infty} \frac{(-iz)^n}{n!} \right)$$
$$= \frac{1}{2i} \sum_{n=0}^{\infty} \left(1 - (-1)^n \right) \frac{(iz)^n}{n!}$$

Donc en ne gardant que les valeurs impaires de la sommation :

$$s(z) = \frac{1}{i} \sum_{p=0}^{\infty} \frac{(iz)^{2p+1}}{(2p+1)!}$$

Or $i^{2p+1} = (-1)^p i$, ce qui permet de conclure :

$$s(z) = \sum_{p=0}^{\infty} \frac{(-1)^p z^{2p+1}}{(2p+1)!}$$

3.2 – On établit de même :
$$c(z) = \sum_{p=0}^{\infty} \frac{(-1)^p z^{2p}}{(2p)!}$$

$$4 - \text{Pour } m \in \mathbb{N} \text{ on a : } \sum_{n=0}^{m} \frac{\left(-1\right)^{n}}{\left(2n+1\right)!} \left(\gamma I_{2}\right)^{2n+1} = \left(\sum_{n=0}^{m} \frac{\left(-1\right)^{n}}{\left(2n+1\right)!} \gamma^{2n+1}\right) I_{2} \xrightarrow{m \to +\infty} s\left(\gamma\right) I_{n}.$$

$$\text{Donc } \varphi\left(\gamma I_{2}\right) \text{ existe et } \varphi\left(\gamma I_{2}\right) = s\left(\gamma\right) I_{2}.$$

- 5.1 C'est une question de cours : A étant une matrice de taille 2 ayant deux valeurs propres distinctes $\alpha \neq \beta$, A est alors semblable $B = \begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix}$, et donc il existe $P \in GL_2(\mathbb{R})$ tel que $P^{-1}AP = B$.
- 5.2 On se donne $m \in \mathbb{N}$. On a alors :

$$\sum_{n=0}^{m} \frac{\left(-1\right)^{n}}{\left(2n+1\right)!} B^{2n+1} = \sum_{n=0}^{m} \frac{\left(-1\right)^{n}}{\left(2n+1\right)!} \begin{pmatrix} \alpha^{2n+1} & 0 \\ 0 & \beta^{2n+1} \end{pmatrix} = \begin{pmatrix} \sum_{n=0}^{m} \frac{\left(-1\right)^{n} \alpha^{2n+1}}{\left(2n+1\right)!} & 0 \\ 0 & \sum_{n=0}^{m} \frac{\left(-1\right)^{n} \beta^{2n+1}}{\left(2n+1\right)!} \end{pmatrix}$$

Puis en utilisant le théorème de 'limite par coordonnées' :

$$\lim_{m \to +\infty} \sum_{n=0}^{m} \frac{\left(-1\right)^{n}}{\left(2n+1\right)!} B^{2n+1} = \begin{pmatrix} s\left(\alpha\right) & 0\\ 0 & s\left(\beta\right) \end{pmatrix}$$

Donc: $\varphi(B)$ existe et $\varphi(B) = \begin{pmatrix} s(\alpha) & 0 \\ 0 & s(\beta) \end{pmatrix}$.

On regarde maintenant
$$\sum_{n=0}^{m} \frac{\left(-1\right)^{n}}{\left(2n+1\right)!} A^{2n+1} = \sum_{n=0}^{m} \frac{\left(-1\right)^{n}}{\left(2n+1\right)!} P B^{2n+1} P^{-1} = P \left(\sum_{n=0}^{m} \frac{\left(-1\right)^{n}}{\left(2n+1\right)!} B^{2n+1}\right) P^{-1}.$$

Par continuité (car linéaire en dimension finie) de $M \in \mathfrak{N}_2(\mathbb{C}) \mapsto P^{-1}MP$ on a alors :

$$\lim_{m \to +\infty} P\left(\sum_{n=0}^{m} \frac{\left(-1\right)^{n}}{\left(2n+1\right)!} B^{2n+1}\right) P^{-1} = P\varphi(B) P^{-1}$$

Donc: $\varphi(A)$ existe et $\varphi(A) = P\varphi(B)P^{-1}$.

6.1 – On sait que toute matrice complexe est trigonalisable (le polynôme caractéristique est toujours scindé sur \mathbb{C}). Donc A est semblable à une matrice triangulaire supérieure, et par invariance du polynôme caractéristique pour des matrices semblables, celle-ci se présente sous la forme $C = \begin{pmatrix} \alpha & y \\ 0 & \alpha \end{pmatrix}$. En d'autres termes, il existe $Q \in GL_2(\mathbb{C})$ telle que $Q^{-1}AQ = C$.

6.2 – On pose
$$J = \begin{pmatrix} 0 & y \\ 0 & 0 \end{pmatrix}$$
 de sorte que $A = \alpha I_2 + J$. αI_2 et J commutent et de plus $J^2 = 0$.

8

Donc pour $n \ge 1$: $C^n = \sum_{k=0}^n \binom{n}{k} \alpha^{n-k} \underbrace{J^k}_{=0 \text{ si } k \ge 2} = \alpha^n I_2 + n\alpha^{n-1} J$. On notera que la formule reste vraie pour n = 0. Explicitement:

$$C^n = \begin{pmatrix} \alpha^n & n\alpha^{n-1}y \\ 0 & \alpha^n \end{pmatrix}$$

6.3 – On calcule d'abord $\varphi(C)$. Pour $m \in \mathbb{N}$ on a :

$$\sum_{n=0}^{m} \frac{\left(-1\right)^{n}}{\left(2n+1\right)!} C^{2n+1} = \begin{pmatrix} \sum_{n=0}^{m} \frac{\left(-1\right)^{n} \alpha^{2n+1}}{(2n+1)!} & y \sum_{n=0}^{m} \frac{\left(-1\right)^{n} \alpha^{2n}}{(2n)!} \\ 0 & \sum_{n=0}^{m} \frac{\left(-1\right)^{n} \alpha^{2n+1}}{(2n+1)!} \end{pmatrix}$$

Et par calcul de limite par coordonnées on obtient :

$$\varphi(C)$$
 existe et $\varphi(C) = \begin{pmatrix} s(\alpha) & yc(\alpha) \\ 0 & s(\alpha) \end{pmatrix}$. Par un raisonnement analogue au 5.2 on a alors : $\varphi(A)$ existe et $\varphi(A) = Q\varphi(C)Q^{-1}$.

 $7 - \text{Pour } A \in \mathfrak{N}_2(\mathbb{C})$, son polynôme caractéristique est scindé et on est dans l'un des deux cas abordés lors des questions 5 et 6. Dans chacun de ces deux cas $\varphi(A)$ existe, ce qui en assure l'existence dans tous les cas.

8 – S'il existait
$$X \in \mathfrak{N}_2(\mathbb{C})$$
 telle que $\varphi(X) = T$ avec $T = \begin{pmatrix} 1 & 2019 \\ 0 & 1 \end{pmatrix}$.

 1^{er} cas : si *X* a deux valeurs propres distinctes α et β.

Alors on a vu que T serait semblable à $\begin{pmatrix} s(\alpha) & 0 \\ 0 & s(\beta) \end{pmatrix}$, et par invariance du polynôme caractéristique on aurait $s(\alpha) = s(\beta) = 1$ et donc T serait semblable à I_2 qui n'est semblable qu'à elle-même. Donc $T = I_2$ ce qui est gênant! Cette hypothèse doit donc être rejetée.

 $\underline{2^{i\grave{e}me}}$ cas: si X a une valeur propre double α .

On a alors vu qu'il existe un complexe y tel que T soit semblable à $\begin{pmatrix} s(\alpha) & yc(\alpha) \\ 0 & s(\alpha) \end{pmatrix}$. Pour la même raison on a $s(\alpha)=1$. Mais $s(\alpha)^2+c(\alpha)^2=\frac{e^{2iz}-2+e^{-2iz}}{-4}+\frac{e^{2iz}+2+e^{-2iz}}{4}=1$, ce qui entraı̂ne $c(\alpha)=0$ et à nouveau T serait semblable à I_2 ce qui conduit à la même contradiction.

On peut conclure qu'il n'existe pas de matrice $X \in \mathfrak{M}_2(\mathbb{C})$ telle que $\varphi(X) = T$.