

Formale Grundlagen der Informatik

12 Eigenschaften kontextfreier Sprachen Chomsky-Normalform Pumping-Lemma

- Die folgenden drei Aussagen sind äquivalent:
 - 1. *L* ist eine kontextfreie Sprache.
 - 2. $L = L(M_1)$ für einen PDA M_1 .
 - 3. $L = N(M_2)$ für einen PDA M_2 .

Sprachfamilie $\mathcal{L}(\mathsf{CF})$

- Jeder NEA ist ein spezieller PDA (der seinen Keller ignoriert).
 - $\triangleright \mathcal{L}(REG) \subseteq \mathcal{L}(CF)$
- { $a^n b^n \mid n \ge 0$ } $\in \mathcal{L}(CF) \setminus \mathcal{L}(REG)$
- Das Wortproblem für kontextfreie Grammatiken ist entscheidbar.
- $\triangleright \mathcal{L}(REG) \subset \mathcal{L}(CF) \subseteq \mathcal{L}(REC)$

Spiversita,

Motivation

- Gibt es entscheidbare Sprachen, die nicht kontextfrei sind?
- Kandidat: Sprache de "Nicht-Quadrate":

$$L_{nq} = \{ uxvu'yv' \in \{a,b\}^* \mid x,y \in \{a,b\}, x \neq y, |u| = |u'|, |v| = |v'| \}$$

- Behauptung: $L_{nq} \notin \mathcal{L}(CF)$
- Begründung:
 - lacktriangle ein PDA müsste sich die Längen von u und v im Keller merken ...
 - ... und in der gleichen Reihenfolge aus dem Keller lesen
 - > nicht möglich
- Stimmt das?

Joiversital,

Vereinfachung kontextfreier Grammatiken

- Um wichtige Eigenschaften nachzuweisen: möglichst einfache Form kontextfreier Grammatiken!
- Chomsky-Normalform
 - benannt nach Noam Chomsky
 - linke Regelseite ist schon einfach: nichtterminales Symbol
 - rechte Regelseite: entweder ein Terminal oder genau zwei Nichtterminale
- **Definition:** Eine kfG G = (N, T, P, S) ist in **Chomsky-Normalform (CNF)**, falls $P \subseteq (N \times NN) \cup (N \times T)$ gilt, also jede Regel die Form $A \to BC$ oder $A \to a$ hat, $A, B, C \in N$, $a \in T$.
- Jede ε -freie kontextfreie Sprache wird von einer kfG in CNF erzeugt.

ε -Regeln

Lemma 12.1. Zu jeder kfG G = (N, T, P, S) kann eine kfG G' = (N, T, P', S) mit $L(G') = L(G) \setminus \{\varepsilon\}$ konstruiert werden, sodass P' keine ε -Regeln (Regeln der Form $A \to \varepsilon$) enthält.

Konstruktion:

- 1. Bestimmen die Menge $N_{\varepsilon} = \{ A \in N \mid A \stackrel{*}{\Longrightarrow} \varepsilon \}$ der **eliminierbaren Symbole** iterativ wie folgt:
 - 1. Füge alle $A \in N$ zu N_{ε} hinzu, für die $A \to \varepsilon \in P$.
 - 2. Wiederhole solange, bis keine neuen Symbole zu N_{ε} hinzugefügt werden: Füge alle $A \in N$ zu N_{ε} hinzu, für die $A \to \nu \in P$ mit $\nu \in N_{\varepsilon}^*$ existiert.
 - > Diese Iteration ist endlich, da N endlich ist.

$$S \rightarrow ABC \mid AB$$

$$A \rightarrow b \mid CD$$

$$B \rightarrow Bb \mid \varepsilon$$

$$C \rightarrow BB$$

$$D \rightarrow aD$$

$$\operatorname{zu} N_{\varepsilon}$$
: B

$$\rightarrow N_{\varepsilon} = \{B, C\}$$

ε -Regeln (Fortsetzung der Konstruktion)

2. Ersetzen jede Regel $A \to X_1 X_2 \dots X_n \in P$, $X_i \in N \cup T$, durch die Menge <u>aller</u> Regeln der Form

$$A \to \alpha_1 \alpha_2 \dots \alpha_n$$

wobei

- 1. $\alpha_i = X_i$, falls $X_i \notin N_{\varepsilon}$;
- 2. $\alpha_i \in \{X_i, \varepsilon\}$, falls $X_i \in N_{\varepsilon}$;
- 3. $\alpha_1 \alpha_2 \dots \alpha_n \neq \varepsilon$.

Die Menge der so erhaltenen Regeln ist die Regelmenge P' von G' = (N, T, P', S).

$$S \rightarrow ABC \mid AB$$

$$A \rightarrow b \mid CD$$

$$B \rightarrow Bb \mid \varepsilon$$

$$C \rightarrow BB$$

$$D \rightarrow aD$$

$$\operatorname{zu} N_{\varepsilon}$$
: B

$$\rightarrow N_{\varepsilon} = \{B, C\}$$

Behauptung: Für alle $A \in N$ und alle $w \in T^*$ gilt $A \stackrel{*}{\Longrightarrow} w$ gdw. $w \neq \varepsilon$ und $A \stackrel{*}{\Longrightarrow} w$. (Dann gilt $w \in L(G')$ gdw. $w \in L(G) \setminus \{\varepsilon\}$.)

Beweis. 1) Es gelte $A \stackrel{n}{\Longrightarrow} w$ und $w \neq \varepsilon$. Zeigen durch VI über n, dass dann $A \stackrel{*}{\Longrightarrow} w$.

I.A. (n = 1): Wenn $A \Longrightarrow w$, dann $A \to w \in P$. Da $w \ne \varepsilon$ ist $A \to w \in P'$, also $A \Longrightarrow w$.

I.S. $(n \to n+1)$: Wenn $A \stackrel{n+1}{\Longrightarrow} w$, dann $A \Longrightarrow X_1 X_2 \dots X_k \stackrel{n}{\Longrightarrow} w_1 w_2 \dots w_k$ mit $X_i \in N \cup T$,

 $w = w_1 w_2 \dots w_k$ und $X_i \stackrel{*}{\Longrightarrow} w_i$ in weniger als n Schritten, $1 \le i \le k$.

Für alle i, $1 \le i \le k$: Falls $w_i = \varepsilon$, dann $X_i \in N_{\varepsilon}$.

Dann gilt $A \stackrel{n}{\Longrightarrow} X_{i_1} X_{i_2} \dots X_{i_r}$ $(1 \le i_j \le k)$ mit $X_{i_1}, X_{i_2}, \dots, X_{i_r} \notin N_{\varepsilon}$, also $w_{i_j} \ne \varepsilon$, $1 \le j \le r$.

Nach I.V. gilt dann $X_{ij} \stackrel{*}{\Longrightarrow} w_{ij}$, $1 \le j \le r$, also $A \stackrel{*}{\Longrightarrow} w_{i_1} w_{i_2} \dots w_{i_r}$ und $w_{i_1} w_{i_2} \dots w_{i_r} = w$.

2) Es gelte $A \stackrel{n}{\Longrightarrow} w$. Es gilt $w \neq \varepsilon$, da G' keine ε -Regeln hat. VI über n, dass $A \stackrel{*}{\Longrightarrow} w$. **I.A.** (n = 1): Wenn $A \Longrightarrow w$, dann $A \to w \in P'$. Dann gibt es eine Regel der Form $A \to w_0 B_1 w_1 \dots w_{k-1} B_k w_k \in P$ mit $w_0 w_1 \dots w_k = w$ und $B_i \in N_\varepsilon$ für $1 \le i \le k$. Somit gilt $A \Longrightarrow w_0 B_1 w_1 \dots w_{k-1} B_k w_k \stackrel{*}{\Longrightarrow} w$.

I.S. ($n \to n+1$): Wenn $A \underset{\overline{G'}}{\Longrightarrow} X_1 X_2 \dots X_k \overset{n}{\underset{\overline{G'}}{\Longrightarrow}} w$, dann gibt es $A \to \alpha \in P$, und die Regel $A \to X_1 X_2 \dots X_k$ entsteht in P' durch Streichen von Symbolen aus N_{ε} in α . Also gilt $A \underset{\overline{G}}{\Longrightarrow} \alpha \overset{*}{\underset{\overline{G}}{\Longrightarrow}} X_1 X_2 \dots X_k$.

Außerdem gibt es eine Zerlegung $w = w_1 w_2 \dots w_k$ mit $X_i \overset{*}{\Longrightarrow} w_i$, $1 \le i \le k$, und nach I.V. $X_i \overset{*}{\Longrightarrow} w_i$, $1 \le i \le k$, also $A \overset{*}{\Longrightarrow} w$.

- Symbol in einer kfG nutzlos, wenn es in keiner Satzform vorkommt oder kein terminales Wort daraus ableitbar ist.
- Lemma 12.2. Zu jeder kfG G = (N, T, P, S) kann eine kfG G' = (N', T', P', S) mit L(G) = L(G') konstruiert werden, sodass N' keine nutzlosen Symbole enthält, das heißt, dass für jedes $A \in (N' \cup T')$ gilt:
 - 1. es gibt ein $v \in T'^*$, sodass $A \stackrel{*}{\Longrightarrow} v$ (A ist **erzeugend**) und
 - 2. es gibt ein $\alpha \in (N' \cup T')^*$ mit $|\alpha|_A > 0$, sodass $S \stackrel{*}{\Longrightarrow} \alpha$ (A ist **erreichbar**).

Beweis: 1. Konstruieren G'' = (N'', T, P'', S) mit Eigenschaft 1.

- Fügen iterativ Nichtterminale $A \in N$ zu N'' hinzu, falls $A \to \nu \in P$ und $\nu \in (T \cup N'')^*$.
- Sei P'' die Menge aller Regeln $A \to \nu \in P$ mit $A \in N''$ und $\nu \in (T \cup N'')^*$.
- \triangleright Jede Ableitung in G'' ist eine Ableitung in G ist, gilt $L(G'') \subseteq L(G)$.
- Für $L(G) \subseteq L(G'')$ ist zu zeigen: Wenn $A \stackrel{*}{\Rightarrow} v$ für ein $v \in T^*$, $n \ge 1$, dann gilt $A \in N''$.
- Induktionsbeweis ähnlich zu Lemma 12.1.

- 2. Konstruieren aus G'' die Grammatik G' = (N', T', P', S) mit Eigenschaft 2.
- Setzen initial $N' = \{S\}$, $T' = \emptyset$.
- Falls $A \in N'$ und $A \rightarrow \nu \in P''$, dann füge
 - alle Nichtterminale in ν der Menge N'
 - und alle Terminale in ν der Menge T' hinzu.
- $\bullet P' = \{ A \rightarrow \nu \mid A \rightarrow \nu \in P'', A \in N' \}$
- Dann enthalten N' und T' nur noch Symbole, die in Satzformen von G'' vorkommen und es gilt L(G') = L(G'').

$$S \rightarrow ABC + AB$$

$$A \rightarrow b + CD$$

$$B \rightarrow Bb + \varepsilon$$

$$C \rightarrow BB$$

$$D \rightarrow aD$$

$$N'' = \{A, B, S, C\}$$

$$N' = \{S, A, B, C\}$$
$$T' = \{b\}$$

- \blacktriangleright Die Beseitigung nutzloser Symbole führt keine ϵ -Regeln ein.
- Führt man die Konstruktionen zuerst nach 12.1. und danach nach 12.2. aus, dann erhält man eine kfG ohne nutzlose Symbole und ohne ε -Regeln.

Kettenregeln

Lemma 12.3. Zu jeder kfG G = (N, T, P, S) ohne ε -Regeln kann eine kfG G' = (N, T, P', S) mit L(G) = L(G') konstruiert werden, sodass P' keine Kettenregeln (Regeln der Form $A \to B$ mit $B \in N$) enthält.

Beweis: Konstruieren $N_c = \{ (A, B) \mid A, B \in N, A \stackrel{*}{\Rightarrow} B \}$. Da P keine ε -Regeln enthält, genügt folgende Prozedur beginnend mit $N_c = \emptyset$:

- 1. Für alle $A \in N$ füge (A, A) hinzu.
- 2. Iteriere: Wenn $(A, C) \in N_C$ und $C \to B \in P$, dann füge (A, B) hinzu.

Nun entsteht P' aus P wie folgt:

- 1. Streiche alle Kettenregeln.
- 2. Für jedes $(A, B) \in N_c$ und $B \to \beta \in P$ mit $\beta \notin N$, füge $A \to \beta$ hinzu.

Kettenregeln

- $\blacksquare A \stackrel{*}{\Longrightarrow} w$ ohne Kettenregeln gdw. $A \stackrel{*}{\Longrightarrow} w$, $w \in T^*$.
- Wenn $A = \alpha_0 \Longrightarrow_L \alpha_1 \cdots \Longrightarrow_L \alpha_n = w$ und für $0 \le i < j < n$ gilt, dass $|\alpha_i| = |\alpha_j|$ und $\alpha_j \Longrightarrow_G \alpha_{j+1}$ durch Anwendung von $A \to \nu$ mit $|\nu| > 1$, dann $\alpha_i \Longrightarrow_L \alpha_{j+1}$ aufgrund der Konstruktion von P'. Also $A \Longrightarrow_{G'} w$.
- Ebenso kann jede Anwendung einer Regel aus $A \to \nu \in P' \setminus P$ durch eine Ableitung in G simuliert werden, in der zunächst Kettenregeln auf A und angewendet werden, so dass $A \stackrel{*}{\Longrightarrow} B$ und dann die Regel $B \to \nu$ verwendet wird.
- Somit gilt L(G) = L(G').

Fortsetzung des Beispiels

$$S \rightarrow ABC \mid AB \mid AC \mid A \longrightarrow S \rightarrow ABC \mid AC \mid AB \mid b$$

$$A \rightarrow b \longrightarrow A \rightarrow b \mid CD \mid D$$

$$B \rightarrow Bb \mid b \longrightarrow B \rightarrow Bb \mid b$$

$$C \rightarrow BB \mid B \longrightarrow C \rightarrow BB \mid B \mid Bb \mid b$$

$$N_c = \{(A, A), (B, B), (C, C), (S, S), (S, A), (C, B)\}$$

- \blacktriangleright Die Beseitigung der Kettenregeln führt weder ϵ -Regeln noch nutzlose Symbole ein.
- Führt man die Konstruktionen in der Reihenfolge nach 12.1., 12.2, 12.3. aus, dann erhält man eine kfG ohne nutzlose Symbole, ε und Kettenregeln.

Chomsky-Normalform (CNF)

Satz 12.4: Zu jeder kfG G = (N, T, P, S) kann eine kfG G' = (N, T, P', S) in Chomsky-Normalform mit $L(G') = L(G) \setminus \{\varepsilon\}$ konstruiert werden.

Konstruktion:

- 1. Beseitigung der ε -Regeln (nach 12.1.)
- 2. Beseitigung nutzloser Symbole (nach 12.2.)
- 3. Beseitigung der Kettenregeln (nach 12.3.)
- 4. Für alle Regeln $A \to X_1 X_2 \dots X_n$ mit n > 1 führe aus: Wenn X_i ein terminales Symbol a ist, ersetze es in der Regel durch ein neues Nichtterminal C_a und füge die Regel $C_a \to a$ hinzu.

Chomsky-Normalform (CNF)

5. Anschließend führe für alle Regeln $A \to B_1B_2 \dots B_n$ mit n > 2 neue Nichtterminale D_1, D_2, \dots, D_{m-2} ein. Ersetze dann die Regel $A \to B_1B_2 \dots B_n$ durch folgende Regeln:

$$A \to B_1 D_1, D_1 \to B_2 D_2, \dots, D_{m-3} \to B_{m-2} D_{m-2}, D_{m-2} \to B_{n-1} B_n$$

- In den Schritten 4. und 5. werden keine nutzlosen Symbole und weder ε noch Kettenregeln eingeführt.
- \triangleright Die entstandene Grammatik ist in CNF und erzeugt $L(G) \setminus \{\varepsilon\}$.

$$S \rightarrow ABC \mid AB \mid AC \mid b$$

$$A \rightarrow b$$

$$B \rightarrow Bb \mid b$$

$$C \rightarrow BB \mid Bb \mid b$$

$$\begin{array}{ccc}
 & \mathcal{B} \to B \mathcal{C}_b \\
 & \mathcal{C} \to B \mathcal{C}_b
\end{array}$$

$$C_b \to b$$

$$S \rightarrow ABC \mid AB \mid AC \mid b$$

$$A \rightarrow b$$

$$B \rightarrow BC_b \mid b$$

$$C \rightarrow BB \mid BC_b \mid b$$

$$C_b \rightarrow b$$

$$\longrightarrow$$
 $S \to AD_1$, $D_1 \to BC$

Die Pumping-Eigenschaft von kfG

- Betrachten Wörter aus der Sprache, die so lang sind, dass in der Ableitung ein Nichtterminal mehrfach vorkommen muss.
- Sei G = (N, T, P, S) eine kfG in CNF und |N| = n.
- Jeder Ableitungsbaum ist ein binärer Baum, wobei
 - alle inneren Knoten mit einem Blatt als Kind nur dieses eine Kind
 - und alle anderen inneren Knoten genau zwei Kinder haben.
- \succ Hat der längste Pfad im Ableitungsbaum die Länge i, dann gibt es maximal 2^{i-1} viele Blätter (wie ein Binärbaum der Tiefe i-1).
- Betrachten Wörter $z \in L(G)$ mit $|z| \ge 2^n$.
 - \triangleright Es gibt mindestens einen Pfad der Länge n+1 in jedem Ableitungsbaum für z.
 - \triangleright Mindestens zwei der n inneren Knoten haben die gleiche Markierung.

Seien die A die beiden <u>letzten</u> Auftreten einer wiederholten Markierung auf dem längsten Pfad im Ableitungsbaum.

Pfadlänge vom ersten dieser A bis zu einem Blatt ist höchstens n (nicht mehr als n+1 Knoten).

Pfadlänge vom ersten dieser A bis zu einem Blatt ist höchstens n (nicht mehr als n+1 Knoten).

$$|vwx| \le 2^n$$

$$|vx| > 0$$

Setzen
$$k = 2^n$$
.

Lemma 12.5. Sei *L* eine kontextfreie Sprache.

Dann gibt es eine (von L abhängige) Konstante k > 0, so dass jedes $z \in L$ mit $|z| \ge k$ eine Zerlegung z = uvwxy hat mit

- 1. $|vwx| \leq k$,
- 2. |vx| > 0,
- 3. $uv^iwx^iy \in L$ für alle $i \ge 0$.

Beweis: Nach Betrachtungen zum Ableitungsbaum für z wissen wir

 $S \stackrel{*}{\Longrightarrow} uAy \stackrel{*}{\Longrightarrow} uvAxy \stackrel{*}{\Longrightarrow} uvwxy$. Wegen $A \stackrel{*}{\Longrightarrow} w$ und $A \stackrel{*}{\Longrightarrow} vAx$ sind auch

 $S \stackrel{*}{\Rightarrow} uAy \stackrel{*}{\Rightarrow} uwy$ und $S \stackrel{*}{\Rightarrow} uAy \stackrel{*}{\Rightarrow} uv^iAx^iy \stackrel{*}{\Rightarrow} uv^iwx^iy$ Ableitungen für alle i.

Anwendung des Pumping-Lemmas

- $L = \{ a^n b^n c^n \mid n \ge 0 \} \notin \mathcal{L}(CF)$
- Annahme: $L \in \mathcal{L}(CF)$.
 - Dann gibt es eine Konstante k aus dem PL für kfG.
 - Für das Wort $z = a^k b^k c^k$ gilt $z \in L$ und $|z| \ge k$.
 - Daher gilt z = uvwxy mit den Eigenschaften 1. bis 3. aus dem PL für kfG.
 - 1. Fall: $vwx \in \{a\}^*$. Da |vx| > 0, gilt $|uv^2wx^2y|_a > |uv^2wx^2y|_b$, also $uv^2wx^2y \notin L$.
 - 2. Fall: $vwx \in \{b\}^*$ oder $vwx \in \{c\}^*$. Analog.
 - 3. Fall: $|vwx|_a > 0$ und $|vwx|_b > 0$. Dann gilt $uv^2wx^2y \in L(a^+b^+a^+b^+c^+)$, also $uv^2wx^2y \notin L$.
 - **4. Fall:** $|vwx|_b > 0$ und $|vwx|_c > 0$. Analog.
 - Da es wegen 1. (PL) keine weiteren Fälle gibt, liegt ein Widerspruch zu 3. (PL) vor.


```
Folgerung 12.6. \mathcal{L}(REG) \subset \mathcal{L}(CF) \subset \mathcal{L}(REC) \subset \mathcal{L}(RE)
```

Beweisskizze: $L = \{ a^n b^n c^n \mid n \ge 0 \} \notin \mathcal{L}(CF)$.

Es genügt also zu zeigen, dass L entscheidbar ist.

Die DTM, die $\{a^nb^n \mid n \geq 0\}$ entscheidet, kann leicht zu einer DTM erweitert werden, die $\{a^nb^nc^n \mid n \geq 0\}$ entscheidet.

Es gilt $\{a^nb^nc^n \mid n \ge 0\} \in \mathcal{L}(REC)$.