OT Vulnerability Management as a business enabler

Craig Morris

About me

KPMG

Director OT Cybersecurity –

- Ex-CISO (Middle East)
- Ex-Asset Owner

So what is the problem?

- Governance, ownership, responsibility
- Risk of downtime, Consequences
- Complexity, expensive
- Legacy systems & Obsolescence
- OT assets insecure by design
- Poor architecture and controls
- Resource capability/capacity
- Vendor/SI Contractual requirements
- Changing Threat Landscape

OT

Purdue Reference Model

Microsoft, Cisco, Linux
Appliances (Linux-based)
AD, MS SQL etc, common web services,
applications

Microsoft, Linux AD, HMI's Historians (Pi, IP21 etc) Cisco, RuggedCom, MOXA, Hirschman SCADA/DCS Apps, SCADA Tools, OT protocols (Proprietary, IP, Serial)

Physical hardware (PLC's etc),
Custom Realtime OS (WindRiver,
VxWorks)
Firmware
Proprietary protocols

Global Vulnerability Statistics 2023/2024

134

New advisories (CISA)

842

New vulnerabilities Disclosed

49

Impacted automation vendors

Impacted by disclosed vulnerabilities

68%

Incidents - could be prevented through proper architecture

Advisories have no known practical, vendor remediation,

54%

Incidents exploited known vulnerabilities

80%

Vulnerabilities reside deep within OT networks (L2, L1)

16%

Network exploitable and Internet facing

What are we protecting in OT environments?

- **Consequences**
- Context

Patching versus Vulnerability Management

Patching

- Tactical activity
- Point in time known issues (CVSS etc, Vendors)
- Event driven (New vulnerability, patch is available?)
- Specific software updates for supported systems
- Subset of Vulnerability Management

Vulnerability Management

- Strategic approach
- Continuous, proactive identification, assessment, remediation of vulnerabilities, misconfigurations
- Risk driven (in theory) business, operational, safety requirements
- All systems even *unsupported* systems
- Remediation may include patching, configuration changes, monitoring

OT Vulnerability Management - Business Enablement

Establishing an OT Vulnerability Management Program

Governance – Essential to success

Who has ultimate responsibility and decision making for significant risks and vulnerabilities?

Key Stakeholders

- COO (or equiv.)
- CISO
- Chief Engineer
- OT Engineer(s)
- Cyber Engineers(s)

Structure

- SteerCo ☺
- Working Group ©
- Re-org ⊗

Charter

- Purpose & Mission
- Authority
- Schedule
- Roles & Resp.
- Escalation

Reporting

- Metrics
- Reporting cycle

Asset Identification – What do we have

What do we have, where, and what condition is it in?

Identification

- Walk downs
- Manual entry
- Automated
- Diagrams
- Purchase Orders

Classify Assets

- Ownership
- Function
- Risk level (Assess)
- Criticality
- Impact (BIA)
- ** SOCI ??

Asset Register

- Asset ID
- Versions
- Components –
 RAM, CPU, IP etc
- Dependencies
- Ownership
- Current state

Maintain

- Secure storage
- Regular reviews
- Updates

Known asset condition, Ownership, Criticality

BIA and Criticality changes
Ownership changes, Obsolescence plans

Asset & Threat Intelligence – Are we vulnerable?

Where are our risks, how do we know we have risks, and how do we ensure we stay up to date with risks and changes in environment

Assess Risks

- High level assessment
- Baseline/current state of assets
- Prioritise Assets
- Additional controls?

Risk Info Sources

- Vulnerability
 Assessments
- Penetration tests
- Audit reports
- Threat Intel feeds
- CVSS, KEV, EPSS
- Mitre ATT&CK ICS
- News, Blogs
- External ACSC etc

Visibility

Continuous:

- Asset
 Identification
- Vulnerability
 Identification
- Anomaly detection

When do we worry? CVSS v KEV v EPSS?

CVE = Common Vulnerabilities and Exposures – ID assigned to a vulnerability	Common Vulnerability Scoring System v4 (CVSS)	Known Exploited Vulnerabilities (KEV)	Exploit Prediction Scoring System v2 (EPSS)
Approach	Assigns score for severity based on multiple factors - Calculated score.	Known vulnerabilities (CVE), actively exploited and clear remediation available	Likelihood/Probability (0-1, 0 – 100%) that a vulnerability will be exploited within 30 days. Data driven
Drawbacks	High CVSS scores ≠ High Risk	Not all active CVE's covered by KEV	Only covers vulnerabilities with a CVE ID, can produce false positives and negatives

Assessment Criteria – How do we decide?

Initial view - How do we know what to remediate and when? We cannot do everything so how do we prioritise?

Exposure

- Is vulnerability applicable?
- Asset Criticality
- Internal or Internet Facing
- Current controls?

Safety Impact

- Vulnerability impact to Safety?
- Remediation impact to Safety?

Security Posture

- Current state?
- Will remediation make a
 difference?

Process Impact

- Asset role in process?
- Impact on process (Safety, Reliability, Production)?
- Cost to implement & test, revalidate (\$, Time)

Technical Impact

- Remediation available?
- Alternate Remediation options?
- CVSS, KEV, EPSS scores

Schedule Decision

- **Now** As soon as possible
- Next Next available shutdown/outage
- Never Do not apply. Has no impact on risk reduction *
- * Asset owner may decide to patch based on maintenance, improvements etc (not cyber requirements)

Craig Morris

Change Management - making safe changes

Ensuring the change is tested, performed and verified so there is no impact to the OT processes.

Plan Change

- Scheduling
- Safety requirements
- Vendors/3rd
 Parties
- Stakeholders
- Site resource availability
- CAB Engagement
- Management of Change (MOC)

Testing

- Offline
 - Test Lab
 - Vendor Lab
- Online ⊗
- Test remediation effectiveness
- Verification Plan
- Rollback Plan

Perform Change

- Staff available
- Stakeholders advised
- Systems backed up
- Implementation
- Update docs & diagrams!!

Verify & Report

- Verify change success
- Communicate and Report
- Architecture & baseline configuration updates
- Update docs & diagrams!!

Vulnerability Process Flow

Alternative Remediations – you can always do something which is better than nothing

RULE: Remediate as close to vulnerable system(s) as feasible

- Disable, remove service/component
- Firewall rules & network configuration
- Restrict/Reduce User access
- Increase OT Logging & Monitoring , Update Playbooks
- Architecture segmentation, zones
- System Upgrades (\$\$\$)

How can we reduce the workload & effort?

SANS – The Five ICS Cybersecurity Critical Controls

1 ICS Incident Response Plan ☐ 2 Defensible Architecture

Establish

network

support

monitoring,

defensible

architecture to

response, reduce

attack surface

Network Visibility and Monitoring

- Continuous monitoring
- Asset identification & Management
- OT protocol aware
- Integration with IT and OT teams

8 4Secure RemoteAccess

- Identification and inventory of <u>all</u> remote access methods
- Connections monitored and recorded.

5
Risk-based Vuln.
Management

- Understand OT risks, context and drivers
- Asset inventory
- Establish riskbased vulnerability management program

threatsEstablish Forensic capabilityResponse

Detect and

contextualise

- Response playbooks
- Training & Exercises

Source: SANS.ORG https://sansorg.egnyte.com/dl/R0r9qGEhEe Dragos: Dragos-5-Critical-Controls-OT-Cybersecurity-Guide-v1.pdf

The best Remediation ... A defensible architecture

Homework – next 90 days

Thank You

