Teoría de la Computación

Primer Parcial

Licenciatura en Informática, Universidad Nacional de Quilmes

1er cuatrimestre de 2024

Ejercicio 1. Decimos que un enumerador es *binario* si solamente emite las palabras sí y no y nunca deja de emitir palabras. Por ejemplo, un enumerador binario podría emitir una secuencia infinita comenzada así:

Además, un enumerador binario E es positivo si emite únicamente la palabra si y nunca emite la palabra no. Consideremos el lenguaje de los enumeradores binarios positivos:

$$\mathsf{EBP} = \{ \langle E \rangle \mid E \text{ es un enumerador binario positivo} \}$$

Demostrar que:

- a) EBP es indecidible.
- b) $\overline{\mathsf{EBP}}$ es semi-decidible, donde $\overline{\mathsf{EBP}}$ denota el complemento de $\overline{\mathsf{EBP}}$.
- c) EBP no es semi-decidible.

Ejercicio 2. Supongamos que M es una máquina de Turing, $w \in \Sigma^*$ es una palabra y $n \in \mathbb{N}$ es un número natural. Decimos que la ejecución de M(w) es de rango n si, a lo largo de la ejecución, el cabezal nunca se aleja más de n celdas del origen. Notamos $\mathcal{L}_n(M)$ al lenguaje de las palabras que M acepta sin que el cabezal se aleje nunca más de n celdas del origen:

$$\mathcal{L}_n(M) = \{ w \in \Sigma^* \mid M(w) \text{ acepta y } M(w) \text{ es de rango } n \}$$

Determinar si el lenguaje $\mathcal{L}_n(M)$ es decidible o indecidible y demostrarlo.

 O_{io} : M(w) podría rechazar o colgarse, aun si el cabezal se mantiene dentro del rango.

Ejercicio 3. Decimos que una máquina de Turing M sobre el alfabeto $\Sigma = \{a, b\}$ es amigable si acepta alguna palabra conformada únicamente por la letra a. Es decir, M es amigable si y sólo si existe un n tal que $M(a^n)$ acepta. Consideremos el lenguaje:

$$\mathsf{AMIGABLE} = \{ \langle M \rangle \mid M \text{ es amigable} \}$$

Demostrar que AMIGABLE $\leq_m A_{MT}$.

Ejercicio 4. Consideremos el lenguaje que consta de los códigos de máquinas de Turing M tales que el lenguaje reconocido por M es Turing-reducible a A_{MT} :

$$\mathsf{TR} = \{ \langle M \rangle \mid \mathcal{L}(M) \leq_T \mathsf{A}_{MT} \}$$

Determinar si TR es decidible o indecidible y demostrarlo.

Justificar todas las respuestas.