Notes on Statistical and Machine Learning

Canonical Correlation Analysis

Chapter: 24 Prepared by: Chenxi Zhou

This note is prepared based on

• Chapter 7, Linear Dimensionality Reduction in Izenman (2009),

- Chapter 15, Latent Variable Models for Blind Source Separation in Izenman (2009), and
- Chapter 8, Sparse Multivariate Methods in Hastie, Tibshirani, and Wainwright (2015).

I. Canonical Variates and Canonical Correlations

- **1. Introduction:** Canonical correlation analysis (CCA) is a method for studying linear relationships between two vector variates, $X = (X_1, \dots, X_p)^{\top}$ and $Y = (Y_1, \dots, Y_s)^{\top}$.
- 2. Basic Setup: Let

$$\begin{pmatrix} X \\ Y \end{pmatrix}$$

be a collection of p + s variables partitioned to two disjoint sub-collections. Furthermore, assume X and Y are jointly distributed with mean

$$\mathbb{E}\bigg[\binom{X}{Y}\bigg] = \binom{\boldsymbol{\mu}_X}{\boldsymbol{\mu}_Y}$$

and the covariance matrix

$$\operatorname{Cov}\left[\begin{pmatrix} X \\ Y \end{pmatrix}\right] = \mathbb{E}\left[\begin{pmatrix} X - \boldsymbol{\mu}_X \\ Y - \boldsymbol{\mu}_Y \end{pmatrix} \begin{pmatrix} X - \mu_X \\ Y - \mu_Y \end{pmatrix}^{\top}\right] = \begin{pmatrix} \boldsymbol{\Sigma}_{XX} & \boldsymbol{\Sigma}_{XY} \\ \boldsymbol{\Sigma}_{YX} & \boldsymbol{\Sigma}_{YY} \end{pmatrix}.$$

We assume Σ_{XX} and Σ_{YY} are nonsingular.

3. Main Idea of CCA: CCA seeks to replace the two sets of correlated variables, *X* and *Y*, by *t* pairs of new variables

$$(\xi_j, \omega_j),$$
 for $j = 1, \dots, t$, with $t \le \min\{p, s\}$.

Here, for all $j = 1, \dots, t$,

$$\xi_j := \mathbf{g}_j^{\top} X = g_{j,1} X_1 + g_{j,2} X_2 + \dots + g_{j,p} X_p,$$

 $\omega_j := \mathbf{h}_i^{\top} Y = h_{j,1} Y_1 + h_{j,2} Y_2 + \dots + h_{j,s} Y_s,$

are linear projections of X and Y, respectively. The j-th pair of coefficient vectors, $\mathbf{g}_j := (g_{j,1}, \dots, g_{j,p})^\top \in \mathbb{R}^p$ and $\mathbf{h}_j := (h_{j,1}, \dots, h_{j,s})^\top \in \mathbb{R}^s$ are chosen so that

(a) the pairs $\{(\xi_j, \omega_j)\}_{j=1}^t$ are ranked in importance through their correlations

$$\rho_j := \operatorname{Cor}(\xi_j, \omega_j) = \frac{\operatorname{Cov}(\xi_j, \omega_j)}{\sqrt{\operatorname{Var}[\xi_j]} \cdot \sqrt{\operatorname{Var}[\omega_j]}} = \frac{\mathbf{g}_j^{\top} \mathbf{\Sigma}_{XY} \mathbf{h}_j}{\sqrt{\mathbf{g}_j^{\top} \mathbf{\Sigma}_{XX} \mathbf{g}_j} \cdot \sqrt{\mathbf{h}_j^{\top} \mathbf{\Sigma}_{YY} \mathbf{h}_j}}, \quad (1)$$

which are listed in the descending order of magnitude, i.e., $\rho_1 \geq \rho_2 \geq \cdots \geq \rho_t$;

(b) ξ_j is uncorrelated with all previously derived ξ_i 's, that is,

$$Cov(\xi_i, \xi_i) = g_i^{\mathsf{T}} \mathbf{\Sigma}_{XX} g_i = 0, \quad \text{for all } i < j;$$
 (2)

(c) ω_i is uncorrelated with all previously derived ω_i 's, that is,

$$Cov(\omega_j, \omega_i) = h_j^{\top} \Sigma_{YY} h_i = 0, \quad \text{for all } i < j.$$
 (3)

The pairs $\{(\xi_j, \omega_j)\}_{j=1}^t$ are called the first t pairs of canonical variates of X and Y and their correlations (1) are called the t largest canonical correlations.

Remark. If the correlation is regarded as the primary determinant of information in the system of variables, then CCA is a major tool for reducing the dimensionality of the original two sets of variables.

II. Least-Squares Optimality of CCA

1. Setup and Goal: Let $\mathbf{G} \in \mathbb{R}^{t \times p}$ and $\mathbf{H} \in \mathbb{R}^{t \times s}$, where $1 \leq t \leq \min\{p, s\}$, be the matrices of weights such that X and Y are linear projected into new vector variates, that is,

$$\boldsymbol{\xi} = \mathbf{G}X, \quad \text{and} \quad \boldsymbol{\omega} = \mathbf{H}Y,$$
 (4)

respectively, where $\boldsymbol{\xi} := (\xi_1, \xi_2, \cdots, \xi_t)^{\top}$ and $\boldsymbol{\omega} := (\omega_1, \omega_2, \cdots, \omega_t)^{\top}$. Consider the problem of finding $\boldsymbol{\nu} \in \mathbb{R}^t$, \mathbf{G} and \mathbf{H} to minimize

trace
$$\left\{ \mathbb{E} \left[\left(\mathbf{H}Y - \boldsymbol{\nu} - \mathbf{G}X \right) \left(\mathbf{H}Y - \boldsymbol{\nu} - \mathbf{G}X \right)^{\top} \right] \right\},$$
 (5)

where we assume that the covariance matrix of $\mathbf{H}Y$ is $\Sigma_{\omega\omega} := \mathbf{H}\Sigma_{YY}\mathbf{H}^{\top} = \mathbf{I}_{t}$. In other words, we are trying to find $\boldsymbol{\nu} \in \mathbb{R}^{t}$, \mathbf{G} and \mathbf{H} such that

$$\mathbf{H}Y \approx \boldsymbol{\nu} + \mathbf{G}X.$$

2. Derivation of the Minimizer: Note that

$$f(\boldsymbol{\nu}, \mathbf{G}, \mathbf{H}) := \mathbb{E} \Big[(\mathbf{H}Y - \boldsymbol{\nu} - \mathbf{G}X) (\mathbf{H}Y - \boldsymbol{\nu} - \mathbf{G}X)^{\top} \Big]$$

$$= \mathbf{H} (\boldsymbol{\Sigma}_{YY} + \boldsymbol{\mu}_{Y} \boldsymbol{\mu}_{Y}^{\top}) \mathbf{H}^{\top} - \mathbf{H} \boldsymbol{\mu}_{Y} \boldsymbol{\nu}^{\top} - \mathbf{H} (\boldsymbol{\Sigma}_{YX} + \boldsymbol{\mu}_{Y} \boldsymbol{\mu}_{X}^{\top}) \mathbf{G}^{\top}$$

$$- \boldsymbol{\nu} \boldsymbol{\mu}_{Y} \mathbf{H}^{\top} + \boldsymbol{\nu} \boldsymbol{\nu}^{\top} + \boldsymbol{\nu} \boldsymbol{\mu}_{X} \mathbf{G}^{\top}$$

$$- \mathbf{G} (\boldsymbol{\Sigma}_{XY} + \boldsymbol{\mu}_{X} \boldsymbol{\mu}_{Y}^{\top}) \mathbf{H}^{\top} + \mathbf{G} \boldsymbol{\mu}_{X} \boldsymbol{\nu}^{\top} + \mathbf{G} (\boldsymbol{\Sigma}_{XX} + \boldsymbol{\mu}_{X} \boldsymbol{\mu}_{X}^{\top}) \mathbf{G}^{\top}.$$
(6)

We first fix G and H and minimize over ν :

$$\begin{split} \operatorname{trace} & \left\{ f(\boldsymbol{\nu}, \mathbf{G}, \mathbf{H}) \right\} = \operatorname{trace} \left\{ \left(\boldsymbol{\nu} - (\mathbf{H} \boldsymbol{\mu}_{Y} - \mathbf{G} \boldsymbol{\mu}_{X}) \right) \left(\boldsymbol{\nu} - (\mathbf{H} \boldsymbol{\mu}_{Y} - \mathbf{G} \boldsymbol{\mu}_{X}) \right)^{\top} \right. \\ & \left. - (\mathbf{H} \boldsymbol{\mu}_{Y} - \mathbf{G} \boldsymbol{\mu}_{X}) (\mathbf{H} \boldsymbol{\mu}_{Y} - \mathbf{G} \boldsymbol{\mu}_{X})^{\top} \right. \\ & \left. + \mathbf{H} (\boldsymbol{\Sigma}_{YY} + \boldsymbol{\mu}_{Y} \boldsymbol{\mu}_{Y}^{\top}) \mathbf{H}^{\top} - \mathbf{H} (\boldsymbol{\Sigma}_{YX} + \boldsymbol{\mu}_{Y} \boldsymbol{\mu}_{X}^{\top}) \mathbf{G}^{\top} \right. \\ & \left. - \mathbf{G} (\boldsymbol{\Sigma}_{XY} + \boldsymbol{\mu}_{X} \boldsymbol{\mu}_{Y}^{\top}) \mathbf{H}^{\top} + \mathbf{G} (\boldsymbol{\Sigma}_{XX} + \boldsymbol{\mu}_{X} \boldsymbol{\mu}_{X}^{\top}) \mathbf{G}^{\top} \right\} \\ & \geq \operatorname{trace} \left\{ - (\mathbf{H} \boldsymbol{\mu}_{Y}^{\top} - \mathbf{G} \boldsymbol{\mu}_{X}^{\top}) (\mathbf{H} \boldsymbol{\mu}_{Y}^{\top} - \mathbf{G} \boldsymbol{\mu}_{X}^{\top})^{\top} \right. \\ & \left. + \mathbf{H} (\boldsymbol{\Sigma}_{YY} + \boldsymbol{\mu}_{Y} \boldsymbol{\mu}_{Y}^{\top}) \mathbf{H}^{\top} - \mathbf{H} (\boldsymbol{\Sigma}_{YX} + \boldsymbol{\mu}_{Y} \boldsymbol{\mu}_{X}^{\top}) \mathbf{G}^{\top} \right. \\ & \left. - \mathbf{G} (\boldsymbol{\Sigma}_{XY} + \boldsymbol{\mu}_{X} \boldsymbol{\mu}_{Y}^{\top}) \mathbf{H}^{\top} + \mathbf{G} (\boldsymbol{\Sigma}_{XX} + \boldsymbol{\mu}_{X} \boldsymbol{\mu}_{X}^{\top}) \mathbf{G}^{\top} \right\} \\ & = \operatorname{trace} \left\{ \mathbf{H} \boldsymbol{\Sigma}_{YY} \mathbf{H}^{\top} - \mathbf{H} \boldsymbol{\Sigma}_{YX} \mathbf{G}^{\top} - \mathbf{G} \boldsymbol{\Sigma}_{XY} \mathbf{H}^{\top} + \mathbf{G} \boldsymbol{\Sigma}_{XX} \mathbf{G}^{\top} \right\}, \end{split}$$

where the inequality becomes an equality if and only if

$$\nu = \mathbf{H}\boldsymbol{\mu}_Y - \mathbf{G}\boldsymbol{\mu}_X. \tag{7}$$

We next minimizer over the matrix **G** by noticing that

$$\begin{aligned} &\operatorname{trace} \Big\{ \mathbf{H} \mathbf{\Sigma}_{YY} \mathbf{H}^{\top} - \mathbf{H} \mathbf{\Sigma}_{YX} \mathbf{G}^{\top} - \mathbf{G} \mathbf{\Sigma}_{XY} \mathbf{H}^{\top} + \mathbf{G} \mathbf{\Sigma}_{XX} \mathbf{G}^{\top} \Big\} \\ &= \operatorname{trace} \Big\{ \Big(\mathbf{G} \mathbf{\Sigma}_{XX}^{1/2} - \mathbf{H} \mathbf{\Sigma}_{YX} \mathbf{\Sigma}_{XX}^{-\frac{1}{2}} \Big) \Big(\mathbf{G} \mathbf{\Sigma}_{XX}^{1/2} - \mathbf{H} \mathbf{\Sigma}_{YX} \mathbf{\Sigma}_{XX}^{-\frac{1}{2}} \Big) \\ &- \mathbf{H} \mathbf{\Sigma}_{YX} \mathbf{\Sigma}_{XX}^{-1} \mathbf{\Sigma}_{XY} \mathbf{H}^{\top} + \mathbf{H} \mathbf{\Sigma}_{YY} \mathbf{H}^{\top} \Big\} \\ &\geq \operatorname{trace} \Big\{ \mathbf{H} \mathbf{\Sigma}_{YY} \mathbf{H}^{\top} - \mathbf{H} \mathbf{\Sigma}_{YX} \mathbf{\Sigma}_{XX}^{-1} \mathbf{\Sigma}_{XY} \mathbf{H}^{\top} \Big\} \\ &= t - \sum_{i=1}^{t} \lambda_{j} \Big(\mathbf{H} \mathbf{\Sigma}_{YX} \mathbf{\Sigma}_{XX}^{-1} \mathbf{\Sigma}_{XY} \mathbf{H}^{\top} \Big), \end{aligned}$$

where the inequality becomes an equality if and only if

$$\mathbf{G} = \mathbf{H} \mathbf{\Sigma}_{YX} \mathbf{\Sigma}_{XX}^{-1}. \tag{8}$$

Finally, we minimize over the matrix \mathbf{H} . Let $\mathbf{U}^{\top} := \mathbf{H} \Sigma_{YY}^{\frac{1}{2}}$ so that $\mathbf{U}^{\top} \mathbf{U} = \mathbf{I}_t$. By the Poincaré Separation Theorem¹, we have

$$t - \sum_{j=1}^{t} \lambda_j(\mathbf{U}^\top \mathbf{R} \mathbf{U}) \ge t - \sum_{j=1}^{t} \lambda_j(\mathbf{R}), \tag{9}$$

$$\lambda_j(\mathbf{U}^{\top}\mathbf{A}\mathbf{U}) \leq \lambda_j(\mathbf{A}),$$

with equality if the columns of \mathbf{U} are the first k eigenvectors of \mathbf{A} .

¹The Poincaré Separation Theorem says the following: if **A** is an $(n \times n)$ -matrix and **U** is an $(n \times k)$ -matrix, where $k \leq n$, such that $\mathbf{U}^{\top}\mathbf{U} = \mathbf{I}_k$. Then,

where

$$\mathbf{R} := \mathbf{\Sigma}_{YY}^{-\frac{1}{2}} \mathbf{\Sigma}_{YX} \mathbf{\Sigma}_{XX}^{-1} \mathbf{\Sigma}_{XY} \mathbf{\Sigma}_{YY}^{-\frac{1}{2}}, \tag{10}$$

with equality being held if and only if the columns of \mathbf{U} are the eigenvectors associated with the first t eigenvalues of \mathbf{R} .

Therefore, the ν , G and H that minimize (5) are given by

$$egin{aligned} oldsymbol{
u}^{(t)} &:= \mathbf{H}^{(t)} oldsymbol{\mu}_Y - \mathbf{G}^{(t)} oldsymbol{\mu}_X, \ \mathbf{G}^{(t)} &:= \mathbf{V}^{(t)} oldsymbol{\Sigma}_{YY}^{-rac{1}{2}} oldsymbol{\Sigma}_{YX} oldsymbol{\Sigma}_{XX}^{-1}, \ \mathbf{H}^{(t)} &:= \mathbf{V}^{(t)} oldsymbol{\Sigma}_{YY}^{-rac{1}{2}}, \end{aligned}$$

where

$$\mathbf{V}^{(t)} := egin{pmatrix} \mathbf{v}_1^{ op} \ dots \ \mathbf{v}_t^{ op} \end{pmatrix}$$

is a $(t \times s)$ -matrix with the j-th row \mathbf{v}_j being the eigenvector associated with the j-th largest eigenvalue of \mathbf{R} , for all $j = 1, \dots, t$.

3. Canonical Variate Score: Let $\mathbf{g}_j := (g_{j,1}, \dots, g_{j,p})^{\top} \in \mathbb{R}^p$ and $\mathbf{h}_j := (h_{j,1}, \dots, h_{j,s})^{\top} \in \mathbb{R}^s$ be the j-th rows of $\mathbf{G}^{(t)}$ and $\mathbf{H}^{(t)}$, respectively, for all $j = 1, 2, \dots, t$. The j-th pair of canonical variate score, (ξ_j, ω_j) , is given by

$$\xi_j = \mathbf{g}_j^{\mathsf{T}} X, \qquad \omega_j = \mathbf{h}_j^{\mathsf{T}} Y,$$
 (11)

where

$$\mathbf{g}_j = \mathbf{\Sigma}_{XX}^{-1} \mathbf{\Sigma}_{XY} \mathbf{\Sigma}_{YY}^{-\frac{1}{2}} \mathbf{v}_j, \quad \text{and} \quad \mathbf{h}_j = \mathbf{\Sigma}_{YY}^{-\frac{1}{2}} \mathbf{v}_j,$$
 (12)

for all $j = 1, \dots, t$.

4. Covariance Matrix of Canonical Variate Scores: Consider the vector of the canonical variate scores

$$\boldsymbol{\xi}^{(t)} = \mathbf{G}^{(t)} X, \quad \text{and} \quad \boldsymbol{\omega}^{(t)} = \mathbf{H}^{(t)} Y.$$
 (13)

Then, the covariance matrix between $\boldsymbol{\xi}^{(t)}$ and $\boldsymbol{\omega}^{(t)}$ is

$$\operatorname{Cov}(\boldsymbol{\xi}^{(t)}, \boldsymbol{\omega}^{(t)}) = \operatorname{Cov}(\mathbf{G}^{(t)}X, \mathbf{H}^{(t)}Y) = \mathbf{G}^{(t)}\operatorname{Cov}(X, Y)\mathbf{H}^{(t)^{\top}}$$

$$= \mathbf{V}^{(t)}\boldsymbol{\Sigma}_{YY}^{-\frac{1}{2}}\boldsymbol{\Sigma}_{YX}\boldsymbol{\Sigma}_{XX}^{-1}\boldsymbol{\Sigma}_{XY}\boldsymbol{\Sigma}_{YY}^{-\frac{1}{2}}\mathbf{V}^{(t)^{\top}}$$

$$= \mathbf{V}^{(t)}\mathbf{R}\mathbf{V}^{(t)^{\top}}$$

$$= \boldsymbol{\Lambda}^{(t)}$$

$$= \operatorname{diag}(\lambda_{1}(\mathbf{R}), \dots, \lambda_{t}(\mathbf{R})). \tag{14}$$

The covariance matrix of $\boldsymbol{\xi}^{(t)}$ is

$$\operatorname{Cov}(\boldsymbol{\xi}^{(t)}, \boldsymbol{\xi}^{(t)}) = \mathbf{G}^{(t)} \operatorname{Cov}(X, X) \mathbf{G}^{(t)^{\top}}$$

$$= \mathbf{V}^{(t)} \boldsymbol{\Sigma}_{YY}^{-\frac{1}{2}} \boldsymbol{\Sigma}_{YX} \boldsymbol{\Sigma}_{XX}^{-1} \boldsymbol{\Sigma}_{XX} \boldsymbol{\Sigma}_{XX}^{-1} \boldsymbol{\Sigma}_{XY} \boldsymbol{\Sigma}_{YY}^{-\frac{1}{2}} \mathbf{V}^{(t)^{\top}}$$

$$= \mathbf{V}^{(t)} \boldsymbol{\Sigma}_{YY}^{-\frac{1}{2}} \boldsymbol{\Sigma}_{YX} \boldsymbol{\Sigma}_{XX}^{-1} \boldsymbol{\Sigma}_{XY} \boldsymbol{\Sigma}_{YY}^{-\frac{1}{2}} \mathbf{V}^{(t)^{\top}}$$

$$= \boldsymbol{\Lambda}^{(t)}. \tag{15}$$

And, finally, the covariance matrix of $\boldsymbol{\omega}^{(t)}$ is

$$\operatorname{Cov}(\omega^{(t)}, \omega^{(t)}) = \mathbf{H}^{(t)} \operatorname{Cov}(Y, Y) \mathbf{H}^{(t)^{\top}}$$
$$= \mathbf{H}^{(t)} \mathbf{\Sigma}_{YY} \mathbf{H}^{(t)^{\top}}$$
$$= \mathbf{I}_{t}.$$

It follows that the correlation matrix between $\boldsymbol{\xi}^{(t)}$ and $\boldsymbol{\omega}^{(t)}$ is

$$\operatorname{Cor}(\boldsymbol{\xi}^{(t)}, \boldsymbol{\omega}^{(t)}) = \boldsymbol{\Lambda}^{\frac{1}{2}}. \tag{16}$$

Consequently, we have

$$Cor(\xi_j^{(t)}, \xi_k^{(t)}) = Cor(\omega_j^{(t)}, \omega_k^{(t)}) = \delta_{j,k}, \qquad Cor(\xi_j^{(t)}, \omega_k^{(t)}) = \rho_j \cdot \delta_{j,k},$$
 (17)

where $\rho_j := \sqrt{\lambda_j(\mathbf{R})}$ and $\delta_{j,k}$ is the Kronecker delta, for all $j, k = 1, \dots, t$.

- **5. Interpretation of the Coefficients** $\{g_{i,j}\}$ and $\{h_{i,j}\}$: We choose the coefficients $\{g_{i,j}\}_{i\in\{1,\dots,t\},j\in\{1,\dots,p\}}$ and $\{h_{i,j}\}_{i\in\{1,\dots,t\},j\in\{1,\dots,s\}}$ so that
 - (a) the first pair (ξ_1, ω_1) has the largest possible correlation among all linear combinations of X and Y;
 - (b) For $j=2,\dots,t$, the j-th pair (ξ_j,ω_j) has the largest possible correlation ρ_j among all linear combinations of X and Y in which ξ_j is uncorrelated with $\xi_1,\xi_2,\dots,\xi_{j-1}$ and ω_j is uncorrelated with $\omega_1,\omega_2,\dots,\omega_{j-1}$.

It follows that

$$1 > \rho_1 > \rho_2 > \dots > \rho_t > 0.$$
 (18)

Here, the correlation coefficient, ρ_j , between ξ_j and ω_j , is called the *canonical correlation coefficient* associated with the j-th pair of canonical variates for all $j = 1, \dots, t$.

6. Special Case — when s = 1: When s = 1, the matrix **R** reduces to the squared multiple correlation coefficient of Y with the best linear predictor of Y using X_1, \dots, X_p :

$$R = \frac{\boldsymbol{\sigma}_{YX}^{\top} \boldsymbol{\Sigma}_{XX}^{-1} \boldsymbol{\sigma}_{XY}}{\sigma_{Y}^{2}},$$

where σ_Y^2 is the variance of Y and $\sigma_{XY} \in \mathbb{R}^p$ is the covariance between X and Y.

The j-th canonical correlation coefficient, ρ_j , can be interpreted as the multiple correlation coefficient of either $\xi_j = \mathbf{g}_j^\top X$ with Y or $\omega_j = \mathbf{h}_j^\top Y$ with X.

7. Special Case — when s = p = 1: When s = p = 1, R is the squared correlation coefficient between Y and X,

$$\mathbf{R} = \rho^2 = \frac{\sigma_{XY}^2}{\sigma_X^2 \sigma_Y^2},$$

where σ_X^2 and σ_Y^2 are the variances of X and Y, respectively, and σ_{XY} is the covariance between X and Y.

8. Invariance: Canonical correlations are *invariant* under simultaneous nonsingular linear transformation of the random vectors X and Y. Let $\mathbf{D} \in \mathbb{R}^{p \times p}$ and $\mathbf{F} \in \mathbb{R}^{s \times s}$ be two nonsingular matrices and let

$$X' = \mathbf{D}X, \qquad Y' = \mathbf{F}Y.$$

Then, the canonical correlations of $\mathbf{D}X$ and $\mathbf{F}Y$ are identical to those of X and Y.

Remark. One consequence of this invariance property is that the canonical correlations obtained from the *covariance* matrix and those from the *correlation* matrix are identical.

III. CCA as a Correlation-Maximization Technique

- 1. Goal: We derive CCA by maximizing the correlation between linear combinations of X and those of Y.
- **2. Assumption:** Assume $\mathbb{E}[X] = \mathbf{0}_p$ and $\mathbb{E}[Y] = \mathbf{0}_s$. Consequently, all ξ_j 's and ω_j 's, for $j = 1, 2, \dots, t$, have zero mean.
- **3. Derivation of** (ξ_1, ω_1) : Consider an arbitrary linear projections $\xi = \mathbf{g}^\top X$ and $\omega = \mathbf{h}^\top Y$, and assume that they both have unit variances

$$\operatorname{Var}(\xi) = \mathbf{g}^{\mathsf{T}} \mathbf{\Sigma}_{XX} \mathbf{g} = 1, \quad \operatorname{and} \quad \operatorname{Var}(\omega) = \mathbf{h}^{\mathsf{T}} \mathbf{\Sigma}_{YY} \mathbf{h} = 1.$$
 (19)

Then, we find vectors **g** and **h** such that the random variables ξ and ω have maximal correlations

$$Cor(\xi, \omega) = \mathbf{g}^{\mathsf{T}} \mathbf{\Sigma}_{XY} \mathbf{h}$$
 (20)

among all linear functions of X and Y.

In other words, we solve the following optimization problem

maximize
$$\mathbf{g}^{\top} \mathbf{\Sigma}_{XY} \mathbf{h}$$

subject to $\mathbf{g}^{\top} \mathbf{\Sigma}_{XX} \mathbf{g} = \mathbf{h}^{\top} \mathbf{\Sigma}_{YY} \mathbf{h} = 1.$ (21)

The Lagrangian function of this problem is

$$L_1(\mathbf{g}, \mathbf{h}, \lambda, \mu) := \mathbf{g}^{\mathsf{T}} \mathbf{\Sigma}_{XY} \mathbf{h} - \frac{\lambda}{2} (\mathbf{g}^{\mathsf{T}} \mathbf{\Sigma}_{XX} \mathbf{g} - 1) - \frac{\mu}{2} (\mathbf{h}^{\mathsf{T}} \mathbf{\Sigma}_{YY} \mathbf{h} - 1), \tag{22}$$

where $\lambda > 0$ and $\mu > 0$ are the Lagrangian multipliers. We differentiate L_1 with respect to \mathbf{g} and \mathbf{h} and set derivatives to zero, and obtain

$$\frac{\partial L_1}{\partial \mathbf{g}} = \mathbf{\Sigma}_{XY} \mathbf{h} - \lambda \mathbf{\Sigma}_{XX} \mathbf{g} = \mathbf{0}_p, \tag{23}$$

$$\frac{\partial L_1}{\partial \mathbf{h}} = \mathbf{\Sigma}_{YX} \mathbf{g} - \mu \mathbf{\Sigma}_{YY} \mathbf{h} = \mathbf{0}_s. \tag{24}$$

Two observations:

• If we multiply (23) on the left by \mathbf{g}^{\top} and (24) on the left by \mathbf{h}^{\top} , we have

$$\mathbf{g}^{\mathsf{T}} \mathbf{\Sigma}_{XY} \mathbf{h} - \lambda \, \mathbf{g}^{\mathsf{T}} \mathbf{\Sigma}_{XX} \mathbf{g} = 0,$$

$$\mathbf{h}^{\mathsf{T}} \mathbf{\Sigma}_{YX} \mathbf{g} - \mu \, \mathbf{h}^{\mathsf{T}} \mathbf{\Sigma}_{YY} \mathbf{h} = 0;$$

that is,

$$\mathbf{g}^{\mathsf{T}} \mathbf{\Sigma}_{XY} \mathbf{h} = \lambda = \mu. \tag{25}$$

• Since (23) and (24) can be written equivalently as

$$-\lambda \Sigma_{XX} \mathbf{g} + \Sigma_{XY} \mathbf{h} = \mathbf{0}_p,$$
 and $\Sigma_{YX} \mathbf{g} - \lambda \Sigma_{YY} \mathbf{h} = \mathbf{0}_s.$

Pre-multiplying the first equation by $\Sigma_{YX}\Sigma_{XX}^{-1}$ and substitute into the second one, we have

$$(\mathbf{\Sigma}_{YX}\mathbf{\Sigma}_{XX}^{-1}\mathbf{\Sigma}_{XY} - \lambda^2\mathbf{\Sigma}_{YY})\mathbf{h} = \mathbf{0}_s, \tag{26}$$

or equivalently, we have

$$\left(\boldsymbol{\Sigma}_{YY}^{-\frac{1}{2}}\boldsymbol{\Sigma}_{YX}\boldsymbol{\Sigma}_{XX}^{-1}\boldsymbol{\Sigma}_{XY}\boldsymbol{\Sigma}_{YY}^{-\frac{1}{2}} - \lambda^{2}\mathbf{I}_{s}\right)\boldsymbol{\Sigma}_{YY}^{\frac{1}{2}}\mathbf{h} = \mathbf{0}_{s}.$$
 (27)

It follows that, at the optimality, we must have

$$\mathbf{g}_1 := \frac{1}{\lambda} \mathbf{\Sigma}_{XX}^{-1} \mathbf{\Sigma}_{XY} \mathbf{\Sigma}_{YY}^{-\frac{1}{2}} \mathbf{v}_1, \quad \text{and} \quad \mathbf{h}_1 := \mathbf{\Sigma}_{YY}^{-\frac{1}{2}} \mathbf{v}_1, \quad (28)$$

where \mathbf{v}_1 is the eigenvector of the matrix

$$\mathbf{R} = \mathbf{\Sigma}_{YY}^{-rac{1}{2}} \mathbf{\Sigma}_{YX} \mathbf{\Sigma}_{XX}^{-1} \mathbf{\Sigma}_{XY} \mathbf{\Sigma}_{YY}^{-rac{1}{2}}$$

associated with the largest eigenvalue.

Hence, the first pair of canonical variates is $(\xi_1, \omega_1) = (\mathbf{g}_1^\top X, \mathbf{h}_1^\top Y)$ and the maximal correlation is the square root of the largest eigenvalue of \mathbf{R} , i.e.,

$$Cor(\xi_1, \omega_1) = \mathbf{g}_1^{\mathsf{T}} \mathbf{\Sigma}_{XY} \mathbf{h}_1 = \sqrt{\lambda_1(\mathbf{R})}.$$
 (29)

Here, note the largest eigenvalue of \mathbf{R} , $\lambda_1(\mathbf{R})$, and the optimal Lagrangian multipliers, λ^* and μ^* , are related by $\lambda_1(\mathbf{R}) = \lambda^{*2} = \mu^{*2}$.

- **4. Derivation of** (ξ_2, ω_2) : Given (ξ_1, ω_1) , let $\xi = \mathbf{g}^\top X$ and $\omega = \mathbf{h}^\top Y$ be a second pair of arbitrary linear projections. We require
 - ξ and ω have the largest correlation among all such linear combinations of X and Y;
 - ξ is uncorrelated with ξ_1 and ω is uncorrelated with ω_1 :

$$\mathbf{g}^{\mathsf{T}} \mathbf{\Sigma}_{XX} \mathbf{g}_1 = 0, \qquad \mathbf{h}^{\mathsf{T}} \mathbf{\Sigma}_{YY} \mathbf{h}_1 = 0; \tag{30}$$

• ξ and ω have unit variance:

$$\mathbf{g}^{\mathsf{T}} \mathbf{\Sigma}_{XX} \mathbf{g} = 1, \qquad \mathbf{h}^{\mathsf{T}} \mathbf{\Sigma}_{YY} \mathbf{h} = 1; \tag{31}$$

• ξ is uncorrelated with ω_1 and ω is uncorrelated with ξ_1 :

$$Cor(\xi, \omega_1) = \mathbf{g}^{\mathsf{T}} \mathbf{\Sigma}_{XY} \mathbf{h}_1 \stackrel{(*)}{=} \lambda_1 \mathbf{g}^{\mathsf{T}} \mathbf{\Sigma}_{XX} \mathbf{g}_1 = 0,$$
 (32)

$$Cor(\omega, \xi_1) = \mathbf{h}^{\top} \mathbf{\Sigma}_{YX} \mathbf{g}_1 \stackrel{(**)}{=} \lambda_1 \mathbf{h}^{\top} \mathbf{\Sigma}_{YY} \mathbf{h}_1 = 0,$$
 (33)

where (*) and (**) follow from (23) and (24), respectively.

Then, we solve the following optimization problem

maximize
$$\operatorname{Cor}(\mathbf{g}^{\top} X, \mathbf{h}^{\top} Y) = \mathbf{g}^{\top} \mathbf{\Sigma}_{XY} \mathbf{h}$$

subject to $\mathbf{g}^{\top} \mathbf{\Sigma}_{XX} \mathbf{g} = 1$,
 $\mathbf{h}^{\top} \mathbf{\Sigma}_{YY} \mathbf{h} = 1$, (34)
 $\mathbf{g}^{\top} \mathbf{\Sigma}_{XX} \mathbf{g}_{1} = 0$,
 $\mathbf{h}^{\top} \mathbf{\Sigma}_{YY} \mathbf{h}_{1} = 0$.

The Lagrangian function of this preceding optimization problem is

$$L_{2}(\mathbf{g}, \mathbf{h}, \lambda, \mu, \eta, \nu) := \mathbf{g}^{\top} \mathbf{\Sigma}_{XY} \mathbf{h} - \frac{\lambda}{2} (\mathbf{g}^{\top} \mathbf{\Sigma}_{XX} \mathbf{g} - 1) - \frac{\mu}{2} (\mathbf{h}^{\top} \mathbf{\Sigma}_{YY} \mathbf{h} - 1) - \frac{\eta}{2} \mathbf{g}^{\top} \mathbf{\Sigma}_{XX} \mathbf{g}_{1} - \frac{\nu}{2} \mathbf{h}^{\top} \mathbf{\Sigma}_{YY} \mathbf{h}_{1},$$
(35)

where $\lambda > 0$, $\mu > 0$, $\eta > 0$ and $\nu > 0$ are the Lagrangian multipliers.

Differentiating L_2 with respect to \mathbf{g} and \mathbf{h} and setting the derivatives to 0 yields

$$\frac{\partial L_2}{\partial \mathbf{g}} = \mathbf{\Sigma}_{XY} \mathbf{h} - \lambda \mathbf{\Sigma}_{XX} \mathbf{g} - \eta \mathbf{\Sigma}_{XX} \mathbf{g}_1 = \mathbf{0}_p, \tag{36}$$

$$\frac{\partial L_2}{\partial \mathbf{h}} = \mathbf{\Sigma}_{YX} \mathbf{g} - \mu \mathbf{\Sigma}_{YY} \mathbf{h} - \mu \mathbf{\Sigma}_{YY} \mathbf{h}_1 = \mathbf{0}_s.$$
 (37)

By solving this linear system, we have that the second pair of the canonical variate is $(\xi_2, \omega_2) = (\mathbf{g}_2^\top X, \mathbf{h}_2^\top Y)$ is

$$\mathbf{g}_2 = \mathbf{\Sigma}_{XX}^{-1} \mathbf{\Sigma}_{XY} \mathbf{\Sigma}_{YY}^{-\frac{1}{2}} \mathbf{v}_2, \qquad \mathbf{h}_2 = \mathbf{\Sigma}_{YY}^{-\frac{1}{2}} \mathbf{v}_2, \tag{38}$$

where \mathbf{v}_2 is the eigenvector of \mathbf{R} associated with the second largest eigenvalue of \mathbf{R} , and their correlation is

$$Cor(\xi_2, \omega_2) = \mathbf{g}_2^{\mathsf{T}} \mathbf{\Sigma}_{XY} \mathbf{h}_2 = \sqrt{\lambda_2(\mathbf{R})}.$$
 (39)

5. Derivation of (ξ_j, ω_j) **for** $j \geq 3$: The remaining canonical variates (ξ_j, ω_j) , for $j \geq 3$, can be obtained by choosing coefficients \mathbf{g}_j and \mathbf{h}_j such that (ξ_j, ω_j) has the largest correlation among all pairs of linear combinations of X and Y that are also uncorrelated with all previously derived pairs, $\{(\xi_i, \omega_i)\}_{i=1}^{j-1}$, until no further solution can be found.

IV. Sample Estimates

1. Setup: Let $\{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^n$ be i.i.d observations from (X, Y). Let

$$\mathbf{X} = (\mathbf{x}_1 \mathbf{x}_2 \cdots \mathbf{x}_n) \in \mathbb{R}^{p \times n}$$
 and $\mathbf{Y} = (\mathbf{y}_1 \mathbf{y}_2 \cdots \mathbf{y}_n) \in \mathbb{R}^{s \times n}$.

2. Estimation of Coefficient Matrix: We estimate G and H by

$$\widehat{\mathbf{G}}^{(t)} := \widehat{\mathbf{V}}^{(t)} \widehat{\boldsymbol{\Sigma}}_{YY}^{-\frac{1}{2}} \widehat{\boldsymbol{\Sigma}}_{YX} \widehat{\boldsymbol{\Sigma}}_{XX}^{-1}, \tag{40}$$

$$\widehat{\mathbf{H}}^{(t)} := \widehat{\mathbf{V}}^{(t)} \widehat{\boldsymbol{\Sigma}}_{YY}^{-\frac{1}{2}},\tag{41}$$

respectively, and

$$\widehat{\mathbf{V}}^{(t)} := \begin{pmatrix} \widehat{\mathbf{v}}_1^\top \\ \vdots \\ \widehat{\mathbf{v}}_t^\top \end{pmatrix} \tag{42}$$

where $\hat{\mathbf{v}}_j$ is the eigenvector associated with the j-th largest eigenvalue of

$$\widehat{\mathbf{R}} = \widehat{\boldsymbol{\Sigma}}_{YY}^{-\frac{1}{2}} \widehat{\boldsymbol{\Sigma}}_{YX} \widehat{\boldsymbol{\Sigma}}_{XX}^{-1} \widehat{\boldsymbol{\Sigma}}_{XY} \widehat{\boldsymbol{\Sigma}}_{YY}^{-\frac{1}{2}}, \tag{43}$$

for $j = 1, \dots, t$.

3. Estimation of Canonical Variates: The *j*-th row of $\hat{\boldsymbol{\xi}} := \widehat{\mathbf{G}}^{(t)}\mathbf{X}$ and $\hat{\boldsymbol{\omega}} := \widehat{\mathbf{H}}^{(t)}\mathbf{Y}$ together form the *j*-th pair of sample canonical variates $(\hat{\boldsymbol{\xi}}_j, \hat{\boldsymbol{\omega}}_j)$, where

$$\hat{\boldsymbol{\xi}}_j = \hat{\mathbf{g}}_j^{\mathsf{T}} \mathbf{X}, \quad \text{and} \quad \hat{\boldsymbol{\omega}}_j = \hat{\mathbf{h}}_j^{\mathsf{T}} \mathbf{Y}$$
 (44)

with canonical variate scores of

$$\hat{\xi}_{i,j} = \hat{\mathbf{g}}_j^{\mathsf{T}} \mathbf{x}_i, \quad \text{and} \quad \hat{\omega}_{i,j} = \hat{\mathbf{h}}_j^{\mathsf{T}} \mathbf{y}_i,$$
 (45)

for $i = 1, \dots, n$, where

$$\hat{\mathbf{g}}_{j}^{\top} = \hat{\mathbf{v}}_{j}^{\top} \hat{\boldsymbol{\Sigma}}_{YY}^{-\frac{1}{2}} \hat{\boldsymbol{\Sigma}}_{YX} \hat{\boldsymbol{\Sigma}}_{XX}^{-1} \tag{46}$$

is the j-th row of $\widehat{\mathbf{G}}^{(t)}$, and

$$\hat{\mathbf{h}}_{i}^{\top} = \hat{\mathbf{v}}_{i}^{\top} \widehat{\boldsymbol{\Sigma}}_{YY}^{-\frac{1}{2}} \tag{47}$$

is the *j*-row of $\widehat{\mathbf{H}}^{(t)}$.

4. Estimation of Sample Canonical Correlation Coefficient: The sample canonical correlation coefficient for the j-th pair of sample canonical variates $(\hat{\boldsymbol{\xi}}_i, \hat{\boldsymbol{\omega}}_j)$ is

$$\hat{\rho}_j = \frac{\hat{\mathbf{g}}_j^{\top} \widehat{\boldsymbol{\Sigma}}_{XY} \hat{\mathbf{h}}_j}{\sqrt{\hat{\mathbf{g}}_j^{\top} \widehat{\boldsymbol{\Sigma}}_{XX} \hat{\mathbf{g}}_j} \cdot \sqrt{\hat{\mathbf{h}}_j^{\top} \widehat{\boldsymbol{\Sigma}}_{YY} \hat{\mathbf{h}}_j}},$$
(48)

for all $j = 1, \dots, t$.

V. Kernel CCA

- 1. Overview: The kernel CCA uses
 - (a) a nonlinear transformation, $\Phi_1 : \mathbb{R}^p \to \mathcal{H}_1$, of one set of input data, $\mathbf{x}_i \in \mathbb{R}^p$, for all $i = 1, 2, \dots, n$, and
 - (b) another nonlinear transformation, $\Phi_2 : \mathbb{R}^s \to \mathcal{H}_2$, of a second set of input data, $\mathbf{y}_i \in \mathbb{R}^s$, for all $j = 1, 2, \dots, n$.

Here, for each $j = 1, 2, \mathcal{H}_j$ is a reproducing kernel Hilbert space (RKHS).

Then, we carry out CCA between two transformed sets of input data $\{\Phi_1(\mathbf{x}_i)\}_{i=1}^n$ and $\{\Phi_2(\mathbf{y}_i)\}_{i=1}^n$, where we assume that both sets of transformed data have been centered.

- **2. Goal:** We wish to find $f_1 \in \mathcal{H}_1$ and $f_2 \in \mathcal{H}_2$ such that the features $f_1(X) = \langle \Phi_1(X), f_1 \rangle_{\mathcal{H}}$ and $f_2(Y) = \langle \Phi_2(Y), f_2 \rangle_{\mathcal{H}}$ have the maximal correlation.
- **3. Naive Kernel CCA:** We consider to maximize the correlation of transformed X and Y, i.e., we maximize

$$\hat{\rho}_{\text{kernel}}(f_1, f_2) := \frac{\widehat{\text{Cov}}(f_1(X), f_2(Y))}{\sqrt{\widehat{\text{Var}}[f_1(X)]} \cdot \sqrt{\widehat{\text{Var}}[f_2(Y)]}},$$
(49)

subject to

$$f_1 \in \operatorname{Span}(\Phi_1(\mathbf{x}_1), \Phi_1(\mathbf{x}_2), \cdots, \Phi_1(\mathbf{x}_n))$$

 $f_2 \in \operatorname{Span}(\Phi_2(\mathbf{y}_1), \Phi_2(\mathbf{y}_2), \cdots, \Phi_2(\mathbf{y}_n)),$

where

$$\widehat{\text{Cov}}(f_1(X), f_2(Y)) = \frac{1}{n} \sum_{i=1}^n f_1(\mathbf{x}_i) f_2(\mathbf{y}_i)$$

$$= \frac{1}{n} \sum_{i=1}^n \langle f_1, \Phi_1(\mathbf{x}_i) \rangle_{\mathcal{H}_1} \langle f_2, \Phi_2(\mathbf{y}_i) \rangle_{\mathcal{H}_2}$$

$$= \frac{1}{n} \boldsymbol{\alpha}_1^{\mathsf{T}} \mathbf{K}_1 \mathbf{K}_2 \boldsymbol{\alpha}_2, \tag{50}$$

$$\widehat{\operatorname{Var}}[f_1(X)] = \frac{1}{n} \boldsymbol{\alpha}_1^{\mathsf{T}} \mathbf{K}_1^2 \boldsymbol{\alpha}_1,$$
 (51)

$$\widehat{\operatorname{Var}}[f_2(Y)] = \frac{1}{n} \boldsymbol{\alpha}_2^{\top} \mathbf{K}_2^2 \boldsymbol{\alpha}_2.$$
 (52)

In the equations above, $\alpha_1 \in \mathbb{R}^n$, $\alpha_2 \in \mathbb{R}^n$, the matrices \mathbf{K}_1 and \mathbf{K}_2 are the $n \times n$ Gram matrices associated with $\{\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_n\}$ and $\{\mathbf{y}_1, \mathbf{y}_2, \cdots, \mathbf{y}_n\}$, respectively. In other words, the (i, j)-th entry of \mathbf{K}_1 is

$$\langle \Phi_1(\mathbf{x}_i), \Phi_1(\mathbf{x}_j) \rangle_{\mathcal{H}_1},$$

and the (i, j)-th entry of \mathbf{K}_2 is

$$\langle \Phi_2(\mathbf{y}_i), \Phi_2(\mathbf{y}_j) \rangle_{\mathcal{H}_2}.$$

It follows that (49) becomes

$$\hat{\rho}_{\text{kernel}}(f_1, f_2) = \frac{\boldsymbol{\alpha}_1^{\top} \mathbf{K}_1 \mathbf{K}_2 \boldsymbol{\alpha}_2}{\sqrt{(\boldsymbol{\alpha}_1^{\top} \mathbf{K}_1^2 \boldsymbol{\alpha}_1) \cdot (\boldsymbol{\alpha}_2^{\top} \mathbf{K}_2^2 \boldsymbol{\alpha}_2)}},$$
(53)

and we maximize over $\alpha_1 \in \mathbb{R}^n$ and $\alpha_2 \in \mathbb{R}^n$.

4. Solution to (53): Differentiating (53) with respect to α_1 and α_2 and setting the results to zero yield the generalized eigen-equations

$$\mathbf{K}\boldsymbol{\alpha} = \lambda \mathbf{D}\boldsymbol{\alpha}$$
.

where

$$\mathbf{K} = \begin{pmatrix} \mathbf{0} & \mathbf{K}_1 \mathbf{K}_2 \\ \mathbf{K}_2 \mathbf{K}_1 & \mathbf{0} \end{pmatrix}, \qquad \mathbf{D} = \begin{pmatrix} \mathbf{K}_1^2 & \mathbf{0} \\ \mathbf{0} & \mathbf{K}_2^2 \end{pmatrix}, \qquad \boldsymbol{\alpha} = \begin{pmatrix} \boldsymbol{\alpha}_1 \\ \boldsymbol{\alpha}_2 \end{pmatrix}.$$

It turns out that all pairs of "kernel canonical variates" in feature space are *perfectly* correlated. The reason is essentially due to overfitting.

- 5. Regularized Kernel CCA: We apply the regularization to solve the kernel CCA problem. More precisely, we penalize the \mathcal{H}_1 -norm of f_1 and the \mathcal{H}_2 -norm of f_2 each by the same small constant value $\kappa > 0$, and replace \mathbf{K}_1^2 by $(\mathbf{K}_1 + \kappa \mathbf{I}_n)^2$ and \mathbf{K}_2^2 by $(\mathbf{K}_2 + \kappa \mathbf{I}_n)^2$ in \mathbf{D} .
 - (a) Justification: suppose $\theta > 0$ is the regularization parameter, then

$$\widehat{\operatorname{Var}}[f_1(X)] + \theta \|f_1\|_{\mathcal{H}_1}^2 = \frac{1}{n} \boldsymbol{\alpha}_1^{\mathsf{T}} \mathbf{K}_1^2 \boldsymbol{\alpha}_1 + \theta \boldsymbol{\alpha}_1^{\mathsf{T}} \mathbf{K}_1 \boldsymbol{\alpha}_1 \approx \frac{1}{n} \boldsymbol{\alpha}_1^{\mathsf{T}} (\mathbf{K}_1 + \kappa \mathbf{I}_n)^2 \boldsymbol{\alpha}_1,$$

$$\widehat{\operatorname{Var}}[f_2(Y)] + \theta \|f_2\|_{\mathcal{H}_2}^2 = \frac{1}{n} \boldsymbol{\alpha}_2^{\mathsf{T}} \mathbf{K}_2^2 \boldsymbol{\alpha}_2 + \theta \boldsymbol{\alpha}_2^{\mathsf{T}} \mathbf{K}_2 \boldsymbol{\alpha}_2 \approx \frac{1}{n} \boldsymbol{\alpha}_2^{\mathsf{T}} (\mathbf{K}_2 + \kappa \mathbf{I}_n)^2 \boldsymbol{\alpha}_2,$$

where we can see $\kappa = \frac{1}{2}n\theta$.

(b) Optimization Problem: The regularized optimization problem (53) becomes

$$\tilde{\rho}_{\text{kernel}}(f_1, f_2; \kappa) = \frac{\boldsymbol{\alpha}_1^{\top} \mathbf{K}_1 \mathbf{K}_2 \boldsymbol{\alpha}_2}{\sqrt{(\boldsymbol{\alpha}_1^{\top} (\mathbf{K}_1 + \kappa \mathbf{I}_n)^2 \boldsymbol{\alpha}_1) \cdot (\boldsymbol{\alpha}_2^{\top} (\mathbf{K}_2 + \kappa \mathbf{I}_n)^2 \boldsymbol{\alpha}_2)}},$$
 (54)

- (c) Effects of κ : The value of κ determines the weight to be placed upon the penalty terms compared with the variance terms. In particular,
 - i. as κ gets close to zero, the variance term dominates, whereas
 - ii. as κ gets larger, the variance term becomes more affected by the amount of roughness allowed by the penalty term.
- (d) Solution: Differentiating (54) with respect to α_1 and α_2 and setting the results to zero yield

$$\mathbf{K}\boldsymbol{\alpha} = \lambda \mathbf{D}^{(\kappa)} \boldsymbol{\alpha},\tag{55}$$

where

$$\mathbf{D}^{(\kappa)} := egin{pmatrix} (\mathbf{K}_1 + \kappa \mathbf{I}_n)^2 & \mathbf{0} \ \mathbf{0} & (\mathbf{K}_2 + \kappa \mathbf{I}_n)^2 \end{pmatrix}.$$

Again, this is a generalized eigen-equation, which has 2n pairs of eigenvalues

$$\lambda_1, -\lambda_1, \cdots, \lambda_n, -\lambda_n$$
.

(e) Equivalent Generalized Eigen-equation: The generalized eigen-equation (55) can be written as

$$\mathbf{K}^{(\kappa)}\boldsymbol{\alpha} = (1+\lambda)\mathbf{D}^{(\kappa)}\boldsymbol{\alpha},\tag{56}$$

where

$$\mathbf{K}^{(\kappa)} = \begin{pmatrix} (\mathbf{K}_1 + \kappa \mathbf{I}_n)^2 & \mathbf{K}_1 \mathbf{K}_2 \\ \mathbf{K}_2 \mathbf{K}_1 & (\mathbf{K}_2 + \kappa \mathbf{I}_n)^2 \end{pmatrix}.$$

Then, (56) has the following pairs of eigenvalues

$$1+\lambda_1, 1-\lambda_1, \cdots, 1+\lambda_n, 1-\lambda_n$$
.

Note that (56) can be equivalently written as

$$\widetilde{\mathbf{K}}^{(\kappa)}\tilde{\boldsymbol{\alpha}} = \tilde{\lambda}\tilde{\boldsymbol{\alpha}},$$

where

$$\begin{split} \widetilde{\mathbf{K}}^{(\kappa)} &= [\mathbf{D}^{(\kappa)}]^{-\frac{1}{2}} \mathbf{K}^{(\kappa)} [\mathbf{D}^{(\kappa)}]^{-\frac{1}{2}} = \begin{pmatrix} \mathbf{I}_n & \widetilde{\mathbf{K}}_1^{(\kappa)} \widetilde{\mathbf{K}}_2^{(\kappa)} \\ \widetilde{\mathbf{K}}_2^{(\kappa)} \widetilde{\mathbf{K}}_1^{(\kappa)} & \mathbf{I}_n \end{pmatrix}, \\ \widetilde{\mathbf{K}}_1^{(\kappa)} &:= (\mathbf{K}_1 + \kappa \mathbf{I}_n)^{-1} \mathbf{K}_1, \\ \widetilde{\mathbf{K}}_2^{(\kappa)} &:= (\mathbf{K}_2 + \kappa \mathbf{I}_n)^{-1} \mathbf{K}_2, \\ \widetilde{\boldsymbol{\alpha}} &:= [\mathbf{D}^{(\kappa)}]^{-\frac{1}{2}} \boldsymbol{\alpha}, \\ \widetilde{\boldsymbol{\lambda}} &:= 1 + \lambda. \end{split}$$

References

Hastie, Trevor, Robert Tibshirani, and Martin Wainwright (2015). Statistical Learning with Sparsity: The Lasso and Generalizations. Chapman & Hall/CRC. ISBN: 1498712169. Izenman, Alan J (Mar. 2009). Modern Multivariate Statistical Techniques: Regression, Classification, and Manifold Learning. en. Springer Science & Business Media.