$$y_i = X_i \beta + X_i \eta_i + \epsilon_i$$

avec $\beta \in \mathbb{R}^p$, $\eta_i \sim \mathcal{N}(0_p, \Omega)$ et $\epsilon_i \sim \mathcal{N}(0, \sigma^2 I_{n_i})$. Marginalement, nous avons :

$$y_i|X_i \sim \mathcal{N}(X_i\beta, X_i\Omega X_i^{\mathsf{T}} + \sigma^2 I_{n_i}).$$

Important : même marginalement, les $(y_i|X_i)_i$ restent indépendants. Si maintenant nous mettons un prior sur β :

$$\beta \sim \mathcal{N}(0_p, \Sigma).$$

Marginalement, nous obtenons:

$$y_i|X_i, \sim \mathcal{N}(0_{n_i}, X_i(\Sigma + \Omega)X_i^{\mathsf{T}} + \sigma^2 I_{n_i}).$$

Nous sommes donc bien centrés en 0_{n_i} pour chaque i. Cela resemble bien à un modèle à effets mixtes où l'effet population est fixé à 0_p et les effets aléatoires ont une covariance Ω' . Mais : comme β est commun à tous les i, la marginalisation induit que les $(y_i|X_i)$ ne sont plus indépendants. Cela change pas mal de choses. Le modèle mixte ferait l'hypothèse d'indépendance (Monolix) ce qui n'est pas le cas ici (?).