Abgabe Übungsblatt 1

Mats Hoffstadt, Phillip Schwarz 23. April 2025

(i)

Beweis. Wir zeigen, dass die Operatornorm auch als Supremum dargestellt werden kann:

$$||A||_{op} = \sup_{\|x\|=1} ||Ax|| = \sup_{\|x\| \le 1} ||Ax||$$

Ursprüngliche Definition:

$$||A||_{op} := \inf\{C > 0 : ||Ax|| \le C||x||\}$$

Schritt 1: Wir zeigen $||A||_{op} = \sup_{||x||=1} ||Ax||$. Für jedes C mit $||Ax|| \le C||x||$ für alle $x \ne 0$ gilt insbesondere für alle x mit ||x|| = 1, dass $||Ax|| \le C$. Daher muss $C \ge \sup_{\|x\|=1} \|Ax\|$ sein.

Das Infimum aller solchen C ist also mindestens $\sup_{\|x\|=1} \|Ax\|$, also $\|A\|_{op} \ge \sup_{\|x\|=1} \|Ax\|$.

Andererseits, sei $S := \sup_{\|x\|=1} \|Ax\|$. Dann gilt für beliebiges $x \neq 0$:

$$||Ax|| = \left| A \left(\frac{x}{||x||} \cdot ||x|| \right) \right|$$

$$= ||x|| \cdot \left| A \left(\frac{x}{||x||} \right) \right|$$

$$< ||x|| \cdot S$$

Da dies für alle $x \neq 0$ gilt, ist S ein zulässiges C in der Definition von $||A||_{op}$, und somit $||A||_{op} \leq S =$ $\sup_{\|x\|=1} \|Ax\|.$

Zusammen erhalten wir $||A||_{op} = \sup_{||x||=1} ||Ax||$.

Schritt 2: Wir zeigen $\sup_{\|x\|=1} \|Ax\| = \sup_{\|x\|\leq 1} \|Ax\|$. Es ist klar, dass $\sup_{\|x\|=1} \|Ax\| \leq \sup_{\|x\|\leq 1} \|Ax\|$, da die Menge $\{x: \|x\|=1\}$ eine Teilmenge von ${x: ||x|| \le 1}$ ist.

Für die andere Richtung: Sei y mit ||y|| < 1. Dann ist $z = \frac{y}{||y||}$ ein Vektor mit ||z|| = 1, und

$$||Ay|| = \left| A \left(||y|| \cdot \frac{y}{||y||} \right) \right|$$

$$= ||y|| \cdot ||Az||$$

$$< ||Az||$$

$$\le \sup_{||x||=1} ||Ax||$$

Daher wird das Supremum über $||x|| \leq 1$ immer auf dem Rand ||x|| = 1 angenommen, und somit $\sup_{\|x\| \le 1} \|Ax\| = \sup_{\|x\| = 1} \|Ax\|.$

(i)

Beweis. Wir sollen zeigen, dass die Folge

$$x_{n+1} = \frac{1}{2} \left(x_n + \frac{S}{x_n} \right)$$

für S>0 und $x_0>0$ konvergiert. Nach dem Monotoniesatz genügt es zu zeigen, dass die Folge beschränkt und monoton ist.

Schritt 1: Nachweis der Beschränktheit.

Untere Schranke: Wir betrachten die Differenz zwischen x_{n+1} und \sqrt{S} :

$$x_{n+1} - \sqrt{S} = \frac{1}{2} \left(x_n + \frac{S}{x_n} \right) - \sqrt{S}$$

$$= \frac{x_n^2 + S}{2x_n} - \sqrt{S}$$

$$= \frac{x_n^2 + S - 2x_n \sqrt{S}}{2x_n}$$

$$= \frac{(x_n - \sqrt{S})^2}{2x_n}$$

Da $x_n > 0$ und $(x_n - \sqrt{S})^2 \ge 0$ für alle reellen Zahlen x_n , folgt:

$$x_{n+1} - \sqrt{S} = \frac{(x_n - \sqrt{S})^2}{2x_n} \ge 0$$

Somit gilt für alle $n \ge 1$: $x_n \ge \sqrt{S}$. Die Folge ist also nach unten durch \sqrt{S} beschränkt. Obere Schranke: Wir untersuchen, wann $x_{n+1} \leq x_n$ gilt:

$$x_{n+1} \le x_n \iff \frac{1}{2} \left(x_n + \frac{S}{x_n} \right) \le x_n$$

$$\iff x_n + \frac{S}{x_n} \le 2x_n$$

$$\iff \frac{S}{x_n} \le x_n$$

$$\iff S \le x_n^2$$

$$\iff \sqrt{S} \le x_n$$

Da wir bereits gezeigt haben, dass $x_n \ge \sqrt{S}$ für alle $n \ge 1$ gilt, folgt $x_{n+1} \le x_n$ für alle $n \ge 1$.

Falls $x_0 < \sqrt{S}$, so kann $x_1 > x_0$ sein. In diesem Fall ist die Folge durch $\max(x_1, x_0)$ nach oben beschränkt. Falls $x_0 \ge \sqrt{S}$, so ist die Folge durch x_0 nach oben beschränkt.

Insgesamt ist die Folge also durch $\max(x_0, x_1, \sqrt{S})$ nach oben beschränkt.

Schritt 2: Nachweis der Monotonie.

Wir unterscheiden zwei Fälle:

Fall 1: $x_0 \ge \sqrt{S}$ Dann gilt $x_0^2 \ge S$, also $\frac{S}{x_0} \le x_0$ und somit:

$$x_1 = \frac{1}{2} \left(x_0 + \frac{S}{x_0} \right) \le \frac{1}{2} (x_0 + x_0) = x_0$$

Da $x_1 \ge \sqrt{S}$ (wie im Nachweis der Beschränktheit gezeigt), folgt induktiv $x_{n+1} \le x_n$ für alle $n \ge 0$. Die Folge ist in diesem Fall monoton fallend.

Fall 2: $0 < x_0 < \sqrt{S}$ Dann gilt $x_0^2 < S$, also $\frac{S}{x_0} > x_0$ und somit:

$$x_1 = \frac{1}{2} \left(x_0 + \frac{S}{x_0} \right) > \frac{1}{2} (x_0 + x_0) = x_0$$

Wir zeigen nun, dass entweder $x_1 \ge \sqrt{S}$ gilt oder die Folge streng monoton steigend ist, bis ein Folgenglied

Angenommen, für ein $k \ge 0$ gilt $0 < x_k < \sqrt{S}$. Dann ist $x_k^2 < S$, also $\frac{S}{x_k} > x_k$ und somit:

$$x_{k+1} = \frac{1}{2} \left(x_k + \frac{S}{x_k} \right) > \frac{1}{2} (x_k + x_k) = x_k$$

Wir betrachten nun die Funktion $f(x) = \frac{1}{2}(x + \frac{S}{x})$ und ihre Ableitung:

$$f'(x) = \frac{1}{2} \left(1 - \frac{S}{x^2} \right)$$

Diese Ableitung ist negativ für $x < \sqrt{S}$ und positiv für $x > \sqrt{S}$. Das bedeutet, dass f(x) streng monoton fallend für $x < \sqrt{S}$ und streng monoton steigend für $x > \sqrt{S}$ ist. Außerdem gilt $f(\sqrt{S}) = \sqrt{S}$.

Da f(x) > x für $x < \sqrt{S}$ und die Folge durch $x_{n+1} = f(x_n)$ definiert ist, muss die Folge (x_n) streng monoton steigend sein, solange $x_n < \sqrt{S}$ gilt, und sie nähert sich \sqrt{S} an. Sobald ein Folgenglied $x_k \ge \sqrt{S}$ erreicht wird, gilt nach Fall 1, dass die Folge ab diesem Index monoton

fallend ist.

Zusammenfassend lässt sich so folgern, dass die Folge

$$x_{n+1} = \frac{1}{2}(x_n + \frac{S}{x_n})$$

konvergiert.

In Julia können wir die drei Normen wie folgt implementieren: # Implementierung der Operatornormen function norm_1(A::Matrix) return maximum([sum(abs.(A[:, j])) for j in 1:size(A, 2)]) end function norm_inf(A::Matrix) return maximum([sum(abs.(A[i, :])) for i in 1:size(A, 1)]) end function norm_F(A::Matrix) return sqrt(sum(abs2.(A))) end (ii) Die Matrix H mit den Einträgen $H_{ij} = \frac{1}{i+j-1}$ kann so implementiert werden: # Implementierung der Matrix H function create_H(n::Int) H = zeros(n, n)for i in 1:n for j in 1:n H[i, j] = 1 / (i + j - 1)end return H end (iii) Hier berechnen wir die Normen für verschiedene Werte von N und stellen die Ergebnisse tabellarisch dar: using LinearAlgebra using DataFrames # Berechnung der Normen für verschiedene Dimensionen $N_{\text{values}} = [2, 3, 5, 8, 10, 15]$ results = [] for N in N_values H = create_H(N) # Berechnung der Normen $n1 = norm_1(H)$ n_inf = norm_inf(H) $nF = norm_F(H)$ push!(results, (N, n1, n_inf, nF)) end # Ausgabe der Ergebnisse als Tabelle d = DataFrame(results, [:N, :norm_1, :norm_inf, :norm_F])

Ergebnisse und Interpretation

Die Ergebnisse zeigen folgende Werte für die verschiedenen Normen:

N	$ H _{1}$	$ H _{\infty}$	$ H _F$
2	1.500000	1.500000	1.269296
3	1.833333	1.833333	1.413624
5	2.283333	2.283333	1.580906
8	2.717857	2.717857	1.722143
10	2.928968	2.928968	1.785527
15	3.318229	3.318229	1.895459

Tabelle 1: Berechnete Normen der Matrix H für verschiedene Dimensionen N

Beobachtungen:

- 1. Die 1-Norm und die ∞ -Norm sind für diese spezielle Matrix H identisch.
- 2. Die Frobenius-Norm wächst langsamer als die anderen beiden Normen.
- 3. Die Normen wachsen logarithmisch mit der Dimension N.

Diese Ergebnisse zeigen, dass die Matrix H mit zunehmender Dimension zwar wächst, aber das Wachstum verlangsamt sich logarithmisch. Die Frobenius-Norm wächst deutlich langsamer als die anderen Normen.

(i)

Wie definieren die Funktion konv zur Berechnung der Werte x + 1 in Abhängigkeit von Startwert x_0 , S und Iterationszahl n.

Die Funktion konv ist wie folgt definiert:

```
function konv(x0, S, n)
    x = zeros(n+1)
    x[1] = x0

for i in 1:n
        x[i+1] = 0.5 * (x[i] + S/x[i])
    end
    return x
end
(iii)
```

Werte für Iterationszahl n=10

Iteration	Wert1	Wert2	Wert3	Wert4
0	0.1	0.5	1.0	5.0
1	2.55	0.75	0.75	2.55
2	1.3475	0.708333333333333334	0.708333333333333334	1.3475
3	0.8538050980392157	0.7071428571428572	0.7071428571428572	0.8538050980392157
4	0.7425860126293996	0.7071067811865476	0.7071067811865476	0.7425860126293996
5	0.7137110468787978	0.7071067811865475	0.7071067811865475	0.7137110468787978
6	0.7082898647584593	0.7071067811865475	0.7071067811865475	0.7082898647584593
7	0.7073354335196762	0.7071067811865475	0.7071067811865475	0.7073354335196762
8	0.7071513325157138	0.7071067811865475	0.7071067811865475	0.7071513325157138
9	0.7071145630901789	0.7071067811865475	0.7071067811865475	0.7071145630901789
10	0.7071081765758	0.7071067811865475	0.7071067811865475	0.7071081765758

Werte für Iterationszahl n=5

Iteration	Wert1	Wert2	Wert3	Wert4
0	0.1	0.5	1.0	5.0
1	2.55	0.75	0.75	2.55
2	1.3475	0.70833333333333333	0.708333333333333333	1.3475
3	0.8538050980392157	0.7071428571428572	0.7071428571428572	0.8538050980392157
4	0.7425860126293996	0.7071067811865476	0.7071067811865476	0.7425860126293996
5	0.7137110468787978	0.7071067811865475	0.7071067811865475	0.7137110468787978

Werte für Iterationszahl n=3

Iteration	Wert1	Wert2	Wert3	Wert4
0	0.1	0.5	1.0	5.0
1	2.55	0.75	0.75	2.55
2	1.3475	0.708333333333333334	0.708333333333333334	1.3475
3	0.8538050980392157	0.7071428571428572	0.7071428571428572	0.8538050980392157

Interpretation der Ergebnisse

Die Tabellen zeigen die Konvergenz der Iterationsfolge $x_{i+1} = \frac{1}{2}(x_i + \frac{S}{x_i})$ für verschiedene Startwerte x_0 und den Parameter S = 0.5. Folgende Beobachtungen lassen sich machen:

- Unabhängig vom Startwert konvergiert die Folge gegen den Wert 0.7071067811865475, was der Quadratwurzel von 0.5 entspricht.
- Die Konvergenzgeschwindigkeit hängt stark vom Startwert ab. Startwerte, die näher am Grenzwert liegen (wie $x_0 = 0.5$ und $x_0 = 1.0$), konvergieren deutlich schneller als Extremwerte (wie $x_0 = 0.1$ oder $x_0 = 5.0$).
- Interessanterweise zeigen die Startwerte $x_0 = 0.1$ und $x_0 = 5.0$ ein symmetrisches Konvergenzverhalten. Nach der ersten Iteration erreichen beide denselben Wert (2.55) und folgen danach identischen Konvergenzpfaden.
- Bei n=3 Iterationen ist die Konvergenz für die extremen Startwerte noch nicht sehr weit fortgeschritten, während bei n=10 Iterationen alle Startwerte eine gute Approximation der Quadratwurzel erreicht haben.
- Die Methode demonstriert das Heron-Verfahren, eine klassische Methode zur Approximation von Quadratwurzeln. Die Formel $x_{i+1} = \frac{1}{2}(x_i + \frac{S}{x_i})$ konvergiert quadratisch gegen \sqrt{S} .