Project Development Phase Model Performance Test

Date	15 NOvember 2022
Team ID	PNT2022TMID34839
Project Name	University Admit Eligibility Predictor
Maximum Marks	10 Marks

Model Performance Testing:

S.No.	Parameter	Values	Screenshot
1.	Metrics	Regression Model: MAE - 0.043332 MSE - 0.0037248 RMSE - 0.051031 R2 score - 0.721402	<pre>In [21]: rgr.score(X_test,y_test) Out[21]: 0.8161902534747856 In [22]: y_predict=rgr.predict(X_test) In [23]: from sklearn.metrics import mean_squared_error, r2_score,mean_absolute_error import numpy as np</pre>
		Classification Model: Confusion Matrix – [[2 5]	<pre>In [26]: y_pred = lr.predict(X_test) In [27]: from sklearn.metrics import accuracy_score, recall_score, roc_auc_score, confusion_matrix print('Accuracy Score:', accuracy_score(y_test, y_pred)) print('Recall Score:', recall_score(y_test, y_pred)) print('Roc AUC Score:', roc_auc_score(y_test, y_pred)) print('Confussion Matrix:\n', confusion_matrix(y_test, y_pred)) Accuracy Score: 0.91666666666666666666666666666666666666</pre>

2.	Tune the Model	Hyperparameter Tuning - Validation Method -	In [64]: scores = cross_val_score(model, X_train, y_train, scoring='r2', cv=5) Out[64]: array([0.81813967, 0.77169539, 0.83989563, 0.74719974, 0.78589678]) In [65]: avg_score=scores.mean() In [67]: print ("Cross Validation Scores : ",scores) print ("Average CV Score : ",avg_score) print ("Number of CV Scores used in Average : ",len(scores)) Cross Validation Scores : [0.81813967 0.77169539 0.83989563 0.74719974 0.78589678] Average CV Score : 0.7925654408790849 Number of CV Scores used in Average : 5
----	-------------------	--	---