JALPAIGURI GOVERNMENT ENGINEERING COLLEGE [A GOVERNMENT AUTONOMOUS COLLEGE] JGEC/B.TECH/ CE/EE/ME/ BS-PH101/ 2023-24 2023 PHYSICS

Full Marks: 70

Times: 3 Hours

The figures in the margin indicate full marks.

Candidates are instructed to write the answers in their own words as far as practicable.

	GROUP-A [OBJECTIVE TYPE QUESTIONS]	5x2=10
Ans	swer <i>all</i> questions Show that $y = Asin(kx - bt)$ satisfy the 1-D wave equation. Here A, k and b are constant.	2
2.	In Fraunhofer diffraction if the width of the single slit is slightly less than the wavelength of the light which is falling on it, comment on the position of the minima.	2
3.	Define group velocity and phase velocity.	2
4.	The wave function for a particle is given by $\psi(x) = ce^{-\alpha^2 x^2}$, $-\infty < x < \infty$, where C and α are constant. Calculate the probability of finding the particle in the region $0 < x < \infty$.	2
5	State and explain Malus's law.	2
•	GROUP-B [LONG ANSWER TYPE QUESTIONS]	15 = 60
Ans 6.	A particle of mass 5 gm moves along x-axis under the influence of two forces: (a) a force of attraction to the origin 0 which in dyne is numerically equal to 40 times the instantaneous distance from 0 and (b) a damping force proportional to the instantaneous speed such that when the speed is 10 cm/s the damping force is 200 dyne. Assuming that the particle starts from rest at a distance 20 cm from 0	
	 i) set up the differential equation and conditions describing the motion, ii) find the position of the particle at any time, iii) determine the amplitude, period and frequency of the damped oscillations, iv) graph of the motion, v) find the logarithmic decrement, vi) determine the natural period and frequency of the particle, for what range of values the damping constant will the motion be over-damped, under-damped or damped oscillatory and critically damped. 	2 3 3 2 2 2 3
7.	State Planck's law of black body radiation. Find out the two limits where Planck's formula reduces to (a) Wien's law and (b) Raleigh-Jeans law. ii) X-rays of wavelength 10.0 pm are scattered from a target. a) Find the wavelength of the x-rays	
	scattered through 45°. Find the maximum wavelength present in the scattered rays. State and explain Heisenberg's uncertainty principle. Justify that an atomic nucleus cannot harbour a free electron.	5
0	iv) Find the de Broglie wavelength of 1.00 MeV proton.	3
8.	i) Find the Volume of the parallelopiped whose edges are represented by $\vec{A} = 2\hat{\imath} - 3\hat{\jmath} + 4\hat{k}$, $\vec{B} = \hat{\imath} + 2\hat{\jmath} - \hat{k}$, $\vec{C} = 3\hat{\imath} - \hat{\jmath} + 2\hat{k}$.	3
	ii) A particle moves so that its position vector is given by $\vec{r} = cos\omega t\hat{\imath} + sin\omega t\hat{\jmath}$, where ω is a constant. Show that a) the velocity \vec{v} is perpendicular to \vec{r} , b) $\vec{r} \times \vec{v}$ is a constant vector.	4
	iii) A particle moves in the force field given by $\vec{F} = 2xz(1 - 6xyz)\hat{\imath} + 2yz(1 - 6xyz)\hat{\jmath} + 2xy(1 - 6xyz)\hat{\jmath}$. Can you define a potential function $V(x, y, z)$ for this force field?	4
	iv) Evaluate $\int \vec{A} \cdot d\vec{r}$ along the curve $x^2 + y^2 = 1$ and $z = 1$ in the positive direction from $(0, 1, 1)$ to $(1, 0, 1)$ if $\vec{A} = 4x\hat{\imath} - 2y^2\hat{\jmath} + z^2\hat{k}$.	4

9. i) Write down the Maxwell's equation of electrodynamic theory in free space. Show that both \vec{E} and \vec{B} satisfy the wave equation. Hence find the speed of light in free space. 2+3 ii) The electric field of a plane electromagnetic wave propagating in free space is described by: $\vec{E} = E_0 \cos(kx - \omega t)\hat{j}$. Determine the corresponding magnetic field and the time average Poynting vector for the wave. iii) Write a short note on displacement current density vector in connection with 4th Maxwell's Equation in EM theory. 10. i) Describe the state of polarization of the wave represented by $\vec{E}(z,t) = E_0 \cos\left(\omega t - kz + \frac{\pi}{2}\right)\hat{\imath}$ $E_0 \cos(\omega t - kz)\hat{j}$ \vec{a}) Calculate the thickness of a half-wave plate for a light of wavelength 500 nm. Given $n_0 =$ $1.5442, n_e = 1.5533.$ jii) A right circularly polarized beam of light ($\lambda = 525 \, nm$) is incident normally on doubly refracting crystal with optic axis parallel to the surface. The thickness of the crystal is 0.003 mm. It is also given that $n_0 - n_e = 0.175$. Find the state of polarization of the emergent light beam. iv) Find an expression for the intensity of Fraunhoffer diffraction pattern due to a single slit. Discuss the conditions for maxima and minima. 11. Show that the wave functions given by $\psi_n(x) = \sqrt{2/L} \sin(n\pi x/L)$ are orthonormal. ii) If p denotes momentum, then find $\langle p \rangle$ as well as $\langle p^2 \rangle$ in a quantum state $\varphi(x) = \sqrt{\frac{2}{L}} \sin \frac{n\pi x}{L}$, L is a 3 iii) Show that <E> is real. 2 iv) Calculate $[x, \frac{\partial}{\partial x}]$.

Jafpaiguri Govt. Engg. College (A Govt. Autonomous College) COE/B.Tech/CE/EE/ME/ES-CS101/2023-24

2024 PROGRAMMING FOR PROBLEM SOLVING

FM: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Group - A [Objective Type Questions]

Answer all questions

 $5 \times 2 = 10$

Time Allotted: 3 hours

- What do you mean by bitwise operators? 1.
- 2. #include<stdio.h> #define SQ(x)(x*x)void main() { int a=4, b; b = SQ(a + 2);printf("\n %d",b);

What will be the output?

- Convert the hexadecimal number (73AF.6B)₁₆ into equivalent binary number. 3.
- What will be the output of following code snippet: 4.

for(i=1;i<=10;i++); { printf("\n i=%d",i); }

Which of the following is the correct way to declare a float pointer 5. a) float ptr b) float *ptr c) *float ptr d) None of the above

> Group - B [Long Answer Type Questions]

Answer any four of the following

 $4 \times 15 = 60$

- 6. a. What is flowchart? Draw a flow chart to determine the greatest number among three numbers?
 - b. What do you mean by conditional operators? Write a program in C Language to check whether a given year is leap year or not using conditional operators.
 - c. Explain the different types of control statements available in C language.

(1+4) + (1+5) + 4

- 7. a. Define a structure? Explain the differences between structure and union.
 - b. Create a structure to specify data on students given below:

Roll Number, Name, Department

Assuming that there are not more than 500 students in the college. Write a program in C language to print the details of a student whose roll number is given.

- c. Calculate the total required memory of the structure student that you have created.
- d. Write a program in C language to find out the largest and smallest element in an array.

(1+2)+5+2+5

