Online HW 6: Symmetry

Bart Snapp and Brad Findell

February 23, 2018

Contents

Symmetry	3
----------	---

Symmetry

 $Short\text{-}answer\ questions\ about\ symmetry.$

Question 1 Categorize the capital letters of the alphabet by their symmetries. Use the following font:

ABCDEFGHIJKLMNOPQRSTUVWXYZ

Question 2 Write the words COKE and PEPSI in capital letters so that they read vertically. Use a mirror to look at a reflection of the words. What is different about the reflections of the two words? Explain.

Question 3 Indicate the number of symmetries of the following figures:

- (a) An equilateral triangle ?
- (b) An isosceles triangle that is not equilateral ?
- (c) A square ?
- (d) A rectangle that is not a square ?
- (e) A rhombus that is not a square ?
- (f) A (non-special) parallelogram ?
- (g) A regular n-gon $\boxed{?}$

Question 4 Describe all of the symmetries of the following figures:

- (a) An equilateral triangle
- (b) An isosceles triangle that is not equilateral
- (c) A square
- (d) A rectangle that is not a square
- (e) A rhombus that is not a square
- (f) A (non-special) parallelogram
- (g) A regular n-gon

Question 5 We often say a figure is "symmetric" when we notice that it has symmetry, but now we want to be more precise:

A symmetry of a figure is a (reflection/rotation/transformation/translation) that maps a figure (to its opposite/onto itself/to another figure).

Question 6 Explain why a sequence of two symmetries of a figure must also be a symmetry of that figure.

Question 7 Explain why the identity transformation should be considered a symmetry of any figure.

Symmetries of polygons.

Question 8 Suppose that quadrilateral ABCD has exactly one rotation symmetry (other than the identity transformation) and no reflection symmetry. What kind(s) of quadrilateral could it be? Explain your reasoning.

Question 9 Suppose that quadrilateral ABCD has exactly one reflection symmetry and no rotation symmetry (other than the identity transformation). What kind(s) of quadrilateral could it be? Explain your reasoning.

Question 10 What are the symmetries of a circle?

Question 11 How can you use the symmetries of a circle to determine whether a figure is indeed a circle?

Question 12 What are the symmetries of a line?

- (a) Describe all translation symmetries.
- (b) Describe all rotation symmetries.
- (c) Describe two types of reflection symmetries.
- (d) Given a line, describe a rotation symmetry and a reflection symmetry that have the same effect on a line. How do the corresponding transformations differ in what they do to the surrounding space?

Question 13 How can you use the symmetries of a line to determine whether a figure is indeed a line?

Symmet	rr
Dymmic	JI.)

 $\begin{tabular}{ll} \textbf{Question 14} & Find some tessellations. For each tessellation, describe all of its symmetries. \end{tabular}$