Lemas y observaciones

Observación 0.1. Sea G un grupo topológico.

- 1. Sea Q(e) la componente conexa de la identidad. Como la función multiplicación es continua se sigue que, para toda $h \in G$ el conjunto hQ(e) es conexo y contiene al elemento h.
- 2. $g \in Q(e)$ si y solo si $e \in Q(g)$. En particular Q(g) = Q(e).
- 3. Si $h \in Q(e)$ entonces $e \in Q(h^{-1})$. En particular $h \in Q(e)$ si y solo si $h^{-1} \in Q(e)$.

Demostración. Sea $g \in Q(e)$, notemos que Q(e) es un conjunto conexo que tiene a g por tanto $Q(e) \subset Q(g)$, en particular $e \in Q(g)$. El recíproco es idéntico y se omite. Para la otra parte, notemos que $h^{-1}Q(e)$ es un conjunto conexo que tiene a h^{-1} por tanto $h^{-1}Q(e) \subset Q(h^{-1})$, como $h \in Q(e)$ se sigue que el elemento,

$$h^{-1}h \in h^{-1}Q(e)$$
y así $e \in Q(h^{-1}).$

Lema 0.2. La componente conexa de la identidad es un grupo.

Demostración. Veremos que el conjunto Q(e) es cerrado bajo la operación de G. Sean $g, h \in Q(e)$, por la observación previa resta ver que $e \in Q(gh)$. Tenemos que $ghQ(e) \subset gQ(h) \subset Q(gh)$ por otro lado notemos que,

$$gh(h^{-1})\in ghQ(e)$$

y así $g \in ghQ(e)$, por tanto tenemos la contención $ghQ(e) \subset Q(g) = Q(e)$, concluimos que $gh \in Q(e)$.

Lema 0.3. Sea (X, τ, \circ) grupo topológico y U abierto en X, para todo $h \in X$ el conjunto hU es abierto.

Demostración. Sea h en X, las siguientes funciones

$$\varphi_h: X \to X$$
$$g \mapsto hg$$

П

$$\phi_h: X \to X$$
$$g \mapsto h^{-1}g$$

son continuas e inversas una de otra. Resta notar que $\varphi_h(U) = hU$ y la imagen directa de φ es la imagen inversa de su función inversa $\varphi_h(U) = \varphi_h^{-1}(U)$ que por continuidad es un conjunto abierto. Tenemos así que hU es un conjunto abierto.

Proposición 0.4. Sea (X, τ, \circ) un grupo topológico conexo. Para toda U(e) se cumple que $\langle U \rangle = X$.

Demostración. Sea $U \in \mathcal{N}(e)$, resta ver que $G \subset \langle U \rangle$. Para ello veremos que $\langle U \rangle$ es un conjunto abierto y cerrado en X por la conexidad de X se da la igualdad.

Sea $g \in \langle U \rangle$, por definición de subgrupo generado, para todo subgrupo H de X que contiene a U se cumple que

- 1. $g \in H$,
- 2. al ser cerrado como subgrupo tenemos que, para toda $u \in U$ el elemento gu está en H, por tanto

$$gU \subset H$$
,

3. Por el lema 0.3 el conjunto gU es abierto.

Más aún, $g = ge \in gU$, de esta manera se que tiene que gU(g) junto con la contención $gU \subset H$ de la definición de grupo generado tenemos que $gU \subset \langle U(e) \rangle$ y por tanto $\langle U(e) \rangle$ es un conjunto abierto.

Para ver que $\langle U \rangle$ es cerrado, sea $h \in \langle U \rangle$ y consideremos al conjunto hU que, por el lema 0.3 es abierto y en particular es vecindad de h, hU(h) y por definición del conjunto cerradura tenemos que,

$$hU \cap \langle U \rangle \neq \emptyset$$
.

De esta manera, sea $g \in hU \cap \langle U \rangle$ ent particular, como $g \in hU$ existe $u \in U$ tal que g = hu y consideremos lo siguiente,

$$h = gu^{-1} \in \langle U \rangle U = \langle U \rangle$$

por tanto $\overline{\langle U \rangle} \subset \langle U \rangle$. Tenemos que $\langle U(e) \rangle$ es un conjunto cerrado a abierto en un espacio conexo, entonces o $\langle U \rangle = \emptyset$ o $\langle U \rangle = X$ como $e \in \langle U \rangle$ concluimos que $\langle U(e) \rangle = X$.

Definición 0.5. Sea $K \subset X$ y $h: X \to X$ un homeomorfismo. Decimos que h está **soportado** en K si,

- 1. $X \setminus K$ es no vacío y
- 2. $h|_{X\setminus K} = id|_{X\setminus K}$.

Al conjunto

$$Sup(h) = \overline{\{x \in X : h(x) \neq x\}},$$

le llamaremos el **soporte** de h. Al subgrupo de homeomorfismos, $g: X \to X$, para los cuales existe $U \in \tau$ tal que $g|_U = e|_U$ le denotaremos por $Hom_0(X)$.

Observación 0.6. Si $g: X \to X$ un homeomorfismo que está soportado en K, para la función inversa $g^{-1}: X \to X$ tenemos que

$$id|_{X\setminus K} = g^{-1}|_{g(X\setminus K)} = g^{-1}|_{X\setminus K}.$$

Es decir, g^{-1} está soportando en g(K).

El siguiente lema será usado en las secciones posteriores, es importante para el desarrollo del trabajo de Anderson y Epstein en **referencia**

Lema 0.7. Sean $K \subset X$ y $g \in Hom_0(X)$ soportado en K.

- 1. Para cualquier $h \in Hom(X)$ se tiene que $h^{-1}gh$ está soportado en $h^{-1}(K)$.
- 2. Si $h^{-1}(K) \cap K = \emptyset$ entonces
 - a) [h,g]está soportado en $h^{-1}(K) \cup K,$
 - $b)\ [h,g]|_K=g|_K \ {\bf y}$
 - c) $[h,g]|_{h^{-1}(K)} = h^{-1}g^{-1}h|_{h^{-1}(K)}$

Demostración. Para el primer inciso. Sea $x \in X \setminus h^{-1}(K) = h^{-1}(X \setminus K)$ de donde $h(x) \in X \setminus K$, como K es el soporte de g tenemos que,

$$g(h(x)) = h(x)$$

de esta manera al componer con la función h^{-1} por la izquierda obtenemos lo siguiente,

$$h^{-1}gh(x) = x$$

tenemos que

$$h^{-1}gh(x)|_{X\backslash h^{-1}(K)} = id_{X\backslash h^{-1}(K)}$$

y por definición concluimos que $h^{-1}gh(x)$ está soportado en $h^{-1}(K)$.

Ahora veremos el segundo inciso. Supongamos que $h^{-1}(K) \cap K = \emptyset$. Sea $x \in (X \setminus h^{-1}(K)) \cap (X \setminus K)$, como como g está soportando en K tenemos que

$$h(g(x)) = h(x),$$

más aún como en el inciso anterior tenemos $h(x)\in X\setminus K$ junto con que $g^{-1}|_{X\setminus K}=id$ (observación 0.6) se sigue que

$$g^{-1}(h(x)) = h(x)$$

finalmente componiendo con h^{-1} por la izquierda tenemos que

$$[h^{-1}, g^{-1}](x) = h^{-1}g^{-1}hg(x) = x$$

es decir,

$$[h^{-1}, g^{-1}]|_{(X \setminus h^{-1}(K)) \cap (X \setminus K)} = id,$$

por tanto $[h^{-1},g^{-1}]$ está soportado en $h^{-1}(K)\cup K$. Finalmente, de la observación 0.6 el homeomorfismo g^{-1} está soportado en g(K) del primer inciso tenemos que $h^{-1}g^{-1}h$ está soportado en $h^{-1}(g(K))$ y de esta manera

$$h^{-1}g^{-1}h(h^{-1}(g(K))) = h^{-1}(K),$$

de donde tenemos que

$$[h^{-1}, g^{-1}]|_{h^{-1}(K)} = h^{-1}(K).$$

Además, notemos $h^{-1}g^{-1}h[g(K)] = id$ entonces

$$g(K) \subset \sup(h^{-1}g^{-1}h)^c$$
.

Observación 0.8. Cualquier conjugado del producto de conjugados de producto de h y h^{-1} tiene el mismo numero de conjugados de h y h^{-1} .

Demostración. Si $f = (g_1h^{-1}g_1^{-1})\cdots(g_nhg_n^{-1})$ entonces para cualquier g en Hom(X) se tiene que

$$gfg^{-1} = g(g_1h^{-1}g_1^{-1})\cdots(g_nhg_n^{-1})g^{-1}$$
$$= (gg_1h^{-1}g_1^{-1}g^{-1})\cdots(gg_nhg_n^{-1}g^{-1}).$$

Finalizamos este capitulo recordando que nuestra introducción pudiera no abarcar todos los resultados que vamos a mencionar, sin embargo mencionamos los libros que hemos consultado donde pudiera estar la demostración detallada o bien un estudio profundo de dicho tema. [?]

Bibliografía

- [1] PRIETO DE CASTRO, CARLOS, *Topología básica*, segunda edicion, Ediciones Científicas Universitarias, México, DF, 2013.
- [2] Salicrup Graciela, *Introducción a la Topología*, Sociedad Matemática Mexicana, México, DF, 1997.
- [3] R.D. Anderson The Algebraic simplicity of certain groups of homeomorphisms American Mathematical Society, Enero 1958.
- [4] J. Krasinkiewicz On homeomorphisms of the Sierpiński curve Annales societatis Mathematicae Polanae, 1969.