Topics on nonlinear optimization

Contents

Introduction

- Gradient based methods
 - Newton's method
 - Gauss-Newton's method
 - Steepest Decent
 - Levenberg-Marquardt's method

Introduction

$$\mathbf{p} = egin{bmatrix} p_1 \\ p_2 \\ dots \\ p_M \end{bmatrix}$$

$$\mathbf{d} = \begin{bmatrix} d_1 \\ d_2 \\ \vdots \\ d_N \end{bmatrix} \quad \mathbf{g}(\mathbf{p}) = \begin{bmatrix} g_1(\mathbf{p}) \\ g_2(\mathbf{p}) \\ \vdots \\ g_N(\mathbf{p}) \end{bmatrix}$$

$$\mathbf{p} = egin{bmatrix} p_1 \ p_2 \ dots \ p_M \end{bmatrix}$$

$$\mathbf{d} = egin{bmatrix} d_1 \ d_2 \ dots \ d_N \end{bmatrix} \quad \mathbf{g}(\mathbf{p}) = egin{bmatrix} g_1(\mathbf{p}) \ g_2(\mathbf{p}) \ dots \ g_N(\mathbf{p}) \end{bmatrix}$$

$$\Phi(\mathbf{p}) = [\mathbf{d} - \mathbf{g}(\mathbf{p})]^{\top} [\mathbf{d} - \mathbf{g}(\mathbf{p})]$$

$$\mathbf{p} = egin{bmatrix} p_1 \ p_2 \ dots \ p_M \end{bmatrix}$$

$$\nabla \Phi(\mathbf{p}^*) = \mathbf{0}_{M \times 1}$$

$$\mathbf{d} = egin{bmatrix} d_1 \ d_2 \ dots \ d_N \end{bmatrix} \quad \mathbf{g}(\mathbf{p}) = egin{bmatrix} g_1(\mathbf{p}) \ g_2(\mathbf{p}) \ dots \ g_N(\mathbf{p}) \end{bmatrix}$$

$$\Phi(\mathbf{p}) = [\mathbf{d} - \mathbf{g}(\mathbf{p})]^{\top} [\mathbf{d} - \mathbf{g}(\mathbf{p})]$$

$$\mathbf{p} = egin{bmatrix} p_1 \ p_2 \ dots \ p_M \end{bmatrix}$$

$$\mathbf{d} = \begin{bmatrix} d_1 \\ d_2 \\ \vdots \\ d_N \end{bmatrix} \quad \mathbf{g}(\mathbf{p}) = \begin{bmatrix} g_1(\mathbf{p}) \\ g_2(\mathbf{p}) \\ \vdots \\ g_N(\mathbf{p}) \end{bmatrix}$$

$$\Phi(\mathbf{p}) = \left[\mathbf{d} - \mathbf{g}(\mathbf{p})\right]^{\top} \left[\mathbf{d} - \mathbf{g}(\mathbf{p})\right]$$

$$\mathbf{p} = \begin{bmatrix} p_1 \\ p_2 \\ \vdots \\ p_M \end{bmatrix}$$

$$\mathbf{d} = \begin{bmatrix} d_1 \\ d_2 \\ \vdots \\ d_N \end{bmatrix} \quad \mathbf{g}(\mathbf{p}) = \begin{bmatrix} g_1(\mathbf{p}) \\ g_2(\mathbf{p}) \\ \vdots \\ g_N(\mathbf{p}) \end{bmatrix}$$

$$\Phi(\mathbf{p}) = \left[\mathbf{d} - \mathbf{g}(\mathbf{p})\right]^{\top} \left[\mathbf{d} - \mathbf{g}(\mathbf{p})\right]$$

$$\mathbf{p} = egin{bmatrix} p_1 \\ p_2 \\ \vdots \\ p_M \end{bmatrix}$$

$$\mathbf{d} = \begin{bmatrix} d_1 \\ d_2 \\ \vdots \\ d_N \end{bmatrix} \quad \mathbf{g}(\mathbf{p}) = \begin{bmatrix} g_1(\mathbf{p}) \\ g_2(\mathbf{p}) \\ \vdots \\ g_N(\mathbf{p}) \end{bmatrix}$$

$$\Phi(\mathbf{p}) = [\mathbf{d} - \mathbf{g}(\mathbf{p})]^{\top} [\mathbf{d} - \mathbf{g}(\mathbf{p})]$$

$$\nabla \Phi(\mathbf{p}^*) = \mathbf{0}_{M \times 1}$$

Linear problem

$$g(p) = Bp + b$$

$$\mathbf{p}^* = \left(\mathbf{B}^{\top}\mathbf{B}\right)^{-1}\mathbf{B}^{\top}\left(\mathbf{d} - \mathbf{b}\right)$$

Nonlinear problem

$$\mathbf{p} = egin{bmatrix} p_1 \ p_2 \ dots \ p_M \end{bmatrix}$$

$$\mathbf{d} = \begin{bmatrix} d_1 \\ d_2 \\ \vdots \\ d_N \end{bmatrix} \quad \mathbf{g}(\mathbf{p}) = \begin{bmatrix} g_1(\mathbf{p}) \\ g_2(\mathbf{p}) \\ \vdots \\ g_N(\mathbf{p}) \end{bmatrix}$$

$$\Phi(\mathbf{p}) = [\mathbf{d} - \mathbf{g}(\mathbf{p})]^{\top} [\mathbf{d} - \mathbf{g}(\mathbf{p})]$$

$$\nabla \Phi(\mathbf{p}^*) = \mathbf{0}_{M \times 1}$$

Linear problem

$$g(p) = Bp + b$$

$$\mathbf{p}^* = \left(\mathbf{B}^{\top}\mathbf{B}\right)^{-1}\mathbf{B}^{\top}\left(\mathbf{d} - \mathbf{b}\right)$$

Nonlinear problem

$$\mathbf{g}(\mathbf{p}) \neq \mathbf{B}\mathbf{p} + \mathbf{b}$$

$$\mathbf{p}_k = \mathbf{p}_{k-1} + \Delta \mathbf{p}_k$$

$$\mathbf{p}^* pprox \mathbf{p}_0 + \Delta \mathbf{p}_1 + \dots + \Delta \mathbf{p}_L$$

$$\mathbf{p} = egin{bmatrix} p_1 \ p_2 \ dots \ p_M \end{bmatrix}$$

$$\mathbf{d} = \begin{bmatrix} d_1 \\ d_2 \\ \vdots \\ d_N \end{bmatrix} \quad \mathbf{g}(\mathbf{p}) = \begin{bmatrix} g_1(\mathbf{p}) \\ g_2(\mathbf{p}) \\ \vdots \\ g_N(\mathbf{p}) \end{bmatrix}$$

$$\Phi(\mathbf{p}) = [\mathbf{d} - \mathbf{g}(\mathbf{p})]^{\top} [\mathbf{d} - \mathbf{g}(\mathbf{p})]$$

Nonlinear problem

 $\mathbf{g}(\mathbf{p}) \neq \mathbf{B}\mathbf{p} + \mathbf{b}$

 $\mathbf{p}_k = \mathbf{p}_{k-1} + \Delta \mathbf{p}_k$

Linear problem

Goal function forms a paraboloid

Linear problem

The minimum can be computed in a single step

Or iteratively, from a given initial approximation

In this case, the minimum is estimated in a single step from the given initial approximation

On the other hand, in a nonlinear problem, the minimum is estimated after several steps from the initial approximation

Approximate the nonlinear function around the initial approximation

Approximate the nonlinear function around the initial approximation

Approximating paraboloid

Approximate the nonlinear function around the initial approximation

This approximation also has a minimum

Compute a new approximation around this minimum

And so on ...

Estimated minimum

Given a point, it is needed to define a direction and the step length

The direction and step length may be defined by using the gradient

 $\Phi(\mathbf{p})$

$$\Phi(\mathbf{p})$$

$$\Phi(\mathbf{p}_0 + \Delta \mathbf{p}) \approx \Phi(\mathbf{p}_0) + \nabla \Phi(\mathbf{p}_0)^{\top} \Delta \mathbf{p} + \frac{1}{2} \Delta \mathbf{p}^{\top} \mathbf{H}(\mathbf{p}_0) \Delta \mathbf{p}$$

$$\Phi(\mathbf{p})$$

$$\Phi(\mathbf{p}_0 + \Delta \mathbf{p}) \approx \Phi(\mathbf{p}_0) + \nabla \Phi(\mathbf{p}_0)^{\top} \Delta \mathbf{p} + \frac{1}{2} \Delta \mathbf{p}^{\top} \mathbf{H}(\mathbf{p}_0) \Delta \mathbf{p}$$

Approximating paraboloid

$$\Phi(\mathbf{p})$$

$$\Phi(\mathbf{p}_0 + \Delta \mathbf{p}) \approx \Phi(\mathbf{p}_0) + \nabla \Phi(\mathbf{p}_0)^{\top} \Delta \mathbf{p} + \frac{1}{2} \Delta \mathbf{p}^{\top} \mathbf{H}(\mathbf{p}_0) \Delta \mathbf{p}$$

$$\mathbf{H}(\mathbf{p}_0)\Delta\mathbf{p} = -\nabla\Phi(\mathbf{p}_0)$$

$$\Phi(\mathbf{p})$$

$$\Phi(\mathbf{p}_0 + \Delta \mathbf{p}) \approx \Phi(\mathbf{p}_0) + \nabla \Phi(\mathbf{p}_0)^{\top} \Delta \mathbf{p} + \frac{1}{2} \Delta \mathbf{p}^{\top} \mathbf{H}(\mathbf{p}_0) \Delta \mathbf{p}$$

$$\mathbf{H}(\mathbf{p}_0)\Delta\mathbf{p} = -\nabla\Phi(\mathbf{p}_0)$$

Difference between methods

$\Phi(\mathbf{p})$

$$\Phi(\mathbf{p}_0 + \Delta \mathbf{p}) \approx \Phi(\mathbf{p}_0) + \nabla \Phi(\mathbf{p}_0)^{\top} \Delta \mathbf{p} + \frac{1}{2} \Delta \mathbf{p}^{\top} \mathbf{H}(\mathbf{p}_0) \Delta \mathbf{p}$$

$$\mathbf{H}(\mathbf{p}_0)\Delta\mathbf{p} = -\nabla\Phi(\mathbf{p}_0)$$

Newton

 $\mathbf{H}(\mathbf{p}_0)$

Gauss - Newton

 $ilde{\mathbf{H}}(\mathbf{p}_0)$

Difference between methods

Steepest decent

 $\lambda \mathbf{I}$

Levenberg -Marquardt

 $\tilde{\mathbf{H}}(\mathbf{p}_0) + \lambda \mathbf{I}$