Mathematics for IT - Assignment 05 Linear Algebra

August 31, 2018

- 1. True or False? Justify your answer.
 - (a) If Q is an orthogonal matrix, then Q is invertible.
 - (b) If \hat{x} is the orthogonal projection of x on W, then \hat{x} is orthogonal to x.
 - (c) If $\hat{\mathbf{u}}$ is the orthogonal projection of \mathbf{u} on Span \mathbf{v} , then: $\hat{\mathbf{u}} = \left(\frac{u \cdot v}{v \cdot v}\right) \cdot u$
 - (d) Suppose P_1 and P_2 are projection matrices. Then, $(P1-P2)^2+(I-P1-P2)^2=I$.
 - (e) Every orthonormal set of vectors in \mathbb{R}^4 must be a basis for \mathbb{R}^4 .
 - (f) In \mathbb{R}^9 , we can find a subspace W such that dim W = dim \mathbb{W}^{\perp} .
- 2. Let P_1 and P_2 be n \times n projection matrices. Then, which of the following statements is false?
 - (a) $P_1(P_1 P_2)^2 = (P_1 P_2)^2 P_1$.
 - (b) If P_1 and P_2 have the same rank, then they are similar.
 - (c) rank (P_1) + rank $(P_1 I) \neq \text{rank } (P_2)$ + rank $(P_2 I)$.
- 3. Let $S = \{(1, -1, 1, 1), (1, 0, 1, 0), (0, 1, 0, 1)\} \subseteq \mathbb{R}^4$. Find an orthonormal set T such that LS(S) = LS(T). LS stands for linear span.
- 4. Let $S = \{ e_1 + e_4, -e_1 + 3e_2 e_3 \} \subset \mathbb{R}^4$. Find S^{\perp} .
- 5. (a) Find the matrix P that projects every vector b in \mathbb{R}^3 onto the line in the direction of a = (2, 1, 3).
 - (b) What are the column space and nullspace of P? Describe them geometrically and also give a basis for each space.
- 6. Let W be a subspace of R^n and W^{\perp} denote its orthogonal complement. If W^1 is subspace of R^n such that if $x \in W^1$, then $x^T u = 0$, for all $u \in W^{\perp}$. Then,
 - (a) dim $W_1^{\perp} \leq \dim W^{\perp}$
 - (b) dim $W_1^{\perp} \leq \dim W$
 - (c) dim $W_1^{\perp} > \dim W^{\perp}$
 - (d) dim $W_1^{\perp} \ge \dim W$
- 7. Consider a subspace S of \mathbb{R}^4 spanned by the following vectors:

$$u_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}, u_2 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 0 \end{bmatrix}, u_3 = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 1 \end{bmatrix}$$

Using the usual dot product on \mathbb{R}^4 , do the following:

- (a) Convert { u_1, u_2, u_3 } to an orthonormal basis for S.
- (b) Explain why Gram Schmidt algorithm fails when the input set of vectors is linearly dependent.

- 8. (a) $p = A\hat{x}$ is the vector in C(A) nearest to a given vector b. If A has independent columns, what equation determines \hat{x} ? What are all the vectors perpendicular to the error $e = b A\hat{x}$? What goes wrong if the columns of A are dependent?
 - (b) Suppose A = QR where Q has orthonormal columns and R is upper triangular invertible. Find \hat{x} and p in terms of Q and R and p (not A).
 - (c) If q_1 and q_2 are any orthonormal vectors in \mathbb{R}^5 , give a formula for the projection p of any vector b onto the plane spanned by q_1 and q_2 (write p as a combination of q_1 and q_2).
- 9. What is the projection of $v = e_1 + 2e_2 3e_3$ on $H: x_1 + 2x_2 + 4x_4 = 0$?
- 10. The matrix Q has orthonormal columns q_1 , q_2 , q_3 :

$$Q = \begin{bmatrix} 0.1 & 0.5 & a \\ 0.7 & 0.5 & b \\ 0.1 & -0.5 & c \\ 0.7 & -0.5 & d \end{bmatrix}$$

- (a) What equations must be satisfied by the numbers a, b, c, d? Is there a unique choice for those (real) numbers, apart from multiplying them all by 1?
- (b) Suppose Gram-Schmidt starts with those same first two columns and with the third column $a_3 = (1, 1, 1, 1)^T$. What third column would it choose for q_3 . (You can leave a square root as $\sqrt{\cdots}$ if you want to.)