PATENT COOPERATION TREATS

	From the INTERNATIONAL BUREAU
PCT	То:
NOTIFICATION OF ELECTION (PCT Rule 61.2)	Assistant Commissioner for Patents United States Patent and Trademark Office Box PCT Washington, D.C.20231 ETATS-UNIS D'AMERIQUE
Date of mailing (day/month/year)	in the second to see closted Office
05 June 2000 (05.06.00)	in its capacity as elected Office
International application No. PCT/US99/25552	Applicant's or agent's file reference 11613.32WO01
International filing date (day/month/year)	Priority date (day/month/year)
29 October 1999 (29.10.99)	31 October 1998 (31.10.98)
Applicant	
KASHMIRI, Syed, V., S. et al	
1. The designated Office is hereby notified of its election made. X In the demand filed with the International Preliminary O4 May 2000 (y Examining Authority on: 04.05.00) national Bureau on: date or, where Rule 32 applies, within the time limit under
The International Bureau of WIPO 34, chemin des Colombettes 1211 Geneva 20, Switzerland	Authorized officer Juan Cruz
Facsimile No.: (41-22) 740.14.35	Telephone No.: (41-22) 338.83.38

(PCT Article 18 and Rules 43 and 44)

Applicant's or agent's file reference 11613.32W001		of Transmittal of International Search Report /220) as well as, where applicable, item 5 below.
International application No.	International filing date (day/month/year)	(Earliest) Priority Date (day/month/year)
PCT/US 99/25552	29/10/1999	31/10/1998
Applicant THE GOVERNEMENT OF THE UN	ITED STATES OF AMERICA	
according to Article 18. A copy is being to This International Search Report consists	_	
language in which it was filed, un the international search w Authority (Rule 23.1(b)).	nd/or amino acid sequence disclosed in the	easis of the international application in the f the international application furnished to this international application, the international search
contained in the internation filed together with the internation furnished subsequently to the statement that the suitnernational application a	onal application in written form. In a properties of the properti	
Certain claims were four Unity of invention is lace.	nd unsearchable (See Box I). king (see Box II).)
	ubmitted by the applicant. shed by this Authority to read as follows:	
the text has been established	ubmitted by the applicant. shed, according to Rule 38.2(b), by this Autho e date of mailing of this international search o	ority as it appears in Box III. The applicant may, eport, submit comments to this Authority.
6. The figure of the drawings to be pub as suggested by the applicant fai because this figure better	icant.	None of the figures.

Box I	Observations where certain claims were found unsearchable (Continuation of Item 1 of first sheet)
This Inte	emational Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. X 2	Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely: Remark: Although claim 42 is directed to a method of treatment of the human/animal body and claims 43-47 (all partially) are directed to a diagnostic method practised on the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition. Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such
	an extent that no meaningful International Search can be carried out, specifically:
3.	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II	Observations where unity of invention is lacking (Continuation of Item 2 of first sheet)
This Inte	omational Searching Authority found multiple inventions in this international application, as follows:
1.	As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2.	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3.	As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4.	No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark	on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 C12N15/85 C12N15/62
A61K51/10 A61P35/00

C12N5/10 G01N33/574 C07K16/30 A61K39/395 C07K16/46

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) IPC $\frac{7}{6}$ CO7K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUM	ENTS CONSIDERED TO BE RELEVANT	
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	Y SHA ET AL: "A heavy-chain grafted antibody that recognizes the tumor-associated TAG72 antigen" CANCER BIOTHERAPY, vol. 9, no. 4, 1 January 1994 (1994-01-01), pages 341-349, XP002079337 abstract page 342, left-hand column, paragraph 2 -right-hand column, paragraph 1 page 346, left-hand column, paragraph 2 -page 347, right-hand column, paragraph 1	1-47
X	WO 97 26010 A (SMITHKLINE BEECHAM CORP., USA; UNIVERSITY OF VERMONT AND STATE AGRICULT) 24 July 1997 (1997-07-24) page 9, line 28 -page 10, line 10 page 21, line 25 -page 22, line 13 -/	1,2,4,6, 7,9, 36-41

	-/- -
X Further documents are listed in the continuation of box C.	Patent family members are listed in annex.
 Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed 	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "&" document member of the same patent family
Date of the actual completion of the international search 6 April 2000	Date of mailing of the international search report $20/04/2000$
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31–70) 340–2040, Tx. 31 651 epo nl, Fax: (+31–70) 340–3016	Authorized officer Covone, M

CACOMINA	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category °	Citation of document, with Indication,where appropriate, of the relevant passages	Relevant to claim No.
X	DATABASE MEDLINE 'Online! US NATIONAL LIBRARY OF MEDICINE (NLM), BETHESDA, MD, US XIANG J ET AL: "Complementarity determining region residues aspartic acid at H55, serine at H95 and tyrosines at H97 and L96 play important roles in the B72.3 antibody—TAG72 antigen interaction." retrieved from STN Database accession no. 97015918 XP002134981 abstract & PROTEIN ENGINEERING, (1996 JUN) 9 (6) 539-43.,	23,36-47
X	DATABASE MEDLINE 'Online! US NATIONAL LIBRARY OF MEDICINE (NLM), BETHESDA, MD, US XIANG J ET AL: "The tyrosine residue at position 97 in the VH CDR3 region of a mouse/human chimeric anti-colorectal carcinoma antibody contributes hydrogen bonding to the TAG72 antigen." retrieved from STN Database accession no. 95102752 XP002134982 abstract & CANCER BIOTHERAPY, (1993 FALL) 8 (3) 253-62.,	23,36-47
A	WO 96 13594 A (US HEALTH) 9 May 1996 (1996-05-09) page 24, line 9 -page 26, line 3 examples 13,17,18	1-47
P,A	WO 99 43816 A (ARMOUR KATHRYN ;CARR FRANK J (GB); HARRIS WILLIAM J (GB); TEMPEST) 2 September 1999 (1999-09-02) example 1 claims	1-47
Т	DATABASE MEDLINE 'Online! US NATIONAL LIBRARY OF MEDICINE (NLM), BETHESDA, MD, US IWAHASHI M ET AL: "CDR substitutions of a humanized monoclonal antibody (CC49): contributions of individual CDRs to antigen binding and immunogenicity." retrieved from STN Database accession no. 2000162136 XP002134983 abstract & MOLECULAR IMMUNOLOGY, (1999 OCT-NOV) 36 (15-16) 1079-91.,	1-47
	_/	ı

International Application No P 99/25552

	P 35 99/25552	
C.(Continu	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
	TAMURA M ET AL: "Structural correlates of an anticarcinoma antibody: identification of specificity—determining residues (SDRs) and development of a minimally immunogenic antibody variant by retention of SDRs only." JOURNAL OF IMMUNOLOGY, (2000 FEB 1) 164 (3) 1432-41. , XP000901556 the whole document	Relevant to claim No.

Informan on patent family members

Interportional Application No
PS 99/25552

Patent docume cited in search re		Publication date	ł	Patent family member(s)	Publication date
WO 9726010	Α	24-07-1997	AU	706397 B	17-06-1999
			AU	1830897 A	11-08-1997
			CN	1213312 A	07-04-1999
			HU	9900396 A	28-05-1999
			NO	983284 A	16-09-1998
			PL	327929 A	04-01-1999
			US	6005091 A	21-12-1999
			ZA	9700347 A	06-10-1998
WO 9613594	Α	09-05-1996	US	5889157 A	30-03-1999
			US	5981726 A	09-11-1999
			US	5608039 A	04-03-1997
			AU	4135596 A	23-05-1996
			CA	2203236 A	09-05-1996
			EP	0796334 A	24-09-1997
			JP	10508202 T	18-08-1998
		_	US	5990296 A	23-11-1999
WO 9943816	Α	02-09-1999	AU	6439398 A	15-09-1999

A CLASSIFICATION OF SUBJECT MATTER
IPC 7 C12N15/85 C12N15/62 C12N5/10 C07K16/30 C07K16/46
A61K51/10 A61P35/00 G01N33/574 A61K39/395

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) IPC 7 C07K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	Y SHA ET AL: "A heavy-chain grafted antibody that recognizes the tumor-associated TAG72 antigen" CANCER BIOTHERAPY, vol. 9, no. 4, 1 January 1994 (1994-01-01), pages 341-349, XP002079337 abstract page 342, left-hand column, paragraph 2 -right-hand column, paragraph 1 page 346, left-hand column, paragraph 2 -page 347, right-hand column, paragraph 1	1-47
X	WO 97 26010 A (SMITHKLINE BEECHAM CORP., JSA; UNIVERSITY OF VERMONT AND STATE AGRICULT) 24 July 1997 (1997-07-24) page 9, line 28 -page 10, line 10 page 21, line 25 -page 22, line 13	1,2,4,6, 7,9, 36-41

Further documents are listed in the continuation of box C.	Patent family members are listed in annex.
"A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filling date "L" document which may throw doubts on priority claim(s) or which is ofted to establish the publication date of another citation or other special reason (as epecified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filling date but later than the priority date claimed	"I" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person exilied in the art. "&" document member of the same patent family
Dete of the actual completion of the international search 6 April 2000	Date of mailing of the international search report 20/04/2000
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2 NL – 2280 HV Rijswijk Tel. (+31–70) 340–2040, Tx. 31 651 epo ni, Fac: (+31–70) 340–3016	Authorized officer Covone, M

Inter. al Application No PCT/US 99/25552

Continue	INTOR) DOCUMENTS CONSIDERED TO BE RELEVANT	PCT/US 99/25552
ategory *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
	TAMURA M ET AL: "Structural correlates of an anticarcinoma antibody: identification of specificity-determining residues (SDRs) and development of a minimally immunogenic antibody variant by retention of SDRs only." JOURNAL OF IMMUNOLOGY, (2000 FEB 1) 164 (3) 1432-41., XP000901556 the whole document	1-47
	nga .	
	· ·	

NIEKNAII – AL SEAKUN KEPUN

information on patent family members

PCT/US 99/25552

Patent document cited in search report		Publication date	Patent family member(s)		Publication date	
WO	9726010	A	24-07-1997	AU	706397 B	17-06-1999
				AU	1830897 A	11-08-1997
			•	CN	1213312 A	07-04-1999
				HU	9900396 A	28-05-1999
				NO	983284 A	16-09-1998
				PL	327929 A	04-01-1999
			,	US	6005091 A	21-12-1999
				ZA	9700347 A	06-10-1998
WO	9613594	Α	09-05-1996	US	5889157 A	30-03-1999
				ÜŠ	5981726 A	09-11-1999
				US	5608039 A	04-03-1997
			•	AU	4135596 A	23-05-1996
				CA	2203236 A	09-05-1996
				EP	0796334 A	24-09-1997
				JP	10508202 T	18-08-1998
				US	5990296 A	23-11-1999
WO	9943816	A	02-09-1999	AU	6439398 A	15-09-1999

i i

From the INTERNATIONAL BUREAU

PCT

NOTIFICATION CONCERNING SUBMISSION OR TRANSMITTAL OF PRIORITY DOCUMENT

(PCT Administrative Instructions, Section 411)

Date of mailing (day/month/year)

FER 1 6 2000

DAIGNAULT, Ronald, A. Merchant & Gould P.C. 3100 Norwest Center 90 South Seventh Street Minneapolis, MN 55402-4131 ÉTATS-UNIS D'AMÉRIQUE

31 January 2000 (31.01.00)	
Applicant's or agent's file reference 11613.32WO01	IMPORTANT NOTIFICATION
International application No.	International filing date (day/month/year)
PCT/US99/25552	29 October 1999 (29.10.99)
International publication date (day/month/year)	Priority date (day/month/year)
Not yet published	31 October 1998 (31.10.98)

THE GOVERNEMENT OF THE UNITED STATES OF AMERICA as represented by THE SECRETARY, DEPARTMENT OF HEALT et al

- The applicant is hereby notified of the date of receipt (except where the letters "NR" appear in the right-hand column) by the International Bureau of the priority document(s) relating to the earlier application(s) indicated below. Unless otherwise indicated by an asterisk appearing next to a date of receipt, or by the letters "NR", in the right-hand column, the priority document concerned was submitted or transmitted to the International Bureau in compliance with Rule 17.1(a) or (b).
- This updates and replaces any previously issued notification concerning submission or transmittal of priority documents.
- An asterisk(*) appearing next to a date of receipt, in the right-hand column, denotes a priority document submitted or transmitted to the International Bureau but not in compliance with Rule 17.1(a) or (b). In such a case, the attention of the applicant is directed to Rule 17.1(c) which provides that no designated Office may disregard the priority claim concerned before giving the applicant an opportunity, upon entry into the national phase, to furnish the priority document within a time limit which is reasonable under the circumstances.
- The letters "NR" appearing in the right-hand column denote a priority document which was not received by the International Bureau or which the applicant did not request the receiving Office to prepare and transmit to the International Bureau. as provided by Rule 17.1(a) or (b), respectively. In such a case, the attention of the applicant is directed to Rule 17.1(c) which provides that no designated Office may disregard the priority claim concerned before giving the applicant an opportunity. upon entry into the national phase, to furnish the priority document within a time limit which is reasonable under the circumstances.

<u>Priority date</u>	Priority application No.	Country or regional Office or PCT receiving Office	Date of receipt of priority document
31 Octo 1998 (31.10.98)	60/106,534	us	24 Janu 2000 (24.01.00)
02 Nove 1998 (02.11.98)	60/106,757	US	24 Janu 2000 (24.01.00)

The International Bureau of WIPO 34, chemin des Colombettes 1211 Geneva 20, Switzerland

Authorized officer

Taïeb Akremi 🦠

Facsimile No. (41-22) 740.14.35

Telephone No. (41-22) 338.83.38

REC'D 19 DEC 2000 **WIPO** PCT

INTERNATIONAL PRELIMINARY EXAMINATION REPORT

(PCT Article 36 and Rule 70)

			•			
	_	ent's file reference	FOR FURTHER AC	TION		ation of Transmittal of International Examination Report (Form PCT/IPEA/416)
.11613.32	WO	01 				, , , , , , , , , , , , , , , , , , , ,
International application No. International filing date (day/month/year) Priority date (day/month/year)						
PCT/US9	9/25	552	29/10/1999			31/10/1998
C12N15/		ent Classification (IPC) or n	ational classification and IPC		······································	
Applicant						
THE GO	VER	NEMENT OF THE UN	IITED STATES OF AM	ERICA		
			nination report has been paccording to Article 36.	prepared	l by this Inte	rnational Preliminary Examining Authority
2. This f	REPC	ORT consists of a total o	f 7 sheets, including this	cover sh	neet.	
b	een a	mended and are the ba		sheets c	ontaining re	n, claims and/or drawings which have ctifications made before this Authority ne PCT).
These	ann	exes consist of a total o	f sheets.			
				•		
3. This r	eport	contains indications rel	ating to the following item	ıs:		
1	\boxtimes	Basis of the report				
II		Priority				
Ш		Non-establishment of	opinion with regard to nov	velty, inv	entive step	and industrial applicability
IV		Lack of unity of invent	ion			
V	Ø		under Article 35(2) with re ions suporting such state		novelty, inve	entive step or industrial applicability;
VI		Certain documents ci	ted			
VII		Certain defects in the	international application			
VIII	×	Certain observations of	on the international applic	ation		
			· · · · · · · · · · · · · · · · · · ·			
Date of sub	missi	on of the demand		Date of	completion of	this report
04/05/20	00			15.12.20	000	
		g address of the internation	nal	Authoriz	ed officer	STAGUES MITHUE
preminary	Eur	ining authority: opean Patent Office		Maria		
		0298 Munich +49 89 2399 - 0 Tx: 52365	56 epmu d	Novak	, 5	
5					ne No. +49 8	9 2399 8930

Telephone No. +49 89 2399 8930

International application No. PCT/US99/25552

I. Basis of the report

This report has been drawn on the basis of (substitute sheets which have been furnished to the receiving Office response to an invitation under Article 14 are referred to in this report as "originally filed" and are not annexed to the report since they do not contain amendments (Rules 70.16 and 70.17).): Description, pages:							
	1-46	6	as originally filed				
	Clai	ms, No.:					
	1-47	7	as originally filed				
	Dra	wings, sheets:					
	1/23	3-23/23	as originally filed				
2.			guage, all the elements marked above were available or furnished to this Authority in the international application was filed, unless otherwise indicated under this item.				
	The	se elements were	available or furnished to this Authority in the following language: , which is:				
		the language of a	translation furnished for the purposes of the international search (under Rule 23.1(b)).				
		the language of p	ublication of the international application (under Rule 48.3(b)).				
		the language of a 55.2 and/or 55.3).	translation furnished for the purposes of international preliminary examination (under Rule				
3.			cleotide and/or amino acid sequence disclosed in the international application, the ry examination was carried out on the basis of the sequence listing:				
		contained in the ir	nternational application in written form.				
		filed together with	the international application in computer readable form.				
		furnished subsequ	uently to this Authority in written form.				
		furnished subsequ	uently to this Authority in computer readable form.				
			at the subsequently furnished written sequence listing does not go beyond the disclosure in application as filed has been furnished.				
		The statement that listing has been for	at the information recorded in computer readable form is identical to the written sequence urnished.				
4.	The	amendments have	e resulted in the cancellation of:				
		the description,	pages:				
		the claims,	Nos.:				

INTERNATIONAL PRELIMINARY EXAMINATION REPORT

International application No. PCT/US99/25552

		the drawings,	sheets:
5.			established as if (some of) the amendments had not been made, since they have been rond the disclosure as filed (Rule 70.2(c)):
		(Any replacement sh report.)	eet containing such amendments must be referred to under item 1 and annexed to this
6.	Ado	litional observations, i	f necessary:
V.			der Article 35(2) with regard to novelty, inventive step or industrial applicability; ons supporting such statement
1.	Sta	tement	

Novelty (N)

Yes:

Claims 1 - 47

No: Claims

Inventive step (IS)

Yes: Claims 10

No: Claims 1 - 9, 11 - 47

Industrial applicability (IA)

Yes: Claims 1 - 41

No: Claims

2. Citations and explanations see separate sheet

VIII. Certain observations on the international application

The following observations on the clarity of the claims, description, and drawings or on the question whether the claims are fully supported by the description, are made: see separate sheet

Reference is made to the following documents:

- D1: Y SHA ET AL: CANCER BIOTHERAPY, vol. 9, no. 4, 1 January 1994, pages 341-349
- D2: WO 97 26010 A, 24 July 1997
- D3: DATABASE MEDLINE [Online] US NATIONAL LIBRARY OF MEDICINE (NLM), BETHESDA, MD, US XIANG J ET AL: retrieved from STN Database accession no. 95102752 XP002134982 & CANCER BIOTHERAPY, (1993 FALL) 8 (3) 253-62.

ad V.

- 1. Novelty (Article 33(2) PCT)
- 1.1. The present application is drawn to mouse-human chimeric variants of CC49 monoclonal antibodies with minimal murine content.
 Also encompassed are biotechnological methods of making the variants and therapeutic methods of using the variants.
- 1.2. This subject-matter is not described in any prior art document, and therefore regarded to fulfill the requirements of Article 33(2) PCT.
- 2. Inventive Step (Article 33(3) PCT)
- 2.1. D1 is considered to represent the closest prior art.
 - This document describes a heavy-chain grafted antibody that recognizes the tumour-associated TAG72 antigen.

This is achieved by the transplantation of CDRs from the murine Vh of the ccM4 antibody into FRs of the human myeloma protein NEWM. This humanized antibody retains its binding reactivity for the TAG72 antigen, though less than the original chimeric antibody.

These results indicate that the murine anti TAG72 specificity can be grafted to human immunoglobulin, and that the choice of the human immunoglobulin framework has importance for the maintenance of the immunoreactivity (see abstract).

INTERNATIONAL PRELIMINARY **EXAMINATION REPORT - SEPARATE SHEET**

- 2.2. The present application differs therefrom inasmuch claimed humanized anti-TAG-72 antibodies comprise either light chain CD regions of human origin, or particular substitutions of heavy chain CD regions not specifically mentioned in the prior art document.
- 2.3. The problem to be solved by the present application may be regarded therefore to provide additional anti-TAG-72 humanized antibodies.
- 2.4. In order to solve the problem to which the application refers the skilled person would take into account the teaching of D2 and/or D3.

D2 describes the principle and theoretical background for "engineered antibodies", i.e., a full-length synthetic antibody in which a portion of the light and/or heavy chain variable domains of a selected acceptor antibody are replaced by analogous parts from one or more donor antibodies which have specificity for the selected epitope (see page 9).

It is pointed out in this document that "humanized antibody" refers to a type of engineered antibody having its CDRs derived from a non-human donor immunoglobulin, the remaining immunoglobulin-derived parts of the molecule being derived from one or more human immunoglobulin. In addition, framework support residues may be altered to preserve binding affinity (see page 10).

D3 is concerned with the tyrosine residue at position 97 in the VH CDR3 region of a mouse/human chimeric anti-TAG72 antibody. A single amino acid substitution at this position resulted in approximate 18-fold lower binding affinity, which suggests that the tyrosine residue at position 97 is in a contact position in the antibody/antigen interaction.

2.5. It follows that motivated by this knowledge the skilled person had the necessary background information in order to apply the teaching of D2 to an anti-TAG-72 antibody as described in D1, and thus to arrive at antibodies claimed in the present application. For the substitution of particular amino acids, such as Tyr97, the results described in D3 give the necessary motivation with reasonable expectation of success.

Therefore, no inventive step can be acknowledged for the subject-matter of claims 1 - 9, and 11-35.

The same is true for compositions comprising such antibodies, or nucleic acids encoding said immunoglobulins, respectively methods for treating cancer using such antibodies.

Such subject-matter is regarded to represent obvious applications, or uses of said immunoglobulins, which come within the scope of the customary practice followed by persons skilled in the art, especially as the advantages thus achieved can be readily foreseen.

Consequently, the subject-matter of claims 36 - 47 is not regarded to fulfill the requirements of Article 33(3) PCT.

The subject-matter of claim 10 however, which is concerned with the CC49 anti-TAG-72 antibody, is considered to involve an inventive step.

- 3. Industrial applicability
- 3.1. Claims 42 47 relate to subject-matter considered by this Authority to be covered by the provisions of Rule 67.1(iv) PCT. Consequently, no opinion will be formulated with respect to the industrial applicability of the subject-matter of these claims (Article 34(4)(a)(i) PCT).

ad VIII.

- Clarity (Article 6 PCT) 4.
- 4.1. It is clear from the description on page 4 that the following feature is essential to the definition of the invention:
 - (1) "variants of CC49"

Since independent claims 1, 11, 23, 34, and 35 do not contain this feature they do not meet the requirement following from Article 6 PCT taken in combination with Rule 6.3(b) PCT that any independent claim must contain all the technical features essential to the definition of the invention.

INTERNATIONAL PRELIMINARY Inter EXAMINATION REPORT - SEPARATE SHEET

- 4.2. Furthermore, claims 11, 23, 34, and 35 are concerned with antibodies which have been substituted at particular amino acid residues, e.g. position 60, 61, 62, or 64 in H-CDR2.
 - Such a description appears completely confusing, and unclear in the light that no specific antibody has been pointed out to which these positions would refer.
- 4.3. As a general rule, the area defined by the claims must be as precise as the invention allows.
 - It is emphasised that claims must be clear on their own and that they must state the technical features which are necessary for the definition of the claimed subject-matter.
 - Consequently, dependent claims 2 9, 12 22, and 24 33 do also not meet the requirements of Article 6 PCT.
- 4.4. It follows from 4.1. 4.3. that claims 1 9, and 11 35 are not allowable. The above objections can only be met by restricting the scope to those antibodies that can be shown to solve the problem posed, i.e. the antibodies having the essential structural feature (variants of CC49, having a defined amino acid structure).

5

10

15

20

25

Table 1: Patient Characteristics

					<u>Dose</u> ^a		
Dose Level	Patient	Age	Sex	Tumor	mCi	mg MAb	
10 mCi/m ²	DS	52	F	Breast	16.0	20	
	LW	45	F	Breast	19.0	20	
	JJ	61	F	Breast	17.2	20	
25 mCi/m ²	DG	45	F	Breast	41.0	20	
	LJ	45	F	Breast	40.3	20	
	JM	42	F	Breast	45.4	20	
15 mCi/m ²	JG	61	M	Colon	29.8	44	
	RW	46	F	Lung	24.2	20	
	TD	50	M	Colon	31.5	47	
	$\mathbf{E}\mathbf{A}^{\mathbf{b}}$	53	F	Colon	24.2	20	
	CP ^b	53	F	Colon	26.0	20	
	LQ^b	45	F	Colon	29.7	20	

^a Patients were administered ¹⁷⁷Lu-PA-DOTA-CC49 by intravenous injection. ^b Patient received new formulation of ¹⁷⁷Lu-PA-DOTA-CC49 that was labeled using a modification of the method described by Mulligan et al. (1995), <u>Clin. Cancer Res.</u> 1:1447-1454.

PA-DOTA was conjugated to human serum albumin (HSA), radiolabeled with Na¹²⁵I, incubated with the patient sera and analyzed for immune complex formation by size-exclusion HPLC. None of the sera showed detectable reactivity with the PA-DOTA-HSA conjugate (Data not shown).

Determination of Patient Humoral Response

The sera from the twelve patients was evaluated for the presence of human anti-murine antibodies (HAMA) in response to MAb CC49 using high performance liquid chromatograph (HPLC) as described by Mulligan et al. (1996) Clin. Cancer Res., 1:1447–1454. The analysis was performed by adding about 500,000 cpm (0.4 μ Ci) of ¹²⁵I–BL–3 to 50 μ l of patient sera. Following a 60 minute incubation at 37°C, 25 μ l of the mixture was applied to a size-exclusion column (TSK 3000SW; TosoHaas, Montgomeryville, PA) equilibrated in 67 mM sodium phosphate (pH 6.8) containing 100 mM KCl. The sera samples were eluted at a flow rate of 0.5 ml/min. The protein was detected by absorbance at 280 nm and the radioactivity was measured using a flow-through γ -scintillation counter (Model 170, Beckman Instruments, Inc., Berkeley, CA). The presence of HAMA was indicated by a shift in the elution profile of the ¹²⁵I–BL–3 because the formation of immune complexes with the radiolabeled BL–3 results in a shorter retention time. The patients' prestudy sera, normal human sera and phosphate buffered saline with ¹²⁵I–BL–3 were used as controls. A patient with a known HAMA response from a previous study

5

10

15

20

25

30

35

PCT/US99/25552

40

(Colcher et al. (1990), <u>J. Nucl. Med.</u>, 31:1133–1142) served as a positive control. The patients' sera were demonstrated to have antibodies against the variable region of the murine CC49.

Figure 19 shows an HPLC analysis of patient HAMA following intravenous injection of ¹⁷⁷Lu–CC49. Serum samples from LQ were analyzed for the presence of HAMA at various timepoints before and after injection with 20 mg of ¹⁷⁷Lu–labeled CC49. Pre–study sera (A), sera collected at 7 days (B), 3 weeks (C), and 6 weeks (D) were mixed with ¹²⁵I–BL–3 and applied to a size exclusion column. Reduction in retention time of the radiolabeled BL–3 as compared to migration of the ¹²⁵I–BL–3 in buffer (E) were indicative of immune complex formation and therefore the presence of HAMA.

Lack of complex formation is evident (FIG. 19A) when the pre-study sera of Patient LQ is incubated with the ¹²⁵I-BL-3. All of the radioactivity is associated with the peak at about 18.5 minutes, the same retention time for ¹²⁵I-BL-3 in buffer (FIG. 19E). Complex formation is also absent when the sera collected at seven days is incubated with ¹²⁵I-BL-3 (FIG. 19B). With sera collected at 3 weeks (FIG. 19C), however, there is an indication of complex formation (46%) with the appearance of two peaks with a shorter retention time (i.e., 14 and 16 minutes). The peaks at a shorter retention time indicate the development of a higher molecular weight species in the sera. At 6 weeks (FIG. 19D), the HAMA response has increased, the amount of radioactivity bound in complexes is now 66%.

Figure 20 shows an HPLC analysis of patients' humoral response to the variable region of MAb CC49. The percent complex formation has been plotted versus time for (solid lines) patients DS (O), LW (\square), JJ (Δ), DG (\bullet), LJ (\blacksquare),

 $TD(\blacktriangle)$; (dotted lines) JG (O), RW (\square), JM (Δ), EA (\bullet), CP (\blacksquare), LQ (\blacktriangle);

At one week, none of the patients showed a detectable response against the HuCC49 (FIG. 20). At 3 weeks, sera from nine of the twelve patients (75%) appears to contain antibody against the variable region of CC49 with one patient having a notably higher response than the others. For the eleven patients evaluated at six weeks, only two patients did not elicit a human antivariable region antibody response (HAVRA) against CC49, i.e., 9 of 11 evaluable patients (82%) had antibody against the variable region of the murine MAb CC49.

Three patterns of HAMA-HAVRA response are evident. The patterns of the HAMA and HAVRA responses elicited in each of the patients were very similar, differing only in the apparent level of antibody. Patients DG, LW, LQ and CP

developed HAVRA simultaneously with HAMA. Patients DS and JM appear to have a strong HAVRA, while HAMA response is modest. While in patients TD, JG, and EA, the HAVRA level is lower than HAMA at 3 weeks, followed by HAMA and HAVRA attaining high levels at later timepoints. In no patient was there a HAVRA response without the development of HAMA..

The HAMA results for the twelve patients are summarized below in Table 2.

Table 2: HPLC Analysis of Patients' Anti-mouse immunoglobulin response after i.v. injection of ¹⁷⁷Lu-CC49

	Days Post-Injection of 177Lu-CC49							
Patient	7	21	42	56				
DS	0 ^a	1	16	27				
LW	3	6	81	NA				
JJ	0	12	3	4				
DG	0	24	84	NA				
LJ	0	42	NA	NA				
JM	0	8	47	NA				
JG	4	83	83	NA				
RW	0	1	2	NA				
TD	0	95	100	NA				
EA	0	27	100	100				
CP3	0	33	27	NA				
LQ	0	46	66	100				

^a The values are the percent of ¹²⁵I-BL-3 detected in complexes after a brief incubation with the patient sera and resolved by size-exclusion chromatography. The timepoints of each patient are background corrected using the patients' prestudy sera.

The patterns of the HAMA responses are varied and are consistent with previous findings by Colcher et al. (1990), <u>J. Nucl. Med.</u> 31:1133–1142. Ten out of the twelve patients (83%) demonstrate a HAMA response at 3 weeks following a single intravenous injection of 20 mg ¹⁷⁷Lu–labeled CC49, two patients (LW and JG) have minimal responses evident at 7 days with complexes of 3% and 4%, respectively. One patient (RW) may be considered a nonresponder. Some of the patients show an escalating HAMA response, while others plateau. Yet another (JJ) peaks at 3 weeks, followed by an apparent decrease in the HAMA level. Overall, at 3 weeks, 8 of 12 patients (57%) at and 6 weeks, 9 of 11 (82%) were HAMA positive.

Specificity of Patient Response

WO 00/26394

5

10

15

20

25

30

35

The specificity of the patients' antibody response to CC49 was assessed using ¹²⁵I-labeled HuCC49 and HuCC49 CDR-replacement variants to determine whether or not any of the responses were directed against the variable region of CC49. To accomplish this, the HPLC methodology was employed using ¹²⁵I-HuCC49 as the probe (See, Kashmiri et al. (1995), <u>Hybridoma</u>, 14:461-473).

To eliminate the artifactual influence of TAG-72 in the HPLC analysis for anti-CC49 antibody responses found in the patient's serum, immunoadsorbents were prepared as reported by Ferroni et al. (1992) <u>J. Clin. Lab. Analysis</u>, 4:465-473. For the purpose of these studies, purified MAb CC92 was coupled to Reacti-gel (HW65F, Pierce) according to the method of Heam et al. (1979), <u>J. Chromatog.</u>, 185:463-470. MAb CC92 is a second-generation monoclonal antibody that reacts with TAG-72, but with an epitope distinct from the one recognized by CC49.

Before probing the patients' sera with the ¹²⁵I-HuCC49, removal of HAMA and circulating TAG-72 were confirmed using ¹²⁵I-BL-3 and ¹²⁵I-B72.3, respectively (data not shown). MAb B72.3 is an anti-TAG-72 MAb that has been shown to form complexes with TAG-72 in patient sera (Colcher et al. (1990), <u>J. Nucl. Med.</u>, 31:1133-1142).

In the competition assay, 5 µg of the cold competitor (either purified HuCC49 or one of its variants) was added to a mixture of patient sera (collected 8 weeks post—i.v. injection with ¹⁷⁷Lu—CC49) and ¹²⁵I—HuCC49 and then analyzed by size—exclusion chromatography for the absence or presence of complexes. The percent inhibition of complex formation was calculated. If the variant competed with the ¹²⁵I—labeled MAb, and complex formation was inhibited, then the variant

5

10

20

25

30

still contained the immunodominant CDR. If the variant failed to inhibit complex formation, then the CDR that is no longer present in the variant is recognized by the patient and hence it is an immunogenic CDR. An example of this assay (using serum from patient LQ) is shown in FIG. 21. Panel A is the profile of the ¹²⁵HuCC49 in buffer only. Panel B, is the profile showing complex formation (42.9%) resulting from patient sera (LQ) incubated with ¹²⁵I–HuCC49. When HuCC49 is added as a competitor, there is competition for the ¹²⁵I–HuCC49 and a loss or absence of complexes is observed (Panel C). The same is true of a variant which still contains an immunogenic CDR (e.g., light chain CDR2 as the competitor) (Panel D). In contrast, there is either a partial (Panel F) or total retention of the complexes (Panel E), when light chain CDR1 or CDR3 variants, respectively, are the competitors.

The results are very striking, see Table 3.

15 Table 3: HPLC Analysis of Patient Reactivity to CDR-Replacement variants of HuCC49^a

Competi							
	CDR ^b	DS	DG	JG	EA	CP	LQ
None		33.5°	46.2	24.5	56.8	32.2	42.9
HuCC49		0	0	2.6	0.5	1.5	3.0
Hu IgG		46.4	59.0	25.1	63.6	ND	54.1
Light Chain	1	16.0	12.2	9.8	10.1	16.9	14.3
•	2	2.7	3.4	2.7	4.4	3.0	2.4
	3	34.8	48.2	22.4	37.6	33.5	46.7
	1,2	24.6	24.5	12.6	19.4	15.7	20.2
Heavy Chain	1	10.2	3.9	3.3	7.0	5.8	3.5
-	2	32.7	32.5	12.7	24.7	29.7	36.6
	3	7.3	5.1	3.7	8.2	6.7	4.6

^a The sera from patients injected with ¹⁷⁷Lu-CC49 were tested for reactivity with variants of HuCC49 in which individual CDRs had been substituted with human sequences in both the heavy and light chains of HuCC49. Five μg of the purified CDR-replacement variants were added to a mixture of ¹²⁵I-HuCC49 and the patient sera and then analyzed for the presence or absence of immune complex formation.

^b The number indicates which CDR in the HuCC49 has been replaced with a human CDR sequence.

^c The values are the percent of complexes, the higher molecular weight species, resolved by size—exclusion chromatography.

Of the six patients analyzed, all six demonstrated reactivity with CDR3 light chain indicating that light chain CDR3 may be immunodominant in murine CC49 MAb. In the heavy chain, CDR2 appears to be dominant but not with the same level of consensus (four of the six patients show the same level of reactivity, the other two

WO 00/26394 PCT/US99/25552

demonstrated partial reactivity). Concordance was obtained among the six patients in regard to CDR2 of the light chain and CDR1 and CDR3 of the heavy chain, which do not appear to contribute to the immunogenicity of the MAb. This is also the case with the light chain CDR1 and, it follows, the variant with the dual substitution of CDR1 and 2 in the light chain, in which all six patients displayed a partial recognition of the variants. Partial recognition with the heavy chain CDR2 variant with two patients may be due to a loss of part but not all of the cognizant epitope, a change in the conformation or conformational epitope, or loss of amino acid residues that might stabilize the antibody:antibody interaction.

10

15

20

5

Ouantitation of Patient Antibody Response

Quantitation of the HAMA or anti-variable region antibody levels in four patients was performed using HPLC analysis. The quantitation study was performed by adding either 500 ng of unlabeled BL-3 or 250 ng of HuCC49, respectively, to the mixture of patient serum and ¹²⁵I-HuCC49 and calculating the amount of BL-3 or HuCC49 bound in complexes.

As shown in Table 4, below, at 6 weeks, the amount of HAMA varies from patient to patient by 43-fold, while the variability of HAVRA is within 4-fold. Furthermore, the HAMA versus HAVRA levels may vary from 10 to 145-fold. Clearly, HAVRA can be detected at 3 weeks, and, not surprisingly, it does not appear to attain the same levels as HAMA. In patient EA, there is a dramatic 10-fold increase in the level of HAVRA from 6 to 8 weeks that is noteworthy.

Table 4: Quantitation of anti-CC49 variable region and anti-murine response of patients administered ¹⁷⁷Lu-CC49

45

μg of Ab/ml Sera

	Post-Mab		
Patient	Injection	BL-3 ^a	HuCC49 ^b
EA	0	0	0
	3 weeks	4.1	0.3
	6 weeks	289.0	2.3
	8 weeks	314.4	21.6
СР	0	0	0
	3 weeks	16.0	0.8
	5 weeks	25.2	0.7
	6 weeks	23.2	0.7
LQ	0	0	ND
	3 weeks	4.61	0.4
	6 weeks	6.64	0.7
	8 weeks	ND	1.7
JG	0	0	0
	3 weeks	58.6	0.7
	6 weeks	47.8	2.6

5

10

15

20

25

Competition Radioimmunoassay

To confirm whether the HAVRA was actually an anti-idiotypic response, including internal image anti-idiotypic antibodies, to the murine MAb CC49, the sera from one patient (EA) was selected and assessed for blocking of the binding of ¹²⁵I-HuCC49 to BSM in a radioimmunoassay.

The immunoreactivity of the radiolabeled MAbs was assessed using bovine submaxillary mucin (BSM) immobilized on a solid support (Reacti–Gel HW65, Pierce) as a modification of the method reported by Heam et al. (1979), <u>J.</u> Chromatog., 185:463–470 and Schott (1992) Cancer Res., 52:6413–6417. Briefly, bovine submaxillary mucin (BSM), which is TAG–72 positive, was adsorbed to each well of a 96–well polyvinylchloride microtiter plate at 10 ng in 50 μ l of phosphate buffered saline (pH 7.2) as described by Horan Hand et al. (1992), Cancer Immunol. Immunother., 353:165–174. After treating the wells with 5% BSA in PBS, serial dilutions of the patient sera (25 μ l in 1% BSA in PBS) were added to each; ¹²⁵I–CC49 (38 nCi in 25 μ l) was also added. Following an 18 hour incubation at 4°C, the plates were washed and the wells counted in a γ –scintillation counter. The percent inhibition was calculated and compared to that of unlabeled CC49. Human IgG (Organon Teknika, Durham, NC), which does not react with TAG–72 was included as a control antibody.

It was found that the patient sera could block the binding of ¹²⁵I-HuCC49 with BSM (FIG. 22) suggesting that the patient, in actuality, demonstrates an anti-idiotypic response, consisting of the internal image anti-idiotypic antibodies. Furthermore, the anti-idiotypic response was observed to increase over an eight week period. Figure 22 shows the detection of patient (EA) anti-idiotypic antibody response to murine CC49: pre-study sera from patient EA (\square); sera collected at 3 weeks (A), 6 weeks (B), and 8 weeks (C).

All references cited in this disclosure are hereby incorporated by reference.

WHAT IS CLAIMED IS:

1. A humanized anti-TAG-72 antibody comprising:

light chain Complementarity Determining Regions (L-CDRs), comprising L-CDR1, L-CDR2 and L-CDR3; and heavy chain Complementarity Determining Regions (H-CDRs), comprising H-CDR1, H-CDR2 and H-CDR3,

wherein L-CDR3, H-CDR1, H-CDR2 and H-CDR3 are from a non-human antibody and at least one of L-CDR1 and L-CDR2 are human antibody sequences.

- 2. The humanized antibody of claim 1, wherein L-CDR1 is from a human antibody.
- 3. The humanized antibody of claim 2, wherein L-CDR1 is from human monoclonal antibody LEN.
- 4. The humanized antibody of claim 1, wherein L-CDR2 from a human antibody.
- 5. The humanized antibody of claim 4, wherein L-CDR2 is from human monoclonal antibody LEN.
- 6. The humanized antibody of claim 1, wherein both L-CDR1 and L-CDR2 are human antibody sequences.
- 7. The humanized antibody of claim 1, wherein L-CDR1 and L-CDR2 are human antibody sequences from the same human antibody.
- 8. The humanized antibody of claim 7, wherein L-CDR1 and L-CDR2 are human antibody sequences from human monoclonal antibody LEN.
- 9. The humanized antibody of claim 6, wherein L-CDR1 and L-CDR2 are human antibody sequences from different human antibodies.

- 10. The humanized antibody of claim 1, wherein L-CDR3, H-CDR1, H-CDR2 and H-CDR3 are from murine monoclonal antibody CC49.
- 11. A humanized anti-TAG-72 antibody comprising:

light chain Complementarity Determining Regions (L-CDRs), comprising L-CDR1, L-CDR2 and L-CDR3; and heavy chain Complementarity Determining Regions (H-CDRs), comprising H-CDR1, H-CDR2 and H-CDR3,

wherein at least one amino acid of positions 60, 61, 62, or 64 in H-CDR2 is replaced with a corresponding amino acid from a human antibody.

- 12. The humanized antibody of claim 11, wherein the human antibody is 21/28'CL.
- 13. The humanized antibody of claim 11, wherein the amino acid at position 97 of L-CDR3 is replaced with a corresponding amino acid from a human antibody.
- 14. The humanized antibody of claim 11, wherein at least one of L-CDR1 and L-CDR2 are human antibody sequences.
- 15. The humanized antibody of claim 14, wherein L-CDR1 is a human antibody sequence.
- 16. The humanized antibody of claim 15, wherein L-CDR1 is from human monoclonal antibody LEN.
- 17. The humanized antibody of claim 14, wherein L-CDR2 is a human antibody sequence.
- 18. The humanized antibody of claim 17, wherein L-CDR2 is from human monoclonal antibody LEN.

- 19. The humanized antibody of claim 17, wherein both L-CDR1 and L-CDR2 are human antibody sequences.
- 20. The humanized antibody of claim 19, wherein L-CDR1 and L-CDR2 are human antibody sequences from the same human antibody.
- 21. The humanized antibody of claim 20, wherein L-CDR1 and L-CDR2 are from human monoclonal antibody LEN.
- 22. The humanized antibody of claim 19, wherein L-CDR1 and L-CDR2 are human antibody sequences from different human antibodies.
- 23. A humanized anti-TAG-72 antibody comprising:

light chain Complementarity Determining Regions (L-CDRs), comprising L-CDR1, L-CDR2 and L-CDR3; and heavy chain Complementarity Determining Regions (H-CDRs), comprising H-CDR1, H-CDR2 and H-CDR3,

wherein an amino acid at position 97 of L-CDR3 is replaced with a corresponding amino acid from a human antibody.

- 24. The humanized antibody of claim 23, wherein at least one amino acid of positions 60, 61, 62, or 64 in H-CDR2 is replaced with a corresponding amino acid from a human antibody.
- 25. The humanized antibody of claim 23, wherein at least one of L-CDR1 and L-CDR2 are human antibody sequences.
- 26. The humanized antibody of claim 25, wherein L-CDR1 is a human antibody sequence.
- 27. The humanized antibody of claim 26, wherein L-CDR1 is from human monoclonal antibody LEN.

- 28. The humanized antibody of claim 25, wherein L-CDR2 is a human antibody sequence.
- 29. The humanized antibody of claim 28, wherein L-CDR2 is from human monoclonal antibody LEN.
- 30. The humanized antibody of claim 25, wherein both L-CDR1 and L-CDR2 are from human antibody sequences.
- The humanized antibody of claim 30, wherein L-CDR1 and L-CDR2 are human antibody sequences from the same human antibody.
- 32. The humanized antibody of claim 31, wherein L-CDR1 and L-CDR2 are from human antibody sequences from human monoclonal antibody LEN.
- 33. The humanized antibody of claim 30, wherein L-CDR1 and L-CDR2 are human antibody sequences from different human antibodies.
- 34. A humanized anti-TAG-72 antibody comprising:

light chain Complementarity Determining Regions (L-CDRs), comprising L-CDR1, L-CDR2 and L-CDR3; and heavy chain Complementarity Determining Regions (H-CDRs), comprising H-CDR1, H-CDR2 and H-CDR3,

wherein residues at positions 94 and 97 in L-CDR3 are from a non-human anti-TAG-72 antibody.

35. A humanized anti-TAG-72 antibody comprising:

light chain Complementarity Determining Regions (L-CDRs), comprising L-CDR1, L-CDR2 and L-CDR3; and heavy chain Complementarity Determining Regions (H-CDRs), comprising H-CDR1, H-CDR2 and H-CDR3,

wherein residues at positions 31, 32 and 34 in H-CDR1 are from a non-human anti-TAG-72 antibody.

PCT/US99/25552 WO 00/26394

A nucleic acid sequence expressing the humanized antibody of any of claims 36. 1, 11, 23, 34 or 35.

- A vector expressing the humanized antibody of any of claims 1, 11, 23, 34 or 37. 35.
- A composition for treatment of cancer, comprising the humanized antibody 38. of any of claims 11, 11, 23, 34 or 35.
- A composition for detecting cancer cells, comprising the humanized antibody 39. of any of claims 1, 11, 23, 34 or 35.
- A composition of for detecting cancer cells, comprising a polypeptide 40. capable of specifically binding TAG-72, said polypeptide comprising a functional fragment of the humanized antibody of any of claims 1, 11, 23, 34 or 35.
- The composition of claim 40, wherein the polypeptide comprises a fragment 41. selected from the group consisting of Fv, Fab, and F(ab')2.
- A method for treating cancer comprising: 42. administering the humanized antibody of any of claims 1, 11, 23, 34 or 35 to a patient.
- A method of detecting cancer cells, comprising: 43. contacting cells with the humanized antibody of any of claims 1, 11, 23, 34 or 35.
- The method of claim 43, wherein the humanized antibody is labeled. 44.
- The method of claim 43, wherein the humanized antibody is detected using a 45. labeled secondary antibody.

- 46. A method of detecting cancer cells, comprising:

 contacting cells with composition comprising a polypeptide capable of specifically binding TAG-72, said polypeptide comprising a functional fragment of the humanized antibody of any of claims 11, 11, 23, 34 or 35.
- 47. The method of claim 46, wherein the polypeptide comprises a fragment selected from the group consisting of Fv, Fab, and F(ab')₂.

Figure 1

				·	S \ S S S S S S S S S S S S S S S S S S S	
Ala Ala						
Election in the second in the					64 GIn	
32 Tyr Tyr				;	63 Phe Phe	
Asn Asn					62 Arg L ys	
30 Lys					6년 8년 8년	
29 Gln Ser					60 Asn <i>Ser</i>	
28 Asn Asn					59 Tyr Tyr	
Ser /					58 Lys Lys	102 Tyr Tyr
Ser		97 Thr Ser			Phe Thr	101 A SSI
즉축		7 E18			Asp Asn	ol Ser
nen c c	56 Ser Ser	20 P 05			कु देश	6 · la
b Leu Val	55 Glu Glu	21岁			Asn Asn Asn	100 Ser
a Ser Ser	Arg Arg	Ser Ser		135 분 일	G G G	9 Alg
27 Gin Gin	53 . Thr	722		34 lle Met	Pro A ta	7 Net
26 Ser Ser	Ser Ser	7万万		Ala Ala	52 Ser A sn	97 Asn 7 <i>y</i> 7
25 Ser Ser	Ala Ala	ଓଡ଼ିଆ		7 기가	51 Phe 11c	
24 Lys Lys	8.1 [−] − − − − − − − − − − − − − − − − − −	음년 당 당		Asp Ser	50 Tyr	95 Ser Gly
Light chain CDR 1 HuCC49 LEN	CDR 2 HuCC49 LEN	CDR 3 HuCC49 LEN	Heavy chain	CDR 1 HuCC49 21/28'CL	CDR 2 HuCC49 21/28'CL	CDR 3 HuCC49 21/28'CL

Figure 3

4/22

Figure 4

Figure 5

7/22 **Figure 7**

8/22 **Figure 8**

9/22

Figure 9

Figure 10

:	CDR1	
LEN Hucc49	DIVMTOSPDSLAVSLGERATING DIVMSOSPDSLAVSLGERVTLNC KSSOSLLYSGNOKNYLA WYQOKPGOSPKLLIY	
LEN Hucc49	CDR2 GVPDRFSGSGSGTDFTLTISSLOAEDVAVYYC GVYDSYPLT FGOGTKLE!K	
.	CDB1	
21/28/CL Hucc49	QVQLVQSGAEVKKPGASVKVSCKASGYTFT WVRQAPGORLEWMG QVQLVQSGAEVVKPGASVKISCKASGYTFT DHAIH WVKQNPGQRLEWIG	
21/28.CL	· · · · · · · · · · · · · · · · · · ·	
HuCC49	YFSPGNDDFKYNERFKG KATLTADTSASTAYVELSSLRSEDTÄVYFCTR CDR3 · · · ·	
21/28/CL Hucc49	SLNMAY WGOGTLVTVSS	

ligure 11

12/22

Figure 12

A.			
		g = # # 2 = 1 to c # c = A TGGA TA SCCAGGCCCAGG TGC TCATGCTCCTGCTGCTGCTGGGTGAG	
		carrega saara gataccta coggtocoggiccacgagtacgacgacgacgacaccacto	60
	_	CGGCACATGCGGCGACATCGTGATGAGCCAGTCTCCAGACTCCCTGGCCGTGTCCCTGGG	
	61	GCCGTGTACGCCGCTGTACCACTACTCCCTCCCCCCCCCC	120
		GCSGTGTACGCCGCTGTASSACTACTCGGTCAGAGGTCTGAGGGACCGGCACAGGGACCC	
	_	CGAGAGGGTGACTCTGAATTGCAAGTCCAGCCAGTCCCTGCTCTATAGCGGAAATCAGAA	
	121	GCTCTCCCACTGAGACTTAACGTTCACCTCCCACTGCTCTATAGCGGAAATCAGAA	180
•		GCTCTCCCACTGAGACTTAACGTTCAGGTCGGTCAGGGACGAGATATCGCCTTTAGTCTT	
		GAACTATCTCGCCTGGTATCAGCAGAAACCAGGGCAGAGCCCTAAACTGCTGATTTACTG	
	181	CTTGATAGAGCGGACCA ACTCCTOTTTCTG	240
		CTTGATAGAGCGGACCATAGTCGTCTTTGGTCCCGTCTCGGGATTTGACGACTAAATGAC	•
		GGCATCCGCTAGGGAATCCCCCCCCCCCCCCCCCCCCCC	
	241	GGCATCCGCTAGGGAATCCGGCGTGCCTGATCGCTTCAGCGGCAGCGGATCTGGGACAGA	
		CCGTAGGCGATCCCTTAGGCCGCACGGACTAGCGAAGTCGCCTAGACCCTGTCT	300
	301	CTTCACTCTGACATCAGCAGCGTGCAGGCAGAAGACGTGGCAGTCTATTATTGTCAGCA	
		GAAGTGAGACTGTTAGTCGTCGCACGTCCGTCTCTGCACCGTCAGATAATAACAGTCGT	360
	316	GTATTATAGCTATCCCCTCACATTCGGCGCTGGCACCAAGCTGGAACTGAAAcgggccgc	
	310	CATAATATCGATAGGGGAGTGTAAGCCGCGACCGTGGTTCGACCTTGACTTTgcccggcg	420
	421	ggct 424	
		ccge	
B.		·	
B.		CIBBGSLICCBSCATGGAGTGGTCCTGGGTCTTCCTCTCTCTCTCTCTCTCT	
B.		CIRRELICCECATGGAGTGGTCCTGGGTCTTCTTCCTGTCCGTGACTACTGG	•
B.		c: a a g = 1 t c c a c c A T G G A G T G G T C C T G G T C C T G T C C T G T C C G T G A C T G G G G C C G G A G G G A G	€0
B.	A 1	TATT COREST TO TACCT CACCAGGACCAGAAGGAGAAGAAGAAGAAGAAGAAGAAGA	60
B.	61	ASTGCACTCCCAGGTCCASCTGGTGCAGTCCGGCGCTGAGGTGGTGAAACCTGGGGCTTC	60 120
B.	61	TATT COREST TO TACCT CACCAGGACCAGAAGGAGAAGAAGAAGAAGAAGAAGAAGA	
B.		ASTGCACTCCAGGTCCASCTGGTGCAGTCCGGCGCTGAGGTGAAACCTGGGGCTTC TCACGTGAGGTCCAGGTCGACCACGTCAGGCCGCGACTCCACCACTTTGGACCCCGAAG	
B.	61	ASTGCACTCCAGGTCCASCTGGTGCAGTCCGGCGCTGAGGTGGTGAAACCTGGGGCTTC TCACGTGAGGGTCCAGGTCCAGGTCAGGCGCGCGCGCGCG	120
B.		ASTGCACTCCAGGTCCASCTGGTGCAGTCCGGCGCTGAGGTGAAACCTGGGGCTTC TCACGTGAGGTCCAGGTCGACCACGTCAGGCCGCGACTCCACCACTTTGGACCCCGAAG	
B.	121	ASTGCACTCCCAGGTCCASCTGGTGCAGTCCGGCGCTGAGGTGGTGAAACCTGGGGCTTC TCACGTGAGGGTCCAGGTCGAGGTCAGGCGCGCGACTCCACCACTTTGGACCCCGAAG CGTGAAGATTTCCTGCAAGGCAAG	120
B.		ASTGCACTCCAGGTCCASCTGGTGCAGTCCGGCGCTGAGGTGGTGAAACCTGGGGCTTC TCACGTGAGGGTCCAGGTCAGGCCGCGCGCGCGCGCCCCACCTTTGGACCCCGAAG CGTGAAGATTTCCTGCAAGGCAAG	120
B.	121	ASTGCACTCCCAGGTCCASCTGGTGCAGTCCGGCGCTGAGGTGGTGAAACCTGGGGCTTC TCACGTGAGGGTCCAGGTCGAGGTCAGGCGCGCGACTCCACCACTTTGGACCCCGAAG CGTGAAGATTTCCTGCAAGGCAAG	120
B.	121	ASTGCACTCCAGGTCCASCTGGTGCAGTCCGGCGCTGAGGTGGTGAAACCTGGGGCTTC TCACGTGAGGTCCAGGTCGAGGTCAGGCCGCGACTCCACCACTTTGGACCCCGAAG CGTGAAGATTTCCTGCAAGGCAAG	120
B.	121	ASTGCACTCCCAGGTCCASCTGGTGCAGTCCGGCGCTGAGGTGGTGAAACCTGGGGCTTC TCACGTGAGGTCCASCTGGTGCAGTCCGGCGCTGAGGTGGTGAAACCTGGGGCTTC TCACGTGAGGTCCAGGTCGAGGCGCGCGACTCCACCACTTTGGACCCCGAAG CGTGAAGATTTCCTGCAAGGCAAG	120
В.	121	ASTGCACTCCAGGTCCASCTGGTGCAGTCCGGCGCTGAGGTGGTGAAACCTGGGGCTTC TCACGTGAGGTCCAGGTCGAGGTCAGGCCGCGACTCCACCACTTTGGACCCCGAAG CGTGAAGATTTCCTGCAAGGCAAG	120
В.	121	ASTGCACTCCAGGTCCASCTGGTGCAGTCCGGCGCTGAGGTGTGAAACCTGGGGCTTC TCACGTGAGGTCCASCTGGTGCAGTCCGGCGCTGAGGTGGTGAAACCTGGGGCTTC TCACGTGAGGTCCAGGTCAGGCCGCGACTCCACCACTTTTGGACCCCGAAG CGTGAAGATTTCCTGCAAGGCAAG	120
В.	121	ASTGCACTCCAGGTCCASCTGGTGCAGTCCGGCGCTGAGGTGGTGAAACCTGGGGCTTC TCACGTGAGGTCCASCTGGTGCAGTCAGGCCGCGACTCCACCACTTTGGACCCCGAAG CGTGAAGATTTCCTGCAAGGCAAG	120
В.	121	ASTGCACTCCAGGTCCASCTGGTGCAGTCCGGCGCTGAGGTGGTGAAACCTGGGGCTTC TCACGTGAGGTCCASCTGGTGCAGTCAGGCCGCGACTCCACCACTTTGGACCCCGAAG CGTGAAGATTTCCTGCAAGGCAAG	120
В.	121	ASTGCACTCCAGGTCCASCTGGTGCAGTCCGGCGCTGAGGTGTGAAACCTGGGGCTTC TCACGTGAGGTCCASCTGGTGCAGTCCGGCGCTGAGGTGGTGAAACCTGGGGCTTC TCACGTGAGGTCCAGGTCAGGCCGCGACTCCACCACTTTGGACCCCGAAG CGTGAAGATTTCCTGCAAGGCAAG	120 180 240 300
В.	121	ASTGCACTCCCAGGTCCASCTGGTGCAGTCCGGCGCTGAGGTGGTGAAACCTGGGGCTTC TCACGTGAGGTCCAGGTCGAGCTCAGGCGGCGCTGAGGTGGTGAAACCTGGGGCTTC TCACGTGAGGGTCCAGGTCGAGCGACGTCAGGCGGCGACTCCACCACTTTGGACCCCGAAG CGTGAAGATTTCCTGCAAGGCAAG	120 180 240 300
В.	121 181 241	ASTGCACTCCCAGGTCCASCTGGTGCAGTCCGGCGCTGAGGTGGTGAAACCTGGGGCTTC TCACGTGAGGTCCAGGTCGAGCTCAGGCGGCGCTGAGGTGGTGAAACCTGGGGCTTC TCACGTGAGGGTCCAGGTCGAGCGACGTCAGGCGGCGACTCCACCACTTTGGACCCCGAAG CGTGAAGATTTCCTGCAAGGCAAG	120 180 240 300
B.	121 181 241	AGTGCACTCCAGGTCCAGCTGAGGCGCGCGCGCGCGCCACTTGGACCCGAAGGCACTGATGACC TCACGTGAGGTCCAGGTCCAGCTCAGGCGGCGCGCGCCACTTTGGACCCGGAAG CGTGAAGATTTCCTGCAAGGCAAG	120 180 240 300
B.	121 181 241	AGTOCATOCAGGACCAGGACCAGGAGGAGGAGGAGGACCAGGAGGACCAGGAGG	120 180 240 300
В.	121 181 241 301	AGTGCACTCCAGGTCCAGCTGAGGCGCGCGCGCGCGCCACTTGGACCCGAAGGCACTGATGACC TCACGTGAGGTCCAGGTCCAGCTCAGGCGGCGCGCGCCACTTTGGACCCGGAAG CGTGAAGATTTCCTGCAAGGCAAG	120 180 240 300

Competition Radioimmunassay: Manipulated CDR Variants of HuCC49

Figure 13

HPLC Analysis of Patient Reactivity to CDR Substitution Variants of HuCC49

Co	mpetitor*		Patients			
	CDR Substitutions	Antigen Binding	DG	СР	EA	DS_
None			46.2 ^b	32.2	56.8	33.5
HuCC49		+++	0	1.5	0.5	0
HulgG		-	59.0	N.D.	63.6	46.4
Light	L3M94	+/- ,	30.2	20.3	16.4	28.9
	L3M96	-	39:2	31,1	42.9	35.2
	L3M97	+++	0.6	1.3	0.7	2.4
	L3M94,97	+/-	26.5	18.2	18.6	25.6
	L1,2+3M97	++	21:3	17.6	23.8	17.1
	L1,2+3M94,97	+	53.2	38.1	44.2	37.3
Heavy	1M32,34	•	1.4	5.5	3.8	0.7
	2M60-62,64	++	24.4	17.9	21.8	16.5
Both	L3M97 H2M60-62,64	++++	13.0	16.1	3.9	20.1
	L1,2+3M97 H2M60-62,64	++	33.0	30.7	24.9	32.1

Figure 14

HuCC9 and its CDR-Replacement Variants ф H-2 ф Comparison of Patient Reactivity with 1000 Figure 15 ng Competitor 100 100 8 49 8 20 Percent Inhibtion

49/16

Pharmacokinetics of Plasma Retention of Radioiodinated HuCC49 and Variant

Figure 17

18/22

Biodistribution of i.v. administered radiolabeled HuCC49 and Variant in athymic mice bearing LS-174T human colon carcinoma xenografts: Percent of injected dose/gram^a

		Timepoints (hr)					
Antibody	Organ	24	48	72	120	168	
Variant	Tumor	15.83	23.75	21.01	17.74	9.21	
	Blood	6.35	4.93	4.88	2.19	0.63	
	Liver	3.39	2.14	1.46	0.91	0.32	
	Spleen	5.90	6.04	2.55	2.43	3.96	
	Kidney	2.52	1.27	1.00	0.77	0.36	
	Lung	3.22	2.57	2.50	1.12	0.36	
HuCC49	Tumor	11.86	17.59	15.31	13.75	5.24	
	Blood	4.17	2.94	2.85	1.29	0.18	
	Liver	4.77	3.05	1.41	0.70	0.12	
	Spleen	6.41	7.47	2.28	2.00	0.46	
	Kidney	1.86	0.92	0.70	0.57	0.14	
	Lung	2.17	1.58	1.46	0.68	0.12	

Figure 18

Fg20

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 C12N15/85 C12N15/62 C12N5/10 C07K16/30 C07K16/46 A61P35/00 G01N33/574 A61K39/395 A61K51/10 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) IPC 7 CO7K Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Category * Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. X Y SHA ET AL: "A heavy-chain grafted 1-47 antibody that recognizes the tumor-associated TAG72 antigen" CANCER BIOTHERAPY, vol. 9, no. 4, 1 January 1994 (1994-01-01), pages 341-349, XP002079337 abstract page 342, left-hand column, paragraph 2 -right-hand column, paragraph 1 page 346, left-hand column, paragraph 2 -page 347, right-hand column, paragraph 1 X WO 97 26010 A (SMITHKLINE BEECHAM CORP., 1,2,4,6, USA; UNIVERSITY OF VERMONT AND STATE 7,9, 36-41 AGRICULT) 24 July 1997 (1997-07-24) page 9, line 28 -page 10, line 10 page 21, line 25 -page 22, line 13 X X Further documents are listed in the continuation of box C. Patent family members are listed in annex. Special categories of cited documents : "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone * document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled O document referring to an oral disclosure, use, exhibition or other means in the art. *P* document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 20/04/2000 6 April 2000 Authorized officer Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijawijk Tel. (+31-70) 340-2040. Tx. 31 651 epo nl,

Fax: (+31-70) 340-3016

1

Covone, M

		PCT/US 99/25552
C.(Continu	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	DATABASE MEDLINE 'Online! US NATIONAL LIBRARY OF MEDICINE (NLM), BETHESDA, MD, US XIANG J ET AL: "Complementarity determining region residues aspartic acid at H55, serine at H95 and tyrosines at H97 and L96 play important roles in the B72.3 antibody-TAG72 antigen interaction." retrieved from STN Database accession no. 97015918 XP002134981 abstract & PROTEIN ENGINEERING, (1996 JUN) 9 (6) 539-43.,	23,36-47
X	DATABASE MEDLINE 'Online! US NATIONAL LIBRARY OF MEDICINE (NLM), BETHESDA, MD, US XIANG J ET AL: "The tyrosine residue at position 97 in the VH CDR3 region of a mouse/human chimeric anti-colorectal carcinoma antibody contributes hydrogen bonding to the TAG72 antigen." retrieved from STN Database accession no. 95102752 XP002134982 abstract & CANCER BIOTHERAPY, (1993 FALL) 8 (3) 253-62.,	23,36-47
A	WO 96 13594 A (US HEALTH) 9 May 1996 (1996-05-09) page 24, line 9 -page 26, line 3 examples 13,17,18	1-47
P,A	WO 99 43816 A (ARMOUR KATHRYN ;CARR FRANK J (GB); HARRIS WILLIAM J (GB); TEMPEST) 2 September 1999 (1999-09-02) example 1 claims	1-47
Т	DATABASE MEDLINE 'Online! US NATIONAL LIBRARY OF MEDICINE (NLM), BETHESDA, MD, US IWAHASHI M ET AL: "CDR substitutions of a humanized monoclonal antibody (CC49): contributions of individual CDRs to antigen binding and immunogenicity." retrieved from STN Database accession no. 2000162136 XP002134983 abstract & MOLECULAR IMMUNOLOGY, (1999 OCT-NOV) 36 (15-16) 1079-91.,	1-47

1

		PCT/US 99/25552
	tion) DOCUMENTS CONSIDERED TO BE RELEVANT	Relevant to claim No.
ory *	Citation of document, with indication, where appropriate, of the relevant passages	Helevant to claim No.
	TAMURA M ET AL: "Structural correlates of an anticarcinoma antibody: identification of specificity-determining residues (SDRs) and development of a minimally immunogenic antibody variant by retention of SDRs only." JOURNAL OF IMMUNOLOGY, (2000 FEB 1) 164 (3) 1432-41., XP000901556 the whole document	1-47
	·	

1

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US 99/25552

Box I	Observations where certain claims were found unsearchable (Continuation of Item 1 of first sheet)
This Inter	national Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
	Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely: Remark: Although claim 42 is directed to a method of treatment of the human/animal body and claims 43-47 (all partially) are directed to a diagnostic method practised on the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.
	Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II	Observations where unity of invention is lacking (Continuation of Item 2 of first sheet)
This inte	mational Searching Authority found multiple inventions in this international application, as follows:
1.	As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2.	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3.	As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4.	No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark	The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

Internal Application No PCT/US 99/25552

Information on patent family members

	tent document in search report		Publication date		Patent family member(s)	Publication date
MO	9726010	Α	24-07-1997	AU	706397 B	17-06-1999
	3720010			AU	1830897 A	11-08-1997
				CN	1213312 A	07-04-1999
				HU	9900396 A	28-05-1999
				NO	983284 A	16-09-1998
				PL	327929 A	04-01-1999
			,	US	6005091 A	21-12-1999
				ZA	9700347 A	06-10-1998
WO	9613594	A	09-05-1996	US	5889157 A	30-03-1999
				US	5981726 A	09-11-1999
				US	5608039 A	04-03-1997
				AU	4135596 A	23-05-1996
				CA	2203236 A	09-05-1996
				EP	0796334 A	24-09-1997
				JP	10508202 T	18-08-1998
				US	5990296 A	23-11-1999
WO	9943816	Α	02-09-1999	AU	6439398 A	15-09-1999

5

10

15

20

25

30

35

(Colcher et al. (1990), <u>J. Nucl. Med.</u>, 31:1133–1142) served as a positive control. The patients' sera were demonstrated to have antibodies against the variable region of the murine CC49.

PCT/US99/25552

Figure 19 shows an HPLC analysis of patient HAMA following intravenous injection of ¹⁷⁷Lu–CC49. Serum samples from LQ were analyzed for the presence of HAMA at various timepoints before and after injection with 20 mg of ¹⁷⁷Lu–labeled CC49. Pre–study sera (A), sera collected at 7 days (B), 3 weeks (C), and 6 weeks (D) were mixed with ¹²⁵I–BL–3 and applied to a size exclusion column. Reduction in retention time of the radiolabeled BL–3 as compared to migration of the ¹²⁵I–BL–3 in buffer (E) were indicative of immune complex formation and therefore the presence of HAMA.

Lack of complex formation is evident (FIG. 19A) when the pre-study sera of Patient LQ is incubated with the ¹²⁵I-BL-3. All of the radioactivity is associated with the peak at about 18.5 minutes, the same retention time for ¹²⁵I-BL-3 in buffer (FIG. 19E). Complex formation is also absent when the sera collected at seven days is incubated with ¹²⁵I-BL-3 (FIG. 19B). With sera collected at 3 weeks (FIG. 19C), however, there is an indication of complex formation (46%) with the appearance of two peaks with a shorter retention time (i.e., 14 and 16 minutes). The peaks at a shorter retention time indicate the development of a higher molecular weight species in the sera. At 6 weeks (FIG. 19D), the HAMA response has increased, the amount of radioactivity bound in complexes is now 66%.

Figure 20 shows an HPLC analysis of patients' humoral response to the variable region of MAb CC49. The percent complex formation has been plotted versus time for (solid lines) patients DS (O), LW (\square), JJ (Δ), DG (\bullet), LJ (\blacksquare),

 $TD(\blacktriangle)$; (dotted lines) JG (O), RW (\square), JM (Δ), EA (\bullet), CP (\blacksquare), LQ (\blacktriangle);

At one week, none of the patients showed a detectable response against the HuCC49 (FIG. 20). At 3 weeks, sera from nine of the twelve patients (75%) appears to contain antibody against the variable region of CC49 with one patient having a notably higher response than the others. For the eleven patients evaluated at six weeks, only two patients did not elicit a human antivariable region antibody response (HAVRA) against CC49, i.e., 9 of 11 evaluable patients (82%) had antibody against the variable region of the murine MAb CC49.

Three patterns of HAMA-HAVRA response are evident. The patterns of the HAMA and HAVRA responses elicited in each of the patients were very similar, differing only in the apparent level of antibody. Patients DG, LW, LQ and CP

developed HAVRA simultaneously with HAMA. Patients DS and JM appear to have a strong HAVRA, while HAMA response is modest. While in patients TD, JG, and EA, the HAVRA level is lower than HAMA at 3 weeks, followed by HAMA and HAVRA attaining high levels at later timepoints. In no patient was there a HAVRA response without the development of HAMA..

The HAMA results for the twelve patients are summarized below in Table 2.

Table 2: HPLC Analysis of Patients' Anti-mouse immunoglobulin response after i.v. injection of ¹⁷⁷Lu-CC49

	Days Post-Injection of 177Lu-CC49						
Patient	7	21	42	56			
DS	0 ^a	1	16	27			
LW	3	6	81	NA			
JJ	0	12	3	4			
DG	0	24	84	NA			
LJ	0	42	NA	NA			
JМ	0	8	47	NA			
JG	4	83	83	NA			
RW	0	1	2	NA			
TD	0	95	100	NA			
EA	0	27	100	100			
CP3	0	33	27	NA			
LQ	0	46	66	100			

^a The values are the percent of ¹²⁵I-BL-3 detected in complexes after a brief incubation with the patient sera and resolved by size-exclusion chromatography. The timepoints of each patient are background corrected using the patients' prestudy sera.

The patterns of the HAMA responses are varied and are consistent with previous findings by Colcher et al. (1990), <u>J. Nucl. Med.</u> 31:1133–1142. Ten out of the twelve patients (83%) demonstrate a HAMA response at 3 weeks following a single intravenous injection of 20 mg ¹⁷⁷Lu-labeled CC49, two patients (LW and JG) have minimal responses evident at 7 days with complexes of 3% and 4%, respectively. One patient (RW) may be considered a nonresponder. Some of the patients show an escalating HAMA response, while others plateau. Yet another (JJ) peaks at 3 weeks, followed by an apparent decrease in the HAMA level. Overall, at 3 weeks, 8 of 12 patients (57%) at and 6 weeks, 9 of 11 (82%) were HAMA positive.

Specificity of Patient Response

5

10

15

20

25

30

35

The specificity of the patients' antibody response to CC49 was assessed using ¹²⁵I-labeled HuCC49 and HuCC49 CDR-replacement variants to determine whether or not any of the responses were directed against the variable region of CC49. To accomplish this, the HPLC methodology was employed using ¹²⁵I-HuCC49 as the probe (See, Kashmiri et al. (1995), <u>Hybridoma</u>, 14:461-473).

To eliminate the artifactual influence of TAG-72 in the HPLC analysis for anti-CC49 antibody responses found in the patient's serum, immunoadsorbents were prepared as reported by Ferroni et al. (1992) <u>J. Clin. Lab. Analysis</u>, 4:465-473. For the purpose of these studies, purified MAb CC92 was coupled to Reacti-gel (HW65F, Pierce) according to the method of Heam et al. (1979), <u>J. Chromatog.</u>, 185:463-470. MAb CC92 is a second-generation monoclonal antibody that reacts with TAG-72, but with an epitope distinct from the one recognized by CC49.

Before probing the patients' sera with the ¹²⁵I-HuCC49, removal of HAMA and circulating TAG-72 were confirmed using ¹²⁵I-BL-3 and ¹²⁵I-B72.3, respectively (data not shown). MAb B72.3 is an anti-TAG-72 MAb that has been shown to form complexes with TAG-72 in patient sera (Colcher et al. (1990), <u>J. Nucl. Med.</u>, 31:1133-1142).

In the competition assay, 5 µg of the cold competitor (either purified HuCC49 or one of its variants) was added to a mixture of patient sera (collected 8 weeks post–i.v. injection with ¹⁷⁷Lu–CC49) and ¹²⁵I–HuCC49 and then analyzed by size–exclusion chromatography for the absence or presence of complexes. The percent inhibition of complex formation was calculated. If the variant competed with the ¹²⁵I–labeled MAb, and complex formation was inhibited, then the variant

still contained the immunodominant CDR. If the variant failed to inhibit complex formation, then the CDR that is no longer present in the variant is recognized by the patient and hence it is an immunogenic CDR. An example of this assay (using serum from patient LQ) is shown in FIG. 21. Panel A is the profile of the ¹²⁵HuCC49 in buffer only. Panel B, is the profile showing complex formation (42.9%) resulting from patient sera (LQ) incubated with ¹²⁵I-HuCC49. When HuCC49 is added as a competitor, there is competition for the ¹²⁵I-HuCC49 and a loss or absence of complexes is observed (Panel C). The same is true of a variant which still contains an immunogenic CDR (e.g., light chain CDR2 as the competitor) (Panel D). In contrast, there is either a partial (Panel F) or total retention of the complexes (Panel E), when light chain CDR1 or CDR3 variants, respectively, are the competitors.

PCT/US99/25552

The results are very striking, see Table 3.

5

10

20

30

15 Table 3: HPLC Analysis of Patient Reactivity to CDR-Replacement variants of HuCC49^a

Competi	Patient Patient						
	CDR ^b	DS	DG	JG	EA	CP	LQ
None		33.5°	46.2	24.5	56.8	32.2	42.9
HuCC49		0	0	2.6	0.5	1.5	3.0
Hu IgG		46.4	59.0	25.1	63.6	ND	54.1
Light Chain	1	16.0	12.2	9.8	10.1	16.9	14.3
•	2	2.7	3.4	2.7	4.4	3.0	2.4
	3	34.8	48.2	22.4	37.6	33.5	46.7
	1,2	24.6	24.5	12.6	19.4	15.7	20.2
Heavy Chain	1	10.2	3.9	3.3	7.0	5.8	3.5
	2	32.7	32.5	12.7	24.7	29.7	36.6
	3	7.3	5.1	3.7	8.2	6.7	4.6

a The sera from patients injected with ¹⁷⁷Lu-CC49 were tested for reactivity with variants of HuCC49 in which individual CDRs had been substituted with human sequences in both the heavy and light chains of HuCC49. Five μg of the purified CDR-replacement variants were added to a mixture of ¹²⁵I-HuCC49 and the patient sera and then analyzed for the presence or absence of immune complex formation. ^b The number indicates which CDR in the HuCC49 has been replaced with a human CDR sequence.

^c The values are the percent of complexes, the higher molecular weight species, resolved by size—exclusion chromatography.

Of the six patients analyzed, all six demonstrated reactivity with CDR3 light chain indicating that light chain CDR3 may be immunodominant in murine CC49 MAb. In the heavy chain, CDR2 appears to be dominant but not with the same level of consensus (four of the six patients show the same level of reactivity, the other two

demonstrated partial reactivity). Concordance was obtained among the six patients in regard to CDR2 of the light chain and CDR1 and CDR3 of the heavy chain, which do not appear to contribute to the immunogenicity of the MAb. This is also the case with the light chain CDR1 and, it follows, the variant with the dual substitution of CDR1 and 2 in the light chain, in which all six patients displayed a partial recognition of the variants. Partial recognition with the heavy chain CDR2 variant with two patients may be due to a loss of part but not all of the cognizant epitope, a change in the conformation or conformational epitope, or loss of amino acid residues that might stabilize the antibody:antibody interaction.

10

15

20

5

Quantitation of Patient Antibody Response

Quantitation of the HAMA or anti-variable region antibody levels in four patients was performed using HPLC analysis. The quantitation study was performed by adding either 500 ng of unlabeled BL-3 or 250 ng of HuCC49, respectively, to the mixture of patient serum and ¹²⁵I-HuCC49 and calculating the amount of BL-3 or HuCC49 bound in complexes.

As shown in Table 4, below, at 6 weeks, the amount of HAMA varies from patient to patient by 43-fold, while the variability of HAVRA is within 4-fold. Furthermore, the HAMA versus HAVRA levels may vary from 10 to 145-fold. Clearly, HAVRA can be detected at 3 weeks, and, not surprisingly, it does not appear to attain the same levels as HAMA. In patient EA, there is a dramatic 10-fold increase in the level of HAVRA from 6 to 8 weeks that is noteworthy.

Table 4: Quantitation of anti-CC49 variable region and anti-murine response of patients administered ¹⁷⁷Lu-CC49

μg of Ab/ml Sera

	Post-Mab		
Patient	Injection	BL-3 ^a	HuCC49 ^b
EA	0	0	0
	3 weeks	4.1	0.3
	6 weeks	289.0	2.3
	8 weeks	314.4	21.6
CP	0	0	0
	3 weeks	16.0	0.8
	5 weeks	25.2	0.7
	6 weeks	23.2	0.7
LQ	LQ 0		ND
	3 weeks	4.61	0.4
	6 weeks	6.64	0.7
	8 weeks	ND	1.7
JG	0	0	0
	3 weeks		0.7
	6 weeks	47.8	2.6

5

10

15

20

25

PCT/US99/25552

Competition Radioimmunoassay

To confirm whether the HAVRA was actually an anti-idiotypic response, including internal image anti-idiotypic antibodies, to the murine MAb CC49, the sera from one patient (EA) was selected and assessed for blocking of the binding of ¹²⁵I-HuCC49 to BSM in a radioimmunoassay.

The immunoreactivity of the radiolabeled MAbs was assessed using bovine submaxillary mucin (BSM) immobilized on a solid support (Reacti–Gel HW65, Pierce) as a modification of the method reported by Heam et al. (1979), \underline{J} . Chromatog., 185:463–470 and Schott (1992) Cancer Res., 52:6413–6417. Briefly, bovine submaxillary mucin (BSM), which is TAG–72 positive, was adsorbed to each well of a 96–well polyvinylchloride microtiter plate at 10 ng in 50 μ l of phosphate buffered saline (pH 7.2) as described by Horan Hand et al. (1992), Cancer Immunol. Immunother., 353:165–174. After treating the wells with 5% BSA in PBS, serial dilutions of the patient sera (25 μ l in 1% BSA in PBS) were added to each; ¹²⁵I–CC49 (38 nCi in 25 μ l) was also added. Following an 18 hour incubation at 4°C, the plates were washed and the wells counted in a γ –scintillation counter. The percent inhibition was calculated and compared to that of unlabeled CC49. Human IgG (Organon Teknika, Durham, NC), which does not react with TAG–72 was included as a control antibody.

It was found that the patient sera could block the binding of ¹²⁵I−HuCC49 with BSM (FIG. 22) suggesting that the patient, in actuality, demonstrates an antiidiotypic response, consisting of the internal image antiidiotypic antibodies. Furthermore, the antiidiotypic response was observed to increase over an eight week period. Figure 22 shows the detection of patient (EA) antiidiotypic antibody response to murine CC49: pre-study sera from patient EA (□); sera collected at 3 weeks (A), 6 weeks (B), and 8 weeks (C).

All references cited in this disclosure are hereby incorporated by reference.

WHAT IS CLAIMED IS:

WO 00/26394

1. A humanized anti-TAG-72 antibody comprising:

light chain Complementarity Determining Regions (L-CDRs), comprising L-CDR1, L-CDR2 and L-CDR3; and heavy chain Complementarity Determining Regions (H-CDRs), comprising H-CDR1, H-CDR2 and H-CDR3,

wherein L-CDR3, H-CDR1, H-CDR2 and H-CDR3 are from a non-human antibody and at least one of L-CDR1 and L-CDR2 are human antibody sequences.

- 2. The humanized antibody of claim 1, wherein L-CDR1 is from a human antibody.
- 3. The humanized antibody of claim 2, wherein L-CDR1 is from human monoclonal antibody LEN.
- 4. The humanized antibody of claim 1, wherein L-CDR2 from a human antibody.
- 5. The humanized antibody of claim 4, wherein L-CDR2 is from human monoclonal antibody LEN.
- 6. The humanized antibody of claim 1, wherein both L-CDR1 and L-CDR2 are human antibody sequences.
- 7. The humanized antibody of claim 1, wherein L-CDR1 and L-CDR2 are human antibody sequences from the same human antibody.
- 8. The humanized antibody of claim 7, wherein L-CDR1 and L-CDR2 are human antibody sequences from human monoclonal antibody LEN.
- 9. The humanized antibody of claim 6, wherein L-CDR1 and L-CDR2 are human antibody sequences from different human antibodies.

WO 00/26394

- 10. The humanized antibody of claim 1, wherein L-CDR3, H-CDR1, H-CDR2 and H-CDR3 are from murine monoclonal antibody CC49.
- 11. A humanized anti-TAG-72 antibody comprising:

light chain Complementarity Determining Regions (L-CDRs), comprising L-CDR1, L-CDR2 and L-CDR3; and heavy chain Complementarity Determining Regions (H-CDRs), comprising H-CDR1, H-CDR2 and H-CDR3,

wherein at least one amino acid of positions 60, 61, 62, or 64 in H-CDR2 is replaced with a corresponding amino acid from a human antibody.

- 12. The humanized antibody of claim 11, wherein the human antibody is 21/28'CL.
- 13. The humanized antibody of claim 11, wherein the amino acid at position 97 of L-CDR3 is replaced with a corresponding amino acid from a human antibody.
- 14. The humanized antibody of claim 11, wherein at least one of L-CDR1 and L-CDR2 are human antibody sequences.
- 15. The humanized antibody of claim 14, wherein L-CDR1 is a human antibody sequence.
- 16. The humanized antibody of claim 15, wherein L-CDR1 is from human monoclonal antibody LEN.
- 17. The humanized antibody of claim 14, wherein L-CDR2 is a human antibody sequence.
- 18. The humanized antibody of claim 17, wherein L-CDR2 is from human monoclonal antibody LEN.

- 19. The humanized antibody of claim 17, wherein both L-CDR1 and L-CDR2 are human antibody sequences.
- 20. The humanized antibody of claim 19, wherein L-CDR1 and L-CDR2 are human antibody sequences from the same human antibody.
- 21. The humanized antibody of claim 20, wherein L-CDR1 and L-CDR2 are from human monoclonal antibody LEN.
- 22. The humanized antibody of claim 19, wherein L-CDR1 and L-CDR2 are human antibody sequences from different human antibodies.
- 23. A humanized anti-TAG-72 antibody comprising:

light chain Complementarity Determining Regions (L-CDRs), comprising L-CDR1, L-CDR2 and L-CDR3; and heavy chain Complementarity Determining Regions (H-CDRs), comprising H-CDR1, H-CDR2 and H-CDR3,

wherein an amino acid at position 97 of L-CDR3 is replaced with a corresponding amino acid from a human antibody.

- 24. The humanized antibody of claim 23, wherein at least one amino acid of positions 60, 61, 62, or 64 in H-CDR2 is replaced with a corresponding amino acid from a human antibody.
- 25. The humanized antibody of claim 23, wherein at least one of L-CDR1 and L-CDR2 are human antibody sequences.
- 26. The humanized antibody of claim 25, wherein L-CDR1 is a human antibody sequence.
- 27. The humanized antibody of claim 26, wherein L-CDR1 is from human monoclonal antibody LEN.

28. The humanized antibody of claim 25, wherein L-CDR2 is a human antibody sequence.

50

- 29. The humanized antibody of claim 28, wherein L-CDR2 is from human monoclonal antibody LEN.
- 30. The humanized antibody of claim 25, wherein both L-CDR1 and L-CDR2 are from human antibody sequences.
- 31. The humanized antibody of claim 30, wherein L-CDR1 and L-CDR2 are human antibody sequences from the same human antibody.
- 32. The humanized antibody of claim 31, wherein L-CDR1 and L-CDR2 are from human antibody sequences from human monoclonal antibody LEN.
- 33. The humanized antibody of claim 30, wherein L-CDR1 and L-CDR2 are human antibody sequences from different human antibodies.
- 34. A humanized anti-TAG-72 antibody comprising:

light chain Complementarity Determining Regions (L-CDRs), comprising L-CDR1, L-CDR2 and L-CDR3; and heavy chain Complementarity Determining Regions (H-CDRs), comprising H-CDR1, H-CDR2 and H-CDR3,

wherein residues at positions 94 and 97 in L-CDR3 are from a non-human anti-TAG-72 antibody.

35. A humanized anti-TAG-72 antibody comprising:

light chain Complementarity Determining Regions (L-CDRs), comprising L-CDR1, L-CDR2 and L-CDR3; and heavy chain Complementarity Determining Regions (H-CDRs), comprising H-CDR1, H-CDR2 and H-CDR3,

wherein residues at positions 31, 32 and 34 in H-CDR1 are from a non-human anti-TAG-72 antibody.

- 36. A nucleic acid sequence expressing the humanized antibody of any of claims 1, 11, 23, 34 or 35.
- 37. A vector expressing the humanized antibody of any of claims 1, 11, 23, 34 or 35.
- 38. A composition for treatment of cancer, comprising the humanized antibody of any of claims 11, 11, 23, 34 or 35.
- 39. A composition for detecting cancer cells, comprising the humanized antibody of any of claims 1, 11, 23, 34 or 35.
- 40. A composition of for detecting cancer cells, comprising a polypeptide capable of specifically binding TAG-72, said polypeptide comprising a functional fragment of the humanized antibody of any of claims 1, 11, 23, 34 or 35.
- 41. The composition of claim 40, wherein the polypeptide comprises a fragment selected from the group consisting of Fv, Fab, and F(ab')₂.
- 42. A method for treating cancer comprising:

 administering the humanized antibody of any of claims 1, 11, 23, 34
 or 35 to a patient.
- 43. A method of detecting cancer cells, comprising:
 contacting cells with the humanized antibody of any of claims 1, 11,
 23, 34 or 35.
- 44. The method of claim 43, wherein the humanized antibody is labeled.
- 45. The method of claim 43, wherein the humanized antibody is detected using a labeled secondary antibody.

- 46. A method of detecting cancer cells, comprising:

 contacting cells with composition comprising a polypeptide capable of specifically binding TAG-72, said polypeptide comprising a functional fragment of the humanized antibody of any of claims 11, 11, 23, 34 or 35.
- 47. The method of claim 46, wherein the polypeptide comprises a fragment selected from the group consisting of Fv, Fab, and F(ab')₂.

FIG. 1

WO 00/26394

٠	4
	•
	2
Ī	

Light chain

CDR 1 HuCC49 LEN	24 Lys Lys	25 Ser Ser	26 Ser Ser	27 Gln Gln	Ser Ser	b Leu Val	c Leu Leu	Tyr	Ser Ser	Gly Ser	Asn Asn	29 Gln Ser	$\frac{30}{\text{Lys}}$	Asn Asn	32 Tyr Tyr	33 Leu	34 Ala Ala	
CDR 2 HuCC49 LEN	177 177	51 Ala Ala	Ser Ser	53 Ala Thr	Arg Arg	55 Glu Glu	56 Ser Ser											
CDR 3 HuCC49 LEN	69 Gln Gln	Gln Gln	17 Tyr	92 Tyr Tyr	Ser Ser	Tyr Thr	95 Pro	$\frac{96}{\text{Leu}}$	97 Thr Ser									
Heavy chain																		
CDR 1 HuCC49 21/28'CL	Asp Ser	$\frac{32}{\text{His}}$	33 Ala Ala	34 Ile Vet	35 His H1s													
CDR 2 HuCC49 21/28'CL	$\frac{50}{Tyr}$	51 Phe <i>Ile</i>	Ser Asn	Pro Ala	53 Gly Gly	Asn Asn	ASP Gly	Asp Asn	$\frac{57}{\text{Phe}}$	58 Lys Lys	59 Tyr Asn	60 Asn Ser	61 Glu Gln	62 Arg Lys	63 Phe Phe	64 Lys Gln	65 Gly Gly	
CDR 3 HuCC49 21/28'CL	Ser Gly	96 Leu Cly	97 Asn Tyr	98 Wet <i>Tyr</i>	99 Ala Gly	100 Ser	dly Gly	b Ser	101 	102 Tyr Tyr				•				

3

FIG.

Hd Hp C **PLNCX** PLNCX Hind III/Cla 1 Hd S Ś Z ပ N O PH Sac II/Cla I pLNCXHuCC49-1HuK LIGATION S Hd pLHCXCC49HuK 2 PH S s · 유 뫋 S Hind III/Sac II S pBSHuCC49-1VL S 모 ₽

FIG.

FIG. 5

PCT/US99/25552

7/23

FIG. 7

SUBSTITUTE SHEET (RULE 26)

FIG. 8

SUBSTITUTE SHEET (RULE 26)

PCT/US99/25552

FIG. 9

FIG. 10

SUBSTITUTE SHEET (RULE 26)

•		•	
(د)	
	Ĺ		

	WO 00/263	994					PCT/U	S99/25552
				12/23	_	_	_	
	09	120	180	240	300	360	420	
FIG. 12A	gcaagettecaecATGGATAGCCAGGCCCAGGTGCTCATGCTCCTGCTGCTGTGGTGAG 1+++++ cgttegaaggtggtACCTATCGGTCCGGGTCCACGAGGACGACGACGACACTC	CGGCACATGCGGCGACATCGTGATGAGCCAGTCTCCAGACTCCCTGGCCGTGTCCCAGGG 61++++ GCCGTGTACGCCGTGTAGCACTCGGTCAGAGGTCTGAGGGACCGGCACAGGGACCC	GAGAGGGTGACTCTGAATTGCAAGTCCAGCCAGTCCCTGCTCTATAGCGGAAATCAGAA 121+++ GCTCTCCCACTGAGACTTAACGTTCAGGTCGGTCAGGACGACGAGATATCGCCTTTAGTCTT	GAACTATCTCGCCTGGTATCAGCAGAACCAGGGCAGAGCCCTAAACTGCTGATTTACTG 181++++++ CTTGATAGAGCGGACCATAGTCGTCTTTGGTCCCGTCTCGGGATTTGACGACTAAATGAC	GGCATCCGCTAGGGAATCCGGCGTGCCTGATCGCTTCAGCGGCAGCGGATCTGGGACAGA 241+++++ CCGTAGGCGATCCCTTAGGCCACGGACTAGCGAAGTCGCCGTCGCCTAGACCCTGTCT	CTTCACTCTGACAATCAGCAGCGGGGGGGAGACGTGGCAGTCTATTATTGTCAGCA 301++++++ GAAGTGAGACTGTTAGTCGTCGCACGTCCGTCTGCACCGTCAGATAACAGTCGT	GTATTATAGCTATCCCCTCACATTCGGCGCTGGCACCAAGCTGGAACTGAAAcgggccgc S1++++ CATAATATCGATAGGGGAGTGTAAGCCGCGCGCGTGGTTCGACCTTGACTTTgcccggcg	ggct 421 424 ccga
4							36	4
			SUBSTIT	UTE SHEET	(HULE 26)	J		

	WO 00/2639	94					PCT/U	S99/25552
	09	120	180	13/23 04 7	300	360	420	
FIG. 12B	CCTTCCTCCTGCTGCTGTGGGTGAG	AGTGCACTCCCAGGTCCAGCTGGTGCAGTCCGGCGCTGAGTCCCTGGCCGTGTCCCAGGG +++++++	CGTGAAGATTTCCTGCAAGGCAAGCGGCTACACCTTCACTCTATAGCGGAAATCAGAA 1++++ GCACTTCTAAAGGACGTTCGCCGATGTGGAAGTGAGAGATATCGCCTTTAGTCTT	GAAACAGAATCCTGGACAGCGCCTGGAGTGGATTGGATATTTCTCTCCCGGAAACGATGA +++	TITIAAGTACAATGAGAGGTICAAGGGCAAGGCCACACTGACTGCAGACACATCTGCCAG +++++	CACTGCCTACGTGGAGCTCTCCAGCCTGAGATCCGAGGATACTGCAGTGTACTTCTGCAC 	AAGATCCCTGAATATGGCCTACTGGGACAGGGAACCCTGGTCACCGTCTCCAGCgccaa 	aactacgggcccat 1+ 434 ttgatgcccgggta
\mathbf{m}		. 61	12.	181	241	301	361	421

SUBSTITUTE SHEET (RULE 26)

FIG. 13

COMPETITION RADIOIMMUNASSAY: MANIPULATED CDR VARIANTS OF HuCC49

SUBSTITUTE SHEET (RULE 26)

FIG. 14

WO 00/26394

HPLC ANALYSIS OF PATIENT REACTIVITY TO CDR SUBSTITUTION VARIANTS OF Hucc49

C	OMPETITOR			PATI	ENTS	
	CDR SUBSTITUTIONS	ANTIGEN BINDING	DG	СР	EA	DS
NONE			46.2 ^b	32.2	56.8	33.5
HuCC49		+++	0	1.5	0.5	0
HulgG		_	59.0	N.D.	63.6	46.4
LIGHT	L3M94	+/-	30.2	20.3	16.4	28.9
	L3M96	_	39.2	31.1	42.9	35.2
	L3M97	+++	0.6	1.3	0.7	2.4
	L3M94,97	+/-	26.5	18.2	18.6	25.6
	L1,2+3M97	++	21.3	17.6	23.8	17.1
	L1,2+3M94,97	+	53.2	38.1	44.2	37.3
HEAVY	1M32,34	_	1.4	5. 5	3.8	0.7
	2M60-62,64	++	24.4	17.9	21.8	16.5
вотн	L3M97 H2M60-62,64	++++	13.0	16.1	3.9	20.1
	L1,2+3M97 H2M60-62,64	++	33.0	30.7	24.9	32.1

FIG. 1

_

FIG. 1

FIG. 18

WO 00/26394

BIODISTRIDUTION OF I.V. ADMINISTERED RADIOLABELED HUCC49 AND VARIANT IN ATHYMIC MICE BEARING LS-174T HUMAN COLON CARCINOMA XENOGRAFTS: PERCENT OF INJECTED DOSE/GRAM

			TIME	POINTS	(hr)	
ANTIBODY	ORGAN	24	48	72	120	168
VARIANT	TUMOR	15.83	23.75	21.01	17.74	9.21
	BLOOD	6.35	4.93	4.88	2.19	0.63
	LIVER	3.39	2.14	1.46	0.91	0.32
	SPLEEN	5.90	6.04	2.55	2.43	3.96
	KIDNEY	2.52	1.27	1.00	0.77	0.36
	LUNG	3.22	2.57	2.50	1.12	0.36
HuCC49	TUMOR	11.86	17.59	15.31	13.75	5.24
	BLOOD	4.17	2.94	2.85	1.29	0.18
	LIVER	4.77	3.05	1.41	0.70	0.12
	SPLEEN	6.41	7.47	2.28	2.00	0.46
	KIDNEY	1.86	0.92	0.70	0.57	0.14
	LUNG	2.17	1.58	1.46	0.68	0.12

FIG. 19

SUBSTITUTE SHEET (RULE 26)

FIG. 20

<u>်</u>

<u>ပ</u>

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 C12N15/85 C12N15/62

C12N15/85 A61K51/10

A61P35/00

C12N5/10 G01N33/574 C07K16/30 A61K39/395 C07K16/46

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) IPC 7 C07K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

Y SHA ET AL: "A heavy-chain grafted antibody that recognizes the tumor-associated TAG72 antigen" CANCER BIOTHERAPY, vol. 9, no. 4,	1-47
1 January 1994 (1994-01-01), pages 341-349, XP002079337 abstract page 342, left-hand column, paragraph 2 -right-hand column, paragraph 1 page 346, left-hand column, paragraph 2 -page 347, right-hand column, paragraph 1	
WO 97 26010 A (SMITHKLINE BEECHAM CORP., USA; UNIVERSITY OF VERMONT AND STATE AGRICULT) 24 July 1997 (1997-07-24) page 9, line 28 -page 10, line 10 page 21, line 25 -page 22, line 13	1,2,4,6, 7,9, 36-41

1			
ı	v	Further documents are listed in the continuation of box C.	

Y Patent family members are listed in annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed
- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention.
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

Date of mailing of the international search report

"&" document member of the same patent family

Date of the actual completion of the international search

Fax: (+31-70) 340-3016

20/04/2000

6 April 2000

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2

NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040, Tx. 31 651 epo ni,

Authorized officer

Covone, M

1

Category °	Citation of document, with Indication, where appropriate, of the relevant passages	Relevant to claim No.
Category -	Citation of document, with indication, where appropriate, of the relevant passages	resvarii to Garn No.
X	DATABASE MEDLINE 'Online! US NATIONAL LIBRARY OF MEDICINE (NLM), BETHESDA, MD, US XIANG J ET AL: "Complementarity determining region residues aspartic acid at H55, serine at H95 and tyrosines at H97 and L96 play important roles in the B72.3 antibody-TAG72 antigen interaction." retrieved from STN Database accession no. 97015918 XP002134981 abstract & PROTEIN ENGINEERING, (1996 JUN) 9 (6) 539-43.,	23,36-47
X	DATABASE MEDLINE 'Online! US NATIONAL LIBRARY OF MEDICINE (NLM), BETHESDA, MD, US XIANG J ET AL: "The tyrosine residue at position 97 in the VH CDR3 region of a mouse/human chimeric anti-colorectal carcinoma antibody contributes hydrogen bonding to the TAG72 antigen." retrieved from STN Database accession no. 95102752 XP002134982 abstract & CANCER BIOTHERAPY, (1993 FALL) 8 (3) 253-62.,	23,36-47
A	WO 96 13594 A (US HEALTH) 9 May 1996 (1996-05-09) page 24, line 9 -page 26, line 3 examples 13,17,18	1–47
P,A	WO 99 43816 A (ARMOUR KATHRYN ;CARR FRANK J (GB); HARRIS WILLIAM J (GB); TEMPEST) 2 September 1999 (1999-09-02) example 1 claims	1-47
T	DATABASE MEDLINE 'Online! US NATIONAL LIBRARY OF MEDICINE (NLM), BETHESDA, MD, US IWAHASHI M ET AL: "CDR substitutions of a humanized monoclonal antibody (CC49): contributions of individual CDRs to antigen binding and immunogenicity." retrieved from STN Database accession no. 2000162136 XP002134983 abstract & MOLECULAR IMMUNOLOGY, (1999 OCT-NOV) 36 (15-16) 1079-91.	1-47
	-/	

1

•		PC1/US 99/25552					
(Continua tegory °	Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT egory Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.						
	Citation of Goodingto, With Indication, Wilde appropriate, Of the relevant passages						
	TAMURA M ET AL: "Structural correlates of an anticarcinoma antibody: identification of specificity-determining residues (SDRs) and development of a minimally immunogenic antibody variant by retention of SDRs only." JOURNAL OF IMMUNOLOGY, (2000 FEB 1) 164 (3) 1432-41., XP000901556 the whole document		1-47				
			·				

1

International application No.

PCT/US 99/25552

Observations where certain claims were found unsearchable (Continuation of Item 1 of first sheet) Box I This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons: because they relate to subject matter not required to be searched by this Authority, namely: Remark: Although claim 42 is directed to a method of treatment of the human/animal body and claims 43-47 (all partially) are directed to a diagnostic method practised on the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition. because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically: Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a). Box ij Observations where unity of invention is lacking (Continuation of Item 2 of first sheet) This International Searching Authority found multiple inventions in this international application, as follows: As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.: No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

Patent document cited in search report		t	Publication date	Patent family member(s)		Publication date
WO	9726010	Α	24-07-1997	AU	706397 B	17-06-1999
				AU	1830897 A	11-08-1997
				CN	1213312 A	07-04-1999
				HU	9900396 A	28-05-1999
				NO	983284 A	16-09-1998
				PL	327929 A	04-01-1999
				US	6005091 A	21-12-1999
				ZA	9700347 A	06-10-1998
WO	9613594	A	09-05-1996	US	5889157 A	30-03-1999
				US	5981726 A	09-11-1999
				US	5608039 A	04-03-1997
			•	AU	4135596 A	23-05-1996
				CA	2203236 A	09-05-1996
				EP	0796334 A	24-09-1997
				JP	10508202 T	18-08-1998
				บร	5990296 A	23-11-1999
WO	9943816	A	02-09-1999	AU	6439398 A	 15-09-1999