Reporte: Exploración en aguas superficiales

EQUIPO 104

Integrantes:

Eddie Guadalupe Elorza Ruiz | **A01793547** Yves Turley Macias Vargas. | **A00813752**

Materia: Ciencia y analítica de datos (Gpo 10)

Profesor Titular: PhD. María de la Paz Rico Fdz

Profesor Tutor: Victoria Guerrero Orozco

18 de noviembre 2022

Metodología

Selección de Dataset

La primera tarea asignada fue la de seleccion de un dataset. Se nos dieron dos opciones. La de cuerpos de agua superficiales y cuerpos de agua subterraneos en México.

Justificación de selección de "Dataset"

Decidimos optar por el de cuerpos de agua superficiales en México.

El dataset es un campo de datos pero con mucha oportunidad para aplicar diferentes técnicas de limpieza y poner en practica métodos aprendidos a lo largo del curso. Se puede visualizar espacios en blanco en la imagen.

	Δ	В	-	D	Е		G	Н			V	-	М	N	0	р	0	R	S	т	II V	W	1
1	CLAVE	SITIO	ORGANIS		MUNICIPI	CHENICA			SUBTIPO	LONGITUE	LATITUD	DEBIODO								CALIDAD	COLI N CALIDAD		
	DLAGU8				RINCON D				PRESA	-102.339		2020	DBO_III	6 Buena cali		Contamina		5 Excelente		Contamina	98 Excelente		ioc_o
					LOS CARO					2021000		2020		o buella call	34.00		<10	Excelente	1102	Containing	90 EXCERNIC		20 Ex
					LOS CABO					2031010	22.8988	2020					<10	Excelente				<3	Ex
					LOS CABO					2031001	22,89609	2020						7 Excelente				<3	Ex
					LOS CABO						22.87694	2020					<10	Excelente					30 Ex
7	DLBAJ104	BAHIA CA	EPENINSUI	BAJA CALI	LOS CABO	SAN LUCA	BAHIA SAI	COSTERO	BAHIA	-109.903	22.88	2020					22,066	7 Excelente				<3	Ex
8	DLBAJ105	LOS CABO	PENINSUI	BAJA CALI	LOS CABO	SAN LUCA	BAHIA SAI	COSTERO	BAHIA	-109.905	22.8831	2020					13.966	7 Excelente					90 Ex
9	DLBAJ106	LAGUNA '	PENINSUI	BAJA CALI	LA PAZ	TODOS SA	TODOS SA	COSTERO	LAGUNA	-110,239	23,4393	2020					57.8	5 Buena calida	d				402 Cc
10	DLBAJ109	MANANT	PENINSUI	BAJA CALI	LA PAZ	TODOS SA	TODOS SA	LOTICO	ARROYO	-110.224	23.45805	2020	<2	Excelente	<10	Excelente	33.	9 Buena cali	3873	Contamina	512 Buena ca	lidad	
11	DLBAJ112	AGUA CAI	PENINSUI	BAJA CALI	LOS CABO	SANTIAGO	SANTIAGO	LOTICO	ARROYO	-109.808	23.43995	2020	<2	Excelente	<10	Excelente	25.	6 Buena cali	189	Buena cali <	Excelente		
12	DLBAJ120	BOCA DE	PENINSU	BAJA CALI	LOS CABO	SAN JOSE	ISAN JOSE	LOTICO (F	ARROYO	-109.826	23.39128	2020	4.	26 Buena cali	27.9	Aceptable	1	4 Excelente	1408	Contamina	84 Excelente		
13	DLBAJ121	HUMEDA	PENINSUI	BAJA CALI	LA PAZ	LAS POCIT	HUMEDAI	LOTICO (F	ARROYO	-110.952	24.50289	2020	<2	Excelente	<10	Excelente	<10	Excelente	15531	Fuertemer	538 Buena ca	lidad	
14	DLBAJ123	OASIS DE	PENINSU	BAJA CALI	LA PAZ	LAS POCIT	CUERPO E	LOTICO (F	ARROYO	-111.003	24.46953	2020	<2	Excelente	<10	Excelente	<10	Excelente	10	Excelente <	Excelente		
15	DLBAJ124	MANANT	PENINSUI	BAJA CALI	LOS CABO	SAN JOSE	ISAN JOSE	LOTICO (F	CANAL	-109.779	23.337	2020		5.4 Aceptable	<10	Excelente	<10	Excelente	24196	Fuertemer	14136 Fuerteme	nte con	tamina
16	DLBAJ126	MANANT	PENINSUI	BAJA CALI	LA PAZ	SAN BART	SAN BART	LOTICO	ARROYO	-109.845	23.73546	2020	<2	Excelente	<10	Excelente	<10	Excelente	218	Aceptable <	Excelente	,	
17	DLBAJ132	HUMEDA	PENINSUI	BAJA CALI	COMOND	SANTO DO	HUMEDAI	LOTICO (F	ARROYO	-111.805	26.06218	2020	<2	Excelente	<10	Excelente	<10	Excelente	663	Aceptable	74 Excelente		
18	DLBAJ133	ESTERO E	PENINSU	BAJA CALI	MULEGE	SAN IGNA	ESTERO	COSTERO	ESTERO	-113.462	26.80955	2020					<10	Excelente				<3	Ex
19	DLBAJ134	ESTERO S	PENINSU	BAJA CALI	COMOND	SANTO DO	ESTERO	COSTERO	ESTERO	-112.093	25.69695	2020					19.533	3 Excelente				<3	Ex
20	DLBAJ135	HUMEDA	PENINSU	BAJA CALI	COMOND	SANTO DO	HUMEDAI	LOTICO (F	ARROYO	-111.833	26.03686	2020	<2	Excelente	<10	Excelente	10.	1 Excelente	1408	Contamina	368 Buena ca	lidad	
21	DLBAJ138	PARQUE I	PENINSU	BAJA CALI	LORETO	LORETO	GOLFO DE	COSTERO	BAHIA	-111.235	25.7233	2020					<10	Excelente				<3	Ex
22	DLBAJ139	BAHIA DE	PENINSUI	BAJA CALI	LORETO	LORETO	GOLFO DE	COSTERO	BAHIA	-111.258	25.74527	2020					<10	Excelente				<3	Ex
23	DLBAJ140	PLAYA JU	PENINSU	BAJA CALI	LORETO	LORETO	GOLFO DE	COSTERO	BAHIA	-111.304	25.80818	2020					<10	Excelente				<3	Ex
4	DLBAJ141	PARQUE I	PENINSU	BAJA CALI	LORETO	LORETO	GOLFO DE	COSTERO	BAHIA	-111.34	25.8758	2020					<10	Excelente				<3	Ex
				BAJA CALI		LORETO		COSTERO		-111.331	25.8363	2020						1 Excelente				<3	Ex
26	DLBAJ144	BAHIA LO	PENINSU	BAJA CALI	LORETO	LORETO	GOLFO DE	COSTERO	BAHIA	-111.335	26.00486	2020					13.866	7 Excelente				<3	Ex
	>	Datos de	calidad o	el agua d	e_si (4	F)									4								•

Imagen 1. Dataset elegido, referencia visual

Limpieza

Se corrieron métodos para identificar espacios vacíos dentro de la base de datos. Así como para identificar el tipo de elemento para trabajar. La cantidad de elementos faltantes dentro de los atributos.

Técnicas que se implementaron:

-Se eliminaron columnas y filas que no agregaban

valor al análisis

-Se cambiaron formatos para poder hacer las interpretaciones adecuadas

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 3493 entries, 0 to 3492
     columns (total 55 columns):
                             Non-Null Count Dtype
     CLAVE
                                              object
     SITIO
     ORGANISMO DE CUENCA
     ESTADO
     MUNICIPIO
                             3493 non-null
                                              object
     CUENCA
                             3492 non-null
                                              object
     CUERPO DE AGUA
     TIPO
                                              object
     SUBTIPO
                                              object
                                              float64
     LONGTTUD
    LATITUD
                                              float64
 11 PERIODO
                             3493 non-null
                                              int64
```

#Revisamso si tenemos valores faltantes df.isnull().values.any() True #El resultado anterior nos marco en efect #En nuestra primer etapa de validación de #decidimos primero ubicar las columnas co df.isna().any() False CLAVE False SITIO ORGANISMO DE CUENCA False **ESTADO** False MUNICIPIO False CUENCA True CUERPO DE AGUA True TIPO False SUBTIPO True False

Imagen 2. Formato de los datos.

Imagen 3. Presencia de elementos faltantes

01

Análisis

Definimos los atributos con los que vamos a trabajar.

- 1.- Nos limitamos a trabajar con variables numéricas y graficamos su comportamiento.
- 2 Revisamos que los atributos nichos con los que trabajamos tengan una correlación directa o una correlación indirecta alta. Nos percatamos de una correlación directa alta y nos permite seguir con el análisis.
- 3.Todo el análisis parece bien realizado, es necesario identificar si tenemos "outliers" en una presencia significativa como para afectar nuestro análisis. En la siguiente grafica vemos que si tenemos pero son minoría como para poder ser despreciados en las interpretaciones, sin la necedad de una normalización extra.

Imagen 4. Elementos nicho y su comportamiento

Imagen 5. Confirmación de correlacion

Imagen 6. Mapa de comportamiento.

Clasificación

La clasificación y ubicación de los centroides fue revisada con un método de matriz de confusión y se determino la precisión de este. Una precisión superior al 99%. Por ende podemos decir que los datos son muy conclusivos en la siguiente imagen.

El método utilizada para mostrar lo siguiente es denominado "K-means".

El método agrupa las formas de agua superficiales en una categoría de semáforos. La verde siento la mejor condición, amarilla poco recomendada y la roja no recomendada.

A su vez podemos ubicar los centroides marcados por puntos azules en la grafica.

02

Imagen 7. Mapa de México usando el método "K-means"

Resultados

Es necesario analizar las siguientes graficas para tener una mejor perspectiva. Los mantos aquiferos superficiales fueron analizados de manera individual y podemos ver que tras tomar en cuenta presencias de metales pesados, cargaso bacterianas, así como otros aspectos nocivos para la salud humana podemos identificar en las costas de nuestro país una carga notoria de agua "buena" para nuestra humanidad pero si utilizamos un método de ML para hacer este análisis y otro método para corraborrar su efectividad podemos ver que hay una fuerte tendencia en la zona nor-oeste del país a una calidad de agua superior, denotando que la zona centro y zona nor-este un "no-recomendado" y finalmente en la zona sur y la península una presencia de agua "poco recomendada".

Imagen 8. Mapa de México de la calidad de los mantos acuíferos

Imagen 9. Mapa de México usando el método "K-means"

Conclusiones

Las conclusiones de nuestro muestreo son las siguientes:

- 1.- La zona norte-oeste tiene mayor calidad de agua, centro y nor-este un "no recomendada" y la zona sur y península "poco recomendada".
- 2.- Este ejercicio no permite acciones conclusivas, un análisis de ciencia de datos debe estar basado en problemáticas del negocio, la única indicación adecuada que se puede entregar es que puede servir para las estrategias de organismos gubernamentales en sus planes de acción.
- 3.- El ejercicio y los métodos utilizados son de gran poder y permiten una perspectiva global de la geografía del país en temas de mantos acuíferos superficiales, la comparación de estos hallazgos con las cuencas de agua entregaría mayor valor.

Conclusiones

Las conclusiones de nuestro muestreo son las siguientes:

- 4.- El análisis implementado requirió de la necesidad de borrar una gran cantidad de atributos debido al manejo del banco de datos, una propuesta directa del equipo de ciencia de datos es que el equipo de recolección de información no tiene un "modern data warehouse". Estos análisis pueden entregar mayor valor al tener la infraestructura técnica adecuada.
- 5.- Es necesario hacer estos análisis comparativos a lo largo de 20 o 30 años para ver una evolución en los tratamientos y acciones de la sociedad junto con gobierno, o en su defecto ver los efectos nocivos.

Proyecto

Actividad de cierre de la materia de Ciencia de datos Maestría en Inteligencia artificial aplicada ITESM