LISTA DE EXERCÍCIOS nº7 – LÓGICA DE PREDICADOS (dedução formal)

1. Preencha a terceira coluna das seguintes provas, identifi a) $\neg p(c) \lor (\exists x)(p(x)), (\exists x)(p(x)) \rightarrow q(c)$				cando f)	cada p(c) ^		s ou como foram obtidas.	
	$\frac{\text{conclusão:}}{\text{conclusão:}} p(c) \to q(c)$					∖ q(c) <u>são:</u> (∃x)(p(x) ∧ q(x	())	
1.	. $\neg p(c) \lor (\exists x)(p(x))$			1.		√ d(c)		
2.	(∃x)($p(x) \rightarrow d(c)$		2.	(∃x)(p(x) ∧ q(x))		
3.		p(c)			<i>(</i>) <i>(</i>) <i>(</i>)	() ())		
4.		(∃x)(p(x))		g)		o(x) ∨ q(x)) <u>são:</u> (∃x)(p(x) ∨ q(x	())	
5.		q(c)		1.		$p(x) \wedge d(x)$		
6.	p(c)	\rightarrow q(c)		2.	p(c)	√ d(c)		
b)	(∀x)(p	$p(x) \rightarrow q(x)$), p(c) <u>conclusão:</u> q(c)	3.	(∃x)($p(x) \vee q(x)$		
1.		$b(x) \rightarrow d(x)$		h)	_((∃x)(p(x))	<u>conclusão:</u> (∀x)(¬	p(x))
2.	p(c)			1.	¬((∃	(p(x))		
3.	p(c) -	→ q(c)		2.		p(c)		
4.	d(c)			3.		(∃x)(p(x))		
c)	¬p(c)		$\frac{\text{conclus}\tilde{a}o:}{}$ \neg ($\forall x$)(p(x))	4.		false		
1.	¬p(c	;)		5.	¬p(0	C)		
2.		(∀x)(p(x))		6.	(∀x)	(¬p(x))		
3.		p(c)						
4.		false		i)		$p(x) \wedge q(x)$	<u>conclusão:</u> (∃x)(p(x))
5.	¬(∀)	κ)(p(x))		1.	(∃X)	$(p(x) \wedge q(x))$		
	<i>(</i>) <i>(</i>) <i>(</i>	() () ()		2.		p(c) ∧ q(c)		
		$p(x) \rightarrow q(x)), (\forall x)$ $\underline{\tilde{ao}}: (\forall x)(p(x) \rightarrow x)$		3.	-	p(c)		
1.		$b(x) \rightarrow d(x)$		4.		(∃x)(p(x))		
2.		$q(x) \rightarrow r(x)$		5.	(∃x)	(p(x))		
3.	p(c) -	→ q(c)		_j)	(∀ x)(r	$p(x) \to q(x), (\exists x)($	p(x)) <u>conclusão:</u> (∃x)(q(x))
4.	q(c) -	→ r(c)		1.		$p(b(x) \to d(x))$	P(X)) <u>condidad:</u> (±X)(q(Λ))
5.	p(c) -	→ r(c)		2.	(∃x)	(p(x))		
6.	(∀x)(ı	$p(x) \rightarrow r(x)$		3.		p(c)		
	() () (. (\\		4.		$b(c) \rightarrow d(c)$		
	$(\forall x)(p)$	o(x)) <u>ão:</u> (∀x)(p(x) ∨ o	ı(x))	5.		q(c)		
1.	(∀x)(I			6.		(∃x)(q(x))		
2.	p(c)			7.	(∃x)	(q(x))		
3.	p(c) \	√ q(c)						
4.	(∀x)(I	$p(x) \vee q(x)$						
L				•				

2. Demonstre a validade dos argumentos abaixo usando regras de inferência.

r) $(\exists x)(p(x) \land \neg q(x)), (\forall x)(r(x) \rightarrow q(x)), (\forall x)(r(x) \lor s(x))$

a) $(\forall x)(p(x) \rightarrow q(x)), (\forall x)(p(x))$ conclusão: q(c) b) $(\forall x)((\forall y)(p(x,y)))$ conclusão: p(c,c) c) $(\forall x)(p(x) \rightarrow q(x)), \neg q(c)$ $\underline{conclusão}$: $\neg p(c)$ d) $(\forall x)(p(x)) \rightarrow (\forall x)(q(x)), \neg q(c)$ conclusão: \neg (($\forall x$)(p(x))) e) $(\forall x)(p(x) \rightarrow q(x)), (\forall y)(p(y))$ conclusão: (∀x)(q(x))f) $(\forall x)(p(x) \land q(x))$ conclusão: $(\forall x)(p(x)) \land (\forall x)(q(x))$ g) $(\forall x)(p(x) \rightarrow (q(x) \lor r(x))), (\forall x)(\neg q(x))$ conclusão: $(\forall x)(p(x)) \rightarrow (\forall x)(r(x))$ h) $(\forall x)(p(x) \rightarrow (q(x) \lor r(x))), (\forall x)(\neg q(x))$ conclusão: $(\forall x)(p(x) \rightarrow r(x))$ i) $(\forall x)(p(c_1,x)), (\forall x)((\forall y)(p(x,y) \rightarrow q(y,x)))$ conclusão: $(\forall x)(q(x,c_1))$ j) $(\exists x)(p(x) \land q(x))$ conclusão: $(\exists x)(p(x)) \land (\exists x)(q(x))$ k) $(\exists x)((\forall y)(p(x,y)))$ conclusão: $(\forall x)((\exists y)(p(y,x)))$ $(\forall x)(p(x) \to q(x)), \ (\exists x)(\neg q(x))$ conclusão: (∃x)(¬p(x))I) m) $(\forall x)(p(x) \rightarrow q(x)), (\exists x)(p(x) \land \neg r(x))$ conclusão: $(\exists x)(q(x) \land \neg r(x))$ n) $(\forall x)((p(x) \lor q(x)) \rightarrow r(x)), p(c)$ conclusão: r(c) o) $(\forall x)(p(x)), (\exists x)(q(x))$ conclusão: $(\exists x)(p(x) \land q(x))$ p) $(\exists x)(p(x) \rightarrow q(x)), (\forall y)(q(y) \rightarrow r(y)), (\forall x)(p(x))$ conclusão: $(\exists x)(r(x))$ q) $(\forall x)(p(x) \rightarrow u(x)), (\exists x)(p(x) \land h(x))$ conclusão: $(\exists x)(p(x) \land h(x) \land u(x))$

conclusão: $(\exists x)(p(x) \land s(x))$

LISTA DE EXERCÍCIOS nº7 - RESOLUÇÃO

1. Preencha a terceira coluna das seguintes provas, identificando cada uma das fórmulas ou como foram obtidas.

a) $\neg p(c) \lor (\exists x)(p(x)), (\exists x)(p(x)) \rightarrow q(c)$ conclusão: $p(c) \rightarrow q(c)$ (NOLT; ROHATYN, p.254 – 6.4)

		(IVOL	ι, ιτοιιλι τιν, ρ.Ζ	.UT U.T)
	1.	(2x)(p(x))		premissa
_	2.			premissa
_	3.		p(c)	suposição
	4.		(∃x)(p(x))	E∨(1,3)
	5.		q(c)	E→(MP,2,4)
	6.	$p(c) \rightarrow q(c)$		I→(3-5) – conclusão

b) $(\forall x)(p(x) \rightarrow q(x)), p(c)$ conclusão: q(c) Todos os homens são mortais. Sócrates é homem. Portanto, Sócrates é mortal. (NOLT; ROHATYN, p.256 - 6.5)

premissa $(\forall x)(p(x) \rightarrow q(x))$ 2. p(c) premissa 3. $p(c) \rightarrow q(c)$ E∀(1) 4. E→(MP,2,3) - conclusão q(c)

c) $\neg p(c)$ conclusão: $\neg(\forall x)(p(x))$ (NOLT; ROHATYN, p.257 - 6.7)

	1.	¬p(c)		premissa
	2.		(∀x)(p(x))	suposição
	3.		p(c)	E∀(2)
	4.		false	Ifalse(1,3)
-	5.	$\neg(\forall x)(p(x))$		I⊣(2-4) – conclusão

d) $(\forall x)(p(x) \rightarrow q(x)), (\forall x)(q(x) \rightarrow r(x))$ conclusão: $(\forall x)(p(x) \rightarrow r(x))$ (NOLT; ROHATYN, p.258 - 6.9)

1.	$(\forall x)(p(x) \to q(x))$	premissa
2.	$(\forall x)(q(x) \to r(x))$	premissa
3.	$p(c) \rightarrow q(c)$	E∀(1)
4.	$q(c) \rightarrow r(c)$	E∀(2)
5.	$p(c) \rightarrow r(c)$	E→(SH,3,4)
6.	$(\forall x)(p(x) \to r(x))$	I∀(5) - conclusão

 $(\forall x)(p(x))$ conclusão: $(\forall x)(p(x) \lor q(x))$ (lista RENATA, q1-no.7)

1.	(∀x)(p(x))	premissa
2.	p(c)	E∀(1)
3.	p(c) \times q(c)	I∨ (2)
4.	$(\forall x)(p(x) \vee q(x))$	I∀(3) - conclusão

 $p(c) \wedge q(c)$ conclusão: $(\exists x)(p(x) \land q(x))$ (NOLT; ROHATYN, p.266)

1.	p(c) ∧ q(c)	premissa
2.	$(\exists x)(p(x) \land q(x))$	I∃(1) - conclusão

g) $(\forall x)(p(x) \vee q(x))$

conclusão: $(\exists x)(p(x) \lor q(x))$ (NOLT: ROHATYN, p.268 – 6.15)

1.	$(\forall x)(p(x) \lor q(x))$	premissa
2.	p(c) ∨ q(c)	E∀(1)
3.	$(\exists x)(p(x) \lor q(x))$	I∃(2) – conclusão

conclusão: $(\forall x)(\neg p(x))$ $\neg((\exists x)(p(x))$ (NOLT; ROHATYN, p.270 - 6.17) 1. \neg ((\exists x)(p(x)) premissa 2. suposição p(c)3. $(\exists x)(p(x))$ I∃(2) 4. Ifalse(1,3) false 5. $\neg p(c)$ I - (2-4)6. $(\forall x)(\neg p(x))$ I∀(5) - conclusão

) ∧ q(x)) ROHATYN, p.2	<u>conclusão:</u> (∃x)(p(x)) ?72)
1.	(∃x)(p	(x) ∧ q(x))	premissa
2.	r	o(c) \ d(c)	suposição
3.	r	o(c)	E∧(2)
4.	((∃x)(p(x)	I∃(3)
5.	(∃x)(p	(x)	E∃(1,2-4) - conclusão

		$p(x) \rightarrow q(x)$), $(\exists x)$ (Γ ; ROHATYN, p.2		
1.	(∀x)	$(p(x) \rightarrow q(x))$	premissa	
2.	(∃x)((p(x))	premissa	
3.		p(c)	suposição	
4.		$p(c) \rightarrow q(c)$	E∀(1)	
5.		q(c)	E→(MP,3,4)	
6.		(∃x)(q(x)	I∃(5)	
7.	(∃x)(q(x))		E∃(2,3-6) - conclusão	

2. Demonstre a validade dos argumentos abaixo usando regras de inferência.

a) $(\forall x)(p(x) \rightarrow q(x)), (\forall x)(p(x))$ <u>conclusão:</u> q(c)

(NOLT; ROHATYN, p.256 – 6.6)

		· · · · · · · · · · · · · · · · · · ·	
1.		$(\forall x)(p(x) \rightarrow q(x))$	premissa
_	2.	(∀x)(p(x))	premissa
	3.	$p(c) \rightarrow q(c)$	E∀(1)
	4.	p(c)	E∀(2)
	5.	q(c)	E→(MP,3,4) - conclusão

b) $(\forall x)((\forall y)(p(x,y)))$ <u>conclusão:</u> p(c,c)

(NOLT; ROHÁTYN, p.257 – 6.8)

1.	$(\forall x)((\forall y)(p(x,y)))$	premissa
2.	(∀y)(p(c,y))	E∀(1)
3.	p(c,c)	E∀(2) – conclusão

c) $(\forall x)(p(x) \rightarrow q(x)), \neg q(c)$ <u>conclusão</u>: $\neg p(c)$ (lista RENATA, q1-no.3)

-	1.	$(\forall x)(p(x) \rightarrow q(x))$	premissa	
2.		¬q(c)	premissa	
	3.	$p(c) \rightarrow q(c)$	E∀(1)	
	4.	¬p(c)	E→(MT,2,3)	

d) $(\forall x)(p(x)) \rightarrow (\forall x)(q(x)), \neg q(c)$ <u>conclusão</u>: $\neg ((\forall x)(p(x)))$ (NOLT; ROHATYN, p.265 – 6.14)

		\		
	1.	$\neg d(c)$ $\neg d(c)$		premissa
	2.			premissa
	3.	(∀:	x)(p(x))	suposição
	4.	(∀:	x)(q(x))	E→(MP,1,3)
-	5.	q(c	;)	E∀(4)
	6.	false	Ifalse(2,5)	
	7.	. ¬((∀x)(p(x)))		I⊣(3-6) – conclusão

e) $(\forall x)(p(x) \rightarrow q(x)), (\forall y)(p(y))$ <u>conclusão</u>: $(\forall x)(q(x))$ (UNISINUS, p.78)

	(O141011400, p.70)		
1.	$(\forall x)(p(x) \to q(x))$	premissa	
2.	(∀y)(p(y))	premissa	
3.	$p(c) \rightarrow q(c)$	E∀(1)	
4.	p(c)	E∀(2)	
5.	q(c)	E→(MP,3,4)	
6.	$(\forall x)(q(x))$	I∀(5) - conclusão	

f) $(\forall x)(p(x) \land q(x))$ <u>conclusão</u>: $(\forall x)(p(x)) \land (\forall x)(q(x))$ (NOLT; ROHATYN, p.262 – 6.10)

1.	$(\forall x)(p(x) \land q(x))$	premissa
2.	p(c) \(\text{q(c)} \)	E∀(1)
3.	p(c)	E∧(2)
4.	q(c)	E∧(2)
5.	(∀x)(p(x))	I∀(3)
6.	(∀x)(q(x))	I∀(4)
7.	$(\forall x)(p(x)) \wedge (\forall x)(q(x))$	I∧(5,6) - conclusão

g) $(\forall x)(p(x) \rightarrow (q(x) \lor r(x))), (\forall x)(\neg q(x))$ $\underline{\text{conclusão}}: (\forall x)(p(x)) \rightarrow (\forall x)(r(x))$ (NOI T: ROHATYN p. 262 – 6.11)

	(NOLT, KOHATTIN, p.262 –	0.11)
1.	$(\forall x)(p(x) \to (q(x) \lor r(x)))$	premissa
2.	$(\forall x)(\neg q(x))$	premissa
3.	(∀x)(p(x))	suposição
4.	p(c)	E∀(3)
5.	$p(c) \to (q(c) \vee r(c))$	E∀(1)
6.	q(c) v r(c)	E→(MP,4,5)
7.	¬q(c)	E∀(2)
8.	r(c)	E√(6,7)
9.	(∀x)(r(x))	I∀(8)
10.	$(\forall x)(p(x)) \to (\forall x)(r(x))$	I⊣(3-9) – conclusão

h) $(\forall x)(p(x) \rightarrow (q(x) \lor r(x))), (\forall x)(\neg q(x))$ <u>conclusão</u>: $(\forall x)(p(x) \rightarrow r(x))$ (NOLT: ROHATYN, p.263 – 6.12)

	(140L1, 11011/11114, p.200	0.12)
1.	$(\forall x)(p(x) \to (q(x) \lor r(x)))$	premissa
2.	(∀x)(¬q(x))	premissa
3.	p(c)	suposição
4.	$p(c) \to (q(c) \vee r(c))$	E∀(1)
5.	q(c) v r(c)	E→(MP,3,4)
6.	¬q(c)	E∀(2)
7.	r(c)	Ev(5,6)
8.	$p(c) \rightarrow r(c)$	I→(3-7)
9.	$(\forall x)(p(x) \rightarrow (r(x))$	I∀(3-9) – conclusão
	•	······

i) $(\forall x)(p(c_1,x)), (\forall x)((\forall y)(p(x,y) \rightarrow q(y,x)))$ <u>conclusão</u>: $(\forall x)(q(x,c_1))$

(NOLT; ROHATYN, p.264 – 6.13)

1.	$(\forall x)(p(c_1,x))$	premissa
2.	$(\forall x)((\forall y)(p(x,y)\rightarrow q(y,x)))$	premissa
3.	p(c ₁ ,c ₂)	E∀(1)
4.	$(\forall y)(p(c_1,y)\rightarrow q(y,c_1))$	E∀(2)
5.	$p(c_1,c_2) \rightarrow q(c_2,c_1)$	E∀(4)
6.	q(C ₂ ,C ₁)	E→(MP,3,5)
7.	(∀x)(q(x,c₁))	I∀(6) – conclusão

 $j) \quad (\exists x)(p(x) \land q(x))$

conclusão: $(\exists x)(p(x)) \land (\exists x)(q(x))$

(lista RENATA, q1-no.1)

1.	$(\exists x)(p(x) \land q(x))$	premissa
2.	p(c) ∧ q(c)	suposição
3.	p(c)	E∧(2)
4.	q(c)	E∧(2)
5.	(∃x)(p(x))	I∃(3)
6.	(∃x)(q(x))	I∃(4)
7.	$(\exists x)(p(x))\wedge(\exists x)(q(x))$	I∧(5,6)
8.	$(\exists x)(p(x))\wedge(\exists x)(q(x))$	E∃(1,2-7) – conclusão

k) $(\exists x)((\forall y)(p(x,y)))$

 $\frac{\text{conclus}\tilde{a}o}{(NOLT, POLLATYAL, 7, 200)}$

(NOLT; ROHATYN, p.280 – 6.22)

1.	$(\exists x)((\forall y)(p(x,y)))$		premissa
2.	(∀y)(p(c ₁ ,y))	suposição
3.	p(c ₁ ,	C ₂)	E∀(2)
4.	(∃y)(¡	O(y,C ₂))	I∃(3)
5.	(∀x)((∃y)(p(y,x)))		I∀(4)
6.	$(\forall x)((\exists y)(p(y,x)))$		E∃(1,2-5) – conclusão

I) $(\forall x)(p(x) \rightarrow q(x)), (\exists x)(\neg q(x))$

conclusão: (∃x)(¬p(x))

(BISPO; CASTANHEIRA; SOUZA FILHO; p. 83)

1.	$(\forall x)(p(x) \to q(x))$		premissa
2.	(∃x)(¬q(x))		premissa
3.		¬q(c)	suposição
4.		$p(c) \rightarrow q(c)$	E∀(1)
5.		¬p(c)	E→(MT,3,4)
6.		(∃x)(¬p(x))	I∃(5)
7.	7. (∃x)(¬p(x))		E∃(2,3-6) – conclusão

m) $(\forall x)(p(x) \rightarrow q(x)), (\exists x)(p(x) \land \neg r(x))$ <u>conclusão</u>: $(\exists x)(q(x) \land \neg r(x))$

(BISPO; CASTANHEIRA; SOUZA FILHO; p. 84)

	(BIOLO, ONOTARRIERO, COOZATTERO, p. 04)			
1.	$(\forall x)(p(x) \to q(x))$	premissa		
2.	$(\exists x)(p(x) \land \neg r(x))$	premissa		
3.	p(c) ∧ ¬r(c)	suposição		
4.	$p(c) \rightarrow q(c)$	E∀(1)		
5.	p(c)	E∧(3)		
6.	q(c)	I→(MP,4,5)		
7.	⊸r(c)	E∧(3)		
8.	q(c) ∧ ¬r(c)	I∧(6,7)		
9.	$(\exists x)(q(x) \land \neg r(x))$	I∃(8)		
10.	$(\exists x)(q(x) \land \neg r(x))$	E∃(2,3-9) – conclusão		

n) $(\forall x)((p(x) \lor q(x)) \to r(x)), p(c)$

conclusão: r(c)

(BISPO; CASTANHEIRA; SOUZA FILHO; p. 84)

1.	$(\forall x)((p(x) \lor q(x)) \to r(x))$	premissa
2.	p(c)	premissa
3.	$(p(c) \lor q(c)) \rightarrow r(c)$	E∀(1)
4.	p(c) v q(c)	I∨(2)
5.	r(c)	E→(MP,3,4) – conclusão

o) $(\forall x)(p(x)), (\exists x)(q(x))$

,	$(\forall x)(p(x)), (\exists x)(q(x))$	
!	conclusão: $(\exists x)(p(x) \land q(x))$	(lista RENATA, q1-no.8)
1.	(∀x)(p(x))	premissa
2.	(∃x)(q(x))	premissa
3.	q(c)	suposição
4.	p(c)	E∀(1)
5.	p(c) ∧ q(c)	I∧(3,4)
6.	$(\exists x)(p(x) \land q(x))$	I∃(5)
7.	$(\exists x)(p(x) \land q(x))$	E∃(2,2-7) – conclusão

p) $(\exists x)(p(x) \rightarrow q(x)), (\forall y)(q(y) \rightarrow r(y)), (\forall x)(p(x))$ <u>conclusão</u>: $(\exists x)(r(x))$ (lista RENATA, q1-no.12)

.	CONDIAGAO. (A)(I(X))		(11014 11211/11/11, 91 110.12
1.	$(\exists x)(p(x) \rightarrow q(x))$		premissa
2.	$(\forall y)(q(y) \rightarrow r(y))$		premissa
3.	(∀x)	(p(x))	premissa
4.		$p(c) \rightarrow q(c)$	suposição
5.		$q(c) \rightarrow r(c)$	E∀(2)
6.		p(c)	E∀(3)
7.		q(c)	E→(MP,4,6)
8.		r(c)	E→(MP,5,7)
9.		(∃x)(r(x))	I∃(8)
10.	(∃x)(r(x))		E∃(1,4-9) – conclusão

q) $(\forall x)(p(x) \rightarrow u(x)), (\exists x)(p(x) \land h(x))$ conclusão: $(\exists x)(p(x) \land h(x) \land u(x))$ (lista RENATA, q2-no.1)

1.	$(\forall x)(p(x) \to u(x))$	premissa
2.	$(\exists x)(p(x) \wedge h(x))$	premissa
3.	p(c) ∧ h(c)	suposição
4.	$p(c) \rightarrow u(c)$	E∀(1)
5.	p(c)	E∧(3)
6.	u(c)	E→(MP,4,5)
7.	p(c) ∧ h(c) ∧ u(c)	I∧(3,6)
8.	$(\exists x)(p(x)\land u(x)\land h(x))$	I∃(7)
9.	$(\exists x)(p(x) \land u(x) \land h(x))$	E∃(2,3-8) – conclusão

r) $(\exists x)(p(x) \land \neg q(x)), (\forall x)(r(x) \rightarrow q(x)), (\forall x)(r(x) \lor s(x))$ conclusão: $(\exists x)(p(x) \land s(x))$ (lista RENATA, q2-no.6) 1. premissa $(\exists x)(p(x) \land \neg q(x))$ 2. $(\forall x)(r(x) \rightarrow q(x))$ premissa 3. premissa $(\forall x)(r(x) \lor s(x))$ 4. suposição $p(c) \land \neg q(c)$ 5. $r(c) \rightarrow q(c)$ E∀(2) 6. $r(c) \vee s(c)$ E∀(3) 7. $\neg q(c)$ E∧(4) 8. ¬r(c) $E\rightarrow (MT,5,7)$ 9. s(c) E_V(6,8) 10. p(c) E∧(4) 11. I∧(9,10) $p(c) \wedge s(c)$ 12. $(\exists x)(p(x) \land s(x))$ I∃(11) E∃(1,4-12) -

conclusão

13.

 $(\exists x)(p(x) \land s(x))$

REGRAS DE INFERÊNCIA (lógica de predicados)

i. exemplo:

	$\frac{(\forall x)(q(x))}{(\forall x)(q(x)), (\forall x)(p(x))}$	conclusão: (∀x)(q(x))
1.	$(\forall x)(p(x)) \to (\forall x)(q(x))$	premissa
2.	(∀x)(p(x))	premissa
3.	(∀x)(q(x))	E→(MP,1,2) – conclusão

fazer q1(a)

já **para**:

 $\begin{array}{ll} (\forall x)(p(x) \to q(x)),\, p(c) & \underline{conclus\~ao:} \; q(c) \\ \neg ((\exists x)(p(x)) & \underline{conclus\~ao:} \; (\forall x)(\neg p(x)) \\ s\~ao \; necess\'arias \; novas \; regras \; para \; inclus\~ao \; (generalizaç\~ao) \; e \\ exclus\~ao \; (particularizaç\~ao): \end{array}$

- do quantificador universal (I∀, E∀)
- do quantificador existencial (I∃, E∃)

regra / restrições	nome da regra
$\frac{(\forall x)(\alpha(x))}{\alpha[x/c]}$ Se $I[\alpha] = V$ para todos os valores de x, então $I[\alpha] = V$ para um valor constante c. Logo, pode-se substituir x por c em α .	E∀

ii. exemplos:

todo nº natural x é maior ou igual a 0.

∴10 é maior ou igual a 0.

 1.	(∀x)(p(x))	premissa
2.	p(c)	E∀(1)

1.	$(\forall x)(p(x) \to q(x))$	premissa
2.	$p(c) \rightarrow q(c)$	E∀(1)

-	1.	$(\forall x)(p(x)) \to (\forall x)(q(x))$	premissa
	2.	$p(c) \rightarrow (\forall x)(q(x))$	E∀(1)

fazer q1(b, c)

regra / restrições	nome da regra
$\frac{\alpha(c)}{(\forall x)(\alpha[c/x])}$	
Se $I[\alpha] = V$ para um valor constante c, onde c substituiu x em α quando da <u>exclusão do \forall</u> , então pode-se substituir c por x em α .	$\mathrm{I}\forall$
restrições: (i) a constante c não pode aparecer nas premissas e nas suposições ainda não descartadas; (ii) α (c) não pode ter sido deduzida da <u>exclusão do ∃;</u> (iii) a variável x não pode aparecer em α ; (iv) todas as ocorrências de c em α devem ser substituídas	

iii. exemplos:

1.	(∀x)(p(x))	premissa
2.	p(c)	E∀(1)
3.	(∀y)(p(y))	I∀(2)

restrições:

(i) a constante c não pode aparecer nas premissas e nas suposições ainda não descartadas

1.	p(c)	premissa
2. (∀x)(p(x))		I∀(1) – errado X
1.	$(\forall x)(b(x) \to d(x))$	premissa
		·

1.	$(\forall x)(p(x) \to q(x))$	premissa
2.	$p(c) \rightarrow q(c)$	E∀(1)
3.	p(c)	suposição
4.	q(c)	E→(MP,2,3)
5.	(∀x)(q(x))	I∀(4) – errado X
6.	$b(c) \rightarrow (\forall x)(d(x))$	X

(ii) α (c) não pode ter sido deduzida da exclusão do \exists

1.	$(\exists x)(p(x) \rightarrow q(x))$		premissa
2.		$p(c) \rightarrow q(c)$	suposição
3.		$(\forall x)(p(x) \rightarrow q(x))$	I∀(2) – errado X
4.	(∀x)	$(p(x) \rightarrow q(x))$	X

(iii) a variável x não pode aparecer em α

1.	()	premissa
2.	(∃x)(p(x,c)) [x em α]	
3.	(∀x)((∃x)(p(<mark>x</mark> ,x)))	I∀(2) – errado X

(iv) todas as ocorrências de c em α devem ser substituídas

1.	(∀x)(p(x,x))	premissa	
2.	p(c,c)	E∀(1)	
3.	(∀y)(p(c ,y))	I∀(2) – errado X	

fazer q1(d, e) fazer q2(a - i)

regra / restrições	nome da regra
[α[x/c]]	
 _(∃x)(α(x)) β β	
Supondo que $I[\alpha] = V$ para algum valor constante c, caso seja possível deduzir que $I[\beta] = V$, pode-se eliminar o quantificador existencial.	E∃
restrições: (i) a constante c não pode ter sido usada anteriormente na demonstração, ou seja, c não pode aparecer em α , β , premissas ou suposições ainda não descartadas	

iv. exemplo: q1(i)

1.	$(\exists x)(p(x) \land q(x))$ [\alpha]	premissa
2.	b(c) ∨ d(c)	suposição α [x/c]
3.	p(c)	E∧(2)
4.	(∃x)(p(x))	I∃(3) β
5.	(∃x)(p(x))	E∃(1,2-4) – conclusão β

restrições: [a constante c não pode ter sido usada antes na demonstração]

(i) a constante c não pode aparecer em α

1.	$(\forall x)((\exists y)(p(y,x))$	premissa
2.	$(\exists y)(p(y, \mathbf{c}))$ [c em α]	E∀(1)
3.	p(c,c)	suposição – errado X
4.	(∃x)(p(x,x))	I∃(3) X
5.	$(\exists x)(p(x,x))$	E∃(2,3-4) X

(ii) a constante c não pode aparecer em β

1.	$(\exists x)(p(x,x))$		premissa
2.		p(c,c)	suposição
3.		(∃x)(p(x, c))	I∃(2) – errado X [c em β]
4.	(∃x)(p(x,c))	E∃(1,2-3) X

(iii) a constante c não pode aparecer nas premissas

1.	. (∃x)(p(x))		premissa	
2.	d(c)		premissa	
3.		p(c)	suposição – errado X	
4.		p(c) ∧ q(c)	I∧(2,3) X	
5.		$(\exists x)(p(x) \land q(x))$	I∃(4) X	
6.	$(\exists x)(p(x) \land q(x))$		E∃(1,3-5) X	

(iv) a constante c não pode aparecer nas suposições ainda não descartadas

1.	(∃x)(p(x))	premissa
2.		premissa
3.	q(c)	suposição
4.	p(c)	suposição – errado X
5.	p(c) ∧ q(c)	I∧(3,4) X
6.	$(\exists x)(p(x) \land q(x))$	I∃(5) X
7.	$(\exists x)(p(x) \land q(x))$	E∃(1,4-6) X
8.	(∃x)(p(x) ∧ q(x))	E∃(2,3-7) X

regra / restrições	nome da regra
$\frac{\alpha(c)}{(\exists x)(\alpha[c/x])}$ Se $I[\alpha] = V$ para algum valor constante c, então $I[\alpha] = V$ para algum valor x. Logo, pode-se substituir c por x em α .	I∃
restrição: (i) a variável x não pode aparecer em α ; (ii) pelo menos uma ocorrência de c deve ser substituída	

v. exemplos:

10 é maior ou igual a 0.

∴algum nº natural x é maior ou igual a 0.

1.	p(x)	premissa
2.	(∃x)(p(x))	I∃(1)

restrições:

(i) a variável x não pode aparecer em α

1.	$(\forall x)(p(\mathbf{x},c))$ [x em α]	premissa
2.	(∃x)((∀x)(p(x ,x)))	I∃(1) – errado X

(ii) pelo menos uma ocorrência de c deve ser substituída

1.	p(c,c)	premissa
2.	(∃x)(p(c , c))	I∃(1) – errado X

fazer q1(f - h)