ad9361_pl_wrapper.v

AUTHORS

JAY CONVERTINO

DATES

2023/11/02

INFORMATION

Brief

AD9361 core and support core wrapper.

License MIT

Copyright 2023 Jay Convertino

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

ad9361 pl wrapper

```
module ad9361_pl_wrapper #(
parameter
FPGA_TECHNOLOGY
=
0,
parameter
FPGA_FAMILY
=
0,
parameter
SPEED_GRADE
```

```
=
Θ,
parameter
DEV_PACKAGE
parameter
ADC_INIT_DELAY
23,
parameter
DAC_INIT_DELAY
parameter
DELAY_REFCLK_FREQUENCY
200,
parameter
DMA_AXI_PROTOCOL_TO_PS
parameter
AXI_DMAC_ADC_ADDR
321h7C400000,
parameter
AXI_DMAC_DAC_ADDR
321h7C420000,
parameter
AXI_AD9361_ADDR
321h79020000
) ( input axi_aclk, input axi_aresetn, input s_axi_awvalid, input [31:0] s_a
```

AD9361 core and support core wrapper.

Parameters

FPGA_TECHNOLOGY Type of FPGA, such as Ultrascale, Arria 10. 1 is for 7 series.

parameter

FPGA_FAMILY Sub type of fpga, such as GX, SX, etc. 4 is for zynq.

parameter

SPEED_GRADE Number that corresponds to the ships recommended

parameter speed. 20 is for -2.

DEV_PACKAGE Specify a number that is equal to the manufactures

parameter package. 3 is for ff.

DELAY_REFCLK_FREQUENCY Reference clock frequency used for ad_data_in instances

parameter

ADC_INIT_DELAY Initial Delay for the ADC

parameter

DAC_INIT_DELAY Initial Delay for the DAC

parameter

Ports

axi_aclkAXI Lite control busaxi_aresetnAXI Lite control buss_axi_awvalidAXI Lite control bus

s axi awaddr AXI Lite control bus AXI Lite control bus s_axi_awready s_axi_awprot AXI Lite control bus s_axi_wvalid AXI Lite control bus s_axi_wdata AXI Lite control bus s axi wstrb AXI Lite control bus s_axi_wready AXI Lite control bus s_axi_bvalid AXI Lite control bus AXI Lite control bus s_axi_bresp s axi bready AXI Lite control bus s_axi_arvalid AXI Lite control bus s axi araddr AXI Lite control bus s_axi_arready AXI Lite control bus s_axi_arprot AXI Lite control bus s_axi_rvalid AXI Lite control bus s axi rready AXI Lite control bus s_axi_rresp AXI Lite control bus s axi rdata AXI Lite control bus adc_dma_irq fmcomms2-3 ADC irq dac dma irq fmcomms2-3 DAC irq delay_clk fmcomms2-3 delay clock rx clk in p fmcomms2-3 receive clock in rx_clk_in_n fmcomms2-3 receive clock in

rx frame in p fmcomms2-3 receive frame rx_frame_in_n fmcomms2-3 receive frame rx data in p fmcomms2-3 receive lvds data rx_data_in_n fmcomms2-3 receive lvds data tx_clk_out_p fmcomms2-3 transmit clock tx_clk_out_n fmcomms2-3 transmit clock tx frame out p fmcomms2-3 transmit frame tx_frame_out_n fmcomms2-3 transmit frame tx_data_out_p fmcomms2-3 transmit lvds data tx_data_out_n fmcomms2-3 transmit lvds data

enable fmcomms2-3 enable fmcomms2-3 txnrx select txnrx up_enable fmcomms2-3 enable input up_txnrx fmcomms2-3 txnrx select input tdd_sync_t fmcomms2-3 TDD sync i/o tdd_sync_i fmcomms2-3 TDD sync i/o tdd_sync_o fmcomms2-3 TDD sync i/o adc_m_dest_axi_awaddr fmcomms2-3 ADC DMA

adc_m_dest_axi_awlen fmcomms2-3 ADC DMA adc m dest axi awsize fmcomms2-3 ADC DMA adc_m_dest_axi_awburst fmcomms2-3 ADC DMA adc_m_dest_axi_awprot fmcomms2-3 ADC DMA adc_m_dest_axi_awcache fmcomms2-3 ADC DMA adc_m_dest_axi_awvalid fmcomms2-3 ADC DMA adc_m_dest_axi_awready fmcomms2-3 ADC DMA adc m dest axi wdata fmcomms2-3 ADC DMA adc m dest axi wstrb fmcomms2-3 ADC DMA adc_m_dest_axi_wready fmcomms2-3 ADC DMA adc_m_dest_axi_wvalid fmcomms2-3 ADC DMA adc_m_dest_axi_wlast fmcomms2-3 ADC DMA adc m dest axi bvalid fmcomms2-3 ADC DMA adc m dest axi bresp fmcomms2-3 ADC DMA adc m dest axi bready fmcomms2-3 ADC DMA dac_m_src_axi_arready fmcomms2-3 DAC DMA dac m src axi arvalid fmcomms2-3 DAC DMA dac_m_src_axi_araddr fmcomms2-3 DAC DMA dac m src axi arlen fmcomms2-3 DAC DMA fmcomms2-3 DAC DMA dac_m_src_axi_arsize dac_m_src_axi_arburst fmcomms2-3 DAC DMA dac_m_src_axi_arprot fmcomms2-3 DAC DMA dac_m_src_axi_arcache fmcomms2-3 DAC DMA dac_m_src_axi_rdata fmcomms2-3 DAC DMA dac m src axi rready fmcomms2-3 DAC DMA dac_m_src_axi_rvalid fmcomms2-3 DAC DMA dac_m_src_axi_rresp fmcomms2-3 DAC DMA dac_m_src_axi_rlast fmcomms2-3 DAC DMA

INSTANTIANTED MODULES

inst axi ad9361

```
axi_ad9361 #(

ID(0),

MODE_1R1T(0),

FPGA_TECHNOLOGY(FPGA_TECHNOLOGY),

FPGA_FAMILY(FPGA_FAMILY),

SPEED_GRADE(SPEED_GRADE),

...
```

```
DEV_PACKAGE(DEV_PACKAGE),
TDD_DISABLE(1),
PPS_RECEIVER_ENABLE(0),
CMOS_OR_LVDS_N(0),
ADC_INIT_DELAY(ADC_INIT_DELAY),
ADC_DATAPATH_DISABLE(0),
ADC_USERPORTS_DISABLE(0),
ADC_DATAFORMAT_DISABLE(0),
ADC_DCFILTER_DISABLE(0),
ADC_IQCORRECTION_DISABLE(0),
DAC_INIT_DELAY(DAC_INIT_DELAY),
DAC_CLK_EDGE_SEL(0),
DAC_IODELAY_ENABLE(0),
DAC_DATAPATH_DISABLE(0),
DAC_DDS_DISABLE(0),
DAC_DDS_TYPE(1),
DAC_DDS_CORDIC_DW(14),
DAC_DDS_CORDIC_PHASE_DW(13),
DAC_USERPORTS_DISABLE(0),
DAC_IQCORRECTION_DISABLE(0),
IO_DELAY_GROUP("dev_if_delay_group"),
MIMO_ENABLE(0),
USE_SSI_CLK(1),
DELAY_REFCLK_FREQUENCY(DELAY_REFCLK_FREQUENCY),
RX_NODPA(0)
) inst_axi_ad9361 ( .rx_clk_in_p(rx_clk_in_p), .rx_clk_in_n(rx_clk_in_n), ..
```

Analog Devices ad9361 interface core

$inst_adc_axi_dmac$

```
axi_dmac #(

ID(0),

DMA_DATA_WIDTH_SRC(64),

DMA_DATA_WIDTH_DEST(64),

...
```

```
DMA_LENGTH_WIDTH(24),
DMA_2D_TRANSFER(0),
ASYNC_CLK_REQ_SRC(1),
ASYNC_CLK_SRC_DEST(1),
ASYNC_CLK_DEST_REQ(0),
AXI_SLICE_DEST(0),
AXI_SLICE_SRC(0),
SYNC_TRANSFER_START(1),
CYCLIC(0),
DMA_AXI_PROTOCOL_DEST(DMA_AXI_PROTOCOL_TO_PS),
DMA_AXI_PROTOCOL_SRC(1),
DMA_TYPE_DEST(0),
DMA_TYPE_SRC(1),
DMA_AXI_ADDR_WIDTH(32),
MAX_BYTES_PER_BURST(128),
FIFO_SIZE(8),
AXI_ID_WIDTH_SRC(6),
AXI_ID_WIDTH_DEST(6),
DMA_AXIS_ID_W(8),
DMA_AXIS_DEST_W(4),
DISABLE_DEBUG_REGISTERS(0),
ENABLE_DIAGNOSTICS_IF(0),
ALLOW_ASYM_MEM(1)
) inst_adc_axi_dmac ( .s_axi_aclk(axi_aclk), .s_axi_aresetn(axi_aresetn), .s
```

Analog Devices DMA for AD9361 ADC

$inst_dac_axi_dmac$

```
axi_dmac #(

ID(0),

DMA_DATA_WIDTH_SRC(64),

DMA_DATA_WIDTH_DEST(64),

DMA_LENGTH_WIDTH(24),

DMA_2D_TRANSFER(0),
```

```
ASYNC_CLK_REQ_SRC(0),
ASYNC_CLK_SRC_DEST(1),
ASYNC_CLK_DEST_REQ(1),
AXI_SLICE_DEST(0),
AXI_SLICE_SRC(0),
SYNC_TRANSFER_START(0),
CYCLIC(1),
DMA_AXI_PROTOCOL_DEST(1),
DMA_AXI_PROTOCOL_SRC(DMA_AXI_PROTOCOL_TO_PS),
DMA_TYPE_DEST(1),
DMA_TYPE_SRC(0),
DMA_AXI_ADDR_WIDTH(32),
MAX_BYTES_PER_BURST(128),
FIFO_SIZE(8),
AXI_ID_WIDTH_SRC(6),
AXI_ID_WIDTH_DEST(6),
DMA_AXIS_ID_W(8),
DMA_AXIS_DEST_W(4),
DISABLE_DEBUG_REGISTERS(0),
ENABLE_DIAGNOSTICS_IF(0),
ALLOW_ASYM_MEM(1)
) inst_dac_axi_dmac ( .s_axi_aclk(axi_aclk), .s_axi_aresetn(axi_aresetn),
```

Analog Devices DMA for AD9361 DAC

inst_adc_cpack

Analog Devices Utility to take ad9361 data and pack it to a AXIS bus for the ADC

inst_dac_cpack

inst_dac_fifo

```
util_rfifo #(
NUM_OF_CHANNELS(4),
DIN_DATA_WIDTH(16),
DOUT_DATA_WIDTH(16),
DIN_ADDRESS_WIDTH(4)
) inst_dac_fifo ( .din_rstn(p_aresetn), .din_clk(d_clk), .din_enable_0(fifo)
```

Analog Devices FIFO for AD9361 DAC BUS

inst_adc_fifo

```
util_wfifo #(
NUM_OF_CHANNELS(4),
DIN_DATA_WIDTH(16),
DOUT_DATA_WIDTH(16),
DIN_ADDRESS_WIDTH(4)
) inst_adc_fifo ( .din_rst(ad_reset_o), .din_clk(l_clk), .din_enable_0(adc_
```

Analog Devices FIFO for AD9361 ADC BUS

inst_clkdiv

```
util_clkdiv #(
    .
SIM_DEVICE(SIM_DEVICE)
) inst_clkdiv ( .clk(l_clk), .clk_sel(adc_r1_mode & dac_r1_mode), .clk_out(
```

Analog Devices Clock Divider with select

isnt_util_tdd_sync

Analog Devices tdd sync utility

inst ad reset

```
ad_rst inst_ad_reset (
    rst_async(~axi_aresetn),
    clk(d_clk),
    rstn(p_aresetn),
    rst(p_reset)
)
```

Analog Devices reset sync

inst_axilxbar

AXI Lite crossbar for ADC DMA, DAC DMA, and AD9361 control registers.