

### NUMBER AND BRIGHTNESS

Emmanuel MARGEAT

CNRS

Centre de Biochimie Structurale - Montpellier



#### Measuring oligomerization



# In an observation volume (« a pixel »), the fluorescence signal I is proportional to the number of fluorophores

$$n=6$$
 $\epsilon=1$ 
 $n=2$ 
 $\epsilon=3$ 

We define n=number of diffusing particles in the observation volume, and  $\epsilon$ =their molecular brightness

$$I = \varepsilon.n$$

In the « small ensemble » regime,  $\varepsilon$  and n are extracted from the fluctuation of I



## Measuring oligomerization













### Measuring oligomerization









Different  $\sigma$ 







$$\varepsilon = \frac{\sigma^2 - \langle I \rangle}{\langle I \rangle}$$

$$n = \frac{\left\langle I \right\rangle^2}{\sigma^2 - \left\langle I \right\rangle}$$

Change in the number of diffusing species (n) and their brightness ( $\epsilon$ )



#### Data acquisition I: FCS





- Obtain simultaneously n,  $\varepsilon$ ,  $t_d$  with great accuracy
- Time consuming (several seconds / pixel)
- Photobleaching is a big issue
- Difficult to obtain an image of n, ε,  $t_d$  (only a few points)



## Data acquisition II: N&B





- $lap{f L}$  Obtain an image of  $n \ \& \ arepsilon$
- Photobleaching is reduced
- Implemented on commercial CLSM

- Timing information (t<sub>D</sub>) is loss
- Necessary to have high speed scanning, photon counters preferred

# Principle of the N&B analysis

For a stack of k images, we define for each pixel!



$$F = \frac{\sum_{K} F(x, y)}{K}$$

$$\sigma_F^2 = \frac{\sum_{K} (F(x, y) - F)^2}{K}$$

Therefore we calculate: 
$$\frac{\sigma_F^2}{\left\langle F\right\rangle^2} = \frac{1}{\left\langle N\right\rangle} \Rightarrow \left\langle N\right\rangle = \frac{\left\langle F\right\rangle^2}{\sigma_F^2} \qquad \left\langle F\right\rangle = B\left\langle N\right\rangle \Rightarrow B = \frac{\sigma_F^2}{\left\langle F\right\rangle}$$

$$\langle F \rangle = B \langle N \rangle \Longrightarrow B = \frac{\sigma_F^2}{\langle F \rangle}$$

# Principe of the N&B analysis

#### Contributions to the variance

Fluctuations of the number of particles

$$\sigma_n^2 = \varepsilon^2 n$$

Fluctuations due to detector noise

$$\sigma_d^2 = \varepsilon n$$

n = true number $\varepsilon = \text{true brightness}$ 

Total variance of the signal

$$\sigma^2 = \sigma_n^2 + \sigma_d^2$$

$$B = \frac{\sigma_F^2}{\langle F \rangle} = \frac{\varepsilon^2 n + \varepsilon n}{\varepsilon n} = 1 + \varepsilon$$

$$\langle N \rangle = \frac{\langle F \rangle^2}{\sigma_E^2} = \frac{\varepsilon^2 n^2}{\varepsilon^2 n + \varepsilon n} = \frac{\varepsilon n}{\varepsilon + 1}$$

$$\varepsilon = \frac{\sigma_F^2 - \langle F \rangle}{\langle F \rangle}$$

$$n = \frac{\left\langle F \right\rangle^2}{\sigma_F^2 - \left\langle F \right\rangle}$$

If the molecules are immobile, only the detector noise contributes to the variance (ie  $\sigma^2=\epsilon n$ ). Thus, n cannot be calculated, and B=1

## N&B data representation



### N&B: Experimental considerations

#### Imaging system

- → In principle, any microscope with laser scanning can be used
  - Sensitivity
  - Photon counting detectors
  - Fast scanning

#### In the lab we use a semi-commercial system

- Femtosecond IR laser for 2-photon excitation
  - Low background
  - No out-of focus photobleaching
  - Small observation volume
  - Multicolor excitation (cross-correlation)
- Inverted microscope, high NA objective
- Detector ISS ALBA: scanning mirrors et 2 channel detection

#### Fast Scanning



Time

#### Slow scanning



Increasing the dwell time decreases the amplitude of the fluctuation.



### Summary of N&B

- N&B distinguishes between number of molecules and molecular brightness in the same pixel
- The acquisition for the N&B can be done with a commercial Laser Scanning Microscope (LSM) and the same data used for RICS can be used to map N and B.
- The Immobile fraction can be separated since it has a Brightness value =1
- The N&B analysis of paxillin at adhesions shows large aggregates of protein during disassembly.

#### N&B: en résumé

- N&B allows the quantification of the number of molecules, and their brightness, pixel by pixel
  - → An « image » of N and B is obtained
- Aquisition can be done with a conventional LSCLM
- An immobile fraction can be detected (B=1)
- Sample photobleaching can be reduced as compared to FCS, but temporal information is lost.



- Fluctuations in N are needed !!!
  - Low concentration ( $< \mu M$ )
  - Low background noise
  - Low photobleaching

Expression of Gfpmut2 under control of an inducible promoter in *B. Subtillis* 





Correlation between the expression determined by 2P-microscopy and ensemble fluorescence

Expression of Gfpmut3 under control of gapB promoter in B. Subtillis



Expression of Gfpmut3 and CFP under control of gapB promoter in B. Subtillis















#### mGluR and GABA<sub>B</sub> oligomerization











 $\rightarrow$  Compare with the value of a single Alexa488



#### mGluR and GABA<sub>B</sub> oligomerization





 $\rightarrow$  mGlu2 appears mainly as a dimer



 $\rightarrow$  GABA<sub>B</sub> forms higher order oligomers



#### Spatial distribution









→ regions of higher intensity represent higher expression, not clusterisation



#### Ligand effects on mgluR oligomerization





 $\rightarrow$  mGlu2 makes dimers of dimers in the presence of agonists <u>and</u> antagonists