Lycée Berthollet MPSI1 2022-23

DS5 de mathématiques, partie raisonnement, mardi 13 décembre 2022 (1h25)

Les documents, téléphones portables, ordinateurs et calculatrices sont interdits.

N.B.1: le sujet s'arrête à la fin de la première page (Q35 incluse). Suite à poursuivre à la maison.

N.B.2: remplacer le mot "est" de la question 24 par le mot "induit".

Etude d'une fonction

- **21.** Etudier sur $]0, +\infty[$ la fonction $f: x \mapsto x^{\frac{1}{x}}$. On précisera le domaine de définition, les limites aux bornes, les extrema et asymptotes éventuels.
- **22.** Montrer que l'on peut prolonger par continuité f en 0. Ce prolongement sera encore noté f. Préciser la valeur de f en 0.
- **23.** La fonction f est-elle dérivable en 0?
- **24.** Montrer que f est une bijection de]0,e] sur $]0,e^{1/e}]$.
- **25.** La fonction réciproque de f est-elle continue, dérivable sur $[0, e^{1/e}]$?

Etude d'une suite

Soit x un réel fixé strictement positif. On pose $\Phi_x(t) = x^t$, et on définit la suite $(t_n)_n$ de la manière suivante

$$t_0 = 1$$
, $t_{n+1} = \Phi_x(t_n)$ pour $n \in \mathbb{N}$.

Lorsque la suite $(t_n)_n$ est convergente on note h(x) sa limite dans \mathbb{R} .

- **26.** Si x = 1, que peut-on dire sur la convergence de la suite $(t_n)_n$?
- **27.** Justifier que si h(x) existe (c'est-à-dire la suite $(t_n)_n$ est convergente) alors $h(x) = \Phi_x(h(x))$, en déduire dans ce cas que f(h(x)) = x.

On va traiter le cas x > 1:

- **28.** Montrer que pour $x \in]1, +\infty[$, la fonction $\Phi_x : t \mapsto x^t$ est strictement croissante sur \mathbb{R} .
- **29.** Soit x > 1, montrer par récurrence : $\forall n \in \mathbb{N}, t_n < t_{n+1}$.
- **30.** On suppose que $x \in]1, e^{1/e}]$, montrer par récurrence : $\forall n \in \mathbb{N}, t_n \leq e$. En déduire que dans ce cas la suite $(t_n)_n$ est convergente.
- **31.** On suppose $x > e^{1/e}$, et on veut montrer que la suite $(t_n)_n$ a pour limite $+\infty$. On pourra supposer que la suite est convergente vers h(x) et en utilisant les questions **27.** et **21.** aboutir à une contradiction. Conclure.

On va étudier le cas $x \in]0,1[$:

- **32.** Montrer que pour $x \in]0,1[$, la fonction $\Phi_x: t \mapsto x^t$ est décroissante sur \mathbb{R} . Que peut-on en déduire sur la monotonie de $\Phi_x \circ \Phi_x$ sur \mathbb{R} ?
- **33.** Pour 0 < x < 1, montrer par récurrence que : $\forall n \in \mathbb{N}, t_{2n+1} < t_{2n}$.
- **34.** On suppose que 0 < x < 1. Montrer par récurrence que la suite extraite $(t_{2n})_n$ est décroissante, puis que la suite extraite $(t_{2n+1})_n$ est croissante.
- **35.** En déduire qu'elles sont toutes les deux convergentes, et que leur limite ne peut être qu'un point fixe de $\Phi_x \circ \Phi_x$ dans [0,1], c'est-à-dire une solution de $(\Phi_x \circ \Phi_x)(t) = t$ dans [0,1].

Détermination des points fixes

La suite du problème consiste à déterminer l'ensemble des points fixes de $\Phi_x \circ \Phi_x$ dans [0,1]. Pour cela on pose $g(t) = (\Phi_x \circ \Phi_x)(t) - t$, on admettra le résultat suivant :

$$g'(t) = \Phi'_x(t). (\Phi'_x \circ \Phi_x)(t) - 1 = (\ln x)^2. \Phi_x(t). (\Phi_x \circ \Phi_x)(t) - 1$$

36. Dans le cas $x \in [\frac{1}{e}, 1[$ on admet que l'on obtient le tableau suivant :

Préciser le signe de g'(0). Quelle est la monotonie de g sur [0,1]? Montrer que $\Phi_x \circ \Phi_x$ n'a qu'un seul point fixe dans [0,1]. Conclusion pour la convergence de la suite $(t_n)_n$.

37. Dans le cas $x \in]0, \frac{1}{e}[$ on admet que l'on a le tableau suivant :

où α est l'unique racine de g'' sur]0,1[et $\beta=g'(\alpha)=-\mathrm{e}^{-1}\ln x-1.$ Préciser le signe de β lorsque $x\in[\mathrm{e}^{-\mathrm{e}},\frac{1}{\mathrm{e}}[$. Que peut-on en déduire sur la convergence de la suite $(t_n)_n$ lorsque $x\in[\mathrm{e}^{-\mathrm{e}},\frac{1}{\mathrm{e}}[$?

38. On suppose à partir de maintenant et jusqu'à la fin que $x \in]0, e^{-e}[$. Et on admet que le tableau de variation est de la forme suivante :

avec $\gamma < \alpha < \delta$ et $g'(\gamma) = g'(\delta) = 0$. On admet aussi que Φ_x possède un unique point fixe dans $]0, \frac{1}{e}[$ que l'on note p, donc $\Phi_x(p) = p$. Montrer que $g'(p) = (\ln p)^2 - 1$ et en déduire le signe de g'(p). En déduire que $\Phi_x \circ \Phi_x$ possède trois points fixes p_1, p, p_2 vérifiant $0 < p_1 < \gamma < p < \delta < p_2 < 1$.

- **39.** Montrer que pour tout $n \in \mathbb{N}$ on a $p_2 \leqslant t_{2n}$, et que la suite $(t_{2n})_n$ est convergente vers p_2 .
- **40.** On veut montrer que $\forall n \in \mathbb{N}$ on a $t_{2n+1} \leq p$. Pour cela, on supposera qu'il existe $n_0 \in \mathbb{N}$ tel que $p < t_{2n_0+1}$ et on aboutira à une contradiction. Que peut-on conclure sur la convergence de $(t_{2n+1})_n$? La suite $(t_n)_n$ est-elle convergente?