DISCLAIMER:

Due to parsing issues in Microsoft PowerPoint and Adobe Acrobat, certain parts of texts and images are inconsistently formatted in the PDF copy of this document.

For a more pleasant viewing experience, please view the PowerPoint copy of this document with the following fonts installed:

- Gotham
- Mercury

Reduction of Logistics and Packaging Costs

STEELCASE MANUFACTURING MALAYSIA (SMM) X SUTD

CAPSTONE 7 | PROJ 61

- 1. Team Introduction
- 2. Company Overview
- 3. Initial Problem Statement
- 4. Needs & Requirements
- 5. Precedent Analysis
- 6. Direction
- 7. Exploration
- 8. Task Allocation
- 9. Timeline

1. Team Introduction

our **TEAM**

ESD PILLAR Engineering Systems Design

Yuan Nan

Hoang Nam

Tirtho

Basil

EPD PILLAR Engineering Product Design

Hui Wen

Herlinda

Xiao Qi

2. Company Overview

Steelcase

Global Leader in
Office Furniture,
Interior Architecture
&
Space Solutions
for Offices, Hospitals
and Classrooms

Inspired by Innovative Research in Workspace Design

Sustainability is one of their Key Goals

Products CHAIR PRODUCTS

Products

3. Initial Problem Statement

Stakeholders

Company

Steelcase

Faisal Shaikh (Plant manager)
Ed Vanderbilt (Leader, Innovation)
Inderjit Singh (Director)
Guat Mei – (Operation Engineering)
Celine – (Purchasing)
Suresh – (Material Management)
Zainurian – (Material Management)
Aditya Bajpai – (Procurement)
Ganeson Ramiah – (Procurement)
Tsok Yee (Import/Export Compliance)
Carey Cheong (Order fulfillment)
York Ping (Operation Engineering)

Workers

Supplier

Problem Statement

SHIPMENT

Analysis of Inbound/Outbound Shipment Data

Increase Packing Efficiency

Optimise Inbound and Outbound Shipment Operations

Accommodate
Different Product Lines

Leverage any Tax Laws to Reduce SMM's Overhead Cost.

Improve Ergonomics of Package Handling

Quantify the Resource Savings

Goals / Deliverables

PACKAGING SHIPMENT ▽ 20% ▽ 5%

BONUS:

Problem Approach

Warehouse **Cost Reduction**

Optimise Product Quantity

Predict Distribution of **Product Demand**

Demand Data, Need:

Warehousing Cost, Backorder Cost.

Etc.

Combine/Redesign **Shipping Routes**

Travelling Time, Shipment Size, **Product Type**

Optimization

Optimise Product Placement

Warehouse Layout

Demand Data, Need:

Current Warehouse

Layout

Problem Approach

Material Reduction

Decrease Amount of Material Used through Redesign

New Material

Use Material with Higher Durability

Use Material Less
Energy-Intensive in the
Production/ Recycling
Stage of its Life Cycle

Decrease Time Needed to Assemble the Packaging

4. Needs & Requirements

Needs & Requirements

TEST REQUIREMENTS

Drop Test

Weather Simulation

PACKAGING REQUIREMENTS

Assembly of Packaging: Time-efficient & Easy

Ergonomics of the Packing Process

MATERIALS REQUIREMENTS

Eco-Friendly

Cost-Effective

Protects Product

Readily Available in Malaysia by Local Suppliers

Constraints

PACKAGING OPTIMISATION CONSTRAINTS

Unable to Do Frequent Site
Visits to Confirm
Hypothesis/ Test Out
Designs Proposed

Limited **Data**Regarding Disassembly
of Products for
Packaging Purposes

Product Structure,
Design & Material
Breakdown

5. Precedent Analysis

Preliminary Data Summary

Outbound data

- Records for SCAP Asian outbound air & ocean shipment information from 2016-2017.
- Volume shipment report from 2015-2017.

Inbound data

 Monthly Asian and European inbound shipment report from 2014 to 2018.

Products and Mechanisms packaging

- Pictures of the current products.
- Pictures of how the components (mechanisms & arms) of the products are packaged.

Preliminary Data Summary

Packaging costs

 The packaging cost break down for each type of the products from Mar 2017 to Jan 2018.

Container utilization

 The packaging space utilization data for different products.

Loading report summary

- Records of container utilization based on country(2016-2018).
- Container utilization ratio comparison.
- Factor of low utilization.

Analysis On Current Packaging

Limited Reusability of Cardboard Boxes

Labour Intensive to Fold & Pack Each Product Individually

Low Packing Efficiency in Current Methods (~28.6%) Mechanisms Take Up Bulk of Their Total Packaging Cost

6. Direction

Direction

LOAD

Optimising Container Space

Reduce No. of Containers Used & Trips Needed **OPTIMISATION**

Improve Packing Efficiency

PACKAGING

Redesign Packaging

Increase Lifespan of Packaging

7. Exploration

Material Exploration

Mushroom packaging, Fungal Mycelium (by Ecovative)

Lactips

AgroResin

Image Credits:
Evocative / UNEP under Fair Use (Education)
Lactips under Fair Use (Education)
Grenidea Technologies Pte Ltd. under Fair Use (Education)

Design Exploration

Protective slots (space wastage)

Design Exploration

The Rapid Packaging Container

Tessellating Shapes Packaging

Space Optimization Exploration

PROPOSED ALGORITHM:

Largest Area First-Fit (LAFF)

Algorithm Input

Algorithm Output

Number of different-sized Box

Width of box

Height of box

Depth of box

Used **Space**

Wasted **Space**

M.Zahid Gʻrbʻz, Selim Akyokuş, İbrahim Emiroğlu, Aysun Gʻran. (2009). An Efficient Algorithm for 3D Rectangular Box Packing. *Applied Automatic Systems: Proceedings of Selected AAS 2009 Papers* N. Chernov, Yu. Stoyan, T. Romanova. (2010). Mathematical model and efficient algorithms for object packing problem. *Computational Geometry*

8. Task Allocation

Task Allocation

	В	Т	HN	YN
Data aggregation and cleaning				
Exploratory analysis				
Statistical analysis				
Hypothesis testing				
Construction of optimization model				
Model validation				
Results validation				
Sensitivity & Trade-Off analysis				

B: Basil Yap

T: Tirtho Sarker

HN: **Hoang Nam**

YN: Yuan Nan

Task Allocation

	Ι	HW	XQ
Analysis of current packaging and space usage			
Background research			
Research evaluation and analysis			
Materials sourcing			
Design documentation			
Conceptualization of ideas			
Concept models			
Prototyping and testing			
Test results analysis			
Evaluation of prototype			

H: Herlinda

HW: Hui Wen

XQ: Xiao Qi

9. Timeline

Timeline

WK 1		Wł	< 2		Wł	ζ 3		Wk	4		Wł	⟨ 5		
	Meeting the team Understanding the problem			Backg	eting w/ SM round resea problem		Explor Specif	round resear atory analy y requiremants fy constrain	analyse info given by SMM			2 nd meeting with SMM Further proscoping Final design direction		

Timeline

Timeline

WK	9		WK	10		W	K 11		W	K 12		W	K 13		
		Concept models			Concept models			Design documentation			Finalising concepts			REVI	EW 2
								Mate	rial sourcin	Team	У				
								Trade-off Analysis							

Q&A

- 1. Team Introduction
- 2. Company Overview
- 3. Initial Problem Statement
- 4. Needs & Requirements
- 5. Precedent Analysis
- 6. Direction
- 7. Exploration
- 8. <u>Task Allocation</u>
- 9. <u>Timeline</u>

