- 2.14 For each $n \in \mathbb{Z}_+$, let $B_n = \{n, n+1, n+2, \ldots\}$, and consider the collection $\mathcal{B} = \{B_n | n \in \mathbb{Z}_+\}$
 - (a) Show that \mathcal{B} is a basis for a topology on \mathbb{Z}_+ Let $x \in \mathbb{Z}_+$. Notice, $x \in B_x := \{x, x+1, x+2, \cdots\}$ Thus, every point in \mathbb{Z}_+ is contained in a basis element. Let $a, b \in \mathbb{Z}, B_a := \{a, a+1, a+2, \cdots\}$ and $B_b := \{b, b+1, b+2, \cdots\}$ with $y \in B_a \cup B_b$. Suppose m = max(a, b). Then, $y \in B_m \subset B_a \cup B_b$ Thus, every point in the intersection of two basis elements is contained in a basis element contained in that intersection. Therefore, \mathcal{B} is a basis on \mathbb{Z}_+
 - (b) Show that the topology on X generated by \mathcal{B} is not Hausdorff. Let X be a set with \mathcal{B} as a basis for X and let $x, y \in X$. Without loss of generality, assume x < y with basis elements of the form $B_x := \{x, \dots, y, y+1, y+2, \dots\}$ and $B_y := \{y, y+1, y+2, \dots\}$ Notice, $B_x \cap B_y = B_y$. Thus, the basis are not disjoint. Therefore, the topology generated by \mathcal{B} is not Hausdorff.
 - (c) Show that the sequence (2,4,6,8,...) converges to every point in \mathbb{Z}_+ with the topology generated by \mathcal{B} Let $j \in \mathbb{Z}_+$. Suppose U is a neighborhood of j. Suppose k = 2j. Then for all elements of $(2,4,6,c...) \geq 2j$, are in U. Therefore, the sequence $(2,4,6,\cdots)$ converges to every point in \mathbb{Z}_+ with the topology generate by \mathcal{B} .
 - (d) Prove that every injective sequence converges to every point in Z₊ with the topology generated by B
 Let s be an injective sequence and z ∈ Z₊. Notice, that s = B_z. Thus, the every injective sequence converges to every point in Z₊.
 [To be honest, I have no idea what this is asking of me.]
- 2.15 Determine the set of limit points of [0,1] in the finite complement topology on \mathbb{R} Notice, [0,1] is an infinite subset of \mathbb{R} . Let $x \in \mathbb{R}$ and U be a neighborhood of x. Then $[0,1] \cap U \neq \emptyset$ and is infinite. Thus, the limit points of [0,1] is every point.
- 2.17 (a) Let $\mathcal{B} = \{[a,b) \subset \mathbb{R} | a,b \in \mathbb{Q} \text{ and } a < b\}$. Show that \mathcal{B} is a basis for a topology on \mathbb{R} . The resulting topology is called the rational lower limit topology and is denoted \mathbb{R}_{rl} .

Let $x \in \mathbb{R}$. Suppose $B \in \mathcal{B}$ such that $x \in B := [x - \epsilon, x + \epsilon)$ for some $\epsilon > 0$. Thus, every point in \mathbb{Z}_+ is contained in a basis element.

Let $B_1 = [a, b)$ and $B_2 = [c, d)$ such that $x \in B_1 \cap B_2$. Let x = max(a, c) and y = min(b, d). Notice, $x \in B = [x, y) \subset B_1 \cap B_2$.

Thus, every point in the intersection of two basis elements is contained in a basis element contained in that intersection.

Therefore, \mathcal{B} is a basis

(b) Determine the closures of $A = (0, \sqrt{2})$ and $B = (\sqrt{2}, 3)$ in \mathbb{R}_l and in \mathbb{R}_{rl} Lower Limit:

$$Cl(A) = [0, \sqrt{2})$$

$$Cl(B) = [\sqrt{2}, 3)$$

Rational Lower Limit:

$$Cl(A) = [0, \sqrt{2}]$$

$$Cl(B) = [\sqrt{2}, 3)$$

2.21 Determine the set of limit points of the set

$$S = \left\{ \left(x, \sin\left(\frac{1}{x}\right) \right) \in \mathbb{R}^2 | 0 < x \le 1 \right\}$$

as a subset of \mathbb{R}^2 in the standard topology. (The closure of S in the plane is known as the topologist's sine curve.

Let $y \in [-1.1]$ and p = (0, y). Notice, for every neighborhood $U - \{p\}$ contain points in S. Thus, every point in S is a limit point.

2.27 Determine $\partial([0,1])$ in \mathbb{R} with the finite complement topology. Justify your result. Let A = [0,1]. We then have $Cl(A) = \mathbb{R}$ and $Int(A) = \emptyset$. Hence, $\partial A = Cl(A) - Int(A) = \mathbb{R}$.

Therefore, $\partial([0,1])$ in \mathbb{R} with the finite complement topology is \mathbb{R}

- 2.28 Prove Theorem 2.15: Let A be a subset of a topological space X.
 - (a) ∂A is closed. Observe,

$$\partial A = Cl(A) - Int(A)$$

= $Cl(A) \cap (X - Int(A))$

Notice, Cl(A) is closed and the complement of Int(A) is closed.

Thus, as intersections of closed sets are closed, we have ∂A is closed.

(b) $\partial A = \operatorname{Cl}(A) \cap \operatorname{Cl}(X - A)$ Observe,

$$\partial A = Cl(A) - Int(A)$$

= $Cl(A) \cap (X - Int(A))$
= $Cl(A) \cap Cl(X - A)$

Thus, $\partial A = \operatorname{Cl}(A) \cap \operatorname{Cl}(X - A)$

- (c) $\partial A \cap \operatorname{In} t(A) = \emptyset$ As $\partial A = Cl(A) - Int(A)$, we have already removed all elements of Int(A). Therefore, $\partial A \cap \operatorname{In} t(A) = \emptyset$
- (d) $\partial A \cup Int(A) = Cl(A)$ Notice,

$$\partial A \cup Int(A) = (Cl(A) - Int(A))UInt(A)$$

= $Cl(A)$

Therefore, $\partial A \cup \operatorname{Int}(A) = \operatorname{Cl}(A)$

(e) $\partial A \subset A$ if and only if A is closed. Let $\partial A \subset A$. Then, A must be closed as $\partial A = Cl(A) - Int(A)$

Let A be closed. Then, we have that Cl(A) is closed. Thus, $\partial A = Cl(A) - Int(A)$. Hence, $\partial A \subset A$.

Therefore, $\partial A \subset A$ if and only if A is closed.

(f) $\partial A \cap A = \emptyset$ if and only if A is open.

Let $\partial A \cap A = \emptyset$. By way of contradiction, assume A is not open. Then, there exists a $x \in A$ such that no open set containing x is a subset of A. This is a contradiction as Int(A) is open and $Int(A) \subset A$.

Thus, A must be open.

Let A be open. Then,

$$\partial A \cap A = (Cl(A) - Int(A)) \cap A$$
$$= (Cl(A) \cap A^{\complement}) \cap A$$
$$= Cl(A) \cap (A^{\complement} \cap A)$$
$$= Cl(A) \cap \varnothing$$
$$= \varnothing$$

(g) $\partial A = \emptyset$ if and only if A is both open and closed.

Let $\partial A = \emptyset$. Notice, $Int(A) \subset A \subset Cl(A)$. From this we have Int(A) = A = Cl(A). Which shows that A is both opened and closed by each part of the equality, respectively.

Let A be opened and closed. Then, we have A = Int(A) and A = Cl(A). Notice, $Cl(A) = Int(A) \cup \partial A \Rightarrow Cl(A) = A \cup \partial A$

And then, $A = A \cup \partial A$ and $Int(A) \cap \partial A = \emptyset$. So, $Int(A) = \partial A = \emptyset$.

Thus, $A = A \cup \partial A$ and $A \cap \partial A = \emptyset$.

Therefore, $\partial A = \emptyset$