機器學習作業五 報告

學號	系級	姓名
B03902015	資工三	簡瑋德

- 1. 請問「softmax」適不適合作為本次作業的「output layer」? 寫出你最後選擇的「output layer」並說明理由。
 - 模型的結構

大王川河中		
Layer	Parameters	
Embedding	<pre>input_dim = 3000, output_dim = 50, input_length = 50</pre>	
LSTM	units = 128, dropout = 0.2, recurrent_dropout = 0.2	
Dropout	rate = 0.2	
Dense	units = 64	
Dropout	rate = 0.2	
Activation	activtion = "relu"	
Dense	units = 38, activation = "sigmoid"	

- 「softmax」不適合作為本次作業的「output layer」
- 我選擇「sigmoid」作為最後一層的「activation function」,原因如下
 - o 我希望「output layer」的38個「unit」,分別代表該文章與各個「tag」的相關程度
 - 。 使用「sigmoid」的話,相當於用一個「0-1」之間的數值來描述相關的程度,「1」表示非常相關,反之「0」表示無關。一篇文章可能和多個「tag」相關,即「multilabel」,因此「output layer」中可能有多個大於「0.5」的數值
 - o 如果使用「softmax」,38個數值的總和會等於一,且每一個數值都不為負,分別代表該文章對應各個「tag」的機率,其中一個「tag」機率高,就表示其他「tag」機率必須較低。這種激活函數,比較適合「one-label」的資料,即各個「tag」間彼此互斥,每筆資料只會和其中一個「tag」相關

2. 請設計實驗驗證上述推論。

參數

epochs	batch_size	loss	optimizer	threshold
25	32	"binary_crossentropy"	"adam"	0.5

• 實驗結果 (Validation on 20% of Training Data)

Activation	Validation Loss	Validation F1 Score
Sigmoid	0.1242	0.2906
Softmax	0.1145	0.0662

- 觀察和解釋
 - o 不論使用「sigmoid」或是「softmax」,「loss」都有降下來
 - o 但是,「softmax」的「f1score」卻很慘,因為當答案有多個「tag」的時候,模型最多也只能猜出其中一個,甚至可能彼此競爭,最後四不像

3. 請試著分析「tags」的分布情況(數量)。

● 表格

Tag	數量	Tag	數量	Tag	數量
FICTION	1672	SPECULATIVE- FICTION	1448	NOVEL	992
SCIENCE-FICTION	959	CHILDREN'S- LITERATURE	777	FANTASY	773
MYSTERY	642	CRIME-FICTION	368	SUSPENSE	318
YOUNG-ADULT- LITERATURE	288	THRILLER	243	HISTORICAL-NOVEL	222
HORROR	192	DETECTIVE-FICTION	178	ROMANCE-NOVEL	157
ROMANCE- NOVEL	137	ADVENTURE-NOVEL	109	NON-FICTION	102
SPY-FICTION	75	ALTERNATE- HISTORY	72	COMEDY	59
AUTOBIOGRAPHY	51	BIOGRAPHY	42	SHORT-STORY	41
HISTORY	40	COMIC-NOVEL	37	SATIRE	35
MEMOIR	35	AUTOBIOGRAPHICAL NOVEL	31	WAR-NOVEL	31
DYSTOPIA	30	NOVELLA	29	HUMOUR	18
TECHNO- THRILLER	18	HIGH-FANTASY	15	APOCALYPTIC- AND-POST- APOCALYPTIC- FICTION	24
GOTHIC-FICTION	12	UTOPIAN-AND- DYSTOPIAN-FICTION	11		

• 觀察與發現

- o 各類「tag」的數量非常不平均,從十幾個到一千六百個都有
- o 另外,在「test」的結果中,數量少的「tag」幾乎都沒有被抓出來
- o 有嘗試對數量少的「tag」做「up-sampling」,但「kaggle public score」反而下降

4. 本次作業中使用何種方式得到「word embedding」?請簡單描述做法。

- GloVe Embedding中維度等於50的版本,包含了40萬個詞彙
- 詞向量的訓練文庫包含「維基百科」和「Linguistic Data Consortium」提供的「Gigaword」 資料庫
- 簡單來說,「GloVe」結合了「共現矩陣(如LSA)」和「局部語境窗口(如word2vec)」的優點, 綜合運用「全局」和「局部」的統計訊息來生成詞向量。前者可以看作「count-base」的方 法,後者則是「prediction-base」的版本,GloVe則是各取所長,嘗試建構更強大的詞向量。
- 至於做法,可以試著從「GloVe」的損失函數來理解

$$\circ \ J = \sum_{i,j=1}^{|V|} f(\mathrm{c}_{ij}) (\mathrm{w}_i \cdot ilde{\mathrm{w}}_j^- + b_i + ilde{b_j} - \log \mathrm{c}_{ij})^2$$

- o \mathbf{w}_i 和 b_i 是當前詞 t_i 的詞向量和偏置, $\tilde{\mathbf{w}}_j$ 和 \tilde{b}_j 則是情境詞 t_j 的輔助向量和輔助偏置,而 c_i 則是從共現矩陣中得到的數值,代表當前詞 t_i 和情境詞 t_j 的相關程度,不會隨著訓練更新
- o f()是加權函數,大於某個閥值就是1,如下圖所示

- 。 從損失函數中,可以發現它確實用到了全局資訊,即共現矩陣的 c_{ij} ,同時,又和「word2vec」同樣使用詞向量與情境輔助向量的內積作為指標
- 向量、偏置的更新方法就是普通的「gradient descent」,並採用「adgrad」來解決「不同的
 参數,更新、收斂的速度不一定一樣」的問題

5. 試比較「bag of word」和「RNN」何者在本次作業中效果較好

• 「Term Fequency Matrix」進「DNN」的模型

Layer	Parameters	
Input	shape = (3000,)	
Dense	units = 1024	
Dropout	rate = 0.2	
Activation	activtion = "relu"	
Dense	units = 512	
Dropout	rate = 0.2	
Activation	activtion = "relu"	
Dense	units = 256	
Dropout	rate = 0.2	
Activation	activtion = "relu"	
Dense	units = 38, activation = "sigmoid"	

「Embedding」搭配「CNN」的模型 - 使用「Functional API」,考慮「Bigram」、
 「Trigram」和「4-gram」

Layer	Parameters	Name	Input
Input	shape = (3000,)	main_input	-
Embedding	<pre>input_dim = 3000, output_dim = 50, input_length = 50</pre>	emb	main_input
Dropout	rate = 0.2	emb_dropout	emb
Conv1D	<pre>units = 128, filters = 2, activation = "relu", strides = 1</pre>	conv1	emb_drop
GlobalMaxPooling1D()	-	maxp1	conv1
Conv1D	units = 128, filters = 3, activation = "relu", strides = 1	conv2	emb_drop
GlobalMaxPooling1D()	-	maxp2	conv2
Conv1D	units = 128, filters = 4, activation = "relu", strides = 1	conv3	emb_drop
GlobalMaxPooling1D()	-	maxp3	conv3
concatenate	[maxp1, maxp2, maxp3]	merged	-
Dense	units = 256	dense	merged
Dropout	rate = 0.4	dropout	dense
Activation	activtion = "relu"	activation	dropout
Dense	units = 38, activation = "sigmoid"	main_output	activation

參數

epochs	batch_size	loss	optimizer	threshold
25	32	"binary_crossentropy"	"adam"	0.5

• 實驗結果 (Validation on 20% of Training Data)

Model	Validation Loss	Validation F1 Score
RNN-Problem1	0.1242	0.2906
DNN	0.1641	0.2588
CNN	0.1209	0.3079

• 觀察與發現

- o 「Term Fequency Matrix」接「DNN」的模型很直關,但參數數量很多,相當吃記憶體,「Validation」的表現反而不如原本的「RNN」,也許是因為參數需要再作調整
- o 「CNN」的版本表現最好,共用一個「embedding」矩陣,並交給三種「n-gram」的「CNN」,最後再將結果「concatenate」起來,進分類器判斷。