Valid Expressions

```
S \rightarrow HELP
      | PRINT
      | LEVELS AEXP1
      | LIST
      | SUBSET_DATAFRAME AEXP2
      | REMOVE
      | ELEMENT_NAMES
      A
      | EXP
      | READ
      | WRITE
      | SAVE
      | LOOP
      | IF
      | WHILE
      | REPEAT
V \rightarrow
            VAR V'
V' \rightarrow V_1 \mid [V_2]
V_1 \rightarrow
            ASSIGN V11
            | eps
            | $SLD
V_{11} \rightarrow EXP \mid | FUNC
SLD \rightarrow VAR SLD_1
SLD1 \rightarrow eps \mid SD11
V_2 \rightarrow
            -EE2
             | SE2
             SM1
             | S2
             EX2
```

$$AEXP1 \rightarrow ASSIGN VECTOR \mid eps$$

 $AEXP2 \rightarrow ASSIGN VAR \mid eps$

Help

```
HELP → ?CHAINE | help(H1

H1 → CHAINE)

|"H2

H2 → CHAINE") | *")
```

Basic arithmetic operations

```
E \rightarrow E E' | VAR | NUMERIC

E' \rightarrow + T | - T | T

T \rightarrow T T' | F | VAR | NUMERIC

T' \rightarrow *F | /F | ^F | %% F

F \rightarrow (E) | D
```

Basic arithmetic functions

```
\begin{tabular}{ll} FUNCTION & \to & mode (VAR) \\ & & cat (VAR) \\ & & length (VAR) \\ \end{tabular}
```

```
log2(VAR) # logarithms base 2 of x
                  log10(VAR) # logaritms base 10 of x
                  exp(VAR) # Exponential of x
                  cos(VAR) # Cosine of x
                  sin(VAR) # Sine of x
                  tan(VAR) #Tangent of x
                  acos(VAR) # arc-cosine of x
                  asin(VAR) # arc-sine of x
                  atan(VAR) #arc-tangent of x
                  abs(VAR) # absolute value of x
                  sqrt(VAR) # square root of x
STAT_FUNCTION →
                       max (VAR)
                        min (VAR)
                        range (VAR)
                        length (VAR)
                        sum (VAR)
                        prod(VAR)
                        mean (VAR)
                        sd(VAR) # Standard deviation
                        var (VAR)
                        sort(VAR)
```

Assigning values to variables

```
VARS \rightarrow VAR VAR2
VAR2 \rightarrow eps|, VAR
VAR \rightarrow CHARACTER COMB
```

```
| .VAR3 
VAR3 \rightarrow _COMP | CHARACTER COMB
```

$$\mathbf{COMB}$$
 → . COMB1
| CHARACTER COMB1
| D COMB1
| eps

COMB1 → eps | COMB

$A \rightarrow RENAME ASSIGN VECTOR$

RSEQ

| CREATE_LIST

```
PRINT → print(VAR)

LIST → ls()

REMOVE → rm(VARS)
```

Basic data types

```
BASIC TYPE \rightarrow
                         LOGICAL
                         NUMERIC
                         STRING
                         | COMPLEX
COMPLEX \rightarrow Di
LOGICAL \rightarrow
                   T LOGICAL3 | F LOGICAL2
LOGICAL2→ eps | ALSE
LOGICAL3→ eps | RUE
NUMERIC → INTEGER | DOUBLE
INTEGER → D INTEGER2 | NEG_INT | POS_INT
INTEGER2 \rightarrow L | e dL
NEG INT \rightarrow - D INTEGER2
POS INT \rightarrow +D INTEGER2
\mathbf{d} \rightarrow 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
\mathbf{D} \rightarrow \mathrm{d}\,\mathrm{D}2
D2 \rightarrow D \mid eps
DOUBLE \rightarrow .D | D DOUBLE2
                   | POS_DOUBLE
                   NEG_DOUBLE
DOUBLE2 \rightarrow eps \mid .D \mid .Ded
POS_DOUBLE \rightarrow +D DOUBLE2 \mid +.D
NEG_DOUBLE \rightarrow -D DOUBLE2 \mid -.D
```

```
STRING → "CHAINE"

| 'CHAINE'

CHAINE → CHARACTER CHAINE

| CHARACTER\ CHAINE2

| CHARACTER

CHAINE2 → eps | 'CHAINE | \"CHAINE
```

CHARACTER \rightarrow a | b | c ... | z | A | ... | Z

CONVERT \rightarrow as.AS

```
AS → numeric(VAR)
| character(VAR)
| logical(VAR)
| factor(VAR)
| dataframe(VAR)
/*
```

* Conversion d'un string to numeric est possible : returns NA (not available)

*/

Vectors

```
c(VECTOR2)
VECTOR \rightarrow
VECTOR2 →
               CL
                | CN VECTOR 4
                | CS VECTOR 3
                | CV
                | CNAMED
VECTOR3 \rightarrow eps
          |,VECTOR33
VECTOR 33 → CN VECTOR333
                | CL
VECTOR 333 \rightarrow CL
               | eps
VECTOR 4 \rightarrow
               eps
               ,CL
               VAR = CNAMED_T
\overline{\mathbf{CNAMED}} \rightarrow
CNAMED T \rightarrow NA CNAMED NA
               CNAMED_N
                | CNAMED L
               | CNAMED _S
CNAMED_NA →
                     eps | , CNAMED_NLS
CNAMED NLS →
                     CNAMED N2
                     CNAMED_L2
```

```
CNAMED_S2
```

CNAMED_N → | NUMERIC CNAMED_N2

CNAMED_N2 → eps

,CNAMED_N

CNAMED_L → | LOGICAL CNAMED_L2

CNAMED_L2 → eps

,CNAMED_L

CNAMED_S → | STRING, CNAMED_S2

 $\frac{\text{CNAMED_S2}}{\text{eps} \mid \text{, CNAMED_S}}$

 $CV \rightarrow VECTOR CV_2$

 $CV2 \rightarrow eps$ |,CV|

 $CL \rightarrow LOGICAL CL2$

 $CL2 \rightarrow eps$ |,CL

 $CN \rightarrow NUMERIC CN_2$

 $CN2 \rightarrow eps$ | ,CN

 $CS \rightarrow STRING CS2$

 $CS2 \rightarrow eps$ |, CS

ELEMENT_NAMES → names(VAR)

AFTER_VAR2 \rightarrow D AFTER_VAR3

$$\begin{array}{c} & \mid c(D,D) \\ & \mid STRING \\ AFTER_VAR3 \rightarrow & eps \\ \mid :D \end{array}$$

$$\begin{array}{ccc} EE2 \rightarrow & D \\ & | c(D,D) \\ & | (D:D) \\ \\ SE2 \rightarrow & VAR \ LOG_OP \ BASIC_TYPE \\ & | !CHECK_NA \\ & | \ CHECK_NA \\ \end{array}$$

 $RC \rightarrow VARS \mid VECTORS$

Matrices

RENAME → rownames(VAR) | colnames(VAR)

TRANSPOSE \rightarrow t(VAR)

 $DIMENSION \rightarrow ncol(VAR)$

| nrow(VAR) | dim(VAR)

 $SM1 \rightarrow SMD \mid SMP \mid SMV$

 $SMP \rightarrow , SMP2$

 $SMP2 \rightarrow D SMP3 \mid VECTOR$

 $SMP3 \rightarrow eps \mid :D$

 $SMD \rightarrow D, SMD2$

 $SMD2 \rightarrow D : D SMD3 | eps : D$

 $SMD_3 \rightarrow eps \mid ,SMD_4$

 $SMD4 \rightarrow eps \mid D:D$

SMV → VECTOR SMV2

 $SMV2 \rightarrow ,VECTOR \mid eps$

 $S2 \rightarrow S4 \mid S3 \mid S5$

 $S_3 \rightarrow STRING S_{33}$, STRING |

 $S_{33} \rightarrow$, | ,STRING | ,D

 $S4 \rightarrow D$, S44

 $S44 \rightarrow D|eps|STRING$

 $S_5 \rightarrow VAR[S_{55}]$

 $\mathrm{S}_{55} \rightarrow \mathrm{VAR}\ \mathrm{LOG_OP}\ \mathrm{BASIC_TYPE},\ \mathrm{S}_{555} \mid \mathrm{,VAR}\ \mathrm{LOG_OP}\ \mathrm{BASIC_TYPE}$

 $S_{555} \rightarrow eps \mid \text{,VAR LOG_OP_BASIC_TYPE}$

 $EX2 \rightarrow -EX3$,-D

 $EX_3 \rightarrow D EX_{33} |, D$

 $EX33 \rightarrow D$,

SPEC_MATRIX_FUNCTION \rightarrow rowSums(VAR)

| colSums(VAR)

| colMeans(VAR)

|rowMeans(VAR)

| apply(VAR,APP)

 $APP \rightarrow 1,STAT_FUNCTION$ | 2,STAT_FUNCTION

Factors

CREATE_FACTOR \rightarrow factor(FP)

FP → VECTOR VAR VAR, levels = VECTOR

FP 2 \rightarrow eps | ,levels = VECTOR

INDIVID_PER_LEVEL → summary(VAR)

LEVELS \rightarrow levels(VAR)

SPEC_FACTOR_FUNC → tapply(VAR,VAR,STAT_FUNCTION) | table(TP)

 $TP \rightarrow VAR TP2$ $TP2 \rightarrow eps \mid ,VAR$

Data frames

CREATE_DATAFRAME → data.frame(COLS)

COLS \rightarrow COL COLS2

```
COLS2 \rightarrow eps | ,COLS

COL \rightarrow VAR=COL2

COL2 \rightarrow VECTOR | VAR | BASIC_TYPE
```

/* You can use t() as same as Matrix to transpose a data frame*/

Sequences

```
\begin{array}{c|c} \textbf{SEQ} \rightarrow & | \operatorname{seq}(\operatorname{SEQP}) \\ & | \operatorname{rep}(\operatorname{D,D}) \\ & | \operatorname{sequence}(\operatorname{c}(\operatorname{CN})) \\ \\ & \operatorname{SEQP} \rightarrow \operatorname{SEQ\_PARAM} \mid \operatorname{D} \operatorname{SEQD} \\ \\ & \operatorname{SEQ\_PARAM} \rightarrow & \operatorname{length=D} \\ & | \operatorname{label} = \operatorname{c}(\operatorname{CS}) \\ & | \operatorname{from} = \operatorname{D} \\ & | \operatorname{to} = \operatorname{D} \\ \end{array}
```

SEQD \rightarrow :D | ,D,D.D

```
SEQR \rightarrow eps
```

Random sequences:

RSEQ → PFUNC(DISTRIB_PARAMS)

$$\begin{array}{ccc} \mathbf{P} \rightarrow & \mathbf{r} \\ & \mid \mathbf{d} \\ & \mid \mathbf{p} \\ & \mid \mathbf{q} \end{array}$$

FUNC \rightarrow norm | exp | gamma | nbinom | unif | geom | cauchy | pois | f | t | logis

Lists

 $CREATE_LIST \rightarrow list(COLS)$

/* element_names and length already exists */

 $\operatorname{SL2} \to \operatorname{STRING}]] \mid \operatorname{D}\operatorname{SLD}$

 $SLD \rightarrow]] SLD2$

SLD 2 \rightarrow eps | [D

Importing Data

READ → read.READ2

READ2 → delim(file.choose(STRING)) |csv(file.choose(STRING)) | csv2(file.choose(STRING))

Exporting Data

```
WRITE \rightarrow data(STRING)
```

| write WRITE2

WRITE2 → table(VAR,PARAMS) | csv(VAR,PARAMS) | csv2(VAR,PARAMS)

```
SAVE \rightarrow saveRDS(VAR,STRING)
```

| readRDS(STRING)

| load(STRING)

save SAVE2

```
SAVE2 → (VARS,file=STRING) | .image(file=STRING)

PARAMS → file = STRING

| sep = "SEP"

| row.names = RCN

| col.names = RCN
```

RCN
$$\rightarrow$$
 LOGICAL | NA
SEP \rightarrow , | ; | \t

Function

```
SS \rightarrow S SS1

SS1 \rightarrow eps \mid ,SS

FUNC \rightarrow AFFECT function(VARS) \{ SS \}
```

Loops

```
FOR → for ( VAR in VECTOR) { SS }
WHILE → while(VAR LOG_OP BASIC_TYPE){ SS }
REPEAT → repeat { SS }
```

Condition

```
IF \rightarrow if(VAR LOG_OP BASIC_TYPE) { SS } IF1 IF2
IF1 \rightarrow eps | else if (VAR LOG_OP BASIC_TYPE) { SS }
```

IF2 \rightarrow eps | else { SS }