

# **SIMMU** 동양미래대학교 전문기술 석사과정

클라우드와 네트워크 보안

**Dongyang Mirae University** 



• 접근제어 : 보안 그룹과 네트워크 ACL

- Access Control
- Routing Control



● 접근 제어 (Access Control):

필요한 트래픽만 허용하고, 불필요한 트래픽은 차단

온프레미스: 방화벽(firewall)을 통해 접근을 제어

VPC: 보안그룹(Security Group)과 네트워크 ACL(Network Access Control List)이 접근을 제어





### ● 접근 제어 (Access Control) 방식 비교 :

Whitelist 방식 vs. Blacklist 방식



허용 규칙이 있으면 통과, 그 외의 트래픽은 차단



거부 규칙이 있으면 차단, 그 외의 트래픽은 통과



● 접근 제어 (Access Control) 방식 비교: Whitelist 방식 vs. Blacklist 방식

### **Hybrid**





Whitelist 기반 결합방식

- 모든 거부 규칙을 최하단에 놓고, 허용과 거부 규칙 혼합

Blacklist 기반 결합방식

- 모든 허용 규칙을 최하단에 놓고, 허용과 거부 규칙 혼합



● 접근 제어 (Access Control) 방식 비교: Whitelist 방식 vs. Blacklist 방식

Hybrid - 규칙(rule) 적용 순서에 따라 허용 가능 트래픽 범위가 달라짐





결합방식(Hybrid)은 규칙의 적용 순서가 중요하므로, 규칙마다 규칙번호(Rule Number)가 존재

- 트래픽이 들어오면 낮은 번호의 규칙부터 적용 됨
- 온프레미스 방화벽에서는 규칙번호를 시퀀스(SEQ)라고 표현







● AWS에서의 접근 제어 (Access Control)

보안그룹(SG: Security Group) - Whitelist 방식 적용

네트워크 ACL - Hybrid 방식 적용

SG는 규칙 번호를 사용하지 않음 (규칙 순서가 무의미 함) NACL은 규칙 번호를 사용 (규칙 순서가 중요)



## •보안 그룹 (Security Group)





### ● 보안그룹(SG : Security Group) – Whitelist 방식 적용

- ENI(Elastic Network Interface)로 들어오거나 나가는 트래픽 접근을 제어
  - ❖ SG의 연결 대상은 ENI이며, 수명 주기 동안 다른 ENI에 연결 가능
  - ❖ SG는 어떤 ENI에도 연결하지 않은 상태로 존재 가능함
  - ❖ 반대로 컴퓨팅 ENI는 반드시 SG에 연결되어 있어야 함
  - ❖ 1개 SG를 여러 ENI에 연결 가능(1:N)
  - ❖ 여러 SG를 1개의 ENI에 연결 가능(N:1) 하나의 서비스에 여러 역할 부여
  - ❖ VPC가 생성되면 기본 SG도 함께 생성(기본 SG 수와 VPC 수는 동일함)





### ● 보안그룹(SG : Security Group) – Whitelist 방식 적용

• ENI(Elastic Network Interface)로 들어오거나 나가는 트래픽 접근을 제어



- ❖ SG(B)는 기본 ENI와 추가 ENI에 연결됨 (1:N 연결)
- ❖ 기본 ENI에 SG(A)와 SG(B)가 연결됨 (N:1 연결)
- ❖ SG는 화이트리스트 방식으로 규칙간 순서가 중용하지 않음
- ✓ ENI에 SG(A)나 SG(B) 중 것을 먼저 연결해도 허용 규칙을 순서 없이 적용





### ● 보안그룹(SG: Security Group) – 규칙 형태

• 온프레미스 방화벽 규칙

| Allow/Deny | Source       | Destination  | Protocol | Port Range |
|------------|--------------|--------------|----------|------------|
| Allow      | 160.83.25.60 | 92.75.100.28 | TCP      | 80         |
| Allow      | 92.75.100.28 | 160.83.25.60 | TCP      | 22         |

- 출발지 IP, 목적지 IP, 프로토콜 유형, 포트번호를 저장
- 유입되는 트래픽이 각 규칙과 일치하는 경우 허용하거나 차단함







- 보안그룹(SG: Security Group) 규칙 형태
  - AWS 보안 그룹 : 연결 대상은 ENI
    - ❖ ENI로 들어오거나 나가는 트래픽을 통제
    - ❖ Inbound / Outbound 트래픽 규칙을 개별관리함
    - ❖ Inbound 트래픽의 목적지 IP, Outbound 트래픽의 발신지 IP 관리 불필요
    - ✓ 일반적으로 온프레미스 환경의 방화벽은 Inbound / Outbound 트래픽 규칙을 별도 관리하지 않고, 소스와 대상 모두 규칙 하나로 입력 관리





● 보안그룹(SG: Security Group) - Inbound / Outbound 규칙 개별 관리함









### 보안그룹(SG : Security Group)

#### 클라이언트 수가 많아지면?





## aws

### ● 보안그룹(SG : Security Group) 의도하지 않은 접속 허용



- ❖ 컴퓨팅 ENI는 반드시 SG에 연결해야 함
- ❖ 인스턴스 생성 단계에서 ENI 기본 장착하므로 SG 역시 인스턴스 생성시 함께 선택 연결하도록 설계됨
- ✓ 불필요한 SG는 인스턴스에서 반드시 해제

## 네트워크 ACL





### 네트워크 ACL – 서브넷을 통과하는 트래픽 접근을 제어

- ❖ NACL의 연결 대상은 서브넷이며, 수명 주기 동안 다른 서브넷에 연결 가능
- ❖ NACL 는 어떤 서브넷에도 연결하지 않은 상태로 존재 가능함
- ❖ 반대로 **서브넷은** 반드시 NACL에 연결되어 있어야 함
- ❖ VPC가 생성되면 기본 NACL도 함께 생성(기본 NACL 수와 VPC 수는 동일함)
- ❖ 서브넷을 생성하면 무조건 기본 NACL에 자동 연결 된다.







❖ VPC 생성시에 기본 NACL(default)도 함께 생성됨



❖ VPC에 서브넷을 만들면 기본 NACL에 자동 연결됨



- ❖ 새로운 NACL을 만들어 subnet 1에 연결하면, 기존 연결은 자동으로 끊어짐
- ❖ 서브넷은 단 하나의 NACL만 연결 가능
- VPC

  Default NACL

  NACL

  Subnet 2

  Create

  Create
- ❖ subnet 1에 연결된 NACL을 해제하면 기본 NACK과 자동으로 연결됨
- ❖ 서브넷은 반드시 하나의 NACL과 연결 되어야 함

- NACL 규칙 형태 화이트 리스트 기반 결합 제어
  - NACL은 허용과 거부 규칙을 결합한 화이트 리스트 기반 결합 제어 방식
     차단 규칙도 적용 가능
  - 결합 방식을 사용하므로 허용/거부 규칙이 나눠져 있음
  - 규칙의 순서가 중요하므로 규칙 번호 순서에 따른 트래픽 접근 제어

#### 인바운드 규칙

| 규칙번호 | 유형       | 프로토콜   | 포트범위 | 소스              | 허용/거부 |
|------|----------|--------|------|-----------------|-------|
| 100  | HTTP(80) | TCP(6) | 80   | 160.83.25.60/32 | Allow |
| *    | 모든 트래픽   | 모두     | 모두   | 0.0.0.0/0       | Deny  |

NACL 최하단에는 삭제 불가능한 모든 차단 규칙이 적용되어 있음





### NACL 규칙 형태

#### 인바운드 규칙

| 규칙번호 | 유형       | 프로토콜   | 포트범위 | 소스              | 허용/거부 |
|------|----------|--------|------|-----------------|-------|
| 100  | HTTP(80) | TCP(6) | 80   | 160.83.25.60/32 | Allow |
| 200  | 모든 트래픽   | 모두     | 모두   | 0.0.0.0/0       | Allow |
| *    | 모든 트래픽   | 모두     | 모두   | 0.0.0.0/0       | Deny  |

- NACL 규칙 적용 순서는 [ 100 -> 200 -> \* ] 순서 임
- 모든 거부 규칙 상단에 모두 허용 규칙을 적용하면, 모든 거부 규칙은 무용지물이 되고 블랙리스트 기반 결합방식으로 활용 가능





### ● 접근제어 방식 비교 : stateful vs. stateledd



- ① 클라이언트(160.83.25.60)는 운영체제에서 할당받은 포트(49200)로 서버(92.75.100.28)의 포트(80)으로 접속
- ② 서버는 접속한 포트(80)으로 클라이언트 포트(49200)에 접속하여 새션을 형성하고 데이터 송수신



### ● 접근제어 방식 비교 : stateful vs. stateless



- ❖ 클라이언트가 운영체제에서 할당받은 포트(49200)는 동적 포트(Dynamic Port) 영역
- ❖ 동적 포트(Dynamic Port) : 49152 ~16384
- ❖ 클라언트 포트 번호가 범위 내에서 변하므로 규칙 설정이 어려움





동양미래대학교

### 보안 그룹(SG): stateful



- ① 클라이언트가 서버에 데이터 요청
- ② 서버에 연결된 SG가 요청 트래픽을 확인해 허용 여부를 결정
- ③ 접속을 요청한 클라이언트의 IP와 포트를 저장
- ④ 서버는 다시 클라이언트에 응답
- ⑤ 이때 SG는 (3)에 저장한 IP와 포트로 접속 허용





### 네트워크 ACL : stateless



❖ 네트워크 ACL에서는 Inbound, Outbound 규칙 모두 저장되어 있어야 함





### NACL 규칙 - Outbound 트래픽 허용 규칙

#### 아웃바운드 규칙

| 규칙번호 | 유형         | 프로토콜        | 포트범위 | 소스              | 허용/거부 |
|------|------------|-------------|------|-----------------|-------|
| 100  | 사용자 지정 TCP | 49152-65535 | 80   | 160.83.25.60/32 | Allow |
| *    | 모든 트래픽     | 모두          | 모두   | 0.0.0.0/0       | Deny  |

- 운영체제 종류마다 동적 포트 범위가 다름
- 모든 포트 허용을 권장





### NACL 규칙 – Outbound 트래픽 허용 규칙

#### 아웃바운드 규칙 - Whitelist 방식 지정 예

| 규칙번호 | 유형         | 프로토콜        | 포트범위 | 소스              | 허용/거부 |
|------|------------|-------------|------|-----------------|-------|
| 100  | 사용자 지정 TCP | 49152-65535 | 80   | 160.83.25.60/32 | Allow |
| *    | 모든 트래픽     | 모두          | 모두   | 0.0.0.0/0       | Deny  |

?

- Inbound 규칙에 허용한 IP를 Outbound 규칙에도 적용해야 함
- 이때 클라이언트의 동적 포트를 모두 허용해야 함
- SG에 신규 허용 규칙을 등록할 때마다 NACL에도 함께 등록 해야함







#### [NACL - 블랙리스트 기반 관리]

- ❖ 서브넷의 인스턴스가 공통으로 차단할 트래픽은 NACL에 적용
- ❖ 그 밖의 모든 트래픽은 NACL에서 허용

#### [SG - 화이트리스트 기반 제어]

❖ 개별 인스턴스에 대한 접근 제어는 SG로 관리

|                | Inbo           | und      |               |
|----------------|----------------|----------|---------------|
| Allow/<br>Deny | Source         | Protocol | Port<br>Range |
| Deny           | 13.112.5.42/32 | All      | All           |
| Allow          | 0.0.0.0/0      | All      | All           |
| Deny           | 0.0.0.0/0      | All      | All           |

| Allow/<br>Deny | Source    | Protocol | Port<br>Range |
|----------------|-----------|----------|---------------|
| Allow          | 0.0.0.0/0 | All      | All           |
| Deny           | 0.0.0.0/0 | All      | All           |
|                |           |          |               |





### ● VPC 네트워킹

- ❖ 온프레미스와 최대한 유사하면서도 쉽게 관리할 수 있는 네트워크 플랫폼
- ❖ 계정 전용 가상 클라우드 공간







### ● VPC 네트워킹

- ❖ 온프레미스와 최대한 유사하면서도 쉽게 관리할 수 있는 네트워크 플랫폼
- ❖ 계정 전용 가상 클라우드 공간



#### [VPC 네트워킹 필수 서비스]

- ❖ VPC상에 존재하는 모든 서비스
- ❖ 인스턴스나 RDS 처럼 가상머신에 ENI를 연결해서 통신하는 서비스
- ❖ VPC 상에 존재하는 모든 서비스는 ENI가 반드시 연결되어 있어야 함
- ❖ 인스턴스가 서브넷 공간에 놓여 있는 모습 자체가 ENI 존재를 표현



### ● VPC 네트워킹

- ❖ 온프레미스와 최대한 유사하면서도 쉽게 관리할 수 있는 네트워크 플랫폼
- ❖ 계정 전용 가상 클라우드 공간









### ● VPC 네트워킹

- ❖ 온프레미스와 최대한 유사하면서도 쉽게 관리할 수 있는 네트워크 플랫폼
- ❖ 계정 전용 가상 클라우드 공간









### ● VPC 네트워킹

- ❖ 온프레미스와 최대한 유사하면서도 쉽게 관리할 수 있는 네트워크 플랫폼
- ❖ 계정 전용 가상 클라우드 공간



#### [VPC 네트워킹 기본 규칙]

- ❖ 보안그룹(SG)을 반드시 수반하는 네트워크 인터페이스가 있다
  - 보안 그룹에 따라 컴퓨팅 ENI와 라우팅 ENI로 분류
- ❖ **서브넷**이 있어야 그 안에 네트워크 인터페이스를 생성 가능
- ❖ VPC 생성되어야 서브넷을 생성 가능
- ❖ 서브넷에는 무조건 **라우팅 테이블**과 네트워크 ACL이 연결됨



### ● 탄력적 네트워크 인터페이스 (ENI : Elastic network Interface)

- ❖ 온프레미스의 NIC(Network Interface Card)에 상응하는 가상 장치
- ❖ VPC의 네트워킹은 반드시 ENI를 기반으로 함
- ❖ ENI는 서브넷에 생성하므로, 최소 1개의 Private IP 주소 소유
- ❖ 서브넷 CIDR 블록 범위 내에서 Private IP를 직접 지정하거나 자동 할당이 가능
- ❖ ENI는 VPC 서비스에 연결된 상태로 존재해야 함







### ● 탄력적 네트워크 인터페이스 (ENI) 유형

- ❖ ENI에 연결된 서비스 종류
  - 컴퓨팅 ENI: 데이터 처리가 주 역할인 서비스에 연결된 ENI
    - instance, Lambda, EFS
    - 애플리케이션 실행, 컴퓨팅, 스토리지 등 데이터 가공과 저장이 주 역할
  - 라우팅 ENI: 트래픽 전송이 주 역할인 서비스에 연결된 ENI
    - NAT Gateway, 전송 게이트웨이와 같은 네트워크 디바이스
    - 트래픽 전송이 주 역할





### ● 탄력적 네트워크 인터페이스 (ENI) 유형









| 구성요소                           | 역할          | Parent  | 연결 대상               | 비고                       |
|--------------------------------|-------------|---------|---------------------|--------------------------|
| ENI(Elastic Network Interface) | 컴퓨팅(트래픽 전달) | Subnet  | 인스턴스 또는 VPC 서비스     |                          |
| EIP(Elastic IP Address)        | 컴퓨팅(트래픽 전달) | Region  | [기본, 보조] Private IP | ENI가 장착된 Private IP에 연결됨 |
| 인스턴스                           | 컴퓨팅(트래픽 생성) | AZ, VPC | <del>-</del>        |                          |







| 구성요소        | 역할        | Parent | 연결 대상  | 비고                      |
|-------------|-----------|--------|--------|-------------------------|
| NAT Gateway | 연결(경로 제어) | Subnet | -      | 라우팅 ENI 사용 서비스로 SG사용 안함 |
| NACL        | 연결(접근 제어) | VPC    | subnet |                         |
| 보안그룹(SG)    | 연결(접근 제어) | VPC    | ENI    |                         |







| 구성요소      | 역할        | Parent | 연결 대상  | 비고                      |
|-----------|-----------|--------|--------|-------------------------|
| 라우팅 테이블   | 연결(경로 제어) | VPC    | subnet | 라우팅 ENI 사용 서비스로 SG사용 안함 |
| 인터넷 게이트웨이 | 연결(경로 제어) | Region | VPC    |                         |
| 보안그룹(SG)  | 연결(접근 제어) | VPC    | ENI    |                         |







| 구성요소     | 역할        | Parent | 연결 대상            | 비고                 |
|----------|-----------|--------|------------------|--------------------|
| ELB(ALB) | 연결(분산 제어) | VPC    | -                |                    |
| ELB(NLB) | 연결(분산 제어) | Region | Endpoint Service | ENI 연결 가능(고정 node) |
|          |           |        |                  |                    |





### ALB와 NLB

| Domain Name              | ALB              | NLB                       | CLB              | GWLB  |  |  |
|--------------------------|------------------|---------------------------|------------------|-------|--|--|
| 가용영역 선택                  | 최소 2개            | 최소 1개                     |                  |       |  |  |
| 가용영역별<br>선택 가능한 Subnet 수 |                  | 1개 (가용 영역별 1개의 노드만 생성 가능) |                  |       |  |  |
| 가용영역 범위                  | 추가, 변경, 삭제<br>가능 | 추가만 가능                    | 추가, 변경, 삭제<br>가능 | 변경 불가 |  |  |
| 노드에 EIP<br>연결 가능         | 불가               | 가능                        | 불가               | 불가    |  |  |







### ALB와 NLB







- ALB 생성시 2개의 가용영역을 선택(2a, 2b)
  - ALB에 대상이 없는 대상그룹(target group)을 연결
- 2 ALB는 노드를 모든 가용영역에 생성하지 않고, 랜덤하게 한곳에 만 생성 (예: 가용영역 2b에 생성)
- 로드밸런싱 대상 인스턴스가 가용영역 2a에 등록되면
  - 가용영역 2a에 노드를 추가 생성함
  - 기존 대상 인스탄스가 중지되면, 노드를 제거하기도 함
  - ❖ ALB는 노드를 가변 적으로 운영함

ALB는 노드에 고정 public IP(EIP)를 할당하지 않고 자동할당 public IP를 할당함





### ALB와 NLB



- NLB 생성시 2개의 가용영역을 선택(2a, 2b)
  - ALB에 대상이 없는 대상그룹(target group)을 연결
- NLB는 로드밸런싱 대상의 유무와 상관없이 모든 가용영역에 노 드를 생성함

NLB는 노드에 고정 public IP(EIP)를 할당함

