Lecture Notes for **Machine Learning in Python**

Professor Eric Larson Introduction, Syllabus, Data Types

Class Logistics and Agenda

- Agenda:
 - Introductions
 - Syllabus and Course Overview
 - What is Machine Learning?
 - Types of Data
 - Numpy/Pandas Demo
- My approach to this course:
 - Programming
 - Math
 - Applications and Analytics

Introductions & Course Syllabus

Richard Feynman @ProfFeynman · 12h Don't just teach your students to read.

- Teach them to question what they read, what they study.
- . Teach them to doubt.
- Teach them to think.
- Teach them to make mistakes and learn from them.
- Teach them how to understand something.
- . Teach them how to teach others.

Richard Feynman @ProfFeynman · 21h You cannot get educated by this selfpropagating system in which people study to pass exams, and teach others to pass exams, but nobody knows anything.

You learn something by doing it yourself, by asking questions, by thinking, and by experimenting.

Introductions

- Me
 - Eric 👍
 - Dr. Larson
 - Prof. Larson de
 - Other
- You
 - Name
 - Where you grew up
 - Department
 - Grad/Undergrad
 - Something true or false

Choices:

High School

College Job

ML Instructor

Marvel

Kids

Limited Introduction because of Hybrid Class

FAQ

- Text:
 - Recommended: Python Machine Learning, Raschka & Mirjalili, Second edition
- Use Canvas for posted course material
- Prerequisites:
 - Linear algebra, calculus (multivariate)
 - Basic statistics and probability
 - Basic python programming
- Version of python: 3.X
 - Install through Anaconda
 - Use conda environments
 - JupyterLab (or notebook)
- Most Used Libraries: Numpy, Pandas, Scikit-Learn, Matplotlib, Keras with Tensorflow

Canvas Syllabus

- Lab Assignments
- Grading Rubrics
- Participation
- Course Schedule
- Flipped Assignments
- Difference between 5000 and 7000

Other topics

- Due to the pandemic: Participation is graded via the quizzes!
- Other topics specific to pandemic:
 - Attendance (ingress/egress, wipe down surfaces, do NOT congregate at doors)
 - Zoom etiquette (chat/video)
 - Flipped assignments
 - Social distancing

https://advances.sciencemag.org/content/early/2020/08/07/sciadv.abd3083

Another view of the data

only deals with droplet transmisssion, not aerosol

https://advances.sciencemag.org/content/early/2020/08/07/sciadv.abd3083

What we cover in this course, by assignment

- Lab One: Visualize data and extract some features
- Lab Two: Analyze Images, Use dimensionality Reduction
- Lab Three: Program Logistic Regression in style of Sci-kit Learn
- Lab Four: Program NN Backpropagation from Scratch, implement Adaptive Gradient Techniques
 - Use given dataset for this lab
- Lab Five: Classify Images with Convolutional Networks
- Lab Six: Classify Text with Recurrent Neural Networks

All Assignments posted on Canvas, with Rubric Everything is a team assignment except quizzes

Is this plagiarism in this class?

- Copying code/text from another source without citing it
 - A. Yes, plagiarism!
 - B. No, its fine!
- Copying code/text from another source, citing at the end of the assignment in a blanket statment (but not making it clear which part of the assignment was from another source)?
 - A. Yes, plagiarism!
 - B. No, its fine!
- Copying code, citing the source directly next to the code, and commenting on what parts were changed?
 - A. Yes, plagiarism!
 - B. No, its fine!
- Copying text directly and citing the source with the text, but not placing the text in quotes.
 - A. Yes, plagiarism!
 - B. No, its fine!

Machine Learning Overview

What is Machine Learning?

Machine learning is a type of artificial intelligence (AI) that provides computers with the ability to learn without being explicitly programmed. **Machine learning** focuses on the development of computer programs that can change when exposed to new data.

What is machine learning? - Definition from WhatIs.com whatis.techtarget.com/definition/machine-learning

About this result • Feedback

Beware of this definition:

- full of imprecise, loaded words:
 - intelligence, learning
- ignores social structures, ethics, deployment,
 and that all results are interpretted by a human

Machine Learning

≧

Prediction Methods

- Use some variables to predict unknown or future values of other variables
- Description Methods
 - Find human-interpretable patterns that describe the data.

Data Mining

Classification

Regression

- Deviation Detection
- Clustering
- Association Rule Discovery
- Sequential Pattern Discovery

section 1, manipulated from Tan et al. Introduction to Data Mining

Problem Types in Machine Learning

Classification and Regression

Supervised Learning Model

- Training Instances: Features + Labels
- Find a model mapping class from values of features.
- Goal: Assign class to previously unseen instances

Example Classification: Malware

- Classify files as malware based on size and naming.
- Approach:
 - Use already classified malware files
 - Must translate name to set of features.
 - {malware, not malware} decision forms the class attribute
 - Collect various malware examples and a number of safe files, providing labels for each and a set of features

Training Set

TID	Name	Size	Class
1	erte.dll	916 b	not
2	fufu.bin	1M	yes
3	exe.exe	1G	not
4	ex.py	113 b	not

Unknown

TID	TID Name Siz	
1	asdf.dll	11b

Example Regression: Housing Price

- Predict a value of a given continuous valued variable based on the values of other variables
- Examples:
 - Predicting sales amounts of new product based on advertising expenditure.
 - Predicting wind velocities as a function of temperature, humidity, air pressure, etc.
 - Predicting House Sales

Training Set

TI	# Rms	Sq Ft	Zip	Price
1	2	1125	74012	150K
2	2	2525	75155	200k
3	10	4678	90210	3M
4	4	2678	75154	350k

Unknown

TI	# Rms	Sq Ft	Zip
1	2	2200	75115

Example Classifying: Objects in Images

Image Net:

- 14 million images
- 200 Labeled Categories
- 1000 Location Labels

Attributes:

Images

Self Test

- A. Classification
 - **B.** Regression
 - **C. Not Machine Learning**
- Dividing up customers by potential profitability?
- Extracting frequency of sound?

Types of Data and Categorization

Steve Fawley
@stevehasnoweave

My psych professor asked if we'd heard of Pavlov. I said "it rings a bell." No one laughed, I'm too witty for this class.

Table Data

 Table Data: Collection of data instances and their features

Python: Pandas Dataframe

R: Data.frame

Matlab: Table

 C++: Trick Question everything is an array Objects, records, records, rows points, samples, cases, entities, Instances

Attributes, columns, variables, fields, characteristics, Features

TID	Pregnant	ВМІ	Age	Diabetes
1	Υ	33.6	41-50	positive
2	Ν	26.6	31-40	negative
3	Υ	23.3	31-40	positive
4	Ν	28.1	21-30	negative
5	Ν	43.1	31-40	positive
6	Υ	25.6	21-30	negative
7	Υ	31.0	21-30	positive
8	Υ	35.3	21-30	negative
9	Ν	30.5	51-60	positive
10	Υ	37.6	51-60	positive

Feature Type Representation

	Attribute	Representation Transformation	Comments
ete	Nominal	Permutation of values only. one hot encoding or hash function	If all employee ID numbers were reassigned, would it make any difference?
Discrete	Ordinal	Order must be preserved new_value = f(old_value) where f is a monotonic function. integer	An attribute encompassing the notion of good, better best can be represented equally well by the values {1, 2, 3} or by { 0.5, 1, 10}.
Continuous	Interval	<pre>new_value =f(old_value) + b f is monotonic through origin float</pre>	Thus, the Fahrenheit and Celsius temperature scales differ in terms of where their zero value is and the size of a unit (degree).
Col	Ratio	<pre>new_value = f(old_value) f is monotonic through origin float</pre>	Length can be measured in meters or feet, but zero is zero

Self Test

- Are these A. ordinal, B. nominal, or C. binary?
 - military rank
 - ordinal
 - coat check number
 - nominal

Before Next Lecture

- Before next class:
 - install python on your laptop
 - install anaconda distribution of python
- Look at Python primer if you need review
 - I made ~4 hours of YouTube content…
 - https://www.youtube.com/playlist?
 list=PL7IPdRN5E0YKCnVI-fvx8j00CWVeGTsrV

Demo

If time:
Jupyter Notebooks

01_Numpy and Pandas Intro.ipynb

Lecture Notes for **Machine Learning in Python**

Professor Eric Larson Numpy, Pandas, Document Features

Professor Eric C. Larson

Class Logistics and Agenda

- Canvas? Anaconda Installs?
- Distance transfers?
- Agenda:
 - Numpy
 - Data Quality
 - Attributes Representation
 - documents
 - The Pandas eco-system
 - loading and manipulating attributes
- Needing some more help?
 - fast.ai has great, free resources

Demo

"Finish"
Jupyter Notebooks
and Numpy

01_Numpy and Pandas Intro.ipynb

Review of Feature Data

Data Quality Problems

- Missing
 - Easy to find, NaNs
- Duplicated
 - Easy to find, hard to verify
- Noise or Outlier
 - Hard to define
 - Hard to catch

Information is not collected (e.g., people decline to give their age and weight)

Features **not applicable** (e.g., annual income for children)

UCI ML Repository: 90% of repositories have missing data

TID	Hair Color	Height	Age	Arrested
1	Brown	5'2"	23	no
2	Hazel	1.5m	12	no
3	Bl	5	999	no
4	Brown	5'2"	23	no

Handling Issues with Data Quality

- Eliminate Instance or Feature
- Ignore the Missing Value During Analysis Replace with all possible values (talk about later)

Impute Missing Values How?

stats? mean median mode

Imputation

- When is it probably fine to impute missing data:
 - (A) When there is not much missing data
 - (B) When the missing feature is mostly predictable from another feature
 - (C) When there is not much missing data for each subgroup of the data
 - (D) When it is the class you want to predict

Split-Impute-Combine

TID	Pregnant	ВМІ	Age	Diabetes
1	Υ	33.6	41-50	positive
2	N	26.6	31-40	negative
3	Υ	23.3	?	positive
4	Ν	28.1	21-30	negative
5	N	43.1	31-40	positive
6	Υ	25.6	21-30	negative
7	Υ	31.0	21-30	positive
8	Υ	35.3	?	negative
9	N	30.5	51-60	positive
10	Υ	37.6	51-60	positive

split: pregnant

split: BMI > 32

TID	Pregnant	ВМІ	Age	Diabetes
1	Υ	>32	41-50	positive
8	Υ	>32	?	negative
10	Υ	>32	51-60	positive

Mode: none, can't impute

TID	Pregnant	ВМІ	Age	Diabetes
3	Υ	<32	?	positive
6	Y	<32	21-30	negative
7	Y	<32	21-30	positive

Mode: 21-30

K-Nearest Neighbors Imputation

TID	Pregnant	ВМІ	Age	Diabetes
1	Y	33.6	41-50	positive
2	N	26.6	31-40	negative
3	Υ	23.3	?	positive
4	?	28.1	21-30	negative
5	N	43.1	31-40	positive
6	Υ	25.6	21-30	negative
7	Υ	31.0	21-30	positive
8	Υ	35.3	?	negative
9	N	30.5	51-60	positive
10	Υ	37.6	51-60	positive

For K=3, find 3 closest neighbors

	TID	Pregnant	ВМІ	Age	Diabetes	Dist
→	3	Y	23.3	?	positive	0
	6	Υ	25.6	21-30	negative	(0+2.3+1)/3
	2	N	26.6	31-40	negative	(1+3.3+1)/3
	4	?	28.1	21-30	negative	(4.8+1)/2

How to calculate distance?

- Difference for valid features only
- May need to normalize ranges
- Or weight neighbors differently
- Or have min # of valid features
- Euclidean, city-block, etc.

Data Representation and Documents

Feature Type Representation Review

	Attribute	Representation Transformation	Comments
ete	Nominal	Any permutation of values one hot encoding	If all employee ID numbers were reassigned, would it make any difference?
Discrete	Ordinal	An order preserving change of values, i.e., new_value = f(old_value) where f is a monotonic function. integer	An attribute encompassing the notion of good, better best can be represented equally well by the values {1, 2, 3} or by { 0.5, 1, 10}.
Continuous	Interval	new_value =a * old_value + b where a and b are constants float	Thus, the Fahrenheit and Celsius temperature scales differ in terms of where their zero value is and the size of a unit (degree).
ŏ	Ratio	new_value = a * old_value float	Length can be measured in meters or feet.

Data Tables as Variable Representations

	TID	Pregnant	BMI	Age	Eye Color	Diabetes
	1	Y	33.6	41-50	brown	positive
$\frac{\mathbb{D}}{\leq}$	2	N	26.6	31-40	hazel	negative
ק	3	Y	23.3	31-40	blue	positive
	4	Ν	28.1	21-30	brown	inconclusive
	5	N	43.1	31-40	blue	positive
	6	Y	25.6	21-30	hazel	negative

Data Tables as Variable Representations

	TID	Pregnant	ВМІ	Age	Eye Color	Diabetes
	1	Y	33.6	41-50	brown	positive
<u>e</u>	2	N	26.6	31-40	hazel	negative
Table	3	Y	23.3	31-40	blue	positive
	4	N	28.1	21-30	brown	inconclusive
	5	N	43.1	31-40	blue	positive
	6	Y	25.6	21-30	hazel	negative
•	TID	Binary	Float	Ordinal	Object	Diabetes
Rep	1	1	33.6	2	hash(0)	1
	2	0	26.6	1	hash(1)	0
Ja	3	1	23.3	1	hash(2)	1

nternal Rep

	Dillary	riout	Oramai	Object	Diabetes
1	1	33.6	2	hash(0)	1
2	0	26.6	1	hash(1)	0
3	1	23.3	1	hash(2)	1
4	0	28.1	0	hash(0)	2
5	0	43.1	1	hash(2)	1
6	1	25.6	0	hash(1)	0

Bag of words model

TID	Pregnant	BMI Chart Notes Diabetes		Diabetes
1	Y	33.6	Complaints of fatigue wh	positive
2	N	26.6	Sleeplessness and some	negative
3	Y	23.3	First saw signs of rash o	positive
4	Ν	28.1	Came in to see Dr. Steve	inconclusive
5	N	43.1	First diagnosis for hospit	positive
6	Υ	25.6	N/A	negative

Bag of Words

Vocabulary

TID	Sleep	Fatigue	Weight	Rash	First	Sight
1	0	1	0	0	2	0
2	1	1	0	0 Imbor of	1	1 rences
3	1	1	0	2	1	1

Feature Hashing

what happens when we get more words?

TID	Slee	Fati	Wei	Ras	First	Sigh	Why	Fox	Bro	Lazy	Dog	Etc	Stev
1	0	1	0	0	2	0	0	0	0	1	0	2	0
2	1	1	0	0	1	1	0	0	4	0	1	3	0
3	1	1	0	2	1	1	1	0	1	0	0	1	0

or we could have a hashing function, h(x) = y

TID	h(x)=1	h(x)=2	h(x)=3	h(x)=4	h(x)=5	h(x)=6
1	0	1	0	1	2	0
2	1	1	4	0	2	1
3	2	1	1	2	1	1

multiple words mapped to one feature (want to minimize collisions or make collisions meaningful)

Term-Frequency, Inverse-Document-Frequency

Demo

Pandas and Imputation Scikit-Learn

Start the following:

03. Data Visualization.ipynb

Other Tutorials:

http://vimeo.com/59324550

http://pandas.pydata.org/pandas-docs/version/0.15.2/tutorials.html

For Next Lecture

- Before next class:
 - verify installation of seaborn, plotly, (and/or bokeh if you want)
 - look at pandas table data and additional tutorials
- Next Week: Data Visualization