Minimal Explanations for Unsatisfiability in Mission-Time Linear Temporal Logic (MLTL)

Your Name

September 4, 2025

Contents

1	Introduction	4
2	Background and Related Work	5
3	System Design and Implementation	6
4	Methodology: Minimal Explanations	7
5	Visualization and Human-Centered Design	8
6	Evaluation	9
7	Discussion	10
8	Conclusion and Future Work	11

List of Figures

List of Tables

Introduction

- Motivation: challenges in debugging MLTL specifications.
- Problem statement: unsatisfiable specifications are difficult to interpret.
- Thesis goals: create a tool that extracts unsat cores, adapts them to runtime verification, and presents minimal explanations.
- Contributions:
 - 1. Tool: MLTL Unsat Core Tool.
 - 2. Method: adaptation of unsat-core extraction to minimal variable+timestep explanations.
 - 3. HCI: visualization + user study on interpretability.
- Thesis structure overview.

Background and Related Work

- Mission-Time Linear Temporal Logic (MLTL).
- Unsatisfiable cores: SAT/SMT methods (QuickXplain, Z3, etc.).
- Runtime verification: goals and challenges.
- Visualization and HCI in formal methods tools.

System Design and Implementation

- Tool architecture: backend solver + frontend (React).
- Input format: traces and specifications.
- Workflow: trace \rightarrow solver \rightarrow unsat core.
- Example run with toy problem.

Methodology: Minimal Explanations

- Problem framing: minimal variables and timesteps.
- Adaptation of existing algorithms to runtime verification.
- Pseudocode for explanation extraction.
- Example walk-through: large trace with conflict at t = 51.

Visualization and Human-Centered Design

- Design goals: reduce cognitive overload, highlight key variables.
- Interface features: variable highlighting, timestep focus.
- Rationale for design choices.
- Screenshots/mockups.

Evaluation

- Study design: participants, tasks, measures.
- Pilot study results and refinements.
- Main study: results (quantitative and qualitative).
- Analysis of tool effectiveness.

Discussion

- Summary of findings.
- Lessons for runtime verification tools.
- Limitations of current approach.

Conclusion and Future Work

- Summary of contributions.
- Implications for verification and HCI.
- Directions for extending this work (scalability, industrial applications).

Bibliography