Homework #5

pn Junction Operation and Small Signal Model – <u>100 points</u> **DUE @ Beginning of Class: Thursday, October 12**

**Make sure to use the "Note" on page 251.

- 1) E-Book, problem 8.3 (12 points)
- 2) E-Book, problem 8.8, you can use the ideal diode equation (10 points)
- 3) E-Book, problem 8.10, you can approximate the current as $I = I_s e^{\frac{V_a}{V_t}}$ (16 points)
- 4) E-Book, problem 8.15, you can use the ideal diode equation (20 points)
- 5) E-Book, problem 8.28 (12 points)
- 6) E-Book, problem 8.37 (8 points)
- 7) E-Book, problem 8.42, (16 points)
- 8) E-Book, problem 1.38 (pg. 443) (6 points)

- 1) E-Book, problem 8.3 (12 points)
- 8.3 The doping concentrations in a GaAs pn junction are $N_d = 10^{16}$ cm⁻³ and $N_a = 4 \times 10^{16}$ cm⁻³. Find the minority carrier concentrations at the edges of the space charge region for (a) $V_a = 0.90$ V, (b) $V_a = 1.10$ V, and (c) $V_a = -0.95$ V.

- 2) E-Book, problem 8.8, you can use the ideal diode equation (10 points)
- 8.8 A one-sided p⁺n silicon diode has doping concentrations of $N_a = 5 \times 10^{17}$ cm⁻³ and $N_d = 8 \times 10^{15}$ cm⁻³. The minority carrier lifetimes are $\tau_{n0} = 10^{-7}$ s and $\tau_{p0} = 8 \times 10^{-8}$ s. The cross-sectional area is $A = 2 \times 10^{-4}$ cm². Calculate the (a) reverse-biased saturation current, and (b) the forward-bias current at (i) $V_a = 0.45$ V, (ii) $V_a = 0.55$ V, and (iii) $V_a = 0.65$ V.

3) E-Book, problem 8.10, you can approximate the current as $I = I_c e^{\frac{V_a}{V_t}}$ (16 points) **8.10** Fill in the missing data in the following table.

Case	$\underline{V_a}(V)$	$\underline{I}(mA)$	\underline{I}_{s} (mA)	$\underline{J_s}$ (mA/cm ²)	\underline{A} (cm ²)
1	0.65	0.50			2×10^{-4}
2	0.70		2×10^{-12}		1×10^{-3}
3		0.80		1×10^{-7}	1×10^{-4}
4	0.72	1.20		2×10^{-8}	

- 4) E-Book, problem 8.15, you can use the ideal diode equation (20 points)
- **8.15** A silicon pn junction with a cross-sectional area of 10^{-4} cm² has the following properties at T = 300 K:

n region	p region		
$N_d = 10^{17} \text{cm}^{-3}$	$N_a = 5 \times 10^{15} \text{cm}^{-3}$		
$\tau_{p0} = 10^{-7} \mathrm{s}$	$ au_{n0} = 10^{-6} \mathrm{s}$		
$\mu_n = 850 \text{ cm}^2/\text{V-s}$	$\mu_n = 1250 \text{ cm}^2/\text{V-s}$		
$\mu_p = 320 \text{ cm}^2/\text{V-s}$	$\mu_p = 420 \text{ cm}^2/\text{V-s}$		

(a) Sketch the thermal equilibrium energy-band diagram of the pn junction, including the values of the Fermi level with respect to the intrinsic level on each side of the junction. (b) Calculate the reverse-saturation current I_s and determine the forward-bias current I at a forward-bias voltage of 0.5 V. (c) Determine the ratio of hole current to total current at the space charge edge x_n .

- 5) E-Book, problem 8.28 (12 points)
- 8.28 Consider a silicon pn junction diode with an applied reverse-biased voltage of $V_R = 5$ V. The doping concentrations are $N_a = N_d = 4 \times 10^{16}$ cm⁻³ and the cross-sectional area is $A = 10^{-4}$ cm². Assume minority carrier lifetimes of $\tau_0 = \tau_{n0} = \tau_{p0} = 10^{-7}$ s. Calculate the (a) ideal reverse-saturation current, (b) reverse-biased generation current, and (c) the ratio of the generation current to ideal saturation current.

- 6) E-Book, problem 8.37 (8 points)
- 8.37 (a) Calculate the small-signal diffusion capacitance and diffusion resistance of a silicon pn junction diode biased at $I_{DQ} = 1.2$ mA. Assume the minority carrier lifetimes are 0.5 μ s in both the n and p regions. (b) Repeat part (a) for the case when the diode is biased at $I_{DQ} = 0.12$ mA.

- 7) E-Book, problem 8.42, (16 points)
- **8.42** A one-sided p⁺n silicon diode has doping concentrations of $N_a = 4 \times 10^{17}$ cm⁻³ and $N_d = 8 \times 10^{15}$ cm⁻³. The diode cross-sectional area is $A = 5 \times 10^{-4}$ cm². (a) The maximum diffusion capacitance is to be limited to 1 nF. Determine (i) the maximum current through the diode, (ii) the maximum forward-bias voltage, and (iii) the diffusion resistance. (b) Repeat part (a) if the maximum diffusion capacitance is limited to 0.25 nF.

- 8) E-Book, problem 1.38 (pg. 443) (6 points)
- 1.38 A pn junction diode is in series with a 1 M Ω resistor and a 2.8 V power supply. The reverse-saturation current of the diode is $I_S = 5 \times 10^{-11}$ A.
 - (a) Determine the diode current and voltage if the diode is forward biased.
 - (b) Repeat part (a) if the diode is reverse biased.