Clustering: k-Means, Agglomerative, DBSCAN

Tan, Steinbach, Kumar

(With Modification by Yufei Tao)

What is Cluster Analysis?

 Finding groups of objects such that the objects in a group will be similar (or related) to one another and different from (or unrelated to) the objects in other groups

Applications of Cluster Analysis

Data Understanding

 Group related documents for browsing, group genes and proteins that have similar functionality, or group stocks with similar price fluctuations

Data Utilization

- Summarization
- Compression

Notion of a Cluster can be Ambiguous

Types of Clusterings

- A clustering is a set of clusters
- Important distinction between hierarchical and partitional sets of clusters
- Partitional Clustering
 - A division data objects into non-overlapping subsets (clusters) such that each data object is in exactly one subset
- Hierarchical clustering
 - A set of nested clusters organized as a hierarchical tree

Partitional Clustering

Original Points

A Partitional Clustering

Hierarchical Clustering

Hierarchical Clustering

Dendrogram

Types of Clusters: Center-Based

Center-based

- A cluster is a set of objects such that an object in a cluster is closer (more similar) to the "center" of a cluster, than to the center of any other cluster
- The center of a cluster is often a centroid, the average of all the points in the cluster, or a medoid, the most "representative" point of a cluster

4 center-based clusters

Types of Clusters: Density-Based

Density-based

- A cluster is a dense region of points, which is separated by low-density regions, from other regions of high density.
- Used when the clusters are irregular or intertwined, and when noise and outliers are present.

6 density-based clusters

Clustering Algorithms

- K-center (the previous lecture).
 - Think: how?
- K-means
- Hierarchical clustering
- Density-based clustering

K-means Clustering

- Partitional clustering approach
- Each cluster is associated with a centroid.
 - The centroid of a point set S is the point p whose x- (y-) coordinate is the mean of the x- (y-) coordinates of the points in S.
- Number of clusters, K, is an input parameter.
- 1: Select K points as the initial centroids.
- 2: repeat
- 3: Form K clusters by assigning all points to the closest centroid.
- 4: Recompute the centroid of each cluster.
- 5: **until** The centroids don't change

K-means Clustering – Details

- Initial centroids are important, as discussed later.
- 'Closeness' is measured by Euclidean distance, cosine similarity, correlation, etc.
- In practice, the stopping condition may be changed to 'Until relatively few points change clusters'

Evaluating K-means Clusters

- Sum of Squared Error (SSE)
 - For each point, the error is the distance to the nearest cluster
 - To get SSE, we square these errors and sum them.

$$SSE = \sum_{i=1}^{K} \sum_{x \in C_i} dist^2(m_i, x)$$

- x is a data point in cluster C_i and m_i is the centroid of C_i
- Ideally, we want to find the K clusters to minimize SSE.

Example with k = 3

Importance of Choosing Initial Centroids

Choosing the Initial Centroids

- A strategy that works for any distance definition:
 - Randomly pick k points.
- A better strategy when the distance definition satisfies triangle inequality:
 - Solution of the k-center problem.
- An even better strategy for Euclidean distance:
 - See next.

Initial Centriod Selection for Euclidean Distance

- P = the input point set
- S = an empty centroid set
- add a point to S uniformly at random
- for i = 2 to k
 - ◆for each point p in P, calculate D(p) as the minimum distance from p to the points already in S
 - ◆sample a point in P by ensuring that each point p in P is sampled with a probability proportional to (D(p))²
 - add the sampled point to S
- The above algorithm allows k-means to achieve an approximation ratio of O(lg k). Namely, if the optimal k clusters has SSE s, then k-means guarantees returning clusters with SSE at most O(s lg k).

Limitations of K-means: Differing Sizes

Original Points

K-means (3 Clusters)

Limitations of K-means: Differing Density

3 2 10 8 8 -1 -2 -3 -2 -1 0 1 2 3 4 5 6 X

Original Points

K-means (3 Clusters)

Limitations of K-means: Non-globular Shapes

Original Points

K-means (2 Clusters)

Hierarchical Clustering

- Produces a set of nested clusters organized as a hierarchical tree
- Can be visualized as a dendrogram
 - A tree like diagram that records the sequences of merges or splits

Strengths of Hierarchical Clustering

- Do not have to assume any particular number of clusters
 - Any desired number of clusters can be obtained by 'cutting' the dendogram at the proper level
- They may correspond to meaningful taxonomies
 - Example in biological sciences (e.g., animal kingdom, phylogeny reconstruction, ...)

Agglomerative Clustering Algorithm

- Basic algorithm is straightforward
 - 1. Compute the proximity matrix
 - 2. Let each data point be a cluster
 - 3. Repeat
 - 4. Merge the two closest clusters
 - 5. Update the proximity matrix
 - **6. Until** only a single cluster remains
- Key operation is the computation of the proximity of two clusters
 - Different approaches to defining the distance between clusters distinguish the different algorithms

Starting Situation

Start with clusters of individual points and a proximity matrix

Intermediate Situation

• After some merging steps, we have some clusters

Intermediate Situation

• We want to merge the two closest clusters (C2 and C5) and update the proximity matrix. C4 **C5**

C2 C3 <u>C4</u> **C5 Proximity Matrix**

C1

C1

After Merging

The question is "How do we update the proximity matrix?"

	р1	p2	рЗ	p4	р5	<u> </u>
p1						
p2						
р3						
p4						
p5						
_						

- MIN
- MAX
- Group Average

	р1	p2	рЗ	p4	р5	<u> </u>
p1						
p2						
р3						
p4						
p5						
_						

- MIN
- MAX
- Group Average

	p1	p2	рЗ	p4	р5	<u> </u>
p1						
p2						
р3						
<u>p4</u>						
р5						

- MIN
- MAX
- Group Average

	р1	p2	р3	p4	р5	<u> </u>
p1						
p2						
р3						
p4						_
р5						

- MIN
- MAX
- Group Average

Hierarchical Clustering: MIN

Nested Clusters

Dendrogram

Strength of MIN

Original Points

Two Clusters

Can handle non-elliptical shapes

Limitations of MIN

Original Points

Two Clusters

Sensitive to noise and outliers

Hierarchical Clustering: MAX

0.3-0.25-0.15-0.1-0.05-0 3 6 4 1 2 5

0.4

0.35

Nested Clusters

Dendrogram

Strength of MAX

Two Clusters

Less susceptible to noise and outliers

Original Points

Limitations of MAX

Two Clusters

•Tends to break large clusters

Original Points

Biased towards globular clusters

Hierarchical Clustering: Group Average

Nested Clusters

Dendrogram

Hierarchical Clustering: Group Average

Compromise between MIN and MAX

- Strengths
 - Less susceptible to noise and outliers

- Limitations
 - Biased towards ball-like clusters

DBSCAN

- DBSCAN is a density-based algorithm.
 - Density = number of points within a specified radius (Eps)
 - A point is a core point if it has more than a specified number of points (MinPts) within Eps
 - These are points that are at the interior of a cluster
 - A border point has fewer than MinPts within Eps, but is in the neighborhood of a core point
 - A noise point is any point that is not a core point or a border point.

DBSCAN: Core, Border, and Noise Points

DBSCAN Algorithm

- Eliminate noise points
- Put an edge between each pair of core points within distance Eps of each other
- Make each group of connected core points into a separate cluster
- Assign each border point arbitrarily to one of the clusters containing its associated core points

DBSCAN: Core, Border and Noise Points

Original Points

Point types: core, border and noise

Eps = 10, MinPts = 4

When DBSCAN Works Well

- Resistant to Noise
- Can handle clusters of different shapes and sizes

Drawback of DBSCAN

 Need to specify Eps and MinPts, which can be difficult in practice.