

### Workshop

Sterling Harper, Travis Labossiere-Hickman, Luke Eure, Patrick White, and Benoit Forget

April 6 2016

### Monte Carlo simulates the movement and reactions of individual neutrons





Monte Carlo randomly samples continuous distributions

For example, we sample an exponential to determine how far a neutron travels before the next collision



We compare cross sections to determine which nuclide a neutron collides with and which reaction happens



MC simulations are divided into batches for statistical reasons

Neutrons are born from fission sites in the last batch

#### Monte Carlo is precise because it uses

3D Space



Continuous Energy



Continuous Angle



#### Jargon:

"Tallies" are results from an MC calculation

e.g.  $k_{\rm eff}$ , flux, <sup>238</sup>U capture rate

## OpenMC is validated against MCNP Criticality Benchmark Suite

117 configurations with different spectra, materials, enrichment





OpenMC scales linearly up to  $\infty$  processors

(786,000 cores, 3,150,000 threads on Mira supercomputer)



OpenMC can model a wide variety of geometries, for example:

Full-core PWR
TRISO particles
ATR

# What makes OpenMC special is its Python-powered input generation and post-processing



### >>> import openmc

OpenMC is 46,000 lines of F90 and 46,000 lines of Python

#### The OpenMC workflow:

- 1. Write Python code describing the problem.
- 2. Use .export\_to\_xml() to create XML files.
- 3. Run OpenMC (using Python or shell). This creates tallies.out and statepoint.h5 output files.
- 4. Read tallies.out with a text editor or read statepoint.h5 with Python.