
Amendments to the Specification

On page 1, please replace the paragraph spanning lines 4-22 with the following:

This application is a continuation-in-part of U.S. Patent Application No. 10/693,095, filed October 23, 2003, which is a [[a]] continuation-in-part of U.S. Patent Application No. 10/444,853, filed May 23, 2003, which is a continuation in part of 10/652,791, filed August 29, 2003, which is a continuation of 10/422,704, filed April 24, 2003, which is a continuation of U.S. Patent Application No. 10/417,012, filed April 16, 2003. U.S. application 10/693,095 is also a continuation-in-part of International Patent Application No. PCT/US03/05346, filed February 20, 2003, and a continuation-in-part of International Patent Application No. PCT/US03/05028, filed February 20, 2003, both of which claim the benefit of U.S. Provisional Application No. 60/358,580 filed February 20, 2002, U.S. Provisional Application No. 60/363,124 filed March 11, 2002, U.S. Provisional Application No. 60/386,782 filed June 6, 2002, U.S. Provisional Application No. 60/406,784 filed August 29, 2002, U.S. Provisional Application No. 60/408,378 filed September 5, 2002, U.S. Provisional Application No. 60/409,293 filed September 9, 2002, and U.S. Provisional Application No. 60/440,129 filed January 15, 2003. ~~U.S. application 10/693,095 is also a continuation in part of US Patent Application No. 10/427,160, filed April 30, 2003 and International Patent Application No. PCT/US02/15876 filed May 17, 2002.~~ The instant application claims the benefit of all the listed applications, which are hereby incorporated by reference herein in their entireties, including the drawings.

On page 4, please replace the paragraph of lines 1-19, as filed, with the following:

Studies have shown that replacing the 3'-terminal nucleotide overhanging segments of a 21-mer siRNA duplex having two-nucleotide 3'-overhangs with deoxyribonucleotides does not have an adverse effect on RNAi activity. Replacing up to four nucleotides on each end of the siRNA with deoxyribonucleotides has been reported to be well tolerated, whereas complete substitution with deoxyribonucleotides results in no RNAi activity (Elbashir *et al.*, 2001, *EMBO J.*, 20, 6877). In addition, Elbashir *et al.*, *supra*, also report that substitution of siRNA with 2'-O-methyl nucleotides completely abolishes RNAi activity. Li *et al.*, International PCT Publication No. WO 00/44914, and Beach *et al.*, International PCT Publication No. WO 01/68836 preliminarily suggest that siRNA may include modifications to either the phosphate-sugar backbone or the nucleoside to include at least one of a nitrogen or sulfur heteroatom, however, neither application postulates to what extent such modifications would be tolerated in siRNA molecules, nor provides any further guidance or examples of such modified siRNA. Kreutzer *et al.*, Canadian Patent Application No. 2,359,180, also describe certain chemical modifications for use in dsRNA constructs in order to counteract activation of double-stranded RNA-dependent protein kinase PKR, specifically 2'-amino or 2'-[[O-]] methyl nucleotides, and nucleotides containing a 2'-O or 4'-C methylene bridge. However, Kreutzer *et al.* similarly fails to provide examples or guidance as to what extent these modifications would be tolerated in siRNA molecules.

Please replace the paragraph bridging pages 6 and 7 with the following paragraph:

This invention relates to compounds, compositions, and methods useful for modulating RNA function and/or gene expression in a cell. Specifically, the instant invention features synthetic small nucleic acid molecules, such as short interfering nucleic acid (siNA), short interfering RNA (siRNA), double-stranded RNA (dsRNA), micro-RNA (miRNA), and short hairpin RNA (shRNA) molecules capable of modulating gene expression in cells by RNA inference interference (RNAi). The siNA molecules of the invention can be chemically modified. The use of chemically modified siNA can improve various properties of native siRNA molecules through increased resistance to nuclease degradation *in vivo* and/or improved cellular uptake. The chemically modified siNA molecules of the instant invention provide useful reagents and methods for a variety of therapeutic, diagnostic, agricultural, target validation, genomic discovery, genetic engineering and pharmacogenomic applications.

Please replace the paragraph bridging pages 7 and 8 with the following paragraph:

In one embodiment, the nucleic acid molecules of the invention that act as mediators of the RNA interference gene silencing response are chemically modified double stranded nucleic acid molecules. As in their native double stranded RNA counterparts, these siNA molecules typically consist of duplexes containing about 19 base pairs between oligonucleotides comprising about 19 to about 25 nucleotides. The most active siRNA molecules are thought to have such duplexes with overhanging ends of 1-3 nucleotides, for example 21 nucleotide duplexes with 19 base pairs and 2 nucleotide 3'-overhangs. These overhanging segments are readily hydrolyzed by endonucleases *in vivo*. Studies have shown that replacing the 3'-overhanging segments of a 21-mer siRNA duplex having 2 nucleotide 3' overhangs with deoxyribonucleotides does not have an adverse effect on RNAi activity. Replacing up to 4 nucleotides on each end of the siRNA with deoxyribonucleotides has been reported to be well tolerated whereas complete substitution with deoxyribonucleotides results in no RNAi activity (Elbashir *et al.*, 2001, EMBO J., 20, 6877). In addition, Elbashir *et al.*, *supra*, also report that substitution of siRNA with 2'-O-methyl nucleotides completely abolishes RNAi activity. Li *et al.*, International PCT Publication No. WO 00/44914, and Beach *et al.*, International PCT Publication No. WO 01/68836 both suggest that siRNA may include modifications to either the phosphate-sugar back bone or the nucleoside to include at least one of a nitrogen or sulfur heteroatom, however neither application teaches to what extent these modifications are tolerated in siRNA molecules nor provide any examples of such modified siRNA. Kreutzer and Limmer, Canadian Patent Application No. 2,359,180, also describe certain chemical modifications for use in dsRNA constructs in order to counteract activation of double stranded-RNA-dependent protein kinase PKR, specifically 2'-amino or 2'-[[O-]]methyl nucleotides, and nucleotides containing a 2'-O or 4'-C methylene bridge. However, Kreutzer and Limmer similarly fail to show to what extent these modifications are tolerated in siRNA molecules nor provide any examples of such modified siRNA.

Please replace the paragraph bridging pages 24-25 with the following paragraph:

In one embodiment, the invention features a chemically-modified short interfering nucleic acid (siNA) molecule capable of mediating RNA interference (RNAi) inside a cell or reconstituted *in vitro* system, wherein the chemical modification comprises one or more (e.g., about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more) nucleotides or non-nucleotides having Formula II:

wherein each R₃, R₄, R₅, R₆, R₇, R₈, R₁₀, R₁₁ and R₁₂ is independently H, OH, alkyl, substituted alkyl, alkaryl or aralkyl, F, Cl, Br, CN, CF₃, OCF₃, OCN, O-alkyl, S-alkyl, N-alkyl, O-alkenyl, S-alkenyl, N-alkenyl, SO-alkyl, alkyl-[O]SH, alkyl-OH, O-alkyl-OH, O-alkyl-SH, S-alkyl-OH, S-alkyl-SH, alkyl-S-alkyl, alkyl-O-alkyl, ONO₂, NO₂, N₃, NH₂, aminoalkyl, aminoacid, aminoacyl, ONH₂, O-aminoalkyl, O-aminoacid, O-aminoacyl, heterocycloalkyl, heterocycloalkaryl, aminoalkylamino, polyalkylamino, substituted silyl, or group having Formula I or II; R₉ is O, S, CH₂, S=O, CHF, or CF₂, and B is a nucleosidic base such as adenine, guanine, uracil, cytosine, thymine, 2-aminoadenosine, 5-methylcytosine, 2,6-diaminopurine, or any other non-naturally occurring base that can be complementary or non-complementary to target RNA or a non-nucleosidic base such as phenyl, naphthyl, 3-nitropyrrole, 5-nitroindole, nebularine, pyridone, pyridinone, or any other non-naturally occurring universal base that can be complementary or non-complementary to target RNA.

Please also replace the paragraph bridging pages 25-26 with the following paragraph:

In one embodiment, the invention features a chemically-modified short interfering nucleic acid (siNA) molecule capable of mediating RNA interference (RNAi) inside a cell or reconstituted *in vitro* system, wherein the chemical modification comprises one or more (e.g., about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more) nucleotides or non-nucleotides having Formula III:

wherein each R3, R4, R5, R6, R7, R8, R10, R11 and R12 is independently H, OH, alkyl, substituted alkyl, alkaryl or aralkyl, F, Cl, Br, CN, CF₃, OCF₃, OCN, O-alkyl, S-alkyl, N-alkyl, O-alkenyl, S-alkenyl, N-alkenyl, SO-alkyl, alkyl-[[O]SH, alkyl-OH, O-alkyl-OH, O-alkyl-SH, S-alkyl-OH, S-alkyl-SH, alkyl-S-alkyl, alkyl-O-alkyl, ONO₂, NO₂, N₃, NH₂, aminoalkyl, aminoacid, aminoacyl, ONH₂, O-aminoalkyl, O-aminoacid, O-aminoacyl, heterocycloalkyl, heterocycloalkaryl, aminoalkylamino, polyalkylamino, substituted silyl, or group having Formula I or II; R9 is O, S, CH₂, S=O, CHF, or CF₂, and B is a nucleosidic base such as adenine, guanine, uracil, cytosine, thymine, 2-aminoadenosine, 5-methylcytosine, 2,6-diaminopurine, or any other non-naturally occurring base that can be employed to be complementary or non-complementary to target RNA or a non-nucleosidic base such as phenyl, naphthyl, 3-nitropyrrole, 5-nitroindole, nebarazine, pyridone, pyridinone, or any other non-naturally occurring universal base that can be complementary or non-complementary to target RNA.

Please replace the paragraph bridging pages 29-30 with the following paragraph:

In one embodiment, the invention features a siNA molecule, wherein the *antisense sense strand* comprises one or more, for example, about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more phosphorothioate internucleotide linkages, and/or about one or more (e.g., about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more) 2'-deoxy, 2'-O-methyl, 2'-deoxy-2'-fluoro, and/or one or more (e.g., about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more) universal base modified nucleotides, and optionally a terminal cap molecule at the 3'-end, the 5'-end, or both of the 3'- and 5'-ends of the sense strand; and wherein the antisense strand comprises about 1 to about 10 or more, specifically about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more phosphorothioate internucleotide linkages, and/or one or more (e.g., about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more) 2'-deoxy, 2'-O-methyl, 2'-deoxy-2'-fluoro, and/or one or more (e.g., about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more) universal base modified nucleotides, and optionally a terminal cap molecule at the 3'-end, the 5'-end, or both of the 3'- and 5'-ends of the antisense strand. In another embodiment, one or more, for example about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more pyrimidine nucleotides of the sense and/or antisense siNA strand are chemically-modified with 2'-deoxy, 2'-O-methyl and/or 2'-deoxy-2'-fluoro nucleotides, with or without one or more, for example, about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more phosphorothioate internucleotide linkages and/or a terminal cap molecule at the 3'-end, the 5'-end, or both of the 3' and 5'-ends, being present in the same or different strand.

Please replace the paragraph spanning lines 3-20 of page 30, as filed, with the following:

In another embodiment, the invention features a siNA molecule, wherein the antisense strand comprises about 1 to about 5 or more, specifically about 1, 2, 3, 4, 5 or more phosphorothioate internucleotide linkages, and/or one or more (e.g., about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more) 2'-deoxy, 2'-O-methyl, 2'-deoxy-2'-fluoro, and/or one or more (e.g., about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more) universal base modified nucleotides, and optionally a terminal cap molecule at the 3'-end, the 5'-end, or both of the 3'- and 5'-ends of the sense strand; and wherein the antisense strand comprises about 1 to about 5 or more, specifically about 1, 2, 3, 4, 5 or more phosphorothioate internucleotide linkages, and/or one or more (e.g., about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more) 2'-deoxy, 2'-O-methyl, 2'-deoxy-2'-fluoro, and/or one or more (e.g., about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more) universal base modified nucleotides, and optionally a terminal cap molecule at the 3'-end, the 5'-end, or both of the 3'- and 5'-ends of the antisense strand. In another embodiment, one or more, for example about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more pyrimidine nucleotides of the sense and/or antisense siNA strand are chemically-modified with 2'-deoxy, 2'-O-methyl and/or 2'-deoxy-2'-fluoro nucleotides, with or without about 1 to about 5, for example about 1, 2, 3, 4, 5 or more phosphorothioate internucleotide linkages and/or a terminal cap molecule at the 3'-end, the 5'-end, or both of the 3'- and 5'-ends, being present in the same or different strand.

Please replace the paragraph spanning lines 5-15 of page 34, as filed, with the following:

In one embodiment, a siNA molecule of the invention comprises at least one (e.g., about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more) abasic moiety, for example a compound having Formula V:

wherein each R3, R4, R5, R6, R7, R8, R10, R11, R12, and R13 is independently H, OH, alkyl, substituted alkyl, alkaryl or aralkyl, F, Cl, Br, CN, CF₃, OCF₃, OCN, O-alkyl, S-alkyl, N-alkyl, O-alkenyl, S-alkenyl, N-alkenyl, SO-alkyl, alkyl-[[O]]SH, alkyl-OH, O-alkyl-OH, O-alkyl-SH, S-alkyl-OH, S-alkyl-SH, alkyl-S-alkyl, alkyl-O-alkyl, ONO₂, NO₂, N₃, NH₂, aminoalkyl, aminoacid, aminoacyl, ONH₂, O-aminoalkyl, O-aminoacid, O-aminoacyl, heterocycloalkyl, heterocycloalkaryl, aminoalkylamino, polyalkylamino, substituted silyl, or group having Formula I or II; R9 is O, S, CH₂, S=O, CHF, or CF₂.

Please replace the paragraph bridging pages 34 and 35 with the following paragraph:

In one embodiment, a siNA molecule of the invention comprises at least one (e.g., about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more) inverted abasic moiety, for example a compound having Formula VI:

wherein each R3, R4, R5, R6, R7, R8, R10, R11, R12, and R13 is independently H, OH, alkyl, substituted alkyl, alkaryl or aralkyl, F, Cl, Br, CN, CF₃, OCF₃, OCN, O-alkyl, S-alkyl, N-alkyl, O-alkenyl, S-alkenyl, N-alkenyl, SO-alkyl, alkyl-[O]SH, alkyl-OH, O-alkyl-OH, O-alkyl-SH, S-alkyl-OH, S-alkyl-SH, alkyl-S-alkyl, alkyl-O-alkyl, ONO₂, NO₂, N₃, NH₂, aminoalkyl, aminoacyl, aminoacid, ONH₂, O-aminoalkyl, O-aminoacid, O-aminoacyl, heterocycloalkyl, heterocycloalkaryl, aminoalkylamino, polyalkylamino, substituted silyl, or group having Formula I or II; R9 is O, S, CH₂, S=O, CHF, or CF₂, and either R3, R5, R8 or R13 serve as points of attachment to the siNA molecule of the invention.

Please replace the paragraph spanning lines 10-21 of page 35, as filed, with the following:

In another embodiment, a siNA molecule of the invention comprises at least one (e.g., about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more) substituted polyalkyl moieties, for example a compound having Formula VII:

wherein each n is independently an integer from 1 to 12, each R1, R2 and R3 is independently H, OH, alkyl, substituted alkyl, alkaryl or aralkyl, F, Cl, Br, CN, CF₃, OCF₃, OCN, O-alkyl, S-alkyl, N-alkyl, O-alkenyl, S-alkenyl, N-alkenyl, SO-alkyl, alkyl-[O]SH, alkyl-OH, O-alkyl-OH, O-alkyl-SH, S-alkyl-OH, S-alkyl-SH, alkyl-S-alkyl, alkyl-O-alkyl, ONO₂, NO₂, N₃, NH₂, aminoalkyl, aminoacyl, aminoacid, aminoacyl, ONH₂, O-aminoalkyl, O-aminoacid, O-aminoacyl, heterocycloalkyl, heterocycloalkaryl, aminoalkylamino, polyalkylamino, substituted silyl, or a group having Formula I, and R1, R2 or R3 serves as points of attachment to the siNA molecule of the invention.

Please replace the paragraph spanning lines 1-12 of page 177, as filed, with the following paragraph:

Internal labeling was performed via kinase reactions with polynucleotide kinase (PNK) and ^{32}P - γ -ATP, with addition of radiolabeled phosphate at nucleotide 13 of strand 2, counting in from the 3' side. Ligation of the remaining 8-mer fragments with T4 RNA ligase resulted in the full length, 21-mer, strand 2. Duplexing of RNAi was done by adding appropriate concentrations of the siNA oligonucleotides and heating to 95° C for 5minutes followed by slow cooling to room temperature. Reactions were performed by adding 100% serum to the siNA duplexes and incubating at 37° C, then removing aliquots at desired time-points. Results of this study are summarized in **Figure 3**. As shown in the Figure 3, chemically modified siNA molecules (e.g., SEQ ID NOS: 412/413396/397, 412/414396/398, 412/415396/399, 412/416396/400, and 412/448397/401) have significantly increased serum stability compared to an siNA construct having all ribonucleotides except a 3'-terminal dithymidine (TT) modification (e.g., SEQ ID NOS: 419/420394/395).

On page 222, please replace the paragraph spanning lines 13-25 with the following paragraph:

The invention illustratively described herein suitably can be practiced in the absence of any element or elements, limitation or limitations that are not specifically disclosed herein. ~~Thus, for example, in each instance herein any of the terms "comprising", "consisting essentially of", and "consisting of" may be replaced with either of the other two terms.~~ The terms and expressions which have been employed are used as terms of description and not of limitation, and there is no intention that in the use of such terms and expressions of excluding any equivalents of the features shown and described or portions thereof, but it is recognized that various modifications are possible within the scope of the invention claimed. Thus, it should be understood that although the present invention has been specifically disclosed by preferred embodiments, optional features, modification and variation of the concepts herein disclosed may be resorted to by those skilled in the art, and that such modifications and variations are considered to be within the scope of this invention as defined by the description and the appended claims.

Please replace the as-filed Table I with the Replacement Table I, as attached herewith.