PROBLEM 1	
LEAST SQUARE FIT (n = 2)	
The integral is evaluated to be: 1.955357*x**2 -	0.853571*x + 2.977714
LEAST SQUARE FIT (n = 3)	
The integral is evaluated to be: 1.042374*x**3 - 0.580735*x + 2.89766	0.546339*x**2 +
We can see from the graph that the cubic fitting points better than quadratic polynomial, as the h fits the data better by osciallating through the	igher degree polynomial
The graph is attached in the file	
PROBLEM 2	
LEAST SQUARE FIT	
The final fit function is: 0.305844555994415*exp(0.68532815760392*exp(-3*x)	-2*x) +
PROBLEM 3	
THREE POINT MIDPOINT FORMULA	
The derivative evaluated at 2.0 using this method 22.228790 The derivative evaluated at 2.0 using this method 22.414162	
THREE POINT ENDPOINT FORMULA	

LEFT ENDPOINT
The derivative evaluated at 2.0 using this method with $h=0.1000000$ is: 22.032310
THREE POINT ENDPOINT FORMULA
RIGHT ENDPOINT
The derivative evaluated at 2.0 using this method with $h = -0.1000000$ is: 22.054525
FIVE POINT MIDPOINT FORMULA
The derivative evaluated at 2.0 using this method with $h=0.1000000$ is: 22.166999
FIVE POINT ENDPOINT FORMULA
LEFT ENDPOINT
Invalid input! Evaluation of the derivative using this method for the given value is not possible!
FIVE POINT ENDPOINT FORMULA
RIGHT ENDPOINT
Invalid input! Evaluation of the derivative using this method for the given value is not possible!
SECOND DERIVATIVE MIDPOINT FORMULA
The derivative evaluated at 2.0 using this method with $h = 0.1000000$ is: 29.593200
The derivative evaluated at 2.0 using this method with $h=0.2000000$ is: 29.704275
SECOND DERIVATIVE MIDPOINT FORMULA
The derivative evaluated at 1.9 using this method with $h=0.1000000$ is: 26.107900
SECOND DERIVATIVE MIDPOINT FORMULA

The derivative evaluated at 2.1 using this method 33.522800	d with $h = 0.1000000$ is:
THREE POINT MIDPOINT FORMULA	-
The derivative evaluated at 2.0 using this method 37.074500	
PROBLEM 4	_
COMPOSITE TRAPEZOIDAL RULE (n = 2)	-
The integral is evaluated to be: 1.57079632679489	966
COMPOSITE TRAPEZOIDAL RULE (n = 4)	-
The integral is evaluated to be: 1.57079632679489	966
COMPOSITE TRAPEZOIDAL RULE (n = 8)	-
The integral is evaluated to be: 1.57079632679489	966
COMPOSITE TRAPEZOIDAL RULE (n = 16)	-
The integral is evaluated to be: 1.57079632679489	966
COMPOSITE SIMPSON'S RULE (n = 2)	-
The integral is evaluated to be: 2.09439510239319	953
COMPOSITE SIMPSON'S RULE (n = 4)	-
The integral is evaluated to be: 1.57079632679489	

COMPOSITE SIMPSON'S RULE (n = 8)

```
The integral is evaluated to be: 1.5707963267948966
_____
     COMPOSITE SIMPSON'S RULE ( n = 16 )
The integral is evaluated to be: 1.5707963267948968
         ROMBERG INTEGRATION
R 1,1: 2.3558171576799582e-32
R 2,1: 1.5707963267948966
R 2,2: 2.0943951023931953
R 2,1: 1.5707963267948968
R 2,2: 1.5707963267948968
R 2,3: 1.5707963267948968
R 2,1: 1.5707963267948966
R 2,2: 1.5707963267948966
R 2,3: 1.5707963267948966
R 2,4: 1.5707963267948966
R 2,1: 1.5707963267948968
R 2,2: 1.5707963267948968
R 2,3: 1.5707963267948968
R 2,4: 1.5707963267948968
R 2,5: 1.5707963267948968
______
              PROBLEM 5
_____
----- Part (a) -----
       GAUSSIAN QUADRATURE ( n = 8 )
_____
The integral evaluated in the interval [ -1 , 1 ] in this method is:
0.8788846226
-----Part (b) -----
_____
       GAUSSIAN QUADRATURE ( n = 4 )
_____
The integral evaluated in the interval [-1, 0] in this method is:
0.1606027775
       GAUSSIAN QUADRATURE (n = 4)
_____
The integral evaluated in the interval [ 0 , 1 ] in this method is:
```

0.7182817683

The integral evaluated in the interval [-1 , 1] is: 0.8788845458
Part (c)
GAUSSIAN QUADRATURE (n = 2)
The integral evaluated in the interval [-1 , -0.5] in this method is 0.1318048310
GAUSSIAN QUADRATURE (n = 2)
The integral evaluated in the interval [-0.5 , 0] in this method is: 0.02871828808
GAUSSIAN QUADRATURE (n = 2)
The integral evaluated in the interval [0 , 0.5] in this method is: 0.06077020746
GAUSSIAN QUADRATURE (n = 2)
The integral evaluated in the interval [0.5 , 1] in this method is: 0.6570944696

The integral evaluated in the interval [-1, 1] is: 0.8783877961

The given function does not vary by a large margin in the given interval so, higher degree n gives more accurate results when compared to piece by piece integration.

Thus n=8 gives the best possible approximation. Legendre polynomial of order 8 has more nodes in comparison with n=2 and 4 so hence it gives a better result.

Also Gaussian Quadrature gives no error upto polynomial of order 2n, thus while taylor expanding the given function, n=8 gives error only after degree 16 polynomial which is highest compared to the other two.