

Algorithms and Data Structures

Graphs 2: Shortest Paths (general case)
Strongly Connected Components

Ulf Leser

Content of this Lecture

- All-Pairs Shortest Paths
 - Transitive closure: Warshall's algorithm
 - Shortest paths: Floyd's algorithm
- Strongly Connected Components

All-Pairs Shortest Paths: General Case

- All-pairs shortest paths: Given a digraph G with positive or negative edge weights, find the distance between all pairs of nodes
 - Transitive closure with distances
 - Result is $O(|V|^2)$ space, so don't try this for really large graphs

\rightarrow	Α	В	С	D	E	F	G	Х	Υ
Α									
В									
С									
D									
E									
F									
G									
X									
Y									

Why Negative Edge Weights?

- Transportation company
 - Every route incurs cost (for fuel, salary, etc.)
 - Every route creates income (for carrying the freight)
- If cost>income, edge weights become negative
 - But still important to find the best route
 - Example: Best tour from X to C

No Dijkstra

- Dijkstra does not work any more
 - Recall that Dijkstra enumerates nodes reachable by shortest paths
 - Now: Adding a subpath to a so-far shortest path may make it "shorter" (by negative edge weights)

Х	0
K1	2
K2	2
K3	1
K4	4
K5	
K6	5
K7	4
K8	

No Dijkstra

- Dijkstra does not work any more
 - Recall that Dijkstra enumerates nodes reachable by shortest paths
 - Now: Adding a subpath to a so-far shortest path may make it "shorter" (by negative edge weights)

Х	0
K1	0
K2	2
К3	0
K4	4
K 5	
K6	5
K7	4
K8	

Negative Cycles

 Shortest path between X and K5?

- X-K3-K4-K5: 5

– X-K3-K4-K5-X-K3-K4-K5: 4

— X-K3-K4-K5-X-K3-K4-K5-X-K3-K4-K5: 3

– ...

Problem is undefined if G contains a negative cycle

First Approach

- We start with a simpler problem: Computing the transitive closure of a digraph G without edge weights
- First idea
 - Reachability is transitive: $x \rightarrow y$ and $y \rightarrow z \Rightarrow x \rightarrow z$
 - We use this idea to iteratively build longer and longer paths
 - First extend edges with edges path of length 2
 - Extend those paths with edges paths of length 3
 - **–** ...
 - No necessary path can be longer then |V|
- In each step, we store "reachable by a path of length ≤k" in a matrix

Naïve Algorithm

```
G = (V, E);
M := adjacency matrix(G);
M'' := M;
n := |V|;
for z := 1..n-1 do
  M' := M'';
  for i = 1..n do
    for j = 1..n do
      if M'[i,j]=1 then
        for k=1 to n do
          if M[j,k]=1 then
            M''[i,k] := 1;
          end if;
        end for;
      end if:
    end for;
 end for;
end for;
```

z appears nowhere; it is just there to ensure that even longest shortest paths are found

- M is the adjacency matrix of G, M" eventually the TC of G
- M': Represents paths ≤z
- Loops i and j look at all pairs reachable by a path of length at most z+1
- Loop k extends path of length at most z by all outgoing edges
- Analysis: Obviously O(n⁴)

Example – After z=1, 2, 3, 4

	Α	В	С	D	Ε
Α		1	1		
В				1	
С				1	
D					1
Ε	1				

	Α	В	С	D	Ε
Α		1	1	1	
В				1	1
С				1	1
D	1				1
E	1	1	1		

	Α	В	С	D	Ε
Α		1	1	1	1
В	1			1	1
С	1			1	1
D	1	1	1		1
Ε	1	1	1	1	

	Α	В	C	D	Ε
Α	1	1	1	1	1
В	1	1	1	1	1
С	1	1	1	1	1
D	1	1	1	1	1
Е	1	1	1	1	1

	Α	В	С	D	Ε
Α	1	1	1	1	1
В	1	1	1	1	1
С	1	1	1	1	1
D	1	1	1	1	1
E	1	1	1	1	1

Path length:

≤2

≤3

≤4

≤5

Observation

- In the first step, we actually compute M*M, and then replace each value ≥1 with 1
 - We only state that there is a path; not how many and not how long
- Transitive closure in graphs can be described as matrix operations

Paths in the Naïve Algorithm

	Α	В	С	D	Е		Α	В	С	D	Ε		Α	В	С	D	E		Α	В	С	D	Ε		Α	В	С	D	E
A		1	1			Α		1	1	1		Α		1	1	1	1	Α	1	1	1	1	1	A	1	1	1	1	1
В				1		В				1	1	В	1			1	1	В	1	1	1	1	1	В	1	1	1	1	1
С				1		С				1	1	С	1			1	1	С	1	1	1	1	1	С	1	1	1	1	1
D					1	D	1				1	D	1	1	1		1	D	1	1	1	1	1	D	1	1	1	1	1
Ε	1					Ε	1	1	1			Ε	1	1	1	1		Ε	1	1	1	1	1	Ε	1	1	1	1	1

- The naive algorithm always extends paths by one edge
 - I.e., it computes M*M, M²*M, M³*M, ... Mⁿ⁻¹*M

Idea for Improvement

- Why not extend paths by all paths found so-far?
 - I.e., compute
 M²′=M*M: Path of length at most 2
 M³′=M²′*M∪M²′*M²′: Path of length 2+1 and 2+2
 M⁴′=M³′*M ∪M³′*M²′ ∪M³′*M³′, Lengths 3/4+1, 3/4+1/2, 3/4+3/4
 ...
 Mn′=... ∪ Mn-1′*Mn-1′
 - [We will implement it differently]
- Trick: We can stop much earlier
 - The longest shortest path can be at most n
 - Thus, it suffices to compute M^{log(n)}′ = ... ∪ M^{log(n)}′ * M^{log(n)}′

Algorithm Improved

```
G = (V, E);
M := adjacency matrix( G);
n := |V|;
for z := 0...ceil(log(n)) do
  for i = 1..n do
    for j = 1..n do
      if M[i,j]=1 then
        for k=1 to n do
          if M[j,k]=1 then
            M[i,k] := 1;
          end if:
        end for:
      end if;
    end for:
 end for:
end for;
```

- We use only one matrix M
- We "add" to M matrices M²′, M³′ ...
- In the extension, we see if a path of length ≤2^z (stored in M) can be extended by a path of length ≤2^z (stored in M)
 - Computes all paths ≤2*2^z=2^{z+1}
- Analysis: O(n³*log(n))
- But ... we still can be faster

Example – After z=1, 2, 3

	Α	В	С	D	Ε
Α		1	1		
В				1	
С				1	
D					1
Ε	1				

	Α	В	С	D	Ε
Α		1	1	1	
В				1	1
С				1	1
D	1				1
E	1	1	1		

	Α	В	С	D	Ε
Α	1	1	1	1	1
В	1	1	1	1	1
С	1	1	1	1	1
D	1	1	1	1	1
E	1	1	1	1	1

Path length:

≤2

≤4

Done

Idea for Further Improvement

	Α	В	С	D	Ε		Α	В	С	D	Ε
Α		1	1			Α		1	1	1	
В				1		В				1	1
С				1		С				1	1
D					1	D	1				1
Ε	1					E	1	1	1		

- Note: The path A→D is found twice: A→B→D / A→C→D
- Can we stop searching A→D once we found A→B→D?
- Can we enumerate paths such that paths are discovered less often (i.e., less paths are tested)?

Warshall's Algorithm

- Warshall, S. (1962). A theorem on Boolean matrices. Journal of the ACM 9(1): 11-12.
- Key idea
 - Suppose a path i→k and (i,k)∉E
 - Then there must be at least one node j with i→j and j→k
 - Let j be the "smallest" such node (the one with the smallest ID)
 - If we fix the highest allowable ID t, then i→k is found iff j≤t
 - Suppose we found all paths consisting only of nodes smaller than t
 - We increase t by one, i.e., we allow the usage of node t+1
 - Every new path must have the form $x \rightarrow (t+1) \rightarrow y$
- Enumerate paths by the IDs of the nodes they may use

Algorithm

- t gives the highest allowed node ID in a path
- Thus, node t must be on any new path
- We find all pairs i,k with
 i→t and t→k
- For every such pair, we set the path i→k to 1

```
1. G = (V, E);
2. M := adjacency_matrix(
   G);
3. n := |V|;
4. for t := 1..n do
     for i = 1..n do
       if M[i,t]=1 then
          for k=1 to n do
         \rightarrow if M[t,k]=1 then
8.
              M[i,k] := 1;
9.
10.
            end if:
          end for;
11.
       end if;
12.
     end for;
13.
14.end for:
```

Proof of Correctness

- Induction: Case t=1 is clear
- Going from t-1 to t
 - Induction assumption: We know all paths using only nodes with ID<t
 - We enter the i-loop
 - L6-L8 builds new paths over t
 - L6-L8 adds all paths which additionally contain the node with ID t
 - Induction assumption holds true
- These are all paths once t=n

```
1. G = (V, E);
2. M := adjacency_matrix(
   G);
3. n := |V|;
4. for t := 1..n do
     for i = 1..n do
       if M[i,t]=1 then
7.
         for k=1 to n do
8.
           if M[t,k]=1 then
             M[i,k] := 1;
10.
           end if:
11.
         end for;
12.
       end if;
     end for;
13.
14.end for:
```

Example – Warshall's Algorithm

	Α	В	С	D	E
Α		1	1		
В				1	
С				1	
D					1
Ε	1				

A allowed Connect E-A with A-B, A-C

maxlen=2

	Α	В	С	D	Ε
Α		1	1		
В				1	
С				1	
D					1
Е	1	1	1		

Example - After t=A,B,C,D,E

maxlen=2

=4	•
----	---

8=

	Α	В	С	D	Ε
Α		1	1		
В				1	
С				1	
D					1
Ε	1	1	1		

	Α	В	С	D	Ε
Α		1	1	1	
В				1	
С				1	
D					1
Е	1	1	1	1	

	Α	В	С	D	Ε
Α		1	1	1	
В				1	
С				1	
D					1
Ε	1	1	1	1	

	Α	В	С	D	Ε
A		1	1	1	1
В				1	1
С				1	1
D					1
Е	1	1	1	1	1

		Α	В	С	D	Ε					
	Α	1	1	1	1	1					
	В	1	1	1	1	1					
	С	1	1	1	1	1					
	D	1	1	1	1	1					
	Ε	1	1	1	1	1					
7											

B allowed Connect A-B/E-B with B-D C allowed Connect A-C/E-C with C-D No news D allowed Connect A-D, B-D, C-D with D-E

Connect everything with everything

E allowed

Little change – Dramatic Consequences

```
G = (V, E);
M := adjacency_matrix( G);
n := |V|;
for z := 1..n do
  for i = 1..n do
    for j = 1..n do
      if M[i,j]=1 then
        for k=1 to n do
          if M[j,k]=1 then
            M[i,k] := 1;
          end if;
        end for:
      end if;
    end for:
  end for:
end for;
```


Swap i and j loop

Rephrase j

```
1. G = (V, E);
2. M := adjacency_matrix( G);
3. n := |V|;
4. for t := 1..n do
  for i = 1..n do
       if M[i,t]=1 then
        for k=1 to n do
           if M[t,k]=1 then
9.
            M[i,k] := 1;
10.
          end if;
11. end for:
12. end if;
13. end for:
14. end for;
```

 $O(n^4)$

 $O(n^3)$

Content of this Lecture

- All-Pairs Shortest Paths
 - Transitive closure: Warshall's algorithm
 - Shortest paths: Floyd's algorithm
- Strongly Connected Components

Shortest Paths

- Floyd, R. W. (1963). Algorithm 97: Shortest Path.
 Communications of the ACM 5(6): 345.
- We use the same idea: Enumerate paths using only nodes smaller than t
- Invariant: Before step t, M[i,j] contains the length of the shortest path that uses no node with ID higher than t
- When increasing t, we find new paths i→t→k and look at their lengths
- Thus: $M[i,k] := min(M[i,k] \cup \{M[i,t] + M[t,k] \mid i \rightarrow t \land t \rightarrow k\})$

	Α	В	С	D	E	F	G
Α				1	3		
В	-2			-1	1		
С							
D	1	3	2	2	4		
Ε						4	1
F	0	2	5	1	3		
G			6			-1	

	Α	В	С	D	E	F	G
Α				1	3		
В	-2						
С							
D		3	2				
Е						4	1
F	1	2	5				
G			6			-1	

	A	В	С	D	E	F	G
A				1	3		
В	-2			-1	1		
С							
D		3	2				
Е						4	1
F	1	2	5	2	4		
G			6			-1	

Summary

- Warshall's algorithm computes the transitive closure of any digraph G without negative cycles in O(|V|³)
- Floyd's algorithm computes the distances between any pair of nodes in a digraph without negative cycles in O(|V|³)
- Storing both information requires O(|V|²)
- Problem is easier for ...
 - undirected graphs: Connected components
 - graphs with only positive edge weights: All-pairs Dijkstra
 - trees: See nice problems

Content of this Lecture

- All-Pairs Shortest Paths
- Strongly Connected Components (SCC)
 - Why?
 - Pre/Postorder Traversal
 - Kosaraju's algorithm

Recall

- Definition
 Let G=(V, E) be a directed graph.
 - A subgraph G'=(V', E') of G is called connected if G' contains a path between any pair $v,v'\in V'$
 - Any maximal connected subgraph of G is called a strongly connected component of G

Recall

- Definition
 Let G=(V, E) be a directed graph.
 - A subgraph G'=(V', E') of G is called connected if G' contains a path between any pair $v,v'\in V'$
 - Any maximal connected subgraph of G is called a strongly connected component of G

Why? Contracting a Graph

- Consider finding the transitive closure (TC) of a digraph G
 - If we know all SCCs, parts of the TC can be computed immediately
 - Next, each SCC can be replaced by a single node, producing G'
 - G' must be acyclic and is (much) smaller than G
 - Intuitively: TC(G) = TC(G') + SCC(G)

Graph Traversal

- Most algorithms for finding SCC are based on pre-/postorder labeling of nodes
- Method Let G=(V, E). We assign each v∈V a pre-order and a post-order in the following way. Set counters pre=post=0. Perform a depth-first traversal of G. Whenever a node v is reached the first time, assign it the value of pre as pre-order value and increase pre. Whenever a node v is left the last time, assign it the value of post as post-order value and increase post.
- Obviously O(|G|)
 - Labeling not unique; depends on order in which children are visited

Content of this Lecture

- All-Pairs Shortest Paths
- Strongly Connected Components (SCC)
 - Why?
 - Pre/Postorder Traversal
 - Kosaraju's algorithm

Kosaraju's Algorithm

- Definition
 - Let G=(V,E). The graph $G^T=(V,E')$ with $(v,w) \in E'$ iff $(w,v) \in E$ is called the transposed graph of G.
- Kosaraju's algorithm is very short
 - Compute post-order labels for all nodes from G using a first DFS
 - Here, we actually don't need the pre-order values
 - Compute G^T
 - Perform a second DFS on G^T always choosing as next node the one with the highest post-order label according to the first DFS
 - All trees that emerge from the second DFS are SCC of G (and G^T)

Correctness

- We prove that two nodes v, w are in the same tree of the second DFS iff v and w are in the same SCC in G
- Proof
 - ⇐: Suppose v→w and w→v in G. One of the two nodes (assume it is v) must be reached first during the second DFS. Since v can be reached by w in G, w can be reached by v in G^T. Thus, when we reach v during the traversal of G^T, we will also reach w in the same tree, so they are in the same tree of G^T.

Correctness

- \Rightarrow : Suppose v and w are in the same DFS-tree of G^T
 - Suppose r is the root of this tree
 - Since $r \rightarrow v$ in G^T , it must hold that $v \rightarrow r$ in G
 - Because of the order of the second DFS: post(r)>post(v) in G
 - Thus, there must be a path $r\rightarrow v$ in G: Otherwise, r had been visited last after v in G and thus would have a smaller post-order
 - Since $v \rightarrow r$ and $r \rightarrow v$ in G, the same is true for G^T
 - The same argument shows that w→r and r→w in G
 - By transitivity, it follows that $v\rightarrow w$ and $w\rightarrow v$ via r in G (and in G^T)

Examples (p() = post-order())

- V→W
- Thus, $w \rightarrow v$ in G^T
- Because w → v in G, p(v)>p(w)
- First tree in G^T starts in v; doesn't reach w
- v, w not in same tree

- v→w and w→v in G and in G^T
- Assume w is first in 1st DFS: p(w)>p(v)
- w has higher p-value, thus 2nd DFS starts in w and reaches v
- v, w in same tree

- Let's start 1st DFS in r: p(r)>p(w)>p(v)
- 2nd DFS starts in r, but doesn't reach w
- Second tree in 2nd DFS starts in w and reaches
- v, w in same tree

Complexity

- Both DFS are in O(|G|), computing G^T is in O(|E|)
- Instead of computing post-order values and sort them, we can simple push nodes on a stack when we leave them the last time – needs to be done O(|V|) times
- Together: O(|V|+|E|)
- Since we need to look at each edge and node at least once to decide upon SCC, the problem is in $\Omega(|V| + |E|)$
- There are faster algorithms that manage to compute SCCs in one traversal
 - Tarjan's algorithm, Gabow's algorithm