

planetmath.org

Math for the people, by the people.

axiom system for propositional logic

Canonical name AxiomSystemForPropositionalLogic

Date of creation 2013-03-22 19:31:50 Last modified on 2013-03-22 19:31:50

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 13

Author CWoo (3771) Entry type Definition Classification msc 03B05

Synonym axiom system for classical propositional logic

Related topic DeductionTheoremHoldsForClassicalPropositionalLogic

Related topic SubstitutionTheoremForPropositionalLogic

The language of (classical) propositional logic PL_c consists of a set of propositional letters or variables, the symbol \bot (for falsity), together with two symbols for logical connectives \neg and \rightarrow . The well-formed formulas (wff's) of PL_c are inductively defined as follows:

- each propositional letter is a wff
- \perp is a wff
- if A and B are wff's, then $A \to B$ is a wff

We also use parentheses (and) to remove ambiguities. The other familiar logical connectives may be defined in terms of \rightarrow : $\neg A$ is $A \rightarrow \bot$, $A \lor B$ is the abbreviation for $\neg A \rightarrow B$, $A \land B$ is the abbreviation for $\neg (A \rightarrow \neg B)$, and $A \leftrightarrow B$ is the abbreviation for $(A \rightarrow B) \land (B \rightarrow A)$.

The axiom system for PL_c consists of sets of wffs called axiom schemas together with a rule of inference. The axiom schemas are:

1.
$$A \rightarrow (B \rightarrow A)$$
,

2.
$$(A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C))$$
,

3.
$$(\neg A \rightarrow \neg B) \rightarrow (B \rightarrow A)$$
,

and the rule of inference is modus ponens (MP): from $A \to B$ and A, we may infer B.

A deduction is a finite sequence of wff's A_1, \ldots, A_n such that each A_i is either an instance of one of the axiom schemas above, or as a result of applying rule MP to earlier wff's in the sequence. In other words, there are j, k < i such that A_k is the wff $A_j \to A_i$. The last wff A_n in the deduction is called a theorem of PL_c . When A is a theorem of PL_c , we write

$$\vdash_c A$$
 or simply \vdash_A .

For example, $\vdash A \rightarrow A$, whose deduction is

1.
$$(A \to ((B \to A) \to A)) \to ((A \to (B \to A)) \to (A \to A))$$
 by Axiom II,

2.
$$A \to ((B \to A) \to A)$$
 by Axiom I,

3.
$$(A \to (B \to A)) \to (A \to A)$$
 by modus ponens on 2 to 1,

- 4. $A \to (B \to A)$ by Axiom I,
- 5. $A \rightarrow A$ by modus ponens on 4 to 3.

More generally, given a set Σ of wff's, we write

$$\Sigma \vdash A$$

if there is a finite sequence of wff's such that each wff is either an axiom, a member of Σ , or as a result of applying MP to earlier wff's in the sequence. An important (meta-)theorem called the deduction theorem, states: if $\Sigma, A \vdash B$, then $\Sigma \vdash A \to B$. The deduction theorem holds for PL_c (proof http://planetmath.org/deductiontheoremholdsforclassicalpropositionallogichere)

Remark. The axiom system above was first introduced by Polish logician Jan Łukasiewicz. Two axiom systems are said to be *deductively equivalent* if every theorem in one system is also a theorem in the other system. There are many axiom systems for PL_c that are deductively equivalent to Łukasiewicz's system. One such system consists of the first two axiom schemas above, but the third axiom schema is $\neg \neg A \rightarrow A$, with MP its sole inference rule.