Universidad Nacional del Altiplano

Facultad de Ingeniería Estadística e Informática

Docente: Fred Torres Cruz

Autor: Cliver Wimar Vilca Tinta

Trabajo Encargado - Nº 004

Ejercicios Ley de Amdalh

Ejercicio 1

El proceso de búsqueda en una base de datos se divide en dos partes y_1 (Índice) y y_2 (Consulta). Se sabe que y_2 consume el 40 % del tiempo total de computación. Si tenemos dos opciones de mejora:

- F_1 = Optimización de y_1 : 3 veces más rápido
- \bullet $F_2 =$ Optimización de $y_2 :$ 5 veces más rápido

¿Cuál es la más óptima y por qué?

Respuesta:

Para determinar cuál opción es más óptima, usamos la Ley de Amdahl. Primero, definimos:

P como la proporción del tiempo total que ocupa y_2 . Entonces, P = 0.4.

La proporción del tiempo total que ocupa y_1 es 1 - P = 0.6.

Calculamos la mejora total ${\cal S}$ para cada opción:

Para F_1 :

La optimización de y_1 es 3 veces más rápida:

$$S_1 = \frac{1}{(1-P) + \frac{P}{F_1}} = \frac{1}{0.6 + \frac{0.4}{3}} = \frac{1}{0.6 + 0.1333} = \frac{1}{0.7333} \approx 1.364$$

Para F_2 :

La optimización de y_2 es 5 veces más rápida:

$$S_2 = \frac{1}{(1-P) + \frac{P}{F_2}} = \frac{1}{0.6 + \frac{0.4}{5}} = \frac{1}{0.6 + 0.08} = \frac{1}{0.68} \approx 1,471$$

Comparando S_1 y S_2 :

$$S_2 \approx 1,471 > S_1 \approx 1,364$$

Un sistema de compresión de archivos se subdivide en dos partes z_1 (compresión) y z_2 (escritura en disco) iterativamente y secuencialmente, se asume que cada una de las partes es independiente, además también se conoce que z_2 consume el 30 % del tiempo total de computación. Si tenemos dos opciones de mejora:

- $F_1 = \text{Optimización de } z_1$: 2 veces más rápido
- F_2 = Optimización de z_2 : 4 veces más rápido

¿Cuál es la más óptima y por qué?

Respuesta:

Para determinar cuál opción es más óptima, usamos la Ley de Amdahl. Primero, definimos:

P como la proporción del tiempo total que ocupa z_2 . Entonces, P=0,3.

La proporción del tiempo total que ocupa z_1 es 1 - P = 0.7.

Calculamos la mejora total S para cada opción:

Para F_1 :

La optimización de z_1 es 2 veces más rápida:

$$S_1 = \frac{1}{(1-P) + \frac{P}{F_1}} = \frac{1}{0.7 + \frac{0.3}{2}} = \frac{1}{0.7 + 0.15} = \frac{1}{0.85} \approx 1.176$$

Para F_2 :

La optimización de z_2 es 4 veces más rápida:

$$S_2 = \frac{1}{(1-P) + \frac{P}{F_2}} = \frac{1}{0.7 + \frac{0.3}{4}} = \frac{1}{0.7 + 0.075} = \frac{1}{0.775} \approx 1.29$$

Comparando S_1 y S_2 :

$$S_2 \approx 1.29 > S_1 \approx 1.176$$

Por lo tanto, la opción más óptima es F_2 , ya que ofrece una mejora significativa mayor en la velocidad total del sistema.

Un sistema de análisis de datos se divide en a_1 (carga de datos) y a_2 (procesamiento de datos). Se sabe que a_1 consume el 50 % del tiempo total de computación. Si tenemos dos opciones de mejora:

- F_1 = Optimización de a_1 : 4 veces más rápido
- \bullet $F_2 =$ Optimización de $a_2 :$ 3 veces más rápido

¿Cuál es la más óptima y por qué?

Respuesta:

Para determinar cuál opción es más óptima, usamos la Ley de Amdahl. Primero, definimos:

P como la proporción del tiempo total que ocupa a_1 . Entonces, P = 0.5.

La proporción del tiempo total que ocupa a_2 es 1 - P = 0.5.

Calculamos la mejora total S para cada opción:

Para F_1 :

La optimización de a_1 es 4 veces más rápida:

$$S_1 = \frac{1}{(1-P) + \frac{P}{F_1}} = \frac{1}{0.5 + \frac{0.5}{4}} = \frac{1}{0.5 + 0.125} = \frac{1}{0.625} = 1.6$$

Para F_2 :

La optimización de a_2 es 3 veces más rápida:

$$S_2 = \frac{1}{(1-P) + \frac{P}{F_2}} = \frac{1}{0.5 + \frac{0.5}{3}} = \frac{1}{0.5 + 0.1667} = \frac{1}{0.6667} \approx 1.5$$

Comparando S_1 y S_2 :

$$S_1 = 1.6 > S_2 \approx 1.5$$

Por consiguiente, la elección más óptima es F_1 , ya que ofrece una mejora superior en la velocidad total del sistema.

Un algoritmo de machine learning se divide en b_1 (preprocesamiento) y b_2 (entrenamiento del modelo). Se sabe que b_2 consume el 70 % del tiempo total de computación. Si tenemos dos opciones de mejora:

- F_1 = Optimización de b_1 : 5 veces más rápido
- $F_2 = \text{Optimización de } b_2$: 6 veces más rápido

¿Cuál es la más óptima y por qué?

Respuesta:

Para determinar cuál opción es más óptima, usamos la Ley de Amdahl. Primero, definimos:

P como la proporción del tiempo total que ocupa b_2 . Entonces, P=0.7.

La proporción del tiempo total que ocupa b_1 es 1 - P = 0.3.

Calculamos la mejora total S para cada opción:

Para F_1 :

La optimización de b_1 es 5 veces más rápida:

$$S_1 = \frac{1}{(1-P) + \frac{P}{F_1}} = \frac{1}{0.3 + \frac{0.7}{5}} = \frac{1}{0.3 + 0.14} = \frac{1}{0.44} \approx 2,273$$

Para F_2 :

La optimización de b_2 es 6 veces más rápida:

$$S_2 = \frac{1}{(1-P) + \frac{P}{F_2}} = \frac{1}{0.3 + \frac{0.7}{6}} = \frac{1}{0.3 + 0.1167} = \frac{1}{0.4167} \approx 2.4$$

Comparando S_1 y S_2 :

$$S_2 \approx 2.4 > S_1 \approx 2.273$$

El proceso de renderizado de gráficos se divide en c_1 (transformación) y c_2 (rasterización). Se sabe que c_1 consume el 60 % del tiempo total de computación. Si tenemos dos opciones de mejora:

- $F_1 = \text{Optimización de } c_1$: 3 veces más rápido
- F_2 = Optimización de c_2 : 4 veces más rápido

¿Cuál es la más óptima y por qué?

Respuesta:

Para determinar cuál opción es más óptima, usamos la Ley de Amdahl. Primero, definimos:

P como la proporción del tiempo total que ocupa c_1 . Entonces, P = 0.6.

La proporción del tiempo total que ocupa c_2 es 1 - P = 0.4.

Calculamos la mejora total S para cada opción:

Para F_1 :

La optimización de c_1 es 3 veces más rápida:

$$S_1 = \frac{1}{(1-P) + \frac{P}{F_1}} = \frac{1}{0.4 + \frac{0.6}{3}} = \frac{1}{0.4 + 0.2} = \frac{1}{0.6} \approx 1.667$$

Para F_2 :

La optimización de c_2 es 4 veces más rápida:

$$S_2 = \frac{1}{(1-P) + \frac{P}{F_2}} = \frac{1}{0.4 + \frac{0.6}{4}} = \frac{1}{0.4 + 0.15} = \frac{1}{0.55} \approx 1.818$$

Comparando S_1 y S_2 :

$$S_2 \approx 1.818 > S_1 \approx 1.667$$

El proceso de transmisión de datos se divide en d_1 (codificación) y d_2 (transmisión). Se sabe que d_2 consume el 45 % del tiempo total de computación. Si tenemos dos opciones de mejora:

- F_1 = Optimización de d_1 : 2 veces más rápido
- $F_2 = \text{Optimización de } d_2$: 6 veces más rápido

¿Cuál es la más óptima y por qué?

Respuesta:

Para determinar cuál opción es más óptima, usamos la Ley de Amdahl. Primero, definimos:

P como la proporción del tiempo total que ocupa d_2 . Entonces, P=0.45.

La proporción del tiempo total que ocupa d_1 es 1 - P = 0.55.

Calculamos la mejora total S para cada opción:

Para F_1 :

La optimización de d_1 es 2 veces más rápida:

$$S_1 = \frac{1}{(1-P) + \frac{P}{F_1}} = \frac{1}{0.55 + \frac{0.45}{2}} = \frac{1}{0.55 + 0.225} = \frac{1}{0.775} \approx 1.29$$

Para F_2 :

La optimización de d_2 es 6 veces más rápida:

$$S_2 = \frac{1}{(1-P) + \frac{P}{F_2}} = \frac{1}{0.55 + \frac{0.45}{6}} = \frac{1}{0.55 + 0.075} = \frac{1}{0.625} = 1.6$$

Comparando S_1 y S_2 :

$$S_2 = 1.6 > S_1 \approx 1.29$$

El proceso de simulación de un sistema se divide en e_1 (generación de eventos) y e_2 (procesamiento de eventos). Se sabe que e_1 consume el 55 % del tiempo total de computación. Si tenemos dos opciones de mejora:

- $F_1 = \text{Optimización de } e_1$: 3 veces más rápido
- $F_2 = \text{Optimización de } e_2$: 5 veces más rápido

¿Cuál es la más óptima y por qué?

Respuesta:

Para determinar cuál opción es más óptima, usamos la Ley de Amdahl. Primero, definimos:

P como la proporción del tiempo total que ocupa e_1 . Entonces, P=0.55.

La proporción del tiempo total que ocupa e_2 es 1 - P = 0.45.

Calculamos la mejora total S para cada opción:

Para F_1 :

La optimización de e_1 es 3 veces más rápida:

$$S_1 = \frac{1}{(1-P) + \frac{P}{F_1}} = \frac{1}{0.45 + \frac{0.55}{3}} = \frac{1}{0.45 + 0.1833} = \frac{1}{0.6333} \approx 1.579$$

Para F_2 :

La optimización de e_2 es 5 veces más rápida:

$$S_2 = \frac{1}{(1-P) + \frac{P}{F_2}} = \frac{1}{0.45 + \frac{0.55}{5}} = \frac{1}{0.45 + 0.11} = \frac{1}{0.56} \approx 1.786$$

Comparando S_1 y S_2 :

$$S_2 \approx 1.786 > S_1 \approx 1.579$$