MA204: Mathematical Statistics

Assignment 4

You have a total of 12 questions in Assignment 4.

Submit your solutions to 9 questions (i.e., Q4.1–Q4.9) in Exercise 4 on pages 180–182 of the Textbook "Mathematical Statistics", plus 3 questions chosen from the following 4 questions.

4.10 Let $X_1, \ldots, X_n, X \stackrel{\text{iid}}{\sim} f(x; \mu)$, where X is called the population random variable,

$$f(x; \mu) = \frac{1}{\sigma_0} e^{-\frac{x-\mu}{\sigma_0}} \exp(-e^{-\frac{x-\mu}{\sigma_0}}), \quad x \in \mathbb{R} \triangleq (-\infty, \infty),$$

where $\mu \in \mathbb{R}$ is the location parameter and $\sigma_0 > 0$ is the known scale parameter.

- (a) Find the cdf of X.
- (b) Use the result (4.3) in page 165 of the textbook "Mathematical Statistics" to find the $100(1-\alpha)\%$ equal-tail CI of μ .
- **4.11** Let $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} f(x; \sigma^2)$, where

$$f(x; \sigma^2) = \frac{x}{\sigma^2} \exp\left(-\frac{x^2}{2\sigma^2}\right), \quad x > 0, \ \sigma > 0.$$

Use the result in Q3.20(a) of Assignment 3 and the result in Example 4.1 of the textbook "Mathematical Statistics" to find the $100(1-\alpha)\%$ equal-tail CI of σ^2 .

- **4.12** Let $X_1, \ldots, X_n, X \stackrel{\text{iid}}{\sim} U(0, \theta)$, where $\theta > 0$ is an unknown parameter.
 - (a) Show that $X_{(n)} = \max(X_1, \dots, X_n)$ is a sufficient statistic of θ .
 - (b) Find the pdf of $U \triangleq X_{(n)}/\theta$. Is U a pivotal quantity?
 - (c) Given $\alpha \in (0,1)$, find the upper $\alpha/2$ -th quantile $h_{\alpha/2}$ and the upper $(1-\alpha/2)$ -th quantile $h_{1-\alpha/2}$ of the distribution of U.
 - (d) Construct the $100(1-\alpha)\%$ equal-tail CI for θ based on the results of Q4.12(b)–(c).
 - (e) Let $x_1 = 4.2$, $x_2 = 3.5$, $x_3 = 1.7$, $x_4 = 1.2$, $x_5 = 2.4$. Calculate the 95% equal-tail CI for θ .
 - (f) Show that the interval $[X_{(n)}, X_{(n)}\alpha^{-1/n}]$ is the shortest $100(1-\alpha)\%$ CI of θ .
- **4.13** Let $X_1, \ldots, X_n, X \stackrel{\text{iid}}{\sim} f(x; \lambda)$, where

$$f(x; \lambda) = \frac{\lambda}{e^{\lambda} - 1} e^{\lambda x}, \quad 0 \leqslant x \leqslant 1, \ \lambda > 0.$$

- (a) Use Newton's method to calculate the MLE of λ .
- (b) Find the cdf of X.
- (c) Use the result (4.3) in page 165 of the textbook "Mathematical Statistics" to find the $100(1-\alpha)\%$ equal-tail CI of λ .