# ANO Technology&Creation

# 匿名科创

# 拓空者 P2 飞控 用户手册

V1.02 2021.05.18

匿名团队出品

踏实做技术,用心做飞控

匿名 Q 群 | 190169595 匿名官网 | www.anotc.com 匿名网店 | anotc.taobao.com

## 目录

| 手册 | <b>∄更新</b> 简 | 简略说明        | 2  |  |
|----|--------------|-------------|----|--|
| 注意 | 意事项.         |             | 3  |  |
| 1  | 拓空和          | 者 P2 特点及功能  | 4  |  |
| 2  | 新手使用入门流程5    |             |    |  |
| 3  | 硬件及接口        |             |    |  |
|    | 3.1          | 硬件配置        |    |  |
|    | 3.2          | 拓空者 P2 兼容版  |    |  |
|    | 3.3          | 兼容版接口介绍     |    |  |
|    | 3.4          | 兼容版硬件组装     |    |  |
|    | 3.5          | 拓空者 P2 到手飞版 |    |  |
| 4  | 模块Į          | 模块功能说明      |    |  |
|    | 4.1          | 如何使用遥控      |    |  |
|    | 4.2          | 连接上位机方法     |    |  |
|    | 4.3          | 匿名数传使用方法    |    |  |
|    | 4.4          | 匿名光流使用方法    |    |  |
|    | 4.5          | GPS 模式使用方法  |    |  |
| 5  | 软件功能说明       |             |    |  |
|    | 5.1          | 飞控数据显示方法    | 14 |  |
|    | 5.2          | 飞控参数设置方法    | 15 |  |
|    | 5.3          | 校准传感器       |    |  |
|    | 5.4          | 飞控解锁、加锁     |    |  |
|    | 5.5          | 飞行模式切换      |    |  |
|    | 5.6          | 传感器恒温       |    |  |
|    | 5.7          | 失控保护        |    |  |
|    | 5.8          | 低电压保护       |    |  |
|    | 5.9          | 姿态角保护       |    |  |
|    | 5.10         | 一键起飞        |    |  |
|    | 5.11         | 一键降落        |    |  |
|    | 5.12         | 指令控制        |    |  |
|    | 5.13         | 指令控制        |    |  |
|    | 5.14         | 遥控控制飞行      |    |  |
| _  | 5.15         | 拓空者 P2 灯光信息 |    |  |
| 6  |              | 知识点         | 21 |  |
|    | 6.1          | 医夕州标名       | 21 |  |

# 手册更新简略说明

V1.00:初版。

V1.01: 更新参数介绍。

V1.02: 更新罗盘传感器,支持 AKM09915; 增加拓空者 IMU 介绍。



## 注意事项

- 1、 安装飞行器时,请确保飞行器重心在机架中心,有负载的在机架中心的垂直方向上。
- 2、 在源码烧写升级、调试过程中请断开电调与电池的连接或移除所有桨翼!
- 3、 飞行时切记先打开遥控器, 然后启动多旋翼飞行器! 着陆后先关闭飞行器, 再关闭遥控器!
- 4、 切勿将油门的失控保护位置设置在 50%以上。
- 5、 在正常飞行过程中应避免摇杆打到"内八"或"外八"的位置,避免触发紧急上锁导致坠机!
- 6、 低压保护的目的不是娱乐! 在任何一种保护情况下,您都应该尽快降落飞行器,以避免坠机等严重后果!
- 7、 GPS 与指南针模块为磁性敏感设备,应远离所有其他电子设备。
- 8、 GPS 模块为选配模块(非标配),请选用此模块的用户关注说明书中涉及 GPS 的内容,未选用此模块的用户请忽略 GPS 控制模式 下的相关内容。
- 9、 强烈建议将接收机安装到机身板下面,天线朝下且无遮挡,以避免无线信号因遮挡丢失,而造成失控。(经验:数传天线与接收机天线呈 90 度摆放,尽量不要平行,防止无线信号互相干扰)
- 10、飞行前请检查所有连线正确,并且确保连线接触良好。
- 11、 使用无线视频设备时,安装位置请尽量远离主控系统 (>25cm), 以避免天线对主控器造成干扰。
- 12、 飞控必须使用多旋翼专用电调 (一般不带 bec 功能),使用旧版固定翼飞机使用的电调 (比如天行者/skywalker) 会出现偶然无规律的抖动、甚至炸鸡等异常现象。
- 13、 请尽量使用质量较好的电机、电调、螺旋桨, 特别是螺旋桨, 动平衡相当重要, 推荐电调使用好赢乐天, 电机和螺旋桨使用大疆、 银燕、朗宇等产品。只有搭配良好的飞行器套件才会取得优秀的飞行效果。
- 14、飞控更新源码的版本后,一定要清空所有参数,恢复默认 PID,恢复默认参数,然后重新校准所有传感器,避免出现参数异常。

## 1 拓空者 P2 特点及功能

- 模块化,像搭积木一样!
- 想从底层学习飞控系统,你需要一块匿名拓空者全开源飞控
- 想快速实现自主飞行,快速实现竞赛题目,你需要一块匿名凌霄飞控。
- ▶ 比赛不限制芯片方案,你想用熟悉的 STM 芯片,你需要一块 STM 飞控
- ▶ 比赛用 TI 芯片有优势,或者你更熟悉 TI 芯片,你需要一块 TI 飞控
- 怎么办,全都想要!
- ▶ 拓空者 P2, 一套硬件系统, 多种组合, 任您搭配!
- ▶ 拓空者 P2, 一套源码架构, 适用多套硬件, 一次学习, 移植无忧!

飞控内置柔性 PCB,实现 IMU 传感器缓冲减震,同时具有传感器恒温功能,通过金属屏蔽罩将 IMU 与外界隔离,保证恶劣环境下 IMU 工作的稳定性,同时可减小飞行气流对气压计的影响。方寸之间,功能强大!



## 2 新手使用入门流程

强烈建议新手使用本飞控时,认真、完整的阅读本手册,我们会将近 10 年在客户服务过程中遇到的新手 常常遇到的问题都在本手册内详细的介绍。

- 当您使用的是我们的拓空者 P2 兼容版,请按以下步骤进行入门准备:
- 1、掌握飞控通过 USB 连接上位机的方法;
- 2、查看飞控灯光信息章节,了解飞控不同提示灯光代表的意义;
- 3、通过上位机查看飞控各个传感器的数据,确认飞控工作正常;
- 4、根据手册安装飞控及电调、电机,完成飞行器的组装(此时先不安装螺旋桨)
- 5、连接接收机,根据手册确认各个通道数据正确;
- 6、如果您配有匿名数传、匿名光流等模块,根据手册对应章节,进行相关模块的初始化配置;
- 7、使用上位机进行必备参数设置(电池芯数、低压报警电压值);
- 8、学习遥控解锁方法,学习遥控操作方法,见章节:遥控控制飞行;
- 9、解锁,查看飞机运行正常;
- 10、 安装螺旋桨,进行试飞。
- 如果您使用的是我们的拓空者 P2 到手飞版本,请按以下步骤进行入门准备:
- 1、您拿到的到手飞是我们组装、配置、调试完毕的飞机,请不要随意更改遥控及飞控的配置;
- 2、掌握飞控通过数传连接上位机的方法;
- 3、查看飞控灯光信息章节,了解飞控不同提示灯光代表的意义;
- 4、飞机直接上电,上位机检查各个传感器数据更新正常;
- 5、学习遥控解锁方法,学习遥控操作方法,见章节:遥控控制飞行;
- 6、不安装螺旋桨,尝试解锁,查看飞机运行正常;
- 7、安装螺旋桨,解锁试飞(在有光流模块时,建议直接光流模式试飞,降低操作难度)。

## 3 硬件及接口

#### 3.1 硬件配置

#### ■ 支持的主控 MCU:

➤ ST 公司: STM32F407

➤ TI 公司: TM4C123

➤ TI 公司: MSP432

#### ■ 支持的 IMU 模块:

- ➤ 拓空者 IMU
- ▶ 凌霄 IMU (当使用凌霄 IMU 时,本系统切换为凌霄方案)

#### ■ 电调接口:

- ▶ 兼容版提供 8 路 PWM 输出接口
- ▶ 到手飞版提供 4 路 PWM 输出接口

#### ■ 接收机接口:

▶ 兼容版与到手飞版均提供1个接收机接口,本接口支持SBUS与PPM协议。

#### ■ 拓展接口:

▶ 串口: 兼容版与到手飞版均提供 5 个拓展串口 (MSP432 硬件只有 4 个串口)

▶ 备用 IO: 兼容版与到手飞版均提供 8 个拓展 IO 接口

▶ 调试接口:兼容版与到手飞版均提供 SWD 接口,作为主控的调试口

- ▶ USB接口: 兼容版与到手飞版均提供两个 USB接口,1个为主控 MCU的 USB接口,另一个为使用凌霄 IMU时,作为凌霄 IMU的 USB接口
- ▶ 电源接口:兼容版提供一个电源接口,支持 2S 到 6S 航模锂电池电压直接输入,作为飞控系统的电源, 并实现电池电压采集、报警功能。

#### 3.2 拓空者 IMU 配置

拓空者 IMU 内部采用柔性 PCB,将惯性传感器放置于柔性 PCB 上,并做好配重,使用专用缓冲海绵将柔性 PCB 包裹于屏蔽罩内,在给传感器提供隔离保护的同时,内置减震,用户可直接使用而不必考虑减震措施。且柔性 PCB 上布置有加热电阻,可通过外部 PWM 控制传感器恒温加热。

#### ■ 传感器配置:

惯性传感器: BMI088

气压高度传感器: SPL06

磁场罗盘传感器: AK8975/AK09915

#### ■ 接口:

本 IMU 模块通过 2.54 间距的邮票孔将传感器 SPI 总线以及各个传感器的 CS 引脚引出,方便用户使用杜邦插针、杜邦线连接,或直接将本模块焊接至用户自己的 PCB 上。同时匿名团队提供 IMU 的邮票孔封装文件,方便大家使用。

#### 3.3 拓空者 P2 兼容版

拓空者 P2 兼容版底板,将飞控公用部分以及所有输入输出接口集成与底板之上,作为飞控系统的载体。

通过 BTB 连接器,可以连接不同类型的主控 MCU,同时可以兼容拓空者 IMU 和凌霄 IMU 两种 IMU 方案。

通过精巧的设计,将共计 12 层 PCB 在有限空间组合,实现整个飞控系统的所有功能。同时设计有专用外壳,精确开孔,外形美观。









#### 3.4 兼容版接口介绍





UT: 串口, RTGV 依次为: RX、TX、GND、5V

SWD: VCGD 依次为: 3.3V、CLK、GND、DIO

UTI: 凌霄 IMU 串口 2

IOA、IOB: 拓展 IO, 具体见原理图

RGB: GRBV 依次为:绿、红、蓝、5V

USB CORE:核心板 USB 接口

USB LX:凌霄 IMU 的 USB 接口

SBUS: GVS 依次为: GND、5V、Signal

BAT: 电池接口,+接电池正极,-接电池负极

PWM: 电调接口, 数字代表第几通道

#### ■ 端口功能介绍:

拓空者版本端口功能:

UTI: 无用

UT1: GPS

UT2: 用户拓展

UT3: 用户拓展

UT4: 匿名光流

UT5: 数传

凌霄版本端口功能:

UTI: 数传

UT1: GPS

UT2: 用户拓展

UT3: 用户拓展

UT4: 匿名光流

UT5: 凌霄 IMU 占用

### 3.5 兼容版硬件组装

#### ■ 飞控安装

飞控支持任意角度安装,用户根据自己机架选择合适角度安装即可,但需注意,一定要飞控安装固定好以 后再进行传感器校准,校准完成后不能再改动飞控安装位置及角度。

同时, 飞控安装位置尽量远离磁场干扰以及电池、电调分电板、电调电源线等大电流元件, 降低磁场对罗盘的干扰。

#### ■ 电机、电调连接

> 飞行器电机转向及电调连接顺序如下图:



- ▶ 务必注意以下几个要点:
- ◇ 飞控前进方向,右前方是1号电机
- ◆ 电机、电调连接顺序,从右前方1号开始,逆时针1、2、3、4
- ◆ 电机旋转方向, 1、3号电机逆时针旋转, 2、4号电机顺时针旋转
- ◇ 螺旋桨风力方向,按图示方向转动时,所有螺旋桨务必保证为向下吹风

#### ■ 电源连接

- ▶ 从飞控 BAT 口,插入飞控配套 4P 导线,另一头将端子剪断,根据引脚顺序,将两个正极连接至电池 正极,两个负极连接至电池负极。
- ▶ 飞控支持 2S 到 6S 电池供电。

注意: 因为飞控有低电压保护逻辑,避免飞行中电压过低发生事故,故飞控必须使用电池供电,在供电的同时,可采集电池电压。

#### 3.6 拓空者 P2 到手飞版

待更新

### 4 模块功能说明

#### 4.1 如何使用遥控

#### 1、接收机连接与配置

- 飞控支持 SBUS 输出模式的航模遥控接收机和 PPM 输出模式的航模遥控接收机,公用一个接口,飞控上电初始化阶段会自动判断信号类别。
- 飞控接收机接口为 3P, 分别为 SVG 端子, 见硬件示意图。按照定义连接至接收机即可。

注意: 必须连接至接收机的 SBUS 或 PPM 接口,并且接收机配置为对应的输出模式。不同接收机有不同连接和配置方法,请根据自己的接收机说明书进行操作。

#### 2、遥控器配置

■ 下面以默认的美国手方式介绍遥控器控制通道的方向定义。

#### 通道方向定义:

- ▶ ROL: 右摇杆左右方向,摇杆向左,通道值减小,摇杆向右,通道值增加。
- > PIT: 右摇杆前后方向, 摇杆向后, 通道值减小, 摇杆向前, 通道值增加。
- > YAW: 左摇杆左右方向, 摇杆向左, 通道值减小, 摇杆向右, 通道值增加。
- > THR: 左摇杆前后方向, 摇杆向后, 通道值减小, 摇杆向前, 通道值增加。
- 同时飞控需要至少一个 3 段式开关,配置为 AUX1 (辅助通道 1,第 5 通道),用于控制飞控飞行模式。

#### 通道值定义:

- 所有通道、中位值为 1500、低值 1000、高值 2000。
- 开关通道 1000、1500、2000 分别对应功能 1、2、3。
- ▶ AUX1 通道默认控制飞控模式,功能 1、2、3 分别对应自稳+定高、定点、程控模式。

#### 4.2 连接上位机方法

本章节介绍通过飞控 USB 接口直接连接电脑上位机的方法,通过匿名数传连接上位机的方法请看下一章节。

■ 本飞控使用 HID 模式与电脑进行通信,无需安装驱动。使用 Micro USB 线缆连接飞控的 USB1 (或标注 为 USB\_MCU)接口至电脑,打开配套的匿名上位机,在软件右下角进行如下操作:



■ 上位机选择 HID 通信方式,搜索设备后,可以看到拓空者飞控,选中并确定。正常情况下,上位机会自动打开连接的匿名设备,若没有自动打开,请点击打开连接按钮。



- 打开连接后,可以发现接收计数开始增长,代表开始接收飞控数据。
- 具体飞控数据查看方法见飞控数据显示章节。

#### 4.3 匿名数传使用方法

使用匿名无线数传时,请先仔细阅读匿名数传使用手册。(发货前数传已经进行了配对,用户拿到即可使用,但使用前仍需了解数传的灯光指示含义,用以区分数传收发模式、串口号选择等功能)

如果使用拓空者 P2 兼容版,需将数传切换为串口 1 模式 (发货默认就是串口 1 模式,无需更改)。若使用 拓空者 P2 到手飞版本,需将数传切换为串口 2 模式 (若您购买的是到手飞套件,套件内自带数传,发货前我们会配置好,无需用户自己配置)。

将数传的主发送端通过串口线连接至拓空者 P2 兼容版的串口 5,或将数传焊接至到手飞版的数传专用焊盘。主接收端通过 USB 线连接至电脑。与飞控连接上位机方式相同,上位机选择 HID 方式,搜索设备打开即可。

#### 4.4 匿名光流使用方法

使用匿名光流时,请先仔细阅读匿名光流使用手册。拓空者 P2 使用匿名光流 V3.2 及后续更高固件版本,该版本固件支持光流模块任意方向安装(摄像头必须垂直朝下,并与激光(超声波)方向相同,这里说的任意方向是指水平方向上可以任意旋转,推荐将 USB 插座朝外安装,方便连接上位机)。将光流模块安装好后,光

流模块通过串口线连接至飞控的串口 4。然后根据光流模块手册介绍,对光流模块进行校准即可。

飞控想要使用光流进行增稳飞行,前提需要光流模块校准完成,光流模块灯光指示正常,飞控需切换至模式 2,然后观察飞控灯光,是否成功进入光流模式,光流可在光线及地面纹理良好时使用。

#### 4.5 GPS 模式使用方法

使用 GPS 模块时,将 GPS 模块连接至飞控的串口 1 (如果是自己的 GPS 模块,连接前无比确定串口线序与匿名飞控串口线序定义相同),GPS 默认波特率需配置为 115200,拓空者 P2 飞控支持 M8N 型号的 GPS,连接好后,在室外空旷空地,飞控切换至模式 2,观察灯光是否成功进入 GPS 定点模式,或通过上位机进行观察。

## 5 软件功能说明

#### 5.1 飞控数据显示方法

#### 1、基本数据显示

飞控基本数据可以通过飞控数据界面进行直观的显示,直接打开上位机的"飞控数据"界面即可。如下图:



#### 2、所有数据显示

飞控各种数据可通过"数据显示"界面的列表进行显示,如下图:



■ 点击列表左侧文件夹图标,可以展开对应栏目;

■ 数据值列有不同颜色, 定义如下:

灰色:数据没有收到

黄色:数据已接收到,但是数据值没有变化

绿色:数据已接收到,且数据值发生了变化

■ 频率列数值表示该帧数据的接收频率,颜色定义如下:

灰色:本帧数据没有收到,频率为0

▶ 蓝色:本帧数据已接收到,频率值为 1 秒内接收到的次数,因 PC 定时器精度,会稍有波动

■ 传输缩放表示本数据传输时的缩放倍数,当需要传输小数时,如果用 Float 格式,容易出现非法值,且数据长度较长。可根据数据表示的物理意义,进行扩大传输,显示时相应缩小对应倍数即可。比如想传输 A=1.12,那么传输时将 A 扩大 100 倍,传输整数 112,显示时缩小 100 倍即可。

#### 5.2 飞控参数设置方法

打开匿名上位机的飞控参数界面,如下图:



所有飞控参数均在该列表显示,在上位机正常连接飞控的情况下,点击读取参数按钮,即可从飞控读取参数显示,若参数值显示为 NA,表示该参数在该飞控并未使用到。

修改参数值后,点击写入参数即可将更改后的参数写入飞控。

#### 5.3 校准传感器

拓空者 P2 支持任意角度安装,惯性校准采用六面校准,使用"匿名传感器校准"程序可在线进行校准工作。校准前务必将飞控安装至飞行器,且校准后禁止改动飞控的安装位置及角度,更改安装后,必须重新进行加速度校准工作。

1、 惯性六面校准



- 关闭匿名上位机软件,打开匿名传感器校准程序,选择 HID 输入模式,如果飞控正确连接,此时下方会提示连接至拓空者飞控,同时右侧惯性数据接收频率开始有数值显示。
- 传感器选择加速度,飞行器水平静止放置,然后点击右下角 3D 校准按钮,根据左侧文本提示进行 校准工作。

注意:每个角度,必须静止时点击 3D 校准按钮,也就是静止判断数值越低越好。

- 完成6个面的校准后,点击加速度校准数据写入飞控按钮,即可将校准数据写入飞控。
- 2、罗盘校准



罗盘校准方法与加速度校准类似,传感器选择选择罗盘,然后点击 3D 校准按钮进行校准工作。

根据左侧文本提示校准完成后,点击罗盘校准数据写入飞控按钮,即可将校准数据写入飞控。

#### 5.4 飞控解锁、加锁

#### ■ 飞控解锁方法 1:

油门摇杆打到右下方 (对应通道值 THR 在 1100 以下, YAW 在 1900 以上),同时方向摇杆打到左下 (对应通道值 ROL 在 1100 以下,PIT 在 1100 以下)。(俗称内八字)

#### ■ 飞控解锁方法 2:

油门摇杆打到左下方 (对应通道值 THR 在 1100 以下, YAW 在 1100 以下),同时方向摇杆打到右下 (对应通道值 ROL 在 1900 以上,PIT 在 1100 以下)。(俗称外八字)

#### ■ 飞控锁定方法:

在解锁状态下,同样使用内八或者外八字,即可加锁。

#### 5.5 飞行模式切换

默认使用遥控器 AUX1 通道 (通道 5) 进行切换,有以下注意点:

■ 没有必要的传感器有效时,无法切换对应的模式,比如没有光流和 GPS,无法进入定点模式,会提示

速度传感器异常。

- 此时发送模式指令后,会有相应提示,并且无法解锁。
- 相应传感器有效后,会切换到发送指令后对应的模式。
- 推荐起飞前就将飞控切换至所需的模式,这样可在起飞前检查必备传感器是否工作正常,避免空中切换带来的风险。

| AUX1 范围   | 定义                                                                                                                                 |
|-----------|------------------------------------------------------------------------------------------------------------------------------------|
| 1000-1200 | 模式 1,自稳+定高控制模式,无位置控制                                                                                                               |
| 1200-1400 | 失控保护设置值识别范围                                                                                                                        |
| 1400-1600 | 模式 2,定点模式,速度控制。 GPS 模块定位正常:本模式为 GPS 定点模式 光流模块正常工作:本模式为光流定点模式 GPS 和光流同时正常工作:本模式为 GPS+光流定点模式。 GPS 和光流都不正常工作:同模式 1,姿态控制模式,且在锁定状态无法解锁。 |
| 1600-1800 | 失控保护设置值识别范围                                                                                                                        |
| 1800-2000 | 模式 3,程控模式<br>同模式 2,但是实时控制数据无效,只能通过指令方式控制。<br>返航也需要在此模式。                                                                            |

#### 5.6 传感器恒温

在"飞控参数"页面,找到"HEATSWITCH"飞控传感器恒温开关参数,设置为 1 (需先读取参数),写入飞控,飞控重启后即可实现传感器恒温功能。

恒温功能实际为一个温度闭环控制,采用 PID 控制 PWM 输出,通过加热电阻为传感器升温,为避免程序 异常导致持续加热损坏传感器,调试期间建议关闭此功能,当源码调试结束,确定源码稳定性没有问题后,再 打开恒温功能。

#### **5.7** 失控保护

当 AUX1 通道在 1200-1400、1600-1800 之间时(遥控器失控保护输出设置到该范围内),或者失去 PPM/SBUS 信号,表示进入遥控失控状态。

#### 5.8 低电压保护

请根据自己使用的航模电池参数,设置报警电压、返航电压、降落电压。

■ 推荐报警电压: 单节 3.7V

■ 推荐返航电压:单节 3.6V(低于此电压,若有 GPS,则进行返航,若没有,则无动作)

推荐降落电压: 单节 3.5V (低于此电压, 飞行器自动降落)

#### 5.9 姿态角保护

待加入

#### 5.10 一键起飞

待加入

#### 5.11 —键降落

待加入

#### 5.12 指令控制

待加入

#### 5.13 指令控制

待加入

#### 5.14 遥控控制飞行

- 拓空者 P2 板载高精度气压计,并且配合完善的定高源码,可以实现稳定的定高功能。所以飞控默认开启定高,同时配合匿名光流的激光测距模块,可以实现激光+气压计智能定高模式。(此模式不用手动开启,飞控会自动判断)
- 定高模式下,最好使用油门摇杆自动回中的遥控器。此模式下油门摇杆不直接控制占空比输出量,油门摇杆控制上升、下降的速度。当油门摇杆高于 50%也就是 1500 时,飞行器上升,当油门摇杆低于 50%也就是 1500 时,飞行器下降,当油门等于 50%时,飞行器保持当前高度。(1500 上下设置有大约+-5%死区)
- 美国手遥控,左侧摇杆上下控制上升下降,左右控制飞行器水平旋转;右侧摇杆上下控制飞行器机头

俯仰, 左右控制飞行器横滚运动。

■ 遥控器分配一个三段式开关至 AUX1 通道,用以控制飞行器飞行模式。

#### 5.15 拓空者 P2 灯光信息

飞控底板上设置有大功率 LED,用以指示重要报警信息、飞控状态信息等。

校准提示类显示优先级最高,其次为报警类提示信息,正常运行模式提示优先级最低。只有当无任何报警信号、不在校准时,会进行飞控状态灯光指示。

| 状态     | 灯光       | 注释                                                                                                                                                                                                                                                |
|--------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 开机静止前  | 白色快闪     | 开机后默认状态,飞机正常初始化完毕,并静止后(尽量水平,但不必须),进入正常<br>状态                                                                                                                                                                                                      |
| 正常运行提示 | 短闪+长间隔   | 飞控正常运行,灯光提示为模式提示+模块提示+长间隔<br>未解锁状态:模式提示为白色短闪,闪烁次数 1-3,分别代表飞行模式 1、2、3<br>解锁状态:模式提示为绿色短闪,闪烁次数 1-3,分别代表飞行模式 1、2、3<br>GPS 模块定位正常:模块提示为蓝色单闪<br>光流模块工作正常:模块提示为紫色单闪<br>激光定高模块测距正常:模块提示为黄色单闪<br>示例:白-白-蓝-长间隔:表示模式 2,未解锁,GPS 定位正常<br>绿-绿-紫-长间隔:表示模式 2,光流正常 |
| 数据保存中  | 绿色       | 在数据存储过程中,绿色常量                                                                                                                                                                                                                                     |
| 传感器故障  | 红色短闪+长间隔 | BMI088: 快闪 2 次,AK8975: 快闪 3 次,SPL06: 快闪 4 次                                                                                                                                                                                                       |
| 低压报警   | 红色短闪+短间隔 | 高频红色闪烁,表示电压低于报警电压                                                                                                                                                                                                                                 |
| 失控     | 红色呼吸     | 遥控接收机异常,飞机进入失控状态                                                                                                                                                                                                                                  |

## 6 其他知识点

## 6.1 匿名坐标系

■ 载体: 机头为 x 正, 左侧为 y 正, z 方向满足笛卡尔直角坐标。

■ 地理: 北为×正, 西为 y 正, 天为 z 正。

注意:约定地理坐标约等于世界坐标,该坐标系为匿名科创飞控参考坐标系,程序里所涉及的所有直角坐标系定义均为此坐标系,欧拉角的定义除外。

