Interval robotics

Chapter 5: Robust observers

Luc Jaulin,

ENSTA-Bretagne, Brest, France

1 State estimation

$$\begin{cases} \mathbf{x}(k+1) &= \mathbf{f}_k(\mathbf{x}(k), \mathbf{n}(k)) \\ \mathbf{y}(k) &= \mathbf{g}_k(\mathbf{x}(k)), \end{cases}$$

with $\mathbf{n}(k) \in \mathbb{N}(k)$ and $\mathbf{y}(k) \in \mathbb{Y}(k)$.

Without outliers

$$\mathbb{X}(k+1) = \mathbf{f}_k\left(\mathbb{X}(k), \mathbb{N}(k)\right) \cap \mathbf{g}_{k+1}^{-1}\left(\mathbb{Y}(k+1)\right).$$

2 SAUC'E

Portsmouth, July 12-15, 2007.

3 Robust observer

Define

$$\begin{cases} \mathbf{f}_{k:k}\left(\mathbb{X}\right) & \stackrel{\mathsf{def}}{=} \ \mathbb{X} \\ \mathbf{f}_{k_1:k_2+1}\left(\mathbb{X}\right) & \stackrel{\mathsf{def}}{=} \ \mathbf{f}_{k_2}(\mathbf{f}_{k_1:k_2}\left(\mathbb{X}\right), \mathbb{N}\left(k_2\right)), \ k_1 \leq k_2. \end{cases}$$

The set $\mathbf{f}_{k_1:k_2}\left(\mathbb{X}\right)$ represents the set of all $\mathbf{x}\left(k_2\right)$, consistent with $\mathbf{x}\left(k_1\right)\in\mathbb{X}$.

Consider the set state estimator

$$\begin{cases} \mathbb{X}(k) &= \mathbf{f}_{0:k}\left(\mathbb{X}(\mathbf{0})\right) \text{ if } k < m, \text{ (initialization step)} \\ \mathbb{X}(k) &= \mathbf{f}_{k-m:k}\left(\mathbb{X}(k-m)\right) \cap \\ \{q\} \\ \bigcap_{i \in \{1,\ldots,m\}} \mathbf{f}_{k-i:k} \circ \mathbf{g}_{k-i}^{-1}\left(\mathbb{Y}(k-i)\right) \text{ if } k \geq m \end{cases}$$

We assume

- (i) within any time window of length m we have less than q outliers and
- (ii) $\mathbb{X}(0)$ contains $\mathbf{x}(0)$, then $\mathbb{X}(k)$ encloses $\mathbf{x}(k)$.

What is the probability of this assumption ?

Theorem. Consider the sequence of sets $\mathbb{X}(0)$, $\mathbb{X}(1)$, . . . built by the set observer. We have

$$\Pr\left(\mathbf{x}\left(k
ight)\in\mathbb{X}(k)
ight)\geqlpha\ *\ \Pr\left(\mathbf{x}\left(k-1
ight)\in\mathbb{X}(k-1)
ight)$$
 where

$$\alpha = \sqrt[m]{\sum_{i=m-q}^{m} \frac{m! \ \pi^{i} \cdot (1-\pi)^{m-i}}{i! \ (m-i)!}}.$$

4 Underwater localization

SAUCISSE inside a swimming pool

The robot evolution is

$$\begin{cases} \dot{x}_1 &= x_4 \cos x_3 \\ \dot{x}_2 &= x_4 \sin x_3 \\ \dot{x}_3 &= u_2 - u_1 \\ \dot{x}_4 &= u_1 + u_2 - x_4, \end{cases}$$

Underwater robot moving inside a pool

Principle of the control of the underwater robot

Emmision diagram at time $t=16.2\,\mathrm{sec}$

t(sec)	$Pr\left(\mathbf{x}\in\mathbb{X} ight)$	Outliers
3.0	≥ 0.965	58
6.0	≥ 0.932	50
9.0	≥ 0.899	42
12.0	\geq 0.869	51
15.0	≥ 0.838	51
16.2	≥ 0.827	49

5 Indoor localization

The robot is equipped with 24 ultrasonic telemetric sensors

Sivia computes the set of all consistent poses

If state equation of the robot are given

$$\begin{cases} \dot{x} = \rho \frac{\omega_{\mathsf{r}} + \omega_{\mathsf{l}}}{2} \cos \theta, \\ \dot{y} = \rho \frac{\omega_{\mathsf{r}} + \omega_{\mathsf{l}}}{2} \sin \theta \\ \dot{\theta} = \rho \frac{\omega_{\mathsf{r}} + \omega_{\mathsf{l}}}{\delta} \end{cases}$$

a set counterpart of the Kalman filter can be implemented.

6 Comparison with the Kalman filter

A robot (unicycle type) which measures the angle y_1 corresponding to the mark ${\bf m}$

$$\begin{cases} \dot{x}_1 &= x_4 \cos x_3 \\ \dot{x}_2 &= x_4 \sin x_3 \\ \dot{x}_3 &= u_1 \\ \dot{x}_4 &= u_2 \end{cases}$$

$$\begin{cases} y_1 &= \operatorname{atan2} \left(m_y - x_2, m_x - x_1 \right) + x_3, & k \in \mathbb{Z} \\ y_2 &= x_3 \\ y_3 &= x_4. \end{cases}$$

Scenario 1. The measurement noises as well as the state noises are all Gaussian and centered with a variance of 0.01.

Scenario 2. With a probability of 5%, an outlier for y_1 is generated.

Scenario 3. This scenario is similar to Scenario 1 but a bias of 0.5 is added to y_1 .

For RSO, m = 50, q = 10.

Scenario 1: All noises are Gaussian

Scenario 2: 1% of the data are outliers

Scenario 3. An unknown bias has been added to y_1 .