

UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS
P.O. Box 1450
Alexandria, Virginia 22313-1450
www.uspto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
10/713,943	11/14/2003	Bong Wan Kim	2013P125	4798
8791	7590	07/20/2006	EXAMINER	
BLAKELY SOKOLOFF TAYLOR & ZAFMAN 12400 WILSHIRE BOULEVARD SEVENTH FLOOR LOS ANGELES, CA 90025-1030			PATEL, KAUSHIKKUMAR M	
		ART UNIT	PAPER NUMBER	
			2188	

DATE MAILED: 07/20/2006

Please find below and/or attached an Office communication concerning this application or proceeding.

Office Action Summary	Application No.	Applicant(s)
	10/713,943	KIM ET AL.
	Examiner Kaushikkumar Patel	Art Unit 2188

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --
Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS, WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION.

- Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication.
- If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
- Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b).

Status

1) Responsive to communication(s) filed on 01 May 2006.
 2a) This action is FINAL. 2b) This action is non-final.
 3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under *Ex parte Quayle*, 1935 C.D. 11, 453 O.G. 213.

Disposition of Claims

4) Claim(s) 1-20 is/are pending in the application.
 4a) Of the above claim(s) _____ is/are withdrawn from consideration.
 5) Claim(s) _____ is/are allowed.
 6) Claim(s) 1-20 is/are rejected.
 7) Claim(s) _____ is/are objected to.
 8) Claim(s) _____ are subject to restriction and/or election requirement.

Application Papers

9) The specification is objected to by the Examiner.
 10) The drawing(s) filed on 14 November 2003 is/are: a) accepted or b) objected to by the Examiner.
 Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).
 Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).
 11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.

Priority under 35 U.S.C. § 119

12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).
 a) All b) Some * c) None of:
 1. Certified copies of the priority documents have been received.
 2. Certified copies of the priority documents have been received in Application No. _____.
 3. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)).

* See the attached detailed Office action for a list of the certified copies not received.

Attachment(s)

1) <input checked="" type="checkbox"/> Notice of References Cited (PTO-892)	4) <input type="checkbox"/> Interview Summary (PTO-413)
2) <input type="checkbox"/> Notice of Draftsperson's Patent Drawing Review (PTO-948)	Paper No(s)/Mail Date: _____
3) <input type="checkbox"/> Information Disclosure Statement(s) (PTO-1449 or PTO/SB/08) Paper No(s)/Mail Date: _____	5) <input type="checkbox"/> Notice of Informal Patent Application (PTO-152)
	6) <input type="checkbox"/> Other: _____

DETAILED ACTION

Response to Amendment

1. This office action is in response to applicant's communication filed May 1, 2006 in response to PTO office action mailed January 30, 2006. The applicant's remarks and the amendments to the claims were considered with the results that follow.
2. In response to the last office action, claims 1, 6-7, 9 and 18-19 have been amended. No new claims have been added. No claims have been deleted. As a result, claims 1-20 remain pending in this application.

Response to Arguments

3. Applicant's arguments with respect to claims 1-20 have been considered but are moot in view of the new ground(s) of rejection.

Allowable Subject Matter

4. The indicated allowability of claims 2, 4, 9, 16 and 18-20 is withdrawn in view of the newly discovered reference(s) to Donahue et al. (Hardware Support for Fast and Bounded-Time Storage Allocation, March 22, 2002). Rejections based on the newly cited reference(s) follow.

Priority

5. Receipt is acknowledged of papers submitted under 35 U.S.C. 119(a)-(d), which papers have been placed of record in the file.

Drawings

6. The drawings are objected to because of following minor informalities.

Fig.1 and Fig. 2 include registers with labels as 1st, 2nd etc. header/tail pointer of free list. It appears as the register pointers are for single list. It should be corrected to indicate that the register pairs are for different size classes of the blocks.

Corrected drawing sheets in compliance with 37 CFR 1.121(d) are required in reply to the Office action to avoid abandonment of the application. Any amended replacement-drawing sheet should include all of the figures appearing on the immediate prior version of the sheet, even if only one figure is being amended. The figure or figure number of an amended drawing should not be labeled as "amended." If a drawing figure is to be canceled, the appropriate figure must be removed from the replacement sheet, and where necessary, the remaining figures must be renumbered and appropriate changes made to the brief description of the several views of the drawings for consistency. Additional replacement sheets may be necessary to show the renumbering of the remaining figures. Each drawing sheet submitted after the filing date of an application must be labeled in the top margin as either "Replacement Sheet" or "New Sheet" pursuant to 37 CFR 1.121(d). If the examiner does not accept the changes, the applicant will be notified and informed of any required corrective action in the next Office action. The objection to the drawings will not be held in abeyance.

Claim Rejections - 35 USC § 112

7. The following is a quotation of the second paragraph of 35 U.S.C. 112:

The specification shall conclude with one or more claims particularly pointing out and distinctly claiming the subject matter, which the applicant regards as his invention.

8. Claim 3 recites the limitations "the number of entries of the data memory", "the entries of the free list memory" and "the entries of the data memory" in lines 2-3. There is insufficient antecedent basis for these limitations in the claim.

Claim 5 recites the limitations "a plurality of data blocks" and "a plurality of sub data block" in lines 2, 4 and 5. There is insufficient antecedent basis for these limitations in the claim.

Claim 6 recites the limitations "a sub data block", "an entry" in lines 3 and 4. There is insufficient antecedent basis for these limitations in the claim.

Claim 8 recites the limitation "the bit mask value" in line 1. There is insufficient antecedent basis for this limitation in the claim.

Claim 15 recites the limitation "the same entry list" in line 6. There is insufficient antecedent basis for this limitation in the claim.

Claim Rejections - 35 USC § 112

9. Claims 4, 8-13, 17-20 are rejected under 35 U.S.C. 112, second paragraph, as being indefinite for failing to particularly point out and distinctly claim the subject matter which applicant regards as the invention.

As per claim 4, the term "memory is "entry...address value"" is presented in double quotes, it is not clear what is the significance of the double quotes in the claim.

As per claims 8-13, the values of n, i, j and X are not defined in claims or previous claims from which they depend from that makes claims indefinite.

Claims 12, 13 and 17 cites limitation “neighboring” in lines 2-3, 2-3 and 8 respectively. The term is relative is not defined clearly in the claims, which renders claims indefinite.

Claim 17 cites “if the size of a deallocated memory---deallocating...and including an entry” in lines 2 and 6. The meaning of the term “deallocated” means the memory is already deallocated and further “deallocating $\frac{n}{2^i}$ -byte memory space” is unclear. Also the phrase “including an entry” creates confusion whether the entry is also deallocated with the memory space?

Claims 18-20 are also rejected due to their dependency on rejected claim 17.

Claim Rejections - 35 USC § 103

10. The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:

(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the manner in which the invention was made.

11. Claims 1-3, 5-20 are rejected under 35 U.S.C. 103(a) as being unpatentable over McMahon et al. (US 5,784,699) (McMahon herein after) and further in view of Donahue et al. (Hardware Support for Fast and Bounded-Time Storage Allocation, March 22, 2002) (Donahue herein after), [and Trainin et al. (US 2002/0144073 A1), Data

Structures and Algorithms by John Morris (doc. 1) and Linked List Basics by Nick Parlante, introduced for evidentiary references (doc. 2)].

12. As per claim 1, McMahon teaches:

a data memory, which comprises a plurality of data blocks, each of which comprises a plurality of sub data, blocks having predetermined size (McMahon col. 2 line 65 – col. 3 line 1, where the slots are equivalent to plurality of data blocks in claim 1), and when there is a request for allocating memory space of variable size, allocates memory space in units of any one of the sub data blocks and the data blocks (col. 3 lines 9-12);

a free list which manages a free memory space of the data memory as at least one entry (col. 3 lines 1-4).

McMahon fails to teach use of pointers and registers. Donahue teaches tracking free lists using doubly-linked list using pointers and use of registers to store pointers (Donahue page 6, sec. 31. and sec. 3.2). Donahue explicitly failed to teach head and tail pointers but it is well known in the art that doubly-linked list inherently contains head and tail pointers (see doc.1, page 2 and doc. 2, page 26, the advantage is scanning can be performed in any direction and nodes can be added or deleted to any location in the list).

It would have been obvious to one having ordinary skill in the art at the time of the invention to use registers and pointers as taught by Donahue in the memory allocation system of McMahon to implement allocation in hardware for real time systems to improve system performance (see Donahue abstract).

As per claim 2, Donahue teaches registers to store addresses, which inherently teaches address translation (see Donahue page 6, sec. 3.2 and fig. 11 on page 7).

As per claim 3, McMahon teaches, the number of entries of the free list memory is the same as the number of entries of the data memory and the entries of the free list memory and the entries of the data memory have 1:1 corresponding relationship (McMahon col. 6 line 65 – col. 7 line 2, each free list has a mapping to each block that indicates the availability status of the block. Each block size has a free list making the mapping a bijection).

As per claim 5, McMahon teaches, the data memory has a hierarchical structure, in which the data memory contains a plurality of data sub blocks each having memory space of n bytes when n is a power of 2 and i and j are positive integers ($i < j$) (McMahon col. 2 line 66 – col. 3 line 1), and each data block comprises a plurality of sub data blocks each having a memory space of $\frac{n}{2^i}$ –bytes and each sub data block comprises a plurality of sub data blocks each having a memory space of $\frac{n}{2^j}$ –byte (McMahon col. 6 – Table 1 row entries 1 and 2 teach block sizes of 16 bytes and 32 bytes, respectively, thus satisfying the structure of claim 5 limitations). (Donahue also teaches free lists with different size classes of relevant powers of two, see page 5, fig. 10 with different blocks and sub blocks having power of two, and page 6, sec. 3.1, satisfying the structure of claim 5 limitations).

As per claims 6 and 7, McMahon and Donahue teaches, each entry forming the free list memory comprises:

a plurality of bit masks each indicating whether or not sub data block is in use (McMahon col. 3 lines 4-6 and col. 6 line 65 – col. 7 line 2 and col. 7 lines 24-28 collectively describe a bijective mapping between bit masks and sub data blocks indicating availability status, Donahue also teaches free lists with respective blocks and sub blocks maintained with doubly-linked list pointers and bits masks to indicate block is currently allocated or not, see Donahue sec. 3.1, page 6). As pointers indicating entries of next and previous blocks/sub blocks and updating of pointers relative to allocating and deallocating memory is an inherent feature of lists maintained with doubly-linked lists (claim 7) (Doc. 1 and Doc. 2 teaches how pointers are used in memory allocation).

As per claim 8, McMahon teaches different size class of blocks with corresponding free lists and each list is capable of allocating memory according to status of bit mask value and their respective sizes (McMahon col. 3 line 4-6, col. 5 lines 32 – col. 6 line 40 and col. 6 line 65 – col. 7 line 2 and col. 7 lines 24-28, table on col. 6 shows different size memory lists and each able to allocate their respective size memory requirement satisfying structure of claim 8, Donahue also teaches multiple free lists with sizes of power of two capable of allocating their respective size requests, see fig. 10 on page 5, and page 4, sec. 3).

As per claim 9, the understanding of registers containing pointer pairs with respect to size classes of blocks and sub data blocks on specification page 6, line 18 – page 7 line 10 and fig.1 and fig. 2, states that each size class is tracked with their respective head and tail pointers (e.g. with respect fig. 1, 1HPFL and 1TPFL for size class of n –bytes, 2HPFL and 2TPFL for size class of $\frac{n}{2}$ –bytes and 3HPFL and 3TPFL

for size class of $\frac{n}{4}$ –bytes. By dividing memory block of size n with power of two creates

two size classes, if four equal sized blocks are created than it creates 3 size classes and eight equal size creates 4 allocatable size classes and so on. The equation $(1 + \log_2 X)$ provides number of available size class with data block with equally sized sub data blocks, for example 256 –byte data block sub divided in four 64 –byte size creates 3 size class of 256 –bytes, 128 –bytes and 64 –bytes, which requires 3 pointer pairs, similarly if block is divided in eight equal 32 –bytes sub block creates four size classes of 256 –bytes, 128 –bytes, 64 –bytes and 32 –bytes and hence requires 4 pointer pairs. Donahue teaches binary buddy allocation method and creating different size class of sub blocks with their respective free list maintained with doubly-linked list (see fig. 10, page 5 and sec. 3.1 on page 6), thus Donahue inherently teaches limitations of claim 9.

As per claims 10 and 11, Donahue teaches allocating memory of size 2^k by searching the free list at index k and if size 2^k is available than allocates or divides blocks with size 2^{k+1} into two 2^k size blocks allocating one and adding other to free list of size 2^k (see Donahue page 4, col. 2. sec. 3, Buddy System Allocation). Thus Donahue satisfies limitations of claims 10 and 11.

As per claims 12 and 13, Donahue teaches deallocation of sub blocks and combining the deallocated block with its buddy to coalescing into larger block (see Donahue page 4, col. 2, sec. Buddy system deallocation. For further explanation of Buddy system, Trainin teaches memory allocation and deallocation in Buddy systems, See paragraphs [0010]-[0014], the advantage is that a block being freed can be found

by a simple address calculation, see Donahue page 4, col. 2, sec. Buddy system Deallocation, page 6, sec. 3.1 and Trainin paragraph [0013]).

As per claims 14-16, Donahue teaches allocating memory request of size $\frac{n}{2^i}$ – bytes (or 2^k as per Donahue) by searching its respective free list index at k, and allocates the block if it is free, if the respective size is not free than larger size of 2^{k+1} divided into two 2^k size blocks allocating one and adding other to free list of size 2^k (see Donahue page 4, col. 2. sec. 3, Buddy System Allocation). It is inherent that block size smaller than requested size can not be allocated so as per limitation of step (a) of claim 14, inherently requires allocating available next larger size and for limitation of step (b), Donahue teaches dividing larger block into two equal size and allocating one and adding other to its respective free list (as explained on page 4 of Donahue). As per limitations of claims 15 and 16, since Donahue teaches managing free lists with doubly-linked list and free/busy bit, inherently requires setting of bit values and changing of head and tail pointers to their respective locations (see doc.1, page 2 and doc. 2, page 26, the advantage is scanning can be performed in any direction and nodes can be added or deleted to any location in the list. Doc.1 and doc. 2 also teaches managing respective pointers).

As per claims 17-19, Donahue teaches deallocating respective memory sizes and combining with their respective buddies (neighboring block as in present application) to coalescing into larger block (see Donahue page 4, Buddy system deallocation also on page 6, sec 3.1 paragraph 7). Similarly updating of free/used flag and pointers are inherent features as explained above.

As per claim 20, McMahon teaches implementing allocation algorithm as a program product (See McMahon col. 16 lines 12-30).

Claim Rejections - 35 USC § 103

13. The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:

(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negated by the manner in which the invention was made.

14. Claim 4 is rejected under 35 U.S.C. 103(a) as being unpatentable over McMahon et al. (US 5,784,699) (McMahon herein after) and Donahue et al. (Hardware Support for Fast and Bounded-Time Storage Allocation, March 22, 2002) (Donahue herein after) as applied to claims 1-3 above and further in view of Murdocca et al. (Principles of Computer Architecture).

As per claim 4, McMahon and Donahue explicitly fail to teach calculating and address value. But as explained by Murdocca that memory is divided into pages with page frame numbers (see page 270, fig. 7-21). It can be seen that starting address of each page frame (entry) is calculated by "page frame (entry) number x page size (block size) + starting address of the memory". For example starting address of page frame 2 can be calculated by $2 \times 1024 + 0 = 2048$. It would have been obvious to one having ordinary skill in the art at the time of the invention would have calculated the starting address of each entry as evident from Murdocca in the system of McMahon and Donahue.

Conclusion

Any inquiry concerning this communication or earlier communications from the examiner should be directed to Kaushikkumar Patel whose telephone number is 571-272-5536. The examiner can normally be reached on 8.00 am - 4.30 pm.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Mano Padmanabhan can be reached on 571-272-4210. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see <http://pair-direct.uspto.gov>. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.

Kaushikkumar Patel
Examiner
Art Unit 2188

frnd
kmp

Mano Padmanabhan
7/16/06

MANO PADMANABHAN
SUPERVISORY PATENT EXAMINER