QUANTUM COMPUTATION AND QUANTUM INFORMATION: THE QUANTUM FOURIER TRANSFORM

1.

We consider the linear map in \mathbb{C}^N which acts on the computational basis as

$$|j\rangle\mapsto \frac{1}{\sqrt{N}}\sum_{k=0}^{N-1}e^{\frac{2i\pi jk}{N}}\,|k\rangle$$

Let A be the matrix of the transformation in the computational basis.

$$\forall (k,l) \in [0,N-1]^2, \quad a_{kl} = \frac{1}{\sqrt{N}} e^{\frac{2i\pi kl}{N}}$$

The adjoint matrix A^{\dagger} is then

$$\forall (k,l) \in [0, N-1]^2, \quad b_{kl} = a_{lk}^*$$

$$= \frac{1}{\sqrt{N}} e^{-\frac{2i\pi kl}{N}}$$

We compute the coefficient k, l of the product AA^{\dagger} :

$$\begin{split} \forall (k,l) \in [\![0,N-1]\!]^2, \quad c_{kl} &= \sum_{j=0}^{N-1} a_{kj} b_{jl} \\ &= \frac{1}{N} \sum_{j=0}^{N-1} e^{\frac{2i\pi j}{N}(k-l)} \\ &= \frac{1}{N} \sum_{j=0}^{N-1} (e^{\frac{2i\pi}{N}(k-l)})^j \\ &= \begin{cases} \frac{1}{N} \frac{1 - (e^{\frac{2i\pi}{N}(k-l)})^N}{1 - e^{\frac{2i\pi}{N}(k-l)}} = 0 & \text{if } e^{\frac{2i\pi}{N}(k-l)} \neq 1, \\ 1 & \text{if } e^{\frac{2i\pi}{N}(k-l)} = 1. \end{cases} \\ &= \begin{cases} 0 & \text{if } k \neq l, \\ 1 & \text{if } k = l. \end{cases} \\ &= \delta_{kl} \end{split}$$

which shows that $AA^{\dagger} = A^{\dagger}A = I$ i.e. A is unitary.

2.

Here the dimension of the state space is $N=2^n$. The Fourier transform of the n qubit state $|00...0\rangle$ is

$$A|0\rangle = \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} |k\rangle$$

we can write k in binary $k_{n-1} \dots k_1 k_0$

$$A|0\rangle = \frac{1}{2^{n/2}} \sum_{k_0, k_1, \dots, k_0} |k_{n-1} \dots k_1 k_0\rangle$$

or in product representation,

$$= \frac{1}{2^{n/2}} \underbrace{(|0\rangle + |1\rangle)(|0\rangle + |1\rangle) \dots (|0\rangle + |1\rangle)}_{\substack{n \text{ qubits}}}$$

Let $N=2^n$ and $Y=(y_k)_{k\in [0,N-1]}$ be the classical fourier transform of $X=(x_k)_{k\in [0,N-1]}$.

$$\forall k \in [0, N-1], \quad y_k = \sum_{j=0}^{N-1} e^{\frac{2i\pi kj}{2^n}} x_j$$

The factor $\frac{1}{\sqrt{N}}$ is omitted for clarity. We can write j in binary $j_{n-1} \dots j_1 j_0$

$$\begin{aligned} y_k &= \sum_{j_0,j_1,\dots,j_{n-1}=0}^1 e^{\frac{2i\pi k(2^{n-1}j_{n-1}+\dots+2j_1)}{2^n}} x_j \\ &= \sum_{j_1,\dots,j_{n-1}=0}^1 e^{\frac{2i\pi k(2^{n-1}j_{n-1}+\dots+2j_1)}{2^n}} x_{j_{n-1}\dots j_10} + \sum_{j_1,\dots,j_{n-1}=0}^1 e^{\frac{2i\pi k(2^{n-1}j_{n-1}+\dots+2j_1+1)}{2^n}} x_{j_{n-1}\dots j_11} \\ &= \sum_{j_1,\dots,j_{n-1}=0}^1 e^{\frac{2i\pi k(2^{n-1}j_{n-1}+\dots+2j_1)}{2^n}} x_{j_{n-1}\dots j_10} + e^{\frac{2i\pi k}{2^n}} \sum_{j_1,\dots,j_{n-1}=0}^1 e^{\frac{2i\pi k(2^{n-1}j_{n-1}+\dots+2j_1)}{2^n}} x_{j_{n-1}\dots j_11} \\ &= \sum_{j_1,\dots,j_{n-1}=0}^1 e^{\frac{2i\pi k(2^{n-2}j_{n-1}+\dots+j_1)}{2^{n-1}}} x_{j_{n-1}\dots j_10} + e^{\frac{2i\pi k}{2^n}} \sum_{j_1,\dots,j_{n-1}=0}^1 e^{\frac{2i\pi k(2^{n-2}j_{n-1}+\dots+j_1)}{2^{n-1}}} x_{j_{n-1}\dots j_11} \end{aligned}$$

We see the first sum is the k^{th} coefficient of the FT of the sequence $(x_{2k})_{k \in [0,N/2-1]}$ and the second is the k^{th} coefficient of the FT of $(x_{2k+1})_{k \in [0,N/2-1]}$. This shows that to compute FT of sequence of length N, we have to compute 2 FT of sequence of length $\frac{N}{2}$ and do 2N complex additions/multiplications. The complexity of the operation T(N) follows the recurrence:

$$T(N) = 2T(\frac{N}{2}) + 2N$$

We can use the Master theorem [1]:

Theorem. Let $a \ge 1$ and b > 1 be constants, let f(n) be a function, and let T(n) be defined on the non negative integers by the recurrence

$$T(n) = aT(\frac{n}{h}) + f(n)$$

where we interpret $\frac{n}{h}$ to mean either $\lfloor \frac{n}{h} \rfloor$ or $\lceil \frac{n}{h} \rceil$. Then T(n) has the following asymptotic bounds:

- (1) If $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
- (2) If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \log n)$.
- (3) If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $af(\frac{n}{b}) \leqslant cf(n)$ for some constant c < 1 and n sufficiently large, then $T(n) = \Theta(f(n))$.

Here we are in the second case of the theorem, so $T(N) = \Theta(N \log(N)) = \Theta(n2^n)$.

Instead of \mathbb{C} , the Fourier transform may be used in any ring as soon as we are given a Nth root of unity. The book The design and analysis of computer algorithms [2] provides an overview of the FFT, an algorithm using bits operations and application to fast integer multiplication.

5.

The inverse Fourier Transform

$$|j\rangle\mapsto \frac{1}{\sqrt{N}}\sum_{k=0}^{N-1}e^{-\frac{2i\pi jk}{N}}|k\rangle$$

is the adjoint of the Fourier Transform. The quantum circuit of figure 1 is obtained from the FT's circuit, replacing each R_k gate by its adjoint

$$R_k^{\dagger} = \begin{bmatrix} 1 & 0\\ 0 & e^{-\frac{2i\pi}{2^k}} \end{bmatrix}$$

FIGURE 1. Quantum circuit for IFT.

Figure 2. Sequence of controlled U.

In figure 2, the t qubits of the first register are prepared with $|j\rangle = |j_{t-1}\dots j_1j_0\rangle$, the second register is prepared with some state $|u\rangle$. After the first controlled-U operation, the state is $|j\rangle |U^{j_02^0}u\rangle$. After the second controlled-U, the state is $|j\rangle |U^{j_12^1}U^{j_02^0}u\rangle = |j\rangle |U^{j_02^0+j_12^1}u\rangle$ and so on. The final state is $|j\rangle |U^{j_02^0+j_12^1+\dots+j_{t-1}2^{t-1}}u\rangle = |j\rangle |U^ju\rangle$.

8.

By linearity, the phase estimation algorithm takes input $|0\rangle |\Sigma_{u\in A}c_u|u\rangle$, where A is some orthonormal basis of eigenstates of U, to output $\sum_{u\in A}c_u|\widetilde{\varphi_u}\rangle |u\rangle$, where $\widetilde{\varphi_u}$ is an estimation of the phase of the eigenvalue associated with eigenstate u. If we fix $u_0\in A$ beforehand, the probability to measure $\widetilde{\varphi_{u_0}}$ when measuring the first register in the computational basis is

$$\begin{split} (\sum_{u \in A} c_u^* \, \langle \widetilde{\varphi_u} | \, \langle u |) P_{\widetilde{\varphi_{u_0}}} \otimes I(\sum_{u \in A} c_u \, | \widetilde{\varphi_u} \rangle \, | u \rangle) &= (\sum_{u \in A} c_u^* \, \langle \widetilde{\varphi_u} | \, \langle u |) (\sum_{\substack{u \in A \\ \widetilde{\varphi_u} = \widetilde{\varphi_{u_0}} \rangle}} c_u \, | \widetilde{\varphi_u} \rangle \, | u \rangle) \\ &= (\sum_{u \in A} c_u^* \, \langle \widetilde{\varphi_u} | \, \langle u |) (\sum_{\substack{u \in A \\ \widetilde{\varphi_u} = \widetilde{\varphi_{u_0}} \rangle}} c_u \, | \widetilde{\varphi_{u_0}} \rangle \, | u \rangle) \\ &= \sum_{\substack{v \in A \\ u \in A \\ \widetilde{\varphi_u} = \widetilde{\varphi_{u_0}} \rangle}} c_v^* c_u \, \langle \widetilde{\varphi_v} | \widetilde{\varphi_u} \rangle \, \langle v | u \rangle \\ &= \sum_{\substack{u \in A \\ \widetilde{\varphi_u} = \widetilde{\varphi_{u_0}} \rangle}} |c_u|^2 \\ &\geqslant |c_{u_0}|^2 \end{split}$$

FIGURE 3. Phase estimation circuit with t = 1.

I is the identity operator of whatever state space U operates on, while $P_{\widetilde{\varphi_{u_0}}}$ is the orthonormal projector onto the space generated by the vector $|\widetilde{\varphi_{u_0}}\rangle$ of the computational basis. Besides, following the analysis of the book, $\widetilde{\varphi_{u_0}}$ is an approximation to φ_{u_0} to an accuracy 2^{-n} with probability at least $1-\epsilon$ if we make use of $t=n+\lceil\log(2+\frac{1}{2\epsilon})\rceil$ bits in the first register. We conclude we get the desired approximation of φ_{u_0} at the end of the phase estimation algorithm with probability at least $|c_{u_0}|^2(1-\epsilon)$.

9.

U being unitary with eigenvalues -1 and +1, the state space is the direct sum of the two orthogonal eigenspaces $E_{-1} \oplus E_1$. Thus we can uniquely decompose any $|\psi\rangle = |\psi_{-1}\rangle + |\psi_{+1}\rangle$, with $|\psi_{-1}\rangle \in E_{-1}$ and $|\psi_{+1}\rangle \in E_{+1}$. Then $-1 = e^{i\pi} = e^{2i\pi 0.1}$ and $1 = e^0 = e^{2i\pi 0.0}$ shows that is sufficient to make use of t = 1 wire in the first register in the phase estimation procedure to read directly the phase of any eigenvector. If we use $|0\rangle |\psi\rangle$ as input in the circuit of figure 3, the output before the final measurement will be $|0\rangle |\psi_{+1}\rangle + |1\rangle |\psi_{-1}\rangle$. When we measure the first register, we obtain 0 with probability

$$(\langle 0 | \langle \psi_{+1} | + \langle 1 | \langle \psi_{-1} |) P_0 \otimes I(|0\rangle | \psi_{+1} \rangle + |1\rangle | \psi_{-1} \rangle) = (\langle 0 | \langle \psi_{+1} | + \langle 1 | \langle \psi_{-1} |) (|0\rangle | \psi_{+1} \rangle)$$

$$= \langle 0 | 0 \rangle \langle \psi_{+1} | \psi_{+1} \rangle$$

$$= \langle \psi_{+1} | \psi_{+1} \rangle$$

or 1 with probability

$$\begin{aligned} \left(\left\langle 0 \right| \left\langle \psi_{+1} \right| + \left\langle 1 \right| \left\langle \psi_{-1} \right| \right) P_1 \otimes I(\left| 0 \right\rangle \left| \psi_{+1} \right\rangle + \left| 1 \right\rangle \left| \psi_{-1} \right\rangle \right) &= \left(\left\langle 0 \right| \left\langle \psi_{+1} \right| + \left\langle 1 \right| \left\langle \psi_{-1} \right| \right) (\left| 1 \right\rangle \left| \psi_{-1} \right\rangle \right) \\ &= \left\langle 1 \right| 1 \right\rangle \left\langle \psi_{-1} \left| \psi_{-1} \right\rangle \\ &= \left\langle \psi_{-1} \right| \psi_{-1} \right\rangle \end{aligned}$$

The state will collapse respectively into $\frac{1}{\sqrt{\langle \psi_{+1}|\psi_{+1}\rangle}} |0\rangle |\psi_{+1}\rangle$ or $\frac{1}{\sqrt{\langle \psi_{-1}|\psi_{-1}\rangle}} |1\rangle |\psi_{-1}\rangle$. Thus if we read 0 in the first register, that means that we have an eigenvector associated to eigenvalue +1 in the second register, and if we read 1 in the first register, that means that we have an eigenvector associated to eigenvalue -1 in the second register.

Once we have noticed that the FT in dimension $N = 2^1$ is just the Hadamard operator, we conclude the phase estimation circuit in this particular case is the just the same as the circuit of exercice 4.34.

10.

$$x^{2} = 25 = 4$$

 $x^{3} = 20 = -1$
 $x^{4} = 4^{2} = 16$
 $x^{5} = 16 \times 5 = 80$
 $= 17$
 $x^{6} = (-1)^{2} = 1$

11.

Theorem (Euler). For $N \in \mathbb{N}^*$, let

$$\varphi(N)=\#\{m\in[\![1,N]\!],m\wedge N=1\}$$

We have

$$\forall x \in \mathbb{N}^*, \quad x \land N = 1 \Rightarrow x^{\varphi(N)} = 1 \mod N$$

Then by definition of the order $r, r \leq \varphi(N) \leq N$.

Since $x \wedge N = 1$, from Bezout's Theorem $\exists (u, v) \in \mathbb{Z}^2$ such that ux + vN = 1 that is $\exists u$ such that ux = 1 mod N which shows that x has a multiplicative inverse $x^{-1} = u$ in the ring $(\frac{\mathbb{Z}}{N\mathbb{Z}}, +, \times)$. We define the linear map U' on $(\mathbb{C}^2)^{\otimes L} \cong \mathbb{C}^{2^L}$ that acts on the computational basis as

$$\forall y \in \{0,1\}^L, \quad U' \left| y \right\rangle = \left\{ \begin{array}{ll} \left| x^{-1}y \mod N \right\rangle & \text{if } y < N, \\ y & \text{if } y \in [\![N,2^L-1]\!]. \end{array} \right.$$

We have

$$\forall y_1, y_2 \in \{0, 1\}^L, \quad \langle y_1 | U(y_2) \rangle = 1 \Leftrightarrow y_1 = y_2 \in \llbracket N, 2^L - 1 \rrbracket \text{ or } (y_1, y_2 < N \text{ and } xy_2 = y_1 \mod N)$$

$$\Leftrightarrow y_1 = y_2 \in \llbracket N, 2^L - 1 \rrbracket \text{ or } (y_1, y_2 < N \text{ and } \exists k \in \mathbb{Z}, xy_2 = y_1 + kN)$$

$$\Leftrightarrow y_1 = y_2 \in \llbracket N, 2^L - 1 \rrbracket \text{ or } (y_1, y_2 < N \text{ and } \exists k \in \mathbb{Z}, y_2 = x^{-1}y_1 + x^{-1}kN)$$

$$\Leftrightarrow y_1 = y_2 \in \llbracket N, 2^L - 1 \rrbracket \text{ or } (y_1, y_2 < N \text{ and } \exists k' \in \mathbb{Z}, y_2 = x^{-1}y_1 + k'N)$$

$$\Leftrightarrow y_1 = y_2 \in \llbracket N, 2^L - 1 \rrbracket \text{ or } (y_1, y_2 < N \text{ and } x^{-1}y_1 = y_2 \mod N)$$

$$\Leftrightarrow \langle U'(y_1) | y_2 \rangle = 1$$

so, since $\langle U'(y_1)|y_2\rangle$, $\langle y_1|U(y_2)\rangle \in \{0,1\}$,

$$\forall y_1, y_2 \in \{0, 1\}^L, \quad \langle y_1 | U(y_2) \rangle = \langle U'(y_1) | y_2 \rangle$$

This shows that $U' = U^{\dagger}$, since it is obvious that U is invertible and $U^{\dagger} = U^{-1}$, we have shown that U is unitary.

13.

 $(|u_s\rangle)_{s\in \llbracket 0,r-1\rrbracket}$ is defined to be the IFT of the sequence $(|x^k\mod N\rangle)_{k\in \llbracket 0,r-1\rrbracket}$:

$$\forall s \in [0, r-1], \quad |u_s\rangle = \frac{1}{\sqrt{r}} \sum_{k=0}^{r-1} e^{-\frac{2i\pi sk}{r}} |x^k \mod N\rangle$$

Thus the equalities

$$\forall k \in [0, r-1], \quad |x^k \mod N\rangle = \frac{1}{\sqrt{r}} \sum_{s=0}^{r-1} e^{\frac{2i\pi sk}{r}} |u_s\rangle$$

just state the fact that $(|x^k \mod N\rangle)_{k \in [0,r-1]}$ is the FT of the sequence $(|u_s\rangle)_{s \in [0,r-1]}$. Let's check this. Let $k \in [0,r-1]$,

$$\frac{1}{\sqrt{r}} \sum_{s=0}^{r-1} e^{\frac{2i\pi sk}{r}} |u_s\rangle = \frac{1}{r} \sum_{s=0}^{r-1} e^{\frac{2i\pi sk}{r}} \sum_{j=0}^{r-1} e^{-\frac{2i\pi sj}{r}} |x^j \mod N\rangle
= \frac{1}{r} \sum_{j=0}^{r-1} (\sum_{s=0}^{r-1} (e^{\frac{2i\pi(k-j)}{r}})^s) |x^j \mod N\rangle
= \frac{1}{r} \sum_{j=0}^{r-1} r \delta_{jk} |x^j \mod N\rangle
= |x^k \mod N\rangle$$

For k = 0 we obtain

$$\frac{1}{\sqrt{r}} \sum_{s=0}^{r-1} |u_s\rangle = |1\rangle$$

The easiest way is to think with the prime decomposition of the integers x and y. Let $d = x \wedge y$ and $m = x \vee y$. Let p_0, p_1, \ldots, p_n be the prime numbers which appear in either prime decomposition. We can write

$$x = p_0^{\alpha_0} p_1^{\alpha_1} \dots p_n^{\alpha_n}$$
$$y = p_0^{\beta_0} p_1^{\beta_1} \dots p_n^{\beta_n}$$

where $\alpha_i, \beta_i \in \mathbb{N}$. Then it is clear that

$$d = p_0^{\gamma_0} p_1^{\gamma_1} \dots p_n^{\gamma_n}$$
$$m = p_0^{\delta_0} p_1^{\delta_1} \dots p_n^{\delta_n}$$

where $\gamma_i = \min(\alpha_i, \beta_i)$ and $\delta_i = \max(\alpha_i, \beta_i)$. We have $\alpha_i + \beta_i = \gamma_i + \delta_i$. Then,

$$md = p_0^{\gamma_0} p_1^{\gamma_1} \dots p_n^{\gamma_n} p_0^{\delta_0} p_1^{\delta_1} \dots p_n^{\delta_n}$$

$$= p_0^{\gamma_0 + \delta_0} p_1^{\gamma_1 + \delta_1} \dots p_n^{\gamma_n + \delta_n}$$

$$= p_0^{\alpha_0 + \beta_0} p_1^{\alpha_1 + \beta_1} \dots p_n^{\alpha_n + \beta_n}$$

$$= xy$$

16.

Let $x \ge 2$.

$$\int_{x}^{x+1} \frac{1}{y^{2}} dy = \frac{1}{x} - \frac{1}{x+1}$$
$$= \frac{1}{x(x+1)}$$

since

$$x+1\leqslant \frac{3}{2}x \Leftrightarrow 2\leqslant x$$

$$\int_{x}^{x+1} \frac{1}{y^2} \, \mathrm{d}y = \frac{1}{x(x+1)} \geqslant \frac{2}{3x^2}$$

If we sum these inequalities

$$\sum_{q=2}^{+\infty} \frac{1}{q^2} \leqslant \frac{3}{2} \sum_{q=2}^{+\infty} \int_q^{q+1} \frac{1}{y^2} \, \mathrm{d}y = \frac{3}{2} \int_2^{+\infty} \frac{1}{y^2} \, \mathrm{d}y = \frac{3}{4}$$

and finally

$$\sum_{\substack{q \in \mathbb{N}^* \\ q \text{ is prime}}} \frac{1}{q^2} \leqslant \sum_{q=2}^{+\infty} \frac{1}{q^2} \leqslant \frac{3}{4}$$

17.

17.1. The assertion $N=a^b\Rightarrow b\leqslant L$ is obviously wrong if N=a=1. Since we aim to prove an asymptotical result, we can assume that $N\geqslant 2$.

$$\begin{split} N &= a^b \Leftrightarrow \log N = b \log a \\ &\Leftrightarrow \frac{\log N}{\log a} = b & (N \geqslant 2 \Rightarrow a \geqslant 2 \Rightarrow \log a \geqslant 1 > 0) \\ &\Rightarrow b \leqslant \log N \\ &\Leftrightarrow b \leqslant \lfloor \log N \rfloor = L - 1 < L & (b \in \mathbb{N}) \end{split}$$

17.2. Let
$$N = 2^l + a_{l-1}2^{l-1} + \dots + a_12 + a_0$$
 with $l+1 \le L$ and $a_i \in \{0,1\}$.

$$N = 2^{l}(1 + a_{l-1}2^{-1} + \dots + a_{1}2^{-l+1} + a_{0}2^{-l})$$

= $2^{l}(1 + f)$

with $f \in [0, 1[$.

$$\log N = l + \log(1 + a_{l-1}2^{-1} + \dots + a_12^{-l+1} + a_02^{-l})$$

= $l + \log(1 + f)$

where log is \log_2 . This shows that to compute an approximation to $\log N$, we just need an approximation of log in range [1, 2[or any interval of the form [t, 2t[for instance $[\frac{3}{4}, \frac{1}{2}[$. Besides,

$$\forall x \in]-1,1], \quad \ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} + \dots + (-1)^{n+1} \frac{x^n}{n} + \dots$$
$$= \sum_{k=1}^{+\infty} (-1)^{k+1} \frac{x^k}{k}$$

Let's write it until order L-1:

$$\forall x \in]-1, +\infty[, \quad \ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} + \dots + (-1)^{L+1} \frac{x^{L-1}}{L-1} + \sum_{k=L}^{+\infty} (-1)^{k+1} \frac{x^k}{k}$$

For $x \in [0, \frac{1}{2}[$, this is an alternating series and we can bound the rest by

$$\left| \sum_{k=L}^{+\infty} (-1)^{k+1} \frac{x^k}{k} \right| \leqslant \left| (-1)^L \frac{x^L}{L} \right|$$

$$\leqslant \frac{1}{2^L L}$$

For $x \in [-\frac{1}{4}, 0]$, we can use Lagrange formula to bound the rest by

$$\exists \xi \in [-\frac{1}{4}, 0[, \quad |\sum_{k=L}^{+\infty} (-1)^{k+1} \frac{x^k}{k}| = |\frac{\log^{(L)}(\xi)}{(L)!} x^L|$$

$$= \frac{(L-1)!}{(1+\xi)^L L!} |x^L|$$

$$= \frac{1}{(1+\xi)^L L} |x^L|$$

$$\leqslant \frac{1}{(1+\xi)^L L} \frac{1}{4^L}$$

$$\leqslant \frac{1}{(\frac{3}{4})^L L} \frac{1}{4^L}$$

$$= \frac{1}{3^L L}$$

This shows that we can use the Taylor series up to order L-1 to approximate $\ln(x)$ with precision 2^{-L} on the range $\left[\frac{3}{4},\frac{1}{2}\right]$. This is to simplify the complexity analysis. In actual implementation though better and faster approximation are used: See the book by Cheney [4] for mathematical fundations of the approximation of functions by polynomials including the Remez algorithm. See also this insightful post [3] which discusses tradeoffs between accuracy and speed in approximating this log function, taking into account error induced by floating-point representation of real numbers. Here [5] can be found an actual implementation of the C standard library.

In addition to the Taylor error, there is an error occurring when computing the polynomial using floating-point arithmetic. If we store the significand of the floating-point variables in binary on L+1 bits, and use

O(L) bits to do arithmetic operations, each operation will incurr a relative error of at most $\epsilon = 2^{-L-1}$, i.e.

$$x \oplus y = (x+y)(1+\xi)$$
$$x \ominus y = (x-y)(1+\xi)$$
$$x \otimes y = (x \times y)(1+\xi)$$
$$x \oslash y = (x \div y)(1+\xi)$$

where $|\xi| \leq \epsilon$ and the values on the left are the value computed exactly and then rounded on L+1 digits. For the details on floating point arithmetic see [6]. The previous polynomial can be rewritten as:

$$P(x) = \sum_{k=1}^{n} (-1)^{k+1} \frac{1}{k} x^k$$

= $x(1 + x(-\frac{1}{2} + x(\frac{1}{3} + \dots + ((-1)^{n-1} \frac{1}{n-1} + (-1)^n \frac{1}{n} x) \dots)))$

This shows that the evaluation costs n fused multiply-add operations. If one rounding error occurs for each of the multiply-add, we have the following bound on the error due to floating-point arithmetic (see [7] for a detailed analysis)):

$$|\bar{P}(x) - \tilde{P}(x)| = |\sum_{j=1}^{n-1} (\xi_j \sum_{i=j}^n (-1)^{i+1} \frac{1}{i} x^i)|$$

$$= |\sum_{i=1}^{n-1} (\sum_{j=1}^i \xi_j) (-1)^{i+1} \frac{1}{i} x^i + (\sum_{j=1}^{n-1} \xi_j) (-1)^n \frac{1}{n} x^n|$$

$$\leq \sum_{i=1}^{n-1} (\sum_{j=1}^i \epsilon) \frac{1}{i} |x^i| + (\sum_{j=1}^{n-1} \epsilon) \frac{1}{n} |x^n|$$

$$= \epsilon \sum_{i=1}^{n-1} |x^i| + \epsilon \frac{n-1}{n} |x^n|$$

$$\leq \epsilon \sum_{i=1}^n \frac{1}{2^i}$$

$$= \epsilon (1 - (\frac{1}{2})^n)$$

$$\leq \epsilon$$

and we add the error due to just storing the coefficients of the polynomial on L bits: for instance $\frac{1}{3} = 0.010101...$ is rounded when storing in binary. If \tilde{a}_i is the rounded value of $a_i = (-1)^i \frac{1}{i}$, the error will be:

$$|P(x) - \tilde{P}(x)| \leqslant \sum_{i=1}^{n} |a_i - \tilde{a}_i| |x^i|$$

$$\leqslant \sum_{i=1}^{n} \epsilon |a_i| |x^i|$$

$$= \epsilon \sum_{i=1}^{n} \frac{1}{i} |x^i|$$

$$\leqslant \epsilon \sum_{i=1}^{n} |x^i|$$

$$\leqslant \epsilon$$

Taking into consideration the three types of error, we see that the taylor series of order L is a approximation to $\ln(x)$ on range $\left[\frac{3}{4}, \frac{1}{2}\right[$ with precision 2^{-L} since :

$$\frac{1}{2^{L+1}(L+1)} + 2\epsilon \leqslant 2^{-L}$$

$$\Leftrightarrow \frac{2^{-L-1}}{L} + 2^{-L} \leqslant 2^{-L}$$

$$\Leftrightarrow 2^{-L-1}(\frac{1}{L} + 1) \leqslant 2^{-L}$$

$$\Leftrightarrow L \geqslant 1$$

This analysis shows that the procedure Log2 computes an approximation of $\log(N)$ to precision 2^{-L} . Binary addition-substraction costs $\Theta(L)$ operations, grade-school multiplication-division costs $\Theta(L^2)$. Multiplication complexity can be improved to:

- $O(L^{\log_2(3)})$ using Karatsuba algorithm [2].
- $-O(L\log(L)\log\log(L))$ using Schönhage-Strassen algorithm [2].
- $O(L \log L \log^* L \text{ using Furer algorithm [8]}.$

Faster division $x \div y$ consists in computing $\frac{1}{y}$ in $O(\log(L))$ multiplications, then doing $x \div y = x \times \frac{1}{y}$ (cf. [9]). In the end computing $\log_2 N$ has an $O(L^3)$ time complexity. If we are given an approximating polynomial and are assured it gives the desired precision for any input size considered, the complexity is $O(L^2)$. The complexity of finding $|\log_2(N)|$ given the binary representation of N is O(L).

```
 \begin{aligned} & Log2(N,L) \\ & \# L \geqslant l+1 \text{ where } l = \lfloor \log_2(N) \rfloor, \text{ i.e. } 2^l \leqslant N < 2^{l+1}. \\ & \textbf{for } j = 1 \textbf{ to } L \\ & A[j] = (-1)^{j+1} \frac{1}{j} \\ & m = \lfloor \log_2(N) \rfloor & \# N = 2^m (1+f) \\ & f = \frac{N}{2^m} - 1 & \# \text{ no rounding error in } f. \\ & \textbf{if } f \geqslant \frac{1}{2} & \# \text{ map range } [1.5, 2[ \text{ to } [0.75, 1[.\\ & f = \frac{1/2 - f}{2} \\ & m = m + 1 \\ & q = 0 \\ & \textbf{for } j = L \textbf{ downto } 0 \\ & q = q \times f + A[j] \\ & q = q \div \ln(2) \\ & \textbf{return } q + m \end{aligned}
```

18.

$$x^{2} = 16$$

 $x^{3} = 64 = -27$
 $x^{4} = 108 = 17$
 $x^{5} = 68 = -23$
 $x^{6} = 92 = 1$

shows that the order of x is 6.

19.

1 is not composite and all the odd integers less than 15 are prime except $9 = 3^2$.

Let $l \in [0, N-1]$.

$$\sum_{x=0}^{N-1} e^{-\frac{2i\pi lx}{N}} f(x) = \sum_{k=0}^{\frac{N}{r}-1} \sum_{x=0}^{r-1} e^{-\frac{2i\pi l(kr+x)}{N}} f(kr+x)$$

$$= \sum_{k=0}^{\frac{N}{r}-1} \sum_{x=0}^{r-1} e^{-\frac{2i\pi lkr}{N}} e^{-\frac{2i\pi lx}{N}} f(x)$$

$$= \sum_{x=0}^{r-1} (\sum_{k=0}^{\frac{N}{r}-1} e^{-\frac{2i\pi lkr}{N}}) e^{-\frac{2i\pi lx}{N}} f(x)$$

$$= \sum_{x=0}^{r-1} (\sum_{k=0}^{\frac{N}{r}-1} e^{-\frac{2i\pi lkr}{N}}) e^{-\frac{2i\pi lx}{N}} f(x)$$

we have

$$\sum_{k=0}^{\frac{N}{r}-1} e^{-\frac{2i\pi lkr}{N}} = \begin{cases} \frac{N}{r} & \text{if } \frac{lr}{N} \in \mathbb{N}, \\ \frac{1 - (e^{-\frac{2i\pi lr}{N}})^{\frac{N}{r}}}{1 - e^{-\frac{2i\pi lr}{N}}} = 0 & \text{otherwise.} \end{cases}$$

so if $l = l' \frac{N}{r}$, with $l' \in [0, r - 1]$,

$$\frac{1}{\sqrt{N}} \sum_{x=0}^{N-1} e^{-\frac{2i\pi lx}{N}} f(x) = \sqrt{\frac{N}{r}} \frac{1}{\sqrt{r}} \sum_{x=0}^{r-1} e^{-\frac{2i\pi l'x}{r}} f(x)$$

otherwise

$$\frac{1}{\sqrt{N}} \sum_{x=0}^{N-1} e^{-\frac{2i\pi lx}{N}} f(x) = 0$$

22.

First we observe that because of the periodicity, we have

$$f(x_1, x_2) = f(x_1 - 1, x_2 + s)$$

$$= \dots$$

$$= f(1, x_2 + (x_1 - 1)s)$$

$$= f(0, x_2 + x_1s)$$

Second, for a fixed x_1 , the application

$$\varphi_{x_1}: \llbracket 0, r-1 \rrbracket \to \llbracket 0, r-1 \rrbracket$$

$$x_2 \mapsto x_2 + x_1 s \mod r$$

is a permutation of [0, r-1], i.e. for each $j \in [0, r-1]$, there is exactly one x_2 such that $x_2 + x_1s = j \mod r$. Finally, if $x_2 + x_1s = j \mod r$,

$$e^{-\frac{2i\pi(l_1x_1+l_2x_2)}{r}} = e^{-\frac{2i\pi(l_1x_1+l_2(j-x_1s+kr))}{r}}$$
$$= e^{-\frac{2i\pi((l_1-l_2s)x_1+l_2j)}{r}}$$

FIGURE 4. Periodicity of f with r = 15 and s = 4.

Let's now rewrite the sum. Let $l_1, l_2 \in [0, r-1]$:

$$|\hat{f}(l_1, l_2)\rangle = \sum_{x_1, x_2=0}^{r-1} e^{-\frac{2i\pi(l_1x_1 + l_2x_2)}{r}} |f(x_1, x_2)\rangle$$

$$= \sum_{x_1=0}^{r-1} \sum_{x_2=0}^{r-1} e^{-\frac{2i\pi(l_1x_1 + l_2x_2)}{r}} |f(x_1, x_2)\rangle$$

$$= \sum_{x_1=0}^{r-1} e^{-\frac{2i\pi l_1x_1}{r}} \sum_{x_2=0}^{r-1} e^{-\frac{2i\pi l_2x_2}{r}} |f(0, x_2 + x_1s)\rangle$$

$$= \sum_{x_1=0}^{r-1} e^{-\frac{2i\pi l_1x_1}{r}} \sum_{j=0}^{r-1} e^{-\frac{2i\pi l_2(-x_1s+j)}{r}} |f(0, j)\rangle$$

$$= \sum_{x_1=0}^{r-1} e^{-\frac{2i\pi(l_1 - l_2s)x_1}{r}} \sum_{j=0}^{r-1} e^{-\frac{2i\pi l_2j}{r}} |f(0, j)\rangle$$

$$= \sum_{x_1=0}^{r-1} (e^{-\frac{2i\pi(l_1 - l_2s)}{r}})^{x_1} \sum_{j=0}^{r-1} e^{-\frac{2i\pi l_2j}{r}} |f(0, j)\rangle$$

Using the usual argument, the first factor which is a geometric sum is 0 unless $l_1 - l_2 s = kr$ with $k \in \mathbb{Z}$ and in that case

$$\sum_{x_1, x_2=0}^{r-1} e^{-\frac{2i\pi(l_1x_1+l_2x_2)}{r}} |f(x_1, x_2)\rangle = r \sum_{j=0}^{r-1} e^{-\frac{2i\pi l_2j}{r}} |f(0, j)\rangle$$

23.

Let $x_1, x_2 \in [0, r-1]$.

$$\sum_{l_1, l_2 = 0}^{r-1} e^{\frac{2i\pi(x_1 l_1 + x_2 l_2)}{r}} |\hat{f}(l_1, l_2)\rangle = \sum_{l_2 = 0}^{r-1} \sum_{l_1 = 0}^{r-1} e^{\frac{2i\pi(x_1 l_1 + x_2 l_2)}{r}} |\hat{f}(l_1, l_2)\rangle$$

for a given value of l_2 , there is exactly one $l_1 \in [0, r-1]$ such that $l_1 = l_2 s \mod r$, so there is exactly one term in each inner sum which is non zero and

$$\begin{split} \sum_{l_2=0}^{r-1} \sum_{l_1=0}^{r-1} e^{\frac{2i\pi(x_1l_1+x_2l_2)}{r}} \, |\hat{f}(l_1,l_2)\rangle &= r \sum_{l_2=0}^{r-1} e^{\frac{2i\pi(x_1l_2s+x_2l_2)}{r}} \sum_{j=0}^{r-1} e^{-\frac{2i\pi l_2j}{r}} \, |f(0,j)\rangle \\ &= r \sum_{j=0}^{r-1} (\sum_{l_2=0}^{r-1} e^{\frac{2i\pi(x_1l_2s+x_2l_2-jl_2)}{r}}) \, |f(0,j)\rangle \\ &= r \sum_{j=0}^{r-1} (\sum_{l_2=0}^{r-1} (e^{\frac{2i\pi(x_1s+x_2-j)}{r}})^{l_2}) \, |f(0,j)\rangle \end{split}$$

Again a geometric sum

$$\sum_{l_2=0}^{r-1} (e^{\frac{2i\pi(x_1s+x_2-j)}{r}})^{l_2} = \begin{cases} r & \text{if } j = x_2+x_1s \mod r, \\ 0 & \text{otherwise.} \end{cases}$$

So finally

$$\sum_{l_2=0}^{r-1} \sum_{l_1=0}^{r-1} e^{\frac{2i\pi(x_1l_1+x_2l_2)}{r}} |\hat{f}(l_1, l_2)\rangle = r^2 |f(0, x_2+x_1s+kr)\rangle$$

$$= r^2 |f(0, x_2+x_1s)\rangle$$

$$= r^2 |f(x_1, x_2)\rangle$$

References

- [1] Thomas H. Cormen and Charles E. Leiserson: Introduction to algorithms, MIT Press (2009)
- [2] Aho, Alfred V.; Hopcroft, John E.; Ullman, Jeffrey D.: The design and analysis of computer algorithms, Addison-Wesley (1974)
- [3] Goldberg, David : Fast approximate Logarithms, https://tech.ebayinc.com/engineering/fast-approximate-logarithms-part-i-the-basics/.
- [4] Cheney, E.W.: Introduction to approximation theory, AMS Chelsea publishing (1998).
- [5] musl an implementation of the standard library for Linux-based systems, http://git.musl-libc.org/cgit/musl/tree/src/math/log2.c.
- [6] Goldberg, David: What every computer scientist should know about floating-point arithmetic, ACM computing surveys, Vol 23 (1991).
- [7] Oliver, J.: rounding error propagation in polynomial evaluation schemes, Journal of Computational and applied Mathematics, volume 5, no 2 (1979).
- [8] Fürer, Martin: Faster integer multiplication, Proceedings of the 39th annual ACM symposium on theory of computing (2007).
- [9] division: multiplicative algorithms, Advanced Computer Arithmetic EE 486,https://web.stanford.edu/class/ee486/doc/chap5.pdf.