Upper bounds for average Bayes accuracy in terms of mutual information

Charles Zheng and Yuval Benjamini

September 7, 2016

These are preliminary notes.

1 Introduction

Suppose X and Y are continuous random variables (or vectors) which have a joint distribution with density p(x,y). Let $p(x) = \int p(x,y)dy$ and $p(y) = \int p(x,y)dx$ denote the respective marginal distributions, and p(y|x) = p(x,y)/p(x) denote the conditional distribution.

Mutual information is defined

$$I[p(x,y)] = \int p(x,y) \log \frac{p(x,y)}{p(x)p(y)} dxdy.$$

ABE_k, or k-class Average Bayes accuracy is defined as follows. Let $X_1, ..., X_K$ be iid from p(x), and draw Z uniformly from 1, ..., k. Draw $Y \sim p(y|X_Z)$. Then, the average Bayes accuracy is defined as

$$ABA_k[p(x, y)] = \sup_{f} Pr[f(x_1, ..., x_k, y) = Z]$$

where the supremum is taken over all functions f. A function f which achieves the supremum is

$$f_{Bayes}(x_1, ..., x_k, y) = \operatorname{argmax}_{z \in \{1, ..., k\}} p(y|x_z),$$

where an arbitrary rule can be employed to break ties. Such a function f_{Bayes} is called a Bayes classification rule. It follows that ABA_k is given explicitly

by

$$ABA_k = \frac{1}{k} \int \left[\prod_{i=1}^k p(x_i) dx_i \right] \int dy \max_i p(y|x_i).$$

2 Problem formulation

Let \mathcal{P} denote the collection of all joint densities p(x, y) on finite-dimensional Euclidean space. For $\iota \in [0, \infty)$ define $C_k(\iota)$ to be the largest k-class average Bayes error attained by any distribution p(x, y) with mutual information not exceeding ι :

$$C_k(\iota) = \sup_{p \in \mathcal{P}: I[p(x,y)] \le \iota} ABA_k[p(x,y)].$$

A priori, $C_k(\iota)$ exists since ABA_k is bounded between 0 and 1. Furthermore, C_k is nondecreasing since the domain of the supremum is monotonically increasing with ι .

It follows that for any density p(x, y), we have

$$ABA_k[p(x,y)] \le C_k(I[p(x,y)]).$$

Hence C_k provides an upper bound for average Bayes error in terms of mutual information.

Conversely we have

$$I[p(x,y)] \ge C_k^{-1}(ABA_k[p(x,y)])$$

so that C_k^{-1} provides a lower bound for mutual information in terms of average Bayes error.

On the other hand, there is no nontrivial *lower* bound for average Bayes error in terms of mutual information, nor upper bound for mutual information in terms of average Bayes error, since

$$\inf_{p \in \mathcal{P}: I[p(x,y)] \le \iota} ABA_k[p(x,y)] = \frac{1}{k}.$$

regardless of ι .

The goal of this work is to attempt to compute or approximate the functions C_k and C_k^{-1} .

3 Special case

We work out the special case where p(x, y) lies on the unit square, and p(x) and p(y) are both the uniform distribution. Let \mathcal{P}^{unif} denote the set of such distributions, and

$$C_k^{unif}(\iota) = \sup_{p(x,y) \in \mathcal{P}^{unif}: \mathbf{I}[p] \le \iota} ABA_k[p].$$

In this case, letting $X_1,...,X_k \sim \text{Unif}[0,1]$, and $Y \sim \text{Unif}[0,1]$ define $Z_i(y) = p(y|X_i)$. We have $\mathbf{E}[Z(y)] = 1$ and,

$$I[p(x,y)] = \mathbf{E}[Z(Y)\log Z(Y)]$$

while

$$ABA_k[p(x,y)] = k^{-1} \mathbf{E}[\max_i Z_i(Y)].$$

Letting g_y be the density of Z(y), we have

$$I[p(x,y)] = \mathbf{E}[-H[g_u]]$$

and

$$ABA_k[p(x,y)] = \mathbf{E}[\psi_k[g_y]]$$

where

$$H[g] = -\int g(x)\log g(x)$$

and

$$\psi_k[g] = \int xg(x)G(x)^{k-1}dx$$

for $G(x) = \int_0^x g(t)dt$. Additionally g_y satisfies the constraint $\int xg(x)dx = 1$ since $\mathbf{E}[Z(y)] = 1$.

Define the set $D = \{(\alpha, \beta)\}$ as the set of possible values of $(-H[g], \psi_k[g])$ taken over all distributions g supported on $[0, \infty)$ with $\int xg(x)dx = 1$. Next, let $\mathcal{C}(D)$ denote the convex hull of D. It follows that $(I[p], ABA_k[p]) \in \mathcal{C}(D)$ since the pair is obtained via a convex average of points $(-H[g_u], \psi_k[g])$.

We trivally obtain the following theorem.

Theorem. Let $d_k(\iota) = \sup\{\beta : (\iota, \beta) \in \mathcal{C}(D)\}$. Then

$$C_k(\iota) \le d_k(\iota).$$

Hence, we can obtain an upper bound on C_k via properties of the set D. It suffices to determine the upper envelope, which can be determined by solving the continuous optimization problems

maximize
$$\int z_0^{\infty} g(z) G^{k-1}(z) dz$$

subject to the constraints

- $g:[0,\infty)\to[0,\infty)$.
- $\int_0^\infty g(z)dz = 1$.
- $\int_0^\infty zg(z)dz = 1.$
- $\int_0^\infty g(z) \log g(z) \le \alpha$.

We can let \mathcal{G}_{α} denote the set of densities g satisfying the constraints; it is evident that \mathcal{G}_{α} is convex. Meanwhile, the objective function, which can also be written

$$\int_0^\infty z g(z) \left(\int_0^z g(t) dt \right)^{k-1} dz$$

4 General case

We claim that the constants $C_k^{unif}(\iota)$ obtained for the special case also apply for the general case, i.e.

$$C_k(\iota) = C_k^{unif}(\iota).$$

We make use of the following Lemma:

Lemma. Suppose X, Y, W, Z are continuous random variables, and that $W \perp Y|Z$, $Z \perp X|Y$, and $W \perp Z|(X,Y)$. Then,

$$I[p(x,y)] = I[p((x,w),(y,z))]$$

and

$$ABA_k[p(x,y)] = ABA_k[p((x,w),(y,z))].$$

Proof. Due to conditional independence relationships, we have

$$p((x,w),(y,z)) = p(x,y)p(w|x)p(z|y).$$

It follows that

$$I[p((x,w),(y,z))] = \int dx dw dy dz \ p(x,y)p(w|x)p(z|w) \log \frac{p((x,w),(y,z))}{p(x,w)p(y,z)}$$

$$= \int dx dw dy dz \ p(x,y)p(w|x)p(z|w) \log \frac{p(x,y)p(w|x)p(z|y)}{p(x)p(y)p(w|x)p(z|y)}$$

$$= \int dx dw dy dz \ p(x,y)p(w|x)p(z|w) \log \frac{p(x,y)}{p(x)p(y)}$$

$$= \int dx dy \ p(x,y) \log \frac{p(x,y)}{p(x)p(y)} = I[p(x,y)].$$

Also,

$$\begin{aligned} \operatorname{ABA}_{k}[p((x,w),(y,z))] &= \int \left[\prod_{i=1}^{k} p(x_{i},w_{i}) dx_{i} dw_{i} \right] \int dy dz \, \max_{i} p(y,z|x_{i},w_{i}). \\ &= \int \left[\prod_{i=1}^{k} p(x_{i},w_{i}) dx_{i} dw_{i} \right] \int dy \, \max_{i} p(y|x_{i}) \int dz \, p(z|y). \\ &= \int \left[\prod_{i=1}^{k} p(x_{i}) dx_{i} \right] \left[\prod_{i=1}^{k} \int dw_{i} p(w_{i}|x_{i}) \right] \int dy \, \max_{i} p(y|x_{i}) \\ &= \operatorname{ABA}_{k}[p(x,y)]. \end{aligned}$$

Г

Next, we use the fact that for any p(x, y) and $\epsilon > 0$, there exists a discrete distribution $p_{\epsilon}(\tilde{x}, \tilde{y})$ such that

$$|\mathrm{I}[p(x,y)] - \mathrm{I}[p_{\epsilon}(\tilde{x},\tilde{y})]| < \epsilon,$$

where for discrete distributions, one defines

$$I[p(x,y)] = \sum_{x} \sum_{y} p(x,y) \log \frac{p(x,y)}{p(x)p(y)}.$$

We require the additional condition that the marginals of the discrete distribution are close to uniform: that is, for some $\delta > 0$, we have

$$\sup_{x,x':p_{\epsilon}(x)>0 \text{ and } p_{\epsilon}(x')>0} \frac{p_{\epsilon}(x)}{p_{\epsilon}(x')} \leq 1 + \delta.$$

and likewise

$$\sup_{y,y':p_{\epsilon}(y)>0 \text{ and } p_{\epsilon}(y')>0} \frac{p_{\epsilon}(y)}{p_{\epsilon}(y')} \leq 1 + \delta.$$

To construct the discretization with the required properties, choose a regular rectangular grid Λ over the domain of p(x,y) sufficiently fine so that partitioning X,Y into grid cells, we have

$$|I[p(x,y)] - I[\tilde{p}(\tilde{x},\tilde{y})]| < \epsilon.$$

[NOTE: to be written more clearly] Next, define