CHI 2024

Exploring Context-Aware Mental Health Self-Tracking Using Multimodal Smart Speakers in Home Environments

Jieun Lim*, Youngji Koh*, Auk Kim, Uichin Lee

Mental Health: A Rising Global Concern

1 in 8 people worldwide live with a mental health problem

Self-Tracking: A Method for Mental Health Monitoring

Support Self-Reflection

Enhance self-awareness of mental health

Help Clinical Decision-Making

Bridge the information gap between healthcare stakeholders and patients

ESM for Mental Health Self-Tracking

Diversity of the Experience Sampling Method (ESM) Technologies

Paper & Pen Method

Mobile/Wearable Technology (Wang et al., 2014)

Smart Speakers in Home Environments (Wei et al., 2021)

Mental Health Self-Tracking in Home Environments

People with mental health issues often stay indoors

Need for mental health self-tracking technology in homes is increasing

Mental Health Self-Tracking with Multimodal Smart Speakers

Mental Health ESM often requires visual-verbal tasks

(e.g., Image description task for diagnosing depression or cognitive impairment)

Opportune Timing for ESM Design in Home Environments

Identifying opportune moments in previous studies

Task Breakpoints in Mobile/Desktop Environment (Adamczyk et al., 2004)

User Activity Transitions in Mobile Environment (Fischer et al., 2011)

Opportune Timing for ESM Design in Home Environments

Identifying opportune moments in previous studies

HCI studies are still to investigate user experiences of context-aware mental health self-tracking using multimodal speakers

Sitting

Standing

Walking

Task Breakpoints in Desktop Environment (Adamczyk et al., 2004) User Activity Transitions in Mobile Environment (Fischer et al., 2011)

Context-Aware Self-Tracking System using Multimodal Speakers

Our System:

Context-Aware Self-Tracking System using Multimodal Speakers

Our System Prototype:

①-2 Speaker triggering app with wide-angle lens

: Collect noise, brightness, and # of people

② Multimodal speaker

: Provide voice and touch interactions

①-1 IoT Sensor : Collect CO2 data

Context-Aware ESM Scheduling

Determine opportune moments for ESM requests in home environments

- Detect user context transitions using sensors:
 - Auditory channel availability using Noise Sensor
 - Proximity to smart speakers using Light Sensor, CO2 Sensor, Camera

Multimodal ESM Survey

ESM Task Steps and User Interface

(1) Start and Greeting

(2) Previous Activity

(3) Mental Health Survey

(4) Picture Card Description

Research Questions

- 1. How do users perceive proactive mental health self-tracking using multimodal speakers?
- 2. How do ESM compliance rates change across different context transitions?
- 3. What are the preferred interaction modalities for responding to multimodal speakers?

Field Study Methods

Participants (N=20)

- Recruitment criteria
 - People who were diagnosed with at least mild depression (a PHQ 9 score of 5 or higher)
 - People who had private spaces at home or were single-person households
 - People who spent a minimum of 5 hours daily in their room, excluding sleep time

Experimental
Orientation
System Setup
Four-week
Field Study
Interview

Research Questions

- 1. How do users perceive proactive mental health self-tracking using multimodal speakers?
- 2. How do ESM compliance rates change across different context transitions?
- 3. What are the preferred interaction modalities for responding to ESM requests?

RQ1: Overall User Experience of Proactive Mental Health Self-Tracking using Multimodal Smart Speakers

Positive Aspects: Proactive system helped users to gauge mental health status

"I don't usually get a chance to ask myself these questions (related to mental health). But every hour or two, the system asks you how you're feeling or how stressed you are, and it gives me more opportunities to think about whether I've just gotten stressed." - P18

"Before, I had no idea about my moods. But when I got a chance to think about it (through the survey), I was like, "I see ... what was happening' and could relieve negative emotions." - P19

RQ1: Overall User Experience of Proactive Mental Health Self-Tracking using Multimodal Smart Speakers

Positive Aspects: Human-like factors made users engaging to ESM requests

"I was more focused on the question because the <u>speaker asked</u> <u>questions verbally</u>. Also, there's only one question on the screen. <u>It makes me concentrate on each question.</u>" - P12

"I felt like it's a person because the timing was not exactly regular. It's usually unpredictable when someone will contact you. So, *the timing of the speaker talking to me made me feel like a person.*" - P13

RQ1: Overall User Experience of Proactive Mental Health Self-Tracking using Multimodal Smart Speakers

Negative Aspects: Machine-like interaction style led to boredom

"The questions and pictures are repeated over and over again. *As the experiment progressed, I felt bored because the system became more habitual and predictable.*" - P15

"I think it was annoying to keep asking the same questions over and over again. So, *there was a decrease in the sincerity of responses.*" - P17

Research Questions

- 1. How do users perceive proactive mental health self-tracking using multimodal speakers?
- 3. What are the preferred interaction modalities for responding to ESM requests?

2. How do ESM compliance rates change across different context transitions?

RQ2: ESM Response Rates across Different Context Transition

ESM response rates were lower in the time-out trigger condition and morning

Trigger type	Num. responses	Num. requests	Response rate	
Maximum time interval	1,502	2,815	53.4%	
CO_2	164	272	60.3%	
Human	364	549	66.3%	
Light	157	206	76.2%	
Noise	14	21	66.7%	
Total	2,201	3,863	57.0%	

Time of day	Num. responses	Num. requests	Response rate
Dawn (2:00~7:59)	35	64	54.7%
Morning (8:00~13:59)	549	1049	52.3%
Afternoon (14:00~19:59)	767	1388	55.3%
Night (20:00~01:59)	850	1362	62.4%
Total	2,201	3,863	57.0%

RQ2: ESM Response Rates across Different Context Transition

Responded more to ESM in the afternoon and night than in the morning

or odds ratio Odds ratio 0.96	1.41 3.00	p-value 0.84
0.96	1.41	
1.64	3.00	0.11
1.64	3.00	0.44
		0.11
1.27	1.53	0.01
1.54	1.86	< 0.001
1.80	2.42	< 0.001
2.52	3.16	< 0.001
3.44	4.95	< 0.001
	3.71	0.47
	2.52	2.52 3.16 3.44 4.95

RQ2: ESM Response Rates across Different Context Transition

Responded more to ESM when users were near the speakers (CO2, Human, Light)

Predictors	B (SE)	z-statistic	95% CI for odds ratio			
			Lower	Odds ratio	Upper	p-value
(Intercept)	-0.04 (0.20)	-0.20	0.66	0.96	1.41	0.84
Time of day						
Dawn (2:00-7:59)	0.50 (0.31)	-1.61	0.90	1.64	3.00	0.11
Afternoon (14:00–19:59)	0.24 (0.09)	2.58	1.06	1.27	1.53	0.01
Night (20:00-1:59)	0.43 (0.10)	4.54	1.28	1.54	1.86	< 0.001
Trigger type						
CO ₂	0.60 (0.15)	3.95	1.35	1.80	2.42	<0.001
Human	0.92 (0.12)	7.98	2.01	2.52	3.16	< 0.001
Light	1.24 (0.19)	6.65	2.39	3.44	4.95	< 0.001
Noise	0.35 (0.49)	0.72	0.55	1.42	3.71	0.47

Research Questions

- 1. How do users perceive proactive mental health self-tracking using multimodal speakers?
- 2. How do ESM compliance rates change across different context transitions?
- 3. What are the preferred interaction modalities for responding to ESM requests?

RQ3: Interaction Modality Preferences based on User Context

Most users preferred to respond with GUI over VUI for multiple choice questions

Reasons for Using a GUI

Limitation of VUI & Familiarity with GUI

Reasons for Using a VUI

Situations when hands are occupied

RQ3: Interaction Modality Preferences based on User Context

VUI/MIXED was more frequent than GUI in doing chores and personal hygiene

Summary of Key Findings

- RQ1: Overall User Experience
 - o **Proactive self-tracking** can increase self-reflection regarding mental health
 - Human-likeness helped users engaging in answering mental health questions
- RQ2: ESM Response Rates across Different Context Transition
 - User response rates improved when ESM are requested in context transitions
- RQ3: Interaction Modality Preferences based on User Context
 - Users' previous contexts influenced their interaction modality selection

Discussion

Context Awareness for Modality Selection and Adaptation

Detect user contexts and **adaptively select** an appropriate **interaction modality**

Sensor Selection in Home Environments

Use sensors that are capable of **detecting** multiple users

Design Implications

Consideration for ESM System Design

Consider **context-sensing in the multimodal ESM** interaction design

Consideration for Engaging ESM Interaction Design

Vary the tone and content as in contexttailored adaptations

CHI 2024

Exploring Context-Aware Mental Health Self-Tracking Using Multimodal Smart Speakers in Home Environments

Youngji Koh, KAIST youngji@kaist.ac.kr

Takeaway Notes

- Context-awareness improves user compliance of ESM surveys and makes user feel it like human
- HCI studies continue to investigate context-tailored adaptations for making user engaging in ESM

