- **457.** An electron moves with a speed of 2.2×10^6 m/s at right angles through a 1.1×10^{-2} T magnetic field. How large is the magnetic force on the electron?
- **458.** A pulsar's magnetic field is 1×10^{-8} T. How fast does an electron move perpendicular to this field so that a 3.2×10^{-22} N magnetic force acts on the charge?
- **459.** A levitation device designed to suspend 75 kg uses 10.0 m of wire and a 4.8×10^{-4} T magnetic field, perpendicular to the wire. What current is needed?
- **460.** A power line carries 1.5×10^3 A for 15 km. Earth's magnetic field is 2.3×10^{-5} T at a 45° angle to the power line. What is the magnetic force on the line?

Chapter 20 Electromagnetic Induction

- **461.** A coil with 540 turns and a 0.016 m² area is rotated exactly from 0° to 90.0° in 0.050 s. How strong must a magnetic field be to induce an emf of 3.0 V?
- **462.** A 550-turn coil with an area of 5.0×10^{-5} m² is in a magnetic field that decreases by 2.5×10^{-4} T in 2.1×10^{-5} s. What is the induced emf in the coil?
- **463.** A 246-turn coil has a 0.40 m² area in a magnetic field that increases from 0.237 T to 0.320 T. What time interval is needed to induce an emf of –9.1 V?
- **464.** A 9.5 V emf is induced in a coil that rotates from 0.0° to 90.0° in a 1.25×10^{-2} T magnetic field for 25 ms. The coil's area is 250 cm². How many turns of wire are in the coil?
- **465.** A generator provides a rms emf of 320 V across 100Ω . What is the maximum emf?
- **466.** Find the rms current in the circuit in problem 465.
- **467.** Some wind turbines can provide an rms current of 1.3 A. What is the maximum ac current?
- **468.** A transformer has 1400 turns on the primary and 140 turns on the secondary. What is the voltage across the primary if secondary voltage is 6.9 kV?
- **469.** A transformer has 140 turns on the primary and 840 turns on the secondary. What is the voltage across the secondary if the primary voltage is 5.6 kV?

- **470.** A step-down transformer converts a 3.6 kV voltage to 1.8 kV. If the primary (input) coil has 58 turns, how many turns does the secondary have?
- **471.** A step-up transformer converts a 4.9 kV voltage to 49 kV. If the secondary (output) coil has 480 turns, how many turns does the primary have?
- **472.** A 320-turn coil rotates from 0° to 90.0° in a 0.046 T magnetic field in 0.25 s, which induces an average emf of 4.0 V. What is the area of the coil?
- **473.** A 180-turn coil with a 5.0×10^{-5} m² area is in a magnetic field that decreases by 5.2×10^{-4} T in 1.9×10^{-5} s. What is the induced current if the coil's resistance is 1.0×10^2 W?
- **474.** A generator provides a maximum ac current of 1.2 A and a maximum output emf of 211 V. Calculate the rms potential difference.
- **475.** Calculate the rms current for problem 474.
- **476.** A generator can provide a maximum output emf of 170 V. Calculate the rms potential difference.
- **477.** A step-down transformer converts 240 V across the primary to 5.0 V across the secondary. What is the step-down ratio $(N_1:N_2)$?

Chapter 21 Atomic Physics

- **478.** Determine the energy of a photon of green light with a wavelength of 527 nm.
- **479.** Calculate the de Broglie wavelength of an electron with a velocity of 2.19×10^6 m/s.
- **480.** Calculate the frequency of ultraviolet (UV) light having a photon energy of 20.7 eV.
- **481.** X-ray radiation can have an energy of 12.4 MeV. To what wavelength does this correspond?
- **482.** Light of wavelength 240 nm shines on a potassium surface. Potassium has a work function of 2.3 eV. What is the maximum kinetic energy of the photoelectrons?
- **483.** Manganese has a work function of 4.1 eV. What is the wavelength of the photon that will just have the threshold energy for manganese?
- **484.** What is the speed of a proton with a de Broglie wavelength of 2.64×10^{-14} m?
- **485.** A cheetah can run as fast as 28 m/s. If the cheetah has a de Broglie wavelength of 8.97×10^{-37} m, what is the cheetah's mass?
- **486.** What is the energy of a photon of blue light with a wavelength of 430.8 nm?