Project Stage II

Information Extraction from Text Documents

Team

Anna Chang Sripradha Karkala Simmi Pateriya

Text Type

The 300 text documents are real estate listings that were scraped from <u>free-classifieds-usa.com</u> using WebHarvy. They include homes of various sizes and from multiple regions of the US. The WebHarvy data was stored in *.csv format, which we extracted to *.txt using <u>this script</u>.

Entity Extracted

We extracted city names from the files and we labelled them using <city></city> tags. Below are are a few examples:

```
<city>Chester</city>, Ohio, United States
Great Location in <city>Branson</city>!!

18164 Fallatin Loop, <city>Beaverton</city>, OR 97007
```

Features

We extracted eight binary features:

Feature	Example	
Is the first letter uppercase?	San Diego	
Is the string followed by a state?	Chattanooga, Tennessee	
Is the string proceed by "City:"?	City: Boise, Idaho	
Is there a comma after the string?	Fairfax, VA	
Is there a comma before the string?	21 Chester Lane, Princeton, NJ	
Does "in" proceed the string?	3 BD in Trenton!	
Does "city" follow the string?	New York City	
Is the string in all caps?	AWESOME HOUSE IN MADISON!!	

Train/Test Distribution

Train (Set I)

200 documents were used for training with 467 mentions.

Test (Set J)

100 documents were used for testing with 237 mentions.

Classifier M (Cross Validation on Train/Set I)

We compared five classifiers: Decision Tree, Random Forest, SVM, Logistic Regression, and Linear Regression. The complete results can be <u>viewed here</u>.

For Linear Regression, we applied a threshold of 0.5 to determine if a string was classified as a city or non-city. If the prediction was greater than 0.5, we classified the string as a city. Otherwise it was classified as a non-city.

After performing cross-validation, our best performing classifiers were the Decision Tree and Random Forest Classifier:

	Precision	Recall	F1
Decision Tree	0.945	0.754	0.839
Random Forest	0.947	0.730	0.823

We chose to use the Decision Tree for our final classifier because the precision was similar to the Random Forest, but the recall and F1 were higher.

Classifier X (Final Classifier on Test/Set J)

Below are the results of the Decision Tree when applied to Test Set J:

	Precision	Recall	F1
Decision Tree	0.92	0.78	0.84

Some Final Thoughts

In Weka, we simulated the results for a pruned decision tree (one with four levels), and we saw that this increase precision to ~94% but reduced recall to 73.5%. Visualizations for our decision trees from scikit-learn and Weka are on the following pages.

Our classifier achieved the target precision and recall so we didn't do any rule-based post-processing.

Decision Tree Visualizations

Scikit-learn

Weka

```
=== Classifier model (full training set) ===
J48 pruned tree
CommaAfter = 1
    AllCapital = 1
       StateAfter = 1: 1 (2.0)
StateAfter = 0: 0 (4.0)
    AllCapital = 0: 1 (136.0)
CommaAfter = 0
    StateAfter = 1
        AllCapital = 1: 0 (17.0/2.0)
        AllCapital = 0
            FirstLetterUppercase = 1: 1 (29.0/6.0)
FirstLetterUppercase = 0: 0 (12.0/1.0)
    StateAfter = 0
        City: = 1: 1 (4.0)
City: = 0: 0 (1522.0/58.0)
Number of Leaves :
Size of the tree :
Time taken to build model: 0.04 seconds
=== Stratified cross-validation ===
=== Summary ===
                                         1655
                                                             95.8864 %
Correctly Classified Instances
                                                              4.1136 %
Incorrectly Classified Instances
                                            0.8009
Kappa statistic
Mean absolute error
                                            0.0741
Root mean squared error
                                            0.1937
Relative absolute error
                                           32.5235 %
Root relative squared error
                                           57.4247 %
Total Number of Instances
                                         1726
=== Detailed Accuracy By Class ===
                  TP Rate FP Rate Precision Recall
                                                           F-Measure MCC
                                                                                 ROC Area PRC Area Class
                                                                       0.809
                  0.735
                            0.007
                                                                                            0.800
                                     0.938
                                                 0.735
                                                           0.824
                                                                                 0.861
                                                                                                      1
                  0.993
                                     0.961
                                                 0.993
                                                                                            0.958
                                                                                                      0
                            0.265
                                                           0.977
                                                                       0.809
                                                                                 0.861
                                      0.958
Weighted Avg.
                  0.959
                            0.232
                                                 0.959
                                                           0.957
                                                                       0.809
                                                                                 0.861
                                                                                            0.938
```