EE24BTECH11006 - Arnav Mahishi

- 1) The value of the quantity P, where $P = \int_0^1 xe^x$ is equal to
 - a) 0

b) 1

c) e

- d) $\frac{1}{a}$
- 2) Divergence of the three-dimensional radial vector field \overrightarrow{r}
 - a) 3

b) $\frac{1}{a}$

- c) $\hat{i} + \hat{j} + \hat{k}$ d) $3(\hat{i} + \hat{j} + \hat{k})$

1

- 3) The period of the signal $x(t) = 8 \sin \left(0.8t + \frac{\pi}{4}\right)$ is
 - a) $0.4\pi s$
- b) $0.8\pi s$
- c) 1.25s
- d) 2.5s
- 4) The system represented by the input-output relationship $y(t) = \int_{-\infty}^{t} x(\tau) d\tau, t > 0$ is
 - a) Linear and casual

c) Casual but not linear

b) Linear but non casual

- d) Neither linear nor casual
- 5) The switch in the circuit has been closed for a long time. It is opened at t = 0. At $t = 0^+$, the current through the $1\mu F$ capacitor is.

a) 0A

b) 1A

- c) 1.25A
- d) 5A
- 6) The second harmonic component of the periodic waveform given in the figure has an amplitude of

- a) Normal
- b) Gamma
- c) Beta
- d) Cauchy
- 7) As shown in the figure, a resistance 1Ω resistance is connected across a source that has a load line v + i = 100. The current through the resistance is

- a) 25A
- b) 50A
- c) 100A
- d) 200A
- 8) A wattmeter is connected as shown in the figure. The wattmeter reads

Text

a) Zero always

- c) Power consumed by Z_1
- b) Total power consumed by Z_1 and Z_2
- d) Power consumed by Z_2
- 9) An ammeter has current range 0 5A and its internal resistance is 0.2Ω . In order to change the range to 0 25A, we need to add a resistance of
 - a) 0.8Ω in series with the meter.
- c) 0.04Ω in parallel with the meter.
- b) 1.0Ω in series with the meter.
- d) 0.05Ω in parallel with the meter.
- 10) As shown in the figure, a negative feedback system has an amplifier of gain 100 with $\pm 10\%$ tolerance in the forward path, and an attenutator of value $\frac{9}{100}$ in the feedback path. The overall system gain is approximately.

- a) $10 \pm 1\%$
- b) $10 \pm 2\%$
- c) $10 \pm 5\%$
- d) $10 \pm 10\%$
- 11) For the system $\frac{2}{s+1}$, The approximate time taken for a step response to reach 98% of its final value is

a) 1s

b) 2s

c) 4s

- d) 8s
- 12) If the electrical circuit of figure(b) is an equivalent of the coupled tank system of figure(a), then

- (b) Electrical Equivalent
- a) A, B are resistances and C, D are capacitances
- b) A, C are resistances and B, D are capacitances
- c) A, B are resistances and C, D are capacitances
- d) A, C are resistances and B, D are capacitances