May 27 Lec—Multinomial Cont., Conditional Expectation, Tower Property

Continuing from last time:

Proposition

If X_1, X_2, \ldots, X_k have a (joint) multinomial distribution with parameter N, p_1, p_2, \ldots, p_k , then:

- 1. $V(X_i) = Np_i(1-p_i)$
- 2. $Cov(X_i, Xj) = -Np_ip_j$ if i
 eq j

Proof

WLOG (without loss of generality), we'll prove that $Cov(X_1,X_2)=-Np_1p_2$.

For each experiment indexed with $k=1,2\ldots,N$, define

$$U_k = egin{cases} 1 & ext{if the outcome is } w_1 \ 0 & ext{otherwise} \end{cases}$$

$$V_k = egin{cases} 1 & ext{if the outcome is } w_2 \ 0 & ext{otherwise} \end{cases}$$

We quickly observe that $U_k \sim Ber(p_1), V_k \sim Ber(p_2)$.

Since X_1 is the total number of the occurrence of w_1 , we have $X_1 = \sum_{k=1}^N U_k$ and $X_2 = \sum_{k=1}^N V_k$.

Since in a multinomial experiment the different trials are independent, we see that if $k \neq k'$, then U_k and $U_{k'}$, U_k and $V_{k'}$, and V_k are all independent in pairs. So

$$egin{align} Cov(x_1,x_2) &= Cov\left(\sum_{k=1}^N U_k,\sum_{k'=1}^N V_{k'}
ight) \ &= \sum_{k=1}^N \sum_{k'=1}^N Cov(U_k,V_{k'}) \ \end{aligned}$$

$$=\sum_{k=k'=1}^{N} Cov(U_k,V_{k'}) + \underbrace{\sum_{k
eq k'} Cov(U_k,V_{k'})}_{ ext{by independence}}$$

$$=\sum_{k=1}^N Cov(U_k,V_k)$$

We calculate one term of $Cov(U_k,V_k)$:

$$egin{aligned} Cov(U_k,V_k) &= \mathbb{E}(U_kV_k) - \mathbb{E}(U_k)\mathbb{E}(V_k) \ &= \mathbb{E}(U_kV_k) - p_1p_2 \end{aligned}$$

We notice that $U_kV_k=0$ for all k (because it's either $1\cdot 0$ or $0\cdot 1$ or $0\cdot 0$). So for all k,

$$Cov(U_k,V_k)=-p_1p_2$$

It follows that

$$egin{aligned} Cov(X_1, X_2) &= \sum_{k=1}^N -p_1 p_2 \ &= -N p_1 p_2 \end{aligned}$$

Example

An urn contains 3 Red balls, 5 Blue bals, and 2 Green balls.

Select N=10 balls from the urn with replacement.

After each draw, the payoff is +2 for Red, -3 for Blue, +1 for Green. Let Y be the total payoff. Find $\mathbb{E}(Y)$ and V(Y).

Let X_R be the number of Reds, X_B be the number of Blues, and X_G be the number of Greens. X_R, X_B, X_G have a joint multinomial distribution with parameters $N=10, p_R=\frac{3}{10}, p_B=\frac{5}{10}, p_G=\frac{2}{10}$ Then

$$egin{aligned} Y &= 2X_R - 3X_B + 1X_G \ \implies \mathbb{E}(Y) &= 2\mathbb{E}(X_R) - 3\mathbb{E}(X_B) + \mathbb{E}(X_G) \ \ &= 2\cdot 10\cdot rac{3}{10} - 3\cdot 10\cdot rac{5}{10} + 1\cdot 10\cdot rac{2}{10} = -7 \end{aligned}$$

and

$$\begin{split} V(Y) &= Cov(Y,Y) \\ &= Cov(2X_R - 3X_B + 1X_G, 2X_R - 3X_B + 1X_G) \\ &= 4V(X_R) + 9V(X_B) + V(X_G) - 12Cov(X_R, X_B) + 4Cov(X_R, X_G) - 6Cov(X_B, X_G) \\ &= 4 \cdot 10 \cdot \frac{3}{10} \cdot \frac{7}{10} + 9 \cdot 10 \cdot \frac{5}{10} \cdot \frac{5}{10} + 10 \cdot \frac{2}{10} \cdot \frac{8}{10} - 12 \cdot (-10) \cdot \frac{3}{10} \cdot \frac{5}{10} + 4 \cdot (-10) \cdot \frac{3}{10} \cdot \frac{5}{10} + 4 \cdot (-10) \cdot \frac{3}{10} \cdot \frac{5}{10} + \frac$$

(scribe's note: again, I am not a mathematician that knows how to count ᇦ)

Conditional Expectation

Motivating example:

Let X be the number of customers coming to a restaurant over a night, and suppose $X \sim P(\lambda)$. Each customer has a fixed probability of p of choosing Menu 1 and 1-p probability of choosing Menu 2. Let X_1 be the number of customers in total choosing Menu 1 and X_2 the number choosing Menu 2.

We'd be baffled at trying to find the distribution of X_1 and X_2 . If we know the value of X (say, N) then $X_1 \sim B(N,p)$, but we don't know much beyond that. (It would be incorrect to say that $X_1 \sim B(X,p)$.)

Definition: Conditional expectations

- 1. Let (X,Y) be a pair of discrete random variables. Let P(Y|X=x) be the conditional pf of Y given X=x. For any function $F:\mathbb{R}\to\mathbb{R}$, define the function $g(x)=\mathbb{E}(F(Y)|X=x)$, which is a function of X.
 - The **conditional expectation** of F(Y) given X is denoted $g(X) = \mathbb{E}(F(Y)|X)$ (a shorthand for $\mathbb{E}(F(Y)|X=x)$).
- 2. Similarly, if (X,Y) is a pair of continuous random variables, the definition of the conditional expectation is

$$g(x) = \mathbb{E}(F(Y)|X=x)$$

$$=\int_{\mathbb{R}}F(y)f(y|X=x)\,dy$$

Example

y -value\ x -value	-1	0	1	$p_Y(y)$
0	$\frac{1}{4}$	$\frac{1}{6}$	1/12	$\frac{1}{2}$
1	$\frac{1}{4}$	0	1/4	$\frac{1}{2}$
$p_X(x)$	$\frac{1}{2}$	$\frac{1}{6}$	$\frac{1}{3}$	

Find $g(X) := \mathbb{E}(Y|X)$ for all valid X.

g(X) is defined only for X=-1,0,1 .

- $g(-1)=\mathbb{E}(Y|X=-1)$. Given X=-1, we have that $Y\sim Ber\left(\frac{1}{2}\right)$, so $g(-1)=\frac{1}{2}$
- g(0) = 0
- $g(1) = \frac{3}{4}$

Continuous example

$$f(x,y) = egin{cases} 6x & 0 < x < y < 1 \ 0 & ext{otherwise} \end{cases}$$

We said many times that $X\sim Beta(2,2)$, $Y\sim Beta(3,1)$. Also, given X=x we have $Y\sim U(x,1)$ and given Y=y we found that $X\sim Y\cdot Beta(2,1)$.

Computing $\mathbb{E}(Y|X)=:g(X)$:

$$g(X) = \mathbb{E}(Y|X=x) = rac{1+x}{2}$$
 since $Y \sim U(x,1)$

We can also compute $h(X) := \mathbb{E}(Y^2|X)$:

 $\mathbb{E}(Y^2|X)=rac{(1-x)^2}{12}+\left(rac{1+x}{2}
ight)^2$ (this is what we did in the proof of uniform distribution variance)

Similarly,
$$g_1(Y) := \mathbb{E}(X|Y) = y \cdot \frac{2}{3}$$

For
$$h_1(Y) := \mathbb{E}(X^2|Y)$$

For fixed Y, $X=Y\cdot W$ where $W\sim Beta(2,1)\implies X^2=Y^2\cdot W^2$.

$$\implies \mathbb{E}(X^2|Y)$$

A third example

Continuing the restaurant example we had above.

What is $\mathbb{E}(X_1|X)$ and $\mathbb{E}(X_2|X)$?

We already said that $\mathbb{E}(X_1|X=N)=Np$ (since we said before that given X=N we have that $X_1\sim B(N,p)$) and similarly $\mathbb{E}(X_2|X=N)=N(1-p)$.

Properties of conditional expectations

- 1. $\mathbb{E}(F(y) + G(y)|X) = \mathbb{E}(F(y)|X) + \mathbb{E}(G(y)|X)$
- 2. If F and G are two functions, then $\mathbb{E}(F(X)G(Y)|X)=F(X)\mathbb{E}(G(Y)|X)$.
- 3. If X and Y are independent, $\mathbb{E}(F(Y)|X) = \mathbb{E}(F(Y))$.
- 4. Tower Property: $\mathbb{E}(\mathbb{E}(F(Y)|X)) = \mathbb{E}(F(Y))$

Proof

1 and 2 should be straightforward enough.

4. Let $G(x) := \mathbb{E}(F(Y)|X)$; we want to compute

$$\int_{-\infty}^{\infty} G(X) f_X(x) \, dx$$

We have

$$G(X) = \int_{-\infty}^{\infty} F(y) f(y|X=x) \, dy$$

S0

$$\mathbb{E}(\mathbb{E}(F(Y)|X)) = \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} F(y)f(y|X=x)\,dy
ight)\!f_X(x)\,dx$$

Since the bounds of integration are both $(-\infty, \infty)$, we can switch the order of integration without any qualms.

$$\mathbb{E}(\mathbb{E}(F(Y)|X)) = \int_{-\infty}^{\infty} F(y) \underbrace{\left(\int_{-\infty}^{\infty} \underbrace{f(y|X=x)f_X(x)}_{f(x,y)} dx
ight)}_{f_Y(y)} dy$$

_ _

$$egin{aligned} &= \int_{-\infty}^{\infty} F(y) f_Y(y) \, dy \ &= \mathbb{E}(F(y)) \end{aligned}$$

5. Assume X, Y are independent.

$$\mathbb{E}(F(Y)|X=x) = \int_{-\infty}^{\infty} F(y) \underbrace{f(y|X=x)}_{=f_Y(y) ext{ by independence}} dy$$
 $= \mathbb{E}(F(y))$

We can view $\mathbb{E}(Y|X)$ as the orthogonal projection of Y on the space of the functions of X.

Proposition

 $Y - \mathbb{E}(Y|X)$ is uncorrelated with every function of X.

Proof

We want to show that $Cov(Y-\mathbb{E}(Y|X),H(X))=0$ for every H(x). We know by the Tower Property $\mathbb{E}(Y-\mathbb{E}(Y|X))=0$ We have

$$Cov(Y - \mathbb{E}(Y|X), H(X)) = \mathbb{E}(YH(X) - \mathbb{E}(Y|X)H(X)$$

$$Cov(Y - \mathbb{E}(Y|X), H(X)) = \mathbb{E}((Y - \mathbb{E}(Y|X)) \cdot H(X)) - \mathbb{E}(Y - \mathbb{E}(Y|X)) \cdot \mathbb{E}(H(X))$$

Example

$$f(x,y) = egin{cases} 6x & 0 < x < y < 1 \ 0 & ext{otherwise} \end{cases}$$

and $X \sim Beta(2,2)$, $Y \sim Beta(3,1)$

Given X=x, $Y\sim U(x,1)$

Given Y=y, X=yW where $W\sim Beta(2,1)$

We computed above that $\mathbb{E}(Y|X) = rac{1+x}{2}$. Then,

 $\mathbb{E}(\mathbb{E}(Y|X))=\mathbb{E}\left(rac{1}{2}+rac{x}{2}
ight)=rac{1}{2}+rac{1}{2}\cdotrac{1}{2}=rac{3}{4}=\mathbb{E}(Y) \text{ as we expected.}$ Also, $\mathbb{E}(\mathbb{E}(X|Y))=\mathbb{E}\left(y\cdotrac{2}{3}
ight)=rac{2}{3}\cdotrac{3}{4}=rac{1}{2}=\mathbb{E}(X)$ as expected.

Continuing the restaurant example above...

What is the mgf of X_1 ?

$$m_{X_1}(t)=\mathbb{E}(e^{tX_1})$$

By the Tower Property,

$$= \mathbb{E}(\mathbb{E}(e^{tX_1}|X))$$

We already know that given X=N , $X_1\sim B(N,p)$. Therefore, by the formulas we had before,

$$H(X):=\mathbb{E}(e^{tX_1}|X)=\left[pe^t+(1-p)
ight]^X$$

and hence

$$egin{aligned} m_{X_1}(t) &= \mathbb{E}(e^{tX_1}) \ &= \mathbb{E}(H(X)) \ &= \mathbb{E}([pe^t + (1-p)]^X) \end{aligned}$$

If $X \sim P(\lambda)$,

and defining $a := pe^t + (1-p)$

$$egin{aligned} m_{X_1}(t) &= \mathbb{E}(e^{X \ln a}) \ &= m_X(t = \ln(a)) \ &e^{\lambda(e^{\ln a}-1)} \ &= e^{\lambda(a-1)} \end{aligned}$$

So

$$m_{X_1}(t) = e^{\lambda(pe^t + (1-p) - 1)}
onumber \ = m_{X_1}(t) = e^{\lambda p(e^t - 1)}$$

So (drum rolls!!!)

$$X_1 \sim P(\lambda p)$$

Aside: a special challenge

Prove that X_2 and X_1 are independent in the above example.