#### Sistemas Operacionais

#### Gerenciamento de Memória Virtual Algoritmos de Paginação

Norton Trevisan Roman Marcelo Morandini Jó Ueyama

Apostila baseada nos trabalhos de Kalinka Castelo Branco, Antônio Carlos Sementille, Luciana A. F. Martimiano e nas transparências fornecidas no site de compra do livro "Sistemas Operacionais Modernos"

#### Tabelas de Páginas

- TLBs aceleram a tradução entre endereços virtuais e reais
- Mas esse é apenas um problema → como traduzir rapidamente
- Resta ainda como lidar com grandes espaços de endereços virtuais → Como organizar a tabela de páginas?
  - Paginação hierárquica (multi-nível)
  - Tabelas de página com hash
  - Tabelas de página invertidas

# Paginação Multi-Nível

- Quebre o espaço de endereço lógico em múltiplas tabelas de página
  - Uma técnica simples é uma tabela de página em dois níveis



- A idéia é evitar manter na memória todas as tabelas de página o tempo todo
  - Apenas as necessárias devem estar na memória
  - Ex.
    - Suponha que um programa esteja dividido em:
      - Uma tabela para o código (4MB da base da memória)
      - Uma para os dados (4MB seguintes)
      - Uma para a pilha (4MB do topo)
      - Há um buraco gigante vazio, na tabela (usou apenas 3 páginas)

- A idéia é evitar manter na memória todas as tabelas de página o tempo todo
  - Ex.
    - Podemos dividir o programa em:
      - Uma tabela para o código (4MB da base da memória)
      - Uma para os dados (4MB seguintes)
      - Uma para a pilha (4MB do topo)
      - Há um buraco gigante vazio, na tabela (usou apenas 3 páginas)
    - Mesmo que a tabela inteira seja enorme, para esse programa precisaríamos apenas manter 4 (a principal, e essas outras 3)
    - As demais (possivelmente não usadas), não estariam na memória.

Tabela Única: 20 bits

→ 1M entradas



**Duas Tabelas:** 

**Principal: 10 bits → 1K entradas** 

Secundárias: Ad hoc



Em nosso exemplo, teríamos mais 3 páginas de 10 bits → 3 x 1K.

O tamanho total ocupado seria 4K

- Endereçamento:
  - Um endereço lógico (em máquinas de 32 bits) é dividido em:
    - um número de página contendo 20 bits
    - um deslocamento de página contendo 12 bits
  - Como a tabela de página é paginada, o número de página é dividido ainda em:
    - um número de página PT1, de 10 bits
    - um número de página PT2, de 10 bits
       PT1 é um índice para a tabela de página mais externa, e
       PT2 é o deslocamento da página dentro da tabela de página mais externa

10

12

Bits

10

- Uma vez que o offset é 12 bits
  - As páginas têm 4KB (o máximo em 12 bits)
- Como temos 32 12 = 20 bits para endereçar páginas:
  - Temos 2<sup>20</sup> = 1M possíveis páginas
- Tradução de endereço:
  - A MMU extrai o
     campo PT1,
     usando seu valor
     como índice na página mais alta



- Tradução de endereço:
  - A entrada nessa posição dá o endereço (ou número da moldura) da tabela de página no segundo nível



- Tradução de endereço:
  - A entrada nessa posição dá o endereço (ou número da moldura) da tabela de página no segundo nível
  - O campo PT2 é então usado como um índice na página de segundo nível





- Tradução de endereço:
  - O número da moldura física é obtido dessa entrada na tabela
    - Checa o bit de residência



- Tradução de endereço:
  - O número da moldura física é obtido dessa entrada na tabela
    - Checa o bit de residência
  - Finalmente o deslocamento é usado para compor o endereço físico





# Paginação em Três Níveis

Mais níveis podem existir

Dois:

| outer page | inner page | offset |
|------------|------------|--------|
| $p_1$      | $p_2$      | d      |
| 42         | 10         | 12     |

Três:

| 2nd outer page | outer page | inner page | offset |
|----------------|------------|------------|--------|
| $p_1$          | $p_2$      | $p_3$      | d      |
| 32             | 10         | 10         | 12     |

Na prática, não se usa mais que 3

## Tabelas de Página em Hash

- Comuns em espaços de endereço > 32 bits
- O número de página virtual é usado para cálculo do valor de hash
- Cada entrada na tabela contém uma lista ligada de elementos, consistindo de:
  - O número da página virtual
  - O valor da moldura
  - Um ponteiro para o próximo elemento da lista

## Tabelas de Página em Hash

#### Funcionamento:

- O endereço de pagina virtual é usado para cálculo do hash
- Esse endereço é comparado a cada elemento
- Se for encontrado, o campo da moldura é usado no endereço físico



- Com 32 bits, multi-nível funciona bem
- E com 64?
  - Se a página tiver 4K ( $2^{12}$ ), teremos uma tabela com  $2^{64}/2^{12} = 2^{6412} = 2^{52}$  entradas
  - Se cada entrada tiver 8 bytes, a tabela terá mais de 30.000.000GB
    - 30PB (peta bytes)
    - Provavelmente, não é uma boa idéia colocá-la na RAM
- Solução:
  - Tabela de página invertida

- Possui uma entrada por moldura na memória física
  - Em vez de uma entrada por página no espaço virtual
  - A entrada registra que página virtual esta localizada na moldura
    - Com informações sobre o processo que possui essa página
- Poupam muito espaço quando o espaço virtual é muito maior que o físico

- Modelo de única página (ou multi-nível)
  - Cada processo tem uma tabela de páginas associada a ele → classificação feita pelo endereço virtual;
- Modelo de página invertida:
  - SO mantém uma única tabela para as molduras de páginas da memória;
  - Cada entrada consiste no endereço virtual da página armazenada naquela página real, com informações sobre o processo dono da página virtual;



#### Problema:

- Traduções virtual → física é muito mais difícil
  - Quando o processo n referencia a página virtual p, o hardware não consegue mais encontrar a página física usando p como índice
    - Deve buscar em toda a tabela de páginas por uma entrada (n,p)
    - Se encontrar, gera o endereço físico
    - Faz isso em cada referência à memória → aumenta o tempo necessário para pesquisar a tabela
- O que fazer?
  - Usar a TLB para guardar as mais acessadas
  - Caso a página buscada não esteja na TLB, devemos procurar em toda a tabela invertida

- Busca na tabela invertida:
  - Feita através de uma tabela de hash, com o valor de hash calculado a partir do endereço virtual
    - Todas as páginas virtuais atualmente na memória com o mesmo valor de hash são agrupadas
    - Uma vez encontrado o número de página buscado, o par (virtual,físico) é armazenado na TLB
- Páginas invertidas são bastante comuns em sistemas de 64 bits



## Alocação de Páginas

- Quantas páginas reais serão alocadas a um processo?
- Duas estratégias:
  - Alocação fixa ou estática: cada processo tem um número máximo de páginas reais, definido quando o processo é criado;
    - O limite pode ser igual para todos os processos;
    - Vantagem: simplicidade;
    - Desvantagens: (i) número muito pequeno de páginas reais pode causar muita paginação; (ii) número muito grande de páginas reais causa desperdício de memória principal;

## Alocação de Páginas

- Quantas páginas reais serão alocadas a um processo?
- Duas estratégias:
  - Alocação variável ou dinâmica: número máximo de páginas reais alocadas ao processo varia durante sua execução;
    - Vantagem: (i) processos com elevada taxa de paginação podem ter seu limite de páginas reais ampliado; (ii) processos com baixa taxa de paginação podem ter seu limite de páginas reais reduzido;
    - Desvantagem: monitoramento constante;

- Paginação simples:
  - Todas as páginas virtuais do processo são carregadas para a memória principal;
  - Assim, sempre todas as páginas são válidas;
- Paginação por demanda (Demand Paging):
  - Processos começam com nenhuma página na memória
  - Assim que a CPU tenta executar a primeira instrução, gera um page fault
    - O S.O. Traz a página que falta à memória

- Paginação por demanda (Demand Paging):
  - Apenas as páginas efetivamente acessadas pelo processo são carregadas na memória principal;
  - Quais páginas virtuais foram carregadas?
    - Indicado pelo bit de residência
  - Página inválida:
    - MMU gera uma interrupção de proteção e aciona o sistema operacional
      - Se a página está fora do espaço de endereçamento do processo, o processo é abortado;
      - Se a página ainda não foi carregada na memória principal, ocorre uma falta de página (page fault);

- Paginação por demanda Falta de Página:
  - Processo é suspenso e seu descritor é inserido em uma fila especial
    - Fila dos processos esperando uma página virtual;
  - Uma página real livre deve ser alocada;
  - A página virtual acessada deve ser localizada no disco;
  - Operação de leitura de disco
    - Indicando o endereço da página virtual no disco e o endereço da página real alocada;

- Paginação por demanda Falta de Página:
  - Após a leitura do disco:
    - Tabela de páginas do processo é corrigida para indicar que a página virtual agora está válida e está na página real alocada;
    - Processo executado pelo Pager:
      - Carrega páginas especificas de um processo do disco para a memória principal;
    - O descritor do processo é retirado da fila especial e colocado na fila do processador;

- Política de Substituição Local:
  - Páginas dos próprios processos são utilizadas na troca;
    - Ex: page fault no processo A

| _  | Age         |
|----|-------------|
| A0 | 10          |
| A1 | 7           |
| A2 | 5           |
| A3 | 4<br>6      |
| A4 |             |
| A5 | 3           |
| B0 | 9           |
| B1 | 4           |
| B2 | 4<br>6<br>2 |
| B3 | 2           |
| B4 | 5           |
| B5 | 6           |
| B6 | 12          |
| C1 | 3           |
| C2 | 5           |
| C3 | 6           |
|    |             |



???

- Política de Substituição Local:
  - Páginas dos próprios processos são utilizadas na troca;
    - Ex: page fault no processo A
    - Escolha a mais antiga dentre as páginas pertencentes a A
  - Aloca a cada processo fração fixa da memória

|          | . Age  |
|----------|--------|
| A0       | 10     |
| A1       | 7      |
| A2       | 5      |
| A3       | 4      |
| A4       | 6      |
| A5       | 3      |
| B0       | 9      |
| B1       | 4      |
| B2       | 4<br>6 |
| B3       | 2      |
| B4       | 5      |
| B5       | 6      |
| B6       | 12     |
| C1       | 3      |
| C2<br>C3 | 5      |
| C3       | 6      |
|          |        |



- Política de Substituição Local:
  - Dificuldade: definir quantas páginas cada processo pode utilizar
    - Se o processo usar menos que as previstas
       → desperdício
    - Se usar mais que o previsto (ou galgar mais memória enquanto executa) → muitas trocas, mesmo havendo páginas disponíveis

|          | Age    |   |
|----------|--------|---|
| A0       | 10     |   |
| A1       | 7<br>5 |   |
| A2       | 5      |   |
| A3       | 4      |   |
| A4       | 4<br>6 |   |
| A5       | 3      |   |
| B0       | 9      |   |
| B1       | 4<br>6 |   |
| B2       | 6      | _ |
| B3       | 2      |   |
| B4       | 5      |   |
| B5       | 6      |   |
| B6       | 12     |   |
| C1       | 3      |   |
| C2<br>C3 | 5      |   |
| C3       | 6      |   |



- Política de Substituição Global:
  - Páginas de todos os processos são utilizadas na troca;
    - Ex: page fault no processo A

| Age |
|-----|
| 10  |
| 7   |
| 5   |
| 4   |
| 6   |
| 3   |
| 9   |
| 4   |
| 6   |
| 2   |
| 5   |
| 6   |
| 12  |
| 3   |
| 5   |
| 6   |
|     |



???

- Política de Substituição Global:
  - Páginas de todos os processos são utilizadas na troca;
    - Ex: page fault no processo A
    - Escolha a mais antiga dentre as páginas disponíveis
  - Processos sem fração fixa da memória

|          | Age    |
|----------|--------|
| A0       | 10     |
| A1       | 7<br>5 |
| A2       | 5      |
| A3       | 4      |
| A4       | 6      |
| A5       | 3      |
| B0       | 9      |
| B1       | 4<br>6 |
| B2       | 6      |
| B3       | 2      |
| B4       | 5      |
| B5       | 6      |
| B6       | 12     |
| C1       | 3      |
| C2<br>C3 | 5      |
| C3       | 6      |



- Política de Substituição Global:
  - Problema: processos com menor prioridade podem ter um número muito reduzido de páginas, e com isso, acontecem muitas faltas de páginas;

|          | <sub>,</sub> Age |
|----------|------------------|
| A0       | 10               |
| A1       | 7<br>5           |
| A2       | 5                |
| A3       | 4<br>6           |
| A4       |                  |
| A5       | 3                |
| B0       | 9                |
| B1       | 4                |
| B2       | 6                |
| B3       | 2                |
| B4       | 5                |
| B5       | 6                |
| B6       | 12               |
| C1       | 3                |
| C2<br>C3 | 5                |
| C3       | 6                |



- Quando ocorre um page fault
  - Se todas as molduras estiverem ocupadas, o S.O.
     Escolhe uma página para eliminar página vítima
    - A escolha pode ser aleatória
    - Será melhor escolher uma página que não seja muito usada
  - Se essa página foi modificada enquanto estava na memória, deve ser reescrita no disco
  - Se n\u00e3o tiver sido modificada, pode apenas ser sobrescrita

- Exemplo:
  - Dois processos P1 e P2, cada um com 4 páginas virtuais;
  - Memória principal com 6 páginas;









0 A 1 B 2 C Simplificada

| 0 | 1 | V |
|---|---|---|
| 1 | 5 |   |
| 2 |   | i |
| 3 | 0 | V |

#### Memória Virtual P2 Tabela de Páginas P2

0 **E**1 **F**2 **G**3 **H** 

Simplificada

0 3 v
1 2 v
2 4 v

#### Mem<u>ória</u> Principal



→ P2 tenta acessar página 3! Falta de Página!



Tabela de Páginas P1 Simplificada

| 0 | 1 | V |
|---|---|---|
| 1 | 5 | V |
| 2 |   | i |
| 3 | 0 | V |

Memória Virtual P2 0 E 1 E 2 G Tabela de Páginas P2 Simplificada

| 0 | 3 | V |
|---|---|---|
| 1 | 2 | V |
| 2 |   | i |
| 3 | 4 | V |

Memória Principal

0

1

2

F

3

B

3 páginas de cada processo

→ Página 2 (virtual) é escolhida como vítima!

## Algoritmos de Troca de Página

- Ótimo;
- NRU;
- FIFO;
- Segunda Chance;
- Relógio;
- LRU;
- Working set;
- WSClock;

 Veremos cada um em detalhes

#### Memória Virtual

Página virtual mapeada para página real;



Ex:

 Computador que gera 64K de endereços virtuais

- Tem apenas 32K de endereços físicos
- Programas de 64K podem ser escritos, mas não carregados inteiramente na memória

MMU realiza o mapeamento

Endereços virtuais (gerados pelo computador)