Hướng dẫn bài tập Vi tích phân 1 Tuần 7

Ngày 18 tháng 3 năm 2024

Xấp xỉ tích phân

Quy tắc trung điểm

Nếu f khả tích trên [a,b], khi đó

$$\int_{a}^{b} f(x) dx \approx \sum_{i=1}^{n} f(\overline{x}_{i}) \Delta x = \Delta x \left[f(\overline{x}_{1}) + \dots + f(\overline{x}_{n}) \right]$$

trong đó
$$\Delta x = \frac{b-a}{n} \quad \text{và} \quad \overline{x}_i = \frac{1}{2}(x_{i-1}+x_i) = \text{trung điểm của} \\ [x_{i-1},x_i].$$

2/14

Quy tắc Trapezoidal

$$\int_{a}^{b} f(x) dx \approx T_{n} = \frac{\Delta x}{2} \left[f(x_{0}) + 2f(x_{1}) + 2f(x_{2}) + \dots + 2f(x_{n-1}) + f(x_{n}) \right]$$

trong đó $\Delta x = (b-a)/n$ và $x_i = a + i\Delta x$.

Chặn sai số

Giả sử $|f''(x)| \leq K$ với $a \leq x \leq b$. Nếu E_T và E_M là các sai số của quy tắc hình thang và quy tắc trung điểm, khi đó

$$|E_T| \le \frac{K(b-a)^3}{12n^2}$$
 và $|E_M| \le \frac{K(b-a)^3}{24n^2}$

Quy tắc Simpson

$$\int_{a}^{b} f(x) dx \approx S_{n} = \frac{\Delta x}{3} \sum_{i=1}^{n/2} \left[f(x_{2i-2}) + 4f(x_{2i-1}) + f(x_{2i}) \right]$$
$$= \frac{\Delta x}{3} \left[f(x_{0}) + 4f(x_{1}) + 2f(x_{2}) + 4f(x_{3}) + \dots + 2f(x_{n-2}) + 4f(x_{n-1}) + f(x_{n}) \right]$$

trong đó n là số chẵn và $\Delta x = (b-a)/n$.

Chăn sai số

Giả sử $|f^{(4)}(x)| \leq K$ với $a \leq x \leq b$. Nếu E_S là các sai số của quy tắc Simpson, khi đó

$$|E_S| \le \frac{K(b-a)^5}{180n^4}$$

4 D > 4 A > 4 B > 4 B > B 9 Q C

Bài 1.

(a) Tìm xấp xỉ T_{10}, M_{10} và S_{10} cho $\int\limits_0^\pi \sin x \ dx$ và sai số tương ứng E_T ,

 E_M và E_S .

- (b) Tìm chặn sai số của các sai số trên.
- (c) Cần phải chọn n lớn bao nhiều để các xấp xỉ T_n, M_n và S_n của tích phân trong câu (a) có sai số trong phạm vi 0.00001.

Tích phân suy rộng

Định nghĩa tích phân suy rộng loại 1

- (a) Nếu $\int_a^t f(x)\ dx$ tồn tại với mọi $t\geq a$ thì $\int_a^\infty f(x)\ dx = \lim_{t\to\infty} \int_a^t f(x)\ dx \text{ nếu giới hạn này tồn tại}$
- (b) Nếu $\int_t^b f(x) \ dx$ tồn tại với mọi $t \leq b$ thì $\int_{-\infty}^b f(x) \ dx = \lim_{t \to -\infty} \int_t^b f(x) \ dx \text{ nếu giới hạn này tồn tại}$ Các tích phân suy rộng trên được gọi là **hội tụ** nếu các giới hạn tương ứng tồn tại và gọi là **phân kỳ** nếu các giới hạn không tồn tại.
- (c) Nếu cả $\int_{-\infty}^a f(x) \ dx$ và $\int_a^\infty f(x) \ dx$ hội tụ thì $\int_{-\infty}^\infty f(x) \ dx = \int_{-\infty}^a f(x) \ dx + \int_a^\infty f(x) \ dx$

Tích phân suy rộng

Định nghĩa tích phân suy rộng loại 2

- (a) Cho f liên tục [a,b) và bị gián đoạn tại b, thì
 - $\int_a^b f(x) \; dx = \lim_{t \to b^-} \int_a^t f(x) \; dx \; \text{n\'eu giới hạn này tồn tại}$
- (b) Cho f liên tục (a,b] và bị gián đoạn tại a, thì

$$\int_a^b f(x) \; dx = \lim_{t \to a^+} \int_t^b f(x) \; dx$$
 nếu giới hạn này tồn tại

Tích phân suy rộng $\int_a^b f(x) dx$ được gọi là **hội tụ** nếu các giới hạn tương ứng tần tại và gọi là **phân kỳ** nấu các giới hạn không tần tại

tương ứng tồn tại và gọi là **phân kỳ** nếu các giới hạn không tồn tại.

- (c) Nếu f gián đoạn tại c ($a \le c \le b$), các tính phân $\int_a^c f(x) \ dx$ và $\int_c^b f(x) \ dx$ đều tồn tại thì
 - $\int_a^b f(x) \ dx = \int_a^c f(x) \ dx + \int_c^b f(x) \ dx$

Bài 2. Xác định xem mỗi tích phân sau hội tụ hay phân kì. Tính giá trị tích phân nếu nó hội tụ.

a).
$$\int_{1}^{\infty} \frac{x+1}{x^2+2x} \ dx$$

b).
$$\int_{1}^{\infty} \frac{1}{x^2 + 3x + 2} dx$$

c).
$$\int_{0}^{6} re^{r/3} dr$$

d).
$$\int_{-\infty}^{\infty} \frac{1}{e^x + e^{-x}} dx$$

Bài 3. Xác định xem tích phân sau hội tụ hay phân kỳ

a).
$$\int_{0}^{1} 3x^2 \ln x \ dx$$

b.
$$\int_{0}^{4} \frac{x}{x^2 - 9} dx$$

c).
$$\int_{-2}^{6} \frac{dx}{\sqrt{|x-2|}}$$

Định lý (Tích phân suy rộng loại 1, Tiêu chuẩn so sánh 1)

Giả sử f và g là hàm số liên tục với $f(x) \geq g(x) \geq 0$ với $x \geq a$ thì

- (a) Nếu $\int_a^\infty f(x) \; dx$ hội tụ thì $\int_a^\infty g(x) \; dx$ hội tụ
- (b) Nếu $\int_{a}^{\infty} g(x) dx$ phân kỳ thì $\int_{a}^{\infty} f(x) dx$ phân kỳ

Định lý (Tích phân suy rộng loại 2, Tiêu chuẩn so sánh 1)

Giả sử $\int_a^b f(x) \ dx$ và $\int_a^b g(x) \ dx$ là tích phân suy rộng loại 2, nếu $c \in [a,b]$ là điểm **kỳ dị** của tích phân (không liên tục hay không xác định). Nếu $f(x) \geq g(x) \geq 0$ với x thuộc lân cận của c. Khi đó,

- (a) Nếu $\int_a^b f(x) \ dx$ hội tụ thì $\int_a^b g(x) \ dx$ hội tụ
- (b) Nếu $\int_a^b g(x) dx$ phân kỳ thì $\int_a^b f(x) dx$ phân kỳ

11 / 14

Định lý (Tích phân suy rộng loại 1, Tiêu chuẩn so sánh 2)

Giả sử f và g là hàm số liên tục với $f(x), g(x) \geq 0$ với $x \geq a.$ Nếu

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = L \in (0, \infty)$$

thì $\int_a^\infty f(x) \ dx$, $\int_a^\infty g(x) \ dx$ cùng hội tụ hay cùng phân kỳ.

Ta cũng có cách so sánh tương tự đối với $\int\limits_{-\infty}^{a} f(x) \ dx$.

Định lý (Tích phân suy rộng loại 2, Tiêu chuẩn so sánh 2)

Giả sử $\int_a^b f(x) \ dx$ và $\int_a^b g(x) \ dx$ là tích phân suy rộng loại 2, nếu $c \in [a,b]$ là điểm **kỳ dị** của tích phân. Nếu

$$\lim_{x \to c} \frac{f(x)}{g(x)} = L \in (0, \infty)$$

thì $\int_a^b f(x) dx$, $\int_a^b g(x) dx$ cùng hội tụ hay cùng phân kỳ.

Bài 4. Xác định tích phân sau hội tụ hay phân kỳ. (Sử dụng tiêu chuẩn so sánh)

(a)
$$\int_{0}^{\pi/2} \frac{1}{x \sin x} dx$$

(b)
$$\int_{1}^{\infty} \frac{x^2 + 1}{x^4 + x} dx$$

(c)
$$\int_{0}^{\pi} \frac{\sin^2 x}{\sqrt{x}} \, dx$$

(d)
$$\int_{2}^{\infty} \frac{\sqrt{x}}{x^3 - 1} \ dx$$

14 / 14