Počítačové a komunikačné siete

TCP 2 riadenie toku dát Internet Protocol (IP)

Prednáška 5

Opakovanie minulej prednášky

- » TCP (používané HTTP)
 - Riadenie toku (pomalé / rýchle linmky)
 - Potvrdzovanie dát (ACK, NACK)
 - Ukončenie spojenia
 - Znovuodoslanie dát

Transportná vrstva

Aplikačná vrstva Prezentačná Aplikačná vrstva vrstva Relačná vrstva Transportná vrstva Transportná vrstva Sieťová vrstva Sieťová vrstva Linková vrstva Linková vrstva

Pohľad vrstiev na topoloógiu siete Transportná vrstva

Protokol TCP

TCP segment

pseudohlavička

Niektoré voliteľné položky (options):

<u>kind</u>	length	<u>význam</u>
2	4	MSS
3	3	zväčšenie okna
4	2	povolenie SACK
5	prem.	SACK

0	7 8	15 16	23 24	31			
Source IP Address							
Destination IP Address							
zero Protocol		ocol	TCP Length				

Vnáranie stránky do paketov

Aplikácia (Web)

Aplikačná vrstva (HTTP)

Transportná vrstva (TCP)

Sieťová vrstva (IP)

Linková vrstva (Ethernet/WiFi)

Císlo segmentu, číslo potvrdenia

ACK: 1611 ACK:3111. ACK:4611

Segment number, ACK number

Dĺžka dát: 1500 B

ACK

Segment number, ACK number

Opakovaná správa z predchádzajúceho slajdu

Segment number, ACK number

Čo nás čaká na prednáške

- » Kontrola toku dát a zahltenia
- » IP protokol

Kontrola toku dát

- » Ciel': čo najefektívnejšie preniesť dáta cez sieť bez straty
- » Čo k tomu potrebujem?

Kontrola toku dát

- » Ciel': čo najefektívnejšie preniesť dáta cez sieť bez straty
- » Čo k tomu potrebujem?
 - Informáciu o stave:
 - Vysielača (Okno vysielača)
 - Prijímača (Okno prijímača)
 - Informáciu o stave siete

Protokol TCP – kontrola zahltenia Okno prijímača

- » Určuje, koľko dát môže prijímač prijať
- » vysielač nemusí poslať celé okno
- » prijímač môže meniť veľkosť okna
- » prijímač nemusí čakať na naplnenie okna pred vyslaním ACK
- » kumulované potvrdzovanie
- » test nulového okna
- » potvrdenie ARQ s návratom, selektívne ARQ

Protokol TCP

Protokol TCP – kontrola zahltenia Okno vysielača

- » Kde ho nájdem?
 - Je iba virtuálne
- » Určuje, koľko dát očakávam, že prejde sieťou

Protokol TCP – kontrola zahltenia Stav siete

Riadenie toku dát (flow control)

- zabezpečiť, aby rýchlosť prenosu dát medzi dvoma prepojenými uzlami neviedla k zahlteniu prijímajúceho uzla

Riešenie: väčšinou spätná väzba

Riadenie zahltenia (congestion control)

 zabezpečiť, aby v komunikačnej podsieti (sieti) nevzniklo blokovanie prenosu dát (zníženie celkovej prenosovej kapacity)

Riešenie: prevencia a spätná väzba

Riadenie toku dát a zahltenia /1

zahltenie prijímajúceho uzla => lokálne zahltenie siete => globálne zahltenie siete

Protokol TCP - riadenie toku dát a zahltenia

- problémy
 - kapacita siete
 - kapacita prijímača
- množstvo vysielaných dát určované oknami
 - rwnd okno (dynamické) na strane prijímača (receiver window),
 veľkosť určuje prijímač v priebehu spojenia
 - cwnd okno na strane vysielača (congestion window),
 predchádzanie zahlteniu
 - aktuálne okno = min(rwnd, cwnd) max. počet vyslaných nepotvrdených dát

Riadenie toku dát a zahltenia /4

Klasifikácia prístupov riadenia toku dát a zahltenia bez spätnej so spätnou väzbou väzby implicitná explicitná riadené zdrojom riadené cieľom spätná väzba spätná väzba trvalá reagujúca spätná väzba spätná väzba

Riadenie toku dát a zahltenia /4

Klasifikácia prístupov riadenia toku dát a zahltenia

- (the leaky bucket alg.)
- algoritmus nádoby povolení (the token bucket alg.)

Preventívne metódy

algoritmus deravej nádoby (the leaky bucket alg.) algoritmus nádoby povolení (the token bucket alg.)

princíp:

Preventívne metódy

algoritmus deravej nádoby (the leaky bucket alg.) algoritmus nádoby povolení (the token bucket alg.)

princíp:

Riadenie toku dát a zahltenia /4

Klasifikácia prístupov riadenia toku dát a zahltenia

- algoritmus nádoby povolení (the token bucket alg.)

stop-and-wait, static window 1. generácia dynamic window, dynamic rate... 2. generácia (end-to-end, hop-by-hop)

FIIT

napr. choke packets (ICMP – source quench) 4

Protokol TCP – prenos dát

Interaktívne vysielanie

- problém malých IP datagramov (tiny datagrams) Nagle_ov algoritmus
 - TCP spojenie môže mať len jeden vyslaný nepotvrdený segment
 - použitie algoritmu

Neinteraktívne vysielanie

- rýchly vysielač, pomalý prijímač
 - syndróm SWS (Silly Window Syndrom)
 - Clarke_ov algoritmus zabrániť vysielaču posielať "malé" okno

Protokol TCP – riadenie toku dát a zahltenia

- cwnd určuje dynamicky vysielač
 - cwnd = 1, vyšle 1 segment a čaká na potvrdenie
 - cwnd = 2, vyšle 2 segmenty a čaká na potvrdenie
 - cwnd = 4,
 - postupne vysiela 2ⁿ segmentov (pomalý štart)
- prah zvyšovania okna ssthresh (slow start threshold), po prekročení prahu vysoká pravdepodobnosť vzniku zahltenia
- algoritmus pomalého štartu (Slow Start SS) a algoritmus vyhýbania sa zahlteniu (Congestion Avoidance - CA)
 - mss, cwnd, ssthresh, rwnd
 - − pomalý štart: cwnd <= ssthresh</p>
 - vyhýbanie sa zahlteniu: cwnd > ssthresh

Protokol TCP – SS a CA

Protokol TCP – algoritmus SS a CA

TCP Tahoe

TCP - riadenie toku dát a zahltenia

```
Ako je limitovaná rýchlosť vysielania ?
rýchlosť (rate) = cwnd / RTT

Ako pozná, že je zahltenie ?
implicitná-, explicitná detekcia
detekcia na základe straty paketu (loss-based detection), napr. TCP Reno, HS-TCP, S-TCP
detekcia na základe oneskorenia paketu (delay-based detection), napr. TCP Vegas, Fast TCP

Aký algoritmus sa použije na riadenie zahltenia ?
aditívny-, multiplikatívny-, iný princíp
napr. AIMD (TCP Reno, HS-TCP), MIMD (Fast TCP),
iné (BIC, CUBIC)
```


Protokol TCP – prenos a zotavenie

• zrýchlený prenos (Fast Retransmition, FRet):

ak počet duplikátov ACK je >= 3 – veľká pravdepodobnosť, že segment je stratený a vysielač opakuje prenos segmentu bez čakania na vypršanie časovača

• rýchle zotavenie (Fast Recovery, FRec):

nezačína sa pri prenose s cwnd=1

Protokol TCP – algoritmus SS a CA

TCP Reno

Protokol TCP – algoritmus SS a CA

TCP Tahoe

TCP Reno

Modifikácia veľkosti okna

- Základné prístupy
 - znižovanie, zvyšovanie veľkosti okna
- Aditívny, multiplikatívny prístup

$$x(t+1) = a_i + b_i *x(t)$$
, ak $y(t) = 0$ (nie je zahltenie)
 $x(t+1) = a_d + b_d *x(t)$, ak $y(t) = 1$ (je zahltenie)

Modifikácia veľkosti okna

$$x(t+1) = a_i + b_i *x(t)$$
, ak $y(t) = 0$ (nie je zahltenie)
 $x(t+1) = a_d + b_d *x(t)$, ak $y(t) = 1$ (je zahltenie)

• AIAD (Additive Increase, Additive Decrease) $a_i > 0$, $a_d < 0$, $b_i = 1$, $b_d = 1$

- MIMD (Multiplicative Increase, Multiplicative Decrease) $a_i = 0$, $a_d = 0$, $b_i > 1$, $0 < b_d < 1$
- MIAD (Multiplicative Increase, Additive Decrease) $a_i = 0$, $a_d < 0$, $b_i > 1$, $b_d = 1$
- AIMD (Additive Increase, Multiplicative Decrease) $a_i > 0$, $a_d = 0$, $b_i = 1$, $0 < b_d < 1$

Porovnanie prístupov MIAD a AIMD

Niektoré varianty TCP

TCP Tahoe

- detekcia straty (len na základe časovača RTO)
- pomalý štart SS, vyhýbanie sa zahlteniu CA, zrýchlený prenos FRet

TCP Reno

- detekcia straty (na základe časovača RTO a duplicitných potvrdení)
- pomalý štart SS, vyhýbanie sa zahlteniu CA, zrýchlený prenos FRet, rýchle zotavenie FRec
- AIMD AI: $w \leftarrow w + 1/w$ MD: $w \leftarrow w \frac{1}{2}*w$

TCP Vegas

- detekcia oneskorenia
- modifikácia pomalého štartu (expon. zvýšenie cwnd len počas každého 2. RTT)
- AIAD

očakávana a skutočná rýchlosť vysielania

Protokol TCP - ECN

explicitné riadenie zahltenia

ECE - ECN-Echo

CWR Congestion Window Reduced
NS Nonce Sum

TCP rozšírenia

zväčšenie okna (window)

• spresnenie merania RTT

selektívne potvrdzovanie

reakcia na zahltenie, okno cwnd

"Pohľad vrstiev" na topológiu siete sieťová vrstva

Formát IPv4 paketu

IP protokol, PDU - datagram

RFC 5735: Special Use IPv4 Addresses

Address Block	Present Use Reference	
0.0.0.0/8	"This" Network	RFC 1122
10.0.0.0/8	Private-Use Networks	RFC 1918
127.0.0.0/8	Loopback	RFC 1122
169.254.0.0/16	Link Local	RFC 3927
172.16.0.0/12	Private-Use Networks	RFC 1918
192.0.0.0/24	IETF Protocol Assignments	RFC 5736
192.0.2.0/24	TEST-NET-1	RFC 5737
192.88.99.0/24	6to4 Relay Anycast	RFC 3068
192.168.0.0/16	Private-Use Networks	RFC 1918
198.18.0.0/15	Network Interconnect Device	
	Benchmark Testing	RFC 2544
198.51.100.0/24	TEST-NET-2	RFC 5737
203.0.113.0/24	TEST-NET-3	RFC 5737
224.0.0.0/4	Multicast	RFC 3171
240.0.0.0/4	Reserved for Future Use	RFC 1112
255.255.255.255	/32 Limited Broadcast	RFC 919, RFC 922

192.168.1.100/16

1100 0000.1010 1000.0000 0001.0110 0100

1111 1111.1111 1111.0000 0000.0000 0000

Adresa siete:

192.168.0.0/16

0.0.1.100

Adresa počítača: 192.168.1.100/16

Adresa siete: 192.168.0.0

Broadcast: 192.168.255.255

Router: zvyčajne: 192.168.0.1

192.168.0.0/20

Druhá sieť

Adresa siete: 192.168.16.0

Broadcast: 192.168.31.255

Príklad adresy počítača: 192.168.28.28

1100 0000.1010 1000.0001 0000.0000 0000

1100 0000.1010 1000.0001 1111.1111 1111

1111 1111.1111 1111.1111 0000.0000 0000

IP protokol - ECN

ECN pole:

ECT - ECN Capable Transpor

CE – Congestion Experienced

SHCN - Explicit Congestion Notification

Zhrnutie prednášky

- » TCP dokončenie
- » IP protokol formát paketu

Čo nás čaká na budúcej prednáške

» Subnetting (IP adresovanie)

» Skutočné funkcie sieťovej vrstvy (smerovanie) budú neskôr

DCCP (Datagram Congestion Control Protocol)

- nespoľahlivý tok datagramov
- spoľahlivé nadväzovanie a ukončenie spojenia
- spol'ahlivé dohadovanie volieb, zahŕňa aj vol'bu riadiaceho mechanizmu zahltenia
- spôsob prenosu potvrdení ACK závisí od mechanizmu riadenia zahltenia
- výber modulárneho mechanizmu riadenia zahltenia
 - CCID2, TCP-like congestion control (RFC 4341)
 - CCID3, TCP-Friendly Rate Control, TFRC (RFC 4342)
 - CCID4, TCP-Friendly Rate Control for Small Packets, TFRC-SP (RFC 4828)
- explicitné riadenia zahltenia (ECN)
- vhodné napr. pre streaming video

• multiplexovanie a demultiplexovanie segmentov

- MSS (Maximum Segment Size)
- číslovanie bajtov
- potvrdzovanie príjmu, kontinuálna ARQ metóda s návratom, selektívna
- riadenie toku a zahltenia
- pohyblivé okno (def. 4096, rozšírenie okna na 32 b)
- časovače

Stručný úvod do TCP

- » protokol so spojením, s potvrdením, spoľahlivý prenos
- » prenos dát prúd bajtov, počet vyslaných bajtov aplikáciou a TCP entitou môže byť rôzny
- » vyrovnávacie pamäte segmentácia prúdu bajtov
- » interaktívny a neinteraktívny prenos dát (typ aplikácie)
- » TCP spojenie plný duplex, dvojbodové
- » urgentné dáta
- » príjem dát aplikáciou príznak PUSH

Riadenie toku dát a zahltenia /3

Príčiny zahltenia na rôznych vrstvách

spojová (dátová) vrstva

- potvrdzovanie
- riadenie toku
- správa vyrovnávacích pamätí prijímača

• • • • • •

sieťová vrstva

- správa vyrovnávacích pamätí
- zničenie paketov
- životnosť paketov
- smerovacie algoritmy

transportná
sieťová
spojová
fyzická

transportná vrstva
potvrdzovanie
správa vyrovnávacích pamätí
určovanie host-host oneskorenia
(,,timeout_u" cez siet')

