

ریاضیات گسسته

دکتر منصوره میرزایی

فصل دوم

نظریه توابع و مجموعه ها

• مجموعه: یک اجتماع بدون ترتیب از اشیایی که به آنها اعضای $a \in A$ مجموعه گفته میشود. $a \in A$ یعنی عنصر $a \notin A$ نیست. است، و $a \notin A$ یعنی عنصر $a \notin A$ نیست.

- برای نشان دادن مجموعه:
- نوشتن همه اعضای آن: {2,4,6,8}
- $\{x | x \ge -10 \land x \le 10\}$ سازنده مجموعه: •

- دو مجموعه با هم مساوی هستند اگر اعضای یکسانی داشته باشند.
- مجموعه ای که هیچ عضوی نداشته باشد را مجموعه تهی گوییم و آن را به صورت $\{\}$ یا \emptyset نشان میدهیم.

• یکی از راه های نمایش مجموعه ها استفاده از نمودار ون است. مجموعه جهانی U که شامل همه عناصر است را با مستطیل نشان میدهیم. داخل این مستطیل مجموعه های دیگر را به صورت دایره یا سایر اشکال هندسی نشان میدهیم.

- مجموعه A زیرمجموعه ای از B است، اگر و فقط اگر هر عضو از A عضوی از B باشد، و آن را به صورت $A \subseteq B$ نشان میدهیم. برای نشان دادن آن باید ثابت کنیم: $A \subseteq B$
- اگر بخواهیم تاکید کنیم که A زیرمجموعه B است ولی با B مساوی نیست، آن را به صورت $A \subset B$ نشان میدهیم. (زیرمجموعه محض) و باید نشان دهیم:

 $\forall x (x \in A \rightarrow x \in B) \land \exists x (x \in B \land x \notin A)$

• اگر مجموعه A شامل n عضو متمایز باشد، گوییم اندازه مجموعه A یا کاردینالیتی مجموعه A برابر با n است و آن را با |A| نشان میدهیم. |A| فرض کنید A مجموعه حروف الفبای فارسی باشد، پس |A|

• مجموعه توانی: مجموعه تمامی زیرمجموعه های یک مجموعه را مجموعه توانی یک مجموعه گویند. P(S)

مثال:

 $\mathcal{P}(\{0, 1, 2\}) = \{\emptyset, \{0\}, \{1\}, \{2\}, \{0, 1\}, \{0, 2\}, \{1, 2\}, \{0, 1, 2\}\}.$

• حاصلضرب دکارتی دو مجموعه: فرض کنید A و B دو مجموعه باشند، حاصلضرب دکارتی A در B را با $A \times B$ نشان میدهیم و برابر است با:

$$A \times B = \{(a, b) | a \in A \land b \in B\}$$

مثال: اگر $A \times B$ ،B = {a,b,c} و $A = \{1,2\}$ برابر است با:

$$A \times B = \{(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)\}.$$

 \emptyset در حالت کلی $A \times B \neq B \times A$ مگر اینکه $A \times B \neq B \times A$ باشد.

 A_1 مجموعه باشند حاصلضرب دکارتی n ، A_n ... A_2 ، A_1 اگر A_1 به صورت n تایی های مرتب به صورت زیر تعریف میشود:

 $A_1 \times A_2 \times \cdots \times A_n = \{(a_1, a_2, \dots, a_n) | a_i \in A_i\} \forall i$

• فرض کنید A و B، دو مجموعه باشند، اجتماع دو مجموعه B و I و او الله فرض کنید $A \cup B = \{x \mid x \in A \lor x \in B\}.$

 $A \cup B$ is shaded.

• فرض کنید A و B، دو مجموعه باشند، اشتراک دو مجموعه B و A را A \cap B به صورت A \cap B نشان میدهیم و برابر است با همه عناصری که هم در A \cap B قرار دارند. A \cap B قرار دارند.

 $A \cap B$ is shaded.

• فرض کنید A و B دو مجموعه باشند. مجموعه A - B شامل عناصری از $A - B = \{x \mid x \in A \land x \notin B\}.$

• فرض کنید U مجموعه جهانی باشد و A یک مجموعه باشد. متمم مجموعه \overline{A} را با \overline{A} نشان میدهیم و شامل همه عناصری از مجموعه جهانی است که در A قرار ندارند، یعنی A $\overline{A} = \{x \in U \mid x \notin A\}$.

 $A-B=A\cap \overline{B}$ مثال: ثابت کنید

$$A-B=A\cap \overline{B}$$
 مثال: ثابت كنيد

حل:

$$x \in A - B \Rightarrow x \in A \land x \notin B$$

$$\Rightarrow x \in A \land x \in \overline{B}$$

$$\Rightarrow x \in A \cap \overline{B}$$

$$x \in A \cap \overline{B} \Rightarrow x \in A \land x \in \overline{B}$$

$$\Rightarrow x \in A \land x \notin B$$

$$\Rightarrow x \in A \land x \notin B$$

$$\Rightarrow x \in A - B$$

Identity	Name
$A \cap U = A$ $A \cup \emptyset = A$	Identity laws
$A \cup U = U$ $A \cap \emptyset = \emptyset$	Domination laws
$A \cup A = A$ $A \cap A = A$	Idempotent laws
$\overline{(\overline{A})} = A$	Complementation law
$A \cup B = B \cup A$ $A \cap B = B \cap A$	Commutative laws
$A \cup (B \cup C) = (A \cup B) \cup C$ $A \cap (B \cap C) = (A \cap B) \cap C$	Associative laws
$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	Distributive laws
$\overline{A \cap B} = \overline{A} \cup \overline{B}$ $\overline{A \cup B} = \overline{A} \cap \overline{B}$	De Morgan's laws
$A \cup (A \cap B) = A$ $A \cap (A \cup B) = A$	Absorption laws
$A \cup \overline{A} = U$ $A \cap \overline{A} = \emptyset$	Complement laws

$$\overline{(A \cap B)} = \overline{A} \cup \overline{B}$$
 مثال: ثابت کنید

$$\overline{(A \cap B)} = \overline{A} \cup \overline{B}$$
 مثال: ثابت کنید

حل:

$$\overline{A \cap B} = \{x \mid x \notin A \cap B\}$$

$$= \{x \mid \neg(x \in (A \cap B))\}$$

$$= \{x \mid \neg(x \in A \land x \in B)\}$$

$$= \{x \mid \neg(x \in A) \lor \neg(x \in B)\}$$

$$= \{x \mid x \notin A \lor x \notin B\}$$

$$= \{x \mid x \in \overline{A} \lor x \in \overline{B}\}$$

$$= \{x \mid x \in \overline{A} \cup \overline{B}\}$$

$$= \overline{A} \cup \overline{B}$$

مثال: برای مجموعه های A و B و C، عبارت زیر را ثابت کنید.

$$\overline{A \cup (B \cap C)} = (\overline{C} \cup \overline{B}) \cap \overline{A}.$$

مثال: برای مجموعه های A و B و C، عبارت زیر را ثابت کنید.

$$\overline{A \cup (B \cap C)} = (\overline{C} \cup \overline{B}) \cap \overline{A}.$$

حل:

$$\overline{A \cup (B \cap C)} = \overline{A} \cap (\overline{B \cap C})$$

$$= \overline{A} \cap (\overline{B} \cup \overline{C})$$

$$= (\overline{B} \cup \overline{C}) \cap \overline{A}$$

$$= (\overline{C} \cup \overline{B}) \cap \overline{A}$$

مثال: عبارت زیر را به ساده ترین شکل ممکن بنویسید.

$$\overline{(A \cup B) \cap C} \cup \overline{B}$$

مثال: عبارت زیر را به ساده ترین شکل ممکن بنویسید.

$$\overline{(A \cup B) \cap C} \cup \overline{B}$$

حل:

$$\overline{(A \cup B) \cap C} \cup \overline{B} = (A \cup B) \cap C \cap B$$
$$= (A \cup B) \cap B \cap C$$
$$= B \cap C$$

تابع (function)

- فرض کنید A و B دو مجموعه غیر تهی باشند، تابع f از A به B، به این صورت تعریف میشود که به هر عضو A دقیقا یک عضو تخصیص می یابد، و آن را به صورت $f:A\to B$ نشان میدهیم.
- به مجموعه A دامنه (Domain)، به مجموعه B حوزه (codomain) گفته میشود.
 - مجموعه همه عناصری که به عضوی از دامنه نگاشت شده اند را برد تابع (range) گوییم.

تابع

تابع

مثال: فرض کنید تابع f:Z o Z به صورت $f(x)=x^2$ تعریف شده باشد.

دامنه: مجموعه همه اعداد صحیح

حوزه: مجموعه همه اعداد صحیح

برد: مجموعه همه اعداد صحیحی که مربع کامل هستند.

تابع

• فرض کنید f تابعی از A به B باشد، و S زیر مجموعه ای از A باشد. در این صورت f(S) به صورت زیر تعریف میشود: $f(S) = \{f(s) | s \in S\}$

تابع یک به یک (injective)

• تابع f را یک به یک گوییم اگر و تنها اگر

$$\forall a \forall b (f(a) = f(b) \rightarrow a = b)$$

• تابع f یک به یک است اگر و تنها اگر

$$\forall a \forall b (a \neq b \rightarrow f(a) \neq f(b))$$

تابع یک به یک

مثال) یک به یک بودن تابع $f(x)=x^2$ را روی اعداد حقیقی بررسی کنید.

حل) یک به یک نیست، زیرا

$$f(1) = f(-1) = 1$$

تابع صعودی و نزولی (, increasing) تابع صعودی و نزولی (, decreasing

• تابع f را صعودی گوییم اگر

$$\forall x \forall y (x < y \rightarrow f(x) \le f(y))$$

• تابع f را نزولی گوییم اگر

$$\forall x \forall y (x < y \rightarrow f(x) \ge f(y))$$

• در دو تعریف بالا حالت اکید وقتی اتفاق می افتد که تساوی نداشته باشیم.

تابع پوشا (surjection)

 $b \in B$ عضو $b \in B$ عضو $a \in A$ اور پوشا گوییم، اگر و فقط اگر برای هر $a \in A$ عضو $a \in A$ وجود داشته باشد به طوری که $a \in A$ به عبارت دیگر $b \in B$ عنو $b \in B$ عضو به عبارت دیگر $b \in B$

تابع پوشا

مثال: آیا تابع $x^2 = f(x) = f(x)$ در مجموعه اعداد حقیقی پوشا است؟ حل) خیر.

در مجموعه اعداد حقیقی f(x) = -1 جواب ندارد.

تابع یک به یک پوشا (bijection)

• تابع f را یک به یک پوشا گوییم، اگر هم یک به یک باشد و هم پوشا

مثال: تابع f(x) = x روی مجموعه اعداد حقیقی یک تابع یک به یک یوشا است.

Suppose that $f: A \to B$.

To show that f is injective Show that if f(x) = f(y) for arbitrary $x, y \in A$ with $x \neq y$, then x = y.

To show that f is not injective Find particular elements $x, y \in A$ such that $x \neq y$ and f(x) = f(y).

To show that f is surjective Consider an arbitrary element $y \in B$ and find an element $x \in A$ such that f(x) = y.

To show that f is not surjective Find a particular $y \in B$ such that $f(x) \neq y$ for all $x \in A$.

تابع یک به یک پوشا

تابع وارون

تابع وارون

مثال) آیا تابع $\mathbb{R}^+ \to \mathbb{R}^+$ با ضابطه $f: \mathbb{R}^+ \to \mathbb{R}^+$ وارون دارد؟ حل) چون این تابع یک تابع دوسویه (یک به یک پوشا) است، بنابراین وارون دارد.

$$y = x^2 \Rightarrow x = \sqrt{y}$$
$$\Rightarrow f^{-1}(y) = \sqrt{y}$$

• فرض کنید g تابعی از A به A و B تابعی از A باشد. ترکیب دو تابع f تابع g برای هر $a \in A$ که آن را به صورت f نشان میدهیم و به صورت زیر تعریف میشود:

$$(f \circ g)(a) = f(g(a))$$

$$g(x) = x^2 + 1$$
 و $f(x) = 3x$ مثال) فرض کنید $g(foh)$ و foh gof fog مطلوبست $g(foh)$ مطلوبست $g(foh)$ مطلوبست $g(foh)$ $g(foh)$

 $f:A \to B$ و $C = \{w, x, y, z\}$ و $B = \{a, b, c\}$ همچنـين $A = \{1, 7, 7, 7\}$ همچنـين $G = \{(a, x) (b, y) (c, z)\}$ و $f = \{(1, a) (7, a) (7, b) (7, c)\}$ يا $g = \{(a, x) (b, y) (c, z)\}$ و $f = \{(1, a) (7, a) (7, b) (7, c)\}$ انگاه:

gof =
$$\{(1, x) (7, x) (7, y) (7, z)\}$$

(gof) (1) = $g(f(1))$ = $g(a)$ = x
(gof) (7) = $g(f(7))$ = $g(a)$ = x
(gof) (7) = $g(f(7))$ = $g(b)$ = y
(gof) (7) = $g(f(7))$ = $g(c)$ = z

- دنباله یک ساختار گسسته است که برای نمایش یک لیست مرتب بکار میرود.
- بطور دقیقتر میتوان گفت دنباله تابعی است از زیرمجموعه ای از اعداد \mathbf{n} ام \mathbf{n} ام \mathbf{n} ام عدد \mathbf{n} دنباله یک مجموعه \mathbf{n} . برای نشان دادن تصویر عدد \mathbf{n} استفاده میکنیم. دنباله را به صورت \mathbf{n} نشان میدهیم.
- $a_n = \frac{1}{n}$ که در آن $a_n = \frac{1}{n}$ ، جملات به صورت $\{a_n\}$ مثال: دنباله هستند.

• تصاعد هندسی دنباله ای است به شکل

$$a, ar, ar^2, \dots, ar^n, \dots$$

که a جمله اول و r نسبت تصاعد است و هر دو عدد حقیقی هستند.

مثال: دنباله
$$a_n=6$$
. $(rac{1}{3})^n$ به صورت زیر است:

$$6, 2, \frac{2}{3}, \frac{2}{9}, \frac{2}{27}, \dots$$

• یک تصاعد حسابی دنباله ای به شکل

a, a + d, a + 2d, ..., a + nd, ...

است که a جمله اول و d قدر نسبت تصاعد نام دارد و هر دو حقیقی هستند.

مثال: دنباله $\{s_n\}$ با $\{s_n\}$ با $\{s_n\}$ به صورت زیر است:

-1, 3, 7, 11, ...

- یک رابطه بازگشتی برای دنباله $\{a_n\}$ رابطه ای است که a_n بر حسب یک یا چند جمله قبلی در دنباله بیان میشود.
 - شرایط اولیه در یک دنباله بازگشتی، جملاتی را مشخص میکند که قبل از محاسبه جمله اول باید مشخص باشند.

مثال: دنباله فيبوناچي

$$f_n = f_{n-1} + f_{n-2}$$
, $f_0 = 0$, $f_1 = 1$

0, 1, 1, 2, 3, 5, 8, 11,

$$a_n = a_{n-1} + 3$$
$$a_1 = 2$$

حل:

حل: روش ۱:

$$a_2 = 2 + 3$$

 $a_3 = (2 + 3) + 3 = 2 + 3 \cdot 2$
 $a_4 = (2 + 2 \cdot 3) + 3 = 2 + 3 \cdot 3$
 \vdots
 $a_n = a_{n-1} + 3 = (2 + 3 \cdot (n - 2)) + 3 = 2 + 3(n - 1).$

$$a_n = a_{n-1} + 3$$

 $= (a_{n-2} + 3) + 3 = a_{n-2} + 3 \cdot 2$
 $= (a_{n-3} + 3) + 3 \cdot 2 = a_{n-3} + 3 \cdot 3$
 \vdots
 $= a_2 + 3(n-2) = (a_1 + 3) + 3(n-2) = 2 + 3(n-1).$

فرض کنید میخواهیم مجموع جملات m ام تا n ام یک دنباله را حساب کنیم. برای اینکار از نماد زیر استفاده میکنیم:

$$\sum_{j=m}^{n} a_j, \qquad \sum_{j=m}^{n} a_j, \qquad \text{or} \qquad \sum_{m \le j \le n} a_j$$

• قضیه: اگر a و r اعداد حقیقی باشند، و $r \neq 0$ در این صورت:

$$\sum_{j=0}^{n} ar^{j} = \begin{cases} \frac{ar^{n+1} - a}{r - 1} & \text{if } r \neq 1\\ (n+1)a & \text{if } r = 1. \end{cases}$$

TABLE 2 Some Useful Summation Formulae.		
Sum	Closed Form	
$\sum_{k=0}^{n} ar^k \ (r \neq 0)$	$\frac{ar^{n+1}-a}{r-1}, r \neq 1$	
$\sum_{k=1}^{n} k$	$\frac{n(n+1)}{2}$	
$\sum_{k=1}^{n} k^2$	$\frac{n(n+1)(2n+1)}{6}$	
$\sum_{k=1}^{n} k^3$	$\frac{n^2(n+1)^2}{4}$	
$\sum_{k=0}^{\infty} x^k, x < 1$	$\frac{1}{1-x}$	
$\sum_{k=1}^{\infty} kx^{k-1}, x < 1$	$\frac{1}{(1-x)^2}$	

مثال: فرض کنید x یک عدد حقیقی باشد که |x| < 1. مجموع زیر را پیدا کنید.

$$\sum_{n=0}^{\infty} x^n$$

حل)

$$\sum_{n=0}^{k} x^n = \frac{x^{k+1} - 1}{x - 1}$$

$$\Rightarrow \sum_{k=0}^{\infty} x^{n} = \lim_{k \to \infty} \frac{x^{k+1} - 1}{x - 1} = \frac{-1}{x - 1} = \frac{1}{1 - x}$$

- مجموعه های A و B کاردینالیتی یکسان دارند، اگر و فقط اگر یک نگاشت یک به یک پوشا از A به A وجود داشته باشد.
- اگر یک تابع یک به یک از A به B وجود داشته باشد، آنوقت داریم: $|A| \ge |A|$ و اگر علاوه بر این بدانیم که $|A| \ge |B|$ یکسانی ندارند، آنگاه |B| > |A|

- مجموعه های نامتناهی را به دو مجموعه تقسیم میکنیم.
- مجموعه هایی که کاردینالیتی یکسان با مجموعه اعداد طبیعی دارند.
 - مجموعه های با کاردینالیتی متفاوت با مجموعه اعداد طبیعی

• مجموعه ای که متناهی باشد یا کاردینالیتی برابر با مجموعه اعداد طبیعی داشته باشد، شمارا نامیده میشود، و مجموعه ای که شمارا نباشد، ناشمارا است.

مثال: نشان دهید مجموعه اعداد فرد مثبت یک مجموعه شمارا است.

حل:

میتوان یک تابع یک به یک پوشا بین اعداد فرد و مجموعه اعداد طبیعی ییدا کرد.

مثال: مجموعه اعداد حقیقی ناشماراست.

• قضیه: اگر $A \cup B$ مجموعه های شمارا باشند، آنگاه $A \cup B$ شمارا است.

- یک تابع را محاسبه پذیر گوییم اگر یک برنامه کامپیوتری وجود داشته باشد بطوریکه مقادیر تابع را پیدا کند. اگر تابعی محاسبه پذیر نباشد، به آن محاسبه ناپذیر گوییم.
 - میتوان ثابت کرد که توابع محاسبه ناپذیر وجود دارند.

• ماتریس یک آرایه مستطیلی با m سطر و n ستون است. اگر تعداد سطرها و ستون ها با هم برابر باشد، به آن آرایه مربعی گوییم.

$$\begin{bmatrix} 1 & 1 \\ 0 & 2 \\ 1 & 3 \end{bmatrix}$$

• مجموع دو ماتریس m در n یک ماتریس m در n است که در آن هر درایه برابر با مجموع درایه های متناظر است.

$$\begin{bmatrix} 1 & 0 & -1 \\ 2 & 2 & -3 \\ 3 & 4 & 0 \end{bmatrix} + \begin{bmatrix} 3 & 4 & -1 \\ 1 & -3 & 0 \\ -1 & 1 & 2 \end{bmatrix} = \begin{bmatrix} 4 & 4 & -2 \\ 3 & -1 & -3 \\ 2 & 5 & 2 \end{bmatrix}.$$

• اگر A یک ماتریس m در m و m یک ماتریس m در m باشد، حاصلضرب دو ماتریس m در m که آن را با m نشان میدهیم، یک ماتریس m در m است که در آن دریه m ام آن برابر با مجموع حاصلضرب درایه های متناظر در سطر m ام m در ستون m است.

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 4 \\ 2 & 1 & 1 \\ 3 & 1 & 0 \\ 0 & 2 & 2 \end{bmatrix} \quad \text{and} \quad \mathbf{B} = \begin{bmatrix} 2 & 4 \\ 1 & 1 \\ 3 & 0 \end{bmatrix} \cdot \quad \mathbf{AB} = \begin{bmatrix} 14 & 4 \\ 8 & 9 \\ 7 & 13 \\ 8 & 2 \end{bmatrix}$$

ضرب ماتریس ها

```
\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1k} \\ a_{21} & a_{22} & \dots & a_{2k} \\ \vdots & \vdots & & \vdots \\ a_{i1} & a_{i2} & \dots & a_{ik} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mk} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & \dots & b_{1j} & \dots & b_{1n} \\ b_{21} & b_{22} & \dots & b_{2j} & \dots & b_{2n} \\ \vdots & \vdots & & \vdots & & \vdots \\ b_{k1} & b_{k2} & \dots & b_{kj} & \dots & b_{kn} \end{bmatrix} = \begin{bmatrix} c_{11} & c_{12} & \dots & c_{1n} \\ c_{21} & c_{22} & \dots & c_{2n} \\ \vdots & \vdots & c_{ij} & \vdots \\ c_{m1} & c_{m2} & \dots & c_{mn} \end{bmatrix}
```

• ماتریس همانی از مرتبه n، یک ماتریس مربعی n×n است که درایه های قطر اصلی ۱ و بقیه صفر هستند.

$$\mathbf{I}_{n} = \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \dots & 1 \end{bmatrix}.$$

$$\mathbf{AI}_{n} = \mathbf{I}_{m}\mathbf{A} = \mathbf{A}.$$

$$\mathbf{A}^{0} = \mathbf{I}_{n}, \qquad \mathbf{A}^{r} = \underbrace{\mathbf{AAA} \cdots \mathbf{A}}_{r \text{ times}}.$$

$$AI_n = I_m A = A.$$

$$\mathbf{A}^0 = \mathbf{I}_n, \qquad \mathbf{A}^r = \underbrace{\mathbf{A}\mathbf{A}\mathbf{A}\cdots\mathbf{A}}_{r \text{ times}}$$

• فرض کنید A یک ماتریس $m \times n$ باشد. ترانهاده ماتریس A که آن را با A^t نشان میدهیم، یک ماتریس $m \times m$ است که از جابجایی سطرها و ستون های A بدست می آید.

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}.$$

• ماتریس A را متقارن گوییم، اگر A

[1	1	0
1	0	1
$\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$	1	0 1 0

- ماتریسی که همه درایه های آن صفر و یک باشند را ماتریس صفر و یک باشند را ماتریس صفر و یک گوییم. روی چنین ماتریس هایی میتوان عملیات منطقی را تعریف کرد.
 - و منطقی (AND): درایه به درایه دو ماتریس با هم AND میشوند.
 - یا منطقی (OR): درایه به درایه دو ماتریس با هم OR میشوند.
 - ضرب بولین (⊙) :مانند حاصلضرب ماتریس ها به صورت زیر تعریف

$$c_{ij} = (a_{i1} \wedge b_{1j}) \vee (a_{i2} \wedge b_{2j}) \vee \cdots \vee (a_{ik} \wedge b_{kj}).$$

• اگر A یک ماتریس مربعی باشد، r امین توان بولین A به صورت زیر تعریف میشود:

$$\mathbf{A}^{[r]} = \underbrace{\mathbf{A} \odot \mathbf{A} \odot \mathbf{A} \odot \cdots \odot \mathbf{A}}_{r \text{ times}}.$$

• توان صفر بولین ماتریس همانی تعریف میباشد.

$$\mathbf{A} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \end{bmatrix}$$

$$\mathbf{A}^{[2]} = \mathbf{A} \odot \mathbf{A} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix}. \qquad \mathbf{A}^{[3]} = \mathbf{A}^{[2]} \odot \mathbf{A} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix},$$

$$\mathbf{A}^{[4]} = \mathbf{A}^{[3]} \odot \mathbf{A} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix}. \qquad \mathbf{A}^{[5]} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}.$$