Intro. Econometria Usando R - Aula 2-

Prof. Mestre. Omar Barroso Khodr Instituto Brasileiro de Educação, Pesquisa e Desenvolvimento

Tópicos

- Medidas de Ajuste R^2
- Regressão Linear Múltipla
- Inferência

 Existe uma medida conveniente para avaliar o quão bem um determinado modelo estatístico se ajusta aos dados. Ela é chamada de R^2 , também chamado de coeficiente de determinação. Utilizamos a decomposição de variância recém-introduzida e escrevemos a fórmula como:

$$egin{aligned} ESS &= \sum_{i=1}^n \left(\hat{Y}_i - \overline{Y}
ight)^2, \ TSS &= \sum_{i=1}^n \left(Y_i - \overline{Y}
ight)^2, \ R^2 &= rac{ESS}{TSS}. \end{aligned}$$

- \hat{y}_i : Valores estimados de Y
- \bar{y} : A média de Y.
- ESS: Soma dos Quadrados
 Explicada (Explained Sum of Squares). →SQE

•
$$R^2 = \frac{SQE}{STQ}$$

$$egin{aligned} ESS &= \sum_{i=1}^n \left(\hat{Y}_i - \overline{Y}
ight)^2, \ TSS &= \sum_{i=1}^n \left(Y_i - \overline{Y}
ight)^2, \ R^2 &= rac{ESS}{TSS}. \end{aligned}$$

- Nesse contexto,
- TSS = ESS + SSR
- Ou Seja, a Soma Total dos Quadrados é igual a Soma dos Quadrados Explicadas mais a Soma dos Resíduos ao Quadrado (SRQ ou SSR Sum of Squared Residuals). Em outras palavras...
- STQ = SQE + SQR
- Assim, podemos também Determinar que,
- $1 \frac{SRQ}{STQ}$

•
$$R^2 = \frac{SQE}{STQ} = 1 - \frac{SRQ}{STQ} \epsilon$$
 [0,1]

- Desta maneira, R^2 fica entre o intervalo de 0 e 1.
- É fácil ver que um ajuste perfeito, ou seja, nenhum erro cometido ao ajustar a linha de regressão, implica $R^2 = 1$.
- Caso contrário, $R^2 = 0$.
- Nesse contexto, quanto mais perto de 1 melhor o ajuste do modelo. Caso contrário, um ajuste menor implica um ajuste menor.

Testando em um Modelo

- Suponha que,
- $Salário = b_0 + b_1 educ_i + e_i$
- Fazendo diagnósticos...
- Pelos sinais vermelhos no eixo y, podemos perceber que os salários estão muito concentrados em torno de 5 USD por hora, com cada vez menos observações em taxas mais altas; e segundo, parece que o salário por hora parece aumentar com níveis educacionais mais elevados.

Salários vs. Educa, 1976

Testando em um Modelo

- Suponha que,
- $Salário = b_0 + b_1 educ_i + e_i$
- Fazendo diagnósticos...
- O histograma reforça o primeiro ponto, mostrando que a pdf (função de densidade de probabilidade) estimada, mostrada como uma linha preta, tem uma cauda direita muito longa: há sempre valores cada vez menores, mas sempre maiores, de salário por hora nos dados.

Histo de Sal e Densidade

Testando em um Modelo

- Resultados,
- Com zero ano de educação, o salário-hora é de aproximadamente -0,9 dólares por hora (linha denominada (Intercepto).
- Cada ano adicional de educação aumenta o salário-hora em 54 centavos. (linha denominada educ)
- Por exemplo, para 15 anos de educação, prevemos aproximadamente -0,9 + 0,541
 * 15 = 7,215 dólares/h.
- Todavia, nosso R^2 é baixo o que demonstra um ajuste fraco no modelo. Com isso, talvez existem variáveis omitidas e coisas que devemos investigar.

```
## Call:
## lm(formula = wage ~ educ, data = wage1)
##
## Residuals:
               10 Median
                                      Max
## -5.3396 -2.1501 -0.9674 1.1921 16.6085
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.90485
                         0.68497 -1.321
## educ
               0.54136
                        0.05325 10.167 <2e-16 ***
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 3.378 on 524 degrees of freedom
## Multiple R-squared: 0.1648, Adjusted R-squared: 0.1632
## F-statistic: 103.4 on 1 and 524 DF, p-value: < 2.2e-16
```

Regressão Múltipla

- Tudo o que aprendemos para o caso de variável única também se aplica aqui. Em vez de uma reta de regressão, agora temos um plano de regressão, ou seja, um objeto representável em três dimensões...
- Por exemplo, (x_1, x_2, y) .

Fonte: Econometrics with R (Sciences Po, 2020)

Regressão Múltipla

- Considerando o modelo anterior:
- $Salário = b_0 + b_1 educ_i + e_i$
- Agora adicionamos mais uma variável e deixamos salário em log.
- $Log.Sal. = b_0 + b_1 educ_i + b_2 Exper_i + e_i$

Fonte: Econometrics with R (Sciences Po, 2020)

Regressão Múltipla (Ceteris Paribus)

- $Log.Sal. = b_0 + b_1 educ_i + b_2 Exper_i + e_i$
- Tudo o mais sendo igual...
- Mantendo o valor de $Exper_i$ fixo, qual seria o impacto em Log.Sal. se aumentássemos apenas $educ_i$? Em outras palavras, mantendo tudo o mais constante, qual seria o impacto de alterar $educ_i$ em Log.Sal.?
- Qual é o impacto de cada variável isoladamente?
- Na verdade, o tipo de pergunta feita aqui é tão comum que tem seu próprio nome: diríamos "ceteris paribus, qual é o impacto da educação nos Salários?"

Regressão Múltipla (Multicolinearidade)

- Um requisito importante para a regressão múltipla é que os dados não sejam linearmente dependentes: cada variável deve fornecer pelo menos alguma informação nova para o resultado e não pode ser replicada como uma combinação linear de outras variáveis.
- Não podemos ter variáveis linearmente dependentes ou perfeitamente colineares. Isso é conhecido como condição de classificação.

Regressão Múltipla (Multicolinearidade)

- Em particular, a condição determina que precisamos de pelo menos $N \geq K+1$, ou seja, mais observações do que coeficientes.
- Quanto maior o grau de dependência linear entre nossas variáveis explicativas, menos informações podemos extrair delas, e nossas estimativas se tornam menos precisas.

Regressão Múltipla (Exemplo)

- $Log.Sal. = b_0 + b_1 educ_i + b_2 Exper_i + e_i$
- Em nosso modelo, Podemos perceber que a correlação entre as nossas variáveis são moderadas ou baixas.
- Ou seja, não temos problemas de multi-colinearidade.

Regressão Múltipla (Exemplo)

- Podemos perceber que ao adicionar mais regressores, o ajuste do nosso modelo melhora.
- Por exemplo, $Log.Sal. = b_0 + b_1 educ_i + b_2 Exper_i$
- Temos um R^2 um pouco maior em 0.249.
- $Log.Sal. = b_0 + b_1 educ_i + b_2 Exper_i + b_3 Ten_3$
- O ajuste melhora ainda mais...

	Dependent variable: lwage		
_			
	(1)	(2)	(3)
educ	0.083***	0.098***	0.092***
	(0.008)	(0.008)	(0.007)
exper		0.010***	0.004**
		(0.002)	(0.002)
tenure			0.022***
			(0.003)
Constant	0.584***	0.217**	0.284***
	(0.097)	(0.109)	(0.104)
Observations	526	526	526
\mathbb{R}^2	0.186	0.249	0.316
Adjusted R ²	0.184	0.246	0.312
Residual Std. Error	0.480 (df = 524)	0.461 (df = 523)	0.441 (df = 522)
F Statistic 1	19.582*** (df = 1; 524)	86.862*** (df = 2; 523)	80.391*** (df = 3; 52)
Note:		*n<0	.1; **p<0.05; ***p<0.0

Regressão Múltipla (Graus de Liberdade)

- Graus de Liberdade = Degrees of Freedom (df).
- Quando você ajusta mais regressores (preditores) em um modelo de regressão, você perde graus de liberdade (gl).
- Cada regressor adicional consome um (ou mais, no caso de variáveis categóricas) grau de liberdade para estimar seu coeficiente associado.

	Dependent variable: lwage		
_			
	(1)	(2)	(3)
educ	0.083***	0.098***	0.092***
	(0.008)	(0.008)	(0.007)
exper		0.010***	0.004**
		(0.002)	(0.002)
tenure			0.022***
			(0.003)
Constant	0.584***	0.217**	0.284***
	(0.097)	(0.109)	(0.104)
Observations	526	526	526
\mathbb{R}^2	0.186	0.249	0.316
Adjusted R ²	0.184	0.246	0.312
Residual Std. Error	0.480 (df = 524)	0.461 (df = 523)	0.441 (df = 522)
F Statistic 1	19.582*** (df = 1; 524)	86.862*** (df = 2; 523)	80.391^{***} (df = 3; 522
Note:		*p<0	.1; **p<0.05; ***p<0.0

Regressão Múltipla (Graus de Liberdade)

- Para um conjunto de dados com n observações, o total de graus de liberdade é n-1 (usado para estimar a variância da variável dependente em torno de sua média).
- Se você incluir K regressores (excluindo o intercepto), usará até k graus de liberdade para estimar seus coeficientes.
- Os graus de liberdade restantes são n-k-1 (onde -1 representa o intercepto).
- Adicionar mais regressores reduz o GL, o que significa que restam menos informações independentes para estimar a variância do erro.

	Dependent variable: lwage		
	(1)	(2)	(3)
educ	0.083***	0.098***	0.092***
	(800.0)	(0.008)	(0.007)
exper		0.010***	0.004**
		(0.002)	(0.002)
tenure			0.022***
			(0.003)
Constant	0.584***	0.217**	0.284***
	(0.097)	(0.109)	(0.104)
Observations	526	526	526
\mathbb{R}^2	0.186	0.249	0.316
Adjusted R ²	0.184	0.246	0.312
Residual Std. Error	0.480 (df = 524)	0.461 (df = 523)	0.441 (df = 522)
F Statistic 1	19.582*** (df = 1; 524)	86.862*** (df = 2; 523)	80.391*** (df = 3; 52
Note:		*p<0	.1; **p<0.05; ***p<0.0

Regressão Múltipla (Graus de Liberdade)

 Cada regressor adicionado poderia melhorar o ajuste (R^2 mais alto), mas se for espúrio, desperdiça df e infla a variância.

 A penalização desencoraja essa compensação, a menos que o regressor forneça valor explicativo suficiente.

	Dependent variable: lwage		
	(1)	(2)	(3)
educ	0.083***	0.098***	0.092***
	(800.0)	(0.008)	(0.007)
exper		0.010***	0.004**
		(0.002)	(0.002)
tenure			0.022***
			(0.003)
Constant	0.584***	0.217**	0.284***
	(0.097)	(0.109)	(0.104)
Observations	526	526	526
\mathbb{R}^2	0.186	0.249	0.316
Adjusted R ²	0.184	0.246	0.312
Residual Std. Error	0.480 (df = 524)	0.461 (df = 523)	0.441 (df = 522)
F Statistic 1	19.582*** (df = 1; 524)	86.862*** (df = 2; 523)	80.391^{***} (df = 3; 522)
Note:		*p<0	.1; **p<0.05; ***p<0.01

Inferência (P-valores e Teste-T)

• P-valores (as estrelinhas): Quantificar a probabilidade de observar o coeficiente estimado (ou mais extremo) se a hipótese nula (H_0) .

Interpretação:

- p < 0,05 (limiar típico): Rejeitar H0; evidência de que o coeficiente é significativo.
- p > 0,05: Falha ao rejeitar H0; nenhuma evidência forte contra H0.

	Dependent variable: lwage		
_			
	(1)	(2)	(3)
educ	0.083***	0.098***	0.092***
	(800.0)	(0.008)	(0.007)
exper		0.010***	0.004**
		(0.002)	(0.002)
tenure			0.022***
			(0.003)
Constant	0.584***	0.217**	0.284***
	(0.097)	(0.109)	(0.104)
Observations	526	526	526
\mathbb{R}^2	0.186	0.249	0.316
Adjusted R ²	0.184	0.246	0.312
Residual Std. Error	0.480 (df = 524)	0.461 (df = 523)	0.441 (df = 522)
F Statistic 1	119.582^{***} (df = 1; 524) 86.862^{***} (df = 2; 523) 80.391^{***} (df = 3; 522)		
Note:	*p<0.1; **p<0.05; ***p<0.01		

Inferência (P-valores e Teste-T)

- $teste\ t = \frac{Coeficiente\ Estimado}{Erro\ Padrão\ do\ coeficiente}$
- Um grande valor t absoluto sugere que é improvável que o coeficiente seja zero por acaso.
- Os testes t avaliam se o efeito de um regressor é estatisticamente distinguível de zero.

	Dependent variable: lwage		
_			
	(1)	(2)	(3)
educ	0.083***	0.098***	0.092***
	(0.008)	(0.008)	(0.007)
exper		0.010***	0.004**
		(0.002)	(0.002)
tenure			0.022***
			(0.003)
Constant	0.584***	0.217**	0.284***
	(0.097)	(0.109)	(0.104)
Observations	526	526	526
\mathbb{R}^2	0.186	0.249	0.316
Adjusted R ²	0.184	0.246	0.312
Residual Std. Error	0.480 (df = 524)	0.461 (df = 523)	0.441 (df = 522)
F Statistic 1	119.582^{***} (df = 1; 524) 86.862^{***} (df = 2; 523) 80.391^{***} (df = 3; 522)		
Note:	*p<0.1; **p<0.05; ***p<0.01		

Bibliografia

• Wooldridge, J.M. (2013) Introductory econometrics: a modern approach. 5th ed. Michigan State University.