

CONVOLUTIONAL NEURAL NETWORK

Effective at Dealing with Image Data

Types of Neural Network

MLP – Multi Layer Perceptron

CNNs have stacked layered architecture of several Convolution and Pooling Layers

Understanding CNNs

- 1. Convolutional Layers.
- 2. Pooling Layers.
- 3. Fully-Connected Layers.
- 4. Padding

Blur Filters

Image Kernel

Small matrix applied to an entire image

1/16	1/8	1/16
1/8	1/4	1/8
1/16	1/8	1/16

0.0625	0.125	0.0625
--------	-------	--------

0.125 0.25 0.125

0.0625 0.125 0.0625

Filters are referred to as Convolution Kernels.

 The process of passing the Kernels over an image is called Convolution

Blur Filter

Note: Padding can be used if you don't want to lose border information

Filter

0	0	0	0	0	0
0	2	2	2	2	0
0	2	1	1	2	0
0	2	1	1	2	0
0	2	2	2	2	0
0	0	0	0	0	0

0	0	0
0	-1	1
0	1	-1

0X0	0X0	0X0
0X0	2X-1	2X1
0X0	2X1	1X-1

3*3 FILTER

Multiply by Filter Weights

Stride Distance = (1,1)

Conv1D is used for input signals which are similar to the voice. By employing them you can find patterns across the signal. For instance, you have a voice signal and you have a convolutional layer. Each convolution traverses the voice to find meaningful patterns by employing a cost function.

Conv2D is used for images. This use case is very popular. The convolution method used for this layer is so called *convolution over volume*. This means you have a two-dimensional image which contains multiple channels, RGB as an example. In this case, each convolutional filter should be a three-dimensional filter to be convolved, cross-correlated actually, with the image to find appropriate patterns across the image.

 ${ t Conv3D}$ is usually used for videos where you have a frame for each time span. These layers usually have more parameters to be learnt than the previous layers. The reason we call them ${ t 3D}$ is that other than images for each frame, there is another axis called *time* containing discrete values, and each of them corresponds to a particular frame.

Convolutional Layers

- Perform FEATURE EXTRACTION on Source Images by applying filters(eg. 16)
- Understand various pattern with regard to Image Structures (Textures, Edges, Corners and Patterns)
- They extract Feature Maps

Max Pooling

Downsamples Feature maps from Conv Layers

4	9
9	3

Window 2x2 Stride: 2

Pooling Layers help in reducing Dimensionality after convolutions(compression)

Padding: "valid"

55 52

57 50

55 162 159 52 167 323 319 154 169 264 326 204 57 107 164 100

1. valid

2. same

Padding: "same"

55 52

57 50

1 2 2 1

 55
 162
 159
 52

 167
 323
 319
 154

 169
 264
 326
 204

 57
 107
 164
 100

https://miro.medium.com/max/2264/1*XUJwcj95wk-LsILwzJHaAg.png

References

- 1. https://www.cs.ryerson.ca/~aharley/vis/
- 2. https://setosa.io/ev/image-kernels/
- 3. https://towardsdatascience.com/understand-transposed-convolutions-and-build-your-own-transposed-convolution-layer-from-scratch-4f5d97b2967

THANK YOU