Короткие ответы к задачам Gen-1

М1. Разностные ЛОС с постоянными коэффициентами

Задача 1

$$y_{t+4} - 2y_{t+3} - y_{t+2} + 2y_{t+1} = 3 \cdot 2^t + (t^2 - 1)(-1)^t + 5.$$

Характеристический многочлен: (r-2)(r-1)(r+1)r.

$$y_t = C_0 0^t + C_1 1^t + C_2 (-1)^t + C_3 2^t + \frac{1}{4} t 2^t + (-1)^t \left(\frac{1}{18} t^3 - \frac{7}{18} t^2 + \frac{35}{54} t\right) - \frac{5}{2} t.$$

Задача 2

$$y_{t+5} + y_{t+4} - 6y_{t+3} - 6y_{t+2} + 8y_{t+1} + 8y_t$$
$$= 2^t \cos \frac{\pi t}{2} + t 3^t.$$

Корни ЛОС: $r \in \{2, -1, -2, \sqrt{2}, -\sqrt{2}\}.$

$$y_t = C_1 2^t + C_2 (-1)^t + C_3 (-2)^t + C_4 (\sqrt{2})^t + C_5 (-\sqrt{2})^t + 2^t \left(\frac{1}{240} \cos \frac{\pi t}{2} + \frac{1}{120} \sin \frac{\pi t}{2}\right) + 3^t \left(\frac{1}{140} t - \frac{969}{19600}\right).$$

Примечание. Для однозначности решения нужна ещё одна нач. величина (порядок 5).

Задача 3

$$y_{t+3} - 3y_{t+2} + 3y_{t+1} - y_t = (t^2 + 4) \cdot 1^t + t(-2)^t$$
.

Левая часть $(E-1)^3$. Общее решение:

$$y_t = A + Bt + Ct^2 + \left(\frac{1}{60}t^5 - \frac{1}{8}t^4 + t^3\right) + (-2)^t \left(-\frac{1}{27}t + \frac{2}{27}\right).$$

М2. Синтез разностного уравнения

Задача 1

Частные решения: 2^t , $t2^t$, $(-2)^t \sin \frac{\pi t}{3}$.

Ответ: характеристический многочлен

$$(r-2)^2 (r^2 + 2r + 4),$$

уравнение минимального порядка 4:

$$y_{t+4} - 2y_{t+3} - 8y_{t+1} + 16y_t = 0.$$

Задача 2

Решения: 3^t , $t3^t$, $2^t \cos \frac{\pi t}{4}$, $2^t \sin \frac{\pi t}{4}$.

Ответ: многочлен

$$(r-3)^2 (r^2 - 2\sqrt{2}r + 4),$$

порядок 4 (коэффициенты допускают $\sqrt{2}$).

Задача 3

Решения: $(-1)^t$, $t(-1)^t$, $t^2(-1)^t$, 5^t .

Ответ: многочлен

$$(r+1)^3(r-5) = r^4 - 2r^3 - 12r^2 - 14r - 5,$$

соответствующее ЛОС:

$$y_{t+4} - 2y_{t+3} - 12y_{t+2} - 14y_{t+1} - 5y_t = 0.$$

М3. Нелинейные 2D: равновесия и типы (гиперболика)

Задача 1

$$\dot{x} = y - x + x^2 + xy, \qquad \dot{y} = -x + 2y - xy.$$

Равновесия:

$$(0,0), (2-\sqrt{3}, 2/\sqrt{3}-1), (2+\sqrt{3}, -1-2/\sqrt{3}).$$

Типы:

$$(0,0)-$$
 седло; $(2-\sqrt{3},2/\sqrt{3}-1)-$ неустойчивый фокус;
$$(2+\sqrt{3},-1-2/\sqrt{3})-$$
 седло.

Задача 2

$$\dot{x} = ay + x(r^2 - 1), \quad \dot{y} = -ax + y(r^2 - 1), \quad r^2 = x^2 + y^2.$$

В начале координат: $J=\begin{pmatrix} -1 & a \\ -a & -1 \end{pmatrix}$, ${\rm tr}=-2, \ {\rm det}=1+a^2>0, \ D<0 \Rightarrow {\bf устойчивый}$ фокус при любом a.

Задача 3

$$\dot{x} = 2y - x - 2, \qquad \dot{y} = -2x + y - 2.$$

Единственное равновесие $\left(-\frac{2}{3},\frac{2}{3}\right)$. Линеаризация: $J=\begin{pmatrix} -1 & 2 \\ -2 & 1 \end{pmatrix}$, $\mathrm{tr}=0,\,\mathrm{det}=3>0,\,D<0$ \Rightarrow центр.

M4. Линейные ОДУ-2: снятие y', вронскиан, нули

Задача 1

$$y'' + \frac{2}{x}y' - \left(\frac{5}{x^2} + 1\right)y = 0, \quad x > 0.$$

 $\phi=x^{-1},\ z=y/\phi,\ z''+Qz=0$ с $Q=-\frac{5}{x^2}-1\leq 0.$ $W(x)=W(1)\,x^{-2}.$ Любое нетривиальное решение имеет ≤ 1 нуль на $(0,\infty).$

Задача 2

$$y'' + 4y' + (3 + e^{-x})y = 0.$$

 $\phi=e^{-2x},\,Q=e^{-x}-1\leq 0.$ $W(x)=W(0)\,e^{-4x}.\Rightarrow {
m y}$ решения ≤ 1 нуль на $\mathbb R.$

Задача 3

$$x^2y'' + \alpha xy' + \beta y = 0, \quad x > 0.$$

 $\phi=x^{-\alpha/2},\ Q=rac{4eta+2lpha-lpha^2}{4x^2}.$ $W(x)=W(x_0)\,(x_0/x)^lpha.$ Условие « ≤ 1 нуль»: $4eta+2lpha-lpha^2\leq 0.$

М5. ПЧП первого порядка: $u = F(I_1, I_2)$

Задача 1

$$(x+y)u_x + (2y - x)u_y = 0.$$

Инварианты: из $\frac{dy}{dx} = \frac{2y-x}{x+y}$ при v = y/x получаем

$$\int \frac{1+v}{v^2-v+1} \, dv = -\ln|x| + C \quad \Rightarrow \quad I_1 = x \, \exp\left(\frac{1}{2}\ln(v^2-v+1) + \sqrt{3} \arctan\frac{2v-1}{\sqrt{3}}\right).$$

Второй инвариант $I_2 = z$. Итог: $u = F(I_1, I_2)$.

Задача 2

$$x u_x + y u_y + (x+y)z u_z = 0.$$

Инварианты: $I_1 = \frac{y}{x}$ (масштабность), $I_2 = z e^{-(x+y)}$. Итог: $u = F\left(\frac{y}{x}, z e^{-(x+y)}\right)$.

Задача 3

$$(2xy)u_x + (y^2 - x^2)u_y + (x - y)u_z = 0.$$

Инварианты: $I_1 = \frac{x^2 + y^2}{x}$ (при v = y/x получаем $d \ln(v^2 + 1) = -d \ln x$), и $I_2 = z + \ln|x + y|$ (так как z' = (x - y) и $(x + y)' = 2xy + y^2 - x^2 = (y - x)(x + y)$). Итог: $u = F\left(\frac{x^2 + y^2}{x}, z + \ln|x + y|\right)$.

М6. ПЧП первого порядка: задача Коши

Задача 1

 $y z_x - x z_y = 0$ с данными z = 2y при x = 1.

Характеристики: $x^2 + y^2 = C$.

Тест нехарактеристичности: $\Delta = y \cdot 1 - (-1) \cdot 0 = y$. В (1,0): $\Delta = 0$ (характеристично).

Решение: $z = \pm 2\sqrt{x^2 + y^2 - 1}$ (неединственность).

Задача 2

 $y z_x - x z_y = 0$ с данными z = 2y при x = 1 + y.

Тест: $\Delta = y + x = 1 \neq 0$ в (1,0) (нехарактеристично).

Решение: $z = -1 + \sqrt{2(x^2 + y^2) - 1}$ (единственно).

Задача 3

 $(x+y)u_x + (2y-x)u_y = 0$ с данными $u = x^2$ на $y = x^2$.

Инвариант: $I_1 = x^2 + y^2$.

Tect: $\Delta = (x+y) \cdot 2x - (2y-x) \cdot 1 = 2x^2 + 2xy - 2y + x \neq 0$ в (0,0).

Решение: $u = F(x^2 + y^2)$, где F определяется из $F(x^2 + x^4) = x^2$.

M7. Нелинейные 2D: равновесия, линеаризация, портрет

Задача 1

 $\dot{x} = x - x^2 - y - y^2, \ \dot{y} = 2x - 3y + xy.$

Равновесия: (0,0) и $(x_*,y_*) \approx (0.1911,\ 0.1361)$.

Якоби в (0,0): $\begin{pmatrix} 1 & -1 \\ 2 & -3 \end{pmatrix}$, собств. значения $-1 \pm \sqrt{2} \Rightarrow \mathbf{ceдлo}$.

В (x_*, y_*) : собственные $\approx (-1.5627, -0.6284) \Rightarrow$ устойчивый узел.

Задача 2

$$\dot{x} = y - x(x^2 + b), \ \dot{y} = -x - y(y^2 + b).$$

$$J(0,0) = \begin{pmatrix} -b & 1 \\ -1 & -b \end{pmatrix}, \lambda = -b \pm i.$$

Классификация: b>0 — устойчивый фокус; b<0 — неустойчивый фокус; b=0 — линейно центр, но нелинейные кубики дают $\dot{r}=-(x^4+y^4)/r<0$ при $r\neq 0\Rightarrow$ асимптотически устойчивый фокус.

Задача 3

$$\dot{x} = (x - y)(1 - xy), \ \dot{y} = (x + y)(1 + x^2).$$

Единственное равновесие: (0,0).

 $J(0,0)=egin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix},\ \lambda=1\pm i\Rightarrow$ неустойчивый фокус.

M8. Полярные координаты, $\dot{r}, \dot{\theta}$

Задача 1

 $\dot{x} = ay + x(r^2 - 1), \ \dot{y} = -ax + y(r^2 - 1).$

В полярных: $\dot{r} = r(r^2 - 1), \dot{\theta} = -a$.

Динамика: r=0 устойчив, r=1 неустойчивый цикл; при r>1 — уход на бесконечность; угловая скорость постоянна.

Задача 2

 $\dot{x} = x(1 - r^2) + \omega y, \ \dot{y} = y(1 - r^2) - \omega x.$

В полярных: $\dot{r} = r(1 - r^2), \, \dot{\theta} = -\omega$.

Динамика: r=0 неустойчив, r=1 устойчивый предельный цикл.

Задача 3

 $\dot{x} = (r^2 - 2)x + \Omega y, \ \dot{y} = (r^2 - 2)y - \Omega x.$

В полярных: $\dot{r} = r(r^2 - 2), \, \dot{\theta} = -\Omega.$

Динамика: r=0 устойчив, $r=\sqrt{2}$ неустойчивый цикл; $r>\sqrt{2}$ — разлёт.

М9. Первые интегралы в 3D-ОДУ

Задача 1

 $\dot{x} = yz, \ \dot{y} = zx, \ \dot{z} = xy.$

Интегралы: $I_1 = x^2 - y^2$, $I_2 = x^2 - z^2$ (постоянны, т.к. $\frac{d}{dt}(x^2 - y^2) = 2xyz - 2xyz = 0$, аналогично для $x^2 - z^2$).

Интегральные поверхности: пересечения квадрик $x^2 - y^2 = C_1$, $x^2 - z^2 = C_2$.

Задача 2

 $\dot{x} = y^2 - z^2, \ \dot{y} = zx, \ \dot{z} = xy.$

Интеграл 1: $I_1 = y^2 - z^2$ (как в задаче 1). Тогда $\dot{x} = I_1 = {\rm const.}$

Интеграл 2:

$$I_2 = \ln \frac{y-z}{y+z} + \frac{x^2}{y^2 - z^2},$$

т.к.
$$\frac{d}{dt} \ln \frac{y-z}{y+z} = -2x$$
, а $\frac{d}{dt} \left(\frac{x^2}{I_1}\right) = \frac{2x\dot{x}}{I_1} = 2x$.

Поверхности: $y^2 - z^2 = C_1$, $\ln \frac{y-z}{y+z} + \frac{x^2}{C_1} = C_2$.

Задача 3

 $\dot{x} = y + z, \ \dot{y} = z + x, \ \dot{z} = x + y.$

Собственный базис: $v_1=(1,1,1),\ \lambda_1=2;\ v_2=(1,-1,0),\ v_3=(1,0,-1),\ \lambda_{2,3}=-1.$ Координаты: $\xi=\frac{x+y+z}{3},\ \eta=\frac{x-2y+z}{3},\ \zeta=\frac{x+y-2z}{3}.$

Интегралы: $I_1 = \frac{\zeta}{\eta}, \quad I_2 = \eta^2 \, \xi \quad (\text{т.к. } \dot{\eta} = -\eta, \ \dot{\zeta} = -\zeta, \ \dot{\xi} = 2\xi).$

В явном виде: $I_1 = \frac{x+y-2z}{x-2y+z}$, $I_2 = \frac{(x-2y+z)^2(x+y+z)}{27}$.

М10. Периодические коэффициенты, монодромия

Задача 1

 $q(x+T)=q(x),\ y(0)=y(T)=0.$ Тогда $y_1(x)=y(x+T)$ тоже решение и $y_1(0)=0.$ Пространство решений с y(0)=0 одномерно $\Rightarrow y(x+T)=C\ y(x).$

Константа: $C = \frac{y'(T)}{y'(0)} \neq 0.$

Задача 2

 $y'' + (2 + \cos x)y = 0$, период 2π . Фундаментальная матрица $\Phi(2\pi)$ имеет $\det = 1$.

Множители Флоке: корни $\mu_{1,2}$ уравнения $\mu^2 - \Delta \mu + 1 = 0$, где $\Delta = \operatorname{tr} \Phi(2\pi) \in \mathbb{R}$.

Виды: (i) $|\Delta| < 2$: $\mu = e^{\pm i\theta}$ (устойчивый, «эллиптический»); (ii) $|\Delta| > 2$: вещественные взаимно обратные; (iii) $|\Delta| = 2$: кратный ± 1 .

Задача 3

 $q(x+\pi)=q(x),$ y(0)=0, $y'(\pi)=0.$ Тогда вектор $(y(\pi),0)$ — результат действия монодромии на (0,y'(0)).

На краях зон спектра монодромия имеет $\mu = \pm 1 \Rightarrow y(x+\pi) = \pm y(x)$. Оба варианта возможны (в зависимости от знака μ).

6

М11. Доказательные мини-кейсы: нули Бесселя, энергетическая устойчивость

Задача 1

Докажите, что функция Бесселя $J_0(x)$ имеет бесконечно много нулей на $(0,\infty)$.

Доказательство: J_0 удовлетворяет $x^2y'' + xy' + x^2y = 0$. При $x \to \infty$ уравнение асимптотически близко к y'' + y = 0, решения которого осциллируют.

Теорема сравнения: если $q(x) \ge 1$ при больших x, то решения y'' + q(x)y = 0 имеют бесконечно много нулей.

Задача 2

$$y'' + \frac{1}{x}y' + \left(1 - \frac{\nu^2}{x^2}\right)y = 0, \ \nu \ge 1.$$

Нормальная форма: $z = y\sqrt{x}$, z'' + Q(x)z = 0 где $Q(x) = 1 - \frac{\nu^2 - 1/4}{x^2}$.

При $\nu \geq 1$: $Q(x) \leq 1$ и $Q(x) \rightarrow 1$ при $x \rightarrow \infty$.

Вывод: решение имеет не более одного нуля на $(0, \infty)$.

Задача 3

$$\ddot{x} + \omega^2 x + \varepsilon x^3 = 0, \ \varepsilon > 0.$$

Функция Ляпунова: $E = \frac{1}{2}\dot{x}^2 + \frac{\omega^2}{2}x^2 + \frac{\varepsilon}{4}x^4$.

 $\dot{E} = \dot{x}(\ddot{x} + \omega^2 x + \varepsilon x^3) = 0 \Rightarrow$ устойчивость по Ляпунову.

М12. Потенциальные системы и устойчивость

Задача 1

 $\ddot{\mathbf{x}} = -\nabla V(\mathbf{x}), \ V \ge 0$, минимум в **0**.

Ляпунов: $E = \frac{1}{2} ||\dot{\mathbf{x}}||^2 + V(\mathbf{x}), \dot{E} = 0 \Rightarrow \mathbf{y}$ стойчивость.

Асимптотическая устойчивость невозможна без диссипации: E сохраняется.

Задача 2

$$V = \frac{1}{4}(r^2 - 1)^2 + \varepsilon xy, r^2 = x^2 + y^2, |\varepsilon| \ll 1$$

 $V=\tfrac{1}{4}(r^2-1)^2+\varepsilon xy,\, r^2=x^2+y^2,\, |\varepsilon|\ll 1.$ Критические точки: $r^2=\underline{1}\pm\varepsilon,$ при $r^2=1-\underline{\varepsilon}$ имеем y=x, при $r^2=1+\varepsilon-y=-x.$

Точки:
$$(\pm a, \pm a)$$
, $a = \sqrt{\frac{1-\varepsilon}{2}}$; $(\pm b, \mp b)$, $b = \sqrt{\frac{1+\varepsilon}{2}}$.

Гессиан в $(\pm a, \pm a)$: собственные $2(1 - \varepsilon)$ и -2ε .

В $(\pm b, \mp b)$: собственные $2(1+\varepsilon)$ и 2ε .

Классика: при $\varepsilon > 0$: $(\pm b, \mp b)$ — **минимумы**, $(\pm a, \pm a)$ — **седла**; при $\varepsilon < 0$ — наоборот.

Задача 3

$$\ddot{\mathbf{x}} + \gamma \dot{\mathbf{x}} = -\nabla V(\mathbf{x}), \ \gamma > 0, \ V(\mathbf{x}) \ge c \|\mathbf{x}\|^2$$
 близ нуля. Ляпунов: $E = \frac{1}{2} \|\dot{\mathbf{x}}\|^2 + V(\mathbf{x}), \ \dot{E} = -\gamma \|\dot{\mathbf{x}}\|^2 \le 0.$

С учётом $V \ge c\|\mathbf{x}\|^2$ и инвариантности по Ляпунову–ЛаСаллю \Rightarrow асимптотически устойчиво.

M13. Системы разностных: вариация постоянных, A^t

Задача 1

$$A = \begin{pmatrix} 3 & -1 \\ 2 & 0 \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \quad \mathbf{x}_{t+1} = A\mathbf{x}_t + \mathbf{b} \, 2^t, \quad \mathbf{x}_0 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$$

$$A^t = \begin{pmatrix} 2 \cdot 2^t - 1 & 1 - 2^t \\ 2 \cdot 2^t - 2 & 2 - 2^t \end{pmatrix}.$$

$$\mathbf{x}_t = A^t \mathbf{x}_0 + \sum_{k=0}^{t-1} A^{t-1-k} \mathbf{b} \, 2^k = \begin{pmatrix} \frac{3}{2} \, 2^t t - 3 \cdot 2^t + 3 \\ \frac{3}{2} \, 2^t t - 5 \cdot 2^t + 6 \end{pmatrix}.$$

Задача 2

$$A = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix} = 2I + N, \ N^3 = 0.$$

$$A^t = 2^t \left(I + \frac{t}{2}N + \frac{t(t-1)}{8}N^2 \right) = 2^t \begin{pmatrix} 1 & \frac{t}{2} & \frac{t(t-1)}{8} \\ 0 & 1 & \frac{t}{2} \\ 0 & 0 & 1 \end{pmatrix}.$$

Общее решение: $\mathbf{x}_t = A^t \mathbf{x}_0$. Рост нормы $\sim C \, 2^t t^2$. Мин. полином: $(\lambda - 2)^3$.

Задача 3

$$\mathbf{x}_{t+1} = \frac{1}{2} \begin{pmatrix} 1 & 3 \\ 3 & 1 \end{pmatrix} \mathbf{x}_t + \begin{pmatrix} (-1)^t \\ t \cdot 2^t \end{pmatrix}, \ \mathbf{x}_0 = \mathbf{0}.$$

Собств. значения матрицы: 2 и -1 (резонанс с правой частью).

$$\mathbf{x}_t = \begin{pmatrix} -\frac{1}{2}(-1)^t t - \frac{5}{18}(-1)^t + \frac{1}{8} 2^t t^2 - \frac{7}{24} 2^t t + \frac{5}{18} 2^t \\ \frac{1}{2}(-1)^t t - \frac{1}{18}(-1)^t + \frac{1}{8} 2^t t^2 + \frac{1}{24} 2^t t + \frac{1}{18} 2^t \end{pmatrix}.$$