Машинное обучение, ФКН ВШЭ Матрично-вектороное дифференцирование

Задача 1. Найдите производную по матрице $A \in \mathbb{R}^{n \times n}$

$$\frac{\partial}{\partial A} \log \det A$$
.

Задача 2. Найдите производную по вектору $a \in \mathbb{R}^n$

$$\frac{\partial}{\partial a} \left(a^T \exp(aa^T) a \right),$$

где $\exp(B)$ — матричная экспонента, $B \in \mathbb{R}^{n \times n}$. Матричной экспонентой обозначают ряд

$$I_n + \frac{B}{1!} + \frac{B^2}{2!} + \frac{B^3}{3!} + \frac{B^4}{4!} + \dots = \sum_{k=0}^{\infty} \frac{B^k}{k!}.$$

Задача 3. Пусть $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$. Найдите производную по вектору $x \in \mathbb{R}^n$

$$\frac{\partial}{\partial x}\sin \|Ax + b\|_2$$

Задача 4. Рассмотрим симметричную матрицу $A \in \mathbb{R}^{n \times n}$ и ее спектральное разложение $A = Q \Lambda Q^T$. Пусть $\lambda \in \mathbb{R}^n$ - это диагональ матрицы Λ (то есть вектор, составленный из собственных значений A). Найдите:

1.
$$\frac{\partial}{\partial \lambda} \operatorname{tr}(A)$$

$$2. \ \frac{\partial}{\partial Q}\operatorname{tr}(A)$$

Задача 5. Рассмотрим задачу обучения линейной регрессии с функцией ошибки Log-Cosh:

$$Q(w) = \frac{1}{\ell} \sum_{i=1}^{\ell} \log(\cosh(w^T x_i - y_i))$$

Выпишите формулу для градиента $\nabla_w Q(w)$. Запишите ее в матричном виде, используя матрицу объекты-признаки X и вектор целевых переменных y.