Fixed Point Iteration Method

<u>Fixed point</u>: A point, say, s is called a fixed point if it satisfies the equation x = g(x).

Fixed point Iteration:

Fixed point iteration method is open and simple method for finding real root of non-linear equation by successive approximation.

It requires only one initial guess to start. Since it is open method its convergence is not guaranteed.

This method is also known as **Iterative Method**.

Fixed point Iteration method

It consist of converting the problem f(x) = 0 into x = g(x)

Example:
If
$$f(x) = x - e^{-x}$$

A possible choice for $g(x)$ is:
 $g(x) = e^{-x}$

The fixed point iteration algorithm:

- 1) Choose an initial point x₀
- 2) Compute $x_{n+1} = g(x_n)$
- 3) Repeat till : $|x_{n+1} x_n| \le \varepsilon$

Algorithm:

```
Input: initial guess P0; tolerance epsilon;
    No max no. of iteration.

Output: approximation solution P or failure

Step-1: i=1;
Step-2: while i<= N_0 do steps 3-6
    Step-3: Set p= q(p_0);
Step-4: If |p-p_0|< epsilon then output Step 5: set i=i+1;
Step-6: set P_0 = P

Step-7: Output failure message
```

Algorithm - Fixed Point Iteration method Steps (Rule)

```
Step-1: First write the equation x=f(x)
Step-2: Find points a and b such that a < b and f(a) \cdot f(b) < 0.
Step-3: If f(a) is more closer to 0 then f(b)
               then x_0 = a
         else
               x_0 = b
Step-4: x_1 = f(x_0)
         x_2=f(x_1)
         x_3 = f(x_2)
         Repeat until | f(x_i)-f(x_i-1)| \approx 0
```

Fixed Point Iteration

- Given f(x) = 0 write x in terms of x = ...
- Label left side as x_{n+1} and right side with x_n
- Pick x_1 and plug into equation
- Repeat until converges

• Example: find where $x^2 - x - 1 = 0$

$$x^{2} - x - 1 = 0$$

$$x^{2} = x + 1$$

$$x = 1 + \frac{1}{x}$$

$$x_{n+1} = 1 + \frac{1}{x_{n}}$$

$$x^{2} = x + 1$$

$$x^{2} = x + 1$$

$$x = \pm \sqrt{x + 1}$$

$$x_{n+1} = \pm \sqrt{x_{n} + 1}$$

$$x^{2} - x - 1 = 0$$

$$x^{2} = x + 1$$

$$x = 1 + \frac{1}{x}$$

$$x_{n+1} = 1 + \frac{1}{x_{n}}$$

$$x_$$

Converging to 1.618 ...

$$x^{2} - x = 1$$

$$x(x - 1) = 1$$

$$x = \frac{1}{x - 1}$$

$$x_{n+1} = \frac{1}{x_{n} - 1}$$

$$x_{1} = \frac{1}{x_{1} - 1}$$

$$x_{2} = \frac{1}{1.6 - 1} = 1.6666$$

$$x_{3} = \frac{1}{1.6666 - 1} = 1.5$$

$$x_{4} = \frac{1}{1.5 - 1} = 2$$

$$x_{5} = \frac{1}{2 - 1} = 1$$
Not converging

When does it converge?

$$\begin{aligned} x_{n+1} &= \dots \\ x_{n+1} &= g(x_n) \\ f(root) &= 0 \\ x_{n+1} - root &= g(x_n) - g(root) \\ \text{Expand } g(x_n) \text{ using Taylor Series} \\ error_{n+1} &= \left[g(root) + g'(\varphi)(x_n - root)\right] - g(root) \\ error_{n+1} &= g'(\varphi) \times error_n \\ |error_{n+1}| &\leq |g'(\varphi)||error_n| \end{aligned}$$

If $|g'(root)| < 1 \rightarrow \text{Converges}$

Convergence of the examples

$$x_{n+1} = 1 + \frac{1}{x_n}$$

$$g(x) = 1 + \frac{1}{x}$$

$$g'(x) = -\frac{1}{x^2}$$

$$g'\left(\frac{1+\sqrt{5}}{2}\right) = -\frac{1}{\left(\frac{1+\sqrt{5}}{2}\right)^2}$$

$$= -0.3819660112501$$

$$|-0.3819660112501| < 1$$
Converges

$$x_{n+1} = \frac{1}{x_n - 1}$$

$$g(x) = \frac{1}{x - 1}$$

$$g'(x) = -\frac{1}{(x - 1)^2}$$

$$g'\left(\frac{1 + \sqrt{5}}{2}\right)$$

$$= -\frac{1}{\left(\left(\frac{1 + \sqrt{5}}{2}\right) - 1\right)^2}$$

$$= -2.6180339887499$$

$$|-2.6180339887499| \ge 1$$
Does not converge

About the Order

- The order of fixed point iteration depends on f(x)
- Remember that $x_{n+1} = g(x_n)$
- If $|g'(r)| < 1 \rightarrow$ Converges
- If $g'(r) = 0 \rightarrow$ Converges Quadraticly (at least)
- And if $g''(r) = 0 \rightarrow$ Converges Order 3 (at least)
- And so on.

 Newton's Method is special case of Fixed Point Iteration • Rearrange the function so that x is on the left side of the equation:

$$f(x) = 0 => g(x) = x$$

 $x_i+1 = g(x_i)$

- Bracketing methods are "convergent".
- Fixed-point methods may sometime "diverge", depending on the stating point (initial guess) and how the function behaves.

Examples:

1.
$$f(x) = x^2 - x - 2$$
 $x > 0$
 $g(x) = x^2 - 2$
or
 $g(x) = \sqrt{x+2}$
or
 $g(x) = 1 + \frac{2}{x}$
2. $f(x) = x^2 - 2x + 3$ $\Rightarrow x = g(x) = (x^2 + 3)/2$

3. $f(x) = \sin x \rightarrow x = g(x) = \sin x + x$

4. $f(x) = e^{-x} - x \rightarrow x = g(x) = e^{-x}$

Example-1

Find a root of an equation $f(x)=x^3-x-1$ using Fixed Point Iteration method

Solution:

Method-1 Let $f(x)=x^3-x-1$

$$x^3$$
- x -1=0

∴
$$x^3$$
= x +1

$$\therefore x = \sqrt[3]{x+1}$$

$$\therefore \phi(x) = \sqrt[3]{x+1}$$

x 0 1 2 f(x) -1 -1 5

Here
$$f(1) = -1 < 0$$
 and $f(2) = 5 > 0$

∴ Root lies between 1 and 2

$$x_0 = \frac{1+2}{2} = 1.5$$

$$X1 = \phi(x_0) = \phi(1.5) = 1.35721$$

$$x2 = \phi(x_1) = \phi(1.35721) = 1.33086$$

$$x3 = \phi(x_2) = \phi(1.33086) = 1.32588$$

$$x4 = \phi(x_3) = \phi(1.32588) = 1.32494$$

$$x5 = \phi(x_4) = \phi(1.32494) = 1.32476$$

Approximate root of the equation x^3 -x-1=0 using Iteration method is 1.32476

n	Y	v =(n(v)	Update	Difference
l II	X ₀	$x_1 = \varphi(x_0)$	Opuate	x ₁ -x ₀
2	1.5	1.35721	$X_0 = X_1$	0.14279
3	1.35721	1.33086	$X_0 = X_1$	0.02635
4	1.33086	1.32588	$X_0 = X_1$	0.00498
5	1.32588	1.32494	$X_0 = X_1$	0.00094
6	1.32494	1.32476	$X_0 = X_1$	0.00018