第三章 运输问题

Transportation problem

3.1 运输问题的典例和数学模型

一、典例:

某食品公司经营糖果业务,公司下设三个工厂A1、A2、A3,四个销售门市部B1、B2、B3、B4。已知每天各自的生产量、销售量及调运时的单位运输费用情况。问:如何调运可使总费用最小?

生产量: A1——7吨, A2 —— 4吨, A3 —— 9吨

销售量: B1 —— 3吨, B2 —— 6吨, B3 —— 5吨, B4 —— 6吨

普拉 華位运价	B1	B2	В3	B4	
A1	3	11	3	10	
A2	1	9	2	8	
A3	7	4	10	5	

调运示意图

二、建立模型

设 x_{ii}——第i产地到第j销地之间的调运量,则有

Min
$$z = \sum_{i=1}^{3} \sum_{j=1}^{4} c_{ij} \cdot x_{ij}$$

$$\stackrel{\mathcal{P}}{\underset{\mathbb{Z}}{\mathbb{Z}}}$$
 $\begin{cases} x_{11} + x_{12} + x_{13} + x_{14} = 7 \\ x_{21} + x_{22} + x_{23} + x_{24} = 4 \\ x_{31} + x_{32} + x_{33} + x_{34} = 9 \end{cases}$ 销 $\begin{cases} x_{11} + x_{21} + x_{31} = 3 \\ x_{12} + x_{22} + x_{32} = 6 \\ x_{13} + x_{23} + x_{33} = 5 \\ x_{13} + x_{23} + x_{33} = 5 \end{cases}$ $\begin{cases} x_{11} + x_{21} + x_{31} = 3 \\ x_{12} + x_{22} + x_{32} = 6 \\ x_{13} + x_{23} + x_{33} = 5 \\ x_{14} + x_{24} + x_{34} = 6 \end{cases}$

一般模型表示:

设有个m产地、n个销地,其中第i个产地的产量为 a_i ,第j个销地的销量为 b_j ,且 $\sum a_i = \sum b_j$ 。若第i个产地到第j个销地每调运单位物资的运费为 c_{ij} ,则使总费用最少的调运模型为:

Min
$$z = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} \cdot x_{ij}$$

$$\begin{cases} \sum_{j=1}^{n} x_{ij} = a_i & (i = 1, 2, ..., m) \\ \sum_{j=1}^{m} x_{ij} = b_j & (j = 1, 2, ..., n) \\ x_{ij} \ge 0 & (i = 1, 2, ..., m; j = 1, 2, ..., n) \end{cases}$$

三、模型的特点

- 1. 变量数: m×n个
- 2. 约束方程数: m+n个 最大独立方程数: m+n-1
- 3. 系数列向量结构:

--第3章 运输问题--

	x ₁₁	\mathbf{x}_1	2	x _{1n}	x ₂₁	X ₂₂	2	x_{2n} ,		, X _{m1}	X_{m2}		X _{mn}	
i=1	1								•••••					
i=2	0	0	••••	0	1	1		1		0	0		0	
			•				·		··			·		
i=m	0	0	•••••	0	Ò	0	•••••	0	••••••	1	1	••••	1	
j=1	1	0		0	1	0	•••••	0	••••	1	0	• • • • •	0	
j=2	0				0	1				0	1		0	
			·····				••••••				•	•••••		
j=n	0		••••		0	0			· · · · · · · · · · · · · · · · · · ·	0	0	•••••	1	

复习思考题

- 1. 运输模型按数学特点属于哪类模型?
- 2. 什么是产销平衡运输问题?
- 3. 产销平衡运输模型有哪些特点?
- 4. 产销平衡运输模型是否一定有最优解?
- 5. 为什么产销平衡运输模型会有一个模型不独立?

3.2 运输问题的表上作业算法

表上作业法步骤: 初始方案→最优性检验→改进方案

- 一、初始方案的确定
- 1. 最小元素法
- 2. Vogel法
- 二、最优性检验
- 1. 闭回路法
- 2. 位势法
- 三、方案改进方法

在闭回路内改进。

产	销	平	衡:	表
,				

产地	B1	B2	В3	B4	产量
A1	(1)	(2)	4	3	7
A2	3	(1)	1	(-1)	4
A3	(10)	6	(12)	3	9
销量	3	6	5	6	

单位运价表

产地	B1	B2	В3	B4
A1	3	11	3	10
A2	1	9	2	8
A3	7	4	10	5

初始方案要求:

- △1) m+n-1个数字格;
- 2) 不形成全部以数字格为顶点的闭回路

A2	3	(2)	(1)	1	4
A3	(9)	6	(12)	3	9
销量	3	6	5	6	

Vogel法:

产销平衡表

产地銷地	B1	B2	В3	B4	产量
A1 A2	3		5	2	7 4
A3	183	6		3	9
销量	3	6	5	6	

产地鎖地	B1	B2	В3	B4	行两最小元素之差
A1 A2 A3	3 1 7	11 9 4	3 2 10	10 8 5	0 0 0 7 1 1 1 6 1 2
列两 最小 元素 之差	2 2 2 -	5 - - -	1 1 1	3 3 2 2	

位势法:

位势表:

产地	B1	B2	В3	B4	行位势
A1	(3)	(9)	3	10	1
A2	1	(7)	(1)	8	-1
A3	(-2)	4	(-2)	5	-4
列位势	2	8	2	9	

单位运价表

产地	B1	B2	В3	B4
A1	3	11	3	10
A2	1	9	2	8
A3	7	4	10	5

- 1. 数字格处上添上对应的运价;
- 2. 计算行位势和列位势;

令u₁=1,则依c_{ij}=u_i+v_j 计算各 u_i和v_i 3. 计算空格处位势;

$$\lambda_{ij} = u_i + v_j$$

4. 计算空格处检验数:

$$\sigma_{ij} = c_{ij} - \lambda_{ij}$$

检验数表

产地鎖地	B1	B2	В3	B4	产量
A1	(0)	(2)	5	2	7
A2	3	(2)	(1)	1	4
A3	(9)	6	(12)	3	9
销量	3	6	5	6	

--第3章 运输问题--

例:表上作业法求解

产地	B1	B2	В3	B4	产量
A1	3	7	6	4	5
A2	2	4	3	2	2
A3	4	3	8	5	3
销量	3	3	2	2	

产地	B1	B2	В3	B4	产量
A1	3	7	6	4	5
A2	2	4	3	2	2
A3	4	3	8	5	3
销量	3	3	2	2	48.41

产地	B1	B2	В3	B4	产量
A1					5
A2					2
A3	(5)	3 -	(6)		3
销量	3	3	2	2	

特殊情况处理说明:

1. 确定初始方案过程中,填一个数字后行和列上产销量同时满足要求,则在该行或列可分配位置填0后,做直线覆盖该行和列的运价;

产地	B1	B2	В3	B4	产量
A1	3	7	6	4	5
A2	2	4	3	2	2
A3	4	3	8	5	3
销量	3	3	2	2	

特殊情况处理说明: 2. 方案调整时, **唐路调整 妫处数船缴囊调整**, 则选择 其中任一位置为空格, 其余

填数字0;

产地	B1	B2	В3	B4	产量
A1	1	0	2	2	5
A2	2				2
A3	(5)	3	(6)	(5)	3
销量	3	3	2	2	

产地	B1	B2	В3	B4	产量
A1	32			2	5
A2				(1)	2
A3	(5)		(6)	(5)	3
销量	3	3	2	2	

☆ 表上作业法说明:

- 1. 初始方案即为基本可行解
 - 1) 有数字格顶点个数
 - 2) 不形成全部以数字格为顶点闭回路
- 2. 检验数计算: $\sigma_{ij} = c_{ij} C_B B^{-1} p_{ij}$
- 3. 改进方案
- 1) 基本要求
- 2) 入基变量 $\min \left\{ \sigma_{ij} \mid \sigma ij < 0 \right\}$
- 3) 出基变量 $\min \{\theta_{ij}\} = \left\{ \frac{x_{ij}^{0}}{p_{ij}} \mid p_{ij} > 0 \right\}$

定理:运输问题中,一组变量 $\{x_{ij}\}$ 对应的列向量 $\{p_{ij}\}$ 线性相关的充要条件是存在以 $\{x_{ii}\}$ 为顶点的闭回路。

证:

1) 充分性: 存在 $\{x_{ii}\}$ 为顶点闭回路⇒ $\{p_{ii}\}$ 线性相关

THE REAL PROPERTY.	

2) 必要性: ${p_{ii}}$ 线性相关⇒存在 ${x_{ii}}$ 为顶点闭回路

复习思考题

- 1. 表上作业法使用的条件是什么?
- 2. 表上作业法中的调运方案应满足什么条件?
- 3. Voge1法比最小元素法有什么优点?
- 4. 表上作业法检验数的经济含义是什么?
- 5. 为什么说表上作业法的计算原理与单纯形法是一致的?

3.3 产销不平衡运输问题及其应用

一、产销不平衡问题

1.产>销

Min
$$z=\sum_{i=1}^{m}\sum_{j=1}^{n}c_{ij}\cdot x_{ij}$$

$$\left(\sum_{j=1}^{n} x_{ij} \leq \mathbf{a}_{i} \quad (i = 1, 2, ..., m) \right)$$

$$\sum_{i=1}^{m} x_{ij} = b_{j} \quad (j = 1, 2, ..., n)$$

$$\chi_{ij} \ge 0 \qquad (i = 1, ..., m; j = 1, ..., n)$$

$$\chi_{ij} \ge 0$$
 $(i = 1, ..., m; j = 1, ..., n)$

Min
$$z = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} \cdot x_{ij} + \sum_{i=1}^{m} 0 \cdot x_{i}, n+1$$

$$\sum_{j=1}^{n+1} x_{ij} = a_i \quad (i = 1, 2, ..., m)$$

$$\sum_{j=1}^{m} x_{ij} = b_j \quad (j = 1, 2, ..., n, n + 1)$$

$$= 1, ..., n)$$

$$\chi_{ij} \ge 0 \quad (i = 1, ..., m; j = 1, ..., n, n + 1)$$

产>销问题单位运价表

产地销地	B1	B2	 Bn	Bn+1	产量
A1 A2	C ₁₁ C ₂₁	C_{12} C_{22}	 C ₁ n C ₂ n	0 0	a ₁ a ₂
Am	Cm ₁	Cm ₂	Cmn	0	l am
销量	b ₁	b ₂	 bn	Σa_i – Σb_j	

2.销>产

Min
$$z = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} \cdot x_{ij}$$

$$\begin{cases} \sum_{j=1}^{m} x_{ij} = a_{i} & (i = 1, 2, ..., m) \\ \sum_{j=1}^{m} x_{ij} \le b_{j} & (j = 1, 2, ..., n) \\ x_{ij} \ge 0 & (i = 1, ..., m; j = 1, ..., n) \end{cases}$$

$$\begin{aligned}
&\text{Min } z = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} \cdot x_{ij} & \text{Min } z = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} \cdot x_{ij} + \sum_{j=1}^{n} 0 \cdot x_{m+1}, j \\
&\sum_{j=1}^{n} x_{ij} = a_{i} \quad (i = 1, 2, ..., m) \\
&\sum_{i=1}^{m} x_{ij} \leq b_{j} \quad (j = 1, 2, ..., n) \\
&\sum_{i=1}^{m} x_{ij} \leq 0 \quad (i = 1, ..., m; j = 1, ..., n)
\end{aligned}$$

$$\begin{aligned}
&\sum_{j=1}^{n} x_{ij} = a_{i} \quad (i = 1, 2, ..., m, m + 1) \\
&\sum_{j=1}^{m+1} x_{ij} = b_{j} \quad (j = 1, 2, ..., n) \\
&\chi_{ij} \geq 0 \quad (i = 1, ..., m, m + 1; j = 1, ..., n)
\end{aligned}$$

销>产问题单位运价表

产地销地	B1	B2	 Bn	产量
A1 A2	C_{11} C_{21}	C_{12} C_{22}	 C ₁ n C ₂ n	a ₁
Am	Cm ₁	Cm ₂	 Cmn	am
Am+1	0	0	 0	Σb _j –Σa _i
销量	b ₁	b ₂	bn	

二、应用模型

例一: 某工厂按合同规定必 须于当年的每个季度末分别 提供10、15、25、20台同一 规格的柴油机。已知该厂的 生产能力及生产每台柴油机 的成本如表示。又如果生产 出来的柴油机当季不交货, 每台每积压一个季度需要存 储维护费用0.15万元。要求 在完成合同的情况下,做出 使全年生产费用最小的决策。

季度	生产能力(台)	单位成本(万元/台)
I	25	10. 8
II	35	11. 1
III	30	11. 0
IV	10	11. 3

模型:

设 x_{ii}——第i季度生产,用于第j季度交货的数量。

obj. min
$$z = \sum_{i=1,j=1}^{4} \sum_{i=1,j=1}^{4} c_{i,j} x_{i,j}$$
 供应: $I = x_{11} + x_{12} + x_{13} + x_{14} \le 25$ 需求: $I = x_{11} = x_{11} = x_{12} + x_{13} + x_{14} \le 25$ 需求: $I = x_{11} = x_{11} = x_{12} + x_{13} + x_{14} \le 25$ 则 $x_{12} + x_{22} = x_{15} = x_{15} + x_{1$

单位费用表:

			单位	立:万元
供应需求	I	II	III	IV
I II III IV	10.8 M M	10. 95 11. 10 M	11. 10 11. 25 11. 00	11. 25 11. 40 11. 15
IV	M	M	M	11. 30

例二:

某餐馆承办宴会,每晚连续举行,共举行五次。 宴会上需用特殊的餐巾,根据参加的人数,预计每 晚的需要量为:第一天1000条,第二天700条,第三 天800条,第四天1200条,第五天1500条,五天之后, 所有的餐巾作废。宴会中用过的餐巾经过洗涤处理 后可以重复使用,这样可以降低使用成本。已知每 条新餐巾需要1元的费用,送洗时可选择两种方式: 快洗仅需要一天时间,每条洗涤费用为0.2元,慢洗 需要两天时间,每条洗涤费用0.1元。问:如何安排, 可使总费用最低?

建立模型:

需

求

约

東

设 x_j —第j天使用新毛巾的数量; y_{ij} —第i天送第j天使用快洗餐巾的数量; z_{ii} —第i天送第j天使用慢洗餐巾的数量;

Min
$$z=\sum x_j+\sum \sum 0.2y_{ij}+\sum \sum 0.1z_{ij}$$

第一天: x₁=1000

第二天: x₂+y₁₂=700

第三天: x₃+z₁₃+y₂₃=800

第四天: x₄+z₁₄+z₂₄+y₃₄=1200

第五天: $x_5+z_{15}+z_{25}+z_{35}+y_{45}=1500$

新购餐巾: $x_1 + x_2 + x_3 + x_4 + x_5 \le 5200$

第一天送洗: y₁₂+z₁₃+z₁₄+z₁₅≤1000

第二天送洗: y₂₃+z₂₄+z₂₅≤700

東 第三天送洗: y₃₄+z₃₅≤800

第四天送洗: y₄₅≤1200

 $x_{i} \ge 0$, $y_{i} \ge 0$, $z_{i} \ge 0$, (i=1, ---, 4; j=1, ---, 5)

供

应

约

产销平衡表

供应	需求	I	II	Ш	IV	V	VI	产量
新	购	1	1	1	1	1	0	5200
第一	一天	M	0.2	0. 1	0. 1	0. 1	0	1000
第二	天	M	M	0.2	0.1	0. 1	0	700
第三	天	M	M	M	0.2	0. 1	0	800
第四	天	M	M	M	M	0.2	0	1200
销	量	1000	700	800	1200	1500	3700	

例三:

有A、B、C三个化肥厂供应四个地区 I、II、III、IV的农用化肥,三个工厂每年各自的产量为A—50万吨,B—60万吨,C—50万吨。四个地区的需求量分别是 I 地区最高50万吨,最低30万吨,II 地区为70万吨,III地区为30万吨以下,IV地区不低于10万吨。问:如何调运,可使总的调运费用最小?单位调运费用如下表所示。

设 x_{ij}一第i工厂 调至第j需求地区 的化肥数量

单位运价	表	9-1	单位:	万元	/万吨
产地销地	Ι	II	Ш	IV	产量
A	16	13	22	17	50
В	14	13	19	15	60
C	19	20	23	_	50
销量	30-50	70	0-30	10-	

产销平衡表

供应需求	I'	Ι "	II	III	IV'	IV''	产量
A B	16 14	16 14	13 13	22 19	17 15	17 15	50 60
C D	19 M	19	20 M	23	M M	M	50 50
销量	30	20	70	30	10	50	

三、扩大的运输问题

例:在前面的例题中,若既可以从Ai运到Bj,也可以经过中间站T1、T2、T3、T4或者Ai、Bj转运,称扩大的运输问题。

几点说明:

- 1. 所有的产地、销地、中间站均视作产地、销地;
- 2. 转运量可定位总的产量之和;
- 3. 不能出现循环倒运现象,允许自身往自身最多调运一次,运价为 $C_{i,j}$ =0;
- 4. 实际产地产量为转运量与该产地实际产量之和,实际销地销量为转运量与实际销量之和。

产销平衡表

产销	A1	A2	A3	T1	T2	Т3	T4	B1	B2	В3	B4	产量
A1	0	1	3	2	1	4	3	3	11	3	10	27
A2	1	0	_	3	5	-	2	1	9	2	8	24
A3	3	-	0	1	<u>-</u>	2	3	7	4	10	5	29
T1	2	3	1	0	1	3	2	2	8	4	6	20
T2	1	5		1	0	1	1	4	5	2	7	20
Т3	4	- 1	2	3	1	0	2	1	8	2	4	20
T4	3	2	3	2	1	2	0	1	-	2	6	20
B1	3	1	7	2	4	1	1	0	1	4	2	20
B2	11	9	4	8	5	8	-	1	0	2	1	20
В3	3	2	10	4	2	2	2	4	2	0	3	20
B4	10	8	5	6	7	4	6	2	1	3	0	20
销量	20	20	20	20	20	20	20	23	26	25	26	

复习思考题

- 1. 产销不平衡运输问题的概念是什么?
- 2. 对于不平衡运输问题如何运用表上作业法求解?
- 3. 虚拟产地或销地的作用是什么?
- 4. 处理扩大的运输问题应遵循哪些原则?

本章知识点

- 1.运输问题模型的结构特点
- 2. 表上作业法的原理与求解
- 3. 表上作业法应用于产销不平衡运输问题的求解
- 4. 产销不平衡模型的应用