Unidad 2 Repaso de redes y TCP/IP

Despliegue de aplicaciones web

Índice

- Introducción.
- Arquitecturas de red.
- Modelo OSI.
- Arquitectura de redes de área local.
- ▶ TCP/IP
 - Introducción.
 - Estructura de capas (niveles).
 - Capa de acceso a la red.
 - Capa de red.
 - Capa de transporte.
 - Capa de aplicación.
- Bibliografía.

- Red de datos (o de comunicación)
 - Conjunto de dispositivos interconectados a través de un medio de transmisión.
 - Ofrecen servicios a los usuarios.

Los dispositivos de una red tienen que ponerse de acuerdo para poder comunicarse.

- Muchos problemas a resolver
 - Información ordenada.
 - Información sin errores.
 - Información sin pérdidas ni duplicados.
 - Siguiendo el camino adecuado.
 - Diferentes medios de transmisión.
 - Trasmisión segura.

0

- Resolver todos los problemas de golpe: inflexible, ineficiente, complejo.
- Solución ("Divide y vencerás") ->
 Arquitecturas de red.

Conjunto organizado de capas (niveles) y protocolos.

- Se estructura el proceso de comunicación en niveles o capas.
 - Cada capa se encarga de una parte del proceso de comunicación.
 - Libera y abstrae a las demás de la solución adoptada.
- ▶ En cada nivel o capa se definen uno o varios protocolos.

Importante

- Protocolos.
- Unidades de datos (PDUs).
 - · Cabecera.
 - Datos.
- Funcionamiento
 - Como se construyen las PDUs.
 - Como viajan las PDUs entre las diferentes capas.

0

- Ejemplos de arquitecturas de red
 - Modelo OSI.
 - Arquitectura TCP/IP
 - Arquitecturas de Redes de Área Local (RAL) (Local Area Network, LAN).
 - Arquitectura ATM.
 - Arquitectura Frame Relay.

0

Modelo OSI

El modelo de referencia OSI (*Open Systems Interconnect*) sirve de referencia para describir y estudiar arquitecturas de redes.

Capa 7: Aplicación

Capa 6: Presentación

Capa 5: Sesión

Capa 4: Transporte

Capa 3: Red

Capa 2: Enlace

Capa 1: Física

Los estándares LAN definen solo los niveles físico y de enlace.

OSI IEEE 802

Capa 7: Aplicación

Capa 6: Presentación

Capa 5: Sesión

Capa 4: Transporte

Capa 3: Red

Capa 2: Enlace

Capa 1: Física

Enlace

Física

- Redes de área local (RAL) (Local Area *Network*, LAN).
- Arquitectura más extendida ->IEEE 802

□ IEEE 802.3 -> Ethernet

∘ IEEE 802.11 -> WiFi

OSI

Capa 7: Aplicación

Capa 6: Presentación

Capa 5: Sesión

Capa 4: Transporte

Capa 3: Red

Capa 2: Enlace

Capa 1: Física

IEEE 802

RED DE ÁREA LOCAL

Enlace Física

Capa física

- Medio de transmisión utilizado.
- Conectores.
- Tecnologías de transmisión y codificación.

Fuente: www.wikipedia.org

Capa de enlace

Formato de tramas.

7 bytes	1 byte	6 bytes	6 bytes	2 bytes	46 - 1500 bytes	4 bytes
PREAMBULO	SDF	Dir. Destino	Dir. Origen	Tipo / Longitud	Datos + Relleno	FCS

- Direccionamiento físico -> Direcciones MAC.
- Control de acceso al medio de transmisión.

```
# Frame 17 (92 bytes on wire, 92 bytes captured)
= Ethernet II, Src: CadmusCo_49:05:93 (08:00:27:49:05:93), Dst: Broadcast (ff:ff:ff:ff:ff)
# Destination: Broadcast (ff:ff:ff:ff:ff)
# Source: CadmusCo_49:05:93 (08:00:27:49:05:93)
    Type: IP (0x0800)
```

Práctica

Práctica 2.1

 Conexión física de las máquinas virtuales a la red de área local ("red física") del aula.

TCP/IP Introducción

- Estándar "de facto" de interconexión de redes.
- Interconexión de millones de computadores en todo el mundo: Internet.

Estructura de capas (niveles)

OSI

Capa 7: Aplicación

Capa 6: Presentación

Capa 5: Sesión

Capa 4: Transporte

Capa 3: Red

Capa 2: Enlace

Capa 1: Física

TCP/IP

Aplicación

Transporte

Red

Acceso a la red

Capa de acceso a la red

Solo se especifica que debe ser capaz de enviar los paquetes (datagramas IP) que vienen del nivel superior (red).

Capa de red. Introducción

- Protocolos
 - Principal -> Protocolo IP.
 - Otros protocolos
 - ICMP
 - •
- Direccionamiento
 - Redes IP.
 - Direcciones IP.
- Interconexión de redes y enrutamiento
 - Routers (o encaminadores).

TCP/IP Capa de red. Protocolo IP

- Versiones
 - IPv4
 - IPv6
- Formato de datagramas IP

Cabecera Datos

Formato de la Cabecera IP (Versión 4)

0-3	4-7	8-15	16-18	19-31			
Versión	Versión Tamaño Tipo de Servicio Lo			ongitud Total			
	ldentifi	Flags	Posición de Fragmento				
Time 1	To Live	Protocolo	Suma de Control de Cabecera				
Dirección IP de Origen							
Dirección IP de Destino							
	Relleno						

Fuente: www.wikipedia.org

Capa de red. Redes IP

- Redes lógicas creada mediante software.
- Basadas en el uso de direcciones IP.

TCP/IP Capa de red. Direccionamiento IP

Direcciones IP

- Números de 32 bits.
- · Representación en decimal para facilitar su uso.
- Se asignan a los interfaces (tarjetas de red) de los equipos (hosts).

11000000 10101000 00000001 00001010

192 . 168 . 1 . 10

Capa de red. Direccionamiento IP

- ▶ Esquema de direccionamiento IP (1)
 - Las direcciones IP se dividen en dos partes.
 - Parte de red
 - Parte de *host*.

Capa de red. Direccionamiento IP

- Esquema de direccionamiento IP (2)
 - Todos los equipos de una red IP tiene la parte de red igual.

TCP/IP Capa de red. Direccionamiento IP

Mascara de red (1)

- Indica en una dirección IP que corresponde a la parte de red y que corresponde al host.
- Número de 32 bits de los cuales se ponen a 1 los que identifican a la parte de red y a 0 los que identifican al host.

Capa de red. Direccionamiento IP

Mascara de red (2)

Notación CIRD. Expresar la mascara con el prefijo /n donde n hace referencia al conjunto de bits que están a 1.

Capa de red. Direccionamiento IP

- ▶ Tipos de direcciones en una red IP(1)
 - Dirección de red: La parte de host todo a 0.
 - Dirección de broadcast: La parte de host todo a 1.
 - Direcciones de hosts: Direcciones que se puedes asignar a los equipos (hosts)

Capa de red. Direccionamiento IP

▶ Tipos de direcciones en una red IP(1)


```
      Dir. de host
      -> 192.168.1.10
      -> 11000000 10101000 00000001 00001010

      Mascara
      -> 255.255.255.0
      -> 11111111 11111111 11111111 11111111

      Dir. red
      -> 192.168.1.0
      -> 11000000 10101000 00000001 00000000

      Dir. broad.
      -> 192.168.1.255
      -> 11000000 10101000 00000001 111111111

      Número de hosts
      -> 28 - 2 = 64 - 2 = 62

      Rango de direcciones de hosts -> 192.168.1.1 - 192.168.1.254
```

TCP/IP Capa de red. Direccionamiento IP

- Un equipo pertenece una red IP según la dirección IP y la mascara asignadas a su interfaz de red.
- Los programas (clientes y servidores) de los equipos que forma parte de la misma red IP pueden comunicarse directamente.

Capa de red. Direccionamiento IP

- Clases de direcciones IP
 - División inicial cuando no existía el concepto de mascara.
 - Se utilizan conceptualmente.
 - Los routers y hosts actuales usan Direccionamiento clasless (sin clases).

Clase	Rango	N° de Redes	N° de Host Por Red	Máscara de Red	Broadcast ID
Α	1.0.0.0 - 126.255.255.255	128	16.777.214	255.0.0.0	x.255.255.255
В	128.0.0.0 - 191.255.255.255	16.384	65.534	255.255.0.0	x.x.255.255
С	192.0.0.0 - 223.255.255.255	2.097.152	254	255.255.255.0	x.x.x.255
(D)	224.0.0.0 - 239.255.255.255	histórico			
(E)	240.0.0.0 - 255.255.255.255	histórico			

Capa de red. Direccionamiento IP

- Otras direcciones especiales (1)
 - Dirección de difusión (*broadcast*) limitada
 - Todos los bits a 1
 - 255.255.255.255
 - Dirección de bucle local (*loopback*)
 - 127.xxx.yyy.zzz
 - Se suele emplear 127.0.0.1
 - Dirección del propio host o ruta por defecto
 - 0.0.0.0

TCP/IP Capa de red. Direccionamiento IP

- Otras direcciones especiales (2)
 - Direcciones experimentales
 - 240.0.0.0 a 255.255.255.254.
 - Dirección de multicast
 - 224.0.0.0 a 239.255.255.255
 - Direcciones de enlace local
 - 169.254.0.0/16
 - Direcciones TEST-NET
 - 192.0.2.0 a 192.0.2.255

Capa de red. Direccionamiento IP

Direcciones IP públicas

- Son visibles en todo Internet.
- Un ordenador con una IP pública es accesible (visible) desde cualquier otro ordenador conectado a Internet.
- Cada dirección IP PÚBLICA es única.
- El número de IP's públicas es limitado.

Capa de red. Direccionamiento IP

Direcciones IP privadas

- Usadas normalmente por organizaciones con su propia intranet.
- No se encaminan por internet, ya que los routers están configurados para no dejar salir datagramas IP con estas direcciones.
 - 10.0.0.0 a 10.255.255.255
 - 172.16.0.0 a 172.31.255.255
 - 192.168.0.0 a 192.168.255.255

Capa de red. Direccionamiento IP

- ¿Cómo conectar una red con direcciones privadas a Internet?
 - · Al menos una o más IP Públicas en la organización.
 - Configurar NAT Network Address Translation .

Capa de red. Interconexión y enrutamiento

- Routers (o encaminadores)
 - Dispositivos de capa 3 que interconectan redes IP.
 - Enrutan (o encaminan) datagramas IP entre diferentes redes IP.

Capa de red. Interconexión y enrutamiento

- Punto de vista de un equipo (host) conectado a una red IP (1)
 - Los equipos de su misma red IP.
 - Con los equipos de la misma red IP se comunica directamente (Entrega Directa).
 - El resto del mundo.
 - Envía los datagramas a un router (puerta de enlace o gateway) (Entrega Indirecta).

Capa de red. Interconexión y enrutamiento

Punto de vista de un equipo (host) conectado a una red IP (2)

Práctica 2.2 (1):

 Configuración de las máquinas virtuales para que pertenezcan a la red IP del aula.

En el diagrama se supone que: + La red del Instituto/Aula es 192.168.1.0/24. + La puerta de enlace (gateway) es 192.168.1.1. + Las direcciones IP asignadas a las máguinas virtuales están libres. En la práctica hay que adaptar las direcciones IP al la red del Instituto/Aula correspondiente. Router INTERNET 192.168.1.0/24 192.168.1.1/24 ServidorLinuxXX ServidorW2008XX MaquinaRealXX 192,168,1,X6/24 192,168,1,X7/24 192.168.1.X8/24 Máquinas Virtuales XX: Número de equipo asignado GrupoXX en el aula (Ej:01, 02, 03, 04, ...15)

Capa 7: HTTP
Capa6
Capa5
Capa 4: TCP Puerto Origen: 1027, Puerto Destino: 80
Capa 3: Encabezado IP IP Origen: 192.168.100.10, IP Destino: 192.168.100.100
Capa 2: Encabezado Ethernet II 00D0.9724.D180 >> 00E0.8FC3.2B12
Capa 1: Puerto(s):

- En el diagrama se supone que:
- + La red del Instituto/Aula es 192.168.1.0/24.
- + La puerta de enlace (gateway) es 192.168.1.1.
- + Las direcciones IP asignadas a las máquinas virtuales están libres.
- En la práctica hay que adaptar las direcciones IP al la red del Instituto/Aula correspondiente.

Práctica 2.2 (2)

- Comandos Windows
 - ·ipconfig
 - ipconfig /all
 - ping
 - tracert
- Comandos Linux
 - ·ifconfig
 - · ifconfig -a
 - ping
 - traceroute

Capa de transporte. Introducción

- Protocolos
 - Protocolo TCP.
 - Protocolo UDP.
- Diferenciar aplicaciones dentro de un mismo equipo (host).
 - Puertos.

Capa 7: Aplicación
Capa 6: Presentación
Capa 5: Sesión
Capa 4: Transporte
Capa 3: Red
Capa 2: Enlace
Capa 1: Física

OSL

Funciones adicionales extremo a extremo (segmentación de datos, control de errores, control de flujo, *QoS*, ...).

Capa de transporte. Puertos

Números enteros positivos (16 bits) (0 – 65535) que identifican procesos de un equipo que envían y reciben información a través de la red.

Puerto origen.

Puerto destino.

```
Capa6
Capa5
Capa 4: TCP Puerto Origen: 1027,
Puerto Destino: 80
Capa 3: Encabezado IP IP Origen:
192.168.100.10, IP Destino:
192.168.100.100
Capa 2: Encabezado Ethernet II
00D0.9724.D180 >> 00E0.8FC3.2B12
Capa 1: Puerto(s):
```

```
+ Frame 47 (74 bytes on wire, 74 bytes captured)
+ Ethernet II, Src: CadmusCo_la:a4:91 (08:00:27:la:a4:91), Dst: CadmusCo_08:44:e0 (08:00:27:08:44:e0)
+ Internet Protocol, Src: 10.33.1.3 (10.33.1.3), Dst: 8.8.8.8 (8.8.8.8)
+ User Datagram Protocol, Src Port: 48860 (48860), Dst Port: domain (53)
+ Domain Name System (query)
```

Capa de transporte. Puertos

- Tipos de números de puerto
 - Puertos bien conocidos ("well-known ports")
 (Números del 0 al 1 023).
 - Puertos registrados (1024 49151).
 - Puertos dinámicos (49 152 65 535).

```
Proto Recv–Q Send–Q Local Address
                                             Foreign Address
                                                                      State
                  0 0.0.0.0:111
                                             0.0.0.0:*
tcp
                  0 0.0.0.0:49331
                                             0.0.0.0:*
tcp
                  0 0.0.0.0:21
tcp
                                             0.0.0.0:*
                  0 10.33.1.2:53
                                             0.0.0.0:*
tcp
tcp
                  0 127.0.0.1:53
                                             0.0.0.0:*
tcp
                  0 127.0.0.1:953
                                             0.0.0.0:*
                                             0.0.0.0:*
                  0 127.0.0.1:25
```

Capa de transporte. Puertos

- Asignación de puertos
 - Estática
 - Definidos en la configuración de la aplicación.
 - Dinámica
 - Sistema operativo.
 - Puertos disponibles.
- Los puertos TCP y UDP son independientes

Capa de transporte. Protocolo UDP

- No orientado a conexión.
 - No hay conexiones.
 - No hay establecimiento de conexión.
- No fiable −> No realiza control de errores.
- Envío de datos más rápido que TCP.
- Datagramas UDP.

+	Bits 0 - 15	16 - 31											
0	Puerto origen	Puerto destino											
32	Longitud del Mensaje	Suma de verificación											
64	Datos												

Fuente: www.wikipedia.org

Capa de transporte. Protocolo TCP

- Orientado a conexión.
 - Conexiones.
 - Establecimiento y finalización de conexiones
- Fiable: Control de errores, Control de flujo, Control de congestión ...
- Segmentos TCP.

Cabecera TCP																																	
Offsets	Octeto	0								1									2								3						
Octeto	Bit	0 1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17 1	18 1	9 2	0 :	21 2	22	23	24	25	26	27	28 2	9 3	31		
0	0	Puerto de origen														Puerto de destino																	
4	32	Número de secuencia																															
8	64	Número de acuse de recibo (si ACK es establecido)																															
12	96	Longitud de Cabecera Reservado N C C C R C R										A C K	p S H	R S T	S Y N	F I N		Tamaño de Ventana															
16	128	Suma de verificación													Puntero urgente (si URG es establecido)																		
20	160		Орс	iones	(Si la	a Loi	ngit	ud	de	Cal	bec	ега	ı > !	5, r	elle	no	al fi	nal	con	"0	" b	yte	s s	si e	s n	ece	saı	io)					
															-																		

Fuente: www.wikipedia.org

Capa de transporte. Protocolo TCP

Conexiones TCP

Capa de transporte. Protocolo TCP

Conexiones TCP

```
Protocolo Recv-Q Send-Q Dirección Local Dirección Externa Estado
                 0 10.33.1.3:39526
                                          91.189.89.31:80
tcp
tcp
                 0 10.33.1.3:40511
                                      130.206.1.5:21
                 0 10.33.1.3:41306
tcp
                                          91.189.89.31:80
tcp
                 0 10.33.1.3:60893
                                          91.199.120.11:80
                 0 10.33.1.3:60894
                                          91.199.120.11:80
tcp
```

Práctica 2.3

- Puertos y conexiones.
- Comandos Windows

netstat -u[n]

```
netstat -a [-n]
netstat -a -p TCP [-n]
netstat -a -p UDP [-n]
netstat -p TCP [-n]
netstat -p UDP [-n]
Comandos Linux
netstat -atu[n]
Netstat -lt[n]
netstat -lu[n]
netstat -t[n]
```

Capa de aplicación

- Ofrece servicios de red a los usuarios
 - Modelo de funcionamiento/comunicación
 - Cliente/Servidor.
 - P2P (Peer To Peer).
 - Híbrido.
 - Aplicaciones.
 - Clientes.
 - Servidores.

Capa 7: Aplicación
Capa 6: Presentación
Capa 5: Sesión
Capa 4: Transporte
Capa 3: Red
Capa 2: Enlace
Capa 1: Física

OSI

Aplicación

Transporte

Red

Acceso a la red

Protocolos: HTTP, FTP, DNS, DHCP, SSH, SMTP, ...

Capa de aplicación

- Ejemplos
 - Servicio de transferencia de ficheros
 - Aplicaciones
 - Servidores: IIS FTP, Fillezilla Server, vstftpd ...
 - · Clientes: ftp, Fillezilla, ..
 - Protocolos: FTP, SSH(SFTP), ...
 - Servicio WWW
 - Aplicaciones
 - Servidores: Apache, IIS, ...
 - Clientes: Firefox, Google Chrome, Internet Explorer,
 Opera, ...
 - Protocolos: HTTP, HTTPS, ...

Bibliografía

- Servicios de Red e Internet. Álvaro García Sánchez, Luis Enamorado Sarmiento, Javier Sanz Rodríguez. Editorial Garceta.
- http://www.wikipedia.org