PSALTer results panel $S = \iiint (\frac{1}{6} (6 \, \mathcal{A}^{\alpha\beta\chi} \, \sigma_{\alpha\beta\chi} + 6 \, f^{\alpha\beta} \, \tau (\Delta + \mathcal{K})_{\alpha\beta} - 18 \, r_{,\, \partial_{\beta}} \mathcal{A}_{,\, \theta}^{\ \theta} \partial^{i} \mathcal{A}^{\alpha\beta}_{\ \alpha} - 6 \, r_{,\, \partial_{\beta}} \mathcal{A}_{,\, \theta}^{\ \theta} \partial^{i} \mathcal{A}^{\alpha\beta}_{\ \alpha} - 6 \, r_{,\, \partial_{\beta}} \mathcal{A}_{,\, \theta}^{\ \theta} \partial^{i} \mathcal{A}^{\alpha\beta}_{\ \alpha} - 6 \, r_{,\, \partial_{\alpha}} \mathcal{A}^{\alpha\beta_{i}}_{\ \alpha} \partial_{\theta} \mathcal{A}_{,\, \theta}^{\ \theta} + 12 \, r_{,\, \partial_{\beta}} \mathcal{A}_{,\, \alpha\beta}^{\ \alpha\beta}_{\ \alpha} \partial_{\theta} \mathcal{A}_{,\, \beta}^{\ \theta} - 18 \, r_{,\, \partial_{\beta}} \mathcal{A}_{,\, \partial_{\beta}}^{\ \theta} \partial^{i} \mathcal{A}^{\alpha\beta_{i}}_{\ \alpha} - 6 \, r_{,\, \partial_{\beta}} \mathcal{A}_{,\, \partial_{\beta}}^{\ \theta} \partial^{i} \mathcal{A}^{\alpha\beta_{i}}_{\ \alpha} - 6 \, r_{,\, \partial_{\alpha}} \partial_{\alpha} \mathcal{A}^{\alpha\beta_{i}}_{\ \alpha} \partial_{\theta} \mathcal{A}_{,\, \beta}^{\ \theta} + 12 \, r_{,\, \partial_{\beta}} \mathcal{A}_{,\, \partial_{\alpha}}^{\ \alpha\beta_{i}} \partial_{\theta} \mathcal{A}_{,\, \beta}^{\ \theta} - 18 \, r_{,\, \partial_{\beta}} \mathcal{A}_{,\, \partial_{\beta}}^{\ \theta} \partial^{i} \mathcal{A}^{\alpha\beta_{i}}_{\ \alpha} - 6 \, r_{,\, \partial_{\beta}} \partial_{\alpha} \mathcal{A}_{,\, \partial_{\beta}}^{\ \theta} \partial_{\alpha} \mathcal{A}_{,\, \beta}^{\ \theta} + 12 \, r_{,\, \partial_{\beta}} \partial_{\alpha} \mathcal{A}_{,\, \partial_{\beta}}^{\ \theta} \partial_{\alpha} \mathcal{A}_{,\, \beta}^{\ \theta} - 6 \, r_{,\, \partial_{\beta}} \partial_{\alpha} \mathcal{A}_{,\, \partial_{\beta}}^{\ \theta} \partial_{\alpha} \mathcal{A}_{,\, \partial_{\beta}}^{\ \theta} - 4 \, r_{,\, \partial_{\beta}} \partial_{\alpha} \mathcal{A}_{,\, \partial_{\beta}}^{\ \theta} \partial_{\alpha} \mathcal{A}_{,\, \partial_{\beta}}$

 $t. \, \partial_{\scriptscriptstyle I} f_{\alpha\theta} \, \partial^{\scriptscriptstyle \theta} f^{\alpha \scriptscriptstyle I} + t. \, \partial_{\scriptscriptstyle \theta} f_{\alpha \scriptscriptstyle I} \, \partial^{\scriptscriptstyle \theta} f^{\alpha \scriptscriptstyle I} - t. \, \partial_{\scriptscriptstyle \theta} f_{{}_{\scriptscriptstyle I}\alpha} \, \partial^{\scriptscriptstyle \theta} f^{\alpha \scriptscriptstyle I} - 4t. \, \mathcal{A}_{\alpha\theta \scriptscriptstyle I} \, (\, \mathcal{A}^{\alpha \scriptscriptstyle I\,\theta} + \partial^{\scriptscriptstyle \theta} f^{\alpha \scriptscriptstyle I}) + 2t. \, \mathcal{A}_{\alpha \scriptscriptstyle I\,\theta} \, (\, \mathcal{A}^{\alpha \scriptscriptstyle I\,\theta} + 2\, \partial^{\scriptscriptstyle \theta} f^{\alpha \scriptscriptstyle I})))[t, \, x, \, y, \, z] \, dz \, dy \, dx \, dt$

Wave operator

Saturated propagator $\begin{smallmatrix} 0,^+\sigma^\parallel & 0,^+\tau^\parallel & 0,^+\tau^\perp & 0,^-\sigma^\parallel \end{smallmatrix}$

^{0,+} σ †	$\frac{1}{6 k^2 r_{\cdot 3}}$	0	0	0										
$0.^{+} \tau^{\parallel} +$	0	0	0	0										
$0.^{+}\tau^{\perp}$ †	0	0	0	0										
⁰ σ †	0	0	0	$\frac{1}{k^2 r. + t.}$	$^{1.^{+}}\sigma^{\parallel}{}_{lphaeta}$	$\overset{1}{\cdot}^{+}\sigma^{{}^{\perp}}{}_{\alpha\beta}$	$\overset{1,^{+}}{\cdot}\tau^{\parallel}{}_{\alpha\beta}$	$\frac{1}{2}\sigma^{\parallel}_{\alpha}$	$^{1}\sigma_{\alpha}^{1}$	$1^{-}\tau^{\parallel}_{\alpha}$	$1 \tau_{\alpha}$			
				$\overset{1^+}{\cdot}\sigma^{\parallel} \stackrel{lphaeta}{+}$	$\frac{1}{k^2 r_{\cdot 3}}$	$-\frac{\sqrt{2}}{k^2 r_1 + k^4 r_3}$	$-\frac{i\sqrt{2}}{kr_1+k^3r_3}$	0	0	0	0			
						$\frac{3 k^2 r. + 2 t.}{(k+k^3)^2 r. t.}$			0	0	0			
				$1.^+ \tau^{\parallel} \uparrow^{\alpha\beta}$	$\frac{i\sqrt{2}}{kr.+k^3r.}$	$-\frac{i(3k^2r.+2t.)}{k(1+k^2)^2r.t.}$	$\frac{3 k^2 r. + 2 t.}{(1+k^2)^2 r. t.}$	0	0	0	0			
				$\dot{\tau}^{\sigma}$	0	0	0	$\frac{1}{k^2 r_{\cdot 3}}$	0	0	0			
				$^{1}\sigma^{\perp}\dagger^{\alpha}$	0	0	0	0	0	0	0			
				$1 \tau^{\parallel} + \alpha$	0	0	0	0	0	0	0			
				1 τ^{\perp} \dagger^{α}	0	0	0	0	0	0	0	$^{2,^{+}}\sigma^{\parallel}{}_{\alpha\beta}$	$2^+_{\cdot} \tau^{\parallel}_{\alpha\beta}$	$2^{-}\sigma^{\parallel}_{\alpha\beta\chi}$
											$^{2^+}\sigma^{\parallel}$ † $^{\alpha\beta}$	0	0	0
											2^+ τ^{\parallel} † $^{\alpha\beta}$	0	0	0
											$2^{-}\sigma^{\parallel} + \alpha^{\alpha\beta\chi}$	0	0	0

Source constraints

Spin-parity form	Covariant form	Multiplicities
$0.^{+}\tau^{\perp} == 0$	$\partial_{\beta}\partial_{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} == 0$	1
$0^+\tau^{\parallel}==0$	$\partial_{\beta}\partial_{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} == \partial_{\beta}\partial^{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha}_{\ \alpha}$	1
1. τ ^{⊥α} == 0	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi}==\partial_{\chi}\partial^{\chi}\partial_{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}$	3
1. τ" == 0	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi}==\partial_{\chi}\partial^{\chi}\partial_{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}$	3
$1 \sigma^{\perp} = 0$	$\partial_{\chi}\partial_{\beta}\sigma^{\beta\alpha\chi}==0$	3
$\bar{i} k \stackrel{1^+}{\cdot} \sigma^{\perp}{}^{\alpha\beta} + \stackrel{1^+}{\cdot} \tau^{\parallel}{}^{\alpha\beta} == 0$	$\partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta} + 2\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\chi\alpha\beta} = =$	3
	$\partial_{\chi}\partial^{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\chi} + \partial_{\chi}\partial^{\chi}\tau \left(\Delta + \mathcal{K}\right)^{\beta\alpha} + 2\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\chi\alpha\delta}$	
$2^{-}\sigma^{\parallel^{\alpha\beta\chi}}=0$	$3 \partial_{\epsilon} \partial_{\delta} \partial^{\chi} \partial^{\alpha} \sigma^{\delta \beta \epsilon} + 3 \partial_{\epsilon} \partial^{\epsilon} \partial^{\chi} \partial^{\alpha} \sigma^{\delta \beta}_{ \delta$	5
	$4\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\chi}\sigma^{\delta\alpha\beta} + 2\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\delta}\sigma^{\alpha\beta\chi} + 3\eta^{\beta\chi}\partial_{\phi}\partial^{\phi}\partial_{\epsilon}\partial^{\alpha}\sigma^{\delta}_{\delta}{}^{\epsilon} + 3\eta^{\alpha\chi}\partial_{\phi}\partial^{\phi}\partial_{\epsilon}\partial_{\delta}\sigma^{\delta\beta\epsilon} + 3\eta^{\beta\chi}\partial_{\phi}\partial^{\phi}\partial_{\epsilon}\partial^{\epsilon}\sigma^{\delta\alpha}_{\delta} = =$	
	$3 \partial_{\epsilon} \partial_{\delta} \partial^{\chi} \partial^{\beta} \sigma^{\delta \alpha \epsilon} + 3 \partial_{\epsilon} \partial^{\epsilon} \partial^{\chi} \partial^{\beta} \sigma^{\delta \alpha}_{ \delta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\beta \chi \delta} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\chi \beta \delta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\delta \beta \chi} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\alpha \beta \delta} +$	
	$2\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\delta}\sigma^{\beta\alpha\chi} + 4\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\delta}\sigma^{\chi\alpha\beta} + 3\eta^{\alpha\chi}\partial_{\phi}\partial^{\phi}\partial_{\epsilon}\partial^{\beta}\sigma^{\delta}_{\delta}{}^{\epsilon} + 3\eta^{\beta\chi}\partial_{\phi}\partial^{\phi}\partial_{\epsilon}\partial_{\delta}\sigma^{\delta\alpha\epsilon} + 3\eta^{\alpha\chi}\partial_{\phi}\partial^{\phi}\partial_{\epsilon}\partial^{\epsilon}\sigma^{\delta\beta}_{\delta}$	
$2^+_{\cdot} \tau^{\parallel}^{\alpha\beta} == 0$	$4 \partial_{\delta} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial^{\beta} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi}_{\chi} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau (\Delta + \mathcal{K})^{\alpha \beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau (\Delta + \mathcal{K})^{\beta \alpha} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \tau (\Delta + \mathcal{K})^{\chi \delta} = 0$	5
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\beta \chi} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau (\Delta + \mathcal{K})^{\alpha \chi} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau (\Delta + \mathcal{K})^{\chi \alpha} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \tau (\Delta + \mathcal{K})^{\chi}$	
$2^+_{\cdot}\sigma^{\parallel^{\alpha\beta}}=0$	$3 \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\chi \beta \delta} + 3 \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\chi \alpha \delta} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \sigma^{\chi}_{\chi}^{\delta} = 2 \partial_{\delta} \partial^{\beta} \partial^{\alpha} \sigma^{\chi}_{\chi}^{\delta} + 3 (\partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \beta \chi} + \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\beta \alpha \chi})$	5

29

Massive spectrum

Total expected gauge generators:

Massive particle

Pole residue:	$-\frac{1}{\frac{r_{\cdot}}{2}} > 0$
Square mass:	$-\frac{\frac{t}{2}}{\frac{r}{2}} > 0$
Spin:	0
Parity:	Odd

Massless spectrum

(No particles)

Unitarity conditions

 $r_{2} < 0 \&\& t_{2} > 0$