Class 7: Machine Learning 1

Kalle Liimatta A59002114

2022-10-19

Table of contents

K-means clustering	1
Principal component analysis (PCA)	7
Q1. How many rows and columns?	8
Q2. Which approach to solving the "row-names problem" do you prefer	
and why?	10
Q3. Changing what optional argument in the above barplot() function	
results in the following plot?	10
Q5: Generating all pairwise plots may help somewhat. Can you make	
sense of the following code and resulting figure? What does it mean	
if a given point lies on the diagonal for a given plot?	11
Q6. What is the main difference between N. Ireland and the other coun-	
tries of the UK in terms of this data-set?	12
Q7. Complete the code below to generate a plot of PC1 vs PC2. The	
second line adds text labels over the data points	13
Q8. Customize your plot so that the colors of the country names match the	
colors in our UK and Ireland map and table at start of this document.	16
Digging Deeper: Variable Loadings	17

K-means clustering

K-> the number of clusters you get. You have to tell it how many clusters you want. Let's make up some data to cluster.

#rnorm --> will pick numbers from a normal distribution #you can adjust where the mean falls by adding a number in the second position

```
tmp <- c(rnorm(30, -3), rnorm(30,3))
x <- cbind(x=tmp, y=rev(tmp))
plot(x)</pre>
```



```
#rev function reverses your vector
rev(c("a", "b", "C"))
```

[1] "C" "b" "a"

The function to do k-means clustering in base R is called 'kmeans()'.

```
#for kmeans(), need to worry about x and centers (see the help page)
#x is the data you're clustering
#centers is the number of clusters you want
km <- kmeans(x, centers=4, nstart=20)
km</pre>
```

K-means clustering with 4 clusters of sizes 16, 16, 14, 14

Cluster means:

```
x y
1 -1.908435 2.983088
```

2 2.983088 -1.908435

3 3.503167 -3.572646 4 -3.572646 3.503167

Clustering vector:

Within cluster sum of squares by cluster:

[1] 18.41869 18.41869 15.68063 15.68063 (between SS / total SS = 94.1 %)

Available components:

[1] "cluster" "centers" "totss" "withinss" "tot.withinss"

[6] "betweenss" "size" "iter" "ifault"

What "component" of your result object details:

• cluster size? -> "size"

#size will tell you how many points in each cluster
km\$size

[1] 16 16 14 14

• cluster assignment/membership? -> "cluster"

km\$cluster

[1] 1 1 1 4 1 4 1 4 1 4 1 1 4 1 4 1 4 1 1 1 1 1 1 1 1 1 1 1 4 1 4 1 4 1 3 3 3 2 3 2 3 2 3 2 3 3 3 2 2 2 2 2 3 3 3 2 3 2 3 2 3 2 3 2 3 2 2 2 2

Q. Plot x colored by the kmeans cluster assignment and add cluster centers as blue points?

```
plot(x, col=c(rep(1,30), rep(2,30)))
```


plot(x, col=km\$cluster)


```
plot(x, col=km$cluster)
points(km$centers, col="blue", pch=15, cex=2)
```


km\$centers

```
x y
1 -1.908435 2.983088
2 2.983088 -1.908435
3 3.503167 -3.572646
4 -3.572646 3.503167
```

#Hierarchical Clustering

The 'hclust()' function performs hierarchical clustering. The big advantage here is that I don't need to tell it "k", the number of clusters...

To run 'hclust()' I need to provide a distance matrix as input (not the original data).

For kmean(), it assumes Euclidean distance

```
hc <- hclust( dist(x))
hc</pre>
```

Call:

hclust(d = dist(x))

Cluster method : complete
Distance : euclidean

Number of objects: 60

plot(hc)

Cluster Dendrogram

dist(x) hclust (*, "complete")

#looking for where the biggest jump is

To get my 'main" result (cluster membership), I want to "cut" this tree to yield "branches" whose leaves are the members of the cluster.

```
#h= the height you want to cut the tree at
cutree(hc, h=8)
```

More often we will use 'cutree()' with k=2 for example

```
#can also do, give me cut that will give me # clusters grps <-cutree(hc, k=2)
```

Make a plot of our 'hclust()' results i.e. our data colored by cluster assignment

```
plot(x, col=grps)
```


Principal component analysis (PCA)

Read data for UK food trends from online

```
url <- "https://tinyurl.com/UK-foods"
x <- read.csv(url)
x</pre>
```

	X	England	Wales	Scotland	N.Ireland
1	Cheese	105	103	103	66
2	Carcass_meat	245	227	242	267
3	Other_meat	685	803	750	586
4	Fish	147	160	122	93

5	Fats_and_oils	193	235	184	209
6	Sugars	156	175	147	139
7	${ t Fresh_potatoes}$	720	874	566	1033
8	Fresh_Veg	253	265	171	143
9	Other_Veg	488	570	418	355
10	Processed_potatoes	198	203	220	187
11	Processed_Veg	360	365	337	334
12	Fresh_fruit	1102	1137	957	674
13	Cereals	1472	1582	1462	1494
14	Beverages	57	73	53	47
15	Soft_drinks	1374	1256	1572	1506
16	Alcoholic_drinks	375	475	458	135
17	Confectionery	54	64	62	41

Q1. How many rows and columns?

```
nrow(x)
```

[1] 17

ncol(x)

[1] 5

dim(x)

[1] 17 5

head(x)

	Х	England	Wales	Scotland	N.Ireland
1	Cheese	105	103	103	66
2	Carcass_meat	245	227	242	267
3	Other_meat	685	803	750	586
4	Fish	147	160	122	93
5	Fats_and_oils	193	235	184	209
6	Sugars	156	175	147	139

We are getting 5 columns—> we want the column with the foods to be our index

Note how the minus indexing works rownames(x) <- x[,1] #makes the first column the row titles head(x)

	Х	England	Wales	Scotland	N.Ireland
Cheese	Cheese	105	103	103	66
Carcass_meat	Carcass_meat	245	227	242	267
Other_meat	Other_meat	685	803	750	586
Fish	Fish	147	160	122	93
Fats_and_oils	Fats_and_oils	193	235	184	209
Sugars	Sugars	156	175	147	139

#need to get rid of the "X" column which is now duplicated x <- x[,-1] head(x)

	England	Wales	${\tt Scotland}$	N.Ireland
Cheese	105	103	103	66
Carcass_meat	245	227	242	267
Other_meat	685	803	750	586
Fish	147	160	122	93
Fats_and_oils	193	235	184	209
Sugars	156	175	147	139

dim(x)

[1] 17 4

Explore the data-- basically plot, plot, and plot again

```
#another way to set the correct row names
x<- read.csv(url, row.names=1)
head(x)</pre>
```

	England	Wales	Scotland	N.Ireland
Cheese	105	103	103	66
Carcass_meat	245	227	242	267
Other meat	685	803	750	586

Fish	147	160	122	93
Fats_and_oils	193	235	184	209
Sugars	156	175	147	139

Q2. Which approach to solving the "row-names problem" do you prefer and why?

I prefer the second approach using "row.names=1". This way you don't have to worry about your matrix changing if you accidentally run your code again.

```
barplot(as.matrix(x), beside=T, col=rainbow(nrow(x)))
```


Q3. Changing what optional argument in the above barplot() function results in the following plot?

Setting beside to False

```
barplot(as.matrix(x), beside=F, col=rainbow(nrow(x)))
```


Q5: Generating all pairwise plots may help somewhat. Can you make sense of the following code and resulting figure? What does it mean if a given point lies on the diagonal for a given plot?

If a point lies on the diagonal, then that food has the same frequency in both countries displayed.

```
pairs(x, col=rainbow(10), pch=16)
```


Q6. What is the main difference between N. Ireland and the other countries of the UK in terms of this data-set?

#PCA to the rescue!

The main function in base R to do PCA is called 'prcomp()'.

One annoying thing about prcomp() function is that it expects the transpose of our data as input. -> in this case, it wants the foods to be columns, and the countries to be rows

t(x)

	Cheese	Carcass_r	neat	Other	_meat	Fish	Fats_and_oils	Sugars
England	105		245		685	147	193	156
Wales	103		227		803	160	235	175
Scotland	103		242		750	122	184	147
N.Ireland	66		267		586	93	209	139
	Fresh_p	otatoes	Fresh	n_Veg	Other	_Veg	Processed_pota	toes
England	Fresh_p	ootatoes 720	Fresh	n_Veg 253	Other	_Veg 488	Processed_pota	toes 198
England Wales	Fresh_p	•	Fresh		Other.		Processed_pota	
J	Fresh_p	720	Fresh	253	Other	488	Processed_pota	198

	Processed_Veg	Fresh_fruit	Cereals	Beverages	Soft_drinks
England	360	1102	1472	57	1374
Wales	365	1137	1582	73	1256
Scotland	337	957	1462	53	1572
N.Ireland	334	674	1494	47	1506
	Alcoholic_drink	s Confection	nery		
England	3	375	54		
Wales	4	1 75	64		
Scotland	4	<u>1</u> 58	62		
N.Ireland	1	.35	41		

```
pca <- prcomp(t(x))
summary(pca)</pre>
```

Importance of components:

	PC1	PC2	PC3	PC4
Standard deviation	324.1502	212.7478	73.87622	4.189e-14
Proportion of Variance	0.6744	0.2905	0.03503	0.000e+00
Cumulative Proportion	0.6744	0.9650	1.00000	1.000e+00

#most important bit is the variance

Q7. Complete the code below to generate a plot of PC1 vs PC2. The second line adds text labels over the data points

The object returned by 'prcomp()' has our results that include a \$x component. This is our "scores" along the PCs (i.e. the plot of our data along the new PC axis).

pca\$x

```
PC1
                             PC2
                                          PC3
                                                        PC4
England
          -144.99315
                        2.532999 -105.768945
                                              2.842865e-14
Wales
          -240.52915
                      224.646925
                                   56.475555
                                              7.804382e-13
Scotland
                                   44.415495 -9.614462e-13
           -91.86934 -286.081786
N.Ireland 477.39164
                       58.901862
                                     4.877895 1.448078e-13
```

```
plot(pca$x[,1], pca$x[,2])
```


Q8. Customize your plot so that the colors of the country names match the colors in our UK and Ireland map and table at start of this document.

Digging Deeper: Variable Loadings

```
## Lets focus on PC1 as it accounts for > 90% of variance
par(mar=c(10, 3, 0.35, 0))
barplot( pca$rotation[,1], las=2 )
```

