

Utility Bus Split (v1.00a)

DS484 April 24, 2009

Introduction

The Utility Bus Split core is designed to be used with Platform Studio to split a bus into smaller buses.

The core takes one input bus and splits it into two output buses and serve as glue logic between peripherals.

Figure 1: Utility Bus Split in a System

Features

The Split Operation has the following features:

Configurable size of the input and output vectors

Product Specification

LogiCORE™ IP Facts			
Core Specifics			
See EDK Supported Device Families.			
Version of core	util_bus_split	v1.00a	
Resources Used			
	Min	Max	
Slices	0	0	
LUTs	0	0	
FFs	0	0	
Block RAMs	0	0	
Provided with Core			
Documentation	Product Specification		
Design File Formats	VHDL		
Constraints File	N	//A	
Verification	N	//A	
Instantiation Template	N	//A	
Reference Designs	No	one	
Design Tool Requirements			
Xilinx® Implementation Tools			
Verification	See Tools for	requirements.	
Simulation			
Synthesis			
Support			
Support provided by Xilinx, Inc.			

^{© 2004-2009} Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE and other designated brands included herein are trademarks of Xilinx in the United States and other countries. All other trademarks are the property of their respective owners.

Utility Bus Split Parameters

Table 1: Utility Bus Split Parameters

Parameter	Description	Default Value	Туре
C_SIZE_IN	The vector size of input bus.	8	integer
C_LEFT_POS	The left bit position of the Out1 output bus. The maximum value of C_LEFT_POS is C_SPLIT-1.	0	integer
C_SPLIT	First bit of the Out2 output bus	4	integer
	The minimum value of C_SPLIT is 1. The maximum value of C_SPLIT is C_SIZE_IN-1.		

Allowable Parameter Combinations

The only restrictions between parameters is that C_LEFT_POS must be smaller than C_SPLIT, and both of them must be smaller than C_SIZE_IN.

Utility Bus Split I/O Signals

Table 2: Utility Bus Split I/O Signals

Signal	Interface	I/O	Description
Sig	None	I	Input bus
Out1	None	0	Output bus1 after split
Out2	None	0	Output bus2 after split

Parameter-Port Dependencies

Table 3: Port and Parameter Dependencies

Name	Affects	Depends	Relationship Description		
Design Parameters					
C_SIZE_IN	Sig	0 to C_SIZE_IN-1	Scale width of input bus		
C_SIZE_IN	Out2	C_SPLIT to C_SIZE_IN-1	Least ¹ significant bit of Out2 bus		
C_LEFT_POS	Out1	C_LEFT_POS to C_SPLIT-1	Most ¹ significant bit of Out1 bus		
C_SPLIT	Out1	C_LEFT_POS to C_SPLIT-1	Least ¹ significant bit of Out1 bus		
C_SPLIT	Out2	C_SPLIT to C_SIZE_IN-1	Most ¹ significant bit of Out2 bus		
Port Signals					
Sig		C_SIZE_IN	Scale width of input bus		
Out1		C_LEFT_POS	Most ¹ significant bit of Out1 bus		
Out1		C_SPLIT	Least ¹ significant bit of Out1 bus		
Out2		C_SPLIT	Most ¹ significant bit of Out2 bus		
Out2		C_SIZE_IN	Least ¹ significant bit of Out2 bus		

^{1.} Assuming reverse big-endian bit ordering

Utility Bus Split Register Descriptions

There are no registers in this core.

Utility Bus Split Interrupt Descriptions

There are no interrupts associated with this core.

Utility Bus Split Block Diagram

Figure 2: Utility Bus Split Block Diagram

Design Implementation

Design Tools

The Utility Bus Split design is handwritten.

Xilinx XST is the synthesis tool used for synthesizing the Utility Bus Split.

Target Technology

The target technology is an FPGA listed in EDK Supported Device Families.

Device Utilization and Performance Benchmarks

This core does not contain any logic. There are no performance benchmarks available.

Specification Exceptions

Not applicable

Reference Documents

None

Revision History

Date	Version	Revision		
03/28/03	1.0	Revision History added to document.		
12/19/03	1.1	Added LogiCORE IP Facts table. Reformatted to current Xilinx template.		
7/15/04	1.2	Minor corrections and updates.		
8/17/04	1.3	Updated for EDK 6.3. Updated trademarks and supported family device listing.		
9/20/04	1.4	Corrected C_LEFT_POS description in parameter table. Updated to new data sheet template		
04/24/09	1.5	Replaced references to supported device families and tool name(s) with hyperlinks to PDF files. Updated trademark information.		

Notice of Disclaimer

Xilinx is providing this product documentation, hereinafter "Information," to you "AS IS" with no warranty of any kind, express or implied. Xilinx makes no representation that the Information, or any particular implementation thereof, is free from any claims of infringement. You are responsible for obtaining any rights you may require for any implementation based on the Information. All specifications are subject to change without notice. XILINX EXPRESSLY DISCLAIMS ANY WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE INFORMATION OR ANY IMPLEMENTATION BASED THEREON, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF INFRINGEMENT AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Except as stated herein, none of the Information may be copied, reproduced, distributed, republished, downloaded, displayed, posted, or transmitted in any form or by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise, without the prior written consent of Xilinx.

4