Linear Algebra II

Felix Chen

Contents

4

1 Bilinear forms

Proposition 0.0.3

1.1 Some special bilinear forms 4 1.2 Lie algebras 7 1.3 Abelian, nilpotent and solvable Lie algebras 10 Here we'll present multiple proofs to emphasize some intermediate result.
Proposition 0.0.1 Let T be a normal map, if $W \subset V$ is T -invariant, then T_W is also normal.
<i>Proof.</i> First note that W, W^{\perp} are T^* -invariant. For $\alpha, \beta \in W$, we have
$\langle (T_W)^* \alpha, \beta \rangle = \langle \alpha, T_W \beta \rangle = \langle \alpha, T \beta \rangle = \langle T^* \alpha, \beta \rangle.$
Thus $(T_W)^* = T_W^*$. The conclusion follows.
Proposition 0.0.2 Let T be a normal map, there exists an orthogonal decomposition $V = \bigoplus_{i=1}^{k} V_i$, such that each V_i is T -invariant, and T_{V_i} simple.
<i>Proof.</i> Note that if W is T-invariant, then W^{\perp} is also T-invariant. By induction and the previous proposition this is trivial.
Therefore to prove $\ref{eq:top:condition}$, we only need to prove the case when T is simple.
Proof of ??. WLOG dim $V > 1$. Since T simple $\implies f_T \in \mathbb{R}[x]$ prime, thus deg $f_T = 2$, dim $V = 2$ and $f_T = (x - c)(x - \overline{c})$. Take any orthonormal basis $\mathcal{B} = \{\alpha_1, \alpha_2\}$, let $r = c $, $A = r^{-1}[T]_{\mathcal{B}}$. Clearly A normal and $\sigma(A) = \{r^{-1}c, r^{-1}\overline{c}\}$, so A is unitarily similar to diag $(r^{-1}c, r^{-1}\overline{c})$, A is unitary. Moreover A is a real matrix so A orthogonal, and det $A = 1$, thus $A = Q_{\theta}, \theta \in [0, 2\pi]$. At last by T has no eigenvector, and we can change α_2 to $-\alpha_2$, so we can require $\theta \in (0, \pi)$. \square

Let $T \in L(V)$, then $\ker(T)^{\perp} = \operatorname{im}(T^*), \operatorname{im}(T)^{\perp} = \ker(T^*).$

Linear Algebra II CONTENTS

Proof. Trivial, just some computation.

Proposition 0.0.4

Let $T \in L(V)$, $\sigma(T^*) = \overline{\sigma(T)}$,

$$\forall c \in \sigma(T), \quad \dim \ker(T - cI) = \dim \ker(T^* - \overline{c}I).$$

Proof. By the previous proposition,

$$\dim \ker(T-cI) = n - \dim \operatorname{im}(T^* - \overline{c}I) = \dim \ker(T^* - \overline{c}I)$$

which also implies $\sigma(T) = \overline{\sigma(T^*)}$.

Proposition 0.0.5

If T normal, then $\ker(T - cI) = \ker(T^* - \bar{c}I)$.

Proof. Let $W = \ker(T - cI)$, T_W^* is just $(c \operatorname{id}_W)^* = \overline{c} \operatorname{id}_W$. Thus $W \subset \ker(T^*0\overline{c}I)$, by dimensional reasons they must be equal.

Proposition 0.0.6

Let T be a normal map, $f, g \in F[x]$ coprime $\implies \ker(f(T)) \perp \ker(g(T))$.

Proof. Since $g(T)^* = \overline{g}(T^*)$, g(T) is normal, thus $\ker(g(T))^{\perp} = \operatorname{im}(g(T))$.

Let $W = \ker(f(T))$, let $a, b \in F[x]$ s.t. af + bg = 1, so $a(T)f(T) + b(T)g(T) = \mathrm{id}_V$. Restrict this equation to W, we get $b(T)_W g(T)_W = \mathrm{id}_W$, hence $W \subset \mathrm{im}(g(T))$.

Proposition 0.0.7

Let T be a normal map,

- The primary decomposition of T are orthogonal decomposition;
- The cyclic decomposition of T can be orthogonal.

Proof. The first one is trivial by previous proposition.

For cyclic decomposition, we proceed by induction on $\dim V$.

Let $\alpha_1 \in V$ s.t. $p_{\alpha_1} = p_r$, then $(R\alpha_1)^{\perp}$ are *T*-invariant, use induction hypo on it and we're done.

Remark 0.0.8 — This means the primary cyclic decomposition of *T* can also be orthogonal.

This gives the second proof of ??:

Proof. WLOG T normal and primary cyclic, then p_T is primary, and T normal $\implies T$ semisimple, so p_T has no multiple factors, thus p_T prime, which proves the result.

Linear Algebra II CONTENTS

Next we present the third proof:

Proposition 0.0.9

If $A, B \in \mathbb{R}^{n \times n}$ are unitarily similar, then they are orthogonally similar.

Lemma 0.0.10 (QS decomposition)

For any unitary matrix U, U = QS where Q real orthogonal, S unitary and symmetrical. Moreover $\exists f \in \mathbb{C}[x]$ s.t. $S = f(U^tU)$.

Proof. Let $\sigma(U^tU) = \{c_1, \dots, c_k\}$. We can take a polynomial $f \in \mathbb{C}[x]$ s.t. $f(c_i)^2 = c_i$.

Since U is unitary, $|c_i| = 1 \implies |f(c_i)| = 1$.

Let $S = f(U^t U)$, we claim that S unitary and $S^2 = U^t U$.

Let $U^tU = P \operatorname{diag}(c_1, \ldots, c_k)P^{-1}$, where P is unitary, then $S = P \operatorname{diag}(f(c_1), \ldots, f(c_k))P^{-1}$ is unitary, and clearly $S^2 = U^tU$.

Let $Q = US^{-1}$, then Q unitary. Since S symmetrical, $S^{-1} = S^* \implies \overline{S^{-1}} = S^t = S$,

$$\overline{Q}Q^{-1} = \overline{U}SSU^{-1} = \overline{U}U^tUU^{-1} = I_n.$$

Hence $\overline{Q} = Q$, Q is real orthogonal.

Return to the original proposition. Let A, B be real matrices unitarily similar, let $B = UAU^{-1}$, taking the conjuate we get

$$UAU^{-1} = \overline{U}AU^t \implies U^tUA = AU^tU.$$

Let U = QS, then AS = SA. We have

$$B = UAU^{-1} = QSAS^{-1}Q^{-1} = QAQ^{-1}$$

Therefore A, B are orthogonally similar.

Corollary 0.0.11

Let A, B be normal matrices, TFAE:

- (1) A, B are unitarily similar (or orthogonally similar);
- (2) A, B are similar;
- (3) $f_A = f_B$.

Proof. We only need to prove $(3) \implies (1)$.

When $F = \mathbb{C}$, A, B are unitarily similar to diagonal matrices D_1, D_2 . Since $f_A = f_B$, D_1, D_2 only differ by a permutation, hence unitarily similar.

When $F = \mathbb{R}$, by the previous proposition and proof for \mathbb{C} , we get the result.

The third proof of ?? is to factorize $f_T \in \mathbb{R}[x]$ and use the above corollary.

At last we prove another property of normal maps:

Proposition 0.0.12

Let A be a normal matrix, then A^* is a complex polynomial of A.

Proof. Use the spectral decomposition.

§1 Bilinear forms

In this section we study the bilinear forms on generic fields. Let $M^2(V)$ denote all the bilinear forms on V.

For $f \in M^2(V)$, Let $(f(\alpha_i, \alpha_j))_{ij}$ be the matrix of f under basis $\{\alpha_i\}$. (Note that this differs by a transpose with previous section)

Obviously $M^2(V) \to F^{n \times n}$ by $f \mapsto [f]_{\mathcal{B}}$ is a linear isomorphism.

Proposition 1.0.1

Let $\mathcal{B}, \mathcal{B}'$ be two basis, P is the transformation matrix between them, for all $f \in M^2(V)$ we have $[f]_{\mathcal{B}'} = P^t[f]_{\mathcal{B}}P$.

Proof. Trivial.

If $A = P^t BP$ for some $P \in GL(V)$, we say A, B are **congruent**.

A bilinear form will induce two linear maps $V \to V^*$, namely L_f, R_f :

$$L_f(\alpha)(\beta) = R_f(\beta)(\alpha) = f(\alpha, \beta).$$

Proposition 1.0.2

For any basis \mathcal{B} , we have rank $L_f = \operatorname{rank} R_f = \operatorname{rank}[f]_{\mathcal{B}}$. This number is called the rank of f, denoted by rank f.

If rank f = n, we say f is non-degenrate, this is equivalent to L_f invertible or R_f invertible.

§1.1 Some special bilinear forms

Definition 1.1.1. For $f \in M^2(V)$,

- If $f(\alpha, \beta) = f(\beta, \alpha), \forall \alpha, \beta \in V$, then we say f is **symmetrical**.
- If $f(\alpha, \beta) = -f(\beta, \alpha), \forall \alpha, \beta \in V$, we say f is **anti-symmetrical**.
- If $f(\alpha, \alpha) = 0, \forall \alpha \in V$, we say f is alternating.

We denote the above functions by $S^2(V)$, $A^2(V)$, $\Lambda^2(V)$.

We can see that $\Lambda^2(V) \subset A^2(V)$, and they are all subspaces of $M^2(V)$.

Proposition 1.1.2

If char $F \neq 2$, then $A^2(V) = \Lambda^2(V)$, and $M^2(V) = A^2(V) \oplus S^2(V)$.

Proof. Already proved in last semester.

Proposition 1.1.3

Let \mathcal{B} be any basis of V,

- f symmetrical $\iff [f]_{\mathcal{B}}$ symmetrical;
- f anti-symmetrical $\iff [f]_{\mathcal{B}}$ anti-symmetrical;
- f alternating \iff $[f]_{\mathcal{B}}$ anti-symmetrical and the diagonal entries are all zero.

Definition 1.1.4 (Quadratic forms). Let $q: V \to F$ be a function, we say q is a **quadratic form** if there exists $f \in M^2(V)$ s.t.

$$q(\alpha) = f(\alpha, \alpha), \quad \forall \alpha \in V.$$

When $V=F^n,$ quadratic forms are just a homogenous quadratic polynomial with n variables, i.e.

$$q(X) = X^t A X, \quad A \in F^{n \times n}, X \in F^n.$$

Let Q(V) denote all the quadratic forms on V, it's an F-vector space. By definition there's a surjective linear map $M^2(V) \to Q(V)$ by $\Phi(f)(\alpha) = f(\alpha, \alpha)$.

Proposition 1.1.5

Let char $F \neq 2$,

- The map $\Phi: S^2(V) \to Q(V)$ is an isomorphism.
- Let $q \in Q(V)$, if $f \in S^2(V)$ and $\Phi(f) = q$, then

$$f(\alpha, \beta) = \frac{1}{4}(q(\alpha + \beta) - q(\alpha - \beta)).$$

Proof. The first one can be proved by $\ker(\Phi) = \Lambda^2(V)$ and $M^2(V) = S^2(V) \oplus \Lambda^2(V)$. The second one is trivial by direct computation.

From this we can define the matrix of a quadratic form q to be the matrix of the symmetrical bilinear form $\Phi^{-1}(q)$, thus $[q]_{\mathcal{B}}$ is always symmetrical.

Theorem 1.1.6

Let $f \in M^2(V)$,

- If char $F \neq 2$, then $f \in S^2(V) \iff \exists \mathcal{B}$, s.t. $[f]_{\mathcal{B}}$ diagonal;
- $f \in \Lambda^2(V) \iff \exists \mathcal{B} \text{ s.t. } [f]_{\mathcal{B}} \text{ is block diagonal with each block being } 0 \text{ or } \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}.$

To prove this theorem, it's sufficient to prove:

Lemma 1.1.7

Let $f \in S^2(V) \cup A^2(V)$, $W \subset V$ is a subspace, let

$$W^{\perp} = \{ \beta \in V \mid f(\alpha, \beta) = 0, \forall \alpha \in W \}.$$

If $f|_W$ is non-degenerate, then $V = W \oplus W^{\perp}$. In this case, let $\mathcal{B}_1, \mathcal{B}_2$ be basis of W, W^{\perp} , and $\mathcal{B} = (\mathcal{B}_1, \mathcal{B}_2)$, we have

$$[f]_{\mathcal{B}} = \operatorname{diag}([f|_{W}]_{\mathcal{B}_{1}}, [f|_{W^{\perp}}]_{\mathcal{B}_{2}}).$$

Proof. Since $f|_{W}$ non-degenerate, $W \cap W^{\perp} = 0$. Note that

$$W^{\perp} = \bigcap_{\alpha \in W} \ker(L_f(\alpha)) = L_f(W)^0.$$

Thus dim $W^{\perp} = n - \dim L_f(W) \ge n - \dim W$. This implies that $V = W \oplus W^{\perp}$.

For the second part, since $f(\alpha, \beta) = 0 \implies f(\beta, \alpha) = 0$, thus the matrix must obey the conclusion.

Now by induction it's trivial when n = 1,

- When $f \in S^2(V)$, WLOG $f \neq 0$, $\exists \alpha$ s.t. $f(\alpha, \alpha) \neq 0$. Let $W = \text{span}\{\alpha\}$, by lemma and induction hypo we're done.
- When $f \in A^2(V)$, there exists α, β s.t. $f(\alpha, \beta) = 1$. Let $W = \text{span}\{\alpha, \beta\}$, similarly by lemma and induction hypo, we're done.

Corollary 1.1.8

For any $q \in Q(V)$, there exists a basis of V s.t. $[q]_{\mathcal{B}}$ diagonal.

The non-degenerate alternating bilinear forms are called **symplectic forms**.

Corollary 1.1.9

If there exists symplectic form f on V, then $\dim V = 2m$ and

$$[f]_{\mathcal{B}} = \begin{pmatrix} 0 & I_m \\ -I_m & 0 \end{pmatrix}$$

for some basis \mathcal{B} .

Theorem 1.1.10

Let F be an algebraically closed field, and char $F \neq 2$. Let $f \in S^2(V)$, there exists a basis \mathcal{B} , s.t. $[f]_{\mathcal{B}}$ diagonal and the diagonal entries can only be 0 or 1.

Proof. Use the previous result and multiply some scalars (the root of $x^2 = c$).

When $F = \mathbb{R}$, using similar technique we can prove the diagonal entries can only be 0, 1 or -1.

§1.2 Lie algebras

There's a class I missed, so the notes may not be complete.

Definition 1.2.1 (Lie algebra). Let L be a vector space over a field F. Suppose an operation (called **Lie bracket**)

$$L\times L\to L,\quad (x,y)\mapsto [x,y]$$

is given and satisfies:

• (Bilinearity)

$$\begin{cases} [ax+by,z] = a[x,z] + b[y,z], \\ [x,ay+bz] = a[x,y] + b[x,z], \end{cases} \forall x,y,z \in L, a,b \in F;$$

• (Alternativity)

$$[x, x] = 0, \quad \forall x \in L;$$

• (Jacobi identity)

$$[[x, y], z] + [[y, z], x] + [[z, x], y] = 0, \quad \forall x, y, z \in L.$$

Then L is called a **Lie algebra** over F.

The Lie algebra can be viewed as a vectorization of Lie groups, where Lie bracket is the commutator in Lie groups.

Example 1.2.2

On any F-vector space L, one can define a trivial Lie bracket by

$$[x,y] = 0, \quad \forall x,y \in L$$

Then L becomes a Lie algebra, called an abelian Lie algebra.

We can also define homomorphisms by $\phi([x,y]) = [\phi(x),\phi(y)].$

Definition 1.2.3 (Representation). Let L be a Lie algebra over F. A **representation** of L is a homomorphism $\phi: L \to \mathfrak{gl}(V)$, where V is some finite-dimensional F-vector space.

Example 1.2.4 (Adjoint representation)

Let L be a Lie algebra over F. Define a linear map ad : $L \to \mathfrak{gl}(L)$ by

$$ad(x)(y) = [x, y], \quad \forall x, y \in L.$$

We claim that it is a representation, called the **adjoint representation** of L. In fact, it follows from the Jacobi identity that for any $x, y, z \in L$,

$$\begin{split} \operatorname{ad}([x,y])(z) &= [[x,y],z] \\ &= [x,[y,z]] - [y,[x,z]] \\ &= \operatorname{ad}(x)([y,z]) - \operatorname{ad}(y)([x,z]) \\ &= [\operatorname{ad}(x),\operatorname{ad}(y)](z). \end{split}$$

Definition 1.2.5 (Subalgebra, ideal, quotient algebra). Let L be a Lie algebra over F.

• If $S, T \subset L$ are subspaces, write

$$[S,T] := \text{span}\{[x,y] : x \in S, y \in T\}.$$

- A subspace $K \subset L$ is called a **subalgebra** if $[K, K] \subset K$, denoted K < L.
- A subspace $I \subset L$ is an **ideal** if $[I, L] \subset I$, denoted $I \triangleleft L$.
- Let $I \triangleleft L$. On the quotient space L/I, we introduce the Lie bracket

$$[x+I,y+I] := [x,y] + I, \quad \forall x,y \in L.$$

Then L/I becomes a Lie algebra, called the **quotient algebra** of L by I.

Example 1.2.6

Let $\phi: L \to L'$ be a homomorphism. Then

$$\ker \phi \lhd L$$
, $\operatorname{im}(\phi) \lhd L'$, $\operatorname{im}(\phi) \cong L/\ker \phi$.

The **center** of L is defined as

$$Z(L) := \{x \in L : [x, y] = 0, \forall y \in L\}.$$

We have $Z(L) \triangleleft L$ and $Z(L) = \ker \operatorname{ad}$.

Definition 1.2.7 (Direct sum). Let $L_1, \ldots L_r$ be Lie algebras over F. On the (external) vector space Direct sum $L_1 \oplus \cdots \oplus L_r$ we introduce the Lie bracket

$$[(x_1,\ldots,x_r),(y_1,\ldots,y_r)]=([x_1,y_1],\ldots,[x_r,y_r])$$

This makes $L_1 \oplus \cdots \oplus L_r$ a Lie algebra, called the **(external) Lie algebra direct sum** of L_1, \ldots, L_r .

Definition 1.2.8 (Linear Lie algebra). Subalgebras of $\mathfrak{gl}_n(F)$ and $\mathfrak{gl}(V)$ are called **linear Lie algebras**.

We have the following deep result:

Theorem 1.2.9 (Ado-Iwasawa)

All finite-dimensional Lie algebras over F are isomorphic to linear Lie algebras.

Let us introduce some important linear Lie algebras.

Example 1.2.10 (Special linear Lie algebra)

Let

$$\mathfrak{sl}_n(F) = \{x \in \mathfrak{gl}_n(F) : \operatorname{tr}(x) = 0\}, \mathfrak{sl}(V) = \{x \in \mathfrak{sl}(V) : \operatorname{tr}(V) = 0\},$$

where V is a vector space over F. We have $\mathfrak{sl}(V) \triangleleft \mathfrak{gl}(V)$.

Example 1.2.11 (The Lie algebra L(V, f))

Let V be a finite-dimensional F-vector space, and $f: V \times V \to F$ be a bilinear form. For $x \in \mathfrak{gl}(V)$, we say that f is **invariant under** x (in the infinitesimal snese) if

$$f(xv, w) + f(v, xw) = 0, \quad \forall v, w \in V.$$

This comes from the derivative of Lie groups: Let $L \in GL(V)$, $g(0) = id_V$. By taking derivatives at t = 0 on

$$f(g(t)v, g(t)w) = f(v, w),$$

we get f(g'(0)v, w) + f(v, g'(0)w) = 0.

Let $L(V, f) \subset \mathfrak{gl}(V)$ be the subspace of all $x \in \mathfrak{gl}(V)$ that leave f invariant, we claim that $L(V, f) < \mathfrak{gl}(V)$.

Example 1.2.12

Let's consider 2 special cases of L(V, f):

• Let $V = F^n$, and f be the symmetrical form given by

$$f(v, w) = v^t w, \quad \forall v, w \in F^n.$$

Then $\mathfrak{o}_n(F) := L(F^n, f)$ is called the **orthogonal Lie algebra**. Under the identification $\mathfrak{gl}(F^n) \cong \mathfrak{gl}_n(F)$, we have $\mathfrak{o}_n(F) = \{x \in \mathfrak{gl}_n(F) : x^t + x = 0\}$.

• Let $V = F^{2n}$, and f be the symplectic form given by

$$f(v,w) = v^t \begin{pmatrix} 0 & I_n \\ -I_n & 0 \end{pmatrix} w, \quad \forall v, w \in V.$$

Then $\mathfrak{sp}_{2n}(F) := L(F^{2n}, f)$ is called the **symplectic Lie algebra**.

Suppose $I \triangleleft L$, and we understand I and L/I, then we understand L (in the rough sense). This motivates the following:

Definition 1.2.13 (Simple Lie algebra, semisimple Lie algebra). Let L be a finite-dimensional Lie algebra over F.

- L is **simple** if it's nonabelian and has no nontrivial ideals.
- L is **semisimple** if it's nonzero and has no nonzero abelian ideal.

Clearly, a simple Lie algebra is semisimple. One of our main purposes is to explain the proof of the following classification theorem:

Theorem 1.2.14

Let L be a finite-dimensional Lie algebra over \mathbb{C} .

- (1) L is semisimple iff it's isomorphic to the direct sum of finitely many simple Lie algebras.
- (2) L is simple iff it's isomorphic to one of the following Lie algebras:
 - $\mathfrak{sl}_n(\mathbb{C}), n \geq 2$;
 - $\mathfrak{o}_n(\mathbb{C}), n \geq 7$;
 - $\mathfrak{sp}_{2n}(\mathcal{C}), n \geq 2$;
 - one of the 5 exceptional complex simple Lie algebras, denoted by $\mathfrak{e}_6, \mathfrak{e}_7, \mathfrak{e}_8, \mathfrak{f}_4, \mathfrak{g}_2$ respectively.

Remark 1.2.15 — It can be shown that

$$\begin{split} \mathfrak{o}_2(\mathbb{C}) &\cong \mathbb{C}, \quad \mathfrak{o}_3(\mathbb{C}) \cong \mathfrak{sl}_2(\mathbb{C}) = \mathfrak{sp}_2(\mathbb{C}), \\ \mathfrak{o}_4(\mathbb{C}) &\cong \mathfrak{sl}_2(\mathbb{C}) \oplus \mathfrak{sl}_2(\mathbb{C}), \quad \mathfrak{o}_5(\mathbb{C}) \cong \mathfrak{sp}_4(\mathbb{C}), \quad \mathfrak{o}_6(\mathbb{C}) \cong \mathfrak{sl}_4(\mathbb{C}). \end{split}$$

§1.3 Abelian, nilpotent and solvable Lie algebras

From now on, let us make the convention that L always denotes a finite-dimensional complex Lie algebra, and V always denoted a complex vector space.

Recall that for $x \in \mathfrak{gl}(V)$, x is said to be semisimple if it's diagonalizable; and nilpotent if $x^r = 0$ for some $r \geq 1$.

Definition 1.3.1 (ad-semisimple and ad-nilpotent). x is ad-semisimple if $ad(x) \in \mathfrak{gl}(V)$ is semisimple. Similarly define ad-nilpotent.

Proposition 1.3.2

Let $L < \mathfrak{gl}(V), x \in L$. If x is semisimple, then it's ad-semisimple. If x is nilpotent, then it's ad-nilpotent.

Remark 1.3.3 — If L is semisimple, then the converse of the proposition holds.

Theorem 1.3.4

A Lie algebra L is abelian iff it consists only of ad-semisimple elements.

For a Lie algebra L, we define two sequences of ideals

$$L = L^0 \supset L^1 \supset \cdots, \quad L = L^{(0)} \supset L^{(1)} \supset \cdots$$

by

$$L^k = [L, L^{k-1}], \quad L^{(k)} = [L^{(k-1)}, L^{(k-1)}].$$

Definition 1.3.5. L is said to be **nilpotent** if $L^k = 0$ for some k. L is said to be **solvable** if $L^{(k)} = 0$ for some k.

It's easy to see $L^k \supset L^{(k)}$, thus nilpotent Lie algebras must be solvable.

Proposition 1.3.6

Let L be a finite-dimensional Lie algebra, TFAE:

- L is semisimple;
- ullet L has no nonzero nilpotent subalgebras;
- ullet L has no nonzero solvable subalgebras.

Theorem 1.3.7 (Engel)

Let $L < \mathfrak{gl}(V)$ be a linear Lie algebra consisting of nilpotent transformations, then the following statement holds:

- There exists $v \in V$ s.t. Lv = 0.
- \bullet There exists a basis of V s.t. elements in L are all upper triangular.

Remark 1.3.8 — This implies that L is nilpotent.