NAVER Data Science Competition 2019

N년 후 당신에게 투자하세요: 배당투자로 연금 마련하기

발표자 박인서

초저금리 시대, 깜깜한 주식시장 당신과 함께 성장할 배당주를 찾는 방법

Keywords: 배당주, 생존분석, 다층모형

• 차원축소 기법을 활용한 금융지표 요약

2. 왜 배당주일까?

• 한국 기업의 배당현황

3. 배당주를 고르는 방법

[1단계] 생존 분석을 활용한 배당금 지급중지 설명 [2단계] 다층 모형을 활용한 연도별 배당변화 패턴 분석 [결론] 배당투자 유망종목

분석 목적 및 배경

세상은 두 부류의 사람이 있다. 주식을 하는 사람, 그리고 <u>주식을 하지 않는 사람</u>

금융 시장은 참여자와 비참여자의 구분이 명확한 영역 그러나 저금리 시대에 접어들면서 주식 투자의 필요성 증대 주식을 하지 않는 사람들을 위한, 쉽고도 확실한 제안

분석 목적

Who?

주식을 하지 않는 사람

Why?

저금리 · 저성장 시대, 주식 투자는 미래를 대비하는 전략이 될 수 있으므로

How?

함께 성장할 배당주를 찾아 투자한다!

분석 목적 및 배경

누가 주식 투자를 하는가?

비참여자의 관점에서 왜 시장에서 참여하지 않는가에 주목

⇒ 불확실성에 대한 태도 차이로부터 발생

근본적으로 주식 투자에 대해 위험 >> 기회로 인식 손실을 입는 대상이 자신이 될 수 있음을 인지한 순간 더 멀어질 것 결국 시장 참여를 위해 선결되어야 할 문제는 무엇인가?

Q. 내가 얻은 수익이 누군가의

손실로부터 비롯된 것은 아닌가?

해결 방안

- 1) 시장이 점점 더 좋아져야 한다.
- 2) 투자한 기업이 성장해야 한다.
- ⇒ 후자가 더 현실적이고 장기적인 방향성

투자자와 기업이 함께 성장할 수 있는 방법 모색

분석 목적 및 배경

잠깐, 주식 투자를 꼭 해야 할까?

물론 아니다. 본인의 선택이니까. 다만 명심해야 할 것은 <mark>금리가 낮고, 앞으로도 낮아질 것</mark>이라는 점이다.

저성장 시대, 투자에서 고려해야 할 것은 무엇인가? 정책금리마저 1%대, 은행에 예금을 하면 그만이었던 과거와는 다르다. 주식 투자를 꼭 해야 하는 것은 아니지만, 분명 미래에 대한 대비책이 될 수 있을 것

Figure 1.1 연도별 국채 금리

차원 축소 기법을 활용한 금융지표 요약

저금리 기조에 따른 경제 흐름 읽기

금융시장에서 가장 두드러진 현상 중 하나는 공동변화(co-movement) 즉 주가, 금리, 환율 등 다양한 금융지표들이 서로 영향을 주고받으며 함께 움직임 ⇒ 하나 이상의 변수들을 설명하는 <mark>기저 차원을 가정</mark>

주성분 분석 (Principal Component Analysis)

: 상관관계에 기반을 두어, 변수들의 변동을 설명할 수 있는 새로운 축을 상정

네이버 금융 최상단에 노출되는 지표들 대상: 코스피, 코스닥, S&P 500 지수, 다우지수, 나스닥 종합지수, 국채이자율, 미국 달러 환율 강한 다중공선성이 발견되어, VIF(Variance Inflation Factor) 기준으로 S&P 500 지수, 나스닥 종합지수 제외; 총 6개 변수 주성분의 수는 카이저 규칙, 스크리플롯과 평행분석을 통해 2개로 선정 이로써 2개의 차원으로 기존 변동의 90% 이상을 설명

Figure 1.2 주요 금융지표들 간 상관계수

차원 축소 기법을 활용한 금융지표 요약

- (1) 국채 금리와 증시의 방향성은 반대
- (2) 2015년 이후 시장 지표들은 증시 성향

2. 왜 배당주인가?

신호 이론으로 본 배당주의 강점

배당주 (Dividend Stock)

쉽게 말해, **배당금(기업이 주주에게 나누어 주는 돈)**을 주는 주식 국내 기업은 일반적으로 연 1회 현금 배당하며, 12월 말 배당금의 규모를 발표한 후 4월경 지급 주주가 직접 주식을 팔지 않더라도, 기준일까지 주식을 보유한 만큼 <mark>현금 배당</mark>

배당은 신호다

현금 배당은 기업이 실제로 시장에 푸는 돈이라는 점에 주목 불확실한 금융 시장에서 기업이 배당금을 주는지 여부와 배당금의 규모는 확실한 신호가 됨 즉 신호 이론의 측면에서 보면 기업이 건실하고 안정적이라는 증거로 삼을 만함

위험 기피 성향이 강한 시장 비참여자들에게 적합

2. 왜 배당주인가?

한국 기업의 배당 현황

Figure 2.1 연도별 배당기업의 수 변화

• 배당 규모 증가

배당을 하는 기업 수도, 배당금 규모도 증가 KOSPI 14년' **15조 원**(483개) → 18년' **30조 원**(546개)

• 정부의 친배당 정책

한국 주식시장의 배당성향은 원래 전 세계 평균보다 낮은 편 2015년 배당소득 증대세제, 기업소득 환류세제 등 정책으로 투자환경이 점차 개선

• 국민연금의 배당압박

자금력이 큰 연기금 투자자들의 배당주 선호 국민연금에서도 배당주를 산다, 그것도 아주 많이! 국내주식 투자액 **107조 원** 중 **91조 원** (*2018.12 기준) → 전체 **84.2%**에 달하며, 계속적으로 배당 확대 압박

[1단계] 생존 분석을 활용한 배당금 지급중지 설명

안정적으로 배당금을 지급할 수 있는 기업

배당투자에 있어서 판단의 기준이자, **제 1의 목적은 배당금**을 받는 것 그러나 시장의 불확실성에 의해 배당금을 지급하지 못하는 사건이 발생한다면?

Figure 3.1 미래에셋대우 (#006800)

[1단계] 생존 분석을 활용한 배당금 지급중지 설명

데이터 준비

2016~2018년 사이 배당을 지급한 이력이 있는 1,378개 코스피 및 코스닥 종목을 대상으로 2009~2018년까지의 *일별 시세, 매매동향* 데이터를 구축 tidyquant 패키지를 사용하여 Yahoo Finance로부터 배당 관련 정보 수집

코스피로 상장된 18개 종목을 포함하여 기존 4,077개에 5,314개 행 추가 최초 관측 시점은 2007년이며, 지급 횟수는 최소 1회에서 최대 10회

Cox 비례위험모형 (Cox Proportional Hazards model)

관심 변수는 첫 배당금 지급 이후 중지까지의 시간 관측 종료시까지 사건이 발생하지 않는 중도절단(censoring) 사례 포함 ⇒ 대표적인 생존분석 기법 중 하나인 Cox 비례위험모형 이용

변수들의 측정 단위는 1년으로, 관측 기간 내내 동일한 것이 아니라 매년 다른 값 비례위험가정에 위배되므로 시변 공변량(time-varying covariates) 투입

Table 3.1 Cox 비례위험모형 투입 데이터 형식

*매 시점에서 지급중지가 발생하면 death=1, 아니면 0

itemcode	itemname	tstart	tstop	death	der_dps_lag1
000020	동화약품	2009	2010	0	0
000020	동화약품	2010	2011	0	100
000020	동화약품	2011	2012	0	100
000020	동화약품	2012	2013	0	100

*동화약품(2009년 배당 시작)의 경우 2010년 배당횟수는 1 *주가변동성은 변동계수(CV) = 표준편차/평균으로 계산

coxph(Surv(tstart, tstop, death) ~ 작년배당금+(이전)배당횟수+주가변동성 +작년배당금*주가변동성)

[1단계] 생존 분석을 활용한 배당금 지급중지 설명

Figure 3.2 Cox 비례위험모형 추정 결과

(1단위 증가에 따른 위험 증가율)

작년배당금 -18%

배당횟수 -15%

주가변동성 +13%

- (1) 배당금 규모가 <u>크면</u> 주가변동이 <mark>악재, 작으면 호재</mark>
- (2) 양쪽 기울기를 비교하니 코스피에서 위 험 증가율은 높고, **감소율은 낮음**
- (3) 코스닥 << 코스피 시장이 안정적

[1단계] 생존 분석을 활용한 배당금 지급중지 설명

[2단계] 다층 모형을 활용한 연도별 배당변화 패턴 분석

지속적으로 성장해왔고, 앞으로도 성장할 기업

안정성이라는 허들을 넘었다면, 이제 **수익성**을 줄 수 있는 배당주를 고를 차례 주당배당금과 시가배당률 모두를 고려하여 **성장세**인 종목을 선정

Figure 3.5 삼성화재 (#001140)

[2단계] 다층 모형을 활용한 연도별 배당변화 패턴 분석

배당변화 패턴 분석

2016~2018년 *배당 이력*과 *기업실적*을 이용해 배당금, 시가배당률 추이 분석

1) 배당금: 선형 회귀를 적합한 뒤 기울기가 양수

2-1) 시가배당률: 선형 회귀를 적합한 뒤 기울기가 양수

2-2) 이차 회귀를 적합한 뒤 18년' 기울기(즉 미분값)이 양수

그 결과 배당금, 시가배당률 모두 증가한 300여개의 종목들이 선택됨

다층 모형 (Multilevel model)

2016~2018년(시간 수준)까지 종목별로(종목 수준)각 3회 반복 측정

⇒ 위계적(hierarchical) 데이터 분석에 적합한 2수준 다층 모형

300여개 종목들을 가지고 배당금, 시가배당률 각각에 대해 다층모형 적합 정규분포 가정을 충족시키고자 상용로그변환 실시 이때 그룹변수로 사용한 것은 앞서 주요한 변수로 지목한 바 있는 <mark>배당횟수</mark> Table 3.2 다층 모형 투입 데이터 형식

itemcode	itemname	tstart	tstop	dps	der_dps_lag1
000020	동화약품	2016	2017	110	80
000020	동화약품	2017	2018	150	110
000020	동화약품	2018	2019	120	150
000050	경방	2016	2017	180	125

Imer(배당금 or 시가배당률 ~ (배당횟수 +KOSPI 여부)*시간+(시간|종목))

[2단계] 다층 모형을 활용한 연도별 배당변화 패턴 분석

Figure 3.6 주당배당금 증가 패턴

1) <mark>선형</mark> 회귀를 적합한 뒤 기울기가 양수

2-1) 선형 회귀를 적합한 뒤 기울기가 양수 2-2) 이차 회귀를 적합한 뒤 18년' 기울기 (즉 미분값)이 양수

Figure 3.7 시가배당률 증가 패턴

[2단계] 다층 모형을 활용한 연도별 배당변화 패턴 분석

배당횟수 그룹의 설명력

기본 모형

Imer(배당금 ~ (1)종목))

ICC(Intra-class correlation) = 0.93

⇒ 전체 분산의 93%가 종목별 차이 때문

배당횟수(및 KOSPI 여부) 투입 모형

Imer(배당금 ~ (배당횟수+KOSPI 여부)* 시간+(시간|종목))

PRE(Proportional Reduction in Error) = 0.60

⇒ 종목 수준에서의 분산이 60% 감소

우리 분류가 종목별 차이의 60%를 설명

[2단계] 다층 모형을 활용한 연도별 배당변화 패턴 분석

주당배당금

시작점도, 기울기도 더 높음

```
Estimate Std. Error
                                                df t value Pr(>|t|)
(Intercept)
                    2.133368
                               0.049266 289.025814
                                                    43.303 < 2e-16 ***
g2Y = 6 \text{ or } 7
                    0.210418
                               0.075666 289.025783
                                                     2.781
                                                           0.00578 **
q2Y = 8
                    0.310442
                               0.162993 289.025790
                                                     1.905
                                                            0.05782 .
market_kospi
                    0.444936
                               0,076852 289.025790
                                                     5.789 1.84e-08 **
                               0.009082 289.011703 11.685 < 2e-16 **
time
                    0.106119
a2Y = 6 \text{ or } 7: time
                   -0.006005
                               0.013948 289.011704 -0.431
                                                            0.66712
                    0.080290
                               0.030046 289.011707
                                                     2.672
                                                            0.00796 **
q2Y = 8:time
                               0.014167 289.011703
                                                    -0.534 0.59400
market_kospi:time
                   -0.007560
```

시가배당률

```
Estimate Std. Error
                                                df t value Pr(>|t|)
                                                     5.993 6.13e-09 **
(Intercept)
                    0.161941
                               0.027023 288.998940
                                                             0.9106
a2Y = 6 \text{ or } 7
                    0.004666
                               0.041504 288.998934
                                                     0.112
a2Y = 8
                    0.190524
                               0.089404 288.998935
                                                     2.131
                                                            0.0339 *
                    0.048423
                               0.042155 288.998935
                                                     1.149
                                                             0.2516
market_kospi
                                                            < 2e-16 **
time
                    0.150734
                               0.009767 288.998194 15.434
g2Y = 6 or 7:time
                    0.006612
                               0.015000 288.998194
                                                     0.441
                                                             0.6597
g2Y = 8:time
                   0.060354
                               0.032312 288.998193
                                                     1.868
                                                            0.0628 .
market_kospi:time
                   -0.032970
                               0.015235 288.998194 -2.164
                                                             0.0313 *
```

8회(최대 배당횟수) 배당한 기업들의 성장세가 뚜렷함

[결론] 배당투자 유망 종목

안정적으로 배당금을 지급할 수 있는 기업

[1단계] 작년배당금, 배당횟수, 주가변동성 그리고 시장 종류를 고려하여 지급중지 회피

지속적으로 성장해왔고, 앞으로도 성장할 기업

[2단계] 최근 3년간 주당배당금과 시가배당률이 성장세 & 8회 배당한 기업

[결론] 배당투자 유망 종목

N = 2,353

배당주인가?

KOSPI/KOSDAQ 상장기업 중 2016~2018년 배당이력이 있는 1,368개

N = 1,368

[1단계] 안정적으로 지급할 수 있는가?

작년배당금, **배당횟수**, 주가변동성 그리고 시장 종류를 고려하여 지급중지 회피 지급중지 이력이 있는 592개 종목 제외

N = 776

N = 293

[2단계] 성장가능성이 있는가?

3년간 **주당배당금**과 **시가배당률**이 성장세인 293개 종목 **최대 배당횟수**(2016년 기준 8회)를 배당한 **9개** 종목을 최종 선정

N = 9

[결론] 배당투자 유망 종목

최종 선정된 종목 리스트

대신증권	삼성전자	삼성전자우	
삼성증권	삼성화재	삼성화재우	
에스엘	한국금융지주	한독	

[결론] 배당투자 유망 종목

Figure 3.9 주당배당금 증가 패턴

Figure 3.10 시가배당률 증가 패턴

[결론] 배당투자 유망 종목

[결론] 배당투자 유망 종목

Year

[결론] 배당투자 유망 종목

자, 이제 실전이다!

주식 시장은 너무도 복잡하다

• 안전성과 성장가능성을 두 축으로 배당주 종목을 선정

무엇을, 언제, 얼마나 살 것인가에 대해 충분히 고민해야

- 수익성: 주당순이익(EPS), 당기순이익
- 투자금 회수: 주가, 주가수익비율(PER)
- 거시적인 금융시장 상황: 주가, 금리, 환율
- 배당소득세 15.4%(지방소득세 1.4% 포함)
- ⇒ 수많은 지표들이 존재하지만, 무엇보다 중요한 것은 자신의 판단!

NAVER Data Science Competition 2019

감사합니다.

발표자 박인서

부가 설명 자료

Cox 비례위험모형 결과

```
Call:
coxph(formula = Surv(tstart, tstop, death) ~ der_dps_lag1 + der_dps_len +
   stock_cv + der_dps_lag1 * stock_cv, data = data)
 n= 8279, number of events= 392
                        coef exp(coef) se(coef)
                                                   z Pr(>|z|)
der_dps_lag1
                    -0.16621   0.84686   0.05129   -3.240   0.00119 **
der_dps_len
                              -0.19442
stock_cv
                     0.12334 1.13126 0.03096 3.983 6.79e-05 ***
                              1.11721 0.03586 3.091 0.00200 **
der_dps_lag1:stock_cv 0.11084
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
                    exp(coef) exp(-coef) lower .95 upper .95
                                                    0.9364
der_dps_lag1
                       0.8469
                                 1.1808
                                          0.7659
der_dps_len
                       0.8233
                                 1.2146
                                          0.7825
                                                    0.8662
                                          1.0647
stock_cv
                       1.1313
                               0.8840
                                                    1.2020
der_dps_lag1:stock_cv
                       1.1172
                                 0.8951
                                           1.0414
                                                    1.1986
Concordance= 0.693 (se = 0.013)
Likelihood ratio test= 131.2 on 4 df, p=<2e-16
Wald test
                   = 123 on 4 df, p=<2e-16
Score (logrank) test = 133.4 on 4 df, p=<2e-16
```

Likelihood ratio test 결과

```
Likelihood ratio test
```

```
Model 1: Surv(tstart, tstop, death) ~ der_dps_lag1
 + der_dps_len + stock_cv +
    der_dps_lag1 * stock_cv
Model 2: Surv(tstart, tstop, death) ~ der_dps_lag1
 + der_dps_len + stock_cv +
    stock_mean + stock_sd + stock_cap + stock_pbr
 + stock listed +
    market_kospi + market_kg2ks + deal_corp_buy +
 deal_foreign_buy +
    deal_corp_sum + deal_foreign_sum + deal_corp_s
ell + deal_foreign_sell +
    der_dps_lag1:stock_cv
  #Df LogLik Df Chisa Pr(>Chisa)
1 4 -2577.5
2 17 -2565.0 13 25.068
                          0.02262 *
Sianif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

- 모형 추정에는 R의 survival 라이브러리의 coxph() 함수를 이용
- Time dependent covariates

부가 설명 자료

Data: dps_sub_long

market_kospi:time -0.007560

2수준 다층 모형 결과: 주당배당금

Formula: dps ~ (g2 + market_kospi) * time + (time | itemcode)

```
REML criterion at convergence: -79.7
Scaled residuals:
            10 Median
-4.9954 -0.3354 0.0316 0.3355 5.7293
Random effects:
Groups Name
               Variance Std.Dev. Corr
itemcode (Intercept) 0.263687 0.51350
                     0.004140 0.06434 -0.33
         time
Residual
                     0.009865 0.09932
Number of obs: 879, groups: itemcode, 293
Fixed effects:
                   Estimate Std. Error
                                               df t value Pr(>|t|)
(Intercept)
                   2.133368  0.049266  289.025814  43.303  < 2e-16 ***
                              0.075666 289.025783 2.781 0.00578 **
a2Y = 6 \text{ or } 7
                   0.210418
q2Y = 8
                   0.310442
                              0.162993 289.025790 1.905 0.05782
                   0.444936
                              0.076852 289.025790 5.789 1.84e-08 ***
market_kospi
                   0.106119
                              0.009082 289.011703 11.685 < 2e-16 ***
time
g2Y = 6 \text{ or } 7: time -0.006005
                              0.013948 289.011704 -0.431 0.66712
                   0.080290
g2Y = 8:time
                              0.030046 289.011707
                                                  2.672 0.00796 **
```

0.014167 289.011703 -0.534 0.59400

기본 모형: 주당배당금

Formula: dps ~ (1 | itemcode)
Data: dps_sub_long

REML criterion at convergence: 343.2

Scaled residuals:

Min 1Q Median 3Q Max -3.2827 -0.3700 0.0360 0.3707 6.0577

Random effects:

Groups Name Variance Std.Dev. itemcode (Intercept) 0.3438 0.5864 Residual 0.0246 0.1568 Number of obs: 879, groups: itemcode, 293

Fixed effects:

Estimate Std. Error df t value Pr(>|t|)
(Intercept) 2.51134 0.03466 291.99999 72.45 <2e-16 ***

- 모형 추정에는 R의 Ime4 라이브러리의 Imer() 함수를 이용
- 모형 추정방법으로는 제한적 최대우도법(REML) 사용
- 고정효과의 자유도(*df*)는 새터스웨이트(Satterthwaite)의 제안에 따라 조정

부가 설명 자료

2수준 다층 모형 결과: 시가배당률

```
Formula: md ~ (g2 + market_kospi) * time + (time | itemcode)
  Data: md_sub_long
REML criterion at convergence: -289.1
Scaled residuals:
            10 Median
   Min
-3.7242 -0.3652 0.0303 0.4393 4.8260
Random effects:
              Variance Std.Dev. Corr
Groups Name
itemcode (Intercept) 0.07573 0.2752
         time
                    0.00360 0.0600
                                     -0.42
                    0.01378 0.1174
 Residual
Number of obs: 879, groups: itemcode, 293
Fixed effects:
                                             df t value Pr(>|t|)
                   Estimate Std. Error
                             0.027023 288.998940 5.993 6.13e-09 ***
(Intercept)
                  0.161941
                  0.004666   0.041504   288.998934   0.112   0.9106
g2Y = 6 \text{ or } 7
a2Y = 8
                  0.190524
                             0.089404 288.998935
                                                 2.131 0.0339 *
market_kospi
                  0.048423
                             0.042155 288.998935
                                                  1.149
                                                        0.2516
                  0.150734
                             0.009767 288.998194 15.434 < 2e-16 ***
time
g2Y = 6 or 7:time 0.006612 0.015000 288.998194
                                                 0.441 0.6597
                  0.060354 0.032312 288.998193
                                                 1.868 0.0628 .
a2Y = 8:time
market_kospi:time -0.032970
```

0.015235 288.998194

-2.164

0.0313 *

기본 모형: 시가배당률

```
Formula: md ~ (1 | itemcode)
  Data: md_sub_long
REML criterion at convergence: 139.8
Scaled residuals:
            1Q Median
                           3Q
                                  Max
-2.8366 -0.4615 0.0003 0.5319 4.3866
Random effects:
Groups Name
                    Variance Std.Dev.
itemcode (Intercept) 0.06982 0.2642
Residual
                    0.03597 0.1897
Number of obs: 879, groups: itemcode, 293
Fixed effects:
            Estimate Std. Error
                                     df t value Pr(>|t|)
(Intercept) 0.20153 0.01671 292.00000 12.06 <2e-16 ***
```

- 모형 추정에는 R의 Ime4 라이브러리의 Imer() 함수를 이용
- 모형 추정방법으로는 제한적 최대우도법(REML) 사용
- 고정효과의 자유도(*df*)는 새터스웨이트(Satterthwaite)의 제안에 따라 조정 29

부가 설명 자료

Lambda

Lambda