b-mehdi.jimdo.com

Correction Algorithmique et programmation Session principale 2009

Exercice 1 (4 pts, on acceptera toute réponse équivalente)

- a) L'algorithme proposé est celui de la méthode du tri par insertion. (1 point)
- **b**) La méthode consiste à parcourir le tableau à trier à partir du 2^{ème} élément et essaye de placer l'élément en cours à sa bonne place parmi les précédents. De cette façon, la partie dans laquelle on cherche à placer l'élément en cours reste toujours triée. L'opération de placement peut nécessiter le décalage d'un bloc d'un pas vers l'avant. (1,5 point)
- c) Algorithme de la procédure DECALER (1,5 point = 0,5 pour le mode de passage + 1 pour le corps de la procédure)
 - 0) Procédure DECALER(i: entier, VAR j : Entier, VAR T : W)
 - 1) $i \leftarrow i$
 - 2) Tant Que (T[j-1]>aux) et (j > 1) Faire

$$T[j] \leftarrow T[j-1]$$
$$j \leftarrow j-1$$

Fin Tant Que

3) Fin DECALER

NB:

- Il est possible de remplacer la structure Tant que par répéter.
- On acceptera toute réponse équivalente

Exercice 2:

- 1°) Ordre de récurrence de la fonction inconnu1 = 1
 Ordre de récurrence de la fonction inconnu2 = 2

- 3°) La fonction inconnu1 permet de calculer x^n La fonction inconnu2 permet de calculer C_n^p
- 4°) Le développement de $(x+1)^n$ est égal à $\sum_{p=0}^n C_n^p x^p$
 - 1) DEF PROC develop (n : entier)
 - 2) [STR(n,chn) ; dev←"x^0"]
 Pour p de 1 à n Faire
 STR(inconnu2(n, p),Cnp)
 STR(p,chp)
 dev ← dev + " + " + Cnp + "." + " x^" + chp

FinPour

- 3) Ecrire(dev)
- 4) Fin develop

NB: On acceptera toute réponse équivalente

Barème			
Question n°1	Question n°2	Question n°3	Question n°4
1pt=0,5+0,5	1pt = 0.5 + 0.5	1pt = 2*0,5	1 pt
	Trace=0,25		
	Résultat= 0,25		

Problème:

Analyse (8 Pts)	Algorithme
	• Pour être évalué, l'algorithme doit présenter un contenu en

Corrigé Algorithmique et programmation Section Sciences de l'Informatique

	-1	
_	-1	
-	-	
	וכ	
- 7	7	
C	וכ	
	•	
•	7	
7	₹	
•	7	
	-	
~	-1	
_	-	
•	_	
•=		١
•=	•)
:=	•)
; -		•
=	-)
<u>: الرر</u>	-)
hdi		•
i ibya		
i ipha		
nohdi i		
moholi i		
moholi i		
-mohdi		
h-moholi i		

	relation avec le problème
	demandé
1) PP (1,5 pt)	PP (0,5 pt)
• Cohérence=0,5	Saisie (0,5 pt)
• Modularité= 1	Remplissage (1,5 pt)
2) Saisie (1 pt=4*0,25)	Traitement (1,5 pt)
3) Remplissage (2 pts)	
• Parcours (1 pt)	
• <u>Détermination de la valeur (1 pt)</u>	
4) Recherche des chemins (0,75 pt)	
5) Remplissage du fichier (0,75 pt)	
6) Affichage (1 pt)	
7) Divers (TDO+mode de passage des paramètres) (1 pt)	

1) Analyse du programme principal nommé **Les_chemins**

Résultat = affichage , fichier_chemins affichage , fichier_chemins = PROC Traitement (p,q,M) (p,q)= PROC Saisie(p,q) M= PROC Remplissage(p,q,M)

Tableau de déclaration des nouveaux types

Туре
Matrice = tableau de 132, 132 entier

Tableau de déclaration des objets globaux

Tubicaa ac acciatation act objets grobaan		
Objet	Type/Nature	Rôle
p	entier	Nombre de lignes de la matrice
q	entier	Nombre de colonnes de la matrice
M	Matrice	Matrice à remplir
Traitement	procédure	Permet d'afficher les n° des chemins et de remplir le
	-	fichier chemin
Saisie	procédure	Permet de saisir p et q
Remplissage	procédure	Permet de remplir la matrice

Analyse de la Procédure saisie

```
DEF PROC saisie (VAR n,m : entier) 

Résultat = n,m 

(n,m) = [ ] Répéter 

n = donnée ("Entrer le nombre de lignes : ") 

m = donnée ("Entrer le nombre de colonnes: ") 

Jusqu'à (5 \le n) et (n \le m) et (m \le 32)
```

Fin Saisie

Analyse de la Procédure remplissage

```
DEF PROC remplissage
                                                                                  Commentaires
(n,m : entier ; VAR A : Matrice)
Résultat = A
                                                                      • Par défaut, on affecte 0 à la case
          Pour i de 1 à n Faire
A = [
                                                                     A[i,j]. La valeur de cette case sera
                                                                      modifiée si ses indices (i et j) vérifient
                ] Pour j de 1 à m Faire
                                                                      la condition de l'énoncé.
                    [A[i,j] \leftarrow 0, L \leftarrow i, C \leftarrow j]
                                                                      • Début de la vérification :
                                                                      1. Conversion en binaire de i et j et
                    Répéter
                                                                          test de la condition:
                                                                           * Division de i et j par 2.
                     [] Si (L MOD 2) + (C MOD 2)=2 alors A[i, j] \leftarrow 1
                                                                           * Si pour cette division, les 2 restes
                                                                          valent 1, alors leur somme (1+1)
                                                                           vaut 2, donc, selon l'énoncé, on
                        sinon
                                                                           affecte 1 à A[i,j].
                                 L \leftarrow L \text{ DIV } 2C \leftarrow C \text{ DIV } 2
                                                                          Sinon, on poursuit la conversion
                                                                      2. la vérification s'arrête à la fin de la
                                                                         conversion (au moins, un des
                         Fin Si
                                                                          quotients s'annule (L*C=0)) ou
                     jusqu'à (L*C = 0) ou (A[i,j]=1)
                                                                          bien si la condition de l'énoncé est
                   Fin Pour
                                                                          vérifiée (A[i,j]=1)
            Fin Pour
Fin Remplissage
```

Tableau de déclaration des objets la procédure remplissage

Objet	Type/Nature	Rôle
i	entier	Compteur
j	entier	Compteur
L	entier	Variable intermédiaire pour vérifier que i et j ont un 1 en
С	entier	commun sur la même position Variable intermédiaire pour vérifier que i et j ont un 1 en commun sur la même position

Analyse de la Procédure **Traitement**

DEF PROC Traitement

(n,m: entier, A: Matrice)

Résultat =affichage, chemin

(affichage, chemin) = $[nbchemin \leftarrow 0;$ Associer (chemin, "D:\chemins.txt")

recréer (chemin); Ecrire nl (chemin,n," ",m)]

Pour i de 1à m faire

Si Fn Verif_Chemin (n,i,A) Alors écrire(i)

nbchemin ← nbchemin + 1

Ecrire_nl (chemin,i)

Fin si

Fin pour

Fin Traitement

Ecrire_nl (chemin, nbchemin) -

Fermer (chemin)

Commentaires

- Traitement d'initialisation
- Traitement de toutes les colonnes (de 1 à m)
- Affichage du n° de la colonne
 (i) qui vérifie les conditions et incrémentation du compteur de chemins valides (nbchemin)
- Sauvegarde des résultats dans le fichier **chemin**

Tableau de déclaration des objets de la procédure Traitement

Objet	Type/Nature	Rôle
i	entier	Compteur
nbchemin	entier	Nombre de chemins
chemin	texte	Fichier texte qui va contenir le nombre de lignes, le
		nombre de colonnes, le numéro de chaque chemin et le
		nombre de chemins
Verif_chemin	Fonction	Permet de vérifier si une colonne constitue un chemin

Analyse de la Fonction Verif_Chemin

Tableau de déclaration des objets la fonction Verif_chemin

Objet	Type/Nature	Rôle
i	entier	Compteur
vérif	booléen	Permet de vérifier si une colonne constitue un chemin

2) Les algorithmes se déduisent directement des analyses correspondantes.

Algorithme du PP

- 0) Début Les_chemins
- 1) PROC Saisie(p,q)
- 2) PROC Remplir(p,q,M)
- 3) PROC Traitement (p,q,M)
- 4) Fin Les_chemin

Algorithme de la procédure Saisie

- 0) DEF PROC saisie (VAR n,m : entier)
- 1) Répéter

Ecrire ("Entrer le nombre de lignes : ") ; lire(n) Ecrire ("Entrer le nombre de colonnes : ") ; lire(m)

Jusqu'à $(5 \le n)$ et $(n \le m)$ et $(m \le 32)$

2) Fin chemin

Algorithme de la procédure Remplissage

- 0) DEF PROC remplissage(n,m: entier; VAR A: Matrice)
- 1) Pour i de 1 à n Faire

Pour j de 1 à m Faire

$$A[i,j] \leftarrow 0 ; L \leftarrow i ; C \leftarrow j$$

Répéter

Si (L MOD 2) + (C MOD 2)=2 alors A[i, j]
$$\leftarrow$$
 1
Sinon
L \leftarrow L DIV 2
C \leftarrow C DIV 2

Fin Si

Jusqu'à L*C =0 ou (A[i,j]=1)

Fin Pour

Fin Pour

2) Fin remplissage

Algorithme de la procédure Traitement

- 0) DEF PROC Traitement (n,m: entier, A: Matrice)
- 1) $nbchemin \leftarrow 0$

Associer(chemin,"D:\chemins.txt")

recréer(chemin)

```
Ecrire_nl(chemin,n," ",m)
     Pour i de 1à m faire
              Si Fn Verif_Chemin(n,i,A)
                               Alors
                                 écrire(i)
                                 nbchemin \leftarrow nbchemin + 1
                                Ecrire_nl(chemin,i)
                           Finsi
      Fin pour
      Ecrire_nl(chemin,nbchemin)
  2) Fermer(chemin)
  3) Fin Traitement
Algorithme de la fonction Verif_Chemin
   0) DEF FN Verif_chemin(n,k : entier ; M : Matrice) : booléen
   1) vérif←vrai ; i←0
      répéter
             i \leftarrow i + 1
              Si (M[i,k] = 0) et (M[i+1,K]=0) Alors vérif \leftarrow faux Finsi
        Jusqu'à (vérif = faux) ou (i = n-1)
      Verif chemin ← vérif
   2) Fin Verif_chemin
```