Układy równań liniowych

Metody Numeryczne 2024

Wstęp

Celem projektu jest implementacja i analiza dwóch metod iteracyjnych (Jacobiego i Gaussa-Seidla) oraz jednej metody bezpośredniej (faktoryzacja LU) rozwiązywania układów równań liniowych. Układy równań liniowych mają zastosowanie w dziedzinach, takich jak elektronika, elektrodynamika czy mechanika, gdzie często reprezentują matematyczne modele problemów.

Do implementacji algorytmów rozwiązujących równania została wykonana w języku programowania C++. Do wizualizacji wyników użyto języka Python wraz z biblioteką matplotlib.

Konstrukcja układu równań

Układ równań liniowych ma następującą postać:

Ax = b

gdzie A jest macierzą systemową, b jest wektorem pobudzenia, zaś x jest wektorem rozwiązań.

Na potrzeby projektu powyższe macierze zostały wygenerowane w następujący sposób:

$$\mathbf{A} = \begin{bmatrix} a1 & a2 & a3 & 0 & 0 & 0 & 0 & \dots & 0 \\ a2 & a1 & a2 & a3 & 0 & 0 & 0 & \dots & 0 \\ a3 & a2 & a1 & a2 & a3 & 0 & 0 & \dots & 0 \\ 0 & a3 & a2 & a1 & a2 & a3 & 0 & \dots & 0 \\ \vdots & \vdots \\ 0 & 0 & \dots & 0 & 0 & 0 & a3 & a2 & a1 \end{bmatrix},$$

Macierz A jest macierzą kwadratową o rozmiarze N, gdzie

- 1) N = 909
- 2) a1 = 11
- 3) a2 = a3 = -1

Wektor b jest wektorem kolumnowym, którego kolejne elementy generowane są według formuły sin(n*(f+1)), gdzie n oznacza indeks elementu, a f jest równy 3.

Wektor x jest również wektorem kolumnowym, a wartości jego elementów zostały zainicjalizowane na wartość równą 1.

Metody iteracyjne

Metody iteracyjne służą do przybliżania rozwiązania układu równań wraz z kolejnymi iteracjami. Dla poniższych przykładów warunkiem stopu było przekroczenie progu 1000 iteracji lub osiągnięcie normy błędu rezydualnego mniejszej od wartości 10^-9.

Dla zdefiniowanego powyżej układu równań liniowych (a1=11 oraz a2=a3=-1) macierz A jest diagonalnie dominująca, co oznacza, że spełnia ona <u>warunki</u> zbieżności dla metody Jacobiego oraz dla metody Gaussa-Seidla.

Metoda Jacobiego

Matrix size: 909

Duration: 0.0683599 seconds

Norm Jacobi: 7.90218e-10

Iterations Jacobi: 26

Metoda Gaussa-Seidla

Matrix size: 909

Duration: 0.0394211 seconds

Norm Gauss-Seidel: 3.63782e-10

Iterations Gauss-Seidel: 18

Wartości normy błędu rezydualnego w obu przypadkach maleją wykładniczo. Łatwo zauważyć, że metoda Gaussa-Seidla w porównaniu z metodą Jacobiego potrzebuje mniej iteracji, a co za tym idzie mniej czasu, aby osiągnąć zadany próg dokładności. Wynika to z faktu, że metoda Gaussa-Seidla do wyznaczenia kolejnego rozwiązania korzysta już z częściowo obliczonych rozwiązań.

Drugim rozważanym przypadkiem, było użycie macierzy A, która nie spełniała warunków zbieżności. Układ równań liniowych został wygenerowany dla a1=3 oraz a2=a3=-1.

Metoda Jacobiego

Matrix size: 909

Duration: 2.28236 seconds Norm jacobi: 3.26979e+126

Iterations Jacobi: 1001

Metoda Gaussa-Seidla

Matrix size: 909

Duration: 2.17651 seconds

Norm gauss_seidel: inf

Iterations Gauss-Seidel: 1001

Porównanie metod

Jak widać, w przypadku, w którym macierz A nie spełnia kryterium zbieżności nie warto stosować omawianych metod iteracyjnych, ponieważ rozwiązania w tym przypadku są rozbieżne. Norma błędów metod iteracyjnych, na wykresie rośnie w sposób liniowy, jednakże warto zauważyć, że oś y jest w skali logarytmicznej, więc w rzeczywistości błąd ten rośnie wykładniczo. Normy błędów są na tyle duże, że dla metody Gaussa-Seidla wartość ta przekroczyła maksymalny zakres liczby zmiennoprzecinkowej zapisywanej na 64-bitach w standardzie IEEE 754.

Metoda bezpośrednia

Metoda bezpośrednia w odróżnieniu od metod iteracyjnych jest w stanie znaleźć rozwiązanie układu równań liniowych bez względu na warunki zbieżności. Rozwiązanie układu równań liniowych dla macierzy A, gdzie a1=3 oraz a2=a3=-1, przy użyciu faktoryzacji LU.

Matrix size: 909

Duration: 0.0754872 seconds

Norm LU decomposition: 1.23928e-13

Jak widać, udało się uzyskać bardzo dobre przybliżenie rozwiązania. Norma residuum wyniosła 1.24e-14, jest to wynik o wiele lepszy niż w metodach iteracyjnych, w których norma błędu nie była w stanie zbiec do oczekiwanego progu. Metoda bezpośrednia może być przydatna tam, gdzie metody iteracyjne mogą rozbiegać się lub nie osiągnąć zadowalającego poziomu dokładności.

Porównanie metod rozwiązywania układów równań liniowych

Porównanie czasu potrzebnego na znalezienie rozwiązania dla metod iteracyjnych w zależności od rozmiaru macierzy.

Jak widać, metoda Gaussa-Seidla jest średnio 30% wydajniejsza od metody Jacobiego. Jak wcześniej wspomniałem, wynika to z faktu, iż metoda Gaussa-Seidla korzysta już z częściowo wyznaczonych rozwiązań co skutkuję mniejszą ilością iteracji algorytmu. Wzrost czasowy ma charakter paraboli, co wynika z złożoności obliczeniowej metod iteracyjnych, która wynosi O(n^2).

Porównanie metod iteracyjnych z metodą bezpośrednią

Metoda bezpośrednia w porównaniu z metodami iteracyjnymi cechuje się dużo wyższym wzrostem czasowym oraz czasem wykonania. Wynika to z tego, że algorytm rozkładający macierz A na macierze L oraz U ma złożoność obliczeniową rzędu O(n^3).

Czas wykonania metody LU dla rozmiaru N=1000 wynosił 0.099 sekundy, zaś dla rozmiaru N=2000 wyniósł 1.17 sekundy, co jest ponad 8-krotnym wzrostem przy dwukrotnym wzroście rozmiaru, co potwierdza złożoność obliczeniowa (wzrost jest ponad 8-krotny, ponieważ poza wykonywaniem rozkładu na macierz L i U w metodzie występują inne algorytmy).

Podsumowanie

Zarówno metody iteracyjne (metoda Jacobiego i metoda Gaussa-Seidla) jak i metoda bezpośrednia (faktoryzacja LU) mogą być przydatnymi narzędziami przy rozwiązywaniu układów równań liniowych. Metody iteracyjne będą przydatne w sytuacjach, w których macierz A spełnia warunki zbieżności, oraz nie potrzebujemy dokładnych wyników. Metody te cechują się prostotą implementacji oraz szybkim czasem wykonania.

W przypadku, w której macierz nie spełnia warunków zbieżności może być konieczne skorzystanie z metody bezpośredniej. Jest ona bardziej czasochłonna dla większych macierzy, lecz oferuje dokładniejsze rozwiązanie równania macierzowego.

Źródła:

- Metody numeryczne wykład dr hab. Inż. Grzegorz Fotyga, prof. PG
- https://pl.wikipedia.org/wiki/Metoda_Gaussa-Seidla#Warunki_zbie%C5%BCno%C5%9Bci
- https://pl.wikipedia.org/wiki/Uk%C5%82ad_r%C3%B3wna%C5%84_liniowych
- Instrukcja projektowa nr. 2.