

#### **CS 575: Software Design**

More on Modeling

# Why is the ability to reconstruct an architecture important?

Its important to be able to reconstruct an architecture to reason about its design for a number of reasons...

- Program Understanding we need to make modifications to the system, where would the modifications go, how long would they take, how much would they cost
- Explaining the operation of the system to stakeholders how does the system work, what are its major features, why should you use this system versus a competitors solution
- Providing a common document to capture the high-level design of the system that can be used to make important management and technical decisions
- Measuring technical health and technical debt how far does the "as built" system deviate from the "as designed" architecture?

### The hardest part of reconstructing an architecture is selecting what needs to be modeled ...

- Components hierarchical description of the major subsystems
- Connectors connections between the components
- Interfaces the protocols governing the connectors, or the properties managed by the clients
- Patterns and Styles are there any interesting patterns or styles used in the architecture that should be documented?
- ◆ Rationale reasoning behind decisions of the aspects we chose to model are they important to stakeholders? are they critical to the understanding of the system?
- Constraints what dependencies don't we want to have in the solution

### Think about what is important to show to promote an understanding of the architecture...

- Static aspects are things that do not change as the system runs, and
- Dynamic aspects are things that do change, manage important state, or are sequence dependent
- Platform aspects are things where the runtime or deployment decisions play an important part of the architecture – load balancers, proxy servers, etc.

#### How do we find things that we want to model...

- Look at the code
  - Source code analysis tools
  - Class/package structure
  - Build / configuration management information
  - Test cases what is being tested that must be important
  - Directory structures
  - Naming conventions

#### How do we find things that we want to model...

- What do we know about the system
  - What are the main features
  - How are they exposed to the users
  - Build / configuration management information
  - Test cases what is being tested that must be important
  - Directory structures
  - Naming conventions
  - Non-functional aspects

## Think about what story that you want to tell

- Think about how you were taught to write stories in elementary school:
  - Who? Who is your stakeholder or target audience
  - What? What is the key message you are trying to get across
  - Why? Why is it important
  - Where? Where are the most important parts think scale, security, etc
  - When? When do key events happen?
  - **How?** How does it work?
  - How Much? How much impact does the system have on an existing landscape?

### And the outcome you want to achieve

- Why do I create a Model / View:
  - Drive stakeholder clarity
  - Making quality / informed decisions
  - Forcing others to make decisions
  - Being transparent around the solution what it is and what it is not
  - Being opinionated around constraints
  - Show alignment, and possible misalignment with enterprise or industry standards

# Example – What are the major pieces?



### Example – What is impacted?



### Example - Who needs to weigh in?



### Example – How does it work?





## Example – How do we explain what we want to change?



### Example – Is this a feasible idea? –

(Inspiration during a camping trip.... sorry, blurred on purpose)



## Don't worry about the notation to get started

- Architecture and design models can be expressed using
  - Formal architecture description languages
  - UML or a variant of UML (Archimate, SysML, SoaML, etc)
  - Simple lines and boxes

**EXPLORE** 

**UNDERSTAND** 

**EVALUATE** 

**MAKE** 

**UNDERSTAND** 

Actively seek information from stakeholders and work to (re)frame the problem.

#### **EXPLORE**

Use generative thinking to identify design concepts and engineering approaches.

Realize design concepts by creating them in the real world as a model, prototype, program, or other artifact.

**MAKE** 

Determine the fitness of design decisions and decide whether to revisit other modes.

**EVALUATE** 

#### Types of architecture models / views

- Reference Architecture Provides a view across a particular domain or problem space
- Conceptual Architecture Provide an understandable picture of the overall purpose of the proposed solution.
- Logical Architecture detailed design which includes all major components and entities plus their relationships.
- Physical Architecture Shows physical components such as servers, firewalls, network equipment, storage engines, etc. Generally captures location and function – ie "A Web Server"