Particle Synthesis

A unified model for granular synthesis

Øyvind Brandtsegg
Sigurd Saue
Thom Johansen

• • Overview

Granular synthesis

General characteristics

Specific subtypes (Roads)

Particle synthesis – partikkel (Csound)

All in one generator

New features and new varieties of GS

Interface and applications

General

One single particle (grain) consist of a short sound clip (waveform)

Waveform can be periodic and repeating (synthetic)

Basic parameters

Grain rate

Defines perceived pitch when rate is high (> 20 Hz)

Grain pitch

Defines perceived pitch when rate is low and/or grains are long (> 50ms)

Grain shape

Attack, decay, sustain, duration

Grain waveform

Varieties of particle synthesis

Previously: separate synthesizers/generators for each type

Main difference: parameter values (available parameter set)

Glissons

Pitch sweep within each grain

Converging

Diverging

Falling

Rising

Separate control of start and end pitch Frequency masking

• • Trainlets

Special case of source waveform

Synthetic waveform: band limited pulse

train

Base frequency

Number of partials

Chroma, harmonic balance

Pulsars

Pulsaret

Parameter linkage: rate/pitch/caramon.

Gain masking

Trainlet pulsars

Formant Synthesis

Grain rate constitutes perceived pitch
Grain pitch affects formants

- Partikkel can use 4 separate source waveforms
 - Here: all 4 set to sine wave
 - Separate pitch for each source wave
- Male bass «a» ... «e»

600 Hz, 0dB 1040 Hz, -7dB 2250 Hz, -7dB 2450 Hz, -9 db 400 Hz, 0dB 1620 Hz, -12dB 2400 Hz, -9dB 2800 Hz, -12 db

Grain clock
Synchronous / asynchronous / modulated

Morphing

Sampled source wave, time modification

Sine

Glisson, converging sweeps

Trainlets

Pulsars

Formants

Asynchronous GS

Waveform mixing

Is it hard to use?

40 parameters per note event

Some parameters are multidimensional

(Grain masking parameters)

Output routing,

mix of waveform sources

++

These are put in tables

Format:

loop start, loop end, data1, data2, data3, ...

...and as if that was not enough

Hadron Particle Synthesizer Using partikkel and Csound as a DSP core

- Large set of modulators, freely assignable to all partikkel (and modulator) parameters
 - Envelopes, LFOs, Random generators
 - All midi input (note num, velocity, expression controllers)
 - Transfer functions, dividers, modulo
 - Analysis tracks: Transient, Pitch, Amp
- Feedback in modulator signals allowed
- 52 modulators, 209 parameters

Handling a large parameter set

Creates a need for new methods of parameter control

Hadron Particle Synthesizer

Parameter values and modulator routing defined in <u>states</u> (presets)

Expression controls for fine tuning

Morphing between states via XY control

Hadron Particle Synthesizer

Csound standalone, Max for Live, VST, AU

DSP library (Csound): LGPL

DSP application (CS orc/sco): LGPL

GUI elements: LGPL

GUI implementation (Juce, Max, M4L): LGPL

Hadron states files (parameter configuration)

Additional states files:

for sale, commercial

• • Thank you

Hadron at Linux Sound Night tonight