- Soit V un ensemble (de **variables**). L'ensemble des **formules logiques** sur V est défini inductivement :
 - T et F sont des formules (Vrai et Faux)
 - Toute variable $x \in V$ est une formule
 - Si φ est une formule alors $\neg \varphi$ est une formule
 - Si φ , ψ sont des formules alors $\varphi \wedge \psi$ (conjonction) et $\varphi \vee \psi$ (disjonction) sont des formules

```
type 'a formula =
    | T | F (* true, false *)
    | Var of 'a (* variable *)
    | Not of 'a formula
    | And of 'a formula * 'a formula
    | Or of 'a formula * 'a formula
```

• On peut représenter une formule logique par un arbre. Exemple : $(x \land \neg y) \lor \neg (y \lor z)$ est représenté par

- L'arité d'un connecteur logique est son nombre d'arguments (= nombre de fils dans l'arbre).
 - \neg est d'arité 1 (unaire) et \land , \lor sont d'arités 2 (binaire).
- La taille d'une formule est le nombre de symboles qu'elle contient (= nombre de noeuds de l'arbre).
- La **hauteur** d'une formule est la hauteur de l'arbre associé.
- (Exemple de démonstration par induction sur les formules) Soit φ une formule ayant $n(\varphi)$ symboles de négation et $b(\varphi)$ connecteurs binaire. Alors la taille $t(\varphi)$ de φ est : $t(\varphi) = 1 + n(\varphi) + 2b(\varphi)$.

<u>Preuve</u>: Montrons $P(\varphi): t(\varphi) = 1 + n(\varphi) + 2b(\varphi)$ par induction

Cas de base : t(T) = 1 = 1 + 0 + 0 donc P(T) est vraie. De même pour P(F) et P(x) où x est une variable.

Hérédité : Soit φ une formule.

- Si $\varphi = \neg \psi$ alors $t(\psi) = 1 + n(\psi) + 2b(\psi)$ par induction et $t(\varphi) = t(\neg \psi) = 1 + t(\psi) = 1 + \underbrace{1 + n(\psi)}_{n(\varphi)} + 2\underbrace{b(\psi)}_{b(\varphi)} =$

 $1 + n(\varphi) + 2b(\varphi)$ donc $P(\varphi)$ est vraie.

- Si $\varphi = \psi_1 \wedge \psi_2$ alors, par induction, $t(\psi_1) = 1 + n(\psi_1) + 2b(\psi_1)$ et $t(\psi_2) = 1 + n(\psi_2) + 2b(\psi_2)$. Donc $t(\varphi) = 1 + t(\psi_1) + t(\psi_2) = 1 + \underbrace{n(\psi_1) + n(\psi_2)}_{p(\varphi)} + 2\underbrace{(1 + b(\psi_1) + b(\psi_2))}_{p(\varphi)}$.

Donc $P(\varphi)$ est vraie.

– De même si $\varphi = \psi_1 \vee \psi_2$.

Par induction structurelle, $P(\varphi)$ est donc vraie pour toute formule φ .

- $\varphi \longrightarrow \psi$ est défini par $\neg \varphi \lor \psi$. $\varphi \longleftrightarrow \psi$ est défini par $\varphi \longrightarrow \psi \land \psi \longrightarrow \varphi$.
- Une valuation sur un ensemble V de variables est une fonction $v:V\longrightarrow \{0,1\}$. 0 est aussi noté Faux ou \bot . 1 est aussi noté Vrai ou \top . L'évaluation $[\![\varphi]\!]_v$ d'une formule φ sur v est définie inductivement :

$$- [T]_v = 1, [F]_v = 0$$

$$- [x]_v = v(x) \text{ si } x \in V$$

$$-\ [\![\neg\varphi]\!]_v=1-[\![\varphi]\!]_v$$

$$- \llbracket \varphi \wedge \psi \rrbracket_v = \min(\llbracket \varphi \rrbracket_v, \llbracket \psi \rrbracket_v)$$

$$- \llbracket \varphi \vee \psi \rrbracket_v = \max(\llbracket \varphi \rrbracket_v, \llbracket \psi \rrbracket_v)$$

Si $\llbracket \varphi \rrbracket_v = 1$, on dit que v est un **modèle** pour φ .

- Une formule toujours évaluée à 1 est une **tautologie**. Une formule toujours évaluée à 0 est une **antilogie**. Une formule qui possède au moins une évaluation à 1 est **satisfiable**.
- Deux formules φ et ψ sur V sont **équivalentes** (et on note $\varphi \equiv \psi$) si, pour toute valuation $v: V \to \{0, 1\} : \llbracket \varphi \rrbracket_v = \llbracket \psi \rrbracket_v$.

$$- \ \neg \neg \varphi \equiv \varphi$$

$$-\varphi \vee \neg \varphi \equiv T \text{ (toujours vrai)}$$

$$-\neg(\varphi \lor \psi) \equiv \neg\varphi \land \neg\psi$$
 (de Morgan)

$$-\neg(\varphi \wedge \psi) \equiv \neg \varphi \vee \neg \psi$$
 (de Morgan)

$$- \varphi_1 \vee (\varphi_2 \wedge \varphi_3) \equiv (\varphi_1 \vee \varphi_2) \wedge (\varphi_1 \vee \varphi_3)$$

$$-\varphi_1 \wedge (\varphi_2 \vee \varphi_3) \equiv (\varphi_1 \wedge \varphi_2) \vee (\varphi_1 \wedge \varphi_3)$$

• La table de vérité permet de voir rapidement quelles sont les évaluations possibles d'une formule. Une formule à n variables possède 2^n évaluations possibles, et donc 2^n lignes dans sa table de vérité.

x	y	$(x \land y) \lor (\neg x \land \neg y)$
0	0	1
0	1	0
1	0	0
1	1	1

Table de vérité de $(x \wedge y) \vee (\neg x \wedge \neg y)$