Session 20: Introduction to Functions

- Definition of a Function
- Injection, Surjection, Bijection

Functions

Definition: Let A and B be nonempty sets. A **function** f from A to B is an assignment of exactly one element of B to each element of A.

If f is a function from A to B, we write $f: A \rightarrow B$.

Functions

Definition: Let A and B be nonempty sets. A **function** f from A to B is an assignment of exactly one element of B to each element of A.

If f is a function from A to B, we write $f: A \rightarrow B$.

We write f(a) = b if b is the unique element of B assigned by the function f to the element a of A.

Functions

Definition: Let A and B be nonempty sets. A **function** f from A to B is an assignment of exactly one element of B to each element of A.

If f is a function from A to B, we write $f: A \rightarrow B$.

We write f(a) = b if b is the unique element of B assigned by the function f to the element a of A.

Functions are sometimes called mappings or transformations.

Example

Given a function $f: A \rightarrow B$:

• We say f maps A to B or f is a mapping from A to B

- We say f maps A to B or f is a mapping from A to B
- A is called the **domain** of f
- *B* is called the *codomain* of *f*

- We say f maps A to B or f is a mapping from A to B
- A is called the **domain** of f
- *B* is called the *codomain* of *f*
- If f(a) = b,
 - then b is called the *image* of a under f
 - a is called the **preimage** of b

- We say f maps A to B or f is a mapping from A to B
- A is called the **domain** of f
- *B* is called the *codomain* of *f*
- If f(a) = b,
 - then b is called the *image* of a under f
 - a is called the **preimage** of b

• The **range** of f is the set of all images of points in \mathbf{A} under f. We denote it by $f(\mathbf{A})$.

- The **range** of f is the set of all images of points in \mathbf{A} under f. We denote it by $f(\mathbf{A})$.
- If $f: A \rightarrow B$ and $S \subseteq A$, then $f(S) = \{f(s) \mid s \in S\}$

- The **range** of f is the set of all images of points in \mathbf{A} under f. We denote it by $f(\mathbf{A})$.
- If $f: A \rightarrow B$ and $S \subseteq A$, then $f(S) = \{f(s) \mid s \in S\}$
- Two functions are *equal* when they have

- The **range** of f is the set of all images of points in \mathbf{A} under f. We denote it by $f(\mathbf{A})$.
- If $f: A \rightarrow B$ and $S \subseteq A$, then $f(S) = \{f(s) \mid s \in S\}$
- Two functions are *equal* when they have
 - the same domain

- The **range** of f is the set of all images of points in \mathbf{A} under f. We denote it by $f(\mathbf{A})$.
- If $f: A \rightarrow B$ and $S \subseteq A$, then $f(S) = \{f(s) \mid s \in S\}$
- Two functions are equal when they have
 - the same domain
 - the same codomain

- The **range** of f is the set of all images of points in \mathbf{A} under f. We denote it by $f(\mathbf{A})$.
- If $f: A \rightarrow B$ and $S \subseteq A$, then $f(S) = \{f(s) \mid s \in S\}$
- Two functions are *equal* when they have
 - the same domain
 - the same codomain
 - and map each element of the domain to the same element of the codomain.

Example

The image of d is
$$\mathcal{W}$$
The domain of f is? $\{a,b,c,d\}$
The codomain of f is? $\{x,y,z,\omega\}$
The preimage of y is? $\{x,y,z,\omega\}$
The preimages of x are? $\{a,b\}$
 $\{a,b,c\}$

Representing Functions

Functions may be specified in different ways

- An explicit statement of the assignment
 Table of students and their grades
- A formula

$$f(x) = x + 1$$

• A computer program.

A Python program that when given an integer n, produces the Number 2ⁿ

Injections

Definition: A function f is said to be **one-to-one**, or **injective**, if and only if f(a) = f(b) implies that a = b for all a and b in the domain of f.

A function is said to be an **injection** if it is one-to-one.

Why important?

Every Sciper number can only be assigned to one student.

Surjections

Definition: A function f from A to B is called **onto** or **surjective**, if and only if for every element $b \in B$ there is an element $a \in A$ with f(a) = b.

A function f is called a **surjection** if it is **onto**.

Why important?

Every Section has at least one student.

Bijections

Definition: A function f from A to B is a **one-to-one correspondence**, or a **bijection**, if it is both one-to-one and onto (surjective and injective).

Illustration

Showing that f is injective

Let $f: A \rightarrow B$ be a function

To show that *f* is injective:

Select arbitrary $x,y \in A$,

Show that if f(x) = f(y), then x = y

Showing that f is injective

Let $f: A \rightarrow B$ be a function

To show that *f* is injective:

Select arbitrary $x, y \in A$,

Show that if f(x) = f(y), then x = y

To show that *f* is not injective:

Find $x,y \in A$ such that $x \neq y$ and f(x) = f(y)

Showing that f is surjective

Let $f: A \rightarrow B$ be a function

To show that *f* is surjective:

Select arbitrary $y \in B$,

Find an element $x \in A$ such that f(x) = y

Showing that f is surjective

Let $f: A \rightarrow B$ be a function

To show that *f* is surjective:

Select arbitrary $y \in B$,

Find an element $x \in A$ such that f(x) = y

To show that f is not surjective :

Find $y \in B$ such that $f(x) \neq y$ for all $x \in A$

Example

```
N = natural numbers = {0, 1, 2, 3, ....}
Z = integers = {..., -3, -2, -1, 0, 1, 2, 3, ...}
```

Is the function f: $\mathbf{Z} \to \mathbf{Z}$, f(x) = x+1 surjective? Is the function f: $\mathbf{N} \to \mathbf{N}$, f(x) = x+1 surjective? Is the function f: $\mathbf{Z} \to \mathbf{Z}$, f(x) = x+1 injective? Is the function f: $\mathbf{N} \to \mathbf{N}$, f(x) = x+1 injective? Is the function f: $\mathbf{Z} \to \mathbf{Z}$, $f(x) = x^2$ surjective? Is the function f: $\mathbf{Z} \to \mathbf{Z}$, $f(x) = x^2$ injective?

no, O is not image of any element yes no, 3 is not image of ony element no, $-1^2 = 1^2$

Summary

- Definition of a Function
 - domain, co-domain, image, pre-image, range, equality
- Injection, Surjection, Bijection
 - How to show these properties