Diffusion Model

Denoising Diffusion Probabilistic Models (DDPM) https://arxiv.org/abs/2006.11239

Diffusion Model 是如何運作的?

Reverse Process

The sculpture is already complete within the marble block, before I start my work. It is already there, I just have to chisel away the superfluous material. - Michelangelo

Denoise 模組內部實際做的事情

如何訓練 Noise Predictor

Text-to-Image

https://laion.ai/blog/laion-5b/

HW6 ImageNet LAION 70k 1M 5.85B

A cat in the snow

Text-to-image Generator

Backend url:

https://knn5.laior

Index:

laion_5B

french cat

Clip retrieval works by converting the text query to a CLIP embedding, then using that embedding to query a knn index of clip image embedddings

)

Safe mode

Hide duplicate urls

₩ Hide (near)

Hide (near)
duplicate images

Search over

image 🔽

Search with multilingual clip

french cat

french cat

How to tell if your feline is french. He wears a b...

網友挑戰「加幾筆畫 出最創意貓咪圖片」,

cat in a suit Georgian sells tomatoes

Text-to-Image

Text-to-Image

Denoising Diffusion Probabilistic Models

Algorithm 1 Training

1: repeat

- 2: $\mathbf{x}_0 \sim q(\mathbf{x}_0)$
- 3: $t \sim \text{Uniform}(\{1, \dots, T\})$
- 4: $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- 5: Take gradient descent step on

$$\nabla_{\theta} \| \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta} (\sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \boldsymbol{\epsilon}, t) \|^2$$

6: until converged

Algorithm 2 Sampling

- 1: $\mathbf{x}_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- 2: **for** t = T, ..., 1 **do**
- 3: $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ if t > 1, else $\mathbf{z} = \mathbf{0}$
- 4: $\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t \frac{1-\alpha_t}{\sqrt{1-\bar{\alpha}_t}} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t, t) \right) + \sigma_t \mathbf{z}$
- 5: end for
- 6: **return** \mathbf{x}_0

Diffusion Model

Denoising Diffusion Probabilistic Models (DDPM) https://arxiv.org/abs/2006.11239