Maria Ubero Gonzalez

Ondes électromagnétiques dans les milieux conducteurs

LP 29

Modèle de Drude

- * Les électrons de conduction n'ont aucune interaction entre eux et peuvent être traités comme des particules indépendantes.
- * Les électrons n'interagissent pas avec les ions du réseau, sauf au niveau des collisions.
- * Les ions du réseau cristallin sont supposés fixes.

Régimes du conducteur en fonction de la pulsation

- 1. **Régime A** : ARQS et hypothèse d'électroneutralité vérifiées.
- 2. **Régime B** : L'électroneutralité n'est pas vérifiée de sorte que l'eq de M.G ne peut pas être simplifiée. L'ARQS peut en théorie être proposée.
- 3. **Régime C** : Ni l'ARQS ni l'hypothèse d'électroneutralité sont vérifiées. Aucune simplification des équations de Maxwell n'est autorisée.

Basses fréquences : Equations de Maxwell

Hypothèses: Electroneutralité et ARQS

Maxwell-Gauss

Maxwell-Thomson

Maxwell-Faraday

Maxwell-Ampère

$$div\vec{E} \simeq 0$$
 $div\vec{B} = 0$

$$\vec{rot}\vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

$$\vec{rotB} \simeq \mu_0 \vec{j}_c$$

Conductivité et épaisseur de peau

	Conductivité (10 ⁶ S/m)	Épaisseur de peau à 50Hz	Épaisseur de peau À 1MHz
Argent	62,1	9 mm	64 μm
Cuivre	58,7	9,2 mm	65 μm
Or	44,2	10,7 mm	76 µm
Aluminium	36,9	11,7 mm	83 μm

Exemple: une feuille d'aluminium comme écran

Un téléphone enfermé dans une feuille d'aluminium recevra-t-il les appels ?

- * Perméabilité magnétique du vide = $1,26.10^{-6}$ H/m
- * Conductivité de l'aluminium = 3,8.10⁷ S/m
- * Épaisseur de la feuille = $2,5.10^{-5}$ m

Ionosphère

- * Densité particulaire des électrons : 10¹⁰ 10¹² électrons par mètre cube.
- * On trouve une fréquence de coupure : $f_p \sim 10^7 \text{ Hz}$

Conclusion-résumé (exemple du cuivre)

- 1. **Régime A** : ARQS et hypothèse d'électroneutralité vérifiées.
- 2. **Régime B** : L'électroneutralité n'est pas vérifiée de sorte que l'eq de M.G ne peut pas être simplifiée. L'ARQS peut en théorie être proposée.
- 3. **Régime C** : Ni l'ARQS ni l'hypothèse d'électroneutralité sont vérifiées. Aucune simplification des équations de Maxwell n'est autorisée.