Elements of Algebraic Structures

 06^{th} September, 2019

Lecture 11: Spanning set, Linear Independence and Basis

Instructor: Sujata Ghosh Scribe: Ankit Gupta

First, revisit the definition of field which we have discussed in the last class.

A field is a set F, along with 2 operations i.e. (F, +, .) with the following properties:

- 1. (F,+) forms an abelian group with 0 as an identity element and -a as an inverse element of a where $0, a, -a \in F$
- 2. $(F-\{0\},.)$ forms an abelian group with 1 as an identity element and a^{-1} as inverse element of a with $a^{-1} = \frac{1}{a}$, where $a, a^{-1}, 1 \in F$

Binary operations which are defined on this field F can be anything. The important thing is that we should have 2 abelian groups(additive and multiplicative) to get a field. Here, in multiplicative abelian group, every non-zero element must have a multiplicative inverse and additive & multiplication laws must be compatible over this field F which means distributive law i.e. a.(b+c) = (a.b) + (a.c) should also be followed here.

Now, when we say vector space V is defined over a field F, it means :

• (V, +) forms an abelian group, where + is defined as:

$$+: V \times V \rightarrow V$$

It means, it takes any 2 vectors say v and w from vector space V and generates a new vector v + w

• Vector space V should follow scalar multiplication(.) over a field F, where . is defined as :

$$.: F \times \mathit{V} \rightarrow \mathit{V}$$

It means, it takes a vector, say, v from vector space V and a scalar 'c' from field F and gives a new vector c.v which is also an element of vector space V i.e.

$$v \mapsto c.v$$

Now, comes to the concept of Spanning set, Linear Independence and Basis. Suppose, we have a vector space V over a fixed field F.

1 Span of a set

If we have a set of vectors $S = \{v_1, v_2,, v_n\}$ in a vector space V and if we can express a vector $w \in V$ as:

$$w = a_1.v_1 + a_2.v_2 + \dots + a_n.v_n$$

 $\forall i, \ a_i \in F$

Then all such linear combinations (or) all such w's form the span of S. So, basically, the span of a set S is the set of all linear combinations of the vectors in S. It is denoted by span(S).

$$span(S) = span\{v_1, v_2, ... v_n\} = \{a_1v_1 + a_2v_2 + ... + a_nv_n \mid a_1, a_2, ..., a_n \in F\}.$$

 $\operatorname{Span}(S)$ is basically a subspace of V.

Spanning Set of a Vector Space: if set $S = \{v_1, v_2, ... v_n\}$ be a subset of a vector space V. Then set S is called a spanning set of V if **every** vector in V can be written as a linear combination of vectors in S. In such cases, it is said that S spans V and consequently, we say, V is finite dimensional.

2 Linear Independence

A set of vectors $\{v_1, v_2,, v_n\}$ is called linearly independent if

$$a_1.v_1 + a_2.v_2 + \dots + a_n.v_n = 0_V$$

where, $\forall i, a_i \in F \text{ and } a_1 = a_2 = \dots = a_n = 0$

Example: Suppose, we have a vector space $V = \mathbb{R}^3$ and set of vectors $\{v_1, v_2, v_3\}$ where $v_1 = (1, 0, 0), v_2 = (1, 1, 0), v_3 = (1, 2, 3)$

Now, here, $span\{v_1, v_2\}$ makes the subspace which contains vectors of the form (a, b, 0), where, $a, b \in \mathbb{R}$

Also, set $\{v_1, v_2, v_3\}$ is linearly independent if $a_1 = a_2 = a_3 = 0$ in $a_1v_1 + a_2v_2 + a_3v_3 = 0$.

Let's test it whether they are linearly independent or not.

$$a_1v_1 + a_2v_2 + a_3v_3 = 0_V$$

$$a_1(1,0,0) + a_2(1,1,0) + a_3(1,2,3) = (0,0,0)$$

$$(a_1,0,0) + (a_2,a_2,0) + (a_3,2a_3,3a_3) = (0,0,0)$$

$$(a_1 + a_2 + a_3, a_2 + 2a_3, 3a_3) = (0,0,0)$$

$$\Rightarrow a_1 + a_2 + a_3 = 0, a_2 + 2a_3 = 0, 3a_3 = 0$$

$$\Rightarrow a_1 = 0, a_2 = 0, a_3 = 0$$

Hence, $\{v_1, v_2, v_3\}$ is a linearly independent set. Actually $\{v_1, v_2, v_3\}$ is a basis of \mathbb{R}^3 . We will see basis in next section.

3 Basis

For vector space V over field F, an ordered set $(v_1, v_2, ..., v_n)$ is said to be a basis of V if it spans V and is linearly independent.

It means every vector $w \in V$ is uniquely expressed as a linear combination i.e.

$$w = a_1 v_1 + a_2 v_2 + \dots + a_n v_n$$

Proof. Let, vector w can be expressed in 2 different ways as:

$$w = a_1 v_1 + a_2 v_2 + \dots + a_n v_n \to (1)$$

$$w = b_1 v_1 + b_2 v_2 + \dots + b_n v_n \to (2)$$

Now, subtract (2) from (1),

$$0_V = (a_1 - b_1)v_1 + (a_2 - b_2)v_2 + \dots + (a_n - b_n)v_n$$

Since, vectors $v_1, v_2, ..., v_n$ are linearly independent.

So,
$$a_1 - b_1 = 0$$
, $a_2 - b_2 = 0$,...., $a_n - b_n = 0$

$$\Rightarrow a_1 = b_1, a_2 = b_2,, a_n = b_n$$

Hence, every vector $w \in V$ can be uniquely expressed.

• A basis of V gives an isomorphism from V to F^n i.e. $f:V\to F^n$ where $f(w)=(a_1,a_2,....,a_n), w\in V$

Proof.: Here, f is homomorphism because if we add 2 vectors w and w' where $w = a_1v_1 + a_2v_2 + ... + a_nv_n$ and $w' = b_1v_1 + b_2v_2 + ... + b_nv_n$ then

$$f(w + w') = (a_1 + b_1, a_2 + b_2,, a_n + b_n) = f(w) + f(w')$$

&
$$f(cw) = (ca_1, ca_2,, ca_n) = cf(w)$$

Now, f is onto because if we have n tuples of scalers in F^n then we can make 'w' by multiplying those scalers with our vectors.

f is one-one also because let,

$$f(w) = f(w')$$

$$\Rightarrow (a_1, a_2, \dots, a_n) = (b_1, b_2, \dots, b_n)$$

$$\Rightarrow a_1 = b_1, a_2 = b_2, \dots a_n = b_n$$

$$\Rightarrow w = w'$$

So, f is one-one.

Theorem: If V is a finite dimensional vector space over a field F then if S is a finite set that spans V, there is a subset of S which forms a basis for V

Proof.: If S is a linearly independent set then we are done because by definition, S is linearly independent set and spans V, So, it forms a basis.

Suppose, if not, i.e. S is a linearly dependent set.

Now, consider the set $S = \{v_1, v_2,, v_n\}$ and relation:

$$a_1v_1 + a_2v_2 + \dots + a_nv_n = 0 \to (1)$$

with some $a_i \neq 0$

Now, without loss of generality,

Suppose, $a_n \neq 0$

Then, from equation (1),

$$a_n v_n = -(a_1 v_1 + a_2 v_2 + \dots + a_{n-1} v_{n-1}) \in V$$

Now, use the fact that we are in a field and we have a non-zero element in the field, So, we can write its multiplicative inverse. So, a_n^{-1} exists.

Then,
$$v_n = \frac{-1}{a_n}(a_1v_1 + a_2v_2 + \dots + a_{n-1}v_{n-1})$$

It means $v_n \in span(v_1, v_2, \dots v_{n-1})$

It means, if we could write something in n things then we could also write it in (n-1)things.

So,
$$span(v_1, v_2,, v_n) = span(v_1, v_2,, v_{n-1}) = V$$

Now, if this set $\{v_1, v_2, ..., v_{n-1}\}$ is linearly independent then we are done and if not, repeat this process finitely many times because we have started with a finite set S. At the end, we may get an empty set which is a basis for $\{0\}$ vector space.

This completes the proof.

Theorem: If $L = \{\mathbf{w_1}, \mathbf{w_2}, ..., \mathbf{w_n}\}$ is a linearly independent set in V then Lcan be extended to a set which will form a basis of V.

Proof.: 1) If L spans V, we are done because according to definition, set L is linearly independent and spans V, so it will definitely form a basis.

2) If not,

Let S is a finite set which spans V. Now, assume, there exists a vector $v \in S$ such that $v \notin span(L)$ because if everything in S is written as a linear combination of things which are in L and everything in V can be written as a linear combination of things which are in S then we would have written everything in V as a linear combination of things in L but here L did not span V. So, there must be some vector in S which is not in the span of L. Then,

Claim: $L \cup \{v\}$ is linearly independent set. Now, consider the relation,

$$\sum_{i=1}^{m} a_i w_i + bv = 0$$

Here, 'b' should be zero otherwise 'v' will be in the span of L because $v = \frac{-1}{b} (\sum_{i=1}^{m} a_i w_i)$ but we assume v is not in span(L)

Hence, $\sum_{i=1}^{m} a_i w_i = 0$, So, all $a_i = 0$ for $1 \le i \le m$.

Let, $L' = L \cup \{v\}$

If L' spans S, we are done otherwise repeat this procedure finite number of times because S is finite and we will get a basis for V.

This completes the proof.

Theorem: If $S = \{v_1, v_2,, v_n\}$ spans $V \& L = \{w_1, w_2,, w_m\}$ is a linearly independent set in V.

Then, $n \ge m$

i.e. spanning sets are bigger than or equal to linearly independent sets.

Proof.: Since, S spans V, we have

$$w_j = \sum_{i=1}^n a_{ij} v_i$$

Now, L is linearly independent set, So,

$$0 = \sum_{j=1}^{m} c_j w_j$$

Now, replace the value of w_i , we get,

$$0 = \sum_{j=1}^{m} c_j \left(\sum_{i=1}^{n} a_{ij} v_i \right)$$

= $\sum_{i=1}^{n} \left(\sum_{j=1}^{m} a_{ij} c_j \right) v_i$

Now, if we have that $\sum_{j=1}^{m} a_{ij}c_j = 0$ for all i with some $c_j \neq 0$ then the set L could not be linearly independent because set L will be linearly independent if all c_j are zero and then $\sum_{j=1}^{m} a_{ij}c_j = 0$

zero and then $\sum_{j=1}^{m} a_{ij}c_j = 0$ Now, here in $\sum_{j=1}^{m} a_{ij}c_j = 0$ with $1 \le i \le n$, we have n equations and m unknowns in system of simultaneous linear equations i.e.

$$a_{11}c_1 + a_{12}c_2 + \dots + a_{1m}c_m = 0$$

$$a_{21}c_1 + a_{22}c_2 + \dots + a_{2m}c_m = 0$$

$$\dots$$

$$a_{n1}c_1 + a_{n2}c_2 + \dots + a_{nm}c_m = 0$$

Now, as we know, If we have more unknowns than equations (m > n) then we can always find a non-trivial solution. It means, it is possible that c_j (j = 1, 2, ..., m) will be non-zero. So, for m > n, it contradicts our hypothesis that set $L = \{w_1, w_2, ..., w_m\}$ is linearly independent because in that case all c_j must be zero. So, in case of m > n, we get the contradiction.

Hence, $m \leq n$

This completes the proof.

Corollary:

1) All the bases of V have the same no. of elements & number of elements in the basis is called the dimension of V. The elements of a basis are called basis vectors. For every vector space, there exists a basis. If the dimension of V is finite-dimensional otherwise infinite-dimensional.

Proof.: Let, we have 2 bases B and B'. Since, B spans and B' is linearly independent.

So, from previous theorem, Number of elements in $B \ge$ Number of elements in B'

Similarly,

Since, B' spans and B is linearly independent. So,

Number of elements in $B' \geq$ Number of elements in B

So, from the above 2 facts,

Number of elements in B = Number of elements in B'

2) If S is a spanning set then no. of elements in $S \ge \dim(V)$

As we have seen previously, we can reduce the spanning set to get a basis. So, no. of elements in S should be at least the no. of elements in a basis.

3) If L is a linearly independent set then no. of elements in $L \leq \dim(V)$

As we have seen previously, we can always increase a linearly independent set to get a basis. So, no. of elements in L should be \leq number of elements in basis(dim(V)).

• Suppose, $W \subseteq V$ and let $W = \{w_1, w_2,, w_m\}$ is a basis for W then $\{w_1, w_2,, w_m, v_{m+1},, v_n\}$ will form a basis of V which means any basis of W can be extended to form a basis of V.

Proof.: Since, original set $\{w_1, w_2,, w_n\}$ is a linearly independent set in V & spans W. As we have seen previously, we can always take a linearly independent set and extend it to a basis.

This completes the proof.

• Consider a map,

$$f \colon V \to V/W$$

such that

$$v \mapsto v + W$$

f is called the **canonical map**.

Here, $\{f(v_{m+1}), f(v_{m+2}),, f(v_n)\}$ forms a basis of quotient space V/W.

Proof.: Here, we need to prove 2 things:

- 1) set $\{f(v_{m+1}), f(v_{m+2}), ..., f(v_n)\}$ spans V/W
- 2) set $\{f(v_{m+1}), f(v_{m+2}), ..., f(v_n)\}$ is linearly independent

Here, W is a subspace of V.

Let, set $R = \{w_1, w_2, \dots, w_m\}$ is a basis for W and

set $S = \{w_1, w_2,, w_m, v_{m+1}, v_{m+2},, v_n\}$ is a basis for V because if we have $\{w_1, w_2,, w_m\}$ is a basis for W then we can extend it to get a basis for V

```
Let, x \in V/W and x = v + W, where, v \in V
We can write x = v + W as:
x = a_1 w_1 + a_2 w_2 + ... + a_m w_m + a_{m+1} v_{m+1} + ... + a_n v_n + W [Since, S is a basis]
Since, a_1w_1 + a_2w_2 + ... + a_mw_m = 0 [Since, R is a basis]
So, x = a_{m+1}v_{m+1} + a_{m+2}v_{m+2} + \dots + a_nv_n + W
\Rightarrow x = a_{m+1}v_{m+1} + W + a_{m+2}v_{m+2} + W + \dots + a_nv_n + W
\Rightarrow x = a_{m+1}(v_{m+1} + W) + a_{m+2}(v_{m+2} + W) + \dots + a_n(v_n + W)
\Rightarrow x = a_{m+1}f(v_{m+1}) + a_{m+2}f(v_{m+2}) + \dots + a_nf(v_n + W)
So, \{f(v_{m+1}), f(v_{m+2}), ..., f(v_n)\} spans V/W
Now, we will prove that set \{f(v_{m+1}), f(v_{m+2}), ..., f(v_n)\} is linearly independent.
Consider, \{c_1f(v_{m+1})+c_2f(v_{m+2})+...+c_nf(v_n)=0'\} where 0' \in W and c_1, c_2, ..., c_n \in
F
\Rightarrow c_1(v_{m+1} + W) + c_2(v_{m+1} + W) + \dots + c_n(v_n + W) = 0'
\Rightarrow c_1 v_{m+1} + c_2 v_{m+1} + \dots + c_n v_n + W = 0'
\Rightarrow c_1 v_{m+1} + c_2 v_{m+1} + \dots + c_n v_n + W = 0 + W
\Rightarrow c_1 v_{m+1} + c_2 v_{m+1} + \dots + c_n v_n \in W
Let, w = c_1 v_{m+1} + c_2 v_{m+1} + \dots + c_n v_n Since, set R forms a basis for W and w is in
W. So, w can also be written as:
w = a_1 w_1 + a_2 w_2 + \dots + a_m w_m
So, c_1v_{m+1} + c_2v_{m+1} + \dots + c_nv_n = a_1w_1 + a_2w_2 + \dots + a_mw_m
\Rightarrow c_1 v_{m+1} + c_2 v_{m+1} + \dots + c_n v_n - a_1 w_1 - a_2 w_2 - \dots - a_m w_m = 0 Since, set S is a
So, c_1 = 0, c_2 = 0, \dots c_n = 0 which implies set \{f(v_{m+1}), f(v_{m+2}), \dots, f(v_n)\} is lin-
early independent.
Hence, \{f(v_{m+1}), f(v_{m+2}), ..., f(v_n)\} forms a basis of quotient space V/W.
```

- If subspace of V is $W' = \text{span}\{v_{m+1},, v_n\}$ then W' is isomorphic to V/W. Here, quotient space V/W sits within vector space V.
- \bullet If W is a subspace of V spanned by $\{w_1,w_2,...w_m\}$ and W' is another subspace which is spanned by $\{v_{m+1},v_{m+2},.....,v_n\}$ Then $W\cap W'=0_V$

Proof.:

Suppose, $w \in W$ and $w' \in W'$ then we can write w and w' as:

$$w = a_1 w_1 + a_2 w_2 + \dots + a_n w_m \to (1)$$

$$w' = a_{m+1}v_{m+1} + a_{m+2}v_{m+2} + \dots + a_nv_n \to (2)$$

Now, suppose w = w' means there is a common vector in sub-spaces W and W'. Now, We will show that this common vector must be only zero vector 0_V

Subtract equation (2) from equation (1),

$$0 = w - w'$$

$$0 = a_1 w_1 + a_2 w_2 + \dots + a_n w_m - a_{m+1} v_{m+1} - a_{m+2} v_{m+2} + \dots - a_n v_n$$

Since, set $\{w_1, w_2, ... w_m, v_{m+1}, v_{m+2},, v_n\}$ is linearly independent set and forms a basis for V.

So, each $a_i = 0$. From equation (1) and (2), $\Rightarrow w = w' = 0$

This completes the proof.

• We have an isomorphism between $W \times W'$ and V i.e.

$$W \times W' = (w, w'); w \in W \& w' \in W'$$

more natural map for this will be:

$$(w,w') \mapsto w+w'$$

Proof. First, we will show that there is a homomorphism/ linear map/linear transformation which means :

$$f(s+t) = f(s) + f(t) &$$

$$f(cs) = cf(s)$$

where s, t are vectors in vector space and 'c' is a scalar from field. Here, map is like:

$$(w_1, w'_1) + (w_2, w'_2) = (w_1 + w_2, w'_1 + w'_2)$$

 $c(w, w') = (cw, cw')$

where, let $w_1, w_2 \in W$ and $w'_1, w'_2 \in W'$

It is clearly a linear map. Now, to show bijections in Vector Spaces, always relate injections with linear independence and surjections with span.

Here, it shows surjectivity because $\{v_1, ..., v_n\}$ spans V. So, everything in V can be written as a linear combination of $\{v_1, ..., v_n\}$. So, if we take 1^{st} part of linear combination from w and 2^{nd} part from w' and add up these, we will get whatever vector we want in vector space V. So, surjectivity follows from spanning.

Now, Injectivity comes from linear independence.

Suppose, $f(w_1, w'_1) = f(w_2, w'_2)$

$$\Rightarrow w_1 + w_1' = w_2 + w_2'$$

$$\Rightarrow w_1 - w_2 = w_1' - w_2'$$

Since, $w_1 - w_2 \in W$ and $w'_1 - w'_2 \in W'$

Let, common vector is v. So, $w_1 - w_2 = v$ and $w'_1 - w'_2 = v$

So, $v \in W \cap W'$ which implies $v = 0_V$

Hence, $w_1 - w_2 = 0 \Rightarrow w_1 = w_2$ and $w_1' - w_2' = 0 \Rightarrow w_1' = w_2'$

This completes the proof.

ullet Suppose, W is a subspace of V and there is another subspace W' of V such that the composition map

$$W' \rightarrow V \rightarrow V/W$$

i.e.

$$w' \mapsto w' \mapsto w' + W$$

gives a linear isomorphism from $\,W'$ to $\,V/W\,$

• V is isomorphic to $W \times V/W$ i.e.

$$V \cong W \times V/W$$

Now, dim(V) = dim(W) + dim(V/W) or we can also write it as : dim(V) = dim(Ker(f)) + dim(Im(f)).