Mark schemes

1

- 1.
- (a) 126 **√**

(b) A neutron decays into a proton

Or

$$n \rightarrow p + e^{(-)} + \overline{\nu_e} \checkmark$$

Allow a neutron changes to a proton. (owtte) Accept the decay equation of a neutron / bismuth

- Statement that neutron converts to proton ✓
- all numbers correct and context ✓

$$^{210}_{83}Bi \rightarrow ^{210}_{84}Po + ^{0}_{-1}e + (^{0}_{0}\overline{v_{e}})$$

Proton number **increases by one** when Bi-210 decays and describes beta minus

Condone missing (or incorrect) neutrino or symbol for bismuth

OR

Bi-210 has one fewer proton (than Po-210) and describes beta minus in words

OR

Po-210 has one more proton (than Bi-210) and describes beta minus in words

Or

Proton number **increases from 83 to 84** and describes beta minus in words \checkmark Allow proton number increases where there is a clear statement that a neutron has decayed into a proton.

(c) (Missing) energy carried off by third particle

Or

(A third particle must be produced) for conservation of energy \checkmark

Accept energy is converted into mass of third particle.

Where third particle is named must be a neutrino or an antineutrino.

There is missing energy (When) a beta (particle) has less than 1.2 MeV (of kinetic energy).

Or

The law of conservation of energy appears to be violated when beta (particle) has less than 1.2 MeV \checkmark

Identify there is difference between 1.2 MeV and E_k .

2

(d) (It must be an electron antineutrino to) conserve lepton number ✓

An electron and (electron) antineutrino have lepton numbers of opposite signs.

Or

An electron and (electron) antineutrino have a (total) lepton number of zero. ✓

**Alternative for 2nd Marking point:

Appropriate particle equation seen annotated with correct lepton numbers.

Alternative:

Producing an (electron) neutrino wouldn't conserve lepton number ✓

An electron and (electron) neutrino have lepton numbers of the same sign.

Or

An electron and (electron) neutrino have a (total) lepton number equal to 2. ✓

**Alternative 2nd marking point:

Appropriate particle equation seen annotated with correct lepton numbers.

(e) (X =) W-minus (boson) / W⁻ (boson) ✓

(Y =) neutron / n ✓

2

2

(f) Lepton (in the water molecule) is an electron ✓

Must state that lepton (in the water) is an electron for all 3 marks

and

Max 2 from

annihilation √

gamma photons are produced ✓

<u>Two</u> (gamma) <u>photons</u> are produced (that travel) in opposite directions. ✓ <u>Penalise answers that list other products in MP3 and MP4</u>

[1]

(g) Max 3

The positron because:

positron is charged and the (electron) antineutrino $(\bar{v}_{(e)})$ is neutral \checkmark

The antineutrino only interacts via the weak interaction / The positron interacts via the electromagnetic interaction (and weak interaction)✓

The antineutrino's (weak) interaction is shorter range / the antineutrino is less likely to get close enough to interact (with particles in the water so will travel further) / the antineutrino will interact with fewer particles ✓

The positron's (electromagnetic) interaction has a longer range / the positron does not have to be so close to interact (with particles in the water so will travel a shorter distance) / the positron will interact with more particles ✓

Or

10⁹ times smaller in number but more than 10⁹ times smaller mass ✓
(Therefore) sample 2 must have a lower mean mass (than sample 1) ✓
Sample 2 has a greater percentage of **Y because Y** has less mass than X ✓

Mean mass of a nucleon sample 1=

Mean mass of a nucleon sample 2 =

Specific charge of sample $1 = 8.8 \times 10^6$ (C kg⁻¹)

Specific charge of sample $2 = 9.0 \times 10^6$ (C kg⁻¹)

Conclusion must be supported by at least one relevant, correct calculation

Condone one power of ten error in one calculation.

Accept converse statements.

Condone incorrect units

3 **[10]**

17. A

[1]

18. C

[1]

19. B

[1]

20.

[1]

21. (a) Award each mark independently

Lepton number not conserved therefore not possible \checkmark

Lepton numbers for particles correct ✓

Any incorrect quantum number equation (for Q, B or S) loses MP2.

Eg 0 = 1 - 1 - 1 (for lepton number)

OR 0 = 0 - 1 + 0 (for muon lepton number)

Alternative for MP2

reference to missing <u>muon neutrino</u> in order to balance/conserve (muon) lepton number.

1

(b) up anti-up

AND

down anti-down ✓

Either order

Credit symbols

But do not condone any use of capital letter

(c) Identification of quarks in either neutral kaon correct, ie kaon d s

OR anti-kaon d
 s ✓

Identification of quarks in other kaon correct, with statement that they are not the same. ✓ *Alternative:*

Kaon has strangeness +1 ✓

Anti-kaon has strangeness −1 and is therefore not the same. ✓

Allow max 1 if

- quark configurations wrong way round.
- value of strangeness is wrong way round
- statement that strangeness is different without reference to value.
- strangeness and quarks given but one of them is incorrect.

2

(d) Award each mark independently

Links hadrons to strong nuclear force (snf)

OR identifies snf as forcing holding nucleus together <

OR

(only) pion and muon have correct rest energy with no mention of kaon.

Reason why it cannot be the kaon ✓

For MP2: kaon rest energy is not between those of electron and half that of nucleon. (values quoted from data booklet)

Reason why it cannot be the muon ✓

For MP3: muon is a <u>lepton</u> (and does not experience snf)

pion is the particle as it (has mass in range and) is a <u>hadron</u> (and therefore experiences snf) \checkmark

An incorrect statement amount a particle negates the mark for that particle.

Rest energies/MeV:

kaon 493.821 or 497.762

pion 139.576 or 134.972

muon 105.659

nucleon 938.257 or 939.551

4 [9] В 22. [1] В [4] В [1] D 25. [1] 26. [1] В [1] C [1]