Construction 5

Given a point on a line, construct the perpendicular to the line at the given point.

Given: Point C on line k

Construct: The perpendicular to k at C

Procedure:

- 1. Using C as center and any radius, draw arcs intersecting k at X and Y.
- 2. Using X as center and a radius greater than CX, draw an arc. Using Y as center and the same radius, draw an arc intersecting the arc with center X at a point Z.

3. Draw \overrightarrow{CZ} .

 \overrightarrow{CZ} is perpendicular to k at C.

Justification: You constructed points X and Y so that C is equidistant from X and Y. Then you constructed point Z so that Z is equidistant from X and Y. Thus \overrightarrow{CZ} is the perpendicular bisector of \overline{XY} , and $\overrightarrow{CZ} \perp k$ at C.

Construction 6

Given a point outside a line, construct the perpendicular to the line from the given point.

Given: Point P outside line k

Construct: The perpendicular to k from P

Procedure:

- 1. Using P as center, draw two arcs of equal radii that intersect k at points X and Y.
- 2. Using X and Y as centers and a suitable radius, draw arcs that intersect at a point Z.
- 3. Draw \overrightarrow{PZ} .

 \overrightarrow{PZ} is perpendicular to k.

Justification: Both P and Z are equidistant from X and Y. Thus \overrightarrow{PZ} is the perpendicular bisector of \overrightarrow{XY} , and $\overrightarrow{PZ} \perp k$.

P·