

Myoung Geun Jang Portfolio

소가

전공		
2015.03 ~ 2022.02	홍익대학교(서울) 전자전기공학부	
SW 프로젝트 경험		
2020.07.01 ~ 2020.10.20 2022.07.05 ~ 2022.08.19 2022.08.22 ~ 2022.10.07 2022.10.10 ~ 2022.11.25	자율주행 드론(Python 딥러닝 영상처리 기반) / 동상 4족 보행 아이 케어 로봇 '보비' / 우수상 ROS시뮬레이터 기반 자율주행 배송 차량 '레스고' unity기반 증강현실 어플리케이션 '싸륜안' / 우수상	
직무 관련 경력		
2022.01 ~ 2022.12 2022.11 ~ 2022.02	삼성청년SW아카데미(SSAFY) 임베디드SW 개발 프로그래머스 자율주행 영상인식 및 자율주행SW개발	
주요 개발 기술 스택		
⊜ C++ ⊕ PYTHON	COPENCV LINUX SQL → GIT → JIRA SQL	
Python 인지/판단/제이	l세 제어, 알고리즘 최적화, 임베디드 시스템 서 알고리즘 구현, 카메라/레이더/라이다 센서퓨전, IoT 개발, DB 데이터 통신 상처리, Yolo/haar를 이용한 객체 탐색, 주행 차선 검출	

프로젝트 목차

자율주행 드론 개요

	프로젝트 : 자율주행 드론(OTD,Object Tracking Drone)	
수행기간	- 2020.06.29 ~ 2020.10.21 (115일)	
수행목표	 목표물까지 스스로 비행하며, 위급시에만 수동조종이 가능한 Level 3 자율주행 드론을 구현 진행경로상의 모든 장애물을 회피하도록 설계 드론의 영상을 실시간으로 분석하여 실시간 자율주행을 구현 딥러닝 영상처리 과정에 있어서 객체 인식 오류가 발생하였을 경우, 해결책을 구축 드론을 지속적으로 tracking 하여 외부 환경요인으로 인한 위치변화 최소화 	
알고리즘	- Python Yolo를 구현하기 위한 딥러닝 프레임워크 OPENCV 활용 - Python 영상처리 모듈 CV2 를 활용한 드론 실시간 영상 수신 - Python 여러 모듈들 NUMPY 등을 활용한 전반적인 OTD 프로세스 구현 및 세부 데이터 파싱 - 객체 데이터와 드론에 내장된 IR센서의 데이터 값을 토대로 비행경로 설정	
사용언어 & 프로그램	- PyCharm, YOLOv4 딥러닝 영상처리 모델, IR 센서, Python OPENCV, NUMPY, PyCharm, 녹스앱플레이어	

<Codrone II>

NO Human Control

인간이 직접 드론 조종 X

Obstacle Detour

장애물 회피

Object Tracking

목표 객체 추적 & 도착

자율주행 드론 프로젝트 - 영상처리 프로세스

- 각 Box의 중심 좌표를 참조하여 드론의 회전 및 경로를 설정.

object 위치 및 크기 판단

자율주행 드론 - 프로세스]

- 드론을 임의의 장소에 놓습니다

- 자율주행 프로그램을 실행시키면, 드론이 1m 상승합니다

- 드론이 찾아갈 목표물 사진을 입력해줍니다. (본 상황에서는 가장 멀리 있는 물체D로 설정하였 습니다.)

자율주행 드론 - 프로세스2

- 드론은 전방 카메라 상에 인식되는 물체들중, 목표물이 존재하는지 탐사합니다.
- -만일 카메라 상에서 목표물을 찾지 못하였을 경우, 드론은 360 도 회전하면서 목표물을 연속적으로 탐색합니다.
- -만일 360도 회전 후에도 목표물을 찾지 못하였을경우, 임의의 방향으로 0.5m 전진 후 다시 360도 탐사를 반복합니다.

- 회전 탐사 후 목표물을 포착하였다면,
 드론 충돌 라인상에 장애물이 있는지 확인합니다.
- 충돌라인 내부에 장애물이 없다면, IR센서를 활용 하여 목표물까지의 거리를 확인합니다.
- IR센서값이 1m 이상이면, 1m 전진합니다.

- 1m 전진 하였다면, 다시 회전 탐사를 진행합니다.
- 카메라상에서 목표물을 찾았다면, 목표물이 드론 카메라의 정 중앙에 오도록 드론을 회전시 킵니다.

자율주행 드론 - 프로세스3

- 목표물이 카메라상의 정중앙으로 정렬되었다면, 드론 충돌라인을 활성화하여 장애물의 존재 유무를 확인합니다.
- 라인 내부에 장애물이 존재한다면, IR센서 값으로 장애물과의 거리를 측정합니다.
- 거리가 1m 이하이면, 충돌 위험 감지 후 회피 준비를 합니다.
- -장애물 대한 반대 방향으로 일정 각도만큼 회전합니다.

- 회전을 통하여 충돌라인 상에서 장애물이 벗어났다면, 다시 충돌라인을 활성화 시켜서 장애물 충돌 유무 판단 을 반복합니다(IR센서 값 활용)
- 충돌 라인 상에 장애물은 있지만, IR센서값이 1M이상 이므로, 충돌 위험은 없습니다.
- 그러므로 1M 전진합니다.

- 1M 전진 하였다면, 다시 360도 탐사를 진행하면서 목표물을 찾아냅니다.

자율주행 드론 - 프로세스4

- 회전 탐사 후, 목표물을 확인하였다면, 다시 충돌라인을 활성화하여 장애물 존재 유무 및 충돌 유무를 파악합니다.
- 라인 상에 장애물이 존재하지 않는다면, 목표물과의 거리를 확인합니다.
- 목표물과의 IR센서값이 1M 이상이면, 드론을 1M 전진 시킵니다.

- 1m 전진 하였다면, 다시 회전 탐사를 진행합니다.
- 회전 탐사 후, 목표물을 확인하였다면, 다시 충돌라인을 활성화하여 장애물 존재 유무 및 충돌 유무를 파악합니다.
- 라인 상에 장애물이 존재하지 않는다면, 목표물과의 거리를 확인합니다.

- 목표물과의 거리가 1m이하라면, 목표물에 도착한 것으로 간주합니다.
- -드론을 지면에 하강시킨 후, 자율주행 프로그램을 종료합니다.

4족 케어 로봇 - 개요

<BoBi>

프로젝트 명: 아이 케어 로봇 '보비'	
수행기간	2022.07.05 ~ 2022.08.19
참가인원	6명(IoT 4명, front-end 1명, back-end 1명)
담당업무 & 세부업무	담당업무: 팀장, 프로젝트 기획, loT HW 및 SW개발 (기여도 80%) > 팀장: 팀원 선정, 프로젝트 역할 배분, 팀원간 프로젝트시 규칙 확립 > 기획: 4족 보행 로봇 선정, 고객중심의 기능 도출 > 개발: - Haar cascade 를 이용한 객체 탐색 및 위치 추적 - 자율주행 알고리즘 개발 - ESP32를 이용한 자세 및 다리 제어 - 몸통 모델링 및 3D프린터를 사용하여 외관 출력
수행목표	 아이를 스스로 인식하고 아이 이동시 자율이동을 통해 아이를 계속해서 팔로잉 영상처리에서 오류가 발생한 경우 상단에 탑재된 초음파 센서를 이용하여 아이와의 충돌을 방지 4족 보행시 카메라 떨림으로 인한 오류 발생 최소화 및 상호작용시 동작 구현 DHT11을 이용한 온습도 측정, MQ2를 이용한 유해가스 등을 측정하여 보호자가 Web을 통해 실시간으로 아이 주변환경 확인
사용기술	- Raspberry Pi4: 영상처리 및 로봇의 연산 담당 - ESP32: 12개의 모터 제어 및 RPI사이 UART통신 - OpenCv, haar cascade: 아이 탐색 및 추적을 위한 측정 - AWS: DB 구축, 보비에서 측정된 데이터값을 Web으로 전송시 사용 - MQTT: 로봇에서 측정된 센서값을 Mysql로 전송

4족 케어 로봇 - 소개

<WeaveGo>

- Google STT 기술을 활용
- 아이의 말을 Text로 변환
- 말을 알아 듣고 로봇과 상호 작용
- 아이를 실시간으로 촬영
- OpenCv , haar cascade 이용, 아이를 추적 및 자율주 행을 통한 아이 팔로잉

- WEB을 통해 보호자가 아이의 모습을 실시간으로 확인
- 그래프를 통해 아이의 주변 환경 상황을 확인

4족 케어 로봇 - Total Archictecture

자율주행 배송 차량 - 개요

<개발시 사용된 Niro 2016>

<AWS를 통해 시뮬레이터와 연동되어 작동되는 실제 모델>

프로젝트 명: 무인 자율주행 배송 차량 'LessGo'		
수행기간	2022.08.22~ 2022.10.07	
참가인원	5명(loT 4명, Web 1명)	
담당업무 & 세부업무	담당업무: 프로젝트 기획, 자율주행 SW개발, 실제 차량 모델 제작 (기여도 80%) > 기획: 배송 차량 선정, 서비스를 위한 기능 도출 및 구현 > 개발: - OpenCv를 이용한 차선 검출 - PID제어, Pure persuit 주행 알고리즘 개발 - 시뮬레이터와 실제 연동되어 구동되는 Test차량 제작 - Ros 시각화 도구 Rviz를 통한 데이터 이미지화	
수행목표	- 카메라, 라이다 , 레이더 센서를 시뮬레이션을 통해 개발하여 각 센서의 특장점을 직접 확인 - 사용자가 목적지를 지정하면 다익스트라 알고리즘을 활용하여 최단 거리를 계산 - V2X를 통해 신호체계를 인식하여 자율주행 - 영상 처리를 통해 차선만을 추출하여 자율주행이 가능하도록 개발	
사용기술	- MORAI: ROS기반 자율주행 시뮬레이터. 카메라, 라이다, 레이더 자율주행 필수 센서를 제공 - ROS: ROS통신 프로토콜을 이용하여 시뮬레이터와 우분투간 통신 - Ubuntu: 시뮬레이터에서 ROS통해 받아온 정보를 바탕으로 인지/판단/제어를 수행 - OpenCv: 차량의 카메라를 통해 들어온 정보 중 차선 추출시 사용 - Raspberry Pi: 시뮬레이터와 동일하게 작동하는 Test차량 제작시 사용 - Mysql: 차량 연동시 주행 데이터를 DB에 저장하기 위해 사용	

자율주행 배송 차량 - 소개

M HYUNDAI

- ROS 기반 자율주행 시뮬레이터
- 실제와 동일한센서, 환경, 모델 제공
- 게임엔진 Unity를 사용하여 현실과 동일한 물리 환경적용
- 현대 그룹 자율주행 개발시 활용

- 목적지를 입력 후 dijkstra알고 리즘을 활용, 최단 거리를 탐색

- 카메라, 라이다, 레이더 센서 를 이용하여 주변 상황을 인지/판단
- V2X를 사용하여 신호등 및 도로 정보를 수집, 보다 안전한 자율 주행 구현

자율주행 배송 차량 - 시뮬레이터 연동 차량

자율주행 배송 차량 - 자율주행 프로세스]

[경로생성]

Gobal path 생성

자율주행 배송 차량 - 자율주행 프로세스2

LFD가 작은 경우

PID 제어 및 속도에 따른 LFD 가중치 가변화 적용

주행시 차량이 좌우로 출렁이는 yawing 현상 발생

안정적인 주행 가능

자율주행 배송 차량 - 영상처리 프로세스]

BGR 타입에서는 차선 경계가 뚜렷하지 않다. -> HSV로 변환시 차선의 경계가 한층 더 뚜렷해진다. 도로 차선의 핵심인 황색과 흰찍을 따로 검출하여 결합 -> 더 정확한 차선 구분이 가능

자율주행 배송 차량 - 영상처리 프로세스2

- Rol 영역을 설정하여 영역 외 부분은 모두 제거 후 영역 내 범위만 펴주는 작업(warping)을 합니다.
- warping 된 차선을 따라 curve fitting 을 하여 차선을 따라 node를 그립니다.

Xycar 자율주행

시간대별 환경 조성

프로젝트 명: XyCAR 기반 차선인식 및 자율주행 프로젝트		
수행기간	2022.10.31 ~ 2022.12.23 / 참가인원: 3명	
담당업무 & 세부업무	담당업무: > 개발: - OpenCv를 이용한 차선 검출 - PID제어, Pure persuit 주행 알고리즘 실차 적용	
수행목표	- 차량에 장착된 Lidar, 초음파, 카메라 특성을 이해 - 현실에서 차선을 인식하는 경우 발생할 수 있는 문제점 해결 - 하드웨어 성능에 최적화된 알고리즘 개발	
사용기술	- ROS: ROS통신 프로토콜을 이용하여 차량의 센서간 통신 - Ubuntu: 시뮬레이터에서 ROS통해 받아온 정보를 바탕으로 인지/판단/제어를 수행 - OpenCv: 차량의 카메라를 통해 들어온 정보 중 차선 추출시 사용 - Jetson TX2: 실습차량에 탑재된 중앙 임베디드 시스템 - Xycar: IMU, LIDAR, 초음파센서, 카메라 등이 탑재된 1/10 크기의 실습차량	

OpenCv 신호인식 프로세스

-> R,G,B를 HSV 변환후 masking을 통해 가장 많은 영역이 분포하고 있는 색상을 선택하여 신호를 결정.

감사합니다