WIDEPIPER

WidePiper представляет собой комплексную систему для управления ликвидностью и перемещения активов между блокчейнами с использованием мостов, искусственного интеллекта и механизмов коллективного прогнозирования. В основе проекта лежат несколько ключевых компонентов: мосты для межсетевого перемещения активов, прогноз ликвидности с помощью моделей машинного обучения, а также система вознаграждений за участие в экосистеме.

Схема работы

Пользователи (User1, User2, User3...UserN):

 Это участники системы, которые могут быть отдельными пользователями, децентрализованными приложениями или организациями, которые вносят или управляют своей ликвидностью.

1. MetaHolder:

 Выступает в роли центрального управляющего элемента или посредника, который агрегирует ликвидность от пользователей. Он обрабатывает ликвидность и направляет её в WiPi Cyborg для эффективного распределения.

3. WiPi Cyborg:

о Это центральный элемент системы. Киборг использует коллективный интеллект и когнитивный резонанс между людьми и машинами для принятия решений по

управлению ликвидностью. Он отвечает за балансировку ликвидности, выполнение межсетевых свопов и обеспечение стабильной работы системы.

4. DEX1 и DEX2:

о Децентрализованные биржи, подключенные к WiPi Cyborg. Ликвидность распределяется между этими биржами в зависимости от рыночного спроса, а киборг следит за тем, чтобы на торговых парах было достаточно ликвидности с использованием стратегических деривативов и байесовских распределений.

5. WP Bridge:

 Это межсетевой мост, который соединяет систему WiPi с различными блокчейнэкосистемами, такими как EVM (Ethereum Virtual Machine) и TVM (Tron Virtual Machine). Он облегчает перемещение активов и ликвидности между этими цепочками.

6. EVM u TVM:

Это разные блокчейн-среды, с которыми взаимодействует система WidePiper.
 EVM относится к цепочкам на основе Ethereum, а TVM – к цепочкам на основе Tron.

WidePiper и межсетевые переводы ликвидности

В последние годы экосистема блокчейнов значительно выросла, и с каждым годом появляется всё больше новых блокчейнов и виртуальных машин (например, Ethereum Virtual Machine, Tron Virtual Machine). С ростом этих сетей появилась сложность – как эффективно управлять ликвидностью между ними.

WidePiper предлагает революционное решение для кроссчейн-управления ликвидностью, используя принципы децентрализованных финансов (DeFi), коллективного интеллекта и инновационные математические модели для анализа рисков и распределения ликвидности

Расчет ликвидности

$$L = N_t \cdot P_t \cdot \hat{N}_t \cdot \hat{P}_t$$

Где:

- L Λ ИКВИДНОСТЬ
- $-N_t$ фактическое количество транзакций за период времени t (реальное количество транзакций, совершённых в сети за определённый промежуток времени.),
- $-P_{t}$ средняя стоимость одной транзакции за период времени t_{t}
- $-\hat{N}_t$ предсказанное количество транзакций за период времени t (прогнозируемое количество транзакций, совершённых в сети за определённый промежуток времени.),
- \hat{P}_t предсказанная стоимость транзакций за период времени t.

Эта формула выражает общую ликвидность как произведение фактического и предсказанного количества транзакций и их стоимости.

Прогнозирование ликвидности

WidePiper использует мощные прогнозные алгоритмы, чтобы определить, как будет меняться ликвидность между различными блокчейнами. Эти прогнозы строятся на основе исторических данных, рыночных трендов и аналитики пользователя. WidePiper использует как машинное обучение, так и коллективный интеллект.

Механизмы прогнозирования:

- Анализ временных рядов. Использование исторических данных для предсказания будущих изменений ликвидности.
- Модели машинного обучения. Обучение системы на основе данных о движении ликвидности для точных прогнозов.
- Байесовские распределения. Применяются для обновления прогноза по мере поступления новой информации.

Пример математической модели для прогнозирования ликвидности:

$$L(t+1) = \alpha_1 L(t) + \alpha_2 L(t-1) + \dots + \epsilon(t)$$

Где L(t)– это ликвидность в момент времени t, а α_1 , α_2 – коэффициенты регрессии. Система постоянно обновляет свои прогнозы, основываясь на новых данных.

Коэффициенты подбираются с помощью математических методов (например, метода наименьших квадратов) на основе исторических данных.

Распределение вознаграждений

Пользователи WidePiper получают вознаграждения на основе точности их предсказаний о движении ликвидности. Механизм вознаграждений выглядит следующим образом:

- 1. Точные прогнозы. Чем точнее прогноз, тем больше вознаграждение.
- 2. Вклад в ликвидность. Пользователи, предоставляющие ликвидность, получают комиссионные с каждой сделки, которая проходит через их ликвидность.
- 3. Длительность участия. Долгосрочные участники получают бонусы за стабильное предоставление ликвидности.

Пример распределения вознаграждений:

- Если пользователь внёс 10% ликвидности в пул, и общие комиссии составили 100 токенов, то пользователь получит 10 токенов (10% от общей суммы).

Откуда берётся вознаграждение

Вознаграждения приходят из нескольких источников:

- Торговые комиссии. Каждая транзакция, которая проходит через пул ликвидности, взимает небольшую комиссию. Эти средства направляются в качестве вознаграждения провайдерам ликвидности.
- Пулы прогнозов. Пользователи, которые точно предсказывают движение ликвидности, получают награды из специального пула вознаграждений.
- Стимулы от протокола. WidePiper может использовать часть своих доходов или сборов для поощрения участников, обеспечивая более устойчивую ликвидность.

Математическая сторона работы WidePiper

WidePiper основывается на сложных математических моделях, таких как гомологическая алгебра и байесовские распределения, чтобы эффективно управлять ликвидностью и минимизировать риски. Основные концепции включают:

Гомологическая алгебра:

WidePiper использует элементы гомологической алгебры для моделирования взаимодействий и процессов в системе, связанных с управлением транзакциями и предсказанием изменений ликвидности. Внутри этой системы применяются несколько ключевых формул, основанных на гомологической алгебре.

1. Гомологическая цепь

Гомологическая цепь — это последовательность объектов, на которые действуют операторы. В WidePiper гомологические цепи используются для описания взаимодействий между транзакциями и состояниями ликвидности.

$$A_n \xrightarrow{d_n} A_{n-1} \xrightarrow{d_{n-1}} A_{n-2} \xrightarrow{d_{n-2}} \dots$$

Где:

- A_n, A_{n-1}, A_{n-2} это состояния системы или результаты транзакций,
- d_n оператор, который переводит объект в следующее состояние системы.

2. Линейность оператора

Система использует линейные операторы для предсказания транзакций и управления ими. Линейность оператора описывает то, как независимые транзакции могут складываться и обрабатываться.

$$d_n(a+b) = d_n(a) + d_n(b)$$

Где:

- $a, b \in A_n$ элементы объекта A_{n}
- d_n оператор, который действует на объекты системы.

Это свойство говорит о том, что результат суммы изменений в системе может быть разложен на сумму отдельных операций. В WidePiper это используется для обработки транзакций, которые поступают одновременно.

3. Условие замкнутости

WidePiper гарантирует, что два последовательных оператора не создают ошибок в системе благодаря условию замкнутости:

$$d_{n+1} \circ d_n = 0$$

Это означает, что если сначала применяется один оператор, а затем следующий, результат не должен создавать новых изменений. В системе это важно для предотвращения конфликтов в транзакциях и поддержания целостности данных.

4. Гомологический дифференциал

Для вычисления изменений между состояниями системы, WidePiper использует гомологический дифференциал:

$$\partial_n(A_n) = A_n - A_{n-1}$$

Где ∂_n – оператор, который вычисляет разницу между состояниями системы в разные моменты времени.

Это позволяет системе точно определять изменения ликвидности и реагировать на них.

5. Гомологический комплекс

WidePiper использует гомологический комплекс для того, чтобы обеспечивать последовательность операций и исключать накопление ошибок:

$$\partial_n \circ \partial_{n-1} = 0$$

Эта формула гарантирует, что последовательные изменения в системе не создадут противоречий или ошибок.

Таким образом:

- 1. Линейность операторов $d_n(a+b) = d_n(a) + d_n(b)$ обеспечивает корректное сложение изменений.
- 2. Условие замкнутости $d_{n+1} \circ d_n = 0$ предотвращает накопление ошибок в системе.
- 3. Гомологический дифференциал $\partial_n(A_n)=A_n-A_{n-1}$ точно описывает изменения в состоянии системы.

4. Гомологический комплекс $\partial_n \circ \partial_{n-1} = 0$ поддерживает непрерывность операций и отсутствие конфликтов.

Байесовская статистика для предсказания ликвидности

WidePiper использует байесовскую теорему для улучшения предсказаний по мере поступления новых данных. Это помогает системе корректировать прогнозы ликвидности на основе новых сведений.

Байесовская теорема

$$P(H \mid D) = \frac{P(D \mid H) \cdot P(H)}{P(D)}$$

Где:

- $P(H \mid D)$ вероятность гипотезы H (например, движение ликвидности) при наличии данных D,
- $P(D \mid H)$ вероятность получения данных D, если гипотеза H верна,
- -P(H) априорная вероятность гипотезы,
- P(D) полная вероятность получения данных.

Применение нормального распределения

Нормальное распределение используется для моделирования вероятности изменения ликвидности на рынке. Оно помогает учитывать естественные колебания данных и делать прогнозы с учётом возможных отклонений.

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

Где:

- f(x) плотность вероятности,
- -x прогнозируемое значение (например, изменение ликвидности),
- $-\mu$ среднее значение(например, среднее изменение ликвидности),
- $-\sigma$ стандартное отклонение, описывающее разброс значений.

1. Моделирование рыночных изменений:

Нормальное распределение помогает моделировать естественные колебания ликвидности на рынке. В большинстве случаев изменения в рыночных данных происходят около среднего значения, но также могут быть экстремальные события (рост или падение ликвидности), которые можно учесть с помощью стандартного отклонения σ .

2. Оценка рисков:

Нормальное распределение позволяет оценить вероятность того, что изменение ликвидности будет близко к среднему значению или значительно от него отклонится. Это важно для оценки рисков и их управления в системе WidePiper.

3. Сглаживание прогнозов:

Использование нормального распределения позволяет сгладить прогнозы, делая их менее подверженными сильным колебаниям. Это помогает системе точнее прогнозировать ликвидность и уменьшать ошибочные предсказания.

Global Delta Risk Exposure (ΔR) и Personal User Risk (Δr) Global Delta Risk Exposure (ΔR)

Метрика ΔR отражает общий риск для всей системы. Она рассчитывается как разница между ликвидностью на различных блокчейнах и средним значением ликвидности.

$$\Delta R = \sum_{i=1}^{n} (L_i - M)$$

Где:

- L_i ликвидность на i -м блокчейне,
- -M среднее значение ликвидности по всем блокчейнам,
- -n количество блокчейнов.

Эта формула помогает системе оценивать общий уровень риска, связанный с движением ликвидности.

 ΔR отражает разницу между балансом ликвидности на различных блокчейнах и средним уровнем ликвидности в системе. Чем больше разброс между цепями, тем выше уровень риска. Основная цель системы — минимизировать этот риск, равномерно распределяя ликвидность между блокчейнами и предотвращая дефицит или излишек активов в одной сети.

Что влияет на Global Delta Risk Exposure (ΔR):

1. Различия в ликвидности между блокчейнами:

- ΔR увеличивается, если ликвидность сильно варьируется между разными блокчейнами в системе. Если один блокчейн имеет слишком много ликвидности, а другой – недостаточно, это создаёт дисбаланс, который увеличивает риск.
- 2. Общее распределение ликвидности:
 - Суммарная ликвидность в системе и её равномерность по цепям. Чем более равномерно распределена ликвидность между блокчейнами, тем ниже ΔR.
- 3. Состояние рынка и активности пользователей:
 - О Изменения рыночных условий (объёмы торгов, волатильность и т.д.) могут увеличить глобальный риск, так как активность в одном блокчейне может резко вырасти или упасть.
- 4. Перемещение активов между блокчейнами:
 - $_{\odot}$ Когда ликвидность активно перемещается из одной сети в другую, это может создавать временные дисбалансы и увеличивать ΔR , если управление этими перемещениями не оптимально.

Personal User Risk (Δr)

Индивидуальный риск пользователя Δr связан с его прогнозом ликвидности и вложенными средствами. Если предсказание пользователя оказывается неправильным, его риск увеличивается.

$$\Delta r = w_u \cdot \left(p_u - a_u \right)$$

Где:

 $-w_{u}$ – ставка пользователя (его вложенные средства),

 $-p_u$ – предсказанное пользователем изменение ликвидности,

- a_u - фактическое изменение ликвидности.

 Δr отражает, насколько рискованным является поведение пользователя в контексте его ставок и предсказаний. Если пользователь делает точные предсказания о том, как изменится ликвидность, его риск будет минимальным. Но если его прогнозы неверны, его индивидуальный риск возрастает, и он может потерять свои ставки.

Что влияет на Personal User Risk (Δr):

- 1. Точность предсказаний:
 - \circ Чем ближе предсказания пользователя о движении ликвидности к реальным изменениям, тем меньше его Δr . Если предсказание пользователя сильно отличается от фактического изменения ликвидности, его Δr увеличивается.
- 2. Размер ставки (вклад пользователя):
 - Чем больше средств пользователь ставит на своё предсказание, тем больше его риск. Ставка пользователя напрямую влияет на возможные потери, если предсказание окажется неверным.
- 3. Реальные изменения ликвидности:
 - о Если фактические изменения ликвидности в системе сильно отличаются от прогнозируемых пользователем значений, это увеличивает его риск.
- 4. Активность пользователя:
 - О Постоянные неверные предсказания или отсутствие активности могут увеличивать риск потери средств для пользователя.

Как связаны Global Delta Risk Exposure (ΔR) и Personal User Risk (Δr):

- Связь через ликвидность: Индивидуальные действия пользователей (их предсказания и перемещение активов) влияют на глобальное распределение ликвидности. Если многие пользователи делают неверные прогнозы или перемещают ликвидность неэффективно, это может увеличить глобальный риск ΔR.
- Взаимодействие рисков: Если ΔR (глобальный риск) становится высоким, это может привести к нестабильности в системе, что, в свою очередь, увеличит Δr (индивидуальный риск) для пользователей. Например, дефицит ликвидности в одной цепи может затруднить выполнение операций и повысить вероятность убытков для участников.
- Механизм обратной связи: Когда ΔR возрастает, система WidePiper может предпринимать корректирующие действия, перераспределяя ликвидность или изменяя стимулы, чтобы уменьшить глобальный риск. Это, в свою очередь, может повлиять на Δr пользователей, так как их предсказания и стратегии могут измениться в зависимости от состояния рынка и ликвидности.

Показатели ΔR и Δr связаны следующей формулой:

$$\Delta R = \sum_{i=1}^{N} \Delta r_i$$

Здесь:

- $-\Delta R$ это глобальная дельта риска, представляющая совокупную величину изменения риска по всем пользователям системы.
- Δr_i это дельта риска конкретного пользователя \(i \), представляющая личный риск на основе его вкладов и активности в системе.
- -N общее количество пользователей в системе.

Эта формула показывает, что глобальная дельта риска ΔR определяется как сумма индивидуальных дельт риска Δr всех пользователей. Другими словами, глобальное изменение риска в системе зависит от совокупного вклада всех участников.

Модели расчёта вознаграждений

Вознаграждение пользователя зависит от точности его предсказаний и суммы вложенных средств.

Формула вознаграждения:

$$R_{u} = \frac{w_{u} \cdot (1 - \left| p_{u} - a_{u} \right|)}{\sum_{i=1}^{n} w_{i}}$$

Где:

- $-R_u$ вознаграждение пользователя n,
- w_u средства, вложенные пользователем u,
- p_u предсказанное изменение ликвидности,
- a_u фактическое изменение ликвидности,
- n количество участников.

Чем точнее предсказание пользователя p_u относительно фактического изменения a_u , тем больше его вознаграждение.

Токеномика и эмиссия токенов

WidePiper использует собственный токен InnerLiquidityToken (XWP). Этот токен выпускается на основе показателя риска Δr и суммы средств, вложенных пользователем.

Формула эмиссии токенов:

$$XWP_{u} = \frac{\Delta r \cdot w_{u}}{\sum_{i=1}^{n} w_{i}}$$

Где:

- XWP_u количество токенов, выпущенных для пользователя \(u \),
- Δr индивидуальный риск пользователя \(u \),
- $-w_{u}$ вклад пользователя (его средства),
- $\sum_{i=1}^{n} w_{i}$ суммарный вклад всех участников.

Важно: При эмиссии токенов ликвидность не уменьшается, так как токены начисляются на основе вклада пользователя в ликвидность, и их распределение стимулирует активность, но не изымает ликвидность из системы.

ΔG (Глобальная энергия системы)

 Δ G описывает глобальное изменение "энергии" или затрат в блоке $Block_n$. В экономическом контексте это можно интерпретировать как изменение экономических или транзакционных затрат в системе между блоками.

$$\Delta G \equiv Block_{n-1} \circ Block_n$$

Это уравнение показывает, что ΔG зависит от двух последовательных блоков $Block_{n-1}$ и $Block_n$, и их взаимодействие (например, обработка транзакций, изменение ликвидности) создаёт изменение в затратах системы.

Формула расчёта ΔG:

$$\Delta G = Block_{n-1}(\Delta G, \Delta R)$$

где ΔR – это глобальный риск $\Delta R = [\Delta r]$, который агрегируется из рисков пользователей.

$$Block(\Delta R) = |\Delta G - \Delta R|$$

Следующий блок использует разницу между ΔG и ΔR , чтобы корректировать своё состояние.

Важность ΔG в системе:

Оценка рисков: ΔG отражает изменения в общем уровне ликвидности и связанных

рисков между блоками. Если ΔG высока, это может указывать на значительные изменения в ликвидности и, возможно, возросшие риски для пользователей и системы.

Регулирование ликвидности: Система использует значение ΔG для корректировки ликвидности между различными блокчейнами, перераспределяя активы для предотвращения дефицита ликвидности на одних платформах и избытка на других. Прогнозирование изменений: ΔG помогает системе прогнозировать будущие изменения на основе текущего состояния и данных из предыдущего блока. Это позволяет пользователям и системе оценивать возможные изменения в ликвидности и адаптироваться к ним.

Схема взаимодействия смарт-контрактов и блоков

Users: Пользователи системы, которые взаимодействуют с MetaHolder.

MetaHolder: Собирает ликвидность от пользователей и передаёт её WiPi Cyborg для распределения по DEX.

WiPi Cyborg: Управляет ликвидностью и передаёт её на децентрализованные биржи (DEX1, DEX2) для выполнения торговых операций.

DEX1 и DEX2: Децентрализованные биржи, где происходит торговля и обеспечение

ликвидности.

WP Bridge: Мост для перемещения ликвидности между блокчейнами.

Block n+1: Следующий блок в блокчейне, где вычисляется глобальная энергия системы ΔG .

ΔР (Прогноз изменения ликвидности)

ΔР в этом контексте представляет собой изменение в состоянии ликвидности или вероятность наступления определённого исхода. Это изменение может быть связано с изменениями цен активов или объёма ликвидности на платформе. ΔР можно рассчитывать на основе транзакций и состояния активов пользователей.

Параметры для расчёта ΔP от кошелька пользователя:

Чтобы рассчитать ΔP для конкретного пользователя от его кошелька, нам понадобятся следующие данные:

- 1. Баланс кошелька пользователя P_{balance} текущее количество активов на кошельке пользователя.
- 2. Транзакции пользователя T_i все транзакции, совершаемые пользователем:
 - Объём транзакции (например, сколько токенов было переведено).
 - Вид актива (какая валюта или токен были использованы в транзакции).
- 3. Изменение ликвидности ΔL n- ликвидность актива, в который были вложены средства пользователя. Это можно получить из данных о рынке или из системы.
- 4. Текущая цена актива $P_{\sf current}$ текущая рыночная цена актива, который использовался в транзакции.

Формула расчёта ΔР:

$$\Delta P = P_{\text{current}} \cdot (P_{\text{balance}} + \sum_{i=1}^{n} T_i \cdot \Delta L)$$

Где:

 $-P_{\mathsf{Current}}$ – текущая цена актива.

 $-P_{\mbox{balance}}$ – баланс пользователя на момент расчёта.

- $-T_i$ объём каждой транзакции.
- ΔL изменение ликвидности, связанное с активами пользователя.

Пример:

- 1. Баланс кошелька пользователя: Пользователь имеет 1000 токенов.
- 2. Текущая цена токена: Цена одного токена составляет 5 USD.
- 3. Транзакция пользователя: Пользователь совершает транзакцию на 200 токенов.
- 4. Изменение ликвидности: Ликвидность увеличивается на 10%.

Теперь мы можем рассчитать ΔP :

$$\Delta P = 5 \cdot (1000 + 200 \cdot 1.10) = 5 \cdot (1000 + 220) = 5 \cdot 1220 = 6100 \text{ USD}$$

Этот результат отражает общую прогнозируемую стоимость актива пользователя с учётом его транзакции и изменения ликвидности.

- $-\Delta G$ это показатель, который отображает изменение глобальных экономических затрат или изменений системы на каждом блоке. Он рассчитывается на основе изменений риска и затрат между последовательными блоками.
- ΔP это прогноз изменения ликвидности и активов пользователя, который вычисляется на основе баланса пользователя, его транзакций и текущего состояния ликвидности на рынке.

Индивидуальный риск Δr и прогноз изменения ликвидности \hat{L} через транзакции

Индивидуальный риск пользователя Δr зависит от его прогнозов и транзакций. Формула для расчёта индивидуального риска:

$$\Delta r = \sum_{i=1}^{n} w_i \cdot |p_i - a_i|$$

Где:

- $-w_{i}$ сумма средств, вложенных пользователем в i -ю транзакцию,
- p_i предсказанное изменение ликвидности для i-й транзакции,
- $-a_i$ фактическое изменение ликвидности, связанное с i-й транзакцией.

2. Прогноз изменения ликвидности \hat{L} через транзакции

Прогнозируемое изменение ликвидности $\hat{L}-$ это взвешенная сумма предсказаний пользователя для каждой транзакции:

$$\hat{L} = \sum_{i=1}^{n} p_i \cdot T_i$$

Где:

- $-\hat{L}$ прогнозируемое изменение ликвидности,
- p_i предсказание пользователя относительно изменения ликвидности для i-й транзакции,
- $-T_i$ объём транзакции (количество токенов или активов, участвующих в транзакции).

Процесс ставок в системе WidePiper

Одной из ключевых функций системы WidePiper является механизм ставок, который позволяет пользователям делать прогнозы относительно изменения ликвидности и получать вознаграждения за точные предсказания. Модель ставок связана с управлением рисками и движением ликвидности в блокчейне, а также стимулирует пользователей делать точные прогнозы.

Создание ставки пользователем

Ставки делаются на основе предсказаний пользователей относительно изменения ликвидности в системе. Пользователь анализирует рыночные данные, делает прогноз и ставит на изменение ликвидности (рост или падение).

Основные параметры ставки:

- Сумма ставки w_u количество средств, которое пользователь готов поставить на свой прогноз.
- Предсказание пользователя p_u процентное изменение ликвидности, на которое ставит пользователь (например, рост на 5% или падение на 3%).
- Верификация ставки: После завершения блока система проверяет фактическое изменение ликвидности и сравнивает его с прогнозом пользователя.
- Тип ставки прогноз может быть на рост или снижение ликвидности. Пользователь указывает, ожидает ли он увеличения или уменьшения ликвидности.

Формирование ставки и регистрация в блокчейне

Когда пользователь делает ставку, она регистрируется в блокчейне для обеспечения прозрачности и неизменности данных. Это включает:

- Отправку транзакции: Ставка создаётся и отправляется в блокчейн через смарт-контракт, который управляет всеми ставками в системе.

- Запись в блокчейн: Все параметры ставки, включая сумму, предсказание, время и тип, записываются в блокчейн, что позволяет избежать подделки данных и защищает участников от мошенничества.

Пример транзакции:

Пользователь делает ставку на 1000 токенов, предсказывая, что ликвидность вырастет на 5% в течение 24 часов. Транзакция отправляется в блокчейн, где эта ставка регистрируется и остаётся неизменной.

Верификация ставки и расчёт фактического изменения ликвидности

Когда период ставки истекает, система оценивает точность прогноза пользователя. Для этого система использует данные о фактическом изменении ликвидности на основе торгов на децентрализованной бирже (DEX) и других источников данных.

Фактическое изменение ликвидности a_u :

 a_u = ликвидность конец периода — ликвидность начало периода

- Если пользователь предсказал рост ликвидности, а фактическая ликвидность действительно увеличилась, его прогноз считается успешным.
- Если прогноз был неточным (например, пользователь ставил на рост, но ликвидность упала), ставка считается проигранной.

Умножение ликвидности

В системе WidePiper происходит умножение ликвидности за счёт многократного участия средств в ставках. В течение суток происходит 144 блока, и каждая ставка остаётся активной в среднем 300 блоков. Это означает, что один вложенный доллар может одновременно участвовать в нескольких ставках, создавая эффект "множителя". В итоге каждый доллар в системе может быть задействован в процессах, умножая свою активность до \$42,000 за счёт непрерывного участия в новых ставках, обеспечивая значительное увеличение оборота ликвидности.

Сверхдолговременность и фрактальность производной ликвидности

Чтобы понять это, представьте себе канат, который плетётся из многочисленных долговременных вкладов пользователей, соединяющих разные блокчейны и ликвидные пулы. Как каждый пользователь делает свою ставку, она не просто служит в одном блоке или для одной цели, а фактически вплетается в многослойную структуру всей экосистемы ликвидности.

Эти ставки действуют как узлы, связывающие множество "канатов" – разные блоки, цепочки и пользователи. Такая сеть становится устойчивой и взаимосвязанной благодаря использованию сверхдолговременных ставок, которые продолжают действовать на протяжении большого количества блоков, создавая своеобразную фрактальную производную. Это означает, что любая новая ставка не просто используется для текущего блока, а продолжает оставаться важным элементом всей ликвидной системы, добавляя к общей структуре и усиливая взаимосвязи.

Схема умножения ликвидности в системе WidePiper

Риски и потери при неверных ставках

Если прогноз пользователя оказывается неточным, его ставка может быть частично или полностью потеряна. Сумма потерь зависит от того, насколько сильно прогноз отклонился от фактического изменения ликвидности.

Потери при ошибке:

Если $|p_u - a_u|$ (разница между прогнозом и фактическим изменением ликвидности) велика, система может удержать значительную часть ставки пользователя в качестве санкции за неверный прогноз.

Вознаграждение от общего пула ставок

Ставки, сделанные всеми пользователями, собираются в общий пул. Пользователи, которые сделали точные прогнозы, получают вознаграждение из этого пула. Размер их вознаграждения зависит не только от их собственной ставки, но и от того, насколько точными были прогнозы остальных участников. (Про вознаграждения подробнее написано в блоке «Модели расчёта вознаграждений»)

Пример процесса ставок:

- 1. Пользователь А делает ставку 1000 токенов, прогнозируя рост ликвидности на 5%.
- 2. Пользователь В делает ставку 500 токенов, прогнозируя падение ликвидности на 3%.
- 3. Когда этот блок и следующий закончатся, пользователи увидят, что ликвидность выросла на 4%.
- 4. Пользователь А получает вознаграждение, так как его прогноз был близок к реальному изменению ликвидности. Пользователь В теряет часть своей ставки, так как его прогноз оказался неточным.

Интеграция с киборгом и блокчейном

- Все ставки пользователей обрабатываются через интерфейс киборга, который обеспечивает взаимодействие между фронтендом и блокчейном.
- Ставки регистрируются в блокчейне для обеспечения прозрачности и безопасности, а после завершения периода ставок, киборг передаёт данные для расчёта вознаграждений на основе фактического изменения ликвидности.

Реализация моста в коде

Moct WidePiper позволяет пользователям перемещать активы между различными блокчейнами, блокируя активы в одном блокчейне и создавая эквивалентные токены в другом. Это делается через смарт-контракты, которые следят за состоянием активов и обеспечивают надёжное перемещение токенов между цепями.

Основные функции смарт-контракта:

- Блокировка активов на исходной сети.
- Выпуск эквивалентных токенов на целевой сети.
- Разблокировка активов при обратном перемещении.

Пример упрощённого кода для смарт-контракта моста:

```
"solidity
contract Bridge {
  address public admin;
  mapping(address => uint256) public lockedTokens;
  constructor() {
    admin = msg.sender;
  }
  function lockTokens(address token, uint256 amount) external {
    require(amount > 0, "Amount must be greater than 0");
    IERC20(token).transferFrom(msg.sender, address(this), amount);
    lockedTokens[msg.sender] += amount;
  }
  function unlockTokens(address token, uint256 amount) external {
    require(lockedTokens[msg.sender] >= amount, "Insufficient balance");
    lockedTokens[msg.sender] -= amount;
    IERC20(token).transfer(msg.sender, amount);
  }
}
```

Этот код выполняет базовые операции блокировки и разблокировки активов между блокчейнами.