Windows Security

Ransomware in the news

Windows vs. Linux

We've discussed security and exploitation on Linux platforms, but what about Windows?

How do the exploits we've seen (buffer overflows, ROP, etc) differ on Windows?

Almost everything you have learned about Linux exploitation applies directly to Windows

Memory corruption bugs are exploited in exactly the same way

```
int main() {
    char buf[100]; // Long enough!
    printf("Your name: ");
    gets(buf);
    printf("Hello, %s\n", buf);
    return 0;
}
```

Linux shellcode relies heavily on syscalls directly to the Linux kernel

```
xor
       eax, eax
push
       eax
push
       "hs//"
push
       "nib/"
       ebx, esp
mov
push
       eax
push
       ebx
       ecx, esp
mov
       al, 0xb; exec
mov
int
       0x80
```

Windows shellcode doesn't usually use syscalls. Instead, we call functions in DLLs

ntdll.dll is the low-level interface to Windows kernel functions

kernel32.dll is a higher level interface with common functions (OpenFile, ReadFile, CreateProcess, etc)

Windows shellcode doesn't use syscalls. Instead, we rely on calling functions in **DLLs** that the application uses

```
xor ecx, ecx
push ecx
push 0x636c6163; "clac"
push esp
mov eax,0x77c293c7; System
call eax
```

Windows XP (2001)

Windows XP SP2 (2004)

DEP support in XP emerges and changes the exploit/malware landscape

Stack cookies emerge in default applications which protect against trivial buffer overflows

Problem: No defense against ROP or other non-trivial exploits

Malware authors aren't scared yet

Stack Cookies

```
int main() {
    char buf[12];
    printf("Your name: ");
    gets(buf);
    printf("%s\n", buf);
    return 0;
}
```

```
Return Addr.
 Saved EBP
Stack Cookie
   <buf>
   <buf>
   <buf>
```

Windows Vista (2006)

ASLR is now supported by the OS and prevent ROP attacks

Practical bar on exploits is now much higher -- we can't write non-interactive

exploits (but address leaks still help)

Introduction of **UAC** actually helps people who don't disable it

Many applications still don't enable ASLR

(Also, Vista sucks)

Windows 7 (2009)

Windows 8 (2012)

More powerful ASLR works to reduce surface area of applications (more entropy with 64-bit address space, all memory allocations randomized, etc)

DEP is broadly deployed throughout the kernel and first-party programs

SecureBoot ensures the Windows boot path is signed by Microsoft

SMEP/SMAP protect against kernel exploits

Cost of exploits is now very high

Windows 10 (2015)

Better support for Control-Flow Guard protections make ASLR even harder

Virtualization-based Security keeps privileged Windows services running in a separate VM -- completely isolated from the main Windows kernel

SecureBoot expanded and tightened with heavy use of hardware support

Early-launch antimalware support allows AV/AM to run before any non-Microsoft processes

Cost of exploits is now astronomically high

Windows 10 (2015)

Better suppor

Virtualization separate VM -

SecureBoot e

Early-launch processes

Cost of exploi

Control-Flow Guard

OS Usage

EMET

Enhanced Mitigation Experience Toolkit

All software is vulnerable. How can we make it harder for hackers to exploit bugs?

ROP mitigations in EMET

- ASLR
- Bottom-up ASLR
- Disallow making the stack executable
- Ensure functions are reached by CALL, not RET
- Detect out-of-bounds stack pivots

Windows Defender and AV

Remember: AV sucks

Windows Security Essentials

Windows Security Essentials

Free antivirus distributed by Microsoft for Windows XP/Vista/7

When launched, combined best performance with excellent detection rates

Quickly fell to worst in 2013 -- why?

Windows Defender

Windows Defender

If we have to use antivirus, better to trust the devil we already know
Microsoft

Any antivirus software bundled with Microsoft becomes the **baseline** for security defense

Malware MUST bypass Windows Defender to even spread

Security Takeaways

Fully-patched Windows 10 has many powerful security features that elevate it above most Linux distributions in exploit defence, **BUT**

- Few people run Windows 10
- Few people always apply the latest patches to their systems
- There are many avenues of attack (eg: ransomware) that don't rely on exploitation
- Windows user share means many more people are trying to attack it

Homework

- Send a brief (1-paragraph) email on any thoughts you have on Windows vs.
 Linux security to cm7bv@virginia.edu with the subject "MST Assignment 10 <YOUR_UVA_ID>"
- Don't hesitate to ask questions

Additional Resources

- Windows Security Bulletins ("Patch Tuesdays")
 https://technet.microsoft.com/en-us/security/bulletins.aspx
- Compilation of Windows exploitation resources
 https://github.com/enddo/awesome-windows-exploitation