Supersingular Elliptic Curve Isogenies

Abhay Sharma

2023/09/24

Table of Contents

- 1 Introduction
- 2 Understanding Elliptic Curves
- 3 Supersingular Elliptic Curves
- 4 Isogeny
- 5 Post-Quantam Key Exchange : SIDH
- 6 Challenges and Ongoing Research
- 7 Conclusion

Introduction

- In the context of elliptic curve cryptography and number theory, supersingular elliptic curves play a crucial role in various cryptographic protocols, particularly in the construction of isogenies-based cryptography
- Today, we'll delve into a fascinating area of cryptography that holds promise in a post-quantum world.

Understanding Elliptic Curves

■ An elliptic curve E defined over a field \mathbb{F}_q is given by the short Weierstrass equation :

$$E: y^2 = x^3 + ax + b$$

where $a, b \in \mathbb{F}_q$.

- E has to be smooth (non-singular), i.e., every point on the curve needs to have a unique tangent
- They have a unique geometric structure and are widely used in modern cryptography for their mathematical properties.

Figure - Figure Caption

Group Law of Elliptic curve

Let $E: y^2 = x^3 + ax + b$ be an elliptic curve. Then an elliptic curve group $E(\mathbb{F}_q)$ is formed by the union of \mathbb{F}_q -rational points on E and the neutral element O. Let $P = (x, y), Q = (x_0, y_0)$ be in $E(\mathbb{F}_q)$. Let O denote the neutral element. We define the group law by the following rules :

$$P \oplus O = O \oplus P = P$$

■
$$P \oplus (-P) = (-P) \oplus P = O$$
 for $(-P) = (x, -y)$,

$$\blacksquare P \oplus Q = (\alpha, \beta)$$

Figure – Demonstration of the Group Law on the Elliptic Curve $E: y^2 = x^3 + ax + b$ defined over $\mathbb R$

Hasse Interval

When $\mathbb{F}_{\shortparallel}$ is a finite field, there are only finitely many points that can lie on E.

■ Finding the exact number $|E(F_q)|$ of points is not easy; however, with Hasse's theorem, we have an upper bound of

$$|E(F_q)| \leq q+1+|t|$$

for a field $\mathbb{F}_{\shortparallel}$ with q elements, where $|t| \leq 2\sqrt{q}$, and t is called the Frobenius trace.

What Makes an Elliptic Curve "Supersingular"?

The elliptic curve E is called **supersingular** if p divides t, and **ordinary** otherwise. Hence, the orders of supersingular elliptic curves over a prime field \mathbb{F}_p are determined by the characteristic p > 3:

$$\#E(\mathbb{F}_p)=p+1$$

■ It follows that E is supersingular if $\#E(\mathbb{F}_q) \equiv 1 \pmod{p}$, and in fact for supersingular curves, one has $\#E(\mathbb{F}_{q^n}) \equiv 1 \pmod{p}$ for all $n \in \mathbb{N}$.

J-inverient And Isomerphism

Definition

Let E(K) be an elliptic curve given by a Weierstrass equation $y^2 = x^3 + ax + b$ defined over a field K with $char(K) \in \{2,3\}$. The j-invariant of E is defined as :

$$j(E) = \frac{1728}{4a^3} \left(\frac{4a^3}{4a^3 + 27b^2} \right)$$

Definition

There is an isomorphism $f: E \to E_0$ if and only if $j(E) = j(E_0)$.

An isogeny is a mathematical map between elliptic curves.

Definition

Let E_1 and E_2 be two elliptic curves over \mathbb{F}_q . An isogeny is a morphism $\phi: E_1 \to E_2$ such that $\phi(0_{F_1}) = 0_{F_2}$.

- Two elliptic curves are called isogenous if there is a non-constant isogeny between them
- It preserves the group structure of points on these curves.
- The degree of an isogeny is essentially the degree of polynomials describing it.
- Isogenies are the building blocks for many cryptographic schemes based on supersingular elliptic curves.

Isogeny Graph

- Each vertex of the graph represents a different j-invariant of a set of supersingular curves.
- The edges between vertices represent isogenies converting one elliptic curve to another.
- The graph is strongly connected, meaning every vertex can be reached from every other vertex.
- An isogeny graph with isogenies of degree I representing the edges is also called an I-isogeny graph

Figure – Supersingular isogeny graphs of degree 2 (left, blue) and 3 (right, red) on \mathbb{F}_{972}

Supersingular Isogeny Diffie-Hellman

The key idea of the Supersingular Isogeny Diffie-Hellman protocol (SIDH), is to let Alice and Bob take random walks in two distinct isogeny graphs on the same vertex set.

■ Random Walk: It is possible to walk a whole graph by starting from any vertex, randomly choosing an edge, following it to the next vertex and then start the process again on a new vertex.

$$\begin{split} \ker \alpha &= \langle A \rangle \subset E[\ell_A^{e_A}] \\ \ker \beta &= \langle B \rangle \subset E[\ell_B^{e_B}] \\ \ker \alpha' &= \langle \beta(A) \rangle \\ \ker \beta' &= \langle \alpha(B) \rangle \end{split}$$

- Alice and Bob pick seceret subgroups A and B of E.
- Alice computes the isogeny $\phi_A : E \to E/A$; Bob computes the isogeny $\phi_B: E \to E/B$. (These isogenies correspond to walking on the isogeny graph.)
- Alice and Bob transmit the values E/A and E/B.
- Alice obtains $A_0 = \phi_B(A)$.(similar for Bob)
- They both compute the shared secret

$$(E/B)/A_0 \approx E/ < A, B > \approx (E/A)/B_0$$

Abhay Sharma

SIDH key exchange protocol

Public parameters	Primes ℓ_A , ℓ_B , and a prime $p = \ell_A^{e_A} \ell_B^{e_B} f \mp 1$, A supersingular elliptic curve E over \mathbb{F}_{p^2} of order $(p \pm 1)^2$, A basis $\langle P_A, Q_A \rangle$ of $E[\ell_A^{e_A}]$,	
	A basis $\langle P_B, Q_B \rangle$ of $E[\ell_B^{e_B}]$, Alice	Bob
Pick random secret	$A = [m_A]P_A + [n_A]Q_A$	$B = [m_B]P_B + [n_B]Q_B$
Compute secret isogeny	$\alpha: E \to E_A = E/\langle A \rangle$	$\beta: E \to E_B = E/\langle B \rangle$
Exchange data	$E_A, \alpha(P_B), \alpha(Q_B) \longrightarrow$	$\leftarrow E_B, \beta(P_A), \beta(Q_A)$
Compute shared secret	$E/\langle A, B \rangle = E_B/\langle \beta(A) \rangle$	$E/\langle A, B \rangle = E_A/\langle \alpha(B) \rangle$

Figure – Supersingular Isogeny Diffie-Hellman key exchange protocol.

■ In practice, we choose a large enough prime p, and two small primes ℓ_A and ℓ_B . The vertex set is going to consist of the supersingular j-invariants defined over \mathbb{F}_{p^2} , Alice's graph is going to be made of ℓ_A -isogenies, while Bob is going to use ℓ_B -isogenies.

- While promising, working with supersingular elliptic curves and isogenies presents challenges:
- Computational Complexity
- Standardization and Adoption
- Ongoing Research to Improve Efficiency
- Staying Updated with the Latest Developments

Conclusion

- Supersingular isogeny-based cryptography is a strong contender in the field of post-quantum security.
- It offers a potential solution to quantum computing threats.
- Its security is based on mathematical problems that have proven resistant to quantum attacks, making it a valuable choice for protecting sensitive data in a quantum computing era.