Visual Diagnostics for More Informed Machine Learning

Women in Data Science 2019

Dr. Rebecca Bilbro

Head of Data Science, ICX Media Co-creator, Scikit-Yellowbrick Author, Applied Text Analysis with Python

@rebeccabilbro

Tianshu Li

Ph.D. Student, University of Virginia Crowd-sourced Urban Infrastructure Management Text Analysis on Historical Inspection Reports

How to get the course materials:

pip install -r requirements.txt

```
git clone git@github.com:icxmedia/ml-teaching-materials.git
  or, depending on the network:
git clone https://github.com/icxmedia/ml-teaching-materials.git
  then:
cd ml-teaching-materials
```

How to get the data:

```
git clone git@github.com:DistrictDataLabs/yellowbrick.git
or, depending on the network:
git clone https://github.com/DistrictDataLabs/yellowbrick.git
then:
cd yellowbrick
pip install -r requirements.txt
pip install -e .
python -m yellowbrick.download
```

The machine learning problem:

Given a set of *n* data samples, each represented by >1 number, create a model that is able to predict properties of as-yet unseen samples. Ask me for my strong opinions about Random Forests.

Scikit-Learn & Yellowbrick

Try them all!


```
from sklearn.svm import SVC
from sklearn.naive bayes import GaussianNB
from sklearn.ensemble import AdaBoostClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn import model selection as ms
classifiers = [
     KNeighborsClassifier(5),
     SVC(kernel="linear", C=0.025),
     RandomForestClassifier(max depth=5),
     AdaBoostClassifier(),
     GaussianNB(),
kfold
       = ms.KFold(len(X), n folds=12)
max([
     ms.cross val score(model, X, y, cv=kfold).mean
     for model in classifiers
])
```

scikit-learn Estimators

The main API implemented by scikit-learn is that of the estimator. An estimator is any object that learns from data;

it may be a classification, regression or clustering algorithm, or a transformer that extracts/filters useful features from raw data.

```
class Estimator(object):
    def fit(self, X, y=None):
         11 11 11
        Fits estimator to data.
        # set state of self
        return self
    def predict(self, X):
        Predict response of X
         11 11 11
        # compute predictions pred
        return pred
```

scikit-learn Transformers

Transformers are special cases of Estimators -- instead of making predictions, they transform the input dataset X to a new dataset X'.

```
class Transformer(Estimator):

   def transform(self, X):
        """

        Transforms the input data.
        """

        # transform X to X_prime
        return X_prime
```

scikit-learn interface

```
# Import the estimator
from sklearn.linear_model import Lasso
# Instantiate the estimator
model = Lasso()
# Fit the data to the estimator
model.fit(X train, y train)
# Generate a prediction
model.predict(X test)
```

Yellowbrick interface

```
# Import the model and visualizer
from sklearn.linear_model import Lasso
from yellowbrick.regressor import PredictionError
                                                             Prediction Error for Lasso
# Instantiate the visualizer
                                                            R^2 = 0.544
visualizer = PredictionError(Lasso())
# Fit
visualizer.fit(X train, y train)
# Score and visualize
visualizer.score(X_test, y_test)
visualizer.poof()
```

Steering the model selection triple

Feature Analysis

a.k.a. finding the **smallest possible** set of features that result in the **most predictive** model.

1. Look for separability

Radial Visualization

Features pull instances towards their position on the circle in proportion to their normalized numerical value for that instance.

Parallel Coordinates

Features represented as vertical lines.

Points represented as connected line segments.

Look for single-colored chords.

2. Look for correlation

Feature Importance Plot

visualize the relative importance of each feature to the model.

Identify weak features or combinations of features that are candidates for removal.

Rank₂D

Recursive Feature Elimination

Iteratively drop the weakest feature(s) until desired number is reached.

Attempts to eliminate dependencies and collinearity.

3. Look at the distribution

PCA Projection Plots

Decompose high dimensional data into two or three dimensions.

visualize projected data along axes of principle variation.

Manifolds

Embed instances into two dimensions

Look for latent (esp. non-linear) structures in the data, noise, separability.

Also for text!

visualize document distribution, top tokens & part-of-speech tags

How to launch the first lab:

cd notebooks
jupyter notebook feature-analysis.ipynb

Evaluation Model Selection

1. Decide what matters

Evaluating Classifiers

Do we want to minimize false positives? precision = true positives / (true positives + false positives)

Do we want to minimize false negatives? recall = true positives / (false negatives + true positives)

Will we need to compare many models?
F1 score = 2 * ((precision * recall) / (precision + recall))

Are the classes imbalanced? support = number of training samples per class

ROC-AUC

Getting more right comes at the expense of getting more wrong

Class Prediction Error

Do I care about being right (or about not being wrong) for some categories more than for others?

Classification Heatmaps

Evaluating Regressors

R²: How well does the model describe the training data? How well does the model predict out-of-sample data?

MSE/ASE: How sensitive is the model to outliers?

Prediction Error Plots

visualize prediction errors as a scatterplot of the predicted & actual values.

visualize the line of best fit & compare to the 45° line.

Plotting Residuals

Are residuals random? we should not be able to predict error!

visualize train and test data with different colors.

2. Try them all

3. Think horses

Class Balance

what to do with a low-accuracy classifier?

Check for class imbalance.

Try stratified sampling, oversampling, or need more data?

Cross Validation Scores

Real world data are distributed unevenly

Models are likely to perform better on some sections of data than others.

How to launch the second lab:

jupyter notebook model-evaluation.ipynb

Hyperparameter Tuning

1. Use the defaults

Hyperparameters

- When we call fit() on an estimator, it learns the parameters of the algorithm that make it fit the data best.
- However, some parameters are not directly learned within an estimator.
 E.g.
 - depth of a decision tree
 - alpha for regularization
 - kernel for support vector machines
 - o number of clusters for centroidal clustering
- These parameters are often referred to as hyperparameters.

2. Gridsearch

Hyperparameter space is large and gridsearch is slow if you don't already know what you're looking for.

3. Visual gridsearch

K-selection with Yellowbrick

Alpha selection with Yellowbrick

Should I use Lasso,
Ridge, or ElasticNet? Is
regularlization even
working?

More alpha => less complexity

Reduced bias, but increased variance

How to launch the third lab:

jupyter notebook hyperparameter-tuning.ipynb

Contributing

We want to be the **best first place** to contribute.

Yellowbrick is an open source project supported by a

community who will gratefully and humbly accept any

contributions you might make to the project.

Star us on GitHub! <u>bit.ly/yb-repo</u>
Read the docs: <u>bit.ly/scikit-yb</u>

