

Chess Mining

Applying **KDD** on chess games

Alberto Velasco Mata, Diego Pedregal Hidalgo Rubén Márquez Villalta, Antonio Manjavacas Lucas

ÍNDICE DE CONTENIDOS

- 1. Introducción
- 2. Obtención de los datos
- 3. Recopilación de datos objetivo
- 4. Visualización y clustering
- 5. Modelo de predicción
- 6. Resultados obtenidos
- 7. Trabajo futuro

1. Introducción

- DeepBlue (fuerza bruta)
- AlphaZero (red neuronal profunda y aprendizaje por refuerzo)
- Stockfish

Diferentes fines:

- Jugar contra humanos
- Jugar contra otras máquinas
- Predecir resultados
- Analizar partidas

1. Introducción

HIPÓTESIS

- H1 Es posible pronosticar el **resultado de un** torneo
- **H2** Es posible definir los **factores de éxito** que influyen en el devenir de una partida
- H3 Es posible definir el estilo de juego de un jugador

OBJETIVOS

- O1 Establecer un **perfil de juego a cada jugador** en base a sus partidas
- O2 Pronosticar el resultado de diferentes partidas individuales

2. Obtención de los datos

2. Obtención de los datos

LIBRERÍAS UTILIZADAS

- API berserk
 - Obtención de la tabla de clasificación:
 - Partidas Clásicas
 - 200 mejores jugadores
 - Obtención de las partidas:
 - Anteriores jugadores
 - Septiembre 2019
- PGN (Portable Game Notation)
- Python-chess
 - Lectura del archivo PGN con las partidas
- json, datetime, numpy

3. Recopilación de datos objetivo

DATOS OBJETIVO

- 1. ELO
- 2. Color
- 3. Apertura
- 4. Movimientos
- 5. Tiempo:
 - a. Tiempo total
 - b. Tiempo por jugador
 - c. Early, middle, end \rightarrow Media, mediana, varianza, máximo y mínimo
- 6. Balance de puntos
- 7. Balance de piezas
- 8. Agresividad:
 - a. Piezas eliminadas \rightarrow Early game
 - b. Apertura agresiva
 - c. Castling
- 9. Result \leftarrow variable objetivo

3. Recopilación de datos objetivo

elo	int64		
colour	category		
opening	category		
result	int64		
movements	int64		
total_time_player	float64		
total_time	float64		
early_times_mean	float64		
early_times_median	float64		
early_times_variance	float64		
early_times_max	float64		
early_times_min	float64		
mid_times_mean	float64		
mid_times_median	float64		
mid_times_variance	float64		

mid_times_max	float64
mid_times_min	float64
end_times_mean	float64
end_times_median	float64
end_times_variance	float64
end_times_max	float64
end_times_min	float64
points_balance	int64
taken_balance	int64
aggressiveness	float64
colour_enc	int8
opening_enc	int16

SELECTED FEATURES

- 1. elo
- 2. opening_enc
- 3. result
- 4. movements
- 5. total_time_per_player
- 6. early_times_median
- 7. early_times_max
- 8. early_times_min
- 9. mid_times_median
- 10. mid_times_max
- 11. mid_times_min
- 12. end_times_median
- 13. end_times_max
- 14. end_times_min
- 15. points_balance

MinMaxScaler

Principal component analysis (PCA)

- Num. componentes = 3
 - o [0.62322601, 0.22088364, 0.06225892]
 - $0.9063685719687516 \rightarrow 90\%$

	PC-0	PC-1	PC-2
elo	-0.110880	-0.006919	0.288907
opening_enc	-0.000983	-0.999766	0.014340
result	-0.989784	0.001753	-0.033313
movements	-0.000406	0.000115	0.443249
total_time_player	0.001063	0.015091	0.730605
early times median	-0.001556	0.002331	0.090972
early times max	-0.000368	0.004323	0.229377
early times min	-0.001495	0.000307	0.014759
mid times median	-0.001311	0.011402	0.302232
mid times max	0.000450	0.003064	0.076533
mid times min	-0.005953	0.004159	0.075692
end times median	0.001603	0.002938	0.055031
end times max	0.003802	-0.000395	0.132851
end times min	-0.001926	0.000521	0.010731
points_balance	-0.089260	-0.000120	0.011578

PROCESO

- 1. Carga de datos (**source**)
- 2. Generación del dataset
- 3. Filtrado de variables

Descartamos IDs de los usuarios, nombre de la apertura e ID de cada uno de los registros.

Generamos el modelo...

Matriz de confusión

GANAN NEGRAS (result=0)

					ТР	FN FP TI	N
CTUAL VS. PREDICTED	0	1	2	ACTUAL	RECALL	F	Phi
0	859	39	300	1,198	71.70%	0.76	0.56
1	59	18	114	191	9.42%	0.13	0.10
2	148	27	886	1,061	83.51%	0.75	0.53
PREDICTED	1,066	84	1,300	2,450	54.88% AVG.RECALL	0.55 AVG. F	0.40 AVG. Ph
PRECISION	80.58%	21.43%	68.15%	56.72% AVG. PRECISION	71.96% ACCURACY		

77.7% Accuracy		0.7588 F-measure
80.6%	71.7%	0.5563
Precision	Recall	Phi coefficient

Matriz de confusión

TABLAS (result=1)

					TP TP	FN FP T	N X
CTUAL VS. PREDICTED	0	1	2	ACTUAL	RECALL	F	Phi
0	859	39	300	1,198	71.70%	0.76	0.56
- 1	59	18	114	191	9.42%	0.13	0.10
2	148	27	886	1,061	83.51%	0.75	0.53
PREDICTED	1,066	84	1,300	2,450	54.88% AVG.RECALL	0.55 AVG. F	0.40 AVG. Ph
PRECISION	80.58%	21.43%	68.15%	56.72% AVG. PRECISION	71.96% ACCURACY		

90.2% Accuracy		0.1309 F-measure
21.4%	9.4%	0.0958
Precision	Recall	Phi coefficient

Matriz de confusión

GANAN BLANCAS (result=2)

					ТР	FN FP T	N [
VS. PREDICTED	0	1	2	ACTUAL	RECALL	F	Phi
0	859	39	300	1,198	71.70%	0.76	0.56
1	59	18	114	191	9.42%	0.13	0.10
2	148	27	886	1,061	83.51%	0.75	0.53
EDICTED	1,066	84	1,300	2,450	54.88% AVG.RECALL	0.55 AVG. F	0.40 AVG. PI
ECISION	80.58%	21.43%	68.15%	56.72% AVG. PRECISION	71.96% ACCURACY		

76.0% Accuracy		0.7505 F-measure
68.2%	83.5%	0.5332
Precision	Recall	Phi coefficient

7. Resultados obtenidos

- H1 Es posible pronosticar el **resultado de un** torneo
- Pronóstico de partidas mediante el modelo
- Alta precisión
- **H2** Es posible definir los **factores de éxito** que influyen en el devenir de una partida
- ➤ Variables más influyentes en el modelo
- H3 Es posible definir el estilo de juego de un jugador
- **➤** Clustering → perfiles de los jugadores

7. Trabajo futuro

 Un modelo que no requiera del balance de piezas comidas / puntos para llevar a cabo la predicción.

Aunque...

- El ajedrez no es similar a otros juegos competitivos donde acumular más puntos siempre significa ganar.
 - Especialmente en niveles profesionales.
- ¿Búsqueda de otros posibles factores de predicción?

¡A jugar!

