昇腾AI芯片与英伟达GPU 的技术对比

□ 2025年5月20日 ○ 2分钟阅读

#GPU #昇腾 #Huawei

昇腾AI芯片与英伟达GPU的技术对比

以下是华为昇腾AI芯片与英伟达GPU的技术对比:

各项指标对标

1. 核心架构与算力对比

技术维度	昇腾910D / 昇腾920 (2025)	英伟达H100 / H200	性能对比
架构设 计	达芬奇3.0 + Chiplet 3D封装	Hopper架构 + CoWoS 封装	昇腾集群效 率高15%
制程工艺	中芯国际7nm (910D) / 6nm (920)	台积电4N (H100) / 台积电CoWoS (H200)	制程差距缩 小至1-2代
FP16 算力	1.2 PFLOPS (910D) / 2.1 PFLOPS (920)	H100: 67 TFLOPS / H200: 90 TFLOPS	昇腾910D为 H100的18 倍
BF16 算力	300 TFLOPS (910D) / 900 TFLOPS (920)	H100: 198 TFLOPS / H200: 312 TFLOPS	昇腾920为 H200的2.9 倍
互联带 宽	光子互连4TB/s	NVLink 4.0 (900GB/s)	昇腾带宽高 4.4倍
延迟	纳秒级 (光子互连)	微秒级 (电信号)	昇腾延迟降 低99%

目录

文章信息

字数

阅读时间

发布时间

更新时间

标签

#GPU #昇腾 #Huawei

2. 能效与散热对比

技术维 度	昇腾910D	英伟达H100	能效优势
功耗	310W	700W	昇腾功耗降低 55%
能效比	2.1 TFLOP/W (FP16)	1.1 TFLOP/W (FP16)	昇腾能效高 91%
散热技 术	液冷系统(45℃全 速运行)	风冷/液冷 (需维持 60℃以下)	昇腾散热成本 低40%
PUE指 标	1.1 (数据中心)	1.5 (传统风冷)	昇腾节能36%

3. 集群性能对比

技术维度	昇腾CM384集群 (384颗910D)	英伟达GB200 NVL72 集群 (72颗H200)	昇腾优势
BF16集 群算力	300 PFLOPS	175 PFLOPS	昇腾算力 高71%
内存容量	12TB (HBM3)	3.3TB (HBM3)	昇腾内存 高3.6倍
训练稳定 性	28天连续运行 (GPT-4级模型)	15天 (需中断维护)	昇腾稳定 性高87%
部署成本	5000万元/集群	1.2亿元/集群	昇腾成本 低58%

4. 软件生态与行业应用

技术维度	昇腾生态	英伟达生态	昇腾进展
开发工具	CANN 7.0(对标 CUDA)	CUDA 12.0	适配率70% vs 100%
框架支持	MindSpore / PyTorch / TensorFlow	TensorFlow / PyTorch	昇腾覆盖90% 主流框架
行业案例	160+大模型(盘古、 DeepSeek等)	GPT-4 / LLaMA	昇腾国内市占率80%
开发者迁 移成本	单模型迁移平均3人天	CUDA原生支持	昇腾效率提升 30%

5. 供应链与成本

技术维度	昇腾910D	英伟达H100	昇腾优势
单卡售价	14.5万元	24万元	价格低40%
国产化率	85% (芯片+工具链)	美国技术占比 100%	完全规避制 裁限制
代工厂	中芯国际 (7nm/6nm)	台积电 (4N工 艺)	自主可控
HBM供 应商	长鑫存储 (HBM3, 良率 80%)	三星/海力士	打破韩国垄 断

总结

通过表格可见,昇腾在**算力密度**(光子互连)、**能效比**(2.1 TFLOP/W)、**国产化率**(85%)和成本(价格仅为英伟达60%)等关键指标上形成显著优势,其技术路径已从追赶转向局部领先。

昇腾超大规模MoE模型推理部 署技术

https://gitcode.com/ascend-tribe/ascend-inference-cluster

1. 综述部分 (Overview)

时间: 5月19日

内容:

全面介绍昇腾超大规模MoE模型推理部署方案的整体架构与核心技术。

重点包括推理框架优化、数学到物理的极致实现(如 FlashComm)、多流并发、MLA加法优化、创新算子等技术亮 点。

2. 昇腾超大规模MoE模型推理负载均衡技术 (OmniPlacement)

时间: 5月20日

内容:

深入讲解在大EP (Expert Parallelism) 场景下,如何实现与昇腾硬件高度亲和的极致负载均衡。

涉及主要组件的技术实现原理,确保大规模推理任务高效分配 与调度。

3. 投机推理技术 (FusionSpec)

时间: 5月21日

内容:

面向高吞吐场景,将原本用于小批量的MTP (Multi-Token Prediction) 技术,基于昇腾平台进行适配和创新。

分享创新量化技术,如以Int8达到FP8精度,提升推理效率与精度。

4. 通信优化技术 (FlashComm)

时间: 5月22日

内容:

聚焦模型侧通信优化,包含AllReduce优化、存换传优化、大EP 四流水并行等多项前沿技术。

目标是降低通信瓶颈, 实现推理过程中的极致并行和吞吐。

5. 昇腾亲和硬件感知创新算子 (OptimizedOps)

时间: 5月23日

内容:

展示基于昇腾硬件深度定制的大量创新算子实现。

这些算子为模型和框架提供极致性能支撑,是上述所有优化的 基础。

总结

本系列报告不仅覆盖了从架构到底层算子的全链路优化思路,还展示了昇腾平台在大模型推理场景下的独特优势和技术突破。相关代码也将陆续开源,推动整个生态发展。

