Electronic Cash

The Problem

Alice opens account.

Withdraws ecash

Bob deposits ecash in his account

Ecash Requirements

- Maintain properties of physical cash
- Unforgeability
- Untraceability
 - Bank cannot link a deposit to a withdrawl
 - Required to maintain anonymity
- Double spending problem
 - A digital copy of ecash could be spent elsewhere

Blind Signature

- Recall RSA --signatures
 - (d,N) is private key and (e,N) public key
 - Signature: m^d mod N
 - Anyone can decrypt this with public key
 - Verify that only owner could sign it
- Blind signature
 - Sign a message without revealing the message to the signer

Blind signature

- Alice sends Bob s = (re m) mod N
 - r is a random number, not revealed to Bob
- Bob computes t = s^d mod N and returns it to Alice
- Alice computes t/r mod N = m^d mod N
 - Obtains Bob signature on message m
 - Hasn't revealed m to Bob

Ecash –blind signatures

- Alice and Bank work together to produce \$1
 - Bank signs the \$1 ecash certificate
 - Bank doesn't have information that this signed \$1 belongs to Alice
- Valid \$1 bill is a pair = (x, y)
 - $y = f(x)^d \mod N$
 - f() is a one-way hash function

Ecash -protocol

- Alice withdraws \$1 by
 - Picks x, computes f(x)
 - Gets a blind signature on f(x) from Bank
 - Alice sends bank $s = (r^e f(x)) \mod N$
 - Bank sends Alice t = sd mod N
 - Alice has $y = t/r = f(x)^d \mod N$
- Alice pays Bob by sending (x,y)

Ecash --protocol

- Bob deposits (x,y) with the bank
- Bank can verify that $y^e = f(x)$
- Bank can check for double spending
 - Not on the list of previously deposited bills
- Bank cannot link this deposit to Alice
 - Blind signature on a random string s

Ecash –Forging

- Imagine $1 = (x,y), y = x^d \mod N$
- Alice can pick y
 - Then, compute $x = y^e \mod N$
 - Now, has a feasible (x,y) pair
- By using, one-way hash function f()
 - Requires Alice to invert the one-way hash
 - Forging is difficult
 - Gets f(x), not x, from ye mod N

Multiple denominations

- Choose multiple key pairs
 - One for each denomination
- A second approach, choose different encryption exponents
 - e = 3 for \$1 bill, 5 for \$5 bill, 7 for \$10 bill
 - These exponents need to be mutually prime
 - If not, can forge bills

Ecash --offline

- The above scheme requires bank to be online all the time
- Not a problem now
- But, can we design a scheme that does not require bank to be online all the time?

- Let bank detect double spending
 - Bank not online all the time to prevent
- If user doesn't double spend, remains anonymous
- If user double spends, user ID is revealed
 - Take suitable action, charge a fine, put in jail etc..

Offline ecash --format

Bank Name

Random Serial Number

One Dollar

 $f(x_1), f(x_1 \oplus ID)$

 $f(x_2), f(x_2 \oplus ID)$

. . . .

 $f(x_k), f(x_k \oplus ID)$

- Alice generates k random numbers x_i for each bill
- Computes $f(x_i)$ and $f(x_i XOR ID)$
- Gets the bank to blind sign the bill with these numbers

- Bank randomly picks N out of M bills it signs for Alice
- Asks Alice to "unblind" them to make sure Alice is actually including her ID in the bills
- Bank assumes that remaining N-M bills include Alice's ID

- Alice pays Bob, the Merchant with signed cash
- Bob sends a challenge bit stream b_i
- If b_i = 0, Alice reveals x_i, b_i = 1, Alice reveals (x_i XOR ID), for i = 1,...k
- Bob can verify each response from Alice
 - Against the information in the \$1 bill

- Bob sends ecash to Bank along with the challenge bit string and the revealed information from Alice –for deposit
- If Alice double spends, the challenge strings given by Merchants will differ in one bit position with a high probability
- Then, bank will have both x_i and (x_i XOR ID)
 - Revealing Alice's ID

- Sequence number is needed
- Without it, Alice can double spend by permuting the $f(x_i)$, $f(x_i XOR ID)$ pairs

Ecash Additional requirements

- Unlinkability: Given two bills, bank cannot tell if they come from the same user
- Divisibility: Bill can be broken up and spend at multiple merchants
- Anonimity Revocation: Based on Judge's orders, to trace illegal transfers
 - Money laundering –owner tracing
 - Blackmail –Bill tracing