es	prit
	Se former autrement

EXAMEN

Semestre : 1 2

Session : Principale Rattrapage

Module : Méthodes Numériques pour l'Ingénieur (MNI)

Enseignant(s): Équipe MNI de l'UP-Maths

Classe(s): 3A1->3A14

Documents autorisés : OUI NON Nombre de pages : 2

Calculatrice autorisée : OUI 📕 NON 🦳 Internet autorisé : OUI 🗌 NON 💻

Date: 04/01/2020 Heure: 09h00 Durée: 1h30

NB : Pour les trois exercices de l'examen, les nombres décimaux seront donnés avec 4 chiffres après la virgule.

$$A_{\alpha} = \begin{pmatrix} \alpha & 1 & 1 \\ 1 & -3 & 1 \\ 1 & 1 & -\alpha \end{pmatrix}, \quad X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}, \quad et \quad b = \begin{pmatrix} 1 \\ -3 \\ 1 \end{pmatrix}$$

- (a) (1 point) Pour quelles valeurs du paramètre réel α , le système (S_{α}) est de Cramer : il admet une unique solution?
- (b) (1 point) Pour quelles valeurs du paramètre réel α , la matrice A_{α} est à diagonale strictement dominante?

Dans la suite, on considère $\alpha = 3$.

- (c) (1 point) Justifier l'existence d'une unique décomposition LU de la matrice A₃.
- (d) (2 points) Réaliser la factorisation LU de la matrice A_3 .
- (e) (1 point) Résoudre le système (S_3) avec une méthode directe de votre choix, vue en cours.
- (f) (1 point) Établir le schéma itératif de la méthode de Jacobi pour la résolution de (S₃) tout en justifiant sa convergence.
- (g) (1 point) En partant du vecteur initial, $X^{(0)} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$, donner les résultats des deux premières itérations de la méthode de Jacobi pour la résolution de (S_3) .

$$f(x) = cos(x) - 3x, x \in I.$$

Il est à noter que la variable x est exprimée en **radian**.

- (a) (1 point) Montrer que l'équation (E) admet une unique solution $x^* \in]0, \frac{\pi}{3}[$.

 Application de la métohde de dichotomie :
- (b) (0.5 points) En utilisant la méthode de dichotomie sur I, estimer le nombre minimal d'itérations pour calculer x^* avec une tolérence de $\varepsilon = \frac{1}{1000}$.

Application de la méthode de Newton :

- (c) (0.5 points) Écrire le schéma itératif de la méthode de Newton associé à (E).
- (d) (1 point) Étudier la convergence de la méthode.
- (e) (0.5 points) Choisir une condition initiale x_0 assurant la convergence de la méthode.
- (f) (2 points) Déterminer x^* avec une précision de $\varepsilon = 10^{-3}$.
- (g) (0.5 points) Comparer les résultats obtenus par les deux méthodes en terme de nombre minimal d'itérations.

(PC)
$$\begin{cases} x'(t) = t - tx(t), & t \in [0, 1] \\ x(0) = 2. \end{cases}$$

(a) (0.5 points) Vérifier que la solution analytique du problème de Cauchy (PC) est donnée par : $x(t) = 1 + e^{-\frac{t^2}{2}}$, $\forall t \in [0,1]$.

Pour la suite, nous notons par h le pas de discrétisation de [0,1], t_n , $n \geq 0$, les points de discrétisation de [0,1], x_n^E , l'approximation de x au point t_n , $n \geq 0$, par la méthode d'Euler Explicite et x_n^I , l'approximation de $x(t_n)$, $n \geq 0$, par la méthode d'Euler Implicite.

- (b) (1 point) Donner, en fonction de h, le schéma d'Euler Explicite (EE), associé au problème (PC).
- (c) (1 point) Pour h = 0.25, approcher x(1) par la méthode EE.
- (d) (1 point) Donner, en fonction de h, le schéma d'Euler Implicite (EI), associé au problème (PC).
- (e) (1 point) En déduire que pour $\forall n \geq 0$:

$$x_{n+1}^{I} = \frac{x_n^{I} + (n+1)h^2}{1 + (n+1)h^2}, \ \forall n \ge 0,$$

- (f) (1 point) Pour h = 0.25, approcher x(1) par la méthode EI.
- (g) (0.5 points) Calculer l'erreur absolue commise par les deux méthodes, EE et EI, au point t = 1. Comparer les résutats.