MEGR 3090/7090/8090: Advanced Optimal Control

$$V_{n}\left(\mathbf{x}_{n}\right) = \min_{\left\{\mathbf{u}_{n}, \mathbf{u}_{n+1}, \cdots, \mathbf{u}_{N-1}\right\}} \left[\frac{1}{2} \sum_{k=n}^{N-1} \left(\mathbf{x}_{k}^{T} \mathbf{Q}_{k} \mathbf{x}_{k} + \mathbf{u}_{k}^{T} \mathbf{R} \mathbf{u}_{k}\right) + \frac{1}{2} \mathbf{x}_{N}^{T} \mathbf{Q}_{N} \mathbf{x}_{N}\right]$$

$$\begin{aligned} V_{n}(\mathbf{x}_{n}) &= \min_{\left[\mathbf{u}_{n}, \mathbf{u}_{n+1}, \cdots, \mathbf{u}_{N-1}\right]} \left[\frac{1}{2} \sum_{k=n}^{N-1} \left(\mathbf{x}_{k}^{T} \mathbf{Q}_{k} \mathbf{x}_{k} + \mathbf{u}_{k}^{T} \mathbf{R} \mathbf{u}_{k} \right) + \frac{1}{2} \mathbf{x}_{N}^{T} \mathbf{Q}_{N} \mathbf{x}_{N} \right] \\ &= \min_{\mathbf{u}_{k}} \left[\frac{1}{2} \left(\mathbf{x}_{n}^{T} \mathbf{Q}_{n} \mathbf{x}_{n} + \mathbf{u}_{n}^{T} \mathbf{R} \mathbf{u}_{n} \right) + \min_{\left[\mathbf{u}_{n-1}, \cdots, \mathbf{u}_{N-1}\right]} \left[\frac{1}{2} \sum_{k=n+1}^{N-1} \left(\mathbf{x}_{k}^{T} \mathbf{Q}_{k} \mathbf{x}_{k} + \mathbf{u}_{k}^{T} \mathbf{R} \mathbf{u}_{k} \right) + \frac{1}{2} \mathbf{x}_{N}^{T} \mathbf{Q}_{N} \mathbf{x}_{N} \right] \right] \\ &= \min_{\mathbf{u}_{k}} \left[\frac{1}{2} \left(\mathbf{x}_{n}^{T} \mathbf{Q}_{n} \mathbf{x}_{n} + \mathbf{u}_{n}^{T} \mathbf{R} \mathbf{u}_{n} \right) + V_{n+1} \left(\mathbf{x}_{n+1} \right) \right] \end{aligned}$$

$$V_{n}\left(\mathbf{x}_{n}\right) = \min_{\mathbf{u}_{n}} \left[\frac{1}{2} \left(\mathbf{x}_{n}^{T} \mathbf{Q}_{n} \mathbf{x}_{n} + \mathbf{u}_{n}^{T} \mathbf{R} \mathbf{u}_{n} \right) + V_{n+1} \left(\mathbf{x}_{n+1} \right) \right]$$

Lecture 11 September 26, 2017

A Note About Unconstrained LQR

Suppose we want to minimize
$$J(u; \times (0)) = \sum_{i=0}^{N+1} (x(i+1))^{T} Qx(i+1) + Civen: x(k+1) = Ax(k+1) + Bu(k)$$

Fun fact: As $N \to \infty$, $u(k)$ can be represented by $u(k) = -Kx(k)$ for some K .

Quadratic Design and Control Optimization Problems - Reminder

Quadratic programming (QP) optimization problem:

Minimize:
$$J(\mathbf{u}) = \mathbf{u}^T Q \mathbf{u} + R \mathbf{u}$$

Subject to:
$$A_1 \mathbf{u} - \mathbf{b}_1 \leq \mathbf{0}$$

$$A_2\mathbf{u} - \mathbf{b}_2 = \mathbf{0}$$

Linear quadratic regulator (LQR) problem:

Minimize:
$$J(\mathbf{u}, \mathbf{x}_0) = \sum_{i=0}^{N-1} (\mathbf{x}(i)^T Q \mathbf{x}(i) + Ru(i)^2)$$

Subject to:
$$Mu(i) - b \le 0, i = 0 \dots N - 1$$

 $\mathbf{x}(i+1) = A\mathbf{x}(i) + Bu(i)$

Quadratic Design and Control Optimization Problems - Reminder

KKT Conditions for Quadratic Programs – **Assessment (Reminder)**

Optimal control problem: Minimize:
$$J(\mathbf{u}) = \mathbf{u}^T Q \mathbf{u} + \mathbf{r}^T \mathbf{u} - p$$
 decision variables

Subject to:
$$A_1 \mathbf{u} - \mathbf{b}_1 \leq \mathbf{0}$$
 q inequality constraints $A_2 \mathbf{u} - \mathbf{b}_2 = \mathbf{0}$ r equality constraints

QP-specific KKT conditions:

$$2Q\mathbf{u} + \mathbf{r}^T + \boldsymbol{\mu}^T A_1 + \boldsymbol{\lambda}^T A_2 = \mathbf{0}$$
 — p linear equations

$$\mu_i \geq 0$$
, $i = 1 \dots q$

$$A_2 \mathbf{u}^* = \mathbf{b}_2 - r$$
 linear equations

$$\lambda_i \neq 0, i = 1 \dots r$$

(Note: $A_{1i} = i^{th}$ row of A_1 , $b_{1i} = i^{th}$ element of \mathbf{b}_1)

Key observations (same as with LP):

- For every i, either $\mu_i = 0$ or $A_{1i} \mathbf{u}^* b_{1i} = 0$
- If we just knew which of the above were true for each i, we'd have q linear equations

KKT Conditions for Quadratic Programs – Assessment (Reminder)

Largrangian:
$$L(u, \mu, \underline{\lambda}) = J(\underline{u}, \underline{x}(0)) + \underline{\mu} g(\underline{u}) + \underline{\lambda} h(\underline{u})$$

1st KKT condition: $\nabla \underline{L}(\underline{u}^*, \underline{\mu}, \underline{\lambda}) = Q$

Remember: The first KKT condition involves taking the derivative of the Lagrangian (with respect to u) and setting it equal to 0.

Challenges with Active Set Methods for **Quadratic Programming**

Challenge 1 (easy to get around) – Optimal point could be on the **interior or boundary** of $G_1 \cap G_2$...Simple remedy: Do an unconstrained optimization first, and if $\mathbf{u}_{unconstrained}^*$ violates constraints, then some constraints must be active at \mathbf{u}^*

Challenge 2 (more cumbersome) – Optimal point will not generally lie on a **vertex** of $G_1 \cap G_2$, so the simplex algorithm isn't applicable

ACTIVE SET ALGORITHM

- 1. Input initial feasible point and working set.
- 2. Termination test (including KKT test). If the point is not optimal, either continue with same working set or go to 7.
- 3. Compute a feasible search vector \mathbf{s}_k .
- 4. Compute a step length α_k along s_k , such that $f(\mathbf{x}_k + \alpha_k \mathbf{s}_k) < f(\mathbf{x}_k)$. If α_k violates a constraint, continue; otherwise go to 6.
- 5. Add a violated constraint to the constraint set and reduce α_k to the maximum possible value that retains feasibility.
- 6. Set $\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k \mathbf{s}_k$.
- 7. Change the working set (if necessary) by deleting a constraint, update all quantities, and go to step 2.

Challenges with Active Set Methods for Quadratic Programming

Dealing with inequality constraints: (31) Always result in nasty complementary stackness condition. (2) Can result in infeasible optimization problem. (3) Leaving zero room for constraint violation can be a very safe thing lif the constraint exists for safety) but can also be very dangerous (if the constraint is there for performance). -Related to difficulty in applying Due to "hardness " KKT conditions, due to inequality

Challenges with Active Set Methods for Quadratic Programming

Original aptimization problem!

Minimize
$$J(u)$$
 $u \in \mathbb{R}^p$ could be Subj. to $g(u) \not = 0$ $g(u) \in \mathbb{R}^p$ crazy complex Modified problem!

Minimize $J(u)$, $u \in \mathbb{R}^p$ $s = vector of Subj. to: $g(u) + s = 0$, $s \in \mathbb{R}^q$ slack variables $s = 0$, $s \in \mathbb{R}^q$ constraints.$

Constraint Softening – Main Idea

If inequality constraints are causing us problems, we can replace them with penalties...

Original QP problem: Minimize: $J(\mathbf{u}) = \mathbf{u}^T Q \mathbf{u} + \mathbf{r}^T \mathbf{u}$

Subject to: $A_1 \mathbf{u} - \mathbf{b}_1 \leq \mathbf{0}$

 $A_2\mathbf{u} - \mathbf{b}_2 = \mathbf{0}$

New approximated QP problem: Minimize: $J(\mathbf{u}) = \mathbf{u}^T Q \mathbf{u} + \mathbf{r}^T \mathbf{u} + kP(\mathbf{u})$

Subject to: $A_2\mathbf{u} - \mathbf{b}_2 = \mathbf{0}$

- The hard inequality constraint from the original problem has been softened
- This can be done for more than just QP problems
- Constraint softening is a fundamental concept behind interior point methods

Constraint Softening via Penalty Functions

Approximated QP problem: Minimize:
$$J(\mathbf{u}) = \mathbf{u}^T Q \mathbf{u} + \mathbf{r}^T \mathbf{u} + \frac{1}{\varepsilon} P(\mathbf{u})$$

Where:
$$P(\mathbf{u}) = [\max\{\mathbf{0}, A_1\mathbf{u} - \mathbf{b}_1\}]^T K \max\{\mathbf{0}, A_1\mathbf{u} - \mathbf{b}_1\}$$

Subject to:
$$A_2\mathbf{u} - \mathbf{b}_2 = \mathbf{0}$$

Visualization for a single constraint:

- Modified and original objective functions are identical when the inequality constraint is satisfied (i.e., when $g(\mathbf{u}) \leq 0$)
- Modified objective function increases rapidly when $g(\mathbf{u}) > 0$ (degree of rapidness depends on ε)

Constraint Softening via Penalty Functions

Idea: Modified optimization problem:

Minimize
$$J_{mod}(u) = J(u) + (min \{0, 5\}) \times (min \{0, 5\})$$

Constraint Softening via Penalty Functions

Constraint Softening via Barrier Functions

Approximated QP problem: Minimize: $J(\mathbf{u}) = \mathbf{u}^T Q \mathbf{u} + \mathbf{r}^T \mathbf{u} + \varepsilon B(\mathbf{u})$

Where:
$$B(\mathbf{u}) = \sum_{i=1}^{q} -k_i \ln(-A_{1i}\mathbf{u} + b_{1i})$$

$$\triangleq -g_i(\mathbf{u})$$

Subject to: $A_2\mathbf{u} - \mathbf{b}_2 = \mathbf{0}$

- Modified and original objective functions are similar far from the inequality constraint, on the feasible side of the constraint set
- Modified objective function goes to ∞ at the boundary of the constraint set (hence acting as a barrier)

Visualization for a single constraint:

Key Ideas of Interior Point Method

Starting point - Modified objective function (augmented with a barrier or penalty – barrier shown here):

Minimize:
$$J(\mathbf{u}) = \mathbf{u}^T Q \mathbf{u} + \mathbf{r}^T \mathbf{u} + \varepsilon B(\mathbf{u})$$

Where: $B(\mathbf{u}) = \sum_{i=1}^q -k_i \ln(-A_{1i}\mathbf{u} + b_{1i})$
Subject to: $A_2\mathbf{u} - \mathbf{b}_2 = \mathbf{0}$ $\triangleq -g_i(\mathbf{u})$

Main optimization process:

- Search for the minimizer of the modified objective function above
- Compute the limit of \mathbf{u}^* as $\varepsilon \to 0$

Two ways to perform the optimization:

- Option 1 (not very common) The analytical way...Write out equations for $\nabla J(\mathbf{u}; \varepsilon)$, set $\nabla J(\mathbf{u}; \varepsilon) = 0$ **0**, then solve for **u** in terms of ε ... $\mathbf{u}^* = \lim_{\varepsilon \to 0} \mathbf{u}(\varepsilon)$
- Option 2 (very common and available as a built-in MATLAB function The numerical way...Start with a relatively large value of ε at iteration 1, then decrease ε at each iteration

Interior Point Method – Simple Analytical Example (Papalambros Ex. 7.7)

Minimize:
$$J(\mathbf{u}) = 3u_1^2 + u_2^2$$

Subject to:
$$u_1 + u_2 \ge 2$$

Main steps:

- 1. Augment $J(\mathbf{u})$ with a barrier function.
- 2. Compute $\nabla J(\mathbf{u}; \varepsilon)$.
- 3. Set $\nabla J(\mathbf{u}; \varepsilon) = 0$, and solve for $\mathbf{u}(\varepsilon)$.
- 4. Compute $\lim_{\varepsilon \to 0} \mathbf{u}(\varepsilon)$

Interior Point Method – Simple Analytical Example (Papalambros Ex. 7.7)

$$\mathcal{E}_{x}: J(\underline{u}) = 3u_{1}^{2} + u_{2}^{2}$$

$$5ub_{1}: to: u_{1} + u_{2} \ge 2$$

$$J_{mod}(\underline{u}) = 3u_{1}^{2} + u_{2}^{2} + \varepsilon \ln(u_{1} + u_{2} - 2)$$

$$\nabla J_{mod} = [6u_{1} - \varepsilon(u_{1} + u_{2} - 2)^{-1} \quad 2u_{2} - \varepsilon(u_{1} + u_{2} - 2)^{-1}] = 6 \text{ when }$$

$$6u_{1}^{*} - \varepsilon(u_{1}^{*} + u_{2}^{*} - 2)^{-1} = 0$$

$$2u_{2}^{*} - \varepsilon(u_{1}^{*} + u_{2}^{*} - 2)^{-1} = 0$$

$$=) u_{2}^{*} = 3u_{1}^{*}$$

Interior Point Method – Simple Analytical Example (Papalambros Ex. 7.7)

$$(\omega_{1}^{*} - \varepsilon(u_{1}^{*} + u_{2}^{*} - 2)^{-1} = 0$$

$$=) (\omega_{1}^{*} (u_{1}^{*} + u_{2}^{*} - 2) - \varepsilon = 0$$

$$=) (\omega_{1}^{*} (u_{1}^{*} + u_{2}^{*} - 2) - \varepsilon = 0$$

$$=) (\omega_{1}^{*} (u_{1}^{*} + u_{2}^{*} - 2) - \varepsilon = 0$$

$$=) (\omega_{1}^{*} (u_{1}^{*} + u_{2}^{*} - 2) - \varepsilon = 0$$

$$=) (\omega_{1}^{*} (u_{1}^{*} + u_{2}^{*} - 2) - \varepsilon = 0$$

$$=) (\omega_{1}^{*} (u_{1}^{*} + u_{2}^{*} - 2) - \varepsilon = 0$$

$$=) (\omega_{1}^{*} (u_{1}^{*} + u_{2}^{*} - 2) - \varepsilon = 0$$

$$=) (\omega_{1}^{*} (u_{1}^{*} + u_{2}^{*} - 2) - \varepsilon = 0$$

$$=) (\omega_{1}^{*} (u_{1}^{*} + u_{2}^{*} - 2) - \varepsilon = 0$$

$$=) (\omega_{1}^{*} (u_{1}^{*} + u_{2}^{*} - 2) - \varepsilon = 0$$

$$=) (\omega_{1}^{*} (u_{1}^{*} + u_{2}^{*} - 2) - \varepsilon = 0$$

$$=) (\omega_{1}^{*} (u_{1}^{*} + u_{2}^{*} - 2) - \varepsilon = 0$$

$$=) (\omega_{1}^{*} (u_{1}^{*} + u_{2}^{*} - 2) - \varepsilon = 0$$

$$=) (\omega_{1}^{*} (u_{1}^{*} + u_{2}^{*} - 2) - \varepsilon = 0$$

$$=) (\omega_{1}^{*} (u_{1}^{*} + u_{2}^{*} - 2) - \varepsilon = 0$$

$$=) (\omega_{1}^{*} (u_{1}^{*} + u_{2}^{*} - 2) - \varepsilon = 0$$

$$=) (\omega_{1}^{*} (u_{1}^{*} + u_{2}^{*} - 2) - \varepsilon = 0$$

$$=) (\omega_{1}^{*} (u_{1}^{*} + u_{2}^{*} - 2) - \varepsilon = 0$$

$$= (\omega_{1}^{*} + u_{2}^{*} - 2) - \varepsilon = 0$$

$$= (\omega_{1}^{*} + u_{1}^{*} - 2) - \varepsilon = 0$$

$$= (\omega_{1}^{*} + u_{2}^{*} - 2) - \varepsilon = 0$$

$$= (\omega_{1}^{*} + u_{2}^{*} - 2) - \varepsilon = 0$$

$$= (\omega_{1}^{*} + u_{2}^{*} - 2) - \varepsilon = 0$$

$$= (\omega_{1}^{*} + u_{2}^{*} - 2) - \varepsilon = 0$$

$$= (\omega_{1}^{*} + u_{2}^{*} - 2) - \varepsilon = 0$$

$$= (\omega_{1}^{*} + u_{2}^{*} - 2) - \varepsilon = 0$$

$$= (\omega_{1}^{*} + u_{2}^{*} - 2) - \varepsilon = 0$$

$$= (\omega_{1}^{*} + u_{2}^{*} - 2) - \varepsilon = 0$$

$$= (\omega_{1}^{*} + u_{2}^{*} - 2) - \varepsilon = 0$$

$$= (\omega_{1}^{*} + u_{2}^{*} - 2) - \varepsilon = 0$$

$$= (\omega_{1}^{*} + u_{2}^{*} - 2) - \varepsilon = 0$$

$$= (\omega_{1}^{*} + u_{2}^{*} - 2) - \varepsilon = 0$$

$$= (\omega_{1}^{*} + u_{2}^{*} - 2) - \varepsilon = 0$$

$$= (\omega_{1}^{*} + u_{2}^{*} - 2) - \varepsilon = 0$$

$$= (\omega_{1}^{*} + u_{2}^{*} - 2) - \varepsilon = 0$$

$$= (\omega_{1}^{*} + u_{2}^{*} - 2) - \varepsilon = 0$$

$$= (\omega_{1}^{*} + u_{2}^{*} - 2) - \varepsilon = 0$$

$$= (\omega_{1}^{*} + u_{2}^{*} - 2) - \varepsilon = 0$$

$$= (\omega_{1}^{*} + u_{2}^{*} - 2) - \varepsilon = 0$$

$$= (\omega_{1}^{*} + u_{2}^{*} - 2) - \varepsilon = 0$$

$$= (\omega_{1}^{*} + u_{2}^{*} - 2) - \varepsilon = 0$$

$$= (\omega_{1}^{*} + u_{2}^{*} - 2) - \varepsilon = 0$$

$$= (\omega_{1}^{*} + u_{2}^{*} - 2) - \varepsilon = 0$$

$$= (\omega_{1}^{*} + u_{2}^{*} - 2) - \varepsilon = 0$$

$$= (\omega_{1}^{*} +$$

Interior Point Method – Numerical Process

Main optimization process:

- Search for the minimizer of the modified objective function above
- Compute the limit of \mathbf{u}^* as $\varepsilon \to 0$

Main idea of numerical optimization: Start with a relatively large value of ε at iteration 1, then decrease ε at each iteration

Syntax:

https://www.mathworks.com/help/optim/ug/quadprog.html

Interior Point Method – Linear Quadratic Regulator Example

System dynamics:

$$\mathbf{x}(k+1) = A\mathbf{x}(k) + Bu(k)$$
$$y(k) = C\mathbf{x}(k)$$

$$A = \begin{bmatrix} 0.99 & 0.1 \\ -0.2 & 0.9 \end{bmatrix}$$

where:
$$B = [0 \ 0.1]^T$$

$$C = \begin{bmatrix} 1 & 0 \end{bmatrix}$$

Minimize:
$$J(u, \mathbf{x}(0)) = \sum_{i=1}^{5} \mathbf{x}^{T}(i) \bar{Q} \mathbf{x}(i) + \bar{R}u(i)^{2}$$
 where: $\bar{Q} = I_{2\times 2}, \bar{R} = 1$

Subject to system dynamics and: $-0.5 \le u(i) \le 0.5, i = 0 ... 4$ $\mathbf{x}(0) = [5 \ 0]^T$

Code available on Canvas

Preview of Upcoming Lectures

Next 2 lectures – Sequential quadratic programming

• Leads to a *locally optimal* solution for more complex optimization problems than LP or QP problems

Subsequent lectures – Dynamic programming

- Leads to a *globally optimal* solution for very general discrete-time optimal control problems
- Can be very computationally intensive, but still more efficient than an exhaustive grid search