

Statistics Practitioners' Challenge

Provided by Allianz

Presentation by "The Rebaggers"

Class imbalances

The team!

Introduction

Proposed solution

Resampling techniques

Results

Introduction

Importance of predicting claim frequency.

- Fraud detection and prevention
- Financial planning and reserving
- Pricing of the policies.

Challenges faced

1. Bias and poor performance metrics

Suggested solution: Application of different resampling techniques to capture the best of both the classes and comparing it within different performance metrics.

Performance metrics - (D2 explained, Mean absolute error, Time taken to train the model, F1 score)

2. Computational complexity and resource constraints

Suggested solution: Representative sampling of the original data to replicate similar results before actually implementing the model on the actual dataset.

Introduction

Proposed solution

Resampling techniques

Results

Proposed solutions

Introduction

Proposed solution

Resampling techniques

Results

Resampling techniques

Random undersampling

 $\underset{(\mathrm{randomly})}{\mathrm{undersampled}}$

left untouched

Random oversampling

left untouched

oversampled (by duplication)

SMOTER

undersampled (randomly)

oversampled (using kNN)

Gaussian noise

undersampled (randomly)

oversampled (adding gaussian noise)

WERCS

combination of the other methods weights to the data by relevance

Introduction

Proposed solution

Resampling techniques

Models

The models

Poisson regression

Random forest

XGboost

REBAGG

Well-suited for count data

- Strong assumption
- Linear relationships

Robust method against overfitting

Computationally complex

Efficient and scalable

Tuning of hyperparameters

Stability and accuracy

Computational resources and time for training

Which is the best model?

Every model!

Apart from WERCS + Random Forest, that's terrible :(

Performance on the rare class

Performance on the rare class

General performance

General performance

The compromise

The compromise

	PDE	F1 Score	MAE on rare class	MAE	Time
General performance					
Benchmark	0.02660	0.00000	1.79269	0.13565	1.42199
XGB None	-0.01537	0.00007	1.79514	0.12326	2.57665
Performance on the rare class					
Benchmark	0.02660	0.00000	1.79269	0.13565	1.42199
POI GN	-3.53659	0.00592	0.85354	1.09977	1.15724
XGB RU	-2.94768	0.00449	0.99613	0.95204	0.35723
XGB GN	-3.36994	0.00531	0.88476	1.05970	3.63604
Compromise					
Benchmark	0.02660	0.00000	1.79269	0.13565	1.42199
POI SMOTER	-1.24956	0.00220	1.69023	0.19723	31.18506
RF None	-1.69685	0.00088	1.76638	0.13885	16.67995
RF SMOTER	-0.93917	0.00340	1.56522	0.29707	51.94275
REBAGG-RO	-0.94582	0.00432	1.55349	0.31093	43.82252
REBAGG-WERCS	-1.14715	0.00287	1.63469	0.24052	58.96560

Introduction

Proposed solution

Resampling techniques

Results

Pros

Cons

Differentiation of strategies with improvements on MAE in general and on the rare class

Overall computational intensity of selected models that is comparable to the benchmark

Very low PDE, probably due to the resampling itself

There is not a unique model capable of addressing this model without downsides

Further analysis

Gridsearch on models hyperparameters

Simultaneous gridsearch of resampling techniques and model hyperparameters to possibly achieve an optimal model

Thank you for your attention!