求解抛物方程 1.2

作者:周铁军

2019年9月29日

1 抛物方程

题目:

$$u_{t} = \alpha(u_{xx} + u_{yy}) + f(x,t) \qquad (x,y) \in G = (0,1) \times (0,1), t > 0$$

$$u(0,y,t) = u(1,y,t) = 0, \qquad y \in [0,1], t \ge 0$$

$$u(x,0,t) = u(x,1,t) = 0, \qquad x \in [0,1], t \ge 0$$

$$u(x,y,0) = 0, \qquad (x,y) \in [0,1] \times [0,1]$$

$$(1)$$

其中 $f(x,y,t) = sin5\pi t sin2\pi x sin\pi y, \alpha = 1$, 网格步长 $h_1 = h_2 = 0.1, 0.05, \tau = 0.01$. 计算 u 在 t = 0.1, 0.2, 0.4, 0.8 的近似值。

2 ADI 法求解

首先,对进行网格剖分,其中 h_1 和 h_2 分别为区间 $[0,1] \times [0,1]$ 上的剖分步长。 其次,利用五点差分离散二阶空间导数 $\frac{\partial^2 u}{\partial x^2}$ 和 $\frac{\partial^2 u}{\partial y^2}$,得到:

$$\frac{\partial^2 u}{\partial x^2} = \frac{u_{i+1,j} + u_{i-1,j} - 2u_{i,j}}{h_1^2} + O(h_1^2)
\frac{\partial^2 u}{\partial y^2} = \frac{u_{i,j+1} + u_{i,j-1} - 2u_{i,j}}{h_2^2} + O(h_2^2)$$
(2)

利用向前差分离散一阶时间导数 $\frac{\partial u}{\partial t}$,得到:

$$\frac{\partial u}{\partial t} = \frac{u_{i,j}^{n+1} - u_{i,j}^n}{\tau} + O(\tau) \tag{3}$$

其中 i, j = 0, 1, ..., n, 于是方程可表示为:

$$\frac{u_{i,j}^{n+\frac{1}{2}} - u_{i,j}^{n}}{\frac{\tau}{2}} = \frac{u_{i+1,j}^{n+\frac{1}{2}} + u_{i-1,j}^{n+\frac{1}{2}} - 2u_{i,j}^{n+\frac{1}{2}}}{h^{2}} + \frac{u_{i,j+1}^{n} + u_{i,j-1}^{n} - 2u_{i,j}^{n}}{h^{2}} + f^{n}(x(i), y(j)),$$

$$\frac{u_{i,j}^{n+1} - u_{i,j}^{n+\frac{1}{2}}}{\frac{\tau}{2}} = \frac{u_{i+1,j}^{n+\frac{1}{2}} + u_{i-1,j}^{n+\frac{1}{2}} - 2u_{i,j}^{n+\frac{1}{2}}}{h^2} + \frac{u_{i,j+1}^{n+1} + u_{i,j-1}^{n+1} - 2u_{i,j}^{n+1}}{h^2} + f^n(x(i), y(j)),$$

化简得:

$$-\frac{\tau}{2h^2}(u_{i+1,j}^{n+\frac{1}{2}}+u_{i-1,j}^{n+\frac{1}{2}})+(1+\frac{\tau}{h^2})u_{i,j}^{n+\frac{1}{2}}=\frac{\tau}{2h^2}(u_{i,j+1}^n+u_{i,j-1}^n)+(1-\frac{\tau}{h^2})2u_{i,j}^n+\frac{\tau}{2}f^n(x(i),y(j)),$$

$$-\frac{\tau}{2h^2}(u_{i,j+1}^{n+1}+u_{i,j-1}^{n+1})+(1+\frac{\tau}{h^2})u_{i,j}^{n+1}=\frac{\tau}{2h^2}(u_{i+1,j}^{n+\frac{1}{2}}+u_{i-1,j}^{n+\frac{1}{2}})+(1-\frac{\tau}{h^2})u_{i,j}^{n+\frac{1}{2}}+\frac{\tau}{2}f^n(x(i),y(j)),$$

考虑边值条件,有:

$$u(x(0), y, t) = u(x(n), y, t) = 0$$

$$u(x, y(0), t) = u(x, y(n), t) = 0$$
(4)

则只需求解红色区域内的点 (见图 1):

图 1: 网格剖分

令
$$U^k = (u_{11}^k, u_{12}^k, ..., u_{1,n-1}^k, u_{21}^k, u_{22}^k, ..., u_{2,n-1}^k, ...)^T$$
 $(U^k 为 (n-1)^2 \times 1$ 向量)

 $F^k = (f_{11}^k, f_{12}^k, ..., f_{1,n-1}^k, f_{21}^k, f_{22}^k, ..., f_{2,n-1}^k, ...)^T \quad (F^k 为 (n-1)^2 \times 1 向量, f_{i,j}^k = f(x(i), y(j), t(k)) = sin5\pi t_k sin2\pi x_i sin\pi y_j),$

系数矩阵:

$$A_{1} = \begin{bmatrix} B_{1} & C & \cdots & 0 \\ C & B_{1} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & B_{1} \end{bmatrix}_{(n-1)^{2} \times (n-1)^{2}},$$
(5)

其中,

$$B_1 = (1 + \frac{\tau}{h^2})I_{n-1}, \quad C = -\frac{\tau}{2h^2}I_{n-1}$$
 (6)

$$A_{2} = \begin{bmatrix} B_{2} & 0 & \cdots & 0 \\ 0 & B_{2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & B_{2} \end{bmatrix}_{(n-1)^{2} \times (n-1)^{2}}, \quad B_{2} = \begin{bmatrix} 1 - \frac{\tau}{h^{2}} & \frac{\tau}{2h^{2}} & \cdots & 0 \\ \frac{\tau}{2h^{2}} & 1 - \frac{\tau}{h^{2}} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 - \frac{\tau}{h^{2}} \end{bmatrix}_{(n-1) \times (n-1)^{2}}$$

$$(7)$$

$$A_{3} = \begin{bmatrix} B_{3} & 0 & \cdots & 0 \\ 0 & B_{3} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & B_{3} \end{bmatrix}_{(n-1)^{2} \times (n-1)^{2}}, \quad B_{3} = \begin{bmatrix} 1 + \frac{\tau}{h^{2}} & -\frac{\tau}{2h^{2}} & \cdots & 0 \\ -\frac{\tau}{2h^{2}} & 1 + \frac{\tau}{h^{2}} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 + \frac{\tau}{h^{2}} \end{bmatrix}_{(n-1) \times (n-1)}$$
(8)

$$A_{4} = \begin{bmatrix} B_{4} & -C & \cdots & 0 \\ -C & B_{4} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & B_{4} \end{bmatrix}_{(n-1)^{2} \times (n-1)^{2}}, \quad B_{4} = (1 - \frac{\tau}{h^{2}})I_{n-1}$$

$$(9)$$

于是得到如下迭代格式:

$$A_1 U^{n+\frac{1}{2}} = A_2 U^n + \frac{\tau}{2} f^n(x(i), y(j))$$

$$A_3U^{n+1} = A_4U^{n+\frac{1}{2}} + \frac{\tau}{2}f^{n+\frac{1}{2}}(x(i), y(j))$$

3 求解结果

不妨令 tmax = 1, 则 $t \in [0, tmax]$,

Part I: $h_1 = h_2 = 0.05$ 不同时刻的 u 的近似值的图像。

图 2: 0.1 时刻的 u 的近似解.

图 4: 0.4 时刻的 u 的近似解.

图 3: 0.2 时刻的 u 的近似解.

图 5: 0.8 时刻的 u 的近似解.

Part II: $h_1 = h_2 = 0.1$ 不同时刻的 \mathbf{u} 的近似值的图像。

图 6: 0.1 时刻的 u 的近似解.

图 8: 0.4 时刻的 u 的近似解.

图 7: 0.2 时刻的 u 的近似解.

图 9: 0.8 时刻的 u 的近似解.

以上为 u 在 t = 0.1, 0.2, 0.4, 0.8 的近似值。

这一次可以看到,随着迭代次数的不断增加,函数近似值的图像最终区域稳定。

4 误差分析

我们选取如下节点的近似解来分析误差

$$\begin{bmatrix}
(0.2, 0.2) & (0.4, 0.2) & \cdots & (0.8, 0.2) \\
(0.2, 0.4) & (0.4, 0.4) & \cdots & (0.8, 0.4) \\
\vdots & \vdots & \ddots & \vdots \\
(0.2, 0.8) & (0.4, 0.8) & \cdots & (0.8, 0.8)
\end{bmatrix}$$
(10)

如图,"×"表示的位置

图 10: 节点坐标

作如下四种剖分, 剖分步长 h=0.2,0.1,0.05,0.025; 并将剖分最密者 (即 h=0.025) 看作精确解。 得到如下误差

表 1: 误差分析

h	max 范数	L_2 范数	max 的阶	L_2 的阶
0.2	1.5467e-4	4.2750e-4	2.1711	2.1711
0.1	3.4344e-5	9.4925e-5	2.3470	2.3470
0.05	6.7503e-6	1.8657e-5		
0.025		看作精确解		