WHAT IS A GROUP

Kechao Chen

March 2021

Concretely, (By Cayley's theorem) all groups are transformation groups (automorphism groups), that is, we can view groups as morphisms

$$_\circ _: \mathrm{Aut}_{\mathbf{C}}X \sqcap \mathrm{Aut}_{\mathbf{C}}X \to \mathrm{Aut}_{\mathbf{C}}X$$

induced by the composition of morphisms in any category C.

Abstractly, a group is a *group object* in **Set**. The concept of a group object models the properties of an automorphism group through categorical notions. It is by definition the information $_ \bullet _ : X \sqcap X \to X$, $e: 1 \to X$ and $\angle : X \to X$, where 1 is the final object of the given category. It's axioms are illustrated in the following diagrams:

• Associativity:

• Identity:

• Inverse elements:

• An abelian group object satisfies an additional property of commutativity:

where $p: X \sqcap Y \to Y \sqcap X$ is the "permutation" isomorphism between products. In this sense, assume $(\bullet_X, e_X, \swarrow_X)$, $(\bullet_Y, e_Y, \swarrow_Y)$, are two group objects of the same category, $\phi: X \to Y$ is a group (object) homomorphism if and only if the diagrams

commute.