Linear_Regression.R

Kaustubh Chalke

```
> #Importing the Hepatatis c Dataset
> HCV <- read.csv("C:/Users/Kaustubh Chalke/Documents/Multivariate Analysis/Project/HCV-Egy-Data.</pre>
> HCV
csv")
  library(dplyr)
  attach(HCV)
  Survivorship =HCV$Survivorship <- if_else( RNA.EOT>= 400000 , 0,1)
  cbind(data.frame(Survivorship),HCV)
    Survivorship Age Gender BMI Fever Nausea Vomting Headache Diarrhea Fatigue...generalized.bone.
ache Jaundice Epigastric.pain
                                                                            1
                                                                                        1
                                             2
                                                                1
1
2
2
2
3
1
           2
                                2
1
                                                                2
                                                                            2
                                                                                        1
                     46
                                    29
                                             1
                  1
           2
                                             2
                                                                2
                                                                            2
                                                                                        2
                  0
                      57
                                    33
           1
                  0
                      49
                                    33
                                             1
                                                                2
                                                                            1
                                                                                        2
           2
                                                                            2
                      59
                                    32
                                             1
                                                                1
                                                                                        1
           2
                  1
                      58
                                    22
                                             2
                                                                2
                                                                            2
                                                                                        1
           2
                      42
                                    26
                                             1
                                                                1
                                                                            2
                                                                                        2
                  1
           2
                  1
                      48
                                    30
                                             1
                                                                1
                                                                            2
                                                                                        2
1
           1
9
                                             1
                                                                1
                                                                            2
                                                                                        2
                  1
                     44
                                    23
           1
10
                  1
                     45
                                    30
                                             2
                                                                1
                                                                            2
                                                                                        2
                                1
2
2
           1
1
\overline{1}1
                                             2
                                                                1
                                                                            2
                                                                                        1
                  0
                     37
                                    24
           2
                                1
1
1
<u>1</u>2
                                    22
                                             2
                                                                2
                                                                            1
                                                                                        1
                  1
                     36
           1
1
                                             2
                                                                1
                                                                            1
                                                                                        1
13
                     45
                                    25
                  1
                                2
2
14
           1
                                                                2
                                                                            1
                                                                                        1
                     34
                                    22
                                             1
                  1
           2
2
15
                                                                2
                                                                            2
                  0
                      40
                                    32
                                             2
                                                                                        1
           1
                                1
                                             2
16
                  0
                     58
                                1
                                    34
                                                                1
                                                                            1
                                                                                        1
2
17
           1
                                                                2
                                             1
                                                                            2
                                                                                        2
                     61
                                1
                                    35
                  1
1
           1
                     55
                                                                            2
                                                                                        2
                                    24
                                             2
                                                                1
18
                  1
           2
                                                                2
                                                                            2
                                                                                        2
19
                  0
                      56
                                    27
                                             1
20
           2
                     35
                                    23
                                             2
                                                                2
                                                                            1
                                                                                        1
                  0
1
21
1
           1
                  0
                      57
                                    23
                                             1
                                                                1
                                                                            2
                                                                                        2
           1
22
23
2
24
1
                  1
                      33
                                    25
                                             2
                                                                1
                                                                            2
                                                                                        2
           2
                  1
                      41
                                    23
                                             1
                                                                2
                                                                            2
                                                                                        2
           1
                     39
                                    29
                                             1
                                                                2
                                                                            1
                                                                                        2
                  1
           1
25
                     33
                                                                2
                                                                            2
                                                                                        2
                  1
                                    24
                                             1
2 26
           1
                     43
                                    34
                                             2
                                                                2
                                                                            2
                                                                                        1
                  1
1
           1
                                1
27
1
                  0
                     51
                                    34
                                             2
                                                                1
                                                                            2
                                                                                        2
           1
28
                     39
                                22222
                                    33
                                             2
                                                                1
                                                                            2
                                                                                        1
                  0
1
29
           1
                     57
                                    26
                                             1
                                                                2
                                                                            2
                                                                                        1
                  1
           1
```

2

31		1	55	2	33	1		2		2	1		
2 32	1	1	58	2 2	35	2		2		2	2		
1	1			1			4		24			5. 24	
WBC RNA.4 R		RBC 2 RNA		Plat RNA.EI		ALT.1	ALT4	ALT.12	ALT.24	ALT.36	ALT.48	ALT.after.24.w	RNA.Base
1 7425	424	8807		112132	99	84	52	109	81	5	5	5	655330
634536 2 12101	2881 442		10	5 129367	5 91	123	95	75	113	57	123	44	40620
	6370 462		33680 12	4 3108 151522	85 113	49	95	107	116	5	5	5	571148
661346		5 7	73594	5 55882	29								
	4/9 5856			146457 3 58230	43 01	64	109	80	88	48	77	33	1041941
5 3661 738756 3		6375	11	187684 6 24286	99	104	67	48	120	94	90	30	660410
6 11785		2456	15	131228	66	104	121	96	65	73	114	29	1157452
1086852 7 11620	474	5 7333	12	5 177261	5 78	57	113	118	107	84	80	28	325694
		095 5941		66 6352 216176	157 119	112	80	127	45	96	53	39	641129
72050 7	8729	5 37	70605	506296	5								
9 10480 757361	460			148889 0 2030	93 12	83	55	102	97	122	39	45	591441
10 6681		5329	12	98200	55	68	72	127	81	125	43	30	1151206
	2673 426	20 2 5042		5 55551 166027	103	124	111	74	53	123	101	33	1023123
103190 12 6052	7319 413		14846 13	6 5999 144266	98 75	49	93	52	46	46	59	45	137712
1122999	561	438	631	.45 8062	204								
13 9279 536969	411	6937 5	13	203003 5	97 5	101	66	53	95	55	104	26	936444
14 5638 884322	432 5868			141110 5 7821	120	61	64	51	78	90	113	23	392976
15 11507	416	5603	14	222874	127	122	106	105	88	111	111	36	1133727
1111871 16 8035				44 1246 149506	509 117	53	50	80	120	66	86	34	614951
314296 17 10843				0 13514 197640	45 86	105	70	86	83	87	47	33	900099
721460		5		5	5								
18 8476 230993				163276 3 25641	53 15	101	50	95	112	97	68	27	1145310
19 6599		8466	15	190642 5 16298	53	124	62	76	57	46	93	26	506756
20 4845	443	6025	10	111819	115	121	63	127	95	124	93	42	1080499
	1715 403	9 40 1637		477719 116558	9 86	109	118	119	55	103	84	32	169624
786017 22 9952	6690			7 28252 109023	24 84	77	67	81	117	68	42	32	1135200
572747		5		5	5								
23 7961 440576	459 530			94733 2 1873	45 41	92	103	104	40	115	93	33	293380
24 7136 992652		5248		211363 7 76276	70	102	76	58	111	95	58	25	993940
25 6057	430	0774	11	222135	62	91	116	128	41	70	106	43	243433
981370 26 6648	125 452			.5 75338 109871	83 48	112	99	85	59	87	78	35	955296
540654 27 11032		5		94503	5 41			64	71	89	87	34	766355
531269	7376	03 7	73486	3 37283	37								
				190314 19572	61	120	113	75	88	114	99	43	486467
29 6038		3261		126721	51	118	98	42	93	53	83	45	285374
186657 30 5846				5 104729	5 120	72	117	126	45	95	49	38	426136
247777 31 5383	7670 399			3 3151! 182262	50 96	49	59	88	62	58	81	41	1194301
928679	297	78 1	L2425	0 24404	49								
32 7378 287714			6689	201114 1 3504	57 44	110	128	96	69	105	72	26	557708

> HCV_lr = select(HCV,RNA.12,RNA.EF,RNA.EOT,RNA.Base)
> #Multiple Regression
> View(HCV)

> # Performing multiple regression on HCV dataset
> fit <- lm(Survivorship~RNA.EF+RNA.EOT+RNA.Base+RNA.12,data=HCV)
> #show the results

> summary(fit)

Call: $lm(formula = Survivorship \sim RNA.EF + RNA.EOT + RNA.Base + RNA.12,$

HCV Data

<pre>> confint(fit,level=0.95) 2.5 % 97.5 %</pre>												
2.5 % (Intercept) 1.039242e+00	1.096251e+00											
RNA.EF 9.246772e-08	1.977093e-07											
RNA.EOT -1.739656e-06	-1.633825e-06	•										
RNA.Base -4.791802e-08	2.024102e-08											
RNA.12 7.403556e-08	1.708087e-07	/										
> # Predicted Values												
<pre>> fitted(fit) 1 2</pre>	2	4	5	6	7							
8 9	J	4	J	U	1							
	-0.100425497	-0.046202140	0.978951116	1.051721814	0.827153724	0.603						
599640 0.463088785	0.1200.20.01	0.0.02022.0	0.0.000		0.02.200.2.	0.005						
10 11	12	13	14	15	16							
17 18												
0.700788986 0.395451379	1.145034724	1.054780232	0.939337139	0.383690303	-0.043539588	1.055						
283193 0.608158926	24			2.4	2.5							
19 20	21	22	23	24	25							
26 27 0.491963928 0.527928690	0.292325027	1.052029748	1.066513908	0.611586573	0.567963654	1.054						
519349 -0.037988796	0.232323027	1.032029740	1.000313906	0.011360373	0.30/903034	1.034						

```
29
                                             30
                                                                              32
                                                                                              33
                                                             31
                                                                                                              34
35 36
-0.167439567 1.063790063 0.565364837 0.880695657 1.028626040 -0.011389086 0.506226136 0.011
654539 0.213029450
                             38
                                             39
                                                             40
                                                                              41
                                                                                              42
 0.597629258 0.737527908 1.005760078
                                                0.793516211 0.267095793 0.588765861 0.794159304 -0.016
029038 1.009401378
> residuals(fit)
                                              3
                                                               4
-0.093951141 0.418416934 0.100425497 0.046202140
                                                                 0.021048884 -0.051721814
                                                                                                  0.172846276 0.396
400360 0.536911215
            10
                                             12
                                                             13
                                                                              14
 0.299211014 - 0.395451379 - 0.145034724 - 0.054780232  0.060662861 - 0.383690303  0.043539588 - 0.055
283193 0.391841074
            19
                                             21
                                                             22
                                                                              23
0.432036346 -0.054
519349 0.037988796
            28
                                             30
                                                             31
                                                                              32
                                                                                              33
 35 36
0.167439567 -0.063790063 0.434635163 0.119304343 -0.028626040 0.011389086 0.493773864 -0.011
654539 -0.213029450
37
                             38
                                             39
                                                             40
                                                                              41
                                                                                              42
 45
0.402370742 0.262472092 -0.005760078 0.206483789 -0.267095793
                                                                                  0.411234139
                                                                                                  0.205840696 0.016
029038 -0.009401378
            46
                                             48
                                                             49
                                                                              50
                                                                                              51
 53 54
0.356215266 -0.022662356 -0.237126633 0.073368272 0.087265310 0.113395942 0.427698389 -0.145
781416 -0.032229682
            55
                             56
                                             57
                                                             58
                                                                              59
                                                                                              60
                                                                                                              61
               63
-0.058694243 -0.077549428 0.193079578 -0.201812452 -0.020263805
                                                                                  0.004195303
                                                                                                 0.353194003 0.241
011417 -0.389892131
            64
                                             66
                                                             67
                                                                              68
                                                                                              69
 71 72
0.058767072 0.048147108 0.170029600 0.452182189 -0.010218911 0.199892619 -0.483167144 0.429
041016 0.265917721
                             74
                                             75
                                                             76
                                                                              77
                                                                                              78
 0.478695135 -0.498119095 -0.377537795 0.147279156
                                                                 0.341947206 -0.416317016
                                                                                                 0.203756691 0.515
857719 0.178512111
               90
 0.157948751 -0.439036477 0.224930967 -0.412856208 0.349722377 -0.047544726 -0.443753655 -0.294
019820 0.399434327
                                             93
                                                                              95
 0.511166604 -0.202967827 -0.058981268 0.128043944 -0.279917451 -0.061377944 0.100981119 0.090
908069 -0.057401881
> #Anova Table
> anova(fit)
Analysis of Variance Table
Response: Survivorship
                Df Sum Sq Mean Sq F value Pr(>F)
1 29.323 29.323 560.5988 < 2.2e-16 ***
1 211.422 211.422 4041.9169 < 2.2e-16 ***
1 0.039 0.039 0.7417 0.3893
               Df
RNA.FF
RNA.EOT
RNA.Base
                                         24.6336 7.796e-07 ***
                               1.289
                     1.289
RNA.12
Residuals 1380 72.184
                               0.052
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 > vcov(fit)
                  (Intercept)
                                         RNA.EF
                                                         RNA.EOT
                                                                         RNA.Base
               2.111404e-04 -8.223385e-11 -8.432992e-11 -1.771662e-10 -7.084659e-11 -8.223385e-11 7.195422e-16 -2.398368e-16 -4.605975e-18 -1.929385e-16 -8.432992e-11 -2.398368e-16 7.276145e-16 -5.055297e-18 -1.804488e-16 -1.771662e-10 -4.605975e-18 -5.055297e-18 3.018065e-16 5.574184e-18 -7.084659e-11 -1.929385e-16 -1.804488e-16 5.574184e-18 6.084031e-16
(Intercept)
RNA.EF
RNA.EOT
RNA.Base
RNA.12
> cov2cor(vcov(fit))
                Intercept) RNA.EF RNA.EOT RNA.Base RNA.12
1.0000000 -0.210977843 -0.21515200 -0.701828333 -0.19766857
-0.2109778 1.000000000 -0.33146446 -0.009883919 -0.29160511
-0.2151520 -0.331464455 1.00000000 -0.010787772 -0.27121123
-0.7018283 -0.009883919 -0.01078777 1.000000000 0.01300832
               (Intercept)
(Intercept)
RNA.EF
RNA.EOT
RNA.Base
                -0.1976686 -0.291605109 -0.27121123 0.013008324 1.00000000
RNA.12
> temp <- influence.measures(fit)</pre>
```

```
temp
Influence measures of
                  lm(formula = Survivorship ~ RNA.EF + RNA.EOT + RNA.Base + RNA.12,
                                                                                                                                            data = HCV) :
       0.009317 -2.30e-03 -7.89e-03
0.011375 -7.56e-02 8.17e-02
0.022491 -1.23e-03 -2.41e-02
                                                                                                -0.01974 1.005
                                                                                                                          7.80e-05 0.00230
                                                                                                  0.13596 0.997
0.03375 1.009
                          -7.91e-02
                                                                                                                          3.69e-03 0.00545
2.28e-04 0.00584
        0.070830
         0.000257
                           1.01e-02
       -0.007665
                           1.34e-03
                                              0.006796
                                                               6.85e-03
                                                                                1.60e-03
                                                                                                  0.01308 1.008
                                                                                                                          3.43e-05 0.00416
                          -1.24e-02
3.24e-03
                                                                                 3.97e-02
2.59e-03
                                                                                                0.03979 1.165
-0.01422 1.007
       -0.007033
                                             -0.009916
                                                                1.08e-03
                                              0.003318 -9.83e-03
       -0.000415
                                                                                                                          4.05e-05 0.00393
                                              0.003310 -3.03e-03 2.33e-03

0.016197 -1.55e-02 -8.46e-03

0.022960 7.23e-03 7.62e-02

0.051171 -8.76e-04 -7.25e-02

-0.015180 5.55e-02 -1.37e-02
                                                                                                  0.04221 1.005
0.09722 0.996
        0.014511
                           3.32e-02
                                             -0.016197
                                                                                                                          3.56e-04 0.00310
       -0.016288
                           1.09e-02
                                             -0.022960
                                                                                                                          1.89e-03 0.00312
        0.041378
                          -1.07e-02
                                                                                                  0.10381 0.986
                                                                                                                          2.15e-03 0.00194
       -0.031871
                           4.17e-02
                                             -0.015180
                                                                                                  0.07817 1.001
                                                                                                                          1.22e-03 0.00354
                                             -0.025488 -5.83e-02 -8.88e-02
0.034561 2.19e-02 -1.18e-02
                                                                                                -0.13291 0.999 3.53e-03 0.00583
-0.05555 1.010 6.17e-04 0.00756
        0.033901
                           8.30e-02
       -0.014484
                          -3.89e-02
                                             0.003466 -6.37e-03
-0.010662 -4.01e-03
                                                                                                                          3.18e-05 0.00275
7.19e-05 0.00506
                                                                                2.79e-03 -0.01260 1.006
13
       -0.003268
                           3.39e-03
                                                             -4.01e-03 4.94e-03 0.01895 1.008
-6.98e-02 -2.65e-02 -0.10098 0.997
                           1.40e-02
        0.001621
                                             -0.033425
15
                           5.05e-02
        0.033820
                                                                                                                          2.04e-03 0.00359
                                             0.010957 2.35e-04 -5.55e-03 0.01276 1.008
0.003490 -5.76e-03 2.83e-03 -0.01239 1.006
-0.000724 7.28e-02 3.27e-02 0.09253 0.996
                          -5.14e-03
3.41e-03
-1.90e-02
16
        0.001641
                                                                                                                          3.26e-05 0.00445
                                                                                                                         3.07e-05 0.00261
1.71e-03 0.00290
17
      -0.003767
-0.037327
18 -0.037327 -1.90e-02 -0.000724 7.28e-02 3.27e-02 0.09253 0.996 1.71e-03 0.00290 199 -0.013742 7.33e-02 -0.012156 1.24e-02 -1.07e-01 -0.13290 0.991 3.52e-03 0.00378 20 0.072959 -8.02e-03 0.014894 -8.68e-02 -8.49e-02 -0.14289 0.988 4.07e-03 0.00379 99 -0.005962 3.51e-03 0.003591 -3.06e-03 2.97e-03 -0.01178 1.006 2.78e-05 0.00220 100 0.033978 -8.45e-03 -0.003932 -2.74e-02 3.14e-04 0.03582 1.004 2.57e-04 0.00253 [reached 'max' / getoption("max.print") -- omitted 1285 rows ]
> View(temp)
> #diagnostic plots
   plot(fit)
Hit <Return> to see next plot:
```


Hit <Return> to see next plot:

Hit <Return> to see next plot:

Im(Survivorship ~ RNA.EF + RNA.EOT + RNA.Base + RNA.12)

Hit <Return> to see next plot:

QQ Plot

> leveragePlots(fit) # leverage plots

Leverage Plots

> # Influential Observations
> # Cook's D plot
> # identify D values > 4/(n-k-1)
> cutoff <- 4/((nrow(HCV_lr)-length(fit\$coefficients)-2))
> plot(fit, which=4, cook.levels=cutoff)

> # Influence Plot > influencePlot(fit, id.method="identify", main="Influence Plot", sub="Circle size is proportial to Cook's Distance") StudRes Hat CookD 5 0.0991361 0.138768759 0.0003169402 296 2.1047833 0.006039832 0.0053705967 494 2.5371963 0.002452653 0.0031530644 625 2.1441686 0.005779939 0.0053316046 838 -1.1507095 0.009669033 0.0025850093 840 2.6034820 0.002786195 0.0037717929

Influence Plot

Hat-Values
Circle size is proportial to Cook's Distance

> # Normality of Residuals
> # qq plot for studentized resid
> qqPlot(fit, main="QQ Plot")
[1] 494 840

QQ Plot

- > # distribution of studentized residuals
 > library(MASS)
 > sresid <- studres(fit)
 > hist(sresid, freq=FALSE,
 + main="Distribution of Studentized Residuals")

Distribution of Studentized Residuals


```
> xfit<-seq(min(sresid),max(sresid),length=40)
> yfit<-dnorm(xfit)
> lines(xfit, yfit)
> #Non-constant Error Variance
> # Evaluate homoscedasticity
> # non-constant error variance test
> ncvTest(fit)
Non-constant Variance Score Test
Variance formula: ~ fitted.values
Chisquare = 79.34254, Df = 1, p = < 2.22e-16
> # plot studentized residuals vs. fitted values
> spreadLevelPlot(fit)
Suggested power transformation: 1.305065
Warning message:
In spreadLevelPlot.lm(fit) :
145 negative fitted values removed
```

Spread-Level Plot for fit

Fitted Values

```
> #Multi-collinearity
> # Evaluate Collinearity
> vif(fit) # variance inflation factors
RNA.EF RNA.EOT RNA.Base RNA.12
1.364358 1.347477 1.000344 1.310757
> sqrt(vif(fit)) > 2 # problem?
RNA.EF RNA.EOT RNA.Base RNA.12
FALSE FALSE FALSE FALSE
> #Nonlinearity
> # component + residual plot
> crplots(fit)
```


> # Ceres plots
> ceresPlots(fit)


```
ASSESSMENT OF THE LINEAR MODEL ASSUMPTIONS
USING THE GLOBAL TEST ON 4 DEGREES-OF-FREEDOM:
Level of Significance = 0.05
call:
 gvlma(x = fit)
                          Value p-value Decision 27.0771 1.918e-05 Assumptions NOT satisfied! 8.7671 3.067e-03 Assumptions NOT satisfied! 0.1197 7.294e-01 Assumptions acceptable. 18.0083 2.199e-05 Assumptions NOT satisfied!
Global Stat
Skewness
Kurtosis
Link Function
Heteroscedasticity 0.1820 6.696e-01
                                                        Assumptions acceptable.
call:
lm(formula = Survivorship ~ RNA.EF + RNA.EOT + RNA.Base + RNA.12.
     data = HCV)
Coefficients:
(Intercept)
                         RNA.EF
                                          RNA.EOT
                                                                                RNA.12
                                                           RNA.Base
  1.068e+00
                    1.451e-07
                                   -1.687e-06
                                                        -1.384e-08
                                                                            1.224e-07
> summary(fit)
lm(formula = Survivorship ~ RNA.EF + RNA.EOT + RNA.Base + RNA.12,
     data = HCV)
Residuals:
                            Median
Min 1Q Median 3Q Max -0.55458 -0.08468 -0.05481 0.13407 0.59337
Coefficients:
                   Estimate Std. Error t value Pr(>|t|)
                1.068e+00 1.453e-02 73.482 < 2e-16 ***
1.451e-07 2.682e-08 5.409 7.47e-08 ***
(Intercept)
RNA.EF
                -1.687e-06 2.697e-08 -62.531 < 2e-16 ***
-1.384e-08 1.737e-08 -0.797 0.426
RNA.EOT
RNA.Base
                                                 4.963 7.80e-07 ***
                  1.224e-07 2.467e-08
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.2287 on 1380 degrees of freedom
Multiple R-squared: 0.7703, Adjusted R-squared: 0.7696
F-statistic: 1157 on 4 and 1380 DF, p-value: < 2.2e-16
> fit1 <- fit
> fit2 <- lm(Survivorship~RNA.EF+RNA.EOT+RNA.12, data=HCV)
> # compare models
> anova(fit1, fit2)
Analysis of Variance Table
Model 1: Survivorship ~ RNA.EF + RNA.EOT + RNA.Base + RNA.12
Model 2: Survivorship ~ RNA.EF + RNA.EOT + RNA.12
Res.Df RSS Df Sum of Sq F Pr(>F)
  Res.Df RSS Df Sum of Sq
1380 72.184
1 1381 72.217 -1 -0.03319 0.6345 0.4258

> step <- stepAIC(fit, direction="both")

Start: AIC=-4081.61
Survivorship ~ RNA.EF + RNA.EOT + RNA.Base + RNA.12
               Df Sum of Sq
                                       RSS
                         0.033 72.217 -4083.0
72.184 -4081.6
1.289 73.473 -4059.1
1.530 73.714 -4054.6
                        0.033
- RNA.Base 1
<none>
- RNA.12
                1
- RNA.EF
                1
                      204.531 276.715 -2222.5
- RNA.EOT
                1
Step: AIC=-4082.98
Survivorship ~ RNA.EF + RNA.EOT + RNA.12
               Df Sum of Sq
                                   72.217 -4083.0
72.184 -4081.6
<none>
+ RNA.Base
                1
                         0.033
- RNA.12
                         1.294 73.512 -4060.4
                      1.526 73.743 -4056.0
204.611 276.828 -2223.9
- RNA.EF
                                   73.743 -4056.0
- RNA.EOT
> step$anova # display results
Stepwise Model Path
Analysis of Deviance Table
```

```
Initial Model:
Survivorship ~ RNA.EF + RNA.EOT + RNA.Base + RNA.12
Final Model:
Survivorship ~ RNA.EF + RNA.EOT + RNA.12
            Step Df Deviance Resid. Df Resid. Dev
                                                                                 AIC
  1380 72.18418 -4081.615

- RNA.Base 1 0.03319039 1381 72.21738 -4082.978

install.packages("leaps", lib="/Library/Frameworks/R.framework/Versions/3.5/Resources/library")
                                                          72.18418 -4081.615
72.21738 -4082.978
   library(leaps)
   leaps<-regsubsets(Survivorship~RNA.EF+RNA.EOT+RNA.Base+RNA.12, data=HCV_lr,nbest=10)</pre>
> # view results
  summary(leaps)
Subset selection object
Call: regsubsets.formula(Survivorship ~ RNA.EF + RNA.EOT + RNA.Base +
RNA.12, data = HCV_lr, nbest = 10)
4 Variables (and intercept)
             FALSE FALSE
RNA.EF
RNA.EOT
                   FALSE
                                    FALSE
RNA.Base
                   FALSE
                                    FALSE
RNA.12
                   FALSE
                                    FALSE
RNA.12
10 subsets of each size up to 4
Selection Algorithm: exhaustive
RNA.EF RNA.EOT RNA.Base RNA.12
1 (1) "" "*" "" "" """
1
1
       1)
3)
4)
1)
2)
3)
                                   .. ..
                                                 .. ..
             11 🛠 11
                        .. ..
             " "
                        .. ..
                                    .. ..
                                                 11 % 11
1
2
2
2
2
             ......
                        .. ..
                                    "*"
                                                 .....
             11 % 11
                        11 🛠 11
                                   .....
                                                 .. ..
             " "
                        "*"
                                    .. ..
                                                 ***
             ......
                        11 🔆 11
                                    11 ½ 11
                                                 .....
             "*"
                        .. ..
                                    .. ..
                                                 ***
             11 % 11
                        11 11
                                    11 % 11
                                                 .....
       5
2 2 3
             .. ..
                        .. ..
                                    11 ½ 11
                                                 11 🛠 11
       6
             "*"
                        "*"
                                    .....
                                                 "*"
       1
       2 )
3 )
4 )
             11 % 11
                        11 % 11
                                    11 % 11
                                                 .. ..
3
             .. ..
                        11 ½ 11
                                    11 ½ 11
                                                 11 🛠 11
             11 % 11
                        .. ..
                                    11 % 11
                                                 11 % 11
       4
                        "*"
             11 % 11
                                    11 % 11
                                                 11 % 11
     (1)
' # plot a table of models showing variables in each model.
' # models are ordered by the selection statistic.
> plot(leaps)
```


> plot(leaps,scale="r2")

> subsets(leaps, statistic="rsq")

> # All Subsets Regression
> plot(leaps,scale="bic")


```
> summary(leaps)
Subset selection object
Call: regsubsets.formula(Survivorship ~ RNA.EF + RNA.EOT + RNA.Base +
RNA.12, data = HCV_lr, nbest = 10)
4 Variables (and intercept)
               Forced in Forced out
 RNA.EF
                       FALSE
                                          FALSE
RNA.EOT
                       FALSE
                                          FALSE
 RNA.Base
                      FALSE
                                          FALSE
RNA.12 FALSE FALSE
10 subsets of each size up to 4
Selection Algorithm: exhaustive
RNA.I

1 (1) ""

1 (2) "*"

1 (3) " "

1 (4) " "

2 (1) "*"

2 (3) " "

2 (4) "*"

2 (6) " "*"

3 (1) "*"

3 (2) "*"

3 (3) " "

4 (1) "*"

> View(leaps)
> leaps

Subset select
                RNA.EF RNA.EOT RNA.Base RNA.12
                            .. ..
                            .. ..
                                          .. ..
                                                          11 % 11
                                          11 % 11
                            11 % 11
                                          .. ..
                                                          .. ..
                            11 % 11
                                                          11 🛠 11
                            11 % 11
                                          11 % 11
                                                          .. ..
                            .. ..
                                          .. ..
                                                         "*"
                            .. ..
                                          11 & 11
                            .. ..
                                                         "*"
                                          "*"
                            11 & 11
                                          .. ..
                                                          "*"
                            11 % 11
                                          11 % 11
                                                          .....
                            11 % 11
                                          ***
                                                          11 % 11
                            .. ..
                                          11 % 11
                                                          ***
                                          "*"
                            11 % 11
                                                          11 % 11
Subset selection object
Call: regsubsets.formula(Survivorship ~ RNA.EF + RNA.EOT + RNA.Base +
    RNA.12, data = HCV_lr, nbest = 10)
4 Variables (and intercept)
               Forced in Forced out
```