Functional Ecology

Aseasonal Pollinators Connect Seasonal Modules in Pollination Networks from the Cerrado, a Highly Diverse **Seasonally Dry Neotropical Savanna**

Journal:	Functional Ecology
Manuscript ID:	FE-2015-00231
Manuscript Type:	Standard Paper
Date Submitted by the Author:	20-Mar-2015
Complete List of Authors:	Cappellari Rabeling, Simone; University of Rochester, Department of Biology Simpson, Beryl; The University of Texas at Austin, Integrative Biology Tidon, Rosana; Universidade de Brasilia, Instituto de Ciências Biológicas Neff, John; Central Texas Melittological Institute, Pawar, Samraat; Imperial College London, Department of Life Sciences
Key-words:	Brazil, community ecology, ecological niche, keystone species, mutualistic networks, Neotropical, robustness, seasonality
	SCHOLARONE™ Manuscripts

1	For consideration a	s an Article at	Functional	Ecology

2	
3	Aseasonal Pollinators Connect Seasonal Modules in Pollination Networks from the
4	Cerrado, a Highly Diverse Seasonally Dry Neotropical Savanna
5	
6	Running head: Seasonality of Neotropical Pollination Networks
7	
8	Authors: Simone Cappellari Rabeling ^{1,5*} , Beryl B. Simpson ¹ , Rosana Tidon ² , John L.
9	Neff ³ , and Samraat Pawar ⁴
10	
11	Affiliations:
12	1 – Department of Integrative Biology, The University of Texas at Austin, Texas,
13	U.S.A.
14	2 – Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, Brazil
15	3 – Central Texas Melittological Institute, Austin, TX, U.S.A.
16	4 - Department of Life Sciences, Silwood Park Campus, Imperial College
17	London, Ascot, Berkshire, U.K RG12 2QA
18	5 – Current address: Department of Biology, University of Rochester, River
19	Campus, Rochester, NY, U.S.A.
20	
21	*Correspondence should be addressed to: scappellari@gmail.com

Summary (350 words)

- 23 1. Seasonally dry savannas and forests cover about 20% of the Neotropics and are
- characterized by regular cycles of severe drought periods followed by rainy seasons.
- Despite their importance in terms of extension and angiosperm diversity, little is
- 26 known about the influence of such extreme climatic conditions on species interactions
- and community structure. Because water stress is likely to impose greater restrictions
- on flowering than pollinator activity, temporal changes in plant-pollinator community
- structure are expected to occur across seasons.
- 30 2. The Cerrado is considered the world's most diverse seasonally dry savanna,
- 31 especially in terms of plant diversity. Its communities are characterized by the
- predominance of biotic pollination by bees. Social bees, which are active year-round
- and demand a constant supply of resources, are especially diverse and abundant in
- this system. We asked whether seasonal changes in precipitation led to a potential
- decrease in plant-pollinator interactions ultimately altering community's stability
- during the dry season. We also investigated the role played by social bees, which are
- year-round active, in the structure, function, and robustness of Cerrado communities.
- 38 3. Changes in the community's structural properties across seasons were quantified
- using ecological network analyses for two data sets from the Cerrado. We tested for
- 40 the occurrence of seasonality in species activity and interactions.
- 4. We find that both plant-pollinator networks undergo a high seasonal turnover in plant
- species composition despite moderate to low turnover in pollinators. As a
- consequence, seasonal modules with low levels of overlap (< 6%) in plant-pollinator
- interactions emerge. Aseasonal pollinators, mainly comprising social but also solitary

bee species with multiple generations per year, span the seasons while plant flowering
is mostly seasonal. Simulations of species extinctions indicate that aseasonal
pollinators play an essential role for robustness in the communities studied. We
provide novel evidence that some solitary bees also function as keystone species of
tropical plant-pollinator networks. Given the commonalities of the study systems here
analyzed with those from other seasonally dry systems, our results provide an
important background to improve the current understanding about the key species and
structural properties that promote stability of plant-pollinator communities in
Neotropical habitats.
Keywords: Brazil, community ecology, ecological niche, keystone species, mutualistic
networks, Neotropical, robustness, seasonality, temporal variation, tropical bees, tropical
plants.

Introduction (6,470 word

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

58

Some of the most impressive natural phenomena on earth, such as the great wildebeest grazing migration after the first rains promoting grass growth in tropical Africa, are linked to effects of seasonal changes in climate (Bell 1971). The drastic seasonal changes associated with the transition between dry and rainy seasons can affect the dynamics of species interactions, either directly by driving physiological responses of organisms or indirectly by influencing the life cycle of primary producers (i.e., grasses). Despite relatively constant temperatures, regular cycles of extreme drought followed by intense rainfall periods characterize a large proportion of Neotropical habitats (Kricher 2011). These include the unique ecosystems known as seasonally dry forests and savannas with organisms adapted to extreme seasonal changes in climate (Pennington & Ratter 2006). These ecosystems occupy a large proportion of the tropical and subtropical Americas, estimated to be over 3,5 million km² and are recognized for their high levels of plant and animal diversity as well as for their poor conservation status (Huber 1987; Myers et al. 2000; Pennington, Lewis & Ratter 2006). However, little is known about the antagonistic effects of water stress and intense rainfall on the dynamics of species interactions in communities from seasonally dry habitats. Understanding how these communities are organized, how they change and function under such contrasting climatic conditions is important not only for gaining insight about factors responsible for the maintenance of the high diversity that characterize Neotropical ecosystems but also necessary for predicting their vulnerability to disturbances, such as climate induced changes in plant phenology and animal activity.

The Brazilian Cerrado is a type of seasonally dry savanna characterized by a
species rich fauna and a highly diverse flora with many endemic plant species (Klink &
Machado 2005). Similar to other tropical habitats, Cerrado communities harbor a variety
of pollination systems with bees figuring as major pollinating agents (Oliveira & Gibbs
2002; Pennington, Lewis & Ratter 2006). In this habitat, seasonal changes in
precipitation can restrict dry season flowering in species with shallow root systems (e.g.,
herbs and shrubs) which cannot reach water pockets that occur below 2 m from the soil
surface (Batalha & Martins 2004; Gottsberger & Silberbauer-Gottsberger 2006a; Oliveira
2008). In contrast, water stress may not pose equally strong constrains on the foraging
activity of most bees, which have been recognized as the primary pollinators of Cerrado
plants (Oliveira & Gibbs 2002; Gottsberger & Silberbauer-Gottsberger 2006b; Cappellari
2011). In fact, many Cerrado bees are active all year due to a social life style or the
production of multiple generations per year (Silveira & Campos 1995; Oliveira & Gibbs
2002; Pinheiro-Machado et al. 2002; Gottsberger & Silberbauer-Gottsberger 2006b).
Besides the need to acquire resources to meet the metabolic demand of individuals and
that of colonies throughout the year, most social and multi-voltine bees are usually active
for periods extending beyond the flowering of most individual plants species (Biesmeijer
& Slaa 2006).
Besides being a highly seasonal system, the Cerrado presents an important model
system for studies addressing temporal changes in plant-pollinator community structure
and function as it harbors an important portion of the Neotropical angiosperm diversity
(Myers et al. 2000). This tropical biome the second largest in South America (>
2,000,000 km ²) and considered one of the most threated tropical ecosystems due to a

combination of intense past and current deforestation and poor conservation policies that
have lead to degradation of more than 50% of its area (Myers et al. 2000; Klink &
Machado 2005). Climate change models project temperature increases and precipitation
decreases across central Brazil, which might affect the original seasonal cycles of rainfall
and drought that typify the Cerrado region and its biota. Yet the ecological dynamics of
Cerrado's plant and pollinator communities are poorly known and scarce data are
available to predict changes in community structure, composition, and function as a result
of potential future changes in climate.

Here, we investigated the ecology of plant-pollinator communities from two Cerrado habitats to provide a first characterization of their structure and temporal variation during seasonal cycles of rain and drought (i.e., dry and rainy seasons). Due to the strong seasonality that characterizes this system, we specifically searched for the existence of temporal modularity in the distribution of plant-pollinator interactions corresponding to the periods of rain and drought. In particular, we tested whether such communities tend to shrink in size and present higher vulnerability to disturbance during the dry season, which comprise a period of five months exposing species to a high and continuous level of water stress relative to the wet season. For this purpose, we measured and compared seasonal changes in the community composition, plant-pollinator interactions, and pollination network structure. We also investigated potential biological drivers of seasonal differences in communities' species composition, interactions and structure (modularity) by analyzing species' ecological niche widths and turnover across seasons to identify potential aseasonal elements that play a role in community stability.

The influence of such elements on the robustness of Cerrado communities was evaluated
using an ecological network approach and simulated extinctions of these target groups.

The Cerrado covers most of Central Brazil and small areas of Paraguay and

Material and methods

Study area and climate information

Bolivia with vegetation comprises a mixture ranging from open grasslands to scrublands with sparse occurrence of trees, and smaller portions of gallery and closed canopy forests, which occur in side-by-side patches creating a highly heterogeneous ecosystem (Eiten 1972; Gottsberger & Silberbauer-Gottsberger 2006a). Our study sites were located near Brasilia in Central Brazil, a region characterized by a well-defined dry winter season that lasts from May until September followed by a summer rainfall period that extends from November until March (Gottsberger & Silberbauer-Gottsberger 2006a) (Fig. 17).

Plant-pollinator interactions were surveyed in the Reserva Ecológica do IBGE (here after 'IBGE') and in the Protected Area of the Jardim Botânico de Brasilia (Brasília's Botanical Garden Protected Area; hereafter 'BBG'), an area of native and preserved Cerrado vegetation and is not used for public display or cultivation. The two areas are situated on the Brazilian plateau (at 1,100 m ASL), within the federally protected conservation site "APA-Gama-Cabeça-de-Viado," which comprises 10,000 ha

and is located approximately 30 km south of Brasília (15°56'S, 47°53'W).

We used data from the IBGE's weather station to obtain monthly average
temperature and precipitation for the past 30 years (1980-2010), quantify climatic
differences throughout the year, and characterize seasons in the study area (Fig. 1).
According to these data, 88% of total annual precipitation (mean monthly precipitation=
6.82 cm; s.d.= 3.22 cm) occurs between October and March, with average temperatures
ranging from 25.7 °C (s.d.= 1.41 °C) during the day to 19.2 °C (s.d.= 1.3 °C) at night.
Conversely, mean monthly precipitation drops to 1.15 cm (s.d.= 1.6 cm) in the remaining
period with average temperatures during the day at 24.3 °C (s.d.= 1.83 °C) to 18 °C (s.d.=
1.9 °C) at night (Fig. 1). As already pointed by other authors (Gottsberger & Silberbauer-
Gottsberger 2006a), the months of April and October present variable climatic conditions
reflecting the transition between the seasons (Fig. 1). For analytical purposes, we
assigned the interactions recorded in the transitional months of April and October to the
dry and rainy seasons, respectively. The periods defined for each season are in agreement
with patterns reported for other Cerrado areas (Gottsberger & Silberbauer-Gottsberger
2006a).

Sampling methods and species identification

Empirical studies have shown that bees are the predominant pollinators in Cerrado communities (\sim 70%) followed by moth (\sim 12%) with small occurrence of hummingbird (\sim 3%), bat (\sim 2%), and beetle (\sim 2%) pollination systems (Oliveira & Gibbs 2000; Oliveira & Gibbs 2002; Gottsberger & Silberbauer-Gottsberger 2006b; Cappellari 2011). Thus, our study concentrated in capturing interactions between plants

and bees. Plant-pollinator interactions at both sites were sampled weekly by walking
transects (Sakagami, Laroca & Moure 1967; Krebs 1999). In both communities, bees
were collected with an entomological net and killed either in individual vials with paper
pellets moistened with ethyl acetate or frozen after each observation. A plant or pollinator
species observed in the study plot was considered part of the community and included in
each of the surveys only if it was involved in an interaction, thus flowering plant species
that did not receive visits, or bees that were not seen foraging on flowers were not
recorded in our data set. For every new interaction recorded, the plant was tagged with a
unique identification number, photographed, and vouchered. In IBGE, photos of each
plant species were added to a database of local floral hosts, and a secondary miniature
voucher was made to facilitate re-identification of species in the field. Plant vouchers
were identified by using comparative herbarium material, a checklist of local
angiosperms, and local botanical expertise (see acknowledgments section). Vouchers of
the plants sampled were deposited at the herbaria of the research station (IBGE),
University of Brasília (UB), and Ezequias Paulo Heringer (HEPH) at the Brasília
Botanical Garden. Insect vouchers were mounted, preserved, and identified to species
level by comparison with reference collections, the taxonomic literature, and local
records (Moure 1962; Silveira, Melo & Almeida 2002; Michener 2007; Moure, Urban &
Melo 2007), and by local entomological experts (see acknowledgments). All insect
vouchers were deposited in the entomological collections of the University of Brasília
and the Padre Moure Collection at the Federal University of Paraná, Brazil.
The IBGE community comprised a 8-hectare plot (200 x 400 m) covered with the
phytophysiognomy known as <i>campo suio</i> , a relatively open type of vegetation mainly

194	composed of grasses mixed with herbaceous plants, and shrubs, with sparse occurrence of
<u>195</u>	lianas and trees (Eiten 1972; Pereira, Silva & Mendonça 1998). This area was sampled by
196	S. C. Rabeling by walking transects covering the entire area for a full day (0800h to
197	1700h) at a weekly basis from November 2008 to October 2009. The sampling effort
198	totaled 47 sampling days over a 12-month period (mean= 3.91 collections/month). The
199	data collected at IBGE was compared to the pre-existing BBG data set collected by M. C.
200	Boaventura, which aimed at characterizing plant-pollinator community structure and
201	seasonality of interactions with bees at a Cerrado site.
202	The BBG community comprised an area of cerrado sensu strictu, a denser type of
203	vegetation with predominance of large shrubs, lianas, and trees (Eiten 1972). This area
204	was sampled weekly (0730 to 1700h) from June 1996 to May 1997 using two predefined
205	transects (5,280 m and 4,130 m in length) located 4 km apart (Boaventura 1998). The
206	sampling effort in this area totaled 49 collection days over a 12-month period (mean=
207	4.08 collections/month). Interactions involving the introduced honey bee (Apis mellifera)
208	were not included in the BBG data set
209	The sampling effort was evaluated in a separate rarefaction analyses for each site
210	and each season considering number of new unique interactions recorded (i.e., recorded
211	links) as sampling units. We used number of links instead of days in this analysis to
212	prevent confounding effects associated with variation in the number of sampling hours
213	per day as a result of inclement weather conditions that interrupted field work during the
214	rainy season, and due to minor differences in the sampling protocol employed in each
215	study (e.g., length of transects). Furthermore, the sequence of links recorded was
216	randomized a hundred times before accumulation curves for network features were

generated. We calculated 95% Confidence Intervals (CIs) around each curve to determine the overlap between the observed and the expected curves for each network feature with regard to the number of new links sampled. Among many community features, we focused this analysis on mean and maximum degrees (i.e., number of interaction partners per species) of each trophic level because the results of our study depend strongly upon this feature, especially for investigating the occurrence and importance of highly connected and aseasonal species. The data analyzed were used to generate rarefaction curves for each specific network feature to determine completeness of sampling.

Data Analysis

Using our calculated climate data and seasonal boundaries, we recorded interactions in both studies as occurring in either the dry or rainy season. Each interaction recorded between a given plant species and a particular bee species was considered to be a link. We calculated specific standard network measures based on interactions recorded during each season to test for qualitative and quantitative seasonal changes in interactions and their overall influence on key community structural features. Each measure was evaluated for both the dry and rainy season communities as well as the overall community (i.e., cumulative accounts for the entire year).

Network size and connectance were evaluated to determine if communities shrink in size and present a higher proportion of species with narrower niche breadths during the dry season. Network size was calculated as the total number of interacting species observed in each season. Connectance was calculated as the proportion of interactions

observed as a function of the total number of possible interactions (undirected bipa	ırtite
connectance = 2 * links / (number of plant species × number of pollinator species)).

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

We used weighted and unweighted estimates of *species degree*, a common proxy that uses the number of visits a plant species by a given pollinator to measure of ecological niche width and ecological specialization in mutualistic network analyses (Jordano 1987; Futuyma & Moreno 1988), to compare seasonal variation in niche use or the number of partners and interactions observed for plants and pollinators in each network. Because lower diversity of species, especially of floral hosts expected during the dry season in the Cerrado, can reduce the number of potential partners available at a given time, narrower niche widths are expected for species active during the dry versus rainy season in the communities studied. To test this hypothesis, we calculated species degree and weighted degree based on interaction frequency counts for each species in each season. Degrees were compared within and between trophic levels across seasons. Interaction frequency rates were first converted to daily rates for each plant-bee species pair by dividing the number of visits by a particular bee species to a particular plant species by the number of days that plant was observed interacting (with any bee) across the sampling period and during each season. This approach reduces underestimation of interaction rates by accounting for plants not flowering during the entire period in which pollinators were active. Interaction frequency was then used to estimate weighted degree to determine the relevance of different interaction types (i.e., links) at different times of the year (Vázquez, Morris & Jordano 2005). This was calculated as the number of visits to i^{th} plant by j^{th} pollinator relative to the number of flowering instances recorded for that plant (by counting all instances of that plant having been visited by any bee). Visitation

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

frequency was also used to evaluate species seasonality and species for which
proportional degree or interaction frequency were equal or greater than 75% in one
season were considered seasonal.

We examined the degree distribution (i.e., frequency distribution of interaction partners per species) in each season for the two communities to determine if the proportion of species with very narrow or broad niches (i.e., specialists versus generalists) varied substantially between seasons. We compared the distributions to three alternative models (exponential, power-law, and truncated power-law) and used the Akaike Information Criteria (AIC) to evaluate each fit. We also calculated degree distribution, and the Nestedness metric based on Overlap and Decreasing Fill (NODF) (Almeida Neto, Guimarães Jr & Lewinsohn 2007) to compare and evaluate variation in the proportion of species with few (specialized) versus many (generalized) interaction partners in each season egree distribution was used to determine and compare seasonal variation in specialization levels within each season and for the overall community. NODF was used to analyze the structural distribution of interactions according to species degree as nested networks have been associated with increased levels of stability (Bascompte et al. 2003; Bascompte & Jordano 2007). Shortest paths and network diameter were calculated to determine whether communities expanded or shrunk during a specific season. All analyses were performed using code written in Octave.

To test whether plant-pollinator communities from seasonally dry habitats show a significant level of modularity, the overall network structure as the corresponding seasonal differences in network measures were assessed against a null model obtained by 1,000 randomizations. In each randomization, each observed interaction was randomly

re-assigned to "dry" or "rainy" season with equal probability, thus creating a random temporal partition of the whole sample into two seasons. The proportion of the 1,000 randomly partitioned seasonal networks that had fewer links in common than those shared between the observed seasonal networks then provided a one-tailed p-value (asymptotically exact) of significance of the observed seasonal modularity. Similarly, the significance in observed differences in each structural feature between seasonal networks was calculated by comparing the null distribution of differences (rainy–dry) between randomized seasons with the observed difference. The proportion of randomized differences in a structural feature less than or equal to the observed difference is the left-tailed p-value (feature has significantly smaller value in rainy season than in dry season). Additionally, the proportion of randomized differences in a structural feature greater than or equal to the observed difference is the right-tailed p-value (feature has significantly larger value in rainy season than in dry season).

Robustness analyses

We performed species extinction simulations to examine how seasonality-driven variation in plant and pollinator composition as well as niche breadth (represented by weighted and unweighted degrees) would relate to a community's robustness to loss of functionally important species in the seasonal modules of IBGE and BBG. Unweighted robustness analyses followed established methodology (Dunne, Williams & Martinez 2002; Memmott *et al.* 2006): upon removal of a plant or pollinator node, every pollinator or plant species left without interaction partners was considered extinct. For the weighted

robustness analyses, we considered targeted removal of species according to their
importance in terms of connections maintained in each seasonal module as well as the
overall network, i.e., from widest to narrowest niche breadth in order of decreasing
degree. In addition, we also considered scenarios of targeted removal from weakly to
highly connected species (i.e., in order of increasing niche breadth), as well as at random.
Weighted robustness was analyzed following standardized methods (Kaiser-
Bunbury et al. 2010) and we measured proportional loss of visitation rates, using the link
weights defined above, instead of just species loss. For this, we first converted each link
weight to its fractional contribution to the total visitation rates across the entire network.
All robustness simulations of plant and pollinator removals were performed individually.
When multiple nodes with the same niche width values (degree) were encountered in
targeted removal sequences we simply permuted the removal sequence among them to
break ties. Thus, random as well as targeted removals yielded a sample of extinction
curves. The values at each point on this curve were then averaged to obtain a single
curve. For both weighted and unweighted robustness analyses, the Area Under the Curve
(AUC) was used as a measure of network robustness to species loss. We chose 100
iterations as a compromise between computational complexity and accuracy of the
average extinction curve. To estimate whether extinction curves were significantly
different, we calculated 95% confidence intervals (CI's) around each mean value on the
curve. We also calculated number of dependent species lost after loss of 50% of target
species (also with 95% CI's).

Results

2	2	2
S	S	Z

Seasonal variation in community composition

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

Over the 12-month study period, 93 species of plants and 111 species of flower foraging bees were recorded at IBGE. A total of 968 pollinator visits to plants, which constituted 434 unique associations (i.e., links) between plants and pollinators, were observed (Fig. 2). The ten pollinator species with the widest niches (i.e., with degree > 8) in this community maintained a large number of interaction partners in both seasons (Supplementary Table S1; Figs 2 and 3). The majority of these abundant, mostconnected, and aseasonal species represented mainly eusocial groups. About one third of all interactions recorded involved social bees and the introduced honey bee (Apis *mellifera*) ranked as the most abundant species (n = 154) sampled on flowers, followed by species of stingless and bumble bees (Table S1). Nonetheless, solitary bee groups presented the largest group of species in this area most of which were seasonal, i.e., recorded in either one of the two seasons (Table S1). Among solitary bees with high numbers of links were some species of oil-collecting bees (i.e., tribes Centridini, Tapinotaspidini, and Tetrapediini), which together comprised one third of all bee species (32 spp.) and 17% of all visits recorded at this site. The pollinator community composition in IBGE was similar to those observed in other Cerrado areas (Silveira & Campos 1995; Pinheiro-Machado *et al.* 2002) with Apidae being the richest group (77 spp.) followed by Halictidae (19 spp.), Megachilidae (13 spp.), Andrenidae (1 sp.), and Colletidae (1 sp.).

Plant species recorded at the site were mostly herbs and shrubs, and belonged to
24 families, Fabaceae (18 spp.) being the most species rich group (Table S1). Among
plants recorded in this community, <i>Dimerostemma vestitum</i> (Asteraceae; degree= 22),
Palicourea coriacea (Rubiaceae; degree= 19), and Diplusodon oblongus (Lythraceae;
degree= 18), which flowered mainly during the rainy season, displayed the widest niches,
i.e., had the largest number of visiting pollinator species, and consequently the highest
degrees (i.e., highest number of interaction partners) in cumulative accounts of species
interactions. These species figured as major nectar and pollen sources for visitors. Unlike
the most connected pollinators, plant species that received the largest number of visits by
bees bloomed in either season, but usually not in both (Table S1).
Between April 1996 and May 1997, 820 unique links and 1,679 visitation events
between 153 plant and 184 bee species were recorded in the cerrado sensu strictu area of
BBG (Supplementary Table S2). Similar to the pattern observed in IBGE, the top ten
most connected pollinator species in this community were aseasonal and maintained a
large number of interaction partners throughout the year (Table S2; Figs 2 and 3). Similar
to IBGE, the bulk of interactions recorded in this community involved eusocial bees (i.e.,
stingless bees and bumble bees), which were represented by 11 species (Table S2). At
BBG, solitary bee groups were also less abundant but more species rich comprising
(Table S2). Even though the BBG area comprised a more species rich pollinator
community, bee families were represented in similar proportions as observed in IBGE:
Apidae (115 spp.), Halictidae (38 spp.), Megachilidae (27 spp.), Colletidae (3 spp.), and
Andrenidae (1 sp.) (Table S2; Figs 2 and 3). Honey bees were not included in the BBG

plant-pollinator survey and species of native, stingless and bumble bees ranked as the most abundant species sampled on flowers (Table S2).

The plants observed in this area represented 41 families, comprising mostly shrubs, some trees, and few herbs. Similar to IBGE, Fabaceae was the most species rich group in this area (31 spp.) followed by Asteraceae (20 spp.) and Malpighiaceae (17 spp.). Considering all interactions recorded in this community, *Vernonia aurea* (Asteraceae; degree = 48), *V. eremophila* (degree = 36), and *Palicourea rigida* (Rubiaceae) (degree = 36; Table S2) ranked as top generalists and were mainly visited by bees for nectar. Similar to the pattern observed in the IBGE community and other pollination networks, the bulk of plant species (73%) interacted with few pollinators (< 5 spp.). Similar to IBGE, interaction abundance patterns in this community indicate that most plants flowered in only one season (Table S2; Figs 2 and 3). Both communities had nearly coinciding peaks of plant-pollinator interaction activity preceding each season: in March and April before begin of the dry season and in August, at the end of the dry season (Supplementary Figs S1 and S2).

Our analyses of the sampling effort (Supplementary Figs S3-S7) show that an asymptote was reached for the curve of pollinators' mean number of interaction partners (mean pollinator degree; Fig. S3) in the IBGE site. No asymptote was reached for all other features in either study site indicating that greater sampling efforts, i.e., bi or triweekly, would be necessary for complete accounts of the richness and diversity of these communities and their structural features.

Seasonal changes in community structure

We found both networks to be characterized by a strong and significant seasonal modularity, with a remarkably small number of links shared between seasons. The overlap in links between seasons was 2.5% (11/434) in the IBGE community and 5.1% (42/820) in BBG. Seasonal modules arose from significant and substantial turnover in species composition in both communities analyzed (P < 0.001; Table 1; Fig. 2). The IBGE community showed a 74% turnover in plant species flowering and 67% turnover in foraging pollinator species. In BBG, species turnover was 79% for plants flowering and 57% for pollinators foraging across seasons.

During the dry season, the IBGE flowering and bee foraging community greatly shrunk in size, displaying only 1/3 of the interactions recorded at this site throughout the year of study. This community showed a greater seasonal variation in network structure than the BBG community with number of species and connectance, with the average degree for plants and pollinators being significantly lower during the dry versus the rainy season at this site (Table 1). In contrast, only pollinator species number and nestedness varied significantly across the seasonal network modules in BBG.

Degree distributions of both plants and pollinators followed a truncated power-law in both communities indicating that species with narrow niches and few interaction partners (≤ 5 links) made up the bulk of species in these communities in both seasons. Few species maintained a large number of partners (Tables S1 and S2). With exception of pollinator degree distribution during the dry season in IBGE, the shape of the distributions did not change seasonally in either community (Supplementary Table S3).

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

Influence of seasonal changes in community composition and structure on network

robustness to species loss

Our weighted as well as unweighted robustness analyses show that both communities were less robust to pollinator removal relative to plant removal (Fig. 4, Supplementary Table S4). This is consistent with the fact that seasonal modules are coupled by bees, which maintain activity through most part of the year, whereas plants tend to flower within either the dry or rainy season (Fig. 3; Tables S1 and S2). Moreover, robustness was lower when most-connected pollinators (i.e., with the highest degrees, also the most aseasonal) were removed first. Overall, communities were less robust to loss of visitation services (weighted robustness) than simple species loss (unweighted robustness). In both communities, the rainy season module was the more robust to species loss as well as visitation loss than the dry season module. However, this difference was more pronounced in the IBGE community (Fig. 4; Table S4), a result consistent with the significant decreases in plant as well as pollinator degree (generality) and connectance during the dry season in IBGE (Tables 1 and S1). We found that ignoring seasonal modularity resulted in an intermediate estimate of robustness in IBGE and had no significant effect for the BBG community. Overall, we found similar changes in robustness with season or aggregation for random species removal or targeted removal in order of increasing degree (Table S4).

442

443

Seasonal variation in community structure

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

445

This is the first characterization of community structure in plant-pollinator networks from the Cerrado, a tropical, highly diverse, and seasonally dry ecosystem that occupies a large portion of South America. Our analyses show that the communities analyzed are modular and undergo substantial changes between seasons. In particular, seasonal transitions are associated with high turnover in the composition plant species in flower and species interactions while only moderate changes in the pollinator assemblage are observed. In both communities, dry and rainy season modules shared a small proportion of the species interactions recorded over the entire year at each site (IBGE= 2.5%; BBG= 5.1%). The small overlap in interactions between seasonal modules can be ascribed to the fact that most plants bloomed in only one of the two seasons while about 1/4 of the pollinators maintained activity and interacted with a relatively high number of floral hosts in both. These 'aseasonal pollinators' have wide niches and mainly comprise species social or semi-social bees but also include solitary and specialized bees that are pollinators adapted to interact with specific groups of plants. The aseasonal activity of pollinators is consistent with a social life style because tropical bee colonies are yearround active and their foraging activity extends beyond the flowering periods of most plants. Thus, over the course of a year all social bees need to establish interactions with multiple host plants to obtain enough resources to meet colony needs (Roubik 1992). On the other hand, aseasonal activity among some solitary bees in these communities can be ascribed to the production of multiple generations per year and diet specialization. For instance, the Cerrado is rich in oil-collecting bee species, which are specialized for the

collection of floral oils from particular groups of plants but visit multiple floral hosts to
obtain all types of resources they need for their own feeding (nectar), brood provisions
(nectar, oils, and pollen), and nest construction (oils) (Neff & Simpson 1981; Silveira &
Campos 1995; Pinheiro-Machado et al. 2002). Thus, both groups are required to switch
between floral hosts as these species become "available" in the community over time and
ultimately connect modules by visiting species blooming exclusively in one of the
seasons. The relevance of aseasonal pollinators for the stability and dynamics of the
communities analyzed here is likely to be common to many, if not most tropical systems,
where warm and stable climates can promote plant-pollinator interactions year-round.
This structural organization could have important implications for improving our
understanding about factors promoting biodiversity and influencing stability of species
rich tropical communities.
Overall, the IBGE community showed a greater variation in network structure

Overall, the IBGE community showed a greater variation in network structure between seasons than BBG. The reduction in cumbers of plant species in flower observed during the dry season in this community was paired with changes in particular network parameters (e.g., low connectance, average degrees, etc.) that have been linked to high vulnerability to disturbance in plant-pollinator communities (Bascompte *et al.* 2003; Memmott, Waser & Price 2004; Bascompte, Jordano & Olesen 2006; Vázquez *et al.* 2009). For instance, low network connectance is a consequence of a high proportion of species with narrow niches (i.e., ecological specialists), which are strongly affected by species extinctions or population fluctuations because they rely on few other partner species to persist in a habitat over time. Conversely, communities comprising a large proportion of generalists are considered to be more stable because redundancy in partner

associations is expected to buffer oscillations of mutualistic partners. It is unclear why
similar patterns of seasonal variation in network structure were not observed in BBG.
Since both sites were sampled weekly during both seasons, we suggest that these
differences could be attributed to the distinct phytophysiognomies or vegetation types
that characterize each area. At IBGE the studied area is covered with a vegetation type
known as campo sujo, which is characterized by a relatively open vegetation mainly
composed by grasses interleafed with herbaceous plants, and subshrubs, with sparse
occurrence of lianas and trees (Eiten 1972). In contrast, BBG's study area is covered with
cerrado sensu strictu, a denser type of vegetation with predominance of large shrubs,
lianas, and trees (Eiten 1972). During the dry season, woody plants (e.g., lianas, shrubs,
and trees) are able to cope with water stress by tapping on water reserves usually stored
over two meters deep in the soil (Oliveira 2008). Therefore, germination and flowering
during the dry season are more likely to be impaired by water stress in campo sujo, where
herbs and subshrubs dominate, than in areas of cerrado sensu strictu. Additionally, high
abundance of trees in cerrado sensu strictu, which produce larger numbers of flowers
than most herbs and subshrubs that predominate in campo sujo, could potentially
influence the differences in pollinator attraction and explain seasonal differences in the
number of interactions as well as in the pollinator composition between sites.
Intra-annual variation in network structure has been examined in subtropical and
arctic communities but data on seasonal variation of tropical systems are scarce (Burkle
& Alarcón 2011). A temporal analysis of a year-long active plant-pollinator community
in the Talar, a subtropical xeric forest in Argentina, showed that variation in network

structural features (e.g., connectance) was associated with expansion and shrinking of the

flowering/foraging bee communities during spring/summer versus autumn/winter months
(Basilio et al. 2006; Medan et al. 2006). Similar to the pattern observed in the Cerrado,
high seasonal turnover in plant composition was paired with moderate turnover in
pollinators which also connected the four seasonal modules observed in this subtropical
habitat. Conversely, arctic communities, which are dominated by flies, have lower
species richness (i.e., 17-31 plant and 26-76 pollinator species), active for a shorter
period of time (e.g., \sim 40-70 days/year) than the tropical and subtropical systems and
undergo much temporal change in proportionally less time (Lundgren & Olesen 2005;
Olesen et al. 2008). For instance, two temporal modules corresponding to "early" and
"late" season periods are recognized in an arctic island community from Greenland,
which present distinct topologies despite being just nine days apart. Unlike the Cerrado
communities analyzed here, a few long-flowering "aseasonal" plant but not pollinator
species appear to be the main connectors of these arctic plant-pollinator communities.
Together, these studies and ours provide preliminary yet adequate evidence that despite
many generalities shared between pollination and other mutualistic networks across
latitudes (Jordano, Bascompte & Olesen 2003), some intra-annual variation in pollination
networks appears to be system-specific and factors such as seasonality, community size,
composition, and length of activity appear to influence the magnitude of change over
time. Therefore, detailed characterization of temporal variation, inter- and intra-annually,
of plant-pollinator communities may be especially important when estimates of
community stability and resilience, which can ultimately guide conservation efforts for
target areas, are inferred based on data about network structural set-up and function.

Seasonality and Community Robustness

Our simulations of species extinction events (i.e., species removal) indicated that removal of aseasonal, highly connected pollinator species resulted in faster collapse of the networks than the removal of any other group of species comprised in the communities. Rates of secondary extinctions were higher for pollinators upon plant removal than vice-versa, corroborating the principle that aseasonal pollinators represent key elements for community robustness. This pattern was pronounced in the IBGE and is consistent with the changes in plant and pollinator degree (i.e., ecological generality) as well as connectance, among other properties, observed during the dry season in this community.

Even though species loss in the community exerted a stronger impact on the patterns of secondary extinction (i.e., extinction based on lack of interactions partners) for the dry season versus rainy season networks, these responses were not significantly different. Thus, seasonal networks were generally not less or more robust to species loss than when the complete community was considered. However, our results show that when robustness is analyzed by cumulative accounts of interactions irrespective of seasonality, a different and incorrect picture of network robustness emerges. As already pointed out by others (Basilio *et al.* 2006; Medan *et al.* 2006), our results show that cumulative estimates of species degree can lead to overestimation of partner redundancy as it assumes that in absence of one partner species all other partners would be available at any given time of the year. For instance, most of the species that appear to have a large number of mutualistic partners in a cumulative analysis of the network, which includes

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

interactions from both seasons, have most interactions concentrate in one of the seasons, remaining only weakly connected outside of their main primary season. Our results also highlight the importance of including information not only about timing and seasonality of interactions but also resource use for robustness analyses considering communities comprising large percentages of evolutionary specialized species (Armbruster 2006). In Cerrado communities, several species of oil-collecting bees and oil-producing flowers (Malpighiaceae) ranked as top generalists based on species degree. However, plants that produce oils usually do not produce nectar thus visitors are required to interact with many non-specialized floral hosts to acquire nectar, a resource equally essential to an oil bee as are oil and pollen. Conversely, oil-producing plants lack nectar and rely on a restricted portion of the pollinator community, i.e., oil-collecting bees, for pollination. Hence, a superficial analysis of species degree would likely lead to an overestimation of partner redundancy for such species. Neotropical communities often comprise a large number of similarly specialized plant-pollinator mutualisms, such as perfume producing flowers and orchid bees and resin-producing flowers and bees that use resin for nest construction (Bawa 1990; Roubik 1992). Hence a superficial analysis of species degree as a method to rank species by their relevance in a community can lead to overestimation if floral host or pollinator redundancy. Furthermore, our data shows that some phenotypic specialized bees that have diverse diets and collect several types of resources, such as the solitary species of oil-collecting groups, may play an important role as "keystone mutualists" in Neotropical plant-pollinator communities (Gilbert 1980). Our study provides additional evidence that proper evaluation of community ecology and robustness of these systems can only be achieved with the inclusion of information of timing and resource use of

interactions recorded. Given the extent of areas covered by seasonally dry forests and savannas worldwide, their relevance for conservation of biodiversity, and the increasing need for baseline research to estimate effects of climate change for the persistence of natural communities a better understanding of plant-pollinator ecology from such habitats is much needed.

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

583

584

585

586

587

Concluding remarks

Our results corroborate the idea that temporal and seasonal variation in species interactions is likely to influence particular structural features relevant for understanding dynamics and stability of plant-pollinator communities. The inclusion of such information might be especially important in the analyses of communities from highly seasonal habitats such as the seasonally dry sayannas and forests from South America. In the systems studied, we show that well-defined modules comprising specific interactions characterize each season and these modules have less than 6% in interactions in common. We ascribe the low overlap in interactions between seasonal modules to strong seasonality in plant phenology while pollinator activity appears to be less affected by climatic conditions. Our findings indicate that long-term water stress in combination with particular vegetation types, as observed in the Cerrado, may lead to drastic changes in community dynamics and structure during the dry season, increasing its vulnerability to disturbance. In the systems studied, aseasonal pollinators, comprising specialized and social bees, function as keystone species and are especially important for the stability of the overall system. We suggest that inclusion of resource use, in addition to seasonal information on species interactions, might be important and necessary for accurate

606	analyses of ecology and stability analyses of Neotropical communities subject to strong
607	seasonality.
608	
609	Acknowledgements
610	We thank the staff of Reserva Ecológica do IBGE for support during field work;
611	M. C. Boaventura for making his data set (BBG) available to our analyses; P. H. Pinheiro
612	for help with field data collection at IBGE; and the graduate program in Ecology at the
613	University of Brasília for logistic and scientific support. We thank the following experts
614	for help with plant identification: M. A. da Silva, M. C. Mamede, C. Proença, A. L.
615	Prado, S. L. Silva, L. P. Queiroz, A. Krapovikas, L. F. Oliveira, T. B. Cavalcante, K.
616	Calago, A. E. Ramos, C. Munhoz, F. Silva, M. G. Nóbrega, R. C. Martins, and R. C.
617	Oliveira, and the following experts for bee identifications: A. J. C. Aguiar, A. Raw, M. C.
618	Boaventura, G. A. R. Melo, F. Vivallo, and D. Urban. Our work was supported by NSF-
619	DDIG (DEB 0909511 to S. C. Cappellari and B. B. Simpson), by the UCLA
620	Biomathematics start-up funds to S. Pawar and by NSF (DEB Award 1021010 also to S.
621	Pawar), and endowment funds from the C. L. Lundell Chair of The University of Texas at
622	Austin.
623	
624	Data accessibility
625	All data used in this manuscript are present in the manuscript and its supporting
626	information.
627	
628	References cited

629	Almeida Neto, M., Guimarães Jr, P.R. & Lewinsohn, T.M. (2007) On nestedness
630	analyses: rethinking matrix temperature and anti nestedness. Oikos, 116, 716-722
631	Armbruster, W.S. (2006) Evolutionary and ecological aspects of specialized pollination:
632	views from the Arctic to the Tropics. Plant-pollinator interactions: from
633	specialization to generalization (eds N.M. Waser & J. Ollerton), pp. 260-282.
634	University of Chicago Press, Chicago.
635	Bascompte, J. & Jordano, P. (2007) Plant-animal mutualistic networks: The architecture
636	of biodiversity. Annual Review of Ecology Evolution and Systematics, 38, 567-
637	593.
638	Bascompte, J., Jordano, P., Melian, C.J. & Olesen, J.M. (2003) The nested assembly of
639	plant-animal mutualistic networks. Proc Natl Acad Sci USA, 100, 9383-9387.
640	Bascompte, J., Jordano, P. & Olesen, J.M. (2006) Asymmetric coevolutionary networks
641	facilitate biodiversity maintenance. Science, 312, 431-433.
642	Basilio, A.M., Medan, D., Torretta, J.P. & Bartoloni, N.J. (2006) A year-long plant-
643	pollinator network. Austral Ecology, 31, 975-983.
644	Batalha, M.A. & Martins, F.R. (2004) Reproductive phenology of the cerrado plant
645	community in Emas National Park (central Brazil). Australian Journal of Botany,
646	52, 149-161.
647	Bawa, K.S. (1990) Plant-pollinator interactions in tropical rain forests. Annual Review of
648	Ecology and Systematics, 399-422.
649	Bell, R.H. (1971) A grazing ecosystem in the Serengeti. Scientific American, 225, 86-93.
650	Biesmeijer, J.C. & Slaa, E.J. (2006) The structure of eusocial bee assemblages in Brazil.
651	Apidologie, 37 , 240-258.

Page 30 of 85

652	Boaventura, M.C. (1998) Sazonalidade e estrutura de uma comunidade de abelhas
653	silvestres (Hymenoptera: Apoidea) numa área de Cerrado do Jardim Botânico de
654	Brasília, Distrito Federal. Master thesis, Universidade de Brasilia.
655	Burkle, L.A. & Alarcón, R. (2011) The future of plant-pollinator diversity:
656	Understanding interaction networks across time, space, and global change.
657	American Journal of Botany, 98, 1-11.
658	Cappellari, S.C. (2011) Evolutionary ecology of Malpighiaceae pollination at the species
659	and community levels. Ph.D., Dissertation thesis, The University of Texas at
660	Austin.
661	Dunne, J.A., Williams, R.J. & Martinez, N.D. (2002) Network structure and biodiversity
662	loss in food webs: robustness increases with connectance. Ecology Letters, 5, 558
663	567.
664	Eiten, G. (1972) The Cerrado vegetation of Brazil. <i>Botanical Review</i> , 38 , 201-341.
665	Futuyma, D.J. & Moreno, G. (1988) The evolution of ecological specialization. Annual
666	Review of Ecology and Systematics, 19, 207-233.
667	Gilbert, L.E. (1980) Food web organization and conservation of neotropical diversity.
668	Conservation biology: An evolutionary-ecological perspective (eds M.E. Soulé &
669	B.A. Wilcox), pp. 11-33. Sinauer, Sunderland, MA.
670	Gottsberger, G. & Silberbauer-Gottsberger, I. (2006a) Life in the Cerrado: a South
671	American Tropical Seasonal Ecosystem: Origin, Structure, Dynamics and Plant
672	Use. Reta Verlag, Ulm.

673	Gottsberger, G. & Silberbauer-Gottsberger, I. (2006b) Life in the Cerrado: a South
674	American Tropical Seasonal Ecosystem: Pollination and Seed Dispersal. Reta
675	Verlag, Ulm.
676	Huber, O. (1987) Neotropical savannas: their flora and vegetation. Trends in ecology &
677	evolution, 2 , 67-71.
678	Jordano, P. (1987) Patterns of mutualistic interactions in pollination and seed dispersal
679	connectance, dependence asymmetries, and coevolution. American Naturalist,
680	129, 657-677.
681	Jordano, P., Bascompte, J. & Olesen, J.M. (2003) Invariant properties in coevolutionary
682	networks of plant–animal interactions. Ecology Letters, 6, 69-81.
683	Kaiser-Bunbury, C.N., Muff, S., Memmott, J., Müller, C.B. & Caflisch, A. (2010) The
684	robustness of pollination networks to the loss of species and interactions: a
685	quantitative approach incorporating pollinator behaviour. Ecology Letters, 13,
686	442-452.
687	Klink, C.A. & Machado, R.B. (2005) Conservation of the Brazilian cerrado.
688	Conservation Biology, 19, 707-713.
689	Krebs, C.J. (1999) Ecological methodology. Benjamin/Cummings Menlo Park,
690	California.
691	Kricher, J. (2011) Tropical Ecology. Princeton University Press.
692	Lundgren, R. & Olesen, J.M. (2005) The dense and highly connected world of
693	Greenland's plants and their pollinators. Arctic, Antarctic, and Alpine Research,
694	37, 514-520.

695 Medan, D., Basilio, A.M., Devoto, M., Bartoloni, N.J., Torretta, J.P. & Petanidou, T. 696 (2006) Measuring generalization and connectance in temperate, year-long active 697 systems. Plant-pollinator interactions: from specialization to generalization (eds 698 N.M. Waser & J. Ollerton), pp. 245-259. The University of Chicago Press, 699 Chicago. 700 Memmott, J., Alonso, D., Berlow, E.L., Dobson, A., Dunne, J.A., Sole, R. & Weitz, J. 701 (2006) Biodiversity loss and ecological network structure. *Ecological Networks*: 702 *Linking Structure to Dynamics in Food Webs*, pp. 325-347. 703 Memmott, J., Waser, N.M. & Price, M.V. (2004) Tolerance of pollination networks to 704 species extinctions. *Proc Biol Sci*, **271**, 2605-2611. 705 Michener, C.D. (2007) The Bees of the World, 2nd edn. The John Hopkins University 706 Press. 707 Moure, J.S. (1962) As Mamangabas Sociais do Brasil (Bombus Latr.) (Hym., Apoidea). 708 Editora Vozes Ltda. Moure, J.S., Urban, D. & Melo, G.A.R. (2007) Catalogue of Bees (Hymenoptera, 709 710 Apoidea) in the Neotropical Region, 1st edn. Universidade Federal do Parana, 711 Curitiba. 712 Myers, N., Mittermeier, R.A., Mittermeier, C.G., da Fonseca, G.A.B. & Kent, J. (2000) 713 Biodiversity hotspots for conservation priorities. *Nature*, **403**, 853-858. 714 Neff, J.L. & Simpson, B.B. (1981) Oil-collecting structures in the Anthophoridae 715 (Hymenoptera): morphology, function, and use in systematics. *Journal of the* 716 Kansas Entomological Society, 54, 95-123.

717	Olesen, J.M., Bascompte, J., Elberling, H. & Jordano, P. (2008) Temporal dynamics in a
718	pollination network. Ecology, 89, 1573-1582.
719	Oliveira, P. & Gibbs, P. (2000) Reproductive biology of woody plants in a cerrado
720	community of Central Brazil. Flora (Jena), 195, 311-329.
721	Oliveira, P.E. (2008) Fenologia e biologia reprodutiva das espécies do Cerrado
722	Cerrado: ecologia e flora (eds S.M. Sano, S.P.d. Almeida & J.F. Ribeiro), pp.
723	273-290. Embrapa Cerrados, Brasília.
724	Oliveira, P.E. & Gibbs, P.E. (2002) Pollination and reproductive biology in cerrado plant
725	communities. The cerrados of Brazil: ecology and natural history of a
726	Neotropical savanna, 329-347.
727	Pennington, R.T., Lewis, G.P. & Ratter, J.A. (2006) An overview of the plant diversity,
728	biogeography and conservation of Neotropical savannas and seasonally dry
729	forests. Neotropical savannas and seasonally dry forests (eds R.T. Pennington,
730	G.P. Lewis & J.A. Ratter), pp. 1-30. CRC Press, Taylor & Francis Group, Boca
731	Raton, FL.
732	Pennington, R.T. & Ratter, J.A. (2006) Neotropical savannas and seasonally dry forests.
733	plant diversity, biogeography, and conservation. CRC Press.
734	Pereira, B.A.S., Silva, M.A. & Mendonça, R.C. (1998) Lista de plantas vasculares da
735	Reserva Ecológica do IBGE (RECOR), Brasília, DF. Instituto Brasileiro de
736	Geografia e Estatística, Brasília.
737	Pinheiro-Machado, C., Alves-dos-Santos, I., Imperatriz-Fonseca, V.L., Kleinert, A.M.P.
738	& Silveira, F.A. (2002) Brazilian bee surveys: state of knowledge, conservation
739	and sustainable use. Pollinating Bees - The Conservation Link Between

/40	Agriculture and Nature. (eds P. Kevan & V.L. Imperatriz-Fonseca), pp. 115-129.
741	Brazilian Ministry of Environment, Brasília.
742	Roubik, D.W. (1992) Ecology and natural history of tropical bees. Cambridge University
743	Press.
744	Sakagami, S.F., Laroca, S. & Moure, J.S. (1967) Wild bee biocenotics in São José dos
745	Pinhais (PR), South Brazil - preliminary report. Journal of the Faculty of Science,
746	Hokkaido University, Zoology, 16, 253-291.
747	Silveira, F. & Campos, M.J.O. (1995) A melissofauna de Corumbataí (SP) e Paraopeba
748	(MG) e uma análise da biogeografía das abelhas do cerrado brasileiro
749	(Hymenoptera, Apoidea). Rev. Bras. Entomol, 39, 371-401.
750	Silveira, F.A., Melo, G.A.R. & Almeida, E.A.B. (2002) Abelhas brasileiras: sistemática
751	e identificação, 1st edn. F.A. Silveira, Belo Horizonte.
752	Vázquez, D.P., Blüthgen, N., Cagnolo, L. & Chacoff, N.P. (2009) Uniting pattern and
753	process in plant-animal mutualistic networks: a review. Annals of Botany, 103,
754	1445.
755	Vázquez, D.P., Morris, W.F. & Jordano, P. (2005) Interaction frequency as a surrogate
756	for the total effect of animal mutualists on plants. Ecology Letters, 8, 1088-1094.
757	
758	

Table 1. Seasonal changes in network structure and species niche breath in the two Cerrado communities. Each nestedness value is a test of the null hypotheses that the observed network is no more nested than a random one, and was calculated from constrained network randomizations (p < 0.0001; see methods). Significant differences in parameters between dry and rainy seasons (at one-tailed p < 0.05) are flagged with a "*" (see methods).

		IBGE			BBG		
	Measure	Cumulative	Rainy	Dry	Cumulative	Rainy	Dry
Network structure	Total species	204	158*	107*	337	227*	221*
	Plant species (P)	93	66	51	153	92	93
	Pollinator species (A)	111	92*	56*	184	135*	128*
	Number of links (L)	434	318*	127*	820	407	455
	Number of visits recorded (V)	968	608	360	1,679	686	993
	Bipartite connectance	0.084	0.105*	0.089	0.058	0.066	0.07
	(BC=2*L/A*P)		0.103	*			6
	Standard connectance	4.20	5.24	4.45	2.91	3.28	3.82
	(C=100*(L/A*P))	4.20	3.24	4.43	2.91	3.28	3.82
	Nestedness (NODF)	13.9	13.3	10.2	14.2	12.0*	17.6
			13.3		14.2	12.0*	*
	Mean shortest path	3.6	3.6	4.2	3.6	3.8	3.6
	Network diameter	9	7	9	8	9	8
Niche breadth	Mean plant degree	4.7	4.8*	2.5*	5.4	4.4	4.9
	Min plant degree	1	1	1	1	1	1
	Max plant degree	22	19	12	48	36	45
	Mean pollinator degree	3.9	3.5*	2.3*	4.5	3	3.6
	Min plant degree	1	1	1	1	1	1
	Max pollinator degree	29	20	14	51	24	32

766 <u>Fig</u>	ire Captions
----------------	--------------

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

Figure 1. Summary of climatic conditions at the study site in the period from 1980 to **2010.** Left figure: Monthly precipitation in centimeters, stars indicate the average in millimeters and bars represent confidence intervals. Right figure: Monthly temperature in Celsius degrees, solid circles indicate the average high daytime temperatures, open circles show the average of the lowest nighttime values, and bars represent confidence intervals. Months on the horizontal axis reflect the seasonal periods defined in the analysis (see methods section). Red indicates dry season and blue rainy season months. Figure 2. Seasonal pollination networks of the two communities. Blue lines indicate interactions recorded during the rainy season, red lines show interactions recorded in the dry season, and black lines show interactions recorded in both seasons (i.e., overlap). Both plants and animal nodes have been ordered by decreasing degree, i.e., with the most connected species on top. Each node is color-coded to reflect its period of activity in the community: blue – only rainy season; red – only dry season; black– both seasons. Black nodes are clustered towards the top, indicating that species with large number of partners (generalists) bloomed or were active in both seasons. The paucity of black links illustrates the low overlap in interactions between seasons and the modularity arising due to floral host switch by pollinators. Figure 3. Temporal turnover in the number of interaction partners for pollinators (upper panels) and plants (lower panels) in Cerrado communities. Turnover is shown

for the five species with the largest number of interaction partners in each community

(i.e., top pollinators and plants). Numbers indicate species node identification number in each respective community (for corresponding species names, see Tables ST and S2 in the supplementary material). Aseasonality of pollinators is illustrated by links colored in black. All top five pollinators comprised species of social bees (i.e., honey bees, stingless bees, and bumble bees) in both communities. Seasonal transitions are associated with nearly complete turnover in the set of partner species with which plants and pollinators interact in each community. Each node and interaction is color-coded to reflect seasonal period of activity: blue – rainy season only, red – dry season only, and black– both seasons.

Figure 4. Network robustness to the simulated extinctions of pollinator and plant species in each community. Curves reflect extinction simulations results with removal following a decreasing rank of species importance (i.e., from largest to smallest values) in degree for robustness to species loss, and weighted degree for robustness to loss of flow. Dots indicate species loss robustness results as the proportion of species remaining in the community after removal; lines indicate flow robustness as the proportion of visitations being made or received after removal; red indicates dry season results, blue refers to rainy season module, and black refers to the results considering the entire, aseasonal community. Significance of differences in robustness are indicates by asteriscs for the removals by decreasing aseasonality (degree) in terms of overlap in the 95% confidence intervals (CI) around the AUC curves, as well as the proportion of nodes or visitation services remaining after removal (in parentheses, ±95% CI). For significance of

- differences in robustness of low to high degree and random removal of species, see Table
- 812 S4 in the supplementary material.

Functional Ecology

Supplementary Material 1

Table S1. Plant (P) and pollinator (A) species recorded from October 2008 to September 2009 at the IBGE site, sorted by
decreasing degree (i.e., number of interaction partners) and interaction frequency as proxies of niche breath within each
trophic level (TL), pollinators appearing first. Cum.= total records independent of seasonality; Rainy= records for the rainy season
only; Dry= records for the dry season only; % = proportion of data recorded in each season relative to the cumulative records. Species
were classified as "seasonal" if proportional degree or interaction frequency were equal or greater than 75% in one season. Social bees

indicated by *; oil-collecting species indicated by §.

7

8

					C	/			NICHE E	BREADTH					
Node	Family	Species	TL				Degree					Intera	ction freq	uency	
				Cum.	Rainy	Dry	% Rainy	% Dry	Seasonality	Cum.	Rainy	Dry	% Rainy	% Dry	Seasonality
16	Apidae	Bombus brevivillus*	bee	29	16	14	0.55	0.48	aseasonal	86	40	46	0.47	0.53	aseasonal
91	Apidae	Paratrigona lineata*	bee	29	20	10	0.69	0.34	aseasonal	106	54	52	0.51	0.49	aseasonal
6	Apidae	Apis mellifera*	bee	27	17	12	0.63	0.44	aseasonal	154	45	109	0.29	0.71	aseasonal
17	Apidae	Bombus morio*	bee	19	9	10	0.47	0.53	aseasonal	43	17	26	0.40	0.60	aseasonal
102	Apidae	Trigona spinipes*	bee	14	10	4	0.71	0.29	aseasonal	60	30	30	0.50	0.50	aseasonal
90	Apidae	Paratetrapedia punctata§	bee	13	9	5	0.69	0.38	aseasonal	22	15	7	0.68	0.32	aseasonal
67	Apidae	Exomalopsis fulvofasciata	bee	11	11	0	1.00	0.00	seasonal	15	15	0	1.00	0.00	seasonal

Node	Family	Species	TL				Degree					Intera	ction freq	uency	
				Cum.	Rainy	Dry	% Rainy	% Dry	Seasonality	Cum.	Rainy	Dry	% Rainy	% Dry	Seasonality
36	Apidae	Ceratina (Crewella) sp. 2	bee	10	7	3	0.70	0.30	aseasonal	12	9	3	0.75	0.25	aseasonal
37	Apidae	Ceratina (Crewella) sp. 3	bee	9	9	1	1.00	0.11	seasonal	14	13	1	0.93	0.07	seasonal
22	Apidae	Centris burgdorfi§	bee	8	5	4	0.63	0.50	aseasonal	13	6	7	0.46	0.54	aseasonal
56	Apidae	Epicharis iheringii [§]	bee	7	7	0	1.00	0.00	seasonal	9	9	0	1.00	0.00	seasonal
57	Apidae	Epicharis morio§	bee	7	6	3	0.86	0.43	seasonal	21	18	3	0.86	0.14	seasonal
66	Apidae	Exomalopsis campestris	bee	7	6	1	0.86	0.14	seasonal	11	10	1	0.91	0.09	seasonal
100	Apidae	Tetrapedia diversipes [§]	bee	7	7	0	1.00	0.00	seasonal	16	16	0	1.00	0.00	seasonal
30	Apidae	Centris nitens§	bee	6	4	2	0.67	0.33	aseasonal	8	6	2	0.75	0.25	aseasonal
52	Apidae	Epicharis analis [§]	bee	6	6	0	1.00	0.00	seasonal	15	15	0	1.00	0.00	seasonal
53	Apidae	Epicharis bicolor [§]	bee	6	5	1	0.83	0.17	seasonal	8	7	1	0.88	0.13	seasonal
54	Apidae	Epicharis cockerelli [§]	bee	6	5	1	0.83	0.17	seasonal	10	9	1	0.90	0.10	seasonal
60	Apidae	Eufriesea violacens	bee	6	6	0	1.00	0.00	seasonal	7	7	0	1.00	0.00	seasonal
73	Apidae	Geotrigona mombuca*	bee	6	4	2	0.67	0.33	aseasonal	21	19	2	0.90	0.10	seasonal
82	Megachilidae	Megachile rubricate	bee	6	5	1	0.83	0.17	seasonal	8	7	1	0.88	0.13	seasonal
96	Apidae	Scaptotrigona postica*	bee	6	5	1	0.83	0.17	seasonal	49	48	1	0.98	0.02	seasonal
108	Apidae	Xylocopa hirsutissima	bee	6	6	0	1.00	0.00	seasonal	7	7	0	1.00	0.00	seasonal
18	Apidae	Bombus pauloensis*	bee	5	2	3	0.40	0.60	aseasonal	8	2	6	0.25	0.75	seasonal

Node	Family	Species	TL				Degree					Intera	ction freq	uency	
				Cum.	Rainy	Dry	% Rainy	% Dry	Seasonality	Cum.	Rainy	Dry	% Rainy	% Dry	Seasonality
71	Apidae	Gaesischia belophora	bee	5	3	2	0.60	0.40	aseasonal	8	5	3	0.63	0.38	aseasonal
87	Apidae	Monoeca mourei [§]	bee	5	5	0	1.00	0.00	seasonal	10	10	0	1.00	0.00	seasonal
99	Apidae	Tetragona quadrangula*	bee	5	3	2	0.60	0.40	aseasonal	11	5	6	0.45	0.55	aseasonal
101	Apidae	Tetrapedia peckoltii [§]	bee	5	4	1	0.80	0.20	seasonal	10	9	1	0.90	0.10	seasonal
104	Apidae	Tropidopedia flavolineata§	bee	5	5	1	1.00	0.20	seasonal	7	5	2	0.71	0.29	aseasonal
31	Apidae	Centris varia [§]	bee	4	4	0	1.00	0.00	seasonal	7	7	0	1.00	0.00	seasonal
21	Apidae	Centris bicolor [§]	bee	4	2	2	0.50	0.50	aseasonal	4	2	2	0.50	0.50	aseasonal
35	Apidae	Ceratina (Crewella) sp. 1	bee	4	4	0	1.00	0.00	seasonal	6	6	0	1.00	0.00	seasonal
41	Apidae	Ceratina (Crewella) sp. 7	bee	4	3	1	0.75	0.25	seasonal	4	3	1	0.75	0.25	aseasonal
51	Megachilidae	Epanthidium tigrinum	bee	4	4	0	1.00	0.00	seasonal	4	4	0	1.00	0.00	seasonal
63	Apidae	Eulaema nigrita	bee	4	4	0	1.00	0.00	seasonal	6	6	0	1.00	0.00	seasonal
65	Apidae	Exomalopsis auropilosa	bee	4	1	3	0.25	0.75	seasonal	5	1	4	0.20	0.80	seasonal
69	Apidae	Exomalopsis sp. 2	bee	4	2	2	0.50	0.50	aseasonal	4	2	2	0.50	0.50	aseasonal
84	Apidae	Melissoptila richardia	bee	4	3	1	0.75	0.25	seasonal	5	3	2	0.60	0.40	aseasonal
5	Megachilidae	Anthodioctes megachiloides	bee	3	2	1	0.67	0.33	aseasonal	3	2	1	0.67	0.33	aseasonal
9	Halictidae	Augochloropsis smithiana*	bee	3	1	2	0.33	0.67	aseasonal	3	1	2	0.33	0.67	aseasonal
11	Halictidae	Augochloropsis sp. 2*	bee	3	3	0	1.00	0.00	seasonal	3	3	0	1.00	0.00	seasonal

Node	Family	Species	TL				Degree					Intera	ction freq	uency	
				Cum.	Rainy	Dry	% Rainy	% Dry	Seasonality	Cum.	Rainy	Dry	% Rainy	% Dry	Seasonality
28	Apidae	Centris scopipes§	bee	3	3	1	1.00	0.33	seasonal	4	3	1	0.75	0.25	aseasonal
40	Apidae	Ceratina (Crewella) sp. 6	bee	3	3	0	1.00	0.00	seasonal	8	8	0	1.00	0.00	seasonal
55	Apidae	Epicharis flava [§]	bee	3	3	0	1.00	0.00	seasonal	5	5	0	1.00	0.00	seasonal
61	Apidae	Euglossa melanotricha	bee	3	3	0	1.00	0.00	seasonal	4	4	0	1.00	0.00	seasonal
62	Apidae	Euglossa sp.	bee	3	3	0	1.00	0.00	seasonal	4	4	0	1.00	0.00	seasonal
68	Apidae	Exomalopsis sp. 1	bee	3	3	0	1.00	0.00	seasonal	3	3	0	1.00	0.00	seasonal
80	Megachilidae	Megachile aureiventris	bee	3	3	0	1.00	0.00	seasonal	3	3	0	1.00	0.00	seasonal
83	Megachilidae	Megachile terrestris	bee	3	3	0	1.00	0.00	seasonal	3	3	0	1.00	0.00	seasonal
88	Andrenidae	Oxaea flavescens	bee	3	3	0	1.00	0.00	seasonal	9	9	0	1.00	0.00	seasonal
109	Apidae	Xylocopa sp.	bee	3	0	3	0.00	1.00	seasonal	3	0	3	0.00	1.00	seasonal
2	Apidae	Ancyloscelis cft. romeroi	bee	2	2	0	1.00	0.00	seasonal	4	4	0	1.00	0.00	seasonal
4	Megachilidae	Anthidium sertanicola	bee	2	2	0	1.00	0.00	seasonal	2	2	0	1.00	0.00	seasonal
12	Halictidae	Augochloropsis sp. 3*	bee	2	0	2	0.00	1.00	seasonal	2	0	2	0.00	1.00	seasonal
13	Halictidae	Augochloropsis sp. 4*	bee	2	1	1	0.50	0.50	aseasonal	2	1	1	0.50	0.50	aseasonal
14	Halictidae	Augochloropsis sp. 5*	bee	2	2	0	1.00	0.00	seasonal	2	2	0	1.00	0.00	seasonal
29	Apidae	Centris tarsata§	bee	2	1	1	0.50	0.50	aseasonal	2	1	1	0.50	0.50	aseasonal
32	Apidae	Ceratalictus clonius*	bee	2	1	1	0.50	0.50	aseasonal	2	1	1	0.50	0.50	aseasonal

Node	Family	Species	TL				Degree					Intera	ction freq	uency	
				Cum.	Rainy	Dry	% Rainy	% Dry	Seasonality	Cum.	Rainy	Dry	% Rainy	% Dry	Seasonality
34	Apidae	Ceratina (Ceratinula) sp. 2	bee	2	1	1	0.50	0.50	aseasonal	2	1	1	0.50	0.50	aseasonal
38	Apidae	Ceratina (Crewella) sp. 4	bee	2	2	0	1.00	0.00	seasonal	2	2	0	1.00	0.00	seasonal
45	Apidae	Ctenioschelus goryi	bee	2	1	1	0.50	0.50	aseasonal	2	1	1	0.50	0.50	aseasonal
75	Megachilidae	Larocanthidium sp.	bee	2	1	1	0.50	0.50	aseasonal	2	1	1	0.50	0.50	aseasonal
47	Halictidae	Lasioglossum (Dialictus) sp. 2*	bee	2	1	1	0.50	0.50	aseasonal	2	1	1	0.50	0.50	aseasonal
78	Apidae	Lophopedia pygmaea [§]	bee	2	2	0	1.00	0.00	seasonal	2	2	0	1.00	0.00	seasonal
93	Apidae	Partamona cupira*	bee	2	2	0	1.00	0.00	seasonal	6	6	0	1.00	0.00	seasonal
94	Halictidae	Pseudoagapostemon sp.*	bee	2	2	0	1.00	0.00	seasonal	2	2	0	1.00	0.00	seasonal
95	Halictidae	Rhinocorynura sp.	bee	2	2	0	1.00	0.00	seasonal	2	2	0	1.00	0.00	seasonal
110	Apidae	Xylocopa subcyanea	bee	2	2	0	1.00	0.00	seasonal	3	3	0	1.00	0.00	seasonal
111	Apidae	Xylocopa vestita	bee	2	0	2	0.00	1.00	seasonal	2	0	2	0.00	1.00	seasonal
1	Halictidae	Agapostemon chapadensis*	bee	1	0	1	0.00	1.00	seasonal	1	0	1	0.00	1.00	seasonal
3	Apidae	Ancyloscelis sp.	bee	1	1	0	1.00	0.00	seasonal	1	1	0	1.00	0.00	seasonal
7	Apidae	Arhysoceble sp. §	bee	1	1	0	1.00	0.00	seasonal	1	1	0	1.00	0.00	seasonal
8	Halictidae	Augochlorella ephyra*	bee	1	1	0	1.00	0.00	seasonal	1	1	0	1.00	0.00	seasonal
10	Halictidae	Augochloropsis sp. 1*	bee	1	1	0	1.00	0.00	seasonal	1	1	0	1.00	0.00	seasonal
15	Halictidae	Augochloropsis sp. 6*	bee	1	1	0	1.00	0.00	seasonal	1	1	0	1.00	0.00	seasonal

Node	Family	Species	TL				Degree					Intera	ction freq	uency	
				Cum.	Rainy	Dry	% Rainy	% Dry	Seasonality	Cum.	Rainy	Dry	% Rainy	% Dry	Seasonality
19	Apidae	Centris aenea [§]	bee	1	1	0	1.00	0.00	seasonal	2	2	0	1.00	0.00	seasonal
20	Apidae	Centris analis§	bee	1	1	0	1.00	0.00	seasonal	1	1	0	1.00	0.00	seasonal
23	Apidae	Centris fuscata [§]	bee	1	0	1	0.00	1.00	seasonal	1	0	1	0.00	1.00	seasonal
24	Apidae	Centris lateritia§	bee	1	0	1	0.00	1.00	seasonal	1	0	1	0.00	1.00	seasonal
25	Apidae	Centris machadoi [§]	bee	1	0	1	0.00	1.00	seasonal	1	0	1	0.00	1.00	seasonal
26	Apidae	Centris mocsaryi [§]	bee	1	1	0	1.00	0.00	seasonal	2	2	0	1.00	0.00	seasonal
27	Apidae	Centris rupestris [§]	bee	1	0	1	0.00	1.00	seasonal	1	0	1	0.00	1.00	seasonal
33	Apidae	Ceratina (Ceratinula) sp. 1	bee	1	1	0	1.00	0.00	seasonal	1	1	0	1.00	0.00	seasonal
39	Apidae	Ceratina (Crewella) sp. 5	bee	1	1	0	1.00	0.00	seasonal	1	1	0	1.00	0.00	seasonal
42	Apidae	Ceratina (Rhysoceratina) sp. 1	bee	1	1	0	1.00	0.00	seasonal	2	2	0	1.00	0.00	seasonal
43	Megachilidae	Coelioxys sp.	bee	1	1	0	1.00	0.00	seasonal	1	1	0	1.00	0.00	seasonal
44	Colletidae	Colletes sp.	bee	1	0	1	0.00	1.00	seasonal	1	0	1	0.00	1.00	seasonal
50	Megachilidae	Epanthidium aureocinctum	bee	1	1	0	1.00	0.00	seasonal	1	1	0	1.00	0.00	seasonal
58	Apidae	Epicharis picta [§]	bee	1	1	0	1.00	0.00	seasonal	1	1	0	1.00	0.00	seasonal
59	Apidae	Epicharis xanthogastra§	bee	1	1	0	1.00	0.00	seasonal	2	2	0	1.00	0.00	seasonal
64	Apidae	Exaerete dentata	bee	1	1	0	1.00	0.00	seasonal	1	1	0	1.00	0.00	seasonal
70	Apidae	Exomalopsis sp. 3	bee	1	0	1	0.00	1.00	seasonal	1	0	1	0.00	1.00	seasonal

Node	Family	Species	TL				Degree					Intera	ction freq	uency	
				Cum.	Rainy	Dry	% Rainy	% Dry	Seasonality	Cum.	Rainy	Dry	% Rainy	% Dry	Seasonality
72	Apidae	Gaesischia nigra	bee	1	0	1	0.00	1.00	seasonal	1	0	1	0.00	1.00	seasonal
74	Megachilidae	Hypanthidium nigritulum	bee	1	1	0	1.00	0.00	seasonal	1	1	0	1.00	0.00	seasonal
76	Halictidae	Lasioglossum (Dialictus) sp. 1*	bee	1	0	1	0.00	1.00	seasonal	1	0	1	0.00	1.00	seasonal
46	Halictidae	Lasioglossum (Dialictus) rostratum*	bee	1	1	0	1.00	0.00	seasonal	1	1	0	1.00	0.00	seasonal
48	Halictidae	Lasioglossum (Dialictus) sp. 3*	bee	1	1	0	1.00	0.00	seasonal	1	1	0	1.00	0.00	seasonal
49	Halictidae	Lasioglossum (Dialictus) sp. 4*	bee	1	0	1	0.00	1.00	seasonal	2	0	2	0.00	1.00	seasonal
77	Megachilidae	Lithurgus huberi	bee	1	0	1	0.00	1.00	seasonal	1	0	1	0.00	1.00	seasonal
79	Megachilidae	Megachile (Pseudocentron) sp.	bee	1	1	0	1.00	0.00	seasonal	1	1	0	1.00	0.00	seasonal
81	Megachilidae	Megachile frankieana	bee	1	1	0	1.00	0.00	seasonal	1	1	0	1.00	0.00	seasonal
85	Apidae	Melissoptila sp.	bee	1	0	1	0.00	1.00	seasonal	1	0	1	0.00	1.00	seasonal
86	Apidae	Monoeca pluricincta [§]	bee	1	0	1	0.00	1.00	seasonal	2	0	2	0.00	1.00	seasonal
89	Apidae	Paratetrapedia flaveola [§]	bee	1	0	1	0.00	1.00	seasonal	2	0	2	0.00	1.00	seasonal
92	Halictidae	Paraxystoglossa mimetica*	bee	1	1	0	1.00	0.00	seasonal	7	7	0	1.00	0.00	seasonal
97	Apidae	Schwarziana quadripunctata*	bee	1	0	1	0.00	1.00	seasonal	2	0	2	0.00	1.00	seasonal
98	Halictidae	Temnosoma sp.	bee	1	1	0	1.00	0.00	seasonal	1	1	0	1.00	0.00	seasonal
103	Apidae	Tropidopedia carinata [§]	bee	1	1	0	1.00	0.00	seasonal	1	1	0	1.00	0.00	seasonal
105	Apidae	Xanthopedia larocai [§]	bee	1	1	0	1.00	0.00	seasonal	1	1	0	1.00	0.00	seasonal

Node	Family	Species	TL				Degree					Intera	ction freq	uency	
				Cum.	Rainy	Dry	% Rainy	% Dry	Seasonality	Cum.	Rainy	Dry	% Rainy	% Dry	Seasonality
106	Apidae	Xylocopa cearensis	bee	1	0	1	0.00	1.00	seasonal	1	0	1	0.00	1.00	seasonal
107	Apidae	Xylocopa grisescens	bee	1	1	0	1.00	0.00	seasonal	1	1	0	1.00	0.00	seasonal
147	Asteraceae	Dimerostemma vestitum	plant	22	18	4	0.82	0.18	seasonal	31	26	5	0.84	0.16	seasonal
182	Rubiaceae	Palicourea coriacea	plant	19	19	0	1.00	0.00	seasonal	48	48	0	1.00	0.00	seasonal
148	Lythraceae	Diplusodon oblongus	plant	18	17	1	0.94	0.06	seasonal	70	69	1	0.99	0.01	seasonal
119	Fabaceae	Bauhinia dumosa	plant	15	15	0	1.00	0.00	seasonal	25	25	0	1.00	0.00	seasonal
193	Vochysiaceae	Qualea parviflora	plant	15	15	0	1.00	0.00	seasonal	23	23	0	1.00	0.00	seasonal
121	Malpighiaceae	Byrsonima basiloba	plant	14	14	0	1.00	0.00	seasonal	24	24	0	1.00	0.00	seasonal
144	Lythraceae	Cuphea linarioides	plant	13	13	0	1.00	0.00	seasonal	19	19	0	1.00	0.00	seasonal
153	Fabaceae	Galactia stereophylla	plant	13	13	0	1.00	0.00	seasonal	19	19	0	1.00	0.00	seasonal
138	Asteraceae	Chresta sphaerocephala	plant	12	0	12	0.00	1.00	seasonal	18	0	18	0.00	1.00	seasonal
166	Asteraceae	Lessingianthus brevipetiolatus	plant	12	8	4	0.67	0.33	aseasonal	15	11	4	0.73	0.27	aseasonal
175	Fabaceae	Mimosa albolanata	plant	12	11	2	0.92	0.17	seasonal	55	47	8	0.85	0.15	seasonal
165	Asteraceae	Lessingianthus bardanoides	plant	11	7	4	0.64	0.36	aseasonal	13	8	5	0.62	0.38	aseasonal
117	Malpighiaceae	Banisteriopsis schizoptera	plant	10	7	5	0.70	0.50	aseasonal	14	7	7	0.50	0.50	aseasonal
143	Euphorbiaceae	Croton goyazensis	plant	10	3	7	0.30	0.70	aseasonal	87	7	80	0.08	0.92	seasonal
116	Malpighiaceae	Banisteriopsis campestris	plant	9	9	0	1.00	0.00	seasonal	16	16	0	1.00	0.00	seasonal

Node	Family	Species	TL				Degree					Intera	ction frequ	uency	
				Cum.	Rainy	Dry	% Rainy	% Dry	Seasonality	Cum.	Rainy	Dry	% Rainy	% Dry	Seasonality
155	Malpighiaceae	Heteropterys campestris	plant	8	8	1	1.00	0.13	seasonal	13	12	1	0.92	0.08	seasonal
159	Lamiaceae	Hyptis lythroides	plant	8	0	8	0.00	1.00	seasonal	32	0	32	0.00	1.00	seasonal
178	Fabaceae	Mimosa radula	plant	8	7	1	0.88	0.13	seasonal	45	44	1	0.98	0.02	seasonal
120	Asteraceae	Bidens graveolens	plant	7	7	0	1.00	0.00	seasonal	19	19	0	1.00	0.00	seasonal
137	Fabaceae	Chamaecrista planaltoana	plant	7	0	7	0.00	1.00	seasonal	53	0	53	0.00	1.00	seasonal
152	Fabaceae	Galactia heringeri	plant	7	7	0	1.00	0.00	seasonal	12	12	0	1.00	0.00	seasonal
160	Convolvulaceae	Ipomoea contorquens	plant	7	7	0	1.00	0.00	seasonal	9	9	0	1.00	0.00	seasonal
161	Gentianaceae	Irlbachia speciosa	plant	7	2	6	0.29	0.86	seasonal	10	2	8	0.20	0.80	seasonal
164	Asteraceae	Lessingianthus argyrophyllus	plant	7	5	2	0.71	0.29	aseasonal	15	12	3	0.80	0.20	seasonal
168	Asteraceae	Lessingianthus ligulaefolius	plant	7	5	3	0.71	0.43	aseasonal	20	16	4	0.80	0.20	seasonal
131	Fabaceae	Centrosema bracteosum	plant	6	6	0	1.00	0.00	seasonal	9	9	0	1.00	0.00	seasonal
142	Fabaceae	Crotalaria unifoliata	plant	6	6	0	1.00	0.00	seasonal	6	6	0	1.00	0.00	seasonal
195	Acanthaceae	Ruellia incompta	plant	6	1	5	0.17	0.83	seasonal	6	1	5	0.17	0.83	seasonal
205	Velloziaceae	Vellozia squamata	plant	6	5	2	0.83	0.33	seasonal	10	8	2	0.80	0.20	seasonal
122	Malpighiaceae	Byrsonima coccolobifolia	plant	5	5	0	1.00	0.00	seasonal	5	5	0	1.00	0.00	seasonal
149	Lamiaceae	Eriope complicata	plant	5	4	2	0.80	0.40	seasonal	13	9	4	0.69	0.31	aseasonal
176	Fabaceae	Mimosa gracilis	plant	5	5	1	1.00	0.20	seasonal	8	7	1	0.88	0.13	seasonal

Node	Family	Species	TL				Degree					Interac	ction freq	uency	
				Cum.	Rainy	Dry	% Rainy	% Dry	Seasonality	Cum.	Rainy	Dry	% Rainy	% Dry	Seasonality
183	Rubiaceae	Palicourea rigida	plant	5	5	0	1.00	0.00	seasonal	8	8	0	1.00	0.00	seasonal
196	Rubiaceae	Sabicea brasiliensis	plant	5	4	1	0.80	0.20	seasonal	6	5	1	0.83	0.17	seasonal
124	Malpighiaceae	Byrsonima rigida	plant	4	4	0	1.00	0.00	seasonal	5	5	0	1.00	0.00	seasonal
135	Fabaceae	Chamaecrista claussenii	plant	4	2	2	0.50	0.50	aseasonal	5	2	3	0.40	0.60	aseasonal
154	Rubiaceae	Galianthe ramosa	plant	4	4	0	1.00	0.00	seasonal	10	10	0	1.00	0.00	seasonal
115	Asteraceae	Aspilia foliacea	plant	3	3	0	1.00	0.00	seasonal	3	3	0	1.00	0.00	seasonal
118	Malpighiaceae	Banisteriopsis stellaris	plant	3	2	1	0.67	0.33	aseasonal	3	2	1	0.67	0.33	aseasonal
128	Asteraceae	Calea fruticosa	plant	3	0	3	0.00	1.00	seasonal	4	0	4	0.00	1.00	seasonal
132	Fabaceae	Chamaecrista desvauxii	plant	3	3	0	1.00	0.00	seasonal	6	6	0	1.00	0.00	seasonal
136	Fabaceae	Chamaecrista lundii	plant	3	0	3	0.00	1.00	seasonal	17	0	17	0.00	1.00	seasonal
150	Erythroxylaceae	Erythroxylum campestre	plant	3	0	3	0.00	1.00	seasonal	14	0	14	0.00	1.00	seasonal
157	Lamiaceae	Hypenia macrantha	plant	3	1	2	0.33	0.67	aseasonal	3	1	2	0.33	0.67	aseasonal
162	Acanthaceae	Justicia picnophylla	plant	3	3	0	1.00	0.00	seasonal	5	5	0	1.00	0.00	seasonal
180	Ochnaceae	Ouratea floribunda	plant	3	0	3	0.00	1.00	seasonal	5	0	5	0.00	1.00	seasonal
185	Malpighiaceae	Peixotoa goiana	plant	3	0	3	0.00	1.00	seasonal	16	0	16	0.00	1.00	seasonal
194	Rubiaceae	Richardia brasiliensis	plant	3	0	3	0.00	1.00	seasonal	5	0	5	0.00	1.00	seasonal
199	Verbenaceae	Stachytarpheta chamissonis	plant	3	1	2	0.33	0.67	aseasonal	3	1	2	0.33	0.67	aseasonal

Node	Family	Species	TL				Degree					Intera	ction freq	uency	
				Cum.	Rainy	Dry	% Rainy	% Dry	Seasonality	Cum.	Rainy	Dry	% Rainy	% Dry	Seasonality
203	Melastomataceae	Tibouchina candollea	plant	3	3	0	1.00	0.00	seasonal	3	3	0	1.00	0.00	seasonal
113	Lamiaceae	Amasonia hirta	plant	2	2	0	1.00	0.00	seasonal	2	2	0	1.00	0.00	seasonal
123	Malpighiaceae	Byrsonima pachyphylla	plant	2	0	2	0.00	1.00	seasonal	2	0	2	0.00	1.00	seasonal
126	Malpighiaceae	Byrsonima verbascifolia	plant	2	2	0	1.00	0.00	seasonal	2	2	0	1.00	0.00	seasonal
134	Fabaceae	Chamaecrista pohliana	plant	2	2	0	1.00	0.00	seasonal	2	2	0	1.00	0.00	seasonal
158	Lamiaceae	Hyptis euneata	plant	2	0	2	0.00	1.00	seasonal	5	0	5	0.00	1.00	seasonal
169	Fabaceae	Lupinus velutinus	plant	2	2	1	1.00	0.50	seasonal	6	3	3	0.50	0.50	aseasonal
172	Convolvulaceae	Merremia contorquens	plant	2	2	0	1.00	0.00	seasonal	2	2	0	1.00	0.00	seasonal
177	Fabaceae	Mimosa lanuginosa	plant	2	0	2	0.00	1.00	seasonal	4	0	4	0.00	1.00	seasonal
179	Myrtaceae	Myrcia sp.	plant	2	2	0	1.00	0.00	seasonal	2	2	0	1.00	0.00	seasonal
187	Malvaceae	Peltaea obsita	plant	2	2	0	1.00	0.00	seasonal	2	2	0	1.00	0.00	seasonal
190	Melastomataceae	Pterolepis repanda	plant	2	2	0	1.00	0.00	seasonal	2	2	0	1.00	0.00	seasonal
192	Vochysiaceae	Qualea multiflora	plant	2	2	0	1.00	0.00	seasonal	2	2	0	1.00	0.00	seasonal
202	Malpighiaceae	Tetrapterys ambigua	plant	2	1	1	0.50	0.50	aseasonal	2	1	1	0.50	0.50	aseasonal
112	Fabaceae	Acosmium dasycarpum	plant	1	1	0	1.00	0.00	seasonal	1	1	0	1.00	0.00	seasonal
114	Bignoniaceae	Arrabidhea sceptrum	plant	1	1	0	1.00	0.00	seasonal	1	1	0	1.00	0.00	seasonal
125	Malpighiaceae	Byrsonima subterranea	plant	1	1	0	1.00	0.00	seasonal	1	1	0	1.00	0.00	seasonal

Node	Family	Species	TL				Degree					Intera	ction freq	uency	
				Cum.	Rainy	Dry	% Rainy	% Dry	Seasonality	Cum.	Rainy	Dry	% Rainy	% Dry	Seasonality
127	Malpighiaceae	Byrsonima viminifolia	plant	1	0	1	0.00	1.00	seasonal	4	0	4	0.00	1.00	seasonal
129	Fabaceae	Calliandra dysantha	plant	1	0	1	0.00	1.00	seasonal	3	0	3	0.00	1.00	seasonal
130	Malpighiaceae	Camarea affinis	plant	1	1	0	1.00	0.00	seasonal	1	1	0	1.00	0.00	seasonal
139	Asteraceae	Chromolaena leucocephala	plant	1	0	1	0.00	1.00	seasonal	2	0	2	0.00	1.00	seasonal
141	Connaraceae	Connarus sp.	plant	1	1	0	1.00	0.00	seasonal	1	1	0	1.00	0.00	seasonal
140	Connaraceae	Connarus suberosus	plant	1	0	1	0.00	1.00	seasonal	1	0	1	0.00	1.00	seasonal
145	Euphorbiaceae	Dalechampia linearis	plant	1	1	0	1.00	0.00	seasonal	3	3	0	1.00	0.00	seasonal
146	Gentianaceae	Deianira chiquitana	plant	1	0	1	0.00	1.00	seasonal	1	0	1	0.00	1.00	seasonal
151	Myrtaceae	Eugenia complicata	plant	1	0	1	0.00	1.00	seasonal	1	0	1	0.00	1.00	seasonal
156	Asteraceae	Hoehnephytum trixoides	plant	1	1	0	1.00	0.00	seasonal	1	1	0	1.00	0.00	seasonal
163	Asteraceae	Lepidaploa aurea	plant	1	0	1	0.00	1.00	seasonal	1	0	1	0.00	1.00	seasonal
167	Asteraceae	Lessingianthus durus	plant	1	0	1	0.00	1.00	seasonal	2	0	2	0.00	1.00	seasonal
170	Apocynaceae	Macrosiphonia velame	plant	1	1	0	1.00	0.00	seasonal	1	1	0	1.00	0.00	seasonal
171	Apocynaceae	Mandevilla novocapitalis	plant	1	1	0	1.00	0.00	seasonal	1	1	0	1.00	0.00	seasonal
173	Convolvulaceae	Merremia tomentosa	plant	1	0	1	0.00	1.00	seasonal	1	0	1	0.00	1.00	seasonal
174	Melastomataceae	Miconia albicans	plant	1	1	0	1.00	0.00	seasonal	1	1	0	1.00	0.00	seasonal
181	Ochnaceae	Ouratea hexasperma	plant	1	0	1	0.00	1.00	seasonal	1	0	1	0.00	1.00	seasonal

NICHE BI	READ	ΤН
----------	------	----

Node	Family	Species	TL				Degree					Intera	ction freq	uency	
				Cum.	Rainy	Dry	% Rainy	% Dry	Seasonality	Cum.	Rainy	Dry	% Rainy	% Dry	Seasonality
184	Malvaceae	Pavonia rosacampestris	plant	1	1	0	1.00	0.00	seasonal	1	1	0	1.00	0.00	seasonal
186	Malpighiaceae	Peixotoa reticulata	plant	1	0	1	0.00	1.00	seasonal	1	0	1	0.00	1.00	seasonal
188	Burseraceae	Protium ovatum	plant	1	0	1	0.00	1.00	seasonal	1	0	1	0.00	1.00	seasonal
189	Myrtaceae	Psidium salutare	plant	1	0	1	0.00	1.00	seasonal	11	0	11	0.00	1.00	seasonal
191	Vochysiaceae	Qualea grandiflora	plant	1	1	0	1.00	0.00	seasonal	1	1	0	1.00	0.00	seasonal
197	Solanaceae	Solanum lycocarpum	plant	1	1	1	1.00	1.00	seasonal	2	1	1	0.50	0.50	aseasonal
198	Solanaceae	Solanum sp.	plant	1	1	0	1.00	0.00	seasonal	1	1	0	1.00	0.00	seasonal
200	Fabaceae	Stylosanthes sp.	plant	1	0	1	0.00	1.00	seasonal	1	0	1	0.00	1.00	seasonal
201	Styracaceae	Styrax ferrugineus	plant	1	0	1	0.00	1.00	seasonal	1	0	1	0.00	1.00	seasonal
204	Rubiaceae	Tocoyena formosa	plant	1	1	0	1.00	0.00	seasonal	1	1	0	1.00	0.00	seasonal

9

10

Table S2. Plant (P) and pollinator (A) species recorded from June 1996 to May 1997 at the Brasilia Botanical Garden (BBG) site, sorted by decreasing degree (i.e., number of interaction partners) and interaction frequency as proxies of niche breath within each trophic level (TL), pollinators appearing first. *Cum*.= total records independent of seasonality; *Rainy*= records for the rainy season only; *Dry*= records for the dry season only; % = proportion of data recorded in each season relative to the cumulative records. Species were classified as "seasonal" if proportional degree or interaction frequency were equal or greater than 75% in one season. Social and semi-social bees indicated by *; solitary, oil-collecting bees indicated by §.

							Degree					Interac	ction frequ	iency	
Node	Family	Species	TL	Cum.	Rainy	Dry	% Rainy	% Dry	Seasonality	Cum.	Rainy	Dry	% Rainy	% Dry	Seasonality
378	Apidae	Trigona sp.*	bee	51	24	32	0.47	0.63	aseasonal	159	70	89	0.44	0.56	aseasonal
350	Apidae	Paratrigona lineata*	bee	35	15	21	0.43	0.60	aseasonal	67	19	48	0.28	0.72	aseasonal
216	Apidae	Bombus atratus*	bee	31	13	20	0.42	0.65	aseasonal	99	34	65	0.34	0.66	aseasonal
364	Apidae	Tetragona clavipes*	bee	31	13	20	0.42	0.65	aseasonal	64	25	39	0.39	0.61	aseasonal
217	Apidae	Bombus morio*	bee	24	6	20	0.25	0.83	seasonal	114	12	102	0.11	0.89	seasonal
213	Halictidae	Augochloropsis sp. 3*	bee	17	10	8	0.59	0.47	aseasonal	30	16	14	0.53	0.47	aseasonal
214	Halictidae	Augochloropsis sp. 4*	bee	16	10	6	0.63	0.38	aseasonal	32	23	9	0.72	0.28	aseasonal
341	Andrenidae	Oxaea flavescens	bee	16	10	9	0.63	0.56	aseasonal	56	27	29	0.48	0.52	aseasonal
325	Apidae	Melipona quinquefasciata*	bee	15	5	10	0.33	0.67	aseasonal	23	5	18	0.22	0.78	seasonal
235	Apidae	Centris longimana [§]	bee	14	8	8	0.57	0.57	aseasonal	36	25	11	0.69	0.31	aseasonal

							Degree					Interac	ction frequ	iency	
Node	Family	Species	TL	Cum.	Rainy	Dry	% Rainy	% Dry	Seasonality	Cum.	Rainy	Dry	% Rainy	% Dry	Seasonality
249	Apidae	Ceratina gossypii	bee	14	7	8	0.50	0.57	aseasonal	25	9	16	0.36	0.64	aseasonal
362	Apidae	Scaptotrigona postica*	bee	14	4	10	0.29	0.71	aseasonal	38	10	28	0.26	0.74	aseasonal
279	Apidae	Epicharis sp. 1§	bee	13	8	7	0.62	0.54	aseasonal	39	19	20	0.49	0.51	aseasonal
190	Halictidae	Augochloropsis sp. 5*	bee	12	9	5	0.75	0.42	seasonal	20	15	5	0.75	0.25	aseasonal
377	Apidae	Trigona amalthea*	bee	12	7	5	0.58	0.42	aseasonal	12	7	5	0.58	0.42	aseasonal
197	Halictidae	Augochloropsis sp. 11*	bee	11	3	8	0.27	0.73	aseasonal	17	7	10	0.41	0.59	aseasonal
253	Apidae	Ceratina sp. 3	bee	11	7	5	0.64	0.45	aseasonal	14	8	6	0.57	0.43	aseasonal
277	Apidae	Epicharis iheringii [§]	bee	11	11	2	1.00	0.18	seasonal	22	20	2	0.91	0.09	seasonal
292	Apidae	Exomalopsis fulvofasciata	bee	11	5	6	0.45	0.55	aseasonal	16	5	11	0.31	0.69	aseasonal
349	Apidae	Paratetrapedia sp. 6 [§]	bee	11	10	2	0.91	0.18	seasonal	20	14	6	0.70	0.30	aseasonal
251	Apidae	Ceratina cf. rupestris§	bee	10	5	5	0.50	0.50	aseasonal	14	6	8	0.43	0.57	aseasonal
281	Apidae	Dasyhalonia sp. 2	bee	10	5	7	0.50	0.70	aseasonal	33	8	25	0.24	0.76	seasonal
234	Apidae	Centris cf. labrosa§	bee	9	4	5	0.44	0.56	aseasonal	12	4	8	0.33	0.67	aseasonal
381	Apidae	Xylocopa ciliate	bee	9	4	5	0.44	0.56	aseasonal	15	5	10	0.33	0.67	aseasonal
386	Apidae	Xylocopa vestita	bee	9	4	6	0.44	0.67	aseasonal	12	4	8	0.33	0.67	aseasonal
387	Apidae	Xylocopa fimbriata	bee	9	1	8	0.11	0.89	seasonal	12	2	10	0.17	0.83	seasonal
250	Apidae	Ceratina maculifrons	bee	8	6	4	0.75	0.50	seasonal	21	6	15	0.29	0.71	aseasonal
185	Megachilidae	Anthodioctes megachiloides	bee	7	3	4	0.43	0.57	aseasonal	8	4	4	0.50	0.50	aseasonal
290	Apidae	Exomalopsis auropilosa	bee	7	1	6	0.14	0.86	seasonal	7	1	6	0.14	0.86	seasonal

							Degree					Interac	ction frequ	iency	
Node	Family	Species	TL	Cum.	Rainy	Dry	% Rainy	% Dry	Seasonality	Cum.	Rainy	Dry	% Rainy	% Dry	Seasonality
295	Apidae	Exomalopsis sp. 2	bee	7	3	4	0.43	0.57	aseasonal	14	3	11	0.21	0.79	seasonal
298	Apidae	Gaesischia belophora	bee	7	1	7	0.14	1.00	seasonal	32	2	30	0.06	0.94	seasonal
351	Apidae	Partamona cupira*	bee	7	0	7	0.00	1.00	seasonal	11	0	11	0.00	1.00	seasonal
193	Halictidae	Augochloropsis sp. 7*	bee	6	2	4	0.33	0.67	aseasonal	7	2	5	0.29	0.71	aseasonal
203	Halictidae	Augochloropsis sp. 17*	bee	6	2	4	0.33	0.67	aseasonal	7	2	5	0.29	0.71	aseasonal
222	Apidae	Centris mocsaryi [§]	bee	6	2	4	0.33	0.67	aseasonal	18	3	15	0.17	0.83	seasonal
233	Apidae	Centris fuscata§	bee	6	0	6	0.00	1.00	seasonal	9	0	9	0.00	1.00	seasonal
276	Apidae	Epicharis cockerelli [§]	bee	6	6	1	1.00	0.17	seasonal	14	13	1	0.93	0.07	seasonal
278	Apidae	Epicharis flava [§]	bee	6	5	2	0.83	0.33	seasonal	13	9	4	0.69	0.31	aseasonal
284	Apidae	Euglossa melanotricha	bee	6	3	3	0.50	0.50	aseasonal	8	5	3	0.63	0.38	aseasonal
289	Apidae	Exomalopsis analis	bee	6	4	2	0.67	0.33	aseasonal	7	4	3	0.57	0.43	aseasonal
326	Apidae	Melissoptila richardiae	bee	6	0	6	0.00	1.00	seasonal	32	0	32	0.00	1.00	seasonal
375	Apidae	Trigona branneri*	bee	6	3	3	0.50	0.50	aseasonal	6	3	3	0.50	0.50	aseasonal
380	Apidae	Xylocopa hirsutissima	bee	6	3	3	0.50	0.50	aseasonal	15	4	11	0.27	0.73	aseasonal
184	Halictidae	Agapostemon chapadensis*	bee	5	2	4	0.40	0.80	seasonal	17	11	6	0.65	0.35	aseasonal
207	Halictidae	Augochloropsis cleopatra*	bee	5	5	0	1.00	0.00	seasonal	5	5	0	1.00	0.00	seasonal
199	Halictidae	Augochloropsis sp. 13*	bee	5	5	0	1.00	0.00	seasonal	5	5	0	1.00	0.00	seasonal
206	Halictidae	Augochloropsis wallacei*	bee	5	2	3	0.40	0.60	aseasonal	10	5	5	0.50	0.50	aseasonal
219	Apidae	Centris sp. 3 [§]	bee	5	2	3	0.40	0.60	aseasonal	7	4	3	0.57	0.43	aseasonal

221 223 231 239	Apidae Apidae Apidae Apidae Apidae	Centris collaris Centris sp. 4 [§] Centris denudans [§] Centris tarsata [§]	bee bee bee	Cum. 5	Rainy 3 0	Dry 2	% Rainy	% Dry 0.40	Seasonality	Cum.	Rainy	Dry	% Rainy	% Dry	Seasonality
223 231	Apidae Apidae Apidae	Centris sp. 4 [§] Centris denudans [§]	bee			2	0.60	0.40							
231	Apidae Apidae	Centris denudans [§]		5	0			0.40	aseasonal	10	8	2	0.80	0.20	seasonal
	Apidae		bee		U	5	0.00	1.00	seasonal	13	0	13	0.00	1.00	seasonal
239	1	Centris tarsata§		5	5	0	1.00	0.00	seasonal	7	7	0	1.00	0.00	seasonal
	Magaahilidaa		bee	5	2	3	0.40	0.60	aseasonal	21	3	18	0.14	0.86	seasonal
315	Megachilidae	Megachile sp. 5	bee	5	1	5	0.20	1.00	seasonal	12	1	11	0.08	0.92	seasonal
333	Apidae	Monoeca sp. 1 [§]	bee	5	0	5	0.00	1.00	seasonal	17	0	17	0.00	1.00	seasonal
192	Halictidae	Augochloropsis sp. 1*	bee	4	3	1	0.75	0.25	seasonal	4	3	1	0.75	0.25	aseasonal
191	Halictidae	Augochloropsis laeta*	bee	4	4	0	1.00	0.00	seasonal	6	6	0	1.00	0.00	seasonal
194	Halictidae	Augochloropsis sp. 8*	bee	4	4	0	1.00	0.00	seasonal	4	4	0	1.00	0.00	seasonal
238	Apidae	Centris spilopoda [§]	bee	4	1	3	0.25	0.75	seasonal	4	1	3	0.25	0.75	seasonal
242	Apidae	Centris violacea§	bee	4	0	4	0.00	1.00	seasonal	7	0	7	0.00	1.00	seasonal
248	Apidae	Ceratina sp. 1	bee	4	3	1	0.75	0.25	seasonal	4	3	1	0.75	0.25	aseasonal
310	Megachilidae	Megachile aureiventris	bee	4	3	2	0.75	0.50	seasonal	6	4	2	0.67	0.33	aseasonal
321	Megachilidae	Megachile sp. 4	bee	4	3	1	0.75	0.25	seasonal	6	5	1	0.83	0.17	seasonal
345	Apidae	Paratetrapedia sp. 2 [§]	bee	4	4	1	1.00	0.25	seasonal	22	21	1	0.95	0.05	seasonal
365	Apidae	Tetrapedia sp. 2 [§]	bee	4	4	0	1.00	0.00	seasonal	4	4	0	1.00	0.00	seasonal
376	Apidae	Trigona spinipes*	bee	4	1	3	0.25	0.75	seasonal	4	1	3	0.25	0.75	seasonal
382	Apidae	Xylocopa frontalis	bee	4	1	3	0.25	0.75	seasonal	5	1	4	0.20	0.80	seasonal
186	Halictidae	Augochloropsis cupreola*	bee	3	1	2	0.33	0.67	aseasonal	3	1	2	0.33	0.67	aseasonal

							Degree					Interac	ction frequ	iency	
Node	Family	Species	TL	Cum.	Rainy	Dry	% Rainy	% Dry	Seasonality	Cum.	Rainy	Dry	% Rainy	% Dry	Seasonality
196	Halictidae	Augochloropsis sp. 10*	bee	3	3	0	1.00	0.00	seasonal	4	4	0	1.00	0.00	seasonal
224	Apidae	Centris nitens [§]	bee	3	0	3	0.00	1.00	seasonal	3	0	3	0.00	1.00	seasonal
228	Apidae	Centris sp. 1 [§]	bee	3	0	3	0.00	1.00	seasonal	3	0	3	0.00	1.00	seasonal
240	Apidae	Centris trigonoides [§]	bee	3	2	1	0.67	0.33	aseasonal	4	2	2	0.50	0.50	aseasonal
246	Megachilidae	Coelioxys sp.	bee	3	2	1	0.67	0.33	aseasonal	3	2	1	0.67	0.33	aseasonal
275	Apidae	Epicharis analis§	bee	3	3	0	1.00	0.00	seasonal	5	5	0	1.00	0.00	seasonal
285	Apidae	Euglossa sp. 1	bee	3	1	2	0.33	0.67	aseasonal	4	1	3	0.25	0.75	seasonal
308	Megachilidae	Megachile guaranitica	bee	3	2	1	0.67	0.33	aseasonal	3	2	1	0.67	0.33	aseasonal
329	Apidae	Melitoma sp. 2	bee	3	0	3	0.00	1.00	seasonal	3	0	3	0.00	1.00	seasonal
330	Apidae	Mesonychium coerulescens	bee	3	0	3	0.00	1.00	seasonal	3	0	3	0.00	1.00	seasonal
334	Apidae	Monoeca sp. 2 [§]	bee	3	1	2	0.33	0.67	aseasonal	5	2	3	0.40	0.60	aseasonal
355	Halictidae	Pseudoauglochlora graminea*	bee	3	2	1	0.67	0.33	aseasonal	5	3	2	0.60	0.40	aseasonal
356	Halictidae	Pseudoauglochloropsis sp. 1*	bee	3	2	2	0.67	0.67	aseasonal	5	2	3	0.40	0.60	aseasonal
361	Halictidae	Lasioglossum (Dialictus) rostratus*	bee	3	1	2	0.33	0.67	aseasonal	4	2	2	0.50	0.50	aseasonal
366	Apidae	Tetrapedia sp. 1 [§]	bee	3	2	1	0.67	0.33	aseasonal	4	3	1	0.75	0.25	aseasonal
198	Halictidae	Augochloropsis sp. 12*	bee	2	2	0	1.00	0.00	seasonal	5	5	0	1.00	0.00	seasonal
200	Halictidae	Augochloropsis sp. 14*	bee	2	2	0	1.00	0.00	seasonal	2	2	0	1.00	0.00	seasonal
225	Apidae	Centris scopipes§	bee	2	2	0	1.00	0.00	seasonal	2	2	0	1.00	0.00	seasonal
247	Apidae	Ceratina asuncionis	bee	2	0	2	0.00	1.00	seasonal	2	0	2	0.00	1.00	seasonal

							Degree					Interac	ction frequ	iency	
Node	Family	Species	TL	Cum.	Rainy	Dry	% Rainy	% Dry	Seasonality	Cum.	Rainy	Dry	% Rainy	% Dry	Seasonality
258	Colletidae	Colletes rufipes	bee	2	1	1	0.50	0.50	aseasonal	2	1	1	0.50	0.50	aseasonal
260	Apidae	Dasyhalonia phaeoptera	bee	2	0	2	0.00	1.00	seasonal	2	0	2	0.00	1.00	seasonal
263	Halictidae	Lasioglossum (Dialictus) sp. 5*	bee	2	0	2	0.00	1.00	seasonal	3	0	3	0.00	1.00	seasonal
267	Megachilidae	Epanthidium sp.	bee	2	2	1	1.00	0.50	seasonal	3	2	1	0.67	0.33	aseasonal
269	Megachilidae	Epanthidium tigrinum	bee	2	0	2	0.00	1.00	seasonal	2	0	2	0.00	1.00	seasonal
283	Apidae	Euglossa imperialis	bee	2	2	0	1.00	0.00	seasonal	2	2	0	1.00	0.00	seasonal
287	Apidae	Euglossa viridis	bee	2	1	1	0.50	0.50	aseasonal	2	1	1	0.50	0.50	aseasonal
296	Apidae	Exomalopsis sp. 3	bee	2	1	1	0.50	0.50	aseasonal	2	1	1	0.50	0.50	aseasonal
299	Apidae	Gaesischia flavoclypeata	bee	2	0	2	0.00	1.00	seasonal	5	0	5	0.00	1.00	seasonal
300	Apidae	Gaesischia fulgurans	bee	2	0	2	0.00	1.00	seasonal	4	0	4	0.00	1.00	seasonal
311	Megachilidae	Megachile brethesi	bee	2	1	1	0.50	0.50	aseasonal	2	1	1	0.50	0.50	aseasonal
316	Megachilidae	Megachile orba	bee	2	2	0	1.00	0.00	seasonal	2	2	0	1.00	0.00	seasonal
322	Megachilidae	Megachile terrestris	bee	2	2	0	1.00	0.00	seasonal	2	2	0	1.00	0.00	seasonal
327	Apidae	Melitoma segmentaria	bee	2	2	0	1.00	0.00	seasonal	2	2	0	1.00	0.00	seasonal
332	Apidae	Mesoplia rufipes	bee	2	0	2	0.00	1.00	seasonal	4	0	4	0.00	1.00	seasonal
335	Apidae	Monoeca sp. 3 [§]	bee	2	1	1	0.50	0.50	aseasonal	6	4	2	0.67	0.33	aseasonal
336	Apidae	Monoeca sp. 4 [§]	bee	2	1	1	0.50	0.50	aseasonal	3	1	2	0.33	0.67	aseasonal
337	Apidae	<i>Monoeca</i> sp. 5 [§]	bee	2	1	1	0.50	0.50	aseasonal	5	1	4	0.20	0.80	seasonal
344	Apidae	Paratetrapedia sp. 1 [§]	bee	2	1	1	0.50	0.50	aseasonal	2	1	1	0.50	0.50	aseasonal

							Degree					Interac	ction frequ	iency	
Node	Family	Species	TL	Cum.	Rainy	Dry	% Rainy	% Dry	Seasonality	Cum.	Rainy	Dry	% Rainy	% Dry	Seasonality
346	Apidae	Paratetrapedia sp. 3 [§]	bee	2	2	0	1.00	0.00	seasonal	2	2	0	1.00	0.00	seasonal
342	Apidae	Paratetrapedia sp. 7 [§]	bee	2	2	1	1.00	0.50	seasonal	3	2	1	0.67	0.33	aseasonal
357	Halictidae	Pseudoauglochloropsis sp. 2*	bee	2	1	1	0.50	0.50	aseasonal	2	1	1	0.50	0.50	aseasonal
358	Halictidae	Pseudoauglochloropsis sp. 3*	bee	2	1	1	0.50	0.50	aseasonal	2	1	1	0.50	0.50	aseasonal
363	Halictidae	Temnosoma sp. 1	bee	2	2	0	1.00	0.00	seasonal	2	2	0	1.00	0.00	seasonal
367	Apidae	Tetrapedia rugulosa [§]	bee	2	1	1	0.50	0.50	aseasonal	2	1	1	0.50	0.50	aseasonal
372	Apidae	Thygater analis	bee	2	2	0	1.00	0.00	seasonal	2	2	0	1.00	0.00	seasonal
379	Apidae	Trigonisca cf. pediculana*	bee	2	1	1	0.50	0.50	aseasonal	6	5	1	0.83	0.17	seasonal
384	Apidae	<i>Xylocopa</i> sp.	bee	2	1	1	0.50	0.50	aseasonal	3	1	2	0.33	0.67	aseasonal
183	Apidae	Acanthopus excellens	bee	1	0	1	0.00	1.00	seasonal	1	0	1	0.00	1.00	seasonal
187	Halictidae	Augochlora sp. 1*	bee	1	1	0	1.00	0.00	seasonal	1	1	0	1.00	0.00	seasonal
188	Halictidae	Augochlora sp. 2*	bee	1	1	0	1.00	0.00	seasonal	1	1	0	1.00	0.00	seasonal
209	Halictidae	Augochloropsis smithiana*	bee	1	0	1	0.00	1.00	seasonal	1	0	1	0.00	1.00	seasonal
195	Halictidae	Augochloropsis sp. 9*	bee	1	1	0	1.00	0.00	seasonal	1	1	0	1.00	0.00	seasonal
201	Halictidae	Augochloropsis sp. 15*	bee	1	0	1	0.00	1.00	seasonal	1	0	1	0.00	1.00	seasonal
202	Halictidae	Augochloropsis sp. 16*	bee	1	1	0	1.00	0.00	seasonal	1	1	0	1.00	0.00	seasonal
204	Halictidae	Augochloropsis sp. 18*	bee	1	1	0	1.00	0.00	seasonal	3	3	0	1.00	0.00	seasonal
205	Halictidae	Augochloropsis sp. 19*	bee	1	1	0	1.00	0.00	seasonal	4	4	0	1.00	0.00	seasonal
208	Halictidae	Augochloropsis sp. 6*	bee	1	0	1	0.00	1.00	seasonal	1	0	1	0.00	1.00	seasonal

							Degree					Interac	ction frequ	iency	
Node	Family	Species	TL	Cum.	Rainy	Dry	% Rainy	% Dry	Seasonality	Cum.	Rainy	Dry	% Rainy	% Dry	Seasonality
212	Halictidae	Augochloropsis sp. 2*	bee	1	1	0	1.00	0.00	seasonal	1	1	0	1.00	0.00	seasonal
220	Apidae	Centris burgdorfi [§]	bee	1	0	1	0.00	1.00	seasonal	8	0	8	0.00	1.00	seasonal
226	Apidae	Centris sp. 5 [§]	bee	1	0	1	0.00	1.00	seasonal	1	0	1	0.00	1.00	seasonal
227	Apidae	Centris tetrazona [§]	bee	1	1	0	1.00	0.00	seasonal	1	1	0	1.00	0.00	seasonal
229	Apidae	Centris aenea [§]	bee	1	0	1	0.00	1.00	seasonal	1	0	1	0.00	1.00	seasonal
230	Apidae	Centris analis§	bee	1	1	0	1.00	0.00	seasonal	1	1	0	1.00	0.00	seasonal
236	Apidae	Centris lutea§	bee	1	0	1	0.00	1.00	seasonal	1	0	1	0.00	1.00	seasonal
237	Apidae	Centris sp. 2§	bee	1	0	1	0.00	1.00	seasonal	1	0	1	0.00	1.00	seasonal
241	Apidae	Centris varia [§]	bee	1	1	0	1.00	0.00	seasonal	1	1	0	1.00	0.00	seasonal
243	Apidae	Centris vittata [§]	bee	1	1	0	1.00	0.00	seasonal	2	2	0	1.00	0.00	seasonal
244	Apidae	Centris xanthocnemis§	bee	1	1	0	1.00	0.00	seasonal	1	1	0	1.00	0.00	seasonal
252	Apidae	Ceratina sp. 2§	bee	1	1	0	1.00	0.00	seasonal	2	2	0	1.00	0.00	seasonal
254	Apidae	Ceratina sp. 4§	bee	1	1	0	1.00	0.00	seasonal	1	1	0	1.00	0.00	seasonal
256	Colletidae	Colletes sp. 1	bee	1	1	0	1.00	0.00	seasonal	1	1	0	1.00	0.00	seasonal
257	Colletidae	Colletes petropolitanus	bee	1	1	0	1.00	0.00	seasonal	1	1	0	1.00	0.00	seasonal
259	Apidae	Ctenioschelus goryi	bee	1	1	0	1.00	0.00	seasonal	1	1	0	1.00	0.00	seasonal
261	Apidae	Dasyhalonia sp. 1	bee	1	0	1	0.00	1.00	seasonal	1	0	1	0.00	1.00	seasonal
264	Megachilidae	Dianthidium sp. 1	bee	1	0	1	0.00	1.00	seasonal	1	0	1	0.00	1.00	seasonal
265	Megachilidae	Dianthidium sp. 2	bee	1	1	0	1.00	0.00	seasonal	1	1	0	1.00	0.00	seasonal

							Degree					Interac	ction frequ	iency	
Node	Family	Species	TL	Cum.	Rainy	Dry	% Rainy	% Dry	Seasonality	Cum.	Rainy	Dry	% Rainy	% Dry	Seasonality
266	Megachilidae	Dianthidium sp. 3	bee	1	0	1	0.00	1.00	seasonal	1	0	1	0.00	1.00	seasonal
268	Megachilidae	Epanthidium aureocinctum	bee	1	0	1	0.00	1.00	seasonal	1	0	1	0.00	1.00	seasonal
270	Apidae	Epicharis bicolor [§]	bee	1	1	0	1.00	0.00	seasonal	1	1	0	1.00	0.00	seasonal
273	Apidae	Epicharis affinis [§]	bee	1	1	0	1.00	0.00	seasonal	1	1	0	1.00	0.00	seasonal
274	Apidae	Epicharis albofasciata [§]	bee	1	1	0	1.00	0.00	seasonal	1	1	0	1.00	0.00	seasonal
280	Apidae	Epicharis xanthogastra§	bee	1	1	0	1.00	0.00	seasonal	1	1	0	1.00	0.00	seasonal
282	Apidae	Euglossa cordata	bee	1	0	1	0.00	1.00	seasonal	1	0	1	0.00	1.00	seasonal
286	Apidae	Euglossa sp. 2	bee	1	1	0	1.00	0.00	seasonal	1	1	0	1.00	0.00	seasonal
288	Apidae	Eulaema nigrita	bee	1	0	1	0.00	1.00	seasonal	1	0	1	0.00	1.00	seasonal
291	Apidae	Exomalopsis campestris	bee	1	1	0	1.00	0.00	seasonal	1	1	0	1.00	0.00	seasonal
293	Apidae	Exomalopsis sp. 1	bee	1	0	1	0.00	1.00	seasonal	2	0	2	0.00	1.00	seasonal
297	Apidae	Gaesischia araguaiana	bee	1	0	1	0.00	1.00	seasonal	3	0	3	0.00	1.00	seasonal
302	Halictidae	Habralictus sp.	bee	1	1	0	1.00	0.00	seasonal	1	1	0	1.00	0.00	seasonal
303	Apidae	Hopliphora superba	bee	1	0	1	0.00	1.00	seasonal	8	0	8	0.00	1.00	seasonal
305	Megachilidae	Lithurgus sp.	bee	1	0	1	0.00	1.00	seasonal	1	0	1	0.00	1.00	seasonal
306	Megachilidae	Megachile assumptionis	bee	1	0	1	0.00	1.00	seasonal	1	0	1	0.00	1.00	seasonal
307	Megachilidae	Megachile diversa	bee	1	0	1	0.00	1.00	seasonal	1	0	1	0.00	1.00	seasonal
323	Megachilidae	Megachile friesei	bee	1	0	1	0.00	1.00	seasonal	1	0	1	0.00	1.00	seasonal
309	Megachilidae	Megachile affabilis	bee	1	1	0	1.00	0.00	seasonal	1	1	0	1.00	0.00	seasonal

Node	Family	Species					Degree			Interaction frequency							
			TL	Cum.	Rainy	Dry	% Rainy	% Dry	Seasonality	Cum.	Rainy	Dry	% Rainy	% Dry	Seasonality		
312	Megachilidae	Megachile curvipes	bee	1	0	1	0.00	1.00	seasonal	1	0	1	0.00	1.00	seasonal		
313	Megachilidae	Megachile sp. 1	bee	1	1	0	1.00	0.00	seasonal	1	1	0	1.00	0.00	seasonal		
314	Megachilidae	Megachile gigas	bee	1	0	1	0.00	1.00	seasonal	1	0	1	0.00	1.00	seasonal		
317	Megachilidae	Megachile rubricata	bee	1	0	1	0.00	1.00	seasonal	1	0	1	0.00	1.00	seasonal		
318	Megachilidae	Megachile sp. 2	bee	1	0	1	0.00	1.00	seasonal	1	0	1	0.00	1.00	seasonal		
319	Megachilidae	Megachile sp. 3	bee	1	0	1	0.00	1.00	seasonal	2	0	2	0.00	1.00	seasonal		
324	Megachilidae	Megachile laeta	bee	1	0	1	0.00	1.00	seasonal	1	0	1	0.00	1.00	seasonal		
328	Apidae	Melitoma sp. 1	bee	1	0	1	0.00	1.00	seasonal	1	0	1	0.00	1.00	seasonal		
331	Apidae	Mesoplia decorata	bee	1	1	0	1.00	0.00	seasonal	1	1	0	1.00	0.00	seasonal		
339	Halictidae	Neocorynura sp. 1	bee	1	1	0	1.00	0.00	seasonal	1	1	0	1.00	0.00	seasonal		
340	Halictidae	Neocorynura sp. 2	bee	1	0	1	0.00	1.00	seasonal	1	0	1	0.00	1.00	seasonal		
343	Apidae	Paratetrapedia lugubris [§]	bee	1	1	0	1.00	0.00	seasonal	3	3	0	1.00	0.00	seasonal		
347	Apidae	Paratetrapedia sp. 4§	bee	1	1	0	1.00	0.00	seasonal	1	1	0	1.00	0.00	seasonal		
348	Apidae	Paratetrapedia sp. 5 [§]	bee	1	1	0	1.00	0.00	seasonal	1	1	0	1.00	0.00	seasonal		
352	Apidae	Plebeia sp.*	bee	1	1	0	1.00	0.00	seasonal	1	1	0	1.00	0.00	seasonal		
359	Apidae	Ptilothrix plumata	bee	1	1	0	1.00	0.00	seasonal	2	2	0	1.00	0.00	seasonal		
360	Apidae	Rhathymus fulvus	bee	1	1	0	1.00	0.00	seasonal	1	1	0	1.00	0.00	seasonal		
369	Apidae	Tetrapedia sp. 3 [§]	bee	1	1	0	1.00	0.00	seasonal	1	1	0	1.00	0.00	seasonal		
370	Apidae	Thalestria spinosa	bee	1	0	1	0.00	1.00	seasonal	1	0	1	0.00	1.00	seasonal		

							Degree			Interaction frequency							
Node	Family	Species	TL	Cum.	Rainy	Dry	% Rainy	% Dry	Seasonality	Cum.	Rainy	Dry	% Rainy	% Dry	Seasonality		
371	Halictidae	Thectochlora alaris	bee	1	1	0	1.00	0.00	seasonal	1	1	0	1.00	0.00	seasonal		
373	Apidae	Trichocerapis mirabilis	bee	1	1	0	1.00	0.00	seasonal	1	1	0	1.00	0.00	seasonal		
385	Apidae	Xylocopa subcyanea	bee	1	0	1	0.00	1.00	seasonal	1	0	1	0.00	1.00	seasonal		
172	Asteraceae	Lepidaploa rufogrisea	plant	48	10	48	0.21	1.00	seasonal	132	11	121	0.08	0.92	seasonal		
125	Rubiaceae	Palicourea rigida	plant	36	36	36	1.00	1.00	seasonal	88	87	1	0.99	0.01	seasonal		
168	Asteraceae	Lepidaploa aurea	plant	36	9	36	0.25	1.00	seasonal	79	9	70	0.11	0.89	seasonal		
27	Malpighiaceae	Byrsonima sp.	plant	34	32	34	0.94	1.00	seasonal	87	77	10	0.89	0.11	seasonal		
102	Verbenaceae	Lippia rotundifolia	plant	31	0	31	0.00	1.00	seasonal	171	0	171	0.00	1.00	seasonal		
14	Fabaceae	Andira sp.	plant	24	0	24	0.00	1.00	seasonal	45	0	45	0.00	1.00	seasonal		
56	Solanaceae	Solanum lycocarpum	plant	19	15	19	0.79	1.00	seasonal	57	40	17	0.70	0.30	aseasonal		
178	Sapindaceae	Matayba guianensis	plant	19	19	0	1.00	0.00	seasonal	29	29	0	1.00	0.00	seasonal		
155	Fabaceae	Periandra mediterranea	plant	18	17	18	0.94	1.00	seasonal	41	37	4	0.90	0.10	seasonal		
165	Fabaceae	Chamaecrista desvauxii	plant	18	13	18	0.72	1.00	seasonal	39	30	9	0.77	0.23	seasonal		
80	Styracaceae	Styrax ferrugineus	plant	17	5	17	0.29	1.00	seasonal	42	6	36	0.14	0.86	seasonal		
174	Asteraceae	Eremanthus sphaerocephalus	plant	16	4	16	0.25	1.00	seasonal	51	5	46	0.10	0.90	seasonal		
31	Vochysiaceae	Qualea multiflora	plant	15	15	0	1.00	0.00	seasonal	20	20	0	1.00	0.00	seasonal		
133	Melastomataceae	Tibouchina stenocarpa	plant	15	4	15	0.27	1.00	seasonal	37	5	32	0.14	0.86	seasonal		
91	Lamiaceae	Hyptis lythroides	plant	14	0	14	0.00	1.00	seasonal	16	0	16	0.00	1.00	seasonal		
175	Vochysiaceae	Qualea parviflora	plant	13	13	0	1.00	0.00	seasonal	17	17	0	1.00	0.00	seasonal		

Node	Family	Species					Degree			Interaction frequency							
			TL	Cum.	Rainy	Dry	% Rainy	% Dry	Seasonality	Cum.	Rainy	Dry	% Rainy	% Dry	Seasonality		
59	Bignoniaceae	Tabebuia caraiba	plant	12	0	12	0.00	1.00	seasonal	35	0	35	0.00	1.00	seasonal		
171	Ochnaceae	Ouratea hexasperma	plant	12	0	12	0.00	1.00	seasonal	18	0	18	0.00	1.00	seasonal		
117	Sapindaceae	Serjania lethalis	plant	11	0	11	0.00	1.00	seasonal	21	0	21	0.00	1.00	seasonal		
125	Malvaceae	Waltheria indica	plant	11	11	11	1.00	1.00	seasonal	28	27	1	0.96	0.04	seasonal		
140	Malpighiaceae	Banisteriopsis campestris	plant	11	10	11	0.91	1.00	seasonal	16	13	3	0.81	0.19	seasonal		
30	Asteraceae	Piptocarpha rotundifolia	plant	10	10	0	1.00	0.00	seasonal	19	19	0	1.00	0.00	seasonal		
107	Fabaceae	Mimosa radula	plant	10	9	10	0.90	1.00	seasonal	15	14	1	0.93	0.07	seasonal		
147	Asteraceae	Eremanthus glomerulatus	plant	10	0	10	0.00	1.00	seasonal	15	0	15	0.00	1.00	seasonal		
169	Malpighiaceae	Banisteriopsis malifolia	plant	10	7	10	0.70	1.00	seasonal	15	9	6	0.60	0.40	aseasonal		
88	Malpighiaceae	Byrsonima verbascifolia	plant	9	7	9	0.78	1.00	seasonal	10	7	3	0.70	0.30	aseasonal		
16	Fabaceae	Senna rugosa	plant	8	3	8	0.38	1.00	seasonal	11	4	7	0.36	0.64	aseasonal		
49	Malpighiaceae	Heteropterys byrsonimifolia	plant	8	8	0	1.00	0.00	seasonal	16	16	0	1.00	0.00	seasonal		
51	Malvaceae	Hibiscus sp.	plant	8	1	8	0.13	1.00	seasonal	16	1	15	0.06	0.94	seasonal		
152	Melastomataceae	Microlicia loricata	plant	8	0	8	0.00	1.00	seasonal	16	0	16	0.00	1.00	seasonal		
52	Malpighiaceae	Peixotoa cordistipula	plant	7	1	7	0.14	1.00	seasonal	14	1	13	0.07	0.93	seasonal		
87	Solanaceae	Solanum paniculatum	plant	7	7	0	1.00	0.00	seasonal	10	10	0	1.00	0.00	seasonal		
138	Convolvulaceae	Ipomoea argentea	plant	7	7	0	1.00	0.00	seasonal	8	8	0	1.00	0.00	seasonal		
150	Asteraceae	Vernonia rubriramea	plant	7	0	7	0.00	1.00	seasonal	14	0	14	0.00	1.00	seasonal		
8	Myrtaceae	Eugenia complicata	plant	6	0	6	0.00	1.00	seasonal	7	0	7	0.00	1.00	seasonal		

		Species					Degree			Interaction frequency							
Node	Family		TL	Cum.	Rainy	Dry	% Rainy	% Dry	Seasonality	Cum.	Rainy	Dry	% Rainy	% Dry	Seasonality		
9	Lythraceae	Diplusodon oblongus	plant	6	3	6	0.50	1.00	seasonal	17	11	6	0.65	0.35	aseasonal		
99	Malpighiaceae	Byrsonima basiloba	plant	6	6	0	1.00	0.00	seasonal	10	10	0	1.00	0.00	seasonal		
103	Malpighiaceae	Byrsonima guilleminiana	plant	6	0	6	0.00	1.00	seasonal	9	0	9	0.00	1.00	seasonal		
104	Malpighiaceae	Byrsonima intermedia	plant	6	6	0	1.00	0.00	seasonal	12	12	0	1.00	0.00	seasonal		
136	Melastomataceae	Miconia fallax	plant	6	0	6	0.00	1.00	seasonal	9	0	9	0.00	1.00	seasonal		
33	Burseraceae	Protium ovatum	plant	5	1	5	0.20	1.00	seasonal	5	1	4	0.20	0.80	seasonal		
76	Asteraceae	Baccharis retusa	plant	5	0	5	0.00	1.00	seasonal	15	0	15	0.00	1.00	seasonal		
93	Araliaceae	Didymopanax macrocarpus	plant	5	0	5	0.00	1.00	seasonal	16	0	16	0.00	1.00	seasonal		
123	Dilleneaceae	Davilla elliptica	plant	5	2	5	0.40	1.00	seasonal	7	3	4	0.43	0.57	aseasonal		
168	Asteraceae	Viguiera robusta	plant	5	0	5	0.00	1.00	seasonal	10	0	10	0.00	1.00	seasonal		
20	Lythraceae	Diplusodon villosus	plant	4	3	4	0.75	1.00	seasonal	4	3	1	0.75	0.25	aseasonal		
28	Malvaceae	Pseudobombax longiflorum	plant	4	0	4	0.00	1.00	seasonal	11	0	11	0.00	1.00	seasonal		
38	Bignoniaceae	Memora pedunculata	plant	4	4	0	1.00	0.00	seasonal	5	5	0	1.00	0.00	seasonal		
57	Poaceae	Echinolaena inflexa	plant	4	2	4	0.50	1.00	seasonal	5	3	2	0.60	0.40	aseasonal		
58	Rubiaceae	Borreria capitata	plant	4	0	4	0.00	1.00	seasonal	4	0	4	0.00	1.00	seasonal		
83	Fabaceae	Stryphnodendron adstringens	plant	4	0	4	0.00	1.00	seasonal	6	0	6	0.00	1.00	seasonal		
92	Gentianaceae	Deianira chiquitana	plant	4	0	4	0.00	1.00	seasonal	4	0	4	0.00	1.00	seasonal		
96	Malvaceae	Pavonia grandiflora	plant	4	4	0	1.00	0.00	seasonal	5	5	0	1.00	0.00	seasonal		
106	Malpighiaceae	Byrsonima rotunda	plant	4	2	4	0.50	1.00	seasonal	4	2	2	0.50	0.50	aseasonal		

							Degree					Interac	ction frequ	iency	
Node	Family	Species	TL	Cum.	Rainy	Dry	% Rainy	% Dry	Seasonality	Cum.	Rainy	Dry	% Rainy	% Dry	Seasonality
111	Rutaceae	Spiranthera odoratissima	plant	4	3	4	0.75	1.00	seasonal	5	4	1	0.80	0.20	seasonal
139	Malvaceae	Eriotheca pubescens	plant	4	0	4	0.00	1.00	seasonal	15	0	15	0.00	1.00	seasonal
154	Asteraceae	Lessingianthus durus	plant	4	0	4	0.00	1.00	seasonal	6	0	6	0.00	1.00	seasonal
161	Rubiaceae	Declieuxia fruticosa	plant	4	4	0	1.00	0.00	seasonal	4	4	0	1.00	0.00	seasonal
11	Convolvulaceae	Ipomoea campestris	plant	3	3	0	1.00	0.00	seasonal	3	3	0	1.00	0.00	seasonal
27	Vochysiaceae	Vochysia thyrsoidea	plant	3	3	0	1.00	0.00	seasonal	4	4	0	1.00	0.00	seasonal
36	Malpighiaceae	Pterandra pyroidea	plant	3	0	3	0.00	1.00	seasonal	3	0	3	0.00	1.00	seasonal
39	Asteraceae	Mikania officinalis	plant	3	3	0	1.00	0.00	seasonal	3	3	0	1.00	0.00	seasonal
41	Fabaceae	Bauhinia pulchella	plant	3	3	3	1.00	1.00	seasonal	7	5	2	0.71	0.29	aseasonal
48	Myrtaceae	Blepharocalyx salicifolius	plant	3	3	0	1.00	0.00	seasonal	3	3	0	1.00	0.00	seasonal
50	Asteraceae	Aspilia foliacea	plant	3	3	0	1.00	0.00	seasonal	3	3	0	1.00	0.00	seasonal
65	Acanthaceae	Ruellia incompta	plant	3	0	3	0.00	1.00	seasonal	4	0	4	0.00	1.00	seasonal
69	Lamiaceae	Hyptis desertorum	plant	3	0	3	0.00	1.00	seasonal	4	0	4	0.00	1.00	seasonal
70	Rubiaceae	Canavalia dictyota	plant	3	0	3	0.00	1.00	seasonal	3	0	3	0.00	1.00	seasonal
71	Asteraceae	Elephantopus biflorus	plant	3	0	3	0.00	1.00	seasonal	5	0	5	0.00	1.00	seasonal
77	Rubiaceae	Borreria verbenoides	plant	3	2	3	0.67	1.00	seasonal	4	2	2	0.50	0.50	aseasonal
90	Bignoniaceae	Phryganocydia corymbosa	plant	3	3	0	1.00	0.00	seasonal	3	3	0	1.00	0.00	seasonal
97	Erythroxylaceae	Erythroxylum suberosum	plant	3	0	3	0.00	1.00	seasonal	7	0	7	0.00	1.00	seasonal
100	Fabaceae	Eriosema glabrum	plant	3	3	0	1.00	0.00	seasonal	3	3	0	1.00	0.00	seasonal

Node	Family	Species	TI							Interaction frequency							
	Family	Species	TL	Cum.	Rainy	Dry	% Rainy	% Dry	Seasonality	Cum.	Rainy	Dry	% Rainy	% Dry	Seasonality		
114	Asteraceae	Calea quadrifolia	plant	3	3	0	1.00	0.00	seasonal	3	3	0	1.00	0.00	seasonal		
129	Fabaceae	Calliandra dysantha	plant	3	0	3	0.00	1.00	seasonal	11	0	11	0.00	1.00	seasonal		
134	Fabaceae	Canavalia dictyota	plant	3	0	3	0.00	1.00	seasonal	5	0	5	0.00	1.00	seasonal		
146	Bignoniaceae	Jacaranda caroba	plant	3	0	3	0.00	1.00	seasonal	7	0	7	0.00	1.00	seasonal		
149	Iridaceae	Trimezia sp.	plant	3	3	0	1.00	0.00	seasonal	4	4	0	1.00	0.00	seasonal		
151	Loranthaceae	Psittacanthus robustus	plant	3	3	0	1.00	0.00	seasonal	3	3	0	1.00	0.00	seasonal		
157	Velloziaceae	Vellozia squamata	plant	3	3	0	1.00	0.00	seasonal	8	8	0	1.00	0.00	seasonal		
163	Fabaceae	Chamaecrista conferta	plant	3	0	3	0.00	1.00	seasonal	6	0	6	0.00	1.00	seasonal		
172	Malvaceae	Waltheria americana	plant	3	3	0	1.00	0.00	seasonal	4	4	0	1.00	0.00	seasonal		
3	Bignoniaceae	Anemopaegma glaucum	plant	2	2	0	1.00	0.00	seasonal	4	4	0	1.00	0.00	seasonal		
10	Cyperaceae	Rhynchospora elatior	plant	2	2	0	1.00	0.00	seasonal	2	2	0	1.00	0.00	seasonal		
13	Fabaceae	Stylosanthes capitata	plant	2	1	2	0.50	1.00	seasonal	7	6	1	0.86	0.14	seasonal		
15	Malpighiaceae	Banisteriopsis schizoptera	plant	2	0	2	0.00	1.00	seasonal	2	0	2	0.00	1.00	seasonal		
18	Connaraceae	Connarus suberosus	plant	2	0	2	0.00	1.00	seasonal	3	0	3	0.00	1.00	seasonal		
24	Convolvulaceae	Ipomoea procumbens	plant	2	1	2	0.50	1.00	seasonal	2	1	1	0.50	0.50	aseasonal		
42	Fabaceae	Mimosa sensitiva	plant	2	0	2	0.00	1.00	seasonal	3	0	3	0.00	1.00	seasonal		
46	Fabaceae	Acosmium dasycarpum	plant	2	2	0	1.00	0.00	seasonal	2	2	0	1.00	0.00	seasonal		
55	Convolvulaceae	Ipomoea squamisepala	plant	2	1	2	0.50	1.00	seasonal	2	1	1	0.50	0.50	aseasonal		
61	Lythraceae	Lafoensia pacari	plant	2	0	2	0.00	1.00	seasonal	3	0	3	0.00	1.00	seasonal		

	Family						Degree					Interac	ction frequ	iency	
Node		Species	TL .	Cum.	Rainy	Dry	% Rainy	% Dry	Seasonality	Cum.	Rainy	Dry	% Rainy	% Dry	Seasonality
66	Asteraceae	Lepidaploa remotiflora	plant	2	2	0	1.00	0.00	seasonal	2	2	0	1.00	0.00	seasonal
72	Rubiaceae	Sabicea brasiliensis	plant	2	2	0	1.00	0.00	seasonal	2	2	0	1.00	0.00	seasonal
73	Oxalidaceae	Oxalis cordata	plant	2	0	2	0.00	1.00	seasonal	2	0	2	0.00	1.00	seasonal
84	Bignoniaceae	Jacaranda ulei	plant	2	2	2	1.00	1.00	seasonal	3	2	1	0.67	0.33	aseasonal
85	Fabaceae	Crotalaria nitens	plant	2	2	0	1.00	0.00	seasonal	3	3	0	1.00	0.00	seasonal
94	Asteraceae	Baccharis varians	plant	2	0	2	0.00	1.00	seasonal	4	0	4	0.00	1.00	seasonal
98	Malpighiaceae	Banisteriopsis megaphylla	plant	2	2	0	1.00	0.00	seasonal	2	2	0	1.00	0.00	seasonal
102	Bignoniaceae	Zeyhera digitalis	plant	2	1	2	0.50	1.00	seasonal	2	1	1	0.50	0.50	aseasonal
108	Fabaceae	Dalbergia miscolobium	plant	2	2	0	1.00	0.00	seasonal	3	3	0	1.00	0.00	seasonal
110	Malpighiaceae	Banisteriopsis anisandra	plant	2	0	2	0.00	1.00	seasonal	2	0	2	0.00	1.00	seasonal
112	Lamiaceae	Hyptis sexatilis	plant	2	0	2	0.00	1.00	seasonal	2	0	2	0.00	1.00	seasonal
141	Fabaceae	Tephrosia candida	plant	2	0	2	0.00	1.00	seasonal	2	0	2	0.00	1.00	seasonal
153	Fabaceae	Mimosa setosa	plant	2	2	0	1.00	0.00	seasonal	3	3	0	1.00	0.00	seasonal
170	Fabaceae	Clitoria fairchildiana	plant	2	2	0	1.00	0.00	seasonal	3	3	0	1.00	0.00	seasonal
182	Asteraceae	Dimerostemma sp.	plant	2	2	0	1.00	0.00	seasonal	2	2	0	1.00	0.00	seasonal
1	Anacardiaceae	Anacardium humile	plant	1	0	1	0.00	1.00	seasonal	1	0	1	0.00	1.00	seasonal
5	Fabaceae	Andira vermifuga	plant	1	0	1	0.00	1.00	seasonal	1	0	1	0.00	1.00	seasonal
7	Fabaceae	Dimorphandra mollis	plant	1	1	0	1.00	0.00	seasonal	1	1	0	1.00	0.00	seasonal
12	Cochlospermaceae	Cochlospermum regium	plant	1	0	1	0.00	1.00	seasonal	1	0	1	0.00	1.00	seasonal

							Degree			Interaction frequency					
Node	Family	Species	TL	Cum.	Rainy	Dry	% Rainy	% Dry	Seasonality	Cum.	Rainy	Dry	% Rainy	% Dry	Seasonality
19	Malpighiaceae	Banisteriopsis stellaris	plant	1	1	0	1.00	0.00	seasonal	1	1	0	1.00	0.00	seasonal
22	Malvaceae	Peltaea macedoi	plant	1	1	0	1.00	0.00	seasonal	1	1	0	1.00	0.00	seasonal
23	Myrtaceae	Eugenia lutescens	plant	1	0	1	0.00	1.00	seasonal	1	0	1	0.00	1.00	seasonal
25	Asteraceae	Eriosema glabrum	plant	1	1	0	1.00	0.00	seasonal	2	2	0	1.00	0.00	seasonal
26	Clusiaceae	Kielmeyera abdita	plant	1	0	1	0.00	1.00	seasonal	1	0	1	0.00	1.00	seasonal
32	Clusiaceae	Kielmeyera coriacea	plant	1	1	0	1.00	0.00	seasonal	1	1	0	1.00	0.00	seasonal
34	Fabaceae	Galactia neesii	plant	1	1	0	1.00	0.00	seasonal	1	1	0	1.00	0.00	seasonal
37	Loganiaceae	Antonia ovata	plant	1	0	1	0.00	1.00	seasonal	1	0	1	0.00	1.00	seasonal
43	Asteraceae	Lessingianthus bardanoides	plant	1	0	1	0.00	1.00	seasonal	1	0	1	0.00	1.00	seasonal
45	Orchidaceae	Galeandra sp.	plant	1	1	0	1.00	0.00	seasonal	1	1	0	1.00	0.00	seasonal
47	Fabaceae	Eriosema defoliatum	plant	1	0	1	0.00	1.00	seasonal	2	0	2	0.00	1.00	seasonal
53	Asteraceae	Aspilia setosa	plant	1	1	0	1.00	0.00	seasonal	2	2	0	1.00	0.00	seasonal
54	Verbenaceae	Lippia lupulina	plant	1	1	0	1.00	0.00	seasonal	1	1	0	1.00	0.00	seasonal
62	Melastomataceae	Miconia ferruginata	plant	1	0	1	0.00	1.00	seasonal	1	0	1	0.00	1.00	seasonal
63	Melastomataceae	Miconia burchelli	plant	1	0	1	0.00	1.00	seasonal	2	0	2	0.00	1.00	seasonal
64	Convolvulaceae	Ipomoea tubulata	plant	1	0	1	0.00	1.00	seasonal	1	0	1	0.00	1.00	seasonal
68	Fabaceae	Crotalaria flavicoma	plant	1	1	0	1.00	0.00	seasonal	1	1	0	1.00	0.00	seasonal
89	Lythraceae	Cuphea spermacoce	plant	1	0	1	0.00	1.00	seasonal	1	0	1	0.00	1.00	seasonal
105	Passifloraceae	Turnera oblongifolia	plant	1	1	0	1.00	0.00	seasonal	1	1	0	1.00	0.00	seasonal

	Family						Degree					Interac	ction frequ	iency	
Node		Species	TL ₋	Cum.	Rainy	Dry	% Rainy	% Dry	Seasonality	Cum.	Rainy	Dry	% Rainy	% Dry	Seasonality
109	Passifloraceae	Piriqueta sidifolia	plant	1	1	0	1.00	0.00	seasonal	1	1	0	1.00	0.00	seasonal
115	Fabaceae	Eriosema prorepens	plant	1	1	0	1.00	0.00	seasonal	1	1	0	1.00	0.00	seasonal
116	Asteraceae	Ichthyothere latifolia	plant	1	1	0	1.00	0.00	seasonal	1	1	0	1.00	0.00	seasonal
122	Melastomataceae	Tibouchina candolleana	plant	1	0	1	0.00	1.00	seasonal	2	0	2	0.00	1.00	seasonal
126	Fabaceae	Mimosa glaucescens	plant	1	1	0	1.00	0.00	seasonal	1	1	0	1.00	0.00	seasonal
127	Melastomataceae	Rhynchanthera grandiflora	plant	1	0	1	0.00	1.00	seasonal	1	0	1	0.00	1.00	seasonal
130	Asteraceae	Lessingianthus compactiflorus	plant	1	1	0	1.00	0.00	seasonal	1	1	0	1.00	0.00	seasonal
131	Aquifoliaceae	Ilex conocarpa	plant	1	0	1	0.00	1.00	seasonal	2	0	2	0.00	1.00	seasonal
132	Myrtaceae	Campomanesia pubescens	plant	1	0	1	0.00	1.00	seasonal	1	0	1	0.00	1.00	seasonal
135	Caryocaraceae	Caryocar brasiliense	plant	1	1	0	1.00	0.00	seasonal	5	5	0	1.00	0.00	seasonal
137	Fabaceae	Pterodon emarginatus	plant	1	0	1	0.00	1.00	seasonal	1	0	1	0.00	1.00	seasonal
142	Fabaceae	Chamaecrista sp.	plant	1	1	0	1.00	0.00	seasonal	1	1	0	1.00	0.00	seasonal
143	Rubiaceae	Tocoyena formosa	plant	1	1	0	1.00	0.00	seasonal	1	1	0	1.00	0.00	seasonal
144	Malpighiaceae	Banisteriopsis gardneriana	plant	1	0	1	0.00	1.00	seasonal	1	0	1	0.00	1.00	seasonal
145	Fabaceae	Enterolobium gummiferum	plant	1	0	1	0.00	1.00	seasonal	4	0	4	0.00	1.00	seasonal
148	Vochysiaceae	Qualea grandiflora	plant	1	1	0	1.00	0.00	seasonal	1	1	0	1.00	0.00	seasonal
159	Cochlospermaceae	Desmodium platycarpum	plant	1	0	1	0.00	1.00	seasonal	1	0	1	0.00	1.00	seasonal
164	Apocynaceae	Mandevilla novocapitalis	plant	1	1	0	1.00	0.00	seasonal	1	1	0	1.00	0.00	seasonal
166	Malpighiaceae	Banisteriopsis laevifolia	plant	1	1	0	1.00	0.00	seasonal	1	1	0	1.00	0.00	seasonal

							Degree	Interaction frequency								
Node	Family	Species	TL	Cum.	Rainy	Dry	% Rainy	% Dry	Seasonality	Cum.	Rainy	Dry	% Rainy	% Dry	Seasonality	
67	Loranthaceae	Phthirusa ovata	plant	1	1	0	1.00	0.00	seasonal	1	1	0	1.00	0.00	seasonal	
76	Myrtaceae	Porsderonia sp.	plant	1	1	0	1.00	0.00	seasonal	1	1	0	1.00	0.00	seasonal	
79	Malvaceae	Melochia villosa	plant	1	1	0	1.00	0.00	seasonal	1	1	0	1.00	0.00	seasonal	
80	Passifloraceae	Turnera longiflora	plant	1	0	1	0.00	1.00	seasonal	1	0	1	0.00	1.00	seasonal	

17 Table S3. Network statistics of Cerrado plant-pollinator communities.

Degree distribution characteristics across seasons for the two communities quantified by fitting three alternative models: exponential, power-law, and truncated power law. The Akaike Information Criteria (AIC) values are shown for each fit. In all but one case, the truncated power law is the best fitting distribution. P= plants; A= animals.

1	2
Z	Z

18

19

20

21

		IBGE		BBG					
	Cumulative	Rainy	Dry	Cumulative	Rainy	Dry			
Mean P degree	4.7	4.8	2.5	5.4	4.4	4.9			
Maximum P degree	22	19	12	48	36	45			
Exponential fit	-63.2	-58.2	-40.6	-68.1	-49.1	-55.8			
Power-law fit	-45.4	-38.6	-32.6	-73.0	-58.2	-53.5			
Truncated power-law fit	-91.6	-76.3	-57.5	-116.2	-75.8	-82.2			
Mean A degree	3.9	3.5	2.3	4.5	3.0	3.6			
Maximum A degree	29	20	14	51	24	32			
Exponential fit	-63.5	-58.6	-27.5	-65.7	-49.6	-45.7			
Power-law fit	-47.7	-36.3	-45.6	-70.5	-55.6	-46.3			
Truncated power-law fit	-79.6	-70.3	-40.6	-129.7	-101.5	-63.6			
				70/2					

Table S4. Results of robustness analyses for the Cerrado communities studied. The Area Under the Curve (AUC) values are shown for each curve (mean of 100 random removal sequences) followed by the proportion of nodes or continued A or resource service remaining after removal, and the values obtained for the 95% Confidence Intervals in parentheses. Pairs of dry and rainy season network robustness AUC values that are significantly different (95% CI's of robustness curves do not overlap) are also flagged by an asterisk.

		IBGE			BBG	
	Cum.	Rainy	Dry	Cum.	Rainy	Dry
Robustness to loss of pollinator species after plant removal	60					
High to low degree	0.48 (0.47 ± 0.01)	0.49* (0.51±0.01)	0.43* (0.41±0.01)	0.43 (0.4 ± 0.01)	0.41 (0.39 ± 0.01)	0.41 (0.38 ± 0.01)
Low to high degree	0.76 (0.82 ± 0.01)	0.76* (0.83±0.01)	0.67* (0.72±0.01)	0.78 (0.83 ± 0.01)	0.75 (0.8 ± 0.01)	0.78 (0.82 ± 0.01)
Random	0.67 (0.75±0.01)	0.67* (0.75±0.01)	0.57* (0.62±0.02)	0.68 (0.76 ± 0.01)	0.64 (0.69 ± 0.02)	0.65 (0.72 ± 0.02)
Robustness to loss of services from plant to pollinator after plant removal			(0)			
High to low weighted degree	0.38 (0.33±0.01)	0.39* (0.35±0.01)	0.35* (0.30±0.01)	0.37 (0.31±0.001)	0.36 (0.31±0.001)	0.37 (0.31±0.01)
Low to high weighted degree	0.55 (0.56 ± 0.01)	0.55 (0.58±0.01)	0.57 (0.60±0.01)	0.56 (0.58±0.01)	0.55 (0.58±0.01)	0.56 (0.57±0.01)
Random	0.49 (0.50±0.01)	0.49 (0.50±0.01)	0.48 (0.49±0.01)	0.5 (0.50±0.01)	0.49 (0.50±0.01)	0.49 (0.49±0.01)
Robustness to loss of plant species after pollinator removal						
High to low degree	0.50 (0.53±0.01)	0.56* (0.61±0.01)	0.44* (0.44±0.01)	0.46 (0.44±0.01)	0.5* (0.50±0.01)	0.47* (0.46±0.01)

		IBGE			BBG	
	Cum.	Rainy	Dry	Cum.	Rainy	Dry
Low to high degree	0.84	0.80*	0.74*	0.81	0.77*	0.8*
Low to high degree	(0.88 ± 0.01)	(0.85 ± 0.01)	(0.81 ± 0.02)	(0.86 ± 0.01)	(0.83 ± 0.01)	(0.86 ± 0.01)
Random	0.70	0.71*	0.63*	0.71	0.68	0.69
Kandom	(0.77 ± 0.01)	(0.79 ± 0.01)	(0.72 ± 0.02)	(0.79 ± 0.01)	(0.75 ± 0.01)	(0.77 ± 0.01)
Robustness to loss of services from pollinator to plan after pollinator removal					0.001	0.244
High to low weighted degree	0.20 (0.13 ± 0.001)	$0.27*$ (0.19 ± 0.001)	$0.16*$ (0.1 ± 0.001)	0.21 (0.12 ± 0.001)	0.26* (0.17±0.001)	0.21* (0.12±0.001)
Low to high weighted degree	0.62	0.58*	0.67*	0.58	0.57*	0.60*
Low to high weighted degree	(0.63 ± 0.01)	(0.60 ± 0.01)	(0.70 ± 0.02)	(0.60 ± 0.01)	(0.58 ± 0.01)	(0.62 ± 0.01)
Random	0.49	0.48*	0.51*	0.50	0.49	0.49
Kangom	(0.48 ± 0.02)	(0.49 ± 0.01)	(0.55 ± 0.04)	(0.51 ± 0.02)	(0.49 ± 0.02)	(0.5 ± 0.02)

30	Supplementary Figures
31	
32	Figure S1. Interaction frequency, rainfall, temperature and relative humidity
33	recorded at IBGE from November 2008 to October 2009. Interaction frequency
34	indicates the proportional number of bees sampled on flowers. Climatic data source:
35	IBGE meteorological station.
36	
37	Figure S2. Interaction frequency, rainfall, temperature and relative humidity
38	recorded at BBG from May 1996 to April 1997. Interaction frequency indicates the
39	proportional number of bees sampled on flowers. Climatic data source: IBGE
40	meteorological station.
41	
42	Figure S3. Rarefaction analyses of sampling effort for capturing interactions recorded
43	during the dry season in IBGE.
44	
45	Figure S4. Rarefaction analyses of sampling effort for capturing interactions recorded
46	during the wet season in IBGE.
47	
48	Figure S5. Rarefaction analyses of sampling effort for capturing interactions recorded
49	during the dry season in BBG.
50	
51	Figure S6. Rarefaction analyses of sampling effort for capturing interactions recorded
52	during the wet season in BBG.

Recorded link

Recorded link

Functional Ecology

Recorded link

871 1016

0.5

Recorded link

871 1016

Functional Ecology

