HR Analytics - Employee Attrition Prediction

This notebook performs EDA, builds classification models, and uses SHAP analysis to understand employee attrition.

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score, confusion_matrix, classification_rep
import shap

# Load dataset
df = pd.read_csv("HR_Analytics.csv")
df.head()
Out[39]: EmpID Age AgeGroup Attrition BusinessTravel DailyRate Department Distance
```

]:		EmpID	Age	AgeGroup	Attrition	BusinessTravel	DailyRate	Department	Distanc
	0	RM297	18	18-25	Yes	Travel_Rarely	230	Research & Development	
	1	RM302	18	18-25	No	Travel_Rarely	812	Sales	
	2	RM458	18	18-25	Yes	Travel_Frequently	1306	Sales	
	3	RM728	18	18-25	No	Non-Travel	287	Research & Development	
	4	RM829	18	18-25	Yes	Non-Travel	247	Research & Development	

5 rows × 38 columns

In [40]: df.info()

df.isnull().sum()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1480 entries, 0 to 1479
Data columns (total 38 columns):

#	Column	Non-Null Count	Dtype
0	EmpID	1480 non-null	object
1	Age	1480 non-null	int64
2	AgeGroup	1480 non-null	object
3	Attrition	1480 non-null	object
4	BusinessTravel	1480 non-null	object
5	DailyRate	1480 non-null	int64
6	Department	1480 non-null	object
7	DistanceFromHome	1480 non-null	int64
8	Education	1480 non-null	int64
9	EducationField	1480 non-null	object
10	EmployeeCount	1480 non-null	int64
11	EmployeeNumber	1480 non-null	int64
12	EnvironmentSatisfaction	1480 non-null	int64
13	Gender	1480 non-null	object
14	HourlyRate	1480 non-null	int64
15	JobInvolvement	1480 non-null	int64
16	JobLevel	1480 non-null	int64
17	JobRole	1480 non-null	object
18	JobSatisfaction	1480 non-null	int64
19	MaritalStatus	1480 non-null	object
20	MonthlyIncome	1480 non-null	int64
21	SalarySlab	1480 non-null	object
22	MonthlyRate	1480 non-null	int64
23	NumCompaniesWorked	1480 non-null	int64
24	Over18	1480 non-null	object
25	OverTime	1480 non-null	object
26	PercentSalaryHike	1480 non-null	int64
27	PerformanceRating	1480 non-null	int64
28	RelationshipSatisfaction	1480 non-null	int64
29	StandardHours	1480 non-null	int64
30	StockOptionLevel	1480 non-null	int64
31	TotalWorkingYears	1480 non-null	int64
32	TrainingTimesLastYear	1480 non-null	int64
33	WorkLifeBalance	1480 non-null	int64
34	YearsAtCompany	1480 non-null	int64
35	YearsInCurrentRole	1480 non-null	int64
36	YearsSinceLastPromotion	1480 non-null	int64
37	YearsWithCurrManager	1423 non-null	float64
	es: float64(1). int64(25).	object(12)	. 100 00-

dtypes: float64(1), int64(25), object(12)

memory usage: 439.5+ KB

```
Out[40]: EmpID
                                       0
          Age
                                       0
          AgeGroup
                                       0
          Attrition
                                       0
          BusinessTravel
                                       0
          DailyRate
                                       0
          Department
                                       0
          DistanceFromHome
                                       0
          Education
                                       0
          EducationField
                                       0
          EmployeeCount
                                       0
          EmployeeNumber
                                       0
          EnvironmentSatisfaction
                                       0
          Gender
                                       0
          HourlyRate
                                       0
          JobInvolvement
                                       0
          JobLevel
                                       a
          JobRole
                                       0
          JobSatisfaction
                                       a
          MaritalStatus
                                       0
          MonthlyIncome
                                       0
          SalarySlab
                                       0
          MonthlyRate
                                       0
          NumCompaniesWorked
                                       0
          Over18
                                       0
          OverTime
                                       0
          PercentSalaryHike
                                       0
          PerformanceRating
                                       0
          RelationshipSatisfaction
                                       0
          StandardHours
                                       a
          StockOptionLevel
          TotalWorkingYears
                                       0
          TrainingTimesLastYear
                                       0
          WorkLifeBalance
                                       0
          YearsAtCompany
                                       0
          YearsInCurrentRole
                                       0
          YearsSinceLastPromotion
                                       0
          YearsWithCurrManager
                                      57
          dtype: int64
In [41]: # Attrition distribution
         sns.countplot(x='Attrition', data=df)
         plt.title("Attrition Distribution")
         plt.show()
         # Department vs Attrition
         plt.figure(figsize=(8,5))
         sns.countplot(x='Department', hue='Attrition', data=df)
         plt.title("Department-wise Attrition")
         plt.xticks(rotation=45)
         plt.show()
         # Age distribution
         plt.figure(figsize=(8,5))
         sns.histplot(df[df['Attrition']=='Yes']['Age'], bins=20, color='red', kde=True,
         sns.histplot(df[df['Attrition']=='No']['Age'], bins=20, color='green', kde=True,
         plt.legend()
         plt.title("Age Distribution by Attrition")
         plt.show()
```


Department

Age Distribution by Attrition


```
# 4. Logistic Regression
         log_reg = LogisticRegression(max_iter=5000, solver='lbfgs', class_weight='balanc')
         log_reg.fit(X_train, y_train)
         # 5. Predictions & Evaluation
         y_pred_log = log_reg.predict(X_test)
         print("Logistic Regression Accuracy:", accuracy_score(y_test, y_pred_log))
         print("Confusion Matrix:\n", confusion_matrix(y_test, y_pred_log))
         print("Classification Report:\n", classification_report(y_test, y_pred_log))
        Logistic Regression Accuracy: 0.7432432432432432
        Confusion Matrix:
         [[277 96]
         [ 18 53]]
        Classification Report:
                       precision recall f1-score
                                                       support
                                    0.74
                   0
                           0.94
                                               0.83
                                                          373
                   1
                           0.36
                                     0.75
                                               0.48
                                                           71
                                               0.74
                                                          444
            accuracy
                           0.65
                                     0.74
                                               0.66
                                                          444
           macro avg
        weighted avg
                           0.85
                                     0.74
                                               0.77
                                                          444
In [46]: dt = DecisionTreeClassifier(max_depth=5, random_state=42)
         dt.fit(X_train, y_train)
         y_pred_dt = dt.predict(X_test)
         print("Decision Tree Accuracy:", accuracy_score(y_test, y_pred_dt))
         print("Confusion Matrix:\n", confusion_matrix(y_test, y_pred_dt))
         print("Classification Report:\n", classification_report(y_test, y_pred_dt))
        Decision Tree Accuracy: 0.8175675675675675
        Confusion Matrix:
         [[343 30]
         [ 51 20]]
        Classification Report:
                       precision recall f1-score support
                                    0.92
                   a
                           0.87
                                               0.89
                                                          373
                                     0.28
                   1
                           0.40
                                               0.33
                                                          71
                                                          444
            accuracy
                                               0.82
           macro avg
                           0.64
                                     0.60
                                               0.61
                                                          444
        weighted avg
                           0.80
                                     0.82
                                               0.80
                                                          444
In [47]: # SHAP for Decision Tree
         explainer = shap.TreeExplainer(dt)
         shap values = explainer.shap values(X test)
         # Feature importance
         shap.summary_plot(shap_values, X_test, plot_type="bar")
```

