Set: distinguishable collection. Element: distinguishable object in the set
Element x is in set A: $x \in A$
Cardinality is the number of element which the set has
$A = \{1, 2, 3\}$ A = card(A) = 3
Union of two sets A and B $A \cup B$
Intersection of two sets A and B $A\cap B$
If set A is sub set of set B: $A \subset B$
$A \subset A$ is true
If cardinality of A is smaller than B, A is proper subset of B
Difference set $A-B$
Complement set against entire set Ω A^C
$A^C = \Omega - A$
Null set ϕ has none element
$\phi \subset \text{all sets}$
Following is true $A \cap \phi = \phi$ $A \cup \phi = A$

```
A \cap A^C = \phi
  _____
A = \{1, 2\} has 4 number of sub sets
  A_1 = \phi
A_2 = \{1\}
A_3 = \{2\}
A_4 = \{1, 2\}
If set A has N number of elements,
A has 2^N number of sub sets
  ______
Following is true as distribution law
A \cup (B \cap C) = (A \cup B) \cap (A \cup C)
A \cap (B \cup C) = (A \cap B) \cup (A \cap C)
  afafaf Probabilistic sample(or random sample, sample):
One realizable phenomenon from the probabilistic problem you want to solve
Or one sampled case
  Sample space \Omega:
Set which contains all possible samples
  Task of defining sample sapce:
Define which phenomenon is possible to occur
and which phenomenon is impossible to occur
Sample space when you toss the coin
\Omega = \{H, T\}
  ______
Some cases has set of entire real numbers as sample space
\Omega = \mathbf{R}
  ______
Possible events: possible sub sets of sample space \Omega
  Sample space \Omega = \{H, T\}
Possible events: \phi, \{H\}, \{T\}, \{H,T\}
```

Probability is function which takes all events and which outputs number
P(A) = 0.1 P() is function P A is event 0.1 is probability value
E======Kolmogorov's axioms
1. $P(\text{all_events}) \ge 0$ 2. $P(\Omega) = 1$ 3. If $A \cap B = \phi$, then $P(A \cup B) = P(A) + P(B)$
Interpretion about probability value: 1. Frequentist 2. Baysian
