Data Structure - Spring 2022 16. Graph: Basics

Walid Abdullah Al

Computer and Electronic Systems Engineering Hankuk University of Foreign Studies

TA: Seong Joo Kim

Based on:

Goodrich, Chapter 9,11 Karumanchi, Chapter 6-7 Slides by Prof. Yung Yi, KAIST Slides by Prof. Chansu Shin, HUFS

Graphs: Basics

On-line/Off-line Social Network

Internet Connectivity

WebBlog Connections

Navigator

Other Applications

Electronic circuits

- Printed circuit board
- Integrated circuit

Transportation networks

- Highway network
- Flight network

Computer networks

- Local area network
- Internet
- Web

Databases

Entity-relationship diagram

Graphs

• A graph is a pair (V, E), where

- V is a set of nodes, called vertices
- *E* is a collection of pairs of vertices, called edges
- Vertices and edges are positions and store elements

Example:

A vertex represents an airport and stores the three-letter airport code

 An edge represents a flight route between two airports and stores the mileage of the route

Edge Types

Directed edge

- ordered pair of vertices (u,v)
- first vertex u is the origin
- second vertex v is the destination
- e.g., a flight

Undirected edge

- unordered pair of vertices (*u*,*v*)
- e.g., a flight route

Directed graph

- all the edges are directed
- e.g., route network

Undirected graph

- all the edges are undirected
- e.g., flight network

Terminology

- End vertices (or endpoints) of an edge
 - U and V are the endpoints of a
- Edges incident on a vertex
 - a, d, and b are incident on V
- Adjacent vertices
 - U and V are adjacent
- Degree of a vertex
 - X has degree 5
- Parallel edges
 - h and i are parallel edges
- Self-loop
 - j is a self-loop

Terminology (cont.)

Path

- sequence of alternating vertices and edges
- begins with a vertex
- ends with a vertex
- each edge is preceded and followed by its endpoints

Simple path

 path such that all its vertices and edges are distinct

Examples

- P₁=(V,b,X,h,Z) is a simple path
- P₂=(U,c,W,e,X,g,Y,f,W,d,V) is a path that is not simple

Terminology (cont.)

Cycle

- circular sequence of alternating vertices and edges
- each edge is preceded and followed by its endpoints

Simple cycle

 cycle such that all its vertices and edges are distinct

Examples

- C₁=(V,b,X,g,Y,f,W,c,U,a,⊥) is a simple cycle
- C₂=(U,c,W,e,X,g,Y,f,W,d,V,a,⊥) is a cycle that is not simple
- Note) Tree is a graph without cycles

Subgraphs

- A subgraph S of a graph G is a graph such that
 - The vertices of S are a subset of the vertices of G
 - The edges of S are a subset of the edges of G
- A spanning subgraph of G is a subgraph that contains all the vertices of G

Subgraph

Spanning subgraph

Connectivity

- A graph is connected if there is a path between every pair of vertices
- A connected component of a graph G is a maximal connected subgraph of G
- "Maximal"?

Connected graph

Non connected graph with two connected components

Trees and Forests

- A (free) tree is an undirected graph T such that
 - T is connected
 - T has no cycles

This definition of tree is different from the one of a rooted tree

- A forest is an undirected graph without cycles
- The connected components of a forest are trees

Tree

Forest

Spanning Trees and Forests

- A spanning tree of a connected graph is a spanning subgraph that is a tree
- A spanning tree is not unique unless the graph is a tree
- Spanning trees have applications to the design of communication networks
- A spanning forest of a graph is a spanning subgraph that is a forest

Some Properties for Undirected Graphs

Property 1

 $\sum_{\mathbf{v}} \deg(\mathbf{v}) = 2\mathbf{m}$

Proof: each edge is counted twice

Property 2

In an undirected graph with no self-loops and no multiple edges

$$m \le n (n-1)/2$$

Proof: each vertex has degree at most (n-1)

What is the bound for a directed graph?

Notation

n

number of vertices number of edges deg(v) degree of vertex v

Example

$$= n = 4$$

$$\mathbf{m} = 6$$

$$\bullet \deg(v) = 3$$

Main Methods of the Graph ADT

Vertices and edges

- are positions
- store elements

Accessor methods

- e.endVertices(): a list of the two endvertices of e
- e.opposite(v): the vertex opposite of v on e
- u.isAdjacentTo(v): true if u and v are adjacent
- *v: reference to element associated with vertex v
- *e: reference to element associated with edge e

Update methods

- insertVertex(o): insert a vertex storing element o
- insertEdge(v, w, o): insert an edge (v,w) storing element o
- eraseVertex(v): remove vertex v (and its incident edges)
- eraseEdge(e): remove edge e

Iterable collection methods

- incidentEdges(v): list of edges incident to v
- vertices(): list of all vertices in the graph
- edges(): list of all edges in the graph

What is the data structure to represent a graph?

We will discuss three ways

Representation: 2D Array

Adjacency matrix)

- If edge (i, j) exists, M[i][j] = 1.
 Otherwise, M[i][j] = 0
- The adj. matrix for an undirected graph has zerodiagonal and is symmetric.

Representation: Adjacency List

List of adjacent vertices

Performance

 n vertices, m edges no parallel edges no self-loops 	Edge List	Adjacency List	Adjacency Matrix
Space	n + m	n + m	n ²
v.incidentEdges()	m	deg(v)	n
u. isAdjacentTo (v)	m	$min(deg(\mathbf{v}), deg(\mathbf{w}))$	1
insertVertex(o)	1	1	n ²
insertEdge(<i>v, w, o</i>)	1	1	1
eraseVertex(v)	m	deg(v)	n ²
eraseEdge(<i>e</i>)	1	1	1

v.incidentEdges(): matrix row check

[•] u.isAdjacentTo(v): using v's key

Performance

 n vertices, m edges no parallel edges no self-loops 	Edge List	Adjacency List	Adjacency Matrix
Space	n + m	n + m	n ²
v.incidentEdges()	m	deg(v)	n
u. isAdjacentTo (v)	m	$min(deg(\mathbf{v}), deg(\mathbf{w}))$	1
insertVertex(o)	1	1	n ²
insertEdge(v, w, o)	1	1	1
eraseVertex(v)	m	deg(v)	n ²
eraseEdge(<i>e</i>)	1	1	1

v.incidentEdges(): direct access to incident edges

u.isAdjacentTo(v):

Depth-First Search

Depth-First Search

- Depth-first search (DFS) is a general technique for traversing a graph
- Why is this traversal important?
- Let's first see the example

Example

Example (cont.)

One implication: discovery edges form a spanning tree.

Depth-First Search

- A DFS traversal of a graph G
 - Visits all the vertices and edges of G
 - Determines whether G is connected (how?)
 - Computes the connected components of G (how?)
 - Computes a spanning forest of G

- DFS on a graph with n vertices and m edges takes O(n+m) time
- DFS can be further extended to solve other graph problems
 - Find and report a path between two given vertices
 - Find a cycle in the graph

DFS Algorithm

 The algorithm uses a mechanism for setting and getting "labels" of vertices and edges

```
Algorithm DFS(G)
   Input graph G
   Output labeling of the edges of G
       as discovery edges and
      back edges
  for all u \in G.vertices()
   u.setLabel(UNEXPLORED)
  for all e \in G.edges()
   e.setLabel(UNEXPLORED)
  for all v \in G.vertices()
  if v.getLabel() = UNEXPLORED
      DFS(G, v)
```

```
Algorithm DFS(G, v)
  Input graph G and a start vertex v of G
  Output labeling of the edges of G
    in the connected component of v
    as discovery edges and back edges
  v.setLabel(VISITED)
  for all e \in G.incidentEdges(v)
    if e.getLabel() = UNEXPLORED
       w \leftarrow e.opposite(v)
      if w.getLabel() = UNEXPLORED
         e.setLabel(DISCOVERY)
         DFS(G, w)
      else
         e.setLabel(BACK)
```


DFS and Maze Traversal

- The DFS algorithm is similar to a classic strategy for exploring a maze
 - We mark each intersection, corner and dead end (vertex) visited
 - We mark each corridor (edge) traversed
 - We keep track of the path back to the entrance (start vertex) by means of a rope (recursion stack)

Properties of DFS

Property 1

DFS(G, v) visits all the vertices and edges in the connected component of v

Property 2

The discovery edges labeled by DFS(G, v) form a spanning tree of the connected component of v

Analysis of DFS

- Setting/getting a vertex/edge label takes O(1) time
- Each vertex is labeled twice
 - once as UNEXPLORED
 - once as VISITED
- Each edge is labeled twice
 - once as UNEXPLORED
 - once as DISCOVERY or BACK
- Method incidentEdges is called once for each vertex
 - Complexity of v.incidentEdges: deg(v)
- DFS runs in O(n+m) time provided the graph is represented by the adjacency list structure
 - Recall that $\sum_{v} \deg(v) = 2m$

Path Finding

- We can specialize the DFS algorithm to find a path between two given vertices u and z using the template method pattern
- We call DFS(G, u) with u as the start vertex
- We use a stack S to keep track of the path between the start vertex and the current vertex
- As soon as destination vertex z is encountered, we return the path as the contents of the stack

```
Algorithm pathDFS(G, v, z)
  v.setLabel(VISITED)
  S.push(v)
  if v = z
    return S.elements()
  for all e \in v.incidentEdges()
    if e.getLabel() = UNEXPLORED
       w \leftarrow e.opposite(v)
       if w.getLabel() = UNEXPLORED
         e.setLabel(DISCOVERY)
         S.push(e)
         pathDFS(G, w, z)
         S.pop(e)
       else
         e.setLabel(BACK)
  S.pop(v)
```


Cycle Finding

- We can specialize the DFS algorithm to find a simple cycle using the template method pattern
- We use a stack S to keep track of the path between the start vertex and the current vertex
- As soon as a back edge (v, w) is encountered, we return the cycle as the portion of the stack from the top to vertex w

```
Algorithm cycleDFS(G, v, z)
  v.setLabel(VISITED)
  S.push(v)
  for all e \in v.incidentEdges()
     if e.getLabel() = UNEXPLORED
        w \leftarrow e.opposite(v)
        S.push(e)
        if w.getLabel() = UNEXPLORED
           e.setLabel(DISCOVERY)
          pathDFS(G, w, z)
           S.pop(e)
        else
           T \leftarrow new empty stack
           repeat
             o \leftarrow S.pop()
              T.push(o)
           until o = w
           return T.elements()
  S.pop(v)
```