Math 146 Notes

velo.x

Instructor: Ross Willard NC 5006

Section: 001

Tutorial: Monday, 4:30, RCH 305

Contents

1	Vect	tor Space
	1.1	Vector Space - Jan 6
	1.2	Linear Combination - Jan 8
	1.3	Subspace - Jan 10
	1.4	Span - Jan 13
	1.5	Basis Jan 17
	1.6	Dimension - Jan 20
	1.7	Direct Sum - Tutorial Jan 20
	1.8	Jan 22
	1.9	Quotient Space - Jan 24
2	Line	ear Transformations
	2.1	Tutorial - Jan 27
	2.2	Null Spance and Range
	2.3	Jan 31
	2.4	Feb 3
	2.5	Tutorial - Feb 3
	26	Fab 5

1 Vector Space

1.1 Vector Space - Jan 6

Definition 1.1.1 (Pseudo-Field). A field is an algebraic system \mathbb{F} having:

- two elements 0 and 1
- operations $+, \times, -$, and $()^{-1}$ (defined on nonzero elements)

satisfying "the obvious" properties.

See appendix of the textbook.

Examples: \mathbb{R} , \mathbb{C} , \mathbb{Q} , \mathbb{Z}_{prime} . $\mathbb{Q}(x) = \{\frac{f(x)}{g(x)} : f, g \ polynomials, g \neq 0\}$

NonExamples: $\{0\}$, $\mathbb{Z}_m(m \ not \ prime)$, Quaternions.

Definition 1.1.2 (Vector Space). A vector space over \mathbb{F} is a set V with two operations:

2

- Addition: $V \times V \rightarrow V \ x + y$
- Scalar Multiplication: $\mathbb{F} \times V \to V$ ax

satisfying 8 properties: $\forall x, y, z \in V$, $\forall a, b \in \mathbb{F}$

- *V1*: x + y = y + x
- V2: x + (y + z) = (x + y) + z
- V3: $\exists a "zero vector" 0 \in V s.t. x + 0 = x$
- V4: $\forall x \in V$, $\exists u \in V$, s.t. x + u = 0
- V5: 1x = x
- V6: (ab)x = a(bx) *let · denote scalar multiplication
- *V7*: a(x+y) = ax + ay
- V8: (a+b)x = ax + bx

Objective 1.1.1.

- Defining/Constructing
- Proving that a system is a vector space

Example 1: \mathbb{R} def: set of all n-tuples of real numbers

$$(x_1, \cdots, x_n) + (y_1, \cdots, y_n) =$$

 $a(x_1, \dots, x_n)$ defined (ax_1, \dots, ax_n) Claim: \mathbb{R}^n is a vector space over \mathbb{R}

Proof. Check V1:

$$(x_1, \dots, x_n) + (y_1, \dots, y_n) = (x_1 + y_1, \dots, x_n + y_n)$$

= $(y_1 + x_1, \dots, y_n + x_n)$
= $(y_1, \dots, y_n) + (x_1, \dots, x_n)$

More generally, for any field \mathbb{F} , \mathbb{F}^n is a field over \mathbb{F} .

Example 2: $\mathbb{R}^{[0,1]} = \{all \ functions \ f : [0,1] \to \mathbb{R}\}$

- $(f+h)(x) \stackrel{def}{=} f(x) + g(x)$
- (af)(x) = af(x)

Claim: $\mathbb{R}^{[0,1]}$ is a vector space $/\mathbb{R}$.

Proof. V3: Let $\overline{0}$ be the constant 0 function, i.e., $\overline{0}(x) = 0 \ \forall x \in [0,1] \ \overline{0} \in \mathbb{R}^{[0,1]}$

Check: $f + \overline{0} = f \ \forall f \in \mathbb{R}^{[0,1]}$

$$(f + \overline{0})(x) = f(x) + \overline{0}(x)$$
$$= f(x) + 0 = f(x)$$

Since $x \in [0,1]$ arbitrary, $f + \overline{o} = f$.

More generally, for any set D, and any field \mathbb{F} , \mathbb{F}^D is a vector space over \mathbb{F} .

Example 3: let $\mathbb{F} = \mathbb{Z}_2$.

Define $W = \{APPLE\},\$

- $APPLE + APPLE \stackrel{def}{=} APPLE$
- $0APPLE \stackrel{def}{=} APPLE$
- $1APPLE \stackrel{def}{=} APPLE$

Claim: W is a vector space over \mathbb{Z}_2 .

Examples 4: 1. $\mathbb{R}^n : \mathbb{F}^n$, 2. $\mathbb{R}^{[0,1]}$, : \mathbb{F}^D , 3. $\{APPLE\}$.

4. Fix a field \mathbb{F} , for $n \geq 0$, $P_n(\mathbb{F})$ is the set of all polynomials, of degree $\leq n$, in variable x, with coefficients from \mathbb{F} ,

$$= \{a_0 + a_1x + a_2x^2 + \dots + a_nx^n : a_i \in \mathbb{F}\}\$$

Addition, scalar mult are "obvious", using op's of \mathbb{F} .

Claim: $P_n(\mathbb{F})$ is a vecor space $/\mathbb{F}$.

5. $\mathbb{F}[x]=$ the set of all polynomials in x with coefficients from $\mathbb{F}=\bigcup_{n=0}^{\infty}P_n(\mathbb{F})$

Claim: with the "obvious" op's $\mathbb{F}[x]$ is a V.S. $/\mathbb{F}$.

Theorem 1.1.1 (Cancellation Law). Let V be a V.S., $/\mathbb{F}$, if $x, y, z \in V$, and x + z = y + z, then x = y.

Proof. Let $u \in V$ be such that z + u = 0 (from V4).

Then

$$x = x + 0 \tag{V3}$$

$$x = x + (z + u) \tag{Choice of u}$$

$$x = (x + z) + u \tag{hypothesis}$$

$$x = (y + z) + u \tag{V2}$$

$$x = y + (z + u) \tag{V2}$$

$$x = y + 0 \tag{choice of u}$$

$$x = y$$

Corollary 1.1.1. Suppose V is a V.S., there is exactly one "zero vector". i.e. a vector satisfy V3. in V.

Proof. Assume $0_1, 0_2 \in V$, both satisfying V3, i,e, $x + 0_1 = x$ and $x + 0_2 = x$, $\forall x \in V$.

$$0_1 = 0_1 + 0_1$$
$$0_1 = 0_1 + 0_2$$

$$0_1 + 0_1 = 0_1 + 0_2$$

= $0_2 + 0_1$ (V1)
 $0_1 = 0_2$ (By Cancellation)

Corollary 1.1.2. Suppose V is a V.S. and $x \in V$, then the vector u in V4 is unique.

Proof. Assume $u_1, u_2 \in V$ both satisfy $x + u_1 = 0 = x + u_2$, then

$$u_1 + x = u_2 + x$$
 (V1)
 $u_1 = u_2$ (By Cancellation)

Definition 1.1.3. Given a V.S. V and $x \in V$,

- ullet the unique vector $u \in V$ s.t. x + u = 0 is denoted -x.
- x y denotes x + (-y)

Note: V2 justifies $a_1x_1 + a_2x_2 + a_3x_3 + \cdots + a_kx_k$ not worry about parentheses.

1.2 Linear Combination - Jan 8

Definition 1.2.1 (Linear Combination). $a_1x_1 + a_2x_2 + a_3x_3 + \cdots + a_kx_k$ is called a linear combination of x_1, \dots, x_k .

Basic Problem: Given a V.S. V/\mathbb{F} , and $u_1, u_2, \dots, u_n \in V$ and $x \in V$ to decide whether x is a linear combination of u_1, \dots, u_n .

Example: $V = \mathbb{Q}[x]$ over \mathbb{Q} . Let $p = 4x^4 + 7x^2 - 2x + 3$.

- $u_1 = x^4 x^2 + 2x + 1$
- $u_2 = 2x^4 + 3x^2 + 2x$
- $u_3 = x^4 + 4x^2 + 1$
- $u_4 = 2x^3 + 3$
- $u_5 = x^4 + 1$

Is p a linear combination of u_1, \dots, u_5 ? Solution: search for $a_1, \dots, a_5 \in \mathbb{Q}$ s.t.

$$p = a_1 u_1 + a_2 u_2 + \dots + a_5 u_5$$

$$4x^{4} + 7x^{2} - 2x + 3 = a_{1}(x^{4} - x^{2} + 2x - 1) + a_{2}(2x^{4} + 3x^{2} + 2x) + a_{3}(x^{4} + 4x^{2} + 1)$$

$$+ a_{4}(2x^{3} + 3) + a_{5}(x^{4} + 1)$$

$$= (a + 1 + 2a_{2} + a - 3 + a_{5})x^{4} + (2a^{4})x^{3} + (-a_{1} + 3a_{2} + 4a_{3})x^{2}$$

$$+ (2a_{1} + 2a_{2})x + (-a_{1} + a_{3} + 3a_{4} + a_{5})$$

$$\begin{cases} a_1 + 2a_2 + a_3 + a_5 = 4 \\ 2a_4 = 0 \\ -a_1 + 3a_2 + 4a_3 = 7 \\ 2a_2 + 2a_2 = -2 \\ -a_1 + a_3 + 3a_4 + a_5 = 3 \end{cases}$$

No solution.

1.3 Subspace - Jan 10

Notation 1.3.1.

- ullet 0 denote the unique vector in V
- x denote the unique $u \in V$ satisfying V4

Theorem 1.3.1. Suppose V is a VS / \mathbb{F} , $X \in V$, $a \in \mathbb{F}$.

- 1. 0x=0, the first 0 is scalar, the second 0 is a vector
- 2. (-a)x=a(-x)=-(ax)
- 3. a0=0

Definition 1.3.1. *Suppose* V *is a* V.S. *over* \mathbb{F} , $S \subseteq V$,

- Closed under Addition: if $x, y \in S$, $x + y \in S$.
- Closed under Scalar Multiplication: if $x \in S \Rightarrow ax \in S$, $\forall a \in \mathbb{F}$.

Definition 1.3.2 (Subspace). Let V be a VS/\mathbb{F} , $S \subseteq V$, say S is a Subspace of V if

- 1. S is closed under addition and scalar multiplication
- 2. $S \neq \emptyset$

Theorem 1.3.2. Suppose V is a vector space $/\mathbb{F}$ and S is a subspace of V, then S, together the operations of V restricted to S.

- \bullet +_S: $S \times S \rightarrow S$
- $\bullet \cdot_S : \mathbb{F} \times S \to S$

Proof. Given V, S, must prove: S with restricted operations of V, satisfying V1 to V8.

V1: must show: if $X, y \in S$, then x + y = y + x. Since $S \in V$, hence $x, y \in S \Rightarrow x, y \in V$, and $V \models V1$. Same proof works for V2, 5, 6, 7, 8.

V3: know $S \neq \emptyset$, take any $x \in S$, consider $0x = 0 \in S$. (S is closed under scalar multiplication)

Hence there eixst a zero vector in S.

V4: fix
$$x \in S$$
, let $u = (-x)x \in S$, then $x + u = 1x + (-1)x = (1 + (-1))x = 0x = 0$.

Note: in every \mathbb{F} , $\forall a \in \mathbb{F}$, $\exists c \in \mathbb{F} a + c = 0$, c = -a. Since $1 \in \mathbb{F}$, $-1 \in \mathbb{F}$.

Theorem 1.3.3. If V is a vector space over \mathbb{F} and $S \subseteq V$, and S with the operations of V, is itself a V.S. / \mathbb{F} , then V is a subspace of V.

1.4 Span - Jan 13

Recall: If V is a V.S. / \mathbb{F} , and $u_1, \dots, u_n, x \in V$, then x is a linear combination (lin. combo.) of u_1, \dots, u_n if $\exists a_1, \dots, a_n$ such that $x = a_1u_1 + a_2u_2 + \dots + a_nu_n$.

Definition 1.4.1. *Suppose* V *is a V.S.* $/\mathbb{F}$, $x \in V$, and $\emptyset \neq S \subseteq V$.

- 1. Say x is a lin. combo. of S if \exists finitely many $u_1, \dots, u_n \in S$, s.t. x is a lin. combo. of u_1, \dots, u_n . $S = \{u_1, u_2, \dots, u_n\}, x = \sum_{n=0}^{\infty} a_n u_n$, converge.
- 2. The **Span** of S written span(S), is the set of all linear combinations of S.
- 3. $\operatorname{span}(\varnothing) \stackrel{df}{=} \{0\}$

Examples

- In \mathbb{R}^2 , $S = \{(1,1)\}$, what is span(S)? the
- In \mathbb{R}^3 , $S = \{(1,0,0), (1,1,0)\} = \{a(1,0,0) + b(1,1,0) : a,b \in \mathbb{R}\} = \{(a+b,b,0) : a,b \in \mathbb{R}\} = (s,t,0) : s,t,\in \mathbb{R}$ =the plane given by z=0
- In $\mathbb{R}[x]$, let $S = \{x, x^2, x^3, \dots\}$, $span(S) = \{f \in \mathbb{R}[x] : f(0) = 0\}$.

Proposition 1.4.1. $(\emptyset \neq S \subseteq V)$. Suppose $u_1, \dots, u_n \in S$, $x \in V$. Suppose x is a linear combination of u_1, \dots, u_n . If v_1, \dots, v_n are more vectors from S, then x is also a linear combination of u_1, \dots, u_n , v_1, \dots, v_n .

Proposition 1.4.2. *If* $S = \{u_1, \dots, u_n\}$, then $\text{span}(S) = \{a_1u_1, \dots, a_ku_k, a_1, \dots, a_k \in \mathbb{F}\}$.

Proposition 1.4.3. *If* $S \subseteq T \subseteq V$, then $\operatorname{span}(S) \subseteq \operatorname{span}(T)$.

Proposition 1.4.4. If S is infinite, if $x, y \in \text{span}(S)$, say x is a linear combo of $u_1, \dots, u_n \in S$, y is a linear combo of $v_1, \dots, v_n \in S$, then x, y are linear combos of $u_1, \dots, u_n, v_1, \dots, v_n$.

Generalization 1.4.1. If $x_1, \dots, x_k \in \text{span}(S)$, then $\exists u_1, \dots, u_n \in S$, s.t. each x_l is a linear combo of u_1, \dots, u_n .

Theorem 1.4.1. Suppose V is a $V.S / \mathbb{F}$, $S \subseteq V$, then $\operatorname{span}(S)$ is the (unique) smallest subspace of $V \supseteq S$. i.e.

- 1. $\operatorname{span}(S)$ is a subspace of V.
- 2. $S \subseteq \operatorname{span}(S)$
- 3. If W is any subspace of V containing S, then $\operatorname{span}(S) \subseteq W$.

Proof. 1. Let $x \in S$, x = 1x, a linear combination of finitely many vectors in S.

2. i) Closure under scalar multiplication: let $x \in \text{span}(S)$, $c \in \mathbb{F}$, $\Rightarrow \exists u_1, \dots, u_n \in S$, s.t. $x = a_1x_1 + \dots + a_nx_n$, so

$$cx = c(a_1u_1 + \dots + a_mu_m) = (ca_1)u_1 + \dots + (ca_n)u_n$$

ii) Closure under vector addition: let $x, y \in \text{span}(S)$, want to prove that $x + y \in \text{span}(S)$.

By the technical remark, $\exists u_1, \dots, u_n \in S$ s.t. $x = a_1u_1 + \dots + a_nu_n$, $y = b_1u_1 + \dots + a_nu_n$, $a_i, b_i \in \mathbb{F}$,

Then, $x + y = (a_1u_1 + \dots + a_nu_n) + (b_1u_1 + \dots + b_nu_n) = (a_1 + b_1)u_1 + \dots + (a_n + b_n)u_n$. So $x + y \in \text{span}(S)$.

Finally, if $S = \emptyset$, then $\operatorname{span}(S) = \{0\}$, if $S \neq \emptyset$, then $S \subseteq \operatorname{span}(S)$,

either case, $\operatorname{span}(S) \neq \emptyset$, so $\operatorname{span}(S)$ is a subspace of V.

3. Let W be a subspace

<u>Intuition:</u> Redundancies in span. Example: V / \mathbb{F} , suppose $S = \{u_1, \dots, u_5\} \subseteq V$.

Assume u_3 is a linear combination of u_2, u_4, u_5 .

$$u_3 = c_2 u_2 + c_4 u_4 + c_5 u_5$$

 $\underline{\mathbf{Claim:}}\ (S) = \mathrm{span}(S - \{u_3\}).$

Proof. RTP \subseteq and \supseteq .

 $\mathrm{span}(S)$ is

- a subspace of V
- which contains $S \setminus \{u_3\} = \{u_1, u_2, \cdots, u_3\}$

By the theorem, the samllest subspace of V containing $S\setminus\{u_3\}$ is $\operatorname{span}(S\setminus\{u_3\})$. hence $\operatorname{span}(S)\supseteq \operatorname{span}(S\setminus\{u_3\})$.

To prove that $\operatorname{span}(S) \subseteq \operatorname{span}(S \setminus \{u_3\})$,

let $x \in \text{span}(S)$, i.e.

$$x = a_1u_1 + a_2u_2 + a_3u_3 + a_4u_4 + a_5u_5$$

= $a_1u_1 + a_2u_2 + a_3(c_2u_2 + c_4u_4 + c_5u_5) + q_4u_4 + a_5u_5$
= $a_1u_1 + (a_2 + a_3c_2)u_2 + (a_4 + a_3c_4)u_4 + (a_5 + a_3c_5)u_5$

$$x \in Span(\{u_1, u_2, u_4, u_5\})$$

Also Observe:

$$0u_1 + c_2u_2 + (-1)u_3 + c_4u_4 + c_5u_5 = 0$$

A linear combination of u_1, \dots, u_5 equally the 0 vector with coefficients not all 0.

So we code redundacies formally with definition:

Definition 1.4.2. $(V\mathbb{F}, S \subseteq V)$, S is linearly dependent if \exists distinct vectors $u_1, \dots, u_n \in S$, and $\exists a_1, \dots, a_n \in \mathbb{F}$, not all 0, such that

$$a_1u_1 + a_2u_2 + \cdots + a_nu_n = 0(zero\ vector)$$

S is linearly independent if S is not linearly dependent.

S is linearly dependent \iff $(\exists distinct \ u_1, \cdots, u_n \in S)(\exists a_1, \cdots, a_n \in \mathbb{F}, \not \forall 0)(a_1u_1 + \cdots + a_nu_n) = 0$ $\equiv (\forall distinct \ u_1, \cdots, u_n \in S)()$

Technical Remark: when $S = \{u_1, \dots, u_n\}$ without reports

- Can drop $(\forall \ distinct \ u_1. \cdots, u_n \in S)$ in choice of linear independence.
- -Can drop $(\exists \ distinct \ u_1 \cdots u_1, \cdots, u_n \in S)$ in choice of linear dependence.

Example 2: Is $S = \{(0, 1, 1), (1, 0, 1), (1, 2, 3)\}$ linear dependent? (in \mathbb{R}^3)

Try to find: $a, b, c \in \mathbb{R}$ s.t.

$$a \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} + b \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + c \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \qquad \Rightarrow \qquad \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} -2 \\ -1 \\ 1 \end{pmatrix}$$

Shows S is linearly dependent.

Question: If $S = \emptyset$, S is linearly dependent.

Question 2: If $S = \{0\}$, S linearly dependent. Can write $1 \cdot 0 = 0$.

More Generally, if $0 \in S \subseteq V$, then S is linearly dependent.

Theorem 1.4.2 (Linear Dependence). $V\mathbb{F}$, $S \subseteq V$, then S is linearly dependent, iff $S = \{0\}$ or $\exists x \in S$, s.t. x is a linear combination of some vectors in $S \setminus \{x\}$.

1.5 Basis Jan 17

Recall If V is a V.S. / \mathbb{F} , $S \subseteq B$.

- 1. $\operatorname{span}(S) = \operatorname{set} \operatorname{of} \operatorname{all linear combinations} \operatorname{of} S$
- 2. S is linearly dependent if $\exists u_1, u_2, \cdots, u_n \in S$ (distinct), $\exists a_1, \cdots, a_n \in \mathbb{F}$ not all 0, s,t, $a_1u_1 + a_2u_2 + \cdots + a_nu_n = 0$.
 - else, S is linearly independent.

Definition 1.5.1. V is $V.S. / \mathbb{F}$,

- 1. A set $S \subseteq V$ is a spanning set of span(S) = V. Also say S spans V.
- 2. *V* is finitely spanned if *V* has a finite spanning set. *V* is countably spanned if *V* has a countable spanning set.

Examples:

 \mathbb{R}^3 is finitely spanned, e.g. by $\{e_1, e_2, e_3\}$.

so is \mathbb{R}^n e.g. by $\{e_1, e_2, \dots, e_n\}$, $e_i = (0, 0, \dots, 1, 0, \dots, 0)$ with 1 at i_{th} spot.

 $\mathbb{R}[x]$ is countably spanned e.g. by $\{1, x, x^2, x^3, \cdots\}$ not finitely spanned.

 $\mathbb{R}^{[0,1]}$ not countably spanned.

Definition 1.5.2. V is a $V.S. / \mathbb{F}$.

A basis for V is any $S \subseteq V$, which

- spans V, and
- S is linearly independent

Examples: $\{e_1, \dots, e_n\} \subseteq \mathbb{F}^n$ is a basis for \mathbb{F}^n .

 $\{1, x, x^2, x^3, \dots\} \subseteq \mathbb{R}[x]$ is a basis for $\mathbb{R}[x]$.

Theorem 1.5.1. Every countably spanned V.S. has a basis.

Proof. Suppose V.S. V is spanned by countable set S, so either $S = \{v_1, v_2, \dots, v_n\}$, or $S = \{v_1, v_2, \dots\}$, WLOG, we assume $0 \notin S$, define

$$T = \{v_i \in S, v_i \notin span(v_1, v_2, \cdots, v_{i-1})\},\$$

Claim that T is a basis for V.

<u>Proof of Claim:</u> 1^{st} show T is linearly independent, by contradiction, assume T is linearly dependent.

Then, $\exists k$, and scalars a_1, a_2, \dots, a_n (not all 0), s,t,

$$a_1 x_1 + a_2 x_2 + \dots + a_n x_n = 0$$

Choose least k for which this is true.

<u>Claim</u>: $k \neq 1$, if k = 1, $a_1v_1 = 0 \Rightarrow v_1 = 0$, but $0 \notin T$, contradiction.

so k > 1, Assume $a_k = 0$, then

$$a_1v_1 + a_2v_2 + a_{k-1}v_{k-1} = 0$$

Not all of $a_1, a_2, \dots, a_{k-1} = 0$.

Next, show span(S) = V.

$$S = \{v_1, v_2, v_3, \dots, v_n\}$$
$$T = \{v_{i_1}, v_{i_2}, v_{i_3}, \dots\}$$

Know $\operatorname{span}(S) = V$, intuitively $\operatorname{span}(T) = \operatorname{span}(S)$.

$$T = \{v_j \in S : v_j \not\in \text{span}(\{v_1, v_2, \cdots, v_{j-1}\})\}$$

Therefore, T is a basis of V.

Remark:

- 1. Every Vector Space has a basis. proof: some version of axiom of choice
- 2. bases is not unique, every V.S. except {0}, has multiple bases.
- 3. What is a basis for $V = \{0\}$?

Theorem 1.5.2 (Axiom of Choice). Suppose A, B are sets, $f: A \rightarrow$.

1.6 Dimension - Jan 20

Remark: Given a vector space V, the basis is not unique.

Relation between two basis of a vector space. (finitely spanned vector spaces)

Theorem 1.6.1. Let V be a finitely spanned vector space over a field \mathbb{F} , let $\{v_1, \dots, v_m\}$ be a basis of V, let $\{w_1, \dots, w_n\} \subset V$ and n > m. Then $\{w_1, \dots, w_n\}$ is linearly dependent.

Sketch. Idea: Replace successfully v_1, v_2, \dots, v_n , by w_1, w_2, \dots, w_n so that

$$span(\{w_1, w_2, \cdots, w_i, v_{i+1}, \cdots, v_m\}) = span(\{v_1, v_2, \cdots, v_i, v_{i+1}\})$$

$$1 \le i \le m-1$$
.

Proof. Assume $\{w_1, \dots, w_n\}$ is linearly dependent. Prove the statement by induction.

<u>Base Case:</u> (i=1), since $\{v_1, \cdots, v_m\}$ is a basis for V and $w_1 \in V$, there exist $a_1, \cdots, a_m \in \mathbb{F}$ s.t. $w_1 = a_1v_1 + \cdots + a_mv_m$.

By the assumption, $w_1 \neq 0$, hence one of the a'_k s is nonzero.

By renumbering v_1, \dots, v_m , WLOG, we can assume $a_1 \neq 0$. We can solve for v_1 .

$$a_1v_1 = w_1 - a_2v_2 - \dots - a_mv_m$$

$$v_1 = a_1^{-1}w_1 - a_1^{-1}a_2v_2 - \dots - a_1^{-1}a_mv_m$$

so, span
$$(\{v_1, v_2, \dots, v_m\}) \subset \text{span}(\{w_1, w_2, \dots, w_m\}) = V$$
.

Induction Assumption: Assume that the statement is true for r. It means after renumbering, v_1, v_2, \cdots, v_m we have

$$span(\{w_1, w_2, \cdots, w_i, v_{i+1}, \cdots, v_m\}) = V.$$

*replace w_{i+1} .

Prove for r+1: Rewrite w_{i+1} as a linear combination of $\{w_1, \dots, w_r, v_{r+1}, \dots, v_m\}$.

$$w_{i+1} = c_1 w_1 + \dots + c_r w_r + d_{i+1} v_{i+1} + \dots + d_m v_m$$

Observation: One of the d_{r+1}, \dots, d_m must be nonzero. Because if $d_{i+1} = \dots = d_m = 0$, then

$$w_{r+1} = c_1 w_1 + \dots + c_r 2_r$$

$$0 = c_1 w_1 + \dots + c_r w_r - w_{r+1}$$

Contradiction since $\{w_1, \cdots, w_{r+1}\}$ is linearly independent.

WLOG, we can assume $d_{i+1} \neq 0$,

$$d_{r+1}v_{r_1} = w_{r+1} - c_1w_1 - \dots - a_rw_r - d_{r+2}v_{r+2} - \dots - d_mv_m$$

Since n > m, $w_n = a_i w_i + \cdots + a_m w_m$, so $\{w_1, \cdots, w_n\}$ is linearly dependent.

It completes the proof.

Theorem 1.6.2. Let V be a finitely spanned vector space, having one basis of m elements having another basis of n elements. Then m = n.

Proof. We could not have m < n, or m > n. If it happends, the other set must be linearly dependent.

Definition 1.6.1. Let V be a vector: space having a basis consisting of n elements, we say n is the dimensioning of V.

$$\dim_{\mathbb{F}} V = n$$

$$\lim\{0=0\}$$

A vector space that has a basis consisting of n elements, zero elements, zero vector space, is called finite dimensional. Otherwise, V is called infinite dimensional(Hamel Basis)

Example:

• $\dim \mathbb{F}^n = n$

Since

$$\left\{ \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \cdots, \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \right\}$$

is a basis for \mathbb{F}^n .

- $\dim P_n(\mathbb{F}) = n+1$ Since $\{1, x, \dots, x^n\}$ is a basis for $P_n(\mathbb{F})$.
- $\dim \mathbb{F}[x] = \infty$

Corollary 1.6.1. Let V be an n-dimensional space, then

- If $\{v_1, \dots, v_n\} \subset V$ is linearly independent, then $\{v_1, \dots, v_n\}$ is a basis for V.
- If $\{v_1, \dots, v_n\} \subset V$, k < n is linearly we can add v_{k+1}, \dots, v_n so that $\{v_1, \dots, v_n\}$ is a basis for V.
- If W is a subspace of V, then $\dim W \leq \dim V$, if furthermore, $\dim W = \dim V$. Then W = V.

1.7 Direct Sum - Tutorial Jan 20

Corollary 1.7.1. If V is finitely spanned, and $\beta\{v_1, \dots, v_n\}$ is linearly independent, then β can be extended to a basis for V, i.e. $\exists w_1, \dots, w_n \in V$, s.t. $\{v_1, \dots, v_n, w_1, \dots, w_r\}$ is a basis for V

Proof. Let m = dim = V. So $n \le m$ by theorem.

Case 1: β is alreadd a basis. (n=m)

Case 2: β is not a basis.

1.8 Jan 22

Corollary 1.8.1. If V is finitely spanned, and $\mathfrak{B} = \{v_1, \dots, v_n\}$ is linearly independent, then \mathfrak{B} can be extended to a basis for V.

i.e. $\exists w_1, \dots w_r \in V$, s.t. $\{v_1, \dots, v_n, w_1, \dots, w_n\}$ is a basis for V.

Proof. Let $m = \dim V$, so $n \le m$. (By theorem).

case 1: \mathfrak{B} is already a basis (n = m). done

Case 2: \mathfrak{B} is not a basis, so $\operatorname{span}\mathfrak{B} \neq V$, so $\exists w_1 \in V \setminus \mathfrak{B}$.

Theorem 1.8.1. For any V.S. V, if $\mathfrak{B} \subseteq V$ is linearly independent, then \mathfrak{B} can be extended to a basis for V. [use axiom of choice]

Example: Let $\mathfrak{B} = \{\cos(nx), n \ge 0\} \cup \{\sin(nx) : n > 0\} \cup \{e^x\}.$

This \mathfrak{B} can be extended to a basis \mathfrak{B}' for $\mathbb{R}^{[0,1]}$.

$$|\mathfrak{B}'| = 2^{2^{\aleph_0}}$$

Recall: If $\{v_1, \dots, v_n\} \subseteq V$ is linearly independent. Say $\{v_1, \dots, v_n\}$ is a maximal linearly independent set, if $\forall w \in V \setminus \{v_1, \dots, v_n\}, \{v_1, \dots, v_n, w\}$ is linearly dependent.

Corollary 1.8.2. If V is a finitely spanned set, then every basis is a maximal linearly independent set, and vice versa.

More generally,

Definition 1.8.1. Let V be a V.S., a subset $\mathfrak{B} \subseteq V$ is a maximal linearly independent set if

- B is linearly independent
- $\forall w \in V \setminus \mathfrak{B}$, $\mathfrak{B} \cup \{w\}$ is linearly dependent.

Theorem 1.8.2. In any V.S. V, every basis is a maximal linearly independent set, and vice versa.

Definition 1.8.2. A mininal spanning set is a set \mathfrak{B} such that

- $\operatorname{span}\mathfrak{B} = V$
- $\forall w \in \mathfrak{B}$, $\operatorname{span}(\mathfrak{B} \setminus \{w\}) \neq V$

Theorem 1.8.3. *In every vector space V,*

1. Every bassi is a minimal spanning set and vice versa

2. Every spanning set can be "shrunk" to a basis i.e. if $\operatorname{span}\mathfrak{B} = V$, then $\exists \mathfrak{B}' \subseteq \mathfrak{B}$ s.t. \mathfrak{B}' is a basis for V.

Proof. For (2), already proved when $\mathfrak B$ is countable. Can extend the proof to uncountable "well-ordering $\mathfrak B$ ".

To find a basis for $\mathbb{R}^{[0,1]}$

- 1. start with $\mathfrak{B} = \mathbb{R}^{[0,1]}$
- 2. well-order \mathfrak{B} ("enumerates" \mathfrak{B})
- 3. use the enumeration to shrink \mathfrak{B} to a basis

1.9 Quotient Space - Jan 24

Review: $\mathbb{Z}_n = \text{the set of the congruence classes, } x \equiv y \pmod{m} \iff m|x-y|$

Revisit: $[0] = \{qm : a \in \mathbb{Z}\} = m\mathbb{Z}.$

 $-m\mathbb{Z}$ is collapsed to become zero

 $-x \equiv y \pmod{n} \iff x = y \in m\mathbb{Z}.$

-advanced notation: $\mathbb{F}/m\mathbb{Z}$.

Version of this:

- $(\mathbb{Z}, +, \cdot) \to \text{a vector space } V$.
- $(m\mathbb{Z}) \to a$ subspace of V.

Definition 1.9.1. Fix a V.S. V over \mathbb{F} , and a subspace W. For $x, y \in V$ say $x \equiv y \pmod{W}$, if $x - y \in W$.

Claim: $\equiv \pmod{W}$ is an equivalence relation on V.

Proof. For transitivity:

Assume $x, y, z \in V$, $x \equiv y \pmod{W}$ and $y \equiv z \pmod{W}$, by definition, $x - y \in W$, $y - z \in W$.

Then $x - z = (x - y) + (y - z) \in W$ since W is closed under addition.

Then by definition, $x \equiv z \pmod{W}$.

Definition 1.9.2. *Define* V, W *as before:*

For $x \in V$,

$$x+W:=\{x+w:w\in W\}$$

(x is fixed, add x to every vector on W). x + W is called **translation of** W **by** x, or **coset of** W **through** x.

Lemma 1.9.1. V, W as before, for any $x \in V$, the equivalence class (congruence class) of $\equiv \pmod{W}$ containing x is x + W. If $y \equiv x \pmod{W}$, and $w \in W$, then $y \equiv x + w \pmod{W}$.

Proof. For any $y \in V$, $y \in \text{the equiv of} \equiv \pmod{V}$ containing x.

$$\iff y \equiv x \pmod{W}$$

$$\iff$$
 $y - x \in W$

$$\iff \qquad y-x=w, for \ some \ w \in W$$

$$\iff$$
 $y = x + w$

$$\iff$$
 $y \in x + W$

Corollary 1.9.1. With V and W as above, for any $x, y \in V$,

$$x + W = y + W \iff x \equiv y \pmod{W}$$
 i.e. $x - y \in W$.

Remark: For $x \in V$, the span class of $\equiv \pmod{W}$ containing x is

$${y \in V, y \equiv x \pmod{W}}$$

Definition 1.9.3.

$$V/W := \text{the set of all equiv classes of the } \equiv \pmod{W} \text{ relation}$$

:= the set of all translations of W
:= $\{x + W : x \in V\} \neq V$

Next, we turn V/W into a vector space over \mathbb{F} ,

$$(x+W) \oplus (y+W) := (x+y) + W$$
$$c(x+w) := (cx) + W$$

Issue: Are the operations well-defined? Yes

E.g. check scalar multiplication:

assume
$$x + W = x_1 + W$$
, $x \equiv x_1 \pmod{W} \iff x - x_1 \in W$.

need to know: $\forall c \in \mathbb{F}$,

$$(cx + W) = (cx_1) + W$$

$$\Leftrightarrow cx \equiv cx_1 \pmod{W}$$

$$\Leftrightarrow (cx) - (cx_1) \in W$$

$$\Leftrightarrow c(x - x_1) \in W$$

Definition 1.9.4. V/W with the natural operations is called the **quotient space** of V modulo W.

2 Linear Transformations

Definition 2.0.1. Let V, W be vector spaces over \mathbb{F} , a function $T:V\to W$ is a linear transformation (or is linear) if

1.
$$T(x+y) = T(x) + T(y), \forall x, y \in V$$

2.
$$T(ax) = aT(x), \forall x \in V, \forall a \in \mathbb{F}$$

Example

$$V = W = \mathbb{R} \text{ (as } V.S./\mathbb{R})$$

Fix $\lambda \in \mathbb{R}$,

$$T: \mathbb{R} \to \mathbb{R}$$
 $T(x) = \lambda x$

T is a linear transformation.

Check: Let $x, y \in \mathbb{R}$, $a \in \mathbb{R}$

1.
$$T(x+y) = \lambda(x+y) = \lambda x + \lambda y = T(x) + T(y)$$

2.
$$T(ax) = \lambda(ax) = a(\lambda x) = aT(x)$$

<u>fact:</u> Every linear transformation from $\mathbb{R} \to \mathbb{R}$ has this form.

Generalization 2.0.1. *let* $V = X = \mathbb{F}$, *(field) considered as* $V.S/\mathbb{F}$, *every linear transformation* $T : \mathbb{F} \to \mathbb{F}$ *is of form* $T(x) = \lambda x$ *for some* $\lambda \in \mathbb{F}$.

Example: $V = W = \mathbb{R}^2$

define
$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
 by $T((x_1, x_2)) = (-x_2, x_1)$,

$$T((1,0)) = (0,1)$$

$$T((0,1)) = (-1,0)$$

Actually, T is "rotation" by 90° c.c.w centered at (0,0).

Claim: T is a linear transformation.

Proof.
$$T((x_1, x_2) + (y_1, y_2)) = T((x_1 + y_1, x_2 + y_2)) = T(-(x_2 + y_2), x_1 + y_1) = (-x_2, z_1) + (-y_2, y_1) = T((x_1, x_2)) + T((y_1, y_2))$$

Similarly, can check
$$T(a(x_1, x_2)) = aT((x_1, x_2))$$

Generalization 2.0.2. Fix $A \in M\mathbb{R}$, set of all $m \times n$ matrices with entries from \mathbb{R} ,

so

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & & & & \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$

Define $L_A: \mathbb{R}^n \to \mathbb{R}^n$, $L_A(x) = Ax$. x is a column vector nx_1 matrix

$$Ax = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & & & & \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n \\ a_{21}x_2 + a_{22}x_2 + \cdots + a_{2n}x_n \\ \vdots \\ a_{m1}x_n + a_{m2}x_2 + \cdots + a_{mn}x_n \end{pmatrix}$$

Claim: L_A is a linear transformation.

Proof. By example, $m=n=2, A=\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$

$$L_A(x) = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} -x_2 \\ x_1 \end{pmatrix} = (-x_2, x_1)$$

Generalization 2.0.3. Fix a field \mathbb{F} , fix $A \in M_{m \times n}(\mathbb{F})$,

define L_A ; $\mathbb{F}^n \to \mathbb{F}^m$ by $L_A(x) = Ax$,

Claim: L_A is a linear transformation.

Recall: $C([-1,1]) = \text{all continuous functions } f: [-1,1] \to \mathbb{R}, \text{ define } T: C([-1,1]) \to \mathbb{R}, \text{ by } T(f) = \int_{-1}^{1} f(x) dx.$

Claim: T is a linear transformation.

Proof.

$$T(f+g) = \int_{-1}^{1} (f+g)dx$$
$$= \int_{-1}^{1} f dx + \int_{-1}^{1} g dx$$
$$= T(f) + T(g)$$

$$T(af) = \int_{-1}^{1} af dx = a \int_{-1}^{1} f dx = aT(f)$$

 $D:C^{\infty}(\mathbb{R}) \to C^{\infty}(\mathbb{R})$ (set of all $f \in C(\mathbb{R})$),

 $f^{(n)}$ exists, and is continuous $\forall n$.

Define D(f) = f', D is linear.

Some easy properties of all linear transformations, suppose $T:V\to W$ linear.

1.
$$T(0) = 0$$

Proof. (a)
$$T(x+0) = T(x) + T(0)$$

(b)
$$T(0 \cdot x) = 0T(x) = 0$$

2. T(x-y) = T(x) - T(y)

Proof.
$$T(x-y) = T(x+(-1)y) = T(x) + T((-1)y) = T(x) - T(y)$$

3.
$$T(a_1x_1 + a_2x_2 + \dots + a_nx_n) = a_1T(x_1) + \dots + a_nT(x_n)$$

Common Mistake:

$$T(ax + by) = T(a)T(x) + T(b)T(y)$$

More Examples:

 $M_{m \times n} \mathbb{F}$ is a vector space over \mathbb{F} , -add matrices componentwise -scalar multiply by multiplying all components

$$\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} + \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix} = \begin{pmatrix} a_{11} + b_{11} & a_{12} + b_{12} \\ a_{21} + b_{21} & a_{22} + b_{22} \end{pmatrix}$$
$$c \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = \begin{pmatrix} ca_{11} & ca_{12} \\ ca_{21} & ca_{22} \end{pmatrix}$$

 $T: M_{m \times n}(\mathbb{F}) \to M_{n \times m}(\mathbb{F})$ by $T(A) = A^t$. (transpose of A)

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{pmatrix}^t = \begin{pmatrix} a_{11} & a_{21} \\ a_{12} & a_{22} \\ a_{13} & a_{23} \end{pmatrix}$$

(V=W) define $I_v:V\to V$ by $I_v(x)=x$ its linear.

2.1 Tutorial - Jan 27

Goals:

- Be able to describe the quotient space
- Be able to find a basis and the dimension of the quotient space

Recall that:

Definition 2.1.1. V is a V.S. $W \leq V/\mathbb{R}$, we call V/W a quotient space if

$$\begin{cases} (x+W) + (y+W) = (x+y) + W \\ c(x+W) = cx + W \end{cases}$$

which $x, y \in V$, $c \in \mathbb{R}$.

Example:

 $V=\mathbb{R}^3, W=\mathrm{span}\{(0,0,1)\}.$ \mathbb{R}^3/W is a quotient space.

Question: What are the elements in \mathbb{R}^3/W ?

A: p + W, $p \in \mathbb{R}^3$.

 $\mathbf{B} \colon [p+W] = \{x \in \mathbb{R}^3 | x-p \in w\}$

C: All lines that are parallel to Z-axis

2.2 Null Spance and Range

Definition 2.2.1. Suppose $T: V \to W$ is a linear transformation.

1. The **null space** of T denoted N(T), is

$$N(T) = \{ x \in V : T(x) = 0 \}$$

2. The range of T denoted as R(T)

$$R(T) = \{T(x) : x \in V\} \subseteq W$$

Example: $D_n: P_n(\mathbb{R}) \to P_n(\mathbb{R}) \ D_n(f) = f'$. It's linear.

What is $N(D_n)$?

$$N(D_n) = \{ f \in P_n(\mathbb{R}) : f' = 0 \} = \{ c : c \in \mathbb{R} \}$$

 $R(D_n) = P_n(\mathbb{R})$

Theorem 2.2.1. Suppose $T: V \to W$ is linear

- 1. N(T) is a subspace of V.
- 2. R(T) is a subspace of W.

Proof.

1. $T(0_v) = 0_w$ so $0_v \in N(T)$ so $N(T) \neq \emptyset$

-closure under addition: let $x, y \in N(T)$,

$$T(x+y) = T(x) + T(y) = 0 + 0 = 0 \in N(T)$$

-closure under scalar multiplication: let $x \in N(T)$, $c \in \mathbb{F}$

$$T(cx) = cT(x) = ca = 0 \in N(T)$$

2. $R(T) \neq \emptyset$ because $V \neq \emptyset$

-closure under addition: let $u, v \in R(T) \subset W$, can write u = T(x), v = T(y), (for some $x, y \in V$), so $u + v = T(x) + T(y) = T(x + y) \in R(T)$.

-Similar argument shows that ${\cal R}(T)$ is closed under scalar multiplication.

Algorithm 2.2.1 (Useful Trick). Suppose $T:V\to W$ is a linear transformation, suppose we know $\operatorname{span}\{v_1,\cdots,v_k\}$, then

$$R(T) = \{T(x), x \in V\}$$

$$= \{T(x) : x = a_1v_1 + \dots + a_kv_k, a_i \in \mathbb{F}\}$$

$$= \{T(a_1v_1 + \dots + a_kv_k) : a_1, \dots, a_k \in \mathbb{F}\}$$

$$= \{a_1T(v_1) + \dots + a_kT(v_k) : a_1, \dots, a_k \in \mathbb{F}\}$$

$$= \operatorname{span}\{T(x_1), \dots, T(x_k)\}$$

Example 1: $D_n: P_n(\mathbb{R}) \to P_n(\mathbb{R})$

A spanning set for $P_n(\mathbb{R})$ is

$$\{1, x, x^2, x^3, \cdots x^n\}$$

SO

$$\mathbb{R}(D_n) = \operatorname{span}\{D_n(1), D_n(x), D_n(x^2), \cdots, D_n(x^n)\}\$$

$$= \operatorname{span}\{0, 1, 2x, \cdots, nx^{n-1}\}\$$

$$= \operatorname{span}\{1, x, x^2, \cdots, x^{n-1}\} = P_{n-1}(\mathbb{R})$$

Example 2: Fix $A \in M_{m \times n}(\mathbb{F})$. $L_A : \mathbb{R}^n \to \mathbb{F}^m$ by $L_A(x) = Ax$.

The "standard basis" for \mathbb{F}^n is

$$\{(1,0,\cdots,0),(0,1,0,\cdots,0),\cdots,(0,\cdots,0,1)\}$$

 $\mathbb{F}^n = \operatorname{span}\{e_1, e_2, \cdots, e_n\}$

Say
$$A = \begin{pmatrix} a_{11} \cdots a_{1n} \\ \vdots \\ a_{m1} \cdots a_{mn} \end{pmatrix}$$

$$L_A(e_1) =$$

Two Basic Questions about Linear Transformation

Question 1: Is it injective?

Question 2: Is it surjective?

Theorem 2.2.2. Suppose $T: V \to W$ is linear, then T is injective $\iff N(T) = \{0\}.$

Proof. (\Rightarrow) Assume T is injective. i.e. $\forall x, y \in V, T(x) = T(y) \Rightarrow x = y$.

Obviously $0 \subseteq N(T)$. (Since N(T) is a subspace)

For
$$N(T) \subseteq \{0\}$$
, let $x \in N(T)$ so $T(x) = 0 = T(0) \Rightarrow x = 0$.

 (\Leftarrow) Assume $N(T) = \{0\}$, prove injectively, assume $x, y \in V$ and T(x) = T(y).

$$\Rightarrow T(x) - T(y) = 0 \Rightarrow T(x - y) = 0 \Rightarrow x - y \in N(T) = \{0\} \Rightarrow x = y.$$

2.3 Jan 31

Definition 2.3.1. A linear transformation $T: V \to W$ is an isomorphism if it is a bijection.

We also write $T: V \cong W$.

We say V, W are **isomorphic**. (and write $V \cong W$) if $\exists T : V \cong W$.

Example 1: $P_n(\mathbb{R}) \cong \mathbb{R}^{n+1}$

An example of an isomorphism $T: P_n(\mathbb{R}) \cong \mathbb{R}^{n+1}$ is

$$T(a_0 + a_1 + \dots + a_n x^n) = (a_0, a_1, \dots, a_n)$$

Easy facts:

- 1. For every V.S. V, $V \cong V$.
- 2. If $V \cong W$ then $W \cong V$.

Definition 2.3.2. Given a linear tranformation $T: V \to W$ the

nullity of
$$T$$
: $\operatorname{nullity}(T) := \dim(N(T))$

rank of T:
$$rank(T) := dim(R(T))$$

Theorem 2.3.1. Suppose $T: V \to W$ is linear and $dimV < \infty$, then rank(T) + null(T) = dim(V).

Proof. First step find basis for N(T) and R(T)

Let S be a basis for N(T) let n = dimV, as $N(T) \subseteq V$, S is linearly independent in V

$$\Rightarrow |S| < n$$
. Write $S = \{v_n, \dots, n_k\}, k < n$.

Special Case: when $T: V \cong W$, dimV = n

$$T$$
 is injective $\Rightarrow N(T) = \{0\}$

$$\Rightarrow null(T) = 0$$

$$\Rightarrow S = \emptyset$$

$$B = \{x_n, \cdots\}$$

2.4 Feb 3

Proposition 2.4.1. Suppose $\{v_1, \dots, v_n\}$ is a basis for V.S. / \mathbb{F} .

Then $\forall x \in V$, x can be uniquely written

$$x = a_1 v_1 + \dots + a_n v_n \qquad a_i \in \mathbb{F}$$

Proof. $\{v_1, \dots, v_n\}$ span V so every $x \in V$ can be written in this way.

For uniqueness, assume $x = a_1v_1 + \cdots + a_nv_n = b_1v_1 + \cdots + b_nv_n$

Get $0=(a_1-b_1)v_1+\cdots+(a_nb_n)v_n$. As $\{v_1,\cdots,v_n\}$ is linearly independent, get $a_1=b_1,\cdots,a_n=b_n$. \square

Example:

Let $V = \{(x, y, z) \in \mathbb{R}^3 : x + y + z = 0\}$. A plane in \mathbb{R}^3 . V is a subspace of \mathbb{R} .

Let
$$v_1 = (-1, 1, 0), v_2 = (0, -1, 1).$$

 $\{v_1, v_2\}$ is a basis for V

$$x = (-3, 1, 2) \in V \Rightarrow x = 3v_1 + 2v_2$$

The **coordinates** of x relative to $\{v_1, v_2\}$ are (3, 2).

Definition 2.4.1. Let V be a V.S. dim V=n. An **Ordered Basis** for V is an n-tuple (v_1, \dots, v_n) where $\{v_1, \dots, v_n\}$ is a basis.

Notation 2.4.1. α, β, γ for ordered bases, A, B, C for basis.

Definition 2.4.2. Suppose V is a V.S., dim V = n, β is an ordered basis for V.

The coordinate vector of x relative to β is the unique n-tuple $(a_1, \dots, a_n) \in \mathbb{F}^n$ s.t.

$$x = a_1 v_1 + \dots + a_n v_n$$

Notation 2.4.2. The coordinate of x relative to β is denoted as: $[x]_{\beta} := (a_1, \dots, a_n)$

Fix $V, \mathbb{F}, \beta = (v_1, \cdots, v_n)$ as in definition.

Define

$$[\]_{\beta}:V\to \mathbb{F}^n, \qquad \qquad x\mapsto [x]_p$$

Theorem 2.4.1. $[\]_{\beta}:V\to \mathbb{F}^n$ is an isomorphism.

Proof. Let $x, y \in V$, (must show $[x + y]_{\beta} = [x]_{\beta} + [y]_{\beta}$)

Write

$$[x]_{\beta} = (a_1, \dots, a_n) \Rightarrow x = a_1 v_1 + \dots + a_n v_n$$

$$[y]_{\beta} = (b_1, \dots, b_n) \Rightarrow y = b_1 v_1 + \dots + b_n v_n$$

$$[x+y]_{\beta}=(c_1,\cdots,c_n)\Rightarrow x+y=c_1v_1+\cdots+c_nv_n$$

$$\Rightarrow (a_1 + b_1)v_1 + \dots + (a_n + b_n)v_n = c_1v_1 + \dots + c_nv_n$$

By prop,

$$\begin{cases} a_1 + b_1 = c_1 \\ a_2 + b_2 = c_2 \\ \cdots \\ a_n + b_n = c_n \end{cases} \Rightarrow (a_1, \dots, a_n) + (b_1, \dots, b_n) = (c_1, \dots, c_n) = [x]_{\beta} + [y]_{\beta} = [x + y]_{\beta}$$

Similarly, $[\]_{\beta}$ presents scalar multiplication, so it is linear.

Bijection:

Injective:

$$N([\]_{\beta} = \{x \in V : [x]_{\beta} = (0, \cdots, 0)\})$$

To show $[\quad]_{\beta}$ is surjective, first find a spanning set for $V=\{v_1,\cdots,v_n\}$

$$R([\]_{\beta}) = \operatorname{span}\{[v_1]_{\beta}, \cdots, [v_n]_{\beta}\}$$

= $\{x \in V : x = 0\}$
= $\{0\}$

What is $[v_1]_{\beta} = (1, 0, \dots, 0) = e_1$.

2.5 Tutorial - Feb 3

let V be a V.S. / \mathbb{F} , a linear functional on V is a linear map $f: V \to \mathbb{F}$.

The collection of all linear functionals is denoted V^* and is called the dual space of V.

Example 1:

Let
$$Vf = \mathbb{R}$$
, $\mathbb{F} = \mathbb{R}$, $f(x) = f(x \cdot 1) = xf(1)$, $x \in \mathbb{R}$.

so the linear maps $f: \mathbb{R} \to \mathbb{R}$ are given by f(x) = ax for some $a \in \mathbb{R}$.

Exampel 2:

$$V=\mathbb{R}^3, \mathbb{F}=\mathbb{R},$$
 let $egin{bmatrix} a \\ b \\ c \end{bmatrix} \in \mathbb{R}^3.$

$$f_{\begin{bmatrix} a \\ b \end{bmatrix}} \begin{pmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = x_1 a + x_2 b + x_3 c = \begin{bmatrix} abc \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

Then $f_{\left[egin{smallmatrix} a \\ b \\ c \end{smallmatrix} \right]}$ is linear.

Let $f \in (T\mathbb{R}^3)^*$ recall that a linear map f is determined by its values on a basis B.

Let
$$x=\begin{bmatrix} x_1\\x_2\\x_3 \end{bmatrix}$$
 so $x=x_1e_1+x_2e_2+x_3e_3$, e : the standard unit basis.

$$f(x) = f(x_1e_1) + f(x_2e_3) + f(x_3e_3) = x_1f(e_1) + x_2f(e_2) + x_3f(e_3).$$

The values of f on the basis vectors determine f.

Let
$$a_1 = f(e_1)$$
, then $f(x_1e_1 + x_2e_2 + x_3e_3) = (a_1, a_2, a_3)^T(x_1, x_2, x_3)^T$.

so
$$f(x) = f_{\begin{bmatrix} a \\ b \\ c \end{bmatrix}}$$

2.6 Feb 5

Proposition 2.6.1. Suppose V, W are vector spaces over \mathbb{F} , B is a basis for V. (note V is not finite dimensional) and $T: V \to W$ is a linear. Then T is determined by its values on vectors in B.

Direct Proof. The claim is that if $T': V \to W$ is another linear transformation and $T'(v) = T(v) \ \forall v \in B$.

i.e.
$$T'|_B = T|_B$$
, then $T' = T$.

Let $x \in V$. (show that T'(x) = T(x))

$$\Rightarrow x \in \operatorname{span}(B)$$

$$\Rightarrow \exists v_1, v_2, \cdots, v_n \in B, \exists a_1, \cdots, a_n \in \mathbb{F}$$

s.t.
$$x = a_1 v_1 + \cdots + a_n v_n$$
.

Then

$$T'(x) = T'(a_1v_1 + \dots + a_nv_n)$$

$$= a'T(v_1) + \dots + a_nT'(v_n)$$

$$= a_1T(v_1) + \dots + a_nT(v_n)$$

$$= \dots$$

$$= T(x)$$

Since x was arbitrary, T' = T.

Proof. Define D = T - T'.

i.e.
$$D: V \to W$$
 given by $D(x) = T(x) - T'(x)$.

D is linear transformation. I'll prove that D is constant 0 function by provign N(D) = V.

Observe
$$B \subseteq N(D)$$
, therefore, span $(B) \subseteq N(D)$, i.e. $V \subseteq N(D) \Rightarrow N(D) = V$.

Proposition 2.6.2. Suppose V, W, \mathbb{F}, B as before, B is a basis for V. Every function $\tau : B \to W$ extends to a unique linear transformation $T : V \to W$. (i.e. $T|_B = \tau$)

Proof. Given $\tau: B \to W$, define $T: V \to W$ as follows:

given $x \in V$, write

$$x = a_1 v_1 + \dots + a_n v_n$$
 $(v_1, \dots, v_n \in B, a_1, \dots a_n \in \mathbb{F})$

Let
$$T(x) := a_1 \tau(v_1) + \cdots + a_n \tau(v_n) \in W$$
.

Check $T|B = \tau$. Suppose $x \in B$, then $x = 1 \cdot x$, so $T(x) = 1\tau(x) = \tau(x)$.

Check: T is linear.

Additivity: let $x, y \in V, \exists v_1, \dots, v_n \in B$, such that

$$x = a_1 v_1 + \dots + a_n v_n$$

$$y = b_1 v_1 + \dots + b_n v_n$$

for sone $a_i, b_i \in \mathbb{F}$.

So
$$x + y = (a_1 + b_1)v_1 + \dots + (a_n + b_n)v_n$$
.

$$T(x+y) = (a_1 + b_1)\tau(v_1) + \dots + (a_n + b_n)\tau(v_n)$$

$$= (a_1\tau(v_1) + \dots + a_n\tau(v_n)) + (b_1\tau(v_1) + \dots + b_n\tau(v_n))$$

$$T(x) + T(x)$$
(def of T)

$$=T(x) + T(y)$$
 (def of T)

Similar proof shows that T preserves scalar multiplication.

So T is linear.

Example: $V = \mathbb{R}^3$, $W = \mathbb{R}^3$, $B = \{v_1, v_2, v_3\}$, where

$$v_1 = (1, 0, 1)$$

$$v_2 = (1, 0, -1)$$

$$v_3 = (1, 1, 1)$$

B is a basis for \mathbb{R}^3 (exercise)

Define $\tau: \{v_1, v_2, v_3\} \to \mathbb{R}^2$ by

$$\tau(v_1) = (1,0)$$

$$\tau(v_2) = (1,0)$$

$$\tau(v_3) = (\pi, e)$$

Define $\tau: \mathbb{R}^3 \to \mathbb{R}^3$ extending τ .

$$T(a, b, c) = (a + b(\pi - 1), be)$$

$$T = L \begin{pmatrix} 1 & \pi - 1 & 0 \\ 0 & e & 0 \end{pmatrix}$$

$$T(v_1) = T(1, 0, 1) = (1, 0)$$

$$T(v_2) = (1,0)$$

$$T(1, i, 1) = (\pi, e)$$

Example 2:

V V.S. / \mathbb{F} , dim V = n, let $\beta = (v_1, \dots, v_n)$ be an ordered basis.

Define
$$\tau : \{v_1, \dots, v_n\} \to \mathbb{F}^n$$
 by $\tau(v_i) = e_i = (0, \dots, 0, 1, 0, \dots, 0)$.

 τ extends uniquely to a linear transformation $T: V \to \mathbb{F}^n$.

$$T:[\quad]_{\beta}.$$

Example 3:

Same V, β .

Pick
$$\bar{a}=(a_1,\cdots,a_n)\in\mathbb{F}^n$$
.

Define $\tau_{\bar{a}}: \{v_1, \cdots, v_n\} \to \mathbb{F}$,

 $\tau_{\bar{a}}(v_i) = a_i.$

 $T(\bar{a})$ extends to a linear transformation. $f_{\bar{a}}:V \to \mathbb{F}.$

Exercise: What is f_{e_i} ?