

Natural Computation Methods in Machine Learning (NCML)

Lecture 11: Evolutionary Computing 1

Evolutionary Computing

- Population methods
 - Parallel search
- Used for problems where the task is to maximize some measure of success
 - Or to minimize a cost
 - Same family of problems as in RL,
 - But very different methods
 - Many individuals, instead of one agent,
 - And they don't move around as in RL
- Methods inspired by genetics, natural selection, evolution

Road Map

Big field. Confusingly many concepts and names

Each with its own chapter in the course book

An evolutionary algorithm

in general

- 1. Create a population of individuals
 - An individual encodes a suggested problem solution
- 2. Evaluate all individuals
 - Requires an interpretation of the encoding, and an evaluation of its fitness
- 3. Select individuals
 - Probabilistic, proportional to fitness
- 4. Create a new population by *cloning*, recombination and/or mutation of individuals
- 5. Repeat from step 2 until end criterion met

The Evolutionary Loop

Tip: Avoid the term 'reproduction' (it's ambiguous)

Genotypes, phenotypes and fitness and a simple Travelling Salesman Problem example

- A solution to the problem is encoded by an individual's genotype (genome, chromosome, ...)
 - For example, in GA it could be a binary string
- TSP example: Visit the 4 oldest Swedish universities, minimizing total distance traveled
 - How to represent a route as a binary string?
 - Naïve approach: Make a table over cities v.s. visit order

	1	2	3	4
Uppsala (1477)	1	0	0	0
Tartu (now Estonian, 1632)	0	0	1	0
Åbo (now Finnish, 1640)		1	0	0
Lund (1666)	0	0	0	1

Then linearize the matrix

1000001001000001

The genotype

The 4 oldest Swedish universities

Genotypes, phenotypes and fitness

and a TSP example

	1	2	3	4
Uppsala (1477)	1	0	0	0
Tartu (now Estonian, 1632)	0	0	1	0
Åbo (now Finnish, 1640)		1	0	0
Lund (1666)	0	0	0	1

Then linearize the matrix

1000001001000001

The genotype

- A genotype's fitness (a scalar value) is evaluate by a fitness function
 - Requires an interpretation of the genotype
 - the phenotype
 - in this example the route Uppsala-Åbo-Tartu-Lund
 - Genotype-phenotype mapping should be many-toone (but is in practice often many-to-many, also IRL)

Genotypes, phenotypes and fitness and a TSP example

As shown later, though, there are much better ways to represent a route in TSP

Selection

Probabilistic, based on fitness or rank

- Fitness selection: Select individuals with probability proportional to their fitness
 - also known as Roulette wheel, or Bolzmann selection
- Rank selection: First sort the individuals after fitness, then select with a probability proportional to their <u>index</u> in that list, not their fitness
- Rank selection is often better
 - Fitness selection can be unfair if the best individual is much better than the rest og2
- All individuals should have some probability (nonzero) of being selected
 - There is no point having them in the population otherwise (and they may contain useful genetic material)
- Allow reselection

Lägg till något här om MATLABs selection-parameter för rank selection, som blir en sorts mellanting Olle Gällmo; 2021-03-12 OG2

Cloning

- Select an individual
 - as above
- 2. Copy the selected individual, unalterered, to the new population

Dolly, the first mammal clone (1996)

- Elitism: Guarantee that the most fit individual(s) are cloned this way
 - to avoid forgetting the best solution(s) found so far
 - but don't overdo it
 - increases risk of premature convergence (introduced later)

Mutation

- Cloning with noise
- Some part in the copy is altered at random
 - for example by flipping a bit
- Should have very low probability
 - This is not the search operator
 - It's just there to 'shake the box'
- Roughly corresponds to exploration in RL
- It is sometimes suggested to invert selection for this
 - lower fitness → higher probability

Recombination

Crossover

- 1. Select two individuals
 - as above
- 2. Perform a *crossover* of the two genotypes, creating two new genotypes/individuals
- 3. Insert the new individuals in the population

- Crossover (not mutation) is <u>the</u> search operator in (most forms of) evolutionary computing
- If it turns out that new solutions are found mostly through mutation, you should either
 - redesign crossover/genotype to make it work, or
 - be happy that it works anyway, but maybe stop calling it EC

Simple crossover examples

for genetic algorithms

One-point crossover

Swap tails

Two-point crossover

Swap a sub-section

Uniform crossover

Select at random from which parent to pick each bit

- Note that this can be very destructive!
- Does it matter?
- Can we make sure that the created individual is valid?

Crossover can be destructive

- There may be constraints to consider
 - which a simple crossover operator doesn't
- In TSP, for example
 - We must visit each city once, but only once
 - We can not be in two cities at the same time
 - With the bit matrix representation used before, each row and column must therefore contain one, but only one, 1
 - If we linearize this and just swap bits, we are <u>very</u> likely to produce invalid solutions

	1	2	3	4
Uppsala	1	0	0	0
Tartu	0	0	1	0
Åbo	0	1	0	0
Lund	0	0	0	1

- Strictly speaking, this is not necessary to prevent
 - Non-functional individuals are unlikely to be selected anyway
 - But it makes crossover inefficient (more like a mutation op)

Better crossover for TSP

- Representations (genotypes) and crossover operators should be designed together!
- If we number the cities, a route could be represented as a list of integers instead
 - For example, for 8 cities: (5 7 1 6 2 4 3 8)
 - It also makes genotype≈phenotype
- Many suggested crossover operators for this repr.
 - For example, Order Crossover (OX)
 - Pick a sub-tour
 - like two-point crossover but we keep what's inbetween the points $(5\ 7\ 1\ 6\ 2\ 4\ 3\ 8) \Longrightarrow (4\ 8\ 1\ 6\ 2\ 3\ 7\ 5)$
 - Fill in the rest by picking cities from the other parent, in order, and excluding already visited ones

Properties of EC

Premature convergence

- EC is parallel search
 - many search points in the search space
- Not much use if they are all in the same place!
- We should avoid premature convergence
 - 'convergence' here means that the <u>population</u> has converged to one spot, not necessarily the search
 - that spot may not even be a local optimum
- We want to maintain diversity
 - This is the main task of mutation, injecting new material
- Risk factors: small population sizes, fitness selection (instead of rank selection), too much elitism, poorly designed crossover operators ...

Properties of EC

- EC is unlikely to get stuck in local optima
 - due to the parallel search
 - if we can avoid premature convergence
 - also since EC does not follow gradients
 - mutation helps
 - in theory it can make it impossible to get stuck
- EC does not require the objective function (nor any other function) to be differentiable
 - The objective function (fitness) is used only in <u>selection</u> of individuals, not to decide how to change them
 - We can use the true objective function, not a differentiable approximation (as we must, for example, when training a neural network with Backprop on a classification task)

Properties of EC

- RL is perhaps more clever (more directed) in its search for a solution
 - EC compensates by its more global view
 - as long as we can maintain diversity
- EC (in particular GA) can be used to search for the best combination of parameters which control or define something
 - A neural network is such a parameterized system ...
 - Training neural networks has actually been one of the most common applications of GA (more next lecture)

Applications

- Training neural networks
 - at least shallow ones
- Engineering designs
 - antenna, jet engine and wind power turbines, focusing mirrors ...
- Scheduling
 - schools, trains, airlines, ...
- Bioinformatics
- Game design
 - racing games in particular

