Álgebra - Curso de Verão - UFV

$3^{\underline{a}}$ Lista de Exercícios – 2015

Prof. José Antônio O. Freitas

Exercício 1: Escreva as permutações abaixo como produtos de ciclos disjuntos e calcule suas ordens:

1.
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 2 & 3 & 4 & 5 & 1 & 6 & 7 & 9 & 8 \end{pmatrix}$$

$$2. \ \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 6 & 5 & 4 & 3 & 1 & 2 & 7 \end{pmatrix}$$

Exercício 2: Calcule $\sigma \alpha \sigma^{-1}$ nos exemplos seguintes:

1.
$$\sigma = (135)(12), \alpha = (1579)$$

2.
$$\sigma = (579), \alpha = (123)(34)$$

3.
$$\sigma = (12)(34), \alpha = (123)(45)$$

Exercício 3: Encontre uma permutação σ tal que $\beta = \sigma \alpha \sigma^{-1}$ nos seguintes casos:

1.
$$\alpha = (12)(34), \beta = (56)(13)$$

2.
$$\alpha = (123)(78), \beta = (257)(13)$$

3.
$$\alpha = (12)(34)(578), \beta = (18)(23)(456)$$

Exercício 4: Sejam $\alpha_1, \ldots, \alpha_t \in S_n$ ciclos disjuntos de comprimentos r_1, \ldots, r_t respectivamente. Mostre que o produto $\alpha_1 \cdots \alpha_t$ tem ordem igual a $mmc\{r_1, \ldots, r_t\}$.

Exercício 5: Sejam p um número primo e $n \in \mathbb{N}$. Mostre que:

- 1. Todo elemento de ordem pno grupo ${\cal S}_p$ é um p-ciclo.
- 2. S_p não tem elemento de ordem kp com $k \geq 2$.
- 3. Se t é um inteiro positivo, mostre que o grupo S_n possui elementos de ordem p^t se, e somente se, $n \ge p^t$.

Exercício 6: Mostre que as possíveis ordens de elementos do grupo S_7 pertencem ao conjunto $\{1, 2, 3, 4, 5, 6, 7, 10, 12\}$.

Exercício 7: Se $\sigma \in S_n$ é um r-ciclo, mostre que $(-1)^{\sigma} = (-1)^{r-1}$.

Exercício 8: Escreva cada elemento de S_4 como um produto de ciclos disjuntos. Escreva cada elemento de S_4 como um produto de transposições.

Exercício 9: Use as idéias da do Lema sobre conjugação de permutações em S_n nos itens abaixo.

- 1. Sejam $a, b, i, j \in \{1, ..., n\}$ distintos. Mostre que existe um 3-ciclo σ , envolvendo a e b e mais uma letra, tal que $\sigma(aij)\sigma^{-1} = \sigma(bak)\sigma^{-1}$ para algum k. Conclua que $(aij) \in \langle (abl) | l \in \{1, ..., n\} \setminus \{a, b\} \rangle$.
- 2. Dados $a, k, l, m \in \{1, ..., n\}$ distintos, sabemos que existe $\sigma \in S_n$ tal que $(klm) = \sigma(akm)\sigma^{-1}$ para algum k. Mostre que σ pode ser escolhido igual a um 3-ciclo envolvendo a letra a e mais duas letras.
- 3. Sejam $a, b \in \{1, \ldots, n\}$ distintos. Conclua que

$$\langle 3 - ciclos \rangle = \langle (abl) \mid l \notin \{a, b\} \rangle.$$

Logo
$$A_n = \langle (abl) \mid l \notin \{a, b\} \rangle$$
.

Exercício 10: Se $\sigma \in S_n$ fixa algum j isto é, $\sigma(j) = j$, onde $1 \le j \le n$, defina $\beta \in S_{n-1}$ por $\beta(i) = \sigma(i)$ para todo $i \ne j$. Mostre que $\operatorname{sgn}(\beta) = \operatorname{sgn}(\sigma)$.

Exercício 11: Mostre que um r-ciclo é um permutação par se, e somente se, r é impar.