Applying Clustering to Image Data

Janani Ravi CO-FOUNDER, LOONYCORN www.loonycorn.com

Overview

Working with image data

Converting images to feature vectors

Partitioning image data using clusters

Classifying images using clusters

Images as Matrices

RGB values are for color images

R, G, B: 0-255

0, 0, 255

3 values to represent color, 3 channels

Grayscale Images

Grayscale Images

Each pixel represents only intensity information

0.0 - 1.0

Grayscale Images

Images as Matrices

Images can be represented by a 3-D matrix

Images as Matrices

ML frameworks (e.g. TensorFlow) usually deal with a list of images in one 4-D Tensor

The images should all be the same size

The number of channels

The height and width of each image in the list

(10, 6, 6, 3)

The number of images

Demo

Clustering images in the MNIST handwritten dataset

Summary

Working with image data

Converting images to feature vectors

Partitioning image data using clusters

Classifying images using clusters

Related Courses

Employing Ensemble Methods with scikit-learn

Foundations of PyTorch

Reducing Dimensions in Data with scikit-learn