Elektronik 2

FS 24 Guido Keel (Michael Lehmann) Autoren:

Simone Stitz, Laurin Heitzer

Version: 1.0.20240604 https://github.com/P4ntomime/elektronik-2

Inhaltsverzeichnis

Reale Bauteile				1.5 Reale Spulen	2				
1.1	Impedanzen – Übersicht	2	1	Deinted Cinesia December (DCD-)	-				
1.2	Reale Widerstände	2	4	Printed Circuit Boards (PCBs)					
1.3	Spezielle Widerstände	2	3	Anhang	2				
1 /	Dagla Vandangatagan	2	1	2.1 E Bailtan	^				

1 Reale Bauteile

1.1 Impedanzen – Übersicht

$$Z_C = \frac{1}{\mathrm{j}\omega C}$$

$$Z_L = j\omega L$$

$$|Z| = \sqrt{R_{\text{tot}}^2 + X_{\text{tot}}^2}$$

$$f_{\rm res} = \frac{1}{2\pi \sqrt{RC}}$$

1.2 Reale Widerstände

$$[R] = \Omega$$

$$R = \frac{\rho \cdot l}{A}$$

$$[\rho] = \frac{\Omega \text{mm}^2}{\text{m}}$$
$$[I] = \text{m}$$

$$[l] = m$$

$$[l] = m$$
$$[A] = m^2$$

1.2.1 Ersatzschaltung und Frequenzabhängigkeit

nom. Widerstand

 L_S Zuleitung

 C_P zwischen Anschlüssen

Grosse Widerstände → R und C Kleine Widerstände → R und L

1.2.2 Temperaturabhängigkeit

 R_{ϑ} R_{20}

Widerstand bei Temperatur ϑ Widerstand bei 20 °C

 $[R_{20}]=\Omega$

 $[R_\vartheta] = \Omega$

 $\Delta R = R_{20} \cdot \alpha \cdot \Delta \vartheta$

Temperaturkoeffizient $[\alpha] = \frac{1}{K}$ $\Delta \vartheta$ Temperaturdifferenz ϑ – 20 °C $[\Delta \vartheta] = {}^{\circ}C$

Achtung: Leistungs-Derating bei steigender Temperatur beachten!

1.2.3 Kenngrössen

Widestandswert

Toleranz

Temperaturkoeffizient α

• max. Verlustleistung

1.2.4 Auswahlkriterien

• Bauform (Grösse)

Leistung (Verlustwärme)

Widerstandsmaterial

· Genauigkeit und Langlebigkeit

1.3 Spezielle Widerstände

1.3.1 Thermistoren

Thermistoren sind temperaturabhängige Widerstände.

NTC (neg. temp. Koeffizient, Heissleiter) PTC (pos. temp. Koeffizient, Kaltleiter)

1.3.2 Varistoren

Varistoren sind spannungsabhängige Widerstände.

1.3.3 Fotowiderstände (LDR)

1.4 Reale Kondensatoren

C =	$\varepsilon_0 \cdot \varepsilon_r \cdot A$	

Kapazität (Plattenkondensator!)

[C] = F

eleltrische Feldkonstante $8.85 \cdot 10^{-12}$ ε_0 relative Permittivität

 $[\varepsilon_0] = \frac{F}{m}$

ε, Fläche der Platten $[\varepsilon_r] = 1$

Abstand zwischen Platten

[A] = m[d] = m

1.4.1 Ersatzschaltung und Frequenzabhängigkeit

nom, Kapazität

Leckströme (vernachlässigbar!) R_{leak} ESR Anschlüsse, Zuleitung

ESL Anschlüsse, Zuleitung

Bei Resonanz: $|X_C| = |X_L| \Rightarrow Z$ rein resistiv (tiefster Punkt in Diagramm)

1.4.2 Temperaturabhängigkeit

1.4.3 Spannungsabhängigkeit

1.4.4 Verschiedene Typen von Kondensatoren

- Elektrolytkondensatoren (Elkos)
 - bla
- Tantalkondensatoren
- Folien-Filmkondensatoren

- Sind selbstheilend
- Hohe Genauigkeit
- Relativ teuer

Kondensatoren mit einstellbarer Kapazität

- Zum Einstellen von Schwingfrequenzen
- Trimmer

• Super-Caps

- Kapazitäten bis 3000 F
- 10 % Energiedichte von Akkus
- 10-fache Leistungsdichte von Akkus
- Können schnell geladen / entladen werden
- Sehr kleine Spannungsfestigkeit

1.5 Reale Spulen

R spez. Widerstand (@ 20°)

 $[R] = \Omega$

Α

spez. Widerstand ρ

 $[\rho] = \frac{\Omega \text{mm}^2}{\text{m}}$ [l] = m

Länge des Leiters Querschnitt des Leiters $[A] = m^2$

1.5.1 Ersatzschaltung und Frequenzabhängigkeit

nom. Widerstand R

 L_S Zuleitung

zwischen Anschlüssen C

2 Printed Circuit Boards (PCBs)

3 Anhang

3.1 E-Reihen

10		12		15		18		22		27		33		39		47		56		68		82	
	11		13		16		20		24		30		36		43		51		62		75		91

E6-Reihe: blau markierte E12-Reihe: obere Zeile

E24-Reihe: ganze Tabelle