(2) 3.3.1.
$$T = \frac{385^2}{V}$$
, $P = \frac{A5^2}{V^2}$.

(2) Find μ as a function of $S_{\nu}v$, then find the fundamable ey.

By Gibbs-Duben Relation, $d\mu = v \cdot dp - sd \cdot T$.

 $dp = d(\frac{A5^2}{V^2})$ $dT = d(\frac{3A5^2}{V^2})$
 $= \frac{3A5^2}{V^2}ds - \frac{2A5^3}{V^2}dv = \frac{6A5}{V}ds + \frac{3A5^3}{V^2}dv$
 $= \frac{3A5^2}{V}ds - \frac{2A5^3}{V^2}dv - \frac{6A5^2}{V}ds + \frac{3A5^3}{V^2}dv$.

 $= \frac{3A5^2}{V}ds + \frac{A5}{V^2}dv$
 $= \frac{3A5^2}{V}ds + \frac{A5}{V}dv$
 $= \frac{-3A5^2}{V}ds + \frac{A5}{V}dv$
 $= \frac{-2A5^3}{V} + \frac{A5^3}{V}dv$

Then Enler Eq. states $V = TS - PV + \mu N$
 $= NT_S - NP_V + \mu N$
 $= NT_S - NP_V + \mu N$

