Introdução a Mineração de Dados - 1/2024 Professor Jairo Melo Especialização em Big Data Analytics Faculdade SENAC

Classificação de publicações de autores ambíguos em repositórios bibliográficos digitais utilizando o modelo de PLN SciBERT

Lucas Damasceno Natan Rodrigues

Brasília, 06 de Abril de 2024

Agenda

- Introdução
- Fundamentação Teórica
 - Desambiguação de nomes de autores ou Author Name Disambiguation - AND
 - Processamento de Linguagem Natural (PLN) BERT
- Experimentos Iniciais
- Considerações Finais

Repositórios Bibliográficos Digitais

Disponibilizam de forma centralizada informações de citações, trabalhos científicos, autores e redes sociais acadêmicas.

Exemplos: DBLP, ArnetMiner, CiteSeerX, PubMED

Figura: Página da pesquisadora Célia Ghedini Ralha no *ArnetMiner* (consulta realizada em 03-04-2024).

Lucas e Natan

Repositórios Bibliográficos Digitais

- Diferentes autores podem compartilhar a mesma referência bibliográfica.
- Erros tipográficos ou abreviações.
- Afeta a integridade dos dados de um repositório digital.
- Um pesquisador pode ter várias entradas em um determinado repositório.

Figura: Outra página da pesquisadora Celia Ghedini Ralha no *ArnetMiner* (consulta realizada em 03-04-2024).

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ 釣 へ ○

Ambiguidade de Nomes de Autores

Aspectos no tratamento de ambiguidade de nomes de autores:

- Vários autores com mesmo nome e/ou um autor com vários formatos de nome.
- Problema da ambiguidade de nomes de autores.
- Desambiguação de Nomes de Autores.
- Existem diversos trabalhos na literatura que visam a resolução do problema de AND.

Ambiguidade de Nomes de Autores

Segundo Ferreira et al. (2020)¹ são questões que devem ser consideradas para o desenvolvimento de soluções para o problema de AND:

- Poucos dados nas citações bibliográficas
- Eficiência
- Praticidade e custo
- Escalabilidade

Synthesis Lectures on Information Concepts, Retrieval, and Services, 12(1), 1–146. https://doi.org/10.2200/S01011ED1V01Y202005ICR070

 Lucas e Natan
 Seminário Final
 06/04/24
 6 / 28

¹Ferreira, A. A., Gonçalves, M. A., & Laender, A. H. F. (2020).Automatic Disambiguation of Author Names in Bibliographic Repositories.

Ambiguidade de Nomes de Autores - Projetos para resolução

 Algoritmo de aprendizado não-supervisionado multinível com clusterização hierárquica de grafos

Zhang, S., Xinhua, E., & Pan, T. (2019). A multi-level author name disambiguation algorithm. <u>IEEE Access</u>, 7, 104250–104257. https://doi.org/10.1109/ACCESS. 2019.2931592

Método de Resolução Progressiva de Entidades

Backes, T., & Dietze, S. (2022).Lattice-Based Progressive Author Disambiguation. Information Systems, 109, 102056. https://doi.org/10.1016/j.is.2022.102056

- Utilização de redes neurais para AND
 Boukhers, Z., & Asundi, N. B. (2022).Whois? Deep Author Name Disambiguation
 Using Bibliographic Data. 201–215
- Abordagem multi-estratégica (comparação de strings, tratamento de ligações de nomes e análise de similaridade de redes sociais)

Rodrigues, N. S., Costa, A. R., Lemos, L. C., & Ralha, C. G. (2021). Multi-strategic Approach for Author Name Disambiguation in Bibliography Repositories. Em Information Management and Big Data. SIMBig 2020. Communications in Computer Springer. https://doi.org/10.1007/978-3-030-76228-5_5

Problema

Considerando que os métodos de AND propostos na literatura podem enfrentar os desafios mencionados, esta pesquisa aborda a utilização de PLN para abordar as questões elencadas.

Justificativa:

 PLN pode lidar com a complexidade semântica dos textos bibliográficos.

Objetivos

O objetivo principal deste trabalho é o desenvolvimento de uma solução que aplique uma classificação utilizando PLN para o problema de AND em repositórios bibliográficos digitais.

Processamento de Linguagem Natural (PLN)

PLN é uma área da Inteligência Artificial que visa o desenvolvimento de métodos e algoritmos para permitir a compreensão, interpretação e geração de linguagem humana por computadores (Daniel, James H et al., 2007).

10 / 28

Lucas e Natan Seminário Final 06/04/24

Técnicas de PLN

- Word2Vec utiliza vetores para representar palavras em alta dimensionalidade capturando relações semânticas e sintáticas.
- Redes Neurais Convolucionais (RNC) particularmente eficazes em tarefas como a classificação de textos e a análise de sentimentos.
- Bidirectional Encoder Representations from Transformers (BERT) modelo de PLN baseado na arquitetura transformer, capaz de
 compreender o contexto das palavras em uma frase de forma
 bidirecional, considerando o contexto anterior e posterior.

Lucas e Natan Se

BERT

- Permite uma boa compreensão das relações e significados das palavras em determinado texto.
- Considera tanto os termos que vêm antes quanto os que vêm depois de cada vocábulo (bidirecional).
- Utilização de transfer learning para adaptação a diferentes domínios.
- Pré-treinamento em grandes conjuntos de textos não rotulados.
- Ajustes para tarefas específicas com camadas de classificação.

BERT

Como o BERT funciona?

- Segmentação de palavras em partes menores e a inclusão dos tokens especiais [CLS] e [SEP] para formatar os dados de entrada.
- [CLS] é usado no início de cada entrada, representando o texto agregado para tarefas de classificação em nível de frase.
- [SEP] separa frases distintas dentro da mesma entrada, permitindo que o BERT lide com várias tarefas.
- Utilização de três tipos de embedding:
 - Token,
 - Segment, e
 - Position.

BERT

Figura: Pré-processamento textual do modelo BERT e criação de embeddings na camada inicial (adaptado de Devlin et al., 2018).

Lucas e Natan

BFRT

O pré-treinamento do BERT é composto por duas tarefas:

- Modelagem de Linguagem Mascarada.
- Previsão da Próxima Fase.

```
Input = [CLS] o homem foi à [MASK] loja [SEP]
        ele comprou um litro de [MASK] leite [SEP]
```

Label = IsNext

Input = [CLS] o homem [MASK] foi à loja [SEP] os gatos têm [MASK] sete vidas [SEP]

Label = NotNext

Figura: Tarefas de pré-treinamento do BERT (adaptado de Devlin et al., 2018; Eler, 2022).

Modelos BERT

Modelo	Características
BERT	Modelo original do Google
RoBERTa	BERT com treinamento mais longo e modelos maiores
DistilBERT	Versão compacta do BERT para inferência mais rápida
ALBERT	Versão leve do BERT com tamanho de modelo e etapas de
	treinamento reduzidas
SciBERT	Modelo BERT pré-treinado para tarefas científicas

Segundo Beltagy et al. (2019)², o SciBERT tem:

- Treinamento com 1.14M papers e 3.1B tokens do semanticscholar.org.
- Bom desempenho em tarefas de PLN no domínio científico.

Lucas e NatanSeminário Final06/04/2416 / 28

²Beltagy, I., Lo, K., & Cohan, A. (2019).SciBERT: Pretrained Language Model for Scientific Text. EMNLP

Setup Experimental

Classificação vs Clusterização

Em tempo real verificamos que esse problema de AND deve ser tratado como um problema de Clusterização, pois dados reais e incrementais são não-rotulados. No entanto, utilizamos bases rotuladas e bem verificadas para teste da classificação utilizando o SciBERT.

- ArnetMiner 2.
- Utilizar Título e *Abstract* (Resumo).
- 100 nomes de autores ambíguos.
- 208827 documentos.
- 39655 autores únicos.
- Autores, coautores, palavras-chave, resumos, títulos e instituições.
- Disponível em https: //github.com/neozhangthe1/disambiguation/?tab=readme-ov-file.

Dataset - Cabeçalho

```
Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount("/content/drive", force remount=True).
Quantidade de classe de autores: 16
Ouantidade total de documentos: 198
                              publication title
                                                                    author id
                                                                                                                       abstract ENCODE AUTHOR
        Induced life cycle transition from holocycly t...
                                                    5b5433f3e1cd8e4e1516badf The Russian wheat aphid (RWA), Diuraphis noxia.
      Impact of alfalfa/cotton intercropping and man...
                                                                                    A short-term study was carried out to evaluate.
                                                    5b5433f3e1cd8e4e1516badf
    A check-list of the Chinese Megalopodinae (Col...
                                                                                 Two genera and 33 taxa of Megalopodinae are re...
                                                    5b5433e5e1cd8e4e15f7474c
     Key to the species of the genus Aristochroa Ts ...
                                                    5b5433e5e1cd8e4e15f7474c
                                                                                     A key to all 14 species of Aristochroa Tschits..
   A review of genus Onycholabis bates (Coleopter...
                                                    5b5433e5e1cd8e4e15f7474c
                                                                                   Species in the genus Onycholabis Bates are bri...
```

Figura: Cabeçalho do Conjunto de Dados

Dataset - WholsWho

 WholsWho é dos maiores datasets rotulados manualmente do mundo com mais de 1.000.000 de artigos construídos usando um processo de anotação interativo.

Execução

- Tratamento dos Dados de Entrada
 - Iteração sobre arquivos .json para extração de informações relevantes.
- BERT
 - SciBERT
 - Hiperparâmetros utilizados:
 - Tamanho do vetor de embedding do SciBERT: 256
 - Tamanho do lote: 64
 - Taxa de aprendizado: 2×10^{-5}
 - Número de épocas de treinamento: 20

Execução - Escolha dos Hiperparâmetros

 Andrade et al. (2020)³ aborda o sucesso das representações contextuais, como as baseadas em BERT, na melhoria da eficácia de algumas tarefas de PLN.

Figura: Hiperparâmetros utilizados neste estudo.

Execução - Código e Hardware para execução

- Disponível em https://github.com/natansr/int_mineracao_dados_seminario_final.git
- GPU A100 Google Colab

Figura: Hardware para experimento.

Métricas de Avaliação

- Precisão (Precision): Mede a proporção de verdadeiros positivos em relação ao número total de previsões positivas feitas pelo modelo.
- Revocação (Recall): Mede a proporção de verdadeiros positivos em relação ao número total de positivos reais na amostra.
- F1-Score: Média harmônica entre precisão e revocação, balanceando a importância de ambas as métricas.
- Acurácia (Accuracy): Mede a proporção de previsões corretas em relação ao total de previsões feitas pelo modelo.

Teste com autor - Hongbin Liang

• Classes: 16

Documentos totais: 198Treinamento (80%): 158

• Teste (20%): 40

Teste com autor - Hongbin Liang

Dolotópios do	classificas	.ão.			
Kelatorios de	classificação:				
	precision	recall	f1-score	support	
0	0.00	0.00	0.00	1	
1	0.83	1.00	0.91	5	
3	0.96	1.00	0.98	27	
5	0.50	1.00	0.67	2	
6	1.00	1.00	1.00	2	
9	0.00	0.00	0.00	1	
12	0.00	0.00	0.00	1	
13	0.00	0.00	0.00	1	
accuracy			0.90	40	
macro avg	0.41	0.50	0.44	40	
weighted avg	0.83	0.90	0.86	40	

Apresentação dos Resultados

Autor	Documentos	Classes	Acurácia (%)
Hongbin Liang	198	16	90.00
Wen Chang Chen	312	13	95.00
Yongsheng Zhao	299	51	63.33
Jing Luo	682	174	58.09
Toda base	208827	39655	X?

Tabela: Resumo dos Autores e Resultados

Considerações finais

- Resultados preliminares demonstram a complexidade do problema de AND e a necessidade de uma maior investigação.
- O F-measure médio é competitivo para classificação de um nome em específico de autor. Também, observamos uma relação entre a quantidade de classes e a acurácia.
- Exploração de métricas específicas ou empíricas para avaliar a qualidade das representações semânticas e classificação obtidas pelo modelo SciBERT.
- Utilizar outros modelos de PLN para comparação de complexidade de processamento.
- Buscar outros modelos para resolução do problema em um cenário não-supervisionado.

Obrigada pela participação e atenção!

Lucas Damasceno Natan Rodrigues

lucasadmfvp@gmail.com, natan5souza@gmail.com

