

# Akademia Górniczo-Hutnicza w Krakowie Wydział FiIS

Zespół:

1.Kulig Mateusz 2. Ryś Przemysław 2 Insiega Pawel

| АОП                               | Fizyka           | 5.Jusięga Pawei           |         |  |  |  |  |  |
|-----------------------------------|------------------|---------------------------|---------|--|--|--|--|--|
| Laboratorium Fizyki Ciała Stałego |                  |                           |         |  |  |  |  |  |
| Rok akademie                      | cki: 2022/2023   | Semestr V                 | Grupa:1 |  |  |  |  |  |
| Temat ćwicze                      | Temat ćwiczenia: |                           |         |  |  |  |  |  |
| Przewodnictwo cieplne             |                  |                           |         |  |  |  |  |  |
|                                   |                  |                           |         |  |  |  |  |  |
| Data wykonania ćwiczenia          |                  | Data oddania sprawozdania | Ocena   |  |  |  |  |  |
|                                   | 12.01.2022       | 23.01.2022                |         |  |  |  |  |  |
|                                   |                  |                           |         |  |  |  |  |  |

### Wstep teoretyczny 1

#### Ciepło właściwe i przewodnictwo cieplne 1.1

Ciepło Q zmagazynowane w układzie jest jednym z przyczynków do energii wewnętrznej tego układu. Ciepło właściwe c jest wielkością wiążącą zmiany temperatury  $\Delta T$  tego układu ze zmianą ciepła w nim zmagazynowanego

$$c = \frac{Q}{m\Delta T}. (1)$$

W powyższym wzorze m jest masą układu, którym może być na przykład jakieś ciało stałe, w szczególności jakieś kryształ. Ciepło właściwe jest co do zasady zależne od temperatury, jednak istnieja okoliczności w których te zmiany przestają mieć duże znaczenie takie jak limit Dulonga-Petita, obowiązujący dla ciał stałych w wysokich temperaturach i podpowiadający wartość  $c = 3k_B$ .

Przewodnictwo cieplne jest zdolnością ciała do transportu ciepła przez swoje wnętrze. Zachodzi w kierunku od wyższych do niższych temperatur. W ciałach stałych realizowane jest poprzez rozpraszanie energii drgających atomów poprzez propagację fononów oraz ruchy swobodniejszych od nich elektronów przewodnictwa. W przypadku metali to właśnie one są głównie odpowiedzialne za transport ciepła. W przypadku izolatorów ich brak stoi za empirycznie obserwowalnym faktem że izolatory przewodzą ciepło dużo słabiej niż metale.

#### Równanie dyfuzji ciepła. Współczynnik przewodnictwa cieplnego 1.2

Dyfuzja ciepła, tak jak każda przeciętna dyfuzja, opisana jest dwoma równaniami. Pierwsze z nich brzmi

$$\vec{j} = -\chi \cdot \nabla T \tag{2}$$

i opisuje proporcjonalna do gradientu temperatury wielkość zwana strumieniem energii cieplnej  $\vec{j}$ .  $\chi$  jest nazywany współczynnikiem przewodnictwa cieplnego  $[W/(m\cdot K)]$ . Drugie równanie dyfuzji opisuje ewolucję czasową rozkładu temperatury jest następujące:

$$\frac{\partial^2 T(x,t)}{\partial x^2} = \frac{1}{K} \frac{\partial T(x,t)}{\partial t}.$$
 (3)

Wielkość K [m<sup>2</sup>/s] jest współczynnikiem przewodnictwa temperaturowego i w odróżnieniu od  $\chi$  uwzględnia zdolność ciała do ogrzewania się zapisaną w cieple właściwym (masowym) c:

$$K = \frac{\chi}{c \cdot \rho}.\tag{4}$$

Gęstość materiału opisana tu jest jako  $\rho$  [kg/m<sup>3</sup>].

Współczynnik  $\chi$  może wykazywać różne zachowania w miarę wzrostu temperatury, możliwy jest zarówno jego spadek jak i wzrost. W przypadku wielu metali w tym miedzi obserwowany ze wzrostem temperatury jest na przykład nieznaczny spadek  $\chi$ . [1]

#### 1.3 Metody pomiaru przewodnictwa cieplnego

Celem pomiarów jest wyznaczenie jednego ze współczynników przewodnictwa, przykładowo K. Aby to zrobić należy mierzyć temperaturę w centrum jakiegoś obiektu o prostej geometrii który poddany jest pewnej zmianie temperatury tak, aby zaczął zachodzić w nim przekaz ciepła. Zapewnia to na przykład wrzucenie okrągłego obiektu do kąpieli wodnej w temperaturze nieznacznie większej niż panująca w pomieszczeniu i jego powietrzu. Temperatura ta nie powinna być zbyt duża aby zminimalizować wpływ najbliższego otoczenia termometru (na przykład opornika platynowego lub termopary) na spowalnianie przepływu ciepła. Rozwiązaniem równania (3) wynikającym z trywialnych kalkulacji i równie trywialnych uproszczeń jest

$$\ln T(x, y, z, t) = const. - \lambda^2 \cdot K \cdot t. \tag{5}$$

To rozwiązanie zostało potraktowane logarytmem naturalnym w celu wyłuskania z niego dość łatwej do analizy zależności liniowej. Naturalnie widać że bez tego otrzymana zależność byłaby eksponencjalna; z posiadanych punktów pomiarowych trzeba odjąć stałą do której zbiegałby one w nieskończoności tak aby logarytmować funkcję eksponencjalną bez przesunięcia o żadną stałą, dążącą do zera czyli w pewnym sensie temperaturę liczoną względem otoczenia podgrzewającego próbkę. Wielkość lambda możliwa jest do wyznaczenia z wymiarów badanego obiektu, co będzie zastosowane w dalszej części ćwiczenia.

Stałą K na podstawie prostej dopasowanej do zależności (5) wyznacza się naturalnie jako  $K=-\frac{a}{\lambda^2}$  gdzie a jest współczynnikiem nachylenia dopasowanej prostej. Wpływ skończonego przewodnictwa cieplnego termometru i jego obszaru zetknięcia z próbką można spróbować ograniczyć wprowadzając nieco bardziej skomplikowaną definicję współczynnika a z poprawką p=0,08798 1/s:

$$[a] = \frac{p\lambda^2 K}{p + \lambda^2 K}. (6)$$

 ${\bf Z}$  tego można łatwo wyciągnąć wartość K, co zostanie zrobione w dalszym fragmencie.

# 2 Ćwiczenie

## 2.1 Wartości własne $\lambda$ równania dyfuzji ciepła

Na początku wybraliśmy 3 materiały, na których przeprowadziliśmy pomiary. Były to prostopadłościany ze stali węglowej i betonu oraz walec z mosiądzu. Zmierzyliśmy przy pomocy suwmiarki elektronicznej wymiary próbek i zestawiliśmy je w tabeli 1 wraz z niepewnościami pomiaru obliczonymi na podstawie rozrzutu statystycznego pomiarów. Następnie obliczyliśmy wartość  $\lambda^2$ : dla walca o długości a i promieniu R według wzoru

$$\lambda^2 = \left(\frac{2,4}{R}\right)^2 + \left(\frac{\pi}{a}\right)^2,$$

a dla prostopadłościanów o bokach a, b, c według wzoru

$$\lambda^2 = \left(\frac{\pi}{a}\right)^2 + \left(\frac{\pi}{b}\right)^2 + \left(\frac{\pi}{c}\right)^2.$$

Wyniki wraz z niepewnościami, które wyznaczyliśmy z prawa przenoszenia niepewności, zamieściliśmy w tabeli 2.

Tabela 1: Wyniki wymiarowania trzech badanych w ćwiczeniu próbek, potrzebne w celu obliczenia  $\lambda$ .

| beton        |           |        |       |       | średnia | odchylenie standardowe |           |        |       |
|--------------|-----------|--------|-------|-------|---------|------------------------|-----------|--------|-------|
| a [mm]       | 52,18     | 52,43  | 52,92 | 52,79 | 52,93   | 52,98                  | 52,87     | 52,73  | 0,3   |
| b [mm]       | 46,7      | 46,93  | 46,81 | 46,84 | 46,24   | 45,71                  | 45,1      | 46,33  | 0,69  |
| c [mm]       | 58,85     | 58,83  | 59,99 | 59,53 | 58,95   | 59,92                  | 59,17     | 59,32  | 0,5   |
| stal węglowa |           |        |       |       |         |                        |           |        |       |
| a [mm]       | 55,77     | 55,78  | 55,79 | 55,8  | 55,82   | 55,8                   | $55,\!86$ | 55,802 | 0,03  |
| b [mm]       | $35,\!58$ | 35,67  | 35,79 | 35,73 | 35,9    | $35,\!85$              | 35,81     | 35,76  | 0,11  |
| c [mm]       | 56,87     | 56,82  | 57,2  | 57,32 | 57,5    | 56,87                  | 56,68     | 57,04  | 0,31  |
| mosiądz      |           |        |       |       |         |                        |           |        |       |
| h [mm]       | 60,66     | 60,13  | 60,44 | 60,14 | 60,22   | 60,08                  | 61        | 60,38  | 0,35  |
| d [mm]       | 29,81     | 29,93  | 30,08 | 29,84 | 29,84   | 29,85                  | 29,87     |        |       |
| r [mm]       | 14,905    | 14,965 | 15,04 | 14,92 | 14,92   | 14,925                 | 14,935    | 14,944 | 0,047 |

Tabela 2: Obliczone wartości  $\lambda^2$  wraz z niepewnościami.

| Materiał     | $\lambda^2$ | $\Delta \lambda^2$ |
|--------------|-------------|--------------------|
| beton        | 0,01095     | 0,00016            |
| stal węglowa | 0,013921    | 0,000058           |
| mosiądz      | 0,02849     | 0,00017            |

## 2.2 Zależność temperatury od czasu i współczynnik przewodnictwa cieplnego

Następnie umieściliśmy kolejno wszystkie próbki w kąpieli wodnej i obserwowaliśmy zmianę napięcia termopary aż do jej ustalenia. Za pomocą pobranych z komputera danych wykonaliśmy wykresy zależności temperatury od czasu dla poszczególnych próbek i przedstawiliśmy je na rysunkach 1, 2 i 3. Następnie dla każdej z próbek wykonaliśmy wykresy obrazujące zależność  $ln(T_{\infty}-T(t))$  od czasu, gdzie  $T_{\infty}$  to temperatura do której dąży próbka. Przedstawiają je rysunki 4, 5 i 6. Następnie korzystając z tych wykresów wybraliśmy obszary, do których dopasowaliśmy proste. Dla mosiądzu wybraliśmy przedział 57,133 - 160,607 [s], a dopasowana prosta (rysunek 7) ma postać

$$y = -0.0263x + 1.1925$$
.

Dla betonu wybraliśmy przedział 106,955 - 417,318 [s], a dopasowana prosta (rysunek 8) ma postać

$$y = -0.011x + 2.2037.$$

Dla stali węglowej wybraliśmy przedział 300,166 - 425,322 [s], a dopasowana prosta (rysunek 9) ma postać

$$y = -0.0218x + 4.61$$
.

Współczynnik przewodnictwa cieplnego obliczyliśmy dla betonu za pomocą współczynnika kierunkowego dopasowanej prostej a za pomocą wzoru

$$K = -\frac{a}{\lambda^2} \approx 1,004373 \text{ [mm}^2/\text{s]}.$$

Dla mosiądzu i stali węglowej użyliśmy wzoru wynikającego z(6)uwzględniającego poprawkę na przewodnictwo cieplne termometru

$$K = \frac{|a|p}{p\lambda^2 - |a|\lambda^2}$$

i otrzymaliśmy dla mosiądzu  $K=1,316367~\mathrm{mm^2/s}$  oraz dla stali węglowej  $K=2,081875~\mathrm{mm^2/s}$ .



Rysunek 1: Zależność temperatury od czasu dla mosiądzu.



Rysunek 2: Zależność temperatury od czasu dla mosiądzu.



Rysunek 3: Zależność temperatury od czasu dla stali węglowej.



Rysunek 4: Zależność  $\ln(T_{\infty}-T(t))$ od czasu dla mosiądzu.



Rysunek 5: Zależność  $\ln(T_{\infty}-T(t))$ od czasu dla betonu.



Rysunek 6: Zależność  $\ln(T_{\infty}-T(t))$ od czasu dla stali węglowej.



Rysunek 7: Prosta dopasowana do zależności  $\ln(T_{\infty}-T(t))$  od czasu dla mosiądzu.



Rysunek 8: Prosta dopasowana do zależności  $\ln(T_{\infty}-T(t))$ od czasu dla betonu.



Rysunek 9: Prosta dopasowana do zależności  $\ln(T_{\infty}-T(t))$  od czasu dla stali węglowej.

## 3 Wnioski

Otrzymane wartości K są dalekie od zgodności z danymi tablicowymi dla dwóch metalicznych próbek jakie zostały zbadane ale dość im bliskie w przypadku próbki z betonu najpewniej przez jego umiarkowane przewodnictwo cieplne będące w harmonii z umiarkowanym przewodnictwem cieplnym termometru i jego interfejsu. Zestawienie tych wartości wygląda w sposób następujący:

Tabela 3: Porównanie wyników z wartościami tablicowymi.

| $K~[\mathrm{mm^2/s}]$ | mosiądz   | stal węglowa | beton     |
|-----------------------|-----------|--------------|-----------|
| eksperyment           | 1,316(25) | 2,082(46)    | 1,004(41) |
| wartość tablicowa     | 34,12     | 11,72        | 1         |

Różnice te wynikają zapewne z tego, że temperatura wody w łaźni była zbyt duża w porównaniu z temperaturą panującą w laboratorium.

## 4 Literatura

[1] C.P. Kothandaraman, S. Subramanyan, "Heat and Mass Transfer Data Book" (fragment) oraz tablica "Thermal diffusivity of selected materials and substances" znajdujące się scalone w jeden dokument na stanowisku pomiarowym w laboratorium