Marcin Kostrzewa, Marcin Miśkiewicz, Mikołaj Langner 255749, 255756, 255716

Raport

Spis treści

1.	Terminarz spotkań	2
2.	Najlepsi zawodnicy	•
3.	Analiza meczów	7
4.	Budżet	Ć
5.	Punkty w meczach	L.
6.	Cena sprzętu	L
7.	Czas pracy	٤ ا
	Założenia:	

— Wszystkie hipotezy są odrzucane/przyjmowane przy poziomie istotności $\alpha=0.05.$

1. Terminarz spotkań

Rysunek 1.1. Liczba spotkań w całej lidze w ciągu miesiąca (z podziałem na rozgrywki).

Rysunek 1.2. Liczba spotkań w klubie Curling Masters, w ciągu miesiąca (z podziałem na rozgrywki).

2. Najlepsi zawodnicy

Na wykresie 2.1 można zauważyć, że skuteczność większości zawodników przekracza połowę wykonanych rzutów z wartością modalną w okolicach 0.75.

Skuteczno rzutów klubu Curling Masters

Rysunek 2.1. Rozkład skuteczności rzutów

Tabela 2.1. Statystyki skuteczności rzutów

średnia	odchylenie standardowe	kurtoza	skośność
0.6830065	0.1121564	2.962595	-0.1599014

Na wykresach 2.2 oraz 2.3 nie zauważa się znaczących różnic w kwartylach skuteczności zawodników ze względu na ich pozycję oraz ligę w jakiej grają.

Skuteczno rzutów zawodników Curling Masters

Rysunek 2.2. Wykresy pudełkowe skuteczności rzutów pogrupowane względem pozycji zawodników

Tabela 2.2. Statystyki skuteczności rzutów pogrupowane ze względu na pozycję zawodników

pozycja	średnia	odchylenie standardowe	kurtoza	skośność
AL	0.6980392	0.1202501	2.536706	-0.0096028
${ m L}$	0.6456667	0.1014272	3.078274	-0.6297025
SE	0.6795833	0.1089667	3.468225	0.4151608
SK	0.6923077	0.1201102	3.047215	-0.6646092
V	0.6918182	0.0974257	2.533466	-0.4659946

W teście ANOVA dla skuteczność rzutów w grupach ze względu na pozycję zawodników p-wartość wynosi 0.3358631. Oznacza to, że odrzuca się na zadanym poziomie istotności różnica skuteczności dla różnych pozycji zawodników nie jest istotna statystycznie.

Skuteczno rzutów dru yn Curling Masters

Rysunek 2.3. Wykresy pudełkowe skuteczności rzutów pogrupowane względem ligi

Tabela 2.3. Statystyki skuteczności rzutów pogrupowane ze względu na ligę

liga	średnia	odchylenie standardowe	kurtoza	skośność
PLK	0.6893333 0.6935294 0.6768539	$\begin{array}{c} 0.1133178 \\ 0.1221495 \\ 0.1086550 \end{array}$	2.948625	0.3214552 -0.4121498 -0.2365812

W teście ANOVA dla skuteczności rzutów w grupach ze względu na ligę p-wartość wynosi 0.7206149. Oznacza to, że na zadanym poziomie istotności różnica skuteczności dla różnych lig, w których zawodnicy grają, nie jest istotna statystycznie.

Tabela 2.4. Lista 10 najlepszych zawodników ze względu na skuteczność rzutów

liga	drużyna	pozycja	imię	nazwisko	skuteczność
Mistrzostwa Polski Juniorów	CM Baby Sharks Szczecin	SE	Karol	Korczak	0.95
Polska Liga Mężczyzn	CM Pełczyce Penguins	AL	Amadeusz	Szulik	0.95
Polska Liga Kobiet	CM Bukówko Butterflies	AL	Danuta	Szczepańska	0.92
Mistrzostwa Polski Juniorów	CM Furia Pyrzyce	AL	Diego	Müller	0.92
Polska Liga Mężczyzn	CM Janowo Yankees	AL	$\operatorname{Grzegorz}$	Rzeszutek	0.91
Polska Liga Kobiet	CM Anielino Angels	SE	Felicja	Lis	0.89
Polska Liga Mężczyzn	CM Stargard Stars	SK	Julian	Januszek	0.88
Polska Liga Kobiet	CM Bukówko Butterflies	AL	Franciszka	Kamińska	0.87
Polska Liga Mężczyzn	CM Pełczyce Penguins	V	Ryszard	Łuszcz	0.85
Polska Liga Mężczyzn	CM Janowo Yankees	AL	Aureliusz	Gliński	0.85

Skuteczno rzutów zawodników dru yn Curling Masters 1.00

0.75 - O.25 - O.00 - MPJ PLK PLM Liga

Rysunek 2.4. Wykresy pudełkowe pogrupowane względem ligi i pozycji zawodników

Najlepsi zawodnicy pod względem skuteczności rzutów przedstawieni są w tabeli 2.4. Jednakże, nie zauważa się w niej żadnych zależności ze względu na ligę oraz pozycję.

3. Analiza meczów

Tabela 3.1. Liczba wygranych i przegranych spotkań drużyn CM z podziałem na ligii.

Liga	Wygrane	Porażki
MPJ	3	4
PLK	9	59
PLM	142	126
PLPM	187	69

Rysunek 3.1. Wykres słupkowy częstości zwycieństw i porażek drużyn z podziałem na ligi.

Sezon 20/21

Sezon 21/22

4. Budżet

Wykresy 4.1 oraz 4.2 przedstawiają wkład poszczególnych komponentów w przychody oraz wydatki klubu. Można zauważyć, że główny bilans toczy się pomiędzy sponsoringiem oraz pensjami dla pracowników.

Rysunek 4.1. Wykres miesięcznych przychodów klubu Curling Masters w czasie

Rysunek 4.2. Wykres miesięcznych wydatków klubu Curling Masters w czasie

Na wykresie 4.3 obserwuje się miesięczny bilans klubu w czasie. W początkowym okresie klub wychodził na plus, po czym zaczął miewać długi, by w ostatniej dekadzie odrabiać straty.

Rysunek 4.3. Wykresy miesięcznych przychodów i wydatków klubu Curling Masters w czasie

Wykres 4.4 przedstawia skumulowany budżet klubu, który po ciężkim okresie długów zaczął wybijać się w ostatnim czasie ostatecznie na plus.

Rysunek 4.4. Wykres budżetu klubu Curling Masters w czasie od zapoczątkowania działalności

Tabele 4.1 oraz 4.2 przedstawiają pensje pracowników klubu, z których wynika, że stanowiska kierownicze są głównym wydatkiem i żeby w przyszłości zredukować ryzyko niewypłacalności klubu należałoby rozważyć zmianę polityki przyznawania pensji.

imie	nazwisko	stanowisko	data zatrudnienia	pensja [zł]
Barbara	Adamska	Coach	2018-09-01	10036.60
Róża	Dąbrowska	President	2011-04-01	9556.91
Róża	Kozłowska	Press Spokesperson	2021-09-01	9050.93
Jowita	Zalewska	Coach	2018-08-01	8719.11
Dobromił	Bura	President	2008-12-01	8612.93
Korneliusz	Jasik	Vicepresident	2015-10-01	8499.91
Zuzanna	Adamska	Coach	2017-01-01	8396.58
Róża	Baran	Audit Committee Chairman	2016-05-01	8355.27
Leszek	Hofman	President	2000-01-01	7903.82
Arleta	Zawadzka	Audit Committee Chairman	2013-07-01	7775.93

Tabela 4.1. Lista 10 najlepiej zarabiających pracowników klubu

Tabela 4.3 przedstawia cenę sprzętu dla drużyn poszczególnych lig. Drużyny juniorskie wydają się posiadać tańszy sprzęt, dlatego w razie wymiany sprzętu, byłby on najtańszy. JEdnakże, nie jest to główny wydatek klubu Curling Masters.

W teście ANOVA dla jednostkowej ceny sprzętu w grupach ze względu na ligę p-wartość wynosi 0.0191343. Oznacza to, że pomiędzy ligami różnica w cenie sprzętu jest statystycznie istotna na zadanym poziomie ufności. Wynika to prawdopodobnie z niższych cen sprzętu juniorskiego.

Tabela 4.2. Statystyki zarobków ze względu na stanowisko pracownika klubu

stanowisko	średnia zarobków [zł]	odchylenie standardowe [zł]
President	8691.220	829.3212
Audit Committee Chairman	7544.952	545.7675
Vicepresident	7458.744	640.9608
CEO	6823.785	488.6320
Press Spokesperson	6535.325	1587.5037
CMO	6508.207	458.1189
CTO	6484.740	690.2954
Coach	6265.847	1024.9404
COO	6261.195	284.0519
CFO	6136.958	297.0253
Accountant	5415.895	606.1673
Secretary	4828.754	512.2143
Audit Committee Secretary	4760.383	193.3811
Audit Committee Member	4666.783	654.6136
Social Media Manager	4223.611	672.3456

Tabela 4.3. Lista ceny sprzętu ze względu na drużynę

liga	drużyna	cena sprzętu [zł]	jednostkowa cena [zł]
Polska Liga Mężczyzn	CM Szybkie Szczoty Szczecin	15295	2185
Polska Liga Mężczyzn	CM Pełczyce Penguins	12600	2100
Polska Liga Mężczyzn	CM Stargard Stars	25080	2090
Polska Liga Mężczyzn	CM Janowo Yankees	15800	1975
Polska Liga Kobiet	CM Anielino Angels	19700	1970
Polska Liga Kobiet	CM Bukówko Butterflies	22800	1900
Mistrzostwa Polski Juniorów	CM Furia Pyrzyce	11100	1850
Mistrzostwa Polski Juniorów	CM Baby Sharks Szczecin	12285	1755

5. Punkty w meczach

Punkty w meczach dru yn CM nzoeu w w mod yn mae zach dru yn CM New yn meczach dru yn CM New y

Rysunek 5.1. Wykresy pudełkowe zdobytych punktów z podziałem na ligii.

Tabela 5.1. Wskaźniki sumaryczne dla uzyskanych przez drużyny punktów z podziałem na ligi.

liga	Średnia	Odchylenie standardowe	Q1	Q3	Kurtoza	Skośność
MPJ	6.857143	4.220133	4	10.00	1.685400	-0.2375658
PLK	3.735294	3.505295	1	5.25	5.095351	1.3639946
PLM	7.791045	5.075571	4	12.00	2.482331	0.3637772
PLPM	9.523438	4.705383	6	13.00	2.328273	-0.0770340

rednia liczba punktów w meczach dru yn CM

Rysunek 5.2. Średnia ilość zdobytych w miesiącu punktów w czasie z podziałem na ligii.

6. Cena sprzętu

Na wykresie 6.1 widać, że najtańszym elementem stroju graczy są rękawice, natomiast najdroższymi są buty oraz szczotki.

Rysunek 6.1. Wykresy pudełkowe ceny poszczególnych części sprzętui

Na wykresach 6.2 oraz 2.3 widnieją rozkłady cen sprzętu z podziałem na odpowiednio płeć oraz docelową grupę wiekową. Kształty tych rozkładów znacząco się różnią, ale średnia w pierwszy przypadku wydaje się oscylować wokół tej samej wartości dla obu płci.

Rysunek 6.2. Cena dostępnego sprzętu ze względu na przeznaczenie dla płci

Tabela 6.1. Statystyki ceny sprzętu względem przeznaczenia na płeć

płeć	średnia [zł]	odchylenie standardowe [zł]
damskie	392.6531	164.0951
męskie	426.4000	143.7864

W teście ANOVA dla ceny sprzętu w grupach ze względu na przeznaczenie sprzętu dla płci p-wartość wynosi 0.2788852. Oznacza to, że na zadanym poziomie istotności różnica ceny sprzętu w podziale na płeć nie jest istotna statystycznie.

Rysunek 6.3. Cena dostępnego sprzętu ze względu na przeznaczenie dla grupy wiekowej

Tabela 6.2. Statystyki ceny sprzętu względem przeznaczenia na grupę wiekową

grupa wiekowa	średnia [zł]	odchylenie standardowe [zł]
dorośli	514.1837	103.1653
juniorzy	458.6538	101.6323

W teście ANOVA dla ceny sprzętu w grupach ze względu na docelową grupę wiekową p-wartość wynosi 0.0288415. Oznacza to, że na zadanym poziomie istotności odrzuca się hipotezę o równości tej ceny w obu grupach wiekowych. Stwierdza się zatem, że ceny sprzętu juniorskiego są istotnie niższe.

7. Czas pracy

Na wykresie 7.1 widać znaczące różnice w okresie zatrudnienia pracowników klubu. Stanowiska kierowniczy są częściej zajęte przez tę sam osobę niż stanowiska niższe.

Rysunek 7.1. Wykres pudełkowy czasu zatrudnienia pracowników klubu ze względu na ich stanowisko

Do sprawdzenia ewentualnej zależności pomiędzy pensją pracowników, a ich okresem zatrudnienia służy wykres 7.2, na którym widać niewielki wzrost długości tego okresu wraz ze wzrostem pensji pracownika.

Tabela 7.1. Statystyki czasu zatrudnienia pogrupowane ze względu na stanowisko pracownika

stanowisko	średnia [lata]	odchylenie standardowe [lata]
Accountant	19.0000000	NA
CEO	10.0000000	NA
Secretary	9.0000000	5.2915026
Vicepresident	8.3333333	1.5275252
CTO	6.5000000	2.1213203
COO	5.0000000	NA
President	5.0000000	4.2426407
CMO	3.5000000	4.9497475
Press Spokesperson	3.0000000	3.3166248
Audit Committee Member	2.7777778	2.2791324
CFO	2.6666667	2.0816660
Coach	2.5454545	3.4377583
Audit Committee Chairman	2.0000000	0.8164966
Audit Committee Secretary	2.0000000	2.8284271
Social Media Manager	0.8571429	1.2149858

Okres zatrudnienia od wynagrodzenia

Rysunek 7.2. Wykres rozproszenia zależności czasu zatrudnienia od pensji pracownika

Korelacja pomiędzy czasem zatrudnienia a pensją pracowników wynosi -0.0015887. W teście Pearsona daje to p-wartość równą 0.9889862. Oznacza to, że na zadanym poziomie istotności nie odrzuca się hipotezy o braku korelacji pomiędzy tymi zmiennymi i nie jest ona istotna statystycznie. Możliwe, że ta zależność nie jest liniowa, bądź też po prostu nie istnieje.