2a. n=4 transition matrix $\frac{1}{4}$ states.

Note that the states is a state of the state of

2a. n=5 transition matrin:

Canonical =
$$\frac{\overline{A}}{B}$$
 $\frac{\overline{B}}{\overline{C}}$ $\frac{\overline{C}}{\overline{C}}$ $\frac{\overline$

2a. monte carlo n=41 .-- 110

n	abs. the
4	1.508
5	2.878
6	5-371
7	8-003
8	10.188
9	13.308
10	16.513
- 1	

numerical

26. 1=4 Pirst dot point.

same states as 2a.

monte carlo:

munerisast:

[0.223, 0.233, 0.236, 0-279, 0.0016, 0.0016]

montesado:

[0.248, 0.248, 0-248, 0-248, 0.0025, 0.0025].

2b.
$$|n=4|$$
 Second dot point

L = 00

R = 000

R = 000

T = 0 \(\frac{1}{6} \) \(

monte carlo:

B = 1-30/6 - 5/6

[0.485, 0.489, 0.0017, 0.0017, 0.0017, 0.0017]
mumerical:

[0.490, 0.490, 0.0082, 0.0049, 0.0033, 0.0033].