第21章 核逻辑回归

21.1 软间隔 SVM 的正则化视角

命题 21.1.1

1. 软间隔 SVM 的无约束优化形式

$$\min_{b,w} \ \underbrace{\frac{1}{2} \|w\|^2}_{\text{L2 正则项}} + C \underbrace{\sum_{n=1}^{N} \max(1 - y_n(w^{\top} z_n + b), \ 0)}_{\text{合页损失 (hinge loss)}}$$

该目标函数由 L2 正则项与合页损失项组成, 可简记为:

$$\min_{b,w} \frac{1}{2} ||w||^2 + C \mathcal{L}_{\text{hinge}}(b,w),$$

即最小化带 L2 正则的 hinge loss,常被称为软间隔支持向量机的无约束形式。

2. 与经典正则化框架的对应关系

模型	正则方式	误差控制或损失
硬间隔 SVM	约束 $ w ^2 \le \text{const.}$	$E_{\rm in} = 0$ (完全可分)
软间隔 SVM	$rac{1}{2}\ w\ ^2$ (L2 正则)	$\sum \max(0, 1 - y_n f(x_n))$ (hinge loss)
L2 正则化模型	$\frac{\lambda}{N} \ w\ ^2$	$\frac{1}{N}\sum$ err(一般损失)

3. 统一视角下的理解

- 大间隔 較少可分超平面 ||w|| 小 强 L2 正则化;
- 软间隔 ⇔ 使用 hinge loss 对误差进行容忍,允许一定程度的误分;
- 正则强度由超参数 C 控制, 等价地, 也可使用 $\lambda = \frac{1}{2C}$:

较大C ⇒ 小正则, 间隔小, 拟合更强 较小C ⇒ 大正则, 间隔大, 泛化更强

- 4. 拓展意义与建模连接
 - 从正则化的角度理解 SVM,有助于与其他学习模型(如逻辑回归、岭回归)建立统一框架;
 - 该视角也便于推广到核方法、稀疏学习、随机特征等更复杂场景:
 - 尽管该无约束形式易于理解,但由于 $\max(\cdot,0)$ 不可导,故优化上比标准 SVM 更难处理,不能直接使用核技巧。

21.2 SVM vs 逻辑回归

命题 21.2.1 (SVM 与逻辑回归的算法误差及关联)

1. 线性评分与误差度量

定义线性评分

$$s = w^{\mathsf{T}} z_n + b.$$

- 0/1 误差: $err_{0/1}(s,y) = \mathbb{I}[ys \le 0]$ 。
- SVM(合页误差): $\operatorname{err}_{\text{SVM}}(s,y) = \max(1-ys,0)$,为 $\operatorname{err}_{0/1}$ 的凸上界,常称 **hinge loss**。
- 。逻辑回归(缩放交叉熵): $\operatorname{err}_{\operatorname{SCE}}(s,y) = \log_2(1+\exp(-ys))$,亦为 $\operatorname{err}_{0/1}$ 的凸上界。

图 21.2.1: 二分类问题中不同误差度量对比图

2. SVM 与逻辑回归的近似关系

当ys远离0时,

$$\operatorname{err}_{\text{SVM}}(s, y) \approx \ln 2 \cdot \operatorname{err}_{\text{SCE}}(s, y),$$

因此 SVM 可视为 带 L2 正则的逻辑回归的近似。

表 21.2.1: 二分类线性模型对比

	PLA	软间隔 SVM	正则化逻辑回归
优化目标	最小化 0/1 误差	最小化正则化合页误差	最小化正则化交叉熵
	$\min_{w,b} \sum_{n} \mathbb{I}[y_n(w^{\top} z_n + b) \le 0]$	$\min_{w,b} \frac{1}{2} w ^2 + C \sum_{n} \max(0, 1 - y_n f(x_n))$	$\min_{w,b} \frac{\lambda}{N} w ^2 + \frac{1}{N} \sum_{n} \log(1 + e^{-y_n f(x_n)})$
求解方法	逐点修正	二次规划 (QP)	梯度下降 / SGD 等
优点	线性可分时高效	优化简单,理论保证	优化简单,正则化自然
缺点	仅线性可分时收敛; 否则需 pocket	合页误差对极负样本宽松	交叉熵对极负样本宽松

注 正则化逻辑回归≈SVM;反之,SVM 也可视为带合页误差的逻辑回归近似。

21.3 软二分类的 SVM

命题 21.3.1 (两层学习: SVM 变换后再用逻辑回归微调)

定义最终模型

$$g(x) = \sigma \left(A \left(w_{\text{SVM}}^{\mathsf{T}} \Phi(x) + b_{\text{SVM}} \right) + B \right), \quad \sigma(z) = \frac{1}{1 + e^{-z}},$$

其中

- SVM 变体:固定超平面方向与位置 (w_{SVM}, b_{SVM}) ,由核方法给出;
- 逻辑回归变体: 仅用两个标量参数 $A>0, B\approx 0$ 对超平面进行 缩放与平移,使其更接近最大似然。

第二层的逻辑回归优化

将 SVM 输出

$$\psi_{\text{SVM}}(x_n) = w_{\text{SVM}}^{\top} \Phi(x_n) + b_{\text{SVM}}$$

作为新特征, 求解

$$\min_{A,B} \ \frac{1}{N} \sum_{n=1}^{N} \log \Big(1 + \exp \left[-y_n \left(A \, \psi_{\text{SVM}}(x_n) + B \right) \right] \Big).$$

总结 此"两层学习"策略把 SVM 的非线性变换结果当作逻辑回归的新输入,实现 SVM 变换后的逻辑回归微调,兼具 SVM 的结构性与逻辑回归的概率校准优势。

算法 21.3.1: Platt 概率 SVM(Platt's Probabilistic SVM)

输入: 训练数据 $\mathcal{D} = \{(x_n, y_n)\}_{n=1}^N$; 核函数 $K(\cdot, \cdot)$; 惩罚参数 C

输出: 概率输出软二分类器 $g(x) = \sigma(A \cdot f_{SVM}(x) + B)$,其中 $\sigma(z) = \frac{1}{1 + \rho^{-z}}$

步骤 1: 训练核软间隔 SVM

$$f_{\text{SVM}}(x) = w_{\text{SVM}}^{\intercal} \Phi(x) + b_{\text{SVM}} = \sum_{n \in \mathcal{I}_{\text{SV}}} \alpha_n y_n K(x_n, x) + b_{\text{SVM}}.$$

步骤 2: 构造新特征

$$z_n = f_{SVM}(x_n), \quad n = 1, \dots, N.$$

步骤 3: 逻辑回归微调

在新特征空间 $\{(z_n, y_n)\}_{n=1}^N$ 上求解带特殊正则化的逻辑回归

$$\min_{A,B} \sum_{n=1}^{N} \log \left(1 + \exp\left[-y_n(Az_n + B) \right] \right) + 正则项.$$

(实际实现中采用梯度下降、SGD 或其他高效方法,因仅含两个变量)

输出

$$q(x) = \sigma(A f_{SVM}(x) + B)$$
, 提供概率而非硬标签。

备注

- 概率边界可能与纯 SVM 边界不同,主要受偏置 B 影响;
- 若直接在 z 空间做精确逻辑回归,则等价于核化逻辑回归(下一节给出)。

21.4 核逻辑回归

命题 21.4.1 (核技巧的核心:统一表示定理)

设最优权重向量可写成训练样本的线性组合

$$w^* = \sum_{n=1}^{N} \beta_n z_n, \qquad z_n = \Phi(x_n).$$

则对任意输入x,

$$w^{*\top}z = \sum_{n=1}^{N} \beta_n z_n^{\top} z = \sum_{n=1}^{N} \beta_n K(x_n, x),$$

其中 $K(x_n,x) = \Phi(x_n)^{\mathsf{T}}\Phi(x)$ 为核函数。因此无需显式计算高维特征 $\Phi(x)$,只需核值即可预测。 三种经典算法的统一形式

$$w = \sum_{n=1}^{N} \alpha_n y_n z_n$$

系数来源:

• SVM: α_n 来自对偶最优解;

• PLA: α_n 为样本被误分并用于修正的次数;

• 逻辑回归 (SGD): α_n 为历次梯度更新中该样本的贡献累积。

结论 核技巧的本质是权重由数据线性表示,使所有线性模型在高维特征空间中统一且高效。

定理 21.4.1 (表示定理 Representer Theorem)

对任意带 L2 正则的线性模型

$$\min_{w} \frac{\lambda}{N} ||w||^2 + \frac{1}{N} \sum_{n=1}^{N} \operatorname{err}(y_n, w^{\top} z_n),$$

其最优解 w^* 必落在训练样本张成的子空间中,即存在 $\{\beta_n\}_{n=1}^N\subset\mathbb{R}$,使得

$$w^* = \sum_{n=1}^{N} \alpha_n z_n, \qquad z_n = \Phi(x_n).$$

证明要点

设 $w^*=w_\parallel+w_\perp$,其中 $w_\parallel\in\mathrm{span}\{z_n\}$, $w_\perp\perp\mathrm{span}\{z_n\}$ 。

• 误差项只与 w_{\parallel} 有关: $\operatorname{err}(y_n, w^{*\top}z_n) = \operatorname{err}(y_n, w_{\parallel}^{\top}z_n)$;

• 正则项满足 $\|w^*\|^2 = \|w_{\parallel}\|^2 + \|w_{\perp}\|^2 \ge \|w_{\parallel}\|^2$;

• 若 $w_{\perp} \neq 0$, 则 w_{\parallel} 更优,矛盾! 故 $w_{\perp} = 0$ 。

推论 任意 L2 正则线性模型均可核化:

$$f(x) = w^{*\top} \Phi(x) = \sum_{n=1}^{N} \beta_n K(x_n, x).$$

 \bigcirc

算法 21.4.2: 核逻辑回归(Kernel Logistic Regression)

目标函数 利用表示定理,将 L2 正则化逻辑回归写成仅与系数 β_n 相关的核化形式:

$$\min_{\beta \in \mathbb{R}^{N}} \frac{\lambda}{N} \sum_{n=1}^{N} \sum_{m=1}^{N} \beta_{n} \beta_{m} K(x_{n}, x_{m}) + \frac{1}{N} \sum_{n=1}^{N} \log \left(1 + \exp \left[-y_{n} \sum_{m=1}^{N} \beta_{m} K(x_{m}, x_{n}) \right] \right)$$

算法步骤

- 1. 构造核矩阵 $\mathbf{K} \in \mathbb{R}^{N \times N}$, 其中 $K_{n,m} = K(x_n, x_m)$;
- 2. 任选优化算法(GD、SGD、LBFGS等)对无约束目标

$$J(\beta) = \frac{\lambda}{N} \beta^{\top} \mathbf{K} \beta + \frac{1}{N} \sum_{n=1}^{N} \log \left(1 + \exp[-y_n(\mathbf{K}\beta)_n] \right)$$

求解最优 β^* ;

3. 预测函数

$$g(x) = \sigma \Big(\sum_{n=1}^{N} \beta_n^* K(x_n, x) \Big), \quad \sigma(z) = \frac{1}{1 + e^{-z}}.$$

复杂度

- 训练: $\mathcal{O}(N^3)$ (核矩阵) + 迭代优化开销;
- 预测: O(N)(全部样本)或稀疏近似。

命题 21.4.2 (核逻辑回归的另一种视角:核特征空间中的线性模型)

核逻辑回归(KLR)可等价地视为在两种不同空间中的线性模型:

1. 核特征空间中的线性模型

目标函数

$$\min_{\beta \in \mathbb{R}^{N}} \frac{\lambda}{N} \sum_{n=1}^{N} \sum_{m=1}^{N} \beta_{n} \beta_{m} K(x_{n}, x_{m}) + \frac{1}{N} \sum_{n=1}^{N} \log \left(1 + \exp \left[-y_{n} \sum_{m=1}^{N} \beta_{m} K(x_{m}, x_{n}) \right] \right)$$

等价于在变换后的特征空间

$$(K(x_1,x_n), K(x_2,x_n), \ldots, K(x_N,x_n)) \in \mathbb{R}^N$$

上学习线性模型

$$f(x) = \beta^{\top} \Phi_{\mathbf{K}}(x),$$

其中 $\Phi_{\mathbf{K}}(x) = (K(x_1, x), \dots, K(x_N, x))^{\mathsf{T}}$, 并采用核正则化项 $\frac{\lambda}{N}\beta^{\mathsf{T}}\mathbf{K}\beta$ 。

2. 嵌入核的原始空间中的线性模型

同样可视为在无限维或高维嵌入特征空间 $\Phi(x)$ 中学习线性模型

$$f(x) = w^{\top} \Phi(x),$$

并施加 L2 正则化 $\frac{\lambda}{N}||w||^2$ 。

与 SVM 的对比

- SVM: α_n 稀疏, 仅支撑向量非零;
- KLR: β_n 通常 非零, 整体稠密, 预测需全部核值。

例题 21.1 选择题: KLR 线性模型的空间维度

当将核逻辑回归(KLR)视为具有嵌入核变换和核正则化的 β 线性模型时,该线性模型操作的 $\mathcal Z$ 空间

的维度是:

- 1) d (原始空间 \mathcal{X} 的维度)
- 2) N (训练样本数)
- 3) \tilde{d} (核函数隐式定义的特征变换维度)
- **4)** λ (正则化参数)

解答 正确选项为 2。对于任意样本 x,核变换后的数据为 $(K(\mathbf{x}_1,\mathbf{x}),K(\mathbf{x}_2,\mathbf{x}),\ldots,K(\mathbf{x}_N,\mathbf{x}))$,其维度为 N。

21.5 总结

Ŷ 笔记 [核逻辑回归]

- 软间隔 SVM 的正则化视角:带 L2 正则项的合页误差 (hinge loss)。
- SVM vs 逻辑回归: SVM 近似于带 L2 正则的逻辑回归。
- 软二分类的 SVM: 常用"两层学习"流程。
- 核逻辑回归: 利用表示定理, 将 L2 正则化逻辑回归推广到核空间。