При расчетах принять:

Модуль ускорения свободного падения $g = 10 \text{ м/c}^2$	Скорость света в вакууме $c = 3 \cdot 10^8 \text{ м/c}$
Постоянная Авогадро $N_A = 6.02 \cdot 10^{23} \text{ моль}^{-1}$	Постоянная Больцмана $k = 1,38 \cdot 10^{-23} \text{Дж/K}$
Электрическая постоянная $\varepsilon_0 = 8.85 \cdot 10^{-12} \frac{\Phi}{M}$; $\frac{1}{4\pi\varepsilon_0} = 9 \cdot 10^9 \frac{H \cdot M^2}{K\pi^2}$	Элементарный заряд $e = 1,6 \cdot 10^{-19} \text{ Кл}$
Универсальная газовая постоянная $R = 8,31 \frac{\mathcal{A} \times \mathcal{C}}{MOЛь \cdot K}$	Гравитационная постоянная $G = 6,67 \cdot 10^{-11} \frac{H \cdot m^2}{\kappa z^2}$
1 эВ = 1,6·10 ⁻¹⁹ Дж π = 3,14; $\sqrt{2}$ = 1,41; $\sqrt{3}$ = 1,73; $\sqrt{5}$ = 2,24	Постоянная Планка $h = 6,63 \cdot 10^{-34} \text{Дж} \cdot \text{с}$

Множители и приставки для образования десятичных кратных и дольных единиц.

Множитель	10^{12}	10^{9}	10^{6}	10^{3}	10^{-2}	10^{-3}	10^{-6}	10^{-9}	10^{-12}
Приставка	тера	гига	мега	кило	санти	милли	микро	нано	пико
Обозначение приставки	T	Γ	M	К	c	M	МК	Н	П

Часть А

	часть А	
A1	Из перечисленных физических величин векторной является:	1) работа; 2) мощность; 3) энергия; 4) давление; 5) сила.
A2	Даны кинематические уравнения движения двух тел: $x_1 = A + Bt$, $x_2 = C + Dt$, где $A = 20$ м, $B = -1$ м/с, $C = 5$ м, $D = 2$ м/с. Координата x места встречи равна:	1) 2 m; 2) 4 m; 3) 10 m; 4) 12 m; 5) 15 m.
A3	Лодка переплывает реку шириной $l=180$ м из пункта A в пункт B за промежуток времени $\Delta t=1,5$ мин, выдерживая направление перпендикулярно берегу. Если модуль скорости течения $\upsilon_m=1,7$ м/с, то модуль скорости υ_n , лодки относительно воды равен:	1) 2,6 M/c; 2) 3,2 M/c; 3) 3,8 M/c; 4) 4,3 M/c; 5) 4,7 M/c.
A4	За время $t = 20$ с равноускоренного движения скорость тела увеличилась от $\upsilon_1 = 2$ м/с до $\upsilon_2 = 43,2$ км/ч. Модуль ускорения a тела равен:	1) 0,1 m/c ² ; 2) 0,5 m/c ² ; 3) 1 m/c ² ; 4) 2 m/c ² ; 5) 5 m/c ² .
A5	На рисунке представлен график зависимости модуля силы упругости F_{ynp} пружины от величины ее деформации $\Delta \ell$, полученный школьником при исследовании упругих свойств пружины. Жесткость k пружины равна:	1) 0,5 H/m; 2) 5,0 H/m; 3) 15 H/m; 4) 50 H/m; 5) 0,50 κH/m.
A6	Координата х тела массой $m=2,0$ кг, движущегося вдоль оси Ох, зависит от времени t по закону $x=A+Bt+Ct^2$, где $A=8$ м, $B=-4,0$ м/с, $C=-1,0$ м/с 2 . За промежуток времени от $t_1=2,0$ с до $t_2=3,0$ с изменение кинетической энергии ΔE_{κ} тела равно:	1) 31 Дж; 2) 36 Дж; 3) 48 Дж; 4) 51 Дж; 5) 64 Дж.
A7	На рисунке изображены положения пяти тел, находящихся на разных высотах над поверхностью Земли. Наименьшей потенциальной энергией относительно поверхности Земли обладает тело:	1) 1; 2) 2; 3) 3; 4) 4; 5) 5.

A8	Одно из колен ртутного ($\rho = 13,6$ г/см³) манометра соединили с сосудом, заполненным газом (см. рис.), а второе — оставили открытым. Если атмосферное давление $p_0 = 100$ кПа, то давление	1) 34,8 κΠa; 2) 45,6 κΠa; 3) 54,4 κΠa; 4) 146 κΠa; 5) 154 κΠa.
A9	Молярная масса алюминия $M=27$ г/моль, его плотность $\rho=2,7$ г/см 3 . Если объем однородного куска алюминия $V=15$ см 3 , то число атомов N , содержащихся в нем, равно:	1) $11,1\cdot10^{23}$; 2) $10,5\cdot10^{23}$; 3) $9,03\cdot10^{23}$; 4) $8,16\cdot10^{23}$; 5) $3,1\cdot10^{23}$.
A10	Идеальный газ, количество вещества которого $v=4$ моль, нагревают при постоянном давлении так, что объем увеличивается в три раза ($V_2=3V_1$), затем газ изохорно охлаждают (см. рис.). Если температура газа в начальном и конечном состояниях $T_1=T_3=300~\mathrm{K}$, то совершенная газом работа A равна:	1) 1,66 кДж; 2) 4,99 кДж; 3) 6,65 кДж; 4) 8,31 кДж; 5) 19,9 кДж.
A11	На рисунке приведен график зависимости температуры t вещества от времени т. Если вначале вещество находилось в твёрдом состоянии, то нагреванию вещества в жидком состоянии соответствует участок графика:	1) AB; 2) BC; 3) CD; 4) DE; 5) EF.
A12	Прибором, предназначенным для измерения электрического напряжения, является:	 динамометр; термометр; амперметр; линейка; вольтметр.
A13	Два маленьких металлических шарика, заряды которых $q_1 = -0.8 \cdot 10^{-7}$ Кл и $q_2 = 0.4 \cdot 10^{-7}$ Кл, находятся в вакууме. Если шарики привести в соприкосновение и после этого разместить так. Чтобы расстояние между их центрами было $r = 3$ см, то модуль силы F электростатического взаимодействия шариков будет равен:	1) 4 MH; 2) 5 MH; 3) 6 MH; 4) 8 MH; 5) 9 MH.
A14	На рисунке приведено условное обозначение	1) реостата; 2) гальванического элемента; 3) вольтметра; 4) конденсатора; 5) электрического звонка.
A15	Плоский воздушный конденсатор отключили от источника тока, а затем уменьшили расстояние между его пластинами. Что произойдет при этом с электроемкостью конденсатора, его энергией и зарядом на обкладках? Установите соответствие между физической величиной и её изменением ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ А) Электроемкость конденсатора Б) Энергия конденсатора В) Заряд обкладок 3) не изменится	1) A3 52 B1; 2) A3 51 B2; 3) A1 52 B1; 4) A1 52 B3; 5) A2 53 B1.
A16	На проводнике сопротивлением $R=50$ Ом поддерживается напряжение $U=4$ В. Через поперечное сечение проводника за время $\Delta t=2$ с пройдут электроны, число N которых равно:	1) 1,0·10 ¹⁸ ; 2) 2,0·10 ¹⁸ ; 3) 1,0·10 ¹⁹ ; 4) 2,0·10 ¹⁹ ; 5) 5,0·10 ¹⁹ .

A17	Направление силы Ампера \vec{F}_A , действующей на прямолинейный проводник с током, помещенный в однородное магнитное поле между полюсами магнитов (см. рис.), обозначено цифрой:	1) 1; 2) 2; 3) 3; 4) 4; 5) 5.
A18	Если при свободных гармонических колебаниях груз на невесомой пружине перемещается от одного крайнего положения до другого за промежуток времени $\Delta t = 0.20$ с, то частота ν его колебаний равна:	1) 0,40 c ⁻¹ ; 2) 2,0 c ⁻¹ ; 3) 2,5 c ⁻¹ ; 4) 4,0 c ⁻¹ ; 5) 5,0 c ⁻¹ .
A19	На рисунке представлена энергетическая диаграмма состояний электрона в атоме водорода. Поглощению фотона с наибольшей длиной волны соответствует переход, обозначенный цифрой: $\begin{bmatrix} E_4 \\ E_3 \\ E_2 \\ \end{bmatrix}$	1) 1; 2) 2; 3) 3; 4) 4; 5) 5.
A20	Стержень расположен перпендикулярно главной оптической оси тонкой собирающей линзы на расстоянии $d=0,3$ м от плоскости линзы с оптической силой $D=5$ дптр. Отношение высоты H изображения стержня к высоте h стержня равно:	1) 2; 2) 3; 3) 4; 4) 5; 5) 6.

Часть В

- T-1	
B1.	Если с башни высотой h = 5,0 м в горизонтальном направлении бросить тело с начальной скоростью,
	модуль которой $v_0 = 3,3$ м/с, то модуль перемещения Δr тела в момент падения на горизонтальную
	поверхность Земли равен дм.
B2.	Груз массой $m=9$ кг поднимают равномерно по наклонной плоскости с углом наклона $\alpha=30^\circ$ к
	горизонту, прикладывая силу F, направленную параллельно наклонной плоскости. Если коэффициент
ļ	$\sqrt{3}$
ļ	трения скольжения $\mu = \frac{\sqrt{3}}{9}$, то величина этой силы F составляет H.
B3.	Искусственный спутник Земли движется по круговой орбите на расстоянии, равном трем радиусам
	Земли от ее поверхности. Если модуль первой космической скорости у поверхности Земли $v_1 = 8$ км/с,
	то модуль линейной скорости υ спутника равен км/с.
B4.	Шарик массой $m = 0.10$ кг, подвешенный на нерастяжимой нити, описывает окружность в
DŦ.	горизонтальной плоскости. Период обращения шарика $T = 0.40$ с. Если модуль силы натяжения нити
	Горизонтальной плоскости. Период обращения шарика $I = 0,40$ с. Если модуль силы натижения нити $F_{\rm H} = 18 \; {\rm H}$, то длина l нити равна см.
	$r_{\rm H}$ — 10 П, 10 длина t нити равна см.
B5.	Рабочее тело идеального теплового двигателя, работающего по циклу Карно, получает от нагревателя
ВЗ.	количество теплоты $Q_1 = 1,50$ кДж. Если отношение температуры холодильника к температуре
	нагревателя $\frac{T_2}{T_1}$ = 0,400, то работа A, совершенная двигателем за цикл, равна Дж.
	T_1
B6.	Лед ($\lambda = 0.33$ МДж/кг) при температуре $t_1 = 0$ °C опустили в калориметр, содержащий воду
	($c = 4,2 \text{ кДж/(кг °C)}$ при температуре t_2 . После таяния льда в калориметре установилась температура
	$t_3 = 50$ °C. Если масса льда составляла 21 % от массы воды в калориметре, а теплоемкость калориметра
	пренебрежимо мала, то первоначальная температура t ₂ воды в нем была равна °C.
B7.	В баллоне находится гелий под давлением $p_1 = 100$ кПа при температуре $T_1 = 300$ К. Массу гелия в
D 7.	баллоне уменьшили в два раза, а оставшийся газ нагрели. Если давление гелия в конечном со стоянии
	$p_2 = 90.0 \text{ кПа, то температура } T_2 оставшегося в баллоне гелия равна К.$
7.0	
B8.	Два точечных заряда ($q_1 = q_2 = 24$ нКл) закреплены в вакууме на расстоянии $a = 1,0$ см друг от друга. На
	расстоянии $b = 1,5$ см от каждого заряда помещают заряженную частицу массой $m = 10$ мг и отпускают
	ее. Если на бесконечно большом удалении от зарядов частица приобретет скорость, модуль которой
	$\upsilon = 12 \text{ м/c}$, то заряд Q частицы равен нКл.
ļ	
ļ	

B9.	Частица ($m=2,5\cdot10^{-17}$ кг, $q=2,5$ нКл) влетает в область пространства, где созданы однородные электростатическое и магнитное поля. Модуль напряженности электростатического поля $E=12,0$ кВ/м,
	модуль индукции магнитного поля B, причем \vec{E} и \vec{B} имеют одинаковое направление. Если в момент
	вхождения в эту область скорость v_0 частицы перпендикулярна линиям индукции магнитного поля,
	модуль $v_0 = 40$ км/с, а модуль ускорения частицы $a = 2 \cdot 10^{12}$ м/с ² , то модуль индукции В магнитного поля
	равен мТл.
B10.	Если работа выхода электрона с поверхности металла $A_{\text{вых}} = 4,6$ эВ, то длина волны λ_{κ} ,
	соответствующая красной границе фотоэффекта для этого металла, равна нм.
B11.	Идеальный колебательный контур состоит из конденсатора емкостью С = 60 мкФ и катушки
	индуктивностью $L = 0.15 \Gamma$ н. Если в момент времени, когда напряжение на конденсаторе $U = 6 \mathrm{B}$, сила
	тока в контуре $I = 0.16$ A, то максимальное напряжение U_0 на конденсаторе равно В.
B12.	Электрическая цепь состоит из источника постоянного тока с ЭДС
	$\epsilon = 12$ В, двух резисторов сопротивлениями $R_1 = 5$ Ом, $R_2 = 3$ Ом,
	идеальной катушки индуктивностью $L = 5.10^{-3}$ Гн и конденсатора R_1 R_2
	ёмкостью $C = 2 \cdot 10^{-3} \Phi$ (см. рис.). В начальный момент времени ключ К
	был замкнут и в цепи протекал постоянный ток. Если внутренним
	сопротивлением источника тока и потерями энергии на излучение
	электромагнитных волн пренебречь, то после размыкания ключа К на
	резисторе R ₂ выделится количество теплоты Q ₂ , равное мДж

Физика подготовка к ЦТ Вариант 5

Ответы

Подготовка к ЦТ В – 5

№ задачи	A1	A2	A3	A4	A5	A6	A7	A8	A9	A10
№ ответа	5	5	1	2	4	2	5	2	3	5
№ задачи	A11	A12	A13	A14	A15	A16	A17	A18	A19	A20
№ ответа	3	5	1	1	4	1	4	3	4	1

№ задачи	B1	B2	В3	B4	B5	B6	B7	B8	B9	B10	B11	B12
№ ответа	60	60	4	73	900	77	540	25	400	270	10	69