

$$x(k+1) = f(x(k))$$

k → ∞ 时会怎样?

田径项目年度世界纪录经常变化,长远趋势是怎样的?

- $(1) x(k) \rightarrow x^*$
- (2) $x(2k) \to x^*, x(2k+1) \to y^*$
- (3) x(k)无极限

2.平衡点及其稳定性

$$x(k+1) = f(x(k))$$
 如果 $x(k) \rightarrow x^*$,

$$\lim_{k\to\infty} x(k+1) = \lim_{k\to\infty} f(x(k)) \longrightarrow x^* = f(x^*)$$

>>>>>

判断差分方程的稳定性:

- ① 求解方程 $x^*=f(x^*)$, 所得 x^* 称为平衡点;
- ② 判断x*的稳定性.

3.平衡点稳定性判断准则

>>>>>

判断x(k+1)=f(x(k))的稳定性:

- ① 求解方程 $x^*=f(x^*)$,所得 x^* 称为平衡点;
- ② 判断 x*的稳定性。

差分方程	平衡点	稳定条件
x(k+1) = ax(k) + b	$\frac{b}{1-a}$	a < 1
x(k+1)=f(x(k))	$x = f(x)$ 的解 x^*	$ f'(x^*) < 1$

二阶线性差分方程

$$x(k+2) + a_1x(k+1) + a_2x(k) = b$$

平衡点由 $x + a_1x + a_2x = b$ 推得: $x^* = \frac{b}{1 + a_1 + a_2}$

求解特征方程: $\beta^2 + a_1\beta + a_2 = 0$ 得到 β_1 , β_2

判断准则: $|\beta_1| < 1$ 且 $|\beta_2| < 1$ 时 x^* 稳定.

差分方程	平衡点	稳定条件
x(k+1) = ax(k) + b	$\frac{b}{1-a}$	a < 1

贝考虑出生死亡的种群模型

$$x(n+1) - x(n) = rx(n) - dx(n)$$

$$x(n+1) = (1+r-d)x(n)$$
 平衡点为0

|1+r-d| < 1时平衡点0稳定,即r < d时, 生育率小于死亡率,种群终将灭亡。

差分方程	平衡点	稳定条件
$x(k+1)=f\big(x(k)\big)$	$x = f(x)$ 的解 x^*	$ f'(x^*) < 1$

资源受限的种群模型

$$x(n+1) = (A - Bx(n))x(n)$$

$$f(x) = (A - Bx)x$$

平衡点:
$$x_1 = 0, x_2 = \frac{A-1}{B}$$
.

$$f'(x) = A - 2Bx$$

 $x_1 = 0$ 的稳定条件: |A| < 1.

 $x_2 = \frac{A-1}{B}$ 的稳定条件: |2-A| < 1, 即1 < A < 3.

Final page

Sudu= Singer ling (1+1) = e