

Équations différentielles À rendre le 20 novembre

Soit $a \neq 0$ et b deux réels fixés. On considère l'équation différentielle suivante sur $I = \mathbf{R}$ avec conditions initiale suivante dans laquelle v_0 est un réel donné :

(E)
$$\begin{cases} v' + av = b & \text{sur } I \\ v(0) = v_0 \end{cases}$$

- **1.** Donner la solution exacte v_* de (E)
- **2. a)** Soit $f: t \mapsto f(t)$ une fonction définie sur \mathbf{R} et C_f sa courbe représentative de f dans un repère orthonormé du plan. On suppose que f est dérivable en un point $t \in \mathbf{R}$. Donner l'équation de la tangente à C_f au point d'abscisse t.
 - **b)** Soit ν une solution de l'equation différentielle (1) sur \mathbf{R} , C_{ν} sa courbe représentative dans un repère orthonormé du plan, et t un réel. Donner l'équation de la tangente T_{ν} à C_{ν} au point d'abscisse t en fonction de a, b, et $\nu(t)$.
- **3.** Soit $t \in \mathbb{R}$, t > 0. On cherche à calculer une valeur approchée du reél $v_*(t)$, la solution exacte de (E). Pour cela, on procède de la manière suivante :
 - On se place sur le segment [0, t].
 - On fixe un entier n>0 et on pose : $t_0=0$, $t_1=\frac{t}{n}$, $t_2=\frac{2}{n}t,\ldots,$ $t_n=t$. On obtient donc pour tout entier k dans $\{0,\ldots,n-1\}$, en posant $J_k=[t_k,t_{k+1}]$, n segments de longueur $\frac{t}{n}$.
 - L'idée est de remplacer la courbe C_{ν_*} sur [0,t] par une ligne brisée joignant des points $A_0(t_0,u_0),A_1(t_1,u_1),\ldots A_n(t_n,u_n)$ obtenus en calculant judicieusement les nombres u_0,\ldots,u_n : on espère que u_n soit une bonne valeur approchée de $\nu_*(t)$. L'idée directrice est que si n est assez grand, les intervalles J_0,\ldots,J_{n-1} sont suffisamment petits pour considérer que remplacer la courbe C_{ν_*} par une de ses tangentes sur chacun des ces intervalles reste une bonne approximation.

Pour cela, on choisit de partir de $A_0(t_0, v_0)$ et on suit l'idée que si J_0 est suffisamment petit, C_{v_*} se confond avec sa tangente T_0 au point A_0 .

- **a)** Donner l'équation de T_0 . Quelles sont les coordonnées du point de T_0 d'abscisse t_1 ? On choisit alors A_1 égal à ce point. En déduire u_1 en fonction de u_0 , a, b, t, n.
- **b)** Soit k < n un entier naturel. Supposons que les réels u_0, \ldots, u_k soient connus. Donner l'équation de la tangente T_k à C_v au point $A_k(t_k, u_k)$ (ainsi supposé connu). En choisissant A_{k+1} égal au point de T_k d'abscisse t_{k+1} , vérifier que l'on a la relation :

$$\forall k < n \quad u_{k+1} = \left(1 - \frac{at}{n}\right)u_k + \frac{b}{n}t$$

- **c)** En déduire la valeur de u_n .
- **d)** En admettant que si α est un réel quelconque, $\lim_{x\to\infty} (1+\alpha/x)^x$ existe et vaut $\exp(x)$, étudier la limite de u_n quand $n\to\infty$.
- 4. Conclure