

主讲教师: 王玉兰

办公室: 图书馆B626

多

等

数

号

第三爷

可降阶的高阶微分方程的解法

一、
$$y'' = f(x)$$
 型的微分方程

二、
$$y'' = f(x, y')$$
 型的微分方程

三、
$$y'' = f(y, y')$$
 型的微分方程

本节考虑二阶微分方程

$$y'' = f(x, y, y')$$

中的如下的三种特殊类型:

一、
$$y'' = f(x)$$
 型的微分方程

二、
$$y'' = f(x, y')$$
 型的微分方程

三、
$$y'' = f(y, y')$$
 型的微分方程

一、 $y^{(n)} = f(x)$ 型的微分方程

特点:右端仅含有自变量X。

令
$$z = y^{(n-1)}$$
, 则 $\frac{\mathrm{d}z}{\mathrm{d}x} = y^{(n)} = f(x)$, 因此
$$z = \int f(x) \, \mathrm{d}x + C_1$$
 即
$$y^{(n-1)} = \int f(x) \, \mathrm{d}x + C_1$$
 同理可得
$$y^{(n-2)} = \int \left[\int f(x) \, \mathrm{d}x + C_1 \right] \, \mathrm{d}x + C_2$$

$$= \int \left[\int f(x) \, \mathrm{d}x \right] \, \mathrm{d}x + C_1 x + C_2$$

依次通过 n 次积分,可得含 n 个任意常数的通解.

例1. 求解
$$y'' = \cos \frac{x}{2} + e^{3x}$$
. 仅常有写真意见

解:
$$y' = \int \left(\cos\frac{x}{2} + e^{3x}\right) dx + C_1$$

$$= 2\sin\frac{x}{2} + \frac{1}{3}e^{3x} + C_1$$

$$y = \int (2\sin\frac{x}{2} + \frac{1}{3}e^{3x} + C_1) dx + C_2$$

$$y = -4\cos\frac{x}{2} + \frac{1}{9}e^{3x} + C_1x + C_2$$

例2. 求解 $y''' = e^{2x} - \cos x$.

解:
$$y'' = \int (e^{2x} - \cos x) dx + C_1'$$
$$= \frac{1}{2}e^{2x} - \sin x + C_1'$$
$$y' = \frac{1}{4}e^{2x} + \cos x + C_1'x + C_2$$
$$y = \frac{1}{8}e^{2x} + \sin x + C_1x^2 + C_2x + C_3$$
$$(此处 C_1 = \frac{1}{2}C_1')$$

二、y'' = f(x, y') 型的微分方程

特点: 右端不含有变量 У。

设y' = p(x),则y'' = p',原方程化为一阶方程

$$p'_{\text{loc}} = f(x, p)$$

设其通解为 $p = \varphi(x, C_1)$

则得 $y' = \varphi(x, C_1)$

再一次积分, 得原方程的通解

$$y = \int \varphi(x, C_1) \, \mathrm{d}x + C_2$$

例3. 求解 $y'' - y' = 2e^x$

解: 设 y' = p(x), 则 y'' = p', 代入方程得

积分得
$$p = e^{\int dx} [C_1 + \int 2e^x \cdot e^{-\int dx} dx],$$
 即 $e^{\int dx} = 2xe^x + C_1 e^x$ 12 位 3

两端再积分得 $y = \int (C_1 e^x + 2xe^x) dx + C_2$

$$y = 2(x-1)e^x + C_1e^x + C_2$$

例4. 求解
$$\begin{cases} (1+x^2)y'' = 2xy' \\ y|_{x=0} = 1, y'|_{x=0} = 3 \end{cases}$$

解: 设 y' = p(x),则 y'' = p',代入方程得

$$(1+x^2)p' = 2xp$$
 $\xrightarrow{\text{$\notD \ \beta$ \overline{\pha}$ \overline{\pha}$ \overline{\pha}$ \overline{\pha}$ \overline{\pha}$ \overline{\pha}$ = $\frac{2x \, dx}{(1+x^2)}$$

积分得 $\ln |p| = \ln (1+x^2) + \ln |C_1|$, 即 $p = C_1(1+x^2)$

利用
$$y'|_{x=0}=3$$
,得 $C_1=3$,于是有 $y'=3(1+x^2)$

两端再积分得 $y = x^3 + 3x + C_2$

利用
$$y|_{x=0} = 1$$
, 得 $C_2 = 1$, 因此所求特解为

$$y = x^3 + 3x + 1$$

三、y'' = f(y, y') 型的微分方程 2h - 5

特点: 右端不含有自变量 x 。

令
$$y' = p(y)$$
, 则 $y'' = \frac{dp}{dx} = \frac{dp}{dy} \cdot \frac{dy}{dx} = p \frac{dp}{dy}$
故方程化为 $p \frac{dp}{dy} = f(y, p)$

设其通解为 $p = \varphi(y, C_1)$, 即得

$$y' = \varphi(y, C_1)$$

分离变量后积分, 得原方程的通解

$$\int \frac{\mathrm{d}y}{\varphi\left(y,C_{1}\right)} = x + C_{2}$$

例5. 求解 $yy'' - y'^2 = 0$.

解: 设
$$y' = p(y)$$
, 则 $y'' = \frac{\mathrm{d}p}{\mathrm{d}x} = \frac{\mathrm{d}p}{\mathrm{d}y} \frac{\mathrm{d}y}{\mathrm{d}x} = p \frac{\mathrm{d}p}{\mathrm{d}y}$

代入方程得
$$y p \frac{dp}{dy} - p^2 = 0$$
, 即 $\frac{dp}{p} = \frac{dy}{y}$

两端积分得 $\ln |p| = \ln |y| + \ln |C_1|$, 即 $p = C_1 y$,

$$y' = C_1 y$$
 (一阶线性齐次方程)

故所求通解为 $y = C_2 e^{C_1 x}$

例6. 求解
$$\begin{cases} yy'' + \frac{1}{y^2}e^{y^2}y' - 2y(y')^2 = 0. \\ y \Big|_{x=-\frac{1}{2e}} = 1, y' \Big|_{x=-\frac{1}{2e}} = e \end{cases}$$

解: 设
$$y' = p(y)$$
, 则 $y'' = \frac{\mathrm{d}p}{\mathrm{d}x} = \frac{\mathrm{d}p}{\mathrm{d}y} \frac{\mathrm{d}y}{\mathrm{d}x} = p \frac{\mathrm{d}p}{\mathrm{d}y}$

代入方程得
$$p(\frac{dp}{dv} + \frac{1}{v^2}e^{v^2} - 2yp) = 0,$$

即
$$p = 0$$
(不满足初始条件,舍)或 $\frac{dp}{dy} + \frac{1}{y^2}e^{y^2} - 2yp = 0$

(一阶线性非齐次方程)

$$p = e^{\int 2ydy} [C_1 + \int -\frac{1}{y^2} e^{y^2} \cdot e^{-\int 2ydy} dy],$$

= $e^{y^2} (\frac{1}{y} + C_1),$

例6. 求解
$$\begin{cases} yy'' + \frac{1}{y^2}e^{y^2}y' - 2y(y')^2 = 0. \\ y \Big|_{x=-\frac{1}{2e}} = 1, y' \Big|_{x=-\frac{1}{2e}} = e \end{cases}$$
 $p = e^{y^2}(\frac{1}{y} + C_1),$

$$p = e^{y^2} \left(\frac{1}{y} + C_1 \right),$$

续: 代入初值条件:
$$y \mid_{x=-\frac{1}{2e}} = 1, y' \mid_{x=-\frac{1}{2e}} = e$$

得:
$$C_1 = 0$$
 即: $\frac{dy}{dx} = \frac{1}{y}e^{y^2}$, 概变量方程

$$-\frac{1}{2}e^{-y^2} = x + C_2$$

代入初值条件: $y' \Big|_{x=-\frac{1}{2e}} = e$ 得: $C_2 = 0$ 故所求特解为 $x = -\frac{1}{2}e^{-y^2}$

故所求特解为
$$x = -\frac{1}{2}e^{-y^2}$$

例7. 求解 $y'' = 1 + (y')^2$.

解: 设
$$y' = p(y)$$
, 则 $y'' = \frac{dp}{dx} = \frac{dp}{dy} \frac{dy}{dx} = p \frac{dp}{dy}$

代入方程得
$$\frac{\mathrm{d}p}{\mathrm{d}x} = 1 + p^2, \quad \text{即} \frac{\mathrm{d}p}{1 + p^2} = dx$$

两边积分得 $\operatorname{arctan} p = x + C_1$

$$\mathbb{P}\frac{dy}{dx} = p = \tan(x + C_1),$$

两边积分,得通解为 $y = -\ln \left| \cos(x + C_1) \right| + C_2$

内容小结

可降阶微分方程的解法 —— 降阶法

1.
$$y^{(n)} = f(x)$$
 逐次积分

2.
$$y'' = f(x, y')$$

$$\diamondsuit y' = p(x), \quad \emptyset y'' = \frac{\mathrm{d}p}{\mathrm{d}x}$$

3.
$$y'' = f(y, y')$$

$$\Rightarrow y' = p(y), \quad \text{if } y'' = p \frac{dp}{dy}$$

思考与练习

1. 方程 y'' = f(y') 如何代换求解 ?

答: 令 y' = p(x) 或 y' = p(y) 均可.

一般说,用前者方便些.

有时用后者方便 . 例如, $y'' = e^{-(y')^2}$

- 2. 解二阶可降阶微分方程初值问题需注意哪些问题 ?
 - 答: (1) 一般情况, 边解边定常数计算简便.
 - (2) 遇到开平方时,要根据题意确定正负号.

第四节从初见点概念性能,但他一个一个多数线性微分方程

- 一、二阶线性微分方程解的结构
- 二、二阶常系数线性微分方程的解法

一、二阶线性微分方程解的结构

二阶微分方程的如下形式

$$y'' + p(x)y' + q(x)y = f(x)$$

称为二阶线性微分方程,简称二阶线性方程. f(x) 称为自由项。

当 $f(x) \neq 0$ 时,称为二阶线性非齐次微分方程, 简称二阶线性非齐次方程.

当f(x) 恒为0 时,称为二阶线性齐次微分方程, 简称二阶线性齐次方程.

方程中 p(x)、 q(x) 和 f(x) 都是自变量的已知连续函数. 这类方程的特点是:右边是已知函数或零,左边每一项含 y'' 或 y' 或 y' 或 y ,且每项均为 y'' 或 y' 或 y 的一次项。

二阶微分方程的如下形式

$$y'' + p(x)y' + q(x)y = f(x)$$

方程中 p(x)、 q(x) 和 f(x) 都是自变量的已知连续函数.

这类方程的特点是:右边是已知函数或零,左边每一项含y"或y,且每项均为y"或y"或y的一次项,如 如 如

例如: $y'' + xy' + y = x^2$ 就是二阶线性非齐次方程.

$$y'' + x(y')^2 + y = x^2$$
 就不是二阶线性方程.

141/2 + 16201 = 0

定理 1 如果函数 y_1 与 y_2 是线性齐次方程的两个解,则函数

$$y = C_1 y_1 + C_2 y_2$$

仍为该方程的解,其中 C_1 , C_2 是任意常数.

证 因为 y_1 与 y_2 是方程 y'' + p(x)y' + q(x)y = 0的两个解, 所以有

$$y_1'' + p(x)y_1' + q(x)y_1 = 0,$$

与

$$y_2'' + p(x)y_2' + q(x)y_2 = 0.$$

又因为
$$y' = C_1 y_1' + C_2 y_2'$$
, $y'' = C_1 y_1'' + C_2 y_2''$, 于是有
$$y'' + p(x)y' + q(x)y$$

$$= (C_1y_1'' + C_2y_2'') + p(x)(C_1y_1' + C_2y_2') + q(x)(C_1y_1 + C_2y_2)$$

$$= C_1(y_1'' + p(x)y_1' + q(x)y_1) + C_2(y_2'' + p(x)y_2' + q(x)y_2)$$

$$= 0$$

所以 $y = C_1y_1 + C_2y_2$ 是 y'' + p(x)y' + q(x)y = 0 的解.

定义 设函数 $y_1(x)$ 和 $y_2(x)$ 是定义在某区间 I 上的两个函数, 如果存在两个不全为 0 的常数 k_1 和 k_2 ,使 $k_1y_1(x) + k_2y_2(x) = 0$

在区间 I 上恒成立. 则称函数 $y_1(x)$ 与 $y_2(x)$ 在区间 上是线性相关的,否则称为线性无关.

考察两个函数是否线性相关,我们往往采用另一种简单易行的方法,即看它们的比是否为常数,事实上,当 $y_1(x)$ 与 $y_2(x)$ 线性相关时,有 $k_1y_1+k_2y_2=0$,其中 k_1,k_2 不全为 0,不失一般性,设 $k_1 \neq 0$,则 $\frac{y_1}{y_2}=-\frac{k_2}{k_1}$,

即 y₁ 与 y₂ 之比为常数. 反之, 若y₁ 与 y₂ 之比为常数, 设 $\frac{y_1}{1} = \lambda$, 则 $y_1 = \lambda y_2$, 即 $y_1 - \lambda y_2 = 0$. 所以 y_1 与 y_2 线性相关. 因此, 如果两个函数的比是常数, 则它们 线性相关;如果不是常数,则它们线性无关. 例如函 数 $y_1 = e^x$, $y_2 = e^{-x}$, 而 $\frac{y_1}{z} \neq$ 常数, 所以,它们是线 性无关的.

定理 2 如果函数 y_1 与 y_2 是二阶线性齐次方程 y'' + p(x)y' + q(x)y = 0 的两个线性无关的特解,则 $y_1 = C_1 y_1 + C_2 y_2$

是该方程的通解,其中 C_1 , C_2 为任意常数.

证 因为 y_1 与 y_2 是方程 y'' + p(x)y' + q(x)y = 0 的解,所以,由定理 1 知 $y = C_1y_1 + C_2y_2$ 也是该方程的解。 又因为 y_1 与 y_2 线性无关,即 y_1 与 y_2 之比不为常数,所以它们中任一个都不能用另一个(形如 $y_1 = ky_2$ 或 $y_2 = k_1y$)来表示。故 C_1 与 C_2 不能合并为一个任意常数,因此 $y = C_1y_1 + C_2y_2$ 是二阶线性齐次方程的通解。

M1 + PGO (y + PGO) = 7 7/2 立"+ 产业"定理3 一如果函数 y* 是线性非齐次方程的一个 特解,Y是该方程所对应的线性齐次方程的通解,则

$$y = Y + y^*$$
, $\frac{1}{2}$

是线性非齐次方程的通解.

二种酒品 证 因为 y^* 与Y分别是线性非齐次方程y''+ p(x)y' + q(x)y = f(x) 和线性齐次方程 y'' + p(x)y' + p(x)y'q(x)v = 0 的解,所以有

$$y^{*"} + p(x)y^{*'} + q(x)y^{*} = f(x),$$

 $Y'' + p(x)Y' + q(x)Y = 0.$

又因为
$$y' = Y' + y^{*'}$$
, $y'' = Y'' + y^{*''}$, 所以

$$y'' + p(x)y' + q(x)y$$

$$= (Y'' + y^{*''}) + p(x)(Y' + y^{*'}) + q(x)(Y + y^{*})$$

$$= (Y'' + p(x) Y' + q(x)Y) + (y^{*''} + p(x) y^{*'} + q(x)y^{*})$$

$$= f(x).$$

这说明函数 $y = Y + y^*$ 是线性非齐次方程的解,又 Y 是二阶线性齐次方程的通解,它含有两个任意常数,故 $y = Y + y^*$ 中含有两个任意常数. 即 $y = Y + y^*$ 是线性非齐次方程 y'' + p(x)y' + q(x)y = f(x) 的通解.

求二阶线性非齐次方程通解的一般步骤为:

- (1) 求线性齐次方程 y'' + p(x)y' + q(x)y = 0 的线性 无关的两个特解 y_1 与 y_2 ,得该方程的通解 $Y=C_1y_1+C_2y_2$.
- (2) 求线性非齐次方程 y'' + p(x)y' + q(x)y = f(x) 的一个特解 y^* .那么,线性非齐次方程的通解为 $y = Y + y^*$.

二、二阶常系数线性微分方程的解法

如果二阶线性微分方程为

$$y'' + py' + qy = f(x) ,$$

其中p、q均为常数,则称该方程为二阶常系数线性微分方程。

1.二阶常系数线性齐次方程的解法

设二阶常系数线性齐次方程为

$$y'' + py' + qy = 0.$$

考虑到左边p, q 均为常数, 我们可以猜想该方程 具有 $y = e^{rx}$ 形式的解,其中r 为待定常数. 将 $y' = re^{rx}$, $y'' = r^2e^{rx}$ 及 $y = e^{rx}$ 代入上式,得

$$e^{rx}(r^2+pr+q)=0$$
. $r^2+3r+2=7$

由于 $e^{rx} \neq 0$,因此,只要r满足方程 $\int_{r=2}^{r=2} \int_{2}^{r} = 1$

$$r^2 + pr + q = 0. ag{5}$$

即 r 是上述一元二次方程的根时, $y = e^{rx}$ 就是 ④式的解. 方程⑤称为方程④的特征方程. 特征方程 根称为特征根.

y' + ry' + v = 0 1° 特征方程具有两个不相等的实根 $r_1 = r_2$,即 $r_1 \neq r_2$,那么,这时函数 $y_1 = e^{r_1 x}$ 和 $y_2 = e^{r_2 x}$ 都是 ④ 的解,且 $\frac{y_1}{1} = e^{(r_1 - r_2)x} \neq$ 常数,所以 $y_1 = y_2$ 线性无关,

 2° 特征方程具有两个相等的实根,即 $r_1 = r_2 = \frac{-p}{2}$. 这时,由特征根可得到常系数线性齐次方程的一个特解 $y_1 = e^{rx}$. 还需再找一个与 y_1 线性无关的特解 y_2 ,为此,设 $y_2 = u(x)y_1$,其中 u(x) 为待定函数. 将 y_2 及其一阶、二阶导数 $y'_2 = (ue^{rx})' = e^{rx}(u'(x) + ru(x))$, $y''_2 = e^{rx}(u''(x) + 2ru'(x) + r^2u(x))$,代入方程 y''+py'+qy=0中,得

$$e^{rx}[u'' + (2r+p)u' + (r^2+pr+q)u] = 0.$$

注意到 $r = \frac{-p}{2}$ 是特征方程的重根,所以有 $r^2 + pr + q = 0$ 及 2r + p = 0. 且 $e^{rx} \neq 0$, 因此只要 u(x) 满足

$$u''(x)=0,$$

则 $y_2 = ue^{rx}$ 就是 ④式的解,为简便起见,取方程 u''(x) = 0 的一个解 u = x, 于是得到方程 ④且与 $y_1 = e^{rx}$ 线性无关的解 $y_2 = xe^{rx}$. 因此,④式的通解为

$$y = C_1 e^{rx} + C_2 x e^{rx} = (C_1 + C_2 x) e^{rx}$$
.

 3° 特征方程具有一对共轭复根 $r_1 = \alpha + i\beta$ 与 $r_2 = \alpha - i\beta$. 这时有两个线性无关的特解 $y_1 = e^{(\alpha + i\beta)x}$ 与 $y_2 = e^{(\alpha - i\beta)x}$. 这是两个复数解,为了便于在实数范围内讨论问题,我们再找两个线性无关的实数解.

由欧拉公式

$$e^{ix} = \cos x + i \sin x$$

(这公式我们将在无穷级数章中补证),可得

$$y_1 = e^{\alpha x} (\cos \beta x + i \sin \beta x),$$

$$y_2 = e^{\alpha x} (\cos \beta x - i \sin \beta x)$$

于是有
$$y_1 + y_2 = e^{\alpha x} \cos \beta x$$
,
工作和 1

$$\frac{1}{2}(y_1 + y_2) = e^{\alpha x} \cos \beta x,$$

$$\frac{1}{2i}(y_1 - y_2) = e^{\alpha x} \sin \beta x.$$

由定理 1 知,以上两个函数 $e^{\alpha x} \cos \beta x$ 与 $e^{\alpha x} \sin \beta x$ 均为 ④ 式的解,且它们线性无关. 因此,这时方程 的通解为

$$y = e^{\alpha x} (C_1 \cos \beta x + C_2 \sin \beta x).$$

上述求二阶常系数线性齐次方程通解的方法称为特征根法,其步骤是:

(1) 写出所给方程的特征方程;

(2) 求出特征根;

(3) 根据特征根的三种不同情况,写出对应的特解,并写出其通解.

y'' + Py + 4 = 0 例 1 求方程 y'' - 2y' - 3y = 0 的通解.

解 该方程的特征方程为 $r^2 - 2r - 3 = 0$, 它有两个不等的实根 $r_1 = -1$, $r_2 = 3$, 其对应的两个线性无关的特解为 $y_1 = e^{-x}$ 与 $y_2 = e^{3x}$, 所以方程的通解为

$$y = C_1 e^{-x} + C_2 e^{3x}$$
.

例 2 求方程 y'' - 4y' + 4y = 0 的满足初始条件 y(0) = 1, y'(0) = 4 的特解.

解 该方程的特征方程为 $r^2 - 4r + 4 = 0$, 它有重根 r = 2. 其对应的两个线性无关的特解为 $y_1 = e^{2x}$ 与 $y_2 = e^{2x}$,所以通解为

$$y = (C_1 + C_2 x)e^{2x},$$

求得

$$y' = C_2 e^{2x} + 2(C_1 + C_2 x)e^{2x}$$
.

将 y(0) = 1, y'(0) = 4 代入上两式,得 $C_1 = 1$, $C_2 = 2$, 因此,所求特解为

$$y = (1 + 2x)e^{2x}$$
.

例 3 求方程 2y'' + 2y' + 3y = 0 的通解.

解 该方程的特征方程为 $2r^2 + 2r + 3 = 0$,它有共轭复根

$$r_{1,2} = \frac{-2 \pm \sqrt{4 - 24}}{4} = -\frac{1}{2} \pm \frac{1}{2} \sqrt{5i}$$
.

即 $\alpha = -\frac{1}{2}$, $\beta = \frac{1}{2}\sqrt{5}$, 对应的两个线性无关的解为

$$y_1 = e^{-\frac{1}{2}x} \cos \frac{\sqrt{5}}{2} x$$
, $y_2 = e^{-\frac{1}{2}x} \sin \frac{\sqrt{5}}{2} x$, 所以方程的通解为

$$y = e^{-\frac{1}{2}x} \left(C_1 \cos \frac{1}{2} \sqrt{5}x + C_2 \sin \frac{1}{2} \sqrt{5}x \right).$$

例 4 求方程 y'' + 4y = 0 的通解.

解 该方程的特征方程为 $r^2 + 4 = 0$,它有共轭 复根 $r_{1,2} = \pm 2i$. 即 $\alpha = 0$, $\beta = 2$. 对应的两个线性 无关的解 $y_1 = \cos 2x$. $y_2 = \sin 2x$. 所以方程的通解为

$$y = C_1 \cos 2x + C_2 \sin 2x.$$