

WE CLAIM:

- 1 1. A nanocomposite reinforced polymer extruded into a tube
2 having 0.001 inches to 0.500 inches inside diameter for
3 use in an intravenous catheter.
- 1 2. A reinforced polymer blend formed by extruding a
2 nanocomposite polymer with a pure virgin copolymer into
3 tubing having an inside diameter of 0.001 to 0.500
4 inches.
- 1 3. A reinforced polymer blend as defined in Claim 2
2 wherein said nanocomposite polymer includes
3 nanoparticles therein.
- 1 4. A reinforced polymer blend as defined in Claim 2
2 wherein said pure virgin copolymer comprises a reacted
3 plastic material formed from a mixture of at least two
4 individual component polymers in order to provide the
5 reinforced polymer blend with at least some mechanical
6 properties attributable to each of said individual
7 component polymers.
- 1 5. A reinforced polymer blend as defined in Claim 2
2 wherein said nanocomposite polymer and said pure virgin

3 copolymer share a common chemical segment and matrix.

1 6. A reinforced polymer blend as defined in Claim 2
2 wherein said nanocomposite polymer and said pure virgin
3 copolymer both are based upon thermoplastic polymers
4 having the same crystalline chemical form.

1 7. A reinforced polymer blend as defined in Claim 2
2 wherein said pure virgin copolymer is added to said
3 nanocomposite polymer in metered amounts to
4 predetermine the mechanical properties of the resultant
5 reinforced polymer blend so formed.

1 8. A reinforced polymer blend as defined in Claim 7
2 wherein said nanocomposite polymer and said pure virgin
3 copolymer share a common chemical family and matrix to
4 enhance predictability of the mechanical properties of
5 the resultant reinforced polymer blend so formed.

1 9. A reinforced polymer blend as defined in Claim 2
2 wherein said pure virgin copolymer includes Nylon and
3 said nanocomposite polymer include Nylon.

1 10. A reinforced polymer blend as defined in Claim 9
2 wherein said pure virgin copolymer includes Nylon 6 and
3 said nanocomposite polymer includes Nylon 6.

1 11. A reinforced polymer blend as defined in Claim 9
2 wherein said pure virgin copolymer includes Nylon 11
3 and said nanocomposite polymer includes Nylon 11.

1 12. A reinforced polymer blend as defined in Claim 9
2 wherein said pure virgin copolymer includes Nylon 12
3 and said nanocomposite polymer includes Nylon 12.

1 13. A reinforced polymer blend as defined in Claim 9
2 wherein a series of decreasing durometer blends are
3 produced with similar melting points for advantages in
4 forming composite guide catheters.

1 14. A reinforced polymer blend as defined in Claim 7
2 wherein the mechanical properties of the resultant
3 reinforced polymer blend are intermediate between the
4 mechanical properties of the pure virgin copolymer and
5 the nanocomposite polymer.

1 15. A reinforced polymer blend as defined in Claim 8
2 wherein at least some of the mechanical properties of
3 the resultant reinforced polymer blend are higher than
4 the same mechanical properties of the pure virgin
5 copolymer and the nanocomposite polymer.

1 16. A reinforced polymer blend as defined in Claim 15
2 wherein the mechanical properties include stiffness.

1 17. A reinforced polymer blend as defined in Claim 15
2 wherein the mechanical properties include dimensional
3 stability.

1 18. A reinforced polymer blend as defined in Claim 15
2 wherein the mechanical properties include outer
3 surfaces with more lubricity with reduced tendency for
4 dust contaminants to adhere thereto.

1 19. A reinforced polymer blend as defined in Claim 15
2 wherein said mechanical properties include outer
3 surfaces with enhanced lubricity for ease of catheter
4 placement and movement.

1 20. A reinforced polymer blend as defined in Claim 15
2 wherein the mechanical properties include ductility.

1 21. A reinforced polymer blend as defined in Claim 2
2 wherein said pure virgin copolymer is nylon based.

1 22. A reinforced polymer blend as defined in Claim 21
2 wherein said nanocomposite polymer is polyamide-based
3 to form a resultant reinforced polymer blend which is

4 also polyamide-based.

1 23. A reinforced polymer blend as defined in Claim 21
2 wherein said nanocomposite polymer is polyester-based
3 to form a resultant reinforced polymer blend which is
4 also polyester-based.

1 24. A reinforced polymer blend as defined in Claim 2
2 wherein said nanocomposite polymer includes 1% to 10%
3 by weight of nanoparticles with Nylon 12 and wherein
4 said pure virgin copolymer comprises Nylon 12.

1 25. A reinforced polymer blend as defined in Claim 24
2 wherein said Nylon 12 pure virgin copolymer is added to
3 said nanocomposite polymer in pre-specified amounts in
4 order to predetermine hardness of the resultant
5 reinforced polymer blend so formed.

1 26. A reinforced polymer blend as defined in Claim 4
2 wherein the resultant reinforced polymer blend so
3 formed is transparent.

1 27. A reinforced polymer blend as defined in Claim 4
2 wherein the resultant reinforced polymer blend so
3 formed is at least partially translucent.

1 28. A reinforced polymer blend as defined in Claim 4
2 wherein the resultant reinforced polymer blend so
3 formed is opaque.

1 29. A reinforced polymer blend as defined in Claim 7
2 wherein the cooling down time for the resultant
3 reinforced polymer blend is increased.

1 30. A reinforced polymer blend as defined in Claim 7
2 wherein the resultant reinforced polymer blend is
3 cooled down in a temperature controlled environment
4 having an increased temperature in order to improve
5 ductility and dimensional stability thereof.

1 31. A reinforced polymer blend as defined in Claim 7
2 wherein the resultant reinforced polymer blend is
3 cooled down in an ambient air environment.

1 32. A reinforced polymer blend as defined in Claim 7
2 wherein the draw down ratio is increased to increase
3 the final stiffness of the resultant reinforced polymer
4 blended material.

1 33. A reinforced polymer blend as defined in Claim 7
2 wherein the nanocomposite polymer increases the
3 adherence of ink used for printing on the exterior of

4 any product formed from the resultant nanocomposite
5 reinforced polymer blend material.

1 34. A reinforced homopolymer nanocomposite material with
2 prespecified strength parameters controlled by the
3 metered amount of pure virgin copolymers added thereto
4 wherein the pure virgin copolymers are similar
5 chemically to the homopolymer in the reinforced
6 homopolymer nanocomposite material.

1 35. A reinforced homopolymer nanocomposite material with
2 prespecified strength parameters as defined in Claim 34
3 wherein the resultant reinforced homopolymer
4 nanocomposite materials is formed into pellets.

1 36. An intravenous catheter or part thereof formed from
2 thermoplastic reinforced polymer tubing wherein the
3 ductility thereof is controlled by the relative amount
4 of pure virgin polymer extruded with a nanocomposite
5 reinforced copolymer.

1 37. An intravenous catheter or part thereof formed from
2 thermoplastic reinforced polymer tubing as defined in
3 Claim 36 wherein the flexibility of the intravenous
4 catheter is further controllable by controlling the
5 temperature of the pure virgin polymer and the

6 nanocomposite reinforced copolymer during extrusion.

1 38. An intravenous catheter or part thereof formed from
2 thermoplastic reinforced polymer tubing as defined in
3 Claim 36 wherein the flexibility is further
4 controllable by multilayer extrusion.

1 39. A reinforced polymer blend formed by extruding a first
2 nanocomposite polymer with a second nanocomposite
3 polymer into tubing having an inside diameter of 0.001
4 to 0.500 inches.

1 40. A reinforced polymer blend as defined in Claim 39
2 wherein said first nanocomposite polymer includes Nylon
3 6 and said second nanocomposite polymer includes a
4 Pebax-based nanocomposite.

1 41. A reinforced polymer blend formed by extruding a
2 nanocomposite polymer with a pure virgin copolymer into
3 pellets.

1 42. A reinforced polymer blend formed by blending together
2 a nanocomposite reinforced polymer and a virgin block
3 copolymer to produce a resultant reinforced copolymer
4 blend having a toughness greater than the toughness of
5 the nanocomposite reinforced polymer and having a

6 toughness greater than the toughness of the virgin
7 block copolymer.

1 43. A reinforced polymer blend as defined in Claim 42
2 wherein toughness is a mechanical property calculated
3 as the product of tensile strength and elongation to
4 break rating.

1 44. A reinforced polymer blend as defined in Claim 42
2 wherein the virgin block copolymer comprises Nylon
3 based.

1 45. A reinforced polymer blend as defined in Claim 44
2 wherein the virgin block copolymer comprises Pebax
3 7233.

1 46. A reinforced polymer blend as defined in Claim 44
2 wherein the virgin block copolymer comprises Pebax
3 2533.

1 47. A reinforced polymer blend as defined in Claim 42
2 wherein the nanocomposite reinforced polymer is Nylon
3 based.

1 48. A reinforced polymer blend as defined in Claim 47
2 wherein the nanocomposite reinforced polymer is based

3 on Nylon 12.

1 49. A reinforced polymer blend as defined in Claim 42
2 wherein the strength and modulus of the resultant
3 reinforced copolymer blend is maintained at a value
4 intermediate between the strength and modulus values of
5 the nanocomposite reinforced polymer and the virgin
6 block copolymer.

1 50. A reinforced polymer blend as defined in Claim 42
2 wherein said nanocomposite reinforced polymer includes
3 nanoparticles of less than 20% by weight.

1 51. A reinforced polymer blend as defined in Claim 42
2 wherein said nanocomposite reinforced polymer and said
3 virgin block copolymer are blended together with equal
4 amounts by weight.

1 52. A reinforced polymer blend as defined in Claim 42
2 wherein said nanocomposite reinforced polymer has
3 approximately 5% nanoparticles by weight.

1 53. A reinforced polymer blend as defined in Claim 42
2 wherein the resultant reinforced polymer blend contains
3 approximately 5% nanoparticles by weight.

1 54. A reinforced polymer blend as defined in Claim 51
2 wherein the resultant reinforced polymer blend contains
3 approximately 2.5% nanoparticles by weight.

1 55. A reinforced polymer blend formed by extruding a
2 nanocomposite polymer with its analogous pure virgin
3 polymer into tubing having an inside diameter of 0.001
4 to 0.500 inches.

1 56. A method of producing a polymeric material with
2 prespecified stress and strain parameters by diluting
3 of a reinforced nanocomposite polymer blend with pure
4 virgin thermoplastic polymers.

1 57. The method of producing a polymeric material with
2 prespecified stress and strain parameters as defined in
3 Claim 56 wherein the resultant produced polymeric
4 material is extruded into tubular shape having an
5 inside diameter of 0.001 to 0.500 inches.

1 58. The method of producing a polymeric material with
2 prespecified stress and strain parameters as defined in
3 Claim 56 wherein the resultant produced polymeric
4 material is extruded into pellets.

1 59. The method of producing a polymeric material with
2 prespecified stress and strain parameters as defined in
3 Claim 57 wherein said extruding is performed within
4 prespecified temperature conditions to produce the
5 resultant polymeric material with prespecified stress
6 and strain parameters.

1 60. The method of producing a polymeric material with
2 prespecified stress and strain parameters as defined in
3 Claim 59 wherein the extruding is performed at a
4 temperature between 40 degrees to 100 degrees
5 Fahrenheit.

1 61. The method of producing a polymeric material with
2 prespecified stress and strain parameters as defined in
3 Claim 56 wherein the reinforced nanocomposite polymer
4 blend is a polyamide-based thermoplastic nanocomposite.

1 62. The method of producing a polymeric material with
2 prespecified stress and strain parameters as defined in
3 Claim 56 wherein the pure virgin thermoplastic polymer
4 is Nylon-based.

1 63. The method of producing a polymeric material with
2 prespecified stress and strain parameters as defined in
3 Claim 61 wherein the polyamide-based thermoplastic

4 nanocomposite is based on Nylon and the pure virgin
5 thermoplastic polymer is a polyether block amide.

1 64. The method of producing a polymeric material with
2 prespecified stress and strain parameters as defined in
3 Claim 63 wherein the polyamide nanocomposite is based
4 on Nylon 11.

1 60. The method of producing a polymeric material with
2 prespecified stress and strain parameters as defined in
3 Claim 63 wherein the polyamide nanocomposite is based
4 on Nylon 12.

1 66. The method of producing a polymeric material with
2 prespecified stress and strain parameters as defined in
3 Claim 63 wherein the polyamide nanocomposite is based
4 on Nylon 6.