Chemistry 123: Exam 1B

The 66 pts exam consists of 6 questions and students have the whole class period to complete the exam. Answers must be written in the box provided or else no credit is provided. Use the empty space provided to do your work. A periodic table is provided at the end. Fill in your name along with your student ID number.

Problem 1: Empirical and Molecular Formulas Caffeine, a stimulant in coffee and tea, has a molar mass of 194.19 g/mol and a mass percentage composition of 49.48% C, 5.19% H, 28.85% N, and 16.48% O. (8 pts)

(a) Determine the empirical formula

(b) What is the molecular formula of caffeine?

Problem 2: Balancing Chemical Equations Balance the following chemical equations. (6 pts)

(a)
$$C_3H_4(g) + O_2(g) \rightarrow CO_2(g) + H_2O(g)$$

- (b) $H_3PO_4(aq) + Ca(OH)_2(aq) \rightarrow Ca_3(PO_4)_2(s) + H_2O(l)$
- $(c)\ \operatorname{Li}(s) \,+\, \operatorname{H}_2\operatorname{O}(l) \,\to\, \operatorname{LiOH}(aq) \,+\, \operatorname{H}_2(g)$

Problem 3: Significant Figures and Unit Conversion Convert the following units and perform the following calculations reporting the correct significant figures.(12 pts)

(a) $8.58 \text{ cHz to } \mu\text{Hz}$

(b) 8.16 dag/L to dg/mL

(c) 1 m^3 to L (Hint : $1 \text{ mL} = 1 \text{ cm}^3$)

(d) 4.2 MJ to nJ

(e) $\frac{67.12 + 52.013}{45.1} =$

(f)

 $5.192 \times 10^2 - 1.024 \times 10 =$

Problem 4 : Precipitation and REDOX Reactions

Pre (8 p	cipitation reaction: Answer the following questions when mixing FeCl ₃ (aq) and KOH(aq). ts)									
(i)	Write the balanced chemical equation when mixing $FeCl_3(aq)$ and $KOH(aq)$. Include the states.									
(ii) Write the complete ionic equation.										
(iii)	iii) What are the spectator ions?									
(iv)	Write the net ionic equation.									
$rac{\mathbf{REI}}{\mathrm{pts}}$	DOX reaction: Answer the following questions given the balanced chemical equation. (10									
	$\mathrm{Cu(s)} + 2 \; \mathrm{AgNO_3(aq)} \rightarrow 2 \; \mathrm{Ag(s)} + \mathrm{Cu(NO_3)_2(aq)}$									
(i)	What are the oxidation states for each atom on the reactant side?									
(ii)	What are the oxidation states for each atom on the product side?									
(11)	What are the oxidations states for each atom on the product side.									
(iii)	What is the oxidizing agent?									
(iv)	What is the reducing agent?									
(v)	From which atom to which atom, is the electron being transferred?									

Problem 5 : Nomenclature Provide either the chemical formula or compound name for the following. (12 pts)

(a)	Vanadium(V) acetate
(b)	$Sr(C_2H_3O_2)_2$
(c)	HClO ₃
(d)	$(NH_4)_2SO_4$
(e)	Carbonic acid
(f)	Sodium bicarbonate
(g)	AuP
(h)	SF_6
(*)	
(i)	Potassium cyanide
(*)	
(j)	Diphosphorus pentoxide
(1-)	SO.
(K)	SO_2
(1)	$\mathrm{Bi}(\mathrm{NO}_3)_3$
(1)	

Problem 6: Relative Atomic Mass and Molar Mass Boron has only two naturally occurring isotopes (Boron-10 and Boron-11). The mass of Boron-10 is 10.01294 amu and the mass of Boron-11 is 11.00931 amu.(10 pts)

(a) Calculate the relative abundance of each isotope. Hint: There are two equations required.

- (b) Taking the amu of boron from the periodic table, show conversion from amu to molar mass
- (g/mol). (1 amu = 1.661×10^{-27} kg)

Chemistry 123 : Apppendix 2 - Formulas and Constants

$$N_A=6.022 imes 10^{23} {
m particles/mol}$$
 weighted average $=A_1I_1+A_2I_2+\ldots$ $A_1+A_2+\ldots=1$

2 Helium 4.003	Neon 20.180	18 Ar Argon 39.948	36 Krypton 83.798	54 Kenon 131.293	Rn Padon [222]	00 00 09anes son [294]		
	9 Fluorine 18.998	Chorine 35.45	35 Br Bromine 79.904	53 — lodine 126,904	At Astatine [210]	117 5 Ennes sine [293]		
	8 Oxygen 15.999	16 S uffur 32.06	Selenium 78.97	53 E Tellurium 127.60	84 PO Polonium [209]	116 LV Livermorium [293]		
				51 Sb Antimony 121.760			70 Yb xterbium 173.045	
	6 Carbon 12.011	28.085	32 Ge Germanium 72.630	50 Tm 118.710	82 Pb Lead 207.2	114 Flerovium [289]		
	5 Boron 10.81	13 A I Aluminum 26.982	31 Gallium 69.723	49	81 Thallium 204.38	Nhonium [286]		
			30 Zinc zinc 65.38	48 Cd Cadmium 112.414	81 Hg Mercury 200.592	Cn Coperacium [285]		
			29 Comper 63.546	47 Ag silver 107.868	80 AU 604 196.997	Roentgenium [281]		
			28 Nickel 58.693	Pd Palladium 106.42	79 Platinum 195.084	DS Darmstackiun [281]	65 Tb Ferbium 158.925	97 Bk Berkelium [247]
			27 CO cobalt 58.933	45 Rh Rhodium 102:906	78	109 Meitnerium [278]		
			26 Feb	Ruthenium 101.07	76 OSmium 190.23	108 Hassium [270]	63 EU Europium 151.964	95 Am Americium [243]
			25 Mn Manganes e 54.938	43 E Fechnetium [97]	75 Re Rhenium 186.207	Bohrium [270]	62 Samarium 150.36	94 Plutonium [244]
				42 MO Molybdenum 95.95			Pm Promethium [145]	
			23 Vanadium 50.942	41 Nbinim Nobium 92.906	73 D Tantalum 180.948	105 Db Dubnium [270]		92 Unanium 238.029
			22 ———————————————————————————————————	40 Z r zirconium 91.224	72 Hafnium 178.49	Rutherfordium [267]	59 Pr Praseodymium 140.908	91 Pa Protactinium 231.036
			Scandium 44.956	39 Yttrium 88.906	71 LU Lutetium 174.967		58 Cerium 140.116	90 Th Thorium 232.038
					* 57 - 70	** 89 - 102	57 La Lanthanum 138.905	89 AC Actinium [227]
	Beryllium	12 Mg Magnesium 24.305	20 Cakium 40.078	Strontium 87.62				
1 Hydrogen 1.008	3 Lithium 6.94	Na Sædium 22.990	19 K	Rubidium 85.468	55 Cestum 132.905	87 Fr Fancium [223]	*Lanthanide series	**Actinide series