

De l'ordinateur au processus : rôle d'un système

CSC 3102

Introduction aux systèmes d'exploitation Gaël Thomas

Présentation du cours

- Contexte du cours :
 - Introduire notre objet d'étude : les systèmes d'exploitation
- Objectifs:
 - Comprendre ce qu'est un ordinateur
 - Comprendre ce qu'est un système d'exploitation
 - Comprendre ce qu'est un processus
 - Comprendre ce que sont une application et un logiciel
- Notions abordées :
 - Ordinateur, mémoire, processeur, périphérique, système d'exploitation, processus, communication, application, logiciel

I. Qu'est ce qu'un ordinateur?

Définition d'un ordinateur

 Machine électronique capable d'exécuter des instructions effectuant des opérations sur des nombres

1946 : ENIAC (calculateur à tubes 30 tonnes, 72m² pour 330 mult/s)

Définition d'un ordinateur

 Machine électronique capable d'exécuter des instructions effectuant des opérations sur des nombres

Janv 1948 : SSEC (premier ordinateur chez IBM) avec une capacité mémoire de 150 nombres

Définition d'un ordinateur

 Machine électronique capable d'exécuter des instructions effectuant des opérations sur des nombres

Schéma de haut niveau d'un ordinateur

- Processeur : unité qui s'occupe d'exécuter les instructions
- Mémoire vive : support stockant les données de travail du processeur
 - Accès rapide, données perdues en cas de coupure électrique.

 Par exemple : SDRAM (Synchronous Dynamic Random Access Memory)
- Périphériques : objets fournissant ou stockant des données secondaires
 - Réseau, disque dur, souris, clavier, carte graphique, carte son...

Schéma de haut niveau d'un ordinateur

Qu'est ce que la mémoire vive

Mémoire vive : ensemble de cases numérotées contenant des octets

Une case contient un octet (byte en anglais) = regroupe 8 bits Case 2

0101 1001b Case 1

0110 0001b

1111 0000b Case 3

0110 0001b

1100 1011b

Bit: valeur valant 0 ou 1

0 : bit non chargé ("courant ne passe pas")

1 : bit chargé ("courant passe")

Case 800

Case 0

Un octet permet de représenter $2^8 = 256 \text{ valeurs}$

Représentation des nombres

Notation décimale : un chiffre peut prendre 10 valeurs de 0 à 9

$$276 = 2*10^2 + 7*10^1 + 6*10^0$$

□ Notation binaire : un chiffre peut prendre 2 valeurs de 0 à 1

$$1101b = 1^2^3 + 1^2^2 + 0^2^1 + 1^2^0 = 13$$

□ Notation hexadécimale : un chiffre peut prendre 16 valeurs de 0 à f

$$0x276 = 2*16^2 + 7*16^1 + 6*16^0 = 630$$

 $0xb6 = 11*16^1 + 6*16^0 = 182$

L'hexadécimal en informatique

- Avec 4 bits, on encode 16 valeurs, soit 1 chiffre hexadécimal
- L'hexadécimal est donc plus concis pour représenter les valeurs des octets
- Un octet est représenté par2 chiffres hexadécimaux

Case 0	1110 0001b						
Case 1	0101 1001b						
Case 2	0110 0001b						
Case 3	1111 0000b						
	:						
ase 800	1100 1011b						

L'hexadécimal en informatique

- Avec 4 bits, on encode 16 valeurs, soit 1 chiffre hexadécimal
- L'hexadécimal est donc plus concis pour représenter les valeurs des octets
- Un octet est représenté par2 chiffres hexadécimaux

Case 0	0xe1					
Case 1	0x59					
Case 2	0x61					
Case 3	0xf0					
	:					
Case 800	0xc3					

Que représentent les octets

- Une série d'octets peut représenter :
 - Un entier naturel (dans N)
 - Un entier relatif (dans Z)
 - Une suite de caractères
 - Une valeur de vérité (vrai ou faux)
 - Un nombre flottant
 - Un nombre complexe
 - Une instruction machine

Case 0	0xe1				
Case 1	0x59				
Case 2	0x61				
Case 3	0xf0				
	• •				
ase 800	0xc3				

Ou tout autre ensemble énumérable

Qu'est ce qu'un processeur

- Un processeur exécute des instructions qui peuvent
 - Effectuer des calculs
 - Accéder à la mémoire
 - Accéder aux autres périphériques
 - Sélectionner l'instruction suivante à exécuter (saut)
- Le processeur identifie une instruction par un numéro (Par exemple : 1 = additionne, 2 = soustrait etc...)

0x4883c02a

le nombre 42 encodé en hexadécimal (42 = 2*16 + 10)

L'instruction d'ajout à %rax de l'entier qui suit

%rax = un registre du processeur (registre = donnée de travail interne du processeur)

%rax vaut 0

Processeur

Remarque: \$ indique qu'on ajoute 42 et non la valeur contenue dans la case 42 en mémoire

Ma seconde instruction

Ma seconde instruction

Copie la valeur du registre %rax dans la 800e case de la mémoire vive

20

Ma seconde instruction

0x48890425 0x00000320

mov %rax, 800

Copie la valeur du registre %rax dans la 800e case de la mémoire vive

Exécute 0x48890425 0x00000320

Où sont les instructions

- Les instructions sont stockées dans la mémoire vive
- Le processeur possède un registre indiquant l'instruction courante (registre d'instruction appelé %rip)
- Le processeur effectue une boucle qui
 - Charge l'instruction en cours dans un registre du processeur
 - Change l'instruction en cours pour la suivante
 - Exécute l'instruction

Exécution séquentielle

%rip: registre du processeur indiquant où est l'instruction suivante

Un processeur exécute les instructions qui se suivent

Exécution séquentielle

%rip: registre du processeur indiquant où est l'instruction suivante

Un processeur exécute les instructions qui se suivent

Exécution séquentielle

%rip: registre du processeur indiquant où est l'instruction suivante

Un processeur exécute les instructions qui se suivent

Instructions de saut

- Un processeur exécute les instructions qui se suivent
 Sauf pour les instructions de saut
- Instruction de saut : instruction qui indique où est le prochain %rip
 - Saut inconditionnel: affecte %rip sans condition
 - Saut conditionnel : affecte %rip sous condition (par exemple si égalité entre deux valeurs)

Ce qu'il faut retenir

- Une machine est constituée d'un processeur, d'une mémoire vive et de périphériques
- Un processeur exécute de façon séquentielle des instructions qui se trouvent en mémoire
 - Chaque instruction est identifiée par un numéro, elle peut
 - Effectuer une opération sur des variables internes (registres)
 - Lire ou écrire en mémoire ses registres
 - Accéder à un périphérique
 - Modifier la prochaine instruction à effectuer (saut)

II. Logiciels et programmes

L'ordinateur vu par l'utilisateur

- □ L'utilisateur installe des logiciels
 Microsoft office, Chrome, Civilization V...
- Logiciel = ensemble de fichiers
 - Fichiers ressources : images, vidéos, musiques...
 - Fichiers programmes : ensemble d'opérations et de données destiné à être exécuté par un ordinateur
- In fine, l'utilisateur lance l'exécution de programmes Excel, Word, Chrome, Civilization V, CivBuilder (permet de construire des cartes pour civilization V)...

De l'ordinateur au processus

Qu'est ce qu'un programme

□ Programme binaire =

Ensemble d'instructions exécutables par le processeur + des données manipulées par ces instructions

□ Programme source =

Ensemble d'opérations abstraites décrivant les actions à effectuer + des données manipulées par ces opérations

Exécution d'un programme binaire

Un binaire doit être chargé en mémoire pour être exécuté
 Chargé à partir du disque dur, du réseau, d'un autre périphérique

Exécution d'un programme binaire

Un binaire doit être chargé en mémoire pour être exécuté
 Chargé à partir du disque dur, du réseau, d'un autre périphérique

Exécution d'un programme binaire

Un binaire doit être chargé en mémoire pour être exécuté
 Chargé à partir du disque dur, du réseau, d'un autre périphérique

L'exécution du programme peut alors démarrer

Bus de communication de l'ordinateur

Exécution d'un programme source

Solution 1 : après une traduction vers un programme binaire

En informatique le traducteur s'appelle un compilateur

Exécution d'un programme source

 Solution 2 : en le faisant interpréter par un autre programme (appelé interpréteur)

Quelques exemples de programmes

- □ Word, Excel ou Chrome sont des programmes binaires
- □ En général, dans un logiciel de jeux
 - Le jeu lui-même est un programme binaire
 - Capable d'interpréter les mods qui, eux, sont directement des programmes sources (mod = extension du jeu)
- Les applications Android sont
 - Interprétées avant Android KitKat (version 4.4)
 - Compilées dès qu'elles sont installées depuis Android KitKat
- Les pages Web interactives sont interprétées

Processus et système

Du programme au processus

- Un processus est un programme en cours d'exécution
 - Contient bien sûr les opérations du programme
 - Mais aussi son état à un instant donné
 - Données en mémoire manipulées par le programme
 - État des registres du processeur
 - État des périphériques (fichiers ouverts, connexions réseaux...)

Gestion des processus

- Le système est un logiciel particulier qui gère les processus (Le système est le seul programme qu'on n'appelle pas processus quand il s'exécute...)
- Rôle du système
 - Démarrer un processus

 (en chargeant le binaire ou l'interpréteur adéquat)
 - Arrêter un processus
 - Offrir une vision abstraite du matériel aux processus
 - Offrir des mécanismes de communication inter-processus (IPC)

Architecture globale à l'exécution

Naissance des premiers systèmes UNIX

- □ 1969 : première version d'UNIX en assembleur
- 1970 : le nom UNIX est créé
- 1971 : invention du C pour réécrire UNIX dans un langage de haut niveau

Ken Thompson

Dennis Ritchie

Brian Kernighan

Objectif du module

- Étude des systèmes Unix par l'exemple
- À l'aide du langage bash (Cl1 et 4)
 - Langage interprété par le programme bash
 - Langage spécialisé dans la gestion de processus
- Comprendre
 - La notion de fichier (CI2 et 3)
 - La notion de processus (CI5)
 - Des mécanismes de communication inter-processus (CI6 à 8)
 - La notion de virtualisation (CI9)

Notions clés du cours

- Un ordinateur
 - Est composé de : mémoire, processeur, périphérique et bus
 - Un processeur exécute des instructions se trouvant en mémoire
- ☐ Un logiciel contient des fichiers
 - Ressources (images, sons, textures...)
 - Programmes (source et/ou binaire)
- Un programme est une suite d'opérations + des données
- Un processus est un programme en cours d'exécution
 - Opérations + état à un instant donné
- Le système gère les processus et abstrait le matériel

De l'ordinateur au processus

Annexe : représentation des données

Représentation des entiers

 Les octets sont regroupés pour former des valeurs entières

(souvent par 1, 2, 4 ou 8 octets)

 Peut être vu comme un naturel (dans N)

$$0xe159 = 14*16^3 + 1*16^2 + 5*16 + 9$$

 $\Rightarrow 0x159 \text{ représente } 57689$

Ou comme un relatif (dans Z)

$$0xe159 + 0x1ea7 = 0x0000 + une retenue$$

0x1ea7 est donc l'inverse de 0xe159

$$0x1ea7 = 1*16^3 + 14*16^2 + 10*16 + 7 = 7847$$

⇒ 0xe159 représente -7847

Le nombre 0xe159

Représentation des valeurs de vérités

- □ Booléen : valeur pouvant valoir vrai ou faux
- Une valeur vrai

- Peut être stocké sur 1 bit, 1 octet,2 octets, 4 octets, 8 octets...
- Convention :
 - 0 vaut faux
 - Toute autre valeur vaut vrai

Représentation des caractères

- Un octet peut être vu comme un caractère
- Table ascii pour faire la correspondance

0x1f	4	0x41	A	0x61	a
0x20	، ،	0x42	В	0x62	b
		0x43	С	0x63	c
0x30	0	0x44	D	0x64	d
0x31	1	0x45	Е		e
0x32	2	0x46	F	0x66	f
0x33	3	0x47	G	0x67	g
	•••			•••	

