Sampling methods and MCMC

Course of Machine Learning Master Degree in Computer Science University of Rome "Tor Vergata"

a.a. 2020-2021

Giorgio Gambosi

General issue

How can we sample from any distribution, especially if we do not have an analytical representation of it?

Sampling: easy case

Assume we know p(x): we wish to find a function f(z) such that if $z\sim U(0,1)$, then $f(z)\sim p(z)$.

- ▶ This is equivalent to saying that for each $z \in [0,1]$ the cumulative probability of z wrt to the uniform distribution, which is $P_U(\zeta \leq z) = z$ itself, should be equal to the cumulative probability of f(z) wrt p(z), that is $P_p(\zeta \leq f(z))$
- ► that is,

$$z = \int_0^z d\zeta = \int_{-\infty}^{f(z)} p(\zeta)d\zeta = P_p(f(z))$$

as a corollary, since it results $z=P_p(f(z)),$ we have that $f(z)=P_p^{-1}(z)$

Sampling in the easy case: an example

Example

Given $\mathcal{R},$ we use it to produce exponentially distributed values, that is values distributed according to

$$p(x|\lambda) = \lambda e^{-\lambda x}, 0 \le x < \infty$$

The exponential cumulative distribution is

$$P(x) = \int_0^x \lambda e^{-\lambda \xi} d\xi = 1 - e^{-\lambda x}$$

by setting $z = P(f(z)) = 1 - e^{-\lambda f(z)}$ we get

$$e^{-\lambda f(z)} = 1 - z$$
$$-\lambda f(z) = \ln(1 - z)$$
$$f(z) = -\frac{1}{\lambda} \ln(1 - z)$$

Sampling on general distributions

Approaches

Applying the above method is possible only for simple distributions. In most cases, you cannot immediately derive values distributed according to $p(\boldsymbol{x})$

Many sampling methods have been introduced

- ► rejection sampling
- ► importance sampling
- ► adaptive rejection sampling
- sampling-importance-sampling
- ▶ ..

Markov chains

Definition

Given a (possibly infinite) sequence of random variables $\mathbf{X} = (X_0, X_1, \ldots)$ and a state space \mathcal{X} of possible values for all $X_i \in \mathbf{X}$, a Markov chain on \mathbf{X} is a stochastic process which defines for each ordered pair $\langle x_i, x_j \rangle \in \mathcal{X}^2$, a probability p_{ij} of transition from x_i to x_j such that $p(X_t = x_i | X_{t-1} = x_j) = p_{ij}$, for all t > 0.

State probability

Given an initial state, that is a vaue assigned to X_0 , the distribution $p(X_t = x_j | X_0 = x_k)$ of each random variable X_t on the set of state can be easily obtained (by matrix multiplication).

Markov chains

Stationary distribution

Under suitable conditions on its structure, a Markov chain is ergodic, that is the probability $p(X_t = x_i | X_0 = x_k)$, as $n \to \infty$,

▶ is independent from the initial state

$$p(X_t = x_j | X_0 = x_k) = p(X_t = x_j)$$

► is stationary

$$p(X_t = x_j) = p(X_{t+1} = x_j)$$

Markov chain Montecarlo (MCMC)

Idea

Given a hard to sample distribution p(x), derive an ergodic Markov chain such that:

- \blacktriangleright its transition probability $q(x_i|x_{i-1})$ is easy to sample
- ightharpoonup its stationary distribution is p(x)

Markov chain Montecarlo (MCMC)

Ho to use it?

Given the Markov chain,

- ightharpoonup a sequence of random transitions is performed, starting from any initial state (value of x).
- ► apply a certain number of initial transitions (burn-in time)
- ▶ after that, at each step the value \overline{x} reached by the MC is tested wrt a predefined criterion: if the test is positive, the value is returned

The returned values are (approximately) distributed as p(x): hence their sequence can be used as a sequence of samplings from p(x)

MCMC methods

Several MCMC methods have been defined, differing each other by the structure of the chain and the acceptance criterion applied.

Metropolis algorithm

Idea

After the burning time, let $x^{(i-1)}$ be the current state and let \overline{x} be the value produced by a random transition from $x^{(i-1)}$, obtained by sampling $q(x|x^{(i-1)})$

 $\overline{\boldsymbol{x}}$ is accepted, and returned as a sample, with probability

$$A(\overline{x}, x^{(i-1)}) = \min \left(1, \frac{p(\overline{x})}{p(x^{(i-1)})}\right)$$

Notice that if \overline{x} has higher probability than $x^{(i-1)}$ with respect to the target distribution p(x), it is accepted, while if its probability is smaller, it is accepted with probability equal to the ratio between them.

If \overline{x} is accepted, then $x^i=\overline{x}$ becomes the current state, otherwise the current state is not modified, that is $x^{(i)}=x^{(i-1)}$)

Note

Observe that the same holds if $\pi(x) = Kp(x)$ is applied in the definition $\mathfrak{g}_{/1}$

Metropolis-Hastings algorithm

Idea

- ▶ Applied for non symmetric q(x|x')
- ► In this case.

$$A'(x,x') = \min\left(1, \frac{p(x)q(x'|x)}{p(x')q(x|x')}\right)$$

Gibbs sampling

Use

Gibbs sampling is a MCMC applied in cases when:

- ightharpoonup x has dimensionality at least 2, $\mathbf{x}=(x_1,\ldots,x_m)$, with m>1
- ▶ for all $i=1,\ldots,m$, the conditional distribution $p(x_i|\mathbf{x}_{-i})$ is easy to sample, where $\mathbf{x}_{-i}=\{x_1,\ldots,x_{i-1},x_{i+1},\ldots,x_m\}$

Idea

Instead of sampling the next state in a single step from $q(\mathbf{x}|\mathbf{x}')$, a sequence of m transitions is sampled, each wrt a component x_i of \mathbf{x} and to distribution $p(x_i|\mathbf{x}_{-i})$.

The basic idea in Gibbs sampling is that rather than probabilistically picking the next state of all at once, a separate probabilistic choice is performed for each of the m dimensions, with each choice depending on the other k-1 dimensions.

MCMC and bayesian models

 MCMC can be applied (as it frequently happens) in bayesian inference by observing that the posterior distribution is defined as

$$p(\theta|\mathbf{X}) = \frac{p(\mathbf{X}|\theta)p(\theta)}{p(\mathbf{X})} = \frac{p(\mathbf{X}|\theta)p(\theta)}{Z}$$

where Z is usually hard to compute

- ▶ Let us remind that MCMC is able to sample a distribution $p(\mathbf{x})$ assuming that a proportional function $\pi(\mathbf{x}) = Kp(\mathbf{x})$ can be evaluated, for any unknown K
- ► Thus, samples of the posterior distribution of parameters can be obtained if both the prior $p(\theta)$ and the likelihood $p(\mathbf{X}|\theta) = \prod_i p(\mathbf{x}_i|\theta)$ can be evaluated for any value θ

Sampling the evidence

► Actually, the evidence

$$p(\mathbf{X}) = \int p(\mathbf{X}|\theta)p(\theta)d\theta$$

could be explicitly evaluated, if necessary, as the average of a set of \boldsymbol{m} values

$$p(\mathbf{X}|\theta_i)$$
 $i = 1, \dots, m$

computed from the set of samples $\theta_1, \ldots, \theta_m$ of $p(\theta)$

Sampling the predictive distribution

► For what regards the predictive distribution

$$p(\mathbf{x}|\mathbf{X}) = \int_{\theta} p(\mathbf{x}|\theta) p(\theta|\mathbf{X}) d\theta$$

the same considerations apply, averaging the set of values

$$p(\mathbf{x}|\theta_i)$$
 $i=1,\ldots,m$

computed from the set of samples $\theta_1, \dots, \theta_m$ of the posterior distribution $p(\theta|\mathbf{X})$