WiZoom: Accurate Multipath Profiling using Commodity WiFi Devices with Limited Bandwidth

Hua Xue, Jiadi Yu, Yanmin Zhu, Li Lu, Shiyou Qian,
Minglu Li
Shanghai Jiao Tong University

Motivation

Motivation

Motivation

Challenge: Resolution

Challenge: Resolution

Remind: Resolution of AoA

Mode vectors:

$$a(\theta_1) = [1 e^{j2\pi d\cos\theta_1/\lambda} e^{j2\pi 2d\cos\theta_1/\lambda}]$$

$$a(\theta_2) = [1 e^{j2\pi d\cos\theta_2/\lambda} e^{j2\pi 2 d\cos\theta_2/\lambda}]$$

MUSIC for AoA:

$$X = AF + W$$
 $A = [a(\theta_1)' a(\theta_2)']$

Increasing the length of mode vectors can improve the resolution of AoA.

[M. Kataru et al. SIGCOMM'15] increases the length of mode vectors by incorporating different subcarriers:

$$A = \begin{bmatrix} 1 & 1 & & & & \\ e^{j2\pi\Delta_{f}t_{1}} & & & e^{j2\pi\Delta_{f}t_{2}} \\ e^{j2\pi2\Delta_{f}t_{1}} & & & e^{j2\pi2\Delta_{f}t_{2}} \\ \vdots & & & \vdots \\ e^{j2\pi d\cos\theta_{1}/\lambda} & & e^{j2\pi d\cos\theta_{2}/\lambda} \\ e^{j2\pi(d\cos\theta_{1}/\lambda+\Delta_{f}t_{1})} & & e^{j2\pi(d\cos\theta_{2}/\lambda+\Delta_{f}t_{2})} \\ e^{j2\pi(d\cos\theta_{1}/\lambda+2\Delta_{f}t_{1})} & & e^{j2\pi(d\cos\theta_{2}/\lambda+2\Delta_{f}t_{2})} \\ \vdots & & & \vdots \\ e^{j2\pi2d\cos\theta_{1}/\lambda} & & e^{j2\pi(2d\cos\theta_{2}/\lambda+2\Delta_{f}t_{2})} \\ e^{j2\pi(2d\cos\theta_{1}/\lambda+2\Delta_{f}t_{1})} & & e^{j2\pi(2d\cos\theta_{2}/\lambda+2\Delta_{f}t_{2})} \\ e^{j2\pi(2d\cos\theta_{1}/\lambda+2\Delta_{f}t_{1})} & & e^{j2\pi(2d\cos\theta_{2}/\lambda+2\Delta_{f}t_{2})} \\ \vdots & & & \vdots \\ e^{j2\pi(2d\cos\theta_{1}/\lambda+2\Delta_{f}t_{1})} & & e^{j2\pi(2d\cos\theta_{2}/\lambda+2\Delta_{f}t_{2})} \\ \vdots & & & \vdots \\ \vdots & & & \vdots \\ e^{j2\pi(2d\cos\theta_{1}/\lambda+2\Delta_{f}t_{1})} & & e^{j2\pi(2d\cos\theta_{2}/\lambda+2\Delta_{f}t_{2})} \\ \vdots & & & \vdots \\ \vdots & & & \vdots \\ e^{j2\pi(2d\cos\theta_{1}/\lambda+2\Delta_{f}t_{1})} & & e^{j2\pi(2d\cos\theta_{2}/\lambda+2\Delta_{f}t_{2})} \\ \vdots & & & \vdots \\ \vdots & & & \vdots \\ e^{j2\pi(2d\cos\theta_{1}/\lambda+2\Delta_{f}t_{1})} & & e^{j2\pi(2d\cos\theta_{2}/\lambda+2\Delta_{f}t_{2})} \\ \vdots & & & \vdots \\ \vdots & & & \vdots \\ e^{j2\pi(2d\cos\theta_{1}/\lambda+2\Delta_{f}t_{1})} & & e^{j2\pi(2d\cos\theta_{2}/\lambda+2\Delta_{f}t_{2})} \\ \vdots & & & \vdots \\ \vdots & & & \vdots$$

Remind: Resolution of AoA

The Analogy

- AoA estimation
 - AoA introduces phase shift across different antennas.
 - Apply MUSIC using antennas as sensors.
 - Improve resolution:
 Increase the number of sensors by incorporating subcarriers.

ToA estimation

- ToA introduces phase shift across different subcarriers.
- Apply MUSIC using subcarriers as sensors.
- Improve resolution:
 Increase the number of sensors by incorporating antennas.

The Analogy

- AoA estimation
 - AoA introduces phase shift across different
 - Apply Nantenn

antenn

- Improv
 - Increase the number of sensors by incorporating **subcarriers**.

- ToA estimation
 - ToA introduces phase shift across different

WiZoom uses this analogy and allocates all the resolution power to ToA estimation.

Increase the number of sensors by incorporating antennas.

sing

on:

sensors.

Estimate ToA

Signal model:

$$X = AF + W$$

$$A = \begin{bmatrix} 1 & 1 & \dots & 1 \\ e^{j2\pi\Delta_{f}t_{1}} & e^{j2\pi\Delta_{f}t_{2}} & \dots & e^{j2\pi\Delta_{f}t_{k}} \\ e^{j2\pi2\Delta_{f}t_{1}} & e^{j2\pi2\Delta_{f}t_{2}} & \dots & e^{j2\pi2\Delta_{f}t_{k}} \\ \vdots & \vdots & \dots & \vdots \\ e^{j2\pi n\Delta_{f}t_{1}} & e^{j2\pi n\Delta_{f}t_{2}} & \dots & e^{j2\pi n\Delta_{f}t_{k}} \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & \dots & 1 \\ e^{j2\pi\Delta_{f}t_{1}} & e^{j2\pi\Delta_{f}t_{2}} & \dots & e^{j2\pi\Delta_{f}t_{k}} \\ e^{j2\pi2\Delta_{f}t_{1}} & e^{j2\pi2\Delta_{f}t_{2}} & \dots & e^{j2\pi2\Delta_{f}t_{k}} \\ \vdots & \vdots & \dots & \vdots \\ e^{j2\pi n\Delta_{f}t_{1}} & e^{j2\pi n\Delta_{f}t_{2}} & \dots & e^{j2\pi n\Delta_{f}t_{k}} \end{bmatrix} \quad Z$$

$$X = \begin{bmatrix} h(f_{1}) & h(f_{2}) & \dots & h(f_{M}) \\ h(f_{M+1}) & h(f_{M+2}) & \dots & h(f_{2M}) \\ h(f_{2M+1}) & h(f_{2M+2}) & \dots & h(f_{3M}) \\ \vdots & \vdots & \dots & \vdots \\ h(f_{NM}) & h(f_{(N-1)M+1}) & \dots & h(f_{NM}) \end{bmatrix} \quad Z$$

#Subcarriers = N * M

MUSIC is applied to estimate (t 1, ..., t k)

Estimate ToA

Combine multiple antennas to improve resolution

Channels of different antennas are uncorrelated linear combinations of multipath components.

The difference of ToAs between different antennas can be ignored.

Estimate ToA

Combine multiple antennas to improve resolution

$$X = \begin{bmatrix} h_1(f_1) & \dots & h_1(f_M) & h_2(f_1) & \dots & h_2(f_M) & \dots \\ h_1(f_{M+1}) & \dots & h_1(f_{2M}) & h_2(f_{M+1}) & \dots & h_2(f_{2M}) & \dots \\ h_1(f_{2M+1}) & \dots & h_1(f_{3M}) & h_2(f_{2M+1}) & \dots & h_2(f_{3M}) & \dots \\ \vdots & \dots & \vdots & \vdots & \dots & \vdots & \dots \\ h_1(f_{NM}) & \dots & h_1(f_{NM}) & h_2(f_{NM}) & \dots & h_2(f_{NM}) & \dots \end{bmatrix}$$

(Total # of Elements) = (# of Subcarriers) * (# of Antennas)

This means we can further increase N to improve resolution.

Estimate other path-related parameters

Channel model:

$$h(f) = \sum_{i=1}^{N} a_i e^{-j(2\pi f t_i + \phi_i)}$$

of equations = # of subcarriers
of unknowns = # of multipath components

Solve this linear system using Least Square.

Evaluation

Ideal case benchmark

- Use RF cables, attenuators and splitters to emulate multipath channels of WiFi signal.
- Different length of RF cables emulate different signal propagation paths, which induces different ToAs

• Real environment evaluation

- Lab: 13*13m, 200 locations, distance of [1,12]m
- Corridor: 3*50m, 200 locations, distance of [1,50]m
- Meeting room: 3*5m, 20 locations, distance of 3m

Ideal case

Stability of direct path attenuation

CSI fitting performance

Consistency across different antennas

Ranging error

Conclusion

- We tackle the problem of multipath profiling using commodity WiFi devices with limited bandwidth.
- We design a scheme called WiZoom, which uses a MUSIC-based algorithm and combines multiple antennas to estimate ToAs with high resolution.
- WiZoom also estimates other path-related parameters to form the complete multipath profile.
- We evaluate the performance of WiZoom and the results show that WiZoom outperforms existed methods.

Thank you all!

Further question? Hua Xue: howardsid@sjtu.edu.cn

