AVIATION RISK ANALYSIS FOR BUSINESS

DECISIONS

PRESENTED BY:

ERIC METOBO ONGAU-DATA SCIENTIST

DATE:

28.04.2025

OVERVIEW & BUSINESS UNDERSTANDING.

In this presentation I will cover the research goal, the data I analyzed, key findings & actionable safety recommendations for various stakeholders in the Aviation industry i.e:

- 1.Loss making Aviation business- Analysis on what might be hailing them.
- 2.Expansion of same business- To get insight of the best models to go for.
- 3.New ventures- To help businesses that want to venture into the aviation industry but lack enough insights.
- **4.Passive investors-** To get a good look on which companies will make profit that will trickle down to their shareholding.
- Regulatory bodies- To come up with informed decision to curb aviation accidents.

DATA UNDERSTANDING

- I analyzed Aviation accidents since 1962 which had information about aircraft types, purpose of flights, injury severity, Make, Model, Engine type and weather conditions (from https://www.kaggle.com/datasets/khsamaha/aviationaccident-database-synopses
- Due to the acknowledgement provided by the said publishers, missing data was addressed to ensure a higher rate of accuracy

SUMMARY OF DATA FIELDS

EVENT DATE
AIRCRAFT CATEGORY
MAKE & MODEL
ENGINE TYPE.

PURPOSE OF FLIGHT
INJURY SEVERITY
TOTAL FATAL INJURIES
WEATHER CONDITIONS.

SOME OF THE GRAPHICAL VISUALIZATION IS AS FOLLOWS:

DATA ANALYSIS.

I employed python for data cleaning and visualization.
 For interactive dashboards, I made use of Tableau.

 Key highlights being finding the correlation between various variables to assist in coming up with recommendations as follows:

1.0

0.8

- 0.6

-0.4

- 0.2

HEAT MAP CORRELATION VISUALIZATION

	Correlation Heatmap							
Aircraft.Category -	1.00	-0.07	0.00	-0.01	0.04	0.31	0.11	
Purpose.of.flight -	-0.07	1.00	0.08	0.03	-0.04	-0.02	0.02	
Injury.Severity -	0.00	0.08	1.00	-0.02	-0.02	0.10	0.03	
otal.Fatal.Injuries -	-0.01	0.03	-0.02	1.00	-0.08	0.03	0.01	
æather.Condition -	0.04	-0.04	-0.02	-0.08	1.00	-0.06	0.07	
Engine.Type -	0.31	-0.02	0.10	0.03	-0.06	100	-0.03	
Year-	0.11	0.02	0.03	0.01	0.07	-0.03	1.00	

SUMMARY HEAT MAP FINDINGS

The summary denotes the strength of correlation

- Aircraft Category and Engine Type (0.31):
- Aircraft Category and Year (0.11):
- Purpose of Flight and Injury Severity (0.08):
- ⁻ Total Fatal Injuries and Weather Condition (-0.08):
- Purpose of Flight and Weather Condition (-0.04):
- Injury Severity and Total Fatal Injuries (-0.02):

AVERAGE DATA ANALYSIS

The data by virtue of absolute counts tends to be skewed. Therefore, to get a better view of accurate results I used average fatal injury to further the analysis as follows:

RECOMMENDATIONS

Based on the analysis, I summarize actionable insights:

1. Low-Risk Aircraft Models: Aircraft categories with lower fatality rates should be prioritized for investment- this strongly correlates with engine type

2. Safer Flight Purposes: Those with lower average fatality rates, such as Aerial, instructional, Banner & Glider flights, External

load, flight test & positioning are safer.

3. Weather Conditions: Avoid flights during adverse weather conditions to minimize risks, also there is need for staff training and other factor-considerations to reduce IMC risks.

4. Engine Types: Electric and geared turbofan engines show lower

fatality rates and should be considered for safer operations.

5. Policy Recommendations: Regulatory bodies should focus on improving safety standards for high-risk aircraft categories and flight purposes.

WHAT NEXT?

- Collaborate with manufacturers to evaluate safer aircrafts models
- The regulatory bodies and businesses to conduct workshops on safety improvements for flight purposes
- Since IMC weather Implies clear skies, further staff training should be done regularly.

THANK YOU

ANY QUESTIONS OR CLARIFICATION

- Name: ERIC METOBO
- Email: mandelametobo5@gmail.com
- Linkedin:https://www.linkedin.com/in/eric
 - -metobo-083670b7/