Problem 1:

Consider $a, b \in \mathbb{R}$, and consider the set of functions $u \in C^1([0,1])$ such that u(0) = a, u(1) = b. Without loss of generality, we can take both a and b nonnegative. Call the set of such functions \mathcal{U} .

Let u and v both minimize the integral $\int_{0}^{1} |f'(x)|^{2} dx$ among functions in \mathcal{U} . Then $\min(u, v)$ minimizes the same integral. Moreover, $\min(u, v) < u$ or $\min(u, v) < v$ at some point if $u \neq v$. But if that were true at any point, then u or v would fail to minimize that integral; thus, u = v at every point.

Next: the linear function minimizes the integral: let l be the linear function with l(0) = a, l(1) = b, and let $u \in \mathcal{U}$ with $u \neq l$ minimize the integral. Also, define $M_1 = \int_0^1 |u'(x)|^2 dx$ and $M_2 = \int_0^1 |l'(x)|^2 dx$. Then $\int_0^1 |u'(x) - l'(x)|^2 dx \neq 0$; that is, u-l fails to minimize the integral $\int_0^1 |v'(x)|^2 dx$ subject to v(0) = v(1) = 0.

Thus, the linear function is the unique function in $C^1([0,1])$ that minimizes the integral $\int_0^1 |f'(x)|^2 dx$.

Problem 2:

Consider the set $A = \{z \in \mathbb{C} : \text{Re}(z) > 0\} \setminus [0, a]$ with $a \in \mathbb{R}^+$.

Define the sets $B = \mathbb{C} \setminus \{z \in \mathbb{R} : z \leq a^2\}$, and $C = \mathbb{C} \setminus \{z \in \mathbb{R} : z \leq 0\}$.

First, the map $\phi: A \to B$ given by $z \mapsto z^2$ is a biholomorphism from A to B, and this is clear; the argument that $z \mapsto z^2$ gives a biholomorphism from the half-plane to the slit plane was made in class, and note that the image of [0, a] under this map is $[0, a^2]$: so because the map is a biholomorphism, the half plane excluding [0, a] has the image of the slit plane excluding $[0, a^2]$.

Second, the map $\psi: B \to C$ given by $z \mapsto z - a^2$ is a biholomorphism from B to C, and this is clear (this is a straight translation).

Third, the map $\xi: C \to \{\text{Re}(z) > 0\}$ given by $z \mapsto \sqrt{z}$ (using the branch of \sqrt{z} that is the natural inverse of z^2 , of course) is a biholomorphism from C to $\{\text{Re}(z) > 0\}$, and this was discussed in class.

So their composition is a biholomorphism from A to $\{\text{Re}(z) > 0\}$; that is, the map $f(z) = \sqrt{z^2 - a^2}$ is a biholomorphism from the above set to $\{\text{Re}(z) > 0\}$.

Problem 3:

Let Ω be open and symmetric about the \mathbb{R} -axis.

Let $f \in C(\Omega)$, and f be holomorphic except perhaps on the \mathbb{R} -axis. Note that f = 0 on the \mathbb{R} -axis.

Our goal is to show that $f \in \mathcal{O}(\Omega)$; we only need to check that f is holomorphic on the \mathbb{R} -axis. So, let $z \in \mathbb{R} \cap \Omega$. Then there is an open ball centered at z, call it $D_r(z)$, contained in Ω . This open ball is simply connected. Now, the real part of f, say u = Re(f), is harmonic on $D_r(z) \setminus \mathbb{R}$. By the reflection principle discussed in class, u is harmonic on all of $D_r(z)$.

Now, u is the real part of some holomorphic function, g, and this holomorphic function is unique up to addition of a constant. So, we can take g(z) = 0.

Now, h = f - g is holomorphic except perhaps on the real axis, where it is 0. Moreover, the real part of h is 0; by the Cauchy-Riemann equations, the imaginary part of h must be constant (except perhaps on the real axis). Thus, because the imaginary part of h is 0 on the real axis (and h is continuous), the imaginary part of h is 0. So, h = 0; that is, f = g.

So, f is holomorphic on $D_r(z)$; in particular, f is holomorphic at z.

Because holomorphy is a local property, this yields the desired result; fis holomorphic on Ω .

Problem 4:

Let $\phi \in \operatorname{Aut}(\overline{\mathbb{C}})$ be such that $\phi(\{z \in \mathbb{C} : \operatorname{Im}(z) > 0\}) = D_1(0)$.

A biholomorphism that takes the disk $D_1(0)$ to $\{z \in \mathbb{C} : \text{Im}(z) > 0\}$ is $\phi_C:\mathbb{C}\to\mathbb{C}$ given by $z\mapsto i\frac{1+z}{1-z}$; this is the Cayley transform. Its inverse is $\psi_C: \mathbb{C} \to \mathbb{C}$ given by $z \mapsto \frac{z-i}{z+i}$. (I pulled these maps from Complex Made Simple; any other transform would've worked).

So, $\psi = \phi_C \circ \phi$ is a biholomorphism of the plane that fixes $\{z \in \mathbb{C} :$ $\operatorname{Im}(z) > 0$; by an earlier homework problem, this means that $\phi_C \circ \phi$ is of the form $z \mapsto \frac{az+b}{cz+d}$ with $a,b,c,d \in \mathbb{R}$, as proven in an earlier homework problem. Fix $z \in \mathbb{C}$. Let $w = \overline{z}$. Then

$$\psi(w) = \frac{aw + b}{cw + d}$$

$$= \frac{a\overline{z} + b}{c\overline{z} + d}$$

$$= \frac{az + b}{cz + d}$$

$$= \overline{\psi(z)}$$

Now, $\psi_C \circ \psi = \phi$. So,

$$\phi(w) = \psi_C(\psi(w))$$

$$= \psi_C(\overline{\psi(z)})$$

$$= \frac{\overline{\psi(z)} - i}{\overline{\psi(z)} + i}$$

$$= \frac{i\frac{1+\phi(z)}{1-\phi(z)} - i}{i\frac{1+\phi(z)}{1-\phi(z)} + i}$$

$$= \frac{-i\frac{1+\phi(z)}{1-\phi(z)} - i}{-i\frac{1+\phi(z)}{1-\phi(z)} + i}$$

$$= \frac{\overline{1+\phi(z)}}{\frac{1+\phi(z)}{1-\phi(z)} + 1}$$

$$= \frac{\overline{1+\phi(z)}}{\frac{1+\phi(z)}{1-\phi(z)} - 1}$$

Problem 5:

Let $f \in \mathcal{O}(\Omega)$, where Ω is a symmetric domain (with respect to \mathbb{R}), and $\mathbb{R} \cap \Omega \neq \emptyset$. Moreover, let $f(\mathbb{R} \cap \Omega) \subset \mathbb{R}$. Then the function g(z) = f(Re(z)) is a holomorphic function.

Now, consider h = f - g; this is holomorphic. Note that h restricted to $A = \Omega^+ \cup (\Omega \cap \mathbb{R})$ satisfies the requirements for the reflection principle; h

restricted to A extends to Ω ; call this extension j. (Note that $j(\overline{z}) = \overline{j(z)}$.) Now, j - h is identically 0 on A. Because j - h is 0 on an open subset of Ω , it is 0 on all of Ω (This follows by uniqueness principle, as Ω is a domain...it is connected.)

So
$$j = h$$
. So $h(\overline{z}) = \overline{h(z)}$. So

$$\begin{split} f(\overline{z}) &= h(\overline{z}) - g(\overline{z}) \\ &= \overline{h(z)} - g(z) \\ &= \overline{h(z)} - \overline{g(z)} \\ &= \overline{f(z)} \end{split}$$

as desired.

Problem 6: