MAU22C00: ASSIGNMENT 5 SOLUTIONS

Each of the following problems is worth 5 points, 2 points for the answer and 3 points for the justification:

(1) Let $A = \mathbb{N} \times \mathbb{Z} \times \mathbb{Q} \times \mathbb{C}$. Is A finite, countably infinite? Justify your answer.

Solution: A is uncountably infinite since it is given by a Cartesian product, which has a factor \mathbb{C} that is uncountably infinite. Here is how we prove that \mathbb{C} is uncountably infinite:

$$\mathbb{C} = \{a + ib \mid a, b \in \mathbb{R} \text{ and } i = \sqrt{-1}\} \sim \{(a, b) \mid a, b \in \mathbb{R}\} = \mathbb{R}^2$$

We have already shown that \mathbb{R}^n for $n \geq 1$ is uncountably infinite in tutorial 18. Please refer to the argument given in the solutions to tutorial 18.

(2) Let A be the set of points in \mathbb{R}^2 whose polar coordinates (r, θ) satisfy the equation $r^2 = (\sin(\theta) - 1)^2$. Is A finite, countably infinite or uncountably infinite? Justify your answer.

Solution: A is uncountably infinite. $r^2 = (\sin(\theta) - 1)^2$ is equivalent to $r = \pm(\sin(\theta) - 1)$. The graph of A is below, where the red graph is $r = 1 - \sin(\theta)$, and the blue graph is $r = \sin(\theta) - 1$. Each of them is a cardioid, namely a heart-shaped graph:

Let us consider only the piece of the red graph $r=1-\sin(\theta)$ given by restricting θ to the interval $0 \le \theta \le \frac{\pi}{2}$. The graph is below:

Since $\sin(\theta)$ is a bijective function for $\theta \in \left[0, \frac{\pi}{2}\right]$, this red piece as a set in \mathbb{R}^2 is in bijective correspondence to $\left[0, \frac{\pi}{2}\right]$, hence with the closed interval [0,1] (use the bijection $f:\left[0,\frac{\pi}{2}\right] \to [0,1]$ given by $f(x) = \frac{2}{\pi}x$.) The closed interval [0,1] contains as a proper set the open interval (0,1). We proved in lecture that (0,1) is uncountably infinite. Therefore, [0,1] must be uncountably infinite as it has an uncountably infinite subset. Thus, $\left[0,\frac{\pi}{2}\right]$ is uncountably infinite, hence that red piece of the cardioid is uncountably infinite. That red piece is a subset of A, however, which means that A has an uncountably infinite subset. We conclude that A must be uncountably infinite.

(3) Let $A = \{(x, y) \in \mathbb{C}^2 \mid x^6 - 3x^2 + 1 = 0\}$. Is A finite, countably infinite or uncountably infinite? Justify your answer.

Solution: A is uncountably infinite. By the Fundamental Theorem of Algebra, there are at most six $x \in \mathbb{C}$ that satisfy the equation $x^6 - 3x^2 + 1 = 0$. Recall that the Fundamental Theorem of Algebra tells us that the number of roots of a polynomial equation counted with multiplicity equals the degree of the polynomial, which is 6 here. There is no condition on y, however, which means A is the Cartesian product of a finite set with \mathbb{C} . As explained in the solution of problem (1), \mathbb{C} is uncountably infinite, and since A is the Cartesian product containing one uncountably infinite factor, it is itself uncountably infinite.

(4) Let

$$A = \{(x,y) \in \mathbb{R} \times \mathbb{R}^+ \middle| 1 + xy = 0 \} \cap \left\{ (x,y) \in \mathbb{R}^2 \middle| \frac{(x-7)^2}{25} + \frac{(y+4)^2}{9} = 1 \right\}.$$

 \mathbb{R}^+ stands for all positive real numbers. Consider $\mathcal{P}(A)$, the power set of A. Is $\mathcal{P}(A)$ finite, countably infinite or uncountably infinite? Justify your answer.

Solution: $\{(x,y) \in \mathbb{R} \times \mathbb{R}^+ \mid 1+xy=0\}$ is the part of the hyperbola 1+xy=0 satisfying that $y \geq 0$, namely the branch of the hyperbola in the second quadrant. This graph is red below. $\frac{(x-7)^2}{25} + \frac{(y+4)^2}{9} = 1$ is an ellipse with center at the point with coordinates (7,-4), horizontal radius 5 (the square root of 25), and vertical radius 3 (the square root of 9). This ellipse is entirely inside the fourth quadrant. Its graph is green below:

As you can see, the intersection of the red graph with the green one is empty, so $A = \emptyset$. Therefore, the power set of it $\mathcal{P}(A)$ must contain exactly one element, namely $\{\emptyset\}$, the set containing the empty set as we saw in the unit on set theory. Thus, $\mathcal{P}(A)$ is finite.

(5) Let A consist of all 2×2 matrices with entries in the real numbers \mathbb{R} and determinant equal to 1. Is A finite, countably infinite or uncountably infinite? Justify your answer.

Solution: A consists of elements that are matrices of the form

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

satisfying that ad - bc = 1 (this is the condition that the determinant is 1 as you hopefully remember from linear algebra, which you studied with Meriel last year). In particular, every element of the form

$$\begin{pmatrix} a & 0 \\ 0 & \frac{1}{a} \end{pmatrix}$$

for $a \in \mathbb{R} \setminus \{0\}$ is in A. Let the set of all such elements be called B. Note that B is in one-to-one correspondence with $\mathbb{R} \setminus \{0\}$, but the open interval (0,1), which we proved to be uncountably infinite in lecture is a subset of $\mathbb{R} \setminus \{0\}$. Therefore, $\mathbb{R} \setminus \{0\}$ is uncountably infinite, and likewise B is uncountably infinite. Therefore, since $B \subset A$, A contains an uncountably infinite subset and hence must be uncountably infinite itself.

(6)] Let $A = \{(x, y, z) \in \mathbb{R}^3 \mid 3x - y + 2z = 0 \text{ and } x + 2y + 3z = 0\}$. Is A finite, countably infinite or uncountably infinite? Justify your answer.

Solution: As you hopefully remember from Meriel's linear algebra, 3x-y+2z=0 determines a plane perpendicular to the vector (3,-1,2), and x+2y+3z=0 determines a plane perpendicular to the vector (1,2,3). As these two vectors are linearly independent, the two planes are not parallel but rather must intersect in a line. Therefore, A is a line in \mathbb{R}^3 , which is in bijective correspondence to any other line in \mathbb{R}^3 . Consider the x-axis in \mathbb{R}^3 (which is a line), and remember that it contains the interval (0,1), which we proved to be uncountably infinite, as a subset. Therefore, the x-axis is uncountably infinite, and hence the line A is likewise uncountably infinite.

(7) Let $A = \{0, 1\}$. Is the language $[(0 \cup \epsilon)^* \circ (1 \cup \epsilon)] \cap (A \circ A)^*$ finite, countably infinite, or uncountably infinite? Justify your answer.

Solution: As you showed in a tutorial, any regular expression gives a regular language that is either finite or countably infinite, and since our language is given by a regular expression, it can only be finite or countably infinite. Note that

$$(0^* \circ \epsilon) \cap (A \circ A)^* = 0^* \cap (A \circ A)^* = \{0^{2m} \mid m \in \mathbb{N}\}$$

is a sublanguage of our language, which is countably infinite because it can be put into one-to-one correspondence with \mathbb{N} , which is countably infinite, via the bijection $f(m) = 0^{2m}$. We conclude that the language

given by $[(0 \cup \epsilon)^* \circ (1 \cup \epsilon)] \cap (A \circ A)^*$, which is at most countably infinite, contains a countably infinite sublanguage, so it must be countably infinite.

(8) Let A be a countably infinite alphabet. Is A^* finite, countably infinite or uncountably infinite? Justify your answer.

Solution: $A^* = \bigcup_{j=0}^{\infty} A^j$, where A^j is the set of words of length j

over the alphabet A. Note that A^j is in one-to-one correspondence with the Cartesian product of A with itself j times. When j=0, $A^0=\{\epsilon\}$, the set containing just the empty word, which is finite, but if $j\geq 1$, A^j is the Cartesian product of the countably infinite set A with itself j times, which is countably infinite by a theorem proven in

lecture. Therefore, $A^* = \{\epsilon\} \cup \bigcup_{j=1}^{\infty} A^j$ is the union of one element with

a countably infinite union of countably infinite sets, which is countably infinite by the theorem we proved in lecture. We conclude that A^* is countably infinite.

(9) Let $A = \{0, 1, 2, 3, 4, 5\}$. Let the language L consist of all even length strings containing at least three odd letters. Is L finite, countably infinite or uncountably infinite? Justify your answer.

Solution: Since A is finite, A^* is countably infinite as proven in lecture. $L \subset A^*$, so L is either finite or countably infinite. We will prove that L is countably infinite by showing it contains a countably infinite subset. This is once again a sandwich argument. Consider $L' = \{1^{2m}3^{2m}5^{2m} \mid m \in \mathbb{N}^*\}$. Clearly, $L' \subset L$, and L' is in one-to-one correspondence with the countably infinite set \mathbb{N}^* via the bijection $f: \mathbb{N}^* \to L'$ given by $f(m) = 1^{2m}3^{2m}5^{2m}$. Therefore, L contains a countably infinite subset and hence must be countably infinite.

(10) Does there exist a sequence $\{x_1, x_2, x_3, \dots\}$ of languages over a finite alphabet A such that x_i is not a regular language $\forall i \geq 1$? Justify your answer.

Solution: Yes, such a sequence exists, and in fact, uncountably many such sequences exist. Some of you constructed the sequence explicitly. I will give here a formal proof for the existence of such a sequence. Let B be the set of all languages over A. B is uncountably infinite as proven in lecture. Let C be the set of all regular languages over A. C is countably infinite as proven in lecture. As we showed in lecture in the proof that \mathbb{R} is uncountably infinite, the set difference between an uncountably

infinite set and a countably infinite one must be uncountably infinite. Therefore, the set $B \setminus C$ of non-regular languages over the alphabet A must be uncountably infinite. Since $B \setminus C$ is uncountably infinite, it is clearly non-empty. Therefore, $\exists x_1 \in B \setminus C$. Now, consider $B \setminus (C \cup \{x_1\})$. We have taken an element out of an uncountably infinite set. Therefore, $B \setminus (C \cup \{x_1\})$ is uncountably infinite, hence non-empty. Therefore, $\exists x_2 \in B \setminus (C \cup \{x_1\})$ and so on. Inductively, $B \setminus (C \cup \{x_1, x_2, \ldots, x_{n-1}\})$ is uncountably infinite, hence non-empty. Therefore, $\exists x_n \in B \setminus (C \cup \{x_1, x_2, \ldots, x_{n-1}\})$. By construction, each x_i is not a regular language. Therefore, $\{x_1, x_2, x_3, \ldots\}$ is a sequence of the kind we were trying to construct, so such a sequence exists.