Wiskunde A

Bert De Saffel

2017-2018

Inhoudsopgave

Ι	Theorie	2
1	Complexe Getallen	3

Deel I Theorie

Hoofdstuk 1

Complexe Getallen

Inleiding

- $\mathbb{N} = \text{Natuurlijke getallen: } \{0, 1, 2, 3, ...\}$
- \mathbb{Z} = Gehele getallen: $\{..., -2, -1, 0, 1, 2, ...\}$
- \mathbb{Q} = Rationale getallen: $\{\frac{1}{3}, -\frac{1}{4}, \frac{7}{2}, \dots \}$
- $\mathbb{R} = \text{Re\"ele}$ getallen: { $\sqrt{2}$, π }
- \mathbb{C} = Complexe getallen: $j^2 = -1, j = \text{imaginaire eenheid}$

Definitie z = a + bj met $z \in \mathbb{C}$, $a \in \mathbb{R}$, $b \in \mathbb{R}$ en $j = \sqrt{-1}$ met

- Re(z) = a
- Im(z) = b

3 Vormen

- Cartesische vorm: z = a + bj
- Goniometrische vorm: $z = r[cos(\theta) + jsin(\theta)]$
- \bullet Exponentiële vorm: $re^{j\theta}$

Vlak van Gauss

a en b

- $a = rcos(\theta)$
- $b = rsin(\theta)$

r en θ

- $r \ge 0$
- $r = \sqrt{a^2 + b^2}$
- $\bullet \ \theta \in [0,2\pi]$
- $\theta \in]-\pi,\pi[$
- $tg(\theta) = \frac{b}{a}(+\pi)$

Complex toegevoegde

- Cartesische vorm: $\overline{z} = a bj$
- Exponentiële vorm: $\overline{z} = re^{-j\theta}$

Bewerkingen

• $z_1 + z_2$

- $z_1.z_2 = (r_1.r_2)e^{j(\theta_1+\theta_2)}$
- $\bullet \ \frac{z_1}{z_2} = \frac{r_1}{r_2} e^{j(\theta_1 \theta_2)}$
- $z^n = r^n e^{jn\theta}$