Istruzioni esame

- Scrivere nome, cognome e matricola su OGNI foglio negli appositi spazi.
- Tutte le risposte vanno riportate sul testo d'esame, eventualmente utilizzando il retro dei fogli se necessario. Non verranno ritirati e corretti eventuali fogli di brutta.
- La prova si considera superata se si ottengono ALMENO 18 punti in totale, di cui ALMENO 10 punti nel primo esercizio (quesiti a risposta multipla).

Cognome, nome e	matricola:	
9		

Esercizio 1

Rispondere alle seguenti domande a risposta multipla, segnando TUTTE le risposte corrette (per ogni domanda ci può essere una, nessuna o diverse risposte corrette).

(a)	Sia	ano φ, ψ delle <i>L</i> -formule.	2 punti
		Se $\neg \phi$ è soddisfacibile allora ϕ è una contraddizione proposizionale.	
		Se ϕ è una tautologia allora $\neg \phi$ è una contraddizione proposizionale.	
		Se ϕ è soddisfacibile allora $\psi \vee \phi$ è soddisfacibile.	
		ϕ è soddisfacibile se e solo se $\neg \phi$ è una tautologia.	
(b)	La	relazione P su $\mathbb{Z}\setminus\{0\}$ definita da y P z se e solo se $y\mid z$	2 punti
		è simmetrica.	
		è transitiva.	
		è un ordine lineare.	
		è riflessiva.	
(c)		onsideriamo il linguaggio L con due simboli di funzione unaria g,h . Quali delle guenti espressioni sono L -enunciati che formalizzano correttamente relativamente a L -struttura $\langle B,g,h\rangle$ l'affermazione "la funzione g è l'inversa della funzione h " $\forall x(g(h(x))=x \wedge h(g(x))=x)$ $\forall x(g(h(x))=x)$ $g=h^{-1}$	2 punti
		$\forall x (g(x) \cdot h(x) = 1)$	

(d) Quali dei seguenti insiemi sono infiniti e numerabili?

2 punti

(e)	Si	a φ la formula $\forall z Q(y,z) \land \exists y \exists z Q(z,y)$, dove Q è un simbolo di	2 punti
	pr	redicato binario.	
		La variabile y occorre libera e vincolata in φ .	
		φ è un enunciato e la variabile y occorre sia libera che vincolata in φ .	
		La variabile z occorre libera e vincolata in φ .	
		φ è un enunciato.	
(f)	Si	ano R. C. D. lottoro proposizionali o O una formula proposizionalo	2 punti

(f) Siano B, C, D lettere proposizionali e Q una formula proposizionale scritta a partire da esse che abbia la seguente tavola di verità:

2 punti

В	С	D	Q
\mathbf{V}	\mathbf{V}	\mathbf{V}	\mathbf{V}
\mathbf{V}	\mathbf{V}	${f F}$	\mathbf{V}
\mathbf{V}	${f F}$	\mathbf{V}	\mathbf{F}
\mathbf{V}	${f F}$	${f F}$	\mathbf{V}
${f F}$	${f V}$	\mathbf{V}	\mathbf{V}
${f F}$	\mathbf{V}	${f F}$	\mathbf{V}
${f F}$	${f F}$	\mathbf{V}	\mathbf{F}
${f F}$	\mathbf{F}	${f F}$	\mathbf{V}

- □ Q ≡ D → C □ Q non è una contraddizione. □ Q ∨ D è una tautologia. $□ Q \models \neg D.$
- (g) La funzione $g\colon \mathbb{Q}\to \mathbb{R}$ definita da $g(t)=3t^2+1$ è uriettiva ma non iniettiva.

2 punti

□ biettiva.

 $\hfill\Box$ né iniettiva, né suriettiva.

□ iniettiva ma non suriettiva.

Punteggio totale primo esercizio: 14 punti

Esercizio 2 9 punti

Sia $L = \{g\}$ con g simbolo di funzione binario. Sia φ la L-formula

$$\exists z \, (g(z,z) = y).$$

1. Stabilire se

$$\langle \mathbb{Z}, + \rangle \models \varphi[y/2, x/1].$$

2. Stabilire se

$$\langle \mathbb{Z}, + \rangle \models \varphi[y/2, x/2].$$

3. Stabilire se

$$\langle \mathbb{Z}, + \rangle \models \forall y \varphi[y/2, x/2].$$

4. Stabilire se

$$\langle \mathbb{Z}, + \rangle \models \exists y \varphi [y/2, x/1].$$

5. Stabilire se

$$\langle \mathbb{R}, \cdot \rangle \models \varphi[y/1, x/3].$$

6. Stabilire se

$$\langle \mathbb{R}, \cdot \rangle \models \varphi[y/\sqrt{2}, x/-2].$$

- 7. È vero che $\langle \mathbb{R}, \cdot \rangle \models \forall y \, \varphi[y/1, x/3]$?
- 8. Sia $\mathcal{C} = \langle \mathbb{R}^+, \cdot \rangle$, dove $\mathbb{R}^+ = \{r \in \mathbb{R} \mid r > 0\}$. È vero che $\mathcal{C} \models \forall y \, \varphi[y/1, x/3]$?

Giustificare le proprie risposte.

Esercizio 3 9 punti

Sia $\langle B, < \rangle$ un ordine lineare stretto e siano C, D sottoinsiemi di B. Formalizzare relativamente alla struttura $\langle B, <, C, D \rangle$ mediante il linguaggio $L = \{<, C, D\}$ con un simbolo di relazione binaria e due simboli di predicato unari le seguenti affermazioni:

- 1. Tra due elementi di C c'è un elemento di C.
- 2. Ci sono due elementi distinti di D tali che nessuno dei due è minore dell'altro, cioè $\langle D, < \rangle$ non è un ordine totale.
- 3. Qualche elemento di C è minore di ogni elemento di D.
- 4. C'è un elemento di C che è il massimo di $\langle B, < \rangle$.