$12n_{0244} \ (K12n_{0244})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^{19} + u^{18} + \dots + u^2 + b, -u^{19} - u^{18} + \dots + a - 2, u^{20} + 2u^{19} + \dots + 2u + 1 \rangle$$

$$I_2^u = \langle b - 1, u^6 - 3u^4 - u^3 + 2u^2 + a + 2u + 1, u^8 - u^7 - 3u^6 + 2u^5 + 3u^4 - 2u - 1 \rangle$$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 28 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$I. \\ I_1^u = \langle u^{19} + u^{18} + \dots + u^2 + b, -u^{19} - u^{18} + \dots + a - 2, u^{20} + 2u^{19} + \dots + 2u + 1 \rangle$$

(i) Arc colorings

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{19} + u^{18} + \dots + 3u + 2 \\ -u^{19} - u^{18} + \dots - 8u^{3} - u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u^{3} + 2u \\ -u^{3} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 2u^{19} + 2u^{18} + \dots + 6u + 3 \\ -u^{19} - u^{18} + \dots - 12u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{12} + 5u^{10} - 9u^{8} + 6u^{6} - u^{2} + 1 \\ u^{14} - 6u^{12} + 13u^{10} - 10u^{8} - 2u^{6} + 4u^{4} + u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -3u^{19} - 3u^{18} + \dots - 6u - 3 \\ u^{19} + u^{18} + \dots - 2u^{2} - u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{2} + 1 \\ u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{5} + 2u^{3} - u \\ u^{7} - 3u^{5} + 2u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{10} - 5u^{8} + 8u^{6} - 3u^{4} - 3u^{2} + 1 \\ u^{10} - 4u^{8} + 5u^{6} - 3u^{2} \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$5u^{19} + 4u^{18} - 38u^{17} - 21u^{16} + 118u^{15} + 27u^{14} - 176u^{13} + 40u^{12} + 88u^{11} - 121u^{10} + 80u^9 + 58u^8 - 89u^7 + 52u^6 - 36u^5 - 27u^4 + 46u^3 - 16u^2 + 12u - 11$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{20} + 39u^{19} + \dots + 18u + 1$
c_{2}, c_{4}	$u^{20} - 9u^{19} + \dots + 9u^2 - 1$
c_{3}, c_{8}	$u^{20} + u^{19} + \dots - 640u - 256$
c_5, c_7	$u^{20} - 6u^{19} + \dots + 2u - 5$
c_6, c_{10}, c_{11}	$u^{20} + 2u^{19} + \dots + 2u + 1$
c_9, c_{12}	$u^{20} - 2u^{19} + \dots + 2u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{20} - 155y^{19} + \dots - 690y + 1$
c_2, c_4	$y^{20} - 39y^{19} + \dots - 18y + 1$
c_3, c_8	$y^{20} - 51y^{19} + \dots + 16384y + 65536$
c_5, c_7	$y^{20} + 6y^{19} + \dots - 194y + 25$
c_6, c_{10}, c_{11}	$y^{20} - 18y^{19} + \dots - 6y + 1$
c_9, c_{12}	$y^{20} - 42y^{19} + \dots - 6y + 1$

(vi) Complex Volumes and Cusp Shapes

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
b = -2.12337 - 0.10108I $u = 0.247662 + 0.821626I$	
u = 0.247662 + 0.821626I	3 <i>I</i>
	3 <i>I</i>
a = -2.43556 - 1.84521I $-15.1547 - 5.2095I$ $-13.60177 + 3.1725$	3 <i>I</i>
b = -2.12150 - 0.21202I	
u = 0.247662 - 0.821626I	
a = -2.43556 + 1.84521I $-15.1547 + 5.2095I$ $-13.60177 - 3.1725$	3I
b = -2.12150 + 0.21202I	
u = -1.208090 + 0.243596I	
a = 0.570598 + 0.429334I - 1.33162 + 1.52088I - 9.67152 - 0.73849	I
b = -0.218634 + 0.234930I	
u = -1.208090 - 0.243596I	
a = 0.570598 - 0.429334I - 1.33162 - 1.52088I - 9.67152 + 0.73849	I
b = -0.218634 - 0.234930I	
u = -0.102862 + 0.701439I	
a = 0.082707 - 0.900739I $1.97616 + 1.89773I$ $-7.07242 - 3.81168$	iI
b = -0.141682 - 0.411106I	
u = -0.102862 - 0.701439I	
a = 0.082707 + 0.900739I $1.97616 - 1.89773I$ $-7.07242 + 3.81168$	iI
b = -0.141682 + 0.411106I	
u = 1.312190 + 0.118081I	
a = 0.496056 - 0.398382I - 4.98968 - 0.65533I - 18.6254 + 0.2318	I
b = 0.691084 - 0.636911I	
u = 1.312190 - 0.118081I	
a = 0.496056 + 0.398382I - 4.98968 + 0.65533I - 18.6254 - 0.2318	I
b = 0.691084 + 0.636911I	

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.335820 + 0.290040I		
a = -0.158410 + 0.393649I	-2.56262 - 5.49819I	-13.3788 + 5.1703I
b = -0.140101 + 0.577407I		
u = 1.335820 - 0.290040I		
a = -0.158410 - 0.393649I	-2.56262 + 5.49819I	-13.3788 - 5.1703I
b = -0.140101 - 0.577407I		
u = -1.371860 + 0.209407I		
a = -0.86878 - 1.49091I	-6.47245 + 3.72845I	-18.3956 - 2.9383I
b = 1.54182 - 0.34669I		
u = -1.371860 - 0.209407I		
a = -0.86878 + 1.49091I	-6.47245 - 3.72845I	-18.3956 + 2.9383I
b = 1.54182 + 0.34669I		
u = -1.41274 + 0.33785I		
a = -0.17556 + 2.27560I	19.0447 + 9.4000I	-17.5612 - 4.3303I
b = -2.15361 + 0.28774I		
u = -1.41274 - 0.33785I		
a = -0.17556 - 2.27560I	19.0447 - 9.4000I	-17.5612 + 4.3303I
b = -2.15361 - 0.28774I		
u = 0.188195 + 0.497650I		
a = 0.89217 + 2.08322I	-1.49234 - 1.05642I	-12.43000 + 2.14230I
b = 1.230350 + 0.275114I		
u = 0.188195 - 0.497650I		
a = 0.89217 - 2.08322I	-1.49234 + 1.05642I	-12.43000 - 2.14230I
b = 1.230350 - 0.275114I		
u = -1.49219		
a = 0.836574	14.2449	-19.8440
b = -2.31363		
u = -0.306795		
a = 1.05438	-0.567629	-17.5890
b = 0.184912		

$$II. \\ I_2^u = \langle b-1, \ u^6-3u^4-u^3+2u^2+a+2u+1, \ u^8-u^7-3u^6+2u^5+3u^4-2u-1 \rangle$$

(i) Arc colorings

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{6} + 3u^{4} + u^{3} - 2u^{2} - 2u - 1 \\ 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u^{3} + 2u \\ -u^{3} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{6} + 3u^{4} + 2u^{3} - 2u^{2} - 4u - 1 \\ u^{3} - u + 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{3} - 2u \\ u^{3} - u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{6} + 3u^{4} + u^{3} - 2u^{2} - 2u - 1 \\ 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{6} + 3u^{4} + u^{3} - 2u^{2} - 2u - 1 \\ 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{5} + 2u^{3} - u \\ u^{7} - 3u^{5} + 2u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{5} + 2u^{3} - u \\ u^{7} - 3u^{5} + 2u^{3} + u \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-u^7 2u^6 + 2u^5 + 8u^4 + 3u^3 7u^2 8u 19$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2	$(u-1)^8$
c_3, c_8	u^8
c_4	$(u+1)^8$
c_5, c_7	$u^8 - 3u^7 + 7u^6 - 10u^5 + 11u^4 - 10u^3 + 6u^2 - 4u + 1$
<i>c</i> ₆	$u^8 + u^7 - 3u^6 - 2u^5 + 3u^4 + 2u - 1$
c_9, c_{12}	$u^8 + u^7 - u^6 - 2u^5 + u^4 + 2u^3 - 2u - 1$
c_{10}, c_{11}	$u^8 - u^7 - 3u^6 + 2u^5 + 3u^4 - 2u - 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$(y-1)^8$
c_3, c_8	y^8
c_5, c_7	$y^8 + 5y^7 + 11y^6 + 6y^5 - 17y^4 - 34y^3 - 22y^2 - 4y + 1$
c_6, c_{10}, c_{11}	$y^8 - 7y^7 + 19y^6 - 22y^5 + 3y^4 + 14y^3 - 6y^2 - 4y + 1$
c_9, c_{12}	$y^8 - 3y^7 + 7y^6 - 10y^5 + 11y^4 - 10y^3 + 6y^2 - 4y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.180120 + 0.268597I		
a = 0.646194 - 0.127698I	-2.68559 + 1.13123I	-15.9046 - 0.8051I
b = 1.00000		
u = -1.180120 - 0.268597I		
a = 0.646194 + 0.127698I	-2.68559 - 1.13123I	-15.9046 + 0.8051I
b = 1.00000		
u = -0.108090 + 0.747508I		
a = 1.43073 - 0.89199I	0.51448 + 2.57849I	-11.78039 - 3.88175I
b = 1.00000		
u = -0.108090 - 0.747508I		
a = 1.43073 + 0.89199I	0.51448 - 2.57849I	-11.78039 + 3.88175I
b = 1.00000		
u = 1.37100		
a = -0.966009	-8.14766	-19.8290
b = 1.00000		
u = 1.334530 + 0.318930I		
a = 0.142888 + 1.323540I	-4.02461 - 6.44354I	-16.5091 + 6.0410I
b = 1.00000		
u = 1.334530 - 0.318930I		
a = 0.142888 - 1.323540I	-4.02461 + 6.44354I	-16.5091 - 6.0410I
b = 1.00000		
u = -0.463640		
a = -0.473616	-2.48997	-16.7830
b = 1.00000		

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u-1)^8)(u^{20}+39u^{19}+\cdots+18u+1)$
c_2	$((u-1)^8)(u^{20} - 9u^{19} + \dots + 9u^2 - 1)$
c_3, c_8	$u^8(u^{20} + u^{19} + \dots - 640u - 256)$
C4	$((u+1)^8)(u^{20} - 9u^{19} + \dots + 9u^2 - 1)$
c_5, c_7	$(u^8 - 3u^7 + 7u^6 - 10u^5 + 11u^4 - 10u^3 + 6u^2 - 4u + 1)$ $\cdot (u^{20} - 6u^{19} + \dots + 2u - 5)$
c_6	$(u^8 + u^7 - 3u^6 - 2u^5 + 3u^4 + 2u - 1)(u^{20} + 2u^{19} + \dots + 2u + 1)$
c_9, c_{12}	$(u^8 + u^7 + \dots - 2u - 1)(u^{20} - 2u^{19} + \dots + 2u + 1)$
c_{10}, c_{11}	$(u^8 - u^7 - 3u^6 + 2u^5 + 3u^4 - 2u - 1)(u^{20} + 2u^{19} + \dots + 2u + 1)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$((y-1)^8)(y^{20} - 155y^{19} + \dots - 690y + 1)$
c_2, c_4	$((y-1)^8)(y^{20}-39y^{19}+\cdots-18y+1)$
c_3, c_8	$y^8(y^{20} - 51y^{19} + \dots + 16384y + 65536)$
c_5, c_7	$(y^8 + 5y^7 + 11y^6 + 6y^5 - 17y^4 - 34y^3 - 22y^2 - 4y + 1)$ $\cdot (y^{20} + 6y^{19} + \dots - 194y + 25)$
c_6, c_{10}, c_{11}	$(y^8 - 7y^7 + 19y^6 - 22y^5 + 3y^4 + 14y^3 - 6y^2 - 4y + 1)$ $\cdot (y^{20} - 18y^{19} + \dots - 6y + 1)$
c_9, c_{12}	$(y^8 - 3y^7 + 7y^6 - 10y^5 + 11y^4 - 10y^3 + 6y^2 - 4y + 1)$ $\cdot (y^{20} - 42y^{19} + \dots - 6y + 1)$