HIVE CHALLENGE (Scenario Based questions)

Table of Contents

SCENARIO 1	2
SCENARIO 2	2
SCENARIO 3	2
SCENARIO 4	2
SCENARIO 5	3
SCENARIO 6	3
SCENARIO 7	3
SCENARIO 8	
SCENARIO 9	
HIVE JOIN OPERATIONS	5
BUILD A DATA PIPELINE WITH HIVE	6
HIVE OPERATION WITH PYTHON	12

SCENARIO 1

Will the reducer work or not if you use "Limit 1" in any HiveQL query?

Reducer(s) will be applied in HQL with aggregate functions including group by, order by, and so on. No reducers are called for simple select HQL query.

SCENARIO 2

Suppose I have installed Apache Hive on top of my Hadoop cluster using default metastore configuration. Then, what will happen if we have multiple clients trying to access Hive at the same time?

The default metastore configuration allows only one Hive session, and cannot be accessed by multiple clients. In this case, if multiple clients try to access will throw exception.

We have to use a standalone metastore, i.e., Local or remote metastore configuration in Apache Hive for allowing access to multiple clients concurrently. Example: MySQL database

SCENARIO 3

Suppose, I create a table that contains details of all the transactions done by the customers:

CREATE TABLE transaction_details (cust_id INT, amount FLOAT, month STRING, country STRING) ROW FORMAT DELIMITED FIELDS TERMINATED BY ',';

Now, after inserting 50,000 records in this table, I want to know the total revenue generated for each month. But Hive is taking too much time in processing this query. How will you solve this problem and list the steps that I will be taking in order to do so?

Query latency can be resolved by partitioning the table based on month.

Steps to follow:

1. Create a partitioned table:

CREATE TABLE transaction_parts (cust_id int, amount float, country string)
PARTITIONED BY (month string)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY ',';

2. Enable dynamic partitioning in Hive:

set hive.exec.dynamic.partition = true; set hive.exec.dynamic.partition.mode = nonstrict;

3. Transfer the data from transaction details to transaction parts:

insert OVERWRITE table transaction_parts
PARTITION (month)
SELECT cust_id, amount, country, month FROM transaction_details;

SCENARIO 4

How can you add a new partition for the month December in the above partitioned table?

New partition can be added using Alter statement ALTER TABLE transaction_parts ADD PARTITION (month='Dec') LOCATION '<hive path>/transaction_parts';

SCENARIO 5

I am inserting data into a table based on partitions dynamically. But I received an error - FAILED ERROR IN SEMANTIC ANALYSIS: Dynamic partition strict mode requires at least one static partition column. How will you remove this error?

```
We have to execute following command to resolve the issues set hive.exec.dynamic.partition = true; set hive.exec.dynamic.partition.mode = nonstrict;
```

SCFNARIO 6

Suppose, I have a CSV file – 'sample.csv' present in '/temp' directory with the following entries: id first_name last_name email gender ip_address

How will you consume this CSV file into the Hive warehouse using built-in SerDe?

```
# CREATE TABLE AS CSV SerDe

create table csv_serde_tbl
(

id int,
first_name string,
last_name string,
email string,
gender string,
ip_address string
)

row format serde 'org.apache.hadoop.hive.serde2.OpenCSVSerde'
stored as textfile;

# LOAD DATA INTO csv_serde_tbl FROM LOCAL
load data local inpath 'file:///tmp/sample.csv' into table csv_serde_tbl;
```

SCENARIO 7

Suppose, I have a lot of small CSV files present in the input directory in HDFS and I want to create a single Hive table corresponding to these files. The data in these files are in the format: {id, name, e-mail, country}. Now, as we know, Hadoop performance degrades when we use lots of small files.

So, how will you solve this problem where we want to create a single Hive table for lots of small files without degrading the performance of the system?

This problem can be resolved using SEQUENCEFILE format which will combine smaller files into one sequence file.

Below steps must be followed to achieve the result.

```
# Create a csv table:
    CREATE TABLE small_csv_tbl
    (
    id int,
    name string,
    e-mail string,
    country string
    )
    ROW FORMAT DELIMITED
    FIELDS TERMINATED BY ','
    STORED AS TEXTFILE;
```

```
# Load the data into small_csv_tbl:
Load data inpath '/input' into table small_csv_tbl;

# Create a table that will store data in SequenceFile format:
CREATE TABLE seq_csv_tbl
(
id int,
name string,
e-mail string,
country string
)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY ','
STORED AS SEQUENCEFILE;

# Transfer the data from the small_csv_tbl table into the seq_csv_tbl table:
INSERT OVERWRITE TABLE seq_csv_tbl SELECT * FROM small_csv_tbl;
```

Here, we have managed to create a single sequence file containing all the small csv files.

SCENARIO 8

The following statement failed to execute. What can be the cause?

LOAD DATA LOCAL INPATH 'Home/country/state/' OVERWRITE INTO TABLE address;

The local inpath should contain the entire file path. Here, filename is missing.

SCENARIO 9

Is it possible to add 100 nodes when we already have 100 nodes in Hive? If yes, how?

Yes, we can add another 100 nodes following below steps:

- 1. Take a new system; create a new username and password
- 2. Install SSH and with the master node setup SSH connections
- 3. Add ssh public_rsa id key to the authorized keys file
- 4. Add the new DataNode hostname, IP address, and other details in /etc/hosts slaves file: 192.168.1.102 slave3.in slave3
- 5. Start the DataNode on a new node
- 6. Login to the new node like suhadoop or: ssh -X hadoop@192.168.1.103
- 7. Start HDFS of the newly added slave node by using the following command: ./bin/hadoop-daemon.sh start data node
- 8. Check the output of the jps command on the new node

HIVE JOIN OPERATIONS

Create a table named CUSTOMERS (ID | NAME | AGE | ADDRESS | SALARY)
Create a Second table ORDER (OID | DATE | CUSTOMER_ID | AMOUNT)

Now perform different joins operations on top of these tables (Inner JOIN, LEFT OUTER JOIN, RIGHT OUTER JOIN, FULL OUTER JOIN)

```
# CREATE CUSTOMER TABLE
create table customer
(
ID int.
NAME string,
AGE int,
ADDRESS string,
SALARY float
row format delimited
fields terminated by ','
STORED AS TEXTFILE;
# CREATE ORDER TABLE
create table order
OID int,
DATE date,
CUSTOMER ID int,
AMOUNT float
row format delimited
fields terminated by ','
STORED AS TEXTFILE;
# INNER JOIN ON CUSTOMER AND ORDER TABLES
select cust.ID, cust.NAME, cust.AGE, cust.ADDRESS, ord .ID, ord.DATE, ord.AMOUNT
from customer cust
JOIN order ord
on (cust.ID=ord.CUSTOMER_ID)
# LEFT OUTER JOIN ON CUSTOMER AND ORDER TABLES
select cust.ID, cust.NAME, cust.AGE, cust.ADDRESS, ord .ID, ord.DATE, ord.AMOUNT
from customer cust
LEFT OUTER JOIN order ord
on (cust.ID=ord.CUSTOMER_ID)
# RIGHT OUTER JOIN ON CUSTOMER AND ORDER TABLES
select cust.ID, cust.NAME, cust.AGE, cust.ADDRESS, ord .ID, ord.DATE, ord.AMOUNT
from customer cust
RIGHT OUTER JOIN order ord
on (cust.ID=ord.CUSTOMER ID)
```

FULL OUTER JOIN ON CUSTOMER AND ORDER TABLES select cust.ID, cust.NAME, cust.AGE, cust.ADDRESS, ord .ID, ord.DATE, ord.AMOUNT from customer cust **FULL OUTER JOIN order ord** on (cust.ID=ord.CUSTOMER ID)

BUILD A DATA PIPELINE WITH HIVE

fields terminated by '\;'

tblproperties("skip.header.line.count"="1");

Download a data from the given location -

The file was then copied into local cloudera path "/home/cloudera/sourav/data" using FileZilla

```
https://archive.ics.uci.edu/ml/machine-learning-databases/00360/
"AirQualityUCI.csv" file was downloaded from the above location
1. Create a hive table as per given schema in your dataset
# CONNECT TO HIVE
 > hive
# CONNECT TO AN EXISTING DATABASE / CREATE A NEW DATABASE
 > user hive_demo;
# CREATE INTERNAL TEMPORARY TABLE
  create table temp_AirQualityUCI_tbl
  Date string,
 Time string,
  CO string,
  PT08S1 int,
  NMHC int,
 C6H6 string,
  PT08S2 int,
  NOx int,
  PT08S3 int,
  NO2 int.
  PT08S4 int,
  PT08S5 int,
 T string,
  RH string,
  AH string,
  Ex1 string,
  Ex2 string
  row format delimited
```

2. try to place a data into table location

COPY THE RAW DATA FROM THE CSV FILE INTO THE HIVE TEAMPORARY TABLE

LOAD DATA LOCAL INPATH '/home/cloudera/sourav/data/AirQualityUCI.csv' OVERWRITE INTO TABLE temp_AirQualityUCI_tbl;

PRINT THE FIRST 5 ROWS FROM THE TEMPORARY TABLE

Select * from temp AirQualityUCI tbl limit 5;

temp airqualit	tyuci tbl.date	temp a	airqualit	yuci tb	l.time	temp a	airquali1	tyuci tbl	.co	temp a	irqualit	yuci tbl	.pt08s1	temp airqualityuc
i_tbl.nmhc	temp_airqual	ityuci_tbl	L.c6h6	temp	airqualit	yuci_tb	l.pt08s2	temp_a	irquali1	yuci_tbl	.nox	temp_a	irqualit	yuci_tbl.pt08s3 t
emp_airquality	yuci_tbl.no2	temp_a	airqualit	yuci_tb	l.pt08s4	temp_a	airqualit	tyuci_tbl	.pt08s5	temp_a	irqualit	yuci_tbl	.t	temp_airqualityuc
i_tbl.rh	temp_airqual	ityuci_tbl	L.ah	temp_	airqualit	yuci_tb	l.ex1	temp_a	irqualit	tyuci_tbl	.ex2			
10/03/2004	18.00.00	2,6	1360	150	11,9	1046	166	1056	113	1692	1268	13,6	48,9	0,7578
10/03/2004	19.00.00	2	1292	112	9,4	955	103	1174	92	1559	972	13,3	47,7	0,7255
10/03/2004	20.00.00	2,2	1402	88	9,0	939	131	1140	114	1555	1074	11,9	54,0	0,7502
10/03/2004	21.00.00	2,2	1376	80	9,2	948	172	1092	122	1584	1203	11,0	60,0	0,7867
10/03/2004	22.00.00	1,6	1272	51	6,5	836	131	1205	116	1490	1110	11,2	59,6	0,7888

```
# CREATE A NEW HIVE TABLE IN ORC FORMAT
  create table AirQualityUCI_ORC_tbl
  Date string,
  Time string,
  CO float,
  PT08S1 int,
  NMHC int,
  C6H6 float,
  PT08S2 int,
  NOx int,
  PT08S3 int,
  NO2 int,
  PT08S4 int,
  PT08S5 int,
  T float,
  RH float,
  AH float
  STORED AS ORC;
```

TRANSFER CLEAN DATA FROM THE TEMPORARY TABLE INTO THE ORC TABLE ## REPLACE COMMA (',') WITH DOT ('.') USING REGEXP_REPLACE FUNCTION

from temp_AirQualityUCI_tbl insert overwrite table AirQualityUCI_ORC_tbl select

```
DATE, Time,
regexp_replace(CO,',','.'),
PT08S1, NMHC,
regexp_replace(C6H6,',','.'),
PT08S2, NOx, PT08S3, NO2, PT08S4, PT08S5,
regexp_replace(T,',','.') as T,
regexp_replace(RH,',','.') as RH,
regexp_replace(AH,',','.') as AH;
```

3. Perform a select operation.

PRINT THE FIRST 5 ROWS FROM THE ORC TABLE

THIS TABLE CONTAINS CLEAN DATA

Select * from AirQualityUCI ORC tbl limit 5;

airqualityuc:	i orc tbl.date	airqua	alityuci	orc tbl	.time	airqua	lityuci	orc tbl.	CO	airqua	lityuci	orc tbl.	pt08s1	airqualityuci orc
tbl.nmhc	airqualityuci	i_orc_tbl.	.c6h6	airqu	alityuci_d	orc_tbl.	pt08s2	airqua	lityuci	orc tbl.	nox	airqua	lityuci	orc tbl.pt08s3 a
irqualityuci	_orc_tbl.no2	airqua	alityuci_	orc_tbl	.pt08s4	airqua	lityuci	_orc_tbl.	pt08s5	airqua	lityuci_	orc_tbl.	t airqua	alityuci_orc_tbl.rha
irqualityuci	orc_tbl.ah													
10/03/2004	18.00.00	2.6	1360	150	11.9	1046	166	1056	113	1692	1268	13.6	48.9	0.7578
10/03/2004	19.00.00	2.0	1292	112	9.4	955	103	1174	92	1559	972	13.3	47.7	0.7255
10/03/2004	20.00.00	2.2	1402	88	9.0	939	131	1140	114	1555	1074	11.9	54.0	0.7502
10/03/2004	21.00.00	2.2	1376	80	9.2	948	172	1092	122	1584	1203	11.0	60.0	0.7867
10/03/2004	22.00.00	1.6	1272	51	6.5	836	131	1205	116	1490	1110	11.2	59.6	0.7888

4. Fetch the result of the select operation in your local as a csv file.

TRANSFER DATA FROM HIVE TABLE INTO LOCAL FOLDER AS A CSV FILE

INSERT OVERWRITE LOCAL DIRECTORY '/home/cloudera/mydata'

ROW FORMAT DELIMITED

FIELDS TERMINATED BY ','

select * from AirQualityUCI ORC tbl;

5. Perform group by operation.

```
# SELECT HIVE TABLE USING GROUP BY select date, avg(CO) as Average_CO_GT, avg(PT08S1) as Average_PT08_S1, avg(NMHC) as Average_NMHC_CT
```

from AirQualityUCI ORC tbl

group by date;

7. Perform filter operation at least 5 kinds of filter examples.

GROUP BY

select date, avg(CO) as Ave CO, from AirQualityUCI ORC tbl group by date;

EQUAL CLAUSE

select * from AirQualityUCI ORC tbl where date = '03/10/2004';

LIKE OPERATOR

select * from AirQualityUCI ORC tbl where date like concat('%','4/10/','%');

NOT NULL

select * from AirQualityUCI ORC tbl where CO is not null;

RLIKE OPERATOR

select * from AirQualityUCI ORC tbl where CO RLIKE '^(-)';

8. show an example of regex operation

SELECT FIRST 10 RECORDS OF HIVE TABLE WITH CO AS NEGATIVE VALUE USING REGEX OPERATION

select * from AirQualityUCI ORC tbl where CO RLIKE '^(-)' limit 10;

	• ,	_	_				,	•							
hive> select *	∤ from AirQualit	yUCI ORC t	bl wher	e CO RLI	KE '^(-)	' limit	10;								
0K															
airqualityuci	orc tbl.date	airqual	ityuci	orc tbl.	time	airqua	alityuci	orc tbl.	CO	airqua	lityuci	orc tbl.	pt08s1	airqual	ityuci
hc airqua	alityuci orc tbl	.c6h6	airqua	lityuci	orc tbl.	pt08s2	airqua	lityuci	orc tbl.	nox	airqua	lityuci	orc tbl.	pt08s3	airqua
c tbl.no2	airqualityuci	orc tbl.p	t08s4	airqua	lityuci	orc tbl.	pt08s5	airqua	lityuci	orc tbl.	t airqua	lityuci	orc tbl.	rh	airqua
c_tbl.ah						_				_			_		
11/03/2004	04.00.00	-200.0	1011	14	1.3	527	21	1818	34	1197	445	10.1	60.5	0.7465	
12/03/2004	04.00.00	-200.0	831	10	1.1	506	21	1893	32	1134	384	6.1	65.9	0.6248	
12/03/2004	09.00.00	-200.0	1545	-200	22.1	1353	-200	767	-200	2058	1588	9.2	56.2	0.6561	
13/03/2004	04.00.00	-200.0	1147	56	6.2	821	109	1132	83	1412	992	7.0	71.1	0.7158	
14/03/2004	04.00.00	-200.0	1130	56	5.2	773	70	1130	82	1452	1051	12.1	61.1	0.8603	
15/03/2004	04.00.00	-200.0	1078	44	4.0	711	66	1150	71	1468	1013	12.3	65.4	0.9351	
16/03/2004	04.00.00	-200.0	941	25	2.6	626	59	1316	59	1373	840	12.3	66.2	0.945	
17/03/2004	04.00.00	-200.0	883	17	1.9	577	54	1396	60	1303	808	12.7	57.9	0.8447	
18/03/2004	04.00.00	-200.0	954	28	2.9	645	60	1260	78	1334	925	11.6	61.9	0.8442	
19/03/2004	04.00.00	-200.0	934	-200	1.8	569	20	1440	32	1280	397	12.3	67.7	0.9665	

9. alter table operation

ALTER TABLE TO RENAME THE TABLE NAME

ALTER TABLE temp_AirQualityUCI_tbl RENAME TO renamed_temp_AirQualityUCI_tbl;

```
hive> select * from temp AirQualityUCI tbl limit 1;
10/03/2004
               18.00.00
                                                     11,9
                                                                             1056
                                                                                    113
                                                                                            1692
                                                                                                    1268
                                                                                                            13,6
                                                                                                                    48,9
                                                                                                                           0,7578
Time taken: 0.072 seconds, Fetched: 1 row(s)
hive> ALTER TABLE temp_AirQualityUCI_tbl RENAME TO renamed_temp_AirQualityUCI_tbl;
Time taken: 0.088 seconds
hive> select * from temp AirQualityUCI tbl limit 1;
FAILED: SemanticException [Error 10001]: Line 1:14 Table not found 'temp AirQualityUCI tbl'
hive> select * from renamed temp AirQualityUCI tbl limit 1;
10/03/2004
              18.00.00
                              2,6 1360 150
                                                     11,9 1046
                                                                   166
                                                                            1056 113
                                                                                            1692
                                                                                                    1268
                                                                                                            13.6
                                                                                                                    48.9
                                                                                                                           0.7578
```

10. drop table operation

DROP A HIVE TABLE

DROP TABLE IF EXISTS renamed_temp_AirQualityUCI_tbl;

12. order by operation.

RETURN ROWS FROM HIVE TABLE WITH ORDER BY CLAUSE

select * from AirQualityUCI ORC tbl order by date desc;

01/01/2005	00.00.00	-200.0	1046	-200	4.2	724	-200	848	-200	898	1201	8.2	40.1	0.4375
01/01/2005	01.00.00	1.6	1275	-200	8.8	930	215	649	106	1024	1617	5.3	50.7	0.4564
01/01/2005	02.00.00	2.5	1173	-200	7.5	878	300	738	129	1002	1355	5.9	50.0	0.4689
01/01/2005	03.00.00	2.7	1163	-200	7.6	881	-200	748	-200	1001	1296	4.9	53.9	0.4693
01/01/2005	04.00.00	1.9	1054	-200	5.6	791	253	830	126	967	1131	4.3	55.3	0.465

13. where clause operations you have to perform.

RETURN ROWS FROM HIVE TABLE USING WHERE CLAUSE

select * from AirQualityUCI_ORC_tbl

where date = '03/10/2004' and C6H6 > 15;

03/10/2004	19.00.00	-200.0	1524	-200	20.8	1320	-200	514	-200	1925	1481	23.7	55.6	1.6074
03/10/2004	20.00.00	-200.0	1540	-200	21.4	1336	-200	498	-200	1929	1590	22.7	59.6	1.6261

14. sorting operation you have to perform.

RETURN ROWS FROM HIVE TABLE USING SORT BY OPERATION

select * from AirQualityUCI_ORC_tbl where date = '03/10/2004' and C6H6 < 8 sort by time;

03/10/2004	01.00.00	-200.0	1037	-200	6.5	836	-200	788	-200	1467	904	20.7	63.2	1.524
03/10/2004	02.00.00	-200.0	982	-200	5.1	768	-200	850	-200	1416	835	21.2	61.5	1.5241
03/10/2004	03.00.00	-200.0	944	-200	4.5	740	-200	881	-200	1412	781	20.3	64.6	1.518
03/10/2004	04.00.00	-200.0	929	-200	3.9	703	-200	908	-200	1391	761	20.2	64.4	1.5035
03/10/2004	05.00.00	-200.0	906	-200	3.3	672	-200	948	-200	1377	742	20.1	65.3	1.5153
03/10/2004	06.00.00	-200.0	907	-200	3.2	665	-200	972	-200	1370	779	19.9	66.0	1.5141
03/10/2004	07.00.00	-200.0	1013	-200	5.4	781	-200	829	-200	1469	894	19.8	66.4	1.5145
03/10/2004	08.00.00	-200.0	1055	-200	5.6	795	-200	800	-200	1476	927	20.4	64.1	1.5178
03/10/2004	09.00.00	-200.0	1138	-200	7.5	880	-200	727	-200	1538	1034	21.6	60.8	1.5496
03/10/2004	14.00.00	-200.0	1092	-200	6.0	814	-200	794	-200	1446	777	27.4	42.8	1.5344
03/10/2004	15.00.00	-200.0	1109	-200	6.7	843	-200	769	-200	1458	743	27.1	43.3	1.5255
03/10/2004	16.00.00	-200.0	1133	-200	6.2	823	-200	775	-200	1449	777	26.9	44.4	1.551
03/10/2004	17.00.00	-200.0	1192	-200	7.7	887	-200	716	-200	1488	819	26.9	44.4	1.5538
03/10/2004	23.00.00	-200.0	1079	-200	7.8	890	-200	745	-200	1522	1000	20.5	64.9	1.5473

15. distinct operation you have to perform.

RETURN DATA FROM A HIVE TABLE USING DISTINCT OPERATION select distinct time from AirQualityUCI_ORC_tbl;

16. like operation you have to perform.

RETURN DATA FROM A HIVE TABLE USING LIKE OPERATION

select * from AirQualityUCI_ORC_tbl

where date like concat('%','4/10/','%') and time like concat('02','%');

hive> select	* from AirQualit	tyUCI_ORC_t	bl wher	e date l	ike conc	at('%','	4/10/','	%') and	time lik	e concat	('02','%	;');		
0K														
04/10/2004	02.00.00	-200.0	890	-200	3.2	666	-200	969	-200	1323	728	18.9	68.6	1.4818
14/10/2004	02.00.00	-200.0	740	-200	1.1	506	-200	1333	-200	1074	469	14.9	56.4	0.9474
24/10/2004	02.00.00	2.1	1155	-200	10.9	1012	243	633	66	1577	1124	19.4	71.4	1.5959

17. union operation you have to perform.

RETURN DATA FROM A HIVE TABLE USING UNION OPERATION

select * from AirQualityUCI_ORC_tbl

where date = '02/04/2004' and time < '05.00.00'

UNION ALL

select * from AirQualityUCI_ORC_tbl

where date = '02/04/2005' and time < '05.00.00'

02/04/2004	00.00.00	2.0	1139	157	8.0	899	126	921	104	1514	1067	14.1	54.4	0.8701
02/04/2004	01.00.00	1.3	1072	88	5.6	795	84	986	93	1442	1048	13.3	58.8	0.8922
02/04/2004	02.00.00	1.0	954	68	3.2	667	58	1180	60	1350	718	13.3	60.9	0.9229
02/04/2004	03.00.00	0.9	951	57	3.3	673	-200	1137	-200	1381	797	11.8	64.3	0.8869
02/04/2004	04.00.00	-200.0	926	36	2.8	638	37	1195	52	1342	749	11.2	65.9	0.8775
02/04/2005	00.00.00	1.5	965	-200	5.8	803	280	802	174	951	889	13.1	32.0	0.4817
02/04/2005	01.00.00	1.1	838	-200	1.9	580	167	1055	127	791	516	12.7	33.6	0.4902
02/04/2005	02.00.00	0.6	835	-200	1.5	546	102	1111	81	768	391	12.2	35.6	0.5038
02/04/2005	03.00.00	0.5	820	-200	1.4	536	92	1137	70	777	374	11.9	35.6	0.4945
02/04/2005	04.00.00	0.4	815	-200	0.9	488	63	1223	49	742	326	11.2	38.3	0.5099

18. table view operation you have to perform.

CREATE VIEW FROM A HIVE TABLE

create view vw_AirQualityUCI_ORC as select DATE,Time,CO,PT08S1 from AirQualityUCI_ORC_tbl where date = '02/04/2004' and time < '05.00.00';

```
hive> create view vw AirQualityUCI ORC as
    > select DATE, Time, CO, PT08S1 from AirQualityUCI ORC tbl
    > where date = '02/04/2004' and time < '05.00.00';
0K
Time taken: 0.074 seconds
hive> select * from vw_AirQualityUCI_ORC;
02/04/2004
                00.00.00
                                2.0
                                         1139
02/04/2004
                01.00.00
                                1.3
                                         1072
                                         954
02/04/2004
                02.00.00
                                1.0
02/04/2004 03.00.00
02/04/2004 04.00.00
                                0.9
                                         951
                                -200.0 926
Time taken: 0.093 seconds, Fetched: 5 row(s)
```

HIVE OPERATION WITH PYTHON

Create a python application that connects to the Hive database for extracting data, creating sub tables for data processing, drops temporary tables. Fetch rows to python itself into a list of tuples and mimic the join or filter operations