Algebraic Topology

Ikhan Choi

November 29, 2023

Contents

Ι	Homology	2
1	Axiomatic homology 1.1 Singular homology	3 3
2	Homology groups 2.1 Cellular homology	4 4
3	Cohomology 3.1 Poincaré duality	5
II	Homotopy	6
4	Homotopy groups	7
5	Fibration5.1 Homotopy lifting property5.2 Obstruction theory5.3 Hurewicz theorem	8 8 8
6	Spectral sequences 6.1 Serre spectral sequence	9 9 9
III	I	10
7	Characteristic classes	12
8	K-theory	13
IV	Stable homotopy theory	14
9	9.1. Generalized homology theory	15 15

Part I Homology

Axiomatic homology

- 1.1 Singular homology
- 1.2 Eilenberg-Steenrod axioms

Mayer-Vietoris sequence

Homology groups

2.1 Cellular homology

CW complex, equivalence,

2.2 Simplicial homology

geometric realization, equivalence, smith normal form, simplicial approximation,

Cohomology

cup product universal coefficient theorem

3.1 Poincaré duality

Part II

Homotopy

Homotopy groups

Fibration

5.1 Homotopy lifting property

Locally trivial bundles pullback bundles: universal property, functoriality, restriction, section prolongation

5.2 Obstruction theory

5.3 Hurewicz theorem

 $H_{ullet}(\Omega S_n)$ and $H_{ullet}(U(n))$ Spin, Spin $_{\mathbb C}$ structure

Spectral sequences

6.1 Serre spectral sequence

(Lyndon-Hochschild-Serre)

6.2 Adams spectral sequence

Part III

Characteristic classes

A characteristic class is a natural transformation $Prin_G = [-,BG] \to H^n(-,A)$ for some n. They are always can be given by the pullback of classes in $H^n(BG,A)$ by the Yoneda lemma.

1.
$$G = GL(1,\mathbb{R})$$
. $Prin_G : \mathbf{Para}^{op} \to \mathbf{Grp}$. $BG = G_1(\mathbb{R}^{\infty}) = \mathbb{RP}^{\infty} = K(\mathbb{Z}/2\mathbb{Z},1)$.

$$(\operatorname{Prin}_G, \otimes) \cong (H^1(-, \mathbb{Z}/2\mathbb{Z}), +).$$

2.
$$G = GL(1, \mathbb{C})$$
. $Prin_G : \mathbf{Para}^{op} \to \mathbf{Grp}$. $BG = G_1(\mathbb{C}^{\infty}) = \mathbb{CP}^{\infty} = K(\mathbb{Z}, 2)$.

$$(\operatorname{Prin}_G, \otimes) \cong (H^2(-, \mathbb{Z}), +).$$

3.
$$G = GL(n, \mathbb{R})$$
. Prin_G: **Para**^{op} \rightarrow **Set**. $BG = G_n(\mathbb{R}^{\infty})$. By Thom and Gysin,

$$H^*(BG, \mathbb{Z}/2\mathbb{Z}) \cong \mathbb{Z}/2\mathbb{Z}[w_1, \cdots, w_n].$$

Since there is a special class in $H^n(K(A, n))$ so that the inducing map provides an isomorphism $[X, K(A, n)] = H^n(X, A)$, we have $H^n(BGL(n, \mathbb{C})) \to H^n(X, A)$.

Exercises

characteristic class of projective spaces

K-theory

bott periodicity Hopf invariant

Part IV Stable homotopy theory

9.1 Generalized homology theory

A generalized reduced cohomology theory on pointed CW complexes is a sequence of functors \widetilde{E}_q : $\mathbf{hCW}_* \to \mathbf{Ab}$ for $q \in \mathbb{Z}$ which is exact and additive, and satisfies the suspension axiom.

- **9.1.** Let *X* and *Y* be pointed CW complexes.
 - (a) Suppose *Y* is (n-1)-connected with non-degenerate base point for some *n*. Then, $[X,Y] \to [\Sigma X, \Sigma Y]$ is surjective if dim $X \le 2n-1$, and bijective if dim $X \le 2n-2$.
- **9.2.** A spectrum is a sequence $E:=(E_n)_n$ of pointed spaces together with structure maps, either $\sigma_n:$ $\Sigma E_n \to E_{n+1}$ or $\sigma'_n: E_n \to \Omega E_{n+1}$. We have

$$[X, E_n] \xrightarrow{\sigma'_n} [X, \Omega E_{n+1}] = [\Sigma X, E_{n+1}].$$

- **9.3** (Properties of spectra). A spectrum $E = (E_n)_n$ is called an Ω -spectrum if $\sigma'_n : E_n \to \Omega E_{n+1}$ is a weak homotopy equivalence. A *ring spectrum* is a spectrum together with a
 - (a) E is an Ω -spectrum if and only if $[-, E_n]$ defines a generalized reduced cohomology theory on based CW complexes.

Sphere spectra, Suspension spectra Eilenberg-MacLane spectra(ordinary cohomology theories), K-theory spectra(K-theories), Thom spectra(cobordism theories)

Let E^* be a (generalized) cohomology theory. Then, the computation of Nat($[-,BO(n)],E^*$) \cong $E^*(BO(n))$ determines all characteristic classes of real vector bundles.

equivariant topology chromatic homotopy theory spectral sequences orthogonal spectra abstract homotopy theory Kervaire invariant problem