Flight Delay Prediction Phase 5 Presentation

261 Final Project Summer 2023 Section 5 Team 1 Kisha Kim kisha.kim@berkeley.edu Lead in Phase 1 Plan the Project

Chase Madson chase_madson@berkeley.edu Lead in Phase 2 Pipelines and Baselines

Eric Danforth edanforth85@berkeley.edu Lead in Phase 3

Jess Stockham jhsmith@berkeley.edu Lead in Phase 4 Find Optimal Algorithm

Business Case and Developing a Model

Background:

On-time Performance (OTP) for air travel has been in a state of steady decline. Airline industry expects to be profitable for the first time since the start of the pandemic in 2023. The losses that's due to flight delay has been steadily rising per the FAA from \$19.2B in 2012 to estimated \$33B in 2019.

Problem Statement:

The goal of this project is to develop a machine learning model that accurately predicts flight delays based on historical flight, airport station, and weather data spanning five years from 2015-2019 in the United States.

- **Delays** are defined as when flight takes off 15 minutes or more later than the predicted departure time.
- Classification problem to predict the delay. This is a label, where delay=1 indicates a delay, delay=0 as on time.
- **Per the business problem**, our **evaluation metric is** F-Beta that prioritizes recall (beta=2). We want to error on the side of predicting more flight delays and being wrong (focus on recall over precision)
- Data: Department of Transportation flights & Weather NOAA (pre-joined)

Our innovative approach

Baseline Model = Random Forest

Estimator	Dataset	Key Parameters (defaults)	F-Beta (beta=2) Metric
Logistic Regression	Jan-Mar 2015 with 3 CV Folds	maxIter=100, regParam=0.0, elasticNetParam = 0.0	3.3%
Random Forest (BASELINE)	Jan-Mar 2015 with 3 CV Folds	maxDepth=5, numTrees=20	0.0%

Feature Families (700 columns total)

- Numeric (2)
 - Flevation
 - Distance
- Categorical (7 columns, but 600+ w/ OHE)
 - Day of Week
 - Month
 - Carrier
 - Origin
 - Destination
 - Origin_Type
 - Destination_Type

- Result is equivalent to the naive baseline that assumes all flights are on-time
- Expected random forest to outperform logistic regression as we refine the model.

Engineering New Features

airport_i	ta_code	pagerank
I	MDW 16	.667919932832607
I	DAL 12	.015323092393754
1	TTN] (6.72722997624961
i	UST 6	.359073234678428
	MAF !	5.78357084337458
i	AMA 5	.759743932028508
Ī	MHT[5.	5422490941052605
Ī	OAK 3	.051454431912101
Ì	CVG 2	.616707398061823
1	MSP 2.2	2573752284359467
·		

New Features Created To-Date:

• Categorical:

- Holidays and holiday-adjacent indicators
- First flight of the day indicator

• Graph (numeric)

- PageRank
- Triangle count
- LPA (dropped because too compute intensive)

Lagged Time-Related Outcomes (numeric)

- Average Flight Delay Duration (from prior day)
- Average Flight Duration by Flight Number (from prior day)
- Expected Airport Congestion
- Departure delay (in minutes) of its preceding flight

Data Pipeline to Minimize Data Leakage

Model Refinement: Hypertuning

- Used Cross-validation Dataset Folds
 - Reduces the risk that you are over-fitting to your particular training dataset
 - Blocked time-series splits over 2015-2018
 - Train: 200 days, val: 92
 - Used most recent 2 folds for hypertuning
- **Hypertuning** is trying different sets of parameters for your estimators to see what produces the best metric (f-beta)
 - Used baysean approach to hypertuning
 - Algorithm learn the best parameters as you perform more trials

Hypertuning Experiments (with new features)

#	Estimator	Dataset	Best Hyperparameters	Trials	Best F-Beta (beta=2) Metric
1	Random Forest	2017-2018 (2-folds) train: 200 days val: 92	maxDepth=12 numTrees=140	8	40.1%
2	LightGBM	2017-2018 (2-folds) train: 200 days val: 92	maxDepth=10 min_child_weight=2 min_data_in_leaf=1000 subsample=0.8 reg_alpha=1	10	28.7%
3	Neural Network	2017-2018 (2-folds) train: 200 days val: 92	layers=[81, 8, 4, 2]	2	43.4%

Feature Families (81 features total)

Numeric (10)

- Elevation
 - Distance
 - 4 graph features
 - 4 time-lagged features

• Categorical (9 columns, but 71 w/ OHE)

- Day of Week
- Month
- Carrier
- Origin Type
- Destination_Type
- CRS_DEP_BUCKET
- Holiday, holiday-adjacent
- first_flight

Final Model Runs: Full Training Dataset

#	Estimator	Dataset	Hyperparameter s	F-Beta (beta=2) Metric	AUC Metric
1	Random Forest 1	2015-2018 Train	maxDepth=12 numTrees=140	40.5%	50.3%
2	Neural Network 1	2015-2018 Train	layers=[81, 8, 4, 2]	40.5%*	66.9%
3	Neural Network 2	2015-2018 Train	layers=[81, 32, 16, 4, 2]	40.3%	67.0%
4	Random Forest 2	DOWNSAMPLE D 2015-2018 Train	maxDepth=12 numTrees=140	60.4%	72.0%
5	Neural Network 3	DOWNSAMPLE D 2015-2018 Train	layers=[81, 8, 4, 2]	63.1%	71.8%

Feature Families (81 features total)

Numeric (10)

- Elevation
- Distance
- 4 graph features
- 4 time-lagged features

• Categorical (9 features, but 71 w/ OHE)

- Day of Week
- Month
- Carrier
- Origin_Type
- Destination_Type
- CRS_DEP_BUCKET
- Holiday, holiday-adjacent
- first_flight

Downsampling

Label	Training Dataset Row Count (original) 2015-2018	Training Dataset After Downsampling Row Count 2015-2018	Test Dataset Row Count 2019
No Delay	19,607,943	4,312,859	5,905,453
Delay	4,312,859	4,312,859	1,353,702
Total	23,920,802	8,625,718	7,259,155

Downsampled training dataset is 34% of the size of the original training dataset

Final Result: Held-Out Dataset (2019)

- Sigmoid activation for the hidden layers, softmax for the output layer
- Limited-memory BFGS for the optimizer

- Block Size of 128
- Learning Rate of 0.03
- Max Iterations of 100

Estimator	Dataset	Hyperparameters	F-Beta (beta=2) Metric	AUC Metric
Neural Network 3	DOWNSAMPLED 2015-2018 Train	layers=[81, 8, 4, 2]	54.4%	70.9%

Evaluation metric used (maybe different to ML loss function)	cross fold validation performance	Performance on blind test set (2021)
Accuracy, Precision, Recall,F1	Accuracy: 77% Precision: 71% Recall: 71% F1: 0.673	
F1	Best regularization parameter : 0.01 F1 score average: 0.7	
AUC-ROC	AUC: 80.9%	AUC: 79.6%
F-Beta	f-beta: 63.1%, AUC: 71.8%	f-beta: 54.4%, AUC: 70.1%
	Accuracy, Precision, Recall,F1 F1 AUC-ROC	Accuracy: 77% Precision: 71% Recall: 71% F1: 0.673 Best regularization parameter: 0.01 F1

Post-Mortem Gap Analysis on Held-Out (2019)

Error Patterns Across Airlines

- Poor on Alaska Airlines and Hawaii Airlines
- Poor on United, Delta, American

Error Patterns Across Time of the Week

- Better on weekday afternoons and evenings
- Poor on mornings, especially before 7:00 a.m.

Shap Values

With 500 rows of data in test set

	U
DAY_OF_WEEK	0.020177
DISTANCE	-0.006085
ELEVATION	0.000640
FE_PRIOR_DAILY_AVG_DEP_DELAY	-0.010594
FE_PRIOR_AVG_DURATION	-0.000483

Conclusion and Next Steps

- Downsampling the majority class was key to model improvement
- Need to add more predictive features to improve performance
- Planned improvements
 - Features
 - Daily or weekly seasonal trend
 - Weather data features taking care to avoid leakage
 - Interaction terms (e.g. MONTH*HOLIDAY)
 - Datasets
 - Major Events
 - Airport (e.g. maintenance, layout)
 - Airline (e.g. reputation, marketing)
 - Plane details (e.g. model, manufacturer, num of seats)

Other Packages we Tried

- tempo (Databricks labs)
 - Wraps the Spark data frame with a TSDF object
 - Creates smaller partitions that that are time aware and allow you to slice across partitions.
- prophet (Facebook)
 - Forecasting time series data with seasonality trends
 - Time blocked crossed validation
 - Limitations:
 - Very memory intensive
 - Difficult to serialize model
- fugue + statsforecast
 - Faster alternative to prophet
 - Limited documentation
- xgboost
 - Computationally heavy gradient boosting
 - Often replaced with lightgbm in Spark

Lessons Learned with Big Data

- Lessons Learned
 - Do your hypertuning on a subset of data
 - Checkpoint often
 - Create a robust data validation/quality assurance module as part of the data pipeline
 - Track experiments
 - Implement version control
- Challenges
 - More limited hypertuning due to time constraints
 - Team productivity challenges when sharing compute
 - Monitoring resources and maximizing use and efficiency
 - Limiting scope based on difficulty of working with data at scale

Questions?

Exploratory Data Analaysis

Figure 1

Figure 2

