CS 4248 Natural Language Processing

Professor NG Hwee Tou

Department of Computer Science
School of Computing
National University of Singapore
nght@comp.nus.edu.sg

Chapter 5: Part-of-Speech Tagging

- Part-of-speech (POS), word class, morphological class, lexical tag
- Examples: noun, verb, adjective, adverb, determiner, preposition, etc.

Utility of POS

- Give info about a word and its neighbors
 - A possessive pronoun (my, his) likely to be followed by a noun
 - A personal pronoun (I, he) likely to be followed by a verb
- The same word in different POS may be pronounced differently
 - lives (noun) vs. lives (verb)
 - lead (noun) vs. lead (verb)

Utility of POS

- POS can help to decide the correct morphological affixes
 - chairs (chair +N +PL)
 - chairs (chair +V +3SG)
- POS tags provide useful info to other NLP components (parsing, word sense disambiguation)
- POS can help to determine the structure of a sentence (e.g., noun phrase boundary)

English POS

Definition of POS

- Morphological property: words in the same POS have similar affixes
- Distributional property: words in the same POS occur with similar surrounding words

Classes of POS

- Open class: noun, verb, adjective, adverb
- Closed class: the rest (determiner, preposition, conjunction, etc.); function words

Tagsets for English

- Penn Treebank (45 POS tags)
 - Used for tagging Brown corpus and Wall Street
 Journal corpus
- Brown corpus (87 POS tags)
 - Used in the original Brown corpus
- C5 tagset (61 POS tags)
 - Used for tagging British National Corpus (BNC)
- C7 tagset (146 POS tags)

Penn Treebank POS Tags

Tag	Description	Example	Tag	Description	Example
CC	coordin. conjunction	and, but, or	SYM	symbol	+,%, &
CD	cardinal number	one, two, three	TO	"to"	to
DT	determiner	a, the	UH	interjection	ah, oops
EX	existential 'there'	there	VB	verb, base form	eat
FW	foreign word	mea culpa	VBD	verb, past tense	ate
IN	preposition/sub-conj	of, in, by	VBG	verb, gerund	eating
JJ	adjective	yellow	VBN	verb, past participle	eaten
JJR	adj., comparative	bigger	VBP	verb, non-3sg pres	eat
JJS	adj., superlative	wildest	VBZ	verb, 3sg pres	eats
LS	list item marker	1, 2, One	WDT	wh-determiner	which, that
MD	modal	can, should	WP	wh-pronoun	what, who
NN	noun, sing. or mass	llama	WP\$	possessive wh-	whose
NNS	noun, plural	llamas	WRB	wh-adverb	how, where
NNP	proper noun, singular	IBM	\$	dollar sign	\$
NNPS	proper noun, plural	Carolinas	#	pound sign	#
PDT	predeterminer	all, both	46	left quote	or "
POS	possessive ending	's	,,	right quote	, or ,,
PRP	personal pronoun	I, you, he	(left parenthesis	[, (, {, <
PRP\$	possessive pronoun	your, one's)	right parenthesis],), }, >
RB	adverb	quickly, never	,	comma	,
RBR	adverb, comparative	faster		sentence-final punc	.!?
RBS	adverb, superlative	fastest	:	mid-sentence punc	:;
RP	particle	up, off			

Penn Treebank POS Tags

Example:

The/DT grand/JJ jury/NN commented/VBD on/IN a/DT number/NN of/IN other/JJ topics/NNS ./.

Penn Treebank POS Tags

there with different POS tags:

There/EX are 70 children there/RB

VBN (event/verb) vs. JJ (property):

They were married/VBN by the Justice of the Peace.

At the time, she was already married/JJ.

Input:

- A sentence S (and a POS tagset)
- E.g. "The grand jury commented on a number of other topics."

• Output:

- One single best POS tag for each word in S
- E.g., "The/DT grand/JJ jury/NN commented/VBD on/IN a/DT number/NN of/IN other/JJ topics/NNS ./."

- Resolve ambiguity
 - Verb: book that flight
 - Noun: hand me that book
 - Determiner: Does that flight serve dinner
 - Subordinating conjunction: I thought that your flight was earlier

- Most words in English are unambiguous, but many of the most common words are ambiguous
- DeRose (1988):
 - 11.5% of word types in Brown corpus are ambiguous
 - Over 40% of word tokens are ambiguous

- Approaches:
 - 1. Rule-based tagging
 - 2. Stochastic HMM (hidden Markov model) tagging

Rule-based Tagging

- Two stages:
 - Use a dictionary to assign each word a list of potential POS
 - 2. Use a large list of hand-written disambiguation rules to narrow down to a single best POS for each word
 - E.g., an ambiguous word is a noun rather than a verb if it follows a determiner

EngCG Tagger

- Lexicon
 - 56,000 entries for English word stems
 - Each entry has morphological/syntactic features
- 3,744 rules/constraints
 - Rule out incorrect POS

$$\hat{T} = \underset{T}{\operatorname{arg max}} P(T|W)$$

$$= \underset{T}{\operatorname{arg max}} \frac{P(T,W)}{P(W)}$$

$$= \underset{T}{\operatorname{arg max}} P(T,W)$$

$$\begin{split} P(T,W) &= P(< s >, t_1, w_1, t_2, w_2, \dots, t_T, w_T,) \\ &= P(< s >) \cdot P(t_1 | < s >) \cdot P(w_1 | < s >, t_1) \cdot \\ P(t_2 | < s >, t_1, w_1) \cdot P(w_2 | < s >, t_1, w_1, t_2) \cdot \dots \cdot \\ P(t_T | < s >, t_1, w_1, \dots, t_{T-1}, w_{T-1}) \cdot \\ P(w_T | < s >, t_1, w_1, \dots, t_{T-1}, w_{T-1}, t_T) \cdot \\ P(w_T | < s >, t_1, w_1, \dots, t_T, w_T) \end{split}$$

$$P(< s >) = 1$$

$$P(t_i | < s >, t_1, w_1, \dots, t_{i-1}, w_{i-1}) \approx P(t_i | t_{i-1}) \\ P(w_i | < s >, t_1, w_1, \dots, t_{i-1}, w_{i-1}, t_i) \approx P(w_i | t_i) \\ P(< / s >| < s >, t_1, w_1, \dots, t_T, w_T) \approx P(< / s >| t_T) \\ P(T,W) = (\prod_{i=1}^T P(t_i | t_{i-1}) \cdot P(w_i | t_i)) \cdot P(< / s >| t_T) \\ \hat{T} = \underset{t_1, \dots, t_T}{\operatorname{arg max}} \left\{ (\prod_{i=1}^T P(t_i | t_{i-1}) \cdot P(w_i | t_i)) \cdot P(< / s >| t_T) \right\} \end{split}$$

$A = a_{11}a_{12}\dots a_{n1}\dots a_{nn}$	a transition probability matrix A , each a_{ij} representing the probability of moving from state i				
	to state j , s.t. $\sum_{j=1}^{n} a_{ij} = 1 \forall i$.				
$O = o_1 o_2 \dots o_T$	a sequence of T observations, each one drawn from a vocabulary $V = v_1, v_2,, v_V$.				
$B = b_i(o_t)$	A sequence of observation likelihoods , also called emission probabilities , each expressing				

erated from a state i.

a set of N states.

 $\forall i \quad \sum_{o_t \in V} b_i(o_t) = 1$

 q_0, q_F

 $Q = q_1 q_2 \dots q_N$

a special **start state** and **end (final) state** that are not associated with observations, together with transition probabilities $a_{01}a_{02}...a_{0n}$ out of the start state and $a_{1F}a_{2F}...a_{nF}$ into the end state.

the probability of an observation o_t being gen-

Illustrating Example

- Determine the most probable state sequence
 - Direct evaluation: $O(T \cdot N^T)$
 - -T = no. of words
 - -N = no. of POS tags

$$\hat{T} = \underset{t_1, \dots, t_T}{\arg \max} \left\{ \left(\prod_{i=1}^T P(t_i \mid t_{i-1}) \cdot P(w_i \mid t_i) \right) \cdot P(|t_T) \right\}$$

Viterbi Algorithm

• Dynamic programming algorithm: $O(T \cdot N^2)$

v_t(j): max probability of all paths ending in state q_j at time t

$$v_{t}(j) = \max_{i=1}^{N} v_{t-1}(i) a_{ij} b_{j}(o_{t})$$

Viterbi Algorithm

```
function VITERBI(observations of len T, state-graph of len N) returns best-path
  create a path probability matrix viterbi[N+2,T]
  for each state s from 1 to N do
                                                             ; initialization step
        viterbi[s,1] \leftarrow a_{0,s} * b_s(o_1)
        backpointer[s,1] \leftarrow 0
  for each time step t from 2 to T do
                                                             ; recursion step
      for each state s from 1 to N do
        viterbi[s,t] \leftarrow \max_{s'=1}^{N} viterbi[s',t-1] * a_{s',s} * b_s(o_t)
        backpointer[s,t] \leftarrow \underset{s',s}{\operatorname{argmax}} viterbi[s',t-1] * a_{s',s}
  viterbi[q_F,T] \leftarrow \max^{N} viterbi[s,T] * a_{s,q_F}; termination step
  backpointer[q_F,T] \leftarrow \underset{s,q_F}{\operatorname{argmax}} viterbi[s,T] * a_{s,q_F}
                                                                ; termination step
  return the backtrace path by following backpointers to states back in time from
backpointer[q_F, T]
```

Illustrating Example

$$P(t_i \mid t_{i-1})$$

 t_i

		VB	TO	NN	PPSS	
	<s></s>	.019	.0043	.041	.067	
	VB	.0038	.035	.047	.0070	
-1	TO	.83	0	.00047	0	
	NN	.0040	.016	.087	.0045	
	PPSS	.23	.00079	.0012	.00014	

$P(w_i)$	$ t.\rangle$
$I \setminus VV_i$	$ \iota_i $

 W_i

	I	want	to	race	
VB	0	.0093	0	.00012	
TO	0	0	.99	0	
NN	0	.000054	0	.00057	
PPS	S .37	0	0	0	

Illustrating Example

- Unknown word model
 - Unknown words similar to words that occurred only once in training data
- Depend on factors:
 - Ratio of unknown words
 - Capitalization (capitalized initial, capitalized non-initial)
 - Morphological suffixes (-s -ed -ing -ion -al -ive etc.)
- If w_i is an unknown word:

 $P(w_i | t_i) = P(\text{unknownword} | t_i) \cdot P(\text{capital} | t_i) \cdot P(\text{endings/hyph} | t_i)$

Evaluating POS Taggers

- Baseline (lower bound):
 - Unigram most probable tag
 - Assign each word to the POS tag it occurs in most often in the training set
 - **90%**
- State-of-the-art POS taggers:
 - 97.9% (Penn Treebank tagset)

Evaluation

- N-fold cross-validation
 - Randomly split the data set into N equal parts (D₁, ..., D_N)
 - For i = 1, ..., N:
 - let D_i be the test set and the union of the remaining D_j (j ≠ i) be the training set
 - Train a tagger on the training set and evaluate on the test set. Let the accuracy be A_i
 - Average A_i to obtain the average accuracy

Error Analysis

Confusion matrix (Contingency table):

Predicted class

	IN	JJ	NN	NNP	RB	VBD	VBN
IN		.2			.7		
JJ	.2	_	3.3	2.1	1.7	.2	2.7
NN		8.7	_				.2
NNP	.2	3.3	4.1	<u> 2</u>	.2		
RB	2.2	2.0	.5		_		
VBD		.3	.5				4.4
VBN		2.8				2.6	

True class