Attention as a Latent Variable Model

February 20, 2018

Language as a Latent Variable

Language as a Latent Variable

Overview of Paper

- Semi-supervised summarization
- Builds on Kingma et al. [2014]'s M2 (the semisupervised version)
- But uses a sequence of words as the latent representation

The Idea for Extractive Summarization

- Start with source sentence $\mathbf{x} = \mathsf{'I}$ wish I could love dogs but I just hate them'
- f o Sample a summary ${f y}=$ 'I love dogs' by picking words from the source
- Reconstruct the source sentence given the summary using an attentive decoder
- Use the probability of the source sentence under the reconstruction decoder (and a couple other terms) as signal for how good the summary was

Auto-Encoding Sentence Compression

Note: Some of the parameters of the inference network are used as the decoder network's encoder, but the shared parameters are not updated using gradients from the decoder

Auto-Encoding Sentence Compression

- The inference network $q_{\lambda}(\mathbf{y} \mid \mathbf{x})$ uses hard attention at every timestep to select a source token
- Use a bidirectional source encoder on \mathbf{x} to get source embedding matrix $H^e = \text{BRNN}(\mathbf{x})$, whose ith element is the vector \mathbf{h}_i^e .
- Select source token x_i with a pointer network 'compressor'

$$\mathbf{h}_{j}^{c} = \text{RNN}(\mathbf{h}_{j-1}^{c}, \mathbf{y}_{j-1}) \tag{1}$$

$$\mathbf{u}_j = \operatorname{attention}(\mathbf{h}_j^c, H^e) \tag{2}$$

$$\mathbf{y}_j \sim \operatorname{Cat}(\mathbf{u}_j)$$
 (3)

ASC Continued

- ullet Let H^c be the concatenation of all the compressor hidden states
- The decoder $p_{\theta}(\mathbf{x} \mid \mathbf{y})$ is a conditional language model that attends over the hidden states H^c to reconstruct the original source sentence \mathbf{x}

$$\mathbf{h}_k^d = \text{RNN}(\mathbf{h}_{k-1}^d, \mathbf{x}_{k-1}) \tag{4}$$

$$\mathbf{v}_k = \operatorname{attention}(\mathbf{h}_k^d, H^c)$$
 (5)

$$\mathbf{d}_k = \mathbf{v}_k^T H^c \tag{6}$$

$$p_{\theta}(\mathbf{x}_k \mid \mathbf{x}_{< k}, \mathbf{y}) = \operatorname{softmax}(W\mathbf{d}_k)$$
 (7)

• (7) is quite strange, since it does not use the recurrent state. My guess is that it is a mistake from following the pointer network paper too closely (this is equation (10) in the paper).

Details and Recap

The attention is the attention formulation from Vinyals et al.
 [2015], which is pretty close to the 'general' attention in Luong et al.
 [2015]

$$\operatorname{attention}(q, C) = \operatorname{softmax}(\mathbf{v}^{T} \tanh(Wq + VC)) \tag{8}$$

- $p_{\theta}(\mathbf{x} \mid \mathbf{y})$ is the reconstructive attention based decoder
- $q_{\lambda}(\mathbf{y} \mid \mathbf{x})$ is the summarizing pointer network, and we omit the conditioning on \mathbf{x} when convenient (randomly)
- p(y) is a language model prior

Marginal Likelihood

- \bullet The inference network's parameters will be denoted by λ and the decoder network's by θ
- As usual, the marginal likelihood is intractable

$$\log p(\mathbf{x}) = \log \sum_{\mathbf{y}} p_{\theta}(\mathbf{x}, \mathbf{y}) \tag{9}$$

since we cannot enumerate all possible summaries, even if they are extractive

Objective

 \bullet So we lower bound it with Jensen's inequality and maximize the ELBO ${\cal L}$

$$\log \sum_{\mathbf{y}} p(\mathbf{x}, \mathbf{y}) = \log \sum_{\mathbf{y}} q_{\lambda}(\mathbf{y}) \frac{p_{\theta}(\mathbf{x}, \mathbf{y})}{q_{\lambda}(\mathbf{y})}$$

$$= \log \mathbb{E}_{\mathbf{y} \sim q_{\lambda}(\mathbf{y})} \left[\frac{p_{\theta}(\mathbf{x}, \mathbf{y})}{q_{\lambda}(\mathbf{y})} \right]$$

$$\geq \mathbb{E}_{\mathbf{y} \sim q_{\lambda}(\mathbf{y})} \left[\log \frac{p_{\theta}(\mathbf{x}, \mathbf{y})}{q_{\lambda}(\mathbf{y})} \right]$$

$$= \mathbb{E}_{\mathbf{y} \sim q_{\lambda}(\mathbf{y})} \left[\log p_{\theta}(\mathbf{x} \mid \mathbf{y}) \right]$$

$$- D_{KL}(q_{\lambda}(\mathbf{y}) || p(\mathbf{y}))$$

$$= \mathcal{L}$$

$$(10)$$

Training Details

• The gradient of the ELBO with respect to the reconstructive decoder only depends on $p_{\theta}(\mathbf{x} \mid \mathbf{y})$

$$\mathcal{L} = \underbrace{\mathbb{E}_{\mathbf{y} \sim q_{\lambda}(\mathbf{y})} \left[\log p_{\theta}(\mathbf{x} \mid \mathbf{y}) \right]}_{\text{1. Reconstruction}} - \underbrace{KL[q_{\lambda}(\mathbf{z}) || p(\mathbf{z})]}_{\text{2. Regularization towards prior}}$$

It's given by term 1

$$\nabla_{\theta} \mathcal{L} = \nabla_{\theta} \mathbb{E}_{\mathbf{y} \sim q_{\lambda}(\mathbf{y})} \left[\log p_{\theta}(\mathbf{x} \mid \mathbf{y}) \right]$$
 (14)

$$\approx \frac{1}{M} \sum \nabla_{\theta} \log p_{\theta}(\mathbf{x} \mid \mathbf{y}^{(m)})$$
 (15)

where ${\cal M}$ sample summaries are generated through ancestral sampling

Training Details

- The gradient with respect to the inference network requires REINFORCE
- We rewrite the ELBO

$$\mathcal{L} = \mathbb{E}_{\mathbf{y} \sim q_{\lambda}(\mathbf{y})} \left[\log \frac{p_{\theta}(\mathbf{x}, \mathbf{y})}{q_{\lambda}(\mathbf{y})} \right]$$
 (16)

$$= \mathbb{E}_{\mathbf{y} \sim q_{\lambda}(\mathbf{y})} \left[\log p_{\theta}(\mathbf{x} \mid \mathbf{y}) + \log p(\mathbf{y}) - \log q_{\lambda}(\mathbf{y}) \right]$$
 (17)

$$= \mathbb{E}_{\mathbf{y} \sim q_{\lambda}(\mathbf{y})} [l(\mathbf{x}, \mathbf{y})] \tag{18}$$

• So we have $l(\mathbf{x}, \mathbf{y}) = \log p_{\theta}(\mathbf{x} \mid \mathbf{y}) + \log p(\mathbf{y}) - \log q_{\lambda}(\mathbf{y})$

REINFORCE

Recall the score function gradient estimator

$$p(\mathbf{x})\nabla \log p(\mathbf{x}) = \nabla p(\mathbf{x})$$
 (19)

We use this to find an approximation of

$$\nabla_{\lambda} \mathcal{L} = \nabla_{\lambda} \mathbb{E}_{\mathbf{y} \sim q_{\lambda}(\mathbf{y})} \left[l(\mathbf{x}, \mathbf{y}) \right]$$
 (20)

$$= \sum_{\mathbf{y}} l(\mathbf{x}, \mathbf{y}) \nabla_{\lambda} q_{\lambda}(\mathbf{y})$$
 (21)

$$= \sum_{\mathbf{y}} q_{\lambda}(\mathbf{y}) l(\mathbf{x}, \mathbf{y}) \nabla_{\lambda} \log q_{\lambda}(\mathbf{y})$$
 (22)

$$= \mathbb{E}_{\mathbf{y} \sim q_{\lambda}(\mathbf{y})} \left[l(\mathbf{x}, \mathbf{y}) \nabla_{\lambda} \log q_{\lambda}(\mathbf{y}) \right]$$
 (23)

Details

- ullet They also train a baseline to predict $l(\mathbf{x},\mathbf{y})$ for variance reduction
- They use a variant of KL annealing, and augment the loss as follows

$$l(\mathbf{x}, \mathbf{y}) = \log p_{\theta}(\mathbf{x} \mid \mathbf{y}) + \lambda(\log p(\mathbf{y}) - \log q_{\lambda}(\mathbf{y}))$$

with $\lambda=0.1$ without justification, but note that increasing λ results in shorter summaries ${\bf y}$ since the prior $p({\bf y})$ prefers shorter sequences

Questions

Why don't we use

$$\log \sum_{\mathbf{y}} p(\mathbf{y}) p_{\theta}(\mathbf{x} \mid \mathbf{y}) \ge \sum_{\mathbf{y}} \mathbb{E}_{\mathbf{y} \sim p(\mathbf{y})} \left[\log p_{\theta}(\mathbf{x} \mid \mathbf{y}) \right]$$

instead of introducing $q_{\lambda}(\mathbf{y})$ if we're using REINFORCE anyway?

Which parts of the reward

$$l(\mathbf{x}, \mathbf{y}) = \log p_{\theta}(\mathbf{x} \mid \mathbf{y}) + \log p(\mathbf{y}) - \log q_{\lambda}(\mathbf{y} \mid \mathbf{x})$$

can we decompose to try to lower variance a bit more?

Connection to MIXER

lol

Title

lol

Semi-supervised learning with deep generative models. *CoRR*, abs/1406.5298, 2014. URL http://arxiv.org/abs/1406.5298.

M.-T. Luong, H. Pham, and C. D. Manning. Effective Approaches to

D. P. Kingma, D. J. Rezende, S. Mohamed, and M. Welling.

- Attention-based Neural Machine Translation. In *Proceedings of EMNLP*, 2015.
- Proceedings of NIPS, 2015.

O. Vinyals, M. Fortunato, and N. Jaitly. Pointer Networks. In