Matemática Discreta (GICD). 29–5–2023

- Nombre y apellidos:
- DNI:
- 1. (1.5 puntos) Sea G = (V, E) un grafo simple. Probar que G es un árbol si y solo si G es conexo y |V| = |E| + 1.

Solución. Teoría.

2. (1.5 puntos) Definir la función φ de Euler y explicar su utilidad para calcular inversos de elementos de \mathbb{Z}_n . Como aplicación calcular los inversos de 5 en \mathbb{Z}_{13} , 7 en \mathbb{Z}_{22} y 4 en \mathbb{Z}_{24} .

Solución. Teoría. Sobre la aplicación, como $\gcd(5,13)=1$, existe 5^{-1} en \mathbb{Z}_{13} que se calcula como

$$5^{-1} = 5^{\varphi(13)-1} = 5^{11} \equiv 8 \pmod{13}.$$

Igualmente gcd(7,22) = 1, así que

$$7^{-1} = 7^{\varphi(22)-1} = 7^{\varphi(11)\varphi(2)-1} = 7^9 \equiv 19 \pmod{22}.$$

Como $gcd(4,24) = 4 \neq 1$, no existe el inverso.

- 3. Sabiendo que $p \to \neg q$, $r \land q$ y r son ciertas, deducir la veracidad de $\neg p$ de las siguientes formas:
 - (a) (0.75 puntos) Utilizando tablas de verdad.

Solución. Hemos de ver que $P=(p\to \neg q)\wedge (r\wedge q)\wedge r\to \neg p$ es una tautología. Para ello

p	q	r	$\neg q$	$p \rightarrow \neg q$	$r \wedge q$	$(p \to \neg q) \land (r \land q) \land r$	$\neg p$	P
1	1	1	0	0	1	0	0	1
1	1	0	0	0	0	0	0	1
1	0	1	1	1	0	0	0	1
1	0	0	1	1	0	0	0	1
0	1	1	0	1	1	1	1	1
0	1	0	0	1	0	0	1	1
0	0	1	1	1	0	0	1	1
0	0	0	1	1	0	0	1	1

que como vemos es tautología.

(b) (0.75 puntos) Sin utilizar tablas de verdad.

Solución. Como r es cierto, y $r \land q$ es verdad, necesariamente q es verdad. Entonces $\neg q$ es falso, y como $p \rightarrow \neg q$ es cierto, p debe de ser falso, por lo que $\neg p$ es cierto.

4. (1.5 puntos) De los 600 habitantes de Villaverde del Cerro Durmiente a 434 les gusta jugar a las cartas, a 223 jugar al frontón y 333 juegan a los bolos. Hay 10 que no juegan a nada, pero a cambio 131 juegan a las cartas y el frontón, 126 al frontón y los bolos y 143 a los bolos y las cartas. ¿Cuántos de ellos juegan a todo? ¿Cuántos únicamente a las cartas?

Solución. Sea A el conjunto de los que juegan a cartas, B los que lo hacen al frontón y C a bolos. Sabemos que

$$|A \cup B \cup C| = 590,$$

$$|A| = 434, \ |B| = 223, \ |C| = 333,$$

$$|A \cap B| = 131, \ |A \cap C| = 143, \ |B \cap C| = 126.$$

Por el principio de inclusión exclusión tenemos que

$$|A \cap B \cap C| = |A \cup B \cup C| - |A| - |B| - |C| + |A \cap B| + |A \cap C| + |B \cap A|$$

= 590 - 434 - 223 - 333 + 131 + 143 + 126
= 0.

por lo que nadie juega a las tres cosas.

Para el segundo apartado, sabemos que

$$A = [A \cap (B \cup C)] \cup [A \cap (B \cup C)^c]$$

У

$$[A \cap (B \cup C)] \cap [A \cap (B \cup C)^c] = \emptyset.$$

Por otra parte

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C),$$

de donde, por el principio de inclusión exclusión tenemos que

$$|(A \cap B) \cup (A \cap C)| = |A \cap B| + |A \cap C| - |A \cap B \cap C|$$

= 131 + 143 - 0 = 274.

Entonces

$$|A \cap (B \cup C)^c| = |A| - |A \cap (B \cup C)| = 434 - 274 = 160.$$

5. (1 punto) Encontrar el menor entero positivo x tal que cuando se divide entre 4 se obtiene un resto igual a 2, cuando se divide entre 7 se obtiene un resto igual a 5 y cuando se divide entre 11 se obtiene un resto igual a 10.

Solución. Reescribimos el enunciado como

$$\begin{cases} x \equiv 2 \pmod{4}, \\ x \equiv 5 \pmod{7}, \\ x \equiv 10 \pmod{11}. \end{cases}$$

Por el Teorema Chino de los restos, que puede aplicarse ya que 7, 4 y 11 son coprimos dos a dos, planteamos las ecuaciones

$$\begin{cases}
77x \equiv 1 \pmod{4}, \\
44x \equiv 1 \pmod{7}, \\
28x \equiv 1 \pmod{11}.
\end{cases}$$

o equivalentemente

$$\begin{cases} x \equiv 1 \pmod{4}, \\ 2x \equiv 1 \pmod{7}, \\ 6x \equiv 1 \pmod{11}. \end{cases}$$

La primera ecuación tiene 1 por solución, mientras que la solución de la segunada es

$$x = 2^{-1} = 4$$
,

y la de la tercera

$$x = 6^{-1} = 2.$$

La solución al problema será entonces

$$x = 77 \cdot 1 \cdot 2 + 44 \cdot 4 \cdot 5 + 28 \cdot 2 \cdot 10 = 1594 \equiv 54 \mod(308),$$

por lo que el número más pequeño solución será 54.

6. (1 punto) Un grafo G = (V, E) que no contiene ciclos tiene 343 vértices y 333 aristas. ¿Puede ser conexo? En caso negativo, ¿cuántas componentes conexas tiene?

Solución. Un grafo sin ciclos conexo es un árbol, que satisface que |V| = |E| + 1, por lo que no puede ser conexo ya que $343 \neq 334$. Como cada componente conexa tiene que ser un árbol y por lo tanto satisfacer la fórmula anterior, tenemos que debe haber 343-333=10 componentes conexas.