Ownership Structure and Economic Growth

Koki Okumura

UCLA

Ownership Structure ⇒ Economic Growth?

- BlackRock, Vanguard, State Street, and Fidelity control 30% of votes of S&P 500 firms
- Top 10 chaebols account for half of stock market capitalization and exports in Korea

Ownership Structure ⇒ Economic Growth?

- BlackRock, Vanguard, State Street, and Fidelity control 30% of votes of S&P 500 firms
- Top 10 chaebols account for half of stock market capitalization and exports in Korea
- Firms maximize shareholder values ⇒
 Partially internalize externalities for commonly owned firm

Ownership Structure ⇒ Economic Growth?

BlackRock, Vanguard, State Street, and Fidelity control 30% of votes of S&P 500 firms

Share

- Top 10 chaebols account for half of stock market capitalization and exports in Korea
- Firms maximize shareholder values ⇒
 Partially internalize externalities for commonly owned firm
- Ownership structure (common ownership, cross ownership, M&A, FDI, ...) =>
 Economic growth?
 - Business stealing effect
 - Technology spillover effect

- Existing Schumpeterian growth models:
 - Lack of strategic interaction (e.g., monopolistic competition)
 - Very few firms in Markov perfect equilibrium

- Existing Schumpeterian growth models:
 - Lack of strategic interaction (e.g., monopolistic competition)
 - Very few firms in Markov perfect equilibrium
- This paper: Many oligopolists + Ownership structure
 - Exercise: Public patenting firms in the US (\simeq 1000 firms)

- Existing Schumpeterian growth models:
 - Lack of strategic interaction (e.g., monopolistic competition)
 - Very few firms in Markov perfect equilibrium
- This paper: Many oligopolists + Ownership structure
 - Exercise: Public patenting firms in the US (\simeq 1000 firms)
- Quantify three inter-firm networks:
 - Ownership structure
 - Product market rivalry
 - Technology spillover

- Existing Schumpeterian growth models:
 - Lack of strategic interaction (e.g., monopolistic competition)
 - Very few firms in Markov perfect equilibrium
- This paper: Many oligopolists + Ownership structure
 - Exercise: Public patenting firms in the US (\simeq 1000 firms)
- Quantify three inter-firm networks:
 - Ownership structure
 - Product market rivalry
 - Technology spillover
- Common ownership in the US:
 - Internalization of business stealing $\Longrightarrow g \downarrow \downarrow$
 - Internalization of technology spillover $\Longrightarrow g \uparrow$

Literature

- Competition & Innovation:
 - d'Aspremont and Jacquemin (1988); Aghion et al. (2001, 2005); Acemoglu and Akcigit (2012); Aghion et al. (2013); Bloom et al. (2013); Lopez and Vives (2019); Peters (2020); Akcigit and Ates (2021, 2023); Liu et al. (2022); Cavenaile et al. (2023); Anton et al. (2023, 2024); Kini et al. (2024); Hopenhayn and Okumura (2024) Quantitative Schumpeterian growth model with ownership structure
 - Hedonic Demand / Empirical IO:
 Lancaster (1966); Rosen (1974); Berry et al. (1995); Nevo (2001); Pellegrino (2024); Ederer and Pellegrino (2024)
 Dynamic general equilibrium / R&D
- Oligopoly / Common Ownership / Market Power:
 Rubinstein and Yaari (1983); Rotemberg (1984); Neary (2003); Atkeson and Burstein (2008); Gutierrez and
 Philippon (2017); He and Huang (2017); Azar et al. (2018, 2022); Autor et al. (2020); Baqaee and Farhi (2020);
 De Loecker et al. (2020); Azar and Vives (2021); Edmond et al. (2023)

Simple Static Partial Equilibrium Model

- $\bullet \;$ Firm $i \in \{1, \dots, n\}$ chooses quantity q_i and R&D effort x_i
- ullet Inverse demand: $\mathbf{p}(\mathbf{q}) = \mathbf{b} oldsymbol{\Sigma} \mathbf{q}$
- \bullet CRS production technology with marginal cost: $\mathbf{m}(\mathbf{x}) = \mathbf{a} \Omega \mathbf{x}$
- \bullet Cost of R&D: $c(x_i) = \frac{1}{2} x_i^2$

Common Ownership Weights

- ullet $\mathbf{K} = \left[\kappa_{ij}
 ight]$: common ownership weights that firm i places on the profit of firm j
- More overlapping ownership b/w firm i and j \Longrightarrow Higher κ_{ij}

Proportional Influece

- Diagonal elements κ_{ii} are normalized to 1 for all firm i
- ullet ${f K}={f I}$: dispersed ownership (each firm maximizes its own value)
- ullet $\mathbf{K}=[\mathbf{1}]$: monopoly (maximizes total producer surplus)

Cournot & R&D Game

• Firm *i*'s profit:

$$\begin{split} \pi_i(\mathbf{q},\mathbf{x}) &= [p_i - m_i]q_i - c(x_i) \\ &= \left[b_i - \sum_{j=1}^n \sigma_{ij}q_j - a_i + \sum_{j=1}^n \omega_{ij}x_j\right]q_i - \frac{1}{2}x_i^2 \end{split}$$

• Given $\left\{q_j,x_j\right\}_{j\neq i}$, firm i chooses q_i and x_i to maximize $\sum_j \kappa_{ij}\pi_j(\mathbf{q},\mathbf{x})$

Impact of Common Ownership on R&D

 \bullet Comparative statics where $\left\{q_k,x_k\right\}_{k \neq i}$ are held constant:

$$\frac{\partial x_i}{\partial \kappa_{ij}} = \frac{q_j}{2 - \omega_{ii}^2} (2\omega_{ij} - \omega_{ii}\sigma_{ij}) \qquad \forall \ j \neq i$$

- SOC: $2 > \omega_{ii}^2$
- Internalize business stealing effect: $\partial^2 x_i/\partial \kappa_{ij}\partial \sigma_{ij} < 0$
- Internalize technology spillover effect: $\partial^2 x_i/\partial \kappa_{ij}\partial \omega_{ij}>0$

Overview of Identification Strategy

Networks	Measurement
Common ownership weight ${f K}$	Institutional investor holdings in 13f filings (Backus et al., 2021)
Product market rivalry $oldsymbol{\Sigma}$	Product proximity (Hoberg and Phillips, 2016): Text analysis of business description in 10k filings
Technology spillover Ω	Technology proximity (Bloom et al., 2013): Patent classification

Schumpeterian Growth Model

Linear quadratic aggregator (final good):

$$Y_t = \mathbf{q}_t^T \mathbf{b}_t - \frac{1}{2} \mathbf{q}_t^T \mathbf{\Sigma} \mathbf{q}_t$$

Linear inverse demand:

$$\mathbf{p}_t = \mathbf{b}_t - \mathbf{\Sigma} \mathbf{q}_t$$

CRS production technology (intermediate good):

$$q_{i,t} = a_{i,t} l_{i,t}$$

- Each firm has knowledge capital $z_{i,t}$
- Each firm allocates knowledge capital to improve labor productivity and product quality:

$$\zeta a_{i,t} + b_{i,t} = z_{i,t}$$

Law of Motion of Knowledge Capital

$$d\mathbf{z}_t = \left(\underbrace{\Omega\mathbf{z}_t}_{\text{tech spillover}} + \underbrace{\mu\mathbf{x}_t}_{\text{R\&D}}\right)dt + \underbrace{\gamma\mathbf{z}_t dW_t}_{\text{shocks}}$$

- $oldsymbol{\Omega} = \left[\omega_{ij}
 ight]$: technology spillover matrix
- $x_{i,t} = \sqrt{d_{i,t}}$
 - ullet $d_{i,t}$: R&D cost in terms of final good
 - Innovation elasticity is 0.5
- μ , γ : positive scalars

Market Clearing and Preference

Inelastic labor supply:

$$L = \sum_{i} l_{i,t}$$

Final good market clearing:

$$C_t + \underbrace{\sum_i d_{i,t}}_{\text{R\&D cost}} = Y_t$$

Risk neutral representative household:

$$\max \ \mathbf{E}_t \left[\int_t^\infty \exp \left(-\rho s \right) C_s ds \right]$$

Cournot-Nash Equilibrium

• Firm i's gross profit before subtracting dynamic R&D cost:

$$\pi_{i,t} = p_{i,t}q_{i,t} - w_tl_{i,t} = \left(b_{i,t} - \frac{w_t}{a_{i,t}} - \sum_{i}\sigma_{ij}q_{j,t}\right)q_{i,t} \quad \text{where} \quad \zeta a_{i,t} + b_{i,t} = z_{i,t}$$

• Given w_t , $z_{i,t}$, and $\left\{q_{j,t}\right\}_{j \neq i}$, firm i chooses $a_{i,t}$, $b_{i,t}$, and $q_{i,t}$ to maximize $\sum_j \kappa_{ij} \pi_{j,t}$

Cournot-Nash Equilibrium

Firm *i*'s gross profit before subtracting dynamic R&D cost:

$$\pi_{i,t} = p_{i,t}q_{i,t} - w_tl_{i,t} = \left(b_{i,t} - \frac{w_t}{a_{i,t}} - \sum_j \sigma_{ij}q_{j,t}\right)q_{i,t} \quad \text{where} \quad \zeta a_{i,t} + b_{i,t} = z_{i,t}$$

- Given w_t , $z_{i,t}$, and $\left\{q_{j,t}\right\}_{i \neq j}$, firm i chooses $a_{i,t}$, $b_{i,t}$, and $q_{i,t}$ to maximize $\sum_{j} \kappa_{ij} \pi_{j,t}$
- Quantity is a linear function of knowledge capital:

$$\mathbf{q}_t = \left\{ 2\underbrace{\frac{\zeta}{L}}_{\text{labor cost}} + \underbrace{\mathbf{\Sigma}}_{\text{substitutability}} + \underbrace{\mathbf{K} \circ \mathbf{\Sigma}}_{\text{ownership} \times \text{substitutability}} \right\}^{-1} \mathbf{z}_t$$

- J = [1]

Linear-Quadratic Differential Game

• Given other players' strategy $\left\{x_{j,t}\right\}_{j\neq i,t\geq 0}$, firm i chooses R&D effort $\left\{x_{i,t}\right\}_{t\geq 0}$ to maximize

$$\max_{\left\{x_{i,t}\right\}_{t\geq0}}\quad V^{i}\left(\mathbf{z}_{0}\right)\equiv\mathbf{E}_{0}\left[\int_{0}^{\infty}\exp\left(-\rho t\right)\left\{\sum_{j}\kappa_{ij}\left(\pi_{j,t}-x_{j,t}^{2}\right)\right\}dt\right]$$

subject to $d\mathbf{z}_t = (\mathbf{\Omega}\mathbf{z}_t + \mu\mathbf{x}_t)\,dt + \gamma\mathbf{z}_t dW_t$

Firm i's HJB equation:

$$\rho V^{i}\left(\mathbf{z}\right) = \max_{x_{i}} \left\{ \mathbf{z}^{T} \mathbf{Q}^{i} \mathbf{z} - \sum_{j} \kappa_{ij} x_{j}^{2} + V_{\mathbf{z}}^{i}\left(\mathbf{z}\right) \left[\mathbf{\Omega} \mathbf{z} + \mu \mathbf{x}\right] + \frac{\gamma^{2}}{2} \mathbf{z}^{T} V_{\mathbf{z}\mathbf{z}}^{i}\left(\mathbf{z}\right) \mathbf{z} \right\}$$

HJB Equations ⇒ Riccati Equations

- Guess and verify $V^{i}\left(\mathbf{z}\right) = \mathbf{z}^{T}\mathbf{X}^{i}\mathbf{z}$ (for any \mathbf{z})
- ullet \mathbf{X}^i is the solution of stacked algebraic Riccati equations lacktriangle
- All public patenting firms in the US in our dataset \simeq 1000 firms \Longrightarrow $1000^3=1$ billion undetermined coefficients (20 seconds on my laptop)

Oligopolistic Schumpeterian	Computation time	# of firms	Productivity space
Cavenaile et al. (2023)	$O(2^n)$	4	6-point grid
Our model	$O(n^4)$	≈1000	Continuous

BGP

- R&D strategy: $x_{i,t} = (\mu \mathbf{X}_i^i)^T \mathbf{z}_t$ where \mathbf{X}_i^i is the i th column of \mathbf{X}^i
- The law of motion is rewritten as $d\mathbf{z}_t = \mathbf{\Phi}\mathbf{z}_t dt + \gamma \mathbf{z}_t dW_t$ where

$$\Phi \equiv \underbrace{\Omega}_{\text{spillover}} + \underbrace{\mu^2 \left[\mathbf{X}_1^1 \cdots \mathbf{X}_n^n \right]^T}_{\text{R&D}}$$

Theorem

Consider the deterministic economy ($\gamma = 0$). If Φ is irreducible, then:

- (i) There exists largest positive eigenvalue of Φ , g, and associated positive eigenvector, \mathbf{z}^* .
- (ii) There exists a globally stable BGP such that the knowledge capital growth rate of all firms is g, and the knowledge capital distribution is a scalar multiple of \mathbf{z}^* .
 - Proof: Perron–Frobenius Theorem
 - " Φ is irreducible" \iff "All firms are directly or indirectly connected technologically"

Static Model

Growth Model

Equilibrium 0000€0 Identification 0000000 Exercise 0000000

BGP

• On BGP, \mathbf{a}_t , \mathbf{b}_t , \mathbf{z}_t , and \mathbf{q}_t grow at the same rate

Technology Choice: $\zeta a_{i,t} + b_{i,t} = z_{i,t}$

Linear Production Technology: $q_{i,t} = a_{i,t} l_{i,t}$

Inelastic Labor Supply: $L = \textstyle \sum_i l_{i,t}$

ullet Linear and quadratic term in ${f q}_t$ of output grow at the same rate: Equilibrium Summary

$$Y_t = \mathbf{q}_t^T \mathbf{b}_t - \frac{1}{2} \mathbf{q}_t^T \mathbf{\Sigma} \mathbf{q}_t$$

Aggregation

Apply Ito's lemma:

$$\begin{array}{ll} \log Y_t &= \log \left(\mathbf{z}_t^T \mathbf{Q} \mathbf{z}_t \right) \\ d\mathbf{z}_t &= \mathbf{\Phi} \mathbf{z}_t dt + \gamma \mathbf{z}_t dW_t \end{array} \implies g_t$$

Expected utility is expressed in quadratic form:

$$\mathbf{E}_t \left[\left. \int_t^\infty \exp\left(-\rho s \right) C_s ds \right| \mathbf{z}_t \right] = \mathbf{z}_t^T \! X \mathbf{z}_t$$

ullet Solve the equilibrium once \Longrightarrow Can compute expected growth and utility for any \mathbf{z}_t

Common Ownership Weight

- Backus et al. (2021) construct a dataset on investors' holdings based on Form 13F
- Baseline: Rotemberg (1984) proportional influence assumption

Proportional Influece

Product Substitutability

- Hoberg and Phillips (2016) estimates product similarity using business descriptions in 10-K
- ullet Pellegrino (2024) estimates lpha to align with the cross-price elasticity of demand

$$\underbrace{\sigma_{ij}}_{\text{substitutability}} = \alpha \times \text{product similarity b/w } i \text{ and } j \quad (i \neq j)$$

Technological Proximity

- Technological profile of firm i
 - ullet The vector of the share of patents held by firm i in each technology class
 - Baseline: group-level classifications (≈ 4000)
- Jaffe (1986) technology proximity measure $\tilde{\omega}_{ij}$:
 - \bullet Cosine similarity of the technological profiles b/w firm i and j

Initial Distribution of Knowledge Capital

- 1. Gross profit (before subtracting R&D cost) $\pi_{i,t} \Leftarrow$ "Revenue" "Costs of goods sold"
 - Deflated by GDP deflator for inter-temporal comparison
- 2. Quantity $\mathbf{q}_t \Longleftarrow \pi_{i,t} = \sum_j \kappa_{ij} \sigma_{ij} q_{i,t} q_{j,t}$
- 3. $\zeta/L \longleftarrow$ match the cost share of the sample firms
- 4. Knowledge capital $\mathbf{z}_t \longleftarrow \mathbf{q}_t = \left\{2\frac{\zeta}{L}J + \Sigma + K \circ \Sigma\right\}^{-1}\mathbf{z}_t$

Initial Distribution of Knowledge Capital

Variables	Identification
$\pi_{i,t}$	Gross profit (before R&D cost) $=$ Revenue $-$ Cost of goods sold
${\sf q}_t$	$\pi_{i,t} = \sum_i \kappa_{ij} \sigma_{ij} q_{i,t} q_{j,t}$
ζ/L	Matches sample firms' cost share
$oldsymbol{z}_t$	$\mathbf{q}_t = \big\{2\frac{\zeta}{L}J + \Sigma + K \circ \Sigma\big\}^{-1}\mathbf{z}_t$

Technology Spillover $\Omega=\beta imes {\it Technology Proximity}$ Ω

$$\boldsymbol{z}_{i,t+1} - \boldsymbol{z}_{i,t} = \beta \sum_{j \neq i} \tilde{\omega}_{ij,t} \boldsymbol{z}_{j,t} + \text{Year FE}_t + \epsilon_{i,t}$$

	(1)	(2)	(3)
	$\boldsymbol{z}_{i,t+1} - \boldsymbol{z}_{i,t}$	$\boldsymbol{z}_{i,t+1} - \boldsymbol{z}_{i,t}$	$\boldsymbol{z}_{i,t+1} - \boldsymbol{z}_{i,t}$
Σ ~ ~	0.000191***	0.000152***	0.000140***
$\sum_{j eq i} ilde{\omega}_{ij,t} z_{j,t}$	(0.000035)	(0.000035)	(0.000039)
/DOD Evpanditura		.037**	
√R&D Expenditure		(0.021)	
Year Fixed Effects	✓	✓	√
IV			\checkmark
IV 1st Stage F-statistics			4176
No. observations	16,324	15,173	14,181

SEs clustered by years and 4-digit naics industries are reported in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01.

IV: User cost of R&D, driven by state-level tax variations (Wilson, 2009; Bloom et al., 2013)

Identification: Summary

Publicly available data + Compustat

Notation	Description	Value	Source
$\mathbf{\Sigma}$	Product proximity		Form 10-K, Hoberg and Phillips (2016)
$\widetilde{\boldsymbol{\Omega}}$	Technological proximity		USPTO, Patent classification
\mathbf{K}	Common ownership weights		Form 13F, Backus et al. (2021)
α	Product proximity $ o$ Substitutability	.12	Pellegrino (2024)
eta	Technological proximity $ o$ Spillover	.00014	Estimate the law of motion
γ	St.d. of idiosyncratic shocks	.027	Estimate the law of motion
ζ/L	Labor augmentation efficiency	.0063	Compustat, Cost of goods sold
ho	Discount rate	.10	
μ	R&D efficiency	.05	1.6% economic growth rate

Fit b/w Model and Data

Model (x-axis) vs Data (y-axis): firm-level profits (targeted), sales and R&D expenditures

Total Output

Total output (Social Optimum: 100)	Ownership (Baseline: 2017)				
	Dispersed	Mean=1999	Uniform	Baseline	Monopoly
Baseline	91.30	91.02	90.78	89.08	89.17
Only Business Steal $oldsymbol{\Omega} = [0]$					
Only Tech Spill ${f \Sigma}={f I},\zeta/L=0$					

- Inelastic labor supply ⇒ changes in total output arise from misallocation
- Common ownership worsens product misallocation

Total Output

Total output (Social Optimum: 100)	Ownership (Baseline: 2017)				
	Dispersed	Mean=1999	Uniform	Baseline	Monopoly
Baseline	91.30	91.02	90.78	89.08	89.17
Only Business Steal $oldsymbol{\Omega} = [0]$	91.30	91.02	90.78	89.08	89.17
Only Tech Spill ${f \Sigma}={f I},\zeta/L=0$					

- ullet Inelastic labor supply \Longrightarrow changes in total output arise from misallocation
- Common ownership worsens product misallocation

Total Output

Total output (Social Optimum: 100)	Ownership (Baseline: 2017)				
	Dispersed	Mean=1999	Uniform	Baseline	Monopoly
Baseline	91.30	91.02	90.78	89.08	89.17
Only Business Steal $oldsymbol{\Omega} = [0]$	91.30	91.02	90.78	89.08	89.17
Only Tech Spill ${f \Sigma}={f I},\zeta/L=0$	75.00	75.00	75.00	75.00	75.00

- ullet Inelastic labor supply \Longrightarrow changes in total output arise from misallocation
- Common ownership worsens product misallocation

Total R&D Expenditure

Total R&D Expenditure (Social Optimum: 100)	Ownership (Baseline: 2017)				
	Dispersed	Mean=1999	Uniform	Baseline	Monopoly
Baseline	26.16	25.90	25.56	22.36	19.36
Only Business Steal $oldsymbol{\Omega} = [0]$					
Only Tech Spill ${f \Sigma}={f I},\zeta/L=0$					

- Internalization of business stealing > Internalization of technology spillover
- Network heterogeneity is important

Total R&D Expenditure

Total R&D Expenditure	Ownership (Baseline: 2017)				
(Social Optimum: 100)	Dispersed	Mean=1999	Uniform	Baseline	Monopoly
Baseline	26.16	25.90	25.56	22.36	19.36
Only Business Steal $oldsymbol{\Omega} = [0]$	28.15	27.79	27.07	23.42	19.80
Only Tech Spill ${f \Sigma}={f I},\zeta/L=0$					

- Network heterogeneity is important

Total R&D Expenditure

Total R&D Expenditure	Ownership (Baseline: 2017)				
(Social Optimum: 100)	Dispersed	Mean=1999	Uniform	Baseline	Monopoly
Baseline	26.16	25.90	25.56	22.36	19.36
Only Business Steal $oldsymbol{\Omega} = [0]$	28.15	27.79	27.07	23.42	19.80
Only Tech Spill $\mathbf{\Sigma} = \mathbf{I}, \ \zeta/L = 0$	18.27	18.34	18.75	18.86	19.84

- Internalization of business stealing > Internalization of technology spillover
- Network heterogeneity is important

Expected Growth Rate

Ownership (Baseline: 2017)				
Dispersed	Mean=1999	Uniform	Baseline	Monopoly
1.796	1.793	1.791	1.753	1.713
	<u> </u>	Dispersed Mean=1999	Dispersed Mean=1999 Uniform	Dispersed Mean=1999 Uniform Baseline

• 0.043 pp (2.4%) lower growth under common ownership compared to dispersed ownership

Expected Growth Rate

Expected economic	Ownership (Baseline: 2017)					
growth rate (%)	Dispersed	Mean=1999	Uniform	Baseline	Monopoly	
Baseline	1.796	1.793	1.791	1.753	1.713	
Only Business Steal $oldsymbol{\Omega} = [0]$	1.097	1.094	1.093	1.062	1.020	
Only Tech Spill $\mathbf{\Sigma} = \mathbf{I}, \zeta/L = 0$						

• 0.043 pp (2.4%) lower growth under common ownership compared to dispersed ownership

Expected Growth Rate

Expected economic	Ownership (Baseline: 2017)					
growth rate (%)	Dispersed	Mean=1999	Uniform	Baseline	Monopoly	
Baseline	1.796	1.793	1.791	1.753	1.713	
Only Business Steal $oldsymbol{\Omega} = [0]$	1.097	1.094	1.093	1.062	1.020	
Only Tech Spill $oldsymbol{\Sigma} = \mathbf{I}, \ \zeta/L = 0$	2.051	2.054	2.068	2.072	2.107	

• 0.043 pp (2.4%) lower growth under common ownership compared to dispersed ownership

Expected Social Welfare

Expected Social Welfare (Social Optimum: 100)	Ownership (Baseline: 2017)				
	Dispersed	Mean=1999	Uniform	Baseline	Monopoly
Baseline	87.72	87.42	87.16	85.25	85.18
Only Business Steal ${f \Omega}=[0]$					
Only Tech Spill ${f \Sigma}={f I},\zeta/L=0$					

• 2.8% CE welfare loss under common ownership compared to dispersed ownership

Expected Social Welfare

Expected Social Welfare	Ownership (Baseline: 2017)				
(Social Optimum: 100)	Dispersed	Mean=1999	Uniform	Baseline	Monopoly
Baseline	87.72	87.42	87.16	85.25	85.18
Only Business Steal $oldsymbol{\Omega} = [0]$	88.83	88.53	88.30	86.44	86.41
Only Tech Spill ${f \Sigma}={f I},\zeta/L=0$					

• 2.8% CE welfare loss under common ownership compared to dispersed ownership

Expected Social Welfare

Expected Social Welfare	Ownership (Baseline: 2017)					
(Social Optimum: 100)	Dispersed	Mean=1999	Uniform	Baseline	Monopoly	
Baseline	87.72	87.42	87.16	85.25	85.18	
Only Business Steal ${f \Omega}=[0]$	88.83	88.53	88.30	86.44	86.41	
Only Tech Spill ${f \Sigma}={f I},\ \zeta/L=0$	68.81	68.82	68.88	68.89	69.02	

2.8% CE welfare loss under common ownership compared to dispersed ownership

Firm Value Share

Firm value	Ownership (Baseline: 2017)					
share (%)	Dispersed	Mean=1999	Uniform	Baseline	Monopoly	
Baseline	28.74	33.43	29.63	34.34	40.92	
Only Business Steal $oldsymbol{\Omega} = [0]$						
Only Tech Spill						
$\Sigma = I, \zeta/L = 0$						

• Firm value share is 5.6% lower under common ownership compared to dispersed ownership

Firm Value Share

Firm value	Ownership (Baseline: 2017)					
share (%)	Dispersed	Mean=1999	Uniform	Baseline	Monopoly	
Baseline	28.74	33.43	29.63	34.34	40.92	
Only Business Steal $oldsymbol{\Omega} = [0]$	27.91	28.80	32.60	33.51	40.14	
Only Tech Spill ${f \Sigma}={f I}, \zeta/L=0$						

• Firm value share is 5.6% lower under common ownership compared to dispersed ownership

Firm Value Share

Firm value	Ownership (Baseline: 2017)					
share (%)	Dispersed	Mean=1999	Uniform	Baseline	Monopoly	
Baseline	28.74	33.43	29.63	34.34	40.92	
Only Business Steal $oldsymbol{\Omega} = [0]$	27.91	28.80	32.60	33.51	40.14	
Only Tech Spill $oldsymbol{\Sigma} = \mathbf{I}, \ \zeta/L = 0$	64.82	64.81	64.76	64.74	64.63	

• Firm value share is 5.6% lower under common ownership compared to dispersed ownership

When Common Ownership Affects only R&D Decisions

Common ownership only influence R&D decisions (d'Aspremont and Jacquemin, 1988)

	Ownership Structure				
	Dispersed	Common R&D	Baseline		
Output (Social Optimum: 100)	91.30	91.30	89.08		
R&D Expenditure (Social Optimum: 100)	26.17	19.76	22.36		
Growth Rate (%)	1.796	1.726	1.753		
Social Welfare (Social Optimum: 100)	87.72	87.49	85.25		
Firm Value Share (%)	28.74	29.04	34.34		

- Lowest R&D expenditure and growth rate
- Intermediate social welfare

Uniform R&D Subsidy Social Optimum

- Optimal rate is s = 33%, which increases g by 0.25 pp (14%)
- CE Welfare loss relative to optimal R&D allocation is reduced to 0.1% (Initially 0.7%)

Conclusion

- Quantitative Schumpeterian growth model with ownership structure
 - Utilize micro data and computational capability
- Common ownership in the US:
 - 1. Internalization of business stealing effect $\Longrightarrow g \downarrow \downarrow$
 - 2. Internalization of technology spillover effect $\Longrightarrow g \uparrow$
- Application:
 - Chaebols in Korea
 - Zaibatsu (pre-WWII) and cross-shareholding (late 20th century) in Japan
 - FDI / multinational companies and international technology diffusion

Share of Top 5 Shareholders in Largest Market Cap Firms (Back)

Microsoft	
Vanguard	9.20%
Blackrock	7.75%
Steven Ballmer	4.48%
State Street	3.97%
Fidelity	2.66%

Nvidia	
Vanguard	8.93%
BlackRock	7.74%
Fidelity	4.12%
State Street	3.97%
Jensen Huang	3.80%

Apple	
Vanguard	9.29%
Blackrock	7.48%
State Street	3.96%
Fidelity	2.27%
Geode Capital	2.26%

Google	
Vanguard	7.36%
Blackrock	6.47%
State Street	3.39%
Fidelity	3.01%
Sergey Brin	2.99%

8.58%
7.77%
6.50%
3.44%
3.10%

Meta	
Vanguard	7.55%
Blackrock	6.50%
Fidelity	5.38%
Accel IX LP	3.88%
State Street	3.40%

Equity Investments by Big tech in Al Startups (Back)

Shareholding percentage	Microsoft	Google	Amazon
OpenAl (ChatGPT)	49%	_	_
Anthropic (Claude)	_	14%	23%

Technology & Product Proximity: Example

Tesla vs. Ford	
Technology Proximity	0.11
Product Proximity	0.15

Apple vs. Intel	
Technology Proximity	0.57
Product Proximity	0.00

Ownership Ratio by Holder Types in Japan

Rotemberg (1984) Proportional Influence

- $o \in \{1, 2, ..., n_o\}$: owners
- s_{io} : the proportion of shares in firm i owned by owner o where $\sum_o s_{io} = 1$
- $\hat{V}_{i,t}$: value of firm i
- $\tilde{V}_{o,t} \equiv \sum_i s_{io} \hat{V}_{i,t}$: value of owner o
- Firms' objective:

$$\sum_{o} s_{io} \tilde{V}_{o,t} \propto \sum_{j} \kappa_{ij} \hat{V}_{j,t}$$

where

$$\kappa_{ij} \equiv \mathbf{s}_i^T \mathbf{s}_j / \mathbf{s}_i^T \mathbf{s}_i \quad \text{where} \quad \mathbf{s}_i \equiv \left[s_{i1},...,s_{io},...,s_{in_o}\right]^T$$

Total Surplus

Total surplus for product i:

$$ts_i(\mathbf{q}, \mathbf{x}) = \pi_i(\mathbf{q}, \mathbf{x}) + cs_i(\mathbf{q}) = q_i \left[b_i - \frac{1}{2} \sum_{i=1}^n \sigma_{ij} q_j - a_i + \sum_{i=1}^n \omega_{ij} x_j \right] - \frac{1}{2} x_i^2$$

R&D Externalities

- 1. Business stealing effect
 - Innovators steel the business (profits) of other firms
- 2. Technology spillover effect
 - Innovation improves the productivity of other firms
- 3. Appropriability effect (market power)
 - Innovators cannot appropriate the entire consumer surplus

R&D Allocation and Externalities

Firms maximize common owner weighted profits:

$$\mathbf{x}^* = (\mathbf{K} \circ \mathbf{\Omega})[\mathbf{\Sigma} + \mathbf{K} \circ \mathbf{\Sigma} - \mathbf{\Omega}(\mathbf{K} \circ \mathbf{\Omega})]^{-1}(\mathbf{b} - \mathbf{a})$$

Firms maximize common owner weighted total surplus (*):

$$\mathbf{x}_{TS}^* = (\mathbf{K} \circ \mathbf{\Omega}) \left[\frac{1}{2} (\mathbf{\Sigma} + \mathbf{K} \circ \mathbf{\Sigma}) - \mathbf{\Omega} (\mathbf{K} \circ \mathbf{\Omega}) \right]^{-1} (\mathbf{b} - \mathbf{a})$$

- $\mathbf{K} = [1]$ in $(\star) \Longrightarrow$ Social Optimum
- Externalities: (i) Appropriability, (ii) Business stealing, (iii) Technology spillover

Generalized Hedonic-Linear Demand (Pellegrino, 2024)

- $i \in \{1, 2, ..., n\}$: firms / products
- 1 unit of product i provides
 - 1 unit of idiosyncratic characteristic $k \in \{1, 2, ..., n\}$
 - $\psi_{k,i}$ unit of shared characteristic $k \in \{n+1, n+2, ..., n+n_k\}$ where $\sum_k \psi_{k,i}^2 = 1$
- Aggregate each characteristic:

$$y_{k,t} = \begin{cases} q_{k,t} & k = 1, 2, ..., n \\ \sum_{i} \psi_{k,i} q_{i,t} & k = n + 1, n + 2, ..., n + n_k \end{cases}$$

Linear quadratic aggregator over characteristics:

$$Y_t = (1-\alpha)\sum_{k=1}^n \left(\underbrace{\hat{b}_{k,t} y_{k,t} - \frac{1}{2} y_{k,t}^2}_{\text{idiosyncratic characteristic}} \right) + \alpha \sum_{k=n+1}^{n+n_k} \left(\underbrace{\hat{b}_{k,t} y_{k,t} - \frac{1}{2} y_{k,t}^2}_{\text{shared characteristic}} \right)$$

Generalized Hedonic-Linear Demand (Pellegrino, 2024)

Quality:

$$b_i = (1 - \alpha)\,\hat{b}_i + \alpha \sum_{k=n+1}^{n+n_k} \psi_k \hat{b}_k$$

Inverse demand:

$$\frac{\mathbf{p}}{P} = \mathbf{b} - \mathbf{\Sigma}\mathbf{q}$$

• Inverse cross price elasticity of demand:

$$\frac{\partial \log p_i}{\partial \log q_j} = -\frac{q_j}{p_i} \cdot \sigma_{ij}$$

Cross price elasticity of demand:

$$\frac{\partial \log q_i}{\partial \log p_j} = -\frac{p_j}{q_i} (\mathbf{\Sigma}^{-1})_{ij}$$

Static Profits

- Real gross profit: $rac{\pi_{i,t}}{P_t} = \sum_j \kappa_{ij} \sigma_{ij} q_{i,t} q_{j,t}$
- Firms choose labor productivity and product quality: $\zeta a_{i,t} = \sqrt{\zeta \frac{w_t}{P_t}}$, $b_{i,t} = z_{i,t} \sqrt{\zeta \frac{w_t}{P_t}}$
- Labor market clearing: $L=\sum_i rac{q_{i,t}}{a_{i,t}} \Longrightarrow \sqrt{\zeta rac{w_t}{P_t}} = rac{\zeta}{L} \sum_i q_{i,t}$
- $ullet \mathbf{q}_t = \mathbf{N}\mathbf{z}_t$ where $N \equiv \left\{2rac{\zeta}{L}\mathbf{J} + \mathbf{\Sigma} + \mathbf{K} \circ \mathbf{\Sigma}
 ight\}^{-1}$
- N_i : the i th row of N
- Ownership weighted profit:

$$\sum_{j} \kappa_{ij} \frac{\pi_{j,t}}{P_t} = \sum_{j} \kappa_{ij} \sum_{h} \kappa_{jh} \sigma_{jh} q_{j,t} q_{h,t} = \mathbf{z}_t^T \mathbf{Q}^i \mathbf{z}_t$$

where

$$\mathbf{Q}^{i} = \frac{1}{2} \sum_{j} \kappa_{ij} \sum_{h} \kappa_{jh} \sigma_{jh} \left(N_{j}^{T} N_{h} + N_{h}^{T} N_{j} \right)$$

Back

Riccati Equations

• $V^{i}(\mathbf{z}) = \mathbf{z}^{T}\mathbf{X}^{i}\mathbf{z}$ where \mathbf{X}^{i} is the solution of the stacked Riccati equation

$$0 = \mathbf{Q}^{i} - \mu^{2} \sum_{j} \kappa_{ij} \mathbf{X}_{j}^{j} \left(\mathbf{X}_{j}^{j} \right)^{T} + \left(\mathbf{\Phi} - \frac{1}{2} \left(\rho - \gamma^{2} \right) \mathbf{I} \right)^{T} \mathbf{X}^{i} + \mathbf{X}^{i} \left(\mathbf{\Phi} - \frac{1}{2} \left(\rho - \gamma^{2} \right) \mathbf{I} \right)$$

- $\mathbf{X}_{i}^{i} \equiv \text{the } i \text{ th column of } \mathbf{X}^{i}$
- $\Phi \equiv \mathbf{\Omega} + \mu^2 \begin{bmatrix} \mathbf{X}_1^1 & \cdots & \mathbf{X}_n^n \end{bmatrix}^T$
- Algorithm: Given $\left[egin{array}{ccc} {f X}_{ au}^1 & \cdots & {f X}_{ au}^n \end{array}
 ight]$, update $\left[egin{array}{ccc} {f X}_{ au-\Delta}^1 & \cdots & {f X}_{ au-\Delta}^n \end{array}
 ight]$ by

$$-\frac{\mathbf{X}_{\tau}^{i}-\mathbf{X}_{\tau-\Delta}^{i}}{\Delta}=\mathbf{Q}^{i}-\mu^{2}\sum_{j}\kappa_{ij}\mathbf{X}_{j,\tau}^{j}\left(\mathbf{X}_{j,\tau}^{j}\right)^{T}+\left(\boldsymbol{\Phi}_{\tau}-\frac{1}{2}\left(\rho-\gamma^{2}\right)\mathbf{I}\right)^{T}\mathbf{X}_{\tau}^{i}+\mathbf{X}_{\tau}^{i}\left(\boldsymbol{\Phi}_{\tau}-\frac{1}{2}\left(\rho-\gamma^{2}\right)\boldsymbol{I}\right)^{T}\mathbf{X}_{\tau}^{i}+\mathbf{X}_{\tau}^{i}\left(\boldsymbol{\Phi}_{\tau}-\frac{1}{2}\left(\rho-\gamma^{2}\right)\boldsymbol{I}\right)^{T}\mathbf{X}_{\tau}^{i}+\mathbf{X}_{\tau}^{i}\left(\boldsymbol{\Phi}_{\tau}-\frac{1}{2}\left(\rho-\gamma^{2}\right)\boldsymbol{I}\right)^{T}\mathbf{X}_{\tau}^{i}+\mathbf{X}_{\tau}^{i}\left(\boldsymbol{\Phi}_{\tau}-\frac{1}{2}\left(\rho-\gamma^{2}\right)\boldsymbol{I}\right)^{T}\mathbf{X}_{\tau}^{i}+\mathbf{X}_{\tau}^{i}\left(\boldsymbol{\Phi}_{\tau}-\frac{1}{2}\left(\rho-\gamma^{2}\right)\boldsymbol{I}\right)^{T}\mathbf{X}_{\tau}^{i}+\mathbf{X}_{\tau}^{i}\left(\boldsymbol{\Phi}_{\tau}-\frac{1}{2}\left(\rho-\gamma^{2}\right)\boldsymbol{I}\right)^{T}\mathbf{X}_{\tau}^{i}+\mathbf{X}_{\tau}^{i}\left(\boldsymbol{\Phi}_{\tau}-\frac{1}{2}\left(\rho-\gamma^{2}\right)\boldsymbol{I}\right)^{T}\mathbf{X}_{\tau}^{i}+\mathbf{X}_{\tau}^{i}\left(\boldsymbol{\Phi}_{\tau}-\frac{1}{2}\left(\rho-\gamma^{2}\right)\boldsymbol{I}\right)^{T}\mathbf{X}_{\tau}^{i}+\mathbf{X}_{\tau}^{i}\left(\boldsymbol{\Phi}_{\tau}-\frac{1}{2}\left(\rho-\gamma^{2}\right)\boldsymbol{I}\right)^{T}\mathbf{X}_{\tau}^{i}+\mathbf{X}_{\tau}^{i}\left(\boldsymbol{\Phi}_{\tau}-\frac{1}{2}\left(\rho-\gamma^{2}\right)\boldsymbol{I}\right)^{T}\mathbf{X}_{\tau}^{i}+\mathbf{X}_{\tau}^{i}\left(\boldsymbol{\Phi}_{\tau}-\frac{1}{2}\left(\rho-\gamma^{2}\right)\boldsymbol{I}\right)^{T}\mathbf{X}_{\tau}^{i}+\mathbf{X}_{\tau}^{i}\left(\boldsymbol{\Phi}_{\tau}-\frac{1}{2}\left(\rho-\gamma^{2}\right)\boldsymbol{I}\right)^{T}\mathbf{X}_{\tau}^{i}+\mathbf{X}_{\tau}^{i}\left(\boldsymbol{\Phi}_{\tau}-\frac{1}{2}\left(\rho-\gamma^{2}\right)\boldsymbol{I}\right)^{T}\mathbf{X}_{\tau}^{i}+\mathbf{X}_{\tau}^{i}\left(\boldsymbol{\Phi}_{\tau}-\frac{1}{2}\left(\rho-\gamma^{2}\right)\boldsymbol{I}\right)^{T}\mathbf{X}_{\tau}^{i}+\mathbf{X}_{\tau}^{i}\left(\boldsymbol{\Phi}_{\tau}-\frac{1}{2}\left(\rho-\gamma^{2}\right)\boldsymbol{I}\right)^{T}\mathbf{X}_{\tau}^{i}+\mathbf{X}_{\tau}^{i}\left(\boldsymbol{\Phi}_{\tau}-\frac{1}{2}\left(\rho-\gamma^{2}\right)\boldsymbol{I}\right)^{T}\mathbf{X}_{\tau}^{i}+\mathbf{X}_{\tau}^{i}\left(\boldsymbol{\Phi}_{\tau}-\frac{1}{2}\left(\rho-\gamma^{2}\right)\boldsymbol{I}\right)^{T}\mathbf{X}_{\tau}^{i}+\mathbf{X}_{\tau}^{i}\left(\boldsymbol{\Phi}_{\tau}-\frac{1}{2}\left(\rho-\gamma^{2}\right)\boldsymbol{I}\right)^{T}\mathbf{X}_{\tau}^{i}+\mathbf{X}_{\tau}^{i}\left(\boldsymbol{\Phi}_{\tau}-\frac{1}{2}\left(\rho-\gamma^{2}\right)\boldsymbol{I}\right)^{T}\mathbf{X}_{\tau}^{i}+\mathbf{X}_{\tau}^{i}\left(\boldsymbol{\Phi}_{\tau}-\frac{1}{2}\left(\rho-\gamma^{2}\right)\boldsymbol{I}\right)^{T}\mathbf{X}_{\tau}^{i}+\mathbf{X}_{\tau}^{i}\left(\boldsymbol{\Phi}_{\tau}-\frac{1}{2}\left(\rho-\gamma^{2}\right)\boldsymbol{I}\right)^{T}\mathbf{X}_{\tau}^{i}+\mathbf{X}_{\tau}^{i}\left(\boldsymbol{\Phi}_{\tau}-\frac{1}{2}\left(\rho-\gamma^{2}\right)\boldsymbol{I}\right)^{T}\mathbf{X}_{\tau}^{i}+\mathbf{X}_{\tau}^{i}\left(\boldsymbol{\Phi}_{\tau}-\frac{1}{2}\left(\rho-\gamma^{2}\right)\boldsymbol{I}\right)^{T}\mathbf{X}_{\tau}^{i}+\mathbf{X}_{\tau}^{i}\left(\boldsymbol{\Phi}_{\tau}-\frac{1}{2}\left(\rho-\gamma^{2}\right)\boldsymbol{I}\right)^{T}\mathbf{X}_{\tau}^{i}+\mathbf{X}_{\tau}^{i}\left(\boldsymbol{\Phi}_{\tau}-\frac{1}{2}\left(\rho-\gamma^{2}\right)\boldsymbol{I}\right)^{T}\mathbf{X}_{\tau}^{i}+\mathbf{X}_{\tau}^{i}\left(\boldsymbol{\Phi}_{\tau}-\frac{1}{2}\left(\rho-\gamma^{2}\right)\boldsymbol{I}\right)^{T}\mathbf{X}_{\tau}^{i}+\mathbf{X}_{\tau}^{i}\left(\boldsymbol{\Phi}_{\tau}-\frac{1}{2}\left(\rho-\gamma^{2}\right)\boldsymbol{I}\right)^{T}\mathbf{X}_{\tau}^{i}+\mathbf{X}_{\tau}^{i}\left(\boldsymbol{\Phi}_{\tau}-\frac{1}{2}\left(\rho-\gamma^{2}\right)\boldsymbol{I}\right)^{T}\mathbf{X}_{\tau}^{i}+\mathbf{X}_{\tau}^{i}\left(\boldsymbol{\Phi}_{\tau}-\frac{1}{2}\left(\rho-\gamma^{2}\right)\boldsymbol{I}\right)^{T}\mathbf{X}_{\tau}^{i}+\mathbf{X}_{\tau}^{i}\left(\boldsymbol{\Phi}_{\tau}-\frac{1}{2}\left(\rho-\gamma^{2}$$

Summary of Equilibrium

Description	Expression
Production strategy	$\mathbf{q}_t = N\mathbf{z}_t$
R&D strategy	$\mathbf{x}_t = \mu ilde{X} \mathbf{z}_t$
Law of motion	$d\mathbf{z}_t = (\Omega \mathbf{z}_t + \mu \mathbf{x}_t) dt + \gamma \mathbf{z}_t dW_t$
Profit of final producers	$\Pi_t^F/P_t = \mathbf{q}_t^T\left(rac{1}{2}\Sigma ight)\mathbf{q}_t$
Total operating profit of firms	$\Pi_t/P_t = \mathbf{q}_t^T \left(\frac{1}{2} \Sigma \circ (K + K^T) \right) \mathbf{q}_t$
Labor income	$w_t L/P_t = \mathbf{q}_t^T \left(rac{\zeta}{L} J ight) \mathbf{q}_t$
Output	$Y_t = \mathbf{q}_t^T \left(\frac{\zeta}{L} J + \frac{1}{2} \Sigma + \frac{1}{2} \Sigma \circ (K + K^T) \right) \mathbf{q}_t$
Consumption	$C_t = Y_t - \mathbf{x}_t^T \mathbf{x}_t$

Output and Expected Utility

• Output: $Y_t = \mathbf{q}_t^T Q \mathbf{q}_t$ where

$$Q = \frac{\zeta}{L}J + \frac{1}{2}\Sigma + \frac{1}{2}\Sigma \circ \left(K + K^T\right)$$

Expected utility:

$$V(\mathbf{z}_t) \equiv \mathbf{E}_t \left[\left. \int_t^\infty \exp\left(-\rho s\right) C_s ds \right| \mathbf{z}_t \right] = \mathbf{z}_t^T X \mathbf{z}_t$$

where X is the solution of the Lyapunov equation (obtained from households' HJB equation):

$$0 = Q - \mu^2 \tilde{X}^T \tilde{X} + X \left(\Phi - \frac{1}{2} \left(\rho - \gamma^2\right) I\right) + \left(\Phi - \frac{1}{2} \left(\rho - \gamma^2\right) I\right)^T X$$

Social Optimum

- Static optimal allocation: $\mathbf{q}_t^* = N^*\mathbf{z}_t$ where $N^* \equiv \left\{2\frac{\zeta}{L}J + \Sigma\right\}^{-1}$
- \bullet Optimal output: $Y_t^* = \mathbf{z}_t^T Q^* \mathbf{z}_t$ where $Q^* = \frac{1}{2} N^*$
- Optimal expected utility:

$$V^*\left(\mathbf{z}_t\right) \equiv \mathbf{E}_t \left[\left. \int_t^\infty \exp\left(-\rho s\right) C_s ds \right| \mathbf{z}_t \right] = \mathbf{z}_t^T X^* \mathbf{z}_t,$$

where X^* is the solution of the Riccati equation (obtained from planner's HJB equation):

$$0 = Q^* - \mu^2 \left(X^*\right)^2 + X^* \left(\Phi^* - \frac{1}{2} \left(\rho - \gamma^2\right) I\right) + \left(\Phi^* - \frac{1}{2} \left(\rho - \gamma^2\right) I\right) X^*$$

- Optimal R&D: $\mathbf{x}_t^* = \mu X^* \mathbf{z}_t$
- Optimal technology transition matrix: $\Phi^* = \Omega + \mu^2 X^*$

Stochastic Process of Output

Applying It's lemma,

$$d\log Y_t = \left[\frac{\mathbf{z}_t^T \left(Q\Phi + \Phi^T Q\right)\mathbf{z}_t}{Y_t} + \gamma^2 \left\{\frac{\sum_i z_{i,t}^2 Q_{ii}}{Y_t} - \frac{2\mathbf{z}_t^T Q \operatorname{diag}\left(\mathbf{z}_t^2\right) Q\mathbf{z}_t}{Y_t^2}\right\}\right] dt + \frac{2\gamma \mathbf{z}_t^T Q \operatorname{diag}\left(\mathbf{z}_t\right)}{Y_t} dW_t$$

where
$$Y_t = \mathbf{z}_t^T Q \mathbf{z}_t$$
 and $\Phi = \Omega + \mu^2 \widetilde{X}$

Description	Expression
Tech Spillover	$\mathbf{z}_t^T (Q\Omega + \Omega Q) \mathbf{z}_t / Y_t$
R&D	$\mu^2 \mathbf{z}_t^T ig(Q \widetilde{X} + \widetilde{X}^T Qig) \mathbf{z}_t / Y_t$
Ito	$\gamma^2 \left\{ \sum_i z_{i,t}^2 Q_{ii}/Y_t - 2\mathbf{z}_t^T Q \mathrm{diag}\left(\mathbf{z}_t^2 ight) Q \mathbf{z}_t/Y_t^2 ight\}$
Total	$\mathbf{E}\left[d\log Y_{t} ight]$

Number of Sample Firms

Trend of Product Substitutability

Technological Proximity

- Merge USPTO data with Compustat firms using DISCERN 2 dataset (Arora et al., 2024)
- Jaffe measure, Group-level patent classification, Stack for 5 years

Distributions of Estimated Knowledge Capital and Quantity

- 1999 - 2005 3.5 2011 ---- 2017 3 2.5 density 1.5 0.5 5.8 5.6 6.8 $\log(z)$

(a) Log of Quantity

(b) Log of Knowledge Capital

First Stage Back

	(1)
Dependent Variable:	$z_{i,t}$
User cost of R&D	-39.495^{***}
	(4.7044)
Year Fixed Effects	✓
No. observations	12,947

SEs clustered by years and 4-digit naics industries are reported in parentheses.

• IV: User cost of R&D, driven by state-level tax variations (Wilson, 2009; Bloom et al., 2013)

Alternative Corporate Governance Models: Ederer and Pellegrino (2024)

- 1. Super-proportional influence: $\tilde{\kappa}_{ij}=\frac{\sum_{z=1}^Z s_{iz}\gamma_{iz}s_{jz}}{\sum_{z=1}^Z s_{iz}\gamma_{iz}s_{iz}}$ where $\gamma_{iz}=\sqrt{s_{iz}}$
- 2. Blockholder influence: $\tilde{\kappa}_{ij}=\frac{\sum_{z=1}^Z s_{iz}b_{iz}s_{jz}}{\sum_{z=1}^Z s_{iz}s_{jz}} \quad (i\neq j),$ where $b_{iz}=1$ if $s_{iz}>5\%$
- 3. Rational investor inattention
 - Gilje et al. (2020) (GGL) estimate the probability that an investor votes against Institutional Shareholders Service recommendations
 - Utilize the estimate to capture the investor's level of attention
- Governance frictions and entrenchment
 - Azar and Ribeiro (2021) (AR) estimate an objective function where the manager of firm i discounts other firms' profit by τ_i

Alternative Corporate Governance Models

(a) Expected Growth

(b) Expected Social Welfare

- **Acemoglu, Daron, and Ufuk Akcigit.** 2012. "Intellectual Property Rights Policy, Competition and Innovation." *Journal of the European Economic Association* 10 (1): 1–42.
- **Aghion, P, N Bloom, R Blundell, R Griffith, and P Howitt.** 2005. "Competition and Innovation: An Inverted-U Relationship." *The Quarterly Journal of Economics* 120 (2): 701–728.
- Aghion, Philippe, Christopher Harris, Peter Howitt, and John Vickers. 2001. "Competition, Imitation and Growth with Step-by-Step Innovation." *The Review of Economic Studies* 68 (3): 467–492
- **Aghion, Philippe, John Van Reenen, and Luigi Zingales.** 2013. "Innovation and Institutional Ownership." *American Economic Review* 103 (1): 277–304.
- **Akcigit, Ufuk, and Sina T Ates.** 2021. "Ten Facts On Declining Business Dynamism and Lessons From Endogenous Growth Theory." *American Economic Journal: Macroeconomics* 13 (1): 257–298.
- **Akcigit, Ufuk, and Sina T Ates.** 2023. "What Happened to US Business Dynamism?" *The Journal of Political Economy* 131 (8): 2059–2124.
- Anton, Miguel, Florian Ederer, Mireia Gine, and Martin Schmalz. 2023. "Common Ownership,

- Competition, and Top Management Incentives." *The journal of political economy* 131 (5): 1294–1355.
- **Anton, Miguel, Florian Ederer, Mireia Gine, and Martin Schmalz.** 2024. "Innovation: The Bright Side of Common Ownership?" *Management science*.
- Arora, Ashish, Sharon Belenzon, Larisa Cioaca, Lia Sheer, Hyun Moh (john) Shin, and Dror Shvadron. 2024. "DISCERN 2: Duke innovation & SCientific Enterprises Research Network."
- **Atkeson, Andrew, and Ariel Burstein.** 2008. "Pricing-to-Market, Trade Costs, and International Relative Prices." *The American Economic Review* 98 (5): 1998–2031.
- Autor, David, David Dorn, Lawrence F Katz, Christina Patterson, and John Van Reenen. 2020."The Fall of The Labor Share and The Rise of Superstar Firms." The Quarterly Journal of Economics 135 (2): 645–709.
- **Azar, Jose, Martin C Schmalz, and Isabel Tecu.** 2018. "Anticompetitive Effects of Common Ownership." *The Journal of Finance* 73 (4): 1513–1565.
- **Azar, Jose, and Xavier Vives.** 2021. "General Equilibrium Oligopoly and Ownership Structure." *Econometrica* 89 (3): 999–1048.

- **Azar, José, Sahil Raina, and Martin Schmalz.** 2022. "Ultimate ownership and bank competition." *Financial management* 51 (1): 227–269.
- **Azar, José, and Ricardo Ribeiro.** 2021. "Estimating oligopoly with shareholder voting models." *SSRN Electronic Journal*.
- Backus, Matthew, Christopher Conlon, and Michael Sinkinson. 2021. "Common Ownership in America: 1980-2017." *American Economic Journal. Microeconomics* 13 (3): 273–308.
- **Baqaee, David Rezza, and Emmanuel Farhi.** 2020. "Productivity and Misallocation in General Equilibrium." *The Quarterly Journal of Economics* 135 (1): 105–163.
- Berry, Steven, James Levinsohn, and Ariel Pakes. 1995. "Automobile Prices in Market Equilibrium." *Econometrica* 63 (4): 841.
- **Bloom, Nicholas, Mark Schankerman, and John VAN Reenen.** 2013. "Identifying Technology Spillovers and Product Market Rivalry." *Econometrica* 81 (4): 1347–1393.
- Cavenaile, Laurent, Murat Alp Celik, and Xu Tian. 2023. "Are Markups Too High? Competition, Strategic Innovation, and Industry Dynamics."
- **d'Aspremont, Claude, and A Jacquemin.** 1988. "Cooperative and noncooperative R&D in duopoly with spillovers." *The American Economic Review* 78 (5): 1133–1137.

- **De Loecker, Jan, Jan Eeckhout, and Gabriel Unger.** 2020. "The Rise of Market Power and The Macroeconomic Implications." *The Quarterly Journal of Economics* 135 (2): 561–644.
- **Ederer, Florian, and Bruno Pellegrino.** 2024. "A Tale of Two Networks: Common Ownership and Product Market Rivalry."
- **Edmond, Chris, Virgiliu Midrigan, and Daniel Yi Xu.** 2023. "How Costly Are Markups?" *The Journal of Political Economy* 000–000.
- **Gilje**, **Erik P**, **Todd A Gormley**, **and Doron Levit.** 2020. "Who's paying attention? Measuring common ownership and its impact on managerial incentives." *Journal of financial economics* 137 (1): 152–178.
- **Gutierrez, German, and Thomas Philippon.** 2017. "An Empirical Investigation." *Brookings Papers on Economic Activity* 89–169.
- **He, Jie (jack), and Jiekun Huang.** 2017. "Product Market Competition in a World of Cross-Ownership: Evidence from Institutional Blockholdings." *The Review of Financial Studies* 30 (8): 2674–2718.
- **Hoberg, Gerard, and Gordon Phillips.** 2016. "Text-Based Network Industries and Endogenous Product Differentiation." *The Journal of Political Economy* 124 (5): 1423–1465.

- **Hopenhayn, Hugo, and Koki Okumura.** 2024. "Dynamic Oligopoly and Innovation: A Quantitative Analysis of Technology Spillovers and Product Market Competition."
- **Jaffe, Adam B.** 1986. "Technological Opportunity and Spillovers of R&D: Evidence from Firms' Patents, Profits, and Market Value." *The American economic review* 76 (5): 984–1001.
- **Kini, Omesh, Sangho Lee, and Mo Shen.** 2024. "Common Institutional Ownership and Product Market Threats." *Management Science* 70 (5): 2705–2731.
- **Lancaster, Kelvin J.** 1966. "A New Approach to Consumer Theory." *The Journal of Political Economy* 74 (2): 132–157.
- Liu, Ernest, Atif Mian, and Amir Sufi. 2022. "Low Interest Rates, Market Power, and Productivity Growth." *Econometrica* 90 (1): 193–221.
- **Lopez, Angel L, and Xavier Vives.** 2019. "Overlapping Ownership, R&D Spillovers, and Antitrust Policy." *The Journal of Political Economy* 127 (5): 2394–2437.
- **Neary, J Peter.** 2003. "Globalization and market structure." *Journal of the European Economic Association* 1 (2-3): 245–271.
- **Nevo, Aviv.** 2001. "Measuring Market Power in the Ready-to-Eat Cereal Industry." *Econometrica* 69 (2): 307–342.

- **Pellegrino, Bruno.** 2024. "Product Differentiation and Oligopoly: A Network Approach." *The American Economic Review*.
- **Peters, Michael.** 2020. "Heterogeneous Markups, Growth, and Endogenous Misallocation." *Econometrica* 88 (5): 2037–2073.
- **Rosen, Sherwin.** 1974. "Hedonic Prices and Implicit Markets: Product Differentiation in Pure Competition." *The Journal of Political Economy* 82 (1): 34–55.
- Rotemberg, Julio. 1984. "Financial transaction costs and industrial performance."
- **Rubinstein, Ariel, and Menahem E Yaari.** 1983. "The Competitive Stock Market as Cartel Maker: Some Examples." *STICERD Theoretical Economics Paper Series*.
- **Wilson, Daniel J.** 2009. "Beggar thy neighbor? The in-state, out-of-state, and aggregate effects of R&D tax credits." *The Review of Economics and Statistics* 91 (2): 431–436.