SNT

Fine-tuning a transformer pipeline for text classification

French NACE dataset

- Origin dataset:
 - 846652 rows labelled with French NACE version with 5 digits

nace	text
8220Z	MISSIONS PONCTUELLES A L AIDE D UNE PLATEFORME
8553Z	INSPECTEUR AUTOMOBILE
5520Z	LA LOCATION TOURISTIQUE DE LOGEMENTS INSOLITES
4791A	COMMERCE DE TOUT ARTICLES ET PRODUITS MARCHAND
9499Z	REGROUPEMENT RETRAITE

- Simplification for this tutorial:
 - Convert 5 digits to 1 digits (NACE section: 21 category from A to U)
 - Very small sample for train (18k) and test (2k)

Text as input is sophisticated

- ML model expect vectors, not strings
- Conversion from word to vectors
 - One hot encoding, ngrams, ... etc
 - Word embeddings (word2vec, fasttext)

- Limited to deal with words that have different meanings (context)
 - Example:
 - Bank vs river bank vs blood bank?

ML model inputs

Input is a vector

Input is a 2D vector (image)

Unknown length

A sentence is a list of words with unknown length (Sequence) <- Our case

ML model outputs

Each vector has a label: POS tagging, BERT

Whole sequence has a label: Text classification <- Our case

Model decide length of the labels: Text generation (GPT), text translation

Sequence model

- Recurrent Neural Network (RNN): Given input sequence (X_1, X_2, X_3, ...)
 - Model is reused for each X and store information to the memory

7

Transformer and self attention

- Attention is all you need
- Encoder Decoder architecture

Encoder:

Bidirectional Encoder Representations from Transformers (BERT)

Decoder: GPT

Self attention layer

Same MultiLayer Perceptron

Composition of linear algebra operations

Token embedding

Text classification as downstream task of BERT

transformers: High level python package

Generic class:

- AutoModel
- AutoTokenizer
- Trainer

Task specific model class:

- AutoModelForSequenceClassification
- AutoModelForCausalLM

- -> Text classification tasks with encoder
- -> Text generation with decoder

Task pipeline: pipeline function

Tutorial: Overview of steps

- 1. Convert csv dataset into hugging face datasets format
- 2. Label encoding
- 3. Fetch pre trained model from hugging face
- 4. Fine Tune the pre trained model
- 5. Run fine tuned model on test csv dataset and evaluate

References

Attention is all you need **BERT**

Hugging face transformers

- **BERT** model
- **Auto Classes doc**

ML course from NTU

