Final examination for Introduction to Combustion

Time allowed: Two hours

Fall semester, 2018-2019

Answer ALL questions

Total mark: 100

Any hardcopy material can be used, but no electronic devices except for non-programmable calculator is allowed.

Molar mass may be needed: $M_O=16~kg/kmol, M_H=1~kg/kmol, M_C=12~kg/kmol, \label{eq:molar}$

 $M_N = 14 \, kg/kmol$, $M_{air} = 28.85 \, kg/kmol$

Air is considered 21% of O₂ and 79% of N₂.

- 1. Multiple choice questions. Select ONE answer for each of the following questions. Each question carries **4** marks.
 - 1) Which one of the following quantities is NOT a property?
 - A. Heat
 - B. Specific volume
 - C. Density
 - D. Internal energy
 - 2) Which one of the processes is POSSIBLE from a thermodynamic point of view?

- 3) Which one of the following statements is INCORRECT?
 - A. The Standard Reference State is defined as Temperature $T_{ref}=0\,^{\circ}\text{C}$, Pressure $p^{0}=1~atm$.
 - B. Standardised enthalpy at temperature T is the sum of enthalpy of formation and the sensible enthalpy change from T_{ref} to T.
 - C. For the elements in their naturally occurring state, such as O₂, their enthalpies of formation are zero.
 - D. The enthalpy of formation is only decided by the reactants and products, independent of the process.
- 4) In the following elementary reactions, which is likely the slowest one?
 - A. $N_2+0\rightarrow NO+N$
 - B. $CO + OH \rightarrow CO_2 + H$
 - C. $CH + N_2 \rightarrow HCN + N$
 - D. $H + OH + M \rightarrow H_2O + M$
- 5) Which one of the following statements about laminar premixed flame is INCORRECT?
 - A. For most of the fuels, the flame speeds are at their maximum values at a slight rich mixture.

- B. Laminar flame speed has a strong temperature dependence.
- C. The maximum flame thickness usually occurs near stoichiometric fuel/air mixture.
- D. With addition of inert gas, flame velocity will reduce.

(Total marks: 20)

- 2. Complete the figures using the given items.
 - 1) Figure 2.1 indicates a typical premixed combustion flame. Fill A to E with the given items (Reactants χ_R , Temperature T, Heat release rate \dot{Q}''' , Preheat zone, Reaction zone)

Figure 2.1

(15 Marks)

2) Figure 2.2 indicates a jet flame. Fill the A to E with given items (Flame zone, Fuel fraction, Oxidiser fraction, Flame length, Rich zone)

Figure 2.2

(15 Marks)

3. Calculation.

1) A typical house brick wall is constructed of two layers of bricks and a foam insulation layer between the brick layers. The conductivity of the brick is k = 1 W/m.K and the conductivity of the foam is k = 0.035 W/m.K. The thickness of the two brick layers is the same at 0.1 m, and the foam insulation is 0.2 m thick. The inner air temperature

is 20°C and the heat transfer coefficient is 9 W/m².K. The outer temperature is 5°C and the heat transfer coefficient is 20 W/m².K.

Draw a thermal resistance network. Determine the heat losses through a wall of 3 meters high and 5 meters long.

(16 Marks)

2) Calculate the stoichiometric A/F ratio of ethane (C_2H_6). Estimate the constant pressure adiabatic flame temperature for the combustion of a stoichiometric C_2H_6 -air mixture at 1 atm and the initial temperature of 298 K. Use the constant specific heat at 1200 K for your calculation.

(16 Marks)

3) Liquid isopentane (C_5H_{12}) is contained in a 2-cm-diameter glass tube at 20°C and maintained at a level 0.2 m below the top of the tube. Its corresponding saturation pressure at this temperature is 79 kPa. The molar mass of isopentane is $M_{C_5H_{12}} = 72 \ kg/kmol$, $D_{C_5H_{12}-air} = 8.3 \times 10^{-5} \ m^2/s$. Calculate the mass evaporation rate (kg/s) of isopentane and the time takes to evaporate 1 gram of isopentane.

(18 Marks)

Bonus question:

For the following reaction mechanism,

$H + O_2 \Leftrightarrow OH + O$	R.1
$O + H_2 \Leftrightarrow OH + H$	R.2
$OH + H_2 \Leftrightarrow H_2O + H$	R.3
$0 + H_2 O \Leftrightarrow OH + OH$	R.4
$H + H + M \Leftrightarrow H_2 + M$	R.5

Define j and I as

j	Species	i	Reaction
1	O_2	1	R.1
2	H_2	2	R.2
3	H_2O	3	R.3
4	0	4	R.4
5	Н	5	R.5
6	ОН		
7	М		

Using j as the column index and I the row index, write the stoichiometric coefficient matrices ν'_{ji} and ν''_{ji} for the form of $\sum_{j=1}^{7}\nu'_{ji}X_{j} \Leftrightarrow \sum_{j=1}^{7}\nu''_{ji}X_{j}$ for i=1,2,3,...,5 (10 Marks)