DM54LS460/DM74LS460 10-Bit Comparator

General Description

The 'LS460 is a 10-bit comparator with true and complement comparison status outputs. The device compares two 10-bit data strings ($A_g - A_0$ and $B_g - B_0$) to establish if this data is Equivalent (EQ = HIGH and NE = LOW) or Not Equivalent (EQ = LOW and NE = HIGH).

Outputs conform to the usual 8 mA LS totem-pole drive standard.

Features/Benefits

- True and complement comparison status outputs
- 24-pin SKINNYDIP saves space
- Low current PNP inputs reduce loading
- Expandable in 10-bit increments

Connection Diagram

Top View COMPARISON STATUS EQ 23 22 21 20 19 18 88 A8 NE EO B7 10-BIT AC COMPARATOR BD B1 **A**2 R2 A3 R3 **A1** GND TL/L/8335-1

Order Number DM54LS460J, DM74LS460J, or DM74LS460N See NS Package Number J24F or N24C

Standard Test Load

Function Table

A9-A0	B9-B0	EQ	NE	Operation
A	Α	Н	L	} Equivalent (A = B)
j B	В	Н	L	Equivalent (A-B)
Α	В	L	Н	Not Equivalent (A≠B)

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Off-State Output Voltage Storage Temperature

Input Voltage

5.5V 5.5V -65° to +150°C

Supply Voltage V_{CC}

7

Operating Conditions

Symbol	Parameter	Military				Units		
	Fai attioloi	Min	Тур	Max	Min	Тур	Max	01111.5
V _{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	٧
T _A	Operating Free-Air Temperature	-55		125*	0		75	•c

^{*}Case Temperature

Electrical Characteristics Over Operating Conditions

Symbol	Parameter	Test Conditions			Min	Тур†	Max	Units
V _{IL}	Low-Level Input Voltage						0.8	٧
V _{IH}	High-Level Input Voltage				2			٧
V _{IC}	Input Clamp Voltage	V _{CC} =MIN	I _I = -18 mA				-1.5	٧
ելը Մ	Low-Level Input Current	V _{CC} =MAX	V _I =0.4V				-0.25	mA
l _{IH}	High-Level Input Current	V _{CC} =MAX	V _i =2.4V				25	μΑ
l _l	Maximum Input Current	V _{CC} =MAX	V _I =5.5V				1	mA
V _{OL}	Low-Level Output Voltage	$V_{CC} = MIN$ $V_{IL} = 0.8V$ $V_{IH} = 2V$		I _{OL} =8 mA			0.5	٧
V _{OH}	High-Level Output Voltage	V _{CC} =MIN V _{IL} =0.8V	MIL	I _{OH} = -2 mA	2.4			V
		$V_{IH} = 2V$	СОМ	I _{OH} = -3.2 mA				
los	Output Short-Circuit Current*	V _{CC} =5.0V		V _O =0V	-30		-130	mA
loc	Supply Current	V _{CC} =MAX				60	100	mA

^{*}No more than one output should be shorted at a time and duration of the short-circuit should not exceed one second

Switching Characteristics Over Operating Conditions

Symbol	Parameter	Test Conditions (See Test Load)	Military			Commercial			Units
			Min	Тур	Max	Min	Тур	Max	
t _{PD}	Any Input to EQ or NE	$C_L = 50 \text{ pF}$ $R_1 = 560\Omega$ $R_2 = 1.1 \text{ k}\Omega$		25	45		25	40	ns

[†]All typical values are at $V_{CC} = 5V$, $T_A = 25^{\circ}C$

Logic Diagram

