LI WANG

Homepage: http://liwangGT.github.io | 1-864-650-6377 | liwang@gatech.edu

EDUCATION

Georgia Institute of Technology, Atlanta, GA

Doctor of Philosophy in Department of Electrical & Computer Engineering

Clemson University, Clemson, SC

Master of Science in Department of Electrical & Computer Engineering

Huazhong University of Sci. & Tech., Wuhan, China

Bachelor of Science (with honor) in Department of Mechanical Engineering

RESEARCH EXPERIENCE

Graduate Research Assistant, Georgia Institute of Technology

August 2014 - Present Topic: Safe Learning and Control of Multi-robot Systems (Video Link 1,2) 3) Advisor: Magnus Egerstedt

- · Developed safety control certificates to ensure safe aggressive maneuvers of multi-quadrotor and mobile robot swarms.
- · Designed online safe learning algorithm for quadrotor dynamics using recursive Gaussian Process with safety guarantees.
- · Implemented safety certificates on teams of quadrotors and robots with Robot Operating System (ROS) (C++, Python).
- · Integrated a multi-robot test-bed with multiple quadrotors, mobile robots, joystick/Iphone, and motion capture system
- · Programmed stable hovering and trajectory tracking of quadrotors with Extended Kalman Filter and sensor fusion.

Graduate Research Assistant, Clemson University

Topic: Online Control, Estimation and Sensor Fusion of Bioreactor

May 2013 - May 2014 Advisor: Richard Groff

August 2014 - May 2018 (expected)

GPA: 91.60/100 Ranking: 1/54

GPA: 4.00/4.00

GPA: 4.00/4.00

July 2012 — May 2014

July 2008 — June 2012

- · Developed and implemented nonlinear adaptive state estimator for online tracking of oxygen uptake rate in bioreactor.
- · Designed and implemented a Kalman filter and particle filter for bioreactor sensing data filtering and fusion
- · Implemented bioreactor real-time control and data acquisition with xPC-target, OPC, UDP and serial communication

Undergraduate Research Group Leader, HUST

March 2011 - June 2012

Topic: Geometric error modelling and compensation for multi-axis machine tools

Advisor: Fangyu Peng

- · Used CAD/CAM software for machine tools and parts modeling and tool cutting path generation and optimization
- · Modeled kinematics of multi-axis machine tools with geometric error and developed tool path post-processing algorithms

WORK EXPERIENCE

Summer Research Intern, Siemens Corporate Technology

May 2017 - August 2017

Project: Planning and Scheduling of Flexible Manufacturing Systems

Advisor: Ulrich Muenz

- · Developed Model Predictive Control based planning and scheduling algorithm for flexible manufacturing systems.
- · Implemented the MPC graph-based planner in C++ and interfaced with Siemens Tecnomatix plant simulator.

Summer Research Intern, OFS Fitel LLC

June 2014 - August 2014

Project: Software Development for Plasma-based Optical Fiber Manufacturing Process

Advisor: David Braganza

- · Worked on hardware&software integration for Siemens PLC, HMI, RF power circuit, and other periphery devices.
- · Developed software for manufacturing recipe optimization and automation in multi-programming language environment

Summer Research Intern, DEPUSH Robotic Education Technology

June 2011 - August 2011

Project: Educational reconfigurable mechantronical platform (Video Link)

Advisor: Kevin Rong

Developed a modular mechantronic platform with mechantronic transmission, micro-controller and Labview interface

Lab Teaching Assistant, Georgia Tech, Clemson University

July 2012 - August 2015

Courses: Mechantronic System, Electronics Lab

Advisors: Allen Robinson, John Wagner

· Taught signal acquisition/processing with transistor circuit, PLC programming, Labview sampling, and CNC operation

SOFTWARE AND HARDWARE SKILLS

Programming Tools: System&Controls: Machine Learning: Signal Processing: Robotic Hardware: Robotic Software Robotics Sensors&Hardware CAD/CAM **Engineering Skills**

Python, C and C++, Matlab&Simulink, ROS (in Ubuntu Linux), PLC, Labview Linear/nonlinear/optimal/networked control, regular/cascaded PID control, LQR control Gaussian Process, Hidden Markov Model, PCA, Expectation-Maximization, KNN/Q learner Complementary/Kalman/Extended-Kalman/Particle Filtering, SVD, Convex optimizations Crazyflie Quadrotor, AR Drone, Segway/Khepera III/Magellan Pro Robots, GRIST bots ROS, MQTT, Player/Stage, Vrep simulator, Rviz, Optitrack/Vicon Motion Capture System Quadrotor dynamics, manipulator forward/inverse kinematics, path planning (PRM, A*) x-PC Target, Servo/step motor, Laser range sensor, Accelerometer, Anolog IO, Gas sensor Solidworks(3 yrs), AutoCAD(3 yrs), UG(3 yrs), Inventor(2 yrs), Mastercam(1 yr) Siemens PLC, CNC, Micro-Controller, Oscilloscope, Signal generator, 3D printing, Laser cutter

SELECTED HONORS

Best Multi-Robot Paper Award: Best Multi-Robot Systems Paper Award at top Robotics conference ICRA 2017

Jenny H. Krauss Fellowship: Awarded to top Georgia Tech graduate students with excellent academic record

Top winner of BlueCompetition: A worldwide competition sponsored by BlueSens Gas Sensor GmbH(Germany)

Chinese National Innovation Grants: Awarded to teams of undergraduates with innovative research projects

MEDIA COVERAGE

- D1. IEEE spectrum, "Swarms of Robots Manage to Not Run Into Each Other", Web link
- D2. Engadget, "Virtual 'top hats' ensure swarming drones won't crash", Web link
- D3. Robohub, "The Robotarium: A remotely accessible swarm robotics research testbed", Web link
- D4. Digital trends, "This swarm of drones uses virtual force fields to avoid crashing into each other", Web link

SERVICE

Tour Organizer, showed live robotic demos (quadrotor swarm and mobile robot swarm experiments) during 2014-2017 to

- Industrial visitors from: BMW, United Technologies Research Center, Siemens Corporate Technology, Littler Mendelson, Denso Corporation, Texas Instrument, Marvel Studios, Walmart, Samsung Electronics, Ford Motor, etc.
- Academical visitors from: NASA, ONR, 2016 Robotics Roadmap, the Ray Foundation, Cristo Rey High School, CMU, UCLA, University of Maryland, University of Tennessee at Chattanooga, 2016/2017 Robotics Open House, Clayton State University, AIAA Technical Committee, George Walton Academy, Tuskegee university, etc.

Session Co-Chair, IFAC Conference on Analysis and Design of Hybrid Systems, Atlanta, 2015.

PUBLICATIONS

A. Master's Thesis

A1. "Design and Implementation of a Real-time Adaptive Oxygen Transfer Rate Estimator", Clemson University, 2014

B. Peer-reviewed Journal Papers

- B1. **L. Wang**, A. Ames, and M. Egerstedt, "Super-Ellipsoidal Barrier Certificates for Safe Maneuvers in Teams of Quadrotors", *IEEE Transactions on Robotics (T-RO)*, under review.
- B2. L. Wang, A. Ames, and M. Egerstedt, "Safety Barrier Certificates for Collisions-Free Multi-robot Systems", *IEEE Transactions on Robotics (T-RO)*, vol. 33, no. 3, pp. 661-674, 2017.
- B3. F. Peng, J. Ma, **L. Wang**, R. Yan and B. Li, "Post-processing Algorithm Based on Total Differential Method for Multi-axis Machine Tools with Arbitrary Configuration", *Chinese Journal of Mechanical Engineering*, vol. 48, no. 13, pp. 121-127, 2012.

C. Peer-reviewed Conference Papers

- C1. L. Wang, E. A. Theodorou, and M. Egerstedt, "Safe Learning of Quadrotor Dynamics Using Barrier Certificates", *IEEE International Conference on Robotics and Automation (ICRA)*, 2018, under review.
- C2. L. Wang, A. Ames, and M. Egerstedt, "Safe Certificate-Based Maneuvers for Teams of Quadrotors Using Differential Flatness", *IEEE International Conference on Robotics and Automation (ICRA)*, pp. 3293-3298, 2017.
- C3. D. Pickem, P. Glotfelter, L. Wang, M. Mote, A. Ames, E. Feron, and M. Egerstedt, "The Robotarium: A Remotely Accessible Swarm Robotics Research Testbed", *IEEE International Conference on Robotics and Automation (ICRA)*, Best Multi-Robot Systems Paper Award, Best Conference Paper Finalist, pp. 1699-1706, 2017.
- C4. L. Wang, D. Han, and M. Egerstedt, "Permissive Barrier Certificates for Safe Stabilization Using Sum-of-squares", 2018 American Control Conference (ACC), under review.
- C5. L. Wang, A. Ames, and M. Egerstedt, "Multi-objective Compositions for Collision-free Connectivity Maintenance in Teams of Mobile Robots", 2016 Decisions and Control Conference (CDC), pp. 2659-2664, Dec. 2016.
- C6. L. Wang, A. Ames, and M. Egerstedt, "Safety Barrier Certificates for Heterogeneous Multi-robot System", 2016 American Control Conference (ACC), pp. 5213-5218, July 2016.
- C7. U Borrmann, L. Wang, A. Ames, and M. Egerstedt, "Control Barrier Certificates for Safe Swarm Behavior", 2015 IFAC Conference on Analysis and Design of Hybrid Systems (ADHS), Oct. 2015.
- C8. L. Wang, M. E. Pepper, A. Padmakumar, T. C. Burg, S. W. Harcum, and R. E. Groff, "A Real-time Adaptive Oxygen Transfer Rate Estimator for Metabolism Tracking in Escherichia coli Cultures", *IEEE Engineering in Medicine and Biology Conference*, pp. 6191-6194, 2014
- C9. M. E. Pepper, L. Wang, A. Padmakumar, T. C. Burg, S. W. Harcum, and R. E. Groff, "A CMI(Cell Metabolic Indicator)-based Controller for Achieving High Growth Rate E.coli Cultures", *IEEE Engineering in Medicine and Biology Conference*, pp. 2911-2915, 2014