

Matemáticas Aplicadas a la Aeronáutica

Introducción a los Cuaterniones

Lic Adriana Favieri
Universidad Tecnológica Nacional
Facultad Regional Haedo
Argentina

El presente tutorial está especialmente realizado para su uso en la asignatura **Matemáticas Aplicadas a la Aeronáutica**

Editorial de la Universidad Tecnológica Nacional – U.T.N. - Argentina edUTecNe

http://www.edutecne.utn.edu.ar

Introducción a los Cuaterniones

Lic Adriana Favieri

Noviembre 2008

Índice

Cuaterniones4
Definición4
Cuaternión nulo5
Cuaternión conjugado5
Cuaternión opuesto5
Valor absoluto o norma de un
cuaternión5
Cuaternión unitario5
Normalización de un cuaternión5
Inverso de un cuaternión6
Álgebra de cuaterniones7
Suma7
Resta7
Propiedades de la suma
de cuaterniones8
La suma de cuaterniones es
conmutativa8
La suma de cuaterniones
es asociativa10
Suma de un cuaternión y
su conjugado10
Producto de cuaterniones11
Propiedades11
El producto de cuaterniones no es
conmutativo11
El producto de cuaterniones es
asociativo11
Productos principales12
Método práctico para hallar el
producto de cuaterniones13
Producto de un cuaternión y su
conjugado16
Conjugado de un producto18
Representación de puntos a través
de cuaterniones20

Representación de vectores a través
de cuaterniones20
Importancia de los cuaterniones
unitarios21
Representación de rotaciones en el
espacio alrededor de un eje21
Transformación de puntos22
Distintas perspectivas25
Cuadro resumen25
Rotación de rectas25
Cuaterniones con el programa
Mathematica 631
Bibliografía34

Cuaterniones

Los cuaterniones son una extensión de los números reales, similar a la de los números complejos. Mientras que los números complejos son una extensión de los reales por la adición de la unidad imaginariai, tal que $\mathbf{i}^2 = -1$, los cuaterniones son una extensión generada de manera análoga añadiendo las unidades imaginarias: \mathbf{i} , \mathbf{j} y \mathbf{k} a los números reales y tal que $\mathbf{i}^2 = \mathbf{j}^2 = \mathbf{k}^2 = -1$

Definición

Un cuaternión es un número de la forma

$$q = a + a_1 i + a_2 j + a_3 k$$
 / $a_1, a_2, a_3 \in \mathbb{R}$.

"a" se denomina parte real o parte escalar, y

" $a_1 \stackrel{\check{i}}{i} + a_2 \stackrel{\check{j}}{j} + a_3 \stackrel{\check{k}}{k}$ " se denomina parte imaginaria o parte vectorial ".

Ejemplo 1

$$q = 2 - 3 i + 5 j + 4 k$$
 es un cuaternión

Cuaternión nulo

Es aquel en que $a = a_1 = a_2 = a_3 = 0$

Cuaternión conjugado

Dado el cuaternión $q = a + a_1 \overset{.}{i} + a_2 \overset{.}{j} + a_3 \overset{.}{k}$ su cuaternión conjugado es $\overset{.}{q} = a - a_1 \overset{.}{i} - a_2 \overset{.}{j} - a_3 \overset{.}{k}$

Ejemplo 2

$$\texttt{Dado}\,\,q = \,\, 2 \,-\, 3\,\, \overset{\,\,{}}{\overset{\,\,{}}{\overset{\,\,{}}}} \,+\, 5\,\, \overset{\,\,{}}{\overset{\,\,{}}{\overset{\,\,{}}}} \,+\, 4\,\,\overset{\,\,{}}{\overset{\,\,{}}{\overset{\,\,{}}}} \,\rightarrow\,\, \overset{\,\,{}}{\overset{\,\,{}}{\overset{\,\,{}}}} \,=\,\, 2\,\,+\,\, 3\,\,\overset{\,\,{}}{\overset{\,\,{}}{\overset{\,\,{}}}} \,-\,\, 5\,\,\overset{\,\,{}}{\overset{\,\,{}}{\overset{\,\,{}}}} \,-\,\, 4\,\,\overset{\,\,{}}{\overset{\,\,{}}{\overset{\,\,{}}}} \,$$

Cuaternión opuesto

Dado el cuaternión $q = a + a_1 \stackrel{.}{i} + a_2 \stackrel{.}{j} + a_3 \stackrel{.}{k}$ su cuaternión opuesto es $-q = -a - a_1 \stackrel{.}{i} - a_2 \stackrel{.}{j} - a_3 \stackrel{.}{k}$

Ejemplo 3

$$\texttt{Dado}\,\,q = \,\, 2 \,-\, 3\,\, \dot{\dot{i}} \,+\, 5\,\, \dot{\dot{j}} \,+\, 4\,\, \dot{\dot{k}} \,\,\rightarrow\,\, -q \,=\,\, -\, 2\,+\, 3\,\, \dot{\dot{i}} \,-\, 5\,\, \dot{\dot{j}} \,-\, 4\,\, \dot{\dot{k}}$$

Valor absoluto o norma de un cuaternión

Dado el cuaternión $q = a + a_1 \stackrel{.}{i} + a_2 \stackrel{.}{j} + a_3 \stackrel{.}{k}$ se define su norma o valor absoluto como $\left| q \right| = \sqrt{a^2 + {a_1}^2 + {a_2}^2 + {a_3}^2}$

Ejemplo 4

Cuaternión unitario

Es aquel cuaternión cuya norma o valor absoluto es uno.

Normalización de un cuaternión

Dado un cuaternión cuya norma no sea igual a uno podemos normalizarlo definiendo un nuevo cuaternión, asociado al primero, mediante la siguiente operación:

$$q_1 = \frac{q}{|q|}$$

Ejemplo 5

Dado q = $2-3\ \dot{i}+5\ \dot{j}+4\ \dot{k}$ el cuaternión unitario asociado a este es:

$$\begin{aligned} & \left| \, q \, \, \right| \, = \, 3 \, \sqrt{6} \\ & q_1 \, = \, \frac{q}{\left| \, q \, \, \right|} \\ & q_1 \, = \, \frac{1}{3 \, \sqrt{6}} \, \left(2 \, - \, 3 \, \, \dot{i} \, + \, 5 \, \, \dot{j} \, + \, 4 \, \, \dot{k} \right) \\ & q_1 \, = \, \frac{2}{3 \, \sqrt{6}} \, - \, \frac{3}{3 \, \sqrt{6}} \, \, \dot{i} \, + \, \frac{5}{3 \, \sqrt{6}} \, \, \dot{j} \, + \, \frac{4}{3 \, \sqrt{6}} \, \, \dot{k} \\ & q_1 \, = \, \frac{2}{3 \, \sqrt{6}} \, - \, \frac{1}{\sqrt{6}} \, \, \dot{i} \, + \, \frac{5}{3 \, \sqrt{6}} \, \, \dot{j} \, + \, \frac{4}{3 \, \sqrt{6}} \, \, \dot{k} \end{aligned}$$

Inverso de un cuaternión

Dado un cuaternión q definimos el cuaternión inverso, que designaremos q^{-1} como

$$q^{-1} = \frac{q}{|q|^2}$$

Ejemplo 6

Dado q = 2 - 3 i + 5 j + 4 k el cuaternión inverso es:

$$q^{-1} = \frac{q}{|q|^2}$$

$$|q| = 3\sqrt{6}$$

$$|q|^2 = 54$$

$$q^{-1} = \frac{1}{54} (2 - 3 i + 5 j + 4 k)$$

$$q^{-1} = \frac{2}{54} - \frac{3}{54} i + \frac{5}{54} j + \frac{4}{54} k$$

$$q^{-1} = \frac{1}{27} - \frac{1}{18} \dot{i} + \frac{5}{54} \dot{j} + \frac{2}{27} \dot{k}$$

Álgebra de cuaterniones

Suma

Dados

$$q_1 = a + a_1 \overset{\checkmark}{i} + a_2 \overset{\checkmark}{j} + a_3 \overset{\checkmark}{k} \quad y \ q_2 = b + b_1 \overset{\checkmark}{i} + b_2 \overset{\checkmark}{j} + b_3 \overset{\checkmark}{k}$$
 se define su suma como

$$q_1 + q_2 = (a + b) + (a_1 + b_1) \dot{i} + (a_2 + b_2) \dot{j} + (a_3 + b_3) \dot{k}$$

Eiemplo 7

Dados

$$\begin{aligned} q_1 &= -3 + 6 \, \check{i} + 7 \, \check{j} - 8 \, \check{k} \quad y \, q_2 = 1 + 12 \, \check{i} - 7 \, \check{j} - 11 \, \check{k} \\ \\ q_1 &+ q_2 &= (-3 + 1) + (6 + 12) \, \check{i} + (7 - 7) \, \check{j} + (-8 - 11) \, \check{k} \\ \\ q_1 &+ q_2 &= -2 + 18 \, \check{i} - 19 \, \check{k} \end{aligned}$$

Resta

Dados

más el opuesto del segundo

$$q_1 + (-q_2) = (a - b) + (a_1 - b_1) \dot{i} + (a_2 - b_2) \dot{j} + (a_3 - b_3) \dot{k}$$

Ejemplo 8

Dados

$$q_1 = -3 + 6 \stackrel{.}{i} + 7 \stackrel{.}{j} - 8 \stackrel{.}{k} \quad y q_2 = 1 + 12 \stackrel{.}{i} - 7 \stackrel{.}{j} - 11 \stackrel{.}{k}$$

$$-q_2 = -1 - 12 \stackrel{.}{i} + 7 \stackrel{.}{j} + 11 \stackrel{.}{k}$$

$$q_1 - q_2 = (-3 - 1) + (6 - 12) \dot{i} + (7 + 7) \dot{j} + (-8 + 11) \dot{k}$$

 $q_1 - q_2 = -4 - 6 \dot{i} + 14 \dot{j} + 3 \dot{k}$

Propiedades de la suma de cuaterniones La suma de cuaterniones es conmutativa.

Dados

$$q_1 = a + a_1 \dot{i} + a_2 \dot{j} + a_3 \dot{k}$$
 $y q_2 = b + b_1 \dot{i} + b_2 \dot{j} + b_3 \dot{k}$ \rightarrow $q_1 + q_2 = q_2 + q_1$

Demostración

$$q_1 + q_2 =$$

$$= (a + b) + (a_1 + b_1) \dot{i} + (a_2 + b_2) \dot{j} + (a_3 + b_3) \dot{k}$$

por conmutatividad de la suma de números reales

=
$$(b + a) + (b_1 + a_1) \dot{i} + (b_2 + a_2) \dot{j} + (b_3 + a_3) \dot{k}$$

= $q_2 + q_1$

Ejemplo 9

Dados

$$q_1 = -3 + 6 \, \dot{i} + 7 \, \dot{j} - 8 \, \dot{k} \quad y \, q_2 = 1 + 12 \, \dot{i} - 7 \, \dot{j} - 11 \, \dot{k}$$

verificar la propiedad conmutativa

$$q_1 + q_2 =$$

$$= (-3 + 6 \dot{i} + 7 \dot{j} - 8 \dot{k}) + (1 + 12 \dot{i} - 7 \dot{j} - 11 \dot{k})$$

$$= -2 + 18 i - 19 k$$
 A

$$q_2 + q_1 =$$

$$= \left(1 + 12 \stackrel{\checkmark}{\mathbf{i}} - 7 \stackrel{\checkmark}{\mathbf{j}} - 11 \stackrel{\backprime}{\mathbf{k}}\right) + \left(-3 + 6 \stackrel{\backprime}{\mathbf{i}} + 7 \stackrel{\backprime}{\mathbf{j}} - 8 \stackrel{\backprime}{\mathbf{k}}\right)$$

$$= -2 + 18 i - 19 k$$
 B

La suma de cuaterniones es asociativa

Dados

$$q_1 = a + a_1 \dot{i} + a_2 \dot{j} + a_3 \dot{k}$$
, $q_2 = b + b_1 \dot{i} + b_2 \dot{j} + b_3 \dot{k}$ y
 $q_3 = c + c_1 \dot{i} + c_2 \dot{j} + c_3 \dot{k}$
 $\rightarrow (q_1 + q_2) + q_3 = q_1 + (q_2 + q_3)$

Demostración

Demostracion
$$(q_1 + q_2) + q_3 =$$

$$= (a+b) + (a_1 + b_1) \dot{i} + (a_2 + b_2) \dot{j} + (a_3 + b_3) \dot{k} + (c + c_1 \dot{i} + c_2 \dot{j} + c_3 \dot{k})$$

$$= ((a+b) + c) + ((a_1 + b_1) + c_1) \dot{i} + ((a_2 + b_2) + c_2) \dot{j} + ((a_3 + b_3) + c_3) \dot{k}$$

$$por asociatividad de la suma de números reales$$

$$= (a + (b+c)) + (a_1 + (b_1 + c_1)) \dot{i} + (a_2 + (b_2 + c_2)) \dot{j} + (a_3 + (b_3 + c_3)) \dot{k}$$

$$= (a + a_1 \dot{i} + a_2 \dot{j} + a_3 \dot{k}) + (b+c) + (b_1 + c_1) \dot{i} + (b_2 + c_2) \dot{j} + (b_3 + c_3) \dot{k}$$

$$= q_1 + (q_2 + q_3)$$

Ejemplo 10

Dados

$$q_1 = -3 + 6 \, \dot{i} + 7 \, \dot{j} - 8 \, \dot{k}$$
, $q_2 = 1 + 12 \, \dot{i} - 7 \, \dot{j} - 11 \, \dot{k} \, y$

$$q_3 = -8 - 27 \, \dot{i} + 14 \, \dot{j} - 22 \, \dot{k}$$

verificar la propiedad asociativa

$$(q_1 + q_2) + q_3 = q_1 + (q_2 + q_3)$$

 $(q_1 + q_2) =$
 $= (-3 + 6 i + 7 j - 8 k) + (1 + 12 i - 7 j - 11 k)$
 $= -2 + 18 i - 19 k$

$$(q_{1} + q_{2}) + q_{3} = (-2 + 18 \stackrel{.}{i} - 19 \stackrel{.}{k}) + (-8 - 27 \stackrel{.}{i} + 14 \stackrel{.}{j} - 22 \stackrel{.}{k})$$

$$(q_{1} + q_{2}) + q_{3} = -10 - 9 \stackrel{.}{i} + 14 \stackrel{.}{j} - 41 \stackrel{.}{k} \boxed{A}$$

$$(q_{2} + q_{3}) =$$

$$= (1 + 12 \stackrel{.}{i} - 7 \stackrel{.}{j} - 11 \stackrel{.}{k}) + (-8 - 27 \stackrel{.}{i} + 14 \stackrel{.}{j} - 22 \stackrel{.}{k})$$

$$= -7 - 15 \stackrel{.}{i} + 7 \stackrel{.}{j} - 33 \stackrel{.}{k}$$

$$q_{1} + (q_{2} + q_{3}) = -10 - 9 \stackrel{.}{i} + 14 \stackrel{.}{j} - 41 \stackrel{.}{k} \boxed{B}$$

$$\boxed{A} = \boxed{B}$$

Suma de un cuaternión y su conjugado.

La suma de un cuaternión y su conjugado es un número real e igual al doble de la parte real de dicho cuaternión.

$$(q + \bar{q}) = 2 a \in \mathbb{R}$$
, siendo a la parte real de q.

Demostracion

Sea
$$q = a + a_1 \dot{i} + a_2 \dot{j} + a_3 \dot{k}$$

 $\rightarrow \dot{q} = a - a_1 \dot{i} - a_2 \dot{j} - a_3 \dot{k}$
 $q + \dot{q} = (a + a) + (a_1 - a_1) \dot{i} + (a_2 - a_2) \dot{j} + (a_3 - a_3) \dot{k}$
 $q + \dot{q} = 2 a$

Ejemplo 11

Dado

$$\begin{array}{ll} q=-3+6\ \check{\mathbf{i}}+7\ \check{\mathbf{j}}-8\ \check{\mathbf{k}} \\ \\ \text{verificar que } \left(q+\ \bar{q}\right)=2\ a \\ \\ \left(q+\ \bar{\mathbf{q}}\right)=\left(-3+6\ \check{\mathbf{i}}+7\ \check{\mathbf{j}}-8\ \check{\mathbf{k}}\ \right)+\left(-3-6\ \check{\mathbf{i}}-7\ \check{\mathbf{j}}+8\ \check{\mathbf{k}}\ \right) \end{array}$$

$$(q + \bar{q}) = -6$$

Producto de cuaterniones

Dados

$$q_1 = a + a_1 i + a_2 j + a_3 k$$
 $y q_2 = b + b_1 i + b_2 j + b_3 k$ se define su producto, que indicaremos con asterisco "*", como

$$q_1 * q_2 = (a b - a_1 b_1 - a_2 b_2 - a_3 b_3) + (a b_1 + b a_1 + a_2 b_3 - a_3 b_2) \dot{i} + (b a_2 + a b_2 + a_3 b_1 - a_1 b_3) \dot{j} + (b a_3 + a b_3 - a_2 b_1 + a_1 b_2) \dot{k}$$

Propiedades

El producto de cuaterniones no es conmutativo

$$q_1 * q_2 \neq q_2 * q_1$$

$$q_1 * q_2 = (a b - a_1 b_1 - a_2 b_2 - a_3 b_3) + (a b_1 + b a_1 + a_2 b_3 - a_3 b_2) \dot{i} + (b a_2 + a b_2 + a_3 b_1 - a_1 b_3) \dot{j} + (b a_3 + a b_3 - a_2 b_1 + a_1 b_2) \dot{k}$$

$$q_2 * q_1 = (a b - a_1 b_1 - a_2 b_2 - a_3 b_3) + (b a_1 + a b_1 + a_3 b_2 - a_2 b_3) \dot{i} + (b a_{2+} a b_2 + a_1 b_3 - a_3 b_1) \dot{j} + (b a_3 + a b_3 + a_2 b_1 - a_1 b_2) \dot{k}$$

en los distintos colores puede apreciarse la desigualdad

El producto de cuaterniones es asociativo

Dados

$$q_1 = a + a_1 \dot{i} + a_2 \dot{j} + a_3 \dot{k}$$
, $q_2 = b + b_1 \dot{i} + b_2 \dot{j} + b_3 \dot{k}$ y
 $q_3 = c + c_1 \dot{i} + c_2 \dot{j} + c_3 \dot{k}$
 $\rightarrow (q_1 * q_2) * q_3 = q_1 * (q_2 * q_3)$

Demostración

$$(q_1 * q_2) * q_3$$

$$= \left[(a b - a_1 b_1 - a_2 b_2 - a_3 b_3) + (b a_1 + a b_1 - a_3 b_2 + a_2 b_3) \right] + \\ + (b a_2 + a_3 b_1 + a b_2 - a_1 b_3) \right] + (b a_3 - a_2 b_1 + a_1 b_2 + a b_3) \right] + \\ + (b a_2 + a_3 b_1 + a b_2 - a_1 b_3) \right] + (b a_3 - a_2 b_1 + a_1 b_2 + a b_3) \right] + \\ + (b a_2 + a_3 b_1 + a b_2 - a_1 b_3) \right] + (b a_3 - a_2 b_1 + a_1 b_2 + a b_3) \right] + \\ + (a b c - c a_1 b_1 - c a_2 b_2 - c a_3 b_3 - b a_1 c_1 - a b_1 c_1 + \\ + (a_3 b_2 c_1 - a_2 b_3 c_1 - b a_2 c_2 - a_3 b_1 c_2 - a b_2 c_2 + \\ + (a_1 b_3 c_2 - b a_3 c_3 + a_2 b_1 c_3 - a_1 b_2 c_3 - a b_3 c_3) + \\ + (b c a_1 + a c b_1 - c a_3 b_2 + c a_2 b_3 + a b c_1 - a_1 b_1 c_1 - \\ - (a_2 b_2 c_1 - a_3 b_3 c_1 - b a_3 c_2 + a_2 b_1 c_2 - a_1 b_2 c_2 - \\ - (a b_3 c_2 + b a_2 c_3 + a_3 b_1 c_3 + a b_2 c_3 - a_1 b_3 c_3) \right] + \\ + (b c a_2 + c a_3 b_1 + a c b_2 - c a_1 b_3 + b a_3 c_1 - a_2 b_1 c_1 + \\ + (a_1 b_2 c_1 + a b_3 c_1 + a b c_2 - a_1 b_1 c_2 - a_2 b_2 c_2 - \\ - (a_3 b_3 c_2 - b a_1 c_3 - a b_1 c_3 + a_3 b_2 c_3 - a_2 b_3 c_3) \right] + \\ + (b c a_3 - c a_2 b_1 + c a_1 b_2 + a c b_3 - b a_2 c_1 - a_3 b_1 c_1 - \\ - (a b_2 c_1 + a_1 b_3 c_1 + b a_1 c_2 + a b_1 c_2 - a_3 b_2 c_2 + \\ + (a_2 b_3 c_2 + a b c_3 - a_1 b_1 c_3 - a_2 b_2 c_3 - a_3 b_3 c_3) \right] + \\ + (c b_1 + b c_1 - b_3 c_2 + b_2 c_3) \right] \left[(b c - b_1 c_1 - b_2 c_2 - b_3 c_3) \right] + \\ + (c b_3 - b_2 c_1 + b_1 c_2 + b c_3) \right]$$

Productos principales

$$\dot{\mathbf{i}} \star \dot{\mathbf{j}} = \dot{\mathbf{k}} \quad \dot{\mathbf{j}} \star \dot{\mathbf{i}} = -\dot{\mathbf{k}}$$

$$\dot{\mathbf{j}} \star \dot{\mathbf{k}} = \dot{\mathbf{i}} \quad \dot{\mathbf{k}} \star \dot{\mathbf{j}} = -\dot{\mathbf{i}}$$

$$\dot{\mathbf{k}} \star \dot{\mathbf{i}} = \dot{\mathbf{j}} \quad \dot{\mathbf{i}} \star \dot{\mathbf{k}} = -\dot{\mathbf{j}}$$

Método práctico para hallar el producto de cuaterniones

Para hallar el producto de dos cuaterniones podemos ayudarnos del uso de una disposición gráfica, de una tabla, y teniendo en cuenta los productos principales.

Armaremos la tabla de la siguiente manera :

en la columna ubicaremos las componentes del primer cuaternión y en la fila las componentes del segundo cuaternión.

Dados

$$q_1 = a + a_1 \overset{\checkmark}{i} + a_2 \overset{\checkmark}{j} + a_3 \overset{\checkmark}{k} \quad y \ q_2 = b + b_1 \overset{\checkmark}{i} + b_2 \overset{\checkmark}{j} + b_3 \overset{\checkmark}{k}$$

$$queremos hallar \ q_1 * \ q_2 = p$$

$q_1 \setminus q_2$	b	b ₁ $\check{\mathbf{i}}$	b ₂ j	b ₃ $\overset{\scriptscriptstyle{\vee}}{k}$
a				
a ₁ i				
a ₂ j				
a ₃ k				

ADVERTENCIA: Como el producto de cuaterniones no es conmutativo debemos tener cuidado con la ubicación de los cuaterniones; siempre debe escribirse en la columna el primer cuaternión.

Ahora completamos la tabla

$q_1 \setminus q_2$	b	b ₁ i	b ₂ j	b ₃ k
a	a b	a b $_1\stackrel{\check{ ext{i}}}{ ext{i}}$	a b ₂ j	a b ₃ $\overset{^{\vee}}{k}$
a ₁ i	a ₁ b i	$a_1 b_1 \overset{\circ}{i} * \overset{\circ}{i}$	$a_1 b_2 \overset{\circ}{i} * \overset{\circ}{j}$	$a_1 b_3 \overset{\circ}{i} * \overset{\circ}{k}$
a ₂ j̇	a ₂ b j	$a_2 b_1 \overset{\circ}{j} * \overset{\circ}{i}$	$a_2 b_2 \overset{\circ}{j} * \overset{\circ}{j}$	$a_2 b_3 \overset{\circ}{j} * \overset{\circ}{k}$
a ₃ k	a ₃ b $\overset{\scriptscriptstyle{\vee}}{k}$	$a_3 b_1 \overset{\circ}{k} * \overset{\circ}{i}$	$a_3 b_2 \overset{\circ}{k} * \overset{\circ}{j}$	a ₃ b ₃ k * k

usando los productos principales y obtenemos

$q_1 \setminus q_2$	b	b ₁ $\check{\mathbf{i}}$	b ₂ j̇	b ₃ k
a	a b	a b $_1\stackrel{\check{ ext{i}}}{ ext{i}}$	ab ₂ j	a b ₃ $\overset{\scriptscriptstyle{\vee}}{k}$
$a_1\stackrel{\check{i}}{i}$	a_1 b ${i}$	-a ₁ b ₁	$\mathtt{a}_1\mathtt{b}_2\overset{{}_{}}{\mathtt{k}}$	$-a_1 b_3 j$
a ₂ j	a_2 b \dot{j}	$-a_2 b_1 \overset{\circ}{k}$	-a ₂ b ₂	$a_2 b_3 \overset{\vee}{i}$
a ₃ k	$a_3 b \overset{\circ}{k}$	a ₃ b ₁ j	-a ₃ b ₂ i	-a ₃ b ₃

ahora sumamos todos los productos que contribuyan a la parte real del producto, todos los que contribuyan a la parte vectorial $"\check{i}"$, a la parte vectorial $"\check{j}"$ y a la parte vectorial $"\check{k}"$. Para ellos podemos reordenar la tabla así:

q ₁ * q ₂	р	$p_1 \check{ ext{i}}$	p ₂ j̈́	p ₃ $\overset{\scriptscriptstyle{\vee}}{k}$
	a b	a b $_1\stackrel{\check{ ext{i}}}{ ext{i}}$	a b ₂ j	a b ₃ $\overset{\check{k}}{k}$
	-a ₁ b ₁	$a_1b\check{i}$	$-a_1 b_3 \dot{j}$	$a_1b_2\overset{{}_{}}{k}$
	-a ₂ b ₂	$a_2 b_3 \overset{\circ}{i}$	a_2 b \dot{j}	$-a_2 b_1 \overset{\circ}{k}$
	-a ₃ b ₃	$-a_3 b_2 \overset{\vee}{i}$	a ₃ b ₁ j	a ₃ b k

 $p = q_1 * q_2$

$$p = (a b - a_1 b_1 - a_2 b_2 - a_3 b_3) + (a b_1 + b a_1 + a_2 b_3 - a_3 b_2) \ \dot{i} + \\ + (b a_2 + a b_2 + a_3 b_1 - a_1 b_3) \ \dot{j} + (b a_3 + a b_3 - a_2 b_1 + a_1 b_2) \ \dot{k}$$
 que es la misma expresión que habíamos escrito anteriormente.

Ejemplo 12

Dados

$$\begin{array}{lll} q_1 = & -3 + 6 \stackrel{.}{i} + 7 \stackrel{.}{j} - 8 \stackrel{.}{k} & y \, q_2 = 1 + 12 \stackrel{.}{i} - 7 \stackrel{.}{j} - 11 \stackrel{.}{k} \\ & \text{hallar} \, p = q_1 * q_2 \end{array}$$

Usaremos el método práctico.

$q_1 \setminus q_2$	1	12 i	-7 j	-11 k
- 3	-3	(-3) 12 i	(-3) (-7) j	(-3) (-11) k
6 i	6 i	(-6) 12	6 (-7) k	(-6) (-11) j
7 j	7 j	(-7) 12 k	(-7) (-7)	7 (-11) i
-8 k	(-8) k	(-8) 12 j	-(-8) (-7) i	- (-8) (-11)

$q_1 \setminus q_2$	1	12 i	-7 j	-11 k
- 3	- 3	-36 i	21 j	33 k
6 i	6 i	-72	$-42\ \overset{\scriptscriptstyle{\vee}}{k}$	66 j
7 j̇̃	7 ž	-84 k	49	-77 i
-8 k	$-8 \overset{\circ}{k}$	-96 j	-56 i	-88

$q_1 * q_2$	р	$\mathtt{p}_1\stackrel{\scriptscriptstyle{\vee}}{\mathtt{i}}$	p ₂ j̇́	p ₃ $\overset{\scriptscriptstyle{\vee}}{k}$
	- 3	-36 i	21 j	33 k
	-72	6 i	66 j	-42 k
	49	-77 i	7 j	-84 k
	-88	-56 i	–96 j̇́	-8 k

$$p = q_1 * q_2$$

$$p = (-3 - 72 + 49 - 88) + (-36 + 6 - 77 - 56) \dot{i} +$$

$$+ (21 + 66 + 7 - 96) \dot{j} + (33 - 42 - 84 - 8) \dot{k}$$

$$q_1 * q_2 = -114 - 163 \dot{i} - 2 \dot{j} - 101 \dot{k}$$

Producto de un cuaternión y su conjugado.

El producto de un cuaternión y su conjugado es un número real e igual al cuadrado de la norma o valor absoluto

$$q * \dot{q} = a^2 + a_1^2 + a_2^2 + a_3^2$$

Sea $q = a + a_1 \dot{i} + a_2 \dot{j} + a_3 \dot{k}$
 $\rightarrow \dot{q} = a - a_1 \dot{i} - a_2 \dot{j} - a_3 \dot{k}$

d / ₫	a	-a ₁ i	-a ₂ j	-a ₃ $\overset{\check{k}}{k}$
a	a a	a (-a ₁) i	a (-a ₂) j	$a(-a_3)\overset{\vee}{k}$
$a_1\check{i}$	$\mathtt{a}_1\mathtt{a}\overset{\scriptscriptstyle{v}}{\mathtt{i}}$	-a ₁ (-a ₁)	$a_1 (-a_2) \overset{\circ}{k}$	-a ₁ (-a ₃) j
a ₂ j̇	a ₂ a j	-a ₂ (-a ₁) $\overset{\circ}{k}$	-a ₂ (-a ₂)	$a_2 (-a_3) \overset{\vee}{i}$
a ₃ k	a ₃ a $\overset{\circ}{k}$	a ₃ (-a ₁) j	-a ₃ (-a ₂) i	-a ₃ (-a ₃)

d * d	р	$p_1\stackrel{\check{ ext{i}}}{ ext{i}}$	p ₂ j	p ₃ k
	a^2	-aa ₁ i	-aa ₂ j̇	-aa ₃ k
	a_1^2	aa $_1\stackrel{\scriptscriptstyle{\vee}}{\mathrm{i}}$	$a_1a_3\check{j}$	-a ₁ a ₂ $\overset{\check{k}}{k}$
	a_2^2	-a ₂ a ₃ i	aa ₂ j	$a_1a_2\overset{{}_{}}{k}$
	a_3^2	$a_2 a_3 \overset{\check{i}}{i}$	-a ₁ a ₃ j̈́	aa ₃ k

$$q \star q = a^2 + a_1^2 + a_2^2 + a_3^2 \in \mathbb{R}$$

Ejemplo 13

Dado

$$q = -3 + 6 \overset{\circ}{i} + 7 \overset{\circ}{j} - 8 \overset{\circ}{k}$$

$$\bar{q} = -3 - 6 \dot{i} - 7 \dot{j} + 8 \dot{k}$$

verificar que $q*\bar{q}=a^2+a_1^2+a_2^2+a_3^2\in\mathbb{R}$

d / ₫	-3	-6 i	-7 j	8 k
- 3	(-3) (-3)	(-3) (-6) i	(-3) (-7) j	(-3) 8 k
6 i	6 (-3) i	(-6) (-6)	6 (-7) k	(-6) 8 j
7 j	7 (-3) j	(-7) (-6) k	(-7) (-7)	7×8 i̇́
-8 k	(-8) (-3) k	(-8) (-6) j	8 (-7) i	8 × 8

d / ₫	-3	-6 i	-7 j	8 k
- 3	9	18 i	21 j	$-24\overset{\circ}{k}$
6 i	-18 i	36	$-42\ \overset{\circ}{k}$	-48 j
7 j	-21 j	42 k	49	56 i
-8 k	24 k	48 j	-56 i	64

d * d	р	p ₁ $\check{\mathbf{i}}$	p ₂ j̇́	p ₃ k
	9	18 i	21 j	$-24\ \overset{\circ}{k}$
	36	-18 i	-48 j	$-42\overset{\circ}{k}$
	49	56 i	-21 j	42 k
	64	-56 i	48 j	24 k

$$q * \dot{q} = 3 + 36 + 49 + 64$$

$$q * \dot{q} = a^2 + a_1^2 + a_2^2 + a_3^2$$

Conjugado de un producto

El conjugado de un producto de cuaterniones es igual al producto de los conjugados en sentido opuesto.

Dados

$$q_1 \ y \ q_2 \rightarrow \overline{q_1 * q_2} = \overline{q_2} * \overline{q_1}$$

Demostración

$$q_{1} * q_{2} = (a b - a_{1} b_{1} - a_{2} b_{2} - a_{3} b_{3}) + (b a_{1} + a b_{1} - a_{3} b_{2} + a_{2} b_{3}) \dot{i} + (b a_{2} + a_{3} b_{1} + a b_{2} - a_{1} b_{3}) \dot{j} + (b a_{3} - a_{2} b_{1} + a_{1} b_{2} + a b_{3}) \dot{k}$$

$$\overline{q_{1} * q_{2}} = (a b - a_{1} b_{1} - a_{2} b_{2} - a_{3} b_{3}) - (b a_{1} + a b_{1} - a_{3} b_{2} + a_{2} b_{3}) \dot{i} + (b a_{2} + a_{3} b_{1} + a b_{2} - a_{1} b_{3}) \dot{j} - (b a_{3} - a_{2} b_{1} + a_{1} b_{2} + a b_{3}) \dot{k}$$

$$\overline{q_{1} * q_{2}} = (a b - a_{1} b_{1} - a_{2} b_{2} - a_{3} b_{3}) + (-b a_{1} - a b_{1} + a_{3} b_{2} - a_{2} b_{3}) \dot{i}$$

$$+ (-b a_{2} - a_{3} b_{1} - a b_{2} + a_{1} b_{3}) \dot{j} + (-b a_{3} + a_{2} b_{1} - a_{1} b_{2} - a b_{3}) \dot{k}$$

$$= \overline{q_{2}} * \overline{q_{1}}$$

Ejemplo 14

Dados

$$q_1 = -3 + 6 \stackrel{\lor}{i} + 7 \stackrel{\lor}{j} - 8 \stackrel{\lor}{k} \quad y \ q_2 = 1 + 12 \stackrel{\lor}{i} - 7 \stackrel{\lor}{j} - 11 \stackrel{\lor}{k}$$
 verificar que $\overline{q_1 * q_2} = \overline{q_2} * \overline{q_1}$

$$q_1 * q_2 = -114 - 163 \, \dot{i} - 2 \, \dot{j} - 101 \, \dot{k} \text{ (ver ejemplo 10)}$$

$$\overline{q_1 * q_2} = -114 + 163 \, \dot{i} + 2 \, \dot{j} + 101 \, \dot{k} \text{ A}$$

$$\overline{q_2} = 1 - 12 \stackrel{\lor}{i} + 7 \stackrel{\lor}{j} + 11 \stackrel{\lor}{k}$$

$$\overline{q_1} = -3 - 6 \overset{\vee}{\mathbf{i}} - 7 \overset{\vee}{\mathbf{j}} + 8 \overset{\vee}{\mathbf{k}}$$

$\overline{q_2} \setminus \overline{q_1}$	- 3	-6 i	-7 j	8 k
1	-3	(-6) i	(-7) j	8 k
-12 i	(-12) (-3) i	- (-12) (-6)	(-12) (-7) k	- (-12) 8 j
7 j	7 (-3) j	-(7) (-6) k	(-7) (-7)	7 × 8 i
11 k	11 (-3) k	11 (-6) j	-11 (-7) i	-11 (8)

$\overline{q_2} \setminus \overline{q_1}$	- 3	-6 i	-7 j	8 k
1	- 3	-6 i	-7 j	8 k
-12 i	36 i	-72	84 k	96 j
7 j	-21 j	42 k	49	56 i
11 k	-33 k	-66 j	77 š	-88

$\overline{q_2} * \overline{q_1}$	р	$p_1\stackrel{\check{\mathbf{i}}}{\mathbf{i}}$	p ₂ j̇́	p ₃ $\overset{\check{k}}{k}$
	- 3	-6 i	– 7 j̇	8 k
	-72	36 i	–96 j	84 k
	49	56 i	-21 j	42 k
	-88	77 <u>i</u>	-66 j	-33 k

$$p = \overline{q_2} * \overline{q_1}$$

$$p = (-3 - 72 + 49 - 88) + (-6 + 36 + 56 + 77) \dot{i} + (-21 - 66 - 7 - 96) \dot{j} +$$

$$p = -114 + 163 \, \dot{i} + 163 \, \dot{j} + 101 \, \dot{k} \, B$$

Representación de puntos a través de cuaterniones

Todo punto del espacio tridimensional puede ser representado mediante un cuaternión cuya parte real es cero.

$$SiP(P_1, P_2, P_3) \rightarrow P = 0 + P_1 \dot{i} + P_2 \dot{j} + P_3 \dot{k}$$

Ejemplo 15

Representar el vector P (-7, 4, 6) como un cuaternión

$$P = 0 - 7 \overset{\checkmark}{i} + 4 \overset{\checkmark}{j} + 6 \overset{\checkmark}{k}$$

Representación de vectores a través de cuaterniones

Todo vector del espacio tridimensional puede ser representado mediante un cuaternión cuya parte real es cero.

$$\mathbf{SI} \overset{\rightarrow}{\mathbf{V}} = \mathbf{V}_1 \overset{\downarrow}{\mathbf{i}} + \mathbf{V}_2 \overset{\downarrow}{\mathbf{j}} + \mathbf{V}_3 \overset{\downarrow}{\mathbf{k}} \rightarrow \mathbf{V} = \mathbf{0} + \mathbf{V}_1 \overset{\downarrow}{\mathbf{i}} + \mathbf{V}_2 \overset{\downarrow}{\mathbf{j}} + \mathbf{V}_3 \overset{\downarrow}{\mathbf{k}}$$

Ejemplo 16

Representarel vector $\vec{v} = \frac{3}{2} \vec{i} + \frac{8}{5} \vec{j} - \frac{3}{4} \vec{k}$ como un cuaternión

$$v = 0 + \frac{3}{2} \dot{i} + \frac{8}{5} \dot{j} - \frac{3}{4} \dot{k}$$

Importancia de los cuaterniones unitarios

La importancia de los cuaterniones unitarios reside en que a través de ellos se pueden representar rotaciones en tres dimensiones de manera muy sencilla. Si q es un cuaternión unitario, éste puede pensarse como una esfera de radio 1 en el espacio 4 D. Y podemos representar una rotación en el espacio 4 D, en donde (a_1, a_2, a_3) son las componentes de cualquier eje arbitrario y a el ángulo de rotación.

Representación de rotaciones en el espacio alrededor de un eje.

Una rotación alrededor de un vector unitario \vec{n} y un ángulo θ puede pensarse como un cuaternión.

Sea
$$\vec{n} = n_1 \vec{i} + n_2 \vec{j} + n_3 \vec{k} / |\vec{n}| = 1 y un ángulo \theta$$

el cuaternión que representa la rotación alrededor del eje es:

$$q = Cos\left[\frac{\theta}{2}\right] + \left(n_1 \ddot{i} + n_2 \ddot{j} + n_3 \ddot{k}\right) Sin\left[\frac{\theta}{2}\right]$$

Comprobemos que es un cuaternión unitario:

$$\mid q \mid = \sqrt{\cos^2 \left[\frac{\theta}{2}\right] + \left(n_1^2 + n_2^2 + n_3^2\right) \sin^2 \left[\frac{\theta}{2}\right]}$$

$$Como \left(n_1^2 + n_2^2 + n_3^2\right) = 1 pues \left| \overrightarrow{n} \right| = 1$$

$$|q| = \sqrt{\cos^2\left[\frac{\theta}{2}\right] + \sin^2\left[\frac{\theta}{2}\right]}$$

$$| q | = 1$$

Ejemplo 17

Representar mediante un cuaternión una rotación de 90° alrededor del eje x .

Eñ eje x escrito como un vector es : $\vec{n} = \vec{i}$

$$y \frac{\Theta}{2} = 45^{\circ}$$

el cuaternión que representa la rotación es

$$q = Cos\left[\frac{\theta}{2}\right] + \left(n_1 \ddot{i} + n_2 \ddot{j} + n_3 \ddot{k}\right) Sin\left[\frac{\theta}{2}\right]$$

$$q = Cos[45^{\circ}] + iSin[45^{\circ}]$$

$$q = \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} \dot{i}$$

Transformación de puntos

Para rotar un punto en el espacio alrededor de un vector unitario \vec{n} y un ángulo θ se sigue el siguiente procedimiento: Dado el punto P, el vector eje con respecto al cual se desea rotar y el ángulo a rotar, el transformado del punto P es: P =

Ejemplo 18

Rotar el punto P (0, 3, 2) 90° alrededor del eje x .

el cuaternión que representa la rotación es

$$q = \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} \stackrel{i}{i} \rightarrow \overline{q} = \frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2} \stackrel{i}{i}$$

el punto P escrito como cuaternión

$$P = 0 + 0 \dot{i} + 3 \dot{j} + 2 \dot{k}$$

$$P' = q * P * \overline{q}$$

$$P^{**} = d * B$$

q/P	0	0 š	3 j̇́	2 k
$\frac{\sqrt{2}}{2}$	0	0	$\frac{3\sqrt{2}}{2}$ \dot{j}	$\sqrt{2} \stackrel{\circ}{k}$
$\frac{\sqrt{2}}{2}$ $\dot{\mathbf{i}}$	0	0	$\frac{3\sqrt{2}}{2}\overset{v}{k}$	$-\sqrt{2}$ \dot{j}
o j	0	0	0	0
0 k	0	0	0	0

d * b	р	$p_1\stackrel{\check{i}}{i}$	p ₂ j̇	p ₃ $\overset{}{k}$
	0	0	$\frac{3\sqrt{2}}{2}$ \dot{j}	$\sqrt{2} \stackrel{\scriptscriptstyle{\vee}}{k}$
	0	0	$-\sqrt{2}$ \dot{j}	$\frac{3\sqrt{2}}{2}$ \mathring{k}
	0	0	0	0
	0	0	0	0

$$P_{\star\star} = \left(\frac{3\sqrt{2}}{2} - \sqrt{2}\right) \dot{j} + \left(\sqrt{2} + \frac{3\sqrt{2}}{2}\right) \dot{k}$$

$$P_{\star\star} = \frac{\sqrt{2}}{2} \ \check{j} + \frac{5\sqrt{2}}{2} \ \check{k}$$

$$P' = P_{**} * \overline{q}$$

$$\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}$$

$P^{**} \setminus \underline{d}$	$\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{2}}{2}$ \dot{i}	οj	0 k
0	0	0	0	0
0	0	0	0	0
$\frac{\sqrt{2}}{2}$ \dot{j}	$\frac{\sqrt{2}}{2}$ $\frac{\sqrt{2}}{2}$ $\dot{\mathbf{j}}$		0	0
$\frac{5\sqrt{2}}{2}$ $\overset{\circ}{k}$	$\begin{array}{c c} \frac{5\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & \mathring{k} \end{array}$	$\begin{array}{c c} 5\sqrt{2} \\ \hline 2 & \left(-\frac{\sqrt{2}}{2}\right) & \mathbf{\dot{j}} \end{array}$	0	0

P** / <u>d</u>	$\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{2}}{2}$ \dot{i}	o j	0 k
0	0	0	0	0
0	0	0	0	0
$\frac{\sqrt{2}}{2}$ \dot{j}	$\frac{1}{2}$ \dot{j}	$\frac{1}{2}\overset{\circ}{k}$	0	0
$\frac{5\sqrt{2}}{2}$ $\overset{\vee}{k}$	$\frac{5}{2}$ $\overset{\vee}{k}$	$-\frac{5}{2}$ \dot{j}	0	0

reordenando

P** * <u>d</u>	р	p ₁ i	o j	0 k
	0	0	0	0
	0	0	0	0
	$\frac{1}{2}$ $\overset{\checkmark}{j}$	$\frac{1}{2}\overset{\vee}{k}$	0	0
	$-\frac{5}{2}$ \dot{j}	$\frac{5}{2}$ $\overset{\circ}{k}$	0	0

$$P' = q * P * \overline{q} = \left(\frac{1}{2} - \frac{5}{2}\right) \dot{j} + \left(\frac{1}{2} + \frac{5}{2}\right) \dot{k}$$

$$P' = q * P * \overline{q} = -2 \dot{j} + 3 \dot{k}$$

escrito como punto

Distintas perspectivas

Al realizar rotaciones con cuaterniones pueden adoptarse dos perspectivas distintas. Una considerando fijos los ejes del marco de referencia, y otra considerando fijo el punto a rotar.

Si consideramos fijo el marco de referencia, el producto $q * P * \overline{q}$ representa una rotación del punto en sentido antihorario, y el producto $\overline{q} * P * q$ representa una rotación del punto en sentido horario.

Este tipo de perspectiva suele llamarse rotación con perspectiva central.

En cambio si consideramos fijo el punto, el producto $q * P * \overline{q}$ representa una rotación del marco de referenciaen sentido horario, y el producto $\overline{q} * P * q$ representa una rotación del marco de referencia en sentido antihorario.

Este tipo de perspectiva suele llamarse rotación con perspectiva axial.

Cuadro resumen

Rota	ción con perspectiva central	
$q * P * \overline{q}$ rotación en sentido antihorario		
<u>d</u> * D * d	rotación en sentido horario	

Rot	ación con perspectiva axial	
$q * P * \overline{q}$ rotación en sentido horario		
<u>q</u> * P * q	rotación en sentido antihorario	

Rotación de rectas

Mediante la rotación en el espacio con cuaterniones las rectas se transforman en otras rectas.

Demostración

Una recta en el espacio que para por el punto A (A_1, A_2, A_3) y es paralela al vector $\overrightarrow{u} = (a_1, a_2, a_3)$ escrita en forma paramétrica es :

$$x = A_1 + a_1 t$$

$$y = A_2 + a_2 t$$

$$z = A_3 + a_3 t$$

Para simplificar la demostración vamos a aplicarle una rotación alrededor del eje x de un ángulo θ .

El cuaternión que representa la rotación es :

$$q = Cos\left[\frac{\theta}{2}\right] + Sin\left[\frac{\theta}{2}\right] \stackrel{\vee}{i} \rightarrow \overline{q} = Cos\left[\frac{\theta}{2}\right] - Sin\left[\frac{\theta}{2}\right] \stackrel{\vee}{i}$$

y vamos a considerar a P como un cuaternión en el cual sus componentes son :

$$P = 0 + (A_1 + a_1 t) \overset{\check{i}}{i} + (A_2 + a_2 t) \overset{\check{j}}{j} + (A_3 + a_3 t) \overset{\check{k}}{k}$$
 su transformado será

$$P' = q * P * \overline{q}$$

d / b	0	$(A_1 + a_1 t) \overset{\circ}{i}$	$(A_2 + a_2 t) \dot{j}$	$(A_3 + a_3 t) \overset{\circ}{k}$
$Cos\!\left[\frac{\theta}{2}\right]$	0	$\cos\left[\frac{\theta}{2}\right]$ *	$Cos\!\left[\!\!\begin{array}{c} \Theta \\ \overline{2} \end{array}\!\!\right]$ *	$Cos\left[\frac{\theta}{2}\right]$ *
		$(A_1 + a_1 t) \overset{\circ}{i}$	$(A_2 + a_2 t)$ j	$(A_3 + a_3 t) \overset{\circ}{k}$
$\operatorname{Sin}\!\left[rac{ heta}{2} ight]$ $\dot{ ext{i}}$	0	$-\mathrm{Sin}\!\left[rac{ heta}{2} ight]$ *	extstyle ext	$-\mathtt{Sin}igl[rac{ heta}{2}igr]$ *
		$(A_1 + a_1 t)$	$(A_2 + a_2 t) \overset{\circ}{k}$	$(A_3 + a_3 t)$ j
o j	0	0	0	0
0 k	0	0	0	0

q * P	р	p ₁ i	p ₂ j̇́	p ₃ $\overset{\circ}{k}$
	0	$Cos\!\left[rac{ heta}{2} ight]\star$	$Cos\!\left[\!\!\begin{array}{c} rac{\Theta}{2} \end{array}\!\!\!\right]$ *	$\cos\left[\frac{\theta}{2}\right]$ *
		$(A_1 + a_1 t) \overset{\circ}{i}$	$(A_2 + a_2 t)$ j	$(A_3 + a_3 t) \overset{\circ}{k}$
	$-\sin\left[\frac{\theta}{2}\right]$ *	0	$-\sin\left[\frac{\theta}{2}\right]$ *	$\operatorname{Sin}\!\left[rac{ heta}{2} ight]$ *
	$(A_1 + a_1 t)$		$(A_3 + a_3 t)$ \dot{j}	$(A_2 + a_2 t) \overset{\circ}{k}$
	0	0	0	0
	0	0	0	0

$$\begin{split} \mathbf{P}_{\star\star} &= -\text{Sin}\Big[\frac{\theta}{2}\Big] \; \left(\mathbf{A}_1 + \mathbf{a}_1 \; \mathbf{t}\right) \; + \text{Cos}\Big[\frac{\theta}{2}\Big] \; \left(\mathbf{A}_1 + \mathbf{a}_1 \; \mathbf{t}\right) \; \dot{\mathbf{i}} \; + \\ &+ \mathbf{t} \; \left(\text{Cos}\Big[\frac{\theta}{2}\Big] \; \mathbf{a}_2 - \text{Sin}\Big[\frac{\theta}{2}\Big] \; \mathbf{a}_3\right) \; + \left(\text{Cos}\Big[\frac{\theta}{2}\Big] \; \mathbf{A}_2 - \text{Sin}\Big[\frac{\theta}{2}\Big] \; \mathbf{A}_3\right) \; \dot{\mathbf{j}} \; + \\ &+ \mathbf{t} \; \left(\text{Sin}\Big[\frac{\theta}{2}\Big] \; \mathbf{a}_2 + \text{Cos}\Big[\frac{\theta}{2}\Big] \; \mathbf{a}_3\right) \; + \left(\text{Sin}\Big[\frac{\theta}{2}\Big] \; \mathbf{A}_2 + \text{Cos}\Big[\frac{\theta}{2}\Big] \; \mathbf{A}_3\right) \; \dot{\mathbf{k}} \end{split}$$

$$P' = P_{**} * \overline{q}$$

b** / <u>d</u>	$Cos\!\left[\!\!\begin{array}{c} heta \\ heta \end{array}\!\!\!\right]$	$-\operatorname{Sin}\!\left[\!\!\begin{array}{c} heta \\ heta \end{array}\!\!\!\right]$ $\dot{ ext{i}}$	o j	0 k
$-\sin\left[\frac{\theta}{2}\right](A_1+a_1t)$				
$ \operatorname{Cos}\left[\frac{\theta}{2}\right] (A_1 + a_1 t) \dot{i} $				
$t \left(\cos \left[\frac{\theta}{2} \right] a_2 - \sin \left[\frac{\theta}{2} \right] a_3 \right) +$				
$\left(\operatorname{Cos}\left[\frac{\theta}{2}\right]\operatorname{A}_2-\operatorname{Sin}\left[\frac{\theta}{2}\right]\operatorname{A}_3\right)\check{j}$				
$t \left(Sin \left[\frac{\theta}{2} \right] a_2 + Cos \left[\frac{\theta}{2} \right] a_3 \right) +$				
$\left(\operatorname{Sin}\left[\frac{\theta}{2}\right] A_2 + \operatorname{Cos}\left[\frac{\theta}{2}\right] A_3\right) \overset{v}{k}$				

Por cuestiones de espacio la tabla se irá completando por columas

$P_{**} \setminus \overline{q}$	$Cosigl[rac{ heta}{2}igr]$	
$-\sin\left[\frac{\theta}{2}\right] (A_1 + a_1 t)$	$-\sin\left[\frac{\theta}{2}\right]\cos\left[\frac{\theta}{2}\right] (A_1 + a_1 t)$	
$ \operatorname{Cos}\left[\frac{\theta}{2}\right] (A_1 + a_1 t) \dot{i} $	$ \operatorname{Cos}\left[\frac{\theta}{2}\right]\operatorname{Cos}\left[\frac{\theta}{2}\right]\left(\operatorname{A}_{1}+\operatorname{a}_{1}\operatorname{t}\right)\overset{\check{i}}{i}$	
$t \left(\cos \left[\frac{\theta}{2} \right] a_2 - \sin \left[\frac{\theta}{2} \right] a_3 \right) +$	$\left(t\left(Cos\left[\frac{\theta}{2}\right]a_2-Sin\left[\frac{\theta}{2}\right]a_3\right)\right.$	
$\left(\operatorname{Cos}\left[\frac{\theta}{2}\right]\operatorname{A}_2-\operatorname{Sin}\left[\frac{\theta}{2}\right]\operatorname{A}_3\right)\check{j}$	$\left(\operatorname{Cos}\left[\frac{\theta}{2}\right] \operatorname{A}_2 - \operatorname{Sin}\left[\frac{\theta}{2}\right] \operatorname{A}_3\right)\right) \operatorname{Cos}\left[\frac{\theta}{2}\right]$	
$t \left(Sin \left[\frac{\theta}{2} \right] a_2 + Cos \left[\frac{\theta}{2} \right] a_3 \right) +$	$\left(t\left(Sin\left[\frac{\theta}{2}\right]a_2 + Cos\left[\frac{\theta}{2}\right]a_3\right) + \right)$	
$\left(\operatorname{Sin}\left[\frac{\theta}{2}\right] A_2 + \operatorname{Cos}\left[\frac{\theta}{2}\right] A_3\right) \overset{v}{k}$	$\left(\operatorname{Sin}\left[\frac{\theta}{2}\right] \operatorname{A}_2 + \operatorname{Cos}\left[\frac{\theta}{2}\right] \operatorname{A}_3\right)\right) \operatorname{Cos}\left[\frac{\theta}{2}\right] \overset{\scriptscriptstyle V}{\mathrm{k}}$	

P** / <u>d</u>	$- exttt{Sin}igl[rac{ heta}{2}igr]$ ${i}$	
$-\sin\left[\frac{\theta}{2}\right](A_1+a_1t)$	$\operatorname{Sin}\left[\frac{\theta}{2}\right]\operatorname{Sin}\left[\frac{\theta}{2}\right]\left(\operatorname{A}_{1}+\operatorname{a}_{1}\operatorname{t}\right)\overset{\check{i}}{i}$	
$ \operatorname{Cos}\left[\frac{\theta}{2}\right] (A_1 + a_1 t) \dot{i} $	$ \operatorname{Cos}\left[\frac{\theta}{2}\right]\operatorname{Sin}\left[\frac{\theta}{2}\right]\left(A_1+a_1t\right) $	
$t \left(\cos \left[\frac{\theta}{2} \right] a_2 - \sin \left[\frac{\theta}{2} \right] a_3 \right) +$	$\left(t\left(Cos\left[\frac{\theta}{2}\right]a_2-Sin\left[\frac{\theta}{2}\right]a_3\right)+\right.$	
$\left(\operatorname{Cos}\left[\frac{\theta}{2}\right]\operatorname{A}_2-\operatorname{Sin}\left[\frac{\theta}{2}\right]\operatorname{A}_3\right)\dot{j}$	$\left(Cos \left[\frac{\theta}{2} \right] A_2 - Sin \left[\frac{\theta}{2} \right] A_3 \right) \right) Sin \left[\frac{\theta}{2} \right] \dot{k} $	
$t \left(Sin \left[\frac{\theta}{2} \right] a_2 + Cos \left[\frac{\theta}{2} \right] a_3 \right) +$	$\left(t\left(Sin\left[\frac{\theta}{2}\right]a_2+Cos\left[\frac{\theta}{2}\right]a_3\right)\right.$	
$\left(\operatorname{Sin}\left[\frac{\theta}{2}\right] \operatorname{A}_{2} + \operatorname{Cos}\left[\frac{\theta}{2}\right] \operatorname{A}_{3}\right) \overset{v}{\mathrm{k}}$	$\left(\operatorname{Sin}\left[\frac{\theta}{2}\right] \operatorname{A}_2 + \operatorname{Cos}\left[\frac{\theta}{2}\right] \operatorname{A}_3\right)\right) \operatorname{Sin}\left[\frac{\theta}{2}\right] \overset{}{j}$	

P** / <u>d</u>	οj	0 k
$-\sin\left[\frac{\theta}{2}\right](A_1+a_1t)$	0	0
$Cos\left[\frac{\theta}{2}\right] (A_1 + a_1 t) \dot{i}$	0	0
$t \left(\cos \left[\frac{\theta}{2} \right] a_2 - \sin \left[\frac{\theta}{2} \right] a_3 \right) +$	0	0
$\left(\operatorname{Cos}\left[\frac{\theta}{2}\right]\operatorname{A}_2-\operatorname{Sin}\left[\frac{\theta}{2}\right]\operatorname{A}_3\right)\check{j}$		
$t \left(Sin \left[\frac{\theta}{2} \right] a_2 + Cos \left[\frac{\theta}{2} \right] a_3 \right) +$	0	0
$\left(\operatorname{Sin}\left[\frac{\theta}{2}\right]\operatorname{A}_{2}+\operatorname{Cos}\left[\frac{\theta}{2}\right]\operatorname{A}_{3}\right)\overset{v}{\mathrm{k}}$		

Simplificando y ordenando

P	р	p ₁ i	p ₂ j̇́	p ₃ $\overset{\scriptscriptstyle{\vee}}{k}$
	$-\operatorname{Sin}\!\left[rac{ heta}{2} ight]\operatorname{Cos}\!\left[rac{ heta}{2} ight]\star$	$\sin^2\left[\frac{\theta}{2}\right]$ *	$Cos\!\left[\!\!\begin{array}{c} heta \\ heta \end{array}\!\!\!\right]$ *	$\cos\left[\frac{\theta}{2}\right]$ *
	$(A_1 + a_1 t)$	$(A_1 + a_1 t) \dot{i}$	$(A_2 + a_2 t)$ j	$(A_3 + a_3 t) \overset{\circ}{k}$
	$\operatorname{Cos}\!\left[rac{ heta}{2} ight]\operatorname{Sin}\!\left[rac{ heta}{2} ight] \star$	$Cos^2\!\left[\!\!\begin{array}{c} heta \\ heta \end{array}\!\!\!\right]$ *	$-\mathtt{Sin}igl[rac{ heta}{2}igr]$ *	extstyle ext
	$(A_1 + a_1 t)$	$(A_1 + a_1 t) \overset{\circ}{i}$	$(A_3 + a_3 t)$ \dot{j}	$(A_2 + a_2 t) \overset{\circ}{k}$
	0	0	0	0
	0	0	0	0

$$\begin{split} \textbf{P}^{'} &= \textbf{0} + (\textbf{t} \, \textbf{a}_1 + \textbf{A}_1) \, \, \dot{\textbf{i}} + [\textbf{t} \, (\textbf{Cos}[\theta] \, \textbf{a}_2 - \textbf{Sin}[\theta] \, \textbf{a}_3) \, + (\textbf{Cos}[\theta] \, \textbf{A}_2 - \textbf{Sin}[\theta] \, \textbf{A}_3) + (\textbf{Sin}[\theta] \, \textbf{a}_2 + \textbf{Cos}[\theta] \, \textbf{A}_3) \,] \, \, \dot{\textbf{k}} \end{split}$$

llamando

$$b_1 = (Cos[\theta] a_2 - Sin[\theta] a_3)$$
 $C_1 = (Cos[\theta] A_2 - Sin[\theta] A_3)$

$$b_2 = (Sin[\theta] a_2 + Cos[\theta] a_3)$$
 $C_2 = (Cos[\theta] A_2 + Sin[\theta] A_3)$

$$P' = 0 + (t a_1 + A_1) \dot{i} + (t b_1 + C_1) \dot{j} + (t b_2 + C_2) \dot{k}$$

se pone en evidencia que es una recta.

En forma similar puede realizarse la rotación alrededor de los otros ejes coordenados.

Ejemplo 19

Rotar el segmento que une los puntos P (0, 3, 2) y Q (3, 2, 0) 90° alrededor del eje x .

el cuaternión que representa la rotación es

$$q = \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} \stackrel{i}{i} \rightarrow \overline{q} = \frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2} \stackrel{i}{i}$$

los puntos escritos como cuaterniones

$$P = 0 + 0 \stackrel{\checkmark}{i} + 3 \stackrel{\checkmark}{j} + 2 \stackrel{\checkmark}{k}$$

$$Q = 0 + 3 \stackrel{\checkmark}{i} + 2 \stackrel{\checkmark}{j} + 0 \stackrel{\checkmark}{k}$$

$$P' = q * P * \overline{q}$$

$$Q' = q * P * \overline{q}$$

Transformamos sólo los extremos del segmento ya que hemos demostrado que la transformada de una recta es

una recta, y el segmento está incluido en la recta.

$$P' = -2 \dot{j} + 3 \dot{k} \text{ (del ejemplo 15)}$$

$$Q' = q * Q * \overline{q}$$

$$Q_{**} = q * Q$$

d/ð	0	3 i	2 j	0 k
$\frac{\sqrt{2}}{2}$	0	$\frac{3\sqrt{2}}{2}$ $\dot{\mathbf{i}}$	$\sqrt{2}$ \dot{j}	0
$\frac{\sqrt{2}}{2}$ \dot{i}	0	$-\frac{3\sqrt{2}}{2}$	$\sqrt{2} \stackrel{\circ}{k}$	- 0
οj	0	0	0	0
0 k	0	0	0	0

$$Q_{**} = -\frac{3\sqrt{2}}{2} + \frac{3\sqrt{2}}{2} \, \dot{i} + \sqrt{2} \, \dot{j} + \sqrt{2} \, \dot{k}$$

$$Q' = P_{**} * \overline{q}$$

$P^{**} \wedge \underline{d}$	$\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{2}}{2}\overset{\vee}{\mathbf{i}}$	o j	0 k
$-\frac{3\sqrt{2}}{2}$	$-\frac{3}{2}$	$\frac{3}{2}$ \dot{i}	0	0
$\frac{3\sqrt{2}}{2}$ $\dot{\mathbf{i}}$	$\frac{3}{2}$ \dot{i}	3/2	0	0
$\sqrt{2}$ \dot{j}	ť	k	0	0
$\sqrt{2} \stackrel{\circ}{k}$	k	– j	0	0

reordenando

$$\hat{Q} = 3 \dot{i} + 2 \dot{k}$$

Transformado: segmento que pasa por

$$P'(0,-2,3) y Q'(3,0,2)$$

Cuaterniones con el programa Mathematica 6

Para trabajar con cuaterniones en el Mathematica 6 debemos primero cargar el paquete correspondiente que se llama : " Quaternions", y se carga de la siguiente manera:

<< Quaternions`

Ejemplo 20

Ingreso de cuaterniones

Para ingresar un cuaternión se procede así:

Si
$$q = 2 - 3i + 5j + 4k$$

q = Quaternion[2, -3, 5, 4]

Quaternion[2, -3, 5, 4]

Si a la instrucción le agregamos dos puntos antes del símbolo igual se carga el cuaternión en la memoria pero no lo escribe en la pantalla.

$$q := Quaternion[2, -3, 5, 4]$$

Ejemplo 21

Encontrar el cuaternión conjugado de $q = 2 - 3 \stackrel{\circ}{i} + 5 \stackrel{\circ}{j} + 4 \stackrel{\circ}{k}$

Conjugate[q]

Quaternion[2, 3, -5, -4]

Ejemplo 22

Encontrar el cuaternión opuesto de q = $2-3\overset{\circ}{i}+5\overset{\circ}{j}+4\overset{\circ}{k}$

-q

Quaternion[-2, 3, -5, -4]

Ejemplo 23

Encontrar valor absoluto de q.

Abs[q]

 $3\sqrt{6}$

Ejemplo 24

Normalizar el cuaternión q

$$\frac{\mathtt{q}}{\mathtt{Abs}[\mathtt{q}]}$$

Quaternion
$$\left[\frac{\sqrt{\frac{2}{3}}}{3}, -\frac{1}{\sqrt{6}}, \frac{5}{3\sqrt{6}}, \frac{2\sqrt{\frac{2}{3}}}{3}\right]$$

Ejemplo 25

Hallar el cuaternión inverso de q.

$$\frac{\mathtt{q}}{\mathtt{Abs}\left[\mathtt{q}\right]^2}$$

Quaternion
$$\left[\frac{1}{27}, -\frac{1}{18}, \frac{5}{54}, \frac{2}{27}\right]$$

Ejemplo 26

Hallar la suma de

$$q_1 = -3 + 6 \, \dot{i} + 7 \, \dot{j} - 8 \, \dot{k} \quad y \, q_2 = 1 + 12 \, \dot{i} - 7 \, \dot{j} - 11 \, \dot{k}$$

Ejemplo 27

Hallar la resta de

$$q_1 = -3 + 6 i + 7 j - 8 k$$
 $y q_2 = 1 + 12 i - 7 j - 11 k$

Quaternion[-3, 6, 7, -8] - Quaternion[1, 12, -7, -11]

Quaternion[-4, -6, 14, 3]

Ejemplo 28

Verificar la propiedad conmutativa de la suma con los cuaterniones del ejemplo 23.

Ejemplo 29

Suma de un cuaternión y su conjugado.

Quaternion[-2, 18, 0, -19]

q + Conjugate[q] Quaternion[4, 0, 0, 0]

Ejemplo 30

Hallar el producto de

$$q_1 = -3 + 6 i + 7 j - 8 k$$
 $y q_2 = 1 + 12 i - 7 j - 11 k$

Quaternion[-3, 6, 7, -8] ** Quaternion[1, 12, -7, -11]

Quaternion[-114, -163, -2, -101]

Ejemplo 31

Verificar que el producto de cuaterniones no es conmutat:

Quaternion[1, 12, -7, -11] ** Quaternion[-3, 6, 7, -8]
Quaternion[-114, 103, 58, 151]

Ejemplo 32

Hallar el producto de un cuaternión por su conjugado.

q ** Conjugate[q]

Quaternion[54, 0, 0, 0]

Ejemplo 33

Rotar el punto P (0, 3, 2) 90° alrededor del eje x .

Quaternion $\left[\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, 0, 0\right] **Quaternion[0, 0, 3, 2] **$ Conjugate Quaternion $\left[\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, 0, 0\right]$

Quaternion[0, 0, -2, 3]

Bibliografía

Santaló, (1966), *Geometría Proyectiva*, Eudeba, Buenos Aires.

Kuipers, Santaló, (1999), *Quaternions and Rotation*Sequences, Princenton University Press, New Jersey.