I FTTER TO THE EDITOR

Submillimeter Microwave Spectrum of the Hydrogen Telluride Molecule

A. V. Burenin, A. F. Krupnov, S. V. Mart'yanov, A. A. Mel'nikov, and L. I. Nikolayev

The Institute of Applied Physics of the Academy of Sciences of the USSR, Gorky, USSR

Hydrogen telluride (H_2 Te) belongs to the H_2 X (X = 0, S, Se . . .) class of molecules, and it is of interest both for pure and applied investigations. The H_2 Te spectrum has been studied earlier only in the infrared regions near 896 cm⁻¹, 2070 cm⁻¹, (1,2) and 2900 cm⁻¹ (3). The present paper describes the first microwave investigation of H_2 Te rotational spectrum in the ground vibrational state.

We produced hydrogen telluride electrochemically by means of electrolysis of 80% solution of orthophosphoric acid with a tellurium cathode and refined it by the fractional distillation method with removal of the head and tail fractions (4). Then H_2Te was dried by passing it through a trap containing anhydrous $CaCl_2$ and P_2O_5 . According to the data of mass-spectrometric analysis a sample of H_2Te contained as impurities $H_2S < 10^{-2}\%$ by volume, $H_2Se < 2 \times 10^{-2}\%$ by volume, and light hydrocarbons $< 10^{-5}\%$ by volume. Hydrogen telluride is a thermodynamically unstable substance and easily decomposes at room temperature. Therefore the sample was stored at liquid nitrogen temperature, and the temperature of the absorption cell in the experiment was between -5 and 0°C.

The H₂Te submillimeter wave spectrum was observed in the range 250-490 GHz by a microwave spectrometer RAD (5). An illustration of the spectrum recorded

Ftg. 1. A reproduction of a portion of the hydrogen telluride spectrum. The lines correspond to eight isotopic species of the molecule. The sample pressure was about 0.8 Torr.

 $TABLE\ I$ Frequencies of Rotational Spectrum of H_zTe in the Ground Vibrational State

Transition			Observ	Observed frequencies, MHz	s, MHz		
	$_{ m H_a}^{130}{ m Te}$	$_{ m H_3}^{ m 128_{Te}}$	$_{ m H_2}^{ m 126_{Te}}$	$_{ m H_2}^{ m 125_{Te}}$	$_{ m H_2}^{ m 124_{Te}}$	$_{ m H_2}^{ m 123_{Te}}$	$^{ m H_2}_{ m 2Te}$
7-5-7	250 478.07		250 156.54	250 075,65	249 994.04	249 912.39	249 829.81
52 01	251 571.51	251 386.22	251 196.88	251 101.06	251 004.16		250 807.67
	254 292.44	254 205.50	254 121.72	254 080.50	254 040.23		253 962.50
	256 023.16	255 851.06	255 674,67	255 585.02	255 494.08	255 402,13	255 308.70
* 400 431	262 334.95	262 202.49	262 066.53	261 997.37	261 926,78		261 782.93
	269 139.58	269 059,68	268 976.94				
	275 288.47	275 254.97	275 225.82	275 211.02	275 195,90		
	278 315.13	278 370.69	278 428.21	278 457.30	278 487.12		
	288 657.85	288 759.75	288 864.96	288 918.64	288 973,85		
	294 682.89	294 853,33	295 029.43	295 118.89	295 210.54		295 397.88
	302 208.09	302 469,85	302 739.87	302 877.88	303 018,60	303 160.65	303 306.18
	310 757.99	311 133.30	311 520.30	311 719.21	311 920,95		312 334.01
	319 701.92	320 213.13	320 739.31	321 008.26	321 282,45	321 560.85	321 843.80
	328 257.42	328 920.38	329 604.52	329 954.18	330 310.85		
	335 493.85	336 324.18	337 180.94	337 618,83	338 065,58	338 537,70	
	413 689,36	413 405.91	413 112.01	412 961.15	412 807.28	412 650,77	
85,3 85,3	428 474.49	428 246.11	428 008,90	427 887.09	427 762.25		427 505.67
7 43 752	441 612.12	441 460.23	441 301.90	441 220.37	441 137,11	441 051.05	440 964.64

	$^{130}_{ m Te}$	$^{\mathrm{H_2}}_{\mathrm{2}}$	$_{ m H_2}^{ m 126_{Te}}$	$H_2^{125}Te$	$_{ m H_2}^{ m 124_{Te}}$	$_{ m H_2}^{ m 123_{Te}}$	$_{ m H_2}^{ m 122}_{ m Te}$
633 - 642	452 201,07	452 123.95	452 043.24	452 001.62	451 958.83	451 915,46	451 870.35
* 1 ₁₁ 2 ₀₂	455 382.35	455 411.07	455 440.64	455 455,79	455 471.06	455 486.70	455 502,52
	459 982.00	459 964.49	459 945.78	459 936.00	459 925.73		459 904.26
* 1 ₀₁ 2 ₁₂	460 333.45	460 410.11	460 489.15	460 529,48			
	465 185.04	465 207.35	465 230.05	465 241.46	465 253.09	465 265.02	465 276.73
303 312	468 325.85	468 370.82	468 415,91	468 439,23	468 462.99	468 487.28	468 511.53
	470 093.31	470 153.83	470 216,32	470 248,24	470 280.82		
	470 349.70	470 418.38	470 489.30	470 525.60	470 562.59	470 600.28	470 638,50
* 533 542	471 605,49	471 689,55	471 776.61	471 821.27	471 866,65	471 912.72	471 959,06
	474 364.71	474 473,51	474 586.37	474 644.09	474 702.62	474 762.51	474 824,56
753 762	479 136.42	479 280,37	479 429.84	479 506.55	479 585.06	479 665.05	479 746,40
863 872	486 409.78	486 598,73	486 795,15	486 896.13	486 999,43	487 104,54	487 212.01
				The state of the s			

Measurement error for lines H_2 $^{130,128,126}_{\rm Te;}$ 0.1MHz, H_2 $^{125,124,123,122}_{\rm Te}$: 0.2MHz, Number of lines: 184

 $TABLE\ II$ $Molecular\ Constants\ in\ the\ Kivelson-Wilson\ Form\ for\ H_2Te\ in\ the\ Ground\ Vibrational\ State,\ MHz$

	H ₂ ¹³⁰ Te	$^{ m H_2^{128}Te}$	H ₂ ¹²⁶ Te
Δ'	187 341.11 <u>+</u> 8.74	187 385,94 <u>+</u> 8,74	187 432.40 + 8.74
₃′	182 724.87 <u>+</u> 9.24	182 725. 0 3 <u>+</u> 9.26	182 725.47 + 9.26
c'	91 012.730 <u>+</u> 0.420	91 023.564 <u>+</u> 0.420	91 034.820 + 0.424
,ı 'aaaa	-93.358 <u>+</u> 0.186	-98.457 <u>+</u> 0.186	-98.693 <u>+</u> 0.186
bbbb	-85.095 <u>+</u> 0.226	-85.120 <u>+</u> 0.228	-85,376 <u>+</u> 0.228
CCCC	- 2.984 <u>+</u> 0.118	- 3.072 <u>+</u> 0.118	- 3.204 <u>+</u> 0.118
,, aabb	37.113 ± 0.792	37.051 <u>+</u> 0.802	36.948 <u>+</u> 0.812
,, 'aacc	- 26.75 <u>+</u> 18.16	-26.87 <u>+</u> 18.18	-27.08 <u>+</u> 18.20
bbcc	16.53 <u>+</u> 17.40	16.50 <u>+</u> 17.42	16.39 +17.44

		в'	c'	T ' _{aaaa}	T'aabb	t' _{bbbb}	T'aacc	T'bbcc	τ΄ _{cccc}
A'	+1.000			aaaa	aauu	adda	aacc	bbcc	cccc
в'	-0.999	+1.000							
c '	+0.827	-0.818	+1.000		Н,	130 _{Te}			
t '	-0.201	+0.182	-0.226	+1.000		-			
aaaa aabb bbbb	+0,991	- 0,993	+0.774	-0.229	+1.000				
T _{bbbb}	+0.672	-0.689	+0.383	+0,489	+0.664	+1.000			
taacc	-1.000	+ 1,000	-0.832	+0.190	-0.991	- 0.675	+1,000		
t' _{bbcc}	+1.000	- 1.000	+0.828	-0.187	+0.991	+0.678	-1.000	+1.000	
t' _{bbcc}	+0.089	- 0.103	-0.466	+0.168	+0.171	+0.380	-0.081	+0.088	+1.000
A [']	+1.000								
B'	-0,999	+1.000							
c'	+0.830	-0.822	+1.000		H	128 _{Te}			
τ _{aaaa}	- 0.202	+0.184	-0.228	+1.000	•	2			
T _{aabb}	+ ().991	-0,993	+0.778	-0.230	+1.000				
T'bbbb	+0.672	-0.689	+0.387	+0.488	+0.664	+1.000			
~ ′	-1.000	+ 1,000	-0.836	+0.192	-0,991	-0.675	+1.000		
Taacc pbcc	+1.000	- 1.000	+0.832	-0.189	+0.992	+0.678	-1.000	+1.000	
t'cccc	+0.093	- 0.103	-0.460	+0.168	+0,171	+0.380	-0.081	+0.088	+1.000
A'	+1.000								
в, С т ′	-0.999	+1,000							
c	+0.833	-0.825	+1.000		Н	$^{126}_{ m Te}$			
T _{,aaaa}	- 0.205	+0.186	-0.230	+1.000		۷			
T _{aabb}	+0.991	- 0,993	+0,782	-0.232	+1.000				
T _{bbbb}	+0,672	- 0.689	+0,391	+0.486	+0,664	+1.000			
T'aacc	-1.000	+1.000	-0.839	+0.194	-0.991	-0.675	+1.000		
T' _{bbcc}	+1.000	-1,000	+ 0,835	-0.192	+0.992	+0.678	-1.000	+1.000	
t _{cccc}	+0.090	-0.104	- 0 .4 555	+0.167	+0.171	+0,380	-0.082	+0.089	+1.000

is presented in Fig. 1. The lines corresponding to eight isotopic species of this molecule of the form H_2^{x} Te are seen (X = 130 (34.5%), 128 (31.8%), 126 (18.7%), 125 (6.99%), 124 (4.61%), 123 (0.875%), 122 (2.46%), and 120 (0.09%)). In parentheses the natural abundance for each molecular species is given. The measurements of spectral line frequencies were made at a pressure ~0.8 Torr in the absorption cell with an accuracy of 0.1–0.2 MHz. Experimental values of the line frequencies for the seven most abundant isotopic species of the molecule and assignments of the transitions are given in Table I.

A theoretical description of the rotational spectrum of H_2X -type molecules (X = 0, S, Se . . .) meets significant difficulties connected with their nonrigidity. A preliminary processing of the data was made by using the rotational Hamiltonian in the Kivelson-Wilson form (6):

$$H_2 + H_4 = A'P_a^2 + B'P_b^2 + C'P_c^2 + \frac{1}{4} \sum_{\alpha,\beta} \tau'_{\alpha\alpha\beta\beta} P_\alpha^2 P_\beta^2$$
 (1)

where α , $\beta = a$, b, and c, and P_{α}^2 is the square of the angular momentum component operator along the main axis "a" in the molecule. The processing was made for three species of the molecule $H_2^{130,128,126}$ Te using only frequencies of 10 transitions with lowest centrifugal shifts (<0.5 GHz). These transitions are marked in Table I with an asterisk. The Hamiltonian parameters with the matrix of correlation coefficients are given in Tables II and III. The mean difference between the measured and calculated frequencies for these selected transitions is 0.17 MHz.

ACKNOWLEDGMENT

The authors wish to express their gratitude to Academician G. G. Devyatykh for suggesting the present investigation.

RECEIVED: August 2, 1978

REFERENCES

- 1. K. ROSSMANN AND J. W. STRALEY, J. Chem. Phys. 24, 1276 (1956).
- R. A. HILL, T. H. EDWARDS, K. ROSSMAN, K. NARAHARI RAO, AND H. H. NIELSEN, J. Mol. Spectrosc. 14, 221-243 (1964).
- 3. N. K. Moncur, P. D. Willson, and T. H. Edwards, J. Mol. Spectrosc. 52, 181-195 (1974).
- M. F. CHURBANOV AND L. I. NIKOLAEV, "Obtaining and Analysis of Pure Substances," Vol. 1, p. 38, Gorky, 1976.
- 5. A. F. KRUPNOV AND A. V. BURENIN, in "Molecular Spectroscopy: Modern Research" (K. Narahari Rao, ed.), Vol. 2, pp. 93-126, Academic Press, New York, 1976.
- 6. D. KIVELSON AND E. B. WILSON, J. Chem. Phys. 20, 1575-1579 (1952).