minimical

F(s) = J f(t) e st dt prelopore (b) - w)

L(c,f, rc,f,) = c,d(f,) + c,d(f,)

 $\mathcal{L}[f_{(t)}^{(n)}] \cdot S^{n} \mathcal{L}(f_{(t)}) - S^{n-1} f(\bar{s}) - S^{n-1} f(\bar{s}) - S^{n-1} f(\bar{s}) - \dots - f(\bar{s})$

th n!

kth kte^{at}

Sinat

Cosat

 $-siz. \quad F(s) = \frac{d(f(t))}{1 - e^{-Ts}}$

Eat cosst

eat sinst

ae cosst + b-ad e sigst

Y|K| eat cos (Bt+ &K)

d (hit)= HIS

V(t) = 1 hit-z je(z) 12

کی المالاس مرس اترسی کی فرمان طبیم کی و المالاس المال

درونوب . آ

 $\frac{5+\alpha}{(S+\alpha)^r + \beta^r}$ $\frac{\beta}{\beta}$ $\frac{(S+\alpha)^r + \beta^r}{\alpha S+\delta}$ $\frac{(S+\alpha)^r + \beta^r}{K}$ $\frac{K}{S+\alpha + J\beta}$

ع تسرك لاملاس المعند عال تا بعث المالية المالية المالية المالية المالية المالية المالية المالية المالية المالية

V(t) = h(t) * e(t) $V(s) = h(s) \times e(s)$

F(s) = John est dt prelopole (b) - will. L(c,f,rc,f,) = c,d(f,) + c,d(f,) م قصا مي شد L[f(n)]. sh(f(t))-sh-1f(-)- Sf(-)--f(-) $\mathcal{L}\left[\int_{-1}^{t} f(t')dt'\right] = \frac{1}{5} \mathcal{L}\left(f(t)\right)$ 10 KILLA L(thf(t))=(-1) F(n) Sinat Cosat $-sl_y. \qquad F(s) = \frac{d(f(t))}{1 - e^{-Ts}}$ درونوب : T Sta Star + Br E cosst eat sinst ae cosst + b-ad e sinst (5ta) + Br YIKIE at cos (Bt+ &K) d(htt)=H(\$) . In wing out of the V(t) = 1 thit- = 10(T) 17 V(t) = h(t) * e(t) $V(s) = h(\beta) \times e(\beta)$ ל מנוע לישון

f(01)= lim f(t) = lim 5 F(5) نعبر العرادات : F(00) = limft) = lim SF(5) VI= LISI, + MSI2 V2 = MSI, + L, SI2 سلوتنوج بالرط ارليم ξ4s Φ - x F) L2 [((-) $V_{1} = L_{1} S \left(\overline{L}_{1} - \frac{\overline{L}_{1}(\cdot)}{6} \right) + M S \left(\overline{L}_{2} - \frac{\overline{L}_{2}(\cdot)}{5} \right)$ VI= LISI, - MSEr - LII, (-) - MIC(-) $V_r = MS(\overline{I}_1 - \frac{\overline{I}_1(o^-)}{s}) + L_rS(\overline{I}_2 - \frac{\overline{I}_2(o^-)}{s})$ N(= We [1+163[6-M](-)- P(]((.)) [disolitai]] H(s) تابعثبه [آبع درددی] کا فرکان مجنوی: • سرائردن مادری سخف سر می ما فرکاس میس تغریک ت مسی را : عرصوها : رکره کارس اسواس , ارساس det [zisi] .. , det[Yisi] .. , det(51-A) = . . فرنا سن ها كامين . طعر الى Tulyby in it is control of the Leastern יוכל לפנטים ב ניטיטי

E VEIk=0 · EVETR = EVETR · Erk = Erk to VI ع در عالت در عی سنوی : کے لالم آداعی سنوی I) V(t) (1) b N (1) I(t) -) In b (1) V(t) II) $\frac{1}{15}$ $\frac{1}{$ Eva, Iru = vill, V O V O V السوس $\begin{bmatrix} V_{I} \\ V_{\Gamma} \end{bmatrix}^{2} \begin{bmatrix} Z_{II} & Z_{IC} \\ Z_{CI} & Z_{CC} \end{bmatrix} \begin{bmatrix} \overline{I}_{I} \\ \overline{I}_{C} \end{bmatrix} \qquad Z_{II} = \frac{V_{I}}{I_{I}} \Big|_{\overline{I}_{C}=0} \qquad Z_{CC} = \frac{V_{C}}{I_{\Gamma}} \Big|_{\overline{I}_{I}=0}$ $Z_{II} = \frac{V_{I}}{I_{I}} \Big|_{\overline{I}_{C}=0} \qquad Z_{CC} = \frac{V_{C}}{I_{\Gamma}} \Big|_{\overline{I}_{I}=0}$ + $(2_{11} - 2_{11}) I_Y$ $Z_{21} - Z_{21}$ V_1 $\frac{1}{\sqrt{|y_{12}-y_{21}|y_{2}}} = \frac{1}{\sqrt{|y_{11}-y_{21}|}} = \frac{1}{\sqrt{|y_{11}$

 $\begin{bmatrix} v_{i} \\ \bar{I}_{\Gamma} \end{bmatrix}^{2} \begin{bmatrix} h_{ii} & h_{ir} \\ h_{ri} & h_{ir} \end{bmatrix} \begin{bmatrix} \bar{I}_{I} \\ v_{r} \end{bmatrix}^{2} h_{ir} = \frac{v_{i}}{I_{I}} \Big|_{V_{\Gamma}=0} h_{ir} = \frac{v_{i}}{v_{r}} \Big|_{\bar{I}_{I}=0} = \frac{v_{i}}{v_{r}} \Big|_{\bar{I}_{I}=0}$ $h_{ir} = \frac{v_{i}}{v_{r}} \Big|_{\bar{I}_{I}=0} = \frac{v_{i}}{v_{i}} \Big|_{\bar{I}_{I}=0$

$$\begin{bmatrix} I_1 \\ v_r \end{bmatrix} = \begin{bmatrix} g_{11} & g_{1r} \\ g_{r_1} & g_{r_2} \end{bmatrix} \begin{bmatrix} V_1 \\ I_r \end{bmatrix}$$

$$V_1 = \begin{bmatrix} g_{11} & g_{12} \\ g_{12} & g_{12} \end{bmatrix}$$

$$\begin{bmatrix} v_i \\ I_i \end{bmatrix} = \begin{bmatrix} t_{ii} & t_{ir} \\ t_{ci} & t_{cr} \end{bmatrix} \cdot \begin{bmatrix} v_i \\ I_i \end{bmatrix}$$

$$\begin{bmatrix} V_{I} \\ I_{I} \end{bmatrix} = \begin{bmatrix} t_{11} & t_{11} \\ t_{CI} & t_{CI} \end{bmatrix} \cdot \begin{bmatrix} V_{C} \\ -\overline{L}_{I} \end{bmatrix} \quad t_{11} = \frac{V_{I}}{V_{C}} \begin{vmatrix} I_{C} \\ I_{C} \end{vmatrix} \quad t_{CI} = \frac{V_{I}}{-T_{C}} \begin{vmatrix} V_{C} \\ V_{CI} \end{vmatrix}$$

$$t_{CI} = \frac{\Gamma_{I}}{V_{C}} \begin{vmatrix} I_{CI} \\ I_{CI} \end{vmatrix} \quad t_{CI} = \frac{\Gamma_{I}}{-T_{C}} \begin{vmatrix} V_{CI} \\ V_{CI} \end{vmatrix}$$

I ₁ N ₁ :N ₂ I ₂ + • • • • • • • • • • • • • • • • • •	$Z = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \qquad Y = \begin{bmatrix} v_1 \\ v_1 \end{bmatrix} \qquad \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \qquad \begin{bmatrix} v_1 \\ v_1 \end{bmatrix} \qquad \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \qquad \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \qquad \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \qquad \begin{bmatrix} v_1 \\ v_1 \end{bmatrix} \qquad \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \qquad \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \qquad \begin{bmatrix} v_1 \\ v_1 \end{bmatrix} \qquad \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \qquad \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \qquad \begin{bmatrix} v_1 \\ v_1 \end{bmatrix} \qquad \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \qquad \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \qquad \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \qquad \begin{bmatrix} v_1 \\ v_1 \end{bmatrix} \qquad \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \qquad \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \qquad \begin{bmatrix} v_1 \\ v_1 \end{bmatrix} \qquad \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \qquad \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \qquad \begin{bmatrix} v_1 \\ v_1 \end{bmatrix} \qquad \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \qquad \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \qquad \begin{bmatrix} v_1 \\ v_1 \end{bmatrix} \qquad \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \qquad \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \qquad \begin{bmatrix} v_1 \\ v_1 \end{bmatrix} \qquad \begin{bmatrix} v_1 \\ v_1 \end{bmatrix} \qquad \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \qquad \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \qquad \begin{bmatrix} v_1 \\ v_1 \end{bmatrix} \qquad \begin{bmatrix} v_1 \\ v_1 \end{bmatrix} \qquad \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \qquad \begin{bmatrix} v_1 \\ v_1 \end{bmatrix} \qquad \begin{bmatrix} v_1 \\ v_1 \end{bmatrix} \qquad \begin{bmatrix} v_1 \\ v_1 \end{bmatrix} \qquad \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \qquad \begin{bmatrix} v_1 \\ v_1 \end{bmatrix} \qquad \begin{bmatrix} v_$	
v ₁	$\begin{bmatrix} \circ & -\frac{1}{\alpha} \\ \end{bmatrix} \qquad T = \begin{bmatrix} \circ & -\alpha \\ -\frac{1}{\alpha} \\ \end{bmatrix} \qquad H = \begin{bmatrix} \circ \\ \circ \\ \end{bmatrix}$	
V ₂	$Z = \begin{bmatrix} \circ & \alpha \\ -\alpha & \circ \end{bmatrix} \qquad Y = \begin{bmatrix} 1 & 0 \\ \alpha & 0 \end{bmatrix} \qquad \begin{bmatrix} \alpha & \beta \\ \alpha & \gamma & \gamma \end{bmatrix} \qquad \begin{bmatrix} L_{\gamma}S & \mp MS \end{bmatrix}$	1
	$Y = \frac{1}{L_1 L_1 S^T - M^T S^T} \begin{bmatrix} \pm MS & L_1 S \end{bmatrix}$	
I_1 M I_2 $0+$ V_2	$Z = \begin{bmatrix} \pm MS & L_{r}S \end{bmatrix} $	
V_1 L_1 $\{L_2, V_2, \ldots, V_n\}$	$Z = \begin{bmatrix} \pm jX_M & jX_{L_Y} \end{bmatrix}$	_

اتصال دوقطبيها

حالت اول: اگر ماتریس ادمیتانس یک دوقطبی به صورت $\begin{bmatrix} y_{11} & y_{17} \\ y_{71} & y_{77} \end{bmatrix}$ باشد، آنگاه با اتصال عناصر به این دوقطبی ماتریس ادمیتانس دوقطبی جدید (دوقطبی داخل نقطهچین) به صورت زیر خواهد بود:

$$Y$$
 جدید =
$$\begin{bmatrix} y_{11} + y_1 + y_7 & y_{17} - y_7 \\ y_{71} - y_7 & y_{77} + y_7 + y_7 \end{bmatrix}$$

حالت دوم: اگر ماتریس امپدانس یک دوقطبی به صورت $\begin{bmatrix} z_{11} & z_{17} \\ z_{71} & z_{77} \end{bmatrix}$ باشد، آنگاه با اتصال سری عناصر به آن، ماتریس امپدانس دوقطبی جدید (دوقطبی داخل نقطه چین) به صورت زیر بیان می شود:

$$\mathbf{Z}$$
 جدید =
$$\begin{bmatrix} \mathbf{Z}_1 + \mathbf{Z}_{11} & \mathbf{Z}_{17} \\ \mathbf{Z}_{71} & \mathbf{Z}_{77} + \mathbf{Z}_{7} \end{bmatrix}$$

حالت سوم: در صورتی که امیدانس Z_۲ و ادمیتانس y_۲ در ورودی و خروجی یک شبکه هایبرید اضافه شود، ماتریس H جدید به صورت زیر تعریف می شود:

$$\mathbf{H}$$
 جدید =
$$\begin{bmatrix} \mathbf{h}_{11} + \mathbf{Z}_1 & \mathbf{h}_{17} \\ \mathbf{h}_{71} & \mathbf{h}_{77} + \mathbf{y}_7 \end{bmatrix}$$

در استفاده از فرمولهای ذکر شده در بالا، باید به واحد نوشته شده در کنار المانهای اطراف شبکه دقت شود، زیرا در برخی موارد انـدازه امپـدانس المـان داده شده است، در صورتی که باید اندازه ادمیتانس آنها در فرمولها وارد شود.

كسترش دوقطبىها

ا_ سری کردن دوقطبیها

اگر دو شبکه b و a به صورت روبرو با هم سری شوند، ماتریس امپدانس آنها با یکدیگر جمع شده و ماتریس امپدانس نهایی را تشکیل میدهند.

$$[Z_T] = [Z_a] + [Z_b]$$

۲_موازی کردن دوقطبیها

اگر دو شبکه به صورت روبرو با هم موازی شوند، ماتریس ادمیتانس آنها با یکدیگر جمع شده و ماتریس ادمیتانس نهایی را تشکیل میدهند.

$$[Y_T] = [Y_a] + [Y_b]$$

۳_ سری و موازی کردن دوقطبیها

حالت اول: اگر ترمینالهای یک دوقطبی در ورودی سری و در خروجی موازی شود، رابطه زیر برقرار است:

حالت دوم: اگر ترمینالهای یک دوقطبی در خروجی سری و در ورودی موازی شود، رابطه زیر برقرار است:

$[G_T] = [G_a] + [G_b]$

4_متوالى كردن دوقطبيها

در صورتی که دو شبکه به صورت متوالی به هم متصل شوند، رابطه زیر برقرار است:

$\{\mathbf{T}_{\mathbf{T}}\} = \{\mathbf{T}_{\mathbf{1}}\}.[\mathbf{T}_{\mathbf{r}}]$

🗷 مثال ۴۸: برای مدار زیر ماتریس امپدانس Z کدام است؟

$$Z = \begin{bmatrix} j\lambda + 1/\Delta & jq - 1 \\ jq - 1 & 1/777 - j10 \end{bmatrix}$$

 $Z = \begin{bmatrix} -j\lambda + 1 & 1 - jq \\ -1 + jq & 1/r - jq \end{bmatrix}$

$$Z = \begin{bmatrix} -j\lambda + 1/\Delta & -jq + 1 \\ +1 - jq & 1/77 - jr \end{bmatrix}$$

$$Z = \begin{bmatrix} -jA - 1/\Delta & -jQ - 1 \\ & & \end{bmatrix} (q)$$

امپدانسهای خروجی و ورودی و بهره ولتاژ در دوقطبیها

z و z

ماتريس موجود	امپدانس یا ادمیتانس ورودی	امپدانس یا ادمیتانس خروجی	بهره ولتاژ $(rac{{ m V}_{ m o}}{{ m V}_{ m S}})$
$\mathbf{Z} = \begin{bmatrix} \mathbf{Z}_{11} & \mathbf{Z}_{17} \\ \mathbf{Z}_{71} & \mathbf{Z}_{77} \end{bmatrix}$	$Z_{in} = Z_{11} - \frac{Z_{17}.Z_{71}}{Z_{77} + Z_{L}}$	$Z_0 = Z_{\gamma\gamma} - \frac{Z_{\gamma\gamma}Z_{\gamma\gamma}}{Z_{\gamma\gamma} + Z_S}$	$\frac{Z_{\gamma_1}.Z_L}{(Z_{\gamma\gamma} + Z_L)(Z_{\gamma_1} + Z_S) - (Z_{\gamma\gamma}Z_{\gamma_1})}$
$\mathbf{y} = \begin{bmatrix} \mathbf{y}_{11} & \mathbf{y}_{1T} \\ \mathbf{y}_{T1} & \mathbf{y}_{TT} \end{bmatrix}$	$y_{in} = y_{ij} - \frac{y_{ij}y_{jj}}{y_{jj} + \frac{1}{Z_L}}$	$y_0 = y_{YY} - \frac{y_{1Y}y_{Y1}}{y_{11} + \frac{1}{Z_S}}$	$\frac{-y_{\gamma_1}.Z_S^{-1}}{(y_{\gamma\gamma}+Z_L^{-1})(y_{11}+Z_S^{-1})-y_{1\gamma}y_{\gamma_1}}$
$\mathbf{H} = \begin{bmatrix} \mathbf{h}_{11} & \mathbf{h}_{1Y} \\ \mathbf{h}_{Y1} & \mathbf{h}_{YY} \end{bmatrix}$	$Z_{in} = h_{11} - \frac{h_{17}h_{71}}{h_{77} + Z_L^{-1}}$	$\mathbf{y_o} = \mathbf{h_{\gamma\gamma}} - \frac{\mathbf{h_{\gamma\gamma}h_{\gamma\gamma}}}{\mathbf{h_{\gamma\gamma}} + \mathbf{Z_S}}$	$\frac{-h_{\gamma_1}}{(h_{\gamma\gamma} + Z_L^{-1})(h_{11} + Z_S) - h_{1\gamma}h_{\gamma_1}}$
$\mathbf{T} = \begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{bmatrix}$	$Z_{in} = \frac{AZ_L + B}{CZ_L + D}$	$\mathbf{Z}_0 = \frac{\mathbf{D}\mathbf{Z}_{\mathrm{S}} + \mathbf{B}}{\mathbf{C}\mathbf{Z}_{\mathrm{S}} + \mathbf{A}}$	$\frac{Z_L}{(A+CZ_S)Z_L+B+DZ_S}$

S=1 عدام است $\frac{V_o}{V_S}$ در مدار زیر مقدار تابع شبکه $\frac{V_o}{V_S}$ ، در حالت S=1

- -0/08(1
- -0/00 (٢
- -0/04(5
- -0/08 (4

پاسخ: گزینه «۲» برای بدست آوردن تابع شبکه، ابتدا می توان ماتریس y مدار مشخص شده به صورت خطچین را محاسبه کرد. با توجه به موازی بودن ژیراتور با المانهای اطراف آن، ماتریس Y_T به صورت زیر محاسبه می شود:

$$Y\left(\frac{1}{2}\right) = \begin{bmatrix} \circ & \frac{-1}{\alpha} \\ \frac{1}{\alpha} & \circ \end{bmatrix} = \begin{bmatrix} \circ & \frac{-1}{r} \\ \frac{1}{r} & \circ \end{bmatrix} \Rightarrow Y_{T} = \begin{bmatrix} \circ + r + (rS)^{-1} & \frac{-1}{r} - (rS)^{-1} \\ \frac{1}{r} - (rS)^{-1} & \circ + (rS)^{-1} \end{bmatrix} = \begin{bmatrix} r + \frac{1}{rS} & \frac{-1}{r} - \frac{1}{rS} \\ \frac{1}{r} - \frac{1}{rS} & \frac{1}{rS} \end{bmatrix}$$

با توجه به روابط پارامترهای ادمیتانس داریم:

$$\frac{V_{o}}{V_{S}} = \frac{-y_{r_{1}}Z_{S}^{-1}}{(y_{r_{1}} + Z_{L}^{-1})(y_{1_{1}} + Z_{S}^{-1}) - y_{1_{1}}y_{r_{1}}} \Rightarrow \frac{V_{o}}{V_{S}} = \frac{-(\frac{1}{r} - \frac{1}{r_{S}})(1)}{(\frac{1}{r_{S}} + \frac{1}{r_{S}})(r + \frac{1}{r_{S}} + 1) - (\frac{-1}{r} - \frac{1}{r_{S}})(\frac{1}{r_{S}} - \frac{1}{r_{S}})}$$

$$\frac{V_o}{V_S} = -\circ/\circ\Delta 1 Y \simeq -\circ/\circ\Delta$$

عدد یک قرار دهیم، داریم: