Relations Review

151/128 Staff

October 22, 2022

- 1. For each example below, determine whether the given relation R is an equivalence relation on the given set S:
 - (a) (MIT 6.042) S = P, where P is the set of all people in the world today; $(x, y) \in R$ if and only if x is at least as tall as y.
 - (b) (BYU) $S = \mathbb{Z}$; $(x, y) \in R$ if and only if $2x + 5y \equiv 0 \pmod{7}$.
 - (c) (For those of you in Matrices) $S = \mathbb{R}^n$ for some $2 \leq n \in \mathbb{N}$; $(\vec{x}, \vec{y}) \in R$ if and only if \vec{x} and \vec{y} are linearly independent.
- 2. Suppose R is a relation on the set X that is both an equivalence relation and a partial order relation. Prove that R is the equality relation on X.
- 3. Let R be a relation on $\mathcal{P}([2n])$ defined by $(A, B) \in R$ if and only if $A \cap [n] = B \cap [n]$. Is R an equivalence relation? What happens if instead of using [n], [2n], we generalize to C, S where $C \subseteq S$?
- 4. (Tripos 2011) Write down an equivalence relation on the positive integers that has exactly four equivalence classes, of which two are infinite and two are finite.