기말고사

학번_____ 이름____

2016-12-01

1.(30점) 세 개의 벡터 $\vec{u}, \vec{v}, \vec{w}$ 가 다음과 같이 주어져 있다.

$$\vec{u} = \begin{bmatrix} 2 \\ 1 \\ 4 \end{bmatrix}, \vec{v} = \begin{bmatrix} 1 \\ -1 \\ 3 \end{bmatrix}, \vec{w} = \begin{bmatrix} 3 \\ 2 \\ 5 \end{bmatrix},$$

 $a_1\vec{u} + a_2\vec{v} + a_3\vec{w} = \vec{b}$ 를 만족하는 a_1, a_2, a_3 를 구하라.

(a)
$$\vec{b} = \begin{bmatrix} 5 \\ 9 \\ 5 \end{bmatrix}$$

	$\lceil 2 \rceil$
(b) $\vec{b}=$	0
	6

(c)
$$\vec{b} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

2.(20점) 다음 벡터들 $\overrightarrow{x_1}$, $\overrightarrow{x_2}$, $\overrightarrow{x_3}$, $\overrightarrow{x_4}$ 에 대하여 물음에 답하라.

$$\overrightarrow{x_1} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, \overrightarrow{x_2} = \begin{bmatrix} -1 \\ 3 \\ 2 \end{bmatrix}, \overrightarrow{x_3} = \begin{bmatrix} -13 \\ -1 \\ 2 \end{bmatrix}, \overrightarrow{x_4} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}.$$

	\rightarrow	\rightarrow	\rightarrow							
10	A ví	v-	va	느	선형종속임을	즈며치라	따하 이거드	THUIDI	서혀과게르	그하다
(0	リハー・	$\lambda_2,$	λ_3	$\overline{}$		2001-	고인 이것은	거이ㅡ	근중단계를	ㅜ이니.

	a
(b) $\overrightarrow{x_1}$, $\overrightarrow{x_2}$, $\overrightarrow{x_4}$ 는 선형독립임을 증명하라. 또한 이것들의 선형결합, $a_1\overrightarrow{x_1} + a_2\overrightarrow{x_2} + a_3\overrightarrow{x_4}$ 이 $\overrightarrow{a} =$	b
이 디드로 뒧느 게스르 차이다	c_{\perp}

이 되도록 이는 게구글 듯이다.		

3.(10점) 다음 행렬
$$A = \begin{bmatrix} 1 & 2 & 1 & 5 \\ 2 & 5 & 1 & 14 \\ 4 & 9 & 3 & 24 \end{bmatrix}$$
가 $PAQ = \begin{bmatrix} I_r & O \\ O & O \end{bmatrix}$ 로 나타나는 P 와 Q 가

$$P = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ -2 & -1 & 1 \end{bmatrix}, Q = \begin{bmatrix} 1 & -2 & -3 & 3 \\ 0 & 1 & 1 & -4 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
임을 보이고, $A_{p \times q} = K_{p \times r} L_{r \times q}$ 의 형태로 나타내라.

단,
$$P^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 4 & 1 & 1 \end{bmatrix}$$
, $Q^{-1} = \begin{bmatrix} 1 & 2 & 1 & 5 \\ 0 & 1 & -1 & 4 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ 임을 이용하라.

4.(10점) 행렬
$$A = \begin{bmatrix} 0 & 1 \\ 5 & 4 \end{bmatrix}$$
의 고유값과 고유벡터를 계산하고 대각화하시오.

$5.$ (10점) 행렬 $A=egin{bmatrix}1\\2\\0\end{pmatrix}$ 을 보이시오.	$\begin{bmatrix} 2 & 3 \\ 1 & 3 \\ 3 & 5 \end{bmatrix}$ 의 LU 분해가 $L = \begin{bmatrix} 1 & 0 & 0 \\ 2 & -3 & 0 \\ 0 & 3 & 2 \end{bmatrix}, U = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ 로 계·	산됨
6.(10점) 행렬 $A = \begin{bmatrix} 4 \\ 2 \\ 2 \end{bmatrix}$	2 2 2 0 0 2 의 일반화역행렬을 최대계수 정방 부분행렬을 이용하여 계산하라. 0 2	

7.(10점) 행렬 $A=egin{bmatrix} 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 &$	$\begin{bmatrix} 2 & 0 & -2 \\ 0 & 4 & 2 \\ 2 & 2 & 4 \end{bmatrix}$	를 삼각행렬의 곱으로	로 나타내시오.	