Laboratorio Calcolo Numerico

Esercizio 1: Si consideri la seguente tabella contenente nella colonna 1 alcuni numeri reali $a \in \mathbb{R}$

colonna 1	colonna 2	colonna 3	colonna 4	colonna 5
a	a^* doppia prec.	\hat{a} singola prec.	ε_a singola prec.	ε_r singola prec.
123456789.0				
$1.23456789 \times 10^{13}$				
3.34567891				
$3.34567891 \times 10^{10}$				

Utilizzando opportunamente i comandi format, disp e single, si costruisca uno script che

- 1. Assegni il valore di a (colonna 1);
- 2. Visualizzi il valore di a^* (doppia precisione) e di \hat{a} (semplice precisione) e si trascrivano i valori visualizzati rispettivamente in colonna 2 ed in colonna 3.
- 3. Calcoli l'errore assoluto $\varepsilon_a = |a^* \hat{a}|$ e l'errore relativo $\varepsilon_r = |a^* \hat{a}|/|a^*|$ rispetto al valore in doppia precisione, e si trascrivano i risultati, rispettivamente, nella colonna 4 e colonna 5.

Si modifichi e si esegua lo script per ognuno dei quattro valori di a, indicati nella colonna 1. Si confrontino poi i risultati ottenuti con quelli del libro a pag. 23.

Esercizio 2: In modo analogo a come effettuato nell'Esercizio 1, si considerino le seguenti coppie di valori reali $x, y \in \mathbb{R}$. Si costruisca uno script che

- 1. Assegni il valori di x e di y (doppia precisione);
- 2. Calcoli e visualizzi la somma e la differenza, trascrivendo il risultato a mano.

Si modifichi e si esegua lo script per ognuno delle sei coppie indicate.

Tabella 1

		doppia precisione		
x	y	$x\ominus y$	$x \oplus y$	
123456789.0	123456788.0			
123456789.0	123456790.0			
$0.56543451\!\times\!10^{6}$	$0.21554623 \times 10^{-4}$			
1.0	0.5×10^{-6}			
0.5654328749876	0.5654328510104			
0.3333333333	0.111111111			

Si scriva un altro script che effettui le medesime operazioni, ma in semplice precisione.

Tabella 2

		semplice precisione		
x	y	$x\ominus y$	$x \oplus y$	
123456789.0	123456788.0			
123456789.0	123456790.0			
0.56543451×10^6	$0.21554623 \times 10^{-4}$			
1.0	0.5×10^{-6}			
0.5654328749876	0.5654328510104			
0.3333333333	0.111111111			

Si paragonino poi i risultati a quelli di pag. 34 del libro.