

Aufgabe 1: Multiple Choice [Für jede Multiple-Choice-Frage gibt es für die richtige Antwort 3 Punkte, für die falsche Antwort -1 Punkt und für keine Antwort keine Punkte. Es ist erlaubt, mehr als eine Antwort auszuwählen, und die Gesamtpunktzahl wird als Summe der Punkte für jede ausgewählte Antwort berechnet.]

- 1) Was ist eine Polarform von $\sqrt{3} i$?
 - a) $2\left(\cos\left(\frac{\pi}{6}\right) + i\sin\left(\frac{\pi}{6}\right)\right)$.

c) $2\left(\cos\left(\frac{\pi}{3}\right) + i\sin\left(\frac{\pi}{3}\right)\right)$.

b) $2(\cos(-\frac{\pi}{6}) + i\sin(-\frac{\pi}{6}))$.

- d) $2\left(\cos\left(-\frac{\pi}{3}\right) + i\sin\left(-\frac{\pi}{3}\right)\right)$.
- 2) Welche der folgenden Mengen ist nicht wegzusammenhängend?
 - a) $\{z \in \mathbb{C} \mid \text{Re}z < 0 \land |z| > 5\}.$
- c) $\{z \in \mathbb{C} \mid |z 3| < 2 \lor |z + 2| < 1\}.$
- b) $\{z \in \mathbb{C} \mid |z| < 5 \land |z 1| > 1\}.$
- d) $\{z \in \mathbb{C} \mid 0 < |z| < 4\}.$

3) Gegeben sei die Potenzreihe

$$\sum_{n=0}^{\infty} c_n z^n,$$

mit $c_{3n}=n,$ $c_{3n+1}=n^2$ und $c_{3n+2}=n^3,$ $n\geq 0.$ Dann ist der Konvergenzradius dieser Potenzreihe

a) R = 0.

c) $R = \infty$.

b) R = 1.

d) nicht bestimmbar.

4) Die Funktion

$$f(z) := \frac{1}{\cos(z) - 1}$$

hat in $z_0 = 0 ...$

a) eine hebbare Singularität.

c) einen Pol zweiter Ordnung.

b) einen Pol erster Ordnung.

d) eine wesentlichen Singularität.

5) Sei

$$f(t) := \begin{cases} 0, & \text{für } t \in (-\pi, 0], \\ \sin t, & \text{für } t \in (0, \pi] \end{cases}$$

die 2π -periodische Funktion. Finden Sie den Koeffizienten a_4 der Fourier-Reihe

$$\frac{1}{2}a_0 + \sum_{n=1}^{\infty} \left(a_n \cos\left(\frac{n\pi}{L}t\right) + b_n \sin\left(\frac{n\pi}{L}t\right) \right)$$

der Funktion f(t):

a) 0.

- b) $-\frac{1}{5\pi}$.
- c) $-\frac{1}{15\pi}$.
- d) $-\frac{2}{15\pi}$
- 6) Die Fourier-Transformation der Funktion $h(t) := \frac{1}{t^2 + k^2}$ ist $\hat{h}(\xi) = \frac{1}{k} \sqrt{\frac{\pi}{2}} e^{-k|\xi|}$. Ferner sei g eine absolut integrierbare Funktion mit Fourier-Transformation \hat{g} . Verwenden Sie den Faltungssatz, um die Fourier-Transformation der Funktion

$$f(t) := \int_{-\infty}^{\infty} \frac{g(s)}{(t-s)^2 + 4} \mathrm{d}s$$

durch \widehat{g} auszudrücken.

a)
$$\hat{f}(\xi) = \frac{\pi}{4} \hat{g}(\xi) e^{-4|\xi|}$$
.

c)
$$\hat{f}(\xi) = \frac{\hat{g}(\xi)}{\xi^2 + 4}$$
.

b)
$$\hat{f}(\xi) = \frac{\pi}{2}\hat{g}(\xi)e^{-2|\xi|}$$
.

d)
$$\widehat{f}(\xi) = \frac{\widehat{g}(\xi)}{\xi+2}$$
.

7) Finden Sie die Laplace-Transformation $\mathcal{L}[y(t)](s)$ der Lösung y(t) der folgenden Differentialgleichung:

$$\ddot{y}(t) - 4\dot{y}(t) - 5y(t) = t,$$
 $t > 0,$
 $\dot{y}(0) = -1,$ $y(0) = 0.$

a)
$$\mathcal{L}[y(t)](s) = \frac{1+s^2}{s(s-5)(s+1)}$$
.

c)
$$\mathcal{L}[y(t)](s) = \frac{1-s}{s(s-5)}$$
.

b)
$$\mathcal{L}[y(t)](s) = \frac{1+s^2}{s^2(s-5)(s+1)}$$
.

d)
$$\mathcal{L}[y(t)](s) = \frac{1-s}{s^2(s-5)}$$
.

8) Finden Sie die Inverse der folgenden Laplace-Transfromation

$$\mathcal{L}[y(t)](s) = 6 \cdot \left(\frac{1}{(s-1)^4} + \frac{1}{(s+1)^4}\right).$$

a)
$$y(t) = 2t^5 \cosh(t) H(t)$$
.

c)
$$y(t) = 2t^5 \sinh(t) H(t)$$
.

b)
$$y(t) = 2t^3 \cosh(t) H(t)$$
.

d)
$$y(t) = 2t^3 \sinh(t) H(t)$$
.

Aufgabe 2 [10 Punkte]

- a) [2 Punkte] Sei $f(x+iy):=x^4-6x^2y^2+y^4+i(4x^3y-4xy^3)$. Zeigen Sie, dass f holomorph ist.
- b) [4 Punkte] Berechnen Sie folgendes Wegintegral

$$I := \int_{\gamma_1} f(z) \mathrm{d}z$$

entlang der Kurve γ_1 , welche in Abbildung 1 dargestellt ist.

Figure 1: Die Kurve γ_1 startet im Punkt $-\imath$ und endet im Punkt \imath .

c) [4 Punkte] Berechnen Sie

$$\int_{\gamma_1} \frac{1}{z} dz.$$

Aufgabe 3 [12 Punkte] Berechnen Sie das Integral

$$\int_{-\infty}^{\infty} \frac{1}{(x^2 - 4x + 13)^2} \, \mathrm{d}x$$

mit Hilfe des Residuensatzes.