

C20-EE-CHPP-PET-401

7444

BOARD DIPLOMA EXAMINATION, (C-20) JUNE/JULY—2022

DEEE – FOURTH SEMESTER EXAMINATION

ENGINEERING MATHEMATICS-III

Time: 3 hours [Total Marks: 80

PART—A

 $3 \times 10 = 30$

Instructions:

- (1) Answer all questions.
 - (2) Each question carries three marks.

1. Solve
$$\frac{d^2y}{dx^2} - 3\frac{dy}{dx} - 4y = 0$$

2. Solve
$$(D^2 + 4D + 13)y = 0$$
, where $D = \frac{d}{dx}$.

- 3. Find the particular integral of $(D^2 + 1)y = 1$, where $D = \frac{d}{dx}$.
- 4. Find the particular integral of $\frac{d^2y}{dx^2} + y = \sin x$.
- 5. Find $L\{\sin 2t \cos t\}$
- 6. Find $L\{te^{-t}\}$

/7444

[Contd...

7. Find
$$L^{-1}\left\{\frac{1}{s^2} - \frac{9}{s^2 + 9} + \frac{2s}{s^2 - 4}\right\}$$

- 8. Find the value of a_0 in the Fourier series expansion of $f(x) = e^{-x}$ in the interval (-1,1).
- 9. Write the formulae for finding the Fourier coefficients of f(x) in the interval $(-\pi,\pi)$.
- 10. Expand $f(x) = 1(0 < x < \pi)$ in half-range Fourier Sine series.

Instructions: (1) Answer either (a) or (b) from each questions from part-B.

(2) Each question carries eight marks.

11. (a) Solve
$$\frac{d^3y}{dx^3} - 2\frac{d^2y}{dx^2} - \frac{dy}{dx} + 2y = 0$$

(b) Solve
$$(D^4 + 8D^2 + 16)y = 0$$
, where $D = \frac{d}{dx}$.

12. (a) Solve
$$(D^2 + 6D + 5)y = \cos x$$
, where $D = \frac{d}{dx}$.

(b) Solve
$$(D^2 - 4D + 4)y = x^2$$
, where $D = \frac{d}{dx}$.

/7444 2 [Contd...

13. (a) Find the Laplace transform of $f(t) = \cos t \cos 2t \cos 3t$.

(OR)

- (b) Find $L\{t^2e^t\sin 4t\}$.
- 14. (a) Find $L\left\{\frac{e^{2t}-e^{3t}}{t}\right\}$.
 - (b) Using Laplace transforms, evaluate $\int_0^\infty e^{-t} \frac{\sin t}{t} dt$
- 15. (a) Find $L^{-1}\left\{\frac{3s+13}{s^2+4s+3}\right\}$.

(OR)

(b) Find $L^{-1}\left\{\frac{s}{\left(s^2+1\right)^2}\right\}$, using convolution theorem.

PART—C 10×1=10

- InsInstructions: (1) Answer the following question.
 - (2) The question carries ten marks.
 - 16. Find the Fourier series for $f(x) = x^2$ in the interval $(0,2\pi)$ and hence deduce that $\frac{1}{1^2} \frac{1}{2^2} + \frac{1}{3^2} \frac{1}{4^2} + \dots = \frac{\pi^2}{12}$.

/7444 3

AA22-PDF