Промежуточная защита

Команда 28

Тема: Предсказание движения цен на фьючерсы на основе текстовых данных

Руководитель: Ковалева Александра Члены команды: Рябцев Василий, Фазилов Сергей, Хоменко Павел, Константинов Артем

Постановка задачи

Необходимо разработать модель для предсказания динамики изменения цен акций на основе различных текстовых данных.

К текстовым данным относятся: посты из реддита и твиттера, заголовки новостей, отчеты компаний по форме 10-k.

Также для модели необходимо разработать приложение с архитектурой клиент – сервер, на основе фреймворков FastAPI и Streamlit.

Цели на год

Сбор и обработка данных:

- Отбор компаний и источников текстовых данных;
- Парсинг и разметка данных;

Машинное обучение:

- Разведывательный анализ данных (EDA);
- Выбор алгоритмов и метрик;
- Обучение моделей и отбор наилучшего решения.

Глубокое обучение:

- Разработка архитектуры нейросети;
- Настройка и обучение модели;
- Оценка и улучшение качества модели.

Приложение:

- FastAPI: Разработка API для взаимодействия с моделью (эндпоинты, обработка данных, возврат результатов).
- Streamlit: Создание интерфейса для загрузки данных и визуализации результатов модели.
- Деплой: Развертывание приложения в Docker, тестирование.

Прогнозирование цены акции по твитам

инфлюенсеров

Общая информация о датасете

- 527 твитов;
- 11 атрибутов;
- твиты 71 инфлюенсера из списков <u>forbes.com</u>, <u>thecfoclub.com</u>, <u>hypefury.com</u>;
- твиты за последние 10 лет по 63 компаниям из разных секторов экономики;
- скрапинг и парсинг с помощью библиотеки <u>twikit</u>;
- английский язык

Описание атрибутов

- 1. **text** текст твита, заголовок превью от ссылки (если есть), список хэштегов (если есть). str
- 2. **is_quote_status** указывает на наличие у твита статуса цитаты. bool
- 3. **view_count** кол-во просмотров (пропуски заполнялись медианой). float
- 4. has_card указывает, содержит ли твит карточку. bool
- 5. **urls** указывает, содержит ли твит ссылку. bool
- 6. day день публикации. int
- 7. **month** месяц публикации. int
- 8. **year** год публикации. int
- 9. **is_in_reply_to** указывает, является ли твит ответов на другой твит. bool
- 10. **is_view_count** указывает, доступна ли информация о просмотрах твита. bool
- 11. **1_day_after** таргет: 1 на следующей день цена тикера, упомянутого в твите, выросла, 0 на следующий день цена тикера, упомянутого в твите, снизилась. int

Самые популярные слова в твитах

Самые популярные слова из превью ссылок

Самые популярные хэштеги

fridaynightdump tockmarket techstocksdividendstocks elonmusk Endowjones fedratecut florida

Количество просмотров

Рис. 1 – Твиты - кол-во просмотров

Рис. 2 – Твиты - кол-во просмотров, 0.75 квантиль

Количество твитов по годам

Соотношение классов таргета

target class	proportion	
1	0.53	
0	0.47	

Корреляция Пирсона

Baseline решение

Тип задачи: двухклассовая классификация

Метрики: ROC-AUC

Семейство моделей: Логистическая регрессия

Векторизаторы текстов: BoW, Tf-idf, Предобученный ProsusAI, Word2vec

Нормировка: StandardScaler

Доля теста: 0.1

Кол-во фолдов для кля кросс валидации: 5

Подбор гиперпараметров через GridSearchCV

BoW: max_features, ngram_range

Tf-idf: max_features, ngram_range, smooth_idf

LogisticRegression: C, penalty, solver, max_iter

Результаты обучения моделей на текстовых признаках

model name	ROC-AUC train	ROC-AUC test	std
bow_lr	0.99	0.60	0.06
tfidf_lr	0.96	0.61	0.03
prosus_Ir	0.57	0.62	0.06
w2v_lr	0.64	0.59	0.08

model name: <векторизатор>_<алгоритм> [_<версия>]

std рассчитывалось для оценок по кросс валидации для моделей с подобранными параметрами

Сравнение prosus_Ir обученной на текстовых признаках и на всех признаках

Model name	ROC-AUC train	ROC-AUC test	std
prosus_Ir	0.57	0.62	0.06
prosus_lr_num	0.62	0.62	0.07

Планы на второе полугодие

- 1. Собрать больше данных
- 2. Feature engineering
- 3. DL методы
- 4. Интерпретация предсказаний модели

Прогнозирование цены акции по

корпоративным отчетам

Исходные данные для исследования

- 1 476 отчетов 10-К (годовой корпоративный отчет) по 112 компаниям из разных секторов экономики за 2004-2023 годы
- Из-за большой длины отчета (в среднем 60 тыс. слов) и сложности машинной обработки большого датасета (2,2 Гб) для построения модели был использован только раздел "Management Discussion and Analysis (MD&A)
- MD&A содержит анализ финансовых результатов компании, планы и риски, которые могут повлиять на будущее
- Поскольку большинство трансформеров может обрабатывать только 512 токенов, методами оптимизации был определен участок MD&A, дающий наибольший Accuracy

EDA

Выше приведены словы из топ-300 биграмм, которые есть в одной группе таргета, но отсутствуют в другой:

- в акциях, которые росли после публикации отчетности, встречались уникальные слова с позитивной коннотацией: results, growth, increased, revenues, income, earnings, value, profit
- у падающих компаний в биграммах встречали слова с негативным подтекстом: credit, limited, trials, obligations

Результаты моделирования (1/2)

Модель	Target	Фрагмент текста	Accuracy (train)	Accuracy (test)
BoW (unigrams)	target_3	22500:24500	100%	59%
BoW (bigrams)	target_3	45500:48500	100%	60%
BoW (trigrams)	target_3	56500:59500	88%	59%
TF-IDF (unigrams)	target_3	500:3500	79%	59%
TF-IDF (bigrams)	target_3	60500:66500	87%	56%

Результаты моделирования (2/2)

Модель	Target	Фрагмент текста	Accuracy (train)	Accuracy (test)
TF-IDF (trigrams)	target_3	22500:24500	80%	59%
BERT (DistilBERT)	target_10_index	45500:48500	70%	60%
BERT (FinBERT)	target_10_index	56500:59500	74%	59%
GPT-2	target_1_index	500:3500	74%	59%

Итоговая модель

В качестве итоговой модели выбран трансформер DistilBERT, так как он обладает наименьшим уровнем переобучения и является "легким" трансформером

ROC-AUC baseline модели: 0.62

Направления дальнейших исследований

- Обогащение датасета числовыми данными показателями финансовой отчетности, обучение модели с учетом показателей отчета
- Оптимизация гиперпараметров модели
- Обучение трансформера на данных отчетов 10К

Прогнозирование цены акции по

НОВОСТЯМ

Общая информация о датасете

- 302 объекта (тикера);
- 582800 наблюдений;
- 5 атрибутов;
- новости с более чем 15 источников: Reuters, Yahoo Finance, Forbes, Bloomberg, NY Times & etc.;
- новости за период январь 2020 апрель 2024;
- английский язык

EDA

- в акциях, которые росли после публикации новостей, в заголовках встречались уникальные слова: growth, more, earnings, best, new, apple
- в текстах аналогичные слова: result, revenue, first, strong, up, announced

Приложение Streamlit

Пример работы клиента (10k)

Сервисная часть на FastAPI

Как реализована сервисная часть на FastAPI

Структура кода:

- 1) Загрузка модели: pickle.load()
- 2) Обработка данных и предсказания: pd.DataFrame(), model.predict()
- 3) Возврат гиперпараметров: model.get_params()
- 4) Запуск сервера: uvicorn.run()

Демонстрация работы сервиса на FastAPI

Демонстрация работы сервиса на FastAPI

Распределение работы в команде

Рябцев Василий: парсинг и скрапинг твиттера, EDA твиттер, обучение моделей твиттер, деплой (развертывание приложения в Docker, настройка логов), разработка в FastAPI и Streamlit (частично).

Константинов Артем: парсинг и обработка датасета новостей, Streamlit.

Хоменко Павел: скрипт для получения котировок по API AlphaVantage, сбор данных и EDA датасета 10K, обучение модели, разработка FastAPI, перенос EDA в Streamlit

Фазилов Сергей: разработка FastAPI