Example 46.2. Let (P) be the following linear program in standard form.

maximize
$$x_1 + x_2$$

subject to
$$-x_1 + x_2 + x_3 = 1$$

$$x_1 + x_4 = 3$$

$$x_2 + x_5 = 2$$

$$x_1 \ge 0, x_2 \ge 0, x_3 \ge 0, x_4 \ge 0, x_5 \ge 0.$$

The matrix A and the vector b are given by

$$A = \begin{pmatrix} -1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \end{pmatrix}, \quad b = \begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix}.$$

Figure 46.1: The planar \mathcal{H} -polyhedron associated with Example 46.2. The initial basic feasible solution is the origin. The simplex algorithm first moves along the horizontal orange line to feasible solution at vertex u_1 . It then moves along the vertical red line to obtain the optimal feasible solution u_2 .

The vector $u_0 = (0, 0, 1, 3, 2)$ corresponding to the basis $K = \{3, 4, 5\}$ is a basic feasible solution, and the corresponding value of the objective function is 0 + 0 = 0. Since the columns (A^3, A^4, A^5) corresponding to $K = \{3, 4, 5\}$ are linearly independent we can express A^1 and A^2 as

$$A^{1} = -A^{3} + A^{4}$$
$$A^{2} = A^{3} + A^{5}.$$