

23, Headington Drive, Cambridge. CB1 9HE Tel: 01954 251974 (test site) or: 01223 241140 (accounts) Fax: 01954 251907 web: www.dbtechnology.co.uk email: mail@dbtechnology.co.uk

REPORT ON ELECTROMAGNETIC COMPATIBILITY TESTS

Performed at: TWENTY PENCE TEST SITE

> **Twenty Pence Road,** Cottenham, Cambridge U.K. **CB24 8PS**

> > on

Dentaku London

Ototo

dated

17th July 2014

Document History

Issue	Date	Affected page(s)	Description of modifications	Revised by	Approved by
1	23/07/14		Initial release		

Based on report template: v090319

	Report No: Issue No:	R3370 1	FCC ID: 2ACKT-OTOTO1		
dB	Test No:	T5219	Test Report	Page:	2 of 15

Equipment Under Test (EUT): Ototo

Test Commissioned by: Dentaku London

Unit 11

Dalston Studios 230 Dalston Lane

London E8 1LA

Representative: Mark McKeague

Test Started: 20th June 2014

Test Completed: 1st July 2014

Test Engineer: Russell McDonnell

Date of Report: 17th July 2014

Written by: Russell McDonnell Checked by: Derek Barlow

Signature: Signature:

Date: 17th July 2014 Date: 23rd July 2014

dB Technology can only report on the specific unit(s) tested at its site. The responsibility for extrapolating this data to a product line lies solely with the manufacturer.

Test Standards Applied

CFR 47 Code of Federal Regulations: Pt 15 Subpart B- Radio Frequency Devices Unintentional Radiators

Measurements performed at dB Technology FCC Listed test facility, registration No: 90528

Emissions Test Results Summary

CFR 47 PASS

Test	Port	Method	Limit	PASS/FAIL	Notes
Conducted Emissions	ac power	ANSI C63.4:2003	FCC(B) = CISPR22(B)	PASS	
Radiated Emissions		ANSI C63.4:2003	CISPR22(B)	PASS	

specs fccv100412

	Report No: Issue No:	R3370 1	FCC ID: 2ACKT-OTOTO1		
1 /	Test No:	T5219	Test Report	Page:	3 of 15

Contents

1 EUT Details	4
1.1 General	4
1.2 Modifications to EUT and Peripherals	4
1.3 EUT Operating Modes	
Figure 1 General Arrangement of EUT and Peripherals	
1.4 Details of Interconnecting Cables	
Photograph 1 Radiated Emissions: Front view	
Photograph 2 Radiated Emissions: Front view	
Photograph 3 Conducted Emissions setup	7
Photograph 4 Conducted Emissions: LISN connection	7
2 Test Equipment	8
3 Test Methods	9
3.1 Conducted Emissions - ac power	9
3.2 Radiated Emissions	9
4 Test Results	9
4.1 Conducted Emissions (Power) - Results	10
4.2 Radiated Emissions Results	11
PLOT 1 Conducted Emissions 150 kHz to 30 MHz 115V AC Live	12
PLOT 2 Conducted Emissions 150 kHz to 30 MHz 115V AC Neutral	13
PLOT 3 Radiated Emissions 25 MHz to 275 MHz	14
PLOT 4 Radiated Emissions 250 MHz to 1 GHz	

	Report No: Issue No:	R3370 1	FCC ID: 2ACKT-OTOTO1		
(dB)	Test No:	T5219	Test Report	Page:	4 of 15

1 EUT Details

1.1 General

The EUT was "Ototo", a circuit board synthesizer. It was an unenclosed PCB, designed to be used in a domestic environment. It was powered over USB, and included microprocessor circuitry with a maximum frequency of 16 MHz.

Details of the EUT and associated peripherals used during the tests are listed below. Figure 1 shows the interconnections between the EUT and peripherals.

Item	Manufacturer	Model	Description	Serial No:	Notes
1 2 3 4 5 6 7 8 9	Dentaku Ltd Dentaku Ltd Dentaku Ltd Dentaku Ltd Dentaku Ltd Apple Apple Apple AIAIAI	Ototo Light sensor Force sensor Rotation sensor Joystick MacBook Air A1374 A1433 TMA-1	Circuit board synth Light sensor Force sensor Rotation sensor Joystick Laptop PSU 14.5V 3.1A Ethernet adapter Headphones	001 001 001 001 001 C02GM20PDJWR none none 1236	EUT #1 #1 #1 DoC Verif DoC #1

^{#1} Passive devices not requiring FCC authorisation.

1.2 Modifications to EUT and Peripherals

Details of any modifications that were required to achieve compliance are listed below. The modification numbers are referred to in the results sections as appropriate.

Mod No:	Details	Implemented for
0	As supplied 21st May 2014.	

1.3 EUT Operating Modes

The EUT was tested in the following operating mode or modes. Generally, operating modes are chosen that will exercise the functions of the EUT as fully as possible and in a manner likely to produce maximum emission levels or susceptibility. Individual test result sheets reference the operating mode of the EUT.

Operating Mode	Details
1	Ototo board playing test sequence from flash memory, USB (12Mbps) comms to Macbook air. H pattern on display. Ethernet internet connection active.

	Report No: Issue No:	R3370 1	FCC ID: 2ACKT-OTOTO1		
dB	Test No:	T5219	Test Report	Page:	5 of 15

Figure 1 General Arrangement of EUT and Peripherals

1.4 Details of Interconnecting Cables

The following table lists details of the cables connected to the EUT.

_	_		1	l
From	То	Cable Type	Length	Notes
mains	laptop PSU	3 core	2m	
laptop PSU	laptop	DC co-ax	2m	
laptop Ethernet adapter	local network	Ethernet Cat5 SFTP	5m	
EUT	laptop	USB shielded	1m	
EUT	Rotation sensor	3 core twisted	50cm	
EUT	Force sensor	3 core twisted	50cm	
EUT	Joystick	3 core twisted	50cm	
EUT	Light sensor	3 core twisted	50cm	
EUT	Croc clips X 12	Single core	40cm	
EUT	Headphones	Audio co-ax	1.5m	
EUI	Headphones	Audio co-ax	1.5m	

	Report No: Issue No:	R3370 1
dB	Test No:	T5219

Test Report

Page:

6 of 15

Photograph 1 Radiated Emissions: Front view

Photograph 2 Radiated Emissions: Front view

This report shall not be reproduced except in full, without the written approval of: dB Technology (Cambridge) Ltd.

A	Report No: Issue No:	R3370 1
dB	Test No:	T5219

Test Report

Page:

7 of 15

Photograph 3 Conducted Emissions setup

Photograph 4 Conducted Emissions: LISN connection

	Report No: Issue No:	R3370 1	FCC ID: 2ACKT-OTOTO1		
dB	Test No:	T5219	Test Report	Page:	8 of 15

2 Test Equipment

The test equipment used during the tests was one or more of the items listed below. Individual test result sheets indicate which items were used.

Ref No:	Details	Serial Number	Cal Date	Cal Interval
A24 A5 L1 L2 R10 R4	Chase X-wing Bilog CBL6144 26MHz-3GHz Chase Bilog CBL6111A EMCO 3825/2 LISN R&S ESH3-Z5 LISN Narda PMM 9010 Receiver (10Hz-30MHz) R&S ESVS10	27590 1760 1358 843862/009 595WX11003 843744/002	28/10/2013 03/03/2014 21/02/2014 21/02/2014 12/02/2014 13/12/2013	1 year 1 year 1 year 1 year 1 year 1 year
R4 R9	R&S ESVS10 Agilent E7405A Spectrum Analyser	843744/002 MY45110758	13/12/2013 19/11/2013	1 year 1 year

	Report No: Issue No:	R3370 1	FCC ID: 2ACKT-OTOTO1		
dB	Test No:	T5219	Test Report	Page:	9 of 15

3 Test Methods

3.1 Conducted Emissions - ac power

Bench top EUTs and peripheral equipment are normally placed on a 0.8m high non-conducting bench, positioned 0.4m from one of the metallic walls of a screened room. Floor standing EUTs are normally placed 0.1m above the metallic floor of the screened room. Mains leads are bundled so as not to exceed 1m

The EUT is powered using a 50ohm/50uH Line Impedance Stabilisation Network (LISN). Peripherals are powered using a second a 50ohm/50uH LISN. These LISNs are bonded to the screened room floor.

With the correct supply voltage applied to the EUT scans are performed on both the live and neutral line outputs of the LISN using quasi-peak detection over the specified frequency range. The results of these scans are shown in the plots section at the end of the report.

Significant emissions identified by the scans are measured and the results tabulated. The table of results is shown in the conducted emissions results section. Corrections are applied as shown below:

Final Level = Receiver Reading + Combined Cable and Attenuation Correction Factor (dBuV) (dBuV) (dB)

Example: if, @191kHz, receiver reading was 35.8dBuV and the combined correction factor was 10dB

Final level = 35.8 + 10.0 = 45.8 dBuV

3.2 Radiated Emissions

Initial scans are performed in a semi-anechoic screened room at a distance of 3m. Scans are performed over the frequency range specified in the test standard with the antenna both horizontally and vertically polarised. During these scans the EUT and peripherals are rotated through 360°. Bench top EUTs are placed on a non-conducting bench at a height of 0.8m above the ground plane. Floor standing EUTs are placed 0.1m above the ground plane. The EUT cables were manipulated in an attempt to produce maximum emissions. The results of the scans are shown in the plots included at the end of the report.

Significant emissions identified by the scans are measured on an open area test site at the appropriate test distance using a CISPR16 quasi-peak receiver. Maximised readings are obtained by rotating the EUT through 360° and adjusting the height of the antenna from 1m to 4m. Measurements are made with the antenna both horizontally and vertically polarised and the results tabulated.

Tabulated results show levels based on the following calculation:

Field Strength (dBuV) = receiver reading (dBuV) + CF (dB/m).

CF is the correction factor for the antenna and the cable.

For example: if, at 114MHz, receiver reading was 17.9dBuV, combined correction factor = 13.1 (dB/m).

Total field strength = 17.9 + 13.1 = 31.0 dBuV/m

Where a narrow band measurement has been taken an additional correction factor is included.

4 Test Results

The following sections contain tabulated test results. Plots of various scans are included at the back of this section.

	Report No: Issue No:	R3370 1	FCC ID: 2ACKT-OTOTO1		
dB	Test No:	T5219	Test Report	Page:	10 of 15

Conducted Emissions (Power) - Results 4.1

L1_14A AB002_CBL005_CBL039_14A - -Factor Set 1:

Factor Set 2: Factor Set 3:

Test Equipment: R10 L1 CSET001 L2

Com	pany:	Dentaku London Product: Ototo										
Date			//2014					Test Eng: Russell McDonnell				
Ports		ac pow										
Test		ANSI	C63.4:	2003	using l	imits	of	FCC(I	3)	=	=CISPR22(E	3)
Ports						,	•					
Test					using l	imits	OT					
Plot	Op	Mod	Line	Fact	Freq.	Det	Rec.	Corr'n	Total	Limit	Margin	Notes
	Mode		(L/N)	Set	MHz	qp/	Level	Factor	Level	FCC(B)	FCC(B)	
						av	dBuV	dB	dBuV	dBuV	dB	
1	1	0	L	1	0.160	qp	45.65	10.05	55.7	65.5	9.8	
1	1	0	L		0.160	av	31.0	10.03	41.0	55.5	14.5	
1	1	0	L	1 1	0.175	qp	42.5	10.0	52.6	64.7	12.2	
1	1	0	L	1 1	0.175	av	23.4	10.0	33.4	54.7	21.3	
1	1	0	L	1	0.190	qp	39.9	10.0	49.9	64.0	14.1	
1	1	0	L	1	0.190	av	26.2	10.0	36.3	54.0	17.8	
1	1	0	L	1	0.232	qp	34.4	10.0	44.4	62.4	18.0	
1	1	0	L	1	0.232	av	17.4	10.0	27.5	52.4	24.9	
1	1	0	L	1	0.515	qp	28.4	10.0	38.4	56.0	17.6	
1	1	0	L	1	0.515	av	21.0	10.0	31.0	46.0	15.0	
1	1	0	L	1	0.560	qp	20.9	10.0	30.9	56.0	25.1	
1	1	0	L	1	0.560	av	12.6	10.0	22.6	46.0	23.4	
2	1	0	N	1	0.160	qp	46.2	10.1	56.3	65.5	9.2	
2	1	0	N	1	0.160	av	31.4	10.1	41.4	55.5	14.0	
2	1	0	N	1	0.175	qp	39.4	10.0	49.4	64.7	15.3	
2	1	0	N	1	0.175	av	20.2	10.0	30.3	54.7	24.4	
2	1	0	N	1	0.190	qp	40.4	10.0	50.4	64.0	13.6	
2	1	0	N	1 1	0.190	av	24.4	10.0	34.4	54.0	19.6	
2	1	0	N	1 1	0.232	qp	34.0	10.0	44.0	62.4	18.4	
2	1	0	N N	1 1	0.232 0.515	av	19.2 28.4	10.0	29.2 38.4	52.4 56.0	23.2 17.6	
2	1		N		0.515	qp av	21.5	10.0	31.5	46.0	14.5	
2	1		N		0.560	qp	21.3	10.0	31.3	56.0	24.7	
2	1	0	N	1	0.560	av	13.8	10.0	23.8	46.0	22.2	
											,	
	Resul	ts					Minimu PASS/F		jin	9.2 PASS	dB	
No	tes						Comme	nts and	Observ	vations		
			Populto	of soc	una abass	o in al	oto 1 a=	.d 2				
		'	nesuits	oi sca	ıns showı	т ш рк	ots i an	iu Z				

Test Report

Page:

11 of 15

4.2 Radiated Emissions Results

Factor Set 1: A5_14A - - CBL015_14A

1 m cable

Factor Set 2: - - - - Factor Set 3: - - - - - Test Equipment: R4 A5

Radiated Emissions

Key:

Com	ea Em	nissions	Products										
Com	рапу.	Dent	aku	Lond	don				C)toto			
Date		20/06	20/06/2014 Test Eng: Peter Barlow										
Ports		4 4 101	ANSI C63.4:2003 using limits of CISPR22(B)										
Test Ports		ANSI	C63	.4:200	J3 using	limits	s of	CIS	PR22(E	3)			
Test					uning	limits	of						
7001					usiriy	minus	5 01						
Plot	Op Mode	Mod State	Dist m	Fact Set	Freq. MHz	Ant Pol	Rec. Level dBuV	Corr'n Factor dB/m	Corr'n Factor dB	Total Level dBuV/m	Limit CISPR22(B) dBuV/m	Margin CISPR22(B) dB	Notes
3	1	0	10	1	30.180	V	0.8	18.9		19.7	30.0	10.3	
3	1	0	10	1	30.180	H	-4.0	18.9		14.9	30.0	15.1	
3	1	0	10	1	36.088	V	7.5	15.8		23.3	30.0	6.7	
3	1	0	10	1	36.088	H	2.0 8.1	15.8		17.8	30.0	12.2	
3	1 1	0 0	10 10	1 1	41.006 41.006	V H	-1.9	13.2		21.3 11.3	30.0 30.0	8.7 18.7	
3	' 1		10	1	115.800	V	5.5	13.2		18.6	30.0	11.4	
3	' 1		10	'	115.800	H	2.5	13.1		15.6	30.0	14.4	
3	' 1	0	10	'	118.300	V	5.5	13.3		18.8	30.0	11.2	
3	1	0	10	1	118.300	H	3.8	13.3		17.1	30.0	12.9	
3	1	0	10	1	144.000	V	12.3	13.3		25.6	30.0	4.4	
3	1	0	10	1	144.000	Н	14.5	13.3		27.8	30.0	2.2	
3	1	0	10	1	156.024	V	12.5	12.7		25.2	30.0	4.8	
3	1	0	10	1	156.024	Н	6.3	12.7		19.0	30.0	11.0	
3	1	0	10	1	160.000	V	9.8	12.4		22.2	30.0	7.8	
3	1	0	10	1	160.000	Н	3.2	12.4		15.6	30.0	14.4	
3	1	0	10	1	185.500	V	7.8	10.9		18.7	30.0	11.3	
3	1	0	10	1	185.500	Н	-0.6	10.9		10.3	30.0	19.7	
4	1	0	10	1	384.016	V	3.1	19.1		22.2	37.0	14.8	
4	1	0	10	1	384.016	H	4.8	19.1		23.9	37.0	13.1	
	Resul	ts	ts Minimum Margin 2.2 dB PASS/FAIL PASS										
No	tes					Comr	ments a	nd Obse	ervation	าร			
			Resul	lts of	scans shov	vn in p	olots 3 a	nd 4.					
		l	Unless otherwise noted measurements were made using a 120kHz bandwidth. Unless otherwise noted measurements were made using a quasi-peak detector.										

These measurements were made at 10m on an Open Area Test Site.

qp - quasi-peak, av - average, pk - peak

<u> </u>	Report No: Issue No:	R3370 1
dB	Test No:	T5219

Test Report Page: 12 of 15

PLOT 1 Conducted Emissions 150 kHz to 30 MHz 115V AC Live

Company:	Dentaku Lt	d	Product:	Ototo		
Date:	01 Jul 14		Test Enginee	er: R McDonnell		
Test:	FCC pt 15		Limit:	EN (B) QP +	AV	
Notes:						
The EUT was p	powered via USI	B from a MacBook	Air connected via a m	nains to DC adapter		
to 115V AC su	pplied via LISN	L1. Ethernet STP le	ead from MacBook co	onnected		
via ISN7 to net	work.					
Equipment: L1	, R10, AB002, C	CBL 005, CBL 039,	ISN7			
Line:	Live	Attenuator:	10dB PAD	Operating Mode:	1	
Detector:	QuasiPeak			Mod. State:	0	
LISN:	EMCO	Filename:	C4701483.png			

<u> </u>	Report No: Issue No:	R3370 1
dB	Test No:	T5219

Test Report	Page:	13 of 15
-------------	-------	----------

PLOT 2 Conducted Emissions 150 kHz to 30 MHz 115V AC Neutral

Company:	Dentaku Ltd		Product:	Ototo
Date:	01 Jul 14		Test Enginee	r: R McDonnell
Test:	FCC pt 15		Limit:	EN (B) QP + AV
Notes:				
The EUT was po	wered via USB fr	om a MacBook Ai	r connected via a m	ains to DC adapter
to 115V AC sup	plied via LISN L1	. Ethernet STP lea	d from MacBook co	onnected
via ISN7 to netw	ork.			
Equipment: L1,	R10, AB002, CBL	. 005, CBL 039, IS	SN7	
Line:	Neutral	Attenuator:	10dB PAD	Operating Mode: 1
Detector:	QuasiPeak			Mod. State: 0
LISN:	EMCO	Filename:	C4701499.png	

PLOT 3 Radiated Emissions 25 MHz to 275 MHz

Company:	Dentaku London	Product:	Ototo
Date:	20/06/2014	Test Eng:	Peter Barlow
Method:		Method:	
Limit1:(RED)	EN55022(B)@3m	Limit2:(GRN)	FCC(B)@3m
Limit3:		Limit4:	

Op mode: Ototo board playing test sequence from flash memory, USB (12Mbps) comms to MacBook air. H pattern on display. Ethernet internet connection active.

Setup: Ototo board with USB connection to MacBook air running from PSU. Ototo board with 4x sensors (joystick, pot, light, force) on 50 cm leads. 12x croc clips on 40 cm leads. MacBook with thunderbolt to ethernet adapter connected. CAT5 SFTP cable from Adapter to local network. Mod state: Version 4. Mod state 0.

Vertical Antenna Polarisation = Black Trace. Horizontal = Blue Trace.

Facility:	Anech_2	Height	1m,1.5m,2m	Mode:	1
Distance	3m	Polarisation	V+H	Modification State:	0
Angle	0-360	File:	H4520570	Analyser:	R9

PLOT 4 Radiated Emissions 250 MHz to 1 GHz

Company:	Dentaku London	Product:	Ototo
Date:	20/06/2014	Test Eng:	Peter Barlow
Method:		Method:	
Limit1:(RED)	EN55022(B)@3m	Limit2:(GRN)	FCC(B)@3m
Limit3:		Limit4:	

Op mode: Ototo board playing test sequence from flash memory, USB (12Mbps) comms to MacBook air. H pattern on display. Ethernet internet connection active.

Setup: Ototo board with USB connection to MacBook air running from PSU. Ototo board with 4x sensors (joystick, pot, light, force) on 50 cm leads. 12x croc clips on 40 cm leads. MacBook with thunderbolt to ethernet adapter connected. CAT5 SFTP cable from Adapter to local network. Mod state: Version 4. Mod state 0.

Vertical Antenna Polarisation = Black Trace. Horizontal = Blue Trace.

Facility:	Anech_2	Height	1m,1.5m,2m	Mode:	1
Distance	3m	Polarisation	V+H	Modification State:	0
Angle	0-360	File:	H452058D	Analyser:	R9