2 Unit Bridging Course – Day 10

Circular Functions II – The general sine function

Clinton Boys

The general sine function

We're now going to consider variations on the sine function.

This is similar to the fact that y = x is a linear function (perhaps the prototypical linear function), but that

$$ax + by + c = 0$$

represents the most general form of a linear function.

The general sine function

We're now going to consider variations on the sine function.

This is similar to the fact that y = x is a linear function (perhaps the prototypical linear function), but that

$$ax + by + c = 0$$

represents the most general form of a linear function.

Ordinarily, the graph of $y = \sin x$ is always between y = 1 and y = -1.

When we multiply by A, the graph of $y = A \sin x$ is always between y = A and y = -A.

A is called the amplitude of the function $y = A \sin x$.

Ordinarily, the graph of $y = \sin x$ is always between y = 1 and y = -1.

When we multiply by A, the graph of $y = A \sin x$ is always between y = A and y = -A.

A is called the amplitude of the function $y = A \sin x$.

Ordinarily, the graph of $y = \sin x$ is always between y = 1 and y = -1.

When we multiply by A, the graph of $y = A \sin x$ is always between y = A and y = -A.

A is called the amplitude of the function $y = A \sin x$.

 $y = \sin(3x)$

If we change $y = \sin x$ to $y = \sin(\omega x)$, the effect is to stretch or compress the graph horizontally.

If $\omega >$ 1, then the graph becomes compressed – we need to now fit in the full sine curve ω times where we previously fitted it in once

If $\omega <$ 1 then the graph becomes stretched – we now have $1/\omega$ times as much space to fit in a full sine curve.

The number $\frac{2\pi}{\omega}$ is called the period of the function $y = \sin(\omega x)$.

If we change $y = \sin x$ to $y = \sin(\omega x)$, the effect is to stretch or compress the graph horizontally.

If $\omega>$ 1, then the graph becomes compressed – we need to now fit in the full sine curve ω times where we previously fitted it in once.

If $\omega <$ 1 then the graph becomes stretched – we now have $1/\omega$ times as much space to fit in a full sine curve.

The number $\frac{2\pi}{\omega}$ is called the period of the function $y = \sin(\omega x)$.

If we change $y = \sin x$ to $y = \sin(\omega x)$, the effect is to stretch or compress the graph horizontally.

If $\omega>$ 1, then the graph becomes compressed – we need to now fit in the full sine curve ω times where we previously fitted it in once.

If ω < 1 then the graph becomes stretched – we now have 1/ ω times as much space to fit in a full sine curve.

The number $\frac{2\pi}{\omega}$ is called the period of the function $y = \sin(\omega x)$.

Sketching sine curves

If we are given a general sine curve $y = A\sin(\omega x)$, we can sketch it without using calculus.

Indeed, if we know that the amplitude is A, and the period is $\frac{2\pi}{\omega}$, this is enough information to sketch the curve, since we know that the basic shape of the curve is the same as for $y = \sin x$.

We just need to change the height of the curve according to its amplitude A, and stretch or compress the curve horizontally according to its period $2\pi/\omega$.

Sketching sine curves

If we are given a general sine curve $y = A\sin(\omega x)$, we can sketch it without using calculus.

Indeed, if we know that the amplitude is A, and the period is $\frac{2\pi}{\omega}$, this is enough information to sketch the curve, since we know that the basic shape of the curve is the same as for $y = \sin x$.

We just need to change the height of the curve according to its amplitude A, and stretch or compress the curve horizontally according to its period $2\pi/\omega$.

Sketching sine curves

If we are given a general sine curve $y = A \sin(\omega x)$, we can sketch it without using calculus.

Indeed, if we know that the amplitude is A, and the period is $\frac{2\pi}{\omega}$, this is enough information to sketch the curve, since we know that the basic shape of the curve is the same as for $y = \sin x$.

We just need to change the height of the curve according to its amplitude A, and stretch or compress the curve horizontally according to its period $2\pi/\omega$.

Sketch the graph of the function $y = 2\sin(3x)$.

The amplitude is 2.

Sketch the graph of the function $y = 2\sin(3x)$.

The amplitude is 2.

Sketch the graph of the function $y = 2\sin(3x)$.

The amplitude is 2.

Sketch the graph of the function $y = 2\sin(3x)$.

The amplitude is 2.

Practice questions

Practice questions

For each of the following sine curves, write down the amplitude, the period, and sketch the curve.

- (i) $y = 3\sin(x/2)$
- (ii) $y = 2\sin(x/3)$
- (ii) $y = (1/2) \sin(2x)$
- (iv) $y = 4 \sin(\pi x)$.

Practice questions

Answers

- (i) amplitude 3, period 4π
- (ii) amplitude 2, period 6π
- (iii) amplitude $\frac{1}{2}$, period π
- (iv) amplitude 4, period $\frac{2\pi}{\pi} = 2$.