Greedy Algorithm

Coins Changing Problem

Input: an integer value N

types of coins
$$\{v_1, v_2, ..., \}$$
 with $v_{i+1}=2v_i$, $v_1=1$

Output: the minimum number of coins to change N

- Example:
 - -N=15
 - $-v_1=1, v_2=2, v_3=4, v_4=8, \dots$
 - Optimal solution: 4 $(v_1: 1, v_2: 1, v_3: 1, v_4: 1)$

Greedy Solution

- What is your greedy choice?
 - $-v_G$ = Highest v_i such that $\leq N$ -----(*)
 - Example (Previous): N=15

4 Choices

Greedy Choice is correct (Proof)

Does this greedy choice guarantee the optimal solution?

Proof:

Let S_{opt} be the **set of coins** of optimal solution.

Let v_{opt} be the highest choice of S_{opt} .

Let S_G be the set of coins of greedy solution.

Let v_G be the highest choice of S_G.

Greedy Choice is correct (Proof)

- By (*), we have: $v_G \ge v_{opt}$.
- Case 1: if $v_G = v_{opt}$
 - → the optimal solution contains the greedy choice
- Case 2: if v_G > v_{opt}

	Optimal solution:				$a_{opt} > 0$, a_{opt-1} ,, $a_1 \ge 0$				
Value of a coin	v _G			V _{opt}	V _{opt-1}			V_2	V_1
Number of coins	0			a _{opt}	a _{opt-1}			a ₂	a ₁

- Claim: for all i in 1..opt, a_i must be either 0 or 1
 - Otherwise, if some a_i > 1, then we can reduce the number of coins in the optimal solution → contradiction!

Greedy Choice is correct (Proof)

After the round-up procedure

Value of a coin

Number of coins

V _G	 	V _{opt}	V _{opt-1}	 	V ₂	V ₁
0	 	a _{opt}	a _{opt-1}	 	a ₂	a ₁

- Case 2: $v_G > v_{opt}$ (continue)
- Claim: for all i in 1..opt, a_i must be either 0 or 1
- Total value in optimal solution $\leq v_{opt} + v_{opt-1} + ... + 1$

$$= v_{opt+1} - 1 < v_G \leq N$$

- \rightarrow Total value in optimal solution \leq N \rightarrow contradiction!
- Thus, Case 2 is impossible
- The proof is complete