QUANTENMECHANIK, BLATT 11, SOMMERSEMESTER 2015, C. KOLLATH

Abgabe Di 30.06 vor der Vorlesung. Besprechung 03.07

I. MAGNETISCHE RESONANZ

Ein Strahl von Neutronen, Teilchen mit Spin 1/2, bewegen sich entlang der x-Achse mit einer Geschwindigkeit v. Wir betrachten die Bewegung der Neutronen als eine klassische lineare Bewegung und behandeln nur den Spin quantenmechanisch. Seien $|n, +\rangle$ und $|n, -\rangle$ die Eigenzustände des Operators \hat{S}_z des Spins des Neutrons entlang Oz. Ein uniformes magnetisches Feld wird angelegt $\mathbf{B_0} = B_0 \mathbf{e_z}$. $\hat{\boldsymbol{\mu}} = \gamma_n \hat{\mathbf{S}}$ ist das magnetische Moment, $\hat{\mathbf{S}}$ der Spin, und γ_n das gyromagnetische Verhältnis des Neutrons.

- 1. Bestimmen Sie die Eigenenergien des Neutrons in Anwesenheit des magnetischen Feldes $\mathbf{B_0}$? Wir nehmen an $\omega_0 = -\gamma_n B_0$ (1 Punkt).
- 2. Die Neutronen durchqueren einen Resonator der Länge L zwischen den Zeiten t_0 und $t_1 = t_0 + \frac{L}{v}$. In diesem Resonator wird zusätzlich zum konstanten Feld $\mathbf{B_0}$, ein rotierendes Magnetfeld $\mathbf{B_1}(t)$ mit ω angelegt:

$$\mathbf{B_1}(t) = B_1(\cos \omega t \, \mathbf{e_x} + \sin \omega t \, \mathbf{e_y}) \tag{1}$$

Wir betrachten ein Neutron, welches zur Zeit t_0 in den Resonator eintritt. $|\psi_n(t)\rangle$ sei sein Spinzustand zur Zeit t mit $|\psi_n(t)\rangle = \alpha_+(t)|n,+\rangle + \alpha_-(t)|n,-\rangle$.

- (a) Leiten Sie die Gleichungen der Zeitentwicklung von $\alpha_{\pm}(t)$ für $t_0 \leq t \leq t_1$ her. Sei $\omega_1 = -\gamma_n B_1$ (2 Punkte).
- (b) Wir nehmen weiter an, dass $\alpha_{\pm}(t) = \beta_{\pm}(t) \exp(\mp i\omega(t-t_0)/2)$. Überführen Sie das Problem in ein Differentialgleichungssystem mit konstanten Koeffizienten (2 Punkte).
- (c) Wir betrachten $|\omega \omega_0| \ll \omega_1$ und wir vernachlässigen die Terme in $\omega \omega_0$. Zeigen Sie, dass für $t_0 \le t \le t_1$ gilt:

$$\beta_{\pm}(t) = \beta_{\pm}(t_0)\cos\theta - ie^{\mp i\omega t_0}\beta_{\mp}(t_0)\sin\theta,\tag{2}$$

wobei wir benutzt haben, dass $\theta = \omega_1(t - t_0)/2$ (6 Punkte).

(d) Zeigen Sie, dass in der selben Näherung, der Zustand des Spins beim Verlassen des Resonators zur Zeit t_1 gegeben ist durch:

$$\begin{pmatrix} \alpha_{+}(t_{1}) \\ \alpha_{-}(t_{1}) \end{pmatrix} = U(t_{0}, t_{1}) \begin{pmatrix} \alpha_{+}(t_{0}) \\ \alpha_{-}(t_{0}) \end{pmatrix}$$
(3)

wobei $U(t_0,t_1)$ die folgende Matrix ist :

$$U(t_0, t_1) = \begin{pmatrix} e^{-i\chi} \cos \phi & -ie^{-i\delta} \sin \phi \\ -ie^{i\delta} \sin \phi & e^{i\chi} \cos \phi \end{pmatrix}$$
(4)

mit $\phi = \omega_1(t_1 - t_0)/2$, $\chi = \omega(t_1 - t_0)/2$, und $\delta = \omega(t_1 + t_0)/2$ (2 Punkte).

II. RAMSEY METHODE

Wir wenden in dieser Aufgabe die Ergebnisse aus der vorherigen Aufgabe auf ein System aus zwei Resonatoren an. Wir behalten, die eingeführte Notation dazu bei. Die Neutronen wer-

FIG. 1. Ramsey-Konfiguration von zwei Resonatoren

den anfänglich im Zustand $|n, -\rangle$ präpariert. Sie durchqueren in Folge die zwei identischen Resonatoren, die wie in Aufgabe 1 ein zusätzliches rotierendes Feld enthalten; der Aufbau ist in Figur 1 dargestellt. Dasselbe Feld $\mathbf{B_1}(t)$ gegeben in (1) ist in den zwei Resonatoren angelegt. Die Amplitude B_1 des Feldes ist so gewählt, dass $\phi = \pi/4$. Ein konstantes Feld B_0 liegt im gesamten Aufbau an. Man misst am Ausgang für verschiedene Werte von ω nahe an ω_0 , die Zahl der Neutronen, die im Zustand $|n, +\rangle$ sind.

- 1. Sei ein Neutron, welches zur Zeit t_0 in den ersten Resonator eintritt, in dem Zustand $|n, -\rangle$. Was ist sein Spin-Zustand beim Austritt aus dem Resonator? Was ist die Wahrscheinlichkeit das Neutron im Zustand $|n, +\rangle$ an dem Ort zu finden (3 Punkte)?
- 2. Der Zeitpunkt des Eintritts in den zweiten Resonator ist $t'_0 = t_1 + T$, mit T = D/v, wobei D der Abstand zwischen den beiden Resonatoren ist. Zwischen den beiden Resonatoren,

präzesiert der Spin in dem Feld $\mathbf{B_0}$. Was ist der Zustand des Neutrons zum Zeitpunkt t_0' (2 Punkte)?

- 3. Sei t_1' der Zeitpunkt des Austritts aus dem zweiten Resonator: $t_1' t_0' = t_1 t_0$. Schreiben Sie die Übergangsmatrix $U(t_0', t_1')$ des zweiten Resonators. Drücken Sie $\delta' = \omega(t_1' + t_0')/2$ als Funktion von ω, t_0, t_1 und T aus (2 Punkte).
- 4. Berechnen Sie die Wahrscheinlichkeit P_+ das Neutron in dem Zustand $|n, +\rangle$ am Austritt des zweiten Resonators zu detektieren. Zeigen Sie, dass dieses eine oszillierende Funktion von $(\omega_0 \omega)T$ ist. Interpretieren Sie das Resultat (5 Punkte).

FIG. 2. Intensität am Austritt des Zustands $|n, +\rangle$ als Funktion der Frequenz $\omega/2\pi$ für einen Strahl von Neutronen mit einer Geschwindigkeitsverteilung.

- 5. Im Experiment, hat der Neutronenstrahl eine gewisse Dispersion von Geschwindigkeiten. Dieses führt zu einer Dispersion in der Zeit T des Flugs zwischen den Resonatoren. Das experimentelle Resultat gibt die Intensität des Neutronenstrahles im Zustand $|n, +\rangle$ als Funktion der Frequenz $\omega/2\pi$ in Figure 2.
 - (a) Finden Sie die Form des Signals der Messung, indem Sie das Resultat der vorherigen Frage mit einer Gauss'schen Wahrscheinlichkeitsverteilung mitteln,

$$dp(T) = \frac{1}{\sqrt{2\pi\tau^2}} e^{-\frac{(T-T_0)^2}{2\tau^2}} dT.$$

Es gilt
$$\int_{-\infty}^{+\infty} \cos(\Omega T) dp(T) = e^{-\Omega^2 \tau^2/2} \cos(\Omega T_0)$$
 (2 Punkte).

(b) Für dieses Experiment wurde $B_0 = 2.57 \ 10^{-2}$ Tesla und D = 1.6 m gewählt. Bestimmen Sie das magnetische Moment vom Neutron. Bestimmen Sie die mittlere

Geschwindigkeit $v_0 = D/T_0$ und die Dispersion der Geschwindigkeit $\delta v = v_0 \tau/T_0$ des Neutronenstrahls (5 Punkte).

III. QUANTENGEHEIMNISSE FÜR JEDERMAN

Lesen Sie den Artikel von Mermin und fassen Sie die wichtigen Ideen zusammen (15 Punkte).

IV. SYMMETRISCHES POTENTIAL

Was kann man über die Symmetrie der stationären Zustände eines Hamilton-Operators sagen, dessen Eigenwerte nicht-entartet sind, wenn das Potential eine gerade Funktion (V(x) = V(-x)) ist? Benutzten Sie, dass die Wellenfunktionen, die zu den diskreten aufsteigend geordneten Eigenwerten $E_1 < E_2 < ... < E_N$, einer eindimensionalen Schrödingergleichung gehören, eine wachsende Anzahl von Nullstellen haben. Die nte Funktion hat n-1 Nullstellen (8 Punkte).