Fluxo Máximo (1)

Zenilton Patrocínio

Rede de Fluxo

Uma rede de fluxo é um grafo direcionado e ponderado G = (V, E) em que se associa a cada aresta $e \in E$ um valor de capacidade u(e) > 0.

Existem dois vértices especiais em uma rede de fluxo:

- Vértice s: "source" (ou fonte) que representa a origem fluxo; e
- Vértice t: "terminal" (ou sumidouro) que representa o destino do fluxo.

Os demais nós da rede são denominados nós internos.

Assume-se que não há arestas entrando em **s** nem saindo de **t**, que todo vértice possui pelo menos uma aresta incidente a ele e que as capacidades são inteiras.

Fluxo

Um fluxo f de \mathbf{s} a \mathbf{t} em uma rede é uma função que associa a cada aresta $e \in E$ um número real não negativo f(e) satisfazendo às seguintes condições:

• Condição de capacidade: Para toda aresta $e \in E$, seu valor de fluxo é não negativo e <u>não pode exercer sua capacidade</u>, isto é,

$$0 \le f(e) \le u(e)$$

 Condição de conservação: Para todo vértice interno v, a soma dos fluxos das arestas que entram em v é igual ao total de fluxo das arestas que saem de v, isto é,

$$\sum_{e \in \Gamma^{-}(v)} f(e) = \sum_{e \in \Gamma^{+}(v)} f(e)$$

Fluxo – Exemplo

Rede de Fluxo

Fluxo – Exemplo

Fluxo – Exemplo

Fluxo Máximo

Dada uma rede, o problema de fluxo máximo consiste em determinar o maior valor de fluxo viável entre a fonte **s** e o sumidouro **t**.

Rede de Fluxo

Fluxo Máximo

Método de Ford-Fulkerson

Rede Residual

Dado um fluxo f em uma rede G = (V, E), a rede residual G'(f) é um grafo direcionado ponderado que:

- Possui os mesmos vértices que G, isto é, V(G') = V(G);
- Para toda aresta e = (v, w) ∈ E tal que f(e) < u(e), G'(f) contém a aresta direta (v, w) com capacidade (residual) igual a u_r(e) = u(e) f(e);
- Para toda aresta $e = (v, w) \in E$ tal que f(e) > 0, G'(f) contém a aresta reversa (w, v) com capacidade (residual) igual a $u_r(e) = f(e)$.

Um caminho na rede residual saindo da fonte **s** até o sumidouro **t** é chamado de **caminho aumentante** (ou caminho de aumento de fluxo).

Fluxo Viável

Rede Residual

Fluxo Viável

Rede Residual

Fluxo Viável

Rede Residual

Fluxo Viável

Rede Residual

Caminho Aumentante

Fluxo Viável

Rede Residual

Menor capacidade do caminho aumentante – "Gargalo" ou Δ

Caminho Aumentante

Método Ford-Fulkerson – Algoritmo

```
para toda aresta e \in E(G) faça f(e) \leftarrow 0;
                                                             // Inicializar fluxo
Construir a rede residual G'(f)
                                                             // Construir rede residual inicial
enquanto existir algum caminho aumentante P em G'(f) efetuar
a. \Delta = \min \{ u_r(e) \mid e \in P \};
                                                             // Determinar "gargalo" de P
     para cada aresta (v, w) \in P faça
     i. <u>se</u> (v, w) for aresta direta <u>então</u>
                f(v, w) \leftarrow f(v, w) + \Delta
                                                             // Aumentar fluxo
     ii.
           senão
                f(w, v) \leftarrow f(w, v) - \Delta
                                                             // Reduzir fluxo
    Atualizar a rede residual G'(f)
                                                             // Construir nova rede residual
```


Rede de Fluxo

Fluxo Viável

Fluxo Viável

Rede Residual

Fluxo Viável

Rede Residual

Caminho Aumentante

Fluxo Viável

Rede Residual

Caminho Aumentante

Fluxo Viável

Fluxo Viável

Rede Residual

Fluxo Viável

Rede Residual

Caminho Aumentante

Fluxo Viável

Rede Residual

Caminho Aumentante

Fluxo Viável

Fluxo Viável

Rede Residual

Dada uma rede G = (V, E) e um subconjunto $S \subset V$, tal que a fonte $s \in S$ e o sumidouro $t \notin S$.

O corte(S) – chamado de corte **s-t** da rede de fluxo – contém as arestas (v, w) em que vértice $v \in S$ e o vértice $w \notin S$.

A capacidade do corte(S) é dada pela soma das capacidades de suas arestas.

TEOREMA: Em qualquer rede de fluxo, o valor do fluxo máximo entre a fonte **s** e o sumidouro **t** é igual à capacidade do corte **s**-**t** mínimo da rede.

Rede de Fluxo

Rede de Fluxo

Rede de Fluxo

Rede de Fluxo

Rede de Fluxo

Rede de Fluxo

Rede Residual

Fluxo máximo = 30

Na solução ótima, S é o conjunto dos elementos alcançáveis a partir da fonte **s**

Rede Residual

Fluxo máximo = 30

Na solução ótima, S é o conjunto dos elementos alcançáveis a partir da fonte **s**

Rede Residual

Capacidade corte(S) = 30

Fluxo máximo = 30

