

TÓPICOS EM CIÊNCIA DE DADOS PARA O ESPORTE

MACHINE LEARNING: VISÃO COMPUTACIONAL

DIEGO RODRIGUES DSC

INFNET

AGENDA

- PARTE 1 : TEORIA
 - INTRODUÇÃO
 - HISTÓRIA DA ÁREA
 - APLICAÇÕES
 - APLICAÇÕES : ESPORTE
- PARTE 2 : PRÁTICA
 - REDE NEURAL CONVOLUTIVA DÍGITOS

CRONOGRAMA

DIA	NÚMERO	ÁREA	AULA	TRABALHOS
30/1/2024	1	Intro	Introdução a Disciplina e Organização do Ambiente	
1/2/2024	2	Dados	Coleta de Dados e Sensoriamento	
6/2/2024	3	Estatística	Variáveis Aleatórias	Grupos
8/2/2024	4		Análise Exploratória	
15/2/2024	5		Estatísticas para Ranqueamento	
20/02/2024	6		Ranqueamento Estatístico : ELO	
22/02/2024	7		Ranqueamento Estatístico : Glicko	
27/2/2024	8		Ranqueamento Estatístico : TrueSkill	
29/2/2024	9		Ranqueamento Estatístico : XELO	Base de Dados
5/3/2024	10	ML	Modelos de Aprendizado de Máquina	
7/3/2024	11		Machine Learning: Classificação	
12/3/2024	12		Machine Learning: Regressão	
14/3/2024	13		Machine Learning: Agrupamento	Pesquisa
19/3/2024	14		Machine Learning: Visão Computacional	
21/3/2024	15	Esportes	Aplicações & Artigos: Esportes Independentes	Modelo
26/3/2024	16		Aplicações & Artigos: Esportes de Objeto	
28/3/2024	17		Aplicações & Artigos: Esportes de Combate	
2/4/2024	18		Aplicações & Artigos : Betting	
4/4/2024	19	Workshop	Workshop	
9/4/2024	20		Apresentações de Trabalhos I	Apresentação
11/4/2024	21		Apresentações de Trabalhos II	

AMBIENTE PYTHON

4. Variáveis Aleatórias

5. Visualização

6. Estimação e Inferência

7. Machine Learning

1. Editor de Código

2. Gestor de Ambiente

3. Ambiente Python do Projeto

3. Notebook Dinâmico

INTRODUÇÃO

PARADIGMAS DE MODELAGEM ESTATÍSTICA

VISÃO COMPUTACIONAL É UMA DISCIPLINA DE INTELIGÊNCIA ARTIFICIAL

Visão computacional é o campo da Inteligência artificial (IA) que habilita computadores e sistemas digitais a extrair informações relevantes de imagens, vídeos e outros sensores visuais e é capaz de tomar ações ou fazer recomendações baseadas nessas informações.

Por conta de **centenas de milhares de anos de evolução**, a **visão humana** é capaz de determinar **distância entre objetos** e **quão longe** as coisas estão, **quanto estão se movimentando** e se há **algo errado com uma determinada imagem**.

A área de visão computacional se preocupa em treinar máquinas para desempenhar as mesmas funções da visão humana, mas, graças à velocidade de processamento das máquinas, ser capaz de superar a capacidade humana em muitas aplicações existentes.

VISÃO COMPUTACIONAL É UM CAMPO INTERDISCIPLINAR

Engenharia(s) / Parte Prática

- **Eletrônica**: câmeras, imageamento médico, microprocessadores e outros componentes para coletar, processar, transmitir e armazenar imagens.
- Computação: programação de sistemas que processem os dados de imagem / vídeo e disponibilizem para algum consumidor final.

Matemática(s) / Parte de Pesquisa

- Estudo teórico de como processar imagens e vídeos como tensores.
- Desenvolvimento de algoritmos especializados em imagens.

Áreas de Aplicação:

Esportes!

HISTÓRIA DA ÁREA

1957 - WALDEN SHOT: O PRIMEIRO SCANNER DE IMAGENS

O primeiro scanner desenvolvido para uso com um computador foi construído em 1957 no **National Bureau of Standards**, por um time liderado por Russell A. Kirsch. A primeira imagem escaneada foi uma fotografia de **Walden**, o filho de três meses de Kirsch.

1959 - FRAJOLA E AS LINHAS RETAS

Em 1959, neurofisiologistas mostraram um conjunto de imagens para um gato, tentando relacionar com sua resposta cerebral.

Os cientistas descobriram que o cérebro do gato respondia primeiro a linhas retas como bordas e contornos.

Isso trouxe a ideia para eles de que o processamento das imagens começa por **formas simples** como linhas e bordas.

1974 - OPTICAL CHARACTER RECOGNITION (OCR) E INTELLIGENT CHARACTER RECOGNITION (ICR)

Em 1974 chegou ao mercado um scanner que era capaz de interpretar os caracteres de texto. Isso iniciou a área de OCR que culminou em seguida na área de ICR, que busca identificar padrões de escrita.

1980'S - DAVID MARR

David Courtenay Marr foi um neurocientista e fisiologista que foi capaz de integrar resultados de psicologia, inteligência artificial e neurofisiologia e propor novos algoritmos de processamento visual.

Seu trabalho foi **pioneiro na** construção de algoritmos da área.

1980'S - NEUROCOGNITRON

Em paralelo a Marr, o cientista da computação Kunihiko Fukushima desenvolveu uma rede neural que era capaz de reconhecer padrões em imagens. A rede, chamada de Neocognitron, foi a primeira Rede Neural Convolucional (CNN) da história.

2001 - ALGORITMO VIOLA-JONES DE DETECÇÃO DE FACES

Algoritmo desenvolvido por Paul Viola e Michael Jones que se tornou o padrão para detecção de rostos antes dos modelos de redes neurais profundas.

2010 - IMAGENET

Em 2010 o dataset "ImageNet" foi disponibilizado, junto com as competições anuais de classificação de imagem. Essa base proveu a fundação para os modelos de CNN utilizados atualmente.

A Rede Neural AlexNet é um dos modelos mais importantes em Visão Computacional, por conta de seu pioneirismo na aplicação de CNNs e GPUs para acelerar o treinamento.

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts at the bottom. The GPUs communicate only at certain layers. The network's input is 150,528-dimensional, and the number of neurons in the network's remaining layers is given by 253,440–186,624–64,896–64,896–43,264–4096–4096–1000.

APLICAÇÕES

CLASSIFICAÇÃO DE IMAGENS

SEGMENTAÇÃO DE IMAGENS

Types of Image Segmentation

SEMANTIC IMAGE SEGMENTATION

INSTANCE SEGMENTATION

PANOPTIC SEGMENTATION

IDENTIFICAÇÃO

DETECÇÃO DE POSE

DETECÇÃO DE OBJETOS

TRACKING DE OBJETOS

BUSCA INDEXADA POR IMAGEM

RECONSTRUÇÃO DE CENA

INSPEÇÃO AUTOMATIZADA

NAVEGAÇÃO

REMOÇÃO DE RUÍDO

True image

Blurred and noisy image

Restoration by Algorithm 1

MODELOS GENERATIVOS

APLICAÇÕES: ESPORTE (ARTIGO)

REDE NEURAL CONVOLUTIVA

DEMO: REDE NEURAL CONVOLUTIVA DÍGITOS

DESAFIO: RODAR O NOTEBOOK VISÃO COMPUTACIONAL DÍGITOS!

PRÓXIMA AULA PESQUISAS!!!!