

Shape Matching

•	Where	have	we	enco	unter	ed s	shape	before	?
---	-------	------	----	------	-------	------	-------	--------	---

Low-level features

Edges

Silhouettes

Fitting

Want to associate a model with observed features

[Fig from Marszalek & Schmid, 2007]

For example, the model could be a line, a circle, or an arbitrary shape.

Deformable contours

Visual Dynamics Group, Dept. Engineering Science, University of Oxford.

Applications: Traffic monitoring

Human-computer interaction

Animation Surveillance

Computer Assisted Diagnosis in medical imaging

Role of shape

Analysis of anatomical structures
Figure from Grimson & Golland

Recognition, detection
Fig from Opelt et al.

Shape in recognition

Questions

- What features?
- How to compare shapes?

Fig. 1. Examples of two handwritten digits. In terms of pixel-to-pixel comparisons, these two images are quite different, but to the human observer, the shapes appear to be similar.

Chamfer distance

Average distance to nearest feature

$$D_{chamfer}(T, I) \equiv \frac{1}{|T|} \sum_{t \in T} d_I(t)$$

- T: template shape → a set of points
- I: image to search
 → a set of points
- d_i(t): min distance for point t to some point in I

Chamfer distance

Average distance to nearest feature

$$D_{chamfer}(T, I) \equiv \frac{1}{|T|} \sum_{t \in T} d_I(t)$$

Edge image

How is the measure different than just filtering with a mask having the shape points?

How expensive is a naïve implementation?

Distance transform

Image features (2D)

Distance Transform

1	0	1	2	3	4	3	2
1	0	1	2	3	3	2	1
1	0	1	2	3	2	1	0
1	0	0	1	2	1	0	1
2	1	1	2	1	0	1	2
3	2	2	2	1	0	1	2
4	3	3	2	1	0	1	2
5	4	4	3	2	1	0	1

Distance Transform is a function $D(\cdot)$ that for each image pixel p assigns a non-negative number D(p) corresponding to distance from p to the nearest feature in the image I

Features could be edge points, foreground points,...

Source: Yuri Boykov

Distance transform

original

Value at (x,y) tells how far that position is from the nearest edge point (or other

>> help bwdist

binary mage structure)

Distance transform (1D)

Two pass O(n) algorithm for 1D L₁ norm

```
1. <u>Initialize</u>: For all j D[j] \leftarrow 1_{\mathbf{p}}[j] // 0 if j is in P, infinity otherwise
```

Distance Transform (2D)

- 2D case analogous to 1D
 - Initialization
 - Forward and backward pass
 - Fwd pass finds closest above and to left
 - Bwd pass finds closest below and to right

8	8	8	8
8	0	8	×
8	0	8	8
8	8	8	8

∞	8	8	8
×	0	1	8
8	0	8	8
8	8	8	8

8	00	8	8
8	0	1	2
8	0	1	2
8	1	2	3

2	1	2	3
1	0	1	2
1	0	1	2
2	1	2	3

Chamfer distance

Average distance to nearest feature

$$D_{chamfer}(T, I) \equiv \frac{1}{|T|} \sum_{t \in T} d_I(t)$$

Edge image

Distance transform image

Chamfer distance

Edge image

Distance transform image

A limitation of active contours

• External energy: snake does not really "see" object boundaries in the image unless it gets very close to it.

image gradients abla I are large only directly on the boundary

Distance transform can help

 External image cost can also be taken from the distance transform of the edge image.

original

-gradient

distance transform

- What limitations might we have using only edge points to represent a shape?
- How descriptive is a point?

Comparing shapes

What points on these two sampled contours are most similar? How do you know?

Shape context descriptor

Shape context descriptor

Comparing shape contexts

$$C_{ij} = \frac{1}{2} \sum_{k=1}^{K} \frac{[h_i(k) - h_j(k)]^2}{h_i(k) + h_j(k)}$$

Recover correspondences by solving for least cost assignment, using costs C_{ii}

(Then use a deformable template match, given the correspondences.)

Shape context matching with handwritten digits

Only errors made out of 10,000 test examples

CAPTCHA's

- CAPTCHA: Completely Automated Turing Test To Tell Computers and Humans Apart
- Luis von Ahn, Manuel Blum, Nicholas Hopper and John Langford, CMU, 2000.
- www.captcha.net

Image-based CAPTCHA

Choose a word that relates to all the images.

TIP: You can type the first letter of a word and then use the down arrow to find it.

Submit

Shape matching application: breaking a visual CAPTCHA

 Use shape matching to recognize characters, words in spite of clutter, warping, etc.

Recognizing Objects in Adversarial Clutter: Breaking a Visual CAPTCHA, by G. Mori and J. Malik, CVPR 2003

Fast Pruning: Representative Shape Contexts

- Pick k points in the image at random
 - Compare to all shape contexts for all known letters
 - Vote for closely matching letters
- Keep all letters with scores under threshold

Algorithm A: bottom-up

- Look for letters
 - Representative ShapeContexts
- Find pairs of letters that are "consistent"
 - Letters nearby in space
- Search for valid words
- Give scores to the words

EZ-Gimpy Results with Algorithm A

- 158 of 191 images correctly identified: 83%
 - Running time: ~10 sec. per image (MATLAB, 1 Ghz P3)

horse

spade

join

here

Computer Vision Group

Gimpy

- Multiple words, task is to find 3 words in the image
- Clutter is other objects, not texture

Algorithm B: Letters are not enough

- Hard to distinguish single letters with so much clutter
- Find words instead of letters
 - Use long range info over entire word
 - Stretch shape contexts into ellipses

- Search problem becomes huge
 - # of words 600 vs. # of letters 26
 - Prune set of words using opening/closing bigrams

Results with Algorithm B

dry clear medical

card arch plate

# Correct words	% tests (of 24)
1 or more	92%
2 or more	75%
3	33%
EZ-Gimpy	92%

door farm important

Shape matching application II: silhouettes and body pose

Fun with silhouettes

- Liu Ren, Gregory Shakhnarovich, Jessica Hodgins, Hanspeter Pfister and Paul Viola, <u>Learning Silhouette Features for Control</u> of Human Motion
- http://graphics.cs.cmu.edu/projects/swing/