Examenul de bacalaureat național 2015

Proba E. c)

Matematică *M_tehnologic*

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 5

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total obținut pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$\frac{2}{\sqrt{3}-1} = \sqrt{3} + 1$ $\sqrt{3} + 1 - \sqrt{3} = 1$	3p
	$\sqrt{3} + 1 - \sqrt{3} = 1$	2 p
2.	f(0) = 2015	3p
	Coordonatele punctului de intersecție cu axa Oy sunt $x = 0$ și $y = 2015$	2 p
3.	x+2=4	2p
	x = 2, care verifică ecuația	3 p
4.	$p-10\% \cdot p = 99$, unde p este prețul obiectului înainte de reducere	3 p
	p = 110 lei	2 p
5.	$MN = \sqrt{(4-2)^2 + (1-1)^2} =$	3 p
	=2	2p
6.	$\sin^2 x = 1 - \cos^2 x = 1 - \left(\frac{3}{5}\right)^2 = \frac{16}{25}$	3p
	Cum $x \in \left(0, \frac{\pi}{2}\right)$, obținem $\sin x = \frac{4}{5}$	2p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$\det A = \begin{vmatrix} 2 & 1 \\ 2 & 1 \end{vmatrix} =$	2p
	$=2\cdot 1-2\cdot 1=0$	3 p
b)	$A \cdot A = \begin{pmatrix} 6 & 3 \\ 6 & 3 \end{pmatrix}, \ xA = \begin{pmatrix} 2x & x \\ 2x & x \end{pmatrix}$	3 p
	$\begin{pmatrix} 6 & 3 \\ 6 & 3 \end{pmatrix} = \begin{pmatrix} 2x & x \\ 2x & x \end{pmatrix} \Leftrightarrow x = 3$	2p
c)	$\det(A+I_2) = \begin{vmatrix} 3 & 1 \\ 2 & 2 \end{vmatrix} = 4$, $\det(A-I_2) = \begin{vmatrix} 1 & 1 \\ 2 & 0 \end{vmatrix} = -2$	3 p
	$\det(A + I_2) + \det(A - I_2) = 4 + (-2) = 2$	2 p
2.a)	$f(1)=1^3-2\cdot 1^2-2\cdot 1+1=$	3 p
	=1-2-2+1=-2	2 p
b)	$f(-1) = (-1)^3 - 2 \cdot (-1)^2 - 2 \cdot (-1) + 1 =$	3 p
	=-1-2+2+1=0, deci polinomul f este divizibil cu polinomul $X+1$	2p

c)
$$x_1 + x_2 + x_3 = 2$$
, $x_1x_2 + x_1x_3 + x_2x_3 = -2$, $x_1x_2x_3 = -1$
 $\frac{x_1 + x_2 + x_3}{x_1x_2x_3} = a(x_1x_2 + x_2x_3 + x_3x_1) \Leftrightarrow \frac{2}{-1} = a \cdot (-2) \Leftrightarrow a = 1$
2p

SUBIECTUL al III-lea (30 de puncte)

	· · · · · · · · · · · · · · · · · · ·	
1.a)	$f'(x) = x' - \left(\frac{1}{x}\right)' =$	2p
	$=1-\left(-\frac{1}{x^2}\right)=1+\frac{1}{x^2}, \ x\in(0,+\infty)$	3 p
b)	$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{x^2 - 1}{x^2} = 1$	2 p
	$\lim_{x \to +\infty} \left(f(x) - x \right) = \lim_{x \to +\infty} \left(-\frac{1}{x} \right) = 0$, deci dreapta de ecuație $y = x$ este asimptotă oblică spre $+\infty$ la graficul funcției f	3 p
c)	$f''(x) = -\frac{2}{x^3}, x \in (0, +\infty)$	2p
	$f''(x) < 0$, pentru orice $x \in (0, +\infty)$, deci funcția f este concavă pe intervalul $(0, +\infty)$	3 p
2.a)	$\int_{0}^{1} (f(x) - 2) dx = \int_{0}^{1} x^{2} dx = \frac{x^{3}}{3} \Big _{0}^{1} =$	3p
	$=\frac{1}{3}-0=\frac{1}{3}$	2p
b)	$F: \mathbb{R} \to \mathbb{R}$, $F(x) = \frac{x^3}{3} + 2x + c$, unde $c \in \mathbb{R}$	2 p
	$F(3) = 5 \Rightarrow c = -10$, deci $F(x) = \frac{x^3}{3} + 2x - 10$	3 p
c)	$\mathcal{A} = \int_{0}^{1} e^{x} \left(x^{2} + 2 \right) dx = e^{x} \left(x^{2} + 2 \right) \Big _{0}^{1} - \int_{0}^{1} 2x e^{x} dx = 3e - 2 - \left(2x e^{x} \Big _{0}^{1} - \int_{0}^{1} 2e^{x} dx \right) =$	3 p
	$=3e-2-2e+2e^{x}\begin{vmatrix}1\\0\\=3e-4\end{vmatrix}$	2 p