Теория групп. Лекция 13

Штепин Вадим Владимирович

28 ноября 2019 г.

Теорема (вторая теорема Силова)

Пусть $|G| = p^n m$, m не делится на p, P — силовская p-подгруппа в G. Тогда $\forall p$ -подгруппы $Q \leq G \; \exists x \in G \; Q \leq P^x$. То есть, любая p-подгруппа в G вкладывается в силовскую pподгруппу (группа, сопряженная силовской сама силовская).

Доказательство

Рассмотрим действие Q на G/P- множество левых смежных классов.

Q(aP)=QaP — действие левыми сдвигами. Пусть $\Omega=G/P,$ $|\Omega|=rac{|G|}{|P|}=m.$ По формуле

 $m=|\Omega|=|Q(a_{i_1})P|+\ldots+|Q(a_{i_s})P|$, где s — количество орбит действия. $|Q(a_{i_j})P|=rac{|Q|}{|St(a_{i_j})|}$ по формуле размера орбиты. Так как |Q| — степень p, то $|Q(a_{i_j})P|$ тоже степень p. Если в формуле орбит все слагаемые делятся на p, то и m делится на p, а это противоречие.

Значит, \exists орбита $Q(a_{i_j})P$ мощности 1. Для нее верно $Qa_{i_j}P=a_{i_j}P \Rightarrow Qa_{i_j}Pa_{i_j}^{-1}=$ $a_{i_j}Pa_{i_j}^{-1}=P^x$, где $x=a_{i_j}$. $QP^x=P^x\Leftrightarrow Q\subset P^x,\ |P^x|=|P|$, так как сопряжение—это автоморфизм.

Следствие

Все силовские p-подгруппы сопряжены между собой и $N_p = |G:N_G(P)|$ (число силовских p-подгрупп), где P— произвольная силовская p-подгруппа.

Доказательство

 Пусть Q=P во второй теореме Силова, тогда $P=P_1^x$ — некоторая силовская p-подгруппа. Значит, все силовские p-подгруппы сопряжены некоторой подгруппе. $N_p = \frac{|G|}{|N_G(P)|}$, если рассмотреть N_p как размер орбиты P при действии сопряжениями, $N_G(P)$ — нормализатор P(т.е. стабилизатор при действии сопряжениями)

Следствие

 $|G| = p^n m, p$ — простое и m не делится на p. Тогда $m : |N_p|$.

Доказательство

 $N_p = \frac{|G|}{|N_G(P)|}$, причем $P \leq N_G(P)$, так как $\forall a \in P \ aP = Pa$. Значит, $|N_G(P)| = t|P|$, tнатуральное число. Тогда $N_p=rac{p^nm}{p^nt}=rac{m}{t}$ и m делится на $N_p.$

Всякая группа порядка 15 абелева

Доказательство

|G|=3*5 \Rightarrow в G есть силовские 3- и 5-подгруппы, причем $N_3\equiv 1\pmod 3$ и $5\stackrel{.}{:}5.$ Значит, $N_3=1$. Аналогично получаем, что $N_5=1$. Больше силовских подгрупп в G нет. Значит, существует не более двух элементов порядка 3 (элементы силовской 3-подгруппы без нейтрального), не более четырех элементов порядка 5 (элементы силовской 5-подгруппы без нейтрального), и ровно один элемент порядка 1 (нейтральный). По теореме Лагранжа порядки всех элементов— это делители порядка группы. Значит, в G есть элементы порядка 15 (и их минимум 8), а группа G циклическая.

Замечание

В общем случае для pq-групп (групп из pq элементов, где p,q — простые) утверждать абелевость нельзя, но можно доказать разрешимость.

Теорема

Пусть p,q — различные простые числа, p < q и |G| = pq. Тогда $G \simeq C_q \rtimes C_p$. Следовательно, G разрешима.

Доказательство

 \exists силовская p-подгруппа P и q-подгруппа Q в G. Так как порядки групп P и Q — простые числа, то $P \simeq C_p$, $Q \simeq C_q$. Покажем, что $Q \triangleleft G$.

 $N_q \equiv 1 \pmod{q}$ и $p \stackrel{.}{:} N_q$, причем p < q и простое. Значит, $N_q = 1$ и $\forall x \in G \ Q^x = Q$ и $Q \triangleleft G$ по определению.

 $P\cap Q=\{e\}$, так как $P\cap Q\leq P$ и $P\cap Q\leq Q$. По теореме Лагранжа, $|P\cap Q|=1$.

По теореме о произведении нормальной подгруппы на подгруппу $PQ = QP \le G$, причем $|PQ|=rac{|P||Q|}{|P\cap Q|}=|G|$ и PQ=G. По теореме о разложении группы в полупрямое произведение получаем $G\simeq C_q \rtimes C_p$. Тогда, $G/C_q\simeq C_p$ —абелева и разрешима, C_q так же абелева и разрешима. По критерию разрешимости в терминах нормальной подгруппы, G разрешима.

Если $P \triangleleft G$, то по теореме о разложении в прямое произведение верно $G \simeq P \times Q$, а значит G циклична и абелева (это верно в случае, если $N_p=1$). Причем верна эквивалентность Gабелева $\Leftrightarrow N_p = 1$.

Замечание

Если
$$N_p > 1$$
, то $N_p = q = 1 + \alpha p, \alpha \ge 1$ и $q - 1$: p

Пример неабелевой
$$pq$$
-группы. Пусть $G=\{A=\begin{vmatrix} a & b \\ 0 & 1 \end{vmatrix} \mid det(A) \neq 0 \ b \in Z_q, \ a \in Z_q*=Z_q \setminus \{0\}\}.$

 $|Z_q*|=q-1$: p-абелева, и, по первой теореме Силова в Z_q* найдется силовская p-подгруппа, причем она обязательно циклическая и порождается элементом порядка p. Пусть это подгруппа $H=\langle a \rangle$. Положим теперь $G=\{A=\begin{vmatrix} a & b \\ 0 & 1 \end{vmatrix} \mid det(A) \neq 0 \ b \in Z_q, \ a \in \mathbb{R}$ $Z_* = H$ }, и G—неабелева.

Теорема (о разложении группы в прямое произведение силовских подгрупп) Пусть $|G| = p_1^{k_1} ... p_s^{k_s}$ — попарно различные простые числа. Тогда

1. силовская p-подгруппа нормальна в $G \Leftrightarrow N_p = 1$

2.
$$G = P_1 \times ... \times P_s \Leftrightarrow \forall i \ P_i \triangleleft G$$

Доказательство

- 1. P силовская p-подгруппа, $P \triangleleft G \Leftrightarrow \forall x \in G \ P^x = P \Leftrightarrow N_p = 1$
- 2. Достаточность. Пусть $P_1,...,P_s$ силовские p_i -подгруппы и $P_i \triangleleft G$.

Индукция по s.

База: Для s=1 очевидно. Переход: Пусть теорема верна для всех G, что $|G|=p_1^{k_1}...p_{s-1}^{k_{s-1}}$. Рассмотрим произведение первых s-1 групп: $P_1...P_{s-1} \triangleleft G$, $P_s \triangleleft G$, причем $P_s \cap (P_1...P_{s-1}) = \{e\}$, так как $\forall z \in P_s \cap (P_1...P_{s-1}) \ ord(z) = 1 \Rightarrow z = e$. Значит, $G = (P_1...P_{s-1}) \times P_s$ по теореме о разложении группы в прямую сумму. К $P_1...P_{s-1}$ применимо предположение индукции, и значит $G = P_1 \times ... \times P_s$

Необходимость. Пусть $G = P_1 \times ... \times P_s$. $|P_1 \times ... \times P_s| = p_1^{k_1} ... p_s^{k_s} \Rightarrow$ слева присутствуют все силовские подгруппы в G. По определению прямого произведения, $\forall i \ P_i \triangleleft G$.

Упражнение

Пусть $G = A \times B$ — внутреннее прямое произведение подгрупп $(A \cap B = \{e\}$ по определению внутреннего прямого произведения). Доказать, что всякая силовская p-подгруппа в G раскладывается в прямое произведение силовских p-подгрупп в A и B

Идея доказательства

 $\forall x \in G \ X = x_A x_B, \ x_A \in A, \ x_B \in B$ и разложение единственно. Рассмотрим гомоморфизмы $\phi: G \to A, \ \phi(x) = x_A$ и $\psi: G \to B, \ \psi(x) = x_B$. Если P—силовская p-подгруппа, то $\phi(P) \leq A$ и $\psi(P) \leq B$. Очевидно, что $P \leq \phi(P) \times \psi(P)$. Осталось доказать равенство $P = \phi(P) \times \psi(P)$.