Bayesian Nonparametric Mixture Models

Yuelin Li, PhD.

Department of Psychiatry & Behavioral Sciences Department of Epidemiology & Biostatistics Memorial Sloan Kettering Cancer Center New York, NY, USA

政大 [計畫課程: 貝氏資料分析 (楊立行/李玉麟)

December 24, 2020

1 Simple Worked Examples

- 1 Simple Worked Examples
- 2 Theory

- 1 Simple Worked Examples
- 2 Theory
- 3 Chinese Restaurant Process Construction

- 1 Simple Worked Examples
- 2 Theory
- 3 Chinese Restaurant Process Construction
- 4 Why BNP in PRO Research?

- 1 Simple Worked Examples
- 2 Theory
- 3 Chinese Restaurant Process Construction
- 4 Why BNP in PRO Research?
- 5 Real-World PRO Examples
 - Individual Meaning-Centered Psychotherapy Trial (IMCP)
 - PRO Comparative Effectiveness Research

- 1 Simple Worked Examples
- 2 Theory
- 3 Chinese Restaurant Process Construction
- 4 Why BNP in PRO Research?
- 5 Real-World PRO Examples
 - Individual Meaning-Centered Psychotherapy Trial (IMCP)
 - PRO Comparative Effectiveness Research
- 6 R Programs Explained Line by Line

- 1 Simple Worked Examples
- 2 Theory
- 3 Chinese Restaurant Process Construction
- 4 Why BNP in PRO Research?
- 5 Real-World PRO Examples
 - Individual Meaning-Centered Psychotherapy Trial (IMCP)
 - PRO Comparative Effectiveness Research
- 6 R Programs Explained Line by Line
- 7 Key Features of BNP

- 1 Simple Worked Examples
- 2 Theory
- 3 Chinese Restaurant Process Construction
- 4 Why BNP in PRO Research?
- 5 Real-World PRO Examples
 - Individual Meaning-Centered Psychotherapy Trial (IMCP)
 - PRO Comparative Effectiveness Research
- 6 R Programs Explained Line by Line
- 7 Key Features of BNP
- 8 Numerous Other Applications of BNP and Future Directions (end at 10:00 CDT)

Simple Worked Examples

Mixture of Univariate Normals

- library("DPpackage"): dataset galaxy
- Receding velocities from 82 galaxies into 4 clusters

• Escobar & West (1995). JASA, 90, 577-88

¹Jara et al. (2011), J Stats Software, 40, 1–30

```
> # source('galaxv.R')
> library("DPpackage")
> prior2 <- list(alpha=1,m1=rep(0,1),</pre>
    psiinv2=solve(diag(0.5,1)),
    nu1=4.nu2=4.tau1=1.tau2=100)
> fit1.2 <- DPdensity(y=speeds,</pre>
    prior=prior2.mcmc=mcmc.
    state=state,status=TRUE)
> hist(speeds, probability = T,
    breaks = seg(5, 35, by = 1),
    col = "grev80". border = "grev60")
> lines(cbind(fit1.2$x1,fit1.2$dens),
    1wd = 3
```

Posterior distribution of K

> plot(fit1.2, output = 'param')

• Mixture of up to K = 10 distributions

Mixture of Bivariate/Multivariate Normals

- scikit-learn.org: Machine Learning in Python
- Variational BayesGaussianMixture()²


```
import numpy as np
from sklearn.mixture import BayesianGaussianMixture
K = 10
DProc = BayesianGaussianMixture(n_components=K,
    weight_concentration_prior_type="dirichlet_process",
    init_params='kmeans',
    covariance_prior = 10 * np.eye(n_cols),
    random_state=random_seed
    ).fit(csv_data)
results = DProc.predict(csv_data)
probs = DProc.predict_proba(csv_data)
print DProc.means_  # print cluster means
print DProc.covariances_  # and covariances
```

²scikit-learn.org/stable/modules/mixture.htm#bgmm

Theory

Hypothetical Data to Illustrate the Theory

 Hypothetical psychotherapy clinical trial for patients with advanced or terminal cancer

Conventional Clustering vs. BNP Clustering

- Conventional clustering
 - E.g., kmeans(), hclust(), or finite mixtures
 - You must specify what *K* is
 - Try $k = 1, 2, 3, \dots, K$, then determine K by model comparison metrics
- Bayesian nonparametric clustering does things fundamentally differently
 - Posterior distribution of $k=1,2,3,\ldots,\infty$ to a theoretically infinite number of clusters
 - A specific K may emerge out of a dataset
 - ullet K is unbounded and may grow as the model encounters more data
 - Sometimes called an *infinite* mixture model ³

³Rasmussen (2000).

Dirichlet Process Mixture Modeling

Neal (2000): one of the most cited papers on BNP⁴

$$y_i | c_i, \phi \sim \mathcal{N}(\phi_k)$$
 $c_i | \boldsymbol{\pi} \sim \text{Discrete}(\pi_1, \pi_2, \dots, \pi_k)$
 $\phi_k \sim G_0$
 $\boldsymbol{\pi} \sim \text{DP}(\alpha/K, \dots, \alpha/K).$

⁴Neal (2000), J Compu and Graph Stats, 9(2): 249-265.

Dirichlet Process Mixture Modeling

• Neal (2000): one of the most cited papers on BNP⁴

$$y_i | c_i, \phi \sim \mathcal{N}(\phi_k)$$
 $c_i | \boldsymbol{\pi} \sim \mathrm{Discrete}(\pi_1, \pi_2, \dots, \pi_k)$
 $\phi_k \sim G_0$
 $\boldsymbol{\pi} \sim \mathrm{DP}(\alpha/K, \dots, \alpha/K)$. "Dirichlet Process Prior"

⁴Neal (2000), J Compu and Graph Stats, 9(2): 249-265.

Dirichlet Process Mixture Modeling

Neal (2000): one of the most cited papers on BNP⁴

$$y_i | c_i, \phi \sim \mathcal{N}(\phi_k)$$

$$c_i | \boldsymbol{\pi} \sim \text{Discrete}(\pi_1, \pi_2, \dots, \pi_k)$$

$$\phi_k \sim G_0$$

$$\boldsymbol{\pi} \sim \text{DP}(\alpha/K, \dots, \alpha/K).$$
 "Dirichlet Process Prior"

- Last two lines allow DP to spawn new clusters, look simple
 - But how? We went through many tutorial papers, books, & videos
 - Did not get very far with them
 - Details omitted entirely, assumed understood, or explained in abstract and unfamilar concepts

⁴Neal (2000), J Compu and Graph Stats, 9(2): 249-265.

BNP by Dirichlet Process Mixtures: Our How-To Guide

We worked out these missing details for non-technical readers

Journal of Mathematical Psychology 91 (2019) 128-144

Tutorial

A tutorial on Dirichlet process mixture modeling

Yuelin Li a,b,*, Elizabeth Schofield a, Mithat Gönen b

^a Department of Psychiatry & Behavioral Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10022, USA
^b Department of Epidemiology & Biostatistics. Memorial Sloan Kettering Cancer Center. New York, NY 10017. USA

- Important equations carefully derived in great detail
- It may also help pave the way to other BNP methods

The Chinese Restaurant Process (CRP) 5

⁵Gershman & Blei (2012), *J Math Psych*, 56, 1–12.

Finite Mixture Model

Data likelihood on mixture of Gaussians when k is fixed 6

$$p(y|\mu_1, \dots, \mu_k, s_1, \dots, s_k, \pi_1, \dots, \pi_k) = \sum_{j=1}^k \pi_j \mathcal{N}(\mu_j, s_j),$$

⁶Rasmussen (2000), The Infinite Gaussian Mixture Model.

Finite Mixture Model

Data likelihood on mixture of Gaussians when k is fixed 6

$$p(y|\mu_1, \dots, \mu_k, s_1, \dots, s_k, \pi_1, \dots, \pi_k) = \sum_{i=1}^k \pi_j \mathcal{N}(\mu_j, s_j),$$

Priors on cluster means and precisions:

$$p(\mu_j) \sim \mathcal{N}(\mu_0, s_0)$$
$$p_0(s_j | \gamma, \beta) \sim \mathcal{G}(\gamma, \beta) \propto s^{\gamma - 1} \exp(-\beta s)$$

⁶Rasmussen (2000), The Infinite Gaussian Mixture Model.

Finite Mixture Model

Data likelihood on mixture of Gaussians when k is fixed 6

$$p(y|\mu_1, \dots, \mu_k, s_1, \dots, s_k, \pi_1, \dots, \pi_k) = \sum_{i=1}^k \pi_j \mathcal{N}(\mu_j, s_j),$$

Priors on cluster means and precisions:

$$p(\mu_j) \sim \mathcal{N}(\mu_0, s_0)$$
$$p_0(s_j | \gamma, \beta) \sim \mathcal{G}(\gamma, \beta) \propto s^{\gamma - 1} \exp(-\beta s)$$

Prior on mixing proportions:

$$p(\pi_1, \dots, \pi_k | \alpha) \sim \text{Dirichlet}(\alpha/k, \dots, \alpha/k)$$
$$= \frac{\Gamma(\alpha)}{\Gamma(\alpha/k)^k} \prod_{i=1}^k \pi_j^{\alpha/k-1},$$

where $\alpha/k=1$ for a flat Dirichlet distribution for simplicity.

⁶Rasmussen (2000), The Infinite Gaussian Mixture Model.

Dirichlet Distribution

• Dirichlet distribution when k=3 is fixed, e.g., $\mathrm{Dirichlet}(\alpha/k=[1,1,1])$ as a conjugate prior for a 3-category solution

Conditional Posterior Distributions

Posteriors: 7

$$p(\boldsymbol{\mu}_{j}|\boldsymbol{c},\boldsymbol{y},s_{j},\mu_{0},s_{0}) \propto p(\boldsymbol{y}|\boldsymbol{\mu},\boldsymbol{c},s_{j})p(\boldsymbol{\mu}_{0})$$

$$\sim \mathcal{N}\left(\frac{\bar{y}_{j}n_{j}s_{j}+\mu_{0}s_{0}}{n_{j}s_{j}+s_{0}},\frac{1}{n_{j}s_{j}+s_{0}}\right),$$

$$p(s_{j}|\boldsymbol{c},\boldsymbol{y},\boldsymbol{\mu}_{j},\alpha,\beta) \propto s^{n_{j}/2} \exp\left(-n_{j}\sum_{[i]c_{j}=j}(y_{i}-\bar{y}_{j})^{2}\right) \times s^{\alpha-1} \exp(-\beta s)$$

$$= s^{\alpha-1+n_{j}/2} \exp\left(-s(\beta+\frac{1}{2}\sum_{[i]c_{j}=j}(y_{i}-\bar{y}_{j})^{2})\right)$$

$$= \mathcal{G}\left(\gamma+n_{j}/2,\beta+\frac{\sum_{i=1}^{n_{j}}(y_{i}-\mu_{j})^{2}}{2}\right).$$

⁷See Li, Schofield & Gönen (2019) in handouts for step by step detailed derivations.

Conditional Posterior Distributions

Posteriors: 7

$$p(\boldsymbol{\mu}_{j}|\boldsymbol{c},\boldsymbol{y},s_{j},\mu_{0},s_{0}) \propto p(\boldsymbol{y}|\boldsymbol{\mu},\boldsymbol{c},s_{j})p(\boldsymbol{\mu}_{0})$$

$$\sim \mathcal{N}\left(\frac{\bar{y}_{j}n_{j}s_{j}+\mu_{0}s_{0}}{n_{j}s_{j}+s_{0}},\frac{1}{n_{j}s_{j}+s_{0}}\right),$$

$$p(s_{j}|\boldsymbol{c},\boldsymbol{y},\boldsymbol{\mu}_{j},\alpha,\beta) \propto s^{n_{j}/2} \exp\left(-n_{j}\sum_{[i]c_{j}=j}(y_{i}-\bar{y}_{j})^{2}\right) \times s^{\alpha-1} \exp(-\beta s)$$

$$= s^{\alpha-1+n_{j}/2} \exp\left(-s(\beta+\frac{1}{2}\sum_{[i]c_{j}=j}(y_{i}-\bar{y}_{j})^{2})\right)$$

$$= \mathcal{G}\left(\gamma+n_{j}/2,\beta+\frac{\sum_{i=1}^{n_{j}}(y_{i}-\mu_{j})^{2}}{2}\right).$$

Prior parameters updated by data likelihood when k is fixed.

⁷See Li, Schofield & Gönen (2019) in handouts for step by step detailed derivations.

But How to Get *k* to Grow with Data?

Let an indicator variable c_i represent each person's latent cluster membership.

$$p(c_1, \dots, c_k | \pi_1, \dots, \pi_k) = \prod_{j=1}^{r} \pi_j^{n_j}.$$

$$p(\pi_1, \dots, \pi_k | \alpha) \sim \text{Dirichlet}(\alpha/k, \dots, \alpha/k) = \frac{\Gamma(\alpha)}{\Gamma(\alpha/k)^k} \prod_{j=1}^k \pi_j^{\alpha/k-1}.$$

$$p(c_1, \dots, c_k | \alpha) = \int p(c_1, \dots, c_k | \pi_1, \dots, \pi_k) p(\pi_1, \dots, \pi_k) d\pi_1 \cdots d\pi_k$$

$$= \frac{\Gamma(\alpha)}{\Gamma(\alpha/k)^k} \int \prod_{j=1}^k \pi_j^{n_j + \alpha/k-1} d\pi_j$$

$$= \frac{\Gamma(\alpha)}{\Gamma(n+\alpha)} \prod_{j=1}^k \frac{\Gamma(n_j + \alpha/k)}{\Gamma(\alpha/k)}.$$

But How to Get *k* to Grow with Data?

Let an indicator variable c_i represent each person's latent cluster membership.

$$p(c_{1}, \ldots, c_{k} | \pi_{1}, \ldots, \pi_{k}) = \prod_{j=1}^{n} \pi_{j}^{n_{j}}.$$

$$p(\pi_{1}, \ldots, \pi_{k} | \alpha) \sim \text{Dirichlet}(\alpha/k, \ldots, \alpha/k) = \frac{\Gamma(\alpha)}{\Gamma(\alpha/k)^{k}} \prod_{j=1}^{k} \pi_{j}^{\alpha/k-1}.$$

$$p(c_{1}, \ldots, c_{k} | \alpha) = \int p(c_{1}, \ldots, c_{k} | \pi_{1}, \ldots, \pi_{k}) p(\pi_{1}, \ldots, \pi_{k}) d\pi_{1} \cdots d\pi_{k}$$

$$= \frac{\Gamma(\alpha)}{\Gamma(\alpha/k)^{k}} \int \prod_{j=1}^{k} \pi_{j}^{n_{j} + \alpha/k-1} d\pi_{j}$$

$$= \frac{\Gamma(\alpha)}{\Gamma(n+\alpha)} \prod_{j=1}^{k} \frac{\Gamma(n_{j} + \alpha/k)}{\Gamma(\alpha/k)}.$$

$$p(c_{i} = j | \mathbf{c}_{-i}, \alpha) = \frac{n_{-i,j} + \alpha/k}{n - 1 + \alpha}.$$

But How to Get *k* to Grow with Data?

Let an indicator variable c_i represent each person's latent cluster membership.

$$p(c_{1}, \ldots, c_{k} | \pi_{1}, \ldots, \pi_{k}) = \prod_{j=1}^{r} \pi_{j}^{n_{j}}.$$

$$p(\pi_{1}, \ldots, \pi_{k} | \alpha) \sim \text{Dirichlet}(\alpha/k, \ldots, \alpha/k) = \frac{\Gamma(\alpha)}{\Gamma(\alpha/k)^{k}} \prod_{j=1}^{k} \pi_{j}^{\alpha/k-1}.$$

$$p(c_{1}, \ldots, c_{k} | \alpha) = \int p(c_{1}, \ldots, c_{k} | \pi_{1}, \ldots, \pi_{k}) p(\pi_{1}, \ldots, \pi_{k}) d\pi_{1} \cdots d\pi_{k}$$

$$= \frac{\Gamma(\alpha)}{\Gamma(\alpha/k)^{k}} \int \prod_{j=1}^{k} \pi_{j}^{n_{j} + \alpha/k-1} d\pi_{j}$$

$$= \frac{\Gamma(\alpha)}{\Gamma(n+\alpha)} \prod_{j=1}^{k} \frac{\Gamma(n_{j} + \alpha/k)}{\Gamma(\alpha/k)}.$$

$$p(c_{i} = j | \mathbf{c}_{-i}, \alpha) = \frac{n_{-i,j} + \alpha/k}{n-1+\alpha}. \iff \text{exchangeability!}$$

Letting $k \to \infty$

Continue from the previous slide,

$$p(c_i = j | \mathbf{c}_{-i}, \alpha) = \frac{n_{-i,j} + \alpha/k}{n - 1 + \alpha}, \quad \text{letting } k \to \infty,$$

$$\lim_{k \to \infty} \frac{n_{-i,j} + \alpha/k}{n - 1 + \alpha} = \frac{n_{-i,j}}{n - 1 + \alpha},$$

Letting $k \to \infty$

Continue from the previous slide,

$$p(c_i = j | \mathbf{c}_{-i}, \alpha) = \frac{n_{-i,j} + \alpha/k}{n - 1 + \alpha}, \quad \text{letting } k \to \infty,$$
$$\lim_{k \to \infty} \frac{n_{-i,j} + \alpha/k}{n - 1 + \alpha} = \frac{n_{-i,j}}{n - 1 + \alpha},$$

$$\begin{cases} \text{already occupied clusters} : & p(c_i|\mathbf{c}_{-i},\alpha) & = \frac{n_{-i,j}}{n-1+\alpha}, \\ \text{a new cluster} : & p(c_i \neq c_j \, \forall j \neq i | \mathbf{c}_{-i},\alpha) & = \frac{\alpha}{n-1+\alpha}. \end{cases}$$

CRP Revisited

$$\begin{cases} \text{already occupied clusters} : & p(c_i|c_{-i},\alpha) & = \frac{n_{-i,j}}{n-1+\alpha}, \\ \text{a new cluster} : & p(c_i \neq c_j \, \forall j \neq i | c_{-i},\alpha) & = \frac{\alpha}{n-1+\alpha}. \end{cases}$$

CRP Equivalent to Stick-Breaking Process Construction 8

Fig. 5. A graphical depiction of the stick-breaking process, showing successive breaks of a stick with starting length one, and how the lengths of the pieces correspond to sampled weights.

⁸See Navarro et al., (2006) for a brief history and explanation

Conditional Posterior Distribution of c_i

 $p(c_i|c_{-i})$ has to be weighted by the posterior probability of *newly observed* values given the data you have already seen:

• clusters where $n_{-i,k} > 0$: $p(c_i|\mathbf{c}_{-i}, \mu_k, \tau_k, \alpha) \propto p(c_i|\mathbf{c}_{-i}, \alpha)p(\tilde{y}_i|\mu_k, \tau_k, \mathbf{c}_{-i})$ $n_{-i,k} \qquad \text{if } \tilde{y}_k n_k \tau_k + \mu_0 \tau_0$

$$\propto \frac{n_{-i,k}}{n-1+\alpha} \mathcal{N}\left(\tilde{y}_i; \frac{\bar{y}_k n_k \tau_k + \mu_0 \tau_0}{n_k \tau_k + \tau_0}, \frac{1}{n_k \tau_k + \tau_0} + \sigma_y^2\right).$$

• all other clusters combined :

$$p(c_{i} \neq c_{k} \forall j \neq i | \boldsymbol{c}_{-i}, \mu_{0}, \tau_{0}, \gamma, \beta, \alpha) \propto$$

$$p(c_{i} \neq c_{k} \forall j \neq i | \boldsymbol{c}_{-i}, \alpha) \int p(\tilde{y}_{i} | \mu_{k}, \tau_{k}) p(\mu_{k}, \tau_{k} | \mu_{0}, \tau_{0}, \gamma, \beta) d\mu_{k} d\tau_{k}$$

$$\propto \frac{\alpha}{n - 1 + \alpha} \mathcal{N}(\tilde{y}_{i}; \mu_{0}, \sigma_{0}^{2} + \sigma_{y}^{2}).$$

DPMM Algorithm ⁹

Algorithm 1: DPMM algorithm

Let the state of the Markov chain consist of $\mathbf{c} = (c_1, \dots, c_n)$ and $\mathbf{\phi} = (\phi_c : c \in \{c_1, \dots, c_n\})$. Repeatedly sample:

for $i \leftarrow 1$ to n do

- | Remove y_i from cluster c_i because we are going to sample a new c_i .
 - · draw $c_i | c_{-i}$, y from:

if $c = c_i$ for some $i \neq i$ then

$$p(c_i = c | c_{-i}, y_i) \propto \frac{n_{-i,c}}{n-1+\alpha} \int \mathcal{N}(\tilde{y}_i, \phi) dH_{-i,c}(\phi)$$

else

$$p(c_i \neq c_j \, \forall j \neq i | c_i, y_i) \propto \frac{\alpha}{n-1+\alpha} \int \mathcal{N}(\tilde{y}_i, \phi) \, dG_0(\phi)$$

end

return c_i

⁹Neal (2000), algorithm 3. *J Compu Graph Stats*, 9(2), 249–265.

Chinese Restaurant Process

Construction

R Implementation of the CRP 10

```
# already occupied table, n/(N + alpha) * mvnorm() density
log weights[c.idx] <- log(counts[c.idx]) +</pre>
      dmvnorm(data[n, ], mean = c mean,
              sigma = c Sig + Sig. log = TRUE)
# new table, alpha/(N + alpha) weighted by mvnorm() density
log weights[Nclust + 1] <- log(alpha) +</pre>
      dmvnorm(data[n, ], mean = mu0, sigma = Sig0 + Sig.
      log = TRUE)
```

Modified from the R program by Tamara Broderick https://people.csail.mit.edu/tbroderick/tutorial_2016_mlss_cadiz.html

		k-means					crp_gibbs()					Python			
		k = 4				k	$k = 10, \alpha = 1/k$					$k = 10, \alpha = 1/k$			
		•	•	•	•	•	•	•	•		•	•	•	•	
Estimated	1	0	0	60	13	0	60	0	8	-	0	0	60	1	
Cluster	2	0	60	0	4	0	0	0	36		0	1	0	55	
	3	0	0	0	43	0	0	60	16		0	59	0	4	
	4	60	0	0	0	60	0	0	0		60	0	0	0	
		k = 4			i	$k = 5, \alpha = 1/k$				$k = 5, \alpha = 1/k$					
Estimated	1					0	0	60	18	•	0	0	60	1	
Cluster	2	Si	ame a	s abov	/e	0	0	0	35		60	0	0	0	
	3					0	60	0	7		0	60	0	4	
	4					60	0	0	0		0	0	0	55	

Why BNP in PRO Research?

Why BNP in PRO Research?

- BNP offers solutions to enduring statistical challenges in the field of symptom science
 - Identification of symptom clusters (e.g., NINR Workshop; Nho et al, (2018))
- Informing personalized, patient-centered treatment decisions
 - Narrow down intervention options most likely to be successful for individual patients
 - NIH PA-18-139: Innovative Questions in Symptom Science and Genomics

Real-World PRO Examples

Individual Meaning-Centered Psychotherapy (IMCP)

- A randomized controlled trial (R01 CA128134, PI: Breitbart)
- Breitbart, Pessin, Rosenfeld, et al. (2018) Cancer, 124, 3231-3239
- Patients with advanced or terminal cancer were randomized
 - 1 Individual Meaning Centered Psychotherapy (IMCP, n = 109)
 - 2 Supportive Psychotherapy (SP, n = 108)
 - 3 Enhanced Usual Care (EUC, n = 104)
- Help patients develop/increase sense of meaning near end of life

Individual Meaning-Centered Psychotherapy (IMCP)

- A randomized controlled trial (R01 CA128134, PI: Breitbart)
- Breitbart, Pessin, Rosenfeld, et al. (2018) Cancer, 124, 3231-3239
- Patients with advanced or terminal cancer were randomized
 - 1 Individual Meaning Centered Psychotherapy (IMCP, n = 109)
 - 2 Supportive Psychotherapy (SP, n = 108)
 - 3 Enhanced Usual Care (EUC, n = 104)
- Help patients develop/increase sense of meaning near end of life
- Psychological outcome measures
 - Meaning Making, Hopelessness, Desire for Hastened Death, Anxiety and Depression
 - 2 Pre-intervention baseline, mid-intv (week 4), post-intv (week 7), and 2-months post-intv (week 15)

DP Mixtures on Baseline Psychosocial Profiles

- Before psychotherapy, do patients show different psychosocial characteristics?
- Can we cluster baseline characteristics into profiles?
- If so, do different clusters respond to IMCP differently?
- Notion of precision psychooncology
- Psychological interventions tailored to baseline profiles

Baseline Psychosocial Profiles by DPMM

- BayesianGaussianMixture() in Python
- Constraining $k \le 5$ to control sparseness

Ва	Baseline psychosocial profiles identified by BayesianGaussianMixture()											
		age	KPRS	Hopelessness	Hastened	Anxiety	Depression	Personal	Existential			
	(n)				Death			Meaning	Transcendence			
1	(22)	63.9	73.7	5.9	2.5	8.5	8.0	82.5	86.4			
2	(17)	56.8	77.4	10.7	5.6	13.0	9.9	47.0	20.9			
3	(131)	58.2	81.8	3.1	1.3	7.0	3.7	82.4	88.2			
4	(10)	63.5	81.2	4.1	3.4	6.0	5.4	93.5	123.5			
5	(72)	56.3	81.5	6.7	4.4	10.0	7.6	66.8	65.6			

^{2: &}quot;Acutely Distressed" cluster

^{5: &}quot;Moderately Distressed" cluster

Responders to IMCP?

• Personal Meaning subscale scores at post-Tx

Post-Tx Personal Meaning subscale scores cf. baseline											
		Base	Post-Tx (week 7)								
		(N)		EUC	(n)	Meaning	(n)	Suprt	(n)		
	1	(22)	82.5	78.5	6	88.8	5	83.3	11		
"Acutely"	2	(17)	47.0	51.3	5	51.4	6	61.0	6		
	3	(131)	82.4	81.9	46	92.0	48	87.5	37		
	4	(10)	93.5	95.0	1	84.0	2	91.0	7		
"Moderately"	5	(72)	66.8	71.4	16	84.1	31	75.8	25		

Clusters Responded to IMCP Differently

• "random intervention effects" model 11

$$y_{c[i]} = \beta_0 + \beta \operatorname{Tx}_{c[i]} + u_{0c} + u_{1c} \operatorname{Tx}_{c[i]} + \epsilon_{c[i]}, \qquad [u_{0c}, u_{1c}] \sim \mathcal{N}(0, \Sigma).$$

• stan_lmer(PersMeaningT3 \sim Tx + (1 + Tx | clus), prior = NULL)

¹¹Lee & Thompson (2005), Clin Trials, 2(2), 163-73.

Probability of Intervention Fit

• Posterior $\Pr(u_{1c_i} > u_{1c_j} | c_i \neq c_j)$

clusters	1	2	3	4	5
1	-	0.81			
"Acutely" 2	0.19	-			
3	0.58	0.84	-		
4	0.42	0.74	0.34	-	
"Moderately" 5	0.58	0.88	0.52	0.65	-

Example 1: IMCP Summary

- Five baseline psychosocial profiles before therapy
- Most (n=131) appeared to be coping relatively well
- Few (n=17) appeared to be acutely distressed
- Some (n=72) moderately distressed but with meaning
- Heterogeneity of Treatment Effects (HTE)
- IMCP works better in moderately than acutely distressed
- Personalized interventions algorithm
 - We can derive probability of latent class, and
 - Probability of treatment response given latent class

Real-World Example 2: CHOICE Study

- A Comparative Effectiveness Trial (PCORI CER-1403-14292-IC, PI: Mao)
- Cancer survivors with Insomnia Severity Index > 7 ('mild'), randomized
 - lacktriangle Cognitive Behavioral Therapy for Insomnia (CBTI, n=79)
 - 2 Acupuncture (Acupuncture, n = 80)
- Overall, Garland & Mao et al. (2019) reported that CBTI was better than acupuncture on insomnia

Real-World Example 2: CHOICE Study

- A Comparative Effectiveness Trial (PCORI CER-1403-14292-IC, PI: Mao)
- Cancer survivors with Insomnia Severity Index > 7 ('mild'), randomized
 - lacktriangle Cognitive Behavioral Therapy for Insomnia (CBTI, n=79)
 - 2 Acupuncture (Acupuncture, n = 80)
- Overall, Garland & Mao et al. (2019) reported that CBTI was better than acupuncture on insomnia
- However, were there symptom clusters that responded differently?
 - 1 We applied DPMM to baseline insomnia, fatigue, pain, and anxiety
 - Pre-intervention baseline and post-intv (week 8)
 - 3 PCORI Methdology Standards: 5. Heterogeneity of Treatment Effects (HTE)

Symptom Clusters

Which is Better and for What Symptoms?

Probability of Intervention Success

•
$$p(c_3 < c_1) = 0.87$$
 $p(c_3 < c_2) = 0.79$ $p(c_2 < c_1) = 0.64$

R Programs Explained Line by Line

36

R Programs Explained Line by Line

Key Features of BNP

Key Features of BNP

- Number of profiles should be able to grow as the model encounters more data,
- Model should introduce no more profiles than are necessary to explain the data
- Identify the subset of individuals who showed subtle and nuanced differences

Numerous Other Applications of BNP

and Future Directions (end at 10:00

CDT)

- Bayesian "nonparametric" methods?
- Not finite parameters (growing/infinite number of parameters)

- Bayesian "nonparametric" methods?
- Not finite parameters (growing/infinite number of parameters)
- Motion capture data (https://arxiv.org/pdf/1308.4747.pdf)

- Bayesian "nonparametric" methods?
- Not finite parameters (growing/infinite number of parameters)
- Motion capture data (https://arxiv.org/pdf/1308.4747.pdf)

• Protein interactome data (Lloyd et al, NIPS 2012)

Figure 2: Protein interactome data. Left: Interactome network. Middle: Sorted adjacency matrix. The network exhibits stochastic equivalence (visible as block structure in the matrix) and homophily (concentration of points around the diagonal). Right: Maximum a posteriori estimate of the function Θ, corresponding to the function in Fig. 1 (middle).

- BNP as the engine for versatile analytic tools, e.g.,
 - Paisley et al. (2009): BNP factor analysis

• Kemp et al. (2006): Infinite Relational Model

- Beyond infinite clusters, e.g.,
 - Navarro et al. (2006): web browsing habits
 - Karabatsos & Walker (2009): BNP Test Equating
 - Tanenbaum et al. (2011): "How to Grow a Mind"
 - Austerweil & Griffiths (2013): feature learning/representation
 - De Iorio et al. (2009) Biometrics, 65, 762-771.
 - Graziani et al. (2015) Biometrics, 71, 188–197.

Vast Literature on BNP

- Countless other points on BNP not covered here
- But I hope I have given you a fundamental intuition on BNP using the DP
- Make you feel more confident and efficient in learning more on your own
- Potentially rediscover finer details of BNP yourself

Thanks

- Funding
 - NIH P30 CA008748 for MSKCC
 - NIH R01 CA128134 (PI: Breitbart)
- DP mixture clustering computer program in R
 - Tamara Broderick at MIT¹²

¹² https://people.csail.mit.edu/tbroderick/tutorial_2016_mlss_cadiz.html