A House

-Without doors, windows!!!

-Utility connections!!

tware without any

-Similarly, a software without any interfaces is of no use!!

Interfaces

- Between Components
 - E.g. A gas pipe from kitchen to living room
 - E.g. A class calling method of another class
- Between Self and External Entities
 - E.g. Gas connection from SNGPL/SSGPL, water connection from WASA
 - E.g. Our software interacting with bank, NADRA
- Between Self and Human
 - E.g. Door bell, button to switch on a tube light/fan
 - E.g. A User clicking on print button, login button, post button on screen

Interfaces

- Between Components (Software Components)
 - E.g. A gas pipe f
 - E.g. E.g. A class
- nonhuman produ
 - E.g. Gas connect from WASA, set Graphical
 - E.g. Our softwa

- -A User Interface can be:
- Between Self and Command Line
- Between Self and Human (Software and Human, User) Interface)
 - E.g. Door bell, button to switch on a tube light/fan
 - E.g. A User clicking on print button, login button, post button on screen

GUIs

- Reduced many interfacing problems
- Found to be difficult to learn, hard to use, confusing in some cases?
 - Any experiences?
- UIs should be easy to:
 - Learn
 - Use
 - Understand

Designing User Interface

- An effective communication medium between a human and a computer
- Creation of a screen layout
- Study of people and how they relate to technology by answering questions like:
 - Who is the user?
 - How does the user learn to interact with the system?
 - How does the user interpret info produced by the system?
 - What will the user expect of the system?

Golden Rules

- Place the User in Control
- Reduce User's Memory Load
- Make the Interface Consistent

Place the user in control

- System should react to user needs
- System should help the user complete tasks
- User should not feel that the system is controlling the user
- e.g OS commands

Place the user in control

- Design Principles:
 - Define interactions s.t. a user is not forced into unnecessary/undesired actions/modes
 - Provide flexible interaction
 - User should not feel that the system is controlling the user
 - Allow interruptible and undoable user interactions
 - Streamline interactions based on skill level, allow interactions to be customized
 - Hide technical internals from casual user
 - Provide mechanism for direct interaction with objects on screen

Reduce the user's memory load

- The more a user has to remember, the more errorprone the interaction
- Design principles:
 - Reduce demand on short term memory
 - Establish meaningful defaults example reset
 - Define shortcuts that are intuitive: Alt:P
 - Disclose information in a progressive manner. Example Select text and show text styles

Make the interface consistent

- Maintain design rules for all screens
- Design principles:
 - Allow user to put current task into a meaningful context: graphical icons
 - Maintain consistency across a complete product line: CNTRL+C
 - Avoid violating de facto standards

UID Process

Interface validation Interface analysis and modeling Interface design Interface construction

UID Process

- Interface Analysis
 - User Model
 - Profile of end user
 - Age, gender, education, physical abilities, cultural/ethnic background etc.
 - Novice, Knowledgeable, Knowledgeable frequent users
 - Design Model
 - Mental Model
 - User's perception of the system
 - Implementation Model

UID Process

- Interface Design
 - Define interface objects and actions
- Interface Construction
 - Creation of prototypes to evaluate usage scenarios
- Interface Validation
 - Ability to implement every user task correctly
 - Degree to which interface is easy to use
 - User's acceptance to user interface as useful

Interface Analysis

- User Analysis
 - Trained professionals? Technicians? Clerks? Etc.
 - Average level of formal education?
 - User capability to learn from written material/training?
 - Expert typists? Do no like keyboard?
 - Age range?
 - Users represented predominantly by one gender?
 - Routine of work? Regular? Overtime?
 - Frequency of usage?
 - Primary spoken language of users?
 - Subject matter experts?
 - Desire to know underlying technology

Interface Analysis

- Task Analysis
 - Work performed by user in particular circumstances
 - Tasks/subtasks performed by the user during the work being performed
 - Problem domain objects manipulated by users
 - Sequence of work tasks? Flow of actions? The workflow?
 - Hierarchy of tasks
 - Techniques used to support task analysis
 - Usecases
 - Task Elaboration(Functional decomposition)
 - Object Elaboration(Classes and attributes)
 - Workflow Analysis

Interface Analysis

- Analysis and display content
 - Partitioning of large objects (e.g. reports) for better understanding
 - Use of colors to improve understanding
 - Content of error messages?

Mapping User Objectives

These slides are designed to accompany Software Engineering: A Practitioner's Approach, 7/e (McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman.

Design Issues

- Response time
- Help
 - Help without leaving the interface?
- Error information handling

References

- Pfleeger Book slides from UCF
- Bruegge et al. OOSE book
- Book and slides from Pressman
- http://www.authorstream.com/Presentation/umr17-1645231-pressman-ch-12-user-interface-design/

Acknowledgement!

- Some slides have been reused from UCF slides for the SE course, specially for UI design
- Majorly, flow of UCF slides has been modified and a few examples have been added