Desenvolvimento do Algoritmo Paralelo 🍑

Desenvolvimento do Programa Paralelo

Mapeamento de Processos

Teste e Depuração de Prog. Paralelos

Avaliação de Desempenho de Prog. **Paralelos**

- Questões a serem tratadas:
 - Onde cada processo deve ser executado?
 - Como a comunicação entre processos será viabilizada no sistema de interconexão existente?
 - De forma geral, tem-se:

Computadores Seqüenciais
e

Arquiteturas Paralelas com
memória compartilhada

Mapeamento
realizado
automaticamente
por

Sistema Operacional
ou
automaticamente
por

Mecanismos de Hardware

Em Arquiteturas Paralelas com memória distribuída

Necessidade de Mapeamento

- O mapeamento de processos paralelos visa minimizar o tempo de processamento;
- Duas estratégias são conflitantes:
 - Processos que podem executar concorrentemente

Mapeados em processadores diferentes

Processos que se comunicam frequentemente

Mapeados no mesmo processador

- Alguns fatores que devem ser verificados:
 - Processos com carga variável;
 - Comunicação não-uniforme;
 - Carga imposta por processo é dinâmica;
 - Comunicação entre tarefas diferentes durante execução.
 - A partir desses fatores ...
 - O mapeamento fica mais complexo;
 - Necessidade de técnicas de escalonamento/balanceamento de carga.

- É desejável:
 - Garantir que todos os EPs (Elementos de Processamento) sejam bem aproveitados;
 - Garantir trabalho suficiente e compatível com a capacidade global do sistema;
 - Garantir que os EPs tenham uma carga uniforme.
- Assim, deve-se distribuir os processos buscando:
 - Minimizar tempo de execução;
 - Minimizar atrasos por comunicação;
 - Maximizar utilização dos recursos.

- Dois conceitos importantes:
 - Processos SPMD (Single Program Multiple Data);
 - Processos MPMD (Multiple Program Multiple Data);

SPMD

- Mesmo código em todas as máquinas;
- Parte diferente do código sendo executado em cada máquina;

- MPMD
 - Códigos distintos nas máquinas.

- SPMD Vantagens:
 - Facilidade no desenvolvimento do algoritmo;
 - Balanceamento de carga.
- SPMD Desvantagens:
 - Gasto de memória.
- MPMD Vantagens:
 - Apenas uma "parte" do programa reside em cada processador;
 - MPMD Desvantagens:
 - Necessidade de escalonamento.

Escalonamento de Programas Paralelos

- Atribuir processos a processadores;
 - Influencia consideravelmente o desempenho em programas paralelos;
 - Pode ser realizado tanto no kernel (pelo sistema operacional) quanto no espaço do usuário (softwares escalonadores);
 - Algumas dificuldades no estudo de escalonamento:
 - Diversas propostas de taxonomias;
 - Divergências quanto a nomenclatura;

Escalonamento de Programas Paralelos

- Em aplicações paralelas distribuídas há também a necessidade de gerenciar o escalonamento;
- Utilização de softwares para atuarem na gerência do escalonamento de aplicações;
 - **Exemplos: CONDOR, CODINE, LSF, AMIGO;**
- Balanceamento de carga: Um dos objetivos da atividade de escalonamento;
 - Resultados obtidos com escalonamento fornecido pelo ambiente AMIGO...

Escalonamento de Programas Paralelos

Resultados utilizando uma aplicação LAM-MPI com o escalonamento realizado pelo AMIGO;

 Experimentos realizados em 06 máquinas do tipo PC, formando uma arquitetura MIMD com memória distribuída;

Desenvolvimento do Algoritmo Paralelo 🎉

Desenvolvimento do Programa Paralelo 🔆

Mapeamento de Processos

- Todo programa não trivial contém erros;
- Erros = falha (bug);
- Teste = Conjunto de atividades que pode ser planejado antecipadamente e realizado sistematicamente;
- Depuração é uma conseqüência de um teste bem sucedido;
 - De maneira geral, a depuração de um programa paralelo é similar à depuração de um programa següencial.

- Algumas características (inerentes) dificultam o desenvolvimento de programas paralelos:
 - Tipo do Processo;
 - Vários Processadores;
 - Tempo de Comunicação;
 - Tamanho do Sistema;
 - Baixa Visibilidade;
 - Estado Global.

- Alguns erros que podem ocorrer em programas paralelos:
 - Condição de Disputa;
 - Deadlock;
 - Livelock;
 - Espera Infinita;
- Não-determinismo;
- Efeito de Intrusão.

- Testes em Programas Paralelos:
 - Muitos algoritmos e métodos de teste para programas seqüenciais falham quando utilizados em programas paralelos;
 - Outro fator que dificulta o teste de programas paralelos é o nãodeterminismo;
 - Teste de reprodução (reproducible testing).
- Alguns testes para programas paralelos:
 - Teste de Tarefas;
 - Teste Comportamental;
 - Teste Intertarefas;
 - Teste do Sistema.

Desenvolvimento do Algoritmo Paralelo 🔆

Desenvolvimento do Programa Paralelo 🔆

Mapeamento de Processos

Teste e Depuração de Prog. Paralelos

Avaliação de Desempenho de Prog. **Paralelos**

Avaliação de Desempenho em Programas Paralelos

- Fatores que devem ser considerados:
 - Como coletar, analisar e entender os dados sobre o desempenho de um sistema paralelo?
 - Que funções devem ser consideradas para representar o desempenho?
 - Como comparar desempenho de programas em diferentes arquiteturas?
- Pode-se utilizar medidas como o Speedup e a Eficiência;

Avaliação de Desempenho em Programas Paralelos

- Deve-se tomar cuidado ao tirar conclusões das medidas de desempenho;
 - ■Exemplo:

	T (seq.)	T (p procs)	Speedup
Sistema A	10	2	5
Sistema B	6	1,5	4

Utilização da Eficiência p=10

	T(Seq)	T(p procs)	Speedup	Eficiência
Sistema A	10	2	5	50%
Sistema B	6	1,5	4	40%

Avaliação de Desempenho em Programas Paralelos

Eficiência – comparação com números diferentes de processadores

	T(Seq)	T(p procs)	Speedup	Eficiência
Sistema A	10	2 (p=10)	5	50%
Sistema B	6	1,5 (p=5)	4	80%