Gödel's Incompletness Theorems

Lukas Wais

Special Topics Course 326.901

June 1, 2020

Table of Contents

- 1 Introduction
 - Who was Kurt Gödel
 - What is Completness?
- 2 First Incompletness Theorem
 - Overview
 - A Modern Approach
 - Gödel's Proof
- 3 Incompletness and Programming
- 4 Outro

Who was Kurt Gödel

Introduction

•0

Kurt Gödel

Introduction

00

A quick reminder of Axioms

Definition (Axiom)

Statements that are true without a formal proof of them.

For example:

$$x = y \land y = z \implies x = z$$

"It is possible to draw a straight line from any point to any other point"

Any mathematical system starts out with a set of axioms

Introduction

Completness

Definition (Complete)

A set of axioms is (syntactically, or negation-) complete if, for any statement in the axioms' language, that statement or its negation is provable from the axioms. [1]

Gödel's First Incompletness Theorem

If axioms do not contradict each other and are computably enumerable some statements are true, but cannot be proofed.

Definition (Computably Enumerable Language)

A recursively enumerable language is a formal language for which there exists a Turing machine which will enumerate all valid strings of the language.

Gödel's First Incompletness Theorem

The status quo is that we have some axioms that are unprofable. Wouldn't it just make sense to add these axioms to our system, that we have a complete system now?

```
IISample Code
```

References

A. Avron, "Peter smith. an introduction to gödel's theorems. cambridge introductions to philosophy, cambridge university press, 2007, xiv+ 362 pp.," Bulletin of Symbolic Logic, vol. 15, no. 2, pp. 218-222, 2009.