

Design and Analysis of Algorithms

Divide and Conquer

Manjula L

Asst. Prof. Dept. of CSE

RNSIT, Bengaluru, India

Text Books

- Divide-and-Conquer (DaC) is probably the best-known general algorithm design technique.
- Given a function to compute on n input the DaC approach suggests splitting the inputs into k distinct subsets,1< k < n, yielding k subproblems
- These subproblem must be solved and then a method must be found to combine solutions into a solution of the whole.
- If the sub problems are relatively large then the divide and conquer approach can possibly be reapplied
- Often the sub problems resulting from our divide and conquer design are of the same type as the original problem.
- Fur those cases the re application of the divide and conquer principle is naturally expressed by a recursive algorithm
- The smaller and smaller sub problems of the same kind are generated until eventually sub problems that are small enough to be solved without splitting are produced

Example: Detecting a counterfeit coin

- Given a bag of n coins and a machine that weighs 2 sets of coins, the task is to find
 - Whether the bag contains a counterfeit coin
 - If present then identify the Counterfeit coin

Control abstraction for Divide and Conquer approach

```
Algorithm DAndC(P)
                                        Boolean valued function that determines
                                        whether the input is small enough or not
       if Small(P) then return S(P) Solution to the problem
        else
          divide P into Smaller instances P1, P2, P3 ... Pk, k≥1;
          Apply DAndC to each of these subproblems;
          return Combine(DAndC(P1), DAndC(P2),...DAndC(Pk));
```

A function that determines the solution to

P using the solutions to **k** subproblems

• If the size of **P** is **n**, And the sizes of the **k** subproblems are **n1**, **n2**, **n3**... **nk**, respectively, then the computing time of DAndC is described by the recurrence relation

$$T(n) = \begin{cases} g(n) & n \text{ small} \\ T(n_1) + T(n_2) + \dots + T(n_k) \text{ otherwise} \end{cases}$$

Where,

- **T(n)** is the time for DAndC on any input of size n
- **g(n)** is the time to compute the answer directly for small inputs
- **f(n)** is the time for dividing **P** and combining the solutions to subproblems.

• The complexity of many divide and conquer is given by recurrences of the form

$$T(n) = \begin{cases} T(1) & n = 1 \\ aT(\frac{n}{b}) + f(n) & n > 1 \end{cases}$$

Where,

- **a** and **b** are constants
- **T(1)** is known
- \mathbf{n} is a power of \mathbf{b} (i.e., $\mathbf{n}=\mathbf{b}^{\mathbf{k}}$)

Binary Search

- Binary search is a remarkably efficient algorithm for searching in a sorted array
- It works by comparing a search key **K** with the array's middle element **A**[m].
- If they match, the algorithm stops; otherwise, the same operation is repeated recursively for the first half of the array if K < A[m], and for the second half if K > A[m]

$$\underbrace{A[0] \dots A[m-1]}_{\text{search here if}} A[m] \underbrace{A[m+1] \dots A[n-1]}_{\text{search here if}}.$$

Binary Search

Example

Apply binary search algorithm to the following set of numbers considering 70
as the key

Binary Search: Non-Recursive

```
Algorithm BinSearch(a, n, x)
  // Given an array a[1:n] of elements in nondecreasing
   // order, n \geq 0, determine whether x is present, and
    // if so, return j such that x = a[j]; else return 0.
5
6
        low := 1; high := n;
        while (low \le high) do
            mid := |(low + high)/2|;
            if (x < a[mid]) then high := mid - 1;
            else if (x > a[mid]) then low := mid + 1;
                  else return mid;
14
        return 0;
15
```


Binary Search: Recursive

```
Algorithm BinSrch(a, i, l, x)
    // Given an array a[i:l] of elements in nondecreasing
    // order, 1 \le i \le l, determine whether x is present, and
     // if so, return j such that x = a[j]; else return 0.
5
         if (l = i) then // If Small(P)
             if (x = a[i]) then return i;
              else return 0;
10
11
         else
         \{ // \text{ Reduce } P \text{ into a smaller subproblem. } \}
12
              mid := \lfloor (i+l)/2 \rfloor;
13
             if (x = a[mid]) then return mid;
14
              else if (x < a[mid]) then
15
                        return BinSrch(a, i, mid - 1, x);
16
                    else return BinSrch(a, mid + 1, l, x);
17
18
19
```


Binary Search: Analysis

Recurrence Relation

$$T(n) = \begin{cases} 1 & n = 1 \\ T\left(\frac{n}{2}\right) + 1 & n > 1 \end{cases}$$

Solution

```
T(n) = T(n/2) + 1
    = [T(n/4)+1]+1 = T(n/4)+2
    =[T(n/8)+1]+2 = T(n/8)+3
=T(n/2^k)+k  n=b^k, n=2^k, logn=log2^k, k=logn
  =T(n/n)+k
   =1+k
    =1+\log n
T(n)=O(\log n)
```


- Merge sort is a perfect example of a successful application of the divide-and conquer technique.
- It has the nice property that in the worst case its complexity is **O(nlogn)**.
- Let us assume that the set of elements are to be sorted in **non-decreasing** order that is in **ascending** order.
- Given a sequence of n elements, a[1].....a[n], the idea is to imagine them split into two sets a[1].....a[$\lfloor n/2 \rfloor$] and a[$\lfloor n/2 \rfloor + 1$].....a[n].
- Each set is individually sorted, and the resulting sorted sequences are merged to produce a single sorted sequence of **n** elements
- This is an ideal example of the divide-and-conquer strategy in which the splitting is into two equal-sized sets and the combining operation is the merging of two sorted sets into one

Do it yourself

Consider the input sequence

11, 44, 22, 99, 66, 33, 88, 55, 77, 00

Obtain the merge sort tree representation showing the divide and combine phase

Merge Sort – algorithm

```
Algorithm MergeSort(low, high)
   //a[low:high] is a global array to be sorted.
   // Small(P) is true if there is only one element
    // to sort. In this case the list is already sorted.
5
6
        if (low < high) then // If there are more than one element
             // Divide P into subproblems.
8
                 // Find where to split the set.
9
                      mid := \lfloor (low + high)/2 \rfloor;
10
             // Solve the subproblems.
                 MergeSort(low, mid);
12
                 MergeSort(mid + 1, high);
13
             // Combine the solutions.
14
                 Merge(low, mid, high);
15
16
17
```


Merge Sort – algorithm

```
Algorithm Merge(low, mid, high)
    // a[low:high] is a global array containing two sorted
    // subsets in a[low:mid] and in a[mid+1:high]. The goal
    // is to merge these two sets into a single set residing
     // in a[low:high]. b[] is an auxiliary global array.
         h := low; i := low; j := mid + 1;
         while ((h \leq mid) \text{ and } (j \leq high)) do
10
             if (a[h] \leq a[j]) then
11
                  b[i] := a[h]; h := h + 1;
12
13
14
             else
15
16
                 b[i] := a[j]; j := j + 1;
17
             i := i + 1;
18
19
20
         if (h > mid) then
21
             for k := j to high do
22
                 b[i] := a[k]; i := i + 1;
23
^{24}
25
         else
26
             for k := h to mid do
27
28
                 b[i] := a[k]; i := i + 1;
29
         for \hat{k} := low to high do a[k] := b[k];
30
31 }
```


Lets Trace the algorithm

```
Algorithm MergeSort(low, high)
       if (low<high) then
          mid = \lfloor (low + high)/2 \rfloor
       MergeSort(low, mid)
       MergeSort(mid+1, high)
          Merge(low, mid, high)
```

Find the tracing in the video

Merge Sort -Analysis

■ The recurrence relation for Merge sort is given by

$$T(n) = \begin{cases} a & n = 1, a \text{ is a constant} \\ 2T\left(\frac{n}{2}\right) + cn & n > 1, c \text{ is a constant} \end{cases}$$

Solution

```
In the given relation a=2, b=2, f(n)=cn, n is power of b so n=b^k, n=2^k
T(n)=2T(n/2) + cn substitute T(n/2)=2T(n/4)+c(n/2)
    = 2[2[T(n/4)+cn/2)] + cn
    =4T(n/4)+2cn substitute T(n/4)=2T(n/8)+c(n/4)
    =4[2T(n/8)+cn/4)+2cn
    =8T(n/8)+3cn
The general pattern?
    = 2^k T(n/2^k) + kcn  n=2^k, k=logn
    =nT(1)+logncn
    = n+cnlogn considering only leading term and ignoring constants we get
T(n) = \Theta(n \log n)
```


Merge Sort -Summary

Properties summarized

- Merge Sort is useful for sorting linked lists.
- Merge Sort is a stable sort which means that the same element in an array maintain their original positions with respect to each other.
- Overall time complexity of Merge sort is $\Theta(nlogn)$.
 - i.e. its best, worst and average case time complexity is $\Theta(nlogn)$.
- It is more efficient as it is in worst case also the runtime is $\Theta(n \log n)$
- The space complexity of Merge sort is O(n). This means that this algorithm takes a lot of space and may slower down operations for the large data sets.
- Merge sort is not in-place sorting

- Quicksort is the other important sorting algorithm that is based on the divideand conquer approach.
- Unlike merge sort, which divides its input elements according to their position in the array, quicksort divides them according to their value.
- The idea of array partition is used in this sorting.
- A partition is an arrangement of the array's elements so that all the elements to the left of some element A[s] are less than or equal to A[s], and all the elements to the right $\frac{bf}{A[s]}$ are greater than or equal to it:

 $A[1] \dots A[S-1]$ A[S] $A[S+1] \dots A[n]$

• Obviously, after a partition is achieved, A[s] will be in its final position in the sorted array, and we can continue sorting the two subarrays to the left and to the right of A[s] independently

- Now note the difference between the working of Merge sort and Quick sort
- In Merge sort the division of the problem into two subproblems is immediate and the entire work happens in combining their solutions;
- In Quick sort, the entire work happens in the division stage, with no work required to combine the solutions to the subproblems.

Pivot Element

- There are a number of ways to pick the pivot element.
- In this example, we will use the first element in the array:

Pivot


```
Let the pivot element be p, i.e., p=a[1], i=1, j=r+1
Following are the rules
repeat
   Increment i until a[i] \ge p [till u get greater number than pivot]
   Decrement j until a[j] \le v [till u get lesser number than pivot]
       swap a[i] and a[j]
until i \ge j
swap (a[i],a[j])
swap(a[1],a[j])
                    0
                         1
                                            5
return j
                         3
                              1
                                  9
                                            2
```



```
Let the pivot element be p, i.e., p=a[l], i=l, j=r+1
Following are the rules repeat

Increment i until a[i] \ge p [till u get greater number than pivot ]

Decrement j until a[j] \le v [till u get lesser number than pivot ]

swap a[i] and a[j]
```

```
until i ≥ j
swap (a[i],a[j])
swap(a[l],a[j])
return j
```

0	1	2	3	4	5	6	7
5	3	1	9	8	2	4	7
p							1
i		j					


```
Let the pivot element be p, i.e., p=a[l], i=l, j=r+1

Following are the rules

repeat

Increment i until a[i] ≥ p [till u get greater
```

```
Increment i until a[i] ≥ p [till u get greater number than pivot ]
Decrement j until a[j] ≤ v [till u get lesser number than pivot ]
swap a[i] and a[j]
```

until i ≥ j swap (a[i],a[j]) swap(a[l],a[j]) return j

0	1	2	3	4	5	6	7	
5	3	1	9	8	2	4	7	
p				1				
i				j				


```
Let the pivot element be p, i.e., p=a[1], i=1, j=r+1
Following are the rules
repeat
   Increment i until a[i] \ge p [till u get greater number than pivot]
   Decrement j until a[j] \le v [till u get lesser number than pivot]
       swap a[i] and a[j]
until i \ge j
swap (a[i],a[j])
swap(a[1],a[j])
                    0
                         1
                                            5
return j
                         3
                              1
                                            2
                   p
```

stop


```
Let the pivot element be p, i.e., p=a[l], i=l,j=r+1
Following are the rules
repeat

Increment i until a[i] ≥ p [till u get greater number than pivot]

Decrement j until a[j] ≤ v [till u get lesser number than pivot]

swap a[i] and a[j]

until i ≥ j

swap (a[i],a[j])
```

until $1 \ge J$
swap (a[i],a[j])
<pre>swap(a[l],a[j])</pre>
return j


```
Let the pivot element be p, i.e., p=a[l], i=l, j=r+1
Following are the rules
repeat

Increment i until a[i] ≥ p [till u get greater number than pivot]

Decrement j until a[j] ≤ v [till u get lesser number than pivot]

swap a[i] and a[j]
```

```
until i ≥ j
swap (a[i],a[j])
swap(a[l],a[j])
return j
```

0	1	2	3	4	5	6	7
5	3	1	4	8	2	9	7
р					1		
	i				J		


```
Let the pivot element be p, i.e., p=a[1], i=1, j=r+1
Following are the rules
repeat
   Increment i until a[i] \ge p [till u get greater number than pivot]
   Decrement j until a[j] \le v [till u get lesser number than pivot]
      swap a[i] and a[j]
until i \ge j
swap (a[i],a[j])
swap(a[l],a[j]) 0
                     1
                          2
                                        5
return j
                     3
                          1
               p
```



```
Let the pivot element be p, i.e., p=a[1], i=1, j=r+1
Following are the rules
repeat
   Increment i until a[i] \ge p [till u get greater number than pivot]
   Decrement j until a[j] \le v [till u get lesser number than pivot]
      swap a[i] and a[j]
until i \ge j
swap (a[i],a[j])
swap(a[l],a[j]) 0
                     1
                          2
                                        5
                                             6
return j
                     3
                          1
               p
```

swap


```
Let the pivot element be p, i.e., p=a[l], i=l, j=r+1
Following are the rules
repeat
   Increment i until a[i] \ge p [till u get greater number than pivot]
   Decrement j until a[j] \le v [till u get lesser number than pivot]
      swap a[i] and a[j]
until i \ge j
swap (a[i],a[j])
swap(a[l],a[j]) 0
                     1
                          2
                                        5
return j
                     3
                          1
               p
```



```
Let the pivot element be p, i.e., p=a[1], i=1, j=r+1
Following are the rules
repeat
   Increment i until a[i] \ge p [till u get greater number than pivot]
   Decrement j until a[j] \le v [till u get lesser number than pivot]
      swap a[i] and a[j]
until i \ge j
swap (a[i],a[j])
swap(a[l],a[j]) o
                     1
                          2
                                        5
                                             6
return j
                     3
                          1
               p
                                                        stop
```



```
Let the pivot element be p, i.e., p=a[1], i=1, j=r+1
Following are the rules
repeat
   Increment i until a[i] \ge p [till u get greater number than pivot]
   Decrement j until a[j] \le v [till u get lesser number than pivot]
      swap a[i] and a[j]
until i \ge j
swap (a[i],a[j])
swap(a[l],a[j]) o
                     1
                          2
                                        5
                                             6
return j
                     3
                          1
               p
                                                        stop
```



```
Let the pivot element be p, i.e., p=a[1], i=1, j=r+1
Following are the rules
repeat
   Increment i until a[i] \ge p [till u get greater number than pivot]
   Decrement j until a[j] \le v [till u get lesser number than pivot]
      swap a[i] and a[j]
until i \ge j
swap (a[i],a[j])
swap(a[l],a[j]) o
                     1
                          2
                                        5
                                             6
return j
                     3
                          1
               p
                                                        stop
```



```
Let the pivot element be p, i.e., p=a[1], i=1, j=r+1
Following are the rules
repeat
   Increment i until a[i] \ge p [till u get greater number than pivot]
   Decrement j until a[j] \le v [till u get lesser number than pivot]
      swap a[i] and a[j]
until i \ge j
swap (a[i],a[j])
swap(a[l],a[j]) o
                     1
                          2
                                        5
return j
                     3
                          1
               p
                 swap
```



```
Let the pivot element be p, i.e., p=a[1], i=1, j=r+1
Following are the rules
repeat
   Increment i until a[i] \ge p [till u get greater number than pivot]
   Decrement j until a[j] \le v [till u get lesser number than pivot]
      swap a[i] and a[j]
until i \ge j
swap (a[i],a[j])
swap(a[l],a[j]) o
                     1
                          2
                                        5
return j
                     3
                          1
               p
                 swap
```


Do it yourself

• Obtain the first partition for the following set of elements considering the first element as the pivot element

■ Apply quicksort to sort the list **E**, **X**, **A**, **M**, **P**, **L**, **E** in alphabetical order


```
ALGORITHM Quicksort(A[l..r])
    //Sorts a subarray by quicksort
    //Input: A subarray A[l..r] of A[0..n-1], defined by its left and right indices
            l and r
    //Output: Subarray A[l..r] sorted in nondecreasing order
    if l < r
        s \leftarrow Partition(A[t..r]) //s is a split position
        Quicksort(A[l..s-1])
        Quicksort(A[s+1..r])
```



```
ALGORITHM Partition(A[l..r])
    //Partitions a subarray by using its first element as a pivot
    //Input: A subarray A[l..r] of A[0..n-1], defined by its left and right
             indices l and r (l < r)
    //Output: A partition of A[l..r], with the split position returned as
                this function's value
    p \leftarrow A[l]
    i \leftarrow l; j \leftarrow r + 1
    repeat
         repeat i \leftarrow i + 1 until A[i] \geq p
        repeat j \leftarrow j-1 until A[j] \leq p
         swap(A[i], A[j])
    until i \geq j
    \operatorname{swap}(A[i], A[j]) //undo last swap when i \geq j
    swap(A[l], A[j])
    return j
```


Quick Sort – Analysis (Best Case)

• The recurrence relation is given by

$$T(n) = \begin{cases} a & n = 1, a \text{ is a constant} \\ 2T(\frac{n}{2}) + n & n > 1, c \text{ is a constant} \end{cases}$$

Solution

```
In the given relation a=2, b=2, f(n)=cn, n is power of b so n=b^k, n=2^k
T(n)=2T(n/2)+n substitute T(n/2)=2T(n/4)+(n/2)
    = 2[2[T(n/4)+n/2)] + n
    =4T(n/4)+2n substitute T(n/4)=2T(n/8)+(n/4)
    =4[2T(n/8)+n/4)+2n
    =8T(n/8)+3n
The general pattern?
    = 2^{k}T(n/2^{k})+kn \qquad n=2^{k}, \quad k=logn
    =nT(1)+logn n
    = n+cnlogn considering only leading term and ignoring constants we get
                               T(n)_{Regt} = \Theta(nlogn)
```


Quick Sort- Analysis (Worst Case)

Quick Sort- Analysis (Worst Case)

■ The recurrence relation for worst case analysis is given by

$$T(n) = o + T(n-1) + n$$

Average case

$$C_{avg}(n) = \frac{1}{n} \sum_{s=0}^{n-1} [(n+1) + C_{avg}(s) + C_{avg}(n-1-s)] \quad \text{for } n > 1,$$

$$C_{avg}(0) = 0, \quad C_{avg}(1) = 0.$$

$$C_{avg}(n) \approx 2n \ln n \approx 1.38n \log_2 n$$
.

Design and Analysis of Algorithms

Divide and Conquer

Manjula L

Asst. Prof. Dept. of CSE RNSIT, Bengaluru, India

- Let A and B be two n x n matrices
- The product matrix C= AB is also an n x n matrix whose i, jthelement is formed by taking the elements in the ith row of **A**and jth column of **B** and multiplying them to get
- $C(i,j) = \sum_{1 \le k \le n} A(i,k)B(k,j)$ for all i and j between 1 and n
- To compute C(i, j) using the formula above how many multiplications are needed?
- Consider an example

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \qquad B = \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} \text{ then } C = \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{bmatrix}$$

Where,

$$c_{11} = a_{11}b_{11} + a_{12}b_{21}$$

$$c_{12} = a_{11}b_{12} + a_{12}b_{22}$$

$$c_{21} = a_{21}b_{11} + a_{22}b_{21}$$

$$c_{22} = a_{21}b_{12} + a_{22}b_{22}$$

8 multiplications

Time complexity? $\Theta(n^3)$

- Can we use **Divide and Conquer** approach to multiply two **n** x **n** matrices ?
- Let's assume that \mathbf{n} is power of $\mathbf{2}$, i.e., there exists a non-negative constant \mathbf{k} such that $\mathbf{n} = \mathbf{2}^{\mathbf{k}}$
- If **n** is not power of **2** then add enough rows and columns of **zeros** to both **A** and **B** so that the resultant dimensions are power of **2**.
- Here is the application of Divide and Conquer approach

Consider the following situation

$$\left[\begin{array}{ccc} A_{11} & A_{12} \\ A_{21} & A_{22} \end{array}\right] \left[\begin{array}{ccc} B_{11} & B_{12} \\ B_{21} & B_{22} \end{array}\right] = \left[\begin{array}{ccc} C_{11} & C_{12} \\ C_{21} & C_{22} \end{array}\right]$$

Then

$$egin{array}{lcl} C_{11} & = & P + S - T + V \ C_{12} & = & R + T \ C_{21} & = & Q + S \ C_{22} & = & P + R - Q + U \ \end{array}$$

Where

$$P = (A_{11} + A_{22})(B_{11} + B_{22})$$

$$Q = (A_{21} + A_{22})B_{11}$$

$$R = A_{11}(B_{12} - B_{22})$$

$$S = A_{22}(B_{21} - B_{11})$$

$$T = (A_{11} + A_{12})B_{22}$$

$$U = (A_{21} - A_{11})(B_{11} + B_{12})$$

$$V = (A_{12} - A_{22})(B_{21} + B_{22})$$

• Consider the following matrices and compute the product using Strassen's Method C = P + S - T + V

■ A=
$$\begin{bmatrix} 2 & 4 \\ 3 & 5 \end{bmatrix}$$
 B= $\begin{bmatrix} 1 & 3 \\ 4 & 7 \end{bmatrix}$
P= (2+5) (1+7)= 7* 8= 56
Q= (3+5)* 1= 8
R= 2* (3-7)= -8
S= 5*(4-1)= 15
T= (2+4) *7= 42
U= (3-2)* (1+3)= 4
V= (4-5)* (4+7)=-11

$$egin{array}{lll} C_{11} & = & P+S-T+V \ C_{12} & = & R+T \ C_{21} & = & Q+S \ C_{22} & = & P+R-Q+U \ \end{array}$$

$$P = (A_{11} + A_{22})(B_{11} + B_{22})$$

$$Q = (A_{21} + A_{22})B_{11}$$

$$R = A_{11}(B_{12} - B_{22})$$

$$S = A_{22}(B_{21} - B_{11})$$

$$T = (A_{11} + A_{12})B_{22}$$

$$U = (A_{21} - A_{11})(B_{11} + B_{12})$$

$$V = (A_{12} - A_{22})(B_{21} + B_{22})$$

$$\begin{pmatrix} 5 & 2 & 6 & 1 \\ 0 & 6 & 2 & 0 \\ 3 & 8 & 1 & 4 \\ 1 & 8 & 5 & 6 \end{pmatrix} \times \begin{pmatrix} 7 & 5 & 8 & 0 \\ 1 & 8 & 2 & 6 \\ 9 & 4 & 3 & 8 \\ 5 & 3 & 7 & 9 \end{pmatrix} = \begin{pmatrix} 96 & 68 & 69 & 69 \\ 24 & 56 & 18 & 52 \\ 58 & 95 & 71 & 92 \\ 90 & 107 & 81 & 142 \end{pmatrix}$$

I now want to use strassen's method which I learned as follows:

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} \times \begin{pmatrix} E & F \\ G & H \end{pmatrix} = \begin{pmatrix} AE + BG & AF + BH \\ CE + DG & CF + DH \end{pmatrix}$$

Time efficiency

- M(n) = 7 M(n/2) for n > 1, M(1) = 1
- Since n= 2 ^ k
- $M(2^K) = 7M(2^K-1)$

- 7 ^ i M(2 ^ (k-k)
- 7^k
- K=log2 n
- n ^ 2.807

Pros of Divide and Conquer Strategy

- Solving difficult problems
- Algorithm efficiency
- Parallelism Suitable for multiprocessor machines
- Memory access optimal cache-oblivious algorithms

Cons of Divide and Conquer Strategy

- Divide and Conquer strategy uses recursion that makes it a little slower and if a little error occurs in the code the program may enter into an infinite loop.
- Usage of explicit stacks may make use of extra space.

Decrease and Conquer

- This technique is based on exploiting the relationship between a solution to a given instance of a problem and a solution to a smaller instance of the same problem. Once such relationship is established, it can be exploited either top down (recursively) or bottom up (without a recursion).
- There are three major variations of decrease-and-conquer:
 - Decrease by a constant.
 - Decrease by a constant factor.
 - Variable size decrease.

Decrease by a constant

$$f(n) = \begin{cases} f(n-1) \cdot a & \text{if } n > 0, \\ 1 & \text{if } n = 0, \end{cases}$$

Decrease by a constant Factor

$$a^{n} = \begin{cases} (a^{n/2})^{2} & \text{if } n \text{ is even and positive,} \\ (a^{(n-1)/2})^{2} \cdot a & \text{if } n \text{ is odd,} \\ 1 & \text{if } n = 0. \end{cases}$$

Variable size decrease

$$\blacksquare$$
gcd (m, n) = gcd (n, m mod n).

THANK YOU