Name: _____ Student No.: _____

?. If P is the set of divisors of 90 with partial order 'is a divisor of', which one of the following is **not** an immediate successor of 3?

(A) 6, (B) 9, (C) 30, (D) 15.

Answer: $\boxed{\mathbf{C}}$: In the partial order we can fit both 6 and 15 between 3 and 30.

?. Suppose $X = \{x, y, z\}$, $Y = \{a, b\}$ and $Z = \{p, q, r\}$ while $R = \{(x, a), (y, a), (y, b), (z, b)\}$ is a relation between X and Y and $S = \{(a, p), (a, q), (b, q), (b, r)\}$ is a relation between Y and Z. Which one of the following pairs is **not** in $S \circ R$?

(A) (x, p), (B) (y, p), (C) (z, p), (D) (z, q).

Answer: $\boxed{\mathbf{C}}$: We have xRa and aSp so answer is not A. We have yRa and aSp so answer is not B. We have zRb and bSq so answer is not D.

- ?. Suppose $S = T = \{0, 1, 2, 3, 4, 5, 6\}$ and $f: S \to T$ is given by f(k) = r where r is the remainder when 3k is divided by 7. Then f is
- (A) Injective but not surjective, (B) Surjective but not injective ,
- (C) Bijective, (D) Neither injective nor surjective.

Answer: $\boxed{\mathbb{C}}$: $f(0) = 3(0) \mod 7 = 0 \mod 7 = 0$, $f(1) = 3(1) \mod 7 = 3 \mod 7 = 3$, $f(2) = 3(2) \mod 7 = 6 \mod 7 = 6$, $f(3) = 3(3) \mod 7 = 9 \mod 7 = 2$, (9 = (1)7 + 2), $f(4) = 3(4) \mod 7 = 12 \mod 7 = 5$, (12 = (1)7 + 5), $f(5) = 3(5) \mod 7 = 15 \mod 7 = 1$, (15 = (2)7 + 1), $f(6) = 3(6) \mod 7 = 18 \mod 7 = 4$, (18 = (2)7 + 4).

?. The inverse of f(x) = (2x + 3)/(-x - 2) is

(A)
$$g(y) = (3y+2)/(-y-2)$$
, (B) $g(y) = (2y+3)/(-2y-1)$, (C) $g(y) = (3y+2)/(-2y-1)$, (D) $g(y) = (2y+3)/(-y-2)$.

Answer: \boxed{D} : If y = (2x+3)/(-x-2) then -xy - 2y = 2x + 3 so that -xy - 2x = 2y + 3 and x = (2y+3)/(-y-2).