Lecture 2: Introduction to Policy Gradient Methods

Wouter van Heeswijk

23 July 2025

Outline

- 1 From value-based to policy-based learning
- 2 Derivation of policy gradient theorem
- 3 Vanilla policy gradient
- 4 Deep policy gradient methods

Introduction to policy gradients

From value-based to policy-based learning

Value-Based vs Policy-Based Methods

Value-Based:

- Learn action values Q(s, a)
- Policy: pick action with highest Q (arg max)
- Works well for discrete, small action spaces
- Difficult with continuous or combinatorial actions

Policy-Based:

- Learn policy $\pi_{\theta}(a|s)$ directly
- Policy outputs a distribution over actions (stochastic!)
- Suitable for continuous, structured actions
- Requires sampling and gradient estimation, which can be noisy

Tradeoff: structured targets vs direct optimization

Why Must Policies Be Stochastic?

To learn, we need a gradient signal from sampled actions:

- lacktriangleright Policy gradient methods estimate how changing heta changes expected rewards by sampling actions
- This estimation requires the policy to output a probability distribution
- Deterministic policies pick a fixed action no variability, no signal

In short:

Stochasticity is essential because it provides the learning signal — without it, the gradient vanishes.

Introduction to policy gradients

Policy Gradient: Core Setup

Goal: Maximize expected return:

$$J(\theta) = \mathbb{E}_{\pi_{\theta}} \left[\sum_{t=0}^{\infty} \gamma^{t} r_{t} \right]$$

Approach:

- **Sample** trajectories from π_{θ}
- Estimate gradient using rewards
- **Update** θ via gradient ascent

$$\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$$

No Bellman equation, no value function, no arg max

From value-based to policy-based learning

Introduction to policy gradients

Policy-based learning

Figure: Wu, C. (2024). Policy gradient. 6.7920: Reinforcement Learning: Foundations and Methods

From value-based to policy-based learning
Introduction to policy gradients

Gradient-Free Policy Optimization

Policies can also be updated without gradients

- Hill Climbing / Random Search:
 - Perturb policy parameters randomly and keep improvements
 - Simple but can be sample inefficient
- Evolution Strategies (ES):
 - Population-based search over policy parameters
 - Uses fitness evaluations instead of gradients
 - Scales well with parallelism
- Cross-Entropy Method (CEM):
 - Iteratively fit a distribution over good policies
 - Sample, evaluate, and update the distribution
- **■** Finite-Difference Methods:
 - Approximate gradient via small parameter perturbations
 - Useful when gradients are unavailable or noisy

Trade-offs: Generally simpler and more robust but less sample efficient than gradient-based methods.

Policy Gradients for Combinatorial Actions

Examples: Routing, scheduling, ranking \Rightarrow Action = a structured object (e.g., sequence, set)

Why not use DQN?

- Must compute Q(s, a) for every possible action
- Combinatorial explosion: |A| = n! or 2^n
- Even $arg max_a Q(s, a)$ is intractable

Policy Gradient Benefit:

- Learn structured stochastic policies $\pi_{\theta}(a|s)$
- Sample complex actions step-by-step
- No need to enumerate or score all actions

Key: PG methods scale better to large structured action spaces

Derivation of policy gradient theorem

Objective of Policy Gradient Methods

Goal: Maximize the expected return of a stochastic policy $\pi_{\theta}(a|s)$:

$$\overline{J(heta) = \mathbb{E}_{ au \sim P(\cdot; heta)}\left[R(au)
ight]} \quad ext{where } R(au) = \sum_{t=0}^T r(s_t, a_t)$$

Policy-based RL:

- lacksquare Directly parameterizes the policy $\pi_{ heta}$
- Optimizes $J(\theta)$ via gradient ascent:

$$\theta_{k+1} = \theta_k + \alpha \nabla_\theta J(\theta_k)$$

Next step: How do we compute $\nabla_{\theta} J(\theta)$?

Why Gradient Estimation Is Hard

The objective $J(\theta) = \mathbb{E}_{\tau \sim P(\cdot;\theta)}[R(\tau)]$ is an expectation over trajectories: $\tau = (s_0, a_0, \dots, s_T) \sim P(\tau; \theta)$.

Trajectory distribution:

$$P(\tau; \theta) = \underbrace{\rho(s_0)}_{\text{initial state}} \cdot \prod_{t=0}^{T-1} \underbrace{\pi_{\theta}(a_t|s_t)}_{\text{policy (learned)}} \cdot \underbrace{P(s_{t+1}|s_t, a_t)}_{\text{environment (fixed)}}$$

Problem:

- $P(\tau; \theta)$ mixes learnable terms (π_{θ}) with unknown, non-differentiable ones (P(s'|s, a))
- Makes direct computation of $\nabla_{\theta}J(\theta)$ infeasible

We need a workaround to isolate the effect of the policy.

└ Difficulty of gradient estimation

Trajectory sampling

Figure: Levine, S. Policy Gradients. CS 294-112: Deep Reinforcement Learning

Why Not Just Differentiate?

We want to compute:

$$\nabla_{\theta} J(\theta) = \nabla_{\theta} \mathbb{E}_{\tau \sim P(\cdot; \theta)} \left[R(\tau) \right]$$

But: $P(\tau; \theta)$ includes both:

- \blacksquare $\pi_{\theta}(a_t|s_t)$: learnable
- $P(s_{t+1}|s_t, a_t)$: non-differentiable, potentially unknown

We can sample from $P(\tau; \theta)$, but not differentiate through it.

Key idea: Rewriting the gradient to only involve terms we control — the policy.

This is where the log-derivative trick comes in.

Starting Point: Naive Gradient

First, rewrite from gradient of sum to sum of gradients.

$$\nabla_{\theta} J(\theta) = \nabla_{\theta} \sum_{\tau} P(\tau; \theta) R(\tau) = \sum_{\tau} \nabla_{\theta} P(\tau; \theta) R(\tau)$$

Problem: $P(\tau; \theta)$ is a product of many terms \rightarrow hard to differentiate directly, especially with sampling!

We will further rewrite this to allow sampling and get stable gradients.

Rewriting the gradient expression

$$\begin{split} \nabla_{\theta} J(\theta) &= \sum_{\tau} \nabla_{\theta} P(\tau;\theta) R(\tau) \\ &= \sum_{\tau} \frac{P(\tau;\theta)}{P(\tau;\theta)} \nabla_{\theta} P(\tau;\theta) R(\tau) \quad // \text{ multiply by 1} \\ &= \sum_{\tau} P(\tau;\theta) \underbrace{\left(\frac{\nabla_{\theta} P(\tau;\theta)}{P(\tau;\theta)}\right)}_{\text{Rewriteablel}} R(\tau) \end{split}$$

Now we have an expectation, as $\sum_{\tau} P(\tau; \theta) = \mathbb{E}_{\tau \sim P(\cdot; \theta)}$.

Apply the Log-Derivative Identity

$$\begin{split} \frac{\nabla_{\theta} P(\tau; \theta)}{P(\tau; \theta)} &= \nabla_{\theta} \log P(\tau; \theta) \quad / / \text{ identity: } \nabla \log f = \frac{\nabla f}{f} \\ &\Rightarrow \nabla_{\theta} J(\theta) = \sum_{\tau} P(\tau; \theta) \nabla_{\theta} \log P(\tau; \theta) R(\tau) \\ &= \mathbb{E}_{\tau \sim P(\cdot; \theta)} \left[\nabla_{\theta} \log P(\tau; \theta) R(\tau) \right] \end{split}$$

Much better: Now we can sample trajectories and compute unbiased gradient estimates.

Only the Policy Depends on θ

$$\log P(\tau;\theta) = \log \left(\rho(s_0) \prod_{t=0}^{T-1} \pi_{\theta}(a_t|s_t) P(s_{t+1}|s_t,a_t) \right)$$

Use log of product: $\log(ab) = \log a + \log b$

$$= \underbrace{\log \rho(s_0)}_{\text{independent}} + \sum_{t=0}^{T-1} \left[\underbrace{\log \pi_{\theta}(a_t|s_t)}_{\text{depends on } \theta} + \underbrace{\log P(s_{t+1}|s_t, a_t)}_{\text{independent of } \theta} \right]$$

$$\Rightarrow
abla_{ heta} \log P(au; heta) = \sum_{t=0}^{T-1}
abla_{ heta} \log \pi_{ heta}(a_t | s_t)$$

Only the policy terms matter for the gradient!

Rewriting the objective function

From Objective to Sample-Based Learning

$$J(heta) = \mathbb{E}_{ au \sim P(\cdot; heta)}[R(au)] \quad \Rightarrow \quad
abla_{ heta} J(heta) = \mathbb{E}_{ au}\left[
abla_{ heta} \log \pi_{ heta}(au) R(au)
ight]$$

Core Steps:

- **1** Express objective as expectation over trajectories
- Rewrite gradient of expectation into expectation of gradient
- 3 Use log-derivative trick to isolate policy terms
- 4 Simplify trajectory log into per-step policy log terms

Now: we can use Monte Carlo samples to compute unbiased gradient estimates!

Vanilla policy gradient (REINFORCE)

Objective and Gradient (REINFORCE)

Objective: Maximize expected return under stochastic policy π_{θ} :

$$J(\theta) = \mathbb{E}_{\pi_{\theta}} \left[\sum_{t=0}^{\infty} r(s_t, a_t) \right]$$

Gradient (log-derivative trick):

$$abla_{ heta} J(heta) = \mathbb{E}_{\pi_{ heta}} \left[\sum_{t}
abla_{ heta} \log \pi_{ heta}(\mathsf{a}_{t}|\mathsf{s}_{t}) \cdot \mathsf{R}_{t}
ight]$$

- $R_t = \sum_{k=t}^{T} \gamma^{k-t} r_k$ (return from step t)
- Fully on-policy and unbiased
- lacktriangle High variance ightarrow motivates baseline/advantage refinements

REINFORCE Algorithm

Input: Stochastic policy $\pi_{\theta}(a|s)$, learning rate α **Loop:**

- **1** Sample a trajectory $\tau = (s_0, a_0, r_0, \dots, s_T)$ from π_{θ}
- **2** Compute return for all time epochs $t \in \{0, ..., T\}$:

$$G_t = \sum_{k=t}^T \gamma^{k-t} r_k$$

3 Gradient ascent update $\forall t \in \{0, ..., T\}$:

$$\theta \leftarrow \theta + \alpha \sum_{t} \nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t}) \cdot G_{t}$$

Simple, general, but sample inefficient.

Policy Parametrizations

1. Discrete actions: Softmax policy

$$\pi_{ heta}(\mathsf{a}|\mathsf{s}) = rac{\mathsf{exp}(h_{ heta}(\mathsf{s},\mathsf{a}))}{\sum_{\mathsf{a}'} \mathsf{exp}(h_{ heta}(\mathsf{s},\mathsf{a}'))}$$

- Works for classification-style action spaces
- Used in scheduling, routing, resource allocation

2. Continuous actions: Gaussian policy

$$\pi_{\theta}(a|s) = \mathcal{N}(a; \mu_{\theta}(s), \sigma_{\theta}^{2}(s))$$

- Works for real-valued action spaces
- Suitable for control, robotics, inventory pricing

Variance Reduction By Baseline

Problem: The REINFORCE gradient estimator has high variance:

$$abla_{ heta} J(heta) = \mathbb{E}\left[\sum_t
abla_{ heta} \log \pi_{ heta}(a_t|s_t) \cdot R_t
ight]$$

Reduce variance by subtracting baseline:

$$abla_{ heta} J(heta) = \mathbb{E}\left[\sum_t
abla_{ heta} \log \pi_{ heta}(a_t|s_t) \cdot (R_t - b(s_t))
ight]$$

where $b(s_t)$ is a baseline – e.g., the average observed reward or value function $V(s_t)$ – that does not bias the gradient

Summary: Vanilla Policy Gradient (REINFORCE)

Strengths:

REINFORCE

- Unbiased gradient estimator
- Works with any differentiable policy (discrete/continuous)
- Conceptually and computationally simple

Limitations:

- High variance → slow convergence
- On-policy → poor sample efficiency
- Requires full trajectories

Used as the backbone for:

- Actor-critic architectures
- Contemporary policy gradient methods

Example: Dynamic Pricing with Policy Gradient

Problem: Set prices over time to maximize revenue under demand uncertainty.

- State: Time remaining, current inventory, past demand, competitor prices
- Action: Price level (discrete or continuous)
- Reward: Revenue from accepted price
- **Transitions:** Demand is stochastic function of price

Why Policy Gradient?

- $lue{}$ Continuous action space ightarrow Gaussian policy
- $lue{}$ Stochastic demand ightarrow learn robust pricing strategies
- Explore pricing strategies without needing a value function

Real-world link: Airline ticket pricing, hotel room pricing, ride-hailing surge prices

Example: Inventory Control with Policy Gradient

Problem: Decide how much to order over time to minimize cost under uncertainty.

- **State:** Current stock level, time, pending orders
- Action: Order quantity (continuous)
- **Reward:** Negative of ordering cost + holding cost + stockout penalty
- Transition: Demand is random, stock evolves deterministically

L Deep policy gradient methods

Introduction to deep policy gradients

Deep policy gradient methods

Deep Policy Gradient: Beyond REINFORCE

What changes compared to basic REINFORCE?

Replace tabular policies with a deep neural network:

$$\pi_{ heta}(a|s)$$
 : neural network with parameters $heta$

Generalize across continuous or high-dimensional state spaces

Training remains the same:

- Collect trajectories using current policy
- Estimate gradient via: $\nabla_{\theta}J(\theta) \approx \sum_{t} \nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t})R_{t}$
- Update θ via SGD/Adam

Still REINFORCE:

- High variance, no bootstrapping
- Still relies on Monte Carlo returns

- L Deep policy gradient methods
 - Introduction to deep policy gradients

Discrete Policy (Actor) Network

Figure: urlhttps://towardsdatascience.com/deep-policy-gradient-for-cliff-walking-37d5014fd4bc/

- Deep policy gradient methods
 - Introduction to deep policy gradients

Continuous Policy (Actor) Network

Figure: urlhttps://towardsdatascience.com/deep-policy-gradient-for-cliff-walking-37d5014fd4bc/_

L Deep policy gradient methods

Introduction to deep policy gradients

Cliff Walking Policy

Figure: https://towardsdatascience.com/deep-policy-gradient-for-cliff-walking-37d5014fd4bc/

Actor-Critic Architectures

Actor-Critic Paradigm

Actor-Critic: Learning Policies with Value Baselines

Motivation: Vanilla policy gradient (REINFORCE) suffers from high variance.

Core idea: Learn a value function to act as a baseline and reduce variance of policy gradient estimates.

What this section covers:

- Why REINFORCE is simple but noisy
- How critic networks stabilize learning
- Actor–Critic as a general architecture (not a specific algorithm)

Examples: Actor-Critic, A2C, DDPG, PPO

Actor-Critic Methods

Key idea:

- **Actor:** policy network $\pi_{\theta}(a|s)$ decides what to do
- **Critic:** value network $V_w(s)$ or $Q_w(s,a)$ evaluates the actor's choices

Policy update:

$$abla_{ heta} J(heta) pprox \mathbb{E}\left[
abla_{ heta} \log \pi_{ heta}(a|s) \cdot \hat{A}(s,a)
ight]$$

Critic learns:

- $V(s) \rightarrow \text{used to estimate advantage: } A(s, a) = Q(s, a) V(s)$
- Can be updated via bootstrapping (TD learning)

Advantages:

- Combines low-variance baseline (critic) with direct policy search (actor)
- More sample-efficient than REINFORCE

Actor-Critic Learning

Figure: Wu, C. (2024). Policy gradient. 6.7920: Reinforcement Learning: Foundations and Methods

Advantage Actor-Critic (A2C)

A2C = Specific variant of Actor-Critic:

- On-policy
- Synchronous parallel workers with shared policy

Actor update:

$$abla_{ heta} J(heta) = \mathbb{E}\left[
abla_{ heta} \log \pi_{ heta}(a_t|s_t) \cdot (R_t - V_{\phi}(s_t))
ight]$$

Critic update:

$$L(\phi) = (V_{\phi}(s_t) - R_t)^2$$
 (regression to empirical return)

Summary:

- Uses full return R_t as target \rightarrow high variance but unbiased
- Shared architecture across workers ensures stability

└ Actor-Critic Architectures

Asynchronous Advantage Actor–Critic (A3C)

A3C = Parallel, asynchronous variant of Actor–Critic:

- Multiple agents interact with independent environment copies
- Each agent computes gradients for actor and critic
- Gradients applied asynchronously to shared global parameters

Benefits:

- $lue{}$ Diverse trajectories ightarrow better exploration
- No experience replay needed
- Efficient on CPUs

Drawbacks:

- Asynchronous updates can be unstable
- Requires careful synchronization

Policy Optimization with Trust Region Constraints

Stable Policy Optimization: From NPG to PPO

Motivation: Vanilla gradient updates can lead to large, unstable policy changes.

Core idea: Control the size and direction of policy updates — either geometrically (Fisher) or via constraints (KL or clipping).

What this section covers:

- Natural gradients and policy geometry
- KL-constrained optimization (TRPO)
- First-order approximation via clipping (PPO)

Why Vanilla Gradients May Fail

Vanilla Policy Gradient:

$$\theta_{k+1} = \theta_k + \alpha \nabla_\theta J(\theta)$$

Problem: Small changes in θ can cause **large, unstable shifts** in the policy $\pi_{\theta}(a|s)$

Intuition: In parameter space, the Euclidean step size $\|\theta_{k+1} - \theta_k\|$ doesn't reflect how much the policy changed!

Figure: https://medium.com/data-science/

From Parameter Space to Policy Space

Problem: Vanilla gradient descent ignores policy geometry \rightarrow risk of **overshooting** or **inefficient updates**

Figure: https://medium.com/data-science/ natural-policy-gradients-in-reinforcement-learning-explained-2265864cf43c

Key idea: Use KL divergence to measure and control distance between policies:

$$D_{\mathsf{KL}}(\pi_{\theta} || \pi_{\theta+\delta})$$

Adjust updates to account for the local curvature of policy space

KL Divergence and the Fisher Matrix

Use second-order Taylor approximation:

$$D_{\mathsf{KL}}(\pi_{ heta} || \pi_{ heta + \delta}) pprox rac{1}{2} \delta^{ op} F(heta) \delta$$

Fisher Information Matrix can be expressed in terms of score function:

$$F(heta) = \mathbb{E}_{s, a \sim \pi_{ heta}} \left[
abla_{ heta} \log \pi_{ heta}(a|s)
abla_{ heta} \log \pi_{ heta}(a|s)^{ op}
ight]$$

Interpretation: Fisher Information Matrix captures local sensitivity of the policy \rightarrow defines the natural metric in policy space.

Natural Gradient: KL-Aware Steepest Ascent

Optimization problem:

$$\max_{\delta} \quad \nabla_{\theta} J(\theta)^{\top} \delta \quad \text{s.t.} \quad D_{\mathsf{KL}} \big(\pi_{\theta} || \pi_{\theta + \delta} \big) \leq \epsilon$$

Using second-order KL approximation:

$$\Rightarrow \quad \max_{\delta} \nabla_{\theta} J^{\top} \delta \quad \text{s.t.} \quad \frac{1}{2} \delta^{\top} F(\theta) \delta \leq \epsilon$$

Solution:

$$\delta^{\star} = \alpha F(\theta)^{-1} \nabla_{\theta} J(\theta)$$

This is the natural policy gradient.

Natural Policy Gradient: Summary and Update Rule

Natural Gradient Direction:

$$\tilde{\nabla}_{\theta} J(\theta) = F(\theta)^{-1} \nabla_{\theta} J(\theta)$$

Policy Update Rule:

$$\theta_{k+1} = \theta_k + \alpha \tilde{\nabla}_{\theta} J(\theta)$$

Why it matters:

- Invariant to policy reparameterization
- Respects geometry of policy space
- Enables stable and efficient learning

Used in TRPO; approximated in PPO.

Limitations of Natural Policy Gradient

Shortcomings of Natural Policy Gradient:

- **I** Approximate KL control: Taylor expansion is only local \rightarrow may violate actual KL trust region.
- **No improvement guarantee:** We do not *check* if the policy is better we just *assume* the step is good.
- **3 Computational burden:** Inverting the Fisher matrix is expensive: $\mathcal{O}(n^3)$

Conclusion: We need an optimization procedure that:

- Enforces the KL constraint more reliably
- Actually checks monotonic policy improvement
- Avoids direct inversion of F
 - ⇒ Trust Region Policy Optimization (TRPO)

TRPO: Trust Region Policy Optimization

Trust Region Idea: Constrain updates in policy space:

$$\max_{\theta_{k+1}} \quad \mathbb{E}_{s,a \sim \pi_{\theta_k}} \left[\frac{\pi_{\theta_{k+1}}(a|s)}{\pi_{\theta_k}(a|s)} A^{\pi_{\theta_k}}(s,a) \right] \quad \text{s.t.}$$

$$\mathbb{E}_{s \sim \mathcal{D}^{\pi_{\theta_k}}} \left[D_{KL}(\pi_{\theta_k}(\cdot|s) || \pi_{\theta_{k+1}}(\cdot|s)) \right] \leq \delta$$

Why this works:

- Avoids explicit matrix inversion using conjugate gradient
- Ensures monotonic improvement via policy improvement bound
- KL constraint prevents overstepping → stable learning

TRPO: Conjugate Gradient

The **conjugate gradient method** solves Fx = g, where $g = \nabla_{\theta} J$ and F is the Fisher information matrix.

- Note that we don't benefit from knowing F^{-1} itself, it is just a step to obtain the natural gradient
- Iterative method that approximates the solution without computing or inverting F explicitly.
- Efficient: uses Hessian-vector products instead of full matrix calculations.
- Returns an approximate natural gradient direction: $x \approx F^{-1}g$.

TRPO Line Search: Surrogate Objective & Importance Sampling

Key idea: Before accepting a policy update, TRPO verifies it improves the surrogate objective.

Surrogate objective (using importance sampling):

$$\hat{J}(heta_{k+1}) = \mathbb{E}_{s,a \sim \pi_{ heta_k}} \left[rac{\pi_{ heta_{k+1}}(a|s)}{\pi_{ heta_k}(a|s)} A^{\pi_{ heta_k}}(s,a)
ight]$$

Here, the importance sampling ratio

$$\frac{\pi_{\theta_{k+1}}(a|s)}{\pi_{\theta_k}(a|s)}$$

reweighs the samples collected under the old policy π_{θ_k} to estimate new policy's $\pi_{\theta_{k+1}}$ performance.

TRPO Line Search: Procedure

Line search procedure:

- Compute $\hat{J}(\theta_{k+1})$ for candidate update θ_{k+1} using reweighted samples
- Check if $\hat{J}(\theta_{k+1}) > \hat{J}(\theta_k)$ (improvement)
- Verify KL constraint:

$$\mathbb{E}_{s}\left[D_{\mathit{KL}}\left(\pi_{\theta_{k}}(\cdot|s)\|\pi_{\theta_{k+1}}(\cdot|s)\right)\right] \leq \delta$$

 \blacksquare If either fails, reduce step size by shrinking the step scaling factor α

TRPO Line Search: Update Rule

Explicit line search update formula:

$$\theta_{k+1} = \theta_k + \alpha^j \sqrt{\frac{2\delta}{\hat{x}_k^\top H_k \hat{x}_k}} \, \hat{x}_k,$$

where:

- \hat{x}_k is the conjugate gradient direction (approximate natural gradient)
- \blacksquare H_k is the Hessian of the KL (Fisher Information Matrix)
- ullet $j=0,1,2,\ldots$ indexes the line search backtracking steps
- $lue{\alpha}$ is typically set to 0.5 (step size halving)

Result: Guarantees monotonic improvement while respecting the trust region.

Policy Optimization with Trust Region Constraints

Trust Region Visualized

Figure: https://avandekleut.github.io/ppo/

Insight: As long as π^{k+1} stays in the trust region, we are guaranteed a lower bound on improvement.

From TRPO to PPO: Practical Challenges

Why not just use TRPO all the time?

- Too slow for deep networks:
 - Even with conjugate gradient, second-order methods are expensive.
 - Fisher matrix is large: $|\theta| \times |\theta|$
- Incompatible with first-order optimizers:
 - Can't use fast optimizers like Adam or RMSprop
- Hard to implement and debug:
 - Conjugate gradient + KL constraint + line search = complex pipeline

Key Question: Can we retain the benefits of TRPO — **stability** and **KL control** — while using only first-order updates?

⇒ Proximal Policy Optimization (PPO)

Proximal Policy Optimization (PPO)

Goal: Stable, efficient policy updates without second-order methods (like TRPO)

Recall TRPO's constraint:

$$\max_{\theta_{k+1}} \quad \mathbb{E}_{s,a \sim \pi_{\theta_k}} \left[\frac{\pi_{\theta_{k+1}}(a|s)}{\pi_{\theta_k}(a|s)} A^{\pi_{\theta_k}}(s,a) \right] \quad \text{s.t.}$$

$$\mathbb{E}_{s,\mathcal{D}^{\pi_{\theta_k}}} \left[D_{KL}(\pi_{\theta_k}(\cdot|s) \| \pi_{\theta_{k+1}}(\cdot|s)) \right] < \delta$$

PPO idea: Replace hard KL constraint with a *clipped surrogate objective* to keep updates "proximal" (i.e., not too large) **Benefit:** No second-order optimization, simple implementation, competitive performance

Deep policy gradient methods

Policy Optimization with Trust Region Constraints

PPO Overview: What's Going On?

PPO components:

- Semi-on-policy: Reuse old data within an update batch, but only briefly (no full replay buffer)
- Surrogate objective: encourages policy improvement via advantage-weighted likelihood ratio
- Clipping: prevents large, destabilizing updates to the policy
- Advantage estimation: uses Generalized Advantage Estimation to reduce variance of policy updates
- Mini-batching: reuses data over multiple epochs to improve sample efficiency

Idea: Combine the best parts of:

- TRPO: trust region stability
- REINFORCE: simplicity and scalability
- GAE: low-variance advantage estimation

Importance Sampling in PPO (continued)

From TRPO to PPO:

■ TRPO uses **importance sampling** to evaluate the new policy $\pi_{\theta_{k+1}}$ under trajectories collected from the old policy π_{θ_k} , ensuring valid off-policy evaluation:

$$\mathbb{E}_{ au \sim \pi_{ heta_k}} \left[rac{\pi_{ heta_{k+1}}(a|s)}{\pi_{ heta_k}(a|s)} A^{\pi_{ heta_k}}(s,a)
ight]$$

■ PPO reuses the same ratio $r_t(\theta_{k+1}) = \frac{\pi_{\theta}(a_t|s_t)}{\pi_{\theta_k}(a_t|s_t)}$ to track policy drift across **multiple gradient steps**—not just one. Same concept, but even more important due to potentially larger drift from original policy.

Clipped Surrogate Objective

Clipped objective:

$$J^{\mathsf{CLIP}}(\theta) = \mathbb{E}_t \left[\min \left(r_t(\theta) A_t, \ \mathsf{clip}(r_t(\theta), 1 - \epsilon, 1 + \epsilon) A_t \right) \right]$$

Intuition:

- $r_t(\theta_{k+1}) = \frac{\pi_{\theta_{k+1}}(a_t|s_t)}{\pi_{\theta_k}(a_t|s_t)}$ is the importance weight comparing new and old policies.
- Objective encourages improvement only within a small trust region.
- If $r_t(\theta)$ deviates too far from 1, surrogate is clipped \rightarrow discourages overly large updates.

Why the min operator in PPO?

The min operator in $\mathbb{E}_t \left[\min \left(r_t A_t, \ \operatorname{clip}(r_t, 1 - \epsilon, 1 + \epsilon) A_t \right) \right]$ ensures a pessimistic bound by blocking two harmful update types:

- Large increase of bad actions (no reward): If $A_t < 0$ but $r_t > 1 + \epsilon$, the policy is boosting a bad action too much. The clipped term $(1 + \epsilon)A_t$ is *lower* (more negative) than r_tA_t , so min picks it, \Rightarrow zero gradient.
- Large decrease of good actions (missed opportunity): If $A_t > 0$ but $r_t < 1 \epsilon$, the policy is cutting a good action's probability too much. The clipped term $(1 \epsilon)A_t$ is *lower* than r_tA_t , so min picks it, \Rightarrow zero gradient.

Result: All other updates (aligned with improving the policy) retain their gradient, while only truly harmful, overly large shifts are halted—creating a soft trust region.

Deep policy gradient methods

Policy Optimization with Trust Region Constraints

PPO Clipping Per Case

Ratio	At	Value of min	Clipped?	Sign	Gradient
$1 - \epsilon \le r_t(\theta) \le 1 + \epsilon$	+	$r_t(\theta)A_t$	No	+	✓
$1-\epsilon \leq r_t(\theta) \leq 1+\epsilon$	_	$r_t(\theta)A_t$	No	_	✓
$r_t(\theta) < 1 - \epsilon$	+	$r_t(\theta)A_t$	No	+	✓
$r_t(\theta) < 1 - \epsilon$	_	$(1-\epsilon)A_t$	Yes	_	×
$r_t(\theta) > 1 + \epsilon$	+	$(1+\epsilon)A_t$	Yes	+	×
$r_t(\theta) > 1 + \epsilon$	_	$r_t(\theta)A_t$	No	_	✓

Stable Advantage Estimation for PPO (GAE)

Why we use GAE:

- Policy gradient updates depend on accurate advantage estimates
- Remind: Monte Carlo = high variance, TD = high bias

Generalized Advantage Estimation (GAE):

$$A_t^{\mathsf{GAE}(\gamma,\lambda)} = \sum_{l=0}^{\infty} (\gamma \lambda)^l \delta_{t+l}$$
 with $\delta_t = r_t + \gamma V(s_{t+1}) - V(s_t)$

Tradeoff: Smooths estimates \rightarrow better learning signal

In PPO: A_t from GAE is used in the clipped objective:

$$\min(r_t(\theta)A_t, \operatorname{clip}(r_t(\theta), 1 - \epsilon, 1 + \epsilon)A_t)$$

Mini-batching and Optimization in PPO

PPO is trained via multiple epochs on collected data:

- PPO reuses the same batch of trajectories for multiple epochs
 → corrects for policy drift using importance sampling
- lacktriangle Collect T timesteps via current policy π_{θ_k}
- Compute advantages (e.g., using GAE)
- Optimize the PPO surrogate objective:

$$\theta \leftarrow \arg\max_{\theta} \ J^{\mathsf{CLIP}}(\theta)$$

over multiple epochs using first-order optimizer like Adam

Split data into mini-batches for stable updates

Typical hyperparameters:

■ Epochs per batch: 3–10

■ Minibatch size: 64–512

■ Timesteps per batch: 2048-8192

PPO Summary: Why It Works

- First-order, efficient, easy to implement
- Stable updates via clipped surrogate objective
- Uses GAE for variance reduction
- Strong empirical performance across environments

Limitations:

- lacksquare Still on-policy o sample inefficient
- Sensitive to hyperparameters (batch size, clip range, etc.)
- Can fail in long-horizon credit assignment tasks

Differentiable Control for Continuous Actions

Stochastic PG vs Deterministic PG

Stochastic policy gradient (PG) methods

- Estimate $\nabla_{\theta}J$ via sampling from $\pi_{\theta}(a|s)$.
- High variance; require on-policy sampling.

Deterministic policy gradient (DPG) algorithms

■ Differentiate *through* the critic to update the actor directly:

$$\nabla_w J(w) = \mathbb{E}_{s \sim D} \Big[\nabla_a Q_{\psi}(s, a) \big|_{a = \varphi_w(s)} \nabla_w \varphi_w(s) \Big].$$

- Off-policy, low variance.
- DPG family: DDPG, TD3, SAC (stochastic policy, but uses reparameterization).

DPG algorithms commonly require the critic to take actions as input, originate in continuous action spaces, and are *off-policy*.

Differentiable Control for Continuous Actions

Challenge: Standard stochastic PG (e.g., REINFORCE) struggles in continuous action spaces:

- High sampling variance
- Non-differentiable sampling step
- On-policy, so no reuse of past experiences

This block explores:

- Reparameterized policies for pathwise gradients
- Deterministic policy gradients for direct control (DDPG, TD3)
- Entropy-regularized policies for robust exploration (SAC)

Theme: Enable end-to-end differentiable optimization over continuous actions.

Deep Deterministic Policy Gradient (DDPG)

Goal: Actor–Critic method for continuous action spaces

Key ideas:

- Deterministic policy: $\mu(s; \theta^{\mu}) \rightarrow$ outputs action a directly
- Critic: $Q(s, a; \theta^Q)$ learns to evaluate (s, a)
- Uses target networks and replay buffer

Updates:

Critic: minimize TD error

$$y = r + \gamma Q'(s', \mu'(s'))$$
 (target networks)

Actor: policy gradient via chain rule:

$$\left.
abla_{ heta^{\mu}} J pprox \mathbb{E}_{s} \left[
abla_{a} Q(s, a) \Big|_{a = \mu(s)}
abla_{ heta^{\mu}} \mu(s)
ight]$$

Issue: Prone to overestimation, instability

Deep policy gradient methods

Differentiable Control for Continuous Actions

DDPG Architecture

Figure:

TD3: Twin Delayed Deep Deterministic Policy Gradient

Fixes to DDPG's instability:

Clipped Double Q-learning: Two critics Q_1, Q_2

$$y = r + \gamma \min_{i=1,2} Q_i'(s', \mu'(s'))$$

■ **Target smoothing:** Add noise to target action:

$$a' = \mu'(s') + \epsilon, \quad \epsilon \sim \mathsf{clip}(\mathcal{N}(0, \sigma), -c, c)$$

■ **Delayed actor update:** Update policy less frequently than critic

Effect: Improved stability, more accurate value estimates, reduced overfitting

From Deterministic to Stochastic Policies

- TD3 uses deterministic policies with added noise for exploration.
- Fixed noise can be suboptimal for consistent, adaptive exploration.
- Stochastic policies explicitly model action distributions, enabling flexible and state-dependent exploration.
- However, gradient estimation for stochastic policies often relies on likelihood ratio methods (e.g., REINFORCE).

Next: Why likelihood ratio methods struggle with variance and gradient flow.

REINFORCE Gradient: Intuition and Limitations

$$abla_{ heta} J = \mathbb{E}_{s,a} ig[Q_{\psi}(s,a) \,
abla_{ heta} \log \pi_{ heta}(a|s) ig]$$

- Uses likelihood ratios to estimate gradient without differentiating through actions.
- Cannot exploit critic gradients w.r.t. actions $(\nabla_a Q)$.
- Gradient only "sees" rewards weighted by log-probability.

Next: Why this leads to high variance and sample inefficiency.

Challenges in Practice: Variance and Sample Efficiency

- **High variance** because $\log \pi_{\theta}(a|s)$ can explode for low-probability actions.
- Sampling breaks gradient flow (data point is not differentiable)
 → cannot backpropagate through critic → noisy updates.
- \blacksquare On-policy learning \to requires fresh samples every update \to sample inefficient.
- SAC tackles these with reparameterization and off-policy learning.

Reparameterization: Deterministic Sampling

Key idea: Replace stochastic draw $a \sim \pi_{\theta}(\cdot|s)$ with

$$a = g_{\theta}(\epsilon, s), \quad \epsilon \sim p(\epsilon)$$

—for example, Gaussian: $a = \mu_{\theta}(s) + \sigma_{\theta}(s) \epsilon$.

Now ϵ carries all randomness, and g_{θ} is differentiable.

Pathwise gradient:

$$\nabla_{\theta} \mathbb{E}_{\epsilon} \big[f(g_{\theta}(\epsilon, s)) \big] = \mathbb{E}_{\epsilon} \big[\nabla_{\mathsf{a}} f(\mathsf{a}) \ \nabla_{\theta} g_{\theta}(\epsilon, s) \big].$$

- Leverages $\nabla_a f$ (e.g. critic's slope).
- No $\log \pi$ term \rightarrow much lower variance.
- Turns sampling into a local deterministic sensitivity analysis.

From Pathwise Gradients to SAC

Actor-critic objective with reparameterization:

$$egin{aligned} J(heta) &= \mathbb{E}_{s,\epsilon}ig[Q_\psiig(s,\,g_ heta(\epsilon,s)ig)ig] \
abla_ heta J &= \mathbb{E}_{s,\epsilon}ig[
abla_a Q_\psi(s,a) \,
abla_ heta g_ heta(\epsilon,s)ig]. \end{aligned}$$

Payoff: A direct, low-variance update telling the actor "which way" in action space to improve Q.

Reparameterization unifies policy gradient estimation; DDPG/TD3 correspond to deterministic policies (zero noise limit), SAC uses stochastic policies with entropy regularization.

Entropy Bonus: Encouraging Exploration

Motivation: Avoid premature convergence to deterministic policies and encourage **exploration** by keeping policy "soft".

Entropy of policy:

$$\mathcal{H}(\pi_{ heta}(\cdot|s)) = -\mathbb{E}_{\mathsf{a}\sim\pi_{ heta}}\left[\log\pi_{ heta}(\mathsf{a}|s)
ight]$$

Entropy-regularized objective:

$$J(\theta) = \mathbb{E}_{\pi_{\theta}} \left[\sum_{t=0}^{\infty} \gamma^{t} \left(r_{t} + \alpha \mathcal{H}(\pi_{\theta}(\cdot|s_{t})) \right) \right]$$

- ullet α controls exploration-exploitation tradeoff
- Larger $\alpha \to \text{more stochastic policies (more exploration)}$
- Integral part of SAC and related methods $$\tt mathematical part of SAC and related methods <math display="inline">\tt mathematical part of SAC and related methods <math display="inline">\tt mathematical part of SAC and related methods <math display="inline">\tt mathematical part of SAC and related methods <math display="inline">\tt mathematical part of SAC and related methods <math display="inline">\tt mathematical part of SAC and related methods are also as a superior of SAC and related methods are also as a s$

Soft Actor-Critic (SAC): Overview

Key idea: Learn a stochastic policy that maximizes expected return **plus entropy**, encouraging exploration.

Objective (policy-level):

$$\pi^* = \arg\max_{\pi} \sum_{t} \mathbb{E}_{(s_t, a_t) \sim \rho_{\pi}} \left[r(s_t, a_t) + \alpha \mathcal{H}(\pi(\cdot|s_t)) \right]$$

Main components:

- Actor: Stochastic Gaussian policy $a = f_{\theta}(s, \epsilon), \epsilon \sim \mathcal{N}(0, 1)$
- **Critic(s):** Two Q-functions Q_{ϕ_1}, Q_{ϕ_2}
- **Entropy coefficient** α **:** Automatically tuned to balance exploitation vs exploration

Off-policy: Learns from replay buffer (like DQN/DDPG), improving sample efficiency over PPO/TRPO

SAC: Critic Loss (Q-function)

Minimize Bellman residual using entropy-regularized target:

$$\mathcal{L}_{Q}(\phi) = \mathbb{E}_{(s,a,r,s') \sim \mathcal{D}} \left(Q_{\phi}(s,a) - \left(r + \gamma \mathbb{E}_{a' \sim \pi_{\theta}} \left[Q_{\bar{\phi}}(s',a') - \alpha \log \pi_{\theta}(a'|s') \right] \right)^{2}$$

- lacksquare \mathcal{D} : Replay buffer
- $lack \phi$: Target network (slow moving average of ϕ)
- lacktriangleright lpha: Entropy coefficient
- Trains the Q-network to predict soft (entropy-regularized) future returns.

SAC: Policy Loss (Actor)

Maximize expected return and entropy:

$$J_{\pi}(\theta) = \mathbb{E}_{s \sim \mathcal{D}, \epsilon \sim \mathcal{N}} \left[Q_{\phi}(s, a) - \alpha \log \pi_{\theta}(a|s) \right], \quad \text{with } a = f_{\theta}(s, \epsilon)$$

Train via gradient ascent (minimize loss):

$$\mathcal{L}_{\pi}(\theta) = \mathbb{E}_{s \sim \mathcal{D}, \epsilon \sim \mathcal{N}} \left[\alpha \log \pi_{\theta}(f_{\theta}(s, \epsilon) | s) - Q_{\phi}(s, f_{\theta}(s, \epsilon)) \right]$$

- $f_{\theta}(s, \epsilon)$: Reparameterized action
- Enables low-variance gradients via backprop through *f*
- Optimizes the policy to choose actions that are both rewarding and diverse.

SAC: Entropy Temperature Loss

Loss: Minimize deviation from target entropy $\mathcal{H}_{\mathsf{target}}$ by adjusting α .

$$\mathcal{L}_{\alpha} = \mathbb{E}_{\mathsf{a} \sim \pi_{\theta}} \left[\alpha \left(-\log \pi_{\theta}(\mathsf{a}|\mathsf{s}) - \mathcal{H}_{\mathsf{target}} \right) \right]$$

- lacksquare α is a learnable parameter
- Trained via **gradient descent** on \mathcal{L}_{α}
- lacksquare Increases lpha if entropy is too low, decreases if too high
- Enables automatic control of policy stochasticity

SAC: Implementation Tricks and Stability Mechanisms

Key implementation tricks:

- Twin Q-networks: Use Q_{ϕ_1} , Q_{ϕ_2} , and take minimum to reduce overestimation bias (as in TD3)
- Target networks: Soft updates through Polyak averaging:

$$ar{\phi}_j \leftarrow au \phi_j + (1- au) ar{\phi}_j$$
 with small $au \ll 1$

- Reparameterization trick: Use $a = f_{\theta}(s, \epsilon)$ with $\epsilon \sim \mathcal{N}(0, 1)$ to backpropagate through stochasticity
- **Entropy coefficient tuning:** Adapt α to maintain a target entropy $\bar{\mathcal{H}}$ (e.g., based on action space dimensionality)
- **Off-policy updates:** Leverage replay buffer \mathcal{D} for sample reuse and training stability

Which Policy Gradient Algorithm to Use?

Algorithm	Use case	Why / Trade-offs
REINFORCE	Toy problems, teaching	Simple, but very high variance
Actor–Critic	Small/medium tasks	Lower variance, still sample-inefficient
TRPO / PPO	Robotics, high-dim control	Stable, robust, but data- hungry (on-policy)
DDPG	Continuous control, low noise	Efficient, but brittle and poor exploration
SAC	Complex continuous control (robotics, finance, games)	Efficient, stable, good exploration (entropy)

Take-away: On-policy = stable but data-hungry. Off-policy = sample efficient, often better for real-world.

Deep policy gradient methods

Wrapping up

Wrapping up

Lecture 2 Summary: Advanced Introduction to Policy Gradients

What we covered:

- Introduced policy-based reinforcement learning and stochastic policies, contrasted policy- and value-based learning
- Derived policy gradient theorem and outlined vanilla policy gradient (REINFORCE)
- Introduced advanced policy gradient methods: actor-critic, natural gradient, PPO, DDPG, SAC

Takeaway: Policy-based RL directly adjusts policies by tuning a parameterized stochastic policy. It forms the foundation for actor-critic models.

Contact details

Wouter van Heeswijk
Assistant Professor
Operations Research & Financial Engineering
University of Twente
w.j.a.vanheeswijk@utwente.nl
+31 53 489 8460