On the minimal number of generators of a finite group

Diogo Santos

November 1, 2024

Introduction

ullet Finding the minimal number of gentators of a finite group H

Introduction

- Finding the minimal number of gentators of a finite group H
 Can be reduced to:
 - Finding the minimal number of gentators of a finite group H such that $d(H/N) \le m$ for every non-trivial normal subgroup N, but d(H) > m

Theorem

Let H be a finite nilpotent group such that $d(H/N) \leq 1$ for every non-trivial normal subgroup N, but d(H) > 1. Then $H \cong \mathbb{Z}_p \times \mathbb{Z}_p$ for some prime p.

Theorem

Let H be a finite nilpotent group such that $d(H/N) \leq 1$ for every non-trivial normal subgroup N, but d(H) > 1. Then $H \cong \mathbb{Z}_p \times \mathbb{Z}_p$ for some prime p.

Proof.

• $H = P_1 \times ... \times P_n$ where P_i is a Sylow p_i -subgroup for $1 \le i \le n$ and $p_1, ..., p_n$ are distinct primes.

Theorem

Let H be a finite nilpotent group such that $d(H/N) \leq 1$ for every non-trivial normal subgroup N, but d(H) > 1. Then $H \cong \mathbb{Z}_p \times \mathbb{Z}_p$ for some prime p.

Proof.

- $H = P_1 \times ... \times P_n$ where P_i is a Sylow p_i -subgroup for $1 \le i \le n$ and $p_1, ..., p_n$ are distinct primes.
- If P_1, \ldots, P_n are cyclic, we obtain $H \cong \mathbb{Z}_{p_1 \ldots p_n}$ which contradicts d(H) > 1. Without loss of generality we can thus assume that P_1 is not cyclic.

Theorem

Let H be a finite nilpotent group such that $d(H/N) \leq 1$ for every non-trivial normal subgroup N, but d(H) > 1. Then $H \cong \mathbb{Z}_p \times \mathbb{Z}_p$ for some prime p.

Proof.

- $H = P_1 \times ... \times P_n$ where P_i is a Sylow p_i -subgroup for $1 \le i \le n$ and $p_1, ..., p_n$ are distinct primes.
- If P_1, \ldots, P_n are cyclic, we obtain $H \cong \mathbb{Z}_{p_1 \ldots p_n}$ which contradicts d(H) > 1. Without loss of generality we can thus assume that P_1 is not cyclic.
- $n \ge 2 \implies P_1 \cong H/(1 \times P_2 \dots \times P_n)$ and thus $d(P_1) = d(H/(1 \times P_2 \dots \times P_n)) = 1$, contradiction.

Theorem

Let H be a finite nilpotent group such that $d(H/N) \leq 1$ for every non-trivial normal subgroup N, but d(H) > 1. Then $H \cong \mathbb{Z}_p \times \mathbb{Z}_p$ for some prime p.

Proof.

- $H = P_1 \times ... \times P_n$ where P_i is a Sylow p_i -subgroup for $1 \le i \le n$ and $p_1, ..., p_n$ are distinct primes.
- If P_1, \ldots, P_n are cyclic, we obtain $H \cong \mathbb{Z}_{p_1 \ldots p_n}$ which contradicts d(H) > 1. Without loss of generality we can thus assume that P_1 is not cyclic.
- $n \ge 2 \implies P_1 \cong H/(1 \times P_2 \dots \times P_n)$ and thus $d(P_1) = d(H/(1 \times P_2 \dots \times P_n)) = 1$, contradiction.
- By Theorem $\ref{eq:total}$, $\Phi(H)=1$ hence $H=(\mathbb{Z}_{p_1})^q$ by Theorem $\ref{eq:total}$?

Proof.

• q = 2 since

$$q-1=d((\mathbb{Z}_{p_1})^{q-1})=d(H/(\mathbb{Z}_{p_1}\times 1\times \ldots \times 1))=1.$$