CAMI: will it be dead on arrival?

Presented by Aaron Darling

Thanks to C. Titus Brown for discussion that inspired this presentation

Three likely ways CAMI will fail

- 1) Becoming obsolete before it is published
- 2) Lack of openness & reproducibility in code and data
- 3) Failure to be forward-thinking about future analysis challenges

Will CAMI be obsolete prior to publication?

Analysis software constantly evolves – or it dies

Genome & metagenome databases continuously growing

github commit activity for metAMOS metagenomics pipeline, prior 12 months

commits for GroopM, all time

Genome assembly benchmarks: previous attempts

- A static assessment of thencurrent genome assembly
- Generated a simulated dataset, teams independently assembled & submitted results
- Only assemblies submitted, no code, no parameters, no way to reproduce a team's results

- Also a static assessment
- Real datasets
- Assemblies run by expert team, slightly more reproducible

An alternative: http:// nucleotid.es

by Michael Barton

- Weekly evaluation of assembly algorithms
- Uses Docker images for each assembler
- QUAST to measure assembly accuracy

Advantages

Open: Anyone can contribute a docker image Reproducible: Exact parameters & software available Current: major improvements (or flaws) identified in days nucleotid.es Benchmarks About Image API Using Images Mailing List

Read Set 0002

Microbe - approx. size: 4MBp, approx. GC: 40%

Assembler Image	Procfile	NG50 	LG50 ↓ ↑	#contigs ↓↑	UN ↓ ↑	IB ‡†
nucleotides/spades	default	109246	15	97	2.62	4.24
nucleotides/spades	careful	109246	15	96	2.62	5.12
nucleotides/spades	single-cell	109202	15	105	2.72	10.38
nucleotides/spades	single-cell-careful	109202	15	100	2.73	3.75
nucleotides/velvet-optimiser	default	91011	18	108	3.29	65.98
nucleotides/idba	single-cell	84779	19	120	2.83	1.16
nucleotides/idba	default	81960	21	134	2.85	0.81
nucleotides/abyss	k-64	78957	19	116	1.27	12.15
nucleotides/abyss	default	38850	41	230	2.56	82.03
nucleotides/idba	idba	16161	94	450	4.4	0.84
nucleotides/soap-denovo	kmer-10-cutoff	12032	118	571	5.96	0.19
nucleotides/soap-denovo	default	11909	118	572	6.01	0.17
nucleotides/velvet	default	2987	504	1469	15.17	7.67

Read Set 0005

Microbe - approx. size: 2MBp, approx. GC: 40%

Assembler Image	Procfile	NG50 []	LG50 ↓↑	#contigs 11	UN IT	IB ‡†
nucleotides/spades	sinale-cell	89875	9	53	2.0	7.49

CAMI: hamstrung by taxonomy?

- Very little of the known diversity is named
- Taxonomy is a human-limited process naming, renaming, fistfights etc.

Figure from Rinke et al 2013 Nature Supplementary material

Is binning to taxonomic marker genes (e.g. 16S or ribosomal proteins) a viable solution?

CAMI: how do we future-proof it?

Recent methods to reconstruct individual genomes from within metagenomes:

- Differential coverage binning:
 - GroopM (Imelfort et al 2014), CONCOCT (Alneberg et al 2013), mmgenome (Albertsen 2014)
- High throughput single cell genome sequencing
 - Rinke et al 2013 Nature, Kashtan et al 2014 Science
- Metagenomic Hi-C
 - Beitel et al 2014 PeerJ, Burton et al 2014 G3

Novel technologies on the horizon?

A solution: benchmark at the limits of science?

- Define a model of a microbial ecosystem's metagenome that is as complete as we could ever hope to reconstruct. What is this limit?
- The complete genome of every cell, with every cell assigned a taxonomic identifier? This is possible via simulation.

Problems, problems, problems:

- What is a meaningful summary?
 - Average fraction of genome reconstructed?
 - Numbers of genes incorrectly binned together?
 - Number of SNPs identified? Correctly linked together?
- Can we can define some of these later?
 - Can individuals contribute benchmark modules for their stats of interest?