

planetmath.org

Math for the people, by the people.

example of an Artinian module which is not Noetherian

 ${\bf Canonical\ name} \quad {\bf Example Of An Artinian Module Which Is Not Noetherian}$

Date of creation 2013-03-22 19:04:18 Last modified on 2013-03-22 19:04:18

Owner joking (16130) Last modified by joking (16130)

Numerical id 5

Author joking (16130) Entry type Example

Classification msc 16D10

It is well known, that left (right) Artinian ring is left (right) Noetherian (Akizuki-Hopkins-Levitzki theorem). We will show that this no longer holds for modules.

Let $\mathbb Z$ be the ring of integers and $\mathbb Q$ the field of rationals. Let $p\in\mathbb Z$ be a prime number and consider

$$G = \{ \frac{a}{p^n} \in \mathbb{Q} \mid a \in \mathbb{Z}; \ n \ge 0 \}.$$

Of course G is a \mathbb{Z} -module via standard multiplication and addition. For $n \geq 0$ consider

$$G_n = \{ \frac{a}{p^n} \in \mathbb{Q} \mid a \in \mathbb{Z} \}.$$

Of course each $G_n \subseteq G$ is a submodule and it is easy to see, that

$$\mathbb{Z} = G_0 \subset G_1 \subset G_2 \subset G_3 \subset \cdots,$$

where each inclusion is proper. We will show that G/\mathbb{Z} is Artinian, but it is not Noetherian.

Let $\pi: G \to G/\mathbb{Z}$ be the canonical projection. Then $G'_n = \pi(G_n)$ is a submodule of G/\mathbb{Z} and

$$0 = G_0' \subset G_1' \subset G_2' \subset G_3' \subset G_4' \subset \cdots$$

The inclusions are proper, because for any n > 0 we have

$$G'_{n+1}/G'_n \simeq (G_{n+1}/\mathbb{Z})/(G_n/\mathbb{Z}) \simeq G_{n+1}/G_n \neq 0,$$

due to Third Isomorphism Theorem for modules. This shows, that G/\mathbb{Z} is not Noetherian.

In order to show that G/\mathbb{Z} is Artinian, we will show, that each proper submodule of G/\mathbb{Z} is of the form G'_n . Let $N \subseteq G/\mathbb{Z}$ be a proper submodule. Assume that for some $a \in \mathbb{Z}$ and $n \geq 0$ we have

$$\frac{a}{p^n} + \mathbb{Z} \in N.$$

We may assume that $gcd(a, p^n) = 1$. Therefore there are $\alpha, \beta \in \mathbb{Z}$ such that

$$1 = \alpha a + \beta p^n.$$

Now, since N is a \mathbb{Z} -module we have

$$\frac{\alpha a}{p^n} + \mathbb{Z} \in N$$

and since $0 + \mathbb{Z} = \beta + \mathbb{Z} = \frac{\beta p^n}{p^n} + \mathbb{Z} \in N$ we have that

$$\frac{1}{p^n} + \mathbb{Z} = \frac{\alpha a + \beta p^n}{p^n} + \mathbb{Z} \in N.$$

Now, let m > 0 be the smallest number, such that $\frac{1}{p^m} + \mathbb{Z} \notin N$. What we showed is that

$$N = G'_{m-1} = \pi(G_{m-1}),$$

because for every $0 \le n \le m-1$ (and only for such n) we have $\frac{1}{p^n} + \mathbb{Z} \in N$ and thus N is a image of a submodule of G, which is generated by $\frac{1}{p^n}$ and this is precisely G_{m-1} . Now let

$$N_1 \supseteq N_2 \supseteq N_3 \supseteq \cdots$$

be a chain of submodules in G/\mathbb{Z} . Then there are natural numbers n_1, n_2, \ldots such that $N_i = G'_{n_i}$. Note that $G'_k \supseteq G'_s$ if and only if $k \ge s$. In particular we obtain a sequence of natural numbers

$$n_1 \ge n_2 \ge n_3 \ge \cdots$$

This chain has to stabilize, which completes the proof. \Box