COM 5120 Communication Theory Homework #1

Due: 10/14/2020

1. (20%) Consider a finite periodic pulse signal x(t) with period T, i.e.

$$x(t) = \sum_{m=-M}^{M} p(t - mT),$$

where p(t)=1 for $-d/2 \le t \le d/2$, otherwise p(t)=0, and d < T.

- (a) Please determine X(f), the Fourier transform of x(t).
- (b) Please sketch X(f) and mark the major null frequencies.
- 2. (20%) Consider the signal $x(t) = 2F sinc(Ft) cos(2\pi f_0 t)$, where $f_0 \gg F$.
 - (a) Find and sketch the spectrum of x(t). (6%)
 - (b) Find and sketch the spectrum of $x_+(t) = \frac{1}{2}x(t) + \frac{j}{2}\hat{x}(t)$, where $\hat{x}(t)$ is the Hilbert transform of x(t). (6%)
 - (c) Find the complex envelope $\tilde{x}(t)$, where $x_+(t) = \frac{1}{2}\tilde{x}(t) \cdot e^{j2\pi f_0 t}$, and also find and sketch its spectrum. (8%)
- 3. (20%) Let $y(t) = \int_{t-T}^{t} x(\tau) d\tau$, that is y(t) is the integrator output of x(t), where T is the integration period. The x(t) and y(t) are sample functions of stationary processes X(t) and Y(t), respectively. Let X(t) be the integrator input, please show that the power spectral density $S_Y(f)$ of the integrator output Y(t) is related to that of the integrator input $S_X(f)$ as

$$S_Y(f) = T^2 sinc^2(fT) S_X(f)$$

- 4. (20%) Let X(t), Y(t) be independent random processes, θ be a random variable uniformly distributed over $[0,2\pi)$ and independent of both X(t) and Y(t), φ be a fixed constant in $[0,2\pi)$, f_c be a constant frequency($f_c>0$). Please indicate whether the following statements (a), (b), (c), (d) are true or false and explain why.
 - (a) If X(t) is wide sense stationary, then $X(t)\cos(2\pi f_c t + \varphi)$ is cyclo-stationary and $X(t)\cos(2\pi f_c t + \theta)$ is wide sense stationary. (5%)
 - (b) Let $X_1(t) = X(t)\cos(2\pi f_c t + \theta)$, $X_2(t) = X(t)\sin(2\pi f_c t + \theta)$, then $X_1(t)$ and $X_2(t)$ both have zero mean. (5%)
 - (c) The $X_1(t)$ and $X_2(t)$ in (b) are uncorrelated random processes. (5%)
 - (d) Let $Y_2(t) = Y(t) \sin(2\pi f_c t + \theta)$, then $X_1(t)$ in (b) and $Y_2(t)$ are uncorrelated random processes. (5%)

5. (20%) A pair of noise random processes $n_1(t)$ and $n_2(t)$ are related by $n_2(t) = n_1(t)\cos(2\pi f_c t + \theta) - n_1(t)\sin(2\pi f_c t + \theta)$ where f_c is a constant, and θ is the value of a random variable θ whose probability density function is defined by

$$f_{\vartheta}(\theta) = \begin{cases} \frac{1}{2\pi}, & 0 \le \theta \le 2\pi \\ 0, & otherwise \end{cases}$$

The noise process $n_1(t)$ is stationary and its power spectral density is as shown in Figure 1. Find and plot the corresponding power spectral density of $n_2(t)$. (20%)

Figure 1.