- 1. Dataset Creation
- 2. Training
- 3. Deploy/Infer

Notes based on CS231n, Stanford University, and EECS 498-007 / 598-005, University of Michigan

Notes based on CS231n, Stanford University, and EECS 498-007 / 598-005, University of Michigan

Hardware for training

- GPU
- TPU

Hardware for inferencing

- CPU
- Edge TPU
- VPU

Hardware for training

- GPU
- TPU

Hardware for inferencing

- CPU
- Edge TPU
- VPU

Inside a computer

GPU: "Graphics Processing Unit"

CPU: "Central Processing Unit"

VS

Supercomputer Power (FLOPS)

The growth of supercomputer power, measured as the number of floating-point operations carried out per second (FLOPS) by the largest supercomputer in any given year. (FLOPS) is a measure of calculations per second for floating-point operations. Floating-point operations are needed for very large or very small real numbers, or computations that require a large dynamic range. It is therefore a more accurate measured than simply instructions per second.

Higher GigaFLOPs at a lower cost

NVIDIA GPU Hardware

Nvidia Tesla K80, T4, P4 and P100

Programming GPUs

- CUDA (NVIDIA only)
 - Write C-like code that runs directly on the GPU
 - NVIDIA provides optimized APIs: cuBLAS, cuFFT, cuDNN, etc

- OpenCL
 - Similar to CUDA, but runs on anything
 - Usually slower on NVIDIA hardware

Scaling up: Typically 8 GPUs per server

NVIDIA A100

Google Tensor Processing Units (TPU) Servers

Tensor Processing Unit (TPU) is an AI accelerator application-specific integrated circuit (ASIC) developed by Google specifically for neural network machine learning

https://cloud.google.com/tpu

ResNet-50 Training Cost Comparison \$100.00 27 times faster training 8 V100 GPUs at 38% lower cost with TPUs training duration: 90 epochs 1 full Cloud TPU v2 Pod training duration: \$25.00 Google Cloud VM with 8 V100 GPUs Full Cloud TPU v2 Pod

ResNet-50 Training Cost Comparison

Tesla Dojo

D1 chips as base 9 petaFLOPS PFLOPS 10¹⁵ 9,000,000,000,000,000 FLOPS

Hardware for training

- GPU
- TPU

Hardware for inferencing

- Edge TPU
- VPU
- CPU

Hardware for training

- GPU
- TPU

Hardware for inferencing

- Edge TPU
- VPU
- CPU

Coral Edge TPU

USB Accelerator

Dev Board

M.2 Accelerator

System-on-Module (SoM)

Mini PCIe Accelerator

M.2 Accelerator B+M key A+E key

Accelerator Module

Dev Board Mini

M.2 Accelerator with Dual Edge TPU

https://coral.ai/products/

https://www.youtube.com/watch?v=bOYWx1jJCZo

CPU + Coral Edge TPU

Raspberry Pi with Coral Edge TPU

Only works with Tensorflow

https://magpi.raspberrypi.org/articles/teachable-machine-coral-usb-accelerator

https://www.youtube.com/watch?v=bOYWx1jJCZo

Intel Vision Processing Unit (VPU)

a.k.a. Myriad X, Movidius, Neural Compute Stick

Specialized processors designed to deliver high-performance machine vision at ultra-low power.

- Supports up to 16 video streams per device
- Ideal for camera and network video recorder (NVR) use cases with power, size, and cost constraints
- Supports small memory footprint networks
- Only works with Intel OpenVINO

FROM reliable, deliver, manage

https://software.intel.com/content/www/us/en/develop/topics/iot/hardware/vision-accelerator-movidius-vpu.html

CPU + VPU

UpSquared with M.2 VPU

Raspberry Pi with Intel Movidius Stick

VPU on Edge Devices

NEON-1000-MDX AI Smart Camera with Intel® Movidius™ Myriad™ X VPU

Al-Vue Series – WP1NNLO 2MP ANPR Bullet Camera
Powered by Intel® Movidius™ Myriad™ X VPU

OpenCV OAK-D

https://store.opencv.ai/products/oak-d

The OpenCV AI Kit (OAK) is a low-power hardware edge AI computing module based on Intel Movidius Myriad-X chip

CPU

Normal CPUs can still infer

Intel® 11th Gen Core Processors

 Deep Learning Boost (Intel® DL Boost)

New Iris Xe Graphics

Up to 96EU – Up to 2x Higher Performance Intel® Deep learning Boost: DP4A for AI

New 2x MEDIA Encoders

Up to 4K60 10b 4:4:4 Up to 8K30 10b 4:2:0

New 4 x Display Pipes

Up to 1 x 8K60 or 4 x 4K60 DP1.4 HBR3, BT.2020

New Image Processing Unit (IPU6)

Video up to 4K90 resolutions (initially 4K30) Still image up to 42 megapixels (initially 27MP)

New GNA 2.0

Enhanced Power Management

Autonomous DVFS

Intel® DL Boost: DP4a

- Introducing 8-bit INT acceleration on Intel® Iris® Xe graphics
- Optimized with Intel® OpenVINO™ Toolkit & OneAPI
- 4X faster than competition (ML Perf)

Deep Learning Software

Notes based on CS231n, Stanford University, and EECS 498-007 / 598-005, University of Michigan

Linux and Python

A zoo of frameworks!

Tensorflow

TensorFlow is a free and open-source software library for machine learning.

Now TF 2.0

Can train on your own (Linux) computer or on Colab.

Can deploy anywhere.

https://www.tensorflow.org/learn

PyTorch

PyTorch is an open source machine learning library for Python, based on Torch. It is used for applications such as natural language processing and was developed by Facebook's Al research group.

Can train on your own (Linux) computer or on Colab.

Can deploy anywhere.

https://pytorch.org/

API Level	Low	High and Low	High
Architecture	Complex, less readable	Not easy to use	Simple, concise, readable
Datasets	Large datasets, high performance	Large datasets, high performance	Smaller datasets
Debugging	Good debugging capabilities	Difficult to conduct debugging	Simple network, so debugging is not often needed
Does It Have Trained Models?	Yes	Yes	Yes
Popularity	Third most popular	Second most popular	Most popular
Speed	Fast, high-performance	Fast, high-performance	Slow, low performance
Written In	Lua	C++, CUDA, Python	Python

https://www.simplilearn.com/keras-vs-tensorflow-vs-pytorch-article

Colab

- Colab allows anybody to write and execute Python code through the browser.
- Get access to Nvidia Tesla K80, T4, P4 and P100 for free!
 Limited to 12GB memory.
- Connect for 12 hours a day.
- Did I mention it's free?

• Want more power? There's Colab Pro.

OpenVino

intel. OpenVINO

Open Visual Inference and Network Optimization

- 1. Dataset Creation
- 2. Training
- 3. Deploy/Infer

Notes based on CS231n, Stanford University, and EECS 498-007 / 598-005, University of Michigan

1. Dataset Creation

Existing datasets are best

- Kaggle
- A list on wikipedia

Otherwise:

- 1.1 Collect Images
- Take own photos
- Scrape the interwebs
- Synthetic/made up data

1.2 Annotate

- LabelImg
- CVAT
- Roboflow
- Perceptilabs
- 1.3 Data Augmentation
- Albumentations
- 1.4 Export to the correct format

2. Training

Train from scratch

• PyTorch, Tensorflow, Keras, etc.

Transfer learn – rewire the dense layer at the output

- PyTorch, Tensorflow, Keras
- Teachable machine
- Roboflow

3. Deploy/Infer

Edge devices

Ability AI Vue camera with VPU

Intel NUC with VPU

OpenCV AI Kit with Myriad X

Jetson Nano 2GB

Raspberry Pi with Coral Edge TPU

Raspberry Pi with NCS

