

数学分析

作者: Huang

时间: July 7, 2025

目录

第1章	数列	1
1.1	极限的计算	1
	1.1.1 stolz 定理	1
	1.1.2 abel 变换	2
	1.1.3 拟合法	4
1.2	渐进展开	6
	1.2.1 初等方法	6
	1.2.2 迭代方法	7
	1.2.3 Laplace 方法	8
1.3	递推数列的敛散性判断	10
	1.3.1 单调性分析方法	
	1.3.2 压缩映像方法	
	1.3.3 蛛网工作法	12
第2章	运 数	14
2.1	连续性和可微性	
	2.1.1 定义法	
	2.1.2 级数法	
	2.1.3 Schwarz 导数	
2.2	• ***	16
2.3	函数方程	
	2.3.1 柯西方程	
	2.3.2 迭代法	20
-	一元函数微分学	22
3.1	微分中值定理	
	3.1.1 插值法	
	3.1.2 K 值法	
2.2	3.1.3 微分方程法	
3.2	函数性态分析	
	3.2.1 常用结论	
2.2	3.2.2 综合运用	
3.3	函数逼近问题	
	3.3.1 连续函数的逼近	
	5.5.2 可你函数的通过	34
第4章	一元函数积分学	37
4.1	积分的计算	37
	4.1.1 区间再现公式	37
	4.1.2 Froullani 积分	38
	4.1.3 化为含参积分处理	40
	4.1.4 级数方法	43

	E	录
4.2	积分的渐进展开	45
	4.2.1 定积分定义	45
	4.2.2 Euler-Maclaurin 公式	48
4.3	积分不等式(难,建议绕过)	50
	4.3.1 Cauchy 不等式	50
	4.3.2 Jensen 不等式	51
	4.3.3 Chebyshev 不等式	51
	4.3.4 Opial 不等式	52
	4.3.5 Young 不等式	52
	4.3.6 单调性方法	52
	4.3.7 中值定理	52
第5章	反常积分	53
5.1	反常积分收散性判断	53
5.2	反常积分特殊性质	56
第6章	级数	59
6.1	- 3	59
0.1	6.1.1 凑已知函数	59
	6.1.2 利用幂级数	59
	6.1.3 特殊方法	60
6.2	敛散性判断	61
0.2	6.2.1 数项级数	61
	6.2.2 函数项级数	62
6.3	综合运用	63
	6.3.1 级数证明	63
	6.3.2 幂级数的阶	63
	6.3.3 Tauber 定理	63
第7章	多元微积分	64
7.1	连续性和可微性	64
7.2	重积分计算	65

第1章 数列

1.1 极限的计算

1.1.1 stolz 定理

定理 1.1.1 (Stolz)

• $(\frac{0}{0})$ 型, $\{a_n\}$, $\{b_n\}$ 是无穷小量, $\{a_n\}$ 单调递减, $\lim_{n\to\infty} \frac{b_{n+1}-b_n}{a_{n+1}-a_n} = l$,则 $\lim_{n\to\infty} \frac{b_n}{a_n} = l$ • $(\frac{*}{\infty})$ 型, $\{a_n\}$ 是严格单调递增无穷大量, $\lim_{n\to\infty} \frac{b_{n+1}-b_n}{a_{n+1}-a_n} = l$,则 $\lim_{n\to\infty} \frac{b_n}{a_n} = l$

•
$$(\frac{*}{\infty})$$
 型, $\{a_n\}$ 是严格单调递增无穷大量, $\lim_{n\to\infty}\frac{b_{n+1}-b_n}{a_{n+1}-a_n}=l$,则 $\lim_{n\to\infty}\frac{b_n}{a_n}=l$

注 该定理可以理解为离散版本的洛必达

例题 1.1 设 $a_1 \in (0,1), a_{n+1} = \sin a_n, n = 1, 2, \cdots$, 试计算

$$\lim_{n\to\infty}\sqrt{n}a_n.$$

 \Diamond

证明

显然 x_n 趋向于 0,考虑到

$$\frac{n}{\frac{1}{a_{n}^{2}}} = \frac{n+1-n}{\frac{1}{a_{n}^{2}} - \frac{1}{a_{n}^{2}}} = \frac{1}{\frac{1}{a_{n}^{2}} - \frac{1}{a_{n}^{2}}} = \frac{a_{n}^{2}a_{n+1}^{2}}{a_{n}^{2} - a_{n+1}^{2}} = \frac{a_{n}^{4}}{a_{n}^{2} - \sin^{2}a_{n}} = \lim_{n \to \infty} \frac{x^{4}}{x^{2} - \sin^{2}x} = 3$$

因此

$$\lim_{n \to \infty} \sqrt{n} a_n = \sqrt{3}$$

例题 1.2 设 $a_n > 0$ 且

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n}$$

存在或者为确定符号的 ∞。

(1) 求证:

$$\lim_{n \to \infty} \sqrt[n]{a_n} = \lim_{n \to \infty} \frac{a_{n+1}}{a_n}.$$

(2) 进一步, 若

$$\lim_{n \to \infty} a_n = a,$$

计算

$$\lim_{r \to 0} \left(\frac{a_1^r + a_2^r + \dots + a_n^r}{n} \right)^{\frac{1}{r}}$$

(2023 中科院夏令营)

证明 (1)

注意到

$$\lim_{n \to \infty} a_n^{\frac{1}{n}} = \lim_{n \to \infty} e^{\frac{1}{n} \ln a_n} = \lim_{n \to \infty} e^{\frac{\ln a_{n+1} - \ln a_n}{n+1-n}} = e^{\lim_{n \to \infty} \frac{a_{n+1}}{a_n}}$$

(2) 注意到

$$\begin{split} &\lim_{r\to 0}\left(\frac{a_1^r+a_2^r+\cdots+a_n^r}{n}\right)^{\frac{1}{r}}=\lim_{r\to 0}e^{\frac{1}{r}\left[\ln\left(\sum_{j=1}^na_j^r\right)-\ln n\right]} \\ &\mathring{\mathbf{A}} \\ \mathring{\mathbf{A}} \\ \mathring{$$

例题 1.3

• 设

$$S_n = \sum_{k=0}^n \frac{\ln C_n^k}{n^2},$$

求

$$\lim_{n\to\infty} S_n.$$

• 计算

$$\lim_{n\to\infty}\frac{\ln n}{\ln\sum_{k=0}^n k^{2020}}.$$

(第十二届全国大学生数学竞赛)

注 分子求和时,不是单纯的 $\sum_{k=0}^{n+1} \ln C_n^k - \sum_{k=0}^n \ln C_n^k$,而是 $\sum_{k=0}^{n+1} \ln C_{n+1}^k - \sum_{k=0}^n \ln C_n^k$. 证明 (1) 利用两次 Stolz 定理即可

$$\lim_{n \to \infty} \frac{\sum_{k=0}^{n} \ln C_n^k}{n^2} = \lim_{n \to \infty} \frac{\sum_{k=0}^{n+1} \ln C_{n+1}^k - \sum_{k=0}^{n} \ln C_n^k}{(n+1)^2 - n^2}$$

$$= \lim_{n \to \infty} \frac{\sum_{k=1}^{n} \ln C_{n+1}^k - \sum_{k=1}^{n} \ln C_n^k}{2n+1}$$

$$C_{n+1}^k = \frac{n+1}{n+1-k} C_n^{k-1}$$

$$= \lim_{n \to \infty} \frac{\sum_{k=1}^{n} \ln \frac{n+1}{k} + \sum_{k=1}^{n} \ln C_n^{k-1} - \sum_{k=1}^{n} \ln C_n^k}{2n+1}$$

$$= \lim_{n \to \infty} \frac{\sum_{k=1}^{n} \ln(n+1) - \sum_{k=1}^{n} \ln k}{2n+1}$$

$$= \lim_{n \to \infty} \frac{n \ln(n+1) - \sum_{k=1}^{n} \ln k}{2n+1}$$

$$= \lim_{n \to \infty} \frac{n \ln(n+1) - (n-1) \ln n - \ln n}{2}$$

$$= \lim_{n \to \infty} \frac{n \ln (1 + \frac{1}{n})}{2}$$

$$= \frac{1}{2}.$$

(2) 利用 Stolz 定理

$$\begin{split} & \lim_{n \to \infty} \frac{\ln n}{\ln \sum_{k=1}^n k^{2020}} = \lim_{n \to \infty} \frac{\ln(n+1) - \ln n}{\ln \sum_{k=1}^{n+1} k^{2020} - \ln \sum_{k=1}^n k^{2020}} \\ &= \lim_{n \to \infty} \frac{\ln \left(1 + \frac{1}{n}\right)}{\ln \left(1 + \frac{(n+1)^{2020}}{\sum_{k=1}^n k^{2020}}\right)} \\ &= \lim_{n \to \infty} \frac{1}{n \ln \left(1 + \frac{(1 + \frac{1}{n})^{2020}}{\sum_{k=1}^n \left(\frac{k}{n}\right)^{2020}}\right)} \\ &= \lim_{n \to \infty} \frac{1}{\frac{1}{n} \sum_{k=1}^n \left(\frac{k}{n}\right)^{2020}} = \int_0^1 x^{2020} \, dx = \frac{1}{2021}. \end{split}$$

1.1.2 abel 变换

定理 1.1.2

$$\sum_{k=1}^{n} a_k b_k = \sum_{k=1}^{n-1} (a_k - a_{k+1}) B_k + a_n B_n, \quad \sharp + B_k = \sum_{i=1}^{k} b_i.$$

注 该定理可以理解为离散版本的分部积分,分部积分具有改善阶的效果,而该定理也具有类似的效果

例题 1.4 设 $\lim_{n\to\infty}\sum_{k=1}^n a_k$ 存在,试计算 $\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^n ka_k$ 注

如果我们直接使用 Stolz 定理,就有

$$\lim_{n \to \infty} \frac{\sum_{k=1}^{n} k a_k}{n} = \lim_{n \to \infty} \frac{n a_n}{n - (n-1)} = \lim_{n \to \infty} n a_n.$$

遗憾的是,上述最后的极限可能不存在,而 Stolz 定理可以适用。

i 本题是一个重要的需要记忆的结论,在很多难题时可能是一个很微不足道的中间步骤,但却会把人狠狠的卡住。此外,此类问题还不是直接应用 Stolz 定理就可以的。

证明 使用 abel 变换, 我们有

$$\lim_{n \to \infty} \frac{\sum_{k=1}^{n} k a_k}{n} = \lim_{n \to \infty} \frac{\sum_{k=1}^{n-1} (k - (k+1)) \sum_{j=1}^{k} a_j + n \sum_{k=1}^{n} a_k}{n}$$

$$= \lim_{n \to \infty} \frac{-\sum_{k=1}^{n-1} \sum_{j=1}^{k} a_j}{n} + \lim_{n \to \infty} \sum_{k=1}^{n} a_k$$

$$= \lim_{n \to \infty} \frac{-\sum_{j=1}^{n} a_j}{n+1-n} + \lim_{n \to \infty} \sum_{k=1}^{n} a_k = 0.$$

例题 1.5 (2023 中科大考研压轴) 设有实数列 $\{a_n\}$, 令 $S_n = \sum_{k=1}^n a_k$, $\sigma_n = \frac{1}{n} \sum_{k=1}^n S_k$.

- (1) 证明: 若 $\{S_n\}$ 有极限S,则 $\lim_{n\to\infty}\sigma_n=S$ 。
- (2) 若 $\{\sigma_n\}$ 收敛, 且 $a_n = o\left(\frac{1}{n}\right)$, 则 $\{S_n\}$ 收敛。

证明 (1)Stolz 一下就出结果了

(2) 注意到

$$\sigma_n = \frac{1}{n} \sum_{k=1}^n S_k = \frac{1}{n} \sum_{k=1}^n S_k \cdot 1$$

使用 abel 变换, 我们有

$$\frac{1}{n}\sum_{k=1}^{n}S_k \cdot 1 = \frac{1}{n}(\sum_{k=1}^{n-1}(S_k - S_{k+1}) \cdot k + S_n \cdot n) = \frac{1}{n}\sum_{k=1}^{n-1}k(S_k - S_{k+1}) + S_n$$

注意到 $S_k - S_{k+1} = -a_{k+1}$, 所以

$$\sigma_n = \frac{1}{n} \sum_{k=1}^{n-1} k(S_k - S_{k+1}) + S_n = \frac{1}{n} \sum_{k=1}^{n-1} k(-a_{k+1}) + S_n = (n-1)a_n + S_n$$

第三个等号用到了 Stolz 定理

注意到 $a_n = o(\frac{1}{n})$, 所以 S_n 收敛

例题 1.6 (2023 中科院提前批) 设 $\lim_{n\to\infty}a_n=a, \lim_{n\to\infty}b_n=b,$ 试求:

$$\lim_{n \to \infty} \frac{a_1 b_n + a_2 b_{n-1} + \dots + a_n b_1}{n}$$

证明 用 $a_n - a, b_n - b$ 分别代替 a_n, b_n ,从而不妨设 a = b = 0。由极限性质,我们知道

$$|a_n| \le M, |b_n| \le M.$$

然后由极限定义,对任何 $\epsilon > 0$,存在 $N \in \mathbb{N}$,当 $n \ge N$,就有

$$|a_n| \le \epsilon, |b_n| \le \epsilon.$$

于是当n > 2N, 此时n - N > N, 我们有

$$\left| \frac{a_1 b_n + a_2 b_{n-1} + \dots + a_n b_1}{n} \right| = \left| \frac{\sum_{k=1}^n a_k b_{n-k}}{n} \right| \le \left| \frac{\sum_{k=1}^N a_k b_{n-k}}{n} \right| + \left| \frac{\sum_{k=N+1}^n a_k b_{n-k}}{n} \right| \le \frac{NM\epsilon}{n} + \frac{M\epsilon(n-N)}{n}.$$

于是让 $n \to +\infty$ 我们得到

$$\overline{\lim_{n \to \infty}} \left| \frac{a_1 b_n + a_2 b_{n-1} + \dots + a_n b_1}{n} \right| \le M\epsilon,$$

由ε任意性我们得证

1.1.3 拟合法

拟合法主要是一种思想,在于抓住问题的关键部分,这个核心思想是 laplace 方法的精髓 **例题 1.7** (2023 北师大夏令营) 设 $f \in C[0,1]$,求证:

$$\lim_{h \to 0^+} \int_0^1 \frac{h}{h^2 + x^2} f(x) dx = \frac{\pi}{2} f(0).$$

证明 由于 $f \in C[0,1]$, 对任意 $\epsilon > 0$, 存在 $\delta > 0$, 使得当 $x \in [0,\delta]$ 时,

$$|f(x) - f(0)| \le \epsilon.$$

因 $|f(x)| \leq M$ (M 为 f 的上界),

$$\left| \int_{\delta}^{1} \frac{h}{h^2 + x^2} f(x) \, dx \right| \le hM \int_{\delta}^{1} \frac{1}{x^2} \, dx = hM \left(\frac{1}{\delta} - 1 \right).$$

当 $h \to 0^+$ 时,此部分趋于 0。

令 x = ht, 则 dx = h dt, 积分变为

$$\int_0^{\delta/h} \frac{h}{h^2 + h^2 t^2} f(ht) \cdot h \, dt = \int_0^{\delta/h} \frac{1}{1 + t^2} f(ht) \, dt.$$

当 $h \to 0^+$ 时, $\delta/h \to +\infty$,且 $f(ht) \to f(0)$ 一致成立。于是

$$\int_0^\infty \frac{1}{1+t^2} f(0) \, dt = f(0) \cdot \frac{\pi}{2}.$$

$$\left| \int_0^\infty \frac{1}{1+t^2} [f(ht) - f(0)] \, dt \right| \le \epsilon \int_0^\infty \frac{1}{1+t^2} \, dt = \epsilon \cdot \frac{\pi}{2}.$$

结合两部分积分,得

$$\left| \int_0^1 \frac{h}{h^2 + x^2} f(x) \, dx - \frac{\pi}{2} f(0) \right| \le \epsilon \cdot \frac{\pi}{2} + o(1).$$

由 ϵ 的任意性, 当 $h \to 0^+$ 时,

$$\lim_{h \to 0^+} \int_0^1 \frac{h}{h^2 + x^2} f(x) \, dx = \frac{\pi}{2} f(0).$$

例题 1.8 (2022 浙大直博压轴) 设 $f(x) \in R[0,1]$, 求证:

$$\lim_{n \to \infty} \int_0^1 f(x) |\sin nx| dx = \frac{2}{\pi} \int_0^1 f(x) dx.$$

证明 像类似黎曼引理的题目,我们考虑分割区间

对任意子区间 $[a,b] \subset [0,1]$, 当 $n \to \infty$ 时,

$$\int_{a}^{b} |\sin nx| \, dx \to \frac{2}{\pi} (b - a).$$

这是因为 $|\sin nx|$ 的周期为 $\frac{\pi}{n}$, 其平均值为 $\frac{2}{n}$

由于 f 在 [0,1] 上黎曼可积,对任意 $\epsilon > 0$,存在分划

$$0 = t_0 < t_1 < \dots < t_k = 1$$
,

使得上和与下和之差满足

$$\sum_{i=1}^{k} \left(M_i - m_i \right) \left(t_i - t_{i-1} \right) < \epsilon,$$

其中 $M_i = \sup_{[t_{i-1},t_i]} f(x)$, $m_i = \inf_{[t_{i-1},t_i]} f(x)$ 。

将原积分分解为分划区间上的和:

$$\int_0^1 f(x)|\sin nx| \, dx = \sum_{i=1}^k \int_{t_{i-1}}^{t_i} f(x)|\sin nx| \, dx.$$

构造阶梯函数 $\varphi(x)$, 在 $[t_{i-1},t_i)$ 上取值为 m_i 或 M_i , 使得

$$\int_0^1 |f(x) - \varphi(x)| \, dx < \epsilon.$$

对每个子区间 $[t_{i-1},t_i]$,利用平均值性质得

$$\int_{t_{i-1}}^{t_i} \varphi(x) |\sin nx| \, dx \approx \varphi(\xi_i) \cdot \frac{2}{\pi} (t_i - t_{i-1}),$$

其中 $\xi_i \in [t_{i-1}, t_i]$ 。求和后得到

$$\int_0^1 \varphi(x) |\sin nx| \, dx \approx \frac{2}{\pi} \int_0^1 \varphi(x) \, dx.$$

剩余部分满足

$$\left| \int_0^1 (f(x) - \varphi(x)) |\sin nx| \, dx \right| \le \int_0^1 |f(x) - \varphi(x)| \, dx < \epsilon.$$

综上所述, 当 $n \to \infty$ 时,

$$\lim_{n \to \infty} \int_0^1 f(x) |\sin nx| \, dx = \frac{2}{\pi} \int_0^1 \varphi(x) \, dx + O(\epsilon).$$

由于 $\int_0^1 \varphi(x) dx$ 逼近 $\int_0^1 f(x) dx$, 且 ϵ 任意小, 故

$$\lim_{n \to \infty} \int_0^1 f(x) |\sin nx| \, dx = \frac{2}{\pi} \int_0^1 f(x) \, dx.$$

例题 1.9

• 求证:

$$\lim_{n \to \infty} \int_0^{\frac{\pi}{2}} \sin^n x \, dx = 0.$$

• (2022 吉大夏令营改编) 设 $f \in R[0,1]$, 且 f(x) 在 x = 1 处连续,求证:

$$\lim_{n \to \infty} n \int_0^1 f(x) x^n \, dx = f(1).$$

证明 (1)

对于任意 $\epsilon > 0$, 选择 $\delta = \epsilon/2$, 将积分为:

$$\int_0^{\frac{\pi}{2}} \sin^n x \, dx = \int_0^{\frac{\pi}{2} - \delta} \sin^n x \, dx + \int_{\frac{\pi}{2} - \delta}^{\frac{\pi}{2}} \sin^n x \, dx.$$

在区间 $[0, \frac{\pi}{2} - \delta]$ 上, $\sin x \le \cos \delta < 1$, 因此:

$$\int_{0}^{\frac{\pi}{2} - \delta} \sin^{n} x \, dx \le \left(\frac{\pi}{2} - \delta\right) (\cos \delta)^{n}.$$

由于 $\cos \delta < 1$, 当 $n \to \infty$ 时, $(\cos \delta)^n \to 0$. 存在 N_1 使得当 $n > N_1$ 时, 该部分积分小于 $\epsilon/2$. 在区间 $\left[\frac{\pi}{2} - \delta, \frac{\pi}{2}\right]$ 上, 令 $t = \frac{\pi}{2} - x$, 则积分变为:

$$\int_0^\delta \cos^n t \, dt \le \int_0^\delta 1 \, dt = \delta = \epsilon/2.$$

当 $n > N_1$ 时, 总积分满足:

$$\int_0^{\frac{\pi}{2}} \sin^n x \, dx < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

由 ϵ 的任意性,得:

$$\lim_{n \to \infty} \int_0^{\frac{\pi}{2}} \sin^n x \, dx = 0.$$

(2) 因为 f 在 x=1 连续,所以对任何 $\epsilon>0$,存在 $\delta\in(0,1)$,使得

$$|f(x) - f(1)| \le \epsilon, \forall x \in [1 - \delta, 1].$$

因为 $f \in R[0,1]$, 所以存在 M > 0, 使得 $|f(x)| \le M, \forall x \in [0,1]$ 。于是我们有

$$\left| n \int_0^1 f(x) x^n dx - n \int_0^1 f(1) x^n dx \right| = n \int_0^1 |f(x) - f(1)| \cdot x^n dx$$

$$\leq 2Mn \int_0^{1-\delta} x^n dx + n\epsilon \int_{1-\delta}^1 x^n dx$$

$$\leq 2Mn \int_0^{1-\delta} (1-\delta)^n dx + n\epsilon \int_0^1 x^{n-1} dx$$

$$= 2Mn(1-\delta)^{n+1} + \epsilon.$$

因此我们有

$$\lim_{n \to \infty} \left| n \int_0^1 f(x) x^n dx - n \int_0^1 f(1) x^n dx \right| \le \epsilon.$$

即由在任意性即得

$$\lim_{n \to \infty} n \int_0^1 f(x) x^n dx = \lim_{n \to \infty} n \int_0^1 f(1) x^n dx = \lim_{n \to \infty} f(1) \frac{n}{n+1} = f(1).$$

我们完成了证明。

1.2 渐进展开

1.2.1 初等方法

反复利用 Stolz 定理即可

例题 1.10 (2021 电子科大考研) 设 $x_{n+1} = \ln(1+x_n), n = 1, 2, \dots, x_1 > 0$ 。 试求

$$\lim_{n \to \infty} \frac{n(nx_n - 2)}{\ln n}$$

证明 显然 x_n 递减到 0 以及

$$\lim_{n\to\infty} nx_n = \lim_{n\to\infty} \frac{n}{\frac{1}{x_n}} \xrightarrow{\operatorname{Stolz}} \text{ $\not \equiv 8.1$} \lim_{n\to\infty} \frac{1}{\frac{1}{x_{n+1}} - \frac{1}{x_n}} = \lim_{x\to 0} \frac{x \ln(1+x)}{x - \ln(1+x)} = 2.$$

于是继续运用 Stolz 定理, 我们有

$$\lim_{n \to \infty} \frac{n(nx_n - 2)}{\ln n} = \lim_{n \to \infty} \frac{nx_n \left(n - \frac{2}{x_n}\right)}{\ln n} = 2 \lim_{n \to \infty} \frac{1 - \frac{2}{nx_n} + \frac{2}{x_n}}{\ln \frac{n+1}{n}}$$

$$\frac{\ln \frac{n+1}{n} \sim \frac{1}{n}, x_n \sim \frac{2}{n}}{n} + 4 \lim_{n \to \infty} \frac{1 - \frac{2}{nx_n} + \frac{2}{x_n}}{x_n} = 4 \lim_{n \to \infty} \frac{1 - \frac{2}{\ln(1+x)} + \frac{2}{x}}{x} = \frac{2}{3}.$$

例题 1.11 设 $x_{n+1} = \sin x_n, n = 1, 2, \dots, x_1 \in (0, \pi)$ 。 计算

$$\lim_{n \to \infty} \frac{n}{\ln n} \left(1 - \sqrt{\frac{n}{3}} x_n \right)$$

证明 显然 x_n 递减到 0 以及 $(x_{n+1} = \sin x_n)$

$$\lim_{n \to \infty} n x_n^2 = \lim_{n \to \infty} \frac{n}{\frac{1}{x_n^2}} \xrightarrow{\text{Stolz } \not\in \mathbb{Z} \times 1.1} \lim_{n \to \infty} \frac{1}{\frac{1}{x_{n+1}^2 - \frac{1}{x_n^2}}} = \lim_{n \to \infty} \frac{1}{\frac{1}{\sin^2 x_n} - \frac{1}{x_n^2}} = \lim_{x \to 0} \frac{x^2 \sin^2 x}{x^2 - \sin^2 x} = 3.$$

于是继续运用 Stolz 定理我们有

$$\lim_{n \to \infty} \frac{n}{\ln n} \left(1 - \sqrt[3]{\frac{n}{x_n^2}} \right) = \lim_{n \to \infty} \frac{n \left(1 - \frac{n^{1/3}}{x_n^{2/3}} \right)}{\ln n} = \lim_{n \to \infty} \frac{n x_n^2 \left(\frac{1}{x_n^2} - \frac{n^{1/3}}{x_n^{8/3}} \right)}{\ln n \left(1 + \sqrt[3]{\frac{n}{x_n^2}} \right)}$$

$$= \frac{3}{2} \lim_{n \to \infty} \frac{\frac{1}{x_n^2} - \frac{n^{1/3}}{x_n^{8/3}}}{\ln n} \xrightarrow{\text{Stolz?}} \frac{3}{2} \lim_{n \to \infty} \frac{\frac{1}{x_{n+1}^2} - \frac{1}{x_n^2} - \frac{1}{3}}{\ln \frac{n+1}{n}}$$

$$= \frac{3}{2} \lim_{n \to \infty} \frac{\frac{1}{\sin^2 x_n} - \frac{1}{x_n^2} - \frac{1}{3}}{\frac{1}{n}}$$

$$= \frac{9}{2} \lim_{n \to \infty} \frac{\frac{1}{\sin^2 x_n} - \frac{1}{x_n^2} - \frac{1}{3}}{x_n^2} \quad \text{(using } nx_n^2 \to 3\text{)}$$

$$= \frac{9}{2} \lim_{n \to \infty} \frac{\frac{1}{\sin^2 x} - \frac{1}{x^2} - \frac{1}{3}}{x^2} = \frac{3}{10}.$$

例题 1.12 (2023 南大夏令营) 已知方程 $x^n - 2023x = 2023$ 在 $(0, +\infty)$ 上有唯一解 x_n ,试求极限

$$\lim_{n \to \infty} \frac{n x_n^n}{\ln n}$$

例题 1.13

本题属于n 可以解出来的类型. 注意到

$$0 < x_n < 1, n = \frac{\ln(2023 - 2023x_n)}{\ln x_n}.$$

显然画出 $f(x) = \frac{\ln(2023 - 2023x)}{\ln x}$ 的图像并类似 $\lim_{n \to \infty} x_n = 1$.

于是由洛必达法则有

$$\begin{split} &\lim_{n\to\infty}\frac{n}{\ln n}x_n^n=\lim_{n\to\infty}\frac{\ln(2023-2023x_n)}{\ln x_n}e^{\frac{\ln(2023-2023x_n)\cdot \ln x_n}{\ln x_n}}=2023\lim_{x\to 1^-}\frac{(1-x)\ln(2023-2023x)}{\ln x\left(\frac{\ln(2023-2023x)}{\ln x}\right)}\\ &=-2023\lim_{x\to 1^-}\ln\left(\frac{\ln(2023-2023x)}{\ln x}\right)=-2023\lim_{x\to 1^-}\frac{-\frac{1}{1-x}}{\frac{1}{(2023-2023x)}\ln(2023-2023x)}-\frac{1}{x\ln x}\\ &=-2023\lim_{x\to 1^-}\frac{\frac{1}{2023\ln(2023-2023x)}+\frac{1-x}{x\ln x}}{0-1}=-2023\cdot\frac{1}{0-1}=2023. \end{split}$$

例题 1.14

1. (2020 电子科大考研) 设 $0 < a_n < 1, a_{n+1} = a_n(1 - a_n)$, 求证:

$$\lim_{n \to \infty} \frac{na_n}{\ln n} = 1.$$

2. (2024 浙大考研) 设 $x_1 = 1, x_{n+1} = \sqrt{\frac{2x_n^2}{2+x_n^2}}, n = 1, 2, \dots$ 。求证:

$$\lim_{n \to \infty} \frac{n(x_n - x_{n+1})}{\ln(1 + x_n)} = 1.$$

1.2.2 迭代方法

例题 1.15 设 $x_n > 0$ 且满足 $x_n e^{x_n} = n, n = 1, 2, \cdots$,求证:

$$x_n = \ln n - \ln \ln n + \frac{\ln \ln n}{\ln n} + o\left(\frac{\ln \ln n}{\ln n}\right), \quad n \to \infty.$$

证明 注意到

$$1 \le x_n = \ln n - \ln x_n \le \ln n \Rightarrow x_n = O(\ln n), n = 3, 4, \dots$$

于是

$$\begin{split} \ln x_n &= \ln \ln n + \ln \left(1 - \frac{\ln x_n}{\ln n}\right) = \ln \ln n - \frac{\ln x_n}{\ln n} + o\left(\frac{\ln x_n}{\ln n}\right) = \ln \ln n - \frac{\ln O(\ln n)}{\ln n} + o\left(\frac{\ln O(\ln n)}{\ln n}\right) \\ &= \ln \ln n - \frac{\ln \ln n + \ln O(1)}{\ln n} + o\left(\frac{\ln \ln n + \ln O(1)}{\ln n}\right) \\ &= \ln \ln n - \frac{\ln \ln n}{\ln n} + o\left(\frac{\ln \ln n}{\ln n}\right). \end{split}$$

即

$$x_n = \ln n - \ln \ln n + \frac{\ln \ln n}{\ln n} + o\left(\frac{\ln \ln n}{\ln n}\right).$$

1.2.3 Laplace 方法

大体上,Laplace 方法适用于 $\int_a^b f^n(x)g(x)dx$ 型积分的渐近估计。可以通过变形和换元法转化为标准形式。这种方法的整体思想就是抓极值部分和所谓的局部化原理。

例题 1.16 (Wallis 公式) 求证:

$$\frac{(2n)!!}{(2n-1)!!} \sim \sqrt{\pi n}, \quad n \to \infty.$$

证明 注意到高数课本积分表的经典公式

$$\int_0^{\frac{\pi}{2}} \sin^{2n} x \, dx = \frac{\pi}{2} \frac{(2n-1)!!}{(2n)!!}.$$

利用 Taylor 公式的 Peano 余项, 我们知道

$$\ln \sin^2 x = -\left(x - \frac{\pi}{2}\right)^2 + o\left[\left(x - \frac{\pi}{2}\right)^2\right],$$

即

$$\lim_{x \to (\frac{\pi}{2})^{-}} \frac{\ln \sin^2 x}{-(x - \frac{\pi}{2})^2} = 1.$$

于是, 对任何 $\epsilon \in (0,1)$, 我们知道存在 $\delta \in (0,1)$, 使得对任何 $x \in [\frac{\pi}{2} - \delta, \frac{\pi}{9}]$, 都有

$$-(1+\epsilon)\left(x-\frac{\pi}{2}\right)^2 \le \ln\sin^2 x \le -(1-\epsilon)\left(x-\frac{\pi}{2}\right)^2.$$

现在一方面

$$\int_{0}^{\frac{\pi}{2}} \sin^{2n} x \, dx = \int_{0}^{\frac{\pi}{2}} e^{n \ln \sin^{2} x} \, dx$$

$$\leq \int_{0}^{\frac{\pi}{2} - \delta} e^{n \ln \sin^{2} (\frac{\pi}{2} - \delta)} \, dx + \int_{\frac{\pi}{2} - \delta}^{\frac{\pi}{2}} e^{-n(1 - \epsilon)(x - \frac{\pi}{2})^{2}} \, dx$$

$$= \left(\frac{\pi}{2} - \delta\right) \sin^{2n} \left(\frac{\pi}{2} - \delta\right) + \int_{0}^{\delta} e^{-n(1 - \epsilon)y^{2}} \, dy$$

$$= \left(\frac{\pi}{2} - \delta\right) \sin^{2n} \left(\frac{\pi}{2} - \delta\right) + \frac{1}{\sqrt{(1 - \epsilon)n}} \int_{0}^{\delta \sqrt{(1 - \epsilon)n}} e^{-z^{2}} \, dz$$

$$\leq \left(\frac{\pi}{2} - \delta\right) \sin^{2n} \left(\frac{\pi}{2} - \delta\right) + \frac{1}{\sqrt{(1 - \epsilon)n}} \int_{0}^{\infty} e^{-z^{2}} \, dz.$$

另外一方面, 我们有

$$\int_0^{\frac{\pi}{2}} \sin^{2n} x \, dx \ge \int_{\frac{\pi}{2} - \delta}^{\frac{\pi}{2}} e^{-n(1+\epsilon)(x - \frac{\pi}{2})^2} \, dx$$

$$= \int_0^{\delta} e^{-n(1+\epsilon)y^2} \, dy$$

$$= \frac{1}{\sqrt{n(1+\epsilon)}} \int_0^{\delta \sqrt{n(1+\epsilon)}} e^{-z^2} \, dz.$$

因此我们有

$$\frac{1}{\sqrt{1+\epsilon}}\int_0^\infty e^{-z^2}\,dz \leq \lim_{n\to\infty} \sqrt{n}\int_0^{\frac{\pi}{2}} \sin^{2n}x\,dx \leq \frac{1}{\sqrt{1-\epsilon}}\int_0^\infty e^{-z^2}\,dz,$$

由ε任意性即可得

$$\lim_{n \to \infty} \sqrt{n} \int_0^{\frac{\pi}{2}} \sin^{2n} x \, dx = \int_0^{\infty} e^{-z^2} \, dz = \frac{\sqrt{\pi}}{2}.$$

例题 1.17 (Stirling 公式) 求证:

$$n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n, \quad n \to \infty.$$

注 积累重要恒等式:

$$(2n)!! = 2^n n!, n = 0, 1, 2, \dots$$

证明 由 A-D 判别法, 我们知道 $\int_{1}^{\infty} \frac{b_1(x)}{x^2} dx$ 收敛. 运用欧拉麦克劳林公式, 我们知道

$$\sum_{k=1}^{n} \ln k = \frac{\ln n + \ln 1}{2} + \int_{1}^{n} \ln x dx + \int_{1}^{n} \frac{b_{1}(x)}{x} dx$$

$$= \frac{\ln n}{2} + n \ln n - n + 1 + \int_{1}^{\infty} \frac{b_{1}(x)}{x} dx - \int_{n}^{\infty} \frac{b_{1}(x)}{x} dx$$

$$= \left(\frac{1}{2} + n\right) \ln n - n + C - \int_{n}^{\infty} \frac{1}{x} db_{2}(x)$$

$$= \left(\frac{1}{2} + n\right) \ln n - n + C + \frac{b_{2}(n)}{n} - \int_{n}^{\infty} \frac{b_{2}(x)}{x^{2}} dx,$$

这里 $C=1+\int_1^\infty rac{b_1(x)}{x^2}dx$ 是某个常数. 注意到周期函数必有界, 因此

$$\left| \frac{b_2(n)}{n} - \int_n^\infty \frac{b_2(x)}{x^2} dx \right| \le M \left(\frac{1}{n} + \int_n^\infty \frac{1}{x^2} dx \right) = \frac{2M}{n},$$

从而

$$n! = e^{\sum_{k=1}^{n} \ln k} = e^{(n + \frac{1}{2}) \ln n - n + C + O(\frac{1}{n})} = e^{C} \sqrt{n} \left(\frac{n}{e}\right)^{n} \left(1 + O\left(\frac{1}{n}\right)\right),$$

即 $\lim_{n\to\infty} \frac{n!}{\sqrt{n}(\frac{n}{\alpha})^n}$ 存在.

现在运用 wallis 公式和恒等式,设

$$\lim_{n \to \infty} \frac{n!}{\sqrt{n} \left(\frac{n}{e}\right)^n} = C > 0,$$

我们知道

$$\sqrt{\pi} = \lim_{n \to \infty} \frac{(2n)!!}{\sqrt{n}(2n-1)!!} = \lim_{n \to \infty} \frac{4^n n!^2}{\sqrt{n}(2n)!}$$

$$= \lim_{n \to \infty} \frac{4^n}{\sqrt{n}} \frac{n!^2}{n\left(\frac{n}{e}\right)^{2n}} \frac{\sqrt{2n}\left(\frac{2n}{e}\right)^{2n}}{(2n)!} \frac{n\left(\frac{n}{e}\right)^{2n}}{\sqrt{2n}\left(\frac{2n}{e}\right)^{2n}}$$

$$= \lim_{n \to \infty} \frac{4^n}{\sqrt{n}} C^2 \frac{n\left(\frac{n}{e}\right)^{2n}}{\sqrt{2n}\left(\frac{2n}{e}\right)^{2n}} \frac{1}{C} = \frac{C}{\sqrt{2}},$$

由此我们完成了证明.

例题 1.18

• (2023 吉大夏令营) 已知函数 f(x) 一阶导存在且 f(1) = 0,求极限

$$\lim_{n\to\infty} n \int_0^1 x^n f(x) \, dx.$$

证明 我们用一种全新的写法因为 f 在 x=1 连续, 所以对任何 $\epsilon>0$, 存在 $\delta\in(0,1)$, 使得

$$|f(x) - f(1)| \le \epsilon, \forall x \in [1 - \delta, 1].$$

因为 $f \in R[0,1]$, 所以存在 M > 0, 使得 $|f(x)| \le M, \forall x \in [0,1]$. 于是我们有

$$\begin{split} \left| n \int_{0}^{1} f(x) x^{n} dx - n \int_{0}^{1} f(1) x^{n} dx \right| &\leq n \int_{0}^{1} |f(x) - f(1)| \cdot x^{n} dx \\ &\leq 2Mn \int_{0}^{1-\delta} x^{n} dx + n\epsilon \int_{1-\delta}^{1} x^{n} dx \\ &\leq 2Mn \int_{0}^{1-\delta} (1-\delta)^{n} dx + n\epsilon \int_{0}^{1} x^{n-1} dx \\ &= 2Mn (1-\delta)^{n+1} + \epsilon. \end{split}$$

因此我们有

$$\lim_{n \to \infty} \left| n \int_0^1 f(x) x^n dx - n \int_0^1 f(1) x^n dx \right| \le \epsilon.$$

即由 є 任意性即得

$$\lim_{n\to\infty} n\int_0^1 f(x)x^n dx = \lim_{n\to\infty} n\int_0^1 f(1)x^n dx = \lim_{n\to\infty} f(1)\frac{n}{n+1} = f(1).$$

我们完成了证明.

1.3 递推数列的敛散性判断

1.3.1 单调性分析方法

单调性分析方法仅仅适用于

$$x_{n+1} = f(x_n), \quad n \in \mathbb{N}.$$

f 是单调递增或是单调递减的情形。

结论1

设f是单调递增函数,则上述递推式确定的 x_n 一定单调,且和不动点的大小关系固定。

结论 2

设 f 是单调递减函数,则上述递推式确定的 x_n 一定不单调,且和不动点的大小关系交错。

例题 1.19 设 $x_1 > -1$, $x_{n+1} = \frac{1}{1+x_n}$, $n = 1, 2, \dots$, 求极限

$$\lim_{n\to\infty} x_n.$$

证明 不妨设 $x_1 > 0$, 递推函数递减. 采取二次复合技巧即:

$$x_{n+2} = \frac{1}{1 + \frac{1}{1 + x_n}} = \frac{1 + x_n}{2 + x_n}.$$

注意到

$$\frac{1+x}{2+x} - x = \frac{\left(x + \frac{\sqrt{5}+1}{2}\right)\left(\frac{\sqrt{5}-1}{2} - x\right)}{x+2}.$$

于是当 $x_1 > \frac{\sqrt{5}-1}{2}, x_{2n-1}$ 递减到 $\frac{\sqrt{5}-1}{2}$. 因为奇偶子列和不动点大小关系交错, 此时 x_{2n} 递增到 $\frac{\sqrt{5}-1}{2}$. 同样的, 当 $0 < x_1 \le \frac{\sqrt{5}-1}{2}, x_{2n-1}$ 递增到 $\frac{\sqrt{5}-1}{2}$. 因为奇偶子列和不动点大小关系交错, 此时 x_{2n} 递减到 $\frac{\sqrt{5}-1}{2}$. 故无论如何都有 $\lim_{n\to\infty} x_n = \frac{\sqrt{5}-1}{2}$.

例题 1.20

证明

• 因为极限不受 x_n 有限项影响可不妨设 $x_1 > 0$, 显然递推函数递增且有不动点 3. 又

$$x_2 - x_1 = \sqrt{6 + x_1} - x_1 = \frac{(3 - x_1)(2 + x_1)}{\sqrt{6 + x_1} + x_1},$$

于是当 $x_1 > 3$ 有 x_n 递减且大于不动点, 因此 $\lim_{n\to\infty} x_n = 3$. 于是当 $x_1 \le 3$ 有 x_n 递增且小于等于不动点, 因此无论如何 $\lim_{n\to\infty} x_n = 3$.

• 显然 $x_n = \frac{3+4x_{n-1}}{1+x_{n-1}}, n=2,3,\ldots$, 且递推函数在 $(0,+\infty)$ 递增. 注意到

$$\frac{3+4x}{1+x} - x = \frac{\left(x + \frac{\sqrt{21}-3}{2}\right)\left(\frac{\sqrt{21}+3}{2} - x\right)}{x+1},$$

显然 $x_1 < \frac{\sqrt{21}+3}{2}$ 以及 x_n 递增且小于不动点 $\frac{\sqrt{21}+3}{2}$, 于是我们有 $\lim_{n\to\infty} x_n = \frac{\sqrt{21}+3}{2}$.

1.3.2 压缩映像方法

压缩映像方法是一种非常重要的处理模型。其思想内核有两种。一种是找到不动点 x_0 ,然后得到某个 $L \in (0,1)$ 。s.t.

$$|x_n - x_0| \le L|x_{n-1} - x_0| \le \dots \le L^{n-1}|x_1 - x_0|$$

另一种是得到某个 $L \in (0,1)$ 。s.t.

$$|x_n - x_{n-1}| \le L|x_{n-1} - x_{n-2}| \le \dots \le L^{n-2}|x_2 - x_1|$$

当数列的递推式 $x_{n+1} = f(x_n)$ 确定时,我们有:

$$|x_n - x_0| = |f(x_{n-1}) - f(x)|, \quad |x_n - x_{n-1}| = |f(x_{n-1}) - f(x_{n-2})|$$

因此往往可以通过中值定理或直接放缩来得到 $L \in (0,1)$ 。

例题 1.21 (2023 中科院提前批) 对于给定实数 x,不断将余弦函数作用在之前的数上,得到的序列 $\{a_n\}$ 如下: $a_0 = x, a_1 = \cos(x), a_2 = \cos(\cos(x)), \, \cdots$,试问当 $n \to \infty$ 时,这一序列会有怎样的趋势?

证明 对于序列 $a_{n+1} = \cos(a_n)$,设其不动点为 d,满足 $d = \cos(d)$ 。通过分析函数 $g(x) = x - \cos x$ 可知,该方程有唯一实数解 $d \in (0,1)$ 。

然后,对于任意 $n \ge 1$,由中值定理,存在一个介于 a_n 和 d 之间的值 c_n ,使得

$$|a_{n+1} - d| = |\cos(a_n) - \cos(d)| = |-\sin(c_n)| \cdot |a_n - d| = |\sin(c_n)| |a_n - d|.$$

因为对于 $n \ge 1$, $a_n \in [-1,1]$, 且 $d \in (0,1)$, 所以 $c_n \in [-1,1]$ 。 在此区间上 $|\sin(c_n)| \le \sin(1)$ 。 记 $k = \sin(1) < 1$ 。 于是我们有

$$|a_{n+1} - d| < k|a_n - d| < k^2|a_{n-1} - d| < \dots < k^n|a_1 - d|$$
.

接下来, 我们应用夹逼准则:

$$0 \le \lim_{n \to \infty} |a_{n+1} - d| \le \lim_{n \to \infty} k^n |a_1 - d| = 0.$$

由夹逼准则即得 $\lim_{n\to\infty} a_n = d$ 。

因此,无论初始值 x 为何,该序列的趋势是收敛到方程 $x = \cos(x)$ 的唯一解 d。

例题 1.22 设 $x_1 > -1, x_{n+1} = \frac{1}{1+x_n}, n = 1, 2, \dots$, 求极限 $\lim_{n \to \infty} x_n$ 。

证明 不妨设 $x_1 > 0$, 于是设 $x_0 = \frac{1}{1+x_0}$, 即 $x_0 = \frac{\sqrt{5}-1}{2} \approx 0.618$. 然后

$$|x_{n+1} - x_0| = \left| \frac{1}{1+x_n} - \frac{1}{1+x_0} \right| = \frac{|x_n - x_0|}{(1+x_n)(1+x_0)} \le \frac{1}{1+x_0} |x_n - x_0| \le \dots \le \left(\frac{1}{1+x_0} \right)^n |x_1 - x_0|,$$

于是我们有

$$0 \le \lim_{n \to \infty} |x_{n+1} - x_0| \le \lim_{n \to \infty} \left(\frac{1}{1 + x_0}\right)^n |x_1 - x_0| = 0.$$

由夹逼准则即得 $\lim_{n\to\infty} x_n = \frac{\sqrt{5}-1}{2}$.

例题 1.23 求数列 $\sqrt{7}$, $\sqrt{7-\sqrt{7}}$, $\sqrt{7-\sqrt{7}+\sqrt{7}}$, ... 的极限。

注 考虑到是跨项了, 所以我们分奇偶分部讨论本题,

证明 注意到 $x_{n+2} = \sqrt{7 - \sqrt{7 + x_n}}$, 于是

$$|x_{n+2} - 2| = \left| \sqrt{7 - \sqrt{7 + x_n}} - 2 \right| = \frac{|3 - \sqrt{7 + x_n}|}{\sqrt{7 - \sqrt{7 + x_n}} + 2}$$
$$= \frac{|2 - x_n|}{(2 + \sqrt{7 - \sqrt{7 + x_n}})(3 + \sqrt{7 + x_n})} \le \frac{1}{6}|x_n - 2|.$$

1.3.3 蛛网工作法

法

先看图 2.4(a)。在其中的曲线代表函数 y = f(x)。它同直线 y = x 的交点的横坐标 a 就是 f 的不动点。从图 中的 x 轴上代表初始值 a_1 的点出发作平行于 y 轴的直线,它与曲线 y = f(x) 的交点的纵坐标就是 $a_2 = f(a_1)$ 。 在这里的一个技巧是从上述交点作平行于 x 轴的直线与直线 y = x 相交。这个交点的横坐标当然也是 a_2 。在图 中从这个交点作一条虚线与纵轴平行,并将它与x轴的交点标为 a_2 。这就完成了蛛网工作法的第一步。

在图 2.4(a) 上将这个方法继续做几步:可以看出,所得的数列是单调增加的

例题 1.24 设 $u_1 = b$, $u_{n+1} = u_n^2 + (1-2a)u_n + a^2$, 试判断 u_n 的敛散性。

证明 折线图方法知当且仅当 $a-1 \le b \le a$ 时, $\lim_{n\to\infty} x_n$ 收敛且极限值为 a.

例题 1.25 设 $x_{n+1}(2-x_n)=1, n=1,2,\cdots$ 。 试判断 x_n 的敛散性。

证明 折线图或者直接求通项的方法知 $\lim_{n\to\infty}x_n=1$. 我们给出通项法证明: 注意到由题目条件得

$$x_n \neq 2, x_{n+1} - 1 = \frac{x_n - 1}{2 - x_n}, \quad n = 1, 2, \dots$$

若
$$x_{n_0} = 1$$
, 则 $x_n = 1$, $\forall n \ge n_0$, 此时当然有 $\lim_{n \to \infty} x_n = 1$. 因此下面假设 $x_n \ne 1$, $\forall n \ge 1$. 于是左右取倒数得
$$\frac{1}{x_{n+1}-1} = \frac{2-x_n}{x_n-1} = \frac{1}{x_n-1} - 1 \implies \frac{1}{x_{n+1}-1} - \frac{1}{x_n-1} = -1 \implies \frac{1}{x_n-1} = \frac{1}{x_1-1} - (n-1).$$

因此 $\lim_{n\to\infty} x_{n+1} = 1$.

例题 1.26 定义数列 $a_0=x$, $a_{n+1}=\frac{a_n^2+y^2}{2}$, $n=0,1,2,\cdots$, 记 $D=\{(x,y)\in\mathbb{R}^2:$ 数列 a_n 收敛 $\}$ 。

证明 Step 1

 $t=\frac{t^2+y^2}{2}$ 关于 t 有解可知 $\Delta=4-4y^2\geq 0$, 即 $|y|\leq 1$.

Step 2

解 $t^2 - 2t + y^2 = 0$ 知 $t = 1 \pm \sqrt{1 - y^2}$, 由折线图技巧我们知道

$$D = \{(x, y) \in \mathbb{R}^2 : 1 - \sqrt{1 - y^2} \le x \le 1 + \sqrt{1 - y^2}; |y| \le 1\}.$$

由初中数学得面积为4+π.

第2章 函数

2.1 连续性和可微性

2.1.1 定义法

例题 2.1 (2023 复旦应统夏令营) 若 $f'(x_0)$ 存在, 试求 $\lim_{h\to 0} \frac{f(x_0+ah)-f(x_0-bh)}{h}$; 反之, 若 $\lim_{h\to 0} \frac{f(x_0+h)-f(x_0)-h}{h}$ 存在, 试问 f(x) 在 x_0 处是否可导?

例题 2.2 (2021 中科院考研) 若 f(x) 在 x=0 处连续,且 $\lim_{x\to 0} \frac{f(2x)-f(x)}{x}=0$,求证: f'(0)=0。

例题 2.3 (2024 上交夏令营) 设函数 f(x) 在 $(-\infty, +\infty)$ 上连续,且 $\lim_{x\to 0} \frac{f(x)}{x}$ 存在,令

$$g(x) = \int_0^1 f(xt) \, dt,$$

- (1) 求 g'(x);
- (2) 讨论 g'(x) 在 x=0 处的连续性。

2.1.2 级数法

例题 2.4 (2024 同济夏令营) 设 $\{x_n\} \subset (0,1), x_j \neq x_i \ (i \neq j)$, 定义函数

$$f(x) = \sum_{n=1}^{\infty} \frac{\operatorname{sgn}(x - x_n)}{2^n},$$

试判断 f(x) 的连续性并给出证明。

例题 2.5 (2023 复旦数科院夏令营) 设数列 $\{r_n\}$ 为 [0,1] 中的所有有理点的一个排列,证明函数

$$f(x) = \sum_{n=1}^{\infty} \frac{|x - r_n|}{3^n}, \quad x \in [0, 1]$$

具有以下性质:

- (1) 处处连续;
- (2) 在无理点处可微,有理点处不可微。

例题 2.6 (Cantor 函数) 设 C 为 [0,1] 上的 Cantor 集,对于 $x=2\sum_{i=1}^{\infty}\frac{a_i}{3^i}\in C, a_i\in\{0,1\}$,令

$$\phi(x) = \phi\left(2\sum_{i=1}^{\infty} \frac{a_i}{3^i}\right) = \sum_{i=1}^{\infty} \frac{a_i}{2^i}.$$

Cantor 函数 $\phi(x)$ 定义为: $\forall x \in [0,1]$,

$$\phi(x) = \sup \{ \phi(y) \mid y \in C, y \le x \}.$$

求证: ϕ 为 [0,1] 上的连续函数。

例题 2.7 设 $Q = \{x_1, x_2, \dots\}$ 为有理数集合,令

$$f(x) = \sum_{x_n \le x} \frac{1}{2^n},$$

证明: f(x) 仅在有理点处不连续。

2.1.3 Schwarz 导数

定义 2.1.1

设有定义在开集 $A \subset \mathbb{R}$ 上的实函数 f(x), 若对于 $a \in A$,

$$\lim_{h \to 0} \frac{f(a+h) - f(a-h)}{2h} = f^s(a)$$

存在,则称 f(x) 在点 a Schwarz 可导, 称 $f^s(a)$ 为 Schwarz 导数。

命题 2.1.1

设 $f(x) \in C[a,b]$ 且在 (a,b) 上 Schwarz 可导, 那么:

- $ilde{x} f(b) > f(a)$, 则 $\exists c \in (a,b)$, 使得 $f^s(c) \ge 0$ 。
- $ilde{H}$ f(a) > f(b), 则 $\exists c \in (a,b)$, 使得 $f^s(c) \le 0$ 。

定理 2.1.1 (Schwarz 导数的 Rolle 中值定理)

设 $f(x) \in C[a,b]$ 且在 (a,b) 上 Schwarz 可导,若 f(a) = f(b),则 $\exists r,t \in (a,b)$,使得 $f^s(r) \geq 0$ 且 $f^s(t) \leq 0$ 。

<u>定理 2.1.2 (Schwarz</u> 导数的 Lagrange 中值定理)

设 $f(x) \in C[a,b]$ 且在 (a,b) 上 Schwarz 可导,则存在 $r,t \in (a,b)$,使得

$$f^{s}(r) \le \frac{f(b) - f(a)}{b - a} \le f^{s}(t).$$

证明 和证明拉格朗日中值定理一样,我们只需证明罗尔中值定理的情况即可。即不妨设 f(a) = f(b) = 0,否则用 $F(x) - f(a) - \frac{f(b) - f(a)}{b - a}(x - a)$ 代替 f 即可。

若 $f \equiv 0$,则命题是显然的。若 f 有正的最大值,则设 $c \in (a,b)$ 是 f 的最大值点使得 f(c) > 0,取 $k \in (0,f(c))$,构造非空有界集

$$U = \{x \in [a, c] : f(x) > k\}.$$

于是记 $x_1 = \inf U$, 就有 $t_n \in U$, 使得

$$t_n \ge x_1, \lim_{n \to \infty} t_n = x_1.$$

注意到 $x_1 \neq a$ 且若 $f(x_1) > k$,则由函数连续性知 x_1 左侧仍有 f > k,这和 x_1 是 inf 矛盾! 故我们只有 $x_1 \notin U$ 且 $f(x_1) = k$ 。现在

$$f^{S}(x_{1}) = \lim_{h \to 0} \frac{f(x_{1} + h) - f(x_{1} - h)}{2h} = \lim_{n \to \infty} \frac{f(x_{1} + t_{n} - x_{1}) - f(x_{1} - (t_{n} - x_{1}))}{2(t_{n} - x_{1})}$$
$$\geq \lim_{n \to \infty} \frac{k - k}{2(t_{n} - x_{1})} = 0.$$

若 f 有负的最小值 f(c) < 0. 取 $k \in (f(c), 0)$, 构造非空有界集

$$V = \{x \in [c, b] : f(x) < k\}.$$

并取 $x_2 = \sup V$,同样的 $f(x_2) = k$ 且 $x_2 \neq b$. 存在 $s_n \in V$ 使得 $\lim_{n \to \infty} s_n = x_2$. 于是

$$f^{S}(x_{2}) = \lim_{h \to 0} \frac{f(x_{2} + h) - f(x_{2} - h)}{2h} = \lim_{n \to \infty} \frac{f(x_{2} + s_{n} - x_{2}) - f(x_{2} - (s_{n} - x_{2}))}{2(s_{n} - x_{2})}$$
$$\geq \lim_{n \to \infty} \frac{k - k}{2(s_{n} - x_{2})} = 0.$$

考虑 f(a+b-x) 可得 $f^S(x_2)$, 这就完成了定理的证明。

定理 2.1.3 (Schwarz 导数与一般导数的联系)

设 $f(x) \in C[a,b]$ 且在 (a,b) 上 Schwarz 可导,若 $f^s(x)$ 在 (a,b) 上连续,则 f(x) 在 (a,b) 上可导且

$$f'(x) = f^s(x), \quad \forall x \in (a, b).$$

 \Diamond

证明 由 Schwarz 导数的 Lagrange 中值定理, 我们知道

$$f^{S}(\theta_{2}) \ge \frac{f(x_{2}) - f(x_{1})}{x_{2} - x_{1}} \ge f^{S}(\theta_{1}),$$

且 θ_1, θ_2 介于 x_1, x_2 之间.

让 $x_2 \rightarrow x_1$, 由 Schwartz 导数连续性和夹逼准则即可得

$$f'(x_1) = f^S(x_1).$$

这就完成了证明.

定理 2.1.4 (利用 Schwarz 导数判断函数单调性)

设函数 f(x) 在开区间 I 上连续且 Schwarz 可导,若 $f^s(x) \geq 0$ 对所有 $x \in I$ 成立,则 f(x) 在 I 上单调递增。

证明 对 $[c,d] \subset [a,b]$, 由 Schwarz 导数的 Lagrange 中值定理知存在 $\theta \in (c,d)$ 使得

$$\frac{f(d) - f(c)}{d - c} \ge f^S(\theta) \ge 0,$$

故

$$f(d) \ge f(c)$$
.

这就完成了证明.

2.2 一致连续性

例题 2.8 设 f 定义在区间 I 的函数. 证明 f 在区间 I 一致连续的充要条件是对任何 $\epsilon > 0$, 存在 M > 0, 使得对任何 $x_1, x_2 \in I$, 都有

$$|f(x_2) - f(x_1)| \le M|x_1 - x_2| + \epsilon.$$

证明 必要性: 因为 f 一致连续, 所以对每个 $\epsilon > 0$, 存在 $\delta > 0$, 使得对任何 $x, y \in I$, 只要 $|x - y| \le \delta$, 就有

$$|f(x) - f(y)| < \epsilon.$$

当 $|f(x) - f(y)| \le \epsilon$, 不等式然成立. 当 $|f(x) - f(y)| > \epsilon$, 不妨设 y > x, f(y) > f(x) 且令 f(y) - f(x) = kt, $k \in \mathbb{N}$, $t \in (\epsilon, 2\epsilon]$. 由介值定理, 存在 $x = x_0 < x_1 < \dots < x_k = y$ 使得

$$f(x_i) = f(x) + it, i = 0, 1, 2, \dots, k.$$

于是

$$f(x_i) - f(x_{i-1}) = t > \epsilon, j = 1, 2, \dots, k,$$

易知 $x_i - x_{i-1} > \delta, j = 1, 2, ..., k$. 从而我们有

$$y - x = \sum_{j=1}^{k} (x_j - x_{j-1}) > k\delta.$$

现在可取 $M = \frac{2\epsilon}{5} > 0$, 于是就有

$$|f(y) - f(x)| = kt \le \frac{t}{\delta}|y - x| \le \frac{2\epsilon}{\delta}|y - x| = M|y - x|.$$

这就证明了不等式成立.

充分性: 对任何 $\epsilon > 0$, 存在 M > 0, 使得对任何 $x_1, x_2 \in I$, 都有 (12.49) 成立. 于是取 $\delta = \frac{\epsilon}{M} > 0$, 当 $x, y \in I, |x-y| \le \delta$, 我们就有

$$|f(x) - f(y)| \le 2\epsilon,$$

这就证明了f在I上一致连续.

例题 2.9 设 f(x) 在 $[a, +\infty)$ 上一致连续,g(x) 在 $[a, +\infty)$ 上连续,且

$$\lim_{x \to +\infty} |f(x) - g(x)| = 0.$$

求证: g(x) 在 $[a, +\infty)$ 上一致连续。

例题 2.10 设 f(x) 在 $[1, +\infty)$ 上一致连续。求证:存在 M > 0,使得

$$\frac{|f(x)|}{x} \leq M, \quad \forall x \in [1,+\infty).$$

证明 在例题 2.8 中取 $x_2 = x, x_1 = 1, \epsilon = 1$ 知存在 c > 0 使得

$$|f(x) - f(1)| \le c|x - 1| + 1, \forall x \ge 1.$$

于是

$$\left|\frac{f(x)}{x}\right| \le \left|\frac{f(x) - f(1)}{x}\right| + \left|\frac{f(1)}{x}\right| \le c \left|1 - \frac{1}{x}\right| + \frac{1 + |f(1)|}{x}.$$

注意到

$$\overline{\lim}_{x\to +\infty} \left| \frac{f(x)}{x} \right| \leq \overline{\lim}_{x\to +\infty} \left[c \left| 1 - \frac{1}{x} \right| + \frac{1 + |f(1)|}{x} \right] = c,$$

于是我们知道存在M > 0使得

$$\left| \frac{f(x)}{x} \right| \le M, \forall x \ge 1.$$

例题 2.11 设 f(x) 在 $[0,+\infty)$ 上一致连续,且对任意 $x \ge 0$ 有

$$\lim_{n \to +\infty} f(x+n) = 0, \quad n \in \mathbb{N}.$$

求证:

$$\lim_{x \to +\infty} f(x) = 0.$$

例题 2.12 设 f(x) 在 $[0,+\infty)$ 上连续,且满足

$$\lim_{n \to \infty} f(\sqrt{n}) = 0.$$

求证: $\lim_{x\to+\infty} f(x)$ 存在当且仅当 f(x) 在 $[0,+\infty)$ 上一致连续。

例题 2.13 若 f(x) 在 $[0,+\infty)$ 上可导,且满足:

- 1. f'(x) 在 $[0,+\infty)$ 上一致连续;
- 2. $\lim_{x\to+\infty} f(x)$ 存在。

求证:

$$\lim_{x \to +\infty} f'(x) = 0.$$

例题 2.14 (2024 国防科大考研) 设函数 f(x) 在 (0,1] 上连续且可导,且满足

$$\lim_{x \to 0^+} \sqrt{x} f'(x) = a.$$

求证: f(x) 在 (0,1] 上一致连续。

证明 首先 $\int_0^a \frac{1}{\sqrt{x}} dx$ 收敛且收敛必有界知

$$\sup_{y \in (0,a]} |\sqrt{y}f'(y)| < +\infty.$$

设 $a \ge x_2 > x_1 > 0$, 则由

$$f(x_2) - f(x_1) = \int_{x_1}^{x_2} f'(y) \, dy = \int_{x_1}^{x_2} \sqrt{y} f'(y) \frac{1}{\sqrt{y}} \, dy \le \sup_{y \in (0, a]} |\sqrt{y} f'(y)| \int_{x_2}^{x_1} \frac{1}{\sqrt{y}} \, dy$$

和 Cauchy 收敛准则知 $\lim_{x\to 0^+} f(x)$ 存在. 由 Cantor 定理知 f 在 [0,a] 一致连续.

例题 2.15 (2024 哈工大考研) 设 (a,b) 为有界开区间,求证: f(x) 在 (a,b) 上一致连续的充要条件是对于任意 Cauchy 列 $\{x_n\} \subset (a,b)$,像列 $\{f(x_n)\}$ 也是 Cauchy 列。

例题 2.16 (2023 吉大夏令营) 设 $f(x) \in C[1, +\infty)$, 且满足

$$\lim_{x \to +\infty} \frac{f(x)}{x^2} = 1.$$

求证: f(x) 在 $[1,+\infty)$ 上非一致连续。

2.3 函数方程

2.3.1 柯西方程

定义 2.3.1

我们称函数 $f: \mathbb{R} \to \mathbb{R}$ 满足的函数方程

$$f(x+y) = f(x) + f(y)$$

为 Cauchy 方程。

例题 2.17 设 $f: \mathbb{R} \to \mathbb{R}$ 是 Cauchy 方程的解,则:

(1) 对任意有理数 $r \in \mathbb{Q}$,有

$$f(rx) = rf(x);$$

(2) 讲一步, 若 f 连续, 则存在常数 c = f(1) 使得

$$f(x) = cx, \quad \forall x \in \mathbb{R}.$$

证明

1. **Step 1** 注意到 f(2x) = f(x+x) = f(x) + f(x) = 2f(x), 然后

$$f(3x) = f(2x + x) = f(2x) + f(x) = 2f(x) + f(x) = 3f(x).$$

依次下去可得

$$f(nx) = n f(x), \forall n \in \mathbb{N}.$$

Step 2 现在对每个 $r = \frac{p}{q} \in \mathbb{Q}, q \neq 0$, 我们注意到

$$rf(x) = f(rx) \iff pf(x) = qf\left(\frac{p}{q}x\right).$$

现在反复运用上式, 我们知道

$$qf\left(\frac{p}{q}x\right) = f(px) = pf(x).$$

2. 对每个无理数 r, 存在有理数列 r_n , $n=1,2,\cdots$ 使得 $\lim_{n\to\infty}r_n=r$ 。 我们知道

$$f(rx) = \lim_{n \to \infty} f(r_n x) = \lim_{n \to \infty} r_n f(x) = rf(x).$$

例题 2.18 求证: ℝ 上既凸又凹的连续函数必为线性函数,即存在常数 a,b ∈ ℝ 使得

$$f(x) = ax + b, \quad \forall x \in \mathbb{R}.$$

注 容易由证明知道任何开区间 (a, b) 上的既凸又凹的连续函数也是直线。

证明 注意到

$$f\left(\frac{x+y}{2}\right) = \frac{1}{2}f(x) + \frac{1}{2}f(y).$$

考虑 g(x) = f(x) - f(0), 则运用 $f(x+y) + f(0) = 2f(\frac{x+y}{2})$ 知 g 满足 Cauchy 方程 11.7. 于是我们知道

$$f(x) = f(0) + [f(1) - f(0)]x.$$

例题 2.19 设 f(x) 在 $(0,+\infty)$ 上连续, 且满足函数方程:

$$f(xy) = xf(y) + yf(x), \quad \forall x, y \in (0, +\infty).$$

求证: f(x) 在 $(0,+\infty)$ 上可微。

证明 首先

$$f(0) = xf(0), \forall x \in \mathbb{R} \Rightarrow f(0) = 0, \quad f(x) = xf(1) + f(x), \forall x \in \mathbb{R} \Rightarrow f(1) = 0.$$

现在

$$f(-x) = xf(-1) - f(x), f(x) = -xf(-1) - f(-x) \Rightarrow 2xf(-1) = 0 \Rightarrow f(-1) = 0.$$

于是

$$f(-x) = xf(-1) - f(x) = -f(x),$$

即f是奇函数。

对 x, y > 0, 取 $x = e^s, y = e^t, s, t \in (-\infty, +\infty)$, 我们有

$$\frac{f(e^{s+t})}{e^{s+t}} = \frac{f(e^s)}{e^s} + \frac{f(e^t)}{e^t},$$

即 $\frac{f(e^x)}{e^x}$ 满足 Cauchy 方程 11.7. 因此

$$\frac{f(e^x)}{e^x} = \frac{f(e)}{e}x, \forall x \in \mathbb{R}.$$

现在可得

$$f(x) = \begin{cases} \frac{f(e)}{e} x \ln x, & x > 0 \\ 0, & x = 0 \\ \frac{f(e)}{e} x \ln(-x), & x < 0 \end{cases}$$

结论显然成立

例题 2.20 (2024 中科院夏令营) 证明: 在 ℝ 上满足函数方程

$$f(x+y) = f(x)f(y)$$

的唯一不恒等于零的连续解是指数函数 $f(x) = a^x$, 其中 a > 0 为常数。

证明 首先,若存在一点 x_0 使得 $f(x_0) = 0$,则对任意 $x \in \mathbb{R}$,有 $f(x) = f(x - x_0 + x_0) = f(x - x_0)f(x_0) = 0$ 。 这导致 $f(x) \equiv 0$,此为平凡解。因我们寻找非平凡解,故可设 $f(x) \neq 0$, $\forall x \in \mathbb{R}$ 。

于是,对任意 $x \in \mathbb{R}$, $f(x) = f(\frac{x}{2} + \frac{x}{2}) = (f(\frac{x}{2}))^2 \ge 0$ 。结合 $f(x) \ne 0$,可知 f(x) > 0。在原方程中令 y = 0,得 f(x) = f(x)f(0)。因为 f(x) > 0,两边消去 f(x) 得 f(0) = 1。

证明过程分三步:

1. 证明对整数成立

令 a = f(1)。由于 f(x) > 0,a > 0。对任意正整数 $n \in \mathbb{N}$,通过归纳法可得 $f(n) = f(1 + \dots + 1) = (f(1))^n = a^n$ 。对负整数 -n, $1 = f(0) = f(n + (-n)) = f(n)f(-n) = a^n f(-n)$,故 $f(-n) = a^{-n}$ 。因此,对所有整数 $k \in \mathbb{Z}$,均有 $f(k) = a^k$ 。

2. 证明对有理数成立

设 $x = \frac{p}{q}$ 是任意有理数,其中 $p, q \in \mathbb{Z}, q \neq 0$ 。根据第 1 步的结论,我们有:

$$a^p = f(p) = f\left(q \cdot \frac{p}{q}\right) = \left(f\left(\frac{p}{q}\right)\right)^q.$$

由于 f(x) > 0, a > 0, 两边开 q 次方, 得 $f(\frac{p}{q}) = (a^p)^{\frac{1}{q}} = a^{\frac{p}{q}}$ 。因此, 对所有有理数 $x \in \mathbb{Q}$, 均有 $f(x) = a^x$ 。

3. 证明对实数成立

对任意实数 $x \in \mathbb{R}$,存在一个有理数序列 $\{q_n\}_{n=1}^{\infty}$ 使得 $\lim_{n\to\infty}q_n=x$ 。由于函数 f(x) 和指数函数 $g(x)=a^x$ 均是连续函数,我们有:

$$f(x) = f\left(\lim_{n \to \infty} q_n\right) = \lim_{n \to \infty} f(q_n).$$

根据第2步的结论, $f(q_n) = a^{q_n}$, 所以

$$f(x) = \lim_{n \to \infty} a^{q_n} = a^{\lim_{n \to \infty} q_n} = a^x.$$

这就证明了 $f(x) = a^x$ 对所有 $x \in \mathbb{R}$ 成立, 其中 a = f(1) > 0 是一个常数。

2.3.2 迭代法

基本思想:通过构造递推关系,将函数方程转化为可求和的形式。

例题 2.21 求函数方程

$$2f(2x) = f(x) + x$$

在 \mathbb{R} 上且满足 f 在 x=0 处连续的所有解。

证明 注意到

$$\frac{1}{2^n} f\left(\frac{x}{2^n}\right) = \frac{1}{2^{n+1}} f\left(\frac{x}{2^{n+1}}\right) + \frac{x}{2^{2n+2}}, \quad n = 0, 1, 2, \dots$$

于是

$$f(x) - \lim_{n \to \infty} \frac{1}{2^{n+1}} f\left(\frac{x}{2^{n+1}}\right) = \sum_{n=0}^{\infty} \left[\frac{1}{2^n} f\left(\frac{x}{2^n}\right) - \frac{1}{2^{n+1}} f\left(\frac{x}{2^{n+1}}\right) \right]$$
$$= \sum_{n=0}^{\infty} \frac{x}{2^{2n+2}} = \frac{1}{4} x \cdot \frac{1}{1 - \frac{1}{4}} = \frac{x}{3}.$$

因此结合 f(0) = 0 知 $f(x) = \frac{x}{3}$.

例题 2.22 求函数方程

$$f(x+y) - f(x-y) = f(x)f(y)$$

在 \mathbb{R} 上且满足 f 在 x=0 处连续的所有解。

证明 取 y = x, 于是 $f(2x) - f(0) = f^2(x)$, 令 x = 0 知 f(0) = 0. 现在考虑 $f(2x) = f^2(x) \ge 0$, 即 f 是非负函数. 注意到对每个 $n \in \mathbb{N}$, 我们有

$$f(x) = f^2\left(\frac{x}{2}\right) = f^{2^2}\left(\frac{x}{2^2}\right) = \dots = f^{2^n}\left(\frac{x}{2^n}\right).$$
 (2.1)

于是, $\Diamond n \to \infty$ 并结合 f 在 x = 0 连续性我们有

$$f(x) = \lim_{n \to \infty} f^{2^n} \left(\frac{x}{2^n} \right) = 0.$$

例题 2.23 求函数方程

$$f(\log_2 x) = f(\log_3 x) + \log_5 x$$

在 ℝ+ 上的所有连续解。

证明 取

$$a_1 = x, \ln a_n = \left(\frac{\ln 2}{\ln 3}\right)^{n-1} \ln x, n \in \mathbb{N}.$$

现在

$$f\left(\frac{\ln a_n}{\ln 2}\right) = f\left(\frac{\ln a_{n+1}}{\ln 2}\right) + \frac{\ln a_n}{\ln 5}, \quad n = 1, 2, \dots,$$

于是

$$\sum_{n=1}^{\infty} \left[f\left(\frac{\ln a_n}{\ln 2}\right) - f\left(\frac{\ln a_{n+1}}{\ln 2}\right) \right] = \sum_{n=1}^{\infty} \frac{\ln a_n}{\ln 5}$$
$$= \sum_{n=1}^{\infty} \left(\frac{\ln 2}{\ln 3}\right)^{n-1} \frac{\ln x}{\ln 5}$$
$$= \frac{\ln x}{\ln 5} \frac{\ln 3}{\ln 3 - \ln 2}.$$

结合

$$\begin{split} \sum_{n=1}^{\infty} \left[f\left(\frac{\ln a_n}{\ln 2}\right) - f\left(\frac{\ln a_{n+1}}{\ln 2}\right) \right] &= f\left(\frac{\ln a_1}{\ln 2}\right) - \lim_{n \to \infty} f\left(\frac{\ln a_{n+1}}{\ln 2}\right) \\ &= f\left(\frac{\ln x}{\ln 2}\right) - f(0), \end{split}$$

我们知道

$$f(x) = f(0) + \frac{x \ln 2 \ln 3}{\ln 5 \ln \frac{3}{2}}.$$

第3章 一元函数微分学

3.1 微分中值定理

3.1.1 插值法

有一类中值定理习题中往往会给我们很多关于函数 f(x) 的信息,进而去证明一个等式。如何利用好这些已知信息?这就涉及到数值分析中的 Lagrange 插值与 Newton 插值。

定理 3.1.1 (Lagrange 插值)

已知插值节点为 $(x_i, y_i), i = 0, 1, 2, \dots, n$, 那么

$$y = f(x) = \sum_{0 \le i \le n} \frac{(x - x_0) \cdots (x - x_{i-1})(x - x_{i+1}) \cdots (x - x_n)}{(x_i - x_0) \cdots (x_i - x_{i-1})(x_i - x_{i+1}) \cdots (x_i - x_n)} y_i$$

对应的插值余项为:

$$R_n(x) = f(x) - L_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)(x - x_1) \cdots (x - x_n)$$

定理 3.1.2 (Newton 插值)

已知插值节点为 $(x_i, y_i), i = 0, 1, 2, \dots, n$, 那么

$$f(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1) + \dots + a_n(x - x_0)(x - x_1)(x - x_2) + \dots + a_{n-1}(x - x_n)(x - x_n) + \dots + a_n(x - x_n)(x - x_n)(x - x_n) + \dots + a_n(x - x_n)(x - x_n)(x - x_n) + \dots + a_n(x - x_n)(x - x_n)(x - x_n)(x - x_n) + \dots + a_n(x - x_n)(x - x_n)(x - x_n)(x - x_n) + \dots + a_n(x - x_n)(x - x_n)(x - x_n)(x - x_n) + \dots + a_n(x - x_n)(x - x_n)(x - x_n)(x - x_n) + \dots + a_n(x - x_n)(x - x_n)(x - x_n)(x - x_n)(x - x_n) + \dots + a_n(x - x_n)(x - x_n)($$

其中 $a_n = f[x_0, x_1, \dots, x_k]$, 对应的插值余项为:

$$R_n(x) = f(x) - L_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)(x-x_1)\cdots(x-x_n)$$

Tip: Newton 插值可以带重节点,进而反映出导数信息。

例题 3.1 设 $f \in D^3[-1,1]$, f(-1) = 0, f'(0) = 0, f(1) = 1。求证: $\exists \theta \in (-1,1)$, s.t. $f'''(\theta) = 3$ 。

注 本题拟和 f(-1), f(1), f(0), f'(0), 4 个条件暗含插值多项式 3 次, 余项应该到 4 阶导, 条件只有 3 阶导, 因此本题是一种新的模型. 即 $f'''(\theta) = p'''(\theta)$ 这种模型.

证明 设

$$p(x) = \frac{(x-0)(x-1)}{(-1-0)(-1-1)}f(-1) + \frac{(x+1)(x-1)}{(0+1)(0-1)}f(0) + \frac{(x+1)(x-0)}{(1+1)(1-0)}f(1) + cx(x+1)(x-1).$$

代入导数条件得 $c=\frac{1}{2}$.

注意到 F(x) = f(x) - p(x) 满足

$$F(0) = F(1) = F(-1) = F'(0) = 0. (10.9)$$

对 F 反复使用罗尔中值定理知存在 $\theta \in (-1,1)$, 使得 $F'''(\theta) = 0$, 直接计算表明

$$F'''(\theta) = f'''(\theta) - p'''(\theta) = f'''(\theta) - \frac{1}{2} \cdot 3! = 0$$
(3.1)

例题 3.2 设 $f \in C[0,2] \cap D(0,2)$ 满足 f(0) = f(2) = 0, $|f'(x)| \leq M$, $\forall x \in (0,2)$ 。求证:

$$\left| \int_0^2 f(x) \, dx \right| \le M.$$

注 插 f(0), f(2), 插值多项式 1 次, 余项 2 阶, 导数不够, 属于靠近哪边对哪边插模型.

证明 当 $x \in [0,1]$, 由插值定理, 我们有

$$f(x) = f(0) + \frac{f'(\theta(x))}{1!}(x - 0) = f'(\theta(x))x,$$

于是

$$|f(x)| \le |f'(\theta(x))| \cdot x \le Mx.$$

当 $x \in [1,2]$,由插值定理,我们有

$$f(x) = f(2) + \frac{f'(\zeta(x))}{1!}(x-2) = f'(\zeta(x))(x-2),$$

于是

$$|f(x)| \le |f'(\zeta(x))| \cdot |x - 2| \le M(2 - x).$$

结合上式, 我们有

$$\left| \int_0^2 f(x) \, dx \right| \le \int_0^2 |f(x)| \, dx = \int_0^1 |f(x)| \, dx + \int_1^2 |f(x)| \, dx$$
$$\le \int_0^1 (Mx) \, dx + \int_1^2 (M(2-x)) \, dx$$
$$= M.$$

例题 3.3 设 $f \in C^3[0,2]$ 满足

$$f(0) = f'(0) = 0, \quad \int_0^2 f(x) dx = 8 \int_0^1 f(x) dx.$$

证明: 存在 $\theta \in (0,2)$, 使得 $f''(\theta) = 0$ 。

注 考虑 $F(x) = \int_0^x f(y) \, dy \in C^4[0,2]$, 初值条件即

$$F(0) = F'(0) = F''(0) = 0, F(2) = 8F(1).$$

这里插点 F(1), F(2), F(0), F'(0), F''(0), 合计 5 个条件, 插值多项式 4 次, 余项 5 阶, 条件不够, 属于模型 F'''' = p''''.

证明 为确定 p, 注意到 0 是 p 的三重零点, 考虑 $p(x) = x^3(ax + b)$, 则

$$F(2) = 8F(1) \Rightarrow p(2) = 8p(1) \Rightarrow a = 0,$$

即 $p(x) = F(1)x^3$. 由插值定理 10.1, 存在 $\theta \in (0, 2)$, 使得

$$f'''(\theta) = F''''(\theta) = p''''(\theta) = 0.$$

这就完成了证明.

下面我们来介绍插值法的积分型余项,这种余项往往蕴含着更多的信息。

定理 3.1.3 (积分型余项)

设 f(x) 是 [a,b] 上的二阶可导函数且 $f''(x) \in R[a,b]$,则有:

$$f(x) = \frac{b-x}{b-a}f(a) + \frac{x-a}{b-a}f(b) + \int_{a}^{b} f''(y)k(x,y)dy,$$

其中,

$$k(x,y) = \begin{cases} \frac{(x-a)(y-b)}{b-a}, & a \le y \le x \le b; \\ \frac{(b-x)(a-y)}{b-a}, & a \le x \le y \le b. \end{cases}$$

例题 3.4 (2021 华东师范考研压轴) 设 $f \in C^2[0,1]$ 满足 f(0) = f(1) = 0,证明:

$$\int_0^1 \left| \frac{f''(x)}{f(x)} \right| dx \ge 4.$$

注 我们指出不等式中的 4 是最佳的. 从下述证明可以看到放缩核心是

$$|k(x,y)| \le k(x,x) \le k\left(\frac{1}{2}, \frac{1}{2}\right) = \frac{1}{4}.$$

因此我们期望 f'' 其中在 $x = \frac{1}{2}$ 附近且值为 1. 于是考虑

$$f_n(x) = \begin{cases} \frac{n^3}{8} \left(x - \frac{1}{2} \right)^4 - \frac{3n}{4} \left(x - \frac{1}{2} \right)^2 + \frac{4n - 3}{8n}, & x \in \left[\frac{1}{2} - \frac{1}{n}, \frac{1}{2} + \frac{1}{n} \right] \\ x, & x \in \left[0, \frac{1}{2} - \frac{1}{n} \right) & , n \ge 2. \\ -(x - 1), & x \in \left(\frac{1}{2} + \frac{1}{n}, 1 \right] \end{cases}$$

由于

$$f_n''(x) \le 0, x \in \left[\frac{1}{2} - \frac{1}{n}, \frac{1}{2} + \frac{1}{n}\right], f_n(x) \ge 0, x \in [0, 1],$$

我们有

$$\int_0^1 \frac{|f_n''(x)|}{f_n(x)} dx = -\int_{\frac{1}{2} - \frac{1}{n}}^{\frac{1}{2} + \frac{1}{n}} \frac{f_n''(x)}{f_n(x)} dx \qquad \stackrel{\text{PDP} in Effective}{=} -\frac{1}{f_n(\xi_n)} \int_{\frac{1}{2} - \frac{1}{n}}^{\frac{1}{2} + \frac{1}{n}} f_n''(x) dx \left(\xi_n - \frac{1}{2} < \frac{1}{n}\right)$$

$$= \frac{2}{f_n(\xi_n)} = \frac{2}{n^3 (\xi_n - \frac{1}{2})^4 - 3n(\xi_n - \frac{1}{2})^2 + \frac{4n - 3}{n}} \to 4, n \to \infty.$$

证明 事实上, 我们知道

$$f(x) = \int_0^1 f''(y)k(x,y) \, dy.$$

于是利用

$$|k(x,y)| \le |k(x,x)| = x(1-x),$$

就有

$$|f(x)| \le \int_0^1 |k(x,y)| \cdot |f''(y)| \, dy \le x(1-x) \int_0^1 |f''(y)| \, dy \le \frac{1}{4} \int_0^1 |f''(y)| \, dy,$$

从而

$$\int_0^1 \frac{|f''(x)|}{f(x)} dx \ge \int_0^1 \frac{|f''(x)|}{\frac{1}{4} \int_0^1 |f''(y)| dy} dx = 4.$$

这就完成了证明.

例题 3.5 设 $f(x) \in D^2[0,1]$, f(0) = f(1) = 0, $|f''(x)| \le M$, 求证:

$$\int_0^1 f(x) \, dx \le \frac{M}{12}$$

证明 事实上,对于满足边界条件 f(0) = f(1) = 0 的函数,我们可以利用格林函数将其表示为

$$f(x) = \int_0^1 k(x, y) f''(y) dy,$$

其中核函数(格林函数)为

$$k(x,y) = \begin{cases} y(x-1), & 0 \le y \le x \\ x(y-1), & x \le y \le 1 \end{cases}$$

于是, 我们对 f(x) 进行积分

$$\int_0^1 f(x) \, dx = \int_0^1 \left(\int_0^1 k(x, y) f''(y) \, dy \right) dx.$$

通过交换积分次序 (Fubini 定理), 我们得到

$$\int_0^1 f(x) \, dx = \int_0^1 f''(y) \left(\int_0^1 k(x, y) \, dx \right) dy.$$

我们先计算内层关于 x 的积分:

$$\int_0^1 k(x,y) \, dx = \int_0^y x(y-1) \, dx + \int_y^1 y(x-1) \, dx$$

$$= (y-1) \left[\frac{x^2}{2} \right]_0^y + y \left[\frac{x^2}{2} - x \right]_y^1$$

$$= (y-1) \frac{y^2}{2} + y \left((\frac{1}{2} - 1) - (\frac{y^2}{2} - y) \right)$$

$$= \frac{y^3 - y^2}{2} + y \left(-\frac{1}{2} - \frac{y^2}{2} + y \right)$$

$$= \frac{y^3 - y^2}{2} - \frac{y}{2} - \frac{y^3}{2} + y^2 = \frac{y^2 - y}{2}.$$

将此结果代回,就有

$$\int_0^1 f(x) \, dx = \int_0^1 f''(y) \frac{y^2 - y}{2} \, dy.$$

从而, 利用已知条件 $|f''(y)| \leq M$,

$$\left| \int_0^1 f(x) \, dx \right| = \left| \int_0^1 f''(y) \frac{y^2 - y}{2} \, dy \right|$$

$$\leq \int_0^1 |f''(y)| \left| \frac{y^2 - y}{2} \right| \, dy$$

$$\leq M \int_0^1 \frac{y - y^2}{2} \, dy$$

$$= \frac{M}{2} \left[\frac{y^2}{2} - \frac{y^3}{3} \right]_0^1 = \frac{M}{2} \left(\frac{1}{2} - \frac{1}{3} \right) = \frac{M}{12}.$$

因为 $\int_0^1 f(x) dx \le \left| \int_0^1 f(x) dx \right|$, 所以原命题成立. 这就完成了证明.

例题 3.6 已知 $f(x) \in C^2[a,b]$, f(a) = f(b) = 0, 求证:

$$|f(x)| \le \frac{(x-a)(b-x)}{b-a} \int_a^b |f''(y)| \, dy$$

证明 事实上, 我们知道对于满足边界条件 f(a) = f(b) = 0 的函数, 有如下格林函数表示:

$$f(x) = \int_a^b k(x, y) f''(y) \, dy,$$

其中核函数 k(x,y) 为

$$k(x,y) = \frac{1}{b-a} \begin{cases} (y-a)(x-b), & a \le y \le x \\ (x-a)(y-b), & x \le y \le b \end{cases}.$$

于是利用绝对值不等式,

$$|f(x)| = \left| \int_a^b k(x,y)f''(y) \, dy \right| \le \int_a^b |k(x,y)| |f''(y)| \, dy.$$

我们来考察核函数 |k(x,y)|. 对于固定的 $x \in [a,b]$:

• $\exists a < y < x \text{ th}, y - a > 0, x - b < 0, \text{ th}$

$$|k(x,y)| = \frac{(y-a)(b-x)}{b-a} \le \frac{(x-a)(b-x)}{b-a}.$$

• $\exists x \le y \le b \text{ } \text{b}, x - a \ge 0, y - b \le 0, \text{ } \text{b}$

$$|k(x,y)| = \frac{(x-a)(b-y)}{b-a} \le \frac{(x-a)(b-x)}{b-a}.$$

因此, 对所有的 $y \in [a,b]$, 我们有一致的界:

$$|k(x,y)| \le \frac{(x-a)(b-x)}{b-a}.$$

从而,将此不等式代入积分,就有

$$|f(x)| \le \int_{a}^{b} |k(x,y)| |f''(y)| \, dy$$

$$\le \int_{a}^{b} \frac{(x-a)(b-x)}{b-a} |f''(y)| \, dy$$

$$= \frac{(x-a)(b-x)}{b-a} \int_{a}^{b} |f''(y)| \, dy.$$

这就完成了证明.

3.1.2 K 值法

看例题操作, 有手就行

例题 3.7 (2021 天津大学考研) 设函数 $f(x) \in C[a,b] \cap D^2(a,b)$, 求证: $\exists \xi \in (a,b)$, 使得

$$f(b) - 2f\left(\frac{a+b}{2}\right) + f(a) = \frac{(b-a)^2}{4}f''(\xi).$$

证明 事实上,记常数 K 满足

$$f(b) - 2f\left(\frac{a+b}{2}\right) + f(a) = \frac{(b-a)^2}{4}K.$$

即

$$K = \frac{4}{(b-a)^2} \left[f(b) - 2f\left(\frac{a+b}{2}\right) + f(a) \right].$$

然后考虑辅助函数

$$F(x) = f(x) - f(a) - \left(f\left(\frac{a+b}{2}\right) - f(a) \right) \frac{2(x-a)}{b-a} - \frac{K}{2}(x-a) \left(x - \frac{a+b}{2} \right).$$

于是直接计算表明

$$F(a) = 0$$
, $F\left(\frac{a+b}{2}\right) = 0$, $F(b) = 0$.

由罗尔中值定理, 我们知道存在 $\theta_1 \in (a, \frac{a+b}{2})$ 和 $\theta_2 \in (\frac{a+b}{2}, b)$, 使得 $F'(\theta_1) = F'(\theta_2) = 0$. 对 F'(x) 再来一次罗尔中值定理, 我们知道存在 $\xi \in (\theta_1, \theta_2) \subset (a, b)$, 使得 $F''(\xi) = 0$. 我们计算 F''(x):

$$F''(x) = f''(x) - K.$$

因此

$$F''(\xi) = f''(\xi) - K = 0,$$

即 $f''(\xi) = K$. 这就证明了结论.

例题 3.8 (2024 大连理工考研) 设函数 f(x) 在 [0,2] 上有二阶连续导数,且 f(0) = f(1) = f(2) = 0,求证: $\forall x \in (0,2), \exists c \in (0,2),$ 使得

$$f(x) = \frac{1}{6}x(x-1)(x-2)f'''(c).$$

证明 事实上, 对任意给定的 $x \in (0,2)$, 且 $x \neq 1$, 记常数 K = K(x) 满足

$$f(x) = \frac{1}{6}x(x-1)(x-2)K.$$

即

$$K = \frac{6f(x)}{x(x-1)(x-2)}.$$

然后考虑函数

$$F(t) = f(t) - \frac{1}{6}t(t-1)(t-2)K, \quad t \in [0,2].$$

于是直接计算表明

$$F(0) = 0$$
, $F(1) = 0$, $F(2) = 0$, $F(x) = 0$.

由罗尔中值定理, 我们知道存在 θ_1 , θ_2 , θ_3 , 分别位于开区间 (0,x), (x,1), (1,2) (或x 所在的其他区间), 使得 $F'(\theta_1) = F'(\theta_2) = F'(\theta_3) = 0$. 继续罗尔中值定理, 我们知道存在 $\eta_1 \in (\theta_1, \theta_2)$, $\eta_2 \in (\theta_2, \theta_3)$, 使得 $F''(\eta_1) = F''(\eta_2) = 0$. 再来一次罗尔中值定理, 我们知道存在 $c \in (\eta_1, \eta_2) \subset (0, 2)$, 使得 F'''(c) = 0. 我们计算 F'''(t):

$$F'''(t) = f'''(t) - \frac{1}{6} \frac{d^3}{dt^3} (t^3 - 3t^2 + 2t)K = f'''(t) - K.$$

因此

$$F'''(c) = f'''(c) - K = 0,$$

即 f'''(c) = K. 这就证明了结论.

例题 3.9 设 f 在 [a,b] 上二阶可微,f(a) = f(b) = 0。证明: 对每个 $x \in (a,b)$,存在 $\xi \in (a,b)$,使得

$$f(x) = \frac{f''(\xi)}{2}(x - a)(x - b).$$

证明 事实上, 对任意给定的 $x \in (a,b)$, 记常数 K = K(x) 满足

$$f(x) = \frac{K}{2}(x-a)(x-b).$$

即

$$K = \frac{2f(x)}{(x-a)(x-b)}.$$

然后考虑函数

$$F(t) = f(t) - \frac{K}{2}(t-a)(t-b), \quad t \in [a, b].$$

于是直接计算表明

$$F(a) = f(a) - 0 = 0,$$

$$F(b) = f(b) - 0 = 0,$$

$$F(x) = f(x) - \frac{K}{2}(x - a)(x - b) = 0.$$

由罗尔中值定理, 我们知道存在 $\theta_1 \in (a,x)$ 和 $\theta_2 \in (x,b)$, 使得 $F'(\theta_1) = F'(\theta_2) = 0$. 对 F'(t) 再来一次罗尔中值定理, 我们知道存在 $\xi \in (\theta_1,\theta_2) \subset (a,b)$, 使得 $F''(\xi) = 0$. 我们计算 F''(t):

$$F''(t) = f''(t) - \frac{K}{2} \frac{d^2}{dt^2} (t^2 - (a+b)t + ab) = f''(t) - K.$$

因此

$$F''(\xi) = f''(\xi) - K = 0,$$

即 $f''(\xi) = K$. 这就证明了结论.

例题 3.10 设 $f \in D^3[0,1]$ 满足 f(0) = -1, f'(0) = 0, f(1) = 0。证明对任何 $x \in [0,1]$,存在 $\theta \in (0,1)$,使得

$$f(x) = -1 + x^2 + \frac{x^2(x-1)}{6}f'''(\theta).$$

证明 事实上,记常数 K = K(x) 满足

$$f(x) = -1 + x^2 + \frac{x^2(x-1)}{6}K,$$

即

$$K = \frac{f(x) + 1 - x^2}{\frac{x^2(x-1)}{6}},$$

然后考虑函数

$$F(y) = f(y) - (-1 + y^2) - \frac{y^2(y-1)}{6}K, \quad y \in [0,1].$$

于是直接计算表明

$$F(0) = F(1) = F(x) = F'(0) = 0. (3.2)$$

由罗尔中值定理, 我们知道存在 $\theta_1 \in (0,x), \theta_2 \in (x,1)$, 使得 $F'(\theta_1) = F'(\theta_2) = 0$. 结合 (10.8), 继续罗尔中值定理我们知道存在 $\theta_3 \in (0,\theta_1), \theta_4 \in (\theta_1,\theta_2)$, 使得 $F''(\theta_3) = F''(\theta_4) = 0$. 再来一次罗尔中值定理, 我们知道存在 $\theta \in (\theta_3,\theta_4)$, 使得 $F'''(\theta) = 0$. 因此

$$F'''(\theta) = f'''(\theta) - K = 0,$$

这就证明了结论.

3.1.3 微分方程法

有一类中值定理习题的解决需要我们构造合适的函数,我们可以通过解微分方程来得到。下面我们结合具体的例子来说明。

例题 3.11 设函数 $f(x) \in C[0,2] \cap D(0,2)$,且 f(0) = f(2) = 0, $\lim_{x \to 1} \frac{f(x)-2}{x-1} = 5$ 。求证:

$$\exists \xi \in (0,2), \text{ s.t. } f'(\xi) = \frac{2\xi - f(\xi)}{\xi}.$$

例题 3.12 (2024 复旦夏令营) 设函数 $f(x) \in C[0,1] \cap D(0,1)$,且 f'(1) = 0。求证:

$$\exists \xi \in (0,1), \text{ s.t. } f'(\xi) = 2024(f(\xi) - f(0)).$$

例题 3.13 (2024 上海夏令营) 设 f(x) 在 [a,b] 上可导,且 $\exists c \in [a,b]$, s.t. f'(c) = 0. 求证:

$$\exists \xi \in [a, b], \text{ s.t. } f'(\xi) = \frac{f(\xi) - f(a)}{b - a}.$$

例题 3.14 设函数 $f(x) \in C[0,1] \cap D(0,1)$,且 f(0) = 0。求证:

$$\exists u \in (0,1), \text{ s.t. } f'(u) = \frac{uf(u)}{1-u}.$$

例题 3.15 设函数 $f(x) \in C[-1,2] \cap D(-1,2)$, $f(-1) = f(2) = -\frac{1}{2}$, $f(\frac{1}{2}) = 1$ 。求证:

$$\forall \lambda \in \mathbb{R}, \exists \xi \in (-1,2), \text{ s.t. } f'(\xi) = \lambda \left[f(\xi) - \frac{\xi}{2} \right] + \frac{1}{2}.$$

例题 3.16 设函数 $f(x) \in D^2\left[0, \frac{\pi}{4}\right], f(0) = 0, f'(0) = 1, f\left(\frac{\pi}{4}\right) = 1$ 。求证:

$$\exists \xi \in \left(0, \frac{\pi}{4}\right), \text{ s.t. } f''(\xi) = 2f(\xi)f'(\xi).$$

注

IStep 1 考虑微分方程 $y' = \frac{2x-y}{x}$,解得 $y = \frac{c}{x} + x$.

Step 2 分离常数 c 得 c = x(y - x),常数变易得构造函数 C(x) = x(f(x) - x).

Step 1 考虑微分方程 y' = 2024y,解得 $y = ce^{2024x}$.

Step 2 分离常数 c 得 $c = ye^{-2024x}$,常数变易得构造函数 $C(x) = (f(x) - f(0))e^{-2024x}$.

Step 1 考虑微分方程 $y' = \frac{y}{b-a}$,解得 $y = ce^{\frac{x}{b-a}}$.

Step 2 分离常数 c 得 $c = ye^{-\frac{x}{b-a}}$,常数变易得构造函数 $C(x) = (f(x) - f(a))e^{-\frac{x}{b-a}}$.

Step 1 考虑微分方程 $y' = \frac{xy}{1-u}$,解得 $y = c(1-x)e^{-x}$.

Step 2 分离常数 c 得 $c = \frac{y}{(1-x)e^{-x}}$,常数变易得构造函数 $C(x) = \frac{f(x)}{(1-x)e^{-x}}$.

Step 1 考虑微分方程 $y'=\lambda\left[y-\frac{x}{2}\right]+\frac{1}{2}$,解得 $y=ce^{\lambda x}+\frac{x}{2}$.

Step 2 分离常数 c 得 $c = \frac{y - \frac{x}{2}}{e^{\lambda x}}$,常数变易得构造函数 $C(x) = \frac{f(x) - \frac{x}{2}}{e^{\lambda x}}$.

Step 1 考虑微分方程 y'' = 2yy', 解得 $y' = y^2 + c$.

Step 2 分离常数 c 得 $c = y' - y^2$,常数变易得构造函数 $C(x) = f'(x) - (f(x))^2$.

证明

1. 由条件 $\lim_{x\to 1} \frac{f(x)-2}{x-1} = 5$ 我们知道 f(1) = 2 且 f'(1) = 5. 构造函数 c(x) = x(f(x)-x), 我们求导得 c'(x) = f(x) - 2x + xf'(x).

注意到

$$c(0) = 0(f(0) - 0) = 0$$
, $c(1) = 1(f(1) - 1) = 2 - 1 = 1$, $c(2) = 2(f(2) - 2) = 2(0 - 2) = -4$.

于是由拉格朗日中值定理得 $\alpha \in (0,1), \beta \in (1,2)$, 使得

$$c'(\alpha) = \frac{c(1) - c(0)}{1 - 0} = 1, \quad c'(\beta) = \frac{c(2) - c(1)}{2 - 1} = \frac{-4 - 1}{1} = -5.$$

由于 c'(x) 在 (0,2) 上连续, 且 $c'(\beta) < 0 < c'(\alpha)$, 由导数介值定理知存在 $\xi \in (\alpha,\beta) \subset (0,2)$ 使得 $c'(\xi) = 0$. 由 $c'(\xi) = f(\xi) - 2\xi + \xi f'(\xi) = 0$ 知

$$f'(\xi) = \frac{2\xi - f(\xi)}{\xi}.$$

2. 构造函数 $c(x) = (f(x) - f(0))e^{-2024x}$. 注意到 $c(0) = (f(0) - f(0))e^0 = 0$. 若 f(1) = f(0), 则 c(1) = 0. 由罗尔中值定理, 存在 $\xi \in (0,1)$, 使得 $c'(\xi) = 0$. 若 $f(1) \neq f(0)$, 不妨设 f(1) > f(0), 则 $c(1) = (f(1) - f(0))e^{-2024} > 0$. 我们求导得

$$c'(x) = [f'(x) - 2024(f(x) - f(0))]e^{-2024x}.$$

于是 $c'(1) = (f'(1) - 2024(f(1) - f(0)))e^{-2024} = -2024(f(1) - f(0))e^{-2024} < 0$. 由于 c(0) = 0 且 c(1) > 0,函数 c(x) 在 [0,1] 上必有最大值. 又因 c'(1) < 0,该最大值点 ξ 必在 (0,1) 内部取得, 故 $c'(\xi) = 0$. f(1) < f(0) 的情形同理. 由 $c'(\xi) = 0$ 即

$$f'(\xi) = 2024(f(\xi) - f(0)).$$

- 3. 构造函数 $c(x) = (f(x) f(a))e^{-\frac{x}{b-a}}$. 该函数在 [a,b] 上连续可导, 故在 [a,b] 上必有最大值和最小值. 设其在 $\eta \in [a,b]$ 处取得极值. 若 $\eta \in (a,b)$, 则 $c'(\eta) = 0$. 若 η 在端点 a 或 b 处取极值, 我们考虑题目所给的 $c \in [a,b]$ 使得 f'(c) = 0. 求导得 $c'(x) = \left(f'(x) \frac{f(x) f(a)}{b-a}\right)e^{-\frac{x}{b-a}}$. 我们有 $c'(\eta) = \left(f'(\eta) \frac{f(\eta) f(a)}{b-a}\right)e^{-\frac{\eta}{b-a}} = 0$. 则 $f'(\eta) = \frac{f(\eta) f(a)}{b-a}$.
- 4. 构造函数 $c(x) = (1-x)e^x f(x)$. 注意到

$$c(0) = (1-0)e^{0}f(0) = 0, \quad c(1) = (1-1)e^{1}f(1) = 0.$$

由罗尔中值定理, 存在 $u \in (0,1)$, 使得 c'(u) = 0. 我们求导得

$$c'(x) = -e^x f(x) + (1-x)e^x f(x) + (1-x)e^x f'(x) = e^x [-xf(x) + (1-x)f'(x)].$$

由 c'(u) = 0 知 -uf(u) + (1-u)f'(u) = 0, 即

$$f'(u) = \frac{uf(u)}{1 - u}.$$

5. 构造函数 $c(x) = \frac{f(x) - \frac{x}{2}}{e^{\lambda x}}$. 注意到

$$c(-1) = \frac{f(-1) - (-\frac{1}{2})}{e^{-\lambda}} = \frac{-\frac{1}{2} + \frac{1}{2}}{e^{-\lambda}} = 0,$$

$$c\left(\frac{1}{2}\right) = \frac{f(\frac{1}{2}) - \frac{1}{4}}{e^{\lambda/2}} = \frac{1 - \frac{1}{4}}{e^{\lambda/2}} = \frac{3}{4e^{\lambda/2}},$$

$$f(2) = \frac{2}{e^{\lambda/2}} = \frac{1}{e^{\lambda/2}} = \frac{3}{4e^{\lambda/2}},$$

$$c(2) = \frac{f(2) - \frac{2}{2}}{e^{2\lambda}} = \frac{-\frac{1}{2} - 1}{e^{2\lambda}} = -\frac{3}{2e^{2\lambda}}.$$

由于 $c(\frac{1}{2})$ 与 c(2) 异号,由零点定理知存在 $\theta \in (\frac{1}{2},2)$,使得 $c(\theta)=0$. 现在我们有 $c(-1)=c(\theta)=0$. 由 罗尔中值定理知存在 $\xi \in (-1,\theta) \subset (-1,2)$,使 $c'(\xi)=0$. 求导得 $c'(x)=\frac{(f'(x)-\frac{1}{2})e^{\lambda x}-(f(x)-\frac{x}{2})\lambda e^{\lambda x}}{e^{2\lambda x}}=\frac{f'(x)-\frac{1}{2}-\lambda(f(x)-\frac{x}{2})}{e^{\lambda x}}$.由 $c'(\xi)=0$ 即

$$f'(\xi) = \lambda \left[f(\xi) - \frac{\xi}{2} \right] + \frac{1}{2}.$$

6. 首先构造函数 $g(x) = \arctan(f(x)) - x$. 注意到

$$g(0) = \arctan(f(0)) - 0 = \arctan(0) - 0 = 0,$$

$$g\left(\frac{\pi}{4}\right) = \arctan\left(f\left(\frac{\pi}{4}\right)\right) - \frac{\pi}{4} = \arctan(1) - \frac{\pi}{4} = 0.$$

由罗尔中值定理, 存在 $c \in (0, \frac{\pi}{4})$, 使得 g'(c) = 0. 由 $g'(x) = \frac{f'(x)}{1+f(x)^2} - 1$ 得 $g'(c) = \frac{f'(c)}{1+f(c)^2} - 1 = 0$, 即 $f'(c) = 1 + f(c)^2$. 再构造函数 $C(x) = f'(x) - f(x)^2$. 我们注意到

$$C(0) = f'(0) - f(0)^2 = 1 - 0^2 = 1,$$

$$C(c) = f'(c) - f(c)^2 = (1 + f(c)^2) - f(c)^2 = 1.$$

于是 C(0) = C(c). 由罗尔中值定理, 存在 $\xi \in (0,c) \subset (0,\frac{\pi}{4})$, 使得 $C'(\xi) = 0$. 求导得 C'(x) = f''(x) - 2f(x)f'(x). 由 $C'(\xi) = 0$ 即

$$f''(\xi) = 2f(\xi)f'(\xi).$$

3.2 函数性态分析

3.2.1 常用结论

定理 3.2.1

导数大于 0 则函数的趋于无穷设 f 在 $[0,+\infty)$ 上可微且 $\lim_{x\to+\infty}f(x)=x>0$ 。 求证: $\lim_{x\to+\infty}f(x)=+\infty$ 。

证明 因为 $\lim_{x\to +\infty} f'(x) = c > 0$,所以存在 X > a,使得 $f'(x) > \frac{c}{2}$, $\forall x \geq X$. 于是由拉格朗日中值定理得到 $f(x) = f(X) + f'(\theta)(x - X) \geq f(X) + \frac{c}{2}(x - X), \forall x \geq X.$

让 $x \to +\infty$ 就得到

$$\lim_{x \to +\infty} f(x) = +\infty.$$

定理 3.2.2

函数值在 $[0,+\infty)$ 处必然有趋于 0 的子列,设 $k\in\mathbb{N}, a\in\mathbb{R}$ 且 $f\in D^k[a,-\infty]$ 。若 $\lim_{x\to+\infty}|f|(x)\neq+\infty$,那么存在趋于正无穷的数列 $\{x_n\}_{n=1}^\infty\subset[0,+\infty), \forall \lim_{x\to+\infty}f^{(k)}(x_n)=0$ 。

证明 注意到若不存在 $\{x_n\}_{n=1}^{\infty}$ 使得上述表示成立,那么将存在 X>0 使得 $f^{(k)}$ 在 $(X,+\infty)$ 要么恒正, 要么恒负

$$f^{(k)}(x) \ge m > 0, \forall x \ge X'.$$

仍然用 X 来表示 X',则由 Taylor 中值定理,我们知道对每个 x > X,运用上式,都有

$$f(x) = \sum_{j=0}^{k-1} \frac{f^{(j)}(X)}{j!} (x - X)^j + \frac{f^{(k)}(\theta)}{k!} (x - X)^k \ge \sum_{j=0}^{k-1} \frac{f^{(j)}(X)}{j!} (x - X)^j + \frac{m}{k!} (x - X)^k,$$

于是 $\lim_{x\to+\infty} f(x) = +\infty$, 这就是一个矛盾! 因此我们证明了必有子列使得上述表示成立.

定理 3.2.3 (导数极限定理)

设 $f(x) \in C^{m,n} \cup D^m[a,b]$,且 $\lim_{x \to a_+} f'(x) = c$,存在。 求证: f(x) 在 $[0,+\infty)$ 处可导且 $f'_+(a) = c$ 。

证明 运用拉格朗日中值定理, 我们知道

$$\lim_{x \to a^+} \frac{f(x) - f(a)}{x - a} = \lim_{x \to a^+} f'(\theta(x)) = c,$$

这里

$$\theta(x) \in (a, x), \quad \lim_{x \to a^+} \theta(x) = a.$$

这就完成了定理的证明.

定理 3.2.4 (低阶导数控制高阶导数)

设 f(x) 在 $[0,+\infty)$ 上 n 阶可微,且存在有限极限 $\lim_{x\to +\infty} f(x)$ 和 $\lim_{x\to +\infty} f^{(k)}(x)$ 。 求证: $\forall k=1,2,\cdots,m$,有: $\lim_{x\to +\infty} f^{(k)}(x)=0$ 。

定理 3.2.5 (低阶导数控制高阶导数)

设 f(x) 在 $[0, +\infty)$ 上二阶可微, 且 |f(x)|, |f'(x)| 的上确界 A, B。求证: $|f(x)| \le \sqrt{2AB}$ 。

\odot

定理 3.2.6 (低阶导数控制高阶导数)

设 f(x) 在 $[0,+\infty)$ 上二阶可微, $\lim_{x\to\infty}f(x)=0$,且 $\lambda\in\mathbb{R}s.t.f''(x)+\lambda f'(x)$ 有上界,求证 $\lim_{x\to\infty}f'(x)=0$

3.2.2 综合运用

例题 3.17 设 $f(x) \in C(\mathbb{R}), g(x) = f(x) \int_0^x f(t) dt$ 单调递减, 求证: $f(x) \equiv 0$.

证明 令 $F(x) = \int_0^x f(t) dt$ 。根据微积分基本定理,我们有 F'(x) = f(x) 且 F(0) = 0。给定的函数可以写作 g(x) = F'(x)F(x)。注意到 g(x) 正是 $\frac{1}{2}\frac{d}{dx}(F(x)^2)$ 。

由题设,g(x) 是一个单调递减函数。这意味着对于任意 $x_1 < x_2$,都有 $g(x_1) \ge g(x_2)$ 。我们考察 x = 0 点的值: $g(0) = f(0) \int_0^0 f(t) dt = 0$ 。

- 对于任意 x > 0,因为 g(x) 单调递减,所以 $g(x) \le g(0) = 0$ 。即 $\frac{1}{2} \frac{d}{dx} \left(F(x)^2 \right) \le 0$ 。这意味着函数 $F(x)^2$ 在 $[0, +\infty)$ 上是单调不增的。因此,对于任意 x > 0,有 $F(x)^2 \le F(0)^2 = 0$ 。
- 对于任意 x < 0,因为 g(x) 单调递减,所以 $g(x) \ge g(0) = 0$ 。即 $\frac{1}{2} \frac{d}{dx} \left(F(x)^2 \right) \ge 0$ 。这意味着函数 $F(x)^2$ 在 $(-\infty, 0]$ 上是单调不减的。因此,对于任意 x < 0,有 $F(x)^2 \le F(0)^2 = 0$ 。

由于 $F(x)^2$ 是一个非负函数,上述两种情况都迫使 $F(x)^2 \equiv 0$ 对所有 $x \in \mathbb{R}$ 成立。所以 $F(x) = \int_0^x f(t) dt \equiv 0$ 。对该恒等式两边关于 x 求导,得到 $f(x) \equiv 0$ 。

例题 3.18 设函数 f(x) 在 $(0, +\infty)$ 上可微, 极限 $\lim_{x\to +\infty} f(x)$ 和 $\lim_{x\to +\infty} f'(x)$ 均存在, 求证: $\lim_{x\to +\infty} f'(x) = 0$.

证明 我们用反证法。设 $\lim_{x\to +\infty} f(x) = L$ 且 $\lim_{x\to +\infty} f'(x) = c$, 其中 L,c 均为有限值。假设 $c\neq 0$ 。

情形 **1:** c>0 根据极限定义,对于 $\epsilon=c/2>0$,存在 X>0,使得对所有 x>X,都有 f'(x)>c/2。根据拉格朗日中值定理,对于任意 y>X,存在 $\xi\in (X,y)$ 使得

$$f(y) - f(X) = f'(\xi)(y - X).$$

因为 $\xi > X$, 所以 $f'(\xi) > c/2$ 。于是

$$f(y) - f(X) > \frac{c}{2}(y - X).$$

当 $y \to +\infty$ 时,右侧 $\frac{c}{2}(y-X) \to +\infty$,这意味着 $\lim_{y \to +\infty} f(y) = +\infty$ 。这与 $\lim_{x \to +\infty} f(x) = L$ 是一个有限 值相矛盾。

情形 **2:** c < 0 类似地,存在 X > 0,使得对所有 x > X,都有 f'(x) < c/2 < 0。根据中值定理,对于任意 y > X,有

$$f(y) - f(X) = f'(\xi)(y - X) < \frac{c}{2}(y - X).$$

当 $y \to +\infty$ 时,右侧 $\frac{c}{2}(y-X) \to -\infty$,这意味着 $\lim_{y \to +\infty} f(y) = -\infty$ 。这同样与 $\lim_{x \to +\infty} f(x) = L$ 有限相矛盾。

综上, 假设 $c \neq 0$ 不成立, 故必有 $\lim_{x \to +\infty} f'(x) = 0$ 。

例题 3.19 设 $f(x) \in C^2[0,1]$, f'(0) = 0, $|f''(x)| \le |f(x) - f(0)|$ 。求证: f(x) 在 [0,1] 上为常值函数。证明 令 h(x) = f(x) - f(0)。则 h(x) 满足以下条件:

- 1. $h \in C^2[0,1]$
- 2. h(0) = f(0) f(0) = 0
- 3. h'(0) = f'(0) = 0
- 4. $|h''(x)| = |f''(x)| \le |h(x)|$

我们的目标是证明 $h(x) \equiv 0$ 。根据泰勒定理 (带积分余项), 我们将 h(x) 在 0 点展开:

$$h(x) = h(0) + h'(0)x + \int_0^x (x - t)h''(t) dt.$$

利用条件 (2) 和 (3), 上式简化为 $h(x) = \int_0^x (x-t)h''(t) dt$ 。 取绝对值, 并利用条件 (4):

$$|h(x)| \le \int_0^x |x-t| |h''(t)| dt \le \int_0^x (x-t) |h(t)| dt.$$

令 $M_x = \sup_{t \in [0,x]} |h(t)|$ 。 由于 $|h(t)| \le M_x$,我们有

$$|h(x)| \le \int_0^x (x-t)M_x dt = M_x \left[-\frac{(x-t)^2}{2} \right]_0^x = M_x \frac{x^2}{2}.$$

因为上式对所有 $x \in [0,1]$ 成立,它也对[0,x]上的上确界成立:

$$M_x = \sup_{t \in [0,x]} |h(t)| \le \sup_{t \in [0,x]} \left(M_t \frac{t^2}{2} \right) \le M_x \frac{x^2}{2}.$$

于是我们有 $M_x \leq M_x \frac{x^2}{2}$, 可以写成 $M_x \left(1 - \frac{x^2}{2}\right) \leq 0$ 。对于 $x \in [0,1]$, 因子 $(1 - x^2/2)$ 是正的。又因为 $M_x \geq 0$, 上述不等式只在 $M_x = 0$ 时成立。

 $M_x = 0$ 意味着在区间 [0, x] 上 $h(t) \equiv 0$ 。取 x = 1,可知 $h(t) \equiv 0$ 在整个 [0, 1] 区间上成立。因此 f(x) - f(0) = 0,即 f(x) 是常值函数。

例题 3.20 设 $f(x) \in C^2[0,1]$, f(0) = f(1), 且 $|f''(x)| \le 2$, $\forall x \in [0,1]$ 。证明: $\forall x \in [0,1]|f'(x)| \le 1$ 。证明 对任意给定的 $x \in [0,1]$,我们将 f(0) 和 f(1) 分别在 x 点进行泰勒展开到二阶:

$$f(0) = f(x) + f'(x)(0 - x) + \frac{f''(\xi_1)}{2}(0 - x)^2, \quad \sharp \, \exists \xi_1 \in (0, x).$$
$$f(1) = f(x) + f'(x)(1 - x) + \frac{f''(\xi_2)}{2}(1 - x)^2, \quad \sharp \, \exists \xi_2 \in (x, 1).$$

由题设 f(0) = f(1), 我们将两式联立, 可得:

$$f(x) - xf'(x) + \frac{x^2}{2}f''(\xi_1) = f(x) + (1-x)f'(x) + \frac{(1-x)^2}{2}f''(\xi_2).$$

整理上式以求解 f'(x):

$$f'(x) = \frac{x^2}{2}f''(\xi_1) - \frac{(1-x)^2}{2}f''(\xi_2).$$

现在取绝对值,并利用三角不等式和题设 |f''(x)| < 2:

$$|f'(x)| = \left| \frac{x^2}{2} f''(\xi_1) - \frac{(1-x)^2}{2} f''(\xi_2) \right|$$

$$\leq \frac{x^2}{2} |f''(\xi_1)| + \frac{(1-x)^2}{2} |f''(\xi_2)|$$

$$\leq \frac{x^2}{2} (2) + \frac{(1-x)^2}{2} (2)$$

$$= x^2 + (1-x)^2 = 2x^2 - 2x + 1.$$

令 $h(x) = 2x^2 - 2x + 1$ 。 这是一个开口向上的抛物线, 其在区间 [0,1] 上的最大值在端点处取得。计算端点值: h(0) = 1, h(1) = 1。 因此, 对于任意 $x \in [0,1]$, 我们有 $|f'(x)| \le h(x) \le 1$ 。 证毕。

例题 3.21 设 $f(x) \in C[0,1] \cap D(0,1)$, f(0) = f(1), 且 |f'(x)| < 1。求证: $\forall x_1, x_2 \in [0,1]$, $|f(x_1) - f(x_2)| < \frac{1}{2}$. 证明 不失一般性,设 $0 \le x_1 < x_2 \le 1$ 。我们分两种情况讨论 x_1 和 x_2 之间的距离。

情形 1: $x_2 - x_1 \le 1/2$ 根据拉格朗日中值定理,存在 $\xi \in (x_1, x_2)$ 使得

$$f(x_2) - f(x_1) = f'(\xi)(x_2 - x_1).$$

取绝对值并利用题设 |f'(x)| < 1:

$$|f(x_2) - f(x_1)| = |f'(\xi)||x_2 - x_1| < 1 \cdot |x_2 - x_1| = x_2 - x_1 \le \frac{1}{2}$$

由于不等式是严格的, 我们有 $|f(x_1) - f(x_2)| < 1/2$ 。

情形 2: $x_2 - x_1 > 1/2$ 在这种情况下, 我们利用端点条件 f(0) = f(1) 和三角不等式来"折叠"区间。

$$|f(x_2) - f(x_1)| = |(f(x_2) - f(1)) + (f(0) - f(x_1))|$$

$$\leq |f(x_2) - f(1)| + |f(x_1) - f(0)|.$$

再次使用中值定理:

•
$$|f(x_2) - f(1)| = |f'(\xi_1)(x_2 - 1)| < 1 \cdot |x_2 - 1| = 1 - x_2$$
.

•
$$|f(x_1) - f(0)| = |f'(\xi_2)(x_1 - 0)| < 1 \cdot |x_1 - 0| = x_1.$$

代入不等式中:

$$|f(x_2) - f(x_1)| < (1 - x_2) + x_1 = 1 - (x_2 - x_1).$$

由本情形的假设 $x_2 - x_1 > 1/2$, 我们得到 $-(x_2 - x_1) < -1/2$ 。因此,

$$|f(x_2) - f(x_1)| < 1 - (x_2 - x_1) < 1 - \frac{1}{2} = \frac{1}{2}.$$

两种情况均证明了 $|f(x_1) - f(x_2)| < 1/2$ 。证毕。

3.3 函数逼近问题

3.3.1 连续函数的逼近

定理 3.3.1 (Weierstrass 第一逼近定理)

对于闭区间 [a,b] 上的任意连续函数 f(x), 存在多项式序列 $\{P_n\}$ 在 [a,b] 上一致收敛于 f(x)。

 \sim

定理 3.3.2 (Weierstrass 第二逼近定理)

ℝ上周期为2π的连续函数可被三角多项式一致逼近。

 \sim

例题 3.22 设 $f(x) \in C[0,1]$, $\forall n \in \mathbb{N}$, $\int_0^1 f(x) x^n dx = 0$, $\forall n = 0, 1, 2, \cdots$, 求证: $f(x) \equiv 0, \forall x \in [0,1]$ 。 证明 对任何 $\epsilon > 0$, 由 Weierstrass 第一逼近定理, 我们知道存在实系数多项式 p 使得

$$|p(x) - f(x)| \le \epsilon, \forall x \in [0, 1].$$

于是由题目条件 $\int_0^1 f(x)p(x)dx = 0$ 和

$$\int_0^1 f^2(x) \, dx = \int_0^1 f(x) [f(x) - p(x)] \, dx \le \epsilon \int_0^1 |f(x)| \, dx.$$

由ε任意性即得

$$f(x) = 0, \forall x \in [0, 1].$$

例题 3.23Riemann 引理 设函数 f(x) 在 [a,b] 上可积,那么有:

$$\lim_{\lambda \to \infty} \int_a^b f(x) \sin \lambda x dx = 0, \quad \lim_{\lambda \to \infty} \int_a^b f(x) \cos \lambda x dx = 0.$$

例题 3.24 设 $f(x) \in R[a,b], g(x)$ 以 T 为周期且在 [0,T] 上可积,则有:

$$\lim_{n \to \infty} \int_a^b f(x)g(nx)dx = \frac{1}{T} \int_0^T g(x)dx \int_a^b f(x)dx.$$

例题 3.25 设 $f(x) \in R[a,b]$,求证: $\lim_{n\to\infty} \int_a^b f(x) \sin nx dx = \frac{2}{\pi} \int_a^b f(x) dx$ 。

3.3.2 可积函数的逼近

例题 3.26 阶梯逼近 设 $f(x) \in R[a,b], \forall \epsilon > 0$, 存在 [a,b] 上的阶梯函数 g(x), 使得

$$\int_{a}^{b} |f(x) - g(x)| dx \le \epsilon.$$

证明 对任何 $\epsilon > 0$, 因为 $f(x) \in R[a,b]$, 根据黎曼可积的定义, 存在一个划分 $P: a = x_0 < x_1 < \cdots < x_n = b$ 使得上和与下和之差满足

$$U(f,P) - L(f,P) = \sum_{i=1}^{n} (M_i - m_i)(x_i - x_{i-1}) < \epsilon,$$

其中 $M_i = \sup_{x \in [x_{i-1}, x_i]} f(x)$ 和 $m_i = \inf_{x \in [x_{i-1}, x_i]} f(x)$.

我们在 [a,b] 上定义一个阶梯函数 g(x), 令在每个子区间 $[x_{i-1},x_i)$ 上, $g(x)=m_i$. 则

$$\int_{a}^{b} |f(x) - g(x)| dx = \sum_{i=1}^{n} \int_{x_{i-1}}^{x_{i}} |f(x) - m_{i}| dx$$

$$\leq \sum_{i=1}^{n} \int_{x_{i-1}}^{x_{i}} (M_{i} - m_{i}) dx$$

$$= \sum_{i=1}^{n} (M_{i} - m_{i})(x_{i} - x_{i-1})$$

$$= U(f, P) - L(f, P) < \epsilon.$$

这就完成了证明。

例题 3.27 连续逼近 设 $f(x) \in R[a,b], \forall \epsilon > 0$, 存在 $g(x) \in C[a,b]$, 使得

$$\int_{a}^{b} |f(x) - g(x)| dx < \epsilon.$$

证明 对任何 $\epsilon > 0$, 因为 $f \in R[a,b]$, 所以存在一个划分 $a = x_0 < x_1 < \cdots < x_n = b$ 使得

$$\sum_{i=1}^{n} w_i(f)(x_i - x_{i-1}) \le \epsilon,$$

 $w_i(f)$ 表示 f 在 $[x_{i-1}, x_i]$, i = 1, 2, ..., n 的振幅.

连接线段 $(x_{i-1}, f(x_{i-1})), (x_i, f(x_i)), i = 1, 2, ..., n$ 得到连续函数 g. 则

$$\int_{a}^{b} |f(x) - g(x)| dx = \sum_{i=1}^{n} \int_{x_{i-1}}^{x_{i}} |f(x) - g(x)| dx$$

$$\leq \sum_{i=1}^{n} \int_{x_{i-1}}^{x_{i}} |f(x) - f(x_{i-1})| dx + \sum_{i=1}^{n} \int_{x_{i-1}}^{x_{i}} |g(x) - f(x_{i-1})| dx$$

$$\leq \sum_{i=1}^{n} w_{i}(f)(x_{i} - x_{i-1}) + \sum_{i=1}^{n} \int_{x_{i-1}}^{x_{i}} \left| \frac{f(x_{i}) - f(x_{i-1})}{x_{i} - x_{i-1}} (x - x_{i-1}) \right| dx$$

$$\leq \sum_{i=1}^{n} w_{i}(f)(x_{i} - x_{i-1}) + \sum_{i=1}^{n} w_{i}(f) \int_{x_{i-1}}^{x_{i}} \left| \frac{x - x_{i-1}}{x_{i} - x_{i-1}} \right| dx$$

$$= \sum_{i=1}^{n} w_{i}(f)(x_{i} - x_{i-1}) + \frac{1}{2} \sum_{i=1}^{n} w_{i}(f)(x_{i} - x_{i-1}) \leq \frac{3}{2} \epsilon.$$

这就完成了证明。

例题 3.28 可微逼近 设 $f(x) \in R[a,b], \forall \epsilon > 0$, 存在 $g(x) \in C^1[a,b]$, 使得

$$\int_{a}^{b} |f(x) - g(x)| dx < \epsilon.$$

证明 对任何 $\epsilon > 0$, 由上一个阶梯逼近的结论, 我们知道存在一个阶梯函数 s(x) 使得

$$\int_{a}^{b} |f(x) - s(x)| \, dx < \frac{\epsilon}{2}.$$

设阶梯函数 s(x) 的跳跃点为 a_1,a_2,\ldots,a_m . 我们可以构造一个连续可微的函数 $g(x)\in C^1[a,b]$ 来 "平滑" 这些跳跃点. 具体而言, 在每个跳跃点 a_i 的一个很小的邻域 $(a_i-\delta,a_i+\delta)$ 内, 用光滑的曲线段连接左右两边的水平线段, 并确保在邻域外 g(x)=s(x).

通过选择足够小的 $\delta > 0$,我们可以使得g(x)与s(x)的差异部分所围成的面积任意小,即

$$\int_{a}^{b} |s(x) - g(x)| \, dx < \frac{\epsilon}{2}.$$

于是由三角不等式可得

$$\begin{split} \int_a^b |f(x) - g(x)| \, dx &= \int_a^b |f(x) - s(x) + s(x) - g(x)| \, dx \\ &\leq \int_a^b |f(x) - s(x)| \, dx + \int_a^b |s(x) - g(x)| \, dx \\ &< \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon. \end{split}$$

这就完成了证明。

例题 3.29 绝对连续性 设 f(x) 在任意有限区间可积,证明: $\forall [a,b]$,有:

$$\lim_{h \to 0} \int_{a}^{b} |f(x+h) - f(x)| dx = 0.$$

证明 对任何 $\epsilon>0$, 因为紧支撑连续函数在 $L^1[a,b]$ 中是稠密的, 所以存在一个连续函数 g(x) 使得

$$\int_{a}^{b} |f(x) - g(x)| \, dx < \frac{\epsilon}{3}.$$

因为 g(x) 在闭区间 [a,b] 上连续, 所以它是一致连续的. 故存在 $\delta>0$, 当 $|h|<\delta$ 时, 对所有 $x\in[a,b]$ 都有 $|g(x+h)-g(x)|<\frac{\epsilon}{3(b-a)}$.

于是当 $|h| < \delta$ 时, 我们有

$$\int_{a}^{b} |f(x+h) - f(x)| dx \le \int_{a}^{b} |f(x+h) - g(x+h)| dx + \int_{a}^{b} |g(x+h) - g(x)| dx + \int_{a}^{b} |g(x) - f(x)| dx \\
= \int_{a+h}^{b+h} |f(y) - g(y)| dy + \int_{a}^{b} |g(x+h) - g(x)| dx + \int_{a}^{b} |g(x) - f(x)| dx \\
\le \int_{a}^{b} |f(y) - g(y)| dy + \int_{a}^{b} \frac{\epsilon}{3(b-a)} dx + \int_{a}^{b} |g(x) - f(x)| dx \quad (\text{Kif} f, g \not= [a, b] \not \uparrow \not= 0) \\
< \frac{\epsilon}{3} + \frac{\epsilon}{3(b-a)} \cdot (b-a) + \frac{\epsilon}{3}$$

这就完成了证明。

例题 3.30 设 $f(x) \in R[a,b], F(x) = \int_a^x f(t)dt$. 求证:

$$\int_{a}^{b} F(x)dx = \int_{a}^{b} (b-x)f(x)dx.$$

证明 根据 F(x) 的定义, 我们有

$$\int_a^b F(x) \, dx = \int_a^b \left(\int_a^x f(t) \, dt \right) \, dx.$$

这是一个在三角形区域 $E=\{(t,x)\mid a\leq t\leq x, a\leq x\leq b\}$ 上的累次积分. 因为 $f(x)\in R[a,b]$, 它是可积的, 我们可以应用 Fubini 定理来交换积分次序. 积分区域 E 也可以描述为 $E=\{(t,x)\mid a\leq t\leq b, t\leq x\leq b\}$.

于是,交换积分次序后可得

$$\int_{a}^{b} F(x) dx = \int_{a}^{b} \left(\int_{t}^{b} f(t) dx \right) dt$$
$$= \int_{a}^{b} f(t) \left(\int_{t}^{b} 1 dx \right) dt$$
$$= \int_{a}^{b} f(t) [x]_{t}^{b} dt$$
$$= \int_{a}^{b} f(t) (b - t) dt.$$

将积分变量 t 替换为 x, 即得

$$\int_a^b F(x) dx = \int_a^b (b-x)f(x) dx.$$

这就完成了证明。

第4章 一元函数积分学

4.1 积分的计算

4.1.1 区间再现公式

定理 4.1.1 (区间再现公式)

当下列积分有意义时, 我们有

1.

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} f(a+b-x) dx$$

$$= \frac{1}{2} \int_{a}^{b} [f(x) + f(a+b-x)] dx$$

$$= \int_{a}^{\frac{a+b}{2}} [f(x) + f(a+b-x)] dx.$$

2.

$$\int_0^\infty f(x) dx = \int_0^1 f(x) dx + \int_1^\infty f(x) dx$$
$$= \int_0^1 \left[f(x) + f\left(\frac{1}{x}\right) \frac{1}{x^2} \right] dx.$$

例题 4.1 计算:

(1)
$$\int_0^1 \ln \sin x dx$$
, (2) $\int_0^1 \frac{\ln(1+x)}{1+x^2} dx$.

证明

1.

$$\int_0^{\frac{\pi}{2}} \ln \sin x \, dx \stackrel{\text{Imps}}{=} \int_0^{\frac{\pi}{4}} \left[\ln \sin x + \ln \sin \left(\frac{\pi}{2} - x \right) \right] \, dx$$

$$= \int_0^{\frac{\pi}{4}} \ln \left[\frac{1}{2} \sin(2x) \right] \, dx$$

$$= \int_0^{\frac{\pi}{4}} \ln 2 + \frac{1}{2} \int_0^{\frac{\pi}{2}} \ln \sin y \, dy,$$

故有

$$\int_0^{\frac{\pi}{2}} \ln \sin x \, dx = -\frac{\pi}{2} \ln 2.$$

2.

$$\int_0^1 \frac{\ln(1+x)}{1+x^2} dx \stackrel{x=\tan\alpha}{=} \int_0^{\frac{\pi}{4}} \ln(1+\tan\alpha) d\alpha$$

$$\stackrel{\boxtimes \text{ in } \pi}{=} \int_0^{\frac{\pi}{8}} \left[\ln(1+\tan\alpha) + \ln\left(1+\tan\left(\frac{\pi}{4}-\alpha\right)\right) \right] d\alpha$$

$$= \int_0^{\frac{\pi}{8}} \left[\ln(1+\tan\alpha) + \ln\left(1+\frac{1-\tan\alpha}{1+\tan\alpha}\right) \right] d\alpha$$

$$= \int_0^{\frac{\pi}{8}} \ln 2 \, d\alpha = \frac{\pi}{8} \ln 2.$$

例题 4.2 计算:

$$(1) \int_0^\infty \frac{dx}{(1+x^2)(1+x^a)} \ (a>0), \quad (2) \int_0^\infty \frac{\ln x}{x^2+x+1} dx.$$

证明

1.

$$\int_0^\infty \frac{dx}{(1+x^2)(1+x^a)} \stackrel{\text{\mathbb{Z} @H$}}{=} \frac{1}{2} \int_0^\infty \left[\frac{1}{(1+x^2)(1+x^a)} + \frac{1}{(1+x^2)(1+x^{-a})} \right] dx$$
$$= \frac{1}{2} \int_0^\infty \frac{1}{1+x^2} dx = \frac{\pi}{4}.$$

2.

$$\int_0^\infty \frac{\ln x}{x^2 + x + 1} \, dx \stackrel{\text{$\sigma \psi \sigma \psi \psi \psi \sigma \psi \sigma \left}}{=} \int_0^\infty \frac{\ln \frac{1}{x}}{\frac{1}{x^2} + \frac{1}{x} + 1} \frac{1}{x^2} \, dx = -\int_0^\infty \frac{\ln x}{x^2 + x + 1} \, dx = 0.$$

例题 4.3 计算

$$\int_0^{\frac{\pi}{2}} \frac{e^{\sin x}}{e^{\sin x} + e^{\cos x}} \, dx$$

证明

$$\int_0^{\frac{\pi}{2}} \frac{e^{\sin x}}{e^{\sin x} + e^{\cos x}} \, dx \stackrel{\text{III}}{=} \int_0^{\frac{\pi}{4}} \frac{e^{\sin x} + e^{\cos x}}{e^{\sin x} + e^{\cos x}} \, dx = \frac{\pi}{4}.$$

例题 4.4 对 $n \in \mathbb{N}$ 计算

$$\int_0^{2\pi} \sin(\sin x + nx) \, dx$$

证明

$$\int_0^{2\pi} \sin(\sin x + nx) \, dx \stackrel{\text{\sqsubseteq [4.3]}}{=} \int_0^{2\pi} \sin(\sin(2\pi - x) + n(2\pi - x)) \, dx = -\int_0^{2\pi} \sin(\sin x + nx) \, dx = 0.$$

4.1.2 Froullani 积分

定理 4.1.2 (Froullani 积分)

设 $f \in C(0, +\infty)$.

1. 若存在极限

$$\lim_{x \to 0^+} f(x), \quad \lim_{x \to +\infty} f(x),$$

则有

$$\int_0^\infty \frac{f(ax) - f(bx)}{x} \, dx = \left[\lim_{x \to 0^+} f(x) - \lim_{x \to +\infty} f(x) \right] \ln \frac{b}{a}.$$

2. 若存在极限和积分

$$\lim_{x \to 0^+} f(x) = \alpha, \quad \int_A^\infty \frac{f(x)}{x} \, dx.$$

则证明对a,b>0,有

$$\int_0^\infty \frac{f(ax) - f(bx)}{x} \, dx = \alpha \ln \frac{b}{a}.$$

3. 若存在极限和积分

$$\lim_{x \to +\infty} f(x) = \alpha, \quad \int_0^1 \frac{f(x)}{x} \, dx.$$

证明对a,b>0,有

$$\int_{0}^{\infty} \frac{f(ax) - f(bx)}{x} dx = \alpha \ln \frac{b}{a}.$$

4. 若 f 是周期 T>0 函数且 $\lim_{x\to 0^+}f(x)$ 存在, 则对 a,b>0 有

$$\int_0^\infty \frac{f(ax) - f(bx)}{x} \, dx = \left[\lim_{x \to 0^+} f(x) - \frac{1}{T} \int_0^T f(x) \, dx \right] \ln \frac{b}{a}.$$

5. 若
$$f$$
 满足 $\lim_{x\to +\infty} \left(f(x) - \frac{1}{x} \int_0^x f(y) \, dy\right)$ 存在,则对 $a,b>0$ 有
$$\int_0^\infty \frac{f(ax) - f(bx)}{x} \, dx = \left[\lim_{x\to 0^+} f(x) - \lim_{x\to +\infty} \frac{1}{x} \int_0^x f(y) \, dy\right] \ln \frac{b}{a}.$$

证明

给定 $A > \delta > 0$, 考虑

$$\int_{\delta}^{A} \frac{f(ax) - f(bx)}{x} dx = \int_{\delta}^{A} \frac{f(ax)}{x} dx - \int_{\delta}^{A} \frac{f(bx)}{x} dx$$

$$= \int_{a\delta}^{aA} \frac{f(x)}{x} dx - \int_{b\delta}^{bA} \frac{f(x)}{x} dx$$

$$= \int_{a\delta}^{b\delta} \frac{f(x)}{x} dx - \int_{aA}^{bA} \frac{f(x)}{x} dx$$

$$\stackrel{\Re \mathcal{P} \stackrel{\text{dig}}{=}}{=} f(\theta_1) \int_{a\delta}^{b\delta} \frac{1}{x} dx - f(\theta_2) \int_{aA}^{bA} \frac{1}{x} dx,$$

这里 $\theta_1 \in (a\delta, b\delta)$, $\theta_2 \in (aA, bA)$, 于是让 $A \to +\infty$, $\delta \to 0^+$, 由我们知

$$\int_0^\infty \frac{f(ax) - f(bx)}{x} dx = \left[\lim_{x \to 0^+} f(x) - \lim_{x \to +\infty} f(x) \right] \ln \frac{b}{a}.$$

2. 给定 $A > \delta > 0$, 考虑

$$\int_{\delta}^{A} \frac{f(ax) - f(bx)}{x} dx = \int_{a\delta}^{aA} \frac{f(x)}{x} dx - \int_{b\delta}^{bA} \frac{f(x)}{x} dx$$

$$= \int_{a\delta}^{b\delta} \frac{f(x)}{x} dx - \int_{aA}^{bA} \frac{f(x)}{x} dx$$

$$\stackrel{\text{R} \Rightarrow \text{ the } \text{ th$$

这里 $\theta \in (a\delta, b\delta)$, 于是让 $A \to +\infty, \delta \to 0^+$, 我们知

$$\int_0^\infty \frac{f(ax) - f(bx)}{x} \, dx = \alpha \ln \frac{b}{a}.$$

3. 给定 $A > \delta > 0$, 考虑

$$\int_{\delta}^{A} \frac{f(ax) - f(bx)}{x} dx = \int_{a\delta}^{aA} \frac{f(x)}{x} dx - \int_{b\delta}^{bA} \frac{f(x)}{x} dx$$

$$= \int_{a\delta}^{b\delta} \frac{f(x)}{x} dx - \int_{aA}^{bA} \frac{f(x)}{x} dx$$

$$\stackrel{\text{R} \Rightarrow \text{ the } \text{ th$$

这里 $\theta \in (aA, bA)$, 于是让 $A \to +\infty$, $\delta \to 0^+$, 由, 我们知

$$\int_0^\infty \frac{f(ax) - f(bx)}{x} \, dx = \alpha \ln \frac{a}{b}.$$

4. 给定 $A > \delta > 0$, 考虑

$$\int_{\delta}^{A} \frac{f(ax) - f(bx)}{x} dx = \int_{a\delta}^{aA} \frac{f(x)}{x} dx - \int_{b\delta}^{bA} \frac{f(x)}{x} dx$$
$$= \int_{bA}^{aA} \frac{f(Ax)}{x} dx - f(\theta) \int_{b\delta}^{a\delta} \frac{1}{x} dx,$$

这里 $\theta \in (a\delta, b\delta)$, 现在

$$\lim_{\delta \to 0^+} \left(-f(\theta) \int_{b\delta}^{a\delta} \frac{1}{x} \, dx \right) = \lim_{x \to 0^+} f(x) \ln \frac{b}{a}.$$

由黎引理, 我们有

$$\lim_{A \to +\infty} \int_{bA}^{aA} \frac{f(Ax)}{x} dx = \frac{1}{T} \int_0^T f(x) dx = \frac{1}{T} \int_0^T f(x) dx \cdot \ln \frac{b}{a},$$

这就证明了

$$\int_0^\infty \frac{f(ax) - f(bx)}{x} dx = \left[\lim_{x \to 0^+} f(x) - \frac{1}{T} \int_0^T f(x) dx \right] \ln \frac{b}{a}.$$

5. 上一问证明中把黎引理用平均值极限定理代替即可.

注 无需记忆,只需要知道有这个就行了

例题 4.5 计算

$$\int_0^{+\infty} \left(\frac{\sin 3x}{3x^2} - \frac{\sin 2x}{2x^2} \right) dx$$

例题 4.6 计算

$$\int_0^\infty \frac{\cos ax - \cos bx}{x} dx, \quad b > a > 0.$$

4.1.3 化为含参积分处理

例题 4.7 计算

$$\int_0^1 \frac{\arctan x}{x\sqrt{1-x^2}} \, dx$$

证明 我们引入一个含参积分

$$I(a) = \int_0^1 \frac{\arctan(ax)}{x\sqrt{1-x^2}} dx$$

我们所求的即为I(1)。对I(a)关于a求导:

$$I'(a) = \int_0^1 \frac{\partial}{\partial a} \left(\frac{\arctan(ax)}{x\sqrt{1-x^2}} \right) dx = \int_0^1 \frac{1}{(1+a^2x^2)\sqrt{1-x^2}} dx$$

$$\begin{split} I'(a) &= \int_0^{\pi/2} \frac{1}{1 + a^2 \sin^2 \theta} \, d\theta = \int_0^{\pi/2} \frac{\sec^2 \theta \, d\theta}{\sec^2 \theta + a^2 \tan^2 \theta} \\ &= \int_0^{\pi/2} \frac{\sec^2 \theta \, d\theta}{1 + \tan^2 \theta + a^2 \tan^2 \theta} = \int_0^{\pi/2} \frac{d(\tan \theta)}{1 + (1 + a^2) \tan^2 \theta} \\ &= \frac{1}{\sqrt{1 + a^2}} \left[\arctan(\sqrt{1 + a^2} \tan \theta) \right]_0^{\pi/2} \\ &= \frac{1}{\sqrt{1 + a^2}} \cdot \frac{\pi}{2} = \frac{\pi}{2\sqrt{1 + a^2}} \end{split}$$

对 I'(a) 从 0 到 a 积分, 注意到 I(0) = 0

$$I(a) = \int_0^a \frac{\pi}{2\sqrt{1+t^2}} dt = \frac{\pi}{2} \left[\ln(t + \sqrt{1+t^2}) \right]_0^a = \frac{\pi}{2} \ln(a + \sqrt{1+a^2})$$

因此, 我们所求的积分为

$$I(1) = \frac{\pi}{2}\ln(1+\sqrt{2})$$

例题 4.8 计算 $I(y) = \int_0^\infty e^{-x^2} \cos 2xy \, dx$, $y \in \mathbb{R}$.

证明 这是一个经典的含参积分问题,通常称为高斯积分的推广。我们对 I(y) 关于 y 求导:

$$I'(y) = \frac{d}{dy} \int_0^\infty e^{-x^2} \cos(2xy) \, dx = \int_0^\infty e^{-x^2} (-2x \sin(2xy)) \, dx$$

接下来我们使用分部积分法,令 $u=\sin(2xy)$ 且 $dv=-2xe^{-x^2}dx$ 。于是 $du=2y\cos(2xy)dx$ 且 $v=e^{-x^2}$ 。

$$I'(y) = \left[e^{-x^2}\sin(2xy)\right]_0^\infty - \int_0^\infty e^{-x^2}(2y\cos(2xy)) dx$$
$$= (0-0) - 2y \int_0^\infty e^{-x^2}\cos(2xy) dx$$
$$= -2yI(y)$$

我们得到了一个关于 I(y) 的一阶线性微分方程 $\frac{dI}{du} = -2yI$ 。分离变量求解:

$$\frac{dI}{I} = -2y \, dy \implies \ln I = -y^2 + C \implies I(y) = Ae^{-y^2}$$

为了确定常数 A,我们计算 I(0):

$$I(0) = \int_0^\infty e^{-x^2} \cos(0) \, dx = \int_0^\infty e^{-x^2} \, dx = \frac{\sqrt{\pi}}{2}$$

同时,从我们的解中得到 $I(0)=Ae^0=A$ 。因此, $A=\frac{\sqrt{\pi}}{2}$ 。最终,我们得到

$$I(y) = \frac{\sqrt{\pi}}{2}e^{-y^2}$$

例题 4.9 计算 $\int_0^\infty \frac{\arctan ax}{x(1+x^2)} dx$. 证明 设所求积分为 J(a),我们假设 $a \ge 0$ 。

$$J(a) = \int_0^\infty \frac{\arctan(ax)}{x(1+x^2)} dx$$

对 a 求导:

$$J'(a) = \int_0^\infty \frac{1}{1 + a^2 x^2} \cdot \frac{1}{1 + x^2} \, dx$$

我们使用部分分式分解 (假设 $a^2 \neq 1$):

$$\frac{1}{(1+a^2x^2)(1+x^2)} = \frac{1}{1-a^2} \left(\frac{1}{1+x^2} - \frac{a^2}{1+a^2x^2} \right)$$

于是,

$$J'(a) = \frac{1}{1 - a^2} \int_0^\infty \left(\frac{1}{1 + x^2} - \frac{a^2}{1 + a^2 x^2} \right) dx$$
$$= \frac{1}{1 - a^2} \left[\arctan x - a \arctan(ax) \right]_0^\infty$$
$$= \frac{1}{1 - a^2} \left(\frac{\pi}{2} - a \frac{\pi}{2} \right) = \frac{\pi}{2} \frac{1 - a}{1 - a^2} = \frac{\pi}{2(1 + a)}$$

当 a=1 时,此公式也成立。现在对 J'(a) 积分,注意到 J(0)=0

$$J(a) = \int_0^a \frac{\pi}{2(1+t)} dt = \frac{\pi}{2} [\ln(1+t)]_0^a = \frac{\pi}{2} \ln(1+a)$$

所以,

$$\int_0^\infty \frac{\arctan ax}{x(1+x^2)} dx = \frac{\pi}{2} \ln(1+a) \quad (a \ge 0)$$

例题 4.10 计算

$$\int_0^{+\infty} \frac{\cos x - \cos 2x}{x} e^{-x} dx$$

证明 我们利用积分公式 $\frac{1}{x} = \int_0^\infty e^{-xt} dt$

$$I = \int_0^\infty (\cos x - \cos 2x)e^{-x} \left(\int_0^\infty e^{-xt} dt \right) dx$$
$$= \int_0^\infty \int_0^\infty (\cos x - \cos 2x)e^{-(1+t)x} dx dt$$

利用拉普拉斯变换公式 $\mathcal{L}\{\cos(bt)\}(s) = \int_0^\infty e^{-st}\cos(bt)dt = \frac{s}{s^2+b^2}$, 我们计算内层积分:

$$\int_0^\infty (\cos x - \cos 2x)e^{-(1+t)x} dx = \int_0^\infty e^{-(1+t)x} \cos x dx - \int_0^\infty e^{-(1+t)x} \cos 2x dx$$
$$= \frac{1+t}{(1+t)^2 + 1^2} - \frac{1+t}{(1+t)^2 + 2^2}$$

代回原积分:

$$I = \int_0^\infty \left(\frac{1+t}{(1+t)^2 + 1} - \frac{1+t}{(1+t)^2 + 4} \right) dt$$

 $\diamondsuit u = 1 + t, du = dt$

$$\begin{split} I &= \int_{1}^{\infty} \left(\frac{u}{u^2 + 1} - \frac{u}{u^2 + 4} \right) du \\ &= \frac{1}{2} \left[\ln(u^2 + 1) - \ln(u^2 + 4) \right]_{1}^{\infty} \\ &= \frac{1}{2} \left[\ln\left(\frac{u^2 + 1}{u^2 + 4} \right) \right]_{1}^{\infty} \\ &= \frac{1}{2} \left(\lim_{u \to \infty} \ln\left(\frac{1 + 1/u^2}{1 + 4/u^2} \right) - \ln\left(\frac{1^2 + 1}{1^2 + 4} \right) \right) \\ &= \frac{1}{2} \left(\ln(1) - \ln\left(\frac{2}{5} \right) \right) = -\frac{1}{2} \ln\left(\frac{2}{5} \right) \end{split}$$

所以,

$$\int_0^{+\infty} \frac{\cos x - \cos 2x}{x} e^{-x} dx = \frac{1}{2} \ln \left(\frac{5}{2} \right)$$

例题 4.11 计算

$$\int_0^{+\infty} \frac{\sin bx - \sin ax}{x} e^{-px} dx, p > 0, b > a$$

证明 同样地,我们使用积分表示 $\frac{1}{x} = \int_0^\infty e^{-xt} dt$ 。

$$I = \int_0^\infty (\sin bx - \sin ax)e^{-px} \left(\int_0^\infty e^{-xt} dt \right) dx$$
$$= \int_0^\infty \int_0^\infty (\sin bx - \sin ax)e^{-(p+t)x} dx dt$$

利用拉普拉斯变换公式 $\mathcal{L}\{\sin(kt)\}(s) = \int_0^\infty e^{-st}\sin(kt)dt = \frac{k}{s^2+k^2}$, 计算内层积分:

$$\int_0^\infty (\sin bx - \sin ax)e^{-(p+t)x} dx = \int_0^\infty e^{-(p+t)x} \sin bx dx - \int_0^\infty e^{-(p+t)x} \sin ax dx$$
$$= \frac{b}{(p+t)^2 + b^2} - \frac{a}{(p+t)^2 + a^2}$$

代回原积分,令u=p+t, du=dt。当t=0, u=p; 当 $t\to\infty, u\to\infty$ 。

$$\begin{split} I &= \int_0^\infty \left(\frac{b}{(p+t)^2 + b^2} - \frac{a}{(p+t)^2 + a^2}\right) dt \\ &= \int_p^\infty \left(\frac{b}{u^2 + b^2} - \frac{a}{u^2 + a^2}\right) du \\ &= \left[\arctan\left(\frac{u}{b}\right) - \arctan\left(\frac{u}{a}\right)\right]_p^\infty \\ &= \left(\lim_{u \to \infty} \left(\arctan\frac{u}{b} - \arctan\frac{u}{a}\right)\right) - \left(\arctan\frac{p}{b} - \arctan\frac{p}{a}\right) \\ &= \left(\frac{\pi}{2} - \frac{\pi}{2}\right) - \arctan\frac{p}{b} + \arctan\frac{p}{a} \end{split}$$

所以,

$$\int_{0}^{+\infty} \frac{\sin bx - \sin ax}{x} e^{-px} dx = \arctan\left(\frac{p}{a}\right) - \arctan\left(\frac{p}{b}\right)$$

4.1.4 级数方法

为了换序 $\sum_{n=1}^{\infty} \int_a^b f_n(x) dx = \int_a^b \sum_{n=1}^{\infty} f_n(x) dx$, 我们需要:

$$\lim_{m \to \infty} \sum_{n=1}^{m} \int_{a}^{b} f_n(x) dx = \int_{a}^{b} \sum_{n=1}^{\infty} f_n(x) dx.$$

有限和随意交换, 我们需要:

$$\lim_{m \to \infty} \int_a^b \sum_{n=1}^m f_n(x) dx = \int_a^b \sum_{n=1}^\infty f_n(x) dx.$$

于是需要:

$$\lim_{m \to \infty} \int_a^b \sum_{n=m+1}^{\infty} f_n(x) dx = 0.$$

例题 4.12 计算: $\int_0^\infty \frac{x}{1+e^x} dx$.

证明

$$\int_0^\infty \frac{x}{1+e^x} dx = \int_0^\infty \frac{xe^{-x}}{1+e^{-x}} dx = \int_0^\infty x \sum_{n=0}^\infty (-1)^n e^{-(n+1)x} dx$$

$$= \sum_{n=0}^\infty (-1)^n \int_0^\infty xe^{-(n+1)x} dx = \sum_{n=0}^\infty \frac{(-1)^n}{(n+1)^2}$$

$$= \sum_{n=1}^\infty \frac{1}{(2n-1)^2} - \sum_{n=1}^\infty \frac{1}{(2n)^2} = \sum_{n=1}^\infty \frac{1}{n^2} - 2\sum_{n=1}^\infty \frac{1}{(2n)^2}$$

$$= \frac{1}{2} \sum_{n=1}^\infty \frac{1}{n^2} = \frac{1}{2} \cdot \frac{\pi^2}{6} = \frac{\pi^2}{12}.$$

为了换序可以过去,我们需要证明

$$\lim_{m \to \infty} \int_0^\infty x \sum_{n=m}^\infty (-1)^n e^{-(n+1)x} dx = 0.$$

注意到交错级数不等式, 我们有

$$\left| \sum_{n=m}^{\infty} (-1)^n e^{-(n+1)x} \right| \le e^{-(m+1)x},$$

于是

$$0 = \lim_{m \to \infty} \left| \int_0^\infty x \sum_{n=m}^\infty (-1)^n e^{-(n+1)x} dx \right| \le \lim_{m \to \infty} \int_0^\infty x \left| \sum_{n=m}^\infty (-1)^n e^{-(n+1)x} \right| dx$$
$$\le \lim_{m \to \infty} \int_0^\infty x e^{-(m+1)x} dx = \lim_{m \to \infty} \frac{1}{(m+1)^2} = 0,$$

这就证明了.

例题 4.13 计算: $\int_0^\infty \frac{\ln x}{1-x^2} dx$.

证明

$$\int_0^\infty \frac{\ln x}{1 - x^2} dx = \int_0^1 \frac{\ln x}{1 - x^2} dx + \int_1^\infty \frac{\ln x}{1 - x^2} dx$$

$$= \int_0^1 \frac{\ln x}{1 - x^2} dx + \int_0^1 \frac{\ln x}{1 - x^2} dx$$

$$= 2 \int_0^1 \frac{\ln x}{1 - x^2} dx = 2 \sum_{n=0}^\infty \int_0^1 x^{2n} \ln x dx$$

$$\stackrel{x=e^{-y}}{=} -2 \sum_{n=0}^\infty \int_0^\infty y e^{-(2n+1)y} dy = -2 \sum_{n=0}^\infty \frac{1}{(2n+1)^2}$$

$$= -2 \left(\sum_{n=1}^\infty \frac{1}{n^2} - \sum_{n=1}^\infty \frac{1}{(2n)^2} \right) = -\frac{3}{2} \sum_{n=1}^\infty \frac{1}{n^2} = -\frac{\pi^2}{4}.$$

例题 4.14 计算:

$$\int_0^1 \ln x \ln(1-x) dx$$

证明

$$\int_0^1 \ln x \cdot \ln(1-x) dx = -\sum_{n=1}^\infty \frac{1}{n} \int_0^1 x^n \ln x dx = \sum_{n=1}^\infty \frac{1}{n} \int_0^\infty y e^{-(n+1)y} dy$$
$$= \sum_{n=1}^\infty \frac{1}{n(n+1)^2} = \sum_{n=1}^\infty \frac{1}{n(n+1)} - \sum_{n=1}^\infty \frac{1}{(n+1)^2}$$
$$= 2 - \frac{\pi^2}{6}.$$

例题 4.15 计算积分:

$$\int_{0}^{1} \frac{\ln(1+x+x^{2})}{x} dx.$$

证明 事实上

$$\begin{split} \int_0^1 \frac{\ln(1+x+x^2)}{x} dx &= \int_0^1 \frac{\ln(1-x^3)}{x} dx - \int_0^1 \frac{\ln(1-x)}{x} dx \\ &= \frac{1}{3} \int_0^1 \frac{\ln(1-x^3)}{x^3} d(x^3) - \int_0^1 \frac{\ln(1-x)}{x} dx \\ &= -\frac{2}{3} \int_0^1 \frac{\ln(1-x)}{x} dx = \frac{2}{3} \int_0^1 \sum_{n=1}^\infty \frac{x^{n-1}}{n} dx \\ &= \frac{2}{3} \sum_{n=1}^\infty \frac{1}{n^2} = \frac{\pi^2}{9}. \end{split}$$

积分化和是经典方法.

例题 4.16 计算积分:

$$\int_0^{+\infty} \frac{x - [x] - \frac{1}{2}}{x} dx.$$

证明 回忆 $b_1(x) = x - [x] - \frac{1}{2}, x \in \mathbb{R}$, 于是

$$\begin{split} \int_{1}^{\infty} \frac{b_{1}(x)}{x} dx &= \int_{1}^{\infty} \frac{x - [x] - \frac{1}{2}}{x} dx = \sum_{k=1}^{\infty} \int_{k}^{k+1} \frac{x - [x] - \frac{1}{2}}{x} dx \\ &= \sum_{k=1}^{\infty} \int_{k}^{k+1} \frac{x - k - \frac{1}{2}}{x} dx = \frac{1}{2} \sum_{k=1}^{\infty} \left[(2k+1) \ln k - (2k+1) \ln(k+1) + 2 \right] \\ &= \frac{1}{2} \lim_{n \to \infty} \sum_{k=1}^{n} \left[(2k+1) \ln k - (2k+1) \ln(k+1) + 2 \right] \\ &= \frac{1}{2} \lim_{n \to \infty} \sum_{k=1}^{n} \left[(2k-1) \ln k - (2k+1) \ln(k+1) + 2 + 2 \ln k \right] \\ &= \frac{1}{2} \lim_{n \to \infty} \left[-(2n+1) \ln(n+1) + 2n + 2 \ln n! \right] \\ &= \frac{1}{2} \lim_{n \to \infty} \left[\ln \frac{(n!)^{2} e^{2n}}{(n+1)^{2n+1}} \right] \overset{\text{Stirling 8.4}}{=} \frac{1}{2} \lim_{n \to \infty} \ln \frac{2\pi n (n^{n}/e)^{2n} e^{2n}}{(n+1)^{2n+1}} \\ &= \frac{1}{2} \lim_{n \to \infty} \ln \frac{2\pi n^{2n+1}}{(n+1)^{2n+1}} = \frac{\ln(2\pi)}{2} - 1. \end{split}$$

4.2 积分的渐进展开

4.2.1 定积分定义

例题 4.17 设 f 在 [0,1] 上可微, |f'(x)| < M, 证明:

$$\left| \int_0^1 f(x) \, dx - \frac{1}{n} \sum_{k=1}^n f\left(\frac{k}{n}\right) \right| \le \frac{M}{2n}.$$

证明 我们将积分与求和之间的差表示为子区间上积分的和

$$\int_{0}^{1} f(x) dx - \frac{1}{n} \sum_{k=1}^{n} f\left(\frac{k}{n}\right) = \sum_{k=1}^{n} \int_{\frac{k-1}{n}}^{\frac{k}{n}} f(x) dx - \sum_{k=1}^{n} \int_{\frac{k-1}{n}}^{\frac{k}{n}} f\left(\frac{k}{n}\right) dx$$
$$= \sum_{k=1}^{n} \int_{\frac{k-1}{n}}^{\frac{k}{n}} \left(f(x) - f\left(\frac{k}{n}\right)\right) dx.$$

根据拉格朗日中值定理, 对于任意 $x \in [\frac{k-1}{n}, \frac{k}{n}]$, 存在 $\xi_k \in (x, \frac{k}{n})$ 使得 $f(x) - f(\frac{k}{n}) = f'(\xi_k)(x - \frac{k}{n})$ 。 由题设 |f'(x)| < M, 我们有:

$$\left| f(x) - f\left(\frac{k}{n}\right) \right| = \left| f'(\xi_k) \right| \left| x - \frac{k}{n} \right| \le M\left(\frac{k}{n} - x\right).$$

现在我们对差的绝对值进行估计:

$$\left| \int_0^1 f(x) \, dx - \frac{1}{n} \sum_{k=1}^n f\left(\frac{k}{n}\right) \right| = \left| \sum_{k=1}^n \int_{\frac{k-1}{n}}^{\frac{k}{n}} \left(f(x) - f\left(\frac{k}{n}\right) \right) dx \right|$$

$$\leq \sum_{k=1}^n \int_{\frac{k-1}{n}}^{\frac{k}{n}} \left| f(x) - f\left(\frac{k}{n}\right) \right| dx$$

$$\leq \sum_{k=1}^n \int_{\frac{k-1}{n}}^{\frac{k}{n}} M\left(\frac{k}{n} - x\right) dx.$$

我们计算其中的积分:

$$\int_{\frac{k-1}{n}}^{\frac{k}{n}} \left(\frac{k}{n} - x\right) dx = \left[\frac{k}{n}x - \frac{x^2}{2}\right]_{\frac{k-1}{n}}^{\frac{k}{n}} = \left(\frac{k^2}{n^2} - \frac{k^2}{2n^2}\right) - \left(\frac{k(k-1)}{n^2} - \frac{(k-1)^2}{2n^2}\right) = \frac{1}{2n^2}.$$

因此,

$$\left| \int_0^1 f(x) \, dx - \frac{1}{n} \sum_{k=1}^n f\left(\frac{k}{n}\right) \right| \le \sum_{k=1}^n M \cdot \frac{1}{2n^2} = n \cdot \frac{M}{2n^2} = \frac{M}{2n}.$$

证毕。

例题 4.18 设 f(x) 在 [0,1] 可微且导数在 [0,1] 上黎曼可积,则有:

$$\lim_{n\to\infty} n\left(\frac{1}{n}\sum_{k=1}^n f\left(\frac{k}{n}\right) - \int_0^1 f(x)\,dx\right) = \frac{f(1) - f(0)}{2}.$$

证明 事实上, 由积分中值定理, 我们知道存在 $\theta_{k,n} \in \left[\frac{k-1}{n}, \frac{k}{n}\right]$ 使得

$$\int_{\frac{k-1}{n}}^{\frac{k}{n}} \frac{f(\frac{k}{n}) - f(x)}{\frac{k}{n} - x} \left(\frac{k}{n} - x\right) dx = \frac{f(\frac{k}{n}) - f(\theta_{k,n})}{\frac{k}{n} - \theta_{k,n}} \int_{\frac{k-1}{n}}^{\frac{k}{n}} \left(\frac{k}{n} - x\right) dx.$$

再由拉格朗日中值定理, 我们知道存在 $\eta_{k,n} \in [\theta_{k,n}, \frac{k}{n}]$ 使得

$$f'(\eta_{k,n}) = \frac{f(\frac{k}{n}) - f(\theta_{k,n})}{\frac{k}{n} - \theta_{k,n}}.$$

于是可知

$$\lim_{n \to \infty} n \left(\frac{1}{n} \sum_{k=1}^{n} f\left(\frac{k}{n}\right) - \int_{0}^{1} f(x) \, dx \right) = \lim_{n \to \infty} n \left(\sum_{k=1}^{n} \int_{\frac{k-1}{n}}^{\frac{k}{n}} f\left(\frac{k}{n}\right) dx - \sum_{k=1}^{n} \int_{\frac{k-1}{n}}^{\frac{k}{n}} f(x) \, dx \right)$$

$$= \lim_{n \to \infty} n \left(\sum_{k=1}^{n} \int_{\frac{k-1}{n}}^{\frac{k}{n}} \frac{f(\frac{k}{n}) - f(x)}{\frac{k}{n} - x} \left(\frac{k}{n} - x\right) dx \right)$$

$$= \lim_{n \to \infty} n \left(\sum_{k=1}^{n} \frac{f(\frac{k}{n}) - f(\theta_{k,n})}{\frac{k}{n} - \theta_{k,n}} \int_{\frac{k-1}{n}}^{\frac{k}{n}} \left(\frac{k}{n} - x\right) dx \right)$$

$$= \lim_{n \to \infty} n \left(\frac{1}{2n^{2}} \sum_{k=1}^{n} \frac{f(\frac{k}{n}) - f(\theta_{k,n})}{\frac{k}{n} - \theta_{k,n}} \right)$$

$$= \lim_{n \to \infty} \left(\frac{1}{2n} \sum_{k=1}^{n} f'(\eta_{k,n}) \right)$$

$$= \frac{1}{2} \int_{0}^{1} f'(x) \, dx$$

$$= \frac{f(1) - f(0)}{2},$$

其中倒数第二个等号来自定积分定义

模仿这个的证明方法, 证明一下

例题 4.19 设 f 在 [0,1] 上可微,|f'(x)| < M,证明:

$$\left| \int_0^1 f(x) \, dx - \frac{1}{n} \sum_{k=1}^n f\left(\frac{k}{n}\right) \right| \le \frac{M}{2n}.$$

例题 4.20 设 f(x) 在 [0,1] 可微且导数在 [0,1] 上黎曼可积,则有:

$$\lim_{n \to \infty} n \left(\frac{1}{n} \sum_{k=1}^{n} f\left(\frac{k}{n}\right) - \int_{0}^{1} f(x) dx \right) = \frac{f(1) - f(0)}{2}.$$

证明 事实上, 由积分中值定理, 我们知道存在 $\theta_{k,n} \in [\frac{k-1}{n}, \frac{k}{n}]$ 使得

$$\int_{\frac{k-1}{n}}^{\frac{k}{n}} \frac{f(\frac{k}{n}) - f(x)}{\frac{k}{n} - x} \left(\frac{k}{n} - x\right) dx = \frac{f(\frac{k}{n}) - f(\theta_{k,n})}{\frac{k}{n} - \theta_{k,n}} \int_{\frac{k-1}{n}}^{\frac{k}{n}} \left(\frac{k}{n} - x\right) dx.$$

再由拉格朗日中值定理, 我们知道存在 $\eta_{k,n} \in [\theta_{k,n}, \frac{k}{n}]$ 使得

$$f'(\eta_{k,n}) = \frac{f(\frac{k}{n}) - f(\theta_{k,n})}{\frac{k}{n} - \theta_{k,n}}.$$

于是可知

$$\lim_{n \to \infty} n \left(\frac{1}{n} \sum_{k=1}^{n} f\left(\frac{k}{n}\right) - \int_{0}^{1} f(x) \, dx \right) = \lim_{n \to \infty} n \left(\sum_{k=1}^{n} \int_{\frac{k-1}{n}}^{\frac{k}{n}} f\left(\frac{k}{n}\right) dx - \sum_{k=1}^{n} \int_{\frac{k-1}{n}}^{\frac{k}{n}} f(x) \, dx \right)$$

$$= \lim_{n \to \infty} n \left(\sum_{k=1}^{n} \int_{\frac{k-1}{n}}^{\frac{k}{n}} \frac{f(\frac{k}{n}) - f(x)}{\frac{k}{n} - x} \left(\frac{k}{n} - x\right) dx \right)$$

$$= \lim_{n \to \infty} n \left(\sum_{k=1}^{n} \frac{f(\frac{k}{n}) - f(\theta_{k,n})}{\frac{k}{n} - \theta_{k,n}} \int_{\frac{k-1}{n}}^{\frac{k}{n}} \left(\frac{k}{n} - x\right) dx \right)$$

$$= \lim_{n \to \infty} n \left(\frac{1}{2n^{2}} \sum_{k=1}^{n} \frac{f(\frac{k}{n}) - f(\theta_{k,n})}{\frac{k}{n} - \theta_{k,n}} \right)$$

$$= \lim_{n \to \infty} \left(\frac{1}{2n} \sum_{k=1}^{n} f'(\eta_{k,n}) \right)$$

$$= \frac{1}{2} \int_{0}^{1} f'(x) \, dx$$

$$= \frac{f(1) - f(0)}{2},$$

其中倒数第二个等号来自定积分定义

例题 4.21 设 f(x) 在区间 [0,1] 上二阶可微,且 $f'' \in R[0,1]$ (黎曼可积),求证:

$$\lim_{n \to \infty} n^2 \left(\int_0^1 f(x) \, dx - \frac{1}{n} \sum_{k=1}^n f\left(\frac{2k-1}{2n}\right) \right) = \frac{1}{24} [f'(1) - f'(0)].$$

证明 令 $c_k = \frac{2k-1}{2n}$, 这是区间 $\left[\frac{k-1}{n}, \frac{k}{n}\right]$ 的中点。我们将表达式写成:

$$n^{2}\left(\sum_{k=1}^{n} \int_{\frac{k-1}{n}}^{\frac{k}{n}} f(x) dx - \sum_{k=1}^{n} \int_{\frac{k-1}{n}}^{\frac{k}{n}} f(c_{k}) dx\right) = n^{2} \sum_{k=1}^{n} \int_{\frac{k-1}{n}}^{\frac{k}{n}} (f(x) - f(c_{k})) dx.$$

将 f(x) 在点 c_k 进行带拉格朗日余项的泰勒展开

$$f(x) = f(c_k) + f'(c_k)(x - c_k) + \frac{f''(\xi_k)}{2}(x - c_k)^2,$$

其中 \mathcal{E}_k 在 x 和 \mathcal{C}_k 之间。代入积分中:

$$\int_{\frac{k-1}{n}}^{\frac{k}{n}} (f(x) - f(c_k)) dx = \int_{\frac{k-1}{n}}^{\frac{k}{n}} \left(f'(c_k)(x - c_k) + \frac{f''(\xi_k)}{2} (x - c_k)^2 \right) dx.$$

由于 c_k 是区间中点, $(x-c_k)$ 在该区间上是奇函数 (相对中点而言),所以

$$\int_{\frac{k-1}{n}}^{\frac{k}{n}} f'(c_k)(x-c_k) dx = f'(c_k) \left[\frac{(x-c_k)^2}{2} \right]_{\frac{k-1}{n}}^{\frac{k}{n}} = f'(c_k) \left(\frac{(1/2n)^2}{2} - \frac{(-1/2n)^2}{2} \right) = 0.$$

因此,表达式变为:

$$n^{2} \sum_{k=1}^{n} \int_{\frac{k-1}{n}}^{\frac{k}{n}} \frac{f''(\xi_{k})}{2} (x - c_{k})^{2} dx.$$

由于 f'' 在 [0,1] 上黎曼可积, 当 $n \to \infty$ 时, $\xi_k \to c_k$, 我们可以用 $f''(c_k)$ 近似 $f''(\xi_k)$ 。积分部分为:

$$\int_{\frac{k-1}{n}}^{\frac{k}{n}} (x - c_k)^2 dx = \left[\frac{(x - c_k)^3}{3} \right]_{\frac{k-1}{n}}^{\frac{k}{n}} = \frac{(1/2n)^3 - (-1/2n)^3}{3} = \frac{2/(8n^3)}{3} = \frac{1}{12n^3}.$$

于是, 我们所求的极限为:

$$\lim_{n \to \infty} n^2 \sum_{k=1}^n \frac{f''(c_k)}{2} \cdot \frac{1}{12n^3} = \lim_{n \to \infty} \frac{1}{24} \sum_{k=1}^n f''(c_k) \frac{1}{n}$$

$$= \frac{1}{24} \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^n f''\left(\frac{2k-1}{2n}\right)$$

$$= \frac{1}{24} \int_0^1 f''(x) \, dx$$

$$= \frac{1}{24} [f'(x)]_0^1 = \frac{1}{24} [f'(1) - f'(0)].$$

其中倒数第二个等号来自定积分的定义 (中点矩形法)。

例题 4.22 设 $f(x) = \arctan x$, A 为常数, 若

$$B = \lim_{n \to \infty} \left(\sum_{k=1}^{n} f\left(\frac{k}{n}\right) - An \right)$$

存在,求A和B。

证明 我们知道黎曼和与定积分的关系:

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} f\left(\frac{k}{n}\right) = \int_{0}^{1} f(x) dx.$$

这意味着当 n 很大时, $\sum_{k=1}^n f(\frac{k}{n}) \approx n \int_0^1 f(x) dx$ 。为了使极限 $B = \lim_{n \to \infty} (\sum_{k=1}^n f(\frac{k}{n}) - An)$ 存在, $\sum_{k=1}^n f(\frac{k}{n})$ 的线性增长部分必须被 An 消去。因此,常数 A 必须等于 f(x) 在 [0,1] 上的积分。我们计算 A:

$$A = \int_0^1 \arctan x \, dx = [x \arctan x]_0^1 - \int_0^1 \frac{x}{1+x^2} \, dx$$
$$= (1 \cdot \arctan 1 - 0) - \left[\frac{1}{2}\ln(1+x^2)\right]_0^1$$
$$= \frac{\pi}{4} - \left(\frac{1}{2}\ln(2) - 0\right) = \frac{\pi}{4} - \frac{\ln 2}{2}.$$

接下来, 我们求 B。根据题目给出的模板公式

$$\lim_{n \to \infty} n \left(\frac{1}{n} \sum_{k=1}^{n} f\left(\frac{k}{n}\right) - \int_{0}^{1} f(x) \, dx \right) = \frac{f(1) - f(0)}{2}.$$

将 $A = \int_0^1 f(x) dx$ 代入 B 的表达式中, 我们发现 B 的形式与此公式完全一致:

$$B = \lim_{n \to \infty} \left(\sum_{k=1}^{n} f\left(\frac{k}{n}\right) - n \int_{0}^{1} f(x) dx \right)$$
$$= \lim_{n \to \infty} n \left(\frac{1}{n} \sum_{k=1}^{n} f\left(\frac{k}{n}\right) - \int_{0}^{1} f(x) dx \right).$$

对于 $f(x) = \arctan x$, 我们有 $f(1) = \arctan 1 = \frac{\pi}{4}$ 和 $f(0) = \arctan 0 = 0$ 。因此,

$$B = \frac{f(1) - f(0)}{2} = \frac{\frac{\pi}{4} - 0}{2} = \frac{\pi}{8}.$$

综上所述,常数 $A = \frac{\pi}{4} - \frac{\ln 2}{2}$,极限 $B = \frac{\pi}{8}$ 。

4.2.2 Euler-Maclaurin 公式

定理 4.2.1 (0 阶情形)

设 $a, b \in \mathbb{Z}, f(x) \in D^1[a, b], f'(x) \in L^1[a, b], 则有:$

$$\sum_{k=a}^{b} f(k) = \int_{a}^{b} f(x) \, dx + \frac{f(a) + f(b)}{2} + \int_{a}^{b} \left([x] - \frac{1}{2} \right) f'(x) \, dx.$$

定理 4.2.2 (一般情形 (了解即可,本质上是分部积分))

设 $a, b, m \in \mathbb{Z}, m \ge 2, f(x) \in D^m[a, b], f^{(m)}(x) \in L^1[a, b], 则有:$

$$\sum_{k=a}^{b} f(k) = \int_{a}^{b} f(x) dx + \frac{f(b) + f(a)}{2} + \sum_{k=2}^{m} \frac{f^{(k-1)}(b) - f^{(k-1)}(a)}{k!} (b-a)^{k} + (-1)^{m+1} \int_{a}^{b} B_{m}(x) f^{(m)}(x) dx.$$

例题 4.23 设 $f \in C^2[0,h]$,则存在 $\xi \in [0,h]$,使得:

$$\int_0^h f(x) \, dx = \frac{h}{2} [f(0) + f(h)] - \frac{1}{12} f''(\xi) h^3.$$

证明 本题是梯形公式的余项估计,其证明可基于题目提供的"0 阶情形"定理。我们先考虑标准区间 [0,1]。根据所述定理,当 a=0,b=1 时,我们有:

$$\int_0^1 f(x) \, dx = \frac{f(0) + f(1)}{2} - \int_0^1 \left(x - \frac{1}{2} \right) f'(x) \, dx.$$

我们对右侧的余项积分进行分部积分:

$$-\int_0^1 \left(x - \frac{1}{2}\right) f'(x) \, dx = -\left[\left(\frac{x^2}{2} - \frac{x}{2}\right) f'(x)\right]_0^1 + \int_0^1 \left(\frac{x^2}{2} - \frac{x}{2}\right) f''(x) \, dx$$
$$= 0 + \int_0^1 \frac{x^2 - x}{2} f''(x) \, dx.$$

由于核函数 $K(x) = \frac{x^2 - x}{2}$ 在区间 [0,1] 上非正,根据积分中值定理,存在 $\eta \in [0,1]$ 使得:

$$\int_0^1 \frac{x^2 - x}{2} f''(x) \, dx = f''(\eta) \int_0^1 \frac{x^2 - x}{2} \, dx = f''(\eta) \left[\frac{x^3}{6} - \frac{x^2}{4} \right]_0^1 = -\frac{1}{12} f''(\eta).$$

于是,对于区间[0,1] 我们证明了:

$$\int_0^1 f(x) \, dx = \frac{f(0) + f(1)}{2} - \frac{1}{12} f''(\eta).$$

为了推广到一般区间 [0,h],令 g(t)=f(ht),并在 [0,1] 上应用此结果于 g(t)。注意到 g(0)=f(0),g(1)=f(h) 以及 $g''(t)=h^2f''(ht)$ 。

$$\int_0^1 f(ht) dt = \frac{f(0) + f(h)}{2} - \frac{1}{12} h^2 f''(h\eta).$$

在左侧作变量代换 x = ht, 则 dt = dx/h, 该积分为 $\frac{1}{h} \int_0^h f(x) dx$ 。 令 $\xi = h\eta \in [0, h]$, 我们得到:

$$\frac{1}{h} \int_0^h f(x) \, dx = \frac{f(0) + f(h)}{2} - \frac{h^2}{12} f''(\xi).$$

将方程两边同乘以 h 即可得证。

例题 4.24 设 $f \in C^4[0,h]$,则存在 $\xi \in [0,h]$,使得:

$$\int_{0}^{h} f(x) dx = \frac{h}{2} [f(0) + f(h)] - \frac{h^{2}}{12} [f'(h) - f'(0)] + \frac{1}{720} f^{(4)}(\xi) h^{5}.$$

证明 该公式是梯形法则的高阶修正形式,可以通过将欧拉-麦克劳林公式(题目所提供定理之特例)应用于区间 [0,1] 并进行变量代换得到。

对于区间 [0,1], 通过对"0 阶情形"定理的余项 $-\int_0^1 B_1(x)f'(x)\,dx$ 进行连续分部积分,可以得到如下的精确关系:

$$\int_0^1 f(x) \, dx = \frac{f(0) + f(1)}{2} - \frac{f'(1) - f'(0)}{12} + R,$$

其中余项为 $R = \frac{1}{24} \int_0^1 (B_4(x) - B_4(0)) f^{(4)}(x) dx$ 。

此处的积分核函数为 $K(x) = B_4(x) - B_4(0) = (x^4 - 2x^3 + x^2 - \frac{1}{30}) - (-\frac{1}{30}) = x^2(x-1)^2$ 。显然,核函数 K(x) 在区间 [0,1] 上是非负的。因此,我们可以应用积分中值定理,存在某个 $\eta \in [0,1]$,使得:

$$R = \frac{1}{24} f^{(4)}(\eta) \int_0^1 x^2 (x - 1)^2 dx$$

$$= \frac{1}{24} f^{(4)}(\eta) \int_0^1 (x^4 - 2x^3 + x^2) dx$$

$$= \frac{1}{24} f^{(4)}(\eta) \left[\frac{x^5}{5} - \frac{x^4}{2} + \frac{x^3}{3} \right]_0^1$$

$$= \frac{1}{24} f^{(4)}(\eta) \left(\frac{1}{5} - \frac{1}{2} + \frac{1}{3} \right) = \frac{1}{24} f^{(4)}(\eta) \cdot \frac{1}{30} = \frac{1}{720} f^{(4)}(\eta).$$

将余项代回, 我们便得到了适用于区间 [0,1] 的公式:

$$\int_0^1 f(x) \, dx = \frac{f(0) + f(1)}{2} - \frac{f'(1) - f'(0)}{12} + \frac{1}{720} f^{(4)}(\eta).$$

为了推广到区间 [0,h], 我们令 g(t)=f(ht), 并将上述结果应用于 g(t)

$$\int_0^1 g(t) dt = \frac{g(0) + g(1)}{2} - \frac{g'(1) - g'(0)}{12} + \frac{1}{720}g^{(4)}(\eta).$$

将 g(t) = f(ht), g'(t) = hf'(ht), $g^{(4)}(t) = h^4 f^{(4)}(ht)$ 代入,并令 $\xi = h\eta \in [0, h]$:

$$\int_0^1 f(ht) dt = \frac{f(0) + f(h)}{2} - \frac{h(f'(h) - f'(0))}{12} + \frac{h^4 f^{(4)}(\xi)}{720}.$$

在左侧积分中作变量代换 x=ht,则 dt=dx/h,积分变为 $\frac{1}{h}\int_0^h f(x)\,dx$

$$\frac{1}{h} \int_0^h f(x) \, dx = \frac{f(0) + f(h)}{2} - \frac{h(f'(h) - f'(0))}{12} + \frac{h^4 f^{(4)}(\xi)}{720}.$$

将方程两边同乘以h,即得最终结果。

利用 Euler-Maclaurin 公式,我们可以导出很多渐近展开:

- $\sum_{k=1}^{n} \frac{1}{k} \sim \ln n + \frac{1}{2n} \frac{1}{12n^2} + \frac{1}{120n^4} + \cdots$
- $\ln(n!) \approx n \ln n n + \frac{1}{2} \ln(2\pi n) + \frac{1}{12n} \frac{1}{360n^3} + \cdots$

4.3 积分不等式(难,建议绕过)

4.3.1 Cauchy 不等式

例题 **4.25Cauchy** 不等式 设 $f(x), g(x) \in R[a, b]$, 则有:

$$\left(\int_a^b f(x)g(x)\,dx\right)^2 \le \left(\int_a^b f^2(x)\,dx\right)\left(\int_a^b g^2(x)\,dx\right).$$

例题 4.26 (第十一届全国大学生数学竞赛) 设 $f(x) \in C[0,1]$, 且 $1 \le f(x) \le 3$, 求证:

$$1 \le \int_0^1 f(x) \, dx \int_0^1 \frac{1}{f(x)} \, dx \le \frac{4}{3}.$$

例题 4.27 设 $f(x) \in C^1[a,b], \ f(a) = 0, \ 求证$

$$\int_{a}^{b} f^{2}(x) dx \le \frac{(b-a)^{2}}{2} \int_{a}^{b} f'^{2}(x) dx.$$

例题 4.28 设 $f(x):[0,1]\to\mathbb{R},\;\; \coprod \int_0^1 x f(x)\,dx=0,\;\;$ 求证:

$$\int_0^1 f^2(x) \, dx \ge 4 \left(\int_0^1 f(x) \, dx \right)^2.$$

例题 4.29 (2024 厦门大学数学夏令营) 设 $f(x) \in C[a,b]$, f(a) = 0, 求证:

$$\int_{a}^{b} f^{2}(x) dx \leq \frac{(b-a)^{2}}{2} \int_{a}^{b} [f'(x)]^{2} dx - \frac{1}{2} \int_{a}^{b} [f'(x)]^{2} (x-a)^{2} dx.$$

例题 4.30 已知 $f(x) \ge 0$, $f(x) \in C[a,b]$, $\int_a^b f(x) dx = 1$, k 为任意实数, 求证:

$$\left(\int_{a}^{b} f(x)\cos kx \, dx\right)^{2} + \left(\int_{a}^{b} f(x)\sin kx \, dx\right)^{2} \le 1.$$

例题 4.31 设 $f(x) \in C^1[a,b]$, f(a) = f(b) = 0, 求证:

$$\int_{a}^{b} f^{2}(x) dx \le \frac{(b-a)^{2}}{4} \int_{a}^{b} f'^{2}(x) dx.$$

例题 4.32 设 $f(x,y) \in C[a,b]$, 求证:

$$\iint_D e^{f(x) - f(y)} \, dx \, dy \ge (a - b)^2, \quad D = [a, b] \times [a, b].$$

4.3.2 Jensen 不等式

例题 4.33Jensen 不等式 设 $f(x) \in R[a,b]$,且 $m \le f(x) \le M$, $\phi(x)$ 为 [m,M] 上的连续下凸函数,则有:

$$\phi\left(\frac{1}{b-a}\int_a^b f(x)\,dx\right) \le \frac{1}{b-a}\int_a^b \phi(f(x))\,dx.$$

例题 4.34 设 $f(x) \in C[0,1]$, $\forall x,y \in [0,1]$, $f\left(\frac{x+y}{2}\right) \le \frac{f(x)+f(y)}{2}$, 求证:

$$\int_0^1 f(x) \, dx \le f\left(\frac{1}{2}\right).$$

例题 4.35 (2023 中科院提前批) 设函数 f(x) 在 [a,b] 上二阶可导,且 f''(x) > 0,求证:

- (1) $f\left(\frac{a+b}{2}\right) \le \frac{1}{b-a} \int_a^b f(x) dx;$
- (2) 若 f(x) < 0, $x \in [a, b]$, 则有:

$$f(x) \ge \frac{2}{b-a} \int_a^b f(x) dx.$$

例题 4.36 (Hardmard 不等式) 设 $f(x) \in C^2[a,b], f''(x) > 0$, 求证:

$$f\left(\frac{a+b}{2}\right) \le \frac{1}{b-a} \int_a^b f(x) \, dx \le \frac{f(a)+f(b)}{2}.$$

例题 4.37 求证:设 $f(x) \in C[0,1], f(x) > 0$,则有:

$$\ln \int_0^1 f(x) \, dx \ge \int_0^1 \ln f(x) \, dx.$$

例题 4.38 设 f(x) 是 [0,1] 上非负连续的凹函数,且 f(0) = 1,求证:

$$2\int_0^1 f(x) \, dx + \frac{1}{12} \le \left(\int_0^1 f(x) \, dx\right)^2.$$

4.3.3 Chebyshev 不等式

例题 4.39Chebyshev 不等式 设 $f(x), g(x) \in C[a,b]$,且 f(x), g(x) 在 [a,b] 上单调性一致,求证:

$$\int_a^b f(x) dx \int_a^b g(x) dx \le (b-a) \int_a^b f(x)g(x) dx.$$

例题 4.40 求证:

$$\int_0^{\frac{1}{2}} \frac{\sin x}{1+x^2} \, dx \le \int_{\frac{1}{2}}^1 \frac{\cos x}{1+x^2} \, dx.$$

例题 4.41 证明:

$$\int_0^1 \frac{\sin x}{1+x^2} \, dx \le \int_0^1 \frac{\cos x}{1+x^2} \, dx.$$

例题 4.42 证明 Chebyshev 的一般形式,即:若 $f(x), g(x), p(x) \in C[a,b]$,且 $\forall x \in [a,b]$, $p(x) \geq 0$,f(x), g(x) 的 单调性一致,则有:

$$\int_a^b p(x)f(x) dx \int_a^b p(x)g(x) dx \le \int_a^b p(x) dx \int_a^b p(x)f(x)g(x) dx.$$

例题 4.43 设 $f(x) \in C[0,1]$ 且单调递增,求证:

$$\frac{\int_0^1 x f^2(x) \, dx}{\int_0^1 x f(x) \, dx} \ge \frac{\int_0^1 f^2(x) \, dx}{\int_0^1 f(x) \, dx}.$$

4.3.4 Opial 不等式

例题 4.44Opial 不等式 设 $f(x) \in C^1[0,a]$ 且 f(0) = 0,求证:

$$\int_0^a |f(x)f'(x)| \, dx \le \frac{a}{2} \int_0^a f'^2(x) \, dx.$$

例题 4.45 设 $f(x) \in C^1[0,a]$ 且 f(0) = f(a) = 0,求证:

$$\int_0^a |f(x)f'(x)| \, dx \le \frac{a}{4} \int_0^a f'^2(x) \, dx.$$

4.3.5 Young 不等式

例题 4.46 设 $f(x) \in C[0,c]$ (c>0) 且严格递增,若 f(0)=0 且 $a\in [0,c]$, $b\in [0,f(c)]$,则:

$$\int_0^a f(x) \, dx + \int_0^b f^{-1}(x) \, dx \ge ab.$$

4.3.6 单调性方法

例题 4.47 设 $f(x) \in C[0,1]$ 且单调递减,求证: $\forall a \in (0,1)$,

$$\int_0^a f(x) \, dx \ge a \int_0^1 f(x) \, dx.$$

例题 4.48 设 $f(x) \in C[0,1]$, 且 $0 \le f(x) \le x$, 求证:

$$\int_0^1 x^2 f(x) \, dx \ge \left(\int_0^1 f(x) \, dx \right)^2.$$

4.3.7 中值定理

例题 4.49 设 $f(x) \in C^2[0,1]$, 求证:

$$\max_{x \in [0,1]} |f'(x)| \le |f(1) - f(0)| + \int_0^1 |f''(x)| \, dx.$$

例题 4.50 设 $f(x) \in C^1[0,2], |f'(x)| \le 1, f(0) = f(2) = 1, 求证:$

$$1 \le \int_0^2 f(x) \, dx \le 3.$$

第5章 反常积分

5.1 反常积分收散性判断

定理 5.1.1 (A-D 判别法)

若 f 满足下述两条件之一,则有 $\int_{a}^{\infty} f(x)g(x) dx$ 收敛.

1. $\int_{a}^{\infty} f(x) dx$ 收敛, g 在 $[a, +\infty)$ 单调有界;

2. $\int_a^A f(x) dx$ 在 $A \in [a, +\infty)$ 有界, g 在 $[a, +\infty)$ 单调且 $\lim_{x \to +\infty} g(x) = 0$.

例题 5.1 设 f > 0 内可积,若

$$\lim_{x \to +\infty} \frac{\ln f(x)}{\ln x} = p, \quad \text{M}:$$

$$\int f(x)dx \begin{cases} \psi \otimes, & -\infty 发散, & -1 < p < +\infty.$$

证明 不妨设 $p \in \mathbb{R}$, 其余情况是类似的。对任何 $\epsilon > 0$, 存在 X > 0, 使得对任何 x > X 都有

$$p - \epsilon \le \frac{\ln f(x)}{\ln x} \le p + \epsilon \iff x^{p - \epsilon} \le f(x) \le x^{p + \epsilon},$$

例题 5.2 若 $f \in C^1[0, +\infty)$ 且 f(0) > 0, f'(x) > 0. 若

$$\int_0^\infty \frac{1}{f(x) + f'(x)} dx < \infty, \quad \text{iff:}$$

$$\int_0^\infty \frac{1}{f(x)} dx < \infty.$$

证明

$$\left| \int_0^\infty \frac{1}{f(x) + f'(x)} dx - \int_0^\infty \frac{1}{f(x)} dx \right| \le \int_0^\infty \left| \frac{1}{f(x) + f'(x)} - \frac{1}{f(x)} \right| dx$$

$$= \int_0^\infty \frac{f'(x)}{[f(x) + f'(x)]f(x)} dx \le \int_0^\infty \frac{f'(x)}{f^2(x)} dx = -\frac{1}{f(x)} \Big|_0^\infty = \frac{1}{f(0)} - \lim_{x \to +\infty} \frac{1}{f(x)}.$$

这里最后极限存在来自于 f 单调递增. 我们完成了证明.

例题 5.3 设 $f \in C[0, +\infty)$, f(x) > 0,

$$\int_0^\infty \frac{1}{f(x)} dx < \infty,$$

求证:

$$\lim_{X \to \infty} \frac{1}{X} \int_0^X f(x) dx = +\infty.$$

证明 由 Cauchy 不等式, 我们有

$$\int_0^X f(x) \, dx \int_0^X \frac{1}{f(x)} \, dx \ge \left(\int_0^X \sqrt{f(x)} \cdot \sqrt{\frac{1}{f(x)}} \, dx \right)^2 = X^2.$$

故

$$\frac{1}{X} \int_0^X f(x) \, dx \ge \frac{X}{\int_0^X \frac{1}{f(x)} \, dx},$$

例题 5.4 设 $f \in D[n, +\infty)$, $\lim_{x \to +\infty} f'(x) = +\infty$ 且 f 严格递增,求证:

$$\int_0^{+\infty} \sin f(x) dx$$

收敛。

证明 因为导函数没有第一类间断点且单调函数没有第二类间断点,于是我们知道 $f' \in C[a, +\infty)$ 。

我们知道 $\lim_{x\to+\infty}f(x)=+\infty$. 我们知道存在 X>0, 使得 f' 在 $[X,+\infty)$ 恒正且 f 在 $[X,+\infty)$ 上存在严格递增反函数 $g:[f(X),+\infty)\to[X,+\infty)$. 现在

$$\int_X^\infty \sin f(x) \, dx \stackrel{x=g(y)}{=} \int_{f(X)}^\infty g'(y) \cdot \sin f(g(y)) \, dy = \int_{f(X)}^\infty \frac{1}{f'(g(y))} \cdot \sin y \, dy.$$

注意到

$$\left| \int_{f(X)}^{A} \sin y \, dy \right| \le 2, \quad \lim_{y \to +\infty} \frac{1}{f'(g(y))} \, \mathring{\mathfrak{B}} \, \mathring{\mathfrak{M}} \, \mathfrak{A} 0,$$

我们就由 A-D 判别法证明了 $\int_0^\infty \sin f(x) dx$ 收敛.

例题 5.5 设 a > 0, f 在 $[a, +\infty)$ 上平方可积, 证明:

$$\int_{a}^{+\infty} \frac{f(x)}{x} dx$$

收敛。

证明 我们考虑积分的绝对收敛性。由柯西-施瓦茨 (Cauchy-Schwarz) 不等式的积分形式,对于任意 A > a,我们有:

$$\left(\int_{a}^{A} \left| \frac{f(x)}{x} \right| dx \right)^{2} = \left(\int_{a}^{A} |f(x)| \cdot \frac{1}{x} dx \right)^{2}$$

$$\leq \left(\int_{a}^{A} f^{2}(x) dx \right) \left(\int_{a}^{A} \frac{1}{x^{2}} dx \right).$$

根据题设, f 在 $[a, +\infty)$ 上平方可积, 故存在 M > 0 使得

$$\lim_{A \to +\infty} \int_{a}^{A} f^{2}(x) \, dx \le M.$$

对于另一个积分, 我们有

$$\int_{a}^{A} \frac{1}{x^{2}} dx = \left[-\frac{1}{x} \right]_{a}^{A} = \frac{1}{a} - \frac{1}{A}.$$

故 $\lim_{A\to+\infty} \int_a^A \frac{1}{x^2} dx = \frac{1}{a}$ 。 因此,我们得到

$$\lim_{A\to +\infty} \left(\int_a^A \left| \frac{f(x)}{x} \right| dx \right)^2 \leq M \cdot \frac{1}{a}.$$

由于被积函数 $\left|\frac{f(x)}{x}\right|$ 非负,这意味着积分 $\int_a^A \left|\frac{f(x)}{x}\right| dx$ 是一个关于 A 的单调递增且有上界的函数,所以它收敛。因为积分 $\int_a^{+\infty} \frac{f(x)}{x} dx$ 绝对收敛,故其自身也收敛。

例题 5.6 设 f 在 $[a, +\infty)$ (a > 1) 上内闭可积,且已知

$$\int_{a}^{+\infty} x f(x) dx$$

收敛, 求证:

$$\int_{a}^{+\infty} f(x)dx$$

收敛。

证明 我们将被积函数 f(x) 写成一个乘积形式,并使用狄利克雷 (Dirichlet) 判别法。

$$\int_{a}^{+\infty} f(x)dx = \int_{a}^{+\infty} \frac{1}{x} \cdot (xf(x)) dx.$$

令 $g(x) = \frac{1}{x}$ 以及 h(x) = xf(x)。 我们检验狄利克雷判别法的两个条件:

- 1. 函数 $g(x)=\frac{1}{x}$ 在 $[a,+\infty)$ 上单调递减,并且 $\lim_{x\to+\infty}g(x)=0$ 。
- 2. 函数 h(x) 的变上限积分 $H(A) = \int_a^A h(x) dx = \int_a^A x f(x) dx$ 有界。这是因为根据题设,广义积分 $\int_a^{+\infty} x f(x) dx$ 收敛, 所以其变上限积分必有界。

两个条件均满足,因此根据狄利克雷判别法,积分 $\int_a^{+\infty} \frac{1}{x} \cdot (xf(x)) dx$ 收敛。

例题 5.7 讨论广义积分

$$\int_0^\infty \frac{\sin x}{x^p} dx \quad (p > 0)$$

的敛散性。对于收敛的情况还要判断是条件收敛还是绝对收敛。

证明 首先,考察积分在 $x \to 0^+$ 时的性质。当 $x \to 0^+$ 时, $\sin x \sim x$, 被积函数

$$\frac{\sin x}{x^p+\sin x}\sim \frac{x}{x^p+x}=\frac{1}{1+x^{p-1}}.$$

当 $x \to 0^+$ 时,此表达式趋于一个有限值 (p > 1 时趋于 1, p = 1 时趋于 1/2, 0 时趋于 <math>0)。因此,积 分在x=0附近不存在奇点,其敛散性完全由在 $+\infty$ 的表现决定。

我们将被积函数与 sin x 作比较。它们之间的差为:

$$\frac{\sin x}{x^p + \sin x} - \frac{\sin x}{x^p} = \frac{x^p \sin x - (x^p + \sin x) \sin x}{x^p (x^p + \sin x)} = \frac{-\sin^2 x}{x^p (x^p + \sin x)}.$$

令 $g(x) = \frac{\sin x}{x^p}$, $h(x) = \frac{\sin^2 x}{x^p(x^p + \sin x)}$ 。 则原积分 $I = \int_1^\infty (g(x) - h(x)) dx$ (为方便,从 1 开始积分)。 我们知道 $\int_1^\infty g(x) dx = \int_1^\infty \frac{\sin x}{x^p} dx$ 对于所有 p > 0 都条件收敛,对于 p > 1 绝对收敛。对于 h(x),当 $x \to +\infty$ 时, $h(x) \sim \frac{\sin^2 x}{x^2 p}$ 。因为 $h(x) \geq 0$,其收敛性与 $\int_1^\infty \frac{dx}{x^2 p}$ 相同, 当且仅当 2p > 1 (即 p > 1/2) 时收敛。

情形 1: p > 1 此时 $\int_{1}^{\infty} g(x)dx$ 绝对收敛。同时因为 p > 1/2, $\int_{1}^{\infty} h(x)dx$ 也收敛(且为绝对收敛)。两个绝 对收敛的积分之差仍为绝对收敛。故原积分绝对收敛。

情形 **2:** $\frac{1}{2} 此时 <math>\int_{1}^{\infty} g(x)dx$ 条件收敛。而因为 p > 1/2, $\int_{1}^{\infty} h(x)dx$ 绝对收敛。一个条件收敛的积分 与一个绝对收敛的积分之差是条件收敛的。故原积分条件收敛。

情形 3: $0 此时 <math>\int_1^\infty g(x) dx$ 条件收敛。但因为 $p \le 1/2$, $\int_1^\infty h(x) dx$ 发散。一个收敛的积分与一个发 散的积分之差是发散的。故原积分发散。

例题 5.8 已知 f(x) 在 $[0,+\infty)$ 单调、导数连续,且

$$\lim_{x \to +\infty} f(x) = 0,$$

证明:

$$\int_0^\infty f(x)\sin x dx$$

绝对收敛。

证明 该命题的表述不完全正确。例如,函数 $f(x)=\frac{1}{x+1}$ 满足所有条件,但积分 $\int_0^\infty \frac{|\sin x|}{x+1} dx$ 发散。为了使命题成立,需要一个更强的条件,一个常见的附加条件是 $\int_0^\infty f(x) dx$ 收敛。我们在该附加条件下进行证明。

我们要证明 $\int_0^\infty |f(x)\sin x| dx$ 收敛。因为 f(x) 单调且极限为 0,所以 f(x) 符号不变。不失一般性,设 $f(x) \geq 0$ 且单调递减。我们考察积分级数 $\sum_{k=0}^{\infty} \int_{k\pi}^{(k+1)\pi} f(x) |\sin x| dx$ 的收敛性。在区间 $[k\pi, (k+1)\pi]$ 上,由于 f(x) 单 调递减,有

$$f((k+1)\pi) \le f(x) \le f(k\pi).$$

因此,

$$\int_{k\pi}^{(k+1)\pi} f(x) |\sin x| dx \le f(k\pi) \int_{k\pi}^{(k+1)\pi} |\sin x| dx.$$

我们知道 $\int_{k\pi}^{(k+1)\pi} |\sin x| dx = \int_0^{\pi} \sin t \, dt = 2$ 。于是,

$$\int_{k\pi}^{(k+1)\pi} f(x)|\sin x| dx \le 2f(k\pi).$$

要证明原积分绝对收敛,只需证明级数 $\sum_{k=0}^{\infty} 2f(k\pi)$ 收敛即可。由于 f(x) 是正项递减函数,根据积分判别法,级数 $\sum_{k=0}^{\infty} f(k\pi)$ 的收敛性与广义积分 $\int_{0}^{\infty} f(x\pi)dx$ 的收敛性相同。作变量代换 $u=x\pi$,则 $\int_{0}^{\infty} f(x\pi)dx=\frac{1}{\pi}\int_{0}^{\infty} f(u)du$ 。根据我们附加的条件 $\int_{0}^{\infty} f(x)dx$ 收敛,可知 $\sum_{k=0}^{\infty} f(k\pi)$ 收敛。

5.2 反常积分特殊性质

例题 5.9 判断"求积分 $\int_{-\infty}^{+\infty} \frac{dx}{1+x^2+y^2}$ "的函数性质。

解 该表达式并非一个固定的值,而是一个依赖于参数 y 的函数。我们首先计算该积分。令 $I(y) = \int_{-\infty}^{+\infty} \frac{dx}{1+y^2+x^2}$ 。设 $a^2 = 1 + y^2$ 。由于 $y \in \mathbb{R}$,a 是一个正的实数。

$$I(y) = \int_{-\infty}^{+\infty} \frac{dx}{a^2 + x^2} = \frac{1}{a} \left[\arctan\left(\frac{x}{a}\right) \right]_{-\infty}^{+\infty} = \frac{1}{a} \left(\frac{\pi}{2} - \left(-\frac{\pi}{2}\right)\right) = \frac{\pi}{a}.$$

代回 $a = \sqrt{1+y^2}$, 我们得到 $I(y) = \frac{\pi}{\sqrt{1+y^2}}$ 。

作为y的函数, I(y) 具有以下性质:

- 1. 定义域: $y \in \mathbb{R}$ 。
- 2. 连续性: I(y) 在整个定义域上是连续的。
- 3. 有界性: $0 < I(y) \le \pi$ 。最大值在 y = 0 时取到,为 π 。
- 4. 奇偶性: I(y) 是一个偶函数,因为 I(-y) = I(y)。
- 5. 极限行为: $\lim_{y\to\pm\infty}I(y)=0$ 。

例题 5.10 设反常积分 $\int_a^\infty f(x)dx$ 收敛,且 $\lim_{x\to+\infty} f(x)$ 存在,则它一定为 0。

证明 我们用反证法。设 $\lim_{x\to+\infty} f(x) = L$,并假设 $L \neq 0$ 。

情形 **1:** L>0 根据极限的定义,对于 $\epsilon=\frac{L}{2}>0$,存在一个实数 X>a,使得对所有 x>X,都有 $|f(x)-L|<\frac{L}{2}$,这意味着 $f(x)>L-\frac{L}{2}=\frac{L}{2}$ 。于是,

$$\int_{Y}^{\infty} f(x) \, dx \ge \int_{Y}^{\infty} \frac{L}{2} \, dx.$$

由于 L>0,积分 $\int_X^\infty \frac{L}{2} dx$ 发散到 $+\infty$ 。根据比较判别法, $\int_X^\infty f(x) dx$ 也发散。这与 $\int_a^\infty f(x) dx$ 收敛(这意味着 $\int_X^\infty f(x) dx$ 也必须收敛)相矛盾。

情形 **2:** L<0 类似地,对于 $\epsilon=-\frac{L}{2}>0$,存在一个实数 X>a,使得对所有 x>X,都有 $|f(x)-L|<-\frac{L}{2}$,这意味着 $f(x)< L-(-\frac{L}{2})=\frac{L}{2}<0$ 。于是,

$$\int_{X}^{\infty} f(x) \, dx \le \int_{X}^{\infty} \frac{L}{2} \, dx.$$

由于 L<0,积分 $\int_X^\infty \frac{L}{2} dx$ 发散到 $-\infty$,这意味着 $\int_X^\infty f(x) dx$ 也发散。这同样与 $\int_a^\infty f(x) dx$ 收敛相矛盾。 综上所述,我们的假设 $L\neq 0$ 必定是错误的。因此, $\lim_{x\to +\infty} f(x)=0$ 。

例题 5.11 若无穷限积分 $\int_a^\infty f(x)dx$ 收敛,且 f 单调,则有 $\lim_{x\to+\infty} xf(x)=0$ 。

证明 由于积分收敛且 f 单调,必有 $\lim_{x\to+\infty}f(x)=0$ 。不失一般性,我们假设 f(x) 是单调递减且 $f(x)\geq0$ (若为单调递增,则可考虑 -f(x))。

根据广义积分收敛的柯西 (Cauchy) 判别法,对于任意 $\epsilon > 0$,存在一个 X > a,使得对于任意 y > x > X,都有 $\left| \int_{x}^{y} f(t) dt \right| < \frac{\epsilon}{2}$ 。由于 $f(x) \geq 0$,这意味着 $\int_{x}^{y} f(t) dt < \frac{\epsilon}{2}$ 。

我们取 y = 2x。对于任何 x > X,我们有

$$\int_{x}^{2x} f(t)dt < \frac{\epsilon}{2}.$$

又因为 f(t) 是单调递减的, 所以在区间 [x,2x] 上, 对任意 t 都有 $f(t) \ge f(2x)$ 。因此,

$$\int_{T}^{2x} f(t)dt \ge \int_{T}^{2x} f(2x)dt = f(2x) \cdot (2x - x) = xf(2x).$$

结合两个不等式, 我们得到对于任意 x > X, 有

$$0 \le x f(2x) < \frac{\epsilon}{2}.$$

这意味着 $\lim_{x\to +\infty} xf(2x) = 0$ 。 令 u = 2x,当 $x\to +\infty$ 时 $u\to +\infty$ 。

$$\lim_{u \to +\infty} \frac{u}{2} f(u) = 0 \implies \lim_{u \to +\infty} u f(u) = 0.$$

证毕。

例题 5.12 反常积分 $\int_a^{+\infty} f(x)dx$ 收敛,且被积函数 f 在 $[a,+\infty)$ 上一致连续,则 $\lim_{x\to+\infty} f(x)=0$ 。

证明 我们用反证法。假设 $\lim_{x\to +\infty} f(x)=0$ 不成立。这意味着,存在某个 $\epsilon_0>0$,对于任意的 X>a,总存在一个 x>X 使得 $|f(x)|\geq \epsilon_0$ 。这等价于说,存在一个序列 $\{x_n\}$ 使得 $x_n\to +\infty$ 并且 $|f(x_n)|\geq \epsilon_0$ 对所有 n 成立。

由于 f 在 $[a, +\infty)$ 上一致连续,对于上述 ϵ_0 ,存在一个 $\delta > 0$ 使得对任意 $x, y \in [a, +\infty)$,只要 $|x-y| < \delta$,就有 $|f(x) - f(y)| < \frac{\epsilon_0}{2}$ 。

现在我们考察序列 $\{x_n\}$ 。不失一般性,可假设 $f(x_n) \ge \epsilon_0$ 。对于任意 $y \in [x_n - \delta, x_n + \delta]$,我们有 $|f(y) - f(x_n)| < \frac{\epsilon_0}{2}$,从而

$$f(y) > f(x_n) - \frac{\epsilon_0}{2} \ge \epsilon_0 - \frac{\epsilon_0}{2} = \frac{\epsilon_0}{2}.$$

考虑在区间 $[x_n, x_n + \delta]$ 上的积分:

$$\int_{x_n}^{x_n+\delta} f(y) \, dy \ge \int_{x_n}^{x_n+\delta} \frac{\epsilon_0}{2} \, dy = \frac{\epsilon_0 \delta}{2}.$$

由于 $x_n \to +\infty$, 我们可以选取一个子序列 (仍记为 $\{x_n\}$) 使得区间 $[x_n, x_n + \delta]$ 互不相交。

这与 $\int_a^\infty f(x)dx$ 收敛的柯西判别法相矛盾。柯西判别法要求对于任意 $\varepsilon>0$ (取 $\varepsilon=\epsilon_0\delta/2$),存在 M 使得对任意 B>A>M 都有 $|\int_A^B f(x)dx|<\varepsilon$ 。但我们总可以找到一个 $x_n>M$,使得 $\int_{x_n}^{x_n+\delta} f(y)dy\geq \epsilon_0\delta/2=\varepsilon$,矛盾。

因此, 我们的假设不成立, 必有 $\lim_{x\to+\infty} f(x) = 0$ 。

例题 5.13 已知无穷积分

$$\int_{a}^{\infty} f(x) \, dx$$

收敛且 xf(x) 单调,证明

$$\lim_{x \to +\infty} x f(x) \ln x = 0.$$

证明 令 g(x)=xf(x)。 由題设 g(x) 单调,且 $\int_a^\infty \frac{g(x)}{x} dx$ 收敛。首先,单调函数 g(x) 必有极限(有限或无穷)。若 $\lim_{x\to\infty} g(x)=L\neq 0$,则 $f(x)\sim L/x$,这将导致 $\int_a^\infty f(x) dx$ 发散(因为 a>0)。因此,必有 $\lim_{x\to\infty} g(x)=\lim_{x\to\infty} xf(x)=0$ 。

不失一般性,设 g(x) 在 $[X_0,\infty)$ 上单调递减且 $g(x)\geq 0$ 。根据柯西判别法,对任意 $\epsilon>0$,存在 $X>X_0$,使得对任意 y>x>X 都有 $\int_x^y f(t)dt<\epsilon$ 。

我们取 $y=x^2$ 。对于充分大的 $x(x>\sqrt{X})$,有 $x^2>x>X$ 。

$$\epsilon > \int_{a}^{x^2} f(t) dt = \int_{a}^{x^2} \frac{g(t)}{t} dt.$$

由于 g(t) 单调递减,对于 $t \in [x, x^2]$,有 $g(t) \ge g(x^2)$ 。

$$\epsilon > \int_{x}^{x^{2}} \frac{g(t)}{t} dt \ge g(x^{2}) \int_{x}^{x^{2}} \frac{1}{t} dt = g(x^{2}) [\ln t]_{x}^{x^{2}} = g(x^{2}) (\ln(x^{2}) - \ln x) = g(x^{2}) \ln x.$$

所以对于充分大的 x, 我们有 $0 \le g(x^2) \ln x < \epsilon$ 。 令 $u = x^2$,则 $x = \sqrt{u}$ 。 当 $x \to \infty$ 时 $u \to \infty$ 。代入上式得到

 $0 \le g(u)\ln(\sqrt{u}) < \epsilon$,即 $0 \le \frac{1}{2}g(u)\ln u < \epsilon$ 。 这证明了 $\lim_{u \to \infty} g(u)\ln u = \lim_{u \to \infty} uf(u)\ln u = 0$ 。

例题 5.14 (2021 厦大夏令营) 设函数 $f \in L^1(\mathbb{R})$,正项级数

$$\sum_{n=1}^{\infty} a_n$$

收敛。求证:

$$\lim_{n\to\infty} f\left(\frac{x}{a_n}\right) = 0, \text{ a.e. } x\in\mathbb{R}.$$

证明 我们希望证明,集合 $E = \{x \in \mathbb{R} \mid \lim_{n \to \infty} f(x/a_n) \neq 0\}$ 的勒贝格测度为零。E 可以表示为 $E = \{x \in \mathbb{R} \mid \lim\sup_{n \to \infty} |f(x/a_n)| > 0\}$ 。进一步地, $E = \bigcup_{k=1}^{\infty} E_k$,其中 $E_k = \{x \in \mathbb{R} \mid \limsup_{n \to \infty} |f(x/a_n)| \geq 1/k\}$ 。若能证明对任意 $k \in \mathbb{N}^+$ 都有 $m(E_k) = 0$,则 E 作为可数个零测集的并集,其测度也为零。

固定 $k \in \mathbb{N}^+$ 。根据切比雪夫不等式,对于任意 $\epsilon > 0$,集合 $A_{\epsilon} = \{y \in \mathbb{R} \mid |f(y)| \geq \epsilon\}$ 的测度有上界 $m(A_{\epsilon}) \leq \frac{1}{\epsilon} ||f||_{L^1} < \infty$ 。 我们取 $\epsilon = 1/k$ 。

令 $S_{n,k} = \{x \in \mathbb{R} \mid |f(x/a_n)| \ge 1/k\}$ 。 $x \in S_{n,k}$ 当且仅当 $x/a_n \in A_{1/k}$,即 $x \in a_n A_{1/k}$ 。因此, $m(S_{n,k}) = m(a_n A_{1/k}) = a_n m(A_{1/k})$ 。

我们计算级数 $\sum_{n=1}^{\infty} m(S_{n,k})$:

$$\sum_{n=1}^{\infty} m(S_{n,k}) = \sum_{n=1}^{\infty} a_n m(A_{1/k}) = m(A_{1/k}) \sum_{n=1}^{\infty} a_n.$$

根据题设, $\sum a_n$ 收敛, 且 $m(A_{1/k})$ 是一个有限数。因此, 级数 $\sum_{n=1}^{\infty} m(S_{n,k})$ 收敛。

根据 Borel-Cantelli 引理的第一条,如果事件(或集合)测度的总和有限,则几乎所有点都只属于有限个这样的事件(或集合)。在本例中,这意味着集合 $E_k = \limsup_{n \to \infty} S_{n,k} = \{x \mid x \text{ 属于无穷多个} S_{n,k}\}$ 的测度为零,即 $m(E_k) = 0$ 。

由于对任意 $k \in \mathbb{N}^+$ 都有 $m(E_k) = 0$,则 $m(E) = m(\bigcup_{k=1}^{\infty} E_k) \le \sum_{k=1}^{\infty} m(E_k) = 0$ 。 m(E) = 0 意味着对于几乎所有的 $x \in \mathbb{R}$, $\limsup_{n \to \infty} |f(x/a_n)| = 0$,这等价于 $\lim_{n \to \infty} f(x/a_n) = 0$ 。

第6章 级数

6.1 级数的计算

6.1.1 凑已知函数

例题 6.1 对 |x| < 1,计算

$$\sum_{n=0}^{\infty} \frac{4n^2 + 4n + 3}{2n + 1} x^n.$$

证明 我们有

$$\begin{split} \sum_{n=0}^{\infty} \frac{4n^2 + 4n + 3}{2n + 1} x^{2n} &= \sum_{n=0}^{\infty} (2n + 1) x^{2n} + 2 \sum_{n=0}^{\infty} \frac{x^{2n}}{2n + 1} \\ &= \left(\sum_{n=0}^{\infty} x^{2n+1}\right)' + \frac{2}{x} \int_{0}^{x} \sum_{n=0}^{\infty} y^{2n} dy \\ &= \left(\frac{x}{1 - x^2}\right)' + \frac{2}{x} \int_{0}^{x} \frac{1}{1 - y^2} dy \\ &= \frac{1 + x^2}{(1 - x^2)^2} + \frac{1}{x} \ln \frac{1 + x}{1 - x}. \end{split}$$

例题 6.2 (2024 人大预推免) 判断

$$\sum_{n=1}^{\infty} \left(\frac{1}{n^2} - (-1)^n \frac{1}{n} \right)$$

是否收敛? 若收敛, 求其和。

例题 6.3 令 $a_n = 1 - \frac{1}{2} + \dots + \frac{(-1)^{n-1}}{n} - \ln 2, n = 1, 2, \dots$, 求

$$\sum_{n=1}^{\infty} a_n$$

的和。

例题 6.4 解决以下问题:

- 1. 设 $a_1 \in (0,1)$, $a_{n+1} = \sqrt{\frac{1+a_n}{2}}$, $n = 1, 2, \cdots$, 求 $\lim_{n \to \infty} a_1 a_2 \cdots a_n$ 。
 2. 对 |x| < 1, 计算 $\sum_{k=1}^{\infty} \frac{1}{2^k} \tan \frac{x}{2^k}$ 。

6.1.2 利用幂级数

例题 6.5 计算 $\sum_{n=1}^{\infty} \left(1 + \frac{1}{2} + \dots + \frac{1}{n}\right) x^n$.

例题 6.6 (2023 北师大夏令营) 确定级数 $S(x) = \sum_{n=1}^{\infty} \frac{x^n}{n}$ 的收敛域,并计算:

$$S(x) + S(1-x) + \ln x \cdot \ln(1-x)$$

例题 6.7 (2023 浙大夏令营) 计算 $\sum_{n=0}^{\infty} \frac{1}{(2n)!}$.

例题 6.8 利用幂级数的性质, 求下列级数的和:

- 1. $\sum_{n=1}^{\infty} \frac{n(n+2)}{4^{n+1}}$; 2. $\sum_{n=0}^{\infty} \frac{(n+1)^2}{2^n}$;
- 3. $\sum_{n=0}^{\infty} (-1)^n \frac{1}{3^n (2n+1)};$ 4. $\sum_{n=2}^{\infty} (-1)^n \frac{1}{2^n (n^2-1)};$ 5. $\sum_{n=0}^{\infty} (-1)^n \frac{2^{n+1}}{n!}.$

6.1.3 特殊方法

定理 6.1.1 (交错级数不等式)

设 a_n 递减非负数列,则对 $m,p \in \mathbb{N}_0$,必有

$$\left| \sum_{n=m}^{m+p} (-1)^n a_n \right| \le a_m.$$

 \Diamond

例题 6.9 求证:

$$\sum_{n=1}^{\infty} \frac{1}{(2n-1)^2} = \frac{\pi^2}{8}.$$

证明 我们有

$$\sum_{n=1}^{\infty} \frac{1}{(2n-1)^2} = \sum_{n=1}^{\infty} \frac{1}{n^2} - \sum_{n=1}^{\infty} \frac{1}{(2n)^2} = \frac{3}{4} \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{8}.$$

例题 6.10 设 $f \in C^1[0,1], f(x) \ge 0$, 证明下述级数收敛且求值

$$\sum_{n=1}^{\infty} (-1)^{n-1} \int_{0}^{1} x^{n} f(x) dx.$$

注 为了有换序

$$\sum_{n=1}^{\infty} \int f_n(x) dx = \int \sum_{n=1}^{\infty} f_n(x) dx,$$

我们只需要

$$\lim_{m \to \infty} \sum_{n=1}^{m} \int f_n(x) \, dx = \lim_{m \to \infty} \int \sum_{n=1}^{m} f_n(x) \, dx = \int \sum_{n=1}^{\infty} f_n(x) \, dx,$$

即需要证明

$$\lim_{m \to \infty} \int \sum_{n=m+1}^{\infty} f_n(x) \, dx = 0.$$

证明 显然 $\int_0^1 x^n f(x) dx$ 递减且

$$0 \le \int_0^1 x^n f(x) \, dx \le \max f \cdot \int_0^1 x^n dx \to 0, n \to \infty,$$

故由交错级数判别法知 $\sum_{n=1}^{\infty} (-1)^{n-1} \int_0^1 x^n f(x) dx$ 收敛. 故

$$\sum_{n=1}^{\infty} (-1)^{n-1} \int_0^1 x^n f(x) \, dx = -\int_0^1 \sum_{n=1}^{\infty} (-x)^n f(x) \, dx = \int_0^1 \frac{x f(x)}{1+x} dx,$$

这里换序来自

$$\left| \int_0^1 \sum_{n=m}^\infty (-x)^n f(x) \, dx \right| \stackrel{\text{off so Max}}{\leq} \int_0^1 x^m f(x) \, dx \to 0, m \to \infty.$$

例题 6.11 计算

$$\sum_{n=1}^{\infty} \left(\ln 2 - \sum_{k=1}^{n} \frac{(-1)^{k-1}}{k} \right).$$

例题 6.12 计算

$$\sum_{n=1}^{\infty} \left(\ln 2 - \frac{1}{n+1} - \frac{1}{n+2} - \dots - \frac{1}{2n} \right) \frac{1}{n}.$$

证明 注意到

$$\sum_{j=1}^{n} \frac{1}{n+j} = \sum_{j=1}^{2n} \frac{1}{j} - \sum_{j=1}^{n} \frac{1}{j} = \sum_{j=1}^{n} \frac{1}{2j} + \sum_{j=1}^{n} \frac{1}{2j-1} - \sum_{j=1}^{n} \frac{1}{j}$$
$$= \sum_{j=1}^{n} \frac{1}{2j-1} - \sum_{j=1}^{n} \frac{1}{2j}.$$

于是有经典恒等式

$$\sum_{j=1}^{n} \frac{1}{n+j} = \sum_{j=1}^{2n} \frac{(-1)^{j-1}}{j}.$$

于是我们有

$$\begin{split} \sum_{n=1}^{\infty} n \left(\ln 2 - \frac{1}{n+1} - \frac{1}{n+2} - \dots - \frac{1}{2n} \right) &= \sum_{n=1}^{\infty} \frac{1}{n} \left(\ln 2 - \sum_{j=n+1}^{2n} \frac{(-1)^{j-1}}{j} \right) = \sum_{n=1}^{\infty} \frac{1}{n} \left(\ln 2 - \int_{0}^{1} \sum_{j=0}^{2n-1} (-x)^{j} dx \right) \\ &= \sum_{n=1}^{\infty} \frac{1}{n} \left(\ln 2 - \int_{0}^{1} \frac{1 - x^{2n}}{1 + x} dx \right) = \sum_{n=1}^{\infty} \frac{1}{n} \int_{0}^{1} \frac{x^{2n}}{1 + x} dx \\ &= \int_{0}^{1} \frac{1}{1 + x} \sum_{n=1}^{\infty} \frac{x^{2n}}{n} dx = -\int_{0}^{1} \frac{\ln (1 - x^{2})}{1 + x} dx \\ &= -\int_{0}^{1} \frac{\ln (1 - x)}{1 + x} dx - \int_{0}^{1} \frac{\ln (1 + x)}{1 + x} dx = -\int_{0}^{1} \frac{\ln x}{2 - x} dx - \frac{\ln^{2} 2}{2} \\ &= -2 \int_{0}^{1/2} \frac{\ln x + \ln 2}{2 - 2x} dx - \ln 2 \int_{0}^{1/2} \frac{1}{1 - x} dx - \frac{\ln^{2} 2}{2} \\ &= -\int_{0}^{1/2} \frac{\ln x}{1 - x} dx - \ln 2 \int_{0}^{1/2} \frac{1}{1 - x} dx - \frac{\ln^{2} 2}{2} \\ &= \frac{\pi^{2}}{12} + \frac{\ln^{2} 2}{2} - \ln^{2} 2 - \frac{\ln^{2} 2}{2} = \frac{\pi^{2}}{12} - \ln^{2} 2, \end{split}$$

6.2 敛散性判断

6.2.1 数项级数

例题 6.13 设正项级数 $\sum_{n=1}^{\infty} a_n$ 收敛, $0 < \alpha, \beta < 1$, $\alpha + \beta > 1$,求证:级数 $\sum_{n=1}^{\infty} \frac{a_n^{\alpha}}{n^{\beta}}$ 收敛。 **例题 6.14** 设正项数列 $\{a_n\}$ 单调减少,则 $\lim_{n\to\infty} a_n = 0$ 的充要条件是正项级数 $\sum_{n=1}^{\infty} \left(1 - \frac{a_{n+1}}{a_n}\right)$ 发散。 该命题有如下等价形式:

- 设 $\{a_n\}$ 为单调增加的正数数列,则该数列与级数 $\sum_{n=1}^{\infty} \left(1 \frac{a_n}{a_{n+1}}\right)$ 同敛散。(2023 华东师大夏令营) 若正项级数 $\sum_{n=1}^{\infty} a_n$ 的部分和数列为 $\{S_n\}$,则 $\sum_{n=1}^{\infty} \frac{a_n}{S_n}$ 与 $\sum_{n=1}^{\infty} \frac{a_n}{S_n}$ 同敛散。

例题 6.15 (Kummer 判别法) 证明以下命题:

- 正项级数 $\sum_{n=1}^{\infty}a_n$ 收敛的充分必要条件是存在正数数列 $\{b_n\}$ 和正数 δ ,使得当 n 充分大时有 $b_n\cdot\frac{a_n}{a_{n+1}}$ —
- 正项级数 $\sum_{n=1}^{\infty}a_n$ 发散的充分必要条件是存在发散的正项级数 $\sum_{n=1}^{\infty}\frac{1}{b_n}$, 当 n 充分大时有 $b_n\cdot\frac{a_n}{a_{n+1}}$ $b_{n+1} \leq 0_{\circ}$

例题 6.16 证明以下两个命题:

- 对于给定的收敛正项级数 $\sum_{n=1}^{\infty} a_n$,一定存在收敛正项级数 $\sum_{n=1}^{\infty} b_n$,使得 $\lim_{n\to\infty} \frac{a_n}{b_n} = 0$; 对于给定的发散正项级数 $\sum_{n=1}^{\infty} a_n$,一定存在发散正项级数 $\sum_{n=1}^{\infty} b_n$,使得 $\lim_{n\to\infty} \frac{b_n}{a_n} = 0$ 。 注:上述这两个命题表明:对于比较判别法而言,不论是判别出收敛还是发散,都不可能存在万能的比较级 数!

例题 6.17 正项级数 $\sum_{n=1}^{\infty} \frac{1}{a_n}$ 收敛,证明:级数 $\sum_{n=1}^{\infty} \frac{n}{a_1+a_2+\cdots+a_n}$ 也收敛。

例题 6.18 (2024 北师大夏令营) 设 x>0,证明:级数 $\sum_{n=1}^{\infty} \frac{x^n}{(1+x)(1+x^2)\cdots(1+x^n)}$ 收敛。

例题 6.19 (2023 华东师范夏令营) 设 $\{a_n\}$ 单调增加,讨论 $\sum_{n=1}^{\infty}\left(1-\frac{a_n}{a_{n+1}}\right)$ 的收敛性。 **例题 6.20** (2023 中山夏令营) 设正项级数 $\sum_{n=1}^{\infty}u_n$ 收敛,证明:级数 $\sum_{n=1}^{\infty}(e^{u_n}-1)$ 也收敛。若 $\sum_{n=1}^{\infty}u_n$ 不是 正项级数,问能否由它收敛推知级数 $\sum_{n=1}^{\infty} (e^{u_n} - 1)$ 也收敛?

例题 6.21 (2023 中科院提前批) 证明:函数项级数 $\sum_{n=1}^{\infty} (-1)^n x^n (1-x)$ 在 [0,1] 上绝对收敛且一致收敛,但不绝 对一致收敛。

例题 6.22 (2023 山大夏令营) 设 $S_n(x) = nx(1-x^2)^n, x \in [0,1]$, 证明 $S_n(x)$ 收敛于 S(x) = 0, 但不一致收敛于 $S(x) = 0_{\circ}$

例题 6.23 (2023 浙大直博) 求证: $f(x) = \sum_{n=1}^{+\infty} \frac{1}{n^x}$ 在 $(1, +\infty)$ 上连续可微。

例题 6.24 (2024 上交夏令营) 设函数项级数 $S(x) = \sum_{n=0}^{\infty} \frac{(-1)^n e^{-nx}}{n+x^2}$,试讨论以下问题:

- 求函数 S(x) 的定义域。
- 讨论 S(x) 在定义域内的连续性。
- $\lim_{x\to+\infty} S(x)$ 是否存在? 给出证明。

6.2.2 函数项级数

对于函数项级数来说,主要的一致收敛性判别法有: Cauchy 一致收敛准则 Weierstrass 判别法(也称为 M 判 别法、强级数判别法和优级数判别法),以及通过 Abel 变换得到的 Abel 判别法和 Dirichlet 判别法。

Cauchy 一致收敛准则是充分必要条件,但应用时往往需要较复杂的技巧。

Weierstrass 判别法只对绝对一致收敛的情况有效,但是可举例说明,存在绝对一致收敛的函数项级数的例 子,使得 Weierstrass 判别法失效,但由于它将问题归结为正项级数的收敛性判别,使用方便,因此有广泛的应 用。

Abel 判别法和 Dirichlet 判别法都是函数项级数一致收敛的充分必要条件,其证明与广义积分和数项级数的 同名判别法类似。

在讨论函数项级数 $\sum_{n=1}^{\infty} u_n(x)$ 的一致收敛性时比较容易的一类情况是能够得到其部分和函数列 $\{S_n(x)\}$ 的紧凑表达式,这时问题就转化为函数列的一致收敛性问题(不难看出可以将已经列举的各种判别法改述为关 于函数列的一致收敛性判别法)。如果同时还能得到级数的和函数,即函数列 $\{S_n(x)\}$ 的极限函数 S(x) 的表达 式,则就有上确界判别法:函数列 $\{S_n(x)\}$ 在数集 E 上一致收敛于 S(x) 的充分必要条件是

$$\lim_{n \to \infty} \sup_{x \in E} \{ |S_n(x) - S(x)| \} = 0.$$

例题 6.25 设连续函数列 $\{f_n(x)\}$ 在 [a,b] 上一致收敛于 f(x),而 $g(x) \in C(-\infty, +\infty)$,求证: $\{g(f_n(x))\}$ 在 [a,b]上一致收敛于 g(f(x))。

例题 6.26 (2023 中科院提前批) 证明:函数项级数 $\sum_{n=1}^{\infty} (-1)^n x^n (1-x)$ 在 [0,1] 上绝对收敛且一致收敛,但不绝 对一致收敛。

例题 **6.27** (2024 浙大夏令营) 设可微函数列 $\{f_n(x)\}$ 在 [0,1] 上处处收敛,且 $\{f'_n(x)\}$ 在 [0,1] 上一致有界。证明 $\{f_n(x)\}$ 在 [0,1] 上一致收敛。

例题 6.28 (2023 山大夏令营) 设 $S_n(x) = nx(1-x^2)^n, x \in [0,1]$, 证明 $S_n(x)$ 收敛于 S(x) = 0, 但不一致收敛于

例题 6.29 (2023 浙大直博) 求证: $f(x) = \sum_{n=1}^{+\infty} \frac{1}{n^x}$ 在 $(1, +\infty)$ 上连续可微。

例题 6.30 (2024 上交夏令营) 设函数项级数 $S(x) = \sum_{n=0}^{\infty} \frac{(-1)^n e^{-nx}}{n+x^2}$,试讨论以下问题:

- 求函数 S(x) 的定义域。
- 讨论 S(x) 在定义域内的连续性。
- $\lim_{x\to+\infty} S(x)$ 是否存在? 给出证明。

例题 6.31 (2023 首师夏令营) 设 $u_n(x) \geq 0$ 在 [a,b] 上连续,而 $\sum_{n=1}^{\infty} u_n(x)$ 在 [a,b] 上收敛于连续函数 f(x),则 $\sum_{n=1}^{\infty} u_n(x)$ 在 [a,b] 上一致收敛于 f(x)。

例题 **6.32** (2024 浙大夏令营) 设可微函数列 $\{f_n(x)\}$ 在 [0,1] 上处处收敛,且 $\{f'_n(x)\}$ 在 [0,1] 上一致有界,证明 $\{f_n(x)\}$ 在 [0,1] 上一致收敛。

6.3 综合运用

6.3.1 级数证明

例题 6.33 设 $a_n > -1$ 且 $\sum_{n=1}^{\infty} a_n$ 收敛,则 $\prod_{n=1}^{\infty} (1+a_n)$ 收敛当且仅当 $\sum_{n=1}^{\infty} a_n^2$ 收敛。

例题 6.34 已知正项级数 $\sum_{n=1}^{\infty} a_n$ 收敛,证明 $\sum_{n=1}^{\infty} \sqrt{a_n a_{n+1}}$ 也收敛,反之正确吗?

例题 6.35 设 $a_n > 0$,且满足 $\{a_n - a_{n+1}\}$ 递减, $\sum_{n=1}^{\infty} a_n$ 收敛,求证: $\lim_{n \to \infty} \left(\frac{1}{a_{n+1}} - \frac{1}{a_n}\right) = +\infty$ 。 例题 6.36 设 $a_n > 0$, $\sum_{n=1}^{\infty} |b_n| < \infty$ 且 $\frac{a_n}{a_{n+1}} \le 1 + \frac{1}{n} + \frac{1}{n \ln n} + b_n$, $n = 1, 2, \ldots$,证明: $\sum_{n=1}^{\infty} a_n$ 发散。 例题 6.37 设 $\{a_n\}$ 递减到 0,证明: $\sum_{n=1}^{\infty} n(a_n - a_{n+1})$ 收敛的充要条件是 $\sum_{n=1}^{\infty} a_n$ 收敛。

6.3.2 幂级数的阶

下面讨论幂级数系数的阶与和函数的阶之间的关系。

例题 6.38 证明以下命题:

- $\mbox{if } f(x) = \sum_{n=0}^{\infty} a_n x^n, g(x) = \sum_{n=0}^{\infty} b_n x^n, x \in (-1,1), \mbox{if } E b_n > 0, \lim_{n \to \infty} \frac{a_n}{b_n} = 0, \lim_{x \to 1^-} g(x) = +\infty,$ 则 $\lim_{x\to 1^-} \frac{f(x)}{g(x)} = 0$ 。
- $\mbox{if } f(x) = \sum_{n=0}^{\infty} a_n x^n, g(x) = \sum_{n=0}^{\infty} b_n x^n, x \in (-1,1), \mbox{if } E b_n > 0, \lim_{n \to \infty} \frac{a_n}{b_n} = 1, \lim_{x \to 1^-} g(x) = +\infty,$ $\mbox{if } \lim_{x \to 1^-} \frac{f(x)}{g(x)} = 1.$
- 设 $f(x) = \sum_{n=0}^{g(x)} a_n x^n$, $g(x) = \sum_{n=0}^{\infty} b_n x^n$, $x \in \mathbb{R}$, 满足 $b_n > 0$, $\lim_{n \to \infty} \frac{a_n}{b_n} = 1$, 则 $\lim_{x \to +\infty} \frac{f(x)}{g(x)} = 1$ 。 例题 6.39 给定 $\{a_n\}_{n=0}^{\infty} \subset \mathbb{R}$,设 $f(x) = \sum_{n=0}^{\infty} a_n x^n$, $x \in (-1,1)$,若 $f(x) = \sum_{n=0}^{\infty} a_n x^n$, $x \in (-1,1)$,证明: $\lim_{x\to 1^-} f(x) = +\infty$ (或 $-\infty$),并指出 $\lim_{n\to\infty} |\sum_{k=0}^n a_k| = \infty$ 推不出 $\lim_{x\to 1^-} |f(x)| = \infty$ 。 例题 6.40 (2024 复旦数学夏令营) 已知 $\lim_{n\to\infty}a_n=1$,求 $\lim_{x\to 1^-}\frac{\sum_{n=0}^\infty a_n x^n}{\ln(1-x)}$ 。

6.3.3 Tauber 定理

例题 6.41 若 $\sum_{n=0}^{\infty} a_n x^n$ 在 (-1,1) 收敛且 $\lim_{x\to 1^-} \sum_{n=0}^{\infty} a_n x^n = A$,若 $a_n \ge 0$,则 $\sum_{n=0}^{\infty} a_n = A$ 。 **例题 6.42** (Tauber 定理) 设级数 $\sum_{n=0}^{\infty} a_n x^n$ 收敛半径为 1, 左极限 $\lim_{x\to 1^-} \sum_{n=0}^{\infty} a_n x^n = A$ 存在,且 $\lim_{n\to\infty} na_n = A$ $0, \ \iiint \sum_{n=0}^{\infty} a_n = A_{\circ}$

第7章 多元微积分

7.1 连续性和可微性

例题 7.1 设 $f(x,y) = \sqrt{|xy|}$,求证:

- f(x,y) 在 (0,0) 点连续;
- $\frac{\partial f}{\partial x}(0,0)$ 和 $\frac{\partial f}{\partial y}(0,0)$ 都存在;
- f(x,y) 在 (0,0) 点不可微。

证明

• 连续性: 我们考察当 $(x,y) \rightarrow (0,0)$ 时函数的极限。

$$\lim_{(x,y)\to(0,0)} f(x,y) = \lim_{(x,y)\to(0,0)} \sqrt{|xy|}.$$

因为 $0 \le \sqrt{|xy|} \le \sqrt{\frac{x^2+y^2}{2}}$,而 $\lim_{(x,y)\to(0,0)} \sqrt{\frac{x^2+y^2}{2}} = 0$ 。根据夹逼定理, $\lim_{(x,y)\to(0,0)} f(x,y) = 0$ 。由于 $f(0,0) = \sqrt{|0\cdot 0|} = 0$,所以 $\lim_{(x,y)\to(0,0)} f(x,y) = f(0,0)$ 。因此,f(x,y) 在 (0,0) 点连续。

• 偏导数存在性: 按偏导数定义计算:

$$\frac{\partial f}{\partial x}(0,0) = \lim_{\Delta x \to 0} \frac{f(0+\Delta x,0) - f(0,0)}{\Delta x} = \lim_{\Delta x \to 0} \frac{\sqrt{|(\Delta x) \cdot 0|} - 0}{\Delta x} = \lim_{\Delta x \to 0} \frac{0}{\Delta x} = 0.$$

$$\frac{\partial f}{\partial y}(0,0) = \lim_{\Delta y \to 0} \frac{f(0,0+\Delta y) - f(0,0)}{\Delta y} = \lim_{\Delta y \to 0} \frac{\sqrt{|0 \cdot (\Delta y)|} - 0}{\Delta y} = \lim_{\Delta y \to 0} \frac{0}{\Delta y} = 0.$$

因此, $\frac{\partial f}{\partial x}(0,0)$ 和 $\frac{\partial f}{\partial y}(0,0)$ 都存在且为 0。

• 可微性: 如果 f(x,y) 在 (0,0) 可微,则必须满足

$$\lim_{(\Delta x, \Delta y) \to (0,0)} \frac{f(\Delta x, \Delta y) - f(0,0) - \frac{\partial f}{\partial x}(0,0)\Delta x - \frac{\partial f}{\partial y}(0,0)\Delta y}{\sqrt{(\Delta x)^2 + (\Delta y)^2}} = 0.$$

代入已知值,我们考察极限:

$$L = \lim_{(\Delta x, \Delta y) \to (0,0)} \frac{\sqrt{|\Delta x \Delta y|}}{\sqrt{(\Delta x)^2 + (\Delta y)^2}}.$$

我们沿路径 $\Delta y = k\Delta x$ 趋近于 (0,0)

$$L = \lim_{\Delta x \to 0} \frac{\sqrt{|k(\Delta x)^2|}}{\sqrt{(\Delta x)^2 + (k\Delta x)^2}} = \lim_{\Delta x \to 0} \frac{\sqrt{|k|}|\Delta x|}{|\Delta x|\sqrt{1 + k^2}} = \frac{\sqrt{|k|}}{\sqrt{1 + k^2}}.$$

由于极限值依赖于路径 k 的选择(例如,k=1 时极限为 $\frac{1}{\sqrt{2}}$,k=2 时极限为 $\frac{\sqrt{2}}{\sqrt{5}}$),所以该极限不存在。 因此,f(x,y) 在 (0,0) 点不可微。

例题 7.2 (2024 同济夏令营改编) 设 $f(x,y) = |x-y|\phi(x,y)$,其中 $\phi(x,y)$ 在点 (0,0) 的一个邻域上有定义,要求给出函数 $\phi(x,y)$ 加上适当的条件,使得:

- f(x,y) 在点(0,0) 连续;
- f(x,y) 在点 (0,0) 存在偏导数;
- f(x,y) 在点(0,0) 可微。

证明

- 连续性: 要使 f(x,y) 在 (0,0) 连续,需要 $\lim_{(x,y)\to(0,0)} f(x,y) = f(0,0)$ 。 $f(0,0) = |0-0|\phi(0,0) = 0$ (这 要求 $\phi(0,0)$ 有定义)。 $\lim_{(x,y)\to(0,0)} |x-y|\phi(x,y)$ 。 由于 $\lim_{(x,y)\to(0,0)} |x-y| = 0$,只要 $\phi(x,y)$ 在 (0,0) 的 一个邻域内是有界的,那么根据有界变量乘以无穷小量是无穷小量,极限即为 0。所以,一个充分条件是: $\phi(x,y)$ 在 (0,0) 的某邻域内有界。
- 偏导数存在性: $f_x(0,0) = \lim_{x \to 0} \frac{f(x,0) f(0,0)}{x} = \lim_{x \to 0} \frac{|x|\phi(x,0)}{x}$ 。为使该极限存在,需要 $\lim_{x \to 0^+} \frac{x\phi(x,0)}{x} = \lim_{x \to 0^+} \phi(x,0)$ 和 $\lim_{x \to 0^+} \frac{-x\phi(x,0)}{x} = \lim_{x \to 0^-} -\phi(x,0)$ 相等。这要求 $\lim_{x \to 0} \phi(x,0) = -\lim_{x \to 0} \phi(x,0)$,

蕴含了 $\lim_{x\to 0} \phi(x,0) = 0$ 。 同理, $f_y(0,0) = \lim_{y\to 0} \frac{|-y|\phi(0,y)}{y} = \lim_{y\to 0} \frac{|y|\phi(0,y)}{y}$ 。 为使该极限存在,同样要求 $\lim_{y\to 0} \phi(0,y) = 0$ 。 一个充分条件是: $\phi(x,y)$ 在 (0,0) 点连续且 $\phi(0,0) = 0$ 。 在此条件下, $f_x(0,0) = 0$, $f_y(0,0) = 0$ 。

• 可微性: 若 f(x,y) 在 (0,0) 可微,则 $\lim_{(x,y)\to(0,0)} \frac{f(x,y)-f(0,0)-f_x(0,0)x-f_y(0,0)y}{\sqrt{x^2+y^2}} = 0$ 。 在前述 $\phi(0,0)=0$ 的条件下, $f_x(0,0)=f_y(0,0)=0$ 。 我们需要考察:

$$\lim_{(x,y)\to (0,0)} \frac{|x-y|\phi(x,y)}{\sqrt{x^2+y^2}} = 0.$$

由于 $\frac{|x-y|}{\sqrt{x^2+y^2}}$ 在 (0,0) 附近是有界的(令 $x=r\cos\theta, y=r\sin\theta$,则 $\frac{|r(\cos\theta-\sin\theta)|}{r}=|\cos\theta-\sin\theta|\leq\sqrt{2}$),因此,只要 $\lim_{(x,y)\to(0,0)}\phi(x,y)=0$,即 $\phi(x,y)$ 是无穷小量,就能保证上述总极限为 0。所以,一个充分条件是: $\phi(x,y)$ 在 (0,0) 点连续且 $\phi(0,0)=0$ 。

例题 7.3 设
$$f(x,y) = \begin{cases} \frac{\sqrt{|x-y|}}{x^2+y^2} \sin(x^2+y^2), & x^2+y^2 \neq 0, \\ 0, & x^2+y^2 = 0, \end{cases}$$
 讨论:

- 1. f(x,y) 在点 (0,0) 是否连续?
- 2. f(x,y) 在点 (0,0) 是否可微?

证明

1. 连续性: 我们考察当 $(x,y) \to (0,0)$ 时函数的极限。令 $\rho = \sqrt{x^2 + y^2}$ 。当 $\rho \to 0$ 时, $x^2 + y^2 = \rho^2 \to 0$ 。利用等价无穷小 $\sin(u) \sim u$ (当 $u \to 0$),我们有

$$\lim_{(x,y)\to(0,0)} f(x,y) = \lim_{(x,y)\to(0,0)} \frac{\sqrt{|x-y|}}{x^2+y^2} (x^2+y^2) = \lim_{(x,y)\to(0,0)} \sqrt{|x-y|}.$$

由于 $0 \le \sqrt{|x-y|} \le \sqrt{|x|+|y|}$,当 $(x,y) \to (0,0)$ 时, $\sqrt{|x|+|y|} \to 0$ 。根据夹逼定理, $\lim_{(x,y)\to(0,0)} f(x,y) = 0$ 。 因为 f(0,0) = 0,所以函数在点 (0,0) 连续。

2. 可微性: 首先计算偏导数。

$$f_x(0,0) = \lim_{x \to 0} \frac{f(x,0) - f(0,0)}{x} = \lim_{x \to 0} \frac{1}{x} \frac{\sqrt{|x|}}{x^2} \sin(x^2) = \lim_{x \to 0} \frac{\sqrt{|x|}}{x} \frac{\sin(x^2)}{x^2} = \lim_{x \to 0} \frac{\sqrt{|x|}}{x}.$$

当 $x \to 0^+$ 时,极限为 $\lim_{x\to 0^+} \frac{\sqrt{x}}{x} = \lim_{x\to 0^+} \frac{1}{\sqrt{x}} = +\infty$ 。因为偏导数 $f_x(0,0)$ 不存在,所以函数 f(x,y) 在点 (0,0) 不可微。(注:可微的必要条件是所有偏导数都存在。)

7.2 重积分计算

例题 7.4 (2021 复旦夏令营) 计算积分 $\iint_{0 \le x+y \le \pi, x \ge 0, y \ge 0} \ln|\sin(x-y)| dx dy$ 。(注: 已根据标准解法补充隐含的 $x, y \ge 0$ 条件)

证明 作变量代换 u=x+y, v=x-y。则 $x=\frac{u+v}{2}, y=\frac{u-v}{2}$ 。雅可比行列式的绝对值为 $|\det(J)|=|-\frac{1}{2}|=\frac{1}{2}$ 。积分区域 $D=\{(x,y)\mid 0\leq x+y\leq \pi, x\geq 0, y\geq 0\}$ 变换为 $D'=\{(u,v)\mid 0\leq u\leq \pi, -u\leq v\leq u\}$ 。

$$I = \iint_{D'} \ln|\sin(v)| \cdot \frac{1}{2} du dv$$

$$= \frac{1}{2} \int_0^{\pi} \left(\int_{-u}^{u} \ln|\sin v| dv \right) du$$

$$= \frac{1}{2} \int_0^{\pi} \left(2 \int_0^{u} \ln(\sin v) dv \right) du \quad (被积函数是偶函数)$$

$$= \int_0^{\pi} \left(\int_0^{u} \ln(\sin v) dv \right) du.$$

对上式进行分部积分:

$$I = \left[u \int_0^u \ln(\sin v) \, dv \right]_0^\pi - \int_0^\pi u \ln(\sin u) \, du$$
$$= \pi \int_0^\pi \ln(\sin v) \, dv - \int_0^\pi u \ln(\sin u) \, du.$$

利用标准积分结论 $\int_0^\pi \ln(\sin x) \, dx = -\pi \ln 2$ 。令 $J = \int_0^\pi u \ln(\sin u) \, du$ 。作代换 $u = \pi - t$,则 $J = \int_0^\pi (\pi - t) \ln(\sin(\pi - t)) \, dt = \int_0^\pi (\pi - t) \ln(\sin t) \, dt = \pi \int_0^\pi \ln(\sin t) \, dt - J$ 。于是 $2J = \pi \int_0^\pi \ln(\sin t) \, dt = \pi (-\pi \ln 2)$,解得 $J = -\frac{\pi^2}{2} \ln 2$ 。代回原式:

$$I = \pi(-\pi \ln 2) - \left(-\frac{\pi^2}{2} \ln 2\right) = -\pi^2 \ln 2 + \frac{\pi^2}{2} \ln 2 = -\frac{\pi^2}{2} \ln 2.$$

例题 7.5 (2024 中科院夏令营) 计算积分:

$$\iint_D (x+y) \, dx \, dy,$$

其中 $D = \{(x,y) \mid (x-1)^2 + (y-1)^2 \le 2, y \ge x\}$ 。

证明 令 x-1=u,y-1=v。则 x=u+1,y=v+1,dxdy=dudv。积分区域 D 变为 $D'=\{(u,v)\mid u^2+v^2\leq 2,v+1\geq u+1\Longrightarrow v\geq u\}$ 。D' 是圆盘 $u^2+v^2\leq 2$ 被直线 v=u 分割后的上半部分(一个半圆盘)。被积函数变为 x+y=(u+1)+(v+1)=u+v+2。积分 $I=\iint_{D'}(u+v+2)\,du\,dv=\iint_{D'}(u+v)\,du\,dv+\iint_{D'}2\,du\,dv$ 。区域 D' 关于直线 v=-u 对称。在 f(u,v)=u+v 中,若将 (u,v) 替换为 (-v,-u),则 f(-v,-u)=-v-u=-f(u,v)。因此函数 u+v 在对称区域 D' 上的积分为零。

$$\iint_{D'} (u+v) \, du \, dv = 0.$$

第二部分是 2 乘以区域 D' 的面积。D' 是一个半径为 $\sqrt{2}$ 的半圆盘, 其面积为 $S_{D'}=\frac{1}{2}\pi(\sqrt{2})^2=\pi$ 。

$$\iint_{D'} 2 \, du \, dv = 2 \cdot S_{D'} = 2\pi.$$

因此, 原积分 $I = 0 + 2\pi = 2\pi$ 。

例题 7.6 (2023 中科院推免生) 计算四重积分:

$$\int_{Q(x) \le 1} e^{Q(x)} \, dx \, dy \, dz \, dt.$$

 $\sharp \mapsto Q(x) = x^2 + y^2 + z^2 + t^2$

证明 积分区域为 \mathbb{R}^4 中的单位球。我们采用四维球坐标。令 $r = \sqrt{x^2 + y^2 + z^2 + t^2}$ 。体积微元 dV = dxdydzdt 可以表示为 $A_3(r)dr$,其中 $A_3(r)$ 是半径为 r 的三维球面(在 \mathbb{R}^4 中)的面积。单位三维球面的面积为 $S_3 = 2\pi^2$ 。因此 $A_3(r) = S_3r^3 = 2\pi^2r^3$ 。积分可化为以 r 为变量的一重积分:

$$I = \int_0^1 e^{r^2} (2\pi^2 r^3) dr = 2\pi^2 \int_0^1 r^3 e^{r^2} dr.$$

 $\diamondsuit u = r^2, \quad \mathbb{M} \ du = 2r \, dr_{\circ}$

例题 7.7 (2024 人大预推免) 计算 n 维超球体的体积。

证明 令 $V_n(R)$ 表示 \mathbb{R}^n 中半径为 R 的球体 $B_n(R) = \{x \in \mathbb{R}^n : ||x|| \le R\}$ 的体积。我们考虑高斯积分的 n 次幂:

$$\pi^{n/2} = \left(\int_{-\infty}^{\infty} e^{-x^2} dx \right)^n = \int_{\mathbb{R}^n} e^{-\|x\|^2} dV.$$

使用 n 维球坐标,令 $r=\|x\|$ 。体积微元 $dV=S_{n-1}r^{n-1}dr$,其中 S_{n-1} 是 \mathbb{R}^n 中单位 (n-1)-球面的表面积。

$$\pi^{n/2} = \int_0^\infty e^{-r^2} S_{n-1} r^{n-1} dr = S_{n-1} \int_0^\infty e^{-r^2} r^{n-1} dr.$$

令 $t = r^2$, dt = 2rdr。 该积分变为:

$$\int_0^\infty e^{-r^2} r^{n-1} dr = \int_0^\infty e^{-t} t^{(n-1)/2} \frac{dt}{2r} = \frac{1}{2} \int_0^\infty t^{n/2-1} e^{-t} dt = \frac{1}{2} \Gamma\left(\frac{n}{2}\right).$$

这里 $\Gamma(z)=\int_0^\infty t^{z-1}e^{-t}dt$ 是伽马函数。因此 $\pi^{n/2}=S_{n-1}\cdot \frac{1}{2}\Gamma(\frac{n}{2})$,解得单位 (n-1)-球面的表面积为 $S_{n-1}=\frac{2\pi^{n/2}}{\Gamma(n/2)}$ 。n 维球体的体积可通过对其表面积从 0 到 R 积分得到:

$$V_n(R) = \int_0^R S_{n-1} r^{n-1} dr = S_{n-1} \left[\frac{r^n}{n} \right]_0^R = \frac{S_{n-1} R^n}{n}.$$

代入 S_{n-1} 的表达式:

$$V_n(R) = \frac{2\pi^{n/2}}{n\Gamma(n/2)}R^n.$$

利用伽马函数的性质 $z\Gamma(z) = \Gamma(z+1)$, 我们有 $n\Gamma(n/2) = 2 \cdot \frac{n}{2}\Gamma(\frac{n}{2}) = 2\Gamma(\frac{n}{2}+1)$ 。 最终体积公式为:

$$V_n(R) = \frac{2\pi^{n/2}}{2\Gamma(n/2+1)}R^n = \frac{\pi^{n/2}}{\Gamma(\frac{n}{2}+1)}R^n.$$

7.3 曲线积分

7.3.1 第一型曲线积分

第一型曲线积分是对弧长的积分,与曲线的方向无关。即:

$$I = \int_{AB} f(x) \, ds = \int_{BA} f(x) \, ds.$$

若 Γ 是 \mathbb{R}^n 中简单可求长的曲线,且 f(x) 在 Γ 上连续,则 f(x) 在 Γ 上的第一型曲线积分存在。 若 Γ 是 \mathbb{R}^n 中逐段光滑的简单曲线,且有参数表示:

$$\Gamma: x = x(t) \in \mathbb{R}^n, \quad a \le t \le b,$$

则弧长微分:

$$ds = |x'(t)|dt = \left(\sum_{i=1}^{n} (x_i'(t))^2\right)^{1/2} dt,$$

则:

$$\int_{\Gamma} f(x) ds = \int_{a}^{b} f(x(t))|x'(t)|dt.$$

例题 7.8 求 $I = \oint_C x^2 ds$,其中 C 为:

$$\begin{cases} x^2 + y^2 + z^2 = R^2, \\ x + y + z = 0. \end{cases}$$

证明 曲线 C 是一个半径为 R 的大圆,因为平面 x+y+z=0 过球心 (0,0,0)。由于对称性, $\oint_C x^2 \, ds = \oint_C y^2 \, ds = \oint_C z^2 \, ds$ 。因此, $3\oint_C x^2 \, ds = \oint_C (x^2+y^2+z^2) \, ds = \oint_C R^2 \, ds$ 。 $I = \frac{1}{3}\oint_C R^2 \, ds = \frac{R^2}{3} \cdot (\text{圆} C \text{ 的周长}) = \frac{R^2}{3} \cdot 2\pi R = \frac{2\pi R^3}{3}$ 。

例题 7.9 设椭圆 $\frac{x^2}{4} + \frac{y^2}{3} = 1$ 的周长为 a > 0,计算 $\oint_{\frac{x^2}{4} + \frac{y^2}{2} = 1} (2xy + 3x^2 + 4y^2) ds$ 。

证明 设 C 为椭圆 $\frac{x^2}{4}+\frac{y^2}{3}=1$ 。由于椭圆关于 x 轴和 y 轴对称,而 2xy 是关于 x 和 y 的奇函数,我们有 $\oint_C 2xy \, ds = 0$ 。利用对称性, 我们寻找 x^2 和 y^2 在椭圆上的积分关系。

参数化椭圆: $x = 2\cos t, y = \sqrt{3}\sin t, t \in [0, 2\pi]$ 。 $ds = \sqrt{x'(t)^2 + y'(t)^2} dt = \sqrt{4\sin^2 t + 3\cos^2 t} dt = \sqrt{4\sin^2 t + 3\cos^2 t} dt$ $\sqrt{3+\sin^2 t} \, dt \cdot \oint_C x^2 \, ds = \int_0^{2\pi} 4\cos^2 t \sqrt{3+\sin^2 t} \, dt \cdot \oint_C y^2 \, ds = \int_0^{2\pi} 3\sin^2 t \sqrt{3+\sin^2 t} \, dt \cdot \oint_C y^2 \, ds$

注意到 $\oint_C (x^2+y^2)\,ds = \oint_C (\frac{3}{4}x^2+\frac{1}{4}x^2+y^2)ds = \oint_C (\frac{3}{4}x^2+\frac{x^2}{4}+y^2)ds$ 。

在椭圆上 $\frac{x^2}{4} + \frac{y^2}{3} = 1 \implies 3x^2 + 4y^2 = 12$ 。

所以原积分为
$$\oint_C (2xy+3x^2+4y^2) ds = \oint_C 2xy ds + \oint_C (3x^2+4y^2) ds = 0 + \oint_C 12 ds = 12 \cdot (椭圆周长) = 12a$$
。 **例题 7.10** 设 $a>0$, $\Gamma: \left\{ \begin{array}{l} x^2+y^2+z^2=a^2, \\ x+y+z=0 \end{array} \right.$,试计算 $\int_{\Gamma} (1+x)^2 ds$ 。

证明

 $\textstyle \int_{\Gamma} (1+x)^2 \, ds = \int_{\Gamma} (1+2x+x^2) \, ds = \int_{\Gamma} 1 \, ds + 2 \int_{\Gamma} x \, ds + \int_{\Gamma} x^2 \, ds \text{。 曲线 } \Gamma \text{ 是半径为 } a \text{ 的大圆,其周长为}$ $2\pi a_{\circ}$

- 1. $\int_{\Gamma} 1 \, ds = 2\pi a \circ$
- 2. 由于曲线 Γ 关于原点对称, 而 x 是奇函数, 所以 $\int_{\Gamma} x \, ds = 0$ 。
- 3. 由对称性, $\int_{\Gamma} x^2 ds = \int_{\Gamma} y^2 ds = \int_{\Gamma} z^2 ds$ 。 $3 \int_{\Gamma} x^2 ds = \int_{\Gamma} (x^2 + y^2 + z^2) ds = \int_{\Gamma} a^2 ds = a^2 (2\pi a) = 2\pi a^3$ 。 所以 $\int_{\Gamma} x^2 ds = \frac{2\pi a^3}{3}$ 。 因此,原积分 = $2\pi a + 0 + \frac{2\pi a^3}{3} = 2\pi a(1 + \frac{a^2}{3})$ 。

7.3.2 第二型曲线积分

第二型曲线积分的形式为:

$$I = \int_{\Gamma} P(x, y, z) dx + Q(x, y, z) dy + R(x, y, z) dz$$

若逐段光滑的有向曲线 Γ 有参数表示:

$$\begin{aligned} x &= x(t), \\ y &= y(t), \\ z &= z(t), \quad a \leq t \leq b, \end{aligned}$$

$$\int_{\Gamma} P \, dx + Q \, dy + R \, dz = \int_{a}^{b} \left[P(x(t), y(t), z(t)) x'(t) + Q(x(t), y(t), z(t)) y'(t) + R(x(t), y(t), z(t)) z'(t) \right] dt.$$

例题 7.11 计算积分 $I=\oint_C (x^2+2xy)\,dy$,其中 C 表示逆时针方向的上半椭圆 $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ 。

证明 题目中的" ϕ "符号表示一个闭合路径。我们假定路径 C 由上半椭圆弧 C_1 (从 (a,0) 到 (-a,0)) 和 x 轴上的 线段 C_2 (从 (-a,0) 到 (a,0)) 组成。

在 C_2 上, y=0, dy=0, 所以 $\int_{C_2} (x^2+2xy) dy=0$ 。因此, 积分的值等于沿椭圆弧 C_1 的积分。

我们对椭圆弧 C_1 进行参数化: $x = a\cos t, y = b\sin t$, 其中 t 从 0 变化到 π 。于是 $dy = b\cos t\,dt$ 。

$$I = \int_{C_1} (x^2 + 2xy) \, dy = \int_0^{\pi} [(a\cos t)^2 + 2(a\cos t)(b\sin t)](b\cos t) \, dt$$
$$= \int_0^{\pi} (a^2b\cos^3 t + 2ab^2\sin t\cos^2 t) \, dt$$
$$= a^2b \int_0^{\pi} \cos^3 t \, dt + 2ab^2 \int_0^{\pi} \sin t\cos^2 t \, dt$$

其中第一个积分为 $\int_0^{\pi} (1-\sin^2 t) \cos t \, dt = \left[\sin t - \frac{\sin^3 t}{3} \right]_0^{\pi} = 0$ 。第二个积分为 $\int_0^{\pi} \sin t \cos^2 t \, dt = \left[-\frac{\cos^3 t}{3} \right]_0^{\pi} = 0$ $-\frac{(-1)^3}{2} - (-\frac{1^3}{2}) = \frac{1}{2} + \frac{1}{2} = \frac{2}{2}$ 。 所以,

$$I = a^2b(0) + 2ab^2\left(\frac{2}{3}\right) = \frac{4}{3}ab^2.$$

例题 7.12 设 C 为抛物线 $2x = \pi y^2$ 自 (0,0) 到 $(\frac{\pi}{2},1)$ 的弧段,求积分:

$$I = \int_C (2xy^3 - y^2 \cos x) \, dx + (1 - 2y \sin x + 3x^2 y^2) \, dy.$$

证明 令 $P(x,y) = 2xy^3 - y^2 \cos x$, $Q(x,y) = 1 - 2y \sin x + 3x^2y^2$ 。 我们计算偏导数:

$$\frac{\partial P}{\partial y} = 6xy^2 - 2y\cos x$$
$$\frac{\partial Q}{\partial x} = -2y\cos x + 6xy^2$$

因为 $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$, 所以该积分为路劲无关。我们寻找一个势函数 $\varphi(x,y)$ 。由 $\frac{\partial \varphi}{\partial x} = P(x,y)$ 积分得:

$$\varphi(x,y) = \int (2xy^3 - y^2 \cos x) \, dx = x^2 y^3 - y^2 \sin x + g(y).$$

对其求y的偏导数并令其等于Q(x,y):

$$\frac{\partial \varphi}{\partial y} = 3x^2y^2 - 2y\sin x + g'(y) = 1 - 2y\sin x + 3x^2y^2.$$

比较可知 g'(y)=1, 故 g(y)=y (忽略常数)。 势函数为 $\varphi(x,y)=x^2y^3-y^2\sin x+y$ 。 积分值为势函数在终点和起点的差:

$$I = \varphi\left(\frac{\pi}{2}, 1\right) - \varphi(0, 0) = \left[\left(\frac{\pi}{2}\right)^2 (1)^3 - (1)^2 \sin\left(\frac{\pi}{2}\right) + 1\right] - [0] = \frac{\pi^2}{4} - 1 + 1 = \frac{\pi^2}{4}.$$

例题 7.13 (2024 北师夏令营改编) 设 $f(x) \in C^1(-\infty, +\infty)$,L 是上半平面 (y > 0) 内的有向分段光滑曲线,起点为 (a,b),终点为 (c,d)。计算:

$$I = \int_{L} \frac{1}{y} [1 + y^{2} f(xy)] dx + \frac{x}{y^{2}} [y^{2} f(xy) - 1] dy.$$

证明 我们将积分表达式整理为 Pdx + Qdy 的形式:

$$P(x,y) = \frac{1}{y} + yf(xy)$$
$$Q(x,y) = xf(xy) - \frac{x}{y^2}$$

检验其是否为恰当微分形式 (全微分):

$$\frac{\partial P}{\partial y} = -\frac{1}{y^2} + \left[1 \cdot f(xy) + y \cdot f'(xy) \cdot x\right] = -\frac{1}{y^2} + f(xy) + xyf'(xy)$$

$$\frac{\partial Q}{\partial x} = \left[1 \cdot f(xy) + x \cdot f'(xy) \cdot y\right] - \frac{1}{y^2} = f(xy) + xyf'(xy) - \frac{1}{y^2}$$

因为 $\frac{\partial P}{\partial u} = \frac{\partial Q}{\partial x}$, 积分与路径无关。我们可以将全微分式分组重写:

$$\omega = \left(\frac{1}{y}dx - \frac{x}{y^2}dy\right) + (yf(xy)dx + xf(xy)dy) = d\left(\frac{x}{y}\right) + f(xy)d(xy).$$

令 F(u) 为 f(u) 的一个原函数,即 F'(u)=f(u)。则 f(xy)d(xy)=d(F(xy))。所以,势函数为 $\varphi(x,y)=\frac{x}{y}+F(xy)$ 。积分的值为:

$$I = \varphi(c, d) - \varphi(a, b) = \left(\frac{c}{d} + F(cd)\right) - \left(\frac{a}{b} + F(ab)\right).$$

例题 7.14 计算 $I = \oint_{x^2 + y^2 = 1} \frac{x \, dy - y \, dx}{x^2 + y^2}$,方向取逆时针。

证明 采用极坐标参数化。对于单位圆 $x^2 + y^2 = 1$,我们有 $x = \cos t, y = \sin t$,其中 t 从 0 到 2π 。微分元为 $dx = -\sin t \, dt, dy = \cos t \, dt$ 。代入分子:

$$x \, dy - y \, dx = (\cos t)(\cos t \, dt) - (\sin t)(-\sin t \, dt) = (\cos^2 t + \sin^2 t) \, dt = dt.$$

代入分母:

$$x^2 + y^2 = \cos^2 t + \sin^2 t = 1.$$

因此积分为:

$$I = \int_0^{2\pi} \frac{dt}{1} = 2\pi.$$

例题 7.15 求简单正定向光滑闭曲线 L 使得积分 $\oint_L (y^3 - y) dx - 2x^3 dy$ 值最大,并计算最大值。

证明 令 $P = y^3 - y$, $Q = -2x^3$ 。根据格林公式,该线积分可化为二重积分:

$$I = \oint_{L} P \, dx + Q \, dy = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dA$$

其中 D 是由 L 围成的区域。

$$\frac{\partial Q}{\partial x} = -6x^2, \quad \frac{\partial P}{\partial y} = 3y^2 - 1.$$

所以

$$I = \iint_D (-6x^2 - (3y^2 - 1)) dA = \iint_D (1 - 6x^2 - 3y^2) dA.$$

为了使积分值最大,积分区域D应取被积函数 $1-6x^2-3y^2$ 为非负值的区域。即

$$1 - 6x^2 - 3y^2 \ge 0 \implies 6x^2 + 3y^2 \le 1.$$

此区域是由椭圆 $6x^2+3y^2=1$ 围成的。我们计算这个最大值。令 $x=\frac{u}{\sqrt{6}},y=\frac{v}{\sqrt{3}}$,则区域变为单位圆 $u^2+v^2\leq 1$ 。 雅可比行列式为 $|J|=\left|\frac{\partial(x,y)}{\partial(u,v)}\right|=\frac{1}{\sqrt{18}}=\frac{1}{3\sqrt{2}}$ 。

$$I_{max} = \iint_{u^2 + v^2 \le 1} (1 - u^2 - v^2) \frac{1}{3\sqrt{2}} \, du \, dv.$$

在极坐标下 $(u = r \cos \theta, v = r \sin \theta)$

$$I_{max} = \frac{1}{3\sqrt{2}} \int_0^{2\pi} \int_0^1 (1 - r^2) r \, dr \, d\theta = \frac{2\pi}{3\sqrt{2}} \left[\frac{r^2}{2} - \frac{r^4}{4} \right]_0^1 = \frac{2\pi}{3\sqrt{2}} \left(\frac{1}{4} \right) = \frac{\pi}{6\sqrt{2}} = \frac{\pi\sqrt{2}}{12}.$$

例题 7.16 设 D 是平面内的单连通区域, $\omega = Pdx + Qdy$,其中 P,Q 在 D 上有连续的偏导数,则以下结论等价:

- 对 D 内的任意一条闭曲线 C,有 $\oint_C \omega = 0$ 。
- 对 D 内的任一条路径 C,积分 $\int_C \omega$ 仅与 C 的起点和终点有关,而与所沿的路径无关。
- 在 D 内处处成立 $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$.
- 存在函数 $\varphi(x,y)$,使得在 D 内成立 $d\varphi(x,y) = P(x,y)dx + Q(x,y)dy$ 。

证明 这是向量分析中关于保守场(或恰当微分形式)的基本定理。该定理指出了在单连通区域上,一个向量场的线积分为0、线积分与路径无关、旋度为零(在二维平面上即 $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$)以及该场是一个标量场的梯度(即存在势函数)这四个条件是互相等价的。这是连接格林公式、斯托克斯公式和微分形式理论的核心结论。

例题 7.17 计算积分 $I = \oint_C \frac{e^y}{x^2 + y^2} \left[(x \sin x + y \cos x) dx + (y \sin x - x \cos x) dy \right]$,其中 $C : x^2 + y^2 = 1$,取逆时针方向。

证明 令 ω 为被积的微分形式。被积函数在原点 (0,0) 有一个奇点,该奇点在闭曲线 C 内部。我们记 P(x,y) 和 Q(x,y) 为 dx 和 dy 的系数。通过一个比较繁琐的计算可以验证,在定义域 $\mathbb{R}^2\setminus\{(0,0)\}$ 内,有 $\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}$ 成立。

根据格林公式的推广,对于包含奇点的区域,积分值在任何包围该奇点的简单闭曲线上都是相同的。因此, 我们可以用一个半径为 $r \to 0$ 的小圆 C_r 来代替单位圆 C 进行计算。

$$I = \oint_{C_r} \frac{e^y}{x^2 + y^2} \left[(x \sin x + y \cos x) dx + (y \sin x - x \cos x) dy \right].$$

将积分表达式的分子重新组合, 可以发现

 $(x\sin x + y\cos x)dx + (y\sin x - x\cos x)dy = \sin x(xdx + ydy) + \cos x(ydx - xdy).$

利用极坐标关系 $x^2+y^2=r^2$ 和 $d\theta=\frac{xdy-ydx}{x^2+y^2}$,我们有 xdx+ydy=rdr 以及 $ydx-xdy=-r^2d\theta$ 。

在路径 C_r 上, r 是常数, 所以 dr = 0。因此 xdx + ydy = 0。积分式简化为:

$$I = \oint_{C_r} \frac{e^y}{r^2} \cos x (y dx - x dy) = \oint_{C_r} \frac{e^y}{r^2} \cos x (-r^2 d\theta) = \oint_{C_r} -e^y \cos x d\theta.$$

现在我们用参数 $x = r \cos \theta, y = r \sin \theta$ 代入被积函数:

$$I = \int_0^{2\pi} -e^{r\sin\theta} \cos(r\cos\theta) \, d\theta.$$

由于积分值与r无关,我们可以取极限 $r \to 0$ 。由于被积函数一致收敛,我们可以将极限移入积分号内:

$$I = \int_0^{2\pi} \lim_{r \to 0} \left(-e^{r \sin \theta} \cos(r \cos \theta) \right) d\theta = \int_0^{2\pi} (-e^0 \cos \theta) d\theta = \int_0^{2\pi} (-1) d\theta = -2\pi.$$