Probabilidad I

Apuntes de Probabilidad

Diego Antonio Zúñiga Galvám 25 de enero de 2023

Índice

1.	Prin	ner Parcial	2
	1.1.	Espacios de Probabilidad	2
	1.2.	σ -álgebras	2
	1.3.	Medidas de Probabilidad	4

Probabilidad I Pág. 1 - 4

1 Primer Parcial

1.1 Espacios de Probabilidad

El espacio de probabilidad consiste en una terna ordenada, denotada usualmente por (Ω, F, P) , en donde Ω es un conjunto arbitrario, F es una σ -álgebra de subconjuntos de Ω , y P es una medida de probabilidad.

Medida de probabilidad.

Una función P definida sobre una σ -algebra F y con valores en el intervalo [0,1] es una medida de probabilidad si $P(\Omega)=1$ y es σ -aditiva, es decir, si cumple que:

$$P(\bigcup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} P(A_n)$$

1.2 σ -álgebras

Una colección F de subconjuntos de Ω es una σ -álgebra si cumple las siguientes condiciones:

- 1. $\Omega \in F$
- 2. Si $A \in F$, entonces $\bigcup_{n=1}^{\infty} A_n \in F$
- 3. Si $A_1, A_2, \ldots \in F$ entonces $\bigcup_{n=1}^{\infty} A_n \in F$

A la pareja (Ω, F) se le llama espacio medible y a los elementos de F se les llama eventos o conjuntos medibles.

La intersección de dos σ -álgebras es una σ -álgebra, pero en general no es cierto que la union de dos σ -álgebras produce una nueva σ -álgebra.

 σ -ÁLGEBRA GENERADA. Sea ζ una colección no vacía de subconjuntos de Ω . La σ álgebra generada por ζ , denotada por $\sigma(\zeta)$, es la colección

$$\sigma(\zeta) = \bigcap \{F : F \text{es una } \sigma\text{-\'algebra y } \zeta \subseteq F\}$$

Es decir, la colección de $\sigma(\zeta)$ es la intersección de todas aquellas σ -álgebras que contienen a ζ .

Proposición: Sean ζ_1 y ζ_2 dos colecciones de subconjuntos de Ω tales que $\zeta_1 \subseteq \zeta_2$. Entonces $\sigma(\zeta_1) \subseteq \sigma(\zeta_2)$.

Proposición: Si F es una σ -álgebra, entonces $\sigma(F) = F$.

Definición (Álgebra): Una colección A de subconjuntos de Ω es una álgebra si cumple las siguientes condiciones:

- 1. $\Omega \in A$.
- 2. Si $A \in A$, entonces $A^c \in A$.
- 3. Si $A_1, A_2, ..., A_n \in A$, entonces $\bigcup_{k=1}^n A_k \in A$.

Probabilidad I Pág. 2 - 4

Conjuntos de Borel

La colección de todos los intervalos abiertos (a,b) de $\mathbb R$, en donde $a\leq b$. A la mínima σ -álgebra generada por esta colección se le llama σ -álgebra de Borel de $\mathbb R$, y se denota por $B(\mathbb R)$

Definición (σ -álgebra de Borel):

$$B(\mathbb{R}) = \sigma\{(a, b) \subseteq \mathbb{R} : a \le b\}$$

Sucesiones de eventos Limite Superior e Inferior

- 1. $\limsup_{n\to\infty} A_n = \bigcap_{n=a}^{\infty} \bigcup_{k=n}^{\infty} A_k$
- 2. $\liminf_{n\to\infty} A_n = \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k$

$$\liminf_{n\to\infty} A_n \subseteq \limsup_{n\to\infty} A_n$$

Definición (Convergencia de Eventos):

Sea $\{A_n : n \in \mathbb{N}\}$ una sucesión de eventos. Si existe un evento A tal que:

$$\liminf_{n \to \infty} A_n = \limsup_{n \to \infty} A_n = A$$

entonces se dice que la sucesión converge al evento A, y se escribe $\lim_{n\to\infty}A_n=A$

Proposición

Sea $\{A_n : n \in \mathbb{N}\}$ una sucesión monota de eventos.

- 1. Si $A_1\subseteq A_2\subseteq ...$, entonces $\lim_{n\to\infty}A_n=\bigcup_{n=1}^\infty A_n$
- 2. Si $A_1\supseteq A_2...$, entonces $\lim_{n\to\infty}A_n=\bigcap_{n=1}^\infty A_n$

Proposición

Sea $\{A_n : n \in \mathbb{N}\}$ una sucesión de eventos. Defina.

$$B_1=A_1 \quad \text{y} \quad B_n=A_n-\bigcup_{k=1}^{n-1}A_k, \quad \text{para} \quad n\geq 2$$

Entonces la sucesión de eventos $\{B_n:n\in\mathbb{N}\}$ satisface las siguientes propiedades:

- 1. $B_n \subseteq A_n$.
- 2. $B_n \cap B_m = \emptyset$, si $n \neq m$.
- 3. $\bigcup_{n=1}^{\infty} A_n = \bigcup_{n=1}^{\infty} A_n.$

Probabilidad I Pág. 3 - 4

1.3 Medidas de Probabilidad

Probabilidad I Pág. 4 - 4