Package 'HPLB'

October 12, 2022

Type Package
Title High-Probability Lower Bounds for the Total Variance Distance
Version 1.0.0
Author Loris Michel, Jeffrey Naef
Maintainer Loris Michel <michel@stat.math.ethz.ch></michel@stat.math.ethz.ch>
Description An implementation of high-probability lower bounds for the total variance distance as introduced in Michel & Naef & Meinshausen (2020) <arxiv:2005.06006>. An estimated lower-bound (with high-probability) on the total variation distance between two probability distributions from which samples are observed can be obtained with the function HPLB.</arxiv:2005.06006>
License GPL-3
Encoding UTF-8
LazyData true
Depends data.table, stats, graphics
Suggests testthat, fields, ranger, distrEx
RoxygenNote 7.0.2
NeedsCompilation no
Repository CRAN
Date/Publication 2020-06-09 12:50:02 UTC
R topics documented:
boundingOperation 2 empiricalBF
Index

2 empiricalBF

boundingOperation	Bounding Operation
-------------------	---------------------------

Description

Bounding Operation

Usage

```
boundingOperation(v, left, right, m, n)
```

Arguments

V	a a numeric value giving an ordering permutation of 1 to m+n.
left	a numeric value giving the number of witnesses left.
right	a numeric value giving the number of witnesses right.
m	a numeric value, the number of observations left.
n	a numeric value, the number of observations right.

Value

a cumulative counting function represented as a numeric vector.

empiricalBF	Empirical Bounding Functions

Description

Empirical Bounding Functions

Usage

```
empiricalBF(tv.seq, nsim = 1000, m = 100, n = 100, alpha = 0.05)
```

Arguments

```
tv.seq a vector of total variation values between 0 and 1.

nsim a numeric value giving the number of repetitions.

m a numeric value, the number of observations left.

n a numeric value, the number of observations right.

alpha a numeric value giving the type-I error level.
```

Value

a list of empirical bounding functions indexed by the tv.seq (in the respective order).

HPLB 3

HPLB

High Probability Lower Bounds (HPLB) for the Total Variation Distance (TV) Based on Finite Samples

Description

Implementations of different HPLBs for TV as described in (Michel et al., 2020).

Usage

```
HPLB(
    t,
    rho,
    s = 0.5,
    estimator.type = "adapt",
    alpha = 0.05,
    tv.seq = seq(from = 0, to = 1, by = 1/length(t)),
    custom.bounding.seq = NULL,
    direction = rep("left", length(s)),
    cutoff = 0.5,
    verbose.plot = FALSE,
    seed = 0,
    ...
)
```

Arguments

t a numeric vector value corresponding to a natural ordering of the observations.

For a two-sample test 0-1 numeric values values should be provided.

rho a numeric vector value providing an ordering. This could be a binary classifier, a regressor, a witness function from a MMD kernel or anything else that would

witness a distributional difference.

s a numeric vector value giving split points on t.

estimator.type a character value indicating which estimator to use. One option out of:

- adapt:adaptive binary classification estimator (asymptotic bounding function)
- · bayes:binary classification estimator
- bayes_finite_sample:binary classification finite sample estimator
- adapt_empirical:adaptive binary classification estimator (simulation-based bounding function)
- adapt_custom:adaptive binary classificatrion estimator (user-defined bounding function)
- adapt_dwit:adaptive binary classificatrion estimator (for distributional witnesses estimation)

alpha a numeric value giving the overall type-I error control level.

4 HPLB

tv.seq a sequence of values between 0 and 1 used as the grid search for the total variation distance in case of tv-search.

custom.bounding.seq a list of bounding functions respecting the order of tv.seq used in case of estimator.type "custom-tv-search".

direction a character vector value made of "left" or "right" giving which distribution witness count to estimate (t<=s or t>s?).

cutoff a numeric value. This is the cutoff used if bayes estimators are used. The theory suggests to use 1/2 but this can be changed.

verbose.plot a boolean value for additional plots.

seed an integer value. The seed for reproducibility.

... additional parameters for the function empiricalBF.

Value

a list containing the relevant lower bounds estimates. For the total variation distance the relevant entry is tvhat.

Author(s)

Loris Michel, Jeffrey Naef

References

L. Michel, J. Naef and N. Meinshausen (2020). High-Probability Lower Bounds for the Total Variation Distance

Examples

HPLB 5

```
# estimated HPLB
tvhat <- HPLB(t = t, rho = bayesRate(x), estimator.type = "bayes")</pre>
TotalVarDist(e1 = Norm(2,1), e2 = Norm(0,1))
## Example 2: optimal mixture detection (adapt estimator), Gaussian mean-shift example
n <- 100
mean.shift <- 2
t.train <- runif(n, 0 ,1)</pre>
x.train <- ifelse(t.train>0.5, stats::rnorm(n, mean.shift), stats::rnorm(n))
rf <- ranger::ranger(t~x, data.frame(t=t.train,x=x.train))</pre>
n <- 100
t.test <- runif(n, 0 ,1)</pre>
x.test <- ifelse(t.test>0.5, stats::rnorm(n, mean.shift), stats::rnorm(n))
rho <- predict(rf, data.frame(t=t.test,x=x.test))$predictions</pre>
## out-of-sample
tv.oos <- HPLB(t = t.test, rho = rho, s = seq(0.1,0.9,0.1), estimator.type = "adapt")
## total variation values
tv <- c()
for (s in seq(0.1,0.9,0.1)) {
 if (s<=0.5) {
   D.left <- Norm(0,1)
 } else {
   D.left <- UnivarMixingDistribution(Dlist = list(Norm(0,1),Norm(mean.shift,1)),</pre>
               mixCoeff = c(ifelse(s <= 0.5, 1, 0.5/s), ifelse(s <= 0.5, 0, (s - 0.5)/s)))
 if (s < 0.5) {
   D.right <- UnivarMixingDistribution(Dlist = list(Norm(0,1),Norm(mean.shift,1)),</pre>
           mixCoeff = c(ifelse(s <= 0.5, (0.5-s)/(1-s), 0), ifelse(s <= 0.5, (0.5/(1-s)), 1)))
 } else {
   D.right <- Norm(mean.shift,1)</pre>
tv <- c(tv, TotalVarDist(e1 = D.left, e2 = D.right))</pre>
}
## plot
oldpar <- par(no.readonly =TRUE)</pre>
par(mfrow=c(2,1))
plot(t.test,x.test,pch=19,xlab="t",ylab="x")
plot(seq(0.1,0.9,0.1), tv.oos$tvhat,type="l",ylim=c(0,1),xlab="t", ylab="TV")
lines(seq(0.1, 0.9, 0.1), tv, col="red", type="1")
par(oldpar)
```

6 HPLBmatrix

HPLBmatrix

Pairwise Total Variation Distance Lower Bound Matrix for the Multi-Class Setting

Description

Pairwise Total Variation Distance Lower Bound Matrix for the Multi-Class Setting

Usage

```
HPLBmatrix(
  labels,
  ordering.array,
  alpha = 0.05,
  computation.type = "non-optimized",
  seed = 0,
  ...
)
```

Arguments

labels a numeric vector value. The labels of the classes, should be encoded in [0,nclass1].

ordering.array a numeric array of size (nclass, nclass, nobs) such that the value (i,j,k) represents a propensity of being of class j instead of i for observation k.

alpha a numeric value. The type-I error level.

computation.type

a character value. For the moment only "non-optimized" (default) available.

seed an integer value. The seed for reproducility.

... additional parameters to be passed to the HPLB function.

Value

a numeric matrix of size (nclass, nclass) giving the matrix of pairwise total variation lower bounds.

Author(s)

Loris Michel, Jeffrey Naef

References

L. Michel, J. Naef and N. Meinshausen (2020). High-Probability Lower Bounds for the Total Variation Distance

HPLBmatrix 7

Examples

```
# iris example
require(HPLB)
require(ranger)
# training a multi-class classifier on iris and getting tv lower bounds between classes
data("iris")
ind.train <- sample(1:nrow(iris), size = nrow(iris)/2, replace = FALSE)</pre>
rf <- ranger(Species~., data = iris[ind.train, ], probability = TRUE)</pre>
preds <- predict(rf, iris[-ind.train,])$predictions</pre>
# creating the ordering array based on prediction differences
ar <- array(dim = c(3, 3, nrow(preds)))</pre>
for (i in 1:3) {
 for (j in 1:3) {
  ar[i,j,] <- preds[,j] - preds[,i]</pre>
}
# encoding the class response
y <- factor(iris$Species)</pre>
levels(y) <- c(0,1,2)
y <- as.numeric(y)-1</pre>
# getting the lower bound matrix
tvhat.iris <- HPLBmatrix(labels = y[-ind.train], ordering.array = ar)</pre>
tvhat.iris
```

Index

```
boundingOperation, 2  \\  \mbox{empiricalBF, 2} \\  \mbox{HPLB, 3} \\  \mbox{HPLBmatrix, 6} \\
```