場の理論ゼミ

Toshiya Tanaka

October 22, 2022

1 Introduction

- B4 の後期は [PS95] を研究室のゼミで読むことになったので、学びを記録しようと思います.
- 教科書中の式は PS (number) のように記します.

2 The Klien-Gordon Field

• p.14 で, $E = \sqrt{p^2 + m^2}$ の方で計算した propagator

$$U(t) = \frac{1}{2\pi^2 |\vec{x} - \vec{x}_0|} \int_0^\infty dp \sin(p|\vec{x} - \vec{x}_0|) e^{-it\sqrt{p^2 + m^2}}$$
(2.1)

を直接評価する方法は、本でも引用されているように、 $[GR80, p.491]^{i}$ を見れば良い.

$$\int_0^\infty x e^{-\beta\sqrt{\gamma^2 + x^2}} \sin\beta x \, \mathrm{d}x = \frac{b\beta\gamma^2}{\beta^2 + b^2} K_2(\gamma\sqrt{\beta^2 + b^2})$$
 (2.2)

という式があり、この収束する積分の指数の肩を虚数倍ひねる、いわゆる解析接続をしていると解釈できる。元の積分はpが無限で発散し、虚数の指数関数は振動するので、被積分関数を見ると発散してしまうことがわかる. $^{\rm ii}$

- PS (2.31) で $\delta(0)$ の無限大をむしすることについて,
 - GR を考えるときは無視できない.
 - SUSY を入れると出ない.
- PS (2.33) の計算は奇関数が対称区間の積分で消えることを考える.素直に代入して,

$$\vec{P} = -\int d^3x \,\pi(\vec{x}) \vec{\nabla}\phi(\vec{x}) \tag{2.3}$$

$$= -\int d^3x \int \frac{d^3p}{(2\pi)^3} \int \frac{d^3p'}{(2\pi)^3} \left(\left(-i\sqrt{\frac{\omega_p}{2}} \right) (a_p - a_{-p}^{\dagger}) e^{i\vec{p}\cdot\vec{x}} (i\vec{p}') \frac{1}{\sqrt{2\omega_{p'}}} (a_{p'} + a_{-p'}^{\dagger}) e^{-i\vec{p}\cdot\vec{x}} \right)$$
(2.4)

となり,

$$\int \frac{\mathrm{d}^3 x}{(2\pi)^3} e^{\mathrm{i}(\vec{p} + \vec{p}') \cdot \vec{x}} = \delta^{(3)}(\vec{p} + \vec{p}')$$
(2.5)

を使うと,

$$\vec{P} = -\int \frac{\mathrm{d}^3 p}{(2\pi)^3} (-\vec{p}) \frac{1}{2} (a_p - a_{-p}^{\dagger}) (a_{-p} + a_p^{\dagger}) \tag{2.6}$$

となる. 今, $(a_pa_{-p}-a_{-p}^\dagger a_{-p}+a_pa_p^\dagger +a_{-p}a_p^\dagger)$ となるが,p と -p が交互に入っているものは奇関数になり,消える.

$$\int \frac{\mathrm{d}^3 p}{(2\pi)^3} \vec{p}(a_p a_{-p} + a_{-p}^{\dagger} a_p) = 0.$$
 (2.7)

すると、添字の運動量は、符号が一致したものしか残らず、全空間の積分なので符号を変えて、全て +p で計算する

ii. この一連の議論はd氏に教えていただいた.

テクニックが使える. これより,

$$\vec{P} = \int \frac{\mathrm{d}^3 p}{(2\pi)^3} \vec{p} \frac{1}{2} \left(a_p a_p^{\dagger} - a_{-p}^{\dagger} a_{-p} \right) \tag{2.8}$$

$$= \int \frac{\mathrm{d}^3 p}{(2\pi)^3} \vec{p} \left(a_p^{\dagger} a_p + \frac{1}{2} \left[a_p, a_p^{\dagger} \right] \right) \tag{2.9}$$

$$= \int \frac{\mathrm{d}^3 p}{(2\pi)^3} \vec{p} a_p^{\dagger} a_p \tag{2.10}$$

となる. 最後の $\left[a_p, a_p^{\dagger}\right] = \delta(0)$ は偶関数と思うと消える.

- PS (2.40) は三次元空間の $\mathrm{d}^3p/(2E_p)$ で measure を入れたものだが, $\mathbb{R}^{1,3}$ に埋め込むと $p^0>0$ の方の双曲超平面上 の積分と思える.
- ・ PS (2.41), PS (2.42) から, $\phi(x) |0\rangle_{\mathrm{QFT}} \sim |\vec{x}\rangle_{\mathrm{QM}}$, $\langle 0|\phi(x)|p\rangle_{\mathrm{QFT}} \sim \langle x|p\rangle_{\mathrm{QM}} = \mathrm{e}^{\mathrm{i}px}$ と対応がつく.
 ・ section 2.4 では今まで,時間に依存しない Schödinger 描像でやっていたものを,Heisenberg 描像に移す.やりかたは,QM と同じように $\mathcal{O}_{\mathrm{Heisenberg}} = \mathrm{e}^{\mathrm{i}Ht}\mathcal{O}_{\mathrm{Schrödinger}}\mathrm{e}^{-\mathrm{i}Ht}$ とする.
 ・ 生成消滅演算子の Heisenberg 描像は $\mathrm{e}^{\mathrm{i}Ht} = \sum_{n=0}^{\infty} \frac{\mathrm{i}Ht}{n!}$ と $H^n a_p = a_p (H E_p)$ など に を用いて, $a_p \mathrm{e}^{-\mathrm{i}E_p t}$ などにな
- り,場の演算子も綺麗にまとまる.
- ullet PS (2.51) の最後の評価は、鞍点ではないが、振動の遅いところが積分に最も寄与すると思うと、E=m の値を採用 すると考える.

References

[GR80] I. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series, and products, Academic Press, New York, 1980. [PS95] M. E. Peskin and D. V. Schroeder, An Introduction to quantum field theory, Addison-Wesley, Reading, USA, 1995.

iii. 生成消滅のこのような関係式は、片方について調べると、もう片方はエルミート共役を取れば直ちに成り立つことを確認できる.