# Algèbre de base

# Chapitre 2

# Les nombres complexes

| Pré-requis                                                                                                             |
|------------------------------------------------------------------------------------------------------------------------|
| ☐ Équations de second degré.                                                                                           |
| ☐ Trigonométrie.                                                                                                       |
| □ Valeur absolue.                                                                                                      |
|                                                                                                                        |
|                                                                                                                        |
| Ø Objectifs                                                                                                            |
| □ Savoir manipuler l'écriture algébrique, l'écriture trigonométrique et l'écriture exponentielle d'un nombre complexe. |
| □ Savoir effectuer les opérations sur les complexes.                                                                   |
| □ Savoir calculer le module et l'argument d'un nombre complexe.                                                        |
| □ Connaître les formules d'Euler et de Moivre.                                                                         |
| ☐ Savoir calculer les racines carrées d'un nombre complexe,                                                            |
| $\square$ Savoir résoudre une équation de second degré dans $\mathbb{C}$ .                                             |

#### Sommaire

#### Séquence 1 : Calculs avec les nombres complexes 3 Généralités sur les nombres complexes - Calculs avec les nombres complexes - Module, conjugué et leurs propriétés. Séquence 2 : Écriture géométrique d'un nombre complexe 15 Représentation géométrique - Formulation exponentielle. **25** Séquence 3 : Résolution d'équations du second degré Résolution d'équations du second degré à coefficients réels - Racines carrées d'un nombre complexe - Résolution d'équations du second degré à coefficients complexes.

#### Calculs avec les nombres complexes

### 1 Généralités sur les nombres complexes

#### Notation

On admet l'existence d'un nombre, noté i, tel que

$$i^2 = -1$$
.

#### **Définitions**: Nombres complexes

On appelle **nombre complexe** tout élément z pouvant s'écrire sous la forme

$$z := a + i b$$
, où  $a \in \mathbb{R}$  et  $b \in \mathbb{R}$ .

- $\triangleright$  L'écriture a+ib est appelée **l'écriture algébrique** du nombre complexe z.
- $\triangleright$  Le réel a est appelé la partie réelle de z et se note  $\mathcal{R}e(z)$ .
- $\triangleright$  Le réel b est appelé la partie imaginaire de z et se note  $\mathcal{I}m(z)$ .

L'ensemble des nombres complexes se note  $\mathbb{C}$ .

Un nombre complexe z est dit **imaginaire pur** si sa partie réelle est nulle :  $\Re e(z) = 0$ .

#### Remarque

Tous les réels sont des nombres complexes (avec une partie imaginaire nulle).

#### Notation

Les ensembles  $\mathbb{R}$  et  $\mathbb{C}$  vérifient que tous les éléments de  $\mathbb{R}$  sont des éléments de  $\mathbb{C}$ . On dit alors que «  $\mathbb{R}$  est contenu dans  $\mathbb{C}$  » et on écrit

$$\mathbb{R} \subset \mathbb{C}$$
.

ce qui se lit «  $\mathbb R$  est **inclus** dans  $\mathbb C$  », ou «  $\mathbb R$  est **une partie** de  $\mathbb C$  » ou encore «  $\mathbb R$  est un **sous-ensemble** de  $\mathbb C$  ».

Cela revient à dire que si  $x \in \mathbb{R}$ , alors  $x \in \mathbb{C}$ , ce que l'on note

$$(x \in \mathbb{R}) \implies (x \in \mathbb{C}).$$

#### $igoplus \mathbf{Exemples} - \mathit{Partie}$ réelle et partie imaginaire

 $\triangleright$  Soit  $z_1 := 1 + i$ . On a  $\Re e(z_1) = 1$  et  $\mathcal{I}m(z_1) = 1$ .

 $\triangleright$  Soit  $z_2 := -\sqrt{2}$ . Alors,  $z = -\sqrt{2} + 0i$ , donc,  $\Re(z_2) = -\sqrt{2}$  et  $\Im(z_2) = 0$ .

ightharpoonup Soit  $z_3:=2i$ . Alors,  $z_3$  est un imaginaire pur car  $\mathcal{R}e(z_3)=0$ . De plus,  $\mathcal{I}m(z_3)=2$ .



#### $\checkmark$ Attention

La partie réelle et la partie imaginaire d'un nombre complexe sont des réels.

#### Calculs avec les nombres complexes 2

#### **Propriété**: Égalité dans C

Soient  $z_1 := a_1 + ib_1$  et  $z_2 := a_2 + ib_2$ , où  $a_1, a_2, b_1, b_2$  sont des réels. Alors,

 $z_1 = z_2$  si et seulement si  $a_1 = a_2$  et  $b_1 = b_2$ .

#### Notation

L'expression si et seulement si est une équivalence. Autrement dit, la phrase «  $z_1 = z_2$  si et seulement si  $a_1 = a_2$  et  $b_1 = b_2$  » signifie que :

- 1. si  $z_1 = z_2$ , alors  $a_1 = a_2$  et  $b_1 = b_2$ ,
- 2. réciproquement, si  $a_1 = a_2$  et  $b_1 = b_2$ , alors  $z_1 = z_2$ .

On dit aussi que 1. et 2. sont **équivalents**, ce qui se note « 1.  $\iff$  2. ». Ainsi, pour le cas de l'égalité, on a

$$(z_1 = z_2) \iff (a_1 = a_2 \text{ et } b_1 = b_2).$$

Enfin, on dit encore que  $a_1 = a_2$  et  $b_1 = b_2$  est une condition nécessaire et suffisante pour que  $z_1 = z_2$ .

#### ${f D\'efinition}: \mathit{Somme\ dans}\ \mathbb{C}$

Soient  $z_1 := a_1 + i b_1$  et  $z_2 := a_2 + i b_2$  avec  $a_1, a_2, b_1, b_2$  des réels. La **somme** de  $z_1$  et de  $z_2$ est définie par :

$$z_1 + z_2 := (a_1 + i b_1) + (a_2 + i b_2) = a_1 + a_2 + i(b_1 + b_2).$$



 $lackbox{\textbf{Exemple}} - \textit{Somme dans } \mathbb{C}$ 

Soient  $z_1 := 3 + 2i$  et  $z_2 := 1 - 4i$ . Alors,  $z_1 + z_2 = (3 + 2i) + (1 - 4i) = 4 - 2i$ .

#### **Définition :** Produit dans $\mathbb{C}$

Soient  $z_1 := a_1 + i b_1$  et  $z_2 := a_2 + i b_2$  avec  $a_1, a_2, b_1, b_2$  des réels. Le **produit** de  $z_1$  par  $z_2$ est donné par :

$$z_1 z_2 := a_1 a_2 - b_1 b_2 + i(a_1 b_2 + b_1 a_2).$$

Dans le cas du produit, plutôt que d'apprendre la formule précédente, on retiendra la méthode ci-dessous.

#### $M\acute{e}thode - Calcul du produit dans <math>\mathbb{C}$

- 1. Développer les produits (de la même façon que dans les réels).
- 2. Simplifier, en remplaçant  $i^2$  par -1.
- 3. Regrouper toutes les parties réelles et imaginaires.



#### $\bigcirc$ **Exemple** - *Produit dans* $\mathbb C$

Soient  $z_1 := 2 - i$  et  $z_2 := -1 + 2i$ . Alors,

$$z_1z_2 = (2-i)(-1+2i)$$
  
 $= -2+4i+i-2i^2$   
 $= -2+4i+i+(-2)(-1)$   
 $= -2+4i+i+2$   
 $= 0+5i=5i.$   $\downarrow$  après développement du produit  
 $\downarrow$  après remplacement de  $i^2$  par  $-1$   
 $\downarrow$  après regroupement des parties  
 $\downarrow$  réelles et imaginaires

# S Exercice 1.

- 1) Calculer (1+i)(2-i).
- 2) Déterminer la partie réelle et la partie imaginaire du nombre complexe z := -1 + (1+i)i.
- 3) Développer  $(a+ib)^2$ , où a et b sont deux nombres réels.
- $\bigcirc$  Remarque Corps des nombres complexes

L'ensemble des nombres complexes, muni de l'addition (notée +) et de la multiplication (notée  $\cdot$ ), est noté ( $\mathbb{C}, +, \cdot$ ) et est appelé le **corps des nombres complexes**.

#### Module, conjugué et leurs propriétés 3

#### **Définition**: Module d'un nombre complexe

Soit z := a + ib, où a et b sont réels. Le **module** de z, noté |z|, est le **réel positif** défini par

$$|z| := \sqrt{a^2 + b^2}.$$

## 0 Remarque

Le module d'un nombre réel est sa valeur absolue.

En effet, si  $x \in \mathbb{R}$  alors x = x + i0 donc le module de x est  $\sqrt{x^2 + 0^2} = \sqrt{x^2} = |x|$ .

C'est pour cela que la même notation est utilisée pour le module et la valeur absolue.

### **Exemples**

▷ Pour z := 1 + i, on a  $|z| = \sqrt{1^2 + 1^2} = \sqrt{2}$ . ▷ Pour z := -2 = -2 + 0i, on a  $|z| = \sqrt{(-2)^2 + 0^2} = 2$ . ▷ Pour z := -i = 0 - i, on a  $|z| = \sqrt{0^2 + (-1)^2} = 1$ .

#### Propriété: Sur le module

Soit  $z \in \mathbb{C}$ . Alors,

$$(|z| = 0) \iff (z = 0).$$

#### Propriétés: Module et opérations

Soient  $z_1, z_2 \in \mathbb{C}$ . Alors

 $|z_1 z_2| = |z_1||z_2|.$ 

 $ightharpoonup Si \ z_2 \neq 0, \ on \ a \left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z_2|}.$ 

▷ Le module vérifie l'inégalité triangulaire :

$$|z_1 + z_2| \le |z_1| + |z_2|.$$

#### Notation

Au lieu d'écrire  $z_2 \in \mathbb{C}$  et  $z_2 \neq 0$ , on peut écrire  $z \in \mathbb{C}^*$ . Autrement dit,

$$\mathbb{C}^* := \left\{ z \in \mathbb{C} \mid z \neq 0 \right\}.$$

### Exemple

Soit z := 18 - 24i.

Remarquons que:

$$z = 18 - 24i = 6(3 - 4i).$$

Le calcul du module de z peut entraı̂ner de longs calculs :

$$|z| := \sqrt{18^2 + 24^2} = \sqrt{324 + 576} = \sqrt{900} = 30.$$

Soient maintenant  $z_1 := 3 - 4i$  et  $z_2 := 6$ . On a :

$$|z_1| = \sqrt{(3)^2 + (-4)^2} = \sqrt{25} = 5$$
 et  $|z_2| = \sqrt{6^2} = 6$ .

On a donc bien  $|z_1z_2| = |z_1||z_2|$  et cette propriété permet de simplifier des calculs.

#### Exercice 2.

Soient  $z_1 := 3 + 4i$  et  $z_2 := \sqrt{2} - \sqrt{2}i$ . Calculer:

1)  $|z_1z_2|^2$ ,

2)  $|z_1|^2$ ,

3)  $|z_2|^2$ .

#### **Définition:** Conjugué d'un nombre complexe

Soit z := a + ib, où  $a \in \mathbb{R}$  et  $b \in \mathbb{R}$ . Le **conjugué** de z, noté  $\overline{z}$ , est le nombre complexe défini par:

$$\overline{z} := a - ib.$$

# Exemples

Pour z := 1 + i, on a  $\overline{z} = 1 - i$ .

Pour z := -2 = -2 + 0i, on a  $\overline{z} = -2 - 0i = -2$ .

Pour z := -i = 0 - i, on a  $\overline{z} = -(-i) = i$ .

#### Propriétés : Sur le conjugué

Soit  $z \in \mathbb{C}$ . On a les propriétés suivantes :

 $\triangleright \ \overline{\overline{z}} = z,$ 

 $ightharpoonup \mathcal{R}e(z) = rac{z + \overline{z}}{2}$  et  $\mathcal{I}m(z) = rac{z - \overline{z}}{2i}$ ,

 $\rhd \ z \in \mathbb{R} \Longleftrightarrow z = \overline{z}.$ 

# Exemple

Soit z := 2 - 7i. On a  $\overline{z} = 2 + 7i$  et  $\Re e(z) = 2$ . De plus,  $\frac{z + \overline{z}}{2} = \frac{2 - 7i + 2 + 7i}{2} = \frac{4}{2} = 2$ . On a donc bien  $\frac{z + \overline{z}}{2} = \Re e(z)$ .

#### 0 Remarque

Ces propriétés se démontrent facilement en utilisant la définition du conjugué.

Soit  $z:=a+ib\in\mathbb{C},$  où  $a,b\in\mathbb{R}.$  Alors on a  $\overline{z}=a-ib.$  Ainsi,

$$\frac{z+\overline{z}}{2} = \frac{a+ib+a-ib}{2} = \frac{2a}{2} = a = \mathcal{R}e(z).$$

### **Exercice 3.**

Soit  $z \in \mathbb{C}$ . Montrer que  $\mathcal{I}m(z) = \frac{z - \overline{z}}{2i}$ .

#### Propriétés : Conjugué et opérations

Soient  $z, z_1$  et  $z_2$  des nombres complexes. On a les propriétés suivantes :

$$\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}, \qquad \overline{z_1 z_2} = \overline{z_1} \, \overline{z_2} \qquad et \qquad si \, z_2 \neq 0, \quad \overline{\left(\frac{z_1}{z_2}\right)} = \overline{\frac{\overline{z_1}}{\overline{z_2}}}.$$

De plus, on a aussi:

$$ightharpoonup si z_2 \in \mathbb{C}^*, \ \frac{z_1}{z_2} = \frac{z_1 \overline{z_2}}{|z_2|^2}.$$

# Exemple

$$\triangleright \overline{z_1} = 2 + i,$$

$$> \overline{z_2} = -1 - 2i.$$

$$\overline{z_1} \ \overline{z_2} = (2+i)(-1-2i) = -2-4i-i+-2i^2 = -2-5i+2 = -5i$$

Soient  $z_1 := 2 - i$  et  $z_2 := -1 + 2i$ . Alors,  $\triangleright \overline{z_1} = 2 + i$ ,  $\triangleright \overline{z_2} = -1 - 2i$ . Ainsi,  $\overline{z_1} \ \overline{z_2} = (2 + i)(-1 - 2i) = -2 - 4i - i + -2i^2 = -2 - 5i + 2 = -5i$ . Or, d'après un exemple précédent,  $z_1 z_2 = 5i$ . D'où,  $\overline{z_1 z_2} = \overline{5i} = -5i$ . On a bien

$$\overline{z_1 z_2} = \overline{z_1} \ \overline{z_2}.$$

# Méthode – Simplification d'une fraction complexe

Pour simplifier une fraction de la forme  $\frac{N}{D}$ , où le dénominateur D est une expression complexe, il est possible de multiplier la fraction, en haut et en bas, par le conjugué de D:

$$\frac{N}{D} = \frac{N\overline{D}}{D\overline{D}} = \frac{N\overline{D}}{|D|^2}.$$

Soit 
$$z := \frac{1}{1+i}$$
. On a, 
$$z = \frac{1}{1+i} = \frac{1-i}{(1+i)(1-i)} = \frac{1-i}{|1+i|^2} = \frac{1-i}{2} = \frac{1}{2} - \frac{1}{2}i.$$
 car  $|1+i|^2 = (\sqrt{1^2+1^2})^2 = (\sqrt{2})^2 = 2$ .

car 
$$|1+i|^2 = (\sqrt{1^2+1^2})^2 = (\sqrt{2})^2 = 2$$
.

#### Exercice 4.

- 1) Mettre  $z := \frac{3-2i}{5+i}$  sous sa forme algébrique.
- 2) Calculer |z| de deux façons différentes.

## Exercice 5.

Résoudre dans  $\mathbb{C}$  l'équation suivante (2+i)z-1+2i=0.

#### Correction des exercices

Correction de l'Exercice 1.

1) 
$$(1+i)(2-i) = 2-i+2i-i^2 = 2-i+2i-1(-1) = 3+i$$
.

2) 
$$z = -1 + (1+i)i = -1 + i + i^2 = -1 + i - 1 = -2 + i$$
. Donc  $\Re(z) = -2$  et  $\Im(z) = 1$ .

3) 
$$(a+ib)^2 = a^2 + (ib)^2 + 2aib = a^2 - b^2 + i2ab$$
.

Correction de l'Exercice 2.

On a

$$z_1 z_2 = (3+4i)(\sqrt{2}-\sqrt{2}i) = 3\sqrt{2}-3\sqrt{2}i+4\sqrt{2}i-4\sqrt{2}i^2$$
  
=  $3\sqrt{2}-3\sqrt{2}i+4\sqrt{2}i+4\sqrt{2}=7\sqrt{2}+\sqrt{2}i.$ 

Donc  $|z_1 z_2|^2 = (7\sqrt{2})^2 + (\sqrt{2})^2 = 98 + 2 = 100$ . Et,  $|z_1|^2 = 9 + 16 = 25$  et  $|z_2|^2 = 2 + 2 = 4$ . Remarquons que  $|z_1 z_2|^2 = |z_1|^2 |z_2|^2$ .

Scorrection de l'Exercice 3.

On a

$$z = \mathcal{R}e(z) + i\mathcal{I}m(z),$$
  
 $\overline{z} = \mathcal{R}e(z) - i\mathcal{I}m(z),$ 

donc  $z - \overline{z} = 2i\mathcal{I}m(z)$ , d'où

$$\mathcal{I}m(z) = \frac{z - \overline{z}}{2i}.$$

S Correction de l'Exercice 4.

1) 
$$z = \frac{3-2i}{5+i} \frac{5-i}{5-i} = \frac{15-3i-10i-2}{26} = \frac{13-13i}{26} = \frac{13}{26} - \frac{13}{26}i = \frac{1}{2} - \frac{1}{2}i.$$

2) > Méthode 1 :

$$|z| = \frac{|3-2i|}{|5+i|} = \frac{\sqrt{9+4}}{\sqrt{25+1}} = \sqrt{\frac{13}{26}} = \sqrt{\frac{1}{2}} = \frac{\sqrt{2}}{2}.$$

▷ Méthode 2 :

$$|z| = \left| \frac{1}{2} - \frac{1}{2}i \right| = \sqrt{\frac{1}{4} + \frac{1}{4}} = \frac{\sqrt{2}}{2}.$$

Correction de l'Exercice 5.

On a

$$(2+i)z - 1 + 2i = 0 \quad \Leftrightarrow \quad z = \frac{1-2i}{2+i} = \frac{1-2i}{2+i} \frac{2-i}{2-i} = \frac{2-i-4i-2}{4+1} = \frac{-5i}{5} = -i.$$

#### Chapitre 2

#### Feuille d'exercices de la séquence 1

# SExercice 1.

Soient  $z_1 := 2 + 3i$  et  $z_2 := 5 - 6i$ . Calculer  $z_1 + z_2$ ,  $z_1 - z_2$  et  $z_1 z_2$ .

# **S** Exercice 2.

Soient  $z_1 := a_1 + ib_1$  et  $z_2 := a_2 + ib_2$  les formes algébriques des nombres complexes  $z_1$  et  $z_2$ , et soit  $\lambda$  un réel. Déterminer les formes algébriques de  $\lambda z_1$ ,  $z_1 + z_2$  et  $z_1 z_2$ .

### **S** Exercice 3.

Déterminer le conjugué des nombres complexes suivants :

1) 
$$z_1 := 1 + 2i$$
,

**2)** 
$$z_2 := -i$$
,

3) 
$$z_3 := 5i - 2$$
,

**4)** 
$$z_4 := -\frac{1}{2} - \frac{\sqrt{3}}{2}i$$
.

# SExercice 4.

Calculer le conjugué et le module des nombres complexes suivants :

1) 
$$z_1 := i + 6 - 2i + 5$$
,

**2)** 
$$z_2 := \frac{1}{2} + \frac{i}{3} + \frac{2}{3} + \frac{i}{2} - \frac{1}{3}$$
,

3) 
$$z_3 := (1+2i)(3-3i),$$

**4)** 
$$z_4 := \left(\frac{1}{2} + \frac{2i}{3}\right) \left(\frac{2}{3} - \frac{6i}{5}\right),$$

**5)** 
$$z_5 := (\sqrt{2} + i\sqrt{3}) (\sqrt{2} - i\sqrt{3}),$$

**6)** 
$$z_6 := (3\sqrt{5} + 2i\sqrt{2})^2$$
.

#### Exercice 5.

Soit z := 2 - 5i. Calculer  $z + \overline{z}$ ,  $z - \overline{z}$  et  $z\overline{z}$ .

### Exercice 6.

Soit z un nombre complexe de forme algébrique z := a + ib.

- 1) Calculer  $z + \overline{z}$ ,  $z \overline{z}$  et  $z\overline{z}$ .
- 2) Donner une expresion de a et b en fonction de z et  $\bar{z}$ .

### **S** Exercice 7.

- 1) Calculer les modules des nombres complexes  $z_1 := 2 + 3i$  et  $z_2 := 1 2i$ .
- 2) Vérifier que  $|z_1z_2| = |z_1||z_2|$ .
- 3) Vérifier que  $|z_1 + z_2| < |z_1| + |z_2|$ .

# Exercice 8.

Soient  $z_1 := a_1 + ib_1$  et  $z_2 := a_2 + ib_2$  deux nombres complexes donnés sous forme algébrique. Calculer  $|z_1 z_2|^2$ ,  $|z_1|^2$  et  $|z_2|^2$ .

11

### Exercice 9.

Soit  $a \in \mathbb{C}$  et soit z := ia. Déterminer le conjugué de z.

### Exercice 10.

Par convention, posons  $i^0 := 1$ .

- 1) Calculer  $i^3$ ,  $i^4$ ,  $i^{-1}$ ,  $i^{-2}$ ,  $i^{-3}$ ,  $i^{-4}$ .
- 2) Calculer  $i^{4m}$ ,  $i^{4m+1}$ ,  $i^{4m+2}$ ,  $i^{4m+3}$  pour  $m \in \mathbb{Z}$ .
- 3) En déduire  $i^{2022}$ .

# 🕏 Exercice 11.

Mettre sous forme algébrique (c'est-à-dire simplifier) les nombres complexes suivants :

1) 
$$z_1 := \frac{-1-i}{2-2i}$$
,

**2)** 
$$z_2 := \frac{5 - 5i}{-3 + 4i}$$
,

3) 
$$z_3 := \frac{-1+4i}{-2-i}$$

**4)** 
$$z_4 := \frac{7+6i}{4-i} \cdot \frac{3+i}{i}$$

**5)** 
$$z_5 := \frac{2+i}{1+3i} \cdot \frac{1-i}{1+i}$$

1) 
$$z_1 := \frac{-1-i}{2-2i}$$
, 2)  $z_2 := \frac{5-5i}{-3+4i}$ , 3)  $z_3 := \frac{-1+4i}{-2-i}$ , 4)  $z_4 := \frac{7+6i}{4-i} \cdot \frac{3+i}{i}$ , 5)  $z_5 := \frac{2+i}{1+3i} \cdot \frac{1-i}{1+i}$ , 6)  $z_6 := \frac{2+5i}{1-i} + \frac{2-5i}{1+i}$ .

# Exercice 12.

Pour chacun des nombres complexes z ci-dessous, donner la forme algébrique du conjugué  $\bar{z}$ :

1) 
$$z_1 := \frac{1}{i}$$
,

2) 
$$z_2 := \frac{2i-1}{1-2i}$$
,

3) 
$$z_3 := (5+2i)^2$$
,

4) 
$$z_4 := \frac{i}{i+1}$$
.

# **S** Exercice 13.

Déterminer sous forme algébrique les solutions des équations suivantes :

1) 
$$2z + 6 - 4i = 0$$
,

2) 
$$(-1-2i)z-2=0$$
,

3) 
$$-3z + 2 = 4iz - 2i$$
,

4) 
$$(2+i)^2z - (1-i)^3 = 0$$
.

#### S Exercice 14.

- 1) Montrer que  $z^2 2z + 5 = (z 1 2i)(z 1 + 2i)$ .
- 2) En déduire les solutions dans  $\mathbb{C}$  de l'équation  $z^2 2z + 5 = 0$  sans calculer le discriminant.

### S Exercice 15.

- 1) Montrer que  $z^2 3 4i = (z 2 i)(z + 2 + i)$ .
- 2) En déduire les solutions dans  $\mathbb{C}$  de l'équation  $z^2 = 3 + 4i$ .

#### **Exercice** 16.

- 1) Montrer que  $z^2 + (4+i)z + (5+5i) = (z+1+2i)(z+3-i)$ .
- 2) En déduire les solutions dans  $\mathbb{C}$  de l'équation  $z^2 + 4z + 5 = -iz 5i$ .

### **S** Exercice 17.

Montrer l'équivalence suivante :

$$(|z| = 0) \quad \Longleftrightarrow \quad (z = 0).$$

Pour cela, on procède en 2 étapes :

- 1) Montrer que  $(|z| = 0) \implies (z = 0)$ .
- 2) Montrer que  $(z=0) \Longrightarrow (|z|=0)$ .

### Exercice 18.

Montrer l'équivalence suivante :

$$(z \in \mathbb{R}) \iff (\overline{z} = z).$$

#### ${f \widehat{0}}$ ${f Remarque}$ — Une application en électronique

On peut rencontrer les nombres complexes lorsque l'on travaille avec les circuits électriques.

Tout d'abord une précision. En mathématiques, on a vu que le nombre i est utilisé pour définir les nombres complexes. Par contre, en électronique, ce nombre i signifie déjà courant, donc on utilise la lettre j pour les nombres complexes (parce que la lettre suivante après i est j).

L' **impédance électrique** mesure la résistance d'un circuit électrique au passage d'un courant alternatif sinusoïdal. Il correspond à un nombre complexe, noté Z. L'admittance, notée Y, est l'inverse de l'impédance :  $Y = \frac{1}{Z}$ .

Si  $\omega$  définit la pulsation (en radians par seconde) du courant sinusoïdal, alors

- $\triangleright$  l'impédance d'une résistance est  $Z_R := R$ , où R est la valeur (en ohms  $\Omega$ ) de la résistance,
- $\triangleright$  l'impédance d'un condensateur est  $Z_C := \frac{1}{jC\omega}$ , où C est la capacité (en farad F) du condensateur,
- $\triangleright$  l'impédance d'une bobine est  $Z_L := jL\omega$ , où L est l'inductance (en henry H) de la bobine.

L'impédance complexe d'un circuit se calcule en suivant les règles suivantes :

▷ l'impédance d'éléments en série est la somme des impédances,

$$I \longrightarrow Z_1 \qquad Z_2 \qquad \text{est \'equivalent \`a} \qquad \longrightarrow Z_{tot} \qquad \text{avec } Z_{tot} = Z_1 + Z_2$$

⊳ si on a des éléments en parallèle, l'inverse de l'impédance du circuit est la somme des inverses des impédances. Donc, dans ce cas, ce sont les admittances qui s'additionnent.



#### Exemple

Pour le circuit suivant :



avec 
$$Z_{tot} = Z_R + \frac{1}{\frac{1}{Z_L} + \frac{1}{Z_C}} = R + \frac{1}{\frac{1}{jL\omega} + \frac{1}{\frac{1}{jC\omega}}} = R + \frac{jL\omega}{1 + (jC\omega)(jL\omega)} = R + \frac{jL\omega}{1 - CL\omega^2}$$

#### **S** Exercice 19.

Calculer l'impédance complexe du circuit suivant :



#### Chapitre 2 - Séquence 2

#### Écriture géométrique d'un nombre complexe

#### Représentation géométrique 4

Soit le plan muni d'un repère orthonormé  $(O, \vec{u}, \vec{v})$ .

#### **Définition**: Image d'un nombre complexe

A tout nombre complexe z := a + ib (avec  $a, b \in \mathbb{R}$ ), on associe le point  $M_z$  de coordonnées cartésiennes (a, b).

Le point  $M_z$  est appelé image du nombre complexe z dans le plan.



### 🐧 Remarques

 $\triangleright$  Si  $z \neq 0$ , son image  $M_z$  est distincte de  $O: M_z \neq O$ .

ightharpoonup La longueur de  $OM_z$  est égale à  $\sqrt{a^2+b^2}=|z|$ .

#### **Définition**: Argument d'un nombre complexe

Soient  $z \in \mathbb{C}$  tel que  $z \neq 0$  et  $M_z$  son image dans le plan.

Toute mesure  $\theta$  en radians de l'angle  $(\overrightarrow{u}, \overrightarrow{OM_z})$  est appelée **argument** de z, noté arg(z):

$$arg(z) := \theta + 2k\pi, \ k \in \mathbb{Z}.$$



#### • Exemples

Soient les nombres complexes suivants :

$$z_1 \coloneqq 1, \quad z_2 \coloneqq 1 + i, \quad z_3 \coloneqq i, \quad z_4 \coloneqq -1.$$

À partir de leur image dans le plan, il est possible de déduire leurs arguments (où  $k \in \mathbb{Z}$ ):



$$\arg(z_1) = 0 + 2k\pi$$



$$arg(z_2) = \frac{\pi}{4} + 2k\pi$$







$$arg(z_4) = \pi + 2k\pi$$

### 0 Remarques

- $\triangleright$  Le nombre complexe z = 0 n'a pas d'argument.
- $\triangleright$  Un nombre complexe non nul possède une infinité d'arguments : si  $\theta$  est un argument de z, alors  $\theta + 2k\pi$   $(k \in \mathbb{Z})$  est aussi un argument de z.
- $\,\rhd\,$  De la représentation graphique, on déduit

$$\mathcal{R}e(z) = |z|\cos\theta$$
 et  $\mathcal{I}m(z) = |z|\sin\theta$ .

#### Propriétés : Écriture trigonométrique d'un nombre complexe

Soit  $z \in \mathbb{C}^*$  et soit  $\theta$  un argument de z. Alors,

$$z \coloneqq |z|(\cos\theta + i\sin\theta).$$

C'est la forme trigonométrique du nombre complexe z.



#### 0 Remarque

La position du point  $M_z$  dans le plan peut-être obtenue à l'aide simplement du module |z|et d'un argument  $\theta$ . Le couple  $(|z|, \theta)$  est appelé coordonnées polaires de z.



 ${f M\acute{e}thode}-{\it Calculer}\ {\it un}\ {\it argument}\ {\it d'un}\ {\it nombre}\ {\it complexe}\ {\it z}$ 

- 1. Vérifier que  $z \neq 0$ .
- 2. Déterminer sa forme algébrique z = a + ib.
- 3. Calculer son module |z|.
- 4. Trouver un angle  $\theta$  tel que  $\cos \theta = \frac{a}{|z|}$  et  $\sin \theta = \frac{b}{|z|}$ .

### • Exemples

 $\triangleright$  Pour  $z_1 := 1$ , on a  $|z_1| = 1$ . D'où,

$$\begin{cases} \cos \theta_1 &= 1\\ \sin \theta_1 &= 0 \end{cases} \quad \text{donc} \quad \theta_1 = 0 + 2k\pi, \ k \in \mathbb{Z}.$$

 $ightharpoonup ext{Pour } z_2 := 1 + i, ext{ on a } |z_2| = \sqrt{1^2 + 1^2} = \sqrt{2}. ext{ Ainsi, } z_2 = \sqrt{2} \left( \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} i \right).$ 

$$\begin{cases} \cos \theta_2 &= \frac{\sqrt{2}}{2} \\ \sin \theta_2 &= \frac{\sqrt{2}}{2} \end{cases} \quad \text{donc} \quad \theta_1 = \frac{\pi}{4} + 2k\pi, \ k \in \mathbb{Z}.$$

 $\triangleright$  Pour  $z_3 \coloneqq i$ , on a  $|z_3| = 1$ . D'où,  $\cos \theta_3 = 0$  et  $\sin \theta_3 = 1$ . Donc,  $\theta_3 = \frac{\pi}{2} + 2k\pi$ ,  $k \in \mathbb{Z}$ .

 $\triangleright$  Pour  $z_4 := -1$ , on a  $|z_4| = 1$ . D'où,  $\cos \theta_4 = -1$  et  $\sin \theta_4 = 0$ . Donc,  $\theta_4 = \pi + 2k\pi$ ,

#### Formulation exponentielle 5

### 0 Remarque

Soient deux nombres complexes :

$$z_1 := \cos \theta + i \sin \theta$$
 et  $z_2 := \cos \theta' + i \sin \theta'$ 

Remarquons que

$$z_1 z_2 := (\cos \theta + i \sin \theta) (\cos \theta' + i \sin \theta')$$

$$= \cos \theta \cos \theta' + i \sin \theta \cos \theta' + i \sin \theta' \cos \theta - \sin \theta \sin \theta'$$

$$= \cos \theta \cos \theta' - \sin \theta \sin \theta' + i (\sin \theta \cos \theta' + \sin \theta' \cos \theta)$$

$$= \cos(\theta + \theta') + i \sin(\theta + \theta').$$

Ainsi, un argument du produit  $z_1z_2$  est la somme des arguments de  $z_1$  et  $z_2$ . Ce résultat, déterminé en utilisant les propriétés de calculs dans les complexes et les formules d'addition du chapitre Trigonométrie, met en évidence une propriété qui peut faire penser à l'exponentielle. En effet, on sait que :

$$e^x e^y = e^{x+y}$$
.

#### **Définition**: Écriture exponentielle d'un nombre complexe

Soit  $\theta \in \mathbb{R}$ . Posons

$$\exp(i\theta) = e^{i\theta} := \cos\theta + i\sin\theta.$$

Soit  $z \in \mathbb{C}^*$  et  $\theta$  un de ses arguments, alors

$$z = |z| \exp(i\theta) = |z| e^{i\theta}$$
.

C'est la forme exponentielle du nombre complexe z.

#### Exemple

Reprenons les nombres complexes  $z_1 \coloneqq 1, z_2 \coloneqq 1+i, z_3 \coloneqq i, z_4 \coloneqq -1$ . Pour chacun de ces

nombres, le module et un argument ont déjà été calculés dans l'exemple précédent. Ainsi, 
$$\triangleright z_1 = |z_1| \exp(i\theta_1) = e^{i0}, \qquad \qquad \triangleright z_3 = |z_3| \exp(i\theta_3) = e^{i\frac{\pi}{2}}, \\ \triangleright z_2 = |z_2| \exp(i\theta_2) = \sqrt{2} e^{i\frac{\pi}{4}}, \qquad \qquad \triangleright z_4 = |z_4| \exp(i\theta_4) = e^{i\pi}.$$

# Exercice 1.

Déterminer la forme exponentielle des nombres complexes suivants :

1) 
$$z_1 := 1 - i$$
, 2)  $z_2 := \frac{\sqrt{3}}{2} + \frac{1}{2}i$ , 3)  $z_3 := -3 + \sqrt{3}i$ .

#### Notation

On note  $\mathbb{R}_+^*$  l'ensemble des nombres réels strictement positifs. Autrement dit, on a

$$\mathbb{R}_{+}^{*} \coloneqq \{x \in \mathbb{R} \mid x > 0\}.$$

#### Propriétés

Soient  $z_1 := r_1 e^{i\theta_1}$  et  $z_2 := r_2 e^{i\theta_2}$  avec  $r_1, r_2 \in \mathbb{R}_+^*$  et  $\theta_1, \theta_2 \in \mathbb{R}$ . Alors

$$(z_1 = z_2) \iff (r_1 = r_2 \quad et \quad \theta_1 = \theta_2 + 2k\pi, \ k \in \mathbb{Z}).$$

# 🔼 Attention

Les arguments sont égaux à  $2k\pi$  près,  $k \in \mathbb{Z}$ .

#### **Propriétés**

Soit  $\theta \in \mathbb{R}$ . Alors

$$|e^{i\theta}| = 1$$
  $et$   $\overline{e^{i\theta}} = e^{-i\theta} = \frac{1}{e^{i\theta}}$ .

### (i) Remarque

Ces deux propriétés se démontrent assez facilement grâce aux propriétés trigonométriques :

$$\cos^2 \theta + \sin^2 \theta = 1$$
,  $\cos(-\theta) = \cos \theta$  et  $\sin(-\theta) = -\sin \theta$ 

$$\triangleright |e^{i\theta}| = \sqrt{\cos^2 \theta + \sin^2 \theta} = \sqrt{1} = 1.$$

$$\cos^2 \theta + \sin^2 \theta = 1, \qquad \cos(-\theta) = \cos \theta \quad \text{et} \quad \sin(-\theta) = -\sin \theta$$

$$\triangleright |e^{i\theta}| = \sqrt{\cos^2 \theta + \sin^2 \theta} = \sqrt{1} = 1.$$

$$\triangleright \overline{e^{i\theta}} = \cos \theta - i \sin \theta = \cos(-\theta) + i \sin(-\theta) = e^{-i\theta} = \frac{1}{e^{i\theta}}.$$

#### Propriétés : Formule de Moivre

Soient  $n \in \mathbb{Z}$  et  $\theta \in \mathbb{R}$ . Alors

$$(e^{i\theta})^n = e^{in\theta}$$
.

C'est-à-dire

$$(\cos \theta + i \sin \theta)^n = \cos n\theta + i \sin n\theta.$$

#### Remarque

Les outils présentés dans le chapitre de trigonométrie permettent aisément de démontrer ce résultat dans le cas où n := 2. En effet, on a

$$(\cos\theta + i\sin\theta)^2 = (\cos\theta)^2 + 2(\cos\theta)(i\sin\theta) + (i\sin\theta)^2 = (\cos^2\theta - \sin^2\theta) + i(2\cos\theta\sin\theta).$$

18

Or, d'après les formules d'addition trigonométrique,

$$cos(2\theta) = cos^2 \theta - sin^2 \theta$$
 et  $sin(2\theta) = 2 cos \theta sin \theta$ .

Donc, on a  $(\cos \theta + i \sin \theta)^2 = \cos(2\theta) + i \sin(2\theta)$ .

### **S** Exercice 2.

- 1) Développer l'expression  $(\cos \theta + i \sin \theta)^3$ .
- 2) Écrire la formule de Moivre pour  $(\cos \theta + i \sin \theta)^3$ .
- 3) En identifiant les parties réelles et imaginaires des deux expressions obtenues, déterminer  $\cos 3\theta$  en fonction de  $\cos \theta$ .

#### Propriétés : Formules d'Euler

Soit  $\theta \in \mathbb{R}$ . Alors

$$\cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2}$$
  $et$   $\sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2i}$ .

# **Exemple** – Linéarisation d'un cosinus

Linéarisons  $\cos^2\theta,$  c'est-à-dire exprimons  $\cos^2\theta$  à l'aide de  $\cos(2\theta).$  On a

$$\cos^2 \theta = (\cos \theta)^2 = \left(\frac{e^{i\theta} + e^{-i\theta}}{2}\right)^2 = \frac{1}{4} \left( (e^{i\theta})^2 + 2e^{i\theta} e^{-i\theta} + (e^{-i\theta})^2 \right).$$

Or, d'après les formules de Moivre  $(e^{i\theta})^2 = e^{i2\theta}$  et  $(e^{-i\theta})^2 = e^{-2i\theta}$ . De plus,  $e^{i\theta} e^{-i\theta} = e^0 = 1$ . Donc,  $\cos^2 \theta = \frac{1}{4} (2\cos(2\theta) + 2) = \frac{\cos(2\theta) + 1}{2}$ .

### Remarque

Déterminer une expression de  $\sin^n \theta$   $(n \in \mathbb{N})$  en fonction de  $\sin(m\theta)$  et  $\cos(m\theta)$ , où m est un entier compris entre 1 et n, revient à **linéariser** cette expression.

### **S** Exercice 3.

- 1) Reprendre la démarche de l'exemple pour écrire  $\sin^3\theta$  en fonction de  $\sin\theta$  et de  $\sin3\theta$ .
- 2) Faire de même pour  $\cos^3 \theta$ .

#### Propriétés

Soient z,  $z_1$  et  $z_2$  des nombres complexes non nuls d'arguments respectifs  $\theta, \theta_1$  et  $\theta_2$ . Alors

19

$$> z_1 z_2 = |z_1||z_2| e^{i(\theta_1 + \theta_2)}, \qquad > \frac{1}{z} = \frac{1}{|z|} e^{-i\theta}, \qquad \qquad > \frac{z_1}{z_2} = \frac{|z_1|}{|z_2|} e^{i(\theta_1 - \theta_2)}.$$

 $ightharpoonup Pour tout n \in \mathbb{Z}, z^n = |z|^n e^{in\theta}.$ 

#### Notation

En mathématiques, le symbole  $\forall$  signifie **pour tout** ou encore **quelque soit**.

Ainsi, la propriété « Pour tout  $n\in\mathbb{Z},\,z^n=|z|^n\,\mathrm{e}^{in\theta}$  » se note :

$$\forall n \in \mathbb{Z}, \quad z^n = |z|^n e^{in\theta}.$$

# Exemple

Soient  $z_1 \coloneqq 1 - i$  et  $z_2 \coloneqq 1 + \sqrt{3}i$ . Alors,  $z_1 = \sqrt{2} e^{-i\frac{\pi}{4}}$  et  $z_2 = 2 e^{i\frac{\pi}{3}}$ . Donc,  $z \coloneqq z_1 z_2 = 2\sqrt{2} e^{i\frac{\pi}{12}}$ . De plus,  $z^2 = (2\sqrt{2} e^{i\frac{\pi}{12}})^2 = (2\sqrt{2})^2 e^{i2\frac{\pi}{12}} = 8 e^{i\frac{\pi}{6}} = 8 \left(\frac{\sqrt{3}}{2} + i\frac{1}{2}\right) = 4\sqrt{3} + 4i.$ 

$$z^{2} = (2\sqrt{2}e^{i\frac{\pi}{12}})^{2} = (2\sqrt{2})^{2}e^{i2\frac{\pi}{12}} = 8e^{i\frac{\pi}{6}} = 8\left(\frac{\sqrt{3}}{2} + i\frac{1}{2}\right) = 4\sqrt{3} + 4i.$$

### Exercice 4.

Soit  $z := \frac{32}{(\sqrt{3} + i)^9}$ .

- 1) Calculer une forme exponentielle de  $\sqrt{3} + i$ .
- 2) En déduire une forme exponentielle de z puis donner sa forme algébrique.

# Correction des exercices

### Scorrection de l'Exercice 1.

1) On a  $|z_1| = \sqrt{1+1} = \sqrt{2}$ . D'où,

$$\cos \theta_1 = \frac{1}{\sqrt{2}}$$
 et  $\sin \theta_1 = -\frac{1}{\sqrt{2}}$   $\Rightarrow$   $\theta_1 = -\frac{\pi}{4} + 2k\pi, \ k \in \mathbb{Z}.$ 

Donc,  $z_1 = \sqrt{2} e^{i\frac{\pi}{4}}$ .

**2)** On a  $|z_2| = \sqrt{\frac{3}{4} + \frac{1}{4}} = 1$ . D'où

$$\cos \theta_2 = \frac{\sqrt{3}}{2}$$
 et  $\sin \theta_2 = \frac{1}{2}$   $\Rightarrow$   $\theta_2 = \frac{\pi}{6} + 2k\pi, \ k \in \mathbb{Z}.$ 

Donc,  $z_2 = e^{i\frac{\pi}{6}}$ .

3) On a  $|z_3| = \sqrt{9+3} = \sqrt{12} = 2\sqrt{3}$ . D'où,

$$\cos \theta_3 = -\frac{3}{2\sqrt{3}} = -\frac{\sqrt{3}}{2}$$
 et  $\sin \theta_3 = \frac{\sqrt{3}}{2\sqrt{3}} = \frac{1}{2}$   $\Rightarrow$   $\theta_3 = \frac{5\pi}{6} + 2k\pi, \ k \in \mathbb{Z}.$ 

Donc,  $z_3 = 2\sqrt{3} e^{i\frac{5\pi}{6}}$ .

#### Correction de l'Exercice 2.

D'après la formule de Moivre, on a :

$$(\cos \theta + i \sin \theta)^3 = \cos(3\theta) + i \sin(3\theta).$$

Or

$$(\cos \theta + i \sin \theta)^3 = (\cos \theta)^3 + 3(\cos \theta)^2 (i \sin \theta) + 3(\cos \theta)(i \sin \theta)^3 + (i \sin \theta)^3$$
$$= \cos^3 \theta + 3i \cos^2 \theta \sin \theta - 3\cos \theta \sin^2 \theta - i \sin^3 \theta$$
$$= \cos^3 \theta - 3\cos \theta \sin^2 \theta + i(3\cos^2 \theta \sin \theta - \sin^3 \theta).$$

En identifiant les parties réelles et imaginaires, on obtient

$$\cos(3\theta) = \cos^3 \theta - 3\cos\theta \sin^2 \theta = \cos^3 \theta - 3\cos\theta (1 - \cos^2 \theta)$$
$$= 4\cos^3 \theta - 3\cos\theta$$
$$\sin(3\theta) = 3\cos^2 \theta \sin\theta - \sin^3 \theta = 3(1 - \sin^2 \theta)\sin\theta - \sin^3 \theta$$
$$= 3\sin\theta - 4\sin^3 \theta.$$

#### Correction de l'Exercice 3.

Exprimons  $\sin^3 \theta$  à l'aide de  $\sin \theta$  et  $\sin(3\theta)$ . On a

$$\sin^{3}\theta = (\sin\theta)^{3} = \left(\frac{e^{i\theta} - e^{-i\theta}}{2i}\right)^{3}$$

$$= \frac{1}{-8i}(e^{i3\theta} - 3e^{i2\theta}e^{-i\theta} + 3e^{i\theta}e^{-i2\theta} - e^{-i3\theta})$$

$$= \frac{1}{-8i}(e^{i3\theta} - e^{-i3\theta} - 3e^{i\theta} + 3e^{-i\theta})$$

$$= -\frac{1}{4}\left(\frac{e^{i3\theta} - e^{-i3\theta}}{2i} - 3\frac{e^{i\theta} - e^{-i\theta}}{2i}\right) = -\frac{1}{4}\left(\sin(3\theta) - 3\sin(\theta)\right).$$

Exprimons  $\cos^3 \theta$  à l'aide de  $\cos \theta$  et  $\cos(3\theta)$ . On a

$$\cos^{3}\theta = (\cos\theta)^{3} = \left(\frac{e^{i\theta} + e^{-i\theta}}{2}\right)^{3}$$

$$= \frac{1}{8}(e^{i3\theta} + 3e^{i2\theta}e^{-i\theta} + 3e^{i\theta}e^{-i2\theta} + e^{-i3\theta})$$

$$= \frac{1}{8}(e^{i3\theta} + e^{-i3\theta} + 3e^{i\theta} + 3e^{-i\theta})$$

$$= \frac{1}{4}\left(\frac{e^{i3\theta} + e^{-i3\theta}}{2} + 3\frac{e^{i\theta} + e^{-i\theta}}{2}\right) = \frac{1}{4}\left(\cos(3\theta) + 3\cos(\theta)\right).$$

#### Correction de l'Exercice 4.

1) On a

$$|\sqrt{3}+i|=\sqrt{3+1}=2,\quad\cos\theta=\frac{\sqrt{3}}{2},\quad\sin\theta=\frac{1}{2}.$$
 D'où,  $\theta=\frac{\pi}{6}+2k\pi,k\in\mathbb{Z}.$  Donc,  $\sqrt{3}+i=2\operatorname{e}^{i\frac{\pi}{6}}.$ 

**2)** On a

$$z = \frac{32}{(\sqrt{3} + i)^9} = \frac{32}{\left(2e^{i\frac{\pi}{6}}\right)^9} = \frac{2^5}{2^9}e^{-i\frac{3\pi}{2}} = \frac{1}{2^4}e^{-i\frac{3\pi}{2}} = \frac{1}{16}\left(\cos\left(\frac{3\pi}{2}\right) - i\sin\left(\frac{3\pi}{2}\right)\right) = \frac{1}{16}i.$$

#### Chapitre 2

#### Feuille d'exercices de la séquence 2

#### **Exercice** 1.

Soit z := 2 + i. Placer dans un plan le point  $M_z$  puis les points  $M_{\overline{z}}$ ,  $M_{-z}$  et  $M_{-\overline{z}}$ . Même question pour z := -1 + 2i et z := 3 - i.

#### Exercice 2.

Déterminer la relation vérifiée par tous les nombres complexes z := a + ib (avec  $a, b \in \mathbb{R}$ ) solutions de l'équation |z| = 1. Géométriquement, que représentent les solutions de cette équation dans le plan?

### **Exercice** 3.

Déterminer la forme exponentielle des nombres complexes suivants :

1) 
$$z_1 := \frac{1}{2} + \frac{\sqrt{3}}{2}i$$
,

**2)** 
$$z_2 := 1 + \sqrt{3}i$$
,

3) 
$$z_3 := 3 - 3i$$
,

4) 
$$z_4 := -1 + \sqrt{3}i$$
,

$$5) \ z_5 := -\frac{1}{4} - \frac{1}{4} i,$$

**6)** 
$$z_6 := 3 + 3\sqrt{3}i - 3i + 3\sqrt{3}$$
.

#### **Exercice** 4.

Soient  $\theta, \theta' \in \mathbb{R}$ . Montrer que

1) 
$$e^{i\theta} + e^{-i\theta} = 2\cos\theta$$
,

$$2) e^{i\theta} - e^{-i\theta} = 2i \sin \theta,$$

3) 
$$|e^{i\theta}| = 1$$
,

$$\mathbf{4)} \ \overline{\mathbf{e}^{i\theta}} = \mathbf{e}^{-i\theta},$$

$$5) e^{-i\theta} = \frac{1}{e^{i\theta}},$$

$$6) e^{i\theta} e^{i\theta'} = e^{i(\theta + \theta')},$$

7) 
$$\frac{e^{i\theta}}{e^{i\theta'}} = e^{i(\theta - \theta')}$$
,

8) 
$$(e^{i\theta})^2 = e^{i2\theta}$$
.

#### Exercice 5.

Soient  $z_1 := r_1 e^{i\theta_1}$  et  $z_2 := r_2 e^{i\theta_2}$  avec  $r_1, r_2 \in \mathbb{R}_+^*$  et  $\theta_1, \theta_2 \in \mathbb{R}$ .

- 1) Montrer que si  $r_1 = r_2$  et  $\theta_1 = \theta_2 + 2k\pi$  avec  $k \in \mathbb{Z}$ , alors  $z_1 = z_2$ .
- 2) Montrer que si  $z_1 = z_2$ , alors  $r_1 = r_2$  et il existe  $k \in \mathbb{Z}$  tel que  $\theta_1 = \theta_2 + 2k\pi$ .
- 3) Que peut-on en déduire?

#### **S** Exercice 6.

Soit  $z := \frac{2+2i}{1-i}$ . Déterminer

1) sa partie réelle,

2) sa partie imaginaire,

3) son module,

4) sa forme exponentielle.

En déduire une simplification de  $z^5$ .

#### Exercice 7.

Calculer le module et les arguments des nombres complexes  $u:=\frac{\sqrt{6}-i\sqrt{2}}{2}$  et v:=-1+i. En déduire le module et les arguments de w := uv.

#### S Exercice 8.

Simplifier  $z := \left(\frac{-\sqrt{2} + 3\sqrt{2}i}{-2+i}\right)^3$ .

### Exercice 9.

Soient  $z := 2\sqrt{3} + 2i$ ,  $z_1 := (1 + \sqrt{3}) + (1 - \sqrt{3})i$  et  $z_2 := \frac{z}{z_1}$ .

- 1) Donner la forme algébrique de  $z_2$ , puis sa forme exponentielle.
- 2) Donner la forme exponentielle de z.
- 3) En déduire la forme exponentielle de  $z_1$ , ainsi que les valeurs exactes de  $\cos \frac{\pi}{12}$  et  $\sin \frac{\pi}{12}$ .

### Exercice 10.

Écrire les nombres complexes suivants sous forme exponentielle, puis sous forme algébrique :

1) 
$$z_1 := \left(-\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)^6$$
,

**2)** 
$$z_2 := (1+i)^9 (1-i)^7$$

1) 
$$z_1 := \left(-\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)^6$$
, 2)  $z_2 := (1+i)^9(1-i)^7$ , 3)  $z_3 := \left(\frac{-3+3i}{\sqrt{6}-\sqrt{18}i}\right)^6$ .

### **Exercice** 11.

Soit  $\delta := i$ .

- 1) Déterminer la forme exponentielle de  $\delta$ .
- 2) Soit  $\Delta := r e^{i\theta}$  avec  $r \in \mathbb{R}_+^*$ ,  $\theta \in \mathbb{R}$ . Quelles sont les valeurs de r et de  $\theta$  telles que  $\Delta^2 = \delta$ ?

#### Exercice 12.

Soit  $\delta := -3 + \sqrt{3}i$ .

- 1) Déterminer la forme exponentielle de  $\delta$ .
- 2) Soit  $\Delta := r e^{i\theta}$  avec  $r \in \mathbb{R}_+^*$ ,  $\theta \in \mathbb{R}$ . Quelles sont les valeurs de r et de  $\theta$  telles que  $\Delta^2 = \delta$ ?

#### Résolution d'équations du second degré

# 6 Résolution d'équations du second degré à coefficients réels

Les nombres complexes permettent de résoudre les équations de second degré de discriminant négatif. Plus précisément, on a le résultat suivant concernant les équations du second degré :

#### Théorème

Soient  $a, b, c \in \mathbb{R}$ , avec  $a \neq 0$ , et  $\Delta := b^2 - 4ac$  le discriminant du polynôme de second degré  $P(x) := ax^2 + bx + c$ .

 $ightharpoonup Si \Delta > 0$ , le polynôme P admet deux racines réelles qui sont

$$x_1 = \frac{-b + \sqrt{\Delta}}{2a}$$
 et  $x_2 = \frac{-b - \sqrt{\Delta}}{2a}$ ,

et P(x) se factorise sous la forme

$$P(x) = a(x - x_1)(x - x_2).$$

 $ightharpoonup Si \Delta = 0$ , le polynôme P admet une unique racine réelle (dite double) :

$$x_0 = \frac{-b}{2a},$$

et P(x) se factorise sous la forme

$$P(x) = a(x - x_0)^2.$$

 $\triangleright$  Si  $\Delta$  < 0, le polynôme P admet deux racines complexes conjuguées qui sont

$$z_1 = \frac{-b + i\sqrt{-\Delta}}{2a}$$
 et  $z_2 = \overline{z_1} = \frac{-b - i\sqrt{-\Delta}}{2a}$ ,

et P(x) se factorise sous la forme

$$P(x) = a(x - z_1)(x - z_2).$$

#### Remarques

- $\triangleright$  Lorsque  $\Delta < 0$ , on a  $-\Delta > 0$  et donc  $\sqrt{-\Delta}$  est bien définie.
- Dans le cas où le discriminant est négatif, on note les racines de P par la lettre z pour mettre en évidence le fait que celles-ci sont complexes. De plus, on écrit alors P(z) au lieu de P(x), ainsi la factorisation de P(z) lorsque  $\Delta < 0$  s'écrit plutôt

$$P(z) = a(z - z_1)(z - z_2).$$

Démonstration. La démonstration est supposée connue dans le cas  $\Delta \geq 0$ , on ne montre donc que le cas où  $\Delta < 0$ .

Le polynôme P s'écrit sous forme canonique :

$$P(z) = a\left(z + \frac{b}{2a}\right)^2 - \frac{\Delta}{4a} = a\left[\left(z + \frac{b}{2a}\right)^2 - \frac{\Delta}{4a^2}\right] = a\left[\left(z + \frac{b}{2a}\right)^2 - \frac{\Delta}{(2a)^2}\right].$$

Supposons  $\Delta < 0$ . Alors,  $-\Delta > 0$  et  $(i\sqrt{-\Delta})^2 = \Delta$ .

On en déduit

$$P(z) = a \left[ \left( z + \frac{b}{2a} \right)^2 - \frac{(i\sqrt{-\Delta})^2}{(2a)^2} \right] = a \left[ \left( z + \frac{b}{2a} \right)^2 - \left( \frac{i\sqrt{-\Delta}}{2a} \right)^2 \right]$$
$$= a \left( z + \frac{b}{2a} - \frac{i\sqrt{-\Delta}}{2a} \right) \left( z + \frac{b}{2a} + \frac{i\sqrt{-\Delta}}{2a} \right)$$
$$= a \left( z - \frac{-b + i\sqrt{-\Delta}}{2a} \right) \left( z - \frac{-b - i\sqrt{-\Delta}}{2a} \right) = a(z - z_1)(z - z_2).$$

On obtient ainsi la factorisation de P(z). De plus, on en déduit alors que P(z) = 0 si et seulement si  $z = z_1$  ou  $z = z_2$ , ce qui donne le résultat.



On considère l'équation

$$3z^2 - 3z + 1 = 0.$$

La discriminant du polynôme  $3z^2-3z+1$  est  $\Delta=9-12=-3$ . Les solutions de l'équation sont donc

$$z_1 = \frac{3 - i\sqrt{3}}{6}$$
 et  $z_2 = \frac{3 + i\sqrt{3}}{6}$ .

### **Exercice** 1.

Résoudre dans  $\mathbb{C}$  les équations suivantes :

1) 
$$z^2 + z + 1 = 0$$
,

2) 
$$z^2 + 4 = 0$$
.

#### Exercice 2.

À quelles conditions sur  $k \in \mathbb{R}$ , l'équation  $z^2 + kz + 1 = 0$  admet deux solutions complexes non réelles? Déterminer alors ces solutions.

#### 7 Racines carrées d'un nombre complexe

#### Définition

Soit  $\Delta$  un nombre complexe donné. Le nombre  $\delta \in \mathbb{C}$  est appelé **racine carrée** de  $\Delta$  si  $\delta^2 = \Delta$ .



#### 

Si  $\Delta$  n'est pas un réel positif, il est **interdit** d'écrire «  $\sqrt{\Delta}$  ».

L'objectif est de résoudre dans  $\mathbb{C}$  l'équation d'inconnue  $\delta$ 

$$\delta^2 = \Delta$$
,

Si  $\Delta = 0$ , il est clair que la seule solution est  $\delta = 0$ .

Supposons maintenant que  $\Delta \neq 0$ . Pour résoudre cette équation, il faut utiliser l'une des méthodes suivantes:

- > la méthode trigonométrique,
- > la méthode algébrique.

#### **Propriétés**

Soit  $\theta$  un argument du nombre complexe  $\Delta \neq 0$ . Alors, l'équation  $\delta^2 = \Delta$  admet deux solutions:

$$\delta_1 = \sqrt{|\Delta|} e^{\left(i\frac{\theta}{2}\right)}$$
 et  $\delta_2 = -\sqrt{|\Delta|} e^{\left(i\frac{\theta}{2}\right)}$ .



 ${f M\acute{e}thode}-{f m\acute{e}thode}$  trigonométrique pour le calcul d'une racine d'un complexe

- 1. Calculer une forme exponentielle de  $\Delta$ , c'est-à-dire  $\Delta = |\Delta| e^{i\theta}$ .
- 2. Les solutions de l'équation  $\Delta = \delta^2$  sont  $\pm \sqrt{|\Delta|} e^{\left(i\frac{\theta}{2}\right)}$ .



Résolvons l'équation  $\delta^2 = 2i$  par la méthode trigonométrique. Posons  $\Delta = 2i$ .

1. Calculons une forme exponentielle de  $\Delta$ . On a  $|\Delta|=2$ , d'où  $\Delta=2(0+i)$ . Donc

$$\left\{ \begin{array}{lll} \cos(\theta) & = & 0, \\ \sin(\theta) & = & 1. \end{array} \right.$$

Ainsi,  $\theta = \frac{\pi}{2}$  est un argument qui convient. Donc,  $\Delta = 2\exp(i\frac{\pi}{2})$ .

2. Les solutions de l'équation  $\delta^2 = 2i$  sont donc

$$\delta = \pm \sqrt{2} \exp\left(i\frac{\pi}{4}\right) = \pm \sqrt{2} \left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right) = \pm \sqrt{2} \left(\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}\right) = \pm (1+i).$$

# \right Remarque

La méthode trigonométrique peut être difficile à utiliser si on ne connait pas un argument de  $\Delta$ . Dans ce cas, il sera nécessaire d'utiliser la **méthode algébrique**.

### Propriétés

Supposons que  $\Delta = a + ib$ , où a et b sont deux réels. Alors, l'équation  $\delta^2 = \Delta$  admet deux solutions de la forme  $\delta = x + iy$ , où x et y sont solutions du système :

$$\begin{cases} |\delta|^2 &= x^2 + y^2 = \sqrt{a^2 + b^2} = |\Delta|, \\ \mathcal{R}e(\delta^2) &= x^2 - y^2 = a, \\ \mathcal{I}m(\delta^2) &= 2xy = b. \end{cases}$$



Méthode – méthode algébrique pour le calcul d'une racine carrée d'un complexe

- 1. Calculer une forme algébrique de  $\Delta$ , c'est-à-dire déterminer les réels a et b tels que  $\Delta = a + ib$ .
- 2. Écrire et résoudre le système

$$\begin{cases} x^2 + y^2 &= \sqrt{a^2 + b^2}, \\ x^2 - y^2 &= a, \\ 2xy &= b. \end{cases}$$

où x et y sont les inconnues.

3. Pour chaque couple (x,y) trouvé,  $\delta = x + iy$  est une solution de l'équation  $\Delta = \delta^2$ .



#### Exemple

Résolvons l'équation  $\delta^2 = -3 + 4i$  par la methode algébrique. Posons  $\Delta = -3 + 4i$ .

- 1. Le nombre  $\Delta$  est déjà sous forme algébrique avec a=-3 et b=4.
- 2. Cherchons  $\delta = x + iy$  tel que  $\delta^2 = \Delta$ . On a  $|\Delta| = 5$ , d'où on obtient le système :

$$\delta^{2} = -3 + 4i \quad \Rightarrow \quad \begin{cases} x^{2} + y^{2} = 5, \\ x^{2} - y^{2} = -3, \\ 2xy = 4. \end{cases}$$

En additionnant les 2 premières équations, on obtient

$$2x^2 = 2 \quad \text{donc} \quad x = \pm 1.$$

En soustrayant ces 2 mêmes équations, on obtient

$$2y^2 = 8 \quad \text{donc} \quad y = \pm 2.$$

D'après la troisième équation, on a 2xy = 4 > 0. D'où, les nombres x et y sont de même signe. Ainsi, les solutions possibles du système sont :

$$(x = 1 \text{ et } y = 2)$$
 ou  $(x = -1 \text{ et } y = -2).$ 

3. Donc, les solutions de  $\delta^2 = -3 + 4i$  sont  $\delta_1 = 1 + 2i$  ou  $\delta_2 = -1 - 2i$ .



#### **S** Exercice 3.

Résoudre dans  $\mathbb{C}$  les équations suivantes :

1) 
$$\delta^2 = \sqrt{2} - i\sqrt{2}$$
.

2) 
$$\delta^2 = -3 - 4i$$
.

#### Résolution d'équations du second degré à coefficients 8 complexes

#### Propriétés

Soit l'équation du second dégrée à coefficients complexes :

$$az^2 + bz + c = 0,$$

où a, b, c sont des complexes avec  $a \neq 0$ . Alors, les solutions de l'équation sont :

$$z_1 = \frac{-b+\delta}{2a}$$
  $et$   $z_2 = \frac{-b-\delta}{2a}$ ,

où  $\delta$  est une racine carrée du discriminant  $\Delta = b^2 - 4ac$ , c'est-à-dire  $\delta^2 = \Delta$ .

# $\mathbf{M\acute{e}thode} - \mathit{R\acute{e}solution}$ d'une équation du second degré à coefficients complexes

- 1. Identifier les coefficients complexes a, b et c; et vérifier que  $a \neq 0$ .
- 2. Calculer le discriminant complexe  $\Delta$ .
- 3. Trouver une racine carrée  $\delta$  de  $\Delta$ , c'est-à-dire résoudre l'équation  $\delta^2=\Delta$  à l'aide la méthode trigonométrique ou géométrique. Puis choisir une des solutions trouvées.
- 4. Calculer les solutions de l'équation :

$$z_1 = \frac{-b+\delta}{2a}$$
 et  $z_2 = \frac{-b-\delta}{2a}$ .

#### Exemple

Résolvons l'équation du second degré  $z^2 - (2+3i)z - 5 + i = 0$ .

- 1. Identifions les coefficients :  $a = 1 \neq 0$ , b = -2 3i et c = -5 + i.
- 2. Calculons le discriminant de l'équation :

$$\Delta = (2+3i)^2 - 4(-5+i) = 4 - 9 + 12i + 20 - 4i = 15 + 8i.$$

3. Déterminons une racine carrée  $\delta$  de  $\Delta = 15 + 8i$ . Résolvons l'équation :

$$\delta^2 = 15 + 8i$$
.

D'où,  $|\Delta| = \sqrt{15^2 + 8^2} = \sqrt{225 + 64} = \sqrt{289} = 17$ . Il n'est possible d'utiliser la méthode trigonométrique. Donc, utilisons la méthode algébrique en résolvant le système :

$$\int x^2 + y^2 = 17, (1)$$

$$\begin{cases} x^2 + y^2 = 17, & (1) \\ x^2 - y^2 = 15, & (2) \\ 2xy = 8 & (3) \end{cases}$$

$$2xy = 8. (3)$$

Or,

$$(1) + (2):$$
  $2x^2 = 32 \Leftrightarrow x = \pm 4.$ 

$$(1) - (2):$$
  $2y^2 = 2 \Leftrightarrow y = \pm 1.$ 

Et, d'après la troisième équation, on a xy = 4 > 0. Donc, les réels x et y sont de même signe, d'où

$$(x = 4 \text{ et } y = 1)$$
 ou  $(x = -4 \text{ et } y = -1).$ 

Ainsi, les solutions de  $\delta^2 = 15 + 8i$  sont  $\pm (4 + i)$ .

4. Il nous faut qu'une seule racine carrée. Choississons par exemple  $\delta = 4 + i$ . Alors, les deux solutions de l'équation du second degré sont :

$$z_1 = \frac{(2+3i)+(4+i)}{2} = 3+2i$$
 et  $z_2 = \frac{(2+3i)-(4+i)}{2} = -1+i$ .

#### Exercice 4.

Résoudre dans  $\mathbb{C}$  les équations suivantes :

a) 
$$3z^2 - 3z + 1 = 0$$
, b)  $z^2 + 16 = 0$ ,

**b)** 
$$z^2 + 16 = 0$$
,

c) 
$$z^2 - 2iz - 1 + 2i = 0$$
.

#### Correction des exercices

#### S Correction de l'Exercice 1.

1) L'équation  $z^2+z+1=0$  admet pour discriminant  $\Delta=1-4=-3<0$  qui est strictement négatif donc l'équation admet deux solutions complexes conjuguées :

$$z_{1,2} = \frac{-b \pm i\sqrt{-\Delta}}{2a} = \frac{-1 \pm i\sqrt{3}}{2}.$$

2) L'équation  $z^2 + 4 = 0$  admet pour discriminant  $\Delta = -16 < 0$  qui est strictement négatif donc l'équation admet deux solutions complexes conjuguées :

$$z_{1,2} = \frac{\pm i\sqrt{16}}{2} = \pm 2i.$$

3) L'équation  $z^2 - 4iz + 5 = 0$  n'est pas à coefficients réels (en effet on a b = -4i). On peut quand-même calculer son  $\Delta = (-4i)^2 - 20 = -16 - 20 = -36$ . Puisque  $\Delta$  est un nombre réel on peut quand-même utiliser la formule pour calculer les racines :

$$z_{1,2} = \frac{-b \pm i\sqrt{-\Delta}}{2a} = \frac{4i \pm i\sqrt{36}}{2} = \frac{4i \pm 6i}{2}.$$

On a donc

$$z_1 = \frac{4i+6i}{2} = 5i$$
 et  $z_2 = \frac{4i-6i}{2} = -i$ .

On remarque que dans ce cas les deux solutions ne sont plus conjuguées.

# Correction de l'Exercice 2.

On a  $\Delta = k^2 - 4$ , donc le discriminant est négatif si et seulement si  $k^2 - 4 < 0$ , c'est-à-dire si et seulement si -2 < k < 2.

Dans ce cas, pour tout  $k \in ]-2;2[$ , on a

$$z_{1,2} \frac{-k \pm i\sqrt{4-k^2}}{2}.$$

#### Correction de l'Exercice 3.

1) Posons  $\Delta = \sqrt{2} - i\sqrt{2}$ . D'où,  $|\Delta| = \sqrt{4} = 2$ . Appliquons la méthode trigonométrique. Or  $\Delta = 2\left(\frac{\sqrt{2}}{2} - i\frac{\sqrt{2}}{2}\right) = 2\exp(-i\frac{\pi}{4})$ . Donc, les solutions de l'équation  $\delta^2 = \sqrt{2} - i\sqrt{2}$  sont

$$\delta = \pm \sqrt{2} \exp\left(-i\frac{\pi}{8}\right).$$

2) Posons  $\Delta = -3 - 4i$ . D'où,  $|\Delta| = \sqrt{9 + 16} = 5$ . Il est pas possible de déterminer un argument de  $\Delta$ . Appliquons la *méthode algébrique*. En posant  $\delta = x + iy$ , on obtient le système à résoudre :

$$\delta^{2} = -3 - 4i \Rightarrow \begin{cases} x^{2} + y^{2} = 5, \\ x^{2} - y^{2} = -3, \\ 2xy = -4. \end{cases}$$

En additionnant les 2 premières équations, on obtient :

$$2x^2 = 2 \implies x^2 = 1 \implies x = \pm 1.$$

En soustrayant ces 2 mêmes équations, on obtient :

$$2y^2 = 8 \implies y^2 = 4 \implies y = \pm 23.$$

La troisième équation, 2xy = -4 < 0, nous donne que x et y sont de signe opposé :

$$(x = 1 \text{ et } y = -2)$$
 ou  $(x = -1 \text{ et } y = 2)$ 

En conclusion, les solutions de  $\delta^2 = -3 - 4i$  sont :

$$\delta_1 = 1 - 2i \qquad \text{ou} \qquad \delta_2 = -1 + 2i.$$

#### S Correction de l'Exercice 4.

- 1) On doit résoudre  $3z^2 3z + 1 = 0$ . On a  $\Delta = 9 12 = -3 < 0$ , donc  $z_{1,2} = \frac{+3 \pm i\sqrt{3}}{6}$ .
- 2) On a  $z^2 + 16 = z^2 (-16) = z^2 16i^2 = (z + 4i)(z 4i)$ , d'après l'identité remarquable  $a^2 b^2 = (a + b)(a b)$ . Donc les deux solutions de l'équation sont  $z_{1,2} = \pm 4i$ .
- 3) On doit résoudre  $z^2-2iz-1+2i=0$ . On a  $\Delta=(-2i)^2-4(-1+2i)=-4+4-8i=-8i\in\mathbb{C}$ . On applique la méthode algébrique pour déterminer  $\delta$  tel que  $\delta^2=\Delta$ . En posant  $\delta=x+iy$ , et en calculant le module de  $\Delta$ ,  $|\Delta|=8$ , on obtient le système à résoudre :

$$\delta^{2} = -8i \Rightarrow \begin{cases} x^{2} + y^{2} = 8, \\ x^{2} - y^{2} = 0, \\ 2xy = -8. \end{cases}$$

En additionnant les 2 premières équations, on obtient :

$$2x^2 = 8 \implies x^2 = 4 \implies x = \pm 2.$$

En soustrayant ces 2 mêmes équations, on obtient :

$$2y^2 = 8 \implies y^2 = 4 \implies y = \pm 2.$$

La troisième équation, 2xy = -8 < 0, nous donne que x et y sont de signe opposé :

$$(x = 2 \text{ et } y = -2)$$
 ou  $(x = -2 \text{ et } y = 2).$ 

En conclusion, une solution de  $\delta^2 = -8i$  est :  $\delta = 2 - 2i$  et donc

$$z_1 = \frac{2i + (2 - 2i)}{2} = 1$$
  $z_2 = \frac{2i - (2 - 2i)}{2} = -1 + 2i.$ 

#### Feuille d'exercices séquence 3

# **S** Exercice 1.

Résoudre dans  $\mathbb C$  les équations suivantes :

1) 
$$z^2 - z + 1 = 0$$

**2)** 
$$z^2 + 9 = 0$$

3) 
$$z^2 + 6z + 25 = 0$$

4) 
$$iz^2 + 4z - 5i = 0$$

#### **S** Exercice 2.

Résoudre dans  $\mathbb C$  les équations suivantes :

1) 
$$\delta^2 = 1 - i$$
,

**2)** 
$$\delta^2 = 2 + 2\sqrt{3}i$$
,

3) 
$$\delta^2 = -8 - 6i$$
,

4) 
$$\delta^2 = 1 + i\sqrt{3}$$
,

**5**) 
$$\delta^2 = 4 - i$$
,

**6)** 
$$\delta^2 = 5 - 12i$$
.

### **S** Exercice 3.

Déterminer les racines carrées de  $Z = \frac{1+i}{\sqrt{2}}$  sous forme algébrique puis sous forme exponentielle. En déduire les valeurs de  $\cos\left(\frac{\pi}{8}\right)$  et  $\sin\left(\frac{\pi}{8}\right)$ .

### **Exercice** 4.

Résoudre l'équation  $z^2 = \sqrt{3} + i$ . En déduire les valeurs de  $\cos\left(\frac{\pi}{12}\right)$  et  $\sin\left(\frac{\pi}{12}\right)$ .

#### Exercice 5.

Résoudre dans  $\mathbb C$  les équations suivantes :

1) 
$$z^2 + 3z + 4 = 0$$
,

2) 
$$z^2 - \sqrt{3}z - i = 0$$

3) 
$$z^2 - 2iz + 2(1+2i) = 0$$
,

4) 
$$iz^2 - 4iz - 2 + 4i = 0$$
,

5) 
$$z^4 = 1$$
,

**6)** 
$$z^4 - \sqrt{2}z^2 + 1 = 0$$
.

**Exercice 6.** – Généralisation de la méthode trigonométrique

Soit  $\Delta = r e^{i\theta}$  avec  $r \in \mathbb{R}^*_{\perp}$  et  $\theta \in \mathbb{R}$ .

- 1) Preuve de la méthode : Considérons  $\delta = r' e^{i\theta'}$ , avec  $r' \in \mathbb{R}_+^*$  et  $\theta' \in \mathbb{R}$ , tel que  $\delta^2 = \Delta$ . Montrer que  $r' = \sqrt{r}$  et  $\theta' = \frac{\theta}{2} + k\pi$  avec  $k \in \mathbb{Z}$ . En déduire que les solutions de  $\delta^2 = \Delta$  sont  $\pm \sqrt{r} e^{i\frac{\theta}{2}}$ .
- 2) Généralisation de la méthode : Soit  $n \in \mathbb{N}^*$ .

Le nombre  $\delta \in \mathbb{C}$  est dit racine n-ième de  $\Delta$  si  $\delta^n = \Delta$ .

Considérons  $\delta = r' e^{i\theta'}$ , avec  $r' \in \mathbb{R}$  et  $\theta' \in \mathbb{R}$ , tel que  $\delta^n = \Delta$ . Quelle relation existe-t-il entre r' et r? Même question entre  $\theta'$  et  $\theta$ ? En déduire une expression des racines n-ièmes de  $\Delta$ .

3) Application : Résoudre dans  $\mathbb C$  l'équation

$$\delta^6 = i.$$

**Exercice 7.** – Démonstration de la méthode algébrique

Soit  $\Delta=a+ib\neq 0$  avec a et b deux réels. Considérons  $\delta=x+iy$ , avec x et y deux réels, tel que  $\delta^2=\Delta$ .

- 1) Simplifier  $\delta^2$ . En déduire que  $x^2 y^2 = a$  et 2xy = b.
- 2) Montrer que  $|\delta^2| = |\delta|^2$ . En déduire que  $x^2 + y^2 = \sqrt{a^2 + b^2}$ .