Concept course "Cell Biology": 551-0326-00L Spring semester 2017

Autophagy

Dr. Werner Kovacs ETH Zürich, Institute of Molecular Health Sciences, HPL H16

werner.kovacs@biol.ethz.ch

The growth of autophagy research and historical landmarks

ETH zürich

Christian de Duve

Nobel Prize (1974)

Discovery of the lysosome, peroxisome, and autophagy

Yoshinori Ohsumi

Nobel Prize (2016)

Discovery of mechanisms underlying autophagy: **AuT**opha**G**y-related genes (ATGs)

Schematic depiction of autophagy in yeast and mammalian cells

Cvt: cytoplasm to vacuole targeting

PAS: Phagophore assembly site

Signaling regulation of mammalian autophagy

blue: stimulating factors red: inhibiting factors for autophagy

some reasonalble level of autophagy is needed to maintain homeostasis

Cell-wide metabolic rewiring associated with the activation of autophagy

not soo important

very important slide

Autophagic core machinery

ATG101 is a new component of the dashed mTORC1 process

ULK1/2: orthologues of yeast Atg1 **BARKOR**: Beclin-1-associated autophagy-related key regulator **UVRAG**: protein product of the

ultraviolet radiation resistance gene

AMBRA1: activating molecule in

Beclin-1-regulated autophagy **RUBICON**: RUN domain and

cysteine-rich domain

mTORC1: mTOR+ RAPTOR

mTORC2: mTOR + RICTOR

RAPTOR: reuglatory associated protein of mTOR RICTOR: rapamycin insensitive companion of mTOR

K /

2 ubiquitin-like conjugation systems

mTORC1/2 are simply complexes

Regulation of autophagy by Beclin 1 complexes

Beclin was found to have tumor suppressor functions. Antiapoptotic members of the Bcl-2 family: Bcl-2, Bcl-XI, Mcl-1

Processing of Atg8s

Mammalian Atg8 orthologues:

MAP1LC3A (LC3A)

MAP1LC3B (LC3B)

MAP1LC3C (LC3C)

GABARAP

GABARAPL1

GABARAPL2 (GATE-16)

Atg4

Atg4

Atg8

Atg4

Atg8-I

Atg8 is in yeast, in mammalians ther eare three; work very similarly, but there are tissue distribution differences. (can you think of a reason?)

The lipidated Atg8 form of MAP1LC3B is termed "LC3B-II".

The mammalian Atg8-I homolog, MAP1LC3B, is dubbed the "LC3B-I form"

The ATG16L1-ATG12-ATG5 complex is localized to autophagosomal membranes by WIPI2.

ETH zürich

one can increase ph value to inhibit degradation of proteins, LC3-processing to monitor autophagy I think-

GFP-LC3 processing to monitor autophagy

Localization of LC3 upon induction of autophagy

Effects of autophagy on disease progression

Principles of selective autophagy

The 4 key steps of selective autophagy

At the heart of this selectivity lies the LC3-interacting region (LIR) motif, which ensures the targeting of autophagy receptors to LC3 (or other ATG8 family proteins) anchored in the phagophore membrane.

Types of selective autophagy in mammalian cells

The process and regulation of selective autophagy

Two common mechanisms of organellophagy

phosphylrations can be inhibitory or activating

The process and regulation of selective autophagy

a summary

Ubiquitin-dependent and -independent selective autophagy

ubiqutitin independent degradation

Receptor-mediated mitophagy in yeast

our focus of today: mitophagy (degradation of mitochondria)

CK2 := casein kinase 2 involved in many selective autophagy processes, both in mammals and yeast, is found not only in mitochondra

HIF-dependent regulation of mitophagy

exam question; how does HIF downregulate mitochondrial metabolism?

Ubiquitin-mediated cargo recognition

There is a cooperative function of the autophagy-lysosome system with the ubiquitinproteasome system to manage the turnover of damaged proteins to maintain the proteome.

The ubiquitin-proteasome system requires unfolding of substrates for degradation via the proteasome core.

The autophagy-lysosome system is capable of handling much larger protein aggregates or tightly folded proteins without a requisite unfolding step.

There is some overlap in specificity for ubiquitylated cargo among selective autophagy receptors. In some cases this overlap is cooperative to mediate delivery to autophagosomes (e.g., mitophagy). In other cases multiple different autophagy receptors appear capable of mediating the process individually (e.g., xenophagy).

Post-translational modifications of both the selective autophagy receptors as well as the cargo (and in some cases ubiquitin itself on the cargo) are integral to regulating autophagy receptor function.

Additional complexity given that many of the selective autophagy receptors have non-autophagy functions.

Receptors and substrates in selective autophagy pathways

Pathway	Receptor	Substrate	Refs
Ub-dependent			
Aggrephagy	p62, NBR1, OPTN, Cue5, TOLLIP	Protein aggregates	[32-36]
Mitophagy	OPTN, NDP52, Tax1BP1	Mitochondria	[41-43]
Xenophagy	p62, NDP52, OPTN	Bacteria	[37-39]
Pexophagy	NBR1	Peroxisomes	[40]
Zymophagy	p62	Zymogen	[16]
Proteaphagy	RPN10	Proteasomes	[24]
Midbody disposal	p62, NBR1	Midbody	[15,44]
Nucleic acid disposal	p62, NDP52	Nucleic acids	[18,45]
Ub-independent			
Mitophagy	NIX, BNIP3, FUNDC1, Atg32	Mitochondria	[84-89]
ER-phagy	FAM134B, Atg40	ER	[93,95]
Nucleophagy	Atg39	Nuclear envelope	[95]
Ferritinophagy	NCOA4	Ferritin	[12,13]
Pexophagy	NBR1, Atg30, Atg36	Peroxisomes	[40,90,91]
Glycophagy	Stbd1	Glycogen	[92]
Signalophagy	c-Cbl	Src	[19]
Cvt targeting	Atg 19, Atg34	Ape1, Ams1	[82,83]
Lysophagy	Galectin-8	Lysosomes	[97]
Xenophagy	Galectin-8	Bacteria	[97]
Virophagy	TRIM5∝, SMURF1	Viral components	[17,20]
Fatty acid synthase (FAS) disposal	FAS	FAS	[21]

Mitochondrial stress

Various insults can cause damage:

- Environmental (radiation, toxic chemicals)
- Genetic (mutations in genes for metabolic processes or repair pathways)
- Spontaneous (ROS generated as byproduct of electron transport)

Types of damage:

- DNA
- Proteins
- Lipids

Problems caused by damage:

- Loss of metabolic functions (ATP synthesis, etc.)
- More ROS made by defective mitochondria
- F₁F₀-ATPase may, instead of making ATP, consume ATP to generate membrane potential

Cellular responses to damage:

- DNA repair
- Proteases
- Lipases
- Mitochondrial unfolded protein response
- Mitophagy
- Apoptosis

Mitochondrial fission and fusion

Fission proteins:

Dynamin-related GTPase (Drp1/Dlp1)
Mitochondrial fission factor (Mff)
Fission 1 (Fis1)
GDAP1

Fusion proteins:

Optic atrophy 1(Opa1) Mitofusin 1 (Mfn1) Mitofusin 2 (Mfn2)

Segregation of damaged parts of mitochondria by fission

Parkinson's disease

- The term parkinsonism is used for a motor syndrome whose main symptoms are tremor at rest, stiffness, slowing of movement and postural instability.
- 1817 first described by James Parkinson.
- The second most common age-related neurodegenerative disease.
- The central pathological feature is the loss of neurons in the substantia nigra pars compacta (SNpc).
- 1997: discovery that mutations in the gene for asynuclein cause an inherited form of PD.

Illustration of Parkinson's disease by William Richard Gowers from *A Manual of Diseases of the Nervous System in 1886*

Parkinson's disease

Gen	Lokus	Alter	Mutationen	Klinik	Pathologie	Bemerkung
LRRK2	Park8 (12cen)	50-70a	Dominant, über 20 verschiedene missense Mutationen (G2019S, R1441C/G, Y1699C)	wie sporadischer M.P., Demenz Amytrophie	überwiegend Lewy Bodies, Neurofibrilare Tangles (selten) und/oder nigrale Degeneration	etwa 1–5% der spora- dischen, 10–20% der dominanten Fälle, 20–40% der Ashkenazi Juden bzw. der nordafrikanischen Bevölkerung
a -Synuklein	Park1 und Park4 (4q21)	38–65a Duplikation 24–48y Triplikation	Dominant A30P, E46K, A53T, genomische Multiplikationen			Allelvariationen prädisponieren für sporadischen M. P.
UCHL1	Park5 (4p14)	55–58 a	Dominant (I93M)	sporadisch	n,b	Allelvariationen prädisponieren für sporadischen M.P.
Parkin	Park2 (6q25–q27)	~30 a (20–70 a)	Rezessiv, Missense, Deletionen, Duplikationen, Rearrangements	Beginn oft mit Dystonie, gutes Ansprechen auf L-Dopa	Nigrale Degeneration	50% aller früh beginnenden familiären Fälle (~20a); 20% aller frühen sporadischen Fälle (<50 a)
PINK1	Park6 (1p35–p36)	20–40 a	Rezessiv, Missense, Deletionen	Langsam progredient gutes Ansprechen auf L-Dopa	n,b	Selten, 1–2% der früh beginnenden Fälle (~50a), Haploinsuffizienz prädis- poniert möglicherweise für späten M. P
DJ1	Park7 (1p36)	20–40 a	Rezessiv, Missense, Deletionen	Langsam progredient eventuell psychiatrisch Symptome	n.b	Selten, < 1% der früh beginnenden Fälle (~50a)
ATP13A2	Park9	~20 a	Rezessiv, splice site, Frame shift Mutation	Degeneration pyramidaler Zellen, Demenz	n.b	

Tab.: Auf Basis von Kopplungsanalysen in großen monogenen Parkinson-Familien gelang in den letzten 10 Jahren die Identifikation chromosomaler Loci für familiären Parkinsonismus, für 7 der 10 Genorte konnten die entsprechenden Gene gefunden werden

Parkin is an E3 ubiquitin ligase PINK1: PTEN-induced kinase 1

Photodamage-induced mitophagy

Mitochondria (TMRM)

GFP-LC3

laser shot on mitochondria

after around 1h, the damaged mitochondria were removed; green are autophagosomes containing damages mitochondria

Recruitment of Parkin to damaged mitochondria

CCCP is a drug that can depolairze mitochondira, simulating mitochondrial damage

Matsuda et al., J. Cell Biol. 2010 Okatsu et al., Genes Cells 2010 Narendra et al., Autophagy 2010

Parkin mediates extensive proteolysis of outer mitochondrial membrane proteins via the ubiquitin proteasome system (UPS)

1. Summary

- 1. Mitochondria are depolarized (with CCCP or due to damage)
- 2. Parkin translocates to damaged mitochondria.
- 3. Parkin ubiquitylates mitochondrial surface proteins (e.g., MFN1, MFN2, VDAC).
- 4. Proteasome translocates to damaged mitochondria.
- 5. Surface proteins are degraded.

How does Parkin detect damaged mitochondria?

How does the autophagic machinery detect these mitochondria?

PINK1 gets stabilized and accumulates on depolarized mitochondria

Parkin recruitment to depolarized mitochondria requires PINK1

Model of Parkin-induced mitophagy

PINK1/Parkin-mediated mitophagy

MPP: matrix processing peptidase, removes PINK1's N-terminal mitochondrial targeting signal PARL: rhomboid presenilin-associated rhomboidlike

PINK1-mediated phosphorylation of ubiquitin and Parkin

Phosphorylation of ubiquitin during PINK1/Parkin-mediated mitophagy

NDP52 and optineurin are the primary receptors for PINK1- and parkinmediated mitophagy

OA: Oligomycin and antimycin A treatment