Supervisory Committee Meeting

Xiaomeng Ju

UBC

18/08/2021

Overview

- ► Thesis scope
- Contents of the thesis
- Projects and progress
- Challenges
- ▶ Timeline

Thesis Scope

- Title: Robust boosting for complex data
- ▶ Goal: estimate F in a regression model, $Y \in \mathbb{R}$

$$Y = F(X) + \epsilon \tag{1}$$

- Complex data:
 - ▶ (a) $X \in \mathbb{R}^p$, Y contains outliers \rightarrow Chapter 2
 - ▶ (b) $X \in \text{Hilbert space}$, $Y \text{ follows } (1) \rightarrow \text{Chapter } 3$
 - (c) $X \in \text{Hilbert space}$, $Y \text{ contains outliers} \rightarrow \text{Chapter 4}$
 - ▶ (d) $X \in L^2(\mathcal{I})$ and evaluated on a sparse grid, possibly contaminated, Y follows (1) \rightarrow Chapter 5

For (b), (c), and (d), X may also contain real-valued predictors $\in \mathbb{R}^d$

Robust gradient boosting: MM-estimators

- ► Motivated by MM-estimator for regression
 - ► S-estimator: highly robust

$$\hat{F}_S = \underset{F}{\operatorname{argmin}} \hat{\sigma}_S(F),$$

where $\hat{\sigma}_S(F)$ is a robust scale of residuals

M-estimator: highly efficient, initialized at \hat{F}_S

$$\hat{F}_{M} = \underset{F}{\operatorname{argmin}} \sum_{i \in \mathcal{I}_{\operatorname{train}}} \rho \left(\frac{y_{i} - F(\mathbf{x}_{i})}{\hat{\sigma}_{S}(\hat{F}_{S})} \right)$$

MM-estimator: highly robust and highly efficient

Robust gradient boosting: methodology

RRBoost

- ▶ Stage 1 : compute an S-type boosting estimator \hat{F}_S with high robustness but possibly low efficiency (S-scale as L)
- ▶ Stage 2: compute an M-type boosting estimator initialized at the function estimator (\hat{F}_S) and scale estimator $\hat{\sigma}_S$ obtained in Stage 1. (bonded loss as L)

Boosting for functional regression: progress

- Ju, Xiaomeng, and Matías Salibián-Barrera. "Robust boosting for regression problems." Computational Statistics & Data Analysis 153 (2021): 107065.
- RRBoost package on CRAN
- ► Repo: https://github.com/xmengju/RRBoost

Boosting for functional regression: model

- Goal: estimate F: X → Y in order to make predictions for future observations
- ► Multi-index model:

$$F(X) = r(\langle X, \alpha_1 \rangle, ..., \langle X, \alpha_p \rangle)$$

Fit complex functions; capture iterations between indices

► Approximation:

$$F(X) \approx r_1(\langle X, \beta_{1,1} \rangle, ..., \langle X, \beta_{1,k} \rangle) + ... + r_T(\langle X, \beta_{T,1} \rangle, ..., \langle X, \beta_{T,K} \rangle),$$

where each $r_j(\langle X, \beta_{j,1} \rangle, ..., \langle X, \beta_{j,K} \rangle)$ is fitted by a functional multi-index tree.

Boosting for functional regression: methodology

- Propose a boosting algorithm: TFBoost
- ▶ Input data: (\mathbf{x}_i, y_i) , $i \in {\mathcal{I}_{train} \cup \mathcal{I}_{val}}$
- ▶ Loss function: $L(y_i, F(x_i))$
- Every boosting iteration: calculate negative gradient \rightarrow fit base learner (functional multi-index tree) \rightarrow find step size $(\alpha_t) \rightarrow$ update function

$$\hat{F}(x_i) = \sum_{t=1}^{T} \alpha_t \hat{r}_t(\langle x_i, \hat{\beta}_{t,1} \rangle, ..., \langle x_i, \hat{\beta}_{t,k} \rangle)$$

- Multi-index tree
 - ► Type A tree: optimal indices for the whole tree
 - Type B tree: optimal index for each split (fast calculation)

Boosting for functional regression: progress

- ▶ Paper draft soon to be submitted (in August)
- ► TFBoost package completed
- Repo: https://github.com/xmengju/TFBoost

Robust TFBoost: problem description

- Extend TFBoost to data with outliers
- Most proposals are for linear models
- ► Types of outliers (include a figure):
 - Shape outliers
 - ► Magnitude outliers (curve, point, or interval)
 - Vertical outliers

Robust TFBoost: methodology

- ► TFBoost(LAD): TFBoost with L1 loss
- ▶ TFBoost(LAD-M): TFBoost(LAD) \rightarrow residual scale \rightarrow M-type TFBoost
- ► TFBoost(RR): S-type TFBoost → M-type TFBoost

Robust TFBoost: progress

- ➤ Simulation results comparing 3 proposals with competing robust functional regression methods in the literature
- Technical report that describes the methodology and the simulation study
- Deadline: mid September

Sparse TFBoost: methodology

- Problem: difficulty to calculate the inner product with sparsely observed functions
- Idea: borrow strength across functions

$$\tilde{X}(t) = \sum_{j=1}^{K} \xi_j \phi_j(t),$$

where $\phi_j(t)$ are FPC and $\xi_j = \langle (X(t) - \mu(t)), \phi_j(t) \rangle$

- Methods:
 - Sparse X without functional outliers: PACE, ROB
 - Sparse X with functional outliers: ROB

Sparse TFBoost: progress

- Have reviewed literature and got familiar with the software of PACE and ROB
- ▶ Most of this project remains to be done.

Challenges

Past:

- ▶ Late completion of the comprehensive exam
- Limited computational resources (solved)
- ► Time management

Future:

- Writing speed
- ▶ Additional time to revise the TFBoost paper after submission

Timeline

- ► TFBoost paper and package submission (2021/08)
- Experiments
 - ► Real example for Chapter 4 (2021/08)
 - Experiments for Chapter 5 (2021/09-2021/10)
- ► Thesis writing
 - ► Chapter 2 and Chapter 3 (2021/08)
 - ► Chapter 4 (2021/09)
 - Chapter 5 (2021/10 2021/11)
 - Chapter 6 (2021/11 2021/12)

- Thesis revision:
 - First revision
- - Chapter 2 and Chapter 3 (2021/09)
 - Chapter 4 (2021/10)
 - Chapter 5 (2021/11)
 - ► Chapter 6 (2021/12 2022/01)

 - Second revision (2022/02) ► Send to committee members (2022/03)
- ► Thesis defence (2022/06)

Contents of the Thesis

- Chapter 1: Introduction
 - 1.1 The regression problem
 - 1.2 Gradient boosting
 - 1.3 Complex data
 - 1.4 Outline of the thesis
- Chapter 2: Robust gradient boosting
 - 2.1 Robust regression
 - 2.1.1 Robust linear regression
 - 2.1.2 Robust nonparametric regression
 - 2.2 Related work
 - 2.3 SBoost
 - 2.4 RRBoost
 - 2.5 Robust variable importance
 - 2.6 Simulation studies
 - 2.7 Empirical studies
 - 2.8 Software

Contents of the Thesis

- Chapter 3: Boosting for functional regression
 - 3.1 Functional regression
 - 3.1.1 Functional linear regression
 - 3.1.2 Functional non-parametric regression
 - 3.1.3 Functional single-index regression
 - 3.2 Related work
 - 3.3 Tree-based functional boosting (TFBoost)
 - 3.4 Functional multi-index tree
 - 3.4.1 Type A tree
 - 3.4.2 Type B tree
 - 3.5 Simulation studies
 - 3.6 German electricity data
 - 3.7 Software
- Chapter 4: Robust boosting for functional regression
 - 4.1 Related work
 - 4.1 Related Work
 - 4.2 Robust TFBoost
 - 4.3 Simulation studies
 - 4.4 Empirical studies
 - 4.5 Software

Contents of the Thesis

- ► Chapter 5: Boosting for functional regression with sparsely observed functional explanatory variables
 - 5.1 Functional principal component analysis
 - 5.1.1 Principal analysis by conditional estimation (PACE)
 - 5.1.2 Robust functional principal components analysis (ROB)
 - 5.2 Related work
 - 5.3 Sparse TFBoost
 - 5.4 Simulation studies
 - 5.5 Empirical studies
 - 5.6 Software
- Chapter 6: Conclusion remarks and future work
 - 6.1 Conclusion
 - 6.2 Future work