$\ensuremath{\mathsf{ME591}}$ - Assignment 4

 $\begin{array}{c} {\rm Herman~Kolstad~Jakobsen} \\ 20196493 \end{array}$

October 15, 2019

Scanned by CamScanner

Given that				1: -
$A = \sum_{i=1}^{N-1}$	$\frac{1}{i} = \sum_{i=1}^{N-1} \left(\sum_{j=i+1}^{N} \frac{1}{i} \right)^{j}$		if xilxi otherwise	for i'i
so for our	case	÷		
$A = \sum_{i=1}^{q}$	5 his			
	his means that every	Ai is	the number	04
	the consecutive samp			
current sa				
Applying this,	we end up with		N.	-1
Applying this,				
A ₁ = 0				
A ₁ = 0	A ₁₁ = 9			
$A_1 = O$ $A_2 = 5$	$A_{11} = 9$ $A_{12} = 3$			
$A_1 = 0$ $A_2 = 5$ $A_3 = 7$	$A_{11} = 9$ $A_{12} = 3$ $A_{13} = 0$			
$A_1 = 0$ $A_2 = 5$ $A_3 = 7$ $A_4 = 6$	$A_{11} = 9$ $A_{12} = 3$ $A_{13} = 0$ $A_{14} = 5$			
$A_{1} = 0$ $A_{2} = 5$ $A_{3} = 7$ $A_{4} = 6$ $A_{5} = 8$	$A_{11} = 9$ $A_{12} = 3$ $A_{13} = 0$ $A_{14} = 5$ $A_{15} = 1$			
$A_{1} = 0$ $A_{2} = 5$ $A_{3} = 7$ $A_{4} = 6$ $A_{5} = 8$ $A_{6} = 12$ $A_{7} = 9$	$A_{11} = 9$ $A_{12} = 3$ $A_{13} = 0$ $A_{14} = 5$ $A_{15} = 1$ $A_{16} = 0$ $A_{17} = 0$			
$A_{1} = 0$ $A_{2} = 5$ $A_{3} = 7$ $A_{4} = 6$ $A_{5} = 8$ $A_{6} = 12$ $A_{7} = 9$ $A_{8} = 0$	$A_{11} = 9$ $A_{12} = 3$ $A_{13} = 0$ $A_{14} = 5$ $A_{15} = 1$ $A_{16} = 0$ $A_{17} = 0$ $A_{18} = 0$			
$A_{1} = 0$ $A_{2} = 5$ $A_{3} = 7$ $A_{4} = 6$ $A_{5} = 8$ $A_{6} = 12$ $A_{7} = 4$ $A_{8} = 0$ $A_{q} = 4$	$A_{11} = 9$ $A_{12} = 3$ $A_{13} = 0$ $A_{14} = 5$ $A_{15} = 1$ $A_{16} = 0$ $A_{17} = 0$			
$A_{1} = 0$ $A_{2} = 5$ $A_{3} = 7$ $A_{4} = 6$ $A_{5} = 8$ $A_{6} = 12$ $A_{7} = 9$ $A_{8} = 0$	$A_{11} = 9$ $A_{12} = 3$ $A_{13} = 0$ $A_{14} = 5$ $A_{15} = 1$ $A_{16} = 0$ $A_{17} = 0$ $A_{18} = 0$			

Problem	, 3a)									
Defining	g a	new tan	dom v	ariable	Ξ,	which	151	the	sun	of
				1 1 1					1 1	xater.
Hence			,				1 - 1 00			
	x~x	(50·h	50.0	2) - U	- (50.2	1 300	7,72)	= 0	100	24,5)
				_						independen
The t	ofal o	mount c	of wa	ter th	at will	be c	onsum	ed o	, the	trip' is
then										
	X~4	(100,	24,5)							
٥٥										
P (+	سم مر	l of wa	ter)=	1 - P	(not r	سم ه	4 06	nate	r)	
Will ste	andardize	the r	ormal c	distribus	ted vo	riable	X			
	-	V- 11	×	- 100		NC (-)				
		ν- h	7-	24,5	~ (N (0, 1				
The						4				
Then	(,,1,	n out	of w	ater)=	P(X < II	0)	4		
PI	NOT TO	Sh 300			P(2 4		1			
						1				
					P (=	2 4 2,	02)			.
					0,97	83				
Ultima	_		,	s - , +		13		2		S
P(tun o	ut of i	rater):	= 1-0,	q783	= ,0,	0217	, , ,	17. 7	0
/I4 wa	were	to rev	nove t	he as	sumption	on of	inc	lepende	ent k	wables,
we we		colcu		,				1		
				ter u	40	2.2				
		Pe	r mar	ater u						
ins-	tead									
						1		C	ed by Ca	

Scanned by CamScanner

36)	
Since	the population (not injected rats) variance is unknown, we
_	use the t-distribution. Hence, our test statistic is
(1,005)	use the t-distribution. Hence, our test
	$T = \overline{X} - II$
	$T_0 = \frac{\overline{X} - \mu}{5} \sim C_{n-1}$
,	3/7
Defining	the hypothesis
	Ho: The drug has no effect
	H7: The drug has an effect
	can be expressed as
1 h 13	
	Ho: µ=1,2
	H,: p ≠ 1,2
Hence,	our test statistic is (assuming to is true)
	$T_0 = 1,05 - 1,2$ -3
	015 VT00
Having	DoF = n-1 = aa and $\alpha = 0.05$; the table gives the (95% confidence interval)
Followin	g value
	T= 1,984
We so	ze that
	> T => To=-3 < -T = -1,984
Thus,	we reject the hull-hypothesis.
With	a 5% level of significance, the drug has
	effect.

	egree of f				
Where	K is the	number or	f intervals.	Thus	
	n = 10-3 = 7				
46)				f	(F-A ²
Interval	No. Interval	Probability	Expected fragi	vency Observed free	
	0-9	0,0617	6,17	9	1,2980
2	10-19	0,0673	6,73	4	1,1074
3	20- 29	0,1064	10, 64	[4	7 0610
4	30 - 39	0,1424	14, 24	10	/ 2625
5	40-49	0, 1615	16, 15	17	0,0447
6	50 - 59	0 1552	15,52	12	0,7983
7	60 - 69	0,1264	12,64	11	0,2128
8	70 - 79	0,0872	8, 72	11	0,5961
9	80 - 89	0,051	5,1	8	1,6490
lo	90-100	0,0411	4,11	4	0,0029
					$x^2 = 8,03$
The pro	obability is co	Iculated	from a not	mal distribu	tion (assumin
	viable is no				
	. Interval				
		2; P(10			

