

Smart Cities and Smart Homes - Part I

Dr. Sudip Misra

Associate Professor

Department of Computer Science and Engineering

IIT KHARAGPUR

Email: smisra@sit.iitkgp.ernet.in Website: http://cse.iitkgp.ac.in/~smisra/

Introduction

- ✓ A Smart City is-
 - An urban system
 - Uses Information & Communication Technology (ICT)
 - Makes infrastructure more interactive, accessible and efficient.
- ✓ Need for Smart Cities arose due to-
 - Rapidly growing urban population
 - Fast depleting natural resources
 - Changes in environment and climate

Source: Pellicer, Soledad, et al. "A global perspective of smart cities: A survey." IEEE Seventh International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS), 2013.

Analogy

Humans	Smart Cities
Skeleton	Buildings, Industries, People
Skin	Transportation, Logistics
Organs	Hospital, Police, Banks, Schools
Brain	Ubiquitously embedded intelligence
Nerves	Digital telecommunication networks
Sensory Organs	Sensors, Tags
Cognition	Software

Application Focus Areas

Source: Pellicer, Soledad, et al. "A global perspective of smart cities: A survey." IEEE Seventh International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS), 2013.

Smart Economy

Smart Governance

Smart People

Smart Mobility

Smart Environment

Smart Living

Current Focus Areas

- √ Smart Homes
 - Health monitoring.
 - Conservation of resources (e.g. electricity, water, fuel).
 - Security and safety.
- ✓ Smart Parking Lots
 - Auto routing of vehicles to empty slots.
 - Auto charging for services provided.
 - Detection of vacant slots in the parking lot.

Current Focus Areas (contd.)

✓ Smart Vehicles

- Assistance to drivers during bad weather or low-visibility.
- Detection of bad driving patterns or driving under the influence of substances.
- Auto alert generation during crashes.
- Self diagnostics.

✓ Smart Health

- Low cost, portable, at-home medical diagnosis kits.
- Remote check-ups and diagnosis.
- On-body sensors for effortless and accurate health monitoring.
- Auto alert generation in case of emergency medical episodes (e.g. Heart attacks, seizures).

Current Focus Areas (contd.)

- ✓ Pollution and Calamity Monitoring
 - Monitoring for weather or man-made based calamities.
 - Alert generation in case of above-threshold pollutants in the air or water.
 - Resource reallocation and rerouting of services in the event of calamities.
- ✓ Smart Energy
 - Smart metering systems.
 - Smart energy allocation and distribution system.
 - Incorporation of traditional and renewable sources of energy in the same grid.

Current Focus Areas (contd.)

- ✓ Smart Agriculture
 - Automatic detection of plant water stress.
 - Monitoring of crop health status.
 - Auto detection of crop infection.
 - Auto application of fertilizers and pesticides.
 - Scheduling harvesting and arranging proper transfer of harvests to warehouses or markets.

Technological Focus Areas

Data Collection

• Mobile devices, Sensors, Architecture

Data Transmission

• Radios, Networking, Topologies

Data Storage

Local storage, Data warehouses

Data Processing

Data cleaning, Analytics, Prediction

Source: Pellicer, Soledad, et al. "A global perspective of smart cities: A survey." IEEE Seventh International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS), 2013.

IoT Challenges in Smart Cities

- ✓ Security and Privacy
 - Exposure to attacks (e.g. cross-site scripting, side channel, etc.).
 - Exposure to vulnerabilities.
 - Multi-tenancy induces the risk of data leakage.
- √ Heterogeneity
 - Integration of varying hardware platforms and specifications.
 - Integration of different radio specifications.
 - Integration of various software platforms.
 - Accommodating varying user requirements.

IoT Challenges in Smart Cities (contd.)

- ✓ Reliability
 - Unreliable communication due to vehicle mobility.
 - Device failures still significant
- ✓ Large scale
 - Delay due to large scale deployments.
 - Delay due to mobility of deployed nodes.
 - Distribution of devices can affect monitoring tasks.

IoT Challenges in Smart Cities (contd.)

- ✓ Legal and Social aspects
 - Services based on user provided information may be subject to local or international laws.
 - Individual and informed consent required for using humans as data sources.
- ✓ Big data
 - Transfer, storage and maintenance of huge volumes of data is expensive.
 - Data cleaning and purification is time consuming.
 - Analytics on gigantic data volumes is processing intensive.

IoT Challenges in Smart Cities (contd.)

✓ Sensor Networks

- Choice of appropriate sensors for individual sensing tasks is crucial.
- Energy planning is crucial.
- Device placement and network architecture is important for reliable end-to-end IoT implementation.
- Communication medium and means play an important role in seamless function of IoT in smart cities.

Thank You!!

Smart Cities and Smart Homes - Part II

Dr. Sudip Misra

Associate Professor

Department of Computer Science and Engineering

IIT KHARAGPUR

Email: smisra@sit.iitkgp.ernet.in Website: http://cse.iitkgp.ac.in/~smisra/

Data Fusion

- ✓ Enormous volume of data is produced periodically in a smart city environment.
- ✓ Challenges include making the available/ incoming large data volume precise and accurate.
- ✓ Quality of data precision and accuracy affects the quality of decision making in IoT-enabled smart cities.
- ✓ Data fusion enables optimum utilization of massive data gathered from multiple sources, and across multiple platforms.

Multi-sensor Data Fusion

- ✓ Combines information from multiple sensor sources.
- ✓ Enhances the ability of decision making systems to include a multitude of variables prior to arriving at a decision.
- ✓ Inferences drawn from multiple sensor type data is qualitatively superior to single sensor type data.
- ✓ Information fusion generated from multiple heterogeneous sensors provides for better understanding of the operational surroundings.

Challenges

Imperfection	Inaccurate or uncertain WSN sensor data
Ambiguity	Outliers, missing data
Conflicts	Same sensor type reports different data for the same location.
Alignment	Arises when sensor data frames are converted to a singular frame prior to transmission
Trivial features	Processing of trivial data features may bring down the accuracy of the whole system

Data Fusion Opportunities in IoT

- ✓ Collective data is rich in information and generates better intelligence compared to data from single sources.
- ✓ Optimal amalgamation of data.
- ✓ Enhancing the collective information content obtained from multiple low-power, low-precision sensors.
- ✓ Enables hiding of critical data sources and semantics (useful in military applications, medical cases, etc.).

Stages of Data Fusion

Decision level

Ensemble of decisions

Feature level

 Fusion of information prior to decision making

Pixel level

 Fusion of information at the imaging device level itself

Signal level

 Fusion of information at the sensor node/ within the local network itself.

Mathematical Methods of Data Fusion

Probability based

• Bayesian analysis, Statistics, Recursive methods

Al based

ANN, Machine Learning, CNN

Theory of Evidence based

• Belief functions, Transferable belief models

Al in loT Decision Making

Data Fusion for Autonomous Vehicles

Smart Parking

- ✓ Shortens parking search time of drivers.
- ✓ Reduces traffic congestion.
- ✓ Reduces pollution by keeping unnecessarily lingering vehicles off the roads.
- ✓ Reduces fuel consumption and costs.
- ✓ Increases urban mobility.
- ✓ Shorter parking search time results in more parked time, and hence, more revenue.

Functional Layers in Smart parking

Smart Parking: Information Collection

Smart Parking: System Deployment

Smart Parking: Service Dissemination

Information Sensing in Smart Parking

Energy Management in Smart Cities

- ✓ Energy efficient solutions
 - Lightweight protocols
 - Scheduling optimization
 - Predictive models for energy consumption
 - Cloud-based approach
 - Low-power transceivers
 - Cognitive management framework

Source: Ejaz, Waleed, et al. "Efficient Energy Management for Internet of Things in Smart Cities." IEEE Communications Magazine, 2017

Energy Management in Smart Cities

- ✓ Energy harvesting solutions
 - Ambient energy harvesting
 - RF sources
 - Wind
 - Sun
 - Heat
 - Vibration

Source: Ejaz, Waleed, et al. "Efficient Energy Management for Internet of Things in Smart Cities." IEEE Communications Magazine, 2017

Energy Management in Smart Cities

- ✓ Energy harvesting solutions
 - Dedicated energy harvesting
 - Energy sources intentionally deployed near IoT sources.
 - Amount of energy harvested depends upon:
 - 1. Sensitivity of the harvesting circuit
 - Distance between the device and source
 - 3. Environment

Source: Ejaz, Waleed, et al. "Efficient Energy Management for Internet of Things in Smart Cities." IEEE Communications Magazine, 2017

Thank You!!

Smart Cities and Smart Homes - Part III

Dr. Sudip Misra

Associate Professor

Department of Computer Science and Engineering

IIT KHARAGPUR

Email: smisra@sit.iitkgp.ernet.in Website: http://cse.iitkgp.ac.in/~smisra/

Introduction

- ✓ Smart home infrastructure consists of:
 - Intelligent networking device infrastructure
 - Seamless integration of various devices using wired/wireless technologies
- ✓ Allows ease of use for household systems.
- ✓ Creates a highly personalized and safe home space
- ✓ Corporations seriously indulging in smart home systems include GE, Cisco, Google, Microsoft, and others.

Smart Home

- ✓ Provides productive and cost-efficient environment.
- ✓ Maximizes the effectiveness of the occupants.
- ✓ Provides efficient management with minimum life-time costs of hardware and facilities.
- ✓ Optimizes-
 - Structures
 - Systems
 - Services and management
 - Interrelationships between the above three

Smart Home Aspects

Home Area Networks (HANs)

- ✓ Network contained within a home.
- ✓ Enables remote access and control of devices and systems.
- ✓ Provides amalgamation of various systems within a home, such as – security systems, home automation systems, personal media, communication, etc.

HAN Elements

- ✓ Internet Protocol (IP)
 - Multi-protocol gateway bridges non-IP network to IP network.
 - Bridging between new technologies is limited.
 - For new technologies or networks, a new mapping is required for bridging to perform satisfactorily.

Internet Protocol Wired HAD WirelessHAN

HAN Elements

✓ Wired HAN

- Easy integration with preexisting house infrastructure.
- Low cost.
- Can use power lines, coaxial cables, telephone lines, optical fibers, and other such technologies for communication.

HAN Elements

✓ Wireless HAN

- Can use popular home Wi-Fi,
 ZigBee, and even new
 standards, such as 6LoWPAN.
- Wireless makes implementation easy.

HAN Medium Classification

- ✓ Universal Plug and Play (UPnP).
- ✓ Application layer technology, mainly web-based.
- ✓ TCP/IP protocol stack provides support for the lower layers, and enables seamless integration of various technologies.
- ✓ Provides transparent networking with support for zero-configuration networking and automatic discovery of devices.

UPnP DLNA Konnex LonWorks Zigbee X-10

- ✓ Digital Living Network Alliance (DLNA)
- ✓ Trade organization created by Sony, Intel, and Microsoft.
- ✓ Connects cable-based networks with wireless networks for increased sharing of media, control and access.
- ✓ Domestically shares network media resources.

UPnP DLNA Konnex LonWorks Zigbee X-10

- ✓ Konnex (KNX): an open important standard for home and building networks.
- ✓ Utilizes the full range of home communication infrastructure Power lines, coaxial cables, twisted pair, RF, etc.
- ✓ Must be setup and configured via a software before its proper usage.

UPnP DLNA Konnex LonWorks Zigbee X-10

- ✓ Local Operation Networks (LonWorks).
- ✓ Every device includes a Neuron Chip, a transceiver and the application electronics.
- ✓ Neuron chip is a SOC with multiple microprocessors, RAM, ROM and IO interface ports.
- ✓ Splits device groups into intelligent elements, which can communicate through a physical communication medium.

UPnP DLNA Konnex **LonWorks** Zigbee X-10

- ✓ Zigbee consists of four layers Physical, Medium Access Control, Network, and Application.
- ✓ Physical and MAC layers are defined by IEEE802.15.4, whereas Network and Application are defined by Zigbee.
- ✓ Aims at low-cost, low-energy devices.
- ✓ ZigBee Alliance is composed of Mitsubishi, Honeywell, Invensys, Motorola and Philips

UPnP DLNA Konnex LonWorks Zigbee X-10

- ✓ X-10 enables remote control of compliant transmitters and receivers over power lines and electrical wirings present in the house.
- ✓ Adopted by GE and Philips.
- ✓ Standard defines procedures for transmission of bits over AC carrier signals.
- ✓ Low-speed and low data rate.
- Mainly used for control of lighting, appliance networks and security sensors.

UPnP DLNA Konnex LonWorks Zigbee X-10

HAN Architectures

- ✓ Uses XML for description and webservices for control.
- ✓ Follows a Service oriented Architecture (SOA).
- ✓ Not tied to any software, language or architecture.
- ✓ A central gateway connects different technologies.
- ✓ A tech Manager for each technology provides web services for control and access.

HAN Architectures

- ✓ Connects various devices sharing their resources with auto-configuration and auto-installation.
- ✓ Based on JAVA environment and pursued by Sun Microsystems (Now, Oracle).
- ✓ Constructs an organized distribution system without a central node (federation).
- ✓ Jini apps use bytecode to run JVM, and are portable.
- ✓ Follows Object Oriented Paradigm.

HAN Initiatives

- ✓ Middleware for embedded intelligent systems.
- ✓ Connects a Service Oriented Architecture Network.
- ✓ Connected devices may have limited resources, low processing power, memory or energy consumption.
- ✓ Each device has an embedded HYDRA client which acts as a proxy between the device and the middleware.

HYDRA Protocol Stack

Applications

HYDRA Middleware

OS: TinyOS, Windows, etc.

Physical layers: Bluetooth, Zigbee, WLAN, etc.

HAN Initiatives

- ✓ Aimed at:-
 - Ambient intelligent systems
 - For networked home systems
- ✓ Features user-friendly interfaces, interoperability, and automatic discovery of devices and services.

Thank You!!

Connected Vehicles - Part I

Dr. Sudip Misra

Associate Professor

Department of Computer Science and Engineering

IIT KHARAGPUR

Email: smisra@sit.iitkgp.ernet.in Website: http://cse.iitkgp.ac.in/~smisra/

Introduction

- ✓ Vehicles equipped with
 - Sensors
 - Networking and communicating devices
- ✓ Capable of :
 - Communicating with other devices within the vehicle
 - Communicating with other similar vehicles
 - Communicating with fixed infrastructure

Source: Kim, Younsun, Hyunggoy Oh, and Sungho Kang. "Proof of Concept of Home IoT Connected Vehicles." Sensors 17.6 (2017): 1289.

Challenges

- ✓ Security
- ✓ Privacy
- ✓ Scalability
- ✓ Reliability
- ✓ Quality of service
- ✓ Lack of global standards

Source: Kim, Younsun, Hyunggoy Oh, and Sungho Kang. "Proof of Concept of Home IoT Connected Vehicles." Sensors 17.6 (2017): 1289.

Connected Vehicles

Source: Kim, Younsun, Hyunggoy Oh, and Sungho Kang. "Proof of Concept of Home IoT Connected Vehicles." Sensors 17.6 (2017): 1289.

Vehicle-to-Everything (V2X) Paradigm

- ✓ Main component of future Intelligent Transportation System (ITS).
- ✓ Enables vehicles to wirelessly share a diverse range of information.
- ✓ Information sharing may be with other vehicles, pedestrians, or fixed infrastructures (mobile towers, parking meters, etc.)
- ✓ Allows for traffic management, ensuring on-road and off-road safety, mobility for traveling.

V2X

- ✓ Follows a distributed architecture, where contents are widely distributed over the network.
- ✓ Not restricted to single source information provider.
- ✓ Designed mainly for highly mobile environments.
- ✓ Can share information to nodes in vicinity, as well as remotely located.
- ✓ Has greatly enhanced travel efficiency, as well as safety.
- ✓ The network is mainly used as a tool for sharing and disseminating information.

Failures of TCP/IP in V2X

- ✓ Designed mainly for handling information exchange between a single pair of entities.
- ✓ Information exchange dependent on the location of data.
- ✓ Can only identify the addresses of endpoints, which alone is not useful for content distribution.
- ✓ Increase in number of wireless devices, restricts the mobility of the nodes.

Content Centric Networking (CCN)

- ✓ CCN is derived from Information Centric Networking (ICN) architecture.
- ✓ Focuses more on the data than its actual location.
- ✓ Hierarchically named data.
- ✓ Hierarchical data is transmitted directly instead of being part of a conversation.
- ✓ Enables scalable and efficient data dissemination.
- ✓ In-network caching allows for low data traffic.
- ✓ Works well in highly mobile environments.

Vehicular Ad-hoc Networks (VANETs)

- ✓ Based on:
 - Dedicated Short-Range Communication (DSRC)
 - Wireless Access in Vehicular Environment (WAVE)
- ✓ Routing protocols derived from MANETs.
- ✓ High throughput achievable in mobile environments.
- ✓ Guaranteed low-latency in mobile environments.

VANET Features

High Dynamic Topology

• Vehicles in highly mobile environments causes constant changes in network partitioning and topology.

High transmission and computation capability

• Vehicle-stored energy sources and computational power do not restrict capabilities.

Unstable connectivity

• Link durations are short due to highly dynamic nature of VANETs.

Large scale

• Can be easily scaled up to include all vehicles on roads.

Predictable mobility pattern

• Vehicular restriction within roads, makes mobility pattern predictable.

Applications of VANETS

Safety

 Emergency braking, lane change warning, collision avoidance, hazard notification

Efficiency

• Congestion management, electronic toll collection, parking availability

Commercial

• Internet access, multimedia stream

Comfort

• Weather information, autonomous driving, journey time estimation

CCN for VANETS

✓ Routing

- Forwarding and routing based on name of content (not location).
- Individual content's name prefixes are advertised by routers across the network.
- This helps to build a Forwarding Information Base (FIB) for each router.
- The name of content remains same and unique globally.
- No issues of IP address management or address exhaustion.
- Communication does not depend on speed or direction of nodes.

CCN for VANETS

✓ Scalability

- An in-network caching mechanism at each router.
- Uniquely identifiable (named) data chunks are stored in Content Store (CS), which acts as a cache.
- Subsequent requests for a stored data chunk can be made to a CS.
- The naming system in the CS enables a data to be used multiple times, unlike normal IP-based routers.
- Reduced network load during increased network size, as a result of the caching mechanism.

Source: Zhu, Z., et al. "Recent advances in connected vehicles via information-centric networking." *Intelligent and Connected Vehicles (ICV 2016), IET International Conference on.* IET, 2016.

Body and Brain Architecture

- ✓ An in-vehicle networking architecture.
- ✓ Three layered architecture.
- ✓ The body consists of intelligent networking nodes (INN) which constantly collect information from the vehicle.
- ✓ The brain manages central coordination.

Decision

• Brain

Network and Transmission

Nervous system

Sense and Execution

Body

Source: J. Wang, D. Yang and X. Lian, "Research on electrical/electronic architecture for connected vehicles," *IET International Conference on Intelligent and Connected Vehicles (ICV 2016)*, Chongqing, 2016, pp. 1-6

Sense and Execution Layer

Classification of INN

Source: J. Wang, D. Yang and X. Lian, "Research on electrical/electronic architecture for connected vehicles," *IET International Conference on Intelligent and Connected Vehicles (ICV 2016)*, Chongqing, 2016, pp. 1-6

Network and Transmission Layer

For communication

Decision Layer

Thank You!!

Connected Vehicles - Part II

Dr. Sudip Misra

Associate Professor

Department of Computer Science and Engineering

IIT KHARAGPUR

Email: smisra@sit.iitkgp.ernet.in Website: http://cse.iitkgp.ac.in/~smisra/

Intelligent Connected Vehicles (ICVs)

Technological Background

- ✓ The US Department of Transport and Federal Communications
 Commission allocated 75MHz (5850-5925MHz) as the dedicated
 spectrum for ICVs.
- ✓ It is based on Dedicated Short Range Communication (DSRC) technology.
- ✓ IEEE developed IEEE 802.11p and IEEE 1609 as DSRC standards.
- ✓ Society of Automotive Engineers (SAE) came up with SAE J2735 and J2945 as DSRC standards.

IEEE 1609 Family

- ✓ **IEEE P1609.0** Draft Standard for Wireless Access in Vehicular Environments (WAVE) Architecture
- ✓ **IEEE 1609.1**-2006 Trial Use Standard for Wireless Access in Vehicular Environments (WAVE) <u>Resource Manager</u>
- ✓ **IEEE 1609.2** -2006- Trial Use Standard for Wireless Access in Vehicular Environments (WAVE) <u>Security Services</u> for Applications and Management Messages
- ✓ **IEEE 1609.3** -2007 Trial Use Standard for Wireless Access in Vehicular Environments (WAVE) <u>Networking Services</u>
- ✓ **IEEE 1609.4** -2006- Trial Use Standard for Wireless Access in Vehicular Environments (WAVE) <u>Multi-Channel Operations</u>
- ✓ **IEEE P1609.11** Over-the-Air Data Exchange Protocol for Intelligent Transportation Systems (ITS).

DSRC Outline

Phases of ICV Development

Phase-1

- Infotainment service with remote information processing
- Based on 2G/3G

Phase-2

- Intelligent transportation service
- Based on 4G LTE or DSRC

Phase-3

Vehicles connected to the cloud

Forward Collision Warning (V2V)

Vulnerable Road User Safety (V2P)

VANETS In-vehicle Ad-hoc **Domains** Infrastructure

In-Vehicle Domain

- ✓ Composed of one or more on-board units (OBUs).
- ✓ Additional presence of Advanced Driver Assistance Systems (ADAS) sensors such as
 - cameras
 - proximity sensors
 - Engine sensors
 - Radars
 - Actuators
- ✓ Communication is mainly through Controller Area Network (CAN), Vehicular Powerline Networks (VPLN), and Ethernet.

Ad-hoc Domain

- ✓ Composed of vehicles and road-side units.
- ✓ The vehicles (OBUs) are mobile.
- ✓ The road-side units (RSUs) are static.
- ✓ Communication mode may be either V2V or V2I.
- ✓ Communication through DSRC stack (IEEE 802.11p)

Infrastructure Domain

- ✓ RSUs connected to Internet by means of Gateways.
- ✓ In the presence of RSUs, the vehicles may communicate to the Internet via V2I interfaces.
- ✓ In the absence of RSUs, the vehicles may communicate with each other or the Internet through cellular networks such as 3G/4G, LTE, etc.

V2X Communication: Advantages

- ✓ Increased traffic safety.
- ✓ Increased driver safety.
- ✓ Optimized time of travel.
- ✓ Efficiency of fuel consumption.
- ✓ Secure travel.
- ✓ Easier drive in low-visibility or unfavorable weather conditions.

Source: Schmidt, Teresa, et al. "Public perception of V2X-technology-evaluation of general advantages, disadvantages and reasons for data sharing with connected vehicles." *Intelligent Vehicles Symposium (IV), 2016 IEEE*. IEEE, 2016.

V2X Communication: Disadvantages

- ✓ Violation of privacy.
- ✓ Loss of data control.
- ✓ Collection of personal data.
- ✓ Second use of data.
- ✓ Data use by unauthorized entities.
- ✓ Tracking of movements.
- ✓ Localization of position.

Source: Schmidt, Teresa, et al. "Public perception of V2X-technology-evaluation of general advantages, disadvantages and reasons for data sharing with connected vehicles." *Intelligent Vehicles Symposium (IV), 2016 IEEE*. IEEE, 2016.

Thank You!!

