Test v2

Развлекательно-познавательный тест на знание теории вероятностей, python, машинного обучения и глубоких нейронных сетей.

Чтобы сохранить изменения, войдите в аккаунт Google. Подробнее...

*Обязательный вопрос

Электронная почта *

Ваш адрес эл. почты

Как вас зовут? *

Мой ответ

Задачи

Теория вероятностей

1 of 8

2. Есть три урны, в каждой из которых лежит по два шара (в первой * 1 балл — два черных, во второй — один черный и один белый, в третьей — два белых). Выбираем одну из этих урн случайным образом и вслепую вытаскиваем один из шаров. Он оказывается белым. Какова вероятность того, что второй шар в этой урне тоже белый?

О 0.5

О 0.75

1/3

2/3

Python

H

4. Выберите наиболее быстрый из предложенных способ получить * 1 балл случайную перестановку элементов списка:

```
from itertools import permutations
import random
import numpy as np
elements = ['a', 'c', 'd', 'x', 'z', 'e', 'b', 'df', 'g', 'd']
```

- permutation_1 = random.choice(list(permutations(elements)))
- permutation_2 = tuple(np.random.permutation(elements))

B

***** 1 балл

7. Ниже изображены разделяющие поверхности, полученные при классификации набора данных на 3 класса с использованием следующих алгоритмов: kNN, Decision tree, оптимальный Байесовский классификатор. Известно, что данные в каждом классе получены путем семплирования из нормального распределения, причем матрицы ковариаций "зеленого" и "синего" классов совпадают. Сопоставьте использованные классификаторы и изображения в порядке слева направо.

8. Выберите верные утверждения: оценка качества моделей с помощью кросс-валидации	1 балл
Осмысленна только для шумных данных	
Обычно более точная	
Используется только для задач регрессии	
Требует кратно больше вычислений	

- 8

9. Выберите верные утверждения: логистическая регрессия	1 балл
Используется для поиска нелинейной (сигмоидальной) разделяющей поверхности	
Не может работать с бинарными признаками	
Па инференсе автоматически присваивает наблюдениям метку класса	
Может использовать одновременно L1 и L2 регуляризацию	
Глубокое обучение	

10. Ниже изображены траектории, полученные при минимизации * 1 балл функции f(x,y) по x и у с использованием различных оптимизаторов (GD - gradient descent). Сопоставьте использованные оптимизаторы и изображения в порядке слева направо.

- OD+momentum с параметром α, GD+momentum с параметром β>α, GD
- \bigcirc GD, GD+momentum с параметром $\beta > \alpha$, GD+momentum с параметром α ,
- \bigcirc GD, GD+momentum с параметром α , GD+momentum с параметром $\beta>\alpha$
- \bigcirc GD+momentum с параметром β > α , GD+momentum с параметром α , GD

11. Как производится inference при прохождении через слой inverted * 1 балл dropout'a с вероятностью исключения элемента pdrop?
Элементы входного тензора остаются без изменений
Элементы входного тензора домножаются на 1/(1-pdrop)
Элементы входного тензора домножаются на 1-pdrop
Несколько раз случайным образом зануляются элементы входного тензора, а затем результаты работы сети усредняются

12. Слой batch normalization применяет следующее преобразование к * 1 балл входному тензору. Как обучаются параметры γ , β , μ и σ ?

$$\hat{x} = \gamma \frac{x - \mu}{\sqrt{\sigma^2 + \varepsilon}} + \beta$$

- О μ и у обучаются градиентными методами оптимизации, а β и σ определяются по обучающему набору данных
- у и β обучаются градиентными методами оптимизации, а μ и σ определяются по обучающему набору данных
- ри о обучаются градиентными методами оптимизации, а у и β определяются по обучающему набору данных
- Все параметры обучаются градиентными методами оптимизации
- 13. Дана операция conv(kernel_size = 7x7, strides = 1x1). Выберите способы снизить число обучаемых параметров этой операции, при этом сохраняя receptive field.

 | conv(kernel_size = 3x3, strides = 1x1, dilation=2x2)
 | conv(kernel_size = 3x3, strides = 2x2)
 | conv(kernel_size = 7x1, strides = 1x1) + conv(kernel_size = 1x7, strides = 1x1)
 | conv(ks = 3x3, strides = 1x1) + conv(ks = 3x3, strides = 1x1) + conv(ks = 3x3, strides = 1x1)

H

14. Дана операция свёртки conv(kernel_size = 3x3, in_channels = 8, out_channels = 16, strides = 2x2, bias = True, padding = 'valid'). Размер тензора на входе - 32*32*8 (H*W*C). Каково число обучаемых параметров у свертки?

3 * 3 * 8 * 16 + 16

3 * 3 * 32 * 32 * 8 * 16 + 16

3 * 3 * (32 / 2) * (32 / 2) * 8 * 16

Отправить мне копию ответов

Отправить Страница 1 из 1 Очистить форму

Никогда не используйте формы Google для передачи паролей.

reCAPTCHA

<u>КонфиденциальностьУсловия</u>

Компания Google не имеет никакого отношения к этому контенту. <u>Сообщение о нарушении - Условия использования - Политика конфиденциальности</u>

Google Формы