Propuesta de Investigación 2025 Integración de Aprendizaje Automático en Sistemas de Colas con Encuestas

Carlos [Tu Apellido] Universidad Autónoma de la Ciudad de México

Abril 2025

Plan de Trabajo por Etapas

Etapa 1 — Año 2025

Duración: 6 meses

Descripción: Durante esta primera fase se establecerán las bases conceptuales y matemáticas del proyecto. Se realizará una revisión exhaustiva de la literatura en teoría de colas, procesos estocásticos, y aprendizaje por refuerzo. Posteriormente, se formularán modelos base de polling systems con estructuras dinámicas, y se definirán formalmente las variables relevantes y métricas de desempeño. Se comenzará con la implementación de simulaciones iniciales de políticas clásicas (round-robin, gated, exhaustive) como referencia para análisis comparativo.

Metas:

- Realizar revisión bibliográfica y sistematización de modelos existentes de colas y aprendizaje automático.
- Formular modelos matemáticos estocásticos básicos y definir métricas clave de desempeño.

Entregables:

- Documento técnico con marco teórico y estado del arte.
- Prototipo de simulación inicial de políticas tradicionales en sistemas de colas.

Actividades:

- Revisión de al menos 50 artículos clave sobre ML y teoría de colas.
- Modelado en papel y validación formal de condiciones de estabilidad.
- Implementación de modelos clásicos con Python/SimPy.
- Redacción del informe técnico de avance.

Etapa 2 — Año 2026

Duración: 12 meses

Descripción: En esta segunda fase se desarrollarán e implementarán algoritmos de aprendizaje automático, en particular aprendizaje por refuerzo, aplicados a los modelos de colas formulados. Se evaluarán distintas arquitecturas de agentes de decisión adaptativa, midiendo su desempeño contra políticas tradicionales en diversos escenarios simulados. También se realizarán análisis matemáticos sobre estabilidad, convergencia y ergodicidad de los modelos híbridos. Esta etapa busca consolidar la parte computacional y teórica del proyecto mediante simulaciones robustas.

Metas:

- Desarrollar e implementar algoritmos de ML aplicados a los modelos de colas.
- Analizar y validar el comportamiento de los modelos híbridos mediante pruebas computacionales.

Entregables:

- Repositorio de código con políticas de ML implementadas.
- Informe técnico de análisis comparativo de políticas.

Actividades:

- Diseño de entorno de simulación para aprendizaje por refuerzo.
- Implementación de políticas con TensorFlow/Keras.
- Ejecución de simulaciones comparativas en escenarios variables.
- Análisis de resultados y validación con métricas de desempeño.

Etapa 3 — Año 2027

Duración: 12 meses

Descripción: La etapa final se enfocará en la validación empírica de los modelos desarrollados y la preparación de publicaciones científicas. Se realizarán ajustes al modelo con base en los resultados obtenidos y se elaborarán herramientas de visualización de resultados. Además, se integrará un informe final con recomendaciones, implicaciones teóricas y aplicadas, así como posibles rutas para aplicaciones futuras en sectores estratégicos.

Metas:

- Validar los modelos en entornos simulados y ajustar parámetros finales.
- Difundir los resultados a través de publicaciones, presentaciones y herramientas digitales.

Entregables:

- Artículo científico para revista indexada.
- Informe final y repositorio con visualización de resultados.

Actividades:

- Ajuste final de hiperparámetros y simulaciones.
- Redacción y envío de artículo a revista académica.
- Generación de panel de visualización de políticas y desempeño.
- Entrega del informe final y cierre del proyecto.