Санкт-Петербургский политехнический университет Петра Великого

Институт прикладной математики и механики Кафедра «Прикладная математика»

ОТЧЁТ ПО ЛАБОРАТОРНЫМ РАБОТАМ ПО ДИСЦИПЛИНЕ «МАТЕМАТИЧЕСКАЯ СТАТИСТИКА»

Выполнил студент Войнова Алёна Игоревна группы 3630102/80201

Проверил к. ф.-м. н., доцент Баженов Александр Николаевич

Санкт-Петербург 2021

Содержание

1	Постановка задачи
	1.1 Задание 1
2	Теория
	2.1 Распределения
	2.1.1 Выборочные числовые характеристики
	2.1.2 Характеристики положения
	2.1.3 Характеристики рассеяния
3	Реализация
4	Результаты
	4.1 Характеристики положения и рассеяния
5	Обсуждение
6	Приложения

1 Постановка задачи

Для 5 распределений:

- 1. N(x,0,1) нормальное распределение
- 2. C(x,0,1) распределение Коши
- 3. $L(x,0,\frac{1}{\sqrt{2}})$ распределение Лапласа
- 4. P(k, 10) распределение Пуассона
- 5. $U(x,-\sqrt{3},\sqrt{3})$ равномерное распределение

1.1 Задание 1

Сгенерировать выборки размером 10, 100 и 1000 элементов.

 \overline{x} , medx, z_R , z_Q , z_{tr} . Повторить такие вычисления 1000 раз для каждой выборки и найти среднее характеристик положения и их квадратов:

$$E(z) = \overline{z}(1) \tag{1}$$

Вычислить оценку дисперсии по формуле:

$$D(z) = \overline{z^2} - \overline{z}^2(2) \tag{2}$$

Представить полученные данные в виде таблиц.

2 Теория

2.1 Распределения

• Нормальное распределение

$$N(x,0,1) = \frac{1}{\sqrt{2\pi}} e^{\frac{-x^2}{2}}(1) \tag{3}$$

• Распределение Коши

$$C(x,0,1) = \frac{1}{\pi} \frac{1}{x^2 + 1} (2) \tag{4}$$

• Распределение Лапласа

$$L(x,0,\frac{1}{\sqrt{2}}) = \frac{1}{\sqrt{2}}e^{-\sqrt{2}|x|}(3)$$
 (5)

• Распределение Пуассона

$$P(k,10) = \frac{10^k}{k!}e^{-10}(4) \tag{6}$$

• Равномерное распределение

$$U(x, -\sqrt{3}, \sqrt{3}) = \begin{cases} \frac{1}{2\sqrt{3}} & |x| \le \sqrt{3} \\ 0 & |x| > \sqrt{3} \end{cases} (5)$$

2.1.1 Выборочные числовые характеристики

С помощью выборки образуются её числовые характеристики. Это числовые характеристики дискретной случайной величины $x_1, x_2, ..., x_n$ [1, с. 411].

2.1.2 Характеристики положения

• Выборочное среднее

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \tag{8}$$

• Выборочная медиана

$$medx = \begin{cases} x_{(l+1)} & \text{при } n = 2l+1, \\ \frac{x_{(l)} + x_{(l+1)}}{2} & \text{при } n = 2l. \end{cases}$$
 (9)

• Полусумма экстремальных выборочных элементов

$$z_R = \frac{x_{(1)} + x_{(n)}}{2} \tag{10}$$

• Полусумма квартилей

Выборочная квартиль z_p порядка p определяется формулой

$$z_p = \begin{cases} x_{([np]+1)} & \text{при } np \text{ дробном,} \\ x_{(np)} & \text{при } np \text{ целом.} \end{cases}$$
 (11)

Полусумма квартилей

$$z_Q = \frac{z_{1/4} + z_{3/4}}{2} \tag{12}$$

• Усечённое среднее

$$z_{tr} = \frac{1}{n - 2r} \sum_{i=r+1}^{n-r} x_i$$
, где $r \approx \frac{n}{4}$ (13)

2.1.3 Характеристики рассеяния

Выборочная дисперсия

$$D = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2$$
 (14)

3 Реализация

Лабораторная работа выполнена с помощью средств языка программирования **Python** в среде разработки **Jupyter**. Исходный код лабораторной работы приведён в приложении.

4 Результаты

4.1 Характеристики положения и рассеяния

Мощность выборки указана в первом столбике справа. Строка "Estimation" в таблицах - оценка среднего. Оценка производилась по формуле $x=E\pm\sqrt{(D)}$

Normal	\bar{x}	medx	z_R	z_Q	z_{tr}
E(z) = 10	0.0076	0.0055	0.0162	0.0058	0.0197
D(z) = 10	0.103	0.1382	0.1931	0.1143	0.161
intervals					
$E(z) - \sqrt{(D(z))}$	-0.3133	-0.3662	-0.4232	-0.3323	-0.3816
$E(z) + \sqrt{(D(z))}$	0.3285	0.3773	0.4556	0.344	0.4209
$\dot{Estimation}$	0	0	0	0	0
$\mathrm{E}(\mathrm{z}) = 100$	0.0025	0.0053	0.01	0.0018	0.0029
D(z) = 100	0.01	0.016	0.0961	0.0121	0.0196
intervals					
$E(z) - \sqrt{(D(z))}$	-0.0975	-0.1211	-0.3001	-0.1082	-0.1372
$E(z) + \sqrt{(D(z))}$	0.1024	0.1318	0.32	0.1118	0.1431
Estimation	0	0	0	0	0
$\mathrm{E}(\mathrm{z}) = 1000$	-0.001	-0.0002	0.0081	-0.0015	-0.0016
D(z) = 1000	0.001	0.0015	0.0603	0.0012	0.002
intervals					
$E(z) - \sqrt{(D(z))}$	-0.0326	-0.0386	-0.2375	-0.0363	-0.0462
$E(z) + \sqrt{(D(z))}$	0.0306	0.0382	0.2536	0.0332	0.0429
Estimation	0.0	0.0	0	0.0	0.0

Таблица 1: Нормальное распределение

Cauchy	\bar{x}	medx	z_R	z_Q	$\overline{z_{tr}}$
E(z) = 10	1.4778	0.0082	7.3655	0.0068	2.3004
D(z) = 10	3318.1921	0.3366	82766.2065	0.8874	5919.7142
intervals					
$E(z) - \sqrt{(D(z))}$	-56.1259	-0.572	-280.3257	-0.9352	-74.6393
$E(z) + \sqrt{(D(z))}$	59.0816	0.5884	295.0567	0.9489	79.2401
Estimation	-	0	-	0	-
E(z) = 100	-8.6782	0.0021	-431.7424	-0.0042	-17.7486
D(z) = 100	70263.0283	0.0232	175613061.8818	0.051	280268.8182
intervals					
$E(z) - \sqrt{(D(z))}$	-273.7499	-0.1503	-13683.6503	-0.2301	-547.1528
$E(z) + \sqrt{(D(z))}$	256.3936	0.1545	12820.1654	0.2218	511.6556
Estimation	-	0.0	-	0.0	-
$\mathrm{E}(\mathrm{z}) = 1000$	0.836	0.0011	424.2771	0.0013	1.8509
D(z) = 1000	664.1761	0.0023	164719702.3878	0.0047	2293.0864
intervals					
$E(z) - \sqrt{(D(z))}$	-24.9356	-0.047	-12410.0403	-0.0675	-46.0353
$E(z) + \sqrt{(D(z))}$	26.6076	0.0492	13258.5944	0.0701	49.7371
Estimation	_	0.0	-	0.0	-

Таблица 2: Распределение Коши

E(z) = 10	0.0076	0.0058	0.0105	0.0086	0.0145		
D(z) = 10	0.1003	0.0755	0.4148	0.0897	0.1664		
intervals							
$E(z) - \sqrt{(D(z))}$	-0.309	-0.269	-0.6335	-0.2909	-0.3934		
$E(z) + \sqrt{(D(z))}$	0.3243	0.2806	0.6545	0.308	0.4224		
Estimation	0	0	0	0	0		
E(z) = 100	0.0058	0.0021	0.0204	0.0073	0.0036		
D(z) = 100	0.0106	0.0058	0.3667	0.0095	0.0211		
intervals							
$E(z) - \sqrt{(D(z))}$	-0.0972	-0.0739	-0.5851	-0.09	-0.1416		
$E(z) + \sqrt{(D(z))}$	0.1088	0.078	0.626	0.1047	0.1488		
Estimation	0	0.0	0	0	0		
E(z) = 1000	0.0021	0.0012	0.0339	0.0019	0.0027		
D(z) = 1000	0.001	0.0005	0.4414	0.001	0.0021		
intervals							
$E(z) - \sqrt{(D(z))}$	-0.0298	-0.0213	-0.6305	-0.0294	-0.0436		
$E(z) + \sqrt{(D(z))}$	0.034	0.0238	0.6983	0.0331	0.0491		
Estimation	0.0	0.0	0	0.0	0.0		

Таблица 3: Распределение Лапласа

poisson	X_	med(x)	z_R	z_Q	$z_{ m tr}$
E(z) = 10	10.0336	9.907	10.3175	9.935	10.0325
D(z) = 10	0.91	1.3009	1.8604	1.0569	1.5678
intervals					
$E(z) - \sqrt{(D(z))}$	9.0797	8.7665	8.9535	8.9069	8.7804
$E(z) + \sqrt{(D(z))}$	10.9875	11.0475	11.6815	10.9631	11.2846
Estimation	9^{+0}_{-0}	9^{+0}_{-0}	10^{+0}_{-0}	9^{+0}_{-0}	10^{+0}_{-0}
E(z) = 100	10.0007	9.857	10.968	9.9179	9.9892
D(z) = 100	0.0991	0.2151	0.967	0.1456	0.202
intervals					
$E(z) - \sqrt{(D(z))}$	9.6859	9.3933	9.9847	9.5363	9.5397
$E(z) + \sqrt{(D(z))}$	10.3155	10.3207	11.9513	10.2994	10.4386
Estimation	10^{+0}_{-0}	9^{+0}_{-0}	10^{+0}_{-0}	9^{+0}_{-0}	9^{+0}_{-0}
$\mathrm{E}(\mathrm{z}) = 1000$	9.9978	9.995	11.652	9.9955	9.9957
D(z) = 1000	0.0096	0.0045	0.6104	0.0028	0.0201
intervals					
$E(z) - \sqrt{(D(z))}$	9.8999	9.9281	10.8707	9.943	9.8538
$E(z) + \sqrt{(D(z))}$	10.0957	10.0619	12.4333	10.048	10.1376
$\dot{Estimation}$	10^{+0}_{-0}	9^{+0}_{-0}	10^{+0}_{-0}	9^{+0}_{-0}	10^{+0}_{-0}

Таблица 4: Распределение Пуассона

uniform	х_	med(x)	z_R	z_Q	z_tr
E(z) = 10	0.0155	0.0077	0.009	0.0222	0.0198
D(z) = 10	0.1038	0.2338	0.0469	0.1427	0.1699
intervals					
$E(z) - \sqrt{(D(z))}$	-0.3067	-0.4758	-0.2075	-0.3556	-0.3924
$E(z) + \sqrt{(D(z))}$	0.3377	0.4912	0.2255	0.4	0.432
Estimation	0	0	0	0	0
$\mathrm{E}(\mathrm{z}) = 100$	-0.0042	-0.005	-0.0007	-0.0064	-0.0045
D(z) = 100	0.0102	0.0304	0.0006	0.0147	0.0207
intervals					
$E(z) - \sqrt{(D(z))}$	-0.1052	-0.1792	-0.0243	-0.1275	-0.1484
$E(z) + \sqrt{(D(z))}$	0.0969	0.1692	0.023	0.1147	0.1395
Estimation	0	0	0.0	0	0
$\mathrm{E}(\mathrm{z}) = 1000$	0.0004	-0.0	0.0	0.0007	0.0011
D(z) = 1000	0.001	0.0031	0.0	0.0015	0.002
intervals					
$E(z) - \sqrt{(D(z))}$	-0.0317	-0.0555	-0.0024	-0.0385	-0.0435
$E(z) + \sqrt{(D(z))}$	0.0325	0.0555	0.0025	0.0399	0.0457
Estimation	0.0	0.0	0.00	0.0	0.0

Таблица 5: Равномерное распределение

5 Обсуждение

Проанализировав полученные результаты, можно заметить, что для нормального распределения, распределения Лапласа и равномерного распределения E(z) и D(z) для всех характеристик уменьшаются с ростом выборки.

В распеределении Пуассона значения E(z) для всех характеристик колеблется в районе 10, но в D(z), аналогично рассмотренным выше распределениям, наблюдается уменьшение значений при росте выборки.

Особо выделяется распределение Коши. Значения D(z) для \bar{x} и z_R , E(z) для z_R достигают больших порядков. Такое поведение дисперсии характеристик рассеяния для распределения Коши является некой аномалией: значения слишком большие даже при увеличении размера выборки - понятно, что это результат выбросов, которые мы могли наблюдать в результатах предыдущего задания.

6 Приложения

URL: Выполненная лабораторная работа на GitHub https://github.com/pikabol88/Math-Statistics/blob/main/labs/Lab2.ipynb