«УТВЕРЖДАЮ»

Расчетно-пояснительная записка

К схеме размещения и крепления Оборудования энергетического (код ЕТСНГ 351397) на железнодорожной платформе

Чертеж № 503-ГПЛ-ПЧ Расчёт выполнен с учётом требований Приложения 3 к СМГС

1. Характеристика платформы и грузовых мест

Характеристика 4-х осной ж/д платформы

Длина пола Ширина пола Масса тары Высота пола от УГР Высота центра тяжести (ЦТ) от УГР База платформы floor_length width_floor tare_weight height_floor_ugr height_center_gravity_ct_ugr platform_base

Характеристика груза:

Nº n/n	№ грцза	Наименование грцза	Γαδα	оитные размер	оы (мм)	Кол-во	Bec 1 ed.	Общий вес
N-11/11	т грузи	пииненичиние грузи	Длина	Ширина	Высота	(шт)	(KZ)	(KZ)
1	1		3650	3320	1500	1	6670	6670
2	2	Обарудование энергетическое	3870	2890	1020	1	4085	4085
3	3	и запасные части к нему ЕТСНГ 351397	1080	1580	390	1	395	395
4	4		4100	1720	1150	1	1865	1865

Общая масса груза 13015 кг Общая масса груза с крепежным реквизитом 13395 кг

п. Подп. и дата	
Инв. № дубл.	
Взам.инв. №	
Подп. и дата	
№ подл.	

Изм. Лист № докум. Подпись Дата

503-ГПЛ-ПЧ

Инв. № дубл

Взам.инв.

Подп. и дата

№ подл.

Расчет

1. Смещение ЦТ грузов в вагоне

1.1. Продольное смещение

Продольное смещение грузов в вагоне:

$$l_e = 0.5 \times L - \frac{\sum Q_i \times l_i}{\sum Q_i}$$

где: Q_i - масса і-го груза, т;

 $L\,$ - длина кузова вагона, мм;

 l_i - координата центра тяжести груза относительно торцевого борта, мм.

Смещение допустимо.

Продольное смещение грузов с вагоном:

$$l_e = 0.5 \times L - \frac{\sum \mathcal{Q}_i \times l_i + \mathcal{Q}_e \times l_e}{\sum \mathcal{Q}_i + \mathcal{Q}_e}$$

где: $Q_{\scriptscriptstyle 6}$ - масса вагона, т;

 $l_{\it g}$ - координата центра тяжести вагона относительно торцевого борта, мм.

1.2. Поперечное смещение

Поперечное смещение центра тяжести отсутствует, грузы расположены симметрично относительно продольной оси платформы.

2. Общая высота ЦТ

$$H_{LT} = \frac{\sum Q_i \times h_i}{Q_i}$$

Высота ЦТ грузов в вагоне:

total ct in van

Где: h_i - высота центра тяжести і-го груза относительно УГР, мм.

3. Устойчивость грузов с вагоном

3.1. Общая высота ЦТ

$$H_{\mathit{UT}}^{O} = \frac{\sum \mathcal{Q}_{i} \times h_{i} + \mathcal{Q}_{e} \times h_{e}}{\sum \mathcal{Q}_{i} + \mathcal{Q}_{e}} = 0$$

где: h_{g} - высота центра тяжести вагона, мм.

3.2. Расчет наветренной поверхности

где: S_i - наветренная поверхность і-го груза, м 2 ;

 S_{vag} - наветренная поверхность вагона, м²

Поперечная устойчивость груженого вагона не проверяется.

			F	<i>J</i>	
I					
	Изм.	Лист	№ докум.	Подпись	Дата

503-ГПЛ-ПЧ

Удельная продольная инерционная сила на одну тонну веса груза:

$$a_{np} = a_{22} - \frac{Q_{2p}^{0} \times (a_{22} - a_{94})}{72} =$$

=

где: - общая масса груза в вагоне, т;

*а*₂₂, *а*₉₄ - см. таблицу 17 гл. I ТУ;

Продольная инерционная сила:

$$F_{np} = a_{np} \times Q_{ap} =$$

=

4.2. Поперечная инерционная сила

Удельная поперечная инерционная сила на 1 т. массы груза:

$$a_n = 0.33 + \frac{0.44}{l_e} \times l_{xy} =$$

=

где: $l_{\it zp}$ - расстояние от Цтгр до вертикальной плоскости, проходящей через поперечную ось вагона;

 $l_{\rm g}$ - база вагона.

Поперечная инерционная сила

$$F_n = Q_{2n} \times a_n =$$

Подп. и дата

Инв. № дубл

Взам.инв. №

Подп. и дата

Инв. № подл.

4.3. Вертикальная инерционная сила

Удельная вертикальная инерционная сила на 1 тонну груза:

$$a_e = 0,25 + \kappa \times l_{zy} + \frac{2,14}{Q_{zy}^0} =$$

=

при погрузке с опорой на один вагон принимают $\kappa = 5 x 10^{-6}$. Вертикальная инерционная сила

$$F_e = Q_{zy} \times a_e =$$

=

4.4. Ветровая нагрузка

$$W_s = 50 \times S_n \times 10^{-3} =$$

где: S_n - площадь наветренной поверхности груза, м².

4.5. Сила трения в продольном направлении

$$F_{my}^{np} = \mu \times Q_{np} =$$

=0,5*6,670=3,34 TC

где: μ - коэффициент трения.

И	ЗМ.	Лист	№ докум.	Подпись	Дата

503-ГПЛ-ПЧ

4.6. Сила трения в поперечном направлении

$$F_{mp}^{n} = \mu \times Q_{2p} \times (1 - a_{e}) =$$

. _ __

4.7. Усилия которые должны восприниматься средствами крепления Продольное:

$$\Delta F_{np} = F_{np} - F_{mp}^{np} =$$

Поперечное:

$$\Delta F_n = 1,25 \times (F_n + W_e) - F_{my}^n =$$

5. Расчет сил, действующих на Груз № 2

5.1. Продольная инерционная сила.

Продольная инерционная сила:

5.2. Поперечная инерционная сила Удельная поперечная инерционная сила на 1 т. массы груза:

Поперечная инерционная сила

5.3. Вертикальная инерционная сила

Удельная вертикальная инерционная сила на 1 тонну груза:

Вертикальная инерционная сила

- 5.4. Ветровая нагрузка
- 5.5. Сила трения в продольном направлении
- 5.6. Сила трения в поперечном направлении
- 5.7. Усилия которые должны восприниматься средствами крепления Продольное:

Поперечное:

$$_n = 1,25*(2,14+0,19)-1,15 = 1,76 \text{ TC}$$

					_
					l
					1
Изм.	Лист	№ докум.	Подпись	Дата	

503-ГПЛ-ПЧ

_{Лист}

Инв. № дубл

		6.2. Поперечная инерционная сила Удельная поперечная инерционная сила на 1 т. массы груза:
		Поперечная инерционная сила
		6.3. Вертикальная инерционная сила Удельная вертикальная инерционная сила на 1 тонну груза:
		Вертикальная инерционная сила
		6.4. Ветровая нагрузка
		6.5. Сила трения в продольном направлении
ıara		6.6. Сила трения в поперечном направлении
Подп. и дата		6.7. Усилия которые должны восприниматься средствами крепления Продольное:
нв. № дубл.		Поперечное:
HHB. No		 7. Расчет сил, действующих на Груз № 4 7.1. Продольная инерционная сила. Продольная инерционная сила:
Взам.инв. №		7.2. Поперечная инерционная сила Удельная поперечная инерционная сила на 1 т. массы груза:
и дата		Поперечная инерционная сила
Подп. и дата		7.3. Вертикальная инерционная сила Удельная вертикальная инерционная сила на 1 тонну груза:
тодл.		$=0,25+5*10^{-6}*280+2,14/13,015=0,416 \text{ Tc/T}$
Инв. № подл.	Изм. Лист	№ докум. Подпись Дата Лист 503-ГПЛ-ПЧ 7

Расчет сил, действующих на Груз № 3 Продольная инерционная сила.

Продольная инерционная сила:

6. 6.1. Вертикальная инерционная сила

- 7.4. Ветровая нагрузка
- 7.5. Сила трения в продольном направлении
- 7.6. Сила трения в поперечном направлении
- Усилия которые должны восприниматься средствами крепления Продольное:

Поперечное:

Инв. № дубл

Взам.инв.

Подп. и дата

№ подл.

Устойчивость грузов в вагоне

Устойчивость груза № 1 в вагоне

$$\eta_{\rm np} = \frac{l_{\rm np}^{\rho}}{(h_{\rm HT} - h_{\rm p}^{\rm np}) \times a_{\rm np}} =$$

9.1. Коэффициент запаса устойчивости от опрокидывания вдоль вагона

где: - кратчайшее расстояние от проекции Цт_{гр} на горизонтальную плоскость до ребра опрокидывания вдоль вагона, мм;

 h_{HT} высота ЦТ груза над полом вагона, мм;

 h_y^{np} в l_{np}^o ота продольного упора от пола вагона, мм; a_{np} удельная продольная инерционная сила 1 т массы груза, тс/с.

9.2. Коэффициент запаса устойчивости от опрокидывания поперек вагона

$$\eta_n = \frac{Q_{xy} \times b_n^o}{F_n \times (h_{\underline{HT}} - h_y^n) + W_e \times (h_{nn}^n - h_y^n)} = \frac{Q_{xy} \times b_n^o}{F_n \times (h_{\underline{HT}} - h_y^n) + W_e \times (h_{nn}^n - h_y^n)} = \frac{Q_{xy} \times b_n^o}{F_n \times (h_{\underline{HT}} - h_y^n) + W_e \times (h_{nn}^n - h_y^n)} = \frac{Q_{xy} \times b_n^o}{F_n \times (h_{\underline{HT}} - h_y^n) + W_e \times (h_{nn}^n - h_y^n)} = \frac{Q_{xy} \times b_n^o}{F_n \times (h_{\underline{HT}} - h_y^n) + W_e \times (h_{nn}^n - h_y^n)} = \frac{Q_{xy} \times b_n^o}{F_n \times (h_{\underline{HT}} - h_y^n) + W_e \times (h_{nn}^n - h_y^n)} = \frac{Q_{xy} \times b_n^o}{F_n \times (h_{\underline{HT}} - h_y^n) + W_e \times (h_{nn}^n - h_y^n)} = \frac{Q_{xy} \times b_n^o}{F_n \times (h_{nn}^n - h_y^n) + W_e \times (h_{nn}^n - h_y^n)} = \frac{Q_{xy} \times b_n^o}{F_n \times (h_{nn}^n - h_y^n)} = \frac{Q_{xy} \times (h_n^n - h_y^n) + W_e \times (h_n^n - h_y^n)}{F_n \times (h_n^n - h_y^n)} = \frac{Q_{xy} \times (h_n^n - h_y^n) + W_e \times (h_n^n - h_y^n)}{F_n \times (h_n^n - h_y^n)} = \frac{Q_{xy} \times (h_n^n - h_y^n)}{F_n \times (h_n^n - h_y^n)} = \frac{Q_{xy} \times (h_n^n - h_y^n)}{F_n \times (h_n^n - h_y^n)} = \frac{Q_{xy} \times (h_n^n - h_y^n)}{F_n \times (h_n^n - h_y^n)} = \frac{Q_{xy} \times (h_n^n - h_y^n)}{F_n \times (h_n^n - h_y^n)} = \frac{Q_{xy} \times (h_n^n - h_y^n)}{F_n \times (h_n^n - h_y^n)} = \frac{Q_{xy} \times (h_n^n - h_y^n)}{F_n \times (h_n^n - h_y^n)} = \frac{Q_{xy} \times (h_n^n - h_y^n)}{F_n \times (h_n^n - h_y^n)} = \frac{Q_{xy} \times (h_n^n - h_y^n)}{F_n \times (h_n^n - h_y^n)} = \frac{Q_{xy} \times (h_n^n - h_y^n)}{F_n \times (h_n^n - h_y^n)} = \frac{Q_{xy} \times (h_n^n - h_y^n)}{F_n \times (h_n^n - h_y^n)} = \frac{Q_{xy} \times (h_n^n - h_y^n)}{F_n \times (h_n^n - h_y^n)} = \frac{Q_{xy} \times (h_n^n - h_y^n)}{F_n \times (h_n^n - h_y^n)} = \frac{Q_{xy} \times (h_n^n - h_y^n)}{F_n \times (h_n^n - h_y^n)} = \frac{Q_{xy} \times (h_n^n - h_y^n)}{F_n \times (h_n^n - h_y^n)} = \frac{Q_{xy} \times (h_n^n - h_y^n)}{F_n \times (h_n^n - h_y^n)} = \frac{Q_{xy} \times (h_n^n - h_y^n)}{F_n \times (h_n^n - h_y^n)} = \frac{Q_{xy} \times (h_n^n - h_y^n)}{F_n \times (h_n^n - h_y^n)} = \frac{Q_{xy} \times (h_n^n - h_y^n)}{F_n \times (h_n^n - h_y^n)} = \frac{Q_{xy} \times (h_n^n - h_y^n)}{F_n \times (h_n^n - h_y^n)} = \frac{Q_{xy} \times (h_n^n - h_y^n)}{F_n \times (h_n^n - h_y^n)} = \frac{Q_{xy} \times (h_n^n - h_y^n)}{F_n \times (h_n^n - h_y^n)} = \frac{Q_{xy} \times (h_n^n - h_y^n)}{F_n \times (h_n^n - h_y^n)} = \frac{Q_{xy} \times (h_n^n - h_y^n)}{F_n \times (h_n^n - h_y^n)} = \frac{Q_{xy} \times (h_n^n - h_y^n)}{$$

где: b_a^o кратчайшее расстояние от проекции ЦТ груза на горизонтальную плоскость до ребра опрокидывания поперек вагона, мм;

 h_{n}^{n} высота поперечного упора от пола вагона, мм;

 $h_{nn}^{''}$ высота центра проекции боковой поверхности груза от пола вагона, мм;

- Устойчивость груза № 2 в вагоне 10.
- 10.1. Коэффициент запаса устойчивости от опрокидывания вдоль вагона

503-ГПЛ-ПЧ

Коэффициент запаса устойчивости от опрокидывания поперек вагона

Коэффициент запаса устойчивости от опрокидывания вдоль вагона

Коэффициент запаса устойчивости от опрокидывания вдоль вагона

то груз устойчив в продольном направлении. 11.2. Коэффициент запаса устойчивости от опрокидывания поперек вагона

то груз устойчив в поперечном направлении.

то груз устойчив в продольном направлении. 12.2. Коэффициент запаса устойчивости от опрокидывания поперек вагона

то груз устойчив в поперечном направлении.

Устойчивость груза № 3 в вагоне

Устойчивость груза № 4 в вагоне

11.

12.

11.1.

	усилие, воспринимаемое брусками:
	груз 3 надежно закрепле
упорными бруска	ми в продольном направлении.
	Крепление груза 4
Продольное	усилие, воспринимаемое брусками:
	груз 4 надежно закрепл
упорными бруска	ми в продольном направлении.
РАСЧЕТ КРЕПЛ	ПЕНИЯ ГРУЗА ОТ СМЕЩЕНИЙ В ПОПЕРЕЧНОМ НАПРАВЛЕНИ
	Крепление груза 1
Поперечное	усилие, воспринимаемое брусками:
	. $> \Delta F_{nl} = 2,54$ тс $-$ груз 1 надеж
закреплен упорны	ыми брусками в поперечном направлении.
	Крепление груза 2
Поперечное	усилие, воспринимаемое брусками:
Honepe moe	yendine, boenpinnimaemoe opyekami.
	груз 2 надежно закрепле
растяжками и упо	орными брусками в поперечном направлении.
	Крепление груза 3
Поперечное	усилие, воспринимаемое брусками:
	 груз 3 надежно закрепле
растяжками и упо	 груз 3 надежно закрепле орными брусками в поперечном направлении.
растяжками и упо	
	орными брусками в поперечном направлении. Крепление груза 4
	ррными брусками в поперечном направлении.
	орными брусками в поперечном направлении. Крепление груза 4
Поперечное	орными брусками в поперечном направлении. Крепление груза 4 усилие, воспринимаемое брусками:
Поперечное	орными брусками в поперечном направлении. Крепление груза 4 усилие, воспринимаемое брусками: — груз 4 надежн
Поперечное	орными брусками в поперечном направлении. Крепление груза 4 усилие, воспринимаемое брусками: — груз 4 надежн
Поперечное	орными брусками в поперечном направлении. Крепление груза 4 усилие, воспринимаемое брусками: — груз 4 надежн
Поперечное	орными брусками в поперечном направлении. Крепление груза 4 усилие, воспринимаемое брусками: — груз 4 надежн

Подп. и дата

Инв. № дубл.

Взам.инв. №

Подп. и дата

Инв. № подл.

Изм.

Лист

№ докум.

Подпись

Дата

Крепление груза 3

Расчет досок пола на смятие от груза 1

Напряжение смятия

где: S_o – суммарная площадь деталей, см²

 $F = (Q_{cp} + F_s + 2nR_{np}sin\alpha)$ - нагрузка действующая на пол платформы от груза 1, кгс S_o - суммарная площадь деталей на которую действует нагрузка F,

3 поверхности касания длиной 335 см и шириной 15 см

напряжение на смятие поперек волокон для деталей вагона

Расчет досок пола на смятие от груза 2

– 5 поверхностей касания длиной 357 см и шириной 15 см

- максимально допускаемое напряжение

- максимально допускаемое

на смятие поперек волокон для деталей вагона

Расчет бруса поз. 1 на смятие от груза 1

S₀- суммарная площадь деталей на которую действует нагрузка F,

2 поверхности касания шириной 15 см и высотой 10 см

- максимально допускаемое напряжение

на смятие вдоль волокон для съемных деталей крепления.

Расчет брусков поз. 5 на смятие от груза 2

 S_o - суммарная площадь деталей на которую действует нагрузка F,

– 2 поверхности касания шириной 15 см и высотой 10 см

- максимально допускаемое напряжение на

смятие вдоль волокон для съемных деталей крепления.

Инв. № подл. Подп. и дата Взам.инв. №

Изм. Лист № докум. Подпись Дата

503-ГПЛ-ПЧ