1

$\begin{array}{ccc} EECS~16A & Designing~Information~Devices~and~Systems~I\\ Spring~2020 & Discussion~13A \end{array}$

1. Least Squares with Orthogonal Columns

(a) Consider a least squares problem of the form

$$\min_{\vec{x}} \quad \left\| \vec{b} - \mathbf{A}\vec{x} \right\|^2 \quad = \quad \min_{\vec{x}} \quad \left\| \mathbf{A}\vec{x} - \vec{b} \right\|^2 \quad = \quad \min_{\vec{x}} \quad \left\| \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} - \begin{bmatrix} | & | \\ \vec{a_1} & \vec{a_2} \\ | & | \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \right\|^2$$

Let the solution be $\vec{\hat{x}} = \begin{bmatrix} \hat{x}_1 \\ \hat{x}_2 \end{bmatrix}$.

Label the following elements in the diagram below.

$$\mathrm{span}\{\vec{a_1},\vec{a_2}\}, \qquad \vec{\hat{e}} = \vec{b} - \mathbf{A}\vec{\hat{x}}, \qquad \mathbf{A}\vec{\hat{x}}, \qquad \vec{a_1}\hat{x}_1, \ \vec{a_2}\hat{x}_2, \qquad \mathrm{colspace}(\mathbf{A})$$

(b) We now consider the special case of least squares where the columns of **A** are orthogonal (illustrated in the figure below). Given that $\vec{\hat{x}} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \vec{b}$ and $A\vec{\hat{x}} = \operatorname{proj}_{\mathbf{A}}(\vec{b}) = \hat{x_1}\vec{a_1} + \hat{x_2}\vec{a_2}$, show that

$$\operatorname{proj}_{\vec{a_1}}(\vec{b}) = \hat{x_1}\vec{a_1}$$
$$\operatorname{proj}_{\vec{a_2}}(\vec{b}) = \hat{x_2}\vec{a_2}$$

(c) Compute the least squares solution to

$$\min_{\vec{x}} \quad \left\| \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} - \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \right\|^2.$$

2. Polynomial Fitting

Let's try an example. Say we know that the output, y, is a quartic polynomial in x. This means that we know that y and x are related as follows:

$$y = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4$$

We're also given the following observations:

у
24.0
6.61
0.0
-0.95
0.07
0.73
-0.12
-0.83
-0.04
6.42

- (a) What are the unknowns in this question? What are we trying to solve for?
- (b) Can you write an equation corresponding to the first observation (x_0, y_0) , in terms of a_0 , a_1 , a_2 , a_3 , and a_4 ? What does this equation look like? Is it linear in the unknowns?
- (c) Now, write a system of equations in terms of a_0 , a_1 , a_2 , a_3 , and a_4 using all of the observations.

(d) Finally, solve for a_0 , a_1 , a_2 , a_3 , and a_4 using IPython. You have now found the quartic polynomial that best fits the data!

3. Vector Derivative for Least Squares

Recall that for least squares, we are trying to minimize $\|\vec{b} - A\vec{x}\|^2$.

$$\begin{aligned} ||\vec{b} - \mathbf{A}\vec{x}||^2 &= \langle \vec{b} - \mathbf{A}\vec{x}, \vec{b} - \mathbf{A}\vec{x} \rangle \\ &= \left(\vec{b} - \mathbf{A}\vec{x} \right)^T \left(\vec{b} - \mathbf{A}\vec{x} \right) \\ &= \left(\vec{b}^T - \vec{x}^T \mathbf{A}^T \right) \left(\vec{b} - \mathbf{A}\vec{x} \right) \\ &= \vec{x}^T \mathbf{A}^T \mathbf{A}\vec{x} - \vec{b}^T \mathbf{A}\vec{x} - \vec{x}^T \mathbf{A}^T \vec{b} + \vec{b}^T \vec{b} \end{aligned}$$

Note that $\vec{b}^T \mathbf{A} \vec{x} = \vec{x}^T \mathbf{A}^T \vec{b}$ since both sides are scalars. Therefore,

$$\|\vec{b} - \mathbf{A}\vec{x}\|^2 = \vec{x}^T \mathbf{A}^T \mathbf{A}\vec{x} - 2\vec{b}^T \mathbf{A}\vec{x} + \vec{b}^T \vec{b}$$

For a column vector $\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$, the vector derivative of a scalar y is defined as a row vector:

$$\frac{dy}{d\vec{x}} = \begin{bmatrix} \frac{dy}{dx_1} & \frac{dy}{dx_2} & \cdots & \frac{dy}{dx_n} \end{bmatrix}$$

In this case, $y = \vec{x}^T \mathbf{A}^T \mathbf{A} \vec{x} - 2\vec{b}^T \mathbf{A} \vec{x} + \vec{b}^T \vec{b}$. Evaluating $\frac{dy}{d\vec{x}}$ (out-of-scope for this class) gives:

$$\frac{dy}{d\vec{x}} = 2\vec{x}^T \mathbf{A}^T \mathbf{A} - 2\vec{b}^T \mathbf{A}$$

To find the minimum, we set $\frac{dy}{d\vec{x}} = \vec{0}^T$.

$$\frac{dy}{d\vec{x}} = 2\vec{x}^T \mathbf{A}^T \mathbf{A} - 2\vec{b}^T \mathbf{A} = \vec{0}^T$$
$$2\mathbf{A}^T \mathbf{A} \vec{x} - 2\mathbf{A}^T \vec{b} = \vec{0}$$
$$2\mathbf{A}^T \mathbf{A} \vec{x} = 2\mathbf{A}^T \vec{b}$$
$$\mathbf{A}^T \mathbf{A} \vec{x} = \mathbf{A}^T \vec{b}$$