

RF TEST REPORT

Applicant iRay Technology Co. Ltd.

FCC ID 2ACHK-01070189

Product Wireless Digital Flat Panel Detector

Model Mars1717V-VSI

Report No. R1905A0238-R2

Issue Date October 16, 2019

TA Technology (Shanghai) Co., Ltd. tested the above equipment in accordance with the requirements in **FCC CFR47 Part 15E (2018)**. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Performed by: Peng Tao

Approved by: Kai Xu

Kai Xu

TA Technology (Shanghai) Co., Ltd.

No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China TEL: +86-021-50791141/2/3

FAX: +86-021-50791141/2/3-8000

TABLE OF CONTENT

Report No.: R1905A0238-R2

1.	٦	Tes	t Laboratory	4
	1.1	1.	Notes of the test report	4
	1.2		Testing Location	
2.	(Gen	neral Description of Equipment under Test	
3.			olied Standards	
4.	-	Tes	t Configuration	8
5.	-	Tes	t Case Results	10
	5.1	1.	Occupied Bandwidth	10
	5.2	2.	Average Power Output –Conducted	13
	5.3	3.	Frequency Stability	20
	5.4	1.	Power Spectral Density	23
	5.5	5.	Unwanted Emission	30
	5.6	6.	Conducted Emission	76
6.	1	Maiı	n Test Instruments	79

Summary of measurement results

Number	Test Case	Clause in FCC rules	Verdict		
1	Average conducted output power	15.407(a)	Only test 802.11ac		
I		15.407 (a)	VHT80		
2	Occupied bandwidth	15.407(e)	Only test 802.11ac		
2	Occupied baridwidth	15.407 (e)	VHT80		
3	Frequency stability	15.407(g)	Only test 802.11ac		
3			VHT80		
4	Power spectral density	15.407(a)	Only test 802.11ac		
4			VHT80		
5	Unwanted Emissions	15.407(b)	PASS		
6	Conducted Emissions	15.207	PASS		
Date of T	Date of Testing: May 25, 2019~ June12, 2019 and September 12, 2019~ September 25, 2019				

WIFI-2-V897EA1 (Report No.: R1905A0235-R4) is a variant model of WIFI-2-V897EA1 (Report No.: SHEM180400246702). Test values partial duplicated from Original for variant. There is only tested Unwanted Emissions, Conducted Emissions and add 802.11ac VHT80 for other items for variant in this report. The detailed product change description please refers to the FCC class II permissive change application letter.

Mars1717V-VSI (Report No.: R1905A0238-R2) is a variant model of WIFI-2-V897EA1 (Report No.: R1905A0235-R4). Test values partial duplicated from Original for variant. There is tested Unwanted Emissions for variant in this report. The detailed product change description please refers to the 2ACHK-01070189_FCC class II permissive change application letter.

RF Test Report

1. Test Laboratory

1.1. Notes of the test report

This report shall not be reproduced in full or partial, without the written approval of **TA technology**

Report No.: R1905A0238-R2

(shanghai) co., Ltd. The results documented in this report apply only to the tested sample, under the

conditions and modes of operation as described herein. Measurement Uncertainties were not taken

into account and are published for informational purposes only. This report is written to support

regulatory compliance of the applicable standards stated above.

1.2. Testing Location

Company: TA Technology (Shanghai) Co., Ltd.

Address: No.145, Jintang Rd, Tangzhen Industry Park, Pudong

City: Shanghai

Post code: 201201

Country: P. R. China

Contact: Xu Kai

Telephone: +86-021-50791141/2/3

Fax: +86-021-50791141/2/3-8000

Website: http://www.ta-shanghai.com

E-mail: xukai@ta-shanghai.com

2. General Description of Equipment under Test

Client Information

Applicant	iRay Technology Co. Ltd.
Applicant address	RM 202, Building 7, No. 590, Ruiqing RD. ,Pudong, Shanghai, China
Manufacturer	iRay Technology Taicang Ltd.
Manufacturer address	No.33 Xinggang Road, Taicang Port Economic and Technological Development Zone, Taicang, 215434 Jiangsu, China

General information

EUT Description			
Model	Mars1717V-VSI		
IMEI	1		
Hardware Version	V3		
Software Version	ARM:Core:1.10 Kermel:1.19 FPGA main:1.10 MCU:1.0 SDK:4.0		
Power Supply	External Power Supply		
Antenna Type	Connector Antenna		
Antenna Gain	Antenna 1: 3.6 dBi Antenna 2: 3.6 dBi		
additional beamforming gain	NA		
Test Mode(s)	U-NII-1(5150MHz-5250MHz) U-NII-3(5725MHz-5850MHz)		
Modulation Type	802.11a/n (HT20/HT40) : OFDM 802.11ac (VHT20/VHT40/VHT80): OFDM		
Max. Conducted Power	12.68 dBm (802.11ac VHT80)		
Operating Frequency Range(s)	U-NII-1: 5150-5250MHz U-NII-3: 5725-5850MHz		
Operating temperature range:	-20 ° C to 50° C		
Operating voltage range:	2.805V to 3.795 V		
State DC voltage:	3.3V		
EUT Accessory			

TA Technology (Shanghai) Co., Ltd. TA-MB-04-006R This report shall not be reproduced except in full, without the written approval of TA Technology (Shanghai) Co., Ltd.

Adenter	Manufacturer: Shenzhen Longxc Supply Co., LTD	
Adapter	Model:LXCP61-024300	
Dotton	Manufacturer: iRay Technology Co. Ltd.	
Battery	Model: BATTERY-KV	
Note: The information of the EUT is declared by the manufacturer.		

M

3. Applied Standards

According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

Report No.: R1905A0238-R2

FCC CFR47 Part 15E (2018) Unlicensed National Information Infrastructure Devices

ANSI C63.10 (2013)

KDB 789033 D02 General UNII Test Procedures New Rules v02r01

KDB 662911 D01 Multiple Transmitter Output v02r01

4. Test Configuration

Test Mode

The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application.

The radiated emission was measured in the following position: EUT stand-up position (Z axis), lie-down position (X, Y axis). The worst emission was found in lie-down position (X axis) and the worst case was recorded.

In order to find the worst case condition, Pre-tests are needed at the presence of different data rate. Preliminary tests have been done on all the configuration for confirming worst case. Data rate below means worst-case rate of each test item.

Worst-case data rates are shown as following table.

Band		Data Rate	
Ballu	Antenna 1	Antenna 2	MIMO
802.11a	6 Mbps	6 Mbps	1
802.11n HT20	MCS0	MCS0	MCS8
802.11n HT40	MCS0	MCS0	MCS8
802.11ac VHT20	MCS0	MCS0	MCS8
802.11ac VHT40	MCS0	MCS0	MCS8
802.11ac VHT80	MCS0	MCS0	MCS8

The worst case Antenna mode for each of the following tests for Wi-Fi:

Test Cases	Antenna 1	Antenna 2	MIMO
Average conducted output power	0	0	802.11n HT20/40
Average conducted output power	O	O	802.11ac VHT20/40/80
Occupied bandwidth	802.11a		802.11n HT20/40
Occupied bandwidth	602.11a		802.11ac VHT20/40/80
Frequency stability	802.11a		
Dower Spectral Density	0	0	802.11n HT20/40
Power Spectral Density			802.11ac VHT20/40/80
Unwanted Emissions	802.11a		802.11n HT20/40
Onwanted Emissions	002.11a		802.11ac VHT20/40/80
Conducted Emissions	0		
Note: "O": test all bands			

According to RF Output power results in Original Report, MIMO was selected as the worst antenna for 802.11n HT20/40, 802.11ac VHT20/40/80. SISO Antenna 1 was selected as the worst SISO antenna for 802.11a.

Wireless Technology and Frequency Range

Wireless	Technology	Bandwidth	Channel	Frequency		
			36	5180MHz		
		20 MHz	40	5200MHz		
		ZU IVITIZ	44	5220MHz		
	U-NII-1		48	5240MHz		
		40 MHz	38	5190MHz		
		40 MIZ	46	5230MHz		
		80 MHz	42	5210MHz		
Wi-Fi	11 NIII 2	20 MHz	149	5745MHz		
			153	5765MHz		
			157	5785MHz		
			161	5805MHz		
	U-NII-3		165	5825MHz		
		40 MUI-	151	5755MHz		
		40 MHz	159	5795MHz		
		80 MHz	155	5775MHz		
Does this	Does this device support TDWR Band? □Yes ⊠No					

5. Test Case Results

5.1. Occupied Bandwidth

Ambient condition

Temperature	Relative humidity	Pressure	
23°C ~25°C	45%~50%	101.5kPa	

Method of Measurement

The EUT was connected to the spectrum analyzer through an external attenuator (20dB) and a known loss cable.

For U-NII-1/U-NII-2A/U-NII-2C, set RBW ≈1% OCB kHz, VBW ≥ 3 × RBW, measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 26 dB relative to the maximum level measured in the fundamental emission.

For U-NII-3, Set RBW = 100 kHz, VBW ≥ 3 × RBW, measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Note: The automatic bandwidth measurement capability of a spectrum analyzer or EMI receiver may be employed if it implements the functionality described above.

Use the 99 % power bandwidth function of the instrument

Test Setup

Limits

Rule FCC Part §15.407(e)

Within the 5.725-5.85 GHz band, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 2, U = 936 Hz.

Test Results:

U-NII-1

Network Carrier frequency (MHz)		99% bandwidth (MHz)	Minimum 26 dB bandwidth (MHz)	Conclusion
802.11ac VHT80	5210	76.128	81.11	PASS

U-NII-3

Network Standards	Carrier frequency (MHz)	99% bandwidth (MHz)	Minimum 6 dB bandwidth (MHz)	Limit (kHz)	Conclusion
802.11ac VHT80	5775	76.117	76.66	500	PASS

99% bandwidth

Minimum 6 dB bandwidth

5.2. Average Power Output -Conducted

Ambient condition

Temperature	Relative humidity	Pressure
23°C ~25°C	45%~50%	101.5kPa

Methods of Measurement

During the process of the testing, The EUT was connected to the average power meter through an external attenuator and a known loss cable. The EUT is max power transmission with proper modulation. We use Maximum average Conducted Output Power Level Method in KDB789033 for this test

The conducted Power is measured at each antenna port. The measured results at the various antenna ports are then summed mathematically.

Test Setup

Limits

Rule FCC Part 15.407(a)(1)(2)(3)

- (1) For the band 5.15-5.25 GHz.
- (i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).
- (ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- (iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23

dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

- (iv) For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- (2)For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 2, U = 0.44 dB.

Test Results

Band	T _{on} (ms)	T _(on+off) (ms)	Duty cycle	Duty cycle correction Factor(dB)
802.11ac VHT80	1.00	1.04	0.97	0.15

Report No.: R1905A0238-R2

Note: when Duty cycle>0.98, Duty cycle correction Factor not required.

SISO Antenna Power Index						
Dooket Tune	SISO	Antenna 1	SISO Antenna 2			
Packet Type	CH42	CH155	CH42	CH155		
802.11ac VHT80	10	10	10	10		

MIMO Antenna Power Index						
Docket Time	MIMO	Antenna 1	MIMO Antenna 2			
Packet Type	CH42	CH155	CH42	CH155		
802.11ac VHT80	9	9	9	9		

SISO Antenna 1

U-NII-1(Client)

Network Standards	Channel/ Frequency (MHz)	Average Power Measured (dBm)	Average Power with duty factor (dBm)	Limit (dBm)	Conclusion				
802.11ac VHT80	42/5210	10.11	10.26	24	PASS				
Note: Average Power w	Note: Average Power with duty factor = Average Power Measured +Duty cycle correction factor								

Report No.: R1905A0238-R2

U-NII-1(Master)

Network Standards	Channel/ Frequency (MHz)	Average Power Measured (dBm)	Average Power with duty factor (dBm)	Limit (dBm)	Conclusion
802.11ac VHT80	42/5210	10.11	10.26	30	PASS
		_			

Note: Average Power with duty factor = Average Power Measured +Duty cycle correction factor

U-NII-3

Network Standards	Channel/ Frequency (MHz)	requency Measured (dBm) 155/5775 12.22		Limit (dBm)	Conclusion
802.11ac VHT80	155/5775	12.22	12.37	30	PASS
Note: Average Power	with duty factor	= Average Power N	Measured +Duty	y cycle corre	ection factor

SISO Antenna 2 U-NII-1(Client)

Network Standards	Channel/ Frequency (MHz)	Average Power Measured (dBm)	Average Power with duty factor (dBm)	Limit (dBm)	Conclusion		
802.11ac VHT80	42/5210	11.22	11.37	24	PASS		
Note: Average Power with duty factor = Average Power Measured +Duty cycle correction factor							

U-NII-1(Master)

Network Standards	Channel/ Frequency (MHz)	Average Power Measured (dBm)	Average Power with duty factor (dBm)	Limit (dBm)	Conclusion
802.11ac VHT80	42/5210	11.22	11.37	30	PASS

Note: Average Power with duty factor = Average Power Measured +Duty cycle correction factor

U-NII-3

Network Standards	Channel/ Frequency (MHz) Average Power Measured (dBm) 155/5775 10.02		Average Power with duty factor (dBm)	Limit (dBm)	Conclusion
802.11ac VHT80	155/5775	10.02	10.17	30	PASS
Note: Average Bower	with duty factor	- Average Power N	Accured +Dut	v ovolo corre	otion factor

Note: Average Power with duty factor = Average Power Measured +Duty cycle correction factor

MIMO

U-NII-1(Client)

		MII Ante	MO nna 1		MO nna 2			
Network Standards	Channel/ Frequency (MHz)	Average Power Measured (dBm)	Average Power with duty factor (dBm)	Average Power Measured (dBm)	Average Power with duty factor (dBm)	Total Power (dBm)	Limit (dBm)	Conclusion
802.11ac VHT80	42/5210	9.52	9.67	9.12	9.27	12.49	24.00	PASS

Note: 1. For Total Power, according to KDB 662911 D01 Multiple Transmitter Output v02r01 1),

The Total Power =10log(10^(Power antenna1 in dBm/10)+10^(Power antenna2 in dBm/10)).

2. The manufacturer declared the transmitter output signals is CDD mode And N_{ss} =1. According to KDB 662911 D01 Multiple Transmitter Output v02r01 2)f)(i): If all antennas have the same gain, Directional gain = G_{ANT} + Array Gain, For power measurements on IEEE 802.11 devices,

Array Gain = 0 dB (i.e., no array gain) for $N_{ANT} \le 4$;

Array Gain = 0 dB (i.e., no array gain) for channel widths ≥ 40 MHz for any N_{ANT};

Array Gain = 5 log(N_{ANT}/N_{SS}) dB or 3 dB, whichever is less, for 20-MHz channel widths with N_{ANT} ≥ 5.

So directional gain = G_{ANT} + Array Gain =6+0=6 dBi≤6dBi. So the power limt is 24dBm.

U-NII-1(Master)

			MIMO MIMO Antenna 1 Antenna 2			-tol			
Netwo Standa	rk Frequ	nnel/ uency Hz)	Average Power Measured (dBm)	Average Power with duty factor (dBm)	Average Power Measured (dBm)	Average Power with duty factor (dBm)	Total Power (dBm)	Limit (dBm)	Conclusion
802.11 VHT8	42/5	5210	9.52	9.67	9.12	9.27	12.49	30.00	PASS

Note: 1. For Total Power, according to KDB 662911 D01 Multiple Transmitter Output v02r01 1),

The Total Power =10log(10^(Power antenna1 in dBm/10)+10^(Power antenna2 in dBm/10)).

2. The manufacturer declared the transmitter output signals is CDD mode And N_{ss} =1. According to KDB 662911 D01 Multiple Transmitter Output v02r01 2)f)(i): If all antennas have the same gain, Directional gain = G_{ANT} + Array Gain, For power measurements on IEEE 802.11 devices,

Array Gain = 0 dB (i.e., no array gain) for $N_{ANT} \le 4$;

Array Gain = 0 dB (i.e., no array gain) for channel widths ≥ 40 MHz for any N_{ANT};

Array Gain = 5 log(N_{ANT}/N_{SS}) dB or 3 dB, whichever is less, for 20-MHz channel widths with N_{ANT} ≥ 5.

So directional gain = G_{ANT} + Array Gain =6+0=6 dBi≤6dBi. So the power limt is 30dBm.

II MIII 2

802.11ac

VHT80

U-MII-3								
		MII Ante			MO nna 2			
Network Standards	Channel/ Frequency (MHz)	Average Power Measured	Average Power with duty factor	Average Power Measured	Average Power with duty factor	Total Power (dBm)	Limit (dBm)	Conclusio

(dBm)

8.84

(dBm)

8.99

12.68

Report No.: R1905A0238-R2

30.00

PASS

Note: 1. For Total Power, according to KDB 662911 D01 Multiple Transmitter Output v02r01 1), The Total Power =10log(10^(Power antenna1 in dBm/10)+10^(Power antenna2 in dBm/10)).

(dBm)

10.26

2. The manufacturer declared the transmitter output signals is CDD mode And N_{ss} =1. According to KDB 662911 D01 Multiple Transmitter Output v02r01 2)f)(i): If all antennas have the same gain, Directional gain = G_{ANT} + Array Gain, For power measurements on IEEE 802.11 devices,

Array Gain = 0 dB (i.e., no array gain) for $N_{ANT} \le 4$;

155/5775

Array Gain = 0 dB (i.e., no array gain) for channel widths ≥ 40 MHz for any N_{ANT};

(dBm)

10.11

Array Gain = $5 \log(N_{ANT}/N_{SS})$ dB or 3 dB, whichever is less, for 20-MHz channel widths with $N_{ANT} \ge 5$.

So directional gain = G_{ANT} + Array Gain =6+0=6 dBi<6dBi. So the power limt is 30dBm.

5.3. Frequency Stability

Ambient condition

Temperature	Relative humidity	Pressure
23°C ~25°C	45%~50%	101.5kPa

Method of Measurement

- 1. Frequency stability with respect to ambient temperature
- a) Supply the EUT with a nominal ac voltage or install a new or fully charged battery in the EUT. If possible, a dummy load shall be connected to the EUT because an antenna near the metallic walls of an environmental test chamber could affect the output frequency of the EUT. If the EUT is equipped with a permanently attached, adjustable-length antenna, then the EUT shall be placed in the center of the chamber with the antenna adjusted to the shortest length possible. Turn ON the EUT and tune it to one of the number of frequencies shown in 5.6.
- b) Couple the unlicensed wireless device output to the measuring instrument by connecting an antenna to the measuring instrument with a suitable length of coaxial cable and placing the measuring antenna near the EUT (e.g., 15 cm away), or by connecting a dummy load to the measuring instrument, through an attenuator if necessary.
- c) Adjust the location of the measurement antenna and the controls on the measurement instrument to obtain a suitable signal level (i.e., a level that will not overload the measurement instrument but is strong enough to allow measurement of the operating or fundamental frequency of the EUT).
- d) Turn the EUT OFF and place it inside the environmental temperature chamber. For devices that have oscillator heaters, energize only the heater circuit.
- e) Set the temperature control on the chamber to the highest specified in the regulatory requirements for the type of device and allow the oscillator heater and the chamber temperature to stabilize.
- f) While maintaining a constant temperature inside the environmental chamber, turn the EUT ON and record the operating frequency at startup, and at 2 minutes, 5 minutes, and 10 minutes after the EUT is energized. Four measurements in total are made.
- g) Measure the frequency at each of frequencies specified in 5.6.
- h) Switch OFF the EUT but do not switch OFF the oscillator heater.
- i) Lower the chamber temperature by not more that 10°C, and allow the temperature inside the chamber to stabilize.
- j) Repeat step f) through step i) down to the lowest specified temperature.
- 2. Frequency stability when varying supply voltage
 Unless otherwise specified, these tests shall be made at ambient room temperature (+15°C to
 +25°C). An antenna shall be connected to the antenna output terminals of the EUT if possible. If the
 EUT is equipped with or uses an adjustable-length antenna, then it shall be fully extended.
- a) Supply the EUT with nominal voltage or install a new or fully charged battery in the EUT. Turn ON the EUT and couple its output to a frequency counter or other frequency-measuring instrument.

b) Tune the EUT to one of the number of frequencies required in 5.6. Adjust the location of the measurement antenna and the controls on the measurement instrument to obtain a suitable signal level (i.e., a level that will not overload the measurement instrument but is strong enough to allow measurement of the operating or fundamental frequency of the EUT).

- c) Measure the frequency at each of the frequencies specified in 5.6.
- d) Repeat the above procedure at 85% and 115% of the nominal supply voltage.

Limit

Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the users manual.

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 2, U = 936Hz

Test Results

Mallana	T	U-NII-1 Test Results				
Voltage (V)	Temperature (°C)		5200	MHz		
(•)	(0)	1min	2min	5min	10min	
3.3	-20	5200.005793	5200.003350	5200.000687	5199.993981	
3.3	-10	5200.001892	5199.999718	5200.000511	5199.984777	
3.3	0	5199.993067	5199.999504	5199.993298	5199.980517	
3.3	10	5199.991266	5199.993536	5199.989330	5199.976921	
3.3	20	5199.989692	5199.987772	5199.987957	5199.973444	
3.3	30	5199.985722	5199.978994	5199.980779	5199.966733	
3.3	40	5199.983324	5199.972576	5199.972479	5199.958614	
3.3	50	5199.979005	5199.972311	5199.971044	5199.957850	
2.805	20	5199.973696	5199.963815	5199.967741	5199.954141	
3.975	20	5199.966398	5199.956604	5199.959647	5199.952529	
	MHz	-0.033602	-0.043396	-0.040353	-0.047471	
	PPM	-6.461957	-8.345411	-7.760223	-9.129045	

Report No.: R1905A0238-R2

Valtana	T	U-NII-3 Test Results						
Voltage (V)	Temperature (°C)		5785MHz					
(•)	(0)	1min	2min	5min	10min			
3.3	-20	5785.007078	5785.006500	5784.999251	5784.993057			
3.3	-10	5784.999800	5785.000547	5784.993375	5784.986643			
3.3	0	5784.990946	5784.995150	5784.985652	5784.983508			
3.3	10	5784.988943	5784.987377	5784.982738	5784.978644			
3.3	20	5784.979917	5784.978408	5784.976832	5784.972834			
3.3	30	5784.977557	5784.975547	5784.966999	5784.970944			
3.3	40	5784.967647	5784.967593	5784.965882	5784.968857			
3.3	50	5784.967152	5784.964433	5784.959103	5784.959022			
2.805	20	5784.959003	5784.963498	5784.954414	5784.954730			
3.975	20	5784.958115	5784.953760	5784.944668	5784.945286			
	MHz	-0.041885	-0.046240	-0.055332	-0.054714			
	PPM	-7.240196	-7.993033	-9.564815	-9.457989			

5.4. Power Spectral Density

Ambient condition

Temperature	Relative humidity	Pressure
23°C ~25°C	45%~50%	101.5kPa

Method of Measurement

The EUT was connected to the spectrum analyzer through an external attenuator (20dB) and a known loss cable.

Set RBW = 500 kHz, VBW =1.5MHz for the band 5.725-5.85 GHz

Set RBW = 1 MHz, VBW =3MHz for the band 5.150-5.250 GHz

The conducted PSD is measured at each antenna port. The measured results at the various antenna ports are then summed mathematically.

Test setup

Limits

Rule FCC Part 15.407(a)(1)/ Part 15.407(a)(2) / Part 15.407(a)(3)

For an indoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(iv) For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. For the band 5.725-5.85 GHz, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmittingantennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the

amount in dB that the directional gain of the antenna exceeds 6 dBi.

Frequency Bands/MHz	Limits		
5150-5250	17/11dBm/MHz		
5725-5850	30dBm/500kHz		

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 2, U = 0.75dB.

Test Results:

Note: Power Spectral Density =Read Value+Duty cycle correction factor

SISO Antenna 1 U-NII-1(Client)

Network Standards	Channel Number	Read Value (dBm /MHz)	Power Spectral Density (dBm /MHz)	Limit (dBm /MHz)	Conclusion
802.11ac VHT80	42	-7.655	-7.502	11	PASS

U-NII-1(Master)

Network Standards	Channel Number	Read Value (dBm /MHz)	Power Spectral Density (dBm /MHz)	Limit (dBm /MHz)	Conclusion
802.11ac VHT80	42	-7.655	-7.502	17	PASS

U-NII-3

Network Standards	Channel Number	Read Value (dBm/500kHz)	Power Spectral Density (dBm/500kHz)	Limit (dBm/500kHz)	Conclusion
802.11ac VHT80	155	-10.577	-10.424	30	PASS

SISO Antenna 2

U-NII-1(Client)

Network Standards	Channel Number	Read Value (dBm /MHz)	Power Spectral Density (dBm /MHz)	Limit (dBm /MHz)	Conclusion
802.11ac VHT80	42	-6.119	-5.966	11	PASS

U-NII-1(Master)

Network Standards	Channel Number	Read Value (dBm /MHz)	Power Spectral Density (dBm /MHz)	Limit (dBm /MHz)	Conclusion
802.11ac VHT80	42	-6.119	-5.966	17	PASS

U-NII-3

Network Standards	Channel Number	Read Value (dBm/500kHz)	Power Spectral Density (dBm/500kHz)	Limit (dBm/500kHz)	Conclusion
802.11ac VHT80	155	-10.098	-9.945	30	PASS

MIMO

U-NII-1(Client)

			Power Spectral Density					
	Channel/	Anten	Antenna 1 Antenna 2 Total		Limit			
Network	Frequency	Read	PSD	Read	PSD	Power	(dBm	Conclusion
Standards	(MHz)	Value	(dBm	Value	(dBm	(dBm	/MHz)	
		(dBm/MHz)	/MHz)	(dBm/MHz)	/MHz)	/MHz)		
802.11ac VHT80	42/5210	-8.959	-8.806	-9.499	-9.346	-6.057	7.990	PASS

Note: 1. Power Spectral Density =Read Value+Duty cycle correction factor

- 2. For Total PSD, according to KDB 662911 D01 Multiple Transmitter Output v02r01 2)a),the power spectral density=10log(10^(PSD antenna1 in dBm/10)+10^(PSD antenna2 in dBm/10))
- 3. The manufacturer declared the transmitter output signals is CDD mode And Nss=1. According to KDB 662911 D01 Multiple Transmitter Output v02r01 2)f)(i): If all antennas have the same gain, Directional gain = GANT + Array Gain, For PSD measurements on all devices, Array Gain=10log(Nant/Nss)dB, so directional gain=GANT+Array Gain=6+10log (2/1)=9.01>6 dBi. So the PSD limt is 11-(directional gain-6 dBi) =11-(9.01-6)=7.99 dBm.

U-NII-1(Master)

		Power Spectral Density						
	Channel/	Anteni	na 1	Antenna 2	2	Total	Limit	
Network	Frequency	Read	PSD	Read	PSD	Power	(dBm	Conclusion
Standards	(MHz)	Value	(dBm	Value	(dBm	(dBm	/MHz)	
		(dBm/MHz)	/MHz)	(dBm/MHz)	/MHz)	/MHz)		
802.11ac VHT80	42/5210	-8.959	-8.806	-9.499	-9.346	-6.057	13.990	PASS

Note: 1. Power Spectral Density =Read Value+Duty cycle correction factor

- 2. For Total PSD, according to KDB 662911 D01 Multiple Transmitter Output v02r01 2)a),the power spectral density=10log(10^(PSD antenna1 in dBm/10)+10^(PSD antenna2 in dBm/10))
- 3. The manufacturer declared the transmitter output signals is CDD mode And Nss=1. According to KDB 662911 D01 Multiple Transmitter Output v02r01 2)f)(i): If all antennas have the same gain, Directional gain = GANT + Array Gain, For PSD measurements on all devices, Array Gain=10log(Nant/Nss)dB, so directional gain=GANT+Array Gain=6+10log (2/1)=9.01>6 dBi. So the PSD limt is 11-(directional gain-6 dBi) =17-(9.01-6)=13.99 dBm.

		Power Spectral Density						
	Channel/	Anteni	na 1	Antenna 2	2	Total	Limit	
Network	Frequency	Read	PSD	Read	PSD	Power	(dBm	Conclusion
Standards	(MHz)	Value	(dBm	Value	(dBm	(dBm	/MHz)	
		(dBm/MHz)	/MHz)	(dBm/MHz)	/MHz)	/MHz)		
802.11ac VHT80	155/5775	-10.154	-10.001	-12.759	-12.606	-8.101	26.990	PASS

Note: 1. Power Spectral Density =Read Value+Duty cycle correction factor

- 2. For Total PSD, according to KDB 662911 D01 Multiple Transmitter Output v02r01 2)a),the power spectral density=10log(10^(PSD antenna1 in dBm/10)+10^(PSD antenna2 in dBm/10))
- 3. The manufacturer declared the transmitter output signals is CDD mode And Nss=1. According to KDB 662911 D01 Multiple Transmitter Output v02r01 2)f)(i): If all antennas have the same gain, Directional gain = GANT + Array Gain, For PSD measurements on all devices, Array Gain=10log(Nant/Nss)dB, so directional gain=GANT+Array Gain=6+10log (2/1)=9.01>6 dBi. So the PSD limt is 30-(directional gain-6 dBi) =30-(9.01-6)=26.99 dBm.

SISO Antenna 1

SISO Antenna 2

MIMO Antenna 1

MIMO Antenna 2

5.5. Unwanted Emission

Ambient condition

Temperature	Relative humidity	Pressure
23°C ~25°C	45%~50%	101.5kPa

Method of Measurement

The test set-up was made in accordance to the general provisions of ANSI C63.10-2013. The Equipment Under Test (EUT) was set up on a non-conductive table in the semi-anechoic chamber. The test was performed at the distance of 3 m between the EUT and the receiving antenna. The radiated emissions measurements were made in a typical installation configuration. Sweep the whole frequency band range from 9kHz to the 10th harmonic of the carrier, and the

During the test, the height of receive antenna shall be moved from 1 to 4 meters, and the antenna shall be performed under horizontal and vertical polarization. The turntable shall be rotated from 0 to 360 degrees for detecting the maximum of radiated spurious signal level. The measurements shall be repeated with orthogonal polarization of the test antenna. The data of cable loss and antenna factor has been calibrated in full testing frequency range before the testing.

Set the spectrum analyzer in the following:

Below 1GHz (detector: Peak and Quasi-Peak)
RBW=100kHz / VBW=300kHz / Sweep=AUTO

Above 1GHz (detector: Peak):

I) Peak emission levels are measured by setting the instrument as follows:

emissions less than 20 dB below the permissible value are reported.

- 1) RBW = 1 MHz.
- 2) VBW ≥ [3 × RBW]
- 3) Detector = peak.
- 4) Sweep time = auto.
- 5) Trace mode = max hold.
- 6) Allow sweeps to continue until the trace stabilizes. Note that if the transmission is not continuous, then the time required for the trace to stabilize will increase by a factor of approximately 1 / D, where D is the duty cycle.
- II) Average emission levels are measured by setting the instrument as follows:
- a) RBW = 1 MHz.
- b) VBW \geq [3 × RBW].
- c) Detector = RMS (power averaging), if [span / (# of points in sweep)] \leq RBW / 2. Satisfying this condition can require increasing the number of points in the sweep or reducing the span. If the condition is not satisfied, then the detector mode shall be set to peak.
- d) Averaging type = power (i.e., rms) (As an alternative, the detector and averaging type may be set for linear voltage averaging. Some instruments require linear display mode to use linear voltage averaging. Log or dB averaging shall not be used.)

- e) Sweep time = auto.
- f) Perform a trace average of at least 100 traces if the transmission is continuous. If the transmission is not continuous, then the number of traces shall be increased by a factor of 1 / D, where D is the duty cycle. For example, with 50% duty cycle, at least 200 traces shall be averaged. (If a specific emission is demonstrated to be continuous—i.e., 100% duty cycle—then rather than turning ON and OFF with the transmit cycle, at least 100 traces shall be averaged.)
- g) If tests are performed with the EUT transmitting at a duty cycle less than 98%, then a correction factor shall be added to the measurement results prior to comparing with the emission limit, to compute the emission level that would have been measured had the test been performed at 100% duty cycle. The correction factor is computed as follows:
- 1) If power averaging (rms) mode was used in the preceding step e), then the correction factor is [10 log (1 / D)], where D is the duty cycle. For example, if the transmit duty cycle was 50%, then 3 dB shall be added to the measured emission levels.
- 2) If linear voltage averaging mode was used in the preceding step e), then the correction factor is [20 log (1 / D)], where D is the duty cycle. For example, if the transmit duty cycle was 50%, then 6 dB shall be added to the measured emission levels.
- 3) If a specific emission is demonstrated to be continuous (100% duty cycle) rather than turning ON and OFF with the transmit cycle, then no duty cycle correction is required for that emission.

Reduce the video bandwidth until no significant variations in the displayed signal are observed in subsequent traces, provided the video bandwidth is no less than 1 Hz. For regulatory requirements that specify averaging only over the transmit duration (e.g., digital transmission system [DTS] and Unlicensed National Information Infrastructure [U-NII]), the video bandwidth shall be greater than [1 / (minimum transmitter on time)] and no less than 1 Hz.

The field strength of spurious emission was measured in the following position: EUT stand-up position (Z axis), lie-down position (X, Y axis). The worst emission was found in stand-up position (Z axis) and the loop antenna is vertical, others antenna are vertical and horizontal.

The test is in transmitting mode.

.....

9KHz~~~30MHz

Report No.: R1905A0238-R2

30MHz~~~ 1GHz

Above 1GHz

Note: Area side:2.4mX3.6m

- (1) For transmitters operating in the 5725-5850 MHz band: All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.
- (2) For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz(68.2dBµV/m).
- (3) For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz(68.2dBµV/m).
- (4) For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz(68.2dBµV/m).

Note: the following formula is used to convert the EIRP to field strength

- $\S1$, $E[dB\mu V/m] = EIRP[dBm] 20 log(d[meters]) + 104.77, where E = field strength and$
- d = distance at which field strength limit is specified in the rules;
- $2 \times E[dB\mu V/m] = EIRP[dBm] + 95.2$, for d = 3 meters
- (5) Unwanted spurious emissions fallen in restricted bands per FCC Part15.205 shall comply with the general field strength limits set forth in § 15.209 as below table.

Frequency of emission (MHz)	Field strength(uV/m)	Field strength(dBuV/m)
0.009-0.490	2400/F(kHz)	I
0.490–1.705	24000/F(kHz)	I
1.705–30.0	30	1
30-88	100	40
88-216	150	43.5
216-960	200	46
Above960	500	54

TA Technology (Shanghai) Co., Ltd. TA-MB-04-006R This report shall not be reproduced except in full, without the written approval of TA Technology (Shanghai) Co., Ltd.

MHz	MHz	MHz	GHz	
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15	
10.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46	
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75	
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5	
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2	
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5	
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7	
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4	
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5	
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2	
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4	
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12	
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0	
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8	
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5	
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(²)	
13.36 - 13.41			,	

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 1.96.

Frequency	Uncertainty		
9KHz-30MHz	3.55 dB		
30MHz-200MHz	4.02 dB		
200MHz-1GHz	3.28 dB		
1GHz-18G	3.70 dB		
18GHz-26.5GHz	5.78 dB		
26.5G-40GHz	5.82 dB		

Test Results:

The modulation and bandwidth are similar for 802.11n mode for 20MHz/40MHz and 802.11ac mode for V20MHz/V40MHz, therefore investigated worst case to representative mode in test report.

The signal beyond the limit is carrier.

U-NII-1

SISO Antenna1

MIMO Antenna1& Antenna2

U-NII-3 SISO Antenna1

MIMO Antenna1& Antenna2

802.11n HT40-Channel 151: Peak

802.11n HT40-Channel 159: Peak

802.11ac VHT80- Channel 155: Peak

RF Test Report No.: R1905A0238-R2

Result of RE

Test result

Sweep the whole frequency band through the range from 9kHz to the 10th harmonic of the carrier, the Emissions in the frequency band 9kHz-30MHz and 18GHz-40GHz are more than 20dB below the limit are not reported.

After the pretest, MIMO was selected as the worst antenna. SISO Antenna 2 was selected as the worst SISO antenna.

During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes with all channels, 802.11ac VHT20, Channel 165 are selected as the worst condition. The test data of the worst-case condition was recorded in this report.

Continuous TX mode:

Radiates Emission from 30MHz to 1GHz

Frequency (MHz)	Quasi-Peak (dBuV/m)	Height (cm)	Polarization	Azimuth (deg)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
31.497310	30.4	100.0	V	248.0	-3.1	9.6	40.0
36.456131	30.7	100.0	V	163.0	-4.0	9.3	40.0
83.502572	28.7	225.0	Н	181.0	-11.8	11.3	40.0
135.791622	25.1	207.0	Н	196.0	-14.0	18.4	43.5
184.249425	29.6	100.0	V	215.0	-13.0	13.9	43.5
375.018750	35.6	100.0	Н	24.0	-5.5	10.4	46.0

Remark: 1. Correction Factor = Antenna factor+ Insertion loss(cable loss+amplifier gain)

2. Margin = Limit - Quasi-Peak

SISO Antenna2 802.11a CH36

Radiates Emission from 1GHz to 8GHz Note: The signal beyond the limit is carrier.

Radiates Emission from 8GHz to 18GHz

Frequency (MHz)	Peak (dBuV/m)	Height (cm)	Polarization	Azimuth (deg)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
1194.250000	44.5	200.0	V	34.0	0.7	23.7	68.2
1944.125000	47.3	100.0	V	245.0	4.0	20.9	68.2
2673.000000	48.8	100.0	Н	266.0	7.0	19.4	68.2
3103.500000	49.5	200.0	V	50.0	8.6	18.7	68.2
3595.250000	51.0	200.0	V	169.0	10.4	17.2	68.2
7881.000000	58.0	100.0	Н	124.0	19.1	10.2	68.2

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

Frequency (MHz)	Average (dBuV/m)	Height (cm)	Polarization	Azimuth (deg)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
1406.875000	35.0	200.0	V	205.0	1.9	19.0	54.0
2232.875000	36.5	200.0	V	43.0	5.1	17.5	54.0
2706.250000	38.7	100.0	V	39.0	7.1	15.3	54.0
3651.250000	40.7	100.0	Н	63.0	10.4	13.3	54.0
3955.750000	41.6	200.0	V	92.0	11.4	12.4	54.0
7542.375000	47.1	100.0	Н	181.0	18.6	6.9	54.0

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

802.11a CH44

Radiates Emission from 1GHz to 8GHz Note: The signal beyond the limit is carrier.

Radiates Emission from 8GHz to 18GHz

Correct **Frequency** Peak **Azimuth** Margin Limit Height **Polarization Factor** (dBuV/m) (dBuV/m) (MHz) (cm) (deg) (dB) (dB) 100.0 ٧ 1297.500000 45.2 212.0 1.2 23.0 68.2 1881.125000 47.3 200.0 ٧ 122.0 3.7 20.9 68.2 2669.500000 100.0 V 326.0 7.0 68.2 49.2 19.0 3526.125000 51.2 200.0 Н 147.0 10.1 17.0 68.2 6671.750000 200.0 Н 180.0 14.1 11.0 68.2 57.2 200.0 V 45.0 7878.375000 58.0 17.1 10.2 68.2

Report No.: R1905A0238-R2

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

Frequency (MHz)	Average (dBuV/m)	Height (cm)	Polarization	Azimuth (deg)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
1398.125000	34.8	200.0	V	0.0	1.8	19.2	54.0
1534.625000	34.8	200.0	V	249.0	2.2	19.2	54.0
2232.875000	36.9	200.0	V	200.0	5.1	17.1	54.0
2744.750000	38.2	200.0	Н	337.0	7.2	15.8	54.0
3966.250000	41.0	100.0	Н	239.0	11.4	13.0	54.0
5430.125000	43.3	100.0	V	350.0	14.6	10.7	54.0

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

TA-MB-04-006R

Radiates Emission from 1GHz to 8GHz Note: The signal beyond the limit is carrier.

Radiates Emission from 8GHz to 18GHz

Correct **Frequency** Peak Height **Azimuth** Margin Limit **Polarization Factor** (dBuV/m) (dBuV/m) (MHz) (cm) (deg) (dB) (dB) 100.0 1262.500000 44.9 Н 16.0 1.0 23.3 68.2 1971.250000 47.6 200.0 V 62.0 4.1 20.6 68.2 2627.500000 49.6 200.0 V 111.0 18.6 68.2 6.8 3259.250000 51.4 100.0 Н 33.0 8.9 16.8 68.2 6606.125000 200.0 Н 268.0 17.3 68.2 57.1 11.1 7990.375000 57.8 100.0 V 288.0 19.0 10.4 68.2

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

Frequency (MHz)	Average (dBuV/m)	Height (cm)	Polarization	Azimuth (deg)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
1411.250000	35.5	200.0	V	119.0	1.9	18.5	54.0
1546.000000	34.7	200.0	Н	172.0	2.3	19.3	54.0
2240.750000	36.9	200.0	V	188.0	5.1	17.1	54.0
2791.125000	38.3	200.0	V	136.0	7.4	15.7	54.0
3827.125000	41.6	200.0	Н	180.0	10.9	12.4	54.0
4836.000000	42.7	200.0	Н	0.0	13.4	11.3	54.0

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

802.11a CH149

Radiates Emission from 1GHz to 8GHz Note: The signal beyond the limit is carrier.

Radiates Emission from 8GHz to 18GHz

Frequency (MHz)	Peak (dBuV/m)	Height (cm)	Polarization	Azimuth (deg)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
1386.750000	45.2	100.0	V	32.0	1.7	28.8	74.0
1700.000000	46.6	200.0	V	147.0	3.0	27.4	74.0
2236.375000	47.0	100.0	Н	118.0	5.1	27.0	74.0
3884.875000	51.8	100.0	Н	228.0	11.1	22.2	74.0
4590.125000	52.7	200.0	V	123.0	12.8	21.3	74.0
7513.500000	58.2	100.0	V	0.0	18.6	15.8	74.0

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

Frequency (MHz)	Average (dBuV/m)	Height (cm)	Polarization	Azimuth (deg)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
1406.000000	35.0	100.0	V	212.0	1.9	19.0	54.0
1677.250000	35.4	200.0	V	196.0	2.9	18.6	54.0
2311.625000	37.0	200.0	V	102.0	5.5	17.0	54.0
2715.875000	38.9	200.0	V	243.0	7.1	15.1	54.0
3981.125000	41.4	200.0	Н	73.0	11.5	12.6	54.0
4930.500000	42.2	100.0	V	90.0	13.5	11.8	54.0

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

802.11a CH157

Radiates Emission from 1GHz to 8GHz Note: The signal beyond the limit is carrier.

Radiates Emission from 8GHz to 18GHz

Correct **Frequency** Peak **Azimuth** Margin Limit Height **Polarization Factor** (dBuV/m) (MHz) (dBuV/m) (cm) (deg) (dB) (dB) 200.0 ٧ 1351.750000 45.7 64.0 1.5 28.3 74.0 1526.750000 45.1 100.0 ٧ 230.0 2.2 28.9 74.0 2225.875000 46.8 100.0 ٧ 180.0 5.1 27.2 74.0 2701.000000 48.9 100.0 V 0.0 7.1 25.1 74.0 3620.625000 51.9 200.0 V 294.0 10.3 74.0 22.1 100.0 ٧ 303.0 4920.000000 55.0 13.5 19.0 74.0

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

Frequency (MHz)	Average (dBuV/m)	Height (cm)	Polarization	Azimuth (deg)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
1392.875000	34.7	100.0	V	122.0	1.8	19.3	54.0
1568.750000	34.7	100.0	V	295.0	2.4	19.3	54.0
2852.375000	38.7	200.0	V	15.0	7.6	15.3	54.0
3946.125000	41.7	100.0	Н	33.0	11.4	12.3	54.0
4898.125000	41.7	100.0	V	336.0	13.5	12.3	54.0

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

802.11a CH165

Radiates Emission from 1GHz to 8GHz Note: The signal beyond the limit is carrier.

Radiates Emission from 8GHz to 18GHz

Frequency (MHz)	Peak (dBuV/m)	Height (cm)	Polarization	Azimuth (deg)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
1398.125000	45.4	100.0	V	203.0	1.8	28.6	74.0
1540.750000	45.1	200.0	V	284.0	2.2	28.9	74.0
2234.625000	47.5	100.0	Н	209.0	5.1	26.5	74.0
2826.125000	48.9	100.0	Н	229.0	7.5	25.1	74.0
3788.625000	52.1	200.0	V	336.0	10.7	21.9	74.0
4878.000000	53.4	100.0	V	154.0	13.5	20.6	74.0

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

Frequency (MHz)	Average (dBuV/m)	Height (cm)	Polarization	Azimuth (deg)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
1389.375000	34.6	200.0	V	322.0	1.8	19.4	54.0
1555.625000	35.3	100.0	V	218.0	2.3	18.7	54.0
2234.625000	37.2	200.0	V	267.0	5.1	16.8	54.0
2832.250000	38.1	100.0	Н	99.0	7.5	15.9	54.0
3915.500000	41.7	200.0	V	137.0	11.2	12.3	54.0
4892.000000	42.8	100.0	Н	107.0	13.5	11.2	54.0

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

RF Test Report No.: R1905A0238-R2

MIMO Antenna1& Antenna2 802.11n (HT20) CH36

Radiates Emission from 1GHz to 8GHz Note: The signal beyond the limit is carrier.

Radiates Emission from 8GHz to 18GHz

Frequency (MHz)	Peak (dBuV/m)	Height (cm)	Polarization	Azimuth (deg)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
1127.750000	44.7	100.0	Н	6.0	0.3	23.5	68.2
1765.625000	47.1	100.0	Н	0.0	3.3	21.1	68.2
2051.750000	47.3	100.0	V	109.0	4.4	20.9	68.2
2660.750000	49.4	100.0	Н	162.0	6.9	18.8	68.2
3448.250000	50.8	200.0	Н	157.0	9.7	17.4	68.2
7979.000000	58.0	200.0	V	70.0	19.0	10.2	68.2

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

Frequency (MHz)	Average (dBuV/m)	Height (cm)	Polarization	Azimuth (deg)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
1400.750000	34.8	200.0	Н	249.0	1.9	19.2	54.0
1612.500000	35.3	200.0	Н	190.0	2.6	18.7	54.0
2289.750000	37.6	200.0	V	127.0	5.4	16.4	54.0
3913.750000	41.6	200.0	Н	315.0	11.2	12.4	54.0
4858.750000	42.4	100.0	V	273.0	13.4	11.6	54.0
7597.500000	46.9	100.0	V	61.0	18.8	7.1	54.0

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

802.11n (HT20) CH44

Radiates Emission from 1GHz to 8GHz Note: The signal beyond the limit is carrier.

Radiates Emission from 8GHz to 18GHz

Frequency (MHz)	Peak (dBuV/m)	Height (cm)	Polarization	Azimuth (deg)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
1213.500000	44.5	100.0	Н	36.0	0.8	23.7	68.2
1984.375000	47.0	100.0	Н	202.0	4.2	21.2	68.2
2624.875000	48.8	100.0	V	245.0	6.8	19.4	68.2
3071.125000	49.1	200.0	V	61.0	8.5	19.1	68.2
3590.000000	51.3	100.0	V	262.0	10.4	16.9	68.2
6854.625000	57.5	100.0	V	359.0	17.7	10.7	68.2

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

Frequency (MHz)	Average (dBuV/m)	Height (cm)	Polarization	Azimuth (deg)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
1410.375000	35.1	200.0	V	345.0	1.9	18.9	54.0
1606.375000	35.8	200.0	V	198.0	2.6	18.2	54.0
2329.125000	37.3	200.0	V	6.0	5.5	16.7	54.0
2778.000000	39.3	200.0	V	77.0	7.3	14.7	54.0
3998.625000	41.5	200.0	V	44.0	11.6	12.5	54.0
4949.750000	42.8	100.0	V	124.0	13.5	11.2	54.0

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

802.11n (HT20) CH48

Radiates Emission from 1GHz to 8GHz Note: The signal beyond the limit is carrier.

Radiates Emission from 8GHz to 18GHz

Frequency (MHz)	Peak (dBuV/m)	Height (cm)	Polarization	Azimuth (deg)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
1003.500000	44.5	200.0	V	58.0	-0.5	23.7	68.2
1197.750000	43.5	100.0	V	247.0	0.7	24.7	68.2
1964.250000	46.8	100.0	V	253.0	4.1	21.4	68.2
2664.250000	49.3	200.0	Н	39.0	6.9	18.9	68.2
3575.125000	51.4	200.0	V	90.0	10.3	16.8	68.2
7914.250000	57.7	100.0	V	199.0	19.0	10.5	68.2

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

Frequency (MHz)	Average (dBuV/m)	Height (cm)	Polarization	Azimuth (deg)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
1399.000000	35.0	100.0	Н	64.0	1.8	19.0	54.0
1597.625000	34.6	100.0	Н	241.0	2.5	19.4	54.0
2322.125000	37.0	200.0	V	50.0	5.5	17.0	54.0
2717.625000	38.6	200.0	V	312.0	7.1	15.4	54.0
3983.750000	41.5	100.0	Н	121.0	11.5	12.5	54.0
7546.750000	46.8	200.0	Н	213.0	18.7	7.2	54.0

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

802.11n (HT20) CH149

Radiates Emission from 1GHz to 8GHz Note: The signal beyond the limit is carrier.

Radiates Emission from 8GHz to 18GHz

Frequency (MHz)	Peak (dBuV/m)	Height (cm)	Polarization	Azimuth (deg)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
1324.625000	43.4	100.0	Н	118.0	1.3	30.6	74.0
1596.750000	44.7	100.0	Н	36.0	2.5	29.3	74.0
2223.250000	47.9	200.0	V	218.0	5.1	26.1	74.0
2715.000000	49.5	100.0	V	357.0	7.1	24.5	74.0
3889.250000	52.2	200.0	V	359.0	11.1	21.8	74.0
4932.250000	52.9	100.0	Н	226.0	13.5	21.1	74.0

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

Frequency (MHz)	Average (dBuV/m)	Height (cm)	Polarization	Azimuth (deg)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
1307.125000	33.8	200.0	V	35.0	1.2	20.2	54.0
1597.625000	34.0	100.0	V	171.0	2.5	20.0	54.0
2236.375000	37.1	200.0	V	0.0	5.1	16.9	54.0
2818.250000	38.8	100.0	Н	262.0	7.5	15.2	54.0
3993.375000	41.5	100.0	Н	0.0	11.5	12.5	54.0
4925.250000	42.8	200.0	Н	69.0	13.5	11.2	54.0

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

802.11n (HT20) CH157

Radiates Emission from 1GHz to 8GHz Note: The signal beyond the limit is carrier.

Radiates Emission from 8GHz to 18GHz

Correct **Frequency** Peak **Azimuth** Margin Limit Height **Polarization Factor** (dBuV/m) (dBuV/m) (MHz) (cm) (deg) (dB) (dB) ٧ 1319.375000 44.1 200.0 0.0 1.3 29.9 74.0 1557.375000 44.8 200.0 Η 325.0 2.3 29.2 74.0 2235.500000 47.5 100.0 102.0 5.1 74.0 Η 26.5 2695.750000 49.8 200.0 Н 65.0 7.0 24.2 74.0 100.0 ٧ 301.0 11.4 22.0 74.0 3972.375000 52.0 ٧ 4913.875000 53.5 100.0 301.0 13.5 20.5 74.0

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

Frequency (MHz)	Average (dBuV/m)	Height (cm)	Polarization	Azimuth (deg)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
1321.125000	32.9	200.0	V	294.0	1.3	21.1	54.0
1560.875000	34.7	200.0	Н	141.0	2.3	19.3	54.0
2239.875000	37.6	200.0	V	219.0	5.1	16.4	54.0
2803.375000	38.7	100.0	Н	45.0	7.4	15.3	54.0
3949.625000	41.8	200.0	Н	149.0	11.4	12.2	54.0
4917.375000	42.9	100.0	Н	354.0	13.5	11.1	54.0

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

802.11n (HT20) CH165

Radiates Emission from 1GHz to 8GHz Note: The signal beyond the limit is carrier.

Radiates Emission from 8GHz to 18GHz

Correct **Frequency** Peak **Azimuth** Margin Limit Height **Polarization Factor** (dBuV/m) (dBuV/m) (MHz) (cm) (deg) (dB) (dB) 100.0 ٧ 1311.500000 42.7 261.0 1.2 31.3 74.0 1588.875000 44.5 200.0 Η 305.0 2.5 29.5 74.0 2788.500000 100.0 7.3 74.0 49.1 Η 0.0 24.9 3814.875000 52.8 200.0 Н 353.0 10.9 21.2 74.0 4838.625000 53.2 200.0 Н 87.0 13.4 20.8 74.0

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

Frequency (MHz)	Average (dBuV/m)	Height (cm)	Polarization	Azimuth (deg)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
1329.875000	33.9	100.0	V	228.0	1.3	20.1	54.0
1590.625000	35.3	100.0	Н	170.0	2.5	18.7	54.0
2704.500000	38.6	100.0	Н	176.0	7.1	15.4	54.0
3883.125000	41.6	100.0	V	236.0	11.1	12.4	54.0
4839.500000	42.8	100.0	V	252.0	13.4	11.2	54.0

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

802.11n (HT40) CH38

Radiates Emission from 1GHz to 8GHz Note: The signal beyond the limit is carrier.

Radiates Emission from 8GHz to 18GHz

Frequency (MHz)	Peak (dBuV/m)	Height (cm)	Polarization	Azimuth (deg)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
1199.500000	44.7	200.0	Н	0.0	0.7	23.5	68.2
1892.500000	46.8	200.0	V	25.0	3.7	21.4	68.2
2512.000000	48.4	200.0	Н	326.0	6.1	19.8	68.2
3121.000000	50.0	200.0	Н	0.0	8.7	18.2	68.2
3529.625000	50.9	200.0	Н	307.0	10.1	17.3	68.2
7071.625000	57.2	100.0	Н	124.0	17.9	11.0	68.2

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

Frequency (MHz)	Average (dBuV/m)	Height (cm)	Polarization	Azimuth (deg)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
1385.875000	34.4	200.0	V	25.0	1.7	19.6	54.0
1582.750000	34.8	200.0	V	89.0	2.5	19.2	54.0
2779.750000	38.6	200.0	Н	224.0	7.3	15.4	54.0
3919.000000	41.4	100.0	Н	132.0	11.2	12.6	54.0
4864.000000	42.7	100.0	V	220.0	13.4	11.3	54.0

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

802.11n (HT40) CH46

Radiates Emission from 1GHz to 8GHz Note: The signal beyond the limit is carrier.

Radiates Emission from 8GHz to 18GHz

Frequency (MHz)	Peak (dBuV/m)	Height (cm)	Polarization	Azimuth (deg)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
1074.375000	44.2	100.0	V	251.0	-0.2	24.0	68.2
1273.875000	44.5	100.0	Н	88.0	1.1	23.7	68.2
1983.500000	47.0	200.0	V	172.0	4.2	21.2	68.2
2680.875000	49.7	200.0	Н	243.0	7.0	18.5	68.2
3454.375000	51.2	100.0	V	139.0	9.7	17.0	68.2
6713.750000	57.1	200.0	V	108.0	17.6	11.1	68.2

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

Frequency (MHz)	Average (dBuV/m)	Height (cm)	Polarization	Azimuth (deg)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
1410.375000	34.6	100.0	V	292.0	1.9	19.4	54.0
1684.250000	34.5	100.0	V	243.0	2.9	19.5	54.0
2236.375000	36.9	200.0	V	0.0	5.1	17.1	54.0
2852.375000	38.3	200.0	Н	0.0	7.6	15.7	54.0
3985.500000	41.4	200.0	V	251.0	11.5	12.6	54.0
4973.375000	43.1	100.0	V	340.0	13.6	10.9	54.0

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

802.11n (HT40) CH151

Radiates Emission from 1GHz to 8GHz Note: The signal beyond the limit is carrier.

Radiates Emission from 8GHz to 18GHz

Frequency (MHz)	Peak (dBuV/m)	Height (cm)	Polarization	Azimuth (deg)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
1342.125000	44.7	100.0	Н	190.0	1.4	29.3	74.0
1589.750000	44.6	200.0	V	110.0	2.5	29.4	74.0
2254.750000	47.5	100.0	Н	0.0	5.2	26.5	74.0
2753.500000	49.3	200.0	V	0.0	7.2	24.7	74.0
3786.875000	52.8	100.0	V	167.0	10.7	21.2	74.0
4991.750000	53.8	100.0	V	250.0	13.6	20.2	74.0

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

Frequency (MHz)	Average (dBuV/m)	Height (cm)	Polarization	Azimuth (deg)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
1344.750000	33.6	100.0	Н	4.0	1.4	20.4	54.0
1595.875000	34.9	200.0	V	132.0	2.5	19.1	54.0
2252.125000	37.2	100.0	V	275.0	5.2	16.8	54.0
2808.625000	38.8	200.0	Н	207.0	7.4	15.2	54.0
3994.250000	41.5	100.0	Н	239.0	11.5	12.5	54.0
5020.625000	42.7	100.0	Н	36.0	13.7	11.3	54.0

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

TA-MB-04-006R

802.11n (HT40) CH159

Radiates Emission from 1GHz to 8GHz Note: The signal beyond the limit is carrier.

Radiates Emission from 8GHz to 18GHz

Frequency (MHz)	Peak (dBuV/m)	Height (cm)	Polarization	Azimuth (deg)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
1390.250000	44.6	100.0	V	137.0	1.8	29.4	74.0
1572.250000	44.6	100.0	V	192.0	2.4	29.4	74.0
2224.125000	48.2	200.0	Н	303.0	5.1	25.8	74.0
2701.875000	49.8	100.0	V	223.0	7.1	24.2	74.0
3917.250000	52.2	200.0	V	248.0	11.2	21.8	74.0
4971.625000	53.2	200.0	Н	237.0	13.5	20.8	74.0

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

Frequency (MHz)	Average (dBuV/m)	Height (cm)	Polarization	Azimuth (deg)	Factor		Limit (dBuV/m)
1404.250000	34.3	100.0	Н	120.0	1.9	19.7	54.0
1586.250000	34.7	200.0	V	173.0	2.5	19.3	54.0
2239.875000	37.1	200.0	V	126.0	5.1	16.9	54.0
2738.625000	38.2	100.0	Н	42.0	7.2	15.8	54.0
3961.875000	41.9	200.0	V	52.0	11.4	12.1	54.0
4998.750000	42.8	200.0	V	0.0	13.6	11.2	54.0

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

802.11ac (HT80) CH42

Radiates Emission from 1GHz to 8GHz Note: The signal beyond the limit is carrier.

Radiates Emission from 8GHz to 18GHz

Correct **Frequency** Peak **Azimuth** Margin Limit Height **Polarization Factor** (dBuV/m) (MHz) (dBuV/m) (cm) (deg) (dB) (dB) 100.0 ٧ 1234.500000 45.1 266.0 0.9 23.1 68.2 1904.750000 47.0 200.0 Η 138.0 3.8 21.2 68.2 100.0 6.2 18.4 68.2 2533.000000 49.8 Η 86.0 3476.250000 51.7 100.0 Н 314.0 9.8 16.5 68.2 5866.750000 200.0 ٧ 230.0 15.8 12.7 68.2 55.5 57.6 Н 7954.500000 100.0 181.0 19.0 10.6 68.2

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

Frequency (MHz)	Average (dBuV/m)	Height (cm)	Polarization	Azimuth (deg)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
1385.875000	35.1	100.0	Н	148.0	1.7	18.9	54.0
2358.875000	37.7	200.0	Н	68.0	5.6	16.3	54.0
2805.125000	39.0	100.0	Н	140.0	7.4	15.0	54.0
3927.750000	42.3	100.0	V	296.0	11.3	11.7	54.0
4791.375000	42.7	100.0	Н	0.0	13.3	11.3	54.0
7566.875000	47.4	200.0	V	278.0	18.7	6.6	54.0

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

802.11ac (HT80) CH155

Radiates Emission from 1GHz to 8GHz Note: The signal beyond the limit is carrier.

Radiates Emission from 8GHz to 18GHz

Correct Height **Azimuth** Limit **Frequency** Peak Margin **Polarization Factor** (dBuV/m) (MHz) (dBuV/m) (cm) (deg) (dB) 1337.750000 44.9 100.0 Н 280.0 1.4 29.1 74.0 200.0 Н 161.0 2.4 74.0 1571.375000 46.0 28.0 2333.500000 47.4 100.0 Н 248.0 74.0 5.5 26.6 2850.625000 48.6 100.0 Н 321.0 7.6 25.4 74.0 3815.750000 52.5 100.0 Η 0.0 10.9 21.5 74.0 100.0 V 129.0 13.4 74.0 4824.625000 53.4 20.6

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

Frequency (MHz)	Average (dBuV/m)	Height (cm)	Polarization	Azimuth (deg)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
1392.000000	35.1	100.0	V	89.0	1.8	18.9	54.0
1576.625000	35.4	100.0	Н	256.0	2.4	18.6	54.0
2334.375000	37.6	100.0	Н	172.0	5.5	16.4	54.0
2743.000000	39.0	100.0	Н	180.0	7.2	15.0	54.0
3924.250000	42.0	100.0	V	223.0	11.3	12.0	54.0
4866.625000	43.3	200.0	V	277.0	13.4	10.7	54.0

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

5.6. Conducted Emission

Ambient condition

Temperature	Relative humidity	Pressure
23°C ~25°C	45%~50%	101.5kPa

Report No.: R1905A0238-R2

Methods of Measurement

The EUT IS placed on a non-metallic table of 80cm height above the horizontal metal reference ground plane. During the test, the EUT was operating in its typical mode. The test method is according to ANSI C63.10-2013.Connect the AC power line of the EUT to the LISN Use EMI receiver to detect the average and Quasi-peak value. RBW is set to 9kHz, VBW is set to 30kHz The measurement result should include both L line and N line.

The test is in transmitting mode.

Test Setup

Note: AC Power source is used to change the voltage 110V/60Hz.

Limits

Frequency	Conducted Limits(dBμV)						
(MHz)	Quasi-peak	Average					
0.15 - 0.5	66 to 56 *	56 to 46*					
0.5 - 5	56	46					
5 - 30	60	50					
*: Decreases wit	* Decreases with the logarithm of the frequency.						

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 1.96, U = 2.69 dB.

RF Test Report No.: R1905A0238-R2

Test Results:

Following plots, Blue trace uses the peak detection and Green trace uses the average detection. During the test, the Conducted Emission was performed in all modes with all channels, 802.11ac VHT20, Channel 165 are selected as the worst condition. The test data of the worst-case condition was recorded in this report.

Frequency (MHz)	QuasiPeak (dΒμV)	Average (dBµV)	Limit (dBµV)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Line	Filter	Corr. (dB)
0.35	42.79	-	58.96	16.17	1000.0	9.000	L1	ON	19.17
0.35		37.09	48.90	11.81	1000.0	9.000	L1	ON	19.18
0.53		32.70	46.00	13.30	1000.0	9.000	L1	ON	19.24
0.53	37.23		56.00	18.77	1000.0	9.000	L1	ON	19.24
1.97		36.01	46.00	9.99	1000.0	9.000	L1	ON	19.14
2.02	39.76		56.00	16.24	1000.0	9.000	L1	ON	19.13
4.83		40.54	46.00	5.46	1000.0	9.000	L1	ON	19.07
4.85	46.12		56.00	9.88	1000.0	9.000	L1	ON	19.07
5.16		39.58	50.00	10.42	1000.0	9.000	L1	ON	19.09
5.20	45.18		60.00	14.82	1000.0	9.000	L1	ON	19.09
20.87	31.24		60.00	28.76	1000.0	9.000	L1	ON	19.67
21.04		27.03	50.00	22.97	1000.0	9.000	L1	ON	19.67

Remark: Correct factor=cable loss + LISN factor

L line Conducted Emission from 150 KHz to 30 MHz

Frequency (MHz)	QuasiPeak (dΒμV)	Average (dBµV)	Limit (dBµV)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Line	Filter	Corr. (dB)
0.35	43.28		59.06	15.78	1000.0	9.000	N	ON	19.18
0.35		37.95	48.90	10.95	1000.0	9.000	N	ON	19.18
0.53	37.71		56.00	18.29	1000.0	9.000	N	ON	19.24
0.53		33.65	46.00	12.35	1000.0	9.000	N	ON	19.25
1.97		35.46	46.00	10.54	1000.0	9.000	N	ON	19.14
2.05	39.03		56.00	16.97	1000.0	9.000	N	ON	19.11
4.95	45.88		56.00	10.12	1000.0	9.000	N	ON	19.07
5.00		38.84	46.00	7.16	1000.0	9.000	N	ON	19.08
5.19	44.96		60.00	15.04	1000.0	9.000	N	ON	19.09
6.47		37.94	50.00	12.06	1000.0	9.000	N	ON	19.13
20.64	30.97		60.00	29.03	1000.0	9.000	N	ON	19.50
20.81		27.07	50.00	22.93	1000.0	9.000	N	ON	19.52

Remark: Correct factor=cable loss + LISN factor

N line Conducted Emission from 150 KHz to 30 MHz

6. Main Test Instruments

Name	Manufacturer	Туре	Serial Number	Calibration Date	Expiration Date
Spectrum Analyzer	R&S	FSV40	15195-01-00	2019-05-19	2020-05-18
EMI Test Receiver	R&S	ESCI 100948		2019-05-19	2020-05-18
Loop Antenna	SCHWARZBECK	FMZB1519	1519-047	2019-09-26	2021-09-25
TRILOG Broadband Antenna	SCHWARZBECK	VULB 9163	9163-201	2017-11-18	2019-11-17
Double Ridged Waveguide Horn Antenna	R&S	HF907	100126	2018-07-07	2020-07-06
Standard Gain Horn	ETS-Lindgren	3160-09	00102643	2018-06-20	2020-06-19
Standard Gain Horn	STEATITE	QSH-SL-26-40 -K-15	16779	2017-07-20	2019-07-19
Broadband Horn Antenna	SCHWARZBECK	BBHA 9120D	430	2018-07-07	2020-07-06
EMI Test Receiver	R&S	ESR	101667	2019-05-19	2020-05-18
LISN	R&S	ENV216	101171	2016-12-16	2019-12-15
Spectrum Analyzer	KEYSIGHT	N9020A	MY54420163	2018-12-16	2019-12-15
RF Cable	Agilent	SMA 15cm	0001	2019-03-15	2019-06-14
TEMPERATURE CHAMBER	WEISS	VT4002	582261194500 10	2018-12-16	2019-12-15
AV Power Meter	R&S	NRP	104306	2019-05-19	2020-05-18
Power Probe	R&S	NRP-Z21	104799	2019-05-19	2020-05-18
DC Power Supply	GWINSTEK	GPS-3030D	GEP882653	2019-05-19	2020-05-18
Software	R&S	EMC32	9.26.0	1	1

*****END OF REPORT *****