MIT ASSIGNMENT - 9

1. The Given String Is Stored At Memory Location 1000 Onwards:

"Microprocessor And Interface" Ended With 'Odh'.

Write 8085 Program To Count Occurrences Of Each Character In Given String. Output Is Displayed From Memory Location 2000.

;Program1

LXI H,1000H

LOOP:MOV A,M

CALL ASCII

MOV A,M

INX H

CPI 0DH

JNZ LOOP

hlt

ASCII: CPI 41H ;ASCII OF A=65 =41H

RC

SUI 41H

JMP STORE

RET

STORE: LXI D,2000H

MOV E,A

LDAX D

INR A

STAX D

RET

п	n	n	11	t	•
ш		р	u	ι	•

Address (Hex)	Address	Data	a					
1000	4096	77	M					
1001	4097	105	i	1000	41	08 11	1 0	0
1002	4098	99	С	1000) 41	09 11	4 r	r
1003	4099	114	r	100E	41	10 32		
1004	4100	111	0	100F	41	11 65	-	Д
1005	4101	112	р	1010	41	12 11	0 r	n
1006	4102	114	r	1011	41	13 10	0 0	d
1007	4103	111	0	1012	41	14 32		
1008	4104	99	С	1013	41	15 73	1	ı
1009	4105	101	e	1014	41	16 11	0 r	n
100A	4106	115	S	1015	5 41	17 11		t
100B	4107	115	S	1016	41	18 10	1 e	- e

1017	4119	114	r
1018	4120	102	f
1019	4121	97	a
101A	4122	99	С
101B	4123	101	e
101C	4124	13	"end"

Output:

Address (Hex)	Address	Dat	а
2000	8192	1	←A
2001	8193	0	
2002	8194	0	
2003	8195	0	
2004	8196	0	
2005	8197	0	
2006	8198	0	
2007	8199	0	
2008	8200	1	← 1
2009	8201	0	
200A	8202	0	
200B	8203	0	

Address (Hex)	Address	Data
200C	8204	1 ← M
200D	8205	0
200E	8206	0
200F	8207	0
2010	8208	0
2011	8209	0
2012	8210	0
2013	8211	0
2014	8212	0
2015	8213	0
2016	8214	0
2017	8215	0

Address (Hex)	Address	Data	Address (Hex)	Address	Da	ta
2018	8216	0	2024	8228	3	е
2019	8217	0	2025	8229	1	f
201A	8218	0	2026	8230	0	g
201B	8219	0	2027	8231	0	h
201C	8220	0	2028	8232	1	i
201D	8221	0	2029	8233	0	j
201E	8222	0	202A	8234	0	k
201F	8223	0	202B	8235	0	I
2020	8224	1 ← a	202C	8236	0	m
2021	8225	0	202D	8237	2	n
2022	8226	3 ← c	202E	8238	3	0
2023	8227	1 ←d	202F	8239	1	p

Address (Hex)	Address	Da	ta
2030	8240	0	q
2031	8241	4	r
2032	8242	2	S
2033	8243	1	t
2034	8244	0	u
2035	8245	0	V
2036	8246	0	W
2037	8247	0	X
2038	8248	0	У
2039	8249	0	Z

2. Write An 8085 Program To Check The Substring From Given String

Example: Given String: "Hello World"

Substring: "Wor"

;Program2

LXI H,2000H

LDA 3000H

MOV B,A

LOOP: MOV A,M

CMP B

CZ CHECK

MOV A,M

INX H

CPI 0DH

JNZ LOOP

Hlt

CHECK: PUSH H

LXI D,3000H

REPEAT: LDAX D

CMP M

JNZ NOTEQUAL

INX D

INX H

LDAX D

CPI 0DH

JNZ REPEAT

POP H

XCHG

INX H

INX H

MOV M,E

INX H

MOV M,D

HLT

NOTEQUAL: POP H

RET

Hello World= 72 101 108 108 111 32 87 111 114 108 100

0d=13

Wor = 87 111 114

Output:

3. Write an Assembly Language Program In 8085 Microprocessor To Subtract Two 8 Bit BCD Numbers.

;Program3

lda 2051h

mov b,a

mvi a,99h

sub b

inr a

mov c,a

lda 2050h

add c

daa

sta 2052h

hlt

4. Write An Assembly Level Language Program To Convert 8 Bit BCD Number To Its Respective ASCII Code.

;Program4 lda 2000h mvi b,00h mvi c,00h call bintobcd adi 30h ;add (48)₁₀ sta 2001h mov a,c adi 30h ;add (48)₁₀ sta 2002h mov a,b adi 30h ;add (48)₁₀ cpi 30h jz end sta 2003h end: hlt bintobcd: cpi 64h jc s1 inr b sui 64h jmp bintobcd s1: cpi 0Ah jc exit inr c sui 0Ah jmp s1 exit: ret

Program assembled successfully