Minería de patrones frecuentes y reglas de asociación

Máster Online en Ciencia de Datos

Dr. José Raúl Romero

Profesor Titular de la Universidad de Córdoba y Doctor en Ingeniería Informática por la Universidad de Málaga. Sus líneas actuales de trabajo se centran en la democratización de la ciencia de datos (*Automated ML* y *Explainable Artificial Intelligence*), aprendizaje automático evolutivo y análitica de software (aplicación de aprendizaje y optimización a la mejora del proceso de desarrollo de software).

Miembro del Consejo de Administración de la *European Association for Data Science*, e investigador senior del Instituto de Investigación Andaluz de *Data Science and Computational Intelligence*.

Director del **Máster Online en Ciencia de Datos** de la Universidad de Córdoba.

UNIVERSIDAD Ð CÓRDOBA

Métricas de rendimiento y evaluación de reglas de asociación

Soporte y confianza como medidas básicas

- La minería de reglas de asociación se debe enfocar en generar reglas de asociación simples
- La longitud de una regla puede ser limitada por un threshold (umbral) definido por el científico de datos
 - Con un menor número de itemsets, la interpretación de las reglas resulta más intuitiva
 - Sin embargo, simplificar las reglas puede aumentar notablemente su número
- Los valores cuantitativos pueden agruparse y categorizarse (p.ej. En grupos de edad)

 Los algoritmos de reglas de asociación tienden a producir una gran cantidad de reglas

muchas de ellas no son interesantes o son redundantes

redundantes si $\{A,B,C\} \rightarrow \{D\}$ y $\{A,B\} \rightarrow \{D\}$ tienen el mismo soporte y confianza

- Las métricas de interés se pueden usar para podar/ordenar los patrones
- En la formulación original de reglas de asociación se utilizan soporte y confianza pero las únicas métricas existentes

- Soporte: proporción del número de instancias que cubren el antecedente y el consecuente de la regla sobre el total de instancias del conjunto de datos.
 - Esta medida de calidad actuará mayoritariamente como medida de *fitness* en las propuestas evolutivas

 Confianza: proporción del número de instancias que cubren el antecedente y el consecuente de la regla sobre el número de instancias que cubren en antecedente de dicha regla

R. Agrawal, T. Imielinski, and A. Swami. *Mining associations between sets of items in large databases*. In Proc. of the ACM SIGMOD Int'l Conference on Management of Data, pages 207-216, Washington D.C., May 1993

Soporte

- La utilidad de una regla puede medirse con un umbral de soporte mínimo
- Las reglas para transacciones cuyos itemsets no están suficientemente contenidos en ambos lados (definido por un valor de umbral) pueden ser excluídos
- El **soporte** puede definirse como:

Soporte

• Supongamos la siguiente base de datos:

$$D = \{(1,2,3), (2,3,4), (1,2,4), (1,2,5), (1,3,5)\}$$

• El **soporte** para el itemset (1,2) es:

$$| \{T_k \in D \mid X \subseteq T_k\} |$$

 $supp((1,2)) = ---- = 3/5 = 60\%$
 $|D|$

Soporte

El **soporte** del conjunto de elementos {*Pan, Mantequilla*} será **3/5=0,6**. Cualquier regla que se forme a partir de dicho conjunto de elementos tendrá el valor de **soporte 0,6**

	Leche	Pan	Mantequilla	Galletas
Usuario 1	✓		\checkmark	
Usuario 2			\checkmark	
Usuario 3	✓			\checkmark
Usuario 4	✓		\checkmark	
Usuario 5		✓		✓

Confianza

- La confianza de una regla (o strength) mide la frecuencia con la que un itemset encontrado en la parte izquierda de la regla, también se encuentra en la parte derecha
 - Este parámetro puede evaluarse a partir de un umbral mínimo de confianza
- Las reglas para eventos cuyos itemsets no están suficientemente contenidos en la parte derecha, aunque sí en la izquierda (definido por un valor umbral) pueden excluirse
- La confianza se define como:

$$supp(X_a \cup X_c)$$
 Esta relaction $conf(X_a, X_c) = ---- supp(X_a)$

Esta relación compara el número de eventos que contienen los itemsets \mathbf{X}_{a} y \mathbf{X}_{c} con el número de eventos que sólo contiene \mathbf{X}_{a}

donde existe una regla $X_a \rightarrow X_c$, de modo que los *itemsets* X_a y X_c son subregiones de un evento T_k , esto es: $X_a \subseteq T_k \land X_c \subseteq T_k$

Además, se cumple que $X_a \cap X_c = \emptyset$

Confianza

• Supongamos la siguiente base de datos:

$$D = \{(1,2,3), (2,3,4), (1,2,4), (1,2,5), (1,3,5)\}$$

Calculamos la confianza de la regla 1 -> 2

$$supp(1 \cup 2)$$
 3/5
 $conf((1,2)) = ---- = \frac{3}{4} = 75\%$
 $supp(1)$ 4/5

Esto es, la relación de transacciones que contienen X_a y X_c por las transacciones que contienen el itemset X_a

Confianza

A partir del conjunto de elementos {*Pan, Mantequilla*} pueden obtenerse las reglas:

- \rightarrow Pan \longrightarrow Mantequilla con una confianza de 3/4 = 0,75
- \rightarrow Mantequilla \rightarrow Pan con una confianza de 3/3 = 1

	Leche	Pan	Mantequilla	Galletas
Usuario 1	✓	√	\checkmark	
Usuario 2		√	√	
Usuario 3	✓			✓
Usuario 4	✓	√	✓	
Usuario 5		√		✓

- Si la confianza alcanza un valor del 100 %, entonces se dice que la implicación es una regla exacta
- Aunque la confianza alcance valores altos, la regla no será útil a menos que el soporte también alcance valores altos
- A las reglas que tienen alta confianza y alto suporte se les denomina reglas fuertes
 - ¿Cómo optimizar soporte y confianza?
 - ¿Hay casos en los que interese soporte o confianza muy bajo?
 - Algunas propuestas competitivas (distintas a Apriori) pueden generar reglas útiles aún incluso con valores bajos de soporte

Métricas de rendimiento y evaluación de reglas de asociación

Otras medidas de evaluación

Lift

 Lift: El interés o medida de lift, calcula cuántas veces ocurre el antecedente y el consecuente más de lo esperado en un dataset suponiendo que tanto el antecedente como el consecuente son independientes

• Puesto que el denominador es el producto de soportes del antecedente y consecuente, el **lift** es una **medida simétrica**

lift (
$$Pan \rightarrow Mantequilla$$
) = **lift** ($Mantequilla \rightarrow Pan$)

Lift

- Soporte (Pan) = 4/5 = 0.8
- Soporte (Mantequilla) = 3/5 = 0,6
- Soporte (Mantequilla) * Soporte (Pan) = 0,8*0,6 = 0,48
- Lift (Pan → Mantequilla) = 0,6/0,48 = 1,25

	Leche	Pan	Mantequilla	Galletas
Usuario 1	√	√	✓	
Usuario 2		✓	✓	
Usuario 3	✓			\checkmark
Usuario 4	✓	✓	\checkmark	
Usuario 5		✓		✓

Leverage

- Leverage: Calcula la diferencia entre el número de veces que ocurre el antecedente y el consecuente en un dataset y lo que se esperaba suponiendo ambos son independientes
 - Presenta cierta similitud con el interés (*lift*).

leverage(
$$R_{A\to c}$$
) = supp(R) – [supp(A) * supp(C)]

 Como la resta es con el producto de los soportes del antecedente y consecuente, el leverage es una medida simétrica

leverage ($Pan \rightarrow Mantequilla$) = **leverage** ($Mantequilla \rightarrow Pan$)

Leverage

- Soporte (Pan) = 4/5 = 0.8
- Soporte (Mantequilla) = 3/5 = 0,6
- Soporte (Mantequilla) * Soporte (Pan) = 0,8*0,6 = 0,48
- Leverage (Pan → Mantequilla) = 0,6-0,48 = 0,12

	Leche	Pan	Mantequilla	Galletas
Usuario 1	✓	√	√	
Usuario 2		✓	√	
Usuario 3	✓			\checkmark
Usuario 4	✓	✓	✓	
Usuario 5		√		√

All-confidence

- All-confidence: representa que todas las reglas que pueden ser generadas a partir del itemset Z tienen al menos la confianza de all-confidence(Z).
 - Posee la propiedad de clausura hacia abajo por menor conjunto (downward-closed closure property)

Una colección C de conjuntos es cerrada hacia abajo (**downward closed**) si para cualquier X conjunto de la colección, entonces cualquier subconjunto de X también pertenece a C

donde max(..) es el soporte del ítem con el mayor soporte en R.

All-confidence

- All-confidence (Usuario1) = supp (Usuario1) / max (0.6, **0.8**, 0.6) = (2/5) / 0,8 = 0,5
- Soporte (Leche) = 3/5 = 0.6
- Soporte (Pan) = 4/5 = 0.8
- Soporte (Leche) = 3/5 = 0.6

	Leche	Pan	Mantequilla	Galletas
Usuario 1	√	✓	✓	
Usuario 2		✓	\checkmark	
Usuario 3	✓			\checkmark
Usuario 4	✓	✓	\checkmark	
Usuario 5		✓		√

Cobertura

- Coverage: representa las veces que una regla puede ser aplicada en la base de datos
- También se le conoce como soporte del antecedente

$$coverage(R_{A\rightarrow C}) = supp (A)$$

Cobertura

- Coverage(Leche \rightarrow Galletas) = supp (Leche) = 3/5 = 0,6
- Coverage(Galletas → Leche) = supp (Galletas) = 2/5 = 0,4

	Leche	Pan	Mantequilla	Galletas
Usuario 1	√	✓	✓	
Usuario 2		✓	√	
Usuario 3	✓			✓
Usuario 4	✓	✓	✓	
Usuario 5		✓		✓

Dada la regla $X \rightarrow Y$, la información necesitada se computa a partir de la **tabla de contingencia**

	Y	$\overline{m{Y}}$
X	f_{11}	f_{10}
\overline{X}	f_{01}	f_{00}
	f_{+1}	f_{+0}

$$f_{I^+} \ f_{o^+}$$

$$f_{11}$$
: soporte de X e Y f_{10} : soporte de X e \overline{Y} f_{01} : soporte de \overline{X} e Y f_{00} : soporte de \overline{X} e \overline{Y}

La table permite definir varias métricas

soporte, confianza, lift, Gini, J-measure, etc.

	Café	Café	
Té	15	5	20
Té	75	5	80
	90	10	100

Regla de asociación: **Té** → **Café**

Confianza =
$$P(Café|Té) = 0.75$$

pero $P(Café) = 0.9$

⇒ Aunque la confianza es alta, la regla es confusa

Población de 1000 estudiantes

- 600 estudiantes saben como nadar (S)
- 700 estudiantes saben como montar en bici (B)
- 420 estudiantes saben como nadar y montar en bici (S ∧ B)
- $P(S \land B) = 420/1000 = 0.42$
- $P(S) \times P(B) = 0.6 \times 0.7 = 0.42$
- $P(S \land B) = P(S) \times P(B) => Independencia estadística$
- $P(S \land B) > P(S) \times P(B) => Positivamente correlado$
- $P(S \land B) < P(S) \times P(B) => Negativamente correlado$

	Café	Café	
Té	15	5	20
Té	75	5	80
	90	10	100

Regla de asociación: **Té** → **Café**

```
Confianza = P(Café|Té) = 15 / 20 = 0.75

pero P(Café) = 90 / 100 = 0.9

\Rightarrow Lift = P(Café|Té) / P(Café) = 0.75/0.9 = 0.8333

(< 1, por lo tanto, están negativamente correladas)
```


	Y	Y	
X	10	0	10
X	0	90	90
	10	90	100

	Υ	Y	
X	90	0	90
X	0	10	10
	90	10	100

$$Lift = \frac{0.1}{(0.1)(0.1)} = 10$$

$$Lift = \frac{0.1}{(0.1)(0.1)} = 10 \qquad \qquad Lift = \frac{0.9}{(0.9)(0.9)} = 1.11$$

Independencia estadística:

Si
$$P(X,Y)=P(X)P(Y) \Rightarrow Lift = 1$$

	#	Measure	Formula
	1	ϕ -coefficient	$\frac{P(A,B)-P(A)P(B)}{\sqrt{P(A)P(B)(1-P(A))(1-P(B))}}$
	2	Goodman-Kruskal's (λ)	$\frac{\sum_{j} \max_{k} P(A_j, B_k) + \sum_{k} \max_{j} P(A_j, B_k) - \max_{j} P(A_j) - \max_{k} P(B_k)}{2 - \max_{j} P(A_j) - \max_{k} P(B_k)}$
	3	Odds ratio (α)	$\frac{P(A,B)P(\overline{A},\overline{B})}{P(A,\overline{B})P(\overline{A},B)}$
	4	Yule's Q	$\frac{P(A,B)P(\overline{AB})-P(A,\overline{B})P(\overline{A},B)}{P(A,B)P(\overline{A},B)} = \frac{\alpha-1}{\alpha-1}$
	5	Yule's Y	$\frac{\sqrt{P(A,B)P(AB)} + P(A,B)P(A,B)}{\sqrt{P(A,B)P(\overline{AB})} + \sqrt{P(A,\overline{B})P(\overline{A},B)}} = \frac{\sqrt{\alpha} - 1}{\sqrt{\alpha} + 1}$
	6	Kappa (κ)	$P(A,B)+P(\overline{A},\overline{B})-P(A)P(B)-P(\overline{A})P(\overline{B})$
	7	Mutual Information (M)	$\frac{1 - P(A)P(B) - P(\overline{A})P(\overline{B})}{\sum_{i} \sum_{j} P(A_{i}, B_{j}) \log \frac{P(A_{i}, B_{j})}{P(A_{i})P(B_{j})}}$ $\frac{\min(-\sum_{i} P(A_{i}) \log P(A_{i}), -\sum_{j} P(B_{j}) \log P(B_{j}))}{\min(-\sum_{i} P(A_{i}) \log P(A_{i}), -\sum_{j} P(B_{j}) \log P(B_{j}))}$
	8	J-Measure (J)	$\max\left(P(A,B)\log(\frac{P(B A)}{P(B)}) + P(A\overline{B})\log(\frac{P(\overline{B} A)}{P(\overline{B})}),\right.$
			$P(A,B)\log(\frac{P(A B)}{P(A)}) + P(\overline{A}B)\log(\frac{P(\overline{A} B')}{P(A)})$
	9	Gini index (G)	$\max \left(P(A)[P(B A)^2 + P(\overline{B} A)^2] + P(\overline{A})[P(B \overline{A})^2 + P(\overline{B} \overline{A})^2] \right)$
			$-P(B)^2-P(\overline{B})^2,$
			$P(B)[P(A B)^{2} + P(\overline{A} B)^{2}] + P(\overline{B})[P(A \overline{B})^{2} + P(\overline{A} \overline{B})^{2}]$
			$-P(A)^2 - P(\overline{A})^2$
	10	Support (s)	P(A,B)
Multitud de medidas:	11	Confidence (c)	$\max(P(B A), P(A B))$
Waltitud de Medidas.	12	Laplace (L)	$\max\left(rac{NP(A,B)+1}{NP(A)+2},rac{NP(A,B)+1}{NP(B)+2} ight)$
	13	Conviction (V)	$\max\left(rac{P(A)P(\overline{B})}{P(A\overline{B})},rac{P(B)P(\overline{A})}{P(B\overline{A})} ight)$
	14	Interest (I)	$\frac{P(A,B)}{P(A)P(B)}$
	15	cosine (IS)	$\frac{P(A,B)}{\sqrt{P(A)P(B)}}$
	16	Piatetsky-Shapiro's (PS)	P(A,B) - P(A)P(B)
	17	Certainty factor (F)	$\max\left(rac{P(B A)-P(B)}{1-P(B)},rac{P(A B)-P(A)}{1-P(A)} ight)$
	18	Added Value (AV)	$\max(P(B A) - P(B), P(A B) - P(A))$
	19	Collective strength (S)	$\max(P(B A) - P(B), P(A B) - P(A))$ $\frac{P(A,B) + P(\overline{AB})}{P(A)P(B) + P(\overline{A})P(\overline{B})} \times \frac{1 - P(A)P(B) - P(\overline{A})P(\overline{B})}{1 - P(A,B) - P(\overline{AB})}$
	20	Jaccard (ζ)	$\frac{P(A,B)}{P(A)+P(B)-P(A,B)}$
	21	Klosgen (K)	$\sqrt{P(A,B)}\max(P(B A)-P(B),P(A B)-P(A))$

