

Summer 2014 Examination

Subject & Code: Applied Maths (17301) **Model Answer Page No:** 1/27

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
		Important Instructions to the Examiners:		
		1) The Answers should be examined by key words and not as		
		word-to-word as given in the model answer scheme.		
		2) The model answer and the answer written by candidate may		
		vary but the examiner may try to assess the understanding		
		level of the candidate.		
		3) The language errors such as grammatical, spelling errors		
		should not be given more importance. (Not applicable for		
		subject English and Communication Skills.)		
		4) While assessing figures, examiner may give credit for		
		principal components indicated in the figure. The figures		
		drawn by the candidate and those in the model answer may		
		vary. The examiner may give credit for any equivalent		
		figure drawn.		
		5) Credits may be given step wise for numerical problems. In		
		some cases, the assumed constant values may vary and there		
		may be some difference in the candidate's Answers and the		
		model answer.		
		6) In case of some questions credit may be given by judgment		
		on part of examiner of relevant answer based on candidate's		
		understanding.		
		7) For programming language papers, credit may be given to		
		any other program based on equivalent concept.		

Subject & Code: Applied Maths (17301)

Page No: 2/27

Que.	Sub.	Model Answers	Marks	Total
No.	Que.	Attempt any TEN of the following:	1/101113	Marks
1)		Attempt any TEN of the following.		
	a)	Find the inclination of the tangent to the curve $y = e^{2x}$ at $(1, -3)$		
	Ans.	$y = e^{2x}$		
		$y = e^{2x}$ $\therefore \frac{dy}{dx} = 2e^{2x}$	1/2	
		\therefore slope of tangent at $(1, -3)is$,		
		$m=2e^2$	1/2	
		:. the angle of inclination is,		
		$\theta = \tan^{-1}\left(m\right) = \tan^{-1}\left(2e^2\right)$	1	2
	b)	Find the point on the curve $y = 2x^2 - 6x$ where the tangent is		
		parallel to the x-axis.		
	Ans.	$y = 2x^2 - 6x$		
		$\therefore \frac{dy}{dx} = 4x - 6$	1/2	
		But tangent is parallel to x-axis.		
		$\therefore 4x - 6 = 0$	1/	
		$\therefore x = \frac{3}{2}$	1/2	
		$\therefore y = 2\left(\frac{3}{2}\right)^2 - 6\left(\frac{3}{2}\right) = -\frac{9}{2}$	1/2	
		$\therefore \text{ the point is } \left(\frac{3}{2}, -\frac{9}{2}\right)$	1/2	2
	-)			
	c)	Evaluate $\int \sqrt{1+\sin 2x} \cdot dx$		
	Ans.	$\int \sqrt{1+\sin 2x} \cdot dx = \int \sqrt{\sin^2 x + \cos^2 x + 2\sin x \cos x} \cdot dx$	1/2	
		$= \int \sqrt{(\sin x + \cos x)^2} \cdot dx$		
		$= \int (\sin x + \cos x) \cdot dx$	1/2	
		$= -\cos x + \sin x + c$	1	2
		OR		

Subject & Code: Applied Maths (17301)

Page No: 3/27

Que.	Sub.	Model Answers	Marks	Total
No. 1)	Que.	THOUGH I HOWELD	1,141110	Marks
1)		$\int \sqrt{1+\sin 2x} \cdot dx = \int \sqrt{\cos^2 x + \sin^2 x + 2\sin x \cos x} \cdot dx$ $= \int \sqrt{\left(\cos x + \sin x\right)^2} \cdot dx$	1/2	
		$= \int (\cos x + \sin x) \cdot dx$	1/2	
		$= \sin x - \cos x + c$	1	2
		Note: In the solution of any integration problems , if the constant c is not added, ½ mark may be deducted.		
	d)	Evaluate $\int \frac{e^x}{e^{2x} - 16} \cdot dx$		
	Ans.	$\int \frac{e^x}{e^{2x} - 16} \cdot dx$ $Put e^x = t$ $\therefore e^x dx = dt$	1/2	
		$= \int \frac{1}{t^2 - 16} \cdot dt$ $= \int \frac{1}{t^2 - 4^2} \cdot dt$	1/2	
		$= \frac{1}{2 \cdot 4} \log \left(\frac{t - 4}{t + 4} \right) + c$	1/2	
		$= \frac{1}{8} \log \left(\frac{e^x - 4}{e^x + 4} \right) + c$	1/2	2
		OR		
		$\int \frac{e^x}{e^{2x} - 16} \cdot dx$ $Put e^x = t$ $\therefore e^x dx = dt$	1/2	
		$= \int \frac{1}{t^2 - 16} \cdot dt$ $= \int \frac{1}{(t - 4)(t + 4)} \cdot dt$	1/2	
		$= \int \left[\frac{1/8}{t-4} - \frac{1/8}{t+4} \right] \cdot dt$		
		$= \frac{1}{8}\log(t-4) - \frac{1}{8}\log(t+4) + c$	1/2	
		$= \frac{1}{8}\log(e^{x} - 4) - \frac{1}{8}\log(e^{x} + 4) + c$	1/2	2

Subject & Code: Applied Maths (17301)

Page No: 4/27

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
1)	e)	Evaluate $\int \frac{\cos x - \sin x}{\cos x + \sin x} dx$		IVIAIRS
	Ans.	$\int \frac{\cos x - \sin x}{\cos x + \sin x} dx$ $Put \cos x + \sin x = t$ $\therefore (-\sin x + \cos x) dx = dt$	1/2	
		$=\int_{t}^{1} dt$	1/2	
		$= \log t + c$ $= \log (\cos x + \sin x) + c$	1/ ₂ 1/ ₂	2
		OR		
		$\int \frac{\cos x - \sin x}{\cos x + \sin x} \cdot dx$		
		$= \int \frac{1 - \tan x}{1 + \tan x} \cdot dt$	1/2	
		$= \int \tan\left(\frac{\pi}{4} - x\right) \cdot dx$	1/2	
		$= \frac{\log \sec\left(\frac{\pi}{4} - x\right)}{-1} + c \qquad or \qquad -\log \sec\left(\frac{\pi}{4} - x\right) + c$	1	2
		$or \log \cos \left(\frac{\pi}{4} - x\right) + c$		
	f)	Evaluate $\int \log x dx$		
	Ans.	$\int \log x dx = \int \log x \cdot 1 \cdot dx$		
		$= \log x \int 1 dx - \int \left(\int 1 dx \right) \frac{d}{dx} (\log x) dx$	1/2	
		$= \log x \cdot x - \int x \cdot \frac{1}{x} dx$	1/2	
		$= x \log x - \int 1 dx$	1/2	2
		$= x \log x - x + c$	1/2	_

Subject & Code: Applied Maths (17301)

Page No: 5/27

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
1)	g)	Evaluate $\int_{\pi/6}^{\pi/4} \cot^2 x \cdot dx$		MININS
	Ans.	$\int_{\pi/6}^{\pi/4} \cot^2 x \cdot dx = \int_{\pi/6}^{\pi/4} (\cos ec^2 x - 1) \cdot dx$	1/2	
		$= \left[-\cot x - x \right]_{\pi/6}^{\pi/4}$	1/2	
		$= \left[-\cot \frac{\pi}{4} - \frac{\pi}{4} \right] - \left[-\cot \frac{\pi}{6} - \frac{\pi}{6} \right]$	1/2	
		$= -1 + \sqrt{3} - \frac{\pi}{12} \qquad or \qquad 0.470$	1/2	2
		Note: In case of definite integrations, the problem may be solved by without limits and then the limits would be applied, as illustrated below:		
		$\int \cot^2 x \cdot dx = \int (\cos ec^2 x - 1) \cdot dx$ $= -\cot x - x$	1/ ₂ 1/ ₂	
		$\therefore \int_{\pi/6}^{\pi/4} \cot^2 x \cdot dx = \left[-\cot x - x \right]_{\pi/6}^{\pi/4}$		
		$= \left[-\cot\frac{\pi}{4} - \frac{\pi}{4} \right] - \left[-\cot\frac{\pi}{6} - \frac{\pi}{6} \right]$	1/2	
		$= -1 + \sqrt{3} - \frac{\pi}{12} \qquad or \qquad 0.470$	1/2	2
	h)	Find the area enclosed by $y = 2x + x^2$ (above the x-axis) and $x = 1$ and $x = 3$.		
	Ans.	$\int_{1}^{3} y \cdot dx = \int_{1}^{3} (2x + x^{2}) \cdot dx$		
		$= \left[x^2 + \frac{x^3}{3}\right]_1^3$	1	
		$= \left[3^2 + \frac{3^3}{3}\right] - \left[1 + \frac{1}{3}\right]$	1/2	
		$=\frac{50}{3}$ or 16.667	1/2	2
	i)	Find the order and degree of the following equation: $\frac{d^2 y}{dx^2} = \sqrt{1 + \frac{dy}{dx}}$		
	Ans.	Order = 2	1	

Subject & Code: Applied Maths (17301)

Page No: 6/27

Que.	Sub.	Model Answers	Marks	Total
No.	Que.	Woder Ariswers	Iviaiks	Marks
1)	j)	For degree, $\left(\frac{d^2y}{dx^2}\right)^2 = 1 + \frac{dy}{dx}$ $\therefore \text{ Degree} = 2$ If a coin is tossed three times, find the probability of getting exactly two tails.	1	2
	Ans.	$p = p(Tail) = \frac{1}{2}$ $\therefore q = 1 - p = \frac{1}{2}$ $\therefore p(3) = {}^{n}C_{r}p^{r}q^{n-r}$	1/2	
		$= {}^{3}C_{2} \left(\frac{1}{2}\right)^{2} \left(\frac{1}{2}\right)^{3-2}$ $= \frac{3}{8} or 0.375$	1/2	2
		OR		
		$S = \{HHH, HHT, HTH, THH, HTT, THT, TTH, TTT\}$ $n = n(S) = 8$ $A = \{HTT, THT, TTH\}$ $m = n(A) = 3$ $\therefore p = \frac{m}{n} = \frac{3}{8} \text{ or } 0.375$	1/2	
		$\frac{1}{n} - \frac{1}{n} - \frac{1}{8}$ or 0.373	1	2
		OR		
		$n = n(S) = (Faces \ of \ object)^{No.of \ repetations} = 2^3 = 8$ $m = n(A) = {}^3C_2 = 3$ $\therefore p = \frac{m}{n} = \frac{3}{8} \ or \ 0.375$ Note: Due to the use of advance non-programmable scientific calculators, writing directly the values of nC_r or ${}^nC_r p^r q^{n-r}$ is permissible. No marks to be deducted for calculating directly the value.	1/ ₂ 1/ ₂ 1	2

Subject & Code: Applied Maths (17301)

Page No: 7/27

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
1)				IVIAINS
	k)	Verify that $y = \cos x$ is a solution of $\frac{d^2y}{dx^2} + y = 0$.		
	Ans.	$y = \cos x$		
		$\therefore \frac{dy}{dx} = -\sin x$	1/2	
		$\therefore \frac{d^2y}{dx^2} = -\cos x$	1/2	
		$\therefore \frac{d^2 y}{dx^2} = -y$	1/2	
		$\therefore \frac{d^2 y}{dx^2} + y = 0$	1/2	2
		\mathbf{OR} $y = \cos x$		
		$\therefore \frac{dy}{dx} = -\sin x$	1/	
		dx d^2y	1/2	
		$\therefore \frac{d^2 y}{dx^2} = -\cos x$	1/2	
		$\therefore \frac{d^2y}{dx^2} + y = -\cos x + \cos x = 0$	1	2
	<i>l</i>)	Two cards are drawn at random from a well shuffled pack of 52 cards. Find the probability that the two cards drawn are a king and a queen of the same unit.		
	Ans.	$n = n(S) = {}^{52}C_2 = 1326$	1/2	
		$m = n(pair\ of\ King\ and\ Queen\ of\ same\ suit) = 4$	1/2	
		$\therefore p = \frac{m}{n} = \frac{4}{1326}$	1/2	
		$=\frac{2}{663}$ or 0.003	1/2	2
		Note for Numerical Problems: For practical purpose, generally the values of fractional numbers are truncated up to 3 decimal points by the method of rounded-off. Thus the solution is taken up to 3 decimal points only. If answer is truncated more than 3 decimal points, the final answer may vary for last decimal point. Thus 2/663 is actually 0.00301659125188536953242835595777 but can be taken as		

Subject & Code: Applied Maths (17301)

Page No: 8/27

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
		0.003. Due to the use of advance calculators, such as modern scientific non-programmable calculators, the step 2/663 may not be written by the students and then directly the answer 0.003 is written. In this case, no marks to be deducted.		
2)		Attempt any FOUR of the following:		
	a)	Find the equation of the tangent and normal to the curve $4x^2 + 9y^2 = 40$ at $(1, 2)$.		
	Ans.	$4x^2 + 9y^2 = 40$		
		$\therefore 8x + 18y \frac{dy}{dx} = 0$	1/2	
		$\therefore \frac{dy}{dx} = -\frac{8x}{18y} or -\frac{4x}{9y}$	1/2	
		$\therefore \text{ the slope of tangent at } (1, 2) \text{ is}$ $m = \frac{dy}{dx} = -\frac{8x}{18y} = -\frac{8}{36} = -\frac{2}{9}$	1/2	
		∴ the equation of tangent is $y-2 = -\frac{2}{9}(x-1)$	1/2	
		$\therefore 9y - 18 = -2x + 2$	1/2	
		$\therefore 2x + 9y - 20 = 0$		
		$\therefore \text{ the slope of normal } = -\frac{1}{m} = \frac{9}{2}$	1/2	
		∴ the equation of normal is $y-2 = \frac{9}{2}(x-1)$	1/2	
		$\therefore 2y - 4 = 9x - 9$ $\therefore 9x - 2y - 5 = 0$	1/2	4
	b)	Find the maximum and minimum value of $x^3 = 18x^2 + 96x$		
		Note: For a given differential function only, we can find extreme values of the function. In the given problem function is not given, but polynomial equation in x is given and we never find extreme values of an equation as every equation has its own definite values known as its roots/solutions. The given one is $x^3 = 18x^2 + 96x$. Considering the given is a typographical mistake, we reconsider herein this in two different ways as follows just to provide solution of the problem.		

Subject & Code: Applied Maths (17301)

Page No: 9/27

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
2)	Que.	The given is $x^3 = 18x^2 + 96x$. Considering = sign as -ve sign, we have first case as $y = x^3 - 18x^2 + 96x$. And considering the given as $x^3 - 18x^2 - 96x = 0$, we consider it as $y = x^3 - 18x^2 - 96x$.		TYTATING
		Let $y = x^3 - 18x^2 + 96x$		
		$\therefore \frac{dy}{dx} = 3x^2 - 36x + 96$	1/2	
		$\therefore \frac{d^2y}{dx^2} = 6x - 36$	1/2	
		For stationary values, $\frac{dy}{dx} = 0$		
		$\therefore 3x^2 - 36x + 96 = 0$	1	
		$\therefore x = 4, 8$	1	
		At x = 4,		
		$\frac{d^2y}{dx^2} = 6(4) - 36 = -12 < 0$	1/2	
		:. At $x = 4$, y has max imum value and it is $y = (4)^3 - 18(4)^2 + 96(4) = 160$		
		$y = (4)^3 - 18(4)^2 + 90(4) - 100$	1/2	
		At x = 8,		
		$\frac{d^2y}{dx^2} = 6(8) - 36 = 12 > 0$	1/2	
		$\therefore At \ x = 8, \ y \ has \min imum \ value \ and \ it \ is$		
		$y = (8)^3 - 18(8)^2 + 96(8) = 128$	1/2	4
		OR		
		Let $y = x^3 - 18x^2 - 96x$		
		$\therefore \frac{dy}{dx} = 3x^2 - 36x - 96$	1/2	
		$\therefore \frac{d^2y}{dx^2} = 6x - 36$	1/2	
		For stationary values, $\frac{dy}{dx} = 0$		
		$\therefore 3x^2 - 36x - 96 = 0$		
		$\therefore x^2 - 12x - 32 = 0$		
		$\therefore x = 6 - 2\sqrt{17}, 6 + 2\sqrt{17}$		
		$\therefore x = -2.246, 14.246$	1	

Subject & Code: Applied Maths (17301)

Page No: 10/27

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
2)	Z uci	At $x = -2.246$, $\frac{d^2y}{dx^2} = 6(-2.246) - 36 = -49.476 < 0$ \therefore At $x = -2.246$, y has max imum value and it is $y = (-2.246)^3 - 18(-2.246)^2 - 96(-2.246) = 113.485$ At $x = 14.246$, $\frac{d^2y}{dx^2} = 6(14.246) - 36 = 49.476 > 0$ \therefore At $x = 14.246$, y has min imum value and it is $y = (14.246)^3 - 18(14.246)^2 - 96(14.246) = -2129.485$	1/2 1/2 1/2 1/2	4
	c)	Find the radius of curvature for the curve $y = 2\sin x - \sin 2x$ at $x = \frac{\pi}{2}$.		
	Ans.	$y = 2\sin x - \sin 2x$ $\therefore \frac{dy}{dx} = 2\cos x - 2\cos 2x$ $\& \frac{d^2y}{dx^2} = -2\sin x + 4\sin 2x$ $\therefore at \ x = \frac{\pi}{2},$ $\frac{dy}{dx} = 2\cos\left(\frac{\pi}{2}\right) - 2\cos 2\left(\frac{\pi}{2}\right) = 2$ $and \frac{d^2y}{dx^2} = -2\sin\left(\frac{\pi}{2}\right) + 4\sin 2\left(\frac{\pi}{2}\right) = -2$ $\therefore \rho = \frac{\left[1 + \left(\frac{dy}{dx}\right)^2\right]^{\frac{3}{2}}}{\frac{d^2y}{dx^2}} = \frac{\left[1 + (2)^2\right]^{\frac{3}{2}}}{-2} = -5.590$	1/ ₂ 1/ ₂ 1 1 1	4
	d)	Evaluate $\int \frac{1 + \tan^2 x}{1 - \tan^2 x} dx$		
	Ans.	$\int \frac{1 + \tan^2 x}{1 - \tan^2 x} \cdot dx$ $= \int \frac{\sec^2 x}{1 - \tan^2 x} \cdot dx$ $Put \tan x = t$ $\therefore \sec^2 x dx = dt$	1	

Subject & Code: Applied Maths (17301)

Page No: 11/27

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
2)	Que.			Widiks
		$=\int \frac{1}{1-t^2} \cdot dt$	1	
		$= \frac{1}{2} \log \left(\frac{1-t}{1+t} \right) + c$		
			1	
		$= \frac{1}{2} \log \left(\frac{1 - \tan x}{1 + \tan x} \right) + c$	1	4
		OR		
		$\int \frac{1+\tan^2 x}{1-\tan^2 x} \cdot dx = \int \frac{\cos^2 x + \sin^2 x}{\cos^2 x - \sin^2 x} \cdot dx$	1	
		$=\int \frac{1}{\cos 2x} \cdot dx$	1	
		$= \int \sec 2x \cdot dx$	1	
		$= \frac{\log(\sec 2x + \tan 2x)}{2} + c$		
		2	1	4
	e)	Evaluate $\int \frac{(x-1)e^x}{x^2 \sin^2(e^x/x)} dx$		
	Ans.	$\int \frac{(x-1)e^x}{x^2 \sin^2(e^x/x)} dx$ $\therefore \frac{xe^x - e^x \cdot 1}{x^2} dx = dt$ $\therefore \frac{(x-1)e^x}{x^2} dx = dt$	1	
		$= \int \frac{1}{\sin^2(e^x/x)} \cdot \frac{(x-1)e^x}{x^2} dx$		
		$=\int \frac{1}{\sin^2 t} dt$	1	
		$= \int \cos ec^2 t dt$		
		$=-\cot t+c$	1	
		$=-\cot\left(\frac{e^x}{x}\right)+c$	1	4

Subject & Code: Applied Maths (17301)

Page No: 12/27

Que.	Sub.			Total
No.	Que.	Model Answers	Marks	Marks
2)	f)	Evaluate $\int \frac{\left(1+\sqrt{x}\right)^2}{\sqrt{x}} \cdot dx$		
	Ans.	$\int \frac{\left(1+\sqrt{x}\right)^2}{\sqrt{x}} \cdot dx$ $Put \ 1+\sqrt{x} = t$ $\therefore \frac{1}{2\sqrt{x}} dx = dt$	1	
		$= \int t^2 \cdot 2dt$	1	
		$ \frac{1}{2\sqrt{x}} \frac{dx}{dx} = dt $ $ = \int t^2 \cdot 2dt $ $ = 2 \cdot \frac{t^3}{3} + c $	1	
		$=2\cdot\frac{\left(1+\sqrt{x}\right)^3}{3}+c$	1	4
		OR		
		$\int \frac{\left(1+\sqrt{x}\right)^2}{\sqrt{x}} \cdot dx$ $\begin{vmatrix} Put & \sqrt{x} = t \\ \therefore \frac{1}{2\sqrt{x}} dx = dt \end{vmatrix}$	1	
		$= \int (1+t)^2 \cdot 2dt$ $= 2 \cdot \frac{(1+t)^3}{3} + c$	1	
			1	
		$=2\cdot\frac{\left(1+\sqrt{x}\right)^3}{3}+c$	1	4
		OR		
		$\int \frac{\left(1+\sqrt{x}\right)^2}{\sqrt{x}} \cdot dx$		
		$= \int \frac{1 + 2\sqrt{x} + x}{\sqrt{x}} \cdot dx$	1	
		$= \int \left(\frac{1}{\sqrt{x}} + 2 + \sqrt{x}\right) \cdot dx$	1	
		$=2\sqrt{x}+2x+\frac{2}{3}x^{3/2}+c$	1+1	4

Subject & Code: Applied Maths (17301)

Page No: 13/27

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
3)	Que.	Attempt any FOUR of the following:		IVIAIRS
	a)	Evaluate $\int \frac{dx}{4\cos^2 x + 9\sin^2 x}$		
	Ans.	$\int \frac{dx}{4\cos^2 x + 9\sin^2 x}$		
		$= \int \frac{dx/\cos^2 x}{4\cos^2 x + 9\sin^2 x}$ $\cos^2 x$		
		$= \int \frac{\sec^2 x dx}{4 + 9\tan^2 x}$ $Put \tan x = t$ $\therefore \sec^2 x dx = dt$	1/2	
		$=\int \frac{dt}{4+9t^2}$	1/2	
		$=\int \frac{dt}{9\left(\frac{4}{9} + t^2\right)}$		
		$= \frac{1}{9} \int \frac{dt}{\left(\frac{2}{3}\right)^2 + t^2}$	1	
		$= \frac{1}{9} \cdot \frac{1}{\frac{2}{3}} \tan^{-1} \left(\frac{t}{\frac{2}{3}} \right) + c$	1	
		$= \frac{1}{6} \tan^{-1} \left(\frac{3 \tan x}{2} \right) + c$	1	4
	b)	Evaluate $\int \sin(\log x) \cdot dx$		
	Ans.	$Put \log x = t$		
		$I = \int \sin(\log x) \cdot dx$ $\therefore x = e^t$ $\therefore dx = e^t dt$	1/2	
		$= \int e^t \sin t \cdot dt$	1/2	
		$= \sin t \int e^t dt - \int \left(\int e^t dt \right) \frac{d}{dt} (\sin t) dt$	1/2	
		$= \sin t \cdot e^t - \int e^t \cdot \cos t dt$	1/2	

Subject & Code: Applied Maths (17301)

Page No: 14/27

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
3)		$= \sin t \cdot e^t - \left[\cos t \int e^t dt - \int \left(\int e^t dt\right) \frac{d}{dt} (\cos t) dt\right]$		
		$= \sin t \cdot e^t - \left[\cos t \cdot e^t - \int e^t \cdot (-\sin t) \cdot dt\right]$	1/2	
		$= \sin t \cdot e^t - \left[\cos t \cdot e^t + \int e^t \sin t dt\right]$		
		$= \sin t \cdot e^t - \left[\cos t \cdot e^t + I\right]$	1/2	
		$= \sin t \cdot e^t - \cos t \cdot e^t - I$	/2	
		$\therefore I + I = \sin t \cdot e^t - \cos t \cdot e^t$ $\therefore 2I = e^t \left(\sin t - \cos t \right)$	1/2	
		$\therefore I = \frac{e^t}{2} \left[\sin t - \cos t \right] = \frac{e^{\log x}}{2} \left[\sin \left(\log x \right) - \cos \left(\log x \right) \right] + c$	1/2	4
	c)	Evaluate $\int \frac{\log x}{x(2 + \log x)(3 + \log x)} dx$		
	Ans.	$\int \frac{\log x}{x(2+\log x)(3+\log x)} dx \qquad \begin{vmatrix} Put & \log x = t \\ \therefore \frac{1}{x} dx = dt \end{vmatrix}$	1/2	
		$=\int \frac{t}{(2+t)(3+t)} dt$	1/2	
			1	
		$=\int \left[\frac{-2}{2+t} + \frac{3}{3+t}\right] dt$	1	
		$=-2\log(2+t)+3\log(3+t)+c$	1	
		$= -2\log(2 + \log x) + 3\log(3 + \log x) + c$	1	4
		Note: Direct method of partial fraction is allowed.		
	d)	Evaluate $\int_{0}^{1} x \tan^{-1} x dx$		
	Ans.	$\int_{0}^{1} x \tan^{-1} x dx$		
		$= \left[\tan^{-1} x \int x dx - \int \left(\int x dx \right) \frac{d}{dx} \left(\tan^{-1} x \right) dx \right]_{0}^{1}$ $= \left[\frac{x^{2}}{2} \tan^{-1} x - \int \frac{x^{2}}{2} \cdot \frac{1}{x^{2} + 1} \cdot dx \right]_{0}^{1}$	1/2	
		$= \left[\frac{x^2}{2} \tan^{-1} x - \int \frac{x^2}{2} \cdot \frac{1}{x^2 + 1} \cdot dx \right]_0^1$	1	

Subject & Code: Applied Maths (17301)

Page No: 15/27

Que. No.	Sub.	Model Answers	Marks	Total Marks
3)	Que.	Γ2 12 7^1		iviarks
		$= \left[\frac{x^2}{2} \tan^{-1} x - \frac{1}{2} \int \frac{x^2}{x^2 + 1} dx \right]_0$		
		$= \left[\frac{x^2}{2} \tan^{-1} x - \frac{1}{2} \int \frac{(x^2 + 1) - 1}{x^2 + 1} \cdot dx \right]_0^1$		
		$= \left[\frac{x^2}{2} \tan^{-1} x - \frac{1}{2} \int \left(1 - \frac{1}{x^2 + 1} \right) \cdot dx \right]_0^1$	1/2	
		$= \left[\frac{x^2}{2} \tan^{-1} x - \frac{1}{2} \left(x - \tan^{-1} x \right) \right]_0^1$	1	
		$= \left[\frac{1}{2} \tan^{-1} 1 - \frac{1}{2} (1 - \tan^{-1} 1) \right] - \left[0 - \frac{1}{2} (0 - \tan^{-1} 0) \right]$	1/2	
		$=\frac{1}{2}\cdot\frac{\pi}{4}-\frac{1}{2}\left(1-\frac{\pi}{4}\right)$		
		$=\frac{\pi}{4}-\frac{1}{2}$ or 0.285	1/2	4
		Note: This is example is of "integration by parts", which can be first solved without limits and then the limits can be applied.		
	e)	Evaluate $\int_{0}^{\pi} \frac{dx}{5 + 4\cos x}$		
	Ans.	Put $\tan \frac{x}{2} = t$		
		$\therefore dx = \frac{2dt}{1+t^2} \text{and} \cos x = \frac{1-t^2}{1+t^2}$	1/2	
		$ \begin{array}{c ccc} x & 0 & \pi \\ t & 0 & \infty \end{array} $	1/2	
		$\therefore \int_{0}^{\pi} \frac{dx}{5 + 4\cos x} = \int_{0}^{\infty} \frac{1}{5 + 4\left(\frac{1 - t^{2}}{1 + t^{2}}\right)} \cdot \frac{2dt}{1 + t^{2}}$	1/2	
		$=2\int_{0}^{\infty}\frac{1}{t^{2}+9}dt$	1/2	
		$=2\int\limits_{0}^{\infty}\frac{1}{t^2+3^2}dt$		

Subject & Code: Applied Maths (17301)

Page No: 16/27

Que.	Sub.	Model Answers	Marks	Total
No. 3)	Que.			Marks
		$= 2 \times \frac{1}{3} \left[\tan^{-1} \left(\frac{t}{3} \right) \right]_{0}^{\infty}$ $= \frac{2}{3} \left[\tan^{-1} \infty - \tan^{-1} 0 \right]$	1 1/2	
	f)	$= \frac{2}{3} \left[\frac{\pi}{2} \right]$ $= \frac{\pi}{3}$ Obtain the differential equation of $y = A\cos(\log x) + B\sin(\log x)$	1/2	4
		(logs)		
	Ans.	$y = A\cos(\log x) + B\sin(\log x)$ $\therefore \frac{dy}{dx} = -A\sin(\log x) \cdot \frac{1}{x} + B\cos(\log x) \cdot \frac{1}{x}$ $\therefore x \frac{dy}{dx} = -A\sin(\log x) + B\cos(\log x)$ $\therefore x \frac{d^2y}{dx^2} + \frac{dy}{dx} = -A\cos(\log x) \cdot \frac{1}{x} - B\sin(\log x) \cdot \frac{1}{x}$ $\therefore x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} = -A\cos(\log x) - B\sin(\log x)$ $\therefore x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} = -[A\cos(\log x) + B\sin(\log x)]$	1 1 1	
4)		$=-y$ $\therefore x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} + y = 0$ Attempt any FOUR of the followings:	1	4
-,	a)	Evaluate $\int_{0}^{\pi/2} \frac{1}{1+\tan x} dx$		
	Ans.	$I = \int_{0}^{\pi/2} \frac{1}{1 + \tan x} dx$ $= \int_{0}^{\pi/2} \frac{1}{1 + \frac{\sin x}{\cos x}} dx$		

Subject & Code: Applied Maths (17301)

Page No: 17/27

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
4)	Que.	$I = \int_{0}^{\pi/2} \frac{\cos x}{\cos x + \sin x} dx$ $Replace $	1	William
		$\therefore I = \int_{0}^{\pi/2} \frac{\sin x}{\sin x + \cos x} dx$ $\therefore 2I = \int_{0}^{\pi/2} \frac{\cos x + \sin x}{\cos x + \sin x} dx$	1	
		$\therefore 2I = \int_{0}^{\pi/2} 1 \cdot dx$ $\therefore 2I = \left[x\right]_{0}^{\pi/2} = \frac{\pi}{2} - 0$	$\frac{1}{2} + \frac{1}{2}$	
		$\therefore I = \frac{\pi}{4}$		4
		OR		
		$I = \int_{0}^{\pi/2} \frac{1}{1 + \tan x} dx$ $= \int_{0}^{\pi/2} \frac{1}{1 + \frac{\sin x}{\cos x}} dx$		
		$I = \int_{0}^{\pi/2} \frac{\cos x}{\cos x + \sin x} dx$		
		$= \int_{0}^{\pi/2} \frac{\cos\left(\frac{\pi}{2} - x\right)}{\cos\left(\frac{\pi}{2} - x\right) + \sin\left(\frac{\pi}{2} - x\right)} dx$	1/2	
		$\therefore I = \int_{0}^{\pi/2} \frac{\sin x}{\sin x + \cos x} dx$	1/2	
		$\therefore 2I = \int_{0}^{\pi/2} \frac{\cos x + \sin x}{\cos x + \sin x} dx$	1	
		$\therefore 2I = \int_{0}^{\pi/2} 1 \cdot dx$		
		$\therefore 2I = [x]_0^{\pi/2} = \frac{\pi}{2} - 0$	1/2 + 1/2	
		$\therefore I = \frac{\pi}{4}$	1	4

Subject & Code: Applied Maths (17301)

Page No: 18/27

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
4)		Evaluate $\int_{2}^{5} \frac{\sqrt{x}}{\sqrt{7-x} + \sqrt{x}} dx$		IVIUINS
	Ans.	$I = \int_{2}^{5} \frac{\sqrt{x}}{\sqrt{7 - x} + \sqrt{x}} dx$ $\begin{vmatrix} \text{Replace } x \to 7 - x \\ \therefore x \to 7 - x \\ & & 7 - x \to x \end{vmatrix}$	1	
		$\therefore I = \int_{2}^{5} \frac{\sqrt{7-x}}{\sqrt{x} + \sqrt{7-x}} dx$ $\therefore 2I = \int_{2}^{5} \frac{\sqrt{x} + \sqrt{7-x}}{\sqrt{x} + \sqrt{7-x}} dx$	1	
		$\therefore 2I = \int_{2}^{5} 1 \cdot dx$ $\therefore 2I = [x]_{2}^{5}$	1/ ₂ 1/ ₂	
		$\therefore 2I = 5 - 2 = 3$ $\therefore I = \frac{3}{2}$	1	4
		OR		
		$I = \int_{2}^{5} \frac{\sqrt{x}}{\sqrt{7 - x} + \sqrt{x}} dx$ $\therefore I = \int_{2}^{5} \frac{\sqrt{5 + 2 - x}}{\sqrt{7 - (5 + 2 - x)} + \sqrt{5 + 2 - x}} dx$	1/2	
		$\therefore I = \int_{2}^{5} \frac{\sqrt{7-x}}{\sqrt{x} + \sqrt{7-x}} dx$	1/2	
		$\therefore 2I = \int_{2}^{5} \frac{\sqrt{x} + \sqrt{7 - x}}{\sqrt{x} + \sqrt{7 - x}} dx$ $\therefore 2I = \int_{2}^{5} 1 \cdot dx$	1	
		$\therefore 2I = [x]_2^5$	1/2	
		$\therefore 2I = 5 - 2 = 3$ $\therefore I = \frac{3}{2}$	1/2	4

Subject & Code: Applied Maths (17301)

Page No: 19/27

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
4)				IVIAINS
	c)	Evaluate $\int_0^1 x^2 \sqrt{1-x} \cdot dx$		
	Ans.	$I = \int_0^1 x^2 \sqrt{1 - x} \cdot dx$		
		$\therefore I = \int_0^1 (1-x)^2 \sqrt{1-(1-x)} \cdot dx$	1/2	
		$= \int_0^1 \left(1 - 2x + x^2\right) \sqrt{x} \cdot dx$		
		$= \int_0^1 \left(\sqrt{x} - 2x^{\frac{3}{2}} + x^{\frac{5}{2}} \right) \cdot dx$	1	
		$= \left[\frac{2}{3} x^{\frac{3}{2}} - 2 \frac{x^{\frac{5}{2}}}{\frac{5}{2}} + \frac{x^{\frac{7}{2}}}{\frac{7}{2}} \right]_0^1$	1	
		$= \left[\frac{2}{3}x^{\frac{3}{2}} - \frac{4}{5}x^{\frac{5}{2}} + \frac{2}{7}x^{\frac{7}{2}}\right]_0^1$		
		$= \left[\frac{2}{3}1^{\frac{3}{2}} - \frac{4}{5}1^{\frac{5}{2}} + \frac{2}{7}1^{\frac{7}{2}}\right] - [0 - 0 + 0]$	1	
		$=\frac{16}{105}$ or 0.152	1/2	4
	d)	Prove that the area of circle $x^2 + y^2 = a^2$ is πa^2 sq. units.		
	Ans.	$x^2 + y^2 = a^2$		
		$y^2 = a^2 - x^2$ $y = \sqrt{a^2 - x^2}$		
		$\therefore y = \sqrt{a^2 - x^2}$ $At y = 0, a^2 - x^2 = 0$		
		$\therefore x = -a, a$	1	
		$\therefore A = 4 \int_a^b y dx$		
		$=4\int_0^a \sqrt{a^2-x^2} dx$	1/2	
		$= 4 \left[\frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1} \left(\frac{x}{a} \right) \right]_0^a$	1	
		$=4\left[0+\frac{a^{2}}{2}\sin^{-1}(1)\right]-\left[0+\frac{a^{2}}{2}\sin^{-1}(0)\right]$	1/2	
		$=4\left\lceil\frac{a^2}{2}\cdot\frac{\pi}{2}\right\rceil$	1/2	
		$= \pi a^2$	1/2	4

Subject & Code: Applied Maths (17301)

Page No: 20/27

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
4)	Que.	OR		IVIAIKS
		$\therefore A = 2 \int_a^b y dx$		
		$=2\int_{-a}^{a}\sqrt{a^2-x^2}dx$	1/2	
		$= 2 \left[\frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1} \left(\frac{x}{a} \right) \right]_{-a}^{a}$	1	
		$= 2 \left[0 + \frac{a^2}{2} \sin^{-1}(1) \right] - \left[0 + \frac{a^2}{2} \sin^{-1}(-1) \right]$	1/2	
		$=2\left[\frac{a^2}{2}\cdot\frac{\pi}{2}+\frac{a^2}{2}\cdot\frac{\pi}{2}\right]$	1/2	
		$=\pi a^2$	1/2	4
	c)	Find the area between the parabola $y = 4x - x^2$ and the x-axis.		
	Ans.	$y = 4x - x^2$ and $x - axis i.e., y = 0$		
		$\therefore 4x - x^2 = 0$ $\therefore x = 0, 4$	1	
		$\therefore A = \int_0^a y dx$ $= \int_0^4 (4x - x^2) dx$	1/2	
		$= \left[4 \cdot \frac{x^2}{2} - \frac{x^3}{3}\right]_0^4$	1	
		$= \left[2x^2 - \frac{x^3}{3}\right]_0^4$		
		$= \left[2 \cdot 4^2 - \frac{4^3}{3}\right] - [0 - 0]$	1/2	
		$=\frac{32}{3}$ or 10.667	1	4
	f)	Find the area bounded by $y^2 = 2x$ and $x - y = 4$		
	Áns.	$y^2 = 2x \qquad and \qquad x - y = 4$		
		$\therefore (x-4)^2 = 2x$		
		$\therefore x^2 - 10x + 16 = 0$		
		$\therefore x = 2, 8$	1	

Subject & Code: Applied Maths (17301)

Page No: 21/27

No. (Que.	Model Answers		Total
41			Marks	Marks
		$\therefore A = \int_{a}^{b} (y_{2} - y_{1}) dx$ $= \int_{2}^{8} (x - 4 - \sqrt{2}x) dx$ $= \left[\frac{x^{2}}{2} - 4x - \sqrt{2} \cdot \frac{2}{3} x^{\frac{3}{2}} \right]_{2}^{8}$ $= \left[\frac{8^{2}}{2} - 4(8) - \sqrt{2} \cdot \frac{2}{3} \cdot 8^{\frac{3}{2}} \right] - \left[\frac{2^{2}}{2} - 4(2) - \sqrt{2} \cdot \frac{2}{3} \cdot 2^{\frac{3}{2}} \right]$ $= \frac{38}{3} or 12.667$	1 1 ½ ½	4
		OR		
		$\therefore A = \int_a^b (y_1 - y_2) dx$		
		$=\int_2^8 \left(\sqrt{2x} - (x-4)\right) dx$	1	
		$= \int_2^8 \left(\sqrt{2x} - x + 4\right) dx$		
		$= \left[\sqrt{2} \cdot \frac{2}{3} x^{\frac{3}{2}} - \frac{x^2}{2} + 4x\right]_2^8$	1	
		$= \left[\sqrt{2} \cdot \frac{2}{3} \cdot 8^{\frac{3}{2}} - \frac{8^{2}}{2} + 4(8)\right] - \left[\sqrt{2} \cdot \frac{2}{3} \cdot 2^{\frac{3}{2}} - \frac{2^{2}}{2} + 4(2)\right]$	1/2	
		$= -\frac{38}{3} or -12.667$		
		$\therefore A = \frac{38}{3} or 12.667 \qquad (\because area is always + ve)$	1/2	4
5)		Attempt any FOUR of the followings:		
a	a)	Solve $\frac{dy}{dx} = e^{3x-2y} + x^2 e^{-2y}$		
A A	Ans.	$\frac{dy}{dx} = e^{3x - 2y} + x^2 e^{-2y}$		
		$\therefore \frac{dy}{dx} = e^{3x} \cdot e^{-2y} + x^2 e^{-2y}$ $= \left(e^{3x} + x^2\right) e^{-2y}$		
		$=\left(e^{3x}+x^2\right)e^{-2y}$		

Subject & Code: Applied Maths (17301)

Page No: 22/27

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
5)	Que.		4	IVIUINS
		$\therefore e^{2y} dy = \left(e^{3x} + x^2\right) dx$	1	
		$\therefore \int e^{2y} \cdot dy = \int \left(e^{3x} + x^2\right) \cdot dx$	1	
		$\therefore \frac{e^{2y}}{2} = \frac{e^{3x}}{3} + \frac{x^3}{3} + c$	1+1	4
	b)	Solve $\frac{dy}{dx} = \cos(x+y)$		
	Ans.	$\frac{dy}{dx} = \cos(x+y)$		
		Put x + y = v		
		$\therefore 1 + \frac{dy}{dx} = \frac{dv}{dx}$	1	
		$\therefore \frac{dv}{dx} - 1 = \cos v$	1/2	
		$\therefore \frac{dv}{dx} = 1 + \cos v$		
		$\therefore \frac{dv}{1 + \cos v} = dx$		
		$\therefore \int \frac{dv}{1 + \cos v} = \int dx$	1/2	
		$\therefore \int \frac{dv}{2\cos^2\left(\frac{v}{2}\right)} = \int dx$	1/2	
		$\therefore \frac{1}{2} \int \sec^2 \left(\frac{v}{2}\right) dv = \int dx$		
		$\therefore \frac{1}{2} \cdot \frac{\tan\left(\frac{v}{2}\right)}{\frac{1}{2}} = x + c$	1	
		$\therefore \tan\left(\frac{x+y}{2}\right) = x+c$	1/2	4
	c)	Solve $(x^3 + y^3) \frac{dy}{dx} = x^2 y$		
	Ans.	$\therefore \frac{dy}{dx} = \frac{x^2 y}{x^3 + y^3}$		

Subject & Code: Applied Maths (17301)

Page No: 23/27

Que.	Sub.	Model Answers	Marks	Total
No. 5)	Que.	THOUGH FAILUNG IS	TVICTIO	Marks
3)		Put $y = vx$ $\therefore \frac{dy}{dx} = v + x \frac{dv}{dx}$ $dv x^2 vx v$	1	
		$\therefore v + x \frac{dv}{dx} = \frac{x^2 vx}{x^3 + (vx)^3} = \frac{v}{1 + v^3}$	1/2	
		$\therefore x \frac{dv}{dx} = \frac{v}{1 + v^3} - v$	1/	
		$\therefore x \frac{dv}{dx} = -\frac{v^4}{1 + v^3}$	1/2	
		$\therefore \frac{1+v^3}{v^4} dv = -\frac{1}{x} dx$	1/2	
		$\therefore \int \left(\frac{1}{v^4} + \frac{1}{v}\right) dv = -\int \frac{1}{x} dx$		
		$\therefore \frac{v^{-3}}{-3} + \log v = -\log x + c$	1	
		$\therefore \frac{1}{-3v^3} + \log v = -\log x + c$		
		$\therefore \frac{x^3}{-3y^3} + \log\left(\frac{y}{x}\right) = -\log x + c$	1/2	4
	d)	Solve $(4x^3y^2 + y\cos xy)dx + (2x^4y + x\cos xy)dy = 0$		
	Ans.	$(4x^{3}y^{2} + y\cos xy)dx + (2x^{4}y + x\cos xy)dy = 0$		
		$M = 4x^3y^2 + y\cos xy$		
		$\therefore \frac{\partial M}{\partial y} = 8x^3 y - y \sin xy \cdot x + \cos xy$	1	
		$N = 2x^4 y + x \cos xy$		
		$\therefore \frac{\partial N}{\partial x} = 8x^3 y - x \sin xy \cdot y + \cos xy$	1/2	
		∴the equation is exact.	1/2	
		$\int_{y \ cons \ tan \ t} M dx + \int_{terms \ free \ from \ x} N dy = c$		
		$\int \left(4x^3y^2 + y\cos xy\right)dx + \int 0dy = c$	1	
		$\therefore 4 \cdot \frac{x^4}{4} \cdot y^2 + y \cdot \frac{\sin xy}{y} = c$ $or x^4 y^2 + \sin xy = c$	1	4
		$or = x + \sin xy - c$		

Subject & Code: Applied Maths (17301)

Page No: 24/27

Que.	Sub.	Model Answers	Marks	Total
No. 5)	Que.			Marks
-,	e)	Solve $(1+x^2)\frac{dy}{dx} + y = e \tan^{-1} x$		
	Ans.	$\left(1+x^2\right)\frac{dy}{dx} + y = e \tan^{-1} x$		
		$\therefore \frac{dy}{dx} + \frac{1}{1+x^2} \cdot y = \frac{e \tan^{-1} x}{1+x^2}$		
		$\therefore P = \frac{1}{1+x^2} \text{and} Q = \frac{e \tan^{-1} x}{1+x^2}$		
		$\therefore IF = e^{\int pdx} = e^{\int \frac{1}{1+x^2} dx} = e^{\tan^{-1}x}$ $\therefore y \cdot IF = \int Q \cdot IF \cdot dx + c$	1	
		$\therefore y \cdot e^{\tan^{-1} x} = \int \frac{e \tan^{-1} x}{1 + x^2} \cdot e^{\tan^{-1} x} \cdot dx + c$	1	
		Put $\tan^{-1} x = t$ $\therefore \frac{1}{1+x^2} \cdot dx = dt$	1/2	
		$\therefore y \cdot e^{\tan^{-1}x} = \int e t e^t \cdot dt + c$		
		$\therefore y \cdot e^{\tan^{-1}x} = e\left(te^t - e^t\right) + c$	1	
		$\therefore y \cdot e^{\tan^{-1} x} = e \left(\tan^{-1} x e^{\tan^{-1} x} - e^{\tan^{-1} x} \right) + c$	1/2	4
	f)	If the probability of a bad reaction from a certain injection is 0.001, determine the chance that out of 2000 individuals more than two will get a bad reaction. (Given $e^2 = 7.4$)		
		n = 2000, p = 0.001		
	Ans.	m = np = 2	1	
		$\therefore p = \frac{e^{-m}m^r}{r!}$		
		<i>7</i> :		
		$p (more than 2) = 1 - p (maximum 2)$ $= 1 - \lceil p(0) + p(1) + p(2) \rceil$	1	
		$=1 - \left[\frac{e^{-2}2^{0}}{0!} + \frac{e^{-2}2^{1}}{1!} + \frac{e^{-2}2^{2}}{2!} \right]$	1	
		= 1 - [0.1353 + 0.2706 + 0.2706]		
		= 1 - [0.1333 + 0.2700 + 0.2700] $= 0.3235$		
			1	4

Subject & Code: Applied Maths (17301)

Page No: 25/27

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
6)	a)	Attempt any FOUR of the followings: If $P(A) = \frac{3}{5}$, $P(B) = \frac{1}{5}$, $P(B/A) = \frac{2}{3}$, find $P(A/B)$ and $P(A \cup B)$.		
	Ans.	The values of the data provided in this example are incorrect in accordance with the theory of probability. Theoretically speaking $A \cap B \subseteq B$. Therefore, $P(A \cap B) \leq P(B)$ Further note that, $P(A \cap B) = P(A) \cdot P(B/A)$ Consequently, $P(A) \cdot P(B/A) \leq P(B)$ Thus the given values must satisfy this relation. But here in this example $P(A) \cdot P(B/A) = \frac{3}{5} \cdot \frac{2}{3} = \frac{2}{5} and P(B) = \frac{1}{5}$ $\therefore P(A) \cdot P(B/A) \not \leq P(B)$		
	b)	If two dice are rolled simultaneously, find the probability that the total is 6 or 10.		
	Ans.	$n = n(S) = 6^{2} = 36$ $A = \{(1, 5), (2, 4), (3, 3), (4, 2), (5, 1), (4, 6), (5, 5), (6, 4)\}$ $m = n(A) = 8$ $\therefore p = \frac{m}{n} = \frac{8}{36}$ $= \frac{2}{9} \text{ or } 0.222$	1 1 1	4
	c) Ans.	If 2% of electric bulbs manufactured by a company are defective, find the probability that in a sample of 100 bulbs i) 3 are defective ii) at least two are defective. $p = 2\% = 0.02, n = 100$ $m = np = 2$ $\therefore p = \frac{e^{-m}m^r}{r!}$	1	4

Subject & Code: Applied Maths (17301)

Page No: 26/27

Que.	Sub.	Model Answers	Marks	Total
No.	Que.	Wodel Aliswers	IVIaIKS	Marks
6)		$i) \ p(3) = \frac{e^{-2}2^{3}}{3!} = 0.1804 (or \ also \ 0.180)$ $ii) \ p(\text{at least } 2) = 1 - p(\text{maximum } 1)$	1	
		$=1-\left[p(0)+p(1)\right]$	1	
		$=1-\left[\frac{e^{-2}2^{0}}{0!}+\frac{e^{-2}2^{1}}{1!}\right]$	1	
		=1-[0.1353+0.2707]		
		$=0.2706 \ (or \ also \ 0.271)$	1	4
		Note: Please refer note stated in Q. 1 (<i>l</i>).		
	d)	The probability that a man aged 65 will live to 75 is 0.65. What is the probability that out of 10 men which are now 65, 7 will live to 75?		
	Ans.	p = 0.65	1	
		$\therefore q = 1 - p = 0.35$	1	
		$\therefore p(3) = {}^{n}C_{r}p^{r}q^{n-r}$		
		$= {}^{10}C_7 (0.65)^7 (0.35)^{10-7}$	2	
		=0.252	1	4
	e)	A problem is given to three students A, B, C whose chances of solving it are $\frac{1}{2}$, $\frac{3}{4}$ and $\frac{1}{4}$ respectively. What is the change (chance) that the problem is solved?		
	Ans.	$P(A) = \frac{1}{2} \qquad \therefore P(A') = 1 - P(A) = \frac{1}{2}$	1/2	
		$P(A) = \frac{1}{2} \qquad \therefore P(A') = 1 - P(A) = \frac{1}{2}$ $P(B) = \frac{3}{4} \qquad \therefore P(B') = 1 - P(B) = \frac{1}{4}$	1/2	
		$P(C) = \frac{1}{4}$ $\therefore P(C') = 1 - P(C) = \frac{3}{4}$	1/2	
		$\therefore p = p \text{ (the problem is solved)}$ $= 1 - p \text{ (the problem is not solved by all A, B, C)}$	1/2	
		$=1-p(A'\cap B'\cap C')$	1/2	

Subject & Code: Applied Maths (17301)

Page No: 27/27

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
6)	Que.			Iviaiks
,		$=1-\frac{1}{2}\cdot\frac{1}{4}\cdot\frac{3}{4}$		
			1	
		$=\frac{29}{32}$ or 0.906	1/2	4
	f)	A metal wire 36 cm long is bent to form a rectangle. Find its dimensions, when its area is maximum.		
	Ans.	Let x and y be the sides of rectangle.		
		$\therefore 2x + 2y = 36$ or $x + y = 18$	1/2	
		$\therefore y = 18 - x$		
		But area $A = xy = x(18-x) = 18x - x^2$	1	
		$\therefore \frac{dA}{dx} = 18 - 2x$	1/2	
		$\therefore \frac{d^2 p}{dx^2} = -2$	1/2	
		For stationary values, $\frac{dp}{dx} = 0$		
		$\therefore 18 - 2x = 0$		
		$\therefore x = 9$	1/2	
		$At \ x = 9, \ \frac{d^2p}{dx^2} = -2 < 0$	1/2	
		\therefore At $x = 9$, A has max imum value		
		and the other side is	1/2	4
		y = 18 - x = 9	, -	1
		Important Note		
		In the solution of the question paper, wherever possible all the		
		possible alternative methods of solution are given for the sake		
		of convenience. Still student may follow a method other than the given herein. In such case, FIRST SEE whether the method		
		falls within the scope of the curriculum, and THEN ONLY		
		give appropriate marks in accordance with the scheme of marking.		