Step-1

Given that 3x = 10, 4x = 5

We have to find the least-squares solution $\hat{x}_{to} 3x = 10, 4x = 5$.

Step-2

We know that the least-squares solution to a problem ax = b is $\hat{x} = \frac{a^T b}{a^T a}$.

We can write 3x = 10, 4x = 5 as $\begin{pmatrix} 3 \\ 4 \end{pmatrix} x = \begin{pmatrix} 10 \\ 5 \end{pmatrix}$.

 $a = \begin{pmatrix} 3 \\ 4 \end{pmatrix}, b = \begin{pmatrix} 10 \\ 5 \end{pmatrix}$

Now the least-squares solution to 3x = 10, 4x = 5 is

 $a^{T}b = (3 \quad 4) {10 \choose 5}$ = 3(10) + 4(5) = 30 + 20 = 50

Step-3

And

 $a^{T}a = (3 \quad 4)\begin{pmatrix} 3\\4 \end{pmatrix}$ = 3(3)+4(4) = 9+16 = 25

Step-4

Therefore,

$$\hat{x} = \frac{a^T b}{a^T a}$$
$$= \frac{50}{25}$$

Hence the least-square solution to 3x = 10, 4x = 5 is (x = 2).

Step-5

We have to the error E^2 that is minimized.

Since ax = b by minimizing $E^2 = ||ax - b||^2$

$$\Rightarrow E^2 = \left(a_1 x - b_1\right)^2 + \dots + \left(a_m x - b_m\right)^2$$

Therefore $E^2 = (10-3x)^2 + (5-4x)^2$ is minimized.

Step-6

Let e = error vector

Then

$$e = (10 - 3\hat{x}, 5 - 4\hat{x})$$

= (10 - 3(2), 5 - 4(2))
= (4, -3)

Step-7

Now

$$e^{T}a = (4, -3) \begin{pmatrix} 3 \\ 4 \end{pmatrix}$$

= 4(3)+(-3)4
= 12-12
= 0

Hence error vector $e = (10 - 3\hat{x}, 5 - 4\hat{x})_{is perpendicular to} a = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$.