Московский физико-технический университет Факультет радиотехники и кибернетики

Лабораторная работа N 3.5.1

(Общая физика: электричество и магнетизм)

Изучение плазмы газового разряда в неоне

Работу выполнил: **Милославов Глеб, группа Б01-103**

г. Долгопрудный 2022 год **Цель работы**: изучение вольт-амперной характеристики тлеющего разряда, изучение свойств плазмы методом зондовых характеристик.

В работе используются: стеклянная газоразрядная трубка, наполненная изотопом неона, высоковольтный источник питания (ВИП), источник питания постоянного тока, делитель напряжения, резистор, потенциометр, амперметры, вольтметры, переключатели.

1 Теория

1.1 Плазма

В ионизированном газе поле ионов «экранируется» электронами. Для поля ${\bf E}$ и плотности ρ электрического заряда

$$\mathrm{div}\;\mathbf{E}=4\pi\rho,$$

а с учётом сферической симметрии и $\mathbf{E} = -\mathrm{grad} \ \varphi$:

$$\frac{d^2\varphi}{dr^2} + \frac{2}{r}\frac{d\varphi}{dr} = -4\pi\rho. \tag{1}$$

Плотности заряда электронов и ионов (которые мы считаем бесконечно тяжёлыми и поэтому неподвижными)

$$\rho_e = -ne \cdot \exp\left(\frac{e\varphi}{kT_e}\right),$$

$$\rho_i = ne.$$
(2)

Тогда из (1) в предположении $\frac{e\varphi}{kT_e}\ll 1$ получим

$$\varphi = \frac{Ze}{r}e^{-r/r_D},\tag{3}$$

где $r_D = \sqrt{\frac{kT_e}{4\pi ne^2}}$ – paduyc Дебая. Среднее число ионов в сфере такого радиуса

$$N_D = n\frac{4}{3}\pi r_D^2. \tag{4}$$

Теперь выделим параллелепипед с плотностью n электронов, сместим их на x. Возникнут поверхностные заряды $\sigma = nex$, поле от которых будет придавать электронам ускорение:

$$\frac{d^2x}{dt^2} = -\frac{eE}{m} = -\frac{4\pi ne^2}{m}x.$$

Отсюда получаем плазменную (ленгмюровскую) частоту колебаний электронов:

$$\omega_p = \sqrt{\frac{4\pi n e^2}{m}}. (5)$$

1.2 Одиночный зонд

При внесении в плазму уединённого проводника — зонда — с потенциалом, изначально равным потенциалу точки плазмы, в которую его помещают, на него поступают токи электроннов и ионов:

$$I_{e0} = \frac{n\langle v_e \rangle}{4} eS,$$

$$I_{i0} = \frac{n\langle v_i \rangle}{4} eS,$$
(6)

где $\langle v_e \rangle$ и $\langle v_i \rangle$ — средние скорости электронов и ионов, S — площадь зонда, n — плотность электронов и ионов. Скорости электронов много больше скорости ионов, поэтому $I_{i0} \ll I_{e0}$. Зонд будет заряжаться до некоторого равновестного напряжения $-U_f$ — nлавающего nотенциала.

В равновесии ионный ток мало меняется, а электронный имеет вид

$$I_e = I_0 \exp\left(-\frac{eU_f}{kT_e}\right).$$

Будем подавать потенциал U_3 на зонд и снимать значение зондового тока I_3 . Максимальное значение тока $I_{e\text{H}}$ — электронный ток насыщения, а минимальное $I_{i\text{H}}$ — ионный ток насыщения. Значение из эмпирической формулы Бомона:

$$I_{iH} = 0.4 ne S \sqrt{\frac{2kT_e}{m_i}}. (7)$$

1.3 Двойной зонд

Двойной зонд — система из двух одинаковых зондов, расположенных на небольшом расстоянии друг от друга, между которыми создаётся разность потенциалов, меньшая U_f . Рассчитаем ток между ними вблизи I=0. При небольших разностях потенциалов ионные токи на оба зонда близки к току насыщения и компенсируют друг друга, а значит величина результирующего тока полностью связана с разностью электронных токов. Пусть потенциалы на зондах

$$U_1 = -U_f + \Delta U_1,$$

$$U_2 = -U_f + \Delta U_2.$$

Между зондами $U=U_2-U_1=\Delta U_2-\Delta U_1$. Через первый электрод

$$I_{1} = I_{iH} + I_{e1} = I_{iH} - \frac{1}{4} neS \langle v_{e} \rangle \exp\left(-\frac{eU_{f}}{kT_{e}}\right) \exp\left(\frac{e\Delta U_{1}}{kT_{e}}\right) = I_{iH} \left(1 - \exp\left(\frac{e\Delta U_{1}}{kT_{e}}\right)\right). \tag{8}$$

Аналогично через второй получим

$$I_2 = I_{iH} \left(1 - \exp\left(\frac{e\Delta U_2}{kT_e}\right) \right) \tag{9}$$

Из (7) и (8) с учётом последовательного соединение зондов ($I_1 = -I_2 = I$):

$$\Delta U_1 = \frac{kT_e}{e} \ln \left(1 - \frac{I}{I_{i\text{H}}} \right)$$

$$\Delta U_2 = \frac{kT_e}{e} \ln \left(1 + \frac{I}{I_{i\text{H}}} \right)$$

Тогда итоговые формулы для разности потенциалов и тока

$$U = \frac{kT_e}{e} \ln \frac{1 - I/I_{iH}}{1 + I/I_{iH}}, I = I_{iH} th \frac{eU}{2kT_e}.$$
 (10)

Реальная зависимость выглядит несколько иначе и описывается формулой

$$I = I_{iH} th \frac{eU}{2kT_e} + AU.$$
 (11)

Из этой формулы можно найти формулу для T_e : для U=0 мы найдём $I_{i \text{H}}$, продифференцируем в точке U=0 и с учётом th $\alpha \approx \alpha$ при малых α и $A \to 0$ получим:

$$kT_e = \frac{1}{2} \frac{eI_{iH}}{\frac{dI}{dU}|_{U=0}}.$$
 (12)

2 Описание установки

Стеклянная газоразрядная трубка имеет холодный (ненакаливаемый) полый катод, три анода и $\emph{геттерный}$ узел — стеклянный баллон, на внутреннюю повехность которого напылена газопоглощающая плёнка ($\emph{геттер}$). Трубка наполнена изотопом неона 22 Ne при давлении 2 мм рт. ст. Катод и один из анодом (I и II) с помощью переключателя Π_1 подключается через балластный резистор R_6 (≈ 450 кОм) к регулируемому ВИП с выкодным напряжением до 5 кВ.

При подключении к ВИП анода-I между ним и катодом возникает газовый разряд. Ток разряда измеряется миллиамперметром A_1 , а падение напряжения на разрядной трубке — цифровым вольтметром V_1 , подключённым к трубке черезе высокомный (25 МОм) делитель напряжения с коэффициентом $(R_1 + R_2)/R_2 = 10$.

При подключении к ВИП анода-II разряд возникает в пространстве между катодом и анодом-II, где находятся двойной зонд, используемый для диагностики плазмы положительного столба. Зонды изготовлены из молибденовой проволоки диаметром d=0.2 мм и имеют длину l=5.2 мм. Они подключены к источнику питания GPS через потенциометр R. Переключатель Π_2 позволяет изменять полярность напряжения на зондах. Величина напряжения на зондах изменяеься с помощью дискретного переключателя «V» выходного напряжения источника питания и потенциометра R, а измеряется цифровым вольтметром V_2 . Для измерения зондового тока используется мультиметр A_2 .

3 Ход работы

3.1 ВАХ разряда

Занесём данные вольт-амперной характеристики разряда:

Vp, B	σVp, B	Ір, дел	Ір, мА	σΙр, мА
32,90	0,139	36	1,4	0,023
28,97	0,127	45	1,8	0,024
25,12	0,115	50	2,0	0,024
21,52	0,105	60	2,4	0,025
20,60	0,102	70	2,8	0,026
19,57	0,099	80	3,2	0,026
18,49	0,095	90	3,6	0,027
17,70	0,093	100	4,0	0,028
17,16	0,091	110	4,4	0,029
16,72	0,090	120	4,8	0,030
17,44	0,092	105	4,2	0,028
18,21	0,095	95	3,8	0,028
19,03	0,097	85	3,4	0,027
19,98	0,100	75	3,0	0,026
20,51	0,102	65	2,6	0,025
22,94	0,109	55	2,2	0,024
28,45	0,125	45	1,8	0,024
32,97	0,139	35	1,4	0,023
33,99	0,142	25	1,0	0,022
34,73	0,144	15	0,6	0,021

Рис. 1: Данные ВАХ разряда

Далее построим график и найдём наклоны участков графика, тогда если $k=\frac{dI_p}{dU_p}$ это минимальное значение наклона, то:

$$R_{\mathrm{диф}} = rac{dU}{dI} = rac{1}{rac{dI_p}{dU_p}} = rac{1}{k}$$

Рис. 2: График ВАХ разряда

 $k = 0.066 \pm 0.007$; $R_{\mathrm{диф}} = 150 \pm 16 \; \mathrm{кOm}$

3.2 Зондовые характеристкики

Внесём данные для зондовых характеристик при разных токах разряда:

Ip = 5 mA			Ip = 3 mA			Ip = 1,5 mA					
V2, B	σV2, B	А2, мкА	σΑ2, мκΑ	V2, B	σV2, B	А2, мкА	σΑ2, мкА	V2, B	σV2, B	А2, мкА	σΑ2, мкА
25,0	0,12	102,7	0,23	25,0	0,12	54,5	0,13	25,0	0,12	54,1	0,13
21,1	0,10	99,2	0,22	21,9	0,11	52,9	0,13	22,1	0,11	52,7	0,13
18,0	0,09	96,8	0,21	18,2	0,09	51,0	0,12	18,8	0,10	50,8	0,12
15,4	0,09	93,6	0,21	15,1	0,09	49,1	0,12	15,3	0,09	48,8	0,12
12,2	0,08	87,7	0,20	12,5	0,08	46,9	0,11	12,2	0,08	46,0	0,11
10,0	0,07	81,3	0,18	10,3	0,07	43,7	0,11	10,4	0,07	43,4	0,11
8,2	0,06	73,3	0,17	8,1	0,06	38,9	0,10	8,0	0,06	38,0	0,10
6,1	0,06	61,2	0,14	6,2	0,06	32,7	0,09	6,0	0,06	31,7	0,08
4,1	0,05	47,3	0,11	4,1	0,05	24,3	0,07	4,1	0,05	23,6	0,07
2,1	0,05	30,2	0,08	2,1	0,05	13,5	0,05	2,1	0,05	13,5	0,05
0,5	0,04	16,0	0,05	0,5	0,04	4,8	0,03	0,6	0,04	4,8	0,03
-0,5	0,04	-14,7	0,01	-0,5	0,04	-3,9	0,01	-0,6	0,04	-4,5	0,01
-2,0	0,03	-29,0	0,04	-1,2	0,04	-8,1	0,00	-2,0	0,03	-13,1	0,01
-4,1	0,03	-47,4	0,07	-2,0	0,03	-12,8	0,01	-4,3	0,03	-25,0	0,03
-6,1	0,02	-62,3	0,10	-4,1	0,03	-24,0	0,03	-6,0	0,02	-32,6	0,05
-8,2	0,02	-75,6	0,13	-6,1	0,02	-33,1	0,05	-8,4	0,01	-40,0	0,06
-10,4	0,01	-85,7	0,15	-8,3	0,02	-40,8	0,06	-10,1	0,01	-44,9	0,07
-12,2	0,00	-91,6	0,16	-10,1	0,01	-45,2	0,07	-12,0	0,00	-48,2	0,08
-15,0	0,01	-98,2	0,18	-12,7	0,00	-49,3	0,08	-15,1	0,01	-51,3	0,08
-18,2	0,01	-102,6	0,19	-15,1	0,01	-51,5	0,08	-18,1	0,01	-53,3	0,09
-21,2	0,02	-105,6	0,19	-18,1	0,01	-53,4	0,09	-21,3	0,02	-55,0	0,09
-24,0	0,03	-108,3	0,20	-21,1	0,02	-55,1	0,09	24,9	0,11	-57,0	0,09
				-25	0,04	-57,3	0,09				

По этим данным построим семейство зондовых характеристик

Рис. 3: Графики всех зондовых характеристик

Расмотрим каждую по отдельности: Для $I_p = 5$ мА имеем:

Рис. 4: Графики всех зондовых характеристик

Аппроксимируем график прямыми при $\pm U^{max}$ и U=0, получим:

$$I_{i\text{H}}^{+} = 81.5 \pm 0.8 \text{ MA} \quad ; \quad I_{i\text{H}}^{-} = -84.7 \pm 0.2 \text{ MA} \quad ; \quad \frac{dI}{dU}(U=0) = 14.9 \pm 4.7 \frac{\text{MA}}{\text{B}}$$

Тогда
$$I_{i\text{H}}=83.1\pm1.0$$
 мА ; $T_e=\frac{1}{2k_6}\frac{eI_{i\text{H}}}{\frac{dI}{dU}(U=0)}=(32\pm10)\cdot10^3~K$

Для $I_p = 3$ мА имеем:

Рис. 5: Графики всех зондовых характеристик

Аппроксимируем график прямыми при $\pm U^{max}$ и U=0, получим:

$$I_{i\mathrm{H}}^{+} = 40.9 \pm 0.3 \; \mathrm{MA} \quad ; \quad I_{i\mathrm{H}}^{-} = -42.7 \pm 0.2 \; \mathrm{MA} \quad ; \quad \frac{dI}{dU}(U=0) = 6.2 \pm 0.3 \; \frac{\mathrm{MA}}{\mathrm{B}}$$

Тогда
$$I_{iH} = 41.8 \pm 0.5 \text{ мA}$$
 ; $T_e = \frac{1}{2k_6} \frac{eI_{iH}}{\frac{dI}{dU}(U=0)} = (38 \pm 2) \cdot 10^3 \text{ K}$

Для $I_p = 1,5$ мА имеем:

Рис. 6: Графики всех зондовых характеристик

Аппроксимируем график прямыми при $\pm U^{max}$ и U=0, получим:

$$I_{i\mathrm{H}}^{+} = 40.4 \pm 0.3 \text{ MA} \quad ; \quad I_{i\mathrm{H}}^{-} = -42.7 \pm 0.4 \text{ MA} \quad ; \quad \frac{dI}{dU}(U=0) = 6.5 \pm 0.2 \frac{\mathrm{MA}}{\mathrm{B}}$$

Тогда
$$I_{i\text{H}}=41.6\pm0.9$$
 мА ; $T_e=\frac{1}{2k_6}\frac{eI_{i\text{H}}}{\frac{dI}{dU}(U=0)}=(36\pm4)\cdot10^3~K$

3.3 Подсчёты других величин и Вывод

Подсчитаем другие параметры плазмы и внесём их в таблицу:

I_p , MA	$T_e, 10^4 \text{ K}$	$n_e, 10^{15} \text{ m}^{-3}$	$\omega_p,10^4~{ m pag/c}$	$r_D, 10^{-5} \text{ cm}$	N_D
5.0	32 ± 10	45 ± 3	94 ± 34	55 ± 17	40
3.0	38 ± 2	33 ± 2	75 ± 6	72 ± 5	56
1.5	36 ± 4	32 ± 3	81 ± 8	65 ± 4	47

Строить графики $T_e(I_p)$ и $n_e(I_p)$ нецелесообразно ввиду малого количества экспериментов при разных I_p . Видно, что так как характерная величина установки (1 см) много больше радиуса Дебая (порядка 10^{-4}), и так как $N_D >> 1$, то к тлеющему разряду в неоне справедливо применена теория идеальной плазмы. Так же по значению радиуса Дебая можно сказать, что в ходе эксперемента плазма была квазинейтральной.