Year 9 Science Revision Summary - Bolingbroke Academy

this revision guide covers the core science topics from the Year 9 curriculum across
Biology, Chemistry, and Physics, broken down by term. It is designed to support exam
preparation by focusing on key content, diagrams, and formulas likely to appear in end-of-
year assessments.

Physics: Forces Predict Motion

7. Forces in Balance / Motion - Resultant force = difference between opposing forces -Newton's First Law (object stays at rest/moving unless acted on) - Newton's Second Law: (F = ma) (Force = mass x acceleration)

FORCES IN BALANCE / MOTION - Year 9 Physics

RESULTANT FORCE

Difference between opposing forces

NEWTON'S FIRST LAW

"An object stays at rest or moving at constant speed unless acted on by an unbalanced force"

NEWTON'S SECOND LAW

F = ma

Force = mass × acceleration

Cover what you want to find

UNITS TO REMEMBER

- · Force (F) measured in Newtons (N)
- · Mass (m) measured in kilograms (kg)
- · Acceleration (a) measured in m/s2

More force = more acceleration (if mass stays same) • More mass = less acceleration (if force stays same) • Zero resultant force = no acceleration YEAR 9 EXAM TIPS ✓ **Resultant force = 0:** balanced forces, no acceleration ✓ **Always show working** for F=ma calculations ✓ **Use the triangle method** to rearrange F=ma ✓ **Include correct** ⊕ units in your final answers Q **8.** Interpreting Graphs of Motion - Distance-time graph: slope = speed - Velocity-time graph: slope = acceleration; area = distance

INTERPRETING GRAPHS OF MOTION - Year 9 Physics

DISTANCE-TIME GRAPHS

VELOCITY-TIME GRAPHS

WORKED EXAMPLES

DISTANCE-TIME EXAMPLE A car travels 120m in 40 seconds. What is its speed? Speed = distance + time Speed = 120 + 40 = 3 m/s The slope of the line = 3 m/s

VELOCITY-TIME EXAMPLE A bike accelerates from 0 to 15 m/s in 5 seconds. Find: (a) acceleration (b) distance travelled (a) Acceleration = $(15-0) + 5 = 3 \text{ m/s}^2$ (b) Distance = $\frac{1}{2} \times 5 \times 15 = 37.5 \text{ m}$

Constant velocity of 10 m/s for 6 seconds Area under line = distance travelled Rectangle area = length × width Distance = 6 × 10 = 60 m This works for any shape under the line!

AREA = DISTANCE

EXAM TIPS: Always label axes and units! Use triangles to calculate slopes. Remember: steep = fast, flat = slow/constant

Physics: Energy is Conserved

13. Heating and Energy Transfer - Conduction, Convection, Radiation - Specific Heat Capacity: (Q = mcT) - (Q =) heat energy, (m =) mass, (c =) specific heat, (T =) temperature change

HEATING AND ENERGY TRANSFER - Year 9 Physics

Energy is Conserved

THREE METHODS OF HEAT TRANSFER

SPECIFIC HEAT CAPACITY

Only in fluids (liquids and gases)Examples: Central heating, sea breeze

Energy needed to raise 1kg of material by 1°C

Physics: Radiation Transfers Energy

15. Sound and Waves - Longitudinal vs transverse waves - Wave formula: (v = f) - (v = g) wave speed, (f = g) frequency, (f = g) wavelength - Reflection: angle of incidence = angle of reflection - Refraction: wave bends at boundary due to speed change

Diagrams: - Ray diagrams showing reflection and refraction

SOUND AND WAVES - Radiation Transfers Energy

Year 9 Physics Exam Revision

TYPES OF WAVES

 ${f v}$ = wave speed (m/s) ${f f}$ = frequency (Hz) ${f \lambda}$ = wavelength (m) EXAMPLE f = 20 Hz, ${f \lambda}$ = 17 m v = 20 × 17 = 340 m/s (Speed of sound in air!) REFLECTION Angle of incidence = Angle of reflection Mirror Normal Incident ray Reflected ray i r i = r Both angles measured from normal REFRACTION Wave bends at boundary due to speed change Air (fast) Glass (slow) Normal Incident ray Refracted ray ${f \theta}_1$ ${f \theta}_2$ Ray bends TOWARDS normal when slowing down PRACTICAL EXAMPLES REFLECTION ${f \cdot}$ Mirrors ${f \cdot}$ Echoes ${\bf \cdot}$ Periscopes REFRACTION ${\bf \cdot}$ Lenses ${\bf \cdot}$ Prisms ${\bf \cdot}$ Water appearing shallow WAVE

Key Mathematical & Scientific Skills to Practice: - Rearranging equations (e.g. (F = ma), magnification) - Interpreting graphs and diagrams (e.g. velocity-time graphs) - Drawing cells, ray diagrams, food chains - Using and interpreting Punnett squares - Evaluating risk and method in experiments

Always read questions twice - underline key words \checkmark Show ALL working - even if wrong method, you get method marks \checkmark Use scientific vocabulary correctly \checkmark Check units match the question \checkmark Practice past papers regularly

Tips for Exam Success: - Always label diagrams clearly - Learn key formulas and be able to rearrange them - Show all working in calculations - Use scientific language in long answers

End of Revision Summary