Теоретические ("малые") домашние задания

Теория типов, ИТМО, МЗЗЗ4-МЗЗЗ9, осень 2019 года

Домашнее задание №1: «знакомство с лямбда-исчислением»

- 1. Расставьте скобки:
 - (a) $\lambda x.x \ x \ \lambda x.x \ x$
 - (b) $(\lambda x.x \ x) \ \lambda x.x \ x$
 - (c) $\lambda x.(x \ x) \ \lambda x.x \ x$
 - (d) $\lambda f.\lambda x.fffx$
- 2. Проведите бета-редукции и приведите выражения к нормальной форме:
 - (a) $(\lambda a.\lambda b.a)$ $(\lambda a.\lambda b.a)$ $(\lambda a.\lambda b.b)$
 - (b) $(\lambda a.\lambda b.a)$ b
 - (c) $(\lambda f.\lambda x.f (f x)) (\lambda f.\lambda x.f (f x))$
- 3. Выразите следующие функции в лямбда-исчислении:
 - (a) Or, Xor;
 - (b) тернарная операция в Си (?:);
 - (c) isZero (T, если аргумент равен 0, иначе F);
 - (d) isEven (T, если аргумент чётный);
 - (е) умножение на 2;
 - (f) умножение;
 - (g) возведение в степень;
 - (h) упорядоченная пара. К паре должны прилагаться три лямбда-выражения (M, P_l, P_r) : выражение M по двум значениям строит упорядоченную пару, а выражения P_l и P_r возвращают первый и второй элемент упорядоченной пары соответственно.

Убедитесь, что для ваших выражений выполнено

$$P_l (M A B) \rightarrow_{\beta} \cdots \rightarrow_{\beta} A$$

И

$$P_r (M A B) \rightarrow_{\beta} \cdots \rightarrow_{\beta} B$$

- (i) вычитание 1;
- (j) вычитание;
- (k) сравнение («меньше»);
- (1) деление.
- 4. Назовём бета-эквивалентностью транзитивное, рефлексивное и симметричное замыкание отношения бета-редукции, будем записывать его как $(=_{\beta})$. В частности, бета-эквивалентны те термы, которые имеют одинаковую нормальную форму. Также, нетрудно заметить следующее:
 - (a) And $T F =_{\beta} F$;
 - (b) $\Omega =_{\beta} \Omega$;
 - (c) $(\lambda n.\lambda f.\lambda x.n \ f \ (f \ x)) \ \overline{n} =_{\beta} \overline{n+1};$
 - (d) $a \neq_{\beta} b$.

Мы будем говорить, что лямбда-выражение E выражает функцию $f(x_1, \ldots, x_k) : \mathbb{N}_0^k \to \mathbb{N}_0$, если при любых $x_1, \ldots, x_k \in \mathbb{N}_0$ выполнено

$$E \overline{x_1} \dots \overline{x_k} =_{\beta} \overline{f(x_1, \dots, x_k)}$$

Какие функции выражают следующие выражения? Ответ обоснуйте.

- (a) $\lambda m.\lambda n.n m$;
- (b) $\lambda m.\lambda n.\lambda x.n \ (m \ x)$.
- 5. Ненормализуемым назовём лямбда-выражение, не имеющее нормальной формы, то есть выражение, для которого нет конечной последовательности бета-редукций, приводящей к нормальной форме. Сильно нормализуемым назовём лямбда-выражение, для которого не существует бесконечной последовательности бета-редукций (любая последовательность бета-редукций неизбежно заканчивается нормальной формой, если её продолжать достаточно долго). Слабо нормализуемым назовём лямбда-выражение, которое имеет нормальную форму, но существует бесконечная последовательность бета-редукций, которая не приводит его в нормальную форму. Приведите примеры сильно нормализуемого, слабо нормализуемого и ненормализуемого лямбда-выражения.

Домашнее задание №2: «теорема Чёрча-Россера, Y-комбинатор»

- 1. *Полное доказательство теоремы Чёрча-Россера*. На лекции был представлен план доказательства теоремы, в котором необходимо заполнить пустоты.
 - (a) Покажите, что отношение бета-редукции подотношение отношения параллельной бета-редукции. В символической записи, $(\rightarrow_{\beta}) \subseteq (\rightrightarrows_{\beta})$. То есть, если $A \rightarrow_{\beta} B$, то $A \rightrightarrows_{\beta} B$.
 - (b) Покажите, что каковы бы ни были термы A, P, Q и переменная x, если выполнено $P \rightrightarrows_{\beta} Q$, то $A[x := P] \rightrightarrows_{\beta} A[x := Q]$. Убедитесь, что это справедливо и если x не входит свободно в A.
 - (c) Покажите, что каковы бы ни были термы $A,\,B,\,P,\,Q$ и переменная x, если $A \rightrightarrows_{\beta} B$ и $P \rightrightarrows_{\beta} Q,$ то $A[x:=P] \rightrightarrows_{\beta} B[x:=Q].$
 - (d) Покажите, что (\Rightarrow_{β}) обладает ромбовидным свойством.
 - (e) Транзитивным и рефлексивным замыканием отношения $R\subseteq U^2$ назовём такое отношение $R^*\subseteq U^2$, что $(x,y)\in R^*$ тогда и только тогда, когда существует $n\in\mathbb{N}$ и последовательность $a_1,\ldots,a_n\in U$, что: $a_1=x,\ a_n=y$ и $(a_i,a_{i+1})\in R$.
 - Покажите, что если R некоторое отношение, обладающее ромбовидным свойством, то R^* тоже обладает ромбовидным свойством.
 - (f) Покажите, что каковы бы ни были отношения R и S, если $R \subseteq S$, то $R^* \subseteq S^*$. В частности, покажите, что $(\twoheadrightarrow_{\beta}) \subseteq (\rightrightarrows_{\beta})^*$.
 - (g) Покажите, что $(\rightrightarrows_{\beta})^* \subseteq (\twoheadrightarrow_{\beta})$

На основании доказанных лемм несложно показать утверждение теоремы Чёрча-Россера: из последних пунктов следует, что $(\rightrightarrows_{\beta})^* = (\twoheadrightarrow_{\beta})$, а из пункта (d) — что это отношение обладает ромбовидным свойством.

- 2. Реализуйте следующие функции с помощью У-комбинатора, вычисляющие:
 - (а) факториал числа;
 - (b) n-е простое число;
 - (с) функцию Аккермана;
 - (d) частичный логарифм.
- 3. Отмеченным объединением множеств $L \uplus R$ назовём множество пар

$$U = \{ \langle 1, x \rangle \mid x \in L \} \cup \{ \langle 2, y \rangle \mid y \in R \}$$

Соответственно, для данного множества мы можем определить три функции

название	обозначение	определение
левая инъекция	$in_L:L o U$	$in_L(x) = \langle 1, x \rangle$
правая инъекция	$in_R:R o U$	$in_R(x) = \langle 2, x \rangle$
выбор	Case: $U \times (L \to X) \times (R \to X) \to X$	$Case(u, f, g) = \left\{ egin{array}{ll} f(x), & ext{если } u = \langle 1, x angle \\ g(x), & ext{если } u = \langle 2, x angle \end{array} ight.$

Говоря простыми словами, инъекции приписывают к значению цифру 1 или 2, получая значение из множества U, а выбор, основываясь на приписанной цифре, применяет к значению первую или вторую фукнцию.

Построим аналогичную конструкцию для типов. Tunom-cymmoй типов L и R (или, иначе, anee6pau-ueckum munom) назовём тип данных U, хранящий значения либо типа L, либо типа R, причём всегда

точно известно, какого именно (сравните с определением дизъюнкции в интуиционистской логике). С точки зрения теории множеств, множество значений типа U — отмеченное объединение множеств значений типов L и R. Для этого типа существует три базовых операции: две инъекции и выбор. Данный тип данных довольно широко распространён, и присутствует в ограниченном объёме даже в языках Си и Паскаль.

Например, в языке Паскаль с возможно следующее определение (там данная конструкция называется «записью с вариантами»):

```
type value: record
   is_real: boolean;
   case is_real of
      false: (real_value: real);
      true: (int_value: integer);
   end:
```

Данная запись если is_real = true содержит поле int_value, а если false — поле real_value. Реализация данной структуры предполагает, что оба эти поля расположены в одной памяти.

В языке Си аналогом этой структуры является объединение (union), однако, явного поля для выбора одного из вариантов там не предусмотрено. В языке Cu++ довольно близким аналогом является класс std::variant — «безопасное» объединение.

В лямбда-исчислении оказывается возможно реализовать эту конструкцию в чистом математическом виде:

$$\begin{split} In_L &= \lambda x. \lambda f. \lambda g.f \ x \\ In_R &= \lambda x. \lambda f. \lambda g.g \ x \\ Case &= \lambda u. \lambda f. \lambda g.u \ f \ g \end{split}$$

Также ещё заметим, что список можно представить, как алгебраический тип с двумя вариантами:

- Nil (соответствует пустому списку)
- Cons(h,t) (соединение головы списка h и хвоста t)

В частности, можно записать список [1,2,3] как Cons(1,Cons(2,Cons(3,Nil))).

В лямбда-исчислении мы можем представить Cons(h,t) как правую инъекцию упорядоченной пары $\langle h, t \rangle$ (так будем обозначать выражение $\lambda a.a~h~t$), а Nil — как левую инъекцию любого значения, например, F. Тогда список [1,2,3] может быть представлен следующим лямбда-выражением:

$$In_R \langle \overline{1}, In_R \langle \overline{2}, In_R \langle \overline{3}, In_L F \rangle \rangle \rangle$$

- (a) Реализуйте конструкции In_L , In_R , Case на языках Си, Паскаль и Си++ как можно ближе к формальному определению.
- (b) Покажите, что $Case\ (In_L\ p\ q)\ (\lambda x.x)\ (\lambda x.x) =_{\beta} p$ и $Case\ (In_R\ p\ q)\ (\lambda x.x)\ (\lambda x.x) =_{\beta} q$.
- (c) Постройте лямбда-выражение, по чёрчевскому нумералу \overline{n} возвращающее список [1,2,3,...,n].
- (d) Постройте лямбда-выражение, по списку возвращающее его длину.
- (е) Постройте лямбда-выражение, суммирующее список чёрчевских нумералов.
- (f) Покажите, как реализовать алгебраический тип на n вариантов.
- (g) Покажите, как реализовать обращение списка (функция должна вернуть список в обратном порядке).
- 4. Чёрчевские нумералы соответствуют аксиоматике Пеано (числа записываются путём приписываний штрихов прибавлений единиц). В частности поэтому вся арифметика с ними крайне медленная. А можно ли реализовать их с использованием двоичной записи?
 - (a) Предложите, как можно реализовать «логарифмические» нумералы значения, которые соответствовали бы двоичной записи чисел.
 - (b) Определите операцию преобразования чёрчевского нумерала в логарифмический.
 - (с) Определите операцию преобразования логарифмического нумерала в чёрчевский.
 - (d) Определите операцию суммы логарифмических нумералов.
 - (е) Определите операцию ограниченного вычитания единицы из логарифмического нумерала (напомним, ограниченное вычитание возвращает 0, если вычитаемое больше уменьшаемого).