Composants de l'architecture Oracle

Objectifs

A la fin de ce chapitre, vous pourrez :

- décrire l'architecture Oracle et ses principaux composants
- répertorier les structures utilisées dans la connexion d'un utilisateur à une instance Oracle

Présentation des principaux composants

Serveur Oracle

Un serveur Oracle:

- est un système de gestion de base de données qui offre une méthode de gestion des informations ouverte, complète et intégrée,
- est constitué d'une instance et d'une base de données Oracle.

Instance Oracle

Une instance Oracle:

- permet d'accéder à une base de données Oracle,
- n'ouvre qu'une seule base de données,
- est constituée de structures de processus d'arrièreplan et de structures mémoire.

Structures mémoire

Structures de processus d'arrière-plan

Etablir une connexion et créer une session

Se connecter à une instance Oracle :

- Etablir une connexion utilisateur
- Créer une session

Base de données Oracle

Une base de données Oracle :

- est un ensemble de données traitées comme une seule et même entité,
- est constituée de trois types de fichier.

Fichier de paramètres
Fichier de mots de passe

Fichiers de Journalisation archivés

Structure physique

La structure physique comprend trois types de fichier :

• Fichiers de contrôle

• Fichiers de journalisation

Fichiers de journalisation

Fichiers de Données (incluent le dictionnaire de données) en ligne

Fichiers de de contrôle

Structure mémoire

La structure mémoire d'Oracle est constituée des deux zones de mémoire suivantes :

- la mémoire SGA, qui est allouée au démarrage de l'instance et qui est une composante fondamentale d'une instance Oracle
- la mémoire PGA, qui est allouée au démarrage du processus serveur

Mémoire SGA

- La mémoire SGA est constituée de plusieurs structures mémoire :
 - la zone de mémoire partagée,
 - le cache de tampons de la base de données,
 - le tampon de journalisation,
 - d'autres structures (gestion des verrous externes (lock) et des verrous internes (latch), données statistiques, par exemple).
- Deux structures mémoire supplémentaires peuvent également être configurées dans la mémoire SGA :
 - la zone de mémoire LARGE POOL,
 - la zone de mémoire Java.

Mémoire SGA

- Dynamique
- Taille définie à l'aide du paramètre SGA MAX SIZE
- Allocation et suivi sous forme de granules par les composants de la mémoire SGA
 - Allocation de mémoire virtuelle contiguë
 - Taille des granules définie en fonction de la valeur totale estimée de SGA MAX SIZE

Zone de mémoire partagée

- Elle permet de stocker :
 - les dernières instructions SQL exécutées,
 - les dernières définitions de données utilisées.
- Elle est constituée de deux structures mémoire clés liées aux performances :
 - Cache "library"
 - Cache du dictionnaire de données
- Sa taille est définie par le paramètre

SHARED_POOL_SIZE.

ALTER SYSTEM SET
SHARED_POOL_SIZE = 64M;

Cache "library"

- Le cache "library" conserve des informations sur les dernières instructions SQL et PL/SQL utilisées.
- Il permet le partage des instructions fréquemment utilisées.
- Il est géré par un algorithme LRU.
- Il est composé de deux structures :
 - la zone SQL partagée,
 - la zone PL/SQL partagée.
- Sa taille dépend du dimensionnement de la zone de mémoire partagée.

Cache du dictionnaire de données

- Le cache du dictionnaire de données contient les dernières définitions utilisées dans la base.
- Il contient des informations sur les fichiers, les tables, les index, les colonnes, les utilisateurs, les privilèges et d'autres objets de la base de données.
- Au cours de l'analyse, le processus serveur recherche les informations dans le cache du dictionnaire pour résoudre les noms d'objet et valider l'accès.
- La mise en mémoire cache des informations du dictionnaire de données réduit le temps de réponse aux interrogations et aux instructions LMD.
- La taille du cache dépend du dimensionnement de la zone de mémoire partagée.

Cache de tampons de la base de données

- Ce cache conserve des copies des blocs de données extraits des fichiers de données.
- Il permet des gains de performances considérables lors de l'obtention et de la mise à jour de données.
- Il est géré par un algorithme LRU.
- Le paramètre DB_BLOCK_SIZE détermine la taille du bloc principal.

Cache de tampons de la base de données

- Ce cache est composé de sous-caches indépendants :
 - DB_CACHE_SIZE
 - DB KEEP CACHE SIZE
 - DB RECYCLE CACHE SIZE
- Il peut être redimensionné dynamiquement :

```
ALTER SYSTEM SET DB_CACHE_SIZE = 96M;
```

- Le paramètre DB_CACHE_ADVICE peut être défini pour collecter des statistiques permettant de prévoir le comportement du serveur en fonction de différentes tailles de cache.
- La vue V\$DB_CACHE_ADVICE affiche les statistiques collectées.

Tampon de journalisation

- Il enregistre toutes les modifications apportées aux blocs de données de la base.
- Sa principale fonction est la récupération de données.
- Les modifications enregistrées constituent des entrées de journalisation.

Tampon de

journalisation

- Les entrées de journalisation contiennent des informations permettant de reconstruire des modifications.
- La taille du tampon est définie par le paramètre LOG_BUFFER.

Zone de mémoire LARGE POOL

- Zone facultative de la mémoire SGA
- Elle réduit la charge de la zone de mémoire partagée.
 - la mémoire allouée par session (UGA) au serveur partagé
 - les processus serveur d'E/S
 - les opérations de sauvegarde et de restauration ou RMAN
 - les mémoires tampon des messages d'exécution en parallèle
 - PARALLEL_AUTOMATIC_TUNING = TRUE
- Elle n'utilise pas de liste LRU.
- Sa taille est définie par le paramètre LARGE_POOL_SIZE.

Zone de mémoire Java

- La zone de mémoire Java répond aux besoins d'analyse des commandes Java.
- Elle est nécessaire si Java est installé et utilisé.
- Sa taille est définie par le paramètre JAVA_POOL_SIZE.

Mémoire PGA

- Mémoire réservée à chaque processus utilisateur qui se connecte à une base de données Oracle.
- Elle est allouée lorsqu'un processus est créé.
- Elle est libérée à la fin du processus.
- Elle n'est utilisée que par un processus.

Structure de processus

Oracle utilise différents types de processus :

- le processus utilisateur, qui est démarré au moment où un utilisateur de la base de données tente de se connecter au serveur Oracle,
- le processus serveur, qui établit la connexion à l'instance Oracle et démarre lorsqu'un utilisateur ouvre une session,
- les processus d'arrière-plan, lancés au démarrage d'une instance Oracle.

Processus utilisateur

- Programme qui demande une interaction avec le serveur Oracle.
- · Ce processus doit d'abord établir une connexion.
- Il n'entre pas directement en interaction avec le serveur Oracle.

Utilisateur de la base de données

Processus serveur

- Programme qui entre directement en interaction avec le serveur Oracle.
- Il répond aux appels générés et renvoie les résultats.
- Il peut s'agir d'un serveur dédié ou d'un serveur partagé.

Processus d'arrière-plan

Gèrent et appliquent les relations entre les structures physiques et les structures mémoire.

- Processus d'arrière-plan obligatoires
 - DBWnPMONCKPT
 - LGWR SMON
- Processus d'arrière-plan facultatifs
 - ARCn LMDn RECO
 - CJQ0 LMON Snnn
 - Dnnn Pnnn
 - LCKn QMNn

Processus database writer (DBWn)

DBWn écrit dans les cas suivants :

- point de reprise
- seuil des tampons "dirty" atteint
- aucune mémoire tampon disponible
- temps imparti dépassé
- demande de ping RAC
- tablespace hors ligne
- tablespace en lecture seule
- DROP ou TRUNCATE sur une table
- BEGIN BACKUP sur un tablespace

Processus LGWR (Log Writer)

LGWR écrit dans les cas suivants :

- validation
- un tiers du cache est occupé
- la journalisation atteint 1 Mo
- toutes les trois secondes
- avant que le processus DBWn ne procède à une opération d'écriture

Processus SMON (System Monitor)

Responsabilités :

- Récupération de l'instance :
 - réimplémente des modifications dans les fichiers de journalisation,
 - ouvre la base de données pour permettre l'accès aux utilisateurs,
 - annule les transactions non validées.
- Fusion de l'espace libre
- Libération des segments temporaires segments

Processus PMON (Process Monitor)

Suite à l'échec de processus, PMON exécute des opérations de nettoyage :

- annule la transaction
- libère des verrous
- libère d'autres ressources
- redémarre les répartiteurs interrompus

Processus CKPT (Checkpoint)

Ce processus est chargé :

- de signaler DBWn aux points de reprise,
- de mettre à jour les en-têtes de fichiers de données avec les informations sur le point de reprise,
- de mettre à jour les fichiers de contrôle avec les informations sur le point de reprise.

Processus ARCn (processus d'archivage)

- Processus d'arrière-plan facultatif
- En mode ARCHIVELOG, il archive automatiquement les fichiers de journalisation en ligne
- Il enregistre toutes les modifications apportées à la base de données

Structure logique

- La structure logique définit le mode d'utilisation de l'espace physique d'une base de données.
- Cette structure possède une hiérarchie composée de tablespaces, de segments, d'extents et de blocs.

Tablespace

Traiter les instructions SQL

- Connexion à une instance via :
 - le processus utilisateur,
 - le processus serveur.
- Les composants du serveur Oracle utilisés dépendent du type d'instruction SQL :
 - Les interrogations renvoient des lignes.
 - Les instructions LMD consignent les modifications.
 - La validation garantit la récupération de la transaction.
- Certains composants du serveur Oracle n'interviennent pas dans le traitement des instructions SQL.

Synthèse

Ce chapitre vous a présenté :

- les fichiers de base de données : fichiers de données, fichiers de contrôle, fichiers de journalisation en ligne
- les structures mémoire SGA : cache de tampons de la base de données, zone de mémoire partagée et tampon de journalisation
- les principaux processus d'arrière-plan : DBWn, LGWR, CKPT, PMON et SMON
- l'utilisation du processus d'arrière-plan ARCn
- les processus d'arrière-plan facultatifs et conditionnels
- la hiérarchie logique

Présentation de l'exercice 1

Cet exercice porte sur :

- les composants de l'architecture
- les structures utilisées dans la connexion d'un utilisateur à une instance Oracle