上机报告-7

数算B 谢胡睿 2400014151

题目

1.题目背景

排序。

2.题目描述

给定一个数组,输出其升序排序之后的结果。

3.输入格式

第一行为一个正整数N,表示数组共有N个数。接下来1行,包含以单个空格分隔的N个整数。

4.输出格式

1行,以单个空格分隔的M个整数,为按照升序排序后的结果。

输入输出样例

输入

5 4 3 2 1

输出

1 2 3 4 5

数据范围和提示

- 对于100%的数据, $N imes \log_2 N \le 1,000,000$,且数据存在极端情况。
- 数组中的数为 *long* 范围的(4 位)
- 评测限时 1s, 无存储限制
- 本题任何除了结构体、默认的数组、链表之外的数据结构必须自行实现

Solution

总体描述

由稳定性和时限要求,本题要求实现归并排序算法.

方案: 归并排序 (Merge Sort)

设计思路

1. 基本原理:

• **分解**: 递归地分成两个各含 N/2 个元素的子序列。 • **合并**: 将两个已排序的子序列合并成一个升序序列。

2. 数据结构 (Arr):

• int num:存储数组中元素的数量。

• long* nodes:动态数组实现。

• 构造函数 Arr(int n)。

• 析构函数 ~Arr(): 释放内存。

优缺点

优点:

- 1. **时间复杂度稳定**:归并排序在最坏、平均和最好情况下的时间复杂度均为 $O(N\log_2 N)$ 。
- 2. 稳定性: 归并排序是稳定的排序算法。

缺点:

- 1. **空间复杂度**:本次实现的归并排序不是原地的。递归调用本身也会消耗 $O(\log_2 N)$ 的栈空间。
- 2. 动态内存分配开销。

问题与挑战

1. 内存管理

• 中间结果的释放:

```
delete a;
delete b;
```

- 最终结果的释放
- Arr 结构体自身的内存管理: 析构函数。