

LABORATORIO Nº1

Sistemas materiales

QUÍMICA – 63.01/83.01 1º 2020

TRABAJO PRÁCTICO N°2.

MEDIDA DE LA VISCOSIDAD POR EL MÉTODO DE STOKES.

SISTEMAS MATERIALES

OBJETIVOS:

✓ Reconocer la propiedad de viscosidad de los líquidos y medirla por el método de Stokes

Conceptos teóricos que debe conocer para realizar la practica

 Naturaleza y fuerzas intermoleculares que presentan las sustancias a ser separadas.

PROPIEDADES DE LOS LÍQUIDOS: VISCOSIDAD

Es la resistencia a fluir que presenta un fluido.
Es necesario ejercer una fuerza para obligar a una capa de fluido a deslizar sobre otra debido a las fuerzas intermoleculares existentes.

La VISCOSIDAD es una medida del rozamiento interno entre las capas de fluido.

La fuerza (F_{γ}) por unidad de área (A) que hay que aplicar es proporcional al gradiente de las velocidades entre las capas. La constante de proporcionalidad o COEFICIENTE DE VISCOSIDAD DINÁMICO se denomina comúnmente viscosidad y se designa con la letra η .

Ley de Newton de la viscosidad

$$\frac{F_y}{A} = \eta \frac{dv_y}{dx}$$

Flujo estacionario de fluido Newtoniano

Unidades viscosidad

 η = VISCOSIDAD DINÁMICA

<u>Unidades</u>

Pascal-segundo (Pa-s), que corresponde a 1 N·s/m² ó 1 kg/(m·s).

POISE (P) o centiPoise (cP).

1poise = 100centipoise = $1g/(cm \cdot s) = 0,1Pa \cdot s$

$$\mu$$
 = VISCOSIDAD CINEMÁTICA

$$\mu=rac{\eta}{
ho}$$

Con ρ = densidad del fluido

<u>Unidades</u>

Stoke (St) o centiStokes

$$1St = 100cSt = 1cm^2/s = 0.0001m^2/s$$

COMPARACIÓN DE VISCOSIDADES ENTRE LÍQUIDOS Y GASES

Valores de η en cP para líquidos y gases a 25°C y 1 atm,

Sustancia	C ₆ H ₆	H ₂ O	H ₂ SO ₄	Aceite de oliva	Glicerol	O ₂	CH₄
η (cP)	0,60	0,89	19	80	954	0,021	0,011

¿Qué sustancias son líquidas y cuales gases a la T y P dadas?

COMPORTAMIENTO DE LA VISCOSIDAD DE FLUIDOS CON LA TEMPERATURA

Al *aumentar* la temperatura

DISMINUYE viscosidad

Comportamiento de la viscosidad de los <u>líquidos</u> con la <u>temperatura</u>

Distintos tipos de aceite de motor

Comportamiento de la viscosidad de los gases con la temperatura

VARIACIÓN DE LA VISCOSIDAD DE FLUIDOS CON LA PRESIÓN

GASES

No experimentan cambios al aumentar la presión

LÍQUIDOS

La viscosidad <u>aumentar</u> al aumentar la presión

Determinación experimental de la viscosidad

Viscosímetro de Ostwald

Método de Stokes

Método de Stokes

Ley de Stokes

$$F_r = 6\pi R\eta v$$

$$egin{aligned} m{F_r} &= 6\pi R\eta v \ m{mg} &=
ho_e V_e =
ho_e rac{4}{3}\pi R^3 g \ m{E} &=
ho_f V_e g =
ho_f rac{4}{3}\pi R^3 g \end{aligned}$$

$$\mathbf{E} = \rho_f V_e g = \rho_f \frac{4}{3} \pi R^3 g$$

2da Ley de Newton:

$$ma = mg - E - F_r$$

g :_aceleración de la gravedad =_981 cm/s²

 ρ_e : densidad de la esfera (g/cm³)

 ρ_f : densidad del aceite (g/cm³)

R : radio de la esfera (cm)

v : velocidad (cm/s)

V_e: Volumen de la esfera (cm³)

Método de Stokes

 $a = 0 \rightarrow velocidad constante \rightarrow Velocidad límite: <math>v_{lim}$

$$0 = \rho_e \frac{4}{3} \pi R^3 g - \rho_f \frac{4}{3} \pi R^3 g - 6 \pi R \eta v_{lim}$$

$$\eta(cP) = \frac{2.g(\rho_e - \rho_f).R^2}{9.v_{\text{lim}}} \times \frac{100cP}{1P}$$

g :_aceleración de la gravedad =_981 cm/s²

ρ_e: densidad de la esfera (g/cm³)

v_{lim}: velocidad límite (cm/s)

VELOCIDAD LÍMITE

Expresión para la velocidad en función del tiempo para un objeto cayendo en un fluido viscoso e infinito.

Siendo $k=6\pi R\eta$

MEDIDA DE LA VISCOSIDAD POR EL MÉTODO DE STOKES

Magnitudes a medir:

- ✓ Diámetro de las esferas (con calibre)
- ✓ Temperatura del líquido (con termómetro)
- ✓ Distancia de tránsito de la esfera (con regla)

√ Tiempo de tránsito de la esfera (con cronómetro)

Magnitudes a calcular:

- ✓ Volumen y Densidad de las esferas (Datos: Masa promedio esferas =5,385g, Vol esfera= $4/3\pi R^3$)
- ✓ Densidad del líquido (ver gráfico).
- √ Velocidad de descenso de la esfera.

Procedimiento:

IMPORTANTE: utilizar los datos en unidades consistentes!!!

- ✓ Medir y anotar el tiempo de tránsito de la esfera entre dos marcas cualesquiera.
- ✓ Realizar el procedimiento dos veces, una con cada esfera.
- ✓ Con los tiempos de tránsito obtenidos, calcular la velocidad límite de caída.
- ✓ Calcular el valor del coeficiente de viscosidad del líquido utilizando la siguiente expresión.
- ✓ Comparar el valor obtenido con el del agua y justificar las diferencias.

$$\eta(cP) = \frac{2.g(\rho_e - \rho_f).R^2}{9.v} \times \frac{100cP}{P}$$

ACTIVIDAD A REALIZAR

Completar con los datos faltantes y calcular la viscosidad

Diámetro 1 Esfera (cm)	1,61	Diámetro 2 Esfera (cm)	1,61
Diámetro Promedio (cm)		Radio (cm)	
Volumen Esfera (cm³)		Masa Esfera (g)	5,385
Densidad Esfera (g/cm³)		Acel. Gravedad (cm/s²)	981
Longitud 1 (cm)	50	Tiempo 1 (s)	2,51
Velocidad 1 (cm/s)			
Longitud 2 (cm)	50	Tiempo 2 (s)	2,49
Velocidad 2 (cm/s)			
Velocidad Promedio (cm/s)			
Temperatura aceite (ºC)	24°C	Densidad Aceite (g/cm³)	
VISCOSIDAD ACEITE (cP)			

ACTIVIDAD A REALIZAR

Comparar el valor obtenido con datos de bibliografía. Si existen diferencias sustanciales, analizar posibles fuentes de incerteza.

Realizar práctica empleando la aplicación que se encuentra en el Campus FIUBA:

https://github.com/DMaitia/AugmentedReality/wiki/Viscosidad:-descarga

Comparar los valores obtenidos. Discutir las posibles discrepancia entre ellos.

ACTIVIDAD A REALIZAR

Justificación de las viscosidades obtenidas. ¿El resultado es el esperado en base a las fuerzas intermoleculares presentes en las sustancias?

Agua Ácido oleico

