

目 录

第	一部分 前电机 BYD-2011TZA 电机维修手册	2
1,	驱动电机总成简介	2
	1.1、技术参数	2
	1.2、电动机外形:	2
2.	电机的拆卸与检测	3
	2.1 拆装注意事项:	3
	2.2 检测前的准备工作:	3
	2.3 外观检查	3
	2.4 电机线电阻检测	4
	2.5 测量三相绕组对机壳绝缘	6
	2.6 测量旋变阻值	7
	2.7 测量旋变对绕组绝缘	8
	2.8 测量旋变对机壳绝缘	9
	2.9 测量绕组温度传感器阻值	10
	2. 10 测量绕组温度传感器对机壳绝缘	12
	2. 11 测量绕组温度传感器对三相绕组绝缘	12
3、	电机的常见故障及检测手段	13
	3.1 旋变故障	. 13
	3.2 电机漏电	. 14
	3.3 电机过温	. 14
	3.4 电机异响	. 14
第	二部分 后电机 BYD-2011TZB 电机维修手册	14
1,	驱动电机总成简介	. 14
	1.1、技术参数	. 14
	1.2、电动机外形:	. 14
2,	电机的拆卸与检测	15
	2.1 拆装注意事项:	15
	2.2 检测前的准备工作:	16
	2.3 外观检查	16
	2.4 电机线电阻检测	17
	2.5 测量三相绕组对机壳绝缘	19
	2.6 测量旋变阻值	20
	2.7 测量旋变对绕组绝缘	22
	2.8 测量旋变对机壳绝缘	22
	2.9 测量绕组温度传感器阻值	23
	2. 10 测量绕组温度传感器对机壳绝缘	25
	2. 11 测量绕组温度传感器对三相绕组绝缘	26
3、	电机的常见故障及检测手段	27
	3.1 旋变故障	27
	3.2 电机漏电	27
	3.3 电机过温	28
	3.4 电机异响	28

第一部分 前电机 BYD-2011TZA 电机维修手册

1、 驱动电机总成简介.

1.1、技术参数

电动机最大输出扭矩 : 250N.m 电动机最大输出功率 : 110kW 电动机最大输出转速 : 12000r/min

电机散热方式: 水冷 电机重量: 50kg 螺纹胶型号: 赛特 242

密封胶型号: 耐油硅酮密封胶 M-1213 型

1.2、电动机外形:

$A \times B \times C = 512.1 \text{mm} \times 661.4 \text{mm} \times 310.7 \text{mm}$

2、电机的拆卸与检测

2.1 拆装注意事项:

- 2.1.1 电机拆卸前,要熟悉电机结构特点和检修技术要领,准备好拆卸所需工具和设备。另外,需保证整车已切断电源(指断开12V低压电池,至少两分钟以上);
- 2.1.2 在拆卸总成悬置螺栓时,为防止悬置孔滑丝,必须先用手动扳手将螺栓拧松,再使用气动扳手进行松动;
- 2.1.3 在合装总成悬置螺栓时,为防止悬置孔滑丝,拧紧悬置螺栓不应使用气动扳手,必须使用扭矩扳手进行拧紧至规定的力矩,并用漆标做好记录;
- 2.2.4 总成在拆解时,需要注意防止电机接插件磕碰 (特别是旋变接插件),防止尘土杂质、水迹油污进入接插件端。在接插件装配时需使用气枪进行清理。

2.2 检测前的准备工作:

- 2.2.1向用户了解电机运行情况;
- 2.2.2对漏水等无法长期保持的故障现象,需详细记录判断过程及检测数据;
- 2.2.3故障确认过程,需准确记录电机温度、冷却水温度,并描述故障时整车运行工况(电机是冷态或热态/故障时是否有剧烈震动/是否急加、急减速工况等);
- 2.2.4确认故障前电机、变速器、高低压线束等与电机匹配的部件是否有升级、整改等操作;
- 2.2.5详细记录整车故障现象、故障里程、电机编号、车架号等基本车辆信息。

注意事项: 检测过程不得破坏任何电机零部件,完成检测后需恢复产品状态。

2.3 外观检查

2.3.1 检查电机外观是否正常,记录下是否存在磕碰或烧蚀等痕迹:

2.3.2 检查密封盖是否缺失、损伤,用手轻按密封盖与端盖相邻位置,确认密封盖与端盖是否保持平齐,需进行拍照记录;

2.3.3 检查旋变、绕组温度传感器接插件内针脚是否有变形、断裂、退端子,接插件内是否有水、油、杂质等异物;

2.4 电机线电阻检测

2.4.1 所需设备:

M6 套筒、棘轮扳手、低电阻测试仪/毫欧表

2.4.2 测试步骤:

1、使用M6套筒和棘轮扳手取下图示四颗锁紧螺栓,轻轻用力可从控制器上取下三相线接插件插头;

2、检查三相线端子是否有水、油污、杂质及烧蚀变色等异常;端子对应绕组关系如图所示(A-黄,B-绿,C-红);

3、选择量程为200m Ω的检测设备或器具,如低电阻测试仪/毫欧表;设备调零,准备测量;

4、如下图所示依次测量AB/AC/BC端的阻值,并反复测量(最少3次),分别记录数据。 判断标准: 温度为 25 ℃时,阻值范围: 39 ± 2 mΩ,且三相阻值偏差不超过 1 mΩ; 注意: 三相阻值测试需要冷态下进行测试,且需要多次测量。

2.5 测量三相绕组对机壳绝缘

2.5.1 所需设备:

绝缘耐压测试仪/兆欧表

2.5.2 测试步骤:

- 1、将绝缘测试设备、器具选项调整至1000V电压(无1000V电压情况下需选择设备最大电压选项);
- 2、将火线端子接三相端子任意一相,零线端子接机壳裸露处;
- 3、启动测试设备,待显示阻值稳定后,读取测试数据并完成记录。

判断标准: 常温下通直流电压 1000V, 通电时间 10s, 绝缘阻值大于 $20M\Omega$ 。

注意:绝缘阻值测试结果受电机温度影响较大,因此需注意电机测试温度及温度传感器阻值。

※ 在使用绝缘耐压测试位/兆欧夷的过程中, 需注意做好人员绝缘保护!

2.6 测量旋变阻值

2.6.1 所需设备:

八芯接插件(母端)工装、万用表

2.6.2 测试步骤:

1、下图箭头所示接插件为旋变、温度接插件; 检测前用手指压紧接插件母端两侧的卡扣,稍用力即可拔出母端接插件,确认接插件内部情况;

旋变、温度 接插件

2、使用图示简易工装(若无工装,可以直接使用测试探头进行接触测量),对准防错槽装配到电机接插件上,听到卡扣"咔"一声,表示接插件装配到位,按下图分别理出旋变引出线;

3、将万用表调至电阻档,通过分别测量引出线sin+与sin-, cos+与cos-, exc+与exc-之间的阻值,从而得到旋变正弦、余弦、励磁的阻值,并记录数据。

判断标准: $\sin 13.3 \pm 4 \Omega$ / $\cos 13.3 \pm 4 \Omega$ / $\exp 6.3 \pm 2 \Omega$

注意: 此步骤需多次测量并详细记录数据。

2.7 测量旋变对绕组绝缘

2.7.1 所需设备:

八芯接插件(母端)工装、绝缘耐压测试仪/兆欧表

2.7.2 测试步骤:

- 1、将绝缘测试设备、器具选项调整至 500V 电压 (无 500V 电压情况下需选择设备最大电压选项);
- 2、将旋变6根引出线拧成一股,将仪表一端接拧成一股的旋变引出线,另一端接三相端子任意一相;若无工装,可通过使用测试探头,分别测试正弦与三相线、余弦与三相线、励磁与三相线之间的绝缘实现;
- 3、启动测试设备,待显示阻值稳定后,读取测试数据并完成记录。 判断标准:常温下直流电压 500V,通电时间 10s,绝缘阻值大于 $50M\Omega$ 。

注意: 此步骤需对三相线ABC相分别进行多次测量,并详细记录数据。

2.8 测量旋变对机壳绝缘

2.8.1 所需设备:

八芯接插件(母端)工装、绝缘耐压测试仪/兆欧表

2.8.2 测试步骤:

- 1、将绝缘测试设备、器具选项调整至 500V 电压 (无 500V 电压情况下需选择设备最大电压 选项);
- 2、将旋变6根引出线拧成一股,将仪表一端接拧成一股的旋变引出线,另一端接机壳任意裸露处;若无工装,可通过使用测试探头,分别测试正弦与机壳、余弦与机壳、励磁与机壳之间的绝缘实现;
- 3、启动测试设备,待显示阻值稳定后,读取测试数据并完成记录。

判断标准: 常温下直流电压 500V,通电时间 10s,绝缘阻值大于 $50M\Omega$ 。

注意: 此步骤需对机壳不同处进行3次以上测量,并详细记录数据。

2.9 测量绕组温度传感器阻值

2.9.1 所需设备:

八芯接插件 (母端) 工装、万用表

2.9.2 测试步骤:

1、下图所示为旋变、温度传感器接插件,检测前用手指压紧接插件母端两侧的卡扣,稍用力即可拔出母端接插件,确认接插件内部情况;

2、使用图示简易工装(若无工装,可以直接使用测试探头进行接触测量),对准防错槽装配到电机接插件上,听到卡扣"咔"一声,表示接插件装配到位,按下图分别理出温度引出线;

3、将万用表调至电阻档,在常温下使用测试探头多次测量绕组温度传感器有效引脚阻值, 并记录数据。

判断标准: -10℃~50℃时, 阻值为30.84-604.5kΩ

注意:判断温度传感器阻值是否正常时,请在电机冷却后进行。

2.10 测量绕组温度传感器对机壳绝缘

2.10.1 所需设备:

八芯接插件(母端)工装、绝缘耐压测试仪/兆欧表

2.10.2 测试步骤:

- 1、将绝缘测试设备、器具选项调整至 500V 电压 (无 500V 电压情况下需选择设备最大电压选项);
- 2、将两根温度传感器引出线拧成一股,将仪表测试探头一端接拧成一股的温度传感器引出 线,另一端接机壳任意裸露处;若无工装,可用导线将引脚引出,拧成一股后,使用测试探 头测试引出线与机壳之间的绝缘;
- 3、启动测试设备,待显示阻值稳定后,读取测试数据并完成记录。 判断标准:常温下直流电压 500V,通电时间 10s,绝缘阻值大于 50MΩ。

注意: 此步骤需对机壳不同处进行3次以上测量,并详细记录数据。

2.11 测量绕组温度传感器对三相绕组绝缘

2.11.1 所需设备:

八芯接插件(母端)工装、绝缘耐压测试仪/兆欧表

2.11.2 测试步骤:

1、将绝缘测试设备、器具选项调整至 500V 电压 (无 500V 电压情况下需选择设备最大电压

选项);

2、将两根温度传感器引出线拧成一股,将仪表一端接拧成一股的温度传感器引出线,另一端接ABC三相任意一相;若无工装,可用导线将引脚引出,拧成一股后,使用测试探头测试引出线与三相线之间的绝缘;

3、启动测试设备,待显示阻值稳定后,读取测试数据并完成记录。

判断标准: 常温下直流电压 500V, 通电时间 10s, 绝缘阻值大于 20MΩ。

注意: 此步骤需对机壳不同处进行3次以上测量,并详细记录数据。

3、电机的常见故障及检测手段

3.1 旋变故障

对于报旋变故障的电机,可通过如下测试进行判定:

- 1、外观上,需检查电机表面是否有磕碰痕迹,电机端盖处黑色密封盖与端面是否保持高度平齐,详见 2.3.1, 2.3.2:
- 2、检查旋变接插件内针脚是否有变形、断裂、缺失,接插件内是否有水、油、杂质等异物, 如有请先清除,详见 2.3.3;
- 3、测量旋变阻值,旋变对绕组绝缘,旋变对机壳绝缘,详见 2.6, 2.7, 2.8, 若任一阻值绝缘不合格,请将电机及测试数据一起反馈到总部进行处理。

3.2 电机漏电

对于报严重漏电故障的电机,可通过如下测试进行判定:

- 1、 检查绕组温度传感器接插件内针脚是否有变形、断裂、缺失,接插件内是否有水、油、杂质等异物,如有请先清除,详见 2.3.3;
- 2、测量三相绕组对机壳绝缘,绕组温度传感器对机壳绝缘,绕组温度传感器对三相绕组绝缘,详见2.5,2.10,2.11,若任一绝缘不合格,请将电机及测试数据一起反馈到总部进行处理。

3.3 电机过温

对于报过温的电机,可通过如下测试进行判定: 将电机冷却到常温后,测试绕组温度传感器阻值,详见 2.9,若阻值不与温度阻值表对应,请将电机及测试数据一起反馈到总部进行处理。

3.4 电机异响

对于报异响的电机,请将电机及故障信息一起反馈到总部进行处理。

第二部分 后电机 BYD-2011TZB 电机维修手册

1、 驱动电机总成简介.

1.1、技术参数

电动机最大输出扭矩: 250N.m 电动机最大输出功率: 110kW 电动机最大输出转速: 12000r/min

电机散热方式: 水冷 电机重量: 45kg 螺纹胶型号: 赛特 242

密封胶型号: 耐油硅酮密封胶 M-1213 型

1.2、电动机外形:

 $A \times B \times C = 347.3 \text{ mm} \times 446.8 \text{ mm} \times 351.8 \text{mm}$

2、电机的拆卸与检测

2.1 拆装注意事项:

- 2.1.1 电机拆卸前,要熟悉电机结构特点和检修技术要领,准备好拆卸所需工具和设备。另外,需保证整车已切断电源;
- 2.1.2 在拆卸总成悬置螺栓时,为防止悬置孔滑丝,必须先用手动扳手将螺栓拧松,再使用气动扳手进行松动;
- 2.1.3 在合装总成悬置螺栓时,为防止悬置孔滑丝,拧紧悬置螺栓不应使用气动扳手,必须使用扭矩扳手进行拧紧;
- 2.1.4 总成在拆解时,需要注意防止电机接插件磕碰 (特别是旋变接插件),防止尘土杂质、 水迹油污进入接插件端。在接插件装配时需使用气枪进行清理。

2.2检测前的准备工作:

- 2.2.1向用户了解电机运行情况;
- 2.2.2对漏水等无法长期保持的故障现象,需详细记录判断过程及检测数据;
- 2.2.3故障确认过程,需准确记录电机温度、冷却水温度,并描述故障时整车运行工况(电机是冷态或热态/故障时是否有剧烈震动/是否急加、急减速工况等);
- 2.2.4确认故障前电机、变速器、高低压线束等与电机匹配的部件是否有升级、整改等操作;
- 2.2.5详细记录整车故障现象、故障里程、电机编号、车架号等基本车辆信息。

注意事项: 检测过程不得破坏任何电机零部件,完成检测后需恢复产品状态。

2.3 外观检查

2.3.1 检查电机外观是否正常,记录下是否存在磕碰或烧蚀等痕迹;

2.3.2 检查密封盖是否缺失、损伤,用手轻按密封盖与端盖相邻位置,确认密封盖与端盖是否保持平齐,需进行拍照记录;

2.3.3 检查旋变、绕组温度传感器接插件内针脚是否有变形、断裂、缺失,接插件内是否有水、油、杂质等异物;

2.4 电机线电阻检测

2.4.1 所需设备:

M6 套筒、棘轮扳手、低电阻测试仪/毫欧表

2.4.2 测试步骤

1、使用M6套筒和棘轮扳手取下图示四颗锁紧螺栓,轻轻用力可从控制器上取下三相线接插

件插头;

2、检查三相线端子是否有水、油污、杂质及烧蚀变色等异常;端子对应绕组关系如图所示(A-黄,B-绿,C-红);

3、选择量程为200mΩ的检测设备或器具,如低电阻测试仪/毫欧表;设备调零,准备测量;

4、如下图所示依次测量AB/AC/BC端的阻值,并反复测量(最少3次),分别记录数据。 判断标准: 温度为 25 ℃时,阻值范围: 39 ± 2 m Ω ,且三相阻值偏差不超过 1 m Ω ; 注意: 三相阻值测试需要冷态下进行测试,且需要多次测量。

2.5 测量三相绕组对机壳绝缘

2.5.1 所需设备:

绝缘耐压测试仪/兆欧表

2.5.2 测试步骤:

- 1、将绝缘测试设备、器具选项调整至1000V电压(无1000V电压情况下需选择设备最大电压 选项);
- 2、将火线端子接三相端子任意一相,零线端子接机壳裸露处;
- 3、启动测试设备,待显示阻值稳定后,读取测试数据并完成记录。

判断标准: 常温下通直流电压 1000V, 通电时间 10s, 绝缘阻值大于 $20M\Omega$ 。

注意:绝缘阻值测试结果受电机温度影响较大,因此需注意电机测试温度及温度传感器阻值。

※ 在使用绝缘耐压测试仪/兆欧表的过程中,需注意做好人员绝缘保护!

2.6 测量旋变阻值

2.6.1 所需设备:

八芯接插件 (母端) 工装、万用表

2.6.2 测试步骤

1、下图箭头所示接插件为旋变、温度接插件; 检测前用手指压紧接插件母端两侧的卡扣,稍用力即可拔出母端接插件,确认接插件内部情况;

2、使用图示简易工装(若无工装,可以直接使用测试探头进行接触测量),对准防错槽装配到电机接插件上,听到卡扣"咔"一声,表示接插件装配到位,按下图分别理出旋变引出线;

3、将万用表调至电阻档,通过分别测量引出线sin+与sin-, cos+与cos-, exc+与exc-之间的阻值,从而得到旋变正弦、余弦、励磁的阻值,并记录数据。

判断标准: $\sin 13.3 \pm 4 \,\Omega$ / $\cos 13.3 \pm 4 \,\Omega$ / $\exp 6.3 \pm 2 \,\Omega$

注意: 此步骤需多次测量并详细记录数据。

引出 exc+, exc-线(励磁)

2.7 测量旋变对绕组绝缘

2.7.1 所需设备:

八芯接插件(母端)工装、绝缘耐压测试仪/兆欧表

2.7.2 测试步骤

- 1、将绝缘测试设备、器具选项调整至 500V 电压 (无 500V 电压情况下需选择设备最大电压选项);
- 2、将旋变6根引出线拧成一股,将仪表一端接拧成一股的旋变引出线,另一端接三相端子任意一相;若无工装,可通过使用测试探头,分别测试正弦与三相线、余弦与三相线、励磁与三相线之间的绝缘实现;

注意: 此步骤需对三相线ABC相分别进行多次测量,并详细记录数据。

2.8 测量旋变对机壳绝缘

2.8.1 所需设备:

八芯接插件(母端)工装、绝缘耐压测试仪/兆欧表

2.8.2 测试步骤

1、将绝缘测试设备、器具选项调整至 500V 电压 (无 500V 电压情况下需选择设备最大电压选项);

- 2、将旋变6根引出线拧成一股,将仪表一端接拧成一股的旋变引出线,另一端接机壳任意裸露处;若无工装,可通过使用测试探头,分别测试正弦与机壳、余弦与机壳、励磁与机壳之间的绝缘实现;
- 3、启动测试设备,待显示阻值稳定后,读取测试数据并完成记录。 **判断标准:** 常温下直流电压 500V,通电时间 10s,绝缘阻值大于 $50M\Omega$ 。

注意: 此步骤需对机壳不同处进行3次以上测量,并详细记录数据。

2.9 测量绕组温度传感器阻值

2.9.1 所需设备:

八芯接插件(母端)工装、万用表

2.9.2 测试步骤

1、下图所示为旋变、温度传感器接插件,检测前用手指压紧接插件母端两侧的卡扣,稍用力即可拔出母端接插件,确认接插件内部情况;

2、使用图示简易工装(若无工装,可以直接使用测试探头进行接触测量),对准防错槽装配到电机接插件上,听到卡扣"咔"一声,表示接插件装配到位,按下图分别理出温度引出线;

3、将万用表调至电阻档,在常温下使用测试探头多次测量绕组温度传感器有效引脚阻值, 并记录数据。

判断标准: -10℃~50℃时, 阻值为30.84-604.5kΩ

注意: 判断温度传感器阻值是否正常时,请在电机冷却后进行。

2.10 测量绕组温度传感器对机壳绝缘

2.10.1 所需设备:

八芯接插件(母端)工装、绝缘耐压测试仪/兆欧表

2.10.2 测试步骤

- 1、将绝缘测试设备、器具选项调整至 500V 电压 (无 500V 电压情况下需选择设备最大电压选项);
- 2、将两根温度传感器引出线拧成一股,并拧成一股,将仪表测试探头一端接拧成一股的温度传感器引出线,另一端接机壳任意裸露处;若无工装,可用导线将引脚引出,拧成一股后,使用测试探头测试引出线与机壳之间的绝缘;
- 3、启动测试设备,待显示阻值稳定后,读取测试数据并完成记录。 判断标准: 常温下直流电压 500V,通电时间 10s,绝缘阻值大于 $50M\Omega$ 。

注意: 此步骤需对机壳不同处进行3次以上测量,并详细记录数据。

2.11 测量绕组温度传感器对三相绕组绝缘

2.11.1 所需设备:

八芯接插件(母端)工装、绝缘耐压测试仪/兆欧表

2.11.2 测试步骤

- 1、将绝缘测试设备、器具选项调整至 500V 电压 (无 500V 电压情况下需选择设备最大电压选项);
- 2、将两根温度传感器引出线拧成一股,并拧成一股,将仪表一端接拧成一股的温度传感器引出线,另一端接ABC三相任意一相;若无工装,可用导线将引脚引出,拧成一股后,使用测试探头测试引出线与三相线之间的绝缘;
- 3、启动测试设备,待显示阻值稳定后,读取测试数据并完成记录。

判断标准: 常温下直流电压 500V, 通电时间 10s, 绝缘阻值大于 20MΩ。

注意: 此步骤需对机壳不同处进行3次以上测量,并详细记录数据。

3、电机的常见故障及检测手段

3.1 旋变故障

对于报旋变故障的电机,可通过如下测试进行判定:

- 5、外观上,需检查电机表面是否有磕碰痕迹,电机端盖处黑色密封盖与端面是否保持高度平齐,详见 2.3.1, 2.3.2;
- 6、检查旋变接插件内针脚是否有变形、断裂、缺失,接插件内是否有水、油、杂质等异物, 如有请先清除,详见 2.3.3;
- 7、测量旋变阻值,旋变对绕组绝缘,旋变对机壳绝缘,详见 2.6, 2.7, 2.8, 若任一阻值绝缘不合格,请将电机及测试数据一起反馈到总部进行处理。

3.2 电机漏电

对于报严重漏电故障的电机,可通过如下测试进行判定:

- 8、检查绕组温度传感器接插件内针脚是否有变形、断裂、缺失,接插件内是否有水、油、 杂质等异物,如有请先清除,详见 2.3.3;
- 9、测量三相绕组对机壳绝缘,绕组温度传感器对机壳绝缘,绕组温度传感器对三相绕组绝缘,详见 2.5, 2.10, 2.11,若任一绝缘不合格,请将电机及测试数据一起反馈到总部进行处理。

3.3 电机过温

对于报过温的电机,可通过如下测试进行判定: 将电机冷却到常温后,测试绕组温度传感器阻值,详见 2.9, 若阻值不与温度阻值表对应,请将电机及测试数据一起反馈到总部进行处理。

3.4 电机异响

对于报异响的电机, 请将电机及故障信息一起反馈到总部进行处理。