Лабораторная работа № 6

Задача об эпидемии

Пиняева Анна Андреевна

```
Содержание
Цель работы
Теоретическое введение
3
Задание
Выполнение лабораторной работы
 Построение математической модели. Решение с помощью
программ
5
   Julia
5
   Результаты работы кода на Julia
6
   Julia
7
   Результаты работы кода на Julia
8
 OpenModelica
   Результаты работы кода на OpenModelica
10
Выводы
```

12

12

Список литературы

Цель работы

Целью данной работы является построение модели эпидемии.

Теоретическое введение

Рассмотрим простейшую модель эпидемии SIR [1]. Предположим, что некая популяция, состоящая из N особей, (считаем, что популяция изолирована) подразделяется на три группы. Первая группа - это восприимчивые к болезни, но пока здоровые особи, обозначим их через S(t). Вторая группа – это число инфицированных особей, которые также при этом являются распространителями инфекции, обозначим их I(t). А третья группа, обозначающаяся через R(t) – это здоровые особи с иммунитетом к болезни. До того, как число заболевших не превышает критического значения I*, считаем, что все больные изолированы и не заражают здоровых. Когда I(t) > I*, тогда инфицирование способны заражать восприимчивых к болезни особей. [2]

Задание

Вариант 29

На одном острове вспыхнула эпидемия. Известно, что из всех проживающих на острове (N=11~600) в момент начала эпидемии (t=0) число заболевших людей (являющихся распространителями инфекции) I(0)=260, А число здоровых людей с иммунитетом к болезни R(0)=48. Таким образом, число людей восприимчивых к болезни, но пока здоровых, в начальный момент времени S(0)=N-I(0)-R(0).

Постройте графики изменения числа особей в каждой из трех групп. Рассмотрите, как будет протекать эпидемия в случае:

1) если
$$I(0) \le I^*$$

2) если
$$I(0) > I^*$$

"Вариант 29"

Выполнение лабораторной работы

Построение математической модели. Решение с помощью программ

Julia

```
Первый случай:
using Plots
using DifferentialEquations
N = 11600
I0 = 260
R0 = 48
S0 = N - I0 - R0
a = 0.01
b = 0.02
function ode fn(du, u, p, t)
    S, I, R = u;
    du[1] = 0
    du[2] = -b*u[2]
    du[3] = b*u[2]
end
v0 = [S0, I0, R0]
tspan = (0.0, 60.0)
prob = ODEProblem(ode fn, v0, tspan)
sol = solve(prob, dtmax = 0.05)
S = [u[1] \text{ for } u \text{ in sol.} u]
I = [u[2] \text{ for } u \text{ in sol.} u]
R = [u[3] \text{ for } u \text{ in sol.} u]
T = [t for t in sol.t]
```

```
plt = plot(
   dpi = 300,
    legend =:topright)
plot!(
   plt,
    Т,
    S,
    label = "Восприимчивые к болезни",
    color = :red)
plot!(
   plt,
    Т,
    I,
    label = "Заболевшие",
    color = :blue)
plot!(
    plt,
    Т,
    label = "0co6u c иммунитетом",
    color = :green)
```

Результаты работы кода на Julia

Построим графики численности особей трех групп S, I, R для первого случая (рис.1)

"Puc.1 Графики численности особей трех групп S, I, R, построенные на Julia, для случая, когда больные изолированы"

Julia

```
Второй случай:
```

N = 11600

```
using Plots using DifferentialEquations
```

```
I0 = 260
R0 = 48
S0 = N - I0 - R0
a = 0.01
b = 0.02

function ode_fn(du, u, p, t)
    S, I, R = u;
    du[1] = -a*u[1]
    du[2] = a*u[1]-b*u[2]
    du[3] = b*u[2]
end
```

```
v0 = [S0, I0, R0]
tspan = (0.0, 60.0)
prob = ODEProblem(ode fn, v0, tspan)
sol = solve(prob, dtmax = 0.05)
S = [u[1] \text{ for } u \text{ in sol.} u]
I = [u[2] \text{ for } u \text{ in sol.} u]
R = [u[3] \text{ for } u \text{ in sol.} u]
T = [t for t in sol.t]
plt = plot(
    dpi = 300,
    legend =:topright)
plot!(
    plt,
    Т,
    label = "Восприимчивые к болезни",
    color = :red)
plot!(
    plt,
    Τ,
    label = "Заболевшие",
    color = :blue)
plot!(
    plt,
    Т,
    R,
    label = "Особи с иммунитетом",
    color = :green)
```

Результаты работы кода на Julia

По аналогии с предыдущим построением получим получим графики для второго случая (рис.2)

"Puc.2 Графики численности особей трех групп S, I, R, построенные на Julia, для случая, когда больные могут заражать особей группы S"

OpenModelica

Первый случай:

```
model lab6_1
Real N = 11600;
Real I;
Real R;
Real S;
Real a = 0.01;
Real b = 0.02;
initial equation
I = 260;
R = 48;
S = N - I - R;
equation
der(S) = 0;
```

```
der(I) = -b*I;
der(R) = b*I;
end lab6 1;
Второй случай:
model lab6 2
Real N = 11600;
Real I:
Real R;
Real S;
Real a = 0.01;
Real b = 0.02;
initial equation
I = 260;
R = 48;
S = N - I - R;
equation
der(S) = -a*S;
der(I) = a*S-b*I;
der(R) = b*I;
end lab6 2;
```

Результаты работы кода на OpenModelica

Построим графики численности особей трех групп S, I, R для первого случая (рис.3)

"Puc.3 Графики численности особей трех групп S, I, R, построенные на OpenModelica, для случая, когда больные изолированы"

По аналогии с предыдущим построением получим получим графики для второго случая (рис.4)

"Puc.4 Графики численности особей трех групп S, I, R, построенные на OpenModelica, для случая, когда больные могут заражать особей группы S"

Выводы

В итоге проделанной работы мы построили графики зависимости численности особей трех групп S, I, R для случаев, когда больные изолированы и когда они могут заражать особей группы S, на языках Julia и OpenModelica. Построение модели эпидемии на языке OpenModelica занимает значительно меньше строк, чем аналогичное построение на Julia. Кроме того, построения на языке OpenModelica проводятся относительно значения времени t по умолчанию, что упрощает нашу работу.

Список литературы

- [1] Конструирование эпидемиологических моделей. Habr: https://habr.com/ru/post/551682/
- [2] Руководство к лабоарторной работе: https://esystem.rudn.ru/pluginfile.php/ 1971664/mod_resource/content/
- 2/%D0%9B%D0%B0%D0%B1%D0%BE%D1%80%D0%B0%D1%82%D0%BE%D1%80

%D0%BD%D0%B0%D1%8F%20%D1%80%D0%B0%D0%B1%D0%BE%D1%82%D0%B0%20%E2%84%96%205.pdf