Национальный исследовательский университет «МЭИ»

Институт радиотехники и электроники Кафедра радиотехнических систем

КУРСОВАЯ РАБОТА

по дисциплине

Аппаратура потребителей спутниковых радионавигационных систем «Разработка модуля расчет координат спутника Beidou»

ΦИО СТУДЕНТА: САЛИН Г.А.
Группа: ЭР-15-16
Вариант №:20
Дата:
Подпись:

ФИО преподавателя: Корогодин И.В.
Оценка:

Содержание

Введение	3
1 Использование сторонних средств	4
1.1 Описание этапа	4
1.2 CelesTrak	4
1.3 Trimble GNSS Planning Online	6
1.4 Эфемериды в сигнале Beidou B11	8
1.5 Заключение по результатам использования сторонних с	редств 10
2 Моделирование	11
2.1 Описание этапа	11
2.2 Алгоритм расчета координат	12
2.3 Результаты расчета координат спутника	13
2.4 Pacчет SkyView	14
2.4 Заключение по результатам моделирования	16

Введение

Название проекта: Разработка модуля расчёта координат спутника Beidou.

Цель проекта - добавление в программное обеспечение приемника функции расчета положения спутника Beidou на заданное время по данным его эфемерид.

Требования к разрабатываемому программному модулю:

- требования назначения;
- отсутствие утечек памяти;
- малое время выполнения;
- низкий расход памяти;
- корректное выполнение при аномальных входных данных.

Для достижения цели выполняется ряд задач, соответствующих этапам и контрольным мероприятиям:

- обработка данных от приемника, работа со сторонними сервисами для подготовки входных и проверочных данных для разрабатываемого модуля;
- моделирование модуля в Matlab/Python;
- реализация программного модуля на C/C++, включая юнит-тестирование в Check.

Этапы курсовой работы отличаются осваиваемыми инструментами.

1 Использование сторонних средств

1.1 Описание этапа

На крыше корпуса Е МЭИ установлена трехдиапазонная антенна Harxon HX-CSX601A. Она через 50-метровый кабель, сплиттер, bias-tee и усилитель подключена к трем навигационным приемникам:

- Javad Lexon LGDD,
- SwiftNavigation Piksi Multi,
- Clonicus разработки ЛНС МЭИ.

Эти приемники осуществляют первичную обработку сигналов Beidou B11, выдавая по интерфейсам соответствующие потоки данных — наблюдения псевдодальностей и эфемериды спутников. Данные от приемника Clonicus, записанные вечером 16 февраля 2021 года, доступны в рабочем репозитории (директория logs) в нескольких форматах.

Во-первых, это дам бинарного потока данных от приемника в формате NVS BINR.

Во-вторых, текстовый файл данных пакета 0хF7, полученный из данного дампа.

1.2 CelesTrak

Определение формы орбиты и положения спутника на ней на начало рассматриваемого интервала времени (на 18:00 МСК 16 февраля 2021 года) по данным сервиса CelesTrak.

Для определения имя и ID спутника воспользуемся таблицей из ru.wikipedia.org/wiki/Бэйдоу.

Nº ≑	Спутник 💠	PRN ÷	Дата (UTC) +	Ракета 💠	NSSDC ID \$	SCN ÷	Орбита 💠	Статус 💠
24	Бэйдоу-3 М1	C19	05.11.2017 11:44	CZ-3B/YZ-1	2017-069A&	43001₺	<u>СОО,</u> ~21 500 км	действующий
25	Бэйдоу-3 М2	C20	05.11.2017 11.44			43002₺	<u>COO</u> , ~21 500 км	действующий

Рисунок 1 – Часть таблицы со списком спутников

Как видно из таблицы, спутник с номером 20 (PRN C20) имеет порядковый номер 25, имя спутника – Бэйдоу-3 М2 и ID 43002 (SCN в таблице).

Теперь зайдем на сайт celestrak.com. Выберем спутник Beidou-3 M2 с ID 43002, и установим заданное время. В сервисе используется время по UTC, которое отличается от времени по МСК на 3:00 часа, поэтому установим следующее время: 15:00:00 2021:02:16. Результаты приведены на рисунках 2 и 3.

Рисунок 2 – Орбита спутника

Рисунок 3 – Подспутниковая точка

По рисунку 2 видно, что орбита у спутника Beidou-3 M2 круговая.

По рисунку 3 видно, что подспутниковая точка на заданное время находилась в районе островов Филиппин.

1.3 Trimble GNSS Planning Online

Расчет графика угла места собственного спутника от времени по данным Trimble GNSS Planning Online на интервале времени с 18:00 МСК 16 февраля до 06:00 МСК 17 февраля 2021 года.

Зайдем на сайт gnssplanning.com. По заданному интервалу и расположению приемной антенны устанавливаем следующие настройки (рисунок 4).

Рисунок 4 – Настройки сервиса Trimble GNSS Planning Online

Зная из предыдущего пункта имя спутника, выберем его и построим график угла места (рисунок 5), график SkyView (рисунок 6) и, для проверки, карту мира с траекторией движения спутника (рисунок 7).

Рисунок 5 – График угла места

По рисунку 5 видно, что спутник попал в поле зрения приемной антенны в 16:00 по UTC (19:00 МСК) и пропал в 18:30 UTC (21:30 МСК). Угол места изменялся от 11.03 до 22.57 градусов.

Рисунок 6 – График SkyView

График SkyView показывает, что спутник был виден антенной в азимуте от 0 до 90 градусов.

Рисунок 7 – Карта мира с траекторией движения спутника

В тот момент, когда спутник попал в поле зрения приемной антенны (19:00 МСК), его ПТ находилась чуть выше Филиппин, а когда исчез из поля зрения (21:30 МСК) — чуть восточнее полуострова Камчатка.

1.4 Эфемериды в сигнале Beidou B11

Формирование списка и описание параметров, входящих в состав эфемерид в сигнале Beidou B11.

Воспользуемся ИКД BeiDou: Navigation Satellite System Signal In Space, Interface Control Document, Open Service Signal B1I (Version 3.0), China Satellite Navigation Office, February 2019. Находим там таблицы 5-9 и 5-10, объединяем их и формируем таблицу с описанием параметров эфемерид.

Таблица 1 – Описание параметров, входящих в состав эфемерид Beidou.

Parameter	Definition	Units
t_{oe}	Ephemeris reference time	S
\sqrt{A}	Square root of semi-major axis	m ^{1/2}
e	Eccentricity	-
ω	Argument of perigee	π
Δn	Mean motion difference from computed value	π/s
M_0	Mean anomaly at reference time	π
Ω_0	Longitude of ascending node of orbital of plane computed according to reference time	π
Ω	Rate of right ascension	π/s
i_0	Inclination angle at reference time	π
IDOT	Rate of inclination angle	π/s
C_{uc}	Amplitude of cosine harmonic correction term to the argument of latitude	rad
C_{us}	Amplitude of sine harmonic correction term to the argument of latitude	rad
C_{rc}	Amplitude of cosine harmonic correction term to the orbit radius	m
C_{rs}	Amplitude of sine harmonic correction term to the orbit radius	m
C_{ic}	Amplitude of cosine harmonic correction term to the angle of inclination	rad

C_{is} Amplitude of sine harmonic correction term to the angle of inclination	rad
---	-----

Формирование таблицы эфемерид спутника с подписанными размерностями.

Для этого откроем файл binr_0x00F7_BdsB1I.txt из директории logs/, найдем эфемериды спутника, и сведем их в таблицу 2.

Таблица 2 – Эфемериды спутника Beidou C20.

Параметр	Обозначение переменной	Единица измерения	Значение
	mor emerine		
PRN	SatNum	-	20
t_{oe}	toe	мс	226800000.000
C_{rs}	Crs	М	-7.39218750000000000e+01
Δn	Dn	рад/с	3.97195124013371981e-12
M_0	m0	рад	8.71704768059675339e-01
C_{uc}	Cuc	рад	-3.64007428288459778e-06
е	e	-	6.97147799655795097e-04
C_{us}	Cus	рад	5.95534220337867737e-06
\sqrt{A}	sqrtA	M ^{1/2}	5.28262682533264160e+03
C_{ic}	Cic	рад	-7.49714672565460205e-08
Ω_0	Omega0	рад	-2.82333800290329728e-01
C_{is}	Cis	рад	-6.84522092342376709e-08
i_0	i0	рад	9.65664043486355039e-01
C_{rc}	Crc	М	2.44500000000000000e+02
ω	omega	рад	-7.73836711576575076e-01
Ω	OmegaDot	рад/мс	-7.00779190266137795e-12

IDOT	iDot	π/c	-1.97151069276238744e-13
T_{GD}	Tgd	мс	2.3000000000000000e+05
t_{oc}	toc	мс	2.2680000000000000e+08
a_{f2}	af2	MC/MC ²	0.00000000000000000e+00
a_{f1}	af1	мс/мс	-4.24460466774689849e-12
a_{f0}	af0	мс	-9.16242361068725586e-01
URA	URA	-	0
IODE	IODE	-	257
IODC	IODC	-	1
codeL2	codeL2	-	0
L2P	L2P	-	0
WN	WN	-	789

1.5 Заключение по результатам использования сторонних средств

В результате использования сторонних средств, такие как сервисы CelesTrak и Trimble GNSS Planning Online, а также данных от приемника Clonicus, были получены следующие результаты:

- Определена форма орбиты и положение собственного спутника на ней на 18:00 МСК 16 февраля 2021 года.
- Получены график угла места и диаграмма угла места и азимута (SkyView) собственного спутника на интервале времени с 18:00 МСК 16 февраля до 06:00 МСК 17 февраля.
- Сформированы таблица со списком и описанием параметров, входящих в состав
 эфемерид спутника Beidou, и таблица эфемерид собственного спутника Beidou.

2 Моделирование

2.1 Описание этапа

На предыдущем этапе были получены эфемериды спутника. Эфемериды – параметры некоторой модели движения спутника. В разных ГНСС эти модели разные, а значит отличается и формат эфемерид, и алгоритмы расчета положения спутника.

Одна из самых простых и удобных моделей – в системе GPS. Beidou наследует эту модель.

Требуется реализовать на языке Matlab или Python функцию расчета положения спутника Beidou на заданный момент по шкале времени UTC. В качестве эфемерид использовать данные, полученные на предыдущим этапе.

Построить трехмерные графики множества положений спутника Beidou C20. Графики в двух вариантах: в СК ECEF WGS84 и соответствующей ей инерциальной СК. Положения должны соответствовать временному интервалу с 18:00 МСК 16 февраля до 06:00 МСК 17 февраля 2021 года. Допускается использовать одни и те же эфемериды на весь рассматриваемый интервал.

Построить SkyView за указанный временной интервал и сравнить результат с Trimble GNSS Planning Online, полученный на предыдущем этапе.

Таблица 3. Используемые эфемериды

Параметр	Обозначение переменной	Единица измерения	Значение
t_{oe}	toe	МС	226800000.000
C_{rs}	Crs	М	-7.39218750000000000e+01
Δη	Dn	рад/с	3.97195124013371981e-12
M_0	m0	рад	8.71704768059675339e-01
C_{uc}	Cuc	рад	-3.64007428288459778e-06
е	е	-	6.97147799655795097e-04
C_{us}	Cus	рад	5.95534220337867737e-06
\sqrt{A}	sqrtA	M ^{1/2}	5.28262682533264160e+03

C_{ic}	Cic	рад	-7.49714672565460205e-08
Ω_0	Omega0	рад	-2.82333800290329728e-01
C_{is}	Cis	рад	-6.84522092342376709e-08
i_0	iO	рад	9.65664043486355039e-01
C_{rc}	Crc	M	2.44500000000000000e+02
ω	omega	рад	-7.73836711576575076e-01
Ω	OmegaDot	рад/мс	-7.00779190266137795e-12
IDOT	iDot	π/c	-1.97151069276238744e-13

2.2 Алгоритм расчета координат

Как было сказано выше, Beidou наследует модель движения спутника GPS. Воспользуемся caйтом, https://gssc.esa.int/navipedia/index.php/GPS and Galileo Satellite Coordinates Computation.

Алгоритм расчета следующий:

— Вычисление время t_{κ} от эталонной эпохи эфемерид t_{oe} (t и t_{oe} выражаются в секундах от начала недели GPS):

$$t_{\kappa} = t - t_{oe}$$

Если $t_{\rm K} > 302~400$ секунд, необходимо вычесть 604 800 секунд из $t_{\rm K}$. Если $t_{\rm K} < -302~400$ секунд, необходимо добавить 604 800 секунд.

– Вычисление средней аномалии на t_{κ} :

$$M_{\rm K} = M_0 + \left(\frac{\sqrt{\mu}}{\sqrt{a^3}} + \Delta n\right) t_{\rm K}$$

Где $a = \left(\sqrt{A}\right)^2$ – длина большой полуоси;

 $\mu = 3,986004118 \times 10^{14}$ – гравитационная постоянная.

— Решение (итеративное) уравнения Кеплера для нахождения аномалии эксцентриситета E_k :

$$M_k = E_k - e \sin E_k$$

$$E_k = M_k + e \sin E_k$$

Начальное условие: $E_k = M_k$;

Точность вычисления: $\varepsilon = 10^{-6}$.

– Вычисление истинной аномалии ν_k :

$$v_k = \arctan\left(\frac{\sqrt{1 - e^2}\sin E_k}{\cos E_k - e}\right)$$

– Вычисление аргумента широты u_k :

$$u_k = \omega + v_k + C_{uc} \cos 2(\omega + v_k) + C_{us} \sin 2(\omega + v_k)$$

– Вычисление радиальное расстояние r_k :

$$r_k = A(1 - e\cos E_k) + C_{rc}\cos 2(\omega + v_k) + C_{rs}\sin 2(\omega + v_k)$$

– Вычисление наклона орбитальной плоскости i_k :

$$i_k = i_0 + IDOT \cdot t_K + C_{ic} \cos 2(\omega + \nu_k) + C_{is} \sin 2(\omega + \nu_k)$$

– Вычисление долготы восходящего узла λ_k :

$$\lambda_k = \Omega_0 + (\dot{\Omega} - \omega_E)t_{\kappa} - \omega_E t_{oe}$$

 Γ де $\omega_E = 7,2921151467 \times 10^{-5}$ – скорость вращения Земли.

Далее, чтобы не пользоваться матрицами поворота, воспользуемся ИКД Beidou, ссылка: http://www.beidou.gov.cn/xt/gfxz/201902/P020190227593621142475.pdf

- Вычисление позиции спутника в орбитальной плоскости:

$$\begin{cases} x_k = r_k \cos u_k \\ y_k = r_k \sin u_k \end{cases}$$

- Вычисление координат спутника:

$$\begin{cases} X_k = x_k \cos \lambda_k - y_k \cos i_k \sin \lambda_k \\ Y_k = x_k \sin \lambda_k + y_k \cos i_k \cos \lambda_k \\ Z_k = y_k \cos i_k \end{cases}$$

2.3 Результаты расчета координат спутника

Для моделирования выбран язык Matlab. Скрипты программы находятся в директории simulation проекта. Листинг программы приведен в приложении.

Рисунок 8 – Траектория движения спутника Beidou C20 в СК ECEF WGS84 и в инерциальной СК вокруг Земли.

2.4 Pacчет SkyView

Для расчета SkyView необходимо перейти в локальную СК приемника ECEF WGS-84. Для этого воспользуемся сторонней функцией llh2xyz(), которая преобразует широту, долготу и высоту в декартовые координаты ECEF.

Расчетные координаты приемника:

X = 2846,341 км

Y = 2200,173 км

Z = 5249,655 km

Далее пересчитаем локальные декартовые координаты в сферические, получив, тем самым азимут, угол места и расстояние. По этим данным построим графики SkyView и угла места и сравним их с данными Trimble GNSS Planning Online.

Рисунок 9 – График SkyView

Рисунок 10 – График угла места

По моделированию SkyView и графика угла места видно, что спутник попал в зону видимости приемной антенны в 15:15:32 UTC и вышел из зоны – в 19:07:40 UTC. Данные результатов моделирования совпадают с данными Trimble GNSS Planning Online с погрешностью. Это объясняется тем, что использовались одни и те же эфемериды на весь интервал расчета, что приводит к такого рода погрешностям.

2.4 Заключение по результатам моделирования

На данном этапе была реализована на языке Matlab функция расчета положения спутника Beidou C20 на интервале времени с 18:00 МСК 16 февраля до 06:00 МСК 17 февраля. В качестве эфемерид использовались данные, полученные на предыдущем этапе.

Использовались одни и те же эфемериды на весь рассматриваемый интервал, что привело к погрешностям расчета. Для избежание погрешностей, необходимо обновлять эфемериды по мере их получения.

В результате моделирования были получены графики траекторий движения спутника Beidou C20 в системах координат ECEF WGS84 и соответствующей ей инерциальной СК. Графики SkyView и угла места от времени с учетом координат приемника.