

MATEMATICA I SECCIÓN: U1

CLASE N° 15

- Las funciones continuas.
- Funciones definidas a trozos
- Propiedades de los límites
- Sustitución ingenua
- Indeterminaciones

Continuidad de Funciones Reales.

Noción intuitiva

g(x) presenta "irregularidad" en x_0

f(x) puede ser recorrida sin "irregularidades"

h(x) presenta "irregularidad" en x_0

Diremos que f(x) es continua en todo \mathbb{R} . En cambio, g(x) y h(x) presentan una discontinuidad en (x_0) .

Continuidad

Una función f(x) es continua en "a", si y sólo si satisface las siguientes condiciones:

- 1. f(a) existe. (Es decir, "a" está en el dominio de f).
- 2. $\lim_{x \to a} f(x)$ existe y es finito.
- $3. \quad \lim_{x \to a} f(x) = f(a)$

Si f no cumple con las condiciones 2 o 3 se dice que es discontinua en "a". Un punto de discontinuidad "a" se denomina evitable, si la función puede redefinirse en "a", de modo que se haga continua la función.

De otra forma, un punto de discontinuidad se denomina no evitable.

Discontinuidad evitable:

Una función f tiene una discontinuidad evitable en a si y sólo si

$$\lim_{x\to a^+} f(x) = \lim_{x\to a^-} f(x);$$
 $f(a)$ existe pero $\lim_{x\to a} f(x) \neq f(a).$

Ejemplo:

La función f(x) tiene una discontinuidad evitable en x = -1

C PHILAD CRAFT

LAS FUNCIONES CONTINUAS

Punto aislado:

Un punto $a \in Dom(f)$ es un punto aislado para una función f, si existe un intervalo abierto I tal que $Dom(f) \cap I = \{a\}$.

Ejemplo:

Las funciones son siempre continuas en los puntos aislados de sus dominios.

Ruptura:

Una función f tiene una ruptura en a si y sólo si

 $\lim_{x\to a^+} f(x) \neq \lim_{x\to a^-} f(x)$ y f(a) no existe, es decir, $a \notin Dom(f)$.

Ejemplo:

La función f(x) tiene una ruptura en x = 0

Ruptura evitable:

Una función f tiene una ruptura evitable en a si y sólo si

 $\lim_{x\to a^+} f(x) = \lim_{x\to a^-} f(x)$; pero f(a) no existe, es decir $a\notin Dom(f)$.

Ejemplo:

La función f(x) tiene una ruptura evitable en x = -1

FUNCIONES DEFINIDAS A TROZOS

Funciones definidas a trozos

Ejemplo 1:

$$g(x) = \begin{cases} -x & \text{si } x < 0 \\ 1 & \text{si } x \ge 0 \end{cases}$$

FUNCIONES DEFINIDAS A TROZOS

Ejemplo 2:

$$g(x) = \begin{cases} x+1 & \text{si } x < 0 \\ 2 & \text{si } x \in [0,1] \\ x+2 & \text{si } x > 1 \end{cases}$$

PROPIEDADES DE LOS LÍMITES

Propiedades de los límites

Sean n un entero positivo, k una constante e f y g funciones que tengan límites en c, entonces,

$$\lim_{x \to c} k = k$$

8)
$$\lim_{x \to c} [f(x)]^n = \left[\lim_{x \to c} f(x)\right]^n$$

$$\lim_{x \to c} x = c$$

$$\lim_{x \to c} kf(x) = k \lim_{x \to c} f(x)$$

4)
$$\lim_{x \to c} [f(x) \pm g(x)] = \lim_{x \to c} f(x) \pm \lim_{x \to c} g(x)$$

$$\lim_{x \to c} [f(x) \cdot g(x)] = \lim_{x \to c} f(x) \cdot \lim_{x \to c} g(x)$$

6)
$$\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{\lim_{x \to c} f(x)}{\lim_{x \to c} g(x)}$$
; siempre que $\lim_{x \to c} g(x) \neq 0$

$$\lim_{x\to c} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x\to c} f(x)}$$
 ; siempre que $\lim_{x\to c} f(x) > 0$, cuando n sea par.

PROPIEDADES DE LOS LÍMITES

Ejemplos:

$$\lim_{x \to -2} \sqrt{-2x^3}$$

Solución:

$$\lim_{x \to -2} \sqrt{-2x^3} = \sqrt{\lim_{x \to -2} -2x^3} = \sqrt{-2\lim_{x \to -2} x^3} = \sqrt{-2\left(\lim_{x \to -2} x\right)^3} = \sqrt{-2(-2)^3} = \sqrt{16} = 4 \; ;$$
(7)
(8)
(2)
Así, $\lim_{x \to -2} \sqrt{-2x^3} = 4$

$$\lim_{x \to -1} (2x^3 - 4x + 1)$$

Solución:

$$\lim_{x \to -1} (2x^3 - 4x + 1) = \lim_{x \to -1} 2x^3 - \lim_{x \to -1} 4x + \lim_{x \to -1} 1 = 2 \lim_{x \to -1} x^3 - 4 \lim_{x \to -1} x + 1$$

$$= 2(-1)^3 - 4(-1) + 1 = -2 + 4 + 1 = 3$$
Así,
$$\lim_{x \to -1} (2x^3 - 4x + 1) = 3$$

SUSTITUCIÓN INGENUA

Sustitución ingenua

$$\lim_{x \to a} f(x) = f(a)$$

Ejemplos:

$$\lim_{x\to 2} (5x^3 - 9x^2 + 2x - 6)$$

Solución:

$$\lim_{x\to 2} (5x^3 - 9x^2 + 2x - 6) = 5(2)^3 - 9(2)^2 + 2(2) - 6 = 40 - 36 + 4 - 6 = 2 \quad ;$$
 Así,
$$\lim_{x\to 2} (5x^3 - 9x^2 + 2x - 6) = 2$$

$$\lim_{x \to 3} \frac{4x^2 - 7x + 2}{x^3 - 1}$$

Solución:

$$\lim_{x \to 3} \frac{4x^2 - 7x + 2}{x^3 - 1} = \frac{4(3)^2 - 7(3) + 2}{(3)^3 - 1} = \frac{36 - 21 + 2}{27 - 1} = \frac{17}{26} \quad ;$$

Así,
$$\lim_{x \to 3} \frac{4x^2 - 7x + 2}{x^3 - 1} = \frac{17}{26}$$

SUSTITUCIÓN INGENUA

Al realizar la sustitución ingenua, se nos pueden presentar algunos de estos resultados:

$$\infty \pm k = \infty$$

$$\infty \cdot k = \infty \quad \text{si} \quad k > 0$$

$$\infty \cdot k = -\infty \quad \text{si} \quad k < 0$$

$$\frac{k}{\infty} = 0$$

$$\frac{k}{0^{+}} = \infty \quad \text{si} \quad k > 0$$

$$\frac{k}{0^{-}} = -\infty \quad \text{si} \quad k > 0$$

$$\frac{k}{0^{+}} = -\infty \quad \text{si} \quad k < 0$$

$$\frac{k}{0^{-}} = \infty \quad \text{si} \quad k < 0$$

3) Calcular

Solución:

$$\lim_{x \to -1} \frac{x^2 - 1}{x + 1} = \frac{(-1)^2 - 1}{-1 + 1} = \frac{1 - 1}{0} = \frac{0}{0}$$
????

Indeterminaciones

$\frac{0}{2}$	<u> </u>	$0\cdot\infty$	$\infty - \infty$	1 [∞]	∞^0
0	∞				

0^0 $\frac{k}{0}$ $\frac{\infty}{0}$ $\infty + \nexists$	∞・∄	0 • ∄
--	-----	-------