2) TEOREMAS DE ISOMORFIA

- **1) Teorema de homomorpismos**: See $f:G \longrightarrow H$ homomorphomo de grupos y N subgrupo de G tal que N \in $\ker(l)$. Entouces emote un único homomorphomo $\overline{J}:G/N \longrightarrow H$ tal que $\overline{J}\circ \psi=f$ doude $\psi:G \longrightarrow (G/N)$ os la proyeccicá:

 Además:
 - → 1 es epimorhomo sir 1 6 es
 - → ker I = ker 1/N
 - → I es monomorphone su kert = N

DEM => apucació [(an)= j(a)]: GIN -> H

2) Primer teorema de isomorfia: Si $f:G \longrightarrow H$ es homomorfiame de grupos entonces $(G/\ker I) \cong Im I$

Dem => \int entre (G/kert) y H , que os epimerfismo si tomanus Im(1). Ademós (\tilde{I} es un monomorfismo => es biyecturo.

3) Segundo teorema de isomorfia: Si N es un subgrupo normal de G y H es un subgrupo de G (entonces H n N es normal en H y $\frac{H}{H n N} \cong \frac{(N H)}{N}$

DEM => 1:H -> NH/N es epimorfismo y kerl=1 heH: Nh=N1=1heH: heN1=1hN, Par el primer teorema es isomorfismo.

4) Tercer teorema de isomorfic. Si H y N son dos ideales de G con $H \supseteq N$ entourono $\frac{G}{H} \cong \frac{G/N}{H/N}$

DEM => $\psi: G \longrightarrow G/H$ (a projection, es un epimorhomo de grupos y her $\psi=H$ luego $N \in \ker \psi$ entouces exista epimorhomo $\overline{\psi}: G/N \longrightarrow G/H$, pero a $N \in \ker \psi$ su a $N \in H$, entouces her $\overline{\psi}=(H/N)$, entouces por el primer tecrema exista