Проверка применимости критерия с помощью моделирования (равномерное распределение p-value). Как по распределению p-level сравнить критерии по мощности?

Мальцев А.С и Соколиков Е.А.

Санкт-Петербургский государственный университет Прикладная математика и информатика

Санкт-Петербург 2019г.

Общий подход к проверке гипотез

- ▶ Гипотеза H_0 некоторое предположение о случайной величине ξ $(\xi:(\Omega,\mathfrak{F},P)\longrightarrow V);$
- **В**ыборка $x = (x_1, ..., x_n);$
- ▶ Критерий в общем смысле:

```
V^n=\mathcal{A}^lpha_{
m дов}\sqcup\mathcal{A}^lpha_{
m крит} так, чтобы P_{H_0}(x\in\mathcal{A}^lpha_{
m крит})=lpha, где lpha – уровень значимости, 0<lpha\leqslant 1;
```

▶ Использование критерия:

```
x \in \mathcal{A}^{\alpha}_{\text{дов}} \Rightarrow H_0 не отвергаем; x \in \mathcal{A}^{\alpha}_{\text{крмт}} \Rightarrow H_0 отвергаем;
```

ightharpoonup lpha — вероятность отвергнуть гипотезу, если она верна.

Схема построения критериев

- ▶ Строим статистику $t = t(x_1, ..., x_n), t \in D \subset \mathbb{R}$:
 - ightharpoonup распределение t, если верна H_0 , известно;
 - ightharpoonup t измеряет то, насколько выборка не соответствует гипотезе;
- lacktriangledown $t\in D$ (например, $(-\infty,+\infty)$ или $[0,+\infty)$). Разбиваем $D=A^lpha_{ t дов}\sqcup A^lpha_{ t крит}$:
 - $P_{H_0}(t \in A_{\mathsf{крит}}^{\alpha}) = \alpha;$
 - включаем в $A^{\alpha}_{\mathsf{крит}}$ значения наиболее далекие от идеального (— соображения разумности выбора $A^{\alpha}_{\mathsf{крит}}$).

Ошибки первого и второго рода

- lacktriangle Альтернативная гипотеза H_1 это некоторое предположение о случайной величине ξ , которое не пересекается с гипотезой H_0 ;
- lacktriangle Вероятность ошибки первого рода $lpha_{f I}=P_{H_0}(t\in A^lpha_{\sf крит})=lpha$;
- lacktriangle Вероятность ошибки второго рода $lpha_{{f II}}=P_{H_1}(t\in A^lpha_{{f дов}})=lpha_{{f II}}(n,lpha,H_1).$

		Верная гипотеза	
		но	H1
Результат применения критерия	НО	НО верно не отвергнута	НО неверно не отвергнута (Ошибка второго рода)
	H1	НО неверно отвергнута (Ошибка первого рода)	НО верно отвергнута

Виды критериев и мощность

- ▶ $\alpha_{\mathbf{I}} = \alpha$ точный критерий;
- ▶ $\alpha_{\bf I} < \alpha$ консервативный критерий;
- $\alpha_{{f I}} > \alpha$ радикальный критерий;
- $ightharpoonup lpha_{\mathbf{I}} \underset{n o \infty}{\longrightarrow} lpha$ асимптотический критерий;
- $m{\rho}_n = m{\beta} = 1 lpha_{{f II}} = m{\beta}(n, lpha, H_1)$ мощность критерия против альтернативной гипотезы H_1 ;
- $ightharpoonup eta_n \mathop{\longrightarrow}\limits_{n o \infty} 1$ состоятельность критерия против альтернативы $H_1.$

p-value

▶ p-value (p-level) – это максимальный уровень значимости, при котором гипотеза не отвергается.

Проверка применимости критерия

- lacktriangleq P-value можно рассматривать, как случайную величину: $p=p(x_1,\ldots,x_n)$;
- ightharpoonup $lpha_{f I}=P_{H_0}(H_0 \ {
 m otbepraetcs})=lpha \Leftrightarrow P_{H_0}(lpha>p)=lpha \Leftrightarrow P_{H_0}(p<lpha)=lpha;$
- \blacktriangleright Таким образом, если H_0 верна, то p-value равномерно распределено на [0,1].

Алгоритм проверки применимости критерия:

- Моделируем m выборок (x_1,\ldots,x_n) размера n из распределения случайной величины ξ , при этом распределение ξ соотвествует нулевой гипотезе;
- lacktriangle Подсчитываем p-value для каждой выборки. Тогда получаем $(p_1,...,p_m)$;
- lacktriangle Строим эмпирическую функцию распределения: $\hat{\mathcal{F}}_m(y) = rac{\#\{p_i < y\}}{m}.$

Пример моделирования

- ► Модель: $\xi \sim \mathcal{N}(a, \sigma^2)$;
- ightharpoonup Гипотеза: $H_0: a=a_0=0$;
- **В** качестве критерия, применимость которого будем проверять, возьмем одновыборочный t-критерий Стьюдента (one sample t-test):

$$t = \frac{\sqrt{n}(\overline{x} - a_0)}{\tilde{s}} \sim t(n - 1)$$

- lacktriangle Моделируем 20000 выборок размера 200 из распределения $\mathcal{N}(0,1)$;
- ▶ Подсчитываем выборку p-value: (p_1, \ldots, p_{20000}) и строим функцию распределения.

Сравнение функций распределения

Рис.: Эмпирическая функция распределения p-levels.

Консервативные и радикальные критерии

Сравнение критериев по мощности

- $\begin{array}{l} \bullet \quad \alpha_{\mathbf{II}} = P_{H_1}(H_0 \text{ не отвергается}) \Leftrightarrow \alpha_{\mathbf{II}} = P_{H_1}(\alpha < p) \Leftrightarrow \\ \Leftrightarrow \alpha_{\mathbf{II}} = 1 P_{H_1}(p < \alpha) \Leftrightarrow P_{H_1}(p < \alpha) = \beta; \end{array}$
- lacktriangle Таким образом, если верна альтернативная гипотеза, то через эмпирическую функцию распределения p-value можно найти мощность критерия против альтернативы H_1 .

Алгоритм сравнения критериев по мощности:

- ▶ Моделируем m выборок (x_1, \ldots, x_n) размера n из распределения случайной величины ξ , при этом распределение ξ соотвествует альтернативной гипотезе;
- ightharpoonup Подсчитываем p-value для каждой выборки;
- Оцениваем мощности.

Пример моделирования

- ▶ Модель: $\xi \sim \mathcal{N}(a, \sigma^2)$;
- ightharpoonup Гипотеза: $H_0: a=0$;
- ightharpoonup В качестве критерия возьмем одновыборочный t-критерий Стьюдента (one sample t-test);
- lacktriangle Альтернативные гипотезы: $H_1^{(1)}: a=0.1$, $H_1^{(2)}: a=0.3$;
- Моделируем 20000 выборок размера 200 из распределения $\mathcal{N}(0.1,1)$ и столько же из распределения $\mathcal{N}(0.3,1)$;
- ightharpoonup Подсчитываем выборки p-value: $(p_1^{(1)},\dots,p_{20000}^{(1)})$ и $(p_1^{(2)},\dots,p_{20000}^{(2)})$ и строим функции распределения.

Сравнение функций распределения

 $\mathsf{Puc.}$: Эмпирическая функция распределения p-levels.

Python code

```
FST = 0
VAR = 1
SAMPLE SIZE = 200
PVAL SAMPLE SIZE = 20000
SIZE = (SAMPLE SIZE, PVAL SAMPLE SIZE)
def generate pval(mean):
  return stats.ttest 1samp(np.random.normal(
       mean, VAR, size=SIZE), EST)[1]
def first graph():
  pval = generate pval(0)
  //generate pval(0.1) - power
  ecdf = ECDF(pval)
  plt.plot(ecdf.x, ecdf.y, linewidth=4, label='ecdf(x)')
  plt.show()
```

R code