Finite Inverse Categories as a Data Structure

Dimitris Tsementzis

June 7, 2018

Introduction

2 Finite Inverse Categories

Implementing Data Shapes

Future Directions

Section 1

Introduction

What is category theory?

Category theory is the mathematical study of mathematical structure.

A category can be thought of as a collection of nodes (structures) and arrows between nodes (transformations).

Categories, the objects of study of category theory, are themselves mathematical structures.

Example

- The category Set with sets as nodes and functions as arrows
- The category **Graph** with graphs as nodes and graph homomorphisms as arrows
- The category ω with the natural numbers $n,m\in\mathbb{N}$ as nodes and with an arrow $n\to m$ iff $n\le m$

The Problem: Data Sets are too specific

Data is formalized as a mathematical structure.

Usually it is formalized as a table T which we can think of as a set of rows $r_1, ..., r_n$ and a set of columns $C_1, ..., C_m$ such the C_j are sets and $r_i \in C_1 \times ... \times C_m$

Name	Age	Gender	Team
John	13	М	Bulls
lana	22	_	Ducks

Pia	28	U	Bucks
	88	M	Bulls
	1	ı	

PROBLEM: This formalism for data is often too fine-grained.

Example

Example

• What is the average age of John?

Proposed Solution: Data Shapes

The usual approach to data is to formalize and store it in a maximally **fine-grained** way, and then introduce abstractions on top of this maximally fine-grained layer: **Sand Paradigm**

This works very well in some cases (e.g. reusability) but not so well in others (e.g. large databases, functional queries).

IDEA: Formalize, store and manipulate data in an **abstract** way, and fine-grain it at will: **Slab Paradigm**

IMPLEMENTATION: A two-layer (abstract/concrete) framework for data.

SLOGAN: Data is Shape.

The Big Picture: Foundations of Mathematics

Big Picture: Role of Category Theory

Related Work: Category Theory and Data

The idea of applying category-theoretic approaches to data, databases, data management etc. has been explored...

- Spivak, Kent. Olog: A Categorical Framework for Knowledge Representation. (2012)
- Wisnesky, Breiner, Jones, Spivak, Subrahmanian. Using Category Theory to Facilitate Multiple Manufacturing Service Database Integration. (2017)
- Rosebrugh, Wood. Relational Databases and Indexed Categories. (1992)

...and there is even, already, some work involving HoTT

• Chu, Weitz, Cheung, Suciu. HoTTSQL: Proving Query Rewrites with Univalent SQL Semantics.

Section 2

Finite Inverse Categories

Finite Inverse Categories as damgs with extra structure

Definition

A directed acyclic (multi)graph (da(m)g) is a directed (multi)graph G = (O, A) with no paths from any node to itself (acyclic).

Definition

A finite inverse category (fic) is a pair (\mathcal{L}, \circ) where:

- \bullet \mathcal{L} is a transitive damg
- ullet o is a partial associative binary operation on the edges of ${\cal L}$ which is defined only for "composable" pairs of arrows.

Definition

A **finite inverse category** (fic) is a finite skeletal category with no non-identity endomorphisms.

Examples of fics

Example

The one-object,one-morphism category \bullet is a fic

Example

Example

How to think of fics

- A schema for dependently typed data
- A syntax for a certain logic (FOL_≅)
- But **not** as ologs.

Μ

How to think of fics

- *O* : **Type** *a*, *b*, *c* : *O*
- $A: O \rightarrow O \rightarrow \mathsf{Type}$ g: A(c,c), f: A(b,a)
- $I: \Sigma(x:O)A(x,x) \rightarrow \mathsf{Type}$ $\tau: I(g,c)$

$$\mathcal{L}_{\mathsf{rg}}$$
 — \longrightarrow Set

TAKE-AWAY: fic data exists ONLY with its dependencies

fics as a data structure

Fix a fic \mathcal{L} .

Definition ("Data Shape")

A **data shape** is a (Reedy fibrant) functor $M : \mathcal{L} \to \mathbf{Set}$.

Definition ("Data Tranformation")

A data transformation is a natural transformation $\alpha: M \Rightarrow N$.

Definition ("Data Point")

If M is a data shape and C an object in \mathcal{L} , then a **data point** is a transformation $r : \mathbf{y}C \Rightarrow M$.

One can think of r as a "row", and of yC as a "column" for our the "table" given by the data shape M.

Example of a data shapes and its points

Section 3

Implementing Data Shapes

Zoom out: How is this all relevant to the problem?

Theorem (T.,2016)

Every fic \mathcal{L} corresponds to a well-formed type $S_{\mathcal{L}}$ in MLTT and every \mathcal{L} -structure M corresponds to a well-formed context.

Theorem (T., Weaver, 2017)

There exists a "mini type theory" \mathbb{T}_{fic} whose well-formed contexts are in bijective correspondence to fics.

Implementing Data Shapes: A Prototype

Following this way of thinking I have created an experimental implementation of fics in Python, together with an interpreter that produces a Coq file containing the definition of the fic.

This establishes a minimal functional pipeline for storing, querying and manipulating data as abstract shapes.

Let's see a demonstration.

Section 4

Future Directions

Questions and Further Directions

There are several directions of immediate interest to pursue, both theoretical and applied:

Theoretical: For $a, b \in M(K)$, when is $a \cong b$?

• A Higher Structure Identity Principle, (T., B. Ahrens, P. North, M. Shulman)

Theoretical: Implement the whole system **inside** HoTT.

• HoTT+I, (T., M. Weaver)

Questions and Further Directions

There are several directions of immediate interest to pursue, both theoretical and applied:

Applied: Develop the DataShape prototype into a usable platform, possibly with a UI

Applied: Develop DataShape database for a real-world use case.

- Engineering blueprints
- Blockchain Data
- Graphs defining neural nets

WHY NOW?

- Category Theory combined with new foundations.
- DTT is becoming a GPPL

Thank you

References

- Makkai, Michael. First-Order Logic with Dependent Sorts with Applications to Category Theory. (1997)
- Tsementzis, Dimitris. First-Order Logic with Isomorphism. arXiv preprint arXiv:1603.03092 (2016).
- Tsementzis, Dimitris, and Matthew Weaver. "Finite Inverse Categories as Dependently Typed Signatures, arXiv preprint." arXiv preprint arXiv:1707.07339 (2017).
- "The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of Mathematics. http://homotopytypetheory. org/book, Institute for Advanced Study, 2013