

Apache Flink™: Stream and Batch processing at Scale

Marton Balassi (ELTE/SZTAKI, Hungary)

Paris Carbone (KTH, Stockholm, Sweden)

Gyula Fora (SICS, Stockholm, Sweden)

Vasia Kalavri (KTH, Stockholm, Sweden)

Asterios Katsifodimos (TU Berlin, Germany)

What is Flink?

A platform for distributed batch and streaming analytics

Flink in the Analytics Ecosystem

What can I do with it?

An engine that can **natively** support all these workloads.

Datasets and Streams

```
case class Word (word: String, frequency: Int)
```

DataSet API (batch):

DataStream API (streaming):

Tables and Graphs

Table API (SQL):

```
case class Result(a: String, d: Int)
val input1 = env.fromElements(...).toTable('a, 'b)
val input2 = env.fromElements(...).toTable('c, 'd)
val joined = input1.join(input2).where("b = a && d > 42").select("a,d").toDataSet[Result]
```

Gelly API (Graphs):

Execution Model

- Flink program = DAG* of operators and intermediate results
- Operator = computation + state
- Intermediate result = logical stream of records

Architecture

- Hybrid MapReduce and MPP database runtime
- Pipelined/Streaming engine
 - Complete DAG deployed

Batch is a Special Case of Streaming

Lower-overhead fault-tolerance via replaying intermediate results Blocking operators (e.g., hybrid hash join) are embedded in streaming topology

Cost-based optimizer

Community

Flink started as the Stratosphere project in in 2009, led by TU Berlin. KTH, ELTE/SZTAKI, and companies are contributing to the code.

Entered incubation April 2014 graduated on December 2014.

Now one of the most active big data projects after over a year in the Apache Software Foundation.

BERLIN 12/13 OCT 2015

http://flink-forward.org

Today

- Introduction
 - 15' Overview
 - 15' Gelly (Graph) API
- 30' Break
- Graph Processing
 - 20' DataSet/Gelly Hands-on
- Stream processing with Flink
 - 10' DataStream API
 - 15' Fault Tolerance Demo
 - 45' Streaming Hands-on

Appendix

FlinkML

- API for ML pipelines inspired by scikit-learn
- Collection of packaged algorithms
 - SVM, Multiple Linear Regression, Optimization, ALS, ...

```
val trainingData: DataSet[LabeledVector] = ...
val testingData: DataSet[Vector] = ...

val scaler = StandardScaler()
val polyFeatures = PolynomialFeatures().setDegree(3)
val mlr = MultipleLinearRegression()

val pipeline = scaler.chainTransformer(polyFeatures).chainPredictor(mlr)
pipeline.fit(trainingData)

val predictions: DataSet[LabeledVector] = pipeline.predict(testingData)
```

Gelly

- Graph API and library
- Packaged algorithms
 - PageRank, SSSP, Label Propagation, Community Detection, Connected Components

Managed Memory

- Language APIs automatically converts objects to tuples
 - Tuples mapped to pages/buffers of bytes
 - Operators can work on pages/buffers
- Full control over memory, out-of-core enabled
- Operators (e.g., Hybrid Hash Join) address individual fields (not deserialize object): robust

Iterative processing in Flink

Flink offers built-in iterations and delta iterations to execute ML and graph algorithms efficiently

Exactly once approaches

- Discretized streams mini-batching (Spark Streaming)
 - Treat streaming as a series of small atomic computations
 - "Fast track" to fault tolerance, but does not separate business logic from recovery
- MillWheel (Google Cloud Dataflow)
 - State update and derived events committed as atomic transaction to a high-throughput transactional store
 - Needs a very high-throughput transactional store ©
- Chandy-Lamport-inspired distributed snapshots (Flink)*

Roadmap

- Short-term (3-6 months)
 - Graduate DataStream API from beta
 - Fully managed window and user-defined state with pluggable backends
 - Table API for streams (towards StreamSQL)
- Long-term (6+ months)
 - Highly available master
 - Dynamic scale in/out
 - FlinkML and Gelly for streams
 - Full batch + stream unification

Discretized streams

Problems of mini-batch

Latency

 Each mini-batch schedules a new job, loads user libraries, establishes DB connections, etc

Programming model

 Does not separate business logic from recovery – changing the mini-batch size changes query results

Power

 Keeping and updating state across mini-batches only possible by immutable computations

Exactly once approaches

- Discretized streams mini-batching (Spark Streaming)
 - Treat streaming as a series of small atomic computations
 - "Fast track" to fault tolerance, but does not separate business logic from recovery
- MillWheel (Google Cloud Dataflow)
 - State update and derived events committed as atomic transaction to a high-throughput transactional store
 - Needs a very high-throughput transactional store ©
- Chandy-Lamport-inspired distributed snapshots (Flink)*

Integration with batch

- Currently cannot mix DataSet & DataStream programs
- However, DataStream programs can read batch sources, they are just finite streams ☺
- Goal is to evolve DataStream to a batch/stream-agnostic API

e.g.: Non-native iterations

```
for (int i = 0; i < maxIterations; i++) {</pre>
    // Execute MapReduce job
                      Client {
                          Step
```

What is Operator State?

- User-defined state
 - Objects in Flink long running operators (map/reduce/etc)
- Windowing operators
 - Time, count, data-driven, etc. window discretizers
- Fault tolerance mechanism:
 - Back up and restored state stored in a backend (HDFS, Ignite, Cassandra, ...)
 - After restore: replay stream from the last checkpoint

e.g.: Non-native streaming

Why streaming

Streaming Data availability - Some schema - Which data? - Ingestion rate - When? - Programmable - Who? **Batch** - Some schema Load rate - Programmable Data Warehouse - Strict schema - Load rate - Bl access

2000 2008 2015 29

What does streaming enable?

1. Data integration

cf. Kleppmann: "Turning the DB inside out with Samza"

2. Low latency applications

- Fresh recommendations, fraud detection, etc
- Internet of Things, intelligent manufacturing
- Results "right here, right now"

3. Batch < Streaming

The Stack

Example: Bouygues Telecom

Flink Optimizer

- What you write is not what is executed
- No need to hardcode execution strategies
- Flink Optimizer decides:
 - Pipelines and dam/barrier placement
 - Sort- vs. hash- based execution
 - Data exchange (partition vs. broadcast)
 - Data partitioning steps
 - In-memory caching

What is a stream processor?

Pipelining Basics Stream replay Operator state State Backup and restore High-level APIs App development Integration with batch High availability Large deployments Scale-in and scale-out

Pipelining

Basic building block to "keep the data moving"

Complete pipeline online concurrently

Note: pipelined systems do not usually transfer individual tuples, but buffers that batch several tuples!

Built-in vs. driver-based looping

Loop outside the system, in driver program

Iterative program looks like many independent jobs

Dataflows with feedback edges

System is iterationaware, can optimize the job

Rich set of operators

Map, Reduce, Join, CoGroup, Union, Iterate, Delta Iterate, Filter, FlatMap, GroupReduce, Project, Aggregate, Distinct, Vertex-Update, Accumulators, ...

1.) Trigger Policies (TPs)

Specify when the aggregate is executed on the current buffer content.

Define the moment that results are emitted.

2.) Eviction Policies (EPs)

Specify when data-items are removed from the buffer.

Query Example (tumbling/fixed window of size 3):

dataStream.window(Count.of(3))

1.) Trigger Policies (TPs)

Specify when the aggregate is executed on the current buffer content.

Define the moment that results are emitted.

2.) Eviction Policies (EPs)

Specify when data-items are removed from the buffer.

1.) Trigger Policies (TPs)

Specify when the aggregate is executed on the current buffer content.

Define the moment that results are emitted.

2.) Eviction Policies (EPs)

Specify when data-items are removed from the buffer.

1.) Trigger Policies (TPs)

Specify when the aggregate is executed on the current buffer content.

Define the moment that results are emitted.

2.) Eviction Policies (EPs)

Specify when data-items are removed from the buffer.

1.) Trigger Policies (TPs)

Specify when the aggregate is executed on the current buffer content.

Define the moment that results are emitted.

2.) Eviction Policies (EPs)

Specify when data-items are removed from the buffer.

1.) Trigger Policies (TPs)

Specify when the aggregate is executed on the current buffer content.

Define the moment that results are emitted.

2.) Eviction Policies (EPs)

Specify when data-items are removed from the buffer.

Distributed snapshots in Flink

Super-impose checkpointing mechanism on execution instead of using execution as the checkpointing mechanism

JobManager

Barriers "push" prior events (assumes in-order delivery in individual channels)

Example Analysis: Windowed Aggregation

51

```
(1) val windowedStream = stockStream.window(Time.of(10, SECONDS)).every(Time.of(5, SECONDS))
(2) val lowest = windowedStream.minBy("price")
(3) val maxByStock = windowedStream.groupBy("symbol").maxBy("price")
(4) val rollingMean = windowedStream.groupBy("symbol").mapWindow(mean _)
```

Managed Memory

- Language APIs automatically converts objects to tuples
 - Tuples mapped to pages of bytes
 - Operators work on pages
- Full control over memory, out-of-core enabled
- Operators (e.g., Hybrid Hash Join) address individual fields (not deserialize whole object)

Desiderate for Stream Processors

Pipelining Basics Stream replay Operator state State Backup and restore High-level APIs App development Integration with batch High availability Large deployments Scale-in and scale-out

Benefits of Flink's approach

- Data processing does not block
 - Can checkpoint at any interval you like to balance overhead/recovery time
- Separates business logic from recovery
 - Checkpointing interval is a config parameter, not a variable in the program (as in discretization)
- Can support richer windows
 - Session windows, event time, etc.
- Best of all worlds: true streaming latency, exactly-once semantics, and low overhead for recovery

Where in my cluster does Flink fit?

- Gather and backup streams
- Offer streams for consumption
- Provide stream recovery

- Analyze and correlate streams
- Create derived streams and state
- Provide these to upstream systems