Tema VII: Espacios Vectoriales

<u>Definición:</u> un conjunto de objetos E se llama espacio vectorial real y sus elementos se llaman vectores, si en este se han definido dos operaciones:

- a) Suma de vectores +.
- b) Un producto de un número real por un vector.

Además se debe cumplir:

- 1) Si $u, v \in E \Rightarrow u + v \in E$.
- 2) Si $u \in E$, $c \in \mathbb{R} \Rightarrow cu \in E$; $\forall u, v, w \in E$; $\forall a, b \in \mathbb{R}$.
- 3) u + v = v + u
- 4) (u+v)+w=u+(v+w)
- 5) $\exists 0_a \in E \text{ tal que } u + 0_a = u$.
- 6) $\forall a \in E, \exists -u \in E \text{ tal que: } u + -u = 0$
- 7) (a+b)u = au + bu
- 8) a(u+v)=au+av
- 9) (ab)u = a(bu)
- 10) 1u = u

Ejemplo: espacios vectoriales usuales

$$E = \mathbb{R}, \mathbb{R}^2, \mathbb{R}^3, \dots, \mathbb{R}^n$$

$$E = M(m, n, \mathbb{R})$$

$$E = P_n = \left\{ p(x) / a_0 + a_1 x + a_2 x^2 + \dots + a_k x^k / k \le n \right\}$$

<u>Subespacios:</u> se dice que S es un subespacio de un espacio vectorial E si S es un subconjunto no vacío de E y, con las mismas operaciones de suma y multiplicación por un escalar de E, es sí mismo un espacio vectorial.

Teorema: sea E un espacio vectorial, y $S \subset E$ un subconjunto no vacío, si S satisface las dos propiedades:

- i) Si $x \in S, y \in S \Rightarrow x + y \in S$
- ii) Si $x \in S$ y $\alpha \in \mathbb{R} \Rightarrow \alpha x \in S$

Entonces S es un subespacio de E.

<u>Observación importante:</u> de las propiedades enunciadas en el teorema anterior, se puede utilizar el siguiente argumento que permite demostrar de forma directa que $S \subset E$.

- i) $0_{e} \in S$ (el cero del espacio vectorial E).
- ii) Si $x, y \in S$ y $\alpha \in \mathbb{R} \Rightarrow x + \alpha y \in S$.

Ejemplo: muestre que si $A \in M(n, m, \mathbb{R})$ entonces $S = \{x \in \mathbb{R}^m / Ax = 0_n\}$ es un subespacio de \mathbb{R}^n .

- i) $0_m \in S$ pues $A \cdot 0_m = 0_n \Longrightarrow s \neq \emptyset$
- ii) Tomemos $x, y \in S$, $\alpha \in \mathbb{R}$ hay que probar que $x + \alpha y \in S$

$$A(x + \alpha y) = Ax + A \cdot \alpha y$$
$$= Ax + \alpha Ay$$
$$= o_n + \alpha \cdot o_n$$
$$= o_n$$

 \Rightarrow por i e ii S es un subespacio de \mathbb{R}^n

Ejemplo: $S = \{(t-2s, -s, t)/t, s \in \mathbb{R}\}$ es un subespacio de \mathbb{R}^3 .

$$i)(0,0,0) \in S$$
 tómese $t = s = 0 \Rightarrow S \neq \emptyset$

ii) Sea
$$x, y \in S$$
 y $\alpha \in \mathbb{R}$ $x = (t_1 - 2s_1, -s_1, t_1), y = (t_2 - 2s_2, -s_2, t_2)$

$$x + \alpha y = (t_1 - 2s_1, -s_1, t_1) + \alpha (t_2 - 2s_2, -s_2, t_2)$$

$$= (t_1 - 2s_1, -s_1, t_1) + (\alpha t_2 - 2\alpha s_2, -\alpha s_2, \alpha t_2)$$

$$= (t_1 + \alpha t_2 - 2s_1 - 2\alpha s_2, -s_1 - \alpha s_2, t_1 + \alpha t_2)$$

$$= (t_1 + \alpha t_2 - 2(s_1 + \alpha s_2), -(s_1 + \alpha s_2), t_1 + \alpha t_2)$$
Tómese $t = t_1 + \alpha t_2, s = s_1 + \alpha s_2$

$$= (t - 2s, -s, t) \in S$$

 \Longrightarrow por i e ii S es un subespacio de \mathbb{R}^3

<u>Ejemplo:</u> Sea $S = \{(t+3s, s+1, t-s)\}$ ¿es S un subespacio de \mathbb{R}^3 ?

Si $t = s = 0 \Rightarrow (t + 3s, s + 1, t - s) = (0, 1, 0) \Rightarrow (0, 0, 0) \notin S \Rightarrow S$ no es un subespacio de \mathbb{R}^3

Ejemplo: Sea $S = \left\{ \begin{pmatrix} x & x-y \\ x+y & y \end{pmatrix} \in M\left(2,\mathbb{R}\right)/x, y \in \mathbb{R} \right\}$, S es un subespacio de $V = M\left(2,\mathbb{R}\right)$.

i) Tómese
$$x = y = 0 \Rightarrow \begin{pmatrix} x & x - y \\ x + y & y \end{pmatrix} = \begin{pmatrix} 0 & 0 - 0 \\ 0 + 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \in S \Rightarrow S \neq \emptyset$$

ii) Sean
$$x = \begin{pmatrix} x_1 & x_1 - y_1 \\ x_1 + y_1 & y_1 \end{pmatrix}, y = \begin{pmatrix} x_2 & x_2 - y_2 \\ x_2 + y_2 & y_2 \end{pmatrix}, \alpha \in \mathbb{R}$$

$$x + \alpha y = \begin{pmatrix} x_1 & x_1 - y_1 \\ x_1 + y_1 & y_1 \end{pmatrix} + \alpha \begin{pmatrix} x_2 & x_2 - y_2 \\ x_2 + y_2 & y_2 \end{pmatrix}$$

$$= \begin{pmatrix} x_1 & x_1 - y_1 \\ x_1 + y_1 & y_1 \end{pmatrix} + \begin{pmatrix} \alpha x_2 & \alpha x_2 - \alpha y_2 \\ \alpha x_2 + \alpha y_2 & \alpha y_2 \end{pmatrix}$$

$$= \begin{pmatrix} x_1 + \alpha x_2 & x_1 + \alpha x_2 - y_1 - \alpha y_2 \\ x_1 \alpha x_2 + y_1 + \alpha y_2 & y_1 + \alpha y_2 \end{pmatrix}$$

$$= \begin{pmatrix} x_1 + \alpha x_2 & x_1 + \alpha x_2 - (y_1 + \alpha y_2) \\ x_1 + \alpha x_2 + y_1 + \alpha y_2 & y_1 + \alpha y_2 \end{pmatrix} \text{ Tómese } x = x_1 + \alpha x_2, \ y = y_1 + \alpha y_2$$

$$= \begin{pmatrix} x & x - y \\ x + y & y \end{pmatrix} \in S$$

 \Rightarrow por i e ii S es un subespacio de $V = M(2, \mathbb{R})$

Tres subespacios típicos de \mathbb{R}^n

a) Rectas que pasan por el origen: dado un vector $v \in \mathbb{R}^n$ no nulo el subespacio $L = c\ell\{v\} = \{tv/t \in \mathbb{R}\}$ está constituido por todos los puntos de \mathbb{R}^n en una recta que contiene al origen y la dirección de \vec{v} .

$$(x, y, z)^{t} = t(1, 2, 3)^{t}; L = c\ell\{(1, 2, 3)^{t}\} = \{t(1, 2, 3)^{t} / t \in \mathbb{R}\}$$

b) Planos por el origen: se consideran los vectores $u, v \in \mathbb{R}^n$

$$P = c\ell \{u, v\} = \{tu + sv / t, s \in \mathbb{R}\}$$

Corresponde al conjunto de todos los puntos de un cierto plano de \mathbb{R}^n que contienen al origen en la dirección de los vectores u y v.

$$(x, y, z)^{t} = t(1, 2, 3)^{t} + s(-1, -1, 2)^{t}$$

c) Hiperplanos por el origen: $H = \left\{ x \in \mathbb{R}^n \ / \ a_1 x_1 + a_2 x_2 + \dots + a_n x_n = 0 \right\} = \left\{ x \in \mathbb{R}^n \ / \ a \cdot x = 0 \right\}$. Hiperplano por el origen ortogonal a a.

Combinaciones lineales y conjuntos generadores

<u>Definición:</u> sea E un espacio vectorial y $\{v_1, v_2, ..., v_n\}$ un conjunto de vectores de E. se llama combinación lineal de los vectores $v_1, v_2, ..., v_n$ al vector

$$v = \alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_n v_n$$

cualquiera que sea la elección de los escalares $\alpha_1, \alpha_2, ..., \alpha_n$ y al conjunto

$$c\ell\left\{v_{1},v_{2},\ldots,v_{n}\right\} = \left\{\alpha_{1}v_{1} + \alpha_{2}v_{2} + \cdots + \alpha_{n}v_{n} / \alpha_{1},\alpha_{2},\ldots,\alpha_{n} \in \mathbb{R}\right\}$$

Observación: lo anterior es válido para cualquier espacio vectorial.

<u>Definición:</u> un conjunto de vectores $\{v_1, v_2, ..., v_n\}$ de un espacio vectorial E, se llama un conjunto generador de E si todo $v \in E$ se puede expresar como combinación lineal de los vectores $v_1, v_2, ..., v_n$.

Observación: válida para los espacios \mathbb{R}^n y de matrices. Cuando $\{v_1, v_2, ..., v_n\}$ generan a E, entonces $E = c\ell\{v_1, v_2, ..., v_n\}$.

Ejemplo: considere $E = \mathbb{R}^2$, $E = \mathbb{R}^3$, los vectores canónicos de \mathbb{R}^2 y \mathbb{R}^3 , respectivamente.

 $\forall (x, y) \in \mathbb{R}^2$ con vectores canónicos $e_1 = (1, 0)^t$, $e_2 = (0, 1)^t$

Es decir,
$$\begin{pmatrix} x \\ y \end{pmatrix} = x \begin{pmatrix} 1 \\ 0 \end{pmatrix} + y \begin{pmatrix} 0 \\ 1 \end{pmatrix} \Rightarrow \mathbb{R}^2 = c\ell \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}$$

 $\forall (x, y, z) \in \mathbb{R}^3$ con vectores canónicos $e_1 = (1, 0, 0)^t$, $e_2 = (0, 1, 0)^t$, $e_3 = (0, 0, 1)^t$

Es decir,
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = x \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + y \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + z \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \Rightarrow \mathbb{R}^3 = c\ell \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\}$$

Ejemplo: considere los vectores de \mathbb{R}^3 , $v_1 = (1,1,-1)^t$, $v_2 = (0,1,-2)^t$, $v_3 = (-1,0,-1)^t$. Muestre que $\{v_1,v_2,v_3\}$ no generan \mathbb{R}^3 .

$$\begin{pmatrix} a \\ b \\ c \end{pmatrix} = a \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} + b \begin{pmatrix} 0 \\ 1 \\ -2 \end{pmatrix} + c \begin{pmatrix} -1 \\ 0 \\ -1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & -1 | a \\ 1 & 1 & 0 | b \\ -1 & -2 & -1 | c \end{pmatrix} \xrightarrow{f_1 + f_3} \begin{pmatrix} 1 & 0 & -1 | a \\ 0 & 1 & 1 | -a + b \\ 0 & -2 & -2 | a + c \end{pmatrix} \xrightarrow{2f_2 + f_3} \begin{pmatrix} 1 & 0 & -1 | a \\ 0 & 1 & 1 | -a + b \\ 0 & 0 & 0 | -a + 2b + c \end{pmatrix}$$

Si
$$-a+2b+c \neq 0 \Rightarrow v \notin c\ell \{v_1, v_2, v_3\}$$

Dependencia e independencia lineal

Un conjunto $\{v_1,v_2,\ldots,v_n\}$ de vectores de un espacio vectorial E se llama **linealmente dependiente (ld)**, si existen escalares a_1,a_2,\ldots,a_n no todos nulos tal que $a_1v_1+a_2v_2+\cdots+a_nv_n=0_e$. Es decir, si uno de ellos es combinación lineal de los restantes. Y se llaman **linealmente independiente (li)** sí $a_1v_1+a_2v_2+\cdots+a_nv_n=0_e$ $\Rightarrow a_1=a_2=\cdots=a_n=0$.

Teorema: sea $V = c\ell\{v_1, v_2, ..., v_n\}$ donde cada v_i pertenece a un espacio vectorial E, entonces cualquier conjunto p+1 vectores en V es linealmente dependiente.

Bases

Un conjunto de vectores $\{v_1, v_2, ..., v_n\}$ de un espacio vectorial E es una base de este espacio \Leftrightarrow todo vector $v \in E$ se puede expresar como combinación lineal única de los vectores $v_1, v_2, ..., v_n$.

Ejemplo: muestre que $\left\{ \begin{pmatrix} 1 \\ 1 \\ -1 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ -2 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} \right\} \text{ es una base de } \mathbb{R}^4.$

 $v = (a, b, c, d)^t \in \mathbb{R}^4$; existen x_1, x_2, x_3, x_4 únicos tales que:

$$\begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} = x_1 \begin{pmatrix} 1 \\ 1 \\ -1 \\ 1 \end{pmatrix} + x_2 \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix} + x_3 \begin{pmatrix} 1 \\ -1 \\ -2 \\ 0 \end{pmatrix} + x_4 \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 1 & 0 & | & a \\
1 & 1 & -1 & 0 & | & b \\
-1 & 0 & -2 & 0 & | & c \\
0 & 1 & 0 & 1 & | & d
\end{pmatrix}
\xrightarrow{f_1 + f_2}
\xrightarrow{f_1 + f_3}$$

$$\begin{pmatrix}
1 & 0 & 1 & 0 & | & a \\
0 & 1 & -2 & 0 & | & -a + b \\
0 & 0 & -1 & 0 & | & a + c \\
0 & 1 & 0 & 1 & | & d
\end{pmatrix}
\xrightarrow{f_3 + f_1}
\xrightarrow{f_3 + f_2}
\xrightarrow{f_3 + f_3}
\xrightarrow{f_3 + f$$

$$\Rightarrow \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} = (2a+c) \begin{pmatrix} 1 \\ 1 \\ -1 \\ 0 \end{pmatrix} + (-3a+b-2c) \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix} + (-a-c) \begin{pmatrix} 1 \\ -1 \\ -2 \\ 0 \end{pmatrix} + (3a-b+2c+d) \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$

de modo que $\{v_1, v_2, v_3, v_4\}$ es una base de \mathbb{R}^4 .

Ejemplo: sea $A_1 = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}, A_2 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, A_3 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, A_4 = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}.$ Muestre que $\{A_1, A_2, A_3, A_4\}$ es una base de $M(2, \mathbb{R})$.

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} = x_1 \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} + x_2 \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + x_3 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + x_4 \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} x_1 + x_3 & -x_1 + x_2 + x_4 \\ x_2 & x_1 + x_3 + x_4 \end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 1 & 0 & | & a \\
-1 & 1 & 0 & 1 & | & b \\
0 & 1 & 0 & 0 & | & c \\
1 & 0 & 1 & 1 & | & d
\end{pmatrix}
\xrightarrow{f_1 + f_2 \atop -f_1 + f_4}$$

$$\begin{pmatrix}
1 & 0 & 1 & 0 & | & a \\
0 & 1 & 1 & 1 & | & a + b \\
0 & 1 & 0 & 0 & | & c \\
0 & 0 & 0 & 1 & | -a + d
\end{pmatrix}
\xrightarrow{-f_3 + f_2}$$

$$\begin{pmatrix}
1 & 0 & 1 & 0 & | & a \\
0 & 0 & 1 & 1 & | & a + b - c \\
0 & 1 & 0 & 0 & | & c \\
0 & 0 & 0 & 1 & | -a + d
\end{pmatrix}$$

$$\xrightarrow{-f_4+f_2} \left(\begin{array}{ccc|c} 1 & 0 & 1 & 0 & a \\ 0 & 0 & 1 & 0 & 2a+b-c-d \\ 0 & 1 & 0 & 0 & c \\ 0 & 0 & 0 & 1 & -a+d \end{array} \right) \xrightarrow{-f_2+f_1} \left(\begin{array}{ccc|c} 1 & 0 & 0 & 0 & -a-b+c+d \\ 0 & 1 & 0 & 0 & c \\ 0 & 0 & 1 & 0 & 2a+b-c-d \\ 0 & 0 & 0 & 1 & -a+d \end{array} \right)$$

Es decir,

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} -a-b+c+d \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} + c \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + \begin{pmatrix} 2a+b-c-d \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} -a+d \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}$$

Teorema:

Un conjunto $\{v_1, v_2, ..., v_n\}$ de vectores de un espacio vectorial E, es una base de E \Leftrightarrow el conjunto es linealmente independiente y genera.

Definición:

Si E es un espacio vectorial y tiene una base con n elementos, entonces el entero "n" es la dimensión de E. se denota $\dim(E) = n$.

Ejemplo: se S el conjunto de vectores columna $(x_1, x_2, x_3, x_4)^t$ tal que $\begin{cases} -2x_1 + 3x_2 - x_4 = 0 \\ x_1 - 2x_2 - x_3 = 0 \end{cases}$. determine el menor número de vectores que generan S.

$$\begin{pmatrix}
-2 & 3 & 0 & -1 \\
1 & -2 & -1 & 0
\end{pmatrix}
\xrightarrow{f_1 \leftrightarrow f_2}
\begin{pmatrix}
1 & -2 & -1 & 0 \\
-2 & 3 & 0 & -1
\end{pmatrix}
\xrightarrow{2f_1 + f_2}
\begin{pmatrix}
1 & -2 & -1 & 0 \\
0 & -1 & -2 & -1
\end{pmatrix}$$

$$\xrightarrow{-f_2}
\begin{pmatrix}
1 & -2 & -1 & 0 \\
0 & 1 & 2 & 1
\end{pmatrix}
\xrightarrow{2f_2 + f_1}
\begin{pmatrix}
1 & 0 & 3 & 2 \\
0 & 1 & 2 & 1
\end{pmatrix}$$

$$x_1 = -3x_3 - 2x_4 \quad x_2 = -2x_3 - x_4 \quad x_3 = s \quad x_4 = t$$

$$x_1 = -3s - 2t \quad x_2 = -2s - t$$

$$\Rightarrow S = \left\{ (x_1, x_2, x_3, x_4)^t / (-3s - 2t, -2s - t, s, t), s, t \in \mathbb{R} \right\}$$

$$(-3s - 2t, -2s - t, s, t)^t = s(-3, -2, 1, 0)^t + t(-2, -1, 0, 1)^t$$

$$\Rightarrow S = c\ell \left\{ (-3, -2, 1, 0)^t, (-2, -1, 0, 1)^t \right\} \quad \text{además dim}(S) = 2$$

Teorema:

Si E es un espacio vectorial de dimensión n y v_i ; i = 1, 2, ..., k son k vectores linealmente independientes de E:

- a) Si k < n entonces existen $v_{k+1}, ..., v_n$ vectores en E, tal que $\{v_1, v_2, ..., v_k, v_{k+1}, ..., v_n\}$ es una base de E.
- b) Si k = n entonces $\{v_1, v_2, ..., v_n\}$ generan E.

Corolario:

Sea E un espacio vectorial de dimensión n, entonces:

- a) Cualquier conjunto de n vectores que genera a E es una base.
- b) Cualquier conjunto de n vectores linealmente independiente de E es una base.

Ejemplo: sea
$$T = \{A \in M(2, \mathbb{R}) \mid A \text{ es triangular inferior} \}$$
 y $A_1 = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}, A_2 = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}, A_3 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

Demuestre que $B = \{A_1, A_2, A_3\}$ es una base de T.

Basta demostrar que los A, son li

$$a_{1} \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} + a_{2} \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix} + a_{3} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \Rightarrow a_{1} = a_{2} = a_{3} = 0$$

$$a_{1} + a_{3} = 0$$

$$a_{1} + a_{2} = 0$$

$$a_{2} + a_{3} = 0$$

$$\begin{vmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{vmatrix} = \begin{vmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 0 & 1 & 1 \end{vmatrix} = \begin{vmatrix} 1 & -1 \\ 1 & 1 \end{vmatrix} = 2 \neq 0$$

$$\Rightarrow a_{1} = a_{2} = a_{3} = 0 \quad \Rightarrow \text{B es una base de T}$$

Conjuntos generadores de hiperplanos

Sea H un subespacio de \mathbb{R}^n ; $H = \left\{x \in \mathbb{R}^n \ / \ a_1x_1 + a_2x_2 + \dots + a_nx_n = 0\right\}$ corresponde a hiperplanos que contienen al origen y todos sus vectores son ortogonales al vector $a = \left(a_1, a_2, \dots, a_n\right)$. Entonces $H = c\ell\left\{v_1, v_2, \dots, v_{n-1}\right\}$ forman una base para H; además $\dim(H) = n-1$.

Ejemplo: considere
$$H = \{(x, y, z, w) \in \mathbb{R}^4 / x - 3y + w = 0\}$$

 $x - 3y + w = 0 \Rightarrow x = 3y - w \text{ tomamos } y = t, z = s, w = r, t, s, r \in \mathbb{R}$
 $(x, y, z, w) = (3t - r, t, s, r) = t(3,1,0,0) + s(0,0,1,0) + r(-1,0,0,1)$
 $H = c\ell\{(3,1,0,0), (0,0,1,0), (-1,0,0,1)\} = \{v_1, v_2, v_3\} \text{ dim}(H) = 3$

Sea a = (1, -3, 0, 1), note que:

$$a \cdot v_1 = (1, -3, 0, 1) \cdot (3, 1, 0, 0) = 0$$

$$a \cdot v_2 = (1, -3, 0, 1) \cdot (0, 0, 1, 0) = 0$$

$$a \cdot v_1 = (1, -3, 0, 1) \cdot (-1, 0, 0, 1) = 0$$

Coordenadas de v en la base B

Si $B = \{v_1, v_2, \dots, v_n\}$ es una base de E, entonces $\forall v \in E$, se llaman coordenadas de v en la base B a los únicos escalares a_1, a_2, \dots, a_n tal que $v = a_1v_1 + a_2v_2 + \dots + a_nv_n$ y se denota $\begin{bmatrix} v \end{bmatrix}_B$ al vector columna $\begin{bmatrix} v \end{bmatrix}_B = \begin{pmatrix} a_1, a_2, \dots, a_n \end{pmatrix}^t$ de coordenadas de v en la base B.

<u>Ejemplo:</u> Sea $B = \{v_1, v_2, v_3, v_4\}$ una base de \mathbb{R}^4 y suponga que $v = 2v_1 - 3v_3 + v_4$ entonces

$$\begin{bmatrix} v \end{bmatrix}_B = \begin{pmatrix} 2 \\ 0 \\ -3 \\ 1 \end{pmatrix}.$$

<u>Ejemplo:</u> sea $B = \{u, v\} = \{(-1, 1), (1, 2)\}$ una base de \mathbb{R}^2 . Sea $w = (\frac{7}{2}, 1)$. Encuentre $[w]_B$.

 $(\frac{7}{2},1) = a_1(-1,1) + a_2(1,2)$ se resuelve el siguiente sistema lineal:

$$\begin{pmatrix}
-1 & 1 \middle| \frac{7}{2} \\
1 & 2 \middle| 1
\end{pmatrix}
\xrightarrow{f_1 + f_2}
\xrightarrow{-f_1}
\begin{pmatrix}
1 & -1 \middle| -\frac{7}{2} \\
0 & 3 \middle| \frac{9}{2}
\end{pmatrix}
\xrightarrow{\frac{1}{3}f_2}
\begin{pmatrix}
1 & -1 \middle| -\frac{7}{2} \\
0 & 1 \middle| \frac{3}{2}
\end{pmatrix}
\xrightarrow{f_2 + f_1}
\begin{pmatrix}
1 & 0 \middle| -2 \\
0 & 1 \middle| \frac{3}{2}
\end{pmatrix}$$

$$\Rightarrow \left(\frac{7}{2},1\right) = -2\left(-1,1\right) + \frac{3}{2}\left(1,2\right)$$

$$\Rightarrow [w]_B = (-2, \frac{3}{2})$$

Espacio generado por las filas y las columnas de una matriz

Espacio nulo de una matriz: si $A \in M(m,n,\mathbb{R})$, definimos espacio nulo de A, denotado N(A), al conjunto de todas las soluciones del sistema homogéneo Ax=0. Es decir, $N(A) = \{x \in \mathbb{R}^n \mid Ax = 0\}$

Ejemplo: sea
$$A = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 2 & 1 & 0 & 1 \end{pmatrix}$$
. Encuentre N(A)

$$\begin{pmatrix}
1 & 1 & 1 & 0 \\
2 & 1 & 0 & 1
\end{pmatrix}
\xrightarrow{-2f_1+f_2}
\begin{pmatrix}
1 & 1 & 1 & 0 \\
0 & -1 & -2 & 1
\end{pmatrix}
\xrightarrow{f_2+f_1 \\
-f_2}
\begin{pmatrix}
1 & 0 & -1 & 1 \\
0 & 1 & 2 & -1
\end{pmatrix}$$

$$x-z+w=0 \land y+2z-w=0$$

$$x=z-w \land y=-2z+w$$

$$\Rightarrow (x, y, z, w) = (z-w, -2z+w, z, w) = z(1, -2, 1, 0) + w(-1, 1, 0, 1)$$

$$\Rightarrow N(A) = c\ell \left\{ (1, -2, 1, 0)^t, (-1, 1, 0, 1)^t \right\}$$

Además, éstos vectores forman una base, es decir: $\Rightarrow N(A) = \{(1, -2, 1, 0)^t, (-1, 1, 0, 1)^t\}$

<u>Definición:</u> sea $A \in M(m, n, \mathbb{R})$

- i) Vectores filas de A: son los m vectores (1Xn) correspondientes a las filas de A. Se denota F_A.
- ii) Vectores columnas de A: son los n vectores (mX1) correspondientes a las columnas de A. Se denota C_A.
- iii) Espacio fila de A: el subespacio de \mathbb{R}^n generado por los vectores filas de A.
- iv) Espacio columna de A: el subespacio de \mathbb{R}^m generado por los vectores columnas de A.

Ejemplo: sea
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \Rightarrow F_A = \{(1,0,0),(0,1,0)\}, C_A = \{\begin{pmatrix} 1 \\ 0 \end{pmatrix},\begin{pmatrix} 0 \\ 1 \end{pmatrix}\}$$

Teorema: si dos matrices $A, B \in M(m, n, \mathbb{R})$ son equivalentes por filas, entonces tienen el mismo espacio de filas.

Rango de una matriz: sea $A \in M(m,n,\mathbb{R})$, el rango de A, denotado rang(A) es igual a la cantidad máxima de vectores filas linealmente independientes de A.

Ejemplo: sea
$$A = \begin{pmatrix} 1 & -2 & 3 \\ 2 & -5 & 1 \\ 1 & -4 & -7 \end{pmatrix}$$

$$\begin{pmatrix} 1 & -2 & 3 \\ 2 & -5 & 1 \\ 1 & -4 & -7 \end{pmatrix} \xrightarrow{\begin{array}{c} -2f_1+f_2 \\ -f_1+f_2 \\ \end{array}} \begin{pmatrix} 1 & -2 & 3 \\ 0 & -1 & -5 \\ 0 & -2 & -10 \end{pmatrix} \xrightarrow{\begin{array}{c} -2f_2+f_1 \\ -f_2 \\ \end{array}} \begin{pmatrix} 1 & -2 & 3 \\ 0 & 1 & 5 \\ 0 & 0 & 0 \end{pmatrix}$$

$$F_A = \{(1, -2, -3), (0, 1, 5)\} \Rightarrow rang(A) = 2 = \dim(F_A)$$

Rango y nulidad de una matriz

<u>Definición:</u> se denomina nulidad de una matriz $A \in M(m, n, \mathbb{R})$ a la dimensión de su espacio nulo N(A).

Teorema: rango y nulidad

Sea
$$A \in M(m, n, \mathbb{R})$$
 entonces $rang(A) + nulidad(A) = n$

Ejemplo: encontrar una base para el espacio fila y para el espacio nulo de

$$A = \begin{pmatrix} 1 & 2 & -1 & 1 \\ 2 & 4 & -3 & 0 \\ 1 & 2 & 1 & 5 \end{pmatrix}.$$

$$\begin{pmatrix}
1 & 2 & -1 & 1 \\
2 & 4 & -3 & 0 \\
1 & 2 & 1 & 5
\end{pmatrix}
\xrightarrow{-2f_1+f_2}
\begin{pmatrix}
1 & 2 & -1 & 1 \\
0 & 0 & -1 & -2 \\
0 & 0 & 2 & 4
\end{pmatrix}
\xrightarrow{-2f_2+f_3}
\begin{pmatrix}
1 & 2 & -1 & 1 \\
0 & 0 & 1 & 2 \\
0 & 0 & 0 & 0
\end{pmatrix}
\xrightarrow{f_2+f_1}
\begin{pmatrix}
1 & 2 & 0 & 3 \\
0 & 0 & 1 & 2 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\Rightarrow F_A = \{(1,2,0,3),(0,0,1,2)\}$$

$$rang(A) = 2$$
 pero $nulidad(A) = n - rang(A) = 4 - 2 = 2$

Espacio nulo de $\begin{pmatrix} 1 & 2 & 0 & 3 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ es el siguiente:

$$x_1 + 2x_2 + 3x_4 = 0 \land x_3 + 2x_4 = 0$$

$$x_1 = -2x_2 - 3x_4 \wedge x_3 = -2x_4$$

$$\Rightarrow (x_1, x_2, x_3, x_4) = (-2x_2 - 3x_4, x_2, -2x_4, x_4) = x_2(-2, 1, 0, 0) + x_4(-3, 0, -2, 1)$$

$$\Rightarrow N(A) = \{(-2,1,0,0), (-3,0,-2,1)\} \Rightarrow \dim(N(A)) = 2 = nulidad(A)$$

Teorema: la dimensión del espacio fila de una matriz $A \in M(m, n, \mathbb{R})$ (rango(A)) es igual a la dimensión de su espacio columna.

Observaciones importantes: sea $A \in M(m, n, \mathbb{R})$

- a) El número de filas linealmente independiente de A es igual al número de columnas linealmente independientes de A.
- b) rango(A) = número de filas linealmente independientes = igual al número de columnas linealmente independientes.
- c) $rango(A) = rango(A^t)$.
- d) Lo anteriormente dicho, no significa que el subespacio generado por las filas sea el mismo que el generado por las columnas, sino sólo que las dimensiones de estos subespacios son iquales.

Bases del espacio columna:

Para encontrar una "base del espacio columna" de $A \in M\left(m,n,\mathbb{R}\right)$, se reduce $A \sim R$ y se identifican las columnas de R correspondientes a las variables dependientes (aquellas que tienen los coeficientes 1 como pivotes). Las columnas correspondientes a A serán linealmente independientes y formarán una base para el espacio columna.

Observación:

R nos dice sólo cuales columnas de A para formar una base del espacio columna de A. no podemos usar los vectores columnas de R, ya que en general los espacios columnas de A y R son diferentes.

Ejemplo: sea
$$A = \begin{pmatrix} 1 & -2 & 1 & 1 & 2 \\ -1 & 3 & 0 & 2 & -2 \\ 0 & 1 & 1 & 3 & 4 \\ 1 & 2 & 5 & 13 & 5 \end{pmatrix}$$

$$\begin{pmatrix}
1 & -2 & 1 & 1 & 2 \\
-1 & 3 & 0 & 2 & -2 \\
0 & 1 & 1 & 3 & 4 \\
1 & 2 & 5 & 13 & 5
\end{pmatrix}
\xrightarrow{f_1+f_2 \atop -f_1+f_4}$$

$$\begin{pmatrix}
1 & -2 & 1 & 1 & 2 \\
0 & 1 & 1 & 3 & 0 \\
0 & 1 & 1 & 3 & 4 \\
0 & 4 & 4 & 12 & 3
\end{pmatrix}
\xrightarrow{f_2+f_3 \atop -4f_2+f_4}$$

$$\begin{pmatrix}
1 & -2 & 1 & 1 & 2 \\
0 & 1 & 1 & 3 & 0 \\
0 & 0 & 0 & 0 & 4 \\
0 & 0 & 0 & 0 & 3
\end{pmatrix}$$

$$\Rightarrow C_A = \left\{ \begin{pmatrix} 1 \\ -1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} -2 \\ 3 \\ 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 2 \\ -2 \\ 4 \\ 5 \end{pmatrix} \right\}$$
 (no es el único)

Método alternativo para encontrar una base para el espacio columna

Dados que las columnas de A son las filas de A^t, se puede reducir por filas A^t y encontrar una base para el espacio fila de ella. Luego se pueden trasponer estos vectores fila para obtener una base para el espacio columna de A.

Ejemplo: sea
$$A = \begin{pmatrix} 1 & -2 & 1 & 1 & 2 \\ -1 & 3 & 0 & 2 & -2 \\ 0 & 1 & 1 & 3 & 4 \\ 1 & 2 & 5 & 13 & 5 \end{pmatrix}$$

$$\begin{pmatrix}
1 & -1 & 0 & 1 \\
-2 & 3 & 1 & 2 \\
1 & 0 & 1 & 5 \\
1 & 2 & 3 & 13 \\
2 & -2 & 4 & 5
\end{pmatrix}
\xrightarrow{\begin{array}{c}
2f_1+f_2 \\
-f_1+f_3 \\
-f_1+f_4 \\
-2f_1+f_5
\end{array}}
\begin{pmatrix}
1 & -1 & 0 & 1 \\
0 & 1 & 1 & 4 \\
0 & 1 & 1 & 4 \\
0 & 3 & 3 & 12 \\
0 & 0 & 4 & 3
\end{pmatrix}
\xrightarrow{\begin{array}{c}
-f_2+f_3 \\
-3f_2+f_4 \\
y_4f_5
\end{array}}
\begin{pmatrix}
1 & -1 & 0 & 1 \\
0 & 1 & 1 & 4 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & \frac{3}{4}
\end{pmatrix}$$

$$\Rightarrow C_A = \left\{ \left(1, -1, 0, 1\right)^t, \left(0, 1, 1, 4\right)^t, \left(0, 0, 1, \frac{3}{4}\right)^t \right\}$$

<u>Observación</u>: la imagen de una matriz A, que se denota Img(A), es equivalente al espacio columna, Im g(A) = espacio columna.

<u>Intersección de dos subespacios:</u> sea V y W subespacios de un espacio vectorial E. La intersección $V \cap W$ es también un subespacio de E.

Ejemplo: sea $E = \mathbb{R}^3$, $V = \{(x, y, z)/2x - 3y + z = 0\}$ y $W = \{(x, y, z)/x - y + 2z = 0\}$. Determine el subespacio $V \cap W$.

$$\begin{pmatrix} 2 & -3 & 1 \\ 1 & -1 & 2 \end{pmatrix} \xrightarrow{f_1 \leftrightarrow f_2} \begin{pmatrix} 1 & -1 & 2 \\ 0 & -1 & -3 \end{pmatrix} \xrightarrow{-f_2 + f_1} \begin{pmatrix} 1 & 0 & 5 \\ 0 & 1 & 3 \end{pmatrix}$$

$$x = -5z = -5t \land y = -3z = -3t$$

$$(x, y, z) = (-5t, -3t, t) = t(-5, -3, 1)$$

$$\Rightarrow V \cap W = \{ t(-5, -3, 1) / t \in \mathbb{R} \} \text{ una recta que pasa por el origen}$$

<u>Suma de dos subespacios</u>: sea V y W subespacios de un espacio vectorial E. La intersección V+W es también un subespacio de E.

Sí $\begin{pmatrix} x & y \\ z & w \end{pmatrix} \in V + W$, entonces existen $a, b, p, q \in \mathbb{R}$ tales que:

$$\begin{pmatrix} x & y \\ z & w \end{pmatrix} = \begin{pmatrix} a & a \\ 0 & b \end{pmatrix} + \begin{pmatrix} p & q \\ 0 & q \end{pmatrix} = \begin{pmatrix} a+p & a+q \\ 0 & b+q \end{pmatrix}$$

$$x = a + p$$

$$y = a + q$$

$$z = 0$$

$$w = b + q$$

$$\Rightarrow V + W = \left\{ \begin{pmatrix} x & y \\ 0 & w \end{pmatrix} / x, y, w \in \mathbb{R} \right\}$$

Referencias bibliográficas

Anton, H. (2004) Introducción al Álgebra Lineal. (5^{ta} edición). Limusa: México.

Arce, C., Castillo, W., González, J. (2004). *Álgebra Lineal.* (3^{ra} edición). Editorial UCR: Costa Rica.

Barrantes, H. (2012). Elementos de Álgebra Lineal. EUNED: Costa Rica.

Grossman, S., Flores, J. (2012). Álgebra Lineal. (7^{ma} edición). Mc-GrawHill: México.

Sánchez, Jesús. (2020). *Álgebra lineal fundamental: teoría y ejercicios*. Editorial UCR: Costa Rica.

Sánchez, Jesús. (2020). MA1004 álgebra lineal: Exámenes resueltos. En revisión.