Информатика. Динамическое программирование. Задания 18, 23.

Содержание

1	Что такое динамическое программирование?											
	1.1	Пример	2									
2 \(Pas	вбор №23 с вебинара	3									
	2.1	Пример 1	3									
	2.2	Пример 2	4									
	2.3	Пример 3	5									
3	Pas	вбор №18 с вебинара	6									
	3.1	Пример 1	6									
	3.2	Пример 2	8									
	3.3	Пример 3	10									

1 Что такое динамическое программирование?

Определение

Динамическое программирование – это способ решения сложных задач путём разбиения их на более простые подзадачи.

1.1 Пример

Представьте, что у нас есть болото, в котором сидит кузнечик. Он умеет прыгать только вперед, при этом только на одну либо через одну кочку. Сколько способов есть у кузнечика допрыгать от начала до конца?

Решение

Запишем все способы последовательно:

Если посмотреть внимательно, то можно заметить, что в этом списке скрываются числа Фибоначчи.

Отсюда мы можем записать рекуррентное соотношение:

$$a_n=1$$
, при $n\leq 2$

$$a_n = a_{n-1} + a_{n-2}$$
, при $n > 2$

2 Разбор №23 с вебинара

2.1 Пример 1

У исполнителя Калькулятор две команды, которым присвоены номера:

- 1. Прибавь 1
- 2. Умножь на 2

Сколько есть команд, которые число 1 преобразуют в число 16?

Решение

Запишем ряд целых чисел от 1 до 16:

```
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
```

Подобно задаче с кузнечиком, запишем количество способов добраться в нужное число из предыдущих значений.

```
1 2 2 4 4 6 6 10 10 14 14 20 20 26 26 36
```

Получаем общее число способов – 36.

Решим эту задачу с помощью программирования.

```
def f(a, b):
    if a > b: return 0
    if a == b: return 1
    return f(a + 1, b) + f(a * 2, b)

print(f(1, 16))
```

Ответ: 36.

2.2 Пример 2

Исполнитель Июнь15 преобразует число на экране. У исполнителя есть две команды, которым присвоены номера:

- 1. Прибавь 1
- 2. Умножь на 2

Первая команда увеличивает число на экране на 1, вторая умножает его на 2. Программа для исполнителя Июнь15 — последовательность команд. Сколько существует программ, для которых при исходном числе 2 результатом является число 31 и при этом траектория вычислений содержит число 15 и не содержит число 22?

Решение

Решим эту задачу с помощью программирования.

```
def f(a, b):
    if (a > b) or a == 22: return 0
    if a == b: return 1
    return f(a + 1, b) + f(a * 2, b)

print(f(2, 15) * f(15, 31))
```

Ответ: 13.

2.3 Пример 3

Исполнитель K17 преобразует число, записанное на экране. У исполнителя есть три команды, которым присвоены номера:

- 1. Прибавь 1
- 2. Прибавь 2
- 3. Умножь на 2

Программа для исполнителя K17 – это последовательность команд. Сколько существует программ, для которых при исходном числе 3 результатом является число 13 и при этом траектория вычислений содержит число 9 и число 11?

Решение

Решим эту задачу с помощью программирования.

```
def f(a, b):
    if a > b: return 0
    if a == b: return 1
    return f(a + 1, b) + f(a + 2, b) + f(a * 2, b)

print(f(3, 9) * f(9, 11) * f(11, 13))
```

Ответ: 68.

Важно!

Для того, чтобы функция не считала одни и те же значения несколько раз, в первые строки кода нужно добавить модуль functools. Это особенно полезно для функций, которые требуют больших вычислительных затрат или часто вызываются с одними и теми же аргументами.

Вставка модуля выглядит следующим образом:

from <u>functools</u> import lru_cache
@lru_cache(None)

3 Разбор №18 с вебинара

3.1 Пример 1

Исходные данные записаны в файле **18-5.xls** в виде электронной таблицы прямоугольной формы. Робот может двигаться только вниз или вправо. Определите максимальную и минимальную денежную сумму, которую может собрать Робот, пройдя из левой верхней клетки в правую нижнюю. В ответе укажите два числа — сначала максимальную сумму, затем минимальную.

Решение

Выделяем нашу таблицу, ставим в ней толстые внешние границы. Копируем таблицу и вставляем чуть ниже, при этом вставку используем «только с учетом форматирования».

В ячейку A12 копируем значение ячейки A1, в ячейку B12 пишем формулу: =A12+B1 и растягиваем её вправо до конца таблицы, а в ячейку A13 – формулу: =A12+A2 и растягиваем её вниз до конца таблицы. В ячейку B13 впишем формулу =MAKC(B12;A13)+B2 и растягиваем её вниз и вправо до конца таблицы.

Получаем, что ответ для максимальной суммы – 1350.

							A . \ \ \ \						
	Α	В	С	D	E	F	G	Н	1	J			
L	93	31	10	58	59	82	40	19	16	22			
2	58	51	94	93	27	59	84	41	49	39			
3	18	32	84	81	25	86	21	33	100	8			
1	82	37	6	59	95	57	87	6	88	25			
5	27	39	6	60	60	ტ 26	80	24	20	7			
5	12	29	87	55	78	22	36	60	81	69			
7	72	23	10	29	21	36	77	24	33	4			
3	52	50	34	38	31	15	30	28	13	60			
)	59	73	97	78	39	97	9	77	88	91			
0	29	28	9	72	28	86	69	87	17	75			
1													
2	93	124	134	192	251	333	373	392	408	430			
3	151	202	296	389	416	475	559	600	649	688			
4	169	234	380	470	495	581	602	635	749	757			
5	251	288	386	529	624	681	768	774	862	887			
6	278	327	392	589	684	710	848	872	892	899			
7	290	356	479	644	762	784	884	944	1025	1094			
8	362	385	489	673	783	820	961	985	1058	1098			
9	414	464	523	711	814	835	991	1019	1071	1158			
0	473	546	643	789	853	950	1000	1096	1184	1275			
1	502	574	652	861	889	1036	1105	1192	1209	1350			

Для поиска минимального значения аналогично нажмём сочетание клавиш Ctrl+H и заменим слово МАКС на МИН.

	Α	В	С	D	Е	F	G	Н		J
	93	31	10	58	59	82	40	19	16	22
	58	51	94	93	27	59	84	41	49	39
	18	32	84	81	25	86	21	33	100	8
	82	37	6	59	95	57	87	6	88	25
	27	39	6	60	60	26	80	24	20	7
	12	29	87	55	78	22	36	60	81	69
	72	23	10	29	21	36	77	24	33	4
	52	50	34	38	31	15	30	28	13	60
	59	73	97	78	39	97	9	77	88	91
L	29	28	9	72	28	86	69	87	17	75
H	93	124	134	192	251	333	373	392	408	430
	151	175	228	285	278	337	421	433	457	469
	169	201	285	366	303	389	410	443	543	477
	251	238	244	303	398	446	497	449	537	502
	278	277	250	310	370	396	476	473	493	500
	290	306	337	365	443	418	454	514	574	569
	362	329	339	368	389	425	502	526	559	563
	414	379	373	406	420	435	465	493	506	566
	473	452	470	484	459	532	474	551	594	657
	502	480	479	551	487	573	543	630	611	686

Получим ответ для минимальной суммы: 686.

Ответ: 1350 686.

3.2 Пример 2

Квадрат разлинован на $N \times N$ клеток (1 < N < 30). Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: вправо или вниз. По команде вправо Робот перемещается в соседнюю правую клетку, по команде вниз — в соседнюю нижнюю. Квадрат ограничен внешними стенами. Между соседними клетками квадрата также могут быть внутренние стены. Сквозь стену Робот пройти не может.

Перед каждым запуском Робота в каждой клетке квадрата лежит монета достоинством от 1 до 100. Посетив клетку, Робот забирает монету с собой; это также относится к начальной и конечной клеткам маршрута Робота.

В «угловых» клетках поля – тех, которые справа и снизу ограничены стенами, Робот не может продолжать движение, поэтому накопленная сумма считается итоговой. Таких конечных клеток на поле может быть несколько, включая правую нижнюю клетку поля. При разных запусках итоговые накопленные суммы могут различаться.

Определите максимальную и минимальную денежные суммы, среди всех возможных итоговых сумм, которые может собрать Робот, пройдя из левой верхней клетки в конечную клетку маршрута.

Исходные файлы записаны в файле **18-180.xls** в виде электронной таблицы размером N x N, каждая ячейка которой соответствует клетке квадрата. В ответе укажите два числа — сначала минимальную сумму, затем максимальную.

Решение

Аналогично предыдущей задаче: выделяем нашу таблицу, ставим в ней толстые внешние границы. Копируем таблицу и вставляем чуть ниже, при этом вставку используем «только с учетом форматирования».

В ячейку A12 копируем значение ячейки A1, в ячейку B12 пишем формулу: =A12+B1 и растягиваем её вправо до конца таблицы, а в ячейку A13 – формулу: =A12+A2 и растягиваем её вниз до конца таблицы. В ячейку B13 впишем формулу =MAKC(B12;A13)+B2 и растягиваем её вниз и вправо до конца таблицы.

Однако теперь у нас нет стен и для того чтобы их вернуть, снова скопируем исходную таблицу и вставим только форматирование в нижнюю таблицу. Сделать

это можно с помощью раздела «Специальная вставка» – «Форматы».

В ячейки E26:E35, I24:I27, M35:M41, S27:S36 робот не может прийти слева, а в ячейки J28:O28, I35:L35, P37:R37, B26:D26 он не может прийти сверху. Для этих ячеек можно скопировать формулы с первого столбца и первой строки соответственно.

Максимальное значение получилось – 1978.

Α	В	С	D	Е	F	G	Н	-1	J	K	L	M	N	a	Р	Q	R	S	Т
11	74	149	224	256	277	311	367	391	438	480	494	519	592	660	666	720	799	875	883
90	142	208	271	335	342	351	425	449	513	574	602	664	675	746	777	812	828	925	946
150	214	293	365	410	471	532	609	498	576	649	711	723	808	885	976	1070	1126	1138	1156
225	267	298	444	484	489	548	683	538	581	694	730	774	859	954	1021	1159	1250	1267	1282
241	319	397	418	564	624	681	731	593	637	734	768	805	938	1026	1065	1221	1308	1329	1343
313	392	418	458	613	691	705	738	607	656	753	787	816	1021	1119	1158	1288	1378	1400	1425
348	431	473	550	659	698	721	758	765	772	786	803	808	895	948	1200	1366	1450	1407	1434
401	467	551	562	723	774	780	793	809	824	839	858	864	985	1031	1276	1454	1549	1425	1440
473	520	608	619	736	815	833	849	859	873	882	891	908	1021	1107	1351	1548	1639	1441	1446
514	562	690	789	831	868	878	884	897	912	918	928	943	1049	1129	1356	1573	1719	1456	1467
547	600	771	836	857	876	892	910	926	941	957	969	989	1091	1181	1430	1596	1733	1490	1506
612	677	824	928	946	991	1008	1028	1036	1053	1067	1078	1098	1131	1250	1447	1633	1785	1555	1570
684	718	875	975	1023	1074	1094	1108	1123	1139	1158	1169	1189	1200	1255	1493	1704	1809	1596	1615
748	842	959	1057	1076	1112	1135	1198	1277	1291	1327	1351	1200	1276	1327	1515	1774	1888	1625	1630
775	879	1010	1132	1198	1215	1256	1262	1291	1328	1379	1421	1206	1327	1403	1534	1796	1926	1664	1685
870	968	1086	1222	1282	1307	1345	1359	1386	1432	1500	1507	1281	1405	1442	1518	1562	1628	1673	1697
933	1043	1148	1275	1317	1389	1438	1444	1504	1574	1593	1643	1313	1485	1524	1595	1624	1673	1700	1715
029	1078	1192	1364	1395	1452	1519	1538	1582	1614	1634	1680	1326	1518	1603	1661	1717	1733	1790	1829
110	1182	1271	1430	1519	1568	1597	1626	1631	1706	1768	1777	1389	1573	1622	1680	1729	1795	1873	1953
177	1258	1321	1493	1588	1662	1671	1711	1775	1821	1874	1913	1464	1590	1673	1743	1793	1875	1893	1978

Для поиска минимального значения аналогично нажмём сочетание клавиш Ctrl+ H и заменим слово МАКС на МИН.

В	С	D	Е	F	G	Н	1	J	K	L	М	N	0	Р	Q	R	S	Т
74	149	224	256	277	311	367	391	438	480	494	519	592	660	666	720	799	875	883
126	185	232	296	284	293	351	375	439	500	522	581	592	663	694	729	745	795	816
190	264	304	341	345	354	428	424	487	560	584	593	677	740	785	823	801	807	825
232	237	316	356	350	366	440	464	469	514	533	577	628	697	742	831	892	824	839
319	397	418	436	410	423	471	519	513	553	567	598	677	749	781	843	901	845	853
386	407	447	485	477	437	444	533	532	551	570	581	664	757	796	863	933	916	878
387	429	506	531	484	453	464	471	478	492	509	514	601	654	696	774	846	923	887
123	501	512	595	535	459	472	487	493	507	526	520	610	656	732	820	915	941	893
170	527	523	608	576	477	488	497	507	516	525	537	573	649	724	818	908	957	898
512	594	622	703	613	487	493	506	521	522	532	547	575	597	602	627	707	972	909
550	631	669	729	621	501	511	522	536	538	544	564	606	649	676	650	664	1006	925
515	668	760	818	666	518	531	530	547	552	555	575	608	677	693	687	716	1071	940
549	700	747	895	717	538	545	545	561	571	566	586	597	602	648	719	740	1112	959
743	784	829	948	753	561	608	687	701	737	761	597	673	653	670	740	819	1141	964
780	831	904	970	770	602	608	622	659	710	752	603	654	729	689	711	749	1180	985
369	907	994	1030	795	640	622	649	695	763	759	678	732	766	842	886	952	961	973
944	969	1022	1057	867	689	628	688	758	777	809	710	790	805	876	905	950	977	988
979	1013	1102	1088	924	756	647	691	723	743	780	723	756	835	893	949	965	1022	1027
)51	1092	1158	1177	973	785	676	681	756	805	789	786	811	830	849	861	923	1001	1081
127	1142	1205	1246	1047	794	716	745	791	844	828	861	828	879	912	911	991	1009	1034

Минимальное значение равно 1034.

Ответ: 1034 1978.

3.3 Пример 3

Квадрат разлинован на $N \times N$ клеток (1 < N < 12). Исполнитель Змейка может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: вправо или вниз. По команде вправо Змейка перемещается в соседнюю правую клетку; по команде вниз – в соседнюю нижнюю. Квадрат ограничен внешними стенками, сквозь стену Змейка пройти не может. В некоторых клетках квадрата расположены двоичные цифры (0 или 1). Посетив клетку с цифрой, Змейка подставляет её к своей голове. Например, посетив клетку с единицей, Змейка вида «1011» превратится в «10111», а посетив клетку с нулём – в «10110». Определите максимальное и минимальное значение Змейки после того, как она пройдет из левой верхней клетки в правую нижнюю.

Исходные файлы записаны в файле **18-147.xls** в виде электронной таблицы размером N x N, каждая ячейка которой соответствует клетке квадрата. В ответе укажите два числа — сначала максимальное значение, затем минимальное. Ответы запишите в десятичной системе счисления.

Решение

Аналогично предыдущей задаче: выделяем нашу таблицу, ставим в ней толстые внешние границы. Копируем таблицу и вставляем чуть ниже, при этом вставку используем «только с учетом форматирования».

В ячейку A13 вставляем значение 1. Так как в первой строке таблицы нет значений, то все ячейки будут равны 1.

В ячейку A14 впишем формулу: =ЕСЛИ(ЕПУСТО(A2); A13; A13*10+A2) и растянем её вниз. В ячейку B14 впишем формулу:

=ЕСЛИ(ЕПУСТО(B2);МАКС(A14; B13);МАКС(A14; B13) * 10 + B2.

K	J	1	Н	G	F	E	D	С	В	A
	0		1				0		0	1
	0		-	0		1			0	
		1				-			1	0
				1		0	0			
								1		
	0		0			1				0
		1			0					
				0			0	1		1
	0									
					1	1		0		
	1	1	1	1	1	1	1	1	1	1
1001	10010	1001	1001	100	100	100	100	10	10	1
10010	10010	10010	10010	10010	1001	1001	100	10	10	1
10010	100101	100101	10010	10010	1001	1001	101	101	101	10
10100	101001	101001	101001	101001	10100	10100	1010	101	101	10
10100	101001	101001	101001	101001	10100	10100	1011	1011	101	10
1010010	10100100	1010010	1010010	101001	101001	101001	1011	1011	101	100
1010010	10100101	10100101	1010010	1010010	1010010	101001	1011	1011	101	100
1010010	10100101	10100101	10100100	10100100	1010010	101110	101110	10111	1001	1001
10100101	101001010	10100101	10100100	10100100	1010010	101110	101110	10111	1001	1001
10100101	101001010	10111011	10111011	10111011	10111011	1011101	101110	101110	1001	1001

Получаем, что максимальное значение – 101001010_2 . По условию его нужно перевести в десятичную систему счисления: $101001010_2 = 330_{10}$.

Для поиска минимального значения аналогично нажмём сочетание клавиш Ctrl+ H и заменим слово МАКС на МИН.

4	A	В	C	D	E	F	G	Н		J	K
	1										
		0		0				1		0	
					1		0				1
	0	1							1		
				0	0		1				
			1							٥	
	0				1			0		0	
						0			1		
	1		1	0			0				
)										0	
1			0		1	1					
2											
3	1	1	1	1	1	1	1	1	1	1	1
1	1	10	1	10	1	1	1	11	1	10	1
5	1	1	1	1	11	1	10	10	1	1	11
5	10	11	1	1	1	1	1	1	11	1	1
7	10	10	1	10	10	1	11	1	1	1	1
3	10	10	11	10	10	1	1	1	1	1	1
9	100	10	10	10	101	1	1	10	1	10	1
)	100	10	10	10	10	10	1	1	11	10	1
L	1001	10	101	100	10	10	10	1	1	1	1
2	1001	10	10	10	10	10	10	1	1	10	1
3	1001	10	100	10	101	101	10	1	1	1	1
1											

Получаем ответ: 1 (как в двоичной, так и в десятичной системе счисления).

Ответ: 330 1.