

Rapport mini-projet

Modélisation – Représentations et analyse des modèles

Sujet No. 25 Un système proie-prédateur qui tourne au chaos

> Réalisé par le groupe no. 25A : Théo SCHNEIDER Urbain SCHNEIDER Tom VIDAL

Table des matières

1	Introduction (1 page max)	1
	1.1 Contexte et objectif	1
	1.2 Etat de l'art	1
	1.3 Contribution	1
	1.4 Structure du rapport	1
2	Modèle à état discret (2 pages max)	2
	2.1 Modèle proposé	2
	2.2 Etude théorique des points d'équilibre	2
	2.3 Hypothèses du modèle	
3	Résultats de simulation et analyse du modèle à état discret (2 pages max)	4
4	Modèle à évènements discrets (2 pages max)	5
5	Conclusion (1 page max)	6
	5.1 Conclusion sur les modèles proposés	6
	5.2 Perspectives	
A	nnexes	6
		_
A	nnexe 1	7

Introduction (1 page max)

1.1 Contexte et objectif

La modélisation des dynamiques de populations a toujours été un sujet d'intérêt majeur afin de comprendre l'évolution de la biodiversité. En effet, la modélisation de l'évolution d'une population permet d'anticiper les espèces en danger et de planifier la protection de la biodiversité.

En particulier, les systèmes proie-prédateurs permettent de modéliser les interactions entre différentes espèces. On peut ainsi prévoir la prolifération d'espèces dangeureuses en modélisant la dynamique de chasse entre des proies et des prédateurs. La formalisation à travers un système d'équations différentielles multiples permet aussi de prendre en compte l'influence de l'environnement.

Le principal défi avec de tels systèmes est l'étude de la stabilité, et donc de la pertinence, des solutions trouvées sur le temps long. En effet, les systèmes proie-prédateur ont tendance à avoir des comportements chaotiques.

1.2 Etat de l'art

Historiquement, l'étude de systèmes proie-prédateur est très liées à la modélisation des populations. En particulier, comme le rappelle [1]. En effet, dans un tel système, on considère que la population de proie seule est capable de proliférer. Se pose donc la question du modèle à utiliser afin de représenter la disponibilité des ressources. Les modèles les plus classiques afin de décrire des sytèmes proie-prédateurs sont rappelés dans [2] sous la forme générale :

$$\begin{cases} \dot{x}(t) = ax(t) - \phi(x(t))y(t) \\ \dot{y}(t) = -by(t) + c\phi(x(t))y(t) \end{cases}$$

$$(1.1)$$

avec différents choix possibles pour la fonction ϕ en fonction de la modélisation choisie.

Après avoir obtenu un système différentiel cohérent, il s'agit ensuite de le transformer en un système à temps discret. En effet, on peut dans une bonne approximation étudier les interactions proie prédateur de manière discréte dans le temps, tous les six mois par exemple.

1.3 Contribution

Ce rapport se propose d'étudier un système proie-prédateur dans lequel on prend en compte le nombre fini de ressource à disposition de chaque espèce. Cela revient à dire que s'il y a plus de proies à ressources constantes, alors les différents membres de cette espèce vont rentrer en compétition les uns avec les autres pour les ressources disponibles. Concrètement, cela revient à ajouter un facteur d'atténuation de la forme $-x(t)^2$ (resp. $-y(t)^2$) à l'équation régissant la population de proies (resp. de prédateurs).

Afin de mieux mettre en évidence l'influence de ce facteur, l'équation de base choisie est assez simple. Comme on le verra ci-après, le modèle étudié se base sur une variation du modèle proposé traditionnellement par Lotka et Volterra et décrit dans [?].

1.4 Structure du rapport

Le Chapitre 2 présente le modèle mathématique à état discret. Le Chapitre 3 porte sur l'analyse des résultats de simulation obtenus en utilisant le modèle présenté au chapitre précédent. Le Chapitre 4 se focalise sur le développement du modèle à évènements discrets. Finalement, les conclusions et perspectives sont présentées.

Modèle à état discret (2 pages max)

Ce chapitre se propose d'étudier le système présenté en (2.1) en le transformant sous la forme d'un système à temps discret, puis en en étudiant les points d'équilibre et leur stabilité.

2.1 Modèle proposé

Le système continu d'origine du modèle étudié ici est le suivant :

$$\begin{cases} \dot{x}(t) = \alpha x(t) - \beta x(t)y(t) - \gamma x(t)^2 \\ \dot{y}(t) = -\rho y(t) + \sigma x(t)y(t) - \nu y(t)^2 \end{cases}$$
(2.1)

où α , β , γ , ρ , σ et ν sont des constantes positives.

Afin de pouvoir mener une étude plus approfondie de ce système, on cherche ensuite à le discrétiser dans le temps sous la forme de deux suites chaînées définies par récurrence.

En utilisant l'approximation $\dot{x}(t) = x_{n+1} - x_n$ (resp. $\dot{y}(t) = y_{n+1} - y_n$), on obtient immédiatement le système à temps discret suivant :

$$\begin{cases} x_{n+1} = (1+\alpha)x_n - \beta x_n y_n - \gamma x_n^2 \\ y_{n+1} = (1-\rho)y_n + \sigma x_n y_n - \nu y_n^2 \end{cases}$$
 (2.2)

2.2 Etude théorique des points d'équilibre

Maintenant que nous disposons d'un système d'équations modélisant la dynamique de deux populations de proies et de prédateurs, il s'agit d'en étudier les points d'équilibre.

On peut tout d'abord remarquer que le point $(x_n, y_n) = (0, 0)$ est un point d'équilibre trivial assez peu intéressant pour le système 2.2.

Si l'on cherche ensuite d'autres potentiels points d'équilibre, on est amené à résoudre le système d'équations:

$$\begin{cases} x^* = (1+\alpha)x^* - \beta x^*y^* - \gamma(x^*)^2 \\ y^* = (1-\rho)y^* + \sigma x^*y^* - \nu(y^*)^2 \end{cases}$$
 (2.3)

d'inconnues x^* et y^* supposées positifs et non nuls.

Sans se soucier pour l'instant des conditions d'existence, en simplifiant les deux lignes par x^* (resp. y^*) puis en résolvant, on obtient une solution possible :

$$\begin{cases} x^* = \frac{1}{\gamma} (\alpha - \beta y^*) \\ y^* = \frac{\sigma \alpha - \rho \gamma}{\beta + \nu \gamma} \end{cases}$$
 (2.4)

Or pour qu'un tel point d'équilibre existe, il doit vérifier $x^*>0$ et $y^*>0$, c'est-à-dire les deux conditions : $\sigma\alpha>\rho\gamma$ et $\alpha>\beta y^*$.

On s'intéresse maintenant à la stabilité des deux points d'équilibre ainsi obtenus.

Pour cela, on va chercher à calculer le linéarisé tangent du système 2.2 aux points d'équilibre (0,0) et 2.4. Avant cela, on va poser les notations suivantes :

$$f: (x,y) \to (1+\alpha)x - \beta xy - \gamma x^2 \tag{2.5}$$

$$g:(x,y) \to (1-\rho)y + \sigma xy - \nu y^2$$
 (2.6)

de sorte qu'on a : $x_{n+1} = f(x_n, y_n)$ et $y_{n+1} = g(x_n, y_n)$. Alors on a les dérivées partielles suivantes :

$$\frac{\partial f}{\partial x}(x,y) = 1 + \alpha - \beta y - 2\gamma x \tag{2.7}$$

$$\frac{\partial f}{\partial y}(x,y) = -\beta x \tag{2.8}$$

$$\frac{\partial g}{\partial x}(x,y) = \sigma y \tag{2.9}$$

$$\frac{\partial g}{\partial y}(x,y) = 1 - \rho + \sigma x - 2\nu y \tag{2.10}$$

D'où les matrices suivantes pour le linéarisé tangent aux deux points d'équilibre :

$$J_1(0,0) = \begin{bmatrix} 1 + \alpha & 0 \\ 0 & 1 - \rho \end{bmatrix} \quad \text{et} \quad J_2(x^*, y^*) = \begin{bmatrix} 1 - \alpha + \beta y^* & -\beta x^* \\ \sigma y^* & 1 - \rho + \sigma x^* + 2\nu y^* \end{bmatrix}$$
(2.11)

On peut alors calculer l'expression du polynôme caractéristique de ces deux matrices et en déduire par le critère de Jury une condition de stabilité pour ces points d'équilibre.

Pour l'équilibre en (0,0), on trouve : $\chi_{(0,0)}(X) = (X - (1+\alpha))(X - (1-\rho))$ et on remarque que $(1+\alpha)$ est une valeur propre de module strictement supérieur à 1. Ainsi, le point (0,0) est un point d'équilibre instable pour le système considéré.

Pour ce qui est de l'équilibre en (x^*, y^*) , on peut utiliser le critère de Jury pour obtenir une série d'inégalités entre les différents paramètres du problème qui caractérisent exactement les conditions d'équilibre stable.

2.3 Hypothèses du modèle

Le modèle proposé plus haut se base implicitement sur plusieurs hypothèses qui simplifient considérablement l'évolution d'une population.

En premier lieux, il suppose que l'évolution des population de proies et de prédateurs ne dépende que des conditions initiales imposées au système. En particulier, ce modèle considère que tous les facteurs multiplicatifs présents dans le système 2.2 sont des constantes. Ainsi, on ne prend pas en compte l'influence de facteurs environnementaux comme les saisons ou les évènements météorologiques extraordinaires.

De plus, le modèle de compétition intra-espèce suppose aussi que les deux espèces sont parfaitement isolées du reste de l'univers. Par exemple, on ne suppose pas la présence d'une deuxième espèce de prédateurs qui viendrait réduire la population de proies.

En début de chapitre, il est conseillé d'annoncer ce qui va être traité par la suite et dans quel but. Ensuite, il s'agit de traiter la problématique exposée en début du chapitre. Il est important de citer les différentes sources utilisées pour réaliser votre mini-projet.

Il s'agit ensuite de réexposer le problème de modélisation en s'appuyant sur un formalisme mathématique détaillé, de préciser et d'analyser les hypothèses de modélisation, etc.

Ce chapitre permettra de répondre notamment aux questions I.1, I.2 et I.3 du sujet, en précisant les méthodes théoriques utilisées.

Résultats de simulation et analyse du modèle à état discret (2 pages max)

Le Chapitre 3 porte sur la présentation des résultats de simulation (ne pas oublier de préciser les valeurs numériques des paramètres considérés) et l'analyse des résultats de simulation obtenus en utilisant le modèle à état discret. Ce chapitre permettra de valider en simulation le modèle à état continu, complétant les réponses aux questions I.1, I.2 et I.3 du sujet.

Modèle à évènements discrets (2 pages max)

Le Chapitre 4 porte sur le développement d'un $mod\`ele$ à évènements discrets. On ne demande pas de simulateur pour le mod $\`ele$ à évènements discrets.

Ce chapitre permettra de répondre à la question II.1 du sujet.

Conclusion (1 page max)

5.1 Conclusion sur les modèles proposés

La conclusion résume les grandes lignes du rapport (principe des solutions, principaux résultats et limitations). Elle doit contenir le message essentiel que l'on souhaite faire passer et montrer l'intérêt des approches proposées dans le rapport.

5.2 Perspectives

Des perspectives seront demandées dans la plupart des projets que vous allez faire. Il est important de faire apparaître des pistes envisagées pour la continuation de votre projet.

Annexe 1 (si besoin)

Style de rédaction

Un rapport technique se rédige dans un style neutre. Il convient en particulier d'éviter un vocabulaire familier ou trop littéraire. On recherche la concision et la clarté en évitant les phrases trop longues et les termes imprécis.

L'usage des pronoms personnels (par exemple nous) est à limiter à de rare cas précis (par exemple pour mettre l'accent sur un choix déterminant ou pour se démarquer par rapport aux autres).

Une énumération est constituée d'objets qui se situent sur le même plan, par ailleurs les éléments de l'énumération doivent avoir la même nature grammaticale.

Il est fondamental de relire le rapport avec un regard extérieur, en particulier pour vérifier le sens des phrases, ainsi que leur clarté.

Formules mathématiques

- Toutes les notations et grandeurs utilisées doivent être définies (avec leurs dimensions dans le cas des matrices) et, dans la mesure du possible, ces notations doivent rester conventionnelles.
- Les notations doivent être cohérentes sur l'ensemble du rapport (éviter en particulier de réutiliser la même notation pour des objets différents).
- Les formules doivent en général être introduites par une phrase pour les rendre plus explicites.
- Il est conseillé de numéroter les équations, les tableaux, les figures et de les citer dans le texte. Par exemple, la variable \mathbf{x} est introduite dans (5.1) de la manière suivante :

$$\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t) \tag{5.1}$$

On adopte en général les conventions suivantes pour la présentation des formules :

- Les scalaires sont en italique et en minuscule (par exemple x);
- Les vecteurs sont en gras et en minuscule (par exemple \mathbf{x});
- Les matrices sont en gras et en majuscule (par exemple X).

Figures et tableaux

Dans la suite quelques consignes pour insérer les figures (ou tableaux) dans le rapport sont précisées :

- Toutes les figures doivent être numérotées et comporter une légende.
- Pour ne pas couper les paragraphes avec des figures, faire référence au numéro de la figure dans le texte (ex. "voir Figure 5.1" plutôt que "on voit sur la figure ci-dessous :").
- Afin d'optimiser la mise en page et d'éviter les grands blocs blancs, mettre les figures en haut ou en bas de page, ou encore les regrouper sur une même page.

Quelques règles pour une présentation des courbes correcte :

- Préciser la nature et les unités des axes;
- Ajouter une légende permettant de distinguer les courbes (s'il y a plusieurs courbes);
- S'assurer de la lisibilité des échelles;
- S'assurer de la lisibilité des courbes (en particulier si l'impression est en noir et blanc éviter les couleurs et préférer des symboles ou des styles de lignes différents pour identifier les courbes).

Exemple de figure. Un premier concept est illustré dans la Figure 5.1 (voir comment citer une figure dans le texte).

FIGURE 5.1 – Une jolie figure

Bibliographie

Quelques règles pour une présentation correcte des références bibliographiques sont proposées dans la suite :

- Les références bibliographiques sont regroupées à la fin du document ;
- Les références doivent être complètes : titre, auteurs, date, éditeur (revue, volume et numéro de pages pour les articles de revue);
- Toutes les références bibliographiques sont numérotées et doivent être citées dans le document, par exemple [3].

Divers

Il est conseillé de respecter les règles de typographie, en particulier :

- Ne mettre des majuscules qu'en début de phrase, sur les noms propres et les sigles ;
- Ne pas mettre de ' :' ou de '.' à la fin des titres;
- Vérifier que la numérotation et le style des titres sont uniformes;
- Définir un bas (ou haut) de page contenant le numéro de page, le nom des auteurs et le titre du document, la date;
- Réaliser le double alignement du texte (à droite et à gauche) du texte sur l'ensemble du document.

Bibliographie

- [1] F. Brauer and C. Castillo-Chavez. *Mathematical Models in Population Biology and Epidemiology*. Springer New York, NY, 2012.
- [2] N. Shi C. Ji, D. Jiang. Analysis of a predator-prey model with modified leslie-gower and holling-type ii schemes with stochastic perturbation. *Journal of Mathematical Analysis and Applications*, Volume 359, Issue 2(page 482-498), 2009.
- [3] M. Seidemann. Improving engineering reports and talks. *IEEE Transactions on Engineering Writing and Speech*, 1967.