Name: Soumya H J

USN:01FE20BEC097

Project: 7 pack opamp design

Design Details

Cell Name	7_pack_opamp
Test Bench Name	7_pack_opamp_test
Technology	180nm TECHNOLOGY UMC_18_CMOS
Devices	MOSFET, CAPACITORS, VOLTAGE AND CURRENT SOURCE
Simulation Area	CADENCE
Design Owner	Soumya H J
Reviewed By	-
Acknowledging	Dr. SUJATA KOTABAGI, SCHOOL OF ELECTRONICS AND COMMUNICATION

Contents

- Design Details
- Pin Description
- o Simulation plan
- o SCM
- Schematic
 - Test bench
 - DC analysis
 - AC analysis

Two Stage Amplifier

- ❖ High gain and high output swing
- ❖ 1st stage : Differential amplifier
- ❖ 2nd stage: Common source with PMOS load, capacitive load
- ❖ Overall gain Av=A1*A2

- ❖ Negative feedback increases oscillations
- ❖ Need for greater PM

Two Stage Amplifier

OP-AMP COMPENSATION:

- ❖ 2 pole system
- ❖ PM closes zero
- Millers Compensation
- \bullet C_c between the outputs of two stages
- Pole splitting
- ❖ Dominant pole compensation

$$P1=1 \div g_{m7}R_1R_2C_c$$

Pin Description

THE MAIN PURPOSE IS TO SHOW THE BASIC METHODS FOR DESIGNING A TWO STAGE OP-AMP BASED ON CADENCE, AND DC SCHEMATIC PLOT AND AC ANALYSIS SIMULATION.

SI.No	Pin Name	Description	Input/Output/Supply		
1	V _{DD}	Supply pin V _{DD}	Supply		
2	GND	Supply pin GND	Supply		
4	I _{ref}	20μA of reference current	Input		
5	V ₊	+ve Input	Input		
6	V ₋	-ve Input	Input		
7	V _{out}	Output voltage	Output		

7_pack SCM

7_pack SCM									
Specification Compliance Matrix									
Parameter	Unit	Specification		PVT			Comment		
		Min	Тур	Max	Min	Тур	Max		
V_{DD}	V	1.8	1.8	1.8	1.8	1.8	1.8	Supply Voltage	
TEMP	°C	-40	27	125	-40	27	125	Temperature	
I _{ref}	μА	20	10	20	20	10	20	Reference Current	
ICMR	V	0.8	0.7	1.6	0.8	0.7	1.6	Input Common Mode Range(ICMR)	
C _L	pF	-	2	-	-	2	-	Load Capacitance	
Gain	dB	-	60	-	66	60	60.74	DC gain	
PM	deg	-	60	-	57	55	58.34	Phase Margin	
GBW	MHz	-	30	-	32.2	30	32.76	Gain Bandwidth Product	

Schematic

HAND CALCULATIONS ARE BEEN DONE TO OBTAIN THE DESIGN PARAMETERS (I.E.(W/L) RATIO).

Bias Parameters

Parameter	M1	M2	M3	M4	M5	M6	M7	M8
W (μm)	3	3	7	7	12	87	75	12
L (nm)	500	500	500	500	1000	500	1000	1000
V _{gs} (V)								
V _{ds} (V)								

Bias parameters

AC Analysis

Gain-Phase Plot-Vin=0.8V Gain=66dB,BW=32.20MHz,PM=57degree

AC Analysis

Gain-Phase Plot-Vin=1.6V
Gain=60.74dB,BW=32.76MHz,PM=58.34degree

Power Dissipation

Total Power=Vdd*Sum of all currents

=261uW

For Vin=0.8V

Power=273.53uW

For Vin=1.6V

Power=297.88uW

Thank You