Universidad Nacional de Loja

PERIODO ACADÉMICO: OCTUBRE 2019 – MARZO 2020 PRACTICA # 2

ASIGNATURA: SIMULACIÓN

TIEMPO PLANIFICADO: 3 HORAS NUMERO DE ESTUDIANTES: PARALELO (A y B)

- 1. Determine el ciclo o período de vida de los siguientes generadores congruenciales:
 - a. $x_{i\#1} = (21x_i + 15) mod$
- (31) con $x_0 = 21$

El periodo será = 30

- b. $x_{i#1} = (13x_i + 9) mod$
- (128) con $x_0 = 7$

El periodo será = 128

c. $x_{i\#1} = (17x_i) \mod (31) \mod x_0 = 23$

El periodo será = 30

- d. $x_{i#1} = (121 + x_i) mod$
- (256) con $x_0 = 17$

El periodo será = 256

- e. $x_{i#1} = (21x_i + 15) mod$
- (31) con $x_0 = 21$

El periodo será = 30

- 2. Determine el ciclo o período de vida de los siguientes generadores congruenciales:
 - a. $x_{i\#1} = (137x_i + 47)mod$ (17)

Con semilla 17 el periodo será = 4

b. $x_{i#1} = (191x_i + 17) mod$ (23)

Con semilla 17 el periodo será = 22

c. $x_{i#1} = (237x_i + 71) mod$ (37)

Con semilla 17 el periodo será = 9

d. $x_{i#1} = (117x_i + 31) mod$ (19)

Con semilla 3 el periodo será = 6

e. $x_{i\#1} = (157x_i + 47)mod$ (37)

Con semilla 15 el periodo será = 3

f. $x_{i#1} = (321x_i + 11) mod$ (27)

Con semilla 20 el periodo será = 18

3. A través del programa desarrollado realice el cálculo de la serie congruencial

 $x_{i#1} = (553 + 121x_i) \mod (177)$ con $x_0 = 23$, haga lo siguiente:

a. Determine el ciclo o período de vida.

Constante Multiplicativa 'a'	553
Constante Aditiva 'c'	121
Semilla X0	23
Modulo	177

El periodo será = 87

1 1	50.0	1	0,85	32	1	22.0	ì	0,12	63	1	50.0	1	0,28
2 1	18.0	1	0,67	33	1	29.0	1	0,16	64	1	54.0	1	0,31
3 1	40.0	1	0,79	34	1	168.0	1	0,95	65	1	7.0	1	0,04
4 1	47.0	1	0,83	35	1	172.0	1	0,97	66	1	161.0	1	0,91
5 1	09.0	1	0,62	36	1	125.0	1	0,71	67	1	33.0	1	0,19
6 1	13.0	1	0,64	37	1	102.0	1	0,58	68	1	121.0	1	0,68
7 1 6	6.0	1	0,37	38	1	151.0	1	0,85	69	1	149.0	1	0,84
8 4	3.0	1	0,24	39	1	62.0	1	0,35	70	1	174.0	1	0,98
9 9	2.0	1	0,52	40	1	90.0	1	0,51	71	1	13.0	1	0,07
10	3.0	1	0,02	41	1	115.0	1	0,65	72	1	2.0	1	0,01
11	31.0	1	0,18	42	1	131.0	1	0,74	73	1	87.0	1	0,49
12	56.0	1	0,32	43	1	120.0	1	0,68	74	1	106.0	1	0,60
13	72.0	1	0,41	44	1	28.0	1	0,16	75	1	104.0	1	0,59
14	61.0	1	0,34	45	1	47.0	1	0,27	76	1	39.0	1	0,22
15	146.0		0,82	46	1	45.0	1	0,25	77	1	139.0	1	0,79
16	165.0		0,93	47	1	157.0	1	0,89	78	1	26.0	1	0,15
17	163.0		0,92	48	1	80.0	1	0,45	79	1	159.0	1	0,90
18	98.0	1	0,55	49	1	144.0	1	0,81	80	1	145.0	1	0,82
19	21.0	1	0,12	50	1	100.0	1	0,56	81	1	44.0	1	0,25
20	85.0	1	0,48	51	1	86.0	1	0,49	82	1	36.0	1	0,20
21	41.0	1	0,23	52	1	162.0	1	0,92	83	1	130.0	1	0,73
22	27.0	1	0,15	53	1	154.0	1	0,87	84	1	176.0	1	0,99
23	103.0		0,58	54	1	71.0	1	0,40	85	1	78.0	1	0,44
24	95.0	1	0,54	55	1	117.0	1	0,66	86	1	79.0	1	0,45
25	12.0	1	0,07	56	1	19.0	1	0,11	87	1	23.0	1	0,13
26	58.0	1	0,33	57	1	20.0	1	0,11	88	1	150.0	1	0,85
27	137.0		0,77	58	1	141.0	1	0,80					
28	138.0		0,78	59	1	91.0	1	0,51					
29	82.0	1	0,46	60	1	59.0	1	0,33					
30	32.0	1	0,18	61	1	81.0	1	0,46					
31	0.0	1	0,00	62	1	88.0	1	0,50					

b. Realice las pruebas de promedios con un nivel de confianza del 95%, frecuencias y series con n = 10.

Prueba de promedios:

Datos:

nivel de confianza; 0.95

Zcritico:1.96 Hipotesis:

> Hipotesis nula HO: U= 1/2 Hipotesis alterna H1: U!= 1/2

Tamaño de la muestra :87

sumatoria: 43,64407 Nconfinza: 0.95 Zcritico: 1.96 Promedio: 0,50166 Zestadistico: 0,05351

Prueba de hipostesis:

Zestadistico < Zcritico; por lo tanto no se puede rechazar HO de que los numeros pseudoaleatorios tiene una media de 0.5

Prueba de frecuencias

Datos:

N: 87 n: 5 gl: 4

X°critico: 9.4877

Hipotesis:

HO: Los numero pseudoaleatorios provienen de una distribuion uniforme

H1: Los numero pseudoaleatorios no provienen de una distribuion uniforme

#intervalo	FE	FO	(FO-FE)	(FO-FE) °/FE
0,2	17.4	18	0,60000	0,36000
0,4	17.4	14	-3,40000	11,56000
0,6	17.4	20	2,60000	6,76000
0,8	17.4	18	0,60000	0,36000
1,0	17.4	17	-0,40000	0,16000
Total			1,1	10345

x°calucado: 1,10345

Prueba de hipostesis:

Se acepta la hipotesos HO ya que

Xcalculado < Xcritico

Prueba de series

Datos:

N:86 n:4 gl:15 α: 0.05

X°critico:24.9958

Hipotesis:

H0: Los numero pseudoaleatorios provienen de una distribuion uniforme

H1: Los numero pseudoaleatorios no provienen de una distribuion uniforme

6	7	5	6
4	6	4	4
8	2	4	7
4	6	6	7

0.25 0.5 0.75 1.0

#intervalo	FE	FO	(FO-FE)	(FO-FE) °/FE
1	5.375	6	0.625	0,3906
2	5.375	7	1.625	2,6406
3	5.375	5	-0.375	0,1406
4	5.375	6	0.625	0,3906
5	5.375	4	-1.375	1,8906
6	5.375	6	0.625	0,3906
7	5.375	4	-1.375	1,8906
8	5.375	4	-1.375	1,8906
9	5.375	8	2.625	6,8906
10	5.375	2	-3.375	11,3906
11	5.375	4	-1.375	1,8906
12	5.375	7	1.625	2,6406
13	5.375	4	-1.375	1,8906
14	5.375	6	0.625	0,3906
15	5.375	6	0.625	0,3906

Total 86.0 86.0 7,0233

5.375 7 1.625 2,6406

x°calucado:7,0233

16

Prueba de hipostesis:

Se acepta la hipotesos HO ya que Xcalculado < Xcritico 4. Realice las pruebas de frecuencias, series y corridas a los primeros 200 aleatorios de los siguientes generadores:

a.
$$x_{i#1} = (1117x_i + 3057)d$$
 (1679567) con $x_0 = 1457$

Constante Multiplicativa 'a'	3057
Constante Aditiva 'c'	1117
Semilla X0	1457
Modulo	167967

Secuencia generada

				81	0.6752814540951496				
1	0.5240553203903148	41	0.5019974161591265	82	0.34205528466901236	122	0.22326409354218388		
	0.04376454898878947	42	0.6127513142462507	83	0.6696553489673567		0.5249840742526806		0.5589014508802325
	0.7948763745259485	43	0.18741776658510303	84	0.1430519090059357		0.8829651062411069		0.5683854566670834
	0.9437270416212709	44	0.9427625664565064	85	0.3163359469419588		0.23097989486029993		0.5609911470705555
-	0.980216352021528	45	0.03181577333642918	86	0.04563991736472045		0.11218870373347145		0.9565867104847976
	0.5280382456077682	46	0.2674692052605571	87	0.5278774997469741		0.9675174290187953		0.29222406782284616
	0.21956693874391994	47	0.6600105973197116	88	0.7281668422964035		0.7074306262539666		0.335625450237249
	0.22278185595980163	48	0.6590461221549471	89	0.012687015901933118		0.6220745741723076		0.013651491066697625
9	0.050783784910131156	49	0.7106455434698482	90	0.7908577280060964		0.6886233605410587		0.7392583066911953
10	0.2526805860675014	50	0.4500765031226372	91	0.6587246304333589		0.1282632898128799		0.91929367078057
11		51	0.8905201616984288	92	0.7278453505748153		0.107527073770443		0.2874016919990236
12	0.3303208368310442	52	0.3267844278935743	93	0.029886823006900164		0.7169146320408175		0.5936225568117547
13	0.7974483082986539	53	0.9866461864532914	94	0.3706680478903594		0.6146802645757797		0.7108062893306424
14	0.8061285847815345	54	0.18404210350842726	95	0.1388725166252895		0.08421892395530074		0.9414765995701536
15	0.3417337929474242	55	0.6233605410586603	96	0.5399334393065305		0.46390064715092844		0.10061500175629737
16	0.6868551560723237	56	0.6198241321211905	97	0.5831740758601391		0.15092845618484582		0.586710484797609
17	0.7228622288901987	57	0.809022010275828	98	0.7698000202420714		0.3949406728702662		0.5806021420874339
18	0.7964838331338894	58	0.18693552900272078	99	0.28531199580870054		0.3402870802002774		0.9073984770818078
19	0.8577280060964356	59	0.4685622771139569	100	0.2054213029940405		0.26425428804467543		0.9237945548828044
20	0.08116475260021314	60	0.4015312531628237	101	0.9795733685783518		0.832008668369382		0.04660439252948496
21	0.1272988146481154	61	0.487691034548453	102	0.5624378598177023		0.4571493209975769		0.476278078432073
22	0.15912649508534416	62	0.8781427304172843	103	0.3791875785124459		0.5121244053891538		0.9887358826436146
23	0.4563455916936065	63	0.48897700143480566	104	0.18307762834366273		0.5709573904397888		0.5722433573261414
24	0.05512392315157144	64	0.8093435019974161	105	0.6749599623735615		0.42339269023081916		0.35459346181095097
25	0.5204831901504462	65	0.16973572189775374	106	0.3592550917739794		0.31810415141069376		0.9988628718736419
26	0.12376240571064555	66	0.8887519572296939	107	0.24946566885161967		0.4510409782874017		0.5304494335196794
27	0.34832437323998167	67	0.9213833669708931	108	0.6231997951978663		0.8389207403835277		0.5905683854566671
28	0.8342591104204993	68	0.6756029458167379	109	0.128424035673674		0.5873534682407854		0.37420445682782927
29	0.33675067126280755	69	0.3248554775640453	110	0.5989271702179595		0.5462025278774998		0.9496746384706519
30	0.45345216619931294	70	0.0898450290830937	111	0.927009472098686		0.7477778373132817		0.16201992057963766
31	0.20992218709627486	71	0.6629040228140052	112	0.8746063214798145		0.9634987824989433		0.3015473277489031
32	0.738776069108813	72	0.5042478582102436	113	0.6781748795894431		0.42242821506605466		0.8368310441932046
33	0.4450933814380206	73	0.4923526645114814	114	0.18725702072430894		0.3697035727255949		0.1991522144230712
34	0.6571171718254181	74	0.12874552739526215	115	0.4513624700089899		0.19047193794019063		0.8149696071252092
35	0.8138443860996505	75	0.5817273631129924	116	0.8217209332785607		0.2793643989593194		0.3687390975608304
36	0.9289384224282151	76	0.34719915221442305	117	0.007543148356522412		0.023617734435930866		0.24207135925509177
37	0.7714074788500122	77	0.39445843528788394	118	0.0660546416855692		0.20606428643721683	197	0.01879535861210833
38	0.19931296028386528	78	0.866086790857728	119	0.9356897485815666		0.9451737543684176	198	0.46406139301172256
39	0.3063697035727256	79	0.63396976787107	120	0.41021152964570423		0.4028172200491763		0.6423285526323623
40	0.578833937618699	80	0.05223049765727792	121	0.023296242714342698		0.4188918061285848	200	0.6050355129281347
						202	V. 1200510001E00010		

Prueba de Frecuencias

Datos:

N: 200 n: 5 gl: 4

Xºcritico: 9.4877

Hipotesis:

HO: Los numero pseudoaleatorios provienen de una

distribuion uniforme

H1: Los numero pseudoaleatorios no provienen de una

distribuion uniforme

#intervalo	FE	FO	(FO-FE)	(FO-FE) °/FE
0,2	40.0	40	0,00000	0,00000
0,4	40.0	39	-1,00000	1,00000
0,6	40.0	47	7,00000	49,00000
0,8	40.0	37	-3,00000	9,00000
1,0	40.0	37	-3,00000	9,00000
Total			1	70000

Total 1,70000

xºcalucado: 1,70000

Prueba de hipostesis:

Se acepta la hipotesos HO ya que

Xcalculado < Xcritico

Prueba de series

Datos:

N:199 n:4 gl:15 a: 0.05

X°critico:24.9958

Hipotesis:

HO: Los numero pseudoaleatorios provienen de una

distribuion uniforme

H1: Los numero pseudoaleatorios no provienen de una

distribuion uniforme

9	14	11	9
15	9	22	10
15	13	11	12
10	15	12	12

0.25 0.5 0.75 1.0

```
#intervalo
          FE FO (FO-FE) (FO-FE) 2/FE
  1
       12.4375 9 -3.4375 11,8164
        12.4375 14 1.5625
                           2,4414
        12.4375 11 -1.4375
                            2,0664
        12.4375 9 -3.4375
                            11,8164
         12.4375 15 2.5625
                            6,5664
                           11,8164
  6
        12.4375 9 -3.4375
  7
        12.4375 22 9.5625
                           91,4414
  8
        12.4375 10 -2.4375
                            5,9414
  9
        12.4375 15 2.5625 6,5664
         12.4375 13 0.5625
  10
                            0,3164
         12.4375 11 -1.4375
                             2,0664
  11
         12.4375 12 -0.4375
                              0,1914
  13
         12.4375 10 -2.4375
                             5,9414
         12.4375 15 2.5625
  14
                            6,5664
         12.4375 12 -0.4375 0,1914
  15
         12.4375 12 -0.4375
  16
                             0,1914
Total 199.0 199.0 13,3417
xscalucado:13,3417
```

Prueba de hipostesis:

Se acepta la hipotesos HO va que

Xcalculado < Xcritico

Prueba de corridas

positivas: 100 negativas: 100 corridas 95 promedio: 101.0 desviacion: 9,950 Valor de Z: -0,603

los numero pseudoaleatorios pasanla prueba de aleatoriedad puesto que Z<Zcritico

5. Para el generador del problema anterior tome ahora los datos del 101 al 200 y realice las pruebas de Kolmogorov-Smirnov con un nivel de confianza del 95%, póker con un valor de $\propto = 0$. 05 y corridas con un valor de $\propto = 0.05$

Prueba Kolmogorov-Smirnov

Datos:

n: 200 alfa: 0.05 deritico: 0.242

i	Xi	Fnx	Dn=max Fnx-Xi				
102	0,00754	0,51000	0,50246	155	0,54620	0,77500	0,22880
103	0,01365	0,51500	0,50135	156	0,55890	0,78000	0,22110
104	0,01880	0,52000	0,50120	157	0,56099	0,78500	0,22401
105	0,02330	0,52500	0,50170	158	0,56244		0,22756
106	0,02362	0,53000	0,50638	159	0,56839	0,79500	0,22661
107	0,04660	0,53500	0,48840	160	0,57096	0,80000	0,22904
108	0,06605	0,54000	0,47395	161	0,57224	0,80500	0,23276
109	0,08422	0,54500	0,46078	162	0,58060	0,81000	0,22940
110	0,10062	0,55000	0,44938	163	0,58671	0,81500	0,22829
111	0,10753	0,55500	0,44747	164	0,58735	0,82000	0,23265
112	0,11219	0,56000	0,44781	165	0,59057	0,82500	0,23443
113	0,12826	0,56500	0,43674	166	0,59362	0,83000	0,23638
114	0,12842	0,57000	0,44158	167	0,59893	0,83500	0,23607
115	0,15093	0,57500	0,42407	168	0,60504	0,84000	0,23496
116	0,16202	0,58000	0,41798	169	0,61468	-	0,23430
117	0,18308	0,58500	0,40192	170	0,62207	0,85000	0,23032
118	0,18726	0,59000	0,40274	171	0,62320	0,85500	0,22793
119	0,19047	0,59500	0,40453	172	0,62320	0,86000	0,23160
120	0,19915	0,60000	0,40085	173	0,64233	•	0,21767
121	0,20606	0,60500	0,39894	174	0,67436	0,80000	0,19004
122	0,22326	0,61000	0,38674	175	0,67817	•	0,19183
123	0,23098	0,61500	0,38402	176	•	0,87500	•
124	0,24207	0,62000	0,37793		0,70743	0,88000	0,17257
125	0,24947	0,62500	0,37553	177	0,71081	0,88500	0,17419
126	0,24347	-	0,36575	178	0,71691	0,89000	0,17309
127	-	•	0,35564	179	0,73926	•	0,15574
	0,27936	•	•	180	0,74778	0,90000	0,15222
128	0,28740	-	0,35260	181	0,81497	0,90500	0,09003
129	0,29222	-	0,35278	182	0,82172	0,91000	0,08828
130	0,30155	-	0,34845	183	0,83201	0,91500	0,08299 0,08317
131	0,31810	0,65500	0,33690	184	0,83683	0,92000	•
132	0,33563	-	0,32437	185	0,83892	0,92500	0,08608
133	0,34029	-	0,32471	186	0,87461	0,93000	0,05539
134	0,35459	-	0,31541	187	0,88297	0,93500	0,05203
135	0,35926	0,67500	0,31574	188	0,90740	0,94000	0,03260
136	0,36874	-	0,31126	189	0,91929	0,94500	0,02571
137	0,36970	-	0,31530	190	0,92379	0,95000	0,02621
138	0,37420	0,69000	0,31580	191	0,92701	0,95500	0,02799
139	0,37919	0,69500	0,31581	192	0,93569	0,96000	0,02431
140	0,39494	0,70000	0,30506	193	0,94148	0,96500	0,02352
141	0,40282	0,70500	0,30218	194	0,94517	0,97000	0,02483
142	0,41021	0,71000	0,29979	195	0,94967	-	0,02533
143	-	0,71500	0,29611	196	0,95659	-	0,02341
144	0,42243	•	0,29757	197	0,96350		0,02150
145	0,42339	-	0,30161	198	0,96752	-	0,02248
146	0,45104	-	0,27896	199	0,98874	-	0,02246
147	-	0,73500	0,28364	200	0,99886	-	0,00024
148	0,45715	-	0,28285	200	5,55000	2,00000	0,00114
149	0,46390		0,28110				
150		0,75000	0,28594				
151	•	0,75500	0,27872				
152	0,51212	-	0,24788				
153	0,52498		0,24002				
154	0,53045	0,77000	0,23955				

Dn: 0,50638

Se rechaza HO y se acepta H1:Los números no provienen de una distribucion unifome

Prueba de corridas

6. Obtenga una secuencia de aleatorios (200) con el generador congruencial $x_{i\#1} = (69069x_i) \mod(4294967296)$ con $x_0 = 1$ y efectúe lo siguiente:

los numero pseudoaleatorios pasanla prueba de aleatoriedad puesto que Z<Zcritico

Constante Multiplicativa 'a'	69069
Constante Aditiva 'c'	69069
Semilla X0	1
Modulo	4294967296

- a. Prueba de promedios con un nivel de confianza del 90%
- b. Prueba de frecuencias con n = 10
- c. Prueba de series con n = 10
- d. Prueba de Kolmogorov con un nivel de confianza del 90%
- e. Prueba de póker con un valor de $\propto = 0.1$
- f. Prueba de las corridas con un valor de $\propto = 0.1$
- 6. INVESTIGACIÓN COMPLEMENTARIA (a elaborar por el estudiante)

Investigar y resumir acerca del método de generación de números pseudo-aleatorios llamado "Mercenne Twister"

El Mersenne twister es un generador de números pseudo-aleatorios desarrollado en 1997, por Matsumoto y Nishimura. Su nombre proviene del hecho de que se usan números tipos Mersenne. Se dice que un número M es un número de Mersenne si es una unidad menor que una potencia de 2, es decir M_n = 2^n -1. La sucesión es de tipo $2^{2^{n+1}}$ es periódica, con período $2^{219937-1}=10^{600}$ números.

La librería random es un generador de números pseudo-aleatorios que usa el algoritmo Mersenne-Twister. Funciones relacionadas con random:

- random.seed().- Inicia la semilla (valor inicial de la sucesión). Por default, la semilla se escoge como el tiempo actual del sistema cuando la librería random se importa.
- random.randrange(inicio, final, tamaño de paso): Regresa un elemento selecto de forma aleatoria, desde el valor inicial hasta el valor final con el número de pasos que indicamos.
- random.choice(seq): Regresa un elemento random para una secuencia dada no vacía. Escoge un elemento aleatorio de una lista.
- random.shuffle(seq): Reacomoda una lista de manera aleatoria.
- random.random(): Regresa un valor flotante tipo random entre el intervalo [0.0,1.0).

• random.uniform(a,b): Regresa un flotante escogido aleatoriamente entre el intervalo [a,b].

7. DISCUSIÓN (a elaborar por el estudiante)

Se trata de un generador pseudoaleatorio que es rápido, seguro y eficiente además que un período extenso que reduce la probabilidad de causar problemas.

8. CONCLUSIONES (a elaborar por el estudiante)

Este generador tiene propiedades deseables como un periodo largo (2^19937-1) por lo que permite muchas pruebas de aleatoriedad.

9. RECOMENDACIONES (elaborar por el estudiante)

Mersenne Twister se debe utilizar en los siguientes sistemas o bibliotecas: Python, Ruby, R, PHP, Common Lisp, C ++ Boost, Julia, Octave, Excel, Mathematica, etc.

BIBLIOGRAFÍA:

- Alberto, Marva; Schwer, Ingrid; Cámara, Viviana; Fumero, Yanina (2005). Matematica Discreta. Universidad Nac. del Litoral. p. 295. ISBN 9789875084315.
- Blanco Castañeda, Liliana (2004). <u>Probabilidad</u>. textos. Univ. Nacional de Colombia. p. 295. ISBN 9789587014495.
- Simulación : Un Enfoque Práctico, 2a. Edición de la 4a. en Inglés by Raúl Coss Bu

Firma del Presidente de Curso de Sexto A