МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«БЕЛГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ им. В. Г. ШУХОВА» (БГТУ им. В.Г. Шухова)

ИНСТИТУТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ И УПРАВЛЯЮЩИХ СИСТЕМ

Лабораторная работа №2

по дисциплине: Теория автоматов и формальных языков тема: «Преобразования КС-грамматик.»

Выполнил: ст. группы ПВ-223 Пахомов Владислав Андреевич

Проверили: ст. пр. Рязанов Юрий Дмитриевич

Лабораторная работа №2

Преобразования КС-грамматик. Вариант 8

Цель работы: изучить основные эквивалентные преобразования КС-грамматик и научиться применять их для получения КС-грамматик, обладающих заданными свойствами.

Задание:

- 1. $T \rightarrow abETP$
- $2. T \rightarrow aDE$
- $3. T \rightarrow D$
- 4. $D \rightarrow DTAb$
- 5. $D \rightarrow b$
- 6. $E \rightarrow \varepsilon$
- 7. $P \rightarrow BCa$
- 8. $P \rightarrow Cb$
- 9. $C \rightarrow abC$
- 10. $A \rightarrow Bbb$
- 11. $B \rightarrow aECb$
- 12. $B \rightarrow D$
 - 1. Преобразовать исходную грамматику G в грамматику G_1 без лишних символов. **Модификации:** в ходе выполнения лабораторной работы обнаружено, что в грамматике не будет недостижимых символов. Поэтому добавим правило:

13.
$$S \rightarrow ab$$

Найдём в исходной грамматике бесплодные нетерминалы.

Для начала найдём продуктивные нетерминалы.

В множество продуктивных нетерминалов Р включаем нетерминал D (правило 5) нетерминал E (правило 6) и нетерминал S (правило 13). Получаем $= \{D, E, S\}$. Повторяем проверку и включаем нетерминал T (правило 2) и нетерминал B (правило 12). Получаем $P = \{D, E, S, T, B\}$

Повторяем проверку и включаем A (правило 10). Получаем $P = \{D, E, S, T, B, A\}$ Множество P больше увеличить не можем.

Из множества нетерминалов исключаем продуктивные нетерминалы и получаем $\{P,C\}$ - множество бесплодных нетерминалов.

Исключаем правила 1, 7, 8, 9, 11 так как они содержат бесплодные нетерминалы. Получаем грамматику:

- 2. $T \rightarrow aDE$
- 3. $T \rightarrow D$
- 4. $D \rightarrow DTAb$

5.
$$D \rightarrow b$$

6.
$$E \rightarrow \varepsilon$$

10.
$$A \rightarrow Bbb$$

12.
$$B \rightarrow D$$

13.
$$S \rightarrow ab$$

Найдём достижимые символы.

Положим $P = \{T\}$, где T - начальный нетерминал.

Включим в список a, D, E (правило 2). $P = \{T, a, D, E\}$.

Включим в список b, A (правило 4), ε . $P = \{T, a, D, E, \varepsilon, b, A\}$.

Включим в список В (правило 10). $P = \{T, a, D, E, \varepsilon, b, A, B\}$.

Множество Р больше увеличить не можем.

Из множества терминалов и нетерминалов исключаем достижимые терминалы и нетерминалы и получаем $\{S\}$ - множество недостижимых нетерминалов и терминалов.

Исключаем из грамматики правило 13, так как оно содержит недостижимый символ.

Искомая грамматика G_1 :

1.
$$T \rightarrow aDE$$

$$2. T \rightarrow D$$

3.
$$D \rightarrow DTAb$$

4.
$$D \rightarrow b$$

5.
$$E \rightarrow \varepsilon$$

6.
$$A \rightarrow Bbb$$

$$7. B \rightarrow D$$

2. Преобразовать грамматику G_1 в грамматику G_2 без ε -правил.

Выберем правило 5. Иключаем из правой части каждого правила исходной грамматики всеми возможными способами вхождение нетерминала Е. Полученные правила добавляем в множество правил грамматики.

$$1_1. T \rightarrow aDE$$

1 2.
$$T \rightarrow aD$$

$$2.T \rightarrow D$$

3.
$$D \rightarrow DTAb$$

$$4. D \rightarrow b$$

5.
$$E \rightarrow \varepsilon$$

6.
$$A \rightarrow Bbb$$

$$7. B \rightarrow D$$

Исключаем из списка правил правило 5.

1 1.
$$T \rightarrow aDE$$

$$1_2. T \rightarrow aD$$

2.
$$T \rightarrow D$$

$$3. D \rightarrow DTAb$$

- 4. $D \rightarrow b$
- 6. $A \rightarrow Bbb$
- $7. B \rightarrow D$

Исключим из правил непродуктивные символы:

- 1 2. $T \rightarrow aD$
- 2. $T \rightarrow D$
- 3. $D \rightarrow DTAb$
- 4. $D \rightarrow b$
- 6. $A \rightarrow Bbb$
- 7. $B \rightarrow D$

В полученной грамматике G_2 нет правил вида $A \to A$, одинаковых правил и ε -правил. Получили искомую грамматику:

Искомая грамматика G_2 :

- 1. $T \rightarrow aD$
- 2. $T \rightarrow D$
- 3. $D \rightarrow DTAb$
- 4. $D \rightarrow b$
- 6. $A \rightarrow Bbb$
- $7. B \rightarrow D$
- 3. Преобразовать грамматику G_1 в грамматику G_3 без цепных правил.

Исходная грамматика:

- 1. $T \rightarrow aDE$
- $2. T \rightarrow D$
- 3. $D \rightarrow DTAb$
- 4. $D \rightarrow b$
- 5. $E \rightarrow \varepsilon$
- 6. $A \rightarrow Bbb$
- 7. $B \rightarrow D$

Заменим символ Т в правиле 3 символом D согласно правилу 2:

- 1. $T \rightarrow aDE$
- 3 1. $D \rightarrow DTAb$
- $\overline{3}^{-}2. D \rightarrow DDAb$
- 4. $D \rightarrow b$
- 5. $E \rightarrow \varepsilon$
- 6. $A \rightarrow Bbb$
- 7. $B \rightarrow D$

Заменим символ В в правиле 6 символом D согласно правилу 7:

- 1. $T \rightarrow aDE$
- 3 1. $D \rightarrow DTAb$
- $\overline{3}^{-}2. D \rightarrow DDAb$
- $4.D \rightarrow b$
- 5. $E \rightarrow \varepsilon$

6 1.
$$A \rightarrow Bbb$$

6 2.
$$A \rightarrow Dbb$$

Исключим правила с бесплодными нетерминалами:

1.
$$T \rightarrow aDE$$

$$3_1. D \rightarrow DTAb$$

3 2.
$$D \rightarrow DDAb$$

4.
$$D \rightarrow b$$

5.
$$E \rightarrow \varepsilon$$

$$6_2. A \rightarrow Dbb$$

Искомая грамматика G_3 :

$$1. T \rightarrow aDE$$

2.
$$D \rightarrow DTAb$$

3.
$$D \rightarrow DDAb$$

$$4. D \rightarrow b$$

5.
$$E \rightarrow \varepsilon$$

6.
$$A \rightarrow Dbb$$

4. Преобразовать грамматику G_1 в грамматику G_4 без левой рекурсии.

Алгоритм применим, если грамматика не имеет циклов (цепных правил) и ε -правил. Для получения грамматики без ε -правил воспользуемся грамматикой G_2 .

1.
$$T \rightarrow aD$$

2.
$$T \rightarrow D$$

3.
$$D \rightarrow DTAb$$

4.
$$D \rightarrow b$$

6.
$$A \rightarrow Bbb$$

$$7. B \rightarrow D$$

Преобразуем эту грамматику так, чтобы в ней не было цепных правил.

Исходная грамматика:

1.
$$T \rightarrow aD$$

2.
$$\mathbf{T} \rightarrow \mathbf{D}$$

3.
$$D \rightarrow DTAb$$

$$4. D \rightarrow b$$

6.
$$A \rightarrow Bbb$$

$$7. B \rightarrow D$$

Выполним замену края:

1.
$$T \rightarrow aD$$

2 1.
$$T \rightarrow DTAb$$

$$2^{-}2. T \rightarrow b$$

$$3.D \rightarrow DTAb$$

```
4. D \rightarrow b
```

6.
$$A \rightarrow Bbb$$

7.
$$\mathbf{B} \rightarrow \mathbf{D}$$

Выполним замену края:

1.
$$T \rightarrow aD$$

2 1.
$$T \rightarrow DTAb$$

$$2^{-}2. T \rightarrow b$$

$$3. D \rightarrow DTAb$$

$$4. D \rightarrow b$$

6.
$$A \rightarrow Bbb$$

7 1.
$$B \rightarrow DTAb$$

7_2.
$$B \rightarrow b$$

Получили грамматику G_3' без лишних символов, ε -правил и цепных правил:

1.
$$T \rightarrow aD$$

$$2. T \rightarrow DTAb$$

$$3. T \rightarrow b$$

4.
$$D \rightarrow DTAb$$

$$5. D \rightarrow b$$

6.
$$A \rightarrow Bbb$$

7.
$$B \rightarrow DTAb$$

$$8. B \rightarrow b$$

Обозначим нетерминалы грамматики: T, D, A, B как A_1, A_2, A_3, A_4 соответственно.

$$1. A_1 \rightarrow aA_2$$

2.
$$A_1 \rightarrow A_2 A_1 A_3 b$$

$$3. A_1 \rightarrow b$$

4.
$$A_2 \to A_2 A_1 A_3 b$$

5.
$$A_2 \rightarrow b$$

6.
$$A_3 \rightarrow A_4bb$$

7.
$$A_4 \rightarrow A_2 A_1 A_3 b$$

8.
$$A_4 \rightarrow b$$

Рассмотрим нетерминал A_1 .

Правил вида $A_1 \to A_0 a$ не существует, следовательно замену края выполнять не будем.

Самолеворекурсивных правил для A_1 также нет.

Рассмотрим нетерминал A_2 .

Правил вида $A_2 \to A_1 a$ не существует, следовательно замену края выполнять не будем.

Для A_2 существует самолеворекурсивное правило 4. Также существует несаморекурсивное правило 5. Заменим эти правила:

$$1. A_1 \rightarrow aA_2$$

$$2. A_1 \rightarrow A_2 A_1 A_3 b$$

3.
$$A_1 \rightarrow b$$

9.
$$A_2 \rightarrow bB_1$$

10.
$$B_1 \rightarrow A_1 A_3 b B_1$$

11.
$$B_1 \rightarrow \varepsilon$$

6.
$$A_3 \rightarrow A_4bb$$

7.
$$A_4 \rightarrow A_2 A_1 A_3 b$$

$$8. A_4 \rightarrow b$$

Рассмотрим нетерминал A_3 .

Правил вида $A_3 \to A_2 a$ не существует, следовательно замену края выполнять не будем.

Самолеворекурсивных правил для A_3 также нет.

Рассмотрим нетерминал A_4 .

Существует правило 7. $A_4 \to A_2 A_1 A_3 b$, выполним замену края:

$$1. A_1 \rightarrow aA_2$$

$$2. A_1 \rightarrow A_2 A_1 A_3 b$$

3.
$$A_1 \rightarrow b$$

9.
$$A_2 \rightarrow bB_1$$

10.
$$B_1 \rightarrow A_1 A_3 b B_1$$

11.
$$B_1 \to \varepsilon$$

6.
$$A_3 \rightarrow A_4bb$$

12.
$$A_4 \rightarrow bB_1A_1A_3b$$

$$8. A_4 \rightarrow b$$

Искомая грамматика G_4 :

1.
$$T \rightarrow aD$$

2.
$$T \rightarrow DTAb$$

3.
$$T \rightarrow b$$

4.
$$D \rightarrow bB_1$$

5.
$$B_1 \rightarrow TAbB_1$$

6.
$$B_1 \rightarrow \varepsilon$$

7.
$$A \rightarrow Bbb$$

8.
$$B \rightarrow bB_1TAb$$

9.
$$B \rightarrow b$$

Вывод: в ходе лабораторной работы изучили основные эквивалентные преобразования КС-грамматик и научились применять их для получения КС-грамматик, обладающих заданными свойствами.