# VIETNAM NATIONAL UNIVERSITY – HO CHI MINH CITY INTERNATIONAL UNIVERSITY DEPARTMENT OF INDUSTRIAL ENGINEERING & MANAGEMENT



# Optimizing Production and Inventory Decisions for Mixed Make-to-order/Make-to-stock Ready-made Garment Industry

# INVENTORY MANAGEMENT COURSE

Lecturer: Dr. Nguyen Van Hop

**Group Number: 2** 

**Class: Morning Friday** 

| Student ID  | Member name         | % Contribution |
|-------------|---------------------|----------------|
| IELSIU19266 | Lê Phong Công Thành | 100%           |
| IELSIU19166 | Phạm Ngọc Huy       | 100%           |
| IELSIU18255 | Hoàng Thị Thảo An   | 100%           |
| IELSIU19228 | Nguyễn Hoàng Tú Nhi | 100%           |

#### **ABSTRACT**

In this study, we use the MILP model to plan production in the garment industry. The scope of research and application model on this topic has been based on a case study in Egypt, and we will re-apply this analytical model to our own data to find out the influence between the factors and make an optimal production decision.

This model considers capacity decisions and financial planning for mixed manufacturing environments of make-to-order (MTO) and make-in-stock (MTS) to cope with changes in demand but can be predicted.

We will provide research results on the application of the MILP model in the analysis of MTS and MTO production. It clearly shows that production decisions are strongly influenced by cash availability and that this research model is quite sensitive to increases in fabric costs and inventory cost while overall net profit is not affected significantly by changes in inventory holding costs. Besides, the study using this MILP model again will help garment factories make reasonable decisions according to their production capacity and can adapt to changes. Seasonal demand can be predicted by making production and inventory decisions for MTO and MTS.

**Keywords:** MILP model, Make to order, make to stock, production planning, ready-made garment industry.

# **TABLE OF CONTENTS**

| ABSTRACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| TABLE OF CONTENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3  |
| CHAPTER 1 INTRODUCTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4  |
| 1.1 System Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4  |
| 1.2 Problem Statement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5  |
| 1.3 Scope and Limitations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5  |
| CHAPTER 2 BACKGROUND AND LITERATURE REVIEW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6  |
| 2.1 Background                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6  |
| 2.2 Literature review                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6  |
| CHAPTER 3 METHODOLOGY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8  |
| 3.1 Problem descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8  |
| 3.2 Mathematical model formulation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9  |
| 3.2.1 Model assumption                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9  |
| 3.2.2 Model formulation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10 |
| 3.2.2.1 Index sets                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10 |
| 3.2.2.2 Input parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10 |
| 3.2.2.3 Decision variables                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11 |
| 3.2.2.4 The objective function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12 |
| 3.2.2.5 The constraints                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 13 |
| 3.3 Model in Cplex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 15 |
| CHAPTER 4 RESULTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 18 |
| 4.1 Data Collection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 18 |
| 4.2 The data results discussion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25 |
| 4.3 Sensitivity Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 30 |
| 4.3.1 Impact of increasing fabric price on the profits.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 31 |
| 4.3.2 Impact of increasing the inventory holding cost on the revenues                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 32 |
| CHAPTER 5 CONCLUSION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 33 |
| 5.1 Concluding remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 33 |
| 1.1 System Description 1.2 Problem Statement 1.3 Scope and Limitations  CHAPTER 2 BACKGROUND AND LITERATURE REVIEW 2.1 Background 2.2 Literature review  CHAPTER 3 METHODOLOGY 3.1 Problem descriptions 3.2 Mathematical model formulation 3.2.1 Model assumption 3.2.2 Model formulation 3.2.2 Injust parameters 3.2.2.3 Decision variables 3.2.2.4 The objective function 3.2.2.5 The constraints 3.3 Model in Cplex  CHAPTER 4 RESULTS 4.1 Data Collection 4.2 The data results discussion 4.3 Sensitivity Analysis 4.3.1 Impact of increasing fabric price on the profits. 4.3.2 Impact of increasing the inventory holding cost on the revenues  CHAPTER 5 CONCLUSION 5.1 Concluding remarks 5.2 Insights on Future work: |    |
| REFERENCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 35 |

#### **CHAPTER 1 INTRODUCTION**

# 1.1 System Description

Among the industries in the world, the RGM ready-made garment industry is one of the quite competitive industries [1], because of its specificity, it is ready-made garments. Coming up with the optimal plan for this knitting industry is a very challenging task, especially with MTO/MTS needs. In addition, the seasonality of demand in the garment industry is often short-lived, the production plan must immediately respond to the demand for production decisions. And respond to the rapid changes of the fashion market, of the time trend in the world. As a result, horizontal plans are often quite short, seasonal. Therefore, planning decisions such as production time, production quantity to meet demand must be made very carefully because it directly affects the cost and revenue of the factory.

In which, the price of raw materials, specifically fabric, is the most important factor that affects production costs and cash flow for production operations, especially make-to-order products. This issue was caused by some garment factories in Egypt experiencing due to a recent currency floatation. Some factories are troubled with financial turmoil due to payment delays and recurring operating cost pressures. The main challenge is the management of MTS and short-term production planning for MTS with limited resources and finance.

In the world, there are a number of research papers on production planning for the garment industry, but mainly for the MTS production system. The decision that poses problems for the MTO production system will be different from the MTS production system. For MTOs, the most important thing is to meet the demand on the day of delivery although quantities and times may be subject to change. Therefore, it requires a detailed production plan that can control the inflow and outflow production.

The order of this research is in the following sequences. The methodology of this research is reviewed in Section II. Furthermore, Section III shows a final process that wraps up and provides an experimental result of this research. Lastly, Section IV presents a conclusion and recommendation.

# **1.2 Problem Statement**

A company in the textile industry that only manufactures MTO products has a serious financial deficit due to the impact of the rising price of fabric material. This leads us to plan for the MTO and MTS category of textiles and to monitor the factory's available cash flow throughout the planning process to make optimal decisions. The goal is to enable the plant management team to make realistic decisions based on cost versus projected revenue for orders (MTO) and production planning (MTS) for a given season.

# 1.3 Scope and Limitations

The MILP model developed in this research has the goal of maximizing achieved net profits by eliminating prospective cost elements from sales revenues. The importance of this research is coming from the engaging financial aspects, such as the cash flow, with the production planning of a hybrid MTO-MTS manufacturing system. Separating finances from production planning is no longer a viable option for a company to stay afloat.

We will discuss research on the use of MILP for analyzing MTS and MTO production models to help the management of garment factories to make rational decisions according to their production capacity and be able to adapt to predictable seasonal demand changes by how to make production decisions and inventory decisions for 2 types of goods MTO and MTS. This model also demonstrates that cash availability has a significant impact on production decisions, and this research model is sensitive to changes in fabric costs and sub-bids while total net profit is unaffected. Changes in inventory holding costs have a substantial impact.

#### CHAPTER 2 BACKGROUND AND LITERATURE REVIEW

# 2.1 Background

The ready-made garment is always hard to manage with its pattern changes constantly over time. Firms must learn how to come up with short term plans that could secure their profit but also satisfy customers' needs. Both types of products provide significant benefits to the business. Planning for mixed MTS/MTO demand types, on the other hand, might be challenging for the majority.

On-the-spot payment is not always guaranteed with made-to-order manufacture. Therefore, most organizations tend to focus on their make-to-stock product. This is fairly apparent in previous studies. In the literature, research in the field of production planning for either MTO or MTS production systems is addressed more frequently than that for both modes of demand within the same system. There are just a few publications that consider them all together, but they all emphasis on the textile sector.

# 2.2 Literature review

Several research papers on production planning in the garment industry have been published. This serves as a starting point for the field. Guo, et.al (2006) constructed a job shop scheduling (JSS) model for a mixed- and multi-product assembly apparel environment. The goal of their design is to reduce the overall cost of earliness and tardiness by determining when to begin production on each order and how to assign operations to machines. A genetic algorithm (GA) was used to solve the proposed model. Mok, et al. (2013) also implemented GA in combination with group technology to get automated work assignments, ensuring efficient resource usage and job completion.

Ohta, Hirota, and Rahim (2007) looked at a multi-production inventory policy comparison between MTO and MTS. The study used a queuing model, with the optimality condition determined by which products are made-to-order and which are in stock. They calculated the

optimal level of base stock. The investigation of how planners should approach the combination MTO-MTS issue in the real world would put the finishing touches on this study.

Kaminsky and Kaya (2009) offered advice on when to utilize made-to-order and made-to-stock procedures in centralized and decentralized supply chains. They evaluated the advantages of employing each operation in different situations and how to run the whole system to keep expenses low. This is one of the first articles that analyze inventory decisions, scheduling, and lead time quotation in the context of a supply chain, as well as the influence of the supplier—manufacturer relationship on these systems. However, these were simplified models, and real-world systems have far more complicated attributes than these models can describe.

Beemsterboer, Land, and Teunter (2016) built a Markov Decision Process model to examine the benefits of hybrid planning techniques for both MTO and MTS. The system decides when MTO and MTS items should be manufactured, taking into account positive lead times for MTO products. The development of heuristic planning approaches for hybrid production systems in more complicated contexts, such as working station or machine configurations, was lacking in the study.

In 2011, Gunalay selected which scheduling policy to follow for MTO versus MTS items in a single facility. The overall cost, inventory holding, and order delay costs were evaluated between two distinct server scheduling policies, first in first out and cyclic service. There is no dominating approach for either production policy or product scheduling policy, according to the analytical and numerical examination.

Rafiei, Rabbani, and Kokabi, (2014), presented a mixed-integer program for a multi-site production firm's production planning. Their intention was to maximize the manufacturer's profit. It would be interesting to look at the scheduling issue, which is linked to the issue in their study.

A strong methodology has been given by Wong, et.al (2014) for optimizing medium-range production planning in a combined MTS–MTO business context. The given model included suppliers, processes, and consumers to assess their inconsistencies and to justify the suggested model by applying it to an industrial case. Their article concentrates on cost-related uncertainty rather than all potential future concerns. Adopting non-financial uncertainty into the model,

such as manufacturing lead time or raw material supply lead time, would improve its use for academics and practitioners.

Under the hybrid strategy of MTO/MTS, Zhang et.al, 2015 provided a nonlinear integer programming model that co-optimizes multi-level inventory matching and order planning for steel plants. Their research also delivered an enhanced Particle Swarm Optimization (PSO) approach that can overcome the problem of local optimal limitation.

Rabbani et.al (2008) described a hybrid strategy to decide which items will be made-to-order and which will be kept in stock, based on a strategic technique of strengths and weaknesses, opportunities and threats (SWOT) analysis, and a fuzzy analytical hierarchy process (FAHP). Combining the two methodologies yielded quantifiable values for the SWOT criteria, resulting in an order partitioning choice. However, crucial restrictions such as the firm's capacity and time limit were not considered in the article.

The model suggested in this study is a MILP model with the goal of optimizing net profits by deducting possible cost factors from sales revenues.

The relevance of including financial variables, such as cash flow, into the production planning of a hybrid MTO-MTS manufacturing system underpins this research. Separating financing from production planning is no longer a viable option for sustaining a corporation.

# **CHAPTER 3 METHODOLOGY**

# 3.1 Problem descriptions

Management of MTO and MTS production together in a readymade garment factory is a challenging problem. Particularly if the planning horizon is short, due to the nature of the industry, and if one of the systems was the only applicable kind of production. Various garments require different number of labor hours and amount of fabric per garment and the factory has limited capacity and financial resources. Also, once fabric is ordered, the factory must provide enough cash to pay for it.

The management team aims at having a production plan for the factory that considers a successful operation of seasonal MTO and MTS production simultaneously, within the available resources. To achieve an optimum plan, major trade-offs from the interaction of both production types and their implications on the cash and revenue at the end of the season have to be considered. Trade-offs such as, capacity allocation for both production types during different seasons, producing an order in an early period and storing it or producing it in a latter period, and considering overtime or maybe subcontracting sometimes to be able to meet-up with the orders due dates.

The objective of the developed model is to maximize the net profits for various garments required for either MTO/MTS customer, while maintaining a positive cash flow throughout the planning horizon.

The proposed model is a deterministic model that is developed for a mix of MTO and MTS production within the limited resources. The model maximizes the net revenues resulting from the MTO and MTS sales along the planning horizon. It also provides an optimal production plan that deals with frequent production scenarios.

The main difference between MTO and MTS in the model is that the MTS products are produced and stocked along the planning horizon to meet the forecasted amounts, and no sales occur in the first four periods for the MTS.

#### 3.2 Mathematical model formulation

# 3.2.1 Model assumption

- 1. Fabrics arrive on time.
- 2. The cost of other materials/subassemblies required for producing the garment (threads, buttons, zippers...) are included in the fabric cost.
- 3. Service wear products are produced based on MTO policy while children wear products are produced on a MTS policy.

- 4. MTO are confirmed orders at the beginning of the season.
- 5. Overtime is allowed for MTO and MTS production.
- 6. Initial inventory for material is zero for both products in categories.
- 7. The production capacity is known and fixed.
- 8. Subcontracting is allowed for MTO products only.
- 9. The planning horizon is 1 season, equivalent to 12 weeks.
- 10. Production cost includes labor cost and maintenance cost.
- 11. Once an order is delivered its cash is received.
- 12. No down-payment for MTO items.
- 13. Safety stock is not considered for neither MTO fabrics nor MTS products.
- 14. There is no minimum batch size required for subcontracted products.

# 3.2.2 Model formulation

# **3.2.2.1 Index sets**

| Set                                    | Index |
|----------------------------------------|-------|
| T: set of time periods t               | t     |
| M: set of made to order (MTO) products | m     |
| J: set of made to stock (MTS) products | j     |
| F : set of fabric types                | f     |
| K: set of level fabrics                | k     |

# 3.2.2.2 Input parameters

| $\alpha_{fj}^S$ | Amount of fabric $f$ used to make one unit of MTS product j      | m².fabric      |
|-----------------|------------------------------------------------------------------|----------------|
| $h_{m}^{O}$     | labor hours required to process one unit of MTO product m        | hrs/unit       |
| $h_j^S$         | labor hours needed to produce one unit of MTS product <i>j</i> . | hrs/unit       |
| Hmax            | Maximum available regular production hours.                      | Hrs            |
| G max           | Maximum allowed overtime production hours.                       | Hrs            |
| Wf              | Warehouse space needed per square meter of fabric f              | m²/m²of fabric |
| Wmax            | Maximum fabric warehouse capacity for fabrics                    | $m^2$          |

| $v^{O}$          | Storage space requirements per unit of finished MTO       | m²/unit    |
|------------------|-----------------------------------------------------------|------------|
| m                | product m                                                 |            |
| $v_J^S$          | Storage space requirements per unit of finished MTS       | m²/unit    |
|                  | product j                                                 |            |
| Vmax             | Maximum storage capacity for MTO and MTS final            | $m^2$      |
|                  | products                                                  | <i></i>    |
| <b>D</b> mt      | Confirmed orders at the beginning of the planning horizon | units      |
| <b>F</b> jt      | Forecasted demand for MTS product $j$ during period $t$   | units      |
| $p_{m}^{O}$      | Selling price of one unit of MTO product <i>m</i>         | EGP/unit   |
| $p_{J}^{S}$      | Selling price for one unit of MTS product <i>j</i>        | EGP/unit   |
| <b>r</b> fk      | Purchase price r of fabric f at level k, where k1,2,      | $EGP/m^2$  |
|                  | indicating the two pricing levels.                        |            |
| $q_f$            | Minimum meters of fabric so that the discount is offered/ | 2          |
|                  | can purchase from a wholesaler.                           | $m^2$      |
| $B_m^O$          | Minimum batch size for production of MTO product <i>m</i> | Units      |
| $B_I^S$          | Minimum batch size for production of MTS product $j$      | Units      |
| $C_{\theta}$     | Initial cash available at the beginning of the planning   | <b>EGP</b> |
|                  | horizon                                                   |            |
|                  | Minimum final cash targeted at the end of the planning    | <b>EGP</b> |
| $C^T$            | horizon                                                   |            |
| $\boldsymbol{L}$ | A Large positive number                                   |            |
|                  |                                                           |            |

# 3.2.2.3 Decision variables

| FQ <sub>fkt</sub> | Quantity of fabric $f$ ordered at price level $k$ during period $t$ | $m^2$      |
|-------------------|---------------------------------------------------------------------|------------|
| <b>IF</b> ft      | Inventory of fabric $f$ by the end of period $t$                    | $m^2$      |
| <b>CH</b> t       | Cash available by the end of period t                               | <b>EGP</b> |
| $I_{mt}^O$        | WIP Inventory level of MTO product $m$ by the end of period $t$     | unit       |
| $I_{jt}^{S}$      | WIP Inventory level of MTS product $j$ by the end of period $t$     | unit       |

| $R^O$          | Regular time production quantity of MTO product $m$ during period $t$                                            | unit  |
|----------------|------------------------------------------------------------------------------------------------------------------|-------|
| $R^S$          | Regular time production quantity of MTS product <i>j</i> during                                                  | unit  |
| K              | period t                                                                                                         |       |
| 00             | overtime production quantity of MTO product $m$ during period $t$                                                | unit  |
| 0 <sup>S</sup> | overtime production quantity of MTS product $j$ during period $t$                                                | unit  |
| <b>b</b> ft    | Binary integer variables, $b_{ft} l$ if fabric $f$ is purchased for price level $k2$ ,                           |       |
|                | in time period $t$ and 0 for otherwise                                                                           |       |
| $S_{mt}$       | Subcontracting amount of product $m$ at time period $t$                                                          | units |
| CO<br>mt       | Binary integer variables, $\zeta^o$ 1; if MTO product $m$ is produced during period $t$ , $\zeta^o$ 0 otherwise. |       |
| ζS             | Binary integer variables, $\zeta^{s}$ 1; if MTS product j is produced during period t, $\zeta^{s}$ 0 otherwise.  |       |

# 3.2.2.4 The objective function

The objective function aims at maximizing the firm's total profits P which is the net value achieved from subtracting potential cost elements from sales revenues.

Maximize Profit: P Total Revenues – Total Costs.

Therefore, the **objective function** is expressed as follows:

$$\begin{aligned} &Max.\ P = \sum_{m \in M} \sum_{t \in T} p_m^O\ D_{mt} + \sum_{j \in J} \sum_{t \in T} p_j^S\ F_{jt} - \sum_{m \in M} R_m^{CO} \sum_{t \in T} R_{it}^O \\ &- \sum_{m \in M} O_m^{CO} \sum_{t \in T} O_{mt}^O - \sum_{j \in J} R_j^{CS} \sum_{t \in T} R_{jt}^S - \sum_{j \in J} O_j^{CS} \sum_{t \in T} O_{jt}^S \\ &- \sum_{t \in T} \sum_{f \in F} r_{fk} F Q_{fkt} - \sum_{m \in M} \sum_{t \in T} I_{mt}^{CO}\ I_{mt}^O - \sum_{j \in J} \sum_{t \in T} I_{jt}^{CS}\ I_{jt}^S \\ &- \sum_{t \in T} \sum_{f \in F} I_{ft}^{CF}\ I F_{ft} - \sum_{t \in T} \sum_{m \in M} S b_{mt}^C\ S_{mt} \end{aligned} \tag{1}$$

#### 3.2.2.5 The constraints

$$IF_{ft=0} = IF_{in} \forall t (2)$$

$$IF_{ft-1} + FQ_{fkt} - \sum_{i \in I} \alpha_{fi}^{O} \left( R_{it}^{O} + O_{it}^{O} \right)$$

$$- \sum_{j \in I} \alpha_{fj}^{S} \left( R_{jt}^{S} + O_{jt}^{S} \right) = IF_{ft}$$

$$\forall f, \forall t$$
(3)

$$I_{it=0}^{S} = I_{in}^{S} \qquad \forall t \tag{4}$$

$$(R_{jt}^S + O_{jt}^S) + I_{jt-1}^S - I_{jt}^S = F_{jt} \qquad \forall j \in J, \forall t$$
 (5)

$$I_{mt-1} + R_{mt}^{0} + O_{mt}^{0} + S_{mt} = D_{mt} + I_{mt} \quad \forall m \in M, \forall t$$
 (6)

$$\sum_{m \in M} h_m^O R_{mt}^O + \sum_{i \in I} h_j^S R_{jt}^S \le H_{max}$$
  $\forall t$  (7)

$$\sum_{m \in M} h_m^O O_{mt}^O + \sum_{i \in I} h_j^S O_{jt}^S \le G_{max}$$
  $\forall t$  (8)

$$\sum_{f \in F} w_f I F_{ft} \le W_{max}$$
  $\forall t$  (9)

$$\sum_{m \in M}^{f \in F} v_m^O I_{mt}^O + \sum_{j \in I} v_j^S I_{jt}^S \leq V_{\text{max}}$$
  $\forall t$  (10)

$$FQ_{f1t} \le q_f b_{ft} \qquad \forall f, \forall t \qquad (11)$$

$$q_f(1 - b_{ft}) \le FQ_{f2t} \qquad \forall f, \forall t \qquad (12)$$

$$CH_t = C_0 \forall t = 1 (13)$$

$$CH_{t-1} + \sum_{m \in M} p_m^o D_{mt} - \sum_{f \in F} r_{fk} F Q_{fkt}$$

$$- \sum_{m \in M} (R_m^{CO} R_{mt}^O + O_m^{CO} O_{mt}^O)$$

$$- \sum_{j \in J} (R_j^{CS} R_{jt}^S + O_j^{CS} O_{jt}^S)$$

$$- \sum_{j \in J} S b_{mt}^C S_{mt} = C H_t$$

$$\forall t$$

$$\in \{1, 2, 3, 4\}$$
(14)

$$\begin{split} &CH_{t-1} + \sum_{m \in M} p_m^o \, D_{mt} + \sum_{j \in J} p_j^S \, F_{jt} \\ &- \sum_{f \in F} r_{fk} \, FQ_{fkt} \, - \sum_{m \in M} (R_m^{co} R_{mt}^o + O_m^{co} O_{mt}^o) \end{split}$$

$$-\sum_{j \in J} (R_{j}^{CS} R_{jt}^{S} + O_{j}^{CS} O_{jt}^{S}) + \sum_{m \in M} Sb_{mt}^{C} S_{mt}$$

$$= CH_{t}$$

$$= CH_{t}$$

$$\forall t$$

$$\in \{5,6 \dots$$

$$12\}$$

$$(15)$$

$$CH_t \ge C^T \qquad \qquad t = 12 \tag{16}$$

$$R_{mt}^{O} + O_{mt}^{O} \ge B_{m}^{O} \zeta_{it}^{O} \qquad \forall m, \forall t \qquad (17)$$

$$\zeta_{it}^{o} \ge \frac{1}{L} \sum_{m \in M} (R_{mt}^{o} + O_{mt}^{o}) \qquad \forall m, \forall t \qquad (18)$$

$$R_{jt}^S + O_{jt}^S \ge B_j^S \zeta_{jt}^S \qquad \forall j, \forall t \qquad (19)$$

$$\zeta_{jt}^{S} \ge \frac{1}{L} \sum_{i \in I} (R_{jt}^{S} + O_{jt}^{S})$$
  $\forall j, \forall t$  (20)

$$FQ_{fkt}, IF_{ft}, CH_t, I_{mt}^O, I_{jt}^S, R_{mt}^O, R_{jt}^S, O_{mt}^O, O \ge 0$$
 (21)

Initial fabric inventory is indicated by constraint (1) while constraint (2) represents the material balance constraints for MTO and MTS products. Initial inventory for MTS production is represented by equation (3). Equation (4) indicates inventory balance equation for meeting MTS forecast. Constraint (5) indicates MTO demand satisfaction constraint.

Equations (6) and (7) are for the capacity constraints for regular and overtime products respectively. Fabrics storage capacity constraint is denoted by equation (8). The storage capacity for MTO and MTS final products is illustrated by equation (9). Equations (10) and (11) are developed for the quantity discount on fabric purchase. where k represents the two price levels, k 1 means that no discount is offered for a quantity less than  $q_f$ , as illustrated by equation (10), while k2 means that the amount purchased is greater than  $q_f$  and therefore the discount is offered, equation (11). Equation (12) represents the initial cash at the beginning of the planning horizon. The cash balance for the first four periods of the planning horizon is presented by equation (13).

Equation (14) indicates the cash balance from period 5 to the end of the planning horizon, where the MTS sales take place with the MTO sales. The final cash at the end of the planning horizon should be greater than or equal an amount  $C^T$ , as denoted by equation (15).

Equations (16) and (17) satisfy the minimum batch production for MTO production. MTS minimum batch production is presented by equations (18) and (19) is for non-negativity constraints

# 3.3 Model in Cplex

We implement the model in Cplex and Runs the model with random generate. Before developing the formulation, we will first present the notation in Cplex:

k: the numberlevel pricing fabric

nmts: the number of type of MTS nmto: the number of type of MTO

tf: the number of type of fabric

np: number period rmts: range MTS

rmto: range MTO

rf: range type of fabric

rp: range period

rk: range level pricing fabric

ICF[rf][rp]: holding cost fabric taken from excel

ICO[rmto][rp]: holding cost MTO taken from excel ICS[rmts][rp]: holding cost MTS taken from excel

IFA[rf]: inventory of each type of fabric at period 0

IS[rmts]: inventory of each type of MTS products at period 0

RCO[rmto]: regular time production cost per unit of each m MT0 products

RCS[rmts]: regular time production cost per unit of each j MTS products OCO[rmto]: overtime production cost per unit of m product MTO

OCS[rmts]: overtime production cost per unit of j produce MTS

```
SBC[rmto][rp]: subcontracting cost for each m MTO product at each period
    AFO[rf][rmto]:amount of fabric f to make one unit of MTO product m
    AFS[rf][rmts]: amount of fabric f to make one unit of MTS product j
    HO[rmto]: labor hour needed to process one unit of product m of MTO
    HS[rmts]: labor hour needed to process one unit of product j of MTS
    HMAX: maximum available regular production hours per period
    GMAX: maximum available overtime production hour per period
    WF[rf]: warehouse space needed per meter of each fabric f
    WFMAX: maximum fabric warehouse capacity (m2)
    VO[rmto]: storage space requirement per unit of finished MTO product m
    VS[rmts]: storage space requirement per unit of finished MTS product j
    VMAX50: maximum storage space for MTO and MTS
    DM[rmto][rp]: demand based on confirmed orders MTO
    FJ[rmts][rp]: forecasted demand MTS
    PO[rmto]: selling price of one unit of MTO product m
    PS[rmts]: selling price of one unit of MTS product j
    RF[rf][rk]: purchase price r of fabric f at level k
    QF[rf]: minimum of meters fabric to get discount (m2)
    BO[rmto]:minimum batch size for production of MTO product m
    BS[rmts]:minimum batch size for production of MTS product j
    CO:initial cash available at the beginning of the planning horizon
    CT: minimum final cash targeted at the end of the planning horizon
    L: a large positive number
    FQ[rf][rk][rp]: Area of fabric f ordered at price level k during period t (m2)
    IA[rf][rp]: Area of fabric f kept in inventory by the end of period t (m2).
    CH[rp]: Cash available by the end of period t
    ILO[rmto][rp]: WIP Inventory level of MTO product m by the end of period t
    ILS[rmts][rp]: WIP Inventory level of MTS product j by the end of period t
    RO[rmto][rp]: Regular time production quantity of MTO product m during period t
    RS[rmts][rp]: Regular time production quantity of MTS product j during period t
    OP[rmto][rp]: overtime production quantity of MTO product m during period t
    SP[rmts][rp]: overtime production quantity of MTS product j during period t
    S[rmto][rp]: Subcontracting amount of product m at time period t
    B[rf][rp]: if fabric f is purchase for price level k = 2, in time period t and = 0 otherwise.
    F[rmto][rp]: =1 if MTO product m is produced during period t, and = 0 otherwise
    F1[rmts][rp]: =1 if MTS product j is produced during period t, and = 0 otherwise
    Next, we define constraints in Cplex:
    c1 : for all (f in rf, t in rp: t == 0){ IA[f][t] == IFA[f];}
    c2 : forall(f in rf, k in rk, t in rp)\{IA[f][0] + FQ[f][k][0] - sum(i in rmto)AFO[f][i]*(RO[i][0] + b
OP[i][0] - sum(j in rmts)AFS[f][j] *(RS[j][0] + SP[j][0]) == IA[f][0];
     if(t>0) IA[f][t-1] + FQ[f][k][t]
     - sum(i in rmto)AFO[f][i]*(RO[i][t] + OP[i][t])
     - sum(j in rmts)AFS[f][j] *(RS[j][t] + SP[j][t]) == IA[f][t];
    c3 : for all (j in rmts, t in rp: t == 0){ILS[i][t] == IS[i];}
```

```
c4 :forall(j in rmts, t in rp) \{(RS[j][0] + SP[j][0]) - ILS[j][0] == FJ[j][0]\}
        if(t > 0)(RS[j][t] + SP[j][t]) + ILS[j][t-1] - ILS[j][t] \le FJ[j][t];
     c5 :forall(m in rmto, t in rp){ ILO[m][0] + RO[m][0] + OP[m][0] + S[m][0] == DM[m][0] + ILO[m][0];
       if(t>0) ILO[m][t-1] + RO[m][t] + OP[m][t] + S[m][t] == DM[m][t] + ILO[m][t];
     c6 : for all (t in rp) { sum(m in rmto) HO[m]*RO[m][t] + sum(j in rmts) HS[j]*RS[j][t] \leq HMAX; }
     c7 : forall(t in rp){sum(m \text{ in rmto}) HO[m]*OP[m][t] + sum(j \text{ in rmts}) HS[j]*SP[j][t] <= GMAX;}
     c8 : forall(t in rp: t \ge 1 \&\&t \le 12) {sum(f in rf) WF[f]*IA[f][t] <= WFMAX;}
     c9 :forall(t in rp: t \ge 1 \&\&t \le 12){sum(m in rmto) VO[m]*ILO[m][t] + sum(j in rmts) VS[j]* ILS[j][t] <=
VMAX;}
     c10 : for all (f in rf, k in rk, t in rp: k == 1) {FQ[f][k][t] <= QF[f]*B[f][t];}
     c11 :forall(f in rf, k in rk, t in rp: k == 2){QF[f]*(1 - B[f][t]) <= FQ[f][k][t];}
     c12 : forall(t in rp:t == 0){CH[t] == CO;}
     c13 :forall(f in rf, k in rk, t in rp: t \le 4 \&\& t \ge 1){CH[t-1] + sum(m in rmto) PO[m] * DM[m][t] - sum(f in
rf) RF[f][k]*FQ[f][k][t]- sum(m in rmto)(RCO[m]*RO[m][t] + OCO[m]*OP[m][t])- sum(j in method)
rmts)(RCS[j]*RS[j][t] + OCS[j]*SP[j][t])- sum(m in rmto) SBC[m][t]*S[m][t] == CH[t];
    c14 :forall(f in rf, k in rk, t in rp: t \ge 5 \&\& t \le 12){CH[t-1] + sum(m in rmto) PO[m] * DM[m][t] + sum(j
in rmts) PS[j] * FJ[j][t] - sum(f in rf) RF[f][k]*FQ[f][k][t]- sum(m in rmto)(RCO[m]*RO[m][t] + respectively.
OCO[m]*OP[m][t])-sum(j in rmts)(RCS[j]*RS[j][t] + OCS[j]*SP[j][t]) + sum(m in rmto) SBC[m][t]*S[m][t]
== CH[t];
     c15 : for all (t in rp: t==12)
                                       CH[t] >= CT;
     c16 : forall(m in rmto, t in rp)\{RO[m][t] + OP[m][t] \ge BO[m]*F[m][t];\}
    c17 : forall(m in rmto, t in rp)\{F[m][t] \ge 1/L * sum(m in rmto)(RO[m][t] + OP[m][t]);\}
     c18 : forall(j in rmts, t in rp)\{RS[j][t] + SP[j][t] >= BS[j]*F1[j][t];\}
     c19 :forall(j in rmts, t in rp)\{F1[j][t] \ge 1/L * sum(j in rmts)(RS[j][t] + SP[j][t]);\}
     forall(f in rf, k in rk, t in rp: 1 \le t \le 12)
        FQ[f][k][t] >= 0;
     forall(f in rf, t in rp: 1 \le t \le 12)
        IA[f][t] >= 0;
     forall(t in rp: 1 \le t \le 12)
        CH[t] >= 0;
     forall(m in rmto, t in rp: 1 \le t \le 12)
        ILO[m][t] \ge 0;
     forall(j in rmts, t in rp: t == 0)
        ILS[j][t] ==0;
     forall(j in rmts, t in rp: 1 \le t \le 12)
        ILS[j][t] >= 0;
     forall(m in rmto, t in rp: 1 \le t \le 12)
        RO[m][t] \ge 0;
     forall(j in rmts, t in rp: 1 \le t \le 12)
        RS[j][t] >=0;
     forall(m in rmto, t in rp: 1 \le t \le 12)
        OP[m][t] \ge 0;
     forall(j in rmts, t in rp: 1 \le t \le 12)
        SP[i][t] >=0
```

# **CHAPTER 4 RESULTS**

#### 4.1 Data Collection

The production capacity data obtained from the factory were as shown in table 1 for the regular, overtime and storage capacities. The regular hours are 48 hours per week and the over-time hours are 10 hours per week.

Table 1: Production capacity data for the base case

| Capacities available per period                      |                   |  |  |  |  |  |  |  |  |  |
|------------------------------------------------------|-------------------|--|--|--|--|--|--|--|--|--|
| Regular Capacity <i>H<sub>max</sub></i>              | 260 hrs           |  |  |  |  |  |  |  |  |  |
| Overtime Capacity G max                              | 160 hrs           |  |  |  |  |  |  |  |  |  |
| Storage capacity for Final products V <sub>max</sub> | 50 m <sup>2</sup> |  |  |  |  |  |  |  |  |  |
| Storage capacity for fabrics Wmax                    | 40 m <sup>2</sup> |  |  |  |  |  |  |  |  |  |

In all the computational runs, a period is one week, and there are five common types of fabrics that are used for MTO or MTS production. Therefore, those are the only ones considered. Fabric input parameters are given in table 2 Followed by MTO and MTS input data in tables 8, 9, 10 and 11.

**Table 2: Fabrics input parameters** 

| Fabric input parameters | Fabric 1 | Fabric 2 | Fabric 3 | Fabric 4 | Fabric 5 |
|-------------------------|----------|----------|----------|----------|----------|
| l'fk=1                  | 4        | 4        | 6        | 4        | 3        |
| l'fk=2                  | 5        | 6        | 7        | 6        | 5        |
| wf                      | 0.004    | 0.004    | 0.004    | 0.004    | 0.004    |
| $q_f$                   | 30       | 40       | 100      | 100      | 50       |

Table 3: Inventory holding cost of fabric f during period t (EGP/m2/week)

|   | 0   | 1   | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9   | 10  | 11  | 12  |
|---|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 1 | 2.5 | 3   | 2.7 | 1.9 | 1.5 | 2.6 | 3   | 1.8 | 2.9 | 2.9 | 1.8 | 3   | 2.6 |
| 2 | 2   | 2.2 | 2.6 | 3   | 2.6 | 1.5 | 2.7 | 1.9 | 2.3 | 2.2 | 2.6 | 2.2 | 1.5 |
| 3 | 2   | 2.1 | 2.1 | 2.3 | 2.4 | 1.9 | 2.6 | 2.5 | 1.9 | 1.8 | 3   | 2.5 | 1.5 |
| 4 | 1.5 | 2.3 | 2.2 | 1.6 | 2.1 | 2.9 | 2.8 | 2.4 | 1.6 | 2.3 | 1.8 | 1.7 | 2   |
| 5 | 2.8 | 2.9 | 2.5 | 2.8 | 3   | 2.7 | 2.9 | 1.5 | 1.6 | 2.8 | 2.6 | 2.1 | 1.6 |

Table 4: Amount of fabric f used to make one unit of MTO product m (m2)

| fabric<br>f/ | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   |
|--------------|------|------|------|------|------|------|------|------|------|------|
| 1            | 0.5  | 0.5  | 0.4  | 0.5  | 0.6  | 0.4  | 0.5  | 0.6  | 0.7  | 0.4  |
| 2            | 0.7  | 0.7  | 0.7  | 0.7  | 0.6  | 0.7  | 0.6  | 0.6  | 0.6  | 0.7  |
| 3            | 0.69 | 0.64 | 0.6  | 0.68 | 0.6  | 0.6  | 0.6  | 0.66 | 0.61 | 0.62 |
| 4            | 0.7  | 0.78 | 0.74 | 0.73 | 0.71 | 0.73 | 0.71 | 0.71 | 0.72 | 0.78 |
| 5            | 0.8  | 0.8  | 0.71 | 0.77 | 0.73 | 0.73 | 0.8  | 0.8  | 0.78 | 0.79 |

Table 5: Amount of fabric f used to make one unit of MTS product j (m2).

|   | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10  | 11   | 12   | 13   | 14   | 15   |
|---|------|------|------|------|------|------|------|------|------|-----|------|------|------|------|------|
| 1 | 0.7  | 0.7  | 0.5  | 0.7  | 0.7  | 0.7  | 0.6  | 0.6  | 0.6  | 0.5 | 0.7  | 0.6  | 0.5  | 0.7  | 0.5  |
| 2 | 0.7  | 0.6  | 0.6  | 0.7  | 0.6  | 0.7  | 0.7  | 0.7  | 0.7  | 0.6 | 0.7  | 0.6  | 0.7  | 0.7  | 0.7  |
| 3 | 0.6  | 0.69 | 0.65 | 0.62 | 0.6  | 0.62 | 0.61 | 0.63 | 0.63 | 0.6 | 0.65 | 0.66 | 0.61 | 0.64 | 0.65 |
| 4 | 0.78 | 0.72 | 0.79 | 0.75 | 0.77 | 0.76 | 0.8  | 0.7  | 0.76 | 0.8 | 0.8  | 0.79 | 0.71 | 0.78 | 0.8  |
| 5 | 0.74 | 0.76 | 0.7  | 0.73 | 0.77 | 0.78 | 0.72 | 0.75 | 0.75 | 0.8 | 0.74 | 0.71 | 0.73 | 0.77 | 0.72 |

Table 6: Initial inventory values and initial cash value

| Initial fabric inventory | Initial MTO/MTS inventory | C₀(EGP) |
|--------------------------|---------------------------|---------|
| 0                        | 0                         | 200000  |

Table 7: Inventory holding cost per unit of MTO product m during period t (EGP/unit/week).

|    | 0    | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   | 11   | 12   |
|----|------|------|------|------|------|------|------|------|------|------|------|------|------|
| 1  | 3.20 | 3.40 | 3.30 | 3.50 | 3.50 | 3.80 | 3.00 | 3.00 | 3.00 | 3.10 | 3.90 | 3.50 | 3.30 |
| 2  | 3.80 | 3.90 | 3.10 | 3.80 | 3.60 | 3.10 | 3.50 | 3.40 | 3.00 | 3.60 | 3.00 | 3.60 | 4.00 |
| 3  | 3.70 | 3.20 | 3.80 | 3.70 | 3.70 | 3.00 | 3.20 | 4.00 | 3.60 | 3.40 | 3.20 | 3.10 | 3.40 |
| 4  | 3.50 | 3.30 | 3.40 | 3.80 | 3.90 | 3.30 | 4.00 | 3.80 | 3.00 | 3.50 | 3.30 | 3.20 | 3.50 |
| 5  | 3.50 | 3.70 | 3.50 | 3.60 | 3.20 | 3.60 | 3.80 | 3.80 | 3.80 | 3.30 | 4.00 | 3.60 | 3.40 |
| 6  | 4.00 | 3.00 | 4.00 | 3.20 | 3.30 | 3.10 | 3.50 | 3.20 | 3.50 | 3.30 | 3.90 | 4.00 | 3.90 |
| 7  | 3.30 | 3.40 | 3.50 | 3.10 | 4.00 | 3.10 | 4.00 | 3.00 | 3.50 | 3.40 | 3.00 | 3.60 | 3.80 |
| 8  | 3.10 | 3.70 | 3.70 | 3.40 | 3.30 | 4.00 | 3.90 | 3.40 | 3.00 | 3.60 | 3.30 | 4.00 | 3.80 |
| 9  | 4.00 | 3.10 | 3.60 | 3.90 | 4.00 | 3.10 | 3.50 | 3.20 | 3.90 | 3.70 | 3.50 | 3.30 | 3.40 |
| 10 | 3.90 | 3.10 | 3.60 | 4.00 | 3.40 | 3.60 | 3.90 | 3.30 | 4.00 | 3.40 | 3.50 | 3.70 | 3.70 |

Table 8: Labor hours required to process one unit of MTO product m (hr/unit).

| МТО   | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10    |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Hours | 0.067 | 0.067 | 0.050 | 0.083 | 0.067 | 0.067 | 0.050 | 0.067 | 0.067 | 0.050 |

Table 9: Labor hours required to process one unit of MTS product j (hr/unit).

| MTS  | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10    | 11    | 12    | 13    | 14    | 15    |
|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Cost | 0.050 | 0.067 | 0.067 | 0.083 | 0.050 | 0.067 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.067 | 0.083 | 0.083 | 0.083 |

Table 10: Inventory holding cost per unit of MTS product during period t(EGP/unit/week).

|    | 0    | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   | 11   | 12   |
|----|------|------|------|------|------|------|------|------|------|------|------|------|------|
| 1  | 3.20 | 3.30 | 3.60 | 3.40 | 4.00 | 3.80 | 4.00 | 3.00 | 3.70 | 3.70 | 3.10 | 3.10 | 3.70 |
| 2  | 4.00 | 3.70 | 3.20 | 3.80 | 3.50 | 3.90 | 3.60 | 3.20 | 3.20 | 3.70 | 3.40 | 3.10 | 3.80 |
| 3  | 3.20 | 4.00 | 4.00 | 3.20 | 3.90 | 3.80 | 3.90 | 3.80 | 3.80 | 3.60 | 3.90 | 3.70 | 3.80 |
| 4  | 3.40 | 3.40 | 3.50 | 3.60 | 4.00 | 3.50 | 3.00 | 3.00 | 3.20 | 3.40 | 3.50 | 3.30 | 3.10 |
| 5  | 3.70 | 3.90 | 3.50 | 3.50 | 3.90 | 3.40 | 3.60 | 3.70 | 3.20 | 3.10 | 3.90 | 3.20 | 3.00 |
| 6  | 3.80 | 3.40 | 3.30 | 3.30 | 3.70 | 3.80 | 3.70 | 3.80 | 3.90 | 3.50 | 3.20 | 3.10 | 3.80 |
| 7  | 4.00 | 4.00 | 3.80 | 3.10 | 3.80 | 3.90 | 3.60 | 3.40 | 4.00 | 3.60 | 3.40 | 3.40 | 3.80 |
| 8  | 3.30 | 3.20 | 3.10 | 3.40 | 3.40 | 3.20 | 3.20 | 3.30 | 3.60 | 3.00 | 3.40 | 3.60 | 3.20 |
| 9  | 4.00 | 3.70 | 3.40 | 3.90 | 3.40 | 3.00 | 3.70 | 3.00 | 3.90 | 3.90 | 4.00 | 3.60 | 3.30 |
| 10 | 3.70 | 3.10 | 3.80 | 3.50 | 4.00 | 3.60 | 3.40 | 4.00 | 3.70 | 3.70 | 3.30 | 4.00 | 3.10 |
| 11 | 3.40 | 4.00 | 3.60 | 3.50 | 3.30 | 3.00 | 3.90 | 3.70 | 3.30 | 3.90 | 3.60 | 3.10 | 3.10 |
| 12 | 3.00 | 3.10 | 3.70 | 4.00 | 3.10 | 3.40 | 3.40 | 4.00 | 3.40 | 4.00 | 3.40 | 3.90 | 3.90 |
| 13 | 3.70 | 3.80 | 4.00 | 3.30 | 3.60 | 3.60 | 3.20 | 3.60 | 3.10 | 3.30 | 3.30 | 3.70 | 3.40 |
| 14 | 3.40 | 3.90 | 3.20 | 3.90 | 3.50 | 3.80 | 3.90 | 3.50 | 3.90 | 3.20 | 3.30 | 3.50 | 3.60 |
| 15 | 3.10 | 3.50 | 3.90 | 3.80 | 3.60 | 3.60 | 4.00 | 3.50 | 3.20 | 3.20 | 3.90 | 4.00 | 4.00 |

Table 11: Regular time production cost per unit of MTO product m (EGP/unit)

| МТО  | 1   | 2 | 3   | 4   | 5   | 6   | 7   | 8   | 9   | 10  |
|------|-----|---|-----|-----|-----|-----|-----|-----|-----|-----|
| Cost | 1.4 | 1 | 5.1 | 4.2 | 4.4 | 4.8 | 4.2 | 3.1 | 4.3 | 2.2 |

Table 12: Regular time production cost per unit of MTS product j (EGP/unit)

| MTS  | 1   | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9   | 10 | 11  | 12 | 13  | 14  | 15  |
|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|----|-----|----|-----|-----|-----|
| Cost | 3.1 | 4.6 | 2.7 | 4.7 | 2.6 | 4.1 | 2.7 | 3.1 | 4.7 | 5  | 1.1 | 1  | 4.9 | 1.9 | 5.2 |

Table 13: Storage space requirements per unit of finished MTO product m (m2/unit)

| МТО   | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   |
|-------|------|------|------|------|------|------|------|------|------|------|
| Space | 0.03 | 0.01 | 0.02 | 0.07 | 0.07 | 0.09 | 0.03 | 0.08 | 0.05 | 0.05 |

Table 14: Storage space requirements per unit of finished MTS product j (m2/unit)

| MTS   | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   | 11   | 12   | 13   | 14   | 15   |
|-------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| Space | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 |

**Table 15: Base case MTO demands** 

| MTO/t | 0 | 1   | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9   | 10  | 11  | 12  |
|-------|---|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 1     | 0 | 257 | 255 | 275 | 269 | 278 | 251 | 254 | 304 | 298 | 275 | 258 | 249 |
| 2     | 0 | 203 | 256 | 232 | 204 | 231 | 202 | 209 | 249 | 200 | 200 | 220 | 220 |
| 3     | 0 | 260 | 243 | 270 | 244 | 249 | 230 | 272 | 204 | 255 | 271 | 272 | 257 |
| 4     | 0 | 268 | 217 | 213 | 264 | 254 | 228 | 225 | 220 | 205 | 271 | 288 | 200 |
| 5     | 0 | 200 | 304 | 246 | 235 | 247 | 258 | 217 | 278 | 246 | 237 | 221 | 222 |
| 6     | 0 | 256 | 228 | 227 | 260 | 259 | 210 | 302 | 263 | 208 | 213 | 249 | 250 |
| 7     | 0 | 191 | 253 | 224 | 229 | 212 | 230 | 197 | 287 | 294 | 209 | 265 | 268 |
| 8     | 0 | 247 | 298 | 204 | 224 | 223 | 227 | 278 | 284 | 253 | 244 | 248 | 221 |
| 9     | 0 | 197 | 262 | 298 | 263 | 204 | 274 | 281 | 216 | 267 | 242 | 216 | 216 |
| 10    | 0 | 241 | 264 | 238 | 263 | 282 | 250 | 224 | 200 | 279 | 235 | 233 | 226 |

**Table 16: MTS forecasted demands** 

| MTS/t | 0 | 1   | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9   | 10  | 11  | 12  |
|-------|---|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 1     | 0 | 201 | 191 | 184 | 174 | 211 | 218 | 207 | 193 | 194 | 194 | 196 | 176 |
| 2     | 0 | 214 | 202 | 209 | 184 | 170 | 187 | 169 | 177 | 198 | 171 | 212 | 189 |
| 3     | 0 | 201 | 174 | 199 | 215 | 181 | 167 | 180 | 215 | 193 | 206 | 195 | 177 |
| 4     | 0 | 220 | 211 | 218 | 214 | 191 | 168 | 174 | 197 | 189 | 219 | 186 | 186 |
| 5     | 0 | 195 | 182 | 182 | 225 | 190 | 170 | 206 | 185 | 196 | 190 | 214 | 213 |
| 6     | 0 | 191 | 194 | 172 | 174 | 204 | 175 | 205 | 191 | 203 | 225 | 222 | 193 |
| 7     | 0 | 198 | 187 | 194 | 191 | 200 | 221 | 189 | 174 | 196 | 169 | 176 | 192 |
| 8     | 0 | 210 | 189 | 217 | 181 | 215 | 206 | 195 | 187 | 211 | 187 | 186 | 205 |
| 9     | 0 | 181 | 169 | 197 | 168 | 186 | 177 | 202 | 172 | 197 | 201 | 211 | 181 |
| 10    | 0 | 179 | 189 | 180 | 197 | 192 | 212 | 184 | 205 | 183 | 198 | 190 | 178 |
| 11    | 0 | 170 | 185 | 198 | 195 | 216 | 177 | 171 | 171 | 199 | 188 | 194 | 178 |
| 12    | 0 | 184 | 203 | 207 | 186 | 200 | 187 | 209 | 194 | 186 | 195 | 182 | 188 |
| 13    | 0 | 207 | 199 | 179 | 200 | 190 | 170 | 182 | 221 | 220 | 168 | 208 | 178 |
| 14    | 0 | 206 | 188 | 190 | 178 | 191 | 219 | 179 | 208 | 173 | 190 | 218 | 205 |
| 15    | 0 | 216 | 214 | 183 | 198 | 209 | 197 | 190 | 207 | 194 | 185 | 188 | 177 |

Table 17: Over- time production cost per unit of MTO product m (EGP/unit)

| MTO/t | 1   | 2   | 3    | 4   | 5    | 6   | 7 | 8   | 9   | 10   |
|-------|-----|-----|------|-----|------|-----|---|-----|-----|------|
| Cost  | 8.7 | 5.1 | 15.6 | 4.2 | 11.4 | 4.2 | 9 | 7.8 | 8.4 | 11.7 |

Table 18: Over- time production cost per unit of MTS product j (EGP/unit)

| MTS/t | 1   | 2   | 3   | 4    | 5    | 6    | 7   | 8   | 9    | 10 | 11   | 12  | 13  | 14   | 15 |
|-------|-----|-----|-----|------|------|------|-----|-----|------|----|------|-----|-----|------|----|
| Cost  | 8.7 | 8.1 | 3.6 | 11.7 | 12.6 | 15.6 | 5.4 | 5.4 | 10.8 | 6  | 10.8 | 4.5 | 6.6 | 15.3 | 12 |

Table 19: Subcontracting cost for MTO product i during time period t (EGP/unit)

| MTO/t | 0 | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 |
|-------|---|----|----|----|----|----|----|----|----|----|----|----|----|
| 1     | 0 | 29 | 30 | 27 | 29 | 29 | 30 | 26 | 30 | 30 | 28 | 26 | 27 |
| 2     | 0 | 25 | 26 | 28 | 27 | 30 | 30 | 27 | 26 | 26 | 29 | 25 | 26 |
| 3     | 0 | 28 | 26 | 26 | 30 | 30 | 30 | 28 | 29 | 27 | 25 | 28 | 27 |
| 4     | 0 | 26 | 25 | 26 | 26 | 26 | 28 | 27 | 28 | 27 | 29 | 28 | 25 |
| 5     | 0 | 25 | 29 | 28 | 25 | 28 | 30 | 25 | 29 | 25 | 29 | 30 | 27 |
| 6     | 0 | 27 | 29 | 26 | 26 | 29 | 30 | 27 | 28 | 26 | 29 | 30 | 30 |
| 7     | 0 | 26 | 28 | 27 | 30 | 28 | 26 | 29 | 28 | 29 | 30 | 29 | 30 |
| 8     | 0 | 30 | 29 | 25 | 25 | 28 | 26 | 28 | 25 | 28 | 28 | 28 | 28 |
| 9     | 0 | 30 | 25 | 30 | 26 | 29 | 27 | 28 | 28 | 27 | 27 | 26 | 27 |
| 10    | 0 | 30 | 28 | 30 | 26 | 29 | 29 | 29 | 28 | 29 | 30 | 25 | 28 |

Table 20: Selling price of one unit of MTO product m (EGP/unit)

| МТО   | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 |
|-------|----|----|----|----|----|----|----|----|----|----|
| Price | 54 | 55 | 60 | 54 | 57 | 51 | 59 | 50 | 52 | 53 |

Table 20: Selling price of one unit of MTS product j (EGP/unit)

| MTS   | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14 | 15 |
|-------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| Price | 40 | 37 | 45 | 37 | 40 | 36 | 45 | 39 | 45 | 41 | 39 | 42 | 45 | 43 | 36 |

Table 21: Minimum batch size for production of MTO product m

| MTO        | 1   | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9   | 10  |
|------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Batch size | 200 | 180 | 130 | 180 | 210 | 160 | 170 | 200 | 280 | 120 |

Table 21: Minimum batch size for production of MTS product j

| MTS        | 1   | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9   | 10  | 11  | 12  | 13  | 14  | 15  |
|------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Batch size | 130 | 120 | 140 | 170 | 180 | 140 | 100 | 170 | 130 | 160 | 120 | 120 | 140 | 120 | 120 |

# 4.2 The data results discussion

The input data distribution was based on historical demand patterns. The results for the base case are presented in table 22, 23, 24, with an optimal integer objective of the profit 689,375 *EGP*. Where the model decisions to produce in regular, overtime /subcontract or hold in inventory were seized on costs only.

Table 22: Base case optimal results MTO

| мто   | Variables | 1   | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9   | 10  | 11  | 12  |
|-------|-----------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
|       | RO<br>1t  | 183 | 168 | 199 | 179 | 193 | 159 | 164 | 155 | 168 | 193 | 184 | 180 |
| MTO1  | 00<br>1t  | 90  | 94  | 81  | 87  | 84  | 82  | 87  | 88  | 85  | 90  | 89  | 84  |
| MIOI  | IO<br>1t  | 10  | 0   | 10  | 0   | 3   | 6   | 1   | 3   | 8   | 6   | 5   | 0   |
|       | S1t       | 6   | 7   | 7   | 7   | 0   | 8   | 0   | 7   | 3   | 10  | 1   | 1   |
|       | RO<br>1t  | 115 | 122 | 152 | 131 | 116 | 141 | 163 | 169 | 149 | 106 | 140 | 154 |
| MTO2  | 00<br>1t  | 89  | 83  | 83  | 80  | 87  | 92  | 85  | 93  | 85  | 88  | 82  | 86  |
| WITOZ | IO<br>1t  | 0   | 2   | 5   | 10  | 0   | 0   | 0   | 0   | 0   | 9   | 3   | 0   |
|       | SIt       | 3   | 4   | 10  | 8   | 4   | 6   | 1   | 3   | 7   | 6   | 2   | 5   |
|       | RO<br>1t  | 118 | 112 | 108 | 152 | 136 | 124 | 149 | 112 | 146 | 139 | 151 | 165 |
| мтоз  | 00<br>1t  | 81  | 80  | 84  | 89  | 92  | 89  | 82  | 88  | 94  | 92  | 87  | 93  |
| WITOS | IO<br>1t  | 3   | 5   | 4   | 4   | 5   | 0   | 0   | 0   | 10  | 6   | 6   | 0   |
|       | S1t       | 4   | 4   | 0   | 6   | 0   | 6   | 4   | 7   | 7   | 3   | 6   | 8   |
|       | RO<br>1t  | 187 | 142 | 100 | 151 | 179 | 116 | 138 | 119 | 107 | 100 | 152 | 183 |
| MTO4  | 00<br>1t  | 88  | 94  | 80  | 93  | 91  | 86  | 81  | 80  | 91  | 94  | 81  | 93  |
| WIIO4 | IO<br>1t  | 2   | 7   | 10  | 8   | 1   | 10  | 6   | 4   | 2   | 10  | 1   | 0   |
|       | S1t       | 5   | 2   | 10  | 8   | 9   | 7   | 2   | 0   | 9   | 8   | 1   | 5   |
|       | RO<br>1t  | 188 | 200 | 119 | 132 | 191 | 154 | 171 | 177 | 111 | 172 | 129 | 149 |
| MTO5  | 00<br>1t  | 81  | 90  | 84  | 81  | 95  | 81  | 95  | 93  | 80  | 93  | 95  | 93  |
| W1103 | IO<br>1t  | 8   | 8   | 3   | 3   | 7   | 1   | 0   | 5   | 1   | 10  | 4   | 0   |
|       | S1t       | 6   | 1   | 8   | 1   | 9   | 9   | 8   | 8   | 6   | 8   | 10  | 5   |

|       | RO<br>1t | 188 | 200 | 119 | 132 | 191 | 154 | 171 | 177 | 111 | 172 | 129 | 149 |
|-------|----------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
|       | 00<br>1t | 81  | 90  | 84  | 81  | 95  | 81  | 95  | 93  | 80  | 93  | 95  | 93  |
| MTO5  | IO<br>1t | 8   | 8   | 3   | 3   | 7   | 1   | 0   | 5   | 1   | 10  | 4   | 0   |
|       | S1t      | 6   | 1   | 8   | 1   | 9   | 9   | 8   | 8   | 6   | 8   | 10  | 5   |
|       | RO<br>1t | 172 | 144 | 197 | 108 | 140 | 149 | 142 | 193 | 152 | 124 | 180 | 183 |
|       | 00<br>1t | 93  | 86  | 87  | 94  | 85  | 82  | 84  | 87  | 90  | 87  | 90  | 88  |
| MTO6  | IO<br>1t | 2   | 4   | 9   | 5   | 3   | 3   | 8   | 3   | 7   | 4   | 0   | 0   |
|       | S1t      | 8   | 7   | 1   | 0   | 2   | 1   | 7   | 0   | 8   | 3   | 8   | 1   |
|       | RO<br>1t | 132 | 154 | 171 | 130 | 111 | 180 | 159 | 189 | 108 | 148 | 194 | 134 |
| MTOT  | 00<br>1t | 90  | 92  | 89  | 93  | 81  | 85  | 95  | 82  | 89  | 85  | 95  | 90  |
| MTO7  | IO<br>1t | 0   | 0   | 0   | 0   | 5   | 10  | 7   | 7   | 2   | 1   | 6   | 0   |
|       | S1t      | 3   | 4   | 0   | 10  | 2   | 8   | 8   | 3   | 7   | 7   | 9   | 5   |
|       | RO<br>1t | 109 | 192 | 191 | 100 | 171 | 135 | 123 | 117 | 137 | 119 | 118 | 134 |
| MTO   | 00<br>1t | 83  | 93  | 80  | 91  | 81  | 85  | 80  | 87  | 81  | 88  | 88  | 89  |
| MTO8  | 10<br>1t | 3   | 7   | 10  | 3   | 7   | 4   | 7   | 8   | 0   | 5   | 0   | 0   |
|       | S1t      | 4   | 1   | 2   | 6   | 6   | 0   | 0   | 1   | 3   | 9   | 0   | 4   |
|       | RO<br>1t | 143 | 177 | 122 | 146 | 146 | 155 | 166 | 101 | 126 | 175 | 143 | 144 |
| МТО9  | 00<br>1t | 91  | 84  | 80  | 91  | 81  | 94  | 80  | 82  | 82  | 80  | 94  | 83  |
| MIO9  | IO<br>1t | 0   | 2   | 2   | 1   | 0   | 0   | 0   | 0   | 0   | 0   | 2   | 0   |
|       | S1t      | 5   | 2   | 7   | 1   | 2   | 1   | 0   | 2   | 10  | 7   | 7   | 1   |
|       | RO<br>1t | 177 | 196 | 165 | 151 | 108 | 139 | 127 | 174 | 190 | 117 | 164 | 178 |
| MTO10 | 00<br>1t | 81  | 86  | 82  | 90  | 81  | 91  | 81  | 82  | 84  | 90  | 82  | 85  |
| MTO10 | 10<br>1t | 0   | 3   | 3   | 1   | 0   | 9   | 8   | 4   | 3   | 0   | 3   | 0   |
|       | S1t      | 1   | 3   | 0   | 7   | 0   | 3   | 0   | 0   | 0   | 10  | 0   | 4   |

**Table 23: Base case optimal results MTS** 

| MTS  | Variables | 1   | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9   | 10  | 11  | 12  |
|------|-----------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
|      | RO<br>1t  | 112 | 103 | 115 | 137 | 134 | 144 | 128 | 100 | 107 | 120 | 121 | 146 |
| MTS1 | 00<br>1t  | 64  | 64  | 62  | 68  | 74  | 75  | 61  | 71  | 71  | 70  | 70  | 73  |
|      | IO<br>1t  | 9   | 0   | 0   | 0   | 0   | 0   | 8   | 0   | 0   | 7   | 1   | 0   |
|      | RO<br>1t  | 112 | 108 | 104 | 127 | 112 | 150 | 150 | 133 | 126 | 130 | 101 | 128 |
| MTS2 | 00<br>1t  | 63  | 72  | 74  | 63  | 74  | 70  | 67  | 74  | 64  | 71  | 74  | 60  |
|      | IO<br>1t  | 1   | 0   | 0   | 0   | 1   | 6   | 7   | 2   | 10  | 7   | 6   | 0   |
|      | RO<br>1t  | 114 | 104 | 116 | 122 | 131 | 118 | 140 | 119 | 116 | 147 | 125 | 104 |
| MTS3 | 00<br>1t  | 71  | 70  | 70  | 71  | 72  | 72  | 67  | 66  | 61  | 73  | 71  | 71  |
|      | IO<br>1t  | 5   | 5   | 3   | 0   | 8   | 7   | 9   | 0   | 8   | 0   | 5   | 0   |
|      | RO<br>1t  | 144 | 134 | 138 | 125 | 109 | 122 | 135 | 133 | 107 | 122 | 118 | 128 |
| MTS4 | 00<br>1t  | 75  | 75  | 60  | 72  | 70  | 66  | 71  | 73  | 61  | 75  | 67  | 75  |
|      | IO<br>1t  | 9   | 8   | 0   | 0   | 0   | 0   | 0   | 9   | 5   | 1   | 10  | 0   |
|      | RO<br>1t  | 135 | 148 | 147 | 122 | 121 | 140 | 106 | 145 | 100 | 113 | 130 | 142 |
| MTS5 | 00<br>1t  | 71  | 70  | 73  | 69  | 75  | 71  | 65  | 64  | 74  | 62  | 73  | 67  |
|      | 10<br>1t  | 5   | 2   | 9   | 8   | 0   | 0   | 0   | 9   | 4   | 7   | 4   | 0   |
|      | RO<br>1t  | 122 | 104 | 139 | 106 | 142 | 112 | 113 | 144 | 125 | 128 | 122 | 105 |
| MTS6 | 00<br>1t  | 67  | 65  | 72  | 73  | 70  | 73  | 65  | 60  | 67  | 62  | 73  | 69  |
|      | IO<br>1t  | 10  | 2   | 3   | 1   | 1   | 1   | 7   | 4   | 7   | 8   | 10  | 0   |
|      | RO<br>1t  | 106 | 138 | 138 | 139 | 133 | 118 | 100 | 129 | 137 | 104 | 137 | 100 |
| MTS7 | 00<br>1t  | 74  | 62  | 65  | 66  | 61  | 62  | 61  | 66  | 68  | 61  | 61  | 70  |
|      | IO<br>1t  | 7   | 0   | 9   | 3   | 6   | 4   | 4   | 3   | 0   | 9   | 6   | 0   |
|      | RO<br>1t  | 106 | 107 | 146 | 148 | 131 | 110 | 135 | 131 | 134 | 105 | 125 | 146 |
| MTS8 | 00<br>1t  | 74  | 64  | 70  | 68  | 63  | 69  | 75  | 72  | 66  | 68  | 70  | 62  |
|      | IO<br>1t  | 0   | 3   | 10  | 0   | 0   | 0   | 0   | 2   | 7   | 1   | 4   | 0   |

|       | RO       |     |     |     |     |     |     |     |     |     |     |     |     |
|-------|----------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
|       | 1t       | 126 | 103 | 136 | 140 | 105 | 134 | 103 | 117 | 125 | 144 | 123 | 115 |
| MTS9  | 00<br>1t | 72  | 60  | 61  | 61  | 61  | 61  | 71  | 69  | 63  | 67  | 60  | 67  |
|       | IO<br>1t | 8   | 0   | 0   | 0   | 0   | 0   | 5   | 7   | 10  | 5   | 5   | 0   |
|       | RO<br>1t | 102 | 123 | 123 | 125 | 104 | 133 | 146 | 149 | 144 | 142 | 114 | 115 |
| MT10  | 00<br>1t | 71  | 69  | 72  | 67  | 75  | 63  | 65  | 66  | 70  | 63  | 75  | 64  |
|       | 10<br>1t | 1   | 5   | 1   | 0   | 0   | 0   | 0   | 10  | 0   | 0   | 0   | 0   |
|       | RO<br>1t | 149 | 111 | 143 | 140 | 122 | 119 | 138 | 129 | 100 | 140 | 117 | 142 |
| MTS11 | 00<br>1t | 69  | 64  | 71  | 61  | 68  | 69  | 73  | 72  | 66  | 64  | 68  | 74  |
|       | IO<br>1t | 0   | 4   | 1   | 9   | 1   | 0   | 0   | 0   | 7   | 2   | 9   | 2   |
|       | RO<br>1t | 130 | 147 | 136 | 125 | 111 | 142 | 120 | 141 | 128 | 120 | 140 | 127 |
| MTS12 | 00<br>1t | 69  | 64  | 73  | 68  | 75  | 68  | 65  | 70  | 61  | 67  | 71  | 71  |
|       | 10<br>1t | 3   | 0   | 0   | 0   | 2   | 4   | 7   | 3   | 6   | 9   | 8   | 0   |
|       | RO<br>1t | 100 | 138 | 149 | 109 | 115 | 127 | 144 | 142 | 118 | 145 | 140 | 105 |
| MTS13 | 00<br>1t | 61  | 67  | 68  | 69  | 70  | 62  | 75  | 63  | 72  | 65  | 68  | 74  |
|       | 10<br>1t | 10  | 5   | 4   | 0   | 0   | 0   | 5   | 8   | 7   | 8   | 4   | 0   |
|       | RO<br>1t | 148 | 149 | 136 | 105 | 106 | 143 | 104 | 134 | 150 | 122 | 117 | 121 |
| MTS14 | 00<br>1t | 65  | 64  | 63  | 74  | 66  | 60  | 60  | 63  | 67  | 75  | 60  | 69  |
|       | IO<br>1t | 7   | 0   | 9   | 0   | 0   | 0   | 0   | 0   | 0   | 2   | 4   | 0   |
|       | RO<br>1t | 106 | 116 | 102 | 101 | 123 | 103 | 144 | 140 | 125 | 122 | 108 | 123 |
| MTS15 | 00<br>1t | 73  | 75  | 73  | 74  | 61  | 74  | 64  | 63  | 66  | 63  | 66  | 61  |
|       | IO<br>1t | 3   | 7   | 6   | 4   | 10  | 0   | 0   | 0   | 0   | 7   | 1   | 0   |

Results for amounts of fabric purchased per period and their inventory levels are indicated in tables 24 and 25.

Table 24: Base case fabric purchasing amounts

|        |         | •       |         |         |         | FQ.     | f2t     |         |         |         |         |         |
|--------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
|        |         |         |         |         |         | Peri    | ods     |         |         |         |         |         |
| Fabric | 1       | 2       | 3       | 4       | 5       | 6       | 7       | 8       | 9       | 10      | 11      | 12      |
| F1     | 6261.6  | 6380.4  | 6346.8  | 6367.2  | 6300    | 6501.6  | 6075.6  | 6176.4  | 6240    | 6117.6  | 6290.4  | 6482.4  |
| F2     | 7115.36 | 7307.3  | 7288.68 | 7349.02 | 7252.98 | 7412.72 | 6977.32 | 7105.7  | 7205.1  | 7121.38 | 7210    | 7463.96 |
| F3     | 6666.46 | 6848.14 | 6831.33 | 6889.07 | 6798.45 | 6945.86 | 6539.51 | 6660.24 | 6754.25 | 6677.61 | 6757.14 | 6996.24 |
| F4     | 7963.8  | 8167.77 | 8143.2  | 8203.65 | 8099.91 | 8291.92 | 7795.32 | 7936.37 | 8042.45 | 7938.19 | 8057.92 | 8335.34 |
| F5     | 7758.66 | 7959.9  | 7936.83 | 7997.37 | 7895.43 | 8079.42 | 7597.77 | 7735.8  | 7840.35 | 7741.23 | 7853.1  | 8124.96 |

Table 25: Base case fabric inventory levels

|        |         | -        |          |          |          | IFft     | •        |          |          |          |          |          |
|--------|---------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
|        |         |          |          |          |          | Perio    | ds       | _        |          |          |          |          |
| Fabric | 1       | 2        | 3        | 4        | 5        | 6        | 7        | 8        | 9        | 10       | 11       | 12       |
| F1     | 3120    | 3078.6   | 3264.6   | 3246.6   | 3244.8   | 3156.6   | 3144     | 3109.8   | 3120.6   | 3060     | 3173.4   | 3052.8   |
| F2     | 2868.32 | 2834.16  | 2984.968 | 2995.664 | 2964.472 | 2904.888 | 2858.632 | 2850.456 | 2872.968 | 2848.048 | 2951.144 | 2822.064 |
| F3     | 2688.4  | 2656.508 | 2797.208 | 2808.108 | 2777.924 | 2722.768 | 2678.3   | 2671.384 | 2692.888 | 2670.52  | 2767.112 | 2645.544 |
| F4     | 4005.3  | 3956.68  | 4172.025 | 4180.54  | 4143.945 | 4055.675 | 3999.255 | 3982.355 | 4010.825 | 3968.77  | 4113.005 | 3937.05  |
| F5     | 3903.9  | 3856.725 | 4065.51  | 4075.305 | 4038.015 | 3953.16  | 3896.265 | 3881.07  | 3909.51  | 3870.21  | 4010.73  | 3838.23  |

Table 25: The cash flow for base case

| Period | 1      | 2      | 3      | 4      | 5      | 6      | 7      | 8      | 9      | 10     | 11     | 12     |
|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Cash   | 243972 | 259915 | 254252 | 259367 | 242283 | 250642 | 246333 | 245208 | 257300 | 260967 | 248407 | 262626 |

The cash flow per period for the base case is indicated in figure 1



Figure 1: Cash flow for base case

# 4.3 Sensitivity Analysis

Changing influential parameters of the model are in charge of checking the reaction of the costs and revenues towards those changes. The parameters are tested that are subjected to changes or uncertainties: fabric price changeability and the inventory holding costs.

#### 4.3.1 Impact of increasing fabric price on the profits.

Fabric price is one of the most important parameters of the system. Thus, changing these prices has considerable impacts on the revenues and inventory Table 26, for each percent increase in the fabric price, it shows revenues and inventory holding costs in reducing the process.

| T 11 A/ T 1 '    | •                | •           | e, 101 · .              |
|------------------|------------------|-------------|-------------------------|
| Table 76. Habrie | nrico norcontaga | INCPAGED VE | nratite and tahric cast |
| Table 20. Pablic | DITCC DCICCHTAE  | mulcast vs. | profits and fabric cost |
|                  |                  |             |                         |

| Fabric price percent increase | Profits | Fabric cost |  |
|-------------------------------|---------|-------------|--|
| Base                          | 689,375 | 1879822.07  |  |
| 10%                           | 567,327 | 2001870.596 |  |
| 30%                           | 203,261 | 2365936.352 |  |
| 40%                           | 32,280  | 2536917.25  |  |
| 45%                           | -54,022 | 2623219.084 |  |



Figure 2: Fabric price percentage increase vs. revenues

**Figure 2:** Shows how profits were extremely sensitive to fabric price increases; a falling model is displayed in revenues for every percent rise, it will be impossible for the revenues to get a positive number as the fabric cost grew by around 45%. The increasing fabric cost was sensitive to the profits for using the large number of fabrics and their price

# 4.3.2 Impact of increasing the inventory holding cost on the revenues

Negative impacts of rising inventory holding costs for MTO, MTS, and textiles in Table 27. The MTS inventory cost has a much lower holding cost than the fabric, while the MTO inventory had the lowest one. This corresponds to the data regarding fabric quantities for MTO products. Both MTS and MTO products all require 3.5 meters of fabric for each type.

Table 27: Profits and costs for inventory holding cost increase

| Percent<br>increase | Profits     | MTO revenues | MTS<br>revenues | MTO inventory costs | MTS inventory costs | Fabric inventory costs |
|---------------------|-------------|--------------|-----------------|---------------------|---------------------|------------------------|
| Base                | 689375.1597 | 1621625      | 1418004         | 1424.5              | 1750                | 467257.2703            |
| 10%                 | 655479.2938 | 1621625      | 1418004         | 1801.8              | 2006.15             | 500519.6862            |
| 20%                 | 597280.33   | 1621625      | 1418004         | 2291.23             | 2297.23             | 557938.14              |
| 40%                 | 494476.6922 | 1621625      | 1418004         | 2291.23             | 2297.23             | 660741.7778            |
| 60%                 | 441099.377  | 1621625      | 1418004         | 2435.42             | 2345.12             | 713927.013             |



Figure 3: Profits and costs for inventory holding cost increase

As seen in table 27,, increasing the inventory holding cost by another 10% reduced earnings by another 5% - 6% percent. As the cost of inventory keeping grew, the net profits did not really decline. Fabric inventory cost was sensitive to the rise in inventory holding costs due to the big number of them, but the MTS and MTO were not. This is because the MTS and MTO amount are produced in a row with a level of acceptable demand or would say pretty small against the capacity.

# CHAPTER 5 CONCLUSION

#### 5.1 Concluding remarks

For the readymade garment business, a MILP model for production and inventory planning of a combined MTO – MTS system is presented. The proposed model demonstrated that having an MTS production line in addition to the MTO production stream is an effective solution for overcoming financial disadvantages and the consequences of relying simply on MTO needs.

The created model assisted in making the best inventory and production decisions for various items in a mixed MTO-MTS product to get the best results. The critical decisions need to be taken into account that must be made as a result of the influence of production costs on revenue.

Income was considered at the end of each quarter and positive cash flow was generated at the end of each period in difficultis in the Garment Industry. As a result, there will be no budgetary constraints in the production process. The sales of the MTS and MTO goods provided cash inflow .The most important aspects need to be taken into account that impact the manufacturing process. The fabric required for manufacture, capacity constraints, and financial availability were all issues. For the planned items, MTO due dates and predicted demand were satisfied.

Fabric pricing was a critical parameter, and the model was quite sensitive to changes in it, which was understandable considering that the fabric price accounts for 90% of the garment material cost. The quantity of money available to create for MTS is limited, and this has an impact on the choice to accept orders. The findings assisted in making practical decisions that considerably improved a clothing business.

The model's effectiveness was notable for its simplicity and application to practical garment manufacture, since it took into account the most important inputs. It has also addressed the important and concrete decisions that had a substantial influence on the judgments taken. The issue has been to find the best answer for a garment business's sustainability and growth by combining capacity and production planning decisions with financial considerations. As a result, a policy for garment manufacturing production and capacity planning was highlighted.

# **5.2** Insights on Future work:

- 1. For a better prediction, consider accounting for missed revenue and backlogging for MTO requests.
- 2. Merging MTO demands acceptance and rejection criteria.
- 3. Examining the effects of the interest rate on the cash flow and revenues for every specific loan might be part of future studies.
- 4. Including fabric purchase decisions in the model, such as supplier selection, supplier lead-time effect, and discount conditions from suppliers.

#### **REFERENCE**

- IBM Corporation. (2017). IBM ILOG CPLEX Optimization Studio. NY: IBM Corporation, accessed online on december 16, 2017.
- 2. Arreola-risa, A. (1998). Make-to-order versus make-to-stock in a production inventory system with general production times, *IIE Transaction*, 705-713.
- 3. Beemsterboer, B., Land, M., & Teunter, R. (2016), Hybrid MTO-MTS production planning: An explorative study, *European Journal of Operational Research*, 248(2), 453-461.
- 4. Carr, S., & Duenyas, I. (2000). Optimal admission control and sequencing in a make-to-Stock/Make-to-order production system. *Operations Research*, 48(5), 709-720.
- 5. Chen, J., Chen, C., Su, L., Wu, H., & Sun, C. (2012). Assembly line balancing in garment industry. *Expert Systems with Applications*, *39*(11), 10073-10081.
- Choy, K. L., Leung, Y. K., Chow, H. K. H., Poon, T. C., Kwong, C. K., Ho, G. T.
   S. (2011). A hybrid scheduling decision support model for minimizing job tardiness in a make-to-order based mould manufacturing environment. *Expert Systems with Applications*, 38(3), 1931-1941.
- 7. Ebadian, M., Rabbani, M., Jolai, F., Torabi, S. A., & Tavakkoli-Moghaddam, R. (2008).

  A new decision-making structure for the order entry stage in make-to-order environments. *International Journal of Production Economics*, 111(2), 351-367.
- 8. Ebadian, M., Rabbani, M., Torabi, S. A., & Jolai, F. (2009). Hierarchical production planning and scheduling in make-to-order environments: Reaching. short and reliable delivery dates. *International Journal of Production Research*, 47(20), 5761-5789.