

Enhanced Universal Serial Communication Interface (eUSCI) – SPI Mode

The enhanced universal serial communication interfaces, eUSCI_A and eUSCI_B, support multiple serial communication modes with one hardware module. This chapter describes the operation of the synchronous peripheral interface (SPI) mode.

Topic Page

23.1	Enhanced Universal Serial Communication Interfaces (eUSCI_A, eUSCI_B) Overview	604
23.2	eUSCI Introduction – SPI Mode	604
23.3	eUSCI Operation – SPI Mode	606
23.4	eUSCI_A SPI Registers	612
23.5	eUSCI_B SPI Registers	619

23.1 Enhanced Universal Serial Communication Interfaces (eUSCI_A, eUSCI_B) Overview

Both the eUSCI_A and the eUSCI_B support serial communication in SPI mode.

23.2 eUSCI Introduction - SPI Mode

In synchronous mode, the eUSCI connects the device to an external system through three or four pins: UCxSIMO, UCxSOMI, UCxCLK, and UCxSTE. SPI mode is selected when the UCSYNC bit is set, and SPI mode (3-pin or 4-pin) is selected with the UCMODEx bits.

SPI mode features include:

- · 7-bit or 8-bit data length
- · LSB-first or MSB-first data transmit and receive
- · 3-pin or 4-pin SPI operation
- · Master or slave modes
- · Independent transmit and receive shift registers
- · Separate transmit and receive buffer registers
- Continuous transmit and receive operation
- · Selectable clock polarity and phase control
- · Programmable clock frequency in master mode
- · Independent interrupt capability for receive and transmit
- · Slave operation in LPM4

Figure 23-1 shows the eUSCI when configured for SPI mode.

Figure 23-1. eUSCI Block Diagram - SPI Mode

23.3 eUSCI Operation - SPI Mode

In SPI mode, serial data is transmitted and received by multiple devices using a shared clock provided by the master. An additional pin controlled by the master, UCxSTE, is provided to enable a device to receive and transmit data.

Three or four signals are used for SPI data exchange:

UCxSIMO – slave in, master out

Master mode: UCxSIMO is the data output line. Slave mode: UCxSIMO is the data input line.

UCxSOMI – slave out, master in

Master mode: UCxSOMI is the data input line. Slave mode: UCxSOMI is the data output line.

UCxCLK – eUSCI SPI clock

Master mode: UCxCLK is an output. Slave mode: UCxCLK is an input.

UCxSTE – slave transmit enable

Used in 4-pin mode to allow multiple masters on a single bus. Not used in 3-pin mode. Table 23-1 describes the UCxSTE operation.

UCMODEx	UCxSTE Active State	UCxSTE	Slave	Master
01	Lliab	0	Inactive	Active
01	High	1	Active	Inactive
10	Low	0	Active	Inactive
10	Low	1	Inactive	Active

Table 23-1. UCxSTE Operation

23.3.1 eUSCI Initialization and Reset

The eUSCI is reset by a PUC or by the UCSWRST bit. After a PUC, the UCSWRST bit is automatically set, which keeps the eUSCI in a reset condition. When set, the UCSWRST bit resets the UCRXIE, UCTXIE, UCRXIFG, UCOE, and UCFE bits, and sets the UCTXIFG flag. Clearing UCSWRST releases the eUSCI for operation.

To avoid unpredictable behavior, configure or reconfigure the eUSCI module when UCSWRST is set.

NOTE: Initializing or reconfiguring the eUSCI module

The recommended eUSCI initialization or reconfiguration process is:

1. Set UCSWRST.

BIS.B #UCSWRST, &UCxCTL1

- 2. Initialize all eUSCI registers while UCSWRST = 1 (including UCxCTL1).
- 3. Configure ports.
- 4. Clear UCSWRST in software.

BIC.B #UCSWRST, &UCxCTL1

5. Enable interrupts (optional) by setting UCRXIE or UCTXIE.

23.3.2 Character Format

The eUSCI module in SPI mode supports 7-bit and 8-bit character lengths selected by the UC7BIT bit. In 7-bit data mode, UCxRXBUF is LSB justified and the MSB is always reset. The UCMSB bit controls the direction of the transfer and selects LSB or MSB first.

NOTE: Default character format The default SPI character transmission is LSB first. For communication with other SPI interfaces, MSB first mode may be required. NOTE: Character format for figures Figures throughout this chapter use MSB first format.

23.3.3 Master Mode

Figure 23-2 shows the eUSCI as a master in both 3-pin and 4-pin configurations.

Figure 23-2. eUSCI Master and External Slave (UCSTEM = 0)

The eUSCI initiates data transfer when data is moved to the transmit data buffer UCxTXBUF. The UCxTXBUF data is moved to the transmit (TX) shift register when the TX shift register is empty, initiating data transfer on UCxSIMO starting with either the MSB or LSB, depending on the UCMSB setting. Data on UCxSOMI is shifted into the receive shift register on the opposite clock edge. When the character is received, the receive data is moved from the receive (RX) shift register to the received data buffer UCxRXBUF and the receive interrupt flag UCRXIFG is set, indicating that the RX or TX operation is complete.

A set transmit interrupt flag, UCTXIFG, indicates that data has moved from UCxTXBUF to the TX shift register and UCxTXBUF is ready for new data. It does not indicate RX or TX completion.

To receive data into the eUSCI in master mode, data must be written to UCxTXBUF, because receive and transmit operations operate concurrently.

There two different options for configuring the eUSCI as a 4-pin master, which are described in the following sections:

- The fourth pin is used as input to prevent conflicts with other masters (UCSTEM = 0).
- The fourth pin is used as output to generate a slave enable signal (UCSTEM = 1).

The bit UCSTEM is used to select the corresponding mode.

23.3.3.1 4-Pin SPI Master Mode (UCSTEM = 0)

In 4-pin master mode with UCSTEM = 0, UCxSTE is a digital input that can be used to prevent conflicts with another master and controls the master as described in Table 23-1. When UCxSTE is in the master-inactive state and UCSTEM = 0:

- UCxSIMO and UCxCLK are set to inputs and no longer drive the bus.
- The error bit UCFE is set, indicating a communication integrity violation to be handled by the user.
- The internal state machines are reset and the shift operation is aborted.

If data is written into UCxTXBUF while the master is held inactive by UCxSTE, it is transmit as soon as UCxSTE transitions to the master-active state. If an active transfer is aborted by UCxSTE transitioning to the master-inactive state, the data must be rewritten into UCxTXBUF to be transferred when UCxSTE transitions back to the master-active state. The UCxSTE input signal is not used in 3-pin master mode.

23.3.3.2 4-Pin SPI Master Mode (UCSTEM = 1)

If UCSTEM = 1 in 4-pin master mode, UCxSTE is a digital output. In this mode the slave enable signal for a single slave is automatically generated on UCxSTE. The corresponding behavior can be seen in Figure 23-4.

If multiple slaves are desired, this feature is not applicable and the software needs to use general-purpose I/O pins instead to generate STE signals for each slave individually.

23.3.4 Slave Mode

Figure 23-3 shows the eUSCI as a slave in both 3-pin and 4-pin configurations.

Figure 23-3. eUSCI Slave and External Master

UCxCLK is used as the input for the SPI clock and must be supplied by the external master. The data-transfer rate is determined by this clock and not by the internal bit clock generator. Data written to UCxTXBUF and moved to the TX shift register before the start of UCxCLK is transmitted on UCxSOMI. Data on UCxSIMO is shifted into the receive shift register on the opposite edge of UCxCLK and moved to UCxRXBUF when the set number of bits are received. When data is moved from the RX shift register to UCxRXBUF, the UCRXIFG interrupt flag is set, indicating that data has been received. The overrun error bit UCOE is set when the previously received data is not read from UCxRXBUF before new data is moved to UCxRXBUF.

23.3.4.1 4-Pin SPI Slave Mode

In 4-pin slave mode, UCxSTE is a digital input used by the slave to enable the transmit and receive operations and is driven by the SPI master. When UCxSTE is in the slave-active state, the slave operates normally. When UCxSTE is in the slave- inactive state:

- Any receive operation in progress on UCxSIMO is halted.
- UCxSOMI is set to the input direction.
- The shift operation is halted until the UCxSTE line transitions into the slave transmit active state.

The UCxSTE input signal is not used in 3-pin slave mode.

23.3.5 SPI Enable

When the eUSCI module is enabled by clearing the UCSWRST bit, it is ready to receive and transmit. In master mode, the bit clock generator is ready, but is not clocked nor producing any clocks. In slave mode, the bit clock generator is disabled and the clock is provided by the master.

A transmit or receive operation is indicated by UCBUSY = 1.

A PUC or set UCSWRST bit disables the eUSCI immediately and any active transfer is terminated.

23.3.5.1 Transmit Enable

In master mode, writing to UCxTXBUF activates the bit clock generator, and the data begins to transmit.

In slave mode, transmission begins when a master provides a clock and, in 4-pin mode, when the UCxSTE is in the slave-active state.

23.3.5.2 Receive Enable

The SPI receives data when a transmission is active. Receive and transmit operations operate concurrently.

23.3.6 Serial Clock Control

UCxCLK is provided by the master on the SPI bus. When UCMST = 1, the bit clock is provided by the eUSCI bit clock generator on the UCxCLK pin. The clock used to generate the bit clock is selected with the UCSSELx bits. When UCMST = 0, the eUSCI clock is provided on the UCxCLK pin by the master, the bit clock generator is not used, and the UCSSELx bits are don't care. The SPI receiver and transmitter operate in parallel and use the same clock source for data transfer.

The 16-bit value of UCBRx in the bit rate control registers UCxxBRW is the division factor of the eUSCI clock source, BRCLK. With UCBRx = 0 the maximum bit clock that can be generated in master mode is BRCLK. Modulation is not used in SPI mode, and UCAxMCTL should be cleared when using SPI mode for eUSCI A. The UCAxCLK or UCBxCLK frequency is given by Equation 15.

$$f_{BitClock} = f_{BRCLK} / UCBRx$$
 (15)

When UCBRx = 0, no division is applied to BRCLK, and the bit clock equals BRCLK ($f_{RifClock} = f_{BRCLK}$).

Even UCBRx settings result in even divisions and, thus, generate a bit clock with a 50/50 duty cycle.

Odd UCBRx settings result in odd divisions. In this case, the high phase of the bit clock is one BRCLK cycle longer than the low phase.

23.3.6.1 Serial Clock Polarity and Phase

The polarity and phase of UCxCLK are independently configured with the UCCKPL and UCCKPH control bits of the eUSCI. Timing for each case is shown in Figure 23-4.

Figure 23-4. eUSCI SPI Timing With UCMSB = 1

23.3.7 Using the SPI Mode With Low-Power Modes

The eUSCI module provides automatic clock activation for use with low-power modes. When the eUSCI clock source is inactive because the device is in a low-power mode, the eUSCI module automatically activates it when needed, regardless of the control-bit settings for the clock source. The clock remains active until the eUSCI module returns to its idle condition. After the eUSCI module returns to the idle condition, control of the clock source reverts to the settings of its control bits.

In SPI slave mode, no internal clock source is required because the clock is provided by the external master. It is possible to operate the eUSCI in SPI slave mode while the device is in LPM4 and all clock sources are disabled. The receive or transmit interrupt can wake up the CPU from any low-power mode.

When receiving multiple bytes as a slave in LPM4, the wake-up time of the CPU must be considered. If the wake-up time of the CPU is, for example, 150 μ s (see device-specific data-sheet), make sure that the CPU services the TXIFG of the first received byte before the second byte is completely received by the eUSCI A or eUSCI B. Otherwise an overrun error occurs.

NOTE: SPI mode in low-power modes

When RXIFG is generated during a low-power mode, the MCU needs the specified time to wake up from the low-power mode to active mode and handle this event. To avoid missing an event, TI recommends that the next RXIFG is generated until after this wake up time. See the device-specific data sheet for the wake-up time details.

23.3.8 SPI Interrupts

The eUSCI has only one interrupt vector that is shared for transmission and for reception. eUSCI_Ax and eUSCI_Bx do not share the same interrupt vector.

23.3.8.1 SPI Transmit Interrupt Operation

The UCTXIFG interrupt flag is set by the transmitter to indicate that UCxTXBUF is ready to accept another character. An interrupt request is generated if UCTXIE and GIE are also set. UCTXIFG is automatically reset if a character is written to UCxTXBUF. UCTXIFG is set after a PUC or when UCSWRST = 1. UCTXIE is reset after a PUC or when UCSWRST = 1.

NOTE: Writing to UCxTXBUF in SPI mode

Data written to UCxTXBUF when UCTXIFG = 0 may result in erroneous data transmission.

23.3.8.2 SPI Receive Interrupt Operation

The UCRXIFG interrupt flag is set each time a character is received and loaded into UCxRXBUF. An interrupt request is generated if UCRXIE and GIE are also set. UCRXIFG and UCRXIE are reset by a system reset PUC signal or when UCSWRST = 1. UCRXIFG is automatically reset when UCxRXBUF is read.

23.3.8.3 UCxIV, Interrupt Vector Generator

The eUSCI interrupt flags are prioritized and combined to source a single interrupt vector. The interrupt vector register UCxIV is used to determine which flag requested an interrupt. The highest-priority enabled interrupt generates a number in the UCxIV register that can be evaluated or added to the program counter (PC) to automatically enter the appropriate software routine. Disabled interrupts do not affect the UCxIV value.

Any access, read or write, of the UCxIV register automatically resets the highest-pending interrupt flag. If another interrupt flag is set, another interrupt is immediately generated after servicing the initial interrupt.

23.3.8.3.1 UCxIV Software Example

The following software example shows the recommended use of UCxIV. The UCxIV value is added to the PC to automatically jump to the appropriate routine. The following example is given for eUSCI B0.

```
USCI SPI ISR
                  &UCBOIV, PC ; Add offset to jump table
         ADD
                              ; Vector 0: No interrupt
         RETI
         JMP
                  RXIFG ISR
                               ; Vector 2: RXIFG
TXIFG ISR
                               ; Vector 4: TXIFG
                               ; Task starts here
         . . .
                               ; Return
        RETT
RXIFG ISR
                               ; Vector 2
                               ; Task starts here
         RETI
                               ; Return
```


eUSCI_A SPI Registers www.ti.com

23.4 eUSCI_A SPI Registers

The eUSCI_A registers applicable in SPI mode and their address offsets are listed in Table 23-2. The base addresses can be found in the device-specific data sheet.

Table 23-2. eUSCI_A SPI Registers

Offset	Acronym	Register Name	Туре	Access	Reset	Section
00h	UCAxCTLW0	eUSCI_Ax Control Word 0	Read/write	Word	0001h	Section 23.4.1
00h	UCAxCTL1	eUSCI_Ax Control 1	Read/write	Byte	01h	
01h	UCAxCTL0	eUSCI_Ax Control 0	Read/write	Byte	00h	
06h	UCAxBRW	eUSCI_Ax Bit Rate Control Word	Read/write	Word	0000h	Section 23.4.2
06h	UCAxBR0	eUSCI_Ax Bit Rate Control 0	Read/write	Byte	00h	
07h	UCAxBR1	eUSCI_Ax Bit Rate Control 1	Read/write	Byte	00h	
0Ah	UCAxSTATW	eUSCI_Ax Status	Read/write	Word	00h	Section 23.4.3
0Ch	UCAxRXBUF	eUSCI_Ax Receive Buffer	Read/write	Word	00h	Section 23.4.4
0Eh	UCAxTXBUF	eUSCI_Ax Transmit Buffer	Read/write	Word	00h	Section 23.4.5
1Ah	UCAxIE	eUSCI_Ax Interrupt Enable	Read/write	Word	00h	Section 23.4.6
1Ch	UCAxIFG	eUSCI_Ax Interrupt Flag	Read/write	Word	02h	Section 23.4.7
1Eh	UCAxIV	eUSCI_Ax Interrupt Vector	Read	Word	0000h	Section 23.4.8

www.ti.com eUSCI_A SPI Registers

23.4.1 UCAxCTLW0 Register

eUSCI_Ax Control Register 0

Figure 23-5. UCAxCTLW0 Register

15	14	13	12	11	10	9	8
UCCKPH	UCCKPL	UCMSB	UC7BIT	UCMST	UCM	ODEx	UCSYNC
rw-0	rw-0	rw-0	rw-0	rw-0	rw-0	rw-0	rw-0
7	6	5	4	3	2	1	0
UCS	UCSSELx			erved		UCSTEM	UCSWRST
rw-0	rw-0	rw-0	rw-0	rw-0	rw-0	rw-0	rw-1

Modify only when UCSWRST = 1.

Table 23-3. UCAxCTLW0 Register Description

Bit	Field	Type	Reset	Description
15	UCCKPH	RW	Oh	Clock phase select. Modify only when UCSWRST = 1. 0b = Data is changed on the first UCLK edge and captured on the following edge. 1b = Data is captured on the first UCLK edge and changed on the following edge.
14	UCCKPL	RW	0h	Clock polarity select. Modify only when UCSWRST = 1. 0b = The inactive state is low. 1b = The inactive state is high.
13	UCMSB	RW	Oh	MSB first select. Controls the direction of the receive and transmit shift register. Modify only when UCSWRST = 1. 0b = LSB first 1b = MSB first
12	UC7BIT	RW	Oh	Character length. Selects 7-bit or 8-bit character length. Modify only when UCSWRST = 1. 0b = 8-bit data 1b = 7-bit data
11	UCMST	RW	0h	Master mode select. Modify only when UCSWRST = 1. 0b = Slave mode 1b = Master mode
10-9	UCMODEx	RW	0h	eUSCI mode. The UCMODEx bits select the synchronous mode when UCSYNC = 1. Modify only when UCSWRST = 1. 00b = 3-pin SPI 01b = 4-pin SPI with UCxSTE active high: Slave enabled when UCxSTE = 1 10b = 4-pin SPI with UCxSTE active low: Slave enabled when UCxSTE = 0 11b = I2C mode
8	UCSYNC	RW	Oh	Synchronous mode enable. Modify only when UCSWRST = 1. 0b = Asynchronous mode 1b = Synchronous mode
7-6	UCSSELx	RW	0h	eUSCI clock source select. These bits select the BRCLK source clock in master mode. UCxCLK is always used in slave mode. Modify only when UCSWRST = 1. 00b = Reserved 01b = Device specific 10b = SMCLK 11b = SMCLK
5-2	Reserved	R	0h	Reserved
1	UCSTEM	RW	Oh	STE mode select in master mode. This byte is ignored in slave or 3-wire mode. Modify only when UCSWRST = 1. 0b = STE pin is used to prevent conflicts with other masters 1b = STE pin is used to generate the enable signal for a 4-wire slave

eUSCI_A SPI Registers www.ti.com

Table 23-3. UCAxCTLW0 Register Description (continued)

Bit	Field	Туре	Reset	Description
0	UCSWRST	RW	1h	Software reset enable
				0b = Disabled. eUSCI reset released for operation.
				1b = Enabled. eUSCI logic held in reset state.

23.4.2 UCAxBRW Register

eUSCI_Ax Bit Rate Control Register 1

Figure 23-6. UCAxBRW Register

15	14	13	12	11	10	9	8		
			UCI	BRx					
rw	rw	rw	rw	rw	rw	rw	rw		
7	6	5	4	3	2	1	0		
	UCBRx								
rw	rw	rw	rw	rw	rw	rw	rw		

Modify only when UCSWRST = 1.

Table 23-4. UCAxBRW Register Description

Bit	Field	Туре	Reset	Description
15-0	UCBRx	RW	0h	Bit clock prescaler setting. Modify only when UCSWRST = 1.
				$f_{BitClock} = f_{BRCLK} / UCBRx$
				If UCBRx = 0, $f_{BitClock} = f_{BRCLK}$

www.ti.com eUSCI_A SPI Registers

23.4.3 UCAxSTATW Register

eUSCI_Ax Status Register

Figure 23-7. UCAxSTATW Register

15	14	13	12	11	10	9	8
			Rese	erved			
r0	r0	r0	r0	r0	r0	r0	r0
7	6	5	4	3	2	1	0
UCLISTEN	UCFE	UCOE		Rese	erved		UCBUSY
rw-0	rw-0	rw-0	rw-0	rw-0	rw-0	rw-0	r-0

Modify only when UCSWRST = 1.

Table 23-5. UCAxSTATW Register Description

Bit	Field	Туре	Reset	Description
15-8	Reserved	R	0h	Reserved
7	UCLISTEN	RW	0h	Listen enable. The UCLISTEN bit selects loopback mode. Modify only when UCSWRST = 1. 0b = Disabled 1b = Enabled. The transmitter output is internally fed back to the receiver.
6	UCFE	RW	Oh	Framing error flag. This bit indicates a bus conflict in 4-wire master mode. UCFE is not used in 3-wire master or any slave mode. 0b = No error 1b = Bus conflict occurred
5	UCOE	RW	0h	Overrun error flag. This bit is set when a character is transferred into UCxRXBUF before the previous character was read. UCOE is cleared automatically when UCxRXBUF is read and must not be cleared by software. Otherwise, it does not function correctly. Ob = No error 1b = Overrun error occurred
4-1	Reserved	RW	0h	Reserved
0	UCBUSY	R	Oh	eUSCI busy. This bit indicates if a transmit or receive operation is in progress. 0b = eUSCI inactive 1b = eUSCI transmitting or receiving

eUSCI_A SPI Registers www.ti.com

23.4.4 UCAxRXBUF Register

eUSCI_Ax Receive Buffer Register

Figure 23-8. UCAxRXBUF Register

15	14	13	12	11	10	9	8			
			Rese	erved						
r0	r0	r0	r0	r0	r0	r0	r0			
7	6	5	4	3	2	1	0			
	UCRXBUFx									
rw	rw	rw	rw	rw	rw	rw	rw			

Table 23-6. UCAxRXBUF Register Description

Bit	Field	Туре	Reset	Description
15-8	Reserved	R	0h	Reserved
7-0	UCRXBUFx	R	Oh	The receive-data buffer is user accessible and contains the last received character from the receive shift register. Reading UCxRXBUF resets the receive-error bits and UCRXIFG. In 7-bit data mode, UCxRXBUF is LSB justified and the MSB is always reset.

23.4.5 UCAxTXBUF Register

eUSCI_Ax Transmit Buffer Register

Figure 23-9. UCAxTXBUF Register

15	14	13	12	11	10	9	8
			Rese	erved			
r0	r0	r0	r0	r0	r0	r0	rO
7	6	5	4	3	2	1	0
			UCTX	BUFx			
rw	rw	rw	rw	rw	rw	rw	rw

Table 23-7. UCAxTXBUF Register Description

Bit	Field	Туре	Reset	Description
15-8	Reserved	R	0h	Reserved
7-0	UCTXBUFx	RW	Oh	The transmit data buffer is user accessible and holds the data waiting to be moved into the transmit shift register and transmitted. Writing to the transmit data buffer clears UCTXIFG. The MSB of UCxTXBUF is not used for 7-bit data and is reset.

www.ti.com eUSCI_A SPI Registers

23.4.6 UCAxIE Register

eUSCI_Ax Interrupt Enable Register

Figure 23-10. UCAxIE Register

15	14	13	12	11	10	9	8
			Rese	erved			
r0	r0	r0	r0	r0	r0	r0	r0
7	6	5	4	3	2	1	0
		Res	erved			UCTXIE	UCRXIE
r-0	r-0	r-0	r-0	r-0	r-0	rw-0	rw-0

Table 23-8. UCAxIE Register Description

Bit	Field	Туре	Reset	Description
15-2	Reserved	R	0h	Reserved
1	UCTXIE	RW	0h	Transmit interrupt enable 0b = Interrupt disabled 1b = Interrupt enabled
0	UCRXIE	RW	0h	Receive interrupt enable 0b = Interrupt disabled 1b = Interrupt enabled

23.4.7 UCAxIFG Register

eUSCI_Ax Interrupt Flag Register

Figure 23-11. UCAxIFG Register

Table 23-9. UCAxIFG Register Description

Bit	Field	Туре	Reset	Description
15-2	Reserved	R	0h	Reserved
1	UCTXIFG	RW	1h	Transmit interrupt flag. UCTXIFG is set when UCAxTXBUF empty. 0b = No interrupt pending 1b = Interrupt pending
0	UCRXIFG	RW	Oh	Receive interrupt flag. UCRXIFG is set when UCAxRXBUF has received a complete character. 0b = No interrupt pending 1b = Interrupt pending

eUSCI_A SPI Registers www.ti.com

23.4.8 UCAxIV Register

eUSCI_Ax Interrupt Vector Register

Figure 23-12. UCAxIV Register

Table 23-10. UCAxIV Register Description

Bit	Field	Туре	Reset	Description
15-0	UCIVx	R	0h	eUSCI interrupt vector value 000h = No interrupt pending
				002h = Interrupt Source: Data received; Interrupt Flag: UCRXIFG; Interrupt Priority: Highest
				004h = Interrupt Source: Transmit buffer empty; Interrupt Flag: UCTXIFG; Interrupt Priority: Lowest

www.ti.com eUSCI_B SPI Registers

23.5 eUSCI_B SPI Registers

The eUSCI_B registers applicable in SPI mode and their address offsets are listed in Table 23-11. The base addresses can be found in the device-specific data sheet.

Table 23-11. eUSCI_B SPI Registers

Offset	Acronym	Register Name	Туре	Access	Reset	Section
00h	UCBxCTLW0	eUSCI_Bx Control Word 0	Read/write	Word	01C1h	Section 23.5.1
00h	UCBxCTL1	eUSCI_Bx Control 1	Read/write	Byte	C1h	
01h	UCBxCTL0	eUSCI_Bx Control 0	Read/write	Byte	01h	
06h	UCBxBRW	eUSCI_Bx Bit Rate Control Word	Read/write	Word	0000h	Section 23.5.2
06h	UCBxBR0	eUSCI_Bx Bit Rate Control 0	Read/write	Byte	00h	
07h	UCBxBR1	eUSCI_Bx Bit Rate Control 1	Read/write	Byte	00h	
08h	UCBxSTATW	eUSCI_Bx Status	Read/write	Word	00h	Section 23.5.3
0Ch	UCBxRXBUF	eUSCI_Bx Receive Buffer	Read/write	Word	00h	Section 23.5.4
0Eh	UCBxTXBUF	eUSCI_Bx Transmit Buffer	Read/write	Word	00h	Section 23.5.5
2Ah	UCBxIE	eUSCI_Bx Interrupt Enable	Read/write	Word	00h	Section 23.5.6
2Ch	UCBxIFG	eUSCI_Bx Interrupt Flag	Read/write	Word	02h	Section 23.5.7
2Eh	UCBxIV	eUSCI_Bx Interrupt Vector	Read	Word	0000h	Section 23.5.8

eUSCI_B SPI Registers www.ti.com

23.5.1 UCBxCTLW0 Register

eUSCI_Bx Control Register 0

Figure 23-13. UCBxCTLW0 Register

15	14	13	12	11	10	9	8
UCCKPH	UCCKPL	UCMSB	UC7BIT	UCMST	UCM	ODEx	UCSYNC
rw-0	rw-0	rw-0	rw-0	rw-0	rw-0	rw-0	rw-1
7	6	5	4	3	2	1	0
UCS	SELx		Rese	erved		UCSTEM	UCSWRST
rw-1	rw-1	r0	rw-0	rw-0	rw-0	rw-0	rw-1

Modify only when UCSWRST = 1.

Table 23-12. UCBxCTLW0 Register Description

Bit	Field	Туре	Reset	Description
15	UCCKPH	RW	Oh	Clock phase select. Modify only when UCSWRST = 1. 0b = Data is changed on the first UCLK edge and captured on the following edge. 1b = Data is captured on the first UCLK edge and changed on the following edge.
14	UCCKPL	RW	0h	Clock polarity select. Modify only when UCSWRST = 1. 0b = The inactive state is low. 1b = The inactive state is high.
13	UCMSB	RW	0h	MSB first select. Controls the direction of the receive and transmit shift register. Modify only when UCSWRST = 1. 0b = LSB first 1b = MSB first
12	UC7BIT	RW	Oh	Character length. Selects 7-bit or 8-bit character length. Modify only when UCSWRST = 1. 0b = 8-bit data 1b = 7-bit data
11	UCMST	RW	0h	Master mode select. Modify only when UCSWRST = 1. 0b = Slave mode 1b = Master mode
10-9	UCMODEX	RW	0h	eUSCI mode. The UCMODEx bits select the synchronous mode when UCSYNC = 1. Modify only when UCSWRST = 1. 00b = 3-pin SPI 01b = 4-pin SPI with UCxSTE active high: Slave enabled when UCxSTE = 1 10b = 4-pin SPI with UCxSTE active low: Slave enabled when UCxSTE = 0 11b = I2C mode
8	UCSYNC	RW	1h	Synchronous mode enable. Modify only when UCSWRST = 1. 0b = Asynchronous mode 1b = Synchronous mode
7-6	UCSSELx	RW	3h	eUSCI clock source select. These bits select the BRCLK source clock in master mode. UCxCLK is always used in slave mode. Modify only when UCSWRST = 1. 00b = Reserved 01b = Device Specific 10b = SMCLK 11b = SMCLK
5-2	Reserved	R	0h	Reserved
1	UCSTEM	RW	Oh	STE mode select in master mode. This byte is ignored in slave or 3-wire mode. Modify only when UCSWRST = 1. 0b = STE pin is used to prevent conflicts with other masters 1b = STE pin is used to generate the enable signal for a 4-wire slave

www.ti.com eUSCI_B SPI Registers

Table 23-12. UCBxCTLW0 Register Description (continued)

Bit	Field	Туре	Reset	Description
0	UCSWRST	RW	1h	Software reset enable
				0b = Disabled. eUSCI reset released for operation.
				1b = Enabled. eUSCI logic held in reset state.

23.5.2 UCBxBRW Register

eUSCI_Bx Bit Rate Control Register 1

Figure 23-14. UCBxBRW Register

15	14	13	12	11	10	9	8
			UCI	BRx			
rw	rw	rw	rw	rw	rw	rw	rw
7	6	5	4	3	2	1	0
			UCI	BRx			
rw	rw	rw	rw	rw	rw	rw	rw

Modify only when UCSWRST = 1.

Table 23-13. UCBxBRW Register Description

Bit	Field	Туре	Reset	Description
15-0	UCBRx	RW	0h	Bit clock prescaler setting. Modify only when UCSWRST = 1.
				$f_{BitClock} = f_{BRCLK} / UCBRx$
				If UCBRx = 0, $f_{BitClock} = f_{BRCLK}$

eUSCI_B SPI Registers www.ti.com

23.5.3 UCBxSTATW Register

eUSCI_Bx Status Register

Figure 23-15. UCBxSTATW Register

15	14	13	12	11	10	9	8
			Rese	erved			
r0	r0	r0	r0	r0	r0	r0	r0
7	6	5	4	3	2	1	0
UCLISTEN	UCFE	UCOE		Rese	erved		UCBUSY
rw-0	rw-0	rw-0	r0	r0	r0	r0	r-0

Modify only when UCSWRST = 1.

Table 23-14. UCBxSTATW Register Description

Bit	Field	Туре	Reset	Description
15-8	Reserved	R	0h	Reserved
7	UCLISTEN	RW	0h	Listen enable. The UCLISTEN bit selects loopback mode. Modify only when UCSWRST = 1.
				0b = Disabled
				1b = Enabled. The transmitter output is internally fed back to the receiver.
6	UCFE	RW	0h	Framing error flag. This bit indicates a bus conflict in 4-wire master mode. UCFE is not used in 3-wire master mode or any slave mode.
				0b = No error
				1b = Bus conflict occurred
5	UCOE	RW	0h	Overrun error flag. This bit is set when a character is transferred into UCxRXBUF before the previous character was read. UCOE is cleared automatically when UCxRXBUF is read and must not be cleared by software. Otherwise, it does not function correctly.
				0b = No error
				1b = Overrun error occurred
4-1	Reserved	R	0h	Reserved
0	UCBUSY	R	0h	eUSCI busy. This bit indicates if a transmit or receive operation is in progress.
				0b = eUSCI inactive
				1b = eUSCI transmitting or receiving

www.ti.com eUSCI_B SPI Registers

23.5.4 UCBxRXBUF Register

eUSCI_Bx Receive Buffer Register

Figure 23-16. UCBxRXBUF Register

15	14	13	12	11	10	9	8			
			Rese	erved						
r0	r0	r0	r0	r0	r0	r0	r0			
7	6	5	4	3	2	1	0			
	UCRXBUFx									
rw	rw	rw	rw	rw	rw	rw	rw			

Table 23-15. UCBxRXBUF Register Description

Bit	Field	Туре	Reset	Description
15-8	Reserved	R	0h	Reserved
7-0	UCRXBUFx	R	Oh	The receive-data buffer is user accessible and contains the last received character from the receive shift register. Reading UCxRXBUF resets the receive-error bits and UCRXIFG. In 7-bit data mode, UCxRXBUF is LSB justified and the MSB is always reset.

23.5.5 UCBxTXBUF Register

eUSCI_Bx Transmit Buffer Register

Figure 23-17. UCBxTXBUF Register

15	14	13	12	11	10	9	8			
			Rese	erved						
r0	r0	r0	r0	r0	r0	r0	r0			
7	6	5	4	3	2	1	0			
	UCTXBUFx									
rw	rw	rw	rw	rw	rw	rw	rw			

Table 23-16. UCBxTXBUF Register Description

Bit	Field	Туре	Reset	Description
15-8	Reserved	R	0h	Reserved
7-0	UCTXBUFx	RW	0h	The transmit data buffer is user accessible and holds the data waiting to be moved into the transmit shift register and transmitted. Writing to the transmit data buffer clears UCTXIFG. The MSB of UCxTXBUF is not used for 7-bit data and is reset.

eUSCI_B SPI Registers www.ti.com

23.5.6 UCBxIE Register

eUSCI_Bx Interrupt Enable Register

Figure 23-18. UCBxIE Register

15	14	13	12	11	10	9	8
			Rese	erved			
r0	r0	r0	r0	r0	r0	r0	r0
7	6	5	4	3	2	1	0
		Rese					
r-0	r-0	r-0	r-0	r-0	r-0	rw-0	rw-0

Table 23-17. UCBxIE Register Description

Bit	Field	Туре	Reset	Description
15-2	Reserved	R	0h	Reserved
1	UCTXIE	RW	0h	Transmit interrupt enable 0b = Interrupt disabled 1b = Interrupt enabled
0	UCRXIE	RW	0h	Receive interrupt enable 0b = Interrupt disabled 1b = Interrupt enabled

23.5.7 UCBxIFG Register

eUSCI_Bx Interrupt Flag Register

Figure 23-19. UCBxIFG Register

			5		5		
15	14	13	12	11	10	9	8
			Rese	rved			
r0	r0	r0	r0	r0	r0	r0	r0
7	6	5	4	3	2	1	0
			UCTXIFG	UCRXIFG			
r-0	r-0	r-0	r-0	r-0	r-0	rw-1	rw-0

Table 23-18. UCBxIFG Register Description

Bit	Field	Туре	Reset	Description
15-2	Reserved	R	0h	Reserved
1	UCTXIFG	RW	1h	Transmit interrupt flag. UCTXIFG is set when UCBxTXBUF empty. 0b = No interrupt pending 1b = Interrupt pending
0	UCRXIFG	RW	0h	Receive interrupt flag. UCRXIFG is set when UCBxRXBUF has received a complete character. 0b = No interrupt pending 1b = Interrupt pending

www.ti.com eUSCI_B SPI Registers

23.5.8 UCBxIV Register

eUSCI_Bx Interrupt Vector Register

Figure 23-20. UCBxIV Register

Table 23-19. UCBxIV Register Description

Bit	Field	Туре	Reset	Description
15-0	UCIVx	R	0h	eUSCI interrupt vector value 0000h = No interrupt pending
				0002h = Interrupt Source: Data received; Interrupt Flag: UCRXIFG; Interrupt Priority: Highest
				0004h = Interrupt Source: Transmit buffer empty; Interrupt Flag: UCTXIFG; Interrupt Priority: Lowest