

Universidade de São Paulo

Instituto de Ciências Matemáticas e de Computação Departamento de Ciências de Computação SCC218 - Algoritmos Avançados e Aplicações

$$2^5 = 10^5 ?$$

1 Descrição

Joselino Barbacena (também conhecido como JB) anda meio estressado e acredita que $2^5 = 10^5$. A cachorrinha Chica, conselheira para assuntos aleatórios, aconselhou-o a resolver um problema de programação para desanuviar um pouco e assim recuperar os sentidos!

Chica sugeriu o seguinte: em um plano há n coordenadas ($2 \le n \le 10^5$). Note bem: 10 elevado à quinta! Cada coordenada (x_i, y_i) é um par de inteiros ($1 \le x_i, y_i \le 10^6$). Note bem: 10 elevado à sexta!

Para mostrar que 2^5 não é igual a 10^5 ela sugeriu que ele escrevesse um programa para calcular a menor distância entre 1 par de quaisquer dois pontos do plano. Ela argumentou que se $2^5 = 10^5$, então o tempo de execução para entradas para tais valores de n seria o mesmo, o que, ela insiste, não é o caso. A cachorrinha sabe que se a solução não for eficiente, para casos de teste com n na ordem de 10^5 não vai executar em tempo hábil. Ele, ainda desconfiado, resolveu aceitar o desafio.

2 Input

A primeira linha contém o número de coordenadas n. As n linhas subsequentes contém dois inteiros: os valores de x_i e y_i .

3 Output

Imprima um único valor (com duas casas de precisão) da menor distância euclidiana entre duas coordenadas do referido plano.

4 Exemplos de Entrada e Saída

Entrada	Saída
6	1.41
2 3	
12 30	
40 50	
5 1	
12 10	
3 4	