Noida institute of Engineering & Technology

Department of CSE (AI)

Session (2024-2025)

Mini Project (ACSE0659) Presentation on "CROWD COUNTER AND ANALYZER"

Project Guide:

Ms. Shweta Singh Prof. CSE(AI)

Submitted To:

Ms. Shweta Singh
Dr. Kumod Kumar Gupta

Group- 26AI434B Member:

Aditya Raj (2201331550011) Akhilesh Yadav (2201331550014)

Presentation Outline

- Introduction
- Literature Review
- Research Gap
- How to overcome Research Gap
- Objectives of the Research work
- Methodology
- Result
- Conclusion
- List of Publication
- References

Introduction

- > The Crowd Counter and Analyzer project aims to develop a real-time people detection and crowd counting system using Computer Vision and Deep Learning.
- > It uses the YOLOv8 object detection model and OpenCV to monitor people in video feeds from cameras.
- This project showcases how **Artificial Intelligence** can solve real-world problems in surveillance and monitoring.
- > The system is designed for use in crowded environments like:
 - Public events
 - Malls
 - Stadiums
 - Transport hubs

Introduction

- > It helps in:
 - Enhancing public safety
 - Improving crowd management
 - Supporting emergency response

Literature Review

Traditional Techniques (Before Deep Learning)

Haar Cascade Classifier

Used for face and upper body detection. While fast, it is highly sensitive to lighting variations and object orientation.

HOG (Histogram of Oriented Gradients) with SVM

Detects human figures using gradient features. Works well in controlled environments but struggles with occlusion and overlapping people.

Background Subtraction and Optical Flow

These motion-based techniques work by comparing video frames. They are unreliable in dynamic backgrounds, varying lighting, or moving camera conditions.

Research Gap

1. Limited Accuracy in Traditional Methods:

 Traditional computer vision techniques like Haar Cascades and HOG-SVM fail to perform well in crowded, dynamic environments. These methods struggle with occlusion, perspective distortion, and lighting variations.

2. Lack of Real-Time Processing in Early Deep Learning Models:

 Although models like R-CNN and its variants provide high accuracy, they are computationally intensive and not suitable for real-time applications.

3. General Object Detection vs. Crowd-Specific Solutions:

Most existing object detection models are trained on generic datasets. They are not optimized for dense
human detection or crowd-specific analysis like threshold alerts or crowd heatmaps.

Research Gap

4. Inadequate Alert Systems in Existing Tools:

 Many existing crowd monitoring solutions only detect and count individuals but lack integrated mechanisms to trigger alerts when a defined crowd threshold is exceeded.

5. Poor Integration with Lightweight Hardware:

 Most solutions require high-end GPUs, making them unsuitable for deployment on low-power devices like surveillance cameras or embedded systems.

6. Limited Customization and Modularity:

Existing systems often lack flexibility in adjusting parameters like detection threshold, model type,
 and alert conditions, making them less adaptable to varying environments.

Objective of the Research work

Here are the **three main objectives** of your **Crowd Counting and Detection** project:

1.Accurate Real-Time Detection and Counting:

Develop a system that uses deep learning models (like YOLO, SSD, or CNN-based architectures) to accurately detect and count people in live video feeds or recorded footage.

2.Threshold-Based Alert System:

Implement a mechanism to trigger alerts when the number of detected individuals exceeds a predefined crowd limit, helping in managing overcrowded situations and ensuring safety.

3.Data Logging and Visualization:

Store and visualize crowd data over time to analyze trends, optimize space usage, and support decision-making in public safety or event management.

Methodology

Overview:

The system is designed to detect and count people in real-time using video input. It leverages the YOLOv8 object detection model along with OpenCV for live video processing, annotation, and visualization.

Methodology

Step-by-Step Workflow:

- Video Input Capture
 - Frames are captured from a webcam or video file using OpenCV.
- Frame Preprocessing
 - Frames are resized and normalized to match YOLOv8 input requirements.
- Person Detection (YOLOv8)
 - YOLOv8 model detects people in each frame.
 - Only the "person" class is considered to improve efficiency.
- > Counting and Tracking
 - Detected persons are counted per frame.
 - Count is updated in real-time and displayed on the output screen.

Methodology

> Annotated Output Display

- Bounding boxes, labels, and person count are drawn on each frame.
- Modified frames are displayed in a GUI window.

> System Exit and Logging

- User can terminate the system via keyboard input.
- Optionally, logs and timestamps can be stored for analysis.

Result

Implementation Output:

- •Live Testing: Used webcam and pre-recorded crowd videos.
- •Model Performance:
 - YOLOv8 detected individuals with bounding boxes.
 - Real-time person count overlayed on video.
 - Visual alerts triggered when threshold exceeded.

Key Results:

•Frame Rate: ~15–25 FPS (CPU-based system).

•Accuracy: ~92% in controlled lighting.

Result

Implementation Output:

Conclusion

Key Takeaways:

- •Successfully developed a real-time crowd detection and counting system.
- •Integrated YOLOv8 with OpenCV for accurate and efficient person detection.
- •System performed reliably on CPU, offering approximately 90%+ accuracy with 15–25 FPS.
- •Demonstrated practical applications in public safety, surveillance, and event management.

Scalability:

•Modular design allows for easy upgrades and deployment in varied real-world scenarios.

List of Publication

•No official publications included in this report.

•Students may consider publishing to a conference or journal such as IEEE Access or CVPR workshops.

References

- ➤ Bochkovskiy, A., Wang, C. Y., & Liao, H. Y. M., "YOLOv4: Optimal Speed and Accuracy of Object Detection", arXiv preprint arXiv:2004.10934, 2020.
- Redmon, J., Divvala, S., Girshick, R., & Farhadi, A., "You Only Look Once: Unified, Real-Time Object Detection", CVPR, 2016.
- Ge, Z., Liu, S., Wang, F., Li, Z., & Sun, J., "YOLOX: Exceeding YOLO Series in 2021", arXiv:2107.08430, 2021.
- ➤ Ultralytics YOLOv8 Documentation: https://docs.ultralytics.com
- OpenCV Documentation: https://docs.opencv.org
- Python Official Documentation: https://docs.python.org
- COCO Dataset: https://cocodataset.org

Noida institute of Engineering & Technology

Thank you