

El arte de manejar la complejidad

Abstracción

- Disciplina
- Las tres i: Hierarchy, Modularity, Regularity.

Abstracción

Disciplina

- Intencionalmente restringir opciones de diseño
- Ejemplos de disciplina digital:
 - Voltajes discretos en vez de continuos.
 - Más sencillos que sistemas análogos y más sofisticados
 - Sistemas digitales reemplazando predecesores análogos.

Las tres i

Hierarchy:

Recursivamente descomponer un sistema en sub sistemas

Modularity

Definiciones de funciones e interfaces

Regularity

Partes intercambiables

Lógica digital: digito binario bit

- Dos valores discretos:
 - '1' y '0'
 - '1', verdadero, alto
 - '0', falso, bajo
- 1 y 0: niveles de voltaje, niveles de presión, temperatura, etc
- 0: voltaje bajo
- 1: voltaje alto

Conceptos

Suma binaria

Suma binaria con overflow

Números binarios con signo

Escribir 5 y -5 con un bit de signo (0 para positivo y 1 para negativo)

$$5_{10} = 0101_{2} \\
-5_{10} = 1101_{2}$$

$$10010_{2}$$

Números binarios con complemento a dos

Encontrar la representación de -2 con cuatro bits en complemento a dos:

$$+2_{10} = 0010_2$$

Invertir los bits y adicionar 1:

$$1101_2 + 1$$

Números binarios con complemento a dos

Encontrar el valor decimal del número en complemento a dos de:

$$1001_2 = -7_{10}$$

Dado que tiene un 1 al inicio es negativo, para encontrar magnitud invertir todos los bits y sumar 1.

$$0110_2 + 1$$

$$0111_2 = 7_{10}$$

Ejercicio:

Calcular:

$$-2_{10} + 1_{10}$$

 $-7_{10} + 7_{10}$

$$-2_{10} + 1_{10} = 1110_2 + 0001_2 = 1111_2 = -1_{10}$$

$$-7_{10} + 7_{10} = 1001_2 + 0111_2 = 10000_2 = 0000_2$$

- Voltajes discretos representan 1 y 0
- 0 es tierra (ground, gnd) ó 0 voltios
- 1 es Vdd ó 5 voltios
- ¿Qué sucede con 4.95 v?
- ¿Qué pasa con 3.2 v?

Margen de ruido

$$NM_L = V_{IL} - V_{OL}$$

$$NM_H = V_{OH} - V_{IH}$$

El circuito digital con dos inversores tiene las siguientes características:

$$V_{dd} = 5 \text{ V}, V_{IL} = 1.35 \text{ V}, V_{IH} = 3.15 \text{ V}, V_{OL} = 0.33 \text{ V}, V_{OH} = 3.84 \text{ V}$$

¿Cuáles son los márgenes de ruido alto y bajo? ¿Puede el circuito tolerar 1 V de ruido entre Vo1 y Vl2?

Los márgenes de ruido son:

$$NM_L = V_{IL} - V_{OL}$$

 $NM_L = 1.35 - 0.33 = 1.02 V$

$$NM_H = V_{OH} - V_{IH}$$

 $NM_H = 3.84 - 3.15 = 0.69 V$

El circuito tolera 1 V de ruido cuando la salida es Low, sin embargo, no tolera 1 V de ruido cuando es High.

Niveles lógicos – curva de transferencia

Niveles lógicos – familias lógicas

Niveles lógicos en 1970s y 1980s

Logic Family	V_{DD}	$V_{I\!L}$	$V_{I\!H}$	V_{OL}	V_{OH}
TTL	5 (4.75-5.25)	0.8	2.0	0.4	2.4
CMOS	5 (4.5-6)	1.35	3.15	0.33	3.84
LVTTL	3.3 (3-3.6)	0.8	2.0	0.4	2.4
LVCMOS	3.3 (3-3.6)	0.9	1.8	0.36	2.7

Ha disminuido Vdd, 3.3 V, 2.5 V, 1,8 V, 1.5 V, 1.2 v, 1.0 V.

Hasta la próxima