Example 3: Solve

$$\frac{dy}{dx} - 5y = -\frac{5}{2}xy^3$$

Solution This is a Bernoulli equation with n=3, P(x)=-5 and $Q(x)=-\frac{5}{2}$. To transform $\frac{dy}{dx}-5y=-\frac{5}{2}xy^3$ into a linear equation, we first divide by y^3 to obtain

$$y^{-3}\frac{dy}{dx} - 5y^{-2} = -\frac{5}{2}x$$

Next we make the substitution $v = y^{-2}$. Since $\frac{dv}{dx} = -2y^{-3}\frac{dy}{dx}$, the transformed equation is

$$-\frac{1}{2}\frac{dv}{dx} - 5v = -\frac{5}{2}x$$
$$\frac{dv}{dx} + 10v = 5x$$

 $\frac{dv}{dx}+10v=5x$ is linear, so we can solve it for v. It turns out

$$v = \frac{x}{2} - \frac{1}{20 + Ce^{-1x}}$$

Not included in the last equation is the solution $y \equiv 0$ that was lost in the process of $\frac{dy}{dx} - 5y = -\frac{5}{2}xy^3$ by y^3