```
import numpy as np
import pandas as pd
from sklearn.preprocessing import LabelEncc
from sklearn.linear_model import LinearRegr
from sklearn.metrics import mean_squared_er
from sklearn.ensemble import RandomForestR€
import warnings
warnings.filterwarnings("ignore")
dt=pd.read_csv('/content/Clean_Dataset.csv'
dt.shape
→ (300153, 12)
dt.isnull().values.any() # boolen methoud t
→ False
dt.isnull().sum()
    N0
                          0
\rightarrow
     airline
                          0
     flight
                          0
     source_city
                          0
                          0
     departure_time
     stops
                          0
     arrival_time
                          0
     destination_city
                          0
     class
                          0
     duration
                          0
     days_left
                          0
     price
                          0
     dtype: int64
dt = dt.dropna() # to double check
dt.duplicated(subset=None, keep='first')
\rightarrow
               False
     1
               False
     2
               False
     3
               False
               False
               . . .
     300148
               False
     300149
               False
     300150
               False
     300151
               False
     300152
               False
     Length: 300153, dtype: bool
```

dt.shape

→ (300153, 12)

dt.info() # checking the data type of every column

<<class 'pandas.core.frame.DataFrame'>
 RangeIndex: 300153 entries, 0 to 300152
 Data columns (total 12 columns):

Data	Cotamins (total 12		•
#	Column	Non-Nu	ll Count
0	NO	300153	non-null
1	airline	300153	non-null
2	flight	300153	non-null
3	source_city	300153	non-null
4	departure_time	300153	non-null
5	stops	300153	non-null
6	arrival_time	300153	non-null
7	destination_city	300153	non-null
8	class	300153	non-null
9	duration	300153	non-null
10	days_left	300153	non-null
11	price	300153	non-null
dtype	es: float64(1), int	t64(3),	object(8)
memo	ry usage: 27.5+ MB		

Start coding or generate with AI.

dt.head()

→		NO	airline	flight	source_city	dep
	0	0	SpiceJet	SG- 8709	Delhi	
	1	1	SpiceJet	SG- 8157	Delhi	
	2	2	AirAsia	I5-764	Delhi	
	3	3	Vistara	UK-995	Delhi	
	4	4	Vistara	UK-963	Delhi	

dt.tail()

 \rightarrow

	NO	airline	flight	source_
300148	300148	Vistara	UK-822	Che
300149	300149	Vistara	UK-826	Che
300150	300150	Vistara	UK-832	Che
300151	300151	Vistara	UK-828	Che
300152	300152	Vistara	UK-822	Che

dt.describe() #generate various summary stati #Note: Only features with numeric data are co

	NO	airline	flight	source_
300148	300148	Vistara	UK-822	Che
300149	300149	Vistara	UK-826	Che
300150	300150	Vistara	UK-832	Che
300151	300151	Vistara	UK-828	Che
300152	300152	Vistara	UK-822	Che

Rose A 6 May 2024 (edited 6 May 2024) we can see that the min duration 0.83 which is correct becoz some flight take less than hour like 0.83= 50 minutes so no impure/of low quality Rose A 6 May 2024

no need to do any update on the data

N₀ duration day count 300153.000000 300153.000000 300153 mean 150076.000000 12.221021 26 std 86646.852011 7.191997 13 min 0.000000 0.830000 1 25% 75038.000000 6.830000 15 50% 150076.000000 11.250000 26 75% 225114.000000 16.170000 38 300152.000000 49.830000 49 max

Rose A 6 May 2024 add a name for the first feature

dt.columns = dt.columns.str.replace('Unnamed: 0', 'NO')

dt.columns #check if the name changed

```
Index(['N0', 'airline', 'flight',
'source_city', 'departure_time',
'stops',
          arrival_time',
'destination_city', 'class',
'duration', 'days_left',
         'price'],
        dtype='object')
```

dt.describe(include = 'object') #summary st

its an inverse relationship as the number increase the price decrease Moreover:

		_
÷	_	÷
7	-	×
•	_	_

	airline	flight	source_city	de
count	300153	300153	300153	
unique	6	1561	6	
top	Vistara	UK-706	Delhi	
freq	127859	3235	61343	

import seaborn as sns #for making statistic
import matplotlib.pyplot as plt #collectior
plt.figure(figsize=(10,6))
sns.regplot(x="days_left", y="price", data=

<Axes: xlabel='days_left',
ylabel='price'>

the number of days left before a flight can affect the price. Generally, booking flights well in advance can sometimes result in lower prices, especially for popular routes and peak travel times. However, prices can also fluctuate based on demand, seat availability, airline pricing strategies, and other factors. Last-minute bookings, on the other hand, might result in higher prices due to limited availability and increased demand. It's advisable to monitor prices and book flights when you find a suitable balance between price and convenience.

Rose A 6 May 2024

As observed in the plot above, a negative correlation is observed

from scipy import stats
pearson_coef, p_value = stats.pearsonr(dt['
print("The Pearson Correlation Coefficient

The Pearson Correlation Coefficient is

plt.figure(figsize=(10,6))
sns.regplot(x="duration", y="price", data=c

<Axes: xlabel='duration',</pre> \rightarrow ylabel='price'>

A 0.2 correlation is calculated which is very small with a p value of 0. This indicates that even though the correlation is small but its 20% of 100 which is significant hence this feature can be used for predicition. In addition, p value confirms its importance

pearson_coef, p_value = stats.pearsonr(dt[' print("The Pearson Correlation Coefficient

The Pearson Correlation Coefficient is

plt.figure(figsize=(10,6)) sns.regplot(x="N0", y="price", data=dt)

As observed above, a high positive correlation of 0.7 is calculated along with the p-value of 0. Nevertheless, this is just numbers for the data set which can not be at all effecting the predication

pearson_coef, p_value = stats.pearsonr(dt['
print("The Pearson Correlation Coefficient

The Pearson Correlation Coefficient is

#Box Plot

dt.info()

<<class 'pandas.core.frame.DataFrame'>
 RangeIndex: 300153 entries, 0 to 300152
 Data columns (total 12 columns):

#	Column	Non-Nu	ll Count
0	NO	300153	non-null
1	airline	300153	non-null
2	flight	300153	non-null
3	source_city	300153	non-null
4	<pre>departure_time</pre>	300153	non-null
5	stops	300153	non-null
6	arrival_time	300153	non-null
7	destination_city	300153	non-null
8	class	300153	non-null
9	duration	300153	non-null
10	days_left	300153	non-null
11	price	300153	non-null
dtyp	es: float64(1), in	t64(3),	object(8)
memo	ry usage: 27.5+ MB		

In the given plot below, it is observed that the price range vary for airline. This indicates the categories can vary with price hence feature can be used for prediction

sns.boxplot(x="airline", y="price", data=dt) #X to metion x-aixs y to met

is not that important when selling a ticket.

The variety of price ranges for all categories prove that the feature is insignificant for price prediction

<Axes: xlabel='airline',
ylabel='price'>

hence feature can be used for prediction

sns.boxplot(x="flight", y="price", data=dt)

<Axes: xlabel='flight',
ylabel='price'>

sns.boxplot(x="source_city", y="price", data=dt)

<Axes: xlabel='source_city', ylabel='price'>

In the given plot below, it is observed that the price range vary for departure_time. This indicates the categories can vary with price hence feature can be used for prediction

sns.boxplot(x="destination_city", y="price", data=dt)

<Axes: xlabel='destination_city',
ylabel='price'>

have wider price ranges between one another. This feature is also crucial for price prediction.

sns.boxplot(x="departure_time", y="price", data=dt)

<Axes: xlabel='departure_time',
ylabel='price'>

Start coding or generate with AI.

sns.boxplot(x="stops", y="price", data=dt)

sns.boxplot(x="arrival_time", y="price", data=dt)

<Axes: xlabel='arrival_time', ylabel='price'>

Start coding or generate with AI.

sns.boxplot(x="class", y="price", data=dt)

dt.drop(['N0','flight',], axis = 1, inplace

dt.shape

→ (300153, 10)

#Data Transformation

from sklearn.preprocessing import LabelEncc

labelencoder = LabelEncoder()
dt.days_left = labelencoder.fit_transform(c
dt.duration=labelencoder.fit_transform(dt.c
dt.airline=labelencoder.fit_transform(dt.ai
dt.source_city=labelencoder.fit_transform(c
dt.departure_time=labelencoder.fit_transfor
dt.stops=labelencoder.fit_transform(dt.stop
dt.arrival_time=labelencoder.fit_transform(
dt.destination_city=labelencoder.fit_transf

dt.columns = dt.columns.str.replace('class'
#change the name of the feature because it'

dt.columns = dt.columns.str.replace('class_

dt.columns #check the columns name

```
Index(['airline', 'source_city',
    'departure_time', 'stops',
    'arrival_time',
        'destination_city',
    'class_Type', 'duration', 'days_left',
    'price'],
        dtype='object')
```

dt.class_Type=labelencoder.fit_transform(dt

dt.head(10)

$\overline{\Rightarrow}$		airline	source_city	departure_time
	0	4	2	2
	1	4	2	1
	2	0	2	1
	3	5	2	4
	4	5	2	4
	5	5	2	4
	6	5	2	4
	7	5	2	0
	8	2	2	1
	9	2	2	0

Calculate the z-score with scipy
import scipy.stats as stats
dt = stats.zscore(dt)

dt # check the result of z socre

	airline	source_city	departure
0	0.488270	-0.329721	-0.2
1	0.488270	-0.329721	3.0-
2	-1.693633	-0.329721	3.0-
3	1.033746	-0.329721	9.0
4	1.033746	-0.329721	9.0
300148	1.033746	-0.900576	9.0
300149	1.033746	-0.900576	-1.3
300150	1.033746	-0.900576	3.0-
300151	1.033746	-0.900576	3.0-
300152	1.033746	-0.900576	9.0

300153 rows × 10 columns

x_train=dt.iloc[:,0:8]
y_train=dt.iloc[:,9]

x_train.head()#check the train head feature

→		airline	source_city	departure_time
	0	0.488270	-0.329721	-0.237897
	1	0.488270	-0.329721	-0.807934
	2	-1.693633	-0.329721	-0.807934
	3	1.033746	-0.329721	0.902176
	4	1.033746	-0.329721	0.902176

y_train.head()# check the traget variable

 $\rightarrow \blacktriangledown$

0 -0.658068

1 -0.658068

2 - 0.657936

3 -0.657980

4 -0.657980

Name: price, dtype: float64

#importing train_test_split from sklearn
from sklearn.model_selection import train_t
#Fit Model
#Multiple Linear Regression
#Calling multiple linear regression model a
from sklearn.linear_model import LinearRegr
model = LinearRegression()

model_mlr = model.fit(X_train,Y_train)

Double-click (or enter) to edit

Y_pred_MLR = model_mlr.predict(X_test) #Ma

#Calculating the Mean Square Error for MLR
mse_MLR = mean_squared_error(Y_test, Y_prec
print('The mean square error for Multiple L

The mean square error for Multiple Line

#Calculating the Mean Absolute Error for ML mae_MLR= mean_absolute_error(Y_test, Y_prec print('The mean absolute error for Multiple

The mean absolute error for Multiple Li

#Random Forest Regressor (checking other Mc
#calling the random forest model and fittir
rfModel = RandomForestRegressor()
model_rf = rfModel.fit(X_train,Y_train)

Y_pred_RF = model_rf.predict(X_test)

#Random Forest Evaluation
#Calculating the Mean Square Error for Ranc
mse_RF = mean_squared_error(Y_test, Y_pred_
print('The mean square error of price and print)

The mean square error of price and pred