Chapter 4 Trust-Region Methods l'tirst part Basic idea: * Fit a model around the current location. * Reduce size if inadequate * Increase size if model fits well * minimize function within region current point: Xx trust region around Xx Graphically function minimizing contours direction

Fit a quadratic model: wk(b) = | K + DI L B b * If $B_k = \nabla^2 f(x_k + t \ell)$, then the error is O(11p113). Else, the error is $O(||p||^2)$ * When Bx is the Hessian, we have the trust-region Newton method. Basic minimization problem is: min $m_k(p)$ such that $||p|| \leq \Delta_k$. or: $\left(p^T p \leq \Delta_k^2 \right)$ Suppose: * BK is positive definite, $* \|\mathcal{B}_{k}^{k} \nabla f_{k}\| \leq \Delta_{k}$ Then $P_k^B = -B_k^T \nabla f_k$ (the unconstrained)

minimum Else approximate

Reduction Ratio For the step P_k : $P_k = \frac{f(x_k) - f(x_k + P_k)}{M_k(0) - M_k(P_k)} = \frac{Actual}{Predicted}$ We have $m_k(0) - m_k(p_k) > 0$ by design. If pr<0, we are actually moving in a direction of increasing f(), and the step is rejected, and reduce trust region * if PK21 then we have very good agreement. It we are also taking the maximum possible step: ||Pk||= 1k) they increase the trust region

Hldorithm

2>0: moiscimen allowable radius Do ∈(0, D): initial value for trust-region

ME[0,14): minimum acceptable reduction threshold. Obtain Pr by approximately solving:

(min mr (p)=fr+Vfrp+12PTBxp

per Rr for k=0,1,2, such that: ||P|| \le Dk Evaluate: $P_k = \frac{f(x_k) - f(x_k + P_k)}{m_k(0) - m_k(P_k)} = \frac{f(x_k) - f(x_k + P_k)}{m_k(0)} = \frac{f(x_k) - f(x_k)}{m_k(0)} = \frac{f(x_k)}{m_$ ρεκτι = ¼ Δκ special reduction or perhaps increase!

Δκ+1 = ¼ Δκ special reduce trust-region, where model is more applicable (if sufficient

if $p_{x}>3/4$ and $||P_{x}||=\Delta_{x}$ reduction, Increase region

 $\Delta_{K+1} = min(2A_{K}, \overline{\Delta});$ (within bound else DK+1 = DK, a else, keep the size.

Pr>M then $x_{k+1} = x_k + p_k$; and take the step...

4.1 The Cauchy Point & Related Alg. Ch4-5 From steepest descent, solve P_k = argmin f_k + $\nabla f_k^T P$, $||P|| \leq \Delta_k$ asing: $\int_{2}^{\kappa} = \frac{\|\Delta t^{\kappa}\|}{\|\Delta t^{\kappa}\|}$ Then test this on the local min.: which is line seach subject to (*). The proposed solution is: $T_{k} = \begin{cases} 1 & \text{if} \\ \text{min} \left(\|\nabla f_{k}\|^{3} / (\Delta_{k} \nabla f_{k} B_{k} \nabla f_{k}), 1 \right), \\ \text{otherwise}. \end{cases}$ IF VIKBKVIKSO

Improving on the Cauchy Point We want to improve convergence by min m(P) = f + VfP+ ZPTBP, IIpII < 1 at every step. Solution is p*(A). Dropping k Dogleg Method Basic idea: approximate optimal trajectory by first taking a steepest descent step along - Vf, and then taking a Newton-Step at - BVf. descent direction at xk. Geometry: Newton NB: or anosi-Optimal trajectory Newton step for follows - Of at every approx1point. mating the optimal step (fits quadratic).

Dogled direction is given in terms of two line segments:

Ch4-7

$$\widetilde{P}(\tau) = \begin{cases} \tau P^{U}, & 0 \leq \tau \leq 1 \\ P^{V} + (\tau - 1)(P^{B} - P^{V}), & 1 \leq \tau \leq 2 \end{cases}$$

where the steepest-descent direction is

simply: $P' = -\frac{q^Tq}{q^TBq}q$, $q = \nabla f_K$.

Vote that the denominator can be negative, if B is not positive definite.

Book recommends that we don't apply the Dogled method in this case! (set 19 Bg1?).

$$*$$
 $P^{B} = -B^{-1}g, g = \nabla f_{K}$

* to compute τ :

** if $\|P^{\nu}\| \leq \Delta$, take $\tilde{P} = \frac{\Delta}{\|P^{\nu}\|} \cdot P^{\nu}$

$$+ \frac{\text{Else}}{\|P^{\prime} + (\tau^{+} - 1)(P^{B} - P^{\prime})\|^{2}} = \Delta^{2} - \Delta$$
for τ^{*} and take $\tilde{P}(\tau^{*})$.

Motes: * The optimal solution is $P^*(A) = P^B \text{ when } A > ||P^B||$

* The dogleg method allows to define a solution for all IIPII, thus allowing us to change the trust-region size as we wish.

* Lemma 4.1 shows that everything works for B positive definite.

* two-dimensional subspace minimization replaces P by P= x, \forall f + x2 B'\forall f and computes the minimum of:

by computing α_1 , α_2 that satisfy both equations. Book errata claim that this leads to a 4th-order polynomial, for which we can use Maple/Mathematica to solve algebraically.

* if B is not positive definite, ch4-9
the method may somehow be corrected 12 by using: (B.+ xI) instead of B, so that (B+xI) has positive eigenvaluer, and it is positive-det. Yet, the improve-ments may not be as great as we would hope Steinaug's Approach (excellent properties, if based on Newton).

* Correct algorithm 4.3 by changing the last line (see book errata):

 $d_{J+1} = -r_{J+1} + \beta_{J+1} d_{J}$

Ch4-10 CG-Steinaug Given E>0; Set $P_0=0$, $r_0=-\nabla f_0$, $d_0=-r_0$; if (IIVoII < E) = Careful on how to implement this! See Dennis & Schnabel. return P=Po; < and terminate the search! for J=0,1,2,..., n = Jup to n, the dimension of B! If (dJBdj < 0) ~ (negative definite "behavior") for B, terminate. for m(p), 11P11=1, p= 1,+ rdj return (P=P,+tdj); <= (see note 1.) Qs = rstrs /ds Bds; CG-Step Poti = Pot + and = (direction ca) 4 (11P3+111>1) = Outside trust region? Find $\tau > 0$ s.t. $p = p_3 + \tau d_5$ satisfies $||p|| = \Delta$ = see note 2 refurn D?

 $r_{j+1} = r_j + \alpha_j B d_{j-1}$ Sufficient residual reduction, terminate, (watch implementation!) IF 1/2+1 1/ < E/1/2/1/ « return P= P5+13 $B_{J+1} = r_{J+1}^T r_{J+1} / r_J^T r_J$ Thew step-length $d_{J+1} = -r_{J+1} + B_{J+1}d_{J};$ (correct the text (see book errata). end *There are only two do consider. Note 1 * Bisection with T=0, T large>0, or t=0, t large <0, and then evaluate f+Vf'P+KPTBP to find which one gives the minimum (or use Newton...)

Note 2: We have the solution, we same situation, but now, we only look for the solution for T>0.

4.2 Using Nearly Exact Solutions 4th Start with B! (memorize!) * Note that B is always symmetric. * If the estimated B is not symmetric, then set B to $B = \frac{1}{2}\hat{B} + \frac{1}{2}\hat{B}^T$ where B denotes our estimate. * Recall that every symmetric matrix has an eigen decomposition of the eigenvector motrix Note that: QQT = I Alternatively, we write: $\Lambda = diag(\lambda_1, \lambda_2, \dots, \lambda_n), \quad \lambda_1 \leq \lambda_2 \leq \dots \leq \lambda_n$

 $Q = \left[q_1 q_2 \cdots q_n \right]$

Now, add $B + \lambda I = Q \Lambda Q^T + \lambda I$ $= Q \Lambda Q^{T} + \lambda Q Q^{T}$ $= Q \left(\Lambda Q^{\mathsf{T}} + \lambda \mathbf{I} \cdot Q^{\mathsf{T}} \right)$ $= Q (\Lambda + \lambda I) Q'$ new eigenvalue matrix. $\Lambda = \Lambda + \lambda I$ => $\Lambda'=diag(x,+\lambda,\lambda_2+\lambda,\dots,\lambda_n+\lambda)$ Clearly, if we look at the minimum: $min \lambda_i + \lambda > 0 = \sum_i \lambda > -min \lambda_i$ require this for $B+\lambda^{I}$ to be positive semi-definite (all 1:>0)

Recall that a <u>feasible</u> point required refers to a point for which all required conditions are satisfied.

The key to finding a global solution is theorem 4.3.

It applies to all B!

For min m(P)=f+gTP+gPBP, with IIPII & A, we have a solution p* iff $(\beta + \lambda I) p^* = -q, (\Delta)$ $\lambda \left(\Delta - \| P^* \| \right) = 0,$ III) (B+1I) is positive semidativite,

and 1+1+1 are satisfied for some

*Note that $\lambda(\Lambda-11P^{*11})=0$ requires that either 1=0 or 1=11p*11. * for the solution:

$$-\nabla M(p^*) = -Bp^* - g = \lambda p^*$$
from (1)

 $\Rightarrow P(\chi) = -\sum_{j=1}^{2-1} \left(\frac{J_j J_j}{J_j J_j} \right) J_j$ from the orthogonality of the eigenvectors. (Note for eg: $B = \sum_{J=1}^{\infty} \lambda_J q_J q_J^{\mathsf{T}}, \dots$ The key in (1) is to note that when $\lambda \rightarrow -\lambda_1$ (as we want), have: $P(\lambda) \sim \frac{q_1 q}{(\lambda_1 + \lambda)^2 q_1} \begin{pmatrix} small \\ terms \\ dropped \end{pmatrix}$ Following this discussion, we eventually come to algorithm 4.4 for computing & using Newton's alanithms algorithm.

4.3 Global Convergence att For convergence, we note the following model reduction by the Cauchy point (Lemma 4.5): $m_k(0) - m_k(p_{ic}^c) > 5 ||\nabla f_k|| \min(\Delta_k, \frac{||\nabla f_{ic}||}{||B_k||})$ For convergence to stationary points, recall the following step from algorithm For M=0, ||Bk|| bounded, the level set [x/(xx) < f(xo)] is bounded, the reduction in ((above) is attained, and 11 Pich = YDK, some 8>1. Then: liming $||\nabla f_k|| = 0$.

Note that the algorithm is 4.1, all where the following line:

{Obtain Pr by minimizing Mrcp)

Edbtain Pr by minimizing Mrcp) has been replaced by the cauchy-point method, or better.

For M > 0, theorem 4.8 says that $\lim_{k \to \infty} \nabla f_k = 0$, which is convergence to a stationary point.

*A similar result follows for nearly exact solutions.

* Scaling issues:

||Dp|| < A for some diagonal
matrix D can be used for
ellipsoidal regions.

Algorithm 1.5 gives the 4 Tg
Cauchy point for such ellipsoidal
regions.

For non-Euclidean regions, we need to wait till Quadratic Programming