WINTER CONFERENCE IN STATISTICS BAYESIAN MACHINE LEARNING

BAYESICS

MATTIAS VILLANI

DEPARTMENT OF STATISTICS
STOCKHOLM UNIVERSITY
AND
DEPARTMENT OF COMPUTER AND INFORMATION SCIENCE
LINKÖPING UNIVERSITY

LECTURE OVERVIEW

- **■** Bayesian inference
- The **normal model** with known variance
- The linear regression model
- Regularization priors

Slides and code:

https://github.com/mattiasvillani/WinterConfHemavan2019

THE LIKELIHOOD FUNCTION - NORMAL DATA

Normal data with known variance:

$$X_1, ..., X_n | \theta \stackrel{\text{iid}}{\sim} N(\theta, \sigma^2).$$

Likelihood from independent observations: $x_1, ..., x_n$

$$p(x_1, ..., x_n | \theta) \propto \exp\left(-\frac{1}{2(\sigma^2/n)}(\theta - \bar{x})^2\right)$$

- Maximum likelihood: $\hat{\theta} = \bar{x}$ maximizes $p(x_1, ..., x_n | \theta)$.
- **Likelihood function**: $p(x_1, ..., x_n | \theta)$ as a function of θ .

EXAMPLE: AM | REALLY GETTING MY 50MBIT/SEC?

- My broadband provider promises me at least 50Mbit/sec.
- Data: x = (22.42, 34.01, 35.04, 38.74, 25.15) Mbit/sec.
- Measurement errors: $\sigma = 5$ (±10Mbit with 95% probability)
- The likelihood function is proportional to $N(\bar{x}, \sigma^2/n)$ density.

UNCERTAINTY AND SUBJECTIVE PROBABILITY

- $Pr(\theta \ge 50|data)$ only makes sense if θ is random.
- But θ may be a fixed natural constant?
- **Bayesian:** doesn't matter if θ is fixed or random.
- Do **You** know the value of θ or not?
- \blacksquare $p(\theta)$ reflects Your knowledge/uncertainty about θ .
- **Subjective probability**.
- The statement $Pr(10th\ decimal\ of\ \pi = 9) = 0.1\ makes\ sense.$

BAYESIAN LEARNING

- **Bayesian learning** about a model parameter θ :
 - **prior** knowledge as a probability distribution $p(\theta)$.
 - collect data and form the likelihood $p(Data|\theta)$.
 - · combine prior and data information.
- How to combine the data and prior information?
- **Bayes' theorem**

$$p(\theta|Data) = \frac{p(Data|\theta)p(\theta)}{p(Data)}$$

$$p(\theta|Data) \propto p(Data|\theta)p(\theta)$$

Posterior ∝ Likelihood · Prior

NORMAL DATA, KNOWN VARIANCE - NORMAL PRIOR

■ Prior

$$\theta \sim N(\mu_{\rm O}, \tau_{\rm O}^2)$$

Posterior

$$p(\theta|x_1,...,x_n) \propto p(x_1,...,x_n|\theta,\sigma^2)p(\theta)$$

$$\propto N(\theta|\mu_n,\tau_n^2),$$

where

$$\frac{1}{\tau_n^2} = \frac{n}{\sigma^2} + \frac{1}{\tau_0^2},$$

 $\mu_{\mathsf{n}} = \mathsf{w}\bar{\mathsf{x}} + (\mathsf{1} - \mathsf{w})\mu_{\mathsf{o}},$

and

$$W = \frac{\frac{n}{\sigma^2}}{\frac{n}{\sigma^2} + \frac{1}{\tau_0^2}}.$$

EXAMPLE: DOWNLOAD SPEED

- Data: x = (22.42, 34.01, 35.04, 38.74, 25.15) Mbit/sec.
- Model: $X_1, ..., X_5 \sim N(\theta, \sigma^2)$.
- Assume $\sigma = 5$ (±10Mbit with 95% probability)
- My **prior**: $\theta \sim N(50, 5^2)$.

Download speed data: x=(22.42, 34.01, 35.04)

WHY BAYESIAN INFERENCE IN MACHINE LEARNING

■ Prediction

$$p(\tilde{\mathbf{y}}|\mathbf{y}) = \int p(\tilde{\mathbf{y}}|\theta)p(\theta|\mathbf{y})d\theta$$

Decision making

$$\operatorname{argmax}_{a \in \mathcal{A}} E_{p(\theta|\mathbf{y})}[U(a,\theta)]$$

■ Model inference

 $Pr(M_i|\mathbf{y})$ for models M_i in a collection of models \mathcal{M}

■ Smoothness priors - Use extremely flexible nonlinear models and encode smoothness via the prior.

LINEAR REGRESSION

■ The linear regression model in matrix form

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}_{(n \times 1)} + (n \times 1)$$

- Usually first column of **X** is the unit vector and β_1 is the intercept.
- Normal errors: $\varepsilon_i \stackrel{iid}{\sim} N(0, \sigma^2)$, so $\varepsilon \sim N(0, \sigma^2 I_n)$.
- **■** Likelihood

$$\mathbf{y}|\beta,\sigma^2,\mathbf{X}\sim N(\mathbf{X}\beta,\sigma^2I_n)$$

LINEAR REGRESSION - UNIFORM PRIOR

■ Standard **non-informative prior**: uniform on $(\beta, \log \sigma^2)$

$$p(\beta, \sigma^2) \propto \sigma^{-2}$$

■ **Joint posterior** of β and σ^2 :

$$eta | \sigma^2, \mathbf{y} \sim \mathbf{N} \left[\hat{\beta}, \sigma^2 (\mathbf{X}'\mathbf{X})^{-1} \right]$$

 $\sigma^2 | \mathbf{y} \sim \mathbf{Inv} \cdot \chi^2 (n - k, s^2)$

where
$$\hat{\beta} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$$
 and $s^2 = \frac{1}{n-k}(\mathbf{y} - \mathbf{X}\hat{\beta})'(\mathbf{y} - \mathbf{X}\hat{\beta})$.

- Simulate from the joint posterior by simulating from
 - $p(\sigma^2|\mathbf{y})$
 - $p(\beta|\sigma^2, \mathbf{y})$
- Marginal posterior of β :

$$\beta | \mathbf{y} \sim t_{n-k} \left[\hat{\beta}, s^2 (X'X)^{-1} \right]$$

LINEAR REGRESSION - CONJUGATE PRIOR

Joint prior for β and σ^2

$$\begin{split} \beta | \sigma^2 &\sim \text{N} \left(\mu_\text{O}, \sigma^2 \Omega_\text{O}^{-1} \right) \\ \sigma^2 &\sim \text{Inv} - \chi^2 \left(\nu_\text{O}, \sigma_\text{O}^2 \right) \end{split}$$

Posterior

$$\begin{split} \beta | \sigma^2, \mathbf{y} &\sim \mathsf{N} \left[\mu_{\mathsf{n}}, \sigma^2 \Omega_{\mathsf{n}}^{-1} \right] \\ \sigma^2 | \mathbf{y} &\sim \mathsf{Inv} - \chi^2 \left(\nu_{\mathsf{n}}, \sigma_{\mathsf{n}}^2 \right) \end{split}$$

$$\begin{split} \mu_n &= \left(\mathbf{X}'\mathbf{X} + \Omega_{\mathrm{O}}\right)^{-1} \left(\mathbf{X}'\mathbf{X}\hat{\boldsymbol{\beta}} + \Omega_{\mathrm{O}}\mu_{\mathrm{O}}\right) \\ \Omega_n &= \mathbf{X}'\mathbf{X} + \Omega_{\mathrm{O}} \\ \nu_n &= \nu_{\mathrm{O}} + n \\ \nu_n\sigma_n^2 &= \nu_{\mathrm{O}}\sigma_{\mathrm{O}}^2 + \left(\mathbf{y}'\mathbf{y} + \mu_{\mathrm{O}}'\Omega_{\mathrm{O}}\mu_{\mathrm{O}} - \mu_n'\Omega_n\mu_n\right) \end{split}$$

LINEAR REGRESSION - CONJUGATE PRIOR

Scaled inverse χ^2 distribution

16 | 2

RIDGE REGRESSION = NORMAL PRIOR

- Problem: too many covariates leads to over-fitting.
- **Smoothness/shrinkage/regularization prior**

$$\beta_i | \sigma^2 \stackrel{iid}{\sim} N \left(o, \frac{\sigma^2}{\lambda} \right)$$

■ Equivalent to **penalized likelihood**:

$$-2 \cdot \log p(\beta | \sigma^2, \mathbf{y}, \mathbf{X}) \propto (y - X\beta)^T (y - X\beta) + \lambda \beta' \beta$$

Posterior mean gives ridge regression estimator

$$\tilde{\beta} = (\mathbf{X}'\mathbf{X} + \lambda I)^{-1}\mathbf{X}'\mathbf{y}$$

■ When X'X = I. Shrinkage

$$\tilde{\beta} = \frac{1}{1+\lambda}\hat{\beta}$$

LASSO REGRESSION = LAPLACE PRIOR

Lasso is equivalent to posterior mode under Laplace prior

$$\beta_i | \sigma^2 \stackrel{iid}{\sim} \text{Laplace} \left(0, \frac{\sigma^2}{\lambda} \right)$$

- **Laplace prior**:
 - heavy tails
 - many β_i close to zero, but some β_i can be very large.
- Normal prior
 - · light tails
 - all β_i 's are similar in magnitude and no β_i very large.

ESTIMATING THE SHRINKAGE

- Cross-validation is often used to determine the degree of smoothness, λ .
- Bayesian: λ is **unknown** \Rightarrow **use a prior** for λ .
- $\lambda \sim Inv-\chi^2(\eta_0, \lambda_0)$. The user specifies η_0 and λ_0 .
- Hierarchical setup:

$$\begin{aligned} \mathbf{y} | \beta, \mathbf{X} &\sim N(\mathbf{X}\beta, \sigma^2 I_n) \\ \beta | \sigma^2, \lambda &\sim N\left(\mathbf{0}, \sigma^2 \lambda^{-1} I_m\right) \\ \sigma^2 &\sim \text{Inv} - \chi^2(\nu_0, \sigma_0^2) \\ \lambda &\sim \text{Inv-} \chi^2(\eta_0, \lambda_0) \end{aligned}$$

REGRESSION WITH ESTIMATED SHRINKAGE

■ The **joint posterior** of β , σ^2 and λ is

$$\begin{split} \beta | \sigma^2, \lambda, \mathbf{y} &\sim \text{N} \left(\mu_n, \Omega_n^{-1} \right) \\ \sigma^2 | \lambda, \mathbf{y} &\sim \text{Inv} - \chi^2 \left(\nu_n, \sigma_n^2 \right) \\ p(\lambda | \mathbf{y}) &\propto \sqrt{\frac{|\Omega_0|}{|\mathbf{X}^T \mathbf{X} + \Omega_0|}} \left(\frac{\nu_n \sigma_n^2}{2} \right)^{-\nu_n/2} \cdot p(\lambda) \end{split}$$

where $\Omega_0 = \lambda I_m$, and $p(\lambda)$ is the prior for λ , and

$$\mu_n = \left(\mathbf{X}^\mathsf{T}\mathbf{X} + \Omega_\mathsf{O}\right)^{-1}\mathbf{X}^\mathsf{T}\mathbf{y}$$

$$\Omega_n = \mathbf{X}^\mathsf{T}\mathbf{X} + \Omega_\mathsf{O}$$

$$\nu_n = \nu_\mathsf{O} + n$$

$$\nu_n \sigma_n^2 = \nu_\mathsf{O} \sigma_\mathsf{O}^2 + \mathbf{y}^\mathsf{T}\mathbf{y} - \mu_n^\mathsf{T}\Omega_n\mu_n$$

20

POLYNOMIAL REGRESSION

Polynomial regression

$$f(x_i) = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \dots + \beta_k x_i^k.$$

$$\mathbf{y} = \mathbf{X}\beta + \varepsilon,$$

where

$$\mathbf{X} = (1, x, x^2, ..., x^k).$$

- Problem: higher order polynomials can overfit the data.
- Solution: shrink higher order coefficients harder:

$$\beta | \sigma^2 \sim N \begin{bmatrix} 0, & 100 & 0 & 0 & \cdots & 0 \\ 0 & \frac{1}{\lambda} & 0 & \cdots & 0 \\ 0 & 0 & \frac{1}{2\lambda} & & & \\ \vdots & \vdots & & \ddots & \\ 0 & 0 & 0 & \cdots & \frac{1}{k\lambda} \end{bmatrix}$$

FINDING THE TIME FOR MAXIMUM

Quadratic relationship between pain relief (y) and time (x)

$$y = \beta_0 + \beta_1 x + \beta_2 x^2 + \varepsilon.$$

 \blacksquare At what time x_{max} is there maximal pain relief?

$$X_{max} = -\beta_1/2\beta_2$$

- Posterior distribution of x_{max} can be obtained by change of variable. Cauchy-like.
- **Easy** to obtain marginal posterior $p(x_{max}|\mathbf{y},\mathbf{X})$ by **simulation**:
 - Simulate N coefficient vectors from the posterior β , $\sigma^2 | \mathbf{y}$, \mathbf{X}
 - For each simulated β , compute $x_{max} = -\beta_1/2\beta_2$.
 - Plot a histogram. Converges to $p(x_{max}|\mathbf{y},\mathbf{X})$ as $N\to\infty$.

FINDING THE TIME FOR MAXIMUM

