Link Layer

Link Layer

Review: Flow Control

Flow Control: Refers to the control of the amount of data that a sender can transmit without overflowing the receiver.

Stop-and-Wait ARQ

ACK = received packet, ready to receive packet #

Stop-and-Wait ARQ: Time-Out

Frame is lost during transmission

Piggybacking ACKs

 Next data frame send carries acknowledgement for last frame received

Bandwidth-Delay Product: Example

- Bandwidth × Round-Trip-Time
 - gives indication of amount of data that can be send while waiting for ACK

- Communication link with 1Mb/s
- Round-Trip time: $20 \text{ ms} = 20*10^{-3} \text{ s}$
- How much data can you send during the time it takes for 1 bit to
- $20*10^{-3}$ s * $1*10^{6}$ b/s = 20.000 bits
- Frame of 2000 bit \Rightarrow 10% of bandwidth used

Bandwidth-Delay Product: Example

Go-Back-N ARQ

Go-Back-N: Lost ACK

Go-Back-N ARQ: Bad Behaviour

Selective Repeat

- Two Windows:
 - 1 Sender Window 1 Receiver Window

a. Sender window

b. Receiver window

school of

Selective Repeat ARQ: Lost Frame

- NAK = Negative Acknowledgement
- Sender still maintains timers for packets in case NAK gets lost

Selective Repeat ARQ

Sliding Windows

Allow multiple frames to be in transit

- Receiver has buffer w long
- Transmitter can send up to w frames
 - without ACK

- Each frame is numbered
- ACK includes number of next frame expected

Window Size for Go-Back-N

- Depends on size of max. frame number
 - Frame # needs to be included in every frame
 - e.g. 4 bits 2^4 = 16 frame numbers

Trade-off between window size and frame size

CS2031 Telecommunications II

High-level Data Link Control (HDLC)

HDLC

- ISO 33009, ISO 4335, Used initially in X.25
 1979, ISO 3309
- It's old so, why should we care?
 - Implements framing, addressing
 - Implements flow control mechanisms
- Do we have to learn it by heart?
 - No learn the principles not the frames layout!

HDLC Station Types

- Primary station
 - Controls operation of link
 - Frames issued are called commands
- Secondary station
 - Under control of primary station
 - Frames issued called responses
- Combined station
 - Combination of primary and secondary station
 - May issue commands and responses

HDLC Station Types

Unbalanced Configuration

Two types of stations:

- Primary station
- Secondary station

Balanced Configuration

One type of stations:

Combined station

HDLC Modes

- Three modes:
 - Normal Response Mode (NRM)
 - Asynchronous Response Mode (ARM)
 - Asynchronous Balanced Mode (ABM)

Normal Response Mode (NRM)

- Master/Slave architecture
- Unbalanced configuration
- Primary initiates transfer to secondary
- Secondary may only transmit data in response to command from primary
- Used on multi-drop lines

Asynchronous Balanced Mode (ABM)

- Balanced configuration
- Either station may initiate transmission without receiving permission
- Most widely used
- No polling overhead

Asynchronous Response Mode (ARM)

b. Multipoint

- Unbalanced configuration
- Secondary may initiate transmission without permission form primary
- Primary responsible for line
- Rarely used

HDLC frame

- Flag= 01111110
 - specifies beginning and end of frame
- Address
 - specifies secondary station
 - as either sender or receiver
- Control
 - specifies type of frame and seq.&ack. number
- Frame Check Sequence (FCS)
 - either 16- or 32-bit CRC

Bit-Stuffing

- Bit stuffing used to avoid confusion with data containing same combination as flag 01111110
 - 0 inserted after every sequence of five 1s
 - If receiver detects five 1s
 - it checks next bit
 - If 0, it is deleted
 - If 1 and seventh bit is 0, accept as flag
 - If sixth and seventh bits 1, sender is indicating abort* Figure is courtesy of B. Forouzan

Bit Stuffing

Process of adding 0 whenever there is a flag or escape sequence in the text.

Bit stuffing in HDLC

Bit stuffing in HDLC

Address Field

- Usually 8 bits long
- May be extended to multiples of 7 bits
 - LSB of each octet indicates that it is the last octet (1) or not (0)
- All ones (11111111) is broadcast

HDLC Frame Types

- I-Frame: Information Transfer Format
 - Control= 0 ? ? ? ? ? ? ? ?
- S-Frame: Supervisory Format
 - Control= 1 0 ? ? ? ? ? ?
- U-Frame: Unnumbered Format
 - Control= 11??????

I-Frame

- N(S)
 - Sequence Number of Sender
- N(R)
 - Sequence Number of Receiver
- P/F
 - Poll/Final bit
 - Set by Primary station as request for information
 - Set by Secondary station to signal response or to signal final frame of a transmission

S-Frame Control Field

- Code 00 = Receive Ready (RR)
 - Acknowledge frames & waiting for more
- Code 10 = Receive Not Ready (RNR)
 - Acknowledge frames & busy right now
- Code 01 = Reject (REJ)
 - Go-Back-N NAK
- Code 11 = Selective Reject (SREJ)
 - Selective Repeat NAK

Example

^{*} Figure is courtesy of W. Stallings

U-Frame Control Field

Code	Command/Response	Meaning
00 001	SNRM	Set normal response mode
11 100	SABM	Set asynchronous balanced mode
00 100	UP	Unnumbered poll
00 000	UI	Unnumbered information
00 110	UA	Unnumbered acknowledgment
00 010	DISC	Disconnect
10 000	SIM	Set initialization mode
11 001	RSET	Reset
11 101	XID	Exchange ID
10 001	FRMR	Frame reject

Connection & Disconnection

^{*} Figure is courtesy of B. Forouzan

Examples of Operation

SABME	Set asynchronous balanced mode	RR	Receive Ready
1	Information	RNR	Receive Not Ready
UA	Unnumbered acknowledgment	REJ	Reject
DISC	Disconnect	SREJ	Selective Reject

Piggybacking without Error

Piggybacking with Error

Summary: HDLC

- Three station types
 - Primary station
 - Secondary station
 - Combined station
- Operation modes
 - Normal response mode
 - Asynchronous response mode
- Three frame types
 - I-Frame: Information Transfer Format
 - S-Frame: Supervisory Format Flow Control
 - U-Frame: Unnumbered Format Connection setup/term./etc
- Bit-Stuffing to avoid confusion of data and flag

HDLC - Why?

- 'should give you a feeling for a protocol
- It includes most of the basic mechanisms
 - Framing
 - Addressing
 - Bit-stuffing
 - Flow/Error control
- Once you can run through HDLC in your head, you understand the basics of link layer protocols

Binary Example

Binary Example

IEEE 802

- 802.3: Ethernet
- 802.11: Wifi
- 802.16: WiMAX
- 802.20: Mobile Broadband Wireless Access (MBWA)
- 802.15.1: Bluetooth

802.3 MAC Frame

- 64-bit frame preamble (10101010) used to synchronize reception
 - 7 bit preamble (10101010) + 1 start flag (10101011)
- Maximum frame length: 1518 bytes
- Minimum frame length: 64 bytes

802.2 LLC Control Fields

LLC PDU control field bits

Information transfer command/response (I-format PDU)

Supervisory commands/responses (S-format PDUs)

Unnumbered commands/responses (U-format PDUs)

1	2	3	4	5	6	7	8	9	10–16
0	N(S)							P/F	N(R)
1	0	s	s	х	х	Х	х	P/F	N(R)
1	1	М	М	P/F	М	М	М		

N(S) = sender send sequence number (Bit 2=lower-order-bit)

N(R) = sender receive sequence number (Bit 10=lower-order-bit)

S = supervisory function bit M = modifier function bit

X = reserved and set to zero

P/F = poll bit—command LLC PDUs

final bit—response LLC PDUs

(1=poll/final)

Figure 9—LLC PDU control field formats

max w-size= 64 frames

m = 7

 $2^{m} = 128$

IEEE 802.2: Logical Link Control (LLC)

- LLC provides three HDLC services:
 - 1. Unacknowledged connectionless service, recall HDLC has unnumbered frames;
 - 2. Reliable connection-oriented service in the form of HDLC ABM mode;
 - 3. Acknowledged connectionless service, need to add two unnumbered frames to HDLC frame set.
- LLC can provide reliable packet transfer service

Bridges from 802.x to 802.y

Operation of a LAN bridge from 802.11 to 802.3.

Every Connection involves the Link Layer

That's all folks

