```
import numpy as np
import pandas as pd
import seaborn as snb
from matplotlib import pyplot as plt
from matplotlib import style
from sklearn import linear_model
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
from sklearn.linear_model import Perceptron
from sklearn.linear_model import SGDClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.neighbors import KNeighborsClassifier
 from sklearn.svm import SVC, LinearSVC
from sklearn.naive_bayes import GaussianNB
test df = pd.read csv("test.csv")
train_df = pd.read_csv("train.csv")
train df.info()
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 891 entries, 0 to 890
     Data columns (total 12 columns):
      #
        Column
                      Non-Null Count Dtype
                       -----
         PassengerId 891 non-null
                                      int64
      0
      1
         Survived
                      891 non-null
                                      int64
      2
         Pclass
                      891 non-null
                                      int64
         Name
                      891 non-null
                                      object
```

4	Sex	891	non-null	object					
5	Age	714	non-null	float64					
6	SibSp	891	non-null	int64					
7	Parch	891	non-null	int64					
8	Ticket	891	non-null	object					
9	Fare	891	non-null	float64					
10	Cabin	204	non-null	object					
11	Embarked	889	non-null	object					
<pre>dtypes: float64(2), int64(5), object(5)</pre>									

memory usage: 83.7+ KB

train_df.head(8)

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282
4									>

```
total = train_df.isnull().sum().sort_values(ascending=False)

percent_1 = train_df.isnull().sum()/train_df.isnull().count()*100

percent_2 = (round(percent_1,1)).sort_values(ascending=False)

missing_data = pd.concat([total, percent_2], axis=1, keys=['Total', '%'])

missing_data.head(5)
```

```
Total %

Cabin 687 77.1
```

train_df.columns.values

Survived 0 0.0

survived = 'survived'
not_survived = 'not survived'

fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(10, 4))

women = train_df[train_df['Sex']=='female']

men = train_df[train_df['Sex']=='male']

ax = snb.distplot(women[women['Survived']==1].Age.dropna(), bins=18, label = survived, ax

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: FutureWarning: warnings.warn(msg, FutureWarning)

ax = snb.distplot(women[women['Survived']==0].Age.dropna(), bins=40, label = not_survived,
axes[0], kde =False)

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: FutureWarning: warnings.warn(msg, FutureWarning)

ax.legend()

<matplotlib.legend.Legend at 0x7f1dc6fd88d0>

```
ax.set_title('Female')
    Text(0.5, 1.0, 'Female')

ax = snb.distplot(men[men['Survived']==1].Age.dropna(), bins=18, label
= survived, ax = axes[1], kde = False)

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: FutureWarning:
    warnings.warn(msg, FutureWarning)

ax = snb.distplot(men[men['Survived']==0].Age.dropna(), bins=40, label
= not_survived, ax = axes[1], kde = False)

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: FutureWarning:
    warnings.warn(msg, FutureWarning)

ax.legend()

cmatplotlib.legend.Legend at 0x7f1dc6f96f90>

ax.set_title('Male')
    Text(0.5, 1.0, 'Male')
```

fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(10, 4))

FacetGrid = snb.FacetGrid(train_df, row='Embarked', size=4.5, aspect=1.6)
FacetGrid.map(snb.pointplot, 'Pclass', 'Survived', 'Sex',
palette=None, order=None, hue_order=None)
FacetGrid.add legend()

<matplotlib.axes._subplots.AxesSubplot at 0x7f1dc4319dd0>

grid = snb.FacetGrid(train_df, col='Survived', row='Pclass', size=2.2, aspect=1.6)
grid.map(plt.hist, 'Age', alpha=.5, bins=20)
grid.add_legend();

/usr/local/lib/python3.7/dist-packages/seaborn/axisgrid.py:337: UserWarning: The `warnings.warn(msg, UserWarning)

data = [train_df, test_df]

```
dataset.loc[dataset['relatives'] > 0, 'not alone'] =0
 dataset.loc[dataset['relatives'] == 0, 'not alone'] = 1
dataset['not_alone'] =dataset['not_alone'].astype(int)
train df['not alone'].value counts()
     KeyError
                                               Traceback (most recent call last)
     /usr/local/lib/python3.7/dist-packages/pandas/core/indexes/base.py in
     get_loc(self, key, method, tolerance)
        3360
                         try:
     -> 3361
                             return self._engine.get_loc(casted_key)
        3362
                         except KeyError as err:
                                        🗘 4 frames
     pandas/_libs/hashtable_class_helper.pxi in
     pandas. libs.hashtable.PyObjectHashTable.get item()
     pandas/_libs/hashtable_class_helper.pxi in
     pandas._libs.hashtable.PyObjectHashTable.get_item()
     KeyError: 'not alone'
     The above exception was the direct cause of the following exception:
                                               Traceback (most recent call last)
     KeyError
     /usr/local/lib/python3.7/dist-packages/pandas/core/indexes/base.py in
     get_loc(self, key, method, tolerance)
                             return self._engine.get_loc(casted_key)
        3361
        3362
                         except KeyError as err:
     -> 3363
                             raise KeyError(key) from err
        3364
                     if is scalar(key) and isna(key) and not self.hasnans:
        3365
axes = snb.factorplot('relatives','Survived', data=train df, aspect = 2.5, )
```

```
/usr/local/lib/python3.7/dist-packages/seaborn/categorical.py:3717: UserWarning: The
       warnings.warn(msg)
     /usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass
       FutureWarning
       0.8
       0.6
      urvived
       0.4
train_df = train_df.drop(['PassengerId'], axis=1)
       0.2 1
import re
deck = {"A": 1, "B": 2, "C": 3, "D": 4, "E": 5, "F": 6, "G": 7, "U":
8}
data = [train_df, test_df]
for dataset in data:
   dataset['Cabin'] = dataset['Cabin'].fillna("U0")
dataset['Deck'] = dataset['Cabin'].map(lambda x: re.compile("([azA-Z]+)").search(x).group(
dataset['Deck'] = dataset['Deck'].map(deck)
dataset['Deck'] = dataset['Deck'].fillna(0)
dataset['Deck'] = dataset['Deck'].astype(int)# we can now drop the cabin feature
train df = train df.drop(['Cabin'], axis=1)
test_df = test_df.drop(['Cabin'], axis=1)
data = [train_df, test_df]
for dataset in data:
   mean = train_df["Age"].mean()
std = test_df["Age"].std()
is_null = dataset["Age"].isnull().sum()
# compute random numbers between the mean, std and is null
```

```
rand age = np.random.randint(mean - std, mean + std, size =
# fill NaN values in Age column with random values generated
age_slice = dataset["Age"].copy()
age_slice[np.isnan(age_slice)] = rand_age
dataset["Age"] =age_slice
dataset["Age"] =train_df["Age"].astype(int)
     IntCastingNaNError
                                               Traceback (most recent call last)
     <ipython-input-93-5d9b0307c3cb> in <module>
     ----> 1 dataset["Age"] =train_df["Age"].astype(int)
                                        🗘 7 frames -
     /usr/local/lib/python3.7/dist-packages/pandas/core/dtypes/cast.py in
     astype_float_to_int_nansafe(values, dtype, copy)
                 if not np.isfinite(values).all():
        1212
        1213
                     raise IntCastingNaNError(
                         "Cannot convert non-finite values (NA or inf) to integer"
     -> 1214
        1215
                     )
        1216
                 return values.astype(dtype, copy=copy)
     IntCastingNaNError: Cannot convert non-finite values (NA or inf) to integer
     SEARCH STACK OVERFLOW
train df["Age"].isnull().sum()
     177
train df['Embarked'].describe()
     count
               889
     unique
                 3
                 S
     top
     freq
               644
     Name: Embarked, dtype: object
```

Colab paid products - Cancel contracts here