Fundamental Optimizations (GTC 2010)

Paulius Micikevicius | NVIDIA

Outline

- Kernel optimizations
 - Launch configuration
 - Global memory throughput
 - Shared memory access
 - Instruction throughput / control flow
- Optimization of CPU-GPU interaction
 - Maximizing PCle throughput
 - Overlapping kernel execution with memory copies

Launch Configuration

Launch Configuration

- How many threads/threadblocks to launch?
- Key to understanding:
 - Instructions are issued in order
 - A thread stalls when one of the operands isn't ready:
 - Memory read by itself doesn't stall execution
 - Latency is hidden by switching threads
 - GMEM latency: 400-800 cycles
 - Arithmetic latency: 18-22 cycles
- Conclusion:
 - Need enough threads to hide latency

Launch Configuration

- Hiding arithmetic latency:
 - Need ~18 warps (576) threads per Fermi SM
 - Fewer warps for pre-Fermi GPUs (Fermi SM more than doubled issue rate)
 - Or, latency can also be hidden with independent instructions from the same warp
 - For example, if instruction never depends on the output of preceding instruction, then only 9 warps are needed, etc.
- Maximizing global memory throughput:
 - Depends on the access pattern, and word size
 - Need enough memory transactions in flight to saturate the bus
 - Independent loads and stores from the same thread
 - Loads and stores from different threads
 - Larger word sizes can also help (float2 is twice the transactions of float, for example)

Maximizing Memory Throughput

- Increment of an array of 64M elements
 - Two accesses per thread (load then store)
 - The two accesses are dependent, so really 1 access per thread at a time
- Tesla C2050, ECC on, theoretical bandwidth: ~120 GB/s

Several independent smaller accesses have the same effect as one larger one.

For example:

Four 32-bit ~= one 128-bit

Launch Configuration: Summary

- Need enough total threads to keep GPU busy
 - Typically, you'd like 512+ threads per SM
 - More if processing one fp32 element per thread
 - Of course, exceptions exist
- Threadblock configuration
 - Threads per block should be a multiple of warp size (32)
 - SM can concurrently execute up to 8 threadblocks
 - Really small threadblocks prevent achieving good occupancy
 - Really large threadblocks are less flexible
 - I generally use 128-256 threads/block, but use whatever is best for the application
- For more details:
 - Vasily Volkov's GTC2010 talk "Better Performance at Lower Occupancy"

Global Memory Throughput

Fermi Memory Hierarchy Review

Local storage

- Each thread has own local storage
- Mostly registers (managed by the compiler)

Shared memory / L1

- Program configurable: 16KB shared / 48 KB L1
 OR 48KB shared / 16KB L1
- Shared memory is accessible by the threads in the same threadblock
- Very low latency
- Very high throughput: 1+ TB/s aggregate

• L2

All accesses to global memory go through L2, including copies to/from CPU host

Global memory

- Accessible by all threads as well as host (CPU)
- High latency (400-800 cycles)
- Throughput: up to 177 GB/s

Fermi Memory Hierarchy Review

© NVIDIA 2010

Fermi GMEM Operations

- Two types of loads:
 - Caching
 - Default mode
 - Attempts to hit in L1, then L2, then GMEM
 - Load granularity is 128-byte line
 - Non-caching
 - Compile with -Xptxas -dlcm=cg option to nvcc
 - Attempts to hit in L2, then GMEM
 - Do not hit in L1, invalidate the line if it's in L1 already
 - Load granularity is 32-bytes
- Stores:
 - Invalidate L1, write-back for L2

Load Operation

- Memory operations are issued per warp (32 threads)
 - Just like all other instructions
 - Prior to Fermi, memory issues were per half-warp
- Operation:
 - Threads in a warp provide memory addresses
 - Determine which lines/segments are needed
 - Request the needed lines/segments

Caching Load

- Warp requests 32 aligned, consecutive 4-byte words
- Addresses fall within 1 cache-line
 - Warp needs 128 bytes
 - 128 bytes move across the bus on a miss
 - Bus utilization: 100%

Non-caching Load

- Warp requests 32 aligned, consecutive 4-byte words
- Addresses fall within 4 segments
 - Warp needs 128 bytes
 - 128 bytes move across the bus on a miss
 - Bus utilization: 100%

Caching Load

- Warp requests 32 aligned, permuted 4-byte words
- Addresses fall within 1 cache-line
 - Warp needs 128 bytes
 - 128 bytes move across the bus on a miss
 - Bus utilization: 100%

Non-caching Load

- Warp requests 32 aligned, permuted 4-byte words
- Addresses fall within 4 segments
 - Warp needs 128 bytes
 - 128 bytes move across the bus on a miss
 - Bus utilization: 100%

Caching Load

- Warp requests 32 misaligned, consecutive 4-byte words
- Addresses fall within 2 cache-lines
 - Warp needs 128 bytes
 - 256 bytes move across the bus on misses
 - Bus utilization: 50%

Non-caching Load

- Warp requests 32 misaligned, consecutive 4-byte words
- Addresses fall within at most 5 segments
 - Warp needs 128 bytes
 - 256 bytes move across the bus on misses
 - Bus utilization: at least 80%
 - Some misaligned patterns will fall within 4 segments, so 100% utilization

Caching Load

- All threads in a warp request the same 4-byte word
- Addresses fall within a single cache-line
 - Warp needs 4 bytes
 - 128 bytes move across the bus on a miss
 - Bus utilization: 3.125%

Non-caching Load

- All threads in a warp request the same 4-byte word
- Addresses fall within a single segment
 - Warp needs 4 bytes
 - 32 bytes move across the bus on a miss
 - Bus utilization: 12.5%

Caching Load

- Warp requests 32 scattered 4-byte words
- Addresses fall within N cache-lines
 - Warp needs 128 bytes
 - N*128 bytes move across the bus on a miss
 - Bus utilization: 128 / (N*128)

Non-caching Load

- Warp requests 32 scattered 4-byte words
- Addresses fall within N segments
 - Warp needs 128 bytes
 - N*32 bytes move across the bus on a miss
 - Bus utilization: 128 / (N*32)

Impact of Address Alignment

- Warps should access aligned regions for maximum memory throughput
 - Fermi L1 can help for misaligned loads if several warps are accessing a contiguous region
 - ECC further significantly reduces misaligned store throughput

Experiment:

- Copy 16MB of floats
- 256 threads/block

Greatest throughput drop:

- GT200: 40%
- Fermi:
 - CA loads: 15%
 - CG loads: 32%

GMEM Optimization Guidelines

- Strive for perfect coalescing
 - Align starting address (may require padding)
 - A warp should access within a contiguous region
- Have enough concurrent accesses to saturate the bus
 - Process several elements per thread
 - Multiple loads get pipelined
 - · Indexing calculations can often be reused
 - Launch enough threads to maximize thruoghput
 - Latency is hidden by switching threads (warps)
- Try L1 and caching configurations to see which one works best
 - Caching vs non-caching loads (compiler option)
 - 16KB vs 48KB L1 (CUDA call)

Shared Memory

Shared Memory

• Uses:

- Inter-thread communication within a block
- Cache data to reduce redundant global memory accesses
- Use it to improve global memory access patterns

Organization:

- 32 banks, 4-byte wide banks
- Successive 4-byte words belong to different banks

Performance:

- 4 bytes per bank per 2 clocks per multiprocessor
- smem accesses are issued per 32 threads (warp)
 - per 16-threads for GPUs prior to Fermi
- serialization: if n threads of 32 access different 4-byte words in the same bank, n accesses are executed serially
- multicast: n threads access the same word in one fetch
 - · Could be different bytes within the same word
 - Prior to Fermi, only broadcast was available, sub-word accesses within the same bank caused serialization

Bank Addressing Examples

Bank Addressing Examples

Shared Memory: Avoiding Bank Conflicts

- 32x32 SMEM array
- Warp accesses a column:
 - 32-way bank conflicts (threads in a warp access the same bank)

Bank 0 Bank 1

. . .

Bank 31

Shared Memory: Avoiding Bank Conflicts

- Add a column for padding:
 - 32x33 SMEM array
- Warp accesses a column:
 - 32 different banks, no bank conflicts

Bank 0 Bank 1

• • •

Bank 31

Additional "memories"

- <u>Texture</u> and <u>constant</u>
- Read-only
- Data resides in global memory
- Read through different caches

- Ideal for coefficients and other data that is read uniformly by warps
- Data is stored in global memory, read through a constant-cache
 - __constant__ qualifier in declarations
 - Can only be read by GPU kernels
 - Limited to 64KB
- Fermi adds uniform accesses:
 - Kernel pointer argument qualified with const
 - Compiler must determine that <u>all threads in a threadblock</u> will dereference the same address
 - No limit on array size, can use any global memory pointer
- Constant cache throughput:
 - 32 bits per warp per 2 clocks per multiprocessor
 - To be used when all threads in a warp read the same address
 - Serializes otherwise

Ideal for coefficients and other data that is read uniformly by warps

Data is stored in global mem

```
    __constant__ qualifier in de
```

- Can only be read by GPU ke
- Limited to 64KB
- Fermi adds uniform access
 - Kernel pointer argument qu
 - Compiler must determine t
 - No limit on array size, can
- Constant cache throughput
 - 32 bits per warp per 2 clock
 - To be used when all threads`
 - Serializes otherwise

- Ideal for coefficients and other data that is read uniformly by warps
- Data is stored in global memory, read through a constant-cache
 - constant qualifier in declarations
 - Can only be read by GPU kernels
 - Limited to 64KB
- Fermi adds uniform accesses:
 - Kernel pointer argument qualified with const
 - Compiler must determine that all threads in a threadblock will dereference the same address
 - No limit on array size, can use any global memory pointer
- Constant cache throughput:
 - 32 bits per warp per 2 clocks per multiprocessor
 - To be used when all threads in a warp read the same address
 - Serializes otherwise

- Kernel executes 10K threads (320 warps)per SM during its lifetime
- All threads access the same 4B word
- Using GMEM:
 - Each warp fetches 32B -> 10KB of bus traffic
 - Caching loads potentially worse 128B line, very likely to be evicted multiple times

- Kernel executes 10K threads (320 warps)per SM during its lifetime
- All threads access the same 4B word
- Using constant/uniform access:
 - First warp fetches 32 bytes
 - All others hit in constant cache -> 32 bytes of bus traffic
 - Unlikely to be evicted over kernel lifetime other loads do not go through this cache

Texture

- Separate cache
- Dedicated texture cache hardware provides:
 - Out-of-bounds index handling
 - · clamp or wrap-around
 - Optional interpolation
 - Think: using fp indices for arrays
 - Linear, bilinear, trilinear
 - Interpolation weights are 9-bit
 - Optional format conversion
 - {char, short, int} -> float
 - All of these are "free"

Instruction Throughput / Control Flow

Runtime Math Library and Intrinsics

- Two types of runtime math library functions
 - func(): many map directly to hardware ISA
 - Fast but lower accuracy (see CUDA Programming Guide for full details)
 - Examples: __sinf(x), __expf(x), __powf(x, y)
 - func(): compile to multiple instructions
 - Slower but higher accuracy (5 ulp or less)
 - Examples: sin(x), exp(x), pow(x, y)
- A number of additional intrinsics:
 - __sincosf(), __frcp_rz(), ...
 - Explicit IEEE rounding modes (rz,rn,ru,rd)

Control Flow

- Instructions are issued per 32 threads (warp)
- Divergent branches:
 - Threads within a single warp take different paths

```
• if-else, ...
```

- Different execution paths within a warp are serialized
- Different warps can execute different code with no impact on performance
- Avoid diverging within a warp
 - Example with divergence:

```
• if (threadIdx.x > 2) {...} else {...}
```

- Branch granularity < warp size
- Example without divergence:

```
• if (threadIdx.x / WARP_SIZE > 2) {...} else {...}
```

Branch granularity is a whole multiple of warp size

CPU-GPU Interaction

Pinned (non-pageable) memory

Pinned memory enables:

- faster PCIe copies
- memcopies asynchronous with CPU
- memcopies asynchronous with GPU

Usage

- cudaHostAlloc / cudaFreeHost
 - instead of malloc / free

Implication:

pinned memory is essentially removed from host virtual memory

Streams and Async API

- Default API:
 - Kernel launches are asynchronous with CPU
 - Memcopies (D2H, H2D) block CPU thread
 - CUDA calls are serialized by the driver
- Streams and async functions provide:
 - Memcopies (D2H, H2D) asynchronous with CPU
 - Ability to concurrently execute a kernel and a memcopy
- Stream = sequence of operations that execute in issue-order on GPU
 - Operations from different streams may be interleaved
 - A kernel and memcopy from different streams can be overlapped

Overlap kernel and memory copy

Requirements:

- D2H or H2D memcopy from <u>pinned</u> memory
- Device with compute capability ≥ 1.1 (G84 and later)
- Kernel and memcopy in different, non-0 streams

Code:

```
cudaStream_t stream1, stream2;
cudaStreamCreate(&stream1);
cudaStreamCreate(&stream2);

cudaMemcpyAsync( dst, src, size, dir, stream1 );
kernel<<<grid, block, 0, stream2>>>(...);

potentially
overlapped
```

Call Sequencing for Optimal Overlap

- CUDA calls are dispatched to the hw in the sequence they were issued
- Fermi can concurrently execute:
 - Upto 16 kernels
 - Upto 2 memcopies, as long as they are in different directions (D2H and H2D)
- A call is dispatched if both are true:
 - Resources are available
 - Preceding calls in the same stream have completed
- Note that if a call blocks, it blocks all other calls of the same type behind it, even in other streams
 - Type is one of { kernel, memcopy}

Stream Examples (current HW)

- Time →

K:

M:

kernel

Integer: stread ID

memcopy

© NVIDIA 2010

More on Fermi Concurrent Kernels

 Kernels may be executed concurrently if they are issued into different streams

Scheduling:

- Kernels are executed in the order in which they were issued
- Threadblocks for a given kernel are scheduled if all threadblocks for preceding kernels have been scheduled and there still are SM resources available

More on Fermi Dual Copy

- Fermi is capable of duplex communication with the host
 - PCIe bus is duplex
 - The two memcopies must be in different streams, different directions
- Not all current host systems can saturate duplex PCIe bandwidth:
 - Likely issues with IOH chips
 - If this is important to you, test your host system

Duplex Copy: Experimental Results

10.8 GB/s

7.5 GB/s

Duplex Copy: Experimental Results

10.8 GB/s

11 GB/s

Summary

- Kernel Launch Configuration:
 - Launch enough threads per SM to hide latency
 - Launch enough threadblocks to load the GPU
- Global memory:
 - Maximize throughput (GPU has lots of bandwidth, use it effectively)
- Use shared memory when applicable (over 1 TB/s bandwidth)
- GPU-CPU interaction:
 - Minimize CPU/GPU idling, maximize PCIe throughput
- Use analysis/profiling when optimizing:
 - "Analysis-driven Optimization" talk, Thursday 3:00-5:00

Additional Resources

- Basics:
 - CUDA webinars on NVIDIA website (just google for CUDA webinar)
 - CUDA by Example" book by J. Sanders and E. Candrot
- · Profiling, analysis, and optimization for Fermi:
 - GTC-2010 session 2012: "Analysis-driven Optimization" (tomorrow, 3-5pm)
- GT200 optimization:
 - GTC-2009 session 1029 (slides and video)
 - Slides:
 - http://www.nvidia.com/content/GTC/documents/1029_GTC09.pdf
 - Materials for all sessions:
 - http://developer.download.nvidia.com/compute/cuda/docs/GTC09Materials.htm
- CUDA Tutorials at Supercomputing:
 - http://gpgpu.org/{sc2007,sc2008,sc2009}
- CUDA Programming Guide
- CUDA Best Practices Guide

Questions?

