Introdução à Análise de dados em FAE

(29 de março de 2024)

Estatística

Professores: Sandro Fonseca, Eliza da Costa, Maurício Thiel

Name: Eduarda de Barros Silva

Lista 2

EXERCICIO 7

Dentre os calouros de uma Universidade, 2587 são alunos e 2832 são alunas. Inscreveram-se nos cursos da área tecnológica 1291 alunos e 547 alunas. Determine a probabilidade de se sortear aleatoriamente um estudante do sexo masculino da área tecnológica.

Na área de tecnologia há 1291 alunos e 547 alunas, logo o número total de estudantes nessa área é de 1838.

$$P = \frac{n\acute{u}merodealunos}{n\acute{u}merototal de estudantes} = \frac{1291}{1838} = 0,70 \quad ou \quad 70\% \tag{0.1}$$

EXERCICIO 8

Em uma cidade, 15% dos táxis são azuis e o restante são verdes. Em uma noite, um táxi atropelou uma pessoa e fugiu. Uma testemunha identificou como azul o táxi envolvido no acidente. A polícia constatou que, nas mesmas circunstâncias da noite do acidente, essa testemunha identificou cada cor corretamente em 80% das vezes, e confundiu as cores em 20% das vezes. Determine a probabilidade de ter sido azul o táxi envolvido no acidente.

Teorema de Bayes

A = evento em que o táxi envolvido no acidente é azul

B = evento em que o táxi envolvido no acidente é verde

Probabilidade de um táxi ser azul: P(A) = 15 % = 0.15

Probabilidade de um táxi ser verde: P(A') = 1 - P(A) = 1 - 0.15 = 0.85

Probabilidade da testemunha identificar o táxi corretamente: P(B|A) = 80 % = 0.80

Probabilidade da testemunha identificar o táxi erroniamente: P(B|A') = 1 - 0.80 = 0.20

Calculando P(B):

$$P(B) = P(B|A) \times P(A) + P(B|A') \times P(A')$$

$$\tag{0.2}$$

Calculando P(A|B):

$$P(A|B) = \frac{P(B|A) \times P(A)}{P(B)} \tag{0.3}$$

Substituindo os valores nas equações 0.2 e 0.3, encontramos que P(B) = 0.29 e que $P(A|B) \approx 0.41$.

EXERCICIO 9

Enquanto 7% das mamografias identificam um caso de câncer quando ele não existe (taxa de falso-positivo), 10% não identificam a doença quando ela existe (taxa de falso-negativo). Sabendo que a incidência de câncer na população feminina é cerca de 0.8%, determine a probabilidade de que uma mulher esteja doente ao receber um resultado de teste positivo.

Teorema de Bayes

A = evento em que a mulher está doente

A' = evento em que a mulher **não** está doente

Probabilidade da mulheres estar com câncer: P(A) = 0.8 % = 0.008

Probabilidade de uma mulher não estar com câncer: P(A') = 1 - 0,008 = 0,992

Probabilidade do exame dar falso-positivo: P(B|A) = 7% = 0.07

Probabiblidade do exame dar positivo e a mulher não estar doente: P(B|A') = 0.10

Calculando P(B):

$$P(B) = P(B|A) \times P(A) + P(B|A') \times P(A') \tag{0.4}$$

Calculando P(A|B):

$$P(A|B) = \frac{P(B|A) \times P(A)}{P(B)} \tag{0.5}$$

Substituindo os valores nas equações 0.4 e 0.5, encontramos que P(B) = 0,09976 e que $P(A|B) \approx 0,0056$ ou $\approx 0.6 \%$.

EXERCICIO 10

Três urnas têm a seguinte composição: a primeira contém 5 bolas brancas e 6 pretas; a segunda contém 4 brancas e 5 pretas; a terceira 4 brancas e 4 pretas. Após escolher por acaso uma urna e se retirar uma bola preta, determine a probabilidade de que a bola sorteada tenha sido extraída da terceira urna.

Teorema de Bayes

 A_1 = evento de escolher a $3^{\underline{a}}$ urna

 A_2 = evento de retirar uma bola preta da $3^{\underline{a}}$ urna

 B_1 = evento de escolher a $2^{\underline{a}}$ urna

 B_2 = evento de retirar uma bola preta da $2^{\underline{a}}$ urna

 C_1 = evento de escolher a 1ª urna

 C_2 = evento de retirar uma bola preta da 1ª urna

Probabilidade de escolher a $3^{\underline{a}}$ urna: P(A) = 1/3

Probabilidade de escolher a $2^{\underline{a}}$ urna: P(B) = 1/3

Probabilidade de escolher a 1ª urna: P(C) = 1/3

Probabilidade de retirar uma bola preta da $3^{\underline{a}}$ urna (na $3^{\underline{a}}$ urna existem 8 bolas, sendo apenas 4 pretas): P(A') = 4/8 = 1/2

Probabilidade de retirar uma bola preta da $2^{\underline{a}}$ urna (na $2^{\underline{a}}$ urna existem 9 bolas, sendo apenas 5 pretas):

P(B') = 5/9Probabilidade de retirar uma bola preta da 1ª urna (na 1ª urna existem 11 bolas, sendo apenas 6 pretas): P(C') = 11/6

Calculando a probabilidade total P(T):

$$P(T) = P(A) \times P(A') + P(B) \times P(B') + P(C) \times P(C')$$

$$\tag{0.6}$$

Calculando P(A|B):

$$P() = \frac{P(A) \times P(A')}{P(T)} \tag{0.7}$$

Substituindo os valores nas equações 0.6 e 0.7, encontramos que $P(B) = \frac{26}{27}$ e que P(A|B) = 0.17 ou 17 %.

EXERCICIO 13

Qual a probabilidade de que dentre 720 pessoas duas aniversariem em um mesmo dia? (compare binomial e Poisson)

Distribuição Binomial

$$P = \frac{N!}{(N-s)!s!} p^s (1-p)^{N-s}$$
(0.8)

Fazendo N = 720, s = 2, p = 1/365. Encontramos que P = 0,27 ou 27 %

Distribuição de Poisson

$$P = \frac{e^{-u}u^x}{x!} \tag{0.9}$$

Fazendo x = 2 e $\lambda = \frac{N.x}{p} = \frac{720.2}{365} = 3,9452.$ Encontramos que P = 0,15 ou 15 %

EXERCICIO 15

Um problema clássico envolvendo a distribuição de Poisson é o experimento de Rutherford-Geiger, da contagem do número de partículas α emitidas por uma amostra de polônio, em intervalos de 7,5 s, num total de 2608 intervalos. A tabela abaixo mostra as frequências (f_m) correspondentes ao número de contagens (m) em cada intervalo.

m	f_m
0	57
1	203
2	383
3	525
4	532
5	408
6	273
7	139
8	45
9	27
10	10
11	4
12	2
13	0
14	0

a) Determine o número médio de contagens em cada intervalo de 7,5 s.

$$t = 7.5 \text{ s}$$

 $\Delta t = 2608 \text{ (intervalos)}$

Média de contagem:

$$\lambda = \frac{\sum m.f_m}{\Delta t} \tag{0.10}$$

$$\sum m.f_m = 10094$$

Aplicando este resultado na fórmula 0.10, temos que o número médio de contagens em cada intervalo de 7,5 s é de 3,87.

b) Compare a distribuição de frequências das contagens do experimento com a distribuição de Poisson de média igual ao número médio de contagens.

EXERCICIO 17

A média dos diâmetros dos rolamentos de esfera produzidos por uma determinada máquina é de 0,482 cm com desvio padrão de 0,004 cm. Uma peça é considerada defeituosa se tiver mais que 0,491 cm ou menos que 0,473 cm. Qual a porcentagem de peças defeituosas produzidas?

$$\mu_e = 0.482 \text{ cm}$$

$$\sigma_e = 0.004 \text{ cm}$$

$$z = \frac{x - \mu_e}{\sigma_e} \tag{0.11}$$

Para calcular o limite superior usamos o valor de x=0,491 cm e obtemos $z_1=2,25$. Para calcular o limite inferior usamos o valor de x=0,473 cm e obtemos $z_2=-2,25$. De acordo com a tabela que se encontra no Apêndice A, para z_1 a área acumulada é de 0,9878 e para z_2 a área acumulada é de 0,0122. Fazendo a diferença entre z_1 e z_2 , temos que Z=0,9756.

Ou seja, 97,56 % dos rolamentos de esfera produzidos estão dentro do valor aceitável para que a peça seja considerada sem defeitos. E 2,44 % são peças produzidas que são consideradas defeituosas por terem um diâmetro maior que 0,491 cm ou menor que 0,473 cm.

Apêndice A

	Tabela - Normal Padrão acumulada à esquerda							$P(Z \leq z)$				
z		Segunda casa decimal de Z										
	0	1	2	3	4	5	6	7	8	9		
1,5	0,9332	0,9345	0,9357	0,9370	0,9382	0,9394	0,9406	0,9418	0,9429	0,9441		
1,6	0,9452	0,9463	0,9474	0,9484	0,9495	0,9505	0,9515	0,9525	0,9535	0,9545		
1,7	0,9554	0,9564	0,9573	0,9582	0,9591	0,9599	0,9608	0,9616	0,9625	0,9633		
1,8	0,9641	0,9649	0,9656	0,9664	0,9671	0,9678	0,9686	0,9693	0,9699	0,9706		
1,9	0,9713	0,9719	0,9726	0,9732	0,9738	0,9744	0,9750	0,9756	0,9761	0,9767		
2,0	0,9772	0,9778	0,9783	0,9788	0,9793	0,9798	0,9803	0,9808	0,9812	0,9817		
2,1	0,9821	0,9826	0,9830	0,9834	0,9838	0,9842	0,9846	0,9850	0,9854	0,9857		
2,2	0,9861	0,9864	0,9868	0,9871	0,9875	0,9878	0,9881	0,9884	0,9887	0,9890		
2,3	0,9893	0,9896	0,9898	0,9901	0,9904	0,9906	0,9909	0,9911	0,9913	0,9916		
2,4	0,9918	0,9920	0,9922	0,9925	0,9927	0,9929	0,9931	0,9932	0,9934	0,9936		
2,5	0,9938	0,9940	0,9941	0,9943	0,9945	0,9946	0,9948	0,9949	0,9951	0,9952		
2,6	0,9953	0,9955	0,9956	0,9957	0,9959	0,9960	0,9961	0,9962	0,9963	0,9964		
2,7	0,9965	0,9966	0,9967	0,9968	0,9969	0,9970	0,9971	0,9972	0,9973	0,9974		
2,8	0,9974	0,9975	0,9976	0,9977	0,9977	0,9978	0,9979	0,9979	0,9980	0,9981		
2,9	0,9981	0,9982	0,9982	0,9983	0,9984	0,9984	0,9985	0,9985	0,9986	0,9986		
3,0	0,9987	0,9987	0,9987	0,9988	0,9988	0,9989	0,9989	0,9989	0,9990	0,9990		
3,1	0,9990	0,9991	0,9991	0,9991	0,9992	0,9992	0,9992	0,9992	0,9993	0,9993		
3,2	0,9993	0,9993	0,9994	0,9994	0,9994	0,9994	0,9994	0,9995	0,9995	0,9995		
3,3	0,9995	0,9995	0,9995	0,9996	0,9996	0,9996	0,9996	0,9996	0,9996	0,9997		
3,4	0,9997	0,9997	0,9997	0,9997	0,9997	0,9997	0,9997	0,9997	0,9997	0,9998		
3,5	0,9998	0,9998	0,9998	0,9998	0,9998	0,9998	0,9998	0,9998	0,9998	0,9998		
3,6	0,9998	0,9998	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999		
3,7	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999		
3,8	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999		
3,9	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000		
4,0	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000		
🚨 Professor Guru							profe	ssorguru.c	om.br			

	Tabela - Normal Padrão acumulada à esquerda							$P(Z \leq z)$			
	z					Segunda casi	decimal de Z				
		0	1	2	3	4	5	6	7	8	9
	-4,0	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
	-3,9	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
	-3,8	0,0001	0,0001	0,0001	0,0001	0,0001	0,0001	0,0001	0,0001	0,0001	0,0001
	-3,7	0,0001	0,0001	0,0001	0,0001	0,0001	0,0001	0,0001	0,0001	0,0001	0,0001
	-3,6	0,0002	0,0002	0,0001	0,0001	0,0001	0,0001	0,0001	0,0001	0,0001	0,0001
	-3,5	0,0002	0,0002	0,0002	0,0002	0,0002	0,0002	0,0002	0,0002	0,0002	0,0002
	-3,4	0,0003	0,0003	0,0003	0,0003	0,0003	0,0003	0,0003	0,0003	0,0003	0,0002
	-3,3	0,0005	0,0005	0,0005	0,0004	0,0004	0,0004	0,0004	0,0004	0,0004	0,0003
	-3,2	0,0007	0,0007	0,0006	0,0006	0,0006	0,0006	0,0006	0,0005	0,0005	0,0005
	-3,1	0,0010	0,0009	0,0009	0,0009	0,0008	0,0008	0,0008	0,0008	0,0007	0,0007
	-3,0	0,0013	0,0013	0,0013	0,0012	0,0012	0,0011	0,0011	0,0011	0,0010	0,0010
	-2,9	0,0019	0,0018	0,0018	0,0017	0,0016	0,0016	0,0015	0,0015	0,0014	0,0014
	-2,8	0,0026	0,0025	0,0024	0.0023	0,0023	0,0022	0,0021	0,0021	0,0020	0,0019
	-2,7	0,0035	0,0034	0,0033	0,0032	0,0031	0,0030	0,0029	0,0028	0,0027	0,0026
	-2,6	0,0047	0,0045	0,0044	0,0043	0,0041	0,0040	0,0039	0,0038	0,0037	0,0036
	-2,5	0,0062	0,0060	0,0059	0,0057	0,0055	0,0054	0,0052	0,0051	0,0049	0,0048
	-2,4	0,0082	0,0080	0,0078	0,0075	0,0073	0,0071	0,0069	0,0068	0,0066	0,0064
	-2,3	0,0107	0,0104	0,0102	0,0099	0,0096	0,0094	0,0091	0,0089	0,0087	0,0084
	-2,2	0,0139	0,0136	0,0132	0,0129	0,0125	0,0122	0,0119	0,0116	0,0113	0,0110
	-2,1	0,0179	0,0174	0,0170	0,0166	0,0162	0,0158	0,0113	0,0150	0,0146	0,0143
	-2,1	0,0179	0,0174	0,0170	0,0100	0,0102	0,0138	0,0197	0,0192	0,0148	0,0143
	-1,9	0,0228	0,0222	0,0217	0,0212	0,0267	0,0256	0,0157	0,0192	0,0188	0,0183
			_	_	_	_	-	_		_	
	-1,8	0,0359	0,0351	0,0344	0,0336	0,0329	0,0322	0,0314	0,0307	0,0301	0,0294
	-1,7	-	0,0436	0,0427	0,0418		-	0,0392	0,0384	0,0375	0,0367
	-1,6	0,0548	0,0537	0,0526	0,0516	0,0505	0,0495	0,0485	0,0475	0,0465	0,0455
	-1,5	0,0668	0,0655	0,0643	0,0630	0,0618	0,0606	0,0594	0,0582	0,0571	0,0559
	-1,4	0,0808	0,0793	0,0778	0,0764	0,0749	0,0735	0,0721	0,0708	0,0694	0,0681
	-1,3	0,0968	0,0951	0,0934	0,0918	0,0901	0,0885	0,0869	0,0853	0,0838	0,0823
	-1,2	0,1151	0,1131	0,1112	0,1093	0,1075	0,1056	0,1038	0,1020	0,1003	0,0985
	-1,1	0,1357	0,1335	0,1314	0,1292	0,1271	0,1251	0,1230	0,1210	0,1190	0,1170
	-1,0	0,1587	0,1562	0,1539	0,1515	0,1492	0,1469	0,1446	0,1423	0,1401	0,1379
	-0,9	0,1841	0,1814	0,1788	0,1762	0,1736	0,1711	0,1685	0,1660	0,1635	0,1611
	-0,8	0,2119	0,2090	0,2061	0,2033	0,2005	0,1977	0,1949	0,1922	0,1894	0,1867
	-0,7	0,2420	0,2389	0,2358	0,2327	0,2296	0,2266	0,2236	0,2206	0,2177	0,2148
	-0,6	0,2743	0,2709	0,2676	0,2643	0,2611	0,2578	0,2546	0,2514	0,2483	0,2451
	-0,5	0,3085	0,3050	0,3015	0,2981	0,2946	0,2912	0,2877	0,2843	0,2810	0,2776
2 %	-0,4	0,3446	0,3409	0,3372	0,3336	0,3300	0,3264	0,3228	0,3192	0,3156	0,3121
TE .	-0,3	0,3821	0,3783	0,3745	0,3707	0,3669	0,3632	0,3594	0,3557	0,3520	0,3483
deci	-0,2	0,4207	0,4168	0,4129	0,4090	0,4052	0,4013	0,3974	0,3936	0,3897	0,3859
casa decimal de Z	-0,1	0,4602	0,4562	0,4522	0,4483	0,4443	0,4404	0,4364	0,4325	0,4286	0,4247
eira	-0,0	0,5000	0,4960	0,4920	0,4880	0,4840	0,4801	0,4761	0,4721	0,4681	0,4641
inteira e primeira	0,0	0,5000	0,5040	0,5080	0,5120	0,5160	0,5199	0,5239	0,5279	0,5319	0,5359
9	0,1	0,5398	0,5438	0,5478	0,5517	0,5557	0,5596	0,5636	0,5675	0,5714	0,5753
utel	0,2	0,5793	0,5832	0,5871	0,5910	0,5948	0,5987	0,6026	0,6064	0,6103	0,6141
Parte	0,3	0,6179	0,6217	0,6255	0,6293	0,6331	0,6368	0,6406	0,6443	0,6480	0,6517
Z	0,4	0,6554	0,6591	0,6628	0,6664	0,6700	0,6736	0,6772	0,6808	0,6844	0,6879
	0,5	0,6915	0,6950	0,6985	0,7019	0,7054	0,7088	0,7123	0,7157	0,7190	0,7224
	0,6	0,7257	0,7291	0,7324	0,7357	0,7389	0,7422	0,7454	0,7486	0,7517	0,7549
	0,7	0,7580	0,7611	0,7642	0,7673	0,7704	0,7734	0,7764	0,7794	0,7823	0,7852
	0,8	0,7881	0,7910	0,7939	0,7967	0,7995	0,8023	0,8051	0,8078	0,8106	0,8133
	0,9	0,8159	0,8186	0,8212	0,8238	0,8264	0,8289	0,8315	0,8340	0,8365	0,8389
	1,0	0,8413	0,8438	0,8461	0,8485	0,8508	0,8531	0,8554	0,8577	0,8599	0,8621
	1,1	0,8643	0,8665	0,8686	0,8708	0,8729	0,8749	0,8770	0,8790	0,8810	0,8830
	1,2	0,8849	0,8869	0,8888	0,8907	0,8925	0,8944	0,8962	0,8980	0,8997	0,9015
	1,3	0,9032	0,9049	0,9066	0,9082	0,9099	0,9115	0,9131	0,9147	0,9162	0,9177
	1,4	0,9192	0,9207	0,9222	0,9236	0,9251	0,9265	0,9279	0,9292	0,9306	0,9319

REFERÊNCIAS

- [3] https://www.professorguru.com.br/estatistica/tabela-normal-padrao.html
- [4] https://pt.wikipedia.org/wiki/Teorema_de_Bayes