CME 200 Workshop 3

October 11, 2013

1. All bases of a subspace must have the same number of elements

Proof. Suppose not. Let $\{u_1, \ldots, u_k\}$ and $\{v_1, \ldots, v_l\}$ be two bases of a subspace $S \subset \mathbf{R}^n$. Without loss of generality, we assume l > k. \mathcal{U} is a basis of S and $\{v_1, \ldots, v_l\} \subset S$, so we can express v_1, \ldots, v_l in terms of u_1, \ldots, u_k :

$$v_1 = \sum_{i=1}^k \alpha_{i,1} u_i$$

$$\vdots$$

$$v_l = \sum_{i=1}^k \alpha_{i,l} u_i$$

In matrix notation:

$$V = UA$$
.

 u_1,\ldots,u_k and v_1,\ldots,v_{k+l} are the columns of $U\in\mathbf{R}^{n\times k}$ and $V\in\mathbf{R}^{n\times (k+l)}$, and $\alpha_{i,j}$ are the entries in $A\in\mathbf{R}^{k\times (k+l)}$. A has more columns than rows, so the columns of A are linearly dependent. This means there is a $z\in\mathbf{R}^{k+l}$ such that Az=0. But this also means

$$Vz = UAz = 0.$$

This is a contradiction: we assumed v_1, \ldots, v_{k+l} are linearly independent. \square

2. Verifying two bases span the same subspace

To show two sets A and B are the same, we must show $A \subset B$ and $B \subset A$. In this case, we must check

$$\operatorname{span}(\{u_1,\ldots,u_k\}) \subset \operatorname{span}(\{v_1,\ldots,v_k\})$$
$$\operatorname{span}(\{v_1,\ldots,v_k\}) \subset \operatorname{span}(\{u_1,\ldots,u_k\}).$$

To show

$$\operatorname{span}(\{u_1,\ldots,u_k\}) \subset \operatorname{span}(\{v_1,\ldots,v_k\}),$$

it suffices to show

$$\{u_1,\ldots,u_k\}\subset \operatorname{span}(\{v_1,\ldots,v_k\}).$$

¹We simply define $\{u_1, \ldots, u_k\}$ to be the set with the smaller number of elements.

Why? Because if u_1, \ldots, u_k are linear combinations of v_1, \ldots, v_k , then any linear combination of u_1, \ldots, u_k is also a linear combination of v_1, \ldots, v_k :

$$\sum_{i=1}^k \alpha_i u_i = \sum_{i=1}^k \alpha_i \left(\sum_{j=1}^k \beta_{i,j} v_j \right) = \sum_{i=1}^k \left(\alpha_i \sum_{j=1}^k \beta_{i,j} \right) v_j.$$

We can use the same trick (just swap u_i and v_i) to show

$$\operatorname{span}(\{v_1,\ldots,v_k\})\subset\operatorname{span}(\{u_1,\ldots,u_k\}).$$

3. Effect on x because of a perturbation to b and A

We are interested in how the solution x to the linear system Ax = b changes when we perturb both A and b. Consider the perturbed linear system

$$(A + \Delta A)y = b + \Delta b.$$

The perturbed solution y can be expressed as $x + \Delta x$ for some Δx , so we have

$$(A + \Delta A)(x + \Delta x) = b + \Delta b.$$

Assuming $A + \Delta A$ is invertible, we solve for Δx to obtain

$$\Delta x = (A + \Delta A)^{-1}(b + \Delta b - (A + \Delta A)x) \tag{3.1}$$

$$= (A + \Delta A)^{-1}(b + \Delta b) - x. \tag{3.2}$$

If ΔA is small, then $(A + \Delta A)^{-1} \approx A^{-1} - A^{-1} \Delta A A^{-1}$. We substitute this expression into (3.2)

$$\Delta x \approx (A^{-1} - A^{-1} \Delta A A^{-1})(b + \Delta b) - x$$

= $A^{-1} \Delta b - A^{-1} \Delta A A^{-1}(b + \Delta b)$

and drop the second-order term $A^{-1}\Delta AA^{-1}\Delta b$

$$\Delta x \approx A^{-1} \Delta b - A^{-1} \Delta A A^{-1} b$$
$$= A^{-1} (\Delta b - \Delta A x).$$

We take norms to obtain

$$\|\Delta x\| \le \|A^{-1}\| (\|\Delta b\| + \|\Delta A\| \|x\|).$$

We divide both sides by ||x||

$$\frac{\|\Delta x\|}{\|x\|} \le \|A^{-1}\| \left(\frac{\|\Delta b\|}{\|x\|} + \|\Delta A\| \right)$$

and use the fact that $\frac{1}{\|x\|} \le \frac{\|A\|}{\|b\|}$

$$\begin{aligned} \frac{\|\Delta x\|}{\|x\|} &\leq \left\|A^{-1}\right\| \left(\|A\| \frac{\|\Delta b\|}{\|b\|} + \|\Delta A\|\right) \\ &= \kappa(A) \left(\frac{\|\Delta b\|}{\|b\|} + \frac{\|\Delta A\|}{\|A\|}\right). \end{aligned}$$

3

- 4. Questions
 - 1. Let U and V be subspaces of \mathbb{R}^n .
 - (a) The intersection of U and V is the set

$$U \cap V := \{ x \in \mathbf{R}^n \mid x \in U \text{ and } x \in V \}.$$

Is $U \cap V$ a subspace for any U and V?

Yes, since U and V are both closed under addition, the sum of any two vectors in both U and V must remain in both U and V are also both closed under scalar multiplication, so a scalar multiple of a vector in both U and V must also remain in both U and V.

(b) The union of U and V is the set

$$U \cup V := \{ x \in \mathbf{R}^n \mid x \in U \text{ or } x \in V \}.$$

Is $U \cup V$ a subspace for any U and V?

No. For a counterexample, let $U \subset \mathbf{R}^2$ be the x-axis and $V \subset \mathbf{R}^2$ be the y-axis. The union of these two sets is closed under scalar multiplication, but not addition.

2. Suppose u_1, \ldots, u_k form a basis for a subspace S and $x \in S$. Then there are $\alpha_1, \ldots, \alpha_k$ such that

$$x = \sum_{i=1}^{k} \alpha_i u_i$$

Are $\alpha_1, \ldots, \alpha_k$ unique? Can you form x in terms of u_1, \ldots, u_k with a different set of coefficients?

No the coefficients must be unique. If the coefficients are not unique, then u_1, \ldots, u_k are linearly dependent. To see this, suppose there are two sets of coefficients that give x:

$$x = \sum_{i=1}^{k} \alpha_i u_i = \sum_{i=1}^{k} \beta_i u_i.$$

If we subtract the second equation from the first, we obtain

$$0 = \sum_{i=1}^{k} (\alpha_i - \beta_i) u_i.$$

If $\alpha \neq \beta_i$ for all i, then we have found a nontrivial linear combination of the u_i 's that yield zero. This contradicts the assumption that u_1, \ldots, u_k are linearly independent.

3. Problem 11 in Workshop Problems for Week 3

(a) Let L be the set of vectors x in \mathbb{R}^4 for which

$$x_1 + x_2 + x_3 = 0. (4.1)$$

Find a basis for L. What is the dimension of L?

The dimension of L is 3. Any 3 linearly independent vectors that satisfy (4.1) would be a basis. An example is

$$\left\{ \begin{bmatrix} 1\\-1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\-1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\-1\\1 \end{bmatrix} \right\}.$$

(b) Find a basis for the subspace of \mathbb{R}^4 spanned by the vectors

$$\begin{bmatrix} 0 \\ 2 \\ 3 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \end{bmatrix}.$$

To find a basis, we attempt to row reduce the matrix whose rows are these four vectors:

$$\begin{bmatrix} 2 & 1 & 0 & 0 \\ 0 & 2 & 3 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix}.$$

We note that this matrix is already almost upper triangular (except the last row), and the last row is clearly a linear combination of the second and third rows. Hence this matrix has row-rank three and the first three rows form a basis for this subspace of \mathbf{R}^4 .