

Mathematik 3

Laplacetransformation Wintersemester 2013/14

Lösung von Differentialgleichungen im Bildbereich

Laplacetransformation

	Laplacetransformation	Fouriertransformation	
Hintransformation	$F(s) = \int_{0}^{\infty} f(t) \cdot e^{-st} dt$	$F(\omega) = \int_{-\infty}^{\infty} f(t) \cdot e^{-j\omega t} dt$	
Rücktransformation	$f(t) = \frac{1}{2\pi j} \int_{c-j\infty}^{c+j\infty} F(s) \cdot e^{st} ds$	$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) \cdot e^{j\omega t} d\omega$	

Laplacetransformation vs. Fouriertransformation

$$\rightarrow e^{-j\omega t} \rightarrow e^{-st} = e^{-\delta t - j\omega t}$$

Dämpfungsfaktor für Konvergenz \Rightarrow

→ Untere Integrationsgrenze = 0

- Signale = 0 für t < 0 \Rightarrow
- → Rücktransformation erfordert Integration über komplexe Variable s
- Praktisch nur mit Tabellen möglich \Rightarrow

Wichtige Eigenschaften der Laplacetransformation

	Zeitfunktionen $f(t) = 0$ für $t < 0$	$F(s) = \int_{0}^{\infty} f(t) \cdot e^{-st} dt$
Linearkombination	$a \cdot f(t) + b \cdot g(t)$	$a \cdot F(s) + b \cdot G(s)$
Zeitverschiebung	f(t-T)	$e^{-sT} \cdot F(s)$
Dämpfung	$e^{\alpha \cdot t} \cdot f(t)$	$F(s-\alpha)$
Differentiation	$\frac{df(t)}{dt}$ \vdots $\frac{d^k f(t)}{dt^k}$	$s \cdot F(s) - f(-0)$ \vdots $s^{k} \cdot F(s) - s^{k-1} \cdot f(-0) - \dots - f^{k-1}(-0)$

Wichtige Eigenschaften der Laplacetransformation

	Zeitfunktionen $f(t) = 0$ für $t < 0$	$F(s) = \int_{0}^{\infty} f(t) \cdot e^{-st} dt$
Integration	$\int_{0}^{t} f(\tau) \ d\tau$	$\frac{1}{s} \cdot F(s)$
Faltung	$f(t) * g(t) = \int_{0}^{t} f(\tau) \cdot g(t - \tau) d\tau$	$F(s) \cdot G(s)$
Anfangswert	$f(+0) = \lim_{t \to 0+} f(t) = \lim_{s \to \infty} s \cdot F(s)$	
Endwert	$\lim_{t \to \infty} f(t) = \lim_{s \to 0} s \cdot F(s)$	

Korrespondenzen der Laplacetransformation

Zeitfunktionen $f(t) = 0$ für $t < 0$	$F(s) = \int_{0}^{\infty} f(t) e^{-st} dt$	Zeitfunktionen $f(t) = 0$ für $t < 0$	$F(s) = \int_{0}^{\infty} f(t) e^{-st} dt$
$\delta(t)$	1	$e^{-\delta t}$	$\frac{1}{s+\delta}$
$\delta(t-t_0)$	$e^{-t_0 s}$	$t \cdot e^{-\delta t}$	$\frac{1}{(s+\delta)^2}$
1	$\frac{1}{s}$	$\frac{t^n}{n!} \cdot e^{-\delta t}$	$\frac{1}{(s+\delta)^{n+1}}$
t	$\frac{1}{s^2}$	$\frac{1}{T} \cdot e^{-\frac{t}{T}}$	$\frac{1}{1+T s}$
$\frac{1}{2}t^2$	$\frac{1}{s^3}$	$1-e^{-\frac{t}{T}}$	$\frac{1}{s\cdot(1+Ts)}$
$\frac{t^n}{n!}$	$\frac{1}{s^{n+1}}$	$\frac{t}{T^2} \cdot e^{-\frac{t}{T}}$	$\frac{1}{(1+Ts)^2}$

Korrespondenzen der Laplacetransformation

Zeitfunktionen $f(t) = 0$ für $t < 0$	$F(s) = \int_{0}^{\infty} f(t) \cdot e^{-st} dt$	
$\sin \omega t$	$\frac{\omega}{s^2 + \omega^2}$	
$\cos \omega t$	$\frac{s}{s^2 + \omega^2}$	
$e^{-\delta t} \cdot \sin \omega t$	$\frac{\omega}{(s+\delta)^2 + \omega^2} = \frac{\omega}{s^2 + 2\delta s + \delta^2 + \omega^2}$	
$e^{-\delta t} \cdot \cos \omega t$	$\frac{s+\delta}{(s+\delta)^2+\omega^2} = \frac{s+\delta}{s^2+2\delta s+\delta^2+\omega^2}$	
$1 - \frac{T_1}{T_1 - T_2} e^{-\frac{t}{T_1}} + \frac{T_2}{T_1 - T_2} e^{-\frac{t}{T_2}}$	$\frac{1}{s\cdot (1+T_1s)\cdot (1+T_2s)}$	
$1 - \frac{1}{\sqrt{1 - d^2}} e^{-\frac{dt}{T}} \cdot \sin\left(\sqrt{1 - d^2} \frac{t}{T} + \arccos d\right)$	$\frac{1}{s\cdot (T^2s^2+2\ d\ T\ s+1)}$	

Systembeschreibung mit Laplacetransformation

Differentialgleichung

$$y(t) + a_1 y'(t) + \dots + a_n y^{(n)}(t) =$$

= $u(t) + b_1 u'(t) + \dots + b_m u^{(m)}(t)$

Übertragungsfunktion

$$Y(s) = G(s) \cdot U(s)$$

Testsignale

Impuls:
$$u(t) = \delta(t) \leadsto U(\omega) = 1$$

$$\boxed{y(t) = g(t)}$$

Sprung: $u(t) = \sigma(t) \rightsquigarrow 1/s$

Sinus: $u(t) = u_0 \cdot \sin(\omega_0 t) \cdot \sigma(t)$

Frequenzgang für stabile Systeme: $|G(j\omega) = G(s)|_{s=j\omega}$

$$u(t) = u_0 \cdot \sin(\omega_0 t) \cdot \sigma(t)$$

$$|G(j\omega) = G(s)|_{s=j\omega}$$

Ausgangsgröße (nach dem Einschwingen)

$$y(t) = |G(j\omega_0)| \cdot u_0 \cdot \sin(\omega_0 t + \varphi(\omega_0))$$

- Selbe Frequenz
- Amplitude multipliziert mit $|G(j\omega_0)|$
- Phasenverschiebung $\varphi(\omega_0) = \arg(G(j\omega_0))$

Beispiel: Systemantwort auf Sinussignal

