

Affinity Analysis and Market Basket Analysis

- Affinity analysis
 - the study of attributes that "go together"
 - known as "market basket analysis"
 - seek to uncover associations among these attributes
- Association rules
 - "if antecedent, the consequent"

Affinity Examples

- Proportion of subscribers to cell phone plan that respond positively to an offer of service upgrade
- Proportion of children whose parents read to them who are themselves good readers
- Predicted degradation in telecommunications networks
- Finding which items in a supermarket are purchased together and which are never purchased together
- Proportion of cases in which new drug will exhibit dangerous side effects

Data Representation for Market Basket Analysis

• Transactions made at the roadside vegetable stand

Transition	Items Purchased
1	Broccoli, green peppers, corn
2	Asparagus, squash, corn
3	Corn, tomatoes, beans, squash
4	Green papers, corn, tomatoes, beans
5	Beans, asparagus, broccoli
6	Squash, asparagus, beans, tomatoes,
7	Tomatoes, corn
8	Broccoli, tomatoes, green peppers
9	Squash, asparagus, beans
10	Beans, corn
11	Green peppers, broccoli, beans, squash
12	Asparagus, beans, squash
13	Squash, corn, asparagus, beans
14	Squash, corn, asparagus, beans
15	Corn, green peppers, tomatoes, beans, broccoli

• transactional data format for the roadside vegetable stand

Affinity Analysis

Transactional Data Format Excerpt of first 4 rows:

Transaction ID	Items
1	Broccoli
1	Green peppers
1	Corn
2	Asparagus

Tabular Data Format Excerpt of first 4 rows:

Transaction	Asparagus	Beans	Broccoli	Corn	Green	Squash	Tomatoes
					Peppers		
1	0	0	1	1	1	0	0
2	1	0	0	1	0	1	0
3	0	1	0	1	0	1	1
4	0	1	0	1	1	0	1

Notations

- D: the set of transactions, where each transaction represents a set of items contained in I
 - A: particular set of items (e.g., bean, squash, etc.)
 - B: Another set of items (e.g. asparagus)
- Association rule takes the form
 - if A, then B (A => B)
 - A and B are mutually exclusive
 - A (left-hand side) and B(right-hand side)

Notations

- An *itemset* is set of items contained in *I* a *k-itemset* is an itemset containing *k* items
- An *itemset frequency* is number of transactions containing itemset
- A frequent itemset is an itemset that occurs at least a minimum, φ times
- The set of *frequent k*-itemsets is denoted F_k

Association Rule

- Support
 - a particular association rule A=> B is the proportion of transactions in D that contains both A and B

$$-P(A \cap B) = \frac{\text{# of transactions containing both A and B}}{\text{total # of transactions}}$$

- Confidence
 - A measure of the accuracy of eh rule, as determined by the percentage of transactions in D containing A that also contain B

$$- P(B|A) = \frac{P(A \cap B)}{P(A)}$$

 $= \frac{\text{\# of transactions containing both A and B}}{\text{\# of transactions containing A}}$

Association Rule

- Support is the proportion of transactions that contain both A and B
- Confidence is a measure of the accuracy of the rule as determined by the percentage of transactions in D containing A that also contain B
 - strong rules are those that meet or surpass minimum support and confidence criteria

Association Rule

- Mining association rules
 - Find all frequent itemsets
 - find all itemsets with frequency $\geq \phi$
 - From the frequent itemsets, generate association rules satisfying the minimum support and confidence conditions.
- A prior property
 - If an itemset Z is not frequent then for any item $A, Z \cup A$ will not be frequent.

Association Rule

• Lift

$$- \ \ Lift = \frac{Rule \ confidence}{Prior \ proportion \ of \ the \ consequent} = \frac{P(A \cap B)}{P(A)P(B)}$$

- $lift(A \Rightarrow B) > 1$
- $lift(A \Rightarrow B) < 1$
- Analysts prefer rules that have either high support or high confidence, and usually both
 - Rules with lift values different from 1 will be more interesting and useful than those with lift values near 1

Association Rule

• Example

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

 $\begin{aligned} & \text{support}(\textit{Diaper} \Rightarrow \textit{Beer}) = \frac{3}{5} \\ & \text{confidence}(\textit{Diaper} \Rightarrow \textit{Beer}) = \frac{3}{4} \\ & \text{lift}(\textit{Diaper} \Rightarrow \textit{Beer}) = \frac{1}{4} \end{aligned}$

Example

- Categorical data \rightarrow binarization

	1	FEMALE	1	23	1	NO		ES !	YES		
	2	MALE	1	28	i	NO	I Y	ES	NO		
	3	FEMALE	i	42	!	NO	I N	0	NO		
	4 FEMALE		34		! YES		YES	YES NO			
5 MALE		45		NO !		! N	NO				
	6	FEMALE	i	36 YE		YES	I Y	ES	YES		
				-7-							2
CUST _ID	*	GENDER = FEMALE	-20	AGE =30		CHILD_ PRD_ YN =YES	CHILD_ PRD_ YN =NO	MOBILE_ APP_USE =YES	MOBILE_ APP_USE =NO	RE_ ORDER =YES	RE_ ORDI =NO
	0	1	1	0	0	0	1	1 1	0	1	0
1		0	1	0	0	0	1	1 1	0	0	1
1 2	1		-								
	0	1	0	0	1	0	1	1 0	1	0	1
2		1		0	0	0	1 0	1 0	0	0	0
2	0	1	0		-			1	-	4	

Example • Read transaction data - read.transactions() inspect(rules) | State | Stread, pastry, sausage, tropical fruit, vegitables, water) | >> (shopping bag) | 0.1904762 1.0000000 | 1.40000000 | 1.4000000 | 1.4000000 | 1.4000000 | 1.4000000 | 1.4000000 | 1.4000000 | 1.4000000 | 1.4000000 | 1.4000000 | 1.4000000 | 1.40000000 | 1.40000000 | 1.40000000 | 1.40000000 | 1.40000000 | 1.40000000 | 1.40000000 | 1.40000000 | 1.40000000 | 1.40000000 | 1.40000000 | 1.40000000 | 1.40000000 | 1.40000000 | 1.40000000 | 1.40000000 | 1.400000000 | 1.40000000 | 1.40000000 | 1.400000000 | 1.40000000 | 1.40000000 | 1.40000000 | 1.40000000 | 1.400000000 | 1.400000000 | 1.400000000 | 1.400000000 | 1.400000000 | 1.400000000 | 1.40000000 | 1.400000000 | 1.400000000 | 1.400000000 | 1.400000000 | 1.40000000 | 1.400000000 | 1.40000000 | 1.400000000 | 1.400000000 | 1.40000000 | 1.400000000 | 1.400000000 | 1.400000000 | 1.400000000 | 1.400000000 | 1.400000000 | 1.400000000 | 1.400000000 | 1.400000000 | 1.400000000 | 1.400000000 | 1.400000000 | 1.400000000 | 1.400000000 | 1.40000000 | 1.400000000 | 1.400000000 | 1.40000000000 | 1.400000000 | 1.

Example

- Parameter adjustment
 - minlen = 2, supp= 0.3, conf= 0.9
 - Sort the outputs
 - quality(), round(), and sort()