

Project: LTE Cell Search Cohort 9

Team: The Correlators

Jeffrey High
Mahesh Valavala
Satish Nichanametla
Shubhadip Paul UCSD WES Cohort 9, All Rights Reserved.

UCSD WES Cohort 9, All Rights Reserved.

What is LTE Cell search about?

LTE stands for **Long Term Evolution** and referred as 4G LTE.
It's a standard for wireless data transmission.

A Physical **Cell ID** (PCI) is an important parameter to establish connection with LTE network

Establish time and frequency synchronization with LTE signals and extract cell ID.

To decode LTE cell ID, Primary Synchronization Signal (**PSS**) and Secondary Synchronization Signal (**SSS**) signals should be decoded.

Xilinx Zynq® UltraScale+™ **RFSoC** with giga sample RF data converters is used.

Main LTE Blocks – For Cell Search

UCSD WES Cohort 9, All Rights Reserved.

XILINX VITIS...

The physical cell identity, $N_{I\!D}^{cell}$, is defined by the equation:

$$N_{ID}^{CELL} = 3N_{ID}^{(1)} + N_{ID}^{(2)}$$

- $N_{I\!D}^{(1)}$ is the physical layer cell identity group (0 to 167).
- $N_{ID}^{(2)}$ is the identity within the group (0 to 2).

System Requirements and Configurations

ADC Configuration

- RF SoC supports Fs in range of 1024 MHz 4096 MHz.
- Our LTE Cell search IP needs Fs of 1.92MHz.
- ADC Fs is configured to 3932.16MHz as it is a multiple of 30.72MHz (LTE Rate). Reference ADC clock needed 491.52MHz.

Decimation

- Our System needs decimation of 2048.
- 8x decimation in RF Soc. From 3932.16MHz to 491.52MHz.
- 256x decimation in our custom IP to achieve Fs of 1.92MHz at LTE Cell search IP.

NCO (Numerically Controlled Oscillator)

- NCO configured to down convert carrier frequency to DC.
- 48-bit NCO per RF-ADC.
- Mixer is programmed to fine mode.

UCSD WES Cohort 9, All Rights Reserved.

UCSD WES Cohort 9, All Rights Reserved.

LTE Cell Search Test Bench

Loop Back Mode

LTE waveform from DAC loop back

UCSD WES Cohort 9, All Rights Reserved.

External Signal Generator

Single Tone/CW and LTE waveform testing at various carrier frequencies.

Pluto SDR

Wireless testing with LTE waveform

LTE Cell Search Test Setups

FPGA IP Research

UCSD WES Cohort 9, All Rights Reserved.

• Blocks - TX Signal Generator

FPGA IP Research (cont'd..)

Front End Module

- Fs = 491.52MHz.
- Packed ADC samples.
- 8 I/Q samples
- Outputs 1.92MHz I/Q samples

Simulink Design

- Developed using Simulink Cascade Filters
- Designed with MATLAB filter designer

UCSD WES Cohort 9, All Rights Reserved.

Constraints	Status	WNS	TNS	WHS	THS	TPWS	Total Power	Failed Routes	L. V1	FF
constrs_1	synth_design Complete!								0	
constrs_1	write_bitstream Complete!	0.014	0.000	0.010	0.000	0.000	9.414	0	106618	1408
	Submodule Runs Complete									
base_LTE_MIB_H_ip_0_0	synth_design Complete!								26794	390
base_iteCellSearch_0_0	synth_design Complete!								17203	116
base_ddr4_0_0	synth_design Complete!								17112	215
base_LTE_DOWNS_ip_0_0	synth_design Complete!								11037	104
base_rfdc_0	synth_design Complete!								3766	31
base_axi_dma_real_1	synth_design Complete!								1738	27
base_LTE_GENER_ip_0_1	synth_design Complete!								1700	29
base_xbar_0	synth_design Complete!								1607	21
base_mb_1	synth_design Complete!								1188	9
base_shutdown_lpd_0	synth_design Complete!								898	19
base_xbar_7	synth_design Complete!								774	7
base_xbar_11	synth_design Complete!								751	6
base_adcPassThrough_0_2	synth_design Complete!								612	20
base_spi_1	synth_design Complete!								439	6
base_iic_1	synth design Complete!								401	3

Base Overlay:

- 1. RF SoC PYNQ image has default Base overlay.
- 2. The base design allows generation of bitstream with IPs to use RF ADC's and DAC's.

VIVADO IP Integration:

- 1. Added our HW IPs to base overlay and rebuild the base overlay.
- 2. Used 'base.tcl' script to generate VIVADO project with IP Integrator for the base overlay

RF Data Converters:

PYNQ Base image has notebooks to interact with Radio IP subsystem in the base overlay which allowed us to control RF Data Converters.

O1_rf_dataconverter_intro.ipynb O2_rf_spectrum_analysic.ipynb

Choosing a reference overlay for RFSoC2x2 and application for implementing Cell Search

Challenges

UCSD WES Cohort 9, All Rights Reserved.

ADC Clock

- Fs of 3932.16MHz needed a reference clock of 491.52MHz.
- Register settings for this reference clock are not available
- Used TIC Pro TI software to generate the register settings for reference clock

IP Restart Algorithms

- In order scan over frequency, algorithms should have the ability to restart after tuning to a new frequency.
- Need to ensure the IP restart would not stall design

NCO Configurations

- Bug in PYNQ base overlay wrapper NCO settings.
- Found base reference host SW not supporting mixer in fine mode.

UCSD WES Cohort 9, All Rights Reserved.

UC San Diego

JACOBS SCHOOL OF ENGINEERING

Thanks!

Prof. Ryan Kastner Prof. Fred Harris Prof. John Eldon Patrick Ling

References

- [1] https://www.rfsoc-pynq.io/overlays.html
- [2] https://www.rfsoc-pynq.io/base_overlay.html
- [3] https://github.com/Xilinx/RFSoC2x2-PYNQ.git
- [4] https://github.com/strath-sdr/rfsoc_sam
- [5] https://github.com/strath-sdr/rfsoc_ofdm
- [6] https://www.mathworks.com/help/wireless-hdl/ug/lte-hdl-cell-search.html
- [7] https://www.mathworks.com/help/lte/ug/synchronization-signals-pss-and-sss.html
- [8] https://ieeexplore.ieee.org/document/599949
- [9] https://www.mathworks.com/help/lte/ug/cell-search-mib-and-sib1-recovery.html
- [10] https://www.sharetechnote.com/html/FrameStructure_DL.html#Overview