

Dr. N MEHALA

Department of Computer Science and Engineering

Module 4 [Unsupervised Learning]

Dr. N MEHALA

Department of Computer Science and Engineering

MACHINE INTELLIGENCE FP GROWTH ALGORITHM

FP Growth Algorithm

PES UNIVERSITY

- Use a compressed representation of the database using an FP-tree
- FP-Growth: allows frequent item set discovery without candidate item set generation

Two step approach:

- **Step 1:** Build a compact data structure called the FP-tree
 - Built using 2 passes over the data-set.
- **Step 2**: Extracts frequent item sets directly from the FP-tree
 - Traversal through FP-Tree
- Once an FP-tree has been constructed, it uses a recursive divide-and-conquer approach to mine the frequent item sets

STEP1: FP-Tree construction (Example)

Transaction Data Set

TID	Items
1	{a,b}
2	{b,c,d}
3	{a,c,d,e}
4	{a,d,e}
5	{a,b,c}
6	{a,b,c,d}
7	{a}
8	{a,b,c}
9	{a,b,d}
10	{b,c,e}

(i) After reading TID=1

(ii) After reading TID=2

- •Pointers are maintained between nodes containing the same item, creating singly linked lists (dotted lines)
- The more paths that overlap, the higher the compression. FP-tree may fit in memory.
- Frequent itemsets are extracted from the FP-Tree.

(iii) After reading TID=3

(iv) After reading TID=10

FP Tree Zize

- ► The FP-Tree usually has a smaller size than the uncompressed data – typically many transactions share items (and hence prefixes).
 - Best case scenario: all transactions contain the same set of items.
 - ▶ 1 path in the FP-tree
 - Worst case scenario: every transaction has a unique set of items (no items in common)
 - Size of the FP-tree is at least as large as the original data.
 - Storage requirements for the FP-tree are higher need to store the pointers between the nodes and the counters.
 - ► The size of the FP-tree depends on how the items are ordered
 - Ordering by decreasing support is typically used but it does not always lead to the smallest tree (it's a heuristic).

Dr. N MEHALA

Department of Computer Science and Engineering

Module 4 [Unsupervised Learning]

Dr. N MEHALA

Department of Computer Science and Engineering

MACHINE INTELLIGENCE FP GROWTH ALGORITHM

STEP2: Frequent Item Generation

STEP2: Frequent Item Generation

- ► FP-Growth extracts frequent itemsets from the FP-tree.
- Bottom-up algorithm from the leaves towards the root
 - Divide and conquer: first look for frequent itemsets ending in e, then de, etc... then d, then cd, etc...
- First, extract prefix path sub-trees ending in an item(set). (hint: use the linked lists)

- ↑ Complete FP-tree
- → **Example**: prefix path sub-trees

b:5 (

null

) null

(b) Paths containing node d

STEP2: Frequent Item Generation

- ► Each prefix path sub-tree is processed recursively to extract the frequent itemsets. Solutions are then merged.
 - ▶ **E.g.** the *prefix path sub-tree* for *e* will be used to extract frequent itemsets ending in *e*, then in *de*, *ce*, *be* and *ae*, then in *cde*, *bde*, *cde*, etc.
 - Divide and conquer approach

Prefix path sub-tree ending in e.

...

STEP2: Frequent Item Generation

Example

Let minSup = 2 and extract all frequent itemsets containing e.

▶ 1. Obtain the prefix path sub-tree for e:

- ▶ 2. Check if e is a frequent item by adding the counts along the linked list (dotted line). If so, extract it.
 - ▶ Yes, count =3 so $\{e\}$ is extracted as a frequent itemset.
- ➤ 3. As e is frequent, find frequent itemsets ending in e. i.e. de, ce, be and ae.
 - i.e. decompose the problem recursively.
 - To do this, we must first to obtain the conditional FP-tree for e.

STEP2: Frequent Item Generation

PES UNIVERSITY ONLINE

Conditional FP-Tree

- ► The FP-Tree that would be built if we only consider transactions containing a particular itemset (and then removing that itemset from all transactions).
- **Example**: FP-Tree conditional on *e*.

TID	Items
4	{a,b}
-2	{b,c,d}
3	{a,c,d,&}
4	{a,d, ∖ }
-5	{a,b,e}
-6-	{a,b,c,d}
7	[a]
-8	{a,b,c}
9	{a,b,d}
10	{b,c, \}

STEP2: Frequent Item Generation

To obtain the *conditional FP-tree* for *e* from the *prefix sub-tree* ending in *e*:

- ▶ Update the support counts along the prefix paths (from e) to reflect the number of transactions containing e.
 - b and c should be set to 1 and a to 2.

STEP2: Frequent Item Generation

PES UNIVERSITY ONLINE

To obtain the *conditional FP-tree* for *e* from the *prefix sub-tree* ending in *e*:

▶ Remove the nodes containing e − information about node e is no longer needed because of the previous step

STEP2: Frequent Item Generation

Conditional FP-Tree

To obtain the *conditional FP-tree* for *e* from the *prefix sub-tree* ending in *e*:

- ► Remove infrequent items (nodes) from the prefix paths
- ▶ E.g. b has a support of 1 (note this really means be has a support of 1). i.e. there is only 1 transaction containing b and e so be is infrequent can remove b.

STEP2: Frequent Item Generation

Example (continued)

- ▶ 4. Use the the conditional FP-tree for e to find frequent itemsets ending in de, ce and ae
 - Note that be is not considered as b is not in the conditional FP-tree for e.
 - ▶ For each of them (e.g. de), find the prefix paths from the conditional tree for e, extract frequent itemsets, generate conditional FP-tree, etc... (recursive)
 - Example: e → de → ade ({d,e},{a,d,e} are found to be frequent)

STEP2: Frequent Item Generation

PES UNIVERSITY ONLINE

Example (continued)

- ▶ 4. Use the the conditional FP-tree for e to find frequent itemsets ending in de, ce and ae
 - **Example:** $e \rightarrow ce$ ($\{c, e\}$ is found to be frequent)

ightharpoonup etc... (ae, then do the whole thing for b,... etc)

STEP2: Frequent Item Generation

► Frequent itemsets found (ordered by suffix and order in which they are found):

Suffix	Frequent Itemsets
е	$\{e\}, \{d,e\}, \{a,d,e\}, \{c,e\}, \{a,e\}$
d	$\{d\}, \{c,d\}, \{b,c,d\}, \{a,c,d\}, \{b,d\}, \{a,b,d\}, \{a,d\}$
С	$\{c\}, \{b,c\}, \{a,b,c\}, \{a,c\}$
b	$\{b\}, \{a,b\}$
a	$\{a\}$

Discussion

- Advantages of FP-Growth
 - only 2 passes over data-set
 - "compresses" data-set
 - no candidate generation
 - much faster than Apriori
- ► Disadvantages of FP-Growth
 - ► FP-Tree may not fit in memory!!
 - FP-Tree is expensive to build
 - ► Trade-off: takes time to build, but once it is built, frequent itemsets are read off easily.
 - Time is wasted (especially if support threshold is high), as the only pruning that can be done is on single items.
 - support can only be calculated once the entire data-set is added to the FP-Tree.

Summary

Resources

- http://www2.ift.ulaval.ca/~chaib/IFT-4102 7025/public html/Fichiers/Machine Learning in Action.pdf
- http://wwwusers.cs.umn.edu/~kumar/dmbook/.
- ftp://ftp.aw.com/cseng/authors/tan
- http://web.ccsu.edu/datamining/resources.html

THANK YOU

Dr. N MEHALA

Department of Computer Science and Engineering mehala@pes.edu