

## Cambridge International AS & A Level

| CHEMICTRY         |                     | 0704/20 |
|-------------------|---------------------|---------|
| CENTRE<br>NUMBER  | CANDIDATE<br>NUMBER |         |
| CANDIDATE<br>NAME |                     |         |

CHEMISTRY

9701/32

Paper 3 Advanced Practical Skills 2

May/June 2021

2 hours

You must answer on the question paper.

You will need: The materials and apparatus listed in the confidential instructions

#### **INSTRUCTIONS**

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use a calculator.
- You should show all your working, use appropriate units and use an appropriate number of significant figures.
- Give details of the practical session and laboratory, where appropriate, in the boxes provided.

# Laboratory

Session

#### **INFORMATION**

- The total mark for this paper is 40.
- The number of marks for each question or part question is shown in brackets [ ].
- The Periodic Table is printed in the question paper.
- Notes for use in qualitative analysis are provided in the question paper.

| For Examiner's Use |  |  |
|--------------------|--|--|
| 1                  |  |  |
| 2                  |  |  |
| 3                  |  |  |
| Total              |  |  |
|                    |  |  |

This document has **12** pages.

IB21 06\_9701\_32/4RP © UCLES 2021

[Turn over





#### Quantitative analysis

Read through the whole method before starting any practical work. Where appropriate, prepare a table for your results in the space provided.

Show your working and appropriate significant figures in the final answer to each step of your calculations.

1 Washing soda consists of hydrated sodium carbonate, Na<sub>2</sub>CO<sub>3</sub>•10H<sub>2</sub>O. When it is stored it loses some of its water of crystallisation to leave Na<sub>2</sub>CO<sub>3</sub>•xH<sub>2</sub>O. Since water has been lost x is no longer an integer.

You will carry out a titration to determine the value of x. You will titrate a solution of the sodium carbonate with hydrochloric acid.

The equation for the reaction is shown.

$$Na_2CO_3 \cdot xH_2O(aq) + 2HCl(aq) \rightarrow 2NaCl(aq) + CO_2(aq) + (x+1)H_2O(l)$$

**FB 1** is an aqueous solution containing 11.30 g dm<sup>-3</sup> of Na<sub>2</sub>CO<sub>3</sub>•xH<sub>2</sub>O. **FB 2** is 0.100 mol dm<sup>-3</sup> hydrochloric acid, HC*l.* bromophenol blue indicator

#### (a) Method

- Fill the burette with **FB 2**.
- Pipette 25.0 cm<sup>3</sup> of FB 1 into a conical flask.
- Add a few drops of bromophenol blue indicator.
- Carry out a rough titration and record your burette readings in the space below.

| The rough titre | is | <br>$cm^3$ |
|-----------------|----|------------|

- Carry out as many accurate titrations as you think necessary to obtain consistent results.
- Make sure your recorded results show the precision of your practical work.
- Record in a suitable form, in the space below, all of your burette readings and the volume of **FB 2** added in each accurate titration.

| I   |  |
|-----|--|
| II  |  |
| III |  |
| IV  |  |
| V   |  |
| VI  |  |
| VII |  |
|     |  |

[7]

© UCLES 2021 9701/32/M/J/21



| (b) |       | m your accurate titration results, obtain a value for the volume of <b>FB 2</b> to be used in your culations. Show clearly how you obtained this value.                                                  |
|-----|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | oan   | diations. Onow oleany now you obtained this value.                                                                                                                                                       |
|     |       |                                                                                                                                                                                                          |
|     |       |                                                                                                                                                                                                          |
|     |       | 25.0 cm <sup>3</sup> of <b>FB 1</b> required cm <sup>3</sup> of <b>FB 2</b> . [1]                                                                                                                        |
| (c) | Cal   | culations                                                                                                                                                                                                |
|     | (i)   | Give your answers to (c)(ii), (c)(iii) and (c)(iv) to an appropriate number of significant figures.                                                                                                      |
|     | (ii)  | Calculate the number of moles of hydrochloric acid present in the volume of <b>FB 2</b> you calculated in <b>(b)</b> .                                                                                   |
|     |       |                                                                                                                                                                                                          |
|     |       | moles of HC <i>l</i> = mol [1]                                                                                                                                                                           |
|     |       |                                                                                                                                                                                                          |
|     | (iii) | Use the equation on page 2, and your answer to <b>(c)(ii)</b> , to calculate the concentration, in mol dm <sup>-3</sup> , of Na <sub>2</sub> CO <sub>3</sub> •xH <sub>2</sub> O present in <b>FB 1</b> . |
|     |       |                                                                                                                                                                                                          |
|     |       |                                                                                                                                                                                                          |
|     |       | concentration of $Na_2CO_3 \cdot xH_2O = \dots \mod dm^{-3}$ [1]                                                                                                                                         |
|     | (iv)  | Calculate the value of $x$ in this sample of $Na_2CO_3 \cdot xH_2O$ .                                                                                                                                    |
|     |       | Show your working.                                                                                                                                                                                       |
|     |       |                                                                                                                                                                                                          |
|     |       |                                                                                                                                                                                                          |
|     |       |                                                                                                                                                                                                          |
|     |       |                                                                                                                                                                                                          |
|     |       |                                                                                                                                                                                                          |
|     |       |                                                                                                                                                                                                          |
|     |       | x =[3]                                                                                                                                                                                                   |
|     |       | [Total: 14]                                                                                                                                                                                              |
|     |       |                                                                                                                                                                                                          |

2 When anhydrous sodium carbonate dissolves in water the following reaction occurs.

$$Na_2CO_3(s) + aq \rightarrow 2Na^+(aq) + CO_3^{2-}(aq)$$

The enthalpy change for this reaction is the enthalpy change of solution of anhydrous sodium carbonate. Its value is –28.1 kJ mol<sup>-1</sup>.

You will use this information to find the percentage purity of an impure sample of anhydrous sodium carbonate.

**FB 3** is a sample of impure anhydrous sodium carbonate.

#### (a) Method

#### **Experiment 1**

- Weigh the cup and record the mass.
- Place between 1.9g and 2.1g of FB 3 in the cup. Record the mass of the cup + FB 3.
- Calculate and record the mass of FB 3 used.
- Support the cup in the beaker.
- Place 25.0 cm<sup>3</sup> of distilled water into the measuring cylinder. Measure and record the temperature of the water.
- Place the water in the cup and stir until all the solid dissolves.
- Place the thermometer in the solution and record the highest temperature reached. Tilt the cup if necessary so that the bulb of the thermometer is fully covered.
- Rinse the cup and shake dry ready to carry out **Experiment 2**.

#### **Experiment 2**

- Repeat the experiment using between 3.9 g and 4.1 g of **FB 3** and 25.0 cm<sup>3</sup> of water.
- Record your results in the same way as in **Experiment 1**.

#### **Results**



[5]

© UCLES 2021 9701/32/M/J/21



|   | (h) |   | C- | lcu | loti |     |    |
|---|-----|---|----|-----|------|-----|----|
| ۱ | D   | ) | Lа | ıcu | ıatı | ıor | าร |

|     | (i)         | Use your results from <b>Experiment 1</b> to calculate the heat energy, in J, released when the <b>FB 3</b> dissolves.                                                |
|-----|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |             | (Assume 4.2 J of heat energy changes the temperature of 1.0 cm <sup>3</sup> of solution by 1.0 °C.)                                                                   |
|     |             | heat energy = J [1]                                                                                                                                                   |
| (   | (ii)        | Use the information on page 4 to calculate the number of moles of anhydrous sodium carbonate needed to release the amount of energy in your answer to <b>(b)(i)</b> . |
|     |             |                                                                                                                                                                       |
|     |             | moles of $Na_2CO_3 = \dots mol$ [1]                                                                                                                                   |
| (   | iii)        | Calculate the mass of anhydrous sodium carbonate present in the number of moles in your answer to <b>(b)(ii)</b> .                                                    |
|     |             | mass of Na <sub>2</sub> CO <sub>3</sub> = g [1]                                                                                                                       |
| (   | iv)         | Use your answer to <b>(b)(iii)</b> to calculate the percentage purity of anhydrous sodium carbonate in <b>FB 3</b> .                                                  |
|     |             |                                                                                                                                                                       |
|     |             | percentage purity = [1]                                                                                                                                               |
| (c) | In <b>(</b> | b)(iv) you calculated the percentage purity of anhydrous sodium carbonate in FB 3.                                                                                    |
|     | Wh          | at did you assume about the impurity present?                                                                                                                         |
|     |             | [1]                                                                                                                                                                   |

| (d) | You carried out two experiments to measure the temperature change when anhydrous sodium carbonate was dissolved in water. |
|-----|---------------------------------------------------------------------------------------------------------------------------|
|     | Complete the sentence below to explain which of these experiments was more accurate.                                      |
|     | Your answer should not make reference to the fact that different masses of sodium carbonate were used.                    |
|     | Experiment was more accurate because                                                                                      |
|     |                                                                                                                           |
|     |                                                                                                                           |
|     | [Total: 11]                                                                                                               |

© UCLES 2021

#### Qualitative analysis

Where reagents are selected for use in a test, the **name** or **correct formula** of the element or compound must be given.

At each stage of any test you are to record details of the following:

- colour changes seen
- the formation of any precipitate and its solubility in an excess of the reagent added
- the formation of any gas and its identification by a suitable test.

You should indicate clearly at what stage in a test a change occurs.

If any solution is warmed, a **boiling tube** must be used.

Rinse and reuse test-tubes and boiling tubes where possible.

No additional tests for ions present should be attempted.

3 (a) FB 4 and FB 5 each contain one cation and one anion from those listed in the Qualitative Analysis Notes.

Carry out the following tests and record your observations.

| test                                                                                                          | observations |      |  |  |  |
|---------------------------------------------------------------------------------------------------------------|--------------|------|--|--|--|
| lest                                                                                                          | FB 4         | FB 5 |  |  |  |
| Test 1 Heat a spatula measure of solid in a hard-glass test-tube gently at first and then more strongly, then |              |      |  |  |  |
| leave the tube to cool.                                                                                       |              |      |  |  |  |
| Test 2 To a small spatula measure of solid in a boiling tube add a 2 cm depth of dilute sulfuric acid.        |              |      |  |  |  |

[5]



(b) FB 6 is a solution prepared by reacting FB 4 with dilute sulfuric acid.
FB 7 is a solution prepared by reacting FB 5 with dilute sulfuric acid.
In each test use a 1 cm depth of FB 6 or FB 7 in a test-tube. Carry out the tests and record your observations.

| 44                                                                                             | observ | vations . |
|------------------------------------------------------------------------------------------------|--------|-----------|
| test                                                                                           | FB 6   | FB 7      |
| Test 1 Add a 1 cm depth of aqueous edta.                                                       |        |           |
| Test 2 Add aqueous sodium hydroxide until no further reaction occurs.                          |        |           |
| Test 3 Add aqueous ammonia until no further reaction occurs.                                   |        |           |
| <b>Test 4</b> Add a 1 cm length of magnesium ribbon and leave to stand for a few minutes.      |        |           |
| <b>Test 5</b> Add a 2cm depth of aqueous potassium iodide, then                                |        |           |
| add a few drops of starch indicator.                                                           |        |           |
| Test 6 Add concentrated hydrochloric acid (CARE) drop by drop until no further change is seen. |        |           |
| Wash the test-tube thoroughly with plenty of water once your observations are complete.        |        |           |

[7]



(c) Complete the table with the formula of each cation and each anion in **FB 4** and **FB 5**. If you are unable to identify an ion write 'unknown'.

|        | FB 4 | FB 5 |
|--------|------|------|
| cation |      |      |
| anion  |      |      |

| (d) | Write the ionic equation for the reaction between FB 6 and magnesium. Include state symbol | S. |
|-----|--------------------------------------------------------------------------------------------|----|
|     | [                                                                                          | 1] |
|     | [Total: 1                                                                                  | 5  |

9701/32/M/J/21

## **Qualitative analysis notes**

## 1 Reactions of aqueous cations

| ion                                  | reaction with                                                                |                                                                              |  |  |  |  |  |  |  |  |
|--------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| ion                                  | NaOH(aq)                                                                     | NH <sub>3</sub> (aq)                                                         |  |  |  |  |  |  |  |  |
| aluminium,<br>A <i>l</i> ³+(aq)      | white ppt. soluble in excess                                                 | white ppt. insoluble in excess                                               |  |  |  |  |  |  |  |  |
| ammonium,<br>NH₄⁺(aq)                | no ppt. ammonia produced on heating                                          | _                                                                            |  |  |  |  |  |  |  |  |
| barium,<br>Ba²+(aq)                  | faint white ppt. is nearly always observed unless reagents are pure          | no ppt.                                                                      |  |  |  |  |  |  |  |  |
| calcium,<br>Ca²+(aq)                 | white ppt. with high [Ca²+(aq)]                                              | no ppt.                                                                      |  |  |  |  |  |  |  |  |
| chromium(III),<br>Cr³+(aq)           | grey-green ppt.<br>soluble in excess                                         | grey-green ppt. insoluble in excess                                          |  |  |  |  |  |  |  |  |
| copper(II),<br>Cu <sup>2+</sup> (aq) | pale blue ppt.<br>insoluble in excess                                        | pale blue ppt. soluble in excess giving dark blue solution                   |  |  |  |  |  |  |  |  |
| iron(II),<br>Fe <sup>2+</sup> (aq)   | green ppt. turning brown on contact with air insoluble in excess             | green ppt. turning brown on contact with air insoluble in excess             |  |  |  |  |  |  |  |  |
| iron(III),<br>Fe³+(aq)               | red-brown ppt. insoluble in excess                                           | red-brown ppt. insoluble in excess                                           |  |  |  |  |  |  |  |  |
| magnesium,<br>Mg²+(aq)               | white ppt. insoluble in excess                                               | white ppt. insoluble in excess                                               |  |  |  |  |  |  |  |  |
| manganese(II),<br>Mn²+(aq)           | off-white ppt. rapidly turning brown on contact with air insoluble in excess | off-white ppt. rapidly turning brown on contact with air insoluble in excess |  |  |  |  |  |  |  |  |
| zinc,<br>Zn²+(aq)                    | white ppt. soluble in excess                                                 | white ppt. soluble in excess                                                 |  |  |  |  |  |  |  |  |

© UCLES 2021 9701/32/M/J/21



#### 2 Reactions of anions

| ion                                            | reaction                                                                               |
|------------------------------------------------|----------------------------------------------------------------------------------------|
| carbonate,<br>CO <sub>3</sub> <sup>2-</sup>    | CO <sub>2</sub> liberated by dilute acids                                              |
| chloride,<br>C <i>l</i> <sup>-</sup> (aq)      | gives white ppt. with Ag⁺(aq) (soluble in NH₃(aq))                                     |
| bromide,<br>Br <sup>-</sup> (aq)               | gives cream ppt. with Ag <sup>+</sup> (aq) (partially soluble in NH <sub>3</sub> (aq)) |
| iodide,<br>I <sup>-</sup> (aq)                 | gives yellow ppt. with Ag <sup>+</sup> (aq) (insoluble in NH <sub>3</sub> (aq))        |
| nitrate,<br>NO <sub>3</sub> <sup>-</sup> (aq)  | NH <sub>3</sub> liberated on heating with OH <sup>-</sup> (aq) and A <i>l</i> foil     |
| nitrite,<br>NO <sub>2</sub> <sup>-</sup> (aq)  | NH <sub>3</sub> liberated on heating with OH <sup>-</sup> (aq) and A <i>l</i> foil     |
| sulfate,<br>SO <sub>4</sub> <sup>2-</sup> (aq) | gives white ppt. with Ba²⁺(aq) (insoluble in excess dilute strong acids)               |
| sulfite,<br>SO <sub>3</sub> ²-(aq)             | gives white ppt. with Ba²⁺(aq) (soluble in excess dilute strong acids)                 |

### 3 Tests for gases

© UCLES 2021

| gas                             | test and test result                                                            |
|---------------------------------|---------------------------------------------------------------------------------|
| ammonia, NH <sub>3</sub>        | turns damp red litmus paper blue                                                |
| carbon dioxide, CO <sub>2</sub> | gives a white ppt. with limewater (ppt. dissolves with excess CO <sub>2</sub> ) |
| chlorine, Cl <sub>2</sub>       | bleaches damp litmus paper                                                      |
| hydrogen, H <sub>2</sub>        | 'pops' with a lighted splint                                                    |
| oxygen, O <sub>2</sub>          | relights a glowing splint                                                       |

9701/32/M/J/21

PapaCambridge

The Periodic Table of Elements

|       | 18 | 2 | He | helium<br>4.0   | 10            | Ne            | neon<br>20.2                | 18 | Ā  | argon<br>39.9      | 36 | 궃  | krypton<br>83.8   | 54 | Xe       | xenon<br>131.3     | 98    | R           | radon             |        |           |                    |
|-------|----|---|----|-----------------|---------------|---------------|-----------------------------|----|----|--------------------|----|----|-------------------|----|----------|--------------------|-------|-------------|-------------------|--------|-----------|--------------------|
|       | 17 |   |    |                 | 6             | ш             | fluorine<br>19.0            | 17 | Cl | chlorine<br>35.5   | 35 | ğ  | bromine<br>79.9   | 53 | Н        | iodine<br>126.9    | 85    | Αţ          | astatine          |        |           |                    |
|       | 16 |   |    |                 | 8             | 0             | oxygen<br>16.0              | 16 | ഗ  | sulfur<br>32.1     | 34 | Se | selenium<br>79.0  | 52 | <u>e</u> | tellurium<br>127.6 | 84    | Ъ           | polonium          | 116    | _         | livermorium<br>-   |
|       | 15 |   |    |                 | 7             | z             | nitrogen<br>14.0            | 15 | ۵  | phosphorus<br>31.0 | 33 | As | arsenic<br>74.9   | 51 | Sp       | antimony<br>121.8  | 83    | Ξ           | bismuth<br>209.0  |        |           |                    |
|       | 14 |   |    |                 | 9             | ပ             | carbon<br>12.0              | 14 | Si | silicon<br>28.1    | 32 | Ge | germanium<br>72.6 | 20 | Sn       | tin<br>118.7       | 82    | Pb          | lead<br>207.2     | 114    | Fl        | flerovium<br>-     |
|       | 13 |   |    |                 | 2             | В             | boron<br>10.8               | 13 | Αl | aluminium<br>27.0  | 31 | Ga | gallium<br>69.7   | 49 | I        | indium<br>114.8    | 81    | <i>1</i> L  | thallium<br>204.4 |        |           |                    |
|       |    |   |    |                 |               |               |                             | •  |    | 12                 | 30 | Zu | zinc<br>65.4      | 48 | В        | cadmium<br>112.4   | 80    | Hg          | mercury<br>200.6  | 112    | S         | copernicium        |
|       |    |   |    |                 |               |               |                             |    |    | 1                  | 59 | C  | copper<br>63.5    | 47 | Ag       | silver<br>107.9    | 62    | Αn          | gold<br>197.0     | 111    | Rg        | roentgenium        |
| Group |    |   |    |                 |               |               |                             |    |    | 10                 | 28 | Z  | nickel<br>58.7    | 46 | Pd       | palladium<br>106.4 | 78    | 풉           | platinum<br>195.1 | 110    | Ds        | darmstadtium<br>-  |
| Gro   |    |   |    |                 |               |               |                             |    |    | 6                  | 27 | රි | cobalt<br>58.9    | 45 | 돈        | rhodium<br>102.9   | 77    | Г           | iridium<br>192.2  | 109    | ¥         | meitnerium<br>-    |
|       |    | - | I  | hydrogen<br>1.0 |               |               |                             |    |    | œ                  | 26 | Ьe | iron<br>55.8      | 44 | Ru       | ruthenium<br>101.1 | 9/    | SO          | osmium<br>190.2   | 108    | H         | hassium<br>-       |
|       |    |   |    |                 |               |               |                             |    |    | 7                  | 25 | M  | manganese<br>54.9 | 43 | ပ        | technetium<br>-    | 75    | Re          | rhenium<br>186.2  | 107    | В         | bohrium            |
|       |    |   |    |                 |               | pol           | ass                         |    |    | 9                  | 24 | ပ် | chromium<br>52.0  | 42 | Mo       | molybdenum<br>95.9 | 74    | ≯           | tungsten<br>183.8 | 106    | Sg        | seaborgium<br>-    |
|       |    |   |    | Key             | atomic number | atomic symbol | name<br>relative atomic mas |    |    | 2                  | 23 | >  | vanadium<br>50.9  | 41 | g        | niobium<br>92.9    | 73    | Та          | tantalum<br>180.9 | 105    | 9         | dubnium<br>-       |
|       |    |   |    |                 |               | atc           | rek                         |    |    | 4                  | 22 | i= | titanium<br>47.9  | 40 | Zr       | zirconium<br>91.2  | 72    | Ξ           | hafnium<br>178.5  | 104    | 꿆         | rutherfordium<br>- |
|       |    |   |    |                 |               |               |                             |    |    | က                  | 21 | Sc | scandium<br>45.0  | 39 | >        | yttrium<br>88.9    | 57–71 | lanthanoids |                   | 89–103 | actinoids |                    |
|       | 2  |   |    |                 | 4             | Be            | beryllium<br>9.0            | 12 | Mg | magnesium<br>24.3  | 20 | Ca | calcium<br>40.1   | 38 | Š        | strontium<br>87.6  | 56    | Ва          | barium<br>137.3   | 88     | Ra        | radium             |
|       | _  |   |    |                 | က             | :=            | lithium<br>6.9              | =  | Na | sodium<br>23.0     | 19 | ¥  | potassium<br>39.1 | 37 | &        | rubidium<br>85.5   | 55    | Cs          | caesium<br>132.9  | 87     | ᇁ         | francium<br>-      |

| Lu<br>Lu            | lutetium<br>175.0     | 103 | ۲         | lawrencium   | 1     |
|---------------------|-----------------------|-----|-----------|--------------|-------|
| <sup>5</sup> Y      | ^                     |     |           | _            |       |
| e9<br>Tm            | thulium<br>168.9      | 101 | Md        | mendelevium  | I     |
| 68<br>Fr            | erbium<br>167.3       | 100 | Fm        | fermium      | ı     |
| 67<br>H             | holmium<br>164.9      | 66  | Es        | einsteinium  | ı     |
| ® Q                 | dysprosium<br>162.5   | 98  | Ç         | californium  | ı     |
| 65<br>Tb            | terbium<br>158.9      | 26  | Ř         | berkelium    | ı     |
| <sup>29</sup><br>Gd | gadolinium<br>157.3   | 96  | Cm        | curium       | ı     |
| 63<br>Eu            | europium<br>152.0     | 92  | Am        | americium    | ı     |
| 62<br>Sm            | samarium<br>150.4     | 94  | Pu        | plutonium    | I     |
| e1<br>Pm            | promethium<br>-       | 93  | δ         | neptunium    | ı     |
| 9 PZ                | neodymium<br>144.4    | 92  | $\supset$ | uranium      | 238.0 |
| 59<br><b>Pr</b>     | praseodymium<br>140.9 | 91  | Ра        | protactinium | 231.0 |
| Se<br>Ce            | cerium<br>140.1       | 06  | 드         | thorium      | 232.0 |
| 57<br>La            | anthanum<br>138.9     | 89  | Ac        | actinium     | 1     |

lanthanoids

actinoids

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.