Math 449: Numerical Methods Lecture 03

Sep 6th, 2017

Today's topic: Fixed point iteration

$$g: [a,b] \rightarrow [a,b]$$

 $\xi \in [a,b]$ is a fixed pt if $g(\xi) = \xi$

Fixed pt iteration:

pick
$$x_0 \in [a,b]$$
 For $k = 0, 1, 2, ...$ $X_{k+1} = g(x_k)$

Def. g is a contraction if
$$|g(x)-g(y)| \le L|x-y|$$
 for all $x,y \in [a,b]$, where $0 < L < 1$

Contraction mapping theorem:

A contraction $g: [a,b] \rightarrow [a,b]$ has a unique fixed pt $g \in [a,b]$, and $z_{k+1} = g(z_k)$ converges to g for every $z_0 \in [a,b]$.

Lemma

If
$$|g'(x)| \le L \ \forall \ x \in (a,b)$$
, then $|g(x) - g(y)| \le L |x-y| \ \forall \ x, y \in [a,b]$
\(\xi\) is stable if $x_h \to \xi\) wherever x_h is sufficiently close to \(\xi\).$

Theorem Fixed Pt Stability Test

Suppose g has a fixed pt 3 and is continuously differentiable in some internal around 3.

(a) If
$$|9'(3)| < 1$$
, then 3 is stable

(b) If
$$|g'(\xi)| > 1$$
, then ξ is unstable.

(c) If
$$|g'(\xi)| = 1$$
, insufficient info to determine stability.

Proof (a)

: 3' is continuous, we can take a small interval
$$l_6=[\S-8,\S+8]$$
, $S>0$ S.t. $|g'(x)| \le L < |$ on l_6

Therefore, g is a contraction on 1_8 , so \forall $z_0 \in I_8$, $z_k \to \xi$ Proof (b)

Similarly, if
$$|g'(\xi)| > 1$$
, then $\exists \ \exists \xi \text{ where } |g'(z)| \geqslant L > 1$

By mean value theorem MVT,
$$|x_{k+1} - \xi| = |g(x_k) - g(\xi)| = |g'(y_k)| |x_k - \xi| \ge L|x_k - \xi|$$

so x_0, x_1, x_2, \dots gets "pushed away" from ξ

$$g(x) = \frac{1}{2}(x - \frac{4}{x}) \qquad x \neq 0$$

$$g'(x) = \frac{1}{2} \left(1 - \frac{4}{2^2} \right)$$

If
$$\xi = \pm \sqrt{3}$$
, then $\xi^2 = \frac{3}{3}$, $\therefore g'(\xi) = \frac{1}{2}(1 - \frac{\xi^2}{\xi^2}) = 0 < 1$ $\therefore \xi$ is stable.

Example Heron's method (y=0)

$$g(x) = \frac{1}{2}x$$
 \Rightarrow $g'(x) = \frac{1}{2}$ \Rightarrow $g'(\xi) = \frac{1}{2}$

Convergence faster

Example
$$g(x) = x - f(x) = x - x^2 + y$$

$$\xi = \pm \sqrt{g}$$
 are fixed pts

- Jy is always unstable for y>0

 $+\sqrt{y}$ is stable when 0< y<1 and unstable when y>1 e.g. y=2

not enough info when y=0.1.

Relaxation of fixed pt iteration methods

Want to slow down iteration to stabilize fixed pt (avoid overshooting)

$$\frac{}{\chi_k} \frac{}{\chi_{k+1}} \frac{}{g(\chi_k)}$$

Given "relaxation parameter λ , $x_{k+1} = (1-\lambda) x_k + \lambda g(x_k)$

Ex.
$$\lambda = 1$$
 $x_{k+1} = g(x_k)$

$$\lambda = \frac{1}{2}$$
 $x_{k+1} = \frac{x_k + g(x_k)}{2}$ go halfway

$$\lambda = 0$$
 $x_{k+1} = x_k$

Usually $0<\lambda<1$ to slow down the fixed pt iteration Can speed up by taking $\lambda>1$ called "overYelaxation"

$$\int_{\mathbb{R}^{2}} \int_{\mathbb{R}^{2}} g_{\lambda}(x) = (1-\lambda)x + \lambda g(x)$$

prop Suppose $\lambda \neq 0$, then ξ is a fixed pt of g iff it's a fixed pt of g_{λ}

Proof
$$(\Rightarrow)$$
 If $g(\xi) = \xi$, then $g_{\lambda}(\xi) = (1-\lambda)\xi + \lambda g(\xi) = (1-\lambda)\xi + \lambda \xi = \xi$

$$(\Leftarrow)$$
 If $g_{\lambda}(\xi) = \xi$, then $\xi = (1-\lambda)\xi + \lambda g(\xi)$

Stability of relaxed fixed pt iteration

$$g_{\lambda}'(x) = (1-\lambda) + \lambda g'(x)$$

If
$$\xi$$
 is a fixed pt, $g'_{\lambda}(\xi) = (1-\lambda) + \lambda g'(\xi)$

Idea: Stabalize $\frac{1}{2}$ by taking λ approximately optimal. $g_{\lambda}'(\xi) = 0$.

$$0 = (/-\lambda) + \lambda g'(\xi)$$

$$\lambda(1-g'(\xi))=1$$

$$\lambda = \frac{1}{1 - g'(\xi)}$$

So assuming $g'(\xi) \neq 1$, we can always find λ so that ξ is a stable, fixed pt of g_{λ} .