DDR 使用说明书

版本号 DDR_v1.1

2015 级袁亚鹏

一、DDR_v1.1¹概述

DDR 接口簇按照一定的寻址规律对 DDR 进行读写访问,主要用于按照配置信息指定的方式从 DDR 中读取数据或向 DDR 写入数据。相比于 DDR_v1.0,DDR_v1.1 不控制任务切换²!

DDR 中的数据包括以下三类:

1) 配置信息类3

对各个簇进行配置所需的信息(只读),它其实是 MC 指令信息的一部分!

2) 指令信息类

系统中有两种独特的数据(对于 DDR 只读):

- A) MC 指令信息
- B) COP 运算类指令信息

3) 运算类数据

在任务中参与运算的数据,按照因果关系分为三种:

- A) 源数据
- B) 中间数据
- C) 结果数据

这三种数据对 DDR 来说是没有区别的,但仍有必要清晰地建立这种概念!

表 1 DDR_v1.1 功能模式

力能構式		三方	节点	目的节点		三方节点和目的	备注	
切肥	功能模式 		数量 使用 数量		节点是否成对	金社		
三	方	√	1	√	1	√	一个地址通道只	
广	播	×		~	全部		能选择一种模式	
普	通	×		√	1	——	1 化处纬 作误入	
功模式组合	支持	 二二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二	· —— 支 · —— 支 <u>·</u> —— 不 ············· ·············· ·······	持广播功 支持三方 	能、不支	持广播功能 持三方功能 支持广播功能 	当三方开启时, 循环功能、行列 优先功能无效。	
	不支持	三方广播	采					

注: V表示使用 ×表示不使用

¹ 与 DDR_V1.0 相比, DDR_V1.1 的配置信息发生了很大变化!

² 在 DDR_v1.1 版本中,任务切换是由主控制器控制的,而非 DDR 簇。

³ 这里的配置信息包括系统中所有需要配置的簇的配置信息,而非单指 DDR 簇的配置信息!

二、DDR 结构

图 1 DDR 簇内部结构示意图

注: 附录 1 是图 1 的扩展,它指明了 DDR 在整个系统中所处的位置!

表 2 给出了 DDR 结构中各功能模块的简要功能。

图 2 展示了控制通路的局部结构。

表 2 DDR 模块功能说明

Module	Function	Attention
	【功能 1】接收并解析来自配置网的配置信息(CFG info),	内 含 子 模 块
<cfg port=""></cfg>	对 DDR 通用地址通道(general address channel, ach);	<cfg_pos_ok_v2>,该子</cfg_pos_ok_v2>
Cig_port>	【功能 2】接收并解析来自配置网的数据请求信息(REQ	模块仅在 <cfg_port>实</cfg_port>
	info),产生请求信息送往 ach;	现【功能1】时起作用。
<mc cmd=""></mc>	系 <u>地址通道</u> ,专为主控制器(Main controller, MC)取指令	
<nic_civid></nic_civid>	设定,不接受配置信息的配置。	
<cop cmd=""></cop>	系 <u>地址通道</u> ,专为 COP 取指令设定,不接受配置信息的	
COP_CIVID>	配置。	
<general data=""></general>	系 <u>地址通道</u> ,内含 32 个 general ach,专为取数据设定,	
Coelleral_DATA2	必须接受配置信息的配置。	
<task_arbiter></task_arbiter>	接收来自地址通道的数据请求,为其请求分配数据通道	
 	后将请求的详细信息送至数据通道。	
	系 <u>数据通道</u> ,共六个 dch,是设计中处理请求的真正场	
	所,也是数据层网络、状态层网络与 DDR Wrapper 发生	
	信息交互的起点!	
	【功能 1】在读请求起始产生写应答请求至状态模块,	
	后经状态网至 MC,MC 将写应答请求经配置网广播给写	
通道 1~6	请求簇	
<ddr_ch_fsm></ddr_ch_fsm>	【功能 2】产生地址通道释放请求至状态模块,后经状	
	态网发送至 MC	
	【功能 3】产生读写请求地址送至后续模块	
	<rd_ddr_arbiter>和<wr_ddr_arbiter></wr_ddr_arbiter></rd_ddr_arbiter>	
	【功能 4】读请求下将数据打包成 PCC 格式或者广播网	
	格式	

	【功能 5】写请求下解析 PCC 包中数据,送至内部数据	
	FIFO	
actatus north	接收 dch 发出的状态请求,包括写应答请求和通道释放	
<status_port></status_port>	请求,打包成状态网格式并上传!	
	控制 6 个 dch 与广播层网络的数据交互,实现 6 路转 1	同一时刻只能连接至
<pre><brookst_crossbar></brookst_crossbar></pre>	路!	多1路 dch,且只会在读
		请求时发生!
	控制 6 个 dch 与 PCC 网络的 8 个端口的数据交互!	实际上就是一个大的
<pcc_crossbar></pcc_crossbar>	【功能 1】读请求下在空闲 op 通道中查询并分配最优通	crossbar
<pcc_ciossdai></pcc_ciossdai>	道,实现 6 路 dch 转 8 路 op	
	【功能 2】写请求下实现 8 路 ip 转 6 路 dch	
	以时间轮片的方式轮流接收 6 路 dch 的读请求地址,将	两个 FIFO
<rd_ddr_arbiter></rd_ddr_arbiter>	地址送至读地址 FIFO,并将抽取到的读数据正确送至对	跨时钟域
	应的 dch	
cur ddr arbitar	以时间轮片的方式轮流抽取 6 路 dch 的写请求地址和写	两个 FIFO
<wr_ddr_arbiter></wr_ddr_arbiter>	数据,同步送至写地址 FIFO 和写数据 FIFO	跨时钟域
	操作 DDR-ip controller 用户接口,以时间轮片的方式在读	
<ddr_ui_ctrl></ddr_ui_ctrl>	写 DDR 操作之间切换,既是写请求下写数据的终点,又	
	是读请求下读数据的起点	

图 2 控制通路局部结构示意图

三、DDR 配置信息

一段 DDR 配置信息流(config_stream)包括 16 条配置字,每条配置字 32-bits。DDR 中包含 32 个通用地址通道(为方便起见,表示成 ach),每一段 config_stream 只对一个 ach 配置,若想在某次任务(task)中使用多个 ach,则必须多次下发 config_stream。

表 3 给出了 DDR 配置字的组织格式。表 4 给出了 DDR 配置字的具体含义。

表 3 DDR 配置字组织格式

				CFG_0					
31	3	0	29	28		27		26	
third_req	stre	am	Broadcast	Row/Col	umn	Read/W	rite	D2D_FLAG	
25:23	22:	20	19:17	16:8		7:5		4:0	
reserved	ch_clust	er_num	reserved	Vr_ic	d	VR_FI	R	ddr_channel_id	
				CFG_1					
31:2	24		23:16		15:8			7:0	
ch_data_p	os3_1st	ch_da	ata_pos2_1st	ch_c	lata_pos	1_1st	ch	_data_pos0_1st	
				CFG_2					
31:2	24		23:16		15:8			7:0	
ch_data_p	os7_1st	ch_da	ata_pos6_1st	ch_c	lata_pos	5_1st	ch	_data_pos4_1st	
				CFG_3					
31:2	24		23:16		15:8		7:0		
ch_addr_pos3_1st ch_		ch_ac	nddr_pos2_1st ch_		addr_pos1_1st c		ch	h_addr_pos0_1st	
				CFG_4					
31:24			23:16 15:8		15:8			7:0	
ch_addr_p	os7_1st	ch_ac	ddr_pos6_1st ch_addr_pos5_1st ch_addr_pos4			_addr_pos4_1st			
				CFG_5					
	31:30		29:0						
	Reserved		ch_start_addr						
				CFG_6					
31:30			29:16			15:0			
Reserve	ed	ch_c	column_num_1			ch_r	row_nu	ım_1st	
				CFG_7					
31:30			29:16		15:0				
Reserved ch_co				olumn_num_2nd		ch_row_num_2nd			
				CFG_8					
	31:24		23:21			20:18			
F	Reserved		ch_ data_pos7_2nd ch_data_pos6_2n			a_pos6_2nd			

17:15	14:12	11:9			
ch_data_pos5_2nd	ch_data_pos4_2nd	ch_data_pos3_2nd			
8:6	5:3	2:0			
ch_data_pos2_2nd	ch_data_pos1_2nd	ch_data_pos0_2nd			
	CFG_9				
31:24	23:21	20:18			
Reserved	ch_addr_pos7_2nd	ch_addr_pos6_2nd			
17:15	14:12	11:9			
ch_addr_pos5_2nd	ch_addr_pos4_2nd	ch_addr_pos3_2nd			
8:6	5:3	2:0			
ch_addr_pos2_2nd	ch_addr_pos1_2nd	ch_addr_pos0_2nd			
	CFG_10				
31:30		29:0			
Reserved	ch_	ch_circu_times			
	CFG_11	CFG_11			
31:30		29:0			
Reserved	ch_cı	ch_col_addr_burst			
	CFG_12				
31:30		29:0			
Reserved		ch_row_addr_burst			
	CFG_13				
31:30		29:0			
Reserved		ch_2nd_addr_burst			
	CFG_14				
31:30		29:0			
Reserved	_	access_length			
	CFG_15				
	31: 0				
	Reserved				

表 4 DDR 配置字含义说明

配置项	位宽	含义	值
third_req	1	是否三方。 0-否 1-是	
stream	1	是否流请求。 0-否 1-是	
Broadcast	1	是否广播。 0-否 1-是	
Row/Column	1	行/列优先。 0-列 1-行	
Read/Write	1	读/写模式。 0-读 1-写	
D2D_FLAG	1	数据从 DDR 到 DDR 使能信号	

ch_cluster_num	3	通道簇数目 (0~7)	真实值 减一
Vr_id	9	主控制器虚拟寄存器编号	
ddr_channel_id	5	地址通道编号 (0~31)	
ch_data_posx_1st	8	目标节点的一级坐标	
ch_data_posx_2nd	3	目标节点的二级坐标	
ch_addr_posx_1st	8	三方节点的一级坐标	
ch_addr_posx_2nd	3	三方节点的二级坐标	
ch_start_addr	30	起始地址(DDR 的绝对地址)	真实值
ch_column_num_1st	14	一级矩阵列数	真实值 减一
ch_row_num_1st	16	一级矩阵行数	真实值 减一
ch_column_num_2nd	14	 二级矩阵列数	真实值/burst_length -1
cn_column_mam_zma		—	现有系统中 burst_length 为8
ch_row_num_2nd	16	二级矩阵行数	真实值 减一
ch_circu_times	30	矩阵循环次数(0表示无循环)	真实值 减一
	T		
ch_col_addr_burst	30	 一级矩阵列加一地址跳变数目	真实值
	00	70.72.17740R 73.12.75.75.75	二级矩阵列数(真实值)
			真实值
			下面三个参数的乘积:
ch_row_addr_burst	30	一级矩阵行加一地址跳变数目	参数 1: 二级矩阵列数(真实值)
			参数 2: 一级矩阵列数(真实值)
			参数 2: 一级矩阵列数(真实值) 参数 3: 二级矩阵行数(真实值)
			参数 2: 一级矩阵列数(真实值) 参数 3: 二级矩阵行数(真实值) 真实值
ch 2nd addr burst			参数 2: 一级矩阵列数(真实值) 参数 3: 二级矩阵行数(真实值) 真实值 下面两个参数的乘积:
ch_2nd_addr_burst	30	二级矩阵行加一地址跳变数目	参数 2: 一级矩阵列数(真实值) 参数 3: 二级矩阵行数(真实值) 真实值 下面两个参数的乘积: 参数 1: 二级矩阵列数(真实值)
ch_2nd_addr_burst			参数 2: 一级矩阵列数(真实值) 参数 3: 二级矩阵行数(真实值) 真实值 下面两个参数的乘积:
ch_2nd_addr_burst			参数 2: 一级矩阵列数(真实值) 参数 3: 二级矩阵行数(真实值) 真实值 下面两个参数的乘积: 参数 1: 二级矩阵列数(真实值) 参数 2: 一级矩阵列数(真实值)
	30	二级矩阵行加一地址跳变数目	参数 2: 一级矩阵列数(真实值) 参数 3: 二级矩阵行数(真实值) 真实值 下面两个参数的乘积: 参数 1: 二级矩阵列数(真实值) 参数 2: 一级矩阵列数(真实值)
ch_2nd_addr_burst ch_access_length			参数 2: 一级矩阵列数(真实值) 参数 3: 二级矩阵行数(真实值) 真实值 下面两个参数的乘积: 参数 1: 二级矩阵列数(真实值) 参数 2: 一级矩阵列数(真实值)

一级矩阵和二级矩阵的访存模式:

自问自答

问:数据为什么组织成二维矩阵形式呢?

答:在现有系统中,数据最大的特点是粗粒度,即运算簇的对象是"大批量的数据集合"。为了"迎合"粗粒度的需求,"将数据组织成二维矩阵形式"这种概念应运而生,因为它非常有利于数据的管理!

放弃二级矩阵列向存取的原因:

列向存取只会在 DDR_SDRAM 配置为 BURST_LENGTH=1 时(即 DDR_SDRAM 不使用突发模式)起作用。但很不幸的是,这要付出巨大代价:

一方面不使用突发模式时,要想访问 8 个数据,则必须送出 8 次地址,发出 8 次读 DDR_SDRAM 指令(突发模式下访问一个连续的 8 个地址空间数据,只需发布一次读指令,附带首地址),会使得 DDR 的访存带宽大为降低(理论上,突发: 不突发 = 4:1 [4:1 [4:1] 4:1

另一方面,列向存取会使得 DDR_SDRAM 频繁地"关闭当前行—激活新行",大部分时间都花费在"不必要的动作"上,性能大打折扣!

虽然二级矩阵列向存取对矩阵转置类型任务有莫大的吸引力,但显而易见的是,以如此大的代价换取在整个任务中明不明显的好处,得不偿失,实不可取!现有系统中为了挖掘 DDR_SDRAM 带宽,已经默认的将 DDR 中的突发长度设定为 8,并且将来的系统即使更新换代,也不会脱离这一点!

DDR 配置信息中部分参数的定义:

⁴ 该数据有待验证!

- 一级矩阵: M行N列
- 二级矩阵: T行S列
- 二级矩阵块个数: TS
- 一级矩阵块Yi-1Xj-1: 一级矩阵表格的第i行j列, 其入口地址为:
- (<u>一级矩阵入口地址</u>) + (<u>i-1</u>)*(<u>一级矩阵行加一地址跳变距离</u>) + (<u>j-1</u>)*(<u>一级矩阵列加一地址跳变距离</u>)

注意图中的三个橙色小块,为了说明的方便,三个小块一次命名为P1/P2/P3,相对于一级矩阵入口地址的偏移量依次为0、S、NS*T,那么有如下定义:

- 一级矩阵入口地址: P1块在内存空间中的真实地址,图中红色箭头指向的真实地址!
- 一级矩阵列加一地址跳变距离: P1到P2的距离,即: S-0 = S
- 一级矩阵行加一地址跳变距离: P1到P3的距离,即: NS*T-0 = NS*T
- 二级矩阵行加一地址跳变距离:__P1到P1块下面的那个小块的距离,即NS-0 = NS

注: "二维矩阵"和"二级矩阵"不是一个概念,"二维矩阵"是"一级矩阵"和"二级矩阵"的嵌套组合,每一个"一级矩阵元素"(一级矩阵块)都对应一个"二级矩阵"。

四、请求信息(REQ)

在现有系统中,一段请求信息流由 3 条请求信息(REQ_0/REQ_1/REQ_2)组成,其中 REQ_0 通用,REQ_1 复用(三种封装格式,其解析方式由 REQ_1[MSB]及 REQ_0 共同决定),REQ_2 通用(Reserved)。

REQ_0 通用							
31		30:22					
End_flag		reserved					
21:20	19	19 18:16 15:8					
Src_type	reserved	Src_pos_2nd	Src_pos_1st				
7:0							
	Dst_pos_1st						
	REQ_1(1)用	于 COP 三方取数据					
31	30	29:16 15:0					
1'b0	Last_trans	ddr_1st_col_pos	ddr_1st_row_pos				
	<mark>REQ_1(2)</mark> 月	月于 MC/COP 取指令					
31	30:20	19	9:0				
1'b1	reserved	MC_addr,	/COP_addr				
	REQ_1 (3)	用于普通数据请求					
31		30:0					
1'b0		reserved					
		REQ_2					
	31:0						
	r	eserved					

表 5 配置网络请求信息格式

注1: REQ_1 的最高位(MSB)用于区分当前请求是指令类请求还是数据类请求。

注2: 对于Reserved 信号,一般都默认为低电平(default: GND)。

表 6 REQ_INFO 中的某些关键信号说明

信号	说明				
	对于 DDR 来说暂时没什么用!				
End_flag	1'b0 not end				
	1'b1 end				
	A) 对于主控制器来说是区分顶层/底层指令的唯一标识				
	2'b01 src_A //top 256				
Src_type	2'b10 src_B //btm 512				
	B) 对于目的节点来说是区分源数据类型的唯一标识				
	c) 三方请求中,源类型标识由目的节点请求决定,三方节点仅提供访存块坐标				
Src_pos_2nd	请求节点在网络中的二级坐标				
Src_pos_1st	请求节点在网络中的一级坐标				
Dst_pos_1st	请求包的"目的地"在网络中的一级坐标				
Last_trans	三方请求是否是最后一次请求,高有效!				
ddr_1st_col_pos	又使用在三方请求中 一文法式的注意也在,你不愿意,我也的从后				
ddr_1st_row_pos	三方请求的访存块在一级矩阵表格中的坐标 (暂且只有 COP 充当三方节点)				

五、DDR 与四层网络接口

DDR 簇与四层网络(配置层网络、状态层网络、PCC 层网络、广播层网络)相连的示意图(参见附录 1)

5.1 配置网络接口

配置网络用于下发配置信息和访存 DDR 请求,配置网络上的信息由主控制器发出。DDR 簇中cfg decoder 模块负责接收来自配置网的信息,并按照对应方式进行解析。

- 1) 判断当前信息是配置信息还是请求信息?
- 2) 如果是请求信息,则继续判断是数据请求信息还是指令请求信息?

配置信息和请求信息已经叙述过,这里不再阐述,只附上链接!

链接 1: 配置信息说明 链接 2: 请求信息说明

附录 1: DDR 簇结构及其在系统中的位置

5.2 状态网络接口

状态网络接口是 DDR 向外界传递自身状态信息的唯一途径!

附录 1: DDR 簇结构及其在系统中的位置

在两种情况下, DDR 会上传状态信息:

1) 写反馈

DDR 在响应运算簇 A 发起的写请求时,会返回给簇 A 一个写反馈,然后簇 A 接收到该写反馈信息时,开始通过 PCC 向 DDR 发送数据!

表7给出写反馈信息格式

表8给出写反馈信息中的某些关键信号的说明

- 2) 地址通道释放
 - 一旦某个通用地址通道(general address channel, ach)关闭,在该通道对应的最后一次访存操作完成后,DDR 会上传地址通道释放信息,并被主控制器接收!

表 9 给出地址通道释放信息格式

表 10 给出地址通道释放信息中的某些关键信号的说明

注: STATUS_0 最高位[31]是区分写反馈/地址通道释放的唯一标志(1'b0:写反馈/1'b1:地址通道释放)

STATUS_0									
31	30:22	21:20	19	18:16	15:8	7:0			
1'b0	reserved	Src_type	1'b0	offset_pos	ddrport_pos	Status_dst_pos			
	STATUS_1								
	31:8 7:0								
	reser	ved			ddr_pcc_port_p	os			
	STATUS_2								
	31:0								

reserved

表 7 DDR 返回给写请求簇的状态信息格式(写反馈)

表 8 写反馈信息中的某些关键信号说明

信号 说明

Src_type写请求簇附带的源类型标志offset_pos写请求簇附带的二级坐标Status_dst_pos写请求簇附带的一级坐标ddrport_posDDR 在配置网中的一级坐标ddr_pcc_port_posDDR 为写请求簇分配的 PCC 端口

表 9 返回给主控制器的状态信息格式(地址通道释放)

status_0								
31 30:17 16:8 7:5 4:0								
<mark>1'b1</mark>	reserved	VR_ID	VR_FR	ddr_channel_ID				
		STATU	JS_1					
		31	:0					
		resei	rved					
	STATUS_2							
31:0								
		resei	rved					

表 10 地址通道释放信息中的某些关键信号说明

信号 说明

VR_ID 虚拟寄存器编号(由主控制器决定,DDR 只负责转发)

Cluster_type 功能单元类型(现有 6 种)

编号	000	001	010	011	100	101	110	111
类型	VR	RCU	FFT	СОР	FR	ETH	Reserved	

注:功能单元类型不由 DDR 决定, DDR 只负责转发!

ddr_channel_ID DDR 地址通道编号(0~31)

问:为什么需要写反馈?

答:回答这个问题,需要先弄清楚写操作过程中发生了什么!

典型写操作流程

step1:簇 A 发起写请求

作 用:告诉 DDR 簇"簇 A 已经准备好,随时可以向 DDR 簇发送数据"。

目的地: DDR 簇

路 径: 簇 A→状态层网络→主控制器→配制层网络→DDR 簇

step2:DDR 响应上述写请求,发送写反馈

作用:告诉簇 A"DDR 簇已经准备好,随时可以接收来自簇 A的数据"; 另外,为簇 A分配一个 PCC 接口(8×8 尺寸 PCC 有 8 个 port)比如 PA,簇 A 后续发送数据时会将数据通过 PA 口转给 DDR 簇!

目的地:簇A

路 径: DDR 簇→状态层网络→主控制器→配制层网络→簇 A

step3:簇 A 检测到写反馈,开始打通一条 PCC 链路

路 径: 簇 A→ (相关 PCC NODE..→) (PA→)DDR 簇

####注: 至此, 进入 PCC 协议, 此处不再赘述! ####

从典型写操作流程示意图中可以明确看出,写反馈的存在有两方面的意义!

意义一: 告诉写请求簇一个信息 "DDR 已经准备好,随时可以接收写请求簇的数据"。

意义二: 告诉写请求簇一个信息"发送数据时要从哪一个 PCC 口进入 DDR"。

问:为什么需要**地址通道释放**?

答:用来告诉主控制器一个信息"DDR 簇中哪些 ach 处于关闭状态",主控制器得知 DDR 中的资源哪些被释放,然后会释放对应的寄存器资源、任务资源!

5.3 PCC 网络接口

表 11 PCC 网络协议

起始包	65:64	63:18	17:16	15:8	7:0	
	2'b10	46'b0	Src_type	Local_pos	Status_dst_pos	
配置包	65:64	63	62:0			
	2'b01	1'b0	reserved			
数据包	65:64	63:0				
	2'b00	DATA				
结束包	65:64	63	62:0			
	2'b01	1'b1	reserved			

5.4 广播网络接口

表 12 广播网协议

起始包1	٠٠					
2'b01 dest_7 dest_6 dest_5 dest_4 dest_3 dest_2 dest_1 de	ι_υ					
起始包 2	:0					
2'b10 type_7 type_6 type_5 type_4 type_3 type_2 type_1 type	e_0					
数据包 65:64 63:0	63:0					
文治 也 2'b00 data						
65:54 63:0 结束包						
9年已 2'b11 64'b0						

注1: dest 表示在一次广播任务中目的节点坐标,type 表示对应坐标的数据类型为源A/源B。

注2: 起始包2中为了保持与起始包1对应,[63:16]位没有显示,这48位保留不使用,默认为零。

附录

附录 1

图 DDR簇结构图及其在系统中的位置