$11a_{204} (K11a_{204})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^{50} - u^{49} + \dots + u - 1 \rangle$$

* 1 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 50 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^{50} - u^{49} + \dots + u - 1 \rangle$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{3} + u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{3} \\ -u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{6} - u^{4} + 1 \\ -u^{6} + 2u^{4} - u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{14} + 3u^{12} - 4u^{10} + u^{8} + 2u^{6} - 2u^{4} + 1 \\ u^{16} - 4u^{14} + 8u^{12} - 8u^{10} + 4u^{8} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u^{14} + 3u^{12} - 4u^{10} + u^{8} + 2u^{6} - 2u^{4} + 1 \\ u^{14} - 4u^{12} + 7u^{10} - 6u^{8} + 2u^{6} - u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{44} + 11u^{42} + \cdots - u^{2} + 1 \\ u^{46} - 12u^{44} + \cdots + 2u^{6} - u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{25} + 6u^{23} + \cdots - 3u^{5} + u \\ u^{25} - 7u^{23} + \cdots - 2u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{25} + 6u^{23} + \cdots - 3u^{5} + u \\ u^{25} - 7u^{23} + \cdots - 2u^{3} + u \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-4u^{48} + 52u^{46} + \cdots + 8u 6$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_6	$u^{50} - u^{49} + \dots + u - 1$
c_2	$u^{50} + 27u^{49} + \dots + 3u + 1$
c_3, c_4, c_9	$u^{50} + u^{49} + \dots - 3u - 1$
<i>C</i> ₅	$u^{50} - 7u^{49} + \dots - 111u + 37$
c_7,c_{11}	$u^{50} - 3u^{49} + \dots + u + 1$
c_8, c_{10}	$u^{50} - u^{49} + \dots - 45u - 17$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_6	$y^{50} - 27y^{49} + \dots - 3y + 1$
c_2	$y^{50} - 7y^{49} + \dots - 7y + 1$
c_3, c_4, c_9	$y^{50} + 41y^{49} + \dots - 3y + 1$
c_5	$y^{50} - 11y^{49} + \dots - 28823y + 1369$
c_7,c_{11}	$y^{50} + 41y^{49} + \dots - 111y + 1$
c_{8}, c_{10}	$y^{50} - 35y^{49} + \dots + 457y + 289$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.898377 + 0.505512I	-2.14014 + 4.60582I	-9.82761 - 7.01636I
u = -0.898377 - 0.505512I	-2.14014 - 4.60582I	-9.82761 + 7.01636I
u = 0.886274 + 0.537129I	2.36766 - 8.44259I	-4.56565 + 8.69974I
u = 0.886274 - 0.537129I	2.36766 + 8.44259I	-4.56565 - 8.69974I
u = 0.940835 + 0.435517I	1.03261 - 1.03580I	-6.91855 + 2.91618I
u = 0.940835 - 0.435517I	1.03261 + 1.03580I	-6.91855 - 2.91618I
u = 1.04249	-5.57110	-16.4420
u = -1.048370 + 0.049358I	-1.64759 + 4.00369I	-11.91063 - 3.67666I
u = -1.048370 - 0.049358I	-1.64759 - 4.00369I	-11.91063 + 3.67666I
u = -0.764066 + 0.531630I	6.63211 + 2.15686I	0.57370 - 3.89945I
u = -0.764066 - 0.531630I	6.63211 - 2.15686I	0.57370 + 3.89945I
u = 0.774496 + 0.423862I	0.95587 - 1.83688I	-2.97268 + 5.52059I
u = 0.774496 - 0.423862I	0.95587 + 1.83688I	-2.97268 - 5.52059I
u = 0.131214 + 0.816301I	-1.25862 + 8.74450I	-6.26482 - 5.70892I
u = 0.131214 - 0.816301I	-1.25862 - 8.74450I	-6.26482 + 5.70892I
u = -0.113334 + 0.813002I	-5.75677 - 4.53837I	-10.90083 + 3.52404I
u = -0.113334 - 0.813002I	-5.75677 + 4.53837I	-10.90083 - 3.52404I
u = 0.600001 + 0.552718I	3.16690 + 4.05720I	-2.39559 - 2.41761I
u = 0.600001 - 0.552718I	3.16690 - 4.05720I	-2.39559 + 2.41761I
u = 0.088090 + 0.807114I	-2.52256 + 0.29931I	-7.87191 + 0.33424I
u = 0.088090 - 0.807114I	-2.52256 - 0.29931I	-7.87191 - 0.33424I
u = 1.124710 + 0.394492I	0.834215 - 0.681511I	-6.55623 + 0.I
u = 1.124710 - 0.394492I	0.834215 + 0.681511I	-6.55623 + 0.I
u = -1.169100 + 0.434672I	-4.41097 + 2.59787I	-11.45875 + 0.I
u = -1.169100 - 0.434672I	-4.41097 - 2.59787I	-11.45875 + 0.I
u = -1.157340 + 0.497610I	1.58916 + 7.35454I	0
u = -1.157340 - 0.497610I	1.58916 - 7.35454I	0
u = -0.542490 + 0.497935I	-1.186550 - 0.458750I	-7.63805 + 0.36311I
u = -0.542490 - 0.497935I	-1.186550 + 0.458750I	-7.63805 - 0.36311I
u = 1.173630 + 0.470826I	-4.14754 - 5.79334I	0

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.173630 - 0.470826I	-4.14754 + 5.79334I	0
u = -0.173744 + 0.706786I	4.42834 - 2.79951I	-1.47445 + 3.26453I
u = -0.173744 - 0.706786I	4.42834 + 2.79951I	-1.47445 - 3.26453I
u = -1.219870 + 0.382444I	-5.33475 - 4.67917I	0
u = -1.219870 - 0.382444I	-5.33475 + 4.67917I	0
u = 1.219490 + 0.394041I	-9.75574 + 0.40809I	0
u = 1.219490 - 0.394041I	-9.75574 - 0.40809I	0
u = -1.217770 + 0.408433I	-6.41473 + 3.90979I	0
u = -1.217770 - 0.408433I	-6.41473 - 3.90979I	0
u = 0.065064 + 0.701160I	-1.00563 + 1.42365I	-7.09664 - 4.59801I
u = 0.065064 - 0.701160I	-1.00563 - 1.42365I	-7.09664 + 4.59801I
u = 1.203910 + 0.493230I	-5.81092 - 5.03608I	0
u = 1.203910 - 0.493230I	-5.81092 + 5.03608I	0
u = -1.202290 + 0.504191I	-8.97338 + 9.35305I	0
u = -1.202290 - 0.504191I	-8.97338 - 9.35305I	0
u = 1.200010 + 0.511632I	-4.4198 - 13.6080I	0
u = 1.200010 - 0.511632I	-4.4198 + 13.6080I	0
u = 0.406824 + 0.539325I	2.56296 - 2.88378I	-2.70702 + 3.08785I
u = 0.406824 - 0.539325I	2.56296 + 2.88378I	-2.70702 - 3.08785I
u = -0.658085	-0.823669	-13.0660

II. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_6	$u^{50} - u^{49} + \dots + u - 1$
c_2	$u^{50} + 27u^{49} + \dots + 3u + 1$
c_3, c_4, c_9	$u^{50} + u^{49} + \dots - 3u - 1$
c_5	$u^{50} - 7u^{49} + \dots - 111u + 37$
c_7, c_{11}	$u^{50} - 3u^{49} + \dots + u + 1$
c_{8}, c_{10}	$u^{50} - u^{49} + \dots - 45u - 17$

III. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_6	$y^{50} - 27y^{49} + \dots - 3y + 1$
c_2	$y^{50} - 7y^{49} + \dots - 7y + 1$
c_3, c_4, c_9	$y^{50} + 41y^{49} + \dots - 3y + 1$
c_5	$y^{50} - 11y^{49} + \dots - 28823y + 1369$
c_7, c_{11}	$y^{50} + 41y^{49} + \dots - 111y + 1$
c_8,c_{10}	$y^{50} - 35y^{49} + \dots + 457y + 289$