MIE 1620 Computational Project

Method-3:
The third method is to solve by Gurobi solver.

The till diliculou is to solve by Gulobi solver.	
The original Problem:	The Dual/Block Angular structure
For all scenarios=S	For all scenarios=S
<u>Decision variables:</u>	<u>Decision variables(prices for the original)</u>
x0[s] = acres of land devoted to wheat	X
x1[s] = acres of land devoted to corn	y1[s]
x2[s]= acres of land devoted to sugar beets	y2[s]
yw [s]= tons of wheat purchased	y3[s]
yc[s] =tons of corn purchased	y4[s]
zw[s]=tons of wheat sold	
zc[s] = tons of corn sold	
zb[s]= tons of sugar beets sold at favorable	
price	
zbb[s]= tons of sugar beets sold at lower price	
_	
	

Results:

Scenario=3	
Original [L-shaped] LP	<u>Dual of the problem</u>
Model file:	[Block Angular structure]
3.Farmer_model(S=3).lp	Model file:
Code file:	3.Dual(S=3).lp
3.Farmer-ted with Gurobi(S=3).py	Code file:
Optimal objective -1.083900000e+05	3.Dual (S=3).py
	Optimal objective 1.083900000e+05
Optimal solution	Outined selection
x[0] 170	Optimal solution × 275
x[1] 80 x[2] 250	y1[1] 56.6667
x[2] 230 yw[0] 0	y1[2] 56.6667
yw[1] 0	y1[3] 56.6667

yw[2] 0 yc[0] 0 yc[1] 0 yc[2] 48 zc[0] 48 zc[1] 0 zc[2] 0 zb[0] 6000 zb[1] 5000 zb[1] 5000 zb[2] 4000 zw[0] 310 zw[1] 225 zw[2] 140 zbb[0] 0 zbb[1] 0 zbb[1] 0	y2[1] 50 y2[2] 52.3333 y2[3] 70 y3[1] 4.29167 y3[2] 12 y3[3] 12 y4[1] 7.70833 y4[2] 0 y4[3] 0
Scenario=5	
Original [L-shaped] LP	<u>Dual of the problem</u>
Model file:	[Block Angular structure]
3.Farmer_model(S=5).lp	Model file:
Code file:	3.Dual(S=5).lp
South The:	Code file:
3.Farmer-ted-gurobi(S=5).py	3.Dual (S=3).py
	3.2 um (5 3).py
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Optimal objective -1.024220000e+05	
Optimal solution	Optimal objective 1.485600000e+06
Optimal solution	Optimal solution
x[0] 170	x 3140
x[1] 80	y1[1] 34
x[2] 250 yw[0] 0	y1[2] 34
yw[1] 0	y1[3] 34
yw[2] 0	y1[4] 34
yw[3] 0 yw[4] 0	y1[5] 34
yw[4] 0 yc[0] 0	y2[1] 42
yc[1] 0	y2[2] 42
yc[2] 0	y2[3] 42
yc[3] 48 yc[4] 96	y2[4] 42
zw[0] 395	y2[5] 42
zw[1] 310	y3[1] 7.2
zw[2] 225	y3[2] 7.2

zw[3] 140 zw[4] 55 zc[0] 96 zc[1] 48 zc[2] 0 zc[3] 0 zc[4] 0 zb[0] 6000 zb[1] 6000 zb[2] 5000 zb[3] 4000 zb[4] 3000 zb[4] 3000 zb[4] 0 zbb[1] 0 zbb[2] 0 zbb[3] 0 zbb[4] 0	y3[3] 7.2 y3[4] 7.2 y3[5] 7.2 y4[1] 0 y4[2] 0 y4[3] 0 y4[4] 0 y4[5] 0
Original [L-shaped] LP	
Model file: Farmer_model3(S=9).lp	Model file: 3.Dual(S=9).lp
Code file: 3.Farmer-ted-gurobi(S=9).py Optimal objective -9.178805556e+04	Code file: 3.Dual (S=9).py Optimal objective 9.067793210e+04
x[0] 232.5 x[1] 80 x[2] 187.5 yw[0] 0 yw[1] 0 yw[2] 0 yw[3] 0 yw[4] 0 yw[5] 0 yw[6] 0 yw[7] 0 yw[8] 83.75 yc[0] 0 yc[1] 0 yc[2] 0 yc[3] 0 yc[4] 0 yc[5] 48 yc[6] 96	x 278.778 y1[1] 18.8889 y1[2] 18.8889 y1[3] 18.8889 y1[4] 18.8889 y1[5] 18.8889 y1[6] 18.8889 y1[7] 18.8889 y1[7] 18.8889 y1[9] 26.4444 y2[1] 0.884774 y2[2] 23.3333 y2[3] 23.3333 y2[4] 23.3333 y2[5] 23.3333 y2[6] 23.3333 y2[7] 23.3333 y2[8] 23.3333

```
yc[7] 144
                                     y2[9] 23.3333
                                     y3[1] 1.11111
yc[8] 192
zw[0] 846.25
                                     y3[2] 1.58681
zw[1] 730
                                     y3[3] 4
zw[2] 613.75
                                     y3[4]
                                           4
zw[3] 497.5
                                     y3[5] 4
zw[4] 381.25
                                     y3[6] 4
zw[7] 32.5
                                     y3[7]
                                           4
zw[8] 0
                                     y3[8]
                                           4
zc[0] 192
                                     y3[9] 4
zc[1] 144
                                     y4[1] 2.88889
zc[2] 96
                                     y4[2] 2.41319
zc[3] 48
                                     y4[3] 0
zc[4] 0
                                     y4[4] 0
zc[5] 0
                                     y4[5] 0
zc[6] 0
                                     y4[6] 0
zc[7] 0
                                     y4[7] 0
zc[8] 0
                                     y4[8] 0
zb[0] 6000
                                     y4[9] 0
zb[1] 6000
zb[2] 5250
zb[3] 4500
zb[4] 3750
zb[5] 3000
zb[6] 2250
zb[7] 1500
zb[8] 750
zbb[0] 750
zbb[1] 0
zbb[2] 0
zbb[3] 0
zw[5] 265
zw[6] 148.75
zbb[4] 0
zbb[5] 0
zbb[6] 0
zbb[7] 0
zbb[8] 0
```

Method-1:

The first method to use is the simplex method as developed in class.

The original Problem:	The Dual/Block Angular structure
For all scenarios=S	For all scenarios=S
Decision variables:	Decision variables(prices for the original)
x0[s] = acres of land devoted to wheat	X
x1[s] = acres of land devoted to corn	y1[s]
x2[s]= acres of land devoted to sugar beets	y2[s]
yw [s]= tons of wheat purchased	y3[s]
yc[s] =tons of corn purchased	y4[s]
zw[s]=tons of wheat sold	slack variables:
zc[s]= tons of corn sold	1[0],1[1],1[2]
zb[s]= tons of sugar beets sold at favorable	s1[s]
price	s2[s]
zbb[s]= tons of sugar beets sold at lower price	s3[s]
slack variables:	s4[s]
ux	s5[s]
uw[s]	s6[s]
uc[s]	Artificial variables:
ub[s]	la[0],la[1],la[2]
ubb[s]	a1[s]
Artificial variables:	a2[s]
vx[s]	a3[s]
vw[s]	a4[s]
vc[s]	a5[s]
vb[s]	a6[s]
vbb[s]	

Results:

Scenario=3	
Original [L-shaped] LP	<u>Dual of the problem</u>
	[Block Angular structure]
Model file:	Model file:
1.Farmer_model(S=3).lp	1.DualLP-simplex(S=3).lp
Code file: 1 Formouted simpley model1(S=2) my	Code file:
1.Farmersted -simplex -model1(S=3).py	Code IIIe.
Z=Z1+Z2 Z1= -108390.0	1.Dual LP-simplex(S=3).py
Z2 119969373520.36111	Z1= 108390.0000000003

```
Optimal solution
XB= [140. 170. 310. 225.
                             80.
                                   Optimal solution
48. 48. 6000. 5000. 4000. 250.
1000.
                                   XB= [56.66666667 52.33333333
2000.]
                                   95833333 2.33333333 20.
                                     22.66666667 275.
                                                                70.
                                   22.66666667 20.
                                     17.66666667 22.66666667 50.
                                   8.66666667 56.66666667
                                     56.66666667 8.66666667
                                                                7.708
                                   33333 4.29166667 12.
                                     12.
                                                ]
Scenario=5
Original [L-shaped] LP
                                   Dual of the problem
Model file:
                                   [Block Angular structure]
3.Farmer_model(S=5).lp
                                   Model file:
                                   1.DualLP-simplex(S=5).lp
Code file:
1.Farmersted -simplex-model1(S=5)
                                   Code file:
Z = -102421.99999999997
                                   1.DualLP-simplex(S=5).py
                                   Z1= 244216.666666666
Optimal solution
XB= [48. 170. 2000. 310. 140.
                                   Optimal solution
1000. 80. 96. 395. 225. 9
                                   XB= [ 56.6666667 50.
6.6000.
                                               5.79166667 22.6666666
6000. 5000. 4000. 3000. 250. 10
00. 55. 48. 3000.]
                                     22.66666667 22.66666667 22.666
                                   66667 558.33333333 50.
                                                   50.97222222
                                                                 0.972
                                   22222 56.66666667 22.66666667
                                     56.66666667 19.02777778 20.
                                                56.6666667
                                      8.66666667 20.
                                                                20.
                                   56.66666667 2.875
                                      8.66666667 8.66666667 8.666
                                   66667 3.33333333 6.20833333
                                     12.
                                                   12.
                                                                12.
                                   ]
Scenarios=9
```

```
Original [L-shaped] LP
Model file:
                                  Model file:
1.Farmer_model(S=9).lp
                                   1.DualLP-simplex(S=9).lp
Code file:
                                  Code file:
1.Farmer_model(S=9).lp
                                  1.DualLP-simplex(S=9)
                                  objective Z1= 486933.333333333333
Z = -91788.0555555555
                                  Z2 5.6999958860108005e+19
                                  Z1=XB*CB
Optimal solution:
                                  Z2=XN*CN
x[0] 232.5
x[1] 80
x[2] 187.5
                                  Solution
yw[0] 0
                                  XB= [ 56.6666667
                                                       50.
yw[1] 0
                                                50.
                                                              50.
yw[2] 0
                                     22.66666667 22.66666667 22.
yw[3] 0
                                  66666667 22.6666667 22.666666
yw[4] 0
yw[5] 0
                                      1.66666667 22.66666667
                                                                 50.
yw[6] 0
                                  50. 20.
yw[7] 0
                                     50.
                                                   22.66666667
yw[8] 83.75
                                                  79.33333333
                                  1159.
yc[0] 0
                                     79.33333333 56.6666667
                                                                 56.
yc[1] 0
                                  66666667 20.
                                                            5.416666
yc[2] 0
yc[3] 0
                                     22.66666667 20.
                                                                 18.
yc[4] 0
                                  33333333 20.
                                                           20.
yc[5] 48
                                      8.66666667 8.66666667
                                                                 56.
yc[6] 96
                                  66666667 20.
                                                           56.666666
yc[7] 144
                                  67
yc[8] 192
                                     20.
                                                  51.66666667
                                                                 70.
zw[0] 846.25
                                  70.
                                                56.6666667
zw[1] 730
                                     22.66666667
                                                   3.25
zw[2] 613.75
                                  66666667 8.66666667
                                                           8.666666
zw[3] 497.5
zw[4] 381.25
                                      8.66666667 8.66666667
                                                                 8.
zw[7] 32.5
                                   66666667 3.33333333 3.333333
zw[8] 0
                                  33
zc[0] 192
                                      6.58333333
                                                   12.
                                                                 56.
zc[1] 144
                                  66666667 12.
                                                           12.
zc[2] 96
                                     12.
                                                   12.
                                                             1
zc[3] 48
zc[4] 0
zc[5] 0
zc[6] 0
zc[7] 0
zc[8] 0
zb[0] 6000
zb[1] 6000
zb[2] 5250
zb[3] 4500
```

```
zb[4] 3750
zb[5] 3000
zb[6] 2250
zb[7] 1500
zb[8] 750
zbb[0] 750
zbb[1] 0
zbb[2] 0
zbb[3] 0
zw[5] 265
zw[6] 148.75
zbb[4] 0
zbb[5] 0
zbb[6] 0
zbb[7] 0
zbb[8] 0
```

The results of Simplex method showed that the model for 9 scenarios was not giving an optimal solution.

So for these large scale problems we need to implement another algorithm which is used when the matrix A has block angular structure i.e. the dual problem in this report.

Method-2

The second method to use is the Danzig Wolfe Decomposition as developed in class.

Model file:

Dantzewolfe.lp

Code file:

Dantzig wolfedecomposition.py

There are many errors in the code so could not solve large problems So tried solving scenario=3 by hand and also did subproblems in gurobi solver at iterations.

Subproblems file:

subproblems(S=3).py