Complex analysis

Definitions

$$\sin z = \frac{1}{2i} \left(e^{iz} - e^{-iz} \right) \quad \cos z = \frac{1}{2} \left(e^{iz} + e^{-iz} \right)$$
$$\sinh z = \frac{1}{2} \left(e^z - e^{-z} \right) \qquad \cosh z = \frac{1}{2} \left(e^z + e^{-z} \right)$$

Roots

$$\begin{split} \left(e^{i\theta}\right)^n &= \left(\cos\theta + i\sin\theta\right)^n\right) = \cos n\theta + i\sin n\theta \\ z^{1/n} &= \left(re^{i\theta}\right)^{1/n} = r^{1/n}e^{i\theta/n} \,. \\ \ln z &= \ln re^{i\theta} = \ln r + i\theta \,. \end{split}$$

Complex series

Comparison test:If $|Z_n| \leq a_n$ and $\sum a_n$ converges, then $\sum z_n$ converges.

 z_n converges, then z_n converges, then Ratio test: If $\left|\frac{z_{n+1}}{z_n}\right| \le k$ for all n sufficiently large, and k < 1, then $\sum z_n$ converges absolutely. Divergerence check: If z_n does not converge towards zero, then $\sum z_n$ diverges; the complex and imaginary part will diverge seperately. Complex power series: The ratio test gives convergence for $|z-z_0| < \left|\frac{a_n}{a_{n+1}}\right| = R$ as $n \to \infty$. We call R radius of convergence, and $|z-z_0| < R$ for the disk of convergence.

Cauchy-Riemann equations

Analytic: \leftrightarrow Has a unique derivative at wanted region. If a function is analytic it has unique derivatives of all orders and is a solution of Laplace's equation. Regular point: A point where f(z) is analytic. Singular point or Singularity: A point where f(z) is not analytic. Isolated singularity: If f(z) is analytic in a small circle around, but not at, the given point. CR-eq. is a tool to check if a function f(z) = u(x, y) + iv(x, y) is analytic in a region by requiering existance of a unique derivative

derivative

$$\begin{split} \frac{\partial u}{\partial x} &= \frac{\partial v}{\partial y} & \frac{\partial v}{\partial x} &= -\frac{\partial u}{\partial y} \\ \frac{\partial u}{\partial r} &= \frac{1}{r} \frac{\partial v}{\partial \theta} & \frac{1}{r} \frac{\partial u}{\partial \theta} &= -\frac{\partial v}{\partial r} \end{split}$$

must be satisfied in that region. If a function is analytic within some region it can be expanded as a Taylor series about any point z_0 inside the region. The power series converges inside a circle about z_0 that extends to the nearest singular point. Harmonic functions: Are solutions to the 2D Laplace equa-

Harmonic functions: Are solutions to the 2D Laplace equation $\nabla^2 \phi = 0$. If a function f(z) = u(x,y) + iv(x,y) is ANALYTIC in a region, then u and v are harmonic functions. Harmonic conjugate: Given a harmonic function u(x,y), there excists another harmonic functions v(x,y) such that u+iv is an analytic function of z in that region; v is called the Harmonic Conjugate.

- Check that u(x, y) is harmonic
- Find harmonic conjugate through Cauchy-Riemann equations through integration
- Express u + iv in terms of z

Integrals of complex functions

Contours: Finite sequence of directed smooth curves patched together.
Simple closed contours: A contour which does not cross it-

Positivly oriented contour: A contour with interior to the left and exterior to the right, arrow going counter clockwise. Loop: A closed contour.

Contour integral:

 $\int_{\Gamma} f(z) dz = \lim_{n \to \infty} \sum_{k=1}^{n} f(z_k) \Delta z_k.$

If a function is continous in a domain then

- f has an anti-derivative
- · Contour integrals are independent of path
- · Any loop integral is zero

If any of these are true, the two others are true.

$$\int_C (z - z_0)^n dz = \delta_{n,-1}.$$

Inside a simply connected region (no singularities) we continously deform contours without changing the integral of analytic functions along these curves. **Cauchy-Integral formula:** For an function f, which is analytic inside a simply connected region containg a contour Γ which is simple, closed and positivly oriented, then:

$$f(z_0) = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(z)}{z - z_0} \, \mathrm{d}z$$

$$f(z_0)^{\left(n\right)} = \frac{n!}{2\pi i} \int_{\Gamma} \frac{f(z)}{(z-z_0)^{n+1}} \; \mathrm{d}z, n \geq 1$$

Liouvilles theorem: A bounded analytic function in the entire complex plane is a constant.

Upper bound estimates

Use the generalized triangle inequality

$$\left|\sum_k z_k\right| \leq \sum_k |z_k| \quad \to \quad |z_1 - z_2| \geq |z_2| - |z_1|.$$

Apply this to Riemann sum

$$\left|\int_{\Gamma} f(z)\,\mathrm{d}z\right| = \left|\sum_{k=1}^n f(z_k)\Delta z_k\right| \leq \sum_{k=1}^n \left|f(z_k)\right| \left|\Delta z_k\right| \leq M \sum_{k=1}^n \left|\Delta z_k\right|,$$

where M is the maximum value of |f(z)| on contour. We then use that $\sum_k |\Delta z_k|$ can not be longer than the length of the contour L:

$$\left| \int_{\Gamma} f(z) \, \mathrm{d}z \right| \leq ML.$$

Cauchy inequality: A function f which is analytic on and inside a circle with radius R centerd at z_0 satisfy $\left|f^{(n)}\right| \leq \frac{n!M}{R^n}$.

Laurent series

Let f be analytic in the area between two circles $r < |z-z_0| < R$, then f can be represented uniquely as the sum of two series

$$\begin{split} f(z) &= \sum_{n=0}^{\infty} a_n (z-z_0)^n + \sum_{n=1}^{\infty} \frac{b_n}{(z-z_0)^n} \\ a_n &= \frac{1}{2\pi i} \oint_C \frac{f(z)}{(z-z_0)^{n+1}} \, \mathrm{d}z \\ b_n &= \frac{1}{2\pi i} \oint_C \frac{f(z)}{(z-z_0)^{-n+1}} \, \mathrm{d}z \end{split}$$

Derive a_n from using important integral and divide expression for Laurent series with $(z-z_0)^{n+1}$ and integrating. Derive b_n with same method, but multiplying with $(z-z_0)^{n-1}$ instead. Series of positive powers converges inside some circle $|z-z_0| < R$. Series of negative powers converges outside some circle $|z-z_0| > R$. Often usefull to use partial fraction decomposition and

$$\frac{1}{1-w} = \sum_{n=0}^{\infty} w^n, \quad |w| < 1.$$

Residue: Is the value of the coefficient b_1 . **A zero of a function:** A point z_0 where f is analytic and $f(z_0) = 0$.

A zero of order m: When $f(z_0) = f^{(1)}(z_0) = \dots = f^{(m-1)}(z_0) = 0$ and $f^{(m)}(z_0) \neq 0$. This can be factorized as $f(z) = (z - z_0)^m g(z)$, where g(z) is analytic and non-zero at

 $z_0.$ Isolated singularities: Assume f(z) has an isolated singular ty at $z_0,$ with a Laurent series, then:

- Removable singularity: If all $b_n = 0$
- Pole of order m: If $b_m \neq 0$, but $b_k = 0$ for all
- Essential singularity: If there are infinitely many b-

Residue theory

If Γ is a simplle closed, positivily oriented contour, and f is analytic on and inside Γ , except at the points $z_1, ... z_k$ inside Γ , then

$$\oint_{\Gamma} f(z) dz = 2\pi i \sum_{k=1}^{N} \operatorname{Res}(f; z_k).$$

True since only $1/(z-z_0)$ term contributes in integrals, we get no other contributions sice we can deform contour around singularities such that the path between each singularity cancels. Finding residues:

- Find Laurent series around z₀, then Res(f; z₀) is b₁.
- Evaluate $\mathrm{Res}(f;z_0) = \lim_{b \to z_0} \left[f(z) \left(z z_0 \right) \right]$, finite answer only if it is a simple pole. Removable singularity gives zero, higher order poles gives infinity.
- For f(z)=P(z)/Q(z) where $P(z_0)\neq 0$ and $Q(z_0)$ is a SIMPLE ZERO, and both analytic at z_0 , then $\mathrm{Res}(f;z_0)=$ $P(z_0)/Q'(z_0)$.
- If f has a pole of order m at z_0 then $\mathrm{Res}(f;z_0) = \lim_{z \to z_0} \frac{1}{(M-1)!} \frac{\mathrm{d}^M 1}{\mathrm{d}z^M 1} \left[(z-z_0)^M f(z) \right]$ where $M \ge m$. If you know the order of the pole us m = M, but get correct result by overshooting as well.

Solving integrals

- **Trigonometric integrals:** Integrals of type $\int_0^{2\pi} u(\cos\theta, \sin\theta) d\theta$, can be made into complex J_0^{σ} " $u(\cos\theta,\sin\theta)\,\mathrm{d}\theta$, can be made into complex integral by variable substitution $z=e^{i\theta}$ and integrate around |z|=1. Use complex version of $\cos\theta=(z+1/z)/2$ and $\sin\theta=(z-1/z)/2i$ and $\mathrm{d}\theta=\mathrm{d}z/(iz)$. Solve the integral with residue theory and take the real value of the final answer. If the integration limits are not 0 to 2π you can use a substitution to change integral limits such that the final limits are 0 to 2π , f.ex $u=2\pi-\theta$ will change limits from $0\to\pi$ to $\pi\to2\pi$.
- Infinte integrals: Integrals from -∞ → ∞ can be extended to the complex plane by connecting ± at the x-axis by a semi-circle with infinite radius giving no contribution. Thus the integral can be solved from residues inside the first and secound quadrant, or third and fourth quadrant depending on orientation of semi-sircle. Only works if: (1) f is analytic on and above the real axis, except for a finite number of singularities, (2) we can ignore contributions infinitely far away from the origin we can do this (f(x) = P(x)/O(x)) if from the origin, we can do this (f(z) = P(z)/Q(z)) if $DEG(Q) \ge DEG(P) + 2$.

• Infinite Trigonometric integral: Two options:

1. Write the trigonometric function in it's complex 1. Write the trigonometric function in it's complex form, which will give two integrals, one with e^{imx} which must be closed in the upper half plane, and one with e^{-imx} which must be closed in the lower half plane. Since the last one goes counter clockwise we must flip the sign. We can ignore the semi-circle only if the degree of the polynomial in the denominator is one larger than the degree of the numerator, this is called **Jordan's lemma**. Without the exponential the difference in polynomial degree would be two. 2. If the integral is real we can write $\cos mx$ as the real part of e^{imx} , or $\sin mx$ as the imaginary part, then solve the integral and take the imaginary or real part of the answer.

• Singularities on the real axis: Infinities can cancel if apprached symmetrically: $\text{PV}\int_a^b f(x) \, \mathrm{d}x$ $\lim_{r\to 0}\int_a^{c-r}f(x)\,\mathrm{d}x+\int_{c+r}^bf(x)\,\mathrm{d}x, \text{ with a singularity at }x=c.$ Can also be computed with residue theory:

$$\text{PV}\int_{-\infty}^{\infty} f(x) \, \mathrm{d}x = 2\pi i \sum \underbrace{\text{Res}(f; z_k)}_{\text{upper half}} + \pi i \sum \underbrace{\text{Res}(f; z_j)}_{\text{real axis}}$$

Tensors

Tensors of rank 0= scalars, rank 1= vectors, rank 2= matrices. Tensors represent physical quantities, should be independent of choice of coordinate frames $v_i'=A_{ij}v_j,\ v_i=A_{ji}v_j,$ where $A_{ij}=\boldsymbol{e}_i\cdot\boldsymbol{e}_j'$, which implies $A^{-1}=A^T.$ We get one A for each index $T_{kl}'=A_{ki}A_{lj}T_{ij}.$

Inertia tensor

A rigid body rotating around a fixed axis: $L = I\omega$, where I is the inertia tensor. Since I is symmetric we can find a coordinate system where I is diagonal. The eigenvectors of I are the principle axis of inertia. Point masses: $I_{ij} = mr^2\delta_{ij} - mr_ir_j$ where you sum over all masses. Continouum masses: $I_{ij} = \int mr^2\delta_{ij} - mr_ir_j \, dm$ where. Examples:

Examples:
$$\begin{split} & I_{xx} = \sum_i m_i (r^2 - x^2) = \sum_i m_i (y^2 + z^2) = \int y^2 + z^2 \, \mathrm{d}m. \\ & I_{xy} = -\sum_i m_i x_i y_i = -\int xy \, \mathrm{d}m. \end{split}$$

Cronecker-delta and Levi-civita

$$\delta_{ij} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$

$$\epsilon_{ijk} = \begin{cases} 1 & \text{if } ijk = 123, 231, \text{ eller } 312 \\ -1 & \text{if } ijk = 321, 213, \text{ eller } 132 \\ 0 & \text{if repeating indicies} \end{cases}$$

$$\epsilon_{ijk}\epsilon_{imn} = \delta_{jm}\delta_{kn} - \delta_{jn}\delta_{km}$$

$$(\mathbf{a} \times \mathbf{b})_i = a_jb_k\epsilon_{ijk}$$

$$\det \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = a_{1i}a_{2j}a_{3k}\epsilon_{ijk}$$

$$(\nabla \times \mathbf{V})_i = \epsilon_{ijk}\frac{\partial V_k}{\partial x_j}$$

$$(\mathbf{U} \times \mathbf{V})_i = \epsilon_{ijk}U_jV_k$$

Dirac-delta and Heaviside step func-

$$\delta(x-a) = \begin{cases} \infty, & x = a \\ 0, & x \neq a \end{cases}$$

$$\int_{-\infty}^{\infty} \delta(x-a) \, \mathrm{d}x = 1$$

$$\int_{-\infty}^{\infty} f(x)\delta(x-a) \, \mathrm{d}x = f(a)$$

$$\delta(ax) = \frac{1}{|a|}\delta(x)$$

$$H(t-a) = \begin{cases} 0, & t < a \\ 1, & t > a \end{cases}$$

$$H'(x-a) = \delta(x-a)$$

$$\int_{-\infty}^{\infty} f(x)\delta^{(n)}(x-a) \, \mathrm{d}x = (-1)^{(n)}f(a)$$

Calculus of variations

Given an integral $I=\int_{x_0}^{x_1}F(x,y,y')\,\mathrm{d}x$ we want to find the function x(y) or y(x) between (x_1,y_1) and (x_2,y_2) such that I is stationary (locally minimized). The function which satisfies this is

$$\frac{\mathrm{d}}{\mathrm{d}x} \frac{\partial F}{\partial y'} - \frac{\partial F}{\partial y} = 0.$$

If F has no y dependence we get $\frac{\partial F}{\partial y'}$ = constant, which can

be solved for y. One can change variables such that we have a cylic coordinate through the substitutions: y'=1/x' and $\mathrm{d}x=x'\,\mathrm{d}y$.

Tips and tricks

$$\frac{1}{z-1} = \frac{1}{z} \frac{1}{1-\frac{1}{z}} = \frac{1}{z} \sum_{n} \left(\frac{1}{z}\right)^{n} = \sum_{n} \left(\frac{1}{z}\right)^{n+1}, z > 1$$

$$ax^{2} + bx + c = 0 \qquad \to \qquad x_{\pm} = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

Ordinary differential eq.

Ordinary: Derivatives with respect to only one variable. Linear: Only linear terms y, y' etc. no yy', y^2 , $(y'')^3$ etc. Order of DE: Order of highest derivative. For secound order DE we get exact solution from BC since we can solve DE for y'' and evaluate at BC, and get higher orders from taking the derivative of this equation. From these values we can construct a taylor series of the function, which uniquely fixes the solution.

fixes the solution. A linear combination of two solutions is also a solution. Criteria for two solutions $y_1(x)$ and $y_2(x)$ being linearly inde-

- Linearly independent if $c_1y_1(x)+c_2y_2(x)=0$ can only be satisfied when $c_1=c_2=0$ (y_2 is not a multiple of the other).
- Linearly dependent if $y_2(x_0) = Ky_1(x_0)$ AND $y_2'(x_0) = Ky_1(x_0)$ they are linearly dependent.
- Linearly independent if $y_1'(x_0)/y_2'(x_0)=y_1(x_0)/y_2(x_0)$, in other words: if the wronskian is non-zero

$$w(x_0) = \begin{vmatrix} y_1(x_0) & y_2(x_0) \\ y_1'(x_0) & y_2'(x_0) \end{vmatrix} \neq 0$$

Then we can write the full solution as $y(x) = c_1 y_1(x) +$

Integrating factors

$$\frac{\mathrm{d}y}{\mathrm{d}x} + P(x)y = Q(x) \to \mathrm{d}y + (Py - Q)\,\mathrm{d}x = 0$$

Multiply with $\mu(x)$ to get an exact solution from.

$$\mu(x) = \exp\Bigl\{ \int P \,\mathrm{d}x \Bigr\}$$

$$y(x) = \frac{1}{\mu(x)} \left(\int \mu(x) Q(x) \, \mathrm{d}x + C \right)$$

Variation of constants

If $y_1(x)$ is a solution we can find another linearly independent solution $y_2(x)$ by writing $y_2(x) = c(x)y_1(x)$, where we determine c(x) from DE. When finding c we can ignore constants since these constants contribute function equal to $y_1(x)$, and constant factors can be determined outside of solution.

Constant coefficients

$$y^{\prime\prime} + ay^{\prime} + by = 0$$

Always has an exponential solution $y = e^{\lambda x}$, inserting gives $\lambda^2 + a\lambda + b = 0$ which we solve to find λ . This gives three possibilities:

- $\lambda_{+} \neq \lambda_{-}$ and both are real: we get two linearly independent solutions $y(x) = c_1 e^{\lambda} + \frac{x}{x} + c_2 e^{\lambda} - \frac{x}{x}$.
- Double root $a^2-4ab=0$: gives $\lambda_+=\lambda_-=\lambda=-a/2$. Can be shown from variation of constants that we get two linearly independent solutions $y_1(x)=e^{\lambda x}$ and $y_2(x)=xe^{\lambda x}$.
- \bullet Complex roots a^2 4b < 0: gives λ_{\pm} = -a/2 \pm $i\sqrt{4b-a^2}/2=-a/2\pm iw$. Solution is the standard form, but can be written in many different forms: $y(x)=e^{-ax/2}\left(Ae^{iwx}+Be^{-iwx}\right)$

$$y(x) = e^{-ax/2} (C\cos wx + D\sin wx)$$

$$y(x) = e^{-ax/2} \sin (wx + \delta)E.$$

$$y(x) = e^{-ax/2} \sin(wx + \delta)E.$$

Euler-Cauchy equation

$$x^2y'' + a_1xy1 + a_0y = 0$$
 or $y'' + \frac{a_1}{x}y' + \frac{a_0}{x^2} = 0$

Use substitution $x=e^z$ for x>0 and $x=-|x|=-e^z$ for x<0. This gives us $\frac{\mathrm{d}y}{\mathrm{d}x}=1/x\frac{\mathrm{d}y}{\mathrm{d}z}$ and $\frac{\mathrm{d}^2y}{\mathrm{d}x^2}=-1/x^2\frac{\mathrm{d}y}{\mathrm{d}z}+$ $1/x^2 \frac{\mathrm{d}^2 y}{\mathrm{d}x^2}$, inserting this into DE gives

$$\frac{\mathrm{d}^2 y}{\mathrm{d}z^2} + (a_1 - 1)\frac{\mathrm{d}y}{\mathrm{d}z} + a_0 y = 0$$

This is a differential equation with constant coefficients which we can solve, then substitute back $z=\ln|x|$. Get different coefficients from initial conditions for positive and negative x, no solution for x=0.

Inhomogeneous DE's

$$y'' + P(x)y' + Q(x)y = R(x)$$

The full solution is the sum of the homgeneous and particular equation $y(x)=y_h\left(x\right)+y_p(x)$, where y_p has no undetermined coefficients. The homogeneous equation can match boundary conditions if the Wronskian is non-zero.

Method of undetermined coeffs.

$$y'' + ay' + by = R(x)$$

Method works when R(x) is a function whose derivative resembles the function itself: exponential, trigonometric, polynomial, sine/cosine and combination of these. We then guess on a solution of the same form as R(x), (possibly time x or x^2 with an unknown coefficient which is determined by putting it into the equation:

• $R(x) = Ae^{kx}$. We call the roots of the characteristic equation of the homogeneous equation α and β , then:

$$\begin{array}{ll} -& k \neq \alpha, \beta: y_p(x) = Be^{kx} \\ \\ -& k = \alpha \text{ or } \beta, \text{ and } \alpha \neq \beta: y_p(x) = Cxe^{kx} \\ \\ -& k = \alpha = \beta: y_p(x) = Dx^2e^{kx} \end{array}$$

- $R(x) = A \sin kx$ or $R(x) = A \cos kx$: $y_p(x) = Ae^{ikx}$ and take real or imaginary part of solution.
- $R(x) = e^{kx} P_n x$ where $P_n(x)$ is a polynomial of de-

$$\begin{array}{l} -\ k \neq alpha, beta: y_p = e^{kx}Q_n(x) \\ \\ -\ k = \alpha \text{ or } \beta, \text{ and } \alpha \neq \beta: y_p(x) = e^{kx}Q_n(x)x \\ \\ -\ k = \alpha = \beta: y_p(x) = e^{kx}Q_n(x)x^2 \end{array}$$

If RHS is a sum of two different such functions you take the sum of two guesses (???)

Finding particular solution from factorization

$$y'' + P(x)y' + Q(x)y = R(x)$$

We are given a known solution u(x) of the homogeneous DE. Guess on a particular solution $y_p(x) = u(x)v(x)$, insert into DE and use that u is a solution to the homogeneous equation to reduce equation down to

$$v'' + \left(\frac{2u'}{u} + P\right)v' = \frac{R}{u}$$

Define w(x) = v'(x), getting

$$w + \left(\frac{2u'}{u} + P\right)w = \frac{R}{u}$$

Solve this equation by integrating factors and find v by $v(x) = \int w(x) dx$, no integration constant, get full solution by multiplying $y_p(x) = u(x)v(x)$.

Variation of parameters

Know two linearly independent homogeneous soulutions y_1 and y_2 , the particular solution is then

$$y_{P}(x) = -y_{1} \int \frac{y_{2}(x)R(x)}{W(x)} \; \mathrm{d}x + y_{2} \int \frac{y_{1}(x)R(x)}{W(x)} \; \mathrm{d}x$$

where W is the Wronskian $W(x) = \begin{vmatrix} y_1(x) & y_2(x) \\ y_1'(x) & y_2'(x) \end{vmatrix}$. Rember to write the DE in standard form before reading of R(x). Derived from $y_p(x) = f_1(x)y_1(x) + f_2(x)y_2(x)$ and impose condition $f_1'y_1 + f_2'y_2 = 0$ to make terms in y_p' vanish. Insert this into DE and use that y_1 and y_2 satisfy homogeneous equation to make two terms disappear. This gives us one equation, which in combination with out imposed condition $(f_1'y_1 + f_2'y_2 = 0)$ gives us the expression for f_1 and f_2 which we use to find y_p from $y_p(x) = f_1(x)y_1(x) + f_2(x)y_2(x)$.

Greens functions

$$\underbrace{\left(\frac{\mathrm{d}^2}{\mathrm{d}x^2} + P(x)\frac{\mathrm{d}}{\mathrm{d}x} + Q(x)\right)}_{D}y = R(x)$$

Assume given DE, homogeneous solution, and BC. LHS and BCs give us the Greens function G(x,z) which gives us y_h+y_D for any R(x) with no arbritary constants. Begin by writing DE as Dy(x)=R(x), exists D^{-1} , then $y(x)=D^{-1}R(x)$, this is an integral

$$y(x) = \int_a^b G(x, z) R(z) dz, \qquad a \le x, z \le b$$

We apply D_x to both sides, giving us

$$D_x y(x) = \int_a^b \underbrace{D_x G(x, z)}_{\delta(x - z)} R(z) dz$$

Have to solve

$$D_x G(x, z) = \delta(x - z)$$

The Greens function satsify the original DE, but with $R(x)=\delta(x-z).$ We have restrictions on G(x,z)

- G(x,z) must satisfy the given BCs given for y(x). Ex: $y(a)=y(b)=0 \rightarrow G(a,z)=G(b,z)=0$
- G(x, z) is continous at x = z.
- We have a singularity at x=z, we integrate the DE for G(x,z) from $z-\epsilon$ to $z+\epsilon$, this gives us that $\frac{\mathrm{d}G(x,z)}{\mathrm{d}x}\Big|_{z-\epsilon}^{z+\epsilon}=1$

Begin with $DG(x,z)=\delta(x-z).$ For x< z and x>z we get different solutions, which both are equal to the homogeneous solution, but their coefficients are different and dependent on z. Use the boundary conditions, the continuity of G at x=z, and the discontinuity of it's derivative $\frac{dG(x,z)}{dx}\Big|_{z-\epsilon}^{z+\epsilon}=1$ to find G(x,z) for x < z and x > z and solve the integral for

Power series

$$y'' + P(x)y' + Q(x)y = 0$$

Usefull for DEs whose solution can not be written in terms of

Osemin for DEs whose solution can not be written in terms of elementary functions. Represent P(x) and Q(x) as power series (if they are not already polynomials), and assume solution on the form

$$y(x) = \sum_{n=1}^{\infty} a_n x^n, \qquad y'(x) = \sum_{n=1}^{\infty} n a_n x^{n-1}$$

$$y''(x) = \sum_{n=1}^{\infty} n(n-1)a_n x^{n-2} = \sum_{n=1}^{\infty} n(n+1)a_{n+1} x^{n-1}$$

Insert into DE and equate power by power in x to determine

Insert into DE and equate power by power in x to determine coefficients a_n . Existance of solution: If P(x) and Q(x) are analytic at $x=x_0$, then every solution of the differential equation is analytic at $x=x_0$ and thus can be represented by a power series in $(x-x_0)$ with some radius of convergence R>0.

Legendre functions: $(1 - x^2)y'' - 2xy' + l(l+1)y = 0$

Fröbenious method

method
$$y'' + \frac{b(x)}{x}y' + \frac{c(x)}{x^2}y = 0$$

where b(x) and c(x) are analytic at x=0, has at least one solution that can be represented as

$$y(x) = x^s \sum_{n=1}^{\infty} a_n x^n$$

By construction $a_0 \neq 0$, and s may be non-integer, real or complex. Determine s from matching terms for lowest possible power, this gives **indical equation**, which is a 2nd order equation for s with at least one solution. Write DE as

$$x^{2}y'' + xb(x)y' + c(x)y = 0$$

with b and c written as polynomials or infinte series, then equate terms with x^S which gives INDICAL EQUATION, this gives three possible scenarios:

- Two different roots, and their difference is not an integer. Then we have two linearly independent solutions.
- Two different roots, and their difference is an integer. Find coefficients for the smallest root first, since it might give the full solution. If it does not give the full solution then finding the coefficients with the other root will. Sometimes the the smallest root does not give a solution, then find solution of largest root and use variation of constants $y_2(x) = f(x)y_1(x)$.
- Double root. Find coefficient with this root, and find secound solution by variation of constants $y_2(x) =$

Fourier

Fourier series

Series representation of periodic functions expanded in \sin , \cos or e rather than in power series. Can represent functions with cusps and discontinuities. Orthogonality relations:

$$\int_{-\pi}^{\pi} \cos nx \, \mathrm{d}x = \int_{-\pi}^{\pi} \sin nx \, \mathrm{d}x = 0 \qquad n \text{ is integer}$$

$$\int_{-\pi}^{\pi} \cos nx \sin mx \, \mathrm{d}x = 0 \qquad n, m \text{ is integer}$$

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} \sin nx \sin mx \, \mathrm{d}x = \begin{cases} 0; & \text{m} \neq n \\ 1/2; & \text{m} = n \neq 0 \\ 0; & \text{m}, m = 0 \end{cases}$$

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} \cos nx \cos mx \, \mathrm{d}x = \begin{cases} 0; & \text{m} \neq n \\ 1/2; & \text{m} = n \neq 0 \\ 1; & \text{m}, m = 0 \end{cases}$$