Topología: Tarea #7

Jonathan Andrés Niño Cortés

16 de marzo de 2015

1. Sean X,Y espacios topológicos con Y compacto de Hausdorff. Demuestre que una función $f:X\to Y$ es continua si y sólo si su gráfica

$$G_f = \{(x, f(x)) : x \in X\}$$

es cerrada en $X \times Y$. Este es el ejercicio 8 de la página 194 del Munkres.

Demostración. (\Leftarrow) Suponga que f es continua. Vamos a demostrar que $X \times Y \backslash G_f$ es abierto. Tome un punto $x \times c \notin G_f$. Como f es una función existe y = f(x) tal que $x \times y \in G_f$. Entonces tenemos que $c \neq y$. Ahora como Y es de Hausdorff tenemos que existen conjuntos abiertos U y V disyuntas de c y g respectivamente.

Además como f es continua tenemos que $f^{-1}(V)$ es abierto en X. Luego $f^{-1}(V) \times U$ es un vecindario de $x \times c$ contenido en $X \setminus G_f$. $x \in f^{-1}(V)$ porque $f(x) = y \in V$ y $c \in U$ porque U es un vecindario de c. Por otra parte, si algún $a \times b \in f^{-1}(V) \times U$ pertenece a G_f entonces tenemos que b = f(a) por lo que $a \in f^{-1}(U)$, pero $a \in f^{-1}(V)$ y U y V son disyuntos por lo que llegariamos a una contradicción con la buena definición de la función f. Concluimos que G_f es cerrado.

(⇒) Suponga que G_f es cerrado. Primero vamos a demostrar que si Y es compacto entonces π_X , la proyección sobre X es un mapa cerrado. Sea C un subespacio cerrado de $X \times Y$ y tomemos $\pi_X(C)$. Vamos a demostrar que el complemento es abierto entonces tome $x \notin f(X)$. Esto significa que para todo $y \in Y$ $x \times y \notin C$. Luego concluimos que $(X \times Y) \setminus C$ es un vecindario que cubra la fibra de x. Entonces por el Lema del tubo existe un tubo $V \times Y \subseteq (X \times Y) \setminus C$. Como para todo $a \in X$ se cumple que para todo $y \in Y$ $a \times y \notin C$ concluimos que $x \in V \subseteq X \setminus \pi_X(C)$. Por lo tanto $\pi_X(C)$ es cerrado.

Ahora para probar el enunciado inicial tome cualquier vecindario V de Y. Tenemos que $Y \setminus V$ es cerrado. Luego $C = X \times (Y \setminus V) \cap G_f$ es la intersección de dos conjuntos cerrados de $X \times Y$ y por lo tanto también es cerrado.

Entonces por lo demostrado anteriormente $\pi_X(C)$ también es cerrado. El complemento de $\pi_X(C)$ es precisamente $f^{-1}(V)$. $x \in f^{-1}(V)$ es equivalente a que $f(x) \in V$. Tenemos que $x \times f(x)$ es la única tupla de x contenida en G_f pero $f(x) \notin (Y \setminus V)$. Esto equivale a que para todo $y \in Y$ $x \times y \notin C$ luego $x \notin \pi_X(C)$.

2. Sean X un compacto de Hausdorff, $U\subseteq X$ abierto y $p\in U$. Pruebe que existe un abierto V tal que $p\in V$ y $\overline{V}\subseteq U$.

Demostración. En el Munkres tenemos el siguiente Lema. Si X es de Hausdorff, K es un subespacio compacto de X y $p \notin K$ entonces existen dos vecindarios disyuntos U y V tales que $K \subseteq U$ y $p \in V$.

Entonces tome cualquier vecindario abierto U de p. El complemento de U es cerrado y como es un subespacio de un compacto de Hausdorff concluimos que es compacto también. Luego por el lema anterior existen vecindarios U' y V tales que $X \setminus Y \subseteq U'$, $p \in V$ y $U' \cap V = \emptyset$. Y precisamente V es el vecindario buscado. Si suponemos por contradicción que $\overline{V} \notin U$ entonces existe $x \in X \setminus U$ tal que $x \in \overline{V}$. Pero precisamente existe un vecindario U' de x tal que $U' \cap V = \emptyset$, por lo que llegamos a una contradicción. Concluimos que $\overline{V} \subset U$.

3. Suponga que (X, τ) es un compacto de Hausdorff, $p \in X$ y existe una familia enumerable $\{U_n : n \in \omega\} \subseteq \tau$ tal que $\bigcap_{n \in \omega} U_n = \{p\}$. Demuestre que X es primero contable en p.

Demostración. La idea central de esta demostración fue aportada por Gloria Buritica y la construcción de la familia fue dada por Santiago Cortés.

Construya recursivamente una familia V_n de vecindades de p de la siguiente manera. V_1 será un vecindario de p tal que $\overline{V_1} \subseteq U_1$. Nótese que esta vecindad existe por el punto anterior.

Ahora V_n será un vecindario de p tal que $\overline{V_n} \subseteq V_{n-1} \cap U_n$, que de nuevo existe por el punto 2. Obsérvese que $V_{n+1} \subseteq V_n$ por lo que V_n forman una cadena, es decir un orden lineal completo bajo contenencias.

Si suponemos por contradicción que este no es el caso entonces tenemos que existe algún vecindario U de p tal que para todo $n \in \omega$, $V_n \not\subseteq U$. Claramente si esto se cumple entonces $\overline{V_n} \not\subseteq U$ y entonces para todo n, $\overline{V_n} \setminus U \neq \emptyset$ es cerrado y por lo tanto compacto. Ahora obsérvese que cualquier intersección finita $\bigcap_{n \in S} \overline{V_n} \setminus U$, donde $S \subseteq \omega$ es finito, es no vacía. Se puede tomar N el máximo $n \in S$ pues S es finito. Y como $\overline{V_N} \setminus U \neq \emptyset$ podemos tomar un elemento x. Como para cualquier $n \leq N$ se cumple que $V_N \subseteq V_n$ concluimos que para todo $n \in S$ $x \in \overline{V_n} \setminus U$. Por lo tanto $x \in \bigcap_{n \in S} \overline{V_n} \setminus U$. Luego concluimos que $\bigcap_{n \in \omega} \overline{V_n} \setminus U \subseteq U_n$. Luego $\bigcap_{n \in \omega} \overline{V_n} \setminus U \subseteq \bigcap_{n \in \omega} U_n = \{p\}$. Luego concluimos que $\bigcap_{n \in \omega} \overline{V_n} \setminus U = \{p\}$ pero esto es una contradicción porque $p \in U$ y por lo tanto no esta en ningun conjunto $V_n \setminus U$. Luego p no esta en la intersección.

4. Sea X un espacio compacto de Hausdorff y sea $\{x_n\}_{n\in\mathbb{N}}$ una sucesión arbitraria de puntos en X. Muestre que la función $f:\beta\mathbb{N}\to X$ definida por

$$f(\mathcal{U}) = \lim_{n \to \mathcal{U}} x_n$$

es continua.

Demostración. El teorema visto en clase que toda secuencia en un espacio compacto de Hausdorff cuando n converge a un filtro converge y sólo converge a un único punto nos garantiza que la función está bien definida.

Ahora para demostrar que es continua primero demostramos el siguiente Lema

Lema 1. Sea \mathcal{U} un ultrafiltro $y\{x_n\}$ una sucesión en X. Si U es un abierto en X tal que $N_U = \{n \in \mathbb{N} : x_n \in U\} \in \mathcal{U}$ entonces $x = \lim_{n \to \mathcal{U}} x_n \in \overline{\mathcal{U}}$.

Demostración. Suponga por contradicción que $x \notin \overline{U}$. Entonces existe un vecindario V de x tal que $U \cap V = \emptyset$. Pero por definición de convergencia $N_V = \{n \in \mathbb{N} : x_n \in V\} \in \mathcal{U}$. Pero N_U y N_V son disyuntos y como ambos pertenecen al ultrafiltro, el vacío también perteneceria al vacío lo cual es una contradicción.

Ahora para demostrar el enunciado tome un conjunto abierto U y veamos que $f^{-1}(U)$ es abierta. Tome cualquier ultrafiltro $\mathcal{U} \in f^{-1}(U)$. Sea $x = \lim_{n \to \mathcal{U}} x_n$. Por el punto 2 existe un vecindario V de x tal que $\overline{V} \subseteq U$. Entonces si tomamos $N_V = \{n \in \mathbb{N} : x_n \in V\}$ el básico $[N_V]$ es un vecindario de \mathcal{U} contenido en $f^{-1}(U)$.

Claramente $\mathcal{U} \in [N_V]$ porque V es un vecindario de x. Además si tomamos cualquier filtro $\mathcal{U}' \in [N_V]$, por el lema tenemos que $\lim_{n \to \mathcal{U}'} x_n \in \overline{V} \subseteq U$. Por lo tanto, $[N_V] \in f^{-1}(U)$.

5. Sea K un subespacio compacto de la línea de Sogenfrey \mathbb{R}_{ℓ} . Muestre que K es a lo sumo enumerable.

Demostración. Primero vamos a demostrar que todo elemento en K exceptuando el mínimo si existe tiene un predecesor inmediato. Suponga por contradicción que este no es el caso. Entonces existe un elemento a diferente del mínimo tal que para todo b < a existe un elemento c tal que b < c < a. Entonces podemos construir una cadena de elemento infinita de elementos menores que a y mayores a b de manera recursiva. Tome $x_1 = b$ y x_n tal que $x_{n-1} < x_n < a$ que siempre se puede encontrar por nuestras hipótesis. Entonces tome la cobertura abierta dada por $\{[x_n, x_{n+1}) : n \in \omega\} \cup \{((-\infty, x_1), [a, \infty)\}$. Notese que es infinita y disyunta. Entonces no existe una subcobertura finita porque no podemos quitar siquiera uno de los intervalos de la

forma $[x_n, x_{n+1})$ pues ningun otro abierto en la cobertura cubre esa porción. Llegamos a una contradicción con la compacidad de K, esto demuestra la afirmación.

Ahora para demostrar que hay a lo sumo enumerables puntos en K. Tome $K\backslash M$ donde $M=\{m\}$ donde m es el mínimo o si no existe entonces $M=\emptyset$. Todo elemento $k\in K\backslash M$ tiene un predecesor inmediato. Denotemos a este predecesor por k-1. Entonces para todo k existe un conjunto (k-1,k) tal que si $k_1\neq k_2$ entonces $(k_1-1,k_1)\cap (k_2-1,k_2)=\emptyset$. Como los racionales son densos en $\mathbb Q$ y estos conjuntos pertenecen a la topología usual de $\mathbb R$ concluimos que en cada (k-1,k) existe un $q\in \mathbb Q$ contenido en ese intervalo. Concluimos entonces que hay una función inyectiva entre $f:K\backslash M\to \mathbb Q$. Luego, $|K\backslash M|\leq |\mathbb Q|=\aleph_0$. Y pues como M tiene a lo sumo un elemento concluimos que $|K|=|K\backslash M|\leq \aleph_0$.