Fler övningsexempel på vektorer

1. Vektorerna \vec{u} = (3,2) och \vec{v} = (4,6) är givna

Bestäm koordinaterna för

- a) $\overrightarrow{u} + \overrightarrow{v}$
- c) \overrightarrow{u} \overrightarrow{v}
- b) $2\overrightarrow{u} + 3\overrightarrow{v}$ d) $-2\overrightarrow{u} 4\overrightarrow{v}$
- 2. Vektorerna $\vec{a} = (1,4)$, $\vec{b} = (-4,2)$ och $\vec{c} = (3,-4)$ är givna

Bestäm koordinaterna för

- a) $\vec{a} + \vec{b} + \vec{c}$
- c) $2\vec{a} + 4\vec{b}$
- b) \vec{a} \vec{b} \vec{c}
- d) $2\vec{a}$ $4\vec{b}$
- 3. Vektorerna \vec{a} = (2,1), \vec{b} = (1,-2) är givna

Bestäm i exakt form längden av vektorerna

- a) \vec{a}
- c) \vec{a} \vec{b}
- b) $3\vec{a} + \vec{b}$
- d) $3\vec{a}$ $4\vec{b}$
- 4. Lös ekvationerna, dvs ange x och y.
 - a) (x, y) = 5(3, 1) + 2(4, -5)
 - b) (15, 12) = (x, 10) + (23, y)
- 5. Om $\vec{u} = \mathbf{k} \cdot \vec{v}$, så är vektorerna \vec{u} och \vec{v} parallella. Vilka av följande vektorer är parallella med \vec{u} = (2,-3)?
 - a) (6, -9)
- c) (10, 15)
- b) (-8, 16)
- d) (-12, 18)
- 6) Vektorerna \vec{u} = (-2, 3) och \vec{v} = (3, -1) är givna

Bestäm talen a och b så att a \overrightarrow{u} + \overrightarrow{v} = (0, b)

FACIT

- 1 a) (7,8)
- c) (-1, -4)
- b) (18,22)
- d) (-22, -28)
- 2 a) (0,2)
- c) (-14, 16)
- b) (2,6)
- d) 18, 0)

3 a) $\sqrt{5}$

- c) $\sqrt{10}$
- b) $\sqrt{50}$
- d) $\sqrt{125}$
- 4 a) x = 23 y = -5
 - b) x = -8 y = 2
- 5 a) och d)

Motivering:

(6, -9) = 3(2, -+3) och (-12, 18) = -6(2,3)

6 a = 1,5 och b = 3,5

Ledtråd:

Lös ekvationen -2a + 3 = 0