Trabajo práctico – Inteligencia Artificial (MCT5738)

Instrucciones de entrega

Entrega:

Vía correo electrónico.

Formato de entrega:

Enviar los archivos **.m** correspondientes a cada función creada en un archivo comprimido **cedula_nombre_apellido.zip** según corresponda.

Dirección de correo para entrega:

guidovalenzano@ieee.org

Asunto del correo electrónico:

«Trabajo Práctico - Inteligencia Artificial - Nombre Apellido», sin comillas.

Fecha de entrega:

Jueves 6 de abril de 2017, hasta las 11:59 horas.

Tema 1 (10 %)

Escribir una función fuzzyTri en lenguaje M que permita determinar el grado de pertenencia $\mu(x)$ de una variable x, suponiendo que la función de pertenencia es triangular con parámetros a_1 , a_2 , y a_3 . Estos parámetros son pasados a la función en forma de **vector fila**.

Tema 2 (10 %)

Escribir una función fuzzyInv en lenguaje M que calcule la inversa del tema anterior. Es decir, dado un grado de pertenencia $\mu(x) > 0$ y un **vector fila** $p = \begin{bmatrix} a_1 & a_2 & a_3 \end{bmatrix}$, devuelva un conjunto de valores u, v tales que $\mu(u) = \mu(v) = \mu(x)$.

Tema 3 (10 %)

Escribir una función fuzzyInput en lenguaje M que permita fuzzificar la variable de entrada x y devuelva un **vector fila** \tilde{x}_f con los grados de pertenencia correspondiente a cada valor difuso A, B, \ldots, N en s. En la matriz s, cada **fila** corresponde a los elementos a_1 , a_2 y a_3 de una función triangular que caracteriza al valor difuso. **Observación:** utilizar la función del Tema 1.

Tema 4 (10 %)

Escribir una función defuzzy en lenguaje M que permita defuzzificar una salida difusa \tilde{z}_f utilizando el método de la altura (también llamado promedio ponderado). La función recibe un **vector fila** \tilde{z}_f donde cada elemento representa el grado de pertenencia correspondiente a cada valor difuso A, B, \ldots, N en s. En la matriz s, cada **fila** corresponde a los elementos a_1, a_2 y a_3 de una función triangular que caracteriza al valor difuso. **Observación:** en el método de la altura es posible que el denominador se haga cero. Utilizar una sentencia **if-else** para que $\tilde{z}_f = 0$ en dicho caso.

Tema 5 (60 %)

Dados dos **vectores fila** \tilde{x}_f y \tilde{y}_f correspondientes a entradas difusas x e y. Asuma que las mismas cuentan con el **mismo número** de valores difusos, es decir:

Dada además una matriz r correspondiente a las reglas, de forma que \tilde{x} varía en las columnas e \tilde{y} varía en las filas, y donde cada valor en $r(i,j) = r(\tilde{y}_f(i), \tilde{x}_f(j))$ está vinculado a un valor difuso correspondiente a la salida difusa $\tilde{z}_f = \begin{bmatrix} \mu_1(z) & \mu_2(z) & \mu_3(z) & \dots & \mu_n(z) \end{bmatrix}$. Como por ejemplo:

$$r = \begin{bmatrix} 1 & 1 & 2 & 3 & 4 \\ 1 & 1 & 3 & 4 & 4 \\ 1 & 2 & 3 & 4 & 5 \\ 2 & 2 & 3 & 5 & 5 \\ 2 & 3 & 4 & 5 & 5 \end{bmatrix}$$

Escribir una función fuzzyInference que, utilizando el método de inferencia Mamdani y los operadores \max y \min , determine las reglas activadas y devuelva un **vector fila** correspondiente a los grados de pertenencia en \tilde{z}_f .

Observación: las funciones max, min, unique, find y meshgrid pueden llegar a ser útiles.