CS F351: Theory of Computation

16 Sep, 2022

8: More Closure Properties

Scribe: Piyush Mohite

More Closure Properties

0.1 Monoid

A tuple (S, \bullet, e) is known as a *monoid*, if:

- -S is a set.
- \bullet : is associative, i.e., $\forall u, v, w \in S, (w \bullet u) \bullet v = w \bullet (u \bullet v)$
- $-e \in S$ is the identity element, i.e., $\forall w \in S, e \bullet w = w \bullet e = w$

Eg: (Σ^*, \bullet, e) is a monoid.

Eg: $(\mathbb{N}, +, 0)$ is a monoid. [Also commutative.]

Eg: $(\{e,a\}, \bullet, e)$ is NOT a monoid. [Because, if we consider 'a' and 'a', we get the concatenation $a \bullet a = aa$, which is not a part of the set $\{e,a\}$, since it has to be $SxS \to S$.]

Specification: (trying to describe what is required in words)

$$\exists x \exists y. (x < y \land R_a(x) \land R_b(y))$$

 $R_a(x)$: Tells us that at the position 'x' in the word, we have the letter 'a'.

 $R_b(y)$: Tells us that at the position 'y' in the word, we have the letter 'b'.

0.2 Homomorphism

A function $h: S_1 \to S_2$ is called a (monoid) homomorphism from (S_1, \bullet_1, e_1) to (S_1, \bullet_1, e_1) , if:

- $h(e_1) = e_2.$
- $\forall u, v \in S_1, h(u \bullet_1 v) = h(u) \bullet_2 h(v).$

Eg: $h: \{a,b\}^* \to \mathbb{N}$ is defined as h(w) = |w| is a homomorphism from (Σ^*, \bullet, e) to $(\mathbb{N}, +, 0)$.

Theorem 1. Let h is a homomorphism from (Σ^*, \bullet, e) to (Γ^*, \bullet, e) . Then:

- 1. If $L \subset \Sigma^*$ is regular, then $h(L) \subseteq \Gamma^*$ is regular. $[h(L) := \{h(w) | w \in L\}]$
- 2. If $L \subset \Gamma^*$ is regular, then $h^-1(L) \subseteq \Gamma^*$ is regular. $[h(L) := \{w \in \Sigma | h(w) \in L\}]$