Inequalities I: Tedious Techniques

Reid Barton

June 16, 2003

1. (IMO '95) Let a, b, c be positive real numbers with abc = 1. Prove that

$$\frac{1}{a^3(b+c)} + \frac{1}{b^3(c+a)} + \frac{1}{c^3(a+b)} \ge \frac{3}{2}.$$

2. (USAMO '03) Let a, b, c be positive real numbers. Prove that

$$\frac{(2a+b+c)^2}{2a^2+(b+c)^2} + \frac{(2b+c+a)^2}{2b^2+(c+a)^2} + \frac{(2c+a+b)^2}{2c^2+(a+b)^2} \le 8.$$

3. (Bulgaria '97) Let a, b, c be positive real numbers such that abc = 1. Prove that

$$\frac{1}{1+a+b} + \frac{1}{1+b+c} + \frac{1}{1+c+a} \le \frac{1}{2+a} + \frac{1}{2+b} + \frac{1}{2+c}.$$

4. (USAMO '98) Let a_0, a_1, \ldots, a_n be numbers from the interval $(0, \pi/2)$ such that

$$\tan(a_0 - \frac{\pi}{4}) + \tan(a_1 - \frac{\pi}{4}) + \dots + \tan(a_n - \frac{\pi}{4}) \ge n - 1.$$

Prove that

$$\tan a_0 \tan a_1 \cdots \tan a_n \ge n^{n+1}.$$

5. (China '97) Let $x_1, x_2, \ldots, x_{1997}$ be real numbers satisfying the following conditions:

(a)
$$-\frac{1}{\sqrt{3}} \le x_i \le \sqrt{3}$$
 for $i = 1, 2, \dots, 1997$;

(b)
$$x_1 + x_2 + \dots + x_{1997} = -318\sqrt{3}$$
.

6. Find the maximum number of edges a k-partite graph on n edges can contain.

7. (IMO '99) Let $n \geq 2$ be a fixed integer. Find the smallest constant C such that for all nonnegative reals x_1, \ldots, x_n ,

$$\sum_{1 \le i < j \le n} x_i x_j (x_i^2 + x_j^2) \le C \left(\sum_{1 \le i \le n} x_i\right)^4.$$

Determine when equality occurs.

8. (Vietnam '96) Let a, b, c, d be four nonnegative real numbers satisfying the condition

$$2(ab + ac + ad + bc + bd + cd) + abc + abd + acd + bcd = 16.$$

Prove that

$$a+b+c+d \ge \frac{2}{3}(ab+ac+ad+bc+bd+cd)$$

and determine when equality holds.