MATH 3175 Notes

Xin Guan

1. 01.22

(a) Definition: 7.1

Function $f: X \to Y$ is bijection if f is both surjection(on to) and injection (one to one)

(b) Theorem: 7.2

 $f: X \to Y$ is bijection \Leftrightarrow

 $\exists g: Y \to X \text{ s.t. } g \circ f = id_x, f \circ g = id_y \ (id_x \text{ means identity})$

Such g is called the inverse of f. Denoted by f^{-1}

- (c) Recall:
 - Composition of two injective functions is injective.
 - o Composition of two surjective functions is surjective.
 - Composition of two bijective functions is bijective.
- (d) Definition: 7.4 Permutation:

Permutation on set *X* is a bijection $f: X \to X$

- (e) prop 7.5
 - i. if $f: X \to X$ is a permutation then $\exists f^{-1}: X \to X$ which is also permutation.
 - ii. composition of two permutation is again a permutation.
- (f) Definition: 7.6

if $X = \{1, 2, ..., n\}$ then, $S_n := \{\text{all permutation on } X\}$

(g) EX 7.7

$$\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 1 & 2 & 5 \end{pmatrix}$$

$$\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 1 & 2 & 5 \end{pmatrix}$$
$$\beta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 1 & 4 & 3 & 2 \end{pmatrix}$$

Find $\alpha\beta$ (composition of α and β), α^{-1}

Solution:

$$(\alpha\beta)(1) = \alpha(\beta(1)) = \alpha(5) = 5$$

$$(\alpha\beta)(2) = \alpha(\beta(2)) = \alpha(1) = 3$$

$$(\alpha\beta)(3) = \alpha(\beta(3)) = \alpha(4) = 2$$

$$(\alpha\beta)(4) = \alpha(\beta(4)) = \alpha(5) = 1$$

$$(\alpha\beta)(5) = \alpha(\beta(5)) = \alpha(2) = 4$$

Then,
$$\alpha \beta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 3 & 2 & 1 & 4 \end{pmatrix}$$

$$\alpha^{-1} = \begin{pmatrix} 3 & 4 & 1 & 2 & 5 \\ 1 & 2 & 3 & 4 & 5 \end{pmatrix}$$
rearrange:
$$\alpha^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 1 & 2 & 5 \end{pmatrix}$$

(h) Homework: 2.1 9(b)

 $g : \mathbb{Z}_8 \Rightarrow \mathbb{Z}_1 2$, $g([x]_8) = [6x]_1 2$ show that g is well defined. Solution:

Proof. Suppose
$$[x]_8 = [x']_8$$
, WTS $g([x]_8) = g([x']_8)$
Let $[x]_8 = [x']_8$
⇒ $x \equiv x' \pmod{8}$
⇒ $8|(x-x')$
⇒ $x-x' = 8*q$ for some $q \in \mathbb{Z}$
 $x = 8 \cdot q + x'$
By definition of g , $g([x]_8) = [6x]_{12}$
Then, $g([x]_8) = [6(8q + x')]_{12} = [48q + 6x']_{12}$, $g([x']_8) = [6x']_{12}$
WTS $[48q + 6x']_{12} = [6x']_{12}$
Enough to show: $12|(48q + 6x' - 6x')$
Since $48q + 6x' - 6x' = 48q = 12 \cdot 4 \cdot q$
⇒ $12|12 \cdot 4 \cdot q$
⇒ $12|(48q + 6x' - 6x')$
⇒ $g([x]_8) = g([x']_8)$

2. 01.23

(a) Recall:

DEF: Permutation on set X is a bijection $f: X \to X$ NOTE: $S_x = \{\text{permutation on } X\}$, $S_n = \{\text{permutation on } \{1,2,3, \dots n\}\}$ PROPERTIES: composition of permutation is again a permutation.

identity map: $id: X \to X(id(x) = x)$ is a permutation. each permutation f there is an inverse f^{-1} such that $f \circ f^{-1} = id$, $f^{-1} \circ f = id$. (b) Definition: 8.1 Disjoint cycle decomposition

Suppose
$$\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 4 & 8 & 1 & 2 & 6 & 7 & 5 \end{pmatrix}$$

= $(1\ 3\ 8\ 5\ 2\ 4)(6)(7)$ or $(1\ 3\ 8\ 5\ 2\ 4)$ (in cycle notation)

(c) Definition: 8.2

2-cycle
$$\rightarrow$$
 (i j) $i \neq j$
3-cycle \rightarrow (i j k) i,j,k distinct
r-cycle \rightarrow ($i_1, i_2, ..., i_r$), $i_1, i_2, ..., i_r$ distinct

(d) Example: 8.3 $\alpha = (142), \beta = (13) \alpha \rightarrow 3$ -cycle, $\beta \rightarrow 2$ -cycle.

(e) identity permutation in S_n

i.
$$(1)(2)...(n)$$

- ii. fixes $\forall i$
- iii. 1-cycle (*i*) fixes *i*
- iv. often we do not note 1-cycle: $\alpha = (142) = (142)(3)$

v.
$$id = (1) = (1)(2)...(n)$$

(f) Example: 8.5 multiplication of permutation

$$\alpha = (142), \beta = (13), \in S_4$$

compute - write as a product of disjoint cycles (same as Example: 7.7 with new notation)

$$\alpha\beta = (142)(13) = (1342)$$

HOWTO: β : 1 \rightarrow 3, then α : 3 \rightarrow 3, then (13) now.

 β : 3 \rightarrow 1, then α : 1 \rightarrow 4, then (134) now.

 $\beta: 4 \rightarrow 4$, then $\alpha: 4 \rightarrow 2$, then (1342).

Similarly: $\beta \alpha = (13)(142) = (1423)$

- (g) Remark: 8.6 In general $\alpha \beta \neq \beta \alpha$ if α, β are disjoint then $\alpha \beta = \beta \alpha$
- (h) Definition: 8.7

Order of permutation α is the smallest positive integer n such that $\alpha^n = (1)$ where $\alpha^n = \alpha \alpha \dots \alpha$ (there are n α 's)

(i) Example: 8.8

$$\alpha = (142)$$

$$\alpha^2 = \alpha \alpha = (142)(142) = (124)$$

$$\alpha^3 = \alpha \alpha \alpha = (142)(142)(142) = (142)(124) = (1)(2)(4) = (1)$$

Then $|\alpha| = 3$. Order of α is 3.

$$\beta = (13)$$

$$\beta^2 = (13)(13) = (1)$$

Then $|\beta| = 2$

- (j) Prop: 8.10 Order of an r-cycle is r
- (k) Example: $8.11 \alpha = (143)(25)$ $|\alpha| = LCM(|(143)|, |(25)|) = LCM(3, 2) = 6$
- (1) Prop: 8.12 Let α , β be two disgoint permutation. Then $|\alpha\beta| = LCM(|\alpha|, |\beta|)$
- (m) Possible Disjoint Cycles

	, ,			
Partition of	of 6 Disjoint cycles	Example	Order	# different permutations
6	6 cycle	(132654)	6	$\frac{6!}{6} = 5!$
5 + 1	5 cycle, 1 cycle	(13465)(2)	5	$\binom{6}{5} \frac{5!}{5} \frac{1!}{1} = \binom{6}{5} \cdot 4!$
4 + 2	4 cycle, 2 cycle	(1354)(26)	4	$\binom{6}{4}\binom{2}{2}\frac{4!}{4}\frac{2!}{2}$
4 + 1 + 1	(4,1,1)	(1354)(2)(6)	4	$\binom{6}{4} \frac{4!}{4} \binom{2}{1} \frac{2!}{2!} \binom{1}{1} \frac{1!}{1!} \frac{1}{2!}$

NOTE: We need to divide by the order since (123) = (231) = (312). We need to eliminate repeative terms.

Also, we need to eliminate possible arrangement of cycles of the same length. In (4,1,1) the 1 cycles can appear in different orders but representing the same disjoint cycles.

Notation: (6), (5,1), (4,2), (4,1,1), (3,3), (3,2,1), (3,1,1,1), (2,2,2), (2,2,1,1), (2,1,1,1,1), (1,1,1,1,1,1)

3. 01.27 GROUPS!

(a) Definition: 9.11 G set

i.
$$G \times G \rightarrow *G$$
 binary operation: $(x, y) \rightarrow x * y$

$$(x*y)*z = x*(y*z), \forall x, y, z \in G$$

iii.
$$\exists e \in G$$
 is identity s.t. $e * x = x, x * e = x, \forall x \in G$

iv.
$$\forall x \in G, \exists y \in Gs.t.x * y = e, y * x = e$$
 and y is called inverse of x . (it is not necessarily unique)

v.
$$x * y = y * x \forall x, y \in G$$

If only the **first** 2 properties hold, it is called **semigroups**.

If only the **first 3** properties hold, it is called **monoid**.

If only the **first** 4 properties hold, it is called **group**.

If only the all properties hold, it is called Commutative group (Abelian group).

(b) Examples:

i.
$$(\mathbb{Z},+)$$

A.
$$x, y \in \mathbb{Z}, x + y \in \mathbb{Z}$$

B.
$$(x + y) + z = x + (y + z)$$

C.
$$x + 0 = x, 0 + x = x, \forall x \in \mathbb{Z}$$
 therefore $e = 0$

D.
$$x + y = 0, y + x = 0 \rightarrow y = -x$$

E.
$$x + y = y + x$$

Then, $(\mathbb{Z}, +)$ is **Abelian group**

ii.
$$(\mathbb{Z},\cdot)$$

A.
$$x, y \in \mathbb{Z}, x \cdot y \in \mathbb{Z}$$

B.
$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

C.
$$x \cdot 1 = x, 1 \cdot x = x, \forall x \in \mathbb{Z}$$
 therefore $e = 1$

D.
$$x \cdot y = 1$$
, $y \cdot x = 1 \rightarrow NO$ inverse in general. $\{1,-1\}$ have inverse

$$E. \ x \cdot y = y \cdot x$$

Then, $(\mathbb{Z}, +)$ is a **commutative monoid** but not a **group**

iii.
$$(\mathbb{Z}, -)$$

A.
$$x, y \in \mathbb{Z}, x - y \in \mathbb{Z}$$

B.
$$(x-y)-z \neq x-(y-z)$$
 example: $2-(1-5) \neq (2-1)-5$

Then, $(\mathbb{Z}, +)$ is not even a **semigroup**.

We don't need to check following properties since it does not have an operation. All the following properties are target at the operation.

iv.
$$(\mathbb{Z}_6, +_6)$$

A.
$$[x]_6, [y]_6 \in \mathbb{Z}_6, [x]_6 + [y]_6 = [x+y]_6 \in \mathbb{Z}_6$$

B.
$$(x + y) + z = x + (y + z)$$

C.
$$e = [0]_6$$

D. inverse:
$$[-x]_6 + [x_6] = e$$

E.
$$[x]_6 + [y]_6 = [y]_6 + [x]_6$$

(\mathbb{Z}_6 , +₆) is **Abelian group**

- v. (\mathbb{Z}_6,\cdot_6)
 - A. $[x]_6, [y]_6 \in \mathbb{Z}_6, [x]_6 \cdot [y]_6 = [x \cdot y]_6 \in \mathbb{Z}_6$
 - B. works
 - C. $e = [1]_6$
 - D. y does not always exists. only when gcd(x, 6) = 1 inverse exists.
 - E. $[x]_6 \cdot [y]_6 = [y]_6 \cdot [x]_6$
 - $(\mathbb{Z}_6, +_6)$ is **commutative monoid** but not a **group**
- vi. $(\mathbb{Z}_6^{\times}, \cdot_6)$

$$\mathbb{Z}_6^{\times} = \{ [x]_6 \in \mathbb{Z}_6 | gcd(x, 6) = 1 \}$$

$$\mathbb{Z}_6^{\times} = \{[1]_6, [5]_6\}$$

- A. $[x]_6, [y]_6 \in \mathbb{Z}_6, [x]_6 \cdot [y]_6 = [x \cdot y]_6 \in \mathbb{Z}_6$
- B. works
- C. $e = [1]_6$
- D. holds!
- E. $[x]_6 \cdot [y]_6 = [y]_6 \cdot [x]_6$ $(\mathbb{Z}_6^{\times}, +_6)$ is **Abelian group**
- vii. $(M_2(\mathbb{R}), +), M_2(\mathbb{R}) = M \in \mathbb{R}^{2 \times 2}$
 - A. Yes, there is a closed binary operation.
 - B. associate law is inherted from +
 - C. $e = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$
 - D. inverses exist.
 - E. commutative property holds.

$$(M_2(\mathbb{R}),+)$$
 is **Abelian group**

- viii. $(M_2(\mathbb{R}), \cdot)$
 - A. Yes, there is a closed binary operation.
 - B. (AB)C = A(BC)

$$C. e = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

- D. inverses not necessaily exist. only $det(x) \neq 0$
- E. commutative property dose not hold.

$$(M_2(\mathbb{R}), +)$$
 is monoid

- ix. $(GL_2(\mathbb{R}), \cdot)$ GL: general linear group determinants is $\neq 0$
 - A. $det(AB) = det(A)det(B) \neq 0$
 - B. (AB)C = A(BC)
 - C. $e = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
 - D. inverse exists
 - E. $AB \neq BA$ in general $(GL_2(\mathbb{R}), \cdot)$ is **Abelian group**
- $\mathbf{x}.~(S_3,\cdot)$

$$S_3 = \{(123), (132), (12), (13), (23), (1)\}$$

A.
$$\alpha \cdot \beta = \alpha \beta$$

B. associative law good

C. e = (1)

D. inverse exists $(123)^{-1} = (321)...$

4. 01.29

(a) Recall: 10.2

monoids(prop 1,2,3) \subseteq semigroups (prop 1,2) groups(prop 1,2,3,4) \subseteq monoids(prop 1,2,3) Abelian groups(prop 1,2,3,4,5) \subseteq groups(prop 1,2,3,4)

(b) 10.3 Let G be a monoid, then G has a unique identity element e

Proof. By definition of monoid, $\exists e \in G \text{ s.t } ex = x, xe = x, \forall x \in G$ Suppose that e and e' are identity of G. i.e ex = x, xe = x, e'x = x, xe' = xWTS e = e'

e = ee'(e' is identity) = e'(e is identity)

NOTE: we are using symmetric and transitive property of =

(c) Prop: 10.4

Leg *G* be a group. Let $x \in G$ then $\exists ! y \in G$ s.t. xy = e and yx = e

Proof. let $x \in G$ by definition, $\exists y \in G$ s.t. xy = e, yx = e Suppose y and $y' \in G$ s.t. xy = e, yx = e; xy' = e, y'x = e WTS y = y'

by assumption:

$$xy = e$$

operate y' on the left:

$$y'(xy) = y'e$$

associate law:

$$(y'x)y = y'e$$

by assumption:

$$y = y'e$$

property of e:

$$y = y'$$

Therefore, $\exists ! y \in G \text{ s.t. } xy = e \text{ and } yx = e$

(d) Prop: 10.5

Let G be a group then cancellation laws hold. i.e.

$$ax = ay \Rightarrow x = y$$

$$xa = ya \Rightarrow x = y$$

Proof.

$$ax = ay$$

Let a^{-1} be the inverse of a, then operate a^{-1} on both sides.

$$a^{-1}(ax) = a^{-1}(ay)$$

associative law:

$$(a^{-1}a)x = (a^{-1}a)y$$

property of inverse:

$$ex = ey$$

property of identity:

$$x = y$$

Therefore $ax = ay \Rightarrow x = y$ similarly, $xa = ya \Rightarrow x = y$

(e) Definition: 10.6 Subgroup

Let *G* be a group. A subgroup of *G* is *H* if:

- $H \subset G$ is a subset of G
- H is a group under the same operation. i.e. (H,*) is a group
- (f) Example: 10.7

$$G = (Z, +), H = (3Z, +)$$

(g) Example: 10.8

$$G = (\mathbf{Z}_6, +_6), H = (3\mathbf{Z}, +)$$

$$H = (\{[2], [4], [0]\}, +_6)$$

Need to show: 1. H is a subset 2. $(H,+_6)$ is a group

Just write a cayley table.

5. 01.30

(a) Definition: 11.1

Let (G,*) be a group, then H is a subgroup of G if

- $H \subseteq G$, H is a subset of G
- (*H*,*) is a group.
- (b) Example: 11.2

$$G=S_3=\{(1),(123),(132),(12),(13),(23)\}$$

Operation - multiplication of permutation.

 $H = \{(1), (123), (132)\}$ is a subgroup of G

H is a proper subgroup of $G \Leftrightarrow H \neq G$

- $S_0 H \subset G$
- S_{00} H is nonempty (i.e $H \neq \emptyset$) Usually, we check for identity.
- S_1 H is closed under operation
- S_2 H has inverse

How To Check:

- H is a subset of G: by def of elements of H
- H is a group under operation: 1. closed 2. associative 3. identity 4. inverse

When checking small sets, just use Cayley Table:

	(1)	(123)	(132)
(1)	(1)	(123)	(132)
(123)	(123)	(132)	(1)
(132)	(132)	(1)	(123)

It is closed. Identity: e = (1). Inverse exists.

(c) Remark: 11.3

Let (G,*) be a group then (G,*) is a subgroup of itself.

(d) Definition: 11.4

Proper subgroup of *G* is a subgroup *H* s.t. $H \neq G$

- 6. 02.03
 - (a) Remark: 12.2 We proved that if *G* is a group, $x \in G$, then $\exists!$ inverse $y \in G$
 - (b) Prop: 12.3

Leg *G* be a group, let $x \in G$. If xy = e, then $y = x^{-1}$. i.e. If xy = e, then yx = e

• since G is a group $\exists ! x^{-1} \in G$, multiply by x^{-1} on the left.

$$x^{-1}(xy) = x^{-1}e$$

$$x^{-1}(xy) = (x^{-1}x)y = ey = y = x^{-1}$$

(c) 12.4 Restating 12.3:

Let *G* be a group, $x \in G$, it is enough to check xy = e to claim that $y = x^{-1}$

- (d) 12.5 Let G be a group. Suppose $x^n = e$ for some n postive integer. Then $x^{-1} = x^{n-1}$.
- (e) Definition: 12.6 Let *G* be a group. Let $x \in G$ then order of x, denoted by |x| is the smallest positive integer n s.t. $x^n = e$. If such n does not exist then $|x| = \infty$
- (f) Definition: 12.7

G is a Group, $x \in G$.

i. $x^n := xxx...x$ (n-times) if n is positive integer.

ii. $x^0 := e$

iii. x^{-1} :=the inverse

iv. $x^{-n} := (x^{-1})^n = (x^n)^{-1}$

Then x^n is defined on \mathbb{Z}

(g) Prop: 12.8 *G* a group, $x \in G$ then $x^n x^m = x^{n+m}, \forall n, m \in \mathbb{Z}$

Proof. • *n, m* positive integer

 $x^n x^m = x \dots x$ (n-times) $x \dots x$ (m-times) $= x \dots x$ (n+m times)

Or use induction.

• ...

Just use definition 12.7 to check all.

- (h) H is a subgroup of G if
 - *H* is a subset of G
 - $e \in H$ (check for not empty)
 - $a, b \in H$ then $ab \in H$
 - $a \in H$ then $a^{-1} \in H$
- (i) Remark: 12.10 If *H* is finite, then it is enough to check:
 - *H* is subset of *G*
 - *H* closed under operation

Proof. $x \in H$ then we have to take x, x^1, x^2, \dots, x^n since we are closed under operation.

H is finite $\Rightarrow \exists m, n \text{ s.t. } x^n = x^m$ Suppose $n \ge m, x^n = x^m$,

$$x^{n} = x^{m}x^{n-m} = x^{m}$$

$$\Rightarrow x^{m}x^{n-m} = x^{m}e$$

$$\Rightarrow x^{n-m} = e$$

Then it guarantees that there is identity in H

- (j) Definition: 12.12 *G* a group, $x \in G$ $\langle x \rangle := \{x^n | n \in \mathbb{Z}\}$
- (k) Prop: 12.13 < x >is a subgroup of G

Proof. 1. WTS $< x > \subset G$

- Positive power: *G* is closed, then $x^2 = xx$ then x^2 is in *G* By induction, x^n is in *G* for all positive n.
- 0 power: $x^0 = e$, e is in G since G is a group.
- negative power: x^{-1} is in G, then x^{-n} is in G (the same reason as the positive powers)

Then $\langle x \rangle \subset G$

2. WTS $a, b \in \langle x \rangle$, then $ab \in \langle x \rangle$ $a \in \langle x \rangle \Rightarrow a = x^n, n \in \mathbb{Z}$ $b \in \langle x \rangle \Rightarrow b = x^m, m \in \mathbb{Z} \Rightarrow ab = x^n x^m = x^{n+m} \in \langle x \rangle$

$$3.a^{-1} \text{ in } < x >$$

- 7. 02.06
 - (a) Definition: 14.1 Let G be a group, let $x \in G$, then conjugate of x by $g \in G$ is gxg^{-1}
 - (b) Remark: 14.2

- $(13254)^{-1} = (45231)$
- $(13)^{-1} = (31) = (13)$
- $(ii)^{-1} = (ii)$
- $a^n = e \rightarrow a^{-1} = a^{n-1}$
- (c) Example: 14.3 $G = S_4$. Find a conjugate of x = (143) $g = (23) gxg^{-1} = (23)(143)(23)^{-1} = (23)(143)(32) = (142)(3) = (142)$
- (d) Example: Let $G = S_3$ Find all conjugate of x = (13)Since $S_3 = \{(1), (12), ...\}$ $(1)(13)(1)^{-1} = (13)$ $(12)(13)(12)^{-1} = (23)$ $(13)(13)(13)^{-1} = (13)$ $(23)(13)(23)^{-1} = (12)$ $(123)(13)(123)^{-1} = (12)$ $(132)(13)(132)^{-1} = (23)$
- (e) Prop: 14.5 Let $\alpha \in S_n$, all conjugate of α = all permutations which have the none disjoint cycle decomposition as α
- (f) Example: 14.7 $G = S_5$ $\alpha = (142)(35)$ How many conjugates of α are there in S_5 ? i.e. How many permutations in S_5 has the form of (3-cycle)(2-cycle)? $\binom{5}{3}\frac{3!}{3}\binom{2}{2}\frac{2!}{2}$
- (g) Prop: Let G be a group, Let $x \sim y$ if x is conjugate to y. Conjugate is an equivalece relation.
- (h) Definition: 14.9 Let *G* be a group, $x \in G$, then conjugate(x):= $\{gxg^{-1} \mid g \in G\}$
- (i) Remark: 14.10 Conj. class of x = equivelence class of x under $y \sim z$ if y is conj to z
- (j) Example: 14.11 Let $\alpha = (147)(235) \in S_8$. Find the size of conj class (α) .
- (k) |conj. class(α)| = $\binom{8}{3} \frac{3!}{3} \binom{5}{3} \frac{2!}{2} \frac{1}{2!}$
- (1) Example: $14.12 G = (\mathbb{Z}_4, +_4)$ Find all conj of $[2]_4$ [0] + [2] + [-0] = [2] [1] + [2] + [-1] = [1] + [2] + [3] = [2] [2] + [2] + [-2] = [2] [3] + [2] + [-3] = [2]
- (m) Prop: 14.13 Let *G* be an ebelian group. Conj. class(x) = $\{x\}$ |Conj. class(x)| = 1 (property of commutative show that $gxg^{-1} = gg^{-1}x = ex = x$)
- (n) Conj. Class(x) = $\{x\}$ \Rightarrow then x commutes with all $g \in G$ G is disjoint union of its conj classes.
- (o) Definition: 14.15 Let G be a group be H be a subgroup of G. Let $g \in G$. Define $gHg^{-1}:\{ghg^{-1}\mid h\in H\}$ This is called conjugate of H by g.
- (p) Example: 14.16 Let $G = S_3$ let $H = \{(13), (1)\}$. Find conjugate of H by $g = (123)(123)(13)(123)^{-1} = (123)(13)(321) = (1)(23)(321) = (12)(123)(1)(123)^{-1} = (1)$ $gHg^{-1} = \{(12), (1)\}$
- (q) Prop: 14.17 Let G be a goup, Let H be a subgroup of G. Let $g \in G$ then gHg^{-1} is a subgroup of G.

```
0. gHg<sup>-1</sup> is a subset of G.
00. e ∈ gHg<sup>-1</sup>
1. If a, b ∈ gHg<sup>-1</sup>, then ab ∈ gHg<sup>-1</sup>
2. If a ∈ gHg<sup>-1</sup>, then a<sup>-1</sup> ∈ gHg<sup>-1</sup>
• Show gHg<sup>-1</sup> is a subset of G.

∀h ∈ H, g ∈ G, g, h, g<sup>-1</sup> ∈ G, G is closed under operation.

⇒ ghg<sup>-1</sup> ∈ G. Then gHg is a subset of G.
```

• Show $e \in gHg^{-1}$ Since H is a group, $\Rightarrow e \in H$. $geg^{-1} = e \Rightarrow e \in gHg^{-1}$.

Proof. WTS: gHg^{-1} is a subgroup of G

- Show If $a, b \in gHg^{-1}$, then $ab \in gHg^{-1}$ $\exists a', b' \in H$ such that $ga'g^{-1} = a, gb'g^{-1} = b$. $ab = ga'g^{-1}gb'g^{-1} = ga'(g^{-1}g)b'g^{-1} = g(a'b')g^{-1}$ Therefore, $ab \in gHg^{-1}$
- Show If $a \in gHg^{-1}$, then $a^{-1} \in gHg^{-1}$ $\exists a' \in H$ such that $ga'g^{-1} = a$ Since H is a group, $a'^{-1} \in H$ Then, $ga'^{-1}g^{-1} \in gHg^{-1}$. $a \cdot ga'^{-1}g^{-1}$ $= ga'g^{-1}ga'^{-1}g^{-1}$ $= ga'(g^{-1}g)a'^{-1}g^{-1}$ $= ga'ea'^{-1}g^{-1}$ $= ga'a'^{-1}g^{-1}$ $= g(a'a'^{-1})g^{-1}$ $= geg^{-1}$ $= gg^{-1}$ = eTherefore, $a^{-1} = ga'^{-1}g^{-1} \in gHg^{-1}$

8. 02.10 ISOMORPHISMS of GROUPS

- (a) Definition: 15.1 Let G, G' be groups. A function $f: G \to G'$ is called isomorphisms of groups if:
 - f(x*y) = f(x)*f(y)
 - *f* is one to one (injective)
 - *f* is onto (surjective)
- (b) Remark: 15.2

First multiply and then apply f is the same as first apply f and then multiply

(c) Example: 15.3 $G = (S_2, \cdot) = \{(1), (12)\}, G' = (Z_2, +_2) = \{[0]_2, [1]_2\}$ Then $f : (1) \rightarrow [0]_2, (12) \rightarrow [1]_2$ We need to check: $f((1) \cdot (1)) =?f(1) +_2 f(1)$ Check: $f((1) \cdot (1)) = f((1)) = [0]_2$

$$f(1) +_{2} f(1) = [0]_{2} + [0]_{2} = [0]_{2}$$

$$f((1) \cdot (12)) =?f(1) +_{2} f(12)$$
Check: $f((1) \cdot (12)) = f((12)) = [1]_{2}$

$$f(1) +_{2} f(12) = [0]_{2} + [1]_{2} = [1]_{2}$$

$$f((12) \cdot (12)) =?f(12) +_{2} f(12)$$
Check: $f((12) \cdot (12)) = f((1)) = [0]_{2}$

$$f(12) +_{2} f(12) = [1]_{2} + [1]_{2} = [0]_{2}$$

$$f((12) \cdot (1)) =?f(12) +_{2} f(1)$$
Check: $f((12) \cdot (1)) = f((12)) = [1]_{2}$

$$f(12) +_{2} f(1) = [1]_{2} + [0]_{2} = [1]_{2}$$

For small groups, just use cayley tables

S_2	(1)	(2)	Z_2	0	1
$\overline{(1)}$	(1)	(12)	0	0	1
(12)	(12)	(1)	1	1	0

If the cayley tables are the same under the mapping f, then it is isomorphism.

- (d) Example: 15.4 $G = (S_2, \cdot)$, $G' = (Z_2, +_2)$ consider the mapping: $(1) \to [1]_2, (12) \to [0]_2$ Property 2, 3 is trivial, Check the property one. $f((1)(12)) = f((12)) = [0]_2$. while $f(1) + f(12) = [1]_2 + [0]_2 = [1]_2$ Therefore, this mapping is not a isomorphism.
- (e) Example: $15.5 G = (Z_4, +_4), G' = (Z_1^{\times}0, *_10)$ $G = \{[0], [1], [2], [3]\}, G' = \{1, 3, 7, 9\}$ **NOTE:** $G = <[1]_1 >, G' = <3 >.$ Therefore, a possible way to define a map is $[1]_4^i \rightarrow 3^i$. i.e. $[1] \rightarrow 3$ $[1]^2 = [2] \rightarrow 3^2 = 9$ $[1]^3 = [3] \rightarrow 3^3 = 7$ $[1]^4 = [0] \rightarrow 3^4 = 1$
- (f) Definition: 15.6 Let *G* be a group, If *G* is finite then order of G = |G| is defined to be the number of elements in *G*. If *G* is not finite, then $|G| = \infty$
- (g) Prop: 15.7 Suppose $G \cong G'$ i.e. $\exists f : G \to G'$ that is isomorphic. Then |G| = |G'|.
- (h) Prop: 15.8 Suppose $G \cong G'$ Then G is abelian $\Leftrightarrow G'$ is abelian. (which implies that abelian group and non abelian group is not isomorphic)
- (i) Definition: 15.10 A group *G* is cyclic if $G = \langle a \rangle$ for some $a \in G$
- (j) Remark: 15.11 $(Z_4, +_4)$ is cyclic, $(Z_10^{\times}, \cdot_10)$ is cyclic
- (k) Prop: 15.12 if G and G' are cyclic and |G| = |G'| then $G \cong G'$

Proof. idea of proof: G cyclic, $G = \langle a \rangle$, G' cyclic, $G' = \langle a' \rangle$ Then $f: G \to G'$: $a^i \to (a')^i$ Then check f is bijection.

(l) Prop: 15.13 Let $G = (Z_n, +_n) = \{[0], [1] \cdots, [n-1]\}, G' = (Z_n, +_n) = (\{0, 1, 2, \cdots, n-1\}, +_n)$ Then $G \cong G'$ and the isomorphism can be take $[x]_n \to x$

9. 02.12

(a) Definition: 16.1 Order of a group: # of elements in that group.

- (b) Definition: 16.2 Order of an element: smallest positive integer n such that $g^n = e^{-\frac{\pi}{2}}$
- (c) Prop: 16.3 Let $g \in G$, $|\langle g \rangle| = |g|$

```
Proof. \langle g \rangle = \{..., g^{-1}, g^0, g^1, g^2, ...\}
```

 $|g| = n \Rightarrow g^n = e$ n is the smallest positive integer.

Then
$$\langle g \rangle = \{e, g, g^2, \dots, g^{n-1}\}$$

CLAIM: they are all distinct elements

proof: suppose $g^i = g^j$ for some $0 \le i, j \le n - 1$

Suppose $i \le j$

$$g^{-i}g^{i} = g^{-i}g^{j}$$

$$e = g^{j-i}$$

Since $i \le j$, then $j - i \ge 0$

Therefore, i - i = 0

Therefore, j = i

Therefore, $g^i = g^j$

Therefore, for all 0, 1, 2, ..., n-1, g^i are all distinct.

Therefore, g^i are all distinct.

Therefore,
$$|\langle g \rangle| = n \Rightarrow |\langle g \rangle| = |g|$$

- (d) Remark: $16.4 \text{ Let } g \in G \text{ then } \langle g \rangle \text{ is a subgroup of } G.$
- (e) Remark: 16.5 < g > is cyclic group (is a cyclic subgroup of G)
- (f) Theorem: 16.6 Let H be a subgroup of group G then |H| divides |G|
- (g) Example: 16.7 Let G be a group with G = 7, Then the only subgroups of G are H = G or $H = \{e\}$

If H < G is a subgroup of G then |H| divides |G|

Therefore, |H| = 1 or 7.

Therefore, H = G or $H = \{e\}$

(h) Corollary: $16.8 g \in G$, then |g| divides |G|

Proof. $|g| = |\langle g \rangle|$, $\langle g \rangle$ is a subgroup of |G|.

Then $|\langle g \rangle|$ divides |G|.

Then |g| divides |G|.

(i) Let $G = S_3$ let $x \in G$ what are the possible orders of x?

 $|G| = |S_3| = 6$

 \Rightarrow |x| = 1,2,3,6 We know that orders are only 1,2,3. Not all divisors appear as order of elements.

(j) Prop: 16.10 Let *G* be a group, $|G| = n < \infty$ then *G* is cyclic $\Leftrightarrow \exists x \in G, |x| = n$

Proof. Exercise

- (k) 16.11 $G = S_3$ G is not cyclic since there is no element of order |G|.
- (1) Remark: $16.12 < g >= \{g^i\}$

Under addition: (G, +) then $< g >= \{0, g, 2g, 3g, ..., ng\}$

(m) Recall: 16.14

$$G = (Z_1 2, +_1 2)$$
 then $G = \{4, 8, 12 = 0\}$

(n) Example: $16.14 G = (Z_1 2, +_1 2)$, show, *G* is cyclic

Proof. To show *G* is cyclic, we need to find an element of order 12.

1 has order 12 since $\langle 1 \rangle = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 = 0 = e\}$

Then we can say: 1 is a generator of G

Any number that is relatively prime to 12 is a generator of G

1,5,7,11 are generators of G

(o) Definition: 16.15 Let G be a group. Let H be a subgroup. Let $a \in G$. a **left coset** of H in G

$$aH := \{ah \mid h \in H\}$$

NOTE: Not simply mean multiplication. It is the binary operation in the group

(p) Example: 16.16 Let $G = S_3$ Let $H = < (13) > = {(13), (1)}$. Find all left cosets of H

	(13)	(1)
$\overline{(1)}$	(13)	(1)
(12)	(132)	(12)
(13)	(1)	(13)
(23)	(123)	(23)
(123)	(23)	(123)
(132)	(12)	(132)

- Disjoint (or the same) cosets
- $aH = H \Leftrightarrow a \in H$
- a ∈ aH
- $a \in bH \Leftrightarrow aH = bH \Leftrightarrow b \in aH$
- |H| = |aH|
- # of disjoint cosets = $3 = \frac{|G|}{|H|}$
- $G = \cup$ all cosets.

+1 (01.27)