МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №7 по дисциплине «Искусственные нейронные сети»

Тема: Классификация обзоров фильмов

Студентка гр. 8382	 Кузина А.М.
Преподаватель	Жангиров Т.Р

Санкт-Петербург

Цель работы

Классификация последовательностей – это проблема прогнозирующего моделирования, когда у вас есть некоторая последовательность входных данных в пространстве или времени, и задача состоит в том, чтобы предсказать Проблема усложняется категорию ДЛЯ последовательности. последовательности могут различаться по длине, состоять из очень большого словарного запаса входных символов и могут потребовать от модели изучения долгосрочного контекста или зависимостей между символами во входной лабораторной последовательности. В данной работе также будет использоваться датасет IMDb, однако обучение будет проводиться с помощью рекуррентной нейронной сети.

Задачи:

- Ознакомиться с рекуррентными нейронными сетями
- Изучить способы классификации текста
- Ознакомиться с ансамблированием сетей
- Построить ансамбль сетей, который позволит получать точность не менее 97%

Требования:

- 1. Найти набор оптимальных ИНС для классификации текста
- 2. Провести ансамблирование моделей
- 3. Написать функцию/функции, которые позволят загружать текст и получать результат ансамбля сетей
- 4. Провести тестирование сетей на своих текстах (привести в отчете)

Ход работы

Для классификации загружается датасет IMDb. Будем рассматривать 5000 самых часто встречающихся в датасете слов. Для дальнейшего кодирования отзывов необходимо, чтобы они все были одинаковой длины, поэтому короткие последовательности дополним до 500 слов нулями, а длинные – усечем до 500 слов.

Были рассмотрены несколько вариантов моделей сети, для включения в ансамбль, но в итоговый вариант вошли две модели, использованные каждая по два раза:

```
def get model type one(num , max review length ):
    embedding vector length = 32
    model one = Sequential()
    model one.add(layers.Embedding(num , embedding vector length,
input_length=max_review_length_))
    model one.add(layers.Conv1D(filters=32, kernel size=3,
padding='same', activation='relu'))
    model one.add(layers.MaxPooling1D(pool size=2))
    model one.add(layers.LSTM(100))
    model one.add(layers.Dense(1, activation='sigmoid'))
    model one.compile(loss='binary crossentropy', optimizer='adam',
metrics=['accuracy'])
    return model one
def get model type two(num , max review length ):
    embedding vector length = 32
    model two = Sequential()
    model two.add(layers.Embedding(num , embedding vector length,
input_length=max_review_length_))
    model two.add(layers.Conv1D(filters=32, kernel size=3,
padding='same', activation='relu'))
    model two.add(layers.MaxPooling1D(pool size=2))
    model two.add(layers.Dropout(0.2))
    model two.add(layers.LSTM(100))
    model two.add(layers.Dropout(0.2))
    model two.add(layers.Dense(1, activation='sigmoid'))
    model two.compile(loss='binary crossentropy',
optimizer='adam', metrics=['accuracy'])
    return model two
```

Полученные модели были объединены в ансамбль и обучены на различных частях датасета:

```
all_models = [get_model_type_one(num, max_review_length),
get_model_type_one(num, max_review_length), get_model_type_two(num,
max_review_length), get_model_type_two(num, max_review_length)]
k = len(all models)
```

Точность каждой модели отдельно и всего ансамбля:

Model 1 accuracy: 86.16%

Model 2 accuracy: 87.38%

Model 3 accuracy: 85.75%

Model 4 accuracy: 87.70%

Ensemble accuracy: 88.98%

Точность ансамбля в совокупности выше, чем точность каждой модели по отдельности.

Предсказание ансамбля вычисляется как среднее арифметическое предсказаний каждой из модели в отдельности.

Также был реализован функционал обработки пользовательского текста.

Ниже приведены рассмотренные рецензии и предсказание сети по ним:

Отзыв	Оценка сети
Lindsay Lohan is accomplished in the dual role	0.37803984
of twins separated at birth who meet when	
they're 11—and contrive to reunite their	
divorced parents. But the process takes more	
than two hours, during which seemingly	
inconsequential details—like the fact that the	
twins' mother designs bridal gowns—are	
obtrusively emphasized so their significance can	
be revealed later. A remake of the 1961 movie,	
which was based on a story by Erich Kästner,	
this 1998 romantic comedy is mostly boring	
with its cumbersome exposition and close-ups of	
trivial objects scattered throughout lackluster	
montage sequences.	
This film remakes the classic movie very well	0.96257126
with interesting additions and changes that keep	

the viewers engaged and entertained. This is a great movie to watch with the family and can	
make many viewers cry.	
shit	0.4612723
I was praying that this film will be the best film	0.8084070
in history. The best actors play in it, the people	
who created world famous masterpieces were	
engaged in its creation. It takes enormous talent	
to adapt such an amazing book so mediocre, I	
am discouraged	

Были рассмотрены такие же рецензии, как и в предыдущей работе, чтобы сравнить успешность работы различных сетей. Данная сеть справилась с предсказанием эмоции каждого из отзывов немного лучше, чем сеть, рассмотренная в предыдущей работе. Сейчас сеть в первой рецензии менее «категорична» в оценке — как и сам отзыв, во второй рецензии результат настолько же положительный, как и сам отзыв. Третий отзыв сеть стабильно помечает как отрицательный, но с очень небольшим отклонением от середины. Четвертый отзыв сеть продолжает помечать как положительный, но зачастую предсказание ближе к 0.7-0.8, что все еще классифицируется как положительный отзыв, но немного ближе к истине.

Выводы

В данной лабораторной работе была создана и нейронная сеть, предсказывающая эмоциональный окрас рецензии на фильм. Сеть была обучена на датасете IMDB и достигла точности классификации в 89.5%. Также был реализован функционал, позволяющий загружать и классифицировать пользовательские рецензии.

Было проведено ансамблирование нескольких моделей, при этом точность ансамбля превысила точность каждой из сетей по отдельности.