第二次作业

人工智能 CS410 2021年秋季

姓名: 李子龙 学号: 518070910095 日期: 2021年11月12日

题目 1. 尝试比较局部搜索算法(例如爬山法)与系统搜索算法(例如宽度优先搜索、A*算法)。

解. 两者的比较如表 1 所示。

表 1. 比较

	局部搜索算法	系统搜索方法			
定义 特点 复杂性 使用范围	考虑对一个或多个状态进行评价和修改 只使用很少的内存,找到合理的解 取决于解空间的分布与需要解的优性 在很大或无限的状态空间中需要合理解	系统地探索从初始状态开始的路径 能够找到最优解 需要全局扫描 在确定较小的空间中找到最优解			

题目 2. 我们希望使用爬山法解决一些最优化问题。

- (1) 假设我们需要找 $f(x,y,z) = e^x(xy+2z)$ 的最小值,且当前状态下我们有(x,y,z) = (0,1,-1),那么我们需要将当前状态向怎样的方向进行移动、能够在理论上最快靠近极值?(方向用三维元组表示即可,计算过程可以参考多元函数的偏导数求解、最速下降法)。
- (2) 使用爬山法搜索可能会遇到哪些问题? 我们可以使用哪些更好的方法来代替?

解. (1) 计算出梯度向量

$$\nabla f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right) = \left(e^x(xy + 2z + y), e^x x, 2e^x\right)$$

代入当前状态的值就给出了最陡斜面方向

$$\nabla f(0, 1, -1) = (-1, 0, 2)$$

应当是反方向:

$$(1,0,-2)$$

- (2) 爬山法经常陷入困境:
 - 局部最大值
 - 山脊
 - 平原

都会到达无法再取得进展的地点。**随机爬山法**在上山移动中随机地选择下一步**;随机 重启爬山法**通过随机生成初始状态来导引爬山法搜索,直到找到目标,都是非常好的替代。

题目 3. 我们的minimax搜索树如图1所示。

(1) 假如我们的a节点是max节点,请问最后a节点会得到怎样的值?

(2) 假如我们使用 $\alpha - \beta$ 剪枝法进行minimax树的搜索,搜索过程中会从左至右访问相关节点,且a节点是max节点。算法运行过程中会访问多少个节点(包括字母标号的节点与数字标号的叶节点、忽略重复访问)?同时,请写下各节点的访问顺序(例如顺序:"a - c - f - 43")。

图 1: 第三题的对抗搜索树

解. (1) a 为 32, 如图 2 所示。

图 2: 题目3第(1)题

(2) 访问了 12 个节点。

a - c - f - 43

a - c - f - 12

a - c - g - 32

a - c - g - 31

a - b - d - 20

a - b - d - 23

题目 4. 考虑一个这样的CSP问题: 我们需要给变量 X_1, X_2, X_3, X_4 赋值,需要满足以下约束: $(a)X_1 \ge X_2, (b)X_2 > X_3 \text{ or } X_3 - X_2 = 2, (c)X_3 \ne X_4, (d)X_1 \ne X_3$ 。

图 3: 第四题的csp问题

- (1) 根据CSP问题赋值求解的Most constraining variable规则, 我们应该最先尝试给哪个变量赋值?
- (2) 假如我们规定变量变量 X_1, X_2, X_3, X_4 的值域分别为 $D_1 = \{1, 2, 3, 4\}, D_2 = \{3, 4, 5, 8, 9\}, D_3 = \{2, 3, 5, 6, 7, 9\}, D_4 = \{3, 5, 7, 8, 9\}$ 。请问变量 X_1, X_2, X_3, X_4 的哪些弧满足弧相容性(arc consistency)?
- (3) 我们对该CSP问题在当前状态下运行AC3算法,请完成下方表格的步骤1-7。

初始的搜索列: $\{X_2 \to X_1, X_1 \to X_2, X_3 \to X_2, X_2 \to X_3, X_4 \to X_3, X_3 \to X_4, X_3 \to X_1, X_1 \to X_3\}$ 。

步骤	需要检查的弧 $X_i \to X_j$	- 2	添加进入搜索列的弧
0	$X_2 \to X_1$		
1	$X_1 \to X_2$		
2	$X_3 \to X_2$		
3	$X_2 \to X_3$		
4	$X_4 \to X_3$		
5	$X_3 \to X_4$		
6	$X_3 \to X_1$		
7	$X_1 \to X_3$		

解. (1) X_3

- (2) $X_3 \to X_1, X_1 \to X_3, X_2 \to X_3, X_4 \to X_3, X_3 \to X_4$
 - (3) 初始的搜索列: $\{X_2 \to X_1, X_1 \to X_2, X_3 \to X_2, X_2 \to X_3, X_4 \to X_3, X_3 \to X_4, X_3 \to X_1, X_1 \to X_3\}$ 。

步骤	需要检查的弧 $X_i \to X_j$	X_i 值域的变化	添加进入搜索列的弧
0	$X_2 \to X_1$	$X_2 = \{3, 4\}$	无 (因为已经都加入了)
1	$X_1 \to X_2$	$X_1 = \{3, 4\}$	$X_2 \to X_1$
2	$X_3 \to X_2$	$X_3 = \{2, 3, 5, 6\}$	无
3	$X_2 \to X_3$	无变化	无
4	$X_4 \to X_3$	无变化	无
5	$X_3 \to X_4$	无变化	无
6	$X_3 \to X_1$	无变化	无
7	$X_1 \to X_3$	无变化	无