2.1

Problem: Recall that an ordered pair (a, b) can be defined as the set $\{\{a\}, \{a, b\}\}$. Show that (a, b) = (c, d) if and only if a = c and b = d

Solution. Let $L = \{\{a\}, \{a, b\}\}$ and $R = \{c, \{c, d\}\}$. Suppose L = R. Since $\{a\} \in L$, we have $\{a\} \in R$. Thus, $\{a\} = \{c\}$ or $\{a\} = \{c, d\}$.

Case 1: If $\{a\} = \{c\}$, then $a \in \{c\}$, meaning a = c.

Case 2: If $\{a\} = \{c, d\}$, then $c \in \{a\}$, meaning c = a.

Since $\{a, b\} \in L$, we have $\{a, b\} \in R$, meaning $\{a, b\} = \{c\}$ or $\{a, b\} = \{c, d\}$.

Case 3: If $\{a, b\} = \{c\}$, then it must be the case that $\{a\} = \{c, d\}$, meaning a = b = c = d, so b = d.

Case 4: If $\{a, b\} = \{c, d\}$, then it must be the case that $\{a\} = \{c\}$, meaning a = c, and thus b = d.

2.2

Problem: Define the ordered triple (a,b,c) to be the ordered pair ((a,b),c), where the ordered pair is defined as usual. Show that

$$(a_1, b_1, c_1) = (a_2, b_2, c_2)$$

if and only if $a_1 = a_2$, $b_1 = b_2$, and $c_1 = c_2$.

Solution. Since

$$(a_1, b_1, c_1) = (a_2, b_2, c_2)$$

implies

$$((a_1,b_1),c_1)=((a_2,b_2),c_2).$$

this is true if and only if $(a_1, b_1) = (a_2, b_2)$ and $c_1 = c_2$, which is true if and only if $a_1 = a_2$, $b_1 = b_2$, and $c_1 = c_2$.

2.3

Problem: Show that the replacement schema implies the comprehension schema.

Solution. Let $\psi(u, v) = \varphi(v) \wedge u = v$. Then, the replacement schema becomes

$$\forall a \exists b \forall v (v \in b \Leftrightarrow \exists u (u \in a \land \psi(u, v)))$$

$$\forall a \exists b \forall v (v \in b \Leftrightarrow \exists u (u \in a \land \forall u (\varphi(v) \land u = v)))$$

$$\forall a \exists b \forall v (v \in b \Leftrightarrow v \in a \land \varphi(v))$$

2.4

Problem: In this question, we show how the pairing axiom follows from the replacement schema. Let sets a and b be given.

- (a) We originally used the pairing axiom to construct the set $\{\emptyset, \{\emptyset\}\}$. Instead, us the power set axiom.
- (b) Let $\psi(u, v)$ be the formula

$$(u = \emptyset \land v = a) \lor (u \neq \emptyset \land v = b).$$

Show that this is a function-like formula.

(c) Use the replacement schema on the set $\{\emptyset, \{\emptyset\}\}$ and the function-like formula $\psi(\mathfrak{u}, \mathfrak{v})$ to show the existence of the set with elements \mathfrak{a} and \mathfrak{b} .

Solution.

- (a) Consider $\{\emptyset\}$. By the power set axiom, there exists a set c such that c consists of all subsets of $\{\emptyset\}$. Thus, $c = \{\emptyset, \{\emptyset\}\}$.
- (b) Let $\psi(u, v) = (u = \emptyset \land v = a) \lor (u \neq \emptyset \land v = b)$. Then, if $\psi(u, v) = \psi(u, w) = \text{true}$,

$$(u = \emptyset \land v = a) \lor (u \neq \emptyset \land v = b)$$

and

$$(u = \emptyset \land w = a) \lor (u \neq \emptyset \land w = b)$$

If v = b, then $u \neq \emptyset$, implying w = b, and similarly, if v = a, then w = a. Thus, u = w.

(c) Using the replacement schema on $\{\emptyset, \{\emptyset\}\}\$, we see there is a set b such that for $\emptyset \in \{\emptyset, \{\emptyset\}\}\$, $\psi(u, v)$ maps \emptyset to a, and for $\{\emptyset\} \in \{\emptyset, \{\emptyset\}\}\$, $\psi(u, v)$ maps $\{\emptyset\}$ to b.

2.5

Problem:

- (a) Define a relation on the set of ordered pairs of natural numbers as follows: $(a, b) \sim (c, d)$ if a + d = b + c. Show that this is an equivalence relation.
- (b) Let S be the set of ordered pairs of integers with a nonzero second component. Define a relation on S as follows: $(a,b) \sim (c,d)$ if ad = bc. Show that this is an equivalence relation.

Solution.

(a) Reflexivity follows from a = a and b = b, while symmetry follows from the commutativity of addition. Let $(a, b) \sim (c, d)$ and $(c, d) \sim (e, f)$. Then,

$$a + d = b + c \tag{*}$$

$$c + f = d + e. \tag{**}$$

Adding f to both sides of (*), we have

$$a + d + f = b + c + f$$

 $a + d + f = b + d + e$
 $a + f = b + e$,

meaning $(a, b) \sim (e, f)$.

(b) Reflexivity follows from a = a and b = b, while symmetry follows from the commutativity of multiplication.

Let $(a, b) \sim (c, d)$ and $(c, d) \sim (e, f)$. Then, ad = bc and cf = de. Multiplying f on both sides of the first relation, we get

$$adf = bcf$$

$$adf = bde.$$

Since $d \neq 0$, we have

$$af = be$$
,

meaning $(a, b) \sim (e, f)$.

Extra Problem 1

Problem:

- (a) Explain what would go wrong if we defined $(a, b) = \{a, \{b\}\}.$
- (b) Can you figure out why the book defines $(a, b) = \{\{a\}, \{a, b\}\}\$ instead of $\{a, \{a, b\}\}\$.

Solution.

- (a) I don't know how to do this one.
- (b) If we consider (a, b) = (a, b), we must then have $\{a, \{a, b\}\} = \{a, \{a, b\}\}\)$, meaning our cases would yield $a \in \{a, \{a, b\}\}\)$, or $a = \{a, b\}\)$, implying $a \in a$ or $a \in b$. In particular, for $a \in a$, we get a descending membership chain, which ends up requiring the regularity axiom.

Extra Problem 2

Problem: Let s be a set. Use mathematical symbols exclusively to express t, the set of all singleton subsets of s.

Solution.

$$\forall s \exists t \ \forall x \ (x \in t \Leftrightarrow x \in s \land \forall a \ \forall b \ (a \in x \land b \in x \Rightarrow a = b))$$

Extra Problem 3

Problem: Using the ZF Axioms, show that $A \times B$ exists for any sets A and B.

Solution. We know that for all $a \in A$, the pairing axiom allows for the existence of the set $\{a\}$. Similarly, for $a \in A$ and $b \in B$, the pairing axiom allows for creation of the set $\{a,b\}$. In particular, we let $\{a\}$ be shorthand for the pairing axiom applied to $a \in A$, and $\{a,b\}$ be shorthand for the pairing axiom applied to $a \in A$ and $b \in B$.

We can create the element $w \in A \times B$ by applying the pairing axiom to $\{a\}$ and $\{a,b\}$. We let $\{\{a\},\{a,b\}\}$ be shorthand for the pairing axiom applied to $\{a\}$ and $\{a,b\}$.

This gives us

$$\forall A \forall B \exists C \ (w \in C \Leftrightarrow \forall a \forall b \ (a \in A \land b \in B \Rightarrow w = \{\{a\}, \{a, b\}\})).$$

Extra Problem 4

Problem: Show that if A and B are nonempty sets, then $\bigcap (A \cup B) = \bigcap A \cup \bigcap B$.

Solution.

$$\bigcap (A \cup B) = \forall A \forall B \exists C \ \forall x \ (x \in C \land (x \in A \lor x \in B))$$
$$= \forall A \forall B \exists C \ \forall x \ ((x \in C \land x \in A) \lor (x \in C \land x \in B))$$
$$= \bigcap A \cup \bigcap B.$$

Extra Problem 5

Problem: Show there exists a set s such that $x \in s$ if and only if x is a natural number.

Solution.

$$\exists s \, \forall x \left(\underbrace{(x \in s \land x \cup \{x\} \in s)}_{\text{Axiom of Infinity}} \land \forall y \, (y \in s \Rightarrow \exists z \, (y = z \cup \{z\})) \right).$$