2.1 Оператори замикання і взяття внутрішності

Система аксіом, наведена в означенні 1.1 належить радянському математику П.С.Александрову (1925). Проте першу систему аксіом, що визначає топологічну структуру, запропонував польський математик К.Куратовський (1922).

Озн. 2.1. Нехай X — довільна множина. Відображення cl: $2^X \to 2^X$ називається **оператором замикання Куратовського на** X, якщо воно задовольняє наступні умови (аксіоми Куратовського):

K.1. cl($M \cup N$) = cl(M) \cup cl(N) (аддитивність);

 $K.2. M \subset cl(M)$;

K.3. cl(cl(M)) = cl(M) (ідемпотентність);

 $K.4. \operatorname{cl}(\emptyset) = \emptyset.$

Теорема 2.1. Якщо в деякій множині X введено топологію в розумінні Александрова, то відображення cl, що задовольняє умові $cl(M) = \overline{M}$ є оператором Куратовського на X.

Доведення. Неважно помітити, що аксіоми К1–К4 просто співпадають із властивостями замикання, доведеними в теоремі 1.1. ■

Теорема 2.2 (про завдання топології оператором **Куратовського**). Кожний оператор Куратовського cl на довільній множині X задає в X топологію $\tau = \{U \subset X : cl(X \setminus U) = X \setminus U\}$ в розумінні Александрова, до того ж замикання \overline{M} довільної підмножини M із X в цій топології τ збігається з cl(M), тобто $cl(M) = \overline{M}$.

Доведення. Побудуємо сімейство

$$\sigma = \{M \subset X : M = X \setminus U, U \in \tau\},\$$

що складається із всіх можливих доповнень множин із системи τ , тобто таких множин, для яких cl(M) = M. Інакше кажучи, система о складається з нерухомих точок оператора замикання Куратовського. За принципом двоїстості де Моргана, для сімейства о виконуються аксіоми замкненої топології

F1.
$$X,\emptyset \in \sigma$$
.

F2.
$$F_{\alpha}\in\sigma,\ \alpha\in A\Rightarrow\bigcap_{\alpha\in A}F_{\alpha}\in\sigma$$
, де A — довільна множина.
F3. $F_{\alpha}\in\sigma,\ \alpha=1,2,...,n\Rightarrow\bigcup_{\alpha=1}^{n}G_{\alpha}\in\sigma$.

F3.
$$F_{\alpha} \in \sigma$$
, $\alpha = 1, 2, ..., n \Rightarrow \bigcup_{\alpha=1}^{n} G_{\alpha} \in \sigma$

Отже, щоб перевірити аксіоми Александрова сімейства множин т, достатньо перевірити виконання аксіом F1-F3 для сімейства множин σ.

1) Перевіримо аксіому F1: $X \in \sigma$? $\emptyset \in \sigma$?

Аксіома K2 стверджує, що $M \subset cl(M)$. Покладемо M = X. Отже, $X \subset \operatorname{cl}(X) \subset X \Rightarrow \operatorname{cl}(X) = X \Rightarrow X \in \sigma$.

Аксіома K4 стверджує, що $cl(\emptyset) = \emptyset \Rightarrow \emptyset \in \sigma$.

2) Перевіримо виконання аксіоми F2.

Спочатку покажемо, що оператор cl ϵ монотонним:

$$\forall A, B \in \sigma : A \subset B \Rightarrow cl(A) \subset cl(B).$$

Нехай $A, B ∈ \sigma$ і $A \subset B$. Тоді

$$cl(B) = cl(B \cup A) = cl(B) \cup cl(A)$$
 (akcioma K1),

Отже,

$$cl(A) \subset cl(A) \cup cl(B) = cl(B \cup A) = cl(B)$$
.

Використаємо це допоміжне твердження для перевірки аксіоми F3. З одного боку,

$$\begin{split} \forall F_{\alpha} &\in \sigma \bigcap_{\alpha \in A} F_{\alpha} \subset F_{\alpha} \ \forall \alpha \in A \Rightarrow \Rightarrow \\ cl \bigg(\bigcap_{\alpha \in A} F_{\alpha} \bigg) &\subset cl(F_{\alpha}) = F_{\alpha} \ \forall \alpha \in A \Rightarrow \\ &\Rightarrow cl \bigg(\bigcap_{\alpha \in A} F_{\alpha} \bigg) &\subset \bigcap_{\alpha \in A} F_{\alpha} \ . \end{split}$$

3 іншого боку, за аксіомою К2

$$\bigcap_{\alpha\in A} F_{\alpha} \subset cl\bigg(\bigcap_{\alpha\in A} F_{\alpha}\bigg).$$

Отже,

$$cl\left(\bigcap_{\alpha\in A}F_{\alpha}\right)=\bigcap_{\alpha\in A}F_{\alpha}\in\sigma.$$

3) Перевіримо виконання аксіоми F3.

$$A, B \in \sigma \Rightarrow \operatorname{cl}(A \cup B) = \operatorname{cl}(A) \cup \operatorname{cl}(B) = A \cup B \Rightarrow A \cup B \in \sigma.$$

Таким чином, σ — замкнена топологія, а сімейство τ , що складається із доповнень до множин із сімейства σ — відкрита топологія.

Залишилося показати, що в просторі (X, τ) , побудованому за допомогою оператора cl, замикання \overline{M} довільної множини M збігається з cl(M):

$$cl(M) = \overline{M}$$
.

Дійсно, за теоремою 1.2 множина M ϵ замкненою, якщо $\overline{M}=M$. Із аксіом К2 і К3 випливає, що множина $\operatorname{cl}(M)$ ϵ замкненою і містить M. Покажемо, що ця множина — найменша замкнена множина, що містить множину M, тобто ϵ її замиканням.

Нехай F — довільна замкнена в (X, τ) множина, що містить M:

$$M \subset F$$
, $cl(F) = F$.

Внаслідок монотонності оператора cl отримуємо наступне.

$$M \subset F$$
, $\operatorname{cl}(F) = F \Rightarrow \operatorname{cl}(M) \subset \operatorname{cl}(F) = F$.

Озн. 2.2. Нехай X — довільна множина. Відображення Int: $2^X \to 2^X$ називається **оператором взяття внутрішності множини X**, якщо воно задовольняє наступні умови:

 $K.1. \operatorname{Int}(M \cap N) = \operatorname{Int}(M) \cap \operatorname{Int}(N)$ (аддитивність);

 $K.2. \operatorname{Int}(M) \subset M$;

K.3. Int(Int(M)) = Int(M) (ідемпотентність);

 $K.4. \operatorname{Int}(\emptyset) = \emptyset.$

Наслідок 2.1. Оскільки

Int
$$A = X \setminus \overline{X \setminus A}$$
,

оператор взяття внутрішності є двоїстим для оператора замикання Куратовського. Отже, система множин $\tau = \{A \subseteq X : Int \ A = A\}$ утворює в X топологію, а множина Іпт A в цій топології є внутрішністю множини A.

2.2 Бази

Для завдання в множині X певної топології немає потреби безпосередньо указувати всі відкриті підмножини цієї топології. Існує деяка сукупність відкритих підмножин, яка повністю визначає топологію. Така сукупність називається базою цієї топології.

Озн. 2.3. Сукупність β відкритих множин простору (X,τ) називається базою топології τ або базою простору (X,τ) , якщо довільна непорожня відкрита множина цього

простору ϵ об' ϵ днанням деякої сукупності множин, що належать В.

$$\forall G \in \tau, G \neq \emptyset \ \exists B_{\alpha} \in \beta, \alpha \in A : G = \bigcup_{\alpha \in A} B_{\alpha}.$$

Зауваження 2.1. Будь-який простір (X, τ) має базу, оскільки система всіх відкритих підмножин цього простору утворює базу його топології.

Зауваження 2.2. Якщо в просторі (X,τ) ізольовані точки, вони повинні входити в склад будь-якої бази цього простору.

Теорема 2.3. Для того щоб сукупність В множин із топології т була базою цієї топології, необхідно і достатньо, щоб для кожної точки $x \in X$ і довільної відкритої множини U, що містить точку x, існувала множина V∈ β , така щоб x∈V⊂U.

Доведення. *Необхідність*. Нехай β — база простору (X, τ) , $x_0 \in X$, а $U_0 \in \tau$, таке що $x_0 \in U_0$. Тоді за означенням бази

$$U_0 = \bigcup_{\alpha \in A} V_\alpha \text{ , де } V_\alpha \in \beta. \text{ 3 цього випливає, що } x_0 \in V_{\alpha_0} \subset U_0 \text{ .}$$

$$\beta = \mathcal{B}(\tau), \quad x_0 \in X, \quad U_0 \in \tau, \quad x_0 \in U_0 \Rightarrow U_0 = \bigcup_{\alpha \in A} V_\alpha \text{ , } \quad V_\alpha \in \beta \Rightarrow$$

$$x_0 \in V_{\alpha_0} \subset U_0$$

Достатність. Нехай для кожної точки $x \in X$ і довільної відкритої множини $U \in \tau$, що містить точку x, існує множина V_x \in β , така що x \in V_x \subset U. Легко перевірити, що $U = \bigcup_{x \in U} V_x$.

Дійсно, якщо точка $x \in U$, то за умовою теореми, вона належить множині $V_x \subset U$, а отже і об'єднанню таких множин $\bigcup_{x \in U} V_x$.

$$x \in U \Rightarrow \exists V_x \subset U: x \in V_x \Rightarrow x \in \bigcup_{x \in U} V_x$$
.

I навпаки, якщо точка належить об'єднанню $\bigcup_{x \in U} V_x$, то

вона належить принаймні одній із цих множин $V_x \subset U$, а отже — вона належить множині U.

$$x \in \bigcup_{x \in U} V_x \Rightarrow \exists V_x \subset U : x \in V_x \Rightarrow x \in U$$
.

Таким чином, довільну відкриту множину $U \in \tau$ можна подати у вигляді об'єднання множин із β .

Приклад 2.1. Оскільки $\forall x \in \mathbb{R}^1$ і $\forall (a,b) \ni x \exists (a_0,b_0) \subset (a,b)$, то за теоремою 2.3 сукупність всіх відкритих інтервалів утворює базу топології в \mathbb{R}^1 .

Приклад 2.2. Оскільки $\forall x \in \mathbb{R}^1$ і $\forall (a,b) \ni x \exists (r_1,r_2) \subset (a,b)$, $r_1, r_2 \in \mathbb{Q}$, то за теоремою 2.3 сукупність всіх відкритих інтервалів із раціональними кінцями також утворює базу топології в \mathbb{R}^1 .

Із теореми 2.3 випливають два наслідки.

Властивість 2.1. Об'єднання всіх множин, які належать базі β топології τ , утворює всю множину X.

Доведення. Оскільки $X \in \tau$, то за означенням бази $X = \bigcup_{\alpha \in A} V_{\alpha}$, де $V_{\alpha} \in \beta$.

Властивість 2.2. Для довільних двох множин U і V із бази β і для кожної точки $x \in U \cap V$ існує множина W із β така, що $x \in W \subset U \cap V$.

Доведення. Оскільки $U \cap V \in \tau$, то за теоремою 2.3 в множині $U \cap V$ міститься відкрита множина W із бази, така що $x \in W$.

Теорема 2.4 (про завдання топології за допомогою бази). Нехай в довільній множині X задана деяка сукупність відкритих множин β , що має властивості 2.1 і 2.2. Тоді в

множині X існує єдина топологія τ , однією з баз якої є сукупність β .

Доведення. Припустимо, що τ — сімейство, що містить лише порожню множину і всі підмножини множини X, кожна з яких ϵ об'єднанням підмножин із сукупності β (властивість 2.1).

$$\tau = \left\{ \varnothing, \ G_{\alpha} \subset X, \, \alpha \in A : G_{\alpha} = \bigcup_{i \in I} B_{i}^{\alpha}, \, B_{i}^{\alpha} \in \beta \right\}.$$

Перевіримо, що це сімейство множин є топологією. Виконання аксіом топології 1 і 2 є очевидним: $\emptyset \in \tau$, $X \in \tau$ і G $\alpha \in \tau$, $\alpha \in A \Rightarrow \bigcup_{\alpha \in A} G_{\alpha} \in \tau$. Аксіома 3 є наслідком

властивостей 2.1 і 2.2. Не обмежуючи загальності, можна перевірити її для випадку перетину двох множин.

Нехай
$$U, U' \in \tau$$
. За означенням, $U = \bigcup_{i \in I} V_i$, $U' = \bigcup_{j \in J} V'_j$,

 $V_i, V_i' \in \beta$. Розглянемо перетин

$$U \cap U' = \left(\bigcup_{i \in I} V_i\right) \cap \left(\bigcup_{j \in J} V'_j\right) = \bigcup_{i \in I, j \in J} \left(V_i \cap V'_j\right).$$

Доведемо, що $V_i \cap V_j' \in \tau$. Нехай $x \in V_i \cap V_j'$. Тоді, за властивістю 2.2, існує множина $W_x \in \beta$, така що $x \in W_x \subset V_i \cap V_j'$. Оскільки точка $x \in V_i \cap V_j'$ є довільною, то $V_i \cap V_j' = \bigcup_{x \in V_i \cap V_j} W_x \in \tau$. Отже, $U \cap U' \in \tau$.

Таким чином, сімейство τ дійсно утворює топологію на X, а система β є її базою.

Література

Функціональний аналіз, спеціальність «Прикладна математика» Лекція \mathfrak{N}_{2} 2. Методи введення топології

- 1. Александрян Р.А., Мирзаханян Э.А. Общая топология. М.: Высшая школа, 1979 (стр. 14–22).
- 2. Энгелькинг Р. Общая топология. М.: Мир, 1986 (стр. 46–50).