Module 7: Data Wrangling with Pandas

CPE311 Computational Thinking with Python

Submitted by: Belocora, John Rome A.

Performed on: 03/20/2024

Submitted on: 03/20/2024

Submitted to: Engr. Roman M. Richard

Exercise 1

We want to look at data for the Facebook, Apple, Amazon, Netflix, and Google(FAANG) stocks, but we were given each as separate CSV file. Combine them into a single file and store the dataframe of the FAANG data as faang for the rest of the exercises:

1. Read each file in.

```
import pandas as pd
# Reading each file for each dataset
facebook = pd.read_csv('data/fb.csv')
facebook
```

	date	open	high	low	close	volume	#		
0	2018-01-02	177.68	181.58	177.5500	181.42	18151903	ılı		
1	2018-01-03	181.88	184.78	181.3300	184.67	16886563			
2	2018-01-04	184.90	186.21	184.0996	184.33	13880896			
3	2018-01-05	185.59	186.90	184.9300	186.85	13574535			
4	2018-01-08	187.20	188.90	186.3300	188.28	17994726			
246	2018-12-24	123.10	129.74	123.0200	124.06	22066002			
247	2018-12-26	126.00	134.24	125.8900	134.18	39723370			
248	2018-12-27	132.44	134.99	129.6700	134.52	31202509			
249	2018-12-28	135.34	135.92	132.2000	133.20	22627569			
250	2018-12-31	134.45	134.64	129.9500	131.09	24625308			
251 rows × 6 columns									

apple = pd.read_csv('data/aapl.csv') apple

netflix = pd.read_csv('data/nflx.csv')
netflix

google = pd.read_csv('data/goog.csv')

Next steps: View recommended plots

2. Add a column to each dataframe, called ticker, indicating the ticker symbol it is for (Apple's is AAPL, for example). This is how you look up a stock. Each file's name is also the ticker symbol, so be sure to capitalize it.

```
# Adding a new column named "ticker" that consist the ticker's symbol
facebook['ticker'] = 'FB'
facebook
```


20110110 1 001011111

apple['ticker'] = 'AAPL'
apple

	date	open	high	low	close	volume	ticker	\blacksquare		
0	2018-01-02	166.9271	169.0264	166.0442	168.9872	25555934	AAPL	ılı		
1	2018-01-03	169.2521	171.2337	168.6929	168.9578	29517899	AAPL			
2	2018-01-04	169.2619	170.1742	168.8106	169.7426	22434597	AAPL			
3	2018-01-05	170.1448	172.0381	169.7622	171.6751	23660018	AAPL			
4	2018-01-08	171.0375	172.2736	170.6255	171.0375	20567766	AAPL			
246	2018-12-24	147.5173	150.9027	145.9639	146.2029	37169232	AAPL			
247	2018-12-26	147.6666	156.5585	146.0934	156.4987	58582544	AAPL			
248	2018-12-27	155.1744	156.1004	149.4291	155.4831	53117065	AAPL			
249	2018-12-28	156.8273	157.8430	153.8899	155.5627	42291424	AAPL			
250	2018-12-31	157.8529	158.6794	155.8117	157.0663	35003466	AAPL			
251 rows × 7 columns										

amazon['ticker'] = 'AMZN'
amazon

netflix['ticker'] = 'NFLX' netflix

	date	open	high	low	close	volume	ticker		
0	2018-01-02	196.10	201.6500	195.4200	201.070	10966889	NFLX		
1	2018-01-03	202.05	206.2100	201.5000	205.050	8591369	NFLX		
2	2018-01-04	206.20	207.0500	204.0006	205.630	6029616	NFLX		
3	2018-01-05	207.25	210.0200	205.5900	209.990	7033240	NFLX		
4	2018-01-08	210.02	212.5000	208.4400	212.050	5580178	NFLX		
246	2018-12-24	242.00	250.6500	233.6800	233.880	9547616	NFLX		
247	2018-12-26	233.92	254.5000	231.2300	253.670	14402735	NFLX		
248	2018-12-27	250.11	255.5900	240.1000	255.565	12235217	NFLX		
249	2018-12-28	257.94	261.9144	249.8000	256.080	10987286	NFLX		
250	2018-12-31	260.16	270.1001	260.0000	267.660	13508920	NFLX		
251 rows × 7 columns									

google['ticker'] = 'GOOG' google

Using concat we can append all the dataframes together
faang = pd.concat([facebook, apple, amazon, netflix, google])
faang

Next steps:

4. Save the result in a CSV file called faang.csv

```
# Converting the faang file into
faang.to_csv('faang.csv')
```

faang = pd.read_csv('data/faang.csv')
faang

Next steps:

View recommended plots

Exercise 2

· With faang, use type conversion to change the date column into a datetime and the volume column into integers. Then, sort by date and ticker.

Converting the data type of date to datetime and volume to integer datatype date = pd.to datetime(faang.date), volume=faang.volume.astype('int'),

faang.dtypes

Unnamed: 0 int64 date datetime64[ns] open float64 high float64 float64 low close float64 volume int64 ticker object dtype: object

Soring the date and ticker in the dataframe faang.sort_values(by=['date','ticker'], inplace=True) faang

	Unnamed: 0	date	open	high	low	close	volume	ticker	
251	0	2018-01-02	166.9271	169.0264	166.0442	168.9872	25555934	AAPL	ıl.
502	0	2018-01-02	1172.0000	1190.0000	1170.5100	1189.0100	2694494	AMZN	
0	0	2018-01-02	177.6800	181.5800	177.5500	181.4200	18151903	FB	
1004	0	2018-01-02	1048.3400	1066.9400	1045.2300	1065.0000	1237564	GOOG	
753	0	2018-01-02	196.1000	201.6500	195.4200	201.0700	10966889	NFLX	
501	250	2018-12-31	157.8529	158.6794	155.8117	157.0663	35003466	AAPL	
752	250	2018-12-31	1510.8000	1520.7600	1487.0000	1501.9700	6954507	AMZN	
250	250	2018-12-31	134.4500	134.6400	129.9500	131.0900	24625308	FB	
1254	250	2018-12-31	1050.9600	1052.7000	1023.5900	1035.6100	1493722	GOOG	
1003	250	2018-12-31	260.1600	270.1001	260.0000	267.6600	13508920	NFLX	
4055									

1255 rows × 8 columns

• Find the seven rows with the highest value for volume.

Locating the first 7 rows of volume with the highest value faang.sort_values(by='volume', ascending=False).head(7)

	Unnamed: 0	date	open	high	low	close	volume	ticker	
142	142	2018-07-26	174.8900	180.1300	173.7500	176.2600	169803668	FB	ılı
53	53	2018-03-20	167.4700	170.2000	161.9500	168.1500	129851768	FB	
57	57	2018-03-26	160.8200	161.1000	149.0200	160.0600	126116634	FB	
54	54	2018-03-21	164.8000	173.4000	163.3000	169.3900	106598834	FB	
433	182	2018-09-21	219.0727	219.6482	215.6097	215.9768	96246748	AAPL	
496	245	2018-12-21	156.1901	157.4845	148.9909	150.0862	95744384	AAPL	
463	212	2018-11-02	207.9295	211.9978	203.8414	205.8755	91328654	AAPL	

• Right now, the data is somewhere between long and wide format. Use melt() to make it completely long format. Hint: date and ticker are