Binary Quadratic Forms

Sivmeng HUN

 $August\ 19,\ 2023$

Chapter 1

Gaussian Integers and Sum of Two Squares

1.1 Gaussian Integers

We denote $\mathbb{Z}[i] = \{p + iq : p, q \in \mathbb{Z}\}$ the set of Gaussian integers. For x = p + qi, we define the norm $N(x) = p^2 + q^2$. It turns out that this norm satisfy Euclidean algorithm.

For $x, y \in \mathbb{Z}[i]$ we say $x \mid y$ if there is an $u \in \mathbb{Z}[i]$ such that xu = y. By a unit in $\mathbb{Z}[i]$ we mean those elements that divides 1, i.e. they are those that have multiplicative inverse. Lastly, we say u, v are associates if $u \mid v$ and $v \mid u$. We denote it by $u \sim v$.

One might ask: How many units are there in $\mathbb{Z}[i]$? This is answered in Exercise 1.2.3 in Lehman's book which we will give a full proof here.

Proposition 0.1 (Ex 1.2.3, p. 26) Let u, v, w be Gaussian integers, then the following are true:

- If v divides w in $\mathbb{Z}[i]$, then N(v) divides N(w) in \mathbb{Z}
- u is a unit if and only if N(u) = 1
- If $v \sim w$ in $\mathbb{Z}[i]$, then N(v) = N(w).

Proof. Let $u, v, w \in \mathbb{Z}[i]$.

- Suppose that $v \mid w$, then vu = w for some u. Taking the norm from both sides, we have N(v)N(u) = N(vu) = N(w). Thus $N(v) \mid N(w)$. However, the converse isn't always true. Take for instance v = 2 + i and w = 3 + i. It's easy to see that $v \nmid w$ but $N(v) \mid N(w)$.
- Let u be a unit. By definition, $u \mid 1$ thus $N(u) \mid 1$ in \mathbb{Z} . We conclude that N(u) = 1. Conversely, suppose that u = p + qi and N(u) = 1. Thus $p^2 + q^2 = 1$. This means that $(p, q) = (\pm 1, 0), (0, \pm 1)$. It's easy to prove that each of the four possibilities of p + qi has inverse, i.e. u is a unit.
- Suppose that $v \sim u$, i.e. $v \mid u$ and $u \mid v$. Hence $N(v) \mid N(u)$ and $N(u) \mid N(v)$ in \mathbb{Z} . Therefore N(u) = N(v). The converse isn't always

true. For example take v = 7 + i and w = 5 + 5i. It's easy to see that v and w aren't associates, but N(v) = N(u) = 50.

This shows that in $\mathbb{Z}[i]$ there are precisely four units namely 1, -1, i, -i.

Unique Factorization into Irreducibles

In $\mathbb{Z}[i]$, by reducible element we mean a non-zero, non-unit element that can be written as products of non-unit elements in $\mathbb{Z}[i]$. Otherwise we call them irreducible elements.

Proposition 0.2 (Ex 1.2.8, p. 27) Let w be a reducible Gaussian integer. Then w can be written in some way as a product of irreducible elements in $\mathbb{Z}[i]$.

Proof. We prove by contradiction. Suppose that there are reducibles that can't be written as product of irreducibles, and let w be one of them with the smallest norm. Since w is reducible, then we can write w = ab where a, b are non-unit. Taking norm from both sides, we obtain that N(a), N(b) < N(w). Moreover neither a nor b can be irreducibles since we would have w = ab product of irreducibles.

Without loss of generality, assume that the factor a is reducible. Hence $a =: \prod a_i$ must be product of irreducibles, if not, a would have the same property of w, yet with a smaller norm. Therefore b must also be reducible as well. Arguing as the above, we conclude that $b =: \prod b_j$ is product of irreducibles. But that would be a contradiction because now $w = \prod a_i \cdot \prod b_j$ is product of irreducibles.

The above proposition shows the existence of such factorizations. It says that every non-unit element of $\mathbb{Z}[i]$ is either irreducible or product of irreducibles. Next, we prove the uniqueness of such factorization up to multiplication by units.

Proposition 0.3 Every Gaussian integer that is neither zero nor a unit can be wrriten uniquely as a product of irreducibles, aside from the order of the factors and multiplication by units.

Proof. Again we prove by contradiction, and assume that w is an element of smallest norm that can be written in two distinct ways a products of irreducibles. We may write $w = u_1 \cdot u_2 \cdots u_k$ and $w = z_1 \cdot z_2 \cdots z_\ell$ and we may assume $\ell \geq k$. Since u_1 is irreducible, then it has to divide exactly one of the z_i , and by rearranging the terms, we may without loss of generality assume that $u_1 \mid z_1$. Thus we can write $z_1 = u_1 a_1$ for some non-zero a_i . We claim that a_1 has to be a unit, otherwise a_1 is either irreducible or product of one. But then z_1 would have two distinct factorizations namely z_1 and $u_1 a_1$. Since $N(z_1) < N(w)$, that would be a contradiction.

We conclude that $u_2 \cdots u_k = a_1 \cdot (z_2 \cdots z_\ell)$. Since a_1 is unit, then $u_2 \nmid a_1$. Arguing as above, we may assume that $u_2 \mid z_2$ and $z_2 = u_2 a_2$ where a_2 is a unit. Continuing this fashion, we obtain

$$1 = a_1 a_2 \cdots a_k \cdot (z_{k+1} \cdots z_\ell)$$

This tells us that the rest of the z_i 's are unit, and we would get a contradiction because the factorization $\prod u_i$ and $\prod z_i$ are unique up to unit multiples and rearranging the terms.

This tells us that the ring $\mathbb{Z}[i]$ is a UFD domain.

Classification of Irreducibles

In Lehman's book we have the following result: If N(z) is prime, then z is irreducible in $\mathbb{Z}[i]$. Moreover If z is irreducible, then $z \mid p$ for some prime $p \in \mathbb{N}$. So if we can factorize p into into irreducibles in $\mathbb{Z}[i]$, we would have a way to classify all the irreducibles. This is made clear with the following theorem

Theorem 1 Let $p \in \mathbb{N}$ be a prime number. Then

$$p$$
 is reducible $\iff p \equiv 1 \pmod{4}$.

Moreover in proving the above theorem we obtain that if p is reducible, then its factorization is $p=z\cdot \overline{z}$ where z and \overline{z} are both irreducibles. Now we can start classifying as follows: let $z\in \mathbb{Z}[i]$ be any irreducible and u is any unit. Then there is some prime $p\in \mathbb{N}$ such that $z\mid p$. There are three cases:

- Case p=2: we have (1+i)(1-i)=2, and $(1+i)\sim (1-i)$. Moreover 1+i is irreducible since N(1+i) is prime. Therefore z=(1+i)u.
- Case $p \equiv 1 \pmod{4}$: As mentioned above, we conclude that p = (q + ri)(q ri). Multiplication by units, we might assume that q > r > 0. Because both (q+ri) and (q-ri) are irreducibles, and they aren't associate of each other, this yields z = (q+ri)u or z = (q-ri)u.
- Case $p \equiv 3 \pmod{4}$: The above theorem tells us that p is irreducible in $\mathbb{Z}[i]$, therefore z = p.

We summarize these result in the following theorem

Theorem 2 The irreducibles in $\mathbb{Z}[i]$ consists precisely of the following elements and their associates:

- p, where $p \equiv 3 \pmod{4}$ is a prime
- q + ri and q ri, where $q^2 + r^2 \equiv 1 \pmod{4}$ is a prime (q > r)
- 1 + i