CPE201 Digital Design

By Benjamin Haas

Class 22: Shift Registers 2

Outline

- Shift Register Counters
 - Johnson Counter
 - Ring Counter
- Shift Register Applications
- Troubleshooting

Shift Register Counter

- Output is connected back to input
 - Are also considered counters (Ch9)
- Have a specified sequence of states

Johnson Counter

- Creates a clock frequency that is 2n slower that CLK
 - n is the number of bits in the counter
- Ex: if CLK is 1MHz and the counter has 5 bits
 - Johnson counter freq = 1MHZ/(2*5) =

Circuit

Four-bit Johnson counter

Five-bit Johnson counter

Four-bit Johnson sequence.

Clock Pulse	Q_0	Q_1	Q_2	Q_3	
0	0	0	0	0 <	
1	1	0	0	0	
2	1	1	0	0	
3	1	1	1	0	
4	1	1	1	1	
5	0	1	1	1	
6	0	0	1	1	
7	0	0	0	1 -	

Five-bit Johnson sequence.

Clock Pulse	Q_0	Q_1	Q_2	Q_3	Q_4	
0	0	0	0	0	0 ←	
1	1	0	0	0	0	
2	1	1	0	0	0	
3	1	1	1	0	0	
4	1	1	1	1	0	
5	1	1	1	1	1	
6	0	1	1	1	1	
7	0	0	1	1	1	
8	0	0	0	1	1	
9	0	0	0	0	1 —	

Signal Example

- Measure output i one spot
- No signal setup required

Timing sequence for a 4-bit Johnson counter.

Timing sequence for a 5-bit Johnson counter.

Ring Counter

- Like a Johnson counter, but with any bit pattern
- The pattern continuously goes through all flip-flops and then back to the beginning

Circuit

- No use of Q'
- Use Preset to insert bit sequence

Logic Table

Read any flip-flop output to watch the sequence

Ten-bit ring counter sequence.

Clock Pulse	Q_0	Q_1	Q_2	Q_3	Q_4	Q_5	Q_6	Q_7	Q_8	Q_9
0	1	0	0	0	0	0	0	0	0	0 ←
1	0	1	0	0	0	0	0	0	0	0
2	0	0	1	0	0	0	0	0	0	0
3	0	0	0	1	0	0	0	0	0	0
4	0	0	0	0	1	0	0	0	0	0
5	0	0	0	0	0	1	0	0	0	0
6	0	0	0	0	0	0	1	0	0	0
7	0	0	0	0	0	0	0	1	0	0
8	0	0	0	0	0	0	0	0	1	0
9	0	0	0	0	0	0	0	0	0	1 -

Signal Example

Needs PRE'
on CLK 1 & 3
to set the seq
- You set that up
externally

Applications

- Time Delay
- Serial to Parallel Converter
- UART Transmitter
- Keyboard Encoder

Time Delay

- Insert a delay into some signals
 - Allow for setup time on a part w/o delaying

Another Option

* Data shifts from Q_0 toward Q_7 .

Serial to Parallel Converter

- Serial is one line
 - Connection count is small and takes little space
- Parallel is one line per bit
 - Very fast because all bits are xferred at once
 - Takes up much more space than serial

Serial to Parallel Converter

UART

- Universal Asynchronous Receiver Transmitter
 - Full Duplex (RX and TX as same time)
 - Asynchronous (no cl
 - Serial data xfer
 - Low overhead

UART

PISO transmit / SIPO receive

Keyboard Encoder

- Get key press data to send over USB to computer
 - Simplified with no key press memory buffer
- Scans for pressed keys
- Encodes key presses and stores for TX
- Debounces a key press

Real Chip – 74HC194

M

Universal shift reg

Do nothing: $S_0 = 0, S_1 = 0$ (mode 0)

Shift right: $S_0 = 1, S_1 = 0$ (mode 1, as in 1, 4D)

 $S_0 = 0, S_1 = 1$ Shift left: (mode 2, as in 2, 4D)

Parallel load: $S_0 = 1, S_1 = 1$ (mode 3, as in 3, 4D)

Exercising a Circuit

- Put all parts of the circuit through all possible states
 - Tests all chips for working status
 - Tests all circuit connections
 - More complicated with more memory parts or complexity

Example (SIPO Test)

Reading

- This lecture
 - Sections 8.4-8.7
- Next lecture
 - -9.1-9.4

