Para los teoremas y definiciones, considere $X = \langle x_1, \dots, x_n \rangle$, $Y = \langle y_1, \dots, y_n \rangle$ cadenas del mismo tamaño que pertenecen al conjunto Σ_{σ}^* , con $\sigma \in \mathbb{N}^*$.

Definición 1 (Cuerda Reducida). *Si X es una cadena usual, definimos su cuerda reducida como:*

$$red(X) = \{x_i : x_i \in X\},\tag{1}$$

es decir, es el conjunto que contiene a todos los elementos que conforman la cadena X, sin repeticiones.

Definición 2 (Intervalo Permitido). *Si X e Y* son dos cadenas $y \delta \in \mathbb{N}$, definimos el intervalo permitido de $\overline{x_i} \in red(X)$ como:

$$I_j = \bigcap_{\substack{i=1\\x_i=x_j}}^n [y_i - \delta, y_i + \delta], \tag{2}$$

con $[y_i - \delta, y_i + \delta] \subset \Sigma_{\sigma}$, donde x_i barre todas las posiciones de la cadena X.

Teorema 1. Si para algún j = 1, ..., |red(X)|, se cumple que $I_j = \emptyset$, entonces no es cierto que $X \stackrel{\delta}{\leadsto} Y.z$

Teorema 2. Si se satisface la desigualdad:

$$\left|\bigcup_{j=1}^{|red(X)|} I_j\right| < |red(X)|,\tag{3}$$

entonces no es cierto que $X \stackrel{\delta}{\leadsto} Y$.