WEEK 10

Graphing Quadratic Functions and Analyzing the Effects on its Graph

Ι

After going through this module, you are expected to:

- Determines the equation of a quadratic function given: (a) a table of values; (b) graph; (c) zeros.
- Solves problems involving quadratic functions.

Complete the table using the function of x.

Х	- 3	- 2	- 1	0	1	2	3
$f(x) = 3x^2 - 5$							

 \mathbf{D}

Equation of the Quadratic function can be determine through table.

Illustrative Example 1

X	1	2	3	4	5	6	7
У	5	11	19	29	41	55	71
1st Differences	ć	5 8	3 1	2 14	10	3 18	1
2 nd Differences		2	2	2	2	2	

Solution: Let the quadratic function f be of the form $y = ax^2 + bx + c$ where a, b and c are to be determined. Let us consider any 3 ordered pairs (x, y) from the table.

Equation
$$1 \rightarrow 5 = a(1)^2 + b(1) + c \rightarrow 5 = a + b + c$$

Equation $2 \rightarrow 19 = a(3)^2 + b(3) + c \rightarrow 19 = 9a + 3b + c$
Equation $3 \rightarrow 29 = a(4)^2 + b(4) + c \rightarrow 29 = 16a + 4b + c$

We obtain a systems of linear equations in 3 unknowns a, b and c.

$$(1) 5 = a + b + c$$

(2)
$$19 = 9a + 3b + c$$

$$(3) 29 = 16a + 4b + c$$

$$-(1)$$
 gives $8a + 2b = 14$ or $4a + b = 7(4)$

$$-(2)$$
 gives $7a + b = 10(5)$

$$(5)$$
 - (4) gives $3a = 3$ or $a = 1$

Substituting $\mathbf{a} = \mathbf{1}$ in (4) yields $\mathbf{b} = \mathbf{3}$.

Substituting $\mathbf{a} = \mathbf{1}$ and $\mathbf{b} = \mathbf{3}$ in (1), we obtain $\mathbf{c} = \mathbf{1}$.

Thus, the quadratic function determined by the table is $y = x^2 + 3x + 1$.

Equation of the Quadratic function can also be determine backwards:

Illustrative Example 2

Determine an equation that has the solutions x = -4 and x = 3.

Work backward to find the equation:

$$x = -4$$
 $x = 3$ given

$$x + 4 = 0$$
 $x-3 = 0$ set equal to 0

$$(x + 4) (x - 3) = 0$$
 equation factor

$$x^2 + x - 12 = 0$$
 product of factors

The equation is $x^2 + x - 12 = 0$

Illustrative Example 3

Find the solutions for the equation

$$3x^2 + 3x - 36 = 0$$

The equation can be solved by factoring

$$3x^2 + 3x - 36 = 0$$

$$3(x^2 + x - 12) = 0$$

$$3(x + 4)(x - 3) = 0$$

$$3 \neq 0$$
; $x + 4 = 0$; $x - 3 = 0$

$$x = -4$$
 $x = 3$

Note: Working backward will create an equation, but remember that there are other equations that will also have that same set of solutions.

Illustrative Example 4

If the x-intercepts are (-3, 0) and (4, 0), we know that the roots (zeros) of the equation will be x = -3 and x = 4. Working background, we can create the factors (x + 3) and (x - 4) and get the equation y = (x + 3)(x - 4). Then the equation is $y = x^2 - x - 12$.

Find the equation of the parabolas below. Put your answer in standard form.

E

The sum of two numbers is 29. Find the maximum possible product of the two numbers.

Solution:

Let x be the first number

29 - x be the second number

y be the maximum possible product of the two numbers

$$y = x(29 - x)$$
$$y = 29x - x^2$$

The graph of $y = 29x - x^2$ opens downward and has a maximum value which is equal to **k** and it occurs at **h**.

Solving for the value of k,

$$k = \frac{4ac - b^2}{4a} = \frac{4(-1)(0) - 29^2}{4(-1)} = 210.25$$

The two numbers that will give its maximum possible product are equal to h.

$$h = -\frac{b}{2a} = -\frac{29}{2(-1)} = 14.5$$

Learning Task 2. Solve each problem using quadratic functions.

- 1. The sum of two positive integers is 35. What is the minimum sum of their squares?
- 2. A rectangle has a perimeter of 100 cm. Find the greatest possible area for the rectangle.

Find the quadratic function determined by each table.

Х	- 2	- 1	0	1	2	3
У	4	0	- 2	- 2	0	4

A

Learning Task 3. Find the largest area which the farmer can enclose with 56 m of fencing materials.

Learner's Material for Mathematics Grade 9 (2013) Module 1: Quadratic Equations and Inequalities

Learner's Material for Mathematics Grade 9 (2013) Module 2: Quadratic Functions

Oronce & Mendoza (2016), e-Math Worktext in Mathematics 9. Rex Publishing, Inc., Manila.

Synergy for Success in Mathematics 9, Singapore Approach (2016), SAP Education, e-Books Interactive Systems, Inc.

For inquiries or feedback, please write or call:

Department of Education Region 4A CALABARZON

Office Address: Gate 2 Karangalan Village, Cainta Rizal

Landline: 02-8682-5773 local 420/421

Email Address: lrmd.calabarzon@deped.gov.ph

