Ans 1 While Clow <= high)

mid = Clow + high)/2
if Conn [mid] == key)
neturn true

else if Cann Emid] > key)

else low=mid+1

netunn false

Ans 2 Itemative insention sont:

for Cint i=1; icn; i++)

j= i-1;

x=A[i];
While Ci>-1 && A[i]>n)

A [i+1] = A [i];

A [0+1]=n;

```
Reconsive insention sont:
void insention sont (int ann [], int n)
  if (ne=1)
  insentionsont (ann, n-1)
   int last = gan [n-1]
   While Ci>= 0 LL ann [i]>last)
       ann [i+i] = ann [i]
 ann [i+i] = last;
 Insertion sont is online sonting because whenever a new element come, insertion sont
```

define its night place.

Ans 3	Bubble sont -> O(n2)
	Insention > O(n2)
	Selection > O(n2)
	Menge > O(n logn)
	Count > O(n)
	Quick - O(n logn)
	Lucia Octo 10913

Bucket - O(n)

Ans 4 Online sonting -> Insention sont

Stable sonting -> Menge sont, Insention, Bubble

Inplace sorting -> Bubble, Insention, Selection

Ans 5 Itemative Binary Search: While Clow <= high)

int mid = Clow + high)/2

if Carro [mid] == key

setum towe

else if Carro [mid] > key)

high = mid-1

else

low = mid +1

Reconsive: While Clow <= high)

int mid = Clow + high)/2

if Cann [mid] == key)

neturn true;

else if Cann [mid] > key)

binary seanch Cann, low, mid-1)

else

binary seanch Cann, mid+1, high

}

Ans 6 T(n) = T(n/2) + T(n/2) + C

Ans 7 for Cint i=0; i<ann. size CD; i++)

if Cm. find Ctanget -ann [1]) = m. end CD)

m [ann [i]] = 1;

else

cout «i«" "« mp [ann [i]];

}

neturn false;

Ans 8 Quicksont is the fastest general purpose sont.

In most pratical situation, quicksont is the method of choice.

If stability is important & space is available, menge sont might be best.

Ans 9 Invension indicates - how fan on close the

Invensions = 31

Ans 10 Wonst Case: Occurs when the picked pivot is

alsways an extreme element. It happens

when input armoy is somted as

nevense souted & cithen first on

lost element is picked as pivot.

Best Case: Best case occurs when pivot element is the middle element.

Ans 11 Menge Sont: T(n) = 2T(1/2) to (n)

Quick Sont: T(n) = 2T(1/2) + n + 1

		1		
	Bosis	Quick Sont	Menge Sont	
	Pantition	Splitting is done	Annay is ponted	
		in ony natio	into just 2	
	,		holves.	
	Womks well on	Smallen annay	Any size	
	Addition of space	Less (inplace)	Монв	
	Efficient	Inefficient fon	Mone efficient	
		langen annay		
	Sorting	Internal	Externol	
	Stability	Not Stable	Stoble	

Ans 14	He will use Meage Sout because we con divide the 468 data into 4 packets of 168 & sout them separately & combine
	1 68 & sont them sepanately & combine later.
	Internal: All the data is stoned in memory

Internal: All the data is stoned in memory at all times.

· External: All the data is stoned outside memory I only loaded into memory in small chunks.

.