TÍCH PHÂN

TÀI LIỆU DÀNH CHO ĐỐI TƯỢNG HỌC SINH TRUNG BÌNH MỨC 5-6 ĐIỂM Dạng. Sử dụng tính chất, bảng nguyên hàm cơ bản để tính tích phân

1.Định nghĩa: Cho hàm số y = f(x) liên tục trên K; a,b là hai phần tử bất kì thuộc K, F(x) là một nguyên hàm của f(x) trên K. Hiệu số F(b) - F(a) gọi là tích phân của của f(x) từ a đến b và được kí hiệu: $\int_a^b f(x) dx = F(x) \Big|_a^b = F(b) - F(a).$

2. Các tính chất của tích phân:

$$+ \int_{a}^{a} f(x) dx = 0$$

$$+ \int_{a}^{b} \left[f(x) \pm g(x) \right] dx = \int_{a}^{b} f(x) dx$$

$$+ \int_{a}^{b} f(x) dx = -\int_{a}^{b} f(x) dx$$

$$+ \int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx$$

$$+ \int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx$$

$$+ \int_{a}^{b} f(x) dx = \int_{a}^{b} f(x) dx$$

$$+ \int_{a}^{b} f(x) dx = \int_{a}^{b} f(x) dx$$

$$+ N \hat{e} u f(x) \ge g(x) \forall x \in [a;b] \text{ thi } \int_{a}^{b} f(x) dx \ge \int_{a}^{b} g(x) dx.$$

Bảng nguyên hàm của một số hàm thường gặp

$\int x^{\alpha}.dx = \frac{x^{\alpha+1}}{\alpha+1} + C$	$\int (ax+b)^{\alpha} dx = \frac{1}{a} \cdot \frac{(ax+b)^{\alpha+1}}{\alpha+1} + C$
$\int \frac{1}{x} dx = \ln x + C$	$\int \frac{1}{ax+b} dx = \frac{1}{a} . \ln ax+b + C$
$\int \frac{1}{x^2} dx = -\frac{1}{x} + C$	$\int \frac{1}{\left(ax+b\right)^2} dx = -\frac{1}{a} \cdot \frac{1}{ax+b} + C$
$\int \sin x. dx = -\cos x + C$	$\int \sin(ax+b).dx = -\frac{1}{a}.\cos(ax+b) + C$
$\int \cos x. dx = \sin x + C$	$\int \cos(ax+b).dx = \frac{1}{a}.\sin(ax+b) + C$
$\int \frac{1}{\sin^2 x} . dx = -\cot x + C$	$\int \frac{1}{\sin^2(ax+b)} dx = -\frac{1}{a} \cdot \cot(ax+b) + C$
$\int \frac{1}{\cos^2 x} . dx = \tan x + C$	$\int \frac{1}{\cos^2(ax+b)} dx = \frac{1}{a} \cdot \tan(ax+b) + C$
$\int e^x . dx = e^x + C$	$\int e^{ax+b} . dx = \frac{1}{a} . e^{ax+b} + C$
$\int a^x . dx = \frac{a^x}{\ln a} + C$	$\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \ln \left \frac{x - a}{x + a} \right + C$

Nhận xét. Khi thay x bằng (ax+b) thì lấy nguyên hàm nhân kết quả thêm $\frac{1}{a}$.

Câu 1. (**Mã 101-2021-Lần 2**) Cho f là hàm số liên tục trên [1;2]. Biết F là nguyên hàm của f trên [1;2] thỏa F(1) = -2 và F(2) = 4. Khi đó $\int_{1}^{2} f(x) dx$ bằng.

A. 6

R 2

C. -6

D. −2.

Câu 2. (Mã 102-2021-Lần 2) Cho f là hàm số liên tục trên đoạn [1;2]. Biết F là nguyên hàm của f

trên đoạn [1;2] thỏa mãn F(1) = -2 và F(2) = 3. Khi đó $\int_{1}^{2} f(x) dx$ bằng

A. -5.

B. 1.

C. -1.

D. 5.

Câu 3. (Đề minh họa 2022) Nếu $\int_{2}^{5} f(x) dx = 3$ và $\int_{2}^{5} g(x) dx = -2$ thì $\int_{2}^{5} [f(x) + g(x)] dx$ bằng:

A. 5.

B. -5.

C. 1.

D. 3.

Câu 4. (Đề minh họa 2022) Nếu $\int_{2}^{5} f(x) dx = 2 \text{ thì } \int_{2}^{5} 3f(x) dx \text{ bằng}$

A. 6.

B. 3

C. 18.

D. 2.

Câu 5. (Đề minh họa 2022) Nếu $\int_{1}^{3} f(x) dx = 2 \text{ thì } \int_{1}^{3} [f(x) + 2x] dx \text{ bằng}$

A. 20.

B. 10.

C. 18.

D. 12.

Câu 6. (**Mã 101-2022**) Nếu $\int_{0}^{2} f(x) dx = 4$ thì $\int_{0}^{2} \left[\frac{1}{2} f(x) + 2 \right] dx$ bằng

A. 6.

B. 8.

C. 4

D. 2.

Câu 7. (**Mã 101-2022**) Nếu $\int_{-1}^{5} f(x) dx = -3$ thì $\int_{5}^{-1} f(x) dx$ bằng

A. 5.

B. 6.

C. 4

D. 3.

Câu 8. (**Mã 102 - 2022**) Nếu $\int_{0}^{2} f(x) dx = 4$ thì $\int_{0}^{2} \left[\frac{1}{2} f(x) + 2 \right] dx$ bằn

A. 2.

B. 6

C. 4

D. 8.

Câu 9. (**Mã 102 - 2022**) Nếu $\int_{-1}^{5} f(x) dx = -3$ thì $\int_{5}^{-1} f(x) dx$ bằng

A. 3.

R. 4

C.6

D. 5.

Câu 10. (**Mã 103 - 2022**) Nếu $\int_{0}^{3} f(x) dx = 6$ thì $\int_{0}^{3} \left[\frac{1}{3} f(x) + 2 \right] dx$ bằng?

A. 8 .

R 5

 \mathbf{C}

D. 6 .

Câu 11. (**Mã 103 - 2022**) Nếu $\int_{-1}^{2} f(x) dx = 2$ và $\int_{2}^{5} f(x) dx = -5$ thì $\int_{-1}^{5} f(x) dx$ bằng

A - 7.

 B_{-3} .

C. 4

D. 7 .

Câu 12. (**Mã 104-2022**) Nếu $\int_{-1}^{2} f(x) dx = 2$ và $\int_{2}^{5} f(x) dx = -5$ thì $\int_{-1}^{5} f(x) dx$ bằng

A. 7.

B. -3.

C. -7.

D. 4.

Câu 13. (**Mã 104-2022**) Nếu $\int_{0}^{3} f(x) dx = 6$ thì $\int_{0}^{3} \left[\frac{1}{3} f(x) + 2 \right] dx$ bằng

A 6

B. 5.

C. 9

D. 8

Câu 14. (**Mã 120-2021-Lần 2**) Nếu $\int_{0}^{2} f(x) dx = 3 \text{ thì } \int_{0}^{2} [4x - f(x)] dx bằng$

A. -2.

B. 5.

C. 14.

D. 11.

Câu 15. (**Mã 111-2021-Lần 2**) Nếu $\int_{0}^{2} f(x) dx = 3$ thì $\int_{0}^{2} [2x - f(x)] dx$ bằng

A. 7.

B. 10.

C. 1

D. -2.

Câu 16. (Đề Minh Họa 2020 Lần 1) Nếu $\int_{1}^{2} f(x) dx = -2 \text{ và } \int_{2}^{3} f(x) dx = 1 \text{ thì } \int_{1}^{3} f(x) dx \text{ bằng}$

A. -3.

B. -1.

C. 1.

D. 3.

Câu 17. (Đề Tham Khảo 2020 Lần 2) Nếu $\int_{0}^{1} f(x) dx = 4 \text{ thì } \int_{0}^{1} 2f(x) dx \text{ bằng}$

A. 16.

B. 4.

C. 2

D. 8.

Câu 18. (**Mã 101 - 2020 Lần 1**) Biết $\int_{1}^{3} f(x) dx = 3$. Giá trị của $\int_{1}^{3} 2f(x) dx$ bằng

A. 5.

B. 9.

C. 6.

D. $\frac{3}{2}$

Câu 19. (**Mã 101 - 2020 Lần 1**) Biết $F(x) = x^2$ là một nguyên hàm của hàm số f(x) trên \mathbb{R} . Giá trị của $\int_{-\infty}^{2} \left[2 + f(x)\right] dx$ bằng

A. 5.

B. 3.

C. $\frac{13}{3}$.

D. $\frac{7}{3}$

Câu 20. (**Mã 102 - 2020 Lần 1**) Biết $\int_{1}^{5} f(x) dx = 4$. Giá trị của $\int_{1}^{5} 3f(x) dx$ bằng

A. 7.

B. $\frac{4}{3}$

C. 64.

D. 12.

Câu 21. (**Mã 102 - 2020 Lần 1**) Biết $F(x) = x^3$ là một nguyên hàm của hàm số f(x) trên \mathbb{R} . Giá trị của $\int\limits_{-\infty}^{2} (2+f(x)) \, \mathrm{d}x \quad \text{bằng}$

A. $\frac{23}{4}$.

B. 7.

C. 9.

D. $\frac{15}{4}$.

Câu 22. (**Mã 103 - 2020 Lần 1**) Biết $\int_{1}^{2} f(x) dx = 2$. Giá trị của $\int_{1}^{3} 3f(x) dx$ bằng

A. 5.

B. 6.

C. $\frac{2}{3}$.

D. 8.

Câu 23. (**Mã 103 - 2020 Lần 1**) Biết $F(x) = x^3$ là một nguyên hàm của hàm số f(x) trên $\mathbb R$. Giá trị của $\int\limits_0^3 (1+f(x)) \mathrm{d}x \, \mathrm{bằng}$

A. 20.

B. 22.

C. 26.

D. 28.

A. -1.

Câu 36. (**Mã 104 - 2019**) Biết
$$\int_0^1 f(x) dx = 2 \text{ và } \int_0^1 g(x) dx = -4$$
, khi đó $\int_0^1 [f(x) + g(x)] dx$ bằng **A.** 6. **B.** -6. **C.** -2. **D.** 2.

Câu 37. (**Mã 101 2019**) Biết
$$\int_{0}^{1} f(x) dx = -2 \text{ và } \int_{0}^{1} g(x) dx = 3$$
, khi đó $\int_{0}^{1} [f(x) - g(x)] dx$ bằng

Câu 38. (Đề Tham Khảo 2019) Cho
$$\int_{0}^{1} f(x) dx = 2$$
 và $\int_{0}^{1} g(x) dx = 5$, khi $\int_{0}^{1} [f(x) - 2g(x)] dx$ bằng **A.** -8 **B.** 1 **C.** -3 **D.** 12

Câu 39. (THPT Ba Đình 2019) Khẳng định nào trong các khẳng định sau đúng với mọi hàm f, g liên tục trên K và a, b là các số bất kỳ thuộc K?

A.
$$\int_{a}^{b} [f(x) + 2g(x)] dx = \int_{a}^{b} f(x) dx + 2 \int_{a}^{b} g(x) dx$$
. **B.** $\int_{a}^{b} \frac{f(x)}{g(x)} dx = \frac{\int_{a}^{b} f(x) dx}{\int_{a}^{b} g(x) dx}$.

$$\mathbf{C.} \int_{a}^{b} [f(x).g(x)] dx = \int_{a}^{b} f(x) dx \cdot \int_{a}^{b} g(x) dx \cdot \mathbf{D.} \int_{a}^{b} f^{2}(x) dx = \left[\int_{a}^{b} f(x) dx \right]^{2}.$$

Câu 40. (THPT Cẩm Giàng 2 2019) Cho
$$\int_{-2}^{2} f(x) dx = 1$$
, $\int_{-2}^{4} f(t) dt = -4$. Tính $\int_{2}^{4} f(y) dy$.
A. $I = 5$. **B.** $I = -3$. **C.** $I = 3$. **D.** $I = -5$.

Câu 41. (**THPT Cù Huy Cận -2019**) Cho
$$\int_0^2 f(x) dx = 3$$
 và $\int_0^2 g(x) dx = 7$, khi đó $\int_0^2 \left[f(x) + 3g(x) \right] dx$ bằng

A. 16.

B. −18.

C. 24.

D. 10.

Câu 42. (**THPT - YÊN Định Thanh Hóa2019**) Cho
$$\int_{0}^{1} f(x) dx = -1$$
; $\int_{0}^{3} f(x) dx = 5$. Tính $\int_{1}^{3} f(x) dx$
A. 1. **B.** 4. **C.** 6. **D.** 5.

Câu 43. (THPT Quỳnh Lưu 3 Nghệ An 2019) Cho $\int_{1}^{2} f(x) dx = -3$ và $\int_{2}^{3} f(x) dx = 4$. Khi đó $\int_{1}^{3} f(x) dx$ bằng

A. 12.

B. 7.

C. 1.

D. -12.

Câu 44. Cho hàm số f(x) liên tục, có đạo hàm trên [-1;2], f(-1)=8; f(2)=-1. Tích phân $\int_{-1}^{2} f'(x) dx$ bằng

A. 1.

B. 7.

C. −9.

D. 9.

Câu 45. (Sở Thanh Hóa - 2019) Cho hàm số f(x) liên tục trên R và có $\int_0^2 f(x) dx = 9$; $\int_2^4 f(x) dx = 4$. Tính $I = \int_0^4 f(x) dx$.

A.
$$I = 5$$
.

B.
$$I = 36$$

C.
$$I = \frac{9}{4}$$
.

D.
$$I = 13$$
.

Câu 46. Cho $\int_{-1}^{9} f(x) dx = 3 \int_{0}^{3} f(x) dx = 3$. Tích phân $\int_{1}^{3} f(x) dx$ bằng

C. 2

D. 0

Câu 47. (Chuyên Nguyễn Trãi Hải Dương 2019) Cho hàm số f(x) liên tục trên \mathbb{R} và $\int f(x) dx = 10$,

 $\int_{0}^{4} f(x) dx = 4. \text{ Tích phân } \int_{0}^{3} f(x) dx \text{ bằng}$

C. 3.

D. 6.

Câu 48. (THPT Hoàng Hoa Thám Hưng Yên 2019) Nếu $F'(x) = \frac{1}{2x-1}$ và F(1) = 1 thì giá trị của F(4) bằng

B.
$$1 + \frac{1}{2} \ln 7$$
. **C.** $\ln 3$.

D. $1 + \ln 7$.

Câu 49. (THPT Đoàn Thượng - Hải Dương -2019) Cho hàm số f(x) liên tục trên $\mathbb R$ thoả mãn

 $\int_{1}^{8} f(x) dx = 9, \int_{1}^{8} f(x) dx = 3, \int_{1}^{8} f(x) dx = 5.$

Tính $I = \int_{1}^{12} f(x) dx$. **A.** I = 17. **B.** I = 1. **C.** I = 11.

A.
$$I = 17$$
.

B.
$$I = 1$$
.

C.
$$I = 11$$

$$D. I = 7$$

Câu 50. (THPT Quang Trung Đống Đa Hà Nội 2019) Cho hàm số f(x) liên tục trên [0;10] thỏa mãn

 $\int_{0}^{\infty} f(x) dx = 7, \int_{2}^{\infty} f(x) dx = 3. \text{ Tinh } P = \int_{0}^{2} f(x) dx + \int_{2}^{10} f(x) dx.$

A.
$$P = 10$$
.

B.
$$P = 4$$

C.
$$P = 7$$
.

C.
$$P = 7$$
. **D.** $P = -6$.

Câu 51. (Chuyên Lê Quý Đôn Điện Biên 2019) Cho f, g là hai hàm liên tục trên đoạn [1;3] thoả:

 $\int_{1}^{3} [f(x) + 3g(x)] dx = 10, \int_{1}^{3} [2f(x) - g(x)] dx = 6. \text{ Tinh } \int_{1}^{3} [f(x) + g(x)] dx.$

A. 7.

D. 9.

Câu 52. (Chuyên Vĩnh Phúc 2019) Cho hàm số f(x) liên tục trên đoạn [0;10] và $\int_{0}^{\infty} f(x) dx = 7$;

 $\int_{2}^{6} f(x) dx = 3. \text{ Tinh } P = \int_{0}^{2} f(x) dx + \int_{6}^{10} f(x) dx.$

C. P = 7 **D.** P = -4

Câu 53. Cho f,g là hai hàm số liên tục trên [1;3] thỏa mãn điều kiện $\int_{-\infty}^{\infty} [f(x)+3g(x)]dx=10$ đồng thời

 $\int_{0}^{3} \left[2f(x) - g(x) \right] dx = 6. \text{ Tính } \int_{0}^{3} \left[f(x) + g(x) \right] dx.$

Câu 54. (THPT Đông Sơn Thanh Hóa 2019) Cho f, g là hai hàm liên tục trên [1;3]

thỏa:
$$\int_{1}^{3} [f(x) + 3g(x)] dx = 10 \text{ và } \int_{1}^{3} [2f(x) - g(x)] dx = 6$$
. Tính $I = \int_{1}^{3} [f(x) + g(x)] dx$.

A. 8. **B.** 7. **C.** 9. **D.** 6.

Câu 55. (**Mã 104 2017**) Cho
$$\int_{0}^{\frac{\pi}{2}} f(x) dx = 5$$
. Tính $I = \int_{0}^{\frac{\pi}{2}} [f(x) + 2\sin x] dx = 5$.

B. $I = 5 + \frac{\pi}{2}$ **C.** I = 3

Câu 56. (**Mã 110 2017**) Cho
$$\int_{-1}^{2} f(x) dx = 2$$
 và $\int_{-1}^{2} g(x) dx = -1$. Tính $I = \int_{-1}^{2} \left[x + 2f(x) - 3g(x) \right] dx$.
A. $I = \frac{17}{2}$ **B.** $I = \frac{5}{2}$ **C.** $I = \frac{7}{2}$ **D.** $I = \frac{11}{2}$

Câu 57. (THPT Hàm Rồng Thanh Hóa 2019) Cho hai tích phân
$$\int_{-2}^{5} f(x) dx = 8$$
 và $\int_{5}^{-2} g(x) dx = 3$. Tính

$$I = \int_{-2}^{5} \left[f(x) - 4g(x) - 1 \right] dx$$

A. 13.

B. 27.

C. -11.

Câu 58. (Sở Bình Phước 2019) Cho
$$\int_{-1}^{2} f(x)dx = 2 \text{ và } \int_{-1}^{2} g(x)dx = -1, \text{ khi đó } \int_{-1}^{2} \left[x + 2f(x) + 3g(x)\right]dx \text{ bằng}$$

Câu 59. (Sở Phú Thọ 2019) Cho
$$\int_{0}^{2} f(x) dx = 3$$
, $\int_{0}^{2} g(x) dx = -1$ thì $\int_{0}^{2} [f(x) - 5g(x) + x] dx$ bằng:

A. 12.

Câu 60. (Chuyên Lê Hồng Phong Nam Định 2019) Cho
$$\int_{0}^{5} f(x) dx = -2$$
. Tích phân $\int_{0}^{5} \left[4f(x) - 3x^{2} \right] dx$ bằng

A. -140.

B. -130.

 $\mathbf{C.} - 120.$

D. -133.

Câu 61. (Chuyên Lê Hồng Phong Nam Định -2019) Cho
$$\int_{1}^{2} \left[4f(x) - 2x \right] dx = 1$$
. Khi đó $\int_{1}^{2} f(x) dx$ bằng:

A. 1.

B. -3.

C. 3.

D. −1.

Câu 62. Cho
$$\int_{0}^{1} f(x) dx = 1$$
 tích phân $\int_{0}^{1} (2f(x) - 3x^{2}) dx$ bằng

A. 1.

B. 0.

C. 3.

D. -1.

Câu 63. (THPT Yên Phong 1 Bắc Ninh 2019) Tính tích phân
$$I = \int_{-1}^{0} (2x+1) dx$$
.

A.
$$I = 0$$
.

B.
$$I = 1$$
.

C.
$$I = 2$$
.

D.
$$I = -\frac{1}{2}$$
.

Câu 64. Tích phân $\int (3x+1)(x+3) dx$ bằng

A. 12.

- **B.** 9.
- **C.** 5.
- **D.** 6.

Câu 65. (KTNL GV Thpt Lý Thái Tổ -2019) Giá trị của $\int_{0}^{\frac{\pi}{2}} \sin x dx$ bằng

A. 0.

B. 1.

- **C.** -1.
- **D.** $\frac{\pi}{2}$.

Câu 66. (KTNL GV Bắc Giang 2019) Tính tích phân $I = \int (2x+1)dx$

- **A.** I = 5.
- **B.** I = 6.
- **C.** I = 2.
- **D.** I = 4.

Câu 67. Với a,b là các tham số thực. Giá trị tích phân $\int_{a}^{b} (3x^2 - 2ax - 1) dx$ bằng

A.
$$b^3 - b^2 a - b$$
. **B.** $b^3 + b^2 a + b$. **C.** $b^3 - ba^2 - b$. **D.** $3b^2 - 2ab - 1$.

B.
$$b^3 + b^2 a + b$$

C.
$$b^3 - ba^2 - b$$

D.
$$3b^2 - 2ab - 1$$

Câu 68. (THPT An Lão Hải Phòng 2019) Giả sử $I = \int_{0}^{\frac{a}{4}} \sin 3x dx = a + b \frac{\sqrt{2}}{2} \ (a, b \in \mathbb{Q})$. Khi đó giá trị của

a-b là

A.
$$-\frac{1}{6}$$

B.
$$-\frac{1}{6}$$

B.
$$-\frac{1}{6}$$
 C. $-\frac{3}{10}$ **D.** $\frac{1}{5}$

D.
$$\frac{1}{5}$$

Câu 69. (Chuyên Nguyễn Tất Thành Yên Bái 2019) Cho hàm số f(x) liên tục trên $\mathbb R$ và

 $\int_{0}^{2} \left(f(x) + 3x^{2} \right) dx = 10. \text{ Tính } \int_{0}^{2} f(x) dx.$

- **C.** 18.
- **D.** -18.

Câu 70. (Chuyên Nguyễn Trãi Hải Dương 2019) Cho $\int (3x^2 - 2x + 1) dx = 6$. Giá trị của tham số m thuộc

khoảng nào sau đây?

A.
$$(-1;2)$$
.

B.
$$(-\infty;0)$$
.

D.
$$(-3;1)$$
.

Câu 71. (**Mã 104 2018**) $\int_{1}^{2} \frac{dx}{2x+3}$ bằng

- **A.** $\frac{1}{2} \ln 35$ **B.** $\ln \frac{7}{5}$
- C. $\frac{1}{2} \ln \frac{7}{5}$
- **D.** $2 \ln \frac{7}{5}$

Câu 72. (**Mã 103 2018**) $\int_{1}^{2} \frac{dx}{3x-2}$ bằng

- **A.** 2 ln 2
- **B.** $\frac{1}{2} \ln 2$
- C. $\frac{2}{3} \ln 2$
- **D.** ln 2

Câu 73. (Đề Tham Khảo 2018) Tích phân $\int_{-\infty}^{2} \frac{dx}{x+3}$ bằng

A.
$$\frac{2}{15}$$

B.
$$\frac{16}{225}$$

B.
$$\frac{16}{225}$$
 C. $\log \frac{5}{3}$ **D.** $\ln \frac{5}{3}$

D.
$$\ln \frac{5}{3}$$

Câu 74. (**Mã 105 2017**) Cho $\int_{a}^{1} \left(\frac{1}{x+1} - \frac{1}{x+2} \right) dx = a \ln 2 + b \ln 3$ với a, b là các số nguyên. Mệnh đề nào dưới đây đúng?

A.
$$a + 2b = 0$$

B.
$$a + b = 2$$

B.
$$a+b=2$$
 C. $a-2b=0$

D.
$$a + b = -2$$

Câu 75. (THPT An Lão Hải Phòng 2019) Tính tích phân $I = \int_{1}^{e} \left(\frac{1}{x} - \frac{1}{x^2}\right) dx$

$$\mathbf{A.} \ I = \frac{1}{e}$$

B.
$$I = \frac{1}{e} + 1$$

C.
$$I = 1$$

$$\mathbf{D.}\ I=\epsilon$$

Câu 76. (THPT Hùng Vương Bình Phước 2019) Tính tích phân $I = \int_{0}^{3} \frac{dx}{x+2}$.

A.
$$I = -\frac{21}{100}$$

B.
$$I = \ln \frac{5}{2}$$
.

C.
$$I = \log \frac{5}{2}$$

A.
$$I = -\frac{21}{100}$$
. **B.** $I = \ln \frac{5}{2}$. **C.** $I = \log \frac{5}{2}$. **D.** $I = \frac{4581}{5000}$.

Câu 77. (THPT Đoàn Thượng - Hải Dương - 2019) $\int_{3x-2}^{2} \frac{dx}{3x-2}$ bằng

B.
$$\frac{2}{3} \ln 2$$
.

D.
$$\frac{1}{3} \ln 2$$
.

Câu 78. Tính tích phân $I = \int_{1}^{2} \frac{x-1}{x} dx$.

A.
$$I = 1 - \ln 2$$
. **B.** $I = \frac{7}{4}$. **C.** $I = 1 + \ln 2$. **D.** $I = 2 \ln 2$.

B.
$$I = \frac{7}{4}$$
.

C.
$$I = 1 + \ln 2$$
.

D.
$$I = 2 \ln 2$$
.

Câu 79. Biết $\int_{-x}^{3} \frac{x+2}{x} dx = a+b \ln c$, với $a,b,c \in \mathbb{Z},c < 9$. Tính tổng S = a+b+c.

A.
$$S = 7$$
.

B.
$$S = 5$$
.

C.
$$S = 8$$
.

D.
$$S = 6$$
.

Câu 80. (**Mã 110 2017**) Cho F(x) là một nguyên hàm của hàm số $f(x) = \frac{\ln x}{x}$. Tính: I = F(e) - F(1)?

A.
$$I = \frac{1}{2}$$

B.
$$I = \frac{1}{e}$$

C.
$$I = 1$$

D.
$$I = e$$

Câu 81. (**Mã 102 2018**) $\int_{0}^{1} e^{3x+1} dx$ bằng

A.
$$\frac{1}{3}(e^4+e)$$
 B. e^3-e

B.
$$e^{3} - e^{3}$$

C.
$$\frac{1}{3}(e^4 - e)$$
 D. $e^4 - e$

D.
$$e^4 - e^4$$

Câu 82. (**Mã 101 2018**) $\int_{1}^{2} e^{3x-1} dx$ bằng

A.
$$\frac{1}{3} (e^5 + e^2)$$

A.
$$\frac{1}{3}(e^5 + e^2)$$
 B. $\frac{1}{3}(e^5 - e^2)$ **C.** $\frac{1}{3}e^5 - e^2$

C.
$$\frac{1}{3}e^5 - e^2$$

D.
$$e^5 - e^2$$

Blog: Nguyễn Bảo Vương: https://www.nbv.edu.vn/

Câu 83. (**Mã 123 2017**) Cho $\int_{0}^{6} f(x)dx = 12$. Tính $I = \int_{0}^{2} f(3x)dx$. **A.** I = 5 **B.** I = 36 **C.** I = 4

Câu 84. (Chuyên Lê Hồng Phong Nam Định 2019) Tích phân $I = \int_0^1 \frac{1}{x+1} dx$ có giá trị bằng

- **A.** $\ln 2 1$.
- $\mathbf{B.} \ln 2$.
- **C.** ln 2.
- **D.** $1 \ln 2$.

Câu 85. (THPT Hoàng Hoa Thám Hưng Yên -2019) Tính $K = \int_{2}^{3} \frac{x}{x^2 - 1} dx$.

- **A.** $K = \ln 2$. **B.** $K = \frac{1}{2} \ln \frac{8}{3}$. **C.** $K = 2 \ln 2$. **D.** $K = \ln \frac{8}{3}$.

Theo dõi Fanpage: Nguyễn Bảo Vương Fhttps://www.facebook.com/tracnghiemtoanthpt489/

Hoặc Facebook: Nguyễn Vương Attps://www.facebook.com/phong.baovuong

Tham gia ngay: Nhóm Nguyễn Bào Vương (TÀI LIỀU TOÁN) # https://www.facebook.com/groups/703546230477890/

Án sub kênh Youtube: Nguyễn Vương

* https://www.youtube.com/channel/UCQ4u2J5gIEI1iRUbT3nwJfA?view as=subscriber

Tải nhiều tài liệu hơn tại: https://www.nbv.edu.vn/