

GRUNDLAGEN DER ELEKTROTECHNIK ET1

Simulationstools

WAS IST SPICE?

SPICE...

Simulation

Program with

Integrated

Circuit

Emphasis

... ist eine Software zur Simulation analoger, digitaler und gemischter elektrischer Schaltungen (Schaltungssimulation). "Wikipedia.de"

SPICE PROGRAMME

Google liefert bei "spice simulation" ~13.700.000 Treffer

→ weit verbreitet

Viele kommerzielle & Open Source Lösungen verfügbar.

An der HAW wird oftmals "LT-Spice" verwendet.

- frei verfügbar
- mehr oder weniger platformunabhängig
- eher weniger bedienerfreundlich → Übung Übung Übung

WARUM HILFREICH

Probieren Sie es aus...

Versuchen Sie die Begriffe "Strom", "Spannung", Widerstand zu verstehen indem Sie in kleinen Gruppen Simulationen starten und auswerten.

Für den ersten Versuch eignet sich das Online-Tool

"Falstad Circuit Simulator" https://www.falstad.com/circuit/

ÜBUNG 1: "OHMSCHES GESETZ"

Das nebenstehende Bild zeigt eine einfache Schaltung, die aus einer Spannungsquelle und einem Widerstand besteht.

- Verwenden Sie den FALSTAD-Online-Simulator, um die gegebene Schaltung zu simulieren und variieren Sie die Spannung der Spannungsquelle sowie den Widerstandswert jeweils 5 Mal.
- Zeichnen Sie den Stromwert als Simulationsausgang auf und werten Sie das Verhältnis von Spannung und Strom und die Multiplikation von Widerstandswert und Strom aus.

ÜBUNG 2: KIRCHHOFFSCHE MASCHENREGEL (KVL) UND REIHENSCHALTUNG VON WIDERSTÄNDEN

Nebenstehende Abbildung zeigt eine elektrische Schaltung, die aus 6 Widerständen und einer Spannungsquelle besteht.

- Verwenden Sie den FALSTAD-Online-Simulator um die dargestellte Schaltungzhu simulieren.
- 2. Untersuchen Sie alle Ströme und bestimmen Sie die Potentiale (oder Spannungen gegen Masse/ 0V) an jedem Punkt der Schaltung
- Bestimmen Sie die Spannungsfälle (Potentialdifferenzen) an jedem Schaltungselement und summieren Sie alle Spannungen im linken und rechten Masche der Schaltung.
- 4. Versuchen Sie die Erkenntnisse aus der ersten Aufgabe (Ohmsches Gesetz) einzuordnen!

ÜBUNG 3: KIRCHHOFFS KNOTENREGEL (KCL) & PARALLELSCHALTUNG VON WIDERSTÄNDEN

Die nebenstehende Abbildung zeigt eine Parallelschaltung von drei Widerständen, die an eine Spannungsquelle angeschlossen sind.

- Benutzen Sie den Online-Simulator FALSTAD, um die gegebene Schaltung zu simulieren. Finden Sie alle Ströme, die in den und aus dem Knoten 1 fließen.
- 2. Wiederholen Sie den Vorgang für zufällig gewählte Widerstandswerte und Spannungen der Spannungsquelle.
- 3. Untersuchen Sie die Summe der in Teilaufgabe 1 & 2 ermittelten Ströme.
- 4. Versuchen Sie die Erkenntnisse aus der ersten Aufgabe (Ohmsches Gesetz) einzuordnen!