Лабораторная работа № 3

РЕШЕНИЕ КРАЕВЫХ ЗАДАЧ ДЛЯ ЭЛЛИПТИЧЕСКИХ УРАВНЕНИЙ

Цель работы: получить навык численного решения краевых задач для уравнений эллиптического типа с использованием различных методов на примере задачи Дирихле для линейного двумерного неоднородного уравнения.

Задания на лабораторную работу

Краевая задача для уравнения эллиптического типа

Рассматривается задача Дирихле для линейного двумерного неоднородного эллиптического уравнения с переменными коэффициентами:

$$\frac{\partial}{\partial x} \left(a(x, y) \frac{\partial u}{\partial x} \right) + \frac{\partial}{\partial y} \left(b(x, y) \frac{\partial u}{\partial y} \right) + c(x, y) u + f(x, y) = 0, \tag{1}$$

$$(x, y) \in \Omega = (0, l_x) \times (0, l_y);$$

$$u|_{\Gamma} = \varphi(x, y), \qquad (x, y) \in \Gamma = \partial\Omega.$$
 (2)

I. Задача Дирихле для уравнения Пуассона с постоянными коэффициентами

Рассматривается частный случай уравнения (1) — уравнение Пуассона с постоянными коэффициентами:

$$a(x,y) = b(x,y) = 1, c(x,y) = 0.$$
 (3)

По заданному в индивидуальном задании точному решению задачи (см. таблицу 1) необходимо восстановить функции f(x,y) и $\varphi(x,y)$.

Задача 1 (2 балла).

1) Написать вычислительную программу на языке программирования C++ решения задачи (1)-(3) с использованием конечно-разностной схемы с шаблоном «крест» на сетке с постоянными шагами h_x и h_y по направлениям x и y, удовлетворяющих соотношению

$$\frac{h_x}{h_y} = \frac{l_x}{l_y}.$$

Для решения получающейся СЛАУ использовать метод простых итераций. При этом матрица системы не должна храниться в памяти.

- 2) Исследовать зависимость погрешности решения от величины шагов сетки и построить соответствующие графики. Погрешность оценивать в равномерной норме.
- 3) Исследовать зависимости числа итераций от шага сетки.

Задача 2 (2 балла).

Решить задачу 1 с использованием для решения СЛАУ метод SOR. Параметр релаксации либо выбирается фиксированным, либо используется формула для оптимального значения.

Задача З (2 балла).

Решить задачу 1 с использованием для решения СЛАУ любой точный метод (Гаусса, LU-разложение, метод сопряженных градиентов с большим числом итераций). В данной задаче матрицу системы можно хранить целиком в памяти, желательно только ненулевые диагонали.

Индивидуальные задания к задаче 1

Таблица 1

			Таолица 1
№ в-та	l_x	l_y	u(x,y)
1	2	4	$(l_x - x)^2 (l_y - y)^3 xy$
2	π	1	$xy(l_x - \sin(x))(l_y - y)$
3	1	1	$(e^{xy}-1)(1-x)(1-y)$
4	1	2	$(l_x - x^2) \sin\left(\frac{\pi y}{l_y}\right)$
5	2	1	$(x+1)\sin\left(\frac{\pi x}{l_x}\right)\sin\left(\frac{\pi y}{l_y}\right)$
6	5	1	$y(l_x - x)^2(l_y - \sin(y))$
7	1	1	$\sin^2\left(\frac{\pi x}{l_x}\right)\sin\left(\frac{\pi y}{l_y}\right)$
8	2	1	$\sin\left(\frac{\pi x}{l_x}\right)\sin^2\left(\frac{\pi y}{l_y}\right)$
9	1	2	$\sin\left(\frac{\pi x^2}{{l_x}^2}\right)\sin\left(\frac{\pi y}{l_y}\right)$
10	π	1	$y\sin(x)(l_x-x)\left(l_y-y\right)$
11	1	1	$\cos(3xy) - 1$
12	2	2	$\exp(-4(x-1)^2 - 9(y-1)^2)$
13			
14			
15			

II. Решение задачи с переменными коэффициентами

Задача 4 (4 балла).

- 1) Написать вычислительную программу на языке программирования С++ решения задачи (1)-(2) с параметрами из таблиц 1 и 2 методом переменных направлений, либо использовать другой достаточно метод решения СЛАУ (точный метод или метод сопряженных градиентов).
- 2) Исследовать зависимость погрешности получаемого решения от величины шага сетки, построить соответствующие графики.

Индивидуальные задания к задаче 2

Таблина 2

			таолица 2
№ в-та	a(x,y)	b(x,y)	c(x,y)
1	1+x	$2 + y^2$	-xy
2	2-y	$1 + x^2$	x + y
3	$x^2 + y^2$	$x^2 + y^2$	2xy
4	x	y	$x^2 + y^2$
5	у	x	1
6	$x^2 + y + 1$	$y^2 + x + 1$	x - y
7	e^x	e^{y}	1
8	$2 + \sin(\pi y)$	$\sin(\pi x)$	х
9	1	$1 + y^2$	$x^2 - y^2$
10	1 + xy	1+xy	x + y
11	1 + x + y	$\cos(\pi x)$	1
12	2-y	3+x	1
13			
14			
15			

Теоретическая часть

Номер задачи	Литература	
	[1] глава 10, п. 6, [3] глава 4, п. 1,2	
1		
2		
3		
4		

- 1. Бахвалов Н.С., Жидков Н.П., Кобельков Г.М. Численные методы.
- 2. Калиткин Н.Н. Численные методы.
- 3. Самарский А.А. Введение в численные методы

По каждой решенной задаче в обязательном порядке оформляется отчет. Лабораторная работа считается выполненной, если набрано 6 и более баллов.