1. Mathematische Grundlagen und Logik

Naive Mengenlehre

Fragen im 19. Jahrhundert:

- Was sind die Grundlagen der Mathematik/Arithmetik?
- Was sind Zahlen? Was sind Mengen? Darf es unendliche Mengen geben?

Idee/Definition (Ende 19. Jahrhundert, CANTOR 1895)

Mengen sind ungeordnete Zusammenfassungen von wohlunterschiedenen Objekten (unseres Denkens) zu einem Ganzen.

Beispiele: $\{10^{10}, 1, \pi, 19, 2001\}$, Menge der natürlichen Zahlen, $\{A, x, 1, B\}$

Definition (FREGE 1893)

Für jedes sprachliche Prädikat P gibt es die **Menge** M_P aller der Objekte O, auf die das Prädikat P zutrifft

$$M_P = \{O \colon P(O) \text{ gilt}\}.$$

Objekte O für die P(O) gilt, heißen **Elemente von** M_P

$$O \in M_P$$
.

Russels Paradoxon

Antinomie (RUSSEL 1903)

Sei P das Prädikat "x enthält sich nicht selbst als Element", d. h.

$$M_P := \{O \colon P(O) \text{ gilt}\} = \{O \colon O \notin O\}.$$

Widerspruch: $M_P \notin M_P$ genau dann, wenn $M_P \in M_P$.

Beweis: Auf der einen Seite erhalten wir

$$M_P \notin M_P \stackrel{\text{Def.} \notin}{\Longrightarrow} M_P$$
 enthält sich nicht selbst als Element $\stackrel{\text{Def.} P}{\Longrightarrow} P(M_P)$ gilt $\stackrel{\text{Def.} M_P}{\Longrightarrow} M_P \in M_P$

und auf der anderen Seite erhalten wir

$$M_P \in M_P \stackrel{\text{Def.} \in}{\Longrightarrow} M_P$$
 enthält sich selbst als Element $\stackrel{\text{Def.} P}{\Longrightarrow} P(M_P)$ gilt nicht $\stackrel{\text{Def.} M_P}{\Longrightarrow} M_P \notin M_P$

 $\implies M_P$ kann nicht existieren

Freges Ansatz ist nicht widerspruchsfrei!

Auflösung des Paradoxons

Probleme in Freges Definition:

- Was ist ein Prädikat? Wann ist ein Prädikat "wahr", wann "gilt" es?
- Was sind Objekte? Gibt es eine "Grundmenge" aller Objekte?

Ausweg:

- Formalisierung mathematischer Sprache (Aussagen) und Regeln
 → mathematische Logik
- Benennung als wahr angenommener Grundaussagen (**Axiome**) \rightarrow axiomatische Mengenlehre
- der Wahrheitswert aller anderen Aussagen wird formal mit Hilfe der Regeln
 aus den Axiomen hergeleitet (Beweis)
 → Mathematik

Probleme:

- (innere) Widerspruchsfreiheit der Regeln und Axiome unentscheidbar
- Vollständigkeit Sind alle wahren Aussagen beweisbar? Nein, GÖDEL

Bemerkungen

- Standardaxiomensystem benannt nach Zermelo und Fraenkel
- hinzu kommt oft das sogenannte Auswahlaxiom (Axiom of Choice) \rightarrow ZFC-Axiome
- Axiome etablieren Grundmengen und zulässige Operationen, um aus bestehenden Mengen weitere Mengen abzuleiten
- Großteil der Mathematik kann innerhalb ZFC bewiesen werden
- Innerhalb von ZFC lassen sich die *üblichen* Zahlenmengen

 $\mathbb{N} = \mathsf{Menge} \; \mathsf{der} \; \mathsf{nat} \mathsf{\"{urlichen}} \; \mathsf{Zahlen},$

 $\mathbb{Z} = \mathsf{Menge} \; \mathsf{der} \; \mathsf{ganzen} \; \mathsf{Zahlen},$

 $\mathbb{Q} = \mathsf{Menge} \; \mathsf{der} \; \mathsf{rationalen} \; \mathsf{Zahlen},$

 $\mathbb{R} = \mathsf{Menge} \; \mathsf{der} \; \mathsf{reellen} \; \mathsf{Zahlen},$

 $\mathbb{C}=\mathsf{Menge}\;\mathsf{der}\;\mathsf{komplexen}\;\mathsf{Zahlen}$

implementieren und Aussagen darüber beweisen.

ZFC – Axiome der Mengenlehre

Teil 1

1 Existenz der leeren Menge: Es existiert eine Menge, die kein Element enthält.

$$(\exists x)(\forall y)(y \notin x)$$

Extensionalitätsaxiom: Zwei Mengen sind genau dann gleich, wenn sie die gleichen Elemente enthalten.

$$(\forall x)(\forall y)\Big((x=y)\Leftrightarrow \Big((\forall z)\big((z\in x)\Leftrightarrow (z\in y)\big)\Big)\Big)$$

Paarmengenaxiom: Für je zwei Mengen A, B existiert die Menge $\{A, B\}$.

$$(\forall x)(\forall y)(\exists z)(\forall u)\Big((u\in z)\Leftrightarrow \big((u=x)\vee(u=y)\big)\Big)$$

Vereinigungsmengenaxiom: Für jede Menge A gibt es eine Menge $\bigcup A$, deren Elemente die Elemente der Elemente von A sind.

$$(\forall x)(\exists y)(\forall z)\Big((z\in y)\Leftrightarrow \big((\exists u)\big((u\in x)\land (z\in u)\big)\big)\Big)$$

Potenzmengenaxiom: Für jede Menge A existiert die **Potenzmenge** $\mathcal{P}(A)$. die alle Teilmengen von A als Elemente enthält.

$$(\forall x)(\exists y)(\forall z)\Big((z\in y)\Leftrightarrow \big((\forall u\in z)(u\in x)\big)\Big)$$

Aussonderungsaxiom: Für jede Menge A und jede Aussageform p(x) existiert die Menge $A' \in A$: p(A'), die Teilmenge von A deren Elemente p(x) erfüllen.

$$(\forall x)(\exists y)(\forall z)\Big((z \in y) \Leftrightarrow \big(z \in x) \land p(z)\big)\Big)$$

ZFC – Axiome der Mengenlehre

Teil 2

7 Unendlichkeitsaxiom: Es gibt eine Menge N, die die leere Menge als Element enthält und für jede Menge A, die ein Element von N ist, auch den **Nachfolger** $A^+ := A \cup \{A\}$ in N als Element enthält.

$$(\exists x) \Big((\varnothing \in x) \land \big(\forall y \in x \big) ((y \cup \{y\}) \in x) \Big) \Big)$$

Ersetzungsaxiom: Das "Bild einer Menge unter einer Funktion" ist eine Menge. Für jede Aussagenform p(x,y) mit der Eigenschaft, dass für jede Menge A genau eine Menge B existiert, für die p(A,B) gilt und für jede Menge M ist die Zusammenfassung der N', für die eine $N \in M$ mit p(N,N') existiert, eine Menge.

$$(\forall x)(\exists y)(\forall z)\big((z \in y) \Leftrightarrow ((\exists u \in x)p(u,z))\big)$$

9 Fundierungsaxiom: Jede nicht leere Menge A enthält ein Element A', deren Schnitt mit A leer ist.

$$((\forall x)(x \neq \varnothing)) \Rightarrow ((\exists y \in x)(\forall z \in y)(z \notin x))$$

Auswahlaxiom: Für jede nicht leere Menge A bestehend aus paarweise disjunkten nicht leeren Mengen existiert eine Menge B, die aus jeder Menge $A' \in A$ genau ein Element enthält.

$$(\forall x) \Big(\big((\forall y \in x)(y \neq \varnothing) \big) \land (\forall y \in x)(\forall z \in x) \big((y \neq z) \Rightarrow (y \cap z = \varnothing) \big) \Big)$$
$$\Rightarrow (\exists u)(\forall y \in x)(\exists! z \in y)(z \in u)$$

Hierbei steht $\exists !$ für "es existiert genau ein", d. h. $(\exists !x)p(x)$ ist genau dann **wahr**, wenn die Aussage $(\exists x) \big(p(x) \land (\forall y) ((y \neq x) \Rightarrow \neg p(y)) \big)$ wahr ist.

Mengen

- Angabe der Axiome in dieser VL nur zur Kenntnisnahme \longrightarrow explizit **nicht** klausurreleveant
- in dieser VL reicht der folgende intuitive Mengenbegriff von CANTOR

Definition (Mengen)

Eine Menge ist eine Zusammenfassung bestimmter, wohlunterschiedener Objekte, die Elemente der Menge genannt werden.

■ Vermeidung des Russelschen Paradoxon wird dadurch erreicht, dass in Mengendefinitionen jeweils eine Grundmenge angeben werden muss

$$M = \{x \in X : x \text{ erfüllt } ...\}$$

und die "Menge aller Mengen" keine Menge ist.

■ Außerdem gibt es keine Mengen, die sich selbst als Element enthalten.

Mengenlehre

- Mengen sind ungeordnet, d. h. Elemente haben keine Reihenfolge
- Elemente können nicht mehrfach in Mengen vorkommen
- ⇒ jede Menge ist eindeutig durch ihre Elemente bestimmt und zwei Mengen sind gleich, wenn sie dieselben Elemente enthalten

$${x, y, z} = {y, z, x} = {y, z, x, x, z}$$

- $x \in M$ steht für "x ist ein Element der Menge M"
- $B \subseteq A$ steht für "die Menge B enthält nur Elemente aus A" $\to B$ ist eine Teilmenge von A

Beispiel

$$M = \{m, n, o\}, N_1 = \{a, b, \dots, z\}, N_2 = \{\{a, b, c\}, \{b, c, d\}, \dots, \{x, y, z\}\}$$

Dann gilt:

$$\varnothing \neq M \subseteq N_1$$
, $M \notin N_1$, $M \subseteq N_2$ und $M \in N_2$.

Aussagenlogik

Definition (Aussagen)

Aussagen sind Zeichenfolgen (Ausdrücke) bestehend aus (u. U. verzierten) lateinischen, griechischen, hebräischen, ... Buchstaben (Bezeichner) und Symbolen (,), $\{, \}$, usw., \emptyset , \in , \subseteq , =, :, \neg , \lor , \land , \Rightarrow , \Leftrightarrow , und xor. Hierbei liest man ": " als "so dass" und \neg als nicht ..., xor als entweder ..., oder ..., \lor als ... oder ..., \land als ... und ..., \Rightarrow als wenn ..., dann ..., \Leftrightarrow als ... genau dann, wenn

- Für je zwei Mengen A und B sind die Ausdrücke " $A \in B$ " und " $A \subseteq B$ " primitive Aussagen.
- Für zwei Aussagen p und q sind "¬p", "p xor q", " $p \lor q$ ", " $p \land q$ ", " $p \Rightarrow q$ " und " $p \Leftrightarrow q$ " zusammengesetzte Aussagen.

Bemerkung

■ Etwas allgemeiner gefasst ist eine Aussage ein Satz, für den man im Prinzip eindeutig feststellen kann, ob er wahr oder falsch ist.

Verknüpfte Aussagen

Definition (Zusammengesetzte Aussagen)

Für Aussagen p und q nennt man

und diese Aussagen heißen zusammengesetzte Aussagen.

- xor heißt auch exklusives Oder bzw. ausschließendes Oder
- an Stelle von \Rightarrow und \Leftrightarrow benutzt man auch \rightarrow und \leftrightarrow
- für $p \Rightarrow q$ sagt man auch p impliziert q bzw. q folgt aus p

Wahrheitsgehalt von Aussagen

- Primitive Aussagen der Form " $a \in B$ " (bzw. " $A \subseteq B$ ") sind wahr, wenn a, A und B in der Beziehung $a \in B$ (bzw. $A \subseteq B$) stehen und ansonsten sind sie falsch.
- Für aus Aussagen p und q zusammengesetzte Aussagen gilt:

$$\neg p \text{ ist } \begin{cases} \textbf{wahr} & \text{wenn } p \text{ falsch ist,} \\ \textbf{sonst, d. h. wenn } p \text{ wahr ist,} \end{cases}$$

$$p \times or q \text{ ist } \begin{cases} \textbf{wahr} & \text{wenn genau eine der Aussagen } p \text{ oder } q \text{ wahr ist,} \\ \textbf{sonst, d. h. wenn beide Aussagen } p \text{ und } q \text{ wahr oder falsch sind,} \end{cases}$$

$$p \vee q \text{ ist } \begin{cases} \textbf{wahr} & \text{wenn mindestens eine der Aussagen } p \text{ oder } q \text{ wahr ist,} \\ \textbf{sonst, d. h. wenn keine der Aussagen } p \text{ und } q \text{ wahr ist,} \end{cases}$$

$$p \wedge q \text{ ist } \begin{cases} \textbf{wahr} & \text{wenn beide Aussagen } p \text{ und } q \text{ wahr sind,} \\ \textbf{sonst, d. h. wenn höchstens eine der Aussagen } p, q \text{ wahr ist,} \end{cases}$$

$$p \Rightarrow q \text{ ist } \begin{cases} \textbf{wahr} & \text{wenn } q \text{ wahr ist oder wenn } p \text{ falsch ist,} \\ \textbf{sonst, d. h. wenn } p \text{ wahr und } q \text{ falsch ist,} \end{cases}$$

$$p \Rightarrow q \text{ ist } \begin{cases} \textbf{wahr} & \text{wenn } q \text{ wahr ist oder wenn } p \text{ falsch ist,} \\ \textbf{sonst, d. h. wenn } p \text{ und } q \text{ beide wahr oder wenn beide falsch sind,} \\ \textbf{sonst, d. h. wenn } p \text{ und } q \text{ unterschiedliche W'werte haben.} \end{cases}$$

■ wahr wird oft durch w, 1 und falsch durch f, 0 abgekürzt

Wahrheitstafeln

 Wahrheitswerte zusammengesetzter Aussagen lassen sich einfach über Wahrheitstafeln darstellen

p	q	-p	$\neg q$	$p \times or q$	$p \vee q$	$p \wedge q$	$p \Rightarrow q$	$p \Leftrightarrow q$
0	0	1	1	0	0	0	1	1
0	$\mid 1 \mid$	1	0	1	1	0	1	0
1	0	0	1	1	1	0	0	0
1	$\mid 1 \mid$	0	0	0	1	1	1	1

Mit Wahrheitstafeln kann man leicht folgende Aussagen beweisen:

Satz

Für Aussagen p, q und q' gilt

 $-(\neg p)$ ist äquivalent zu p

(doppelte Negation)

- $\neg (p \times p \times q)$ ist äquivalent zu $p \Leftrightarrow q$
- $p \land (q \lor q')$ ist äquivalent zu $(p \land q) \lor (p \land q')$

(Distributivität)

■ $p \Rightarrow q$ ist äquivalent zu $(\neg q) \Rightarrow (\neg p)$

(Kontraposition)

Distributivgesetz: $p \land (q \lor q') \Leftrightarrow (p \land q) \lor (p \land q')$

Beweis (mit Wahrheitstafeln)

p	q	q'	$q \lor q'$	$p \wedge (q \vee q')$	$p \wedge q$	$p \wedge q'$	$(p \land q) \lor (p \land q')$
0	0	0	0	0	0	0	0
0	0	$\mid 1 \mid$	1	0	0	0	0
0	1	0	1	0	0	0	0
0	1	1	1	0	0	0	0
1	0	0	0	0	0	0	0
1	0	1	1	1	0	1	1
1	1	0	1	1	1	0	1
1	1	1	1	1	1	1	1

Reductio ad absurdum

Widerspruchsbeweis bzw. indirekter Beweis

Mit Hilfe der Kontraposition kann eine Aussage p durch **Widerspruch** bewiesen werden. Dafür muss für eine bekannte falsche Aussage q die Implikation

$$(\neg p) \Rightarrow q$$

bewiesen werden, d. h. man beweist die Richtigkeit der Aussage "wenn p falsch ist, dann ist q wahr."

Da q aber falsch ist, kann p somit nicht falsch sein, also muss p wahr sein.

Bsp.: $p = \sqrt{2}$ ist irrational" und q = ges gibt teilerfremde a, b für die a/b kürzbar ist"

- q ist offensichtlich falsch
- Angenommen $\neg p$ ist wahr $\Rightarrow \sqrt{2} = a/b$ für teilerfremde natürliche Zahlen a, b
- $\Rightarrow 2b^2 = a^2 \Rightarrow 2 \text{ teilt } a^2$
- \Rightarrow da 2 eine Primzahl ist, teilt 2 somit auch a, d. h. $a=2a_1$ für geeignetes a_1
- \Rightarrow $2b^2 = a^2 = 4a_1^2 \Rightarrow b^2 = 2a_1^2 \Rightarrow 2$ teilt $b^2 \Rightarrow 2$ teilt b, d. h. $b = 2b_1$
- $\Rightarrow a/b = (2a_1)/(2b_1) = a_1/b_1 \Rightarrow q \text{ ist wahr}$
 - Also muss $\neg p$ falsch sein und somit ist p wahr, d. h. $\sqrt{2}$ ist irrational

Aussageformen

Definition (Aussageform)

Eine Aussageform ist eine Aussage, in der eine Konstante durch eine freie Variable ersetzt wurde. So erhält man aus einer Aussage p eine Aussageform p(x).

Beispiel

Sei p(x) die Aussageform "x ist gerade" und q(x) die Form " x^2 ist durch 4 teilbar".

- $p(x) \Rightarrow q(x)$ bedeutet "wenn x gerade ist, dann ist x^2 durch 4 teilbar" wahr für natürliche Zahlen x
- $q(x) \Rightarrow p(x)$ bedeutet "wenn x^2 durch 4 teilbar ist, dann ist x gerade" wahr für natürliche Zahlen x

Für natürliche Zahlen x gilt also

 $p(x) \Leftrightarrow q(x)$, "x is genau dann gerade, wenn x^2 durch 4 teilbar ist"

Quantoren: Allquantor ∀ und Existenzquantor ∃

Definition (Allaussagen und Existenzaussagen)

Sei p(x) eine Aussageform und M eine Menge. Dann ist

- $(\forall x \in M)p(x)$ eine Aussage Allaussage "für alle x in M gilt p(x)"
- $(\exists x \in M)p(x)$ eine Aussage Existenzaussage "es gibt ein x in M, so dass p(x) gilt"

Die freie Variable x in p(x) heißt dann gebundene Variable in der All-/Existenzaussage.

In All-/Existenzaussagen kann durch Einführung neuer Variablen eine neue Aussageform gebildet werden, die durch weitere Quantoren wieder gebunden werden können.

Definition (Wahrheitswerte von All- und Existenzaussagen)

Für eine Aussageform p(x) und eine Menge M gilt:

$$(\forall x \in M) p(x) \text{ ist } \begin{cases} \mathbf{wahr} & \text{wenn } p(x) \text{ für jedes } x \in M \text{ wahr ist} \\ \mathbf{falsch} & \text{sonst, d. h. wenn es ein } x \in M \text{ gibt, für das } p(x) \text{ falsch ist,} \end{cases}$$

$$(\exists x \in M) p(x) \text{ ist } \begin{cases} \mathbf{wahr} & \text{wenn es ein } x \in M \text{ gibt, so dass } p(x) \text{ wahr ist} \\ \mathbf{falsch} & \text{sonst, d. h. } p(x) \text{ ist falsch für jedes } x \in M. \end{cases}$$

$$\neg \big((\forall x \in M) p(x) \big) \iff \big((\exists x \in M) \neg p(x) \big) \,, \quad \neg \big((\exists x \in M) p(x) \big) \iff \big((\forall x \in M) \neg p(x) \big)$$

Mengenoperationen

Definition

Seien A und B Mengen, dann ist

- $A \cup B := \{x : x \in A \lor x \in B\}$ die Vereinigung von A und B,
- $A \cap B := \{x : x \in A \land x \in B\}$ der Schnitt von A und B,
- $A \setminus B := \{x : x \in A \land x \notin B\}$ die Differenz A ohne B,
- $\mathcal{P}(A) := \{x : x \subseteq A\}$ die Potenzmenge von A.

Für eine feste Grundmenge M mit $A \subseteq M$, ist

$$\overline{A} := M \setminus A = \{x \in M : x \notin A\}$$

das Komplement von A in M.

- mengentheoretische \cup (bzw. \cap) "entspricht" logischem \vee (bzw. \wedge)
- Potenzmenge wird auch mit $\mathcal{P}(A)$, 2^A , $\mathbb{P}(A)$, pow(A) bezeichnet

- $\overline{(A)} = \overline{A} = \overline{M \setminus A} = M \setminus (M \setminus A) = A \text{ für jede Menge } A \subseteq M$

Distributivitätsgesetz für Mengen

Satz

Für beliebige Mengen A, B, $C \subseteq M$ gilt $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

Beweis (mit Wahrheitstafeln)

Aus den Definitionen der Vereinigung und des Schnittes folgt

$$A \cap (B \cup C) = \{x \in M \colon x \in A \land (x \in B \lor x \in C)\}.$$

Für ein beliebiges $x \in M$ seien a_x , b_x und c_x die (primitiven) Aussagen $x \in A$, $x \in B$ und $x \in C$. Somit gilt

$$x \in A \cap (B \cup C) \iff a_x \wedge (b_x \vee c_x) \text{ ist wahr.}$$

Wegen des Distributivgesetzes des logischen "und" und "oder" (bewiesen durch Wahrheitstafeln) gilt

$$a_X \wedge (b_X \vee c_X) \Longleftrightarrow (a_X \wedge b_X) \vee (a_X \wedge c_X),$$

und somit gilt

$$x \in A \cap (B \cup C) \iff (a_x \wedge b_x) \vee (a_x \wedge c_x) \text{ ist wahr}$$

 $\iff (x \in A \wedge x \in B) \vee (x \in A \wedge x \in C) \text{ ist wahr}$

und die Aussage des Satzes folgt, da $x \in M$ beliebig war.

Distributivitätsgesetz für Mengen

2. Beweis

Satz

Für beliebige Mengen A, B, $C \subseteq M$ gilt $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

Beweis

Wir beweisen beide Teilmengenbeziehungen

$$A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$$
 und $A \cap (B \cup C) \supseteq (A \cap B) \cup (A \cap C)$

einzeln, wodurch sich die Gleichheit ergibt.

"⊆" Sei $x \in A \cap (B \cup C)$ beliebig. Das bedeutet $x \in A$ und

$$x \in B \cup C$$
. (*)

Falls $x \in B$, dann gilt auch $x \in A \cap B$ und somit auch $x \in (A \cap B) \cup (A \cap C)$.

Falls $x \notin B$, dann gilt $x \in C$ wegen (*) und somit auch $x \in A \cap C$ und wieder folgt $x \in (A \cap B) \cup (A \cap C)$.

In jedem Fall gilt also $x \in (A \cap B) \cup (A \cap C)$ und da x beliebig aus $x \in A \cap (B \cup C)$ gewählt war, folgt die gesuchte Inklusion

$$A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$$
.

Distributivitätsgesetz für Mengen

2. Beweis

Satz

Für beliebige Mengen A, B, $C \subseteq M$ gilt $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

Beweis

Wir beweisen beide Teilmengenbeziehungen

$$A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$$
 und $A \cap (B \cup C) \supseteq (A \cap B) \cup (A \cap C)$

einzeln, wodurch sich die Gleichheit ergibt.

"⊇" Sei nun
$$x \in (A \cap B) \cup (A \cap C)$$
 beliebig.

$$\Rightarrow x \in A \cap B \text{ oder } x \in A \cap C$$

- Falls $x \in A \cap B$
 - $\Rightarrow x \in A \text{ und } x \in B$
 - $\Rightarrow x \in A \text{ und } x \in B \cup C$
 - \Rightarrow $x \in A \cap (B \cup C)$.
- Der Fall $x \in A \cap C$ ist analog mit B und C vertauscht.

Somit gilt $x \in A \cap (B \cup C)$ und da x beliebig gewählt war, folgt auch die Inklusion $(A \cap B) \cup (A \cap C) \subseteq A \cap (B \cup C)$.

Beide Inklusionen zusammen ziehen die Gleichheit der Mengen nach sich.

DE MORGANsche Regeln

Satz (DE MORGAN)

Für beliebige Mengen A, $B \subseteq M$ gilt

$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$
 und $\overline{A \cup B} = \overline{A} \cap \overline{B}$.

Beweis

• Sei $x \in \overline{A \cap B}$.

 $\Rightarrow x \notin (A \cap B) \Rightarrow x \notin A \text{ oder } x \notin B \Rightarrow x \in \overline{A} \text{ oder } x \in \overline{B} \Rightarrow x \in \overline{A} \cup \overline{B}.$ Somit gilt $\overline{A \cap B} \subseteq \overline{A} \cup \overline{B}$.

• Sei umgekehrt $x \in \overline{A} \cup \overline{B}$.

 $\Rightarrow x \in \overline{A} \text{ oder } x \in \overline{B} \Rightarrow x \notin A \text{ oder } x \notin B \Rightarrow x \notin (A \cap B) \Rightarrow x \in \overline{A \cap B}.$ Somit gilt auch $\overline{A} \cup \overline{B} \subseteq \overline{A \cap B}$ und die erste Gleichheit folgt.

• Für die zweite Identität folgern wir zuerst aus der ersten Regel (angewandt auf \overline{A} und \overline{B})

$$\overline{\overline{A} \cap \overline{B}} = \overline{\overline{A}} \cup \overline{\overline{B}} = A \cup B$$

und Komplementbildung auf beiden Seiten ergibt $\overline{A} \cap \overline{B} = \overline{A \cup B}$.

BOOLEsche Algebren

DE MORGAN für Mengen: $\overline{A \cap B} = \overline{A} \cup \overline{B}$ und $\overline{A \cup B} = \overline{A} \cap \overline{B}$

$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$

$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$

Satz (DE MORGAN für Aussagen)

Für Aussagen p und q gilt: $\neg(p \land q) = \neg p \lor \neg q$ und $\neg(p \lor q) = \neg p \land \neg q$.

Beweis: Wahrheitstafeln (Übung/Selbststudium)

Bemerkungen

- Distributivgesetze, DE Morgan-Regel gibt es jeweils für Mengen und Aussagen
- enger Zusammenhang zwischen Mengen und Aussagen

	Komplement	Vereinigung	Schnitt
Mengen	\overline{A}	$A \cup B$	$A \cap B$
Aussagen	$\neg p$	$p \vee q$	$p \wedge q$
	Negation	Disjunktion	Konjunktion

wobei Komplementbildung (bzw. Negation) \cup/\cap (bzw. \vee/\wedge) vertauscht.

- Abstraktion führt zum Begriff der Booleschen Algebra, z. B.
 - \blacksquare die Schaltkreisalgebra $(\{0,1\}, \vee, \wedge, \neg, 0, 1)$ auf den Wahrheitswerten 0 und 1 mit den logischen Verknüpfungen,
 - die Potenzmengenalgebra $(\mathcal{P}(M), \cup, \cap, \neg, \emptyset, M)$ in $\mathcal{P}(M)$ für eine nichtleere Menge $M \neq \emptyset$ mit den mengentheoretischen Verknüpfungen.
- in diesem Kontext entspricht die DE Morgansche Regel dem Dualitätspinzip

Kartesisches Produkt

Definition

Für Mengen A und B ist das kartesische Produkt/Kreuzprodukt definiert durch

$$A \times B := \{(a, b) : a \in A \text{ und } b \in B\}$$

als die Menge aller **geordneten** Paare mit dem ersten Element aus A und dem zweiten B.

Allgemeiner definieren wir für Mengen A_1, \ldots, A_n durch

$$A_1 \times \cdots \times A_n := \{(a_1, \ldots, a_n) : a_1 \in A_1, \ldots, a_n \in A_n\}$$

die Menge aller entsprechenden **geordneten** *n*-Tupel.

- falls $A_1 = \cdots = A_n = A$ gilt, dann schreiben wir A^n für $A_1 \times \cdots \times A_n$
- falls $A_i = \emptyset$ für ein i, dann ist $A_1 \times \cdots \times A_n = \emptyset$
- für n = 0 ist $A^0 = \{()\}$ die Menge bestehend aus dem leeren Tupel ()

Abbildungen/Funktionen

Definition

Eine Abbildung/Funktion f von einer Menge A in eine Menge B ist eine **Zuordnung**, die jedem Element von A ein Element von B zuordnet und wir schreiben abkürzend

$$f: A \rightarrow B$$

und sagen, f ist eine Abbildung/Funktion von A nach B.

Die Menge A heißt Definitionsbereich und B ist der Wertevorrat von f.

Für jedes $a \in A$ bezeichnen wir mit b = f(a) das Element $b \in B$, das die Funktion f dem Element a zuordnet und wir sagen, f bildet a auf b ab und schreiben

$$a \mapsto b$$
,

wenn klar ist, welche Funktion f gemeint ist.

Die Teilmenge $\{f(a): a \in A\}$ des Wertevorrats heißt Bild von f.

Eigenschaften von Funktionen

Definition

Eine Funktion $f: A \rightarrow B$ heißt

- injektiv, falls für alle $a, a' \in A$ gilt $f(a) = f(a') \Rightarrow a = a'$.
- surjektiv, falls für alle $b \in B$ ein $a \in A$ existiert, so dass f(a) = b gilt.
- bijektiv, falls sie sowohl injektiv, als auch surjektiv ist.

Beispiele

- $f_1: \mathbb{N} \to \mathbb{N}$ mit $x \mapsto x^2$ ist injektiv, aber nicht surjektiv
- $f_2: \mathbb{Z} \to \mathbb{Z}$ mit $x \mapsto x^2$ ist weder injektiv, noch surjektiv
- $f_3: \mathbb{R} \to \mathbb{R}$ mit $x \mapsto x^3 + x^2$ ist nicht injektiv, aber surjektiv
- $f_4: \mathbb{R} \to \mathbb{R}$ mit $x \mapsto x^3$ ist bijektiv
- $g: \mathbb{R} \to \mathbb{R}$ mit $x \mapsto \exp(x)$ ist injektiv, aber nicht surjektiv mit dem Bild $\{r \in \mathbb{R}: r > 0\}$
- konstante Funktionen $h \equiv z$, $h: M \to M$ mit $x \mapsto z$ für festes $z \in M$ sind im Allgemeinen weder injektiv, noch surjektiv
- Identität auf M id $_M$: $M \to M$ mit $x \mapsto x$ ist bijektiv

Operationen

Definition

Eine *n*-stellige Operation/(innere) *n*-stellige Verknüpfung auf einer Menge M ist eine Abbildung $f: M^n \to M$.

Beispiele

- jede 0-stellige Operation auf einer Menge M ordnet dem leeren Tupel () ein Element in M zu und kann als konstante Funktion bzw. einfach als Darstellung einer Konstante angesehen werden
- Negation (\neg) ist eine 1-stellige $(un\"{a}re)$ Operation auf den Aussagen
- Komplement $\overline{(}$ ist eine 1-stellige Operation auf $\mathcal{P}(M)$ für jedes M
- die logischen (xor, \vee , \wedge , \Rightarrow , \Leftrightarrow) und mengentheoretischen (\cup , \cap , \setminus) Verknüpfungen sind 2-stellige (binäre) Operationen
- oft schreiben wir bei binären Operationen den Operator zwischen die beiden Argumente (Infixnotation), z. B. $A \cap B$ an Stelle von $\cap (A, B)$
- Grundrechenarten Addition (+), Subtraktion (-), Multiplikation (\cdot) und Division (\cdot) sind bekannte Beispiele für binäre Operationen

Summen- und Produktzeichen

Definition $(\sum und \prod)$

Für Zahlen x_1, \ldots, x_n sei

$$\sum_{i=1}^{n} x_i := x_1 + x_2 + \dots + x_n \quad \text{und} \quad \prod_{i=1}^{n} x_i := x_1 \cdot x_2 \cdot \dots \cdot x_n.$$

Dabei heißt i der Laufindex, 1 ist die untere Summations-/Produktgrenze und n ist die obere Summations-/Produktgrenze.

Für n = 0 definieren wir die leere Summe $\sum_{i=1}^{0} x_i$ als 0 und das leere Produkt $\prod_{i=1}^{0} x_i$ als 1.

■ Laufindex muss nicht mit *i* bezeichnet werden und mit 1 beginnen

$$\sum_{k=-2}^{3} 2^{k+1} = 2^{-1} + 2^{0} + 2^{1} + 2^{2} + 2^{3} + 2^{4} = 31, 5 = \sum_{i=1}^{6} 2^{i-2}$$

■ Potenzen von -1 ermöglichen alternierende Summen/Produkte mit wechselndem Vorzeichen

$$\sum_{i=0}^{3} (-1)^{i} 3^{i} = 1 - 3 + 9 - 27 = -20 \quad \text{und} \quad \sum_{i=0}^{3} (-1)^{i+1} 3^{i} = -1 + 3 - 9 + 27 = 20$$

Rechenregeln

• für $x_1 = \cdots = x_n = x$ erhalten wir

$$\sum_{i=1}^{n} x = n \cdot x \quad \text{und} \quad \prod_{i=1}^{n} x = x^{n}$$

■ Linearität der Summe: folgt aus dem Distributivgesetz

$$a\sum_{i=1}^{n} x_i = a \cdot (x_1 + \dots + x_n) = ax_1 + \dots + ax_n = \sum_{i=1}^{n} ax_i$$

und aus der Assoziativität und Kommutativität der Addition

$$\sum_{i=1}^{n} (x_i + y_i) = (x_1 + y_1) + \dots + (x_n + y_n)$$

$$= (x_1 + \dots + x_n) + (y_1 + \dots + y_n) = \sum_{i=1}^{n} x_i + \sum_{i=1}^{n} y_i$$

Rechenregeln

2. Teil

Ausmultiplizieren ergibt

$$\left(\sum_{i=1}^{n} x_i\right) \left(\sum_{j=1}^{m} y_j\right) = (x_1 + \dots + x_n) \cdot (y_1 + \dots + y_m)$$

$$= x_1 y_1 + x_1 y_2 + \dots + x_1 y_m$$

$$+ x_2 y_1 + \dots + x_2 y_m$$

$$+ \dots +$$

$$+ x_n y_1 + \dots + x_n y_m$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{m} x_i y_j$$

Kommutivität erlaubt dann die Vertauschung

$$\sum_{i=1}^{n} \sum_{j=1}^{m} x_i y_j = \sum_{j=1}^{m} \sum_{i=1}^{n} x_i y_j$$