<u>CHEM110 – Stoichiometric Calculations</u>

These types of questions are essentially all the same. You are given a chemical equation and a mass, a volume or a pressure and are required to determine the mass, volume or pressure of another substance in the reaction. The pattern followed is always the same. For now we will worry only about starting with a mass and move onto volumes and pressures later on. The key linking the substances is the MOLE RATIO \rightarrow a: b:c:d

$$aA + bB \rightarrow cC + dD$$

a : b : c : d

<u>Step 1</u>: Calculate moles of whatever substance you have been given the mass for, using molecular weight (MW) of that substance

<u>Step 2</u>: Use mole ratio from chemical equation to convert moles of what you have been given information about (answer from step 1) to moles of whichever substance you need to know about.

<u>Step 3</u>: Use molecular weight of the substance of interest to convert moles of that substance (answer from step 2) into mass.

These steps are shown in a flow diagram below. There is a similar one in your text book in Figure 2.13 on page 75. An important point to remember is that substance X can be any reactant or product and substance Y can be any reactant or product.

$$2NaOH + H_2SO_4 \rightarrow Na_2SO_4 + 2H_2O$$
 $2 : 1 : 1 : 2$

1. Question: How many grams of H₂O can be produced from 125.3g NaOH?

Translation: Convert mass of NaOH to mass of H₂O

mass NaOH \rightarrow moles NaOH \rightarrow moles H₂O \rightarrow mass H₂O

$$125.3 \text{ g NaOH} \times \underbrace{\left(\frac{1 \text{ mol NaOH}}{40.00 \text{ g NaOH}}\right)}_{\text{molecular weight of NaOH}} \times \underbrace{\left(\frac{2 \text{ mol H}_2\text{O}}{2 \text{ mol NaOH}}\right)}_{\text{mole ratio}} \times \underbrace{\left(\frac{18.02 \text{ g H}_2\text{O}}{1 \text{ mol H}_2\text{O}}\right)}_{\text{molecular weight of H}_2\text{O}} = 56.45 \text{ g H}_2\text{O}$$

2. <u>Question</u>: How many grams of Na₂SO₄ can be produced from 125.3g NaOH? <u>Translation</u>: Convert mass of NaOH to mass of Na₂SO₄

mass NaOH → moles NaOH → moles Na₂SO₄ → mass Na₂SO₄

$$125.3 \text{ g NaOH} \times \underbrace{\left(\frac{1 \text{ mol NaOH}}{40.00 \text{ g NaOH}}\right)}_{\text{molecular weight of NaOH}} \times \underbrace{\left(\frac{1 \text{ mol Na}_2 \text{SO}_4}{2 \text{ mol NaOH}}\right)}_{\text{mole ratio}} \times \underbrace{\left(\frac{142.0 \text{ g Na}_2 \text{SO}_4}{1 \text{ mol Na}_2 \text{SO}_4}\right)}_{\text{molecular weight of Na}_2 \text{SO}_4} = 222.4 \text{ g Na}_2 \text{SO}_4$$

3. Question: How many grams of H₂SO₄ are needed to react with 125.3g NaOH? Translation: Convert mass of NaOH to mass of H₂SO₄

mass NaOH → moles NaOH → moles H₂SO₄ → mass H₂SO₄

$$125.3 \text{ g NaOH} \times \underbrace{\left(\frac{1 \text{ mol NaOH}}{40.00 \text{ g NaOH}}\right)}_{\text{molecular weight of NaOH}} \times \underbrace{\left(\frac{1 \text{ mol H}_2 \text{SO}_4}{2 \text{ mol NaOH}}\right)}_{\text{mole ratio}} \times \underbrace{\left(\frac{98.08 \text{ g H}_2 \text{SO}_4}{1 \text{ mol H}_2 \text{SO}_4}\right)}_{\text{molecular weight of H}_2 \text{SO}_4} = 153.6 \text{ g H}_2 \text{SO}_4$$

4. Question: How many grams of H₂O are produced if 210.3g of Na₂SO₄ are produced? Translation: Convert mass of H₂O to mass of Na₂SO₄

mass $Na_2SO_4 \rightarrow moles Na_2SO_4 \rightarrow moles H_2O \rightarrow mass H_2O$

$$210.3 \text{ g Na}_2\text{SO}_4 \times \left(\frac{1 \text{ mol Na}_2\text{SO}_4}{142.00 \text{ g Na}_2\text{SO}_4}\right) \times \left(\frac{2 \text{ mol H}_2\text{O}}{1 \text{ mol Na}_2\text{SO}_4}\right) \times \left(\frac{18.02 \text{ g H}_2\text{O}}{1 \text{ mol H}_2\text{O}}\right) = 53.37 \text{ g H}_2\text{O}$$

		C_3H_8	+	5O ₂ →	3CO ₂	+	4H ₂ O	
			: _	:		:		
5.	Question: Translation:			-			7g C₃H ₈ ?	
	mass	s>	moles	> mo	les	_ > ma	ss	
6	Question:	How many g	rams of CC	a can he n	roduced fr	om 62 -	7g C-H-2	
Ο.	<u>Translation</u> :			•		0111 02.7	, g C3⊔8 ;	
	mass	s →	moles	→ mo	les	_ > ma	ss	
7.	<u>Question</u> : <u>Translation</u> :					with 62	.7g C₃H ₈ ?	
	mass	s >	moles	→ mo	les	_ > ma	ss	
8.	Question:	How many g	rams of O2	will he pro	oduced if 4	17 09g o	f CO2 are pr	oduced?
	<u>Translation</u> :	Convert mas				- 0 -	2 · · · · · ·	
	mass	s>	moles	→ mo	les	_ > ma	ss	

	6H₂O	+	7CO ₂	\rightarrow	6O ₂	+	$C_6H_{12}O_6$	+	CO ₂
		: _		:	:			: .	
9.	Question: Translation:		-		-		_	g CO₂?	
	mass	s)	moles	>	moles _		→ mass		
10.	. <u>Question</u> : <u>Translation</u> : mass	Convert m		_ to mas	ss of	·			
11.	. <u>Question</u> : <u>Translation</u> : mass	Convert m	-	_ to ma	ass of		_		,
12.	. <u>Question:</u> <u>Translation:</u> mass	Convert m	y grams of O nass of moles	to ma	ass of			·	ed?
			N_2	+	$3H_2$	\rightarrow	2NH ₃		

			:	:			
13.		How many grams of		-		g N ₂ ?	
	mass	> moles _	<u> </u>	→ moles	→ mas	s	
1.4	Question	How many grams of	· N. aro	required to n	roduco 27a	of N∐. 2	
17.		Convert mass of			_	01 14113:	
	mass	> moles _	·	→ moles	→ mas	s	
15.		How many grams of Convert mass of		•		.0g of N₂?	
	mass	> moles _		→ moles	→ mas	s	
16.	<u>Question</u> : <u>Translation</u> :	How many grams of Convert mass of	_	•		.0g of H₂?	
	mass	→ moles		→ moles	→ mas	c	