Рекомендации по выполнению Лабораторной работы №2 «Усилители аналоговых сигналов»

В Лабораторной работе №2 проводятся измерения основных параметров усилителей. Внутренняя структура усилителя и принципы его построения «остаются за кадром», усилитель рассматривается просто как устройство со входом (2 клеммы) и выходом (2 клеммы).

8. Схема с ОЭ и ООС по напряжению

9. Схема с общей базой (ОБ) прп

10. Схема с общей базой (ОБ) *pnp*

11. Схема с ОЭ и заданием рабочей точки напряжением *прп*

12. Схема с ОЭ и заданием рабочей точки напряжением *pnp*

В предлагаемых схемах транзисторы могут являться как *прп*-транзисторами, так и *pпр*-транзисторами. На это следует обратить внимание при сборе схемы: *прп*-транзисторы требуют положительного питания (потенциал коллектора должен быть выше потенциала эмиттера), а *pпр*-транзисторы требуют, наоборот, отрицательного питания (потенциал коллектора должен быть ниже потенциала эмиттера).

Номиналы элементов усилителей разнятся от варианта к варианту.

Программа выполнения работы:

- 1. Собрать предлагаемую схему усилителя. Проконтролировать, что усилитель спроектирован и собран правильно. Для этого, не подавая входной сигнал (можно заземлить вход усилителя), измерить вольтметром постоянного тока разность потенциалов $U_{\mbox{\tiny K}}-U_{\mbox{\tiny 9}}$ и убедиться, что она составляет половину напряжения источника питания (±10%). В случае, если в состав усилителя входят два транзистора, проверить только выходной транзистор. Если разность потенциалов $U_{\mbox{\tiny K}}-U_{\mbox{\tiny 9}}$ не составляет половину напряжения источника питания, подкорректировать сопротивление резистора R_6 .
- 2. Подать на вход усилителя синусоидальный сигнал некоторой частоты и амплитуды и убедиться с помощью осциллографа, что усилитель усиливает этот сигнал. При выборе амплитуды и частоты входного сигнала следует использовать следующие соображения:
 - амплитуда выходного сигнала предлагаемых схем не может (в принципе) превысить половину напряжения источника питания и для того, чтобы избежать нелинейных искажений её желательно делать не более 10-20% половины напряжения источника питания;
 - чтобы получить заданную амплитуду выходного сигнала $U_{\rm вых}$, нужно подать на вход усилителя сигнал с амплитудой $U_{\rm вx}=U_{\rm вых}/K$, где K коэффициент усиления усилителя по напряжению (около нескольких десятков-сотен для схем с ОЭ и ОБ, $R_{\rm k}/R_{\rm s}$ для схемы с ОЭ и ООС по току, несколько десятков для схем с ОЭ и ООС по напряжению, 1 для схем с ОК, до нескольких тысяч для схем Дарлингтона и Шиклаи). Совершенно необязательно пытаться заранее предсказать коэффициент усиления усилителя, можно устанавливать амплитуду входного напряжения такой, чтобы она имела максимально возможное значение, при котором отсутствуют нелинейные искажения (это можно контролировать по осциллограмме выходного сигнала).
 - частоту входного сигнала следует выбрать изначально равной нескольким кГц, в дальнейшем будет нелишним убедиться, что выбранная частота находится на горизонтальном участке АЧХ усилителя
 - 3. Снять АЧХ усилителя. Это можно сделать двумя способами:

За. Подать на вход усилителя сигнал с «правильной» амплитудой $U_{\rm BX}$ и частотой f (п.1) и измерить амплитуду выходного сигнала $U_{\rm BLX}$. При этом следует учитывать, что вольтметры переменного напряжения, как правило, показывают не амплитуду, а действующее значение напряжения, поэтому не следует забывать о коэффициенте $\sqrt{2}$. После этого достаточно вычислить значение АЧХ на выбранной частоте как отношение $U_{\rm BLX}/U_{\rm BX}$. При этом удобно устанавливать не амплитуду входного напряжения, а его действующее значение (RMS в системе Proteus). Следует также иметь в виду, что вольтметр переменного напряжения Proteus выдаёт среднеквадратичное значение напряжения за устанавливаемы промежуток времени, поэтому следует каждый раз при измерении устанавливать этот промежуток равным $\approx (10...100)/f$, а также то, что измеряет он именно среднеквадратичное напряжение (без вычета постоянной составляющей), поэтому подключать его нужно только после разделительного конденсатора $C_{\rm BLX}$ (при этом необходимо, конечно, учитывать, что импеданс конденсатора $1/(\omega C_{\rm BLX})$ должен быть много меньше сопротивления вольтметра).

Измерить выходной сигнал и вычислить значения АЧХ усилителя на всех рабочих частотах, начиная от (можно ниже) нижней частоты среза, на которой АЧХ имеет значение $\sqrt{2}$ от её максимального значения (-3,01 дБ от максимума) и заканчивая верхней частотой среза (можно выше), на которой АЧХ имеет значение $\sqrt{2}$ от её максимального значения (-3,01 дБ от максимума). Привести таблицу полученной зависимости и построить её график (в двойном логарифмическом масштабе.

36. Воспользоваться средствами Proteus для построения частотных характеристик. Для этого включить Graph Mode (кликнуть на левой стороне окна Proteus по иконке со схематичным изображением графиков), выбрать FREQUENCY, отметить на рабочей области прямоугольник для построения АЧХ. Далее — правый клик по FREQUENCY RESPONCE/Edit Properties/Reference и выбрать источник переменного входного сигнала. После этого подключить к выходу усилителя пробник напряжения, кликнуть по нему и перенести его изображение в левую сторону прямоугольника АЧХ (перенесение в правую сторону даст возможность построить ФЧХ). Теперь правый клик/Simulate Graph (не включая симуляции!) приводит к автоматическому построению АЧХ, которую можно развернуть во весь экран кликом по FREQUENCY RESPONCE, можно также настроить удобный масштаб просмотра.

Координаты точек АЧХ можно считать, устанавливая маркер (клик по АЧХ в полноэкранном режиме) и считывая значения координат в нижней строчке экрана. Можно также вывести координаты точек АЧХ в текстовый файл (правый клик/Export Graph Data/Указать путь сохранения без символов кириллицы). Надо иметь в виду, что расширение файла сохранения необходимо изменить на *.txt, и, при использовании русифицированной ОС, заменить десятичные точки на десятичные запятые. Полученный текстовый файл следует экспортировать в Excel и построить

график АЧХ (При этом следует иметь в виду, что Proteus использует десятичную точку, а русифицированный Excel – десятичную запятую).

4. Найти (по графику или по таблице) коэффициент усиления усилителя K , то есть значение его AЧX на её горизонтальном участке

Найти (по графику или по таблице) частоты среза усилителя $f_{_{\rm H}}$ и $f_{_{\rm B}}$, то есть такие частоты входного сигнала, при которых значение его АЧХ в $\sqrt{2}\,$ раз меньше K (или, что то же самое, меньше K на 3,01 дБ).

Определить полосу пропускания усилителя — от $f_{_{\rm H}}$ и $f_{_{\rm B}}$ и её ширину $f_{_{\rm B}}-f_{_{\rm H}}$. Не стоит приводить в отчёте $f_{_{\rm H}}$, $f_{_{\rm B}}$ и ширину полосы пропускания с точностью до огромного количества цифр, для этого достаточно 2-3 цифр.

Дальнейшие разделы программы выполнения работы, если это не оговорено отдельно, следует выполнять на частоте середины полосы пропускания, которую можно приблизительно оценить по графику, можно воспользоваться формулой $f_0 \approx \sqrt{f_{\scriptscriptstyle \rm H} f_{\scriptscriptstyle B}}$ (при этом f_0 следует выбирать максимально «круглым», с максимальной точностью до 2-3 цифр).

5. Измерить входное сопротивление усилителя. Для этого подать на его вход сигнал разных (по очереди) частот с достаточно малой амплитудой (такой, что на осциллографе визуально не наблюдаются нелинейные искажения, то есть отличие формы сигнала от синусоидальной) и измерить (амперметром переменного тока) входной ток усилителя. При этом, если точности амперметра недостаточно, можно воспользоваться средствами Proteus для усиления измеряемого тока, как это показано на рисунке:

На приведённом фрагменте схемы используется преобразователь CCVS и измеряемый ток равняется 168 нА. Необходимо отметить, что ёмкость конденсатора C3 в приведённом примере следует выбирать такой, чтобы его емкостное сопротивление $\left(1/(2\pi fC)\right)$ на 2-3 порядка меньше сопротивления вольтметра.

Оцениваемое входное сопротивление, очевидно, равняется $R_{_{
m BX}}=U_{_{
m BX}}/I_{_{
m BX}}$, причём $U_{_{
m BX}}$ и $I_{_{
m BX}}$ – это одновременно либо действующие, либо амплитудные значения.

Измерения входного сопротивления необходимо провести минимум на трёх частотах:

- на середине полосы пропускания f_0 ;
- вблизи нижней частоты среза (можно взять $\sqrt{f_{_{\mathrm{H}}}f_{_{0}}}$, округлить до 2-3 знаков);

- вблизи верхней частоты среза (можно взять $\sqrt{f_0 f_{\scriptscriptstyle \mathrm{B}}}$, округлить до 2-3 знаков);
- 6. Снять передаточную характеристику усилителя. Для этого подать на вход усилителя сигнал с частотой f_0 и действующим значением $U_{\min} = \sqrt{4kTR_{\rm BX}\Delta f}$, где $R_{\rm BX}$ входное сопротивление (определённое в п.4), Δf ширина полосы частот (определённая в п.3) в Гц, T окружающая температура ($\approx 300~{\rm K}$), k постоянная Больцмана ($\approx 1,38\times 10^{-23}~{\rm [CH]}$) и измерить действующее значение выходного напряжения. Затем постепенно увеличивать входное напряжение до той поры $\left(U_{\rm max}\right)$, пока зависимость $U_{\rm BLIX}\left(U_{\rm BX}\right)$ не станет значительно (до $\approx 10\%$) отличаться от линейной. Вычислить динамический диапазон усилителя как отношение $U_{\rm max}/U_{\rm min}$ в дБ.
- 7. Измерить выходное сопротивление усилителя. Для этого подать на вход усилителя сигнал с действующим значением $\sqrt{U_{\min}U_{\max}}$ и измерить (без нагрузки) действующее значение выходного напряжения U_{∞} . Далее подключить к выходу усилителя нагрузку и, подобрав такое значение её сопротивления R_{H} , при котором выходное напряжение уменьшается на 5...10 %, измерить это выходное напряжение U_{R} . Выходное сопротивление вычислить по формуле:

$$R_{\text{\tiny BbIX}} = -\frac{\Delta U}{\Delta I} = -\frac{U_{\infty} - U_{R}}{I_{\infty} - I_{R}} = -\frac{U_{\infty} - U_{R}}{0 - I_{R}} = \frac{U_{\infty} - U_{R}}{U_{R}/R} = R\left(\frac{U_{\infty}}{U_{R}} - 1\right).$$

Измерения следует провести на всех частотах, используемых в п.5

Содержание отчёта:

Отчёт должен содержать:

- 1. Самостоятельно выполненную (в любом графическом редакторе) схему усилителя. Схема должна содержать обозначения только российского ГОСТ с их номиналами, записанными в соответствии с общепринятыми правилами (сопротивления: Ом число без указания единиц, кОм число с символом «к», конденсаторы: пФ число без запятой и без указания единиц, мкФ число обязательно с десятичной запятой). За применение обозначений, отличных от ГОСТ, оценка снижается на 1 балл, за необозначение точек соединения проводников на 2 балла, за рукописные символы на схеме на 1 балл.
- 2. График АЧХ усилителя. В случаях, если график снят путём измерения $U_{\scriptscriptstyle \rm BMX}/U_{\scriptscriptstyle \rm BX}$ на разных частотах, или если для его построения использовались значения маркера Proteus, к графику обязательно должна быть приложена таблица измерений. Если же график был снят путём экспортирования данных АЧХ, таблица необязательна. График обязательно должен быть построен в Excel, скриншоты экрана не допускаются (— 2 балла). График должен быть построен в двойном логарифмическом масштабе и на нём должны быть видны частоты среза усилителя (если возможностей Proteus не достаточно для определения верхней частоты среза, то допустимо снять АЧХ до максимально возможной частоты и сделать приписку

- « $f_{_{\rm B}}$ определить не удалось», и далее эту максимально возможную частоту можно использовать в качестве $f_{_{\rm B}}$).
- 3. Определённые по графику значения частот среза, полосы пропускания усилителя и её ширины.
- 4. Таблицу измерения входного сопротивления усилителя с указанием частоты, входного напряжения, входного тока (со скриншотами измерений) и вычисленных значений входного сопротивления.
- 5. Определённое (п.5 программы выполнения) значение U_{\min} , таблицу измерения и график передаточной характеристики. График должен быть построен в Excel в линейном масштабе.
- 6. Определённое (п.5 программы выполнения) значение U_{max} и вычисленный динамический диапазон усилителя.
- 7. Таблицу измерения выходного сопротивления усилителя с указанием частоты, выходных напряжений, выходного тока (со скриншотами измерений) и вычисленных значений выходного сопротивления.

Варианты заданий приведены в таблице:

Nº	Nº	<i>E</i> , B	7	Γ	R_{6} , 1	<i>R</i> б, кОм		R_{\circ} ,	$C_{\scriptscriptstyle \mathrm{BX}}$	$C_{\text{вых}}$	$C_{\kappa 9}, C_6, C_9$	
вар.	схемы	E, D	T_1	T_2	R_{61}	R_{61} R_{62}		кОм		мкФ		
1	13	32	2N3904	BD135	42	4200		_	1	5,1	_	
2	19	35	ZTX458	BC327	5 6	500	-	0,35	0,002	2,9	_	
3	18	-24	ZTX558	BC338	29	90	0,029	_	1	1	_	
4	6	-51	BC ²	161	3	,5	_	0,06	3,5	83	_	
5	18	-39	2N3906	BD135	24	000	0,65	_	5,1	0,1	_	
6	20	-42	BC327	2N2222	22	20	_	0,042	0,024	0,2	_	
7	5	10	2N1	711	4	-2	_	0,42	3,5	12	_	
8	2	-4,2	PN4	355	3	2	0,1	_	10	15	_	
9	17	16	2N1893	BD136	2 000		0,2	_	0,51	0,51	_	
10	11	350	ZTX	458	10	10 0,147		0,051	20	1	20	
11	4	-20	2N3	906	560		1	0,1	1	2	_	
12	9	83	2N5	830	29	290		0,0001	38	3,2	1,5	
13	12	-26	2N4	403	0,62	0,62 0,026		0,0051	12	0,5	1	
14	6	-24	BC3	328	0,18		_	0,015	9,1	26	_	
15	1	5,1	ZTX	454	12	20	0,51	_	10	1,5	_	
16	15	12	2N1893	BC338	10	00		0,03	0,0026	0,51	_	
17	6	-12	BC1	160	5	1		0,5	1	32	_	
18	17	12	2N1893	BC160	32	320		_	2,6	0,51	_	
19	8	-15	2N3	906	9:	910		_	1	1	0,2	
20	17	83	2N5830	BD140	46 000		2,2	_	1,5	6,2	_	
21	16	-24	ZTX558	BC327	200		_	0,029	0,001	1	_	
22	19	29	2N2222	BC461	46	460		0,051	0,02	5,1	_	
23	5	51	2N1	893	68	80		5,1	2	32	_	
24	5	39	2N3	019	2	4		0,32	8,3	20	_	

25	19	83	2N5830	BD140	24 000	_	2,2	0,0015	6,2	_
26	18	-42	MPSA92	2N3019	110	0,032	-	22	10	_
27	14	-22	MPSA55	BC328	130	0,026	_	16	13	_

Nº	Nº		7	T		<i>R</i> б, кОм		R_{3} ,	$C_{\scriptscriptstyle \mathrm{BX}}$	Свых	$C_{\kappa 9}, C_6, C_9$	
вар.	схемы	<i>E</i> , B	T_1	T_2		R_{61} R_{62}		Ом	мкФ)	
28	1	29	ZTX	150	38		1,5	_	0,51	0,51	_	
29	9	350	ZTX	158	42	20	2	0,051	20	1	20	
30	20	-22	MPSA55	2N1711	6	2	_	0,026	0,016	13	_	
31	16	-22	MPSA55	BC328	5	6	_	0,026	0,016	13	_	
32	9	46	2N1	711	7,	5	0,08	0,01	10	14	51	
33	16	-42	MPSA92	BD136	8	3	_	0,032	0,022	10	_	
34	5	42	BD1	.31	1,	3	_	0,04	4,2	83	_	
35	3	11	2N5	830	83	30	2,6	1,3	2	5,1	_	
36	5	24	BC3	38	8,	3	_	0,12	1	75	_	
37	1	10	2N5	830	35	50	1	_	5,1	1	_	
38	16	-15	2N4403	BD140	4	6	_	0,01	0,012	0,5	_	
39	20	-42	MPSA92	2N3019	5	1	_	0,032	0,022	10	_	
40	19	32	2N3904	2N2907	15	00	_	0,16	0,001	5,1	_	
41	9	26	2N2	222	510	000	1000	0,02	13	0,5	2	
42	8	-6,2	MPS	A55	5	1	0,32	_	0,2	1,5	0,51	
43	19	12	2N1893	BC160	14	10	_	0,03	0,0026	0,51	_	
44	10	-5,1	2N2	907	6	68		0,0035	75	0,1	0,35	
45	19	46	2N1711	BC328	220	220 000		3,6	0,0051	1	_	
46	8	-35	MPS	A92	6 8	6 800		_	1,5	2,9	1	
47	19	26	2N4401	BD132	260		_	0,042	0,01	1,5	_	
48	3	3,2	ZTX	155	1,	8	0,012	0,002	10	0,51	_	
49	17	32	2N3904	2N2907	3 2	00	0,16	_	1	5,1	-	
50	5	75	BD1	.39	83	30	_	7,5	2,6	62	_	
51	4	-22	ZTX!	558	38 000		100	10	4,6	7,5	_	
52	10	-4,2	PN4	355	6,	8	0,021	0,0032	25	7,5	3,6	
53	17	26	2N4401	BD132	2	2	0,042	_	10	1,5	_	
54	18	-15	2N4403	BD131	11	LO	0,01	_	12	0,5	_	
55	13	29	2N2222	BC338	83		0,051	_	20	5,1	_	
56	20	-39	2N3906	BD135	11 (_	0,65	0,0051	0,1	_	
57	14	-42	MPSA92	BD136	18		0,032	_	22	10	-	
58	13	12	2N1893	BC338	29		0,03	_	2,6	0,51	-	
59	3	32	2N3		34		1	0,22	0,5	5	_	
60	6	-42	BC3		0,2		_	0,02	3,2	15	-	
61	12	-250	MPS		ŕ	0,062	0,32 0,01	0,024	22	10	2	
62	11	3,2	2N4			0,032 0,011		0,0001	180	1,8	7,5	
63	10	-250	MPS		68		0,32	0,024	22	10	2	
64	15	83	2N5830		22 000		_	2,2	0,0015	6,2	_	
65	4	-38	ZTXS		9 100		20	2	12	8,3	_	
66	20	-24	ZTX558		140		-	0,029	0,001	1	-	
67	12	-5,1	2N2		1,1	0,2	0,26	0,0035	75	0,1	0,35	
68	2	-15	2N3		91		2	_	1	1	-	
69	18	-22	MPSA55		13		0,026	_	16	13	_	
70	7	20	2N3	904	2 9	UU	10		1	5,1	0,1	

Nº	Nº		T		<i>R</i> б, кОм		R_{κ}	R_{3} ,	$C_{\scriptscriptstyle \mathrm{BX}}$	Свых	$C_{\kappa 9}, C_6, C_9$	
вар.	схемы	<i>E</i> , B	T_1	T_2	R_{61} R_{62}		к(Ом	мкФ		Þ	
71	2	-26	2N4	403		330	20	_	0,51	2,6	_	
72	14	-12	PN4355	BD132	2	19	0,0042	_	25	7,5	_	
73	18	-42	BC327	2N2222	3	380		_	24	0,2	_	
74	11	46	2N1	711	0,383 0,032		0,08	0,01	10	14	51	
75	15	35	ZTX458	BC338	5 1	5 100		0,35	0,002	2,9	1	
76	19	16	2N1893	BD136	10	000	_	0,2	0,0005	0,51	1	
77	17	35	ZTX458	BC327	8 3	300	0,35	_	2	2,9	_	
78	20	-7,5	2N2907	BC338	2	20	_	0,0075	0,075	0,1	_	
79	20	-15	2N4403	BD131	5	51	_	0,01	0,012	0,5	_	
80	16	-7,5	2N2907	BC160	5	,1	_	0,0075	0,075	0,1		
81	18	-12	PN4355	BD139	2	19	0,0042	_	25	7,5	<u> </u>	
82	14	-7,5	2N2907	BC160	2	20	0,0075		75	0,1		
83	6	-15	BD1	.32	0,0	062	_	0,005	7,5	51	_	
84	1	2,9	ZTX	455	4	12	0,2		1,5	6,2		
85	2	-20	ZTX	951	6:	20	3,2	_	2	12	_	
86	13	83	2N5830	BD131	46	000	2,2	_	1,5	6,2	_	
87	13	35	ZTX458	BC338	12	000	0,35		2	2,9		
88	4	-12	MPS	A55	4	60	2,6	0,22	1,5	0,2	_	
89	1	16	PN22	22A	133		0,38	_	20	5,1	_	
90	9	24	2N3	904	29	000	10	0,1	200	10	20	
91	7	42	ZTX	458	8 250		26	_	2,6	0,51	0,01	
92	2	-6,2	MPS	A55	51		0,32	_	0,2	1,5	_	
93	11	68	2N1	893	0,85	0,015	0,2	0,001	220	2,2	15	
94	10	-15	2N3	906	2	29	0,1	0,001	5,1	0,1	0,1	
95	11	83	2N5	830	2,4	0,024	0,5	0,0001	38	3,2	1,5	
96	17	46	2N1711	BC328	83	000	3,6	_	5,1	1	_	
97	11	7,5	BC3	38	0,133	0,02	0,029	0,0002	32	5,6	5,1	
98	3	22	2N4	401	6:	20	1,6	0,42	1	6,2	_	
99	3	20	PN22	22A	16	200	56	5,6	35	9,1	_	
100	14	-15	2N4403	BD140	1:	10	0,01	_	12	0,5	_	
101	3	26	ZTX	450	13	330	4,2	1,2	2,6	2,9	_	
102	14	-39	2N3906	2N2907	62	000	0,65	_	5,1	0,1	_	
103	11	24	2N3	904	46,4	1,6	10	0,1	200	10	20	
104	1	24	2N4	401	4 2	200	15	_	2	2,9	<u> </u>	
105	4	-2,9	ZTX!	550	2 6	500	12	3,2	26	15	_	
106	12	-180	ZTX!	558	5,11	0,075	1	0,02	1	1	1	
107	5	6,2	2N2	222	2	,4	_	0,032	6,2	42	_	
108	4	-24	2N4	403	9:	10	1,6	0,83	2,6	0,51	_	
109	5	20	BD1	135		22	_	0,01	5,1	91	_	
110	12	-6,2	MPS		0,083	0,01	0,016	0,0001	16	13	1,8	
111	16	-12	PN4355	BD132	1	.2	_	0,0042	0,025	7,5	_	
112	2	-12	ZTX!			20	1,2	_	15	26	_	
113	12	-15	2N3	906	0,42	0,024	0,1	0,001	5,1	0,1	0,1	

Nº	Nº	r D	7	7	R_{6} ,	кОм	$R_{\scriptscriptstyle m K}$,	R_{3} ,	$C_{\scriptscriptstyle \mathrm{BX}}$	Свых	C_{κ_9}, C_6, C_9	
вар.	схемы	<i>E</i> , B	T_1	T_2	R_{61}	R_{62}	K	кОм		мкФ		
114	10	-26	2N4	403		56		0,0051	12	0,5	1	
115	15	16	2N1893	2N3019	3 600		_	0,2	0,0005	0,51	_	
116	9	7,5	BC3	338	0,287		0,029	0,0002	32	5,6	5,1	
117	14	-42	BC327	BC461	9	1	0,042	_	24	0,2	_	
118	3	38	ZTX	458	5 6	500	20	5,1	1,5	1,5	_	
119	9	68	2N1	893	2	0	0,2	0,001	220	2,2	15	
120	13	16	2N1893	2N3019	7 5	500	0,2	1	0,51	0,51	_	
121	10	-180	ZTX	558	29	90	1	0,02	1	1	1	
122	8	-18	ZTX	558	6	,2	0,046	_	6,8	8,3	2	
123	18	-7,5	2N2907	BC338	2	6	0,0075	_	75	0,1	_	
124	13	26	2N4401	BD139	50	60	0,042	1	10	1,5	_	
125	11	26	2N2	222	4840	100	1000	0,02	13	0,5	2	
126	12	-42	BC3	327	0,1	0,005	0,03	0,0002	24	0,2	0,2	
127	15	46	2N1711	2N1711	68	000	_	3,6	0,0051	1	_	
128	4	-29	MPS	A92	750		4,2	1,3	2,9	1,5	_	
129	13	46	2N1711	2N1711	150	000	3,6	-	5,1	1	_	
130	6	-39	BD1	L36	1	18		0,4	1,2	35	_	
131	2	-35	MPS	A92	6 800		51	1	1,5	2,9	_	
132	7	24	2N4	401	4 2	200	15	_	2	2,9	0,035	
133	12	-4,2	PN4	355	0,075	0,02	0,021	0,0032	25	7,5	3,6	
134	15	26	2N4401	BD139	24	40	_	0,042	0,01	1,5	_	
135	7	10	2N5	830	3!	50	1	_	5,1	1	0,2	
136	10	-42	BC3	327	1	,2	0,03	0,0002	24	0,2	0,2	
137	2	-18	ZTX	558	6,2		0,046	-	6,8	8,3	_	
138	10	-6,2	MPS	A55	2	,2	0,016	0,0001	16	13	1,8	
139	16	-39	2N3906	2N2907	3 6	500	_	0,65	0,0051	0,1	_	
140	17	29	2N2222	BC461	9:	10	0,051	_	20	5,1	_	
141	1	42	ZTX	458	8 2	250	26	_	2,6	0,51	_	
142	16	-42	BC327	BC461	13	30	_	0,042	0,024	0,2	_	
143	15	29	2N2222	BC338	38	30	_	0,051	0,02	5,1	_	
144	14	-24	ZTX558	BC327	29	90	0,029	_	1	1	_	
145	6	-5,1	2N2	907	2	26		0,25	1,5	10	_	
146	4	-5,1	PN4	355	2 6	2 600		3,5	15	10	_	
147	3	5,6	ZTX	454	1 500		7,5	1,5	0,51	0,51	_	
148	6	-80	BD1	140	56		_	1	5,1	42	_	
149	15	32	2N3904	BD135	1100		_	0,16	0,001	5,1	_	
150	9	3,2	2N4	401	3	3	0,01	0,0001	180	1,8	7,5	
151	20	-12	PN4355	BD139	1	4	_	0,0042	0,025	7,5	_	
152	1	20	2N3	904	2 9	2 900		_	1	5,1	_	

Предостережение 1

При выборе транзисторов заданных марок в системе Proteus иногда предлагаются 2 (возможно, более) марки одинаковых названий. В этом случае выбирать следует тот, для которого в собранной схеме (без источника входного сигнала) падение напряжения коллектор-эмиттер составляет около половины напряжения источника питания.

Предостережение 2

В предлагаемой таблице вариантов иногда встречается неточность — проводимость транзисторов предлагаемых марок не соответствует знаку напряжения источника питания. В этом случае следует адекватно изменить знак напряжения источника питания — транзисторы n-p-n должны запитываться от положительного напряжения, а транзисторы p-n-p — от отрицательного (в более сложных случаях необходимо проследить, что ток в схеме течёт «по стрелочкам» транзисторов) и сообщить об этом преподавателю.