In the claims:

1. (Currently amended) A compound of Formula I:

$$(R^{4})_{n}$$
 R^{1}
 R^{1}
 R^{10}
 R^{13}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}

or a pharmaceutically acceptable salt or stereoisomer thereof,

wherein:

a is 0 or 1; 0 or 1; b is 0, 1, or 2; m is 0, 1, 2 or 3; n is 0 or 1; r is s is 0 or 1; 0, 1 or 2; t is 0, 1, or 2; u is

R¹ and R² are independently selected from: H, (C₁-C₆)alkyl, aryl, heterocyclyl and (C₃-C₆)cycloalkyl, optionally substituted with one, two or three substituents selected from R⁷;

R³ is selected from:

- 1) Hhydrogen,
- 2) C₁-C₁₀ alkyl;
- 3) C₁-C₁₀ alkyl-O-Rd,
- 4) C2-C10 alkenyl-O-Rd,
- 5) C2-C₁₀ alkynyl-O-Rd,
- 6) (C₁-C₆-alkylene)_nC₃-C₈ cycloalkyl-O-Rd,
- 7) C_1 - C_{10} alkyl- $(C=O)_b$ - NR^cR^c ,
- 8) C2-C10 alkenyl-(C=O)bNRcRc',
- 9) C2-C₁₀ alkynyl-(C=O)_bNRcRc',
- 10) (C₁-C₆-alkylene)_nC₃-C₈ cycloalkyl-(C=O)_bNRcRc',
- 11) C_1 - C_{10} alkyl- $S(O)_m$ -Rd,
- 12) C_2 - C_{10} alkenyl- $S(O)_m$ -Rd,
- 13) C_2 - C_{10} alkynyl- $S(O)_m$ -Rd,
- 14) (C1-C6-alkylene)_nC3-C8 cycloalkyl- S(O)_m-Rd,

said alkyl, alkenyl, alkynyl and cycloalkyl are optionally substituted with one or more substituents selected from R6;

R⁴ is independently selected from:

- 1) $(C=O)_aO_bC_1-C_{10}$ alkyl,
- 2) $(C=O)_aO_baryl$,
- 3) CO₂H,
- 4) halo,
- 5) CN,
- 6) OH,
- 7) ObC1-C6 perfluoroalkyl,
- 8) $O_a(C=O)_bNR^8R^9$,
- 9) $S(O)_m R^a$,
- 10) $S(O)_2NR^8R^9$,
- 11) –OPO(OH)₂;

said alkyl, and aryl, alkenyl, alkynyl, heterocyclyl, and cycloalkyl optionally substituted with one, two or three substituents selected from R⁷;

R⁵ is selected from:

1) hydrogen;

- 2) $(C=O)_aO_bC_1-C_{10}$ alkyl,
- 3) $(C=O)_aO_baryl$,
- 4) CO₂H,
- 5) halo,
- 6) CN,
- 7) OH,
- 8) ObC1-C6 perfluoroalkyl,
- 9) $O_a(C=O)bNR^8R^9$,
- 10) $S(O)_m R^a$,
- 11) $S(O)_2NR^8R^9$,
- 12) $-OPO(OH)_2$;

said alkyl, <u>and</u> aryl, <u>alkenyl</u>, <u>alkynyl</u>, <u>heterocyclyl</u>, <u>and cycloalkyl</u> optionally substituted with one, two or three substituents selected from R⁷;

R6 is independently selected from:

- 1) $(C=O)_aO_bC_1-C_{10}$ alkyl,
- 2) (C=O)_aO_baryl,
- 3) C2-C₁₀ alkenyl,
- 4) C2-C₁₀ alkynyl,
- 5) (C=O)_aO_b heterocyclyl,
- 6) CO₂H,
- 7) halo,
- 8) CN,
- 9) OH,
- 10) ObC1-C6 perfluoroalkyl,
- 11) $O_a(C=O)_bNR^8R^9$,
- 12) $S(O)_m R^a$,
- 13) $S(O)_2NR^8R^9$,
- 14) oxo,
- 15) CHO,
- 16) $(N=O)R^8R^9$, or
- 17) (C=O)_aO_bC₃-C₈ cycloalkyl,
- 18) –OPO(OH)₂;

said alkyl, aryl, alkenyl, alkynyl, heterocyclyl, and cycloalkyl optionally substituted with one, two or three substituents selected from R⁷;

R⁷ is selected from:

- 1) $(C=O)_rO_s(C_1-C_{10})$ alkyl,
- 2) $O_r(C_1-C_3)$ perfluoroalkyl,
- 3) oxo,
- 4) OH,
- 5) halo,
- 6) CN,
- 7) (C2-C₁₀)alkenyl,
- 8) (C2-C₁₀)alkynyl,
- 9) $(C=O)_rO_s(C_3-C_6)$ cycloalkyl,
- 10) $(C=O)_rO_s(C_0-C_6)$ alkylene-aryl,
- 11) $(C=O)_rO_s(C_0-C_6)$ alkylene-heterocyclyl,
- 12) $(C=O)_rO_s(C_0-C_6)$ alkylene- $N(R^b)_2$,
- 13) $C(O)R^a$,
- 14) (C₀-C₆)alkylene-CO₂R^a,
- 15) C(O)H,
- 16) (C₀-C₆)alkylene-CO₂H,
- 17) $(C=O)_rN(R^b)_2$,
- 18) $S(O)_m R^a$,
- 19) $S(O)_2N(R^b)_2$, and
- 20) –OPO(OH)₂;

said alkyl, alkenyl, alkynyl, cycloalkyl, aryl, alkylene and heterocyclyl is optionally substituted with up to three substituents selected from R^b, OH, (C₁-C₆)alkoxy, halogen, CO₂H, CN, O(C=O)C₁-C₆ alkyl, oxo, NO₂ and N(R^b)₂;

R⁸ and R⁹ are independently selected from:

- 1) H,
- $(C=O)O_bC_1-C_{10}$ alkyl,
- 3) (C=O)ObC3-C8 cycloalkyl,
- 4) (C=O)Obaryl,
- 5) (C=O)Obheterocyclyl,
- 6) C₁-C₁₀ alkyl,
- 7) aryl,
- 8) C2-C₁₀ alkenyl,

- 9) C2-C₁₀ alkynyl,
- 10) heterocyclyl,
- 11) C3-C8 cycloalkyl,
- 12) SO₂Ra, and
- 13) $(C=O)NRb_2$,

said alkyl, cycloalkyl, aryl, heterocylyl, alkenyl, and alkynyl is optionally substituted with one, two or three substituents selected from R⁷, or

R⁸ and R⁹ can be taken together with the nitrogen to which they are attached to form a monocyclic or bicyclic heterocycle with 3-7 members in each ring and optionally containing, in addition to the nitrogen, one or two additional heteroatoms selected from N, O and S, said monocyclic or bicyclic heterocycle optionally substituted with one, two or three substituents selected from R⁷;

R¹⁰ is selected from: H and F;

R11 and R12 are independently selected from: F and -CH₂F;

R13 and R14 are independently selected from: H and -CH₂F;

R^{ox} is absent or is oxo;

R^a is independently selected from: (C₁-C₆)alkyl, (C₃-C₆)cycloalkyl, aryl, or heterocyclyl, optionally substituted with one, two or three substituents selected from R⁷;

Rb is independently selected from: H, (C_1-C_6) alkyl, aryl, heterocyclyl, (C_3-C_6) cycloalkyl, $(C=O)OC_1-C_6$ alkyl, $(C=O)C_1-C_6$ alkyl, (C=O)aryl, (C=O)heterocyclyl, $(C=O)NR^eR^e$ or $S(O)_2R^a$, optionally substituted with one, two or three substituents selected from R^7 ;

R^cand R^c ' are independently selected from: H, (C₁-C₆)alkyl, aryl, NH₂, OH, OR^a, -(C₁-C₆)alkyl-OH, -(C₁-C₆)alkyl-O-(C₁-C₆)alkyl, (C=O)OC₁-C₆ alkyl, (C=O)C₁-C₆ alkyl, (C=O)aryl, (C=O)heterocyclyl, (C=O)NR^eR^e ', S(O)₂R^a and -(C₁-C₆)alkyl-N(R^b)₂, wherein the alkyl is optionally substituted with one, two or three substituents selected from R⁷; or

R^c and R^c' can be taken together with the nitrogen to which they are attached to form a monocyclic or bicyclic heterocycle with 3-7 members in each ring and optionally containing, in addition to the nitrogen, one or two additional heteroatoms selected from N, O and S, said monocyclic or bicyclic heterocycle optionally substituted with one, two or three substituents selected from R⁷;

 R^d is selected from: H, (C1-C6)alkyl, -(C2-C6)alkyl-OH, -(C1-C6)alkyl-O-(C1-C6)alkyl and -(C1-C6)alkyl-N(R^b)2, wherein the alkyl is optionally substituted with one, two or three substituents selected from R^7 ;

Re and Re' are independently selected from: H, (C₁-C₆)alkyl, aryl, heterocyclyl and (C₃-C₆)cycloalkyl, optionally substituted with one, two or three substituents selected from R⁷; or

Re and Re' can be taken together with the nitrogen to which they are attached to form a monocyclic or bicyclic heterocycle with 3-7 members in each ring and optionally containing, in addition to the nitrogen, one or two additional heteroatoms selected from N, O and S, said monocyclic or bicyclic heterocycle optionally substituted with one, two or three substituents selected from R7.

2. (Currently amended) The compound according to Claim 1 of Formula II:

$$(R^{4})_{n}$$
 R^{1}
 R^{1}
 R^{13}
 R^{13}
 R^{14}
 R^{14}
 R^{14}

or a pharmaceutically acceptable salt or stereoisomer thereof, wherein:

a is 0 or 1; b is 0 or 1; 0, 1, or 2; m is 0, 1, 2 or 3; n is 0 or 1; r is 0 or 1; s is 0 or 1; t is u is 0 or 1;

 R^1 and R^2 are independently selected from: H, (C1-C6)alkyl, aryl, heterocyclyl and (C3-C6)cycloalkyl, optionally substituted with one, two or three substituents selected from R^7 ;

R³ is selected from:

- 1) hydrogen;
- 2) C₁-C₁₀ alkyl;
- 3) C₁-C₁₀ alkyl-O-Rd,
- 4) C2-C₁₀ alkenyl-O-Rd,

- 5) C2-C₁₀ alkynyl-O-Rd,
- 6) (C₁-C₆-alkylene)_nC₃-C₈ cycloalkyl-O-Rd,
- 7) C_1 - C_{10} alkyl- $(C=O)_b$ - NR^cR^c ,
- 8) C2-C₁₀ alkenyl-(C=O)_bNRcRc',
- 9) C2-C₁₀ alkynyl-(C=O)_bNRcRc',
- 10) (C₁-C₆-alkylene)_nC₃-C₈ cycloalkyl-(C=O)_bNRcRc',
- 11) C_1 - C_{10} alkyl- $S(O)_m$ -Rd,
- 12) C_2 - C_{10} alkenyl- $S(O)_m$ -Rd,
- 13) C_2 - C_{10} alkynyl- $S(O)_m$ - R^d ,
- 14) (C₁-C₆-alkylene)_nC₃-C₈ cycloalkyl-S(O)_m-Rd,

said alkyl, alkenyl, alkynyl and cycloalkyl are optionally substituted with one or more substituents selected from R⁶;

R⁴ is independently selected from:

- 1) $(C=O)_aO_bC_1-C_{10}$ alkyl,
- 2) (C=O)_aO_baryl,
- 3) CO₂H,
- 4) halo,
- 5) CN,
- 6) OH,
- 7) O_bC₁-C₆ perfluoroalkyl,
- 8) $O_a(C=O)_bNR^8R^9$,
- 9) $S(O)_m R^a$,
- $S(O)_2NR^8R^9$, and
- 11) $-OPO(OH)_2$;

said alkyl, and aryl, alkenyl, alkynyl, heterocyclyl, and cycloalkyl optionally substituted with one, two or three substituents selected from R⁷;

R⁵ is selected from:

- 1) hydrogen;
- 2) $(C=O)_aO_bC_1-C_{10}$ alkyl,
- 3) $(C=O)_aO_baryl$,
- 4) CO₂H,

- 5) halo,
- 6) CN,
- 7) OH,
- 8) ObC1-C6 perfluoroalkyl,
- 9) $O_a(C=O)_bNR^8R^9$,
- 10) $S(O)_m R^a$,
- 11) $S(O)_2NR^8R^9$,

said alkyl, and aryl, alkynyl, heterocyclyl, and cycloalkyl optionally substituted with one, two or three substituents selected from R7;

R⁶ is independently selected from:

- 1) $(C=O)_aO_bC_1-C_{10}$ alkyl,
- 2) $(C=O)_aO_baryl$,
- 3) C2-C₁₀ alkenyl,
- 4) C2-C₁₀ alkynyl,
- 5) (C=O)_aO_b heterocyclyl,
- 6) CO₂H,
- 7) halo,
- 8) CN,
- 9) OH,
- 10) ObC1-C6 perfluoroalkyl,
- 11) $O_a(C=O)_bNR^8R^9$,
- 12) $S(O)_m R^a$,
- 13) $S(O)_2NR^8R^9$,
- 14) oxo,
- 15) CHO,
- 16) $(N=O)R^8R^9$, or
- 17) (C=O)_aO_bC₃-C₈ cycloalkyl, and
- 18) –OPO(OH)₂;

said alkyl, aryl, alkenyl, alkynyl, heterocyclyl, and cycloalkyl optionally substituted with one, two or three substituents selected from R7;

R⁷ is selected from:

- 1) $(C=O)_rO_s(C_1-C_{10})$ alkyl,
- 2) $O_r(C_1-C_3)$ perfluoroalkyl,

- 3) oxo,
- 4) OH,
- 5) halo,
- 6) CN,
- 7) (C2-C₁₀)alkenyl,
- 8) (C_2-C_{10}) alkynyl,
- 9) $(C=O)_rO_s(C_3-C_6)$ cycloalkyl,
- 10) $(C=O)_rO_S(C_0-C_6)$ alkylene-aryl,
- 11) $(C=O)_rO_s(C_0-C_6)$ alkylene-heterocyclyl,
- 12) $(C=O)_rO_s(C_0-C_6)$ alkylene- $N(R^b)_2$,
- $C(O)R^a$,
- (C0-C6)alkylene-CO2R^a,
- 15) C(O)H,
- 16) (C₀-C₆)alkylene-CO₂H,
- 17) $C(O)N(R^b)_{2}$,
- 18) $S(O)_m Ra$,
- 19) $S(O)_2N(R^b)_2$; and
- 20) –OPO(OH)₂;

said alkyl, alkenyl, alkynyl, cycloalkyl, aryl, alkylene and heterocyclyl is optionally substituted with up to three substituents selected from R^b, OH, (C₁-C₆)alkoxy, halogen, CO₂H, CN, O(C=O)C₁-C₆ alkyl, oxo, NO₂ and N(R^b)₂;

R⁸ and R⁹ are independently selected from:

- 1) H,
- $(C=O)O_bC_1-C_{10}$ alkyl,
- 3) (C=O)ObC3-C8 cycloalkyl,
- 4) (C=O)Obaryl,
- 5) (C=O)Obheterocyclyl,
- 6) C₁-C₁₀ alkyl,
- 7) aryl,
- 8) C2-C₁₀ alkenyl,
- 9) C2-C₁₀ alkynyl,
- 10) heterocyclyl,
- 11) C3-C8 cycloalkyl,
- 12) SO₂Ra, and

13)
$$(C=O)NRb_2$$
,

said alkyl, cycloalkyl, aryl, heterocylyl, alkenyl, and alkynyl is optionally substituted with one, two or three substituents selected from R⁷, or

 R^8 and R^9 can be taken together with the nitrogen to which they are attached to form a monocyclic or bicyclic heterocycle with 3-7 members in each ring and optionally containing, in addition to the nitrogen, one or two additional heteroatoms selected from N, O and S, said monocyclic or bicyclic heterocycle optionally substituted with one, two or three substituents selected from R^7 ;

R¹¹ and R¹² are independently selected from: F and –CH₂F;

R¹³ and R¹⁴ are independently selected from: H and –CH₂F, provided that when t is 1, R¹⁴ is H; and when u is 1, R¹³ is H;

R^{ox} is absent or is oxo;

R^a is independently selected from: (C₁-C₆)alkyl, (C₃-C₆)cycloalkyl, aryl, or heterocyclyl, optionally substituted with one, two or three substituents selected from R⁷;

 R^b is independently selected from: H, (C_1-C_6) alkyl, aryl, heterocyclyl, (C_3-C_6) cycloalkyl, $(C=O)OC_1-C_6$ alkyl, $(C=O)C_1-C_6$ alkyl, (C=O)aryl, (C=O)heterocyclyl, $(C=O)NR^eR^e$ or $S(O)_2R^a$, optionally substituted with one, two or three substituents selected from R^7 ;

Rcand Rc ' are independently selected from: H, (C1-C6)alkyl, aryl, NH2, OH, ORa, -(C1-C6)alkyl-OH, -(C1-C6)alkyl-O-(C1-C6)alkyl, (C=O)OC1-C6 alkyl, (C=O)C1-C6 alkyl, (C=O)Aryl, (C=O)heterocyclyl, (C=O)NReRe', S(O)2Ra and -(C1-C6)alkyl-N(Rb)2, wherein the alkyl is optionally substituted with one, two or three substituents selected from R7; or

R^c and R^c' can be taken together with the nitrogen to which they are attached to form a monocyclic or bicyclic heterocycle with 3-7 members in each ring and optionally containing, in addition to the nitrogen, one or two additional heteroatoms selected from N, O and S, said monocyclic or bicyclic heterocycle optionally substituted with one, two or three substituents selected from R⁷;

Rd is selected from: H, (C_1-C_6) alkyl, $-(C_2-C_6)$ alkyl-OH, $-(C_1-C_6)$ alkyl-O- $-(C_1-C_6)$ alkyl-O($-(C_1-C_6)$ alkyl-N($-(C_1-C_6)$ alkyl-N(

Re and Re' are independently selected from: H, (C₁-C₆)alkyl, aryl, heterocyclyl and (C₃-C₆)cycloalkyl, optionally substituted with one, two or three substituents selected from R⁷; or

Re and Re' can be taken together with the nitrogen to which they are attached to form a monocyclic or bicyclic heterocycle with 3-7 members in each ring and optionally containing, in addition to the nitrogen, one or two additional heteroatoms selected from N, O and S, said monocyclic or bicyclic heterocycle optionally substituted with one, two or three substituents selected from R⁷.

3. (Currently amended) The compound according to Claim 2 of the Formula

$$(R^{4})_{n}$$
 R^{1}
 R^{1}
 R^{1}
 R^{1}
 R^{1}
 R^{1}
 R^{1}
 R^{1}
 R^{1}
 R^{1}

or a pharmaceutically acceptable salt or stereoisomer thereof,

wherein:

III:

a is 0 or 1;

```
b is 0 or 1;
m is 0, 1, or 2;
n is 0, 1 or 2;
r is 0 or 1;
s is 0 or 1;
t is 0 or 1;
```

 R^1 and R^2 are independently selected from: H, (C₁-C₆)alkyl, aryl and (C₃-C₆)cycloalkyl, optionally substituted with one, two or three substituents selected from R^7 ;

R⁴ is independently selected from:

- 1) halo,
- 2) OH,
- 3) ObC1-C6 perfluoroalkyl,

R⁵ is selected from:

- 1) hydrogen,
- 2) halo,
- 3) OH,
- 4) ObC1-C6 perfluoroalkyl,

R⁷ is selected from:

- 1) $(C=O)_rO_s(C_1-C_{10})$ alkyl,
- 2) $O_r(C_1-C_3)$ perfluoroalkyl,
- 3) oxo,
- 4) OH,
- 5) halo,
- 6) CN,
- 7) (C2-C₁₀)alkenyl,
- 8) (C2-C10)alkynyl,
- 9) $(C=O)_rO_s(C_3-C_6)$ cycloalkyl,
- 10) $(C=O)_rO_s(C_0-C_6)$ alkylene-aryl,
- 11) $(C=O)_rO_s(C_0-C_6)$ alkylene-heterocyclyl,
- 12) $(C=O)_rO_s(C_0-C_6)$ alkylene- $N(R^b)_2$,
- 13) $C(O)R^a$,

- 14) (C₀-C₆)alkylene-CO₂R^a,
- 15) C(O)H,
- 16) (C₀-C₆)alkylene-CO₂H, and
- 17) $C(O)N(R^b)_{2}$
- 18) $S(O)_mR^a$, and
- 19) $S(O)_2N(R^b)_2$;

said alkyl, alkenyl, alkynyl, cycloalkyl, aryl, alkylene and heterocyclyl is optionally substituted with up to three substituents selected from R^b, OH, (C₁-C₆)alkoxy, halogen, CO₂H, CN, O(C=O)C₁-C₆ alkyl, oxo, NO₂ and N(R^b)₂;

R⁸ and R⁹ are independently selected from:

- 1) H,
- 2) $(C=O)O_bC_1-C_{10}$ alkyl,
- 3) (C=O)ObC3-C8 cycloalkyl,
- 4) (C=O)Obaryl,
- 5) (C=O)Obheterocyclyl,
- 6) C₁-C₁₀ alkyl,
- 7) aryl,
- 8) C2-C₁₀ alkenyl,
- 9) C2-C₁₀ alkynyl,
- 10) heterocyclyl,
- 11) C3-C8 cycloalkyl,
- 12) SO₂Ra, and
- 13) $(C=O)NRb_2$,

said alkyl, cycloalkyl, aryl, heterocylyl, alkenyl, and alkynyl is optionally substituted with one, two or three substituents selected from R⁷, or

R⁸ and R⁹ can be taken together with the nitrogen to which they are attached to form a monocyclic or bicyclic heterocycle with 3-7 members in each ring and optionally containing, in addition to the nitrogen, one or two additional heteroatoms selected from N, O and S, said monocyclic or bicyclic heterocycle optionally substituted with one, two or three substituents selected from R⁷;

R¹² is selected from: F and -CH₂F;

R¹⁴ is selected from: H and –CH₂F, provided that when t is 1, R¹⁴ is H;

R^a is independently selected from: (C₁-C₆)alkyl, (C₃-C₆)cycloalkyl, aryl, or heterocyclyl, optionally substituted with one, two or three substituents selected from R⁷;

 R^b is independently selected from: H, (C_1-C_6) alkyl, aryl, heterocyclyl, (C_3-C_6) cycloalkyl, $(C=O)OC_1-C_6$ alkyl, $(C=O)C_1-C_6$ alkyl, (C=O)aryl, (C=O)heterocyclyl, $(C=O)NR^eR^e$ or $S(O)_2R^a$, optionally substituted with one, two or three substituents selected from R^7 ;

Rcand Rc ' are independently selected from: H, (C1-C6)alkyl, aryl, NH2, OH, ORa, -(C1-C6)alkyl-OH, -(C1-C6)alkyl-O-(C1-C6)alkyl, (C=O)OC1-C6 alkyl, (C=O)C1-C6 alkyl, (C=O)Aryl, (C=O)heterocyclyl, (C=O)NReRe', S(O)2Ra and -(C1-C6)alkyl-N(Rb)2, wherein the alkyl is optionally substituted with one, two or three substituents selected from R7; or

R^c and R^c' can be taken together with the nitrogen to which they are attached to form a monocyclic or bicyclic heterocycle with 3-7 members in each ring and optionally containing, in addition to the nitrogen, one or two additional heteroatoms selected from N, O and S, said monocyclic or bicyclic heterocycle optionally substituted with one, two or three substituents selected from R⁷;

 R^e and R^e ' are independently selected from: H, (C_1-C_6) alkyl, aryl, heterocyclyl and (C_3-C_6) cycloalkyl, optionally substituted with one, two or three substituents selected from R^7 ; or

Re and Re' can be taken together with the nitrogen to which they are attached to form a monocyclic or bicyclic heterocycle with 3-7 members in each ring and optionally containing, in addition to the nitrogen, one or two additional heteroatoms selected from N, O and S, said monocyclic or bicyclic heterocycle optionally substituted with one, two or three substituents selected from R⁷.

IV:

4. (Currently amended) The compound according to Claim 3 of the Formula

or a pharmaceutically acceptable salt or stereoisomer thereof,

wherein:

a is 0 or 1; b is 0 or 1; m is 0, 1, or 2; r is 0 or 1; s is 0 or 1;

R¹ and R² are independently selected from: H and (C₁-C₆)alkyl, optionally substituted with one, two or three substituents selected from R⁷;

R⁴ is independently selected from:

- 1) halo,
- 2) OH,
- 3) ObC1-C6 perfluoroalkyl,

R⁷ is selected from:

- 1) $(C=O)_rO_s(C_1-C_{10})$ alkyl,
- 2) $O_r(C_1-C_3)$ perfluoroalkyl,
- 3) oxo,

- 4) OH,
- 5) halo,
- 6) CN,
- 7) (C2-C₁₀)alkenyl,
- 8) (C2-C₁₀)alkynyl,
- 9) $(C=O)_rO_s(C_3-C_6)$ cycloalkyl,
- 10) $(C=O)_rO_s(C_0-C_6)$ alkylene-aryl,
- 11) $(C=O)_rO_s(C_0-C_6)$ alkylene-heterocyclyl,
- 12) $(C=O)_rO_s(C_0-C_6)$ alkylene- $N(R^b)_2$,
- $C(O)R^a$,
- 14) (C₀-C₆)alkylene-CO₂R^a,
- 15) C(O)H,
- 16) (C₀-C₆)alkylene-CO₂H, and
- 17) $C(O)N(R^b)_2$,
- 18) $S(O)_mR^a$, and
- 19) $S(O)_2N(R^b)_2$;

said alkyl, alkenyl, alkynyl, cycloalkyl, aryl, alkylene and heterocyclyl is optionally substituted with up to three substituents selected from R^b, OH, (C₁-C₆)alkoxy, halogen, CO₂H, CN, O(C=O)C₁-C₆ alkyl, oxo, NO₂ and N(R^b)₂;

 R^8 and R^9 are independently selected from:

- 1) H,
- 2) $(C=O)O_bC_1-C_{10}$ alkyl,
- 3) (C=O)ObC3-C8 cycloalkyl,
- 4) (C=O)Obaryl,
- 5) (C=O)Obheterocyclyl,
- 6) C₁-C₁₀ alkyl,
- 7) aryl,
- 8) C2-C₁₀ alkenyl,
- 9) C2-C₁₀ alkynyl,
- 10) heterocyclyl,
- 11) C3-C8 cycloalkyl,
- 12) SO₂Ra, and
- 13) $(C=O)NRb_2$,

said alkyl, cycloalkyl, aryl, heterocylyl, alkenyl, and alkynyl is optionally substituted with one, two or three substituents selected from R⁷, or

R⁸ and R⁹ can be taken together with the nitrogen to which they are attached to form a monocyclic or bicyclic heterocycle with 3-7 members in each ring and optionally containing, in addition to the nitrogen, one or two additional heteroatoms selected from N, O and S, said monocyclic or bicyclic heterocycle optionally substituted with one, two or three substituents selected from R⁷;

R^a is independently selected from: (C₁-C₆)alkyl, (C₃-C₆)cycloalkyl, aryl, or heterocyclyl, optionally substituted with one, two or three substituents selected from R⁷;

Rb is independently selected from: H, (C₁-C₆)alkyl, aryl, heterocyclyl, (C₃-C₆)cycloalkyl, (C=O)OC₁-C₆ alkyl, (C=O)aryl, (C=O)heterocyclyl, (C=O)NReRe 'or S(O)₂Ra, optionally substituted with one, two or three substituents selected from R⁷;

Rcand Rc ' are independently selected from: H, (C1-C6)alkyl, aryl, NH2, OH, ORa, -(C1-C6)alkyl-OH, -(C1-C6)alkyl-O-(C1-C6)alkyl, (C=O)OC1-C6 alkyl, (C=O)C1-C6 alkyl, (C=O)aryl, (C=O)heterocyclyl, (C=O)NReRe', $S(O)_2R^a$ and -(C1-C6)alkyl-N(Rb)2, wherein the alkyl is optionally substituted with one, two or three substituents selected from R7; or

Rc and Rc' can be taken together with the nitrogen to which they are attached to form a monocyclic or bicyclic heterocycle with 3-7 members in each ring and optionally containing, in addition to the nitrogen, one or two additional heteroatoms selected from N, O and S, said monocyclic or bicyclic heterocycle optionally substituted with one, two or three substituents selected from R⁷;

Re and Re' are independently selected from: H, (C₁-C₆)alkyl, aryl, heterocyclyl and (C₃-C₆)cycloalkyl, optionally substituted with one, two or three substituents selected from R⁷; or

Re and Re' can be taken together with the nitrogen to which they are attached to form a monocyclic or bicyclic heterocycle with 3-7 members in each ring and optionally containing, in addition to the nitrogen, one or two additional heteroatoms selected from N, O and S, said monocyclic or bicyclic heterocycle optionally substituted with one, two or three substituents selected from R⁷.

5. (Original) A compound selected from:

(2S)-4-(2,5-difluorophenyl)-N-[(4R,6S)-6-fluoro-1-methylazepan-4-yl]-2-(hydroxymethyl)-N-methyl-2-phenyl-2,5-dihydro-1H-pyrrole-1-carboxamide

(2S)-4-(2,5-difluorophenyl)-N-[(4S,6R)-6-fluoro-1-methylazepan-4-yl]-2-(hydroxymethyl)-N-methyl-2-phenyl-2,5-dihydro-1H-pyrrole-1-carboxamide

or a pharmaceutically acceptable salt thereof.

6. (Currently amended) The compound according to Claim 1 which is selected from:

$$R_4$$
 R_3
 R_2
 R_3
 R_1
 R_2

R ₁	R_2	R_3	R_4	R_5
	CH ₂ OH	Me	F	Н
^	CH₂OH	Me	F	Н
	CH ₂ OH	Me	F	Н
N	CH ₂ OH	Me	F	Н
N	CH ₂ OH	Me	F	Н
N	CH₂OH	Me	F	Н
N	CH ₂ OH	Me	F	Н

R ₁	R_2	R ₃	R_4	R ₅
N N	CH ₂ OH	Me	F	Н
N N	CH ₂ OH	Me	F	Н
	CH ₂ OH	Me	F	Н
N=NH	CH ₂ OH	Me	F	Н
N-N	CH ₂ OH	Me	F	Н
O	CH ₂ OH	Me	F	Н
ON	CH ₂ OH	Me	F	Н

R_1	R_2	R_3	R_4	R_5
S	CH ₂ OH	Me	F	Н
N	CH ₂ OH	Me	F	Н
OMe	^e CH₂OH	Me	F	Н
N	CH ₂ OH	Me	F	Н
N OM	CH ₂ OH e	Me	F	Н
Me	Me	Me	F	Н
Me		Me	F	Н
Me	OH	Me	F	Н

R ₁	R_2	R_3	R_4	R_5
Me	\sim NH $_2$ Ph	Me	F	Н
Me	ОН	Me	F	Н
Me	\sim NH ₂	Me	F	Н
Me	Ph NH ₂	Me	F	н
Me	OH	Me	F	Н
Me	\sim NH ₂	Me	F	Н
Me	NH_2	Me	F	Н
Me	NH_2 CHF_2	Me	F	Н
Me	CHF ₂ NH ₂	Me	F	н
Me	NH_2 CHF_2	Me	F	Н

R ₁	R_2	R_3	R_4	R_5
Me	∕ N H	Me	F	Н
Me	NH	Me	F	Н
Me	N H O H	Me	F	Н
Me	N OMe	Me	F	Н
Me	$N H_2$	Me	F	Н
Me	N	Me	F	Н

R ₁	R_2	R_3	R_4	R_5
Me	N H	Me	F	Н
Me	NO	Me	F	н
Me	NH NH	Me	F	н
Me	√√N ^S	Me	F	н
Me	CH ₂ OH		F	Н
Me	CH ₂ OH	/	F	Н

R ₁	R_2	R ₃	R_4	R_5
Me	CH ₂ OH		F	Н
Me	CH₂OH		F	Н
Me	CH ₂ OH		F	Н
Me	CH ₂ OH		F	Н
Me	CH ₂ OH		F	Н
Me	CH₂OH	CN	F	Н
Me	CH ₂ OH		F	Н
Me	CH ₂ OH	\wedge	F	Н

R ₁	R_2	R_3	R_4	R ₅
Me	CH ₂ OH	Me	CI	Н
Me	CH ₂ OH	Me	Br	Н
Me	CH ₂ OH	Me	CN	Н
Me	CH ₂ OH	Me	Me	Н
Me	CH ₂ OH	Me	CF ₃	Н
Me	CH ₂ OH	Me	NO ₂	Н
Me	CH ₂ OH	Me	F	ОН
Me	CH ₂ OH	Me	F	NH ₂
Me	CH ₂ OH	Me	F	F
Me	CH ₂ OH	Me	F	SH

$$R_4$$
 R_3
 R_2
 R_3
 R_4
 R_5
 R_2
 R_3
 R_4
 R_5

R ₁	R_2	R_3	R_4	R_5
	CH ₂ OH	Me	F	Н
^	CH ₂ OH	Me	F	Н
	CH ₂ OH	Me	F	Н
N	CH ₂ OH	Me	F	Н
N	CH ₂ OH	Me	F	Н
N	CH₂OH	Me	F	Н
N	CH ₂ OH	Me	F	Н

R ₁	R ₂	R ₃	R_4	R ₅
N N	CH ₂ OH	Me	F	Н
N N	CH ₂ OH	Me	F	Н
	CH ₂ OH	Me	F	Н
N=NH	CH ₂ OH	Me	F	Н
N-N	CH ₂ OH	Me	F	Н
O	CH ₂ OH	Me	F	Н
ON	CH ₂ OH	Me	F	Н

R ₁	R_2	R_3	R_4	R_5
S	CH ₂ OH	Me	F	Н
N	CH ₂ OH	Me	F	Н
OMe	CH ₂ OH	Me	F	Н
N	CH ₂ OH	Me	F	Н
OMe	CH₂OH	Me	F	Н
Ме	Me	Me	F	Н
Me		Me	F	Н
Me	OH	Me	F	Н

R ₁	R_2	R_3	R_4	R_5
Me	NH_2	Me	F	Н
Me	ОН	Me	F	Н
Me	$\nearrow \nearrow NH_2$	Me	F	Н
Me	\sim Ph \sim NH ₂	Me	F	Н
Me	OH	Me	F	Н
Me	\sim NH ₂	Me	F	Н
Me	NH_2	Me	F	н
Me	NH_2 CHF_2	Me	F	Н
Me	CHF ₂ NH ₂	Me	F	н
Me	NH_2 CHF_2	Me	F	Н

R_1	R_2	R_3	R_4	R_5
Me	∕ N H	Me	F	Н
Me	N H	Me	F	Н
Me	~~NH OH	Me	F	н
Me	N OMe	Me	F	н
Me	$N H_2$	Me	F	Н
Me	\sim	Me	F	Н

R ₁	R_2	R_3	R_4	R_5
Me	N H	Me	F	Н
Me	NO	Me	F	н
Me	NH NH	Me	F	н
Me	S	Me	F	Н
Me	CH ₂ OH		F	Н
Me	CH ₂ OH	/ /	F	Н

R_1	R_2	R_3	R_4	R_5
Me	CH ₂ OH		F	Н
Me	CH₂OH		F	Н
Me	CH ₂ OH		F	Н
Me	CH ₂ OH		F	Н
Me	CH₂OH		F	Н
Me	CH₂OH	CN	F	Н
Me	CH₂OH		F	Н
Me	CH ₂ OH	\wedge	F	Н

R ₁	R_2	R_3	R_4	R_5
Me	CH ₂ OH	Me	CI	н
Me	CH ₂ OH	Me	Br	Н
Me	CH ₂ OH	Me	CN	Н
Me	CH ₂ OH	Me	Me	Н
Me	CH ₂ OH	Me	CF ₃	Н
Me	CH ₂ OH	Me	NO ₂	Н
Me	CH₂OH	Me	F	ОН
Me	CH ₂ OH	Me	F	NH ₂
Me	CH ₂ OH	Me	F	F
Me	CH ₂ OH	Me	F	SH

$$R_4$$
 R_3
 R_2
 R_3
 R_1

R ₁	R_2	R_3	R_4	R_5
	CH ₂ OH	Me	F	Н
^	CH ₂ OH	Me	F	Н
	CH ₂ OH	Me	F	Н
N	CH ₂ OH	Me	F	Н
N	CH ₂ OH	Me	F	Н
N	CH ₂ OH	Me	F	Н
N	CH ₂ OH	Me	F	Н

R_1	R_2	R_3	R ₄	R_5
N N	CH ₂ OH	Me	F	Н
N	CH ₂ OH	Me	F	Н
	CH ₂ OH	Me	F	Н
NH N NH	CH ₂ OH	Me	F	Н
N-N	CH ₂ OH	Me	F	Н
$\bigcirc \\ \bigcirc \\ N$	CH ₂ OH	Me	F	Н
O _N	CH ₂ OH	Me	F	Н

R ₁	R_2	R_3	R_4	R_5
S	CH ₂ OH	Me	F	Н
N	CH ₂ OH	Me	F	Н
OMO	e CH ₂ OH	Me	F	Н
N	CH ₂ OH	Me	F	Н
OM	CH ₂ OH e	Me	F	Н
Me	Me	Me	F	Н
Me		Me	F	Н
Me	OH	Me	F	Н

R ₁	R_2	R_3	R_4	R_5
Me	NH_2	Me	F	Н
Me	ОН	Me	F	Н
Me	$\nearrow \nearrow NH_2$	Me	F	Н
Me	\sim Ph \sim NH ₂	Me	F	Н
Me	OH	Me	F	Н
Me	\sim NH ₂	Me	F	Н
Me	NH_2	Me	F	н
Me	NH_2 CHF_2	Me	F	Н
Me	CHF ₂ NH ₂	Me	F	н
Me	NH_2 CHF_2	Me	F	Н

R_1	R_2	R_3	R_4	R_5
Me	∕ N H	Me	F	н
Me	N H	Me	F	Н
Me	~~NH OH	Me	F	н
Me	N OMe	Me	F	н
Me	NH_2	Me	F	Н
Me	\sim	Me	F	Н

R ₁	R_2	R_3	R_4	R_5
Me	N H	Me	F	Н
Me	NO	Me	F	н
Me	N N N	Me	F	н
Me	√√N ^S	Me	F	н
Me	CH ₂ OH		F	Н
Me	CH₂OH	/ //	F	Н

R_1	R_2	R_3	R_4	R_5
Me	CH ₂ OH		F	Н
Me	CH₂OH		F	Н
Me	CH ₂ OH		F	Н
Me	CH ₂ OH		F	Н
Me	CH₂OH		F	Н
Me	CH₂OH	CN	F	Н
Me	CH ₂ OH		F	Н
Me	CH ₂ OH	\wedge	F	Н

R ₁	R_2	R_3	R_4	R ₅
Me	CH ₂ OH	Me	CI	Н
Me	CH ₂ OH	Me	Br	Н
Me	CH ₂ OH	Me	CN	Н
Me	CH ₂ OH	Me	Me	Н
Me	CH ₂ OH	Me	CF ₃	Н
Me	CH ₂ OH	Me	NO ₂	Н
Me	CH ₂ OH	Me	F	ОН
Me	CH ₂ OH	Me	F	NH ₂
Me	CH ₂ OH	Me	F	F
Me	CH ₂ OH	Me	F	SH

$$R_4$$
 R_5
 R_2
 R_3
 R_0
 R_1

R ₁	R_2	R_3	R_4	R ₅
	CH ₂ OH	Me	F	Н
^	CH ₂ OH	Me	F	Н
	CH ₂ OH	Me	F	Н
N	CH ₂ OH	Me	F	Н
N	CH ₂ OH	Me	F	Н
N	CH ₂ OH	Me	F	Н
N	CH ₂ OH	Me	F	H -

R ₁	R_2	R ₃	R_4	R_5
N N	CH ₂ OH	Me	F	Н
N	CH ₂ OH	Me	F	Н
	CH ₂ OH	Me	F	Н
NW NH	CH ₂ OH	Me	F	Н
N-N	CH ₂ OH	Me	F	Н
ON	CH ₂ OH	Me	F	Н
O _N	CH ₂ OH	Me	F	н

R ₁	R_2	R_3	R_4	R_5
S	CH ₂ OH	Me	F	Н
N	CH ₂ OH	Me	F	Н
OMe	CH ₂ OH	Me	F	Н
N	CH ₂ OH	Me	F	Н
OMe	CH₂OH	Me	F	Н
Me	Me	Me	F	Н
Me		Me	F	Н
Me	∕ OH	Me	F	Н

R ₁	R_2	R_3	R_4	R_5
Me	NH_2	Me	F	Н
Me	ОН	Me	F	Н
Me	$\nearrow \nearrow NH_2$	Me	F	Н
Me	\sim Ph \sim NH ₂	Me	F	Н
Me	OH	Me	F	Н
Me	\sim NH ₂	Me	F	Н
Me	NH_2 Ph	Me	F	Н
Me	NH_2 CHF_2	Me	F	Н
Me	CHF ₂ NH ₂	Me	F	н
Me	NH_2 CHF_2	Me	F	Н

R_1	R_2	R_3	R_4	R_5
Me	∕ N H	Me	F	Н
Me	N H	Me	F	Н
Me	N O	Me	F	н
Me	N OMe	Me	F	Н
Me	NH_2	Me	F	н
Me	N	Me	F	Н

R ₁	R_2	R_3	R_4	R_5
Me	N H	Me	F	Н
Me	NO	Me	F	н
Me	N N N	Me	F	н
Me	√√N ^S	Me	F	н
Me	CH ₂ OH		F	Н
Me	CH₂OH	/	F	Н

R ₁	R_2	R ₃	R_4	R ₅
Me	CH₂OH		F	Н
Me	CH₂OH		F	Н
Me	CH ₂ OH		F	Н
Me	CH ₂ OH		F	Н
Me	CH₂OH	\int	F	Н
Me	CH ₂ OH	CN	F	Н
Me	CH ₂ OH		F	Н
Me	CH ₂ OH	\wedge	F	Н

R ₁	R_2	R_3	R ₄	R ₅
Me	CH₂OH	Me	CI	Н
Me	CH₂OH	Me	Br	Н
Me	CH₂OH	Me	CN	Н
Me	CH₂OH	Me	Me	Н
Me	CH₂OH	Me	CF ₃	Н
Me	CH₂OH	Me	NO ₂	Н
Me	CH₂OH	Me	F	ОН
Me	CH₂OH	Me	F	NH_2
Me	CH₂OH	Me	F	F
Me	CH₂OH	Me	F	SH

or a pharmaceutically acceptable salt or stereoisomer thereof.

- 7. (Original) A pharmaceutical composition that is comprised of a compound in accordance with Claim 1 and a pharmaceutically acceptable carrier.
 - 8.-10. Cancelled
 - 11.-19. Previosuly cancelled
 - 20.-23. Cancelled
 - 24.-26. Previously cancelled
 - 27.-28. Cancelled
 - 29. Previosuly cancelled
 - 30.-33. Cancelled