Cryptography and Network Security (CS435/890BN)

Part Five (Related Math Knowledge)

Modular Arithmetic

- define modulo operator "a mod n" to be remainder when a is divided by n
- use the term congruence for: a = b mod n
 - when divided by n, a & b have same remainder
 - eg. $100 = 34 \mod 11$
- b is called a residue of a mod n
 - since with integers can always write: a = qn + b
 - usually chose smallest positive remainder as residue
 - ie. 0 <= b <= n-1
 - process is known as modulo reduction
 - eg. $-12 \mod 7 = -5 \mod 7 = 2 \mod 7 = 9 \mod 7$

Divisors

- say a non-zero number b divides a if for some m have a=mb (a,b,m all integers)
- that is b divides into a with no remainder
- denote this b|a
- and say that b is a divisor of a
- eg. all of 1,2,3,4,6,8,12,24 divide 24

Modular Arithmetic Operations

- is 'clock arithmetic'
- uses a finite number of values, and loops back from either end
- modular arithmetic is when do addition & multiplication and modulo reduce answer
- can do reduction at any point

Modular Arithmetic

- can do modular arithmetic with any group of integers: $Z_n = \{0, 1, ..., n-1\}$
- form a commutative ring for addition
- with a multiplicative identity
- note some peculiarities
 - if (a+b) = (a+c) mod n
 then b=c mod n
 - but if (a.b) = (a.c) mod n
 then b=c mod n only if a is relatively prime to n

Modulo 8 Addition Example

+	0	1	2	3	4	5	6	7
0	0	1	2	3	4	5	6	7
1	1	2	3	4	5	6	7	0
2	2	3	4	5	6	7	0	1
3	3	4	5	6	7	0	1	2
4	4	5	6	7	0	1	2	3
5	5	6	7	0	1	2	3	4
6	6	7	0	1	2	3	4	5
7	7	0	1	2	3	4	5	6

Greatest Common Divisor (GCD)

- a common problem in number theory
- GCD (a,b) of a and b is the largest number that divides evenly into both a and b
 - eg GCD(60,24) = 12
- often want no common factors (except 1) and hence numbers are relatively prime
 - eg GCD(8,15) = 1
 - hence 8 & 15 are relatively prime

Euclidean Algorithm

- an efficient way to find the GCD(a,b)
- uses theorem that:

```
-GCD(a,b) = GCD(b, a mod b)
```

Euclidean Algorithm to compute GCD(a,b) is:

```
EUCLID(a,b)
1. A = a; B = b
2. if B = 0 return A = gcd(a, b)
3. R = A mod B
4. A = B
5. B = R
6. goto 2
```

Example GCD(1970,1066)

```
1970 = 1 \times 1066 + 904
                               gcd(1066, 904)
                               gcd(904, 162)
1066 = 1 \times 904 + 162
                               gcd(162, 94)
904 = 5 \times 162 + 94
162 = 1 \times 94 + 68
                               gcd(94, 68)
94 = 1 \times 68 + 26
                               gcd(68, 26)
68 = 2 \times 26 + 16
                               gcd(26, 16)
26 = 1 \times 16 + 10
                               gcd(16, 10)
16 = 1 \times 10 + 6
                               gcd(10, 6)
10 = 1 \times 6 + 4
                               gcd(6, 4)
6 = 1 \times 4 + 2
                               gcd(4, 2)
4 = 2 \times 2 + 0
                               gcd(2, 0)
```

Galois Fields

- finite fields play a key role in cryptography
- can show number of elements in a finite field must be a power of a prime pⁿ
- known as Galois fields
- denoted GF(pⁿ)
- in particular often use the fields:
 - -GF(p)
 - $-GF(2^n)$

Galois Fields GF(p)

- GF(p) is the set of integers {0,1, ..., p-1}
 with arithmetic operations modulo prime p
- these form a finite field
 - since have multiplicative inverses
- hence arithmetic is "well-behaved" and can do addition, subtraction, multiplication, and division without leaving the field GF(p)

GF(7) Multiplication Example

×	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	4	6	1	3	5
3	0	3	6	2	5	1	4
4	0	4	1	5	2	6	3
5	0	5	3	1	6	4	2
6	0	6	5	4	3	2	1

Finding Inverses

```
EXTENDED EUCLID (m, b)
1. (A1, A2, A3) = (1, 0, m);
   (B1, B2, B3) = (0, 1, b)
2. if B3 = 0
  return A3 = gcd(m, b); no inverse
3. if B3 = 1
  return B3 = gcd (m, b); B2 = b^{-1} \mod m
4. O = A3 div B3
5. (T1, T2, T3) = (A1 - Q B1, A2 - Q B2, A3 - Q B3)
6. (A1, A2, A3) = (B1, B2, B3)
7. (B1, B2, B3) = (T1, T2, T3)
8. qoto 2
```

Inverse of 550 in GF(1759)

Q	A1	A2	A3	B 1	B2	B3
_	1	0	1759	0	1	550
3	0	1	550	1	- 3	109
5	1	- 3	109	- 5	16	5
21	- 5	16	5	106	-339	4
1	106	-339	4	-111	355	1

Polynomial Arithmetic

can compute using polynomials

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0 = \sum a_i x^i$$

- nb. not interested in any specific value of x
- which is known as the indeterminate
- several alternatives available
 - ordinary polynomial arithmetic
 - poly arithmetic with coords mod p
 - poly arithmetic with coords mod p and polynomials mod m(x)

Ordinary Polynomial Arithmetic

- add or subtract corresponding coefficients
- multiply all terms by each other
- eg

let
$$f(x) = x^3 + x^2 + 2$$
 and $g(x) = x^2 - x + 1$
 $f(x) + g(x) = x^3 + 2x^2 - x + 3$
 $f(x) - g(x) = x^3 + x + 1$
 $f(x) \times g(x) = x^5 + 3x^2 - 2x + 2$

Polynomial Arithmetic with Modulo Coefficients

- when computing value of each coefficient do calculation modulo some value
 - forms a polynomial ring
- could be modulo any prime
- but we are most interested in mod 2
 - ie all coefficients are 0 or 1

- eg. let
$$f(x) = x^3 + x^2$$
 and $g(x) = x^2 + x + 1$
 $f(x) + g(x) = x^3 + x + 1$
 $f(x) \times g(x) = x^5 + x^2$

Polynomial Division

- can write any polynomial in the form:
 - -f(x) = q(x) g(x) + r(x)
 - can interpret r(x) as being a remainder
 - $r(x) = f(x) \bmod g(x)$
- if have no remainder say g(x) divides f(x)
- if g(x) has no divisors other than itself & 1 say it is irreducible (or prime) polynomial
- arithmetic modulo an irreducible polynomial forms a field

Polynomial GCD

- can find greatest common divisor for polys
 - c(x) = GCD(a(x), b(x)) if c(x) is the poly of greatest degree which divides both a(x), b(x)
- can adapt Euclid's Algorithm to find it:

- **1.** A(x) = a(x); B(x) = b(x)
- **2.** if B(x) = 0 return A(x) = gcd[a(x), b(x)]
- **3.** $R(x) = A(x) \mod B(x)$
- **4.** A(x) ... B(x)
- **5.** B(x) ... R(x)
- **6. goto** 2

Modular Polynomial Arithmetic

- can compute in field GF(2ⁿ)
 - polynomials with coefficients modulo 2
 - whose degree is less than n
 - hence must reduce modulo an irreducible poly of degree n (for multiplication only)
- form a finite field
- can always find an inverse
 - can extend Euclid's Inverse algorithm to find

Example GF(2³)

Table 4.6 Polynomial Arithmetic Modulo $(x^3 + x + 1)$

	+	000	001 1	010 x	$\begin{array}{c} 011 \\ x + 1 \end{array}$	100 x ²	$x^2 + 1$	$\frac{110}{x^2 + x}$	$x^2 + x + 1$
000	0	0	1	X	x+1	x^2	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$
001	1	1	0	x + 1	X	$x^2 + 1$	x^2	$x^2 + x + 1$	$x^2 + x$
010	X	x	x + 1	0	1	$x^2 + x$	$x^2 + x + 1$	χ^2	$x^2 + 1$
011	x + 1	x+1	x	1	0	$x^2 + x + 1$	$x^2 + x$	$x^2 + 1$	x^2
100	χ^2	x^2	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$	0	1	X	x+1
101	$x^2 + 1$	$x^2 + 1$	x^2	$x^2 + x + 1$	$x^{2} + x$	1	0	x + 1	X
110	$x^{2} + x$	$x^2 + x$	$x^2 + x + 1$	x^2	$x^2 + 1$	x	x + 1	0	1
111	$x^2 + x + 1$	$x^2 + x + 1$	$x^2 + x$	$x^2 + 1$	x^2	x + 1	x	1	0

(a) Addition

	×	000	001 1	010 x	$011 \\ x + 1$	100 x ²	101 $x^2 + 1$	$\frac{110}{x^2 + x}$	111 $x^2 + x + 1$
000	0	0	0	0	0	0	0	0	0
001	1	0	1	X	x+1	x^2	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$
010	X	0	х	x^2	$x^2 + x$	x+1	1	$x^2 + x + 1$	$x^2 + 1$
011	x + 1	0	x + 1	$x^2 + x$	$x^2 + 1$	$x^2 + x + 1$	x^2	1	X
100	x^2	0	x^2	x + 1	$x^2 + x + 1$	$x^2 + x$	х	$x^2 + 1$	1
101	$x^2 + 1$	0	$x^2 + 1$	1	x^2	x	$x^2 + x + 1$	x + 1	$x^2 + x$
110	$x^{2} + x$	0	$x^{2} + x$	$x^2 + x + 1$	1	$x^2 + 1$	x + 1	X	x ²
111	$x^2 + x + 1$	0	$x^2 + x + 1$	$x^2 + 1$	X	1	$x^{2} + x$	χ^2	x+1

Computational Considerations

- since coefficients are 0 or 1, can represent any such polynomial as a bit string
- addition becomes XOR of these bit strings
- multiplication is shift & XOR
 - cf long-hand multiplication
- modulo reduction done by repeatedly substituting highest power with remainder of irreducible poly (also shift & XOR)

Computational Example

- in GF(2³) have (x^2+1) is $101_2 & (x^2+x+1)$ is 111_2
- so addition is
 - $-(x^2+1)+(x^2+x+1)=x$
 - $-101 \text{ XOR } 111 = 010_{2}$
- and multiplication is
 - $(x+1).(x^{2}+1) = x.(x^{2}+1) + 1.(x^{2}+1)$ $= x^{3}+x+x^{2}+1 = x^{3}+x^{2}+x+1$
 - 011.101 = (101)<<1 XOR (101)<<0 = 1010 XOR 0101 = 1111₂
- polynomial modulo reduction (get q(x) & r(x)) is
 - $-(x^3+x^2+x+1) \mod (x^3+x+1) = 1.(x^3+x+1) + (x^2) = x^2$
 - $-1111 \mod 1011 = 1111 \mod 1011 = 0100_2$

Using a Generator

- equivalent definition of a finite field
- a generator g is an element whose powers generate all non-zero elements
 - in F have 0, g⁰, g¹, ..., g^{q-2}
- can create generator from root of the irreducible polynomial
- then implement multiplication by adding exponents of generator

Prime Numbers

- prime numbers only have divisors of 1 and self
 - they cannot be written as a product of other numbers
 - note: 1 is prime, but is generally not of interest
- eg. 2,3,5,7 are prime, 4,6,8,9,10 are not
- prime numbers are central to number theory
- list of prime number less than 200 is:

```
2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 179 181 191 193 197 199
```

Prime Factorisation

- to factor a number n is to write it as a product of other numbers: n=a x b x c
- note that factoring a number is relatively hard compared to multiplying the factors together to generate the number
- the prime factorisation of a number n is when its written as a product of primes

-eg. 91=7x13 ; 3600=24x32x52
$$a = \prod_{p \in P} p^{a_p}$$

Relatively Prime Numbers & GCD

- two numbers a, b are relatively prime if have no common divisors apart from 1
 - eg. 8 & 15 are relatively prime since factors of 8 are 1,2,4,8 and of 15 are 1,3,5,15 and 1 is the only common factor
- conversely can determine the greatest common divisor by comparing their prime factorizations and using least powers
 - eg. $300=2^2 \times 3^1 \times 5^2$ $18=2^1 \times 3^2$ hence GCD $(18,300)=2^1 \times 3^1 \times 5^0=6$

Fermat's Theorem

- $a^{p-1} \equiv 1 \pmod{p}$ - where p is prime and gcd (a, p) =1
- also known as Fermat's Little Theorem

- $a^p \equiv a \pmod{p}$
- useful in public key and primality testing

Euler Totient Function \emptyset (n)

- when doing arithmetic modulo n
- complete set of residues is: 0..n-1
- reduced set of residues is those numbers (residues) which are relatively prime to n
 - eg for n=10,
 - complete set of residues is {0,1,2,3,4,5,6,7,8,9}
 - reduced set of residues is {1,3,7,9}
- number of elements in reduced set of residues is called the Euler Totient Function ø(n)

Euler Totient Function \emptyset (n)

- to compute ø(n) need to count number of residues to be excluded
- in general need prime factorization, but

```
- for p (p prime) \varnothing (p) = p-1
```

- for p.q (p,q prime) \varnothing (pq) = (p-1) x (q-1)
- eg.

```
\emptyset (37) = 36

\emptyset (21) = (3-1)x(7-1) = 2x6 = 12
```

Euler's Theorem

- a generalisation of Fermat's Theorem
- $a^{g(n)} = 1 \pmod{n}$ • for any a, n where gcd(a, n) = 1
- eg.

```
a=3; n=10; \varnothing (10)=4;
hence 3^4=81=1 \mod 10
a=2; n=11; \varnothing (11)=10;
hence 2^{10}=1024=1 \mod 11
```

Miller Rabin Algorithm

- a test based on Fermat's Theorem
- algorithm is:

```
TEST (n) is:
```

- 1. Find integers k, q, k > 0, q odd, so that $(n-1) = 2^k q$
- 2. Select a random integer a, 1 < a < n-1
- 3. if $a^q \mod n = 1$ then return ("maybe prime");
- 4. **for** j = 0 **to** k 1 **do**
 - **5.** if $(a^{2^{j}q} \mod n = n-1)$

then return(" maybe prime ")

6. return ("composite")

Chinese Remainder Theorem

- used to speed up modulo computations
- if working modulo a product of numbers

```
-eg. mod M = m_1 m_2..m_k
```

- Chinese Remainder theorem lets us work in each moduli m_i separately
- since computational cost is proportional to size, this is faster than working in the full modulus M

Chinese Remainder Theorem

- can implement CRT in several ways
- to compute A (mod M)
 - first compute all a_i = A mod m_i separately
 - determine constants c_i below, where $M_i = M/m_i$
 - then combine results to get answer using:

$$A \equiv \left(\sum_{i=1}^k a_i c_i\right) \pmod{M}$$

$$c_i = M_i \times (M_i^{-1} \mod m_i)$$
 for $1 \le i \le k$