Soluções Jacob Palis 2022 N2

Samuel de Araújo Brandão

4 de Setembro de 2025

Uma coleção de soluções para a **Jacob Palis 2022 Nível 2**, inspirada no estilo de Evan Chen. Pode-se encontrar todos os problemas **aqui** e as respostas oficiais **aqui**.

Todas as soluções foram inteiramente escritas por mim, enquanto me preparava para a International Mathematical Olympiad (IMO).

Caso encontre algum erro ou tiver sugestões ou comentários, sinta-se a vontade para entrar em contato!

Conteúdos

1	Prot	lemas	2
	1.1	Testes	2
	1.2	Respostas Numéricas	3
2	Solu	zões	5
	2.1	Problema 1	5
	2.2	Problema 2	6
	2.3	Problema 3	7
	2.4	Problema 4	8
	2.5	Problema 5	9
	2.6	Problema 6	0
	2.7		.1
	2.8		2
	2.9	Problema 9	3
	2.10		4
			.5
			6
			7
			.8
			9
2	Rofo	râncias 2	'n

1 Problemas

1.1 Testes

1. Sônico, o tatu bola veloz, está caminhando pelas estradas do planeta Mobius coletando anéis. Abaixo está um mapa com a quantidade de anéis em cada estrada do reino. Sabendo que Sônico partiu da cidade A até a cidade B, qual a diferença

entre a maior e a menor quantidade de anéis que ele pode ter coletado?

- 2. Dentro de cada uma de duas caixas há uma bola vermelha ou uma bola verde. Na primeira caixa, do lado de fora, há um aviso: "Dentro de pelo menos uma das duas caixas há uma bola verde" e na segunda caixa há o aviso: "Há uma bola vermelha dentro da outra caixa". Sabe-se que os dois avisos são ambos falsos ou ambos são verdadeiros. O que pode ser afirmado com certeza?
- 3. Qual é a soma dos primeiros 2022 dígitos após a vírgula na representação decimal da fração $\frac{2021}{148}$?
- **4.** Uma data é especial quando ocorre no dia k do mês k e cai no k-ésimo dia da semana (em que o primeiro dia da semana é domingo) para algum k, $1 \le k \le 7$. Por exemplo, 5 de maio de 2022 é especial, pois caiu na quinta-feira (nesse exemplo, k = 5). Qual é a maior quantidade de dias especiais que pode ocorrer em um ano?

Dados: Janeiro, Março e Maio têm 31 dias; Fevereiro tem 28 ou 29 dias; Abril e Junho têm 30 dias.

5. A soma dos algarismos do número

$$20222022^2 + 20222021^2 - 2 \times 20222020 \times 20222019$$

é igual a o que?

6. Na figura, AD é altura e O é o centro da circunferência circunscrita ao triângulo ABC. Sabendo que $\angle BAC = 72^{\circ}$, qual é a medida do ângulo $\angle AEB$?

7. Um número inteiro positivo n é tal que:

- n possui exatamente 15 divisores positivos;
- n não é múltiplo de 5.

Qual é a diferença entre o quarto e o terceiro menores valores possíveis de n?

- **8.** No triângulo ABC, retângulo em A, temos AB = 6 e AC = 8. Seja D o pé da altura relativa ao lado BC e M o ponto médio de BC. Qual o valor de DM?
- 9. As raízes da equação $x^2 nx + m = 0$ são os números reais não nulos $a \in b$. As raízes da equação $x^2 2nx + 2m = 0$ são $a^2 \in b^2$. Quanto vale m + n?
- 10. De quantas maneiras podemos cobrir algumas casas de um tabuleiro 10×10 com dominós 2×1 ou 1×2 de tal forma que, dadas quaisquer quatro casas do tabuleiro que compartilham um vértice, exatamente duas delas estão cobertas por dominós? A seguir exibimos parte de um tabuleiro válido, em que os retângulos cinzas representam os dominós.

1.2 Respostas Numéricas

1. Maria observou que os ponteiros de um relógio analógico formavam um ângulo de 33° (sim, Maria mediu), como mostra a figura a seguir. Após algum tempo, menor do que uma hora, o ponteiro dos minutos (ponteiro maior) passou pelo ponteiro das horas (ponteiro menor) e formou novamente um ângulo de 33°. Quantos minutos se passaram?

- 2. A calculadora do professor Piraldo tem só um botão. Ao apertá-lo, ele subtrai do número N no visor o seu maior divisor diferente de N. Por exemplo, se no visor aparece 75, o botão faz aparecer o número 75-25=50. Suponha que a calculadora exiba o número 5^{2022} (a calculadora é bem grande!). Quantas vezes o botão deve ser apertado até que apareça 1 no visor pela primeira vez?
- **3.** As 9 casinhas de um tabuleiro 3×3 devem ser preenchidas com os números de 1 a 9, com um número em cada casinha. Um preenchimento é *sinuoso* quando todos os

pares de números consecutivos ocupam casas vizinhas (com um lado em comum). O tabuleiro a seguir, por exemplo, é sinuoso:

1	2	9
4	3	8
5	6	7

Quantos são os tabuleiros sinuosos?

4. Na figura, M é ponto médio do lado de um quadrado de área 36. Qual é a área do triângulo retângulo cinza?

5. Para cada x real denotamos $\lfloor x \rfloor$ o maior inteiro menor que ou igual a x. Por exemplo, $\lfloor 3,15 \rfloor = 3$. Sabendo que

$$\left[\sqrt{1}\right] + \left[\sqrt{2}\right] + \left[\sqrt{3}\right] + \dots + \left[\sqrt{n}\right] = 217,$$

qual é o valor de n?

2 Soluções

2.1 Problema 1

Enunciado

Sônico, o tatu bola veloz, está caminhando pelas estradas do planeta Mobius coletando anéis. Abaixo está um mapa com a quantidade de anéis em cada estrada do reino. Sabendo que Sônico partiu da cidade A até a cidade B, a diferença entre a maior e a menor quantidade de anéis que ele pode ter coletado é:

2.2 Problema 2

Enunciado

Dentro de cada uma de duas caixas há uma bola vermelha ou uma bola verde. Na primeira caixa, do lado de fora, há um aviso: 'Dentro de pelo menos uma das duas caixas há uma bola verde" e na segunda caixa há o aviso: 'Há uma bola vermelha dentro da outra caixa". Sabe-se que os dois avisos são ambos falsos ou ambos são verdadeiros. O que pode ser afirmado com certeza?

2.3 Problema 3

Enunciado

Qual é a soma dos primeiros 2022 dígitos após a vírgula na representação decimal da fração $\frac{2021}{148}$

2.4 Problema 4

Enunciado

Uma data é especial quando ocorre no dia k do mês k e cai no k-ésimo dia da semana (em que o primeiro dia da semana é domingo) para algum k, $1 \le k \le 7$. Por exemplo, 5 de maio de 2022 é especial, pois caiu na quinta-feira (nesse exemplo, k = 5). Qual é a maior quantidade de dias especiais que pode ocorrer em um ano? Dados: Janeiro, Março e Maio têm 31 dias; Fevereiro tem 28 ou 29 dias; Abril e Junho têm 30 dias.

2.5 Problema 5

Enunciado

A soma dos algarismos do número

$$20222022^2 + 20222021^2 - 2 \times 20222020 \times 20222019$$

é igual a

2.6 Problema 6

Enunciado

Na figura, AD é altura e O é o centro da circunferência circunscrita ao triângulo ABC. Sabendo que $\angle BAC = 72^{\circ}$, qual é a medida do ângulo $\angle AEB$?

2.7 Problema 7

Enunciado

Um número inteiro positivo n é tal que:

- n possui exatamente 15 divisores positivos;
- n não é múltiplo de 5.

Qual é a diferença entre o quarto e o terceiro menores valores possíveis de n?

2.8 Problema 8

Enunciado

No triângulo ABC, retângulo em A, temos AB=6 e AC=8. Seja D o pé da altura relativa ao lado BC e M o ponto médio de BC. O valor de DM é

2.9 Problema 9

Enunciado

As raízes da equação $x^2-nx+m=0$ são os números reais não nulos a e b. As raízes da equação $x^2-2nx+2m=0$ são a^2 e b^2 . O valor de m+n é

2.10 Problema 10

Enunciado

De quantas maneiras podemos cobrir algumas casas de um tabuleiro 10×10 com dominós 2×1 ou 1×2 de tal forma que, dadas quaisquer quatro casas do tabuleiro que compartilham um vértice, exatamente duas delas estão cobertas por dominós? A seguir exibimos parte de um tabuleiro válido, em que os retângulos cinzas representam os dominós.

2.11 Problema 11

Enunciado

Maria observou que os ponteiros de um relógio analógico formavam um ângulo de 33° (sim, Maria mediu), como mostra a figura a seguir. Após algum tempo, menor do que uma hora, o ponteiro dos minutos (ponteiro maior) passou pelo ponteiro das horas (ponteiro menor) e formou novamente um ângulo de 33°. Quantos minutos se passaram?

2.12 Problema 12

Enunciado

A calculadora do professor Piraldo tem só um botão. Ao apertá-lo, ele subtrai do número N no visor o seu maior divisor diferente de N. Por exemplo, se no visor aparece 75, o botão faz aparecer o número 75-25=50. Suponha que a calculadora exiba o número 5^{2022} (a calculadora é bem grande!). Quantas vezes o botão deve ser apertado até que apareça 1 no visor pela primeira vez?

2.13 Problema 13

Enunciado

As 9 casinhas de um tabuleiro 3×3 devem ser preenchidas com os números de 1 a 9, com um número em cada casinha. Um preenchimento é sinuoso quando todos os pares de números consecutivos ocupam casas vizinhas (com um lado em comum). O tabuleiro a seguir, por exemplo, é sinuoso:

1	2	9
4	3	8
5	6	7

Quantos são os tabuleiros sinuosos?

2.14 Problema 14

Enunciado Na figura, M é ponto médio do lado de um quadrado de área 36. Qual é a área do triângulo retângulo cinza?

2.15 Problema 15

Enunciado

Para cada x real denotamos $\lfloor x \rfloor$ o maior inteiro menor que ou igual a x. Por exemplo, $\lfloor 3,15 \rfloor = 3$. Sabendo que

$$\left\lfloor \sqrt{1} \right\rfloor + \left\lfloor \sqrt{2} \right\rfloor + \left\lfloor \sqrt{3} \right\rfloor + \dots + \left\lfloor \sqrt{n} \right\rfloor = 217,$$

qual é o valor de n?

3 Referências