Bachelorarbeit

mein thema

vorgelegt von

Maximilian Huber

am

Institut für Mathematik der Universität Augsburg

betreut durch

Prof. Dr. Marco Hien

abgegeben am noch nicht

Inhaltsverzeichnis

Ei	inleitung	iii
I	Theorie	1
1	Mathematische Grundlagen	2
	1.1 Einige Ergebnise aus der Kommutativen Algebra	2
	1.2 Weyl-Algebra und der Ring \mathcal{D}	3
	1.2.1 Struktur von Links-Idealen auf \mathcal{D}	5
2	Der Meromorpher Zusammenhang	6
	2.1 Definition	6
	2.2 Eigenschaften	6
	2.3 pull-back und push-forward	8
	2.4 Newton Polygon	9
3	Levelt-Turittin-Theorem	11
11	Beispiele	15
4	Beispiele/Anwendung	16
	4.1 Einfache Beispiele	16
	4.2 Meromorpher Zusammenhang der formal, aber nicht Konvergent, zerfällt	17
	4.2.1 beispiel von sabbah	17
	4.2.2 Beispiel ohne namen	18
Ar	nhang	19
Δ	Aufteilung von	20

Einleitung

Teil I

Theorie

1 Mathematische Grundlagen

Hier werde ich mich auf [6] und [2] beziehen.

1.1 Einige Ergebnise aus der Kommutativen Algebra

In dieser Arbeit spielen die folgenden Ringe eine Große Rolle:

- $\mathbb{C}[x] := \{\sum_{i=1}^N a_i x^i | N \in \mathbb{N} \}$
- $\mathbb{C}\{x\} := \{\sum_{i=1}^{\infty} a_i x^i | \text{pos. Konvergenz radius} \}$
- $\mathbb{C}[x] := \{\sum_{i=1}^{\infty} a_i x^i\}$
- $\bullet \ K:=\mathbb{C}(\{x\}):=\mathbb{C}\{x\}[x^{-1}]$
- $\hat{K} := \mathbb{C}((x)) := \mathbb{C}[x][x^{-1}]$

Wobei offensichtlich gilt $\mathbb{C}[x] \subset \mathbb{C}\{x\} \subset \mathbb{C}[x]$.

Definition 1.1 (Direkte Summe). [8, 4(Categories).5.1] Seien $x, y \in \text{Ob}(\mathcal{C})$, eine *Direkte Summe* oder das *coprodukt* von x und y ist ein Objekt $x \oplus y \in \text{Ob}(\mathcal{C})$ zusammen mit Morphismen $i \in \text{Mor}_{\mathcal{C}}(x, x \oplus y)$ und $j \in \text{Mor}_{\mathcal{C}}(y, x \oplus y)$ so dass die folgende universelle Eigenschaft gilt: für jedes $w \in Ob(\mathcal{C})$ mit Morphismen $\alpha \in \text{Mor}_{\mathcal{C}}(x, w)$ und $\beta \in \text{Mor}_{\mathcal{C}}(y, w)$ existiert ein eindeutiges $\gamma \in \text{Mor}_{\mathcal{C}}(x \oplus y, w)$ so dass das Diagram

kommutiert.

Definition 1.2 (Tensorprodukt). [8, 3(Algebra).11.21]

1.2 Weyl-Algebra und der Ring \mathcal{D}

Ich werde hier die Weyl Algebra, wie in [6, Chapter 1], in einer Veränderlichen einführen. Sei $\frac{\partial}{\partial x} = \partial_x$ der Ableitungsoperator nach x und sei $f \in \mathbb{C}[x]$ (bzw. $\mathbb{C}\{x\}$ bzw. $\mathbb{C}[x]$). Man hat die folgende Kommutations-Relation zwischen dem Ableitungsoperator und dem Multiplikations Operator f:

$$\left[\frac{\partial}{\partial x}, f\right] = \frac{\partial f}{\partial x} \tag{1.1}$$

wobei die Rechte Seite die Multiplikation mit $\frac{\partial f}{\partial x}$ darstellt. Dies bedeutet, für alle $g \in \mathbb{C}[x]$ hat man:

$$[\frac{\partial}{\partial x},f]\cdot g=\frac{\partial fg}{\partial x}-f\frac{\partial g}{\partial x}=\frac{\partial f}{\partial x}\cdot g$$

Definition 1.3 (Weyl Algebra). Definiere nun die Weyl Algebra $A_1(\mathbb{C})$ (bzw. die Algebra \mathcal{D} von linearen Operatoren mit Koeffizienten in $\mathbb{C}\{x\}$ bzw. die Algebra $\hat{\mathcal{D}}$ (Koeffizienten in $\mathbb{C}[x]$)) als die Quotientenalgebra der freien Algebra, welche von dem Koeffizientenring zusammen mit dem Element ∂_x , erzeugt wird, Modulo der Relation (1.1).

Wir werden die Notation $A_1(\mathbb{C}) := \mathbb{C}[x] < \partial_x > \text{(bzw. } \mathcal{D} := \mathbb{C}\{x\} < \partial_x > \text{bzw. } \hat{\mathcal{D}} := \mathbb{C}[x] < \partial_x > \text{)}$ verwenden.

Lemma 1.4. Sei A einer der 3 soeben eingeführten Objekten, so definieren die Addition

$$+: A \times A \rightarrow A$$

und die Multiplikation

$$\cdot: A \times A \to A$$

eine Ringstruktur auf A.

Bemerkung 1.5. $A_1(\mathbb{C})$, \mathcal{D} und $\hat{\mathcal{D}}$ sind nicht kommutative Algebren.

Definition 1.6 (Kommutator). Sei R ein Ring. Für $a, b \in R$ wird

$$[a, b] = a \cdot b - b \cdot a$$

der Kommutator von a und b genannt.

Proposition 1.7. 1. Es gilt

$$[\partial_x, x] = \partial_x x - x \partial_x = 1$$

2. Sei $f \in \mathbb{C}[x]$, so gilt:

$$[\partial_x, f] = \frac{\partial}{\partial x}.$$

Denn für $g \in \mathbb{C}[x]$ ist

$$[\partial_x, f] \cdot g = \partial_x (fg) - f \partial_x g = (\partial_x f)g + \underbrace{f(\partial_x g) - f(\partial_x g)}_{=0} = (\partial_x f)g$$

3. Es gelten die Formeln

$$\begin{split} [\partial_x, x^k] &= kx^{k-1} \\ [\partial_x^j, x] &= j\partial_x^{j-1} \\ [\partial_x^j, x^k] &= \sum_{i \ge 1} \frac{k(k-1)\cdots(k-i+1)\cdot j(j-1)\cdots(j-i+1)}{i!} x^{k-i} \partial_x^{j-i} \end{split}$$

Beweis. [1]

Proposition 1.8. Jedes Element in $A_1(\mathbb{C})$ (bzw. \mathcal{D} oder $\hat{\mathcal{D}}$) kann auf eindeutige weiße als $P = \sum_{i=0}^{n} a_i(x) \partial_x^i$, mit $a_i(x) \in A_1(\mathbb{C})$ (bzw. \mathcal{D} oder $\hat{\mathcal{D}}$), geschrieben werden.

Beweis. [6, Proposition 1.2.3] \Box

Definition 1.9. Sei $P = \sum_{i=0}^{n} a_i(x) \partial_x^i$ gegeben, so definiere

$$\deg P := \max\{i | a_i \neq 0\}$$

In natürlicher Weise erhält man $F_N\mathcal{D}:=\{P\in\mathcal{D}|\deg P\leq N\}$ sowie die entsprechende aufsteigende Filtrierung

$$\cdots \subset F_{-1}\mathcal{D} \subset F_0\mathcal{D} \subset F_1\mathcal{D} \subset \cdots \subset \mathcal{D}$$

und erhalte $gr_k^F \mathcal{D} \stackrel{=}{\underset{\text{def}}{=}} F_N \mathcal{D} / F_{N-1} \mathcal{D} = \{ P \in \mathcal{D} | \deg P = N \} \cong \mathbb{C} \{ x \}.$

Beweis. Sei $P \in F_N \mathcal{D}$ so betrachte den Isomorphismus:

$$F_N \mathcal{D}/F_{N-1} \mathcal{D} \to \mathbb{C}\{x\}; [P] = P + F_{N-1} \mathcal{D} \mapsto a_n(x)$$

Proposition 1.10. Es gilt:

$$gr^F \mathcal{D} := \bigoplus_{N \in \mathbb{Z}} gr_N^F \mathcal{D} = \bigoplus_{N \in \mathbb{N}_0} gr_N^F \mathcal{D} \cong \bigoplus_{N \in \mathbb{N}_0} \mathbb{C}\{x\} \cong \mathbb{C}\{x\}[\xi] = \bigoplus_{N \in \mathbb{N}_0} \mathbb{C}\{x\} \cdot \xi^N$$

$$\underbrace{isomorph \ als}_{isomorph} \underbrace{grad. \ Ringe}$$

also

$$gr^F \mathcal{D} \cong \bigoplus_{N \in \mathbb{N}_0} \mathbb{C}\{x\} \cdot \xi^N$$
.

Beweis. TODO \Box

1.2.1 Struktur von Links-Idealen auf ${\mathcal D}$

2 Der Meromorpher Zusammenhang

Quelle ist [6]

2.1 Definition

Definition 2.1 (Meromorpher Zusammenhang). Ein (Keim eines) Meromorpher Zusammenhang (an x = 0) (\mathcal{M}_K, ∂) besteht aus folgenden Daten:

- \mathcal{M}_K , ein endlich dimensionaler K-Vr
- einer C-linearen Abbildung $\partial: \mathcal{M}_K \to \mathcal{M}_K$, genannt Derivation, welche für alle $f \in K$ und $u \in \mathcal{M}_K$ die Leibnitzregel

$$\partial(fu) = f'u + f\partial u \tag{2.1}$$

erfüllen soll.

Bemerkung 2.2. Später wird man auf die Angabe von ∂ verichten und einfach \mathcal{M}_K als den Meromorphen Zusammenhang bezeichnen.

Definition 2.3. [7, 1.a] Sei $\varphi \in \mathbb{C}((u))$. Wir schreiben \mathscr{E}^{φ} für den Rang 1 Vektorraum $\mathbb{C}((u))$ ausgestattet mit dem Zusammenhang $\nabla = \partial_u + \partial_u \varphi$, so dass $\nabla_{\partial_u} 1 = \varphi'$. Es gilt $\mathscr{E}^{\varphi} \cong \mathscr{E}^{\psi}$ genau dann wenn $\varphi \equiv \psi \mod \mathbb{C}((u))$.

Bemerkung 2.4. [7, 1.a] Es gilt $\mathscr{E}^{\varphi} \cong \mathscr{E}^{\psi}$ genau dann wenn $\varphi \equiv \psi \mod \mathbb{C}[\![u]\!]$.

2.2 Eigenschaften

Hier nun einige Eigenschaften Meromorpher Zusammenhänge.

Satz 2.5. [6, Thm 4.3.2] Ein Meromorpher Zusammenhang bestimmt ein D-Modul und andersherum.

Beweis. [6, Thm
$$4.3.2$$
]

Lemma 2.6. [1, Satz 4.12] [6, Thm 4.3.2] Ist \mathcal{M}_K ein Meromorpher Zusammenhang, dann existiert ein $P \in \mathcal{D}_K$ so dass $\mathcal{M}_K \cong \mathcal{D}_K/\mathcal{D}_K \cdot P$.

Beweis. [1, Satz 4.12]

Lemma 2.7. Sei $(\mathcal{M}_K, \partial)$ ein gegebener Meromorpher Zusammenhang, und φ ein Basisisomorphismus von K^r nach \mathcal{M}_K , also in der Situation

$$\begin{array}{ccc} \mathcal{M}_{K} & \stackrel{\partial}{\longrightarrow} \mathcal{M}_{K} \\ \uparrow & & \uparrow \\ \cong \varphi & & \varphi \cong \\ \mid & & \mid \\ K^{r} & \stackrel{\varphi^{-1}\partial \varphi}{\longrightarrow} K^{r} \end{array}$$

gilt: $(K^r, \varphi^{-1}\partial \varphi)$ ist ebenfalls ein Meromorpher Zusammenhang.

Beweis. TODO, (3. Treffen)
$$\Box$$

Sind ∂_1 und ∂_2 zwei Meromorphe Zusammenhänge auf $\mathcal{M}_K \cong K^r$. So betrachte $\partial_1 - \partial_2 : \mathcal{M} \to \mathcal{M}$ für alle $f \in K$ und $u \in \mathcal{M}_K$:

$$(\partial_1 - \partial_2)(fu) = \partial_1(fu) - \partial_2(fu)$$

= $f'u + f\partial_1 u - f'u - f\partial_2 u$
= $f \cdot (\partial_1 - \partial_2)(u)$

Lemma 2.8. Da $\partial_1 - \partial_2$ \mathbb{C} -linear und, wie eben gezeigt, $(\partial_1 - \partial_2)(fu) = f \cdot (\partial_1 - \partial_2)(u)$ allgemein, gilt: Die differenz zweier Meromorpher Zusammenhäge ist K-linear.

Insbesondere ist $\frac{d}{dz} - \partial : K^r \to K^r$ K-linear, also es existiert eine Matrix $A \in M(r \times r, K)$ mit $\frac{d}{dz} - \partial = A$, also ist $\partial = \frac{d}{dz} - A$.

Definition 2.9 (Transformationsformel). In der Situation

mit φ, ψ und T K-Linear und $\partial, (\frac{d}{dz} + A)$ und $(\frac{d}{dz} + B)$ \mathbb{C} -Linear, gilt: Der Merom. Zush. $\frac{d}{dz} + A$ auf K^r wird durch Basiswechsel $T \in GL(r, K)$ zu

$$\frac{d}{dz} + (T^{-1} \cdot T' + T^{-1}AT) = \frac{d}{dz} + B$$

Definition 2.10. $A \sim B$ differenziell Äquivalent : $\Leftrightarrow \exists T \in GL(r,K)$ mit $B = T^{-1} \cdot T' + T^{-1}AT$

2.3 pull-back und push-forward

Nach [7, 1.a]. Sei $\rho \in u\mathbb{C}[\![u]\!]$ mit Bewertung $p \geq 1$ und sei \mathcal{M} ein endlich dimensionaler $\mathbb{C}(\!(t)\!)$ Vektorraum ausgestattet mit einem Zusammenhang ∇ .

Definition 2.11 (pull-back). [7, 1.a] Der pull-back $\rho^+\mathcal{M}$ ist der Vektorraum $\rho^*\mathcal{M} = \mathbb{C}((u)) \otimes_{\mathbb{C}((u))} \mathcal{M}$ mit dem pull-back Zusammenhang $\rho^*\nabla$ definiert durch $\partial_u(1 \otimes m) := \rho'(u) \otimes \partial_t m$.

Sei \mathcal{N} ein $\mathbb{C}((u))$ -VR mit Verknüpfung, so definiere den push-forward wie folgt.

Definition 2.12 (push-forward). [7, 1.a] Der push-forward $\rho_+\mathcal{N}$ ist definiert durch:

- der $\mathbb{C}((t))$ -VR $\rho_*\mathcal{N}$ ist der \mathbb{C} -VR \mathcal{N} mit der $\mathbb{C}((t))$ Struktur durch $f(t) \cdot m := f(\rho(t))m$
- die Wirkung von ∂_t ist die von $\rho'(u)^{-1}\partial_u$

Beispiel 2.13 (push-forward). Für $\rho:t\to u^2,\, \varphi=\frac{1}{u^2}$ betrachte:

$$\mathcal{E}^{\varphi} \cong \hat{\mathcal{D}}/\hat{\mathcal{D}} \cdot (\partial_u + \partial_t \frac{1}{u^2})$$
$$= \hat{\mathcal{D}}/\hat{\mathcal{D}} \cdot (\partial_u + \frac{2}{u^3})$$

TODO

also $P = \partial_u + \frac{2}{u^3}$ mit slopes $(P) = \{2\}$

mache nun einen push-forward mittels ρ :

$$(\partial_u + \frac{2}{u^3}) = 2u(\frac{1}{2u}\partial_u + \frac{1}{u^4})$$
$$= 2u(\rho'(u)\partial_u + \frac{1}{u^4})$$
$$= 2u(\partial_t + \frac{1}{t^2})$$

Also ist

$$\rho_{+}\mathcal{E}^{\varphi} \cong \hat{\mathcal{D}}/\hat{\mathcal{D}} \cdot (\partial_{t} + \frac{1}{t^{2}})$$
also $\rho_{*}P = \partial_{t} + \frac{1}{t^{2}}$ mit slopes $(P) = \{1\}$

Satz 2.14. [7, 1.a] Es gilt die Projektionsformel

$$\rho_{+}(\mathcal{N} \otimes_{\mathbb{C}((u))} \rho^{+} \mathcal{M}) \cong \rho_{+} \mathcal{N} \otimes_{\mathbb{C}((t))} \mathcal{M}. \tag{2.2}$$

Beweis.

$$\rho_{+}(\mathcal{N} \otimes_{\mathbb{C}((u))} \rho^{+} \mathcal{M}) = \rho_{+}(\mathcal{N} \otimes_{\mathbb{C}((u))} (\mathbb{C}((u)) \otimes_{\mathbb{C}((t))} \mathcal{M}))$$

$$\cong \rho_{+}((\mathcal{N} \otimes_{\mathbb{C}((u))} \mathbb{C}((u))) \otimes_{\mathbb{C}((t))} \mathcal{M})$$

$$\cong \rho_{+}(\mathcal{N} \otimes_{\mathbb{C}((t))} \mathcal{M})$$

$$= \rho_{+} \mathcal{N} \otimes_{\mathbb{C}((t))} \mathcal{M}$$

2.4 Newton Polygon

Jedes $P \in \mathcal{D}$ lässt sich eindeutig schreiben als

$$P = \sum_{k=0}^{n} \sum_{l=-N}^{\infty} \alpha_{kl} t^{l} \partial_{t}^{k}$$

mit $\alpha_{kl} \in \mathbb{C}$ schreiben und betrachte das dazugehörige

$$H := \bigcup_{k,l \text{ mit } \alpha_{kl} \neq 0} \{ (k, l - k) + \mathbb{R}_{\leq 0} \times \mathbb{R}_{\geq 0} \} \subset \mathbb{R}^2.$$

Definition 2.15. Das Randpolygon von conv(H) heißt das Newton Polygon von P und wird geschrieben als N(P).

Definition 2.16. Die *Steigungen (engl. slopes)* sind die nicht-vertikalen Steigungen von N(P), die sich echt rechts von $\{0\} \times \mathbb{R}$ befinden.

- P heißt regulär singulär : \Leftrightarrow slopes $P=\{0\}$, sonst irregulär singulär.
- \bullet Schreibe $\mathcal{P}(\mathcal{M}_K)$ für die Menge der zu \mathcal{M}_K gehörigen slopes
- Ein meromorpher Zusammenhang \mathcal{M}_K heißt regulär singulär, falls $\mathcal{M}_K \cong \mathcal{D}/\mathcal{D} \cdot P$ mit P regulär singulär, sonst irregulär singulär

3 Levelt-Turittin-Theorem

Ab hier werden wir nur noch formale Meromorphe Zusammenhänge betrachten. Alle bisher getroffenen Aussagen gelten für diese aber analog.

Satz 3.1. [6, Thm 5.3.1]

Sei $\rho: u \mapsto u^p$ und $\mu_{\xi}: u \mapsto \xi u$.

Lemma 3.2. [7, Lem 2.4] Für alle $\varphi \in \mathbb{C}((u))$ qilt

$$\rho^+ \rho_+ \mathscr{E}^{\varphi} = \bigoplus_{\xi^p = 1} \mathscr{E}^{\varphi \circ \mu_{\xi}} .$$

Beweis. Wir wählen eine $\mathbb{C}((u))$ Basis $\{e\}$ von \mathscr{E}^{φ} und zur vereinfachung nehmen wir an, dass $\varphi \in u^{-1}\mathbb{C}[u^{-1}]$ [1].

Dann ist die Familie $e, ue, ..., u^{p-1}e$ eine $\mathbb{C}((t))$ -Basis von $\rho_+\mathscr{E}^{\varphi}$.

Setze $e_k = u^{-k} \otimes_{\mathbb{C}((t))} u^k e$. Dann ist die Familie $\mathbf{e} = (e_0, ..., e_{p-1})$ eine $\mathbb{C}((u))$ -Basis von $\rho^+ \rho_+ \mathscr{E}^{\varphi}$. Zerlege nun $u\varphi'(u) = \sum_{j=0}^{p-1} u^j \psi_j(u^p) \in u^{-2}\mathbb{C}[u^{-1}]$ mit $\psi_j \in \mathbb{C}[t^{-1}]$ für alle j > 0 und $\psi_0 \in t^{-1}\mathbb{C}[u^{-1}]$ (siehe: Anhang A).

Sei P die Permutationsmatrix, definiert durch $\mathbf{e} \cdot P = (e_1, ..., e_{p-1}, e_0)^{[2]}$. Es gilt:

$$u\partial_{u}e_{k} = \sum_{i=0}^{p-1-k} u^{i}\psi_{i}(u^{p})e_{k+1} + \sum_{i=p-k}^{p-1} u^{i}\psi_{i}(u^{p})e_{k+i-p}$$

denn:

$$u\partial_{u}e_{k} = u\partial_{u}(u^{-k} \otimes_{\mathbb{C}((t))} u^{k}e)$$

$$= u(-ku^{-k-1} \otimes_{\mathbb{C}((t))} u^{k}e + pu^{p-1}u^{-k} \otimes_{\mathbb{C}((t))} \partial_{t}(\underbrace{u^{k}e}_{\in \rho_{+}\mathscr{E}^{\varphi}}))$$

$$= -ku^{-k} \otimes_{\mathbb{C}((t))} u^{k}e + pu^{p-1}u^{-k+1} \otimes_{\mathbb{C}((t))} (pu^{p-1})^{-1}(ku^{k-1}e + u^{k}\varphi'(u)e)$$

$$= -ku^{-k} \otimes_{\mathbb{C}((t))} u^{k} e + u^{-k+1} \otimes_{\mathbb{C}((t))} (ku^{k-1} e + u^{k} \varphi'(u) e)$$

$$= \underbrace{-ku^{-k} \otimes_{\mathbb{C}((t))} u^{k} e + u^{-k+1} \otimes_{\mathbb{C}((t))} ku^{k-1} e}_{=0} + u^{-k+1} \otimes_{\mathbb{C}((t))} u^{k} \varphi'(u) e$$

$$= u^{-k} \otimes_{\mathbb{C}((t))} u^{k+1} \varphi'(u) e$$

$$= \sum_{i=0}^{p-1} u^{-k} \otimes_{\mathbb{C}((t))} u^{k} u^{i} \underbrace{\psi_{i}(u^{p}) e}_{\in\mathbb{C}((t))}$$

$$= \sum_{i=0}^{p-1} u^{i} \psi_{i}(u^{p}) (u^{-k} \otimes_{\mathbb{C}((t))} u^{k} e)$$

$$= \sum_{i=0}^{p-1-k} u^{i} \psi_{i}(u^{p}) e_{k+1} + \sum_{i=p-k}^{p-1} u^{i} \psi_{i}(u^{p}) e_{k+i-p}$$

so dass gilt:

$$u\partial_u \mathbf{e} = \mathbf{e} \left[\sum_{j=0}^{p-1} u^j \psi_j P^j \right]$$

denn:

$$\begin{split} u\partial_{u}\mathbf{e} &= (u\partial_{u}e_{0}, ..., u\partial_{u}e_{p-1}) \\ &= \left(\sum_{i=0}^{p-1-k} u^{i}\psi_{i}(u^{p})e_{k+1} + \sum_{i=p-k}^{p-1} u^{i}\psi_{i}(u^{p})e_{k+i-p}\right)_{k\in\{0,...,p-1\}} \\ &= \mathbf{e} \begin{pmatrix} u^{p-1}\psi_{p-1}(u^{p}) & \cdots & u^{3}\psi_{3}(u^{p}) & u^{2}\psi_{2}(u^{p}) & u^{1}\psi_{1}(u^{p}) \\ u^{1}\psi_{1}(u^{p}) & u^{p-1}\psi_{p-1}(u^{p}) & \ddots & u^{2}\psi_{2}(u^{p}) \\ u^{2}\psi_{2}(u^{p}) & u^{1}\psi_{1}(u^{p}) & \ddots & \ddots & \vdots \\ u^{3}\psi_{3}(u^{p}) & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & u^{1}\psi_{1}(u^{p}) & u^{p-1}\psi_{p-1}(u^{p}) \\ u^{p-2}\psi_{p-2}(u^{p}) & \cdots & u^{3}\psi_{3}(u^{p}) & u^{2}\psi_{2}(u^{p}) & u^{1}\psi_{1}(u^{p}) & u^{p-1}\psi_{p-1}(u^{p}) \end{pmatrix} \\ &= \mathbf{e} [\sum_{j=0}^{p-1} u^{j}\psi_{j}(u^{p})P^{j}] \end{split}$$

Die Wirkung von ∂_u auf die Basis von $\rho^+\rho_+\mathscr{E}^{\varphi(u)}$ ist also Beschrieben durch:

$$\partial_u \mathbf{e} = \mathbf{e} [\sum_{j=0}^{p-1} u^{j-1} \psi_j P^j]$$

Diagonalisiere nun
$$TPT^{-1}=D=\begin{pmatrix} \xi^0 & & & \\ & \xi^1 & & \\ & & \ddots & \\ & & & \xi^{p-1} \end{pmatrix}^{[3]}, \ \mathrm{mit} \ \xi^p=1 \ \mathrm{und} \ T\in Gl_p(\mathbb{C}).$$

So dass gilt:

$$T[\sum_{j=0}^{p-1} u^{j-1} \psi_{j}(u^{p}) P^{j}] T^{-1} = [\sum_{j=0}^{p-1} u^{j-1} \psi_{j}(u^{p}) (TPT^{-1})^{j}]$$

$$= [\sum_{j=0}^{p-1} u^{j-1} \psi_{j}(u^{p}) D^{j}]$$

$$= \begin{bmatrix} \sum_{j=0}^{p-1} u^{j-1} \psi_{j} & & & \\ & \sum_{j=0}^{p-1} u^{j-1} \psi_{j} & & & \\ & & & \sum_{j=0}^{p-1} u^{j-1} \psi_{j} & \\ & & & & \sum_{j=0}^{p-1} u^{j-1} \psi_{j} & \\ & & & & & \sum_{j=0}^{p-1} (u\xi^{1})^{j-1} \psi_{j} \xi^{1} \\ & & & & & \sum_{j=0}^{p-1} (u\xi^{p-1})^{j-1} \psi_{j} \xi^{p-1} \end{bmatrix}$$

$$= \begin{bmatrix} \varphi'(u) & & & & & \\ & \varphi'(\xi u) \xi^{1} & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ &$$

Wie sieht denn die Wirkung auf die Basis von $\bigoplus_{\xi^p=1} \mathscr{E}^{\varphi \circ \mu_\xi} \stackrel{\Phi}{\cong} \mathbb{C}((u))^p$ aus?

$$\partial_{u} \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} = \begin{pmatrix} \partial_{u} 1 \\ \partial_{u} 0 \\ \vdots \\ \partial_{u} 0 \end{pmatrix} = \begin{pmatrix} \varphi'(u) \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

$$\partial_{u} \begin{pmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} = \begin{pmatrix} \partial_{u} 0 \\ \partial_{u} 1 \\ \partial_{u} 0 \\ \vdots \\ \partial_{u} 0 \end{pmatrix} = \begin{pmatrix} 0 \\ \varphi'(u) \\ 0 \\ \vdots \\ 0 \end{pmatrix} \xrightarrow{\Phi} \begin{pmatrix} 0 \\ \varphi'(u)\xi \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

Also kommutiert das Diagram:

 $^{^{[3]}}$ Klar, da mipo X^p-1

$$\rho^{+}\rho_{+}\mathscr{E}^{\varphi(u)} \stackrel{\cong}{\longleftarrow} \mathbb{C}((u))^{p} \stackrel{T}{\longleftarrow} \mathbb{C}((u))^{p} \stackrel{\Phi}{\longrightarrow} \bigoplus_{\xi^{p}=1} \mathscr{E}^{\varphi\circ\mu_{\xi}}$$

$$\downarrow \qquad \downarrow$$

$$\downarrow \qquad \qquad \qquad \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow$$

$$\rho^{+}\rho_{+}\mathscr{E}^{\varphi(u)} \stackrel{\longleftarrow}{\longleftarrow} \mathbb{C}((u))^{p} \stackrel{T}{\longleftarrow} \mathbb{C}((u))^{p} \stackrel{\longrightarrow}{\longrightarrow} \bigoplus_{\xi^{p}=1} \mathscr{E}^{\varphi\circ\mu_{\xi}}$$

Und deshalb ist klar ersichtlich das auf $\rho^+\rho_+\mathscr{E}^{\varphi(u)}$ und $\sum_{j=0}^{p-1}u^{j-1}\psi_jD^j$ ein Äquivalenter Meromorpher Zusammenhang definiert ist.

Teil II Beispiele

4 Beispiele/Anwendung

4.1 Einfache Beispiele

Hier soll ein einfaches Beispiel hergeleitet werden, an dem die Zerlegung nach dem Levelt-Turittin-Theorem einmal explizit ausformuliert werden soll.

Beginne mit

$$t^4(t+1)\partial_t^4 + t\partial_t^2 + \frac{1}{t}\partial_t + 1$$

(von ZulaBarbara Seite 47) und ignoriere zuerst die Terme, die zum Newton Polygon keinen Beitrag leisten

$$t^4\partial_t^4 + \frac{1}{t}\partial_t$$

multipliziere dieses mit t und ändere aber dadurch den assoziierten Meromorphen Zusammenhang nicht [6,Chapter 5.1]

$$P := t^5 \partial_t^4 + \partial_t$$

und es gilt slopes $(P)=\{0,\frac{2}{3}\}$. Eliminiere als nächstes nun die Brüche in den Slopes mittels einem geeignetem Pullback. Da hier der Hauptnenner 3 ist bietet sich $\rho:t\mapsto u^3$ für den Pullback an.

$$\rho^{+}P = ???$$

welches die Slopes slopes $(\rho^+ P) = \{0,2\} \subset \mathbb{Z}$ hat. Schreibe nun dieses $\rho^+ P = Q \cdot R$ mit $P,Q \in \mathbb{C}[\![u]\!]$ wobei gilt slopes $(Q) = \{0\}$ und slopes $(R) = \{2\}$.

Also gilt:

$$\hat{\mathcal{D}}/(\hat{\mathcal{D}} \cdot \rho^+ P) \cong \hat{\mathcal{D}}/(\hat{\mathcal{D}} \cdot Q) \oplus \hat{\mathcal{D}}/(\hat{\mathcal{D}} \cdot R)$$

4.2 Meromorpher Zusammenhang der formal, aber nicht Konvergent, zerfällt

4.2.1 beispiel von sabbah

Sei
$$P = t(t\partial_t)^2 + t\partial_t + \frac{1}{2}$$

Schritt 1

Zeige das $\mathcal{D}/\mathcal{D} \cdot P$ einen Meromorphen Zusammenhag Definiert.

Schritt 2

$$P = t(t\partial_t)^2 + t\partial_t + \frac{1}{2}$$

$$= tt(\partial_t t)\partial_t + t\partial_t + \frac{1}{2}$$

$$= t^2(t\partial_t + 1)\partial_t + t\partial_t + \frac{1}{2}$$

$$= t^3\partial_t^2 + (t^2 + t)\partial_t + \frac{1}{2}$$

Also mit slopes $P = \{0, 1\}$

Schritt 3 a)

Schritt 3 b)

Schritt 3 c)

4.2.2 Beispiel ohne namen

Wir wollen nun den zum folgendem ${\cal P}$ assoziierten Meromorphen Zusammenhang betrachten:

$$P = t^3 \partial_t^2 - 4t^2 \partial_t - 1$$

 $mit slopes(P) = \{\frac{1}{2}\}\$

Wir wollen ganzzahlige slopes haben, also wernde den pull-back $\rho: t \to u^2$ an.

Zunächst ein paar nebenrechnungen:

$$\begin{split} \partial_t &= \frac{1}{\rho'} \partial_u = \frac{1}{2u} \partial_u \\ \partial_t^2 &= (\frac{1}{2u} \partial_u)^2 \\ &= \frac{1}{2u} (-\frac{1}{2u^2} \partial_u + \frac{1}{2u} \partial_u^2) \\ &= -\frac{1}{4u^3} \partial_u + \frac{1}{4u^2} \partial_u^2 \end{split}$$

also

$$\rho^{+}P = u^{6}\left(-\frac{1}{4u^{3}}\partial_{u} + \frac{1}{4u^{2}}\partial_{u}^{2}\right) - 4u^{4}\frac{1}{2u}\partial_{u} - 1$$

$$= -u^{3}\frac{1}{4u^{3}}\partial_{u} + \frac{1}{4}u^{4}\partial_{u}^{2} - 4u^{3}\frac{1}{2}\partial_{u} - 1$$

$$= \frac{1}{4}u^{4}\partial_{u}^{2} - 2\frac{1}{4}u^{3}\partial_{u} - 1$$

A Aufteilung von ...

Sei $\varphi \in u^{-1}\mathbb{C}[u^{-1}]$, so ist $\varphi' \coloneqq \sum_{i=2}^N a_{-i}u^{-i} \in u^{-2}\mathbb{C}[u^{-1}]$ also $u\varphi'(u) = \sum_{i=1}^N a_{-i-1}u^{-i} \in u^{-1}\mathbb{C}[u^{-1}]$, welches wir zerlegen wollen. Zerlege also $u\varphi'(u) = \sum_{j=0}^{p-1} u^j \psi_j(u^p)$ mit $\psi_j \in \mathbb{C}[t^{-1}]$ für alle j > 0 und $\psi_0 \in t^{-1}\mathbb{C}[t^{-1}]$:

 $u\varphi'(u) = a_{-2}u^{-1} + \dots + a_{-p}u^{-(p-1)} + a_{-(p+1)}u^{-\tilde{p}} + a_{-(p+2)}u^{-(p+1)} + \dots + a_{-2p}u^{-(2p-1)} + a_{-(2p+1)}u^{-2p} + a_{-(2p+3)}u^{-(2p+1)} + \dots$ $-\psi_0(u^p)$ $--- up^{-1}\psi_{p-1}(u^p) = --u \psi_1(u^p)$

also:

$$\psi_0(u^p) = a_{-(p+1)}u^{-p} + a_{-(2p+1)}u^{-2p} + \dots$$

$$\psi_1(u^p) = a_{-p}u^{-p} + a_{-2p}u^{2p} + \dots$$

$$\vdots$$

$$\vdots$$

$$\psi_{p-1}(u^p) = a_{-2}u^p + a_{-(p+2)}u^{2p} + \dots$$

Literaturverzeichnis

- [1] B. Alkofer and F. Vogl. Lineare differentialgleichungen und deren fouriertransformierte aus algebraischer sicht / lineare differentialgleichungen aus algebraischer sicht, 2009.
- [2] S.C. Coutinho. A Primer of Algebraic D-Modules. London Mathematical Society Student Texts. Cambridge University Press, 1995.
- [3] R. Hartshorne. Algebraic Geometry. Graduate Texts in Mathematics. Springer, 1977.
- [4] R. Hotta, K. Takeuchi, and T. Tanisaki. *D-Modules, Perverse Sheaves, and Representation Theory*. Progress in Mathematics. Birkhäuser Boston, 2007.
- [5] H. Matsumura and M. Reid. Commutative Ring Theory. Cambridge Studies in Advanced Mathematics. Cambridge University Press, 1989.
- [6] C. Sabbah. Introduction to algebraic theory of linear systems of differential equations. Vorlesungsskript.
- [7] C. Sabbah. An explicit stationary phase formula for the local formal Fourier-Laplace transform, June 2007.
- [8] The Stacks Project Authors. Stacks Project. http://stacks.math.columbia.edu.