

Emil Björnson

Outline

- Downlink communication
 - System model
 - Precoding
- Capacity lower bound
 - Any precoding
 - MR precoding
- Performance comparison: Uplink and downlink

00000000

Downlink communication

• Notation:

• Signal sent by base station

Received signal at User i

• Transmitted signal: \sqrt{n}

• Channel vector:

• Additive noise:

$$\sqrt{
ho_{dl}} x$$

 \boldsymbol{g}_i

 $w_i \sim CN(0,1)$

Received signal:

$$y_i = \sqrt{\rho_{dl}} \boldsymbol{g}_i^T \boldsymbol{x} + w_i$$

Downlink Massive MIMO system model

• Received signal:

$$\mathbf{y} = \sqrt{\rho_{dl}} \mathbf{G}^T \mathbf{x} + \mathbf{w}$$

where

$$\mathbf{y} = \begin{pmatrix} y_1 \\ \vdots \\ y_K \end{pmatrix} \quad \mathbf{G} = \begin{pmatrix} g_1^1 & \cdots & g_K^1 \\ \vdots & \ddots & \vdots \\ g_1^M & \cdots & g_K^M \end{pmatrix} \quad \mathbf{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_M \end{pmatrix} \quad \mathbf{w} = \begin{pmatrix} w_1 \\ \vdots \\ w_K \end{pmatrix}$$

- Parameters are normalized: Maximum power is ρ_{dl} $\mathrm{E}\{||\pmb{x}||^2\} \leq 1$
- Channel of user $k: g_k^1, ..., g_k^M \sim CN(0, \beta_k)$
- Normalized noise: $\mathbf{w} \sim CN(\mathbf{0}, \mathbf{I}_K)$

Large-scale fading coefficient

Linear precoding

• Select transmitted signal as

If \boldsymbol{b}_k is a preferred precoder, pick

$$\boldsymbol{a}_k = \frac{1}{\sqrt{E\{||\boldsymbol{b}_k||^2\}}} \boldsymbol{b}_k$$

$$x = \sum_{k=1}^{K} \sqrt{\eta_k} a_k q_k$$

• Message symbol to user k: q_k , $E\{|q_k|^2\} = 1$, zero mean

• Precoding vector: a_k , $E\{||a_k||^2\}=1$

• Power control coefficient: $\eta_k \leq 1$

Total power constraint:

$$E\{\|\mathbf{x}\|^2\} = \sum_{k=1}^{K} \eta_k \le 1$$

Capacity lower bound

- Desired signal x, transmit power ρ
- Deterministic channel coefficient g, known at receiver

Capacity lower bound:

$$C \ge \log_2\left(1 + \frac{\rho|g|^2}{Var\{w\}}\right)$$

Rewriting the received downlink signal

• Received signal:

$$y_i = \boldsymbol{g}_i^T \left(\sum_{k=1}^K \sqrt{\rho_{dl} \eta_k} \boldsymbol{a}_k q_k \right) + w_i = \sqrt{\rho_{dl} \eta_i} \boldsymbol{g}_i^T \boldsymbol{a}_i q_i + \sum_{k=1, k \neq i}^K \sqrt{\rho_{dl} \eta_k} \boldsymbol{g}_i^T \boldsymbol{a}_k q_k + w_i$$
Desired signal Interference plus noise

Receiver does not know $\boldsymbol{g}_i^T \boldsymbol{a}_i$

But it knows that $\boldsymbol{g}_i^T \boldsymbol{a}_i \approx E\{\boldsymbol{g}_i^T \boldsymbol{a}_i\}$ if M is large

Add and subtract $E\{\boldsymbol{g}_i^T \boldsymbol{a}_i\}$

• Received signal:

$$y_{i} = \sqrt{\rho_{dl}\eta_{i}} \boldsymbol{g}_{i}^{T} \boldsymbol{a}_{i} q_{i} + \sum_{k=1, k \neq i}^{K} \sqrt{\rho_{dl}\eta_{k}} \boldsymbol{g}_{i}^{T} \boldsymbol{a}_{k} q_{k} + w_{i}$$

$$= \sqrt{\rho_{dl}\eta_{i}} E\{\boldsymbol{g}_{i}^{T} \boldsymbol{a}_{i}\} q_{i} + \sqrt{\rho_{dl}\eta_{i}} (\boldsymbol{g}_{i}^{T} \boldsymbol{a}_{i} - E\{\boldsymbol{g}_{i}^{T} \boldsymbol{a}_{i}\}) q_{i} + \sum_{k=1, k \neq i}^{K} \sqrt{\rho_{dl}\eta_{k}} \boldsymbol{g}_{i}^{T} \boldsymbol{a}_{k} q_{k} + w_{i}$$

w: Interference plus noise

Almost like an AWGN channel!

Capacity lower bound:

$$C \ge \log_2\left(1 + \frac{\rho|g|^2}{Var\{w\}}\right)$$

Capacity lower bound with any precoding

$$\log_{2}\left(1 + \frac{\rho_{dl}\eta_{i}\left|E\left\{\boldsymbol{g}_{i}^{T}\boldsymbol{a}_{i}\right\}\right|^{2}}{\sum_{k=1}^{K}\rho_{dl}\eta_{k}E\left\{\left|\boldsymbol{g}_{i}^{T}\boldsymbol{a}_{k}\right|^{2}\right\} + 1 - \rho_{dl}\eta_{i}\left|E\left\{\boldsymbol{g}_{i}^{T}\boldsymbol{a}_{i}\right\}\right|^{2}}\right)$$

- Interpretation
 - Averaging over small-scale fading
 - Numerator: Proportional to $|E\{\boldsymbol{g}_i^T\boldsymbol{a}_i\}|^2$
 - Denominator: Sum of interference proportional to $E\left\{\left|\boldsymbol{g}_{i}^{T}\boldsymbol{a}_{k}\right|^{2}\right\} \text{ from all users plus noise variance}$

How to select precoding?

• Recall: Uplink processing

• MMSE: $\boldsymbol{a}_i = \sqrt{\rho_{ul}\eta_i}\boldsymbol{B}_i^{-1}\widehat{\boldsymbol{g}}_i$

• MR: $\boldsymbol{a}_i = \widehat{\boldsymbol{g}}_i$

Precoding principle

Transmit in the direction where you heard the users "most clearly"

• MMSE: $\boldsymbol{a}_i = c_i \sqrt{\rho_{ul} \eta_i} (\boldsymbol{B}_i^{-1} \widehat{\boldsymbol{g}}_i)^*$

• MR: $\boldsymbol{a}_i = c_i \widehat{\boldsymbol{g}}_i^*$

$$c_{i} = \frac{1}{\sqrt{E\{\|\sqrt{\rho_{ul}\eta_{i}}\boldsymbol{B}_{i}^{-1}\boldsymbol{\hat{g}}_{i}\|^{2}\}}}$$

$$c_{i} = \frac{1}{\sqrt{E\{\|\boldsymbol{\hat{g}}_{i}\|^{2}\}}}$$

Recall: Estimates of channels

• MMSE estimate of g_k^m from user k to antenna m

• Estimate:

$$\widehat{g}_k^m = E\{g_k^m | \mathbf{Y}_p'\} = \frac{\sqrt{\tau_p \rho_{ul}} \beta_k}{1 + \tau_p \rho_{ul} \beta_k} \left[\mathbf{Y}_p'\right]_{mk} \sim CN(0, \gamma_k)$$

• Estimation error: where

$$\tilde{g}_k^m = \hat{g}_k^m - g_k^m \sim CN(0, \beta_k - \gamma_k)$$

$$\gamma_k = \frac{\tau_p \rho_{ul} \beta_k^2}{1 + \tau_p \rho_{ul} \beta_k}$$

Downlink capacity lower bound with MR

$$C \ge \log_2 \left(1 + \frac{M \rho_{dl} \eta_i \gamma_i}{\sum_{k=1}^K \rho_{dl} \eta_k \beta_i + 1} \right)$$

- Interpretation
 - Small-scale fading is not visible in this bound
 - Numerator:

Coherent beamforming gain, grows with antennas M, power $\rho_{dl}\eta_i$ and estimation quality γ_i

Denominator:

Sum of non-coherent interference from all users plus noise variance

Comparing uplink and downlink (with MR)

Uplink:

$$\log_2\left(1 + \frac{M\rho_{ul}\eta_i\gamma_i}{\sum_{k=1}^K \rho_{ul}\eta_k\beta_k + 1}\right)$$

Downlink:

$$\log_2\left(1 + \frac{M\rho_{ul}\eta_i\gamma_i}{\sum_{k=1}^K \rho_{ul}\eta_k\beta_k + 1}\right) \qquad \log_2\left(1 + \frac{M\rho_{dl}\eta_i\gamma_i}{\beta_i\sum_{k=1}^K \rho_{dl}\eta_k + 1}\right)$$

Similarities

• Same structure (beamforming gain M, powers $\rho_{ul/dl}\eta_i$)

Differences

- Uplink interference: From users $(\beta_1, ..., \beta_K)$
- Downlink interference: From base station (β_i)

Example: Uplink rate, varying SNR

Assumptions:

$$K = 10$$

$$\beta = 1$$

$$\tau_p = K$$

$$\eta_k = 1 \ \forall k$$

Same for DL if $\rho_{dl} = K \cdot \rho_{ul}$ $\eta_k = 1/K$

Always better with more antennas

Example: Uplink rate, different schemes

Assumptions:

$$K = 10$$

$$\beta = 1$$

$$\tau_p = K$$

$$\eta_k = 1 \ \forall k$$

$$\rho_{ul} = -5 \ \mathrm{dB}$$

Similar for DL if $\rho_{dl} = K \cdot \rho_{ul}$ $\eta_k = 1/K$

Same trend, but 40-60% higher rate with MMSE

Example: Rate when scaling number of users

Assumptions:

$$\beta = 1$$
 $\tau_p = K$
 $\eta_k = 1 \ \forall k$
MR processing

(γ_k grows with K)

Same behavior, but higher rates with MMSE

Example: Sum rate, scaling number of users

Assumptions:

$$\beta = 1$$
 $\tau_p = K$
 $\eta_k = 1 \ \forall k$
MR processing

Same behavior, but higher rates with MMSE

What are the benefits of MR processing?

- Lower computational complexity
 - Substantial performance loss in theory
 - Practical loss is smaller since MR easier to implement
- Closed form bound on ergodic capacity
 - Typical shape of ergodic capacity bounds:
 - Treating channel as equal to its mean value:
 - Simple expression for SINR_{constant} with MR

- $E\{\log_2(1 + SINR_{random})\}$
- $log_2(1 + SINR_{constant})$

Summary

- Downlink communication
 - Rate expression for arbitrary precoding
 - Closed-form expression with MR precoding
- Insights
 - Uplink and downlink rates behave similarly
 - MMSE is substantially better than MR
 - Should increase the number of antennas when the number of users increase

Emil Björnson