CPU Architecture

Task 2 report

FPGA based ALU Design

הגדרת תכנון המערכת

מטלה או היא מטלת המשך של מטלה 2 ונבצע בה סינתזה של רכיב ה-ALU שכתבנו במטלה הקודמת. Cyclone II FPGA על רכיב

התבקשנו לבצע שני מקרי בוחן לחומרה שתכננו:

<u>Performance Test Case - מקרה בוחן ראשון</u>

תרשים המערכת:

Figure 1: Overall DUT structure

Figure 2: ALU structure

- סימולציית ה-ModelSim בוצעה במטלה 1 ראה נספחים.
- אופטימיזציות שבוצעו על הקוד של מטלה 1 בכדי להתאימה למטלה 2 הן:
- כ ביטול הרגיסטרים בכניסה העוטפים את ה-ALU והחלפתם ברגיסטרים ספציפיים לכל אחת מהכניסות הפועלים באמצעות קו enable כמו כן לDFF של פעולת ה-MAC נכנס קו enable נוסף והוא איננו מחובר לשעון.
 - . ביטול הרגיסטרים במוצא הפלט מגיע ישירות למוצא ללא סנכרון.
- ס כתוצאה משינויים אלו המערכת אינה תלויה בשעון אלא רק בקווי ה- enable השונים. לכן יש חשיבות לסדר הפעולות המבצעים על רכיב ה-FPGA כאשר מפעילים אותו (טעינת הערכים לרגיסטרים A,B בחירת OPCODE וטעינתו, ובמקרה של MAC לרגיסטרים

:סיבים של הרכיבים אר ה-RTL-ה . Quartus-ביצענו התכנון של התכנון שלנו

.95 Mhz תדר השעון המקסימלי שקיבלנו הוא

Slow Model Fmax Summary						
	Fmax	Restricted Fmax	Clock Name	Note		
1	95.95 MHz	95.95 MHz	dk			

לכן הגדרנו בקובץ הSDC את זמן המחזור כ-

$$T = \frac{1}{95Mhz} = 10.526 \, ns \cong 11 \, ns$$

ניתוח המסלול הקריטי:
המסלול הקריטי הוא של פקודת ה-MAC, ככל הנראה בעקבות השהיות שנוצרות מהרגיסטר
בכניסה למכפל ופעולת המכפל עצמה.

• מבין ה- Entities הראשיים שלנו המסלול הקצר ביותר הוא המסלול של ה-shifter והתדר המקסימלי שניתן לקבל בו הוא 138 Mhz:

Slow Model Fmax Summary						
Fmax Restricted Fmax Clock Name Note						
1	138.41 MHz	138.41 MHz	dk			

AND או OR ,bitwise או משערים כי המסלול הכי קצר בכלל המערכת הוא של אחת מפעולות ה-OR ,bitwise או OR (XOR)
מכל הנראה מעט ארוכה יותר), זאת מכיוון שהן מבוצעות ע"י מימוש פשוט של שער לוגי וללא פעולות אריתמטיות מסובכות.

• ניתוח השימוש הלוגי top:

Flow Summary	
Flow Status	Successful - Fri Jun 05 09:51:22 2020
Quartus II 64-Bit Version	12.1 Build 177 11/07/2012 SJ Web Edition
Revision Name	Test
Top-level Entity Name	top
Family	Cyclone II
Device	EP2C50U484C7
Timing Models	Final
Total logic elements	358 / 50,528 (< 1 %)
Total combinational functions	337 / 50,528 (< 1 %)
Dedicated logic registers	74 / 50,528 (< 1 %)
Total registers	74
Total pins	43 / 294 (15 %)
Total virtual pins	0
Total memory bits	0 / 594,432 (0 %)
Embedded Multiplier 9-bit elements	1 / 172 (< 1 %)
Total PLLs	0/4(0%)

• ניתוח השימוש הלוגי shifter

Flow Summary	
Flow Status	Successful - Fri Jun 05 10:38:18 2020
Quartus II 64-Bit Version	12.1 Build 177 11/07/2012 SJ Web Edition
Revision Name	Test
Top-level Entity Name	top_shifter
Family	Cyclone II
Device	EP2C50U484C7
Timing Models	Final
Total logic elements	156 / 50,528 (< 1 %)
···· Total combinational functions	145 / 50,528 (< 1 %)
Dedicated logic registers	35 / 50,528 (< 1 %)
Total registers	35
Total pins	43 / 294 (15 %)
Total virtual pins	0
Total memory bits	0 / 594,432 (0 %)
Embedded Multiplier 9-bit elements	0 / 172 (0 %)
Total PLLs	0/4(0%)
TOTALPLLS	0/4(0%)

• ניתוח השימוש הלוגי Arithmetic unit:

Flow Summary Flow Status Successful - Fri Jun 05 10:27:19 2020 Quartus II 64-Bit Version 12.1 Build 177 11/07/2012 SJ Web Edition Revision Name Test Top-level Entity Name top_arith Family Cyclone II Device EP2C50U484C7 Timing Models Final 180 / 50,528 (< 1 %) Total logic elements Total combinational functions 159 / 50,528 (< 1 %) Dedicated logic registers 70 / 50,528 (< 1 %) Total registers 70 Total pins 43 / 294 (15 %) Total virtual pins 0 0 / 594,432 (0 %) Total memory bits Embedded Multiplier 9-bit elements 1 / 172 (< 1 %) Total PLLs 0/4(0%)

Hardware Test Case - מקרה בוחן שני

Figure 3: Hardware Test Case

Figure 4: Hardware of MAC circuit

buffer והיא הוספת, FPGA, והיא של הקוד על מנת שיעבוד כראוי על ה-FPGA, והיא הוספת שישמור את התוצאה האחרונה וכך כאשר מבצעים MAC RST הפלט יהיה התוצאה האחרונה לפני כן.

כמו כן היינו צריכים להוסיף סיגנלים שיתרגמו את תוצאת החישוב למסך ה-HEX, בקובץ ה-top.

:Signal Tap ביצוע בדיקות

 $Clk_mac = key3$

 $Enable_b = key2$

 $Enable_opc = key1$

 $Enable_a = key0$

MULT בדיקת הפעולה

log: 2020/06/05 16:12:25 #0		/05 16:12:25 #0	click to insert time bar			
Туре	Alias	Name	8 16 24 32 40 48 56 64			
in		clk_ena				
in		clk_mac				
in		ena_A				
in		ena_B				
in		ena_OP				
₽ B		reg2ALU_B	18h			
₽ →		reg2ALU_A	E3h			
₽ →		reg2ALU_OPC	04h			
**		RES_HI	15h			
**		RES_LO	48h			
**		± STATUS	1h			

XOR בדיקת הפעולה

log: 2020/06/05 16:16:24 #0		/05 16:16:24 #0	click to insert time bar			
Туре	Alias	Name	8 16 24 32 40 48 56 64			
in		clk_ena				
in		clk_mac				
in		ena_A				
in		ena_B				
in		ena_OP				
B		reg2ALU_B	73h			
B		⊞reg2ALU_A	5Ah			
₽		reg2ALU_OPC	0.Bh			
**		RES_HI	00h			
**		RES_LO	29h			
#		⊞ STATUS	0h			

SUB בדיקת הפעולה

log: 2020/06/05 16:03:45 #0		/05 16:03:45 #0	click to insert time bar			
Туре	Alias	Name	-16 -8 0 8 16 24 32 40 48			
in		clk_ena				
in		clk_mac				
in		ena_A				
in		ena_B				
in		ena_OP				
₽ P		reg2ALU_B	12h			
₽ P		⊞…reg2ALU_A	0 Eh			
B		reg2ALU_OPC	02h			
**		⊞RES_HI	FFh			
**		⊞RES_LO	FCh			
**		STATUS	1h			
			<u> </u>			

RLC בדיקת הפעולה

נספחים דוח מטלה 1 וקבצי RTL דוח מטלה 1

CPU Architecture

Task 1 report

ALU Design with VHDL

תוכן עניינים

3	הגדרת תכנון המערכת
5	תיאור הרכיבים
6	תיאור הבדיקות
11	File based simulation of DUT

הגדרת תכנון המערכת

התבקשנו לכתוב תיאור חומרה למערכת הבאה:

מורכב מ: ALU בסיסי, עם רגיסטרים בכניסה וביציאה שלו. ה-ALU מורכב מ

- 1. יחידה אריתמטית המבצעת פעולות מתמטיות.
- . יחידת הוזה shift המבצעת פעולות הוזה שונות.
- .shift unit-בין האריתמטית ל-Selector בין היחידה האריתמטית ל-3

Cin-ניט סPCODE באורך ברירת מחדל אל B,A באורך ברירת פורך אורך פור המערכת מקבלת שני Input המערכת מקבלת שני התואמת ל-PCODE לרגיסטר RES המורכב משני רגיסטרים באורך ומוציאה את תוצאות הפעולה התואמת ל-OPCODE לרגיסטר (LOW ו-HIGH).

דרישות נוספות:

- השכבה העליונה של ה-ALU צריכה להיות
- שניתנו עם המשימה. top יש להשתמש בקבצים oux_package
- יש להשתמש במודול אחד של כפל ומודול אחד של חיבור-חיסור בלבד.
 - . נדרש לכתוב Test Bench למערכת כולה.

תרשים המערכת:

Figure 1: Overall DUT structure

Figure 2: ALU structure

מיבורים:

. ערוצי הכניסה בעלי n ביטים כל אחד – $A,\,B$

.(carry) כניסה של ביט נוסף -Cin

: בחירת הפעולה שתתבצע על הכניסות הנקבעת באופן הבא -OPCODE

Instruction	Opcode	Operation	Note
ADD	00001	RES(HI,LO) = A + B	As in lab1 requirement (see FAQ file)
SUB	00010	RES(HI,LO) = A - B	As in lab1 requirement (see FAQ file)
ADDC	00011	RES(HI,LO) = A + B + Cin	As in lab1 requirement (see FAQ file)
MULT	00100	RES(HI,LO) = A*B	Multiply two integer unsigned numbers
			(Result is N*2 bits)
MAC	00101	ACC= ACC+A*B	Multiply Accumulate (MAC is internal N*2
		RES(HI,LO) = ACC	bits register) integer unsigned numbers
MAC_RST	00110	MAC=0	Reset MAC
MAX	00111	RES(0,LO) = Max(A,B)	maximum between A and B
MIN	01000	RES(0,LO) = Min(A,B)	minimum between A and B
AND	01001	RES(0,LO) = AND(A,B)	Bitwise operation
OR	01010	RES(0,LO) = OR(A,B)	Bitwise operation
XOR	01011	RES(0,LO) = XOR(A,B)	Bitwise operation
RLA	01100	RES(0,LO) = rotation result	Rotate left A arithmetically B(20) times
RLC	01101	RES(0,LO) = rotation result	Rotate left A through carry B(20) times
RRA	01110	RES(0,LO) = rotation result	Rotate right A arithmetically B(20) times
RRC	01111	RES(0,LO) = rotation result	Rotate right A through carry B(20) times

Table 1 : ALU Op Codes

. ערוצי ביטים n ביטים כל אחד. - Hi, Low

ביטים האחרונה Carry ו-Zero של ביטים ביטים ביטים ביטים - Status של הפעולה שהתבצעה:

Status	Condition	Indicator
Flag Name		(status ₁ , status ₀) ₂
C Last OP produces carry		01
Z	Last OP result is zero	10
	Last OP produces both (C&Z)	11
	else	00

Table 2 : Status Bus

תיאור הרכיבים

לפי הגדרת המשימה הגדרנו את המודולים ותתי המודולים הבאים (מסודרים לפי היררכיית השכבות):

aux_package	top				
aux_package	ALU				
	Selector Shift_Unit		Arithmetic_Logic_Unit		
		RRA	RLA	Adder_Substructor	
		Yblock	Yblock	FA	
		MUX2	MUX2	IA	

הערות – לגבי המודולים ממעבדה 1:

• מודול ה- Yblock כתוב בצורה גנרית ומתאר שכבה אחת ברכיב ה-shifter (כמתואר בדרישות המעבדה הראשונה) כלומר עמודה כזו:

.2 ightarrow מתאר מרבב Full Adder מתאר רכיב העדול ה-FA מתאר מרבב ightarrow

תיאור הלוגיקה של המודולים בעמוד הבא

תיאור הבדיקות

File based simulation of DUT

כתבנו מודול tb היוצר מקובץ ה-input.txt סימולציה למערכת.

בקובץ ה-input הכנסנו תרחישים לכל הפקודות השונות אותן המערכת צריכה לבצע (כל הopcodeים), וכן מקרי קצה.

כלומר הוא מכיל ערכים לכל הקלטים של המערכת. כמו כן המודול tb כותב את הפלטים לקובץ output.txt.

:wave form ניתוח תוצאות הסימולציה בתצוגת

:XOR ,OR ,AND ,MIN ,MAX ,MULT ,ADDC ,SUB ,ADD בדיקת הפעולות

:MAC, MAC_RST בדיקת הפעולות

:RLA, RRA, RRC, RLC בדיקת הפעולות

Page 1 of 1 Revision: Test

Relation:

Tof 1 Realization

Page 1 of 1 Revision: Test

nquire.

