Linear Programming

min/max f(x)  $s.t. g_i(x) \le 0$ ,  $i \in \{1...n\}$  $x \in S \subseteq \mathbb{R}^n$ 

9: R - AFFINE f: R - LINEAR

Why does f being linear suffice? An affine f(x) can be expressed as f(x) = g(x) + c where g(x) is linear it is easy that the value of x that max/minimizes f(x) will be the one that  $\max/\min zes$  g(x). Thus the two optimization problems are equivalent.

A general linear program books like this:

min/max  $C^{T}x > b_{i} \in \mathbb{R}^{n}$   $s.t. a^{iT}x - b_{i} \leq 0 \quad \forall i \in \{1...m\}$  $\alpha \in \mathbb{R}^{n}$ 

 $\alpha \in \mathbb{R}^n$   $Ax - b \leq 0 \iff Ax \leq b \iff b \text{ are elements of } b$ 

General form:  $min/max C^{\dagger}z$   $A \in \mathbb{R}^{m}$   $s \in \mathbb{R}^{n}$   $z \in \mathbb{R}^{n}$ 

Feasible region of a linear program  $\begin{cases}
2 \times \mathbb{R}^n : Ax \leq b \end{cases} \xrightarrow{\text{POLYHEDRON}}$ 

 $\begin{array}{c|c}
(0,a) & (0,a$ 

Can a circle be described in the form  $\{x \in \mathbb{R}^2 : Ax \le b\}$  for some A and b? No, as its boundary cannot be described by using finitely many line segments/lines

Def<sup>n</sup>: Intersection of a finite number of half-spaces is

called a polyhedron.

Can a polyhedron be unbounded? Yes!

Def n: A bounded polyhedron is called a polytope.

Show that every polyhedron is a convex set.

Proof: Consider two points  $x, y \in \text{polyhedron } P = \{x \mid Ax \leq b\}$  $\vdots Ax \leq b, Ay \leq b$ 

 $A(\chi \chi + (l-\chi)y) = \chi A\chi + (l-\chi)Ay \leq \chi b + (l-\chi)b = b$  $\vdots \chi \chi + (l-\chi)y \in P + \chi \in [0,1]$ 

Thus every polyhedron is a convex set.

Note: Every polytope is a polyhedron. Not via versa!

Consider the following linear program.

min  $C^T x$ s.t. Ax = b  $A \in \mathbb{R}^n$  Linear program  $b \in \mathbb{R}^n$  Unear system of early

 $x \in \mathbb{R}^n$  b  $\in \mathbb{R}$  Linear system if eqns  $f = \{x \in \mathbb{R}^n : Ax = b\}$ 

(ases (a)  $F = \phi$  no optimal solution (LP is infeasible)

(b) F is a singleton  $i \in F = \{ \pi \}$  LP has unique optimal solution  $\pi$ (A is  $n \times n$  non-singular)

(c) F has infinitely many f olutions. When does this

happen? The system of linear equations has infinitely many solutions if

For non-trivial hull space of A i.e. N(A).

x is a solution then  $\forall d \in \mathcal{N}(A)$ ,  $\alpha \in \mathbb{R}$ , (x:Ax=b)  $\overline{A} = x + \alpha d \Rightarrow A(\overline{x}) = Ax + \alpha Ad = b$ 



Consider  $\hat{x} \in F$ .  $F = \int x \cdot \hat{x} + \alpha \vec{J}, \alpha \in \mathbb{R}'$  why? Now for any  $x \in F$ ,  $C^T x = C^T (\hat{x} + \alpha \vec{J}) = C^T \hat{x} + \vec{c} \vec{\alpha} \vec{J}$  $C^T \hat{x}$  is the optimal value  $\beta^*$  and every point on f is an

optimal solution

What if  $C \leq N(A)$ ?

Any joint  $x \in f$ ,  $x = \hat{x} + \alpha d$ ,  $\alpha \in \mathbb{R}$   $\int_{a}^{T} x = \int_{a}^{T} x + \alpha d d$ The sum our objective sense is that of maximisation if  $\int_{a}^{T} d < 0$ , make  $x \to -\infty$  and  $\int_{a}^{T} x \to \infty$ If  $\int_{a}^{T} d < 0$ , make  $x \to \infty$  and  $\int_{a}^{T} x \to \infty$ 

In either case, the problem is UNBOUNDED.