IFT2125 - Introduction à l'algorithmique

Programmation dynamique (B&B chapitre 8)

Pierre McKenzie

DIRO, Université de Montréal

Automne 2017

Two inefficient uses of divide-and-conquer Deux usages inefficaces de diviser-pour-régner

 Calcul des coefficients binomiaux, B&B Section 8.1.1 Calculation of binomial coefficients

binomial coefficients COEFFICIENT BINOMIAL

DONNÉE: integer $0 \le k \le n$

Let

CALCULER: $\binom{n}{k}$

Here is a divide-for-conquer algo for Binomial Coefficient:

Voici un algo diviser-pour-régner pour COEFFICIENT BINOMIAL :

function
$$C(n, k)$$

if $k = 0$ or $k = n$ then return 1
else return $C(n - 1, k - 1) + C(n - 1, k)$

Two inefficient uses of divide-and-conquer Deux usages inefficaces de diviser-pour-régner

2) Probabilité de l'emporter en série mondiale, B&B Section 8.1.2

2) Probability of winning a world series, B & B Section 8.1.2

world series probability $0 \le p \le 1$ that A beats B during a single match, integers n > 0 and $0 \le i, j < i + j < 2n$

DONNÉE: probabilité $0 \le p \le 1$ que A batte B lors d'un seul match,

Let entiers n > 0 et 0 < i, j < i + j < 2n

CALCULER: probabilité P(i, j) que A gagne n matchs avant B, sachant

calculate gu'il mangue à Ai victoires et à Bi victoires

probability P (i, j) that A wins n matches before B, knowing that A i

wins and B j wins are missing

Quel serait un algo diviser-pour-régner?

What would an algo divide-to-conquer?

Two inefficient uses of divide-and-conquer Deux usages inefficaces de diviser-pour-régner

- 2) Probabilité de l'emporter en série mondiale, B&B Section 8.1.2
 - 2) Probability of winning a world series, B & B Section 8.1.2

world series probability $0 \le p \le 1$ that A beats B during a single match, integers n > 0 and $0 \le i, j < i + j < 2n$

DONNÉE: probabilité $0 \le p \le 1$ que A batte B lors d'un seul match,

Let entiers n > 0 et 0 < i, j < i + j < 2n

CALCULER: probabilité P(i,j) que A gagne n matchs avant B, sachant

calculate qu'il manque à A i victoires et à B j victoires

probability P (i, j) that A wins n matches before B, knowing that A i

wins and B j wins are missing

Quel serait un algo diviser-pour-régner?

What would an algo divide-to-conquer?

function P(i, j)

if i = 0 then return 1 else if j = 0 then return 0

else return pP(i-1, j)+qP(i, j-1)

Much better solution for World Series Bien meilleure solution pour SÉRIE MONDIALE

Par "programmation dynamique" By "dynamic programming"

$$P(i,j) = pP(i-1,j) + qP(i,j-1)$$

suggère de remplir un tableau une diagonale à la fois de haut en bas suggests filling a chart one diagonal at a time from top to bottom

$\acute{\rm SERIE}$ $\rm MONDIALE$ par programming ation dynamique

B&B Section 8.1.2

```
function series(n, p)
    array P[0..n,0..n]
    a \leftarrow 1 - p
    {Fill from top left to main diagonal}
    for s \leftarrow 1 to n do
        P[0,s] \leftarrow 1: P[s,0] \leftarrow 0
        for k \leftarrow 1 to s - 1 do
             P[k, s-k] \leftarrow pP[k-1, s-k] + aP[k, s-k-1]
    {Fill from below main diagonal to bottom right}
    for s \leftarrow 1 to n do
        for k \leftarrow 0 to n - s do
             P[s+k, n-k] \leftarrow pP[s+k-1, n-k] + aP[s+k, n-k-1]
    return P[n, n]
```

Reminder: although effective, the greedy approach sometimes missed a solution

Rappel: bien qu'efficace, l'approche vorace parfois ratait une solution

The dynamic programming approach works, whatever the coin values

- L'approche programmation dynamique fonctionne, quelles que soient les valeurs des pièces :
 - démo du 15 novembre demo of November 15th.
- the idea · I 'idée · min number of pieces to make j in i denominations c[i,j] = nombre min de pièces pour rendre j en i dénominations
 - then: Alors:

$$\underline{c[i,j] = \min(c[i-1,j], 1 + c[i,j-\mathsf{dénom}[i]])}$$

suggère à nouveau de remplir par diagonales, de haut en bas again suggests filling diagonally, from top to bottom

B&B Section 8.3

Dynamic programming is to be preferred when

- La programmation dynamique est à privilégier lorsque the problem to solve breaks down into similar sub-problems
 - the problem to solve breaks down into similar sub-problems
 le problème à résoudre se décompose en sous-problèmes semblables
 - these sub-problems tend to overlap ces sous-problemes ont tendance à se chevaucher
 - le principe d'optimalité s'applique : chaque sous-séquence d'une séquence de choix optimale est optimale
 - the principle of optimality applies: each subsequence of an optimal choice sequence is optimal

Principle of optimality Principe d'optimalité

Exemples

shortest way: yes

- chemin le plus court : oui
- chemin le plus rapide : nonfastest way: no
- longest single path: no, ex: full graph chemin simple le plus long : non, ex : graphe complet

backtrack SAC À DOS

capacity W ∈ R ≥ 0 and objects 1,2, ..., n of weight

capacité $W \in \mathbb{R}^{\geq 0}$ et objets $1, 2, \dots, n$ de poids DONNÉE:

Let $w_1, \dots, w_n \in \mathbb{R}^{\geq 0}$ et de valeurs $v_1, \dots, v_n \in \mathbb{R}^{\geq 0}$ CALCULER: objets de valeur maximale et de poids n'excédant pas W

objects of maximum value and weight not exceeding W Calculate

• Rappel : bien qu'efficace, l'approche vorace ne parvenait à résoudre que SAC À DOS FRACTIONNAIRE

Reminder: Although effective, the greedy approach could only solve Fractional knapsack

• L'approche programmation dynamique résoud SAC À DOS Comment?

The dynamic programming approach resolves Backpack How?

Sac à dos (suite)

The idea

• L'idée : $V[i,j] = \text{valeur max avec objets } \{1,2,...,i\} \text{ and capacity } V[i,j] = \text{valeur max avec objets } \{1,2,...,i\} \text{ et capacité } \leq j$

• On cherche : V[n, W] We search

Then:

Alors :

Sac à dos (suite)

(cont.)

The idea

- L'idée : $V[i,j] = \text{valeur max avec objets } \{1,2,...,i\} \text{ and capacity } V[i,j] = \text{valeur max avec objets } \{1,2,...,i\} \text{ et capacité } \leq j$
- On cherche : V[n, W]

Then:

Alors :

$$V[i,j] = \max(V[i-1,j], v_i + V[i-1,j-w_i])$$

suffit donc de remplir ligne par ligne, de haut en bas So just fill in line by line, from top to bottom

• L'algorithme détaillé coûtera $\Theta(nW)$ opérations (accès au tableau, sommes, comparaisons)

The detailed algorithm will cost Θ (nW) operations (table access, sums, comparisons)

B&B Section 8.5

Shortest paths

Plus courts chemins

graph (N, A) with non-negative lengths (or ∞) at arcs **DONNÉE:** graphe (N, A) avec longueurs non négatives (ou ∞) aux arcs

CALCULER: chemins les plus courts de chaque sommet *i* à chaque

Sommet j shortest paths from each vertex i to each vertex j

Reminder: Dijkstra (voracious) calculated in Θ (I N I 2) the distances from one vertex fixed to all the others.

- Rappel : Dijkstra (vorace) calculait en $\Theta(|N|^2)$ les distances d'un sommet fixé à tous les autres, donc résoud PLUS COURTS CHEMINS en $\Theta(|N|^3)$
- So solve shorter paths in Θ (I N I 3)
- Floyd (programmation dynamique) fournit une solution alternative Comment?
 - Floyd (dynamic programming) provides an alternative solution How?

Shortest paths Plus courts chemins

```
(suite)
(cont.)
```

The idea:

- L'idée : Dk [i, j] = pcc length from i to j restricted to vertices \leq k $D_k[i,j] =$ longueur du pcc de i à j restreint aux sommets $\leq k$
- On cherche : les n^2 entrées de D_n We are looking for: the n^2 entries of Dn
- Alors $\forall i, j : D_k[i,j] = \min(D_{k-1}[i,j],$

Shortest paths Plus courts chemins

```
(suite)
(cont.)
```

The idea:

- L'idée : Dk [i, j] = pcc length from i to j restricted to vertices \leq k $D_k[i,j] =$ longueur du pcc de i à j restreint aux sommets $\leq k$
- On cherche : les n^2 entrées de D_n We are looking for: the n^2 entries of Dn
- Alors $\forall i, j : D_k[i, j] = \min(D_{k-1}[i, j], D_{k-1}[i, k] + D_{k-1}[k, j])$

the algo

L'algo :

Shortest paths Plus courts chemins

```
(suite)
(cont.)
```

The idea:

- L'idée : Dk [i, j] = pcc length from i to j restricted to vertices \leq k $D_k[i,j] =$ longueur du pcc de i à j restreint aux sommets $\leq k$
- On cherche : les n^2 entrées de D_n We are looking for: the n^2 entries of Dn
- Alors $\forall i, j : D_k[i, j] = \min(D_{k-1}[i, j], D_{k-1}[i, k] + D_{k-1}[k, j])$

the algo

- L'algo : fill D1, then D2, then D3, then ..., then Dn
 - remplir D_1 , puis D_2 , puis D_3 , puis \cdots , puis D_n
 - coup de bol : un seul tableau peut stocker D_1, D_2, \ldots, D_n coup de bol: only one table can store D1, D2, ..., Dn

(cont.)

```
function Floyd(L[1..n,1..n]): array [1..n,1..n]
    array D[1..n,1..n]
    D \leftarrow L
    for k \leftarrow 1 to n do
        for i \leftarrow 1 to n do
             for i \leftarrow 1 to n do
                 D[i,j] \leftarrow \min(D[i,j],D[i,k]+D[k,j])
    return D
```

Chained product of matrices Produit chaîné de matrices

B&B Section 8.6

Scheduling of matrix products

Ordonnancement de produits matriciels

matrices M1, M2, ..., Mn of compatible dimensions matrices $M_1, M_2, ..., M_n$ de dimensions compatibles DONNÉE:

CALCULER: I'ordre optimal dans lequel effectuer les produits pour

obtenir $\prod_{i=1}^n M_i$

the optimal order in which to perform the products to get prod_{i=1,...,n}M_i}

En classe. In class.

```
def matrices(D):
    m = len(D)-1
    T = [0]*m for i in range(m)]
    P = [[-1]*m for i in range(m)]
    for i in reversed(range(m)):
        for j in range(i+1, m):
            c. pos = float("inf"), -1
            for k in range(i, j):
                d = T[i][k] + T[k+1][j] + D[i]*D[k+1]*D[j+1]
                if (d < c):
                    c, pos = d, k
            T[i][j] = c
            P[i][j] = pos
```

return P

© Michael Blondin

Transform into recursion ... Transformer en récursion...

B&B Section 8.7

idea Idée :

Instead of an array like T [i, j], a recursive function fT [i, j]

- Au lieu d'un tableau comme T[i,j], une fonction récursive fT[i,j]
- Au lieu d'accéder à T[i,j], appeler récursivement fT[i,j] Instead of accessing T [i, j], recursively call fT [i, j]

Why? Pourquoi?

Pour remplir "top down" au lieu de "bottom up"
 To fill "top down" instead of "bottom up"

the trouble? Le malheur?

 Même inconvénient de recoupements abusifs d'exemplaires que les usages inefficaces de diviser-pour-régner!

Even disadvantage of abusive cross-checks of copies as ineffective uses of divide-and-conquer!

B&B Section 8.8

the idea l''idée .

- An array mtab which stores the values fT [i, j] already calculated Un tableau mtab qui mémorise les valeurs fT[i,j] déjà calculées
- $\bullet \ \, \text{Avant de recalculer} \, \, \textit{fT}[i,j], \, \, \text{v\'erifier} \, \underset{\text{before recalculating fT[i,\,j], \, check \, mtab[i,j]}{\text{the order}}$
- On récupère (presque) l'efficacité de la programmation dynamique We recover (almost) the efficiency of dynamic programming

 Exemple pour ORDONNANCEMENT DE PRODUITS MATRICIELS:

Example for Scheduling Matrix Products:

```
function fm-mem(i, j)
    if i = i then return 0
    if mtab[i, j] \ge 0 then return mtab[i, j]
    m \leftarrow \infty
    for k \leftarrow i to i - 1 do
         m \leftarrow \min(m, fm - mem(i, k) + fm - mem(k + 1, j))
                                         +d[i-1]d[k]d[i])
    mtab[i, j] \leftarrow m
    return m
```