

Netzwerke

8. Methoden zur Berechnung von Netzwerken

Vadim Issakov Sommersemester 2024

Methoden zur Berechnung von Netzwerken - Übersicht

- Motivation für die Einführung von Lösungsverfahren
- Knotenpotentialverfahren
- Maschenimpedanzverfahren
- Modifiziertes Knotenpotentialverfahren (Modified Node Analysis, MNA)

Motivation – gezeigt an einem Beispiel

- k-1 linear unabhängige Knotengleichungen
- z k + 1 linear unabhängige Knotengleichungen
- z Zweiggleichungen
- $\sum : 2z$ Gleichungen für 2z Unbekannte $I_i, U_i, i = 1, ..., 5$

Motivation

Aufwendig zu lösendes Gleichungssystem. Reduktion des Gleichungssystems mit

- Knotenpotentialverfahren \rightarrow Gleichungssystem mit (k-1) Unbekannten
- Maschenimpedanzverfahren \rightarrow Gleichungssystem mit (z k + 1) Unbekannten

Motivation

Knotenpotentialverfahren und Maschenimpedanzverfahren

- Vereinfachung der Berechnung bei
 - Netzwerken mit gesteuerten Quellen
 - komplexen Netzwerken

Methoden zur Berechnung von Netzwerken - Übersicht

Motivation f
ür die Einf
ührung von L
ösungsverfahren

Knotenpotentialverfahren

- Maschenimpedanzverfahren
- Modifiziertes Knotenpotentialverfahren (MNA)

Knotenpotentialverfahren

Vorbereiten des Netzwerks

Referenzknoten festlegen Restlichen Knoten Potential zuordnen

Aufstellen des Gleichungssystems

Berechnen der gesuchten Größen

Vorbereiten des Netzwerks

Gleichungssystem aufstellen - I

Enthält das Netzwerk gesteuerte Quellen?

- Gleichungssystem in zwei Schritten aufstellen
 - Schritt 1: Gleichungssystem so aufstellen, als ob die gesteuerten Quellen fest wären <u>Y'U_K = I'_q</u>
 <u>Y'</u> symmetrisch
 - Schritt 2: Steuerungen berücksichtigen

$$\Rightarrow \underline{\underline{Y}} \underline{U}_K = \underline{I}_q$$

 \underline{Y} in der Regel **nicht** symmetrisch

Gleichungssystem in einem Schritt aufstellbar

$$\underline{\underline{Y}} \ \underline{\underline{U}}_K = \underline{\underline{I}}_q$$

 $\underline{\underline{Y}}$ symmetrisch

Gleichungssystem aufstellen - II

(Schritt 1 bei Netzwerken mit gesteuerten Quellen)

Gleichungssystem aufstellen - III

Gleichungssystem mit Hilfe der Kirchhoffschen Knotengleichungen aufstellen

k-1 Kirchhoffsche Knotengleichungen aufstellen

Stromquellen auf die rechte Seite (feste und gesteuerte)

Zweige mit Admittanzen: Zweigspannungen durch Knotenpotentiale ausdrücken

Gleichungssystem in Matrixform umschreiben

$$\sum_{p=1}^{n} I_p = 0$$

Vorzeichenkonvention muss beachtet werden!

(Schritt 1 bei Netzwerken mit gesteuerten Quellen)

Gleichungssystem aufstellen - IV

Gleichungssystem direkt in Matrixschreibweise aufstellen

(Schritt 1 bei Netzwerken mit gesteuerten Quellen)

 Y'_{ii} : Σ Admittanzen der mit Knoten i verbundenen Bauelemente

 Y'_{ik} : $-(\Sigma \text{ Admittanzen zwischen Knoten } i \text{ und } k)$; $i \neq k$ 0, wenn keine Admittanz zwischen Knoten i und k; $Y'_{ik} = Y'_{ki} \Rightarrow \text{Zur Hauptdiagonalen symmetrische Matrix}$

 I'_{qi} = Σ der mit Knoten i verbundenen Stromquellen (feste und gesteuerte); Quellstrom fließt in Knoten $i \Rightarrow$ Eintrag als positiver Wert Quellstrom fließt aus Knoten $i \Rightarrow$ Eintrag als negativer Wert

Bei Netzwerken nur mit festen Quellen gilt: $\underline{\underline{Y}} = \underline{\underline{Y}}'$, $\underline{I}_q = \underline{\underline{I}}'_q$

Gleichungssystem aufstellen - V

Schritt 2: Steuerungen berücksichtigen

$$\underline{\underline{Y}}'\underline{\underline{U}}_K = \underline{\underline{I}}'_q$$

- Wenn gesteuerte Quellen in \underline{I}'_q sind
 - \underline{I}'_q abhängig von \underline{U}_K
 - Zerlege \underline{I}'_q in festen und über \underline{U}_K gesteuerten Anteil
 - Drücke steuernde Spannungen durch Knotenpotentiale aus

$$\underline{I}'_{q} = \underline{I}_{q} + \underline{\underline{Y}}_{steuer} \underline{\underline{U}}_{K}$$

$$\underline{\underline{Y}} \ \underline{\underline{U}}_{K} = \left(\underline{\underline{Y}}' - \underline{\underline{Y}}_{steuer}\right) \underline{\underline{U}}_{K} = \underline{\underline{I}}_{q}$$

$$\underline{\underline{Y}} \ \underline{\underline{U}}_K = \underline{\underline{I}}_q$$

 $\underline{\underline{Y}}$ in der Regel **nicht** symmetrisch

Berechnung der gesuchten Größen

Berechnung am einfachsten mit Hilfe der Cramerschen Regel

Gleichungssystem: $\underline{\underline{A}} \underline{x} = \underline{b}$

 $\underline{\underline{A}}$ sei $(n \times n)$ -Matrix mit $\det \underline{\underline{A}} \neq 0$, so ist $\underline{\underline{A}} \underline{x} = \underline{b}$ eindeutig lösbar.

$$x_{i} = \frac{\det \underline{A_{i}}}{\det \underline{\underline{A}}} \quad \text{für } i = 1, \dots, n \text{ mit } \underline{x} = \begin{pmatrix} x_{1} \\ \vdots \\ x_{n} \end{pmatrix}$$

 A_i wird gebildet, indem die *i*-te Spalte von $\underline{\underline{A}}$ durch $\underline{\underline{b}}$ ersetzt wird.

Beispiel:

$$\underbrace{\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}}_{\underline{\underline{A}}} \underbrace{\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}}_{\underline{\underline{x}}} = \underbrace{\begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}}_{\underline{\underline{b}}}$$

$$x_{2} = \frac{\det \underline{A_{2}}}{\det \underline{\underline{A}}} = \frac{\begin{vmatrix} a_{11} & b_{1} & a_{13} \\ a_{21} & b_{2} & a_{23} \\ a_{31} & b_{3} & a_{33} \end{vmatrix}}{\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}}$$

Netzwerk mit $G_1>0$, $G_2>0$, $G_3>0$ und zwei festen idealen Stromquellen I_{q1} , I_{q2} .

Berechnen Sie die Spannung U_1 .

Beispiel I – Aufstellen des Gleichungssystems

Enthält das Netzwerk gesteuerte Quellen?

- Ja
- Gleichungssystem in zwei Schritten aufstellen
 - Schritt 1: Gleichungssystem so aufstellen, als ob die gesteuerten Quellen fest wären <u>Y'U_K</u> = <u>I'_q</u>

 $\underline{\underline{Y}}'$ symmetrisch

Schritt 2: Steuerungen berücksichtigen

$$\Rightarrow \underline{\underline{Y}} \underline{U}_K = \underline{I}_q$$

 \underline{Y} in der Regel **nicht** symmetrisch

Nein

 Gleichungssystem in einem Schritt aufstellbar

Y symmetrisch

Methoden zur Aufstellung des Gleichungssystems

oder

mit Hilfe der Kirchhoffschen Knotengleichungen

direkt in Matrixschreibweise

Beispiel I – Aufstellen des Gleichungssystems

k-1 Kirchhoffsche Knotengleichungen aufstellen

Stromquellen auf die rechte Seite (feste und gesteuerte)

Zweige mit Admittanzen: Zweigspannungen durch Knotenpotenttiale ausdrücken

Gleichungssystem in Matrixform umschreiben

$$K_1$$
: $I_1 + I_2 - I_{q1} = 0$
 K_2 : $-I_2 + I_3 - I_{q2} = 0$

$$K_1$$
: $G_1U_1 + G_2U_2 = I_{q1}$
 K_2 : $-G_2U_2 + G_3U_3 = I_{q2}$

$$U_{1} = U_{K1}$$

$$U_{2} = U_{K1} - U_{K2}$$

$$U_{3} = U_{K2}$$

$$K_1$$
: $(G_1 + G_2)U_{K1} - G_2U_2 = I_{q1}$
 K_2 : $-G_2U_{K1} + (G_2 + G_3)U_3 = I_{q2}$

$$\underbrace{\begin{pmatrix} G_1 + G_2 & -G_2 \\ -G_2 & G_2 + G_3 \end{pmatrix}}_{\underline{Y}} \begin{pmatrix} U_{K1} \\ U_{K2} \end{pmatrix} = \begin{pmatrix} I_{q1} \\ I_{q2} \end{pmatrix}$$

symmetrisch für passives Netzwerk

Beispiel I – Gleichungssystem direkt in Matrixform

 Y'_{ii} : Σ Admittanzen der mit Knoten i verbundenen Bauelemente

 Y'_{ik} : $-(\Sigma \text{ Admittanzen zwischen Knoten } i \text{ und } k)$; $i \neq k$ 0, wenn keine Admittanz zwischen Knoten i und k; $Y'_{ik} = Y'_{ki} \Rightarrow \text{Zur Hauptdiagonalen symmetrische Matrix}$

 $I'_{qi} = \Sigma$ der mit Knoten i verbundenen Stromquellen (feste und gesteuerte); Quellstrom fließt in Knoten $i \Rightarrow$ Eintrag als positiver Wert Quellstrom fließt aus Knoten $i \Rightarrow$ Eintrag als negativer Wert

Beispiel I – Gleichungssystem direkt in Matrixform

$$\underbrace{\begin{pmatrix} G_1 + G_2 & -G_2 \\ -G_2 & G_2 + G_3 \end{pmatrix}}_{\underline{\underline{Y}}} \begin{pmatrix} U_{K1} \\ U_{K2} \end{pmatrix} = \begin{pmatrix} I_{q1} \\ I_{q2} \end{pmatrix}$$

Berechnen der Spannung U_1 (Cramersche Regel)

$$U_1 = U_{K1} = \frac{\begin{vmatrix} I_{q1} & -G_2 \\ I_{q2} & G_2 + G_3 \end{vmatrix}}{\begin{vmatrix} G_1 + G_2 & -G_2 \\ -G_2 & G_2 + G_2 \end{vmatrix}} = \frac{(G_2 + G_3)I_{q1} + G_2I_{q2}}{(G_1 + G_2)(G_2 + G_3) - G_2^2}$$

Netzwerk mit 6 Widerständen $R_i > 0$, i = 1, ..., 6, einer festen idealen Spannungsquelle U_0 und einer festen idealen Stromquelle I_0 .

Berechnen Sie die Spannung U_4 .

Verschiebung der Spannungsquelle von Zweig 0 in alle anderen Zweige von K₁

Netzwerk nach Spannungsquellenverschiebung

Rücktransformationsgleichungen

$$U_1'=U_1-U_0\Rightarrow U_1=U_1'+U_0$$

$$U_4'=U_4-U_0\Rightarrow U_4=U_4'+U_0$$

$$I_v=I_1+I_4$$
 gesuchte Spannung Rückgewinnungsgleichung für I_v

Beispiel mit Spannungsquellenverschiebung - Vorbereiten

Netzwerk nach Spannungsquellenverschiebung

$$G_i = \frac{1}{R_i}$$
, $i = 1, ..., 6$

/

Vorbereiten des Netzwerks

4

Referenzknoten festlegen Restlichen Knoten Potential zuordnen

Aufstellen des Gleichungssystems

Berechnen der gesuchten Größen

$$G_i = \frac{1}{R_i}$$
, $i = 1, ..., 6$

//

Vorbereiten des Netzwerks

//

Referenzknoten festlegen Restlichen Knoten Potential zuordnen

Aufstellen des Gleichungssystems

Berechnen der gesuchten Größen

$$=\frac{1}{R_i}, i=1,\ldots,6$$

Enthä

Ja

- Gleichungssystem in zwei Schritten aufstellen
 - Schritt 1: Gleichungssystem so aufstellen, als ob die gesteuerten Quellen fest wären $\underline{Y'}\underline{U}_K = \underline{I'}_q$

Y' symmetrisch

Schritt 2: Steuerungen berücksichtigen

$$\Rightarrow \underline{\underline{Y}} \underline{U}_K = \underline{I}_q$$

 \underline{Y} in der Regel **nicht** symmetrisch

Enthält das Netzwerk gesteuerte Quellen?

 Gleichungssystem in einem Schritt aufstellbar

Y symmetrisch

Methoden zur Aufstellung des Gleichungssystems

mit Hilfe der Kirchhoffschen Knotengleichungen

oder

direkt in Matrixschreibweise

$$G_i = \frac{1}{R_i}$$
, $i = 1, ..., 6$

 Y'_{ii} : Σ Admittanzen der mit Knoten i verbundenen Bauelemente

 Y'_{ik} : $-(\Sigma \text{ Admittanzen zwischen Knoten } i \text{ und } k)$; $i \neq k$ 0, wenn keine Admittanz zwischen Knoten i und k; $Y'_{ik} = Y'_{ki} \Rightarrow \text{Zur Hauptdiagonalen symmetrische Matrix}$

 $I'_{qi} = \Sigma$ der mit Knoten i verbundenen Stromquellen (feste und gesteuerte); Quellstrom fließt in Knoten $i \Rightarrow$ Eintrag als positiver Wert Quellstrom fließt aus Knoten $i \Rightarrow$ Eintrag als negativer Wert

$$\underbrace{\begin{pmatrix} G_1 + G_4 + G_6 & -G_1 & 0 \\ -G_1 & G_1 + G_2 + G_3 & -G_2 \\ 0 & -G_2 & G_2 + G_5 \end{pmatrix}}_{\underline{\underline{Y}}} \begin{pmatrix} U_{K1} \\ U_{K2} \\ U_{K3} \end{pmatrix} = \begin{pmatrix} -G_1 U_0 - G_4 U_0 + I_0 \\ G_1 U_0 \\ -I_0 \end{pmatrix}$$

$$G_i = \frac{1}{R_i}$$
, $i = 1, ..., 6$

Berechnen der Spannung U_4

Berechnen der Spannung U_4 (Cramersche Regel)

$$G_i = \frac{1}{R_i}, i = 1, \dots, 6$$

$$\underbrace{\begin{pmatrix} G_1 + G_4 + G_6 & -G_1 & 0 \\ -G_1 & G_1 + G_2 + G_3 & -G_2 \\ 0 & -G_2 & G_2 + G_5 \end{pmatrix}}_{\underline{Y}} \begin{pmatrix} U_{K1} \\ U_{K2} \\ U_{K3} \end{pmatrix} = \begin{pmatrix} -G_1 U_0 - G_4 U_0 + I_0 \\ G_1 U_0 \\ -I_0 \end{pmatrix}$$

$$U_4 = U_4' + U_0$$

$$U_4' = U_{K1} = \frac{\begin{vmatrix} -(G_1 + G_4)U_0 + I_0 & -G_1 & 0\\ G_1U_0 & G_1 + G_2 + G_3 & -G_2\\ -I_0 & -G_2 & G_2 + G_5 \end{vmatrix}}{\det \underline{Y}}$$

Berechnen der Spannung U_4 für $R_1 = R_2 = R_3 = R_4 = R_5 = R_6 = R$

$$\left[G_i = \frac{1}{R_i}, i = 1, ..., 6\right]$$

$$U_4 = U_4' + U_0$$

$$U_4' = U_{K1} = \frac{\begin{vmatrix} -2GU_0 + I_0 & -G & 0 \\ GU_0 & 3G & -G \\ -I_0 & -G & 2G \end{vmatrix}}{\begin{vmatrix} 3G & -G & 0 \\ -G & 3G & -G \\ 0 & -G & 2G \end{vmatrix}} = \frac{-8G^3U_0 + 4G^2I_0}{13G^3}$$

$$U_4 = U_4' + U_0 = \frac{5}{13}U_0 + \frac{4}{13G}I_0$$

Beispiel mit gesteuerter Quelle

Netzwerk mit 6 Widerständen $R_i > 0$, i = 1, ..., 6, einer festen Spannungsquelle U_0 , einer festen idealen Stromquelle I_0 und einer spannungsgesteuerten Spannungsquelle $A_v U_6$ mit $A_v > 0$.

Berechnen Sie die Spannung U_{R4} .

Beispiel mit gesteuerter Quelle

Beispiel mit gesteuerter Quelle - Gleichungssystem

- Gleichungssystem in zwei Schritten aufstellen
 - Schritt 1: Gleichungssystem so aufstellen, als ob die gesteuerten Quellen fest wären $\underline{Y}'\underline{U}_K = \underline{I}'_g$

Y' symmetrisch

Schritt 2: Steuerungen berücksichtigen

$$\Rightarrow \underline{\underline{Y}} \underline{U}_K = \underline{I}_q$$

 \underline{Y} in der Regel **nicht** symmetrisch

$$\underline{\underline{Y}} \ \underline{\underline{U}}_K = \underline{\underline{I}}_q$$

 \underline{Y} symmetrisch

Beispiel mit gesteuerter Quelle - Gleichungssystem

 Y'_{ii} : Σ Admittanzen der mit Knoten i verbundenen Bauelemente

 Y'_{ik} : $-(\Sigma \text{ Admittanzen zwischen Knoten } i \text{ und } k)$; $i \neq k$ 0, wenn keine Admittanz zwischen Knoten i und k; $Y'_{ik} = Y'_{ki} \Rightarrow \text{Zur Hauptdiagonalen symmetrische Matrix}$

 I'_{qi} = Σ der mit Knoten i verbundenen Stromquellen (feste und gesteuerte); Quellstrom fließt in Knoten $i \Rightarrow$ Eintrag als positiver Wert Quellstrom fließt aus Knoten $i \Rightarrow$ Eintrag als negativer Wert

$$\underbrace{\begin{pmatrix} G_1 + G_2 + G_3 & -G_3 & 0 \\ -G_3 & G_3 + G_4 + G_5 & -G_5 \\ 0 & -G_5 & G_5 + G_6 \end{pmatrix}}_{\underline{\underline{Y}'}} \underbrace{\begin{pmatrix} U_{K1} \\ U_{K2} \\ U_{K3} \end{pmatrix}}_{\underline{\underline{U}_K}} = \underbrace{\begin{pmatrix} G_1 U_0 + G_2 A_v U_6 \\ 0 \\ I_0 \end{pmatrix}}_{\underline{\underline{I}'_q}}$$

$$\underbrace{\begin{pmatrix} G_1 + G_2 + G_3 & -G_3 & 0 \\ -G_3 & G_3 + G_4 + G_5 & -G_5 \\ 0 & -G_5 & G_5 + G_6 \end{pmatrix}}_{\underline{\underline{Y}'}} \underbrace{\begin{pmatrix} U_{K1} \\ U_{K2} \\ U_{K3} \end{pmatrix}}_{\underline{\underline{U}_K}} = \underbrace{\begin{pmatrix} G_1 U_0 + G_2 A_v U_6 \\ 0 \\ I_0 \end{pmatrix}}_{\underline{\underline{I}'_q}}$$

Schritt 2: Steuerungen berücksichtigen

- Wenn gesteuerte Quellen in \underline{I}'_q sind
 - \underline{I}'_q abhängig von \underline{U}_K
 - Zerlege \underline{I}'_q in festen und über \underline{U}_K gesteuerten Anteil
 - Drücke steuernde Ströme durch Knotenpotentiale aus

$$\underline{I}'_{q} = \underline{I}_{q} + \underline{\underline{Y}}_{steuer}\underline{\underline{U}}_{K}$$

$$\underline{\underline{Y}} \ \underline{\underline{U}}_{K} = \left(\underline{\underline{Y}}' - \underline{\underline{Y}}_{steuer}\right)\underline{\underline{U}}_{K} = \underline{\underline{I}}_{q}$$

 $\underline{\underline{Y}}$ in der Regel **nicht** symmetrisch

Steuerung berücksichtigen: $U_6 = U_{K3}$

- Der Term $G_2A_vU_{K3}$ muss auf die linke Seite verschoben werden, weil man eine Abhängigkeit von U_{K3} hat. Die Matrix \underline{Y}' muss entsprechend angepasst werden.
- Nach der Verschiebung: Der Vektor <u>I</u>_q enthält nur feste Quellen!

$$(G_1 + G_2 + G_3) \cdot U_{K1} - G_3 \cdot U_{K2} + 0 \cdot U_{K3} = G_1 U_0 + G_1 + G_2 + G_3 \cdot U_{K1} - G_3 \cdot U_{K2} - G_2 A_v \cdot U_{K3} = G_1 U_0$$

Aktualisierte Matrix:

$$\underbrace{\begin{pmatrix} G_1 + G_2 + G_3 & -G_3 & -G_2 A_v \\ -G_3 & G_3 + G_4 + G_5 & -G_5 \\ 0 & -G_5 & G_5 + G_6 \end{pmatrix}}_{\underline{\underline{V}}_K} \underbrace{\begin{pmatrix} U_{K1} \\ U_{K2} \\ U_{K3} \end{pmatrix}}_{\underline{\underline{U}}_K} = \underbrace{\begin{pmatrix} G_1 U_0 \\ 0 \\ I_0 \end{pmatrix}}_{\underline{\underline{I}}_q'}$$

- Die gesteuerte Quelle wirkt auf den Knoten 1 (K1) und wird gesteuert vom Knoten 3 (K3)
- Deshalb erscheint der Multiplikationsfaktor als Eintrag in der Y-Matrix an der Stelle Y_{13}

Berechnen der Spannung U_{R4} (Cramersche Regel)

$$\underbrace{\begin{pmatrix} G_1 + G_2 + G_3 & -G_3 & -G_2 A_v \\ -G_3 & G_3 + G_4 + G_5 & -G_5 \\ 0 & -G_5 & G_5 + G_6 \end{pmatrix}}_{\underline{\underline{Y}}} \underbrace{\begin{pmatrix} U_{K1} \\ U_{K2} \\ U_{K3} \end{pmatrix}}_{\underline{\underline{U}}_K} = \underbrace{\begin{pmatrix} G_1 U_0 \\ 0 \\ I_0 \end{pmatrix}}_{\underline{\underline{I}'_q}}$$

$$U_{R4} = U_{K2} = \frac{\begin{vmatrix} G_1 + G_2 + G_3 & G_1 U_0 & -G_2 A_v \\ -G_3 & 0 & -G_5 \\ 0 & I_0 & G_5 + G_6 \end{vmatrix}}{\det \underline{Y}}$$

Berechnen der Spannung U_{R4} mit

$$R_1 = R_2 = R_3 = R_4 = R_5 = R_6 = R \rightarrow G_1 = G_2 = G_3 = G_4 = G_5 = G_6 = G$$

$$U_{R4} = U_{K2} = \begin{vmatrix} 3G & GU_0 & -GA_v \\ -G & 0 & -G \\ 0 & I_0 & 2G \end{vmatrix} = \frac{G^2 I_0 (3 + A_v) + 2G^3 U_0}{G^3 (13 - A_v)}$$

$$= \frac{G^2 I_0 (3 + A_v) + 2G^3 U_0}{G^3 (13 - A_v)}$$

$$\begin{vmatrix} 3G & GU_0 & -GA_v \\ -G & 0 & -G \\ 0 & I_0 & 2G \end{vmatrix} = 3G \begin{vmatrix} 0 & -G \\ I_0 & 2G \end{vmatrix} + G \begin{vmatrix} GU_0 & -GA_v \\ I_0 & 2G \end{vmatrix} + 0 = G^2I_0(3 + A_v) + 2G^3U_0$$

$$U_{K2} = \frac{I_0}{G} \frac{3 + A_v}{13 - A_v} + \frac{2U_0}{13 - A_v} = \frac{I_0 R(3 + A_v)}{13 - A_v} + \frac{2U_0}{13 - A_v}$$

Berechnen der Spannung U_{R4} mit z.B. $U_0=1$ V, $I_0=10$ mA, $A_v=5$, $R=50\Omega$

$$U_{R4} = U_{K2} = \frac{I_0 R (3 + A_v)}{13 - A_v} + \frac{2U_0}{13 - A_v} = 750 \text{ mV}$$
Simulations ergebnis

$$\begin{array}{c} \text{Simulations ergebnis} \\ \text{Simulatio$$

Methoden zur Berechnung von Netzwerken - Übersicht

- Motivation für die Einführung von Lösungsverfahren
- Knotenpotentialverfahren

Maschenimpedanzverfahren

Modifiziertes Knotenpotentialverfahren (MNA)

Maschenimpedanzverfahren

Fundamentalmaschen festlegen

Gleichungssystem aufstellen

Gesuchte Größen berechnen

Vorbereiten des Netzwerks

Fundamentalmaschen (FM) festlegen

Topologische Grundbegriffe

Zur Erinnerung:

- Ein Verbindungszweig (VZ) pro Fundamentalmasche (FM)
- Bei den FM-Gleichungen werden die VZ-Spannungen positiv gezählt.

Gleichungssystem aufstellen - I

Enthält das Netzwerk gesteuerte Quellen?

- Gleichungssystem in zwei Schritten aufstellen
 - Schritt 1: Gleichungssystem so aufstellen, als ob die gesteuerten Quellen fest wären <u>Z'I_M = <u>U'</u>_q <u>Z'</u> symmetrisch
 </u>
 - Schritt 2: Steuerungen berücksichtigen

$$\Rightarrow \underline{\underline{Z}} \underline{I}_{M} = \underline{U}_{q}$$

 $\underline{\mathit{Z}}$ in der Regel **nicht** symmetrisch

Gleichungssystem in einem Schritt aufstellbar

$$\underline{\underline{Z}} \ \underline{I}_{M} = \underline{U}_{q}$$

 $\underline{\underline{Z}}$ symmetrisch

Gleichungssystem aufstellen - II

(Schritt 1 bei Netzwerken mit gesteuerten Quellen)

Gleichungssystem aufstellen - III

Gleichungssystem mit Hilfe der Kirchhoffschen Maschengleichungen aufstellen

m = z - k + 1 Kirchhoffsche Maschengleichungen aufstellen

Spannungsquellen auf die rechte Seite (feste und gesteuerte)

Zweige mit Impedanzen: Zweigströme durch Maschenströme ausdrücken

Gleichungssystem in Matrixform umschreiben

$$\sum_{k=1}^{n} U_k = 0$$

Vorzeichenkonvention muss beachtet werden!

(Schritt 1 bei Netzwerken mit gesteuerten Quellen)

Gleichungssystem aufstellen - IV

Gleichungssystem direkt in Matrixschreibweise aufstellen

(Schritt 1 bei Netzwerken mit gesteuerten Quellen)

Z'_{ii} : Σ Impedanzen in Masche i

 Z'_{ik} : $\pm \Sigma$ Impedanzen, die zur Masche i und k gehören

 $i \neq k$ 0, Masche i und k haben keine gemeinsame Impedanz

+, Maschenumlaufrichtungen beider Maschen stimmen überein;

-, sonst

 $Z'_{ik} = Z'_{ki} \Rightarrow$ Zur Hauptdiagonalen symmetrische Matrix

 $U'_{ai} = \pm \Sigma$ der Spannungsquellen (feste und gesteuerte) in Masche i;

-, Zählpfeilrichtung und Maschenumlaufrichtung stimmen überein

+ , sonst

Bei Netzwerken nur mit festen Quellen gilt: $\underline{\underline{Z}} = \underline{\underline{Z}}'$, $\underline{\underline{U}}_q = \underline{\underline{U}}_q'$

Gleichungssystem aufstellen - V

Schritt 2: Steuerungen berücksichtigen

$$\underline{\underline{Z}'}\underline{I}_{M}=\underline{U}'_{q}$$

- Wenn gesteuerte Quellen in \underline{U}'_q sind
 - \underline{U}'_q abhängig von \underline{I}_M
 - Zerlege \underline{U}'_q in festen und über \underline{I}_M gesteuerten Anteil
 - Drücke steuernde Ströme durch Maschenströme aus

$$\underline{U}_{q}' = \underline{U}_{q} + \underline{Z}_{steuer}\underline{I}_{M}$$

$$\underline{Z} \underline{I}_{M} = (\underline{Z}' - \underline{Z}_{steuer})\underline{I}_{M} = \underline{U}_{q}$$

 $\underline{\underline{Z}}$ in der Regel **nicht** symmetrisch

$$\underline{\underline{Z}} \underline{I}_{M} = \underline{U}_{q}$$

Netzwerk mit 5 Widerständen $R_i > 0$, i = 1, ..., 5 und einer festen idealen Spannungsquelle U_0 . Berechnen Sie die Spannung U_4 .

Netzwerk

Anzahl linear unabhängiger Maschen:

$$m = z - k + 1 = 6 - 4 + 1 = 3$$

BZ = Baumzweig VZ = Verbindungszweig

Enthält das Netzwerk gesteuerte Quellen?

- Schritt 1: Gleichungssystem so aufstellen, als ob die gesteuerten Quellen fest wären <u>Z'I_M</u> = <u>U'</u>_q
 - \overline{Z}' symmetrisch
- Schritt 2: Steuerungen berücksichtigen

$$\Rightarrow \underline{\underline{Z}} \underline{I}_{M} = \underline{U}_{q}$$

 \underline{Z} in der Regel **nicht** symmetrisch

 Gleichungssystem in einem Schritt aufstellbar

$$\underline{\underline{Z}} \ \underline{I}_{M} = \underline{U}_{q}$$

 \underline{Z} symmetrisch

m = z - k + 1 Kirchhoffsche Maschengleichungen aufstellen

Spannungsquellen auf die rechte Seite (feste und gesteuerte)

Zweige mit Impedanzen: Zweigströme durch Maschenströme ausdrücken

Gleichungssystem in Matrixform umschreiben

$$FM_1: U_5 + U_1 + U_3 = 0$$

$$FM_2: U_4 - U_3 - U_1 + U_2 = 0$$

$$FM_3: -V_0 - U_1 + U_2 = 0$$

 $FM_1: R_5I_5 + R_1I_1 + R_3I_3 = 0$ $FM_2: R_4I_4 - R_3I_3 - R_1I_1 + R_2I_2 = 0$ $FM_3: -R_1I_1 + R_2I_2 = V_0$

$$I_1 = I_{M1} - I_{M2} - I_{M3}$$
 $I_4 = I_{M2}$
 $I_2 = I_{M2} + I_{M3}$ $I_5 = I_{M1}$
 $I_3 = I_{M1} - I_{M2}$ $I_0 = I_{M3}$

$$FM_1: (R_1 + R_3 + R_5)I_{M1} - (R_1 + R_3)I_{M2} - R_1I_{M3} = 0$$

$$FM_2: -(R_1 + R_3)I_{M1} + (R_1 + R_2 + R_3 + R_4)I_{M2} + (R_1 + R_2)I_{M3} = 0$$

$$FM_3: -R_1I_{M1} + (R_1 + R_2)I_{M2} + (R_1 + R_2)I_{M3} = V_0$$

$$\underbrace{\begin{pmatrix} R_1 + R_3 + R_5 & -(R_1 + R_3) & -R_1 \\ -(R_1 + R_3) & R_1 + R_2 + R_3 + R_4 & R_1 + R_2 \\ -R_1 & R_1 + R_2 & R_1 + R_2 \end{pmatrix}}_{\underline{\underline{I}_{M}}} \underbrace{\begin{pmatrix} I_{M1} \\ I_{M2} \\ I_{M3} \end{pmatrix}}_{\underline{\underline{I}_{M}}} = \underbrace{\begin{pmatrix} 0 \\ 0 \\ V_0 \end{pmatrix}}_{\underline{\underline{U}_{q}}}$$

mit Hilfe der Kirchhoffschen Maschengleichungen

Methoden zur Aufstellung des Gleichungssystems

oder direkt in Matrixschreibweise

Z'_{ii} : Σ Impedanzen in Masche i

 Z'_{ik} : $\pm \Sigma$ Impedanzen, die zur Masche i und k gehören $i \neq k$ 0, Masche i und k haben keine gemeinsame Impedanz +, Maschenumlaufrichtungen beider Maschen stimmen überein; -, sonst $Z'_{ik} = Z'_{ki} \Rightarrow$ Zur Hauptdiagonalen symmetrische Matrix

 U'_{qi} = $\pm\Sigma$ der Spannungsquellen (feste und gesteuerte) in Masche i; —, Zählpfeilrichtung und Maschenumlaufrichtung stimmen überein + , sonst

Berechnen von
$$U_4$$
 (Cramersche Regel)

$$\underbrace{\begin{pmatrix} R_1 + R_3 + R_5 & -(R_1 + R_3) & -R_1 \\ -(R_1 + R_3) & R_1 + R_2 + R_3 + R_4 & R_1 + R_2 \\ -R_1 & R_1 + R_2 & R_1 + R_2 \end{pmatrix}}_{\underline{Z}} \underbrace{\begin{pmatrix} I_{M1} \\ I_{M2} \\ I_{M3} \end{pmatrix}}_{\underline{I}_{M}} = \underbrace{\begin{pmatrix} 0 \\ 0 \\ V_{0} \end{pmatrix}}_{\underline{V}_{Q}}$$

$$U_4 = R_4 I_4 = R_4 I_{M2} = R_4 \frac{\begin{vmatrix} R_1 + R_3 + R_5 & 0 & -R_1 \\ -(R_1 + R_3) & 0 & R_1 + R_2 \\ -R_1 & V_0 & R_1 + R_2 \end{vmatrix}}{\begin{vmatrix} R_1 + R_3 + R_5 & -(R_1 + R_3) & -R_1 \\ -(R_1 + R_3) & R_1 + R_2 + R_3 + R_4 & R_1 + R_2 \\ -R_1 & R_1 + R_2 & R_1 + R_2 \end{vmatrix}}$$

$$= -R_4 \frac{(R_1 + R_2 + R_3)(R_1 + R_2) + R_1(R_1 + R_3)}{R_1 R_2 R_4 + (R_1 + R_2)(R_2 + R_3)(R_3 + R_4)} V_0$$

Beispiel mit Stromquellenverschiebung

Netzwerk mit 6 Widerständen $R_i > 0, i = 1, ..., 6$, einer festen idealen Spannungsquelle U_0 und einer festen idealen Stromquelle I_0 .

Berechnen Sie die Spannung U_4 .

Beispiel mit Stromquellenverschiebung

Netzwerk nach Stromquellenverschiebung

Rücktransformationsgleichungen

$$I_5' = I_5 - I_0 \Rightarrow I_5 = I_5' + I_0$$

$$I_6' = I_6 + I_0 \Rightarrow I_6 = I_6' - I_0$$

$$U_j = U_6 - U_5$$

Rückgewinnungsgleichung für U_i

Netzwerk nach Stromquellenverschiebung

Netzwerk in Ersatzspannungsquellendarstellung

Enthält das Netzwerk gesteuerte Quellen?

 Schritt 1: Gleichungssystem so aufstellen, als ob die gesteuerten Quellen fest wären Z'I_M = U'_a

 $\overline{\underline{Z}}'$ symmetrisch

Schritt 2: Steuerungen berücksichtigen

$$\Rightarrow \underline{\underline{Z}} \underline{I}_M = \underline{U}_q$$

 \underline{Z} in der Regel **nicht** symmetrisch

$$\underline{\underline{Z}} \ \underline{\underline{I}}_{M} = \underline{\underline{U}}_{Q}$$

 \underline{Z} symmetrisch

 Z'_{ii} : Σ Impedanzen in Masche i

 Z'_{ik} : $\pm \Sigma$ Impedanzen, die zur Masche i und k gehören $i \neq k$ 0, Masche i und k haben keine gemeinsame Impedanz +, Maschenumlaufrichtungen beider Maschen stimmen überein; -, sonst $Z'_{ik} = Z'_{ki} \Rightarrow$ Zur Hauptdiagonalen symmetrische Matrix

 U'_{qi} = $\pm\Sigma$ der Spannungsquellen (feste und gesteuerte) in Masche i; —, Zählpfeilrichtung und Maschenumlaufrichtung stimmen überein + , sonst

$$\underbrace{\begin{pmatrix} R_1 + R_3 + R_4 & R_3 & -R_1 - R_3 \\ R_3 & R_2 + R_3 + R_5 & -R_3 \\ -R_1 - R_3 & -R_3 & R_1 + R_3 + R_6 \end{pmatrix}}_{\underline{\underline{I}_M}} \underbrace{\begin{pmatrix} I_{M1} \\ I_{M2} \\ I_{M3} \end{pmatrix}}_{\underline{\underline{I}_M}} = \underbrace{\begin{pmatrix} 0 \\ R_5 I_0 \\ U_0 + R_6 I_0 \end{pmatrix}}_{\underline{\underline{U}_q}}$$

Berechnen der Spannung U_4 (Cramereche Regal)

$$U_4 = R_4 I_4 = R_4 I_{M1} = R_4 \frac{\begin{vmatrix} 0 & R_3 & -R_1 - R_3 \\ R_5 I_0 & R_2 + R_3 + R_5 & -R_3 \\ U_0 + R_6 I_0 & -R_3 & R_1 + R_3 + R_6 \end{vmatrix}}{\det \underline{Z}}$$

Berechnen der Spannung U_4 mit $R_1 = R_2 = R_3 = R_4 = R_5 = R_6 = R$

$$U_4 = RI_4 = RI_{M1} = R \frac{\begin{vmatrix} 0 & R & -2R \\ RI_0 & 3R & -R \\ U_0 + RI_0 & -R & 3R \end{vmatrix}}{\begin{vmatrix} 3R & R & -2R \\ R & 3R & -R \\ -2R & -R & 3R \end{vmatrix}} = R \frac{5R^2U_0 + 4R^3I_0}{13R^3} = \frac{5}{13}U_0 + \frac{4}{13}RI_0$$

Maschenimpedanzverfahren und Knotenadmittanzverfahren liefern gleiche Ergebnisse.

Knotenpotentialverfahren – Maschenverfahren

- Es wird ein lineares Netzwerk mit z Zweigen und k Knoten betrachtet, dessen Graph zusammenhängend ist.
- Knotenpotentialanalyse erfordert k 1 Knotengleichungen.
- Maschenstromanalyse erfordert z k + 1 Maschengleichungen.
- k-1 < z-k+1, falls Knoten über viele Zweige mit anderen Knoten verbunden ist.
- Vorteil für das Knotenpotentialverfahren, falls z > 2k 2

Methoden zur Berechnung von Netzwerken - Übersicht

- Motivation f
 ür die Einf
 ührung von L
 ösungsverfahren
- Knotenpotentialverfahren
- Maschenimpedanzverfahren
- Modifiziertes Knotenpotentialverfahren (MNA)

Modifiziertes Knotenpotentialverfahren (Modified Nodal Analysis, MNA)

- Verwendung bei Schaltungssimulatoren wie Spice, Spectre, Qucs
- Quellenverschiebung und Umschreibung von Stromsteuerung auf Spannungssteuerung nicht leicht automatisierbar, deshalb bei MNA
 - Keine Spannungsquellenverschiebung
 - Keine Umschreibung von Stromsteuerung auf Spannungssteuerung
- Stattdessen zusätzliche Stromvariablen:
 - Zweigströme der Zweige mit idealen Spannungsquellen
 - Zweigströme, die in einem anderen Zweig zur Steuerung verwendet werden

Modifiziertes Knotenpotentialverfahren (Modified Nodal Analysis, MNA)

Zusätzliche Stromvariablen identifizieren

Ersatzstromquellendarstellung der Zweige ohne zusätzliche Stromvariablen

Referenzknoten festlegen
Restlichen Knoten Potentiale zuordnen

Aufstellen des Gleichungssystems

Berechnen der gesuchten Größen

Zusätzliche Stromvariablen identifizieren

 Keine doppelte Berücksichtigung eines Zweigstroms als zusätzliche Stromvariable (z.B. Zweig mit idealer Spannungsquelle und steuerndem Strom ⇒ eine zusätzliche Stromvariable)

Gleichungssystem aufstellen - I

- Matrix-Gleichung: $\underline{A} \cdot \underline{X} = \underline{b}$
- Netzwerk mit
 - n: Anzahl der Knoten ohne Referenzknoten (n = k 1)
 - *m*: Anzahl der Zweige mit zusätzlichen Stromvariablen
- $\underline{\underline{A}}: (n+m) \times (n+m)$ -Matrix

$$\begin{bmatrix}
\underline{Y} & \underline{B} \\
\underline{C} & \underline{D}
\end{bmatrix}$$

$$\underline{A} \qquad \underline{X} \qquad \underline{D}$$

Gleichungssystem aufstellen - II

Enthält das Netzwerk gesteuerte Quellen?

- Gleichungssystem in zwei Schritten aufstellen
 - Schritt 1: Gleichungssystem so aufstellen, als ob die gesteuerten Quellen fest wären <u>A'X</u> = <u>b'</u>
 <u>A'</u> symmetrisch
 - Schritt 2: Steuerungen berücksichtigen

$$\Rightarrow \underline{\underline{A}} \underline{X} = \underline{b}$$

 $\underline{\mathit{A}}$ in der Regel **nicht** symmetrisch

Gleichungssystem in einem Schritt aufstellbar

$$\underline{\underline{A}} \underline{X} = \underline{b}$$

 $\underline{\underline{A}}$ symmetrisch

Bei Netzwerken nur mit festen Quellen gilt: $\underline{\underline{A}} = \underline{\underline{A}}'$, $\underline{\underline{b}} = \underline{\underline{b}}'$

Gleichungssystem aufstellen - III

(Schritt 1 bei Netzwerken mit gesteuerten Quellen)

Gleichungssystem aufstellen - IV

• \underline{X} : $(n+m) \times 1$ -Matrix

 $\underline{\underline{A}}' \cdot \underline{\underline{X}} = \underline{b}'$

- besteht aus zwei Untervektoren $\underline{X} = \begin{bmatrix} \underline{U}_K \\ \underline{I}_V \end{bmatrix}$
- \underline{U}_K : $n \times 1$ -Matrix, Knotenpotentiale (unbekannte Spannungen)
 - Jedes Element enthält das einem Knoten zugeordnete Knotenpotential (ohne Referenzknoten)

•
$$\underline{U}_K = \begin{bmatrix} U_{K1} \\ \vdots \\ U_{Kn} \end{bmatrix}$$
, $n = k - 1$

- I_V : $m \times 1$ -Matrix, zusätzliche Stromvariablen
 - Für Netzwerk mit m zusätzlichen Stromvariablen: $\underline{I}_{V} = \begin{bmatrix} I_{V1} \\ \vdots \\ I_{Vm} \end{bmatrix}$

Gleichungssystem aufstellen - V

• $\underline{\underline{Y}}'$: $n \times n$ -Matrix (n: Anzahl der Knoten ohne Referenzknoten)

$$\underline{\underline{A}}' = \begin{bmatrix} \underline{\underline{Y}'} & \underline{\underline{B}'} \\ \underline{\underline{C}'} & \underline{\underline{D}'} \end{bmatrix}$$

Nur Zweige **ohne** zusätzliche Stromvariable berücksichtigen

 Y'_{ii} : Σ Admittanzen der mit Knoten i verbundenen Bauelemente

 Y'_{ik} : $-(\Sigma \text{ Admittanzen zwischen Knoten } i \text{ und } k)$; $i \neq k$ 0, wenn keine Admittanz zwischen Knoten i und k; $Y'_{ik} = Y'_{ki} \Rightarrow \text{Zur Hauptdiagonalen symmetrische Matrix}$

 Y'_{11} ... Y'_{1n} \vdots \vdots Y'_{n1} ... Y'_{nn} $\frac{Y'}{=}$

Bei Netzwerken nur mit festen Quellen gilt: $\underline{\underline{Y}} = \underline{\underline{Y}}'$

Gleichungssystem aufstellen - VI

■ $\underline{\mathbf{\textit{B}}}'$: $n \times m$ -Matrix, (m: Anzahl der Zweige mit zusätzlichen Stromvariablen)

$$\underline{A}' = \begin{bmatrix} \underline{Y}' & \underline{\underline{B}'} \\ \underline{C}' & \underline{D}' \end{bmatrix}$$

Zweige mit zusätzlichen Stromvariablen

Nur Zweige ohne ideale Stromquelle

 B'_{ki} : +1, Zweig i ist vom Knoten k weg orientiert;

- -1, Zweig i ist zum Knoten k hin orientiert;
- = 0, sonst

Bei Netzwerken nur mit festen Quellen gilt: $\underline{\underline{B}} = \underline{\underline{B}}'$

Gleichungssystem aufstellen - VII

• $\underline{\mathbf{C}}'$: $m \times n$ -Matrix, (m: Anzahl der Zweige mit zusätzlichen Stromvariablen)

$$\underline{A}' = \begin{bmatrix} \underline{\underline{Y}}' & \underline{\underline{B}}' \\ \underline{\underline{C}}' & \underline{\underline{D}}' \end{bmatrix}$$

Zweige mit zusätzlichen Stromvariablen

Nur Zweige **ohne** ideale Stromquelle

 C'_{ik} : +1, Zweig i ist vom Knoten k weg orientiert; -1, Zweig i ist zum Knoten k hin orientiert; = 0, sonst

$$\begin{bmatrix} C'_{11} & \cdots & C'_{1n} \\ \vdots & \ddots & \vdots \\ \hline C'_{m1} & \cdots & C'_{mn} \\ \hline \underline{\underline{C}} \end{bmatrix}$$

 $\underline{\underline{C'}} = \underline{\underline{B'}}^T \ (\underline{\underline{C'}} \text{ ist die Transponierte von } \underline{\underline{B'}})$

Bei Netzwerken nur mit festen Quellen gilt: $\underline{\underline{C}} = \underline{\underline{C}}'$

Gleichungssystem aufstellen - VIII

■ <u>**D**</u>′: *m* × *m*-Matrix

$$\underline{\underline{A}}' = \begin{bmatrix} \underline{\underline{Y}}' & \underline{\underline{B}}' \\ \underline{\underline{C}}' & \underline{\underline{\underline{D}}}' \end{bmatrix}$$

Nur Zweige mit zusätzlichen Stromvariablen

 D'_{ii} : +1, Zweig i ist ideale Stromquelle $-Z_i$ (Impedanz des Zweiges i)
Achtung: keine ideale Stromquelle in diesem Zweig 0, sonst

$$D'_{11}$$
 ... D'_{1m}

$$\vdots$$

$$\vdots$$

$$D'_{m1}$$
 ...
$$D'_{mm}$$

$$\underline{\underline{D}}'$$

$$D'_{ik} = 0, i \neq k$$

Bei Netzwerken nur mit festen Quellen gilt: $\underline{\underline{D}} = \underline{\underline{D}}'$, alle Einträge = 0

Gleichungssystem aufstellen - IX

$$\underline{\underline{A}'} \cdot \underline{\underline{X}} = \underline{\underline{b}'}$$

- \underline{b}' : $(n+m) \times 1$ -Matrix
 - feste und gesteuerte Strom- und Spannungsquellen
 - besteht aus zwei Untermatrizen
 - Bei Netzwerken nur mit festen Quellen gilt: $\underline{b} = \underline{b}'$

• \underline{I}'_q : $n \times 1$ -Matrix

 I'_{qi} = Σ der mit Knoten i verbundenen Stromquellen (feste und gesteuerte); Quellstrom fließt in Knoten $i \Rightarrow$ Eintrag als positiver Wert Quellstrom fließt aus Knoten $i \Rightarrow$ Eintrag als negativer Wert

■ \underline{E}'_q : $m \times 1$ -Matrix

Nur Zweige **mit** zusätzlichen Stromvariablen

 E'_{qi} = Strom- oder Spannungsquelle (fest oder gesteuert) von Zweig i Orientierung von Quelle und Zweig i gleich \Rightarrow Eintrag als positiver Wert Orientierung von Quelle und Zweig i entgegengesetzt \Rightarrow Eintrag als negativer Wert

Gleichungssystem aufstellen - X

Schritt 2: Steuerungen berücksichtigen

$$\underline{\underline{A}}'\underline{X} = \underline{b}'$$

- Wenn gesteuerte Quellen in \underline{b}' sind
 - **Z**erlege \underline{b}' in festen und gesteuerten Anteil
 - Drücke steuernde Spannungen durch Knotenpotentiale und steuernde Ströme durch zusätzliche Stromvariablen aus

$$\underline{b}' = \underline{b} + \underline{\underline{A}}_{steuer} \underline{X}$$

$$\underline{\underline{A}} \ \underline{X} = \left(\underline{\underline{A}}' - \underline{\underline{A}}_{steuer}\right) \underline{X} = \underline{b}$$

$$\underline{\underline{A}} \ \text{in der Regel } \mathbf{nicht} \ \text{symmetrisch}$$

$$\underline{\underline{A}} \ \underline{X} = \underline{b}$$

Beispiel 1

$$R_1 = 5\Omega, R_2 = 10\Omega, U_1 = 1V, I_1 = 1A$$

Ersatzstromquellendarstellung der Zweige **ohne** zusätzliche Stromvariablen

Referenzknoten festlegen
Restlichen Knoten Potentiale zuordnen

Aufstellen des Gleichungssystems

Berechnen der gesuchten Größen

Beispiel 1

Zusätzliche Stromvariable:

• I_{V_1} : Zweig mit idealer Spannungsquelle

Beispiel 1

$$R_1 = 5\Omega, R_2 = 10\Omega, U_1 = 1V, I_1 = 1A$$

Zusätzliche Stromvariable: I_{V_1}

Ersatzstromquellendarstellung (Impedanzen \rightarrow Admittanzen): $R_1 \rightarrow \frac{1}{R_1}, R_2 \rightarrow \frac{1}{R_2}$

$$R_1 = 5\Omega, R_2 = 10\Omega, U_1 = 1V, I_1 = 1A$$

Enthält das Netzwerk gesteuerte Quellen?

- Gleichungssystem in zwei Schritten aufstellen
 - Schritt 1: Gleichungssystem so aufstellen, als ob die gesteuerten Quellen fest wären <u>A'X</u> = <u>b'</u> A' symmetrisch
 - Schritt 2: Steuerungen berücksichtigen

$$\Rightarrow \underline{\underline{A}} \underline{X} = \underline{b}$$

 $\underline{\underline{\underline{A}}}$ in der Regel **nicht** symmetrisch

 Gleichungssystem in einem Schritt aufstellbar

$$\underline{\underline{A}} \ \underline{\underline{X}} = \underline{\underline{b}}$$

 $\underline{\textbf{\textit{A}}}$ symmetrisch

$$R_1 = 5\Omega, R_2 = 10\Omega, U_1 = 1V, I_1 = 1A$$

$$\underline{\underline{A}} \cdot \underline{\underline{X}} = \underline{b}$$

Zusätzliche Stromvariable: I_{V_1}

lacktriangledown \underline{U}_K : n imes 1-Matrix, Knotenpotentiale (unbekannte Spannungen)

•
$$\underline{U}_K = \begin{bmatrix} U_{K1} \\ \vdots \\ U_{Kn} \end{bmatrix}$$
, $n = k - 1$

- I_V : $m \times 1$ -Matrix, zusätzliche Stromvariablen
 - Für Netzwerk mit m zusätzlichen Stromvariablen: $\underline{I}_{\mathcal{V}} = \begin{bmatrix} I_{V1} \\ \vdots \\ I_{Vm} \end{bmatrix}$

Nur feste Quellen $\Rightarrow \underline{\underline{Y}} = \underline{\underline{Y}}'$

Nur Zweige ohne zusätzliche Stromvariable berücksichtigen

 Y'_{ii} : Σ Admittanzen der mit Knoten i verbundenen Bauelemente

 Y'_{ik} : $-(\Sigma \text{ Admittanzen zwischen Knoten } i \text{ und } k)$; $i \neq k$ 0, wenn keine Admittanz zwischen Knoten i und k; $Y'_{ik} = Y'_{ki} \Rightarrow \text{Zur Hauptdiagonalen symmetrische Matrix}$

$$\begin{bmatrix} \frac{1}{R_1} & -\frac{1}{R_1} \\ -\frac{1}{R_1} & \frac{1}{R_1} + \frac{1}{R_2} \\ \end{bmatrix} \begin{bmatrix} U_{K1} \\ U_{K2} \\ \end{bmatrix} = \begin{bmatrix} U_{K2} \\ U_{V_1} \end{bmatrix}$$

Nur feste Quellen $\Rightarrow \underline{B} = \underline{B}'$

Zweige mit zusätzlichen Stromvariablen

Nur Zweige ohne ideale Stromquelle

 B'_{ki} : +1, Zweig i ist vom Knoten k weg orientiert; -1, Zweig i ist zum Knoten k hin orientiert; = 0, sonst

$$\begin{bmatrix} \frac{1}{R_1} & -\frac{1}{R_1} & 1 \\ -\frac{1}{R_1} & \frac{1}{R_1} + \frac{1}{R_2} & 0 \end{bmatrix} \begin{bmatrix} U_{K1} \\ U_{K2} \\ I_{V_1} \end{bmatrix} = \begin{bmatrix} U_{K1} \\ U_{K2} \\ U_{V_1} \end{bmatrix}$$

$$R_1 = 5\Omega, R_2 = 10\Omega, U_1 = 1V, I_1 = 1A$$

Zusätzliche Stromvariable:
$$I_{V_1}$$

Nur feste Quellen $\Rightarrow \underline{C} = \underline{C}'$

Zweige mit zusätzlichen Stromvariablen

Nur Zweige ohne ideale Stromquelle

 C'_{ik} : +1, Zweig i ist vom Knoten k weg orientiert; -1, Zweig i ist zum Knoten k hin orientiert; = 0, sonst

$$\underline{\underline{C}} = \underline{\underline{B}}^T$$

$$\begin{bmatrix} \frac{1}{R_1} & -\frac{1}{R_1} & 1 \\ -\frac{1}{R_1} & \frac{1}{R_1} + \frac{1}{R_2} & 0 \\ \hline 1 & 0 & I_{V_1} \end{bmatrix} = \begin{bmatrix} U_{K1} \\ U_{K2} \\ \hline I_{V_1} \end{bmatrix} = \begin{bmatrix} U_{K1} \\ U_{K2} \\ \hline I_{V_1} \end{bmatrix}$$

Referenzknoten

Nur feste Quellen $\Rightarrow \underline{D} = \underline{D}'$

Nur Zweige mit zusätzlichen Stromvariablen

$$D'_{ii}$$
: +1, Zweig i ist ideale Stromquelle $-Z_i$ (Impedanz des Zweiges i)

Achtung: keine ideale Stromquelle in diesem Zweig 0 , sonst

$$D'_{ik} = 0, \ i \neq k$$

$$\begin{bmatrix} \frac{1}{R_1} & -\frac{1}{R_1} & 1\\ -\frac{1}{R_1} & \frac{1}{R_1} + \frac{1}{R_2} & 0\\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} U_{K1} \\ U_{K2} \\ I_{V_1} \end{bmatrix} = \begin{bmatrix} \\ \\ \\ \\ I_{V_1} \end{bmatrix}$$

 I'_{qi} = Σ der mit Knoten i verbundenen Stromquellen (feste und gesteuerte); Quellstrom fließt in Knoten $i \Rightarrow$ Eintrag als positiver Wert Quellstrom fließt aus Knoten $i \Rightarrow$ Eintrag als negativer Wert

$$E'_{qi}$$
 = Strom- oder Spannungsquelle (fest oder gesteuert) von Zweig i
Orientierung von Quelle und Zweig i gleich
 \Rightarrow Eintrag als positiver Wert
Orientierung von Quelle und Zweig i entgegengesetzt
 \Rightarrow Eintrag als negativer Wert

Nur Zweige mit zusätzlichen Stromvariablen

Beispiel 1 – Mit Kirchhoffschen Knotengleichungen

Aufstellen der Kirchhoffschen Knotengleichungen und der konstitutiven Gleichung

Knoten ① :
$$\frac{1}{R_1}U_{K1} - \frac{1}{R_1}U_{K2} + I_{V_1} = 0$$
 Knoten ② :
$$-\frac{1}{R_1}U_{K1} + \left(\frac{1}{R_1} + \frac{1}{R_2}\right)U_{K2} = I_1$$

$$U_{K1} = U_1$$

Es ergibt sich das gleiche Gleichungssystem wie mit den Regeln des MNA.

Beispiel 2: Netzwerk mit gesteuerten Quellen

Netzwerk mit 3 Admittanzen $Y_i > 0$, i = 1,2,3, einer idealen festen Spannungsquelle V, einer idealen spannungsgesteuerten Spannungsquelle μU_1 , $\mu > 0$ und einer idealen stromgesteuerten Stromquelle αI_{V_1} , $\alpha > 0$.

Geben Sie das Gleichungssystem des modifizierten Knotenpotentialverfahren in Matrixform an.

Zusätzliche Stromvariablen:

- I_{V_1} : Steuerstrom, Zweig mit idealer Spannungsquelle
- I_{V_2} : Zweig mit idealer Spannungsquelle

Zusätzliche Stromvariablen:

- I_{V_1}
- I_{V2}

Enthält das Netzwerk gesteuerte Quellen?

Ja

- Gleichungssystem in zwei Schritten aufstellen
 - Schritt 1: Gleichungssystem so aufstellen, als ob die gesteuerten Quellen fest wären A'X = b'

 $\underline{\underline{A'}}$ symmetrisch

Schritt 2: Steuerungen berücksichtigen

$$\Rightarrow \underline{\underline{A}} \underline{X} = \underline{b}$$

 $\underline{\textbf{\textit{A}}}$ in der Regel **nicht** symmetrisch

Nein

Gleichungssystem in einem Schritt aufstellbar

$$\underline{\underline{A}} \ \underline{\underline{X}} = \underline{\underline{b}}$$

 $\underline{\textbf{\textit{A}}}$ symmetrisch

Beispiel 2: Netzwerk mit gesteuerten Quellen - \underline{X}

- \underline{U}_K : $n \times 1$ -Matrix, Knotenpotentiale (unbekannte Spannungen)
 - $\underline{U}_K = \begin{bmatrix} U_{K1} \\ \vdots \\ U_{Kn} \end{bmatrix}$, n = k 1
- \underline{I}_{y} : $m \times 1$ -Matrix, zusätzliche Stromvariablen
 - Für Netzwerk mit m zusätzlichen Stromvariablen: $\underline{I}_{V} = \begin{bmatrix} I_{V1} \\ \vdots \\ I_{Vm} \end{bmatrix}$

Zusätzliche Stromvariablen:

- I_{V_1}
- I_{V_2}

Beispiel 2: Netzwerk mit gesteuerten Quellen - \underline{Y}'

Nur Zweige ohne zusätzliche Stromvariable berücksichtigen

 Y'_{ii} : Σ Admittanzen der mit Knoten i verbundenen Bauelemente

 Y'_{ik} : $-(\Sigma \text{ Admittanzen zwischen Knoten } i \text{ und } k);$

 $\neq k$ 0, wenn keine Admittanz zwischen Knoten i und k; $Y'_{ik} = Y'_{ki} \Rightarrow \text{Zur Hauptdiagonalen symmetrische Matrix}$

Beispiel 2: Netzwerk mit gesteuerten Quellen - \underline{B}'

Zweige mit zusätzlichen Stromvariablen

 B'_{ki} : +1, Zweig i ist vom Knoten k weg orientiert; -1, Zweig i ist zum Knoten k hin orientiert;

Beispiel 2: Netzwerk mit gesteuerten Quellen - \underline{C}'

Zweige mit zusätzlichen Stromvariablen

Nur Zweige ohne ideale Stromquelle

 C'_{ik} : +1, Zweig i ist vom Knoten k weg orientiert; -1, Zweig i ist zum Knoten k hin orientiert;

= 0, sonst

Beispiel 2: Netzwerk mit gesteuerten Quellen - \underline{D}'

Nur Zweige mit zusätzlichen Stromvariablen

 D_{ii}' : +1, Zweig i ist ideale Stromquelle $-Z_i$ (Impedanz des Zweiges i)
Achtung: keine ideale Stromquelle in diesem Zweig 0, sonst

$$D'_{ik} = 0, i \neq k$$

Beispiel 2: Netzwerk nit gesteuerten Quellen - \underline{b}'

 I'_{qi} = Σ der mit Knoten i verbundenen Stromquellen (feste und gesteuerte); Quellstrom fließt in Knoten $i \Rightarrow$ Eintrag als positiver Wert Quellstrom fließt aus Knoten $i \Rightarrow$ Eintrag als negativer Wert

 E'_{qi} = Strom- oder Spannungsquelle (fest oder gesteuert) von Zweig i Orientierung von Quelle und Zweig i gleich \Rightarrow Eintrag als positiver Wert Orientierung von Quelle und Zweig i entgegengesetzt \Rightarrow Eintrag als negativer Wert

Nur Zweige mit zusätzlichen Stromvariablen

Beispiel 2: Netzwerk nit gesteuerten Quellen - \underline{b}'

 I'_{qi} = Σ der mit Knoten i verbundenen Stromquellen (feste und gesteuerte); Quellstrom fließt in Knoten $i \Rightarrow$ Eintrag als positiver Wert Quellstrom fließt aus Knoten $i \Rightarrow$ Eintrag als negativer Wert

 E'_{qi} = Strom- oder Spannungsquelle (fest oder gesteuert) von Zweig i Orientierung von Quelle und Zweig i gleich \Rightarrow Eintrag als positiver Wert Orientierung von Quelle und Zweig i entgegengesetzt \Rightarrow Eintrag als negativer Wert

Nur Zweige mit zusätzlichen Stromvariablen

$$\begin{bmatrix} Y_1 + Y_2 & -Y_2 & 0 & 1 & 0 \\ -Y_2 & Y_2 & 0 & 0 & -1 \\ 0 & 0 & Y_3 & -1 & 0 \\ 1 & 0 & -1 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} U_{K1} \\ U_{K2} \\ U_{K3} \\ I_{V_1} \\ I_{V_2} \end{bmatrix} = \begin{bmatrix} \alpha I_{V_1} \\ -\alpha I_{V_1} \\ 0 \\ V \\ \mu U_1 \end{bmatrix}$$

Schritt 2: Steuerungen berücksichtigen $U_1 = -U_{K1}$

Anhang:

Aufstellen des Gleichungssystems von Beispiel 2 mit

Hilfe der Kirchhoffschen Knotengleichungen

Beispiel 2: Netzwerk mit gesteuerten Quellen – Mit Kirchhoffschen Gl.

Ersatzstromquellendarstellung der Zweige ohne zusätzliche Stromvariablen

Kirchhoffsche Knotengleichungen:

$$K_1: 0 = I_{V_1} - I_1 - I_2$$
 $K_2: 0 = I_2 - I_{V_2}$
 $K_3: 0 = I_3 - I_{V_1}$

Ausdrücken der Zweigspannungen durch Knotenpotentiale.

$$U_1 = -U_{K1}$$
, $U_2 = U_{K2} - U_{K1}$, $U_3 = U_{K3}$

$$I_1 = Y_1 U_1 = -Y_1 U_{K1}$$

$$I_2 = Y_2 U_2 + \alpha I_{V_1} = Y_2 (U_{K2} - U_{K1}) + \alpha I_{V_1}$$

$$I_3 = Y_3 U_3 = Y_3 U_{K3}$$

Beispiel 2: Netzwerk mit gesteuerten Quellen – Mit Kirchhoffschen Gl.

$$K_1: 0 = I_{V_1} - I_1 - I_2$$
 $K_2: 0 = I_2 - I_{V_2}$
 $K_3: 0 = I_3 - I_{V_1}$
(1)

$$I_{1} = Y_{1}U_{1} = -Y_{1}U_{K1}$$

$$I_{2} = Y_{2}U_{2} + \alpha I_{V_{1}} = Y_{2}(U_{K2} - U_{K1}) + \alpha I_{V_{1}}$$

$$I_{3} = Y_{3}U_{3} = Y_{3}U_{K3}$$

in (1) einsetzen

$$K_1: 0 = I_{V_1} + Y_1 U_{K1} - (Y_2 (U_{K2} - U_{K1}) + \alpha I_{V_1})$$

$$K_2$$
: $0 = Y_2(U_{K2} - U_{K1}) + \alpha I_{V_1} - I_{V_2}$
 K_3 : $0 = Y_3U_{K3} - I_{V_1}$

$$K_3: 0 = Y_3 U_{K3} - I_{V3}$$

Ideale feste und gesteuerte Spannungsquellen durch Knotenpotentiale ausdrücken:

$$U_{K1} - U_{K3} = V$$

 $U_{K2} = -\mu U_1 = -\mu (-U_{K1}) \Rightarrow \mu U_{K1} - U_{K2} = 0$

Beispiel 2: Netzwerk mit gesteuerten Quellen – Mit Kirchhoffschen Gl.

Gesamter

Gleichungssatz:

$$K_1: 0 = I_{V_1} + Y_1 U_{K1} - (Y_2 (U_{K2} - U_{K1}) + \alpha I_{V_1})$$

$$K_2: 0 = Y_2 (U_{K2} - U_{K1}) + \alpha I_{V_1} - I_{V_2}$$

$$K_3: 0 = Y_3 U_{K3} - I_{V_1}$$

$$U_{K1} - U_{K3} = V$$

$$U_{K2} = -\mu U_1 = -\mu (-U_{K1}) \Rightarrow \mu U_{K1} - U_{K2} = 0$$

$$\underline{\underline{A}} \cdot \underline{X} = \underline{b}$$

$$\begin{bmatrix} \underline{\underline{G}} & \underline{\underline{B}} \\ \underline{\underline{C}} & \underline{\underline{D}} \end{bmatrix} \cdot \underline{X} = \underline{b}$$

