Introduction to Structural Modelling in R

Lubor Homolka

May 28, 2014

1 CFA - Confirmatory Factor Analysis

CFA is a covariance based method for latent analysis modelling. All latent variables (referred as constructs) are related to each other by non-directional link. There are two comfortable ways to assess these relations in R. Library lavaan contains function cfa with easy to follow guidance how to describe model using path-equation format. In the sem library function cfa allows several ways how to define model. Some might be useful for more in-depth analysis. Results obtained from both libraries can visualised using two-step procedure utilising semPlot package, namely functions semPlotModel_lavaanModel for results obtained from lavaan library and semPlotModel for sem results and semPaths function. I'll demonstrate CFA on HBAT data from Hair's book.

1.1 CFA - library sem

In this example five latents constructs are being analysed with no prior knowledge about particular construct relationships. It is only assumed all constructs are related to each other. In this and following sections data are cleaned and imported in the same way.

```
data.sem <- read.table("hair_sem.csv", header=TRUE)
> str(data.sem) # trimmed
'data.frame': 400 obs. of 22 variables:
```

In the following we set the measure model.

```
cfa.hair.model <- cfa()
job: OC1 , OC2 , OC3 , OC4
cow: AC1 , AC2 , AC3 , AC4
env: EP1 , EP2 , EP3 , EP4
int: SI1 , SI2 , SI3 , SI4
com: JS1 , JS2 , JS3 , JS4</pre>
```

There are two missing values in the original dataset which are omitted in model matrix.

```
library(sem)
cfa.hair.fit <- sem(cfa.hair.model, data=data.sem)</pre>
```

It's also possible to supply sem function with covariance matrix and number of observations instead of data sample. Path graph is created employing semPlot package.

```
plot.hair <- semPlotModel(cfa.hair.fit)
semPaths(plot.hair, whatLabels="est", layout="spring", edge.label.cex=1)</pre>
```

The output of four latent constructs:

Returned results from sem are surprisingly concise. Results lack GOF statistics except of p-value of χ^2 test.

```
summary(cfa.hair.fit)
Model Chisquare = 211.8349   Df = 160 Pr(>Chisq) = 0.003797915
AIC = 311.8349
```


Figure 1: CFA analysis from sem library.

```
BIC = -745.9975
```

```
R-square for Endogenous Variables - AVE for question:

OC1 OC2 OC3 OC4 AC1 AC2 AC3 AC4

0.3389 0.7886 0.4335 0.7048 0.6746 0.6726 0.6999 0.6631
```

```
Parameter Estimates # Trimmed output
```

```
Estimate Std Error z value Pr(>|z|)  
lam[0C3:job] 0.7865337 0.07637945 10.297714 7.215560e-25 0C3 <--- job \# indicator - construct
V[job] 2.1650058 0.35912492 6.028559 1.654276e-09 job <--> job # variance of construct
V[0C1] 4.2226746 0.32105136 13.152644 1.643251e-39 0C1 <--> 0C1 # variance of indicator
C[cow,com] 0.0304077 0.06667814 0.456037 6.483632e-01 com <--> cow # construct - construct
```

If we compare Hair's results with ours (although we use only four constructs) we do find only minor differences. Hair's estimated loading for OC3 are 0.78 with standard error of 0.08. Our results shows 0.7865 and 0.07637.

1.2 CFA - library lavaan

Before proceeding to example using lavaan you have to restart your R. Both libraries use same name functions and it might possibly cause unpredictable behaviour. Syntax used by lavaan is very simple. It uses $=\sim$ as a symbol for describing dependency relations between constructs and indicators.

library(lavaan)

```
cfa.model <- "
job = 0C1 + 0C2 + 0C3 + 0C4
cow = AC1 + AC2 + AC3 + AC4
env = EP1 + EP2 + EP3 + EP4
int = SI1 + SI2 + SI3 + SI4
com = JS1 + JS2 + JS3 + JS4"
```

cfa.fit <- cfa(cfa.model, data = data.sem)</pre>

In the summarising step fit indices are printed:

```
summary(cfa.fit, fit.measures=TRUE)
```

 χ^2 is significant (p-val =0.004), Comparative Fit Index (CFI = 0.987) and Tucker-Lewis Index (TLI = 0.984) are very close to Hair's estimates (both) of 0.99. Confidence interval (alpha=0.1) estimated by lavaan ranges from 0.017 to 0.038, while Hair's is 0.015-0.036. All of these results are more restrictive in lavaan than in AMOS software.

lavaan (0.5-16) converged normally after 52 iterations

Number of observations	Used 398	Total 400
Estimator	ML	
Minimum Function Test Statistic	212.368	
Degrees of freedom	160	
P-value (Chi-square)	0.004	
Model test baseline model:		
Minimum Function Tost Statistic	4200 671	

Minimum Function Test Statistic	4200.671
Degrees of freedom	190
P-value	0.000

User model versus baseline model:

Comparative Fit Index (CFI)	0.987
Tucker-Lewis Index (TLI)	0.984

Loglikelihood and Information Criteria:

Loglikelihood user model (HO)	-12183.402
Loglikelihood unrestricted model (H1)	-12077.217
,	
Number of free parameters	50
Akaike (AIC)	24466.803
Bayesian (BIC)	24666.126
Sample-size adjusted Bayesian (BIC)	24507.474
1	

Root Mean Square Error of Approximation:

RMSEA		0.029
90 Percent Confidence Interval	0.017	0.038
P-value RMSEA <= 0.05		1.000

Standardized Root Mean Square Residual:

SRMR 0.034

Parameter estimates:

Information	Expected
Standard Errors	Standard

	Estimate	Std.err	Z-value	P(> z)
Latent variables:				
job =~				
OC1	1.000			
OC2	1.319	0.108	12.193	0.000
OC3	0.787	0.076	10.311	0.000
0C4	1.174	0.098	11.961	0.000
cow =~				
AC1	1.000			
AC2	1.238	0.068	18.307	0.000
AC3	1.036	0.055	18.769	0.000
AC4	1.145	0.063	18.142	0.000
env =~				
EP1	1.000			
EP2	1.035	0.072	14.395	0.000
EP3	0.805	0.058	13.897	0.000
EP4	0.897	0.062	14.528	0.000
int =~				
SI1	1.000			
SI2	1.073	0.055	19.515	0.000
SI3	1.065	0.066	16.020	0.000
SI4	1.167	0.061	19.199	0.000
com =~				
JS1	1.000			
JS2	1.027	0.081	12.635	0.000

JS3	0.929	0.077	12.074	0.000
JS4	0.920	0.075	12.235	0.000
Covariances:				
job ~~				
COW	0.513	0.107	4.813	0.000
env	0.931	0.144	6.464	0.000
int	0.574	0.080	7.172	0.000
com	0.276	0.090	3.057	0.002
COW ~~				
env	0.370	0.088	4.183	0.000
int	0.249	0.048	5.139	0.000
com	0.030	0.066	0.457	0.648
env ~~				
int	0.508	0.066	7.746	0.000
com	0.290	0.079	3.649	0.000
int ~~				
com	0.149	0.043	3.509	0.000
Variances:				
OC1	4.212	0.320		
OC2	1.006	0.147		
OC3	1.746	0.138		
OC4	1.246	0.137		
AC1	0.631	0.060		
AC2	0.976	0.092		
AC3	0.602	0.060		
AC4	0.871	0.081		
EP1	1.718	0.141		
EP2	0.899	0.090		
EP3	0.687	0.063		
EP4	0.628	0.065		
SI1	0.260	0.023		
SI2	0.195	0.021		
SI3	0.466			
SI4	0.256	0.026		
JS1	0.818	0.081		
JS2	0.851	0.085		
JS3	0.893	0.081		
JS4	0.820	0.076		
job	2.160	0.358		
COM	1.308	0.136		
env	1.637	0.216		
int	0.500	0.053		
com	0.974	0.126		
COM	0.014	0.120		

1.3 Other statistics

This sub-chapter should be predecessor of previous two because it deals data-quality problem. Here, we will compute reliability (and not only Cronbach's α) and Average Extracted Variance (AVE) statistics.

library(semTools)
reliability(cfa.fit)

```
job cow env int com alpha 0.8239700 0.8902763 0.8504382 0.8864902 0.8117312 omega 0.8280547 0.8924000 0.8532772 0.8873356 0.8123543 omega2 0.8193148 0.8923847 0.8535925 0.8872116 0.8123778
```

Alpha coefficient is famous Cronbach's α which suffers from several flaws (well documented in [1]). Omega coefficients are less restrictive in underlying assumptions and are report better results in terms of statistical efficiency. In our data-sample All constructs show high degree of reliability (they exceed 0.7 which is generally agreed rule of thumbs).

AVE can be assess from the summary output from sem function package in sem library. An useful mean of extracting results from summary is to use inspect function.

```
> inspect(cfa.fit, "rsquare" ) #AVE
                                                                        AC3
                                                                                   AC4
                                       0C4
                                                  AC1
                                                             AC2
                 OC2
                            0C3
0.3389344 0.7886414 0.4335438 0.7047895 0.6746469 0.6725739 0.6999397 0.6630944
      EP1
                 EP2
                            EP3
                                       EP4
                                                  SI1
                                                             SI2
                                                                        SI3
                                                                                   SI4
0.4879068 \ 0.6611908 \ 0.6068804 \ 0.6773577 \ 0.6581530 \ 0.7467179 \ 0.5492653 \ 0.7265875
                 JS2
                            JS3
                                       JS4
      JS1
0.5436664 0.5473573 0.4850054 0.5012040
```

AVE for constructs is the mean value of single indicators AVE's:

```
ave.dat <- data.frame(matrix(ave, ncol=4, byrow=TRUE))</pre>
```

```
ave.const <- data.frame(AVE=apply(ave.dat, 1, mean)) # compute mean in each row
rownames(ave.const) <- c("Commitment", "Coworkers", "Environment", "Intentions", "Satisfaction")</pre>
```

ave.const # print results

	AVE
Commitment	0.57
Coworkers	0.68
Environment	0.61
Intensions	0.67
Satisfaction	0.52

References

[1] Dunn, Thomas J., From alpha to omega: A practical solution to the pervasive problem of internal consistency estimation *British Journal of Psychology*, (2013), Retrieved from: http://onlinelibrary.wiley.com/doi/10.1111/bjop.12046/abstract.