CS 5003: Parameterized Algorithms

Lectures 26-27

Krithika Ramaswamy

IIT Palakkad

Sunflower Lemma

- * Universe $U = \{1, 2, 3, ..., n\}$
- * Family of subsets of U: $F = \{S_1, S_2, \ldots, S_m\}$

Sunflower Lemma

- * Universe $U = \{1, 2, 3, \ldots, n\}$, Family of subsets of $U: F = \{S_1, S_2, \ldots, S_m\}$
- * A sunflower with k petals and core Y is a collection $C \subseteq F$ of sets s.t
 - * $S \cap S' = Y$ for any two distinct S, S' in C
 - * S\Y is non-empty for every S in C

- * 3 Petals {3}, {4}, {5, 6}
 - * Each petal is non-empty
- * Core = $\{1, 2\}$

* A set of pairwise disjoint sets is a sunflower with empty core

Sunflower Lemma

- * Universe $U = \{1, 2, 3, ..., n\}$
- * Family of subsets of U: $F = \{S_1, S_2, ..., S_m\}$ (no duplicates)
- * Each set in F has size d
- * |F| > d! (k-1)d

* F has a sunflower with k petals that can be obtained in polynomial time

Proof of Sunflower Lemma

- Universe $U = \{1, 2, 3, ..., n\}$
- Family of subsets of U: $F = \{S_1, S_2, ..., S_m\}$
 - * No duplicates
- Each set in F has size d, IFI > d! (k-1)d

Induction on d

- * d = 1 (singletons)
- * d>=2
 - * $\{S_1, S_2, \ldots, S_l\}$ maximal set of disjoint sets in F
 - * If l>=k, $\{S_1, S_2, \ldots, S_l\}$ is the sunflower with k petals
 - * Otherwise, I<k

Proof of Sunflower Lemma

- Universe $U = \{1, 2, 3, ..., n\}$
- Family of subsets of U: $F = \{S_1, S_2, \ldots, S_m\}$
 - * No duplicates
- Each set in F has size d, IFI > d! (k-1)d

Suppose each element of S is in less than |F|/|S| sets, then elements of S are in total < |F| sets but every set in F has an element

- * $S = S_1 \cup S_2 \cup ... \cup S_i \text{ and } |S| \le d(k-1)$
- * Every set in F has an element in S
- There is an element x that is in >= IFI/ISI > d! (k-1)d / d(k-1) sets of F

Proof of Sunflower Lemma

- Universe $U = \{1, 2, 3, ..., n\}$
- Family of subsets of U: $F = \{S_1, S_2, \ldots, S_m\}$
 - * No duplicates
- * Each set in F has size d, IFI > d! (k-1)d

- * There is an element x that is in $>= |F|/|S| > d! (k-1)^d / d(k-1)$ sets of F
- * F' = sets in F containing x
- * F": obtained from F' by deleting x (no duplicates)
 - * $|F''| > (d-1)! (k-1)^{d-1}$
- * By induction hypothesis, F' has a sunflower with k petals
 - * $\{S'_1, S'_2, ..., S'_k\}$
- * $\{S'_1 \cup \{x\}, S'_2 \cup \{x\}, ..., S'_k \cup \{x\}\}\}$ is a sunflower with k petals in F

Computing a Sunflower

- Universe $U = \{1, 2, 3, ..., n\}$
- * Family of subsets of U: $F = \{S_1, S_2, \ldots, S_m\}$
 - * No duplicates
- * Each set in F has size d, IFI > d! (k-1)d

- * Find a maximal set $\{S_1, S_2, \ldots, S_l\}$ of disjoint sets in F
- * Let x be an element that is in a maximum number of sets in F
 - * x is in >= IFI/ISI sets of F
- * F': sets in F containing x
- * F": obtained from F' by deleting x (no duplicates)
 - * $|F''| > (d-1)! (k-1)^{d-1}$ as $|F|/|S| > d! (k-1)^d / d(k-1)$
- * Recurse on F' to find a sunflower $\{S'_1, S'_2, ..., S'_k\}$ with k petals
- * $\{S'_1 \cup \{x\}, S'_2 \cup \{x\}, \ldots, S'_k \cup \{x\}\}\}$ is a sunflower with k petals in F

Sunflower Lemma (Variant)

- * Universe $U = \{1, 2, 3, ..., n\}$
- * Family of subsets of U: $F = \{S_1, S_2, \ldots, S_m\}$ (no duplicates)
- * Each set in F has size at most d
- * |F| > d * d! (k-1)d

* F has a sunflower with k petals that can be obtained in polynomial time

Hint: There exists $r < d s.t | F_r| > d! (k-1)^d$ where F_r is the subset of F containing sets of size = r

d-Hitting Set

Input:

- * Universe $U = \{1, 2, 3, ..., n\}$
- * Family $F = \{S_1, S_2, \ldots, S_m\}$ of $\{S_1, S_2, \ldots, S_m\}$ of $\{S_1, S_2, \ldots, S_m\}$ of $\{S_1, S_2, \ldots, S_m\}$
- * A non-negative integer k

Question: Does there exist $V \subseteq U$ with $|V| \le k$ s.t for each S in F, $S \cap V \ne \emptyset$?

Some Common Hitting Sets

- * Vertex Cover
- Feedback Vertex Set
- * Odd Cycle Transversal
- Cluster Vertex Deletion

d-Hitting Set

Input:

- * Universe $U = \{1, 2, 3, ..., n\}$
- * Family $F = \{S_1, S_2, \ldots, S_m\}$ of $\{S_1, S_2, \ldots, S_m\}$ of $\{S_1, S_2, \ldots, S_m\}$ of $\{S_1, S_2, \ldots, S_m\}$
- * A non-negative integer k

Question: Does there exist $V \subseteq U$ with $|V| \le k$ s.t for each S in F, $S \cap V \ne \emptyset$?

- * If IFI <= d * d! K^d when something (d) is given as part of problem definition, treat it as c
 - * Kernel with d * d! kd sets and d2 * d! kd elements
- * Otherwise
 - * find a sunflower with (k+1) petals

d-Hitting Set

forward dirn: Suppose there exist such a V; a hitting set, then it clearly hits Y.reverse dirn: Hitting Y is equivalent to hitting all of

- * If Y is empty then there is no (U,F) has no hitting set of size <=k
- Otherwise,
 - * Any hitting set of size <= k has a non-empty intersection with Y
 - * Pelete $S_1, S_2, ..., S_{k+1}$ from F and add Y to F to get resultant instance (U',F',k)

(U,F,k) is a yes-instance iff (U',F',k) is a yes-instance

d-Set Packing

Input:

- * Universe $U = \{1, 2, 3, ..., n\}$
- Family $F = \{S_1, S_2, ..., S_m\}$ of $\{S_1, S_2, ..., S_m\}$ of $\{S_2, S_2, ..., S_m\}$ of $\{S_1, S_2, ..., S_m\}$ of $\{S_2, S_2, ..., S_m\}$ of $\{S_1, S_2, ..., S_m\}$ of $\{S_2, S_2, ..., S_m\}$ of $\{S_2,$
- * A non-negative integer k

Question: Poes there exist $F' \subseteq F$ of pairwise disjoint $\frac{\text{sets s.t. } |F'| >= k?}{\text{sets s.t. } |F'| >= k?}$

- * If |F| <= d * d! (d(k-1)+1)d
 - * Kernel with $d * d! (d(k-1)+1)^d$ sets and $d^2 * d! (d(k-1)+1)^d$ elements
- * Otherwise
 - * find a sunflower with d(k-1)+2 petals

d-Set Packing

- Pelete S₁ from F to get resultant instance (U',F',k)
- * (U,F,k) is a yes-instance iff (U',F',k) is a yes-instance
 - * Reverse direction is easy

* Forward direction

for forward dirn: Clearly if Y is empty then we already have our F', o/w we can

- Suppose P is a k-set packing containing S₁
- * $P(S_1)$ has <= d(k-1) elements (set X)
- * There is a set S_i that has no element from X for some 2 <= i <= d(k-1)+2
- * $P(S_1)\cup (S_i)$ is a k-set packing not containing S_1