Study of lifting of 1D adinkras to 2D

Kevin Iga and Yan X Zhang

February 25, 2015

1 Definitions

1.1 1-d Adinkras

Adinkras in [references] will be referred to as 1-d Adinkras in this paper, since they relate to supersymmetry in 1 dimension. We will review a definition of 1-d Adinkras now. Note that while it is conventional to specify a natural number N to denote the number of supersymmetries, we break with convention and instead specify C, a set of N different colors.

Definition 1.1. A 1-d Adinkra with color set C is (V, E, χ, Δ, g) where

- V is a finite set of vertices
- $E \subset V \times V$ is a set of edges
- $\chi: E \to C$ is a map called the coloring
- $\Delta: E \to \{1, -1\}$ is a map called the dashing
- $g: V \to \mathbf{Z}$ is a map called the grading

These are required to satisfy the following:

- If $(v, w) \in E$, then $(w, v) \in E$. Furthermore, $\chi(v, w) = \chi(w, v)$ and $\Delta(v, w) = \Delta(w, v)$.
- For every $v \in V$ and $c \in C$, there exist exactly one $w \in V$ so that $(v, w) \in E$ and $\chi(v, w) = c$.
- If $c_1, c_2 \in C$ with $c_1 \neq c_2$, and $v \in V$, then there exist w, x, and $y \in V$ so that (v, w), (w, x), (x, y), and $(y, v) \in E$, and $\chi(v, w) = \chi(x, y) = c_1$ and $\chi(w, x) = \chi(y, v) = c_2$ and $\Delta(v, w)\Delta(w, x)\Delta(x, y)\Delta(y, v) = -1$.
- If $(v, w) \in E$, then |g(v) g(w)| = 1.

Note that in [Reference], there is also a bigrading of the vertices. This is rendered obsolete by the grading, since g(v) is even if and only if v is a boson.

Let $V(A, r) = g^{-1}(\{r\})$ be the vertices of A with rank r. We will assume 0 to be the lowest rank in the range of g.

Recall that a 1-d adinkra has a code L, which is necessarily doubly-even. The code has parameters (n,k), where n=|C| is the number of colors and k is the dimensions of the code. In this situation, the vertices of A are labeled by cosets $\{0,1\}^n + L$, so $|V| = 2^{n-k}$.

1.2 2-d Adinkras

The notion of 2-d Adinkras is described in Ref...[fill in references to various things]. We use a definition here that is equivalent to the one found in [some reference]: the proof is found in Appendix...[maybe?]

A 2-d Adinkra is similar to a 1-d Adinkra except that some colors are called "left-moving" and the other colors called "right-moving". Edges are called "left-moving" if they are colored by left-moving edges, and right-moving otherwise. Furthermore, there are two gradings, one that is affected by the left-moving edges and the other for the right-moving edges.

More formally,

Definition 1.2. A 2-d Adinkra with disjoint color sets C_L and C_R is $(V, E, \chi, \Delta, g_L, g_R)$ where

- \bullet V is a finite set of vertices
- $E \subset V \times V$ is a set of edges
- $\chi: E \to C_L \cup C_R$ is a map called the coloring
- $\Delta: E \to \{1, -1\}$ is a map called the dashing
- $g_L: V \to \mathbf{Z}$ and $g_R: V \to \mathbf{Z}$ are maps called the left grading and right grading.

These are required to satisfy:

- The first requirement for a 1-d Adinkra still holds.
- The second and third requirements for a 1-d Adinkra still hold with $C = C_L \cup C_R$.
- The fourth requirement is replaced by: if $(v, w) \in E$ and $\chi(v, w) \in C_L$, then $|g_L(v) g_L(w)| = 1$ and $g_R(v) = g_R(w)$. If $(v, w) \in E$ and $\chi(v, w) \in C_R$, then $|g_R(v) g_R(w)| = 1$ and $g_L(v) = g_R(w)$.

2 Product of Adinkras

One way to get 2-d Adinkras is to take a product of two 1-d Adinkras, where the first Adinkra uses only left-moving colors and the second Adinkra uses only right-moving colors.

Definition 2.1. Let C_L and C_R be disjoint color sets. Let $A_1 = (V_1, E_1, \chi_1, \Delta_1, g_1)$ be a 1-d Adinkra with color set C_L ; and let $A_2 = (V_2, E_2, \chi_2, \Delta_2, g_2)$ be a 1-d Adinkra with color set C_R . We can define the product of these Adinkras as the following 2-Adinkra with color sets (C_L, C_R) .

$$A_1 \times A_2 = (V, E, \chi, \Delta, g_L, g_R)$$

where

$$V = V_1 \times V_2$$

$$E = E_1 \cup E_2 \text{ where}$$

$$E_1 = \{((v_1, w), (v_2, w)) \mid (v_1, v_2) \in E_1, \text{ and } w \in V_2\}$$

$$E_2 = \{((v, w_1), (v, w_2)) \mid v \in V, \text{ and } (w_1, w_2) \in E_2\}$$

$$\chi((v_1, w), (v_2, w)) = c_1(v_1, v_2) \text{ for all } ((v_1, w), (v_2, w)) \in E_1$$

$$\chi((v, w_1), (v, w_2)) = c_2(w_1, w_2) \text{ for all } (v, w_1), (v, w_2) \in E_2$$

$$g_L(v, w) = g_1(v)$$

$$g_R(v, w) = g_2(w)$$

$$\Delta((v_1, w), (v_2, w)) = \Delta_1(v_1, v_2)$$

$$\Delta((v, w_1), (v, w_2)) = (-1)^{g_1(v)} \Delta_2(w_1, w_2)$$

3 Structure Theorems

3.1 Bigrading

A really important consequence of having a bigrading is that we get to "complete the square" with the following Corollary:

Corollary 3.1. In a 2-d adinkra, suppose we have a path $(x, y \pm_1 1) \rightarrow (x, y) \rightarrow (x\pm_2 1, y)$, where each \pm_i corresponds to a choice of sign, the first and the last vertices are connected to $(x \pm_2 1, y \pm_1 1)$ via the corresponding colors in a square.

Proof. Because we have an (1-d) adinkra, the two edges in this path correspond to two different colors (WLOG 1 and 2 in order) respectively, and if we use the colors 2 and 1 in order we must also reach $(x \pm_2 1, y)$ from $(x, y \pm_1 1)$. Because left-moving colors only correspond to y-axis moves in the \mathbb{Z}^2 bigrading, and right-moving colors only correspond to x-axis moves, the first move must have displacement $(\pm_2 1, 0)$ and the second move must have displacement $(0, \pm_1)$. This is exactly equivalent to the statement.

3.2 Rectangle

Let the *support* of a 2-d adinkra (and/or its bigrading function g) be defined as the range of g, its bigrading function. Now, we show that the support of 2-d adinkra must form a rectangle in \mathbb{Z}^2 . In this and the following sections, it helps to have some standard assumptions:

- Recall that any 1-d adinkra has vertices labeled by equivalence classes of $\{0,1\}$ by some (n,k) doubly-even code L. We will refer to vertices by these equivalence classes (or particular elements of the equivalence classes).
- Recall that we have n = p + q colors. WLOG, let the first p colors be left-moving and the last q colors be right-moving. We will also refer to these colors as elements of $\{1, 2, ..., n\}$, thinking of them as the indices of the vertices labeled as elements of $\{0, 1\}^n$. So an edge of color i moves a vertex $(v_1v_2 \cdots v_n)$ by changing the i-th bit to $(1 v_i)$ and leaving the other vertices intact.
- We will always define $\overline{0}$ to be the vertex corresponding to the equivalence class of $(00\cdots 0)$. We will also assume that $\overline{0}$ has the coordinate (0,0). (to be precise, this means $q(\overline{0}) = (0,0)$).

For every vertex pair (v, w) in our 2-d adinkra, there exist (many) paths from v to w. Ignoring the dashings for now, let the sequence of colors on any path be called a *color sequence* for the path. So, for example, in a chromotopology corresponding to the unique trivial (4,0) code, the path with color sequence (3,2,1,1) carries $\overline{0}=0000$ to $0010,\ 0110,\ 1110,\$ and finally 0110.

Now, define a map s that takes a color sequence and returns an element of $V = \{0,1\}^n$ where the i-th element is the number of times (modulo 2) that color i appears in the sequence. For example, s(3,2,1,1) = 0110. Note that s(d) will return (a member of the equivalence class of) the bitstring obtained by applying the sequence d to $\overline{0}$. In particular that we may permute a sequence from $d = (d_n)$ to $d' = (d'_n)$ without changing the result of s.

The previous work on 1-d adinkras states that if we start at any vertex, following two paths with color sequences d and d' must end up at the same resulting vertex if and only if $s(d) = s(d') \pmod{L}$. Let l(d) be a rearrangement of d that moves all the left-moving colors to the beginning, and let r(d) be a rearrangement of d that moves all the right-moving colors to the beginning. Thus, suppose p = q = 2, we have l((3, 2, 1, 1)) = (2, 1, 1, 3) and r((3, 2, 1, 1)) = (3, 2, 1, 1). We always have s(l(d)) = s(r(d)) in general, since l(d) and r(d) are just permutations of each other.

Proposition 3.2. Suppose we have any path from (x, y) to (v, w) in a 2-d adinkra A; then the vertices (x, w) and (v, y) are in A's support.

Proof. Let this path take color sequence d. l(d) and r(d) must both end up at (v, w), but l(d) only changes along the y-axis in the first part of moves that only use

left-moving colors, so it must end up at coordinate (x, w) to be able to end up at (v, w) (since it can only use right-moving / x-axis colors afterwards). Using the same argument for r(d) shows we must end up in (v, y) at some point in the path.

Corollary 3.3. The support of a 2-d adinkra is exactly some $k \times l$ rectangle. In other words, the set of points in \mathbb{Z}^2 in the range of the bigrading map can be taken to the set of points (x, y), $0 \le x < l$, $0 \le y < k$.

Proof. If the support is not a rectangle, then there must be some coordinates (x, y) and (v, w) in the support such that one of the other two diagonal coordinates are missing. This violates Proposition 2.2.

3.3 Factored by the boundary

Now, we show the main classification theorem, which is that a 2-d adinkra is completely controlled by its boundary. Let the *left boundary* A_L and *right boundary* A_R of the rectangle be the subgraphs of A induced by vertices of A that occur at the sets $\{(i,0)|0 \le i < l\}$ and $\{(0,j)|0 \le j < k\}$ respectively. It helps to picture the normal Cartesian plane rotated 45 degrees ounterclockwise, because then adjectives refer to the direction of "movement": this way, the left boundary literally corresponds to the left-most vertices in the support rectangle and vice-versa for the right.

Figure 1: Tensoring the two adinkras here with the following identification gives a non-disconnected adinkra with 16 vertices.

Note that we can have both A_L and A_R be disconnected graphs. An example that we will often return to is displayed in Figure 1. However, we show that the disconnectedness is not really an issue:

Lemma 3.4. All disconnected components in A_L (and respectively A_R) are isomorphic as graded posets.

 $[\star\star\star \text{TODO}\star\star\star]$

Theorem 3.5. A 2-d adinkra A of type (n,k) is uniquely determined by A_L , A_R , and an identification of $V(A_L, 0)$ and $V(A_R, 0)$.

Here is another way to factor the adinkra:

Theorem 3.6. Pick any vertex $v \in V(A, (0,0))$. Let the connected component of the right boundary that v belongs to be labeled A_R^v ; similarly, let the connected component in the left boundary that v belongs to be labeled A_L^v . The adinkra A is uniquely determined by the vertices and edges of A_R^v and A_L^v .

Proof. Consider the color sequence d of any path from v to a vertex u in A_R^v . Pick any left-moving color c. Examine the sequence cd. Corollary 2.1 will force the cd_1 to end with the same x-axis displacement as d_1 , cd_1d_2 to end with the same x-axis displacement as d_1d_2 , etc. so inductively any color sequence cd will end with the same x-axis displacement as d. Using induction, we get that for every one of the elements u of A_L^0 , the right-moving (x-axis) colors starting at u forms a copy A_R^v whose x-axis positions are forced by the right boundary.

The key observation is that every element u of the adinkra can be reached starting at v via moving to an element of the left boundary and then using only right-moving moves (i.e. by taking l(d) for any color sequence d that goes from v to u). Because of the discussion in our previous paragraph, A_R^v and A_L^v uniquely tell us how to obtain the coordinates of u.

We will worry less about exact rankings right now with the following construction: for an 1-d adinkra A let Val(A) be the valise form of A. For any 2-d adinkra A with boundary pair (A_L, A_R) , the adinkra defined by the boundary pair $(Val(A_L), Val(A_R))$ is again a 2-d adinkra. We will abuse notation and call this new adinkra Val(A), and call such an adinkra (i.e. where the rectangle is a 2×2 square) a valise (2-d) adinkra. We seek the following theorem, which is very similar to Theorem 2.5

Corollary 3.7. A valise 2-d adinkra A of type (n, k) is uniquely determined by A_L , A_R , and an identification of $V(A_L, 0)$ and $V(A_R, 0)$. Furthermore, $|A_L| = |A_R| = 2^{n-k-1}$.

Figure 2: This is a tight valise which cannot be lifted.

Problem 1. What are all the 2-d adinkras A with the same valise adinkra Val(A)? Not all lifts are possible. For example, the adinkra in Figure 2 cannot be lifted to any non-valise form!

4 Quotienting

To understand quotients, we first define the homomorphism from one 2-d Adinkra to another. This will be similar to the definition of homomorphism of graphs [give some standard reference to this terminology].

Definition 4.1. Let $A_1 = (V_1, E_1, \chi_1, \Delta_1, g_{L1}, g_{R1})$ and $A_2 = (V_2, E_2, \chi_2, \Delta_2, g_{L2}, g_{R2})$ be 2-Adinkras with the same color set C. A homomorphism from A_1 to A_2 is a map

$$\phi: V_1 \to V_2$$

satisfying the following:

- If $(v, w) \in E_1$, then $\phi(v, w) \in E_2$ and $\chi_1(v, w) = \chi_2(\phi(v, w))$.
- If $v \in V_1$ then $g_{1L}(v) = g_{2L}(\phi(v))$.
- If $v \in V_1$ then $g_{1R}(v) = g_{2R}(\phi(v))$.

Note that there is no condition on the dashings Δ_1 and Δ_2 .

Define a even-split doubly-even (ESDE) code to be a doubly-even code isomorphic to a direct sum $C_L \oplus C_R$ of even codes. It was proved [?] that 1-d adinkras are ismorphic to quotienting the hamming cube H^n by a doubly-even code, so any adinkra A has a well-defined associated code C(A) that is uniquely determined by just the graph structure of the adinkra.

Our goal is to show

Theorem 4.2. The image of C of the set of 2-d adinkras are exactly the ESDE codes.

This answers a conjecture of Hübsch [].

To do this we need to show two things:

Proposition 4.3. Any valise 2-d adinkra A has C(A) equal to a ESDE code.

Proof. Note that the automorphism group of the adinkra is defined by the basepoint. \Box

Proposition 4.4. Any ESDE code defines a valise 2-d adinkra A.

Here are some other problems:

Problem 2. Given two values 1-d adinkras A_L and A_R of equal size, what identifications of $V(A_L, 0)$ and $V(A_R, 0)$ are possible?

Proof. Data: if we have $\{0,1\} \cup \{2,3\}$ on one side, the other side must be $\{0,2\} \cup \{1,3\}$.

 $[\star \star \star$ There are two kinds of quotienting that we can think of: one quotient is directly quotienting the mega hypercube adinkra by a ESDE code; one quotient is given the valise adinkra with associated A_L , A_R each with 2^{d+1} vertices, the necessary d-dimensional quotienting that occurs when we naively tensor the two parts (which gives 2^{2d} vertices in each corner, for 2^{2d+2} total vertices, when in the end we just want 2^{d+2} vertices. $\star \star \star$

5 ESDE Codes

In this section, we classify all ESDE codes.

```
[\star\star\star \text{TODO!} \star\star\star]
```

A Equivalence with other notions of 2-d Adinkras

If I read Tristan's stuff right, we can completely translate the combinatorial rules to: a 2-d adinkra (of dimension n) is a finite simple connected graph A such that:

- It is an 1-d adinkra (with the associated ranking, dashing, etc.).
- It has p+q=n colors, where the first p-colors are called "left-moving" and the second q-colors are called "right-moving."
- A coherence condition: for any cycle, we imagine the following sum: going up (here "up" comes from the grading we have from the engineering dimension in our ranking for the 1-d adinkra) a left-handed edge adds -1, and going up a right-handed edge adds 1; going down the edges give contributions with opposite signs. The sum of this around any cycle must be 0. (in particular, this rules out things like ambidextrous bow-ties)

Assuming I interpreted these rules correctly, now I can do combinatorics without needing any physics.

The first structural fact we can impose is a bi-grading that is compatible with the grading we already have from the 1-d adinkra structure, in the sense that the 1-d grading is simply one of the coordinates of our bi-grading.

Proposition A.1. A 1-d adinkra can be extended to a 2-d adinkra if and only if the 1-d adinkra has a bigrading to \mathbb{Z}^2 . This is a map $g: V \to \mathbb{Z}^2$, such that all left-moving edges correspond to displacements of (0,1) and right-moving edges correspond to displacements of (1,0).

Proof. Proof delayed until talking more with Kevin and Tristan about the easiest way to write things up to avoid reinventing wheels. \Box