Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования «СЕВЕРО-КАВКАЗСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

Институт цифрового развития Кафедра инфокоммуникаций

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №5 дисциплины «Основы программной инженерии»

	Выполнил: Магомедов Имран Борисович 2 курс, группа ПИЖ-б-о-22-1, 09.03.04 «Программная инженерия», направленность (профиль) «Разработка
	и сопровождение программного обеспечения», очная форма обучения ————————————————————————————————————
	Руководитель практики: <u>Воронкин Р.А., кандидат технических наук, доцент кафедры инфокоммуникаций</u>
	(подпись)
Отчет защищен с оценкой	Дата защиты

Тема: Условные операторы и циклы в языке Python

Цель работа: приобретение навыков программирования разветвляющихся алгоритмов и алгоритмов циклической структуры. Освоить операторы языка Python версии 3.х if, while, for, break и continue, позволяющих реализовывать разветвляющиеся алгоритмы и алгоритмы циклической структуры.

Методика и порядок выполнения работы

- 1. Изучить теоретический материал работы.
- 2. Создать общедоступный репозиторий на GitHub, в котором будет использована лицензия МІТ и язык программирования Python.

3. Выполните клонирование созданного репозитория.

```
Imran@HOME-PC MINGW64 /g/Другие компьютеры/Компьютер/СКФУ/Основное торная 5
$ git clone https://github.com/MarcusPlay/BSE_Python_2.git
Cloning into 'BSE_Python_2'...
remote: Enumerating objects: 5, done.
remote: Counting objects: 100% (5/5), done.
remote: Compressing objects: 100% (4/4), done.
remote: Total 5 (delta 0), reused 0 (delta 0), pack-reused 0
Receiving objects: 100% (5/5), done.
```

- 4. Организуйте свой репозиторий в соответствие с моделью ветвления git-flow.
- 5. Самостоятельно изучите рекомендации к оформлению исходного кода на языке Python PEP-8 (https://pep8.org/). Выполните оформление исходного примеров лабораторной работы и индивидуальных созданий в соответствие с PEP-8.
- 6. Проработайте примеры лабораторной работы. Создайте для каждого примера отдельный модуль языка Python. Зафиксируйте изменения в репозитории.

7. Приведите в отчете скриншоты результатов выполнения каждой из программ примеров при различных исходных данных, вводимых с клавиатуры.

Пример 1.

```
Examples > 👶 example_1.py > ...
    import math
      if __name__ == '__main__':
          x = float(input("Value of x? "))
          if x <= 0:
            y = 2 * x * x + math.cos(x)
    elif x < 5:
           y = x + 1
          else:
              y = math.sin(x) - x * x
          print(f"y = {y}")
           Value of x? 5
           y = -25.95892427466314
```

Пример 2.

```
Examples > 🍦 example_2.py > ...
       import sys
       if __name__ == '__main__':
            n = int(input("Введите номер месяца: "))
            if n == 1 or n == 2 or n == 12:
                print("3има")
            elif n == 3 or n == 4 or n == 5:
                print("Becha")
           elif n == 6 \text{ or } n == 7 \text{ or } n == 8:
                print("Лето")
           elif n == 9 \text{ or } n == 10 \text{ or } n == 11:
                print("Осень")
            else:
                print("Ошибка!", file=sys.stderr)
                exit(1)
             Введите номер месяца: 12
             Зима
```

Пример 3.

```
Examples > 🍦 example_3.py > ...
      import math
      if __name__ == '__main__':
           n = int(input("Value of n? "))
           x = float(input("Value of x? "))
           S = 0.0
          for k in range(1, n + 1):
               a = math.log(k * x) / (k * k)
               S += a
           print(f"S = {S}")
            Value of n? 5
            Value of x? 6
            S = 3.068814808882306
```

Пример 4.

```
Examples > 🝦 example_4.py > ...
      import math
      import sys
      if name == ' main ':
          a = float(input("Value of a? "))
          if a < 0:
              print("Illegal value of a", file=sys.stderr)
              exit(1)
          x, eps = 1, 1e-10
          while True:
              xp = x
              x = (x + a / x) / 2
              if math.fabs(x - xp) < eps:</pre>
                  break
          print(f"x = {x}\nX = {math.sqrt(a)}")
              Value of a? 3
              x = 1.7320508075688772
              X = 1.7320508075688772
```

Пример 5.

```
Examples > 🍦 example_5.py > ...
      import math
      import sys
      EULER = 0.5772156649015328606
      EPS = 1e-10
      if __na (variable) x: float
          if x == 0:
              print("Illegal value of x", file=sys.stderr)
              exit(1)
          a = x
          S, k = a, 1
          while math.fabs(a) > EPS:
              a *= x * k / (k + 1) ** 2
              S += a
              k += 1
          print(f"Ei({x}) = {EULER + math.log(math.fabs(x)) + S}")
                Value of x? 5
                Ei(5.0) = 40.18527535579794
```

8. Для примеров 4 и 5 постройте UML-диаграмму деятельности. Для построения диаграмм деятельности использовать веб-сервис Google https://www.diagrams.net/.

Пример 4.

Пример 5.

9. Выполните индивидуальные задания, согласно своему варианту. Для заданий повышенной сложности номер варианта должен быть получен у преподавателя.

Задание 1 (вариант – 12)

При покупке товара на сумму от 200 до 500 руб. предоставляется скидка 3%, при покупке товара на сумму от 500 до 800 - скидка 5%, при покупке товара на сумму от 800 до 1000 руб. - скидка 7%, свыше 1000 руб. - скидка 9%. Покупатель приобрел 8 рулонов обоев по цене X и две банки краски по цене X. Сколько он заплатил?

Код решения:

```
🍦 individual_task_1.py > ...
      def total_price(price: float):
           if (price < 200):
               return price
           elif (200 <= price < 500):</pre>
               return price * 0.97
           elif (500 <= price < 800):</pre>
               return price * 0.95
           elif (800 <= price < 1000):</pre>
               return price * 0.93
           elif (1000 <= price):</pre>
              return price * 0.91
      if _ name _ == "_ main _":
          x1 = int(input())
           x2 = int(input())
           print(total_price((8 * x1) + (2 * x2)))
```

UML-диаграмма для решения:

Задание 2 (вариант – 12)

Две окружности заданы координатами центра и радиусами. Сколько точек пересечения имеют эти окружности?

Код решения:

UML-диаграмма для решения:

Задание 3 (вариант - 12)

Покупатель должен заплатить в кассу S р. У него имеются 1, 2, 5, 10, 100, 500 р. Сколько купюр разного достоинства отдаст покупатель, если он начинает платить с самых крупных.

Код решения:

```
4 def how_much(S):
 if S >= 500:
  ···· print(f"500-{S // 500}шт", end='; ')
S = S \% 500
  if S >= 100:
10 print(f"100-{S // 100}ωτ", end='; ')
  S = S \% 100
12 \cdots if S >= 10:
  print(f"10-{S // 10}ωτ", end='; ')
 S = S \% 10
15 | ••• if S >= 5:
  print(f"5-{S // 5}ωτ", end='; ')
  S = S \% 5
18 | if S >= 2:
  print(f"2-{S // 2}ωτ", end='; ')
S = S \% 2
22 print(f"1-{S // 1}шт")
S = S \% 1
 if __name__ == "__main__":
27 ····S = int(input())
 how_much(S)
```

UML-диаграмма для решения:

10. Задача повышенной сложности.

Составить UML-диаграмму деятельности, программу и произвести вычисления вычисление значения специальной функции по ее разложению в ряд с точностью $\varepsilon=10^{-10}$, аргумент функции вводится с клавиатуры. Номер варианта необходимо получить у преподавателя. Интегральный гиперболический синус: $Shi(x)=\int_0^x \frac{\sinh x}{t}dt=\sum_{n=0}^\infty \frac{x^{2n+1}}{(2n+1)(2n+1)!}$

```
import math
 def shi(x, tolerance=1e-10):
 result = 0.0
 term = x
 n = 0
 while abs(term) > tolerance:
 result += term
 n += 1
 \cdots term *= (x * x) / ((2 * n + 1) * (2 * n))
 return result
21 x = int(input())
∃ print(shi(x))
```

- 11. Зафиксируйте сделанные изменения в репозитории.
- 12. Выполните слияние ветки для разработки с веткой main / master.
- 13. Отправьте сделанные изменения на сервер GitHub.

Контрольные вопросы

1. Для чего нужны диаграммы деятельности UML?

Диаграммы деятельности UML используются для визуализации и моделирования процессов и действий в системе, позволяя легче понимать, анализировать и проектировать бизнес-процессы.

2. Что такое состояние действия и состояние деятельности?

Состояние действия (action state) в диаграммах деятельности UML представляет мгновенное выполнение действия, а состояние деятельности (activity state) представляет набор действий, которые выполняются в течение некоторого времени.

3. Какие нотации существуют для обозначения переходов и ветвлений в диаграммах деятельности?

Для обозначения переходов используют стрелки, а для ветвлений - ромбы.

4. Какой алгоритм является алгоритмом разветвляющейся структуры?

Алгоритм разветвляющейся структуры — это алгоритм с условным оператором (if-else), который позволяет выполнять различные действия в зависимости от условия.

5. Чем отличается разветвляющийся алгоритм от линейного?

Разветвляющийся алгоритм имеет условный оператор и может выполнять различные действия в зависимости от условия, в то время как линейный алгоритм выполняет действия последовательно, без разветвлений.

6. Что такое условный оператор? Какие существуют его формы?

Условный оператор — это конструкция, позволяющая выполнять определенные действия в зависимости от выполнения условия. В Python, основные формы условного оператора: if, if-else, и if-elif-else.

7. Какие операторы сравнения используются в Python?

В Python используются операторы сравнения: '==' (равно), '!=' (не равно), '<' (меньше), '>' (больше), '<=' (меньше или равно), '>=' (больше или равно).

8. Что называется простым условием? Приведите примеры.

Простое условие — это условие, которое проверяет одну конкретную величину. Пример: if x > 5:.

9. Что такое составное условие? Приведите примеры.

Составное условие — это условие, состоящее из нескольких простых условий, объединенных логическими операторами. Пример: if x > 5 and y < 10:.

10. Какие логические операторы допускаются при составлении сложных условий?

Для составления сложных условий в Python используются логические операторы: and (логическое И), ог (логическое ИЛИ), и not (логическое НЕ).

11. Может ли оператор ветвления содержать внутри себя другие ветвления?

Да, оператор ветвления (например, if) может содержать внутри себя другие операторы ветвления, создавая вложенные структуры.

12. Какой алгоритм является алгоритмом циклической структуры?

Алгоритм циклической структуры — это алгоритм, в котором определенные действия выполняются многократно в цикле. Примеры: циклы for и while в Python.

13. Типы циклов в языке Python.

В Python существуют два основных типа циклов: цикл for (перебор элементов в итерируемом объекте) и цикл while (повторение действий до выполнения условия).

14. Назовите назначение и способы применения функции range.

Функция range используется для создания последовательности чисел в определенном диапазоне. Она может использоваться в циклах для управления повторением действий.

15. Как с помощью функции range организовать перебор значений от 15 до 0 с шагом 2?

for i in range(15, -1, -2):

16. Могут ли быть циклы вложенными?

Да, циклы могут быть вложенными, то есть один цикл может находиться внутри другого.

17. Как образуется бесконечный цикл и как выйти из него?

Бесконечный цикл образуется, когда условие цикла всегда истинно. Для выхода из него используется оператор break, который позволяет прервать выполнение цикла.

18. Для чего нужен оператор break?

Оператор break используется для прерывания выполнения цикла и выхода из него, даже если условие цикла остается истинным.

19. Где употребляется оператор continue и для чего он используется?

Оператор continue используется внутри циклов для пропуска текущей итерации и перехода к следующей итерации без выполнения оставшихся действий в текущей итерации.

20. Для чего нужны стандартные потоки stdout и stderr?

Стандартные потоки stdout (стандартный вывод) и stderr (стандартный вывод ошибок) используются для направления вывода информации и ошибок программы. stdout используется для нормального вывода, а stderr для вывода ошибок.

21. Как в Python организовать вывод в стандартный поток stderr?

Для вывода в стандартный поток ошибок (stderr) можно воспользоваться методом sys.stderr.write("Текст ошибки")` после импорта модуля sys.

22. Каково назначение функции exit?

Функция exit используется для завершения выполнения программы. Она позволяет передать код завершения и завершить выполнение программы с указанным кодом.