(NASA-CR-159812) CORE COMPRESSOR EXIT STAGE STUDY, 2 Final Report (Pratt and Whitney Aircraft Group) 90 p HC A05/MF A01 CSCL 21E

N80-23312

G3/07 Unclas 20299

NASA

CORE COMPRESSOR EXIT STAGE STUDY

II. FINAL REPORT

Бy

R.F. Behlke, E.A. Burdsall, E. Canal Jr. and N. D. Korn October 1979

> UNITED TECHNOLOGIES CORPORATION Pratt & Whitney Aircraft Group Commercial Products Division

> > Prepared for

NATIONAL AÉRONAUTICS AND SPACE ADMINISTRATION NASA-Lewis Research Center Contract NAS3-20578

FOREWORD

The study described herein was performed under NASA Contract NAS-3-20578 by the Pratt & Whitney Aircraft Group, Commercial Products Division, United Technologies Corporation, under the direction of Mr. N. T. Monsarrat, Program Manager. The NASA Project Manager was Mr. R. S. Ruggeri, NASA-Lewis Research Center, Fluid System Components Division, Fan and Compressor Branch. The work was performed during the period 20 October 1976 through 30 June 1979. The authors wish to acknowledge the participation and contributions in the fulfillment of this centract by Messrs. W. T. Hanley and H. A. Harmon of the Pratt & Whitney Aircraft Group and Ly Mr. C. L. Crockett of the United Technologies Research Center, Test Facilities Operations Group.

PRECEDING PAGE BLANK NOT FILMED

19

TABLE OF CONTENTS

<u>Title</u>	
	<u>Pages</u>
SUMMARY	1
INTRODUCTION	1
APPARATUS Aerodynamic Design Mechanical Design Instrumentation and Calibration	1 2 2 3 4
PROCEDURE Test Procedure Data Reduction Techniques	7 7 7
RESULTS AND DISCUSSION Overall Performance Stage Static Pressure Characteristics Spanwise Profiles	8 8 9 11
SUMMARY OF RESULTS	
REFERENCES	12
APPENDIXES	13
A Symbols and Abbreviations B Data Reduction Equations C Tabulation of Inlet and Exit Spanwise Test Data DISTRIBUTION LIST	53 55 61
STOLKIDGLION FIZE	83

LIST OF ILLUSTRATIONS

<u>Figure</u>	Title	Page
1	Schematic of the 3S1/3S2 Test Compressors	15
2	Photograph of a Typical Rotor Assembly	16
3	Photograph of a Typical Stator Assembly	17
4	Three-Stage Axial-Flow Compressor Rig Facility	18
5	Axial Locations of Instrumentation Planes for the 3S1 and 3S2 Compressors	19
6	Typical Total Pressure Rakes	20
7	Typical Total Temperature Rakes	21
8	Data Analysis Flow Chart	22
9	Comparison of 3S1 and 3S2 Overall Performance Based on Average of Six Repeat Test Speedlines	23
10	Adiabatic Efficiency and Pressure Ratio as Functions of Corrected Weight Flow for 3S1 Configuration at Design Speed	24
11	Adiabatic Efficiency as a Function of Pressure Ratio for 3S1 Configuration at Design Speed	25
12	Total Temperature Ratio as a Function of Corrected Weight Flow for 3S1 Configuration at Design Speed	26
13	Pressure Ratio and Adiabatic Efficiency as Functions of Corrected Weight Flow for 3S1 Configuration at 85 and 105 Percent Design Speed	27
14	Adiabatic Efficiency as a Function of Pressure Ratio for 3S1 Configuration at 85 and 105 Percent Design Speed	28
15	Temperature Ratio as a Function of Corrected Weight Flow for 3S1 Configuration at 85 and 105 Percent of Design Speed	29
	- · · · · · · · · · · · · · · · · · · ·	L.J

LIST OF ILLUSTRATIONS (Continued)

<u>Figure</u>	<u>Title</u>	Dago
16	Adiabatic Efficiency and Pressure Ratio as Functions of Corrected Weight Flow for 3S1 Configuration at Design Speed - Deterioration Check	Page 30
17	Adiabatic Efficiency as a Function of Pressure Ratio for 3S1 Configuration at Design Speed - Deterioration Check	31
18	Temperature Ratio as Function of Corrected Weight Flow for 3S1 Configuration at Design Speed-Deterioration Check	32
19	Adiabatic Efficiency and Pressure Ratio as Functions of Corrected Weight Flow for 3S2 Configuration at Design Speed	33
20	Adiabatic Efficiency as a Function of Pressure Ratio for 3S2 Configuration at Design Speed	34
21	Temperature Ratio as a Function of Corrected Weight Flow for 3S2 Configuration at Design Speed	35
22	Adiabatic Efficiency and Pressure Ratio as Functions of Corrected Flow for 3S2 Configuration at 85 and 105 Percent of Design Speed	36
23	Adiabatic Efficiency as a Function of Pressure Ratio for 3S2 Configuration at 85 and 105 Percent of Design Speed	37
24	Temperature Ratio as a Function of Corrected Weight Flow for 3S2 Configuration at 85 and 105 Percent Design Speed	38
25	Adiabatic Efficiency and Pressure Ratio as Functions of Corrected Weight Flow for 3S2 Configuration at Design Speed - Deterioration Check	
26	Adiabatic Efficiency as a Function of Pressure Ratio for 3S2 Configuration at Design Speed - Deterioration Check	39
	Or wordin dilect	40

LIST OF ILLUSTRATIONS (Continued)

Temperature Ratio as a Function of Corrected Weight Flow for 3S2 Configuration at Design	9 a g e
Speed - Deterioration Check	41
Pressure Rise Coefficient as a Function of Flow Coefficient for 3S1 Configuration at Design Speed	42
Pressure Rise Coefficient as a Function of Flow Coefficient for 3S2 Configuration at Design	43
Pressure Rise Coefficient as a Function of Flow Coefficient for 3S1 Configuration at 85 Percent Design Speed	44
Pressure Rise Coefficient as a Function of Flow Coefficient for 3S2 Configuration at 85 Percent	45
Pressure Rise Coefficient as a Function of Flow Coefficient for 3S1 Configuration at 105 Percent Design Speed	46
Pressure Rise Coefficient as a Function of Flow Coefficient for 3S2 Configuration at 105 Percent	17
Adiabatic Efficiency, Temperature Ratio, and Pressure Ratio as Functions of Percent Span for 3S1 and 3S2 Configurations at Peak Efficiency; Design	
Adiabatic Efficiency, Temperature Ratio, and Pressure Ratio as Functions of Percent Span for 3S1 and 3S2 Configurations at Near Stall; Design	
Inlet Total Pressure and Total Temperature as Functions of Percent Span for 3S1 and 3S2 Configurations at Peak Efficiency; Design Speed 50	
Inlet Tota! Pressure and Total Temperature as Functions of Percent Span for 3S1 and 3S2 Configurations at Near Surge; Design Speed 51	

LIST OF TABLES

Table		Pages
I	Principal Aerodynamic Design Parameters	2
II	Performance Instrumentation	5
III	Overall Performance Summary	9

CORE COMPRESSOR EXIT STAGE STUDY

II. FINAL REPORT

by

R. F. Behlke, E. A. Burdsall, E. Canal, Jr. and N. D. Korn Pratt & Whitney Aircraft Group

SUMMARY

Tests were conducted on two three-stage compressors, designed with aspect ratios of 0.81 and 1.22, to acquire detailed overall aerodynamic performance data on the effects of aspect ratio in high hub-tip ratio stages, similar to those at the rear of advanced multistage compressors. Both compressors were designed for 15 percent surge margin. The 0.81 aspect ratio compressor (3S1) was designed for a higher pressure ratio than the 1.22 aspect ratio compressor (3S2) in recognition of the increased capability believed to exist at lower aspect ratios.

The test results showed that the 0.81 aspect ratio compressor exceeded its design surge margin by nine percent despite its higher design loading and demonstrated a peak adiabatic efficiency of 86.1 percent. The 1.22 aspect ratio compressor achieved a higher peak efficiency level (87.0 percent) than the 0.81 aspect ratio compressor, but fell short of its surge margin goal by three percent. The lower aspect ratio compressor exhibited greater efficiency in the endwall regions and a depressed efficiency in the midspan regions. The first stage of the lower aspect ratio compressor exhibited a stalled static pressure characteristic while all three stages of the higher aspect ratio compressor stalled uniformly but below their peak design level.

INTRODUCTION

Compressors for advanced aircraft turbofan engines must combine high efficiency with adequate stability margin in a compact, light-weight configuration. Pratt & Whitney Aircraft experience (ref. 1) with single and multistage compressors suggests that low aspect ratio airfoils have the potential to meet these requirements by combining high loading capability with previously developed low endwall loss technology. A test program was devised to determine the benefits of low aspect ratio in the high hub-tip ratio rear stage environment of an advanced multistage compressor. The aerodynamic configuration chosen for testing was based on the last three stages of the eight-stage, Advanced Multistage Axial Flow Compressor (AMAC) studied under a previous contract (ref. 2). A low Mach number three-stage rig was selected as the test vehicle.

This report presents the results of both the 0.81 aspect ratio (3S1) compressor and the 1.22 aspect ratio (3S2) compressor tests. Details of the design of each of these compressors are presented in ref. 3.

AERODYNAMIC DESIGN

Two three-stage compressors, designated 3S1 and 3S2, were designed to demonstrate improved blading for the rear stages of highly loaded, advanced core compressors. A schematic of the 3S1 and 3S2 compressors is shown in Figure 1. The average aspect ratio of the 3S1 configuration was 0.81, the overall pressure ratio at design speed was 1.35, and the average diffusion factor (D Factor) was 0.529. The 3S2 configuration was similar to 3S1, but was designed for a fifty percent higher aspect ratio (1.22). The principal aerodynamic design parameters of the 3S1 and 3S2 compressors are given in Table I. The design mean wheel speed, tip diameter, and flow capacity were established to be compatible with the limitations of an existing test facility.

TABLE I
PRINCIPAL AERODYNAMIC DESIGN PARAMETERS

<pre>lnlet Corrected Flow; kg/sec</pre>	$\frac{3S1}{4.30(9.47)}$	3S2 4.30 (9.47)
Corrected Mean Wheel Speed, 50 percent Span; m/sec (ft/sec)	167 (547)	167 (54:)
Pressure Ratio	1.357	1.324
Overall Adiabatic Efficiency, %	88.30	88.70
Aspect Ratio, Average	0.81	1.22
Solidity, Average	1.10	1.10
Inlet Hub-Tip Ratio	0.915	0.915
Exit Hub-Tip Ratio	0.915	0.915
Work Coefficient -E-, Average	0.702	0.644
Flow Coefficient - Cx/U, Average	0.440	0.444
(50 percent Span)		
D Factor, Average*	0.529	0.491
P/(Po-P), Average	0.497	0.467
Tip Clearance, Average cm (in.) Reaction	0.033 (0.013) 0.517	0.033 (0.013) 0.517

*D Factor Average = Sum of mass average diffusion factors from streamline analysis for the various blade rows divided by the number of blade rows.

The aerodynamic design (see ref. 3) was performed in three steps. First, the analytical design system was adjusted to ensure performance agreement with data from tests of three-stage compressors similar to the 3S1 configuration. Next a preliminary design based on a meanline approach provided a rough flow path and average aerodynamic quantities. Finally a detailed full-span design, which utilized a streamline calculation procedure, was used to set blading geometry and finalize flow-path dimensions. Circular arc mean camber line airfoils with a 65 series thickness distribution were chosen for all rows because of their excellent low Mach number performance characteristics.

MECHANICAL DESIGN

Compressor Rig

The basic mechanical design of the 3S1 and 3S2 compressor rigs (see ref. 3) consisted of an assembly of interlocking aluminum rings, which formed the compressor case, and a set of aluminum wheels, which were keyed to a central shaft and formed the compressor hub. The 3S1 compressor assembly is shown as the top half of the schematic in Figure 1 and 3S2 as the lower half. A rotating drum design consisting of a rotor assembly supported by bearings at the front and rear of the compressor was used for the inner portion of the rig. The rotor assembly consisted of a stack of aluminum rotor blade carrier and spacer wheels keyed to a central shaft threaded at both ends. The stator assembly consisted of a stack of interlocking stator vane carrier and spacer rings. The parts were secured in place by steel endplates clamped together by tie rods.

All blading was cast using an aluminum alloy material, A356-T6. Blading attachment was accomplished by means of a bolt, which secured the blade or vane to the blade or vane carrier. Typical rotor and cantilevered stator assemblies are shown in Figures 2 and 3, respectively.

Test Facility

The compressor test facility, located at the United Technologies Research Center, consists of the compressor drive system, the inlet and discharge flow ducting, and the data acquisition system. The drive system and compressor are located within a test cell. The operating controls, monitoring instrumentation, and data acquisition system are located in a separate control room.

The major components of the compressor drive system are a DC electric motor and a speed-increasing gearbox. An automatic speed control is utilized to maintain speed at a preset value.

Filtered ambient air is ducted into the test cell and through a plenum that provides uniform pressure and temperature distributions at the compressor inlet. A throttle downstream of the compressor controls the rate of airflow through the compressor. The flow is exhausted through a duct containing a silencer to reduce noise levels before discharging to the atmosphere. The facility is shown schematically in Figure 4.

The Computerized Precision Acquisition Sequencing System (COMPASS) is used for control, acquisition, and recording of the experimental data. Utilizing a minicomputer for control of the data acquisition sequences, COMPASS can acquire parameters that include identification information and calibration data, as well as analog and digital transducer data. The system is self calibrating via primary and secondary pressure and voltage standards and is capable of a pressure measurement accuracy of ±0.10 percent of full scale reading and a temperature measurement accuracy of ±0.140C (±0.250F).

INSTRUMENTATION AND CALIBRATION

Compressor Performance Instrumentation

Rig instrumentation was selected to obtain overall compressor performance. Wall static pressures were incorporated to evaluate individual rotor as well as individual stage characteristics relative to design values. Figure 5 shows the locations of the overall performance instrumentation as well as the location of the inter-blade row static pressure taps.

Compressor airflow was calculated from measured total and static pressures in an axial plane close to the belimouth exit defined in Figure 1 as station 0. Total temperatures used in the calculation were obtained from probes at the compressor inlet instrumentation plane, station 1 (Figure 5). Prior to the rig test program, a detailed flow calibration was performed in which radial traverses in four circumferential locations were made at several flow rates. The data were integrated to establish the true flow at the rig inlet flow measuring plane. The true flow was then correlated with the flow calculated from the midspan inestrumentation used during the tests and the correlation was used to establish a flow coefficient which was applied to all data, resulting in an accuracy within one percent of the true flow.

Compressor rotor speed was measured by means of a magnetic pickup. A tachometer converted the pulse rate from the pickup into rotor speed in rpm. Accuracy was within 0.1 percent.

Pressures from pole rakes in the inlet and discharge and from static pressure taps were sensed by gage type analog pressure transducers mounted in multiport scarning valves. These pneumatic switches were also used to apply known pressures produced by the calibration hardware to the appropriate pressure transducers. The accuracy of the pressure measurement system was 0.1 percent of full-scale reading.

All temperatures were measured by Chromei-Alumei Type K thermocouples. Each thermocouple wire was individually calibrated to establish its unique properties relative to the 1968 International Temperature Scale. The temperature measurement system is accurate to ± 0.14 (± 0.25).

Compressor inlet and exit total pressure and temperature radial rakes consisted of both five and four element probes. Thus, pressures and temperatures were sampled at nine radial locations. Typical pressure and temperature rakes are shown in Figures 6 and 7. The location, number, and type of performance instrumentation used are given in Table II.

TABLE 11

PERFORMANCE INSTRUMENTATION COMPRESSORS 3S1 AND 3S2

		The second secon		
Instr. Plane <u>Location</u>	Paramoter <u>Measured</u>	Type. Quantity and Radial Location	Circumforential Position Angle - CW From TDC From Rear	
Station O (Flow Mea- suring Station	Po	8 miniature single keilhead probes located at midspan	450, 900, 1350, 1800 2250, 2700, 3150, 00	
	P	8 outer wall static taps	150, 600, 1050, 1500 1950, 2400, 2850, 3300	
	Р	8 inner wall static taps	15°, 60°, 105°, 150° 195°, 240°, 285°, 330°	
Station 1 (Compressor Inlet)	Po	3-five element rakes, keilhead sensors at 5, 20, 50, 80 and 95% span.	110°, 230°, 350°	
		3-four element rakes, Keilhead sensors at 10, 30, 70, and 90% span.	50°, 170°, 290°	
	To	6-five element rakes, T/C sensors at 5, 20, 50, 80 and 95% span. 6-four element rakes, T/C sensors at 10, 30, 70, and 90% span.	35°, 95°, 155°, 215° 275°, 335° 5°, 65°, 125°, 185°, 245°, 305°	
	P	6-outer wall static taps	20 ⁰ , 80 ⁰ , 140 ⁰ , 200 ⁰ 260 ⁰ , 320 ⁰	
		6-inner wall static taps	20°, 80°, 140°, 200° 260°, 320°	
Station 2 (IGV-R1)	Р	4-outer wall static taps	600, 1500, 2400, 3300	
Station 3 (R1-S1)	Р	4-outer wall static taps	600, 1500, 2400, 3300	
Station 4 (S1-R2)		4-outer wall static taps	60°, 150°, 240°, 330°	
Station 5 (R2-S2)	P	4-outer wall static taps	600, 1500, 2400, 3300	

TABLE II (Cont'd)

PERFORMANCE INSTRUMENTATION COMPRESSOR 3S1 AND 3S2

Instr.		CUMPRESSOR 3S1	AND 3S2
Plane Location	Paramete Maasured	P Type e	Circumferential Position Angle - CW From
Station 6 (S2=R3)	Р	4-outer wall static	TDC From Rear 600, 1500, 2400, 3300
Station 7 (R3-S3)	p	4-outer wall static	600, 1500, 2400, 3300
Station 8 (Downstream) of S3)	Р	1-outer wall static taps	600, 1500, 2400, 3300
Station 9 (Compressor Exit)	Po*	6-five element rakes, keilhead sensors at 5, 20, 50, 80 and 95% span	5.50, 66.60 121 06
		6-four element rakes, keilhead sensors at 10, 30, 70, and 90% span	32.10, 53, 156.30 215.6 239.90, 331.00
7	`o*	6-five element rakes, T/C sensors at 5, 20, 50, 80 and 95% span	53.2°, 107.7°, 168.8°, 229.9°, 291.0°, 352.2°
		6-four element rakes, T/C sensors at 10, 30, 70 and 90% span.	18.8°, 79.9°, 141.0°, 202.1°, 256.6°, 317.7°
P		6-outer wall static taps	12.10, 73.20, 131.00, 192.10, 249.90, 311.00
*This instrument ===	.	6-inner wall static taps	12.1°, 73.2°, 131.0°, 192.1°, 249.9°, 311.0°
stator wake and	on was	located circums	2 311.00

*This instrumentation was located circumferentially to access a discharge

Rig Safety Instrumentation

Instrumentation was incorporated to monitor rig and drive motor vibrations, bearing temperatures, rotor/case rub, vane/drum rub, and compressor surge.

PROCEDURES

TEST PROCEDURE

The test program consisted of a shakedown run, the performance program, a program to measure running tip clearance, and a data validity check to identify possible performance deterioration during the test program.

Shakedown tests were conducted to substantiate the mechanical integrity of the rig and to verify that the instrumentation hookup and the data acquisition and reduction systems were functioning properly.

The performance program consisted of obtaining six sets of speedlines at each of three separate speeds: 85, 100, and 105 percent of design speed. This procedure ensured statistically accurate average speedlines. In addition, surge points were obtained for each speed.

Dynamic rotor tip clearances were calculated from measurements of the long blade clearances at 18, 85, 100, and 105 percent rotor speed. Measurements were recorded for each rotor at six circumferential locations.

The data validity program consisted of six sets of speedlines at 100 percent of design speed to verify that overall compressor performance had not deteriorated during the test program.

DATA REDUCTION TECHNIQUES

Data reduction programs developed at Pratt & Whitney Aircraft were used to process the overall performance, stage performance, rotor performance, and radial profiles for the two compressors. Raw data from the test stand were recorded in millivolts on magnetic tape for subsequent processing. Preliminary processing converted the millivolt data into engineering units, applied wire calibrations to thermocouple readings, applied Mach number calibrations to pressure and temperature measurements, performed circumferential mass averaging, corrected the data to standard inlet conditions, calculated overall performance, and punched cards.

The punched cards produced by the data reduction program were used in two data-analysis programs. The first program modified flow and performance measurements by correcting for probe and inlet losses. This program provided corrected performance cards which were fed into a performance plotting and averaging program. Overall performance for each compressor was based upon the arithmetic average of six repeat speed-lines each at 85, 100, and 105 percent of design speed. Spanwise profiles for each compressor were taken from the speedline closest in performance to the average. The second data analysis program calculated stage and rotor static pressure characteristics. The flow of information from test stand through analysis is shown in Figure 8. Details of the data correction and performance calculations are given in Appendix B.

RESULTS AND DISCUSSION

Overall performance, stage and rotor static pressure characteristics; and profiles of inlet and discharge spanwise pressure, temperature and efficiency are presented in this section. The 3S1 and 3S2 compressor test results are compared with each other and with design goals.

OVERALL PERFORMANCE

Overall Performance of 351 Compared With 352

The overall performance (pressure ratio and efficiency as functions of flow) for both the 3S1 and 3S2 compressors are compared in Figure 9. The characteristics shown for each compressor are averages of six

The 3S1 (0.81 aspect ratio) compressor had a one percent lower peak efficiency than the 3S2 configuration, but a greater peak pressure rise and a greater flow range and, as a consequence, a twelve percent higher surge margin. The lower aspect ratio compressor achieved a design speed peak overall adiabatic efficiency of 86.1 percent at a flow of 4.36 kg/sec (9.62 lbm/sec) and a pressure ratio of 1.346. The 1.22 aspect ratio compressor, 3S2, attained a design speed peak overall adiabatic efficiency of 87.0 percent at a flow of 4.35 kg/sec (9.58 lbm/sec) and a pressure ratio of 1.314. Overall performance at design speed is summarized in Table III for each compressor at design speed.

The efficiency of both compressors decreased when speed was increased, but the decrease was greater for the lower aspect ratio compressor. The peak efficiency of 3S1 dropped 0.9 percentage points between 85 percent and 105 percent of design speed. The 3S2 efficiency drop was 0.35 percentage points when speed was increased over the same range. Surge margin to peak efficiency was 24 percent for 3S1 and 12.4 percent for 3S2 at the design speed. Surge margin to the peak efficiency point increased as speed was increased for both compressors. The surge margin of 3S1 was 20.5 percent at 85 percent speed and 27.7 percent at 105 percent speed. Surge margin of 3S2 increased from 9.04 percent at 85 per percent speed to 13.6 percent at 105 percent speed.

Because of fabrication tolerances, the measured average running clearance was 0.037 cm (0.014 in.) for the 3S1 compressor and 0.043 cm (0.017 in.) for the 3S2 configuration.

Plots of efficiency and pressure ratio versus corrected flow, efficiency versus pressure ratio, and temperature ratio versus corrected flow are presented for both compressors at 85, 100, and 105 percent of design speed in Figures 10 through 27. These plots display all of the performance program and deterioration check run data points. The scatter in efficiency measurements can be seen to be generally within ± 0.35 percentage points. No deterioration of performance was noted for either

TABLE III

OVERALL PERFORMANCE SUMMARY

		3\$1	3	3S2
Inlet Corrected Flow.	Test	Design	Test	Design
kg/sec !bm/sec	4.28 9.43	4.30 9.47	4.35 9.58	4.30 9.47
Design Corrected Flow, %	99.58	100.0	101.16	100.0
Corrected Flow Per Unit Inlet Annulus Arga,				
kg/m²-sec lbm/ft²-sec	89.61 18.35	90.05 18.43	91.10 18.65	90.05 18.43
Pressure Ratio—at Peak Efficiency	1.346	1.357	1.314	1.324
Surge Margin (From Peak Efficiency), %	24.0	15.0	12.4	15.0
Adiabatic Efficiency, %	86.1	88.3	87.0	88.7
Average Running Tip Clearance				
cm in.	0.0366 0.0144	0.033 0.013	0.0427 0.0168	0.033 0.013
Average Tip Clearance/ Average Span	0.014	0.0126	0.0163	0.0126
Average Tip Clearance/ Average Chord	0.0112	0.0101	0.0199	0.0154

STAGE STATIC PRESSURE CHARACTERISTICS

Comparison Between 3S1 and 3S2 Compressors

The stage static pressure coefficient versus flow coefficient curves presented in Figures 28 and 29 display significant differences between the two compressors. The second and third stage of the 3S1 compressor speed about 10 percent greater peak pressure coefficient at design peak pressure ratio appears to be the source of the higher surge margin of the lower aspect ratio design. The first stage of 3S1 peaked prior to surge and differs from the other lower aspect ratio stages in that to more representative multistage conditions and should be more indicative of the performance potential for their respective aspect ratios in

a multistage environment. All stages tested fell away slightly from their design pressure rise as surge flow was approached, but the extremely peaked nature of the first 3S1 stage characteristic suggests that it_might be improved by rematching.

The 3S1 and 3S2 rotor characteristics are shown in Figure 28 through 33 for 85, 100, and 105 percent speed. The 100 percent speed characteristics of the 3S1 rotors and stages, Figure 28, are similar in shape and in relative level trends. The prematurely peaked first rotor appears to be the cause of the stalled first-stage characteristic. The second- and third-stage characteristics are below design level, possibly due to poor inlet conditions from the first stage, but closely follow the design shape. The first two 3S2 rotors, Figure 29, follow their respective stage design characteristic trends quite closely, but the last rotor shows a more vertically sloped pressure rise than either its design characteristic or the test characteristics of the other two stages. After the test it was discovered that the stator 3 leading edge static pressure tap used to determine the static pressure rise of the last stage rotor was located inside the vane row. It was concluded that this tap was measuring part of the stator pressure rise, producing excessively high values. The agreement of the three stage characteristics and the first and second rotor characteristics with design, and the mislocated static pressure tap makes it safe to assume that the third 3S2 rotor was also close to design.

Rotor and stage performance at 85 and 105 percent speed, Figures 30 through 33, shows the same trends as in the 100 percent speed results for both compressors.

Compessor 3S1 Characteristics Compared With Design

The static pressure-rise characteristics of the 3S1 compressor are compared with design values in Figures 28, 30 and 32 at 100, 85 and 105 percent design speed, respectively. The first stage is ten percent close to meeting peak pressure rise while the other two stages come close to meeting their design goals, but at a lower flow coefficient. This falloff of characteristic relative to design but eventual attainment of design level at lower flow coefficient implies an increase in blockage which delays the achievement of peak pressure level. The characteristic shapes for all three stages agree well with design from the surge).

Compressor 3S2 Characteristics Compared With Design

The static pressure-rise characteristics of the 3S2 compressor are compared with design values in Figures 29, 31, and 33 at 100, 85, and 105 percent of design, respectively. All stages are close to their design intent at flows from wide open to peak efficiency (fourth point from surge) at all speeds. At flows below peak efficiency, however, the pressure characteristics are 'ow and prematurely peaked by the same

amount relative to design in all three stages at all speeds. These data also show that although premature surge occurred at all speeds tested, all three stages appear to have surged/stalled at about the same time.

The weak first-stage characteristic, relative to the second and third stages, exhibited in the 3S1 test is not present in this uniform 3S2 result, but the peak pressure rise deficit in all three stages of the 3S2 produced significantly less surge margin.

SPANWISE PROFILES

Comparison of 3S1 and 3S2 Spanwise Profiles

Spanwise profiles of pressure ratio, temperature ratio, and efficiency indicate that an increased loading design at reduced aspect ratio flattens discharge radial pressure and temperature profiles and decreases endwall losses. Circumferentially mass averaged discharge radial profiles are shown for peak efficiency in Figure 34. The efficiency of 3S1 was improved in the endwalls, but the improvement was offset by a decrease in core-flow efficiency. Compared with 3S2, the 3S1 lower aspect ratio compressor showed an improvement of 2.4 percentage points in efficiency at the inner wall, a 0.4 percentage point improvement at the outer wall, and a decline in efficiency of 4.0 percentage points at 50 percent span.

Discharge profiles for the 3S1 compressor were significantly flatter than those of the higher aspect ratio compressor. The efficiency profiles of 3S2 was 11.5 percentage points greater at midspan than at the inner wall. In contrast, the efficiency of 3S1 varied by only five percentage points from midspan to either wall. In temperature profile, 3S2 varied about twice as much as 3S1 over the same spanwise extent. In pressure, while the magnitude of the spanwise variation was similar, the shapes were different. The pressure profile of the lower aspect ratio compressor, 3S1, was flat between 20 and 80 percent span while the profile of the higher aspect ratio compressor, 3S2, was peaked in the center.

At near surge, the exit profiles for both compressors tended to flatten and show more similarity than at peak efficiency, as shown in Figure 35. These data indicate that 3S2 demonstrated less root temperature rise near surge than at peak efficiency.

The flatter exit profiles for the 3S1 compressor at peak efficiency, and for both compressors as they were throttled toward surge, indicate that secondary mixing was taking place. The increase of this effect with longer chord and increased loading corresponds to classical secondary loss theories. The increased endwall efficiency with lower aspect ratio could be due to the transport of low momentum air to the depressed efficiency core. However, further testing is required to ascertain whether this core efficiency drop is an inherent efficiency penalty of low aspect ratio blading or a recoverable matching effect.

The slight waviness of the spanwise profiles in Figures 34 and 35 was caused by circumferential variations in the pressure and temperature, which were sampled by the 4 and 5 element probes used to form one composite spanwise profile. Although previous testing been determined that the instrumentation used accurately measures average performance, its use was not intended to produce high resolution circumferential and radial information.

Inlet pressure and temperature profiles at peak efficiency and near surge for both compressors are compared in Figures 36 and 37, respectively, and indicate no significant differences in inlet conditions between the two tests. Tabulations of additional spanwise inlet and exit pressure and temperature data for 3S1 and 3S2 compressor are presented in Appendix "C". These data are for performance points at 85, 100, and 105 percent speeds, being representative of the six repeated speed lines at each speed.

SUMMARY OF RESULTS

Two three stage compressors, representative of the rear stages of advanced compressors, were tested to evaluate the effect of blade aspect ratio on aerodynamic performance. The design aspect ratio of both blades and vanes was 0.81 for the compressor designated 3S1 and was 1.22 for the compressor designated 3S2. The test produced the following principal results.

- 1. The 0.81 aspect ratio compressor demonstrated 12 percent higher surge margin but 0.9 percentage points lower efficiency than a 1.22 aspect ratio compressor of similar design.
- 2. The lower aspect ratio compressor had higher efficiency in the end-wall regions and flatter spanwise exit pressure and temperature profiles than the higher aspect ratio compressor.
- 3. The lower aspect ratio compressor exceeded its design surge margin goal by nine percentage points while the higher aspect ratio compressor was three percentage points low. This suggests that improved efficiency may be attainable at the lower aspect ratio by utilizing the demonstrated excess surge margin to redesign for a higher pressure ratio. In addition, the observed poor match of the first stage could be improved.
- 4. A secondary flow mixing process, which transports low momentum fluid from the endwall region to the core flow regions and is enhanced by increased chord and loading, could be responsible for the flattening of the profiles of 3S1 and both the increased endwall region efficiency and decreased midspan efficiency of 3S1 relative to 3S2. This mechanism could also explain the profile flattening for both compressors as surge is approached.

REFERENCES

- Behlke, R. F., Brooky, J. D.; and Canal, E.: "Study of Blade Aspect Ratio on a Compressor Front Stage - Final Report," NASA CR-159556
- Marman, H. V. and Marchant, R. D., "Preliminary Compressor Design Study for Advanced Multistage Axial Flow Compressors - Final Report," NASA CR-135091, PWA-5318, 1976.
- 3. Burdsall, E. A.; Mal, E.; and Lyons, K. A., "Core Compressor Exit Stage Study I Aerodynamic and Mechanical Design," NASA CR-159714, PWA-5561-55.

Figure 1 Schematic of the 3SI/3S2 Test Compressors

H

Figure 2 Photograph of a Typical Rotor Assembly

ORIGINAL PAGE IS OF POOR QUALITY

Figure 3 Photograph of a Typical Stator Assembly

THE FOOR QUALTER

Figure 4 Three-Stage Axial-Flow Compressor Rig Facility

Axial Locations of Instrumentation Planes for the 3S1 and 3S2 Compressors Figure 5

19

Figure 6 Typical Total Pressure Rakes

Figure 7 Typical Total Temperature Rakes

OF JERRY CHAINS

Figure 8 Data Analysis Flow Chart

Figure 9 Comparison of 3S1 and 3S2 Overall Performance Based on Average of Six Repeat Test Speedlines

Figure 10 Adiabatic Efficiency and Pressure Ratio as Functions of Corrected Weight Flow for 3S1 Configuration at Design Speed

Figure 11 Adiabatic Efficiency as a Function of Pressure Ratio for 3S1 Configuration at Design Speed

Figure 12 Total Temperature Ratio as a Function of Corrected Weight Flow for 3S1 Configuration at Design Speed

Figure 13 Pressure Ratio and Adiabatic Efficiency as Functions of Corrected Weight Flow for 3S1 Configuration at 85 and 105

DATA POINT NUMBER

Figure 14 Adiabatic Efficiency as a Function of Pressure Ratio for 3S1 Configuration at 85 and 105 Percent Design Speed

Figure 15 Temperature Ratio as a Function of Corrected Weight Flow for 3S1 Configuration at 85 and 105 Percent of Design Speed

Figure 16 Adiabatic Efficiency and Pressure Ratio as Functions of Corrected Weight Flow for 3S1 Configuration at Design Speed - Deterioration Check

Figure 17 Adiabatic Efficiency as a Function of Pressure Ratio for 3S1 Configuration at Design Speed - Deterioration Check

Figure 18 Temperature Ratio as Function of Corrected Weight Flow for 3S1 Configuration at Design Speed - Deterioration Check

Figure 19 Adiabatic Efficiency and Pressure Ratio as Functions of Gorrected Weight Flow for 3S2 Configuration at Design Speed

Figure 20 Adiabatic Efficiency as a Function of Pressure Ratio for 352 Configuration at Design Speed

Figure 21 Temperature Ratio as a Function of Corrected Weight Flow for 3S2 Configuration at Design Speed

Figure 22 Adiabatic Efficiency and Pressure Ratio as Functions of Corrected Flow for 3S2 Configuration at 85 and 105 Percent of Design Speed

DATA POINT NUMBERS

Figure 23 Adiabatic Efficiency as a Function of Pressure Ratio for 3S2 Configuration at 85 and 105 Percent of Design Speed

Figure 24 Temperature Ratio as a Function of Corrected Weight Flow for 3S2 Configuration at 85 and 105 Percent Design Speed

Figure 25 Adiabatic Efficiency and Pressure Ratio as Functions of Corrected Weight Flow for 3S2 Configuration at Design Speed - Deterioration Check

Figure 26 Adiabatic Efficiency as a Function of Pressure Ratio for 3S2 Configuration at Design Speed - Deterioration Check

Figure 27 Temperature Ratio as a Function of Corrected Weight Flow for 3S2 Configuration at Design Speed - Deterioration Check

į

Figure 28 Pressure Rise Coefficient as a Function of Flow Coefficient for 3S1 Configuration at Design Speed

Figure 29 Pressure Rise Coefficient as a Function of Flow Coefficient for 3S2 Configuration at Design Speed

Figure 30 Pressure Rise Coefficient as a Function of Flow Coefficient for 3S1 Configuration at 85 Percent Design Speed

Figure 31 Pressure Rise Coefficient as a Function of Flow Coefficient for 3S2 Configuration at 85 Percent Design Speed

Figure 32 Pressure Rise Coefficient as a Function of Flow Coefficient for 3S1 Configuration at 105 Percent Design Speed

Figure 33 Pressure Rise Coefficient as a Function of Flow Coefficient for 3S2 Configuration at 105 Percent Design Speed

Figure 34 Adiabatic Efficiency, Temperature Ratio, and Pressure Ratio as Functions of Percent Span for 3S1 and 3S2 Configurations at Peak Efficiency; Design Speed

Adiabatic Efficiency, Temperature Ratio, and Pressure Ratio as Functions of Percent Span for 3S1 and 3S2 Configurations at Near Stall; Design Speed

Figure 36 Inlet Total Pressure and Total Temperature as Functions of Percent Span for 3S1 and 3S2 Configurations at Peak Efficiency; Design Speed

Figure 37 Inlet Total Pressure and Total Temperature as Functions of Percent Span for 3S1 and 3S2 Configurations at Near Surge; Design Speed

APPENDIX A

SYMBOLS AND ABBREVIATIONS

```
Area. meters ^2 (feet^2)
                     Aerodynamic Set Point (rig speed and throttle setting)
ASP
                     Chord, cm (in)
                     Diffusion factor
                         for rotor:
                            D = 1 - \frac{V'_3}{V'_2} + \frac{r_3 V_{\theta} 3 - r_2 V_{\theta} 2}{(r_2 + r_3)_{\theta} V'_2}
                            for stator:
                            D = 1 - \frac{V_4}{V_3} + \frac{r_3 V_0 3 - r_4 V_0 4}{(r_3 + r_4)_{\circ} V_3}
                        Work Coefficient
E
                      Inlet Guide Vane
IGV
                      Rotor Speed, revolutions per minute
N
                      Static Pressure (absolute), N/m<sup>2</sup> (1bf/ft<sup>2</sup>)
P
                      Total or Stagnation Pressure (absolute), N/m2 (1bf/ft2)
                      Pressure Ratio
                      Static Pressure Rise, N/m<sup>2</sup> (1bf/ft<sup>2</sup>)
ΔP
                      Radius, cm (in)
r
                      Blade spacing (circumferential), cm (in)
Temperature, K (OF)
 S
                      Temperature Ratio
 Tr
                      Total or Stagnation Temperature, K (OF)
 To
                      Rotor tangential velocity, m/sec (ft/sec)
 U
                      Air Velocity, m/sec (ft/sec) Weight Flow, kg/sec (lbm/sec)
 ٧
 W
                       Specific Heat Ratio
 7
                       Total Pressure/Standard Day Total Pressure
                       Total Temperature/Standard Day Total Temperature
                       Efficiency
 η
                       Solidity, b/s
                       Density, kg/m^3 (1bm/ft<sup>3</sup>)
                       Stage Static Pressure Rise Coefficient, (See App. B)
                       Stage Flow Coefficient, (See App. B)
```

APPENDIX A (Cont'd)

Subscripts ad Adiabatic an Annulus av Average cor Corrected to Standard Day m Midspan nom Nominal **z** Axial Component Tangential Component Total or Stagnation condition Inlet Station First Rocor Inlet 0 1 2 First Stator Inlet Second Rotor Inlet Second Stator Inlet Third Rotor Inlet

Third Stator Inlet

Exit Station

Superscripts

Relative to Rotor Mass Averaged

APPENDIX B

DATA REDUCTION EQUATIONS

DATA CORRECTION AND MASS AVERAGING

All measurements were corrected to the nominal test speed and NASA standard sea level inlet total pressure and temperature. Exit total temperature and pressure data at each radius were corrected using the relationships:

(1)
$$T_0 = K_T$$

$$\begin{cases} 1 + \begin{bmatrix} T_0, \text{ test} \\ T_0, \text{ inlet} \\ \text{(mass av)} \end{bmatrix} - 1 \end{bmatrix} \begin{bmatrix} \frac{N_{cor, nom}}{N_{cor, test}} \end{bmatrix} \end{cases}$$
(2) $P_0 = K_P$

$$\begin{cases} 1 + \begin{bmatrix} \frac{P_0, \text{ test}}{P_0, \text{ inlet}} \\ \text{(mass av)} \end{bmatrix} - 1 \end{bmatrix} \begin{bmatrix} \frac{N_{cor, nom}}{N_{cor, test}} \end{bmatrix}^2$$

where, K_T = 288.15K (518.69 °R) K_P = 10.1325 X 10⁴ N/m² (2116.22 1bf/ft²)

Static pressures measured at the inner and outer case walls were corrected to ambient level using the relationship:

(3)
$$P = K_p$$

$$\begin{cases}
\frac{P_{\text{test}}}{P_{\text{o, inlet(mass av)}}} + \frac{2\gamma}{\gamma - 1} & \left[\frac{P_{\text{test}}}{P_{\text{o, inlet(mass av)}}} \right]^{\gamma - 1} \\
+ \left(\frac{P_{\text{test}}}{P_{\text{o, inlet(mass av)}}} \right)^{\gamma} & \left[\frac{N_{\text{cor, nom}}}{N_{\text{cor, test}}} - 1 \right]
\end{cases}$$

where Mach number squared has been assumed small with respect to 1.0. The compressor inlet total pressure and temperature measurements were mass averaged radially and circumferentially for each test point in corrected test speed, defined by $(N/\sqrt{\theta})_2$, was also obtained for each point.

The levels of inlet total pressure and temperature measurements were adjusted so that the radial and circumferential mass averages of all readings are equal to the standard values.

(4)
$$P_0 = Kp + P_0 - P_0 \text{ inlet}$$
 (mass av)

(5)
$$T_0 = K_T + T_0 - T_0 \text{ inlet (mass av)}$$

The corrected test values for total temperature and total pressure from the pole rakes at the inlet and exit stations were circumferentially and radially mass averaged to produce average values for calculating overall performance. A linear static pressure gradient between inner and outer cases at each circumferential location was used for the mass averaging. The corrected data were also mass averaged circumferentially at each radius to give composite radial distributions of temperature and pressure at the inlet and exit stations.

Compressor Overall Performance Computations

Pressure Ratio

Since the tests were intended to reproduce conditions which would be present in the latter stages of a core compressor, the overall performance was presented from upstream of the first rotor (station 2 of Figure 1) to the exit station (station 9). The overall pressure ratio based on the inlet to the first rotor was calculated as follows:

All the inlet loss pressure ratios were calculated as functions of the inlet dynamic pressure calculated as a function of flow by:

For Wcor in kg/sec

$$\frac{P_0 - P}{P_0} = 1.682842 \times 10^{-3} + W_{cor} \times (2.083418 \times 10^{-3} W_{cor} - 1.455674 \times 10^{-3})$$

For Wcor in Ibm/sec

$$\frac{P_0 - P}{P_0} = 1.682842 \times 10^{-3} + W_{cor} \times (4.28655 \times 10^{-4} W_{cor} - 6.602824 \times 10^{-4})$$

$$\overline{P}_{r,IGV} = 1.0 - 0.01534 \left(\frac{P_0 - P}{P_0} \right)$$

$$\overline{P}_{r,pole} = 1.0 - 0.035095 \left(\frac{P_0 - P}{P_0} \right)$$

$$\overline{P}_{r,strut} = 1.0 - 0.001455 \left(\frac{P_0 - P}{P_0} \right)$$

Temperature Ratio

Since no work is done ahead of the first rotor and heat loss through the cases is estimated to be negligible, the total temperature ratio is unchanged:

$$\frac{\overline{T}_{09}}{\overline{T}_{02}} = \frac{\overline{T}_{09}}{\overline{T}_{01}}$$

Adiabatic Efficiency

The adiabatic efficiency of the compressor was calculated by:

$$\eta_{\text{ad}} = \frac{\left(\overline{p}_{09}/\overline{p}_{02}\right) \frac{\gamma - 1}{\gamma} - 1.0}{\left(\overline{T}_{09}/\overline{T}_{02}\right) - 1.0}$$

where γ = the ratio of specific heats at the average temperature of the compressor.

Flow Rate

The flow rate was first calculated for the inlet flow calibration station (station 0) and then corrected to the inlet of the first rotor (station 2). An ideal flow rate was calculated from the average midspan total pressure measured at the flow calibration station, the average midspan static pressure at that station (obtained by linear interpolation between outer and inner wall measurements), and the mass averaged total temperature from all the measurements at station 1. The actual efficient. Thus

$$\left(W\frac{\sqrt{\theta}}{\delta}\right) = (W_{IDEAL}) \times (Flow Coef.) \frac{\sqrt{\frac{T_{01}}{K_T}}}{\left(\frac{P_{02}}{K_P}\right)}$$

Rotor and Stage Performance Based on Wall Static Pressures

Rotor and stage performance was computed separately for each of the three stages for each test point in terms of a static pressure rise coefficient and a flow coefficient. The static pressure rise coefficient based on the kinetic energy the midspan flow would have if the air velocity were the same as the rotor velocity. The rotor static pressure rise coefficients are:

$$\psi \text{ ROTOR 1} = \frac{P_3 - P_2}{1/2 \quad \rho_2 \quad U_{m2}^2}$$

$$\psi \text{ ROTOR 2} = \frac{P_5 - P_4}{1/2 \quad \rho_4 \quad U_{m4}^2}$$

$$\psi$$
 ROTOR 3 = $\frac{P_7 - P_6}{1/2 - P_6 - U_{m6}^2}$

where P = static pressure, N/m^2 (1bf/ft²)

P = fluid density, Kg/m³ (1bm/ft³)

 U_{m} = midspan rotor speed, m/sec (ft/sec)

and subscripts for P, ρ , and ${\rm U_{I\!M}}$ correspond to station numbers in Figure 5.

Similarly, the stage static pressure rise coefficients are:

$$\psi \text{ STAGE 1} = \frac{\frac{P_4 - P_2}{1/2 P_2 U_{m2}^2}}{\frac{g}{1/2 P_4 U_{m4}^2}}$$

$$\psi \text{ STAGE 2} = \frac{\frac{P_6 - P_4}{1/2 P_4 U_{m4}^2}}{\frac{g}{1/2 P_6 U_{m6}^2}}$$

The flow coefficient used for both rotor and stage performance is the ratio of the axial velocity at the rotor inlet station to the midspan rotor speed.

$$\phi_1 = \frac{v_{z2}}{v_{m2}}$$

$$\phi_2 = \frac{v_{z4}}{v_{m2}}$$

In order to calculate the fluid density values, the pressures and temperatures within the compressor were calculated based on assumptions of equal rotor pressure ratio and temperature ratio for each stage. Stator losses were assumed equal to the design values for every test point.

$$\bar{P}_{r,ROTOR} = \frac{\bar{P}_{03}}{\bar{P}_{02}} = \frac{\bar{P}_{05}}{\bar{P}_{04}} = \frac{\bar{P}_{07}}{\bar{P}_{06}}$$

$$= \begin{bmatrix} \frac{\bar{P}_{09}/\bar{P}_{01}}{\bar{P}_{02}} & \frac{\bar{P}_{09}/\bar{P}_{01}}{\bar{P}_{03,DES}} & \frac{\bar{P}_{08}}{\bar{P}_{05,DES}} & \frac{\bar{P}_{08}}{\bar{P}_{07,DES}} \end{bmatrix}$$

$$\bar{T}_{r,ROTOR} = \bar{T}_{r,STAGE} = (\frac{\bar{T}_{09}}{\bar{T}_{01}})^{1/3}$$

APPENDIX C TABULATION OF INLET AND EXIT SPANWISE TEST DATA

3S1 CONFIGURATION AT BS% DESIGN SPEED

ASP 882-888

ASP 882	WCOR *	3.87003	sg/sec (8	.6320 1bm,	(sec)				
% Span	5	10	20	30	50	70	80	00	
Diam m ft	0.5601 1.8377	0.5628 1.8463	0.5679 1.8633	0.5732 1.8805	0,5036 1,9147	0.5940 1.9488	0.5992 1.9658	90 0.6044 1.9830	95 0.6070 1.9915
Po (inlet) N/m² 1bf/ft²	. 100710 2103.39	101257 2114.81	101508 2120.04	101575 2121.45	101579 2121.54	101550 2120.92	101378 2117.33	100745 2104.12	100263 2094.04
To (inlot) K OR	289.380 520.879	288.799 519.834		287.803 518.042	287.824 518.079	287.528 517.546	288.128 518.627	288.599 519.475	
Po (exit) N/m2 Tuf/ft2 To (exit)	121630 2540.30	122022 2548.50	122390 2556 . 19	122554 2559.61	122 7 08 256 2. 83	122590 2560.35	122407 2556.53	121965 2547.30	121750 2542.81
ok K	307.448 553.402	307.328 553.186	307.080 552.739	306.871 552.363	300.666 551.995	306.762 552.167	306.837 552.303	306.872 552.366	306.819 552.270
ASP 883	WCOR = 3	3.73667 kç)/sec (8.:	2380 1bm/s	sec)				
% Span	5	10	20	30	50	70	80	60	95
Diam m ft	0.5601 1.8377	0.5628 1.8463	0.5679 1.8633	0.5732 1.8805	0.5836 1.9147	0.5940 1.9488	0.5992 1.9658	0.6044 1.9830	0.6070 1.9915
Po (inlet) N/m ² lbf/ft ²	100740 2104.02	101270 2115.08	101493 2119.73	101559 2121.11	101568 2121.30	101535 ?120.62	101368 2117.13	100749 2104.20	100365 2096.17
To (inlet) K OR	289.355 520.835	288.812 519.857	288.365 519.052	287.806 518.047	297.818 518.069	287.538 517.564	288.135 518.639	288.610 519.493	289.009 520.212
Po (exit) N/m ² 1bf/ft ²	123526 2579,90	123981 2589.42	124275 2595.55	124407 2598.30	124628 2602.92	124437 2598.93	124255 2595.14	124115 2592.22	123646 2582.42
T _O (exit) K OK	308.730 555.710	308.596 555.458	308.366 555.055	308.191 554.739	308.054 554.493	308.087 554.552	308.336 555.000	308.265 554.873	308,324 554,978

351 CONFIGURATION AT 85% DESIGN SPEED (Cont'd)

ASP 884	Wcor .	3,64677 k	g/sec (8.	0398 1bm/	sec)				
% Span	5	10	20	30	50	70	80	90	aç
Olam m ft	0.5601 1.8377	0.5628 1.8463	0.5679 1.8633	0.5732 1.8805	0.5836 1.9147	0.5940 1.9488	0.5992 1.9658	0.6044 1.9830	0.6070 1.9915
Po (inlot) N/m² lbf/ft²	100774 2104.71	101268 2115.04	101484 2119.54	101640 2120.71	101553 2121.00	101520 2120.31	101393 2117.64	100756 2104.34	100435 2097.65
To (inlet) K og	289.395 520.906	288.833 519.896	288.365 519.052	287.799 518.034	287.815 5x8.033	287.522 517.536	788.108 518.590	288.631 519.531	289.028 520.246
Po (exit) N/m2 lbf/ft ²	124646 2603.29	125085 2612,47	125391 2618.86	125482 26 20. 77	125709 2625.51	125528 2621.72	125370 2518.43	125331 2617.61	124752 2605.52
To (exit) K OR	309.574 557.229	309.373 556.867	309.212 556.578	308.937 556.083	309.964 556.130	308.949 556.103	309.200 556.735	309.149 556.463	309.299 556.734
ASP 885	WCOK ≈ 3	.56159 kg)/sec (7.8	3520 1bm/s	sec)				
% Span	5	10	20	30	50	70	80	90	95
Diam m ft	0.5601 1.8377	0.5628 1.8463	0.5679 1.8633	0.5732 1.8805	0.5936 1.9147	0.5940 1.9488	0.5992 1.9658	0.6044 1.9830	0.6070 1.9915
Po (inlet) N/m ² lbf/ft ²	100788 2105.02	101261 2114.90	101475 2119.36	101534 2120.59	101542 2120.76	101514 2120.17	101371 2117.18	100821 2105.70	100467 2098.30
T _o (inlet) K o _R	289.396 520.908	288.862 519.948	288.357 519.038	287.836 518.100	287.768 517.979	286.433 515.575	288.120 518.511	288.618 519.508	289.013 520.219
Po (exit) N/m ² 1bf/ft ²	125528 2621.72	125974 2631.03	126272 2637.26	126330 2638.47	126480 2641.60	126408 2640.09	126309 2639.04	126279 2637.40	125736 2626.07
T _O (exit) K ^O R	310.235 558.419	310.007 558.008	309.917 557.846	309.609 557.291	309.686 557.430	309.710 557.473	310.039 558.056	309.871 557.764	310.041 558.070

3S1 CONFIGURATION AT 85% DESIGN SPEED (Cont'd)

ASP BB6	WCOR = 3.41780 kg/sec (7.6360 lbm/sec)										
% Span	5	10	20	30	60	70	80	90	95		
Diam m ft	0.5601 1.8377	u.5628 1.8463	0.5679 1.8633	0.5732 1.8805	0.5836 1.9147	0.5940 1.9488	0,5992 1,9658	0,6044 1,9830	0.6070 1.9915		
Po (iglet) N/m² lbf/ft ²	100826 2105.81	101265 2114.98	101461 2119.06	101520 2120.30	101529 2120.49	101497 2119.03	101387 2117,52	100831 2105.92	100526 2099.55		
T _o (inlot) K OR	289.453 521.011	288.873 519.967	2 88.3 67 519.056	287.787 518.012	287.786 518.011	297.505 517.504	288.111 518.596	289,692 519,569	289.076 520.332		
P _O (exit) N/m ² 1bf/ft ²	12662 7 2644.68	127095 2654.45	12 729 0 2658.53	127411 2661.04	1273 83 2660.47	127580 2664.58	127 420 2661.24	127401 2660.85	126939 2651.19		
T _O (exit) K OR	311.232 560.213	310.937 559.682	310.946 559.698	310.646 559.158	310.747 559.341	310.816 559.464	311.10A 559.986	310.945 559.697	311.116 560.005		
ASP 887	WCOR = 3	.22398 kg	/sec (7.1	077 1bm/s	ec)						
% Span	5	10	20	30	50	70	80	90	95		
Diam m ft	0.5601 1.8377	0.5628 1.8463	0.5679 1.8633	0.5732 1.8805	0.5836 1.9147	0.5940 1.9488	0.5902 1.9658	0.6044 1.9830	0.6070 1.9915		
P _o (inlet) N/m ² lbf/ft ²	100906 2107.48	101259 2114.85	101452 2118.89	101497 2119.81	101506 2120.00	101463 2119.11	101377 2117.32	100907 2107.50	100628 2101.68		
T _O (inlet) K O _K	289.298 520.733	288.719 519.690	288.285 518.909	28 7. 783 518.005	287.763 517.969	287.603 517.682	288.180 519.720	288.737 519.722	289.153 520.471		
P _o (exit) N/m ² lbf/ft ²	127333 2659.42	127677 2666.60	127883 2670.90	127996 2673.27	127980 2672.94	128097 2675.37	128044 -2674.27	127858 2670.60	127636 2665.75		
T _o (exit) K OR	311.690 561.037	311.499 560.694	311.660 560.983	311.435 560.578	311.614 560.901	311.646 560.958	311.902 561.419	311.725 561.101	311.800 561.235		

35% CONFIGURATION AT 85% DESIGN SPEED (Contid)

ASP 888	WCOR "								
% Span	5	10	50	30	60	70	80	90	95
Diam m ft	0.5601 1.8377	0.5628 1.8463	0.5679 1.8633	0.5732 1.8805	0.5836 1.9147	0.5940 1.9488	0, 5992 1, 9658	0.6044 1.9830	0.6070 1.9915
Po (iglet) N/m ² lb//ft ²	100921 2107.78	101277 2115.22	101443 2118.70	101485 2119.58	101497 2119.82	101466 2119.18	101366 2117.0 9	100921 2107.79	100653 2102.19
To (inlet) K OR	289.349 520.824	288.761 519.765	288,312 518,958	287.811 518.056	287.773 517.987	287.592 517.661	288.130 518.629	288.685 519.628	289.090 520.357
Po (exit) N/m² 1bf/ft²	127643 2665.90	127908 2671.43	128173 267 6. 96	128192 2677.35	128207 2677.67	128309 2679.80	128271 2615.26	128091 2679.01	127881 2670,87
T _O (exit) K OR	312.281 562.101	312.120 561.811	312.239 562.025	312.029 561.648	312.227 562.004	312.226 562.002	312.495 562.486	312.340 562.208	312.447 562.400

3ST CONFIGURATION AT 100% DESIGN SPEED

ASP 863~870

ASP 863	Wcor *	4.5972 k	9/sec (10	.1352 1bm	/sec)				
3 Span	5	10	20	30	50	70	80	00	
Diam m ft	0.5601 1.8377	0.5628 1.8463	0.5679 1.8633	0, 5732 1, 8805				90 0,6044 1,9830	95 0,6070 1,9915
Po (inlet) N/m= Tof/ft2	100422 2097.37	101183 7 2113,27	101579 2121.50	101683 2123, 7	101697 1 2124.00	101654) 2123,11	101379 L 2112.3	100529 3 - 2099,6	49458 I 2085,59
To (inlet) K OR	289.778 521.596					? 287.330 7 517.190			7 289.168
Po (exit) N/m ² lbf/ft ²	129676 2708,35	130334 2722,10	130849 2732.86	131056 2737,18	131254 3 2741.31	131001 2736.03	130818 2732.21	130314 2721.68	130049
T _O (exit) K OR	314,791 566,620		314.217 565.586	313,923 565, 0 56			313.954 565.113		313.986
ASP 804	WCOR =	4.4611 kg/	/soc (9,8)	3511 1tm/	sec)				
% Span	5	10	20	30	50	70	80	90	or
Diam m ft	0.5601 1.8377	0.5628 1.8463	0,5379 1,8633	0.573.1 1.8805	0.5836	0.5040	0.5002	0.6044	oẹ 0.6070
Po (inlet)	100469	101206	101566	101668	1.9147	1.9498	1,9658	1.9830	1.9915
1bf/ft ² To (inlet)	2098.36	2113.75	2121.27	2123.39	101680 2123,65	101622 2122,43	101403 2117,85	100537 2099,76	9991s 2086.80
To (inlet)	289.911 521.836	289.187 520.534	288.513 519.319	287.737 517.922	287.622 517.717	287.270 517.082	788.055 518.495	288.716 519.685	317.085 570.713
P _o (exit) N/m ² lbf/ft ²	132328 2763.74	132998 2777,74	133448 2787.14	133580 2789.90	133860 2795.74	133671 2791.80	133340 2784.88	133295 2783.93	132528 2767.91
To (exit) K OR	316,545 569,778	316,204 509,102	315.938 568.683	315.584 568.046	315,446 567,799	315.521 567.934	315,880 568,580	315.810 568.454	315.933 568.674

JST CONFIGURATION AT 100% DESIGN SPEED (Cont'd)

ASP 865	Wook .	4.36656	kg/sec (9	.62666 16	m/sec1		111 (1)		
% Span	5	10	20	30	50	70	80	20	
Diam m ft	0.5601 1.8377	0,5628 1,8463	0.5679 1.8633	0.5732 1.8805	0.5836	0.5940	0, 6992	90 0,6044	95 0,6070
Po (inlet)	100501	101216	101556	101660	1.9147	1.9488	1,0658	1.9830	1,9915
16f/ft ² To (Inlet)	2099.01	2113.99	÷ 2121.00	2123.22	101667 2123,38	101611 3 2122.20	101399 2117,79	100531 2099,65	99984 2088, 23
o _R Po (exit)	289,985 521,968				287.615 517.702	287.222 516.996		288.764 519.771	317.166 570.394
10f/ft2	133929 2797.19	134576 2810.70	135015 2819.87	135099 2821.62	135311 2826.05	135251 2824, 79	134902 2819, 39	134882 2817.09	134200 2802.85
To (exit) K or	317.685 571.828	317.271 571.083	317.109 5 70. 793	316.632 569.933	316.650 569.966	316.710 570.074	317.147 570.860	316.975 570.551	317.211 570.975
ASP 866	WCOR = 4	1.28008 kg	a/sec (9.4	43603 1bm/	/sec)				
% Span	5	10	20	30	50	70	80	90	95
Diam m ft	0.5601 1.8377	0.5628 1.8463	0,5679 1,8633	0.5732 1.8805	0.5836 1.9147	0.5940 1.9488	0.5992 1.9658	0.6044 1.9830	0.6070 1.9915
P _o (inTot) N/m² Tbf/ft²	100541 2099,85	101230 2114.25	101540 2120.72	101648 2122.98	101653 2123.08	101594 2121.84	101384 2117.47	100587 2100.81	100040
To (inlet) K OR	289,975 521,950	289.179 520.518	288.516 519,324	287.690 517.837	287.627 517.724	287.216 516.985	288.063 518.510	288.761	2089,39
Po (exit) N/m ² 1bf/ft ²	135152 2822, 72	135152 2835.95	136194 2844,49	136292 2846.54	136370 2848.17	136449 2849.81	136258 2845.82	136057	135529
To (exit) K OR	318,605 573,484	318.097 572.570	320.839 577.506	317.494 571.484	317.626 571.722	317.668 571.798	318,105 572,585	2841.63 317.898 572.211	2830.59 318.186 572.730

351 CONFIGURATION AT 100% DESIGN SPEED (Cont'd)

ASP 867	WCOR *	4.14178	kg/sec (9	.13111 16	m/sec)				
% Span	5	10	20	30	50	70	80	00	
Diam					***	74	ΩV	90	95
m	0.5601	0.5628	0 5070						
ft	1.8377	1.8463	0.5679 1.8633	0.5732	0.5836			0.5044	0.6070
	50 550	*********	1,0033	1.8805	1.9147	1.9488	1.9658	1.9830	1.9915
Po_(inlet)	_								
N/m²	100598	101226	101538	101621	101630	101576	101001		
1bf/ft ²	2101.04	2114.16	2120.67	2122.41		2121.4	101391 7 2117.61	100514	100141
To /imlos)						* ****		2101.3	7 2091.49
To (inlet) K	290.033	200 001	202 4-4				•		
o <u>R</u>	522.056						288.023	288.804	289.436
•••	322,030	320.005	519.280	517.852	517.657	⁷ 516.966	518.438	519.843	
Po (exit)									000,301
N/m ²	136629	137239	137536	137730	1 27666				
lbf/ft ²	2853.58		2872.52		137650 2874.89	137931	137695	137504	137071
* /				20,0150	4014.03	2880.70	2875.84	2871.85	2862.31
To (exit)									
OK	319.783	319.258	319.350	318.798	318.911	318.941	319.330	210 110	
-4	575.605	574.659	574.825	573.832	574.035				
								4741406	574.864
ASP 868	WCOR = 3	3.95810 kg	3/sec (8.	72617 1bm,	/sec)				
% Span	5	10	20	20					
·	-		20	30	50	70	80	90	95
Diam									
m	0.5601	0.5628	0.5679	0.5732	0.5836	0.5040	0 5005		
ft	1.8377	1.8463	1.8633	1.8805	1.9147	0.5940 1.9488	0.5992	0.6044	0.6070
Po (inlet)						14 3400	1.9658	1.9830	1.9915
N/m ²	100626	101000							
lbf/ft ²	2102.63	101237	101518	101599	101606	101552	101364	100695	100227
101716-	2.02.03	2114.38	2120.25	2121.95	2122.10	2120.97	2117.05	2103.07	2093.30
To (inlet)									2093.30
K	290.073	289.167	288.580	207 656	202 616				
οĶ	522.127	520.496	519.440	287.656 517.777	287.616	287.187	288,050	288.757	289.417
_			023.110	527.777	517.705	516.933	518.485	519.777	520.947
Po (exit)	*****								
N/m²	138002	138441	138741	138884	138836	138965	138910	120550	
1bf/ft ²	2882.24	2891.42	2897.68	2900.67	2899.67	2902.35	2901.22	138592 2894.56	138354
To (exit)								£034.30	2889.59
K	320.805	220 441	200 704						
οŘ	577.444	320.441 576.790	320.581	320.138	320.316	320.214	320.611	320.370	320.594
	****	0101130	577.042	576.243	576.565	576.381	577.096	576.661	577.065

3SI CONFIGURATION AT 100% DESIGN SPEED (Cont'd)

ASP 869	WCOR =	3.72177	kg/sec (8	.20515 1b	m/sec)		114 47		
% Span	5	10	20	30	50	70	80	00	25
Diam m ft	0.5601 1.8377	0.5628 1.8463	0.5679 1.8633	0.5732 1.8805	0.5836 1.9147	0.5940 1.9488	0,5992 1,9658	90 0.6044 1.9830	95 0,6070 1,9915
Po (inlet) N/m² 1bf/ft²	100727 2103.73	101270 2115.08	101497 2119.81	101565 2121.28	101575 2121.45	101522 3 2120.39	101353 2116.81	100778 2104.81	100353
To (inlet) K OR Po (exit)	290.104 522.183		288.518 519.328			287.189 516.936	288.021 518.434		
N/m ² 1bf/ft ² To (exit)	138642 2895.62	139065 2904.45	139341 2910.21	139434 2912.15	139569 2914.98	139561 2914.81	139647 2916.60	139289 2909.12	139141 2906.04
og (exit)	321.770 579.181	321.553 578.791	321.743 579.132	321.403 578.521	321.731 579.112	321.527 578.744	321.934 579.477	321.674 579.008	321.872 579.365
ASP 870	Wcor = 3	3.59742 kç)/sec (7.9	93099 1bm/	/sec)				
% Span Diam	5	10	20	30	50	70	80	90	95
m ft	0.5601 1.8377	0.5628 1.8463	0.5679 1.8633	0.5732 1.8805	0.5836 1.9147	0.5940 1.9488	0.5992 1.9658	0.6044 1.9830	0.6070 1.9915
Po (inlet) N/m ² lbf/ft ²	100776 2104.77	101248 2114.63	101481 2119.49	101545 2120.83	101553 2120.99	101509 2120.07	101373 2117.23	100715 2103.48	100445 2097,85
To (inlet) K OR	290.187 522.333	289.298 520.732	288.525 519.341	287.743 517.933	287.517 517.526	287.143 516.853	288.026 518.443	288.765 519.772	289.507 521.109
Po (exit) N/m ² 1bf/ft ²	138797 2898.85	134456 2808.18	139477 2913.05	139618 2915.99	139780 2919.39	139784 2919.47	139868 2921,22	139549 2914.56	139385 2911.16
T _o (exit) K or	322.351 580.227	322.152 579.869	322.403 580.321	321.471 578.644	322.517 580.526	322.348 580.222	322.758 580.960	322.505 580.504	322.738 580.923

3S1 CONFIGURATION AT 105% DESIGN SPEED

ASP 872-879

ASP 872	WCOR *	4.96708 k	g/sec (10	0.9506 1Եռ	1/80C)				
% Span	5	10	20	30	50	70	80	90	95
Diam m ft	0.5601 1.8377	0.5628 1.8463	0.5679 1.8633	0.5732 1.8805	0.5836 1.9147	0.5940 1.9488	0.5992 1.9658	0.6044 1.9830	0.6070 1.9915
Po (inlot) N/m ² 1bf/ft ²	100237 2093. 51	101133 2112.21	101625 2122.50	101767 2125.46	101771 2125.54	101699 2124.04	101425 2118.31	100330 2095.45	99599 2080.18
To (inlet) K OR	289.895 521.807	289.129 520.429	288.565 519.412	287.688 517.834		287.242 517.032	288,052 518,490	288.688 519.636	289.249 520.644
Po (exit) N/m ² 1bf/ft ²	128771 2689.45	129352 2701.59	130073 2716.64	130360 2722.63	130689 2729.51	130324 2721.89	130144 2718.13	129342 2701.37	129084 2695.98
T _O (exit) K O _R	315,149 567,265	314.924 566.859	314.576 566.228	313.644 564.556	313.977 565.155	314.159 565.483	314.146 565.458	314.241 565.629	314.077 565.335
ASP 873	WCOR = 4	.82112 kg	/sec (10.	.6288 1bm/	'sec)				
% Span	5	10	20	30	50	70	80	90	95
Diam m ft	0.5601 1.8377	0.5628 1.8463	0.5679 1.8633	0.5732 1.8805	0.5836 1.9147	0.5940 1.9488	0.5992 1.9658	0.6044 1.9830	0.5070 1.9915
Po (inlet) N/m ² 1bf/ft ²	100315 2095.13	101167 2112.92	101610 2122.18	101734 2124.76	101744 2124.97	101665 2123.32	101427 2118.35	100391 2096.72	99596 2082,20
To (inlet) K OR	289.986 521.970	289.133 520.434	288.567 519.417	287.635 517.740	287.679 517.818	287.199 516.953	288.076 518.533	288.745 519.736	289.363 520.849
Po (exit) N/m ² 1bf/ft ²	133074 2779.33	133804 2794.58	134381 2806.63	134557 2810.30	134822 2815.83	134572 2810.61	134199 2802.82	133964 2797.91	133349 2785.07
T _O (exit) K OR	317.703 571.861	317.444 571.394	317.007 570.609	315.742 570.131	316.431 569.570	316.637 569.942	316.853 570.330	316.941 570.489	316.917 570.447

351 CONFIGURATION AT 105% DESIGN SPEED (Cont'd)

ASP 874	Weor *	4.68286	kg/sec (1	0.3240 16		*** + ** + * +	ur. n)		
% Span	5	10	20	30	50	70	30	00	
Diam					***	7.0	30	90	95
m ft	0.5601 1.8377	0,5628 1.8463	0.5679 1.8633	0.5732 1.8805	0.5836 1.9147	0.5940 1.9488		0.6044 1.9830	0.6070 1.9915
Po (inlet)								11 1030	הופני ו
N/m² 10f/ft2	100382 2096,52	101188 2113,38	101591 3 2121.78	101708 2124.2	101717 3 2124,43	101641 3 2122.8	101434 2 2118.5	100440 1 2097.7	99769 7 2083.75
To (inlet)									4003.7
oK	290.031 522.055	289.162 520.486	288.581 519.441		287.665 517.792	287.190 516.937		288.743 1 519.733	
Po (exit)									
N/m² 1bf/ft²	135979 2840.00	136703 2855.11	137208 2865.68	137327 2868.16	137584 2873.51	137525 2872.28	137068 2862.73	137040 2862.31	136192 2844.44
To (exit)									
o _K	319.509 575.112	319,135 574,438	318.359 573.942	318.434 573.176	318,382 573,083	318,480 573,259		318.767 573.776	
ASP 875	WCOR # 4	1.59037 kg)/sec (10.	.1201 1bm,	/sec)				
% Span	5	10							
	J	10	20	30	50	70	80	d0	95
Diam									• •
m ft	0.5601 1.8377	0.5628 1.8463	0.5679 1.8633	0.5732 1.8805	0.5836 1.9147	0.5940 1.9488	0.5992 1.9658	0.6044 1.9830	0.6070 1.9915
Po (inlet)									447710
N/m² Tbf/ft ²	100405 2097.01	101166 2112.90	101581 2121.56	101700 2124.08	101703 2124.13	101631 2122.62	101423 2118.27	100458 2098.13	99880
To (inlet)							444467	c0*0*13	2085.05
o _R	290,052 522,089	289.230 520.610	288.525 519.341	287.634 517.737	287.601 517.677	287.199 516.954	288.055 518.513	288.812	289.462
Po (exit)							210.213	519,856	521.028
N/m ² 1bf/ft ²	137588 2873.60	138309 2888.65	138785 2898.61	138983 2900.64	139034 2903.81	1390967 2905.11	138756 2897.99	138620 2895.15	137924
To (exit)							=	e0.0119	2880.61
ok K	320.754 577.353	320.252 576.449	320.095 576.166	319.548 575.181	319.614 575.300	319.696 575.449	320.175 576.311	319.953 575.911	320.280 576.500

3S1 CONFIGURATION AT 105% DESIGN SPEED (Cont'd)

ASP 87p	WCOR * 4.49399 kg/sec (9.9076 1bm/sec)									
% Span	5	10	20	30	50	70	80	90	95	
Diam m ft	0.5601 1.8377	0.5628 1.8463	0.5679 1.8633	0.5732 1.8805	0.5836 1.9147	0.5940 1.9488	0.5992 1.9658	0.6044 1.9830	0.6070 1.9916	
Po (inlet) N/m² lbf/ft²	100452 2098.00	101183 2113.27	101553 2120.99	101676 2123.56	101675 2123.54	101627 2122.53	101434 2118,51	100533 2099.68	99928 2087.06	
T _O (inlet) K OR	290.065 522.113	289.265 520.673	288.483 519.266	287.663 517.790	287.558 517.600	287.199 516.954	288.056 518.496	288.841 519.909	289.520 521.132	
Po (exit) N/m ² 1bf/ft ²	138974 2902.54	139700 2917.72	140106 2926.20	140242 2929.03	140254 2929.28	140460 2933.58	140173 2927.58	140012 2924.23	139398 2911.41	
T _O (exit) K O _K	321.856 579.336	321.264 578.270	321.254 578.252	320.023 576.037	320.789 577.416	320.866 577.555	321.298 578.331	321.079 577.937	321.385 578.488	
ASP 877	WCOR = 4	.30493 kg	/sec (9.4	908 1bm/s	ec)					
% Span	5	10	20	30	50	70	80	90	a 5	
Diam m ft	0.5601 1.9377	0.5628 1.8463	0 5679 1.8633	0.5732 1.8805	0.5836 1.9147	0.5940 1.9498	0.5992 1.9658	0.6044 1.9830	0.6070 1.9915	
P _O (inlet) N/m ² lbf/ft ²	100544 20 99, 92	101197 2113.50	101546 2120.85	101647 2122.95	101658 2123.18	101590 2121.76	101402 2117.84	100585 2100.78	100040 2089.40	
T _O (inlet) K OR	290.144 522.255	289.274 520.689	288.519 519.330	287.661 517.785	287.581 517.642	287.142 516.851	288.023 518.438	288.816 519.865	289.526 521.143	
P _O (exit) N/m ² lbf/ft ²	141073 2946.39	141688 2959.23	141965 2965.01	142193 2969.78	142085 2967.53	142393 2973.96	142136 2968.59	141987 2965.48	141479 2954.85	
T _o (exit) K OR	323.393 582.103	322.816 581.065	323.007 581.408	322.409 580.331	322.634 580.736	322.561 580.605	323.024 581.439	322.753 580.950	323.012 581.417	

3S1 CONFIGURATION AT 105% DESIGN SPEED (Cont'd)

ASP 878	WCOR *	4.07446 k	g/sec (8,	9827 1bm/	sec)		·		
% Span	5	10	20	30	50	70	30	90	95
Diam m ft	0.5601 1.8377	0,5628 1,8463	0.5679 1.8633	0.5732 1.8805	0.5836 1.9147	0.5940 1.9488	0.5992 1.9658	0,6044 1,9830	0,6070 1,9918
P _o (inlet) N/m ² lbf/ft ²	100510 2101.08	101222 2114.08	101512 2120.13	101610 2122.17	101620 2122.38	101540 2121.14	101410 2118.01	100657 2102,27	100216 2093.06
T _O (inlet) K OR	290.192 522.342	289.276 520.692	288.486 519.270	287.662 517.787	287.536 517.561	287.126 516.822	288.077 518.534	289.829 519.888	289.611 521.295
Po (exit) N/m ² lof/ft ²	142454 2975,22	142927 2985,10	143271 2992.30	143359 2994.13	143450 2996.04	143507 299 7. 23	143507 2997.22	143180 2000.39	142918 2984.79
T _o (exit) K o _K	324.508 584.218	324.280 583.699	324,428 583,965	304.048 583.281	324.297 583.730	324,166 583,494	324,571 584,224	324,344 583,814	324.552 584.189
ASP 679	WCOR = 3	.89543 kg	/sec (8.5	880 1bm/s	sec)				
% Span	õ	10	20	30	50	70	90	?0	95
Diam m ft	0.5ö01 1.8377	0.5628 1.8463	0.5679 1.3633	0.5732 1.8805	0.5036 1.9147	0.5940 1.9488	0.5992 1.2658	0.6044 1.9830	0.6070 1.9915
P _o (inlet) N/m ² lbf/ft ²	100659 2102.31	101234 2114.32	101512 2120,14	101586 2121.58	101602 2122.01	101549 2120.91	101373 2117.23	100715 2103.50	100264 2094.06
T _o (inlet) K og	290.333 522.597	289.422 520.955	288.507 519.308	287.688 517.835	287.451 517.408	287.059 516.702	288.051 518.488	288.345 519.916	289.702 521.459
Po (exit) N/m ² 1bf/ft ²	142795 2932.36	143267 2992.21	143585 2998.85	143693 3001.10	143893 3005.28	143918 3005.80	143947 3006.42	143654 3000.30	143384 2094.66
To (exit) K OR	325.398 585.711	325.137 585.242	325.373 585.667	325.029 585.017	325.364 585.651	325.201 585.357	325,589 586,055	325,362 585,647	325.568 586,017

382 CONFIGURATION AT 86% DESIGN SPEED

ASP 457-462

ASP 457	WCOH #	3.7832 kg	/sec (8,3	1406 1bm/s	sec)				
% Span	5	10	20	30	50	70	80	90	95
Diani m ft	0.5601 1.8377	0.5628 1.8463	0.5679 1.8633	0.5732 1.8805	0.5836 1.9147	0.5940 1.9488	0.5992 1.9658	0.6044 1.9830	0.6070 1.9915
Po (inlet) N/m ² lbf/ft ²	100849 2106.29	101311 2115.94	101616 2122.30	101628 2122.56	101616 2122.31	101548 2120.88	101084 2111,20	100689 2102.95	100081
To (inlet) K OR	289.109 520.397	288.811 519.859	288.098 518.576	287.309 518.056	287.725 517.905	287.833 518.100	298.147 518.565	288.841 519.913	288.979 520.162
Pn (exit) N/m ² lbf/ft ²	120993 2527.00	121344 2534.34	121664 2541.02	121693 2541.62	121976 2547.53	121734 2542.48	121390 2535.30	121120 2529.35	120728 2521.46
T _O (exit) K OR	307.379 553.283	307.076 552.736	306.595 551.871	306.126 551.026	305.512 549.921	305.789 550.420	306.022 550.839	306.231 551.215	305.147 551.065
ASP 458	WCOR = 3	.7144 kg/	/sec (8.18	390 1bm/se	ec)				
% Span	ë	10	20	30	50	70	80	90	95
Diam m ft	0.5601 1.8377	0.5628 1.8463	0.5679 1.8633	0.5732 1.8805	0.5936 1.9147	0.5940 1.9488	0.5992 1.9658	0.6044 1.9830	0.6070 1.9915
Po (inlet) N/m ² lbf/ft ²	100858 2106.48	101275 2115.19	101605 2122.07	101614 2122.27	101605 2122.07	101556 2121.05	101103 2111.60	100713 2103.44	10012b 2091.19
T _O (inlet) K OR	289.108 520.394	288.864 519.956	288.046 518.483	207.819 518.074	287.696 517.853	287.824 518.034	288.155 518.679	288.891 520.003	289.046 520.282
Po (exit) N/m ² 1bf/ft ²	122151 2551.20	122481 2558.08	122782 2564.37	122891 2566.64	123165 2572.06	122870 2566.20	122665 2561 93	122319 2554.68	122023 2548.51
To (exit) K og	308,240 554,832	307.955 554.319	307.454 553.418	306, 958 552, 524	306.302 551.343	306.609 552.058	30J.898 532.416	307.733 553.074	307.065 552.717

352 CONFIGURATION AT 85% DESIGN SPEED (Cont'd)

ASP 459	WCOR # 3	,6209 kg/s	sec (7.996	60 16m/sec	;)				
% Span	ß	10	20	30	50	70	80	90	95
Diam m ft	0.5601 1.8377	0.5628 1.8463	0.5679 1.8633	0.6732 1.8805	0.5836 1.9147	0.5940 1.9488	0,5992 1,9668	0.6044 1.9830	0.6070
Po (inlet) N/m² lbf/ft²	100882 2106.97	101318 2116.08	101595 2121.86	101603 2122.04	101592 2121.90	101520 2120.31	101113 2111.79	100741 2104.03	100187 2092.46
T _o (inlet) K og	289.122 520.419	288.823 519.882	288.069 518.525	287.788 518.018	287.718 517.892	287.819 518.074	288.160 518.688	288.887 519.996	289.046 520.282
Po (exit) N/m ² lbf/ft ²	123249 2574.13	123569 2580.80	123867 2587.03	124013 2590.07	124285 2595.76	124096 2591.61	123834 2586.34	123558 2580.58	123236 2573.86
T _O (exit) K OR	309.012 556.222	308.748 555.747	308.251 554.351	307.766 553.978	307.107 552.792	307.543 553.578	307.758 533.964	308.201 554.762	307.799 554.038
ASP 460	WCOR = 3	3.4958 kg/	'sec (7.70)70 1bm/se	ec)				
% Snan	5	10	20	30	50	70	80	90	95
Diam m ft	0.5601 1.8377	0.5628 1.8463	0.5679 1.8633	0.5732 1.8805	0.5836 1.9147	0,5940 1,9488	0.5992 1.9658	0.6044 1.9830	0.6070 1.9915
P _o (inlet) N/m ² lbf/ft ²	100926 2107.90	101277 2115.23	101583 2121.61	101592 2121.80	101578 2121.51	101531 2120.54	101072 2110.95	100806 2105.38	100228
T _o (inlet) K og	289.178 520.521	288.826 519.887	288.057 518.502	287.773 517.991	287.676 517.816	287.810 518.058	288.179 518.722	288.957 520.123	289.123 520.422
P _o (exit) N/m ² lbf/ft ²	124664 2603.68	124949 2609.63	125257 2616.07	125360 26 18.21	125659 2624.46	125542 2622.01	125338 2617.76	125068 2612.11	124803 2606.57
T _o (exit) K OR	310.116 558.208		309.431 556.976	308.859 555.946				308.982 556.167	309.235 556.623

352 CONFIGURATION AT 85% DESIGN SPEED (Cont'd)

ASP 461	Wcon =	3.4112 kg	3/sec (7,	:007 114		ween ten	rr , (1)		
% Span	5	10			•				
	4	10	80	30	50	70	AO	90	96
D1am m	0,5601	0.5628	0.5679	0.5732	0 6026	0.5040			
ft	1.8377	1.8463	1.0633	1.8806	0.5836 1.9147	0;5940 1,9488	0,6992 1,9868	0.6044 1.9830	0.6070 1.9915
Po (inlet)	100+39	101286	101567	totene					••
16f/ft2	2108.14	2115.41	2121.29	101575 2121.49	101664 2121.23	101514 2120.18	101115 2111.89	100779 2104.88	100346
To (inlet)	200 146	000 000	400	_					
oR	289.169 520.504	289.856 519.941	288.049 518.488						
Po (exit)							8 4 O 4 O 11 11	980.048	520.406
16f/ft2	125177 2614.39	125471 2620.54	125764 2626.64	125858 2628.62	126057 2632.77	125882 2629.12	125732	125590	125337
To (exit)				404(1)	2032111	cvay. 1c	2627.03	2623.02	2617.73
ok ok	310.509 558.917	310.251 558.452	309.820 557.676	309.306 556.751	308.860	309.295	309.589	309.807	309.797
				000,1731	555.948	556.731	557.261	557.652	557.635
ASP 462	WCOR = 3	3.3900 kg/	/sec (7.47	'38 1bm/se	ec)				
% Span	5	10	20	30	50	70	80	öΟ	95
D1 am									30
m ft	0.5601 1.8377	0.5628 1.8463	0.5679 1.8633	0.5732 1.8805	0.5836 1.9147	0.5940 1.9498	0.5992 1.9658	0.5044	0.6070
Po_(inlet)						*13430	11,5000	1.0830	1.9915
N/m² 1bf/ft²	100935 2108.08	101293 2115.56	101559 2121.J1	101564 2121.23	101554 2121.01	101506	101158	100782	100388
To (inlet)					2121.01	2120.00	2112.75	2104.38	2096.66
o _R	289.176 520.517	288.879 519.982	288.025 518.445	287.791 518.024	287.662	287.796	288.173	288.947	289.144
Po (exit)		013.302	340.443	518,024	517.792	518.033	518.712	520.105	520.460
Po (exit) N/m ² 1bf/ft ²	125244 2615.78	125551	125832	125937	126093	125906	125824	125643	125394
To (exit)	5073110	2622.21	2628.08	2630.27	2633.52	2629,61	2627.90	261.12	2618.92
K	310.625	310.358	309.923	309.392	309,009	309.444	200 710	200 424	
oK	559.125	558.644	557.861	556.905	556.217	5-7.000	309.716 557.489	309,954 557,917	309.921 557.858

352 CONFIGURATION AT 100% DESIGN SPEED

ASP 495-600 ...

				46N	49 - 500				
ASP 495	WCOR	4. 8226	kg/sac (9	. 9707 1bm,	/secl				
¥ Span	ß	10	80	30	8Q .	70			
Diam				44	₽₩ ·	70	99	90	9В
M ft Re (intot)	0.6601 1.837	1 0.5626 7 1.8463		0.673a 1.080a	0.5030 1.9147		0.699 1.966	? 0.6046 1.9836	0.6070 1.9918
Po (iniet) N/m² 1bf/ft²	100563 2100.3	101281 1 2115.3	101736 0 2124.8		101755 1 2125.2	1016 5 8 1 2123.1	100997 8 2109.3	100439	98829
To (Inlot) K	289.34	il dee sa					- 4.00,0		3 2078.72
oji Pojj(ugit)	520.82	6 288.96 3 520.14	8 288.17 3 518.71	7 287.78 9 618.01	7 287.62 6 517.72	7 287.76 9 517.97	2 286.03 2 713.46	7 288.9A 7 520.12	1 289.038 9 520.269
n/m² 1bf/ft2	1 <i>2</i> 8705 268 8 .08	129176 3 2697.92	129608 2706.93	129659 2707.99	130027 2715.66	129755 2710.00	129377 2702.11	128938 1 2692.9	128560
To (exit) K or	314.319 565.776	313.882 5 564.988	313.237 563.826	312.567 562.621	311.799 561.238		312.503 562.508	312.764 562.975	312.748
ASP 498	Wcor =	4.4379 kg	/sec (9.7	839 1bm/s	or l				
% Span Diam	5	10	20	30	50	70	80	90	95
m ft Po_(inlet)	0.5601 1.8377	0.5628 1.8463	0.5679 1.8633	0.5732 1.8805	0.5836 1.9147	0.5940 1.9488	0.5992 1.9658	0.6044 1.9830	0.6070 1.9915
N/m² lbf/ft2	100630 2101.71	101269 2115.05	101734 2124.76	101748 2125.05	101744 2124.98	101627 2122.53	101011	100443 2097.81	99606 2080.32
To (inlet) K OR Po (exit)	289.346 520.822	289.048 520.286	288.151 518.672	287.789 518.020	287.609 517.697	287.729 517.913	288.043 518.478	288.990 520.182	289.097 520.375
N/m ² 1bf/ft ² To (exit)	130450 2724.53	130925 2734.43	131355 2743.43	131500 2746.45	131880 2754.38	131610 2748.75	131204 2740.26	130737 2730.51	130349 2722.42
o _R	315.565 568.017	315.117 567.211	314.494 566.089	313.729 564.712	312.963 563.333	313.437 564.187	313.799 564.839	314.096 565.373	314.108 565.395

352 CONFIGURATION AT 100% DESIGN SPEED (Contid)

ASP 497	WCOH "	4,3488 kg	/sac (9,5	876 1bm/s	ac)				
% Span	ß	10	20	30	60	70	80	90	95
Diam m ft	0.6601 1.8377	0.5628 1.8463	0.5679 1.8633	0.5732 1.8805	0.5836 1.9147	0.5940 1.9480	0,8092 1,9658	0,6044 1,9830	0.6070 1.9916
Po (inlet) N/m² 16f/ft²	100645 2102.02	101287 2115,44	101729 2124.67	101729 2124.67	101721 2124.50	191623 2122,45	100907 2109.16	00889 2100.22	99642 2001.08
To (inlet) OR	289.371 520.868	208.999 520.199	288.152 518.674	287.760 517.968	287.619 517.714	287.721 617.898	288.059 51 0. 506	289.007 520.212	289.127 \$20.428
Po (ogit) N/m ² lbf/ft ²	131982 2756,53	132415 2765.57	132851 2774.67	133005 2777.89	133434 2786.85	133250 2783.00	132854 2774.73	132416 2765.58	132002 2766.93
To (exit) K OR	316.679 570.015	316.254 569.258	315.632 568.138	314.874 566.773	314.082 565.347	314.615 566.307	315.049 567.088	315.294 567.529	315.342 567.615
ASP 408	WCOR = 4	.2127 kg/	'sec (9.28	374 1bm/s∈	e)				
% Span	5	10	20	30	50	70	80	90	95
Diam m ft	0.5601 1.8377	0.5628 1.8463	0.5679 1.8633	0.5732 1.8805	0.5836 1.9147	0.5940 1.9488	0.5992 1.9658	0.6044 1.9830	0.6070 1.9915
P _o (inlet) N/m ² lbf/ft ²	100692 2103.00	101246 2114.58	101690 2123.86	101710 2124.26	101698 2124.01	101620 2122.39	101019 2109.84	100568 2100.42	99756 2083.46
To (inlet) K OR	289.444 520.999	289.029 520.253	288.167 518.701	287.741 517.934	287.591 517.663	287.686 517.835	288.042 518.476	289.057 520.303	289.210 520.578
Po (exit) N/m ² 1bf/ft ²	133816 2794.82	134171 2802.24	134651 2812.25	134716 2813, 62	135117 2822.00	134854 316.50	134719 2813.67	134293 2804.78	134047 2799.65
T _O (exit) K OR	317.945 572.301	317.495 571.491	316.942 570.495	316.105 568.989	315.504 567.907	316.043 568.878	316.513 569.724	316.736 570.125	316.806 570.250

382 CONFIGURATION AT 100% DESIGN SPEED (Cont'd)

ASP 499	WCOR * 4	1.0417 kg/	/sec (8.9)	LO4 1bm/s	ec)				
% Span	5	10	20	30	60	70	80	90	95
Diam m ft	0.5601 1.8377	0.5628 1.8463	0.5679 1.8633	0.5732 1.8805	0.5836 1.9147	0.5940 1.9488	0.6992 1.9658	0.6044 1.9830	0.6070 1.9915
Po (inlot) N/m² lbf/ft²	100715 2103.48	101264 2114.95	101643 2122.86	101664 2123.30	101654 2123.09	101571 2121.36	101144 2112.45	100587 2100.82	100012
T _o (inlet) K OK	289.451 521.012	289.028 520.251	288.122 518.619	287.747 517.944	287.577 517.638	287.701 517.862	288.045 518.481	289.058 520.304	289.242 520.636
Po (exit) N/m ² 1bf/ft ²	135076 2821.14	135516 2830.32	135860 2837.51	135941 2839.21	136062 2841.72	136089 2842.30	135934 2839.06	135566 2831.38	135265 2825.09
T _O (exit) K OR	318.963 574.134	318.561 573.410	317.953 572.316	317.338 571.209	317.002 570. 60 4	317.563 571.613	317.832 572.098	318.131 572.635	318.061 572.510
ASP 500	WCOR = 3	1.9869 kg/	'sec (8.78	196 1bm/se	ec)				
% Span	5	10	20	30	50	70	80	90	95
Diam m ft	0.5601 1.8377	0.5628 1.8463	0.5679 1.8633	0.5732 1.8805	0.5836 1.9147	0.5940 1.9488	0.5992 1.9658	0.6044 1.9830	0.607i 1.9915
Po (inlet) N/m ² lbf/ft ²	100716 2103.51	1012/5 2115.19	101620 2122.38	101635 ⁻ 2122.71	101630 2122.60	101576 2121.47	101203 2113.69	100655 2102.23	100068 2089.98
T _o (inlet) K OR	289.426 520.967	289.075 520.335	288.101 518.581	287.734 517.921	287.583 517.649	287.701 517.861	288.055 518.499	289.037 520.266	289.258 520.665
Po (exit) N/m ² lbf/ft ²	135169 2823, 08	135594 2831.96	135939 2839.17	135978 2839.97	136081 2842.12	136089 2842.29	135965 2839.70	135606 2832.21	135306 2825.94
T _O (exit) K op	318.523 573.342	318.687 573.637	318.101 572.582	317.522 571.539	317.252 571.053	317.832 572.098	318.023 572.441	318.377 573.078	318.263 572.873

352 CONFIGURATION AT 105% DESIGN SPEED

ASP 504+509

					A to Table				
ASP 504	MCOK *	4.7436 k	g/see (10	.4678 1bm	/sec)				
% Span	b	10	20	30	50	70	.80		
Ofam						7.0	,80	u()	95
m ft	0.5601 1.8377	0.5628 1.84 6 3		0,6732 1,8805	0.5836 1.9147	0.5940 1.9488	0, 5002 1, 9658		
Po_(iglet)								• • • • • • •	1.0019
N/m² 1bf/ft2	100484 2098.6	101247 6 2114.59	101769 9 2125.50	101791 2125,96	101782 3 2125.7	101705	10101j 7 2109.6	100391 7 2096.7	99376 3 2075.53
To (inlet)									o 60/0.53
o _R	289.328 520.786) 287.779 3 517.991			5 289.058 1 520.300
Po (exit) N∕m∈	10100								
1bf/ft ²	131906 2759, 93	132434 3 2765.96	132899 2775.67	132972 2777,20	133383 2785.78	133158 2781.08	132653 2770.53	132224	131762 2751.92
To (exit)								******	67.744.97
o _R	317.063 570.708	316,560 569,804	315.887 568.592	315.095 567.167	314.356 565.837	314.764 566.571	315,225 567,400		
ASP 505	WCOR =	4.6557 kg.	/sec (10.:	?642 1bm/:	sec)				
% Span	5	10	20						
04		***	40	30	50	70	80	90	95
Diam m	0.5601	4 * * * * *							
ft	1.8377	0.5628 1.3463	0.5679 1.8633	0.5732 1.8805	0.5836 1.9147	0.5940 1.9488	0.5992 1.9658	0.6044 1.9830	0.6070 1.0915
Pol(inlet)									44 "910
N/m² 1bf/ft²	100540 2099.34	101261 2114.89	101768 2125.48	101790 2125.94	101779 2125.72	101661 2123.25	101011 2109.66	100373 2096,34	99429
To (inlet)							2109100	2090.34	2076.62
o _R	289,292 520,725	283.996 520.193	283.102 518.583	287.784 518.012	287.623 517.721	287.777 517.998	288.065 518.517	288.985 520.173	280.090
Po (exit)							210.017	560,173	520.362
N/m ² 1bf/ft ²	133811 2794.71	134308 2805.10	134790 2815.17	134951 2818,52	135350 2826.86	135185 2823.41	134603 2811.25	134190	133613
To (exit)								2802,64	2790.58
K OR	318.354 573.037	317.838 572.109	317.224 571.003	316,366 569,459	315.603 568.086	316.157 569.092	316.588 569.858	317,108 570,705	316,520 569,753

352 CONFIGURATION AT 105% DESIGN SPEED (Cont'd)

ASP 606	WEOR "	4.5656 kg	/sec (10,	0554 1bm/	sec)				
% Span	5	10	20	30	50	70	80	90	JS
Diam m ft	0.5601 1.8377	0.5628 1.8463	0.5679 1.8633	0.5732 1.8805	0.5836 1.9147	0.5940 1.9488	0.5992 1.9658	0.6044 1.9830	0.6070 1.9915
Po (inlet) N/m² lbf/ft²	100574 2100.55	101260 2114.88	101749 2125.08	101771 2125.55	101764 2125.39	101664 2123.30	100992 2109.28	100407 2097.06	99511 2078.34
T _O (inlet) K OR	289.324 520.784	288.979 520.162	288.099 518.579	287.762 517.972	287.613 517.704	287.782 518.008	288.084 518.551	288.997 520.194	289.114 570.405
Po (exit) N/m ² 1bf/ft ²	135561 2831,26	135995 2840.34	136517 2851.24	136658 2854.18	137110 2863.61	136839 2857.96	136517 2851.23	135993 2840.29	135591 2831.90
To (exit) K OR	319.509 575.116	319.026 574.246	316.411 573.139	317.583 571.650	316.852 570.333	317.377 571.278	317.946 572.303	318.327 572.989	317.863 572.153
ASP 507	WCOR = 4	.3961 kg/	'sec (9.69	917 1bm/se	ec)				
% Span	5	10	20	30	50	70	80	90	95
Diam m ft	0.5601 1.8377	0.5628 1.8463	0.5679 1.8633	0.5732 1.8805	0.5836 1.9147	0.5940 1.9488	0.5992 1.9658	0.6044 1.9830	0.6070 1.9915
P _o (inlet) N/m ² lbf/ft ²	100520 2101.51	101260 2114.88	101721 2124.50	101738 2124.85	101727 2124.63	101637 2122.75	101004 2109.53	100520	00643 2081.09
T _O (inlet) K OR	289.352 520.833	288.950 520.110	288.107 518.593	287.729 517.912	287.617 517.710	287.769 517.985	288.088 518.558	289.031 520.255	289.163 528.493
P _o (exit) N/m ² lbf/ft ²	137891 2879.93	138321 2888.90	138827 2899.48	138906 2901.13	139173 2906.81	139062 2904.39	138863 2900.22	138449 2891.57	138183 2886.03
T _o (exit) K OR	321.229 578.212	320.684 577.232	320.107 576.193	319.241 574.633	318.923 574.061	319.402 574.924	319.856 575.741	320.285 576.513	319.746 575.542

352 CONFIGURATION AT 105% DESIGN SPEED (Cont. d)

ASP 508	Wook # 4.2676 kg/sec (9.4085 lbm/sec)								
% Span	5	10	∂0	30	50 so	70	30	0.0	
Ofan m ft Po (iglet)	0.560 1.837			9 0,573 3 1,880	12 0.583 05 1.914	36 O. 504	0 0,599;	90 2 0,604 3 1,983	
N/m ² 1bf/ft ² To (inlet)	10066. 2102.			8 10170 31 2124.	4 10169 15 2123.	6 101613 98 2122.2	l 101114 21 2111.8	100477 2 2098.6	99846
or Po (exit)	289.38 520.88		59 283.06 5 518.51	61 - 287.73 0 - 517.93	37 287.58 27 517.66	83 287.72 49 517.90	5 288.07 4 518.53	3 280. nz	3 289,249
Iof/ft ² To (exit)	138779 2808.4			139687 2 2917.4		3 139858 01 2921,0	139715 2 - 2918.03	139261	138052
og (exit)	301.96 579.52.	7 321,47 3 578,65		4 320.18 4 576.33	5 319.92 3 575.87	8 320,51; 0 576,92	320.736 577.324	° 321.294	320,672
ASP 509	WCOR =	4.1564 kg	/sec (9.1	.633 1hm/s	soc l				
% Span Diam	5	10	20	30	50	70	80	o()	95
m ft ^P o (inlet)	0.5601 1.8377	0.5628 1.8463	0,5679 1,8633	0.5732 1.8805	0.5836 1.9147	0.5940 1.9488	0.5992 1.9658	0.5044 1.9830	0.6070 1.9915
N/m ² 1bf/ft ² To (inlet)	100680 2102.76	101248 2114.61	101649 2123.00	101658 2123.13	101655 2123.13	101607 2122.12	101189 2113.38	100559 2100.22	99958 208 7. 68
K OR Po (exit)	289.337 520.806	288.971 520.147	288.033 518.460	287.704 517.867	287.592 517.666	287.788 518.018	288.112 518.601	289.054 520.315	289.273 520.691
N/m ² 1bf/ft ² T _O (exit)	138991 2902.91	139461 2912.72	139799 2919.77	139804 2919.39	139931 2922.54	139880 2921,47	139713 2917.98	139353 2910.47	139027 2903.66
o _K	322.155 579.879	321.768 579.183	321.194 578.149	320.668 577.203	320,493 576,898	321.129 578.032	321.272	321.823	321,191 578,143