

فصل ششم: انگیزه

$$x_1 =$$
 size $x_2 =$ # bedrooms $x_3 =$ # floors $x_4 =$ age \ldots x_{100}

$$g(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1 x_2 + \theta_4 x_1^2 x_2 + \theta_5 x_1^3 x_2 + \theta_6 x_1 x_2^2 + \cdots)$$

🗖 برای ۱۰۰ ویژگی:

- $(\Delta \cdots)$ اتعداد جملات درجه دوم $0(n^2)$ تعداد عداد
- $(1 \lor \cdots) O(n^3)$ تعداد جملات درجه سوم

فصل ششم: بينايي ماشين(تشخيص خودرو)

□ آنچه شما میبینید:

آزمایش:

آیا تصویر فوق مربوط به یک خودرو است یا خیر؟

نورونها و مغز

- □ خاستگاه. الگوریتمهایی که میکوشند از مغز تقلید کنند.
- □ استفاده از شبکههای عصبی در دههی ۸۰ و اوایل دههی ۹۰ بسیار رایج بود؛ □ اما محبوبیت آنها در اواخر دههی ۹۰ تقریباً از بین رفت.

- □ حال حاضر. شبکههای عصبی در حال حاضر پیشرفته ترین روش برای بسیاری از کاربردها هستند.
 - ◘ به دلیل افزایش سرعت کامپیوترها، امروزه می توان شبکههای بسیار بزرگ را با سرعت بالا آموزش داد.

فصل ششم: فرضیه ی (یک الگوریتم یادگیری)

فصل ششم: فرضیه ی (یک الگوریتم یادگیری)

قشر لامسه یاد می گیرد که چگونه ببیند!

فصل ششم: بازنمایی حسگرها در مغز

دیدن به وسیله زبان

كمربند جهتيابي

مکان یابی صوتی در انسان (سونار)

كاشت چشم سوم در قورباغه

تقریباً می توان هر نوع حسگری را به مغز متصل نمود و مغز یاد می گیرد چگونه از آن استفاده کند!

بازنمایی فرضیه در شبکههای عصبی

فصل ششم: ساختار یک نورون

□ نورون. هر نورون یک سیستم محاسباتی کامل است که ورودیهایی را دریافت میکند، آنها را پردازش میکند و سپس نتیجه را به خروجی میفرستد.

فصل ششم: ارتباط میان نورون ها

فصل ششم: مدل مصنوعي نورون

$$x = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

$$\theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \\ \theta_3 \end{bmatrix}$$

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$
 (لجستیک) تابع فعالیت. تابع سیگموید (لجستیک

$$a_{1}^{(2)} = g \left(\Theta_{10}^{(1)} x_{0} + \Theta_{11}^{(1)} x_{1} + \Theta_{12}^{(1)} x_{2} + \Theta_{13}^{(1)} x_{3} \right)$$

$$a_{2}^{(2)} = g \left(\Theta_{20}^{(1)} x_{0} + \Theta_{21}^{(1)} x_{1} + \Theta_{22}^{(1)} x_{2} + \Theta_{23}^{(1)} x_{3} \right)$$

$$a_{3}^{(2)} = g \left(\Theta_{30}^{(1)} x_{0} + \Theta_{31}^{(1)} x_{1} + \Theta_{32}^{(1)} x_{2} + \Theta_{33}^{(1)} x_{3} \right)$$

$$h_{\theta}(x) = a_{1}^{(3)} = g \left(\Theta_{10}^{(2)} a_{0}^{(2)} + \Theta_{11}^{(2)} a_{1}^{(2)} + \Theta_{12}^{(2)} a_{2}^{(2)} + \Theta_{13}^{(2)} a_{3}^{(2)} \right)$$

 Θ برابر اس \dot{a} برابر

$$a_i^{(j)}=j$$
 در لايه i در الايه» $\Theta^{(j)}=j+1$ ماتريس وزنها از لايه j به لايه

$$\begin{array}{c} x_1 \\ x_2 \\ x_3 \\ \end{array} \qquad \begin{array}{c} a_1^{(2)} \\ a_2^{(2)} \\ \end{array} \qquad \qquad \begin{array}{c} h_{\Theta}(x) \\ \end{array}$$

اگر شبکه iو در لایه و i واحد در لایه

د[شتهـ بارشد، آنگاه ابعاد

$$\Theta^{(j)} = j + 1$$
 ماتریس وزنها از لایه j به لایه

$$a_i^{(j)} = j$$
 فعاليت» واحد i در لايه»

$$a_1^{(2)} = g \left(\Theta_{10}^{(1)} x_0 + \Theta_{11}^{(1)} x_1 + \Theta_{12}^{(1)} x_2 + \Theta_{13}^{(1)} x_3 \right)$$

$$a_2^{(2)} = g \left(\Theta_{20}^{(1)} x_0 + \Theta_{21}^{(1)} x_1 + \Theta_{22}^{(1)} x_2 + \Theta_{23}^{(1)} x_3 \right)$$

$$a_3^{(2)} = g \left(\Theta_{30}^{(1)} x_0 + \Theta_{31}^{(1)} x_1 + \Theta_{32}^{(1)} x_2 + \Theta_{33}^{(1)} x_3 \right)$$

$$h_{\theta}(x) = a_1^{(3)} = g \left(\Theta_{10}^{(2)} a_0^{(2)} + \Theta_{11}^{(2)} a_1^{(2)} + \Theta_{12}^{(2)} a_2^{(2)} + \Theta_{13}^{(2)} a_3^{(2)} \right)$$

اگر شبکه s_j واحد در لایه j و s_{j+1} واحد در لایه j+1 داشته باشد، آنگاه ابعاد $\Theta^{(j)}$ برابر است با:

$$s_{j+1} \times (s_j + 1)$$

فصل ششم: انتشار پیش رو(پیاده سازی برداری)

$$a_{1}^{(2)} = g\left(\Theta_{10}^{(1)}x_{0} + \Theta_{11}^{(1)}x_{1} + \Theta_{12}^{(1)}x_{2} + \Theta_{13}^{(1)}x_{3}\right)$$

$$a_{2}^{(2)} = g\left(\Theta_{20}^{(1)}x_{0} + \Theta_{21}^{(1)}x_{1} + \Theta_{22}^{(1)}x_{2} + \Theta_{23}^{(1)}x_{3}\right)$$

$$a_{3}^{(2)} = g\left(\Theta_{30}^{(1)}x_{0} + \Theta_{31}^{(1)}x_{1} + \Theta_{32}^{(1)}x_{2} + \Theta_{33}^{(1)}x_{3}\right)$$

$$h_{\theta}(x) = g\left(\Theta_{10}^{(2)}a_{0}^{(2)} + \Theta_{11}^{(2)}a_{1}^{(2)} + \Theta_{12}^{(2)}a_{2}^{(2)} + \Theta_{13}^{(2)}a_{3}^{(2)}\right)$$

$$x = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \end{bmatrix} \qquad z^{(2)} = \begin{bmatrix} z_1^{(2)} \\ z_2^{(2)} \\ z_3^{(2)} \end{bmatrix}$$

$$z^{(2)}=\Theta^{(1)}x$$
 $a^{(2)}=gig(z^{(2)}ig)$ $a^{(2)}_0=1$ اضافه کردن

$$z^{(3)} = \Theta^{(2)}a^{(2)}$$
$$a^{(3)} = g(z^{(3)}) = h_{\theta}(x)$$

فصل ششم: شبکه های عصبی مجموعه ای جدید از ویژگی ها را یاد می گیرند

فصل ششم: انواع دیگر معماری شبکه

مثالها

فصل ششم: كلاس بندى غير خطى(تابع XOR/ XNOR)

فصل ششم: یک مثال ساده (تابع AND)

$$x_1, x_2 \in \{0, 1\}$$

 $y = x_1 \text{ AND } x_2$

$$h_{\Theta}(x) = g(-30 + 20x_1 + 20x_2)$$

 $\Theta_{10}^{(1)} \quad \Theta_{11}^{(1)} \quad \Theta_{12}^{(1)}$

x_1	x_2	$h_{\theta}(x)$
0	0	$g(-30) \approx 0$
0	1	$g(-10) \approx 0$
1	0	$g(-10) \approx 0$
1	1	$g(10) \approx 1$

فصل ششم: مثال (تابع OR)

$$h_{\Theta}(x) = g(-10 + 20x_1 + 20x_2)$$

x_1	x_2	$h_{\theta}(x)$		
0	0	$g(-10) \approx 0$		
0	1	$g(10) \approx 1$		
1	0	$g(10) \approx 1$		
1	1	$g(30) \approx 1$		

فصل ششم: تابع نقيض

نقيض.

$$\begin{array}{c|c} x_1 & h_{\theta}(x) \\ \hline 0 & g(10) \approx 1 \\ 1 & g(-10) \approx 0 \end{array}$$

$$h_{\theta}(x) = g(10 - 20x_1)$$

فصل ششم: مثال(تابع XNOR)

x_1	x_2	$a_1^{(2)}$	$a_2^{(2)}$	$h_{\Theta}(x)$
0	0	0	1	1
0	1	0	0	0
1	0	0	0	0
1	1	1	0	1

فصل ششم: محاسبه ی توابع پیچیده تر

فصل ششم: تشخيص ارقام دستنويس [Yann LeCun]

فصل ششم: عملگرهای جابجایی، چرخش، تغییر اندازه

فصل ششم: مقاومت در برابر نویز

فصل ششم: تشخيص چند كاراكتر

کلاسبندی چند کلاسی

فصل ششم: چندین واحد خروجی(یکی در برابر همه)

خودرو

موتورسيكلت

كاميون

$$h_{\Theta}(x) \in \mathbb{R}^4$$

$$h_{\Theta}(x) \approx \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}$$
مگذر,

$$h_{\Theta}(x) pprox \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix} \quad h_{\Theta}(x) pprox \begin{bmatrix} 0\\1\\0\\0 \end{bmatrix} \quad h_{\Theta}(x) pprox \begin{bmatrix} 0\\0\\1\\0 \end{bmatrix}$$
 موتورسيكلت خودرو رهگذر

فصل ششم: چندین واحد خروجی(یکی در برابر همه)

$$h_{\Theta}(x) \in \mathbb{R}^4$$

$$h_{\Theta}(x) pprox egin{bmatrix} 1 \ 0 \ 0 \ 0 \end{bmatrix} & h_{\Theta}(x) pprox egin{bmatrix} 0 \ 1 \ 0 \ 0 \end{bmatrix} & h_{\Theta}(x) pprox egin{bmatrix} 0 \ 0 \ 1 \ 0 \end{bmatrix}$$
موتورسيكلت خودرو رهگذر

$$(x^{(1)},y^{(1)}),(x^{(2)},y^{(2)}),\dots,(x^{(m)},y^{(m)})$$
 مجموعهی آموزشی:

$$y^{(i)}$$
 $\begin{bmatrix} 1\\0\\0\\0\\0 \end{bmatrix}$ $\begin{bmatrix} 0\\1\\0\\0 \end{bmatrix}$ $\begin{bmatrix} 0\\0\\1\\0 \end{bmatrix}$ $\begin{bmatrix} 0\\0\\0\\1 \end{bmatrix}$

با تشکر از توجه شما

