Deep Learning 2. Multi Layer Perceptrons

A course @EDHEC by Romain Tavenard (Prof. @Univ. Rennes 2)

Limitations of the Perceptron

- Input: $x = \{x_0, ..., x_D\}$
- Output: $a = \varphi(\sum_{j} w_{j}x_{j} + b)$
- Can do
 - Linear regression
 - Linear boundaries for classification
 - Single output

Multi-Layer Perceptron (MLP) model (Rumelhart, Hinton & Williams, 1985)

Definition

A Multilayer perceptron is an acyclic graph of neurons, where neurons are structured in successive layers, beginning by an input layer and finishing with an output.

layer.

Multi-Layer Perceptron (MLP) model (Rumelhart, Hinton & Williams, 1985)

Why introduce hidden layer(s)? Universal approximation theorem (Cybenko, 1989)

- Under reasonable assumptions on the activation function to be used*
- For any continuous function on a compact g and any precision threshold ${\cal E}$
- There exists a 1-hidden-layer MLP with a finite number of neurons that can approximate g at level ${\cal E}$

Why introduce hidden layer(s)? In practice

- Universal Approximation Theorem:
 - A single hidden layer is sufficient in theory
 - The number of neurons in this layer is not given
- In practice, for a given approximation level
 - Stacking more layers requires less parameters
 - A Very deep networks suffer from specific problems too (discussed later in the course)
 - 2-3 hidden layers is a good start for an MLP

End-to-end learning

- Classification using MLP
 - Hidden layers: non-linear transformations

Last layer: logistic regression

Building blocks of neural networks Input/Output layers

- Given a dataset (X, y)
- Constraints on model structure:
 - Input layer dimension is the number of features in X
 - Output layer has as many units as columns in y

Building blocks of neural networks Activation functions

- Important features
 - φ should be differentiable almost everywhere
 - Non-linearities
 - Some linear regime
- Examples

Building blocks of neural networks Activation functions: the reign of ReLU

- ReLU has become the default choice for internal layers over time
- 2 main reasons:
 - cheap to compute (both ReLU and its derivative)
 - vanishing gradients phenomenon (more on that later)

Building blocks of neural networks Activation functions: the case of the output layer

- Output activation functions drive the values:
 - identity ("linear" in keras): any real
 - ReLU: any positive value
 - sigmoid: any value in [0, 1]
 - softmax:
 >0 and sums to 1

 (across output neurons)

$$\operatorname{soft-max}(o)_i = \frac{e^{o_i}}{\sum_j e^{o_j}}$$