

CLAIMS:

1. A fluidising admixture for use with sprayable cementitious compositions, the admixture consisting of

(1) 2-phosphonobutane-1,2,4-tricarboxylic acid;

(2) optionally, citric acid; and

(3) at least one polymer derived from ethylenically-unsaturated mono-or dicarboxylic acids, and characterised in that the polymer consists of

a) 51-95 mole % of moieties of formula 1a and/or 1b and/or 1c

15

20

wherein R¹ = hydrogen or a C₁₋₂₀ aliphatic hydrocarbon residue;
 X = O_a M, -O-(C_mH_{2m}O)_n-R², -NH-(C_mH_{2m}O)_n-R²,
 M = hydrogen, a mono- or divalent metal cation, an ammonium ion or an organic amine residue;

a=0.5 or 1;

R² = hydrogen, C₁₋₂₀ aliphatic hydrocarbon, C₅₋₈ cycloaliphatic hydrocarbon or optionally substituted C₆₋₁₄ aryl residue;

Y = O, NR²;

m = 2-4; and

n = 0-200

b) 1-48.9 mole% of moieties of the general formula II

wherein R^3 = hydrogen or C₁₋₅ aliphatic hydrocarbon;

5 p = 0-3; and

R^2 has the meaning given previously;

c) 0.1-5 mole % of moieties of Formulae IIIa or IIIb

wherein S = H, -COO_aM, - COOR⁵

15 T = U^1 - $(\text{CH---CH}_2\text{---O})_x$ - $(\text{CH}_2\text{---CH}_2\text{O})_yR^6$
 \downarrow
 CH^3
 -W---R^7

$\text{-CO---[NH---(\text{CH}_2)_3]}_s\text{-W---R}^7$

$\text{-CO---O---(\text{CH}_2)_z\text{-W---R}^7}$

$\text{---(\text{CH}_2)_z\text{-V---(\text{CH}_2)_z\text{-CH=CH---R}^2}$

$= \text{- COOR}^5$ when S is - COOR⁵ or COO_aM

U^1 = -CO-NH-, -O-, - CH₂O-

U^2 = - NH-CO-, -O-, -OCH₂-

V = -O-CO-C₆H₄-CO-O- or -W-

20
 U^1 = -CO-NH-, -O-, - CH₂O-

25

30

R^4 = H, CH₃

R^5 = a C₃₋₂₀ aliphatic hydrocarbon residue, a C_{5-C₈} cycloaliphatic hydrocarbon residue or a C₆₋₁₄ aryl residue;

d) 0-47.9 mole % of moieties of the general formula IVa and / or IV b;

IVa

IVb

wherein a, M, X and Y have the significances hereinabove defined.

2. A fluidising admixture according to claim 1, in which

a) the moiety is according to formula Ia:

R^1, R^2 are independently H or CH_3 .

30 X = O₂M₁-O-(C_mH_{2m}O)_n-R²

$M = H$ or a mono- or divalent metal cation:

$$a = 1.$$

$$V \equiv O/NR^2.$$

m= 2-3; and

n= 20-150;

b) R², R³ are independently H or CH₃; and

5 p = 0-1;

c) the moiety is according to formula IIIa;

R⁴, R⁵ are independently H, CH₃;

20 wherein

x = 20-50;

y = 1-10; and

25 z = 0-2.

3. A fluidising admixture according to claim 2, in which

a) the moiety is according to formula Ia;

30 R¹ = H;

R² = CH₃;

X = O_a M;

M = a mono-or divalent metal cation;

Y= O, NR²;

m = 2; and

n = 25-50;

5 b) R², R³ = H; and

p = 0;

c) the moiety is according to formula IIIa;

S = H, -COO_aM;

10 T = U¹-(CH-CH₂-O)_x- (CH₂-CH₂O)_yR⁶
 |
 CH³

-CO-O-(CH₂)_z-W-R⁷

R⁴, R⁵ = H;

R⁶ = R², -CH₂-_{R⁴}CH-U²-_{R⁴}C=S_H

15

R⁷ = R², -[(CH₂)₃-NH]_s-CO-C=CH
 |
 R⁴ S

20

-(CH₂)_z-O-CO-C=CH
 |
 R⁴ S

wherein

U¹ = -CO-NH-;

U² = - NH-CO-, -O-, -OCH₂-

x = 20-50;

25 y = 5-10; and

z = 1-2.

4. A method of imparting flow to a cementitious composition, comprising the addition thereto of an admixture according to any one of claims 1-3.

30

5. A method of spraying a cementitious composition by preparing a cementitious mix and conveying the mix to a spray nozzle, there being added to the mix at preparation an admixture according to claim 1.