

CSCI 544 Applied Natural Language Processing

Mohammad Rostami

USC Computer Science Department

Logistical Notes

- HW1 is out: start working early
- NLTK
- sklearn
- Quiz1: Blackboard
- Recorded lectures: blackboard -> tools -> usc zoom pro meeting -> cloud recordings.
- Groups: 10 groups are formed. Continue to form your groups soon.
- TA office hours: announcements on Blackboard
- Happy to see some people started to form groups and already learning using NLTK

Classification

 Categorizing instances of data into "classes", where class members share some notion of similarity, e.g., having positive sentiment

Parametric Model:

Learning \approx Choosing and selecting the **best** model

$$y_i = h(\theta) \approx \theta^{\top} x_i, \theta \in \mathbb{R}^d$$

Model Selection:

$$\hat{\theta} = \arg\min_{\theta \in \Omega(\theta)} \sum_{i} \mathcal{L}(\theta^{\top} x_i, y_i)$$
Empirical Error

Class 0

Class 1

 $\mathbf{X} = [x_1, \dots, x_N] \in \mathbb{R}^{d \times N}, \mathbf{Y} \in \{0, 1\}^N$ Training Dataset

Testing Dataset

Features!

Preprocessing

Tokenization: splitting the text into units for processing

- Removing extra spaces: the quality is high
- Removing stop words: article, propositions, etc.

['i', 'me', 'my', 'myself', 'we', 'our', 'ours', 'ourselves', 'you', "you're", "you've", "you'd", 'your', 'yours', 'yourself', 'yourselves', 'he', 'him', 'his', 'himself', 'she', "she's", 'hers', 'herself', 'it', "it's", 'its', 'itself', 'they', 'them', 'their', 'theirs', 'themselves', 'what', 'which', 'whon', 'whom', 'this', 'that', "that'll", 'these', 'those', 'am', 'is', 'are', 'was', 'were', 'be', 'been', 'being', 'have', 'has', 'had', 'having', 'do', 'does', 'did', 'doing', 'a', 'an', 'the', 'and', 'but', 'if', 'or', 'because', 'as', 'until', 'while', 'of', 'at', 'by', 'for', 'with', 'about', 'against', 'between', 'into', 'through', 'during', 'before', 'after', 'above', 'below', 'to', 'from', 'up', 'down', 'in', 'out', 'on', 'off', 'over', 'under', 'again', 'further', 'then', 'once', 'here', 'there', 'when', 'where', 'why', 'how', 'all', 'any', 'both', 'each', 'few', 'more', 'most', 'other', 'some', 'such', 'no', 'nor', 'not', 'only', 'own', 'same', 'so', 'than', 'too', 'very', 's', 't', 'can', 'will', 'just', 'don', "don't", 'should', "should've", 'now', 'd', 'll', 'm', 'o', 're', 've', 'y', 'ain', 'aren', "aren't", 'couldn', "couldn't", 'didn', "didn't", 'doesn', "doesn't", 'hadn', "hadn't", 'hasn', "hasn't", 'haven', "haven't", 'won', "won't", 'wouldn', "wouldn't"]

- Contractions are standardized: won't -> will not
- Removing unhelpful words, e.g., external URL links
- Removing unhelpful characters, e.g., non-alphabetical characters.
- Converting capital letter to lowercase

Preprocessing

- Stemming: wordform stripped of some characters
- Lemmatization: the base (or citation) form of a word
- Example:
- ordered could fill pandora bracelet right away wan na wait holiday filled liked fact lot pink charm barely got shipment still charm bracelet wear often since turn wrist green

```
ps = nltk.stem.porter.PorterStemmer()
print([ps.stem(word) for word in txt])

['order', 'could', 'fill', 'pandora', 'bracelet', 'right', 'away', 'wan', 'na', 'wait', 'holi
day', 'fill', 'like', 'fact', 'lot', 'pink', 'charm', 'bare', 'got', 'shipment', 'still', 'ch
arm', 'bracelet', 'wear', 'often', 'sinc', 'turn', 'wrist', 'green']
```

```
ps = nltk.stem.WordNetLemmatizer()
print([ps.lemmatize(word) for word in txt])

['ordered', 'could', 'fill', 'pandora', 'bracelet', 'right', 'away', 'wan', 'na', 'wait', 'ho liday', 'filled', 'liked', 'fact', 'lot', 'pink', 'charm', 'barely', 'got', 'shipment', 'stil l', 'charm', 'bracelet', 'wear', 'often', 'since', 'turn', 'wrist', 'green']
```

Feature Extraction

- We start from raw data, e.g., text, and build values, i.e., features, intended to be informative and non-redundant to help the subsequent learning and generalization steps.
- Is a non-trivial task and specific to the application
- The quality is judged by performance
- A tedious task as applications become more abstract, e.g., document categorization vs document summarization

• Example: Are you satisfied with our service?

Bag of Words (BoW)

- Simple example: counting the number of "informative" words in the input text
- Bag of words:
- we pick a dictionary of words and then put an arbitrary order on the words, e.g., alphabetical order
- We convert the text into a feature vector by reporting the frequency of occurrence of the words in the text
- Ex:
- Dic = [good, bad, nice, expensive, love]
- [I love this shirt because it is nice and worm. The color also is nice and matches my skin tone] -> [0, 0, 2, 0, 1]

as scoring ...

Bag of Words (BoW)

- Limitations of bag of ward:
- Insensitive to language structure: "I wanna eat ice cream" vs "wanna eat ice cream?"
- Information in word dependencies is overlooked: "new york"
 vs "new book"
- The resulting vectors are highly sparse which leads to high computational costs
- Why do we use BoW?
- Simple
- Leads to acceptable performance in some applications

Term Frequency - Inverse Document Frequency

- Core idea: reflect how important a word is to an instance in the dataset.
- Term Frequency: a measure of how frequently a term, t, appears in an instance (document), d:

$$tf_{t,d} = \frac{n_{t,d}}{Number\ of\ terms\ in\ the\ document}$$

- The frequency of occurrence is normalized
- Inverse Document Frequency: a measurement of how distinguishing a term is in the dataset.

$$idf_t = log \frac{number\ of\ documents}{number\ of\ documents\ with\ term\ 't'}$$

Term Frequency - Inverse Document Frequency

 TF-IDF score: reflects importance of the word for a particular instance and informative to categorize the documents

$$(tf_idf)_{t,d} = tf_{t,d} * idf_t$$

- We use TF-IDF to extract the feature vector
- Ex: What is TF-IDF score for stop words?

Implemented in NLTK

Statistical Learning

• Problem: finding a **predictive** function based on an annotated training dataset using probability theory $(\mathbf{x}_i, \mathbf{y}_i) \sim p(\mathbf{x}, \mathbf{y})$

• Goal: given the value of an input vector X, i.e., features, make a good prediction \hat{Y} of the output Y (i.e., $\hat{Y} = Y$ with high probability) using the predictive function

• Maximum posterior estimation: P(Y|X)

Generative vs. Discriminative Models

Generative

- Learn a model of the joint probability P(X, Y)
- Use Bayes' Rule to calculate P(Y|X)
- Return the class that most likely to have generated that instance
- Examples: Naïve Bayes

Discriminative

- Model posterior probability P(Y|X) directly
- Class is a function of feature vector
- Find the exact function that minimizes classification errors on the training dataset and use it for prediction
- Examples: Linear classifier
 Logistic regression, Neural
 Networks (NNs), Support
 Vector Machines (SVMs)

Discriminative vs. Generative Classifiers

- Discriminative classifiers are generally more effective, since they directly optimize the classification accuracy. But
 - They are all sensitive to the choice of features, and in traditional ML these features are extracted heuristically
 - Overfitting can happen if datasets are small
- Generative classifiers directly model the joint probability which is helpful when generating text is necessary but:
 - Modeling the joint probability is a harder problem than classification if only classification is our goal
 - They are more vulnerable with respect to outliers

Bayes Classifier

Bayes Rule:

Posterior Prior Likelihood
$$P(Y|X) = \frac{P(Y)P(X|Y)}{P(X)}$$

Bayes Optimal Classifier:

$$\hat{Y} = \arg\max_{Y} P(Y)P(X|Y)$$

- We use multiple features

$$\hat{Y} = \arg\max_{Y} P(Y) P(X_1, \dots, X_n | Y)$$

(Multinomial) Naïve Bayes Classifier

- Challenges for the Bayes optimal classifier
- Computing the joint likelihood probability is practically almost impossible

 Assuming statistical independence between the features:

$$\hat{Y} = \arg \max_{Y} P(Y) P(X_1, \dots, X_n | Y)$$
$$= \arg \max_{Y} P(Y) \prod_{i=1}^{n} P(X_i | Y)$$

(Multinomial) Naïve Bayes Classifier

- Challenges for the Naïve Bayes classifier
- Computing the likelihood probability even for single features is practically difficult because many words are not frequently used: superb vs good

$$\hat{Y} = \arg \max_{Y} P(Y) P(X_1, \dots, X_n | Y)$$
$$= \arg \max_{Y} P(Y) \prod_{i=1}^{n} P(X_i | Y)$$

- Zero probabilities cannot be conditioned away, no matter the other helpful evidence!
- Smoothing: we add small non-zero probabilities to avoid zero probabilities

Example

- Features/Dic = {I , hate, love, blue, shirt}
 ~ {X1, X2, X3, X4, X5}
- Training
 - I hate blue shirt (Y=0)
 - Love blue shirt (Y=1)
- What is P(Y|X)?
- P(Xi=k|Y=j) = #(documents with Xi=k and Y=j)/ #(documents with Y=j)

$$P(X|Y) = \begin{bmatrix} P(X1=0|Y=0) & P(X2=0|Y=0) & P(X3=0|Y=0) & P(X4=0|Y=0) & P(X5=0|Y=0) \\ P(X1=0|Y=1) & P(X2=0|Y=1) & P(X3=0|Y=1) & P(X4=0|Y=1) & P(X5=0|Y=1) \\ P(X1=1|Y=0) & P(X2=1|Y=0) & P(X3=1|Y=0) & P(X4=1|Y=0) & P(X5=1|Y=0) \\ P(X1=1|Y=1) & P(X2=1|Y=1) & P(X3=1|Y=1) & P(X4=1|Y=1) & P(X5=1|Y=1) \end{bmatrix}$$

Features = $\begin{bmatrix} 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \end{bmatrix}$

- Prior p(Y) $P(Y) = [P(Y = 0) \ P(Y = 1)]$
- P(Y=j) = #(documents with Y=j)/ #(all documents)
- Testing
 - hate shirt {x2,X5}

$$P(Y|X) \propto [P(Y=0) \times P(X2=1|Y=0) \times P(X5=1|Y=0) \quad P(Y=1) \times P(X2=1|Y=1) \times P(X5=1|Y=1)]$$

Example

- Features = {I, hate, love, this, shirt}
- Training
 - I hate this shirt
 - Love this shirt
- What is P(Y|X)?
- Prior p(Y)
- Testing
 - hate shirt

$$P(X|Y) = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \end{bmatrix}$$

$$P(Y) = [1/2 \quad 1/2]$$

$$P(Y|X) \propto [1/2 \times 1 \times 1 \quad 1/2 \times 0 \times 1] \propto [1\ 0]$$

Implemented in sklearn

Linear Classifier

 An interpretation for discriminative models is that we find a boundary between the two classes in the geometrical features space

 A linear classifier assumes that the data points are linearly separable in the feature space

The goal is to find a boundary

Linear models

A linear function in *n*-dimensional space (i.e. we have *n* features) is define by *n*+1 weights:

$$Y = \sum_{i=0}^{n} \beta_i X_i$$

 We find the model weights such that the linear function acts as a good predictive model

Is not necessarily unique!

