PS02 - Bayesian Statistics

2025-02-09

Question 01

Posterior inference: suppose you have a Beta(4, 4) prior distribution on the probability θ that a coin will yield a 'head' when spun in a specified manner. The coin is independently spun ten times, and 'heads' appear fewer than 3 times. You are not told how many heads were seen, only that the number is less than 3. Calculate the exact posterior density (up to a proportionality constant) for θ and sketch it using R.

Answer:			

Question 02

Suppose that X_1 and X_2 are independent random variables, and X_i has the exponential distribution with parameter $\beta_i (i = 1, 2)$. Show that for each constant k > 0:

$$P(X_1 > kX_2) = \frac{\beta_2}{\beta_2 + k\beta_1}$$

How much is $P(X_1 \leq kX_2)$

Answer:

Question 03

Suppose that $X_1, ..., X_n$ form a random sample from an exponential distribution for which the value of the parameter β is unknown ($\beta > 0$) Find the Maximum Likelihood Estimator of β .

Answer:

Question 04

Let $X_1, ..., X_n$ a random sample of size n from the distribution specified in each question below. Show that the statistic T specified is a sufficient statistic for the parameter.

A Bernoulli distribution with parameter p, which is unknown $(0 and <math>T = \sum_{i=1}^{n} X_i$.

B Geometric distribution with parameter p unknown $(0 and <math>T = \sum_{i=1}^{n} X_i$

C Negative binomial distribution with parameters r and p, where r is known and p is unknown $(0 and <math>T = \sum_{i=1}^{n} X_i$.

D Normal distribution for which the mean μ is known but the variance $\sigma^2 > 0$ is unknown; $T = \sum_{i=1}^n (X_i - \mu)^2$.

- **E** The gamma distribution with parameters α and β , where the value of β is known and the value of α is unknown $(\alpha > 0)$; $T = \prod_{i=1}^{n} X_i$
- **F** The beta distribution with parameters α and β , where the value of β is known and the value of α is unknown $(\alpha > 0)$; $T = \prod_{i=1}^{n} X_i$.