DIGITAL SIGNAL & IMAGE MANAGEMENT

Giannelli Alessio Imbonati Lorenzo Valoti Davide

SUMMARY

Step 1: Image Classification -

FGVC Aircraft 100 Dataset

using Densenet201

Step 2: Image Retrieval -

Feature Re-Weighting in CBIR

Dataset & Pre-Processing

<u>Info about Dataset</u>

Dataset Size: 2.76 GB

Number of classes: 100

Number of Instances per class: 100

Splitting

TRAIN (60%) 6000 instances VALIDATION (30%) 3000 instances

TEST (10%) 1000 instances

Cropping

Model Architecture

<u>Transfer Architecture DenseNet201</u>

base_net = keras.applications.DenseNet201(input_shape=(224,224,3), weights='imagenet', include_top=False)
base_net.trainable = True

Layer (type)	Output Shape	Param #
input_4 (InputLayer)	[(None, 224, 224, 3)]	0
<pre>tf.math.truediv_2 (TF0pLamb da)</pre>	(None, 224, 224, 3)	0
<pre>tf.nn.bias_add_1 (TF0pLambd a)</pre>	(None, 224, 224, 3)	0
<pre>tf.math.truediv_3 (TF0pLamb da)</pre>	(None, 224, 224, 3)	0
densenet201 (Functional)	(None, 7, 7, 1920)	18321984
<pre>average_pooling2d_1 (Averag ePooling2D)</pre>	(None, 3, 3, 1920)	0
global_average_pooling2d_1 (GlobalAveragePooling2D)	(None, 1920)	0
dense_3 (Dense)	(None, 1024)	1967104
<pre>batch_normalization_2 (Batc hNormalization)</pre>	(None, 1024)	4096
dropout_2 (Dropout)	(None, 1024)	0
dense_4 (Dense)	(None, 512)	524800
<pre>batch_normalization_3 (Batc hNormalization)</pre>	(None, 512)	2048
dropout_3 (Dropout)	(None, 512)	0
dense_5 (Dense)	(None, 100)	51300

Total params: 20,871,332 Trainable params: 20,639,204 Non-trainable params: 232,128

<u>Transfer Learning</u>

DenseNet201 Performance

Classification Report

	precision	recall	f1-score
0	0.86	0.97	0.91
1	0.93	0.85	0.89
2	0.96	0.74	0.83
19	0.65	0.52	0.58
20	0.73	0.94	0.82
21	0.65	0.73	0.69
22	0.82	0.70	0.75
23	0.97	0.91	0.94
accuracy			0.81
macro avg	0.82	0.81	0.80
weighted avg	0.82	0.81	0.80

Loss & Accuracy Trend

Confusion Matrix

The performance of the model is very good as it achieves 80% accuracy on the validation set.

The trend shows some performance fluctuations but in general it is quite stable and the validation follows the growth of the training set.

DenseNet201 Evaluation

on Web Image

Distribution Probability

on Test Set

Test loss	Test accuracy
0.8971	80.30%

```
previsione

array([[8.45307895e-08, 8.59294147e-09, 2.28450489e-07, 1.04331457e-05, 5.10848849e-07, 9.47635385e-07, 9.56761141e-08, 1.16615745e-04, 1.19382069e-01, 6.69421115e-06, 1.71462332e-07, 1.86927124e-07, 3.83096435e-08, 1.61001561e-04, 8.33525717e-01, 1.18540612e-03,
```

Image Prevision

```
np.argmax(previsione)

14
train.class_names[14]
'757-200'
```


Feature Re-Weighting in CBIR

<u>Implementation of the following paper</u>

Feature Re-weighting in Content-Based Image Retrieval

Gita Das¹, Sid Ray¹, and Campbell Wilson²

Clayton School of Information Technology
Monash University
Victoria 3800, Australia

{Gita.Das, Sid.Ray}@csse.monash.edu.au

Caulfield School of Information Technology
Monash University
Victoria 3800, Australia
Campbell.Wilson@csse.monash.edu.au

Main concepts:

- Use of the previous neural network as feature extractor
- Use of weighted Minkowski distance as similarity measure
- Update of the query results according to user preferences

Feature Extraction

Load Task2 Model

temp = keras.models.load_model('Model/densenet201_final_task2.h5')

layer_name = 'dense_1'
newmodel = Model(inputs=temp.input, outputs=temp.get_layer(layer_name).output)
newmodel.summary()

Splitting

TRAIN 6000 instances TEST 1000 instances

Features normalization

$$f_{i}^{'} = \frac{f_{i,org} - \mu_{i}}{3\sigma_{i}}$$

$$f_{i} = \frac{f_{i}^{'} + 1}{3\sigma_{i}}$$

Image Retrieval (Query)

Manhattan similarity measure

$$D(I,Q) = \sum_{i=1}^{M} w_i * |f_{iI} - f_{iQ}|$$

Weights are constant for the first round of retrieval

Top20 Precision on test set 77.56%

Images Similarity to the test image

Similarity: 344.92 Class: 707-320

Similarity: 334.34 Class: 707-320

Similarity: 345.00 Class: 707-320

Similarity: 341.66 Class: 707-320

Similarity: 345.82 Class: 707-320

Rebalancing type 1

<u>Update weights formula Type 1</u>

$$weight-type1: w_i^{k+1} = \frac{\epsilon + \sigma_{N_r,i}^k}{\epsilon + \sigma_{rel,i}^k}, \epsilon = 0.0001$$

New weight for the i-th feature is equal to the division between the standard deviation over the 20 retrieved images and the standard deviation over the relevant images at the previous round

$$W^{k+1} = 0.9*W^k + 0.1*W^{k+1}$$

Round number	Top20 Precision
Round 0	77.56
Round 1	83.94
Round 2	84.56
Round 3	85.10
Round 4	85.41
Round 5	85.54

Rebalancing type 2

<u>Update weights formula Type 2</u>

$$weight-type2: w_i^{k+1} = \frac{\delta_i^k}{\epsilon + \sigma_{rel,i}^k}$$

$$\delta_i^k = 1 - \frac{\sum_{l=1}^k |\psi_i^{l,U}|}{\sum_{l=1}^k |F_i^{l,U}|}$$

New weight for the i-th feature is equal to the division between the sigma quantity defined in the second formula, that depends on the **dominant range,** and the standard deviation over the relevant images at the previous round

Round number	Top20 Precision
Round 0	77.56
Round 1	61.70
Round 2	58.84
Round 3	59.91
Round 4	60.09
Round 5	60.53

 $W^{k+1} = 0.9*W^k + 0.1*W^{k+1}$

Rebalancing type 3

<u>Update weights formula Type 3</u>

$$weight-type3: w_i^{k+1} = \delta_i^k * \frac{\epsilon + \sigma_{N_r,i}^k}{\epsilon + \sigma_{rel,i}^k}$$

New weight for the i-th feature is equal to the the delta value defined in the previous slide by the weights of type 1

$$W^{k+1} = 0.9*W^k + 0.1*W^{k+1}$$

Round number	Top20 Precision
Round 0	77.56
Round 1	60.33
Round 2	57.35
Round 3	57.94
Round 4	57.85
Round 5	57.77

Rebalancing Types Trend

Type 1 rebalancing is definitely the best since it shows increasing growth.

The other two types of rebalancing do not produce any improvement.

Let's leave room for the demo...

