Digitale Bildverarbeitung

$$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 4 & -1 \\ 0 & -1 & 0 \end{bmatrix}$$

Dr. rer. nat. Johannes Riesterer

Dilatation (binär)

Sei $B \subset \mathbb{R}^n$ eine (nichtleere) Teilmenge und $u: \mathbb{R}^n \to \{0,1\}$ eine binäres Bild. Die Dilatation von u mit dem Strukturelement B ist definiert durch

$$(u \oplus B)(x) = \begin{cases} 1 \text{ falls für ein } y \in B \text{ gilt } u(x+y) = 1 \\ 0 \text{ sonst} \end{cases}$$

Dilatation eines Vierecks mit einem Kreis

Figure: Quelle: Wikipedia

Erosion (binär)

Sei $B \subset \mathbb{R}^n$ eine (nichtleere) Teilmenge und $u: \mathbb{R}^n \to \{0,1\}$ eine binäres Bild. Die Erosion von u mit dem Strukturelement B ist definiert durch

$$(u\ominus B)(x)=egin{cases} 1 ext{ falls für alle } y\in B ext{ gilt } u(x+y)=1 \ 0 ext{ sonst} \end{cases}$$

Erosion eines Vierecks mit einem Kreis

Figure: Quelle: Wikipedia

Lemma

Sei $B \subset \mathbb{R}^n$ eine (nichtleere) Teilmenge und $u : \mathbb{R}^n \to \{0,1\}$. Dann gilt:

$$(u \oplus B)(x) = \sup_{y \in B} u(x+y)$$
$$(u \ominus B)(x) = \inf_{y \in B} u(x+y)$$

Beweis

$$\sup_{y \in B} u(x+y) = 1 \Leftrightarrow \exists y \in B : u(x+y) = 1$$
$$\inf_{y \in B} u(x+y) = 1 \Leftrightarrow \forall y \in B : u(x+y) = 1$$

Dilatation und Erosion von Grauwertbildern

Sei $B \subset \mathbb{R}^n$ eine (nichtleere) Teilmenge und $u : \mathbb{R}^n \to [0,1]$ ein kontinuierliches Grauwertbild. Dann ist die Dilatation und die Erosion definiert durch:

$$(u \oplus B)(x) = \sup_{y \in B} u(x + y)$$
$$(u \ominus B)(x) := \inf_{y \in B} u(x + y)$$

Diskretisierung morphologischer Operationen

Sei $B \subset \mathbb{Z}^2$ eine (nichtleere) Teilmenge und $u: Z^2 \to [0,1]$ ein diskretes Bild. Das Strukturelement B wird durch eine Binärmatrix $B \in \{0,1\}^{2r+1 \times 2s+1}$ kodiert:

$$B := \begin{bmatrix} B_{-r,-s} & \cdots & B_{-r,s} \\ \vdots & H_{0,0} & \vdots \\ B_{r,-s} & \cdots & B_{r,s} \end{bmatrix}$$

Dabei bedeutet $B_{i,j}=1$, dass (i,j) zum Strukturelement gehört und $B_{i,j}=0$, dass es nicht dazu gehört.

Diskretisierung morphologischer Operationen

Mit der Binärmatrix erhalten wir für Dilatation und Erosion

$$(u \ominus B)_{i,j} = \min\{u_{i+k,j+l} \mid (k,l) \text{ mit } B_{k,l} = 1\}$$

$$(u \oplus B)_{i,j} = \max\{u_{i+k,j+l} \mid (k,l) \text{ mit } B_{k,l} = 1\}$$

Öffnen und Schließen

Sei $B \subset \mathbb{R}^n$ eine (nichtleere) Teilmenge und $u : \mathbb{R}^n \to [0,1]$ ein kontinuierliches Grauwertbild. Die Operation

$$u \circ B := (u \ominus B) \oplus B$$

heißt Öffnen (Opening) und die Operation

$$u \bullet B := (u \oplus B) \ominus B$$

Schließen (Closing).

Figure: Quelle: Wikipedia, OpenCV

Figure: Quelle: Wikipedia, OpenCV

Hit-or-miss Operator

Seien $B,C\subset\mathbb{R}^n$ eine (nichtleere) Teilmenge und $u:\mathbb{R}^n\to\{0,1\}$ eine binäres Bild. Dann ist der Hit-or-Miss Operator definiert durch

$$u\odot(B,C):=(u\ominus B)\wedge(u^c\ominus C)$$

Für ein Grauwertbild $u:\mathbb{R}^n o [0,1]$ definiert man analog

$$u\odot (B,C):=(u\ominus B)\cdot ((1-u)\ominus C)$$

Figure: Quelle: OpenCV

Kantenerkennung nach Canny

Kantenerkennung mit Hilfe von Gradienten

Eine Kante weisst eine hohe Änderung des Kontrastes und damit einen grossen Gradienten auf. Um grosse Gradienten zu vermeiden, die durch Rauschen verursacht werden, möchte wir das Bild vorher glätten. Doch welcher Filter ist hierfür Optimal?

Kantenerkennung nach Canny

Kantenerkennung mit Hilfe von Gradienten

Nehmen wir an, die gesuchte Filterfunktion f_{σ} hängt von einem Parameter σ ab und wir betrachten das gefilterte Bild $u(x,\sigma):=u(x)*f_{\sigma}(x)$.

$$\frac{d}{d}u * f_s$$

LINK