Pattern Classification and Recognition:

Classifier Performance Evaluation

ECE 681

Spring 2016

Stacy Tantum, Ph.D.

Goal of Classifiers

Correctly classify a previously unseen data instance (with high probability)

Define Your Problem!

Weight [g]	Wingspan [cm]	Webbed Feet?	Back Color	Species	
1000.1	125.0	No	Brown	Buteo jamaicensis	
3000.7	200.0	No	Gray	Sagittarius serpentarius	
4100.0	136.0	Yes	Black	Gavia immer	
3.0	11.0	No	Green	Calothorax lucifer	
570.0	75.0	No	Black	Campephilius principalis	

Black birds vs. non-black birds?

Swimming birds vs. non-swimming birds?

Small birds vs. big birds?

Colorful birds vs. drab birds?

Ivory-billed woodpecker vs. all others? (\$50,000 reward!)

T02: Classifier Performance Evaluation ECE 681 (Tantum, Spring 2016)

Choose among candidate classifiers

"No Free Lunch" Theorem

No classifier is inherently superior (or inferior) to all others

Compare/choose classifier parameter(s)

Occam's Razor

(avoiding overfitting/overtraining)

Classifiers should be no more complicated than necessary

Compare/choose feature subsets

"Ugly Duckling" Theorem

No feature representation is inherently superior (or inferior)

T02: Classifier Performance Evaluation to all others

ECE 681 (Tantum, Spring 2016)

Predict likely performance when deployed

(Binary) Decision Statistics

Classifiers transform the set of features for a data instance to a single number that forms the basis for making a decision

$$\lambda = f(x_1, x_2, \dots x_N)$$

Binary Decision Outcomes

Binary Hypotheses

H₀: Data *does not* come from the class-of-interest

H₁: Data comes from the class-of-interest

Distributions of Decision Statistics

pdfs of decision statistics for:

- All H_0 data, $f(\lambda | H_0)$
- All H_1 data, $f(\lambda \mid H_1)$

T02: Classifier Performance Evaluation ECE 681 (Tantum, Spring 2016)

Binary Decision Performance Evaluation

$$P_{CR}(\beta) =$$

$$P_{M}(\beta \neq$$

$$P_{FA}(\beta) =$$

$$P_D(\beta \neq$$

ECE 681 (Tantum, Spring 2016)

Generating an ROC (Receiver Operating Characteristic)

Sweep the threshold to generate P_{FA}/P_D pairs

Averaging ROCs

Averaging ROCs

Generating an ROC Another Way

Choose P_{FA}, determine the corresponding threshold, find P_D

Generating an ROC Yet Another Way

Sort data instances by decision statistic, and choose every Nth decision statistic as a threshold (N=1 for finest resolution ROC)

		target		P_{FA}/P_{D}		P _{FA} /P _D
original data set			threshold		-Inf	
	0	0	0		0.01	
	0.11	0	0.11		0.12	
	0.18	1	0.18		0.19	
	0.21	0	0.21		0.22	
	0.35	0	0.35		0.36	
	0.42	1	0.42		0.43	
	0.56	0	0.56		0.57	
	0.82	1	0.82		0.83	
	0.88	1	0.88		0.89	
	0.92	1	0.92		0.93	
			Inf		adjusted th	reshold

T02: Classifier Performance Evaluation ECE 681 (Tantum, Spring 2016)

Decision Statistic pdfs & ROCs

T02: Classifier Performance Evaluation ECE 681 (Tantum, Spring 2016)

Comparing Classifier Performance

AUC: Area under curve to estimate the performance

Pfa@Pd: lower =>ROC is more toward left @ fixed Pd

Pfa@Pd: lower =>ROC is more toward left

ROC Coding Tips

[pF,pD] = generateROC(decisionStatistic,target,rocOptions)

- option to generate ROC for fixed thresholds
 - o easiest to implement, a good start for a first ROC
 - nice to have as an option, to compare performance at different fixed thresholds, especially when a fixed threshold needs to be chosen to deploy the system
 - generally not recommended for performance evaluation during classifier development – linear spacing, logarithmic spacing, other?
- option to generate ROC at fixed P_{FA}'s (or fixed P_D's)
 - o good for being able to average ROCs (and aesthetics)
- option to generate ROC with threshold for every N data instance (sorted by decision statistics)
 - o N = 1 for "stair-step" ROC (most common use)
 - o careful with N too large!
 - o may or may not be able to average ROCs easily

Visualizing Decision Statistics: pdfs

T02: Classifier Performance Evaluation ECE 681 (Tantum, Spring 2016)

Visualize distributions for each class separately

Smaller overlap between decision statistic pdfs:

- Fewer opportunities for mis-classification in overlap region (better performance)
- Higher ROC (closer to top-left corner of axes)

Visualizing Decision Statistics: Scatter Plots

<your own function>

Plot the decision statistic on the x-axis and class (target) on the y-axis

- Similar to plotting pdfs, but it may be easier to tell where individual decision statistics are falling in regions where there aren't many of them
- A few high H₀ decision statistics or low H₁ decisions statistics can make the ROC look weird – this can help you understand that weirdness
- Can add a small amount of noise to the class variable to separate similar decision statistics

Visualizing Decision Statistics: Sorted Plots

<your own function>

Sort the decision statistics from smallest to largest, and plot each one in a symbol that corresponds to its class

- Similar to plotting cdfs, but it may be easier to tell where individual decision statistics are falling in regions where there aren't many of them
- Again, a few very high H₀
 decision statistics or very low
 H₁ decisions statistics can make
 the ROC look weird this can
 help you understand that
 weirdness

Logical Indexing

Allows for selection of a subset of elements without explicitly finding the element indices

Useful for selecting elements by target class

See example provided in HW #1

```
% Demonstration of logical indexing
% Vector of 100 random numbers
randNum = randn(100,1);
% Mean of all random numbers
meanAll = mean(randNum)
% Mean of random numbers > 0
idxGTzero = find(randNum>0);
meanGTzero = mean(randNum(idxGTzero));
% Mean of random numbers > 0
% with logical indexing
meanGTzero_LI = ...
    mean(randNum(randNum>0));
```

Generating ROCs: Fixed Thresholds

<your own function>

Choose thresholds that cover the range of the decision statistics

- Linearly-spaced min to max
- Log-spaced min to max
- All decision statistics sorted min to max
- Every nth decision statistic after sorting min to max

For each *unique* threshold β in the list

- Calculate P_{FA}
 - o (# H_0 DecStat ≥ \Box) / (# H_0 DecStat)
- Calculate P_D
 - o $(\# H_1 DecStat \ge \Box) / (\# H_1 DecStat)$

Generating ROCs: Fixed P_{FA}s (or fixed P_Ds)

<your own function>

For each P_{FA} in the list

- Determine the associated threshold
 - o $P_{FA}^*(\#H_0 DS) = \#H_0 DS \ge \Box$
 - o $[P_{FA}*(\#H_0 DS)]$ will not be an integer... I leave it to you to determine if floor(), ceil(), or round() is the proper conversion to an integer number
 - \circ This integer is the index into the vector containing the H_0 decision statistics

The result is a list of fixed thresholds that will produce P_{FA} s close to the desired P_{FA} s

- May want to calculate actual P_{FA} for each threshold (or not, if averaging ROCs)
- This may produce duplicate thresholds
- Important good practice (<u>if</u> producing a single ROC):
 beta = unique(beta);
 - o Do not eliminate duplicate thresholds if you will be averaging ROCs

Plotting ROCs

Strongly suggest you create <your own function>

Plot the lines between the pF/pD data points

Symbols alone can be difficult to interpret if there are only a few P_{FA}/P_D points on the ROC

As threshold increases

- P_{FA} cannot increase
- P_D cannot increase
- If you see either P_{FA} or P_D increase when you increase the threshold, something is very wrong

Calculating AUC

Trapezoidal integration (trapz) is a robust numerical method

- Provides an exact calculation for piece-wise linear curves – which is exactly what our ROC curve is
- Appropriate when variable of integration (P_{FA} or P_D) is not precisely evenly spaced
- Appropriate when the variable of integration is repeated, as for a "stair-step" ROC

