Outils d'Analyse d'une Base de Règles

Swan Rocher

Université Montpellier 2

1er mai 2012

Contexte

Notions de logique

Opéndance des règles

Classes de règles

Contexte

2 Notions de logique

Opéndance des règles

Classes de règles

Contexte

- Notions de logique
 - Atomes
 - Règles

Dépendance des règles

Atome

- Prédicat : symbole relationnel d'arité donnée
- Atome : prédicat et termes associés à ses positions
- Terme : variable ou constante (pas de fonction)
- Domaine d'un atome : ensemble de ses termes

Exemple

```
"Tom a un père."
```

 $\exists x \; (pere(x, Tom))$

Conjonction d'atomes

- Composée de *k* atomes
- $A = atome_1 \land atome_2 \land ... \land atome_k$
- Représentation par un graphe non orienté

Exemple

"Il existe un homme qui est le père de Tom."

 $\exists x \text{ (homme}(x) \land pere(x,Tom))$

On crée:

- un sommet par atome étiqueté par son prédicat
- un sommet par terme étiqueté si constante
- une arête pour chaque apparition de terme dans un atome dont le poids est la position du terme

 $\exists x \; (\mathsf{homme}(x) \land \mathsf{pere}(x,\mathsf{Tom}))$

On crée:

- un sommet par atome étiqueté par son prédicat ✓
- un sommet par terme étiqueté si constante
- une arête pour chaque apparition de terme dans un atome dont le poids est la position du terme

$$\exists x \; (\mathsf{homme}(x) \land \mathsf{pere}(x,\mathsf{Tom}))$$

$$\boxed{\mathsf{homme} \setminus 1} \qquad \boxed{\mathsf{pere} \setminus 2}$$

On crée:

- un sommet par atome étiqueté par son prédicat √
- un sommet par terme étiqueté si constante √
- une arête pour chaque apparition de terme dans un atome dont le poids est la position du terme

On crée:

- un sommet par atome étiqueté par son prédicat √
- un sommet par terme étiqueté si constante √
- une arête pour chaque apparition de terme dans un atome dont le poids est la position du terme √

Règle

- Deux conjonctions d'atomes : une hypothèse H et une conclusion C
- \bullet $H \rightarrow C$
- Variable soit universelle $(\in H)$ ou existentielle $(\notin H)$
- Frontière : variable à la fois dans H et dans C $(\in H \cap C)$

Règle

- Deux conjonctions d'atomes : une hypothèse H et une conclusion C
- \bullet $H \rightarrow C$
- Variable soit universelle $(\in H)$ ou existentielle $(\notin H)$
- Frontière : variable à la fois dans H et dans C $(\in H \cap C)$

Exemple règle universelle

"Tout homme est un humain."

 $\forall x \; (\mathsf{homme}(x) \to \mathsf{humain}(x))$

Règle

- Deux conjonctions d'atomes : une hypothèse H et une conclusion C
- H → C
- Variable soit universelle $(\in H)$ ou existentielle $(\notin H)$
- Frontière : variable à la fois dans H et dans C $(\in H \cap C)$

Exemple règle universelle

"Tout homme est un humain."

 $\forall x \; (\mathsf{homme}(x) \to \mathsf{humain}(x))$

Exemple règle existentielle

"Tout humain a un père qui est un homme."

 $\forall x \; (\mathsf{humain}(x) \to \exists z \; (\mathsf{homme}(z) \land \mathsf{pere}(z,\mathsf{Tom})))$

Représentation graphique d'une règle

- Ensembles de sommets et d'arêtes identiques à une conjonction d'atomes
- 2-coloration des atomes pour différencier hypothèse et conclusion

Exemple

"Tout humain a un père qui est un homme."

$$\forall x \; (\mathsf{humain}(x) \to \exists z \; (\mathsf{homme}(z) \land \mathsf{pere}(z,x)))$$

Représentation graphique d'une règle

- un sommet par atome étiqueté par son prédicat √
- un sommet par terme étiqueté si constante √
- une arête pour chaque apparition de terme dans un atome dont le poids est la position du terme √
- coloration des sommets atomes en fonction de leur position

 $\forall x \; (\mathsf{humain}(x) \to \exists z \; (\mathsf{homme}(z) \land \mathsf{pere}(z,x)))$

15 / 44

Représentation graphique d'une règle

- un sommet par atome étiqueté par son prédicat √
- un sommet par terme étiqueté si constante √
- une arête pour chaque apparition de terme dans un atome dont le poids est la position du terme √
- coloration des sommets atomes en fonction de leur position √

 $\forall x \; (\mathsf{humain}(x) \to \exists z \; (\mathsf{homme}(z) \land \mathsf{pere}(z,x)))$

16 / 44

Les différents éléments d'une règle

$$\forall x \; (\mathsf{humain}(x) \to \exists z \; (\mathsf{homme}(z) \land \mathsf{pere}(z, x)))$$

Contexte

Notions de logique

3 Dépendance des règles

Classes de règles

Dépendance des règles

- R_1 dépend de $R_2 \leftrightarrow R_2$ peut amener à déclencher R_1
- Unification de la conclusion de R_2 avec l'hypothèse de R_1
- Construction d'un graphe de dépendances des règles
- Les sommets représentent les règles
- Il existe un arc entre R_1 et R_2 si R_2 dépend de R_1

Exemple

"Tout homme est un humain. Tout humain a un père qui est un homme. Si un homme est le parent d'un autre, alors il est son père. Tout père d'un homme est un de ses parents."

- $R_1: \forall x \; (\mathsf{homme}(x) \to \mathsf{humain}(x))$
- $R_2: \forall x \; (\mathsf{humain}(x) \to \exists z \; (\mathsf{homme}(z) \land \mathsf{pere}(z, x)))$
- $R_3: \forall x \forall y \; (\mathsf{parent}(x,y) \land \mathsf{homme}(x) \rightarrow \mathsf{pere}(x,y))$
- $R_4: \forall x \forall y \; (\mathsf{pere}(x,y) \to \mathsf{parent}(x,y))$

Base de règles :

- $R_1: \forall x \; (\mathsf{homme}(x) \to \mathsf{humain}(x))$
- $R_2 : \forall x \text{ (humain}(x) \rightarrow \exists z \text{ (homme}(z) \land \text{pere}(z,x)))}$
- $R_3 : \forall x \forall y \; (parent(x,y) \land homme(x) \rightarrow pere(x,y))$
- $R_4: \forall x \forall y \; (\text{pere}(x,y) \rightarrow \text{parent}(x,y))$

 R_3

 R_4

 R_1

 R_2

Base de règles :

- $R_1: \forall x \; (\mathsf{homme}(x) \to \mathsf{humain}(x))$
- $R_2: \forall x \; (\mathsf{humain}(x) \to \exists z \; (\mathsf{homme}(z) \land \mathsf{pere}(z,x)))$
- R_3 : $\forall x \forall y \; (parent(x,y) \land homme(x) \rightarrow pere(x,y))$
- $R_4: \forall x \forall y \; (\text{pere}(x,y) \rightarrow \text{parent}(x,y))$

 R_1 peut elle se redéclencher? C_1 a un prédicat différent de H_1

Base de règles :

- $R_1: \forall x \; (\mathsf{homme}(x) \to \mathsf{humain}(x))$
- $R_2: \forall x \; (\mathsf{humain}(x) \to \exists z \; (\mathsf{homme}(z) \land \mathsf{pere}(z,x)))$
- R_3 : $\forall x \forall y \; (parent(x,y) \land homme(x) \rightarrow pere(x,y))$
- $R_4: \forall x \forall y \; (pere(x,y) \rightarrow parent(x,y))$

 R_1 peut amener à déclencher R_2 ? C1 = H2

Base de règles :

- $R_1: \forall x \; (\mathsf{homme}(x) \to \mathsf{humain}(x))$
- $R_2: \forall x \; (\mathsf{humain}(x) \to \exists z \; (\mathsf{homme}(z) \land \mathsf{pere}(z,x)))$
- R_3 : $\forall x \forall y \text{ (parent}(x,y) \land \text{homme}(x)$ $\rightarrow \text{pere}(x,y))$
- $R_4: \forall x \forall y \; (\mathsf{pere}(x,y) \to \mathsf{parent}(x,y))$

 R_2 peut amener à déclencher R_1 ? R_2 amène l'existence d'un nouvel individu et l'hypothèse de R_1 est vérifiée pour celui ci

Base de règles :

- $R_1: \forall x \; (\mathsf{homme}(x) \to \mathsf{humain}(x))$
- $R_2 : \forall x \text{ (humain}(x) \rightarrow \exists z \text{ (homme}(z) \land \text{pere}(z,x)))}$
- $R_3 : \forall x \forall y \; (parent(x,y) \land homme(x) \rightarrow pere(x,y))$
- $R_4: \forall x \forall y \; (\text{pere}(x,y) \rightarrow \text{parent}(x,y))$

Contexte

2 Notions de logique

Dépendance des règles

- Classes de règles
 - Classes abstraites

- Aucune propriété vérifiable
- Assurent la décidabilité du problème en suivant certains algorithmes

- Aucune propriété vérifiable
- Assurent la décidabilité du problème en suivant certains algorithmes
- Finite Extension Set : algorithmes de chaînage avant

- Aucune propriété vérifiable
- Assurent la décidabilité du problème en suivant certains algorithmes
- Finite Extension Set : algorithmes de chaînage avant
- (Greedy) Bounded Treewidth Set : algorithmes de chaînage avant avec condition d'arrêt particulière

- Aucune propriété vérifiable
- Assurent la décidabilité du problème en suivant certains algorithmes
- Finite Extension Set
- (Greedy) Bounded Treewidth Set: algorithmes de chaînage avant avec condition d'arrêt particulière
- Finite Unification Set : algorithmes de chaînage arrière

- Aucune propriété vérifiable
- Assurent la décidabilité du problème en suivant certains algorithmes
- Finite Extension Set
- (Greedy) Bounded Treewidth Set : algorithmes de chaînage avant avec condition d'arrêt particulière
- Finite Unification Set : algorithmes de chaînage arrière
- Classes incomparables

Classes de règles concrètes

- Imposent des contraintes sur la forme des règles ou de la base
- Spécialisent les classes abstraites
- Classes pouvant être comparables

Guardée

- Un atome de l'hypothèse contient toutes les variables de celle-ci
- $\exists a \in H_i$: variable(H_i) \subseteq variables(a)
- Simple à vérifier
- $guarded(R) = \{ \forall R_i \in R : R_i \text{ est gard\'ee} \} \in GBTS$

Exemple

 $R_3: \forall x \forall y \; (\mathsf{parent}(x,y) \land \mathsf{homme}(x) \rightarrow \mathsf{père}(x,y))$

Garde : parent(x,y)

Frontière gardée

- Un atome de l'hypothèse contient toutes les variables de la frontière
- $\exists a \in H$: frontière(R) \subseteq variables(a)
- Seule la frontière influe sur l'application d'une règle
- Généralisation des règles gardées
- $fr guarded(R) = \{ \forall R_i \in R : R_i \text{ a une frontière gardée} \} \in GBTS$

Exemple

$$\forall x \forall y (p(x) \land q(y) \rightarrow \exists z (r(y, z)))$$

Garde-frontière : $q(y)$

34 / 44

Frontière de taille 1

- La frontière de la règle est de taille 1
- Spécialisation des règles à frontière gardée
- Utiles pour les notions d'héritage
- $fr 1(R) = \{ \forall R_i \in R : |frontière(R_i)| = 1 \} \in GBTS$

Exemple

$$R_2: \forall x \; (\mathsf{humain}(x) \to \exists z \; (\mathsf{homme}(z) \land \mathsf{p\`ere}(z,x)))$$
 frontière $(R_2) = \{x\}$

Hypothèse atomique

- L'hypothèse de la règle ne contient qu'un seul atome
- Spécialisation des règles gardées
- $ah(R) = \{ \forall R_i = (H_i, C_i) \in R : |H_i| = 1 \} \in GBTS \cap FUS$

Exemple

 $R_1: \forall x \; (\mathsf{homme}(x) \to \mathsf{humain}(x))$

Domaine restreint

- Les atomes de la conclusion contiennent soit toutes les variables de l'hypothèse, soit aucune
- $\forall a_i \in R_i(variables(H_i) \subseteq$ $variables(a_i)) \lor (variables(H_i) \cap variables(a_i) = \emptyset)$
- Incomparable avec les autres classes concrètes exhibées
- $dr(R) = \{ \forall R_i \in R : R_i \text{ a un domaine restreint } \} \in FUS$

Exemple

```
R_2: \forall x \; (\mathsf{humain}(x) \to \exists z \; (\mathsf{homme}(z) \land \mathsf{père}(z,x)))
variables(homme(z)) \cap variables(H_2) = \emptyset
variables(H_2) \subseteq variables(pere(z, x))
```

Déconnectée

- Frontière vide
- Spécialisation des règles de domaine restreint
- Une seule application nécessaire
- $disc(R) = \{ \forall R_i \in R : frontière(R_i) = \emptyset \} \in FUS$

Exemple

$$\forall x(p(x) \land q(a) \rightarrow \exists z(r(a,z)))$$

38 / 44

Universelle

- Aucune variable existentielle
- Couramment utilisées
- $rr(R) = \{ \forall R_i \in R : variables(R_i) \subseteq variables(H_i) \} \in FES \cap GBTS$

Exemple

 $R_5: \forall x \forall y \forall z \text{ (mêmeFamille}(x,y) \land \text{mêmeFamille}(y,z) \rightarrow$ $m\hat{e}meFamille(x,z)$

Faiblement acyclique

- Contrainte sur l'ensemble des règles
- Nécessite l'usage d'une nouvelle structure : le graphe de dépendances des positions
- wa(R) ∈ FES

Exemple de non faible acyclicité

 $R_1: \forall x \; (\mathsf{homme}(x) \to \mathsf{humain}(x))$

 $R_2: \forall x \; (\mathsf{humain}(x) \to \exists z \; (\mathsf{homme}(z) \land \mathsf{père}(z,x)))$

Exemple de faible acyclicité

 $R_3: \forall x \forall y \; (\mathsf{parent}(x,y) \land \mathsf{homme}(x) \rightarrow \mathsf{père}(x,y))$

 $R_4: \forall x \forall y \ (pere(x,y) \rightarrow parent(x,y))$

Sticky

- Contrainte sur l'ensemble des règles
- Marquage des variables
- Une variable marquée ne doit pas apparaître plusieurs fois dans l'hypothèse d'une règle
- $sticky(R) \in FES$

Exemple

 $R_3: \forall x \forall y \; (\mathsf{parent}(x,y) \land \mathsf{homme}(x) \rightarrow \mathsf{père}(x,y))$

 $R_4: \forall x \forall y \ (pere(x,y) \rightarrow parent(x,y))$

Weakly sticky

- Généralisation de faiblement acyclique et de sticky
- Les variables marquées ne doivent pas apparaître plusieurs fois dans l'hypothèse ou ne pas être dans une position de rang infini
- $ws(R) \notin FES \cup GBTS \cup FUS$

Graphe de dépendances des règles acyclique

- L'ensemble des règles forment un graphe de dépendances sans circuit
- $aGRD(R) \in FES \cup FUS$

Exemple de faible acyclicité

 $R_2: \forall x \; (\mathsf{humain}(x) \to \exists z \; (\mathsf{homme}(z) \land \mathsf{père}(z, x)))$

 $R_4: \forall x \forall y \ (\text{père}(x,y) \rightarrow \text{parent}(x,y))$

Schéma récapitulatif

