

AMR surveillance using threshold surveys

Experiences from the OASIS project

FRANK VAN LETH

ASSOCIATE PROFESSOR

VRIJE UNIVERSITEIT AMSTERDAM - DEPARTMENT OF HEALTH SCIENCES

OASIS

AMR Surveillance using Innovative Sampling

A JPIAMR project aiming to develop an antimicrobial resistance (AMR) surveillance strategy in a One Health context, which is applicable in high-, middle-, and low-income countries.

OASIS moves from conventionally estimating AMR prevalence to classifying populations/settings as having a "high" or "low" AMR prevalence, by applying a Lot Quality Assurance Sampling approach.

Togo.

Content

- AMR surveillance methodology
 - Role of threshold surveys
- Lot Quality Assurance Sampling (LQAS)
- Validation LQAS methodology in OASIS
- Use of LQAS-based surveillance
- Conclusion

AMR SURVEILLANCE METHODOLOGY

Objectives AMR surveillance

- Early warning for new resistance profiles
- Guiding empirical antibiotic treatment based on AMR prevalence
- Assessing changes AMR prevalence
- Assessing impact on interventions
- Assessing local variations in AMR prevalence

Conventional AMR surveillance

- Predominantly laboratory-based
 - Known to be biased for community setting
- Growing interest population-based surveillance
 - Adding clinical information at sample storage (ACORN project)
 - Syndromic screening at health facility encounter

Population-based surveillance

Rob Curren on Unsplash

Thor Alvis on Unsplash

Population-based surveillance

Threshold surveys

- Addresses sample size problem
 - Parallel local surveys
- Based on classification, not estimation
- Change of research question

Is the AMR prevalence above or below x %?

VS

What is the prevalence of AMR in this population?

Threshold surveys

Lot Quality Assurance Sampling

Binomial sequential sampling

Truncated sequential sampling

LOT QUALITY ASSURANCE SAMPLING (LQAS)

Lot Quality Assurance Sampling (LQAS)

- Derived from setting of manufacturing
 - Quality assurance strategy
- Used in multiple sectors
 - Vaccine uptake
 - Food safety

—

Lot Quality Assurance Sampling (LQAS)

Component LQAS

- Lower and upper threshold of outcome (AMR)
 - Above which threshold is action needed
 - Below which threshold is misclassification not allowed
- Allowable misclassification
 - true "low" prevalence classified as "high" and vice versa

Misclassification

Misclassification and precision

Component LQAS

- Lower and upper level of outcome (AMR)
- Allowable misclassification
 - true "low" prevalence classified as "high" and vice versa
- Both components together drive
 - the sample size
 - the required number of resistant micro-organisms for classification "high prevalence"
- Crucial decisions
 - Requires multi-disciplinary approach

LQAS sample sizes

Misclassification	High to Low 5% Low to High 10%		
LQAS definition	Sample size	Decision rule	
1 – 5	153	4	
2 – 10	76	4	
3 – 15	50	4	
5 – 20	44	5	
10 – 25	55	10	
13 – 30	49	10	
20 – 40	45	13	
30 – 50	53	21	

LQAS sample sizes

Misclassification	High to Low 5% Low to High 10%		High to Low 5% Low to High 5%
LQAS definition	Sample size	Decision rule	Sample size
1 – 5	153	4	na
2 – 10	76	4	89
3 – 15	50	4	59
5 – 20	44	5	50
10 – 25	55	10	70
13 – 30	49	10	61
20 – 40	45	13	60
30 – 50	53	21	67

VALIDATION LQAS METHODOLOGY IN OASIS

Theoretical lots from conventional surveillance

LQAS classifications from repeated draws

LQAS classifications from repeated draws

Test characteristics

Definition	Sensitivity	Specificity
1-5	100	70.1
2 – 10	100	81.4
3 – 15	100	90.9
5 – 20	100	96.6
10 – 25	99.9	99.9
13 – 30	99.8	97.3
20 – 40	99.7	85.8
30 – 50	99.7	89.2

USE OF LQAS-BASED SURVEILLANCE

Classification

- LQAS classification is on a single assessment
- Underlying "true" AMR prevalence unknown
- Unknown if misclassification present
- Requires careful design
 - Threshold setting

Local variation in LQAS classification

Objectives AMR surveillance

- Guiding empirical antibiotic treatment based on AMR prevalence
 - Flagging areas high AMR prevalence by excellent sensitivity of method
- Assessing changes AMR prevalence
 - Repeat surveys
- Assessing impact on interventions
 - Before After surveys
- Assessing local variations in AMR prevalence
 - Small sample sizes enable parallel surveys in local areas

No role LQAS in early warning (very low prevalence)

- Requires large sample size
 - Takes away advantage of method
- Poor test characteristics
 - Reducing allowable misclassification not possible
- Instead: design proper sentinel surveillance

CONCLUSION AND ACKNOWLEDGEMENT

Conclusion

- LQAS excellent approach to flag settings with high AMR prevalence
 - High sensitivity
- Suitable for most surveillance objectives
 - Not as an early warning approach
- Facilitates move from laboratory- to population-based surveillance
- Critical design decisions needed for proper interpretation
 - Action needed when exceeding upper threshold
 - Careful threshold setting to manage misclassification

Acknowledgements

- Research teams in Germany, Togo, Burkina Faso, Netherlands
 - And their local staff and stakeholders
- JPI-AMR
- National funding agencies

