Medidas resumo

Luan D. Fiorentin

Universidade Federal do Paraná Departamento de Estatística Laboratório de Estatística e Geoinformação

21/08/2019

Sumário

- Introdução
- Medidas de posição
 - Medidas de posição para um conjunto de dados.
 - Medidas de posição para VAs discretas

- Medidas de dispersão
 - Medidas de dispersão para um conjunto de dados
 - Medidas de dispersão para VAs discretas
- 4 Exercícios recomendados

Introdução

- Características importantes de qualquer conjunto de dados ou de uma variável aleatória:
 - Centro;
 - Variação;
 - Distribuição;
 - Valores atípicos.

Introdução

- Características importantes de qualquer conjunto de dados ou de uma variável aleatória:
 - Centro;
 - Variação;
 - Distribuição;
 - Valores atípicos.
- Classificaremos as medidas descritivas em dois grupos:
 - Medidas de posição.
 - Medidas de dispersão.

Sumário

- Introdução
- Medidas de posição
 - Medidas de posição para um conjunto de dados.
 - Medidas de posição para VAs discretas

- Medidas de dispersão
 - Medidas de dispersão para um conjunto de dados
 - Medidas de dispersão para VAs discretas
- 4 Exercícios recomendados

Definição

- Medidas de posição central:
 - Úteis para resumo e análise de dados.
 - As principais medidas são a média, mediana e moda.
- Outras medidas de posição:
 - Extremos: mínimo e máximo.
 - Quantis: 1° quartil, 3° quartil, percentil 5%, entre outras, ...

Moda

- Valor mais frequente em um conjunto de dados.
- Dependendo do conjunto de dados, ele pode ser
 - Sem moda quando nenhum valor se repete;
 - Unimodal quando existe apenas um valor repetido com maior frequência;
 - Bimodal quando existem dois valores com a mesma maior frequência;
 - Multimodal quando mais de dois valores se repetem com a mesma frequência.

Moda

- Valor mais frequente em um conjunto de dados.
- Dependendo do conjunto de dados, ele pode ser
 - Sem moda quando nenhum valor se repete;
 - Unimodal quando existe apenas um valor repetido com maior frequência;
 - Bimodal quando existem dois valores com a mesma maior frequência;
 - Multimodal quando mais de dois valores se repetem com a mesma frequência.
- Valor com maior probabilidade de ocorrer numa VA discreta.
 - Exemplo: lançamento de duas moedas:
 - X: número de caras, $X = \{0, 1, 2\}$.
 - P(x) = 0.25, 0.5 e 0.25, respectivamente.
 - Moda: 1.

Mediana

- O valor do meio da amostra ordenada.
- Separa o conjunto de dados em duas partes iguais, 50% abaixo e 50% acima.
- Considerando as observações ordenadas, denotamos:
 - A menor observação por $x_{(1)}$, a segunda por $x_{(2)}$, e assim por diante:

$$x_{(1)} \le x_{(2)} \le \cdots \le x_{(n-1)} \le x_{(n)}$$

- As observações odenadas são chamadas de estatísticas de ordem
 - $x_{(1)}$ é o mínimo da amostra.
 - $x_{(n)}$ é o máximo da amostra.

Média de dados brutos

• Divide-se a soma de todos os dados pelo número total deles:

$$\bar{x}_{obs} = \frac{x_1 + x_2 + \dots + x_n}{n} = \frac{\sum_{i=1}^{n} x_i}{n}.$$

LEG/DEST/UFPR Medidas resumo 21/08/2019

Média de dados agrupados

• Soma dos produtos dos valores pelas respectivas frequências e divide pela frequência total

$$\bar{x}_{obs} = \frac{n_1 x_1 + n_2 x_2 + \dots + n_k x_k}{n_1 + n_2 + \dots + n_k} = \frac{\sum_{i=1}^k n_i x_i}{n}.$$

Exemplo: média de dados discretos agrupados

• Considere a tabela de frequência abaixo:

Número	n _i	f _i
0	4	0,20
1	5	0,25
2	7	0,35
3	3	0,15
5	1	0,05
Total	20	1

A média é calculada por:

$$\bar{x}_{obs} = \frac{0 \cdot 4 + 1 \cdot 5 + 2 \cdot 7 + 3 \cdot 3 + 5 \cdot 1}{4 + 5 + 7 + 3 + 1} = \frac{33}{20}$$

$$= 1,65$$

LEG/DEST/UFPR Medidas resumo 21/08/2019 10 / 42

Exemplo: média de dados agrupados em classes

• Usar ponto médio de cada classe e respectivas frequências

Classe	$PM = x_i$	n_i	f_i
[4,8)	6	10	0,278
[8, 12)	10	12	0,333
[12, 16)	14	8	0,222
[16, 20)	18	5	0,139
[20, 24)	22	1	0,028
Total	36	1	

Considerando os **pontos médios** de cada classe, a média é calculada por

$$\bar{x}_{obs} = \frac{(6 \cdot 10 + 10 \cdot 12 + \dots + 22 \cdot 1)}{10 + 12 + 8 + 5 + 1} = \frac{404}{36}$$

$$= 11,22$$

LEG/DEST/UFPR Medidas resumo 21/08/2019 11 / 42

Exemplo 4.1 do livro

Suponha que parafusos a serem utilizados em tomadas elétricas são embalados em caixas rotuladas como contendo 100 unidades. Em uma construção, 10 caixas de um lote tiveram o número de parafusos contados, fornecendo os valores:

$$amostra = (98, 102, 100, 100, 99, 97, 96, 95, 99, 100)$$

- Calcular média, mediana e moda:
 - $\bar{x}_{obs} = 98.6$.
 - $md_{obs} = 99$.
 - $mo_{obs} = 100$.

Média e mediana

• Notar a influência de valores extremos na média (se ao invés de 95, o valor fosse 45):

95 96 97 98 99 99 100 100 100 102
$$\Rightarrow$$
 $\bar{x}_{obs} = 98,6 \text{ e } Md = 99$

45 96 97 98 99 99 100 100 100 102
$$\Rightarrow \bar{x}_{obs} = 93,6 \text{ e } Md = 99$$

 Devido a esse fato, a mediana é uma medida de posição central robusta, ou seja, não é influenciada por valores extremos.

LEG/DEST/UFPR Medidas resumo 21/08/2019 13 / 42

Média, mediana e moda

LEG/DEST/UFPR Medidas resumo

Exemplo 4.3 do livro

Foram coletadas 150 observações da variável X, representando o número de vestibulares FUVEST (um por ano) que um mesmo estudande prestou. Com os dados da tabela abaixo, calcule as medidas de posição de X.

Χ	n_i
1	75
2	47
3	21
4	7

Ainda, suponha que o interesse é estudar o gasto dos alunos associado com as despesas do vestibular. Para simplificar, suponha que se atribui, para cada aluno, uma despesa fixa de R\$ 1300,00 relativa a preparação e mais R\$ 50 para cada vestibular prestado. Calcule as medidas de posição central para a variável D (despesa com vestibular).

Exemplo 4.4 do livro

Um estudante está procurando um estágio para o próximo ano. As companhias A e B têm programas de estágios e oferecem uma remuneração por 20 horas semanais com as seguintes características:

Companhia	Α	В
média	2, 5	2,0
mediana	1,7	1, 9
moda	1,5	1,9

• Qual companhia você escolheria?

Medidas de posição para VAs discretas

- Sabemos que a descrição completa do comportamento de uma VA discreta é feita através de sua **função de probabilidade**.
- Assim como fizemos para um conjunto de dados qualquer, podemos obter as medidas de posição para qualquer variável aleatória.
- Considerando que os possíveis valores de uma VA X são x_1, x_2, \ldots, x_k , com correspondentes probabilidades p_1, p_2, \ldots, p_k , então as medidas de posição podem ser definidas a seguir.

LEG/DEST/UFPR Medidas resumo 21/08/2019 17 / 42

Medidas de posição para VAs discretas:

• A Média é chamada de valor esperado ou esperança

$$E(X) = \sum_{i=1}^k x_i p_i.$$

• A Mediana é o valor Md que satisfaz as seguintes condições

$$P(X \le Md) \ge 1/2$$
 e $P(X \ge Md) \ge 1/2$.

• A Moda é o valor (ou valores) com maior probabilidade de ocorrência

$$P(X = Mo) = \max\{p_1, p_2, ..., p_k\}.$$

LEG/DEST/UFPR Medidas resumo 21/08/2019 18 / 42

Exemplo 4.5 do livro

Considere a VA X com a seguinte função discreta de probabilidade:

• Calcule as medidas de tendência central.

Exemplo 4.6 do livro

Considere uma VA X com função de probabilidade dada por

• Calcule as medidas de posição para a VA Y, em que Y = 5X - 10.

Sumário

- Introdução
- Medidas de posição
 - Medidas de posição para um conjunto de dados.
 - Medidas de posição para VAs discretas

- Medidas de dispersão
 - Medidas de dispersão para um conjunto de dados
 - Medidas de dispersão para VAs discretas
- Exercícios recomendados

Introdução

- O resumo de um conjunto de dados exclusivamente por uma medida de centro, esconde toda a informação sobre a variabilidade do conjunto de observações.
- Não é possível analisar um conjunto de dados apenas através de uma medida de tendência central.
- Por isso precisamos de medidas que resumam a variabilidade dos dados em relação à um valor central.

Exemplo: mesma média, diferente dispersão

LEG/DEST/UFPR Medidas resumo 21/08/2019 2

Exemplo 3.2 do livro do Bussab e Morettin

Cinco grupos de alunos se submeteram a um teste, obtendo as seguintes notas

Grupo	Notas	\bar{x}
A	3, 4, 5, 6, 7	5
В	1, 3, 5, 7, 9	5
C	5, 5, 5, 5, 5	5
D	3, 5, 5, 7	5
E	3, 5, 5, 6, 6	5

• O que a média diz a respeito das notas quando comparamos os grupos?

Definição

- São medidas estatísticas que caracterizam o quanto um conjunto de dados está disperso em torno de sua tendência central.
- Ferramentas para resumo e análise de dados:
 - Amplitude;
 - Desvio-médio (ou mediano);
 - Variância;
 - Desvio-padrão;
 - Coeficiente de Variação.

Amplitude

• A amplitude de um conjunto de dados é a diferença entre o maior e o menor valor:

$$\Delta = \max - \min = x_{(n)} - x_{(1)}$$

Grupo	Notas	Δ
A	3, 4, 5, 6, 7	4
В	1, 3, 5, 7, 9	8
C	5, 5, 5, 5, 5	0
D	3, 5, 5, 7	4
Е	3, 5, 5, 6, 6	3

- Apenas usar máximo e mínimo torna a medida sensível a valores extremos.
 - Melhor medida de variabilidade: considerar todos os dados disponíveis.
 - Desvio de cada valor em relação à uma medida de posição central (média ou mediana).

LEG/DEST/UFPR Medidas resumo 21/08/2019 26 / 42

Desvio médio e mediano

- Um **resumo** da variabilidade: **média** dos desvios **absolutos**:
- Desvio mediano: a mediana como medida de posição central

desvio mediano =
$$\frac{1}{n} \sum_{i=1}^{n} |x_i - md_{obs}|$$
.

• Desvio médio: a média como medida de posição central

desvio médio =
$$\frac{1}{n} \sum_{i=1}^{n} |x_i - \bar{x}_{obs}|$$
.

Exemplo: Desvio médio

Considere as notas do grupo A do exemplo anterior $(\bar{x}_{obs} = 5)$.

O desvio médio (DM) pode ser calculado da seguinte forma:

Grupo A	$x_i - \bar{x}$	$ x_i - \bar{x} $
3	-2	2
4	-1	1
5	0	0
6	1	1
7	2	2
Soma	0	6

$$\mathsf{DM} = rac{1}{n} \sum_{i=1}^{n} |x_i - \bar{x}_{obs}| = rac{6}{5} = 1, 2$$

 O desvio médio é baseado em uma operação não algébrica (módulo), o que torna mais difícil o estudo de suas propriedades.

Variância de um conjunto de dados

 Uma alternativa melhor é usar a soma dos quadrados dos desvios, que dá origem à variância de um conjunto de dados

$$var_{obs} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x}_{obs})^2.$$

Uma expressão alternativa da variância (mais fácil de calcular) é

$$var_{obs} = \hat{\sigma}^2 = s^2 = \frac{1}{n} \sum_{i=1}^{n} x_i^2 - \bar{x}_{obs}^2$$

LEG/DEST/UFPR Medidas resumo 21/08/2019 29 / 42

Desvio-padrão de um conjunto de dados

 Para manter a mesma unidade de medida dos dados originais, definimos o desvio padrão como

$$dp_{obs} = \hat{\sigma} = s = \sqrt{var_{obs}}.$$

 O desvio padrão é mais interpretável em um primeiro momento porque é dado na mesma unidade de medida dos dados originais.

Exemplo

No exemplo anterior:

Grupo A	$x_i - \bar{x}$	$ x_i - \bar{x} $	$(x_i - \bar{x})^2$	x_i^2
3	-2	2	4	9
4	-1	1	1	16
5	0	0	0	25
6	1	1	1	36
7	2	2	4	49
Soma	0	6	10	135

A variância é:

$$var_{obs} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x}_{obs})^2 = \frac{10}{5} = 2.$$

Usando a fórmula alternativa, temos que

$$var_{obs} = \frac{1}{n} \sum_{i=1}^{n} x_i^2 - \bar{x}_{obs}^2 = \frac{135}{5} - 5^2 = 2.$$

LEG/DEST/UFPR Medidas resumo 21/08/2019 3

Coeficiente de variação

• O coeficiente de variação para um conjunto de dados é definido por

$$cv_{obs} = \frac{dp_{obs}}{\bar{x}_{obs}}.$$

• É uma medida adimensional, e geralmente apresentada na forma de porcentagem como

$$cv_{obs} = \frac{dp_{obs}}{\bar{x}_{obs}} \cdot 100.$$

LEG/DEST/UFPR Medidas resumo 21/08/2019 32 / 42

Exemplo

No exemplo anterior, temos que $dp_{obs} = \sqrt{var_{obs}} = \sqrt{2} = 1,414214$.

• O desvio padrão é:

$$cv_{obs} = \frac{dp_{obs}}{\bar{x}_{obs}} = \frac{1,414214}{5} = 0,2828427 \approx 28,3\%.$$

Variância em tabelas de frequência

• Assim como no caso da média, se tivermos n observações da variável X, das quais n_1 são iguais a x_1 , n_2 são iguais a x_2 , ..., n_k são iguais a x_k , então a variância pode ser definida por

$$var_{obs}(X) = \frac{1}{n} \sum_{i=1}^{k} n_i (x_i - \bar{x}_{obs})^2.$$

• Pela fórmula alternativa, temos que

$$var_{obs}(X) = \frac{1}{n} \sum_{i=1}^{k} n_i x_i^2 - \bar{x}_{obs}^2.$$

Exemplo

Como exemplo, considere a tabela de frequência abaixo, com média $\bar{x}=1,65$:

Número	n _i	f_i	$x_i - \bar{x}$	$(x_i - \bar{x})^2$
0	4	0,20	-1,65	2,72
1	5	0,25	-0,65	0,42
2	7	0,35	0,35	0,12
3	3	0,15	1,35	1,82
5	1	0,05	3,35	11,22
Total	20	1		

• A variância é calculada por:

$$var_{obs} = \frac{(4 \cdot 2, 72 + 5 \cdot 0, 42 + \dots + 1 \cdot 11, 22)}{4 + 5 + 7 + 3 + 1} = \frac{30, 55}{20}$$
$$= 1,528.$$

LEG/DEST/UFPR Medidas resumo 21/08/2019 35 / 42

Exemplo

Considere a seguinte tabela de distribuição de frequência, com média $\bar{x}=11,22$:

Classe	$PM = x_i$	ni	f_i	$x_i - \bar{x}$	$(x_i - \bar{x})^2$
[4,8)	6	10	0,278	-5,222	27,272
[8, 12)	10	12	0,333	-1,222	1,494
[12, 16)	14	8	0,222	2,778	7,716
[16, 20)	18	5	0,139	6,778	45,938
[20, 24)	22	1	0,028	10, 778	116,160
Total		36	1		

Considerando os **pontos médios** de cada classe como os valores x_i , a variância pode ser calculada por

$$var_{obs} = \frac{(10 \cdot 27, 272 + 12 \cdot 1, 494 + \dots + 1 \cdot 116, 160)}{10 + 12 + 8 + 5 + 1} = \frac{698, 22}{36}$$

= 19, 395.

LEG/DEST/UFPR Medidas resumo 21/08/2019 36 / 42

Exemplo 4.9 do livro

No Exemplo 4.3, definimos a quantidade D, despesa no vestibular, obtida a partir de X pela expressão D=50X+1300, com X indicando o número de vestibulares prestados.

Χ	n _i
1	75
2	47
3	21
4	7

- Calcule a variância de D.
- Calcule a variância do Exemplo 4.10 do livro.

Variância de uma VA discreta

Calcular o valor esperado

$$\mu = E(X) = \sum_{i=1}^k x_i p_i.$$

• Multiplicar o quadrado dos desvios em torno do valor esperado pela probabilidade e somar

$$Var(X) = \sum_{i=1}^k (x_i - \mu)^2 p_i.$$

Alternativamente, podemos usar

$$Var(X) = E[(X - \mu)^2] = E(X^2) - E(X)^2$$

$$com E(X^2) = \sum_{i=1}^k x_i^2 p_i.$$

LEG/DEST/UFPR Medidas resumo 21/08/2019 38 / 42

Exemplo 4.11 do livro

Uma pequena cirurgia dentária pode ser realizada por três métodos diferentes cujos tempos de recuperação (em dias) são modelados pelas variáveis X_1 , X_2 e X_3 . Admita suas funções de probabilidades dadas por

$$\begin{array}{c|ccccc} X_2 & 1 & 5 & 9 \\ \hline p_i & 1/3 & 1/3 & 1/3 \end{array}$$

 Calcule as medidas de posição central e dispersão para cada VA e decida sobre o método mais eficiente.

Propriedades da média e da variância

Conjunto de Dados	Variável Aleatória
$Y = a \cdot X + b$	$Y = a \cdot X + b$
$\bar{y} = a \cdot \bar{x} + b$	$E[Y] = a \cdot E[X] + b$
$s^2(Y) = a^2 \cdot s^2(X)$	$s^2(Y) = a^2 \cdot s^2(X)$

Sumário

- Introdução
- 2 Medidas de posição
 - Medidas de posição para um conjunto de dados.
 - Medidas de posição para VAs discretas

- Medidas de dispersão
 - Medidas de dispersão para um conjunto de dados
 - Medidas de dispersão para VAs discretas
- Exercícios recomendados

Exercícios recomendados

- Seção 4.2: Ex. 1, 2, 3, 4 e 6.
- Seção 4.3: Ex. 1, 2, 3, 4 e 5.
- Extras: Seção 4.4: Ex. 1, 2, 4, 7, 10 e 19.