

Checkpointing Efficace pour les Réseaux de Neurones Profonds

Bryan Chen¹

Wei Tsang Ooi ²

Yannis Montreuil³

Lai Xing Ng ⁴

Axel Carlier

Soutenance PFE à l'ENSEEIHT, Septembre 2024

¹ Toulouse INP - ENSEEIHT, France

² National University of Singapore, Singapour

³ Université Pierre et Marie Curie, France

⁴ A*STAR, Agency for Science, Technology and Research, Singapour

- Contexte du sujet
 - Programme Descartes
 - Working package 4
 - Empoisonnement des données
 - Sujet de stage
- Problématique
- Démarche adoptée
 - LC-checkpoint (Lossy compression checkpoint)
 - Notre optimisation
 - Delta-LoRA
 - Approche proposée
- Résultats
- Conclusion

Contexte du sujet

Plusieurs projets au sein de CNRS@Create:

- Programme Descartes (5 ans)
- Programme Space (2 ans)
- Programme Calypso (2 ans)
- Programme EcoCTs (2 ans)
- Programme ScanCells (2 ans)

Contexte du sujet

Plusieurs projets au sein de CNRS@Create:

- Programme Descartes (5 ans)
- Programme Space (2 ans)
- Programme Calypso (2 ans)
- Programme EcoCTs (2 ans)
- Programme ScanCells (2 ans)

Contexte du sujet

Plusieurs projets au sein de CNRS@Create:

- Programme Descartes (5 ans)
- Programme Space (2 ans)
- Programme Calypso (2 ans)
- Programme EcoCTs (2 ans)
- Programme ScanCells (2 ans)

INTELLIGENT MODELLING FOR <u>DEciSion making in CriticAl urban sysTEmS</u>

ville intelligente (smart city) centrée sur les personnes

Contexte du sujet

Plusieurs projets au sein de CNRS@Create:

- Programme Descartes (5 ans)
- Programme Space (2 ans)
- Programme Calypso (2 ans)
- Programme EcoCTs (2 ans)
- Programme ScanCells (2 ans)

ville intelligente (smart city) centrée sur les personnes

mettre en œuvre de nouvelles **méthodes hybrides d'intelligence artificielle** (hybrid AI ou HAI) pour:

- améliorer la prise de décision
- répondre aux limites de l'IA actuelle (disponibilité, responsabilité, interaction homme-IA, confiance)

Programme Descartes

Programme Descartes comprend ainsi 3 piliers:

- Calcul intelligent
- Le pouvoir aux mains des citoyens dans les villes
- Ingénierie et builder

Working package 4: Collaboration Humain et IA

Fig.1: Les trois piliers du programme Descartes

Programme Descartes

Programme Descartes comprend ainsi 3 piliers :

- Calcul intelligent
- Le pouvoir aux mains des citoyens dans les villes
- Ingénierie et builder

Working package 4: Collaboration Humain et IA

- apporter des aspects humains (non modélisable informatiquement) dans les systèmes d'IA
- augmenter la perception et la cognition humaines (aide à la prise de décision)

Fig.1: Les trois piliers du programme Descartes

Checkpointing Efficace pour les DNNs

Working package 4 (WP4)

Le WP4 intègre un / plusieurs expert(s) (opérateur(s) / contrôleur(s)) dans la boucle d'apprentissage (prise de décision jointe) des modèles d'IA

Fig.2: Présentation du WP4

Working package 4 (WP4)

Le WP4 intègre un / plusieurs expert(s) (opérateur(s) / contrôleur(s)) dans la boucle d'apprentissage (prise de décision jointe) des modèles d'IA

Lorsque le modèle d'IA n'admet pas une bonne précision sur son output, alors le modèle diffère (learning-to-defer) le problème à un/des expert(s) qui apportera son expertise au problème

Fig.2: Présentation du WP4

Working package 4 (WP4)

Le WP4 intègre un / plusieurs expert(s) (opérateur(s) / contrôleur(s)) dans la boucle d'apprentissage (prise de décision jointe) des modèles d'IA

Lorsque le modèle d'IA n'admet pas une bonne précision sur son output, alors le modèle diffère (learning-to-defer) le problème à un/des expert(s) qui apportera son expertise au problème

Le modèle apprend la nouvelle connaissance apportée par l'expert

Fig.2: Présentation du WP4

Bryan Chen | ENSEEIHT | Checkpointing Efficace pour les DNNs

Working package 4 (WP4)

Le WP4 intègre un / plusieurs expert(s) (opérateur(s) / contrôleur(s)) dans la boucle d'apprentissage (prise de décision jointe) des modèles d'IA

Lorsque le modèle d'IA n'admet pas une bonne précision sur son output, alors le modèle diffère (learning-to-defer) le problème à un/des expert(s) qui apportera son expertise au problème

Le modèle apprend la nouvelle connaissance apportée par l'expert

Eviter les hallucinations dans les modèles d'IA

Fig.2: Présentation du WP4

Sujet de stage

Que faire si l'expert est malicieux ou corrompu, on dit qu'il y a empoisonnement des données.

Fig.2: Présentation du WP4

Empoisonnement des données

Que faire si l'expert est malicieux ou corrompu, on dit qu'il y a **empoisonnement des données**.

Hypothèse : On est capable de **détecter l'empoisonnement**

Fig.2: Présentation du WP4

Empoisonnement des données

Que faire si l'expert est malicieux ou corrompu, on dit qu'il y a empoisonnement des données.

Hypothèse : On est capable de **détecter l'empoisonnement**

Solution 1:

On entraîne le modèle à partir du début sur l'ensemble de donnée nettoyé

Fig.2: Présentation du WP4

Empoisonnement des données

Que faire si l'expert est malicieux ou corrompu, on dit qu'il y a empoisonnement des données.

Hypothèse : On est capable de **détecter l'empoisonnement**

Solution 1:

On entraîne le modèle à partir du début sur l'ensemble de donnée nettoyé

Solution naïve

- Coûteux en temps
- Coûteux en calcul

Fig.2: Présentation du WP4

Empoisonnement des données

Que faire si l'expert est malicieux ou corrompu, on dit qu'il y a **empoisonnement des données**.

Hypothèse : On est capable de **détecter l'empoisonnement**

Solution 1:

On entraîne le modèle à partir du début sur l'ensemble de donnée nettoyé

Solution naïve

- Coûteux en temps
- Coûteux en calcul

Notre solution:

On implémente un système efficace de points de branchement (branch point) lors de l'entraînement

Fig.2: Présentation du WP4

Empoisonnement des données

Que faire si l'expert est malicieux ou corrompu, on dit qu'il y a **empoisonnement des données**.

Hypothèse : On est capable de **détecter l'empoisonnement**

Solution 1:

On entraîne le modèle à partir du début sur l'ensemble de donnée nettoyé

Solution naïve

- Coûteux en temps
- Coûteux en calcul

Notre solution:

On implémente un système efficace de points de branchement (branch point) lors de l'entraînement

S'il y a détection

Fig.2: Présentation du WP4

Empoisonnement des données

Que faire si l'expert est malicieux ou corrompu, on dit qu'il y a **empoisonnement des données**.

Hypothèse : On est capable de **détecter l'empoisonnement**

Solution 1:

On entraîne le modèle à partir du début sur l'ensemble de donnée nettoyé

Solution naïve

- Coûteux en temps
- Coûteux en calcul

Notre solution:

On implémente un système efficace de points de branchement (branch point) lors de l'entraînement

S'il y a détection

Entraînement à partir du dernier point de branchement précédant la détection

Fig.2: Présentation du WP4

Bryan Chen | ENSEEIHT

Checkpointing Efficace pour les DNNs

Empoisonnement des données

Empoisonnement des données

STI REEL

Sujet de stage

STI REEL

Sujet de stage

Sujet de stage

Checkpointing Efficace pour les réseaux de neurones profonds :

Être robuste à la panne (explosion de gradient, division par zéro, machine en panne, etc.)

Contexte du sujet <u>Problématique</u> Démarche adoptée Conclusion

Sujet de stage

Checkpointing Efficace pour les réseaux de neurones profonds :

Être robuste à la panne (explosion de gradient, division par zéro, machine en panne, etc.)

Utilisation de points de reprise (= checkpoint) (≠ point de branchement) pendant l'entraînement au sein d'un ensemble d'entraînement

Sujet de stage

Checkpointing Efficace pour les réseaux de neurones profonds :

Être robuste à la panne (explosion de gradient, division par zéro, machine en panne, etc.)

Utilisation de points de reprise (= checkpoint) (≠ point de branchement) pendant l'entraînement au sein d'un ensemble d'entraînement

Sujet de stage

Checkpointing Efficace pour les réseaux de neurones profonds :

Être robuste à la panne (explosion de gradient, division par zéro, machine en panne, etc.)

Utilisation de points de reprise (= checkpoint) (≠ point de branchement) pendant l'entraînement au sein d'un ensemble d'entraînement

LABORATIVE PARTA

Sujet de stage

Checkpointing Efficace pour les réseaux de neurones profonds :

Si on save le modèle entier à chaque fois, cela coûte en espace de stockage

Problématique

Problématique

Comment créer un système d'entraînement robuste à la panne et à l'empoisonnement de donnée tout en minimisant l'espace de stockage nécessaire?

Démarche adoptée

Pour chaque ensemble de donnée (dataloader)

Démarche adoptée

Pour chaque ensemble de donnée (dataloader)

Optimisation en combinant deux techniques de compression

Démarche adoptée

Pour chaque ensemble de donnée (dataloader)

Optimisation en combinant deux techniques de compression

LC-checkpoint (On Efficient Constructions of Checkpoints) [1]

Démarche adoptée

Pour chaque ensemble de donnée (dataloader)

Optimisation en combinant deux techniques de compression

- LC-checkpoint (On Efficient Constructions of Checkpoints) [1]
- Delta-LoRA (Delta-LoRA: Fine-Tuning High-Rank Parameters with the Delta of Low-Rank Matrices) [2]

Démarche adoptée

Pour chaque ensemble de donnée (dataloader)

Optimisation en combinant deux techniques de compression

- LC-checkpoint (On Efficient Constructions of Checkpoints) [1]
- Delta-LoRA (Delta-LoRA: Fine-Tuning High-Rank Parameters with the Delta of Low-Rank Matrices) [2]

Au sein des techniques utilisées pour LC-checkpoint

Codage de Huffman [3] ↔ Algorithme GZip

Démarche adoptée

Pour chaque ensemble de donnée (dataloader)

Optimisation en combinant deux techniques de compression

- LC-checkpoint (On Efficient Constructions of Checkpoints) [1]
- Delta-LoRA (Delta-LoRA: Fine-Tuning High-Rank Parameters with the Delta of Low-Rank Matrices) [2]

Au sein des techniques utilisées pour LC-checkpoint

Codage de Huffman [3] ↔ Algorithme GZip

LC-checkpoint (Lossy compression checkpoint)

Objectif:

LC-checkpoint (Lossy compression checkpoint)

Objectif: En conservant l'intégrité et la validité des données pour la reprise, minimiser:

- volume de données à sauvegarder
- temps pour revenir au dernier point d'entraînement avant la panne

LC-checkpoint (Lossy compression checkpoint)

Objectif: En conservant l'intégrité et la validité des données pour la reprise, minimiser:

- volume de données à sauvegarder
- temps pour revenir au dernier point d'entraînement avant la panne

Schéma de codage différentiel / d'encodage delta :

LC-checkpoint (Lossy compression checkpoint)

Objectif: En conservant l'intégrité et la validité des données pour la reprise, minimiser:

- volume de données à sauvegarder
- temps pour revenir au dernier point d'entraînement avant la panne

Schéma de codage différentiel / d'encodage delta : données sous forme de différences (deltas) entre des données séquentielles plutôt que des fichiers complets

LC-checkpoint (Lossy compression checkpoint)

Objectif: En conservant l'intégrité et la validité des données pour la reprise, minimiser:

- volume de données à sauvegarder
- temps pour revenir au dernier point d'entraînement avant la panne

Schéma de codage différentiel / d'encodage delta : données sous forme de différences (deltas) entre des données séquentielles plutôt que des fichiers complets

$$\tilde{\mathbf{u}}_t = \mathbf{u}_0 + \sum_{i \le t} \tilde{\delta}_i$$

u₀ état initial du modèle

checkpoint sauvegardé par le système à l'itération i

 $\tilde{\mathbf{u}}_t$ approximation de l'état vérité terrain du modèle

LC-checkpoint (Lossy compression checkpoint)

LC-checkpoint (Lossy compression checkpoint)

Combinaison de plusieurs techniques :

 Quantification à base exponentielle

LC-checkpoint (Lossy compression checkpoint)

- Quantification à base exponentielle
- Promotion de priorité

LC-checkpoint (Lossy compression checkpoint)

- Quantification à base exponentielle
- Promotion de priorité
- Encodage de Huffman

LC-checkpoint (Lossy compression checkpoint)

- Quantification à base exponentielle
- Promotion de priorité
- Encodage de Huffman

LC-checkpoint (Lossy compression checkpoint)

Quantification à base exponentielle :

Représente les valeurs en utilisant une base exponentielle: $v = (-1)^s \times m \times 2^e$

→ réduit la précision en conservant une bonne approximation

- m : mantisse v : valeur flottante
- e:exposant s:signe

en ajustant la base exponentielle, possible de contrôler le niveau de compression et la perte

LC-checkpoint (Lossy compression checkpoint)

Quantification à base exponentielle :

$$\delta_t = \mathbf{u}_t - \tilde{\mathbf{u}}_{t-1} \in \mathbf{R}^n$$
 qu'on va encoder

1/ Répartit les entrées δ_t en plusieurs groupes en fonction de l'exposant et des signes identiques

2/ Représente chaque bucket par la **moyenne des** valeurs maximales et minimales

LC-checkpoint (Lossy compression checkpoint)

- Quantification à base exponentielle
- Promotion de priorité
- Encodage de Huffman

LC-checkpoint (Lossy compression checkpoint)

Promotion de priorité

Lorsque $\delta_{t,i} \approx 0 (= u_{i,t-1} \approx u_{i,t})$, il est plus efficace de regrouper les mises à jour

Conserve $2^x - 1$ buckets avec le **plus grand e** (exposant) et fusionne les autres buckets en un **seul avec la valeur 0**, avec x la largeur de bit

Rem : Une largeur de bits de 3 a été jugée suffisante pour la plupart des modèles [3]

LC-checkpoint (Lossy compression checkpoint)

- Quantification à base exponentielle
- Promotion de priorité
- Encodage de Huffman

LC-checkpoint (Lossy compression checkpoint)

Encodage de Huffman

LC-checkpoint (Lossy compression checkpoint)

Encodage de Huffman Technique de compression sans perte d'information

LC-checkpoint (Lossy compression checkpoint)

Encodage de Huffman Technique de compression sans perte d'information

Convertit chaque moyenne de compartiment (bucket) en une chaîne de bits

LC-checkpoint (Lossy compression checkpoint)

Encodage de Huffman Technique de compression sans perte d'information

Convertit chaque moyenne de compartiment (bucket) en une chaîne de bits

LC-checkpoint (Lossy compression checkpoint)

Encodage de Huffman Technique de compression sans perte d'information

Convertit chaque moyenne de compartiment (bucket) en une chaîne de bits

Étapes de l'encodage

Fréquence des caractères de chaque caractère

LC-checkpoint (Lossy compression checkpoint)

Encodage de Huffman Technique de compression sans perte d'information

Convertit chaque moyenne de compartiment (bucket) en une chaîne de bits

- Fréquence des caractères de chaque caractère
- Placés dans un arbre binaire afin que les caractères les plus fréquents aient les chemins les plus courts depuis la racine

LC-checkpoint (Lossy compression checkpoint)

Encodage de Huffman Technique de compression sans perte d'information

Convertit chaque moyenne de compartiment (bucket) en une chaîne de bits

- Fréquence des caractères de chaque caractère
- Placés dans un arbre binaire afin que les caractères les plus fréquents aient les chemins les plus courts depuis la racine
 - Associe à chaque noeud la fréquence du caractère

LC-checkpoint (Lossy compression checkpoint)

Encodage de Huffman Technique de compression sans perte d'information

Convertit chaque moyenne de compartiment (bucket) en une chaîne de bits

- Fréquence des caractères de chaque caractère
- Placés dans un arbre binaire afin que les caractères les plus fréquents aient les chemins les plus courts depuis la racine
 - Associe à chaque noeud la fréquence du caractère
 - Fusionne les noeuds ayant les fréquences les plus faibles pour former un noeud dont la fréquence est la somme

LC-checkpoint (Lossy compression checkpoint)

Encodage de Huffman Technique de compression sans perte d'information

Convertit chaque moyenne de compartiment (bucket) en une chaîne de bits

- Fréquence des caractères de chaque caractère
- Placés dans un arbre binaire afin que les caractères les plus fréquents aient les chemins les plus courts depuis la racine
 - Associe à chaque noeud la fréquence du caractère
 - Fusionne les noeuds ayant les fréquences les plus faibles pour former un noeud dont la fréquence est la somme
- Le chemin pour atteindre chaque caractère depuis la racine de l'arbre définit son code : aller à gauche peut représenter un '0' et aller à droite un '1'

Notre optimisation

Algorithme GZip ↔ **Huffman** Technique de compression sans perte d'information

Convertit chaque moyenne de compartiment (bucket) en une chaîne de bits

Notre optimisation

Algorithme GZip ↔ **Huffman** Technique de compression sans perte d'information

Convertit chaque moyenne de compartiment (bucket) en une chaîne de bits

Étapes de l'algorithme

Notre optimisation

Algorithme GZip ↔ **Huffman** Technique de compression sans perte d'information

Convertit chaque moyenne de compartiment (bucket) en une chaîne de bits

Étapes de l'algorithme

- Algorithme LZ77 [4]: réduit redondance
 - Remplace les séquences répétées de données par une seule occurrence de cette séquence

Notre optimisation

Algorithme GZip ↔ **Huffman** Technique de compression sans perte d'information

Convertit chaque moyenne de compartiment (bucket) en une chaîne de bits

Étapes de l'algorithme

- Algorithme LZ77 [4] : réduit redondance
 - Remplace les séquences répétées de données par une seule occurrence de cette séquence
- Encodage de Huffman : Compression des données

Notre optimisation

Algorithme GZip ↔ **Huffman** Technique de compression sans perte d'information

Convertit chaque moyenne de compartiment (bucket) en une chaîne de bits

Étapes de l'algorithme

- Algorithme LZ77 [4] : réduit redondance
 - Remplace les séquences répétées de données par une seule occurrence de cette séquence
- Encodage de Huffman : Compression des données

GZip fournit une solution plus performante que l'encodage de Huffman et plus facile à implémenter

Notre optimisation

Algorithme GZip ↔ **Huffman** Technique de compression sans perte d'information

Convertit chaque moyenne de compartiment (bucket) en une chaîne de bits

Étapes de l'algorithme

- Algorithme LZ77 [4] : réduit redondance
 - Remplace les séquences répétées de données par une seule occurrence de cette séquence
- Encodage de Huffman : Compression des données

GZip fournit une solution plus performante que l'encodage de Huffman et plus facile à implémenter

Dispose aussi d'une bibliothèque sur Python

Notre optimisation

Algorithme GZip ↔ **Huffman** Technique de compression sans perte d'information

Convertit chaque moyenne de compartiment (bucket) en une chaîne de bits

Étapes de l'algorithme

- Algorithme LZ77 [4] : réduit redondance
 - Remplace les séquences répétées de données par une seule occurrence de cette séquence
- Encodage de Huffman : Compression des données

GZip fournit une solution plus performante que l'encodage de Huffman et plus facile à implémenter

Dispose aussi d'une bibliothèque sur Python

Abus de langage : on va l'appeler LC-checkpoint

Notre optimisation

En sortie de GZip

On obtient une approximation des deltas qu'on ajoute à l'approximation de l'état du modèle, devenant la nouvelle approximation de l'état du modèle.

Démarche adoptée

Pour chaque ensemble de donnée (dataloader)

Optimisation en combinant deux techniques de compression

- LC-checkpoint (On Efficient Constructions of Checkpoints) [1]
- Delta-LoRA (Delta-LoRA: Fine-Tuning High-Rank Parameters with the Delta of Low-Rank Matrices) [2]

Au sein des techniques utilisées pour LC-checkpoint

Codage de Huffman [3] ↔ Algorithme GZip

Delta-LoRA

LoRA - Low Rank Adaptation [5]

Delta-LoRA

LoRA - Low Rank Adaptation [5]

Méthode populaire d'adaptation (fine-tuning : lorsqu'on entraîne un modèle pré-entraîné sur un autre ensemble de donnée) ajoutant un nombre limité de paramètres en conservant la performance

Delta-LoRA

LoRA - Low Rank Adaptation [5]

Méthode populaire d'adaptation (fine-tuning : lorsqu'on entraîne un modèle pré-entraîné sur un autre ensemble de donnée) ajoutant un nombre limité de paramètres en conservant la performance

Motivation

Delta-LoRA

LoRA - Low Rank Adaptation [5]

Méthode populaire d'adaptation (fine-tuning : lorsqu'on entraîne un modèle pré-entraîné sur un autre ensemble de donnée) ajoutant un nombre limité de paramètres en conservant la performance

Motivation

par un article publié en 2018 qui traite de la dimensionnalité intrinsèque des grands modèles [5], affirmant qu'il existe une paramétrisation de faible dimension

Delta-LoRA

LoRA - Low Rank Adaptation [5]

Méthode populaire d'adaptation (fine-tuning : lorsqu'on entraîne un modèle pré-entraîné sur un autre ensemble de donnée) ajoutant un nombre limité de paramètres en conservant la performance

Motivation

par un article publié en 2018 qui traite de la dimensionnalité intrinsèque des grands modèles [5], affirmant qu'il existe une paramétrisation de faible dimension

Fonctionnement de LoRA

Delta-LoRA

LoRA - Low Rank Adaptation [5]

Méthode populaire d'adaptation (fine-tuning : lorsqu'on entraîne un modèle pré-entraîné sur un autre ensemble de donnée) ajoutant un nombre limité de paramètres en conservant la performance

Motivation

par un article publié en 2018 qui traite de la dimensionnalité intrinsèque des grands modèles [5], affirmant qu'il existe une paramétrisation de faible dimension

Fonctionnement de LoRA

Suppose que le changement de poids du modèle ΔW a une faible dimension intrinsèque pour mettre à jour la matrice de poids du modèle pré-entraîné figé W_0 de taille $d \times k$

$$W = W_0 + \Delta W$$
 avec $\Delta W = A \times B$
$$A \in \mathbb{R}^{d \times r}$$

$$B \in \mathbb{R}^{r \times k}$$

$$r \ll \min(d, k)$$

Delta-LoRA

Fonctionnement de LoRA

L'adaptation se fait uniquement sur les matrices A et B, qui contiennent beaucoup moins de paramètres que W_0

$$W = W_0 + \Delta W$$
 avec $\Delta W = A \times B$

Delta-LoRA

Fonctionnement de LoRA

L'adaptation se fait uniquement sur les matrices A et B, qui contiennent beaucoup moins de paramètres que W_0

$$W = W_0 + \Delta W$$
 avec $\Delta W = A \times B$

Rem:

- S'applique sur **toutes couches denses**
- Montré expérimentalement qu'un rang de 8 est un bon équilibre entre compression et performance pour des grands modèles comme LLaMA.

Delta-LoRA

Delta-LoRA: Version modifiée de LoRA

Delta-LoRA

Delta-LoRA: Version modifiée de LoRA

Vise à optimiser les paramètres de haute dimension en utilisant la différence des matrices de faible rang

Delta-LoRA

Delta-LoRA: Version modifiée de LoRA

Vise à optimiser les paramètres de haute dimension en utilisant la différence des matrices de faible rang

Fonctionnement de Delta-LoRA

Delta-LoRA

Delta-LoRA: Version modifiée de LoRA

Vise à optimiser les paramètres de haute dimension en utilisant la différence des matrices de faible rang

Fonctionnement de Delta-LoRA

$$W^{(t+1)} = W^{(t)} + \Delta AB$$
 avec $\Delta AB = A^{(t+1)}B^{(t+1)} - A^{(t)}B^{(t)}$

Pas seulement mettre à jour les matrices de faible rang A et B, mais également de propager l'adaptation aux poids pré-entraînés W via des mises à jour utilisant la différence du produit de deux matrices consécutives de faible rang $A^{(t+1)}B^{(t+1)} - A^{(t)}B^{(t)}$

Approche proposée

Checkpointing Efficace pour les réseaux de neurones profonds

Intégrer les forces respectives de LC-checkpoint et Delta-LoRA dans une seule méthode de compression optimisée

Approche proposée

Checkpointing Efficace pour les réseaux de neurones profonds

Intégrer les forces respectives de LC-checkpoint et Delta-LoRA dans une seule méthode de compression optimisée

Fonctionnement

Approche proposée

Checkpointing Efficace pour les réseaux de neurones profonds

Intégrer les forces respectives de LC-checkpoint et Delta-LoRA dans une seule méthode de compression optimisée

Fonctionnement

Approche proposée

Checkpointing Efficace pour les réseaux de neurones profonds

Intégrer les forces respectives de LC-checkpoint et Delta-LoRA dans une seule méthode de compression optimisée

Fonctionnement

Ce schéma applique au modèle pré-entraîné auquel on y ajoute des couches de Delta-LoRA, les différentes techniques utilisées dans LC-checkpoint :

calcul des deltas via l'encodage delta

Approche proposée

Checkpointing Efficace pour les réseaux de neurones profonds

Intégrer les forces respectives de LC-checkpoint et Delta-LoRA dans une seule méthode de compression optimisée

Fonctionnement

- calcul des deltas via l'encodage delta
- application à chaque delta la quantification à base exponentielle (Exponent-based quantization)

Approche proposée

Checkpointing Efficace pour les réseaux de neurones profonds

Intégrer les forces respectives de LC-checkpoint et Delta-LoRA dans une seule méthode de compression optimisée

Fonctionnement

- calcul des deltas via l'encodage delta
- application à chaque delta la quantification à base exponentielle (Exponent-based quantization)
- promotion de priorité (Priority Promotion) pour donner plus d'importance aux informations plus significatifs

Approche proposée

Checkpointing Efficace pour les réseaux de neurones profonds

Intégrer les forces respectives de LC-checkpoint et Delta-LoRA dans une seule méthode de compression optimisée

Fonctionnement

- calcul des deltas via l'encodage delta
- application à chaque delta la quantification à base exponentielle (Exponent-based quantization)
- promotion de priorité (Priority Promotion) pour donner plus d'importance aux informations plus significatifs
- algorithme GZip

Approche proposée

Vocabulaire pour le Checkpointing Efficace pour les réseaux de neurones profonds

Approche proposée

Schéma du Checkpointing Efficace pour les réseaux de neurones profonds

Approche proposée

Restauration en cas de panne

On récupère le modèle au dernier branchpoint puis on y ajoute la valeur après décompression des checkpoints compressés jusqu'au dernier précédant la panne

Approche proposée

Optimisation en temps pour la restauration

Mettre à jour le modèle à des itérations de manière périodique, nommé **superstep (s)**

A tous les supersteps, le modèle est sauvegardé (nommé **full snapshot**)

En cas de panne, on prend le modèle au dernier superstep précédant la panne, puis s'il y a des checkpoints (des différences) après ce superstep, on les ajoute jusqu'au dernier checkpoint précédant la panne

Résultats

Objectif du stage

Résultats

Objectif du stage

Résultats

Objectif du stage

Étendre les travaux menés par l'ancien stagiaire :

- Reproduire ses résultats

Résultats

Objectif du stage

- Reproduire ses résultats
- Utiliser des modèles avec plus de paramètres

Résultats

Objectif du stage

- Reproduire ses résultats
- Utiliser des modèles avec plus de paramètres
- Utiliser des ensembles d'entraînement plus complexes

Résultats

Objectif du stage

- Reproduire ses résultats
- Utiliser des modèles avec plus de paramètres
- Utiliser des ensembles d'entraînement plus complexes
- Considérer l'empoisonnement des données

Résultats

Objectif du stage

- Reproduire ses résultats
- Utiliser des modèles avec plus de paramètres
- Utiliser des ensembles d'entraînement plus complexes
- Considérer l'empoisonnement des données
- Faire une étude du rang pour Delta-LoRA

Résultats

Résultats préliminaires

Résultats

Résultats préliminaires

Afin de voir l'intérêt de ce schéma de compression, le précédent stagiaire, avait montré l'intérêt de ce dernier en entraînant sur les 1000 premières images de l'ensemble d'entraînement de MNIST [6], puis validant sur les 1000 secondes images de l'ensemble d'entraînement de MNIST, obtenant les résultats suivants pour LeNet-5 [8], AlexNet[9] et VGG-16 [10]

Résultats

Résultats préliminaires

Afin de voir l'intérêt de ce schéma de compression, le précédent stagiaire, avait montré l'intérêt de ce dernier en entraînant sur les 1000 premières images de l'ensemble d'entraînement de MNIST [6], puis validant sur les 1000 secondes images de l'ensemble d'entraînement de MNIST, obtenant les résultats suivants pour LeNet-5 [8], AlexNet[9] et VGG-16 [10]

Model	Mechanism	Compression Ratio	Space Savings	Final Accuracy (Restored / Full)
AlexNet	LC	808.35%	87.629%	98.4% / 98.7% (-0.3%)
	LC + dLoRA	25995.409%	99.615%	95.3% / 98.7% (-3.4%)
VGG-16	LC	813.74%	87.711%	99.1% / 99.4% (-0.3%)
	LC + dLoRA	4188.412%	97.612%	98.4% / 99.4% (-1.0%)
LeNet	LC	537.584%	81.39%	95.9% / 95.9% (-0.0%)
	LC + dLoRA	1889.2869%	94.707%	93.8% / 95.9% (-2.1%)

Résultats

Résultats préliminaires

Obtenus dans les conditions suivantes

Model	AlexNet	VGG-16	LeNet-5
Branching Point	80.72%	72.85%	77.75%
Dataset	MNIST	MNIST	MNIST
Bit-width	3	3	3
LoRA Scaling	0.5	0.5	0.5
Batch Size	32	32	32
Learning Rate	0.01	0.01	0.01
Epochs	20	20	20
Super-Step	Every 10 iteration	Every 10 iteration	Every 10 iteration

Résultats

Reproduction des résultats

Résultats

Reproduction des résultats

Il manquait des fichiers essentiels à l'exécution du code lorsque cet étudiant m'a transféré son code

Réimplémenter les parties manquantes

Résultats

Reproduction des résultats

Il manquait des fichiers essentiels à l'exécution du code lorsque cet étudiant m'a transféré son code

Réimplémenter les parties manquantes

Model	Mechanism	Compression Ratio	Space Savings	Final Accuracy (Restored / Full)
AlexNet	LC	813.32%	87.705%	98.2% / 99.0% (-0.8%)
	LC + dLoRA	28865.393%	99.654%	96.2% / 99.0% (-3.8%
VGG-16	LC	813.705%	87.711%	99.1% / 99.4% (-0.3%
	LC + dLoRA	4185.214%	97.611%	98.1% / 99.4% (-1.3%
LeNet	LC	562.256%	82.215%	96.1% / 96.1% (-0.0%
	LC + dLoRA	1885.7610%	94.697%	91.2% / 96.1% (-4.9%

Résultats de la reproduction

Model	Mechanism	Compression Ratio	Space Savings	Final Accuracy (Restored / Full)
AlexNet	LC	808.35%	87.629%	98.4% / 98.7% (-0.3%)
	LC + dLoRA	25995.409%	99.615%	95.3% / 98.7% (-3.4%)
VGG-16	LC	813.74%	87.711%	99.1% / 99.4% (-0.3%)
	LC + dLoRA	4188.412%	97.612%	98.4% / 99.4% (-1.0%)
LeNet	LC	537.584%	81.39%	95.9% / 95.9% (-0.0%)
	LC + dLoRA	1889.2869%	94.707%	93.8% / 95.9% (-2.1%)

Résultats de l'ancien stagiaire

Résultats

Reproduction des résultats

Il manquait des fichiers essentiels à l'exécution du code lorsque cet étudiant m'a transféré son code

Réimplémenter les parties manquantes

Obtenus dans les conditions suivantes

Model	AlexNet	VGG-16	LeNet-5
Branching Point	80.5%	72.85%	76.8%
Dataset	MNIST	MNIST	MNIST
Bit-width	3	3	3
LoRA Scaling	0.5	0.5	0.5
Batch Size	32	32	32
Learning Rate	0.01	0.01	0.01
Epochs	20	20	20
Super-Step	Every 10 iteration	Every 10 iteration	Every 10 iteration

Conditions de la reproduction

Model	AlexNet	VGG-16	LeNet-5
Branching Point	80.72%	72.85%	77.75%
Dataset	MNIST	MNIST	MNIST
Bit-width	3	3	3
LoRA Scaling	0.5	0.5	0.5
Batch Size	32	32	32
Learning Rate	0.01	0.01	0.01
Epochs	20	20	20
Super-Step	Every 10 iteration	Every 10 iteration	Every 10 iteration

Conditions de l'ancien stagiaire

Résultats

Extension des résultats sur CIFAR-10

Afin de voir l'intérêt de ce schéma de compression, le précédent stagiaire, avait montré l'intérêt de ce dernier en entraînant sur les 1000 premières images de l'ensemble d'entraînement de CIFAR-10 [7], puis validant sur les 1000 secondes images de l'ensemble d'entraînement de CIFAR-10, obtenant les résultats suivants

Résultats

Extension des résultats sur CIFAR-10

Afin de voir l'intérêt de ce schéma de compression, le précédent stagiaire, avait montré l'intérêt de ce dernier en entraînant sur les 1000 premières images de l'ensemble d'entraînement de CIFAR-10 [7], puis validant sur les 1000 secondes images de l'ensemble d'entraînement de CIFAR-10, obtenant les résultats suivants

Model	Mechanism	Compression Ratio	Space Savings	Final Accuracy (Restored / Full)
AlexNet	LC	634.431%	84.238%	99.6% / 99.6% (-0.0%)
Alexivet	LC + dLoRA	23491.97%	99.574%	94.5% / 99.6% (-5.1%)
VGG-16	LC	814.574%	87.724%	100.0% / 100.0% (-0.0%)‡
VGG-10	LC + dLoRA	4756.479%	97.898%	98.2% / 100.0% (-1.8%) [‡]
LaNat	LC	415.728%	81.061%	98.4% / 98.4% (-0.0%)
LeNet	LC + dLoRA	1698.463%	94.112%	86.0% / 98.4% (-12.4%)

Résultats

Extension avec VGG-16 Full, ResNet-50 [11] et Vision Transformer [12]

Pour des raisons d'optimisation du temps à disposition, nous avons maintenu la même configuration sur MNIST tant pour l'entraînement que pour l'évaluation des modèles. Cette méthode uniforme permet de garantir que les résultats sont comparables entre les différents modèles et configurations.

Résultats

Extension avec VGG-16 Full, ResNet-50 [11] et Vision Transformer [12]

Pour des raisons d'optimisation du temps à disposition, nous avons maintenu la même configuration sur MNIST tant pour l'entraînement que pour l'évaluation des modèles. Cette méthode uniforme permet de garantir que les résultats sont comparables entre les différents modèles et configurations.

Model	Mechanism	Compression Ratio	Space Savings	Final Accuracy (Restored / Full)
VGG-16 [†]	LC	771.56%	87.04%	99.5% / 99.5% (-0.0%)
VGG-10	LC + dLoRA	6160.776%	98.378%	98.9% / 99.5% (-0.6%)
ResNet-50	LC	760.59%	86.85%	100.0% / 100.0% (-0.0%)
ResNet-50	LC + dLoRA	761.939%	86.876%	99.3% / 100.0% (-0.7%)‡
ViT-Tiny	LC	244.15%	59.04%	76.0% / 76.0% (-0.0%)
VIII-IIIIy	LC + dLoRA	223.928%	55.343%	75.6% / 76.0% (-0.4%)
AlexNet	LC	813.32%	87.71%	98.2% / 99.0% (-0.8%)
Alexivet	LC + dLoRA	28865.393%	99.654%	96.2% / 99.0% (-2.8%)
VGG-16*	LC	811.67%	87.68%	99.9% / 99.9% (-0.0%)
VGG-10"	LC + dLoRA	4562.891%	97.808%	99.1% / 99.9% (-0.8%)
LeNet	LC	562.26%	82.22%	96.1% / 96.1% (-0.0%)
Lenet	LC + dLoRA	1885.761%	94.697%	91.2% / 96.1% (-4.9%)

- † VGG-16 Full Version
- * VGG-16 Lite Version

Résultats

Extension avec VGG-16 Full, ResNet-50 [11] et Vision Transformer [12]

Pour des raisons d'optimisation du temps à disposition, nous avons maintenu la même configuration sur MNIST tant pour l'entraînement que pour l'évaluation des modèles. Cette méthode uniforme permet de garantir que les résultats sont comparables entre les différents modèles et configurations.

Model	Mechanism	Compression Ratio	Space Savings	Final Accuracy (Restored / Full)
VGG-16 [†]	LC	771.56%	87.04%	99.5% / 99.5% (-0.0%)
VGG-10	LC + dLoRA	6160.776%	98.378%	98.9% / 99.5% (-0.6%)
ResNet-50	LC	760.59%	86.85%	100.0% / 100.0% (-0.0%)‡
ResNet-50	LC + dLoRA	761.939%	86.876%	99.3% / 100.0% (-0.7%)‡
V:T T:	LC	244.15%	59.04%	76.0% / 76.0% (-0.0%)
ViT-Tiny	LC + dLoRA	223.928%	55.343%	75.6% / 76.0% (-0.4%)
AlexNet	LC	813.32%	87.71%	98.2% / 99.0% (-0.8%)
Alexivet	LC + dLoRA	28865.393%	99.654%	96.2% / 99.0% (-2.8%)
VGG-16*	LC	811.67%	87.68%	99.9% / 99.9% (-0.0%)
VGG-10	LC + dLoRA	4562.891%	97.808%	99.1% / 99.9% (-0.8%)
LeNet	LC	562.26%	82.22%	96.1% / 96.1% (-0.0%)
Lenet	LC + dLoRA	1885.761%	94.697%	91.2% / 96.1% (-4.9%)

† VGG-16 Full Version

* VGG-16 Lite Version

La version Lite est la version sur un seul canal de couleur

La version Full est la version du papier original qui était conçu pour être entraîné sur ImageNet

Bryan Chen | ENSEEIHT | Checkpointing Efficace pour les DNNs

Résultats

Extension avec VGG-16 Full, ResNet-50 [11] et Vision Transformer [12]

Pour des raisons d'optimisation du temps à disposition, nous avons maintenu la même configuration sur MNIST tant pour l'entraînement que pour l'évaluation des modèles. Cette méthode uniforme permet de garantir que les résultats sont comparables entre les différents modèles et configurations.

Model	Mechanism	Compression Ratio	Space Savings	Final Accuracy (Restored / Full)
VGG-16 [†]	LC	771.56%	87.04%	99.5% / 99.5% (-0.0%)
VGG-10'	LC + dLoRA	6160.776%	98.378%	98.9% / 99.5% (-0.6%)
ResNet-50	LC	760.59%	86.85%	100.0% / 100.0% (-0.0%)‡
Resnet-50	LC + dLoRA	761.939%	86.876%	99.3% / 100.0% (-0.7%)‡
ViT-Tiny	LC	244.15%	59.04%	76.0% / 76.0% (-0.0%)
VII-IIIIy	LC + dLoRA	223.928%	55.343%	75.6% / 76.0% (-0.4%)
AlexNet	LC	813.32%	87.71%	98.2% / 99.0% (-0.8%)
Alexivet	LC + dLoRA	28865.393%	99.654%	96.2% / 99.0% (-2.8%)
VGG-16*	LC	811.67%	87.68%	99.9% / 99.9% (-0.0%)
VGG-10"	LC + dLoRA	4562.891%	97.808%	99.1% / 99.9% (-0.8%)
LeNet	LC	562.26%	82.22%	96.1% / 96.1% (-0.0%)
Lenet	LC + dLoRA	1885.761%	94.697%	91.2% / 96.1% (-4.9%)

† VGG-16 Full Version

* VGG-16 Lite Version

La version Lite est la version sur un seul canal de couleur

La version Full est la version du papier original qui était conçu pour être entraîné sur ImageNet

Bryan Chen | ENSEEIHT | Checkpointing Efficace pour les DNNs

Résultats

Architecture d'un ResNet-50

Résultats

Architecture d'un ResNet-50

Résultats

Etudes des couches d'application de Delta-LoRA sur Vision Transformer (ViT)

En raison de la compression insuffisante obtenue avec le ViT-Tiny sur MNIST, nous avons décidé de développer un modèle ViT-Small (ViT-S), qui est une configuration plus avancée et proche du plus petit modèle de ViT du papier original.

STI REEL

Résultats

Architecture du Vision Transformer

Résultats

Etudes des couches d'application de Delta-LoRA sur Vision Transformer (ViT)

En raison de la compression insuffisante obtenue avec le ViT-Tiny sur MNIST, nous avons décidé de développer un modèle ViT-Small (ViT-S), qui est une configuration plus avancée et proche du plus petit modèle de ViT du papier original.

Configuration de ViT-S:

- n heads = 8
- n blocks = 8
- hidden dim = 512
- $mlp_size = 2048$

Résultats

Etudes des couches d'application de Delta-LoRA sur Vision Transformer (ViT)

En raison de la compression insuffisante obtenue avec le ViT-Tiny sur MNIST, nous avons décidé de développer un modèle ViT-Small (ViT-S), qui est une configuration plus avancée et proche du plus petit modèle de ViT du papier original.

Configuration de ViT-S:

- n heads = 8
- n blocks = 8
- hidden dim = 512
- $mlp_size = 2048$

Déterminer quelles couches bénéficient le plus de la compression Delta-LoRA

Résultats

Etudes des couches d'application de Delta-LoRA sur Vision Transformer (ViT)

En raison de la compression insuffisante obtenue avec le ViT-Tiny sur MNIST, nous avons décidé de développer un modèle ViT-Small (ViT-S), qui est une configuration plus avancée et proche du plus petit modèle de ViT du papier original.

Configuration de ViT-S:

- n heads = 8
- n blocks = 8
- hidden dim = 512
- $mlp_size = 2048$

Déterminer quelles couches bénéficient le plus de la compression Delta-LoRA

Model	Mechanism	Compression Ratio	Space Savings	Final Accuracy (Restored / Full)
ViT-S	LC	764.484%	86.919%	97.3% / 97.3% (-0.0%)
(MSAxMLP)	LC + dLoRA	12644.316%	99.209%	91.4% / 97.3% (-5.9%)
ViT-S	LC	767.055%	86.963%	96.7% / 96.7% (-0.0%)
(MSA)	LC + dLoRA	790.168%	87.344%	91.4% / 96.7% (-5.3%)
ViT-S	LC	761.956%	86.876%	97.0% / 97.2% (-0.2%)
(MLP)	LC + dLoRA	8215.592%	98.783%	96.7% / 97.2% (-0.5%)

Résultats

Etudes des couches d'application de Delta-LoRA sur Vision Transformer (ViT)

En raison de la compression insuffisante obtenue avec le ViT-Tiny sur MNIST, nous avons décidé de développer un modèle ViT-Small (ViT-S), qui est une configuration plus avancée et proche du plus petit modèle de ViT du papier original.

Configuration de ViT-S:

- n heads = 8
- n blocks = 8
- hidden dim = 512
- $mlp_size = 2048$

Déterminer quelles couches bénéficient le plus de la compression Delta-LoRA

Model	Mechanism	Compression Ratio	Space Savings	Final Accuracy (Restored / Full)
ViT-S	LC	764.484%	86.919%	97.3% / 97.3% (-0.0%)
(MSAxMLP)	LC + dLoRA	12644.316%	99.209%	91.4% / 97.3% (-5.9%)
ViT-S	LC	767.055%	86.963%	96.7% / 96.7% (-0.0%)
(MSA)	LC + dLoRA	790.168%	87.344%	91.4% / 96.7% (-5.3%)
ViT-S	LC	761.956%	86.876%	97.0% / 97.2% (-0.2%)
(MLP)	LC + dLoRA	8215.592%	98.783%	96.7% / 97.2% (-0.5%)

Taux de compression nettement plus élevé lorsque Delta LoRA appliquée sur MSAxMLP par rapport à son application sur MSA et sur MLP

Résultats

Apprentissage incrémental

Résultats

Apprentissage incrémental

Résultats

Apprentissage incrémental

Est-ce que notre schéma peut se développer à grande échelle considérant l'apprentissage incrémental?

Résultats

Apprentissage incrémental

Résultats

Apprentissage incrémental

Hypothèse: Garantit une diversité et une représentativité adéquates au sein de chaque sous-ensemble, avec l'ensemble d'évaluation qui reste inchangé.

Résultats

Apprentissage incrémental

Hypothèse: Garantit une diversité et une représentativité adéquates au sein de chaque sous-ensemble, avec l'ensemble d'évaluation qui reste inchangé.

Première étude : images différentes les unes des autres et toutes les classes de l'ensemble d'intérêt sont représentées dans chaque sous-ensemble

Résultats

Apprentissage incrémental

Hypothèse: Garantit une diversité et une représentativité adéquates au sein de chaque sous-ensemble, avec l'ensemble d'évaluation qui reste inchangé.

Première étude : images différentes les unes des autres et toutes les classes de l'ensemble d'intérêt sont représentées dans chaque sous-ensemble

4 dataloaders avec chacun 25% de l'ensemble d'entraînement d'intérêt

Résultats

Apprentissage incrémental

Hypothèse: Garantit une diversité et une représentativité adéquates au sein de chaque sous-ensemble, avec l'ensemble d'évaluation qui reste inchangé.

Première étude : images différentes les unes des autres et toutes les classes de l'ensemble d'intérêt sont représentées dans chaque sous-ensemble

- 4 dataloaders avec chacun 25% de l'ensemble d'entraînement d'intérêt
- 20 dataloaders avec chacun 5% de l'ensemble d'entraînement d'intérêt

Résultats

Apprentissage incrémental

Hypothèse: Garantit une diversité et une représentativité adéquates au sein de chaque sous-ensemble, avec l'ensemble d'évaluation qui reste inchangé.

Première étude : images différentes les unes des autres et toutes les classes de l'ensemble d'intérêt sont représentées dans chaque sous-ensemble

- 4 dataloaders avec chacun 25% de l'ensemble d'entraînement d'intérêt
- 20 dataloaders avec chacun 5% de l'ensemble d'entraînement d'intérêt
- 80 dataloaders avec chacun 1.25% de l'ensemble d'entraînement d'intérêt

Résultats

Apprentissage incrémental

Hypothèse: Garantit une diversité et une représentativité adéquates au sein de chaque sous-ensemble, avec l'ensemble d'évaluation qui reste inchangé.

Première étude : images différentes les unes des autres et toutes les classes de l'ensemble d'intérêt sont représentées dans chaque sous-ensemble

- 4 dataloaders avec chacun 25% de l'ensemble d'entraînement d'intérêt
- 20 dataloaders avec chacun 5% de l'ensemble d'entraînement d'intérêt
- 80 dataloaders avec chacun 1.25% de l'ensemble d'entraînement d'intérêt

Plus la granularité est importante, plus cela se rapproche du scénario que l'on recherche

Résultats

Apprentissage incrémental : Résultats pour LeNet-5 sur MNIST

Split	Methods	Compression	Space	Final Accuracy
Spiit	Methods	Ratio	Savings	(Restored / Full)
4*25%	LC	888.872%	88.75%	98.87%/98.85%
(15k-15k-15k-15k)				(+0.02%)
(10k 10k 10k 10k)	LC + dLoRA	2481.857%	99.209%	92.09%/98.85%
	LC + dLonA	2401.00170	99.20970	(-6.76%)
20*5%	$_{ m LC}$	723.688%	86.182%	98.39%/98.37%
(20* 3k)	LC	123.00070	00.10270	(+0.02%)
(20 3K)	LC + dLoRA	2270.412%	95.596%	92.63%/98.37%
	LO + dLoreA	2210.41270	99.09070	(-5.74%)
80* 1.25%	$_{ m LC}$	885.524%	88.71%	97.65%/97.75%
(80* 750)	LC	000.024/0	00.71/0	(-0.1%)
(00. 190)	LC + dLoRA	2478.693%	95.97%	94.08%/97.75%
	LC + dLonA	2410.093/0	99.9170	(-3,67%)

Résultats

Apprentissage incrémental : Résultats pour LeNet-5 sur MNIST

Split	Methods	Compression	Space	Final Accuracy
Spiit	Methods	Ratio	Savings	(Restored / Full)
4*25%	LC	888.872%	88.75%	98.87%/98.85%
(15k-15k-15k-15k)	LC	000.01270	00.1070	(+0.02%)
(10K-10K-10K-10K)	LC + dLoRA	2481.857%	99.209%	92.09%/98.85%
	LO + dLorex	2401.00170	33.20370	(-6.76%)
20*5%	LC	723.688%	86.182%	98.39%/98.37%
(20* 3k)	LC	725.00070	00.10270	(+0.02%)
(20 JK)	LC + dLoRA	2270.412%	95.596%	92.63%/98.37%
	EC dEolar	2210.11270	50.05070	(-5.74%)
80* 1.25%	LC	885.524%	88.71%	97.65%/97.75%
(80* 750)	LO	000.02470	00.1170	(-0.1%)
(00 100)	LC + dLoRA	2478.693%	95.97%	94.08%/97.75%
	LC dLoren	2410.03070	55.5170	(-3,67%)

Le taux de compression ne diffère pas tant que cela en fonction des configurations.

Résultats

Apprentissage incrémental : Résultats pour LeNet-5 sur MNIST

Split	Methods	Compression Ratio	Space Savings	Final Accuracy (Restored / Full)
4*25% (15k-15k-15k-15k)	LC	888.872%	88.75%	$98.87\%/98.85\% \ (+0.02\%)$
(101-101-101)	LC + dLoRA	2481.857%	99.209%	92.09%/98.85% (-6.76%)
20*5% (20* 3k)	LC	723.688%	86.182%	$98.39\%/98.37\% \ (+0.02\%)$
(20 3K)	LC + dLoRA	2270.412%	95.596%	92.63%/98.37% (-5.74%)
80* 1.25% (80* 750)	LC	885.524%	88.71%	97.65%/97.75% (-0.1%)
(80 130)	LC + dLoRA	2478.693%	95.97%	94.08%/97.75% (-3,67%)

Le taux de compression ne diffère pas tant que cela en fonction des configurations.

La perte de la performance est moins importante pour 80*1.25% que les autres.

Résultats

Apprentissage incrémental : Résultats pour LeNet-5 sur MNIST

Split	Methods	Compression Ratio	Space Savings	Final Accuracy (Restored / Full)
4*25% (15k-15k-15k-15k)	LC	888.872%	88.75%	$98.87\%/98.85\% \ (+0.02\%)$
(13K-13K-13K-13K)	LC + dLoRA	2481.857%	99.209%	92.09%/98.85% $(-6.76%)$
20*5% (20* 3k)	LC	723.688%	86.182%	$98.39\%/98.37\% \ (+0.02\%)$
(20° 3K)	LC + dLoRA	2270.412%	95.596%	92.63%/98.37% (-5.74%)
80* 1.25% (80* 750)	LC	885.524%	88.71%	97.65%/97.75% $(-0.1%)$
(00 100)	LC + dLoRA	2478.693%	95.97%	94.08%/97.75% (-3,67%)

Le taux de compression ne diffère pas tant que cela en fonction des configurations.

La perte de la performance est moins importante que les autres pour 80*1.25%.

Le modèle apprend mieux lorsque la taille du slot des nouvelles données arrivant est faible

Résultats

Apprentissage incrémental : Résultats pour ViT-B/16 sur CIFAR-10

Split	Methods	Compression	Space	Final Accuracy
Spire	Methods	Ratio	Savings	(Restored / Full)
4*25% (4* 12.5k)	LC	591.368%	83.083%	98.70%/98.74% (-0.04%)
(4* 12.5k)	LC + dLoRA	8173.368%	98.777%	$97.79\%/98.74\% \ (-0.95\%)$

Obtention d'une faible perte de la performance

Résultats

Apprentissage incrémental : Résultats pour ViT-B/16 sur CIFAR-10

Split	Methods	Compression Ratio	Space Savings	Final Accuracy (Restored / Full)
		Ratio	Savings	
4*25% (4* 12.5k)	LC	591.368%	83.083%	98.70%/98.74% (-0.04%)
(4 12.5K)	LC + dLoRA	8173.368%	98.777%	$97.79\%/98.74\% \ (-0.95\%)$

Obtention d'une faible perte de la performance, tout en gardant un taux de compression important, même dans le cas de quatre dataloaders de 25%

Résultats

Apprentissage incrémental : Résultats sur le rang

Résultats

Apprentissage incrémental : Résultats sur le rang

Le rang optimal pouvant évoluer d'un dataloader à l'autre, une analyse du rang a été considérée.

Résultats

Apprentissage incrémental : Résultats sur le rang

Le rang optimal pouvant évoluer d'un dataloader à l'autre, une analyse du rang a été considérée.

Commençons par un rang constant, optimal pour tous les dataloaders

Résultats

Apprentissage incrémental : Résultats sur le rang

Le rang optimal pouvant évoluer d'un dataloader à l'autre, une analyse du rang a été considérée.

Commençons par un rang constant, optimal pour tous les dataloaders

Une étude a été menée sur ViT-B/16 pré-entrainé sur ImageNet-1k et adapté à CIFAR-10

Résultats

Apprentissage incrémental : Résultats sur le rang

Rank	Methods	Compression Ratio	Space Savings	Final Accuracy (Restored / Full)
16	LC	534.542%	81.292%	98.27%/98.23% (+0.04%)
	LC + dLoRA	7325.409%	98.63%	96.56%/98.23% (-1.67%)
4	LC	534.414%	81.29%	98.27%/98.21% (+0.06%)
	LC + dLoRA	8675.518%	98.847%	96.71%/98.21% (-1.5%)

ViT-B/16 obtient des performances similaires pour des rangs différents

Résultats

Apprentissage incrémental : Résultats sur le rang

Rank	Methods	Compression Ratio	Space Savings	Final Accuracy (Restored / Full)
16	LC	534.542%	81.292%	98.27%/98.23% (+0.04%)
	LC + dLoRA	7325.409%	98.63%	96.56%/98.23% (-1.67%)
4	LC	534.414%	81.29%	98.27%/98.21% (+0.06%)
	LC + dLoRA	8675.518%	98.847%	96.71%/98.21% (-1.5%)

ViT-B/16 obtient des performances similaires pour des rangs différents, mais des taux de compression plus importants pour un rang faible.

Résultats

Apprentissage incrémental : Résultats sur le rang

Rank	Methods	Compression Ratio	Space Savings	Final Accuracy (Restored / Full)
16	LC	534.542%	81.292%	98.27%/98.23% (+0.04%)
	LC + dLoRA	7325.409%	98.63%	96.56%/98.23% (-1.67%)
4	LC	534.414%	81.29%	98.27%/98.21% (+0.06%)
	LC + dLoRA	8675.518%	98.847%	96.71%/98.21% (-1.5%)

ViT-B/16 obtient des performances similaires pour des rangs différents, mais des taux de compression plus importants pour un rang faible.

Seconde étude a été menée pour approfondir ce rang faible dans le même contexte

Résultats

Apprentissage incrémental : Résultats sur le rang

ı	Rank	Methods	Compression	Space	Final Accuracy	_
	Rank	Methods	Ratio	Savings	(Restored / Full)	
	4	LC	554.215%	81.956%	98.47%/98.5% (-0.03%)	
		LC + dLoRA	8675.55%	98.847%	$97.53\%/98.5\% \ (-0.91\%)$	
	3	LC	959.664%	89.58%	98.51%/98.51% (-0.00%)	
		LC + dLoRA	8810.807%	98.865%	97.53%/98.51% (-0.92%)	
2	2	LC	553.623%	81.937%	98.49%/98.49% (-0.00%)	
		LC + dLoRA	8950.415%	98.883%	97.48%/98.49% (-1.01%)	
	1	LC	959.664%	89.58%	98.33%/98.51% (-0.18%)	
		LC + dLoRA	9094.627%	98.9%	97.56%/98.51% (-0.95%)	

Performance similaire pour les différents rangs

Final Accuracy

Résultats

Apprentissage incrémental : Résultats sur le rang

Rank	Methods	Compression Space		Final Accuracy
Rank	Methods	Ratio	Savings	(Restored / Full
	LC	554.215%	81.956%	98.47%/98.5%
4		1001.21070	01.00070	(-0.03%)
	LC + dLoRA	8675.55%	98.847%	97.53%/98.5%
	LC GEOIGI	0010.0070	00.01170	(-0.91%)
	$_{ m LC}$	959.664%	89.58%	98.51%/98.51%
3	LO	303.00470	09.9070	(-0.00%)
	LC + dLoRA	8810.807%	98.865%	97.53%/98.51%
	LO dLoren	0010.00170	30.00070	(-0.92%)
	LC	553.623%	81.937%	98.49%/98.49%
2	LC	000.02070	01.99170	(-0.00%)
	LC + dLoRA	8950.415%	98.883%	97.48%/98.49%
	LO + dLortA	0300.41070	90.00970	(-1.01%)
	LC	959.664%	89.58%	98.33%/98.51%
1	LC	959.004/0	09.00/0	(-0.18%)
	LC + dLoRA	9094.627%	98.9%	97.56%/98.51%
	LO + alona	3034.027/0	90.970	(0.0507)

Performance similaire pour les différents rangs

Différence au niveau du taux de compression, où un rang de 1 obtient le meilleur taux de compression

(-0.95%)

Résultats

Apprentissage incrémental : Résultats sur le rang

Rank	Methods	Compression	Space	Final Accuracy	
Rank	Methods	Ratio	Savings	(Restored / Full)	Performance similaire pour les
	LC	554.215%	81.956%	98.47%/98.5%	renormance similare pour les
4		004.21070	01.33070	(-0.03%)	
	LC + dLoRA	8675.55%	98.847%	97.53%/98.5%	Différence au niveau du taux o
	EC dEoleri	0010.0070	30.01170	(-0.91%)	un rang de 1 obtient le meilleu
	LC	959.664%	89.58%	98.51%/98.51%	
3		000.001/0	00.0070	(-0.00%)	compression
	LC + dLoRA	8810.807%	98.865%	97.53%/98.51%	
	7000 (400 CD 6.1)			(-0.92%)	rank = 1 suffit pour maintenir i
	LC	553.623%	81.937%	98.49%/98.49%	aussi bonne que les autres sur
2		The State of the S		(-0.00%)	étant donné la simplicité de la
	LC + dLoRA	8950.415%	98.883%	97.48%/98.49%	classification de l'ensemble de
				(-1.01%) 98.33%/98.51%	ciassification de l'ensemble de
1	LC	959.664%	89.58%		
1				(-0.18%) 97.56%/98.51%	
	LC + dLoRA	9094.627%	98.9%	(-0.95%)	
				(-0.3370)	

s différents rangs

de compression, où ur taux de

une performance r CIFAR-10, peut-être a tâche de e donnée

Résultats

Apprentissage incrémental : Résultats sur le rang

Complexifier la tâche en utilisant un ensemble de donnée plus compliqué

Stanford Cars Dataset

- 8144 images pour le training
- 8041 images pour le test
- 16185 images en tout
- 196 classes

Résultats

Apprentissage incrémental : Résultats sur le rang

Complexifier la tâche en utilisant un ensemble de donnée plus compliqué

Stanford Cars Dataset

- 8144 images pour le training
- 8041 images pour le test
- 16185 images en tout
- 196 classes

Modèle

ViT-L/16 pré-entraîné sur ImageNet-21k

Résultats

Apprentissage incrémental : Résultats sur le rang

Rank	Methods	Compression Ratio	Space Savings	Final Accuracy (Restored / Full)
8	LC	766.253%	86.949%	76.81%/ <mark>77.19%</mark> (-0.38%)
	LC + dLoRA	7036.127%	98.579%	10.53%/ <mark>77.19%</mark> (-66.66%)

Atteinte d'une accuracy de 77.19% en full

Résultats

Apprentissage incrémental : Résultats sur le rang

Rank	Methods	Compression Ratio	Space Savings	Final Accuracy (Restored / Full)
8	LC	766.253%	86.949%	76.81%/77.19% (-0.38%)
	LC + dLoRA	7036.127%	98.579%	10.53%/77.19% (-66.66%)

- Atteinte d'une accuracy de 77.19% en full
- Accuracy de 10.53% avec notre schéma

Résultats

Apprentissage incrémental : Résultats sur le rang

Rank	Methods	Compression Ratio	Space Savings	Final Accuracy (Restored / Full)
8	LC	766.253%	86.949%	76.81%/77.19% (-0.38%)
	LC + dLoRA	7036.127%	98.579%	10.53%/77.19% (-66.66%)

- Atteinte d'une accuracy de 77.19% en full
- Accuracy de 10.53% avec notre schéma

Raisons potentielles

Résultats

Apprentissage incrémental : Résultats sur le rang

Rank	Methods	Compression Ratio	Space Savings	Final Accuracy (Restored / Full)
8	LC	766.253%	86.949%	76.81%/77.19% (-0.38%)
	LC + dLoRA	7036.127%	98.579%	10.53%/77.19% (-66.66%)

- Atteinte d'une accuracy de 77.19% en full
- Accuracy de 10.53% avec notre schéma

Raisons potentielles

Par manque de temps, on a dû se contenter d'un nombre d'epoch faible pour le fine-tuning (ici 3)

Résultats

Apprentissage incrémental : Résultats sur le rang

Rank	Methods	Compression Ratio	Space Savings	Final Accuracy (Restored / Full)
8 LC		766.253%	86.949%	76.81%/77.19% (-0.38%)
	LC + dLoRA	7036.127%	98.579%	10.53%/77.19% (-66.66%)

- Atteinte d'une accuracy de 77.19% en full
- Accuracy de 10.53% avec notre schéma

Raisons potentielles

- Par manque de temps, on a dû se contenter d'un nombre d'epoch faible pour le fine-tuning (ici 3)
- A-t-on peut-être trop compressé en appliquant Delta-LoRA sur MSA x MLP? et en choisissant un rang de 8?

Conclusion

Synthèse

Conclusion

Synthèse

Schéma exploite les potentialités de LC-checkpoint et de Delta-LoRA

Conclusion

- Schéma exploite les potentialités de LC-checkpoint et de Delta-LoRA
- Testé sur différentes architectures de DNNs et sur différents ensembles de données
 - LeNet-5, AlexNet, VGG-16 et ViT
 - MNIST, CIFAR-10, Stanford Cars

Conclusion

- Schéma exploite les potentialités de LC-checkpoint et de Delta-LoRA
- Testé sur différentes architectures de DNNs et sur différents ensembles de données
 - LeNet-5, AlexNet, VGG-16 et ViT
 - MNIST, CIFAR-10, Stanford Cars
- Une étude effectuée sur les couches d'application de Delta-LoRA pour ViTs sur CIFAR-10
 - Si vise à compresser à tout prix, alors application sur MSA + MLP de l'encodeur
 - Sinon, application sur MSA de l'encodeur

Conclusion

- Schéma exploite les potentialités de LC-checkpoint et de Delta-LoRA
- Testé sur différentes architectures de DNNs et sur différents ensembles de données
 - LeNet-5, AlexNet, VGG-16 et ViT
 - MNIST, CIFAR-10, Stanford Cars
- Une étude effectuée sur les couches d'application de Delta-LoRA pour ViTs sur CIFAR-10
 - Si vise à compresser à tout prix, alors application sur MSA + MLP de l'encodeur
 - Sinon, application sur MSA de l'encodeur
- Considération de l'apprentissage incrémental avec trois configurations de découpage de l'ensemble
 - Pour LeNet-5 sur MNIST, la perte de performance est plus basse lorsque dataloaders de taille faible
 - Pour ViT-B/16 sur CIFAR-10, le modèle avec notre schéma apprend bien les nouvelles données

Conclusion

- Schéma exploite les potentialités de LC-checkpoint et de Delta-LoRA
- Testé sur différentes architectures de DNNs et sur différents ensembles de données
 - LeNet-5, AlexNet, VGG-16 et ViT
 - MNIST, CIFAR-10, Stanford Cars
- Une étude effectuée sur les couches d'application de Delta-LoRA pour ViTs sur CIFAR-10
 - Si vise à compresser à tout prix, alors application sur MSA + MLP de l'encodeur
 - Sinon, application sur MSA de l'encodeur
- Considération de l'apprentissage incrémental avec trois configurations de découpage de l'ensemble
 - Pour LeNet-5 sur MNIST, la perte de performance est plus basse lorsque dataloaders de taille faible
 - Pour ViT-B/16 sur CIFAR-10, le modèle avec notre schéma apprend bien les nouvelles données
- Une analyse du rang effectuée sur ViT-B/16 sur CIFAR-10
 - Les images étant peut-être pas compliquées à classifier, un rang de 1 apprend suffisamment bien tout en ayant un taux de compression important

Conclusion

- Schéma exploite les potentialités de LC-checkpoint et de Delta-LoRA
- Testé sur différentes architectures de DNNs et sur différents ensembles de données
 - LeNet-5, AlexNet, VGG-16 et ViT
 - MNIST, CIFAR-10, Stanford Cars
- Une étude effectuée sur les couches d'application de Delta-LoRA pour ViTs sur CIFAR-10
 - Si vise à compresser à tout prix, alors application sur MSA + MLP de l'encodeur
 - Sinon, application sur MSA de l'encodeur
- Considération de l'apprentissage incrémental avec trois configurations de découpage de l'ensemble
 - Pour LeNet-5 sur MNIST, la perte de performance est plus basse lorsque dataloaders de taille faible
 - Pour ViT-B/16 sur CIFAR-10, le modèle avec notre schéma apprend bien les nouvelles données
- Une analyse du rang effectuée sur ViT-B/16 sur CIFAR-10
 - rang de 1 apprend suffisamment bien tout en ayant un taux de compression important

Conclusion

- Choix des configurations de découpage de l'ensemble
 - 4*25%
 - 20*5%
 - 80*1.25%

Conclusion

- Choix des configurations de découpage de l'ensemble
 - 4*25%
 - 20*5%
 - 80*1.25%
- Rang constant pour tous les dataloader à la place d'un rang dynamique

Conclusion

- Choix des configurations de découpage de l'ensemble
 - 4*25%
 - 20*5%
 - 80*1.25%
- Rang constant pour tous les dataloader à la place d'un rang dynamique
- Si **LC-checkpoint** était considéré comme SoTA en 2020, nouveaux algorithmes ont émergés depuis :
 - QD-Compressor [2023]
 - DynaQuant [2023]
 - ExCP [2024]
- Pareil pour **Delta-LoRA**, SoTA en 2023

Conclusion

- Choix des configurations de découpage de l'ensemble
 - 4*25%
 - 20*5%
 - 80*1.25%
- Rang constant pour tous les dataloader à la place d'un rang dynamique
- Si **LC-checkpoint** était considéré comme SoTA en 2020, nouveaux algorithmes ont émergés depuis :
 - QD-Compressor [2023]
 - DynaQuant [2023]
 - ExCP [2024]
- Pareil pour **Delta-LoRA**, SoTA en 2023
- Choix des valeurs des **superstep**

Conclusion

Perspectives

- **Généralisation** sur le découpage de l'ensemble d'intérêt
 - Extension de cette étude à d'autres domaines comme l'analyse de sentiment
 - DistilBERT (66M paramètres) sur IMDb (bases de données de revues de film)
 - RoBERTa sur IMDb
 - gpt-2 sur IMDb
- Rang croissant avec l'accumulation de nouvelles données permettant de pallier la réduction de l'accuracy face à une complexité croissante des connaissances à intégrer
- **Optimisation** du code (quantification à base exponentielle, la promotion de priorité)
- **Développement d'API** pour les chercheurs qui sont intéressés par la prévention d'empoisonnement de donnée et d'un crash éventuel pendant l'entraînement

Conclusion

Merci pour votre attention

Bibliographie

- [1] Chen Y., Liu Z., Ren B., Jin X., On Efficient Constructions of Checkpoints. arXiv:2009.13003, 2020. [cs.LG] [2] Zi B., Qi X., Wang L., Wang J., Wong K-F., Zhang L., Delta-LoRA: Fine-Tuning High-Rank Parameters with the Delta of Low-Rank
- Matrices. arXiv:2309.02411, 2023. [cs.LG]
- [3] Huffman DA., A Method for the Construction of Minimum-Redundancy Codes. Proceedings of the IRE, Vol. 40, No.9, pp.
- 1098-1101, Sept. 1952.
- [4] Ziv J., Lempel A., A Universal Algorithm for Sequential Data Compression. IEEE Transactions on information theory, Vol. it-23, No.3, May 1977.
- [5] Hu E. et al., LoRA: Low-Rank Adaptation of Large Language Models. arXiv:2106.09685, 2021.
- [6] LeCun Y., Cortes C., J.C. Burges C., Modified National Institute of Standards and Technology database. 1994.
- [7] Krizhevsky A., Nair V., Hinton G., Canadian Institute For Advanced Research 10. 2009.
- [8] LeCun Y., Bottou L., Bengio Y., Haffner P., Gradient Based Learning Applied to Document Recognition. Proceedings of the IEEE,
- vol. 86, no. 11, pp. 2278-2324,1998.
- [9] Krizhevsky A., Sutskever I., Hinton G.E., *ImageNet Classification with Deep Convolutional Neural Networks*. NeurIPS 2012.
- [10] Simonyan K. et al. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv:1409.1556, Oxford University, 2014.
- [11] He K., Zhang X., Ren S., Sun J., Deep Residual Learning for Image Recognition. arXiv:1512.03385, Microsoft, 2015.
- [12] Dosovitskiy A. et al., An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. arXiv:2010.11929, 2020.

Bibliographie

- [13] Niederfahrenhorst A., Hakhamaneshi K., Ahmad R., Fine-Tuning LLMs: LoRA or Full-Parameter? An in-depth Analysis with Llama 2. anyscale, 2023.
- [14] Robbins H., Monro S., A Stochastic Approximation Method. University of North Carolina, 1951.
- [15] McCloskey M., J. Cohen N., Catastrophic Interference in Connectionist Networks: The Sequential Learning Problem. Academic Press, Psychology of Learning and Motivation, vol. 24, pp. 109-165, 1989.
- [16] Jin H., Wu D., Zhang S., Zou X., Jin S., Tao D., Liao Q., Xia W., Design of a Quantization-based DNN Delta Compression Framework for Model Snapshots and Federated Learning. Washington State University, EECS, 2023.
- [17] Agrawal A., Reddy S., Bhattamishra S., Prabhakara Sarath Nookala V., Vashishth V., Rong K., Tumanov A., *DynaQuant:* Compressing Deep Learning Training Checkpoints via Dynamic Quantization. arXiv:2306.11800, Georgia Institute Of Technology, University of Oxford, 2023.
- [18] Li W., Chen X., Shu H., Tang Y., Wang Y., ExCP: Extreme LLM Checkpoint Compression via Weight-Momentum Joint Shrinking. arXiv:2406.11257, Huawei, 2024.
- [19] Krause J., Jin H., Yang J., Fei-Fei L., Fine-Grained Recognition without Part Annotations. arXiv:1702.01721, Adobe Research, Stanford, 2013.
- [20] Loshchilov I., Hutter F., Decoupled Weight Decay Regularization. arXiv:1711.05101, ICLR, 2019.
- [21] Pragati Baheti, A Comprehensive Guide to Convolutional Neural Networks. V7Labs, Microsoft, 2021.
- [22] Li C., Farkhoor H., Liu R., Yosinski J., Measuring the Intrinsic Dimension of Objective Landscapes. arXiv:1804.08838, 2018.
- [23] Alex Krizhevsky, Vinod Nair, Geoffrey Hinton, Canadian Institute For Advanced Research 100. 2009.

Annexes

D + 0 1111	4*15k 20*3k	80*750	4*12.5k
Dataset Splitting	(=25%) $(=5%)$	(=1.25%)	(=25%)
Model	LeNet-	5	ViT-B/16
Branching Point	74.6%		HF [‡] pretrained ImageNet1k
Dataset	MNIST	ר	CIFAR-10
Bit-width	3		3
LoRA Scaling	0.5		0.5
Batch Size	128		128
Learning Rate	0.08		4e-5
Epochs	100		5
Super-Step	Every 10 iterations		Every 10 iterations
Stopping Criterion	Early stopping		Early stopping
Optimizer	SGD		Adam¶

Table 11 – Comparaison des configurations de LeNet-5 et ViT-B/16 sur les différents datasets

Annexes

Choix Des Modèles

https://paperswithcode.com/sota/image-classification-on-imagenet

