Capítulo 1

Gases imperfectos

1.1 Cuánticos -reubicar

Ensamble de $\mathcal N$ sistemas $(k=1,2,...,\mathcal N).$ Cada uno tiene su estado descripto por

$$\Psi^k(\mathbf{x},t), \qquad \qquad \hat{H}\Psi^k = i\hbar \frac{\partial \Psi^k}{\partial t} \quad \forall k$$

Si son estados puros entonces

$$\Psi^k = \sum_n a_n(t) \phi_n(\mathbf{x}) \qquad \{\phi_n\} \text{ set ortonormal }$$

Un estado puro es superposición coherente de una base

$$i\hbar \frac{\partial}{\partial t} a_m^k = \sum_n H_{mn} a_n^k$$

El sistema k-ésimo puede describirse a partir de Ψ^k o bien a partir de los coeficientes $\{a_n\}$.

Definimos un operador de densidad,

$$\rho_{mn} \equiv \sum_{k=1}^{\mathcal{N}} p_k a_m^k (a_n^k)^*$$

el cual proviene de

$$\hat{\rho}_{mn} = \sum_{k=1}^{\mathcal{N}} p_k \left| \Psi^k \right\rangle \left\langle \Psi^k \right|$$

Todos son la misma combinación lineal de la base.

Promedio en el ensamble de la interferencia cuántica entre ϕ_m y ϕ_n . p_k es la probabilidad del estado k.

Puede verse que se cumple

$$i\hbar\dot{\rho} = [\hat{H},\hat{\rho}],$$

un teorema de Liouville cuántico.

Sea el valor medio de \hat{G}

$$\left\langle G\right\rangle _{ENS}=\sum_{k=1}^{\mathcal{N}}p_{k}\left\langle G\right\rangle _{k}=\sum_{k=1}^{\mathcal{N}}p_{k}\left\langle \Psi^{k}|\hat{G}|\Psi^{k}\right\rangle _{k}=\sum_{k}p_{k}\int\sum_{i}a_{i}^{k*}\phi_{i}^{*}\hat{G}\sum_{j}a_{j}^{k}\phi_{j}dx$$

$$\begin{split} \left\langle G \right\rangle_{ENS} &= \sum_{k} p_{k} \sum_{i} \sum_{j} a_{i}^{k*} a_{j}^{k} \int \phi_{i}^{*} G \phi_{j} dx = \sum_{i} \sum_{j} \left(\sum_{k} p_{k} a_{i}^{k*} a_{j}^{k} \right) G_{ij} \\ &\left\langle G \right\rangle_{ENS} = \sum_{i} \sum_{j} \rho_{ij} G_{ij} = \text{ Traza } (\hat{\rho} \hat{G}) = \sum_{i} [\rho G]_{ii} \end{split}$$

Ahora, si el conjunto $\{\phi_n\}$ fuesen autoestados de \hat{G} entonces

$$\begin{split} \int dx \phi_i^* G \phi_j &= \int dx \phi_i^* \phi_j g_j = \delta_{ij} g_j = g_i \\ \left\langle G \right\rangle_{ENS} &= \sum_k p_k \sum_i a_i^{k*} a_i^k g_i = \sum_k p_k \sum_i |a_i^k|^2 g_i \end{split}$$

La matriz densidad $\hat{\rho}$ se define de modo que sus elementos ρ_{ij} resultan

$$\langle \phi_i | \hat{\rho} | \phi_j \rangle = \sum_{k=1}^{\mathcal{N}} p_k \, \langle \phi_i | \Psi^k \rangle \, \langle \Psi^k | \phi_j \rangle = \sum_{k=1}^{\mathcal{N}} p_k \int dx \phi_i^* \sum_l a_l^k \phi_l \int dx' \phi_j \sum_m a_m^{k*} \phi_m^*$$

$$\begin{split} \langle \phi_i | \hat{\rho} | \phi_j \rangle = \sum_{k=1}^{\mathcal{N}} p_k \sum_l \sum_m a_l^k a_m^{k*} \int dx \phi_i^* \phi_l \int dx' \phi_j \phi_m^* = \sum_{k=1}^{\mathcal{N}} p_k \sum_l \sum_m a_l^k a_m^{k*} \delta_{il} \delta_{jm} \\ \rho_{ij} = \sum_k p_k a_i^k a_j^{k*} \end{split}$$

El primer postulado de la QSM es asegurarse de que $\rho_{ij} \propto \delta_{ij}$, es decir que EN PROMEDIO no hay correlación entre funciones $\{\phi_i\}$ para diferentes miembros k del ensamble. El elemento ρ_{ij} es el promedio en el ensamble de la interferencia entre ϕ_i y ϕ_j .

En la práctica los ensambles serán mezcla, una superposición de estados puros pero incoherente, de modo que

Es muy difícil preparar un ensamble puro.

$$\hat{\rho} = \sum_{k=1}^{\mathcal{N}} p_k \left| \Psi^k \right\rangle \left\langle \Psi^k \right| \qquad p_k \ge 0 \quad \sum_k p_k = 1$$

donde p_k serán las *abundancias relativas* de los estados puros Ψ^k . Para un ensamble puro sería

$$\hat{\rho} = |\Psi\rangle \langle \Psi|$$

donde no hay supraíndice k puesto que todos son el mismo estado.

Un estado puro puede escribirse

$$\Psi^k = \sum_n a_n \phi_n, \quad \text{ o bien } \quad \left| \Psi^k \right> = \sum_n a_n \left| \phi_n \right>$$

y sabemos que el valor de expectación será

$$\left\langle A\right\rangle _{k}=\left\langle \Psi^{k}|\hat{A}|\Psi^{k}\right\rangle =\int dx\Psi^{k*}A\Psi^{k}$$

Un estado mezcla será en cambio

$$|\xi\rangle \cong \sum_{n} p_n \, |\phi_n\rangle \tag{1.1}$$

donde $\sum_n p_n = 1$ y $p_n \in \mathbb{R} > 0.$ Pero $|\xi\rangle$ no es un estado de sistema como Ψ^k pués

$$|\xi\rangle \neq \sum_{n} c_n |\phi_n\rangle$$
 (1.2)

no hay cambio de base que lleve (1.1) al miembro derecho de (1.2). Entonces

$$\langle A \rangle_{\xi} \neq \langle \xi | \hat{A} | \xi \rangle$$

Pero como en la práctica lo que se tiene son estados mezcla, la matriz de densidad $\hat{\rho}$ permite trabajar con ellos tranquilamente.

Sea que evaluamos el valor medio de $\hat{G}=\hat{\mathcal{H}}$ que será la energía $\langle E \rangle$ en autoestados de $\hat{\mathcal{H}}.$

$$\left\langle \hat{\mathcal{H}} \right\rangle_{ENS} = \left\langle E \right\rangle = \sum_k p_k \sum_i \sum_j a_i^{k*} a_j^k \int \phi_i^* \phi_j E_j = \sum_k p_k \sum_j a_j^{k*} a_j^k E_j$$

$$\langle E \rangle = \sum_k p_k \sum_j a_j^{k*} a_j^k E_j = \sum_j \left(\sum_k p_k a_j^{k*} a_j^k \right) E_j = \sum_j \rho_{jj} E_j$$

Se tiene que $\hat{\rho}$ es diagonal para un operador \hat{G} tal que utilizamos la base de autoestados.

Querremos que esto valga para cualquier base entonces necesitaremos que las fases sean números aleatorios:

$$\rho_{ij} = \sum_{k}^{\mathcal{N}} p_k a_i^{k*} a_j^k = \sum_{k}^{\mathcal{N}} p_k |a_i^k| |a_j^k| e^{i(\theta_i^k - \theta_j^k)}$$

y asi además son equiprobables (microcanónico) los estados base accesibles,

$$p_k = \frac{1}{\mathcal{N}} \qquad \mathbf{y} \qquad |a_i^k| = |a_i| \quad \forall k$$

y asimismo pedimos que para cada miembro del ensamble la amplitud sea la misma, se tiene

$$\rho_{ij} = |a_i||a_j|\frac{1}{\mathcal{N}}\sum_{k}^{\mathcal{N}} \, \mathrm{e}^{i(\theta_i^k - \theta_j^k)} = |a_i||a_j|\delta_{ij}$$

donde se han usado fases al azar, de modo que

$$\rho_{ij} = |a_i|^2 \delta_{ij} = \rho_i \delta_{ij}$$

y entonces

$$\begin{cases} \rho_i = \frac{1}{\Gamma} \\ \rho_i = 0 \end{cases}$$

Entonces ρ_i será la probabilidad del estado de base ϕ_i . Se sigue que el operador densidad del microcanónico puede escribirse

$$\hat{\rho} = \sum_{i} |a_{i}|^{2} |\phi_{i}\rangle \left\langle \phi_{i} \right|$$

de manera que es una superposición incoherente de estados de la base $\{\phi_i\}$

$$\hat{\rho} = \sum_{i} \rho_{i} \left| \phi_{i} \right\rangle \left\langle \phi_{i} \right|$$

y al final del día

$$\rho_{kl} = \left\langle \phi_k | \hat{\rho} | \phi_l \right\rangle = \sum_i \rho_i \left\langle \phi_k | \phi_i \right\rangle \left\langle \phi_i | \phi_l \right\rangle = \sum_i \rho_i \delta_{ki} \delta_{il} = \rho_k \delta_{kl}$$

$$\Omega=1$$
ensamble puro

$$S = k \log \Omega = 0$$

$$\rho_{mn} = \frac{1}{\mathcal{N}} \sum_{k=1}^{\mathcal{N}} a_m^{k*} a_m^k = a_m a_n^*$$

Esto no está consistente: colapsas la delta o no, papi?

si es la misma $\Psi \forall k$ el sistema se halla en una combinación lineal de ϕ_n , o bien

$$\rho_{mn}=|a_m|^2\delta_{mn}$$

el sistema se halla en un único autoestado ϕ_n

 $\Omega > 1$ ensamble mezcla

1.1.1 Resumen formalismo

$$\begin{split} \rho_{ij} &= \rho_i \delta_{ij} \\ \rho_i &= \frac{1}{\Omega} \quad \text{Microcanónico} \\ \rho_i &= \frac{\mathrm{e}^{-\beta E_i}}{Q_N(V,T)} \quad \text{Canónico} \\ \rho_i &= \frac{\mathrm{e}^{-\beta E_i + \beta \mu N_i}}{\Xi(z,V,T)} \quad \text{Gran canónico} \end{split}$$

$$\begin{split} \hat{\rho} &= \sum_i |\phi_i\rangle \, \rho_i \, \langle \phi_i| \qquad \qquad \text{Traza } (\hat{\rho}) = 1 \text{ bien normalizado} \\ \\ \hat{\rho} &= \frac{1}{\Omega} \sum_i^{\text{ACC}} |\phi_i\rangle \, \langle \phi_i| = \frac{1}{\Omega} \hat{\mathbb{1}}^{\text{ACC}} \qquad \text{Tr } (\hat{\rho}) = 1 \end{split}$$

donde $\hat{\mathbb{1}}^{ACC}$ es una indentidad con 0 para los sitios de la diagonal donde no hay estado accesible. Luego Traza $(\hat{\mathbb{1}}^{ACC}) = \Omega$. Para los otros dos casos,

$$\begin{split} \hat{\rho} &= \frac{\mathrm{e}^{-\beta E_i}}{Q_N(V,T)} \sum_i^{\mathrm{ACC}} |\phi_i\rangle \, \langle \phi_i| = \frac{\mathrm{e}^{-\beta E_i}}{Q_N(V,T)} \hat{\mathbb{1}}^{\mathrm{ACC}} \qquad \mathrm{Tr} \; (\hat{\rho}) = \frac{1}{Q_N} \, \mathrm{Tr} \; (\mathrm{e}^{-\beta E_i} \hat{\mathbb{1}}^{\mathrm{ACC}}) \\ \hat{\rho} &= \frac{\mathrm{e}^{-\beta E_i + \beta \mu N_i}}{\Xi(z,V,T)} \sum_i^{\mathrm{ACC}} |\phi_i\rangle \, \langle \phi_i| = \frac{\mathrm{e}^{-\beta E_i + \beta \mu N_i}}{\Xi(z,V,T)} \hat{\mathbb{1}}^{\mathrm{ACC}} \qquad \mathrm{Tr} \; (\hat{\rho}) = \frac{1}{\Xi} \, \mathrm{Tr} \; (\mathrm{e}^{-\beta E_i + \beta \mu N_i} \hat{\mathbb{1}}^{\mathrm{ACC}}) \end{split}$$

El conteo de estados se hace cuánticamente de modo que no hay paradoja de Gibbs. Los estados accesibles en el microcanónico (Ω) son tales que sus probabilidad es

$$|a_i|^2 = \frac{1}{\Omega} \quad \forall i \text{ accesible}$$

Serán aquellos de la base $\{\phi_i\}$ en cuestión tales que la energía resulte vale entre E y $E+\Delta E$.

Los dos postulados

- i) Equiprobabilidad
- · ii) Fases al azar

aseguran que no hay correlación entre las funciones $\{\phi_i\}$ (en promedio).

1.2 Gases reales

Función canónica de un gas real. Surge una integral configuracional

$$Z_N = \int d^3 q_1 ... d^3 q_N \, \mathrm{e}^{-\beta \sum_{i < j} V_{ij}}$$

En el gran canónico tenemos $\Xi(Z_N)$. Potencial de Lenard-Jones

$$\frac{1}{r^{12}} - \frac{1}{r^6}$$

Definimos $f_{ij}={\rm e}^{-\beta V_{ij}}-1$ y expresamos todo en términos de f_{ij} . Estudiamos con los N-grafos.

El gas real lo estudiamos clásicamente, entonces

$$Q_N = \frac{1}{N! \, h^{3N}} \int d^{3N} q d^{3N} p \, \mathrm{e}^{-\beta H(p,q)}$$

si bien aparece h (constante de Planck) no hablamos de funciones de onda; como sí sucede en una expansión cuántica

$$Z_N = \int d^{3N}q \prod_{i < j} (1 + f_{ij})$$

Cada grafo puede verse en una matriz de adyacencias M_{ij}

la cual tendrá (N-1)N/2 productos y $2^{N(N-1)/2}$ términos sumando de modo que serán esa cantidad de integrales

$$\begin{array}{lll} \text{N=2} \rightarrow & 1 \text{ producto y } 2^1 \text{ términos} \\ \text{N=3} \rightarrow & 3 \text{ productos y } 2^3 = 8 \text{ términos} \\ \text{N=4} \rightarrow & 6 \text{ productos y } 2^6 = 64 \text{ términos} \\ \text{N=10} \rightarrow & 45 \text{ productos y } 2^{45} \cong 3.5 \cdot 10^{13} \text{ términos} \end{array}$$

Cada uno de los N-grafos (integrales) puede factorizarse en l-racimos (l-grafo conexo). Un dado N-grafo, por ejemplo

Cada integral puede verse como un grafo.

DIBUJO=

$$\int d^3r_1 d^3r_2 f_{12} \int d^3r_3 \int d^3r_4 d^3r_6 f_{46} \int d^3r_5 \times \\ \int d^3r_7 d^3r_8 d^3r_9 d^3r_{10} f_{78} f_{79} f_{710} f_{89} f_{910}$$

tiene dos 1-racimo, dos 2-racimos y un 4-racimo.

Un dado l-racimo tendrá al menos l-1 términos f_{ij} para asegurar la conexión. El máximo será l(l-1)/2. Se cumple

Términos f_{ij} son los links en el lenguaje de grafos.

$$N = \sum_{l=1}^{N} l \cdot m_l \quad \text{ suma en racimos}$$
 (2.1)

siendo l el número de partículas del racimo y m_l el número de l-racimos y sujeta a

$$N = 1 \cdot 2 + 2 \cdot 2 + 4 \cdot 1 = 10$$
 $\{m_l\} = (2, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0)$

DIBUIO

Claramente separando en racimos cuento las partículas con (2.1).

DIBUJO

Pero el set $\{m_l\}$ tiene degeneración pues es equivalente a este otro arreglo de racimos.

Se definen las integrales de racimo como

$$b_l = \frac{1}{l! \ \lambda^{3l-3}V}$$
 [suma de todos los l-racimos posibles]

donde sumar los l-racimos es en todas las configuraciones de l-bolas conexas DIBUJITO.

$$b_1 = \frac{1}{1!\,\lambda^0 V} \int d^3 r_1 \leftarrow \sum \boxed{1}$$

$$b_2 = \frac{1}{2! \, \lambda^3 V} \int d^3 r_1 d^3 r_2 f_{12} \leftarrow \sum \boxed{1} - - \boxed{2}$$

$$\begin{split} b_3 &= \frac{1}{3!\,\lambda^6 V} \int d^3 r_1 d^3 r_2 d^3 r_3 (f_{12} f_{23} + f_{12} f_{13} + f_{13} f_{23} + f_{12} f_{13} f_{23}) \\ &\leftarrow \sum_{\text{perm. etiqu.}} \left[\, \boxed{\ } - \boxed{\ } + \boxed{\ } - \boxed{\ } - \boxed{\ } \right] \end{split}$$

Sea $S(\{m_l\})$ la suma de todos los l-racimos compatibles con el conjunto $\{m_l\}$

$$S(\{m_l\}) = \sum_{\text{perm. conectores.}} \left[\left[\right]^2 \cdot \left[\left[\right] - - \right]^2 \left[\left[\right] - - - - \right]^1$$

donde los conectores se permutan dentro de cada racimo.

$$Z_N = \int d^3q_1 d^3q_2 ... d^3q_N \left(1 + f_{12} + f_{13} + ... + f_{12} f_{13} + ... \right)$$

Cada N-grafo se divide en varios l-racimos. Un l-racimo tendrá de 1 a N partículas.

Cambiar los boxed por circled!!!

Tenemos $2^{N(N-1)/2}$ integrales

$$Z_N = \int d^3q_1 1 + \int d^3q_2 f_{12} + \ldots + \int d^3q_N f_{12} f_{13}$$

Cada integral es un N-grafo (N bolas unidas por un número m de links (m es igual al número de f_{ij})).

Cada N-grafo se factoriza en l-racimos y se puede escribir

$$N = \sum_{l=1}^{N} l \cdot m_l$$
 suma en racimos

siendo l el número de partículas en el racimo l y m_l el número de l-racimos. El conjunto $\{m_l\}$ es la distribución de l-racimos de un grafo

1. es
$$\{m_l\} = (N, 0, 0, ..., 0)$$
 tiene N 1-racimos

$$2.\{m_l\} = (N-2,1,0,...,0)$$
tiene $N-2$ 1-racimos y 1 2-racimo

$$3.\{m_l\} = (N-3,0,1,...,0) \hspace{1cm} \text{tiene } N-3 \text{ 1-racimos y 1 3-racimo}$$

Sea $S(\{m_l\})$ la suma de todos los l-racimos compatibles con un conjunto $\{m_l\}$ dado,

$$N = N \cdot 1$$

$$N = (N-2) \cdot 1 + 1 \cdot 2$$

$$N = 1 \cdot (N-3) + 3 \cdot 1$$

$$S(\{m_l\}) = \sum_{\text{perm. conectores.}} \left[\boxed{ } \right]^{m_1} \cdot \left[\boxed{ } - - \right]^{m_2} \left[\boxed{ } - - - - \right]^{m_3} \times \dots$$

Por ejemplo, para $m_3=2$ (dos 3-racimos)

Faltan los diagramáticos de estas cosas.

y entonces

 \oplus

lo que da un total de 16 términos.

Esto da el número de formas de construir un 6-grafo compuesto de dos 3-racimos

DIBUJO

Cada set $\{m_l\}$ define un conjunto de $R=\sum m_l$ racimos correspondiente a un conjunto de N-grafos. Así:

$$\{m_l\} = (N-2,1,0,...,0)$$

representa

DIBUJO

una gran cantidad de N-grafos dada por permutar etiquetas. Pero si quiero economizar cuentas similares consideraré un factor

$$\frac{1}{1!^{m_1} \ 2!^{m_2} \ 3!^{m_3} \dots N!^{m_N}}$$

por permutaciones de índices en cada racimo

$$\frac{1}{m_1! \, m_2! \, ... m_N!}$$

por permutaciones de índices entre racimos iguales.

Para el ejemplo es

$$\frac{1}{1!^{N-1} \, 2!^1} \frac{1}{(N-2)! \, 1!}$$

Entonces

$$S(\{m_l\}) = \frac{1}{1!^{m_1} \ 2!^{m_2} \ 3!^{m_3} \dots N!^{m_N}} \frac{1}{m_1! \ m_2! \dots m_N!} \left[\square \right]^{m_1} \times \left[\square - - \right]^{m_2} \times \dots$$

$$S((N-2,1,0,...,0)) = \frac{N(N-1)}{2!} \ [\ \ \,]^{m_1} \times [\ \, \, \, \, \, \, - \, \, \, \, \,]^{m_2} \times [\ \ \, \, \, \, \, \, \, \, - \, \, \, \, \, \,]^{m_3} \times ...$$

Recordando

$$b_l = rac{1}{l! \ \lambda^{3(l-1)} V} \cdot (ext{ Suma de todos los l-racimos })$$

será

$$\begin{split} S(\{m_l\}) &= \frac{N!}{1!^{m_1} \ 2!^{m_2} \ 3!^{m_3} \dots N!^{m_N}} \ \prod_l^N \frac{(l! \ \lambda^{3(l-1)} V \ b_l)^{m_l}}{m_1! \ m_2! \dots m_N!} \\ S(\{m_l\}) &= N! \ \prod_l^N \frac{(\lambda^{3(l-1)} V \ b_l)^{m_l}}{m_1! \ m_2! \dots m_N!} \end{split}$$

Luego

$$Z_N = \sum_{\{m_l\}}^{'} S(\{m_l\}) = N! \, \lambda^{3N} \sum_{\{m_l\}}^{'} \prod_{l}^{N} \frac{1}{m_l!} \left(\frac{V \, b_l}{\lambda^3}\right)^{m_l}$$

$$Q_{N} = \frac{1}{N! \, \lambda^{3N}} Z_{N} = \sum_{\{m_{l}\}}^{'} \prod_{l}^{N} \frac{1}{m_{l}!} \left(\frac{V \, b_{l}}{\lambda^{3}}\right)^{m_{l}}$$

$$\begin{split} \Xi &= \sum_{N=0}^{\infty} z^N Q_N = \sum_{m_1=0}^{\infty} \sum_{m_2=0}^{\infty} \dots \sum_{m_N=0}^{\infty} z^N \prod_l^N \frac{1}{m_l!} \left(\frac{V \, b_l}{\lambda^3}\right)^{m_l} \\ \Xi &= \sum_{m_1=0}^{\infty} \sum_{m_2=0}^{\infty} \dots \sum_{m_N=0}^{\infty} \prod_l^N \frac{1}{m_l!} \left(\frac{z^l V \, b_l}{\lambda^3}\right)^{m_l} \\ \Xi &= \prod_{l=1}^N \sum_{m_l=0}^{\infty} \frac{1}{m_l!} \left(\frac{z^l V \, b_l}{\lambda^3}\right)^{m_l} = \prod_{l=1}^N \, \mathrm{e}^{\frac{z^l V \, b_l}{\lambda^3}} \\ \log \Xi &= \sum_{l=1}^N \log \left(\, \mathrm{e}^{\frac{z^l V \, b_l}{\lambda^3}}\right) = \sum_{l=1}^N \frac{z^l V \, b_l}{\lambda^3} \end{split}$$

de modo que

$$\begin{split} \beta p &= \frac{1}{\lambda^3} \sum_{l=1}^N z^l b_l. \\ b_1 &= \frac{1}{1! \, \lambda^{3(1-1)} V} \int d^3 r = \frac{V}{\lambda^0 V} = 1 \\ b_2 &= \frac{1}{2\lambda^3 V} \int d^3 r d^3 r' f_{rr'} = \frac{1}{2\lambda^3 V} \int d^3 r \int d^3 u f_u \end{split}$$

r-r'=u y entonces -dr'=du.

Sea un sistema de esferas rígidas (potencial esférico)

$$f_u = e^{-\beta V_u} - 1 = \begin{cases} -1 & r < \sigma \\ 0 & r > \sigma \end{cases}$$

DIBUJO

$$\begin{split} b_2 &= \frac{1}{2\lambda^3 V} \int_0^\infty du 4\pi u^2 f_u = \frac{-1}{2\lambda^3 V} \frac{4\pi\sigma^3}{3} \\ Z_3 &= \int d^3 q_1 \int d^3 q_2 \int d^3 q_3 \, (1+f_{12})(1+f_{13})(1+f_{23}) \end{split}$$

$$\begin{split} Z_3 &= \int d^3q_1 d^3q_2 d^3q_3 + \int d^3q_1 d^3q_2 d^3q_3 \, f_{12} + \int d^3q_1 d^3q_2 d^3q_3 \, f_{13} + \\ &\int d^3q_1 d^3q_2 d^3q_3 \, f_{23} + \int d^3q_1 d^3q_2 d^3q_3 \, f_{12} f_{13} + \int d^3q_1 d^3q_2 d^3q_3 \, f_{12} f_{23} + \\ &\int d^3q_1 d^3q_2 d^3q_3 \, f_{13} f_{23} + \int d^3q_1 d^3q_2 d^3q_3 \, f_{12} f_{13} f_{23} \end{split}$$

$$Z_2 = + + + + + + +$$

(muchos dibujitos)

Se observa cierta degeneración. Podemos dar los números de ocupación de cada N-grafo

$$\begin{aligned} \{m_l\} = & (3,0,0) & \text{1er N-grafo} \\ \{m_l\} = & (1,1,0) & \text{2-4 N-grafo} \\ \{m_l\} = & (0,0,1) & \text{5-8 N-grafo} \end{aligned}$$

Son sólo tres conjuntos $\{m_l\}$ que describen todos los ocho 3-grafos. Sumamos los diferentes permutaciones de etiquetas distinguibles de cada conjunto $\{m_l\}$

$$\begin{split} S((3,0,0)) &= []^3 = [\lambda^0 V b_1]^3 \\ S((1,1,0)) &= []^1 []^1 = 3! \, [\lambda^0 V b_1]^1 [\lambda^3 V b_2]^1 \\ S((0,0,3)) &= []^3 = 3! \, [\lambda^6 V b_3]^1 \\ \sum_{\{m_i\}} &= 3! \, \bigg[\frac{(V b_1)^3}{3!} + \lambda^3 V^2 b_1 b_2 + \lambda^6 V b_3 \bigg] \end{split}$$

1.2.1 hoja suelta -reubicar-

1 =

=

Pero la traza debe evaluarse en alguna base dada,

=

donde $|\Psi_E\rangle$ son autoestados de energía del $\hat{H}.$ Usaremos la función de onda simetrizada y normalizada

= =

Una función de onda de ${\cal N}$ partículas correctamente normalizada y simetrizada

$$= (2.2)$$

donde

=

ℙ es el operador de permutaciones

es una función para partículas distinguibles (de Boltzmann).

Cada

=

es función de onda de la partícula i-ésima en el ninvel energético \boldsymbol{e}_i dado por

=

Dado que sumamos en todas las permutaciones de (2.2) es lo mismo permutar coordenadas que vectores

=

=

Dado que las permutaciones sólo difieren en el orden de los términos consideramos sólo una permutación repetida N! veces, con lo cual

=

=

Ahora sea el sistema de las N partículas con energía E, es decir

=

 $\delta \mathbb{P} = egin{cases} 1 & extbf{bosones} \ \pm 1 & extbf{fermiones} \ extbf{(perm par o impar)} \end{cases}$

el estado energético será función de un vector ${\bf P}$

=

quiero evaluar

=

Suma en todos los ${\cal P}$ posibles.

pero esta sumatoria en ${\cal P}$ es equivalente a

=

=

=

donde

=

La cuenta entre paréntesis es integrable pasando al continuo con		
	=	
	=	
Descomponemos cada integral en tres		
	=	
Usamos que		
	=	
	=	
	=	
Luego,	=	
Definimos		
	=	
Resultando	_	
	=	
	=	
	=	
Analizamos la $\sum_{\mathbb{P}}.$ Como se suma en todas las permutaciones, tendremos		
	=	
Veamos la permutación de q_1 y q_2		
	=	
	=	
	=	
	=	

=

_

Veamos los límites clásico y el surgimiento de fenómenos cuánticos

= = =

=

=

donde

Con $|\mathbf{q}_i - \mathbf{q}_j| o 0$ es

DIBUJO

El potencial efectivo βV_{ij} luce como la Figura

Límite clásico → no permutación

Cuando hay overlap de las funciones de onda de las partículas hay que realizar las permutaciones correspondientes.

La simetría (por la indistinguibilidad que hace necesaria la permutación) lleva a términos efectivos de interacción repulsivos (FD) o a atractivos (BE).

1.3 Sistemas de partículas indistinguibles y no interactuantes

- · no interacción
- indistinguibilidad (partículas idénticas)

$$\begin{split} \hat{H} &= \sum_{i}^{N} H_{i}(\vec{q}_{i}, \vec{p}_{i}) \\ \hat{H} \Psi_{E} &= E \Psi_{E} \qquad \text{donde} \\ \Psi_{E} &= \prod_{i=1}^{N} u_{e_{1}}(q_{i}) \qquad \text{y} \; u_{e_{1}}(q_{i}) \end{split}$$

siendo esta última la solución de una única partícula en el nivel e_i y donde e_i es el nivel energético de la partícula 'i'.

El sistema cuántico se describe mediante números de ocupación

$$E = \sum_{j=1}^{L} e_j n_j \qquad \qquad N = \sum_{j=1}^{L} n_j$$

siendo n_j el número de partículas en el nivel de energía \boldsymbol{e}_i

$$\Psi_E = \prod_{i=1}^{n_1} u_{e_1}(q_i) \cdot \prod_{i=n_1+1}^{n_1+n_2} u_{e_2}(q_i) \cdot \dots$$

Permutando coordenadas $({\bf q}_1,{\bf q}_2,...,{\bf q}_N)\to (P{\bf q}_1,P{\bf q}_2,...,P{\bf q}_N)$ llego a

$$\frac{N!}{n_1! \, n_2! \dots} = N! \prod_{i=1}^{N} \frac{1}{n_i!}$$

diferentes estados. Cada vez que permuto dos partículas en diferentes niveles energéticos cuento un estado extra.

Podemos construir una función de onda cuántica correcta (que no se altere por permutaciones) si respetamos

$$|P\Psi|^2 = |\Psi|^2 \quad \text{dos casos}$$

$$P\Psi = \begin{cases} +\Psi \text{ número par de permutaciones} \\ -\Psi \text{ número impar de permutaciones} \end{cases}$$
 simétrica antisimétrica
$$\Psi = \sum_P P\Psi \qquad \qquad \Psi = \sum_P \delta_P P\Psi, \delta_P = \pm 1$$

Faltaría el coeficiente de normalización

La antisimetría puede escribirse como determinante de Slater. Además, una función antisimétrica Ψ será nula al sumar en 'P' si existe más de una partícula en un mismo nivel energético. Esto equivale a tener dos filas iguales en el determinante de Slater. Vemos que el hecho de forzar la simetría de intercambio ha llevado al PRINCIPIO DE EXCLUSIÓN.

BOSE-EINSTEIN	$n_i = 0, 1, 2,, N$	Cualquier ocupación es válida
(spin entero) FERMI-DIRAC (spin semientero)	$n_i = o, 1$	Sólo puede haber a lo sumo una partícula por nivel

La exclusión es $\sum_{i}^{L} n_{i}^{2} = N$

Entonces, dado un conjunto $\{n_i\}$ de números de ocupación tendré

• 1 estado bosónico : $\Psi_S = \sum_P P \Psi_{\mathrm{Boltz}}$

• 1 estado fermiónico : $\Psi_A = \sum_P \delta_P P \Psi_{\text{Boltz}} \ (\text{ si } N0 \sum_i^N n_i^2)$

- $\frac{N!}{\prod_{i=1}^{L} n_i!}$ estados de Boltzmann $\Psi_{\text{Boltz}} = \prod_{i=1}^{N} u_i(\vec{q_i})$

1.3.1 Gas ideal cuántico

Consideramos N partículas no interactuantes indistinguibles ocupando un volumen V y con energía E Un estado es un conjunto $\{n_i^\nu\}$ donde 'i' es nivel energético

$$E_{\nu} = \sum_{i} e_{i} n_{i}^{\nu} \qquad N_{\nu} = \sum_{i} n_{i}^{\nu}$$
 (3.1)

En el microcanónico $E_{\nu}=E$ y $N_{\nu}=N$ para todo estado ν . Pensamos en cierta estructura fina de niveles

donde g_i es el número de subniveles energéticos en la celda 'i' y n_i es el correspondiente número de partículas en la celda 'i'.

DIBUJO

Luego

$$\Gamma = \sum_{\{n_i\}}^{'} W(\{n_i\}) = \sum_{\{n_i\}}^{'} \prod_i^L \omega_i$$

tendremos

- bosones $\omega_i = \frac{(g_i 1 + n_i)!}{(g_i 1)! n_i!}$
- fermiones $\omega_i=\frac{(g_i-n_i+n_i)!}{(g_i-n_i)!n_i!}=\frac{g_i!}{(g_i-n_i)!n_i!}$
- boltzmanniones $\omega_i = g_i^{n_i}$ y hay que multiplicar por el factor $N! \, / \prod n_i!$

donde ω_i es el número de maneras de tener n_i en g_i subniveles.

Para el caso de Boltzmann debemos multiplicar por el factor de buen conteo,

Permutaciones de partículas y paredes (bosones). Permutaciones de partículas y huecos $g_i \geq n_i$.

$$\Gamma = \frac{1}{N!} \sum_{\{n_i\}}' \prod_{i}^{L} \frac{N!}{\prod (n_i)!} (g_i)^{n_i} = \sum_{\{n_i\}} \prod_{i}^{L} \frac{(g_i)^{n_i}}{(n_i)!}$$

La entropía S es

$$S = k \log \sum_{f_{n_i}, 1}' W(\{n_i\}) \approx k \log W(\hat{n}_i)$$

donde se supone que el conjunto $\{\bar{n}_i\}$ domina la \sum' . Buscaremos ese conjunto extremando S sujeto a las condiciones (3.1).

$$\begin{split} \delta(k\log W(\{n_i\})) + \alpha\delta N + \beta\delta E &= 0 \\ \bar{n}_i &= \frac{g_i}{\mathrm{e}^{-\beta\mu}\,\mathrm{e}^{\beta e_i} - 1} \; \mathrm{Bose} \\ \\ \bar{n}_i &= \frac{g_i}{\mathrm{e}^{-\beta\mu}\,\mathrm{e}^{\beta e_i} + 1} \; \mathrm{Fermi} \\ \\ \bar{n}_i &= g_i\,\mathrm{e}^{\beta\mu}\,\mathrm{e}^{\beta e_i} \; \mathrm{Boltzmann} \end{split}$$

Los coeficientes son para las dimensiones. Luego se ve que $\alpha = -\mu/kT$ $\beta = 1/kT$ $z \equiv \frac{\beta}{\mu}$

Esto da el número de partículas por celda energética 'e $_i$ ' pero interesará por nivel 'g $_i$ '. Entonces dividiremos sobre 'g $_i$ ' y cambiamos el índice

$$n_j = \frac{1}{z^{-1} \operatorname{e}^{\beta e_j} + a} \qquad a = \begin{cases} 1 \text{ Bose} \\ -1 \text{ Fermi} \\ 0 \text{ Boltmann} \end{cases}$$

La identificación de los coeficientes puede hacerse desde

$$\begin{split} U &= TS - pV + \mu N & TS &= U + pV - \mu N \\ \frac{S}{k} &= \frac{E}{kT} + \frac{pV}{kT} - \frac{\mu}{kT} N & (S &= S(E, V, N)) \\ \frac{S}{k} &= \frac{1}{kT} \sum_{i} n_i e_i + \frac{pV}{kT} - \frac{\mu}{kT} \sum_{i} n_i \end{split} \tag{3.2}$$

La idea es escribir S/k en (3.2) de modo que queden explícitas las \sum que definen N y E. Para Bose es

$$\begin{split} \frac{S}{k} &= \sum_i n_i \log \left(1 + \frac{g_i}{n_i}\right) + g_i \log \left(1 + \frac{n_i}{g_i}\right) \\ n_i \log(n_i + g_i) - n_i \log(n_i) &= n_i \log(n_i \operatorname{e}^A \operatorname{e}^{Be_i}) - n_i \log(n_i) \\ &\sum_i n_i (A + Be_i) + g_i \\ \frac{S}{k} &= A \sum_i n_i + B \sum_i e_i n_i + \sum_i g_i \log \left(1 + \frac{n_i}{g_i}\right) \\ A &= -\frac{\mu}{kT} \qquad B = \frac{1}{kT} \end{split}$$

1.3.2 Microcanónico cuántico (gas ideal) de Boltzmann

Se puede hacer la cuenta explícitamente.

$$\begin{split} \frac{S}{k} &= \log \left(\prod_i \ \right) = \sum_i n_i \log(g_i) - \log n_i! \\ \frac{S}{k} &\approx \sum_i n_i \log \left(\frac{g_i}{n_i} \right) + n_i = \sum_i n_i \left(\log(g_i/n_i) + 1 \right) \\ N &= \sum_i g_i z \mathrm{e}^{-\beta e_i} = \sum_i z \mathrm{e}^{-\beta e_j} = \frac{1}{h^3} \int d^3p z \mathrm{e}^{-\beta p^2/2m} \int d^3q = \frac{zV}{h^3} (2\pi m kT)^{3/2} = \frac{zV}{\lambda^3} \end{split}$$

donde hemos preparado el paso al continuo

En Boltmann es

$$N = \frac{zV}{\lambda^3} \quad \to \quad z = \frac{\lambda^3}{v} \ll 1$$

$$E = \frac{3}{2}NkT \qquad \frac{S}{k} = \beta E - N\log(z) + N$$

1.4 Cuánticos II

- Gas ideal en el gran canónico, entonces el cálculo de ${\cal Q}_N$ previamente
- Gas ideal (Boltmann) en el canónico ightarrow multinomial

$$\begin{split} Q_N &= \frac{1}{N!} \sum_{n_1}^{\prime} \sum_{n_2}^{\prime} \dots \sum_{n_i}^{\prime} \frac{N!}{n_1! \, n_2! \dots} \, \mathrm{e}^{-\beta \sum_i n_i e_i} \\ Q_N &= \frac{1}{N!} \sum_{n_1}^{\prime} \sum_{n_2}^{\prime} \dots \sum_{n_i}^{\prime} \frac{N!}{n_1! \, n_2! \dots} \prod_i^L \, \mathrm{e}^{-\beta n_i e_i} \\ Q_N &= \frac{1}{N!} \left(\, \mathrm{e}^{-\beta e_1} + \, \mathrm{e}^{-\beta e_2} + \dots \right)^N = \frac{1}{N!} \left(\sum_i \, \mathrm{e}^{-\beta e_i} \right)^N = \frac{1}{N!} \left(\frac{V}{\lambda^3} \right)^N \\ & \log(Q_N) = N \log(V/\lambda^3) - N \log N + 1 \\ & \frac{1}{N} \approx \log \left(\frac{v}{\lambda^3} \right) \\ & \left[\log Q_N = N \left[\log \left(\frac{v}{\lambda^3} \right) + 1 \right] \right] \end{split}$$

• Gas ideal (Fermi y Bose) en el canónico $\rightarrow hard \rightarrow$ paso al gran canónico.

$$\begin{split} \Xi &= \sum_{n=0}^{\infty} z^N Q_N(V,T) \\ \Xi &= \sum_{n=0}^{\infty} \mathrm{e}^{\beta \mu N} \sum_{n_i}^{\prime} \sum_{n_2}^{\prime} \dots \sum_{n_i}^{\prime} \mathrm{e}^{-\beta \sum_i n_i e_i} \end{split}$$

y con un magic pass

$$\Xi = \sum_{n_1}^{\infty} \sum_{n_2}^{\infty} \dots \sum_{n_i}^{\infty} e^{\beta \mu \sum_i n_i} e^{-\beta \sum_i n_i e_i} = \sum_{n_1}^{\infty} \sum_{n_2}^{\infty} \dots \sum_{n_i}^{\infty} \prod_i e^{\beta(\mu - e_i)n_i}$$

$$\Xi = \prod_i^L \left(\sum_{n_i = 0}^{\infty} e^{\beta(\mu - e_i)n_i} \right)$$

Para Boltzmann el gran canónico será

$$\Xi = \sum_{N=0}^{\infty} \frac{1}{N!} \left(\frac{zV}{\lambda^3}\right)^N$$

$$\Xi(z,V,T) = \begin{cases} \prod_i \frac{1}{1-\mathrm{e}^{\beta(\mu-e_i)}} & \text{Bose} \\ \prod_i 1+\mathrm{e}^{\beta(\mu-e_i)} & \text{Fermi} \\ \mathrm{e}^{zV/\lambda^3} & \text{Boltzmann} \end{cases}$$

$$\log \Xi(z,V,T) = \frac{pV}{kT} = \begin{cases} \sum_i -\log(1-\mathrm{e}^{\beta(\mu-e_i)}) & \text{Bose} \\ \sum_i \log(1+\mathrm{e}^{\beta(\mu-e_i)}) & \text{Fermi} \\ \frac{zV}{\lambda^3} = z\sum_i^L \mathrm{e}^{-\beta e_i} & \text{Boltzmann} \end{cases}$$

El número de partículas sale desde

$$\langle N \rangle = z \frac{\partial}{\partial z} (\log \Xi(z,V,T))$$

$$\langle N \rangle = \begin{cases} z \sum_i -\frac{1}{1-z \, \mathrm{e}^{-\beta e_i}} (-\, \mathrm{e}^{-\beta e_i}) = \sum_i \frac{1}{z^{-1} \, \mathrm{e}^{\beta e_i} - 1} & \text{Bose} \\ z \sum_i \frac{1}{1+z \, \mathrm{e}^{-\beta e_i}} (\, \mathrm{e}^{-\beta e_i}) = \sum_i \frac{1}{z^{-1} \, \mathrm{e}^{\beta e_i} + 1} & \text{Fermi} \\ \frac{zV}{\lambda^3} & \text{Boltzmann} \end{cases}$$

$$\langle n_j \rangle = -\frac{\partial}{\partial \beta e_j} (\log \Xi(z,V,T))$$

$$\langle n_j \rangle = \begin{cases} -\frac{-1}{1-z \, \mathrm{e}^{-\beta e_i}} (-z \, \mathrm{e}^{-\beta e_i}) (-1) = \frac{1}{z^{-1} \, \mathrm{e}^{\beta e_i} - 1} & \text{Bose} \\ \\ -\frac{1}{1+z \, \mathrm{e}^{-\beta e_i}} (z \, \mathrm{e}^{-\beta e_i}) (-1) = \frac{1}{z^{-1} \, \mathrm{e}^{\beta e_i} + 1} & \text{Fermi} \\ \\ z \, \mathrm{e}^{-\beta e_j} & \text{Boltzmann} \end{cases}$$

1.4.1 Funciones termodinámicas

Todo comienza desde la función de partición

Fermi Bose
$$\Xi = \prod_i 1 + \, \mathrm{e}^{-\beta(e_i - \mu)} \qquad \Xi = \prod_i \frac{1}{1 - \, \mathrm{e}^{-\beta(e_i - \mu)}}$$

$$\beta pV = \sum_i \log(1 + \, \mathrm{e}^{-\beta(e_i - \mu)})$$

$$\beta pV = \sum_i - \log(1 - \, \mathrm{e}^{-\beta(e_i - \mu)})$$

En gas ideal es, en cartesianas,

$$e = \frac{|\vec{p}|^2}{2m} = (p_x^2 + p_y^2 + p_z^2)/2m$$

o en esféricas

$$e = \frac{p^2}{2m}$$

Un gas ideal cuántico generalizará al gas ideal clásico y para valores determinados de los parámetros (T,V) grandes) debería devolver el resultado clásico.

$$\langle N \rangle = \sum_i \frac{1}{\mathrm{e}^{\beta(e_i - \mu)} + 1} \, \middle| \, \langle N \rangle = \sum_i \frac{1}{\mathrm{e}^{\beta(e_i - \mu)} - 1}$$

El paso al continuo y la integración por partes luego del reemplazo

$$\beta e = \frac{\beta p^2}{2m} = \frac{p^2}{2mkT} \cong x$$

llevará a

$$\begin{split} \beta p &= \frac{1}{\lambda^3} f_{5/2}(z) \\ &\frac{\langle N \rangle}{V} = \frac{1}{\lambda^3} f_{3/2}(z) \\ &\frac{\langle N \rangle}{V} - \frac{N_0}{V} = \frac{1}{\lambda^3} g_{3/2}(z) \end{split}$$

 $n_0 = \frac{1}{z^{-1} - 1} = \frac{z}{1 - z} \text{ se va a } \infty$ Así queda todo en función de $\mathbf{con} \ z \to 1 \ \mathbf{que} \ \mathbf{es} \ \mu \to 0.$

$$\begin{split} f_{\nu}(z) &= \frac{1}{\Gamma(\nu)} \int_{0}^{\infty} \frac{x^{\nu-1}}{z^{-1} \, \mathrm{e}^{x} + 1} dx \qquad \text{y } g_{\nu}(z) = \frac{1}{\Gamma(\nu)} \int_{0}^{\infty} \frac{x^{\nu-1}}{z^{-1} \, \mathrm{e}^{x} - 1} dx \\ & \qquad \qquad \frac{\lambda^{3}}{v} = f_{3/2}(z) \, \left| \begin{array}{c} \frac{\lambda^{3}}{v} (N - n_{0}) = g_{3/2}(z) \end{array} \right. \end{split}$$

 $N - n_0$ es la población en los estados excitados.

Pero tenemos expresiones en términos de z

$$f_{\nu}(z) = \sum_{j=1}^{\infty} \frac{(-1)^{j+1} z^{j}}{j^{\nu}} \quad g_{\nu}(z) = \sum_{j=1}^{\infty} \frac{z^{j}}{j^{\nu}}$$

Podemos escribir

$$\frac{\lambda^3}{v} = z - \frac{z^2}{2^{3/2}} + \frac{z^3}{3^{3/2}} - \dots \qquad \qquad \frac{\lambda^3}{v} (N - n_0) = z + \frac{z^2}{2^{3/2}} + \frac{z^3}{3^{3/2}} - \dots$$

con lo cual con $z\ll 1$ nos podemos quedar con los primeros términos. Asimismo $n_0\ll N.$

$$\beta p = \frac{z - \frac{z^2}{2^{5/2}} + \dots}{v(z - \frac{z^2}{2^{3/2}} + \dots)} \qquad \beta p = \frac{z + \frac{z^2}{2^{5/2}} + \dots}{v(z + \frac{z^2}{2^{3/2}} + \dots)}$$
$$\frac{pV}{NkT} \cong 1 + \frac{\lambda^3}{v2^{5/2}} \qquad \frac{pV}{NkT} \cong 1 - \frac{\lambda^3}{v2^{5/2}}$$

Así vemos la corrección positiva (negativa) de origen cuántico. La presión en el caso de Fermi es mayor (por exclusión) que la ideal; en cambio en Bose es

mayor (condensación). El gas de Boltzmann tendrá como solución

$$\frac{\lambda^3}{v} = z$$

clásicamente

$$\underbrace{\frac{h^3}{(2\pi mkT)^{3/2}}}_{\text{chico}} \; \underbrace{\frac{N}{V}}_{\text{chico}} = z = \; \mathrm{e}^{\mu/kT}$$

y además como

$$e^{\frac{\mu}{kT}} \ll 1$$
 $\frac{\mu}{kT} \ll 0$

y entonces

$$|\mu| \gg 1, \mu < 0$$

pero $\mu \equiv \partial U/\partial N$ con lo cual decimos que clásicamente al aumentar un δN Anoté investigarlo este asunto. tenemos un decrecimiento de la energía δU muy grande (con $\delta V = \delta S = 0$).

Hemos pedido que $e^{\beta(\mu-e_i)} < 1$ para Bose de modo que

$$\beta(\mu - e_i) < 0 \qquad \mu < e_i \forall i$$

es el requerimiento para Bose y si e_i es el ground entonces $\mu < 0$. Si se da que $\mu \to 0^-$ con $e_i = 0$ entonces $\langle n_0 \rangle \to \infty$.

Para Fermi no hay requerimientos pero

$$0 < \langle n_0 \rangle < 1$$

1.4.2 Ecuaciones de estado para los gases ideales

Hay que pasar al continuo

$$\frac{pV}{kT} = \log \left[\Xi(z,V,T)\right] \qquad \qquad \langle N \rangle = z \frac{\partial}{\partial z} \left\{ \log \left[\Xi(z,V,T)\right] \right\}$$

 $x = \beta e = p^2/2mkT$

En el caso de Fermi,

$$\frac{pV}{kT} = \frac{V}{\lambda^3} \frac{4}{3\sqrt{\pi}} \int_0^\infty \frac{x^{3/2}}{z^{-1} \, \mathrm{e}^x + 1} = \frac{V}{\lambda^3} f_{5/2}(z)$$

$$\frac{\langle N \rangle}{V} = \frac{1}{\lambda^3} \frac{1}{2\sqrt{\pi}} \int_0^\infty \frac{x^{1/2}}{z^{-1} e^x + 1} = \frac{1}{\lambda^3} f_{3/2}(z)$$

$$f_{\nu}(z) = \frac{1}{\Gamma(\nu)} \int_{0}^{\infty} \frac{x^{\nu-1}}{z^{-1} \operatorname{e}^{x} + 1} = \sum_{i=1}^{\infty} (-1)^{j+1} \frac{z^{j}}{j^{\nu}}$$

y en el caso de Bose

$$\begin{split} \frac{pV}{kT} &= \frac{V}{\lambda^3} \frac{4}{3\sqrt{\pi}} \int_0^\infty \frac{x^{3/2}}{z^{-1} \, \mathrm{e}^x - 1} - \log(1 - z) = \frac{V}{\lambda^3} g_{5/2}(z) - \log(1 - z) \\ \frac{\langle N \rangle}{V} &= \frac{1}{\lambda^3} \frac{1}{2\sqrt{\pi}} \int_0^\infty \frac{x^{1/2}}{z^{-1} \, \mathrm{e}^x - 1} + \frac{1}{V} \left(\frac{1}{z^{-1} - 1} \right) = \frac{1}{\lambda^3} g_{3/2}(z) + \frac{\langle n_0 \rangle}{V} \\ g_{\nu}(z) &= \frac{1}{\Gamma(\nu)} \int_0^\infty \frac{x^{\nu - 1}}{z^{-1} \, \mathrm{e}^x - 1} = \sum_{j = 1}^\infty \frac{z^j}{j^{\nu}} \end{split}$$

La energía siempre resulta valer

$$\langle E \rangle = \frac{3}{2}pV$$

valor que es universal y no depende por lo tanto de la ecuación de estado.

El límite clásico es cuando

$$z^{-1} e^{\beta e_i} \gg 1 \qquad \Rightarrow \qquad \frac{e^{\beta e_i}}{z} \gg 1$$

y como $e_i>0$ se da $\,\mathrm{e}^{e_i/kT}>1$

$$z \ll 1$$
 $e^{\beta \mu} \ll 1$ $\beta \mu \ll 0$ $\frac{\mu}{kT} \ll 0$ $\mu < 0$ $y |\mu| \to \infty$

pues $kT \propto 10^{-19}$ Joules (a 10000 °K). El límite clásico se da con T altas, $\mu \to -\infty$ y por ello $z \lll 1$.

DIBUJOS

Sea un sistema ideal de bosones $\mu < 0.0 \le e$

$$\langle n \rangle = \frac{1}{\mathrm{e}^{-\beta\mu} \, \mathrm{e}^{\beta e} - 1}$$

se tiene que para e=0 y $\beta\mu=-1$ es $\langle n\rangle=$ 0.582 y para e=0 y $\beta\mu=-0.5$ es $\langle n\rangle=$ 1.541

Vemos entonces que el condensado de Bose debe producirse con $\mu \to 0^-$.