

第三讲 无线介域网及Bluetooth

WPANSIEEE802.15

- □主要内容
 - ○WPAN概述
 - ○蓝牙体系
 - ○蓝牙的核心协议
 - ◇蓝牙无线电层
 - ◆蓝牙基带
 - ◆蓝牙链路控制
 - ◆蓝牙L2CAP
 - ◆蓝牙SDP
 - ♦其他
 - ○蓝牙的profile

无线个域网络

- □无线个域网络(Wireless Personal Area Network)
 - ○所有个人移动设备可通向外部世界的无线传输环境。
 - ○蜂窝电话、汽车、笔记本、键盘、麦、鼠标、耳机。。。

bluetooth的历史

- □ 1994Ericsson发起multi-communicator link的研究;
- □ 1998成立了特别兴趣小组(SIG)并更名bluetooth
 - 成员: Ericsson、IBM、Intel、Nokia、Toshiba
 - 目标:将计算、通信设备以及附加设备通过短程、低耗、低成本的无线电波连接起来
 - 发展: Lucent、 3Com、Microsoft和Motorola加入SIG; 现SIG 成员超过2500个;
- □ 1999 Bluetooth 1.0发布;
- □ 2002 IEEE采纳了bluetooth的物理层和数据链路层,发布了IEEE802.15.1;

为什么叫"bluetooth"

- □ Ericsson借用了Harald Gormsson的昵称 blatand → "Bluetooth"
 - 丹麦的国王 (A.D.940~986)
 - 统一了丹麦(958)和挪威(970)

- □ 寓意统一不同制造商的不同设备
 - Harald把基督教带到斯堪的纳维亚
 - Harald统治了丹麦和挪威
 - ○笔记本和手机的无缝通信

正面

背面

bluetooth是什么?

- □蓝牙是无线技术规范
 - ○短程:最大传输距离10m(高能达到100m)
 - ○性能中等: 721Kbps
 - ○动态配置: 自组联网/漫游
 - ○低能耗(< 2.5mW): 适用于手持应用
 - ○模块大小: 9x9 mm
 - ○支持语音和数据传输

bluetooth的应用

- □蓝牙好在哪里?
 - ○没有线缆连接时!
 - ○个域网 (PAN)
 - ♦使得一组个人设备协同工作
 - ○位置感知服务(例如:漫游)
 - ◇仅在有限范围内并且需要时访问额外资源
 - ○充当进入Internet的桥梁
 - ○构建居家网络
 - ○运动中组网

连接计算机以及其他外部设备

〇需要电池供给能量〇整洁办公空间

支持自组织网络

〇 作需要802.11适配器

充当访问Internet的接入点

构建居家网络环境

运动中的连接

计算机产品中的蓝牙

- □计算机设备
 - ○笔记本
 - **OPDAs**
 - ○桌面PC
 - ○宽带接入点
 - ♦ Ethernet/xDSL /cable
 - ○打印机
 - ○扫描仪
 - ○视频播放器

□计算机应用

- ○外设连接
 - ◆打印机/扫描仪/视频播 放器
- ○网络接入
 - ◆宽带接入点
 - ♦分组无线蜂窝电话
- ○文件同步操作
 - ◆日历/联系管理
- ○文件传输
 - ◆vCards/MP3/数字图片

本电脑将有57%配置蓝牙IDC报告指出到2010年笔记

电话和消费类产品中的蓝牙

- □电话设备
 - ○蜂窝耳麦
 - ○无线耳麦
 - ○PSTN接入点
 - ♦投币电话
 - ◆酒店/居家电话
- □消费类设备
 - ○机顶盒
 - ○数码相机
 - ○MP3播放器
 - ○家庭音响

- □电话应用
 - ○免提使用
 - ○文件同步操作
 - ◆日历/联系管理
 - ○语音和数据的线路
- □消费类应用
 - ○文件传送
 - ♦MP3/数码相片
 - ○外设连接
 - ◆键盘/鼠标打印机

bluetooth系统

Bluetooth应用实例

IEEE 802.15系列

WPAN/Bluetooth TG1

Bluetooth(中等速率)

UWB(480M~1.3G)

WPAN/High Rate TG3

- **◇高速率(>20Mbps)**
- ◇低能耗、低成本
- ◇数字音像和多媒体

WPAN/Bluetooth TG5

Mesh network

Coexistence TG2

WPAN和WLAN的并存

WPAN/Low Rate TG4

♦低速率(250Kbps)

感

♦Sensor

知 位

◇交互玩具

✧智能证章

置

◇远程控制

◇家庭自动控制

Bluetooth传输特性

- □2.4GHz ISM频带
- □传输距离为10m~100m
- □连接便携式和固定设备
- □点—点和点—多点模式
- □数据速率
 - ○同步(电路交换技术)
 - **♦64kbps**
 - ○异步(分组交换技术)
 - **♦433.9kbps(对称)**
 - ◆723.2kbps(非对称)

Bluetooth紹补结构

- □点-点模式
 - ○两个蓝牙设备直接通信
- □ Piconet (微网)
 - ○共享相同信道
 - ○8个蓝牙设备可在小型网络内通信
- □ Scatternet (散网)
 - ○多达256个piconet可连接成更大的网络

Bluetooth 拓扑结构 (续)

Bluetooth & piconet

- □Piconet的组成
 - ○1个Master节点控制FH通信的同步
 - ○7个Slave节点
 - ○255个非活跃Parked*
 - ◆遵循master的跳频算法
 - **○**Stand by*

Master控制所有活跃节点 和parked节点的信道访问。 in 同步

Active Slave

Parked Slave*

Standby*

* 低能耗状态

M

一个Piconet内的设备共享逻辑信道和数据传输。

Bluetooth & Scatternet

- □ 时间和空间层叠的多个 piconets组成一个散网
 - ○几个masters连接到 同一个slave
 - ○一个master可以是另 一个网络的slave

标准只定义了scatternet的概念,并没有给出构造 scatternet的机制。

一个scatternet内的所有设备共享物理区域和全部带

IEEE802.15.1 & bluetooth

Bluetooth的无线电层

- □规范
 - ○定义了载波频率和输出功率
- □特点
 - ○低功率
 - ○2.4GHz的ISM
 - ○79个信道1MHz
 - ○跳频扩频技术1600/s
 - ○收发器的能量分3级

Piconet访问: FH-TDD-TDMA

Bluetooth采用跳频扩频技术

Bluetooth的基带层

- □基本功能
 - ○执行跳频
 - ◆调频速率1600次/秒
 - ◆物理信道的时间槽 0.625ms
 - ○实现介质访问
 - ○定义了物理link
 - ○定义了packet格式

物理信道:共有79个,每个带宽1MHz FH信道:由调频序列组成,同一个 piconet中的设备遵循同一个调频序列

数据传输期间的频率这样

FH序列由master决定,通常是其蓝牙地址的函数。

M设备和S设备之间的物理链路

Link: 主节点到从节点的逻辑信道

- □ ACL (asynchronous connectionless)链路
 - 主要用于Best-effort数据传输服务
 - M和S之间的点-点/点-多点(广播)连接
 - 在没有预留给SCO的时间槽传送无时间规律的分组
 - 通过差错检测和重传来保证传送packet
 - 每个S节点只有1条ACL
 - ◆分别对应于1-slot、 3-slot和5-slot分组
 - **◆正向最大速率: 723.3Kbps(5-slot)**
 - **◆**反向最大速率: 57.6Kbps
 - Half-duplex通信

<u>数据应用特性</u>

- 令对称/非对称
- ◇分组交换
- **◇点-多点连接**

M设备和5设备之间的链路(续)

- □ SCO (synchronous connection oriented)链路
 - 主要用于音频/视频传输
 - M和S之间具有固定带宽的点-点连接
 - ○M为S预留2个连续时间槽传送实时数据
 - Packet从不被重传
 - ○M可同时支持3个SCO
 - 每个S可有2~3个SCO(64kbps)
 - Full-duplex通信

电话语音连接特性

- ♦对称
- ◇电路交换
- ◆点-点连接

SCO链路主要被用在交换需要保证数据率而不需要保证传送的限时数据。

学双工/全双工通信

- □ half-duplex通信(ACL)
 - ○一次往一个方向发送
 - ○不对称最大速率723.3Kbps,反向为57.6Kbps
 - ○对称速率双向发送,每个方向可达433.9Kbps
- □full-duplex通信(SCO)
 - ○可同时双向发送
 - 速率> 64Kbps
 - ○使用M预留的slot(避免同步和冲突)
 - ○没有为SCO链路预留的slot可用于ACL链路

Packet 给 式(3-1)

72b 54b 0~2745b

Access code Header Payload

□访问码

○ 主要用于时钟同步、寻呼和查询

4b 64b 4b

preamble SYNC word preamble

○ 信道访问码:标识一个piconet

○ 设备访问码:用于寻呼(paging)或者后续的应答

○ 查询访问码:用于查询(inquiry)

Packet格式 (3-2)

- □ 包头 (Header)
 - 主要用于标识包类型以及携带的协议控制信息

- ○AM_ADDR:指出某个活跃slave设备的地址,0用否广播;
- Type:标识包的类型
 - ◆4种SCO,ACL链路的公共控制包
 - **♦4种SCO**数据包;
 - **♦6种ACL数据包**;

Packet格式 (3-3)

- □ 包的有效负载(payload)
 - ○对于语音传输,无数据头
 - ○对于ACL包和SCO非语音数据,数据头包括:
 - **♦ Payload header: 8位的1-slot和16位的多-slot**
 - **♦ Payload body**:包括用户数据
 - ◆CRC:应用于所有数据包的16位冗余码

bluetooth的寻址

- □Bluetooth设备地址(BD_ADDR)
 - ○48位IEEE MAC地址
- □活跃成员地址 (AM_ADDR)
 - ○3位活跃S设备地址
 - ○全"0"广播地址(M→S)
- □ 驻扎成员地址 (PM_ADDR)
 - ○8位parked的S设备地址

Bluetooth的链路管理视范

- □ 能量控制:根据接收信号强度要求 发送者调整发送能量
- □ 能力协商:交换版本号和所支持的 特性
- □ QoS协商:轮询时间、延迟、传送 能力
- □ 同步:修正时钟偏差或者接受特殊的同步packet
- □ 改变状态和传输模式: M和S角色的 改变
- □ 链路控制:控制link活动
- □ 安全服务: 认证、加密、密钥分发

通过24个PDU实施基 带连接的建立和管理

Bluetooth的信道控制

- □两种管理情形
 - ○设备知道其他设备的参数
 - ♦执行paging过程
 - 设备不知道其他设备的参数
 - ◆执行inquiring和paging过程
- □两个主要过程
 - Page
 - ◆用来建立与其他节点的链路
 - Inquiry
 - ◆用来了解时钟偏移和其他设备的地址

微网的建立——inquiry模式:地址发现

- □当一个设备想建立一个piconet时
 - ○79个无线电载波中有32个用来wake-up载波
 - Master依次在这32个载波上广播查询访问码(IAC)
- □ 一个standby设备想加入一个piconet时
 - 定期侦听IAC消息
 - 返回一个packet (设备地址和时钟信息)

微网的建立——Page模式:频率同步

- □ M设备根据返回的设备地址计算特殊的跳频序列
- □S设备与M设备时钟同步,并启动M定义的跳频序列

Bluetooth的爷能模式

- **□** Sniff
 - ○M和S设备定期睡眠,并在早期协商的时间间隔 "sniff"
- ☐ Hold
 - ○不释放AMA(活跃成员地址)地址
 - ○停止ACL传输,但可交换SCO分组
- □ Park
 - ○设备仍旧是该piconet的成员
 - ○释放AMA地址但获得一个PMA(parked)地址

Bluetooth设备的baseband状态

Bluetooth的L2CAP层

逻辑链路控制和适配协议:提供了两个bluetooth设备之间具有一定QoS性质的逻辑信道。

- □仅用于ACL
- □ 协议的多路复用/分用
- □接收上层分组(64KB) 分段传输:
- □ 在接收端重组
- □处理服务质量

L2CAP流量控制和差错控制 依赖于底层(基带层)

Bluetooth的逻辑信道

- □ 无连接信道 (CID= 2)
 - ○支持无连接服务(可靠的)
 - ○每个信道是单向的。该信道主要用于从M到多个S的 广播
- □面向连接信道(CID≥64)
 - ○支持面向连接的服务(类似HDLC)
 - ○每个信道是双向的(全双工)。每个方向被指定了服务质量流规范。
- □信令信道(CID=1)
 - ○提供了两个L2CAP实体之间信令消息的交换

L2CAP使用ACL链路,并不提供SCO链路的使用。

Bluetooth的逻辑信道 (续)

CID—channel ID

- 1: 表示信令信道
- 2: 表示无连接信道

- □ M和S之间只能有一个无连接信道和 一个信令信道
- □ M和S之间可有多个面向连接信道

Bluetooth的服务发现协议 (SDP)

- □基本功能
 - ○查询服务
 - **♦搜索特殊的服务种类**
 - ◇浏览当前的可用服务
 - ○检索某个服务的详细属性
 - ○建立到其他设备L2CAP连接
 - ○建立一个使用某个服务的独 立 (non-SDP)连接
- □服务记录
 - ○一系列服务属性

Bluetooth的服务发现协议(续)

- □工作过程
 - ○Master设备广播1条 信息
 - ○Slave设备作出响应
 - ○Master选出一个 slave设备,通过链 路管理与之建立物 理层连接,由此在 主从设备之间建立 一条L2CAP

SDP只定义了服务的发现,而没有服务的使用 →想提供服务的设备必须安装成SDP服务器

Bluetooth的串口仿真(RFCOMM)

- □基本功能
 - ○在面向packet的link 上仿真串行接口
 - ○支持传统应用/协议
 - ○支持一个物理信道上 的多个串行接口
- □与HDLC类似

在蓝牙的基带上仿真RS-232的功能,实现设备串行通信。

RFCOMM

Bluetooth&IP (3-1)

- □基本功能
 - ○通过蜂窝电话接入 Internet
 - ●通过LAN接入点连接PDA 或者笔记本到Internet
- □接入协议
 - **OPPP**
 - **OBNEP**

Point to Point Protocol

Bluetooth Network Encapsulation Protocol

Bluetooth&IP (3-2)

- □ AP具有PPP服务器功能
 - ○用户名/口令管理仍是问题
 - ○漫游不是无缝的

Bluetooth网络封装协议 (BNEP)在L2CAP之上仿真Ethernet

Bluetooth&IP (3-3)

- □从AP隧道发送PPP流量到PPP服务器
 - ○可集中管理用户信息
 - ○减少AP上的处理时间和状态维护
 - ○支持无缝漫游

Bluetooth协议核

Bluetoothmprofile

□ Bluetooth v1.1规范了13种应用+相应的协议栈

面向网络连接

- **♦LAN access**
- **♦Dial-up networking**
- **♦Fax**

面向电话

- **♦**Cordless telephony
- **♦Intercom**
- **♦**Headset

无线设备交换数据

- **♦Object push**
- **♦File transfer**
- **♦**Synchronization

Profile:定义了支持特定应用的协议以及协议特性。

其他实际应用的基础		
Generic access Service discovery	Serial port	Generic object exchange

Bluetooth的语音应用

- □三合一电话 ○呼叫/移动管理/对讲
- Cordless phone or base station application

 TCS BIN SDP Audio

□耳麦

- ◆TCS BIN定义了蓝牙设备之间建立语音和数据呼叫的控制信令
- ◆AT commands类似于一般的调制解调器

Bluetooth&Internet

- Briefcase Trick
 - Laptop in briefcase
 E-mail alert through phone,
 browse E-mails in phone
 - Phone off

Answer mail on laptop and send mail from phone or laptop at arrival

Bluetooth的个人信息管理

◆ IrMC: 提供了从一台设备传送更新的PIM信息到另外一台设备的C/S能力

◆ OBEX:对象交换协议是红外数据协会 (IrDA) 用来交换对象的会赔层协议

□同步应用

○提供了设备与 设备之间(PIM) 信息管理(PIM) 息的同步,例 息的话号码。 日历话号。 通告信息。

Synchronizer

Background synchronization
 PDAs
 Cellular phones
 Notebooks

Bluetooth & WAP

- □ WAP上网流程
 - 手机发出请求
 - **○** GSM接通本地ISP
 - 本地ISP连接WAP网关
 - ○WAP网关向目标ICP发出请求
 - ○ICP将信息传给WAP网关
 - WAP网关将处理后的信息发 送到本地ISP
 - 本地ISP将信息传回GSM网络
 - **○** 手机接收到Internet信息

Bluetooth的女件传送

- □传送能力
 - ○目录
 - ○文件
 - ○文档
 - ○映像
 - ○流媒体
- □浏览能力
 - ○文件夹

OBEX:对象交换协议是由红外数据协会开发的用来交换对象的会晤层协议。

参考资料

□阅读

- O Haartsen, J. "The Bluetooth Radio System", IEEE Personal Communications, February 2000
- O Haartsen, J., and Mattisson, S. "Bluetooth—A New Low-Power Radio Interface Providing Short-Range Connectivity." Proceedings of the IEEE, October 2000
- William Stallings, "Wireless Communications and Networks"(影印版),清华大学出版社

□访问

- http://www.bluetooth.com/products/index.asp
- http://en.wikipedia.org/wiki/Bluetooth
- http://www.howstuffworks.com/bluetooth.htm
- <u>http://www.wirelessnetworkstutorial.info/bluetooth/</u>

思考题

- □微网中Master和slave的关系?
- □如何结合跳频和时分多路复用?
- □ Master和slave之间的链路类型?
- □深入调研蓝牙的某种应用、产品以及相应的协议栈。
- □比较红外、UWB、Zigbee三种技术在WPAN 上与蓝牙的差别。

