CLAIMS

What is claimed is:

1	7	/ proceder ('AMBRICIDA'
•		A processor of	antiun isii ida
		, t proceder t	,

- 2 a first voltage supply input port to receive a first voltage at a first voltage
- 3 level;
- 4 a second voltage supply input port to receive a second voltage;
- 5 a core to be powered by the first voltage; and
- a memory region to be powered by the second voltage, the memory
- 7 region to store at least a portion of a state of the processor while the
- 8 first voltage supply is at a second voltage level.
- 1 2. The processor of claim 1, wherein the second voltage level is lower than the
- 2 first voltage level.
- 1 3. The processor of claim 1, wherein the second voltage level is approximately 0
- 2 volts.
- 1 4. The processor of claim 1, further comprising an L2 cache to be powered by
- 2 the first voltage.
- 1 5. The processor of claim 1, further comprising a first cache to be powered by
- the first voltage, and a second cache to be powered by the second voltage.

5

1	6.	The processor of claim 5, further comprising a snoop controller to be powered
2		by the second voltage, the snoop controller to snoop the second cache while
3		the first voltage supply is at the second voltage level.

- The processor of claim 5, wherein the second voltage level is a voltage level
 that causes a processor state to be lost.
- 1 8. The processor of claim 1, wherein the memory region is a portion of a cache of the processor.
- 1 9. A computer system comprising:
- a fist voltage regulator to supply a first voltage at a first voltage level

 during a first period of time and at a second voltage level during a

 second period of time;
- a processor including a core to be powered by the first voltage and a

 memory region to be powered by the second voltage, the memory

 region to store at least a portion of a state of the processor during the

 second period of time.

a second voltage regulator to supply a second voltage; and

1 10. The computer system of claim 9, wherein the second voltage level is less2 than half the first voltage level.

- 1 11. The computer system of claim 9, further comprising a clock to provide a clock
 2 signal to the processor, the clock signal to be on during the first period of time
 3 and off during the second period of time.
- 1 12. The computer system of claim 9, wherein the second period of time is
- 2 associated with a low power state.
- 1 13. The computer system of claim 12, further comprising a cache to be powered 2 by the second voltage, the cache to maintain its contents during the lower power state.
- 1 14. The computer system of claim 13, further comprising a snoop controller to be
 2 powered by the second voltage, the snoop controller to snoop the cache
 3 during the second period of time.
- 1 15. The computer system of claim 12, further comprising an L1 cache to be
 2 powered by the first voltage, the L1 cache to be flushed upon entering the
 3 lower power state.
- 1 16. The computer system of claim 9, wherein the portion of the state of the
 2 processor includes a strapping options register.

- 1 17. The computer system of claim 9, wherein the memory region is protected by error checking and correction (ECC) code.
- 1 18. A method comprising:
- triggering a processor of a computer system to enter a low power state in

 which a first voltage supplied to a core of the processor is reduced to a

 level that causes a state of the processor to be lost; and

 saving at least a portion of the state of the processor to a memory region

 of the processor upon entering the low power state, the memory region

 to be powered by a second voltage during the low power state.
- 1 19. The method of claim 18, further comprising flushing an L1 cache of the
 2 processor upon entering the low power state, the L1 cache to be powered by
 3 the first voltage.
- The method of claim 18, further comprising maintaining contents of a cache
 of the processor upon entering the low power state, the cache to be powered
 by the second voltage.
- The method of claim 20, further comprising performing a snoop of the cacheduring the low power state.

- 1 22. The method of claim 18, further comprising turning off a clock signal provided to the core upon entering the low power state.
- A machine-readable medium including machine-readable instructions that, if
 executed by a machine, cause the machine to perform the method of claim

 18.
- A machine-readable medium including machine-readable instructions that, if
 executed by a machine, cause the machine to perform the method of claim

 19.
- A machine-readable medium including machine-readable instructions that, if
 executed by a machine, cause the machine to perform the method of claim

 21.