EECS2040 Data Structure Hw #5 (Chapter 6 Graph)

due date 5/30/2022

by 108011235 陳昭維

(Part 1: 2% of final Grade)

Part 1

1. (10%) Does the multigraph below have an Eulerian walk? If so, find one.

<answer>

Yes there is an Eulerian walk

- 2. (10%) For the digraph below obtain
 - (a) The in-degree and out-degree of each vertex
 - (b) Its adjacency-matrix
 - (c) Its adjacency-list representation
 - (d) Its strongly connected components

(a)

Vertex	In-degree	Out-degree	
0	3	0	
1	2	2	
2	1	2	
3	1 3		
4	2	1	
5	2	3	

(b)

This column and row is indexed by (0~5) and (0~5), the graph is generated by LaTeX

$$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 \end{bmatrix}$$

(c)

(d)

3. (10%) Is the digraph below strongly connected? List all the simple paths.

<answer>

Yes, the graph is strongly connected.

Simple path of the graph:

4. (10%) Draw the complete undirected graphs on one, two, three, four, and five vertices. Prove that the number of edges in an n-vertex complete graph is n(n-1)/2.

<answer>

For each n vertex to be connected to other vertex there are n-1 edges, there are n vertices so there are $\frac{n \times (n-1)}{2}$ edges, since 2 of each are replicates.

5. (4%) Apply depth-first and breadth-first searches to the complete graph on four vertices. Assume that vertices are numbered 0 to 3, are stored in increasing order in each list in the adjacency-list representation, and both traversals begin at vertex 0. List the vertices in the order they would be visited. <answer>

Both the order of traversal for DFS and BFS are $~0 \rightarrow 1 \rightarrow 2 \rightarrow 3$

6. (6%) Let *G* be a graph whose vertices are the integers 1 through 8, and let the adjacent vertices of each vertex be given by the table below:

-	_
Vertex	Adjacent Vertice
1	(2, 3, 4)
2	(1, 3, 4)
3	(1, 2, 4)
4	(1, 2, 3, 6)
5	(6, 7, 8)
6	(4, 5, 7)
7	(5, 6, 8)
8	(5, 7)

Assume that, in a traversal of G, the adjacent vertices of a given vertex are returned in the same order as they are listed in the table above.

<answer>

(a) Draw G.

(b) Give the sequence of vertices of G visited using a DFS traversal starting at vertex 1.

$$1\rightarrow2\rightarrow3\rightarrow4\rightarrow6\rightarrow5\rightarrow7\rightarrow8$$

(c) Give the sequence of vertices visited using a BFS traversal starting at vertex 1.

$$1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 6 \rightarrow 5 \rightarrow 7 \rightarrow 8$$

7. (10%) Use ShortestPath (Program 6.8) (Dijkstra's algorithm) to obtain, in nondecreasing order, the lengths and the paths of the shortest paths from vertex 0 to all remaining vertices in the graph below.

<answer>

	path	lengths	
1	0 → 1	20	
2	0 → 2	15	
3	$0 \rightarrow 2 \rightarrow 3$	19	
4	$0 \rightarrow 1 \rightarrow 4$	30	
5	$0 \rightarrow 2 \rightarrow 5$	25	

8. (10%) Using the directed graph below, explain why ShortestPath (Program 6.8) will not work properly. What is the shortest path between vertices 0 and 6?

<answer>

The shortest path from 0 to 6 is $0 \rightarrow 2 \rightarrow 1 \rightarrow 3 \rightarrow 4 \rightarrow 6$ with length 8.

The Dijkstra's algorithm wouldn't work because, negative weight will not guarantee a closed vertex is indeed minimal throughout the traversal.

9. (10%) For the weighted graph G shown below,

(a) Find a minimum spanning tree for the graph using both Prim's and Kruskal's algorithms.

<answer>

(b) Is this minimum spanning tree unique? Why?

<answer>

No, the minimum spanning tree is not unique, it varies with tie-break mechanism if same weight edge occurs, but the total cost shouldn't vary for distinct minimal spanning tree.

10. (10%) Does the following set of precedence relations (<) define a partial order on the elements 0 through 4? Why?

$$0 < 1; 1 < 3; 1 < 2; 2 < 3; 2 < 4; 4 < 0$$

<answer>

Assume a partial order is defined on the relations, since partial order guarantees transitive, thus from above relations, we get 0 < 0 which is a mapping from 0 to 0, which violates the irreflexive properties of partial order. Thus, it doesn't define a partial order.

11. (10%) For the AOE network shown below,

- (a) Obtain the early, $e(a_i)$, and late, $l(a_i)$, start times for each activity. Use the forward-backward approach.
- (b) What is the earliest time the project can finish?
- (c) Which activities are critical? Fill the table below for answers to (a), (b), and (c).

activity	Early time	Late time	slack	critical
	e(a _i)	l(a _i)	$l(a_i)$ - $e(a_i)$	
a ₁	0	4	4	No
a ₂	0	0	0	Yes
a ₃	5	9	4	No
a4	6	6	0	Yes
a ₅	6	12	6	No
a_6	12	12	0	Yes
a ₇	12	15	3	No
a ₈	12	12	0	Yes
a ₉	15	15	0	Yes
a 10	15	15	0	Yes
a 11	16	16	0	Yes
a ₁₂	19	19	0	Yes
a 13	16	19	3	No
a 14	21	21	0	Yes

(d) Is there any single activity whose speed-up would result in a reduction of the project finish time?

The single activity that reduce project finish time is a₂, a₄, a₁₄, since they are on all critical path.