I Accertamento del 14 Dicembre 2001 / A

cognome e nome

Risolvi i seguenti esercizi, riporta le soluzioni in modo chiaro negli appositi riquadri e giustifica sinteticamente le risposte utilizzando i fogli protocollo. Dovrai poi consegnare questo testo e il foglio con le soluzioni, avendo cura di scrivere il tuo nome su ciascun foglio.

1. Procedure in Scheme

Cosa calcola la procedura f?
Calcola i risultati della valutazione delle espressioni Scheme:

e ipotizza il risultato della generica valutazione (fn).

2. Procedure in Scheme

Completa il programma in Scheme a fianco per verificare se due funzioni f, g dai naturali ai naturali sono uguali nell'intervallo [a, b].

(else ____)

3. Definizione di procedure in Scheme

Definisci formalmente una procedura in Scheme per calcolare quante volte occorre la cifra zero nella rappresentazione decimale di un dato numero naturale n.

)))

4. Definizione di procedure in Scheme

Definisci formalmente una procedura in Scheme per risolvere il seguente problema. Data una funzione g definita sull'insieme dei naturali e a valori naturali, e dati due numeri naturali a, b, si vuole conoscere il massimo incremento del valore della funzione fra due punti consecutivi dell'intervallo [a, b].

5. Dimostrazioni per induzione

Considera la procedura f e dimostra per induzione che il risultato della valutazione dall'espressione Scheme (fn) è dato da: (define follambda (n) ; n naturale (if $(= n \ 0)$)

$$2\left(n2^{n}-2^{n}+1\right)$$

```
(lambda (n) ; n naturale

(if (= n 0)

0

(+ (f (- n 1))

(* n (expt 2 n)))

) ))
```

In particolare:

- Scrivi formalmente la proprietà che esprime il caso base.
- Scrivi formalmente l'ipotesi induttiva.
- Scrivi formalmente la proprietà che si deve dimostrare come passo induttivo.
- Dimostra formalmente il caso base.
- Dimostra formalmente il passo induttivo.

6. Ricorsione di coda e invarianti

Esprimi formalmente, in funzione dei parametri, la quantità invariante relativa alla procedura ricorsiva di coda dell'esercizio 1.

I Accertamento del 14 Dicembre 2001 / B

cognome e nome

Risolvi i seguenti esercizi, riporta le soluzioni in modo chiaro negli appositi riquadri e giustifica sinteticamente le risposte utilizzando i fogli protocollo. Dovrai poi consegnare questo testo e il foglio con le soluzioni, avendo cura di scrivere il tuo nome su ciascun foglio.

1. Procedure in Scheme

Cosa calcola la procedura f? Calcola i risultati della valutazione delle espressioni Scheme:

e ipotizza il risultato della generica valutazione (f n).

(define f (lambda (n) ; n naturale (f-iter 1 n 1))(define f-iter (lambda (i k p) (if (> i k)(f-iter (+ i 1) k (* p i)))))

2. Procedure in Scheme

Completa il programma in (define diverse due funzioni f, g dai naturali ai sono naturali diverse nell'intervallo [a, b].

```
Scheme a fianco per verificare se (lambda (f g a b); a <= b
                                    (if (= ____ (g a))
  (if (< a b) (diverse f g ____ )
                                       ) ))
```

3. Definizione di procedure in Scheme

Definisci formalmente una procedura in Scheme per calcolare quante volte occorre la cifra uno nella rappresentazione binaria di un dato numero naturale n.

4. Definizione di procedure in Scheme

Definisci formalmente una procedura in Scheme per risolvere il seguente problema. Data una funzione f definita sull'insieme dei naturali e a valori naturali, e dati due numeri naturali a, b, si vuole conoscere il massimo decremento (in valore assoluto) del valore della funzione fra due punti consecutivi dell'intervallo [a, b].

5. Dimostrazioni per induzione

Considera la procedura g e dimostra per (define g induzione che il risultato della valutazione (lambda (n) ; n naturale dall'espressione Scheme (g n) è dato da:

 $2(n2^{n}-2^{n}+1)$

```
(if (= n 0)
   0
    (* 2 (+ (g (- n 1))
         (- (expt 2 n) 1)))
  ) ))
```

In particolare:

- Scrivi formalmente la proprietà che esprime il caso base.
- Scrivi formalmente l'ipotesi induttiva.
- Scrivi formalmente la proprietà che si deve dimostrare come passo induttivo.
- Dimostra formalmente il caso base.
- Dimostra formalmente il passo induttivo.

6. Ricorsione di coda e invarianti

Esprimi formalmente, in funzione dei parametri, la quantità invariante relativa alla procedura ricorsiva di coda dell'esercizio 1.

I Accertamento del 14 Dicembre 2001 / C

cognome e nome

Risolvi i seguenti esercizi, riporta le soluzioni in modo chiaro negli appositi riquadri e giustifica sinteticamente le risposte utilizzando i fogli protocollo. Dovrai poi consegnare questo testo e il foglio con le soluzioni, avendo cura di scrivere il tuo nome su ciascun foglio.

1. Procedure in Scheme

Cosa calcola la procedura f?
Calcola i risultati della valutazione delle espressioni Scheme:

e ipotizza il risultato della generica valutazione (f n).

2. Procedure in Scheme

Completa il programma in Scheme a fianco per verificare se, date le funzioni f, g dai naturali ai naturali, f è sempre maggiore di g nell'intervallo [a, b].

(lambda (n) ; n naturale

3. Definizione di procedure in Scheme

Definisci formalmente una procedura in Scheme per calcolare la posizione, partendo dalla cifra meno significativa e procedendo verso sinistra, della prima cifra uno nella rappresentazione binaria di un dato numero naturale n.

4. Definizione di procedure in Scheme

Definisci formalmente una procedura in Scheme per risolvere il seguente problema. Data una funzione g definita sull'insieme dei naturali e a valori naturali, e dati due naturali a, b, si vuole verificare se la funzione è crescente nell'intervallo [a, b].

5. Dimostrazioni per induzione

Considera la procedura f e dimostra per induzione che il risultato della valutazione dall'espressione Scheme (f n) è dato da:

(define f

In particolare:

- Scrivi formalmente la proprietà che esprime il caso base.
- Scrivi formalmente l'ipotesi induttiva.
- Scrivi formalmente la proprietà che si deve dimostrare come passo induttivo.
- Dimostra formalmente il caso base.
- Dimostra formalmente il passo induttivo.

6. Ricorsione di coda e invarianti

Esprimi formalmente, in funzione dei parametri, la quantità invariante relativa alla procedura ricorsiva di coda dell'esercizio 1.

I Accertamento del 14 Dicembre 2001 / D

cognome e nome

Risolvi i seguenti esercizi, riporta le soluzioni in modo chiaro negli appositi riquadri e giustifica sinteticamente le risposte utilizzando i fogli protocollo. Dovrai poi consegnare questo testo e il foglio con le soluzioni, avendo cura di scrivere il tuo nome su ciascun foglio.

1. Procedure in Scheme

Cosa calcola la procedura f?
Calcola i risultati della valutazione delle espressioni Scheme:

e ipotizza il risultato della generica valutazione (f n).

2. Procedure in Scheme

Completa il programma in Scheme a fianco per verificare se, date le funzioni f, g dai naturali ai naturali, f è sempre minore di g nell'intervallo [a, b].

3. Definizione di procedure in Scheme

Definisci formalmente una procedura in Scheme per calcolare la posizione, partendo dalla cifra meno significativa e procedendo verso sinistra, della prima cifra diversa da zero nella rappresentazione decimale di un dato numero naturale n.

4. Definizione di procedure in Scheme

Definisci formalmente una procedura in Scheme per risolvere il seguente problema. Data una funzione f definita sull'insieme dei naturali e a valori naturali, e dati due naturali a, b, si vuole verificare se la funzione è decrescente nell'intervallo [a, b].

5. Dimostrazioni per induzione

Considera la procedura g e dimostra per induzione che il risultato della valutazione dall'espressione Scheme (g n) è dato da: (define g (lambda (n) ; n naturale $(if (= n \ 0))$

 $\frac{(2n-1)3^{n+1}+3}{4}$

In particolare:

- Scrivi formalmente la proprietà che esprime il caso base.
- Scrivi formalmente l'ipotesi induttiva.
- Scrivi formalmente la proprietà che si deve dimostrare come passo induttivo.
- Dimostra formalmente il caso base.
- Dimostra formalmente il passo induttivo.

6. Ricorsione di coda e invarianti

Esprimi formalmente, in funzione dei parametri, la quantità invariante relativa alla procedura ricorsiva di coda dell'esercizio 1.

I Accertamento di Programmazione / A Soluzioni degli esercizi:

cognome e nome

caso generale:

1. Procedure in Scheme

 $(f0) \rightarrow 1$ $(f1) \to 1 \qquad (f2) \to 2$

 $(fn) \rightarrow n!$

 $(f3) \rightarrow 6$

 $(f4) \rightarrow 24 \qquad (f5) \rightarrow 120$

2. Procedure in Scheme

Definizione completa:

```
(define uguali
  (lambda (f g a b)
    (cond ((> a b) #t)
          ((= (f a) (g a))
           (uguali f g (+ a 1) b))
          (else #f)
   ))
```

3. Definizione di procedure in Scheme

```
(define quante-cifre-zero
  (lambda (n) ; n naturale
    (cond ((= n 0) 1)
            ((< n 10) 0)
            (else
             (let ((contributo-ultima-cifra
               (if (= (remainder n 10) 0) 1 0)))
(+ (quante-cifre-zero (quotient n 10))
                   contributo-ultima-cifra)
           )))
    ) )
```

Definizione:

5. Dimostrazioni per induzione

Dimostrazioni del caso base e del passo induttivo su foglio allegato.

Proprietà dimostrata nel caso base:

Ipotesi induttiva:

$$(f\ 0) \rightarrow 2(0\cdot 2^0 - 2^0 + 1)$$

Proprietà dimostrata nel passo induttivo: per n > 0

$$(f n) \rightarrow 2 (n2^n - 2^n + 1)$$

$$(f \ n-1) \rightarrow 2 ((n-1)2^{n-1} - 2^{n-1} + 1)$$

 $per \ n > 0$

Dimostrazione:

$$(f \ n) \rightarrow (+ (f \ n-1) \ (* n (expt 2 \ n)))$$

$$\rightarrow (+ \ 2 \cdot ((n-1)2^{n-1} - 2^{n-1} + 1) \ n \cdot 2^n)$$

$$\rightarrow (n-1)2^n - 2^n + 2 + n \cdot 2^n$$

$$= 2 (n2^n - 2^n + 1)$$

6. Ricorsione di coda e invarianti

I Accertamento di Programmazione / B

Soluzioni degli esercizi:

cognome e nome

1. Procedure in Scheme

$$(f0) \rightarrow 1 \qquad \quad (f1) \rightarrow 1 \qquad \quad (f2) \rightarrow 2$$

$$(f3) \rightarrow 6$$

$$(f4) \rightarrow 24$$

$$(f4) \rightarrow 24 \qquad (f5) \rightarrow 120$$

caso generale:

$$(fn) \rightarrow n!$$

2. Procedure in Scheme

Definizione completa:

```
(define diverse
  (lambda (f g a b) ; a \le b
    (if (= (f a) (g a))
        (if (< a b) (diverse f g (+ a 1) b)
                     #f)
        #t
        )
   ))
```

3. Definizione di procedure in Scheme

```
(define quanti-bit-uno
  (lambda (n) ; n naturale
    (cond ((= n 0) 0)
          ((= n 1) 1)
          (else
           (let ((contributo-ultimo-bit
                  (if (= (remainder n 2) 1) 1 0)))
             (+ (quanti-bit-uno (quotient n 2))
                contributo-ultimo-bit)
          )))
   ) )
```

Definizione:

5. Dimostrazioni per induzione

Dimostrazioni del caso base e del passo induttivo su foglio allegato.

Proprietà dimostrata nel caso base:

$$(g\ 0) \rightarrow 2(0\cdot 2^0 - 2^0 + 1)$$

Proprietà dimostrata nel passo induttivo: per n > 0

$$(g \ n) \rightarrow 2 (n2^n - 2^n + 1)$$

Ipotesi induttiva: $per \ n > 0$

$$(g \ n-1) \rightarrow 2 ((n-1)2^{n-1} - 2^{n-1} + 1)$$

Dimostrazione:

$$(g \ n) \rightarrow (*2 (+ (g \ n-1) \ (- (expt \ 2 \ n) \ 1)))$$

$$\rightarrow (*2 (+2 \cdot ((n-1)2^{n-1} - 2^{n-1} + 1) \ 2^n - 1))$$

$$\rightarrow 2 \cdot ((n-1)2^n - 2^n + 2 + 2^n - 1)$$

$$= 2 (n2^n - 2^n + 1)$$

6. Ricorsione di coda e invarianti

$$p \cdot \frac{k!}{(i-1)!}$$

I Accertamento di Programmazione / C

Soluzioni degli esercizi:

cognome e nome

1. Procedure in Scheme

$$(f0) \rightarrow 0$$

$$(f1) \rightarrow 1$$

$$(f0) \rightarrow 0$$
 $(f1) \rightarrow 1$ $(f2) \rightarrow 3$

$$(f3) \rightarrow 6$$

$$(f3) \rightarrow 6$$
 $(f4) \rightarrow 10$ $(f5) \rightarrow 15$

$$(f5) \rightarrow 13$$

caso generale:

$$(fn) \rightarrow \frac{n(n+1)}{2}$$

2. Procedure in Scheme

Definizione completa:

```
(define maggiore
  (lambda (f g a b)
    (cond ((> a b) #t)
          ((<= (f a) (g a)) #f)
          (else (maggiore f g (+ a 1) b))
   ))
```

3. Definizione di procedure in Scheme

```
(define primo-bit-uno
  (lambda (n) ; n > 0 naturale
    (if (= (remainder n 2) 1)
        (+ (primo-bit-uno (quotient n 2)) 1)
   ))
```

Definizione:

5. Dimostrazioni per induzione

Dimostrazioni del caso base e del passo induttivo su foglio allegato.

Proprietà dimostrata nel caso base:

$$(f\ 0)\ \rightarrow\ \frac{(2\cdot 0-1)3^I\ +\ 3}{4}$$

Proprietà dimostrata nel passo induttivo: per n > 0

$$(f n) \rightarrow \frac{(2n-1)3^{n+1} + 3}{4}$$

Dimostrazione:

Ipotesi induttiva: $per \ n > 0$

$$(f n-1) \rightarrow \frac{(2n-3)3^n + 3}{4}$$

 $(f\ n)\ \rightarrow\ (+\ (f\ n{-}1)\ (*\ n\ (expt\ 3\ n)))$

6. Ricorsione di coda e invarianti

$$s + \frac{k \cdot (k+1)}{2}$$

I Accertamento di Programmazione / D

Soluzioni degli esercizi:

cognome e nome

caso generale:

1. Procedure in Scheme

$$(f0) \rightarrow 0$$

$$(f1) \rightarrow 1$$

$$(f0) \rightarrow 0$$
 $(f1) \rightarrow 1$ $(f2) \rightarrow 3$

$$(fn) \rightarrow \frac{n(n+1)}{2}$$

$$(f3) \rightarrow 6$$

$$(f3) \rightarrow 6$$
 $(f4) \rightarrow 10$ $(f5) \rightarrow 15$

$$(f5) \rightarrow 15$$

2. Procedure in Scheme

Definizione completa:

```
(define minore
  (lambda (f g a b)
    (cond ((> a b) #t)
          ((< (f a) (g a))
           (minore f g (+ a 1) b))
          (else #f)
   ))
```

3. Definizione di procedure in Scheme

```
(define prima-cifra-non-zero
 (lambda (n) ; n > 0 naturale
    (if (> (remainder n 10) 0)
        (+ (prima-cifra-non-zero (quotient n 10)) 1)
   ))
```

Definizione:

5. Dimostrazioni per induzione

Dimostrazioni del caso base e del passo induttivo su foglio allegato.

Proprietà dimostrata nel caso base:

$$(g\ 0) \rightarrow \frac{(2\cdot 0 - 1)3^{I} + 3}{4}$$

Proprietà dimostrata nel passo induttivo: per n > 0

$$(g \ n) \rightarrow \frac{(2n-1)3^{n+1} + 3}{4}$$

Dimostrazione:

Ipotesi induttiva: $per \ n > 0$

$$(g n-1) \rightarrow \frac{(2n-3)3^n + 3}{4}$$

 $(g\ n)\ \rightarrow\ (*\ 3\ (+\ (g\ n-1)\ (/\ (-\ (expt\ 3\ n)\ 1)\ 2)))$

6. Ricorsione di coda e invarianti

$$s + \frac{y \cdot (y+1)}{2} - \frac{x \cdot (x-1)}{2}$$