Total 1	No. (of Questions : 8] SEAT No. :	
P295	56	[Total No. of Pages :	: 2
1 4).	50	[5669] 546	
		T.E. (E & TC)	
		POWER ELECTRONICS (Semester - II)	
<i>m</i>	0 T /	(2015 Pattern)	
		[Max. Marks : 1	70
		ns to the candidates:	
	1)	Answer Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6 and Q.7 or Q.8.	
	2) 2)	Neat diagrams must be drawn wherever necessary.	
	3) 4)	Figures to the right side indicate full marks. Assume Suitable data if necessary.	
	, 5)	Use of Calculator is allowed.	
•	,	ose of careanator is allowed.	
Q1) a	a)	Draw the dynamic characteristics of SCR and explain the turn on & tu	rn
2-)	.,	~ · · · · ·	7]
1	b) 🖔	With the help of neat circuit diagram & waveforms explain the operation	_
	- /		7]
(c)	List out the different voltage control techniques used in inverter	_
	- /		6]
		QR	~ 1
00)			B
<i>Q2</i>) a			6]
t	o)	Explain the operation of symmetric 1.φ semi converter with contineo	ŭS
		load current.	
			7]
(c)	Explain 1-\phi full bridge inverter for RL load using MOSFET Dra	W
		necessary ckt dig & waveforms.	7]
<i>Q3</i>) a	a)	Draw & explain step down chopper for R-load with circuit dig. & wav	
		forms Dariya avarassion for avg a/n voltage?	Q1

forms. Derive expression for avg o/p voltage?

Derive the expression for average o/p voltage of step up chopper. A step up b) chopper has i/p voltage of 220v & o/p voltage of 000v. if the non conducting time is 100 μ sec. Calculate pulse width of o/p voltage. Also find the new o/ p voltage if pulse width is half for constant frequency operation [8]

OR

<i>Q4</i>)	a)	With the help of circuit dig & waveforms. Explain the operation of 1-\$\phi\$
		full wave Ac voltage controller with R-load? Derive the expression for
		rms o/p voltage? [8]
	b)	Derive the expression for average o/p voltage of step down chopper. If
		DC chopper has resistive load of $R = 10\Omega$ and the i/p DC voltage is
		300v. When the chopper switch remains on its voltage drop is 2v and the
		chopping freq is kHz. If duty cycle is 40% determine. [8]
		i) Average o/p voltage
		ii) rms o/p voltage
		iii) Form factor
		iv) Ripple factor
o = \		
<i>Q</i> 5)	a)	What is meant by electromagnetic interferance? Explain it's sources and
		different minimization techniques in detail? [10]
	b)	Explain the over voltage protection ckt using selenium diode & Mov to
		protect the power devices in detail? [8]
		OR
<i>Q6</i>)	a)	What is Resonant converters? Explain the concept of ZCS and ZVS
		using ckt dig. & waveforms [10]
	b)	What are the different cooling methods used for protection of power
		devices? Explain in detail [8]
Q7)	a)	With the help of block dig explain the operation of electronic ballast in
		detail?
	b)	What is online? Offline ups? Explain block diagram and applications [8]
		9° OR
Q8)	a)	With the help of neat ckt dig. explain the operation of fan Regulator ckt
		using TRIAC. (8)
	b)	A ups is driving a 600 kl load which has a lagging p.f. of 0.8. The effi-
		ciency of the inverter is 80%. The battery voltage is 24v DC. Assume that
		there is a seperate charger for the battery. Determine [8]
		i) KVA rating of the inverter
		ii) Watlage of Rectifier
		iii) A.H. rating of battery for backup time of 30 min.
		$\Theta \Theta \Theta = \mathcal{O}^{\bullet}$