7.

On varieties studied by Bezrukavnikov-McBreen, Gu-Wang, Lusztig, and myself.

7.1.

Fix a braid $\beta = \sigma_1 \cdots \sigma_\ell$, where $\sigma_1, \dots, \sigma_\ell$ is a sequence of simple twists with possible repetition. We have a variety

$$G(\beta) = \left\{ (g, B_1, \dots, B_\ell) : B_\ell^g \xrightarrow{s_1} B_1 \xrightarrow{s_2} \dots \xrightarrow{s_\ell} B_\ell \right\}$$

$$\subseteq G \times \mathcal{B}^\ell,$$

where $B^g = g^{-1}Bg$. The action of G on itself by right conjugation extends to an action on $G(\beta)$, namely,

$$(g, B_1, \dots, B_\ell) \cdot x = (x^{-1}gx, B_1^x, \dots, B_\ell^x).$$

Fix a pair of opposite Borel subgroups $B_+, B_- \subseteq G$. Let

$$G_+(\beta) = G(\beta)_{B_{\ell} = B_+},$$

the fiber of $\operatorname{pr}_{\ell}:G(\beta)\to\mathcal{B}$ above B_+ . Then

$$[G_+(\beta)/B_{+,\mathrm{Ad}}] \simeq [G(\beta)/G_{\mathrm{Ad}}].$$

Let $U_{\pm} \subseteq B_{\pm}$ be the unipotent radicals, and let $T = B_{+} \cap B_{-}$. We will be interested in the stacks $[G_{+}(\beta)/U_{+,Ad}]$, viewed as T-bundles over $[G(\beta)/G_{Ad}]$.

7.2.

Let $\pi = \sigma_{w_0}^2$, the full twist. By definition,

$$G_{+}(\pi) = \left\{ (g, B) : B_{+}^{g} \xrightarrow{w_{0}} B \xrightarrow{w_{0}} B_{+} \right\}$$
$$\simeq \left\{ (g, B_{+}h) : B_{+}^{g} \xrightarrow{w_{0}} B_{+}^{h} \xrightarrow{w_{0}} B_{+} \right\}.$$

Pick a lift $\dot{w}_0 \in N_G(T)$ of w_0 . Then the fiber of $G_+(\pi) \subseteq G \times \mathcal{B}$ above $g \in G$ is

$$G_{+}(\pi)_{g} = B_{+} \setminus (B_{+}\dot{w}_{0}U_{+}g \cap B_{+}\dot{w}_{0}U_{+}).$$

In the document 2101_09, we observed that the composition

$$B_+\dot{w}_0U_+\cap\dot{w}_0U_+g\to B_+\dot{w}_0U_+\cap B_+\dot{w}_0U_+g\to G_+(\pi)_g$$

was a bijection at the level of points. At the same time, there is another bijection:

$$U_{-}U_{+} \cap B_{+}g \xrightarrow{\sim} B_{+}\dot{w}_{0}U_{+} \cap \dot{w}_{0}U_{+}g$$

$$vu = tzg \mapsto \dot{w}_{0}t^{-1}vu = \dot{w}_{0}zg$$

(Note that $\dot{w}_0 t^{-1} v = (\dot{w}_0 t^{-1} \dot{w}_0^{-1}) (\dot{w}_0 v \dot{w}_0^{-1}) \dot{w}_0 \in B_+ \dot{w}_0$.) Let

$$\mathcal{V} = \{(g, u, v) : B_+g = B_+vu\}$$

$$\subseteq G \times U_+ \times U_-,$$

$$\mathcal{V}_1 = \mathcal{V}_{u=1} = \{(g, v) : B_+g = B_+v\}$$

$$\subseteq G \times U_-.$$

There is a U_+ -action on \mathcal{V} defined by

$$(g, u, v) \cdot x = (x^{-1}gx, ux, v).$$

The composition $\mathcal{V}_1 \to \mathcal{V} \to [\mathcal{V}/U_+]$ is an isomorphism. We conclude:

Lemma 7.1. At the level of points, we have a U_+ -equivariant bijection

$$\begin{array}{ccc} \mathcal{V} & \to & G_+(\pi) \\ (g,u,v) & \mapsto & (g,B_+^{\dot{w}_0zg}) \end{array}$$

where $z \in U_+$ is defined by $vu \in Tzg$. Thus, we have an equivalence of groupoids

$$\mathcal{V}_1 \rightarrow [G_+(\pi)/U_{+,\mathrm{Ad}}]$$

 $(g,v) \mapsto [g,B_+^{\dot{w}_0 v}]$

(a posteriori, a bijection of sets).

Proof. To see the equivariance in the first statement: Note that $vu \in Tzg$ implies $vux \in Tzgx = Tzx(x^{-1}gx)$, and moreover, $B_+^{\dot{w}_0zx(x^{-1}gx)} = (B_+^{\dot{w}_0zg})^x$. To deduce the second statement from the first, set u=1 and observe that in this situation, Tzg=Tv.

Next, we compare V_1 to the varieties studied by Bezrukavnikov–McBreen. Since the U_- -part of an element of U_-B_+ is uniquely determined, we have isomorphisms:

$$\begin{array}{ccc} U_{-}B_{+} & \leftrightarrow & \mathcal{V}_{1} \\ vb & \mapsto & (bv, v) \\ vgv^{-1} & \leftrightarrow & (g, v) \end{array}$$

Notably, these isomorphisms do *not* identify the inclusion $U_-B_+ \to G$ with the projection $\operatorname{pr}_1: \mathcal{V}_1 \to G$. However, since $bv = b(vb)b^{-1}$, they do identify the further maps to $G/B_{+,\operatorname{Ad}}$. We conclude:

Proposition 7.2. At the level of points, there is an equivalence of groupoids

$$\begin{array}{ccc} U_{-}B_{+} & \stackrel{\sim}{\to} & [G_{+}(\pi)/U_{+,\mathrm{Ad}}] \\ vb & \mapsto & [bv, B_{+}^{\dot{w}_{0}v}] \end{array}$$

(a posteriori, a bijection of sets). It fits into a commutative diagram:

$$U_{-}B_{+} \xrightarrow{\sim} [G_{+}(\pi)/U_{+,\mathrm{Ad}}]$$

$$\downarrow \qquad \qquad \downarrow$$

$$G \xrightarrow{} [G/B_{+,\mathrm{Ad}}]$$

In particular, fix a point $\delta \in T /\!\!/ W$. Let $G_{\delta} \subseteq G$ and $[G/G_{Ad}]_{\delta} \subseteq [G/G_{Ad}]$ be its preimages along the maps

$$G \to [G/G_{Ad}] \to T /\!\!/ W$$
.

For any stack \mathcal{X} over $[G/G_{Ad}]$, we set

$$\mathcal{X}_{\delta} = \mathcal{X} \times_{[G/G_{\mathrm{Ad}}]} [G/G_{\mathrm{Ad}}]_{\delta}.$$

If $\mathcal{X} = [X/G]$ for some G-equivariant map of varieties $X \to G$, then $\mathcal{X}_{\delta} = [X_{\delta}/G]$. So the equivalence in the proposition restricts to an equivalence

$$(U_{-}B_{+})_{\delta} \simeq [G_{+}(\pi)_{\delta}/U_{+,Ad}].$$

Two special cases:

- When δ is regular, the left-hand side is the variety studied by Bezrukavnikov—McBreen that conjecturally retracts onto the full lattice quotient of an affine Springer fiber of split type.
- When $\delta = 1$, the scheme $G_+(\pi)_{\delta}$ is the scheme denoted $\mathcal{U}(\pi)_{B_+}$ in the notation of my preprint. The weight-graded Borel–Moore homology of the stack

$$[\mathcal{U}(\pi)_{B_+}/B_{+,\mathrm{Ad}}] \simeq [\mathcal{U}(\pi)/G_{\mathrm{Ad}}]$$

is what I called the A_W -trace of the full twist π . The $\Lambda^*(\mathfrak{t})$ -isotypic components of this bigraded representation of W recover the Khovanov–Rozansky homology of π , up to taking componentwise duals.

So for general β , we want to understand how the varieties $G_+(\beta)_\delta$ vary as δ varies in $T /\!\!/ W$.

7.3.

Let $\delta \in T /\!\!/ W$ be regular, and let $t \in T$ be a preimage of δ . Then G_{δ} is the adjoint orbit of t in G, which we can identify with the image of the embedding $T \setminus G \to G$ that sends $Tg \mapsto g^{-1}tg$. So we have

$$G_{+}(\pi)_{\delta} = \left\{ (Tg, B) : B_{+}^{g^{-1}tg} \xrightarrow{w_{0}} B \xrightarrow{w_{0}} B_{+} \right\} \subseteq T \setminus G \times \mathcal{B}.$$