1. (2 Pts.) List two common applications of text mining:

Any two of:

- Predictive/Supervised or unsupervised models that include customer center notes, website forms, e-mails, and Tweets, or other social media text
- Spam Detection
- Document Categorization (Clustering)
- Topic Extraction
- Information Retrieval
- Anomaly Detection
- Processing large numbers of legal documents
- Hospital admission prediction models incorporating medical records notes as a new source of information
- Insurance fraud modeling using adjustor notes
- Sentiment categorization from customer comments
- Stylometry or forensic applications that identify the author of a writing sample

(Other reasonable examples considered)

- 2. (6 Pts.) Follow the directions from top to bottom to create a document by term matrix.
- 1. Remove all punctuation
- 2. Stem all nouns to singular form
- 3. Remove all stop words
- 4. Remove all terms that are less than or equal to 4 characters in length
- 5. Create a document by term matrix with terms as columns and documents as rows

Stoplist: a about at but for is it me than thing to was you

Document 1: to err is human, but to really foul things up you need a computer

Document 2: computer science is no more about computers than astronomy is about telescopes

Document 3: a computer once beat me at chess, but it was no match for me at kick boxing

	human	really	computer	science	astronomy	telescope	chess	match	boxing
doc 1	1	1	1	0	0	0	0	0	0
doc 2	0	0	2	1	1	1	0	0	0
doc 3	0	0	1	0	0	0	1	1	1

(Column and row order don't matter)

Name:

3. (2 pts.) Consider another unrelated term by document matrix A. A has N rows which represent terms and p columns which represent documents. (We say A is an $N \times p$ matrix.) We use singular value decomposition (SVD) to extract k SVD features from A. Given that SVD follows the well-known equation:

$$A = U\Sigma V^T$$

where \boldsymbol{U} is an $\boldsymbol{N} \times \boldsymbol{k}$ matrix and \boldsymbol{V}^T is an $\boldsymbol{k} \times \boldsymbol{p}$ matrix.

Is **U** or **V** more ideal to analyze the relationship between ideas in the documents and each term?

U

Is **U** or **V** more ideal to analyze the relationship between ideas in the documents and each document?

V