Table B-1. Rotation: A C++ Class for 3-Dimensional Rotations—Reference Sheet

Operation	Mathematical notation	Rotation class
Definition ^a	Let R be an unspecified rotation.	Rotation R;
	Let R be a rotation specified by	Rotation R(y,p,r,ZYX);
	yaw, pitch, and roll. ^b	
	Let R be the rotation specified by	Rotation b(ph1,ph2,ph3,XYZ);
	three angles, ϕ_1 , ϕ_2 , ϕ_3	
	applied in the order x - y - z .	
	Let $R_{\hat{a}}(\alpha)$ be the rotation about	Vector a;
	the vector \boldsymbol{a} through the angle α .	Rotation R(a,alpha);
	Let R be the rotation about the	<pre>pair<double,double> p(th,ph);</double,double></pre>
	direction specified by the angles	Rotation R(p,alpha);
	(θ, ϕ) through the angle α .	
	Let R be the rotation specified by	Vector a, b;
	the vector cross product $\boldsymbol{a} \times \boldsymbol{b}$.	Rotation R(a,b);
	Let R be the rotation that maps the	Vector a1,a2,a3,b1,b2,b3;
	set of linearly independent vectors a_i	Rotation R(a1,a2,a3,b1,b2,b3);
	to the set \boldsymbol{b}_i , where $i = 1, 2, 3$.	
	Let R be the rotation specified by	quaternion q;
	the (unit) quaternion q .	Rotation R(q);
	Let R be the rotation specified by	matrix A;
	the 3×3 rotation matrix A_{ij} . ^d	Rotation R(A);
	Let R be a random rotation, designed	rng::Random rng;
	to randomly orient any vector	R(rng);
	uniformly over the unit sphere.	
Input a rotation R	n/a	cin >> R;
Output the rotation R	n/a	cout << R;
Assign one rotation to	Let $R_2 = R_1$ or	R2 = R1; or
another	$R_2 \Leftarrow R_1$	R2(R1);
Product of two successive	R_2R_1	R2 * R1;
rotations ^e		
Rotation of a vector \boldsymbol{a}	Ra	R * a;
Inverse rotation	R^{-1}	inverse(R); or -R;
Convert a rotation to a	If $R_{\hat{u}}(\theta)$ is the rotation, then	<pre>to_quaternion(R);</pre>
quaternion	$q = \cos(\theta/2) + \hat{\boldsymbol{u}}\sin(\theta/2).$	
Convert a rotation to a	See description on next page.	<pre>to_matrix(R);</pre>
3×3 matrix		
Factor a rotation into a	See description on next page.	<pre>sequence s = factor(R,ZYX);^f</pre>
rotation sequence		
Unit vector along the	Unit vector $\hat{\boldsymbol{u}}$ in the rotation $R_{\hat{\boldsymbol{u}}}(\theta)$	Vector(R); or
axis of rotation		<pre>vec(R);</pre>
Rotation angle	Angle θ in the rotation $R_{\hat{u}}(\theta)$	double(R); or
		ang(R);

^aA rotation is represented in the Rotation class by the pair $(\hat{\boldsymbol{u}}, \theta)$, where $\hat{\boldsymbol{u}}$ is the unit vector along the axis of rotation, and θ is the counterclockwise rotation angle.

^bThe order is significant: first yaw is applied as a counterclockwise (CCW) rotation about the z-axis, then pitch is applied as a CCW rotation about the y'-axis, and finally, roll is applied as a CCW rotation about the x''-axis. The coordinate system is constructed from the local tangent plane in which the z-axis points toward earth center, the x-axis points along the direction of travel, and the y-axis points to the right, to form a right-handed coordinate system. The particular order is specified by using ZYX. There are a total of 12 possible orderings available to the user, 6 of them have distinct principal rotation axes: XYZ, XZY, YXZ, ZXY, ZXY, ZXY, ZXZ, ZYZ.

Convert rotation to a 3×3 matrix: First we convert the rotation $R_{\hat{\boldsymbol{u}}}(\theta)$ into the unit quaternion, via $q = \cos(\theta/2) + \hat{\boldsymbol{u}}\sin(\theta/2)$, and set $w = \cos(\theta/2)$, the scalar part, and $\boldsymbol{v} = \hat{\boldsymbol{u}}\sin(\theta/2)$, the vector part. Then the rotation matrix is

$$\begin{bmatrix} 2w^2 - 1 + 2v_1^2 & 2v_1v_2 - 2wv_3 & 2v_1v_3 + 2wv_2 \\ 2v_1v_2 + 2wv_3 & 2w^2 - 1 + 2v_2^2 & 2v_2v_3 - 2wv_1 \\ 2v_1v_3 - 2wv_2 & 2v_2v_3 + 2wv_1 & 2w^2 - 1 + 2v_3^2 \end{bmatrix}.$$

Factor a rotation into an (aerospace) rotation sequence: First we convert the rotation $R_{\hat{\boldsymbol{u}}}(\theta)$ into the unit quaternion, via $q = \cos(\theta/2) + \hat{\boldsymbol{u}} \sin(\theta/2)$, and set $w = \cos(\theta/2)$, the scalar part, and $\boldsymbol{v} = \hat{\boldsymbol{u}} \sin(\theta/2)$, the vector part. Next, let $p_0 = w$, $p_1 = v_1$, $p_2 = v_2$, $p_3 = v_3$ and set $A = p_0p_1 + p_2p_3$, $B = p_2^2 - p_0^2$, $D = p_1^2 - p_3^2$. Then $\phi_3 = \tan^{-1}(-2A/(B+D))$ is the third angle, which is roll about the x-axis in this case. Now set $c_0 = \cos(\phi_3/2)$, $c_1 = \sin(\phi_3/2)$, $q_0 = p_0c_0 + p_1c_1$, $q_2 = p_2c_0 - p_3c_1$, and $q_3 = p_3c_0 + p_2c_1$. Then $\phi_1 = 2\tan^{-1}(q_3/q_0)$ is the first angle, which is yaw about the z-axis, and $\phi_2 = 2\tan^{-1}(q_2/q_0)$ is the second angle, which is pitch about the y-axis.

```
<sup>c</sup>A quaternion is defined in the Rotation class as follows:
struct quaternion {
double w; // scalar part
Vector v; // vector part
A unit quaternion requires that w^2 + ||v||^2 = 1.
   <sup>d</sup>A matrix is defined in the Rotation class as follows:
struct matrix {
double a11, a12, a13; // 1st row
double a21, a22, a23; // 2nd row
double a31, a32, a33; // 3rd row
To qualify as a rotation, the 3 matrix A must satisfy the 2 conditions: A^{\dagger} = A^{-1} and det A = 1.
   <sup>e</sup>In general, rotations do not commute, i.e. R_1R_2 \neq R_2R_1, so the order is significant and goes from right
to left.
   <sup>f</sup>A (rotation) sequence is defined in the Rotation class as follows:
struct sequence {
double first; // 1st rotation (rad) to apply to body axis
double second; // 2nd rotation (rad) to apply to body axis
double third; // 3rd rotation (rad) to apply to body axis
The order these are applied is always left to right: first, second, third. How they get applied is specified
by using one of the following, which is applied left to right: ZYX, XYZ, XZY, YZX, YXX, ZYX, ZYZ, ZXZ,
```

YZY, YXY, XYX, XZX. For example, the order XYZ would apply first to rotation about the x-axis, second

to rotation about the y-axis, and third to rotation about the z-axis.