Chengchao Yuan

Department of Physics Pennsylvania State University 320 Osmond Lab, University Park PA 16802, USA Phone: (814) 954-2785
E-mail: cxy52@psu.edu
Homepage: yuan-cc.github.io
Citizenship: China

RESEARCH INTERESTS

- Astroparticle physics (neutrinos, gamma rays and cosmic rays from extreme sources)
- High-energy astrophysics (particle acceleration, transport and radiation processes)
- Multimessenger astrophysics

EDUCATION

2016-	Ph.D. candidate in Physics, Pennsylvania State University
	Supervised by Prof. Péter Mészáros and Prof. Kohta Murase
	Thesis: The Origin of High-Energy Astrophysical Neutrinos and Photons in the Era of Multi-Messenger Astronomy
2016	B.Sc. in Astronomy and Space Science, Nanjing University, China
	Supervised by Prof. Xiangyu Wang and Prof. Fayin Wang
	Undergraduate Thesis: The origin of high-energy astrophysical neutrinos

HONORS & AWARDS

2020, 2019	David C. Duncan Graduate Fellowship, Penn State
2018	APS Graduate Student Travel Grant, American Physical Society
2017	Homer F. Braddock Scholarship, Penn State
2016	School of Astronomy and Space Science Dean's Scholarship, Nanjing U.
2016	Outstanding Thesis Award, Nanjing U.
2015	REU Intern Travel Grant (host institution: Penn State), Nanjing U.

PUBLICATIONS

First-author journal articles

- [5] **Yuan, C.**, Murase, K., Kimura, S. & Mészáros, P. "High-energy neutrino emission subsequent to gravitational wave radiation from supermassive black hole mergers", arXiv: 2008.05616, *submitted to Phys. Rev. D*
- [4] **Yuan, C.**, Murase, K. & Mészáros, P. (2020) "Complementarity of Stacking and Multiplet Constraints on the Blazar Contribution to the Cumulative High-Energy Neutrino Intensity", *ApJ*, 890:1. doi: 10.3847/1538-4357/ab65ea
- [3] **Yuan, C.**, Murase, K. & Mészáros, P. (2019) "Secondary Radio and X-ray Emissions from Galaxy Mergers", *ApJ*, 878:76. doi: 10.3847/1538-4357/ab1f06
- [2] **Yuan, C.**, Mészáros, P., Murase K. & Jeong, D. (2018) "Cumulative Neutrino and Gamma-Ray Backgrounds from Halo and Galaxy Mergers", *ApJ*, 857:50. doi: 10.3847/1538-

August 17, 2020 Page 1 of 3

4357/aab774

[1] **Yuan, C.** & Wang, F. (2015) "Cosmological Test Using Strong Gravitational Lensing Systems", *MNRAS*, 452:3. doi: 10.1093/mnras/stv1444

Articles in preparation

- [2] **Yuan, C.**, Murase, K., Kimura, S. & Mészáros, P. "Jet-induced high-energy electromagnetic counterpart of supermassive black hole mergers", *preparing to submit to ApJL*
- [1] Zhang, T. B., Murase, K., **Yuan, C**., Kimura, S. & Mészáros, P. "External Inverse Compton Emission Associated with Extended and Plateau Emission of Short Gamma-Ray Bursts: Application to GRB 160821B", preparing to submit to ApJ Contributions: portion of code development and discussion of results.

Conference proceedings and other articles

- [2] **Yuan, C.**, Mészáros, P., Murase K. & Jeong, D. (2018) "Cumulative Neutrino and Gamma-Ray Backgrounds from Halo and Galaxy Mergers", in *APS April meeting: U17.004*. Talk abstract
- [1] **Yuan, C.**, Murase K. & Mészáros, P. (2019) "A Multi-Messenger Picture of Galaxy Mergers: Neutrinos and Electromagnetic Emissions", (*ICRC2019*) 1041. Proceedings of Science

CONFERENCES AND SCIENTIFIC TALKS

Oct 2020	Talk: Galaxy and SMBH mergers in the era of multi-messenger astrophysics.
	Astronomical seminar, Tohoku University, Japan
Sep 2020	Lunch talk: High-energy neutrino emission from SMBH mergers. Dept. of
	Astronomy & Astrophysics, Penn State
Aug 2020	Talk: High-energy neutrino emission subsequent to GW radiation from SMBH
	mergers. Time-Domain High-Energy Messenger Astrophysics Workshop,
	University of Kyoto, Japan
Jul 2019	Poster: A Multi-Messenger Picture of Galaxy Merger. 36th International
	Cosmic Ray Conference (ICRC), Madison, WI
Jun 2019	Talk: A Multi-Messenger Picture of Galaxy Mergers: Neutrinos and
	Electromagnetic Emissions. IGC@25: Multimessenger Universe Workshop,
	State College, PA
Apr 2018	Talk: Cumulative Neutrino and Gamma-Ray Backgrounds from Halo and
	Galaxy Mergers. APS April meeting, Columbus, OH
Aug 2015	Launch talk: Monte Carlo simulations of electron-photon interactions with pair
	formation. Dept. of Astronomy & Astrophysics, Penn State
May 2015	Talk: Cosmological test using strong gravitational lensing systems. Cosmology
	and Galaxy Workshop, Yangzhou, China

August 17, 2020 Page 2 of 3

CODE DEVELOPMENT

Astrophysical Multimessenger Emission Synthesize (AMES)

A time-dependent numerical code for the production and propagation of high-energy cosmic rays, neutrinos, and gamma-rays for various astrophysical environments

• Developed the code for photo-meson/photo-hadronic interaction cross sections and cosmic $\gamma\gamma$ interactions.

PROGRAMMING SKILLS

- Extensive experience in using CRpropa, an astrophysical simulation code for the propagation of ultra-high-energy particles.
- Programming languages: C++, Python, Mathematica and Fortran

TEACHING EXPERIENCE

2018-2020 Lab. T.A. PHYS250: Introductory Physics

2018 Office hour assistant PHYS525: Methods of Theoretical Physics

2016-2017 Lab. T.A. PHYS212: Electromagnetism

OUTREACH

Jul 2017,18,19 AstroFest - A Tour of Universe, Penn State

May 2018 K-12 Educators: Bring Cutting-Edge STEM Research into your Classroom,

Penn State

REFERENCES

Dr. Péter Mészáros (nnp@psu.edu)

Eberly Chair Professor, Astronomy & Astrophysics and Physics, Penn State

Dr. Kohta Murase (murase@psu.edu)

Assistant Professor, Physics and Astronomy & Astrophysics, Penn State

Dr. Donghui Jeong (djeong@psu.edu)

Associate Professor, Astronomy & Astrophysics, Penn State

Dr. Xiangyu Wang (xywang@nju.edu.cn)

Professor, Astronomy & Space Science, Nanjing University, China

August 17, 2020 Page 3 of 3