编译原理第6次作业

102201113 吴晨昊

2025年3月31日

1 练习 4.4.1: 文法转换

对下面的文法进行提取左公因子或消除左递归的操作。

1.1 文法 1: $S \rightarrow 0S1 \mid 01$

提取左公因子,因为两个产生式都有公共前缀"0"。

应用提取左公因子算法: 将 $A \to \alpha\beta_1 \mid \alpha\beta_2 \mid \ldots \mid \alpha\beta_n$ 形式的文法改写为:

$$A \to \alpha A'$$

 $A' \to \beta_1 \mid \beta_2 \mid \dots \mid \beta_n$

对于我们的文法, $\alpha = 0$, $\beta_1 = S1$, $\beta_2 = 1$, 所以转换后的文法为:

$$S \to 0S'$$
$$S' \to S1 \mid 1$$

1.2 文法 2: $S \rightarrow S(S)S \mid \varepsilon$

这个文法存在左递归(S 出现在右部的开头),需要消除左递归。 应用消除左递归算法:将 $S \to S\alpha \mid \beta$ 形式的文法改写为:

$$S \to \beta S'$$
$$S' \to \alpha S' \mid \varepsilon$$

对于我们的文法, $\alpha = (S)S$, $\beta = \varepsilon$, 因此转换后的文法为:

$$S \to \varepsilon S'$$

 $S' \to (S)SS' \mid \varepsilon$

简化后:

$$S \to S'$$

 $S' \to (S)SS' \mid \varepsilon$

1.3 文法 3: $S \to S + S \mid SS \mid (S) \mid S* \mid a$

这个文法存在多种形式的左递归,需要消除所有的左递归产生式。 消除左递归后得到:

$$S \rightarrow (S)S' \mid aS'$$

$$S' \rightarrow +SS' \mid SS' \mid *S' \mid \varepsilon$$

1.4 文法 4: 布尔表达式文法

原文法:

bexpr \rightarrow bexpr or bterm | bterm bterm \rightarrow bterm and bfactor | bfactor bfactor \rightarrow not bfactor | (bexpr) | true | false

消除左递归: 对 bexpr:

 $\begin{array}{l} \mathrm{bexpr} \to \mathrm{bterm} \ \mathrm{bexpr'} \\ \\ \mathrm{bexpr'} \to \mathrm{or} \ \mathrm{bterm} \ \mathrm{bexpr'} \mid \varepsilon \end{array}$

对 bterm:

bterm \rightarrow bfactor bterm' bterm' \rightarrow and bfactor bterm' | ε

bfactor 不包含左递归,保持不变。 最终消除左递归后的文法:

bexpr \rightarrow bterm bexpr' | ε bexpr' \rightarrow or bterm bexpr' | ε bterm \rightarrow bfactor bterm'
bterm' \rightarrow and bfactor bterm' | ε bfactor \rightarrow not bfactor | (bexpr) | true | false

2 练习 4.4.3: 计算 FIRST 和 FOLLOW 集合

计算以下文法的 FIRST 和 FOLLOW 集合:

$$S \rightarrow SS + \mid SS * \mid a$$

2.1 计算 FIRST 集

FIRST 集的计算规则:

1. 如果 X 是终结符,则 $FIRST(X) = \{X\}$

- 2. 如果 X 是非终结符,且有产生式 $X \to Y_1Y_2 \dots Y_k$,则将 FIRST $(Y_1) \{\varepsilon\}$ 加入到 FIRST(X) 中
- 3. 如果 $\varepsilon \in \text{FIRST}(Y_1)$, 则将 $\text{FIRST}(Y_2) \{\varepsilon\}$ 加入到 FIRST(X) 中
- 4. 如果 $\varepsilon \in \text{FIRST}(Y_1), \text{FIRST}(Y_2), \dots, \text{FIRST}(Y_{k-1}),$ 则将 $\text{FIRST}(Y_k) \{\varepsilon\}$ 加入到 FIRST(X) 中
- 5. 如果 $\varepsilon \in \text{FIRST}(Y_i)$ 对所有的 i = 1, 2, ..., k 成立,则将 ε 加入到 FIRST(X) 中 对于给定的文法,我们有:

$$S \rightarrow SS+$$
 $S \rightarrow SS*$
 $S \rightarrow a$

计算 FIRST(S):

- $\pm FS \rightarrow a$, $a \in FIRST(S)$
- 对于 $S \to SS+$ 和 $S \to SS*$,右部都以 S 开始,这会导致递归调用,但由于 S 不能推导出 ε ,我们不需要考虑右部后续符号

所以, $FIRST(S) = \{a\}$

2.2 计算 FOLLOW 集

FOLLOW 集的计算规则:

- 1. 如果 S 是开始符号,则 $\$ \in FOLLOW(S)$
- 2. 如果有产生式 $A \to \alpha B\beta$, 则将 FIRST(β) $\{\varepsilon\}$ 加入到 FOLLOW(B) 中
- 3. 如果有产生式 $A \to \alpha B$ 或 $A \to \alpha B \beta$ 且 $\varepsilon \in \text{FIRST}(\beta)$,则将 FOLLOW(A) 加入到 FOLLOW(B) 中

对于给定的文法, 我们有:

- S 是开始符号, 所以 $\$ \in FOLLOW(S)$
- 从产生式 $S \to SS+$ 看,第一个 S 后面跟着 S,所以 $FIRST(S) \subset FOLLOW(S)$,即 $a \in FOLLOW(S)$
- 从产生式 $S \to SS +$ 看,第二个 S 后面跟着 +,所以 + \in FOLLOW(S)
- 从产生式 S → SS* 看,第二个 S 后面跟着*,所以*∈ FOLLOW(S)
 所以,FOLLOW(S) = {a,+,*,\$}

3 练习 4.4.4: 计算 FIRST 和 FOLLOW 集合

计算以下各个文法的 FIRST 和 FOLLOW 集合:

3.1 文法 1: $S \rightarrow 0S1 \mid 01$

3.1.1 FIRST 集

计算 FIRST(S):

• 由于 $S \to 0S1$ 和 $S \to 01$,所有产生式都以 0 开头 所以,FIRST(S) = $\{0\}$

3.1.2 FOLLOW 集

计算 FOLLOW(S):

- S 是开始符号,所以 $\$ \in FOLLOW(S)$
- 从产生式 $S \to 0S1$ 看,S 后面跟着 1,所以 $1 \in \text{FOLLOW}(S)$ 所以, $\text{FOLLOW}(S) = \{1,\$\}$
- 3.2 文法 2: $S \rightarrow +SS \mid *SS \mid a$

3.2.1 FIRST 集

计算 FIRST(S):

- $\pm F S \rightarrow +SS$, $+ \in FIRST(S)$
- $\pm F S \rightarrow *SS$, $* \in FIRST(S)$
- 由于 $S \to a$, $a \in FIRST(S)$ 所以, $FIRST(S) = \{+, *, a\}$

3.2.2 FOLLOW 集

计算 FOLLOW(S):

- S 是开始符号,所以 $\$ \in FOLLOW(S)$
- 从产生式 $S \to +SS$ 和 $S \to *SS$ 看,当 S 是第一个 S 时,它后面跟着 S,所以 FIRST(S) \subset FOLLOW(S)

所以, $FOLLOW(S) = \{+, *, a, \$\}$

3.3 文法 3: $S \rightarrow S(S)S \mid \varepsilon$

3.3.1 FIRST 集

计算 FIRST(S):

- $\pm \exists S \to \varepsilon, \ \varepsilon \in \text{FIRST}(S)$
- 由于 $S \to S(S)S$, 产生式右部以 S 开头, 鉴于 $\varepsilon \in FIRST(S)$, 我们需要考虑紧随其后的字符
- 如果 $S \Rightarrow \varepsilon$,则产生式 $S \to S(S)S$ 可视为 $S \to (S)S$,所以 $(\in FIRST(S)$ 所以, $FIRST(S) = \{\varepsilon, (\}$

3.3.2 FOLLOW 集

计算 FOLLOW(S):

- S 是开始符号,所以 $\$ \in FOLLOW(S)$
- 从产生式 $S \to S(S)S$ 看:
 - 第一个 S 后面跟着 ((∈ FOLLOW(S)
 - 第二个 S 后面跟着)) ∈ FOLLOW(S)

所以, $FOLLOW(S) = \{\$, (,)\}$

3.4 文法 4: $S \rightarrow S + S \mid SS \mid (S) \mid S* \mid a$

3.4.1 FIRST 集

计算 FIRST(S):

- $\pm F S \rightarrow a$, $a \in FIRST(S)$
- 产生式 $S \to S + S$, $S \to SS$ 和 $S \to S*$ 都以 S 开头,但 S 不能推导出 ε ,所以不会引入新的 FIRST 集元素

所以, $FIRST(S) = \{a, (\}$

3.4.2 FOLLOW 集

计算 FOLLOW(S):

- S 是开始符号,所以 $\$ \in FOLLOW(S)$
- 从产生式 $S \rightarrow S + S$ 看:
 - 第一个 S 后面跟着 + ,所以 $+ \in FOLLOW(S)$
- 从产生式 $S \rightarrow SS$ 看:
 - 第一个 S 后面跟着 S, 所以 $FIRST(S) \subset FOLLOW(S)$, 即 $a, (\in FOLLOW(S))$
- 从产生式 $S \to (S)$ 看, S 后面跟着), 所以) \in FOLLOW(S)
- 从产生式 $S \to S*$ 看,S 后面跟着 *,所以 * \in FOLLOW(S)

所以, FOLLOW(S) = {\$,+,a,(,),*}

3.5 文法 5: $S \to (L) \mid a$ 和 $L \to L, S \mid S$

3.5.1 FIRST 集

计算 FIRST(S):

- $\pm F S \rightarrow (L)$, $(\in FIRST(S))$
- 由于 S → a, a ∈ FIRST(S)
 所以, FIRST(S) = {(,a}
 计算 FIRST(L):
- 由于 $L \to S$, FIRST $(S) \subset \text{FIRST}(L)$, 即 $(a \in \text{FIRST}(L))$
- 产生式 $L \to L, S$ 以 L 开头,但 L 不能推导出 ε ,所以不会引入新的 FIRST 集元素 所以,FIRST(L) = $\{(,a\}$

3.5.2 FOLLOW 集

计算 FOLLOW(S):

- S 是开始符号,所以 $\$ \in FOLLOW(S)$
- 从产生式 $L \to L, S$ 看,S 后面可能跟着 FOLLOW(L) 的元素,所以 $FOLLOW(L) \subset FOLLOW(S)$ 计算 FOLLOW(L):
- 从产生式 $S \to (L)$ 看, L 后面跟着), 所以) \in FOLLOW(L)
- 从产生式 $L \to L, S$ 看,L 后面跟着 ,,所以 , \in FOLLOW(L) 所以,FOLLOW(L) = $\{\}$, , $\}$, 进而 FOLLOW(S) = $\{\$$, $\}$, $\}$

3.6 文法 6: $S \rightarrow aSbS \mid bSaS \mid \varepsilon$

3.6.1 FIRST 集

计算 FIRST(S):

- 由于 $S \to aSbS$, $a \in FIRST(S)$
- $\pm \exists S \to bSaS, b \in FIRST(S)$
- 由于 $S \to \varepsilon$, $\varepsilon \in \text{FIRST}(S)$ 所以, $\text{FIRST}(S) = \{a, b, \varepsilon\}$

3.6.2 FOLLOW 集

计算 FOLLOW(S):

- S 是开始符号,所以 $\$ \in FOLLOW(S)$
- 从产生式 $S \rightarrow aSbS$ 看:

- 第一个 S 后面跟着 b, 所以 $b \in FOLLOW(S)$
- 从产生式 $S \rightarrow bSaS$ 看:
 - 第一个 S 后面跟着 a, 所以 $a \in FOLLOW(S)$

所以, $FOLLOW(S) = \{\$, a, b\}$

3.7 文法 7: 布尔表达式文法

原文法:

bexpr \rightarrow bexpr or bterm | bterm bterm \rightarrow bterm and bfactor | bfactor bfactor \rightarrow not bfactor | (bexpr) | true | false

3.7.1 FIRST 集

计算 FIRST(bfactor):

- $\pm \pm b$ factor \rightarrow not bfactor, not \in FIRST(bfactor)
- $\pm \mp \text{ bfactor} \rightarrow (\text{bexpr}), (\in \text{FIRST}(\text{bfactor}))$
- $\pm \mp$ bfactor \rightarrow true, true \in FIRST(bfactor)
- $\pm \mp$ bfactor \rightarrow false, false \in FIRST(bfactor)

所以, FIRST(bfactor) = {not, (, true, false} 计算 FIRST(bterm):

- $\pm \mp$ bterm \rightarrow bfactor, FIRST(bfactor) \subset FIRST(bterm)
- 产生式 bterm \to bterm and bfactor 以 bterm 开头,但 bterm 不能推导出 ε ,所以不会引入新 的 FIRST 集元素

所以, FIRST(bterm) = {not, (, true, false} 计算 FIRST(bexpr):

- $\pm \mp \text{ bexpr} \rightarrow \text{bterm}$, FIRST(bterm) $\subset \text{FIRST(bexpr)}$
- 产生式 bexpr \to bexpr or bterm 以 bexpr 开头,但 bexpr 不能推导出 ε ,所以不会引入新的 FIRST 集元素

所以, $FIRST(bexpr) = \{not, (, true, false)\}$

3.7.2 FOLLOW 集

计算 FOLLOW(bexpr):

- bexpr 是开始符号, 所以 \$ ∈ FOLLOW(bexpr)
- 从产生式 bfactor → (bexpr) 看, bexpr 后面跟着), 所以) ∈ FOLLOW(bexpr)

- 从产生式 bexpr → bexpr or bterm | bterm 看 bexpr 后面跟着 or, 所以 or ∈ FOLLOW(bexpr)
 计算 FOLLOW(bterm):
- 从产生式 bexpr → bexpr or bterm 看, bterm 后面可能跟着 FOLLOW(bexpr) 的元素, 所以 FOLLOW(bexpr) ⊂ FOLLOW(bterm)
- 从产生式 bexpr → bterm 看, bterm 后面可能跟着 FOLLOW(bexpr) 的元素,所以 FOLLOW(bexpr) ⊂ FOLLOW(bterm)

所以,FOLLOW(bexpr) = $\{\$, \}$, or $\}$, 进而 FOLLOW(bterm) = $\{\$, \}$, or $\}$ 计算 FOLLOW(bfactor):

- 从产生式 bterm → bterm and bfactor 看, bfactor 后面可能跟着 FOLLOW(bterm) 的元素, 所以 FOLLOW(bterm) ⊂ FOLLOW(bfactor)
- 从产生式 bterm → bterm and bfactor 看, bterm 后面跟着 and, 所以 and ∈ FOLLOW(bterm)
 所以, FOLLOW(bterm) = {\$,), or, and}, 进而 FOLLOW(bfactor) = {\$,), or, and}