МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского»

Радиофизический факультет

Отчет по лабораторной работе "Изучение колебательного движения"

Отчет по (учебной) практике

Студентов группы 0424С1ИБг1 1 курса специалитета Скороходов С.А., Степушов Г.С.

Основная образовательная программа подготовки по направлению 10.05.02 «Информационная безопасность телекоммуникационных систем» (направленность «Системы подвижной цифровой защищенной связи»)

Содержание

1	Вве	дение	3
	1.1	Цель	3
	1.2	Задачи	3
	1.3	Приборы и оборудование	3
2	Teo	ретическая часть	4
	2.1	Основные вычисления	4
	2.2	Вычисления погрешностей	5
3	Пра	ктическая часть	7
	3.1	Определение коэффициента упругости пружин	7
	3.2	Измерение периода колебаний пружин	8
	3.3	Определение зависимости периода колебаний от амплитуды	11
	3.4	Изучение зависимости периода колебаний от времени	12
4	Выі	вод	14
5	Спи	сок использованной литературы	15
6	Ппи	пожение	16

1 Введение

1.1 Цель

Изучить колебательные движения на примере пружинного маятника.

1.2 Задачи

- 1. Определение k из формулы 1, измеряя для каждой пружины величины $\triangle l$ с различными грузами M.
- 2. Измерить периоды колебаний для каждой пружины с различными грузами M. Построить графики зависимости T^2 от M. Сравнить с расчетной зависимостью $T^2 = \frac{4\pi^2 M}{k}$.
- 3. Выяснить зависимость периода колебаний от амплитуды.
- 4. Изучить зависимость периода колебаний от времени. Для чего нужно, на останавливая колебания, выяснить, через какое время амплитуда станет равной $\frac{3}{4}$ от начального значения A_0 , затем $\frac{1}{2}A_0$, $\frac{1}{4}A_0$. Построить график зависимости A от t.

1.3 Приборы и оборудование

Для проведения исследований нужно: штатив с мерной шкалой, секундомер, большая пружина $m_1=145$ г, малая пружинка $m_2=9$ г, набор грузов $M_i=100$ г. $\Delta t=0,2$ с, $\Delta l=0,1$ см, $\Delta M=\Delta m=1$ г.

2 Теоретическая часть

2.1 Основные вычисления

Равновесное положение груза массы M, подвешенного на пружине (см.рис.1), определяется равенством величин силы упругости $F = k \triangle l$ и силы тяжести Mg.

$$k\triangle l = Mq \tag{1}$$

, где k - коэффициент упругости (жесткость) пружины, $\triangle l$ - ее удлинение от недеформированного состояния. Выведенной из положения равновесия груз колеблется около этого положения по синусоидальному (гармоническому) закону.

Рис. 1:

$$x = A\cos(\omega t + \varphi) \tag{2}$$

, где x - смещение груза от положения равновесия, - амплитуда колебаний (величина наибольшего смещения груза от положения равновесия), φ - начальная фала колебаний, ω - круговая (циклическая) частота, период колебаний $T=\frac{2\pi}{\omega}$. Величины A и φ определяется на начальных условий, т.е. значениям x и $V_x=\dot{x}$ в момент времени t=0. Другими словами, A и φ определяются способами возбуждения колебаний груза. Гармоническая зависимость x(t) вида 2 является, как можно проверить непосредственной подстановкой, решением уравнения.

$$\ddot{x} + \omega^2 x = 0 \tag{3}$$

называемого уравнением гармонического осциллятора. Кроме груза на пружине, гармоническими осцилляторами являются, например, математический маятник, электрический колебательный контур без потерь и ряд других систем. В нашем случае уравнение 3 можно получить из второго закона Ньютона, который в проекции на ось x (см.рис.) имеет вид.

$$Ma_x = Mg + F_x \tag{4}$$

Деформация пружины в произвольном положении груза равна $x + \triangle l$ ($x + \triangle l < 0$ в соответствует сжатой пружине), и проекция силы, действующей на груз со стороны пружины, равна $F_x = -k(x + \triangle l)$. Если, кроме того, учесть условие (1) и равенство $a_x = \ddot{x}$, то после преобразований получается уравнение гармонического осциллятора.

$$\ddot{x} + \frac{k}{M}x = 0 \tag{5}$$

Сравнение (3) и (5) показывает, что $\omega^2 = \frac{k}{M}$, а период колебаний. Формула (6) справедлива, если масса пружины m << M.

$$T = 2\pi \sqrt{\frac{M}{k}} \tag{6}$$

Выразим из формулы 1 коэффициент k.

$$k = \frac{Mg}{\Delta l} = \frac{Mg}{l - l_0} \tag{7}$$

2.2 Вычисления погрешностей

Вычислим косвенную погрешность формулы 7. Т.к. измерение длины пружинки проводились только один раз, то будем считать абсолютную погрешность равной приборной ($k_{\text{случайная}} = 0$).

$$\triangle k = \sqrt{\left(\frac{\mathrm{d}k}{\mathrm{d}l}\right)^2 \triangle l^2 + \left(\frac{\mathrm{d}k}{\mathrm{d}l_0}\right)^2 \triangle l_0^2 + \left(\frac{\mathrm{d}k}{\mathrm{d}M}\right)^2 \triangle M^2}$$
 (8)

$$\Delta k = \frac{g}{l - l_0} \sqrt{\Delta M^2 + M^2 \frac{\Delta l_0^2 + \Delta l^2}{(l - l_0)^2}}$$
 (9)

Измерения каждого параметра проводятся только один раз, поэтому будем считать случайную погрешность равной 0 ($\triangle l_{\rm cn}=0,$ $\triangle l_{0\,{\rm cn}}=0,$ $\triangle M_{\rm cn}=0$).

$$\triangle l = \triangle l_{\rm np} = t_{\alpha,\infty} * \frac{\delta_l}{3} \tag{10}$$

$$\triangle l_0 = \triangle l_{0 \text{ mp}} = t_{\alpha,\infty} * \frac{\delta_l}{3} \tag{11}$$

$$\triangle M = \triangle M_{\rm np} = t_{\alpha,\infty} * \frac{\delta_M}{3} \tag{12}$$

Для нахождения периода колебаний пружинного маятника нужно найти отношение общего времени движения от количество полных колебаний.

$$T = \frac{t}{n} \tag{13}$$

Вычислим абсолютную погрешность t.

$$\triangle t_{\rm np} = t_{\alpha,\infty} * \frac{\delta_t}{3} \tag{14}$$

$$S_{t,n} = \sqrt{\frac{\sum_{i=1}^{n} (t_{cp} - t_i)^2}{n(n-1)}}$$
 (15)

$$\Delta t_{\text{cn}} = t_{\alpha,n} * S_{t,n} \tag{16}$$

$$\Delta t = \sqrt{\Delta t_{\rm np}^2 + \Delta t_{\rm cn}^2} \tag{17}$$

Вычислим косвенную погрешность формулы 13 и ее квадрата ($T^2 = T^*$).

$$\Delta T = \sqrt{\left(\frac{\mathrm{d}T}{\mathrm{d}t}\right)^2 \Delta t^2} = \frac{\Delta t}{n} \tag{18}$$

$$\Delta T^* = \sqrt{\left(\frac{\mathrm{d}T^2}{\mathrm{d}T}\right)^2 * \Delta T^2} = 2T\Delta T = \frac{2T\Delta t}{n} \tag{19}$$

Квадрат периода колебаний пружинного маятника также можно найти через формулу 6, возведя ее в части в квадрат.

$$T^* = \frac{4\pi^2 M}{k} \tag{20}$$

Выразим косвенную погрешность формулы 20.

$$\Delta T^* = \sqrt{(\frac{dT^*}{dk})^2 * \Delta k^2 + (\frac{dT^*}{dM})^2 * \Delta M^2} = \frac{4\pi^2 \sqrt{\Delta M^2 k^2 + \Delta k^2 M^2}}{k^2}$$
(21)

3 Практическая часть

3.1 Определение коэффициента упругости пружин

Определяем исходную длину пружин без нагрузки — l_0 , а также с нагрузкой M. Исходя из полученных данных можно вычислить коэффициент упругости пружин по формуле 7 (Вычисления - Приложение 1). (Таблица 1)

T 7 1 II	1 1	
таршина г. из	мепения коэттинен	га жесткости пружин
таолица т. из	мерении коэффициен.	a meethoeth hpymhii

	Пружина большая				Пружинка малая						
М, кг	0,1 0,2 0,3 0,4				0,1	0,2	0,3	0,4			
l_0 , cm		36,5				26,0					
l, cm	40,5	44,7	48,9	53,0	28,5	31,2	33,6	36,0			
$l-l_0$, cm	4,0	8,2	12,4	16,5	2,5	5,2	7,6	10,0			
<i>k</i> , Н/м	Н/м 24,53 23,93 23,73 23,78				39,24	37,73	38,72	39,24			
$k_{\text{сред}}$, Н/м	23,99				38,73						

Вычисляем приборную погрешность инструментов по формулам 10, 11 и 12: $\triangle l = \triangle l_0 = 0,065$ см, $\triangle M = 0,65$ г (Вычисления - Приложение 2). Теперь возможно получение косвенной погрешности коэффициента упругости k по формуле 9 (Вычисление - Приложение 3). (Таблица 2)

Таблица 2: Вычисление абсолютной погрешности коэффициента упругости

l, cm	l_0 , cm	M, кг	$\triangle l$, cm	$\triangle l_0$, cm	$\triangle M$, Γ	$\triangle k$, H*M
40,500	36,500	0,1				0,59
44,700	36,500	0,2				0,28
48,900	36,500	0,3				0,18
53,000	36,500	0,4	0,065	0.065	0,065 0,7	0,14
28,500	26,000	0,1	0,003	0,003		1,47
31,200	26,000	0,2				0,68
33,600	26,000	0,3				0,48
36,000	26,000	0,4				0,37

3.2 Измерение периода колебаний пружин

Производим измерения периода колебаний пружинного маятника. Устанавливаем оптимальную амплитуду ($A=4\,\mathrm{cm}$) с разными массами грузов M. После подготовки установки, запускаем в движение маятник и измеряем за какое время t пройдет n полных колебаний. Для уменьшения величины погрешности времени производим три измерения при одинаковых параметрах. (Таблица 3)

Таблица 3: Измерение периода колебаний в зависимости от массы груза

Большая пружина												
M, кг	0,1			0,2 0,3		0,4						
n	10			10			10			10		
No	1	2	3	1	2	3	1	2	3	1	2	3
t, c	4,9	4,9	5,0	6,3	6,2	6,1	7,3	7,4	7,3	8,2	8,3	8,3
$t_{ m cpeg}$, с		4,9		6,2		7,3			8,3			
T, c	0,49		0,62		0,73			0,83				
T^*, c^2		0,24			0,38			0,54		0,68		

	Малая пружинка											
M, кг	0,1			0,2		0,3			0,4			
n	10				10			10			10	
No	1	2	3	1	2	3	1	2	3	1	2	3
t, c	3,9	4,1	3,9	4,7	4,5	4,6	5,5	5,6	5,4	6,6	6,5	6,4
$t_{ m cpeg}$, с		4,0		4,6		5,5			6,5			
T, c	c 0,40		0,46		0,55			0,65				
T^*, c^2	0,16				0,21		0,30		0,42			

Определим косвенную погрешность квадрата периода $\triangle T^*$ (Формула - 19, Приложение - 8) (Таблица 4), вычислив $\triangle t$ (Формулы 14-17, Приложение - 4-7) . Также найдем квадрат периода колебаний через формулу 20 и его погрешность по формулам 19 и 21 (Приложение 10).(Таблица 5).

Таблица 4: Вычисление косвенной погрешности квадрата периода

S_t , c	$\triangle t_{\mathrm{сл}},$ с	$\triangle t_{\mathrm{np}}, \mathbf{c}$	$\triangle t$, c	$\triangle T^*, c^2$
0,01	0,03	0,33	0,33	0,11
0,02	0,05	0,33	0,33	0,14
0,01	0,03	0,33	0,33	0,16
0,01	0,03	0,33	0,33	0,18
0,03	0,06	0,33	0,33	0,09
0,02	0,05	0,33	0,33	0,10
0,02	0,05	0,33	0,33	0,12
0,02	0,05	0,33	0,33	0,14

Таблица 5: Вычисление квадрата периода по формуле 20

				_ 1	T - F J
k, H/M	М, кг	T^*, c^2	$\triangle M$, Γ	$\triangle k$, H/M	$\triangle T^*, c^2$
24,53	0,1	0,161	0,65	0,59	0,004
23,93	0,2	0,330	0,65	0,28	0,004
23,73	0,3	0,499	0,65	0,18	0,004
23,78	0,4	0,664	0,65	0,14	0,004
39,24	0,1	0,101	0,65	1,47	0,004
37,73	0,2	0,209	0,65	0,68	0,004
38,72	0,3	0,306	0,65	0,48	0,004
39,24	0,4	0,402	0,65	0,37	0,004

Рис. 2: График зависимости квадрата периода от массы груза большой пружины

Рис. 3: График зависимости квадрата периода от массы груза малой пружины

3.3 Определение зависимости периода колебаний от амплитуды

Устанавливаем на стенд пружинки с массой груза $M=300~\mathrm{f}$, амплитудой A. Начинаем измерения, фиксируя время n полных колебаний. После получения данных, по формуле 13 вычисляем период колебаний. (Таблица 3.3)

Таолица	таолица от теследование зависимости периода от амилитуды						
	Пр	ужина бол	тьшая	Пружинка малая			
Амплитуда	малая	средняя	большая	малая	средняя	большая	
A, cm	0,5	2	4	0,5	2	4	
n	10	10	10	10	10	10	
<i>t</i> , c	7,6	7,4	7,2	5,3	5,2	5,1	
<i>T</i> , c	0,76	0,74	0,72	0,53	0,52	0,51	

Таблица 6: Исследование зависимости периода от амплитуды

Вычислим абсолютную погрешность секундомера (Формула 14), т.к. было произведено только одно измерение при разных амплитудах, то будем считать $\Delta t_{\rm cn}=0$, поэтому $\Delta t_{\rm np}=\Delta t$, и косвенную погрешность периода T (Формула 18, Приложение - 11).

$$\triangle t = t_{\alpha,\infty} * \frac{\delta_t}{3} = 1,96 * \frac{0,5 \text{ c}}{3} = 0,33 \text{ c}$$
 (22)

$$\Delta T = \frac{0,33c}{10} = 0,03c \tag{23}$$

Рис. 4: График зависимости периода колебаний от амплитуды

3.4 Изучение зависимости периода колебаний от времени

Изучим зависимость периода колебаний от времени. Для этого установим маятник на A=4 см, M=300 г и будем фиксировать таймер в моментах, когда амплитуда будет равно отношениям $\frac{3}{4}A_0=3$ см, $\frac{1}{2}A_0=2$ см, $\frac{1}{4}A_0=1$ см.

Таблица 7: Исследование зависимости амплитуды колебаний от времени

	№ опыта	A, cm	1	2	3	4
	1		0	70	183	545
Пружина большая	2	t, c	0	56	180	515
	3		0	108	238	555
	1		0	10	20	69
Пружинка малая	2	t, c	0	10	20	55
	3		0	9	20	55

Вычислим абсолютную погрешность времени (Формулы 14-17, Приложение 6, 12-14).

Таблица 8: Вычисление абсолютной погрешности t

S_t , c	$\triangle t_{ m cn},{ m c}$	$\triangle t_{\mathrm{np}},\;\mathbf{c}$	$\triangle t$, c
0,00	0,00	0,33	0,33
6,34	21,28	0,33	21,28
7,70	25,82	0,33	25,28
4,91	16,46	0,33	16,46
0,00	0,00	0,33	0,33
0,14	0,46	0,33	0,56
0,27	0,91	0,33	0,97
1,91	6,39	0,33	6,40

Рис. 5: График периода колебаний от времени большой пружины

Рис. 6: График периода колебаний от времени малой пружины

4 Вывод

В ходе данного исследования было определено значение коэффициента жёсткости k с использованием формулы 1 путём измерения удлинения $\triangle l$ для каждой пружины при различных значениях массы груза M.

Были проведены измерения периодов колебаний для каждой пружины с разными грузами M, после чего были построены графики зависимости T^2 от M, которые были сопоставлены с теоретической зависимостью $T^2 = \frac{4\pi^2 M}{k}$.

Следует отметить, что линия тренда не пересекает точку 0, следовательно, при M=0 колебания будут иметь место.

Было установлено, что амплитуда колебаний не оказывает влияния на период колебаний с учётом погрешности измерений.

Также было замечено, что со временем колебания затухают по обратной экспоненциальной зависимости.

5 Список использованной литературы

- 1. Фаддев М.А. Элементарная обработка результатов эксперимента: Учебное пособие. Нижний Новгород: Издательство Нижегородского государственного университета, 2010. 102 с.
- 2. Скворцов В.А. Изучение колебательного движения: Описание к лабораторной работе. Нижний Новгород: Издательство Нижегородского государственного университета, 1994. 7 с.

6 Приложение

1. Вычисление коэффициента упругости

$$k_1 = \frac{0,1*9,81}{0,405-0,365} = 24,52 \text{ H/m} \qquad k_5 = \frac{0,1*9,81}{0,285-0,26} = 39,24 \text{ H/m}$$

$$k_2 = \frac{0,2*9,81}{0,447-0,365} = 23,93 \text{ H/m} \qquad k_6 = \frac{0,2*9,81}{0,312-0,26} = 37,73 \text{ H/m}$$

$$k_3 = \frac{0,3*9,81}{0,489-0,365} = 23,73 \text{ H/m} \qquad k_7 = \frac{0,3*9,81}{0,336-0,26} = 38,72 \text{ H/m}$$

$$k_4 = \frac{0,4*9,81}{0,53-0,365} = 23,78 \text{ H/m} \qquad k_8 = \frac{0,4*9,81}{0,36-0,26} = 39,24 \text{ H/m}$$

2. Вычисление приборной погрешности

$$\Delta l = t_{\alpha,\infty} * \frac{\delta_l}{3} = 1,96 * \frac{0,1~\text{cm}}{3} = 0,065~\text{cm}$$

$$\Delta l_0 = t_{\alpha,\infty} * \frac{\delta_l}{3} = 1,96 * \frac{0,1~\text{cm}}{3} = 0,065~\text{cm}$$

$$\Delta M = t_{\alpha,\infty} * \frac{\delta_M}{3} = 1,96 * \frac{1~\text{f}}{3} = 0,65~\text{f}$$

3. Вычисление косвенной погрешности коэффициента упругости

$$\Delta k_6 = \frac{9,81}{0,312 - 0,26} \sqrt{0,0007^2 + 0,2^2 \frac{0,0007^2 + 0,0007^2}{(0,312 - 0,26)^2}} = 0,68$$

$$\Delta k_7 = \frac{9,81}{0,336 - 0,26} \sqrt{0,0007^2 + 0,3^2 \frac{0,0007^2 + 0,0007^2}{(0,336 - 0,26)^2}} = 0,48$$

$$\Delta k_8 = \frac{9,81}{0,36 - 0,26} \sqrt{0,0007^2 + 0,4^2 \frac{0,0007^2 + 0,0007^2}{(0,36 - 0,26)^2}} = 0,37$$

4. Расчет среднеквадратичного отклонения

$$S_{t1} = \frac{\sqrt{(4,9-4,9)^2 + (4,9-4,9)^2 + (4,9-5,0)^2}}{6} = 0,01 \text{ c}$$

$$S_{t2} = \frac{\sqrt{(6,2-6,3)^2 + (6,2-6,2)^2 + (6,2-6,1)^2}}{6} = 0,02 \text{ c}$$

$$S_{t3} = \frac{\sqrt{(7,3-7,3)^2 + (7,3-7,4)^2 + (7,3-7,3)^2}}{6} = 0,01 \text{ c}$$

$$S_{t4} = \frac{\sqrt{(8,3-8,2)^2 + (8,3-8,3)^2 + (8,3-8,3)^2}}{6} = 0,01 \text{ c}$$

$$S_{t5} = \frac{\sqrt{(4,0-3,9)^2 + (4,0-4,1)^2 + (4,0-3,9)^2}}{6} = 0,03 \text{ c}$$

$$S_{t6} = \frac{\sqrt{(4,6-4,7)^2 + (4,6-4,5)^2 + (4,6-4,6)^2}}{6} = 0,02 \text{ c}$$

$$S_{t7} = \frac{\sqrt{(5,5-5,5)^2 + (5,5-5,6)^2 + (5,5-5,4)^2}}{6} = 0,02 \text{ c}$$

$$S_{t8} = \frac{\sqrt{(6,5-6,6)^2 + (6,5-6,5)^2 + (6,5-6,4)^2}}{6} = 0,02 \text{ c}$$

5. Расчет случайной погрешности

$$\triangle t_{\text{сл 1}} = 2,306 * 0,014 = 0,03c$$
 $\triangle t_{\text{сл 5}} = 2,306 * 0,027 = 0,06c$ $\triangle t_{\text{сл 6}} = 2,306 * 0,024 = 0,05c$ $\triangle t_{\text{сл 6}} = 2,306 * 0,024 = 0,05c$ $\triangle t_{\text{сл 7}} = 2,306 * 0,014 = 0,03c$ $\triangle t_{\text{сл 7}} = 2,306 * 0,024 = 0,05c$ $\triangle t_{\text{сл 8}} = 2,306 * 0,024 = 0,05c$

6. Расчет приборной погрешности

$$t_{\rm np} = 1,96 * \frac{0,5c}{3} = 0,33c$$

7. Вычисление косвенной погрешности времени

8. Вычисление косвенной погрешности периода колебаний

$$\Delta T_1^* = \frac{2*0,49*0,33}{3} = 0,11 \text{ c}^2 \qquad \Delta T_5^* = \frac{2*0,4*0,33}{3} = 0,09 \text{ c}^2$$

$$\Delta T_2^* = \frac{2*0,62*0,33}{3} = 0,14 \text{ c}^2 \qquad \Delta T_6^* = \frac{2*0,46*0,33}{3} = 0,10 \text{ c}^2$$

$$\Delta T_3^* = \frac{2*0,73*0,33}{3} = 0,16 \text{ c}^2 \qquad \Delta T_7^* = \frac{2*0,55*0,33}{3} = 0,12 \text{ c}^2$$

$$\Delta T_4^* = \frac{2*0,83*0,33}{3} = 0,18 \text{ c}^2 \qquad \Delta T_8^* = \frac{2*0,65*0,33}{3} = 0,14 \text{ c}^2$$

9. Вычисление квадрата периода

$$T_{1}^{*} = \frac{4 * \pi^{2} * 0, 1}{24, 52} = 0,161 \text{ c}^{2}$$

$$T_{5}^{*} = \frac{4 * \pi^{2} * 0, 1}{39, 24} = 0,101 \text{ c}^{2}$$

$$T_{2}^{*} = \frac{4 * \pi^{2} * 0, 2}{23, 93} = 0,330 \text{ c}^{2}$$

$$T_{6}^{*} = \frac{4 * \pi^{2} * 0, 2}{37, 73} = 0,209 \text{ c}^{2}$$

$$T_{7}^{*} = \frac{4 * \pi^{2} * 0, 3}{23, 73} = 0,499 \text{ c}^{2}$$

$$T_{7}^{*} = \frac{4 * \pi^{2} * 0, 3}{38, 72} = 0,306 \text{ c}^{2}$$

$$T_{8}^{*} = \frac{4 * \pi^{2} * 0, 4}{39, 24} = 0,402 \text{ c}^{2}$$

10. Вычисление косвенной погрешности квадрата периода

$$\Delta T_1^* = \frac{4\pi^2 \sqrt{0,59^2 * 24,52^2 + 0,59^2 * 0,1^2}}{24,52^2} = 0,004 \text{ c}^2$$
$$\Delta T_2^* = \frac{4\pi^2 \sqrt{0,28^2 * 23,93^2 + 0,28^2 * 0,2^2}}{23,93^2} = 0,004 \text{ c}^2$$

$$\Delta T_3^* = \frac{4\pi^2 \sqrt{0,18^2 * 23,73^2 + 0,18^2 * 0,3^2}}{23,73^2} = 0,004 \text{ c}^2$$

$$\Delta T_4^* = \frac{4\pi^2 \sqrt{0,14^2 * 23,78^2 + 0,14^2 * 0,4^2}}{23,78^2} = 0,004 \text{ c}^2$$

$$\Delta T_5^* = \frac{4\pi^2 \sqrt{1,47^2 * 39,24^2 + 1,5^2 * 0,1^2}}{39,24^2} = 0,004 \text{ c}^2$$

$$\Delta T_6^* = \frac{4\pi^2 \sqrt{0,68^2 * 37,73^2 + 0,68^2 * 0,2^2}}{37,73^2} = 0,004 \text{ c}^2$$

$$\Delta T_7^* = \frac{4\pi^2 \sqrt{0,48^2 * 38,72^2 + 0,48^2 * 0,3^2}}{38,72^2} = 0,004 \text{ c}^2$$

$$\Delta T_8^* = \frac{4\pi^2 \sqrt{0,37^2 * 39,24^2 + 0,37^2 * 0,4^2}}{39,24^2} = 0,004 \text{ c}^2$$

11. Вычисление периода колебаний

$$T_1 = \frac{7.6}{10} = 0,76 \text{ c}$$
 $T_3 = \frac{7.2}{10} = 0,72 \text{ c}$ $T_5 = \frac{5.2}{10} = 0,52 \text{ c}$ $T_6 = \frac{5.1}{10} = 0,51 \text{ c}$ $T_7 = \frac{7.4}{10} = 0,74 \text{ c}$ $T_8 = \frac{5.3}{10} = 0,53 \text{ c}$ $T_8 = \frac{5.1}{10} = 0,51 \text{ c}$

12. Расчет среднеквадратичного отклонения

$$S_{t1} = \frac{\sqrt{(0,0-0,0)^2 + (0,0-0,0)^2 + (0,0-0,0)^2}}{6} = 0,00 \text{ c}$$

$$S_{t2} = \frac{\sqrt{(78,0-70,0)^2 + (78,0-56,0)^2 + (78,0-108,0)^2}}{6} = 6,34 \text{ c}$$

$$S_{t3} = \frac{\sqrt{(200,3-183,0)^2 + (200,3-180,0)^2 + (200,3-238,0)^2}}{6} = 7,70 \text{ c}$$

$$S_{t4} = \frac{\sqrt{(538,3-545,0)^2 + (538,3-515,0)^2 + (538,3-555,0)^2}}{6} = 4,91 \text{ c}$$

$$S_{t5} = \frac{\sqrt{(0,0-0,0)^2 + (0,0-0,0)^2 + (0,0-0,0)^2}}{6} = 0,00 \text{ c}$$

$$S_{t6} = \frac{\sqrt{(9,7-10,0)^2 + (9,7-10,0)^2 + (9,7-9,0)^2}}{6} = 0,14 \text{ c}$$

$$S_{t7} = \frac{\sqrt{(20,7-20,0)^2 + (20,7-22,0)^2 + (20,7-20,0)^2}}{6} = 0,27 \text{ c}$$

$$S_{t8} = \frac{\sqrt{(59,7-69,0)^2 + (59,7-55,0)^2 + (59,7-55,0)^2}}{6} = 1,91 \text{ c}$$

13. Расчет случайной погрешности

$$\triangle t_{\text{сл 1}} = 3,355 * 0,00 = 0,00 \text{ c}$$
 $\triangle t_{\text{сл 5}} = 3,355 * 0,00 = 0,00 \text{ c}$
 $\triangle t_{\text{сл 6}} = 3,355 * 0,14 = 0,46 \text{ c}$
 $\triangle t_{\text{сл 7}} = 3,355 * 7,70 = 25,82 \text{ c}$
 $\triangle t_{\text{сл 7}} = 3,355 * 0,27 = 0,91 \text{ c}$
 $\triangle t_{\text{сл 8}} = 3,355 * 4,91 = 16,46 \text{ c}$
 $\triangle t_{\text{сл 8}} = 3,355 * 1,91 = 6,39 \text{ c}$

14. Расчет абсолютной погрешности

$$\triangle t_1 = \sqrt{0,33^2 + 0,00^2} = 0,33 \text{ c}$$
 $\triangle t_5 = \sqrt{0,33^2 + 0,00^2} = 0,33 \text{ c}$ $\triangle t_2 = \sqrt{0,33^2 + 21,28^2} = 21,28 \text{ c}$ $\triangle t_6 = \sqrt{0,33^2 + 0,46^2} = 0,56 \text{ c}$ $\triangle t_3 = \sqrt{0,33^2 + 25,82^2} = 25,82 \text{ c}$ $\triangle t_7 = \sqrt{0,33^2 + 0,91^2} = 0,97 \text{ c}$ $\triangle t_4 = \sqrt{0,33^2 + 16,46^2} = 16,46 \text{ c}$ $\triangle t_8 = \sqrt{0,33^2 + 6,39^2} = 6,40 \text{ c}$