Problem Set 1: Number Systems

Number System Conversions

☐ Bookmark this page

Problem Set due May 6, 2023 10:37 PDT Completed

Decimal to Binary

1/1 point (graded)

Express the decimal number 1000_{10} as a binary number. Only use the exact number of bits required (i.e., no leading zeros). Do the math with paper and pencil to get used to your powers of 2.

Decimal to Hexadecimal

1/1 point (graded)

Express the decimal number 1000_{10} as a 3-digit hexadecimal number. This should be straightforward by referring to the previous question.

Hexadecimal to Binary

1/1 point (graded)

Express the hexadecimal number $BEEF_{16}$ as a binary number. Do not use a calculator; this problem should be easy if done properly.

Hexadecimal to Decimal

1/1 point (graded)

Express the hexadecimal number $BB8_{16}$ as a decimal number. Do the math with pencil and paper to get used to your powers of 2.

Binary to Decimal

1/1 point (graded)

Express the binary number 1100101_2 as a decimal number. Do the math with pencil and paper to get used to your powers of 2.

Range of Numbers

1/1 point (graded)

What are the most positive values that can be represented with 16-bit unsigned, sign-magnitude, and 2's complement numbers, respectively.

Submit Try again (1 attempt remaining) (1	Show answer
○ {65536, 32768, 32768}	
○ {32768, 32768, 32768}	
○ {32768, 32768, 32768}	

Range of Numbers

1/1 point (graded)

What are the most negative values that can be represented with 16-bit unsigned, sign-magnitude, and 2's complement numbers, respectively.

Submit

Try again (1 attempt remaining) 1

Show answer

Problem Set due May 6, 2023 10:37 PDT Completed Addition
1/1 point (graded)
Compute 1010 ₂ + 0111 ₂ and write your result as a 5-bit binary number.
10001
Submit Try again (1 attempt remaining) 1 Hint Show answer
Unsigned Interpretation
1/1 point (graded)
If the numbers in the addition problem above are unsigned, interpret the addition in decimal.
○ -2 + 7 = 5
○ -6 + 7 = -15
○ -6 + 7 = 1
O 10 + 7 = 1
10 + 7 = 17

Submit

Try again (1 attempt remaining) 🚯

Show answer

Two's Complement Interpretation

1/1 point (graded)

If the numbers in the addition problem above are signed 2's complement (4-bit for the addends and 5-bits for the sum), write an expression for the addition in decimal.

- \bigcirc -2 + 7 = 5
- \bigcirc -6 + 7 = -15
- \bigcirc -6 + 7 = 1
- \bigcirc 10 + 7 = 1
- \bigcirc 10 + 7 = 17

Submit

Try again (1 attempt remaining) 1

Show answer

Carry out

1/1 point (graded)

Interpreting the numbers as 2's complement, how can you recast the addition problem above to give a sensible result?

Check all that apply.

- ✓ Truncate the 5 bit output to 4 bits like the inputs: 1010 + 0111 = 0001 (-6 + 7 = 1)
- Sign-extend the inputs to 5 bits and interpret the output as 5 bits: 11010 + 00111 = 00001 (-6 + 7 = 1)
- Sign-extend the inputs to 5 bits and interpret the output as 6 bits: 11010 + 00111 = 100001 (-6 + 7 = 1)
- Because of overflow, information is lost and the answer cannot be made sensible.
- Addition of 2's complement numbers never produces sensible results.

Submit

Try again (1 attempt remaining) 1

Show answer

Overflow

1/1 point (graded)

When adding a pair of N-bit two's complement numbers to get an N-bit sum, overflow occurs if and only if:

Subtraction

1/1 point (graded)

Using 6-bit two's complement arithmetic, compute 001000_2 - 010010_2 and express your answer as a 6-bit binary number.

Zero Extension

1/1 point (graded)

Extend the 6-bit unsigned binary number 101111₂ to be an 8-bit unsigned binary number.

Sign Extension

1/1 point (graded)

Extend the 6-bit signed 2's complement binary number 101111_2 to be an 8-bit 2's complement binary number.

Sign Extension

1/1 point (graded)

Extend the 8-bit 2's complement hexadecimal number AD_{16} to 16 bits. Express your result in hexadecimal.

