PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

Cn N 15/31

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 4:
C12N 15/00, A61K 39/04
C01N 22/560

(11) International Publication Number:

WO 88/ 05823

GU1N 33/509

(43) International Publication Date: 11 August 1988 (11.08.88)

(21) International Application Number: PCT/US88/00281

(22) International Filing Date: 1 February 1988 (01.02.88) (74) Agents: GRANAHAN, Patricia et al.; Hamilton, Brook, Smith & Reynolds, Two Militia Drive, Lexington, MA 02173 (US).

(31) Priority Application Number:

010,007

A2

(32) Priority Date:

2 February 1987 (02.02.87)

(33) Priority Country:

US

applicant: WHITEHEAD INSTITUTE FOR BIOM-EDICAL RESEARCH [US/US]: Nine Cambridge Center, Cambridge, MA 02142 (US).

nventors: HUSSON, Robert, N.; 60 Parkman Street, Brookline, MA 02146 (US). YOUNG, Richard, A.; 11 Sussex Road, Winchester, MA 01890 (US). SHIN-NICK, Thomas, M.: 1434 Rainier Falls Drive, Atlanta, GA 30329 (US).

(81) Designated States: AT (European patent), AU. BE (European patent), CH (European patent), DE (European pat pean patent), FR (European patent), GB (European patent), IT (European patent), JP, LU (European patent), NL (European patent), SE (European patent).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: MYCOBACTERIUM TUBERCULOSIS GENES ENCODING PROTEIN ANTIGENS

(57) Abstract

Mycobacterium tuberculosis genes encoding five immunologically relevant proteins have been isolated by systematically screening a lambda gtl1 recombinant DNA expression library with a collection of murine monoclonal antibodies dited against protein antigens of this pathogen. One of the M. tuberculosis antigens, a 65kD protein, has been shown to have determinants common to M. tuberculosis and M. leprae. In addition, genes encoding proteins of other mycobacteria (M. africanum, M. smegmatis, M. bovis BCG and M. avium) have been isolated. Isolation and characterization of genes encoding major protein antigens of M. tuberculosis make it possible to develop reagents useful in the diagnosis, prevention and treatment of tuberculosis. They can be used, for example, in the development of skin tests, serodiagnostic tests and reines specific for tuberculosis.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT AU BB BE BG BJ BR CF CGH CM DE DK FI:	Austria Australia Barbados Belgium Bulgaria Benin Brazil Central African Republic Congo Switzerland Cameroon Germany, Federal Republic of Denmark Finland	FR GA GB HU IT JP KP KR LI LK LU MC MG	France Gabon United Kingdom Hungary Italy Japan Democratic People's Republic of Korea Republic of Korea Liechtenstein Sri Lanka Luxembourg Monaco Madagascar	ML MR MW NL NO SD SE SN TD TG US	Mali Mauritania Malawi Netherlands Norway Romania Sudan Sweden Senegal Soviet Union Chad Togo United States of America
--	---	--	--	--	--

•

MYCOBACTERIUM TUBERCULOSIS GENES AND ENCODING PROTEIN ANTIGENS

Description

Background

15

20

25

Tuberculosis was the major cause of infectious mortality in Europe and the United States in the 19th and early 20th centuries. Dubos, R. and J. Dubos, The White Plague: Tuberculosis, Man and Society, Little Brown & Co., Boston, MA, (1952).

Today, it remains a significant global health

Today, it remains a significant global health problem.

For example, in the United States there are over 20,000 new cases of tuberculosis diagnosed annually. In addition, the steadily declining incidence of tuberculosis evident in preceding years appears to have changed course, reaching a plateau in 1985 and showing an increase in the first half of 1986. Centers for Disease Control, Morbidity/Mortality, Weekly Report, 34:774 (1986); and Centers for Disease Control, Morbidity/Mortality, Weekly Report, 35:774 (1986).

Worldwide, tuberculosis remains widespread and constitutes a health problem of major proportions, particularly in developing countries. The World Health Organization estimates that there are ten million new cases of active tuberculosis per year and an annual mortality of approximately three

million. Joint International Union Against Tuberculosis and World Health Organization Study Group, Tubercle, 63:157-169 (1982).

Tuberculosis is caused by Mycobacterium (M.) 0.5 tuberculosis or Mycobacterium (M.) bovis, which are the 'tubercle bacilli' of the family Mycobacteriaceae. M. bovis is a species which causes tuberculosis in cattle and is transmissible to humans and other animals, in whom it causes tuberculosis. present, nearly all tuberculosis is caused by 1 û respiratory infection with M. tuberculosis. Infection may be asymptomatic in some, but in other individuals, it produces pulmonary lesions which lead to severe debilitation or death. Resistance to tuberculosis is provided by cell-mediated immune 15 mechanisms.

Mycobacteria are aerobic, acid-fast, non-sporeforming, non-motile bacili with high lipid contents and slow generation times. M. leprae is the eti-20 ologic agent of leprosy and, among the other mycobacteria, the only major pathogen. Bloom, B.R. and T. Godal, Review of Infectious Diseases, 5:765-780 (1983). However, other mycobacterial species are capable of causing disease. Wallace, R.J. et.al., Review of Infectious Diseases, 5:657-679 (1984). 25 M.avium, for example, causes tuberculosis in fowl and in other birds. Members of the M. Avium-intracellularae complex have become important pathogens among individuals with acquired immunodeficiency syndrome (AIDS). Certain groups of 30

25

individuals with AIDS have a markedly increased incidence of tuberculosis—as well. Pitchenik, A.E. et. al., Annals of Internal Medicine, 101:641-645 (1984).

0.5 Diagnostic and immunoprophylatic measures for mycobacterial diseases have changed little in the past half century. Tuberculin, developed by Koch as a cure for tuberculosis in the late 1800s, is an M. tuberculosis filtrate of complex and poorly-defined composition. It is used as a skin test antigen to 10 detect prior exposure to the bacillus. Enrichment of the protein fraction of this material in the 1930's produced the purified protein derivative (PPD) which is still used to diagnose exposure to 15 tuberculosis. Seibert, F.M. et.al., American Review of Tuberculosis, 30(Suppl.):705-778 (1934). Its usefulness is limited, however, by its lack of specificity and its inability to distinguish active disease from prior sensitization by contact with M. 20 tuberculosis or cross-sensitization to other mycobacteria. Young, R.A. and R.W. Davis, Proceedings of the National Academy of Sciences, USA, 80:194-1198 (1983).

Bacille Calmette Guerin (BCG), an avirulent strain of M. bovis, has been used widely as a live vaccine against tuberculosis for over 50 years.

Calmette, A., C. et.al., Bulletin of the Academy of

Medicine Paris, 91:787-796 (1924). During that time, numerous studies have shown that BCG has protective efficacy against tuberculosis. studies are reviewed by F. Luelmo in American Review 05 of Respiratory Diseases, 125(pt. 2):70-72 (1982). However, more recently, a major trial of BCG in India indicated that such a vaccine was not protective against tuberculosis in this setting. World Health Organization WHO Technical Report Series, 651 (1980). Presently available approaches to diagnos-1.0 ing, preventing and treating tuberculosis are limited in their effectiveness and must be improved if a solution is to be found for the important public health problem tuberculosis represents 15 worldwide.

Summary of the Invention

20

The present invention is based on the isolation of genes encoding immunogenic protein antigens of the tubercle bacillus Mycobacterium tuberculosis (M. tuberculosis). Genes encoding such protein antigens have been isolated from a recombinant DNA expression library of M. tuberculosis DNA. Genes encoding proteins of four additional mycobacteria have also been isolated and restriction maps produced.

In particular, genes encoding five immunodominant protein antigens of the tuberculosis bacillus (i.e., those M. tuberculosis proteins of molecular weight 12,000 daltons (12kD), 14kD, 19kD, 65kD and 71kD have been isolated by probing a lambda gtll expression library of M. tuberculosis DNA with

10

25

monoclonal antibodies directed against M. tuberculosis-specific antigens.

Recombinant DNA clones producing the specific antigenic determinants recognized by the monoclonal antigens were also isolated in this manner. from such recombinant lambda gtll clones was mapped with restriction endonucleases; the restriction maps for genes encoding the five immunodominant protein antigens (i.e., genes encoding the 12kD, 14kD, 19kD, 65kD and 71kD proteins) were deduced. The nucleotide sequence of three of the genes have been determined and, in each case, the amino acid sequence of the encoded protein has been deduced.

Brief Description of the Drawings

15 Figure 1 shows restriction maps of M. tuberculosis DNA. Recombinant DNA clones isolated with monoclonal antibodies directed against the 12kD, 14kD, 19kD, 65kD and 71kD protein antigens were mapped with restriction endonucleases. The insert 20 DNA endpoints are designated left (L) or right (R) in relation to lac Z transcripts which traverse the insert from right to left. Restriction sites are represented as follows: A, Sal I; B, BamHI; E, EcoRI; G, BglII; K, KpnI; P, PvuI; S, SacI; X, XhoI.

Figure 2 shows arrays of antigens from M. tuberculosis recombinant DNA clones probed with rabbit hyperimmune serum. The code of the recombinant DNA clones shown on the numbers filter is: 1, Y3275; 2, Y3274; 3, Y3279; 4, Y3277; 5, Y3247; 6,

30 Y3272; 7, Y3150; 8, Y3254; 9, Y3147; 10, Y3163; 11,

10

15

30

Y3179; 12, Y3191; 13, Y3252; 14, Y3178; 15, Y3180; 16, Y3143; 17, lambda gtll. Clones 1, 5, 6, 7, 9 and 16 are M. tuberculosis recombinants described in the following section. Clones 10, 11, 14 and 15 are M. leprae recombinants expressing epitopes of the 18kD, 28kD, 36kD and 65kD antigens, respectively. Clones 2, 3, 4, 8, 12, 13 are uncharacterized recombinants from the lambda gtll M. tuberculosis and M. leprae libraries. Clone 17 is a non-recombinant lambda gtll control.

Figure 3 shows arrays of recombinant mycobacterial antigens probed with monoclonal antibodies to assess the extent of cross-reactivity between recombinant protein antigen of M. tuberculosis and of M. leprae. The array of clones is identical to that shown in Figure 2. Antibody probes and the antigen sizes recognized are: 1, IT-11 (71kD); 2, IT-31 (65kD); 3, IT-16 (19kD); 4, IT-1 (14kD); 5, IT-3 (12kD).

Figure 4 shows restriction maps of DNA encoding four proteins (71kD, 65kD, 19kD and 14kD) of M. tuberculosis and four proteins (71kD, 65kD, 19kD and 14kD) of M. bovis BCG. Restriction sites are represented as follows: A, AatII; B, BamHl; C, BcII; D, DraIII; E=EcoRI; G, BgIII; H, HinfI; K, KpnI; P, PstI; S, SaII; V, PvuI and X, XhoI.

Figure 5 is a comparison of restriction maps of the gene encoding the 65kD protein of 6 mycobacteria (M. leprae, M. tuberculosis, M. africanum, M. bovis BCG, M. smegmatis, M. avium). Restriction sites are

j,

0.5

15

20

as follows: B, BamHl; K, KpnI; N, SacI; P, PvuI; S, SalI; X, XhoI.

Figure 6 is the nucleotide sequence of the region containing the <u>M. tuberculosis</u> 19kD gene. The deduced amino acid sequence of the encoded protein is also represented (protein start position, nucleotide 1110; protein stop position, nucleotide 1586).

Figure 7 is the nucleotide sequence of the region containing the M. tuberculosis 71kD gene and the deduced amino acid sequence of the encoded protein.

Figure 8 is the nucleotide sequence of the region containing the <u>M. tuberculosis</u> 65kD gene. The deduced amino acid sequences of the two long open reading frames are presented in one letter code over (540) or under (517) the appropriate triplets.

Detailed Description of the Invention

The invention described herein is based on the isolation of genes encoding immunogenic protein antigens of the bacillus <u>M. tuberculosis</u>, which is the major etiologic agent of tuberculosis. In particular, it is based on the isolation, using monoclonal antibodies directed against <u>M.</u>

- tuberculosis-specific antigens, of genes encoding five immunogenic protein antigens of the tuberculosis bacillus; these five antigens are immunodominant. Immunogenic antigens are those which elicit a response from the immune system.
- 30 Immunodominant protein antigens are immunogenic

antigens against which the immune system directs a significant portion of its response. Genes encoding M. tuberculosis antigens of molecular weight 12,000 daltons (12kD), 14kD, 19kD, 65kD and 71kD were isolated in this manner.

0.5

10

15

20

25

30

Isolation and characterization of major protein antigens of M. tuberculosis, as described herein, make it possible to develop more effective tools for the prevention, diagnosis, and treatment of tuberculosis. Identification and isolation of genes encoding five immunodominant M. tuberculosis protein antigens, as well as of the five protein antigens, are described below; uses of the genes and encoded products are also described.

M. bovis BCG DNA clones were also isolated for the genes encoding the 71kD, 65kD, 19kD and 14kD proteins. In order to compare M. bovis BCG and M. tuberculosis genes encoding proteins of similar molecular weight, restriction endonuclease maps were determined for DNA segments containing each of the genes. Restriction maps for each of these genes is represented in Figure 4.

In addition, DNA clones were isolated for the genes encoding the 65kD protein from M. africanum, M. smegmatis and M. avium. Restriction endonuclease maps were determined for DNA segments containing each of these genes. The restriction maps for these genes, as well as for the genes encoding the 65kD protein of M. tuberculosis, M. bovis BCG and M. leprae, are represented in Figure 5.

-9-

I. Construction of a recombinant expression library of M: tuberculosis DNA

Lambda gtll is a bacteriophage vector which is

A recombinant DNA expression library of M.

tuberculosis DNA was constructed using lambda gtll.

The library was constructed with M. tuberculosis
genomic DNA fragments in such a way that all
protein-coding sequences would be represented and
expressed. Young, R.A., B.R. Bloom, C.M.
Grosskinsky, J. Ivanyi, D. Thomas and R.W. Davis,
Proceedings of the National Academy of Sciences,
USA, 82:2583-2587 (1985).

05

10

capable of driving the expression of foreign insert DNA with E. coli transcription and translation signals. Lambda gtll expresses the insert DNA as a 15 fusion protein connected to the E. coli Betagalactosidase polypeptide. This approach ensures that the foreign DNA sequence will be efficiently transcribed and translated in E. coli. This approach is also useful in addressing the problem of 20 the highly unstable nature of most foreign proteins; fusion proteins are often more resistant to proteolytic degradation than is the foreign polypeptide alone. Lambda gtll and the E. coli strain used 25 (Y1090) have been described previously. Young, R.A. et al., Proceedings of the National Academy of Sciences, USA, 80:1194-1198 (1983); Young, R.A. and R.W. Davis, Science, 222:778-782 (1983). The teachings of these publications are incorporated 30 herein by reference. The library constructed in this manner has a titer of lx 10¹⁰ pfu/ml. and

contains approximately 40% recombinants with an average insert size of 4kB.

II. Screening of the lambda gtll M. tuberculosis library with antibody probes

Murine monoclonal antibodies to protein antigens of M. tuberculosis were used individually to
probe the M. tuberculosis recombinant DNA library.
This work is described below and with specific
reference to the 65kD antigen in the Exemplification. The antibodies used as probes and the sizes
of the antigens to which they bind are shown below.

		M. tuberculosis
	Antibody	Antigen
	IT-3	12kD
15	IT-20	14kD
	IT-19	19kD
	IT-27	19kD
	IT-17	23kD
	IT-29	23kD
20	: IT-15	_ 38kD
	IT-21	38kD
	IT-23	. 38kD
	IT-13	65kD
	IT-31	65kD
25	IT-33	65kD
	IT-11	71kD

Engers, H.D. et al., Infectious Immunology, 51:718-720 (1986).

ì.

05

10

15

20

25

30

All monoclonal antibodies were used at approximately 1:200 to 1:300 dilution in 50mM Tris-HCl pH8/150 mM NaCl/.05% Tween 20.

Screening of the lambda gtll recombinant DNA library was performed as described by Young et al. in Proceedings of the National Academy of Sciences, USA, 82:2583-2587 (1985), the teachings of which are incorporated herein by reference. One modification was made in the method described by Young and co-workers: 1% bovine serum albumin was used in place of 20% fetal calf serum to decrease background.

Briefly, cloned lambda gtll recombinants were arrayed on lawns of E. coli Y1090. The phage were grown, antigen expression was induced and the antigens were blotted and probed with serum. Detection of signal-producing plaques was performed with a biotinylated secondary antibody system (Vectastain, Vector Laboratories, Burlingame, CA) or with an alkaline phosphatase conjugated secondary antibody system (Protoblot, Promega Biotec, Madison, WI), both used according to manufacturer's instructions. Signal-producing clones were isolated using antibodies directed against protein antigens of molecular weight 12kD, 14kD, 19kD and 65kD and 71kD. In each case, similar numbers of clones were isolated in screens of approximately 105 recombinant plaques. DNA clones encoding the 23kD and 38kD antigens could not be detected with these antibodies, possibly because the native epitope is modified or topographically complex, or because the

The second of th

antigen-antibody interaction is too weak to be recognized by current detection methods.

III. Probing of Arrays of lambda gtl1 DNA Clones with Antibody Probes

05 0.2 ml of a saturated culture of Y1090 was added to 2.5 ml of molten LB soft agar, poured onto 100 mm plates containing 1.5% LB agar and allowed to harden at room temperature for 10 min. 100 ul of phage plate stock containing approximately 1011 10 pfu/ml of the lambda gtll DNA clones of interest were placed into alternate wells of 96-well tissue culture plates. A multi-pronged transfer device was placed briefly in the wells containing phage and then touched lightly to the surface of the plate 15 onto which the soft agar had been poured. plates were then incubated at 42°C for approximately 3 hours, at which point clear plaques approximately 5mm in diameter were visible. The plates were then overlayed with nitrocellulose filters saturated with 20 10mM isopropylthiogalactoside (IPTG) and incubated at 37°C for 3.5 hours. Subsequent processing of filters for detection of antigen was identical to the procedures described for screening of lambda gtll library with antibody probes.

Immunoscreening of the lambda gtll library to isolate clones reactive with monoclonal antibodies specific for the 65kD antigen is described in the Exemplification.

10

15

20

25

30

IV. Recombinant DNA Manipulation

DNA from recombinant lambda gtll clones was isolated and mapped with restriction endonucleases by standard techniques. Davis, R.W. et al., Advanced Bacterial Genetics: A Manual for Genetic Engineering, Cold Spring Harbor (1980).

Figure 1 shows the genomic DNA restriction map deduced for each of the genes encoding the five M. tuberculosis antigens and illustrates how each of the cloned DNAs aligns with that map. All clones isolated with monoclonal antibodies directed against any single antigen align with a single genomic DNA segment. This indicates that all clones were isolated because they express the protein of interest rather than an unrelated polypeptide containing a similar or identical epitope. In addition, this result suggests that each antigen is the product of a single gene.

The orientation of each DNA insert in the recombinant clones was determined by restriction analysis. Only among the clones for the 65kD antigen were the inserts found in both possible orientations relative to the direction of lac Z transcription in lambda gtll. This suggests that this protein can be expressed in E. coli from signals independent of those provided by lac Z. Similar results have been obtained for recombinant DNA clones encoding the 65kD antigens of M. bovis and M. leprae. Thole, J.E.R. et al., Infectious Immunology, 50:800-806 (1985); Young, R.A. et al., Nature, 316:450-452 (1985).

The nucleotide sequences of three regions of the <u>M. tuberculosis</u> DNA were determined: 1) the region containing the <u>M. tuberculosis</u> 19kD gene; 2) the region containing the <u>M. tuberculosis</u> 71kD gene; and 3) the region containing the 65kD gene. The three sequences are represented in Figures 6-8. Sequences were determined using standard techniques, which are described in the Exemplification.

V. Filter hybridization of Insert DNA Arrays of lambda gtll clones were create

10 Arrays of lambda gtll clones were created as described above and incubated at 42° for 5 hours. The plates were then overlayed with nitrocellulose filters and placed at 4°C for 1 hour. Probe DNA was labelled with ³²P by nick translation. Filter hybridization was performed as described by Davis et 15 al. in Advanced Bacterial Genetics: A Manual for Genetic Engineering, Cold Spring Harbor (1980), the teachings of which are incorporated herein by reference. Hybridization conditions were as follows: 50% 20 V/V formamide, 5x SSPE (1x SSPE is 0.18M NaCl, 10mM Na_{1.5}H_{1.5}PO₄, 1mM Na₂ EDTA, pH 7.0), 1x Denhardt's solution (0.02% w/v Ficoll, 0.02% w/v polyvinylpyrrolidone, 0.02% w/v bovine serum albumin), 0.3% NaDodSO₄ at 42°C for approximately 16 hours, fol-25 lowed by washing in 2x SSPE, 0.2% NaDodSO, at 45°C.

VI. Recombinant Antigens Recognized by Rabbit Serum

The response of a second animal to an antigen preparation of \underline{M} . <u>tuberculosis</u> was assessed by

þ

05

10

15

20

25

30

examining the reactivity of rabbit anti-M. tuberculosis hyperimmune sera with recombinant antigens. Cloned lambda gtll recombinants were arrayed on lawns of E. coli and probed with the rabbit hyperimmune serum. Anti-M. tuberculosis hyperimmune serum, produced by repeated immunization of rabbits with M. tuberculosis H37Rv culture filtrate, was provided by J. Bennedsen (Statens Seruminstitut, Copenhagen, Denmark). These sera were used at 1:100 dilution.

These sera produced positive signals with lambda gtll clones encoding each of the five M. tuberculosis epitopes which had been isolated with murine monoclonal antibodies (Figure 2). Particularly strong signals were observed with the 65kD and 71kD antigens (Figure 2). These results demonstrate that mice and rabbits can mount an antibody response to the same protein antigens of M. tuberculosis.

Clones for the five M. tuberculosis antigens were detected at similar frequencies in the lambda gtll recombinant DNA library. Thus, the number and type of antigen-producing clones isolated with polyclonal serum antibodies should reflect the relative titer and deversity of the individual antibodies in this serum.

To determine whether any of the 5 M. tuberculosis antigens are relatively immunodominant in the rabbit humoral immune response to M. tuberculosis, the M. tuberculosis lambda gtll recombinant DNA library was screened with the rabbit serum. Forty signal-producing clones were isolated, arrayed on

lawns of E. coli Y1090 and probed with monoclonal antibodies directed against each of the 5 recombinant M. tuberculosis protein antigens. Remarkably, 17 of the 40 clones (43%) reacted strongly with at 05 least one of the four anti-65kD monoclonal antibodies tested. An additional six clones (15%) reacted strongly with the anti-17kD monoclonal antibody (IT-11). This indicates that a large proportion of the anti-M. tuberculosis antibody 10 present in the rabbit serum was directed against the 65kD antigen of M. tuberculosis and suggests that it is a dominant antigen for the rabbit humoral immune response. Seventeen of the clones did not react with any of the monoclonal antibodies tested, 15 suggesting that the rabbit sera may identify M. tuberculosis proteins not recognized by the murine antibodies.

VII. Antigenic Relatedness of M. tuberculosis and M. leprae Proteins

There is evidence that M. tuberculosis and M.

leprae share immunologically important antigens. To
assess this further, an investigation of the exact
nature of the immunological relatedness among
recombinant protein antigens of M. tuberculosis and
M. leprae was conducted.

For each of five \underline{M} . <u>tuberculosis</u> and four \underline{M} . <u>leprae</u> protein antigens, a single recombinant DNA clone containing most or all of the gene of interest was used to express antigen in the following manner. The recombinant phage clones were arrayed on a lawn

-17-

of <u>E</u>. <u>coli</u> Y1090, which was then grown and induced for antigen expression. __

05

10

15

Antigen immobilized on nitrocellulose filters was then probed with 26 individual anti-M. tuberculosis and M. leprae monoclonal antibodies. Figure 3 shows the array of DNA clones used and the results . obtained with the anti-M tuberculosis antibodies IT-1, IT-3, IT-11, IT-16, and IT-31, which recognized proteins of 14kD, 12kD, 71kD, 19kD and 65kD respectively. Table 1 details the full results of these cross-screening experiments, showing the reactivity of antigen expressed from individual recombinant DNA clones with each of the individual monoclonal antibodies. Clones were scored as positive only if the signal produced was clearly greater than the background signal produced by the non-recombinant lambda gtl1 clone included in each array.

TABLE 1

Reactivity of Monoclonal Antibodies with

Recombinant Protein Antigens

				-		DHA	CLONES				
			R: 22	perculo	sis				· Ľ• 1	PEIG	
ANTIBODI	F q	12kD	14KD	19 K D	65 X D	71kD	-	18kD	28kD	36XD	65kD
		Y3275	¥3247	¥3147	Y3150	¥3272	1gt11	¥3179	X3163	Y3180	Y3178
H. tuber		_							•		
12%D	IT-3	\odot	•	-	-	•	•	-	-	•	•
14kD	IT-1	-	\odot	•	-	-	,-	-	-	•	-
	IT-4	-	\odot	-	-	-	-	-	-	-	-
	IT-20	-	\odot	-	•	-	•	-	-	-	
19kD	IT-10	-	-	⊙	-	-	-	-	•	-	-
	17-12	-	-	\odot	-	-	-	-	-	-	-
•	IT-16	-	-	\odot	-	-	-	-	-	-	-
	IT-19	-	-	\odot	-	-	-	-	-	-	-
65kD	IT-13	-	-	-	· •	-	-	-	-	-	-
	17-31		-	•	\odot	-	-		-	-	\odot
	11-33	-	-	-	\odot	-	•	-	•	-	Θ
71kD	IT-11	-	-	-	-	\odot	-	-	-	-	-
M. lepra	<u>e</u>										
18kD	L7-15	-	-	-	•	-	-	\odot	-	-	-
28kD	SA1.DZD	, -	-	-	-	-	. -	-	\odot	-	-
	SA1.BII	н -			-	-	-	-	-	-	-
36kD	F47-9-1		-	•	-	_	-	-	-	\odot	-
	HLO4-A	-	•	-	-	-	- ·	-	-	-	-
65kD	CI.I	_	-	-	⊙	-	-	-	-	-	\odot
	IIH9	-	-	-	\odot	-	-	-	-	-	\odot
	IIIE9	-	-	-	-	-	-	-	•	-	\odot
	IICS	-	-	-	\odot	-	•	-	-	-	\odot
	IIICB	-	- '	-	-	-	-	-	-	-	<u></u>
	T2.3	-	•	-	\odot	•	-	-	-	-	\odot
	Y-1 - 2	-	-	- ·	\odot	-	. •	-	•	-	Θ
	SA2.D70	: -	-	-	000	-	-	• •	•	-	000000
	HLJOA	\odot	⊙	⊙	\odot	⊙	. ①	•	\odot	\odot	©

0.5

10

15

Several conclusions can be drawn from the results shown in Table 1. Among the 11 monoclonal antibodies that recognize a 65kD antigen, 7 react with the 65kD protein from both mycobacteria (IT-31, C1.1, IIH9 (identical to IT-33), IIC8, T2.3, Y1-2, SA2.D7C), one antibody reacts only with the M. tuberculosis 65kD protein (IT-13), and two antibodies react only with the M. leprae 65kD protein (IIIE9 and IIIC8). One antibody, ML3OA, cross-reacts with an antigen in E. coli and could not specifically identify antigen-producing clones. These results indicate that the 65kD protein antigens of \underline{M} . tuberculosis and \underline{M} . leprae are homologues and share a number of epitopes. In addition to these shared epitopes, however, both 65kD antigens have epitopes that are specific for one species relative to the other.

No cross-reactivity was observed between other antigens of these two mycobacterial species.

- Because monoclonal antibodies recognize a single epitope and because only one or a few antibodies were available for each antigen, it is not clear whether the 65kD proteins are the only homologous protein antigens of M. tuberculosis and M. leprae.
- Among the antigens for which lambda gt11 clones have been isolated, the 18kD antigen of M. leprae and the 19kD antigen of M. tuberculosis are of similar size. To determine whether these two antigens are related, the homology of the DNA sequences that encode these antigens was examined. At conditions of moderate
- antigens was examined. At conditions of moderate stringency, no hybridization was observed between

-20-

the insert DNA and Y3147 (an M. tuberculosis 19kD clone) and Y3179 (an M. leprae 18kD clone). This indicates no significant homology between the DNA sequences of the insert DNAs of these two clones. This result suggests that the M. tuberculosis 19kD and the M. leprae 18kD proteins are unlikely to be homologous.

05

10

15

20

25

30

As a result of the work described, recombinant DNA clones encoding five major protein antigens of M. tuberculosis were isolated through the use of an extensive collection of well-characterized murine monoclonal antibodies. These five proteins were also found to be major antigens in the rabbit humoral immune response to M. tuberculosis. One of these antigens, the 65kD protein, is shared with another other mycobacterial pathogen M. leprae.

Several lines of evidence indicate that the 65kD antigen is among the most immunodominant of the protein antigens of M. tuberculosis. Eleven of the 25 different M. tuberculosis and M. leprae monoclonal antibodies examined in this study recognized the 65kD recombinant antigen from one or both mycobacteria. In addition, almost half of the recombinant DNA clones isolated with rabbit polyclonal anti-M. tuberculosis sera express the 65kD antigen, reflecting the predominance of antibody to this antigen in these sera.

Considerable evidence indicates that the 65kD antigen plays an important role in the human response to tuberculosis. Antibodies directed against this protein can be detected in the serum of

patients with tuberculosis. The 65kD antigen is present in purified protein derivatives (PPD's) of M. tuberculosis, M. bovis, and other mycobacteria. Thole, J.E.R. et al., Infection Immunity, 50:800-806 (1985). Finally, helper T cell clones reactive with recombinant 65kD antigen have been isolated from patients with tuberculosis, indicating that this antigen is involved in the cell-mediated as well as the humoral immune response to tuberculosis.

0.5

10

Among the major antigens of the leprosy bacillus, the 65kD antigen appears to elicit antibody and T cell responses similar to those observed for the M. tuberculosis antigen. Both serum antibodies and T cells directed against the 65kD M.

- leprae antigen have been observed in patients with leprosy. Britton, W.J. et al., Journal of Immunology, 135:4171-4177 (1985); Mustafa, A.S. et al., Nature, 319:63-66 (1986). In addition, T cell clones from leprosy patients have been found to
- respond to recombinant 65kD protein of M. bovis, as well as to PPD's from both M. bovis BCG and M. leprae. Emmrich, F. et al., Journal of Experimental Medicine, 163:1024-1029 (1986); Shankar, P. et al., Journal of Immunology, 136:4255-4263 (1986). It is
- interesting to note that in vaccine trials in Asia and Africa, BCG provided significant protection against leprosy, ranging from 20% to 80%. Fine, P., Tubercle, 65:137-153 (1984). An intriguing possibility is that the M. bovis BCG 65kD antigen is
- involved in engendering the immune protection

10

15

provided by this vaccine against \underline{M} . \underline{leprae} , as well as against \underline{M} . $\underline{tuberculosis}$.

In addition to the 65kD antigen, there is evidence that the 19kD and 71kD antigens of M. tuberculosis may be particularly important in the immune response to this bacillus. Helper T cell clones from tuberculosis patients have been isolated which respond to the recombinant 19kD protein. The 71kD antigen is recognized by the humoral immune system of both mice and rabbits, and antibody to this antigen has been shown to be a prominent component of hyperimmune anti-M. tuberculosis rabbit sera.

VIII. Isolation of DNA Clones for Genes Encoding Proteins of Additional Mycobacteria
Using the procedures described above for
isolation of genes encoding M. tuberculosis
proteins, genes encoding proteins of additional
mycobacteria were isolated. DNA clones containing

20 genes encoding the following proteins were isolated:

	Mycobacterium	Protein	Clone
	M. bovis BCG	71kD	PL1-101
		65kD	PL1-105
		19kD	PL1-501
25		14kD	PL1-502
	M. smegmatis	65kD	PL1-206
	M. avium	65kD	PL1-401
	M. africanum	65kD	PL1-301

For purposes of comparison, genes encoding the following proteins were isolated for <u>M. tuberculosis</u> and M. leprae:

	Mycobacterium	Protein	Clone
05	M. tuberculosis	71kD	¥3272
		65kD	Y3150
		19kD	Y3147
		14kD	Y3248
	M. leprae	65kD	

The following strains were used for this purpose:

	Species	<u>Isolate</u>				
	M. leprae	Armadillo isolate (WHO)				
	M. tuberculosis	Erdmann strain				
15	M. africanum	African clinical isolate				
	M. bovis BCG	Danish vaccine strain				
	M. smegmatis	MC ² -6				
	M. avium	AIDS patient isolate				

DNA from recombinant lambda gtll clones was isolated, as described above, and mapped with restriction endonucleases, using standard techniques. Davis, R.W. et al., Advanced Bacterial Genetics: A Manual for Genetic Engineering, Cold Spring Harbor (1980).

Figure 4 presents a comparison of the restriction maps for four genes of <u>M. tuberculosis</u> with the restriction maps for four genes of <u>M. bovis</u> BCG which encode proteins of the same molecular weight. As is evident from the figure, in each case, the

0.5

10

15

20

25

restriction sites on the two genes (e.g., those on the <u>M. tuberculosis</u> gene and those on the <u>M. bovis</u> gene which encodes a protein of the same molecular weight) are essentially identical. This indicates that the sequence of the genes of the two mycobacteria (at least those encoding these four proteins) are very similar and, therefore, the proteins they encode are also very similar.

Figure 5 presents a comparison of the restriction map for the gene encoding the 65kD protein for the six mycobacteria. As is evident, the restriction maps for the genes encoding the 65kD protein of M. tuberculosis, M. africanum, M. bovis BCG, M. smegmatis and M. avium are essentially identical. The fact that there is no detectable difference

The fact that there is no detectable difference among these mycobacteria at the level of the restriction map is an indication that, at least at this level, the encoded proteins are the same.

As is also evident, the map of the <u>M. leprae</u> 65kD gene has several identical restriction sties in common with those of the other mycobacteria; it also has two sites not found in the other genes and lacks three sites present in the others. This indicates that, at the level of the restriction map, there are similarities in the DNA (and the encoded protein). In addition, however, there are differences apparent at this level.

IX. Diagnostic, Therapeutic and Preventive Applications

The isolation of genes encoding major protein antigens of M. tuberculosis makes it possible to

10

15

20

25

30

address problems which presently exist in diagnosing treating and preventing tuberculosis. Isolation of genes encoding proteins of other mycobacteria, such as M. bovis BCG, M. africanum, M. smegmatis and M. avium makes it possible to address similar problems in diseases which they cause.

The nucleotide sequence of three of the five genes has been determined. The sequence of the remaining genes can be determined using well-known methods, such as that of Sanger et al. Sanger, F. et.al., Proceedings of the National Academy of Sciences, USA, 74:5463-5467 (1977). The amino acid sequence of each of the immunodominant proteins has been deduced from the nucleotide sequence of the three genes and can be done for the others.

Identification and characterization of the genes for major tuberculosis protein antigens and of the proteins themselves make it possible to develop improved reagents for diagnosis and immuno-prophylaxis of tuberculosis. Proteins antigens encoded by an entire gene, or amino acid sequences (e.g., peptides, protein fragments) which make up the antigenic determinant of a M. tuberculosis antigen (i.e., M. tuberculosis-specific antigenic determinants) may be used in serodiagnostic tests and skin tests. Such antigens would be highly specific to the tuberculosis bacillus and the tests in which they are used would also be highly specific. Highly specific serological tests would be of great value in screening populations for

-26-

individuals producing antibodies to M. tuberculosisspecific antigenic determinants; in monitoring the
development of active disease in individuals and in
assessing the efficacy of treatment. As a result,
early diagnosis of tuberculosis will be feasible,
thus making it possible to institute treatment at an
early stage of the disease and, in turn, to reduce
the likelihood it will be transmitted.

05

10

15

20

25

30

As a result of the work described, it is also possible to determine which segment(s) of the M. tuberculosis antigen is recognized by M. tuberculosis-specific T cells. A mixture of peptides recognized by helper T cells can serve as a specific skin test antigen useful in assessing immunological status (delayed hypersensitivity) of infected individuals and those with whom they come in contact. This specific skin test antigen would be useful in evaluating rapidly the immunological efficacy of anti-tuberculosis vaccines.

It is reasonable to expect that the products encoded by M. tuberculosis genes, particularly those shown to be recognized by helper T cells, are themselves immunogenic and thus useful components of vaccines against tuberculosis. These products include proteins and portions of such proteins (e.g., polypeptides and peptides). For example, one approach to vaccine development is the introduction of genes encoding products (e.g., polypeptides) which provide immunological protection into viruses such as vaccinia virus, or bacteria, such as cultivatable mycobacteria, thus producing a vaccine

capable of engendering long-lasting and very specific immunity. The genes encoding five immunodominant protein antigens of the tuberculosis bacillus, described herein, are useful for that purpose; genes encoding the 65kD, 19kD and 71kD antigens, or a portion thereof, are particularly valuable in vaccine construction.

Because of the similarities in the DNA encoding similarly-sized proteins and, thus, of the encodied proteins themselves, it is possible that, for example, a vaccine effective against two or more of the mycobacteria can be produced.

EXEMPLIFICATION

05

10

15

20

25

Isolation and Analysis of Recombinants Expressing the 65kD M. tuberculosis Antigen

The recombinant DNA library of M. tuberculosis genomic DNA fragments in the lambda gtll vector was constructed as described above. Recombinant phage lambda RY3143 and lambda RY3146 were used. Young, R.A. et al., Proceedings of the National Academy of Sciences, USA, 82:2583-2587 (1985). Subclones of the mycobacterial DNA inserts in these recombinant phage were constructed in pUC19 or M13mp9 vectors using standard recombinant DNA techniques. Messing, J. and J. Viera, Gene, 19:269-276 (1982). Maniatis, T. et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1982).

Monoclonal antibodies specific for the 65kD antigen were obtained from the Immunology of Tuberculosis Scientific Working Group under a grant from the WHO/World Bank/UNDP Special Program for 05 Vaccine Development. These antibodies included IT-13 (WTB-78), IT-31 (SA2D5H4), and IT-33 (MLIIH9). Coates, A.R.M. et al., Lancet, 2:167-169 (1981). Gillis, T.P. and T.M. Buchanon, Immunology, 37:172-178 (1982). Anti-B-galactosidase antibodies 10 were purchased from CooperBiomedical. Polyclonal rabbit antisera directed against a sonicate of M. tuberculosis strain H37Rv were elicited as described by Minden and co-workers. Minden, P. et al., Infect. Immun., 46:519-525 (1984). Results are 15 shown in Table 2.

20

25

TABLE 2: PATTERNS OF ANTIBODY REACTIVITIES

	Number of Clones	Reactivity with Antibodie			
		<u>IT-13</u>	<u>IT-31</u>	<u>IT-33</u>	
	27	+	+	+	
05	1	+	+	+	
	2	+		+	
	3	-	+	+	
	1	+		-	
	2	-	+	-	
10	2	-	-	+	

a: Recombinant clones expressing antigens reactive with the 65kD antigen specific monoclonal antibodies IT-13, IT-31, and IT-33 were isolated as described above. For the initial screen, a pool of the three antibodies was used; it contained a 1:1000 dilution of each antibody to screen a total of about 8 \times 10⁵ recombinant phage from the lambda gtll-M. tuberculosis library. To determine which monoclonal antibody reacted with which of the 38 plaquepurified recombinants, about 100 pfu of each recombinant phage were inoculated in small spots on a lawn of Y1090. The phage were allowed to grow and induced to synthesize the foreign proteins as described previously. The filters were then reacted with a 1:1000 dilution of one of the monoclonal hybridoma antibodies as described above.

-30-

The lambda gtll-M. tuberculosis library was screened with the monoclonal antibodies specific for the 65kD antigen and clones reactive with them were isolated essentially as described by Young et al. Young, R.A. et al., Proceedings of the National 0.5 Academy of Sciences, USA, 82:2583-2587 (1985). Briefly, for each 150mm LB plate, 0.6ml of a fresh overnight culture of Y1090 was infected with 1-2 x10⁵ plaque forming units of the library. After 3.5-4 hours of growth at 42°C, the plagues were 10 overlaid with a dry nitrocellulose filter which had been saturated with 10mM isopropyl-B-D-thiogalactopyranoside (IPTG). The plates were incubated an additional 3.5-4 hours at 37°C and then removed to 15 room temperature and the position of the filters marked. The filters were washed briefly in TBST (50 mM Tris-HCl, pH 8, 150mM NaCl, 0.05% Tween 20) and then incubated in TBST + 20% fetal calf serum. After 30 minutes at room temperature, the filters 20 were transferred to TBST plus antibody. For the initial screen, the antibody mix contained a 1:1000 dilution of IT-13, IT-31, and IT-33. The filters were incubated with the antibody solution overnight at 4°C with gentle agitation, washed in TBST and 25 reacted with biotinylated goat anti-mouse immunoglobulin, the Vectastain ABC reagent, and developer as described by the manufacturer (Vector Laboratories). After the color had developed the filters were washed with several changes of water and air dried. Phage corresponding to positive 30 signals were twice plaque purified. To determine

-31-

which monoclonal antibodies reacted with which of the recombinant phage, about 100 pfu of a purified phage stock were inoculated in a small spot on a lawn of Y1090 bacteria on an LB plate. The phage were allowed to grow and induced to synthesize the foreign proteins as described above. The filters were then reacted with a 1:1000 dilution of one of the monoclonal antibodies. The subsequent steps were the same as for the initial screen.

05

30

10 Western blot assays were carried out as follows: Cells containing phage or plasmids in which the expression of the foreign sequences was under the control of the E. coli lac gene regulatory sequences were induced to synthesize the foreign 15 proteins by incubating the cells in the presence of 2.5mM IPTG for 2 hours. Crude lysates of cells expressing lambda gtll recombinants were made as described in Huynh et al. Huynh, T.V. et al., In: DNA Cloning Techniques: A Practical Approach, (D. 20 Glover, ed.) IRL Press, Oxford, Vol. 1, pp. 49-78 (1985). Crude lysates of cells expressing plasmid encoded proteins were made by harvesting cells from overnight cultures and resuspending the cells in 10 mM Tris pH7.5/10 mM EDTA containing 100 ug 25 lysozyme/ml. After 10 minutes at room temperature, SDS was added to a final concentration of 0.5%. protease inhibitor (Trasylol, Boehringer Mannheim) was added to all crude lysates at a final concentration of 0.3%. The crude protein preparations

were electrophoresed on 10% polyacrylamide-SDS

Laemmli gels and the separate proteins electrophor-

etically transferred to nitrocellulose. Laemmli,
U.K., Nature, 227:680-685 (1970). Towbin, H. et

al., Proceedings of the National Academy of

Sciences, USA, 76:4350-4354 (1979). The immobilized

proteins were reacted with a 1:1000 dilution of

monoclonal antibody IT-13 in TBST overnight at 4°C.

The nitrocellulose filters were then washed, reacted

with peroxidase-conjugated goat anti-mouse immuno
globulin, and developed as described by Niman and

co-workers. Niman, H.L. et al., Proceedings of the

National Academy of Sciences, USA, 80:4949-4953

(1983).

The sequences of 5'-end-labeled restriction fragments of the mycobacterial DNA were determined 15 by a modification of the partial chemical degradation technique of Maxam and Gilbert. Brow, M.A.D. et al., Mol. Biol. Evol., 2:1-12 (1985). Maxam, A.M. and W. Gilbert, Proceedings of the National Academy of Sciences, USA, 74:560-564 20 For the M13/dideoxy sequencing studies, Sau3AI fragments from the mycobacterial DNA inserts were subcloned into the BamHI site of M13mp9. Phage DNA was isolated from the M13 recombinants and subjected to the dideoxy chain termination sequencing reactions. Biggin, M.D. et al., 25 Proceedings of the National Academy of Sciences, USA, 80:3963-3965 (1983). Sanger, F. et al., Journal of Molecular Biology, 143:161-178 (1980). The products of the sequencing reactions were electrophoresed on 6% acrylamide/7M urea/0.5-2.5 x 30 TBE gradient sequencing gels. The gels were dried

under vacuum and exposed to Kodak XRP-1 film. The nucleotide sequences were determined independently for both strands of the mycobacterial DNA.

Computer-aided analyses of the nucleic acid 0.5 sequences and deduced protein sequences were performed using the Databases and programs provided by the Nucleic Acid and Protein Identification Resources of the National Institutes of Health as well as the programs of Chou and Fasman and Hopp and 10 Woods. Chou, P.Y. and G.D. Fasman, Adv. Enzym., 47:45-148 (1978). Hopp, T.P. and K.P. Woods, Proceedings of the National Academy of Sciences, USA, 78:38'24-3828 (1981). The nucleotide sequence of the region containing the M. tuberculosis 65kD gene and the deduced amino acid sequence of the two 15 long open reading frames are represented in Figure 8.

B-galactosidase assays were also carried out. Cells were grown in LB broth or LB broth plus 2.5mM IPTG to an OD₆₀₀ of about 0.3. Crude lysates were made and b-galactosidase activity assayed as described by Miller. Miller, J.H., Experiments in Molecular Genetics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1972).

25 Equivalents

20

30

Those skilled in the art will recognize or be able to ascertain, using no more than routine experimentation, many equivalents to the specific materials and components described herein. Such equivalents are intended to be encompassed in the scope of the following claims.

-34-

<u>CLAIMS</u>

- 1. Isolated DNA encoding an immunogenic protein antigen of Mycobacterium tuberculosis.
- 2. DNA of Claim 1 selected from the group consisting of DNA encoding Mycobacterium tuberculosis protein antigens of molecular weight 71kD, 65kD, 19kD, 14kD and 12kD.
- 3. Isolated DNA encoding an immunodominant protein antigen of Mycobacterium tuberculosis, the protein antigen having a molecular weight of approximately 65kD and recognized by a monoclonal antibody selected from the group consisting of: IT-31; C1.1; IIH9; IIC8; T2.3; Y1-2; SA2.D7C and IT-13.
- 15
 4. Isolated DNA encoding an immunodominant protein antigen of Mycobacterium tuberculosis, the protein antigen having a molecular weight of approximately 19kD and recognized by a monoclonal antibody selected from the group consisting of: IT-10; IT-12; IT-16; and IT-19.
 - 5. Isolated DNA encoding an immunodominant protein antigen of Mycobacterium tuberculosis, the protein antigen having a molecular weight of approximately 71kD and recognized by the monoclonal antibody IT-11.

WO 88/05823 PCT/US88/00281

-35-

- 6. Isolated DNA encoding an antigenic determinant of Mycobacterium tuberculosis protein.
- 7. DNA of Claim 6 which encodes an antigenic determinant selected from the group consisting of antigenic determinants of Mycobacterium tuberculosis proteins of molecular weight 71kD, 65kD, 19kD, 14kD and 12kD.
- 8. Isolated DNA encoding an amino acid sequence of an antigenic determinant of Mycobacterium tuberculosis protein, said protein having a molecular weight of approximately 65kD.
 - 9. Isolated Mycobacterium tuberculosis DNA encoding an immunodominant protein antigen having a molecular weight of approximately 65kD, said DNA selected from the group consisting of:
 - a. the DNA insert of clone Y3141;
 - b. the DNA insert of clone Y3143;
 - c. the DNA insert of clone Y3150;
 - d. the DNA insert of clone Y3253; and
- e. the DNA insert of clone Y3262.

15

25

- 10. A protein antigen encoded by DNA of Claim 9.
- 11. A protein antigen of Claim 10, wherein the protein antigen is recognized by a monoclonal antibody selected from the group consisting of IT-31; C1.1; IIH9; IIC8; T2.3; Y1-2; SA2.D7C and IT-13.

20

- 12. Isolated DNA having a nucleotide sequence selected from the group consisting of: a) the nucleotide sequence represented in Figure 6, or a portion thereof; b) the nucleotide sequence represented in Figure 7, or a portion thereof; and c) the nucleotide sequence represented in Figure 8, or a portion thereof.
- 13. A protein or a peptide selected from the group consisting of: a) proteins or peptides encoded by the nucleotide sequence represented in Figure 6, or a portion thereof; b) proteins or peptides encoded by the nucleotide sequence represented in Figure 7, or a portion thereof; and c) proteins or peptides encoded by the nucleotide sequence represented in Figure 8, or a portion thereof.
 - 14. A peptide having the amino acid sequence of an antigenic determinant of Mycobacterium tuberculosis protein, said antigenic determinant being unique to Mycobacterium tuberculosis protein.
 - 15. A peptide encoded by isolated Mycobacterium tuberculosis DNA, said peptide recognized by helper T cells.
- 25 16. A peptide encoded by the <u>Mycobacterium</u> tuberculosis DNA insert of clone Y3150 or a portion of said DNA insert.

- 17. Isolated DNA encoding a protein of Myco-bacterium africanum the protein having a molecular weight of 65kD.
- 18. Isolated DNA encoding a protein of Mycobacterium avium, the protein having a molecular weight of 65kD.
 - 19. A vaccine comprising DNA encoding Mycobacterium tuberculosis protein in a recombinant vaccine vector capable of expressing said DNA.
- 10. 20. A vaccine of Claim 19 in which the recombinant vaccine vector is vaccinia virus or cultivatable mycobacteria.
- 21. A vaccine of Claim 20 in which the DNA encodes the 65kD Mycobacterium tuberculosis protein recognized by the monoclonal antibody IT-13, or a portion of said protein.
 - 22. A vaccine comprising DNA encoding an antigenic determinant unique to Mycobacterium tubercu-losis cultivatable mycobacteria capable of expressing said DNA.
 - 23. A method of detecting antibody against <u>Myco-bacterium tuberculosis</u> in a biological fluid, comprising the steps of:
- a) incubating an immunoadsorbent com-25 prising a solid phase to which is attached

10

20

25

immunodeterminant Mycobacterium tuberculosis protein with a sample of the biological fluid to be tested, under conditions which allow the anti-Mycobacterium tuberculosis antibody in the sample to bind to the immunoadsorbent;

- b) separating the immunoadsorbent from the sample; and
- c) determining if antibody is bound to the immunoadsorbent, as an indication of anti-Mycobacterium tuberculosis in the sample.
- 24. A method of Claim 23 in which the <u>Mycobacterium</u> tuberculosis protein attached to the solid phase has a molecular weight of approximately 65kD.
- 25. A method of detecting antibody against Mycobacterium tuberculosis in a biological fluid, comprising the steps of:
 - a) incubating an immunoadsorbent comprising a solid phase to which is attached a
 peptide having the amino acid sequence of an
 antigenic determinant of Mycobacterium
 tuberculosis protein with a sample of the
 biological fluid to be tested, under conditions
 which allow antibody against Mycobacterium
 tuberculosis to bind to the immunoadsorbent;
 - b) separating the immunoadsorbent; and
 - c) determining if antibody is bound to the immunoadsorbent, as an indication of the

WO 88/05823 PCT/US88/00281

-39-

presence of the antibody against <u>Mycobacterium</u> tuberculosis in the sample.

26. A method of Claim 25 in which the peptide has the amino acid sequence of an antigenic determinant which is unique to Mycobacterium tuberculosis protein.

05

27. A kit useful in detecting antibody against

Mycobacterium tuberculosis in a biological
fluid, comprising a collection of reagents for
immunoassay of said antibody, said collection
of reagents a solid phase to which is attached
immunodeterminant Mycobacterium tuberculosis
protein or a peptide having the amino acid
sequence of an antigenic determinant of
Mycobacterium tuberculosis.

2/43

Y3268, Y3271 Y3272 Y3273 L Y3141 L Y3143 Y3150 Y3253 Y3262 FIGURE 1 (Cont'd) BK G PB E E 65 K

3/43 FIG.2

4/43 FIG.3

7/43

		, , , , , , , , , , , , , , , , , , , 	2
- X ♦	P XN	N →	×
			M. leprae
X B ↓ ↓	×N ×		K S
			M. tuberculosis
X B ↓ ↓	₩ ↓		K S ↓ ↓
			M. africanum
X B ↓ ↓	₩ ↓		K S.
			M. bovis BCG
↓ ↓ ↓ ↓	## † ×N ×		K· S ↓ ↓
			M. smegmatis
	₩ ↓ XN X		K S ↓ ↓
			M. avium

65 kD Gene

FIG. 5

8/43

09 <u> AAGGCACAGTTAGCGGAGCCACTCTATCGGGCTGGTCCGCGCGCCTAGCGGGGTGGTTCCG</u> CGGTGAGATAGCCCGACCAGGCGCGCGGGATCGCGCACCAAGG 50 ĸ K G 3 30 G 回 团 П 10 Ŀı

CGGCGCGTCCCAGTCGTCCAACACGTCCAATACGCACCGCAAAAGCCGGTACGTGTTGCG b 100 Z

CGCCTTCGCGCCCTTTATCTTCACGTAGAGGCGTCCCCGGAGCCACGGGCCCCCGGTAGAC ᄓ V [·] Σ 130 K

9/43

CTTGAGCTAGAGGTGGGGCAGCTACCACACCCAGAGGGGCCAGAGAGCCACTACAGCTGGCA CCCCGGTCTCGGTGATGTCGACCG1 230 ĿJ

Σ

Σ

Ľ

G

 Σ

3

FIGURE 6 (CONT'D)

GGGGGCCTCTGGCGCGGGTTGTGCCACGGCATGTACATCGGGCGTGCCGCGTAGTAGCG GCCGTGCTGCTCGCTTTGGAGTGGCCAGCTGTCACAGACGGGCTCCGGCGTCGGCTGCAC GCCGTACATGTAGCCCGCACGGCGCA CTGCCCGAGGCCGCAG 350 290 ŋ M 320 260 CCCGGAGACCGC 310 250 Д Д

10/43

Ö

Ω

FIGURE 6 (CONT'D)

GCGGTGGAAAGGGCGCAGGTGCAGCCGGACCCACCACTGCGGCTCGTGGGGTGGCTTTAC GCTCGGCCGCATCTACAAAAGGACGTGCCGCACGCGCCACTTGGGGAGGCCGCGGTCGTG [L] CGAGCCGGCGTAGATGTTTCCTGCACGGCGTGCGCGGGTGAACC 450 390 Ø 370 G S

11/43

540 TAGCTGTACCGACACCCACATCTACTGGCGCTGGTGCCCCGCCAGCCGAGGCGCCACCCG G . R 530 Ø Ω а 500 I S

12/43 CGCIATGITCAGGICGCCGCCGCCGGIGGAGCCACCIGIGGIIGCCCAGCIACIGCIA GCGATACAAGTCCAGCGCGGCGGCGGCCACCTCGGTGGACACCAACGGGTCGATGACGAT 590 560

099 GTCGGGTCACAGTGGGAGTTGCTTCGACTATAACCTCTATAGCTTAGGCGCCTGGACTAT 650 G rggagatatcgaatc 640 G CAACGAAGCTGATATI 630 S G

13/43

CTACGGGCCGTGGTGGACCATCTCCGGGACAAAGCGCCAGTCGACCCTAACGGCGGTGTC Ø ഗ 700 CTGGTAGAGGCCCTGT 069 G 089 > 670 U

780 CGACCCTACGTGGCTACAGCCGCGCGTGGCAGCTCTTTGCTCATGCGCAGCAACAGGGT \mathcal{O} U G Z a S 760 Д Z K C K 4 S H 区 3 C Σ 出 K ഗ

840 GATCACACACGGGACAGCGCGGCAATGAATCCGCG GTGGTGCGCTGGTAGCCGTCGGAACTAGTGTGCCCCCTGTCGCGCCGTTACTTAGGCGC 820 810 800 Ω CACCACGCGACCAT ⋈ G 790

TAGCCGCAGCAGCTTTAGGCAACACAGTACGTTGCCATTGCTCACAAGTGGCACACGGCG 890 ᄓ S 880 Σ 860 Ω سا Ω 850

15/43 960 GACCTACTGCCGTCACCCTCCAAACACAAGGTAGCCGTGATGTAACGGTGATGATGCCAC 950 G 940 930 ĿĴ CTGGATGACGGCAGTGGGAGGTT

1070

1060

1050

1040

1030

U

<u>م</u>

J

4

ø

Ø

ŋ

2

S

ď

CGIGGAICIGGAGCCCGGGACGAIIGCGCGIAIGACGGCIICGCCAGGAGIIACGGCIAC

FIGURE 6 (CONT'D)

1020 GTGCGGCCATCTACGGCAACCGCTTGGTGCGATGGCTGGTCTTTCTCTCTTAAAAGGCGG GCACCTAGACCTCGGGCCCTGCTAACGCGCATACTGCCGAAGCGGTCCTCAATGCCGATG ACCGACCAGAAAGAGAGAAI 1010 بعا 回 S 1000 U 990 3 Ü ഗ 980 CACGCCGGTAGAT S 970 G

16/43

(CONT'D

9

17/43

S ဟ IJ G Ы u

CTCGGCGGTAAGACCAGGTCCAGAAAGGCCTACAAGTTCGTTGTTCAGCTGATGTCCTT 1190 1160 3 回

1260 CGCCACTCTGGTGCTGGCGCCGTCCGTGCCGTTCSGGGCCGCGGCGGAGGCCCGGGCT 回 1250 K 1240 U G Сı S 1220 4 ഗ 1210 二

18/43

TCCAGCAGTAGCTGCCATTCCTGGTCTTGCAGTGGCCGAGGCACCACACGTGTTGGCGCC AGGTCGTCATCGACGGTAAGGACCAGAACGTCACCGGCTCCGTGGTGTGCACAACCGCGG 1310 1300 တ 1290 S Ġ

1380 GGCCGTTACAGTIGTAGCGCTAGCCGCCCCCGCCGCTGGCCGTAACGGCGGCACGAGTGGC TGCCGTTGGGAGGCCTCCACTTCAGGCAACCCGAGCCATTGCAGTTGCCGCAGTGCGACC ACGGCAACCCTCCGGAGGTGAAGTCCGTTGGGCTCGGTAACGTCAACGGCGTCACGCTGG 1430 1370 1360 1350 14001340 တ S S 1390 1330 G Σ Ø

19/43

TCTAGTGACCCTGGCGATGGCCCCAGCTGTACCGGTTGGGCCTACAGTGGCCACTTGTTCA CTATGTGCAGCCCGTGGCCTGTCCCATTGCGGAGCCGTTGGTTCCTGCCGTCGGTGATGT AGATCACTGGGACCGCTACCGGGGTCGACATGGCCAACCCGATGTCACCGGTGAACAAG1 -ტ 1550 3 1480 3 GATACACGTCGGGCACCGGACAGGGTAACGC 1530 1470 G 1460 K ഗ U 1510 1450 U S

21/43 # 1620 GCAAGCTTTAGCTCCACTGGACAAGGATTGGATTTCGCACAGCTACGCCCGACACTTGTC 1610 ď 1600 Z CGTTCGAAATCGAGGTGACCTGT 1580 S 区 1570 K

1680 GCGCAGCCTCGGCCCGTCAGTCCGGATCGCCGCTGCTAAGCTCGCCAACGGTAGGCAG CTAGCGCGGCGACGATTCGAGCGGTTGCCATCCGT $\mathbf{\Sigma}$ 3 1670 Д EJ. K ഥ لتا 1660 ဟ S 1650 CGCGICGGAGCCGGGCAGICAGGC Ü G 1630 ഗ ď

TICACCGITGGCGTGGCGTTTGAGCCATATAGGCCCACTCGATGAGTGCCACTAGCAAGG ŋ S ᄓ 1700 1690 3

CAACACGCGGAACTGGTGTCGCCTCTGCTAGCGGTCCGGCTCGGGCCACGATGGCCGAAC Ŀ GTTGTGCGCCTTGACCACAGCGGAGACGATCG G 1760

22/43

S Z

23/43 ⊈ 1860 CGCCCTGGCACTGCATAGCGGCGCCCCTTGGCGAGCTTTTGGAGCCTGACGTCGCGCCG CGGACTGCAGCGCGGC 1850 S S ы CGANAAC 1840 Ŀ ы GCGGGACCGTGACGTATCGCCGCGGGGGGAACCGC a 1830 L G K G 1820 H വ 1810 以 ഗ

GCCTTATGGGCCGGGTAACAGCTAGTGGACGTCGTGCTGCACGCAGCCGGGCCACGAGTT CGGAATACCCGGCCCATTGTCGATCACCTGCAGCACGACGTGCGTCGGCC 1910 1900 C, 0681 Ø K 1880 Ø Z $\mathbf{\Sigma}$ 3 U C 1870 G Д 区

24/43

2090

S

 Σ

K

ഥ

2100 CTCGCGGGTGACCACTAGACCAGGCCGTTGTACTCGCAGCGGACTGGCGCAGTTGGCGTTC GAGCGCCCACTGGTGATCTGGTCCGGCAACATGAGCGTCGCTGACCGCGTCAACCGCAAG ഗ 2080 K 2070 G 2060 2050

3

K

25/43

CCGCGACATGTCCACCGGTCCGCGT

2160 GGCGCTGTACAGGTGGCCAGGCGCAAGGTCGCCGGCGGGGCTCAGGTCTGCGCGGTCGTC 2150 2140 \simeq 2130 2120 ŋ 2110 Σ S

26/43 ₩ CACACGCTGCCGGAGCCCTAGCAGGGGATAGGCGACGCAGTTAAGGCACATTGGTGCCTA GTCGTCCAGGAGCTGCTCTGCACAATAGGCGAGCCAGAGGCTACGGTGGGCCGAGTAGCG CTGCGTCAATTCCGTGTAACCACGGAT Ŀ Ø بتا ಭ 2260 2200 띠 Ø CGGGATCGTCCCCTATCCG K Ŀ 2250 2190 U 2240 2180 K Д ഥ ഥ K 2230 Ω

AAGTGACCGGACGGCGGCTGTCACGCCGTCGCTACACCAGCTCGTAGGCCAACTCGCG

လ

 \prec

Ø

S

ធា

Z

Σ

FIGURE 6 (CONT'D)

2400 2340 GCGCCGTTCCCCTCAAGCGTCAAGTACTGACCGTAGCCGTTGCTTGACCGCGTGTGCCCA TTCACTGGCCTGCCGCGCCGACAGTGCGGCAGCGATGTGGTCGAGCATCCGGTTGAGCGC | CATGACTGGCATCGGCAACGAACTGGCGCA 2390 2330 2380 2320 C တ C 2370 2310 S Σ [L] 0 CGCCGCAAGGGGAGTTCGCAGT1 2360 2300 Ø K ഗ Ы ഗ S G 2350 2290 П A Ŀı

27/43

[L]

S

K

ഗ

ū

П

山

Ω

K

G

FIGURE 6 (CONT'D)

28/43 2520 2460 GCTGGGCTCAACGGGGTGGAGCCACCTCCCCAAACGCAGTCCAAGCCCGTGGGCCTGGCC CGACCCGAGTTGCCCCACCTCGGTGGAGGGGTTTGCGTCAGGTTCGGGCACCCGGACCGG 2510 2450 ᄓ 2500 2440 Z ₽ 2490 2430 9 2480 2420 Ы U Ç Ŋ Ø 2470 2410 Н U Ω, K S

(CONT'D

FIGURE

 Σ

Σ

29/43 "IGATGATGACGATTCCGGCGGTCGTCGCGGCGACC GCGGCGTTGCCGCGGTCGCGGGCGAACTACTACTGCTAAGGCCGCCAGCAGCGCCGCTGG TTGCGTTAGTGGCACTGCTAAGGCTTTTACTAGTCGTAGACGTTGTAGCACCGCAGCTGC 2630 2570 2620 · S Σ Ø CGCCGCAACGGCGCCAGCGCCCGC K Z U 2600 2540 K G H

Ξ

FIGURE

48 GAG GluCGTArg GAG Glu 999 G1yCNG Gln TAT Tyr GLC Val CAG Gln ATC I1eCAG Gln GTGVal TCGSer SSS Pro CAA Gln TTCPhe GAA

96

ATC

299

ACC

CTG

GAG

TTC

TCC

999

CIC

TTG

AAG

AAC

CAC

BOB

CCC

ATC

49

Ile

Gly

Thr

Len

Glu

Phe

Ser

G1y

Leu

Len

Lys

Asn

His

Ala

Ala

I1e

ATC GAC TTCACT GTC GAG ATC CAG CCGATT999 990 SCCCCGSSS SSS 97

Asp Phe Thr Val $_{
m Glu}$ Ile Gln Pro 11eG1yArg Pro Ala Pro 192 CGC ACC 299 AAG GAC AAG 229ACC GTCCAC GTG ATT CCC AAC CCC GAC 145

G1yThr G1yLysAsp LysAla Thr Val His Val IleGly Asn Ala Asp

FIGURE 7 (CONT'D)

240		. 288	317	~ 3	336			384	
GAA	Glu		Asp		TTG	Leu	,	GGT	$_{ m G1y}$
AAG	Lys	GAG	Glu			Thr			Glu
TCC	Ser Lys	GAG	Glu		GAG	g]n		ეენ	Ala
·CTG	Leu	၁၁၅	Ala		CCC	Ala		GAG	Glu
CGA ATC CAG GAA GGC TCG GGC CTG TCC AAG	Arg Ile Gln Glu Gly Ser Gly Leu	CAC GCC GAG GAG	lle Asp Arg MET Ile Lys Asp Ala Glu Ala His Ala Glu Glu Asp		GAG GCC GAT GTT CGT AAT CAA GCC GAG ACA	Glu Ala Asp Val Arg Asn Gln Ala Glu		CAG CGT GAG GCC GAG	Lys Phe Val Lys Glu Gln Arg Glu Ala Glu
${ m TCG}$	Ser	SOS	Ala		AAT	Asn		CAG	Gln
CGC	G1Y	ATC AAG GAC GCC GAA GCG	Glu		CGT	Arg		AAG TTC GTC AAA GAA	Glu
GAA	Glu	פככ	Ala		ĊТŢ	Val		AAA	Lys
CAG	Gln	GAC	Asp		GAT	Asp		GTC	Val
ATC	Ile	AAG	Lys		CCC	Ala		TTC	Phe
		ATC	Ile		GAG	Glu		AAG	Lys
ATC	Ile	ATG	MET		GAG	Glu		GAG	Glu
ACG	Thr	ລອລ	Arg		ລອວ	Arg		ACG	Thr
AAG GAG AAC ACG ATC	Lys Glu Asn Thr Ile	GAC ATT GAC CGC ATG	Asp		CGT CGC GAG	Arg Lys Arg Arg Glu		GTC TAC CAG ACG	Val Tyr Gln Thr
GAG	Glu	ATT	Ile		CGC AAG	Lys		TAC	Tyr
AAG	Lys	GAC	Asp		CGC	Arg		\mathtt{GTC}	Val
33	· . ·	□		,	<u>.</u>			1.2	

31/43

Pro

Cys

Arg

 Trp

His

G1y

Thr

Val

Cys

G1y

SerSer

Ser

Arg

Leu

Asp

615

CTC GGC

CGG CGG CGA GCC GGG CGG TGC CCA CCC CGG

CCC

G1y

Len

Pro Pro Arg

Cys

Arg

Pro Arg Arg Arg Ala Gly

FIGURE 7 (CONT'D)

432		480	32/41	528		276
GTG	Val	CAA	Gln	AGC	Ser	TCA GGC TGC GTC ACA GGC CAC TGG CGC TGC CCA
GAA GAC ACG CTG AAC AAG GTT GAT GCC GCG GTG	Glu Asp Thr Leu Asn Lys Val Asp Ala Ala Val	GGC ACT TGG CGG ATC GGA TAT TTC GGC CAT CAA	Gly Thr Trp Arg Ile Gly Tyr Phe Gly His Gln	GCT GGG CCA GGA GTC GCA GGC TCT GGG GCA AGC	Ala Gly Pro Gly Val Ala Gly Ser Gly Ala Ser	TGC
229	Ala	ລອອ	G1y	999	$_{ m G1y}$	ລອລ
GAT	Asp	TTC	Phe	TCT	Ser	TGG
GTT	Val	TAT	Tyr	299	G1y	CAC
AAG	Lys	GGA	G1y	GCA	Ala	ეეე
AAC	Asn	ATC	Ile	GTC	Val	ACA
CTG	Leu	SSO	Arg	GGA	G1y	GTC
ACG	Thr	${ m TGG}$	Trp	CCA	Pro	TGC
GAC	Asp	ACT	Thr	999	$_{ m G1y}$	ეენ
GAA	Glu	CCC	G1Y	GCT	Ala	TCA
CCT	Pro	\mathfrak{GGC}	G1y	GAA	Glu	AGC
TCG AAG GTA	Val	GAA	G1u	GGA	$_{ m G1y}$	AGC
AAG	Lys	CCG	Ala	GAT GGA	Asp	CGA
TCG	Gly Ser Lys Val Pro	GCG GAA GCG GAA GGC	Ala Glu Ala Glu Gly	ეეე	Val Gly Asp Gly Glu	CTA
$^{ m CCT}$	G1y	525	Ala	GTC	Val	529 GAT CTA CGA AGC AGC
385		433		481	•	529.

33/43

240

230

220

200

190

3,	TCGAACGAGGGGGGTGACCCGGTGCGGGGCTTCTTGCACTCGGCATAGGCGAGTGCTAAG AGCTTGCTCCCCGCACTGGGCCACGCCCCGAAGAACGTGAGCCGTATCCGCTCACGATTC 10 20 30 60
	AATAACGTTGGCACTCGCGACCGGTGAGTGCTAGGTCGGGACGGTGAGGCCAGGCCGGTC TTATTGCAACCGTGAGCGCTGGCCACTCACGATCCAGCCCTGCCACTCCGGTCCGGGCAG 70 80 90 120
	GTCGCAGCGAGTGGCAGCGAGGACAACTTGAGCCGTCCGT
	AGCGTAAGTAGCGGGGTTGCCGTCACCCGGTGACCCCGGTTTCATCCCGGATCGGGAGGA

TAGTGAAGCGITACGGG11C1G1TAACGCATGC1GC11CTCCGGGCAGCGCCGGAGCTCG 360 <u> CCCCGAACTTGCGGGAGCGGCTACGCCATTTCCACTGTAACCCGGGGTTCCCGGGGTTGC</u> GGGGCTTGAACGCCCTCGCCGATGCGGTAAAGGTGACAT

 \odot

34/43

35/43

FIGURE 8 (CONT'D)

010 TCAGGTTGTGGAAACCCGACGTCGAGCTCGAGTGGCTCCCATACGCCAAGCTGTTCCCGA CACCGAGGGTATGCGGTTCGACAAGGGC J CGAGC 800

900 TGTAGAGCCCCATGAAGCACTGGCTGGGCCTCGCAGTCCTCCGCCAGGACCTCCTGGGGA <u> ACATCTCGGGGTACTTCGTGACCGACCCGGAGCGTCAGGAGGCGGTCCTGGAGGACCCC</u> ш ш ~ P E <u>_</u> 000 ш ی

TGTAGGACGACCAGTCGAGGTTCCACAGGTGACAGTTCCTAGACGACGGCGACGAGGTCTC **ACATCCTGCTGGTCAGCTCCAAGGTGTCCAC**

1020 1000 **AGGTCATCGGAGCCGGTAAGCCGC**]

0001 1000

GGCCGAAGCCGCTGGCGGCGTTCCGCTACGACGTCCTATACCGGTAAGAGTGGCCACCAG T C CACTAGT C G C T T C T C C C G G A C T G C G A C T G C G G C T G G A C A C C G T | CCAGAACGCCGACC| CCGGCTTCGGCGACCGCCAAGGCGATGCTGCAGGATATGGCCA <u> AGG1GA1CAGCGAAGAGG1CGGCC1</u> 1100 ш

(CONT. D

 ∞

FIGURE

36/43

1440 1320 **TCAAGGCCGGTGCCGCCACCGAGGTCGAACTCAAGGAGCGCAAGCACCGCATCGAGGATG** <u> CCGACGCCATCGCCGGACGAGTGGCCCAGATCCGCCAGGAGATCGAGAACAGCGACTCCG</u> 1200 TCCGGGCGTTCCAGCACCAGTGGTTCCTGCTCTGGTAGCAGCTCCCGCGGCCACTGT 1430 1250 Z J **≃** ي ш <u>د</u> د ш 1360 1300 1240 < ¥ ر س ш 1290 1230 1410 Ċ ~ > ш C 1280 1340 1400 1220 \simeq > > J لنا <u>ن</u> ح ~ 1390

1500 GCCAAGCGTTACBBTTCCBGCAGCTCCTCCGTAGCAGCGGCCACCCCCACACTGCG COGTTCGCAATGCCAADGCCGCCGTCGAGGAGGCATCGTCGCCGGTGGGGGTGTGACGC > J J 1490 G 1480 ಆ ш 1470 ш > ⋖ 1460 1450

1580 TGTTGCAAGCGGCCCCGACCCTGGACGAGCTGAAGCTCGAAGGCGACGAGGCGACGACGGCGGCG GGTTGTAGCACTTCCACCGCGACCTCCGGGGCGACTTCGTCTAGCGGAAGTTGAGGCCCG <u> CCAACATCGTGAAGGTGGCGCTGGAGGCCCCGCTGAAGCAGATCGCCTTCAACTCCGGGC</u> ی J S E F 1550 _ ≪(C ш 1640 × 0 × ب ه 1630 れのひ لنا ≪ _ ш 1520 ピロコ **∀** > ۰ ¥ > Z

2040

37/43

160 160 160 160 160 160 160 160 160 160	igat Git that the 1660	i i i GGA CGG C GA CGG 1660 - 10		1650 1660 1650 10	.	ictertektiri 1668 - 1668 - 16	. LGGU FUTTURAL GARTALLARUA 840 1850 1860 1	CACCGCTCTTCCACGCTTGGACGGCCGACGG 1640 1650 1660 1	ACCICGCCCGCACCACCGCICIICACGCCGACCGGGGGCGGGGGGGG	1640 1650 1660 1660 1660 1660 1660 1660 166	1630 1640 1650 1660 10	1630 1640 1650 1660 1670 168	TAGAGCCAGAGTAGCCGAGAAGGTGCGCAACCIGCCGGCIGGCCACGGALIGAACG ACCTCAGCCCGCACCACGGCTCTTCCACGCGTTGGACGGCCGACCGGTGCCTGACTTGC 1838 1838 1848 1858 1858
60 60	1660 1660	i i i GGAC GGC CGA 1660	1661166Actactus 1860	.c.Acucul I uuAcuuccuA 1650 1660	.	icterteating 1650 1660	. LGGL 1 L L L L L L GLGL 1 GG L L GA L GG L GG L GA L GG L GA L GG L GG L GA L GG L GA L GG L GG L GA L GG L GA L GG L GG L GA L GG L GG L GA L GG L GA L GG L GG L GG L GG L GA L GG L	CACCAGICICICCACACAIIGAACAGCGA 1640 1650 1660	CACCACGGC C 1 C C C C C C C C C C C C C C C	1640 1650 1650 1660	1630 1640 1650 1660	1838 1848 1858 1868	CCC
60	1660	1660	1660 1660	.c.Acaca TaaAcaac 1650 1660	.	1650 1666 1660 1666	. Caberter 1 Caberal 1 Cab	1848 1658 1668 1848 1658 1668	1848 1858 1868 1868	1640 1650 1650 1660	1630 1640 1650 1660	1838 1848 1858 1868	٠ د دو
	16A∪ 16	16 16		.cacaca 1945 1650 16	.	1650 1650 1684 1650 16	. Cagete 11 Centaria as e 840 1650 16	LACCGGC CLACGCG 199AC 1640 1650 16	CACCACGCICIICCACGCGIIGGAC 1848 1858 16	30 1848 1858 1858 16	1630 1640 1650 16	1830 1848 1858 18	1999

(CONT. D

 α

FIGURE

1800 CCCGTTCGGCGCTGCAGAATGCGGCGTCCATCGCGGGGCTGTTCCTGACCACCGAGGCCG GAGTCTGGCCACAGATGCTCCTAGACGAGGGACGGCCGCAACGACTGGGCCAGTTCCACT <u> GGGCAAGCCGCGACGTCTTACGCCGCAGGTAGCGCCCCGACAAGGACTGGTGGCTCCGGC</u> 1790 1780 G S 1760z

0881 T C G T T G C C G A A A G G A A A A G G A A A G G C T T C C G T T C C C G G T G G G C G A C A T G G G T G 0 5 5 5 1840 E K E K A 1030 A D K 1810

<u> ACCGGCGACACCCGCTCAGCCCCCGGCGCAGAGCCACGTCGTCGCGCGCCTACCCATGCT</u> C C C G A G G A G C C A C C T C G A T G C C A T G G C T C T T G T G G T G C G T C C G T T G G A A <u> TGGCCGCTGTGGGCGAGTCGGGGCCGCGTCTCGGTGCAGCAGCGCGCGGGATGGGTACGA</u> GGGCTCCTCTGGTTGGGAGCTACGGTACCGAGAACACCCACGCAGTCGTGTAGGCAACCT1 1970 19601950 1940

8 (CONT'D

38/43

CCTGGGCACGGCCGTCGA GGACCCGTGCCGGCAGCT 2090 2100	GGGTGACTTCGCTGCGGT CCCACTGAAGCGACGCCA 2150 2160	CGACCACTGCCGGGGGTC GCTGGTGACGGGCCCCAG 2210	CCACCGTGTGCACGCGAT GGTGGCACACGTGCGCTA 2270 2200	2330 2340 CAAGGCGGCGCCAGCC	2390 2400 SCGCCCGATGTGTTACTC	2460 2480 CABB TTCGCGGTCGGGCTCGG AAGCGCCAGCCCGAGCC 'E R · D P S P
CACCGCAGCGGGCGGTGTCGTCATCGGGGCCTGCGTCCGACGCCTGGGCACGGCGTCGA GTGGCGTCGCCCGCCAGCAGTAGCCCCGGACGCAGGTGCGGACCCGTGCGGCAGCT 2050 2050 2060 2060 2070 2080 2090	CGATCAGCGAGTAGCCGCTAGGATCGGATGGCCGCCACAACAGGGTGACTTCGCTGCGGT GCTAGTCGCTCATCGGCGATCCTAGCCTACCGCCGGTGTTGTCCCACTGAAGCGACGCCA 2110 2120 2130 2130 2140	GGGCCAGGTTTTGCCGCGTACGACCCCCGATCAGGCCGACGTCGACCACTGCCGGGGTC CCCGGTCCAAAACGGCGCATGCTGGGGGCTAGTCCGGCTGCAGGTGACGGGCCCCAG 2170 2180 2190 2220	CATCGGGGCCGTCGGGGAGTTCGCGCACCGGCTCGACTGCCACCGTGTGCACGCGAT GTAGCCCCGGCAGCCCTCAAGCGCGTCGTGGCCGAGCTGACGGTGGCACACGTGCGCTA 2230 2230 2240 2250 2260	2390 2340 2340 2340 2320 2330 23340 CGCCATCATCGACGGTGATCGATCGACGGCGGCCAGCCAG	S350 2350 2400 CATTGAGGTTTCGAGGTTCGAGGCGCCCGATGTTTTACTC CAAACTCCTATCGAGGTTCCTATCGAGGTTCCGCGCCCGATGTGTTTTACTC CAAACTCCAATGAGGTGCCTAAGCTCCTATCCGCGGGCTACACAATGAG	2410 2420 2430 2440 2480 2480 CGAACCGACCGACCGGCTGCGGGCTGGCGGCTCGGGGCTCGGGGCTCGGGGCTCGGGGCTCGGGGCTCGGGGCTCGGGGCTCGGGGCTGGCGGGCTGGCGGGCTGGCGGGCTGGCGGGGCTGGGCGGGGGG

8 (CONT'D)

FIGURE

			39/43		
2588 3CCAGGGCT CGGTCCCGA G P · S	264Ø GTTCGGGTT CAAGCCCAA N P N	2700 GTTGGTCAG CAACCAGTC N T L	2780 GAGGGGGA CTCCGGCT L A S	2828 GCCGGCGGA CGGCCGCT G A S	2870 2880
267Ø SGTAGCTGGT CCATCGACCA	2638 CGCTACCGGG GCGATGGCCC S G P	2090 CGACGGGCGT GCTGCCCGCA V P T	2760 CCGTTGATCC GGCAACTAGG T S G	2810 CGGTGGCGTA GCCACCGCAT	2870
CGAGTCGTTGCTGCCCGAGTTGACGAAGCTCGGGTAGCTGGTGCCAGGGCTGGCT	O 2630 2610 2620 2630 2640 CGGGGTTGCGGGGTTCGGGTTCGGGTTCGGGTTCGGGTTCGGGTTCGGGTTCGGGTTCGGGTTCGGGTTCGGGTTCGGGTTCGGGTTCGGGTTCGGGTTGGCCCCAAGCCCAAGCCCAAACGCCCAAACGCCCAAACGCCCAAACGCCCAAACGCCCAAACGGGGGTGGGGGGTTGACGGGGGGTGGGGGGGATGGCCCAAGCCCAAAAAAAA	2680 GCCGGGGCGG CGGCCCGCC A P A A	2748 TGGAGACCGCO ACCTCTGGCGO	2800 CTCATGCCGC GAGTACGGCGG	2800
2550 CCCCACTTC CGGCCTCAAC G S H	2010 CGAGCCAGCC GCTCGGTCGG S G A	2878 AGGAGCACTG TCCTCGTGAC P A S	2730 CAGGCCGTGT GTCCGGCACA L G H	2790 AGCCGCCGTGCT TCGGCGCACGA A A T S	2850
2540 AGTCGTTGCT TCAGCAACGA D N S	CGGGTTTGCGCCGGCCGGGGGGGGGGGGGGGGGGGGGG	2880 GGCCCCAAC CCGGCGGTTG G. G. V	272Ø GGACGTTCGC CCTGCAAGCG V N A	278Ø CCCGAACICAA GGGCTTGAGTT G S S L	2840
2530 CCGCAAGCCGA GGCGTTCGGGCT R L G S	2690 TCTAAGGCCCG AGATTCCGGGC	2850 2890 2780 CCCTGACAGGAGCACTGGCCGGGGCGACGGGGGGTGTTGGTCAGGACTCAGGACTGGCCGGGCGGCGGGGGGGG	2710 2720 2730 2740 2750 2780 2780 2780 CCCCGAGTTGGAGACCGCCGTTGATCCGAGGGGGGAACCGCCGTTGATCCGAGGGCGGAACTGGAGTTGGAGACCGCCGTTGATCCGAGGGCGAACTGGAGCTCCGGCGAACTAGGCTCCGGCCTTGGAGCTCCGGCCAACTAGGCTCCGCCCTGGAGACTAGGCTCCGGCCAACTAGGCTCCGGCCAACTAGGCTCCGGCCAACTAGGCTCCGCCTTGGAACTAGGCTCCGGCCAACTAGGCTCCGCCTTGGAACTAGGCTCCGCCTAACAACTAGGCTCCGCCTTGGAACTAGGCTCCGCCTAACAACAACAAAAAAAA	2770 2780 2790 2880 2810 2820 CGCGAGGATGCCCGAACTCAAGCCGCCGTGCTCATGCCGCGGTGGCGTAGCCGGCGGGCG	2830

GTTCCAGAAGCTGGTGTTGAGGCTGCCTGCCGAGGCCCGGGTTGATTGTCCCCGA <u> CAAGGTCTTCGACCACACTCCGACGGACGCGACGGCTCCGGGCGCAACTAACAGGGCT</u> GCTGACCAAGGCCGCCTCCGAGCCAGCCGCGTTCCTAAGGCGGCGTTTTGCATCCCGC 2930 2920 2910 2900 2890

2990

2980

2970

2980

2960

(CONT'D

œ

FIGURE

40/43

GGTCCCGATGCCGCTGTTCAGGCAGTTCCCGATGCCGATGTTTCCGCTGCCGGA CCAGGGCTACGCGCAAGTCCCTGGGCTTAAGGCTACAAAGGCGACGGCT T G I G S H L S G S H G I H G S G S T G I G S H L S G S H G I H G S G S SS H G I G I H G S G S GTTGAATAAGCCGACGTTGCCGAGTTCCCGAAGCCGATGTTGCCGCTACCGGA CAACTTATTCGCTGCAACGCCACGGCTCAAGGCTTCGGCTACAACGCCGATGGCT H F L G V H G T G S H G F G I H G S G S SS S S S S S S S S S S S S S S	•				
CCCGA GGGCT, GG 1 GGATA, CTTAT F L SCACA T N T N T N T N	TOCCOCTOTICAGGGAGCCCGAATTCCCGATGCCGATGTTTCCGCTGCCGGAATTCCGGTACGGCTACAAAGGCGACGGCCTACGGCTACAAAGGCGACGGCCTACGGCTACAAAGGCGACGGCCTACGGCTACAAAGGCGACGGCCTACGGCTACAAAGGCGACGGCCTACGGCTACAAAGGCGACGGCCTACGGCTACAAAGGCGACGGCCTACGGCTACAAAGGCGACGGCTACAAAGGCGACGGCTACGGCTACAAAGGCGACGGCTACAAAGGCGACGGCTACAAAGGCGACGGCTACAAAGGCGACGGCTAAAAGGCGACGGCTACAAAGGCGACGGCTACAAAGGCGACGGCTACAAAGGCGACGGCTACAAAGGCGACGGCTACAAAAGGCGACGGCTACAAAGGCGACGGCTACAAAAGGCGACGGCTACAAAAGGCGACGCTACAAAAGGCGACGCTACAAAAAAAA	AGCCGACGTTGCCGGAGTTCCCGAAGCCGATGTTGCCGCTACCCGA TCGGCTGCAACGCCACGGCTCAAGGGCTTCGGCTACAACGGCGATGGGCT G V N G T G S N G F G I N G S G S	TØ 308Ø 309Ø 310Ø 311Ø 312Ø CGCGAAACCCATCTGGTGATCACCGGATGTTCCCGCT GCGGCTTTGGGTAGACCACTAGGGCGA G F G M Q H D G T 1 G F G I N G S	30 3140 3150 3160 3170 3180 TGCCGAAGCCGATTGCCGAGGTTGCCGCT ACGCCTTCGCCTATAAGGCAGCGCTCCAACGGCTCCAACGGCGCAACGGCTCCAACGGCTCCAACGGCTCCAACGGCTCCAACGGCTCCAACGGCTCCAACGGCTCCAACGGCTCCAACGGCTCCAACGGCGAACGGCGAACGGCTCCAACGGCTCCAACGGCGAACGGCGAACGGCGAACGGCGAACGGCGAACGGCGAACGGCGAACGGCGAACGGCGAACGGCGAACGGCGAACGGCGAACGGCGAACGGCGAACGGCGAACGGCGAACGGCGAACGGCGAACGGCGAACGGCTCCAACGGCGAACGGCGAACGGCCAACGGCGAACGGCGAACGGCCAACGGCGAACGGCGAACGGCCGAACGGCCAACGGCCAACGGCGAACGAACGGCAACGGCCAACGGCCAACGGCCAACGGCCGAACGGCTCCAACGGCTCCAACGGCCAACGGCTCCAACGGCTCCAACGGCTCCAACGGCTCCAACGGCCAACGGCCAACGGCTCCAACGGCCAACGGCTCAACGGCTCCAACGGCTCCAACGGCTCCAACGGCTCCAACGGCTCCAACGGCTCCAACGGCTCA	90 3230 3240 3240 3220 3230 3240 TGCCGCTGCCGATGTTGTTGTT TGCCGCTGCCGATGTTGCCGGTGTTGCCGCTGCCGATGTTGTTGTT ACGCCGACGCCTACAACGCCCACGACGACGCCTACAACAACAA G S G I N G T G T H G S G I N H H
061 CCAA CCAA N N N N N CCAA GCC GCC GCC GCC GCC GCC GCC GCC GC	GGTCCCGATGCCGC CCAGGGCTACGGCG/ T G I G S	3Ø1Ø GTTGAATAAGCCGAU CAACTTATTCGGCTU	3070 GTTGAAGCCGCCGAA CAACTTCGGCGGCTI N F G G F	3130 ACCGGTGTTGCCGA. TGGCCACAACGGCT G T N G F	3190 GCCGGTGTTGCCGC CGCCACAACGGCG G T N G S

3360 GCCCAGATIGATCTGGCCGTTCTTGCCGATGTCGATGCCGAGGTTCCGCAAGACCTGCIG GCCGATGIIGIIGTIGCCGAIGTIGIIGIIGCCGAIGIIGCCGCTGCCGGTGTTGCCGAA C G G C T A C A A C A A C G G C T A C A A C A A C G G C T A C A A C G G C G A C G G C C A C A A C G G C T T J 3350 3290 J S ೮ 3280 3340 I S W W W I S 3270 3330 Z 3260 3320 Z z z 3260 3310 ت - 8 (CONT'D)

FIGURE

41/43

342Ø ATCGCCGC TAGCGGCG	3480 GGAGCGTT SCCTCGCAA P A N	3540 :GCTACCAC :CGATGGTG A V V	3600 CATGGCCTG STACCGGAC	3888 TGGGTTGC SACCCAACG	372Ø TTCGGAIGT AAGCCIÁCA E S T	378Ø CCAGGCGGT GGTCCGCCA W A T
3410 STAACÇAGCC CATTGGTCGG Y G A	347¢ CATGAGCGC GTACTCGCGC	353Ø ACGATTGGCC TGCTAACCGC R N A	3590 CGCTGTTGC GCGACAACGG	3858 GGCTAGGTAC CCGATCCATG A L Y	3710 ACTAGICAG TGATCAGIC S I L	377Ø SCAGCTCGCC SGTCGAGCGG
3400 ATCGAAGTGG TAGCTTCACG	3460 CTCGACGTC GAGCTGCAG E V D	3520 CATCAGGCC GTAGTCCGG	SAACGCGGT CTTGCGCCA F A T	384Ø GCTGAGCCA CGACTCGGT S L W	3700 SCCAGGCGC CGGTCCGCGC	3760 ATTCTICGGG TAAGAAGCCC
3390 GCGCAGACGC CGCGTCTGCG A A S A	3450 TCGTATGCCGC AGCATACGGCG	3510 GCCAGCAGCTG CGGTCGTCGAC A L L Q	3570 AGCGCCGCTC TCGCGGCGGAG L A A E	GCTGCCGCGT	3898 GACGGACCCAC CTGCTGGGT S P G L	3750 FGACGCGAGCA, ACTGCGCTCGT S A L L
3380 TTGTGCGACG AACACGCTGC	CCACATITGC	3500 GTTCGTAGCT CCAAGCATCGA N T A	3560 GGTGGCCGCC GCACCGGCGG	3820 3TTCCGCCTGC 5AAGGCGGACG F A Q	TCGCCGCGCGCGCGCGCGCGCGCGCGCGCGCGCGCGGCGG	3740 GCGACGCTATI CGCTGCGATAA
CCAGGGCGCCAGTTGTGCGACGGCGCACGCATCGAAGTGGTAACCAGCCATCGCGCGCG	CACGTCCAATGCCCACATTTGCTCGTATGCCGCCTCGACGTCCATGAGCGCCGGAGCGTT GTGCAGGTTACGGGTGTAAACGAGCATACGCGGGGGGGGG	3490 3590 3510 3520 3630 3540 CTGCCCAAACCAGTTCGTAGCTGCAGCAGCAGCCACGATTGGCCGCGCTACCACACACA	3550 3590 3600 3600 3570 3590 3590 3600 3600 3600 3600 3600 3600 3600 36	3810 3820 3830 3840 3880 3880 3880 3880 76CGGCCGCCGCTGCGCCGCCGCCGCCAGGCTAGGTACTGGGTTGC ACGCCGCGCGCGCGCGCGCGCGCGCGCGCGCGCGCGC	3000 3700 3000 3000 3700 3720 3720 3720	3730 3740 3750 3760 3780 3780 3780 3780 3780 3780 3780 378

 \approx

FIGURE

42/43

_		D (3 ()	80 (1)(5	5 0 () (3	D (1) (2)
3840		3900 ACCG TGGC		200	4080 GCCC CGGG CGGG
<u> </u>					
3			80 C	# C C	
(1)			``'	ਾ ਹ ∪ ਕ	ີ 6 ຕິດ -
			→	— ¥ `	55
			ن ق	< ⊢	<u>ت</u> ق
	⊢ ₹ =	₹ ⊢ ⊣	့် ပြိပ်ရ	300	Ŭ ë ≃
	∀ ⊢ _	ا ق ن	` ⊢ ≺	ن ق	4 <i>0</i> 7 <i>0</i> CGACGCCGG GCTGCGUCU R R R
	∀ ⊢	⊢ ≺	⊢ ≺	σ	J J
0	S	0 U U	$\mathcal{O} \vdash A \preceq$	むしにほ	$\mathfrak{D} \cup \mathfrak{C} \cong$
3	\mathcal{O}	6 ⊢ ¥	10 C G	ى پ	~ ←
3830	\mathcal{C}	3890 ACTGT TGACA V T	6 ⊢ ≺ _	8 G G	Ø G C
C	SA	m < <u> </u>	m < = >	4000	4022
	⊢ ≪	~	$\frac{1}{2}$	0.0	ي و
					X F
		- 57.75 デ			
	$\frac{2}{2}$	2			\mathcal{S}
	52-	⊋ [- 1	<u> </u>	¥ = >	4000 TGCCAAGCA ACCGTTCGT P L C
5		3880 SATCCA, TAGGT D	₽ = ₹	ကောပ်ပင်	806
3820	\mathcal{L}	3 C G	¥ 1 ×	5 C 8	35
Ġ	₹ 11.	B + 40	6 - 4 ×	2000	8000
8	\overrightarrow{A}	E 4 1	$\tilde{\epsilon}$	400	4 - 4
	U 0	\mathcal{O}	\vdash	ں ی	←
	SUK	$\mathcal{C} \subseteq \mathcal{C}$	$\prec \vdash \equiv$	<u>ں</u> ں ط	\vdash \prec \succ
	\mathcal{G}	ပ္ ပ	ي ن	$\mathbf{g}_{\mathcal{O}}$	
	$\mathcal{C}_{\mathcal{C}_{\mathbf{a}}}$	G O	⊢ ≺	←	<u> </u>
	0,00	₹	000		\vdash \prec \subset
_	₹	3870 GCTIGTC CGAACAG			500
3010					4050 TGTCG ACAGC
		() A			
36)	38 T	€ – ∢	8 J J	
` '	$\ddot{\circ}\ddot{\circ}\ddot{\circ}$	ျပည်တ	← ⊢	<u>ت</u> ت ت ت	` <u>~</u> ~
	\tilde{c}	<u> </u>	< ⊢	⊢ ∢	∀ }
	₹ -	ت ت	ی ن	S S	₹ ⊢
	SCS	C P	\vdash	\prec \vdash \dashv	\vdash \prec \succ
	\mathcal{O}	ى ت	⊢ ≺	⊢ ≺	3
	ی ت	3860 AAATGO TTTACO	$\mathcal{O}_{\mathcal{O}}}}}}}}}}$	_ 0 6	J J
3800		0 H 4 =	5 < ⊢ >	B 000	4040 GCCCC CGGGG
<u> </u>	<u>-</u> ≺	9 4	200	80.4	400
3		88			800
(,)				053-	4004
	\mathcal{E}	ည်း	7	· 80	
	\forall	ĕ∪∢	∀ ⊢ ⊢	¥ ⊢ _	555
	⊢ ∢	آ ق ن	⊢ ≺	J G G	₩ =
	— ~	< ⊢	3	ن ن	ے ت
	X H	_ ∪೮≯	ت ت ط	ひ∨ ∢	ى ق ق
0	\leftarrow	$\sigma \cup \sigma$	$\boldsymbol{\omega} \circ \boldsymbol{\omega}$	$\mathbf{a} \circ \mathbf{a}$	8 6 0
G		. ¥		7 00	€ - ×
3790		3850 CAAC GTTG(L		55 4 1- >	4030 10160 AGACG R
(1)					4 - 4
	337		<u> </u>	25.	
); `	555	555	7 7 4	
	$\ddot{\omega}$	3 5	3 5		\supset
	GGCCGCAGCAATTAGCGG1CCCGACCCGGCAAACATCAGTGCCGAATTGATCTC CCGGCGTCGTTAATCGCCAGGGCTGGGCCTTGGCGTTTGTAGTCACGGCTTAACTAGAG A A A I L P G S G P G A F M L A S N I E	ے ن ق	₽₹Œ	ં છે જે ~	350
	٥٠`	3850 3860 3870 3880 3990 3900 TGGCGGCAACTTAACTGTCAGCGACCGACCGACCGACCTTAACTGTCAGCGACCGAC	3910 3920 3930 3940 3950 3960 3960 3960 3960 3960 TTGCCGTGGCGGTATCGGCACTTCAATACCACTCATCTTTGGAGTCATCTTTGGAGCGCCCAGCGCACCCCAGTAGGAGCTCGCGGGAGCTCGCGGGAAACCCCCAGTAGAAACCTCGCGGGGGGAACCTCGCGGGGAAACCTCGCGGGGAAACCTCGCGGGGGAAACCTCGCGGGGAAACCTCGCGGGGAAACCTCGCGGGGAAACCTCGCGGGAAACCTCGCGGGAAACCTCGCGGGAAACCTCGCGGGAAACCTCGCGGGAAACCTCGCGGGAAACCTCGCGGGAAACCTCGCGGGAAACCTCGCGGGAAACTCGCGGGAAACTCGCGGGAAACTCGCGGGAAACCTCGCGGGAAACCTCGCGGGAAACCTCGCGGGAAACCTCCCGCGGAAAACCTCCAGTAGAAACCTCGCGGGAAACCTCGCGGGAAACCTCGCGGGAAACCTCCGCGGAAACCTCCAGAAACCTCCCAGTAGAAACCTCCCGCGGAAACCTCCCGCGGAAACCTCCCGCGGAAACCTCCCCAGTAGAAACCTCCCGCGGAAAACCTCCCGCGAAAACCTCCCGCGAAAACCTCCCCAGTAGAAACCTCCCCAGTAGAAACCTCCCCAGTAGAAACCTCCCCAGTAGAAACCTCCCCAGTAGAAACCTCCCCAGTAGAAACCTCCCCAGTAGAAACCTCCCCAGTAGAAACCTCCCCAGTAGAAACCTCCCAGTAGAAACCTCCCCAGTAGAAACCTCCCCAGTAGAAACCTCCCCAGTAGAAACCTCCCCAGTAGAAACCTCCCCAGTAGAAACCTCCCCAGTAGAAACCTCCCCAGTAGAAACCTCCCCCAGTAGAAACCTCCCCAGTAGAAACCTCCCCAGTAGAAACCTCCCCAGTAGAAACCTCCCCAGTAGAAACCTCCCCAGTAGAAACCTCCCCAGTAGAAACCTCCCCAGTAGAAACCTCCCCAGTAGAAACCTCCCCAGTAGAAACCTCCCCAGTAGAAACCTCCCCAGTAGAAACCTCCCCAGTAGAAACCTCCCCAGTAGAAACCTCCCCAGTAGAAACCTCCCCAGTAGAAACCTCCCCCAGTAGAAACCTCCCCAGTAGAAACCTCCCCCAGTAGAAACCTCCCCAGTAGAAACCTCCCCCAGTAGAAACCTCCCCCAGTAGAAACCTCCCCCAGTAGAAACCTCCCCCAGTAGAAACCTCCCCCAGTAGAAACCTCCCCCAGTAGAAACCTCCCCCAGTAGAAACCTCCCCCAGTAGAAACCTCCCCCAGTAGAAACCCCCCAGTAGAAAAAAAA	3970 3980 3990 4000 4000 4010 4020 CCTAGGAACCGCCACTTACCTAGTCCCGGGTAGGGCCGACTGGCGGCCGGGTGCAGCGGGGCGGGC	4030 4040 4050 4060 4070 4080 4080 A080 A080 A080 A080 A080 A08
	_			-	, ,

43/43

FIGURE 8 (CONT'D)

		വ
4280 GTGGAAG CACCTTC	4320 CACGACA GTGCTGT	GGAATTC CCTTAAG
4250 ratggccggc rcaccggccg	4310 CTGCCGCGG	4370 \CCCGCCGAC
4240 :AGGTCGCCCAT :TCCAGCGGGTA	270 4310 4290 4390 4330 4310 4320 SACCCGCGACGGTTGGACCGCTTTGGGTTAGATCTGCGCGCGC	330 4370 1340 4350 4360 4370 16GACACCCGCCGACGGAATTC
4230 SCAGGATATAC CGTCCTATATC	4290 SGTGGACCGCT SCACCTGGCGA	4350 GGATGIGGCGA
4220 GCCCGGGT GCGGGCCCAG	428Ø SCGACGGITGG SGCTGCCAACG	4340 ACCGTCCCGA
4210 4220 4230 4240 4250 4260 TGCTCTGGCACAGCCCCGGGGTGCAGGATATACAGGTCGCCCATGTGGCCGGCGTGGAAGAAGACGAGAGCGCCGGGCCCACGTCCTATATGTCCAGCGGGTGCGGCCCACGTCCTATATGTCCAGCGGGTACACGGGCCGCCGCCTTC	4270 4280 4290 4320 4330 4310 4320 A320 A320 A320 A320 A320 A320 A320 A	4330 CCGGATATGGAC