Return Extrapolation and Day/Night Effects

Christopher S. Jones **USC Marshall**

Sungjune Pyun NUS BS/RMI

Tong Wang Univ. Oklahoma

Singapore Scholars Symposium

November 2022

Tug of war - Lou, Polk, and Skouras (2019)

▷ Stocks with relatively *high* past overnight (daytime) returns outperform *overnight* (during the day).

Tug of war - Lou, Polk, and Skouras (2019)

▷ Investors that have different clienteles trade on different times of the day.

Research questions

- ▶ What types of stocks do overnight traders prefer?
- ▶ What are the drivers of day/night return patterns?
- ▷ Relationship to other documented day/night return patterns
 - Stock prices appreciate only overnight (Kelly and Clark 2011)
 - CAPM only holds overnight (Hendershott, Livdan, Roesch 2020)

Three ingredients from behavioral finance and institutional trading

1) Return extrapolation

- ▷ Expectations are positively correlated with past returns
- 2) Unsophisticated investors trade relatively more in the morning.
 - ▷ Different investor clientele (Lou, Polk, and Skouras 2019)
 - ▶ Higher attention at open (Berkman et. al. 2012)
 - ▶ Larger price dislocation and illquid at open (e.g., Brock and Kleidon 1992)
- 3) Short-selling constraint is binding \rightarrow overpricing (Miller 1977)

Motivation

Our main findings - Return extrapolation

- At the stock level, we find:
 - Morning (Afternoon) order imbalance is positively (negatively) related to past daytime returns
 - Overnight (daytime) returns positively (negatively) related to past daytime returns
- ▶ At the portfolio level, we find extrapolative trading leads to the observed day/night return patterns of characteristic-sorted portfolios
- Description At the aggregate level, we find evidence of extrapolative trading

Relationship to existing work

- ➤ The direction (daytime returns positively predict next night returns) is in contrast to
 - daily return reversals (e.g., Avramov Chordia, and Goyal 2006)
 - periodicity in order flows (Heston, Korajczyk, and Sadka 2010)
 - existence of investor clienteles (Lou, Polk, and Skouras 2019)
- ▶ We focus on the morning trades
 - Overnight risk premium (e.g., Barrot, Kaniel, and Sraer 2016, Hendershott et. al. 2020)
 - Margin requirement and lending fee overnight (e.g., Bogousslavsky 2021)

- ▶ Trade and Quote (1993-2014) combined with Polygon (2015-2020)
 - Polygon is the data provider for Robinhood
 - NYSE, NASDAQ, and AMEX. Remove stock price less than \$5 and stocks with market capitalization that falls in the first NYSE quintile
- ▶ Returns are based on mid-quotes
- ▶ Intraday Order imbalance (OIB) measured using signed volume (Lee and Ready 1991)

$$\mathsf{OIB} = \frac{\mathsf{Buy} - \mathsf{Sell}}{\mathsf{Shares} \ \mathsf{Outstanding}}.$$

- ▶ 13 anomaly characteristics from Lou, Polk, and Skouras (2019)
- ▷ Boehmer, Jones and Zhang (2021) retail order imbalance, intermarket sweep order to proxy institutional trade

OIB predictability - Fama-Macbeth (FM) approach

$$\mathsf{OIB}_{\mathit{int},t,i} = \alpha + \beta \mathit{R}_{9:45-3:59,t-1,i} + \delta' \mathsf{OIB}_{\mathsf{t}-1,\mathsf{i}} + \epsilon_{\mathsf{int},\mathsf{t},\mathsf{i}}$$

	9:30-9:45	9:45-10:30	10:30-4:00
$R_{9:45-3:59,t-1,i}$	1.8620 (26.88)	0.3332 (9.51)	-0.1537 (-9.68)
R ² (%)	0.68	1.41	3.27

▶ Unconditional effect

- Since returns are on average close to zero, return extrapolation does not imply any unconditional effect on morning OIB.
- ▶ However, with short-sale constraints, it will be binding only when past returns are negative.
 - We test this hypothesis using the term Max(day return , 0)
 - If there is extrapolation on past returns, β_a should be positive.

$$\begin{split} \mathsf{OIB}_{\textit{int},t,i} &= \alpha + \beta R_{9:45-3:59,t-1,i} \\ &+ \beta_{\textit{a}} \max(R_{9:45-3:59,t-1,i}, 0) + \mathsf{Control}_{t-1,i} + \epsilon_{\textit{int},t,i} \end{split}$$

OIB predictability with short sale constraint

	9:30-9:45	9:45-10:30	10:30-4:00
$R_{9:45-3:59,t-1}$	0.8032	-0.3041	-0.4571
	(5.39)	(-3.98)	(-14.43)
$\max(R_{9:45-3:59,t-1},0)$	2.0664	1.3060	0.7893
	(9.56)	(11.66)	(18.14)
Control	Lagged	night and wee	k returns
R ² (%)	0.70	1.43	3.33

Retail (left) vs Institutional (right) Trade

Return predictability - FM approach

 ➤ To avoid mechanical reversal due to illiquidity and program trading, we use lagged day returns ending 3PM.

Dependent variable		$R_{9:45-3:59,t}$			
$R_{9:45-3:59,t-1}$	-0.1000 (-0.87)				
$R_{9:45-3:00,t-1}$		0.9533 (8.12)	0.8807 (7.92)	-0.3839 (-2.76)	1.1716 (6.89)
$\max(R_{9:45-3:00,t-1},0)$		(-)	(* -)	1.0215 (4.72)	-0.2479 (-1.05)
$R_{3:59-9:45,t-1}$			3.1559 (10.29)	3.7447 (30.05)	-3.2472 (-23.00)
Characteristic controls	N	N	N	Y	Y
R ² (%)	0.00	0.03	0.05	0.14	0.06

Proxies for retail trading

Regression of Order Imbalance

	Z=Mispricing 9:30-9:45 10:30-4:00		Z=Google	Search Vol	Z=% Retail volume		
			9:30-9:45	10:30-4:00	9:30-9:45	10:30-4:00	
$R_{9:45-3:59,t-1}$	0.9892	0.0969	2.4352	2.4352	0.4656	0.4903	
	(4.07)	(1.96)	(28.55)	(-2.19)	(2.96)	(18.44)	
$Z \times R_{9:45-3:59,t-1}$	0.0132	-0.0056	11.0916	11.0916	46.2576	-8.7669	
	(2.69)	(-5.75)	(5.39)	(-9.03)	(13.21)	(-17.63)	
Z	0.0004	0.0003	0.1028	0.1028	-0.1656	0.0068	
	(5.05)	(15.71)	(4.3)	(5.47)	(-2.46)	(0.57)	

Regression of Returns

	Z=Mispricing Night Day		Z=Google	Search Vol	Z=% Ret	Z=% Retail volume	
			Night	Night Day		Day	
$R_{9:45-3:59,t-1}$	-2.7646	-0.5491	-1.0307	-2.1700	-2.7459	0.6721	
	(-2.15)	(-1.17)	(-2.72)	(-0.83)	(-3.62)	(2.58)	
$Z \times R_{9:45-3:59,t-1}$	0.0642	0.0323	13.6811	1.3157	33.1346	-8.6307	
	(2.93)	(3.09)	(6.74)	(0.13)	(6.12)	(-2.71)	
Z	-0.0004	-0.0009	0.0322	-3.8893	0.3486	-0.4663	
	(-0.89)	(-4.26)	(0.87)	(-1.03)	(3.82)	(-4.25)	

Characteristic-sorted portfolios (13×10 portfolios)

- > The short-sale constraint is captured by return dispersion of the portfolio
 - As cross-sectional dispersion increases, fraction of stocks with positive returns are higher

		OIB (×	1000)			Ret	urns	
$R_{t-1,9:45-3:00}$	0.979 (6.67)	-0.713 (-23.27)	0.929 (6.58)	-0.660 (-23.37)	0.030 (8.39)	0.008 (1.62)	0.021 (6.4)	0.004 (1.09)
Lag disp.			0.946 (6.16)	0.405 (12.96)			0.026 (7.67)	-0.039 (-7.68)
$R_{t-1,3:59-9:45}$	0.030 (0.17)	-0.078 (-1.94)	-0.014 (-0.09)	-0.098 (-2.62)	0.040 (8.87)	0.016 (2.59)	0.038 (9.25)	0.013 (2.45)
R ² (%)	12.59	35.62	12.59	36.05	0.49	0.06	0.55	0.26

Extrapolation and overpriced stocks

- ▶ We further investigate whether market-wide extrapolation is more prevalent for overpriced stocks
- Characteristics are defined so that high (portfolio 10) is underpriced (positive alpha)

$$HML_{c,t+1} = \alpha_c + \beta_c R_{m,t} (+\gamma_c \mathsf{Disp}_{m,t}) + \epsilon_{c,t+1},$$

 $\mathsf{HML} = \mathsf{night} - \mathsf{day} \; \mathsf{returns} \; \mathsf{of} \; \mathsf{the} \; \mathsf{HML} \; \mathsf{portfolio}$

▷ Compare the slope of this regression with the night-day return difference

Day/night returns vs. slope of lag returns on OIB

Security Market Line (SML) around the day

- ▶ Hendershott, Livdan, and Roesch (2020)
- ▷ If investors extrapolate on market returns, we expect high beta stocks to outperform in the morning – consistent with the above figure.
- → However, if these patterns are driven by return extrapolation, we expect the night time SML to be steeper following positive day returns (esp. with short-sale constraints)

SML conditional on previous daytime returns

Following positive returns (left) and negative returns (right)

Market return extrapolation at the aggregate level

	Order Imbalance							
	9:30)-9:45	10:30-4:00		Difference			
Lag market ret (9:45-3PM) Lag Dispersion	2.102 (6.44)	1.969 (5.66) 5.002 (11.89)	-0.151 (-1.26)	-0.242 (-1.91) 3.419 (20.31)	2.253 (7.55)	2.211 (7.24) 1.584 (4.86)		
R ² (%)	1.06	6.56	0.03	21.62	1.49	2.15		

	Returns							
	Night		Day		Night minus day			
Lag market ret (9:45-3PM)	0.039	0.039	-0.055	-0.055	0.094	0.094		
	(2.04)	(2.07)	(-2.00)	(-2.00)	(2.90)	(2.91)		
Lag Dispersion		-0.019		0.010		-0.028		
		(-0.91)		(0.35)		(-0.88)		
R ² (%)	0.17	0.19	0.19	0.18	0.39	0.41		

Motivation

- ▶ We find strong evidence of extrapolative trading near the open.
- ▷ Our results explains:
 - Higher returns at the open for stocks that performed well the past day
 - Higher returns at the open for overpriced stocks
 - Steep SML for overnight returns