INTRODUCTION TO DIGITAL IMAGE PROCESSING

Xiaohui Yuan

Department of Computer Science and Engineering University of North Texas xiaohui.yuan@unt.edu

Image Acquisition

- A lens focuses light onto the film
- The thin lens model:
 - Rays passing through the center do not deviate

Photo by Digital Image Processing (3rd Edition), by Rafael C. Gonzalez and Richard E. Woods, Pearson, ISBN-13: 978-0131687288

What is an Image Pixel

- Digital Images are composed of elements called pixels.
 - A pixel is the basic component of every digital image.
 - Each pixel consists of one (or more) numerical value that represents the color of a specific spot in the image.
 - They are organized into a grid to convey image contents.
- Each pixel is a string of binary code.
 - Each 0 or 1 is called a bit.
 - The number of bits in a pixel determines the size of the color palette, which is called color depth.
- If a pixel has more than one value, each value of all pixels forms an image plane known as a channel.
- Given an image I, a pixel is denoted as I(x, y), where x and y are the coordinates or the indices of the row and column of the pixel.

1-bit, black and white

8-bit grayscale

24-bit color

Image Resizing

- A digital image is saved as a matrix in computer memory spaces.
- Resizing an image often requires interpolation
- The interpolation process fills the voids (pixels without a value) generated from enlarging an image.
 - Zero-order interpolation (replication)
 - First-order interpolation (linear)
 - Third-order interpolation (cubic)
- Linear interpolation
 - The closer to a pixel, the higher the weight is assigned $I(n+a)=(1-a)\times I(n)+a\times I(n+1), \quad 0< a< 1$
- When an image is resized smaller, interpolation is also used to provide a smooth color transition between adjacent pixels.

Image Histogram

• The histogram of an image with gray levels in the range [0, L-1] is a discrete function

$$h(r_k) = n_k$$

where n_k is the count of pixels that have the gray level of r_k .

 The algorithm for creating the histogram of an image uses a single loop

Given an image A, its value range is [0 L-1].

- 1. Create a one-dimensional array h of size L with an initial value of zero
- 2. Loop through all pixels in the image A
- 3. For a pixel value v, increase the value at h(v) by one
- 4. Continue until all pixels in the image A are visited.

Histograms of a color image

Histograms of a grayscale image

Histogram Stretching

- Image contrast is the gray level difference between neighboring pixels.
 - A larger gray level difference of an image often results in a greater contrast.
- The histogram stretching maps the value of all pixels to a new value that spans the full grayscale range.
- The mapping function can be a linear function or a nonlinear function.

and Richard E. Woods, Pearson, ISBN-13: 978-0131687288

Histogram Equalization

- The goal is to maximize the usage of the full brightness range
 - This usually results in an enhanced image, with an increase in the dynamic range of pixel values.
 - The maximum contrast is achieved when the image histogram follows a uniform distribution.
- Assume continuous gray level r of an image and r is in the range of [0, 1].
- The enhanced image has a gray level s through a transformation $T(\cdot)$:

$$s = T(r), \qquad 0 < r < 1$$

- The transformation function satisfies the following two criteria:
 - T(·) is monotonically increasing in the range of [0, 1];
 - 0 < T(r) < 1 and 0 < r < 1

Histogram Equalization – Continuous Case

- Given two random variables r and s, their probability density functions are $p_r(r)$ and $p_s(s)$, respectively.
 - We want to compute the transformation function T(r) that maps $p_r(r)$ to $p_s(s)$
- If $p_s(s)$ and T(r) are known, $p_s(s)$ is computed as follows:

$$p_s(s) = p_r(r) \left| \frac{dr}{ds} \right|$$

• Since we know $p_s(s) = 1$, we have

$$p_s(s) = p_r(r) \left| \frac{dr}{ds} \right| = 1$$

- Multiply both sides with ds (ds>0), the above equation becomes $p_s(s)ds=p_r(r)dr=ds$
- Since s = T(r), we have

$$dT(r) = p_r(r)dr$$

Take integration on both sides and we get

$$s = T(r) = \int_0^r p_r(w) dw$$

Histogram Equalization – Discrete Case

- In the discrete case, a uniform distribution in the output can hardly be achieved.
- Approximation is usually used:

$$p_r(r_k) = \frac{n_k}{n}$$
 $k = 0, 1, 2, \dots, L - 1$

 The discrete version of the transformation function is computed as follows:

$$s_k = T(r_k) = \sum_{j=0}^k p_r(r_j) = \sum_{j=0}^k \frac{n_j}{n}$$

A Numerical Example

• Consider an 8-level 64 x 64 image with gray values (0, 1, ..., 7). The normalized gray values are (0, 1/7, 2/7, ..., 1).

Following the transformation: $s = \sum_{j=0}^{k} \frac{n_j}{n}$

k	r_k	n_k	$p(r_k) = n_k/n$
0	0	790	0.19
1	1/7	1023	0.25
2	2/7	850	0.21
3	3/7	656	0.16
4	4/7	329	0.08
5	5/7	245	0.06
6	6/7	122	0.03
7	1	81	0.02

		小	
k	s_k	n_k	$p(s_k) = n_k/n$
0	1/7	790	0.19
1	3/7	1023	0.25
2	5/7	850	0.21
3	6/7	985	0.24
4	1	448	0.11

$$s_{0} = T(r_{0}) = \sum_{j=0}^{5} p_{in}(r_{j}) = p_{in}(r_{0}) = 0.19 \rightarrow \frac{1}{7}$$

$$s_{1} = T(r_{1}) = \sum_{j=0}^{1} p_{in}(r_{j}) = p_{in}(r_{0}) + p_{in}(r_{1}) = 0.44 \rightarrow \frac{3}{7}$$

$$s_{2} = T(r_{2}) = \sum_{j=0}^{2} p_{in}(r_{j}) = p_{in}(r_{0}) + p_{in}(r_{1}) + p_{in}(r_{2}) = 0.65 \rightarrow \frac{5}{7}$$

$$s_{3} = T(r_{3}) = \sum_{j=0}^{3} p_{in}(r_{j}) = p_{in}(r_{0}) + p_{in}(r_{1}) + \dots + p_{in}(r_{3}) = 0.81 \rightarrow \frac{6}{7}$$

$$s_{4} = T(r_{4}) = \sum_{j=0}^{4} p_{in}(r_{j}) = p_{in}(r_{0}) + p_{in}(r_{1}) + \dots + p_{in}(r_{4}) = 0.89 \rightarrow \frac{6}{7}$$

$$s_{5} = T(r_{5}) = \sum_{j=0}^{5} p_{in}(r_{j}) = p_{in}(r_{0}) + p_{in}(r_{1}) + \dots + p_{in}(r_{5}) = 0.95 \rightarrow 1$$

$$s_{6} = T(r_{6}) = \sum_{j=0}^{6} p_{in}(r_{j}) = p_{in}(r_{0}) + p_{in}(r_{1}) + \dots + p_{in}(r_{6}) = 0.98 \rightarrow 1$$

$$s_{7} = T(r_{7}) = \sum_{j=0}^{7} p_{in}(r_{j}) = p_{in}(r_{0}) + p_{in}(r_{1}) + \dots + p_{in}(r_{7}) = 1.00 \rightarrow 1$$

Issues of Histogram Equalization

- Histogram equalization offers advantages of full automation and makes full range of color.
- It may not always produce desirable results
 - when image histogram has long tails.
- It can produce false edges and regions. It can also increase image "graininess."

Histogram Matching

- Histogram matching is used to specify the shape of the histogram that we wish an image to have.
 - We can specify the target histogram by giving a sample image.
- In the continuous case, if we map the histograms of two images (input and target) into the uniform distribution following the histogram equalization, we can have two transformation functions T and G for input and target images, respectively:

$$s = T(r) = \int_0^r p_{in}(w)dw$$
 and $v = G(z) = \int_0^z p_{tg}(w)dw$

• We apply the inverse transformation of the target image, G⁻¹, to the input image, such that the histogram of the input image matches the histogram of the target image:

$$z = H(r) = G^{-1}(T(r))$$

Histogram Matching – Discrete Case

- Obtain the histogram of the input image, $p(r_k)$.
- Map gray level r_k into s_k following the histogram equalization scheme

$$s_k = T(r_k) = \sum_{j=0}^{\kappa} p_r(r_j) = \sum_{j=0}^{\kappa} \frac{n_j}{n}$$

Obtain the transformation function G from, the target image using

$$v_k = G(z_k) = \sum_{j=0}^{n} p_z(z_j) = s_k$$

ullet Pre-compute z_k for each value of s_k using the iterative scheme defined in connection with

$$(G(\hat{z}) - s_k) \ge 0$$

• For each pixel in the input image, if the value of that pixel is r_k , map it to the corresponding level s_k ; then map s_k into the final level z_k .

A Numerical Example

k	r_k	n_k	$p(r_k) = n_k/n$
0	0	790	0.19
1	1/7	1023	0.25
2	2/7	850	0.21
3	3/7	656	0.16
4	4/7	329	0.08
5	5/7	245	0.06
6	6/7	122	0.03
7	1	81	0.02

$r_j \rightarrow s_k$	n_k	$p(s_k)$
$r_0 \rightarrow s_0 = 1/7$	790	0.19
$r_1 \rightarrow s_1 = 3/7$	1023	0.25
$r_2 \rightarrow s_2 = 5/7$	850	0.21
$r_3, r_4 \rightarrow s_3 = 6/7$	985	0.24
$r_5, r_6, r_7 \rightarrow s_4 = 1$	448	0.11

k	z_k	$p_{\text{out}}(z_k)$
0	0	0.00
1	1/7	0.00
2	2/7	0.00
3	3/7	0.15
4	4/7	0.20
5	5/7	0.30
6	6/7	0.20
7	1	0.15

Computing Mapping Function G

$$\begin{aligned} & v_0 = G(z_0) = \sum_{j=0}^0 p_{\text{out}}(z_j) = p_{\text{out}}(z_0) = 0.00 \to 0 \\ & v_1 = G(z_1) = \sum_{j=0}^1 p_{\text{out}}(z_j) = p_{\text{out}}(z_0) + p_{\text{out}}(z_1) = 0.00 \to 0 \\ & v_1 = G(z_1) = \sum_{j=0}^1 p_{\text{out}}(z_j) = p_{\text{out}}(z_0) + p_{\text{out}}(z_1) = 0.00 \to 0 \\ & v_2 = G(z_2) = \sum_{j=0}^2 p_{\text{out}}(z_j) = p_{\text{out}}(z_0) + p_{\text{out}}(z_1) + p_{\text{out}}(z_2) = 0.00 \to 0 \\ & v_2 = G(z_2) = \sum_{j=0}^2 p_{\text{out}}(z_j) = p_{\text{out}}(z_j) = p_{\text{out}}(z_0) + p_{\text{out}}(z_1) + p_{\text{out}}(z_2) = 0.00 \to 0 \\ & v_2 = G(z_2) = \sum_{j=0}^2 p_{\text{out}}(z_j) = p_{\text{out}}(z_0) + p_{\text{out}}(z_1) + p_{\text{out}}(z_2) = 0.00 \to 0 \\ & v_3 = G(z_3) = \sum_{j=0}^3 p_{\text{out}}(z_j) = p_{\text{out}}(z_0) + p_{\text{out}}(z_1) + \dots + p_{\text{out}}(z_3) = 0.15 \to \frac{1}{7} \\ & v_4 = G(z_4) = \sum_{j=0}^4 p_{\text{out}}(z_j) = p_{\text{out}}(z_0) + p_{\text{out}}(z_1) + \dots + p_{\text{out}}(z_3) = 0.15 \to \frac{1}{7} \\ & v_4 = G(z_4) = \sum_{j=0}^4 p_{\text{out}}(z_j) = p_{\text{out}}(z_0) + p_{\text{out}}(z_1) + \dots + p_{\text{out}}(z_4) = 0.35 \to \frac{2}{7} \\ & v_5 = G(z_5) = \sum_{j=0}^5 p_{\text{out}}(z_j) = p_{\text{out}}(z_0) + p_{\text{out}}(z_1) + \dots + p_{\text{out}}(z_5) = 0.65 \to \frac{5}{7} \\ & v_6 = G(z_6) = \sum_{j=0}^6 p_{\text{out}}(z_j) = p_{\text{out}}(z_0) + p_{\text{out}}(z_1) + \dots + p_{\text{out}}(z_5) = 0.85 \to \frac{6}{7} \\ & v_7 = G(z_7) = \sum_{j=0}^7 p_{\text{out}}(z_j) = p_{\text{out}}(z_0) + p_{\text{out}}(z_1) + \dots + p_{\text{out}}(z_5) = 1.00 \to 1 \end{aligned}$$

Gray Level Lookup Table

Inverse function

$G^{-1}(0)$?
$G^{-1}(\frac{1}{7})$	$\frac{3}{7}$
$G^{-1}(\frac{2}{7})$	$\frac{4}{7}$
$G^{-1}(\frac{3}{7})$?
$G^{-1}(\frac{4}{7})$?
$G^{-1}(\frac{5}{7})$	<u>5</u> 7
$G^{-1}(\frac{6}{7})$	$\frac{6}{7}$
$G^{-1}(1)$	1

$r \rightarrow z$		
0	3/7	
1/7	4/7	
2/7	5/7	
3/7	6/7	
4/7	6/7	
5/7	1	
6/7	1	
1	1	
A		

