## **CG1111 Engineering Principles and Practice I**

## **Tutorial for Week 7**

## AC Circuit Analysis and AC-to-DC Conversion

- 1. The circuit in the figure below is supplied by a sinusoidal voltage source.
  - a. Find the expression for  $V_R(t)$ .
  - b. What is the value of resistance R for the phase difference between  $V_s(t)$  and  $V_R(t)$  to be 45°?
  - c. Draw the phasor diagram showing  $V_s(t)$ ,  $V_R(t)$ , and  $V_L(t)$ .

$$V_{S}(t) = V_{R}(t) + V_{R}(t)$$

$$V_{S}(t) = V_{R}(t)$$

$$V_{L}(t)$$

Ans:

a) 
$$V_R(t) = \frac{RV_m}{(\sqrt{R^2 + \omega^2 L^2})} \cos{(\omega t - tan^{-1}\frac{\omega L}{R})}$$

- b)  $10 \Omega$
- 2. For the circuit given below, find the Thevenin equivalent seen across terminals **a** and **b**.



Ans:

$$V_{\mathrm{Th}} = 5\sqrt{2} \angle 15^{\circ}$$

$$Z_{\mathrm{Th}} = 8 - j8 \,\Omega$$

- 3. The circuit in the figure below is supplied by a sinusoidal voltage source.
  - a. Find the voltage v(t).
  - b. Find the current  $i_c(t)$ .



Ans:

- a)  $32.3 \cos (300t + 12.1^{\circ}) V$
- b)  $7.2 \cos (300t + 60.1^{\circ}) A$
- 4. Derive an expression for the voltage ripple at the load  $R_L$  in the following circuit, in terms of the average load voltage  $V_{Load}$ , the AC power supply's frequency  $f_s$ , the capacitance C, and the load resistance  $R_L$ .



5. The above circuit needs to deliver a current of 0.2 A with an average voltage of 15 V. The AC source has a frequency of 50 Hz. The peak-to-peak voltage ripple is to be less than 0.5 V. Assume the diodes are ideal with no voltage drop. Find the minimum value of the filter capacitor needed.

Ans: 4 mF