1. Prescriptive Analytics

What is it?

Prescriptive Analytics is the **third stage** of analytics (after descriptive and predictive). It goes **beyond prediction** and suggests **actions** or **decisions** to optimize outcomes.

Type Purpose

Descriptive What happened?

Predictive What will happen?

Prescriptive What should we do about it?

* Key Tools:

- Optimization models (like Linear Programming)
- Simulation
- Decision trees
- Business rules

Example:

An EdTech company wants to **maximize profit** from course sales given:

- Limited marketing budget
- · Limited counsellor availability
- Different course profit margins

Prescriptive analytics would recommend how much to **invest in each marketing channel** and **how to allocate counsellors** to maximize enrolments and revenue.

2. Linear Optimization / Linear Programming (LP)

What is it?

A mathematical technique used to determine the **best outcome (maximum or minimum)** of a linear objective function, subject to **linear constraints**.

★ LP Components:

- 1. **Decision Variables** What we are solving for (e.g., how many students per course)
- 2. **Objective Function** What to maximize or minimize (e.g., maximize profit)
- 3. Constraints Limitations (e.g., counselor availability, budget, seats)

S Example:

Maximize:

Profit = 200x + 150y

Where:

- x = number of Premium Course enrollments
- y = number of Basic Course enrollments

Subject to:

- x + y ≤ 100 (Total capacity)
- $2x + y \le 150$ (Counselor hours available)

Solve using:

• Simplex Method

• 3. Applications of Linear Optimization

Common Use Cases:

Industry	Application	
EdTech	Course allocation, marketing mix optimization	
Retail	Inventory optimization, pricing models	
Logistics	Route planning, supply chain optimization	
Finance	Portfolio optimization	
Manufacturing Production planning, resource allocation		

★ Micro-Level Steps:

- 1. Define the **goal** (maximize revenue, minimize cost)
- 2. Identify **decision variables** (e.g., how much to spend)
- 3. Set up the objective function
- 4. Identify constraints
- 5. Use optimization tools (Excel, Python)
- 6. Interpret the output (sensitivity, feasibility)

4. Integer Programming (IP)

✓ What is it?

A variation of Linear Programming where **decision variables must be integers** (whole numbers).

Used when fractional solutions are not realistic, like:

- You can't assign 2.6 counsellors
- You can't enrol 3.8 students

S Example:

Select courses to run from a list of 10 where:

- You can only pick **5 whole** courses (not 5.3)
- You want to maximize profit
- Each course has a cost, and you have a budget

This is an Integer Linear Program (ILP)

Tools:

- Excel Solver (with "Simplex & Integer")
- Python pulp, ortools, pyomo
- 5. Logistic Models (Logistic Regression)
- What is it?

Used to **predict probabilities** for **binary outcomes** (Yes/No, True/False, Enrolled/Not Enrolled)

Unlike linear regression, logistic regression maps values between 0 and 1 using a **sigmoid function**.

* Example:

Predict if a lead will convert to a paid student:

Target (Y) = 1 if enrolled, 0 if not

Features:

- session_duration
- counselor_followups
- demo_rating

- email_response

Model:

P(Enrol)=1/(1+e-(b0+b1x1+b2x2+...+bnxn))

Output:

- If P > 0.5, predict enrolment
- If $P \le 0.5$, predict no enrolment

☆ Steps to Build:

- 1. Collect labelled data (leads with outcome 1/0)
- 2. Preprocess: clean, encode, scale
- 3. Fit model using sklearn LogisticRegression()
- 4. Use in Power BI or app for scoring

Summary Table

Term	Purpose	Tool	Example
Prescriptive Analytics	Suggest actions	Optimization, simulation	Maximize counsellor allocation
Linear Optimization	Max/min objective	LP solver, Python	Maximize revenue
Applications	Real-world use	Business planning	Budget allocation
Integer Programming	Whole number decisions	IP solver, Gurobi	Course selection
Logistic Models	Predict yes/no	Logistic regression	Will lead convert?

1. Prescriptive Analytics

Tech Example: Counselor Assignment Optimization

Problem:

You have 10 counselors and 3 course types. Each counselor can handle a max of 5 calls/day. You want to assign them to **maximize conversion**.

Micro-Level Process:

Step	Description
t ☐Define Goal	Maximize enrollment conversions
☑ dentify Decisions	How many calls each counselor should make per course
≦ Objective Function	Maximize: Total_Conversions = Σ (calls_per_course × conversion_rate)
⊈ Constraints	Counselor call capacity, budget, course availability
5 Solve	Use Linear/Integer Programming
© Output	Recommended call distribution per counselor per course

• 2. Linear Optimization (Linear Programming)

Solution Example: Course Profit Optimization

Courses:

- Premium Course: Profit ₹200, Time required: 2 hrs

- Basic Course: Profit ₹150, Time required: 1 hr

Total available time = 150 hours

Total max enrolments = 100

Decision Variables:

- x = # of Premium courses
- y = # of Basic courses

Objective Function:

Maximize Profit = 200x + 150y

Constraints:

 $x + y \le 100$ (max enrolments)

 $2x + y \le 150$ (available time)

 $x, y \ge 0$

Use tools:

• **Python**: SciPy

Output:

Optimal x = 40, y = 60

→ This gives highest profit under constraints.

3. Applications of Linear Programming

Area Example

EdTech Optimizing counselor-to-lead allocation

Retail Inventory order quantity under budget

Airlines Crew scheduling

Hospitals Doctor-patient time optimization

Marketing Max ROI from ad spend across channels

4. Integer Programming (IP)

Txample: Select Courses to Launch

You want to select 5 out of 10 courses to launch. Each has:

- A cost (within budget)
- A profit score

You can't pick 5.4 courses → So you use IP.

\ Binary Integer Programming:

Decision Variables:

• xi = 1 if course i is selected, 0 otherwise

Objective:

Maximize Total_Profit = Σ (xi × profit_i)

Constraints:

 Σ (xi × cost_i) \leq budget

 $\Sigma xi = 5$ (only 5 courses allowed)

 $xi \in \{0, 1\}$

• 5. Logistic Regression Models (Binary Classification)

Ted Tech Example: Predict Enrolment

Inputs (features):

- demo_attended = 1
- session_duration = 45 mins
- counselor_followups = 2
- response_time = fast

Output:

- Probability that student enrolls = 0.87
- Since 0.87 > 0.5 → Predict Enroll

Micro Steps:

Step	Action
------	--------

Define Problem Binary classification: Enroll or Not

2Data Collection CRM leads data with outcomes

**EFeature Engineering Convert duration, channels, followups into features

5 Evaluate ROC Curve, AUC, Accuracy, Precision

©Deploy Score new leads in real-time

TDecision Prioritize leads with high probability to convert

!!! Logistic Equation:

P(enroll)=1/(1+e-(b0+b1*x1+b2*x2+...)))

Example output:

Lead A = 0.83 → enroll

Lead B = $0.25 \rightarrow \text{not enroll}$

■ Integration Example in EdTech Pipeline

Phase	Tool	Task
Data Extraction	n Zoho API → Python/Airbyte	Pull raw leads, enrollments
ETL	Pandas/Talend	Clean, structure data
Warehouse	Snowflake	Store fact/dim tables
Predictive	Logistic Regression	Score lead conversion chance
Prescriptive	Linear/Integer Programming	g Allocate counselors, optimize ads
BI Layer	Power BI	Visualize insights & decisions

What is Making a Decision?

Making a decision means choosing the **best possible option** from a set of alternatives to achieve a specific **goal** or solve a **problem**.

It can be as small as:

"Should I study Python or Power BI tonight?"

Or as big as:

"Should our EdTech company invest in hiring more counsellors or expand to new cities?"

Key Elements of Decision-Making:

Element	Description	Example
Goal	What are you trying to achieve?	Maximize course enrolments
Alternatives	What are your options?	Hire more staff, increase ad spend
Information	What do you know about the problem?	Budget, current conversion rates
Criteria	How will you evaluate options?	ROI, enrolment impact, time
Constraints	What limits your decision?	Budget, time, team size
Outcome	What's the result of your choice?	Higher enrolments or overspending

Micro-Level Steps in Decision-Making

Step	Action	Example
1 Define the Problem	Clearly identify the challenge	Enrolment is low in Tier-2 cities
2 Set the Objective	What is the goal?	Increase Tier-2 enrolments by 25%
3 List Alternatives	Identify available choices	A) Local ads, B) More counsellors
4 Gather Data	Analyze facts, metrics, predictions	Cost of ads, conversion rates
5 Evaluate Options	Compare alternatives based on data	Calculate expected ROI
6 Make a Choice	Choose the best fit option	Select local ads for quick reach
7 Take Action	Implement the decision	Run targeted regional campaigns
8 Review Results	Evaluate impact & learn	Monitor uplift, adjust strategy

Type Description Example

Long-term, high impact Expand to new markets Strategic

Tactical Medium-term Choose pricing for new course

Operational Daily, routine Assign leads to counsellors

Example: Decision-Making in Your EdTech Project

Scenario:

You want to maximize conversions from Zoho CRM leads.

Decision-Making Path:

1. Problem: Low conversion rates

2. Goal: Improve enrollments by 20%

3. Alternatives:

- o Train counselors
- o Shorten response time
- Launch chatbot

4. Criteria:

- o Cost
- o Speed of deployment
- o Predicted improvement
- 5. Use Prescriptive Analytics:
 - o Run an optimization model
 - o Predict with logistic regression
- 6. Choose: Launch chatbot for faster lead response
- 7. Track: Monitor conversion improvement after 1 month

Summary

Decision-making = structured thinking + data + trade-offs Good decisions come from:

- Clear goals
- Relevant data
- Structured methods (like analytics & optimization)

What is Decision Analysis?

Decision Analysis is a **systematic approach** to decision-making under **uncertainty**. It combines:

- Decision theory
- Probability
- Utility (value)
- Modelling tools like decision trees, payoff tables, or sensitivity analysis

It helps decision-makers evaluate different strategies by quantifying:

- Risks
- Rewards
- Trade-offs
- Probabilities

© Purpose of Decision Analysis

- To choose the best alternative when outcomes are uncertain
- To reduce risk in business or personal decisions
- To justify decisions with clear logic and data

Micro-Level Steps in Decision Analysis

Step	Description	Example in EdTech
1 Define the Decision Problem	What decision needs to be made?	Choose between two marketing strategies
2 identify Alternatives	List all possible options	Facebook Ads, Google Ads, Counsellor Outreach
3 Determine Outcomes	What could happen under each option?	High/Medium/Low enrolments
4 Assign Probabilities	Estimate likelihood of each outcome	70% high success with Facebook ads
5 Assign Payoffs (or Costs)	Determine value/cost of each outcome	Profit, enrolments, cost of ads
6 Calculate Expected Value	Multiply probability × payoff for each branch	Use math or tools

Step	Description	Example in EdTech
7 Choose Best Option	Select based on expected value or utility	Facebook Ads if it gives highest value
8 Conduct Sensitivity Analysis	What if assumptions change?	What if ad cost increases?

Example: Decision Tree (EdTech Lead Conversion)

Problem:

You can:

- Hire More Counsellors (Option A)
- Launch a Chatbot (Option B)

Strategy	Outcome	Probability	Enrolments	Net Profit
A: Counsellors	High	60%	100	₹1,00,000
	Low	40%	40	₹20,000
B: Chatbot	High	50%	80	₹80,000
	Low	50%	30	₹10,000

Expected Values:

- EV(A) = 0.6×100000 + 0.4×20000 = ₹72,000
- EV(B) = 0.5×80000 + 0.5×10000 = ₹45,000
- * Choose Option A based on higher expected value.

d Decision Analysis Tools

Tool	Use
Decision Tree	Visualize options, outcomes, and probabilities
Payoff Table	Tabular layout of outcomes, costs/profits
Expected Value	Weighted average of possible outcomes
Sensitivity Analysis	Test effect of changing inputs
Simulation (e.g., Monte Carlo)	Test large uncertainty with random variables
Utility Theory	If decision isn't purely financial (e.g., user satisfaction)

Application in EdTech or Business

Scenario How Decision Analysis Helps

Campaign Planning Choose best ad strategy based on risk/reward

Product Pricing Compare profits under different price points

Hiring Plans Evaluate full-time vs part-time counsellor costs

Expansion Analyse risk-return of entering a new city

When to Use Decision Analysis?

- When multiple uncertain outcomes are possible
- When you need to **justify or explain** a choice
- When data can help you model future outcomes
- When stakes are too high for guesswork

Summary

Feature Value

What is it? A structured method for making decisions under uncertainty

Inputs Alternatives, probabilities, outcomes, values

Outputs Optimal decision, expected values, risk understanding