VILNIAUS UNIVERSITETAS MATEMATIKOS IR INFORMATIKOS FAKULTETAS PROGRAMŲ SISTEMŲ KATEDRA

Bakalaurinis darbas

Autonominis ketursraigčio skrydžio valdymas Autonomus Control of Quadcopter Flight

		grupės studentas
10,015 110	ii pasia .	(parašas)
Darbo v Irus Gri		
Recenze Vytauta		(parašas)

Turinys

Įva	$adas \dots$		2	
1.	Ketursraigčio techninė įranga			
	1.1.	Rėmas, varikliai ir propeleriai	3	
	1.2.	Valdymo elektronika	4	
2. N	Matematinis skrydžio modelis			
	2.1.	Lokali ir globali koordinačių sistemos	5	
	2.2.	Keliamoji jėga	6	
	2.3.	Sukamoji jėga	7	
	2.4.	Bendras judėjimo modelis	8	
3.	Kampinės padėties skaičiavimas			
	3.1.	Kvaternionai	9	
	3.2.	Kampinės padėties skaičiavimas pagal giroskopą	9	
	3.3.	Kampinės padėties skaičiavimas pagal akselerometrą	9	
	3.4.	Galutinis kampinės padėties radimas	9	
4.	Kampi	mpinės padėties valdymo algoritmas		
	4.1.	PID valdymo algoritmas	10	
	4.2.	PID pritaikymas ketursraigčio valdymui	10	
5.	Skrydžio valdymas			
	5.1.	Atviro-ciklo valdymas	11	
	5.2.	Kampinės pozicijos tikslų lentelė	11	
	5.3.	Atviro-ciklo valdymo trūkumai	11	
6.	Programinė įranga		12	
	6.1.	Bendroji architektūra	12	
	6.2.	Kompiuteriui skirtas klientas	12	
	6.3.	Retransmitorius	12	
	6.4.	Ketursraigčio pagrindinis valdiklis	12	
Išvados			13	
Lit	Literatūros sąrašas			

Įvadas

1. Ketursraigčio techninė įranga

Įprasto ketursraigčio techninė struktūra yra palyginus lengvai suprojektuojama bei pagaminama tačiau to negalima pasakyti apie programinę įrangą, bei algoritmus valdančius skrydį.

1.1. Rėmas, varikliai ir propeleriai

Ketursraigtis susideda iš "X" formos rėmo, kurio galuose yra po elektrinį bešepetėlinį variklį su propeleriu. Priešingai nei įprastuose sraigtasparniuose, šių propelerių atakos kampas nėra reguliuojamas, o tai leidžia stipriai supaprastinti skraidyklės techninę struktūrą ir atsisakyti sudėtingų mechaninių dalių. Varikliai skirstomi į dvi grupes iš kurių viena sukasi pagal laikrodžio rodyklę, kita – prieš laikrodžio rodyklę. Šių variklių sukimosi greitis yra reguliuojamas siekiant išgauti tinkamą sukamąją bei keliamąją jėgas.

1 pav. Ketursraigčio rėmo ir variklių išdėstymas. Jų sukimosi kryptys.

Šio darbo tikslams pasiekti buvo nupirktas "HobbyKing x525" 600mm skersmens rėmas, pagamintas iš aliuminio ir stiklo pluošto. Taip pat elektriniai bešepetėliniai 160W galios varikliai "Turnigy D2822" ir 8 colių ilgio, bei 4 laipsnių atakos kampo propeleriai.

1.2. Valdymo elektronika

Stabilaus skrydžio išlaikymas ketursraigtyje yra per sudėtinga užduotis žmogui (pilotui) todėl pasitelkiama pagalbinė elektronika palengvinanti ketursraigčio valdymą. Valdymo elektronikai išskiriami tokie uždaviniai:

- Skrydžio stabilizavimas bei kontrolė
- Ryšio su pilotu arba valdančia sistema palaikymas
- Sugeneruoti galios signalus reikalingus varikliams

Skrydžio stabilizavimas bei kontrolė. Skrydžio stabilizavimui bei kontrolei atlikti naudojami sensoriai pagal kurių duomenis yra paskaičiuojami kokių korekcinių veiksmų reikia imtis norint įgyvendinti piloto ar valdančios sistemos komandas. Išskiriami svarbiausi parametrai yra tikslumas bei greitis.

Atsižvelgiant į rekalavimus šiems parametrams, buvo parinktas kompanijos "STMicroelectronics" procesorius "STM32F401" bei kompanijos "InvenSense" sensorius "MPU6050"

Ryšio su pilotu arba valdančia sistema palaikymas. Ryšio palaikymas parametrizuojamas pagal duomenų persiuntimo greitį ir latenciją, bei veikimo ribas. Ketursaigčio atveju persiunčami duomenys yra tik valdymo signalai iš piloto arba valdančios sistemos, todėl buvo pasirinktas GSM ryšys. Taip pat "Raspberry pi" kompiuteris su "Linux" operacine sistema atlikdavo viską kas reikalinga GSM ryšiui palaikyti.

Galios signalų generavimas. Bešepetėliniai varikliai reikalauja trijų galio signalų jų sukimuisi palaikyti. Šiam tiklui buvo nupirkti 18A elektroniniai greičio valdikliai galintys suvaldyti apie 200W galios, tad puikiai tinkantys 160W galios varikliams.

2 pav. Ketursraigčio elektronikos sudedamųjų dalių schema.

2. Matematinis skrydžio modelis

2.1. Lokali ir globali koordinačių sistemos

Pravartu apibrėžti lokalią ir globalią koordinačių sistemas, kuriose nagrinėsime ketursraigčio dinamiką. Lokalioje koordinačių sistemoje x ir y ašis yra sulygiuota su ketursraigčio rėmo strypais, kur X rodo pirmojo variklio kryptimi, Y - antrojo. Globali sistema yra susieta su žemės gravitaciniu laiku, ir toje sistemoje gravitacinio lauko vektorius nukreiptas priešinga Z ašiai kryptimi.

3 pav. Lokalios ir Globalios koordinačių sistemos palyginimas.

Konvertavimas tarp šių koordinačių sistemų bus vykdomas kvaternionų pagalba (žr.: TODO_SKYR_NR):

$$q_l = q_p * q_g * q_p^{-1} (1)$$

ir į priešingą pusę:

$$q_g = q_p^{-1} * q_l * q_p \tag{2}$$

Čia q_g – tašką arba vektorių globalioje koordinačių sistemoje atvaizduojantis kvaternionas, q_l – tašką arba vektorių lokalioje koordinačių sistemoje atvaizduojantis

kvaternionas, q_p – kampinės pozicijos kvaternionas (žr.: TODO_SKYR_NR).

2.2. Keliamoji jėga

Ketursaigtis sukuria keliamąją jėgą priversdamas judėti orą žemyn. Kadangi naudojami nekintamo atakos kampo propeleriai, keliamoji jėga reguliuojama valdant propelerių sukimosi greitį. pagal (TODO_REFERENCE) keliamoji jėga gali būti apskaičiuota:

$$T = C * \omega^2 \tag{3}$$

Kur T yra keliamoji jėga niutonais vienam varikliui, C yra konstanta priklausanti tik nuo propelerio nekintamų savybių, o ω yra variklių sukimosi greitis.

Taip pat galime paskaičiuoti bendrąją keliamąją jėga visiems varikliams.

$$T = \sum_{i=1}^{4} T_i = \begin{bmatrix} 0 \\ 0 \\ \sum_{i=1}^{4} C_i * \omega_i^2 \end{bmatrix}$$
 (4)

Šiuo atveju T yra keliamosios galios vektorius lokalioje koordinačių sistemoje. Ir skaičiuojant globalioje koordinačių sistemoje:

$$q_{tl} = [0, T_x, T_y, T_z] (5)$$

$$q_{tg} = q_p^{-1} * q_{tl} * q_p (6)$$

$$T_g = \begin{bmatrix} q_{tg_x} \\ q_{tg_y} \\ q_{tg_z} \end{bmatrix} \tag{7}$$

Čia q_{tl} yra kvaternionas reprezentuojantis keliamosios jėgos vektorių lokalioje koordinačių sistemoje, q_p kvaternionas reprezentuojantis pasukimą nuo globalios iki lokalios koordinačių sistemos (žr.: TODO_SECT_NR), q_{tg} – keliamosios jėgos vektorių atvaizduojantis kvaternionas globalioje koordinačių sistemoje, T_g – keliamosios jėgos vektorius globalioje koordinačių sistemoje.

2.3. Sukamoji jėga

Besisukant propeleriams oro trintis į mentes sukelia papildomą jėgą, kuri veikia ketursraigčio rėmą. Kiekvienam iš variklių ši jėga yra nukreipta priešinga kryptimi nei sukasi variklis. Norint išvengti nevaldomo ketursraigčio sukimosi, parenkami du propeleriai skirti suktis pagal laikrodžio rodyklę ir du propeleriai skirti suktis prieš laikrodžio rodyklę, varikliai sujungiami taip, kad jų sukimosi kryptis atitiktų propelerį ir oro srautas būtų nukreiptas žemyn. Konkrečiu atveju varikliai 1 ir 4 sukasi prieš laikrodžio rodyklę, o varikliai 2 ir 3 – pagal.

Šią jėgą modeliuosime tiesiškai priklausančią nuo sukimosi greičio:

$$F = -\omega * C \tag{8}$$

Čia C yra konstata priklausanti tik nuo propelerio savybių. Taip pat tai yra pasipriešinimo jėga, todėl ji yra priešinga judėjimo krypčiai ir iš čia yra neigiama ω .

4 pav. Jėgos sukeliamos dėl oro trinties į propelerius.

Verta pastebėti, kad varikliai skaidomi grupėmis pagal sukimosi kryptį. Tos pačios sukimosi krypties variklis sukuria tos pačios krypties sukamąją jėgą, tik cen-

tras kitoje vietoje. Tačiau rėmo atžvilgiu šias grupes galima nagrinėti kaip vieną jėga. Tokiu atveju turime dvi jėgas priešingų krypčių (žr.: TODO_PAV_REFERENCE).

5 pav. Jėgos sukeliamos dėl oro trinties į propelerius.

Šiuo atveju vidinės rodyklės rodo 2 ir 3 variklių sukamąsias jėgas, o išorinis – 1 ir 4 (žr.: TODO_REFERENCE_I_IMAGE). Verta pastebėti, kad rodyklių storis nėra susijęs su jėgos dydžiu.

2.4. Bendras judėjimo modelis

3. Kampinės padėties skaičiavimas

- 3.1. Kvaternionai
- 3.2. Kampinės padėties skaičiavimas pagal giroskopą
- 3.3. Kampinės padėties skaičiavimas pagal akselerometrą
- 3.4. Galutinis kampinės padėties radimas

- 4. Kampinės padėties valdymo algoritmas
- 4.1. PID valdymo algoritmas
- 4.2. PID pritaikymas ketursraigčio valdymui

- 5. Skrydžio valdymas
- 5.1. Atviro-ciklo valdymas
- 5.2. Kampinės pozicijos tikslų lentelė
- 5.3. Atviro-ciklo valdymo trūkumai

- 6. Programinė įranga
- 6.1. Bendroji architektūra
- 6.2. Kompiuteriui skirtas klientas
- 6.3. Retransmitorius
- 6.4. Ketursraigčio pagrindinis valdiklis

Išvados

- $[AAJ+01\]-Implementing\ a\ Sensor\ Fusion\ Algorithm\ for\ 3D\ Orientation\ Detection\ with \\Inertial/Magnetic\ Sensors,\ http://franciscoraulortega.com/pubs/Algo3DFusionsMems.$ pdf
- [SSF+11] A sensor fusion algorithm for an integrated angular position estimation with inertial measurement units, http://www.date-conference.com/proceedings/PAPERS/2011/DATE11/PDFFILES/IP1_06.PDF
 - [MS11] Modeling, Design and Experimental Study for a Quadcopter System Construction, http://brage.bibsys.no/xmlui/bitstream/id/86811/uiareport.pdf
 - $[----Quadcopter\ Dynamics,\ Simulation,\ and\ Control\ http://andrew.gibiansky.\\ com/downloads/pdf/Quadcopter%20Dynamics,%20Simulation,%20and%20Control.\ pdf$