Scuola di Scienze Dipartimento di Fisica e Astronomia Corso di Laurea in Fisica

GEOMETRIC DEEP LEARNING

Relatore: Presentata da: Prof.ssa. Rita Fioresi Tommaso Lamma

Anno Accademico 2020/2021

Abstract in italiano...

Abstract in english...

Contents

1	Introduction													1
	1.1 Abstract simplicial complexes					 								1

1 Introduction

1.1 Abstract simplicial complexes

Definition 1.1.1. Abstract simplicial complex (finite)

Let \mathcal{F} be a family of sets we then define an abstract simplicial complex \mathcal{A} to be

$$\mathcal{A} := \{ \sigma = \{ A_i \}_{i \in I_{\sigma}} \subset \mathcal{F} : \tau \subset \sigma \Rightarrow \tau \in \mathcal{A} \}$$

where I_{σ} is a finite set of indexes, we shall call σ abstract simplexes of A.

Definition 1.1.2. Dimension of an abstract simplicial complex

Let $A = {\sigma_i}_{i \in J}$ be an abstract simplicial complex we define its dimension to be

$$dim\mathcal{A} := max_{\sigma_i \in \mathcal{A}} dim(\sigma_i),$$

where $dim(\sigma_i) := |\sigma_i| - 1$.

Definition 1.1.3. Abstract graph

An abstract graph $\mathcal{G} = {\{\sigma_j\}_{j \in J}}$ is a 1-dimensional abstract simplicial complex whose vertexes and edges are respectively

$$\mathcal{V} := \{ \sigma_j \in \mathcal{G} : dim(\sigma_j) = 0 \}$$
 and

$$\mathcal{E} := \{ \sigma_j \in \mathcal{G} : dim(\sigma_j) = 1 \} .$$

In Definition 1.1.1. we tacitly assumed the definition of the abstract simplex σ_j invariant with respect to permutations of the indexes I_j , this assumption establishes the difference between directed and undirected graphs.

Definition 1.1.4. Convex envelop of points in \mathbb{R}^n

Let $\{x_i\}_{i\in I} \subset \mathbb{R}^n$ we define the convex envelope of $\{x_i\}_{i\in I}$ to be

$$\langle x_i \rangle_{i \in I} := \{ a = \sum_{i \in I} \lambda_i x_i : \lambda_i \in \mathbb{R}, \ \lambda_i > 0, \ \sum_{i \in I} \lambda_i = 1 \},$$

which is the smallest convex set containing $\{x_i\}_{i\in I}$.

Definition 1.1.5. Affine independency of points in \mathbb{R}^n

Definition 1.1.6. Geometric k-simplexes

Definition 1.1.7. Geometric Simplicial Complex

Theorem 1.1.1. Geometric realization of an abstract simplicial complex