

DP String Problem Variants

what are varient of string question on dp

Dynamic Programming (DP) problems involving strings come in a variety of types and difficulty levels. Below are some common **variants of string problems** in DP, grouped by their themes:

1. Subsequence Problems

- Longest Common Subsequence (LCS)
 - Find the LCS between two strings.
- Shortest Common Supersequence (SCS)
 - Find the shortest string that has both strings as subsequences.
- Number of Subsequences
 - o Count the number of ways one string can appear as a subsequence in another.
- Longest Palindromic Subsequence
 - Find the longest subsequence of a string that is a palindrome.
- Count Palindromic Subsequences
 - Count the total number of palindromic subsequences in a string.

2. Substring Problems

- Longest Common Substring
 - Find the longest substring common to two strings.
- Longest Palindromic Substring
 - Find the longest substring that is a palindrome.
- Distinct Substrings
 - Count the number of distinct substrings in a string.
- Count of Substrings with Certain Properties
 - For example, substrings with at most `k` distinct characters.

3. Edit Distance Problems

- Edit Distance (Levenshtein Distance)
 - Find the minimum number of operations (insertions, deletions, or substitutions) to convert one string to another.
- Minimum Insertions to Make a String Palindrome
- Minimum Deletions to Make a String Palindrome

4. Partitioning Problems

• Palindrome Partitioning

- Partition the string into the minimum number of palindromic substrings.
- Partitioning into K Palindromic Substrings
 - o Determine whether a string can be partitioned into exactly `k` palindromic substrings.

5. Matching Problems

- Wildcard Pattern Matching
 - Match a string with a pattern containing `*` and `?`.
- Regular Expression Matching
 - Match a string with a pattern involving regular expressions.
- String Alignment Problems
 - Align two strings using scoring systems (useful in bioinformatics).

6. Counting Specific Strings

- Count Distinct Subsequences
 - Count distinct subsequences of a string.
- Count Strings that Match a Pattern
 - Count the number of subsequences matching a specific pattern.
- Count Binary Strings Without Consecutive 1s
 - Specific string formation problems based on given rules.

7. Optimization Problems

- Maximum Sum of Non-Overlapping Substrings
 - Find the maximum sum of values assigned to substrings without overlap.
- Optimal Parenthesization of Strings
 - E.g., evaluating the minimum cost of matrix chain multiplication using strings.

8. Miscellaneous

- String Interleaving
 - Check if a string is an interleaving of two other strings.
- Decode Ways
 - Given a string of digits, count the number of ways to decode it.
- Word Break Problem
 - Determine if a string can be segmented into valid dictionary words.
- Burst Balloons (variation using strings)
 - Analogous problems with strings instead of arrays.

Practice Tips:

- 1. Start with classical problems like LCS, LPS, and Edit Distance.
- 2. Gradually move to more challenging ones like Word Break and Regular Expression Matching.
- 3. Practice variations and edge cases to deepen understanding.

Let me know if you'd like explanations or code examples for specific problems!