

For Steps 1-6 I used a program that helped me compute the table:

i	0	4	2	3	1 4	5
1:	84	1	1.0	4	2	1
Dim. T	84	85	169	254	677	931
birmad m	1-107	162	-31	has	-103	38!

B.

$$62 = 2.31$$
 $-103 = (-1) - 103$

Step 7

By analysing the decompositions in prime factors we choose B with boses that appear in at least two decompositions and with -1 Set B = 4-1, 2, 74

We write for each number their associate rectors.

of each respective base from B.

$$-107 = 5$$
 Vo = $(1,0,0)$ us = $(0,0,0)$

we need to find 6, which is the product of the bi's of which rectors yielded sum o

Note that the the condition of the bases involved (without -1) to the power found in the vectors /2 $\frac{1}{2} = \frac{1}{2}(112) = 1$ $\frac{1}{2} = \frac{1}{2}(112) = 1$

=> b = (8h · 85 · 677 - 931) mad on 7163 = 1311 Step 11 1311 |= 2 % 4163

=> (bic, m) or (b-c, m) is a non-trivial factor of m (1313, 7163) = 13 and (1304, 7163) = 1
So, we have 13 as a non-trivial factor of 7163