MA313 : Linear Algebra I

Review: Sample Exam Questions

Dr Niall Madden

November, 2022

Q1. Q1(a) [5 MARKS] Give an example of a 3-dimensional subspace of a 5-dimensional

3 standard basis

functions 3 since the vectors form a Also dim (w) =3 basis (they are linearly independent).

Alt: 194= spon \(\(\) \(

Q1(b) [5 Marks] Find vectors $u, v, w \in V$ with $V = \mathrm{Span}\{u, v, w\}$, where V is the subspace of \mathbb{R}^4 consisting of all vectors of the form

$$\begin{bmatrix} a+b-2c \\ 3a \\ c-b \\ 3a-12c \end{bmatrix}$$

for $a, b, c \in \mathbb{R}$.

$$\begin{bmatrix}
a + b - 2c \\
3a \\
c - b \\
3a - 12c
\end{bmatrix} = \begin{bmatrix}
a \\
3a \\
0 \\
3a
\end{bmatrix} + \begin{bmatrix}
b \\
0 \\
-5 \\
0
\end{bmatrix} + \begin{bmatrix}
-2c \\
0 \\
-12c
\end{bmatrix}$$

$$= a \begin{bmatrix} 1 \\ 3 \\ 0 \\ 3 \end{bmatrix} + b \begin{bmatrix} 1 \\ 0 \\ -1 \\ 0 \end{bmatrix} + c \begin{bmatrix} -2 \\ 0 \\ -12 \end{bmatrix}$$

$$= b \begin{bmatrix} 1 \\ 3 \\ 0 \\ 3 \end{bmatrix} + b \begin{bmatrix} 1 \\ 0 \\ -1 \\ 0 \end{bmatrix} + c \begin{bmatrix} -2 \\ 0 \\ -12 \end{bmatrix}$$

$$= a \begin{bmatrix} 1 \\ 3 \\ 0 \\ 3 \end{bmatrix} + b \begin{bmatrix} 0 \\ -1 \\ 0 \\ 0 \end{bmatrix} + c \begin{bmatrix} -2 \\ 0 \\ -12 \end{bmatrix}$$

$$= b \begin{bmatrix} 1 \\ 3 \\ 0 \\ 3 \end{bmatrix} + b \begin{bmatrix} 0 \\ -1 \\ 0 \\ 0 \end{bmatrix} + c \begin{bmatrix} -2 \\ 0 \\ -12 \end{bmatrix}$$

Q1(c) [10 MARKS] Let

$$A = \begin{bmatrix} -3 & -9 & 1 & 2 \\ -4 & 12 & 1 & 0 \\ 2 & -6 & 1 & 2 \\ -1 & 3 & 2 & 2 \end{bmatrix} \qquad \text{and} \qquad x = \begin{bmatrix} 3 \\ 1 \\ 0 \\ 0 \end{bmatrix}.$$

Determine, with justification, if $x \in \text{Nul } A$, and if $x \in \text{Col } A$.

Hint:
$$rref([A|b]) = \begin{bmatrix} 1 & 0 & 0 & 0 & -2/3 \\ 0 & 1 & 0 & 0 & 1/9 \\ 0 & 0 & 1 & 0 & -3 \\ 0 & 0 & 0 & 1 & 5/2 \end{bmatrix}$$

If
$$x \in \text{Null}(A)$$
, thus, $Ax = 0$ Here
$$Ax = \begin{bmatrix} -3 & -9 & 1 & 2 \\ -4 & 12 & 1 & 0 \\ 2 & -6 & 1 & 2 \\ -1 & 3 & 2 & 2 \end{bmatrix} \begin{bmatrix} 3 \\ 6 \\ 6 \\ 3 \\ -3 \\ +0 \\ +0 \end{bmatrix} = \begin{bmatrix} -18 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$
So $x \in \text{Not}$ in Null (A) ,

Q1(c) [10 MARKS] Let

$$A = \begin{bmatrix} -3 & -9 & 1 & 2 \\ -4 & 12 & 1 & 0 \\ 2 & -6 & 1 & 2 \\ -1 & 3 & 2 & 2 \end{bmatrix} \qquad \text{and} \qquad x = \begin{bmatrix} 3 \\ 1 \\ 0 \\ 0 \end{bmatrix}.$$

Determine, with justification, if $x \in \text{Nul } A$, and if $x \in \text{Col } A$.

Hint:
$$rref([A|b]) = \begin{bmatrix} 1 & 0 & 0 & 0 & -2/3 \\ 0 & 1 & 0 & 0 & 1/9 \\ 0 & 0 & 1 & 0 & -3 \\ 0 & 0 & 0 & 1 & 5/2 \end{bmatrix}$$

If
$$x \in Col(A)$$
 then $Ab = x$ for some vector b .
We can apply row reduction to solve for this b

$$\begin{bmatrix}
A | 5
\end{bmatrix} \Rightarrow
\begin{bmatrix}
-3 & -9 & 1 & 2 & | & 3 & | & 1 & | & 2 & | & 3 & | & 1 & | & 2 & | & 3 & | & 1 & | & 2 & | &$$

Apply row reduction

Augmented Matrix.

Q1(c) [10 MARKS] Let

$$A = \begin{bmatrix} -3 & -9 & 1 & 2 \\ -4 & 12 & 1 & 0 \\ 2 & -6 & 1 & 2 \\ -1 & 3 & 2 & 2 \end{bmatrix} \qquad \text{and} \qquad x = \begin{bmatrix} 3 \\ 1 \\ 0 \\ 0 \end{bmatrix}.$$

and
$$x = \begin{bmatrix} 3 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$

Determine, with justification, if $x \in \text{Nul } A$, and if $x \in \text{Col } A$.

Hint:
$$rref([A|b]) = \begin{bmatrix} 1 & 0 & 0 & 0 & -2/3 \\ 0 & 1 & 0 & 0 & 1/9 \\ 0 & 0 & 1 & 0 & -3 \\ 0 & 0 & 0 & 1 & 5/2 \end{bmatrix}$$

$$\begin{bmatrix} -3 & -9 & 1 & 2 & 3 \\ -4 & 12 & 1 & 0 & 1 \\ 2 & -6 & 1 & 2 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 3 & -\frac{1}{3} & -\frac{2}{3} & | & -1 \\ 0 & 0 & -\frac{1}{3} & -\frac{8}{3} & | & -3 \\ 0 & -12 & \frac{1}{3} & \frac{8}{3} & \frac{7}{3} & \frac{7}{3} \\ x & x & x & x & x \end{bmatrix} \xrightarrow{-3} \begin{bmatrix} 1 & 0 & 0 & 0 & | & -\frac{7}{3} & | & -\frac{7}{3} & | & -\frac{1}{3} & |$$

Q1(d) [5 MARKS] Decide (with justification) whether

$$H = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \in \mathbb{R}^2; x^2 + y^2 \le 0 \right\},$$

is a subspace of \mathbb{R}^2 .

$$H = \left\{ \begin{bmatrix} 2p - 2q \\ 2p + 3q \\ 2q \\ 5r \end{bmatrix} : p, q, r \in \mathbb{R} \right\}$$

of \mathbb{R}^4 .

[5 marks]

First write a spanning set for H.

$$\begin{bmatrix}
2p - 2q \\
2p + 3q
\end{bmatrix} = p \begin{bmatrix}
2 \\
0 \\
5
\end{bmatrix} + q \begin{bmatrix}
-2 \\
3 \\
2 \\
0
\end{bmatrix} + r \begin{bmatrix}
0 \\
0 \\
5
\end{bmatrix}$$

So

$$H = span \begin{cases}
2 \\
2 \\
0 \\
0
\end{cases}, \begin{bmatrix}
2 \\
2 \\
0 \\
0
\end{bmatrix}, \begin{bmatrix}
-2 \\
3 \\
2 \\
0
\end{bmatrix}, \begin{bmatrix}
0 \\
0 \\
5
\end{bmatrix}$$

$$H = \left\{ \begin{bmatrix} 2p - 2q \\ 2p + 3q \\ 2q \\ 5r \end{bmatrix} : p, q, r \in \mathbb{R} \right\}$$

of \mathbb{R}^4 .

[5 marks]

Dim H is the number of linearly Indep vectors in
$$\begin{cases}
2 \\ 2 \\ 0
\end{cases}
\begin{cases}
-2 \\ 3 \\ 2
\end{cases}
\begin{cases}
0 \\ 0
\end{cases}
\end{cases}$$
So check if they ore
$$2p - 2q + 0(r) = 0$$
Therefore indep: (an we solve $2p - 2q + 0(r) = 0$

$$7p + 3q + 0(r) = 0$$

$$9(p) + 2q + 0(r) = 0$$

$$9(p) + 2q + 0(r) = 0$$

$$H = \left\{ \begin{bmatrix} 2p - 2q \\ 2p + 3q \\ 2q \\ 5r \end{bmatrix} : p, q, r \in \mathbb{R} \right\}$$
of \mathbb{R}^4 .
$$2p - 2q + O(r) = O$$

$$7p + 3q + O(r) = O$$

$$O(r) + O(q) + O(r) = O$$

$$O(r) + O(q) + O(r) = O$$

The 4th equation,
$$5r=0$$
, gives $r=0$.
The 3rd Equation, $2q=0$, gives $q=0$
And the 1st eqn gives $2p-2q=0=2p=0$
 $p=0$. So the only solution is $p=q=r=0$.

$$H = \left\{ \begin{bmatrix} 2p - 2q \\ 2p + 3q \\ 2q \\ 5r \end{bmatrix} : p, q, r \in \mathbb{R} \right\}$$
of \mathbb{R}^4 .

⁴. [5 marks]

This means the 3 vectors are linearly independent. So
$$\dim(H) = 3$$

Q2(b) [10 marks] Show that
$$\mathcal{B} = \begin{pmatrix} \begin{bmatrix} -1 \\ 5 \\ 0 \end{bmatrix}, \begin{bmatrix} -5 \\ 8 \\ 1 \end{bmatrix}, \begin{bmatrix} 6 \\ 3 \\ 1 \end{bmatrix}$$
 is a basis of \mathbb{R}^3 .

Moreover, find the coordinate vector of $y = \begin{bmatrix} -10 \\ -5 \\ 4 \end{bmatrix}$ relative to \mathcal{B} .

(Check = solution is $(42, -22, -13)^T$)

Idea: $from s form$ the Augmented matrix

$$\begin{bmatrix} -1 & -5 & 6 & | & 10 \\ 5 & 9 & 3 & | & -5 \\ 0 & 1 & -2 & | & 4 \end{bmatrix}$$
 in to Yeduced row echelon form:

$$\begin{bmatrix} 1 & 0 & 6 & | & 42 \\ 0 & 0 & | & -72 \\ 0 & 0 & 1 & | & -13 \end{bmatrix}$$

So the Coordinate vector is $\begin{bmatrix} 42 \\ -22 \\ -13 \end{bmatrix}$

$$\begin{bmatrix} 1 & 0 & 6 & | & 42 \\ 0 & 0 & | & -13 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 6 & | & 42 \\ 0 & 0 & | & -13 \end{bmatrix}$$

$$\begin{bmatrix} 6 & 3 & | & -42 \\ 0 & | & -13 \end{bmatrix}$$

$$\begin{bmatrix} 6 & 3 & | & -42 \\ 0 & | & -13 \end{bmatrix}$$

$$\begin{bmatrix} 6 & 3 & | & -42 \\ 0 & | & -13 \end{bmatrix}$$

$$\begin{bmatrix} 6 & 3 & | & -42 \\ 0 & | & -13 \end{bmatrix}$$

$$\begin{bmatrix} 6 & 3 & | & -42 \\ 0 & | & -13 \end{bmatrix}$$

$$\begin{bmatrix} 6 & 3 & | & -42 \\ 0 & | & -13 \end{bmatrix}$$

$$\begin{bmatrix} 6 & 3 & | & -42 \\ 0 & | & -13 \end{bmatrix}$$

$$\begin{bmatrix} 6 & 3 & | & -42 \\ 0 & | & -13 \end{bmatrix}$$

$$\begin{bmatrix} 6 & 3 & | & -42 \\ 0 & | & -13 \end{bmatrix}$$

$$\begin{bmatrix} 6 & 3 & | & -42 \\ 0 & | & -13 \end{bmatrix}$$

$$\begin{bmatrix} 6 & 3 & | & -42 \\ 0 & | & -13 \end{bmatrix}$$

$$\begin{bmatrix} 6 & 3 & | & -42 \\ 0 & | & -13 \end{bmatrix}$$

$$\begin{bmatrix} 6 & 3 & | & -42 \\ 0 & | & -13 \end{bmatrix}$$

$$\begin{bmatrix} 6 & 3 & | & -42 \\ 0 & | & -13 \end{bmatrix}$$

$$\begin{bmatrix} 6 & 3 & | & -42 \\ 0 & | & -13 \end{bmatrix}$$

Q2(c) Find bases of the null space and the column space of

$$A = \begin{bmatrix} 1 & 0 & -2 & 1 \\ 5 & 13 & 3 & 5 \\ 1 & -1 & -3 & 1 \end{bmatrix}.$$

Write A in Reduced row echelon form

$$\begin{bmatrix}
1 & 0 & -2 & 1 \\
5 & 13 & 3 & 5 \\
1 & -1 & -3 & 1
\end{bmatrix}
\xrightarrow{-2}
\begin{bmatrix}
1 & 0 & -2 & 1 \\
0 & 13 & 13 & 0 \\
0 & -1 & -1 & 0
\end{bmatrix}$$

$$\xrightarrow{-2}
\begin{bmatrix}
1 & 0 & -2 & 1 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}$$
To find basis for (0) (A), we now see that (0) and (0) or a linearly independent.

Q2(c) Find bases of the null space and the column space of

$$A = \begin{bmatrix} 1 & 0 & -2 & 1 \\ 5 & 13 & 3 & 5 \\ 1 & -1 & -3 & 1 \end{bmatrix}.$$

So
$$col(A) = span \left\{ \begin{bmatrix} 1 \\ 5 \end{bmatrix}, \begin{bmatrix} 6 \\ 13 \end{bmatrix} \right\}$$

To gen null (A), we want
$$\begin{bmatrix} 1 & 0 & -2 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$= \begin{bmatrix} a - 2c + d \\ b + c \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \text{ so } d \text{ & c ore } \\ \text{fiel}'' \text{ & set } b = -c \\ \text{ and } a = 2c - d.$$

"So
$$d & c$$
 ore "fiee" set $b = -c$ and $a = 2c - d$.

 $\ensuremath{\mathsf{Q2}}(c)$ Find bases of the null space and the column space of

$$A = \begin{bmatrix} 1 & 0 & -2 & 1 \\ 5 & 13 & 3 & 5 \\ 1 & -1 & -3 & 1 \end{bmatrix}.$$

$$a = 2c - d$$
 and $b = -c$.
So any vector of the form $\begin{bmatrix} 2c - d \\ -c \end{bmatrix} \in nul(A)$,

Mul $(A) = Span \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix} \begin{bmatrix} -1 \\ 0 \\ 0 \end{bmatrix}$

Q3.

Q3(a) Explain the meaning of the following statement: Linear transformations can be regarded as generalisations of matrices. [5 marks]

Q3(b

- (i) What is the largest possible rank of an 20 \times 10 matrix?
- (ii) If the null space of a 12×4 matrix A is 2-dimensional, what is the dimension of its column space?
- (iii) Give an example of a 4×3 matrix A with nullity A = 2. [5 marks]

See test book & notes.

Q3. Q3(a) Explain the meaning of the following statement: Linear transformations can be regarded as generalisations of matrices. [5 marks]

(i) What is the largest possible rank of an 20 × 10 matrix?

(ii) If the null space of a 12 × 4 matrix A is 2-dimensional, what is the dimension of its column space?

(iii) Give an example of a 4×3 matrix A with nullity A = 2. [5 marks]

mxn matrix has m rows & n cols.

Column Space of A is the space spanned by the cols of A. The Rank of A is the dimension of the column space.

- Q3. Q3(a) Explain the meaning of the following statement: Linear transformations can be regarded as generalisations of matrices. [5 marks]
 - Q3(b) (i) What is the largest possible rank of an 20×10 matrix?
 - (ii) If the null space of a 12×4 matrix A is 2-dimensional, what is the dimension of its column space?
 - (iii) Give an example of a 4×3 matrix A with nullity A = 2. [5 marks]

The most rank of any Mxn matrix is n.

So (i) Answer is 10

(ii) Recall the Rank Mullity Thom from Week 7 conh (A) + nullithy (A) = n din of col space din null space.

Here n=4, nullity (A) = 2, so dim of col space is 2.

- Q3. Q3(a) Explain the meaning of the following statement: Linear transformations can be regarded as generalisations of matrices. [5 marks]
 - Q3(b) (i) What is the largest possible rank of an 20×10 matrix?
 - (ii) If the null space of a 12 × 4 matrix A is 2-dimensional, what is the dimension of its column space?
 - (iii) Give an example of a 4×3 matrix A with nullity A = 2. [5 marks]

(iii) Idea: here
$$N=3$$
, so, if $ranh(N)=1$, then nullity $(N)=7$.

So, eg,
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$$

- Q3(c) Briefly indicate how vector spaces and linear transformations arise in signal [5 marks]
- Q3(d) Recall that \mathbb{P}_n denotes the vector space of polynomials p(t) of degree at most n. Find the matrix of the linear transformation

$$T \colon \mathbb{P}_3 \to \mathbb{P}_3, \quad p(t) \mapsto 3p(t) - 2p'(t) + p''(t)$$

relative to the basis $(1, t, t^2, t^3)$ of \mathbb{P}_3 .

$$\begin{bmatrix} 3 & 0 & 0 & 0 \\ -2 & 3 & 0 & 0 \\ 2 & -4 & 3 & 0 \\ 0 & 3 & -6 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ t \\ t \\ t \end{bmatrix} = \begin{bmatrix} 3 \\ -2 + 3 t \\ 2 - 4t + 3t^{2} \\ 3t - t^{2} + 3t^{3} \end{bmatrix}$$

Q4. Q4(a) Give an example of a vector in \mathbb{R}^3 , none of whose entries are zero and is length 3, or explain why this cannot be done. Give an example of a vector in \mathbb{R}^3 none of whose entries are zero and is length 0, or explain why this cannot be done. [5 marks]

A vector in IR^3 has the form $\begin{bmatrix} a \\ b \end{bmatrix}$ $a,b,c \in IR$. The length of a vector, U_1 is $||V|| = \int U_1^2 + V_2^2 \dots + V_n^2$ So, we want a,b,c, so that $\int a^2 + b^2 + c^2 = 3$. So $a^2 + b^2 + c^2 = 9$. Eq. (i) $a = b = c = \sqrt{3}$ or (ii) a = 1, b = 2, c = 2 Q4. Q4(a) Give an example of a vector in \mathbb{R}^3 , none of whose entries are zero and is length 3, or explain why this cannot be done.

Give an example of a vector in \mathbb{R}^3 , none of whose entries are zero and is length 0, or explain why this cannot be done. [5 marks]

we would near $a \pm 0$, $b \pm a$, $c \pm a$ with $a^2+b^2+c^2=0$.

But since these one real numbers, so if a >0 then $a^2>0$, similarly for b, c.

So, this is not Possible.

(note $\|v\| = 0$ E $V_1 = V_2 = \cdots = V_n = 0$).

Q4(b) Find the orthogonal projection of $\begin{bmatrix} 3 \\ 1 \end{bmatrix}$ onto the line passing through $\begin{bmatrix} 1 \\ 4 \end{bmatrix}$ and the origin in \mathbb{R}^2 . [5 marks]

That is, find the orthogonal projection of
$$v = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$$
 onto $W = \text{span} \left\{ \begin{bmatrix} 4 \\ 4 \end{bmatrix} \right\}$.

Set
$$\hat{v} = \frac{v \cdot u}{u \cdot u} u = \frac{\begin{bmatrix} \frac{3}{4} \\ \frac{1}{4} \end{bmatrix} \cdot \begin{bmatrix} \frac{1}{4} \\ \frac{1}{4} \end{bmatrix}}{\begin{bmatrix} \frac{1}{4} \end{bmatrix} \cdot \begin{bmatrix} \frac{1}{4} \end{bmatrix}} = \frac{7}{17} \begin{bmatrix} \frac{1}{4} \end{bmatrix}$$

Ans:
$$\hat{V} = \begin{bmatrix} \frac{7}{17} \\ 28/17 \end{bmatrix}$$
.

Recall:
$$(AB)^T = B^T A^T$$
.

Q4(c) Explain the meaning of the following statement: Orthogonal matrices preserve angles. [5 marks]

(i) A is orthogonal if
$$A^{T} = A^{-1}$$
, is $A^{T}A = I$.
(ii) cos of the Angle between $u \ l \ v$ is $\frac{u \cdot v}{|(u)| \cdot ||v||}$

Then the angle between Au A Av is

$$\frac{(Au) \cdot (Av)}{\|Au\|! \cdot \|Av\|!}$$
But $u \cdot v = u^T v$.

So $(Au) \cdot (Av) = u^T A^T Av = u^T v = u \cdot v$.

Also $\|V\|! = \int U^T v$. So $\|Au\|! = \int U^T A^T Au = \int u^T u = \|u\|$

So $\frac{(Au) \cdot (Av)}{\|Au\|! \cdot \|Av\|!} = \frac{u \cdot v}{\|u\|! \cdot \|V\|!}$

Q4(d) Find a least-squares solution of the system Ax = b, where

$$A = \begin{bmatrix} 3 & -2 \\ 2 & 1 \\ 1 & 1 \end{bmatrix} \quad \text{and} \quad b = \begin{bmatrix} 50 \\ 0 \\ -25 \end{bmatrix}.$$

What is the length of the residual?

$$Ax = b$$
,

$$A^TA\hat{x} = A^Tb$$

$$\int_{1}^{2} \left[\frac{1}{2}\right] dt$$

$$A^{T}A\hat{x} = A^{T}b =$$

$$\begin{bmatrix}
3 & 2 & 1 \\
-2 & 1
\end{bmatrix}
\begin{bmatrix}
3 & -2 \\
2 & 1
\end{bmatrix}
=
\begin{bmatrix}
3 & 2 & 1 \\
-2 & 1
\end{bmatrix}
\begin{bmatrix}
66 \\
0 \\
-26
\end{bmatrix}$$

$$=) \qquad \begin{bmatrix} 14 & -3 \\ -3 & 6 \end{bmatrix} \begin{bmatrix} \hat{x}_1 \\ \hat{x}_2 \end{bmatrix} = \begin{bmatrix} 125 \\ -125 \end{bmatrix} \qquad \text{Solve thio}.$$

Q4(d) Find a least-squares solution of the system Ax = b, where

$$A = \begin{bmatrix} 3 & -2 \\ 2 & 1 \\ 1 & 1 \end{bmatrix} \quad \text{and} \quad b = \begin{bmatrix} 50 \\ 0 \\ -25 \end{bmatrix}.$$

What is the length of the residual?

$$\begin{bmatrix} \hat{x}_1 \\ \hat{x}_2 \end{bmatrix} = \begin{bmatrix} 5 \\ -55/3 \end{bmatrix} \quad \text{The residual is } A_{\infty}^2 - 5.$$
Here $A_{\infty}^2 - 5 = \begin{bmatrix} 3 & -2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 5 \\ 55/3 \end{bmatrix} - \begin{bmatrix} 50 \\ -25 \end{bmatrix} = \begin{bmatrix} 5/3 \\ 25/3 \\ 35/3 \end{bmatrix}.$

Then length of this is
$$\sqrt{(5/3)^2 + (25/3)^2 + (35/3)^2} = 14.434.$$