Постановка задачи линейного программирование.

- ✓ Задача о распределении ресурсов.
- ✓ Задача оптимального ассортимента продукции.
- ✓ Оптимальное использование оборудования.
- ✓ Многосторонний коммерческий арбитраж.

Ковалева Е.В.

ФГБОУ ВО МГУТУ им. К.Г. Разумовского (ПКУ) УКИТ, преподаватель математики

Принцип оптимальности в планировании и управлении

- Принцип оптимальности предполагает следующее:
 - наличие определённых ресурсов
 - наличие определённых технологических возможностей
 - цель хозяйственной деятельности
 - извлечение прибыли
 - удовлетворение потребностей
 - предотвращение угрозы
 - накопление знаний
 - и т.д.
- Суть принципа:
 - планировать хозяйственную деятельность таким образом, чтобы при имеющихся ресурсах и технологиях *не существовало* способа достичь цели в большей степени, чем это предусматривает план
- В полной мере этот принцип может быть реализован только с помощью экономико-математических моделей

Оптимизационная задача

Оптимизационная задача - это экономико-математическая задача, которая состоит в нахождении оптимального (максимального или минимального) значения целевой функции, причем значения переменных должны принадлежать некоторой области допустимых значений.

$$U=f(X)\rightarrow max, X\in W$$

f(X) — целевая функция

Х – вектор переменных

W – область допустимых значений переменных.

Оптимизационная задача является *неразрешимой*, если она не имеет оптимального решения. В частности, задача максимизации будет неразрешима, если целевая функция f(X) не ограничена сверху на допустимом множестве W.

Методы решения оптимизационных задач зависят как от вида целевой функции f(X), так и от строения допустимого множества W.

Если целевая функция в задаче является функцией *п* переменных, то методы решения называют *методами математического программирования*.

В математическом программировании принято выделять следующие основные задачи в зависимости от вида целевой функции f(X) и от области W:

задачи *линейного* программирования, если W и f(X) линейны;

задачи *целочисленного* программирования, если ставится условие целочисленности переменных X задачи *нелинейного* программирования, если форма f(X) носит нелинейный характер.

Задачи линейного программирования

Задачей линейного программирования называется задача исследования операций, математическая модель которой имеет вид:

"п

$$f(X) = \sum_{j=1}^{n} c_j x_j \to \max(\min);$$

$$\sum_{j=1}^{n} a_{ij} x_{j} = b_{i}, \quad i \in I, \quad I \subseteq M = \{1, 2, ...m\};$$

$$\sum_{j=1}^{n} a_{ij} x_{j} \leq b_{i}, \quad i \in M;$$

$$x_j \ge 0, j \in J, J \subseteq N = \{1, 2, ..., n\}.$$

При этом система линейных уравнений и неравенств определяющая допустимое множество решений задачи W, называется системой ограничений задачи линейного программирования, а линейная функция f(X) называется целевой функцией, или критерием оптимальности

Каноническая форма ЗЛП

$$f(X) = \sum_{j=1}^{n} c_j \cdot x_j \to \min;$$

$$\sum_{j=1}^{n} a_{ij} x_j = b_i, i = \overline{1, m};$$

$$b_i \ge 0;$$

$$x_j \ge 0, j = \overline{1, n},$$

Любую задачу линейного программирования можно свести к задаче линейного программирования в канонической форме. Для этого в общем случае нужно уметь сводить задачу максимизации к задаче минимизации; переходить от ограничений неравенств к ограничениям равенств и заменять переменные, которые не подчиняются условию неотрицательности. Максимизация некоторой функции эквивалентна минимизации той же функции, взятой с противоположным знаком, и наоборот.

Правило приведения задачи линейного программирования к каноническому виду

- 1. если в исходной задаче требуется определить максимум линейной функции, то следует изменить знак и искать минимум этой функции;
- 2. если в ограничениях правая часть отрицательна, то следует умножить это ограничение на —1;
- 3. если среди ограничений имеются неравенства, то путем введения дополнительных неотрицательных переменных они преобразуются в равенства;
- 4. если некоторая переменная не имеет ограничений по знаку, то она заменяется (в целевой функции и во всех ограничениях) разностью между двумя новыми неотрицательными переменными:

$$x_k = x'_k - x_\ell, \qquad x'_k \ge 0, x_\ell \ge 0.$$

Пример

Приведение к канонической форме задачи линейного программирования:

$$\min L = 2x_1 + x_2 - x_3;$$

$$2x_2 - x_3 \le 5;$$

$$x_1 + x_2 - x_3 \ge -1;$$

$$2x_1 - x_2 \le -3;$$

$$x_1 \le 0, x_2 \ge 0, x_3 \ge 0.$$

Задача для самостоятельного решения

$$F = x_1 + x_2 \to \max;$$

$$\begin{cases} x_1 + 3x_2 \le 30; \\ 2x_1 + x_2 \le 20. \end{cases}$$

$$F = -2x_1 + x_2 + 5x_3 \rightarrow \max,$$

$$\begin{cases} 4x_1 + 2x_2 + 5x_3 \leqslant 12, \\ 6x_1 - 3x_2 + 4x_3 = 18, \\ 3x_1 + 3x_2 - 2x_3 \geqslant 16, \end{cases}$$

$$x_1, x_2, x_3 \geqslant 0.$$

Построение экономико-математических моделей задач линейного программирования

Определение оптимального ассортимента продукции.

Предприятие изготавливает два вида продукции — П1 и П2, которая поступает в оптовую продажу. Для производства продукции используются два вида сырья — А и В. Максимально возможные запасы сырья в сутки составляют 9 и 13 единиц соответственно. Расход сырья на единицу продукции вида П1 и вида П2 дан в таблице. Опыт работы показал, что суточный спрос на продукцию П1 никогда не превышает спроса на продукцию П2 более чем на 1 ед. Кроме того, известно, что спрос на продукцию П2 никогда не превышает 2 ед. в сутки. Оптовые цены единицы продукции равны: 3 д. е. — для П1 и 4 д. е. для П2.

Какое количество продукции каждого вида должно производить предприятие, чтобы доход от реализации продукции был максимальным? Расход сырья продукции

Сырье	Расход сырья на 1 ед. продукции		Запас сырья, ед.
	Π_1	Π_2	
A B	2 3	3 2	9 13

Процесс построения математической модели

- 1. Для определения каких величин должна быть построена модель, т. е. как идентифицировать переменные данной задачи?
- 2. Какие ограничения должны быть наложены на переменные, чтобы выполнялись условия, характерные для моделируемой системы?
- 3. В чем состоит цель задачи, для достижения которой из всех допустимых значений переменных нужно выбрать те, которые будут соответствовать оптимальному (наилучшему) решению задачи?

Для задачи.

фирме требуется определить объемы производства каждого вида продукции в тоннах, максимизирующие доход в д. е. от реализации продукции, с учетом ограничений на спрос и расход исходных продуктов.

Для построения математической модели остается только идентифицировать переменные и представить цель и ограничения в виде математических функций этих переменных.

Переменные:

х1 единиц продукции П1 и

х2 единиц продукции П2.

Задача об ассортименте

$$2x_1 + 3x_2 \le 9;$$

$$3x_1 + 2x_2 \le 13;$$

$$x_1 - x_2 \le 1;$$

$$x_2 \le 2;$$

$$x_1 \ge 0;$$

$$x_2 \ge 0.$$

$$F = 3x_1 + 4x_2.$$

Рассмотренная задача относится к разряду типовых задач оптимизации производственной программы предприятия. В качестве критериев оптимальности в этих задачах могут быть также использованы: прибыль, себестоимость, номенклатура производимой продукции и затраты станочного времени.

Использование мощностей оборудования.

Предприятие имеет m моделей машин различных мощностей. Задан план по времени и номенклатуре: Т — время работы каждой машины;

продукции ј-го вида должно быть выпущено не менее Nj-единиц. Необходимо составить такой план работы оборудования, чтобы обеспечить минимальные затраты на производство, если известны производительность каждой і-й машины по выпуску ј-го вида продукции bij и стоимость единицы времени, затрачиваемого і-й машиной на выпуск ј-го вида продукции сij.

Другими словами, задача для предприятия состоит в следующем: требуется определить время работы і-й машины по выпуску ј-го вида продукции хіј, обеспечивающее минимальные затраты на производство при соблюдении ограничений по общему времени работы машин Т и заданному количеству продукции Nj.

Использование мощностей оборудования.

По условию задачи машины работают заданное время Т, поэтому данное ограничение можно представить в следующем виде:

$$\sum_{j=1}^{n} x_{ij} = T, \quad i = \overline{1,m}.$$

Ограничение по заданному количеству продукции выглядит следующим образом:

$$\sum_{i=1}^{m} b_{ij} x_{ij} \ge N_j, \ j = \overline{1, n}.$$

Задача решается на минимум затрат на производство:

$$Z_{\min} = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij}$$
.

Необходимо также учесть неотрицательность переменных $x_{ij} \geq 0$.

Если не допускается превышение плана по номенклатуре, тогда ограничения математической модели изменяются следующим образом:

$$\sum_{j=1}^{n} x_{ij} \leq T, \quad i = \overline{1,m};$$

$$\sum_{j=1}^{m} b_{ij} x_{ij} = N_{j}, \quad j = \overline{1,n};$$

$$x_{ij} \geq 0;$$

$$Z_{\min} = \sum_{j=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij}.$$

Минимизация дисбаланса на линии сборки.

Промышленная фирма производит изделие, представляющее собой сборку из m различных узлов. Эти узлы изготавливаются на n заводах.

Из-за различий в составе технологического оборудования производительность заводов по выпуску j-го узла неодинакова и равна bij. Каждый i завод располагает максимальным суммарным ресурсом времени в течение недели для производства m узлов, равного величине Ti.

Задача состоит в максимизации выпуска изделий, что по существу эквивалентно минимизации дисбаланса, возникающего вследствие некомплектности поставки по одному или по нескольким видам узлов.

В данной задаче требуется определить еженедельные затраты времени (в часах) на производство ј-го узла на i-м заводе, не превышающие в сумме временные ресурсы i-го завода и обеспечивающие максимальный выпуск изделий.

Пусть x_{ij} недельный фонд времени (в часах), выделяемый на заводе і для производства узла ј. Тогда объемы производства узла ј будут следующими:

$$\sum_{i=1}^{n} b_{ij} x_{ij}, \quad j = \overline{1, n}.$$

Так как в конечной сборке каждый из комплектующих узлов представлен в одном экземпляре, количество конечных изделий должно быть равно количеству комплектующих узлов, объем производства которых минимален:

$$\min\left(\sum_{i=1}^n b_{ij}x_{ij}, \ j=\overline{1,m}\right).$$

Условие рассматриваемой задачи устанавливает ограничение на фонд времени, которым располагает завод ј. Таким образом, математическая модель может быть представлена в следующем виде.

Максимизируем

$$Z = \min \left(\sum_{i=1}^{n} b_{ij} x_{ij}, \ j = \overline{1,m} \right);$$

$$\sum_{j=1}^{m} x_{ij} \leq T_i, \quad i = \overline{1, n};$$

$$x_{ij} \ge 0$$
 для всех i и j .

Эта модель не является линейной, но ее можно привести к линейной форме с помощью простого преобразования. Пусть Y— количество изделий:

$$Y = \min \left(\sum_{i=1}^{n} b_{ij} x_{ij} = N_j, \ j = \overline{1,m} \right).$$

Этому выражению с математической точки зрения эквивалентна следующая формулировка: максимизировать Z= Y при ограничениях

$$\sum_{i=1}^{n} b_{ij} x_{ij} - Y \ge 0, \quad j = \overline{1, m};$$

$$\sum_{j=1}^{m} x_{ij} \leq T_i, \quad i = \overline{1,n};$$

 $x_{ij} \ge 0$ для всех i и j; $Y \ge 0$.

Транспортная задача.

Имеется три поставщика и четыре потребителя однородной продукции. Известны затраты на перевозку груза от каждого поставщика каждому потребителю. Обозначим их c_{ij} , $i=\overline{1,3}$; $j=\overline{1,4}$. Запасы грузов у поставщиков равны a_i , $i=\overline{1,3}$. Известны потребности каждого потребителя b_j , $j=\overline{1,4}$. Будем считать, что суммарные потребности равны суммарным запасам:

$$\sum_{i=1}^{3} a_i = \sum_{j=1}^{4} b_j.$$

Требуется составить такой план перевозок, чтобы обеспечить минимальные суммарные затраты при полном удовлетворении потребностей.

Введем переменные x_{ij} — количество груза, перевозимого от i-го поставщика j-му потребителю.

Ограничения задачи выглядят следующим образом: потребности всех потребителей должны быть удовлетворены полностью:

$$\begin{cases} x_{11} + x_{21} + x_{31} = b_1; \\ x_{12} + x_{22} + x_{32} = b_2; \\ x_{13} + x_{23} + x_{33} = b_3; \\ x_{14} + x_{24} + x_{34} = b_4; \end{cases} \qquad \sum_{i=1}^{3} x_{ij} = b_j, \quad j = \overline{1, 4};$$

груз от поставщика должен быть вывезен полностью:

$$\begin{cases} x_{11} + x_{12} + x_{13} + x_{14} = a_1; \\ x_{21} + x_{22} + x_{23} + x_{24} = a_2; \\ x_{31} + x_{32} + x_{33} + x_{34} = a_3; \end{cases} \qquad \sum_{j=1}^{4} x_{ij} = a_i, \quad i = \overline{1,3};$$

условие неотрицательности переменных: $x_{ij} \ge 0, i = \overline{1, 3}, j = \overline{1, 4}.$

Целевая функция должна минимизировать суммарные затраты на перевозку:

$$Z_{\min} = \sum_{i=1}^{3} \sum_{j=1}^{4} c_{ij} x_{ij}$$
.

Выводы

- 1. Ограничения в задачах линейного программирования могут быть выражены как равенствами, так и неравенствами.
- 2. Линейная функция может стремиться как к максимуму, так и к минимуму.
- 3. Переменные в задачах всегда неотрицательны.

Литература

Основные источники

- Половников Виктор Антонович Экономико-математические методы и модели: компьютерное моделирование: Учебное пособие / И.В. Орлова, В.А. Половников. 3-е изд., перераб. и доп. М.: Вузовский учебник: НИЦ ИНФРА-М, 2019. 389 с.: 60х90 1/16. (п) ISBN 978-5-9558-0208-4 http://znanium.com/catalog/product/424033
- Бережная Е.В., Бережной В.И. Математические методы моделирования экономических систем: Учеб. пособие. 2-е изд., перераб. и доп. М.: Финансы и статистика, 2018. 432 с: ил.

Дополнительные источники

- Математическое и имитационное моделирование: учеб. пособие / А.И. Безруков, О.Н. Алексенцева. — М.: ИНФРА-М, 2017. — 227 с. + Доп. материалы, http://znanium.com/catalog/product/811122
- Моделирование систем управления с применением Matlab: Учебное пособие / Тимохин А.Н., Румянцев Ю.Д; Под ред. А.Н.Тимохина М.: НИЦ ИНФРА-М, 2016. 256 с.: 60х90 1/16. (Высшее образование: Бакалавриат) (Переплёт) ISBN 978-5-16-010185-9 http://znanium.com/catalog/product/590240
- Интернет-ресурсы
- http://window.edu.ru
- http:// edu.ru
- http://Fcior.edu.ru