Approach 1: MIT Research

- 1. Data generation using regex and additional logic
- 2. Two datasets df_train and df_2
- 3. Features vector CountVectorizer (what additional we can do: replace with BioBERT)
- 4. Prepare Combined trainDataset, validDataset
- 5. Model:
 - a. Test hyperparamaters : outdict{CombinedNet, FeatureNet, TextNet}
 - b. Finetune bert using BertForSequenceClassification

Reference Github:

https://github.com/Sanger2000/Predicting-Lung-Cancer-Disease-Progression-from-CT-reports

Data Preparation:

Data Description:

Final OUTCOME/Labels for Classification:

- progressive of disease (POD),
- stable disease (SD),
- partial response (PR),
- complete response (CR)

Codeflow:

```
data_utiles.py
```

make_dataset(args) --> return trainDataset, validDataset

- create_data [make_features.py]
 - load_reports [preprocess_data.py]
 - make_POD
 - bert text cleaner
 - extractFeatures [preprocess_data.py]
 - days_after_start
 - findGroups
 - pruneOverall
 - pruneVols
 - pruneLens
 - extractContext
 - setupFeatureVectors [make_features.py]
 - pad_vectors
 - make_id
 - one_hot_encode
 - prepare_y
 - extractText
 - createTextFeatures [make_features.py]
 - learn_bow
 - tokenizer: Bert tokenization [make_features.py]
 - tokenize_input
 - id_vals [make_features.py]

Fig1: Codeflow

	Patient ID	Treatment setting	Objective Response per RECIST v1.1	Treatment start date	Date of radiologic progression- free survival (PFS, calculated from start date)	PFS censor (1 = progressed, 0 = has not progressed)	Scan timepoint (baseline = prior to treatment start, ontx = during treatment or prior to progression if stopped treatment, progression = time of RECIST defined progression)	Scan included on RECIST form? (y/n)	Date of scan	Type of scan	Scan type specified	Scan report text
0	MSK_008	clinical trial	POD	5/17/12	7/12/12	1	baseline	yes	5/2/12	CT	CT CH/ABD/PEL W/ CON	CT CH/ABD/PEL W/ CON\n**ID- NUM\n \n**DATE[MM D
1	MSK_008	clinical trial	POD	5/17/12	7/12/12	1	progression	yes	7/12/12	СТ	FOREIGN CT CHEST - CD	FOREIGN CT CHEST - CD\n**ID- NUM\n \n**DATE[MM

Fig2: Training data

Steps:

Preprocessing:

Step1:

- 1. Consider only RECIST scan observations only
 - a. Remaining data: 1775 observations
- 2. clean text Notes
 - a. remove extra spaces
 - b. lowercase
 - c. remove special characters
- 3. Bert_text_cleaner
 - a. Extract text between FINDINGS?: and IMPRESSIONS?:

Output of 1,2 and 3:

- df train which has 2 columns
 - clean report text
 - bert text: Text between FINDINGS?: and IMPRESSIONS?:

Step2:

- 4. ExtractFeatures
 - a. findGroups

```
{"before_text":[], "after_text":[], "organs":[], "lens":[], "date_dist":[], "timepoint":[], "Patient ID":[], "labels": []}
```

"Input text from Scan Text Report

Output: A dictionary for each organ of the text involved in it "

i. pruneOverall

Input: dictionary of organ descriptions

Output: returns dictionary of organ descriptions where each description has volume or length measurements replaced also returns dictionary of organ tumor minor axis measurements

ii. pruneVols

Input text of a given organ description

Output: extracts the smaller axis lengths from a given volume measurement and replaces it with generic aabbSIZEbbaa word

iii. pruneLens

Input text of a given organ description

Output: extracts the lengths and replaces it with generic aabbsizebbaa word

Organs:

- Extract organs : Ex. LUNG, PLEURA/PERICARDIUM
- Label Encoding (1:N)

Lens:

- (\d\.?\d?) ([CcMm][Mm])
- mult = {"cm": 10, "mm": 1}
- Input text of a given organ description
- Output: extracts the lengths and replaces it with generic aabbsizebbaa word
- Example : extracted 4cm --> 4*10 = 40cm

LUNGS:

A poorly defined confluent right hilar mass is grossly stable and measures approximately 5.1 x 4 cm, previously 5.2 x 3.8 cm. Consolidative findings are seen extending from the right hilum to the anterior right upper lobe, right lower lobe, and the right middle lobe. Numerous tiny pulmonary nodules are seen throughout the lungs bilaterally. Slightly increased septal markings are noted in the upper lung zones.

PLEURA/PERICARDIUM: Stable small to moderate right pleural effusion. A minimal left pleural effusion is also again noted. There is a small pericardial effusion which is stable.

THORACIC NODES: A slightly enlarged left supraclavicular lymph node measures 1.5 x 0.8 cm, previously 1.2 by 0. there on multiple small to slightly enlarged mediastinal lymph nodes similar to prior examination. A subcarinal lymph node measures 1.4 x 1 cm. In addition to the poorly defined confluent right hilar mass there is mild left hilar adenopathy, difficult to compare to prior noncontrast examination.

HEPATOBILIARY: A small heterogeneous nodule is noted laterally at segment 5/6, and this questionably was present on **DATE[MM DD 2012], but comparison is not possible due to the absence of intravenous contrast on the prior examination. Some areas of perfusion anomaly are noted at hepatic segment 4. Cholelithiasis is present. No dilatation of the biliary tree is present.

Fig3: ex of between text

	before_text	after_text	organs	lens	date_dist	timepoint	Patient ID	labels	is_baseline
0	stable and measures approximately	, previously aabbSIZEbbaa .	18	45.5	-0.789903	baseline	MSK_008	POD	True
1	, previously		18	45.0	-0.789903	baseline	MSK_008	POD	True
2	supraclavicular lymph node measures	, previously 1.	41	11.5	-0.789903	baseline	MSK_008	POD	True
3	subcarinal lymph node measures		41	12.0	-0.789903	baseline	MSK_008	POD	True
4	6 image 200 measuring		30	10.5	-0.789903	baseline	MSK_008	POD	True
5	mass has increased previously	now aabbSIZEbbaa .	18	45.5	-0.504963	progression	MSK_008	POD	False
6	now		18	56.0	-0.504963	progression	MSK_008	POD	False

Fig4: df_2 - data after performing ExtractFeatures

Step3:

4. setupFeatureVectors

Input:

- df (output of ExtractFeatures)
- Desired_features = ("lens", "organs", "date_dist")
- Max_before = 600
- Max_after = 300
 - a. learn_bow: on before_text and after_text
 - i. Remove stopwords = ['mm', 'dd', '2017', '2016', '2015', '2014', '2013', '2012', 'date', 'md']
 - ii. CountVectorizer.transform(reports) (Word Embeddings)
 - b. Train features: pad vectors(zero padding)

Output: baseX=train_features[False]), progX=train_features[True], labs=one_hot_encode, id_list= patient id

5. extractText

Input: df train, id list

- is_baseline= {True , False}
- Baseline text: groupped text is baseline== True

- Progress_text : groupped_text is_baseline==False

Output:

baseline_text, progress_text, baseline_bert, progress_bert

6. tokenization

Input: baseline_text, context_text, max_len=509, tokenizer=bert-base-uncased

- c. Tokenizer used bert tokenizer
- d. Id_vals

[0, 0] + [0]*baseline tokens + [1] + [1]*context tokens + [0]*max_len-(len(context) + len(baseline))

Final token = "[CLS]" + baseline tokens + "[SEP]" + context tokens + "[SEP]" + "[MASK]"

Output:

Id_vals = tokenizer.convert_tokens_to_ids(final_tokens)

Id_vals[:,0,:]

id_vals[:, 1,:]

Step 4:

7. Create_data:

- a. load_reports
- b. extractFeatures
- c. setupFeatureVectors
- d. extractText
- e. createTextFeatures
 - Ip- reports(baseline_text{clean_text where is_baseline=False), progress_text)
 - ii. Op- overallTextFeatures (df_text) : sequence horizontally
- f. tokenizer
- g. id_vals

Input:

max_base=400, max_prog=800, max_before=600, max_after=300, desired features=("lens", "organs", "date dist")

Output:

All the following output is groupby patient_id

baseX=train features[False]) -> setupFeatureVectors -> df 2 -> is baseline = False

Combine before text and after text based on is baseline = False

progX=train features[True] -> setupFeatureVectors -> df 2 -> is baseline = True

Combine before_text and after_text based on is_baseline = True

labs=one_hot_encode -> setupFeatureVectors -> labs = one_hot_encode(train_labels)

Df text -> createTextFeatures -> overallTextFeatures

- Used df train -> clean report text

Add/hstack - learn_bow(baseline_text) + learn_bow(progress_text)

Step 5:

- 8. Make_datasets:
 - a. Create_data
 - b. Split data into train(0.8) and validation(0.2) data

Output: trainDataset, validDataset

Model

Model_utils.py:

1. TextNet

X -> Linear(X) -> relu -> dropout -> softmax

2. FeatureNet

```
x, y ->
Shared_layer = Linear()
First_base = relu(shared_layer(x))
First_progress = relu(shared_layer(y))
Overall_out =Linear( torch.cat(First_base, First_progress)
softmax(Overall_out)
```

3. CombinedNet

```
x, y, z ->
Shared_layer = Linear()
First_base = relu(shared_layer(x))
First_progress = relu(shared_layer(y))
Overall_out =Linear( torch.cat(First_base, First_progress, z)
softmax(Overall_out)
```

Main.py

- 1. Pass args
- 2. Test_hyperparamaters

- a. train_data, valid_data
- b. Model_concat.pt : model1= CombinedNet
- c. Model_features.pt : model2 = FeatureNet
- d. Model_text.pt : model3 = TextNet
- 3. Finetune_bert
 - a. train data, valid data
 - b. BertForSequenceClassification
 - c. Bert_model.pt : final fine-tuned model
- 4. Loss used: mse_loss