Bisection and Secant Methods: To bracket or not to bracket

Sean Laverty
9/10/2019

Introduction

Consider the rootfinding problem with f(x) = 3(x+1)(x-1/2)(x-1) on the interval $-1.25 \le x \le 2.5$.

Though the code is omitted, the results below are reported for the example problem above addressing the application of secant method and comparisons to Newton's method and the bisection method.

Bisection Method

On the interval $-1.25 \le x \le 2.5$, solutions to 3*(x+1)*(x-1/2)*(x-1) = 0 are given by the following. bisect(function(x)3*(x+1)*(x-1/2)*(x-1), a=-1.25, b=2.5, k=5)


```
[,1]
                        [,2]
                                      [,3]
                                                   [,4]
##
            1 -1.2500000000 0.6250000000 2.500000000
##
    [1,]
               0.6250000000 1.5625000000 2.500000000
    [2,]
            2
##
               0.6250000000 1.0937500000 1.562500000
##
    [3,]
            3
##
    [4,]
            4
               0.6250000000 0.8593750000 1.093750000
##
    [5,]
            5
               0.8593750000 0.9765625000 1.093750000
               0.9765625000 1.0351562500 1.093750000
##
    [6,]
            6
##
    [7,]
            7
               0.9765625000 1.0058593750 1.035156250
               0.9765625000 0.9912109375 1.005859375
##
    [8,]
    [9,]
               0.9912109375 0.9985351562 1.005859375
##
```

```
## [10,]
               0.9985351562 1.0021972656 1.005859375
## [11,]
               0.9985351562 1.0003662109 1.002197266
           11
               0.9985351562 0.9994506836 1.000366211
## [12,]
## [13,]
               0.9994506836 0.9999084473 1.000366211
           13
## [14,]
           14
               0.9999084473 1.0001373291 1.000366211
## [15,]
               0.9999084473 1.0000228882 1.000137329
           15
## [16,]
               0.9999084473 0.9999656677 1.000022888
           16
## [17,]
               0.9999656677 0.9999942780 1.000022888
           17
## [18,]
           18
               0.9999942780 1.0000085831 1.000022888
## [19,]
               0.9999942780 1.0000014305 1.000008583
## [1] 1.000001431
```

Secant Method

On the interval $-1.25 \le x \le 2.5$, solutions to 3*(x+1)*(x-1/2)*(x-1) = 0 are given by the following. secant(function(x)3*(x+1)*(x-1/2)*(x-1), a=-1.25, b=2.5, p0=2.5, p1=2, k=5)


```
##
        [,1]
                     [,2]
                                  [,3]
##
  [1,]
           1 2.000000000 1.625000000
## [2,]
           2 1.625000000 1.364238411
  [3,]
           3 1.364238411 1.188047870
##
##
   [4,]
           4 1.188047870 1.079879551
## [5,]
           5 1.079879551 1.024080827
## [6,]
           6 1.024080827 1.003947783
## [7,]
           7 1.003947783 1.000224447
## [8,]
           8 1.000224447 1.000002196
## [1] 1.000002196
```

Newton's Method

```
On the interval -1.25 \le x \le 2.5, solutions to 3*(x+1)*(x-1/2)*(x-1) = 0 are given by the following. newton(function(x)3*(x+1)*(x-1/2)*(x-1), function(x)3*((x+1)*(x-1/2)+(x+x-1/2+1)*(x-1)), a=-1.25, b=2.5
```



```
##
        [,1]
                     [,2]
## [1,]
           1 1.811475410
## [2,]
           2 1.386035528
           3 1.144382426
## [3,]
## [4,]
           4 1.032578864
## [5,]
           5 1.002334846
## [6,]
           6 1.000013496
## [7,]
           7 1.000000000
## [1] 1
```