

Efficient Randomized Experiments Using Foundation Models

Piersilvio De Bartolomeis, Javier Abad, Guanbo Wang, Konstantin Donhauser, Raymond Duch, Fanny Yang, Issa Dahabreh

Problem Setting

- We collect an experimental sample $(X_i, A_i, Y_i)_{i=1}^n$ with fixed treatment probability $\pi = \mathbb{P}(A=1)$
- ▶ We want to estimate $\theta = \mathbb{E}[Y \mid A = 1] \mathbb{E}[Y \mid A = 0]$
- ► The average treatment effect is estimated with AIPW

$$\widehat{\theta}(\widehat{h}) = \sum_{i=1}^{n} \frac{A_i - \pi}{\pi(1 - \pi)} (Y_i - \widehat{h}(X_i, A_i)) + \widehat{h}(X_i, 1) - \widehat{h}(X_i, 0)$$

- ▶ But the model $\widehat{h} = \widehat{\mathbb{E}}[Y \mid X, A]$ is learned from the small experimental sample using e.g. linear regression
 - ▶ Idea: use external data and flexible models to learn \widehat{h}

We propose the **H**ybrid **A**ugmented **I**nverse **P**robability **W**eighting **(H-AIPW)**, a novel estimator that safely leverages foundation models to improve efficiency.

Protects against bias from the foundation models

Mays at least as efficient as the classic AIPW estimator

Method

Prior work

Experiments

