Linear Feedback Shift Registers (LFSRs)

- These are n-bit counters exhibiting *pseudo-random* behavior.
- · Built from simple shift-registers with a small number of xor gates.
- · Used for:
 - random number generation
 - counters
 - error checking and correction
- Advantages:
 - very little hardware
 - high speed operation
- Example 4-bit LFSR:

Applications of LFSRs

- · Performance:
 - In general, xors are only ever 2-input and never connect in series.
 - Therefore the minimum clock period for these circuits is:
 - $T > T_{2-input-xor} + clock overhead$
 - Very little latency, and independent of n!
- This can be used as a <u>fast counter</u>, if the particular sequence of count values is not important.
 - Example: micro-code micro-pc

- Can be used as a <u>random</u> number generator.
 - Sequence is a pseudorandom sequence:
 - numbers appear in a random sequence
 - repeats every 2ⁿ-1 patterns
 - Random numbers useful in:
 - · computer graphics
 - · cryptography
 - · automatic testing
- Used for error detection and correction
 - CRC (cyclic redundancy codes)
 - · ethernet uses them

Galois Fields - the theory behind LFSRs

- LFSR circuits performs multiplication on a field.
- A field is defined as a set with the following:
 - two operations defined on it:
 - "addition" and "multiplication"
 - closed under these operations
 - associative and distributive laws hold
 - additive and multiplicative identity elements
 - additive inverse for every element
 - multiplicative inverse for every non-zero element

- · Example fields:
 - set of rational numbers
 - set of real numbers
 - set of integers is *not* a field (why?)
- <u>Finite</u> fields are called *Galois* fields.
- Example:
 - Binary numbers 0,1 with XOR as "addition" and AND as "multiplication".
 - Called GF(2).

 Spring 2003
 EECS150 - Lec26-ECC
 Page 3
 Spring 2003
 EECS150 - Lec26-ECC
 Page 4

Galois Fields - The theory behind LFSRs

- Consider polynomials whose coefficients come from GF(2).
- Each term of the form x^n is either present or absent.
- Examples: 0, 1, x, x^2 , and $x^7 + x^6 + 1$

$$= 1 \cdot x^7 + 1 \cdot x^6 + 0 \cdot x^5 + 0 \cdot x^4 + 0 \cdot x^3 + 0 \cdot x^2 + 0 \cdot x^1 + 1 \cdot x^0$$

- · With addition and multiplication these form a field:
- "Add": XOR each element individually with no carry:

$$\frac{x^4 + x^3 + x + 1}{x^4 + x^2 + x}$$

$$\frac{x^4 + x^3 + x^2 + 1}{x^3 + x^2 + 1}$$

• "Multiply": multiplying by x^n is like shifting to the left.

$$\begin{array}{c}
x^2 + x + 1 \\
\times & x + 1 \\
\hline
x^2 + x + 1 \\
\underline{x^3 + x^2 + x} \\
x^3 & + 1
\end{array}$$

Spring 2003 EECS150 – Lec26-ECC

Page 5

Galois Fields - The theory behind LFSRs

- These polynomials form a Galois (finite) field if we take the results of this multiplication modulo a prime polynomial p(x).
 - A prime polynomial is one that cannot be written as the product of two non-trivial polynomials q(x)r(x)
 - Perform modulo operation by subtracting a (polynomial) multiple of p(x) from the result.
 If the multiple is 1, this corresponds to XOR-ing the result with p(x).
- For any degree, there exists at least one prime polynomial.
- With it we can form $GF(2^n)$

- · Additionally, ...
- Every Galois field has a primitive element, α , such that all non-zero elements of the field can be expressed as a power of α . By raising α to powers (modulo p(x)), all non-zero field elements can be formed.
- Certain choices of p(x) make the simple polynomial x the primitive element. These polynomials are called primitive, and one exists for every degree.
- For example, x^d + x + I is primitive. So α = x is a primitive element and successive powers of α will generate all non-zero elements of GF(16). Example on next slide.

Galois Fields - The theory behind LFSRs

• In general finding primitive polynomials is difficult. Most people just look them up in a table, such as:

Spring 2003 EECS150 - Lec26-ECC Page 7

 $\alpha^{14} = x^3$

 $\alpha^{15} =$

+ 1

Primitive Polynomials

Galois Field

Hardware

⇔ shift left Multiplication by x

Taking the result mod $p(x) \Leftrightarrow XOR$ -ing with the coefficients of p(x)when the most significant coefficient is 1.

Page 8

Shifting and XOR-ing 2^{n} -1 times.

Obtaining all 2^n -1 non-zero \Leftrightarrow elements by evaluating x^k

for
$$k = 1, ..., 2^{n}-1$$

Spring 2003 EECS150 - Lec26-ECC

Building an LFSR from a Primitive Polynomial

- For *k-bit* LFSR number the flip-flops with FF1 on the right.
- The feedback path comes from the Q output of the leftmost FF.
- Find the primitive polynomial of the form $x^k + ... + 1$.
- The x⁰ = 1 term corresponds to connecting the feedback directly to the D input of FF 1.
- Each term of the form x^n corresponds to connecting an xor between FF n and n+1.
- 4-bit example, uses $x^4 + x + 1$
 - x⁴ ⇔ FF4's Q output
 - x ⇔ xor between FF1 and FF2
 - 1 ⇔ FF1's D input
- To build an 8-bit LFSR, use the primitive polynomial $x^8 + x^4 + x^3 + x^2 + I$ and connect xors between FF2 and FF3, FF3 and FF4, and FF4 and FF5.

Error Correction with LFSRs

- · XOR Q4 with incoming bit sequence. Now values of shift-register don't follow a fixed pattern. Dependent on input sequence.
- Look at the value of the register after 15 cycles: "1010"
- Note the length of the input sequence is 24-1 = 15 (same as the number of different nonzero patters for the original LFSR)
- Binary message occupies only 11 bits, the remaining 4 bits are "0000".
 - They would be replaced by the final result of our LFSR: "1010"
 - If we run the sequence back through the LFSR with the replaced bits, we would get "0000" for the final result.
 - 4 parity bits, "neutralize" the sequence with respect to the LFSR.

```
11001000111 0000 \Rightarrow 1010
11001000111 \ 1010 \Rightarrow 0000
```

- · If parity bits not all zero, an error occurred in transmission.
- If number of parity bits = log total number of bits, then single bit errors can be corrected.
- · Using more parity bits allows more errors to be detected.
- Ethernet uses 32 parity bits per frame (packet) with 16-bit LFSR.

Spring 2003 EECS150 - Lec26-ECC Page 11

Division

```
1001 Quotient
Divisor 1000 1001010
                  101
                 1010
                 -1000
                   10 Remainder (or Modulo result)
```

· See how big a number can be subtracted, creating quotient bit on each step

Binary ⇒ 1 * divisor or 0 * divisor

- Dividend = Quotient x Divisor + Remainder sizeof(dividend) = sizeof(quotient) + sizeof(divisor)
- · 3 versions of divide, successive refinement EECS150 - Lec26-ECC Spring 2003

Page 12

DIVIDE HARDWARE Version 1 • 64-bit Divisor register, 64-bit adder/subtractor, 64-bit Remainder register, 32-bit Quotient register Shift Right Divisor 64 bits Shift Left Quotient add/sub 32 bits Write Remainder Control 64 bits Spring 2003 EECS150 - Lec26-ECC Page 13

Version 1	Divisio	n Examp	le 7/2
eration step	quotie	nt divisor	remainder
Initial values	0000	0010 0000	0000 0111
1: rem=rem-div	0000	0010 0000	1110 0111
2b: rem<0 \Rightarrow +div, sll Q, Q0=0	0000	0010 0000	0000 0111
3: shift div right	0000	0001 0000	0000 0111
1: rem=rem-div	0000	0001 0000	1111 0111
2b: rem<0 \Rightarrow +div, sll Q, Q0=0	0000	0001 0000	0000 0111
3: shift div right	0000	0000 1000	0000 0111
1: rem=rem-div	0000	0000 1000	1111 1111
2b: rem<0 \Rightarrow +div, sll Q, Q0=0	0000	0000 1000	0000 0111
3: shift div right	0000	0000 0100	0000 0111
1: rem=rem-div	0000	0000 0100	0000 0011
2a: rem≥0 ⇒ sll Q, Q0=1	0001	0000 0100	0000 0011
3: shift div right	0001	0000 0010	0000 0011
1: rem=rem-div	0001	0000 0010	0000 0001
2a: rem≥0 ⇒ sll Q, Q0=1	0011	0000 0010	0000 0001
3: shift div right	0011	0000 0001	0000 0001
Spring 2003	ECS150 – Lec26-ECC		

Observations on Divide Version 1

- 1/2 bits in divisor always 0
 - \Rightarrow 1/2 of 64-bit adder is wasted
 - \Rightarrow 1/2 of divisor is wasted
- Instead of shifting divisor to right, shift remainder to left?
- 1st step cannot produce a 1 in quotient bit (otherwise quotient $\geq 2^n$)
 - ⇒ switch order to shift first and then subtract, can save 1 iteration

Observations on Divide Version 2

Spring 2003

- Eliminate Quotient register by combining with Remainder as shifted left.
 - Start by shifting the Remainder left as before.
 - Thereafter loop contains only two steps because the shifting of the Remainder register shifts both the remainder in the left half and the quotient in the right half
 - The consequence of combining the two registers together and the new order of the operations in the loop is that the remainder will shifted left one time too many.
 - Thus the final correction step must shift back only the remainder in the left half of the register

EECS150 - Lec26-ECC

Page 19

DIVIDE HARDWARE Version 3

• 32-bit Divisor register, 32-bit adder/subtractor, 64-bit Remainder register, (0-bit Quotient reg)

Observations on Divide Version 3

- Same Hardware as shift and add multiplier: just 63-bit register to shift left or shift right
- Signed divides: Simplest is to remember signs, make positive, and complement quotient and remainder if necessary
 - Note: Dividend and Remainder must have same sign
 - Note: Quotient negated if Divisor sign & Dividend sign disagree e.g., -7 ÷ 2 = -3, remainder = -1
- Possible for quotient to be too large: if divide 64-bit integer by 1, quotient is 64 bits ("called saturation")