Introduction to **Machine Learning and Data Mining**

(Học máy và Khai phá dữ liệu)

Khoat Than

School of Information and Communication Technology
Hanoi University of Science and Technology

Contents

- Introduction to Machine Learning & Data Mining
- Supervised learning
- Unsupervised learning
- Probabilistic modeling
- Regularization
- Practical advice

Revisiting overfiting

- ■The complexity of the learned function: $y = \hat{f}(x, \mathbf{D})$
 - \Box For a given training data **D**: the more complicated \hat{f} , the more possibility that \hat{f} fits **D** better.
 - For a given D: there exist many functions that fit D perfectly (i.e., no error on D).
 - However, those functions might generalize badly.

The Bias-Variance Decomposition

- Consider $y = f(x) + \epsilon$ as the regression function
 - * where $\epsilon \sim \mathcal{N}(0, \sigma^2)$ is a Gaussian noise with mean 0 and variance σ^2 .
 - \star ϵ may represent the *noise* due to measurement or data collection.
- Let $\hat{f}(x; \mathbf{D})$ be the regressor learned from a training data **D**
- Note:
 - * We want that $\hat{f}(x; \mathbf{D})$ approximates the truth f(x) well.
 - * $\hat{f}(x; \mathbf{D})$ is random, according to the randomness when collecting **D**.
- For any x, the error made by $\hat{f}(x; \mathbf{D})$ is

$$\mathbb{E}_{D,\epsilon}\left(y(x) - \hat{f}(x; \mathbf{D})\right)^2 = \sigma^2 + Bias^2\left(\hat{f}(x; \mathbf{D})\right) + Var\left(\hat{f}(x; \mathbf{D})\right)$$

- * $Bias(\hat{f}(x; \mathbf{D})) = \mathbb{E}_D[f(x) \hat{f}(x; \mathbf{D})]$
- * $Var\left(\hat{f}(x; \mathbf{D})\right) = \mathbb{E}_D\left(\hat{f}(x; \mathbf{D}) \mathbb{E}_D\hat{f}(x; \mathbf{D})\right)^2$

The Bias-Variance Decomposition (2)

$$Error(x) = \sigma^2 + Bias^2 (\hat{f}(x; \mathbf{D})) + Var(\hat{f}(x; \mathbf{D}))$$
$$= Irreducible Error + Bias^2 + Variance$$

- This is known as the Bias-Variance Decomposition
 - Irreducible Error: cannot be avoided due to noises or uncontrolled factors
 - Bias: the average of our estimate differs from the true mean
 - * Variance: the expected squared deviation of $\hat{f}(x; \mathbf{D})$ around its mean

Bias-Variance tradeoff: classical view

- The more complex the model $\hat{f}(x; \mathbf{D})$ is, the more data points it can capture, and the lower the bias can be.
 - * However, higher complexity will make the model "move" more to capture the data points, and hence its variance will be larger.

Regularization: introduction

- Regularization is now a popular and useful technique in ML.
- It is a technique to exploit further information to
 - Reduce overfitting in ML.
 - □ Solve ill-posed problems in Maths.
- The further information is often enclosed in a penalty on the complexity of $\hat{f}(x, \mathbf{D})$.
 - More penalty will be imposed on complex functions.
 - □ We prefer simpler functions among all that fit well the training data.

Tikhonov, smoothing an illposed problem

Zaremba, model complexity minimization

Bayes: priors over parameters

Andrew Ng: need no maths, but it prevents overfitting!

Regularization in Ridge regression

Learning a linear regressor by ordinary least squares (OLS) from a training data $\mathbf{D} = \{(x_1, y_1), ..., (x_M, y_M)\}$ is reduced to the following problem:

$$w^* = \arg\min_{\mathbf{w}} RSS(w, \mathbf{D}) + \lambda ||w||_2^2 = \arg\min_{\mathbf{w}} \sum_{(x_i, y_i) \in \mathbf{D}} (y_i - w^T x_i)^2$$

For Ridge regression, learning is reduced to

$$w^* = \arg\min_{\mathbf{w}} RSS(\mathbf{w}, \mathbf{D}) + \lambda ||\mathbf{w}||_2^2$$

- \Box Where λ is a positive constant.
- \Box The term $\lambda ||w||_2^2$ plays the role as limiting the size/complexity of w.
- $_{\Box}$ λ allows us to trade off between fitness on **D** and generalization on future observations.
- Ridge regression is a regularized version of OLS.

Regularization: the principle

- •We need to learn a function f(x, w) from the training set **D**
 - x is a data example and belongs to input space.
 - w is the parameter and often belongs to a parameter space W.
 - $\Box F = \{f(x, w) : w \in W\}$ is the function space, parameterized by w.
- For many ML models, the training problem is often reduced to the following optimization:

$$w^* = \arg\min_{w \in \mathbf{W}} L(f(x, w), \mathbf{D}) \tag{1}$$

- w sometimes tells the size/complexity of that function.
- $\Box L(f(x,w), \mathbf{D})$ is an empirical loss/risk which depends on \mathbf{D} . This loss shows how well function f fits \mathbf{D} .
- •Another view: $f^* = \arg\min_{f \in F} L(f(x, w), \mathbf{D})$

Regularization: the principle

Adding a penalty to (1), we consider

$$w^* = \arg\min_{w \in \mathbf{W}} L(f(x, w), \mathbf{D}) + \lambda g(w)$$
 (2)

- \square Where $\lambda > 0$ is called the regularization/penalty constant.
- $\neg g(w)$ measures the complexity of w. $(g(w) \ge 0)$
- $L(f(x,w), \mathbf{D})$ measures the goodness of function f on \mathbf{D} .
- The penalty (regularization) term: $\lambda g(w)$
 - Allows to trade off the fitness on **D** and the generalization.
 - $_{\Box}$ The greater λ, the heavier penalty, implying that g(w) should be smaller.
 - In practice, λ should be neither too small nor too large.
 (λ không nên quá lớn hoặc quá bé trong thực tế)

Regularization: popular types

g(w) often relates to some norms when w is an n-dimensional vector.

□ L₀-norm:

 $||w||_0$ counts the number of non-zeros in w.

□ L₁-norm:

$$\left\| w \right\|_1 = \sum_{i=1}^n \left| w \right|$$

□ L₂-norm:

$$\|w\|_2^2 = \sum_{i=1}^n w_i^2$$

□ L_p-norm:

$$\|w\|_{p} = \sqrt[p]{|w_{1}|^{p} + ... + |w_{n}|^{p}}$$

Regularization in Ridge regression

- Ridge regression can be derived from OLS by adding a penalty term into the objective function when learning.
- Learning a regressor in Ridge is reduced to

$$w^* = \arg\min_{\mathbf{w}} RSS(\mathbf{w}, \mathbf{D}) + \lambda ||\mathbf{w}||_2^2$$

- \Box Where λ is a positive constant.
- □ The term $\lambda ||w||_2^2$ plays the role as regularization.
- \Box Large λ reduces the size of w.

Regularization in Lasso

- Lasso [Tibshirani, 1996] is a variant of OLS for linear regression by using L₁ to do regularization.
- Learning a linear regressor is reduced to

$$w^* = \arg\min_{\mathbf{w}} RSS(\mathbf{w}, \mathbf{D}) + \lambda \|\mathbf{w}\|_1$$

- \Box Where λ is a positive constant.
- $||\lambda||w||_1$ is the regularization term. Large λ reduces the size of w.
- Regularization here amounts to imposing a Laplace distribution (as prior) over each w_i, with density function:

$$p(w_i|\lambda) = \frac{\lambda}{2}e^{-\lambda|w_i|}$$

 \Box The larger λ , the more possibility that $w_i = 0$.

Regularization in SVM

Learning a classifier in SVM is reduced to the following problem:

- □ Conditioned on $y_i(\langle \mathbf{w} \cdot \mathbf{x}_i \rangle + b) \ge 1$, $\forall i = 1...r$
- In the cases of noises/errors, learning is reduced to
 - $\frac{\langle \mathbf{w} \cdot \mathbf{w} \rangle}{2} + C \sum_{i=1}^{r} \xi_{i}$
 - Conditioned on $\begin{cases} y_i(\langle \mathbf{w}\cdot\mathbf{x}_i\rangle+b)\geq 1-\xi_i, & \forall i=1..r\\ \xi_i\geq 0, & \forall i=1..r \end{cases}$
- $\mathbb{C}(\xi_1 + ... + \xi_r)$ is the regularization term.

Some other regularizations

- Dropout: (by Hilton and his colleagues, 2012)
 - At each iteration of the training process, randomly drop out some parts and just update the other parts of our model.
- Batch normalization [loffe & Szegedy, 2015]
 - Normalize the inputs at each neuron of a neural network
 - Reduce input variance, easier training, faster convergence

Data augmentation

- Produce different versions of an example in the training set, by adding simple noises, translation, rotation, cropping, ...
- Those versions are added to the training data set

Early stopping

Stop training early to avoid overtraining & reduce overfitting

Regularization: MAP role

•Under some conditions, we can view regularization as

$$w^* = \arg\min_{w \in \mathbf{W}} L(f(x, w), \mathbf{D}) + \lambda g(w)$$
Likelihood Prior

- □ Where **D** is a sample from a probability distribution whose log likelihood is $-L(f(x, w), \mathbf{D})$.
- □ w is a random variable and follows the <u>prior with density</u> $p(w) \propto \exp(-\lambda g(w))$
- Then $w^* = \arg\max_{w \in W} \{-L(f(x, w), \mathbf{D}) \lambda g(w)\}$
 - $w^* = \arg \max_{w \in \mathbf{W}} \log \Pr(\mathbf{D}|w) + \log \Pr(w) = \arg \max_{w \in \mathbf{W}} \log \Pr(w|\mathbf{D})$
- As a result, regularization in fact helps us to learn an MAP solution w*.

Regularization: MAP in Ridge

- Consider the Gaussian regression model:
 - \square w follows a Gaussian prior: N(w | 0, $\sigma^2 \rho^2$).
 - □ Variable $f = y w^Tx$ follows the Gaussian distribution $N(f \mid 0, \rho^2, w)$ with mean 0 and variance ρ^2 , and conditioned on w.
- ■Then the MAP estimation of f from the training data **D** is

$$w^* = \operatorname{argmax}_{w} \operatorname{logPr}(w \mid D) = \operatorname{argmax}_{w} \operatorname{log} \left[\operatorname{Pr}(D \mid w) * \operatorname{Pr}(w) \right]$$
$$= \operatorname{argmin}_{w} \sum_{(x_i, y_i)} \frac{1}{2\rho^2} \left(y_i - w^T x_i \right)^2 + \frac{1}{2\sigma^2 \rho^2} w^T w - \operatorname{constant}$$

$$= \operatorname{argmin}_{w} \sum_{(x,y_i)} \left(y_i - w^T x_i \right)^2 + \frac{1}{\sigma^2} w^T w$$

Ridge regression

■Regularization using L_2 with penalty constant $\lambda = \sigma^{-2}$.

Regularization: MAP in Ridge & Lasso

- The regularization constant in Ridge: $\lambda = \sigma^{-2}$
- The regularization constant in Lasso: $\lambda = b^{-1}$
- Gaussian (left) and Laplace distribution (right)

$$f(x,\mu,\sigma) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Regularization: limiting the search space

- The regularization constant in Ridge: $\lambda = \sigma^{-2}$
- The regularization constant in Lasso: $\lambda = b^{-1}$
- The larger λ , the higher probability that x occurs around 0.

$$f(x,\mu,\sigma) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Regularization: limiting the search space

The regularized problem:

$$w^* = \arg\min_{w \in \mathbf{W}} L(f(x, w), \mathbf{D}) + \lambda g(w)$$
 (2)

A result from the optimization literature shows that (2) is equivalent to the following:

$$w^* = \arg\min_{w \in \mathbf{W}} L(f(x, w), \mathbf{D})$$
 such that $g(w) \le s$ (3)

- □ For some constant s.
- ■Note that the constraint of $g(w) \le s$ plays the role as limiting the search space of w.

Regularization: effects of λ

- Vector $\mathbf{w}^* = (w_0, s1, s2, s3, s4, s5, s6, Age, Sex, BMI, BP)$ changes when λ changes in Ridge regression.
 - \square **w*** goes to 0 as λ increases.

Regularization: practical effectiveness

- Ridge regression was under investigation on a prostate dataset with 67 observations.
 - Performance was measured by RMSE (root mean square errors)
 and Correlation coefficient.

λ	0.1	1	10	100	1000	10000
RMSE	0.74	0.74	0.74	0.84	1.08	1.16
Correlation coeficient	0.77	0.77	0.78	0.76	0.74	0.73

- $_{\square}$ Too high or too low values of λ often result in bad predictions.
- □ MhÀšš

Bias-Variance tradeoff: revisit

- Classical view:
 More complex model $\hat{f}(x; \mathbf{D})$
 - Lower bias, higher variance
- Modern phenomenon:
 - Very rich models such as neural networks are trained to exactly fit the data, but often obtain high accuracy on test data [Belkin et al., 2019; Zhang et al., 2021]

- $* Bias \cong 0$
- GPT-3, ResNets, VGG, StyleGAN, DALLE-3, ...
- Why???

Regularization: summary

Advantages:

- Avoid overfitting.
- Limit the search space of the function to be learned.
- Reduce bad effects from noises or errors in observations.
- Might model data better. As an example, L₁ often work well with data/model which are inherently sparse.

Limitations:

- Consume time to select a good regularization constant.
- Might pose some difficulties to design an efficient algorithm.

References

- Belkin, M., Hsu, D., Ma, S., & Mandal, S. (2019). Reconciling modern machinelearning practice and the classical bias-variance trade-off. Proceedings of the National Academy of Sciences, 116(32), 15849-15854.
- loffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing internal covariate shift. In International Conference on Machine Learning (pp. 448-456).
- Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems, 25, 1097-1105.
- Tibshirani, R (1996). Regression shrinkage and selection via the Lasso. Journal of the Royal Statistical Society, vol. 58(1), pp. 267-288.
- Trevor Hastie, Robert Tibshirani, Jerome Friedman. The Elements of Statistical Learning. Springer, 2009.
- Zhang, C., Bengio, S., Hardt, M., Recht, B., & Vinyals, O. (2021). Understanding deep learning (still) requires rethinking generalization. Communications of the ACM, 64(3), 107-115.