Teoría de juegos

Juegos Simultáneos EN (Parte 2)

TEORÍA DE LAS DECISIONES

M. PAULA BONEL

mpaulabonel@gmail.com

¿Consultas clase anterior?

Temas de la clase de hoy

- Estrategias continuas.
- Aplicaciones en comercio internacional
 - Decisión de tarifas
- Aplicaciones en organización industrial
 - Competencia por precios
- Juegos en forma normal con 3 jugadores

Estrategias Continuas

- Ahora consideraremos estrategias continuas:
- •Los jugadores eligen el nivel de una variable continua (ej. precios o cantidades).
- •Los juegos tradicionales no son buenas herramientas analíticas para resolver estos casos ya que existe un número enorme de estrategias alternativas.
- •No podemos representar el juego en forma normal.

Comercio internacional

- Dos países deciden simultáneamente la tarifa de importación: $x_i = [0, 100]$ donde i = 1, 2.
- Los pagos de los países son: $V_i(x_i, x_j) = 2000 + 60x_i + x_i x_j x_i^2 90x_j$
- Encuentre las mejores funciones de mejor respuesta para los países.
- Calcule el equilibrio de Nash.
- Grafique las funciones de MR.
- Muestre que los países estarían mejor si hicieran un acuerdo vinculante para establecer aranceles iguales a cero. No necesita especular cómo se podría hacer cumplir dicho acuerdo.
- Indique el conjunto de estrategias racionalizables para los países (Hint: Puede ayudarse del gráfico del punto anterior)

Comercio internacional (Respuestas)

- •La función de mejor respuesta del país i es: $MR_i(x_j) = 30 + \frac{x_j}{2}$
- •El Equilibrio de Nash es $EN = \{(60, 60)\}.$
- La utilidad en el EN es $u_i(60,60)=200$ mientras que la utilidad en el acuerdo es $u_i(0,0)=2000$

- En esta competencia entre dos firmas, las decisiones estratégicas se basan en elegir precio único del menú de forma simultánea.
- En un barrio existen dos pastelerías que deciden:
 - "La pastelería de Maru": p_1
 - "La Pastelería de Pani": p₂

- La demanda del bien está dada por $m{Q}=m{1000}-m{p}$
- Donde $Q=q_1+q_2$. Dado un cierto precio p, los consumidores demandan 1000-p menús.
- El costo marginal es constante e igual a \$100 por unidad.
- Esto determina que:
 - Si $p_1 = p_2$, se dividen el mercado de clientes a la mitad. Es decir, cada pastelería vende una cantidad de: $\frac{1000 p}{2}$
 - Si las pastelerías eligen precios distintos, los consumidores le compran únicamente a la de menor precio (cuya demanda será 1000-p), mientras que la demanda correspondiente a la otra pastelería es igual a 0.

• En este juego, esto implica que los pagos de cada firma son:

$$Beneficios_{i} = \begin{cases} 0 & si \ p_{i} > p_{j} \\ \frac{(1000 - p_{i})(p_{i} - 100)}{2} & si \ p_{i} = p_{j} \\ (1000 - p_{i})(p_{i} - 100) & si \ p_{i} < p_{j} \end{cases}$$

- Debemos encontrar la intersección de mejores respuestas tal que no haya incentivos al desvío.
- Las estrategias de la firmas son $S_i = [0, \infty)$.

- Si p_j ó $p_i < 100 \rightarrow$ Desvío: La firma que vende a ese precio está obteniendo pérdidas y podría estar mejor sin producir.
- Si $p_j > p_i \ge 100$ \to Desvío: La firma j puede aumentar sus ganancias (antes 0) al elegir un precio entre 100 y p_i .
- Si $p_j=p_i>100
 ightarrow$ Desvío: Aquí cada firma obtiene la mitad de la demanda del mercado, pero podría captar toda la cantidad demandada bajando su precio en una pequeña cantidad.
- Si $p_j = p_i = 100 \rightarrow$ Las firmas no pueden aumentar sus ganancias al bajar o reducir los precios. **Por lo** tanto, no hay incentivos al desvío y la situación constituye un EN.

- Este resultado se conoce como la paradoja de Bertrand.
- ¿Cómo es que se alcanza el resultado de un mercado de competencia perfecta en un mercado donde hay nada más que dos oferentes?
- La paradoja puede ser resuelta examinando dos supuestos subyacentes en el modelo de Bertrand:
 - i. cada empresa vende un producto homogéneo idéntico.
 - ii. cada empresa puede cubrir toda la demanda del mercado cuando elimina a su rival (no tiene limitaciones de capacidad).

- •Hasta ahora modelamos únicamente juegos en forma normal con dos jugadores, pensemos en un caso con tres jugadores.
- Vamos a usar herramientas similares a las que usamos para el caso de dos jugadores.
- Lucía, Diego y Pedro quieren ir a ver un partido de fútbol y uno de basquetbol. No tienen dinero suficiente para pagar las dos entradas y van a decidir por votación a qué partido van a ir. ¿Qué le conviene votar a cada uno?

Tres jugadores EN y mejores respuestas

		Diego (2)		
		Fútbol	Basquetbol	
Lucía	Fútbol	34,25,41	32 , 32 , 36	
(1)	Basquetbol	32 , 30 , 38	33,32,36	

		Diego (2)		
		Fútbol	Basquetbol	
Lucía	Fútbol	34,29,37	38,32,30	
(1)	Basquetbol	35,38,27	36,39,25	

Tres jugadores: Resolución por mejor respuesta

Primero busco las mejores respuestas de Lucía y Diego al interior de cada una de las matrices.

Pedro

		Diego		
		Fútbol Basquetbol		
	Fútbol	34,25,41	32 <u>, 32</u> , 36	
Lucía	Basquetbol	32 , 30 , 38	33 , 32 , 36	

		Diego		
		Fútbol Basquetbol		
	Fútbol	34,29,37	38 , 32 , 30	
Lucía	Basquetbol	<u>35</u> , 38, 27	36 , 39 , 25	

Tres jugadores: Resolución por mejor respuesta

- Tengo que determinar que haría Pedro para cada combinación de estrategias de Lucía y Diego.
- Por ejemplo, si Lucía y Diego eligen Fútbol (primer cuadrante en ambas matrices).
 - Si Pedro elige Fútbol obtiene 41
 - Si Pedro elige Basquetbol recibe 37.

		Diego		
		Fútbol Basquetbol		
	Fútbol	34,25,41	32 , 32 , 36	
Lucía	Basquetbol	32,30,38	33,32,36	

		Diego		
		Fútbol Basquetbol		
	Fútbol	34,29,37	38 , 32 , 30	
Lucía	Basquetbol	<u>35</u> , 38, 27	36 , 39 , 25	

Tres jugadores Dominancia

Futbol es una estrategia estrictamente dominada para Diego.

		Diego		
		Fú	bol	Basquetbol
	Fútbol	34,2	5,41	32,32,36
Lucía	Basquetbol	32,3	0,38	33,32,36

		Diego		
		Fútb <mark>ol Basquetbol</mark>		
	Fútbol	34,29	, 37	38,32,30
Lucía	Basquetbol	35 , 38	, 27	36,39,25

Basquetbol es una estrategia estrictamente dominada para Pedro.

		Diego		
		Fú ⁻ bol Basquetbol		Basquetbol
	Fútbol	34,2	5,41	32 , 32 , 36
Lucía	Basquetbol	32,3	0,38	33 , 32 , 36

		Diego		
		Fútb	ol	Basquetbol
	Fútbol	34,29	, 37	38,32,30
Lucía	Basquetbol	35,38	, 27	36,39,25

La que decide es Lucía eligiendo basquetbol.

EN = (basquetbol, basquetbol, fútbol)

		Diego		
		Fú [·] bol Basquetbol		
	Fátbol	34,2	5,41	32,32,36
Lucía	Basquetbol	32,3	0,38	33,32,36

		Diego		
		Fútbol Basquetbol		
	Fútbol	34,29	, 37	38,32,30
Lucía	Basquetbol	35 , 38	, 27	36,39,25

Lectura recomendada

• Dixit, Avinash K. (2015). Games of strategy. Fourth Edition. New York: W.W. Norton & Company (Capitulos 4 y 5).

•Watson, Joel. (2013). Strategy: an introduction to game theory. Third Edition New York: W. W. Norton & Company (Capitulos 9 y 10).