Prova di Comunicazioni Numeriche

20 Settembre 2018

- Es. 1 Sia dato un sistema LTI caratterizzato dall'equazione $\frac{dy(t)}{dt} + y(t) = \frac{x(t)}{2}$. All'ingresso del sistema viene posto il processo X(t) Gaussiano bianco con correlazione $R_X(\tau) = \frac{N_0}{2}\delta(t)$.
 - 1) Calcolare la correlazione e la densità spettrale di potenza del processo Y(t) all'uscita del sistema
 - 2) Calcolare la potenza dei processi X(t) e Y(t)
- 3) Che densità di probabilità ha la variabile aleatoria $Y(t_0) = Y$ estratta dal processo di uscita al generico istante t_0 ?
- Es. 2 Al ricevitore di Figura 1 è applicato il segnale in banda base $r(t) = \sum_i x[i]p(t-iT) + w(t)$ dove x[i] sono simboli indipendenti ed equiprobabili e appartengono all'alfabeto A = [-2,3]. Il rumore w(t) introdotto dal canale è Gaussiano a media nulla con densità spettrale di potenza $S_w(f) = \frac{N_0}{2}$ e l'impulso trasmesso e' $p(t) = 2Bsinc(2Bt) + Bsinc^2(\frac{B}{2}t)\cos(\pi Bt)$. Il filtro in ricezione è un filtro ideale passa-basso di banda B, dove $B = \frac{2}{T}$. La strategia di decisione è $\hat{x}[k] = \begin{cases} -2 & y[k] \leq \lambda \\ 3 & y[k] > \lambda \end{cases}$ con $\lambda = 0$. Calcolare:
 - 1) L'energia media trasmessa per simbolo
 - 2) La densita' spettrale di potenza del segnale trasmesso
 - 3) La potenza di rumore in uscita al filtro di ricezione
 - 4) Verificare l'assenza di interferenza intersimbolica
 - 5) Calcolare la probabilità di errore.

Fig. 1