What's going to be different about our last paper from what we've seen so far

input output runtime: worst-case

	Problem	Input	Output	Runtime
	Max flow	G = (V, E), s, t	Maximum flow	$O(E^{1+o(1)})$
		$\in V, C: E \to \mathbb{R}$	$F \colon E \to \mathbb{R}$	$O(VE^2)$
	Flow decomposition	G = (V, E), s, t	P, w decomposing flow	$O(E^2)$
		$\in V, F: E \to \mathbb{R}$		
	Minimum flow	G = (V, E), s, t	P, w decomposing flow	NP-Hard
	decomposition	$\in V, F: E \to \mathbb{R}$	P minimized	
	Linear programming	$\max c^t x$	Feasible x^* maximizing	Matrix multiplication
		$Ax \leq b$	objective (or	time
		$x \ge 0$	infeasible/unbounded)	
		$x \in \mathbb{R}^d$		
	Integer linear	$\max c^t x$	Feasible x^* maximizing	NP-Hard
	programming	$Ax \leq b$	objective (or	
		$x \ge 0$	infeasible/unbounded)	
		$x \in \mathbb{Z}^d$		

Single output

Data structures vs. algorithms

Well-defined, Specific input

well-altred, spentic

thing that can give many outputs (queries)

one output

Spall

runtime

grésies must le very fast otay (??) W/ slower motivus in some case

l.g. croogle

e.g. modeling physic

Goals for today

grenz matit
has to enable?

data structures:

hash tables bloom 6'Iter Set membership greny

randomness

estimate vs. exact answer

What do you already know about hash functions and hash tables?

Hash Table

Hash Function

Assume hash function operates on any item from U (integers, strings, etc) and is O(1) time

Hash Table

"Hashing with chaining" or "chain hashing"

Hash Function

Assume hash function operates on any item from U (integers, strings, etc) and is O(1) time

Hash Function

```
int hash(int x) {
   int a = 349534879; // randomly chosen
   int b = 23479238; // randomly chosen
   ...

// return some function of x, a and b
}
```

E.g. The family $h_{a,b}(x) = (ax + b) \mod p$ where p is prime & a,b are uniform, independent draws from $\{0,1,\ldots,p-1\}$

When did we choose a and b?

Spread input over hashtable: - truly random hash function: Mash (x): return random_num mod n - completely deterministic hash(x): X mode

Algorithm phases

Phase 1

Choose algorithm

Determines where randomness is needed & how much

Phase 2 Random interlude Make random draws. Choose hash functions.

Phase 3

Data arrives; Execute!

Use hash functions chosen in Phase 2.

Algorithm phases

Random variables used in analysis are random over the *choice of hash functions*

Not over the input data We make **no distributional assumptions**about the input.

Phase 1

Choose algorithm

Phase 2
Random*
interlude

Phase 3

Data arrives; Execute!