FACULTAD DE INGENIERIA Y CIENCIAS DEPARTAMENTO DE CIENCIAS FÍSICAS

PRUEBA 1 FUNDAMENTOS DE FÍSICA ICF- 024 03/ Septiembre / 2014

P			
NOMBRE COMPLETO		Puntaje	Nota
CARRERA	MODULO		

Instrucciones

- 1. Esta prueba contiene 18 preguntas.
- 2. En las preguntas de selección múltiple, usted debe responder marcando la letra A, B, C, D o E que corresponde a la respuesta correcta. En las preguntas de desarrollo, es necesario que explicite los cálculos realizados.
- 3. El puntaje total de la prueba es **20 puntos.** El puntaje de cada pregunta está indicado en la primera columna.
- 4. Usted está autorizado para usar calculadora.
- 5. Dispone de 2 horas para responder la prueba.
- Se sabe que la temperatura T medida en °C de un cierto cuerpo, se puede modelar mediante una función lineal respecto del tiempo t, válida en el intervalo de tiempo $0 \le t \le 120$, medido en (min). Sí en el instante t = 0, la temperatura del cuerpo es T = 10 °C, y que transcurrido un tiempo de 30 (min) la temperatura era de T = 20°C, entonces de las siguientes afirmaciones respecto al modelo:
 - I. La función T(t) que describe la temperatura expresada en °C, cuando t se expresa en minutos es $T(t) = 10 + \frac{t}{3}$
 - II. Cuando la temperatura es $T=45^{\circ}C$ ha transcurrido un tiempo t=105 minutos
 - III. La temperatura máxima alcanzada de acuerdo al modelo es $T=60^{\circ}C$

Es (son) verdadera(s)

- A) Sólo I
- B) I y II
- C) I y III
- D) II y III
- E) I, II y III

m y t

y t = 8

2.- El gráfico representa la posición de un auto en una pista recta respecto de un observador fijo situado junto a ésta. Si x se mide en en s, la función que mejor describe la posición del auto entre t = 4 (1p) s es:

- A) $-\frac{3}{2}t-10$
 - B) $\frac{2}{3}t 10$
 - C) -3t + 20
 - D) $-\frac{3}{2}t + 10$
 - E) $-\frac{1}{3}t 15$

	3	Desde 1m de altura sobre la superficie de la luna se lanza un cuerpo verticalmente hacia arriba. La función que
		representa la altura que alcanza el cuerpo sobre la superficie lunar en el tiempo está dada por $h(t) = 1 + 10t - 0.8t^2$.
	(1p)	Donde <i>h</i> se expresa en <i>m</i> y el tiempo t en <i>s</i> . De acuerdo con esta información se puede afirmar
		que:
		I. El gráfico $h(t)$ es una parábola
		cóncava hacia arriba.
		II. La altura máxima se alcanza en $t = 6.25 s$
		III. El cuerpo llega al suelo lunar
		exactamente 10.3 s después de ser lanzado.
		ializado.
		Es (son) verdadera(s)
		A) Sólo I B) Sólo II C) Sólo III D) I y III E) II y III
	4	En un colegio Norteamericano, los registros muestran que la calificación promedio G , de un estudiante, es una función del número de horas h que destina a realizar tareas por semana. La calificación promedio es modelada por
		la función $G(h) = -0.01h^2 + 0.2h + 4.0$, donde $0 \le h \le 12$
	(1p)	De acuerdo al modelo, de las siguientes
		afirmaciones
		I. La mejor calificación promedio que puede
		aspirar un estudiante es 7.0
		II. La calificación promedio de un estudiante que dedica 3 horas a la semana es 4.51
		III. La calificación promedio de un estudiante que
		no dedica horas a sus tareas es 4.0
		Es (son) verdadera(s)
		A) Sólo I B) I y II C) I y III D) II y III E) I, II y III
	5	Una chimenea tiene 30 m de altura más que otra. Un observador que está a 100 m de distancia de la base de la más baja, observa que las cúspides de ellas se alinean en la misma dirección al ser vistas con un ángulo de elevación de
	(1)	30° desde el suelo. Respecto a esta situación se afirma que:
	(1p)	
		I. La separación entre las bases de las
		chimeneas es de 60 <i>m</i> . II. La altura de la chimenea más alta es 87.7 <i>m</i> .
		III. Si la distancia del observador se reduce a la
		mitad, la cúspide de la chimenea más baja se vería con un ángulo de elevación de 40° .
		Son verdaderas:
		A) Sólo I B) Sólo II C) I V II D) II V III E) I II V III
		A) Sólo I B) Sólo II C) I y II D) II y III E) I, II y III
	6	Un rectángulo de base $2a$ y altura a tiene una diagonal D que une dos vértices opuestos, tal que
		Un rectángulo de base $2a$ y altura a tiene una diagonal D que une dos vértices opuestos, tal que $D=(a+10)$ y el ángulo que forma dicha diagonal con la horizontal es α . De acuerdo al enunciado, de las
•	6 (1p)	Un rectángulo de base $2a$ y altura a tiene una diagonal D que une dos vértices opuestos, tal que
		Un rectángulo de base $2a$ y altura a tiene una diagonal D que une dos vértices opuestos, tal que $D=(a+10)$ y el ángulo que forma dicha diagonal con la horizontal es α . De acuerdo al enunciado, de las siguientes afirmaciones:
•		Un rectángulo de base $2a$ y altura a tiene una diagonal D que une dos vértices opuestos, tal que $D=(a+10)$ y el ángulo que forma dicha diagonal con la horizontal es α . De acuerdo al enunciado, de las siguientes afirmaciones: $ \text{I.} \qquad \tan{(\alpha)} = 0.5 $
		Un rectángulo de base $2a$ y altura a tiene una diagonal D que une dos vértices opuestos, tal que $D=(a+10)$ y el ángulo que forma dicha diagonal con la horizontal es α . De acuerdo al enunciado, de las siguientes afirmaciones: I. $\tan{(\alpha)}=0.5$ II. $D=a\sqrt{5}$
		Un rectángulo de base $2a$ y altura a tiene una diagonal D que une dos vértices opuestos, tal que $D=(a+10)$ y el ángulo que forma dicha diagonal con la horizontal es α . De acuerdo al enunciado, de las siguientes afirmaciones: $ \text{I.} \qquad \tan{(\alpha)} = 0.5 $
		Un rectángulo de base $2a$ y altura a tiene una diagonal D que une dos vértices opuestos, tal que $D=(a+10)$ y el ángulo que forma dicha diagonal con la horizontal es α . De acuerdo al enunciado, de las siguientes afirmaciones: I. $\tan{(\alpha)}=0.5$ II. $D=a\sqrt{5}$
		Un rectángulo de base $2a$ y altura a tiene una diagonal D que une dos vértices opuestos, tal que $D=(a+10)$ y el ángulo que forma dicha diagonal con la horizontal es α . De acuerdo al enunciado, de las siguientes afirmaciones: I. $\tan{(\alpha)}=0.5$ II. $D=a\sqrt{5}$ III. $a=8.1$
		Un rectángulo de base $2a$ y altura a tiene una diagonal D que une dos vértices opuestos, tal que $D=(a+10)$ y el ángulo que forma dicha diagonal con la horizontal es α . De acuerdo al enunciado, de las siguientes afirmaciones: I. $\tan{(\alpha)}=0.5$ II. $D=a\sqrt{5}$ III. $a=8.1$ Son(es) verdadera(s):
		Un rectángulo de base $2a$ y altura a tiene una diagonal D que une dos vértices opuestos, tal que $D=(a+10)$ y el ángulo que forma dicha diagonal con la horizontal es α . De acuerdo al enunciado, de las siguientes afirmaciones: I. $\tan{(\alpha)}=0.5$ II. $D=a\sqrt{5}$ III. $a=8.1$ Son(es) verdadera(s):
		Un rectángulo de base $2a$ y altura a tiene una diagonal D que une dos vértices opuestos, tal que $D=(a+10)$ y el ángulo que forma dicha diagonal con la horizontal es α . De acuerdo al enunciado, de las siguientes afirmaciones: I. $\tan{(\alpha)}=0.5$ II. $D=a\sqrt{5}$ III. $a=8.1$ Son(es) verdadera(s):

- B) 9.80 m
- C) 10.73 m
- D) 14.28 *m*
- E) 16.27 m

9.- Sean los vectores
$$\vec{a} = -\hat{i} - 2\lambda \hat{j} + 3\hat{k}$$

(1p)
$$\vec{b} = \hat{i} + \lambda \hat{j} + \lambda \hat{k}$$
. Un valor de λ posible para que el ángulo entre ellos sea de 90° es:

10.- La distancia entre dos puntos ubicados en vértices opuestos de una habitación en forma de paralelepípedo es
$$D=8~m$$
 . Esta longitud puede expresarse como un vector \vec{D} en tres dimensiones en el espacio cartesiano. Sí la

(1p) información sobre el vector
$$\vec{D}$$
 medido desde uno de estos vértices se expresa de la siguiente manera:

$$(\vec{D} \bullet \hat{i}) = 4 m$$
, $(\vec{D} \bullet \hat{j}) = 5 m$

De acuerdo a la información, son verdaderas las siguientes aseveraciones respecto del vector \hat{D} :

$$I. \qquad (\vec{D} \bullet \hat{k}) = 6 \ m$$

II.
$$D_z = 4.8 m$$

III.
$$\vec{D} = 4\hat{i} + 5\hat{j} + 6\hat{k} \quad m$$

Son(es) verdadera(s)

Sean
$$\vec{A} = 2\hat{i} + 3\hat{k}$$
, $\vec{B} = -5\hat{j} + \hat{k}$ y $\vec{C} = \hat{i} + \hat{j} - 2\hat{k}$.

Respecto de estos vectores se cumple que:

p) I.
$$\vec{A} + \vec{B} + \vec{C} = 3\hat{i} - 4\hat{j} + 2\hat{k}$$

II.
$$-2\vec{B} + \vec{A} = 2\hat{i} - 10\hat{j} + \hat{k}$$

III.
$$\vec{A}$$
 es perpendicular a \vec{B}

Es (son) correcta(s):

Los módulos de los vectores desplazamientos de la figura son:

A = 20 m, B = 15 m y C = 5 m. El módulo del

desplazamiento resultante de la suma de $\vec{A} + \vec{B} + \vec{C}$ medido en m,

Considere los vectores de la figura, cada cuadrado de la cuadricula tiene longitud de 1 m por lado.

40

Utilizando estos vectores podemos afirmar (1p) lo siguiente:

I. El vector $\vec{A} - \vec{B}$ forma un ángulo de 15.9° aproximadamente con el eje x positivo.

II.
$$\vec{A} + \vec{B} - \vec{C} - \vec{D} = \hat{i} + \hat{j}$$

- III. Existe un escalar λ , tal que $\vec{D}=\lambda\vec{B}$.
- A) Sólo I
- B) Sólo II
- C) I y II
- D) I y III
- E) I, II y III

14.-Considere la siguiente figura.

(1p)

Si consideramos que el bloque se encuentra en equilibrio (la suma de todas las fuerzas es igual a cero), podemos afirmar que:

$$I. \qquad \vec{N} + \vec{F} = \vec{P}$$

II.
$$|N| = |P|$$

III.
$$|F|\cos\theta = |R| + |P|\sin\alpha$$

- A) Sólo I
- B) Sólo II
- C) Sólo III
- D) I y II
- E) I y III

Una hormiga se encuentra en el origen del plano cartesiano cuando detecta un terrón de azúcar en el punto A=(6,8) m, inmediatamente se comienza a mover en línea recta hasta ese punto. Cuando la hormiga va a mitad de camino (Punto B) detecta otro terrón de azúcar ubicado en el punto C=(8,1) m. Si suponemos que la hormiga sólo realiza movimientos en línea recta, podemos afirmar que: vector que representa desplazamiento entre B y C forma un ángulo de 59.04° con respecto al eje y negativo. II. Si la hormiga eligió el terrón ubicado en el punto A, entonces la distancia total que recorrió desde el origen fue de 10.8 m El vector que representa el desplazamiento entre B y A es III. El $3\hat{i} + 4\hat{j}$ m A) Sólo I B) Sólo II C) I y II D) I y III E) I, II y III Considere los siguientes vectores encerrados 16.en una caja rectangular. El ángulo entre \vec{A} y \vec{B} es 63.43° aprox. (1p) $\vec{B} \bullet \hat{A} = \vec{A} \bullet \hat{B}$ II. El producto punto entre \vec{A} y \vec{B} es III. 4m $-12 m^2$. 4m

C) Sólo III

B) Sólo II

A) Sólo I

D) I y III

E) I, II y III

- En el gráfico adjunto se presentan dos curvas correspondientes a una parábola y una línea recta. Con los datos que pueda extraer de la figura, responda las siguientes preguntas:
- (2p)
- I. Cuál es la ecuación de la recta y de la parábolaII. Encuentre el valor de los puntos donde se intersecan ambas curvas

Solución:

Considerando los puntos siguientes

Parábola: (-0.5,0), (0,-2), (1,-3) se obtiene que $y(x) = 2x^2 - 3x - 2$

Línea: (-2,1), (0,2) se obtiene y(x)=0.5x+2

La intersección se obtiene con el sistema de ecuaciones

$$y(x)=0.5x+2$$

 $y(x)=2x2-3x-2$

obteniéndose como resultado: $(x_1,y_1) = (-0.79,1.60)$ y $(x_2,y_2) = (2.54,3.27)$

- 18.-Considere el conjunto de vectores mostrados a la derecha y calcule:
- $\vec{A} = (2,-8)$ $\left| \vec{B} \right| = 3, \ \theta_{\scriptscriptstyle B} = 235^{\circ}$ $\vec{C} = -4\hat{j} - 2\hat{i}$

- (2p) El valor de la expresión $\left| 2\vec{A} + \left(\vec{B} \bullet \vec{C} \right) \vec{B} - \vec{C} \right|.$
 - El vector unitario resultante de la II. operación $\vec{S} = \vec{A} + \vec{C} - \vec{B}$ (es decir \widehat{S})

Solución

$$\left| 2\vec{A} + \left(\vec{B} \bullet \vec{C} \right) \vec{B} - \vec{C} \right| = 47.73$$

 $\hat{s} = (0.18, -0.98)$