

PESQUISA QUANTITATIVA – PRÁTICAS DE LABORATÓRIO

TEORIA DE ERROS

Prof. Marcelo Girardi Schappo FÍSICA

EXATIDÃO E PRECISÃO

"Precisão": medidas próximas entre si, pequena barra de erro "Exatidão": medidas concordantes com valores padrões

Resultado
$(12 \pm 4) m/s^2$
$(8,33 \pm 0,09) \ m/s^2$
$(9,79 \pm 0,05) m/s^2$
$(9 \pm 1) m/s^2$
$9,81 m/s^2$

(A) : pouco preciso e pouco exato

(B) : preciso, mas pouco exato

(C) : preciso e exato

(D) : pouco preciso, mas mais exato

"Teoria de Erros": medidas possuem incerteza associada. Vamos quantificar essas incertezas! Como atingir precisão e exatidão? Identificando as fontes de erro e diminuindo suas causas!

ERRO RELATIVO OU ERRO PERCENTUAL

Indicador de "quão longe" uma medida está do valor padrão.

$$E\% = \left| \frac{medida - padrão}{padrão} \right|.100$$

Experimento	Resultado	Erro Percentual
Α	$(12 \pm 4) \ m/s^2$	22,3 %
В	$(8,33 \pm 0,09) \ m/s^2$	15,1 %
C	$(9,79 \pm 0,05) m/s^2$	0,204 %
D	$(9 \pm 1) \ m/s^2$	8,26 %
Padrão	$9,81 m/s^2$	

FORMA PADRÃO DE ESCRITA DE UM RESULTADO

 $Grandeza = (resultado \pm erro) unidade$

A partir do valor final medido é que se determina o erro percentual (E%) em relação ao valor tabelado/esperado! Erro de escala (E_E)

Erro aleatório (E_A)

Erro sistemático (E_s)

Soma de erros (quando aplicável)

O erro do resultado deve ter apenas um algarismo significativo! Se necessário arredondar o erro, deve ser sempre feito PARA MAIS!

FORMA PADRÃO DE ESCRITA DE UM RESULTADO

É necessário haver concordância no duvidoso da medida e do seu erro associado

 $Grandeza = (resultado \pm erro) unidade$

Escritas incorretas		
$m = (3.2 \pm 0.05) g$		
Abs = (4.88 ± 0.3)		
$L = (12,841 \pm 0,052) \text{ m}$		

Correção
$m = (3,20 \pm 0,05) g$
Abs = (4.9 ± 0.3)
$L = (12,84 \pm 0,06) \text{ m}$

O erro do resultado deve ter apenas um algarismo significativo! Se necessário arredondar o erro, deve ser sempre feito PARA MAIS!

ERRO DE ESCALA

Quantificação da incerteza relacionada à escala do próprio instrumento

Instrumento analógico	Instrumento digital	Instrumento com nônio
$E = \frac{MDE}{2}$	E = MDE	$E = \frac{MDP}{NDN}$

Onde: MDE: Menor divisão de escala do instrumento;

MDP: Menor divisão da escala principal do instrumento;

NDN: Número de divisões do nônio do equipamento que o possui.

O erro de escala é uma ótima ferramenta para você saber qual é o algarismo duvidoso da sua medida!

$$E_E = MDE = 1 s$$

23min = 1380s $(138\overline{8} \pm 1) s$

 $E_E = MDE = 0.001 m$

 $(25,677 \pm 0,001) m$

ERRO DE ESCALA

$$E_E = \frac{MDE}{2} = \frac{1 \ cm}{2} = 0.5 \ cm$$

Medida:

 $(6,7 \pm 0,5) cm$

 $(6,75 \pm 0,5) cm \times$

$$(3 \pm 0.5) cm$$

 $(3, 0 \pm 0, 5) cm$

ERRO DE ESCALA

$$E_E = \frac{MDE}{2} = \frac{0.2 A}{2} = 0.1 A$$

Medida:

$$(3.0 \pm 0.1) A$$

$$E_E = \frac{MDE}{2} = \frac{0.1 \ mL}{2} = 0.05 \ mL$$

Linha inferior do menisco

Medida:

 $(5,73 \pm 0,05) \, mL$

ERRO DE ESCALA

$$E_E = \frac{MDE}{2} = \frac{200 \, mL}{2} = 100 \, mL$$

Medida:

$$(500 \pm 100) \, mL \qquad \qquad \downarrow$$

Só pode ter 1 significativo

$$(5 \pm 1). 10^2 \, mL$$

$$(5.0 \pm 1).10^2 \, mL$$

$$5.5 + \frac{28.5}{100} = 5.785$$

 $(5,785 \pm 0,005) mm$

ERRO DE ESCALA

$$E_E = \frac{MDP}{NDN} = \frac{1 \ mm}{20} = 0.05 \ mm$$

Medida:

 $(17,45 \pm 0,05) mm$

 $(4,15 \pm 0,05) \, mm$

 $(10 \pm 0.05) mm$

 $(10,00\,\pm\,0,05)\,mm$

ERRO DE ESCALA

$$E_E = \frac{MDP}{NDN} = \frac{1^{\circ}}{12} = \frac{60'}{12} = 5'$$

Medida:

 $(50^{\circ} 20' \pm 5')$

MINIMIZANDO ERRO DE ESCALA:

Utilizar instrumentos mais precisos, com menores divisões de escala.

Exemplo para instrumentos de medida de comprimento:

maior precisão

Régua centimetrada
Régua milimetrada
Paquímetro (nônio de 10 div.)
Paquímetro (nônio de 20 div.)
Paquímetro (nônio de 50 div.)
Micrômetro
Micrômetro (nônio de 10 div.

$E_{E} = 0.5 \text{ cm}$	5 mm
$E_{E} = 0.05 \text{ cm}$	0,5 mm
$E_{E} = 0.01 \text{ cm}$	0,1 mm
$E_{E} = 0.005 \text{ cm}$	0,05 mm
$E_{E} = 0.002 \text{ cm}$	0,02 mm
$E_E = 0.0005 \text{ cm}$	0,005 mm
$E_E = 0.0001 \text{ cm}$	0,001 mm

PAQUÍMETRO E MICRÔMETRO

COMPLEMENTO: COMO UTILIZAR O PAQUÍMETRO E O MICRÔMETRO?

Prof. Salézio Momm

https://www.youtube.com/watch?v=sHrmSNq4QWY&t=852s

Assistir entre: (início – 17min20s) e (25min40s – 29min20s)

PAQUÍMETRO E MICRÔMETRO

SIMULADORES VIRTUAIS DOS INSTRUMENTOS (PRÁTICA DE MEDIDAS!)

Prof. Eduardo Stefanelli

Micrômetro

https://www.stefanelli.eng.br/micrometro-virtual-milimetro-centesimal-simulador/#swiffycontainer_1

Micrômetro com nônio

https://www.stefanelli.eng.br/micrometro-milimetro-milesimal-leitura-uso/

Paquímetro com nônio de 10 divisões

https://www.stefanelli.eng.br/nonio-virtual-milimetro-decimal-simulador/

Paquímetro com nônio de 20 divisões

 $\underline{https://www.stefanelli.eng.br/paquimetro-virtual-simulador-milimetro-05/\#swiffycontainer_1}$

Paquímetro com nônio de 50 divisões

https://www.stefanelli.eng.br/paquimetro-virtual-simulador-milimetro-02/

ERRO ALEATÓRIO

Calculado quando são feitas várias medidas nas mesmas condições Muito comum quando se faz "medidas em triplicata", etc. (verificação de reprodutibilidade!)

ERRO ALEATÓRIO

Conjunto de Medidas: $x_1 \; ; \; x_2 \; ; \dots \; ; \; x_n$

Valor médio: $x_m = \frac{x_1 + x_2 + \dots + x_n}{n}$

Desvio das medidas: $\Delta x_i = x_i - x_m$

Desvio padrão: $\sigma = \sqrt{\frac{(\Delta x_1)^2 + (\Delta x_2)^2 + \dots + (\Delta x_n)^2}{n-1}}$

Desvio padrão da média: $\sigma_m = \frac{\sigma}{\sqrt{n}}$

Erro aleatório: $E_A = t. \sigma_m$

escrita final da medida:

$$G = (x_m \pm E_A) u$$

usa o valor médio

Erro arredondado somente no final, sempre para mais e só com 1 algarismo significativo!

ERRO ALEATÓRIO

Exemplo: 4 medidas hipotéticas do período (T) do pêndulo simples

Medidas:

$$x_1 = 2.0 s$$

$$x_2 = 1.9 s$$

$$x_3 = 2.2 s$$

$$x_4 = 2.0 s$$

ERRO ALEATÓRIO

Medidas:

1) Calcular a média:

$$x_1 = 2.0 s$$

$$x_m = \frac{2.0 + 1.9 + 2.2 + 2.0}{4} = 2.025$$

$$x_2 = 1.9 s$$

2) Calcular os desvios: $\Delta x_i = x_i - x_m$

$$x_3 = 2.2 s$$

 $\Delta x_1 = -0.025$ $\Delta x_2 = -0.125$ $\Delta x_3 = 0.175$ $\Delta x_4 = -0.025$

$$x_4 = 2.0 s$$

3) Calcular o desvio padrão:

$$\sigma = \sqrt{\frac{(\Delta x_1)^2 + (\Delta x_2)^2 + \dots + (\Delta x_n)^2}{n-1}} = \sqrt{\frac{0.000625 + 0.015625 + 0.030625 + 0.000625}{3}} = \sqrt{\frac{n-1}{n-1}} = \sqrt{\frac{0.000625 + 0.015625 + 0.030625 + 0.000625}{3}} = \sqrt{\frac{0.000625 + 0.000625 + 0.000625}{3}} = \sqrt{\frac{0.000625 + 0.000625 + 0.000625}{3}}$$

$$\sigma = 0.12583057$$

ERRO ALEATÓRIO

Medidas:

4) Calcular o desvio padrão da média:

$$x_1 = 2.0 s$$

$$\sigma_m = \frac{\sigma}{\sqrt{n}} = \frac{0.12583057}{\sqrt{4}} = 0.0629153$$

$$x_2 = 1.9 s$$
$$x_3 = 2.2 s$$

5) Calcular o erro aleatório:

$$x_4 = 2.0 s$$

 $E_A = t. \sigma_m = 1.0,0629153 = 0,0629153$

6) Escrever a medida, arredondando o erro (para mais) e ajustando os significativos:

$$T = (2.025 \pm 0.06291)$$
 $T = (2.025 \pm 0.07)$

$$T = (2.025 + 0.07)$$

$$T = (2.02 \pm 0.07) s$$

ERRO ALEATÓRIO

MINIMIZANDO ERRO ALEATÓRIO:

Identificar os fatores aleatórios que interferem no seu sistema e buscar formas de evitá-los (chamamos isso de "controlar bem o experimento")

Câmara anecoica:

Ambiente bastante controlado para evitar interferências externas sonoras e/ou eletromagnéticas

ERRO SISTEMÁTICO

Fatores externos que influenciam no resultado do experimento "na mesma direção" (ao contrário do aleatório, que influencia "tanto para mais quanto para menos" aleatoriamente)

ERRO SISTEMÁTICO

MINIMIZANDO ERRO SISTEMÁTICO:

Verificar a calibração dos instrumentos (importância de "medidas-padrão") Obedecer os parâmetros de utilização dos instrumentos

