Statistical power modeling of GPU kernels using performance counters

Statistical Power Modeling of GPU Kernels Using Performance Counters

Hitoshi Nagasaka, *Naoya Maruyama*, Akira Nukada, Toshio Endo and Satoshi Matsuoka

Tokyo Institute of Technolog

International Green Computing Conference, Aug 2010

GPGPU in Scientific Computing

- Strong performance advantages in throughput-oriented scientific computing
 - Tesla S2050: 515 GFlops (DP), 150 GB/s
- Getting integrated in large-scale supercomputing sites
 - Tokyo Tech TSUBAME
 - China's Nebulae
 - ORNL
 - NCSA/UIUC

Power Consumption by GPU

- TDP 250 W per board (Geforce GTX 480)
 - Twice as the typical CPU socket's consumption
- Little is known about fine-grained characteristics
 - How much is it affected by actual workloads?
 - Is it more power efficient than using the CPU?
- Should be able to know power consumption in a program-by-program basis and accurately

Objective

- Allow the power consumption of each GPGPU program to be known accurately
 - Should be easily applicable to real non-trivial programs

Approach

- Statistical estimation with performance counters
 - Known to be effective in the CPU
 - Not yet studied in the GPU

Contributions

- Demonstrates effectiveness of PMC-based energy modeling in NVIDIA CUDA GPUs
 - 95% accuracy in average

- Insights in how the GPU consumers power
 - Linearly correlated with instruction and memory throughputs

Outline

- 1. Introduction
- 2. GPGPU Overview
- 3. Statistical Modeling
- 4. Experimental Results
- 5. Related Work & Conclusions

Overview of NVIDIA GPU

- Currently the dominant HPC accelerator
- Consists of multiple 32-wide SIMD cores
 - The number of cores depend on GPU models and architectures
 - A huge number of simultaneous threads by the HW scheduler
- Coupled with DRAM on GPU boards
 - Hundreds of MB to a few GB

Programming the GPU with CUDA

- Provides abstractions for programming the NVIDIA GPU
 - Threads, thread blocks, grids
 - Global/texture/shared/local memory
- Consists of host and kernel functions
 - Host: functions running
 on the CPU to control the GPU
 - Kernel: functions running on the GPU in parallel

Typical Execution Flow

GPU Energy Modeling

- Motivation
 - No standard ways for direct measurements
 - Needs alternative methods based on measurable metrics
- Approach: Statistical modeling based on performance profiles
 - Statistically correlate performance and power
 - Past work: PMC-based modeling on the CPU
 - NVIDIA GPUs are also equipped with several PMCs

Measuring GPU Power Consumption

- Two power sources
 - Via PCI Express: < 75 W</p>
 - Direct inputs from PSU: < 240 W</p>
- Uses current clamp sensors around the power inputs

Precise and Accurate Measurement with Current Probes

Attaches current sensors to two power lines in PCIe

Direct power inputs from PSU

Reads currents at 100 us interval

Power Profile of GeForce GTX 285

TDP: 200 W

Performance Profiling in GPU

 Obtaining PMC values for each kernel execution via the CUDA Profiler

Name	Description
gld 32b	32-byte global memory load transactions
gld 64b	64-byte global memory load transactions
gld 128b	128-byte global memory load transactions
gst 32b	32-byte global memory store transactions
gst 64b	64-byte global memory store transactions
gst 128b	128-byte global memory store transactions
local load	Local memory loads
local store	Local memory stores
branch	Number of branches
divergent branch	Number of divergent branches
instructions	Instructions executed
warp serialize	Number of thread warps that has bank conflicts
tlb_miss	Number of TLB misses

Statistical Modeling

- Regularized linear regression
 - Finds linear correlation between per-second PMC values and average power of a kernel execution
 - Aggregates 3 kinds of global memory loads/stores
 - gld: gld_32b + gld_64b * 2 + gld_128b * 4
 - Regularization for avoiding overfitting to training data (Ridge Regression [10])

Average power of a kernel (Watts)
$$p = \sum_{i=1}^{n} \alpha_i c_i + \beta$$
 Per-second PMC values

Evaluation

- Tests the accuracy of the proposed modeling
- Methodology
 - Use publicly available CUDA programs to derive and test the model
 - 5-fold cross validation
 - Training using 4/5 of data sets
 - Evaluates accuracies by applying the model to 1/5 data
- Machine setup
 - NVIDIA GeForce GTX 285 (a high-end model in the last generation NVIDIA GPUs)
 - AMD Phenom 9850 Quad-Core processor, AMD 790FX,
 4GB of DDR3 DRAM
 - 64-bit Linux with gcc 4.3.2 and CUDA 2.3

Collecting Sample Data

- 43 GPU kernels
 - 17 applications from NVIDIA CUDA SDK
 - 13 applications from the Rodinia Benchmark
 - Prunes the kernels with less than 120 thread blocks to minimize the effect of using skewed PMC values
 - Excludes kernels involving texture reads
- Run each kernel multiple times for 1 second for power measurement
 - Compensates time skews between the GPU machine and the measurement machine
 - Not necessary once the model is derived

Actual vs. Estimated Power

Sources of Large Errors

- 23W lower than the actual with kernel RandomGPU in program MersenneTwister
 - Likely to be caused by insufficient training data
 - The kernel is the only one that has local_load and local_store
- 18W lower than the actual with kernel sgemm in program simpleCUBLAS
 - SGEMM is likely to exercise FP units more extensively
 - Such differences are not reflected in performance profiles since there is no PMC for FP ops

Linear Model Contributions

 Variations are dominated by instruction and memory throughputs

Limitations

- Texture reads
 - Texture hardware can improve latencies in irregular GPU DRAM accesses
 - But, no PMC as of this study (available in more recent GPUs)
 - Resulted in large errors when applied to such kernels
 - Actual: 150 W vs. Estimated: 100 W (boxFilter)
- Multiple training runs
 - 4 runs to cover the 13 PMCs
 - #instructions and #accesses might be enough

Related Work

- Much work on statistical modeling of power consumption for the CPU
 - [Isci and Martonosi, 2003], [Bellosa et al., 2003],[Lee and Brooks, 2006], etc.
- Analysis and modeling of power consumption of graphics performance profiles [Ma et al., 2009]
 - Does not capture GPGPU-specific events
 - This study: More accurate results with more thorough experiments

Conclusions

Summary

- Accurate statistical modeling of GPU power consumption
- Once a power model is derived, no need for direct measurements

Future work

- Evaluates the effectiveness of the proposed methodology in different GPU architectures (NVIDIA Fermi, AMD, etc)
- Energy optimization with the model
 - Clock scaling based on estimated power efficiency

Extra slides

Limitations in GPU Profiling

- Only 4 HW PMC registers available
 - Needs to run the same kernel multiple times to collect more than 4 counter values
- PMCs are only read from one SIMD core (SM)
 - Executions with load imbalance between SIMD cores can yield skewed profiles
 - Uses only kernels with at least a certain number of thread blocks (120 in our experiments)
- Texture reads are not monitored
 - Texture reads involve DRAM accesses
 - Can be a source of modeling errors
 - Solved in the recent GPUs

Texture Reads

- Some kernels use texture hardware for accessing DRAM data
 - Improves latencies in irregular data accesses
 - But, no PMC as of this study (available in more recent GPUs)
- Evaluates accuracies in two cases
 - Case 1: kernels without texture reads (41 kernels)
 - Case 2: all kernels (Case 1 + 6 additional kernels)

Kernels incl. Texture Reads

