Wybór optymalnego ziarna

za pomocą metody AHP (ang. analytic hierarchy proces)

Dawid Lewandowski Paweł Siejka

Plan prezentacji:

- Ogólnie o algorytmie AHP
- Struktura hierarchiczna
- Porównanie kryteriów
- Dane eksperckie
- Spójność danych
- Prezentacja działania programu

Skala ważności	Definicja
1	Brak przewagi jednego wariantu nad drugim
3	Umiarkowana przewaga wariantu A nad wariantem B
5	Istotna lub silna przewaga wariantu A nad wariantem B
7	Bardzo silna przewaga wariantu A nad wariantem B
9	Ekstremalna przewaga wariantu A nad wariantem B

Fundamentalna skala porównań parami Saaty'ego

Suwaki służą do określania Kryteria: istotności poszczególnych kryteriów względem siebie:) tolerancja na tolerancja tolerancja zakwaszenie temperatury temperatury wydajność odporność na TT 2 5 2 choroby ziaren tolerancja na wydajność tolerancja zakwaszenie temperatury tolerancja na tolerancja na zakwaszenie zakwaszenie choroby ziaren wydajność odporność na odporność na tolerancja choroby choroby temperatury \boldsymbol{c} 1/3 5 1/7 1/5

tworzenie macierzy porównań dla kryteriów

- dany element macierzy jest równoważny względem samego siebie: a(i,i)=1
- wartość oceny elementu b względem elementu a jest odwrotnością oceny a względem b: a(i,j)=1/a(j,i)

$$CR = \frac{CI}{RI} 100\%$$

gdzie:

$$CI = \frac{(\lambda_{max} - n)}{(n-1)}$$

λ_{max} – maksymalna wartość własna macierzy

RI – indeks losowy, zależny od stopnia macierzy n

n - stopień macierzy

Rząd macierzy	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
RI	0	0	0,52	0,89	1,11	1,25	1,35	1,40	1,45	1,49	1,52	1,54	1,56	1,58	1,59

Bibliografia:

- Tomasz Błaszczyk: "Wybór optymalnej decyzji metodą AHP", 2010, [Przeglądany dnia: 16.01.2019], dostępny w: http://dlafirmy.info.pl/4018_wybor_optymalnej_decyzji_metoda_ahp.htm
- Michał Szymaczek: "AHP pomoże podjąć decyzję", 2008, [Przeglądany dnia: 16.01.2019], dostępny w: http://gsetlak.prz.edu.pl/materialy/materialy/4PDF/WZP/AHP_wielokryt_2_.pdf
- Marcin Ćmielewski: "Analityczny proces hierarchiczny (AHP) jako jedna z metod wspomagających podejmowanie decyzji", 2018, [Przeglądany dnia: 16.01.2019], dostępny w: https://www.arcadis.com/pl/polska/blog-arcadis/marcin-cmielewski/analityczny-proces-hierarchicznyahpjako-jedna-z-metod-wspomagajacych-podejmowanie-decyzji/
- Tomasz Błaszczyk: "Wybór optymalnej decyzji metodą AHP", 2010, [Przeglądany dnia: 16.01.2019], dostępny w: http://dlafirmy.info.pl/4018_wybor_optymalnej_decyzji_metoda_ahp.htm
- "Analytic Hierarchy Process", 2018, [Przeglądany dnia: 16.01.2019], dostępny w: https://pl.wikipedia.org/wiki/Analytic_Hierarchy_Process
- Strona internetowa "Uprawy Ekologiczne", [Przeglądana dnia: 16.01.2019], dostępny w: http://www.uprawyekologiczne.pl/