Compressors

Centrifugal Compressor

Axial Compressor

Dual-spool Axial Compressor

Flow path

Flow path

(b) Secondary losses

 α'_1 = blade inlet angle α_2' = blade outlet angle θ = blade camber angle $=\alpha'_1-\alpha'_2$ $\zeta =$ setting or stagger angle s = pitch (or space) ε = deflection $=\alpha_1-\alpha_2$ α_1 = air inlet angle α_2 = air outlet angle V_1 = air inlet velocity V_2 = air outlet velocity i = incidence angle $= \alpha_1 - \alpha_1'$ δ = deviation angle

Rotating Stall

Surge

Local (Higher Order)

Rotating Stall

Fluctuation Models for

Surge and

Rotating Stall

Fan Operating Map

