Chapitre 9: Applications linéaires

Dans tout le chapitre, E et F désigneront des espaces vectoriels et on notera + et \cdot les lois de composition interne et externe associées (cette notation ne fait pas la distinction entre les lois de E et les lois de E).

1 Applications linéaires

1.1 Généralités

Définition 1 (Application linéaire)

Soient E, F deux espaces vectoriels et $f: E \to F$ une application de E dans F. On dit que f est **linéaire** si

- $\forall (u, v) \in E^2$, f(u + v) = f(u) + f(v),
- $\forall u \in E, \forall \lambda \in \mathbb{R}, f(\lambda \cdot u) = \lambda \cdot f(u).$

Une application linéaire de E dans E est appelé un **endomorphisme** de E.

Remarque 1

Une application linéaire est donc une application qui respecte la structure d'espace vectoriel.

Notation 1

Soient E et F deux espaces vectoriels.

- On note $\mathcal{L}(E,F)$ l'ensemble des applications linéaires de E dans F.
- On note $\mathcal{L}(E)$ l'ensemble des endomorphismes de E.

Exemple 1

1.	L'application $f: \mathbb{R} \to \mathbb{R}$ définie par $f: x \to 3x$ est une application linéaire de \mathbb{R} dans \mathbb{R} (c'est un endomorphisme de \mathbb{R}).

2. Soient E et F deux espaces vectoriels, l'application nulle de E dans F définie par

$$f: \mathbf{E} \longrightarrow \mathbf{F}$$
$$u \longmapsto \mathbf{0}_{\mathbf{F}}$$

est linéaire.

3. Soit E un espace vectoriel. L'application identité de E, notée idE, définie par

$$id_E : E \longrightarrow E$$

 $u \longmapsto u$

est un endomorphisme de E.

Contre-exemple 1

L'application $f: \mathbb{R} \to \mathbb{R}$ définie par $f: x \mapsto 3x + 1$ n'est pas linéaire. En effet,

Proposition 1 (Caractérisation des applications linéaires)

Soient E, F deux espaces vectoriels et $f: E \to F$ une application de E dans F. Alors f est linéaire si et seulement si pour tout $(u, v) \in E^2$ et pour tout $\lambda \in \mathbb{R}$ on a

$$f(u + \lambda \cdot v) = f(u) + \lambda \cdot f(v)$$
.

Méthode 1

- 1. En pratique, pour montrer qu'une application est linéaire, on utilise souvent cette caractérisation car elle nécessite moins de vérifications que la définition. À cet effet, la première étape est toujours d'écrire ce que
- 2. Pour montrer qu'une application f est un endomorphisme d'un espace vectoriel E, il vaut vérifier deux

Ex

<u>le 2</u>		
1. L'application		
	$o: \mathbb{R}^2 \longrightarrow \mathbb{R}$	
	$\varphi: \mathbb{R}^2 \longrightarrow \mathbb{R}$ $(x, y) \longmapsto 2x - 3y$	
est linéaire.		
est inteane.		
2. L'application		
	$\phi:\mathscr{C}([0,1],\mathbb{R})\longrightarrow\mathbb{R}$	
	$f \longmapsto \int_0^1 f(t) dt$	
est linéaire.	- •	
cot inicano.		
3. L'application		
	$\phi:\mathbb{R}[X] \longrightarrow \mathbb{R}[X]$	
	$P \longmapsto P'$	
est linéaire.		
est iineaire.		

Test 1 (Voir solution.)

Dans chaque cas, montrer que l'application considérée est linéaire et préciser s'il s'agit ou non d'un endomorphisme.

1. L'application $f: \mathbb{R}^3 \to \mathbb{R}^2$ telle que

$$\forall (x, y, z) \in \mathbb{R}^3, \quad f((x, y, z)) = (x - z, x + y).$$

2. L'application

$$t: \mathcal{M}_{n,p}(\mathbb{R}) \longrightarrow \mathcal{M}_{p,n}(\mathbb{R})$$

$$M \longmapsto^{t} M.$$

3. L'application

$$\Delta: \mathbb{R}[X] \longrightarrow \mathbb{R}[X]$$

$$P \longmapsto P(X+1).$$

4. Soit $A \in \mathcal{M}_n(\mathbb{R})$. L'application

$$m_{\mathbf{A}}: \mathcal{M}_n(\mathbb{R}) \longrightarrow \mathcal{M}_n(\mathbb{R})$$

$$\mathbf{M} \longmapsto \mathbf{AM}.$$

Test 2 (Voir solution.)

Dans \mathbb{R}^3 , on considère la famille \mathscr{B} formée des vecteurs

$$u = (1, 1, 1)$$
 ; $v = (0, 2, -1)$; $w = (-2, 3, 1)$.

- 1. Montrer que \mathscr{B} est une base de \mathbb{R}^3 .
- 2. Déterminer les coordonnées du vecteur (3, -5,2) dans cette base.
- 3. On considère une application linéaire $f: \mathbb{R}^3 \to \mathbb{R}$ telle que

$$f(u) = 2$$
 ; $f(v) = -1$; $f(w) = 0$.

Calculer f((3, -5, 2)).

Proposition 2

Soient E, F deux espaces vectoriels et $f: E \to F$ une **application linéaire** de E dans F. Alors :

- 1. $f(0_E) = 0_F$;
- 2. $\forall n \in \mathbb{N}^*, \forall (u_1, \dots, u_n) \in \mathbb{E}^n, \forall (\lambda_1, \dots, \lambda_n) \in \mathbb{R}^n, f\left(\sum_{k=1}^n \lambda_k \cdot u_k\right) = \sum_{k=1}^n \lambda_k \cdot f(u_k).$

Démonstration:

1.2 L'ensemble $\mathcal{L}(E, F)$

Proposition 3 (Structure de $\mathcal{L}(E,F)$)

Soient E et F deux espaces vectoriels. Alors les ensembles $\mathscr{L}(E,F)$ et $\mathscr{L}(E)$ sont des espaces vectoriels.

En particulier, la somme de deux applications linéaires de E dans F est une application linéaire de E dans F et le produit d'une application linéaire de E dans F par un nombre réel est une application linéaire de E dans F.

Démonstration:

On admet que $\mathscr{F}(E,F)$ (l'ensemble des fonctions de E dans F) muni de ses lois usuelles est un espace vectoriel et on va montrer que $\mathscr{L}(E,F)$ est un sous-espace vectoriel de $\mathscr{F}(E,F)$.

Exemple 3

L'application

$$f: \mathbb{R}[X] \longrightarrow \mathbb{R}[X]$$

 $P \longmapsto P' + 2P(X+1)$

est linéaire car c'est une combinaison linéaire des applications linéaires rencontrées à l'exemple 2 et au test 1.

Proposition 4 (Composition)

Soient E, F et G trois espaces vectoriels. Si $f \in \mathcal{L}(E,F)$ et $g \in \mathcal{L}(F,G)$ alors $g \circ f \in \mathcal{L}(E,G)$. En particulier, si $f \in \mathcal{L}(E)$ et $g \in \mathcal{L}(E)$ alors $g \circ f \in \mathcal{L}(E)$.

Exemple 4

L'application

$$f: \mathbb{R}[X] \longrightarrow \mathbb{R}[X]$$

 $P \longmapsto P(X+2)$

est <u>linéaire car</u>

Définition 2 (Puissance d'un endomorphisme)

Soient E un espace vectoriel et $f \in \mathcal{L}(E)$. On définit les puissances de f par récurrence par

$$\begin{cases} f^0 = i d_{\mathbf{E}} \\ \forall n \in \mathbb{N}, \ f^{n+1} = f \circ f^n. \end{cases}$$

Ainsi, pour tout $n \in \mathbb{N}^*$ on a

$$f^n = \underbrace{f \circ \cdots \circ f}_{n \text{ fois}}.$$

Exemple 5

On considère l'application f définie par

$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$
$$(x, y) \longmapsto (2x, 2y).$$

1. Vérifions que f est linéaire :

2.	Déterminons	f^2	et	f^3 .
----	-------------	-------	----	---------

3. Pour tout $n \in \mathbb{N}^*$, déterminer f^n .

Test 3 (Voir solution.)

Pour chaque application linéaire ϕ ci-dessous, déterminer ϕ^2 et ϕ^3 .

1.

$$\phi: \mathbb{R}[X] \longrightarrow \mathbb{R}[X]$$

$$P \longmapsto P(X+3).$$

2.

$$\varphi \colon \mathscr{C}^{\infty}([0,1],\mathbb{R}) \longrightarrow \mathscr{C}^{\infty}([0,1],\mathbb{R})$$
$$f \longmapsto f'.$$

Test 4 (Voir solution.)

Soient E un espace vectoriel et u, v deux endomorphismes de E qui commutent, ie :

$$u \circ v = v \circ u$$
.

- 1. Montrer que pour tout $k \in \mathbb{N}$, $u^k \circ v = v \circ u^k$.
- 2. Montrer que pour tout entier naturel $n: (u+v)^n = \sum_{k=0}^n \binom{n}{k} u^k \circ v^{n-k}$.

1.3 Isomorphismes, automorphismes

Rappel(s) 1

Soit f une application de E *dans* F.

- 1. On dit que f est **injective** si tout élément de F admet au plus un antécédent par f.
- 2. On dit que f est **surjective** si tout élément de F admet au moins un antécédent par f.
- 3. On dit que f est **bijective** si tout élément de F admet exactement un antécédent par f (autrement dit si f est injective et surjective).

Si f est bijective, on note f^{-1} sa bijection réciproque. On a alors

$$f \circ f^{-1} = \mathrm{id}_{\mathrm{F}}$$
 et $f^{-1} \circ f = \mathrm{id}_{\mathrm{E}}$.

Définition 3 (Isomorphisme, automorphisme)

Soient E et F deux espaces vectoriels.

- On appelle **isomorphisme** de E dans F tout application linéaire bijective de E dans F. L'ensemble des isomorphismes de E dans F est noté GL(E, F).
- On appelle **automorphisme** de E tout endomorphisme bijectif de E. L'ensemble des automorphismes de E est noté GL(E).

S'il existe un isomorphisme entre E et F, on dit que E et F sont **isomorphes**.

Exemple 6

Soit φ l'application définie par

$$\varphi: \mathbb{R}^2 \longrightarrow \mathbb{R}_1[X]$$
$$(a,b) \mapsto aX + b.$$

1. Vérifions que φ est linéaire.

2. Montrons que ϕ est un isomorphisme.

Proposition 5

Soient E, F deux espaces vectoriels et $f \in GL(E, F)$. Alors f^{-1} est linéaire. En particulier, $f^{-1} \in GL(F, E)$.

Exemple 7

L'application ψ définie par :

$$\psi : \mathbb{R}_1[X] \longrightarrow \mathbb{R}_2$$

$$P \mapsto (P'(0), P(0))$$

est linéaire car il s'agit de la bijection réciproque de l'application ϕ de l'exemple 6.

2 Noyau et image d'une application linéaire

2.1 Noyau

Définition 4 (Noyau d'une application linéaire)

Soient E, F deux espaces vectoriels et $f \in \mathcal{L}(E, F)$. On appelle **noyau** de f et on note $\ker(f)$, l'ensemble :

$$\ker(f) = \{ u \in E \mid f(u) = 0_F \}.$$

Remarque 2

D'après la proposition 2, on a toujours $0_E \in \ker(f)$.

Proposition 6

Soient E, F deux espaces vectoriels et $f \in \mathcal{L}(E, F)$. Alors, le noyau de f est un sous-espace vectoriel de E.

Méthode 2

- 1. Pour déterminer le noyau d'une application linéaire f, il faut résoudre l'équation $f(u) = 0_F$ qui se traduit par un système linéaire.
- 2. La proposition précédente fournit une nouvelle méthode pour montrer qu'un ensemble est un (sous)-espace vectoriel : en montrant que c'est le noyau d'une application linéaire.

Exemple 8

On reprend les applications linéaires de l'exemple 2.

1. Déterminons le noyau de

$$\varphi_1: \mathbb{R}^2 \longrightarrow \mathbb{R}$$
 $(x, y) \longmapsto 2x - 3y$.

2. Déterminons le noyau de

$$\phi_2: \mathbb{R}[X] \longrightarrow \mathbb{R}[X]$$
$$P \longmapsto P'.$$

- 1. L'ensemble $\{(x,y) \in \mathbb{R}^2 \mid 2x 3y = 0\}$ est un sous-espace vectoriel de \mathbb{R}^2 car
- 2. L'ensemble $\big\{P\in\mathbb{R}[X]\mid P'=0\big\}$ est un sous-espace vectoriel de $\mathbb{R}[X]$ car

Test 5 (Voir solution.)

Dans chaque cas, déterminer le noyau de l'application linéaire (base du noyau et dimension).

1. L'application $f: \mathbb{R}^3 \to \mathbb{R}^2$ telle que

$$\forall (x, y, z) \in \mathbb{R}^3, \quad f((x, y, z)) = (x - z, x + y).$$

2. L'application

$$t: \mathcal{M}_{n,p}(\mathbb{R}) \longrightarrow \mathcal{M}_{p,n}(\mathbb{R})$$

$$M \longmapsto^{t} M.$$

3. L'application

$$m_{\mathbf{A}}: \mathcal{M}_2(\mathbb{R}) \longrightarrow \mathcal{M}_2(\mathbb{R})$$

$$\mathbf{M} \longmapsto \mathbf{A}\mathbf{M}$$

$$o\grave{u} A = \begin{pmatrix} 1 & 1 \\ 2 & 2 \end{pmatrix}.$$

Proposition 7 (Noyau et injectivité)

Soient E, F deux espaces vectoriels et $f \in \mathcal{L}(E, F)$. Alors f est injective si et seulement si $\ker(f) = \{0_E\}$.

Remarque 3

En général, pour montrer qu'une application f de E dans F est injective, il faut vérifier que pour tout $v \in F$ l'équation f(u) = v possède **au plus** une solution. La proposition précédente assure que, lorsque f est **linéaire**, il suffit de le vérifier pour $v = 0_F$ (on a toujours $0_E \in \ker(f)$ d'après la proposition 2).

Démonstration:

Exemple 10

Parmi les applications linéaires de l'exemple 8, aucune n'est injective.

Test 6 (Voir solution.)

Parmi les applications linéaires du test 5, lesquelles sont injectives?

2.2 Image

Définition 5 (Image d'une application linéaire)

Soient E, F deux espaces vectoriels et $f \in \mathcal{L}(E,F)$. On appelle **image** de f et on note Im(f), l'ensemble :

$$\operatorname{Im}(f) = \left\{ f(u), \ u \in E \right\}.$$

Proposition 8

Soient E, F deux espaces vectoriels et $f \in \mathcal{L}(E,F)$. Alors, l'image de f est un sous-espace vectoriel de F.

Remarque 4

Une autre façon de décrire l'image de $f \in \mathcal{L}(E,F)$ est

$$\operatorname{Im}(f) = \left\{ v \in F \mid \exists u \in E \ f(u) = v \right\}.$$

Exemple 11

1. Déterminons l'image de

$$\varphi_1: \mathbb{R}^2 \longrightarrow \mathbb{R}$$

$$(x, y) \longmapsto 2x - 3y.$$

2. Déterminons l'image de

$$\varphi_2: \mathcal{M}_2(\mathbb{R}) \longrightarrow \mathcal{M}_2(\mathbb{R})$$

$$M \longmapsto M - {}^t M.$$

Test 7 (Voir solution.)

Déterminer l'image de l'application linéaire $f: \mathbb{R}^3 \to \mathbb{R}^2$ telle que

$$\forall (x, y, z) \in \mathbb{R}^3, \quad f((x, y, z)) = (x - z, x + y).$$

Proposition 9 (Image et surjectivité)

Soient E, F deux espaces vectoriels et $f \in \mathcal{L}(E, F)$. Alors f est surjective si et seulement si Im(f) = F.

Test 8 (Voir solution.)

On considère l'application $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ définie par $f: (x, y) \mapsto (2x - y, 2y - 3x)$.

- 1. Montrer que f est une application linéaire.
- 2. Déterminer le noyau et l'image de f.
- 3. L'application f est-elle injective? Surjective?

3 Applications linéaires en dimension finie

3.1 Rang d'une application linéaire

Définition 6 (Rang d'une application linéaire)

Soient E, F deux espaces vectoriels de dimension finie et $f \in \mathcal{L}(E,F)$. On appelle **rang** de f, et on note rg(f), la dimension de Im(f).

Remarque 5

Comme Im(f) est un sous-espace vectoriel de F et que F est de dimension finie, Im(f) est bien de dimension finie et $\text{rg}(f) \leq \dim(F)$ avec égalité si et seulement si f est surjective.

Proposition 10

Soient E, F deux espaces vectoriels et $f \in \mathcal{L}(E,F)$. On suppose que E est de dimension finie et soit (e_1,\ldots,e_n) une base de E. Alors

$$\operatorname{Im}(f) = \operatorname{Vect}(f(e_1), \dots, f(e_n)).$$

En particulier, $rg(f) \leq dim(E)$.

Méthode 3

Ainsi pour déterminer le rang d'une application linéaire $f \in \mathcal{L}(E,F)$ il suffit de déterminer le rang de la famille $(f(e_1),...,f(e_n))$ où $(e_1,...,e_n)$ est une base de E.

Exemple 12

Déterminer le rang de l'application linéaire f définie par

$$f: \mathcal{M}_{3,1}(\mathbb{R}) \longrightarrow \mathcal{M}_{2,1}(\mathbb{R})$$

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \longmapsto \begin{pmatrix} 3x + 2y \\ x + 2y + z \end{pmatrix}.$$

Exemple 13

Déterminons le rang de l'application linéaire $f: \mathbb{R}^3 \to \mathbb{R}^2$ telle que

$$\forall (x, y, z) \in \mathbb{R}^3, \quad f((x, y, z)) = (x - z, x + y).$$

Test 9 (Voir solution.)

Soit φ l'application linéaire définie par

$$\varphi: \mathcal{M}_2(\mathbb{R}) \longrightarrow \mathcal{M}_2(\mathbb{R})$$

$$M \longmapsto M + {}^t M.$$

Déterminer son rang.

Théorème 1 (Théorème du rang)

Soient E, F deux espaces vectoriels de dimension finie et $f \in \mathcal{L}(\mathsf{E},\mathsf{F})$. Alors

$$\dim(E) = \dim(\ker(f)) + \operatorname{rg}(f).$$

Autrement dit

$$\dim(E) = \dim(\ker(f)) + \dim(\operatorname{Im}(f)).$$

Exemple 14

Soit φ l'application définie par

$$\phi: \mathbb{R}_3[X] \longrightarrow \mathbb{R}_2[X]$$
$$P \longmapsto P'.$$

$$P \longmapsto P'$$
.

Déterminons son rang.

Test 10 (Voir solution.)

Soit φ l'application définie par

$$\phi: \mathbb{R}_3[X] \longrightarrow \mathbb{R}^2$$

$$P \longmapsto (P(1), P(2)).$$

- 1. Montrer que φ est linéaire.
- 2. Déterminer $Im(\phi)$ et en déduire le rang de ϕ .
- 3. En déduire la dimension de $ker(\phi)$.
- 4. L'application φ est-elle injective? surjective? bijective?

Conséquence(s) 1

Soient E, F deux espaces vectoriels de dimension finie et $f \in \mathcal{L}(E, F)$.

- 1. Si $\dim(E) < \dim(F)$ alors f n'est pas surjective.
- 2. Si dim(E) > dim(F) alors f n'est pas injective.

En particulier, si $dim(E) \neq dim(F)$, il n'existe pas d'isomorphisme entre E et F.

Conséquence(s) 2

Soient E, F deux espaces vectoriels de **même** dimension finie et $f \in \mathcal{L}(E,F)$. Alors

f est injective \iff f est surjective \iff f est bijective.

Remarque 6

En particulier, si f est un **endomorphisme** d'un espace vectoriel E de dimension finie on a donc

f est injective \iff f est surjective \iff f est bijective.

Exemple 15

1. L'application linéaire

$$f: \mathbb{R}_n[X] \longrightarrow \mathbb{R}_{n-1}[X]$$

$$P \longmapsto P'$$

est-elle injective?

2. L'application linéaire

$$f: \mathcal{M}_2(\mathbb{R}) \longrightarrow \mathbb{R}^4$$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \longmapsto (a+b, a-b, c+d, c-d)$$

Test 11 (Voir solution.)

Soit f l'application définie par

$$f: \mathcal{M}_{3,1}(\mathbb{R}) \longrightarrow \mathcal{M}_{3,1}(\mathbb{R})$$
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \longmapsto \begin{pmatrix} 2x + y \\ z \\ y \end{pmatrix}.$$

Montrer que f est un automorphisme de $\mathcal{M}_{3,1}(\mathbb{R})$.

Conséquence(s) 3

Soient E, F deux espaces vectoriels de dimension finie. S'il existe un isomorphisme de E dans F alors dim(E) = dim(F).

On s'intéresse à la réciproque : deux espaces vectoriels de même dimension finie sont-ils isomorphes?

Proposition 11

Soient E, F deux espaces vectoriels de dimensions finies. On considère une base $\mathscr{B}=(e_1,\ldots,e_n)$ de E. Une application linéaire $f\in \mathscr{L}(E,F)$ est entièrement déterminée par la donnée des vecteurs $(f(e_1),\ldots,f(e_n))$. Cela signifie que pour toute famille $(u_1,\ldots,u_n)\in F^n$ il existe une unique application linéaire $f\in \mathscr{L}(E,F)$ telle que

$$\forall i \in [1, n], f(e_i) = u_i.$$

Remarque 7

En particulier, si $\mathcal{B} = (e_1, ..., e_n)$ est une base de E et que l'on a deux applications linéaires f et g de E dans F telles que

$$\forall i \in [\![1,n]\!], \ f(e_i) = g(e_i)$$

alors f = g.

Exemple 16

1. Soient (e_1, e_2, e_3) la base canonique de \mathbb{R}^3 et f l'endomorphisme de \mathbb{R}^3 tel que

$$f(e_1) = e_1 + 2e_2$$
 ; $f(e_2) = e_1$; $f(e_3) = e_1 - 2e_2 + e_3$.

Déterminons l'expression de f.

(a) Soit $(x, y, z) \in \mathbb{R}^3$. On commence par déterminer les coordonnées de (x, y, z) dans la base (e_1, e_2, e_3) :

b) On déte	rmine $f((x, y, z))$	par linéarité :				
ient E et F c	leux espaces vect	oriels de même	dimension fini	e n. On va mon	trer que E et F	sont iso

Tes

Soient (e_1, e_2, e_3) la base canonique de \mathbb{R}^3 et f l'application linéaire de \mathbb{R}^3 dans $\mathbb{R}_2[X]$ telle que

$$f(e_1) = 1$$
 ; $f(e_2) = X - 2$; $f(e_3) = X^2 + X - 1$.

- 1. Déterminer l'expression de f.
- 2. Déterminer le rang de f.
- 3. Est-ce un isomorphisme?

3.2 Matrice d'une application linéaire

Définition 7 (Matrice d'une famille de vecteurs)

Soient n et p deux entiers naturels non nuls.

Soit E un espace vectoriel de dimension finie n et soit \mathcal{B} une base de E.

1. Soit $u \in E$ et notons $(x_1, ..., x_n) \in \mathbb{R}^n$ les coordonnées de u dans la base \mathscr{B} . On appelle **matrice de** u

dans la base \mathcal{B} et on note $\mathrm{Mat}_{\mathcal{B}}(u)$ la matrice colonne

2. Soit $(u_1, ..., u_p) \in E^p$ une famille de vecteurs de E. On appelle **matrice de** $(u_1, ..., u_p)$ **dans la base** \mathcal{B} et on note $\mathrm{Mat}_{\mathscr{B}}(u_1,\ldots,u_p)$ la matrice de $\mathscr{M}_{n,p}(\mathbb{R})$ dont la j-ième colonne est la $\mathrm{Mat}_{\mathscr{B}}(u_j)$.

Remarque 8

	Si E est un espace vectoriel de dimension $n \in \mathbb{N}^*$ et \mathscr{B} une base de E, on peut montrer que l'application	
	$E \longrightarrow \mathscr{M}_{n,1}(\mathbb{R})$	
	$u \longmapsto \operatorname{Mat}_{\mathscr{B}}(u)$	
	est un isomorphisme.	
Exc	emple 17	
	Dans \mathbb{R}^3 soit $\mathscr{B} = ((1,1,1),(1,1,0),(1,0,0)).$	
	1. La famille ${\mathscr B}$ est une base de ${\mathbb R}^3$:	_
	2. Soient $u = (0, 6, -1)$ et $v = (2, 2, 0)$. Déterminons $\operatorname{Mat}_{\mathscr{B}}(u)$, $\operatorname{Mat}_{\mathscr{B}}(v)$ et $\operatorname{Mat}_{\mathscr{B}}(u, v)$.	
Į		
Exe	emple 18	
	Dans $\mathbb{R}_2[X]$ on considère la base canonique \mathscr{B}_{can} et le polynôme $P = 2(X-1)^2 - 3(X-1) - 4$.	
	1. Trouver la matrice de P dans la base canonique.	\neg

2. On considère la famille $\mathscr{B}_1 = \overline{(1,(X-1),(X-1)^2)}$.

(a) La famille \mathscr{B}_1 est une base de $\mathbb{R}_2[X]$:

(b) Déterminons $Mat_{\mathcal{B}_1}(P)$.

Test 13 (Voir solution.)

Dans $\mathbb{R}_2[X]$ on considère la famille $\mathscr{B} = (1, X+1, X^2+1)$ et les polynômes $P = 3X^2$, $Q = 2+X-X^2$.

- 1. Justifier que \mathscr{B} est une base de $\mathbb{R}_2[X]$.
- 2. Déterminer Mat_B(P,Q).

Définition 8 (Matrice d'une application linéaire)

Soient E et F deux espaces vectoriels de dimension finie. On note $p \in \mathbb{N}^*$ la dimension de E et $n \in \mathbb{N}^*$ la dimension de F et on considère $\mathscr{B}_E = (e_1, \dots, e_p)$ une base de E et \mathscr{B}_F une base de F.

Soit $f \in \mathcal{L}(E,F)$. On appelle **matrice de** f **dans les bases** \mathscr{B}_E **et** \mathscr{B}_F la matrice notée $\mathrm{Mat}_{\mathscr{B}_E,\mathscr{B}_F}(f)$ définie par :

$$\operatorname{Mat}_{\mathscr{B}_{\mathsf{E}},\mathscr{B}_{\mathsf{F}}}(f) = \operatorname{Mat}_{\mathscr{B}_{\mathsf{F}}}(f(e_1),\ldots,f(e_p)).$$

Il s'agit d'une matrice de taille $n \times p$.

Notation 2

 $Pour\ un\ endomorphisme\ f\in \mathcal{L}(\mathsf{E})\ on\ notera\ \mathrm{Mat}_{\mathscr{B}_\mathsf{E}}(f)\ pour\ d\acute{e}signer\ \mathrm{Mat}_{\mathscr{B}_\mathsf{E},\mathscr{B}_\mathsf{E}}(f).$

Méthode 4

Pour déterminer la matrice $\mathrm{Mat}_{\mathscr{B}_{\mathrm{E}},\mathscr{B}_{\mathrm{F}}}(f)$ d'une application linéaire :

- 1. on commence par calculer l'image par f de chaque élément de la base \mathcal{B}_{E} ;
- 2. on détermine les coordonnées dans la base \mathscr{B}_{F} des vecteurs images déterminés à l'étape précédente;
- 3. la matrice $\operatorname{Mat}_{\mathscr{B}_{E},\mathscr{B}_{F}}(f)$ est la matrice dont les colonnes sont les coordonnées dans \mathscr{B}_{F} des images par f des éléments de \mathscr{B}_{E} .

Exemple 19

On considère l'application linéaire $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ définie par

$$\forall (x, y) \in \mathbb{R}^2, \quad f((x, y)) = (2x - 2y, 2x + 4y, -y).$$

1.	Déterminons la matrice de f dans les bases \mathscr{B}_2 et \mathscr{B}_3 où \mathscr{B}_2 et \mathscr{B}_3 sont les bases canoniques de \mathbb{R}^2 et \mathbb{R}^3
	respectivement.

2. Déterminons la matrice de f dans les bases $\mathcal{B} = ((1,1),(1,0))$ et $\mathcal{B}' = ((1,1,1),(1,1,0),(1,0,0))$.

Exemple 20

On considère l'application linéaire $f: \mathbb{R}_3[X] \longrightarrow \mathbb{R}_2[X]$ définie par

$$\forall P \in \mathbb{R}_3[X], \quad f(P) = P'.$$

Test 14 (Voir solution.)

Dans $\mathcal{M}_2(\mathbb{R})$, on considère la base canonique \mathscr{B} et l'endomorphisme ϕ défini par

$$\forall M \in \mathcal{M}_2(\mathbb{R}), \quad \varphi(M) = {}^t M.$$

Déterminer $Mat_{\mathscr{B}}(\varphi)$.

Proposition 12 (Isomorphisme entre $\mathscr{L}(E,F)$ et $\mathscr{M}_{n,p}(\mathbb{R})$)

Soient E et F deux espaces vectoriels de dimension finie. On note $p \in \mathbb{N}^*$ la dimension de E et $n \in \mathbb{N}^*$ la dimension de F et on considère \mathscr{B}_E une base de E et \mathscr{B}_F une base de F. L'application

$$\varphi: \mathcal{L}(E,F) \longrightarrow \mathcal{M}_{n,p}(\mathbb{R})$$
$$f \longmapsto \operatorname{Mat}_{\mathscr{B}_{F},\mathscr{B}_{F}}(f)$$

est un isomorphisme.

Remarque 9

En particulier, une fois les bases \mathcal{B}_E et \mathcal{B}_F fixées :

- 1. toute application linéaire possède une unique représentation matricielle dans ces bases,
- 2. toute matrice $\mathcal{M}_{n,p}(\mathbb{R})$ est l'unique représentation matricielle dans ces bases d'une unique application $f \in \mathcal{L}(E,F)$.
- 3. pour tout $f, g \in \mathcal{L}(E, F)$ et $\lambda \in \mathbb{R}$ on a:

$$\operatorname{Mat}_{\mathscr{B}_{E},\mathscr{B}_{F}}(f+g) = \operatorname{Mat}_{\mathscr{B}_{E},\mathscr{B}_{F}}(f) + \operatorname{Mat}_{\mathscr{B}_{E},\mathscr{B}_{F}}(g) \quad et \quad \operatorname{Mat}_{\mathscr{B}_{E},\mathscr{B}_{F}}(\lambda f) = \lambda \cdot \operatorname{Mat}_{\mathscr{B}_{E},\mathscr{B}_{F}}(f).$$

Exemple 21

Soit f l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique est $A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 0 & 1 \\ 3 & 4 & -2 \end{pmatrix}$. Déterminons f.

Test 15 (Voir solution.)

Soit f l'endomorphisme de $\mathbb{R}_2[X]$ dont la matrice dans la base canonique est

$$A = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 1 & 2 \\ 3 & 2 & 3 \end{pmatrix}.$$

 $D \acute{e} terminer \, f.$

Conséquence(s) 4

Soient E et F deux espaces vectoriels de dimension finie. Alors

$$\dim(\mathcal{L}(E,F)) = \dim(E) \times \dim(F)$$
 et $\dim(\mathcal{L}(E)) = \dim(E)^2$.

3.3 Lien entre applications linéaires et matrices associées

Proposition 13

Soient E et F deux espaces vectoriels de dimension finie. On considère \mathscr{B}_{E} une base de E et \mathscr{B}_{F} une base de F. Soient $f \in \mathscr{L}(E,F)$, $u \in E$ et $v \in F$. Alors :

$$v = f(u) \Longleftrightarrow \operatorname{Mat}_{\mathscr{B}_{F}}(v) = \operatorname{Mat}_{\mathscr{B}_{F}}(f(u)) \Longleftrightarrow \operatorname{Mat}_{\mathscr{B}_{F}}(v) = \operatorname{Mat}_{\mathscr{B}_{E},\mathscr{B}_{F}}(f)\operatorname{Mat}_{\mathscr{B}_{E}}(u).$$

Conséquence(s) 5 (Coordonnées de l'image d'un vecteur)

Soient E et F deux espaces vectoriels de dimension finie. On considère \mathscr{B}_{E} une base de E et \mathscr{B}_{F} une base de F. Soient $f \in \mathscr{L}(E,F)$ et $u \in E$.

Si les coordonnées de u dans la base \mathcal{B}_{E} sont (x_1,\ldots,x_p) alors les coordonnées de f(u) dans la base \mathcal{B}_{F}

sont données par le vecteur colonne $\operatorname{Mat}_{\mathscr{B}_{E},\mathscr{B}_{F}}(f) \times \begin{pmatrix} x_{1} \\ \vdots \\ x_{p} \end{pmatrix}$

Conséquence(s) 6

Soient E et F deux espaces vectoriels de dimension finie. On considère \mathscr{B}_{E} une base de E et \mathscr{B}_{F} une base de F. Soient $f \in \mathscr{L}(E,F)$ et $u \in E$.

Alors $u \in \ker(f)$ si et seulement si $\operatorname{Mat}_{\mathscr{B}_{E},\mathscr{B}_{F}}(f)\operatorname{Mat}_{\mathscr{B}_{E}}(u) = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$.

Exemple 22

1. Soit f l'endomorphisme de $\mathbb{R}_2[X]$ dont la matrice dans la base canonique est

$$B = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 2 & 3 \\ 0 & -1 & 0 \end{pmatrix}.$$

Déterminons l'image de $X^2 + 1$ par f.

2.	Soient \mathscr{B} la base canonique de $\mathbb{R}_2[X]$ et $\mathscr{B}'=(1,X+1,X^2+X+1)$. On considère g l'endomorphisme de $\mathbb{R}_2[X]$
	dont la matrice dans les bases \mathscr{B} et \mathscr{B}' est B.

Déterminons $g(X^2 + 1)$.

Test 16 (Voir solution.)

Soit f l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique est

$$A = \begin{pmatrix} 1 & 1 & 2 \\ 1 & 0 & 3 \\ 0 & -1 & 1 \end{pmatrix}.$$

 $D\acute{e}terminer \ker(f) \ et \ \mathrm{Im}(f).$

Proposition 14 (Composition et représentation matricielle)

Soient E, F et G trois espaces vectoriels de dimension finie. On considère \mathscr{B}_E une base de E, \mathscr{B}_F une base de F et \mathscr{B}_G une base de G. Soient $f \in \mathscr{L}(E,F)$ et $g \in \mathscr{L}(F,G)$. Alors :

$$\operatorname{Mat}_{\mathscr{B}_{\mathsf{F}},\mathscr{B}_{\mathsf{G}}}(g \circ f) = \operatorname{Mat}_{\mathscr{B}_{\mathsf{F}},\mathscr{B}_{\mathsf{G}}}(g) \times \operatorname{Mat}_{\mathscr{B}_{\mathsf{F}},\mathscr{B}_{\mathsf{F}}}(f).$$

Conséquence(s) 7

Soient E, F deux espaces vectoriels de dimension finie. On considère \mathscr{B}_E une base de E et \mathscr{B}_F une base de F.

1. Soit $f \in \mathcal{L}(E)$. Pour tout $k \in \mathbb{N}$ on a :

$$\operatorname{Mat}_{\mathscr{B}_{E},\mathscr{B}_{E}}(f^{k}) = \left(\operatorname{Mat}_{\mathscr{B}_{E},\mathscr{B}_{E}}(f)\right)^{k}.$$

2. Soit $f \in \mathcal{L}(E,F)$. Alors f est bijective si et seulement si $\mathrm{Mat}_{\mathscr{B}_{F},\mathscr{B}_{F}}(f)$ est inversible. Dans ce cas :

$$\operatorname{Mat}_{\mathscr{B}_{F},\mathscr{B}_{E}}(f^{-1}) = \left(\operatorname{Mat}_{\mathscr{B}_{E},\mathscr{B}_{F}}(f)\right)^{-1}.$$

Méthode 5

Pour montrer qu'une application linéaire f entre deux espaces vectoriels de dimension finie est bijective, on peut donc montrer qu'une matrice représentative de f est inversible (en calculant son rang par exemple).

Exemple 23

Déterminons la matrice de l'application h suivante dans la base canonique :

$$h: \mathbb{R}_2[X] \to \mathbb{R}_2[X]$$

 $P \mapsto P'(X+1).$

Exemple 24

Montrons que l'application f suivante est bijective et déterminons sa bijection réciproque.

$$f: \mathbb{R}_2[X] \to \mathbb{R}_2[X]$$

 $P \mapsto P(X+1).$

On considère les applications f et g suivantes :

$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2 \qquad g: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$$

$$(x, y) \longmapsto (x - y, x + y) \qquad (x, y) \longmapsto (3x + y, 2x, 3y)$$

- 1. On note A et B les matrices de f et de g dans les bases canoniques. Déterminer A et B.
- 2. Déterminer l'expression de $g \circ f$ et en déduire la matrice C de $g \circ f$ dans les bases canoniques.
- 3. Vérifier qu'on a bien C = BA.

Proposition 15 (Rang)

Soient E, F deux espaces vectoriels de dimension finie et $f \in \mathcal{L}(E,F)$. On considère \mathscr{B}_E une base de E et \mathscr{B}_F une base de F.

On a:

$$\operatorname{rg}(f) = \operatorname{rg}(\operatorname{Mat}_{\mathscr{B}_{E},\mathscr{B}_{F}}(f)).$$

3.4 Changement de base

Définition 9 (Matrice de passage)

Soit $n \in \mathbb{N}^*$.

Soient E un espace vectoriel de dimension finie n et \mathscr{B} , \mathscr{B}' deux bases de E.

On appelle **matrice de passage de** \mathscr{B} **à** \mathscr{B}' et on note $P_{\mathscr{B},\mathscr{B}'}$ la matrice de la famille \mathscr{B}' dans la base \mathscr{B} .

Ainsi, si $\mathcal{B}' = (e'_1, \dots, e'_n)$ on a:

$$P_{\mathscr{B},\mathscr{B}'} = Mat_{\mathscr{B}}(e'_1,\ldots,e'_n).$$

Remarque 10

La matrice de passage de \mathscr{B} à \mathscr{B}' est la matrice de id_E dans les bases \mathscr{B}' et \mathscr{B} :

$$P_{\mathscr{B},\mathscr{B}'} = Mat_{\mathscr{B}',\mathscr{B}}(id_E).$$

∧Attention à l'ordre des bases!

Exemple 25

1. Si $\mathscr B$ est la base canonique de $\mathbb R^3$ et $\mathscr B'=((1,2,0),(0,1,1),(2,0,2))$ alors

2. $Si \mathcal{B}$ est la base canonique de $\mathbb{R}_3[X]$ et $\mathcal{B}' = (1, (X-1), (X-1)^2, (X-1)^3)$ alors

Proposition 16

Soit E un espace vectoriel de dimension finie et \mathscr{B} , \mathscr{B}' deux bases de E. La matrice $P_{\mathscr{B},\mathscr{B}'}$ est inversible et son inverse est $P_{\mathscr{B}',\mathscr{B}}$:

$$\left(\mathbf{P}_{\mathscr{B},\mathscr{B}'}\right)^{-1} = \mathbf{P}_{\mathscr{B}',\mathscr{B}}.$$

Exemple 26

On reprend l'exemple précédent où \mathcal{B} est la base canonique de $\mathbb{R}_3[X]$ et $\mathcal{B}'=(1,(X-1),(X-1)^2,(X-1)^3)$. Déterminons les coordonnées de X^3 dans la base \mathcal{B}' .

Proposition 17 (Formules de changement de base)

Soit E un espace vectoriel de dimension finie et \mathscr{B} , \mathscr{B}' et \mathscr{B}'' trois bases de E.

- 1. On a: $P_{\mathcal{B},\mathcal{B}''} = P_{\mathcal{B},\mathcal{B}'}P_{\mathcal{B}',\mathcal{B}''}$.
- 2. Soit $u \in E$.

$$Mat_{\mathscr{B}}(u) = P_{\mathscr{B},\mathscr{B}'}Mat_{\mathscr{B}'}(u).$$

Autrement dit, la multiplication à gauche par la matrice de passage $P_{\mathcal{B},\mathcal{B}'}$ permet de déterminer les coordonnées de u dans "l'ancienne" base \mathcal{B} à partir de ses coordonnées dans la "nouvelle" base \mathcal{B}' .

3. Soit $f \in \mathcal{L}(E)$.

$$\mathrm{Mat}_{\mathscr{B}'}(f) = \mathrm{P}_{\mathscr{B},\mathscr{B}'}^{-1} \mathrm{Mat}_{\mathscr{B}}(f) \mathrm{P}_{\mathscr{B},\mathscr{B}'}.$$

Remarque 11

En se souvenant que $P_{\mathscr{B},\mathscr{B}'} = Mat_{\mathscr{B}',\mathscr{B}}(id_E)$, la proposition ci-dessus est une conséquence des propositions 13 et 14 :

- 1. la composition $(E, \mathcal{B}'') \xrightarrow{id_E} (E, \mathcal{B}') \xrightarrow{id_E} (E, \mathcal{B})$ donne le premier point grâce à la proposition 14;
- 2. le deuxième point est une conséquence directe de la proposition 13;
- 3. la composition $(E, \mathcal{B}') \xrightarrow{id_E} (E, \mathcal{B}) \xrightarrow{f} (E, \mathcal{B}) \xrightarrow{id_E} (E, \mathcal{B}')$ donne le dernier point grâce à la proposition 14.

Exemple 27

On reprend l'exemple précédent où \mathscr{B} est la base canonique de $\mathbb{R}_3[X]$ et $\mathscr{B}'=(1,(X-1),(X-1)^2,(X-1)^3)$. Déterminons les coordonnées de $P=2X^3-3X^2+7X-5$ dans la base \mathscr{B}' .

Exemple 28

Soit f l'endomorphisme de \mathbb{R}^2 dont la matrice dans la base $\mathscr{B}' = ((1,1),(1,-1))$ est $A = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}$. Déterminons la matrice B de f dans la base canonique.

Test 18 (Voir solution.)

Soient $v_1 = (1,0,0)$, $v_2 = (5,-2,2)$ et $v_3 = (-1,1,2)$.

- 1. On note $\mathcal{B}_1 = (v_1, v_2, v_3)$.
 - (a) Montrer que \mathcal{B}_1 est une base de \mathbb{R}^3 .
 - (b) Donner la matrice de passage P de la base canonique à \mathcal{B}_1 .
 - (c) Donner la matrice de passage de la base \mathcal{B}_1 à la base canonique.
- 2. Soit f l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique est :

$$A = \begin{pmatrix} 1 & 3 & -2 \\ 0 & 0 & 1 \\ 0 & 2 & 1 \end{pmatrix}.$$

- (a) Déterminer la matrice B de f dans la base \mathcal{B}_1 .
- (b) Calculer $f(v_1)$, $f(v_2)$ et $f(v_3)$ et retrouver l'expression de B.

Définition 10 (Matrices semblables)

Deux matrices A et B de $\mathcal{M}_n(\mathbb{R})$ sont dites **semblables** s'il existe une matrice inversible P telle que A = $P^{-1}BP$.

Proposition 18

Deux matrices A et B de $\mathcal{M}_n(\mathbb{R})$ sont semblables si et seulement si elles représentent le même endomorphisme (dans des bases éventuellement différentes).

4 Objectifs et erreurs à éviter

4.1 Objectifs

- 1. Savoir déterminer si une application est linéaire, est un endomorphisme.
- 2. Savoir déterminer le noyau et l'image d'une application linéaire et en déduire si elle est injective ou surjective.
- 3. Savoir calculer le rang d'une application linéaire (avec la définition ou à partir d'une représentation matricielle).
- 4. Savoir et savoir utiliser le théorème du rang et ses conséquences.
- 5. Savoir déterminer la matrice d'une application linéaire dans des bases données.
- 6. Savoir, à partir de la matrice d'une application linéaire, déterminer son noyau, son image, son rang.
- 7. Savoir déterminer une matrice de changement de bases.
- 8. Savoir utiliser les formules de changement de bases.

4.2 Erreurs à éviter

- 1. Il ne faut pas confondre la caractérisation des sous-espaces vectoriels et la caractérisation des applications linéaires. En particulier, si ϕ est une application linéaire, les assertions du type « ϕ est non vide » ou « ϕ est stable par combinaison linéaire » n'ont pas de sens!
- 2. Si φ est un endomorphisme d'un espace vectoriel, φ^n désigne une composition et non une multiplication!
- 3. Le noyau ker(f) d'une application linéaire est un ensemble. En particulier, écrire $ker(f) = 0_E$ n'a pas de sens!