

(19)日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11)特許出願公開番号

特開2003-245526

(P2003-245526A)

(43)公開日 平成15年9月2日 (2003.9.2)

(51) Int.Cl.⁷
 B 01 D 63/02
 A 61 M 1/18
 B 01 D 67/00

識別記号
 5 0 0
 5 0 0

F I
 B 01 D 63/02
 A 61 M 1/18
 B 01 D 67/00

テマコート^{*}(参考)
 4 C 0 7 7
 5 0 0
 5 0 0

審査請求 未請求 請求項の数 8 O.L. (全 7 頁)

(21)出願番号 特願2002-360373(P2002-360373)
 (22)出願日 平成14年12月12日 (2002.12.12)
 (31)優先権主張番号 特願2001-385567(P2001-385567)
 (32)優先日 平成13年12月19日 (2001.12.19)
 (33)優先権主張国 日本 (JP)

(71)出願人 000003159
 東レ株式会社
 東京都中央区日本橋室町2丁目2番1号
 (72)発明者 山村 泰史
 滋賀県大津市園山1丁目1番1号 東レ株
 式会社滋賀事業場内
 (72)発明者 小澤 英俊
 愛知県岡崎市矢作町字出口1番地 東レ株
 式会社岡崎工場内
 (72)発明者 中島 秀和
 滋賀県野洲郡中主町吉地1208-5

最終頁に続く

(54)【発明の名称】 中空糸膜およびその製造方法、中空糸膜モジュールおよびその製造方法

(57)【要約】

【課題】中空糸膜を収容した中空糸膜モジュールにおいて、軽量で取扱性に優れ、かつ、溶出物が少ない中空糸膜および中空糸膜モジュールならびにそれらの製造方法を提供する。

【解決手段】中空糸膜を収容した中空糸膜モジュールにおいて、該中空糸膜に、中空糸膜の自重に対して4~300%の水を抱液させ、該中空糸膜モジュール内の酸素濃度を0.1%以上、3.6%以下にし、放射線照射を行う中空糸膜および中空糸膜モジュールならびにそれらの製造方法。

【特許請求の範囲】

【請求項1】不活性ガスが充填された中空糸膜モジュールにおいて、前記中空糸膜モジュール内の酸素濃度が0.1%以上、1.0%以下であり、初期洗浄液10m¹中の溶出物に対し、溶出物の滴定のために用いられる2.0×10⁻³mol/l/1過マンガン酸カリウム水溶液の消費量が中空糸膜内表面1m²当たり5m^l以下であることを特徴とする中空糸膜モジュール。

【請求項2】疎水性高分子と親水性高分子を中空糸膜の構成成分として含んでなる請求項1記載の中空糸膜モジュール。

【請求項3】中空糸膜を収容してなる中空糸膜モジュールの製造方法において、中空糸膜モジュール内の酸素濃度を0.1%以上、3.6%以下とし、含水率が中空糸膜の自重に対して4%以上とした状態で放射線照射することを特徴とする中空糸膜モジュールの製造方法。

【請求項4】疎水性高分子と親水性高分子を中空糸膜の構成成分として含んでなる請求項3記載の中空糸膜モジュールの製造方法。

【請求項5】中空糸膜モジュールに収容された中空糸膜であって、初期洗浄液10m^l中の溶出物に対し、溶出物の滴定のために用いられる2.0×10⁻³mol/l/1過マンガン酸カリウム水溶液の消費量が中空糸膜内表面1m²当たり5m^l以下であることを特徴とする中空糸膜。

【請求項6】疎水性高分子と親水性高分子を中空糸膜の構成成分として含んでなる請求項5記載の中空糸膜。

【請求項7】中空糸膜の製造方法において、中空糸膜の周辺雰囲気の酸素濃度を0.1%以上、3.6%以下とし、含水率を中空糸膜の自重に対して4%以上とした状態で放射線照射することを特徴とする中空糸膜の製造方法。

【請求項8】疎水性高分子と親水性高分子を中空糸膜の構成成分として含んでなる請求項7記載の中空糸膜の製造方法。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】本発明は、膜からの溶出物が少ない中空糸膜モジュールおよびその製造方法、かかる中空糸膜を用いたモジュールおよびその製造方法に関するものである。

【0002】

【従来の技術】人工腎臓などによる血液処理で用いられる半透膜として、これまでに様々な素材が用いられてきた。初期のころは、天然素材セルロース、また、その誘導体であるセルロースジアセテート、セルローストリニアセテートが使用されていたが、時代の変化とともに、合成高分子が登場し、ポリスルホン、ポリメチルメタアクリレート(PMMA)、ポリアクリロニトリルなどが幅広く使用され、近年ではセルロースをポリエチレングリ

コール(PEG)などで処理し、血液適合性を改良した改質膜も使用されるようになってきた。慢性腎不全患者の血液処理法についてはアルブミンの漏れは最小限に抑えつつ、その他の低分子蛋白を積極的に除去する試みがなされている。膜の改良だけでなく、血液透析濾過法(HDF)や、プッシュ&プル法が透析効率の向上や低分子蛋白の積極除去のため開発された。現在、膜素材の中で透水性能が高いポリスルホンが、このような透析手法の進歩に合致したものとして、幅広く使用されるに至っている。ポリスルホンは熱可塑性の耐熱エンジニアリングプラスチックとして自動車、電気、医療用具の分野で幅広く用いられているが、ポリスルホンのみで作られた透析膜には解決すべき問題点がある。すなわち、分子間凝集力が強く、ポアサイズのコントロールが難しく、疎水性のために血液との親和性が弱く、血小板などの血液成分が付着し、残血の原因となることがあり、膜性能の低下が起こりがちである。さらに、エアーロック現象を起こすこともあり、血液処理用には使いやすいとは言えない。

【0003】従って、孔形成材として無機塩などを混入し、脱離することで孔を作り、後で親水化処理する方法や、予め、親水性高分子を造孔剤として混入し、脱離させてポアを形成後、残った親水性成分で同時にポリマー表面を親水化し、これを半透膜、逆浸透膜として用いる方法が考案された。例示すると(1)金属塩を入れて製膜する方法、(2)親水性高分子を入れて製膜する方法、(3)多価アルコールを入れて製膜する方法などがすでに開示されている。しかし、特開昭61-232860、特開昭58-114702のようにポリエチレングリコール等の多価アルコールを入れて製膜を行う場合、洗浄が不十分なとき、膜に残存するポリエチレングリコール等の溶出によって、透析時に患者の目に異常が起こることもある。金属塩類の場合はポアサイズが大きすぎて透析膜には不適である。

【0004】特開2001-170167に、充填液を用いない中空糸膜モジュールの記載で、中空糸膜モジュール内を不活性ガス雰囲気とすることによる親水性高分子の溶出が少ない充填液を用いない中空糸膜モジュールが開示されているが、中空糸膜モジュール内を完全に不活性ガス雰囲気とすると生体適合性については低下する。

【0005】

【特許文献1】特開昭61-232860号公報

【0006】

【特許文献2】特開昭58-114702号公報

【0007】

【特許文献3】特開2001-170167号公報

【0008】

【発明が解決しようとする課題】血液透析膜に多く含まれる有機物は人体から見れば異物であり、長期透析によ

る副作用、合併症が数多く報告されている。血液透析膜に含まれる有機物の溶出を抑えることは長期透析時の体内蓄積を防ぎ、副作用を防止する観点から重要な技術である。すでに水充填の γ 線滅菌品では、高透水性能を有し、かつ、架橋されることにより親水性高分子の溶出が抑えられている膜が知られているが、水充填のため重く、取扱いに欠けるという問題があった。

【0009】本発明は、軽い・凍結しないなどの利点がある充填液を用いない中空糸膜モジュールにおいて、従来の充填液を用いない膜において施されているエチレンオキサイドガス（以下EOGと略す。）滅菌、高圧蒸気滅菌品では困難であるとされた、膜の親水性高分子だけでなく、ポッティング材の放射線に対する分解物などを含む、モジュール全体からの溶出物を抑えた中空糸膜および中空糸膜モジュールならびにそれらの製造方法を提供することである。

【0010】

【課題を解決するための手段】本発明は、上記目的を解決するために、下記の構成を有する。

(1) 不活性ガスが充填された中空糸膜モジュールにおいて、前記中空糸膜モジュール内の酸素濃度が0.1%以上、1.0%以下であり、初期洗浄液10m1中の溶出物に対し、溶出物の滴定のために用いられる 2.0×10^{-3} mol/l/1過マンガン酸カリウム水溶液の消費量が中空糸膜内表面1m²当たり5m1以下であることを特徴とする中空糸膜モジュール。

(2) 中空糸膜を収容してなる中空糸膜モジュールの製造方法において、中空糸膜モジュール内の酸素濃度を0.1%以上、3.6%以下とし、含水率が中空糸膜の自重に対して100%以上とした状態で放射線照射することを特徴とする中空糸膜モジュールの製造方法。

【0015】

【0015】親水性高分子としては、例えばポリエチレンリコール、ポリビニルアルコール、カルボキシメチルセルロース、ポリビニルピロリドンなどが用いられ、単独で用いてもよいし、混合して用いてもよい。工業的にも比較的入手しやすいポリビニルピロリドンが好ましい。

【0016】たとえば、以下のようないわゆる方法で中空糸膜を製造することができる。製膜原液を芯液と同時に2重スリット管構造の口金から同時に吐出させることで、中空糸膜を製造できる。その後、所定の水洗、乾燥工程、クリンプ工程を経た後、巻き取られ、適当な長さにカットした後、ケースに挿入され、ポッティング材によって端部を封止し、モジュール化される。

【0017】本発明の軽くて凍結せずかつ取り扱いが容

*て、初期洗浄液10m1中の溶出物に対し、溶出物の滴定のために用いられる 2.0×10^{-3} mol/l/1過マンガン酸カリウム水溶液の消費量が中空糸膜内表面1m²当たり5m1以下であることを特徴とする中空糸膜。

(4) 中空糸膜の製造方法において、中空糸膜の周辺雰囲気の酸素濃度を0.1%以上、3.6%以下とし、含水率を中空糸膜の自重に対して100%以上とした状態で放射線照射することを特徴とする中空糸膜の製造方法。

【0011】

10 【発明の実施の形態】本発明にかかる中空糸膜モジュールは、モジュール内部に不活性ガスが充填されたものである。不活性ガス以外にその他の気体もしくは液体が混入することを妨げないが、放射線照射前におけるモジュール内酸素濃度が0.1%以上、3.6%以下であり、放射線照射後のモジュール内酸素濃度が0.1%以上1.0%以下のものである。

【0012】中空糸膜を構成する成分としては、各種の高分子が用いられ、疎水性高分子、親水性高分子のいずれも用いることができる。中でも疎水性高分子と親水性高分子の両方を同時に構成成分として用いたものが、ポアサイズのコントロールの容易性、生体適合性などの点で優れている。

20 【0013】中空糸膜モジュールを構成する疎水性高分子として、例えば、ポリスルホン、ポリアミド、ポリイミド、ポリフェニルエーテル、ポリフェニレンスルフィドなどほんどのエンジニアリングプラスチックを用いることができるが、下記示式で表されるポリスルホンが特に好ましい。ポリスルホンは下記基本骨格からなるが、ベンゼン環部分を修飾したものを用いることができる。

【0014】

【化1】

易で溶出物が抑えられた中空糸膜を得るためにには、まず放射線照射の工程において水分が必要である。本発明の製造方法においては、中空糸膜が、中空糸膜自重に対して4%以上の水分を抱液していればよく、さらに、中空糸膜に水分を付与してから余剰な水分を除去する際に、温風乾燥あるいは真空乾燥などと言った特別な工程が必要でないという点から、100%以上が好ましい。一方、重量軽減の意味から、300%未満が好ましい。中空糸膜湿潤後に照射する放射線の例としては、 α 線、 β 線、中性子線、X線および γ 線などの種々の電離放射線が知られており、 γ 線が好ましい。中空糸膜湿潤後の放射線照射・滅菌では、大気存在下での放射線照射は励起した酸素ラジカルによって高分子の主鎖が切れ、分解が起こるため、CO₂、N₂、Ar、Heなどの不活性ガス

で大気を置換し、放射線照射を行うと分解が抑制され、溶出物が抑えられる。しかしながら、中空糸膜モジュール内の大气を完全に不活性ガスで置換するのは困難である。また、生体適合性の面から見ると、中空糸膜モジュール内に酸素濃度が高い状態で放射線照射した中空糸膜モジュールの方が、血液を流した時、中空糸膜内表面に付着する血小板数が少なく、好ましい。溶出物を抑えつつ、生体適合性を上げるために、放射線照射前の中空糸膜モジュール内の酸素濃度が0.1%以上、3.6%以下であることが好ましい。放射線照射後の中空糸膜モジュール内部の酸素濃度は、0.1%以上、1.0%以下となる。また、照射する放射線として γ 線を用いる場合、 γ 線吸収線量は10~50KGy、好ましくは10~30KGyである。

【0018】本発明にかかる初期洗浄液とは、中空糸膜モジュールからの溶出物量の測定時に、中空糸膜モジュール内に流速100m1/m inで生理食塩水を流し、中空糸膜モジュール内満水後に最初の15秒間に流出した25m1の洗浄液からサンプリングされた10m1のことをいう。この初期洗浄液に含まれる溶出物量を調べるために、 2.0×10^{-3} mol/1過マンガン酸カリウム水溶液20m1、希塩酸1m1を加え3分間煮沸した後、室温まで冷却し、ヨウ化カリウム水溶液1m1を加え、よく攪拌後10分間放置し、 1.0×10^{-2} mol/1チオ硫酸ナトリウム水溶液で滴定を行う。透析モジュールを通さなかった生理食塩水の滴定に要したチオ硫酸ナトリウム水溶液量と、初期洗浄液の滴定時に要したチオ硫酸ナトリウム水溶液量との差を、溶出物により消費された過マンガン酸カリウム水溶液量（過マンガン酸カリウム水溶液の消費量）とした。

【0019】本発明の提供する中空糸膜および中空糸膜モジュールならびにそれらの製造方法の特色は、過マンガン酸カリウムによる溶出物量の測定、ジメチルアセトアミドによる不溶物の確認および血小板付着量の測定によって確認される。透析型人工腎臓承認基準における回路の溶出物試験は、溶出液10m1を用いて 2.0×10^{-3} mol/1過マンガン酸カリウム水溶液で滴定を実施することとなっており、滴定時の過マンガン酸カリウム水溶液の消費量が1m1以下となることが同基準により定められている。同基準は回路の溶出物試験であり、透析器の承認基準より厳しい基準であるため、中空糸膜モジュールが同基準をクリアすることは必要ではないが、500m1以上の生理食塩水での洗浄後（中空糸膜モジュールの通常の使用時と同じ条件）に該溶出物試験を実施すると、本発明に係る中空糸膜モジュールは、同基準をクリアすることができる。この中空糸膜モジュールを用いて同基準をクリアするためには、後述する過マンガン酸カリウムによる初期洗浄液中の溶出物量の測定において、中空糸膜モジュール内に生理食塩水を100m1/m inの流速で流し、中空糸膜モジュール内満水

後、最初の15秒間に流出する洗浄液25m1からサンプリングした10m1（初期洗浄液）に含まれる溶出物を用いた 2.0×10^{-3} mol/1過マンガン酸カリウム水溶液による滴定時における過マンガン酸カリウムの消費量が、洗浄液10m1に対し中空糸膜内表面1m²当たり5m1以下となることが好ましい。本発明の提供する中空糸膜モジュールは、初期洗浄液を用いた 2.0×10^{-3} mol/1過マンガン酸カリウム水溶液による溶出物量の測定における過マンガン酸カリウムの消費量を5m1以下にすることができた。ここで言う溶出物は膜構成成分、ポッティング材の分解物と推定できるが、本発明の方法ではモジュール全体の溶出物を減少させることができる。これらの方法で作成された中空糸膜は疎水性高分子と親水性高分子のネットワークによって、その尿毒物質の拡散、有用蛋白であるアルブミンの阻止などの血液処理膜としての性能を発揮し、溶出物が少ないという特徴を有する。

【0020】さらに、本発明の提供する中空糸膜および中空糸膜モジュールならびにそれらの製造方法の特色は、ジメチルアセトアミドによる不溶物の確認によって行いうる。本発明によって得られる中空糸膜および中空糸膜モジュールは、溶出物が少ないと特徴があり、その特徴は、ジメチルアセトアミドに不溶であることにより確認した。

【0021】さらに、本発明の特色である生体適合性の高さは、血小板付着実験によって明らかにされうる。血小板付着実験は、中空糸膜内に兎血を灌流し、さらに生理食塩水で洗浄後も中空糸膜内に付着している血小板をグルタルアルデヒドで固定後、走査型電子顕微鏡で観察し、付着している血小板数により確認した。その結果、本発明の提供する中空糸膜は、同実験によって、優れた生体適合性を持つことが示された。

【0022】以上の通り、本発明により得られた中空糸膜および中空糸膜モジュールは、製膜後、特定の範囲の酸素存在したで放射線照射するという製造工程を採用することにより溶出物が少ないと優れた効果を有する中空糸膜および中空糸膜モジュールとすると同時に、生体適合性の高い中空糸膜および中空糸膜モジュールとするとができる。また、ドライ状態で使用できるため、軽く、凍結の心配がなく、取り扱いが容易で高性能な中空糸膜および中空糸膜モジュールを提供することができ、透析コストの削減にも寄与できる。同時に人体から見れば異物である有機物の溶出を抑えることができ、医療用具の安全性を高めることができる。

【0023】本発明の中空糸膜および中空糸膜モジュールは人工腎臓、血漿分離膜、体外循環吸着用担体などの血液処理用途やエンドトキシン除去フィルターなどの水処理分野にも適用可能である。

【0024】

【実施例】次に実施例に基づき本発明を説明する。用い

た測定法は以下の通りである。

【0025】(1) 中空糸膜モジュール内酸素濃度測定
中空糸膜モジュール自体を窒素雰囲気下にいれ、中空糸膜モジュールの栓にガスタイトシリンジの針を刺し、中空糸膜モジュール内ガスを採取し、ガスクロマトグラフィーに直接注入し、分析した。

【0026】(2) 透水性能の測定

中空糸膜両端部を封止したガラス管ミニモジュール（中空糸膜本数20本：有効長8～12cm）の中空糸膜内側に水圧13.3kPaをかけ、外側へ流出してくる単位時間当たりの濾過量を測定した。

【0027】透水性能は下記の式で算出した。

$$【0028】\text{透水性能} (\text{m l/h r/m}^2/\text{k Pa}) = \frac{QW}{T/A/P}$$

ここでQW：濾過量(m l) T：流出時間(h r)

P：圧力(k Pa)

A：膜面積(m²)（中空糸膜内表面面積換算）

(3) 溶出物量の測定

測定中空糸膜モジュールに血液側に初期洗浄液として生理食塩水（大塚製薬）を流量100ml/minで流し、モジュール内満水後、15秒間の洗浄液(25ml)をサンプリングした。また、洗浄開始後5分経過後の溶出物量を確認するため、洗浄開始5分後から15秒間(25ml)の洗浄液をサンプリングした。これらのサンプルから10mlを取り出し、 $2.0 \times 10^{-3} \text{ mol}/1$ 過マンガン酸カリウム水溶液20ml、希塩酸1mlを加え3分間煮沸した。室温まで冷却し、ヨウ化カリウム水溶液1mlを加え、よく攪拌後10分放置し、 $1.0 \times 10^{-2} \text{ mol}/1$ チオ硫酸ナトリウム水溶液で滴定した。別途、透析モジュールを通さなかった水について、測定サンプルと同様な操作をした。透析モジュールを通さない水の滴定に要したチオ硫酸ナトリウム水溶液量と、サンプルの滴定に要したチオ硫酸ナトリウム水溶液量との差を、溶出物により消費された過マンガン酸カリウム水溶液量（過マンガン酸カリウム水溶液の消費量）とした。

【0029】(4) 不溶物の確認

放射線照射の中空糸膜を構成する成分の架橋による不溶化を確認するため、γ線照射の中空糸膜を高温乾燥機を用い50℃で1日乾燥後、中空糸膜10本をジメチルアセトアミド1mlに溶解させ、1分程度経過後の中空糸膜の形態を目視により確認した。

【0030】(5) 血小板付着実験

ガラス管ミニモジュール（中空糸膜本数30本：有効長8～12cm）の中空糸膜内側に、ウサギの全血を0.59ml/minで60分間灌流した。その後、中空糸膜内側に生理食塩水10～12mlを流し洗浄し、2.5～4%のグルタルアルデヒド水溶液をミニモジュール内に充填した。このミニモジュールを1晩～2日間冷蔵保存することで血小板を固定化した。この中空糸膜内表

(5)

特開2003-245526

8

面を走査型電子顕微鏡で観察し、単位面積($1 \times 10^3 \mu\text{m}^2$)あたりの血小板付着数を計数した。

【0031】実施例1

ポリスルホン（アモコ社 Ude1-P3500）16部、ポリビニルピロリドン（インターナショナルスペシャルプロダクツ社；以下ISP社と略す）K30 4部、ポリビニルピロリドン（ISP社K90）2部をジメチルアセトアミド77部、水1部を加熱溶解し、製膜原液とした。

10

【0032】この原液を温度50℃の紡糸口金部へ送り、外径0.35mm、内径0.25mmの2重スリット管から芯液としてジメチルアセトアミド63部、水37部からなる溶液を吐出させ、中空糸膜を形成させた後、温度30℃、露点39～40℃で調湿、10℃～20℃以下のドライミストを加えた350mmのドライゾーン雰囲気を経て、ジメチルアセトアミド20重量%、水80重量%からなる温度40℃の凝固浴を通過させ、60～75℃90秒の水洗工程、140℃の乾燥工程を2分通過させ、160℃のクリンプ工程を経て得られた中空糸膜を巻き取り束とした。この中空糸膜を1.6m²になるように、ケースに充填し、ポッティングし、端部を両面開口させて、透析モジュールとした。

20

【0033】モジュール化後、RO水を充填した後、98kPaの圧空で30秒間、充填水を押し出し含水率270%とした。

30

【0034】モジュールの透析液側、血液側それぞれに49kPaで15秒間、窒素を流し封入しモジュール内を窒素で置換した後、空気を導入することでモジュール内の酸素濃度を3.6%にした。この状態で、γ線照射(25KGy)を行った。γ線照射後のモジュール内酸素濃度は0.9%であった。

40

【0035】このγ線照射後の中空糸膜の透水性能は2504ml/h r/m²/kPaであった。また、γ線照射後の中空糸膜はジメチルアセトアミドに不溶であった。上記の溶出物の測定方法によると、このモジュールの初期洗浄液の過マンガン酸カリウム水溶液の消費量は中空糸膜内表面1m²当たり3.6mlであった。また、5分後の洗浄液の過マンガン酸カリウム水溶液の消費量は0.90mlであった。中空糸膜内表面の単位面積当たりの血小板付着数は、14.6個であった。

【0036】実施例2

ポリスルホン（アモコ社 Ude1-P3500）4部、（アモコ社 Ude1-P1700）12部、ポリビニルピロリドン（インターナショナルスペシャルプロダクツ社；以下ISP社と略す）K30 2部、ポリビニルピロリドン（ISP社K90）4部をジメチルアセトアミド77部、水1部を加熱溶解し、製膜原液とした。

50

【0037】この原液を温度50℃の紡糸口金部へ送り、外径0.35mm、内径0.25mmの2重スリット

(6)

特開2003-245526

10

消費量は中空糸内表面 1m^2 当たり 0.60ml であった。また、生理食塩水によるモジュール内洗浄開始 5 分後の洗浄液の過マンガン酸カリウム水溶液の消費量は 0.07ml であった。中空糸内表面の単位面積当たりの血小板付着数は 2.4 個であった。

【0044】比較例1

実施例1と同様の条件で製膜された中空糸膜を用い、同様にモジュール化した。モジュール化後、モジュール内に RO 水を充填し、 γ 線照射 (25KGy) を行った。この中空糸膜内表面の単位面積当たりの血小板付着数は、36.6 個であった。

【0045】比較例2

実施例1と同様の条件で製膜された中空糸膜を用い、同様にモジュール化した。モジュール化後、実施例1と同様に RO 水を充填し、圧空により水を押しだし、含水率を 27.0% にした。このモジュール内を不活性ガスで置換せず（酸素濃度 21.1% ）、 γ 線照射 (25KGy) を行った。

【0046】この γ 線照射後の中空糸膜の透水性能は 3

$20 53.4\text{ml/h}\text{r/m}^2/\text{kPa}$ であった。また、 γ 線照射後の中空糸膜はジメチルアセトアミドに可溶であった。上記の溶出物の測定方法によると、このモジュールの初期洗浄液の過マンガン酸カリウム水溶液の消費量は中空糸膜内表面 1m^2 当たり 11.7ml であった。中空糸膜内表面の単位面積当たりの血小板付着数は、9.6 個であった。

【0047】比較例3

実施例1と同様の条件で製膜された中空糸膜を用い、同様にモジュール化した。モジュール化後、実施例1と同様に RO 水を充填し、圧空により水を押しだし、含水率を 27.0% にした。このモジュール内を実施例1と同様に窒素に置換した後、空気を導入することでモジュール内の酸素濃度を 4.2% にした。この状態で γ 線照射 (25KGy) した。

【0048】この γ 線照射後の中空糸膜の透水性能は 2

$30 22.48\text{ml/h}\text{r/m}^2/\text{kPa}$ であった。また、 γ 線照射後の中空糸膜はジメチルアセトアミドに可溶であった。上記の溶出物の測定方法によると、このモジュールの初期洗浄液の過マンガン酸カリウム水溶液の消費量は 5.3ml であった。また、5 分後の洗浄液の過マンガ

$40 ン酸カリウム水溶液の消費量は 1.01ml であった。$

【0049】比較例4

実施例2と同様の条件で製膜された中空糸膜を用い、同様にモジュール化した。このモジュールに水を充填せず（含水率 0% ）、実施例1と同様に窒素に置換した後、 γ 線照射 (25KGy) を行った。

【0050】この γ 線照射後の中空糸膜の透水性能は 4

$26.3\text{ml/h}\text{r/m}^2/\text{kPa}$ であった。また、 γ 線照射後の中空糸膜はジメチルアセトアミドに可溶であった。上記の溶出物の測定方法によると、このモジュール

ト管から芯液としてジメチルアセトアミド 6.5 部、水 3.5 部からなる溶液を吐出させ、中空糸膜を形成させた後、温度 30°C 、露点 28°C で調湿し、10 ミクロン以下のドライミストを加えた 350mm のドライゾーン雰囲気を経て、ジメチルアセトアミド 2.0 重量%、水 8.0 重量% からなる温度 40°C の凝固浴を通過させ、 85°C 60 秒の水洗工程、 140°C の乾燥工程を 2 分通過させ、 180°C のクリンプ工程を経て得られた中空糸膜を巻き取り束とした。この中空糸膜を 1.3m^2 になるように、ケースに充填し、ポッティングし、端部を両面開口させて、透析モジュールとした。

【0038】モジュール化後、実施例1と同様に RO 水を充填し、圧空により水を押しだした後、中空糸膜の水分を蒸発させ、含水率 100% とした。このモジュール内を窒素に置換し、モジュール内の酸素濃度を 1.2% にした後、 γ 線照射 (25KGy) を行った。 γ 線照射後のモジュール内酸素濃度は 0.3% であった。

【0039】この γ 線照射後の中空糸膜の透水性能は $3180\text{ml/h}\text{r/m}^2/\text{kPa}$ であった。また、 γ 線照射後の中空糸膜はジメチルアセトアミドに不溶であった。上記の溶出物の測定方法によると、このモジュールの初期洗浄液の過マンガン酸カリウム水溶液の消費量は中空糸膜内表面 1m^2 当たり 0.90ml であった。

【0040】実施例3

実施例1と同様の条件で製膜された中空糸膜を用い、同様にモジュール化した。モジュール化後、実施例1と同様に RO 水を充填し、圧空により水を押しだし、含水率を 27.0% にした。このモジュール内を窒素に置換し、モジュール内の酸素濃度を 0.2% にした。この状態で γ 線照射 (25KGy) した。

【0041】この γ 線照射後の中空糸膜の透水性能は $2812\text{ml/h}\text{r/m}^2/\text{kPa}$ であった。また、 γ 線照射後の中空糸膜はジメチルアセトアミドに不溶であった。上記の溶出物の測定方法によると、このモジュールの初期洗浄液の過マンガン酸カリウム水溶液の消費量は中空糸膜内表面 1m^2 当たり 1.6ml であった。また、生理食塩水によるモジュール内洗浄開始 5 分後の洗浄液の過マンガン酸カリウム水溶液の消費量は 0.80ml であった。中空糸膜内表面の単位面積当たりの血小板付着数は、18.1 個であった。

【0042】実施例4

実施例1と同様の条件で製膜された中空糸膜を用い、同様にモジュール化した。モジュール化後、実施例1と同様に RO 水を充填し、圧空により水を押し出した後、中空糸膜の水分を蒸発させ、含水率を 4% とした。このモジュール内を窒素で置換し、モジュール内の酸素濃度を 0.2% にした。この状態で γ 線照射 (25KGy) した。

【0043】上記の溶出物の測定方法によると、このモジュールの初期洗浄液の過マンガン酸カリウム水溶液の

50

(7)

特開2003-245526

11

の初期洗浄液の過マンガン酸カリウム水溶液の消費量は
中空糸膜内表面 1 m²当たり 11.5 m l であった。

【0051】

【発明の効果】本発明により、軽い・凍結しないなどの*

* 利点がある充填液を用いない中空糸膜モジュールであつて、溶出物が少ない中空糸膜ならびに中空糸膜モジュールを提供しさらにそれらの製造方法を提供する。

12

フロントページの続き

F ターム(参考) 4C077 AA05 BB01 JJ12 KK03 LL05
LL22 LL23 PP04 PP07 PP09
PP13 PP15
4D006 GA13 HA01 JA13A JB04
LA06 MA01 MB02 MB09 MB10
MC18 MC32 MC33 MC40 MG40X
MC46 MC54 MC61 MC62 MC62X
NA04 NA42 NA54 NA64 NA65
NA74 PA01 PB09 PB52 PC47

PATENT ABSTRACTS OF JAPAN

(11)Publication number : 2003-245526
(43)Date of publication of application : 02.09.2003

(51)Int.Cl. B01D 63/02
A61M 1/18
B01D 67/00

(21)Application number : 2002-360373 (71)Applicant : TORAY IND INC
(22)Date of filing : 12.12.2002 (72)Inventor : YAMAMURA YASUSHI
OZAWA HIDETOSHI
NAKAJIMA HIDEKAZU

(30)Priority

Priority number : 2001385567 Priority date : 19.12.2001 Priority country : JP

(54) HOLLOW FIBER MEMBRANE, METHOD FOR MANUFACTURING THE SAME, HOLLOW FIBER MEMBRANE MODULE AND METHOD FOR MANUFACTURING THE SAME

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a hollow fiber membrane in lightweight having excellent handleability and reduced in the amount of eluted matter in the hollow fiber membrane module, to provide the hollow fiber membrane module, and a method for manufacturing them.

SOLUTION: In the hollow fiber membrane module, water is held in each of the hollow fiber membranes in an amount of 4-300% with respect to each own weight of the hollow fiber membranes and the concentration of oxygen in the hollow fiber membrane module is set to 0.1-3.6% and the hollow fiber membranes are irradiated with radiation. The hollow fiber membrane module and the method for manufacturing the same are also disclosed.

LEGAL STATUS

[Date of request for examination] 12.12.2005

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

* NOTICES *

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

1. This document has been translated by computer. So the translation may not reflect the original precisely.
2. **** shows the word which can not be translated.
3. In the drawings, any words are not translated.

CLAIMS

[Claim(s)]

[Claim 1] The hollow fiber module characterized by for the oxygen densities in said hollow fiber module being 0.1% or more and 1.0% or less, and the consumption of the 2.0×10^{-3} mol/l. potassium permanganate water solution used to the effluent in 10ml of initial penetrant removers for titration of an effluent being 5ml or less per two ~~1m~~ of hollow fiber internal surfaces in the hollow fiber module with which it filled up with inert gas.

[Claim 2] The hollow fiber module according to claim 1 which comes to contain a hydrophobic macromolecule and a hydrophilic macromolecule as a constituent of a hollow fiber.

[Claim 3] The manufacture approach of the hollow fiber module characterized by carrying out radiation irradiation after it made the oxygen density in a hollow fiber module into 0.1% or more and 3.6% or less and water content has considered as 4% or more to the self-weight of a hollow fiber in the manufacture approach of a hollow fiber module of coming to hold a hollow fiber.

[Claim 4] The manufacture approach of the hollow fiber module according to claim 3 which comes to contain a hydrophobic macromolecule and a hydrophilic macromolecule as a constituent of a hollow fiber.

[Claim 5] The hollow fiber characterized by being the hollow fiber held in the hollow fiber module, and the consumption of the 2.0×10^{-3} mol/l potassium permanganate water solution used to the effluent in 10ml of initial penetrant removers for titration of an effluent being 5ml or less per two 1m of hollow fiber internal surfaces.

[Claim 6] The hollow fiber according to claim 5 which comes to contain a hydrophobic macromolecule and a hydrophilic macromolecule as a constituent of a hollow fiber.

[Claim 7] The manufacture approach of the hollow fiber characterized by carrying out radiation irradiation where it made the oxygen density of the circumference ambient atmosphere of a hollow fiber into 0.1% or more and 3.6% or less and water content is made into 4% or more to the self-weight of a hollow fiber in the manufacture approach of a hollow fiber.

[Claim 8] The manufacture approach of the hollow fiber according to claim 7 which comes to contain a hydrophobic macromolecule and a hydrophilic macromolecule as a constituent of a hollow fiber.

[Translation done.]

* NOTICES *

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
3. In the drawings, any words are not translated.

DETAILED DESCRIPTION

[Detailed Description of the Invention]

[0001]

[Field of the Invention] This invention relates to the module using a hollow fiber module with few effluents and its manufacture approach, and this hollow fiber and its manufacture approach from the film.

[0002]

[Description of the Prior Art] Materials various until now have been used as semipermeable membrane used by the blood processing by an artificial kidney etc. Although a natural material cellulose and the cellulose diacetate which is the derivative, and cellulose triacetate were used at the time of the first stage, synthetic macromolecule appears with change of a time, polysulfone, polymethylmethacrylate (PMMA), a polyacrylonitrile, etc. are used broadly, a cellulose is processed by a polyethylene glycol (PEG) etc. by recent years, and the reforming film which improved haemocompatibility has also come to be used. About a chronic-renal-failure patient's blood approach, the attempt which removes other low-molecular proteins positively is made, suppressing the leakage of albumin to the minimum. It was developed not only for membranous amelioration but for improvement in dialysis effectiveness and positive removal of low-molecular protein of a hemodialysis filtration process (HDF) and the push & pull method. Polysulfone with permeable high ability has come to be broadly used as a thing corresponding to an advance of such dialysis technique in current and a film material. Although polysulfone is broadly used as thermoplastic heat-resistant engineering plastics in the field of an automobile, the electrical and electric equipment, and a medical supply, there is a trouble which should be solved in the permeable membrane made only from polysulfone. That is, intermolecular cohesive force may be strong, control of pore size may be difficult, compatibility with blood may be weak because of hydrophobicity, constituents of blood, such as a platelet, may adhere, it may become the cause of residual blood, and the fall of membranous ability tends to take place. Furthermore, since an air lock phenomenon is caused, it cannot be told to blood processing that it is easy to use.

[0003] therefore, a hole -- hydrophilization of the polymer front face was carried out to coincidence of the approach of forming a hole by mixing and being desorbed from mineral salt etc. as formation material, and carrying out hydrophilization processing later, and the hydrophilic component which it mixes as an ostomy agent, and the hydrophilic macromolecule was desorbed, and remained after forming pore beforehand, and the approach using this as semipermeable membrane and a reverse osmotic membrane was devised. Instantiation has already indicated the approach of putting in (1) metal salt and producing a film, the approach of putting in (2) hydrophilic-property macromolecule and producing a film, the approach of putting in (3) polyhydric alcohol and producing a film, etc. However, when producing a film by putting in polyhydric alcohol, such as a polyethylene glycol, like JP,61-232860,A and JP,58-114702,A, and washing is inadequate, abnormalities may arise in a patient's eyes by elution, such as a polyethylene glycol which remains on the film, at the time of dialysis. In the case of metal salts, pore size is too large, and it is unsuitable to permeable membrane. [of size]

[0004] Although the hollow fiber module with which the elution of the hydrophilic giant molecule

Scanned
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
339
340
341
342
343
344
345
346
347
348
349
349
350
351
352
353
354
355
356
357
358
359
359
360
361
362
363
364
365
366
367
368
369
369
370
371
372
373
374
375
376
377
378
379
379
380
381
382
383
384
385
386
387
388
389
389
390
391
392
393
394
395
396
397
398
399
399
400
401
402
403
404
405
406
407
408
409
409
410
411
412
413
414
415
416
417
418
419
419
420
421
422
423
424
425
426
427
428
429
429
430
431
432
433
434
435
436
437
438
439
439
440
441
442
443
444
445
446
447
448
449
449
450
451
452
453
454
455
456
457
458
459
459
460
461
462
463
464
465
466
467
468
469
469
470
471
472
473
474
475
476
477
478
479
479
480
481
482
483
484
485
486
487
488
489
489
490
491
492
493
494
495
496
497
498
499
499
500
501
502
503
504
505
506
507
508
509
509
510
511
512
513
514
515
516
517
518
519
519
520
521
522
523
524
525
526
527
528
529
529
530
531
532
533
534
535
536
537
538
539
539
540
541
542
543
544
545
546
547
548
549
549
550
551
552
553
554
555
556
557
558
559
559
560
561
562
563
564
565
566
567
568
569
569
570
571
572
573
574
575
576
577
578
579
579
580
581
582
583
584
585
586
587
588
589
589
590
591
592
593
594
595
596
597
598
599
599
600
601
602
603
604
605
606
607
608
609
609
610
611
612
613
614
615
616
617
618
619
619
620
621
622
623
624
625
626
627
628
629
629
630
631
632
633
634
635
636
637
638
639
639
640
641
642
643
644
645
646
647
648
649
649
650
651
652
653
654
655
656
657
658
659
659
660
661
662
663
664
665
666
667
668
669
669
670
671
672
673
674
675
676
677
678
679
679
680
681
682
683
684
685
686
687
688
689
689
690
691
692
693
694
695
696
697
697
698
699
699
700
701
702
703
704
705
706
707
708
709
709
710
711
712
713
714
715
716
717
718
719
719
720
721
722
723
724
725
726
727
728
729
729
730
731
732
733
734
735
736
737
738
739
739
740
741
742
743
744
745
746
747
748
749
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
797
798
799
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
897
898
899
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
987
988
989
989
990
991
992
993
994
995
995
996
997
997
998
999
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1088
1089
1089
1090
1091
1092
1093
1094
1095
1096
1097
1097
1098
1099
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1188
1189
1189
1190
1191
1192
1193
1194
1195
1196
1197
1197
1198
1199
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1288
1289
1289
1290
1291
1292
1293
1294
1295
1296
1297
1297
1298
1299
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1388
1389
1389
1390
1391
1392
1393
1394
1395
1396
1397
1397
1398
1399
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1488
1489
1489
1490
1491
1492
1493
1494
1495
1496
1497
1497
1498
1499
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1588
1589
1589
1590
1591
1592
1593
1594
1595
1596
1597
1597
1598
1599
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1688
1689
1689
1690
1691
1692
1693
1694
1695
1696
1697
1697
1698
1699
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1788
1789
1789
1790
1791
1792
1793
1794
1795
1796
1797
1797
1798
1799
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1888
1889
1889
1890
1891
1892
1893
1894
1895
1896
1897
1

Scanned
1/8/2006

coincidence as a constituent is excellent in respect of the ease of control of pore size, biocompatibility, etc. especially.

[0013] As a hydrophobic macromolecule which constitutes a hollow fiber module, although almost all engineering plastics, such as polysulfone, a polyamide, polyimide, a polyphenyl ether, and a polyphenylene sulfide, can be used, especially the polysulfone expressed with the following rational formula is desirable. Although polysulfone consists of a following basic frame, what embellished the benzene ring part can be used.

[0014]

[Formula 1]

[0015] As a hydrophilic giant molecule, a polyethylene glycol, polyvinyl alcohol, a carboxymethyl cellulose, a polyvinyl pyrrolidone, etc. may be used, for example, and you may use independently, and may mix and use. The polyvinyl pyrrolidone which is comparatively easy to come to hand also industrially is desirable.

[0016] For example, a hollow fiber can be manufactured by the following approaches. A hollow fiber can be manufactured by making core liquid and coincidence breathe out a film production undiluted solution from the mouthpiece of double slit tubing structure to coincidence. Then, it is rolled round after passing through predetermined rinsing, a desiccation process, and a crimp process, and after cutting into suitable die length, it is inserted in a case, and an edge is closed and a modularization is carried out by potting material.

[0017] It does not freeze and handling is easy, and in order to obtain the hollow fiber by which the effluent was pressed down, in the process of radiation irradiation, moisture is required [this invention is light, and] first. In the manufacture approach of this invention, after giving moisture to a hollow fiber, in case surplus moisture is removed, the point that the special process called warm air desiccation or vacuum drying is not required to 100% or more is [that the hollow fiber should just be ****(ing) 4% or more of moisture to a hollow fiber self-weight] still more desirable. On the other hand, the semantics of weight mitigation to less than 300% is desirable. As an example of the radiation which irradiates after hollow fiber humid, various ionizing radiation, such as alpha rays, beta rays, a neutron beam, an X-ray, and a gamma ray, is known, and a gamma ray is desirable. In the radiation irradiation and sterilization after hollow fiber humid, since the principal chain of a macromolecule is turned off and decomposition takes place by the excited oxygen radical, if the radiation irradiation under atmospheric-air existence permutes atmospheric air with inert gas, such as CO₂, N₂, Ar, and helium, and performs radiation irradiation, decomposition will be controlled and an effluent will be pressed down. However, it is difficult for inert gas to permute the atmospheric air in a hollow fiber module completely. Moreover, when are seen from the field of biocompatibility and the direction of the hollow fiber module in which the oxygen density carried out radiation irradiation in the high condition into the hollow fiber module pours blood, there are few platelet counts adhering to a hollow fiber internal surface, and they are desirable. In order to raise biocompatibility, pressing down an effluent, it is desirable that the oxygen densities in the hollow fiber module in front of radiation irradiation are 0.1% or more and 3.6% or less. The oxygen density inside the hollow fiber module after radiation irradiation becomes 0.1% or more and 1.0% or less. Moreover, when using a gamma ray as a radiation to irradiate, a gamma ray absorbed dose is 10–30KGy preferably ten to 50 KGy.

[0018] The initial penetrant remover concerning this invention means the 10ml thing sampled from the 25ml penetrant remover which flowed out the physiological saline in [of the beginning] 15 seconds after the full of water in a sink and a hollow fiber module by rate-of-flow 100 ml/min in the hollow fiber module at the time of measurement of the amount of effluents from a hollow fiber module. In order to investigate the amount of effluents contained in this initial penetrant remover, after adding 20ml of 2.0x10⁻³ mo/l potassium permanganate water

solutions, and 1ml of dilute hydrochloric acid and boiling it for 3 minutes, it cools to a room temperature, 1ml of potassium iodide water solutions is added, and it is well left for 10 minutes after stirring, and titrates in a 1.0×10^{-2} mol/l sodium-thiosulfate water solution. The difference of the amount of sodium-thiosulfate water solutions which titration of the physiological saline which did not let a dialysis module pass took, and the amount of sodium-thiosulfate water solutions required at the time of titration of an initial penetrant remover was made into the amount of potassium permanganate water solutions (consumption of a potassium permanganate water solution) consumed with the effluent.

[0019] The special feature of the hollow fiber which this invention offers, hollow fiber modules, and those manufacture approaches is checked by measurement of the amount of effluents by potassium permanganate, the check of the insoluble matter by dimethylacetamide, and measurement of platelet coating weight. It is defined by these criteria that the eluting material test of the circuit in dialysis mold artificial-kidney acknowledgement criteria is to titrate in a 2.0×10^{-3} mol/l potassium permanganate water solution using 10ml of eluates, and the consumption of the potassium permanganate water solution at the time of titration is set to 1ml or less. Since these criteria are the eluting material test of a circuit and it is criteria severer than the acknowledgement criteria of a dialyzer, it is not required for a hollow fiber module to clear these criteria, but if this eluting material test is carried out after a physiological saline 500ml or more washes (the same conditions as the time of the anticipated use of a hollow fiber module), the hollow fiber module concerning this invention can clear these criteria. In order to clear these criteria using this hollow fiber module In measurement of the amount of effluents in the initial penetrant remover by the potassium permanganate mentioned later A physiological saline by the rate of flow of 100 ml/min in a hollow fiber module A sink, The consumption of the potassium permanganate at the time of titration by the 2.0×10^{-3} mol/l potassium permanganate water solution using the effluent contained in 10ml (initial penetrant remover) sampled from 25ml of penetrant removers which flow out in [of the beginning] 15 seconds after the full of water in a hollow fiber module It is desirable to be set to 5ml or less per two 1m of hollow fiber internal surfaces to 10ml of penetrant removers. The hollow fiber module which this invention offers was able to set to 5ml or less consumption of the potassium permanganate in measurement of the amount of effluents by the 2.0×10^{-3} mol/l. potassium permanganate water solution which used the initial penetrant remover. Although the effluent said here can be presumed to be the decomposition product of a film constituent and potting material, the effluent of the whole module can be decreased by the approach of this invention. By the network of a hydrophobic macromolecule and a hydrophilic macromolecule, the hollow fiber created by these approaches demonstrates the engine performance as blood processing film, such as diffusion of the urine poison, and inhibition of the albumin which is useful protein, and has the description that few effluents are.

[0020] Furthermore, the check of the insoluble matter by dimethylacetamide can perform the special feature of the hollow fiber which this invention offers, hollow fiber modules, and those manufacture approaches. The hollow fiber and hollow fiber module which are obtained by this invention have the description that few effluents are, and the description was checked according to it being insoluble to dimethylacetamide.

[0021] Furthermore, the height of the biocompatibility which is the special feature of this invention is clarified by platelet adhesion experiment, and it deals in it by it. The platelet adhesion experiment flowed in **** in the hollow fiber, further, observed after immobilization the platelet in which after washing has adhered in a hollow fiber at the physiological saline with the scanning electron microscope by glutaraldehyde, and checked it with the adhering platelet count. Consequently, it was shown that the hollow fiber which this invention offers has the outstanding biocompatibility by this experiment.

[0022] after film production, while the hollow fiber and hollow fiber module which were obtained by this invention as above can be used as the hollow fiber and hollow fiber module of the specific range which have the outstanding effectiveness that there are few effluents, by adopting the production process which recognized oxygen existence of coming out and carrying

S
G
a
n
e
d

1
2
8
/
2
0
0
0
6

out radiation irradiation, they can be used as the high hollow fiber and hollow fiber module of biocompatibility. Moreover, since it can be used in the dry condition, it is light and there are no worries about freezing, and handling can offer an easy and highly efficient hollow fiber and a hollow fiber module, and can contribute also to reduction of dialysis cost. If it sees from the body to coincidence, the elution of the organic substance which is a foreign matter can be stopped, and the safety of a medical supply can be raised.

[0023] The hollow fiber and hollow fiber module of this invention are applicable also to the water treatment fields, such as blood processing applications, such as an artificial kidney, a plasma demarcation membrane, and support for extracorporeal circulation adsorption, and an endotoxin removal filter.

[0024]

[Example] Next, this invention is explained based on an example. The used measuring method is as follows.

[0025] (1) The oxygen density measurement hollow fiber module in a hollow fiber module itself was put into the bottom of nitrogen-gas-atmosphere mind, the plug of a hollow fiber module was stabbed with the needle of a gas-tight syringe, and the gas in a hollow fiber module was extracted, and it poured into the gas chromatography directly and analyzed.

[0026] (2) Water pressure 13.3kPa was applied inside [hollow fiber] the glass tube mini module (8-12cm of 20 hollow fiber numbers : effective length) which closed the measurement hollow fiber both ends of permeable ability, and the amount of filtration per [which flows out outside] unit time amount was measured.

[0027] Permeable ability was computed by the following formula.

[0028] permeable ability (ml/hr/m²/kPa) = QW/T/A/P -- here -- the amount of QW:filtration (ml) T:outflow time amount (hr) P: -- pressure (kPa)

A: Film surface product (m²) (hollow fiber internal-surface area conversion)

(3) The penetrant remover (25ml) for 15 seconds was sampled for the physiological saline (Otsuka Pharmaceutical) after the full of water in a sink and a module by flow rate 100 ml/min as an initial penetrant remover to the measurement measurement hollow fiber module of the amount of effluents at the blood side. Moreover, in order to check the amount of effluents after after [washing initiation] 5-minute progress, the penetrant remover for 15 seconds (25ml) after after [of washing initiation] 5 minutes was sampled. 10ml was taken out from these samples, 20ml of 2.0x10⁻³ mol/l potassium permanganate water solutions and 1ml of dilute hydrochloric acid were added, and it was boiled for 3 minutes. It cooled to the room temperature, 1ml of potassium iodide water solutions was added, and it was well left after churning for 10 minutes, and titrated in the 1.0x10⁻² mol/l sodium-thiosulfate water solution. Separately, the same actuation as a measurement sample was carried out about the water which did not let a dialysis module pass. The difference of the amount of sodium-thiosulfate water solutions which titration of the water which does not let a dialysis module pass took, and the amount of sodium-thiosulfate water solutions which titration of a sample took was made into the amount of potassium permanganate water solutions (consumption of a potassium permanganate water solution) consumed with the effluent.

[0029] (4) In order to check insolubilization by bridge formation of the component which constitutes the hollow fiber after the check radiation irradiation of insoluble matter, ten hollow fibers will be dissolved for the hollow fiber after gamma irradiation in dimethylacetamide 1ml after desiccation at 50 degrees C for one day using an elevated-temperature drier, and the gestalt of the hollow fiber after progress was checked by viewing about 1 minute.

[0030] (5) Inside [hollow fiber] the platelet adhesion experiment glass tube mini module (8-12cm of 30 hollow fiber numbers : effective length), the whole blood of a rabbit was flowed in for 60 minutes by 0.59 ml/min. Then, sink washing of the 10-12ml of the physiological salines was carried out at the hollow fiber inside, and it was filled up with 2.5 - 4% of glutaraldehyde water solution in the mini module. The platelet was fixed by carrying out refrigeration preservation of this mini module for 1 evening - two days. This hollow fiber internal surface was observed with the scanning electron microscope, and counting of the number of platelet adhesion of per an

Scanned
12/2008
unit area (1x10³micrometer²) was carried out.

[0031] The example 1 polysulfone (Amoco Corp. Udel-P3500) 16 section, polyvinyl pyrrolidone K30 (international special products company; it abbreviates to an ISP company below) The heating dissolution of the dimethylacetamide 77 section and the water 1 section was carried out, and the four sections and the polyvinyl-pyrrolidone (ISP company K90) 2 section were used as the film production undiluted solution.

[0032] This undiluted solution as core liquid to the spinneret section with a temperature of 50 degrees C from double slit tubing with delivery, an outer diameter [of 0.35mm], and a bore of 0.25mm The dimethylacetamide 63 section, The temperature of 30 degrees C after making the solution which consists of the water 37 section breathe out and making a hollow fiber form, Carry out gas conditioning at 39–40 degrees C of dew-points, and pass the 350mm dry zone ambient atmosphere where dry Myst 10 microns or less was added. The coagulation bath with a temperature of 40 degrees C which consists of 20 % of the weight of dimethylacetamides and 80 % of the weight of water was passed, 60–75-degree-C rinsing process for 90 seconds and the 140-degree C desiccation process were passed for 2 minutes, the hollow fiber pass the 160-degree C crimp process was rolled round, and it considered as the bundle. Potting of this hollow fiber was filled up with and carried out to the case so that it might be set to 2 1.6m, double-sided opening of the edge was carried out, and it considered as the dialysis module.

[0033] After the modularization, after being filled up with RO water, for 30 seconds and restoration water were extruded by the compressed air of 98kPa, and it considered as 270% of water content.

[0034] After it carried out sink enclosure for 15 seconds and of the nitrogen by 49kPa(s) and nitrogen permuted the inside of a module with each the modular dialysing fluid and blood side, the oxygen density in a module was made 3.6% by introducing air. Gamma irradiation (25KGy) was performed in this condition. The oxygen density in a module after gamma irradiation was 0.9%.

[0035] The permeable ability of the hollow fiber after this gamma irradiation was 2504 ml/hr/m²/kPa. Moreover, the hollow fiber after gamma irradiation was insoluble to dimethylacetamide. According to the measuring method of the above-mentioned effluent, the consumption of the potassium permanganate water solution of the initial penetrant remover of this module was 3.6ml per two 1m of hollow fiber internal surfaces. Moreover, the consumption of the potassium permanganate water solution of the penetrant remover of 5 minutes after was 0.90ml. The number of platelet adhesion per unit area of a hollow fiber internal surface was 14.6 pieces.

[0036] The example 2 polysulfone (Amoco Corp. Udel-P3500) 4 section, the 12 (Amoco Corp. Udel-P1700) sections, polyvinyl pyrrolidone (international special products company; it abbreviates to an ISP company below) K30 The heating dissolution of the dimethylacetamide 77 section and the water 1 section was carried out, and the two sections and the polyvinyl-pyrrolidone (ISP company K90) 4 section were used as the film production undiluted solution.

[0037] This undiluted solution as core liquid to the spinneret section with a temperature of 50 degrees C from double slit tubing with delivery; an outer diameter [of 0.35mm], and a bore of 0.25mm The dimethylacetamide 65 section, The temperature of 30 degrees C after making the solution which consists of the water 35 section breathe out and making a hollow fiber form, Carry out gas conditioning at 28 degrees C of dew-points, and pass the 350mm dry zone ambient atmosphere where dry Myst 10 microns or less was added. The coagulation bath with a temperature of 40 degrees C which consists of 20 % of the weight of dimethylacetamides and 80 % of the weight of water was passed, 85-degree-C rinsing process for 60 seconds and the 140-degree C desiccation process were passed for 2 minutes, the hollow fiber pass the 180-degree C crimp process was rolled round, and it considered as the bundle. Potting of this hollow fiber was filled up with and carried out to the case so that it might be set to 2 1.3m, double-sided opening of the edge was carried out, and it considered as the dialysis module.

[0038] After being filled up with RO water like the example 1 after the modularization and pushing out water by the compressed air, the moisture of a hollow fiber was evaporated and it

Scanned
12/8/2008
considered as 100% of water content. After permuting the inside of this module by nitrogen and making the oxygen density in a module 1.2%, gamma irradiation (25KGy) was performed. The oxygen density in a module after gamma irradiation was 0.3%.

[0039] The permeable ability of the hollow fiber after this gamma irradiation was 3180 ml/hr/m²/kPa. Moreover, the hollow fiber after gamma irradiation was insoluble to dimethylacetamide. According to the measuring method of the above-mentioned effluent, the consumption of the potassium permanganate water solution of the initial penetrant remover of this module was 0.90ml per two 1m of hollow fiber internal surfaces.

[0040] The modularization was similarly carried out using the hollow fiber produced on the same conditions as example 3 example 1. It was filled up with RO water like the example 1 after the modularization, and by the compressed air, it is push about water and water content was made 270%. The inside of this module was permuted by nitrogen, and the oxygen density in a module was made 0.2%. Gamma irradiation (25KGy) was carried out in this condition.

[0041] The permeable ability of the hollow fiber after this gamma irradiation was 2812 ml/hr/m²/kPa. Moreover, the hollow fiber after gamma irradiation was insoluble to dimethylacetamide. According to the measuring method of the above-mentioned effluent, the consumption of the potassium permanganate water solution of the initial penetrant remover of this module was 1.6ml per two 1m of hollow fiber internal surfaces. Moreover, the consumption of the potassium permanganate water solution of the penetrant remover 5 minutes [by the physiological saline] after the washing initiation in a module was 0.80ml. The number of platelet adhesion per unit area of a hollow fiber internal surface was 18.1 pieces.

[0042] The modularization was similarly carried out using the hollow fiber produced on the same conditions as example 4 example 1. After being filled up with RO water like the example 1 after the modularization and extruding water by the compressed air, the moisture of a hollow fiber was evaporated and water content was made into 4%. Nitrogen permuted the inside of this module and the oxygen density in a module was made 0.2%. Gamma irradiation (25KGy) was carried out in this condition.

[0043] According to the measuring method of the above-mentioned effluent, the consumption of the potassium permanganate water solution of the initial penetrant remover of this module was 0.60ml per two 1m of hollow filament internal surfaces. Moreover, the consumption of the potassium permanganate water solution of the penetrant remover 5 minutes [by the physiological saline] after the washing initiation in a module was 0.07ml. The number of platelet adhesion per unit area of a hollow filament internal surface was 2.4 pieces.

[0044] The modularization was similarly carried out using the hollow fiber produced on the same conditions as example of comparison 1 example 1. It was filled up with RO water after a modularization and in the module, and gamma irradiation (25KGy) was performed. The number of platelet adhesion per unit area of this hollow fiber internal surface was 36.6 pieces.

[0045] The modularization was similarly carried out using the hollow fiber produced on the same conditions as example of comparison 2 example 1. It was filled up with RO water like the example 1 after the modularization, and by the compressed air, it is push about water and water content was made 270%. Inert gas did not permute the inside of this module (21.1% of oxygen densities), but gamma irradiation (25KGy) was performed.

[0046] The permeable ability of the hollow fiber after this gamma irradiation was 3534 ml/hr/m²/kPa. Moreover, the hollow fiber after gamma irradiation was meltable to dimethylacetamide. According to the measuring method of the above-mentioned effluent, the consumption of the potassium permanganate water solution of the initial penetrant remover of this module was 11.7ml per two 1m of hollow fiber internal surfaces. The number of platelet adhesion per unit area of a hollow fiber internal surface was 9.6 pieces.

[0047] The modularization was similarly carried out using the hollow fiber produced on the same conditions as example of comparison 3 example 1. It was filled up with RO water like the example 1 after the modularization, and by the compressed air, it is push about water and water content was made 270%. After permuting the inside of this module by nitrogen like an example 1, the oxygen density in a module was made 4.2% by introducing air. Gamma irradiation (25KGy)

Scanned
1
2
3
4
5
6

was carried out in this condition.

[0048] The permeable ability of the hollow fiber after this gamma irradiation was 2248 ml/hr/m²/kPa. Moreover, the hollow fiber after gamma irradiation was meltable to dimethylacetamide. According to the measuring method of the above-mentioned effluent, the consumption of the potassium permanganate water solution of the initial penetrant remover of this module was 5.3ml. Moreover, the consumption of the potassium permanganate water solution of the penetrant remover of 5 minutes after was 1.01ml.

[0049] The modularization was similarly carried out using the hollow fiber produced on the same conditions as example of comparison 4 example 2. After not filling up this module with water (0% of water content) but permuting by nitrogen like an example 1, gamma irradiation (25KGy) was performed.

[0050] The permeable ability of the hollow fiber after this gamma irradiation was 4263 ml/hr/m²/kPa. Moreover, the hollow fiber after gamma irradiation was meltable to dimethylacetamide. According to the measuring method of the above-mentioned effluent, the consumption of the potassium permanganate water solution of the initial penetrant remover of this module was 11.5ml per two 1m of hollow fiber internal surfaces.

[0051]

[Effect of the Invention] this invention -- light - it is the hollow fiber module which does not use a sealing liquid with the advantage of not freezing, and an effluent offers few hollow fibers and a hollow fiber module, and offers those manufacture approaches further.

[Translation done.]

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.