Tópicos em Engenharia de Software

ANÁLISE PREDITIVA APLICADA À IDENTIFICAÇÃO DE FRAUDES EM SEGUROS AUTOMOTIVOS

Gabriel Estevão, Leticia Lott, Luana Fleury, Rafael Ferraz e Yan Nalon

CONTEXTUALIZAÇÃO

INDÚSTRIA DE SEGUROS

- Mercado global de seguros cresceu **9,5% em 2024** nos serviços de proteção de propriedade pessoal e acidentes [1]
- No entanto, as **fraudes de pedidos de seguro** são um desafio intrínseco a essa área

- Acidentes simulados
- Exagero de danos ou lesões
- Inclusão de "passageiros fantasma"

Impacto das fraudes:

- Altos custos operacionais e financeiros
- Sobrecarga nas investigações de sinistros
- Necessidade de métodos automatizados e escaláveis para mitigar prejuizos

PROBLEMA DE PESQUISA

A literatura carece de experimentos comparativos em Machine Learning específicos para previsão de fraudes automotivas

MOTIVAÇÃO

- Métodos tradicionais de auditoria e análise manual são ineficientes para grandes volumes de dados
- Uso de Machine Learning representa uma oportunidade nesse contexto

POTENCIAL DO APRENDIZADO DE MÁQUINA NO COMBATE À FRAUDE

- Machine Learning é uma ferramenta eficiente para combate à fraude, analisando grandes volumes de dados e identificando anomalias.
- Técnicas de aprendizado supervisionado permitem detecção com alta precisão.
- Alarfaj et al. (2022) utilizaram um algoritmo de aprendizado de máquina para detectar fraudes em cartões de crédito, alcançando resultados com alta acurácia, chegando a até 99,9%.

OBJETIVOS

OBJETIVO GERAL

Avaliar o desempenho de técnicas de aprendizado de máquina na detecção de possíveis fraudes em seguros automotivos

OBJETIVOS ESPECÍFICOS

- 1. Investigar a perfomance de cada modelo (Regressão Logística, Naive Bayes, Floresta de Decisão e SVM) na identificação de fraude em seguros automotivos
- 2. Comparar métricas (acurácia, precisão, revocação e F1-Score) entre dados desbalanceados e balanceados (SMOTE)
- 3. Avaliar a consistência dos modelos diante de diferentes distribuições de dados, identificando a técnica mais adequada para aplicação prática.

PROJETO DA METODOLOGIA

INSTRUMENTOS

Bibliotecas: Pandas, Scikit-Learn, ImbLearn e MatPlotLib

Justificativa: Adequação à manipulação de dados e implementação de algoritmos de inteligência artificial + uso em pesquisas na área de aprendizado de máquina.

PROJETO DA METODOLOGIA

DATASET

Kaggle - Vehicle Insurance Claim Fraud Detection

- 15.420 registros, 33 atributos (colunas).
- Target: **FraudFound_P** (0 = não fraude, 1 = fraude)

Law

This dataset contains vehicle dataset - attribute, model, accident details, etc along with policy details - policy type, tenure etc. The target is to

7/18

PRÉ-PROCESSAMENTO

1. Limpeza de dados:

- Remoção de colunas irrelevantes
- Colunas que não agregam valor ao modelo, podendo prejudicar a capacidade de generalização dos modelos, tornando-os mais lentos e imprecisos.

2. Codificação de variáveis:

- Binária (LabelEncoder): aplicada em colunas com dois valores distintos (ex.: *Sex, AccidentArea*), exceto o alvo *FraudFround_P*.
 - Mapeia cada categoria para 0 ou 1.
 - Facilita a interpretação dos algoritmos, que conseguem lidar diretamente com variáveis binárias.
- One-Hot Encoding: aplicada em categórias sem ordem (ex.: *Make, MaritalStatus, PolicyType*).
 - Cria uma coluna nova para cada categoria de uma variável com múltiplos valores sem ordem.
 - Evita que os modelos interpretem incorretamente uma ordem inexistente (ex.: pensar que "Ford" < "Toyota").

PRÉ-PROCESSAMENTO

2. Codificação de variáveis

- Ordinal: aplicada em váriaveis ordenadas (VehiclePrice, AgeOfVehicle).
 - Atribui valores inteiros baseados na ordem das categorias.
 - Ex.: "less than 20000" \rightarrow 0; "20000 to 29000" \rightarrow 1; ...; "more than 69000" \rightarrow 5.
 - Permite que o algoritmo entenda diferenças proporcionais entre níveis e aprenda essa progressão natural.

3. Divisão Treino/Teste:

- 80% dos registros para treinamento, 20% para avaliação.
- Proporção escolhida por ter apresentado maior precisão dos modelos em comparação às proporções 90/10, 70/30 e 60/40.
- Nos testes, observou-se que o Naive Bayes obteve desempenho semelhante nas configurações
 90/10 e 60/40.

BALANCEAMENTO

- SMOTE (oversampling)
 - o Utilizado somente no conjunto de treino, após divisão.
 - Criação de novas instâncias sintéticas da classe minoritária (FraudFound_P = 1).
 - Sem balanceamento, modelos tenderiam a classificar quase tudo como "não fraude", mascarando detecção real.

MÉTRICAS

Elhusseny et al. (2022) realizaram uma revisão sistemática sobre detecção de fraudes com aprendizado de máquina e utilizaram essas mesmas métricas

- Acurácia: proporção de previsões corretas
- **Precisão:** frações de fraudes preditas que realmente são fraudes
- **Revocação:** frações de fraudes reais que foram capturadas
- F1-Score: média harmônica entre precisão e revocação, essencial em classes desbalanceadas.

MODELOS

A escolha dos modelos é devido à predição binária, pois a variável alvo (*FraudFound_P*) é binária (0 e 1).

Regressão Logística

- o Estima a probabilidade de fraude a partir de variáveis preditoras (ex.: idade do veículo).
- Ajusta uma função logística que separa "fraude" e "não fraude", retornando um valor entre 0 e
- o Configurado para realizar no máximo, 1000 iterações a fim de garantir convergência.

Naive Bayes

- Combina probabilidades independentes de cada atributo para classificar um caso como fraude ou não.
- Calcula a probabilidade de fraude combinando separadamente as chances de cada característica. Depois, escolhe o resultado com maior probabilidade geral.

MODELOS

Support Vector Classifier (SVM)

- Separa "fraude" de "não fraude" traçando uma fronteira complexa em espaço de alta dimensão.
- Devido ao tratamento dos dados, foi necessário utilizar o kernel RBF, pois o kernel linear não é capaz de representar fronteiras complexas, enquanto o RBF permite a criação de separações curvas entre as classes.
- \circ O dataset pequeno exigiu um valor alto de C no SVC (C = 10000) para melhorar o desempenho, apesar do maior risco de overfitting.

Random Forest

- Agrega várias árvores de decisão para decidir se um pedido é fraude.
- Cada árvore é treinada em subconjuntos de dados; as árvores "votam" e a maioria determina o resultado final.

RESULTADOS

TABLE I

DESEMPENHO DOS MODELOS NO CONJUNTO DE DADOS DESBALANCEADO

Modelo	Acurácia	Precisão	Revocação	F1-Score
Regressão Logística	0.9403	0.3750	0.0165	0.0316
Naïve Bayes	0.1560	0.0641	0.9780	0.1203
SVM (RBF Kernel)	0.9407	0.4800	0.0659	0.1159
Random Forest	0.9426	0.7778	0.0385	0.0733

• Acurácia

 Random Forest, SVM e Regressão Logística apresentaram desempenhos similares e altos. Naïve Bayes teve acurácia significativamente inferior.

• Precisão

Naïve Bayes com desempenho inferior, indicando muitos falsos positivos.

Revocação

 Naïve Bayes detectou quase todas as fraudes, mas com excesso de falsos positivos. Outros modelos tiveram baixa revocação.

• F1-Score

 Naïve Bayes teve o maior F1-Score devido à alta revocação. Random Forest foi o mais equilibrado entre os demais.

RESULTADOS

TABLE II

DESEMPENHO DOS MODELOS NO CONJUNTO DE DADOS BALANCEADO

Modelo	Acurácia	Precisão	Revocação	F1-Score
Regressão Logística	0.9403	0.3750	0.0165	0.0316
Naïve Bayes	0.2007	0.0655	0.9451	0.1225
SVM (RBF Kernel)	0.9400	0.4444	0.0659	0.1148
Random Forest	0.9410	0.5000	0.0495	0.0900

• Acurácia

o Regressão Logística, SVM, Random Forest mantiveram desempenhos semelhantes e altos. Naïve Bayes continuou com acurácia baixa.

• Precisão

Naïve Bayes manteve desempenho inferior.

Revocação

 Naïve Bayes novamente com desempenho superior. Demais modelos com revocações baixas, continuando a priorizar a classe majoritária.

• F1-Score

Naïve Bayes apresentou o maior valor.

RESULTADOS

• Naïve Bayes:

 Maior variação positiva em acurácia (+28,69%), embora permanecendo com desempenho geral insatisfatório.

• Random Forest:

 Queda acentuada na precisão (-35,71%), mas foi o que mais se beneficiou em revocação (+28,57%) e F1-score (+22,78%).
 SMOTE ampliou sua capacidade de identificar fraudes, mas sacrificou o equilíbrio entre classes (aumentando falsos positivos).

Observação Geral

 Efeitos do balanceamento são dependentes do modelo e da métrica.

TABLE III Maior variação positiva em acurácia Variação percentual após balanceamento dos dados

Modelo	Acurácia (%)	Precisão (%)
Regressão Logística	0.00	0.00
Naïve Bayes	+28.69	+2.18
SVM (RBF Kernel)	-0.07	-7.42
Random Forest	-0.17	-35.71
Média	+9.48	-13.65

Modelo	Revocação (%)	F1-Score (%)
Regressão Logística	0.00	0.00
Naïve Bayes	-3.36	+1.83
SVM (RBF Kernel)	0.00	-0.95
Random Forest	+28.57	+22.78
Média	+8.40	+7.88

CONCLUSÃO

Analisando os resultados obtidos, as principais conclusões e recomendações práticas deste estudo são:

Estabilidade da Acurácia

 Modelos Regressão Logística, SVM e Random Forest apresentaram acurácias elevadas (~94%) e relativamente estáveis em ambos os cenários (desbalanceado e balanceado).

Random Forest como Opção Equilibrada

 Apesar de não atingir revocações elevadas, manteve-se como o mais equilibrado em termos de F1-score no conjunto balanceado (0.0900), sendo uma opção para buscar compromisso entre detecção e controle de falsos positivos.

CONCLUSÃO

• Problema do Naïve Bayes:

- Alta capacidade de identificar fraudes por conta da alta revocação. Porém, acompanhado de baixa precisão.
- Na prática, pouco recomendado para a indústria devido aos potenciais custos operacionais elevados com investigações de falsos positivos.
- Alta revocação não deve ser analisada isoladamente quando há grande disparidade de precisão.

Recomendação Final

 Modelos baseados em Random Forest ou SVM oferecem maior eficácia operacional para detecção de fraudes em seguros automotivos em comparação ao Naïve Bayes, especialmente sob a ótica dos custos de falsos positivos.

REFERENCIAS

- [1] McKinsey & Company, Global Insurance Report 2025: The pursuit of growth. 2024. Dispon´ıvel em: https://www.mckinsey.com/industries/ financial-services/our-insights/global-insurance-report. Acesso em 13 de maio de 2025
- F. K. Alarfaj, I. Malik, H. U. Khan, N. Almusallam, M. Ramzan, and M. Ahmed, "Credit card fraud detection using state-of-the-art machine learning and deep learning algorithms", IEEE Access, vol. 10, pp. 39700–39715, 2022, doi: 10.1109/ACCESS.2022.3166891.
- N. S. Elhusseny, S. M. Ouf, and A. M. Idrees, "Credit Card Fraud Detection Using Machine Learning Techniques", Future Computing and Informatics Journal, vol. 7, no. 1, Article 2, 2022. doi: 10.54623/fue.fcij.7.1.2.

OBRIGADO