Betrag und Orientierung des Erdmagnetfeldes

Ziel

- Erdmagnetfeld
 - Betrag
 - Inklination
 - Kompasskurs

Ziel

$$ec{
abla} imes ec{E} = -rac{\partial ec{B}}{\partial t}$$

$$U = -N \cdot \dot{\Phi}$$

wobei
$$\dot{\Phi}=\dot{B}A+\dot{A}B=B\omega\cdot A_0\cos\omega t$$

$$A = A_0 \sin \omega t$$

$$\cos \alpha = \frac{U_{\min}}{U_{\max}}$$

N: Anzahl der Windungen

$$\mathrm{d}N = N \frac{b\mathrm{d}r}{b(r_a - r_i)}$$
 $U = \frac{1}{\sqrt{2}} \frac{R_i}{R_{\mathrm{Spule}} + R_i} U_{\mathrm{Anzeige}}$ $U = \int_{r_i}^{r_a} U_i \mathrm{d}N$ $= N \omega B \frac{\pi}{3} (r_i^2 + r_i r_a + r_a^2)$

Aufbau & Durchführung

Ziel

$$ec{
abla} imes ec{E} = -rac{\partial ec{B}}{\partial t}$$

$$U = -N \cdot \dot{\Phi}$$

wobei
$$\dot{\Phi}=\dot{B}A+\dot{A}B=B\omega\cdot A_0\cos\omega t$$

$$A = A_0 \sin \omega t$$

$$\cos \alpha = \frac{U_{\min}}{U_{\max}}$$

N: Anzahl der Windungen

$$\mathrm{d}N = N \frac{b\mathrm{d}r}{b(r_a - r_i)}$$
 $U = \frac{1}{\sqrt{2}} \frac{R_i}{R_{\mathrm{Spule}} + R_i} U_{\mathrm{Anzeige}}$ $U = \int_{r_i}^{r_a} U_i \mathrm{d}N$ $= N \omega B \frac{\pi}{3} (r_i^2 + r_i r_a + r_a^2)$

Fehlerrechnung

$$egin{aligned} \sigma_U &= \sqrt{\sum_{i=1}^m \left(rac{\partial U}{\partial x_i}
ight)^2 \sigma_{x_i}^2} \ U &= N \omega B rac{\pi}{3} (r_i^2 + r_i r_a + r_a^2) \ ilde{U} &= N \omega B ilde{r}^2 \ & \sigma_{ ilde{U}} &= \sqrt{N^2 B^2 ilde{r}^4} \sigma_\omega \ & rac{\sigma_{ ilde{U}}}{ ilde{U}} \propto rac{\sigma_\omega}{\omega} \end{aligned}$$

Die Auswertung ist fehleranfällig gegenüber Unsicherheit in der Winkelgeschwindigkeit!

Aufbau & Durchführung

Probleme und Lösung

- Der Betrag ist ohne Kenntnis der Windungszahl nicht bestimmbar
- Kompasspeilung als Maximum bestimmbar
- Inklinationswinkel unabhängig über das Verhältnis bestimmbar

Messwerte

Relativer Winkel	1.Messung	2.Messung	3.Messung	4.Messung
0	33,2	33,4	31,3	30,8
45	32,1	29,2	30,2	28,4
90	36,6	35,2	34,6	37,7
135	38,0	39,0	37,4	38,0
180	34,4	33,8	33,6	32,9
225	32,3	30,9	31,3	31,4
270	33,2	33,7	34,2	34,0
315	34,4	34,0	35,0	34,5
365	31,8	31,5	32,0	31,1

Auswertung

- Starke Unsicherheit in den ersten Werten
- Zwei unabhängige Cosinus-Fits
- Maximum und Minimum aus dem Fit bestimmen

Ergebnisse

• Inklinationswinkel α

• gemessen: $(51 \pm 2)^{\circ} | (64 \pm 1)^{\circ}$

• Literatur: 63°

• Abweichung: 19% | 2%

Zusammenfassung

- Inklination abschätzbar trotz unbekannter Spule
 - Bei linear zusammenhängenden Fehlern lohnt die Betrachtung der Verhältnisse
- Messwerte unabhängig voneinander aufnehmen
 - Vermeidung von durchziehenden Messfehlern
 - Offensichtliche Fehler aussortieren
- Beim Bau von Geräten über Gravur nachdenken

Quellen

- Uni Kiel http://uksph-s5.physik.uni-kiel.de/edu/praktika/aprakt/teil-2/rotspu.pdf
- Uni Heidelberg http://uksph-s5.physik.uni-kiel.de/edu/praktika/aprakt/teil-2/rotspu.pdf
- Wikimedia Commons http://commons.wikimedia.org/wiki/File:Inklinationsbussole.png