MATH 2130 Problem Workshop 1

In questions 1-12, draw the surface defined by the question. In questions 13-16, draw the curve and find the projections in the xy, yz and xz-coordinate planes.

1.
$$x = 2y^2 + z^2$$

2.
$$z = 2xy$$

3.
$$z = |x + y|$$

4.
$$x = z^3 + 1$$

5.
$$|x| + |y| = 1$$

6.
$$z^2 - x^2 = 3y^2$$

7.
$$y^2 = z^2 - 2y + 3$$

$$8. \ x^2 + y^2 = 2x - 4y - 5$$

9.
$$4y^2 + z^2 = x^2 - 1$$

10.
$$4y^2 + z^2 = x^2 + 1$$

11.
$$2x^2 + 3y^2 + 4z^2 = 12$$

12.
$$y^2 + 2z^2 = 4 - 2x$$

13. (The intersection of)
$$z = 2x^2 + 4y^2$$
, $y + z = 1$.

14. (The intersection of)
$$x^2 + y^2 + 2z^2 = 2$$
, $x + y = 1$.

15. (The intersection of)
$$z = x^2 + y^2$$
, $z = 2x^2$.

16. (The intersection of)
$$z = x^2 + y^2$$
, $2z = x^2$.

Answers:

13. •
$$2x^2 + 4y^2 + y = 1$$
, $z = 0$.

•
$$y + z = 1$$
, $x = 0$, where $(-1 - \sqrt{17})/8 \le y \le (-1 + \sqrt{17})/8$

•
$$4z^2 - 9z + 2x^2 + 4 = 0$$
, $y = 0$.

14. •
$$x + y = 1$$
, $z = 0$, where $(1 - \sqrt{3})/2 \le x \le (1 + \sqrt{3})/2$

•
$$2y^2 - 2y + 2z^2 = 1$$
, $x = 0$.

•
$$2x^2 - 2x + 2z^2 = 1$$
, $y = 0$.

15. •
$$y = \pm x$$
, $z = 0$.

•
$$z = 2y^2$$
, $x = 0$.