· Name: Prerna Sunil Jadhav

• Sap ID: 60004220127

• Batch: C22

· Branch: Computer Engineering

Course: Machine Learning

• Experiment 7: PCA

```
import numpy as np
data = np.array([[4, 6],
                 [8, 2],
                 [13, 3],
                 [7, 15]])
mean = np.mean(data, axis=0)
centered data = data - mean
print("Centered Data:")
print(centered data)
covariance matrix = np.cov(centered data, rowvar=False)
print("\nCovariance Matrix:")
print(covariance matrix)
eigen values, eigen vectors = np.linalg.eig(covariance matrix)
print("\nEigenvalues:")
print(eigen_values)
print("\nEigenvectors:")
print(eigen vectors)
new values = np.dot(centered data, eigen vectors)
print("\nNew Values:")
print(new_values)
    Centered Data:
    [[-4. -0.5]
     [0. -4.5]
     [5. -3.5]
     [-1. 8.5]
    Covariance Matrix:
     [[14. -8.]
     [-8. 35.]]
    Eigenvalues:
     [11.29962122 37.70037878]
```

```
Eigenvectors:

[[-0.94747869 0.31981892]

[-0.31981892 -0.94747869]]

New Values:

[[ 3.9498242 -0.80553633]

[ 1.43918513 4.26365409]

[-3.61802722 4.91526999]

[-1.77098211 -8.37338775]]
```

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
df = pd.read csv("../content/salary data.csv")
centered data = df - df.mean()
covariance matrix = np.cov(centered data.values.T)
eigen values, eigen vectors = np.linalg.eig(covariance matrix)
sorted indices = np.argsort(eigen values)[::-1]
eigen values = eigen values[sorted indices]
eigen vectors = eigen vectors[:, sorted indices]
new values = np.dot(centered data.values, eigen vectors)
plt.figure(figsize=(10, 6))
plt.scatter(new values[:, 0], new values[:, 1])
plt.title('PCA of Salary Dataset')
plt.xlabel('Principal Component 1')
plt.ylabel('Principal Component 2')
plt.grid(True)
plt.show()
print("Centered Data:")
print(centered data)
print("\nCovariance Matrix:")
print(covariance matrix)
print("\nEigenvalues:")
print(eigen_values)
print("\nEigenvectors:")
print(eigen vectors)
print("\nNew Values (Transformed Data):")
print(new values)
```


Centered Data:

	YearsExperience	Salary
0	-4.213333	-36660.0
1	-4.013333	-29798.0
2	-3.813333	-38272.0
3	-3.313333	-32478.0
4	-3.113333	-36112.0
5	-2.413333	-19361.0
6	-2.313333	-15853.0
7	-2.113333	-21558.0
8	-2.113333	-11558.0
9	-1.613333	-18814.0
10	-1.413333	-12785.0
11	-1.313333	-20209.0
12	-1.313333	-19046.0
13	-1.213333	-18922.0
14	-0.813333	-14892.0
15	-0.413333	-8065.0
16	-0.213333	-9974.0
17	-0.013333	7085.0
18	0.586667	5360.0
19	0.686667	17937.0
20	1.486667	15735.0
21	1.786667	22270.0
22	2.586667	25299.0
23	2.886667	37809.0
24	3.386667	33428.0
25	3.686667	29579.0
26	4.186667	40966.0
27	4.286667	36632.0
28	4.986667	
29	5.186667	45869.0

Covariance Matrix:

[[8.05360920e+00 7.61063034e+04]

[7.61063034e+04 7.51550960e+08]]

```
Eigenvalues:
[7.51550968e+08 3.46654177e-01]
Eigenvectors:
[[-1.01265659e-04 -9.99999995e-01]
 [-9.99999995e-01 1.01265659e-04]]
New Values (Transformed Data):
[[ 3.66600002e+04 5.00934262e-01]
 [ 2.97980003e+04 9.95819213e-01]
   3.82720002e+04 -6.23059780e-02]
 [ 3.24780002e+04 2.44272513e-02]
 [ 3.61120001e+04 -5.43572152e-01]
 [ 1.93610001e+04 4.52728902e-01]
 [ 1.58530002e+04 7.07968833e-01]
 [ 2.15580001e+04 -6.97517489e-02]
 [ 1.15580002e+04 9.42904839e-01]
 [ 1.88140001e+04 -2.91878779e-01]
 [ 1.27850001e+04 1.18651879e-01]
 [ 2.02090000e+04 -7.33144371e-01]
 [ 1.90460000e+04 -6.15372410e-01]
 [ 1.89220000e+04 -7.02815468e-01]
 [ 1.48920000e+04 -6.94714861e-01]
 [ 8.06500000e+03 -4.03374207e-01]
 [ 9.97399997e+03 -7.96690348e-01]
 [-7.08499996e+03 7.30800526e-01]
 [-5.36000003e+03 -4.38827327e-02]
 [-1.79370000e+04 1.12973546e+00]
 [-1.57350001e+04 1.06748481e-01]
 [-2.22700001e+04 4.68519563e-01]
 [-2.52990001e+04 -2.47467526e-02]
 [-3.78090001e+04 9.42086640e-01]
 [-3.34280002e+04 -1.55820849e-03]
 [-2.95790002e+04 -6.91329727e-01]
 [-4.09660002e+04 -3.82176687e-02]
 [-3.66320002e+04 -5.77103033e-01]
 [-4.63880003e+04 -2.89155263e-01]
```

[-4.58690003e+04 -5.41712139e-01]]