Contents

Funciones	5
Funciones lineales	5
Calcular pendiente usando dos puntos	5
Obtener ecuación de la recta	
Calcular pendiente y ecuación	5
Transformaciones	5
Desplazamientos verticales	5
Desplazamientos horizontales	
Reflexiones	5
Rectas paralelas y perpendiculares	
Paralela	
Perpendicular	
Posibles caracteristicas	
Par	
Impar	
Inyectiva	
Sobreyectiva	
Biyectiva	
Inversa	
Parabolas	
polinomica	
Factorizada	7
Canónica	
Circunferencia	•
Elipse	
простини	•
Trigonometria	7
Seno y Coseno	7
Periodicidad	
Identidad trigonometrica	
Diferencia seno y coseno	
Invertir signo	
Suma de angulos: Coseno	
Suma de angulos: Seno	8
Transformaciones: Funciones trigonometricas	
Amplitud	
Periodicidad	
Tangente	
Definicion	
Dominio	
Propiedades	
Otras funciones trigonometricas	
Secante	
Cosecante	9
Cosconiuc	9

Cotangente					. 9
Radianes y angulos					
Angulos notables Seno y Coseno					
0					
$rac{\pi}{6}$					
$\frac{6}{4}$					
$\frac{4}{\pi}$					
$\frac{3}{2}$					_
2	•		•	•	. 10
Limites					10
Definicion					. 10
Formal					. 10
Propiedades					. 11
Desigualdad y limite					
Lema del sandwich					. 11
Suma de limites			•	•	
Multiplicacion de limites					
Division de limites					
Raiz de limites					
Limite de polinomios					
Limites laterales					
Teorema	•		•	•	. 12
Continuidad					12
Requisitos					
Tipos de discontinuidad					
Evitable					
De salto					
Esencial					
Continuidad lateral					
Por izquierda					
•					
	•				
Por derecha					
Continuidad en un intervalo					. то
Continuidad en un intervalo					
Continuidad en un intervalo					. 13
Continuidad en un intervalo					. 13 . 13
Continuidad en un intervalo		· ·			. 13 . 13 . 13
Continuidad en un intervalo		· · · ·			. 13 . 13 . 13 . 13
Continuidad en un intervalo Intervalo Abierto Intervalo cerrado Propiedades Continuidad y operaciones entre funciones Polinomios Funciones racionales					. 13 . 13 . 13 . 13
Continuidad en un intervalo Intervalo Abierto Intervalo cerrado Propiedades Continuidad y operaciones entre funciones Polinomios Funciones racionales Radicacion					. 13 . 13 . 13 . 13 . 13
Continuidad en un intervalo Intervalo Abierto Intervalo cerrado Propiedades Continuidad y operaciones entre funciones Polinomios Funciones racionales Radicacion Tips					. 13 . 13 . 13 . 13 . 13 . 13
Continuidad en un intervalo Intervalo Abierto Intervalo cerrado Propiedades Continuidad y operaciones entre funciones Polinomios Funciones racionales Radicacion Tips Demostrar continuidad en un punto dado					. 13 . 13 . 13 . 13 . 13 . 13 . 13
Continuidad en un intervalo Intervalo Abierto Intervalo cerrado Propiedades Continuidad y operaciones entre funciones Polinomios Funciones racionales Radicacion Tips Demostrar continuidad en un punto dado Determinar en que puntos es discontinua una función.					. 13 . 13 . 13 . 13 . 13 . 13 . 13 . 13
Continuidad en un intervalo Intervalo Abierto Intervalo cerrado Propiedades Continuidad y operaciones entre funciones Polinomios Funciones racionales Radicacion Tips Demostrar continuidad en un punto dado Determinar en que puntos es discontinua una función .					. 13 . 13 . 13 . 13 . 13 . 13 . 13 . 14 . 14
Continuidad en un intervalo Intervalo Abierto Intervalo cerrado Propiedades Continuidad y operaciones entre funciones Polinomios Funciones racionales Radicacion Tips Demostrar continuidad en un punto dado Determinar en que puntos es discontinua una función.					. 13 . 13 . 13 . 13 . 13 . 13 . 13 . 14 . 14

Derivadas	14
Definición	14
Teorema derivadas y continuidad	14
Laterales	14
Izquierda	14
Derecha	15
Propiedad Derivada y Derivadas laterales	15
Ecuacion de la recta tangente	15
Diferenciacion logarítmica	15
Reglas de derivacion	15
f+g	15
f.g	15
c.f	15
r ·	15
$\frac{1}{g}$	_
f(g(x))	15
$f^{-1}(x)$	15
Derivadas comunes	16
<i>c</i>	16
x^r	16
sen(x)	16
cos(x)	16
e^x	16
a^x	16
ln(x)	16
$\log_a(x)$	16
arcsen(x)	16
arccos(x)	17
arctan(x)	17
Analisis de funciones	17
Extremos absolutos	17
Máximo absoluto	17
Mínimo absoluto	17
Extremos locales	17
Máximo local	17
Mínimo local	17
Prueba de la derivada segunda	17
Derivada y maximo local	18
Derivada y minimo local	18
Encontrar extremos en un intervalo cerrado	18
Teoremas	18
Teorema de fermat	18
Teorema de Rolle	18
Teorema del Valor Medio	18
Puntos críticos	19
Crecimiento y Decrecimiento	19
	-0

Funcion creciente	19
Funcion decreciente	19
Derivada y crecimiento	19
Concavas y Convexas	19
Convexa	19
Concava	19
Prueba de concavidad	19
Punto de inflexion	19
Regla de L'Hopital	20
Cuando tiende a a	20
Cuando tiende al infinito	20
Corolario	20
Aproximacion Lineal	20
	00
Integrales	20
Antiderivada o primitiva	20
Definicion	20
Integral indefinida	20
Definicion	20
Integracion por Sustitucion	21
Integracion por partes	21
Integrales comunes	21
0	21
x^r	21
$\frac{1}{x}$	21
$\cos(\mathbf{x})$	21
sen(x)	21
e^x	21
a^x	22
$rac{1}{\sqrt{1-x^2}}$	22
$\frac{1}{1-x^2}$	22
Propiedades integral indefinida	22
Suma y resta	22
Multiplicacion por constante	22
Integral de $0 \dots \dots \dots \dots \dots \dots$	22
Integral definida	22
Definicion	22
Metodo de sustitucion	22
Metodo por partes	23
Area entre dos curvas	23
Propiedades integral definida	23
Limites de integracion iguales	23
Inversion de limites de integracion	23
Funciones mayores o iguales a 0	23
Multiplicación por constante	23

Suma y resta								23
Transitividad de limites de integracio	n.							24
Desigualdad de funciones e integrales								24
Teoremas fundamentales del calculo								24
Primer teorema								24
Segundo teorema								24

Funciones

Funciones lineales

Calcular pendiente usando dos puntos

$$P = (x_1, y_1), Q = (x_2, y_2)$$

 $\Rightarrow a = \frac{y_2 - y_1}{x_2 - x_1}$

Obtener ecuación de la recta

Teniendo en cuenta que la recta pasa por un punto (x_1, y_1)

$$y = a(x - x_1) + y_1$$

Calcular pendiente y ecuación

$$y = \frac{y_2 - y_1}{x_2 - x_1}(x - x_1) + y_1$$

Transformaciones

Desplazamientos verticales

$$g(x) = f(x) + c$$
 Arriba

$$g(x) = f(x) - c$$
 Abajo

Desplazamientos horizontales

$$k(x) = f(x+c)$$
 Izquierda

$$k(x) = f(x - c)$$
 Derecha

Reflexiones

$$g(x) = -f(x)$$
Refleja respecto al eje x

$$g(x) = f(-x)$$
 Refleja respecto al eje y

Rectas paralelas y perpendiculares

Paralela

Una recta es paralela a otra recta \Leftrightarrow las rectas tienen la misma pendiente

Perpendicular

Una recta es perpendicular a otra recta \Leftrightarrow las rectas tienen pendientes reciprocas negativas

Posibles caracteristicas

Par

Son simetricas en el eje vertical:

$$f(-x) = f(x)$$

${\bf Impar}$

$$f(-x) = -f(x)$$

Inyectiva

No hay dos elementos del Dom(f) con igual imagen:

$$f(x_1) = f(x_2) \Rightarrow x_1 = x_2$$

Sobreyectiva

Una funcion $f : \mathbb{A} \to \mathbb{B}$ es sobreyectiva si todo elemento del conjunto de llegada es un elemento de Im(f), es decir:

$$\mathbb{B} = Im(f)$$

Biyectiva

Es Inyectiva y Sobreyectiva al mismo tiempo

Inversa

Si una función es Biyectiva entonces tiene inversa

$$f(x) = y \Rightarrow f^{-1}(y) = x$$

$$f(f^-1(x)) = x$$

Parabolas

polinomica

$$f(x) = ax^2 + bx + c$$

Factorizada

$$f(x) = a(x - x_1)(x - x_2)$$

Canónica

$$f(x) = a(x - x_v)^2 + y_v$$

 \boldsymbol{x}_v e \boldsymbol{y}_v son las coordenadas del vertice de la curva

$$x_v = -\frac{b}{2a}$$

$$y_v = f(x_v)$$

Circunferencia

$$C = \{(x, y) \in \mathbb{R}^2 | (x - x_0)^2 + (y - y_0)^2 = r^2 \}$$

 $\left(x_{0},y_{0}\right)$ Centro de la circunferencia

Elipse

 $(x_0, y_0) \rightarrow \text{Centro del elipse}$

 $a \rightarrow$ Distancia del centro a los vertices (Eje mayor)

 $b \rightarrow \text{Distancia del centro a los vertices (Eje menor)}$

$$\frac{(x-x_0)^2}{a^2} + \frac{(y-y_0)^2}{b^2} = 1$$

Trigonometria

Seno y Coseno

Periodicidad

$$\cos(t + 2k\pi) = \cos(t)$$

$$sen(t + 2k\pi) = sen(t)$$

Identidad trigonometrica

$$\cos^2(t) + \sin^2(t) = 1$$

Diferencia seno y coseno

$$\cos\left(t - \frac{\pi}{2}\right) = sen(t)$$

$$sen\left(t + \frac{\pi}{2}\right) = cos(t)$$

Invertir signo

$$\cos(t+\pi) = -\cos(t)$$

$$sen(t+\pi) = -sen(t)$$

Suma de angulos: Coseno

$$cos(t+s) = cos(t)cos(s) - sen(t)sen(s)$$

$$t = s \Rightarrow cos(2t) = cos^2(t) - sen^2(t)$$

Suma de angulos: Seno

$$sen(t+s) = sen(t)cos(s) + sen(s)cos(t)$$

$$t = s \Rightarrow sen(2t) = 2sen(t)cos(t)$$

Transformaciones: Funciones trigonometricas

Amplitud

a cos(t)

 $a \ sen(t)$

Cuanto mayor sea a mayor será la amplitud de la función

Si a es negativo existe una reflexión con respecto a uno de los ejes coordenados

Periodicidad

cos(bt)

sen(bt)

b modifica la periodicidad de la función

Si b es negativo existe una reflexión con respecto a uno de los ejes coordenados

Tangente

Definicion

$$tan(t) = \frac{sen(t)}{cos(t)}$$

Dominio

$$\mathbb{R} - \{(2k+1)\frac{\pi}{2}\} \to Cos(t) \neq 0$$

Propiedades

$$tan(t+\pi)=tan(t)$$
 De periodo pi

$$tan(-t) = -tan(t)$$
 Es impar

$$a = tan(t)$$
 Siendo $a =$ pendiente

Otras funciones trigonometricas

Secante

Periodo 2π

Dominio
$$\mathbb{R} - \{(2k+1)\frac{\pi}{2}\}$$

Imagen
$$\mathbb{R} - (-1, 1)$$

$$sec(t) = \frac{1}{cos(t)}$$

Cosecante

Periodo 2π

Dominio
$$\mathbb{R} - \{k\pi | k \in \mathbb{Z}\}$$

Imagen
$$\mathbb{R} - (-1, 1)$$

$$cosec(t) = \frac{1}{sen(t)}$$

Cotangente

Periodo π

Dominio
$$\mathbb{R} - \{k\pi | k \in \mathbb{Z}\}$$

Imagen \mathbb{R}

$$cot(t) = \frac{cos(t)}{sen(t)}$$

Radianes y angulos

$$\pi \cdot g = 180 \cdot h$$

Angulos notables Seno y Coseno

0

grados: 0

 $\cos: 1$

sen: 0

 $\frac{\pi}{6}$

Grados: 30

 $\cos: \frac{\sqrt{3}}{2}$

sen: $\frac{1}{2}$

 $\frac{\pi}{4}$

Grados: 45

 $\cos: \frac{\sqrt{2}}{2}$

sen: $\frac{\sqrt{2}}{2}$

 $\frac{\pi}{3}$

Grados: 60

 $\cos: \frac{1}{2}$

sen: $\frac{\sqrt{3}}{2}$

 $\frac{\pi}{2}$

Grados: 90

 $\cos: 0$

sen: 1

Limites

Definicion

Formal

$$\lim_{x \to a} f(x) = L \ \forall \ \epsilon > 0, \ \exists \ \delta > 0/si \ 0 < |x - a| < \delta \Rightarrow |f(x) - L| < \epsilon$$

Propiedades

Desigualdad y limite

$$f(x) \le g(x) \Rightarrow \lim_{x \to a} f(x) \le \lim_{x \to a} g(x)$$

Lema del sandwich

$$f(x) \leq g(x) \leq h(x) \Rightarrow \lim_{x \to a} f(x) = \lim_{x \to a} h(x) = L \Rightarrow \lim_{x \to a} g(x) = L$$

Suma de limites

Sea
$$\lim_{x \to a} f(x) = L \wedge \lim_{x \to a} g(x) = M$$

$$\lim_{x \to a} (f+g)(x) = L + M$$

Multiplicacion de limites

Sea
$$\lim_{x \to a} f(x) = L \wedge \lim_{x \to a} g(x) = M$$

$$\lim_{x \to a} (f \cdot g)(x) = L \cdot M$$

Division de limites

Sea
$$\lim_{x \to a} f(x) = L \wedge \lim_{x \to a} g(x) = M$$

$$M \neq 0 \Rightarrow \lim_{x \to a} \left(\frac{f}{q}\right)(x) = \frac{L}{M}$$

Raiz de limites

Sea
$$\lim_{x \to a} f(x) = L \wedge \lim_{x \to a} g(x) = M$$

$$n \in \mathbb{N}$$

$$\Rightarrow \lim_{x \to a} \sqrt[n]{f(x)} = \sqrt[n]{L}$$

Limite de polinomios

Cuando se trabaja con polinomios es posible simplemente reemplazar ${\bf x}$ Ejemplos:

$$\lim_{x \to a} p(x) = p(a)$$

$$f(x) = \frac{p(x)}{q(x)} \ \land \ q(a) \neq 0 \Rightarrow \lim_{x \to a} f(x) = \frac{p(a)}{q(a)}$$

$$f(x) = \sqrt[n]{p(x)} \Rightarrow \lim_{x \to a} f(x) = \sqrt[n]{p(a)}$$

Limites laterales

Teorema

$$\lim_{x \to a} f(x) = L \Leftrightarrow \lim_{x \to a^{-}} f(x) = L \wedge \lim_{x \to a^{+}} f(x) = L$$

Continuidad

Requisitos

$$a \in Dom(f) \Rightarrow \exists f(a)$$

$$\exists \lim_{x \to a} f(x)$$

$$f(a) = \lim_{x \to a} f(x)$$

Tipos de discontinuidad

Evitable

Se soluciona redefiniendo f(a) = L

$$\exists \lim_{x \to a} \text{ pero } f(x) \neq f(a) \lor \nexists f(a)$$

De salto

Los limites laterales no coinciden

$$\lim_{x\to a-}\neq \lim_{x\to a+}\Rightarrow \nexists \lim_{x\to a}$$

Esencial

Cuando uno de los limites laterales es infinito

$$\lim_{x \to a-} = \pm \infty \lor \lim_{x \to a+} = \pm \infty \Rightarrow \nexists \lim_{x \to a}$$

Continuidad lateral

Por izquierda

$$\lim_{x \to a^{-}} f(x) = f(a)$$

Por derecha

$$\lim_{x \to a^+} f(x) = f(a)$$

Continuidad en un intervalo

Intervalo Abierto

f es continua en el intervalo (a,b) si es continua en todo número del intervalo

Intervalo cerrado

f es continua en el intervalo [a,b] si:

Es continua en (a,b)

Es continua por derecha en a

Es continua por izquierda en b

Propiedades

Continuidad y operaciones entre funciones

Sean f y g continuas en a, las siguientes funciones también lo son

$$(f+g)(x)$$

$$(f \cdot g)(x)$$

$$c \cdot f(x)$$

$$g(a) \neq 0 \Rightarrow \left(\frac{f}{g}\right)(x)$$

f es continua en g(a) \Rightarrow $(f \circ g)(x)$

Polinomios

Los polinomios son continuos en \mathbb{R}

Funciones racionales

Toda función racional es continua en cualquier punto de su dominio

Radicacion

La radicación es continua en los puntos de su dominio (sin extremos)

Tips

Demostrar continuidad en un punto dado

$$a \in Dom(f) \Rightarrow \exists f(a)$$

$$\exists \lim_{x \to a} f(x)$$

$$f(a) = \lim_{x \to a} f(x)$$

Determinar en que puntos es discontinua una función

Determinar el dominio

Determinar continuidad en intervalos abiertos (con propiedades)

Decidir sobre la continuidad en los puntos extremos del intervalo (si es que hay)

Expresar el tipo de continuidad encontrada: Evitable, Salto, Esencial

Teoremas

Valor intermedio

Sean f continua en [a,b]

$$f(a) < N < f(b) \text{ o } f(b) < N < f(a)$$

$$\Rightarrow \exists c: \ a < c < b \ / \ f(c) = N$$

Weierstrass

Sea f continua en [a,b]

$$\Rightarrow \exists x_1, x_2 \in [a, b] \text{ tal que } f(x_1) \leq f(x) \leq f(x_2) \ \forall x \in [a, b]$$

Derivadas

Definición

$$\frac{df}{dx} = f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

f'(a) es la pendiente de la recta tangente en ese punto

Teorema derivadas y continuidad

 $\exists f'(a) \Rightarrow f$ es continua en a

f es NO es continua en a $\Rightarrow \nexists f'(a)$

Laterales

Izquierda

Valores negativos de h(a + h < a)

$$f'^{-}(a) = \lim_{h \to 0^{-}} \frac{f(a+h) - f(a)}{h}$$

Derecha

Valores positivos de h (a + h > a)

$$f'^{+}(a) = \lim_{h \to 0^{+}} \frac{f(a+h) - f(a)}{h}$$

Propiedad Derivada y Derivadas laterales

f'(a) existe solo si las derivadas laterales existen y son iguales

Ecuacion de la recta tangente

$$y = f'(a)(x - a) + f(a)$$

Diferenciacion logarítmica

Tomar logaritmo de ambos lados

Derivar de ambos lados

Despejar f'(x)

Reglas de derivacion

f + g

f' + g'

f.g

f'.g + f.g'

c.f

c.f'

 $\frac{f}{q}$

 $\frac{f'.g - f.g'}{g^2}$

f(g(x))

 $f^{\prime}(g(x)).g^{\prime}(x)$

 $f^{-1}(x)$

 $\frac{1}{f'(f^{-1}(x))}$

Derivadas comunes

c

0

 x^r

 $r.x^{r-1}$

sen(x)

cos(x)

cos(x)

-sen(x)

 e^x

 e^x

 a^x

Sea a > 0

 $ln(a) \cdot a^x$

ln(x)

Sea x > 0

 $\frac{1}{x}$

 $\log_a(x)$

Sea a > 0 y x > 0

 $\frac{1}{ln(a)\cdot x}$

arcsen(x)

 $\begin{aligned} & \text{Sea} \ -1 \leq x \leq 1 \\ & \frac{1}{\sqrt{1 - x^2}} \end{aligned}$

Sea
$$-1 \le x \le 1$$

$$-\frac{1}{\sqrt{1-x^2}}$$

arctan(x)

$$\frac{1}{1-x^2}$$

Analisis de funciones

Extremos absolutos

Máximo absoluto

 $f(c) \ge f(x) \ \forall x \in Dom f \Rightarrow$ La funcion tiene un máximo absoluto en el punto c

Mínimo absoluto

 $f(c) \leq f(x) \ \forall x \in Domf \Rightarrow$ La funcion tiene un mínimo absoluto en el punto c

Extremos locales

Máximo local

Sea $\mathbb I$ un intervalo abierto

 $c \in \mathbb{I}/f(c) \geq f(x) \; \forall x \in \mathbb{I} \Rightarrow$ el punto c
 es el máximo local de f

Mínimo local

Sea $\mathbb J$ un intervalo abierto

 $c \in \mathbb{J}/f(d) \leq f(x) \; \forall x \in \mathbb{J} \Rightarrow$ el punto d
 es el mínimo local de f

Prueba de la derivada segunda

Sea f" continua en un intervalo abierto que contiene a c

$$f'(c) = 0 \implies c \text{ es } P.C$$

 $f^{\prime\prime}(c)<0\Rightarrow \mathbf{c}$ es maximo local

 $f''(c) > 0 \Rightarrow$ c es minimo local

Derivada y maximo local

$$\exists c \in (a, b)$$

$$f'(x) > 0$$
 a la izquierda de c

$$f'(x) < 0$$
 a la derecha de c

 \Rightarrow c es un máximo local

Derivada y minimo local

$$\exists c \in (a, b)$$

$$f'(x) < 0$$
 a la izquierda de c

$$f'(x) > 0$$
 a la derecha de c

 \Rightarrow c es un mínimo local

Encontrar extremos en un intervalo cerrado

Verificar continuidad en el intervalo

Buscar puntos críticos

Evaluar la funcion en los extremos del intervalo y en los puntos criticos dentro del intervalo

Comparar los valores encontrados para determinar los extremos

Teoremas

Teorema de fermat

Si
$$x = c$$
 es extremo y $\exists f'(c)$

$$\Rightarrow f'(c) = 0$$

Teorema de Rolle

Sea
$$f(x)$$
 Continua en [a, b], Derivable en (a, b) y $f(a) = f(b)$

$$\Rightarrow \exists c \in (a,b)/f'(c) = 0$$

Teorema del Valor Medio

Sea f(x) Continua en [a, b], Derivable en (a, b)

$$\Rightarrow \exists c \in (a,b)/f'(c) = \frac{f(b)-f(a)}{b-a}$$
 Es decir, la derivada en c es igual a la pendiente de la recta que une los puntos $(a, f(a))$ y $(b, f(b))$

Puntos críticos

$$P.C = \{x \in Dom f/f'(x) = 0 \lor \nexists f'(x)\}\$$

Crecimiento y Decrecimiento

Funcion creciente

f se dice creciente sobre $\mathbb{I} \Leftrightarrow f(x_1) < f(x_2)$ cuando $x_1 < x_2$

Funcion decreciente

f se dice decreciente sobre $\mathbb{I} \Leftrightarrow f(x_1) > f(x_2)$ cuando $x_1 < x_2$

Derivada y crecimiento

Sea f(x) Continua en [a, b], Derivable en (a, b)

 $f'(x) > 0 \ \forall x \in (a, b) \Rightarrow$ f es creciente en [a, b]

 $f'(x) < 0 \ \forall x \in (a,b) \Rightarrow f$ es decreciente en [a, b]

Concavas y Convexas

Convexa

f es derivable en $\mathbb I$

la curva de f queda arriba de todas las tangentes a la funcion f es concava hacia arriba (convexa)

Concava

f es derivable en \mathbb{I}

la curva de f queda abajo de todas las tangentes a la funcion f es concava hacia abajo (concava)

Prueba de concavidad

Si f
 tiene derivadas segundas en un intervalo $\mathbb I$

 $f''(x) > 0 \ \forall x \in \mathbb{I} \Rightarrow f$ es concava hacia arriba (convexa) en \mathbb{I}

 $f''(x) < 0 \ \forall x \in \mathbb{I} \Rightarrow$ f es concava hacia abajo en \mathbb{I}

Punto de inflexion

Sea f(x) Continua en $\mathbb I$ y Derivable en $\mathbb I$, salvo quizás en x_0

Si la curva cambia la direccion de su concavidad en el punto $(x_0, f(x_0)) \Rightarrow x_0$ se llama punto de inflexion

Regla de L'Hopital

Cuando tiende a a

Sean f(x) y g(x) Derivables en \mathbb{I} , excepto quizás en a, y $g'(x) \neq 0$ en \mathbb{I} . Entonces:

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

Cuando tiende al infinito

Sean f(x) y g(x) Derivables $\forall x > N$ y $g'(x) \neq 0 \ \forall x > N$. Entonces:

$$\lim_{x \to \pm \infty} \frac{f(x)}{g(x)} = \lim_{x \to \pm \infty} \frac{f'(x)}{g'(x)}$$

Corolario

f' es continua \Rightarrow f es derivable

f' tiene discontinuidad de salto o esencial \Rightarrow f es no es derivable

 $\nexists \lim_{x \to a} f'(x) \Rightarrow$ No se puede decir nada sobre la derivabilidad de f

Aproximacion Lineal

En un entorno alrededor de x_0 , los valores de la funcion se pueden aproximar por los valores de la recta tangente a la funcion en el punto si:

$$|x - x_0| < \delta$$
, $f(x) \sim f(x_0) + f'(x_0)(x - x_0)$

Si la funcion es concava hacia arriba los valores estaran subestimados

Si la funcion es concava hacia abajo los valores estaran sobreestimados

Integrales

Antiderivada o primitiva

Definicion

f(x) definida en I

 $F'(x) = f(x) \ \forall x \in \mathbb{I} \Rightarrow F(x)$ es una antiderivada de f(x)

Integral indefinida

Definicion

Se llama integral indefinida de f al conjunto de todas sus antiderivadas

Es el conjunto infinito de todas las funciones de la forma

$$G(x) = F(x) + c \Rightarrow \int f(x) dx = F(x) + c$$

Integracion por Sustitucion

$$\int f(g(x))g'(x) \ dx = \int f(u) \ du$$

Con
$$u = g(x)$$
, $du = g'(x) dx$

Integracion por partes

$$\int f(x)g'(x) \ dx = f(x)g(x) - \int f'(x)g(x) \ dx$$

Orden para elegir que funcion derivar ILATE: Inversa Logaritmica Algebraica Trigonometrica Exponencial

Integrales comunes

0

 \mathbf{c}

 r^{r}

$$r \neq -1$$

$$\Rightarrow \frac{x^{r+1}}{r+1} + c$$

$$\frac{1}{r}$$

$$x \neq 0$$

$$\Rightarrow ln(|x|) + c$$

$\cos(x)$

$$sen(x) + c$$

$$-cos(x) + c$$

 e^{x}

$$e^x + c$$

$$\frac{a^{x}}{ln(a)} + c$$

$$\frac{1}{\sqrt{1-x^{2}}}$$

$$axcecm(x) + c$$

$$arcsen(x) + c$$

$$-arccos(x) + c$$

$$\frac{1}{1-x^2}$$

$$arctan(x) + c$$

Propiedades integral indefinida

Suma y resta

$$\int (f \pm g)(x) \ dx = \int f(x) \ dx \pm \int g(x) \ d$$

Multiplicacion por constante

$$\int k f(x) dx = k \int f(x) dx$$

Integral de 0

$$\int 0 \ dx = c$$

Integral definida

Definicion

Sea
$$f:[a,b] \to \mathbb{R}$$
 continua, $f(x) \ge 0 \ \forall x \in [a,b],$

La integral definida de f en [a,b] se denota $\int_a^b f(x) dx$

Está dada por el area debajo de la curva y = f(x) entre las rectas x=a e x=b

Metodo de sustitucion

Sean f y g' continuas en sus dominios

$$\Rightarrow \int_a^b f(g(x)).g'(x) \ dx = \int_{g(a)}^{g(b)} f(u)du$$

Si F es primitiva de f:

$$\Rightarrow \int_a^b f(g(x)).g'(x) \ dx = F(g(b)) - F(g(a))$$

Metodo por partes

Sean f y g derivables en [a, b]

$$\Rightarrow \int_a^b f(x).g'(x) \ dx = f(x)g(x) \Big|_a^b - \int_a^b f'(x).g(x) \ dx$$

Area entre dos curvas

Sean f y g tales que $f(x) \ge g(x) \ \forall x \in [a, b]$

El area entre f y g es:

$$\int_a^b (f(x) - g(x)) \ dx$$

Propiedades integral definida

Limites de integracion iguales

$$\int_{a}^{a} f(x)dt = 0$$

Inversion de limites de integracion

$$\int_{a}^{b} f(x)dt = -\int_{b}^{a} f(x)dt$$

Funciones mayores o iguales a 0

$$f(x) \ge 0 \ \forall x \in [a, b]$$

$$\Rightarrow \int_{a}^{b} f(x)dt \ge 0$$

Multiplicacion por constante

$$k \in \mathbb{R}$$

$$\Rightarrow \int_{a}^{b} k.f(x)dt = k \int_{a}^{b} f(x)dt$$

Suma y resta

$$\int_a^b (f(x) \pm g(x)) dt = \int_a^b f(x) dt \pm \int_a^b g(x) dt$$

Transitividad de limites de integracion

 $c \in \mathbb{R}$

$$\Rightarrow \int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx$$

Desigualdad de funciones e integrales

$$f(x) \le g(x) \ \forall x \in [a, b]$$

$$\Rightarrow \int_a^b f(x)dx \le \int_a^b g(x)dx$$

Teoremas fundamentales del calculo

Primer teorema

Sea f: [a, b] -> R una funcion continua, $F(x) = \int_a^x f(t) \ dt \ \ \forall x \in [a,b]$

$$\Rightarrow F'(x) = \frac{d}{dx} \int_{a}^{x} f(t) dt = f(x)$$

Es decir, F es una antiderivada de f en [a, b]

Segundo teorema

Sea f: $[a, b] \rightarrow R$ una funcion continua, G una antiderivada de f

$$\Rightarrow \int_a^b f(x) \ dx = G(x) \bigg|_a^b = G(a) - G(b) \quad \text{(Regla de barrow)}$$