Notes on discrete groups and Furstenberg boundaries

Ryo Ochi

2018年9月3日

目次

1 Introduction2 G-boundary2

Let G be a (countable) discrete group.

1 Introduction

We will argue C*-simplicity. So, we recall group C*-algebras.

Def 1.1. Let λ be a left regular representation of G, i.e.

$$G \ni g \mapsto \lambda_g [= \delta_h \mapsto \delta_{gh}] \in B(l^2(G)).$$

We define the reduced group C^* -algebra $C^*_r(G)$ by the closure of $\overline{\operatorname{span}}\{\lambda_g\}_{g\in G}$.

For any descrete group G, the reduced C^* -algebra $C^*_r(G)$ has a canonical tracial state $\tau_0 := \langle \dot{\delta}_e, \delta_e \rangle$.

Def 1.2. A group G is called C^* -simple, if $C_r^*(G)$ is simple, i.e. $C_r^*(G)$ has no closed two-sided ideal. A group G has the unique trace property if $C_r^*(G)$ has a unique trace.

Powers [Pow75] proved that free groups is C*-simple.

Thm 1.1 ([Pow75]). Let \mathbb{F}_2 be a free group of rank 2. For any $a \in C_r^*(G)$ and any $\varepsilon > 0$, there are $g_i, \ldots, g_n \in G$ and a partition of unity $\sum_{i=1}^n c_i = 1$ s.t.

$$\|\tau_0(a) - \sum_{i=1}^n c_i \lambda_{g_i} a \lambda_{g_i}^* \| < \varepsilon$$

In particular, $C_r^*(\mathbb{F}_2)$ is simple and has a unique trace. In other words, \mathbb{F}_2 is C^* -simple and has the unique trace property.

Variants of Powers' proof became the main method for establishing these property. Many many results. Kalantar and Kennedy [KK17] made the new method for proving C*-simplicity.

Thm 1.2 ([KK17]). Let G be a discrete group and $\partial_F G$ be the Furstenberg boundary of G. The followings are equivalent.

- 1. G is C^* -simple;
- 2. $C(\partial_F G) \rtimes_r G$ is simple;
- 3. $C(B) \rtimes_r G$ is simple for some G-boundary B;

- 4. G acts on $\partial_F G$ topologically freely;
- 5. G acts on B topologically freely for some G-boundary B:

Rem 1.2.1 ([BKKO17]). G acts on $\partial_F G$ freely if and only if G acts on B topologically freely for some G-boundary B.

So, in order to prove C^* -simplicity, it suffices to find the boundary on which G acts topologically freely. For example, for amalgamated free products or HNN-extension, we probably consider the ideal boundary of its Bass-Serre tree. So, many existing results are proved more simplify.

2 G-boundary

Def 2.1. Let G be a group and X be a locally compact group on which G acts. The action of G is called minimal if X has no non-trivial G-invariant closed subspace, that is for any $x \in X$, $\overline{G \cdot x} = X$. The action of G is called strongly proximal if for any $\mu \in \mathcal{P}(X)$, $\overline{G \cdot \mu}$ has a dirac mass, that is for any $\mu \in \mathcal{P}(X)$, there exist $x \in X$ and a net $g_i \in G$ s.t. for any $f \in C_0(X)$,

$$g_i.\mu(f) = \mu(g_i^{-1}.f) \to f(x).$$

X is called G-boundary if X is compact and the action of G is minimal and strongly proximal.

Ex 1 (\mathbb{F}_2). We consider a Caley graph of \mathbb{F}_2 . Let a,b be generators of \mathbb{F}_2 . Let V(T) be a set of all words of \mathbb{F}_2 and $E(T) = \{(v,w) \in V(T) \times V(T) | \text{ there exists } x \in \{a,a^{-1},b,b^{-1}\} \text{ s.t. } v = wx\}.$

参考文献

- [BKKO17] Emmanuel Breuillard, Mehrdad Kalantar, Matthew Kennedy, and Narutaka Ozawa. C*-simplicity and the unique trace property for discrete groups. *Publications mathématiques de l'IHÉS*, 126(1):35–71, 2017.
- [KK17] Mehrdad Kalantar and Matthew Kennedy. Boundaries of reduced c* c^{*}-algebras of discrete groups. Journal für die reine und angewandte Mathematik (Crelles Journal), 2017(727):247–267, 2017.
- [Pow75] R Powers. Simplicity of the c*-algebra associated with the free group on two generators, duke math.. 49 (1975), 151–156. CrossRef MathSciNet Google Scholar, 1975.