Introduction to Statistical Machine Learning

Christfried Webers

Statistical Machine Learning Group NICTA and College of Engineering and Computer Science The Australian National University

> Canberra February – June 2013

(Many figures from C. M. Bishop, "Pattern Recognition and Machine Learning")

Introduction to Statistical Machine Learning

© 2013 Christfried Webers NICTA

The Australian National University

Outlines Overview Introduction

Linear Algebra Probability Linear Regression 1 Linear Regression 2 Linear Classification 1 Linear Classification 2

Neural Networks 1 Neural Networks 2 Kernel Methods

Sparse Kernel Methods Graphical Models I

Graphical Models 2 Graphical Models 3

Mixture Models and EM 1
Mixture Models and EM 2
Approximate Inference

Sampling Sampling

Principal Component Analysis

Sequential Data 1 Sequential Data 2

Combining Models

Selected Topics

Discussion and Summary

Part XI

Kernel Methods

Introduction to Statistical Machine Learning

Christfried Webers NICTA

The Australian National University

- Partition the space x into bins of width Δ_i .
- Count the number n_i of samples falling into each bin i.
- Normalise.

$$p_i = \frac{n_i}{N\Delta_i}$$

Histogram of 50 data points generated from the distribution shown by the green curve for varying common bin width Δ

Introduction to Statistical Machine Learning

Christfried Webers NICTA The Australian National

Nonparametric Probability Density Estimation

Advantages

- Data can be discarded after calculating the p_i.
- Algorithm can be applied to sequentially arriving data.

Disadvantages

- Dependency on bin width Δ_i .
- Discontinuities due to the bin edges.
- Exponential scaling with the dimensionality *D* of the data. Need M^D bins for D dimensions and M bins per dimension.

Data

Duai Kepresentations

ernels

Lagrange Multipliers

- Draw data from some unknown probability distribution $p(\mathbf{x})$ in a D-dimensional space.
- ullet Consider a small region ${\mathcal R}$ containing ${\mathbf x}$. Probability mass associated with this region

$$P = \int_{\mathcal{R}} p(\mathbf{x}) \, d\mathbf{x}$$

• Data set of N observations drawn from $p(\mathbf{x})$. Total number K of points found inside of \mathcal{R} is distributed according to the binomial distribution

$$Bin(K | N, P) = \frac{N!}{K!(N-K)!} P^{K} (1-P)^{N-K}$$

- Expectation of $K : \mathbb{E}[K/N] = P$
- Variance of K: var[K/N] = P(1-P)

- Introduction to Statistical Machine Learning
- ©2013 Christfried Webers NICTA The Australian National

Data

Dual Representations

xerneis

Lagrange Multipliers

- Expectation of $K : \mathbb{E}[K/N] = P$
- Variance of K: var[K/N] = P(1-P)
- For large N, the distribution will be sharply peaked and therefore

$$K \approx NP$$

• Assuming also that the region has volume V and the region is small enough for $p(\mathbf{x})$ to be roughly constant, then

$$P \approx p(\mathbf{x})V$$

- Combining two contradictory assumptions
 - \bullet Region ${\mathcal R}$ is small enough for $p({\mathbf x})$ to be roughly constant.
 - Region $\mathcal R$ is large enough to have enough K points falling into it to get a sharp peak for the binomial distribution.

$$p(\mathbf{x}) \approx \frac{K}{NV}$$

Nonparametric Density Estimation - Refined

Two ways to exploit

$$p(\mathbf{x}) \approx \frac{K}{NV}$$

- Fix V and determine K from the data: kernel density estimation
- Fix K and determine the volume V from the data : K-nearest-neighbours density estimation

Introduction to Statistical Machine Learning

Nonparametric Probability Density Estimation

Data

Dual Representations

Kernels

 $Lagrange\ Multipliers$

 $Lagrange\ Multipliers$

- Define region \mathcal{R} to be a small hypercube around \mathbf{x}
- Define Parzen window (kernel function)

$$k(\mathbf{u}) = \begin{cases} 1, & |u_i| \le 1/2, & i = 1, \dots, D \\ 0, & \text{otherwise} \end{cases}$$

 Total number of data points inside of the hypercube centered at x

$$K = \sum_{n=1}^{N} k \left(\frac{\mathbf{x} - \mathbf{x}_n}{h} \right)$$

• Density estimate for $p(\mathbf{x})$

$$p(\mathbf{x}) \approx \frac{K}{NV} = \frac{1}{N} \sum_{n=1}^{N} \frac{1}{h^D} k \left(\frac{\mathbf{x} - \mathbf{x}_n}{h} \right)$$

• Interpret as sum over N cubes centered at each of the \mathbf{x}_n .

Nonparametric Estimation – Parzen Estimator

- Remaining problem: Discontinuities because of the hypercube (either in or out).
- Choose a smoother kernel function (and normalise correctly).
- Common choice : Gaussian kernel

$$p(\mathbf{x}) = \frac{1}{N} \sum_{n=1}^{N} \frac{1}{(2\pi h^2)^{D/2}} \exp\left\{-\frac{\|\mathbf{x} - \mathbf{x}_n\|}{2h^2}\right\}$$

ullet Can choose any other kernel function $k(\mathbf{u})$ obeying

$$k(\mathbf{u}) \ge 0,$$

$$\int k(\mathbf{u}) \, d\mathbf{u} = 1$$

Introduction to Statistical Machine Learning

© 2013 Christfried Webers NICTA The Australian National University

Nonparametric Probability Density Estimation

Data

Dual Representations

Kernel:

agrange Multipliers

Nonparametric Estimation – Parzen Estimator

Gaussian kernel

$$p(\mathbf{x}) = \frac{1}{N} \sum_{n=1}^{N} \frac{1}{(2\pi h^2)^{D/2}} \exp\left\{-\frac{\|\mathbf{x} - \mathbf{x}_n\|}{2h^2}\right\}$$

 h controls the trade-off between sensitivity to noise and over-smoothing.

Kernel density model with Gaussian kernel for different *h*.

Introduction to Statistical Machine Learning

© 2013 Christfried Webers NICTA The Australian National University

Nonparametric Probability Density Estimation

Data

Dual Representations

Kernel

Lagrange Multipliers

Nonparametric Estimation – Nearest Neighbour

- Now, fix K and find an appropriate value for V.
- Consider a small sphere around x and then allow the radius to increase until it contains exactly K data points.
- Calculate the probability by

$$p(\mathbf{x}) \approx \frac{K}{NV}$$

Nearest neighbour density model for different *K*.

Introduction to Statistical Machine Learning

© 2013 Christfried Webers NICTA The Australian National

Nonparametric Probability Density Estimation

Data

Duai Kepresentations

Kernel.

Lagrange Multipliers

The Role of Training Data

Dual Representation:

Kernels

 $Lagrange\ Multipliers$

Parametric methods

- Learn the model parameter w from the training data t.
- Discard the training data t.
- Nonparametric methods: Use training data directly for prediction.
 - k-nearest neighbours: use k-closest data from the 'training' set for classification
 - Parzen probability density model : set of functions centered on the training data

Kernel methods

 Base prediction on linear combination of kernel functions evaluated at the training data. Consider a linear regression model with regularised sum-of-squares error

$$J(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left\{ \mathbf{w}^{T} \boldsymbol{\phi}(\mathbf{x}_{n}) - t_{n} \right\}^{2} + \frac{\lambda}{2} \mathbf{w}^{T} \mathbf{w}$$

where $\lambda > 0$.

We could also write this in more compact form as

$$J(\mathbf{w}) = \frac{1}{2}(\mathbf{t} - \mathbf{\Phi}\mathbf{w})^T(\mathbf{t} - \mathbf{\Phi}\mathbf{w}) + \frac{\lambda}{2}\mathbf{w}^T\mathbf{w}$$

with the target vector $\mathbf{t} = (t_1, \dots, t_N)^T$, and the design matrix

$$\mathbf{\Phi} = \begin{bmatrix} \phi_0(\mathbf{x}_1) & \phi_1(\mathbf{x}_1) & \dots & \phi_{M-1}(\mathbf{x}_1) \\ \phi_0(\mathbf{x}_2) & \phi_1(\mathbf{x}_2) & \dots & \phi_{M-1}(\mathbf{x}_2) \\ \vdots & \vdots & \ddots & \vdots \\ \phi_0(\mathbf{x}_N) & \phi_1(\mathbf{x}_N) & \dots & \phi_{M-1}(\mathbf{x}_N) \end{bmatrix}.$$

Christfried Webers NICTA The Australian National

Dual Representations

Data

Dual Representations

Kernels

Lagrange Multiplier:

• Critical points for $J(\mathbf{w})$

$$J(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left\{ \mathbf{w}^{T} \boldsymbol{\phi}(\mathbf{x}_{n}) - t_{n} \right\}^{2} + \frac{\lambda}{2} \mathbf{w}^{T} \mathbf{w}$$

can be found as

$$\mathbf{w} = -\frac{1}{\lambda} \sum_{n=1}^{N} \left\{ \mathbf{w}^{T} \phi(\mathbf{x}_{n}) - t_{n} \right\} \phi(\mathbf{x}_{n}) = \sum_{n=1}^{N} a_{n} \phi(\mathbf{x}_{n}) = \mathbf{\Phi}^{T} \mathbf{a}$$

by introducing the new vector $\mathbf{a} = (a_1, \dots, a_N)^T$ with components

$$a_n = -\frac{1}{\lambda} \left\{ \mathbf{w}^T \phi(\mathbf{x}_n) - t_n \right\}$$

Data

Dual Representations

xerneis

Lagrange Multipliers

• Now express $J(\mathbf{w})$ as a function of this new variable a instead of \mathbf{w} via the relation $\mathbf{w} = \mathbf{\Phi}^T \mathbf{a}$

$$J(\mathbf{a}) = \frac{1}{2}\mathbf{a}^T\mathbf{\Phi}\mathbf{\Phi}^T\mathbf{\Phi}\mathbf{\Phi}^T\mathbf{a} - \mathbf{a}^T\mathbf{\Phi}\mathbf{\Phi}^T\mathbf{t} + \frac{1}{2}\mathbf{t}^T\mathbf{t} + \frac{\lambda}{2}\mathbf{a}^T\mathbf{\Phi}\mathbf{\Phi}^T\mathbf{a}$$

where again $\mathbf{t} = (t_1, \dots, t_N)^T$.

• Define the $N \times N$ Gram matrix $\mathbf{K} = \mathbf{\Phi} \mathbf{\Phi}^T$ with elements

$$K_{nm} = \phi(\mathbf{x}_n)^T \phi(\mathbf{x}_m) = k(\mathbf{x}_n, \mathbf{x}_m).$$

Express J(a) now as

$$J(\mathbf{a}) = \frac{1}{2}\mathbf{a}^T \mathbf{K} \mathbf{K} \mathbf{a} - \mathbf{a}^T \mathbf{K} \mathbf{t} + \frac{1}{2}\mathbf{t}^T \mathbf{t} + \frac{\lambda}{2}\mathbf{a}^T \mathbf{K} \mathbf{a}.$$

Data

Dual Representations

Kernel

Lagrange Multipliers

 The kernel function is defined over two points, x and x', of the input space

$$k(\mathbf{x}, \mathbf{x}') = \boldsymbol{\phi}(\mathbf{x})^T \boldsymbol{\phi}(\mathbf{x}').$$

- $k(\mathbf{x}, \mathbf{x}')$ is symmetric.
- It is an inner product of two vectors of basis functions

$$k(\mathbf{x}, \mathbf{x}') = \langle \phi(\mathbf{x}), \phi(\mathbf{x}') \rangle.$$

 For prediction, the kernel function will be evaluated at the training data points. (See next slides.)

Data

Dual Representations

Kernel.

 $Lagrange\ Multipliers$

• Let's calculate the critical points for

$$J(\mathbf{a}) = \frac{1}{2}\mathbf{a}^T\mathbf{K}\mathbf{K}\mathbf{a} - \mathbf{a}^T\mathbf{K}\mathbf{t} + \frac{1}{2}\mathbf{t}^T\mathbf{t} + \frac{\lambda}{2}\mathbf{a}^T\mathbf{K}\mathbf{a}.$$

Directional derivative

$$\mathcal{D}J(\mathbf{a})(\boldsymbol{\xi}) = \boldsymbol{\xi}^T \mathbf{K} \mathbf{K} \mathbf{a} - \boldsymbol{\xi}^T \mathbf{K} \mathbf{t} + \lambda \, \boldsymbol{\xi}^T \mathbf{K} \mathbf{a}$$

should be zero in all possible directions ξ .

• Therefore $\mathbf{K}(\mathbf{Ka} - \mathbf{t} + \lambda \mathbf{a}) = 0$ and as \mathbf{K} has full rank

$$\mathbf{a} = (\mathbf{K} + \lambda \, \mathbf{I}_N)^{-1} \mathbf{t}.$$

ullet Second directional derivative (using $\mathbf{K} = \mathbf{\Phi}\mathbf{\Phi}^T$)

$$\mathcal{D}^2 J(\mathbf{a})(\boldsymbol{\xi}, \boldsymbol{\xi}) = \boldsymbol{\xi}^T \mathbf{K} \mathbf{K} \boldsymbol{\xi} + \lambda \boldsymbol{\xi}^T \mathbf{K} \boldsymbol{\xi} = \|\mathbf{K} \boldsymbol{\xi}\|^2 + \lambda \|\mathbf{\Phi}^T \boldsymbol{\xi}\| > 0.$$

• $\mathbf{a} = (\mathbf{K} + \lambda \mathbf{I}_N)^{-1} \mathbf{t}$ minimises $J(\mathbf{a})$.

Data

Dual Representations

ernels

Lagrange Multipliers

 Inserting the argument a which minimises the error J(a) into the prediction model for the linear regression, we get for the prediction

$$y(\mathbf{x}) = \mathbf{w}^T \phi(\mathbf{x}) = \mathbf{a}^T \Phi \phi(\mathbf{x}) = (\Phi \phi(\mathbf{x}))^T \mathbf{a}$$
$$= \mathbf{k}(\mathbf{x})^T (\mathbf{K} + \lambda \mathbf{I}_N)^{-1} \mathbf{t}$$

where we defined the vector $\mathbf{k}(\mathbf{x})$ with elements $k_n(\mathbf{x}) = k(\mathbf{x}_n, \mathbf{x}) = \phi(\mathbf{x}_n)^T \phi(\mathbf{x})$.

- The prediction $y(\mathbf{x})$ can be expressed entirely in terms of the kernel function $k(\mathbf{x}, \mathbf{x}')$ evaluated at the training and test data.
- Looks familiar? See Bayesian Linear Regression.

Dual Representations

- What have we gained by the dual representation?
- Need to invert an $N \times N$ matrix now, where N is the number of data points. Can be large!
- In the parameter space formulation, we 'only' needed to invert an $M \times M$ matrix, where M was the number of basis functions.
- BUT: a kernel corresponds to an inner product of basis functions. So we can use a large number of basis functions, even infinitely many.
- We can construct new valid kernels directly from given ones (whatever the corresponding basis functions of the new kernel might be).
- As a kernel defines a kind of 'distance' between two points in the input space, we can define kernels over graphs, sets, strings, and text documents.

Data

Kernels

Lagrange Multipliers

Choose a set of basis functions

$$\{\phi_1,\ldots,\phi_M\}$$

Find a new kernel as an inner product between vectors of basis functions evaluated at x and x'

$$k(x, x') = \phi(x)^T \phi(x) = \sum_{i=1}^{M} \phi_i(x) \phi_i(x')$$

Kernels from Basis Functions

Polynomial basis functions

Corresponding kernel k(x, x') as function of x for x' = -0.5 (red cross).

Introduction to Statistical Machine Learning

© 2013 Christfried Webers NICTA The Australian National

Nonparametric Probability Density Estimation

Data

Dual Representations

Kernels

Lagrange Multipliers

Data

Dual Representations

Kernels

Lagrange Multipliers

Gaussian basis functions

Corresponding kernel k(x, x') as function of x for x' = 0.0 (red cross).

Kernels from Basis Functions

Logistic Sigmoid basis functions

Corresponding kernel k(x, x') as function of x for x' = 0.0 (red cross).

Introduction to Statistical Machine Learning

© 2013 Christfried Webers NICTA The Australian National

Nonparametric
Probability Density
Estimation

Data

Dual Representations

Kernels

Lagrange Multipliers

Data

Duai Kepresenianon

Kernels

Lagrange Multiplier:

Choose a mapping from two points of the input space to a real number, which is symmetric in its arguments, e.g.

$$k(\mathbf{x}, \mathbf{z}) = (\mathbf{x}^T \mathbf{z})^2 = k(\mathbf{z}, \mathbf{x})$$

Try to write this as an inner product of a vector valued function evaluated at the arguments x and z, e.g.

$$k(\mathbf{x}, \mathbf{z}) = (\mathbf{x}^T \mathbf{z})^2 = (x_1 z_1 + x_2 z_2)^2$$

$$= x_1^2 z_1^2 + 2x_1 z_2 x_2 z_2 + x_2^2 z_2^2$$

$$= (x_1^2, \sqrt{2} x_1 x_2, x_2^2) (z_1^2, \sqrt{2} z_1 z_2, z_2^2)^T$$

$$= \phi(\mathbf{x})^T \phi(\mathbf{z})$$

with the feature mapping $\phi(\mathbf{x}) = (x_1^2, \sqrt{2}x_1x_2, x_2^2)^T$.

Introduction to Statistical
Machine Learning

©2013 Christfried Webers NICTA The Australian National

Probability Density
Estimation

Data

Dual Representation

Kernels

Lagrange Multipliers

• A necessary and sufficient condition for $k(\mathbf{x}, \mathbf{x}')$ to be a valid kernel is that the Gram matrix \mathbf{K} , whose elements are $k(\mathbf{x}_n, \mathbf{x}_m)$, should be positive semidefinite for all possible choices of the set $\{\mathbf{x}_n\}$.

Note: The Gram matrix \mathbf{K} was defined with the help of the input data $\mathbf{K} = \mathbf{\Phi} \mathbf{\Phi}^T$. The kernel function $k(\mathbf{x}_n, \mathbf{x}_m)$ defines the entries in the Gram matrix $K_{nm} = k(\mathbf{x}_n, \mathbf{x}_m)$ depending on two input data points \mathbf{x}_n and \mathbf{x}_m . The above therefore says, that $k(\mathbf{x}, \mathbf{x}')$ is a valid kernel if the Gram matrix is positive semidefinite for any set of input data.

Given valid kernels $k_1(\mathbf{x}, \mathbf{x}')$ and $k_2(\mathbf{x}, \mathbf{x}')$, the following kernels are also valid:

$$k(\mathbf{x}, \mathbf{x}') = c k_1(\mathbf{x}, \mathbf{x}')$$

$$k(\mathbf{x}, \mathbf{x}') = f(\mathbf{x}) k_1(\mathbf{x}, \mathbf{x}') f(\mathbf{x}')$$

$$k(\mathbf{x}, \mathbf{x}') = q(k_1(\mathbf{x}, \mathbf{x}'))$$

$$k(\mathbf{x}, \mathbf{x}') = \exp(k_1(\mathbf{x}, \mathbf{x}'))$$

$$k(\mathbf{x}, \mathbf{x}') = k_1(\mathbf{x}, \mathbf{x}') + k_2(\mathbf{x}, \mathbf{x}')$$

$$k(\mathbf{x}, \mathbf{x}') = k_1(\mathbf{x}, \mathbf{x}') k_2(\mathbf{x}, \mathbf{x}')$$

$$k(\mathbf{x}, \mathbf{x}') = k_1(\mathbf{x}, \mathbf{x}') k_2(\mathbf{x}, \mathbf{x}')$$

$$k(\mathbf{x}, \mathbf{x}') = k_3(\phi(\mathbf{x}), \phi(\mathbf{x}'))$$

$$k(\mathbf{x}, \mathbf{x}') = \mathbf{x}^T \mathbf{A} \mathbf{x}'$$

$$k(\mathbf{x}, \mathbf{x}') = k_a(\mathbf{x}_a, \mathbf{x}'_a) + k_b(\mathbf{x}_b, \mathbf{x}'_b)$$

$$k(\mathbf{x}, \mathbf{x}') = k_a(\mathbf{x}_a, \mathbf{x}'_a) k_b(\mathbf{x}_b, \mathbf{x}'_b)$$

c>0 constant $f(\cdot)$ any function $q(\cdot)$ polynomial with nonneg. coeff.

any function to \mathbb{R}^M

 $k_3(\cdot,\cdot)$ valid kernel in \mathbb{R}^M $\mathbf{A} = \mathbf{A}^T, \mathbf{A} >= 0$ $\mathbf{x} = (\mathbf{x}_a, \mathbf{x}_b)$

 $\phi(\mathbf{x})$

ISML 2013

Nonparametric
Probability Density
Estimation

Data

Dual Representations

Lagrange Multipliers

Further examples of kernels

$$k(\mathbf{x}, \mathbf{x}') = (\mathbf{x}^T \mathbf{x}')^M$$

$$k(\mathbf{x}, \mathbf{x}') = (\mathbf{x}^T \mathbf{x}' + c)^M$$

$$k(\mathbf{x}, \mathbf{x}') = \exp(-\|\mathbf{x} - \mathbf{x}'\|^2 / 2\sigma^2)$$

$$k(\mathbf{x}, \mathbf{x}') = \tanh(a\mathbf{x}^T \mathbf{x}' + b)$$

only terms of degree M all terms up to degree M Gaussian kernel Sigmoidal kernel

Generally, we call

$$k(\mathbf{x}, \mathbf{x}') = \mathbf{x}^T \mathbf{x}'$$

$$k(\mathbf{x}, \mathbf{x}') = k(\mathbf{x} - \mathbf{x}')$$

$$k(\mathbf{x}, \mathbf{x}') = (\|\mathbf{x} - \mathbf{x}'\|)$$

linear kernel stationary kernel homogeneous kernel

Data

Dual Representations

Kernels

Lagrange Multipliers

- We 'only' need an appropriate similarity measure $k(\mathbf{x}, \mathbf{x}')$ which is a kernel.
- Example: Given a set \mathcal{A} and the set of all subsets of \mathcal{A} , called the power set $\mathcal{P}(\mathcal{A})$.
- For two subsets $A_1, A_2 \in \mathcal{P}(A)$, denote the number of elements of the intersection of A_1 and A_2 by $|A_1 \cap A_2|$.
- Then it can be shown that

$$k(\mathcal{A}_1, \mathcal{A}_2) = 2^{|\mathcal{A}_1 \cap \mathcal{A}_2|}$$

corresponds to an inner product in a feature space. Therefore, $k(\mathcal{A}_1, \mathcal{A}_2)$ is a valid kernel function.

Data

энан керresentano

Kernels

Lagrange Multipliers

• Given $p(\mathbf{x})$, we can define a kernel

$$k(\mathbf{x}, \mathbf{x}') = p(\mathbf{x}) p(\mathbf{x}'),$$

which means two inputs \mathbf{x} and \mathbf{x}' are similar if they both have high probabilities.

• Include a weighting function p(i) and extend the kernel to

$$k(\mathbf{x}, \mathbf{x}') = \sum_{i} p(\mathbf{x} \mid i) p(\mathbf{x}' \mid i) p(i).$$

For a continous variable z

$$k(\mathbf{x}, \mathbf{x}') = \int p(\mathbf{x} \mid \mathbf{z}) p(\mathbf{x}' \mid \mathbf{z}) p(\mathbf{z}) d\mathbf{z}.$$

Hidden Markov Model with sequences of length L.

Data

Dual Representations

rnels

Lagrange Multipliers

- Find the stationary points for a function $f(x_1, x_2)$ subject to one or more constraints on the variables x_1 and x_2 written in the form $g(x_1, x_2) = 0$.
- Direct approach
 - **3** Solve $g(x_1, x_2) = 0$ for one of the variables to get $x_2 = h(x_1)$.
 - **3** Insert the result into $f(x_1, x_2)$ to get a function of one variable $f(x_1, h(x_1))$.
 - **③** Find the stationary point(s) x_1^* of $f(x_1, h(x_1))$ with corresponding value $x_2^* = h(x_1^*)$.
- Finding $x_2 = h(x_1)$ may be hard.
- Symmetry in the variables x_1 and x_2 is lost.

- ©2013 Christfried Webers NICTA
- The Australian National University

Data

Dual Representations

Kernel:

Lagrange Multipliers

- Assume *D*-dimensional variable $\mathbf{x} = (x_1, \dots, x_D)^T$.
- The constraint $g(\mathbf{x}) = 0$ is a (D-1)-dimensional surface in the \mathbf{x} -space.
- The gradient $\nabla g(\mathbf{x})$ will be orthogonal to the surface because if both $g(\mathbf{x} + \boldsymbol{\epsilon})$ and $g(\mathbf{x})$ lie on the surface, then $g(\mathbf{x} + \boldsymbol{\epsilon}) \simeq g(\mathbf{x}) + \boldsymbol{\epsilon}^T \nabla g(\mathbf{x})$.

the value by $f(\mathbf{x}^* + \boldsymbol{\epsilon}) \simeq f(\mathbf{x}^*) + \boldsymbol{\epsilon}^T \nabla f(\mathbf{x}^*)$.

• Thus $\nabla f(\mathbf{x}^*)$ and $\nabla g(\mathbf{x})$ must be parallel (or anti-parallel) and therefore at $\mathbf{x} = \mathbf{x}^*$ we have with the Lagrange multiplier $\lambda \neq 0$,

$$\nabla f(\mathbf{x}) + \lambda \nabla g(\mathbf{x}) = 0.$$

Introduction to Statistical Machine Learning

> ©2013 Christfried Webers NICTA

The Australian National University

Probability Density
Estimation

Data

Dual Representations

Kernels

 $Lagrange\ Multipliers$

Data

Dual Representations

Kernels

Lagrange Multipliers

Introduce the Lagrangian function

$$L(\mathbf{x}, \lambda) = f(\mathbf{x}) + \lambda g(\mathbf{x})$$

from which we get the constraint stationary conditions

$$\nabla_{\mathbf{x}} L(\mathbf{x}, \lambda) = \nabla f(\mathbf{x}) + \lambda \nabla g(\mathbf{x}) = 0$$

and the constraint itself

$$\frac{\partial L(\mathbf{x}, \lambda)}{\partial \lambda} = g(\mathbf{x}) = 0.$$

• This are D equations resulting from $\nabla_{\mathbf{x}} L(\mathbf{x}, \lambda)$ and one equation from $\frac{\partial L(\mathbf{x}, \lambda)}{\partial \lambda}$, together determining \mathbf{x}^{\star} and λ .

Data

Dual Representations

Kernels

Lagrange Multipliers

- Given $f(x_1, x_2) = 1 x_1^2 x_2^2$ subject to the constraint $g(x_1, x_2) = x_1 + x_2 1 = 0$.
- Define the Lagrangian function

$$L(\mathbf{x},\lambda) = 1 - x_1^2 - x_2^2 + \lambda(x_1 + x_2 - 1).$$

• A stationary solution with respect to x_1 , x_2 , and λ must satisfy

$$-2x_1 + \lambda = 0$$
$$-2x_2 + \lambda = 0$$
$$x_1 + x_2 - 1 = 0.$$

• Therefore $(x_1^{\star}, x_2^{\star}) = (\frac{1}{2}, \frac{1}{2})$ and $\lambda = 1$.

Lagrange Multipliers - Example

- Given $f(x_1, x_2) = 1 x_1^2 x_2^2$ subject to the constraint $g(x_1, x_2) = x_1 + x_2 1 = 0$.
- Lagrangian $L(\mathbf{x}, \lambda) = 1 x_1^2 x_2^2 + \lambda(x_1 + x_2 1)$
- $\bullet \ (x_1^{\star}, x_2^{\star}) = (\frac{1}{2}, \frac{1}{2}).$

Introduction to Statistical Machine Learning

© 2013 Christfried Webers NICTA The Australian National

Nonparametric Probability Density Estimation

Data

иш кергезетино

Kernels

Lagrange Multipliers

- ISML
- Nonparametric
 Probability Density
 Estimation
- Data
- Dual Representations
 - rnels
- $Lagrange\ Multipliers$

- Inequality constraint $g(\mathbf{x}) > 0$.
- Two cases
 - If $g(\mathbf{x}) > 0$, constraint is inactive. Constraint plays no role. Solution is $\nabla f(\mathbf{x}) = 0$. Corresponds to Lagrangian with $\lambda = 0$.
 - If $g(\mathbf{x}) = 0$, constraint is active. Solution lies on the boundary, but now the sign of λ is crucial. Only a maximum if its gradient is oriented away from the region $g(\mathbf{x}) > 0$. Therefore, $\nabla f(\mathbf{x}) = -\lambda \nabla g(\mathbf{x})$ for some $\lambda > 0$.
- For either of the cases $\lambda g(\mathbf{x}) = 0$.

- ©2013 Christfried Webers NICTA The Australian National
- ISML 2013

Data

Dual Representations

Kernels

 $Lagrange\ Multipliers$

- Maximise $f(\mathbf{x})$ subject to the constraint $g(\mathbf{x}) \geq 0$.
- Define the Lagrangian

$$L(\mathbf{x}, \lambda) = f(\mathbf{x}) + \lambda g(\mathbf{x})$$

• Solve for ${\bf x}$ and ${\boldsymbol \lambda}$ subject to the constraints (Karush-Kuhn-Tucker or KKT conditions)

$$g(\mathbf{x}) \ge 0$$
$$\lambda \ge 0$$
$$\lambda g(\mathbf{x}) = 0$$

Data

amale

Lagrange Multipliers

- Maximise $f(\mathbf{x})$ subject to the constraints $g_j(\mathbf{x}) = 0$ for $j = 1, \dots, J$, and $h_k(\mathbf{x}) > 0$ for $k = 1, \dots, K$.
- Define the Lagrange multipliers $\{\lambda_j\}$ and $\{\mu_k\}$, and the Lagrangian

$$L(\mathbf{x}, \{\lambda_j\}, \{\mu_k\}) = f(\mathbf{x}) + \sum_{j=1}^J \lambda_j g_j(\mathbf{x}) + \sum_{k=1}^K \mu_k h_k(\mathbf{x}).$$

• Solve for \mathbf{x} , $\{\lambda_j\}$, and $\{\mu_k\}$ subject to the constraints (Karush-Kuhn-Tucker or KKT conditions)

$$\mu_k \ge 0$$
$$\mu_k h_k(\mathbf{x}) = 0$$

for k = 1, ..., K.

• For minimisation of $f(\mathbf{x})$, change the sign in front of the Lagrange multipliers.