第5章 数组和广义表

- 5.1 数组的定义
- 5.2 数组的顺序与实现
- 5.3 矩阵的压缩存储
- 5.4 广义表的定义
- 5.5 广义表的存储结构

■ 数组

- □ 数组是由n(n>1)个具有相同数据类型的数据元素a1, a2, ..., an 组成的有序序列,且该序列必须存储在一块地址连续的存储单元中。
- □ 数组中的数据元素具有相同数据类型。
- 数组是一种随机存取结构,给定一组下标,就可以直接访问与其对 应的数据元素。
- □ 数组中的数据元素个数是固定的,是一种定长的线性表。
- 数组一般不作插入和删除操作,一旦建立了数组,则结构中的数据 元素个数和数据元素之间的关系就不再发生变动。

- 数组是一组偶对(下标值,数据元素值)的集合。
 - □ 在数组中,对于一组有意义的下标,都存在一个与其对应的值。一 维数组对应着一个下标值,二维数组对应着两个下标值,如此类推。
 - □ 数组中的每个数据元素都对应于一组下标(j_1 , j_2 , ..., j_n) 其中: $0 \le j_i \le b_i$ -1

b_i称为第i维的长度(i=1,2,...,n)

数组的抽象数据类型定义

ADT Array{

```
数据对象: j_i = 0,1,...,b_i-1 , i=1,2,...,n ; D = \{ a_{j_1 j_2...j_n} \mid n(>0)称为数组的维数,b_i是数组第i维的长度,j_i是数组元素第i维的下标,a_{j_1 j_2...j_n} \in ElemSet \} 数据关系: R = \{R1, R2, ..., Rn\} Ri = \{ < a_{j_1 j_2...j_i...j_n} , a_{j_1 j_2...j_{i+1}...j_n} > \mid 0 \le j_k \le b_k-1 , 1 \le k \le n \ \text{且k} \ne i , 0 \le j_i \le b_i-2 , a_{j_1 j_2...j_{i+1}...j_n} , a_{j_1 j_2...j_{i+1}...j_n} \in D , i=1,2,...,n \} 基本操作: 取值、赋值 ......
```

ADT Array

■ 直观的n维数组

以二维数组为例讨论。将二维数组看成是一个定长的线性表,其每个元素又是一个定长的线性表。

0≦i≦m-1

设二维数组A=
$$(a_{ij})$$
m×n,则
A= $(\alpha_0, \alpha_2, ..., \alpha_p)$ (p=m-1或n-1)
其中,每个数据元素 α_j 是一个列向量(线性表): α_j = $(a_{0j}, a_{1j}, ..., a_{m-1,j})$ $0 \le j \le n-1$ 或是一个行向量:

 $\alpha_{i} = (a_{i0}, a_{i1}, ..., a_{i,n-1})$

■ 直观的n维数组

- 一. 数组的顺序存储
- 数组一般不做插入和删除操作,也就是说,数组一旦建立, 结构中的元素个数和元素间的关系就不再发生变化
 - □ 因此一般都是采用顺序存储的方法来表示数组。

■ 问题: 计算机的内存结构是一维(线性)地址结构,对于多维数组,将其存放(映射)到内存一维结构时,有个次序约定问题。即必须按某种次序将数组元素排成一列序列,然后将这个线性序列存放到内存中。

- 多维数组的两种顺序存储方式
 - □ 行优先顺序(Row Major Order):将数组元素按行排列,第i+1个行向量紧接在第i个行向量后面。对二维数组,按行优先顺序存储的线性序列为:
 - $= a_{00}, a_{01}, a_{02}, \dots, a_{0,n-1}, a_{10}, a_{11}, \dots a_{1,n-1}, \dots, a_{m-1,0}, a_{m-1,1}, \dots, a_{m-1,n-1}$
 - PASCAL、C是按行优先顺序存储的。
 - □ 列优先顺序(Column Major Order):将数组元素按列向量排列,第 j+1个列向量紧接在第j个列向量之后,对二维数组,按列优先顺序存储的线性序列为:
 - = $a_{00}, a_{10}, \ldots, a_{m-1,0}, a_{01}, a_{11}, \ldots a_{m-1,1}, \ldots$
 - Fortune语言是以列为优先顺序存储

$$A = \begin{pmatrix} a_{00} & a_{01} & \dots & a_{0,n-1} \\ a_{10} & a_{11} & \dots & a_{1,n-1} \\ \dots & \dots & \dots & \dots \\ a_{m-1,0} & a_{m-1,1} & \dots & a_{m-1,n-1} \end{pmatrix}$$

(a) 二维数组

二维数组及其顺序存储图例形式

(b) 行优先顺序存储

(c) 列优先顺序存储

- 二. 数组的地址计算
- 以二维数组为例
 - 口 设有二维数组 $A=(a_{ij})_{m\times n}$,若每个元素占用的存储单元数为 $d(^)$, $LOC[a_{00}]$ 表示元素 a_{00} 的首地址(即数组的首地址(基地址)),以行优先存储,则元素 $LOC[a_{ii}]$ 的存储地址为?
 - (1) 第0行中的每个元素对应的地址是:

LOC[
$$a_{0j}$$
] = LOC[a_{00}] + j×d j=0,1,2,...,n-1

(2) 第1行中的每个元素对应的地址是:

LOC[
$$a_{1i}$$
] = LOC[a_{00}] + (1×n + j) ×d j=0,1,2,...,n-1

...

- 二. 数组的地址计算
- 以行优先存储
 - (3) 第m-1行中的每个元素对应的(首)地址是:

LOC[
$$a_{m-1,i}$$
] = LOC[a_{00}] + ((m-1)*n + j) $\times d$ j=0,1,2,...,n-1

由此可知,二维数组中任一元素a_{ij}的地址是:

LOC[
$$a_{ij}$$
] = LOC[a_{00}] + (i×n+j) ×d
i=0,1,2,...,m-1 j=0,1,2,...,n-1

二. 数组的地址计算

A_{mxn}以列序为主序存储

$$A_{mxn} = \begin{pmatrix} \begin{pmatrix} a_{00} \\ a_{10} \\ \vdots \\ a_{m-1,0} \end{pmatrix} \begin{pmatrix} a_{01} \\ a_{11} \\ \vdots \\ a_{m-1,1} \end{pmatrix} \begin{pmatrix} a_{02} \\ a_{12} \\ \vdots \\ a_{m1,2} \end{pmatrix} \dots \begin{pmatrix} a_{0,n-1} \\ a_{1,n-1} \\ \vdots \\ a_{m-1,n-1} \end{pmatrix}$$

$$\begin{bmatrix} a_{00} & a_{10} & \dots & a_{m-1,0} & a_{01} & a_{11} & \dots & a_{m-1,1} & \dots & a_{0, n-1} & \dots & a_{m-1, n-1} \end{bmatrix}$$

 LOC(a₀₀) 是二维数组的起始存储地址, d为每个数据元素占用存储单元的 长度(数目), 则

LOC(
$$a_{ij}$$
) = LOC(a_{00}) + (i + j × m) × d
其中, i=0,1,2,...,m-1 j=0,1,2,...,n-1

二. 数组的地址计算

■ 推而广之,对于n维数组中任一元素a_{j₁j₂...jn}的地址是

LOC
$$(a_{j_1 j_2...j_n}) = LOC (a_{00...0}) + [(b_2 \times ... \times b_n) \times j_1 + (b_3 \times ... \times b_n) \times j_2 + ... + b_n \times j_{n-1} + j_n] \times d$$

例题

例:一个二维数组A,行下标的范围是1到6,列下标的范围是0到7,每个数组元素用相邻的6个字节存储,存储器按字节编址。那么,这个数组的体积是 288 个字节。

例题

例:已知二维数组Amm按行存储的元素地址公式是:

Loc(a_{ij}) = Loc(a_{11}) + [(i-1) × m+(j-1)] × K , 请问按列存储的公式相同吗?

答: 尽管是方阵, 但公式仍不同。应为:

 $Loc(a_{ij}) = Loc(a_{11}) + [(j-1) \times m + (i-1)] \times K$

例题

〖考研题〗: 设数组a[1···60, 1···70]的基地址为2048,

每个元素占2个存储单元,若以列序为主序顺序存储,则元

素a[32, 58]的存储地址为_____。

答:请注意审题!

根据列优先公式 Loc(a;;)=Loc(a₁₁)+[(j-1) × m+(i-1)] × K

得: LOC($a_{32.58}$)=2048+[(58-1) × 60+(32-1)] × 2=8950

想一想:若数组是a[0···59, 0···69],结果 是否仍为8950?

维界虽未变,但此时的a[32,58]不再是原来的a[32,58]

练习

- 一. 已知二维数组 $A_{40\times50}$,数组左上角元素下标为[0,0],每个元素使用4个字节空间,数组A的起始存储地址为10000。
 - · 若采用行序为主,求数组元素A[20,31]在内存的地址;
 - · 若采用列序为主,求数组元素A[20, 31]在内存的地址。

在科学与工程计算问题中,矩阵是一种常用的数学对象,在高级语言编程时,通常将一个矩阵描述为一个二维数组。这样,可以对其元素进行随机存取,进行各种矩阵运算。

- 对于高阶矩阵,若其中非零元素呈某种规律分布或者矩阵中有大量的零元素,为了节省存储空间,避免存储重复的非零元素或零元素。对这类矩阵进行压缩存储:
 - □ 多个相同的非零元素只分配一个存储空间;
 - □ 零元素不分配空间。

- 一. 特殊矩阵
- ■特殊矩阵是指非零元素或零元素的分布有一定规律的矩阵
 - 对称矩阵:矩阵中,对角线两边对应位置上元素的值相同(a_{ij}=a_{ji})
 - 三角矩阵: 矩阵中,对角线上(下)边元素值为常数(或者0),称下(上) 三角矩阵
 - 如果只存储对称矩阵对角线上的值和对角线以上部分的值,则与上三 角矩阵存储方法相同
 - 如果只存储对称矩阵对角线上的值和对角线以下部分的值,则与下三 角矩阵存储方法相同

- 一. 特殊矩阵
- ■特殊矩阵是指非零元素或零元素的分布有一定规律的矩阵
- 对称矩阵,若一个n阶方阵 $A=(a_{ij})_{n\times n}$ 中的元素满足性质:

对称矩阵示例

一. 特殊矩阵

■ 对称矩阵中的元素<u>关于主对角线对称</u>,因此,让每一对对称元素a_{ij}和 a_{ji}(i≠j)分配一个存储空间,则n²个元素压缩存储到n(n+1)/2个存储空间, 能节约近一半的存储空间。

a ₁₁	a ₁₂	a ₁₃	• • •	a_{1n}
a_{21}	a ₂₂	a ₂₃	•••	a_{2n}
a ₃₁	a ₃₂	a ₃₃	•••	a_{3n}
• • •	• • •	• • •	•••	•••
a_{n1}	a_{n2}	a_{n3}	• • •	a_{nn}

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \cdots & a_{3n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{n1} & a_{n2} & a_{n3} & \cdots & a_{nn} \end{bmatrix}$$

- 一. 特殊矩阵
- 假设按"行优先顺序"存储下三角(包括对角线)中的元素
 - □ 设用一维数组(向量) $M[\frac{n(n+1)}{2}]$ 存储n阶对称矩阵,为了便于访问,必须找出矩阵A中的元素的下标值(i,j)和向量M[k]的下标值k之间的对应关系。

对称矩阵的压缩存储示例

- 一. 特殊矩阵
- 根据上述的下标对应关系,对于矩阵中的任意元素a_{ij},均可在一维数组M中唯一确定其位置k;反之,对所有
 - k=0,1,2, ...,n(n+1)/2-1, 都能确定M[k]中的元素在矩阵A中的位置(i,j)。
 - 称M[n(n+1)/2]为n阶对称矩阵A的压缩存储。

- 一. 特殊矩阵
- K与下标i、j的关系
 - □ 若i >= j: a_{ij}在下三角中,直接保存在M中。a_{ij}之前的i-1行共有元素个数: 1+2+...+(i-1) = i×(i-1)/2

而在第i行上, a_{ij} 之前恰有j-1个元素,因此,元素 a_{ij} 保存在向量M中时的下标值k之间的对应关系是 $k = i \times (i-1)/2 + j-1$

- □ 若i<j: 则 a_{ij} 是在上三角中。因为 a_{ij} = a_{ji} ,在向量M中保存的是 a_{ji} 。依上述分析可得: $k = j \times (j-1)/2 + i-1$ i<j
- □ 所以,若以行序为主序存储矩阵的下三角(包括对角线)中的元素,则

$$K = \begin{cases} i \times (i-1)/2 + (j-1) & i \ge j \\ 1 \le i, j \le n & k = 0, 1, \dots, n \times (n+1)/2 - 1 \\ j \times (j-1)/2 + (i-1) & i < j \end{cases}$$

- 一. 特殊矩阵
- 三角矩阵:以主对角线划分,三角矩阵有上三角和下三角两种。
 - □ 上三角矩阵的下三角(不包括主对角线)中的元素均为常数**c(**一般 为**0)**。
 - □ 下三角矩阵正好相反,它的主对角线上方均为常数,

(a) 上三角矩阵示例

(b) 下三角矩阵示例

- 一. 特殊矩阵
- 三角矩阵中的重复元素c可共享一个存储空间,其余的元素

正好有
$$\frac{n\times(n+1)}{2}$$
个,因此,三角矩阵可压缩存储到向量

M[0, ...,
$$\frac{n \times (n+1)}{2}$$
]中,其中c存放在向量的最后1个分量中。

下三角矩阵

$$\begin{bmatrix} a_{11} & c & c & \cdots & c \\ a_{21} & a_{22} & c & \cdots & c \\ a_{31} & a_{32} & a_{33} & \cdots & c \\ \cdots & \cdots & \cdots & \cdots & c \\ a_{n,1} & a_{n,2} & a_{n,3} & \cdots & a_{n,n} \end{bmatrix}$$

M
$$\begin{bmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & n(n+1)/2-1 \\ a_{11} & a_{21} & a_{22} & a_{31} & a_{32} & a_{33} & a_{41} & a_{42} & a_{43} & \dots & a_{nn} & \mathbf{c} \end{bmatrix}$$

若
$$i \ge j$$
,矩阵元素 a_{ij} 在数组M中的存放位置为 $1 + 2 + \cdots + (i-1) + j-1 = i*(i-1)/2 + j-1$

前上1行元素总数

第1行第1个元素

前的元素个数

- 一. 特殊矩阵
- 下三角矩阵元素 a_{ij} 保存在向量M中时的下标值k与(i,j)之间的对应关系是:

$$\mathbf{K} = \begin{cases} \frac{i \times (i-1)}{2} + (j-1) & \text{\pm i} >= j \text{\pm} \\ \frac{n \times (n+1)}{2} & \text{\pm i} < j \text{\pm i} \end{cases}$$

练习

- 一. 在一个10阶对称矩阵A中,若采用行优先压缩存储矩阵上 三角元素,每个元素使用8个字节,数组内存首址为100。
 - · 若a[1,1]是数组首元素,求矩阵元素A[6,7]的内存地址;
 - · 若a[0,0]是数组首元素,求矩阵元素A[2,3]的内存地址。

元素个数

上二角矩阵

0 1 2 (n-1) n (n+1) n(n+1)/2-1
M
$$a_{11}$$
 a_{12} a_{13} ... $a_{1 n}$ a_{22} a_{23} a_{nn} c

若 $i \le j$,矩阵元素 a_{ij} 在数组M中的存放位置为 $n + (n-1) + (n-2) + \cdots + (n-(i-1)+1) + j-i$

一. 特殊矩阵

矩阵中,除了主对角线和主对角线上或下方若干条对角线上的 元素之外,其余元素皆为零。即所有的非零元素集中在以主对 角线为了中心的带状区域中。

- 一. 特殊矩阵
- 综上所述,各种特殊矩阵其非零元素的分布都是有规律的,因此总能找到一种方法将它们压缩存储到一个向量中,并且一般都能找到矩阵中的元素与该向量的对应关系,通过这个关系,仍能对矩阵的元素进行随机存取。

练习

一. 已知矩阵A[4][5],矩阵元素为整型,每个元素使用4个字节空间,现用一维数组B存储该矩阵,数组B的内存首址为10000,求矩阵元素A[2, 3]在内存的地址(矩阵左上角元素下标为[1,1])

二. 已知对称矩阵M[5][5],矩阵元素为整型,每个元素使用4个字节空间,现用一维数组B存储该矩阵,数组B的内存首址为10000,求矩阵元素M[5, 4]在内存的地址(矩阵左上角元素下标为[1,1])

- 二. 稀疏矩阵
- 对于稀疏矩阵,目前还没有一个确切的定义。
 - 设矩阵A是一个n×m的矩阵中有s个非零元素,
 - 设 $\delta=s/(n\times m)$,称δ为稀疏因子,如果某一矩阵的稀疏因子δ满足 $\delta \le 0.05$ 时称为稀疏矩阵

- 二. 稀疏矩阵
- 对于稀疏矩阵,采用压缩存储方法时,只存储非**0**元素
 - 存储非0元素的行下标值、列下标值、元素值
 - 因此一个三元组(i, j, a_{ij})唯一确定稀疏矩阵的一个非零元素。

如上图稀疏矩阵A的三元组线性表为:

- 二. 稀疏矩阵
- 稀疏矩阵的类型定义

5.3 矩阵的压缩存储

- 三. 三元组顺序表
- 矩阵的转置

		<i>!</i> —	NUT.		
6	mu行数				
7 8	n	nu列数			
8	tı	u元素			
1	2	12			
1	3	9			
3	1	-3			
3	6	14			
4	3	24			
4 5	2	18			
6	1	15			
6	1	_7			

† † † row col value

(a) 原矩阵的三元组表

7	mu行数				
6 8] n	u列	数		
8	tı	tu元素个数			
1	3	-3			
1	6	15			
2	1	12			
2	5	18			
3	1	9			
3	4	24			
6	6	-7			
6	3	14			

† † † row col value

(b)转置矩阵的三元组表

5.3 矩阵的压缩存储

- 三. 三元组顺序表
- 稀疏矩阵的转置

设矩阵列数为m,对矩阵三元组表扫描m次;第k次扫描, 找寻所有列号为k的项,将其行号变列号、列号变行号,顺次存 于转置矩阵三元组表中。

0	0	-3	0	0	15	
12	0	0	0	18	0	
9	0	0	24	0	0	
0	0	0	0	0	0	
0	0	0	0	0	0	
0	0	14	0	0	0	
0	0	0	0	0	0	J

行	列	值 -3
0	2	-3
0	5	15
1	0	12
1	4	18
2	0	9
2	3	24
5	2	14

5.3 矩阵的压缩存储

- 三. 三元组顺序表
- 稀疏矩阵的转置

设矩阵列数为m,对矩阵三元组表扫描m次;第k次扫描, 找寻所有列号为k的项,将其行号变列号、列号变行号,顺次存 于转置矩阵三元组表中。

行	列	值
0	1	12
0	2	9
2	0	-3
2	5	14
3	2	24
4	1	18
5	0	15

一. 概念

- 广义表是线性表的推广和扩充,在人工智能领域中应用 十分广泛。
 - 在第2章中,我们把线性表定义为 $n(n \ge 0)$ 个元素 a_1 , a_2 , …, a_n 的有穷序列,该序列中的所有元素具有相同的数据类型且只能是原子项(Atom)。
 - 所谓原子项可以是一个数或一个结构,是指结构上不可再分的。若放松对元素的这种限制,容许它们具有其自身结构,就产生了广义表的概念。

- 一. 概念
- 广义表(Lists,又称为列表): 是由 $n(n \ge 0)$ 个元素组成的有穷序列,记作: LS= (a_1, a_2, \dots, a_n)
 - 其中a_i或者是原子项,或者是一个广义表。LS是广义表的名字, n为它的长度。若a_i是广义表,则称为LS的子表。
 - 习惯上:原子用小写字母,子表用大写字母

- 一. 概念
- 广义表的术语:

有广义表LS= (a_1, a_2, \dots, a_n)

- 若广义表LS非空,则a₁(表中第一个元素)称为表头;
- 其余元素组成的子表称为表尾: $(a_2, a_3, ..., a_n)$
- 表的长度: 广义表中所包含的元素(包括原子和子表)的个数
- 表的深度:广义表中括号的重数,是**LS**中各**a**_i(i=1,...,n)的深度的最大值加**1**。*空表的深度为1,原子的深度为0。*

一. 概念

- 广义表的性质
 - 广义表的元素可以是原子,也可以是子表,子表的元素又可以是子表, …。即广义表是一个多层次的结构。
 - 广义表可以被其它广义表所共享,也可以共享其它广义表。广义 表共享其它广义表时通过表名引用。
 - 广义表本身可以是一个递归表。
 - 根据对表头、表尾的定义,任何一个非空广义表的表头可以是原子,也可以是子表,而表尾必定是广义表。

- 一. 概念
- 广义表深度和长度

广义表	表长n	表深h
A=()	0	1
B=(e)	1	1
C=(a,(b,c,d))	2	2
D=(A,B,C)	3	3
E=(a,E)	2	8
F=(())	1	2

广义表的图形表示

- 一. 概念
- 注意

例如:

B = (())=(A) 有一个元素的广义表,此元素为空表 长度为1 深度为2

- 一. 概念
- 任何一个非空广义表
 - 表头: 表的第一个元素
 - 表尾: 表头以外其它表元素组成的表

$$LS = (\alpha 1, \alpha 2, ..., \alpha n)$$

均可分解为表头和表尾两部分

- 基本运算:
 - 取表头 Head (LS) = \alpha1
 - 取表尾 Tail(LS)=(α2,...,αn)

一. 概念

■例子

$$D = (E, F), E = (a, (b, c)), F = (d, (e))$$

$$Head(D) = E = (a, (b, c)) \qquad Tail(D) = (F) = ((d, (e)))$$

$$Head(E) = a \qquad Tail(E) = ((b, c))$$

$$Head((b, c)) = (b, c) \qquad Tail((b, c)) = ()$$

$$Head((c)) = (c) \qquad Tail((c)) = ()$$

二. 存储结构

- 由于广义表中的数据元素具有不同的结构,通常用链式 存储结构表示,每个数据元素用一个结点表示。因此, 广义表中就有两类结点:
 - 一类是表结点,用来表示广义表项,由标志域,表头指针域,表 尾指针域组成;
 - 另一类是原子结点,用来表示原子项,由标志域,原子的值域组 成
 - 只要广义表非空,都是由表头和表尾组成。即一个确定的表头和 表尾就唯一确定一个广义表。

标志tag=0 原子的值

标志tag=1 表头指针hp 表尾指针tp

(a) 原子结点

(b) 表结点

- 二. 存储结构
- 广义表的存储结构示例
 - 例子A=(),B=(e),C=(a, (b, c, d)),D=(A, B, C),E=(a, E)

A=NULL

练习

一. 一个广义表是(a, (a, b), ((i, j), k)), 请画出该广义表的链式存储结构。

第5章总结

- 数组是一组偶对的集合,必然带:下标值,数据值
- ■数组的顺序存储
 - 行优先顺序、列优先顺序
 - 二维数组位置ij 和一维数组位置k之间的地址转换
- 特殊矩阵: 非零元素或零元素的分布有一定规律的矩阵
 - 对称矩阵、三角矩阵、K对角矩阵
 - 掌握对称矩阵用一维数组存储时,矩阵下标ij和数组位置k的转换
- 稀疏矩阵: 非0元素占矩阵元素总数比例较少的矩阵
 - 三元组顺序表的表示方法
- 广义表是线性表的推广和扩充,是由n个元素组成的有穷序列
 - 基本概念:表头、表尾、长度、深度
 - 链式存储结构表示