

Física III - Recuperatorio del segundo parcial

 Nombre y apellido: . 	

■ DNI: _____

Instrucciones generales

- Expresar todas las unidades en el Sistema Internacional.
- Tanto las respuestas como los desarrollos correspondientes deben escribirse con bolígrafo.
- Todas las hojas a entregar deben estar numeradas y se debe indicar el nombre, apellido y número de DNI en cada una.
- Todas las respuestas deben estar correctamente justificadas.

Ejercicio 1

Demostrar que las funciones que tienen la forma $\psi(x,t) = f\left(t - \frac{x}{\nu}\right)$ y $\psi(x,t) = g\left(t + \frac{x}{\nu}\right)$ representan ondas que se propagan a lo largo de la dirección x con rapidez ν hacia $+\infty$ y hacia $-\infty$, respectivamente.

Ejercicio 2

Considere la siguiente distribución:

$$y(x) = A \exp \left[-\frac{(x-x_0)^2}{\sigma^2} \right] \cos \left[a \left(x - x_0 \right) \right].$$

¿Cómo debería modificarse esta expresión si ha de representar la forma de una onda en el instante t_0 que se propaga a lo largo del eje x hacia $+\infty$ con rapidez v?

Ejercicio 3

Demostrar que en una cuerda de longitud *L* cuyos extremos están libres solamente se pueden propagar ondas armónicas con las mismas frecuencias con las que vibraría si sus extremos estuviesen fijos.

Ejercicio 4

El campo magnético de una onda electromagnética transversal plana y monocromática que se propaga en la dirección x viene dado por

$$\vec{B}(x,t) = B_0 \cos(kx - \omega t) \,\hat{\mathbf{e}}_{\mathbf{v}}.$$

¿Cuál debe ser la correspondiente expresión del campo eléctrico de forma que se verifique que el vector de Poynting esté orientado según $\hat{\mathbf{e}}_x$?