$\forall x, y \in \mathbb{R}, x < y, \exists i \in \mathbb{R} \backslash \mathbb{Q} \text{ such that } x < i < y$

Proof. ' Case 1: $x,y \in \mathbb{Q}$, choose $i=x+\frac{\sqrt{2}}{2}(y-x) \in \mathbb{R}\backslash \mathbb{Q}$, Case 2: $x,\ y \notin \{x,\ y \in \mathbb{Q}\}$, Obviously $\exists m,\ n \in \mathbb{R},\ x < m < n < y$ If $m,\ n \in \mathbb{Q}$, then by Case 1, $\exists i \in \mathbb{R}\backslash \mathbb{Q}$ such that $x < m < i < n < y \Rightarrow x < i < y$ If $m,\ n \notin \{m,\ n \in \mathbb{Q}\}$ Then choose i=m or i=n such that $i \in \mathbb{R}\backslash \mathbb{Q}$