Linear Regression

Previous class

Midterm

Total	Min	P25	Median	Average	P 75	Max
/50	19.5	29.0	33.0	33.4	37.8	44.5
/100	39.0	58.0	66.0	66.9	75.5	89.0

Today's class

- Linear Regression
- Application in R/RStudio and Inference

Linear Regression

- Rudimentary model in Supervised Learning
- Predicting a numeric variable
- Many advanced models are extensions of linear regression
- Two forms
 - ➤ Simple Linear Regression
 - ➤ Multiple Linear Regression

Regression

- Goal: Fit a relationship between
 - \triangleright numeric output variable Y & set of "p" input variables $X_1, X_2, X_3, \dots X_p$
- Output variable Y is also referred as
 - Response / Target / Outcome variable
- Input variables $X_1, X_2, X_3, \dots X_p$ are also referred as
 - ➤ Predictors / Independent variables / Regressors / Covariates

Linear Regression

■ Predict "Y" using a linear combination of predictors $X_1, X_2, X_3, \dots X_p$

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p + \epsilon$$

Noise or Unexplained part

- Information available on both X's & Y
- $\beta_0, \beta_1, \beta_2 \cdots \beta_p$ are coefficients
- Required to estimate the coefficients
- Underlying estimation process: Ordinary Least Squares (OLS)

$$Y = X \beta + \epsilon$$
 $\widehat{\beta} = (X^T X)^{-1} X^T Y$

Estimated values are generally represented by hat

Types

■ Simple Linear Regression (p = 1)

$$Y = \beta_0 + \beta_1 X_1 + \epsilon$$

Multiple Linear Regression (p > 1)

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p + \epsilon$$

- Regression modeling includes estimating coefficients, and choosing which predictors (X's) to include and in what form
- E.g., A transformed numerical predictor can be included (E.g., $\log X_1$) in the regression
- Right form depends on domain knowledge, data, required predictive power etc.
- Numerous applications

Example: Real Estate market

- Response : house list price (Y)
- Predictors (X)
 - Square Foot (sqft)
 - > Year Built
 - ➤ Beds, Bath, Lot Size, Parking Spots
 - \triangleright Garage (0/1)
 - **>** Zip
 - Crime rate
 - > Income
 - ➤ Public School Rating
 - **>**

list price $\approx \beta_0 + \beta_1 \text{ sqft} + \beta_2 \text{ age} + \dots + \beta_p \text{ school rating}$

list price $\approx 200000 + 34 \text{ sqft} - 27 \text{ age} + \dots + 72 \text{ school rating}$

Example: New route Air fare

- Response : fare (Y)
- Predictors (X)
 - Start and End City
 - New Air carriers entering the route
 - ➤ Market concentration
 - Start and End City Average Income
 - Start and End City Average Population
 - ➤ Distance
 - \triangleright Vacation route (1/0)
 - **>**

fare $\approx \beta_0 + \beta_1$ start city $+ \beta_2$ end city $+ \cdots + \beta_p$ distance

fare $\approx 200 + 35$ start city + 25 end city + \cdots + 100 distance

Example: Toyota corolla used car sales

- Response : sale price (Y)
- Predictors (X)
 - Age in months
 - Accumulated km on odometer
 - Fuel type (Petrol, Diesel, CNG)
 - ➤ Horsepower
 - \triangleright Metallic color? (Yes = 1, No = 0)
 - \triangleright Automatic (Yes = 1, No = 0)
 - > Cylinder volume
 - Number of doors
 - **>**

sale price =
$$\beta_0 + \beta_1$$
 age + β_2 km + \cdots + β_p doors + ϵ
sale price = $15000 - 34$ age -25 km + \cdots + 2 doors + ϵ

More examples

- Credit card customer activity based on demographics, historical activity
- Vacation expenditures based on frequent flyer data
- Staffing requirements at help desk based on historical data, product and sales information
- Sales in brick & mortar retail store based on labor, traffic, discounts etc.
- Box office revenue of bond movies based on rating and violence

Method

Ordinary Least Squares (OLS)

Minimize the sum of squared deviations between outcome (Y) & predicted values (\widehat{Y})

Example

- ➤ Sales of a product in 200 markets
- > sales (K), tv, radio, newspaper (\$K)
- Response (Y): sales
- Predictors (X): tv, radio, newspaper

Simple Linear Regression

- One predictor
- Sales of a product in 200 markets vs tv expenses (\$K)

$$Y = \beta_0 + \beta_1 X_1 + \epsilon$$

sales =
$$\beta_0 + \beta_1 \text{ tv} + \epsilon$$

Sales vs tv scatter plot

Sales vs tv scatter plot

Today's class mandatory steps

- Create a folder name "g.linear_regression" within the folder
 "oba_455_555_ddpm_r/rproject"
- Download "linear_regression_code.R", and all csv files from canvas
- Place all downloaded files in
 - "oba_455_555_ddpm_r/rproject/ g.linear_regression"
- Open RStudio project
- Open "linear_regression_code.R" file within RStudio

Is Regression as a whole significant?

```
Call:
lm(formula = sales ~ tv, data = advertising)
Residuals:
   Min
         10 Median
                         30
                                Max
-8.3860 -1.9545 -0.1913 2.0671 7.2124
Coefficients:
          Estimate Std. Error t value Pr(>|t|)
(Intercept) 7.032594 0.457843 15.36 <2e-16 ***
          tν
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 3.259 on 198 degrees of freedom
Multiple R-squared: 0.6119, Adjusted R-squared: 0.6099
F-statistic: 312.1 on 1 and 198 DF, p-value: < 2.2e-16
```

If p-value < 0.05, then at minimum one of the predictor impacts sales

Intercept & slope coefficients

```
Call:
lm(formula = sales ~ tv, data = advertising)
Residuals:
   Min
           10 Median
                          3Q
                                Max
-8.3860 -1.9545 -0.1913 2.0671
Coefficients:
           (Intercept) 7.032594
                    0.457843 15.36
                    0.002691 17.67 <2e-16 ***
          0.047537
Signif. codes: 0 '***' 0.001 '**' 0.01 '*'
Residual standard error: 3.259 on 198 degrees of freedom
Multiple R-squared: 0.6119, Adjusted R-squared: 0.6099
F-statistic: 312.1 on 1 and 198 DF, p-value: < 2.2e-16
```

Effect of predictors are **insignificant** if you see "." or no stars

Predictors explanatory power

```
Call:
lm(formula = sales ~ tv, data = advertising)
Residuals:
   Min 10 Median 30
                                 Max
-8.3860 -1.9545 -0.1913 2.0671 7.2124
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 7.032594 0.457843 15.36 <2e-16 ***
     0.047537 0.002691 17.67 <2e-16 ***
tν
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 3.259 on 198 degrees of freedom
Multiple R-squared: 0.6119 Adjusted R-squared: 0.6099
F-statistic: 312.1 on 1 and 198 DF, p-value: < 2.2e-16
```

Multiple R-Square (R^2) Proportion of variation in sales explained by tv

Multiple Linear Regression

- Response : Sales of a product in 200 markets
- Predictors: tv, radio, newspaper (\$K)

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \epsilon$$

sales =
$$\beta_0 + \beta_1$$
 tv + β_2 radio + β_3 newspaper + ϵ

Sales vs radio scatter plot

Sales vs news paper scatter plot

Multiple linear regression results

```
Call:
lm(formula = sales \sim tv + radio + newspaper, data = advertising)
Residuals:
   Min 1Q Median 3Q
                                 Max
-8.8277 -0.8908 0.2418 1.1893 2.8292
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.938889 0.311908 9.422 <2e-16 ***
     0.045765 0.001395 32.809 <2e-16 ***
tν
radio 0.188530 0.008611 21.893 <2e-16 ***
newspaper -0.001037 0.005871 -0.177 0.86
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 1.686 on 196 degrees of freedom
Multiple R-squared: 0.8972, Adjusted R-squared: 0.8956
F-statistic: 570.3 on 3 and 196 DF, p-value: < 2.2e-16
```

Implementation: Toyota corolla used car sales

- Response (Y) price : Offer price in euros
- Predictors (X)
 - > age_08_04 : Age in months as of August 2004
 - km: Accumulated kilometers on odometer
 - ➤ fuel_type : Fuel type (Petrol, Diesel, CNG)
 - ➤ hp: Horsepower
 - \rightarrow met_color : Metallic color ? (Yes = 1, No = 0)
 - \triangleright automatic : Automatic (Yes = 1, No = 0)
 - >cc: Cylinder volume in cubic centimeters
 - > doors : Number of doors
 - > quarterly_tax : Quarterly road tax in Euros
 - > weight : Weight in Kilograms
- We will use the above selected predictors
- How does the linear regression model looks like?

Multiple Linear Regression model

price

$$= \beta_0 + \beta_1$$
 age $+ \beta_2$ km

+
$$\beta_3$$
 fuel_type + β_4 hp

$$+ \beta_5$$
 metcolor $+ \beta_6$ automatic

$$+ \beta_7 cc + \beta_8 doors$$

+
$$\beta_9$$
 quarterly tax + β_{10} weight

$$+ \epsilon$$

Is Regression as a whole significant?

```
Call:
lm(formula = price_actual ~ age + km + fuel_type + hp + met_color +
   automatic + cc + doors + quarterly_tax + weight, data = toyota)
Residuals:
    Min
             10
                  Median
                               3Q
                                      Max
          -755.5 -32.7
                            755.8
-11444.0
                                   6757.8
Coefficients:
                Estimate Std. Error t value Pr(>|t|)
(Intercept)
              -7.326e+03 1.232e+03 -5.948 3.41e-09 ***
              -1.231e+02 2.596e+00 -47.421 < 2e-16 ***
age
              -1.689e-02 1.309e-03 -12.901 < 2e-16 ***
km
fuel_typeDiesel 6.280e+02 3.758e+02 1.671
                                           0.0949 .
fuel_typePetrol 2.420e+03 3.683e+02 6.571 6.98e-11 ***
hp
               2.385e+01 3.466e+00 6.881 8.85e-12 ***
            3.629e+01 7.497e+01 0.484 0.6284
met_color
           2.588e+02 1.578e+02 1.640 0.1011
automatic
              -6.271e-02 9.067e-02 -0.692 0.4893
CC
              -7.161e+01 3.966e+01 -1.806
doors
                                           0.0712 .
quarterly_tax 1.231e+01 1.650e+00 7.463 1.46e-13 ***
          1.936e+01 1.218e+00 15.894 < 2e-16 ***
weight
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1317 on 1424 degrees of freedom
Multiple R-squared: 0.8691, Adjusted R-squared: 0.8681
F-statistic: 859.6 on 11 and 1424 DF, p-value: < 2.2e-16
```

If p-value < 0.05, then at least one of the predictors impacts price

Significance of individual predictors

```
Call:
lm(formula = price_actual ~ age + km + fuel_type + hp + met_color +
   automatic + cc + doors + quarterly_tax + weight, data = toyota)
Residuals:
    Min
              10 Median
                               3Q
                                      Max
                            755.8
-11444.0
          -755.5 -32.7
                                   6757.8
Coefficients:
                Estimate Std. Error t value Pr(>|t|)
              -7.326e+03 1.232e+03 -5.948 3.41e-09 ***
(Intercept)
              -1.231e+02 2.596e+00 -47.421 < 2e-16
age
km
               -1.689e-02 1.309e-03 -12.901
                                            < 2e-16
fuel_typeDiesel 6.280e+02 3.758e+02 1.671
                                             0.0949
fuel_typePetrol 2.420e+03 3.683e+02 6.571 6.98e-11
               2.385e+01 3.466e+00 6.881 8.85e-12
hp
met_color
          3.629e+01 7.497e+01 0.484
                                             0.6284
automatic
          2.588e+02 1.578e+02 1.640
                                           0.1011
              -6.271e-02 9.067e-02 -0.692 0.4893
CC
doors
              -7.161e+01 3.966e+01 -1.806
                                             0.0712
quarterly_tax 1.231e+01 1.650e+00 7.463 1.46e-13 ***
           1.936e+01 1.218e+00 15.894 < 2e-16 ***
weight
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '. '0.1 ' 1
Residual standard error: 1317 on 1424 degrees of freedom
Multiple R-squared: 0.8691, Adjusted R-squared: 0.8681
F-statistic: 859.6 on 11 and 1424 DF, p-value: < 2.2e-16
```

Effect of predictors are insignificant if you see "." or no stars

Impact of individual predictors

```
Call:
lm(formula = price_actual ~ age + km + fuel_type + hp + met_color +
    automatic + cc + doors + quarterly_tax + weight, data = toyota)
Residuals:
    Min
              10
                   Median
                                3Q
                                       Max
-11444.0
          -755.5 -32.7
                            755.8
                                    6757.8
Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
(Intercept)
               -7.326e+03 1.232e+03 -5.948 3.41e-09 ***
               -1.231e+02 2.596e+00 -47.421 < 2e-16 ***
age
km
               -1.689e-02 1.309e-03 -12.901 < 2e-16 ***
                6.280e+02 3.758e+02
                                    1.671
fuel_typeDiesel
                                              0.0949 .
                2.420e+03 3.683e+02 6.571 6.98e-11
fuel_typePetrol
hp
                2.385e+01 3.466e+00 6.881 8.85e-12 ***
met_color
                3.629e+01 7.497e+01 0.484
                                              0.6284
automatic
               2.588e+02 1.578e+02 1.640
                                             0.1011
               -6.271e-02 9.067e-02 -0.692
                                            0.4893
CC
doors
               -7.161e+01 3.966e+01 -1.806
                                              0.0712 .
quarterly_tax
                1.231e+01 1.650e+00 7.463 1.46e-13 ***
weight
                1.936e+01 1.218e+00 15.894 < 2e-16 ***
               0 '*** 0.001 '** 0.01 '* 0.05 '. '0.1 ' 1
Signif. codes:
Residual standard error: 1317 on 1424 degrees of freedom
Multiple R-squared: 0.8691, Adjusted R-squared: 0.8681
F-statistic: 859.6 on 11 and 1424 DF, p-value: < 2.2e-16
```

Coefficients (All β ^s)

Interpreting numeric predictor

```
Call:
lm(formula = price_actual ~ age + km + fuel_type + hp + met_color +
   automatic + cc + doors + quarterly_tax + weight, data = toyota)
Residuals:
              10 Median
    Min
                                      Max
                               3Q
-11444.0
          -755.5 -32.7
                            755.8
                                   6757.8
Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
(Intercept)
               -7.326e+03 1.232e+03 -5.948 3.41e-09 ***
               -1.231e+02 2.596e+00 -47.421 < 2e-16 ***
age
km
               -1.689e-02 1.309e-03 -12.901 < 2e-16 ***
fuel_typeDiesel 6.280e+02 3.758e+02
                                     1.671
                                             0.0949 .
fuel_typePetrol 2.420e+03 3.683e+02 6.571 6.98e-11
hp
                2.385e+01 3.466e+00 6.881 8.85e-12 ***
met_color
             3.629e+01 7.497e+01 0.484
                                             0.6284
automatic
             2.588e+02 1.578e+02 1.640 0.1011
               -6.271e-02 9.067e-02 -0.692 0.4893
CC
doors
               -7.161e+01 3.966e+01 -1.806
                                            0.0712 .
quarterly_tax 1.231e+01 1.650e+00 7.463 1.46e-13 ***
weight
              1.936e+01 1.218e+00 15.894 < 2e-16 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' '1
Residual standard error: 1317 on 1424 degrees of freedom
Multiple R-squared: 0.8691, Adjusted R-squared: 0.8681
F-statistic: 859.6 on 11 and 1424 DF, p-value: < 2.2e-16
```

Interpreting character predictor

```
Call:
lm(formula = price_actual ~ age + km + fuel_type + hp + met_color +
   automatic + cc + doors + quarterly_tax + weight, data = toyota)
Residuals:
    Min
              10 Median
                               3Q
                                      Max
                            755.8
-11444.0
          -755.5 -32.7
                                   6757.8
Coefficients:
                Estimate Std. Error t value Pr(>|t|)
(Intercept)
               -7.326e+03 1.232e+03 -5.948 3.41e-09 ***
               -1.231e+02 2.596e+00 -47.421 < 2e-16 ***
age
km
               -1.689e-02 1.309e-03 -12.901 < 2e-16 ***
fuel_typeDiesel 6.280e+02 3.758e+02 1.671 0.0949 .
fuel_typePetrol 2.420e+03 3.683e+02 6.571 6.98e-11 ***
hp
               2.385e+01 3.466e+00
                                     6.881 8.85e-12 ***
met_color
             3.629e+01 7.497e+01
                                     0.484
                                             0.6284
automatic
          2.588e+02 1.578e+02 1.640 0.1011
              -6.271e-02 9.067e-02 -0.692 0.4893
CC
doors
              -7.161e+01 3.966e+01 -1.806 0.0712 .
quarterly_tax 1.231e+01 1.650e+00 7.463 1.46e-13 ***
           1.936e+01 1.218e+00 15.894 < 2e-16 ***
weight
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '. ' 0.1 ' ' 1
Residual standard error: 1317 on 1424 degrees of freedom
Multiple R-squared: 0.8691, Adjusted R-squared: 0.8681
F-statistic: 859.6 on 11 and 1424 DF, p-value: < 2.2e-16
```

What do we see two (of three) levels of **fuel_type** variable? What is the reference category in the **fuel_type** variable?

Model fit

```
Call:
lm(formula = price_actual ~ age + km + fuel_type + hp + met_color +
   automatic + cc + doors + quarterly_tax + weight, data = toyota)
Residuals:
    Min
             10 Median
                              3Q
                                      Max
          -755.5 -32.7
                           755.8
-11444.0
                                   6757.8
Coefficients:
                Estimate Std. Error t value Pr(>|t|)
(Intercept)
              -7.326e+03 1.232e+03 -5.948 3.41e-09 ***
              -1.231e+02 2.596e+00 -47.421 < 2e-16 ***
age
              -1.689e-02 1.309e-03 -12.901 < 2e-16 ***
km
fuel_typeDiesel 6.280e+02 3.758e+02 1.671
                                           0.0949
fuel_typePetrol 2.420e+03 3.683e+02 6.571 6.98e-11 ***
hp
               2.385e+01 3.466e+00 6.881 8.85e-12 ***
            3.629e+01 7.497e+01 0.484 0.6284
met_color
            2.588e+02 1.578e+02 1.640 0.1011
automatic
              -6.271e-02 9.067e-02 -0.692 0.4893
CC
doors
              -7.161e+01 3.966e+01 -1.806 0.0712 .
quarterly_tax 1.231e+01 1.650e+00 7.463 1.46e-13 ***
        1.936e+01 1.218e+00 15.894 < 2e-16 ***
weight
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 1317 on 1424 degrees of freedom
Multiple R-squared: 0.8691 Adjusted R-squared: 0.8681
F-statistic: 859.6 on 11 and 1424 DF, p-value: < 2.2e-16
```

Multiple R-Square (R^2)

Proportion of variation in price explained by predictors in the model

Model Results and Prediction

- Regression model has been run on the entire data of 1436 observations
- Prediction for the 3 new observations is as follows

```
> predict(toyota.mlr, newobs)
1 2 3
9439.020 8570.888 9242.667
```

Predictor selection in Linear Regression

- 38 variables in the toyota data
- Numerous variables in the real-world data
- Kitchen-Sink approach
 - Include all the numerous variables in the model
- Problems with Kitchen-Sink approach
 - Expensive and Time consuming
 - ➤ Unstable
 - Including uncorrelated predictors (insignificant) can increase the variance of predictions
 - > Dropping correlated predictors (significant) can increase the average bias of predictions

How to reduce number of predictors?

- Domain knowledge
 - Experienced individuals in the industry sometimes can provide a more valuable information than what the can demonstrate
- Computational power
 - > Exhaustive search
 - > Subset selection algorithms

Exhaustive Search

- Evaluate all combinations of predictors
- For "n" predictors, how many models can you run with different combinations of X's

$$> 2^{n}-1$$

- Three predictors X_1, X_2, X_3
 - > 7 models
 - $> Y \sim X_1, Y \sim X_2, Y \sim X_3, Y \sim X_1 + X_2, Y \sim X_1 + X_3, Y \sim X_2 + X_3, Y \sim X_1 + X_2 + X_3$
- Choose the model based on one of the performance measures
 - \triangleright High Adjusted R-Square (R^2)
 - Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC)
 - ➤ Mallow's C_p

Subset selection algorithms

- Finding best subset of predictors
- Iterative process
- Computationally inexpensive
- Algorithms
 - > Forward selection
 - ➤ Backward elimination

Algorithms

Backward Elimination

- Step 1 : Run a regression with all the predictor variables
- > Step 2 : Drop the insignificant predictor with the highest p-value
- > Step 3: Run a regression model with the remaining predictors
- > Step 4: Repeat steps 2 & 3 until all the predictors are significant

Forward Selection

- > Step 1 : Run list of regression models with each individual predictor separately
- > Step 2 : Choose the model among the list with highest R²
- ➤ Step 3 : Run list of regression models by incrementally advancing Step 2 model by adding remaining predictors individually
- ➤ Step 4 : Repeat steps 2 & 3 until all predictors are significant in the model and all exhaustive combinations are executed

Summary

- Advantages
 - Useful for predictions and insights
 - > Statistical foundations
 - ➤ Appropriate for small or large datasets
- Disadvantages
 - Limited modeling flexibility
 - > Statistical assumptions

Next Class

Model Evaluation and Accuracy measures for Regression

Thank You