

Tilray Convertible Bond Valuation

Contents / Questions

Question 1

Valuation

- CEV process
- IFDM

Question 2

Real-World Considerations

Question 3

Initial Hedge Ratio for the Bonds

Question 4

Scenario Testing

- Hedge P&L

Question 5

Model Verification

Question 1

< Tilray, 5% 1oct2023, USD (Conv.) Description >

Underlying Asset	Tilray Common Stock	
Face Value	\$100	
Coupon rate	5%	
Conversion rate	0.59735	
Knock out Barrier	0	
Call Barrier	\$250	
Issue date	2018/10/4	
Maturity	2023/10/1	
Call review date	After 2021/10/1	
Coupon date	Semi-annually	
Conversion date	Anytime	
Dividend	0%	
Interest rate	2.4%	
Borrow rate	3%	
Delta t	1/52	
Initial stock price	145.5	

Question 1

Constant Elasticity of Variance process(CEV)

• Physical :
$$\frac{dS}{S} = \mu dt + \frac{\omega}{\sqrt{S}} dW^P$$

· Risk-neutral :
$$\frac{dS}{S} = (r - y) dt + \frac{\omega}{\sqrt{S}} dW^Q$$

- γ (riskless rate) : 3%
- y (share borrowing fee) : 2.4%
- $\omega : 8.4$

- Stock price hits 0
- Possible to check default probability

Question 1

Implicit Finite Difference method(IFDM)

$$C_t + (r - y)C_s + \frac{1}{2}\omega^2 SC_{ss} - rC = 0$$

By using central difference scheme

$$a_{j} = -\left[sigma^{2} * (S_{j})^{2} * \frac{\Delta t}{2(\Delta S)^{2}} + (r - y) * S_{j} * \frac{\Delta t}{2*\Delta S}\right]$$

$$b_{j} = 1 + r * \Delta t + sigma^{2} * (S_{j})^{2} * \frac{\Delta t}{(\Delta S)^{2}}$$

$$c_{j} = -\left[sigma^{2} * (S_{j})^{2} * \frac{\Delta t}{2(\Delta S)^{2}} - (r - y) * S_{j} * \frac{\Delta t}{2*\Delta S}\right]$$

$$d_{j} = V_{j}^{i+1}$$

$$\begin{pmatrix} b_{0} & c_{0} & 0 & \cdots & 0 \\ a_{1} & b_{1} & c_{1} & \ddots & \vdots \\ 0 & a_{2} & b_{2} & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & c_{jmax-1} \\ 0 & \cdots & 0 & a_{jmax} & b_{jmax} \end{pmatrix} \begin{pmatrix} V_{0}^{i} \\ V_{1}^{i} \\ V_{2}^{i} \\ \vdots \\ V_{jmax}^{i} \end{pmatrix} = \begin{pmatrix} d_{0}^{i} \\ d_{1}^{i} \\ d_{2}^{i} \\ \vdots \\ d_{jmax}^{i} \end{pmatrix}$$

- Linear system
- Thomas algorithm or LU Decomposition

Valuation

Question 1

Result

- The number of stock node: 100
- The number of time node : $260(=52 \times 5)$
- Maximum value of stock node: 291(=145.5x2)
- Minimum value of stock node: 0
- Theoretical Value: \$94.65

Q1. Is this a good deal if Merrill Lynch is offering the bond at par(face value)?

"Theoretical value is \$94.65, which is lower than offering price of Merrill Lynch. It is not good deal for us."

Question 1

"Our solutions are not sensitive to the size of stock price grid."

The number of stock node	IFDM Price	Crank-Nicolson Price
100	94.65	96.38
200	94.75	96.61
300	94.79	96.69
400	94.8	96.72
500	94.81	96.75
600	94.82	96.76
700	94.82	96.77
800	94.82	96.78
900	94.83	96.79
1000	94.83	96.79

Question 1

"When the number of time node go up, the price of each models converges to near \$97."

The number of time node	IFDM Price	Crank-Nicolson Price
100	91.91	94.69
200	94.01	95.98
300	94.98	96.58
400	95.58	96.92
500	95.99	97.13
600	96.3	97,24
700	96.54	97.32
800	96.73	97.35
900	96.88	97.37
1000	96.99	97.37

Q2. What are important real-world considerations that your valuation in Question 1 omitted to consider?

Variables to Consider	More valuable	Less valuable
Interest rate	Down	Up
Dividend rate	Down	Up
Volatility	Down	Up
Borrowing rate Down		Up
The number of stock node	No correlation	
The number of time node	Up Down	

About Interest Rates...

Interest rate	IFDM Price	Crank-Nicolson Price
0%	95.75	97.64
1%	95.28	97.1
2%	94.83	96.58
3%	94.4	96.08
4%	94	95.62
5%	93.61	95.17
6%	93.25	94.75
7%	92.91	94.35
8%	92.59	93.97
9%	92.28	93.61
10%	91.99	93.26

About Dividend Rates...

Dividend rate	IFDM Price	Crank-Nicolson Price
0%	94.65	96.38
1%	93.76	95.32
2%	92.86	94.27
3%	91.97	93.22
4%	91.1	92.18
5%	90.24	91.15
6%	89.41	90.14
7%	88.61	89.17
8%	87.88	88.27
9%	87.27	87.5
10%	86.91	86.98

About Volatility...

CEV Process:
$$\frac{dS}{S} = (r - y) dt + \frac{\omega}{\sqrt{S}} dW^Q$$
Acts as volatility!

Real World
Consideration Question 2

About Volatility...

CEV Process:
$$\frac{dS}{S} = (r - y) dt + \frac{\omega}{\sqrt{S}} dW^Q$$
Acts as volatility!

Value of w	IFDM Price	Crank-Nicolson
value of w	IPDIVI PIICE	Price
4	123.44	123.88
5	118.83	119.82
6	110.83	112.34
7	102.8	104.59
8	96.55	98.34
9	92.4	93.98
10	89.91	91.23

Real World
Consideration Question 2

When we simulated stock paths...

The value of w	Probability of default	
0	0%	
1	0%	
2	0%	
3	0.2%	
4	2.6%	
5	10.1%	
6	19.7%	
7	30.4%	
8	41.2%	
9	48.8%	

Delta formula
$$(Bond_0(S_0 + \Delta S) - Bond_0(S_0 - \Delta S))/2\Delta S$$

$$\Delta S = 2.91$$

	0	1	2	3
45	87.2212	87.3585	87.4973	87.6376
46	88.7233	88.859	88.9963	89.1352
47	90.2173	90.3513	90.4869	90.6243
48	91.7036	91.8357	91.9696	92.1052
49	93.1826	93.3127	93.4446	93.5784
50	94.6547	94.7827	94.9125	95.0442
51	96.1204	96.246	96.3735	96.503
52	97.5799	97.703	97.8281	97.9553
53	99.0337	99.1541	99.2767	99.4013

Q3. Compute initial hedge ratio for the bonds, how many shares would you sell if you bought \$100 face value?

"Initial hedge ratio is 0.50515, I should sell 0.50515 shares per \$100"

Scenario Testing

Question 4

Interpolation formula

$$y = y_1 + \frac{y_2 - y_1}{x_2 - x_1} * (x - x_1)$$

y =target bond price, x = 78

 y_1 = lower bond price, x_1 = 75.66

 y_2 = higher bond price, x_2 = 78.57

	2018/10/4	2019/1/31
Stock price	\$145.5	\$78
Market price	\$X	\$83
Theoretical bond price	\$94.65	\$57.9490
The number of shares	50,515	50,515
Profit from stock price change	\$3,409,762.5	

Q4.

1. Stock has fallen to \$78 and the bonds has fallen to 83% of face value. What are the bonds theoretically worth now?

"Theoretical bond price is \$57.9490."

2. How much money did you make or lose, how do you interpret the market's current valuation of the bonds?

"profit = \$3,409,762.5,

mean: model price is undervalue or market price is overvalue."

Interest rate stochastic model

- ✓ $HO\&LEE\ model: dr = \theta(t)dt + \sigma dw$
- ✓ Vasicek model: $\alpha * (\mu r) * dt + \sigma dw$

Q5. If our initial model did not do a good job of telling us how many shares to sell in order to offset the market risk of changes in the bond price, does this mean that our model was wrong?

"Yes, our model might be wrong."

- reason: Interest rate
- adjustment: Interest rate stochastic model or term structure