DELJIVOST BROJEVA

Primer 1.

1. Odredi najmanji četvorocifren broj deljiv sa 18.

Rešenje:

Nemamo direktan kriterijum deljivosti sa 18. Razmislimo malo..... Broj 18 možemo napisati kao 18 = 2.9

Broj je deljiv sa 18 ako je deljiv sa 2 i sa 9.

U tekstu zadatka nije naglašeno da cifre moraju biti različite, što znači da se cifre mogu ponavljati.

Traži se najmanji četvorocifreni broj, pa ćemo sa razmišljanjem krenuti od: 100 .

Sad u kvadratić trebamo upisati neki od brojeva 0,1,2,3,4,5,6,7,8,9 ali tako da taj broj bude deljiv i sa 2 i sa 9.

Znamo da je broj deljiv sa 2 ako se završava sa 0,2,4,6,8. To su moguće opcije.

Broj je deljiv sa 9 ako mu je zbir cifara deljiv sa 9.

U našem broju 100 je zbir za sada 1+0+0=1. Očigledno treba dodati 8 da bi bilo 1+0+0+8=9.

Dakle, traženi broj je 1008.

Radi provere, kad podelimo 1008:18 = 56.

Primer 2.

Odrediti najveći petocifreni broj kome su cifre različite a da je deljiv sa 6.

Rešenje:

Kako je $6 = 2 \cdot 3$ zaključujemo da je **broj deljiv sa 6 ako je deljiv sa 2 i sa 3.**

Kako se traži **najveći** petocifren broj a cifre da su različite, zgodno je krenuti od 9876.

U kvadratić treba staviti neki od brojeva 5,4,3,2,1,0. (jer cifre moraju da se razlikuju)

Deljivost sa dva nam kaže da to mogu biti 4,2,0.

Znamo da je broj deljiv sa 3 ako mu je zbir cifara deljiv sa 3.

U našem broju 9876 za sada imamo 9+8+7+6=30 a to je deljivo sa 3, pa ćemo dodati 0.

Traženi broj je dakle: 98760.

Kad proverimo, zaista 98760:6 = 16460.

Primer 3.

Odrediti najmanji trocifren broj deljiv sa 12.

Rešenje:

Kako je 12 = 3.4 to zaključujemo da je **broj deljiv sa 12 ako je deljiv sa 3 i sa 4**.

Kako se traži najmanji broj , krenućemo sa 10, gde umesto kvadratića možemo upisati 0,1,2,3,4,5,6,7,8,9.

Broj je deljiv sa 4 ako mu je dvocifreni završetak deljiv sa 4.

Ovo nam smanjuje opcije na 0,4,8.

Da bi bio deljiv sa 3 zbir cifara mora da je deljiv sa 3. kako je 1+0+8=9 zaključujemo da je traženi broj 108.

Zaista 108:12 = 9

Primer 4.

Odrediti najmanji prirodan broj koji podeljen sa 6 ili 8 ili 10 daje ostatak 1.

Rešenje:

Ideja je da najpre nadjemo sadržalac za brojeve 6,8 i 10 pa da na taj broj dodamo 1.

Traženi broj je $120+1=\boxed{121}$

www.matematiranje.in.rs

Primer 5.

Zbir tri uzastopna cela broja je uvek deljiv sa 3. Dokazati.

Rešenje:

Uzastopne brojeve uopšteno zapisujemo kao:n-2, n-1, n, n+1, n+2,......

Zbir tri uzastopna broja je:

$$n + (n+1) + (n+2) = n + n + 1 + n + 2 = 3n + 3 = \boxed{3 \cdot (n+1)}$$

Ovo je očigledno deljivo sa 3 jer je neki proizvod deljiv sa 3 ako je bar jedan činilac deljiv sa 3.

Primer 6.

Dokazati da je razlika kvadrata dva uzastopna neparna broja deljiva sa 8.

Rešenje:

Najpre da se podsetimo kako uopšteno obeležavamo parne i neparne brojeve.

2n je paran broj

2n+1 ili 2n-1 je neparan broj

Uzastopni parni brojevi bi bili :2n-4, 2n-2, 2n, 2n+2, 2n+4,

Uzastopni neparni brojevi bi bili :2n-3, 2n-1, 2n+1, 2n+3,

Da postavimo sada zadatak:

Razlika kvadrata dva uzastopna neparna broja:

$$(2n+1)^2 - (2n-1)^2 =$$

Sad po formuli za kvadrat binoma imamo:

$$(2n+1)^{2} - (2n-1)^{2} =$$

$$(4n^{2} + 4n + 1) - (4n^{2} - 4n + 1) =$$

$$4n^{2} + 4n + 1 - 4n^{2} + 4n + 1 = 8n$$

Napravili smo proizvod čiji je jedan činilac 8 pa je on deljiv sa 8.

www.matematiranje.in.rs

Primer 7.

Ako je zbir cifara dvocifrenog broja jednocifren broj, da bi se pomnožio sa 11, dovoljno je izmedju njegovih cifara umetnuti zbir njegovih cifara. Dokazati.

Rešenje:

Da najpre objasnimo šta ovo znači pa ćemo posle to i dokazati.

Na primer, treba da pomnožimo 32·11.

Šta uradimo?

Pošto je zbir cifara broja 32 manji od deset, koristimo ovo trikče:

Raširimo 3 i 2 a u sredinu stavimo 3+2=5 tj. $3 \square 2 \rightarrow 352$

Koliko je recimo 54·11 ?. Koristeći trikče, raširimo 5 i 4 a izmedju stavimo 9 , $5 \square 4 \rightarrow 594$

Sad da odradimo dokaz:

Uzmimo uopšteno dvocifren broj \overline{ab} . Taj dvocifren broj možemo zapisati kao: $\overline{ab} = a \cdot 10 + b$, naravno uz uslov da je zbir cifara manji od 10, to jest a+b<10

 $(a \cdot 10 + b) \cdot 11 = \text{sad je štos da } 11 \text{ napišemo kao } 11 = 10 + 1$

$$(a \cdot 10 + b) \cdot (10 + 1) = 100a + 10a + 10b + b = 100a + 10(a + b) + b$$

Ovim smo dokazali traženu stvar.

Primer 8.

Dokazati da su periodični decimalni brojevi:

- a) 0,777777......
- b) 0,323232.....
- c) 2,625625625.....

Racionalni brojevi.

Rešenje:

a) 0,7777777.....

Obeležimo dati broj sa x.

Dakle x = 0,7777...

Kad se jedna cifra ponavlja, sve pomnožimo sa 10.

$$x = 0,7777...../*10$$

$$10x = 7,7777...$$

$$10x = 7 + 0,7777...$$

$$10x = 7 + x$$

$$10x - x = 7$$

$$9x = 7$$

$$x = \frac{7}{9}$$

b) 0,323232.....

Sličan postupak, obeležimo ovaj broj sa x a zatim množimo sa 100, zato što se dve cifre ponavljaju.

$$x = 0,323232..../*100$$

$$100x = 32,3232...$$

$$100x = 32 + 0,323232...$$

$$100x = 32 + x$$

$$100x - x = 32$$

$$99x = 32$$

$$x = \frac{32}{99}$$

c) 2,625625625.....

Prvo odvojimo 2 cela nek sačekaju : 2,625625625....= 2 + 0,625625.....

$$x = 0,625625..../*1000$$

$$1000x = 625, 625625...$$

$$1000x = 625 + 0,625625...$$

$$1000x = 625 + x$$

$$1000x - x = 625$$

$$999x = 625$$

$$x = \frac{625}{999}$$

Sad se vratimo da završimo zadatak:

$$2,625625625.... = 2 + 0,625625..... = 2 + \frac{625}{999} = 2\frac{625}{999}$$

www.matematiranje.in.rs