Tutorials 1: electrostatics

Problem 20.1 Table salt (sodium chloride) is a crystal with a simple cubic structure with Na⁺ ions and Cl⁻ ions alternating at adjacent lattice sites. The distance between ions is $a = 2.82 \times 10^{-10}$ m = 0.282 nm (1 nm = 10^{-9} m). (a) What force does an Na⁺ ion experience due to one of its nearest Cl⁻ neighbors? (b) What force does a Cl⁻ ion experience due to a neighboring Na⁺? (c) What force does an Na⁺ ion at the origin experience due to Cl⁻ ions at (a, 0, 0) and (0, a, 0)? (d) What is the weight of an Na⁺ ion of mass 3.82×10^{-26} kg?

Problem 20.2 A charge $q_1 = +4 \mu C$ ($1 \mu C = 10^{-6}$ C) is positioned at the origin. A charge $q_2 = +9 \mu C$ is positioned on the x axis at x=4 m. Where on the x axis can a negative charge q_3 be placed so that the force on it is zero? Is there any position off the x axis where the force on q_3 will be zero?

Problem 20.3 Two identical Styrofoam spheres, each of mass 0.030 kg, are each attached to a thread 30 cm long and suspended from a point. Each sphere is given a charge q (perhaps by rubbing it on a piece of cloth), and the two spheres repel each other and hang with each thread making an angle of 7 degrees with vertical. What is the charge on each sphere?

Problem 20.5 Four identical positive charges +q are placed at the corners of a square of side L. Determine the magnitude and direction of the electric field due to them at the midpoint of one side of the square.

roni Page 1