MATH2040C Homework 6

ZHENG Weijia (William, 1155124322)

April 9, 2021

Section 6.1, Q8 1

W.

- 8. Provide reasons why each of the following is not an inner product on the given vector spaces.

 - (a) $\langle (a,b),(c,d)\rangle = ac bd$ on \mathbb{R}^2 . (b) $\langle A,B\rangle = \operatorname{tr}(A+B)$ on $M_{2\times 2}(R)$. (c) $\langle f(x),g(x)\rangle = \int_0^1 f'(t)g(t)\,dt$ on P(R), where ' denotes differentiation

Figure 1: The caption of this figure.

Let $w = \begin{pmatrix} 2 & 4 \\ 4 & 3 \end{pmatrix}$. Note that $w \in W$, because w is symmetric.

Note that $T(w) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 2 & 4 \\ 4 & 3 \end{pmatrix} = \begin{pmatrix} 4 & 3 \\ 2 & 4 \end{pmatrix}$, which is not symmetric, hence not belongs to

Therefore, by definition, W is not a T-invariant subspace of V. Done.