

Digitale Signalverarbeitung auf FPGAs

Kap. 3a – Diskrete Fouriertransformation (Grundlagen)

2016

Dr. Christian Münker

Gliederung Kapitel 3a

- Die Fourier-Familie
- DFT: Komplex aber nicht kompliziert
- Frequenzauflösung
- Schnell, schneller, FFT

Zusätzliches Material zur Wiederholung

edx-Kurs "ELEC301x: Discrete Time Signals and Systems" https://courses.edx.org/courses/RiceX/ELEC301x/T1_2014/ (Kostenloser Account erforderlich)

Videos von Jörg Lovisach:

- ➤ 19.03.1: Diskrete Fourier-Transformation, FFT Teil 1 (www.youtube.com/watch?v=ls5MfqLZVbo)
- ➤ 19.03.2 Diskrete Fourier-Transformation, FFT Teil 2 (www.youtube.com/watch?v=wd6hAPS4ILc)

Digitale Signalverarbeitung auf FPGAs

Kap. 3a Diskrete Fouriertransformation (Grundlagen)

Teil 1 Die Fourier-Familie

2016

Dr. Christian Münker

Spektrum abgetasteter Signale (Wdh.)

Anwendungen der DFT

Abschätzung des Spektrums eines analogen oder zeitdiskreten Signals x(t) bzw. x[n] (\rightarrow Matlab / Python, digitale Messwerterfassung)

Entwurf zeitdiskreter Filter in der Frequenzebene

Komprimierung zeitdiskreter Signale in der Frequenzebene

Schnelle Faltung (zeitdiskret, { x } o∕-• { • })

Robuste Breitband-Datenübertragung über parallele schmale Frequenzbänder (OFDM, PowerLine, LTE, ...)

Kenngrößen bei Fourier-Transformation:

- Anzahl N der Zeit- / Frequenzpunkte
- \triangleright Bandbreite Δf je Frequenzband
- Minimale Mess- bzw. Einschwingzeit T_E

Zeit-Bandbreite-Gesetz: $T_{E} \sim 1 / \Delta f$! ("Unschärferelation" der Nachrichtentechnik)

Fourier-Familie: Fourierreihe (CFT*)

X(f) aperiodisch-diskret

Analoges Signal: Spektralschätzung nur mit analogen Methoden möglich (Filterbank, durchstimmbares Bandpassfilter)

^{*} Continuous Fourier Transform

Fourier-Familie: Fourierintegral (CFT)

X(f) aperiodisch-kontinuierlich

Analoges Signal: Spektralschätzung nur mit analogen Methoden möglich (Filterbank, durchstimmbares Bandpassfilter)

Fourier-Familie: Discrete-Time Fourier Transform

X(f) periodisch-kontinuierlich

Zeitdiskret, aber keine numerische Berechnung möglich, da ∞ viele Samples. Näherungsweise Darstellung mit DFT und Zero-Padding.

Fourier-Familie: Discrete Fourier Transform DFT

X[k] periodisch-diskret

Zeitdiskret & endliche Anzahl Samples N herausgeschnitten: Für periodisch (fortgesetzte) zeitdiskrete Signale ist numerische Berechnung möglich!

Numerische spektrale Analyse einer Messsequenz (1)

Abtastung des Signals mit $f_S = 1 / T_S \rightarrow \text{kein Informations verlust}$

Quantisierung des Signals → (hoffentlich) tolerierbarer Informationsverlust

DTFT würde im Bereich 0 ... f_s identisches Spektrum wie CFT liefern, aber nicht numerisch berechenbar (∞ viele Samples)

Fensterung = Beschränkung auf N Messwerte: Daten außerhalb der N Samples bzw. Ausschnitts mit Länge $T_1 = NT_S$ werden zu Null gesetzt (immer noch DTFT mit ∞ vielen Samples, nicht numerisch berechenbar)

DFT des periodisch mit $T_1 = NT_s$ fortgesetzten Signalausschnitts liefert identische Spektrumswerte bei $kf_1 = kf_s / N$ wie DTFT!

N Datenpunkte x[n] und *N* Frequenzpunkte $X[k] \rightarrow Block$ - oder Frame-Transformation \rightarrow **DFT ist numerisch gut berechenbar: Computer!**

Numerische spektrale Analyse einer Messsequenz (2)

Digitale Signalverarbeitung auf FPGAs

Kap. 3a Diskrete Fouriertransformation (Grundlagen)

Teil 2 DFT: Komplex aber nicht kompliziert

2016

Dr. Christian Münker

DFT: Komplex, aber nicht kompliziert

"e to the pi times i" (https://xkcd.com/179/) von Randall Munroe (xkcd@xkcd.com) unter CC-BY-NC-2.5 Lizenz

Beispiel für DFT einer reellwertigen Sequenz

 Σ : N = 16 Koeffizienten X[k] für Basisfunktionen ("Frequenzpunkte")

Analysegleichung der DFT

$$X[k] = \frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-j2\pi \frac{kn}{N}} = \frac{1}{N} \sum_{n=0}^{N-1} x[n] w_N^{kn} \qquad \text{mit } w_N = e^{-\frac{j2\pi}{N}} \text{ (Drehfaktor)}$$

$$\text{und } k, n = 0 \dots N-1$$

- **n** = 0 ... N 1 ist Laufvariable für N Samples x[n] mit Abstand $T_s = 1 / f_s$. \rightarrow Messfenster mit Länge $T_1 = NT_s$ periodisch fortgesetzt, x[n + N] = x[n]
- **k** = 0 ... N 1 ist Laufvariable für N Frequenzpunkte X[k] zwischen f = 0 ... f_s , periodisch fortgesetzt, X[k + N] = X[k] (Wiederholspektren)

$$f_k = f_S k / N \quad [F_k = k / N] \quad \text{und} \quad \Delta f = f_S / N = f_1 = 1 / T_1$$
Phys. Frequenzen

Frequenzauflösung

- Symmetrie bei reellem x[n]: $X[-k] = X^*[k] \rightarrow X[0]$ und $X[N-N/2] = X^*[N/2]$ reell
- Bei reellem x[n] muss nur die Hälfte der Punkte, $k \le N/2$, berechnet werden
- X[k] ist i.A. komplex, daher sind 2 Datenspeicher pro Frequenzpunkt k nötig (Real- und Imaginärteile sind Gewichtungsfaktoren für Kosinus- und Sinusfunkt.)

Synthesegleichung der DFT (IDFT)

$$x[n] = \sum_{k=0}^{N-1} X[k] e^{+j2\pi \frac{kn}{N}} = \sum_{n=0}^{N-1} X[k] w_N^{-kn} \qquad \text{und } w_N = e^{-\frac{j2\pi}{N}}$$

- N Samples ↔ N Frequenzpunkte = Blocktransformation!
- X[k] im Allgemeinen komplex $\rightarrow N \times N$ komplexe Multiplikationen
- Aber aufgrund Symmetrie X[-k] = X*[k] für reelle x[n] genügt IDFT über die Hälfte des Spektrums
- Periodizität der IDFT x[n + N] = x[n]: Zeitsignal kann periodisch fortgesetzt werden
- Wahl des Skalierungsfaktors (hier: 1/N bei DFT) so:
 - dass nacheinanderfolgende DFT und IDFT von x [n] wieder x [n] ergibt
 - dass DFT Werte die Amplituden der Spektralkomponenten korrekt wiedergeben (optional, ist z.B. bei Matlab nicht so)

Eigenschaften der DTFT (CFT)

	,	*****
Eigenschaft	Zeitbereich x[n]	Frequenzbereich <i>X</i> (e ^{jΩ})
Definition	$x[n] \equiv x(nT_s)$	$X(e^{j\Omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-jn\Omega}$
Linearität	ax[n] + by[n]	$aX(e^{j\Omega}) + bY(e^{j\Omega})$
Zeitverschiebung	$x[n-k], k \in \mathbb{Z}$	$X(e^{j\Omega}) e^{-j\Omega k}$
Frequenzverschiebung (Modulation)	$x[n] e^{jn\Omega_1}, \Omega_1 \in \mathbb{R}$	$X(e^{j(\Omega-\Omega_1)})$
Zeitumkehr	x[-n]	$X(e^{-j\Omega})$
Faltung im Zeitbereich	$x[n] \times y[n]$	$X(e^{j\Omega}) \cdot Y(e^{j\Omega})$
Multiplikation im Zeitbereich	x[n] · y[n]	$X(e^{j\Omega}) * Y(e^{j\Omega}) / 2\pi$
Inverse DTFT	$x[n] = T_{s} \int_{s}^{f_{s}} X(e^{j\Omega}) e^{jn\Omega} d\Omega$	

Eigenschaften der **DFT** (N Punkte)

=19-11-011-0101 = 1 1 (11 1 0111110)		
Eigenschaft	Zeitbereich x[n]	Frequenzbereich X[k]
Definition IDFT / DFT	$x[n] = \sum_{n=0}^{N-1} X[k] e^{+j2\pi \frac{kn}{N}}$	$X[k] = \frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-j2\pi \frac{kn}{N}}$
Periodizität	x[n] = x[n - N]	X[k] = X[k - N]
Linearität	ax[n] + by[n]	aX[k] + bY[k]
Zyklische Zeitverschiebung	$x[n-m], m \in \mathbb{Z}$	$X[k] e^{-j2\pi km/N}$
Modulation	$x[n] e^{j2\pi nm/N}$	X[k-m]
Zeitumkehr	x[-n] = x[N-n]	X[-k] = X[N-k]
Faltung im Zeitbereich	$x[n] \times y[n]$	X[k] · Y[k]
Multiplikation im Zeitbereich	x[n] · y[n]	$X[k] \times Y[k] / N$

Symmetrie der Fouriertransformationen

Bei *reellwertigen Zeitsignalen x* gelten für CFT / DTFT / DFT x ○-● X die folgenden Symmetrieeigenschaften des Spektrums:

Reellwertiges $x \circ - \bullet X^*(e^{j\Omega}) = X(e^{-j\Omega})$ (konjugiert-symmetrisches Spektrum)

Re{X} ist gerade

Im{X} ist ungerade

|X| ist gerade (Betragsgang)

∠ X ist ungerade (Phasengang)

gerader Teil von x ○-● Re{X}

ungerader Teil von x ○-● j lm{X}

DFT reellwertiger und komplexer Sequenzen

N-1

Zeitbereich x[n] mit $n = 0 \dots N-1$ Frequenzbereich X[k]; $k = 0 \dots N-1$

Reellwertig

N reellwertige Datenpunkte

reell:
$$x_R[n] = x[n]$$

imaginär:
$$x_{j}[n] = 0$$

N relevante Datenpunkte

N/2

Komplex

N kompl. = 2*N* reellw. Datenpunkte

reell: $X_R[n]$

imaginär: $x_i[n]$

2N relevante Datenpunkte

reell: $X_{R}[k]$

imag.:
$$X_{i}[k]$$

Frequenzauflösung der DFT

Je größer die Länge N der Datenfolge, desto besser die Frequenzauflösung der DFT: $\Delta f = 1 / NT_s$

Anmerkung: Die *höchste Frequenzkomponente* der DFT wird natürlich durch die Abtastfrequenz bestimmt: $f_{k,max} = f_{N/2} = f_{S}/2$

DFT des Dirac-Stoßes (1)

DFT des Dirac-Stoßes: |X[k]| = ? $\varphi[k] = ?$

$$x[n] = \delta[n] \Rightarrow X[k] = \frac{1}{N} \sum_{n=0}^{N-1} \delta[n] e^{-j2\pi \frac{kn}{N}} = \frac{1}{N}$$

→ Alle Basisfunktionen gewichtet mit Faktor 1/N, rein reell.

$$x[n] = \delta[n-m] \Rightarrow X[k] = \frac{1}{N} \sum_{n=0}^{N-1} \delta[n-m] e^{-j2\pi \frac{kn}{N}} = \frac{1}{N} e^{-j2\pi \frac{km}{N}}$$

 \rightarrow Alle Basisfunktionen gewichtet mit Faktor 1/N, lineare Phase **-2** π k m l N.

DFT des Dirac-Stoßes (2)

Digitale Signalverarbeitung auf FPGAs

Kap. 3a Diskrete Fouriertransformation (Grundlagen)

Teil 4 Schnell, schneller ...

2016

Dr. Christian Münker

DFT als Signal Flow Graph für N = 8

$$NX[k] = \sum_{n=0}^{N-1} x[n]e^{-j2\pi \frac{kn}{N}} = \sum_{n=0}^{N-1} x[n]w_N^{kn}$$
 mit $w_N^{kn} = e^{-j2\pi \frac{kn}{N}}$ (Drehfaktor)

Matrixschreibweise:

$$NX = W_N x$$

Je *N*² komplexe Multiplikationen und Additionen:

4*N*² reelle Mult. + 4*N*² reelle Add.

Σ: 4 N² MAC-Operationen (N² für reellwertige Signale)

DFT als FIR-Filterbank

$$NX[k] = \sum_{n=0}^{N-1} x[n]e^{-j2\pi \frac{kn}{N}} = \sum_{n=0}^{N-1} x[n]w_N^{kn}$$
 mit $w_N^{kn} = e^{-j2\pi \frac{kn}{N}}$

DFT kann auch interpretiert werden als Filterbank aus N FIR-Filtern mit z.T. komplexwertigen Koeffizienten:

Aufteilung in zwei N/2-Punkte DFTs

- Aufteilung in N/2 Punkte DFTs für ungerade und gerade Samples und geeignete Kombination der Teilergebnisse reduziert Gesamt-MACs
- Umsortierung der Eingangssamples notwendig
- Herleitung nicht trivial, siehe Literatur oder 9. Kapitel (vielleicht)

FFT: Sukzessive Aufteilung in Teil-DFTs

* "2N", da kaum Einspareffekte für reellwertige Eingangssignale!

Symmetrien und "Butterfly" - Operation

Nutze Symmetrien des komplexen Drehfaktors ("twiddle factor") zur Vereinfachung der Rechnung:

$$w_N^N = e^{-j\frac{2\pi N}{N}} = 1; \quad w_N^{N/2} = e^{-j\frac{\pi N}{N}} = -1$$
 $w_N^{N+k} = w_N^N w_N^k = w_N^k \text{ (Periodizität)}$
 $w_N^{N-m} = w_N^{-m} = w_N^{m*}$
 $w_N^{N/4} = -j; \quad w_N^{3N/4} = j$
 $w_N^{K+N/2} = w_N^k w_N^{N/2} = -w_N^k$

Damit Optimierung der 2-Punkte DFT ("butterfly computation")

"Optimale" FFT?

- Für $N_{FFT} = 2^k$, lässt sich die FFT so zerlegen, dass man die minimale Anzahl Rechenoperationen erhält
- Aber: Verschiedene sehr gute FFT-Algorithmen wenn eine Zerlegung von N_{FFT} in kleine Primfaktoren möglich ist
- Für diese Fälle ist $N_{MAC} = O(N \log_2 N)$
- Weitere Optimierungsziele:
 - Minimaler Speicherverbrauch
 - minimale Anzahl von Sortiervorgängen
 - Eingangssamples werden in korrekter Reihenfolge verarbeitet
 - **...**

Siehe auch http://lighthouseinthesky.blogspot.de/2010/03/flops-and-fft.html

FFT in Python / Matlab

FFT ist in Python / Matlab schnell aufgestellt:

```
Konstanten: NFFT = 150; fS = 1000

Signal: n = np.arange(NFFT); y = np.sin(2*pi*n/16)

FFT (skaliert): Y = fft(y)/NFFT
```

Frequenzen: f = fftfreq(NFFT, 1/fS) # Angabe von fs optional

f = np.arange(NFFT) * fS/NFFT # Alternativ

```
Zweiseit. Spektrum: Y2 = fftshift(Y) f2 = fftshift(f)
```

Plotten: plot(f2, np.abs(Y2))

Plotten bis $f_s/2$: plot(f[0:NFFT/2], np.abs(Y[0:NFFT/2])

Python: import fft, ... from numpy.fft

Diese Folien und die zugehörigen Videos sind unter Creative-Commons-Lizenz **CC-BY-NC-SA 3.0 de** veröffentlicht.

Bei Verwendung dieses Werks müssen Sie auf die entsprechende **CC-Lizenzurkunde** verweisen, in diesem Fall http://creativecommons.org/licenses/by-nc-sa/3.0/de/.

Sie müssen ferner die folgenden Angaben machen ("BY", attribution)

- Author ("Christian Münker")
- **Titel** ("Digitale Signalverarbeitung auf FPGAs")
- URL zu Werk (https://github.com/chipmuenk/dsp_fpga) und / oder Author (http://www.chipmuenk.de)

Außerdem ist die Verwendung auf folgende Weise eingeschränkt:

- Diese Materialien dürfen nur nicht kommerziell genutzt werden ("NC", non-commercial).
- Dieses Werk oder Teile daraus dürfen nur unter gleichen Lizenzbedingungen weiterverteilt werden ("SA", share alike).

Fragen, Anmerkungen, Anregungen, Bugs, Bierbons bitte an mail@chipmuenk.de. Ich wünsche viel Erfolg und Spaß (?!) mit den Materialien!