Eigenschaften

- worst-case optimal
- adaptiv

Maß für Sortiertheit: #Fehlstände

- sei a₁, ..., a_n eine (unsortierte) Zahlenfolge
- $-f_i$ = # Fehlstände für a_i $f_i = |\{a_j | j > i, a_j < a_i\}|$
- Fehlstände der Zahlenfolge: $F = \sum_{i=1}^{n} f_i$

$$-\operatorname{Es\ gilt:} 0 \le F \le \frac{n(n-1)}{2} = \binom{n}{2}$$

Motivation

- Grundidee
 - Einfügen in verkehrter Reihenfolge
 - innere Knoten speichern Maximum des Teilbaums
- Baumsortieren
 - -allgemein beim Einfügen von \boldsymbol{a}_i

 a_n , ..., a_{i+1} sei bereits eingefügt (sind sortiert im Baum)

 $_*$ a_i wird jetzt eingefügt

Es folgt:

 a_i wird im Baum an der Stelle $f_i \overset{ullet}{+} 1$ von links eingefügt.

w'...Wurzel von T'

Idee: Wenn f_i klein, liegt w' tief.

Einfügen bottom up:

- Starte bei linkestem Blatt
- Laufe bis zu w', d.i. erster innerer Knoten mit Max≥a_i.
- Füge a_i in Teilbaum ein.

 \rightarrow Anhängen von a_i in $\theta(\log f_i)$ Zeit.

a=5 eingefügt

SPALTE(v) liefert:

Laufzeit B-Sort:

$$T(n) = O\left(n\log\left(\frac{F}{n}\right) + n\right)$$

F...Anzahl der Fehlstände in Zahlenfolge

•
$$F=O(n) \rightarrow T(n) = O(n)$$

• F=O(n²)
$$\rightarrow$$
 T(n) = O(n log n)