Interpretable Machine Learning

LIME

Learning goals

- Understand motivation for LIME
- Develop a mathematical intuition

• Local Interpretable Model-agnostic Explanations (LIME) assume that even if a ML model is very complex, the local prediction can be described with a simpler model

- Local Interpretable Model-agnostic Explanations (LIME) assume that even if a ML model is very complex, the local prediction can be described with a simpler model
- LIME explains individual predictions of any black-box model by approximating the model locally with an interpretable model

- Local Interpretable Model-agnostic Explanations (LIME) assume that even if a ML model is very complex, the local prediction can be described with a simpler model
- LIME explains individual predictions of any black-box model by approximating the model locally with an interpretable model
- Called local surrogate models → often inherently interpretable models such as linear models or classification/regression trees are chosen

- Local Interpretable Model-agnostic Explanations (LIME) assume that even if a ML model is very complex, the local prediction can be described with a simpler model
- LIME explains individual predictions of any black-box model by approximating the model locally with an interpretable model
- Called local surrogate models → often inherently interpretable models such as linear models or classification/regression trees are chosen
- LIME should answer why a ML model predicted \hat{y} for input **x**

- Local Interpretable Model-agnostic Explanations (LIME) assume that even if a ML model is very complex, the local prediction can be described with a simpler model
- LIME explains individual predictions of any black-box model by approximating the model locally with an interpretable model
- Called local surrogate models → often inherently interpretable models such as linear models or classification/regression trees are chosen
- LIME should answer why a ML model predicted \hat{y} for input **x**
- LIME is model-agnostic and can handle tabular, image and text data

LIME: CHARACTERISTICS

Definition:

LIME provides a local explanation for a black-box model \hat{f} in form of a model $\hat{g} \in \mathcal{G}$ with \mathcal{G} as the class of potential (interpretable) models

Model *g* should have two characteristics:

- Interpretable: relation between the input variables and the response are easy to understand
- **2** Locally faithful / Fidelity: similar behavior as \hat{f} in the vicinity of the obs. being predicted

Formally, we want to receive a model \hat{g} with minimal complexity and maximal local-fidelity

MODEL COMPLEXITY

We can measure the complexity of a model \hat{g} using a complexity measure $J(\hat{g})$

Example: Linear model

- ullet Let $\mathcal{G} = \{g: \mathcal{X} o \mathbb{R} \mid g(\mathbf{x}) = s(m{ heta}^ op \mathbf{x})\}$ be the class of linear models
- $s(\cdot)$: identity function for linear regression or logistic sigmoid function for logistic regression

$$\rightarrow$$
 $J(g) = \sum_{i=1}^{p} \mathcal{I}_{\{\theta_i \neq 0\}}$ could be the L₀ loss, i.e., the number of non-zero coefficients

MODEL COMPLEXITY

We can measure the complexity of a model \hat{g} using a complexity measure $J(\hat{g})$

Example: Linear model

- ullet Let $\mathcal{G} = \{g: \mathcal{X} o \mathbb{R} \mid g(\mathbf{x}) = s(m{ heta}^ op \mathbf{x})\}$ be the class of linear models
- ullet $s(\cdot)$: identity function for linear regression or logistic sigmoid function for logistic regression
- $\leadsto J(g) = \sum_{j=1}^p \mathcal{I}_{\{\theta_j \neq 0\}}$ could be the L₀ loss, i.e., the number of non-zero coefficients

Example: Tree

- Let $\mathcal{G} = \left\{g: \mathcal{X} \to \mathbb{R} \mid g(\mathbf{x}) = \sum_{m=1}^M c_m \mathcal{I}_{\{\mathbf{x} \in Q_m\}} \right\}$ be the class of trees i.e., the class of additive models (e.g., constant c_m) over the leaf-rectangles Q_m
- \rightsquigarrow J(g) could measure the number of terminal/leaf nodes

- g is locally faithful to \hat{f} w.r.t. \mathbf{x} if for $\mathbf{z} \in \mathcal{Z} \subseteq \mathbb{R}^p$ close to \mathbf{x} , predictions of $\hat{g}(\mathbf{z})$ are close to $\hat{f}(\mathbf{z})$
- In an optimization task: the closer **z** is to **x**, the closer $\hat{g}(\mathbf{z})$ should be to $\hat{f}(\mathbf{z})$

- g is locally faithful to \hat{f} w.r.t. \mathbf{x} if for $\mathbf{z} \in \mathcal{Z} \subseteq \mathbb{R}^p$ close to \mathbf{x} , predictions of $\hat{g}(\mathbf{z})$ are close to $\hat{f}(\mathbf{z})$
- In an optimization task: the closer z is to x, the closer $\hat{g}(z)$ should be to $\hat{f}(z)$
- Two required measures:
 - A proximity (similarity) measure $\phi_{\mathbf{x}}(\mathbf{z})$ between \mathbf{z} and \mathbf{x} , e.g. the exponential kernel:

$$\phi_{\mathbf{x}}(\mathbf{z}) = exp(-d(\mathbf{x},\mathbf{z})^2/\sigma^2)$$

with σ as the kernel width and d as the Euclidean distance (numeric features) or the Gower distance (mixed features)

- g is locally faithful to \hat{f} w.r.t. \mathbf{x} if for $\mathbf{z} \in \mathcal{Z} \subseteq \mathbb{R}^p$ close to \mathbf{x} , predictions of $\hat{g}(\mathbf{z})$ are close to $\hat{f}(\mathbf{z})$
- In an optimization task: the closer z is to x, the closer $\hat{g}(z)$ should be to $\hat{f}(z)$
- Two required measures:
 - A proximity (similarity) measure $\phi_{\mathbf{x}}(\mathbf{z})$ between \mathbf{z} and \mathbf{x} , e.g. the exponential kernel:

$$\phi_{\mathbf{x}}(\mathbf{z}) = exp(-d(\mathbf{x},\mathbf{z})^2/\sigma^2)$$

with σ as the kernel width and d as the Euclidean distance (numeric features) or the Gower distance (mixed features)

2 A distance measure or loss function $L(\hat{f}(\mathbf{z}), \hat{g}(\mathbf{z}))$, e.g. the L₂ loss/squared error

$$L(\hat{f}(\mathbf{z}), \hat{g}(\mathbf{z})) = (\hat{g}(\mathbf{z}) - \hat{f}(\mathbf{z}))^2$$

- g is locally faithful to \hat{f} w.r.t. \mathbf{x} if for $\mathbf{z} \in \mathcal{Z} \subseteq \mathbb{R}^p$ close to \mathbf{x} , predictions of $\hat{g}(\mathbf{z})$ are close to $\hat{f}(\mathbf{z})$
- In an optimization task: the closer **z** is to **x**, the closer $\hat{g}(\mathbf{z})$ should be to $\hat{f}(\mathbf{z})$
- Two required measures:
 - A proximity (similarity) measure $\phi_{\mathbf{x}}(\mathbf{z})$ between \mathbf{z} and \mathbf{x} , e.g. the exponential kernel:

$$\phi_{\mathbf{x}}(\mathbf{z}) = exp(-d(\mathbf{x},\mathbf{z})^2/\sigma^2)$$

with σ as the kernel width and d as the Euclidean distance (numeric features) or the Gower distance (mixed features)

2 A distance measure or loss function $L(\hat{f}(\mathbf{z}), \hat{g}(\mathbf{z}))$, e.g. the L₂ loss/squared error

$$L(\hat{f}(\mathbf{z}),\hat{g}(\mathbf{z})) = (\hat{g}(\mathbf{z}) - \hat{f}(\mathbf{z}))^2$$

ullet Given points old z, we can measure local fidelity of g with respect to \hat{f} in terms of a weighted loss

$$L(\hat{f}, g, \phi_{\mathbf{x}}) = \sum_{\mathbf{z} \in \mathcal{Z}} \phi_{\mathbf{x}}(\mathbf{z}) L(\hat{f}(\mathbf{z}), \hat{g}(\mathbf{z}))$$

MINIMIZATION TASK

Optimization objective of LIME:

$$\mathop{\mathsf{arg\,min}}_{g \in \mathcal{G}} \mathit{L}(\hat{\mathit{f}}, \hat{\mathit{g}}, \phi_{\mathsf{x}}) + \mathit{J}(g)$$

- In practice:
 - LIME only optimizes $L(\hat{f}, \hat{g}, \phi_{x})$ (model-fidelity)
 - ullet Users decide threshold on model complexity J(g) beforehand
- Goal: model-agnostic explainer
 - ightharpoonup optimize $L(\hat{f},\hat{g},\phi_{\mathbf{x}})$ without making any assumptions about \hat{f}
 - \rightsquigarrow learn \hat{g} only approximately

LIME ALGORITHM: OUTLINE

Input:

- Pre-trained model \hat{f}
- Observation **x** whose prediction $\hat{f}(\mathbf{x})$ we want to explain
- \bullet Model class ${\cal G}$ for local surrogate (to limit the complexity of the explanation)

LIME ALGORITHM: OUTLINE

Input:

- Pre-trained model \hat{f}
- Observation \mathbf{x} whose prediction $\hat{f}(\mathbf{x})$ we want to explain
- ullet Model class ${\cal G}$ for local surrogate (to limit the complexity of the explanation)

Algorithm:

- lacktriangle Independently sample new points $\mathbf{z} \in \mathcal{Z}$
- 2 Retrieve predictions $\hat{f}(z)$ for obtained points z
- **3** Weight $\mathbf{z} \in \mathcal{Z}$ by their proximity $\phi_{\mathbf{x}}(\mathbf{z})$
- **③** Train an interpretable surrogate model g on weighted data points $\mathbf{z} \in \mathcal{Z}$ \longrightarrow predictions $\hat{f}(\mathbf{z})$ are the target of this model
- **5** Return the interpretable model \hat{g} as the explainer

LIME ALGORITHM: EXAMPLE

Illustration of LIME based on a classification task:

- Light/dark gray background: prediction surface of a classifier
- Yellow point: **x** to be explained
- ullet \mathcal{G} : class of logistic regression models

LIME ALGORITHM: EXAMPLE (STEP 1+2: SAMPLING) • Ribeiro. 2016

Strategies for sampling:

- Uniformly sample new points from the feasible feature range
- Use the training data set with or without perturbations
- Draw samples from the estimated univariate distribution of each feature
- Create an equidistant grid over the supported feature range

Figure: Uniformly sampled

Figure: Equidistant grid

LIME ALGORITHM: EXAMPLE (STEP 3: PROXIMITY) • Ribeiro. 2016

In this example, we use the exponential kernel defined on the Euclidean distance d

$$\phi_{\mathbf{x}}(\mathbf{z}) = exp(-d(\mathbf{x}, \mathbf{z})^2/\sigma^2).$$

LIME ALGORITHM: EXAMPLE (STEP 4: SURROGATE) • Ribeiro. 2016

In our example, we fit a **logistic regression** model (consequently, $L(\hat{f}(z), \hat{g}(z))$ is the Bernoulli loss)

