Homework 11

Meiyu Zhang

 ${\bf September}\ 2022$

1 Question 5

1. a. Prove that for any positive integer n, 3 divide $n^3 + 2n$

Proof.

BY induction on n.

Base case: n = 1

When n = 1, $n^3 + 2n = 1 + 2 = 3 = 3 \times 1$

Therefore, for n = 1, 3 divide $n^3 + 2n$.

Inductive step: We will show that for any integer k, if 3 divide $k^3 + 2k$, then 3 divide $(k+1)^3 + 2(k+1)$

By the inductive hypothesis, 3 divides k^3+2k , which means that $k^3+2k=3m$ for some integer m.

Starting with $(k+1)^3 + 2(k+1)$:

 $(k+1)^3 + 2(k+1) = k^3 + 3k^2 + 3k + 1 + 2k + 2$ by algebra

 $=3m+3k^2+3k+3$ by the inductive hypothesis

 $=3(m+k^2+k+1)$ by algebra

Since k is an integer, m is an integer, $m + k^2 + k + 1$ is also an integer. Therefore, $(k+1)^3 + 2(k+1)$ is equal to 3 times an integer which means $(k+1)^3 + 2(k+1)$ is divisible by 3.

2. b. Use strong induction to prove that any positive integer $n(n \ge 2)$ can be written as a product of primes.

Proof.

By strong induction on n.

Base case:

n = 2. Since 2 is a prime number, it already is a product of one prime number: 2.

Inductive step: Assume that for $k \ge 2$, k can be expressed as a product of prime numbers. We will show that k+1 can be expressed as a product of prime numbers.

If k+1 is prime, then k+1 is a product of one prime number: k+1.

If k+1 is not prime, k+1 is composite and can be expressed as the product of two integers a/b which are both at least 2. We need to show that both a and b fall in the range of 2 to k to apply in the inductive hypothesis.

Since k+1=ab, then a=(k+1)/b. Furthermore, since $b\geq 2$, then a=(k+1)/b; k+1. If a is an integer which is strictly less than k+1, then $a\leq k$.

Therefore, a and b are both in the range from a to k. Therefore, they can be expressed as a product of primes.

 $\mathbf{a} = p_1 p_2 p_l \ \mathbf{b} = q_1 q_2 q_m$

Therefore k+1 can be expressed as product of primes:

 $\mathbf{k}+1 = \mathbf{a} \cdot \mathbf{b} = (p_1 p_2 p_l) \cdot q_1 q_2 q_m.$

2 Question 6

1. a) Exercise 7.4.1, sections a-g

а.

$$P(3) = 1^2 + 2^2 + 3^2 = 1 + 4 + 9 = 14 = \frac{3 \times (3+1) \times (2 \times 3 + 1)}{6}$$

Therefore, for n = 3, $\sum_{j=1}^{n} j^2 = \frac{n(n+1)(2n+1)}{6}$ is true.

h

Take P = k into the equation, $\sum_{j=1}^{k} j^2 = \frac{k(k+1)(2k+1)}{6}$

c.

Take P = k + 1 into the equation, $\sum_{j=1}^{k+1} j^2 = \frac{(k+1) \times (k+1+1) \times (2(k+1)+1)}{6}$

d.

Since n can be any positive integer, $n \ge 1$.

Therefore, for the base case, n should be 1. Then P(1) must be proven in the base case.

 \mathbf{e}

For the inductive step, we must be proven that for every $k \ge 1$, if P(k) is true, then P(k+1) is true.

f.

the inductive hypothesis in the inductive step is P(k) is true, which is $\sum_{j=1}^k j^2 = \frac{k(k+1)(2k+1)}{6} \text{ is true}.$

g

Theorem: For $n \ge 1$, $\sum_{j=1}^{n} j^2 = \frac{n(n+1)(2n+1)}{6}$.

Proof.

By induction on n.

Base case: n = 1.

$$\frac{1 \times (1+1) \times (2 \times 1 + 1)}{6} = \frac{1 \times 2 \times 3}{6} = 1 = 1^2$$

Therefore, for n = 1, $\sum_{j=1}^{n} j^2 = \frac{n(n+1)(2n+1)}{6}$.

Inductive step: We will show that for any integer $k \ge 1$, if $\sum_{j=1}^{k} j^2 = \frac{k(k+1)(2k+1)}{6}$

then $\sum_{j=1}^{k+1} j^2 = \frac{(k+1)((k+1)+1)(2(k+1)+1)}{6}$ is also true.

Starting with the left side of the equation to be proven:

$$\begin{split} &\sum_{j=1}^{k+1} j^2 = 1^2 + 2^2 + 3^2 + 4^2 + \ldots + (k+1)^2 \\ &= \sum_{j=1}^k j^2 + (k+1)^2 \text{ by separating out the last term} \\ &= \frac{k(k+1)(2k+1)}{6} + (k+1)^2 \text{ by the inductive hypothesis} \\ &= \frac{k(2k+1)(k+1)}{6} + (k+1)^2 \\ &= \frac{(2k^2+k)(k+1) + (6k+6)(k+1)}{6} \\ &= \frac{(k+1)(2k^2+7k+6)}{6} \\ &= \frac{(k+1)((k+1)+1)(2(k+1)+1)}{6} \text{ by algebra} \end{split}$$
 Therefore, $\sum_{j=1}^{k+1} j^2 = \frac{(k+1)((k+1)+1)(2(k+1)+1)}{6}$

b) Exercise 7.4.3, section c

Proof.

By induction on n.

Base case: n = 1.

When n = 1, the left side
$$\frac{1}{n^2} = \frac{1}{1^2} = 1 \le 2 - \frac{1}{n} = 1$$

Therefore, for n = 1,
$$\sum_{j=1}^{n} \frac{1}{n^2} \le 2 - \frac{1}{n}$$

Inductive step: We will show that for any integer $k \geq 1$, if $\sum_{j=1}^{k} \frac{1}{k^2} \leq$

$$2 - \frac{1}{k}$$
 then $\sum_{j=1}^{k+1} \frac{1}{(k+1)^2} \le 2 - \frac{1}{(k+1)^2}$

Starting with the left side:

$$\sum_{j=1}^{k+1} \frac{1}{(k+1)^2} = \sum_{j=1}^k \frac{1}{k^2} + \frac{1}{(k+1)^2}$$
 by separating out the last term

$$\leq 2 - \frac{1}{k} + \frac{1}{(k+1)^2}$$
 by the inductive hypothesis

$$\leq 2-\frac{1}{k}+\frac{1}{k(k+1)} \text{ because } \frac{1}{(k+1)^2} \leq \frac{1}{k(k+1)}$$

$$= 2 - \frac{k+1-1}{k(k+1)}$$

$$= 2 - \frac{k}{k(k+1)}$$

$$= 2 - \frac{1}{k+1}$$

$$\leq 2 - \frac{1}{(k+1)^2}$$
 by algebra

Therefore,
$$\sum_{j=1}^{k+1} \frac{1}{(k+1)^2} \le 2 - \frac{1}{(k+1)^2}$$

c) Exercise 7.5.1, section a

Prove that for any positive integer n, 4 evenly divides $3^{2n} - 1$

Proof.

By induction on n.

Base case: n = 1

 $3^{2n} - 1 = 3^{2 \times 1} - 1 = 3^2 - 1 = 8$. Since 4 evenly divides 8, the theorem holds for the case n = 1.

Inductive step: Suppose that for the positive integer k, 4 evenly divides $3^{2k} - 1$. Then, we will show that 4 evenly divides $3^{2(k+1)} - 1$.

By the inductive hypothesis, 4 evenly divides $3^{2k} - 1$, which means that $3^{2k} - 1 = 4$ m for some integer m. By adding 1 to both side of the equation $3m = 3^{2k} - 1$, we get $3^{2k} = 3m + 1$ which is an equivalent statement of the inductive hypothesis.

We must show that $3^{2(k+1)} - 1$ can be expressed as 4 times an integer.

$$3^{2(k+1)} - 1 = 3^{2k+2} - 1$$

$$= 9 \times 3^{2k} - 1$$
 by algebra

$$= 9(4m+1) - 1$$
 by the inductive hypothesis

$$= 36m + 8$$

$$= 4(9m+2)$$
 by algebra

Since m is an integer, (9m+2) is also an integer. Therefore, $3^{2(k+1)} - 1$ is equal to 4 times an integer which means that $3^{2(k+1)} - 1$ is divisible by 4.