客户流失判断

1. 数据预处理

数据属性共15个,分别为:

- ID: 编号
- Contract: 是否有合同
- Dependents: 是否有家属
- DeviceProtection: 是否有设备保护
- IntenrnetService: 是否有互联网服务
- MonthlyCharges: 月度费用
- MultipleLines: 是否有多条线路
- Partner: 是否有配偶
- PaymentsMethod: 付款方式
- PhoneService: 是否有电话服务
- SeniorCitizen: 是否为老年人
- TVProgram: 是否有电视节目
- TotalCharges: 总费用
- gender: 性别
- tenure: 任期年数

在训练集中,增加了标签属性:

• Label: 用户是否流失

1.1 数据摘要

训练集和测试集数据样例个数分别为5227和1307,在训练集中客户流失比例约占37%。

各属性的数据类型如下:

#	Column	Non-Null Count	Dtype
0	ID	5227 non-null	int64
_			
1	Contract	5227 non-null	object
2	Dependents	5227 non-null	object
3	DeviceProtection	5227 non-null	object
4	InternetService	5227 non-null	object
5	MonthlyCharges	5227 non-null	float64
6	MultipleLines	5227 non-nu11	object
7	Partner	5227 non-nu11	object
8	PaymentMethod	5227 non-nu11	object
9	PhoneService	5227 non-nu11	object
10	SeniorCitizen	5227 non-nu11	int64
11	TVProgram	5227 non-nu11	object
12	TotalCharges	5227 non-nu11	float64
13	gender	5227 non-null	object
14	tenure	5227 non-null	int64
15	Labe1	5227 non-null	object
dtyp	es: $float64(2)$, in	t64(3), object(1	1)

查看各属性取值发现如下:

ID	5227
Contract	3
Dependents	2
DeviceProtection	3
InternetService	3
MonthlyCharges	2620
MultipleLines	3
Partner	2
PaymentMethod	4
PhoneService	2
SeniorCitizen	2
TVProgram	3
TotalCharges	5016
gender	2
tenure	73
Label	2
dtype: int64,	
ID	1307
Contract	3
Dependents	2
DeviceProtection	
InternetService	3
MonthlyCharges	900
MultipleLines	3
Partner	2
PaymentMethod	4
PhoneService	2
SeniorCitizen	2
TVProgram	3
TotalCharges	1289
gender	2
tenure	72
dtype: int64)	

经观察后初步发现:

- PhoneService为No的MultipleLines为No phone service,二者存在关联
- InternetService为No的DeviceProtection,TVProgram为No internet service,存在关联
- tenure为0的8行数据对应的TotalCharfes为2283.300441,在 TotalCharges中为最大值,考虑可能是为tenure为0的用户总费用设为 最大值。
- 大部分属性的取值个数为2-4个,且数值类型为object,需要进行处理。

1.2 数据清洗

主要任务包括:

- 二值属性转为0/1, 其中yes为1, No为0
- 多值属性用one-hot, 去掉第一个, 将处理后数据附加在数据后
- 包含No xx service的多值属性, one-hot值去掉该列
- 删除处理前的属性列

将数据类型为object,取值为yes/no的属性Dependents','Partner','PhoneService', 'Label'替代为1/0

```
collist = ['Dependents','Partner','PhoneService','Label']
# map函数
def binary_map(x):
    return x.map({'Yes':1,"No":0})
custmer_train[collist] =
custmer_train[collist].apply(binary_map)
col = ['Dependents','Partner','PhoneService']
custmer_test[col] = custmer_test[col].apply(binary_map)
```

多值属性如'Contract','InternetService','PaymentMethod','gender'修改为One-hot属性并去掉第一个新属性。

针对一些具有no xx service属性值的数据如'DeviceProtection', 'MultipleLines','TVProgram',考虑到该类取值较少且对结果影响较小,one-

将与上述操作相关的源数据删除后的数据类型如下:

hot处理后去掉该属性。

RangeIndex: 5227 entries, 0 to 5226 Data columns (total 23 columns):

# 	Column	Non-Null Count	Dtype
0	ID	5227 non-null	int64
1	Dependents	5227 non-null	int64
2	MonthlyCharges	5227 non-null	float64
3	Partner	5227 non-null	int64
4	PhoneService	5227 non-null	int64
5	SeniorCitizen	5227 non-null	int64
6	TotalCharges	5227 non-null	float64
7	tenure	5227 non-null	int64
8	Label	5227 non-null	int64
9	Contract_One year	5227 non-null	uint8
10	Contract_Two year	5227 non-null	uint8
11	InternetService_Fiber optic	5227 non-null	uint8
12	InternetService_No	5227 non-null	uint8
13	PaymentMethod_Credit card (automatic)	5227 non-null	uint8
14	PaymentMethod_Electronic check	5227 non-null	uint8
15	PaymentMethod_Mailed check	5227 non-null	uint8
16	gender_Male	5227 non-null	uint8
17	DeviceProtection_No	5227 non-null	uint8
18	DeviceProtection_Yes	5227 non-null	uint8
19	MultipleLines_No	5227 non-null	uint8
20	MultipleLines_Yes	5227 non-nu11	uint8
21	TVProgram_No	5227 non-null	uint8
22	TVProgram_Yes	5227 non-nu11	uint8

查看多值属性的相关数值统计信息如下:

	tenure	MonthlyCharges	SeniorCitizen	TotalCharges
count	5227.000000	5227.000000	5227.000000	5227.000000
mean	28.775971	66.823765	0.118615	2084.477153
std	24.293077	28.862749	0.323366	2183.825066
min	0.000000	18.250000	0.000000	18.800000
25%	5.000000	45.000000	0.000000	292.979609
50%	23.000000	74.200000	0.000000	1218.650000
75%	51.000000	89.900000	0.000000	3373.825000
90%	67.000000	101.395283	1.000000	5683.670000
95%	71.000000	106.196180	1.000000	6632.480000
99%	72.000000	114.037000	1.000000	7937.495000
max	72.000000	118.600000	1.000000	8564.750000

看到以上四种数据分布范围较广,需要对其进行特征缩放处理,其他的数据清洗操作如特征选择等将在最终报告中进行展示。

2. 数据可视化

查看各属性在训练集和测试集的取值分布

经上述分析,可以看出训练集和测试集在数据分布比例上基本一致。

从属性相关性图中可看出有一些属性是强相关的,在特征选取时需要将其删除,避免影响模型效果。

在最终报告中将阐述更详尽的可视化结果。

3. 模型选取

与 项目提出时预选的模型一致,我们将用数据集训练各种机器学习及神经网络模型,用准确率评价各模型的结果,并比较模型的效果。

4. 实验结果

在进行特征选取后使用模型进行客户流失判断,使用GBDT并进行微调后的预测准确率在76.7%,进一步的优化,所有模型的结果及分析将在最终报告中展示。

5. 存在的问题

特征选取不当可能对模型有一定影响,考虑优化特征工程,尝试改进二分类算法 提高准确率。

6. 下一步工作

优化特征工程, 选取代表性强的特征进行训练。

完善模型,对模型参数及结构,验证方法进行改进。

7. 任务完成情况

根据项目提出时的任务分配情况,我们针对每个任务进行了详尽的讨论,小组各成员的任务目前进展顺利,后期将致力于优化过程和提高准确率的任务。