IN THE CLAIMS

The following is a complete, marked up listing of revised claims with a status identifier in parentheses, underlined text indicating insertions, and strikethrough and/or double-bracketed text indicating deletions.

LISTING OF CLAIMS

- 1. (Allowed) A scanning-based apparatus for obtaining tomosynthesis data of an object comprising:
- a divergent radiation source emitting X-ray radiation centered around an axis of symmetry;
- a radiation detector comprising a stack of line detectors, each being directed towards the divergent radiation source to allow a ray bundle of said X-ray radiation that propagates in a respective one of a plurality of different angles to enter the line detector;
- an object area arranged in the radiation path between said divergent radiation source and said radiation detector for housing said object; and
- a first movement device that moves said divergent radiation source and said radiation detector relative to said object essentially linearly in a direction essentially orthogonal to said axis of symmetry, while each of said line detectors records a plurality of line images of X-ray radiation as transmitted through said object in a respective one of said plurality of different angles, wherein
- said divergent radiation source and said radiation detector are moved relative to said object a length which is sufficient for scanning each of said line detectors across the entire object to obtain, for each of said line detectors, a two-dimensional image of X-ray radiation as transmitted through said object in a respective one of said plurality of different angles, wherein

- said scanning-based apparatus further comprises a second movement device that rotates said divergent radiation source and said radiation detector relative to said object an angle around an axis of rotation orthogonal to said axis of symmetry, the line detectors being, after said rotation, each directed towards the divergent radiation source to allow a ray bundle of said X-ray radiation that propagates through said object in a respective one of a further plurality of different angles to enter the line detector, and
- said first movement device moves once more said divergent radiation source and said radiation detector relative to said object essentially linearly in a direction essentially orthogonal to said axis of symmetry, while each of said line detectors records a plurality of line images of X-ray radiation as transmitted through said object in a respective one of said further plurality of different angles, wherein said divergent radiation source and said radiation detector are moved relative to said object a length which is sufficient for scanning each of said line detectors across the entire object to obtain, for each of said line detectors, a two-dimensional image of X-ray radiation as transmitted through said object in a respective one of said further plurality of different angles to thereby obtain said tomosynthesis data.
- 2. (Allowed) The apparatus of claim 1 wherein said axis of rotation is passing through said divergent radiation source.
- 3. (Currently Amended) The apparatus of claim 1 wherein
- said second movement device is adapted to repeatedly rotate said radiation detector around said axis of rotation, the line detectors being, after each of said rotations, each directed towards the divergent radiation source to allow a ray bundle of said radiation that propagates in a respective angle to enter the line detector; and
- said first movement device is adapted, after each of said rotations, to repeat the essential essentially linear movement of said divergent radiation source and said radiation detector relative

to said object, while each of said line detectors is adapted to record line images of radiation as transmitted through said object in a respective angle.

- 4. (Allowed) The apparatus of claim 1 wherein said line detectors are oriented to detect line images extending in a direction essentially orthogonal to said axis of symmetry and essentially orthogonal to the direction, in which said first movement device moves said divergent radiation source and said radiation detector relative to said object.
- 5. (Allowed) The apparatus of claim 4 wherein said direction, in which said line images extend, is parallel with said axis of rotation.
- 6. (Allowed) The apparatus of claim 1 wherein
- said line detectors are oriented to detect line images extending in a direction essentially orthogonal to said axis of symmetry and essentially parallel with the direction, in which said first movement device moves said divergent radiation source and said radiation detector relative said object; and
- said direction, in which said line images extend, is essentially orthogonal to said axis of rotation.
- 7. (Allowed) The apparatus of claim 1 wherein said angle around said axis of rotation is smaller than a difference between two adjacent ones of said plurality of different angles.
- 8. (Allowed) The apparatus of claim 1 wherein said angle around said axis of rotation is equal to, or larger than, an angular range, over which said plurality of different angles is distributed.
- 9. (Allowed) The apparatus of claim 1 wherein said plurality of different angles is distributed over an angular range of at least 5°.

- 10. (Allowed) The apparatus of claim 1 wherein said plurality of different angles is distributed over an angular range of at least 10°.
- 11. (Allowed) The apparatus of claim 1 wherein said plurality of different angles is distributed over an angular range of at least 15°.
- 12. (Allowed) The apparatus of claim 1 wherein the number of line detectors in said stack of line detectors is at least 3.
- 13. (Allowed) The apparatus of claim 1 wherein the number of line detectors in said stack of line detectors is at least 10.
- 14. (Allowed) The apparatus of claim 1 wherein the number of line detectors in said stack of line detectors is at least 25.
- 15. (Cancelled).
- 16. (Allowed) The apparatus of claim 1 wherein
- said divergent radiation source is an X-ray source; and
- said line detectors are gaseous-based ionization detectors, wherein electrons freed as a result of ionization by a respective ray bundle are accelerated in a direction essentially perpendicular to the direction of that ray bundle.
- 17. (Allowed) The apparatus of claim 16 wherein said gaseous-based ionization detectors are electron avalanche detectors.
- 18. (Allowed) The apparatus of claim 1 wherein said line detectors are each any of a diode array, a scintillator-based array, a CCD array, a TFT- or CMOS-based detector, or a liquid detector.

- 19. (Allowed) The apparatus of claim 1 comprising a collimator arranged in the radiation path between said radiation source and said object area, said collimator preventing radiation, which is not directed towards said line detectors, from impinging on said object, thereby reducing the radiation dose to said object.
- 20. (Currently Amended) A scanning-based method for obtaining tomosynthesis data of an object using a divergent radiation source, which emits X-ray radiation centered around an axis of symmetry; and a radiation detector comprising a stack of line detectors, each being directed towards the divergent radiation source to allow a ray bundle of said X-ray radiation that propagates in a respective one of a plurality of different angles to enter the line detector, said method comprising the steps of:
- arranging said object in the radiation path between said divergent radiation source and said radiation detector;
- moving said divergent radiation source and said radiation detector relative to said object essentially linearly in a direction essentially orthogonal to said axis of symmetry, while, by each of said line detectors, recording a plurality of line images of radiation as transmitted through said object in a respective one of said plurality of different angles;

wherein said moving includes moving said divergent radiation source and said radiation detector relative to said object a length which is sufficient for scanning each of said line detectors across the entire object to obtain, for each of said line detectors, a two-dimensional image of X-ray radiation as transmitted through said object in a respective one of said plurality of different angles, wherein

- rotating said radiation detector an angle around an axis of rotation orthogonal to said axis of symmetry, the line detectors being, after said rotation, each directed towards the divergent radiation source to allow a ray bundle of said radiation that propagates in a respective one of a further plurality of different angles to enter the line detector; and

- repeating the <u>essential essentially</u> linear movement of said divergent radiation source and said radiation detector relative to said object, moving once more said divergent radiation source and said radiation detector relative to said object essentially linearly in a direction essentially orthogonal to said axis of symmetry, while each of said line detectors records a plurality of line images of X-ray radiation as transmitted through said object in a respective one of said further plurality of different angles, wherein said divergent radiation source and said radiation detector are moved relative said object a length which is sufficient for scanning each of said line detectors across the entire object to obtain, for each of said line detectors, a two-dimensional image of X-ray radiation as transmitted through said object in a respective one of said further plurality of different angles to thereby obtain said tomosynthesis data.
- 21. (Allowed) The method of claim 20 wherein said axis of rotation is passing through said divergent radiation source.
- 22. (Cancelled).
- 23. (Allowed) The method of claim 20 wherein said angle around said axis of rotation, which said radiation detector is rotated, is smaller than a difference between two adjacent ones of said plurality of different angles.
- 24. (Allowed) The method of claim 20 wherein said angle around said axis of rotation, which said radiation detector is rotated, is equal to, or larger than, an angular range, over which said plurality of different angles is distributed.
- 25. (Currently Amended) A scanning-based apparatus for obtaining tomosynthesis data of an object comprising:
- a divergent radiation source emitting X-ray radiation centered around an axis of symmetry;

- a radiation detector comprising a stack of line detectors, each being directed towards the divergent radiation source to allow a ray bundle of said X-ray radiation that propagates in a respective one of a plurality of different angles to enter the line detector;
- an object area arranged in the radiation path between said divergent radiation source and said radiation detector for housing said object; and
- a first movement device that rotates said divergent radiation source and said radiation detector relative said object an angle around an axis of rotation orthogonal to said axis of symmetry to reach a position where a ray bundle of said X-ray radiation that propagates through said object in a respective one of a further plurality of different angles enters the line detector, wherein each of said line detectors records one line image of X-ray radiation as transmitted through said object in a respective one of said plurality of different angles and one line image of X-ray radiation as transmitted through said object in a respective one of said further plurality of different angles and,
- a second movement device that repeatedly moves said divergent radiation source and said radiation detector relative to said object essentially linearly in a direction essentially orthogonal to said axis of symmetry, wherein
- subsequent to each of said essentially <u>linearly linear</u> movements, said first movement device rotates said divergent radiation source and said radiation detector relative said object, wherein each of said line detectors records a line image of X-ray radiation as transmitted through said object in a respective one of said plurality of different angles and a line image of X-ray radiation as transmitted through said object in a respective one of said further plurality of different angles, and
- said second movement device moves said divergent radiation source and said radiation detector relative to said object essentially linearly in a direction essentially orthogonal to said axis of symmetry repeatedly an accumulated length which is sufficient for scanning each of said line detectors across the entire object to obtain, for each of said line detectors, one two-dimensional

image of X-ray radiation as transmitted through said object in a respective one of said plurality of different angles and one two-dimensional image of X-ray radiation as transmitted through said object in a respective one of said further plurality of different angles to thereby obtain said tomosynthesis data.

- 26. (Allowed) A method for obtaining tomosynthesis data of an object comprising the steps of:
- emitting X-ray radiation centered around an axis of symmetry by a divergent radiation source;
- directing each line detector of a stack of line detectors towards the divergent radiation source to allow a ray bundle of said X-ray radiation that propagates in a respective one of a plurality of different angles to enter the line detector;
- arranging an object area in the radiation path between said divergent radiation source and said stack of line detectors for housing said object; and
- rotating said divergent radiation source and said stack of line detectors relative to said object an angle around an axis of rotation orthogonal to said axis of symmetry to reach a position where a ray bundle of said X-ray radiation that propagates through said object in a respective one of a further plurality of different angles enters the line detector, wherein each of said line detectors records one line image of X-ray radiation as transmitted through said object in a respective one of said plurality of different angles and one line image of X-ray radiation as transmitted through said object in a respective one of said further plurality of different angles; and
- repeatedly moving said divergent radiation source and said stack of line detectors relative to said object essentially linearly in a direction essentially orthogonal to said axis of symmetry, wherein
- repeatedly rotating subsequent to each of said essentially linear movements, said divergent radiation source and said stack of line detectors relative to said object, wherein each of said line

detectors records a line image of X-ray radiation as transmitted through said object in a respective one of said plurality of different angles and a line image of X-ray radiation as transmitted through said object in a respective one of said further plurality of different angles; and

- said repeatedly moving includes moving said divergent radiation source and said stack of line detectors relative to said object essentially linear in a direction essentially orthogonal to said axis of symmetry repeatedly an accumulated length which is sufficient for scanning each of said line detectors across the entire object to obtain, for each of said line detectors, one two-dimensional image of X-ray radiation as transmitted through said object in a respective one of said plurality of different angles and one two-dimensional image of X-ray radiation as transmitted through said object in a respective one of said further plurality of different angles to thereby obtain said tomosynthesis data.