Graph Theory Part Two

Recap from Last Time

A *graph* is a mathematical structure for representing relationships.

A graph consists of a set of *nodes* (or *vertices*) connected by *edges* (or *arcs*)

A *graph* is a mathematical structure for representing relationships.

A graph consists of a set of *nodes* (or *vertices*) connected by *edges* (or *arcs*)

A *graph* is a mathematical structure for representing relationships.

A graph consists of a set of *nodes* (or *vertices*) connected by *edges* (or *arcs*)

Adjacency and Connectivity

- Two nodes in a graph are called adjacent if there's an edge between them.
- Two nodes in a graph are called connected if there's a path between them.
 - A path is a series of one or more nodes where consecutive nodes are adjacent.

k-Vertex-Colorings

• If G = (V, E) is a graph, a k-vertex-coloring of G is a way of assigning colors to the nodes of G, using at most k colors, so that no two nodes of the same color are adjacent.

- The *chromatic number* of G, denoted $\chi(G)$, is the minimum number of colors needed in any k-coloring of G.
- Today, we're going to see several results involving coloring parts of graphs. They don't necessarily involve *k-vertex-colorings* of graphs, so feel free to ask for clarifications if you need them!

New Stuff!

• Theorem (The Pigeonhole Principle): If m objects are distributed into n bins and m > n, then at least one bin will contain at least two objects.

Theorem (The Pigeonhole Principle):
 If m objects are distributed into n bins and m > n, then at least one bin will contain at least two objects.

Theorem (The Pigeonhole Principle):
 If m objects are distributed into n bins and m > n, then at least one bin will contain at least two objects.

• Theorem (The Pigeonhole Principle): If m objects are distributed into n bins and m > n, then at least one bin will contain at least two objects.

m = 4, n = 3

Thanks to Amy Liu for this awesome drawing!

Some Simple Applications

- Any group of 367 people must have a pair of people that share a birthday.
 - 366 possible birthdays (pigeonholes)
 - 367 people (pigeons)
- Two people in San Francisco have the exact same number of hairs on their head.
 - Maximum number of hairs ever found on a human head is no greater than 500,000.
 - There are over 800,000 people in San Francisco.

Theorem (The Pigeonhole Principle): If m objects are distributed into n bins and m > n, then at least one bin will contain at least two objects.

Let A and B be finite sets (sets whose cardinalities are natural numbers) and assume |A| > |B|. **How many** of the following statements are true?

If $f: A \to B$, then f is injective.

If $f: A \to B$, then f is not injective.

If $f: A \to B$, then f is surjective.

If $f: A \to B$, then f is not surjective.

Proving the Pigeonhole Principle

- **Theorem:** If m objects are distributed into n bins and m > n, then there must be some bin that contains at least two objects.
- **Proof:** Suppose for the sake of contradiction that, for some m and n where m > n, there is a way to distribute m objects into n bins such that each bin contains at most one object.

Number the bins 1, 2, 3, ..., n and let x_i denote the number of objects in bin i. There are m objects in total, so we know that

$$m = x_1 + x_2 + ... + x_n$$
.

Since each bin has at most one object in it, we know $x_i \le 1$ for each i. This means that

$$m = x_1 + x_2 + ... + x_n$$

 $\leq 1 + 1 + ... + 1$ (n times)
 $= n$.

This means that $m \le n$, contradicting that m > n. We've reached a contradiction, so our assumption must have been wrong. Therefore, if m objects are distributed into n bins with m > n, some bin must contain at least two objects. \blacksquare

Pigeonhole Principle Party Tricks

Degrees

 The degree of a node v in a graph is the number of nodes that v is adjacent to.

- *Theorem:* Every graph with at least two nodes has at least two nodes with the same degree.
 - Equivalently: at any party with at least two people, there are at least two people with the same number of friends at the party.

0/5

Theorem: In any graph with at least two nodes, there are at least two nodes of the same degree.

Theorem: In any graph with at least two nodes, there are at least two nodes of the same degree.

Proof 1:

Theorem: In any graph with at least two nodes, there are at least two nodes of the same degree.

Proof 1: Let G be a graph with $n \ge 2$ nodes.

- **Theorem:** In any graph with at least two nodes, there are at least two nodes of the same degree.
- **Proof 1:** Let G be a graph with $n \ge 2$ nodes. There are n possible choices for the degrees of nodes in G, namely, 0, 1, 2, ..., and n 1.

- **Theorem:** In any graph with at least two nodes, there are at least two nodes of the same degree.
- **Proof 1:** Let G be a graph with $n \ge 2$ nodes. There are n possible choices for the degrees of nodes in G, namely, 0, 1, 2, ..., and n 1.

We claim that G cannot simultaneously have a node u of degree 0 and a node v of degree n-1:

- **Theorem:** In any graph with at least two nodes, there are at least two nodes of the same degree.
- **Proof 1:** Let G be a graph with $n \ge 2$ nodes. There are n possible choices for the degrees of nodes in G, namely, 0, 1, 2, ..., and n 1.

We claim that G cannot simultaneously have a node u of degree 0 and a node v of degree n-1: if there were such nodes, then node u would be adjacent to no other nodes and node v would be adjacent to all other nodes, including u. (Note that u and v must be different nodes, since v has degree at least 1 and u has degree 0.)

- **Theorem:** In any graph with at least two nodes, there are at least two nodes of the same degree.
- **Proof 1:** Let G be a graph with $n \ge 2$ nodes. There are n possible choices for the degrees of nodes in G, namely, 0, 1, 2, ..., and n 1.

We claim that G cannot simultaneously have a node u of degree 0 and a node v of degree n-1: if there were such nodes, then node u would be adjacent to no other nodes and node v would be adjacent to all other nodes, including u. (Note that u and v must be different nodes, since v has degree at least 1 and u has degree 0.)

We therefore see that the possible options for degrees of nodes in G are either drawn from 0, 1, ..., n - 2 or from 1, 2, ..., n - 1.

- **Theorem:** In any graph with at least two nodes, there are at least two nodes of the same degree.
- **Proof 1:** Let G be a graph with $n \ge 2$ nodes. There are n possible choices for the degrees of nodes in G, namely, 0, 1, 2, ..., and n 1.

We claim that G cannot simultaneously have a node u of degree 0 and a node v of degree n-1: if there were such nodes, then node u would be adjacent to no other nodes and node v would be adjacent to all other nodes, including u. (Note that u and v must be different nodes, since v has degree at least 1 and u has degree 0.)

We therefore see that the possible options for degrees of nodes in G are either drawn from 0, 1, ..., n-2 or from 1, 2, ..., n-1. In either case, there are n nodes and n-1 possible degrees, so by the pigeonhole principle two nodes in G must have the same degree.

- **Theorem:** In any graph with at least two nodes, there are at least two nodes of the same degree.
- **Proof 1:** Let G be a graph with $n \ge 2$ nodes. There are n possible choices for the degrees of nodes in G, namely, 0, 1, 2, ..., and n 1.

We claim that G cannot simultaneously have a node u of degree 0 and a node v of degree n-1: if there were such nodes, then node u would be adjacent to no other nodes and node v would be adjacent to all other nodes, including u. (Note that u and v must be different nodes, since v has degree at least 1 and u has degree 0.)

We therefore see that the possible options for degrees of nodes in G are either drawn from 0, 1, ..., n-2 or from 1, 2, ..., n-1. In either case, there are n nodes and n-1 possible degrees, so by the pigeonhole principle two nodes in G must have the same degree. \blacksquare

Theorem: In any graph with at least two nodes, there are at least two nodes of the same degree.

Proof 2: Assume for the sake of contradiction that there is a graph G with $n \ge 2$ nodes where no two nodes have the same degree. There are n possible choices for the degrees of nodes in G, namely 0, 1, 2, ..., n-1, so this means that G must have exactly one node of each degree. However, this means that G has a node of degree G and a node of degree G and a node of degree G and is adjacent to no other nodes, but this second node is adjacent to every other node, which is impossible.

We have reached a contradiction, so our assumption must have been wrong. Thus if G is a graph with at least two nodes, G must have at least two nodes of the same degree. \blacksquare

The Generalized Pigeonhole Principle

$$\frac{11}{5} = 2\frac{1}{5}$$

A More General Version

- The generalized pigeonhole principle says that if you distribute m objects into n bins, then
 - some bin will have at least $\lceil m/n \rceil$ objects in it, and
 - some bin will have at most $\lfloor m/n \rfloor$ objects in it.

```
[^m/_n] means "^m/_n, rounded up." [^m/_n] means "^m/_n, rounded down."
```


$$m = 11$$
 $n = 5$
 $[m / n] = 3$
 $[m / n] = 2$

A More General Version

- The generalized pigeonhole principle says that if you distribute m objects into n bins, then
 - some bin will have at least $\lceil m/n \rceil$ objects in it, and
 - some bin will have at most $\lfloor m/n \rfloor$ objects in it.

```
[^m/_n] means "^m/_n, rounded up." [^m/_n] means "^m/_n, rounded down."
```


$$m = 11$$
 $n = 5$
 $[m / n] = 3$
 $[m / n] = 2$

A More General Version

- The generalized pigeonhole principle says that if you distribute m objects into n bins, then
 - some bin will have at least $\lceil m/n \rceil$ objects in it, and
 - some bin will have at most $\lfloor m/n \rfloor$ objects in it.

 $[^m/_n]$ means " $^m/_n$, rounded up." $[^m/_n]$ means " $^m/_n$, rounded down."

$$m = 11$$

 $n = 5$

$$[m / n] = 3$$

 $[m / n] = 2$

m = 8, n = 3

Thanks to Amy Liu for this awesome drawing!

Theorem: If m objects are distributed into n > 0 bins, then some bin will contain at least $\lceil m/n \rceil$ objects.

Proof: We will prove that if m objects are distributed into n bins, then some bin contains at least m/n objects. Since the number of objects in each bin is an integer, this will prove that some bin must contain at least $\lceil m/n \rceil$ objects.

To do this, we proceed by contradiction. Suppose that, for some m and n, there is a way to distribute m objects into n bins such that each bin contains fewer than m/n objects.

Number the bins 1, 2, 3, ..., n and let x_i denote the number of objects in bin i. Since there are m objects in total, we know that

$$m = x_1 + x_2 + ... + x_n$$
.

Since each bin contains fewer than $^m/_n$ objects, we see that $x_i < ^m/_n$ for each i. Therefore, we have that

$$m = x_1 + x_2 + ... + x_n$$

 $< {}^m/_n + {}^m/_n + ... + {}^m/_n$ (n times)
 $= m$.

But this means that m < m, which is impossible. We have reached a contradiction, so our initial assumption must have been wrong. Therefore, if m objects are distributed into n bins, some bin must contain at least $\lceil m/n \rceil$ objects.

An Application: Friends and Strangers

Friends and Strangers

- Suppose you have a party of six people. Each pair of people are either friends (they know each other) or strangers (they do not).
- *Theorem:* Any such party must have a group of three mutual friends (three people who all know one another) or three mutual strangers (three people, none of whom know any of the others).

This graph is called a **6-clique**, by the way.

Friends and Strangers Restated

 From a graph-theoretic perspective, the Theorem on Friends and Strangers can be restated as follows:

Theorem: Any 6-clique whose edges are colored red and blue contains a red triangle or a blue triangle (or both).

How can we prove this?

- **Theorem:** Consider a 6-clique in which every edge is colored either red or blue. Then there must be a triangle of red edges, a triangle of blue edges, or both.
- **Proof:** Color the edges of the 6-clique either red or blue arbitrarily. Let x be any node in the 6-clique. It is incident to five edges and there are two possible colors for those edges. Therefore, by the generalized pigeonhole principle, at least $\lceil 5/2 \rceil = 3$ of those edges must be the same color. Call that color c_1 and let the other color be c_2 .

Let r, s, and t be three of the nodes adjacent to node x along an edge of color c_1 . If any of the edges $\{r, s\}$, $\{r, t\}$, or $\{s, t\}$ are of color c_1 , then one of those edges plus the two edges connecting back to node x form a triangle of color c_1 . Otherwise, all three of those edges are of color c_2 , and they form a triangle of color c_2 . Overall, this gives a red triangle or a blue triangle, as required.

Ramsey Theory

- The proof we did is a special case of a broader result.
- **Theorem** (**Ramsey's Theorem**): For any natural number n, there is a smallest natural number R(n) such that if the edges of an R(n)-clique are colored red or blue, the resulting graph will contain either a red n-clique or a blue n-clique.
 - Our proof was that $R(3) \le 6$.
- A more philosophical take on this theorem: true disorder is impossible at a large scale, since no matter how you organize things, you're guaranteed to find some interesting substructure.