

ECOR1043: Circuits

Resistive Circuits

Single Node-pair Circuits

Single Node Pair Circuit

• These circuits are characterized by all the elements having the same voltage across them i.e., the elements are in parallel

1

4

Equivalent Resistances: Parallel

- Equivalent Resistance
 - Simplifies our analysis by combining parallel resistors
 - Resistors are in parallel if they share the same two nodes (same voltage)
 - The equation to determine parallel resistance is given as:

$$\frac{1}{R_p} = \frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_N}$$

$$R_p = \frac{1}{\frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_N}}$$

- Special cases
 - If there are only two resistors in parallel, their sum would be $R_n = \frac{R_1 \times R_2}{R_n}$
 - If there are N parallel resistors of equal value R, their sum would be

$$R_p = \frac{R}{N}$$

Current Divider: General Equation

- In a single node circuit with multiple resistors and a current source, we can find the current through any resistor using Current Divider
- According to Current Divider, current $i_k(t)$ through any resistor R_k is given as:

 $i_k(t) = \frac{R_p}{R_k} i_0(t)$ A

- Where

 $i_0(t)$: Current source

 In other words, in single node circuits, current through any resistor is inversely proportional to its value

Derivation of eq. A is given in Appendix-A at the end

6

Single Node Pair Circuit

• Ex. 1: Find R_p , i_1 , v_1 , and power associated with the source

Finding R_p

$$\frac{1}{R_p} = \frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_N}$$

$$\frac{1}{R_p} = \frac{1}{4k\Omega} + \frac{1}{20k\Omega} + \frac{1}{5k\Omega}$$

$$\frac{1}{R_p} = \frac{5+1+4}{20k\Omega}$$

$$R_p = 2k$$

Single Node Pair Circuit

• Ex. 1: Find R_p , i_1 , v_1 , and power P_s associated with 8mA source

8

Current Divider: Special Case

- For the special case of two resistors R_1 and R_2 , the current divider becomes:

$$i_1 = \frac{R_2}{R_1 + R_2} \times i_0$$

$$i_2 = \frac{R_1}{R_1 + R_2} \times i_0$$

- Use this when possible
- Reduce the parallel circuit to this if possible and convenient

Current Divider: Example

• Ex. 2: Find i_1 and i_2

$$i_1 = \frac{1 \Omega}{1\Omega + 4\Omega} \times 5 \, mA = 1mA$$

Finding i_2

$$i_2 = \frac{R_1}{R_1 + R_2} \times i_0$$

$$i_2 = \frac{4 \Omega}{1\Omega + 4\Omega} \times 5 mA = 4mA$$

We can check our answers using KCL: $i(t)=i_1(t)+i_2(t)\\ 5\,mA=1\,mA+4\,mA\\ 5\,mA=5\,mA\\ \text{LHS}=\text{RHS}$

10

10

Equivalent Current Sources

 Similar to our equivalent voltage sources in a single loop circuits, we can make equivalent current sources.

 $\,-\,$ Assume currents entering the node are +ve and applying KCL

$$i_1(t) - i_2(t) - i_3(t) + i_4(t) - i_5(t) - i_6(t) = 0$$

 Collect current source terms, using the sign of the net value to determine the direction of the equivalent source.

$$[i_1(t) - i_3(t) + i_4(t) - i_6(t)] - i_2(t) - i_5(t) = 0$$

$$[i_1(t) - i_3(t) + i_4(t) - i_6(t)] = i_2(t) + i_5(t)$$

$$i_0(t) = i_2(t) + i_5(t)$$

Where: $i_0(t) = [i$

 $i_0(t) = [i_1(t) - i_3(t) + i_4(t) - i_6(t)]$

Multiple-source/Resistor Networks

• Ex 3 (cont.): Find V_0 and power associated with the sources

and power absorbed by 10mA current source is 100 mW

- Now that V_0 is known, return to original circuit to determine individual powers associated with each current source

resistors which should total 50 mW

14

Practice Problems

Single Node Pair Circuit ullet Pro. 2: Find i_1 , i_2 and v_0 Applying current divider, we get 40k + 80k $\frac{3000}{(40k + 80k) + 60k} \times 0.9 \times 10^{-3}$ = 0.6mA $0.9\,\mathrm{mA}$ $60 \,\mathrm{k}\Omega$ $80 \,\mathrm{k}\Omega > v_o$ $\frac{1}{60k + (40k + 80k)} \times 0.9 \times 10^{-3}$ When in doubt... redraw the circuit to Highlight electrical connections!! = 0.3 mA i_2 For voltage, just use Ohm's law This is an easier way to see the $40\,\mathrm{k}\Omega$ $v_o = 80k \times i_2 = 24V$ divider $0.9\,\mathrm{mA}$ $60 \,\mathrm{k}\Omega$ $80 \,\mathrm{k}\Omega > v_o$ 19

Single Node Pair Circuit

• Pro. 5 (cont): Determine power delivered by source

Alternate solution:

Instead of finding the power delivered directly, we can find the power absorbed by the circuit, which will be equal to power delivered by the source.

$$P = I^2 \times R_p$$

$$P = (20mA)^2 \times R_p$$

Where

$$\frac{1}{R_p} = \frac{1}{2k} + \frac{1}{4k} + \frac{1}{3k}$$
$$= \frac{6+3+4}{12k}$$
$$R_p = \frac{12}{13}k$$

$$P == (20 \times 10^{-3})^2 \times \frac{12}{13} \times 10^3$$

$$P = \frac{4.800}{13} W$$

$$P = 369.2 \text{ mW}$$

24

24

Appendix-A

Derivation of General Case of Current Divider

Current Divider: General Equation

- Similar to the voltage divider we can find an equation for a current divider:

- Start by applying KCL at the top node of the circuit:

$$i_o(t) = i_1(t) + i_2(t) + \dots + i_{N(t)}$$
 A

- Reminder: From Ohm's Law we can rearrange to solve for current:

$$V = IR$$

$$I = \frac{V}{R}$$

26

26

Current Divider: General Equation

- Substitute rearranged Ohm's Law into equation (A) for each current

$$i_o(t) = \frac{v(t)}{R_1} + \frac{v(t)}{R_2} + \dots + \frac{v(t)}{R_N}$$

Solving for i₁(t): factor out v(t) and solve for it:

$$i_o(t) = \left(\frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_N}\right) v(t)$$

$$v(t) = \frac{i_0(t)}{\frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_N}}$$

$$v(t) = i_0(t) \times \left(\frac{1}{\frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_N}}\right)$$

- Notice we can substitute R_p in:

$$v(t) = i_0(t)R_p$$

Current Divider: General Equation

- For any specific current through a resistor we can specify it through Ohm's Law:

$$v(t) = i_1(t)R_1 \qquad \longrightarrow \qquad C$$

- Now we equate equations (B) and (C) and solve for $i_1(t)$

$$i_1(t)R_1 = i_0(t)R_p$$

$$i_1(t) = \frac{i_0(t)R_p}{R_1}$$

 The same algebra can be done for any given resistor, so the general equation is:

$$i_k(t) = \frac{i_0(t)R_p}{R_k}$$

Rearranging the terms

$$i_k(t) = \frac{R_p}{R_k} i_0(t)$$

28

28

White Board