Machine Learning Stanford University Professor Andrew Ng

Jordan Hong

May 22, 2020

Contents

	roduction
1.1	What is Machine Learning
1.2	Supervised Learning
1.3	Unsupervised Learning
Line	ear Regression with One Variable
2.1	Model Representation
	2.1.1 Notations
	2.1.2 Hypothesis Function
2.2	Cost Function
2.3	

1.1 What is Machine Learning

- 1. Machine Learning
 - Grew out of work in Artificial Intelligence (AI)
 - New capabilities for computers
- 2. Examples:
 - database mining
 - applications can't programby hand (handwriting recognition, Natural Language Processing (NLP), Computer Vision)
 - Neuromorphic applications
- 3. Definition

• Arthur Samuel(1959)

Machine Learning: Field of study that gives computers the ability to learn without being explicitly programmed.

• Tom Mitchell(1998)

Well-posed Learning Problem: A computer program is said to learn from experience E with respect to some task T and some performance measure P, if its performance on T, as measured by P, improves with experience E.

- 4. Machine Learning in this course:
 - (a) Suupervised Learning
 - (b) Unsupervised Learning
 - (c) Others: reinforcement learning, recommender systems
 - (d) Practical application techniques

1.2 Supervised Learning

In supervised learning, the the right answer is given. For example:

- 1. Regression: predict real-valued output.
- 2. Classification: predict discrete-valued output.

Figure 1: Supervised Learning

1.3 Unsupervised Learning

The right answer is not given, e.g. cocktail problem (distinguishing two voices from an audio file.)

Unsupervised Learning

Figure 2: Unsupervised learning

2 Linear Regression with One Variable

2.1 Model Representation

2.1.1 Notations

For a training set:

- $\mathbf{m} = \text{Number of training examples}$.
- $\mathbf{x} =$ "input" variable / features.
- y = "output" variables / "target" variable.
- (x,y) one training example.
- (x^i, y^i) denotes the ith training example

2.1.2 Hypothesis Function

A hypothesis function (h) maps input (x) to estimated output (y). How do we represent h?

$$h_{\theta}(x) = \theta_0 + \theta_1 \times x \tag{1}$$

We can apply Univariate linear regression with respect to x.

2.2 Cost Function

Recall 1. The θ^i s are parameters we have to choose. The intuition is is that we want to choose θ_i s such that h_{θ} is closest to y for our training examples (x,y). Cost Function:

2.3 Gradient Descent