A parallel plate capacitor with plate separation of 0.6 mm and filled with free space has an applied peak voltage of 25 V at a frequency of 100 MHz. Find the peak value of displacement current density. [Ans: ~ 231.7 A/m²]

Solution

The displacement current density is defined as, $j_d = \frac{\epsilon_0 V_0 \omega}{d} \cos \omega t$. The peak value of displacement current density can be obtained for $\cos \omega t = 1$. Given, d = 0.6mm, $V_0 = 25V$, f = 100MHz. However, we know that $2\pi f = \omega$. Hence, inserting all the values, $j_d = \frac{(8.85 \times 10^{-12} Fm^{-1}) \times (25V) \times (2\pi \times 100 \ MHz)}{6 \times 10^{-4} m} \simeq 231.7 \ Am^{-2}$.

- Consider a parallel plate capacitor with circular plates having a radius of 5 cm and plate separation of 0.5 mm and filled with free space. A peak voltage of 20 V at a frequency of 20 MHz is applied across the plates. Neglecting end effects in the capacitor calculate
 - a) The peak value of displacement current density [Ans: 44.5 A/m²]
 - b) The magnetic field at the mid plane between the capacitor plates at a distance of 2 cm from the axis. [Ans: $^{\sim}$ 5.6x10⁻⁷ T]
 - c) The magnetic field at the mid plane between the capacitor plates at a distance of 10 cm from the axis. [Ans: $^{\sim}$ 7x10⁻⁷ T]
 - d) At what distance from the axis will the magnetic field be highest?

Solution

a) As we did in the previous problem, the peak value of the displacement current density will be, $j_d = \frac{\epsilon_0 V_0 \omega}{d} = \frac{(8.85 \times 10^{-12} Fm^{-1}) \times (20V) \times (2\pi \times 20MHz)}{5 \times 10^{-4} m} \simeq 44.5 \ Am^{-2}$.

- be, $j_d = \frac{1}{d} = \frac{1}{5 \times 10^{-4} m} \simeq 44.5 \ Am^{-2}$. b) Considering an Amperean loop of radius r, we can write, $B(2\pi r) = \mu_0 j_d \times \pi r^2$. Given, r=2cm. Hence, $B \times (2\pi \times 2 \times 10^{-2} m) = (4\pi \times 10^{-7} Hm^{-1}) \times (44.5 \ Am^{-2}) \times$
- $(\pi \times 4 \times 10^{-4} m^2) \Rightarrow B \simeq 5.6 \times 10^{-7} T$. c) We have already calculated the displacement current density which reads $j_d = 44.5 \ Am^{-2}$. So, the total displacement current for a parallel plate capacitor of radius (R) 5 cm will be, $I_d = j_d \times \pi R^2 = 0.3493A$. Now considering an Amperean loop of radius 10cm, the magnetic field 10cm away from the center of the midplane will be, $B \times (2\pi \times 10 \times 10^{-2} m) = (4\pi \times 10^{-7} Hm^{-1}) \times (0.3493A) \Rightarrow B \simeq 7 \times 10^{-7} T$.
- d) If the distance from the axis is less than the radius of the circular disk (r<R), then the magnetic field $B=\frac{\mu_0}{2} j_d r = \frac{\mu_0 I_d}{2\pi R^2} r$, which suggests a linear increase of the magnetic field. If the distance is greater than the radius of the disk (r>R), then, $B=\mu_0\frac{j_d\pi R^2}{2\pi r}=\frac{\mu_0}{2}\frac{I_d}{\pi r}$, this suggests that the magnetic field varies inversely with the distance. Hence, magnetic field will me maximum when r=R.
- Consider an infinitely long air core tightly wound straight solenoid having N turns per unit length and carrying a current given by $I=I_0 {
 m si} \ {
 m n} \omega t$.
 - Obtain the induced electric field within the interior of the solenoid.
- b) Calculate the displacement current density within the solenoid.

Solution

- Jointie
- a) The induced electric field is $E=\frac{\mu_0N}{2}\frac{dI}{dt}$ $r=\frac{\mu_0N}{2}I_0\omega r\cos\omega t$. b) The displacement current density is defined as, $j_d=\frac{dD}{dt}=\epsilon_0\frac{dE}{dt}=-\frac{\epsilon_0\mu_0I_0N\omega^2r}{2}$ si $n\omega t=$
- 4. An electromagnetic wave propagating in free space is described by the following expression for the electric field:

$$\vec{E} = \vec{E} \exp[-i(3\times10^6x - 4\times10^6y - \omega t)]$$

a) What is the value of ω ?

 $-\frac{N\omega^2}{2\sigma^2}I_0r\sin\omega t$.

b) What is the wavelength of the wave?c) Write down the unit vector along the propagation direction of the wave.

Solutio

Solution
a) Let us consider $\vec{E} = \vec{E} \exp[i(-k_x x + k_y y + \omega t)]$. Now the classical wave equation reads,

$$\nabla^2 E = \frac{1}{c^2} \frac{\partial^2 E}{\partial t^2}$$
. Hence, applying the given electric field in the classical wave equation, $(k_x^2 + k_y^2)E = \frac{\omega^2}{c^2}E \Rightarrow \frac{\omega^2}{c^2} = (3^2 + 4^2) \times 10^{12} \Rightarrow \frac{\omega}{c} = 5 \times 10^6 m^{-1} \Rightarrow \omega = 15 \times 10^{14} s^{-1}$

- b) Now $\frac{\omega}{c} = \frac{2\pi}{\lambda} = 5 \times 10^6 m^{-1} \Rightarrow \lambda = \frac{2\pi}{5 \times 10^6} m \approx 1.25 \times 10^{-6} m$.
- c) The direction of propagation is in the x-y plane since the wave has $k_x = 3 \times 10^6 m^{-1}$, $k_v =$

$$4\times10^6m^{-1}$$
, $k_z=0$. If the angle made with the x axis is θ , then t an $\theta=\frac{k_y}{k_x}=\frac{4}{3}\Rightarrow\theta=53.13^\circ$ as described in the figure.

