

DESIGN DE ESTRUTURAS AEROESPACIAIS

Daniel Afonso

Escola Superior Aveiro Norte, Universidade de Aveiro Centro de Tecnologia Mecânica e Automação (TEMA) dan@ua.pt www.ua.pt/pt/p/16609746

SUMÁRIO

Atrito

- Atrito entre peças
- Tipos de atrito

Guiamento de movimento com atrito dinâmico

Guiamento de movimento linear e rotativo

Guiamento de movimento com atrito rolante

- Guiamento de movimento linear e rotativo
- Preocupações com a seleção de componentes de guiamento para o espaço

GUIAMENTO DE MOVIMENTO E REDUÇÃO DE ATRITO

Componentes

MOVIMENTO ENTRE PEÇAS

mecanismo implica movimento entre múltiplas peças

o contacto entre peças gera atrito

o atrito dissipa energia mecânica, provoca aquecimento, provoca desgaste de material, etc.

$$Ff_{S} = \mu_{S}.N$$

$$Ff_S = \mu_S.N$$

$$Ff_k = \mu_k.N$$

Atrito estático

Atrito dinâmico

Para a maioria da combinação de pares de materiais, o coeficiente de atrito dinâmico é inferior ao coeficiente de atrito estático:

A força necessária para perpetuar o movimento é inferior à necessária para o iniciar

Coeficiente de atrito depende maioritariamente dos materiais que compõem a superfície

Combinação de materiais	Condição de superfície	Coeficiente de atrito estático	Coeficiente de atrito dinâmico
Alumínio — Alumínio	Limpo e seco	1.05 a 1.35	1.4
Alumínio – Alumínio	Lubrificado	0.3	0.3
Alumínio – Aço	Limpo e seco	0.61	0.47
Aço – Aço	Limpo e seco	0.5 a 0.8	0.42
Aço – Aço	Lubrificado	0.15 a 0.23	0.05 a 0.15
Bronze – Aço	Limpo e seco	0.16	0.15
Teflon (PTFE) — Aço	Limpo e seco	0.05 a 0.2	0.04
Fibra de carbono — Aço	Limpo e seco	0.11 a 0.14	
Cobre – Cobre	Limpo e seco	1.6	

Potência depende da força e da velocidade

- Força no sentido oposto ao movimento provoca uma dissipação de potência
- Necessidade de minimizar a força de atrito no movimento

$$P_{dissipada} = F_a.v$$

ESFORÇO ENTRE PEÇAS EM MOVIMENTO

CASQUILHOS E COMPONENTES DESLIZANTES

A montagem de um mecanismo implica contacto entre peças

 A utilização de peças fabricas em materiais que proporcionam um baixo coeficiente de atrito beneficia o funcionamento do mecanismo

Seleção de casquilhos depende da direção da carga a suportar

Casquilhos simples montagens com esforço radial

Casquilhos com abas montagens com esforço radial e uma componente axial facilidade da montagem

Anilhas deslizantes montagens com esforço axial/normal

Casquilhos / carros deslizantes montagens com movimento linear

Atrito estático

Atrito de rolamento

ROLAMENTOS

Elemento utilizado para minimizar o atrito num movimento através de atrito rolante

DIMENSÕES DE ROLAMENTOS

Utilizam carreiras de esferas para produzir o atrito rolante entre um anel fixo e um anel móvel

Simples/Rígido (radial)

Auto-compensado

Misto Contacto angular

Axial

Simples/Rígido maioria das montagens com esforço radial

Auto-compensado montagens com esforço radial onde o veio pode sofrer flexão

Mistos / Radial-Axial montagens com esforço maioritariamente radial e uma componente axial

TENSÃO DE CONTACTO EM ROLAMENTOS

Utilizam carreiras de rolos para produzir o atrito rolante entre um anel fixo e um anel móvel em aplicações com cargas elevadas

Radial

Auto-compensado

Misto
Contacto angular

Axial

Simples/com caixa interior ou exterior maioria das montagens com esforço radial

Auto-compensado montagens com esforço radial onde o veio pode sofrer flexão

Mistos / Radial-Axial / Axial-Radial montagens com esforço combinado radial e axial

Axiais montagens com esforço axial

Mistos / Radial-Axial / Axial-Radial montagens com esforço combinado radial e axial em ambos os sentidos

ROLAMENTOS DE AGULHAS

Utilizam carreiras de agulhas (rolos de pequeno diâmetro) para produzir o atrito rolante entre um anel fixo e um anel móvel em aplicações compactas com cargas elevadas

Radial

Radial com contacto no veio

Axial

ROLAMENTOS COMBINADOS

ROLAMENTOS LINEARES

Utilizam carreiras de esferas ou rolos para produzir o atrito rolante entre uma guia e um corpo móvel com movimento linear

ROLAMENTOS LINEARES

Linear para guia cilíndrica montagens com esforço radial

Linear para guia perfilada montagens com esforço radial e momento fletor

ROLAMENTOS COMBINADOS PARA MOVIMENTO LINEAR

ROLAMENTOS MAGNÉTICOS

Utilizam campos magnéticos (ativos ou passivos) para permitir o movimento de corpos sem contacto

SELEÇÃO DE ROLAMENTOS

Carga suportada

- Adequar a carga suportada à solicitação da aplicação
 - Direção da carga
 - Amplitude da carga

Espaço disponível

• Selecionar a tipologia de rolamento de acordo com o espaço disponível

Facilidade de montagem/desmontagem

- Adequar a tipologia a solução de montagem e fixação
- Possibilidade de utilização de chumaceiras ou mancais (rolamento com caixa para fixação)

SELEÇÃO DE ROLAMENTOS

Precisão da montagem

- Adequar a precisão de montagem do rolamento e atrito deslizante à necessidade da aplicação
- Possibilidade de utilizar molas ou anilhas onduladas para gerir folgas

Desalinhamento da montagem

- Adequar a tipologia a possíveis desalinhamento da montagem
- Criar peças de fixação que permitam a correção de desalinhamento

Velocidade de operação

 Selecionar precisão, atrito deslizante e material dos rolamentos de acordo com a velocidade da aplicação

SELEÇÃO DE ROLAMENTOS

Vibração e ruído

 Selecionar a precisão do rolamento de acordo com os requisitos de vibração da aplicação

Lubrificação e blindagem

- Adequar a seleção do lubrificante e da blindagem às condições de operação
- Adequar a solução de blindagem às condições de limpeza de operação
- Ponderar a necessidade de manutenção

Tempo de vida

 Calcular o tempo de vida de acordo com as condições de funcionamento e nível de confiança pretendido

TEMPO DE VIDA DE UM ROLAMENTO

$$L_{10} = \left(\frac{C}{P}\right)^p$$

 $P = X.F_r + Y.F_a$

L₁₀ - Vida nominal em milhões de rotações C - Carga suportada pelo rolamento

P - Carga dinâmica equivalente a que o rolamento é sugeito

> p - Fator de forma os elementos rolantes

> > p = 3 para esferas p = 10/3 para rolos

F_r - Carga radial

F_a — Carga axial

> X – proporção de carga radial

Y – proporção de carga axial

TEMPO DE VIDA DE UM ROLAMENTO

- Vida nominal do rolamento em milhões de rotações com 90% de confiança
- Valor exigido por norma ISO 281 para o fabrico de rolamentos

L10h

• Vida nominal do rolamento em horas de trabalho

•
$$L_{10h} = \frac{10^6}{60.n}$$
. L_{10}

- Estimativa de vida útil modificada
- $L_{nm} = a_1 \cdot a_{fabricante} \cdot L_{10}$

LIMITAÇÕES DE GUIAMENTO DE MOVIMENTO NO ESPAÇO

Trabalho em vácuo

- Desgaseificação reduz a eficácia do óleo ou graxa
 - necessidade de utilização de óleos lubrificantes e graxas de baixa pressão e baixa liberação de gás

Amplitudes térmicas

- Necessidade de garantir a compatibilidade dos materiais e lubrificantes às amplitudes térmicas
- Necessidade de garantir que a dilatação térmica não compromete a performance do rolamento (potencial utilização de cerâmicos)

LIMITAÇÕES DE GUIAMENTO DE MOVIMENTO NO ESPAÇO

Massa dos elementos de guiamento

- Necessidade de seleção de componentes com menor massa
 - Utilização de rolamento de esferas ocas

Radiação e variações de campos magnéticos

- Radiação (em particular devido ao sol) pode deteriorar o lubrificante e superfície do rolamento
 - Cargas elétricas induzidas podem provocar descargas elétricas que provocam defeitos superficiais (possível ser a falha do Kepler)

