# Deep Transformation-Invariant Clustering

Tom Monnier<sup>1</sup>

Thibault Groueix<sup>1</sup>

Mathieu Aubry<sup>1</sup>

http://imagine.enpc.fr/~monniert/DTIClustering/









## Motivation

Goal → efficiently cluster images, even in the wild

**Challenge** → distances not invariant to image transformations





















color & illumination

#### **Previous work**

- 1. Clustering in a **feature space** 
  - state-of-the-art struggle with real images hard to interpret
- 2. Align images in **pixel space** before clustering them highly interpretable difficult optimization simple alignments

#### **Contributions**

Results

- 1. Joint learning of clustering and deep alignment in pixel space
- 2. Approach with state-of-the-art and interpretable results

## Method

### Standard clustering **DTI clustering** • sample $x_i$ $\mathbf{X}$ prototype $c_1$ $\mathbf{X}$ prototype $c_2$ $\mathbb{X}$ transformed $\mathcal{T}_{f_1(x_i)}(c_1)$ $\mathbb X$ transformed $\mathcal T_{f_2(x_i)}(c_2)$ $f_k$ deep predictor



# **Transformation sequence**

#### **Transformation modules**

- spatial transformers [1]  $\rightarrow$  affine  $\mathcal{T}_{\beta}^{\mathrm{aff}}$ , projective  $\mathcal{T}_{eta}^{ ext{proj}}$  , thin plate spline  $\mathcal{T}_{eta}^{ ext{tps}}$
- color transformation  $\mathcal{T}^{\mathrm{col}}_{eta}$
- morphological transformation  $\mathcal{T}_{\beta}^{\mathrm{mor}}$  (new)



### Key elements for training

→ curriculum learning + cluster reassignment

# Standard image clustering benchmarks



## prototype / query sample / closest aligned prototype

| Method            | Runs    | Eval        | MNIST                    |      | MNIST-test  |                                    | USPS                       |                                | F-MNIST        |             | SVHN                      | MNIST-color |
|-------------------|---------|-------------|--------------------------|------|-------------|------------------------------------|----------------------------|--------------------------------|----------------|-------------|---------------------------|-------------|
|                   |         |             | ACC                      | NMI  | ACC         | NMI                                | ACC                        | NMI                            | ACC            | NMI         | ACC                       | ACC         |
| Clustering on a l | learne  | d feature   |                          |      |             |                                    |                            |                                |                |             |                           |             |
| DEPICT [2]        | 5       | avg         | 96.5                     | 91.7 | 96.3        | 91.5                               | 96.4                       | <b>92.7</b>                    | 39.2           | 39.2        | -                         | -           |
| DSCDAN [3]        | 10      | avg         | <b>97.8</b>              | 94.1 | <b>98.0</b> | 94.6                               | 86.9                       | 85.7                           | <b>66.2</b>    | 64.5        | -                         | -           |
| Clustering on a l | earned  | d feature w | ith data                 | augm | entatio     | on $\overline{a}$ n $\overline{d}$ | $\sqrt{or} a \overline{d}$ | $h\overline{o}c \overline{d}a$ | – –<br>ta repi | esenta      | tion –                    |             |
| IMSAT [4]         | 12      | avg         | 98.4 ▽                   | -    | -           | _                                  | -                          | -                              | -              | -           | <b>57.3</b> <sup>▽†</sup> | 10.6        |
| IIC [5]           | 5       | avg         | $98.4^{ 7}$              | -    | -           | -                                  | -                          | -                              | -              | -           | -                         | 10.6        |
|                   | 5       | minLoss     | <b>99.2</b> <sup>▽</sup> | -    | -           | -                                  | -                          | -                              | -              | -           | -                         | 10.6        |
| Clustering on pix | xel val | ues         |                          |      |             |                                    |                            |                                |                |             |                           |             |
| K-means           | 10      | avg         | 54.8                     | 50.2 | 55.9        | 51.2                               | 65.3                       | 61.2                           | 54.1           | 51.4        | 12.2                      | 10.5        |
| DTI K-means       | 10      | avg         | <b>97.3</b>              | 94.0 | 96.6        | 94.6                               | 86.4                       | 88.2                           | <b>61.2</b>    | 63.7        | 44.5*                     | 96.7        |
|                   | 10      | minLoss     | 97.2                     | 93.8 | 98.0        | 95.3                               | 89.8                       | 89.5                           | 57.4           | <b>64.1</b> | <b>62.6</b> *             | 96.8        |

## Filtered web images (MegaDepth [6])



[1] Spatial Transformer Networks, Jaderberg et al. 2015

- [2] Deep Clustering via Joint Convolutional Autoencoder Embedding and Relative Entropy Minimization, Dizaji et al. 2017
- [3] Deep Spectral Clustering Using Dual Autoencoder Network, Yang et al. 2019 [4] Learning Discrete Representations via Information Maximizing Self-Augmented Training, Hu et al. 2017
- [5] Invariant Information Clustering for Unsupervised Image Classification and Segmentation, Ji et al. 2019

[6] MegaDepth: Learning Single-View Depth Prediction from Internet Photos, Li and Snavely 2018

#### Raw Instagram hashtags

