Test Report

Listen Before Talk (LBT)

Test of Canopy PMP450i AP - 0a-00-3e-45-11-78, 3.6GHz MIMO OFDM 11/21/2016

The unrestricted contention based protocol for devices operating in the 3650-3700 MHz under Part 90Z of the FCC rules permit operation on a co-channel with like systems (similar systems) and unlike systems.

This report was prepared by:			
First and Last Names Title		Date	Signature
Pavel Polyakov	Systems Engineer, SIT	11/21/16	Flat

This report was reviewed by:			
First and Last Names	Title	Date	Signature
Sriram Chaturvedi	Global Director, SIT	Nov 21, 2016	
Steven Payne	Principal Staff Engineer - RF	NOV 21, 2016	StuB

This report was approved by:			
First and Last Names Title		Date	Signature
Rajesh Vijayakumar	Vice President, Engineering	11-21-16	Rijed Vijozahua

Table of Contents

1.	. Customer Information	4
2.	. Summary of Testing	5
	2.1 General Information	
	2.2 Summary of Test Results	
	2.3 Methods and procedures	5
3.	Equipment Under Test (EUT)	е
	3.1 Identification of Equipment Under Test (EUT)	6
	3.2 Description of EUT	e
	3.3 Modifications Incorporated in the EUT	6
	3.4 Additional Information Related to Testing	6
	3.5 Support Equipment	6
4.	Operation and Monitoring of the EUT during Testing	8
	4.1 Operating Modes	8
	4.2 Configuration and Peripherals	8
5.	Measurements, Examinations and Delivered Results	9
	5.1 Test Results	
Αŗ	ppendix 1: Test Equipment Used	13
Δr	opendiy 2: Monitoring Methods Diagrams	1/1

This page has been left intentionally blank

1. Customer Information

Company name:	Cambium Networks Ltd.	
Address:	3800 Golf Road, Suite 360,	
	Rolling Meadows,	
	IL 60008	
	United States of America	

2. Summary of Testing

2.1 General Information

Specification Reference:	Section 90.7 of Part 90 of the US FCC rules	
Specification Description	A protocol that allows multiple users to share the same spectrum by	
of Contention Based	defining the events that must occur when two or more transmitters	
Protocol (CBP):	attempt to simultaneously access the same channel and	
	establishing rules by which a transmitter provides reasonable	
	opportunities for other transmitters to operate. Such a protocol	
	may consist of procedures for initiating new transmissions,	
	procedures for determining the state of the channel (available or	
	unavailable), and procedures for managing retransmissions in the	
	event of a busy channel.	
	The 'Listen Before Talk' (LBT) operational procedure is the most	
	well-known Contention-based Protocol (CBP)	
Test Dates:	From 27 September till 30 September 2016	

2.2 Summary of Test Results

Reference	Part	Measurement	Result
Section 90.7 of US FCC rules	Part 90	Verification of Unrestricted	PASSED
		Contention Based Protocol operation	

Notes:

- 1) The Device Under Test (DUT) is operating in OFDM mode in the 3.65 3.70 GHz frequency band.
- 2) The DUT was operating in the following channel bandwidth: 20 MHz.

2.3 Methods and procedures

Reference:	Section 90.7 of Part 90 of the US FCC rules
Title:	Private land mobile radio services

3. Equipment Under Test (EUT)

3.1 Identification of Equipment Under Test (EUT)

Brand Name:	Cambium Networks
Model Name:	Canopy 450i 3.6GHz MIMO OFDM - Access
	Point
MAC Address:	0a-00-3e-45-11-78
Hardware Version Number (Board Type):	P13
Software Version Number:	14.3 (Build 9) AP-None

3.2 Description of EUT

The device under test was a Point to Multipoint (PMP) Access Point

3.3 Modifications Incorporated in the EUT

No modifications were made to the EUT during testing.

3.4 Additional Information Related to Testing

Technology Tested:	Unrestricted Contention Based Protocol operation: Listen		
	Before Talk		
Type of Unit:	Access Point		
Modulation:	OFDM		
Antenna Gain:	17 dBi (90° sector)		
Power Supply Requirement:	Nominal	30.0 V, CMM3 & CMM4, 802.3af PoE	
		Supply	
Transmit & Receive Frequency	3650 MHz to 3700 MHz		
Range:			
Channel Bandwidth:	20 MHz		
Transmit & Receive Channel Tested:	Channel Frequency (MHz): 3660, 3675, 3690		

3.5 Support Equipment

The following support equipment was used to exercise the EUT during testing:

Description:	450i Subscriber Module
Brand Name:	Cambium Networks
Model Name or Number:	Canopy 3.6GHz MIMO OFDM – Subscriber
	Module
MAC Address:	0a-00-3e-40-6b-3f

Description:	450 Access Point	
Brand Name:	Cambium Networks	
Model Name or Number:	Canopy 3.6GHz MIMO OFDM – Subscriber	
	Module	
MAC Address:	0a-00-3e-40-30-bd	

Description:	AC/DC Power Supply Unit
Brand Name:	Phihong
Model Name or Number:	PSA 15R-295(MOT)

Ì	Serial Number:	P81000498A1
,		

Description: AC/DC Power Supply Unit	
Brand Name:	Phihong
Model Name or Number:	PSA 15R-240(MOT)
Serial Number:	P74215491A1

Description:	scription: Laptop Computer	
Brand Name:	HP Compaq	
Model Name or Number:	85010w	
Serial Number:	CNU8311Z1P	

Description:	ption: Laptop Computer	
Brand Name:	Dell Latitude	
Model Name or Number:	D600	
Serial Number:	2CCHQ31	

4. Operation and Monitoring of the EUT during Testing

4.1 Operating Modes

The EUT was tested in the following operating modes, unless otherwise stated

- The EUT was tested as a Master unit connected to a Slave transmitting on full power using OFDM modulation as the manufacturer declared that as a representative modulation mode for LBT testing and further declared that the modulation mode used would not impact the results.
- The EUT has two receive channels which normally connect to vertically and horizontally polarized antennas.
- Here is the list of frequencies the DUT is operating.

Bandwidth,	Lower frequency,	Middle frequency,	Upper frequency,
MHz	MHz	MHz	MHz
20	3660	3675	3690

- The device was tested with different power level depending on the channel bandwidth and EIRP power limit.
- The LBT detection threshold is based on the following equation:

LBT Detection Threshold (dBm) = -73 dBm/MHz + $10*\log$ (BW) + $23 - P_T + A$, where

BW is the channel bandwidth value;

 P_{T} is the sum of the conducted transmit power Pc and the transmit antenna gain A; A is the antenna gain.

- The device was tested with different power level for each bandwidth and antenna gain of 0 dBi. Therefore the target LBT Detection Threshold is following:
 - for BW = 20 MHz: Detection Threshold = -73 + 13 + 23 25 = -62 dBm (-65 dBm per chain);
- The device was tested with different power level for each bandwidth and antenna gain of 17 dBi. Therefore the target LBT Detection Threshold is following:

for BW = 20 MHz: Detection Threshold = -73 + 13 + 23 - 25 + 17 = -45 dBm (-48 dBm per chain);

4.2 Configuration and Peripherals

The EUT was tested in the following configurations(s):

- All measurements were made using a conducted link. The antenna ports gave independent access to horizontal and vertical antenna connections;
- A laptop PC was used to configure the EUT parameters during the testing using a standard web browser and via SSH. The laptop was connected to the EUT via Ethernet to set EUT parameters;
- The EUT's command line interface was used to report radar detection events;
- When the system required channel loading a UDP data stream with predefined parameters was generated with iperf network testing tool. This stream was transferred from the laptop, connected to the master device (AP) to the laptop, connected to the slave device (SM).

5. Measurements, Examinations and Delivered Results

5.1 Test Results

Test Summary: CW signal was used as an interferer for unlike systems

Test Engineer:	Pavel Polyakov	Test Dates:	27 September 2016
Test Sample MAC Address:	0a-00-3e-45-11-78		

Environmental Conditions:

Temperature (°C):	27.6
Relative Humidity (%):	32

Results: 20 MHz bandwidth, power level 25 dBm and antenna gain 0 dBi

Test #	Frequency (MHz)	Channel Bandwidth (MHz)	Unwanted Signal Level (dBm)	TX Off
1			-72	No
2			-71	No
3			-70	No
4			-69	No
5	3660	200	-68	Yes
6		20	-67	Yes
7			-66	Yes
8		-	-65	Yes
9			-64	Yes
10			-63	Yes

Test #	Frequency (MHz)	Channel Bandwidth (MHz)	Unwanted Signal Level (dBm)	TX Off
1			-72	No
2			-71	No
3			-70	No
4		20	-69	No
5	3675		-68	Yes
6		20	-67	Yes
7			-66	Yes
8			-65	Yes
9			-64	Yes
10			-63	Yes

Test #	Frequency (MHz)	Channel Bandwidth (MHz)	Unwanted Signal Level (dBm)	TX Off
1			-72	No
2			-71	No
3	3690	20	-70	No
4			-69	No
5			-68	Yes

6		-67	Yes
7		-66	Yes
8		-65	Yes
9		-64	Yes
10		-63	Yes

Results: 20 MHz bandwidth, power level 8 dBm and antenna gain 17 dBi

Test #	Frequency (MHz)	Channel Bandwidth (MHz)	Unwanted Signal Level (dBm)	TX Off
1			-58	No
2			-57	No
3			-56	No
4			-55	No
5	3660	20	-54	Yes
6	3000	20	-53	Yes
7			-52	Yes
8			-51	Yes
9			-50	Yes
10			-49	Yes

Test #	Frequency (MHz)	Channel Bandwidth (MHz)	Unwanted Signal Level (dBm)	TX Off
1			-58	No
2			-57	No
3			-56	No
4			-55	No
5	3675	20	-54	Yes
6	3073	20	-53	Yes
7			-52	-52
8			-51	Yes
9			-50	Yes
10			-49	Yes

Test#	Frequency (MHz)	Channel Bandwidth (MHz)	Unwanted Signal Level (dBm)	TX Off
1			-58	No
2			-57	No
3			-56	No
4			-55	No
5	3690	20	-54	Yes
6	3090	20	-53	Yes
7			-52	Yes
8			-51	Yes
9			-50	Yes
10			-49	Yes

Comment: red line (1) – interferer signal is turned on, green line (2) – interferer signal is turned off, blue line (3) – the connection between the AP and SM is restored.

Test Summary: OFDM signal from the similar AP was used as an interferer

Test Engineer:	Pavel Polyakov	Test Dates:	30 February 2014
Test Sample MAC Address:	0a-00-3e-45-11-78		

Environmental Conditions:

Temperature (°C):	27.6
Relative Humidity (%):	32

450 Access Point that was used as a source of interference was configured to have 20 MHz channel bandwidth and 50/50 Downlink/Uplink ratio. With 2.5 ms frame the interfering signal is supposed to be turned on 50 % of the time, i.e. 1.25 ms. However, measurements showed that the actual 'on time' is less than that. Based on the calculations the time that the TX is open is 42.86 %. Please see the screenshot below:

Taking in consideration the fact that the Access Point is not transmitting 100 % of the time the tme domain correction factor should be taking into the account whilst calculating the detection threshold. This correction factor is calculated based on the following equation:

Factor=10*log10(Duty Cycle), for this particular case the correction factor is 10*log10(0.43)=-3.68 dB. Therefore all the threshold calculated earlier goes up by 3.68 dB.

Results: 20 MHz bandwidth, power level 25 dBm and antenna gain 20 dBi

Test	Frequency	Channel Bandwidth	Antenna Gain	Unwanted Signal	TX
#	(MHz)	(MHz)	(dBi)	Level (dBm)	Off
1	3660	20	0	-68 dBm	No
2	3660	20	0	-67 dBm	Yes
3	3675	20	0	-68 dBm	No
4	3675	20	0	-67 dBm	Yes
5	3690	20	0	-68 dBm	No
6	3690	20	0	-67 dBm	Yes
7	3660	20	17	-50 dBm	No
8	3660	20	17	-49 dBm	Yes
9	3675	20	17	-49 dBm	No
10	3675	20	17	-48 dBm	Yes
11	3690	20	17	-50 dBm	No
12	3690	20	17	-49 dBm	Yes

Appendix 1: Test Equipment Used

Manufacturer	Description	Model	Date Calibration Due
Agilent Technologies	MXA Signal Analyzer 20 Hz – 8.4 GHz	N9020A	14 May 2018
Agilent Technologies	PSG Analog Signal Generator 250 kHz – 50 GHz	E8257D	17 Dec 2016

Note: all cables, splitter and attenuators that were used for test setup were preliminary calibrated.

Appendix 2: Monitoring Methods Diagrams

All tests were performed as conducted measurements using the setups as shown below.

Setup Diagram – EUT – Master, CW signal Injection at Master. Client Device acts as a Slave Device for this scenario.

Note: for the test when a similar Canopy AP was used as an interferer, the CW Signal Generator was substituted for this AP for unlike system.