The RF Line

MRF571 MRF572 MRFC572

NPN SILICON HIGH FREQUENCY TRANSISTORS

... designed for low-noise, wide dynamic range front end amplifiers, low-noise VCO's, and microwave power multipliers.

- Low Noise
- High Gain
- Available in Low Cost Plastic, High Reliability Ceramic or Die
- State-of-the-Art Technology
 Fine Line Geometry
 Ion Implanted Arsenic Emitters
 Gold Top Metallization and Wires
 Silicon Nitride Passivation
- Fully Characterized

f_T = 8.0 GHz @ 50 mA NF = 1.0 dB @ 500 MHz NF = 1.5 dB @ 1.0 GHz NF = 2.5 dB @ 2.0 GHz

HIGH FREQUENCY TRANSISTORS

NPN SILICON

		MRFC572	MRF571	MRF572	
MAXIMUM RATINGS			Macro-X Case 317-01	Case 303-01	
Ratings	Symbol	Chip	Style 2	Style 1 ues	10.00
Collector-Emitter Voltage	V _{CEO}	10	10	10	Unit
Collector-Base Voltage	VCBO	20	20	20	Vdc
Emitter-Base Voltage	VEBO	3.0	3.0	3.0	Vdc Vdc
Collector Current — Continuous	ıc	70	70	70	mAdc
Total Device Dissipation @ T _C = 50°C(1) Derate above T _C = 50°C	PD	1.5 T _J = 200°C max	1.0 10	0.75 5.0	Watts mW/°C
Storage Temperature	T _{stg}	-65 to +200	-65 to +150	-65 to +200	°C

NOTE 1. Case temperature measured on collector lead immediately adjacent to body of package.

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage (I _C = 1.0 mAdc, I _E = 0)	V(BR)CEO	10	12	_	Vdc
Collector-Base Breakdown Voltage (I _C = 0.1 mAdc, I _B = 0)	V(BR)CBO	20	_	_	Vdc
Emitter-Base Breakdown Voltage (I _E = 50 μ Adc, I _C = 0)	V(BR)EBO	2.5		_	Vdc
Collector Cutoff Current (VCB = 8.0 Vdc, IE = 0)	ІСВО	_	_	10	μAdc
ON CHARACTERISTICS					
DC Current Gain (I _C = 30 mAdc, V _{CE} = 5.0 Vdc)	hFE	50		300	
DYNAMIC CHARACTERISTICS					
Collector-Base Capacitance (V _{CB} = 6.0 Vdc, I _E = 0, f = 1.0 MHz)	C _{cb}		0.7	1.0	pF
Current Gain — Bandwidth Product (VCE = 8.0 Vdc, IC = 50 mA, f = 1.0 GHz)	fΤ	-	8.0	_	GHz
FUNCTIONAL TESTS					
Gain $(w$ Noise Figure $(I_C = 10 \text{ mAdc}, V_{CE} = 6.0 \text{ Vdc})$ $f = 0.5 \text{ GHz}$ $f = 1.0 \text{ GHz}$	GNF	 10	16.5 12	_	dB
Noise Figure (IC = 10 mAdc, VCE = 6.0 Vdc) f = 0.5 GHz f = 1.0 GHz MRF571 f = 2.0 GHz MRF572 f = 2.0 GHz	ŊF		1.0 1.5 2.8 2.5	 2.0 	dB

FIGURE 1 — C_{cb}, COLLECTOR-BASE CAPACITANCE versus VOLTAGE

FIGURE 2 — C_{ib}, INPUT CAPACITANCE versus EMITTER BASE VOLTAGE

FIGURE 3 — MRF571 — GAIN AT NOISE FIGURE AND NOISE FIGURE versus FREQUENCY

FIGURE 4 — MRF572 — GAIN AT NOISE FIGURE AND NOISE FIGURE versus FREQUENCY

MRF571
INPUT/OUTPUT REFLECTION COEFFICIENTS
versus FREQUENCY (GHz)
VCE = 6.0 V, IC = 5.0 mA

MRF571 FORWARD/REVERSE TRANSMISSION COEFFICIENTS versus FREQUENCY (GHz) VCE = 6.0 V, IC = 5.0 mA

MRF571 COMMON EMITTER S-PARAMETERS

VCE	lc	f.	S	11 `	S	21	S	12	s	22
(Volts)	(mA)	(MHz)	S ₁₁	· ∠ø	S ₂₁	∠ φ	S ₁₂	∠φ	S ₂₂	∠φ
6.0	5.0	200	0.74	-86	10.5	129	0.06	48	0.69	-42
		500	0.62	- 143	5.5	97	0.08	33	0.41	-59
		1000	0.61	178	3.0	78	0.09	37	0.28	- 69
		1500	0.65	158	2.0	62	0.11	44	0.26	88
		2000	0.70	140	1.6	51	0.14	51	0.27	-99
	10	200	0.64	-111	15	118	0.04	44	0.53	- 59
		500	0.58	- 160	6.9	93	0.06	42	0.27	-77
		1000	0.59	168	3.7	77	0.09	52	0.16	91
		1500	0.63	151	2.5	64	0.12	56	0.16	-113
!		2000	0.67	134	2.0	53	0.16	57	0.16	118
	50	200	0.56	- 160	20.4	102	0.02	57	0.27	-98
		500	0.57	176	8.4	86	0.05	67	0.14	- 130
		1000	0.60	156	4.4	75	0.09	70	0.11	- 164
		1500	0.62	152	2.9	64	0.13	68	0.13	- 175
		2000	0.66	127	2.4	53	0.18	62	0.11	- 178
8.0	5.0	200	0.75	-83	10.7	129	0.06	49	0.71	-39
		500	0.62	140	5.1	98	0.08	34	0.43	-54
		1000	0.60	– 179	3.7	78	0.09	38	0.31	-62
,		1500	0.64	159	2.1	62	0.10	45	0.29	-80
		2000	0.69	141	1.7	52	0.13	52	0.29	-91
	10	200	0.64	-99	15.1	120	0.05	46	0.54	-60
		500	0.52	- 152	7.1	94	0.07	45	0.32	75
		1000	0.52	170	3.7	76	0.10	54	0.15	-82
		1500	0.52	150	2.5	62	0.13	56	0.16	- 108
		2000	0.57	133	2.0	51	0.18	55	0.16	- 107
	50	200	0.52	- 153	19.6	102	0.03	56	0.28	-92
		500	0.52	178	8.1	86	0.05	67	0.16	-98
		1000	0.56	157	4.1	73	0.10	70	0.06	- 130
l		1500	0.54	139	2.8	62	0.13	- 68	0.11	- 146
L		. 2000	0.59	126	2.2	52	0.19	63	0.10	137

MRF572
INPUT/OUTPUT REFLECTION
COEFFICIENTS versus FREQUENCY (GHz)
VCE = 6.0 V, IC = 5.0 mA

MRF572 FORWARD/REVERSE COEFFICIENTS versus FREQUENCY (GHz) VCE = 6.0 V, IC = 5.0 mA

MRF572 COMMON EMITTER S-PARAMETERS

VCE	, lc	1		S ₁₁		S ₂₁		S ₁₂	T	S ₂₂
(Volts)	(mA)	(MHz)	S ₁₁	4	S ₂₁	4	S ₁₂			
6.0	5.0	200 500 1000	0.81 0.68 0.66	-73 -130 -167	10.9 6.1 3.3	134 102	0.06 0.09	50 29	0.74 0.43	∠ φ 40 64
	-	1500 2000	0.66 0.68	174 161	2.3 1.8	79 63 49	0.10 0.10 0.11	22 22 23	0.29 0.27 0.29	-77 -94 -104
	10	200 500 1000 1500 2000	0.72 0.66 0.66 0.67 0.69	- 101 - 150 - 178 166 155	15.9 7.7 4.0 2.7 2.1	123 95 77 63 51	0.05 0.06 0.08 0.09 0.10	43 30 33 36	0.57 0.29 0.19 0.19	-58 -86 -103 -122
	50	200 500 1000 1500 2000	0.67 0.68 0.70 0.71 0.73	- 154 - 177 167 157 148	21.8 9.0 4.5 3.0 2.3	104 87 74 62 51	0.02 0.03 0.06 0.08 0.10	37 43 52 58 59 55	0.20 0.30 0.17 0.14 0.16 0.17	- 129 - 94 - 129 - 151 - 160 - 161
8.0	5.0	200 500 1000 1500 2000	0.83 0.71 0.64 0.65 0.66	-69 -125 -164 176 163	10.9 6.3 3.5 2.4 1.8	136 103 80 63 49	0.06 0.08 0.09 0.10 0.11	52 30 24 23	0.75 0.46 0.31 0.29	-36 -57 -68 -84
	10	200 500 1000 1500 2000	0.74 0.65 0.64 0.65 0.67	-94 -146 -176 168	16.2 7.9 4.2 2.8 2.2	125 96 77 63 50	0.05 0.06 0.07 0.09 0.10	24 45 32 33 36 37	0.30 0.60 0.31 0.20 0.19 0.20	-94 -51 -74 -87 -104
	50	200 500 1000 1500 2000	0.62 0.64 0.68 0.69 0.70	- 150 - 174 167 160 147	22.7 9.4 4.8 3.2 2.4	104 86 74 61 50	0.02 0.03 0.05 0.07 0.09	43 51 58 58 58	0.20 0.30 0.15 0.10 0.13 0.15	-111 -81 -107 -126 -140 -140

MRF571 — CONSTANT GAIN and NOISE FIGURE CONTOURS

VCE = 6.0 V, IC = 5.0 mA f = 500 MHz — REGION OF INSTABILITY

f(GHz)	NF OPT(dB)	Rn (Ω)	NF50 Ω (dB)
0.5	0.9	9.3	1.3

TMS NF OPT	Κ
0.49 ∠74°	0.58

 $V_{CE} = 6.0 \text{ V, I}_{C} = 5.0 \text{ mA}$ f = 1.0 GHz

f(GHz)	NF OPT(dB)	Rn (Ω)	NF50 Ω (dB)	TMS NF OPT
1.0	1.5	7.5	2.2	0.48 ∠134°

ГМЅ	ΓML	
0.89 ∠ - 179°	0.81 ∠66°	

MRF572 CONSTANT GAIN and NOISE FIGURE CONTOURS

VCE = 6.0 V, I = 5.0 mA f = 500 MHz T - REGION OF INSTABILITY

f(GHz)		т	
I(GHZ)	Rn (Ω)	NF (50Ω)	TMS NF OPT
0.5	17.1	1.5	0.43 ∠ 57°

K	NF OPT
0.55	1.0

 $V_{CE} = 6.0 \text{ V, I}_{C} = 5.0 \text{ mA}$ f = 1.0 GHz

f(GHz)	NF OPT	Rn (Ω)	NF50 (Ω) (dB)
1.0	1.5	6.0	2.0

ГМЅ	NF OPT	K
0.56	∠ 116°	0.93