Project Design Phase-I Proposed Solution

Date	07 October 2022	
Team ID	PNT2022TMID25540	
Project Name	Project – Natural Disasters Intensity Analysis And Classification Using Artificial Intelligence	

Proposed Solution:.

S.No.	Parameter	Description
1.	Problem Statement (Problem to be	AI can help response teams understand natural
	solved)	hazards, monitor events in real time, and
		anticipate specific risks in the face of
		impending or on-going disasters.
2.	Idea / Solution description	The impact of extreme natural events is also
		defined by socio-economic resilience, with
		inequalities exacerbating risks and
		vulnerabilities. Experts stress the need to
		explore interoperable solutions that can work in
		different contexts and even across borders to
		reach areas with less developed disaster
		infrastructure.
3.	Novelty / Uniqueness	Artificial intelligence (AI) can enhance our
		understanding of natural disasters and support
		disaster relief/early warning. However, AI is
		not yet part of the modus operandi in natural
		disaster management. Therefore, the Focus
		Group on AI for Natural Disaster Management
		(FG-AI4NDM) capitalizes on the growing
		interest and novelty of AI in the field of natural
		disaster management to help lay the
		groundwork for best practices in the use of AI
		for: assisting with data collection and handling,
		improving modelling across spatiotemporal
		scales, and providing effective communication.
4.	Social Impact / Customer	Natural Disasters can cause social impacts that
	Satisfaction	are similar in different types of communities
		such as the need for rebuilding, urgent access to
		health care, simply accessing shelter
		during/after a storm, availability to food and
		water, turning towards the government for aid

		or towards religious organization for aid and moral support.
5.	Scalability of the Solution	Be Hardware Agnostic. A hardware- agnostic DR solution can replicate data from a virtual machine to a DR Target so long as the underlying hypervisors are compatible. This allows businesses to take the complexity out of DR.
		• Work on an Individual Virtual Machine Level. The ability to target and replicate individual virtual machines (VMs) rather than entire logical unit numbers (LUNs) is a must for scalability, especially on modern, high- efficiency computing environments that use virtualization. This helps to reduce overall storage and network requirements.
		• Enable Simplistic Management. Over time, business computing needs can grow to the point where a single business is running dozens or hundreds of individual VMs for all of their different applications and databases. If the DR solution is too complex, it can turn managing recovery operations for all of the company's servers and VMs too difficult to be effective.