Logique des predicats Cours1

Hadjila Fethallah Maître de Conférences au Département d'Informatique

F_hadjila@mail.univ-tlemcen.dz

Limites de la logique des propositions

- Absence de relations (pas de réutilisation de sous-expressions)
- Absence de quantification
- Absence de fonctions

Exemple de modélisation

□ Les dauphins sont des mammifères

 $\forall x, (dauphin(x) \rightarrow mammifere(x))$

certains dauphins sont intelligents

 $\exists x$, $(dauphin(x) \land int(x))$

Syntaxe

Alphabet

Symboles de connecteurs

$$C = \{ \neg, \land, \lor, \rightarrow, \leftrightarrow \}$$

Symboles de quantificateurs

- ∀ (universel): « pour tout », « quel que soit »,
- ⊕ ∃ (existentiel) : « il existe au moins un . . . tel que . . . »

Variables

$$\mathcal{V} = \{x, y, z, \ldots\}$$

Alphabet

Symboles de relations

 $\mathcal{R} = \{P, Q, R, \ldots\}$ ensemble de symboles de relations (prédicats)

Definition (Arite)

À chaque symbole de relation R, on associe un entier $n \ge 0$; on dit alors que R est un symbole d'arité n, c'est-à-dire une relation à n arguments ou n variables. On note $R_{/n}$.

Symboles de fonctions

 $\mathcal{F} = \{f, g, \ldots\}$ ensemble (disjoint de \mathcal{R}) de symboles de fonction

Definition (Constante)

Un symbole de fonction d'arité 0 est appelé symbole de constante.

Logique du premier ordre

Vocabulaire

- Les termes
 - □ les variables et les constantes sont des termes
 - \Box f(t₁, ..., t_n) est un terme sachant que:
 - les *t_i* sont des **termes**
 - f est un symbole de fonction
- Les atomes
 - $\square R(t_1, ..., t_n)$ est un atome sachant que
 - les *t_i* sont des **termes**
 - R est un symbole de prédicat

Formules bien formées

- Un atome est une formule (FBF)
- Si F est une FBF et x une variable, alors :
 - \blacksquare $\forall x (F)$ est une FBF
 - ∃**x**(**G**) est une FBF
- Si F et G sont des FBF alors les expressions suivantes sont des FBF
 - □ ¬(**F**)
 - \Box (F) \land (G)
 - \Box (F) \vee (G)
 - \Box (F) \rightarrow (G)
 - \Box (F) \leftrightarrow (G)

exemples

■ $\forall x \exists y (P(x,f(y)) \rightarrow R(a,x,y))$

■ $\exists x[(P(y,z) \text{ et } Q(x,y)) \leftarrow \rightarrow S(z,x)]$

exemples

- Tous les hommes sont riches
- Quelques étudiants ne sont pas des athlètes
- Seul les dauphins sont des animaux intelligents
- aucun étudiant n'est athlète

Logique du premier ordre

Expressions courantes

```
tous les A sont B \mapsto \forall x, A(x) \to B(x)
seuls les A sont B \mapsto \forall x, B(x) \to A(x)
aucun A n'est B \mapsto \forall x, A(x) \to \neg(B(x))
quelques A sont B \mapsto \exists x, A(x) \land B(x)
```

Occurrence d'une variable

- Une occurrence d'une variable x dans une formule F est un endroit où x apparaît dans F sans être immédiatement précédée par ∀ ou ∃
- Une occurrence libre (O.L) de x dans F est définie comme suit:
- Si F est un atome alors toutes les variables de F sont libres
- Si F= (G) alors les O.L de F sont ceux de G
- Si F = (A et B) ou (A ou B) ou $(A \rightarrow G)$ ou $(A \leftarrow \rightarrow B)$ alors les O.L de F sont ceux de A union B
- $Si F \equiv \forall x A \quad ou$ $F \equiv \exists x A$
- Alors toutes les occurrences de x ne sont pas libres dans F

Caractéristiques des variables

- Une variable est dite libre dans une formule F si elle a au moins une occurrence libre (sinon on dit qu'elle est liée)
- Une formule n'ayant pas de variable libre est dite close sinon elle dite ouverte
- Exemple de formule close:

$$\forall x (p(x) \land \neg p(x))$$

exemples

- $\forall x P(x,f(y)) \text{ ou} \exists y R(x,y)$
- $\exists x \exists y[(P(y,a) \leftarrow \rightarrow S(z,y,x)]$
- $\exists x \exists y[(P(y,a) \rightarrow Q(y,x)]$
- $[\forall x(\exists yp(x, y))] \rightarrow [\exists z \forall y \ yq(x, z, y)]$

Notion de substitution

Definition (Substitution)

Soient F une formule bien formée, x une variable et t un terme. La substitution de t à x, F[t/x] est la formule obtenue en remplaçant toutes les occurrences libres de x dans F par t.

Exemple

Soit $F = \forall y (P(z) \rightarrow R(y))$. La substitution de f(x) à z dans F donne :

$$F[f(x)/z] = \forall y (P(f(x)) \rightarrow R(y))$$

Aspects sémantiques

- Interprétation
- Formules valides
- conséquence logique

notion d'interpretation

- Soit LPRED le langage du calcul des prédicats
- Une interprétation I associée aux formules de LPRED est constituée de:
 - □ Un ensemble D non vide
 - □ Une fonction d'interprétation IF

■ IF associe:

- □ à chaque constante un élément de D
- □ à chaque variable libre un élément de D
- □ à chaque symbole de prédicat R d'arité n, un sousensemble de Dⁿ (ie une relation définie sur Dⁿ)
- □ à chaque symbole de fonction f d'arité n, une application f' de Dⁿ vers D

Exemple d'interprétation

- F1: $\forall x \forall y ((S(x,y) \land P(x,y)) \rightarrow Q(x,y))$
- F2:S(a,b) ∧ P(z,f(b))
- F3:Q(z,a)
- $D = \{1, 2, 3\}$
- La fonction IF (notée aussi [[]])est définie comme suit:
- \blacksquare [[P]] = {(1,2),(2,1)}
- \blacksquare [[S]] = {(2,2), (2,1)}
- \blacksquare [[Q]] = {(3,2)}

е	[[f(e)]]
1	1
2	1
3	1

modèle

- Soit F une formule de LPRED, un modèle de F est une interprétation I qui assure la valeur de vérité 1 à F.
- A est une conséquence logique de B ssi:

$$B = A$$

- Il est impossible de vérifier la conséquence logique en LPRED (nombre d'interprétations est infini)
- Par contre il est possible de prouver que cette relation est violée (avec un contre exemple)

Formes normales

- Forme normale prénexe
 - quantificateurs **en tête** de la formule
- Forme standard de Skolem
 - □ formule sous forme normale prénexe
 - quantificateurs existentiels eliminés
- Forme clausale : forme normale conjonctive étendue pour LPRED

Mise sous forme normale prénexe

Definition (Forme normale prenexe)

Une formule du calcul des prédicats est dite sous forme normale prénexe si et seulement si elle s'écrit :

$$\square_1 x_1 \dots \square_n x_n \quad F$$

où \Box_i est \forall ou \exists et F est une formule sans quantificateurs.

Theoreme

Toute formule du calcul des prédicats est équivalente à une formule sous forme prénexe.

Mise sous forme normale prénexe

- 1. Éliminer les connecteurs \leftrightarrow et \rightarrow
- Transporter les ¬ devant les atomes en utilisant (¬¬ F ↔ F) et les lois de De Morgan
- Transporter les quantificateurs en tête de la formule
- Il faut renommer les variables quantifiées plus d'une fois, pour pouvoir utiliser les règles de l'étape 3.

W

Règles pour transporter les quantificateurs

$$\neg(\exists x F) \Leftrightarrow \forall x \neg F \qquad \forall x \forall y F \Leftrightarrow \forall y \forall x F$$

$$\neg(\forall x F) \Leftrightarrow \exists x \neg F \qquad \exists x \exists y F \Leftrightarrow \exists y \exists x F$$

$$\forall x F \land \forall x H \Leftrightarrow \forall x (F \land H)$$

$$\exists x F \lor \exists x H \Leftrightarrow \exists x (F \lor H)$$

si H ne contient aucune occurrence libre de x alors:

$$(\forall x \ F) \lor H \Leftrightarrow \forall x (F \lor H)$$
$$(\exists x \ F) \land H \Leftrightarrow \exists x (F \land H)$$

Mise sous forme normale prénexe

Exercice

Mettre la formule suivante sous forme prénexe :

$$(\forall x \exists y \forall t R(x, z, y)) \rightarrow (\exists x \forall y \exists t S(x, z, t))$$

Mise sous forme normale prénexe

Exercice

Mettre les formules suivantes sous forme prénexe :

$$(\forall x \exists y \forall t R(x, z, t)) \rightarrow (\exists x \forall y \exists t S(x, z, t))$$

$$(\forall x \exists z \forall t R(x, z, t)) \rightarrow (\exists x \forall z \exists t S(x, z, t))$$

La forme de skolem

- Définition: une formule F est sous la forme de Skolem ssi:
 - □ F est sous la forme prénexe
 - □ tous les quantificateurs existentiels sont éliminés et traités selon les règles suivantes:
 - cas 1:

```
\forallx1\forallX2... \forallXn \exists Y A(x1,X2,...Xn,Y) devient: \forallx1\forallX2... \forallXn A(X1,X2,...Xn,g(X1,X2,...Xn))
```

cas 2:

```
∃ Y ∀x1∀X2... ∀Xn A(x1,X2,...Xn,Y) devient: ∀x1∀X2...
∀Xn A(X1,X2,...Xn,a)) avec a une constante
```

NB : une formule F et sa version skolemisée 'Skolem(F)' ne sont pas équivalentes, mais equi-satisfaisables

La forme de skolem

exemple

- $\blacksquare \exists x \forall y \ p(x, y) \Rightarrow \forall x \exists y p(y, x)$
- $\forall x \exists y \forall x' \exists y'[] p(x, y) \text{ ou } p(y', x')]$
- $\blacksquare \forall x \forall x' [] p(x, g(x)) ou p(h(x, x'), x')]$

Forme clausale

- Une formule peut être transformée en une conjonction de clauses (en préservant la satisfiabilité mais pas l'équivalence):
- Algorithme de mise en forme clausale:
 - □ Eliminer les variables libres, en fermant existentiellement la formule d'entrée
 - Mettre en forme prénexe le resultat précèdent.
 - □ Skolémiser la forme prénexe.
 - □ convertir la forme prénexe en FNC
 - Distribuer le et sur le ou
 - Les variables sont renommées d'une clause
 - à l'autre

exemple

■ F≡ $\forall x \forall y \forall z [(\forall x r(x, x)) \land ((\forall x(r(x, y)) \Rightarrow (\exists y [r(y, x) \land \forall y r(y, z)])))]$

Forme clausale

Exercice

Mettre sous forme clausale la formule suivante :

$$\forall x \exists y \exists z ((\neg P(x, y) \land Q(x, z)) \lor R(x, y, z))$$

Exercice

Mettre sous forme clausale la formule suivante :

$$\forall x \exists y p(x, y) \rightarrow \exists y \forall x p(x, y)$$

FIN

Logique des predicats Cours2

Hadjila Fethallah Maître de Conférences au Département d'Informatique

F_hadjila@mail.univ-tlemcen.dz

Notion de substitution

- Une substitution σ est une liste de paires (Xi,Ti), sachant que Xi est une variable et Ti est un terme ne contenant pas X
- **Exemple** $\sigma = \langle (y, f(x)), (w, a) \rangle$

unification

- c'est le processus qui permet de rendre 02 expressions identiques
- Unification des constantes
- □ Soient C1, C2 deux constantes, C1 et C2 sont unifiables si C1 et C2 sont identiques
- Unification des variables avec les termes
- □ Soient x une variable, et t est un terme : x est unifiable avec t ssi x ne figure pas dans t

100

Unification

- Unification des symboles fonctionels
- □ Les symboles fonctionnels f(t1,....tn) et f'(t1',....tm') sont unifiables ssi
 - Ils ont le même nom (f≡f')
 - Le même nombre d'arguments (n=m)
 - Les arguments sont unifiables 02 à 02 (t_i=t'_i)
- Unification des symboles prédicats
- □ Les symboles d'atomes p(t1,....tn) et p'(t1',....tm') sont unifiables ssi :
 - Ils ont le même nom (p≡p')
 - Le même nombre d'arguments (n=m)
 - Les arguments sont unifiables 02 à 02 (t_i=t'_i)

Algorithme d'unification

Entrée: p(t1,....tn) = p'(t1',....tm')

sortie: unificateur (substitution) / échec

Tant que (l'une des 04 règles est applicable)

Faire

- (1) Si on a : t1=t2, sachant que t2 est une variable et t1 ne l'est pas alors permuter l'equation: t2=t1
- (2) Supprimer les équations de la forme t=t
- (3) Si on a: f(t1,....tn) = f'(t1',....tm') alors appliquer la règle qui correspond aux fonctions
- (4) Si on a x=t alors **si** x ne figure pas dans t **alors**remplacer toutes les occurrences de x

 dans le système d'équations par t, et

ajouter la paire (x,t) dans l'unificateur σ

Sinon retourner échec

Fin faire

exemples

■ P(f(x), f(g(x,y)), g(z,y)) = P(f(h(y)), z, g(w,y))

• S(g(x), f(a,y), x) = S(y,f(w,x),a)

 \blacksquare R(a, g(x,a), f(y)) = R(a, g(f(b), a), x)

Remarques

- L'agorithme d'unification se termine toujours, en donnant soit une substitution, soit un échec
- L'ordre des éléments de la substitution est très important
- L'unification est généralement invoquée avant l'application de la résolution.

Algorithme de résolution

- Règle de factorisation
- Règle de résolution

Règle de factorisation

- Si 02 ou plusieurs littéraux (avec le meme signe) d'une clause C =L(t1,..tn) ∨ L(t'1,..t'n) ∨ C' ont un unificateur σ
- Alors C"= subst(σ ,L(t'1,...t'n)) \vee subst(σ ,C')
- C" est appelée clause factorisée

Règle de factorisation

- \blacksquare C = P(x) \vee P(f(y)) \vee R(x,a).
- $\sigma = \langle (x/f(y)) \rangle$ est un unificateur de P(x) et P(f(y)).
- C" = P(f(y)) ∨ R(f(y),a) est une clause factorisée

Règle de résolution

- Soient C1, C2 deux clauses qui n'ont pas de variables communes, et soient L et ☐L deux litteraux appartenant à C1 et C2 (resp)
- si L et L ont σ comme unificateur alors la clause C≡(subst(σ,C1) subst(σ,L(t1,..tn))) ∨ (subst(σ,C2) subst(σ, L(t'1,..t'n))) est nommée resolvant de C1 et C2.
- Le resolvant est une consequence logique de ses premisses: (C'1∨ L(t1,..tn)) (C'2∨ L(t'1,..t'n))

 $subst(\sigma, C'1) \vee subst(\sigma, C'2)$

exemple

- On considére les 02 clauses C1 = $P(x) \lor Q(x)$ et C2 = $P(a) \lor R(x)$.
- puisque x figure dans les 02 clauses alors on renomme la variable (dans l'une des 02 clauses)
- C2 = P(a) v R(y), on applique la règle de résolution, et le resolvant sera:
- : Q(a) ∨ R(y)

Algorithme de résolution

- Pour prouver que A |- B alors il suffit de montrer que {A, ¬B} |- □
- Prérequis: que A, B sont sous la forme causale
- La boucle principale comporte les 02 règles : résolution et factorisation

Exemple de raisonnement (1)

- On considère les déclarations suivantes :
- Pour chaque crime il y a quelqu'un qui l' a commis
- Les gens qui commettent des crimes sont malhonnêtes
- Les gens arrêtés sont malhonnêtes
- pour chaque x, pour chaque y, si x est un malhonnête arrêté et si y est un crime alors x ne peut commettre y.
- il y a des crimes
- Démontrer qu'il y a des gens malhonnêtes non arrêtés.
- On vous donne les prédicats suivants :
- Crime(x), commettre(x1,x2), Arrêté(x), malhonnête(x).

Exemple de raisonnement (2)

- H1: $\forall x \exists s \forall y \forall w [R(x, w) \rightarrow P(s, y)]$
- H2: $\forall x \forall s \forall w [P(x, w) \rightarrow Q(s, w)]$
- H3: $\exists s \forall z \forall w [Q(z, s) \rightarrow] P(y, w)]$
- Est-ce qu'on peut déduire la formule ∀x∃s R(x,s), à partir de H1,H2,H3 (en utilisant la résolution) ?

Propriétés fondamentales

- Correction
- Toute formule prouvable est valide
- si ⊢ A alors ⊨ A
- Complétude
- Toute formule valide est prouvable
- si ⊨ A alors ⊢ A
- Semi-Décidabilité
- Pour toute formule A ∈Pred, si A est valide alors la résolution s'arrête toujours, mais dans le cas contraire l'algorithme peut faire une boucle infinie.

limites

- Manque d'expressivité
- Absence de quantification de contexte
- Le caractère binaire des valeurs de vérités
- L'acceptation du principe d'absurde (même le tiers exclu) cause des problèmes

FIN