# Augmented Inverse Probability Weighting and DML for Treatment Effect Estimation

ML and Econometrics Term Project

Yu-Hsin Ho June 1, 2023

### **Quick Recap of Motivation**

- ullet We want to estimate the average treatment effect (ATE) of a binary treatment D on an outcome Y
- Usually assuming SUTVA, or selection-on-observables:  $\{Y(1),Y(0)\}\perp D|X$
- ullet So we want to "control" for confounders X
- Usually this is done by linear regression
  - o reg Y D X, r
- Problems:
  - 1. Relationship between Y and X is non-linear (specification error)
  - 2. We have more confidence on D(X) instead of Y(X) (e.g. experimental study)

# Augmented Inverse Probability Weighting (AIPW)

- Proposed by Robins, Rotnitzky, and Zhao (1994, JASA)
- Propensity score: m(X) = P(D = 1|X)
- Response model:  $g_d(X) = E[Y|X,D=d], \ d=0,1$
- **Doubly-robustness**: consistent if either m(x) or  $g_d(X)$  are correctly specified

$$ext{ATE}_{ ext{AIPW}} = g_1(X) - g_0(X) \\ + rac{D(Y - g_1(X))}{m(X)} - rac{(1 - D)(Y - g_0(X))}{1 - m(X)}$$

**DGP** 

$$egin{aligned} Y &= au D + X_1 X_2 + 4 \sin(\pi X_3 X_4) + \exp(X_5) + arepsilon \ \mathbb{P}(D &= 1 | X) = m(X) = \Phi(X_1 + X_3 + X_5 + X_1 X_3) \ D &= \mathrm{Bernoulli}(m(x)) \ X_p \sim N(1,1), \; p = 1, \cdots, 10; \; \; arepsilon \sim N(0,1) \end{aligned}$$

- Treatment effect  $\tau=5$
- Confounders are  $X_1, X_3, X_5$ . Modeling them is sufficient to recover ATE (Pearl, 1995)

#### **Estimating Nuisance Functions**

- 1. LASSO (glmnet)
  - lambda: tuned by CV
- 2. Random Forests (ranger)
  - $\circ$  num.trees: tuned by  $\mathsf{CV} \in [2000, 4000]$
  - mtry: tuned by CV
  - o sample.fraction = 0.5
- 3. Boosting (xgboost)
  - $\circ$  <code>nrounds</code>: tuned by  $\mathsf{CV} \in [1,6000]$
  - o max\_depth = 2,
  - o eta = 0.01
  - o subsample = 0.5

### Specifications

| Spec     |                    | Predictors in $g(X)$ |
|----------|--------------------|----------------------|
| both     | $X_1\cdots X_{10}$ | $X_1\cdots X_{10}$   |
| pscore   | $X_1\cdots X_{10}$ | $X_6\cdots X_{10}$   |
| response | $X_6\cdots X_{10}$ | $X_1\cdots X_{10}$   |

#### **Estimators**

1. AIPW:

$$\hat{ au} = g_1(X) - g_0(X) + rac{D(Y - g_1(X))}{m(X)} - rac{(1 - D)(Y - g_0(X))}{1 - m(X)}$$

2. IPW: 
$$\hat{\tau} = \frac{DY}{m(X)} - \frac{(1-D)Y}{1-m(X)}$$

3. OLS: 
$$Y = \hat{ au}D + X'\hat{eta} + \hat{arepsilon}$$

4. PLS: 
$$(Y - \hat{g}(X)) = \hat{ au}(D - \hat{m}(X)) + \hat{arepsilon}$$

We get  $3 \times 3 \times 4 = 36$  ATE estimates per simulation.

#### **Procedures**

- 1. Generate 2000 samples from DGP
- 2. Use 1st sample to tune hyperparameters (10-fold CV)
- 3. Get ATE estimates with 2-fold crossfitting

## Results: Both specified correctly





# Results: pscore specified correctly





### Results: response specified correctly





| estimator           | Bias   | RMSE   | S.D.   |  |  |
|---------------------|--------|--------|--------|--|--|
| both - LASSO        |        |        |        |  |  |
| OLS                 | 0.022  | 0.249  | 0.249  |  |  |
| PLR                 | 0.550  | 0.635  | 0.319  |  |  |
| IPW                 | 1.493  | 5.316  | 5.104  |  |  |
| AIPW                | 1.227  | 21.434 | 21.405 |  |  |
| both - RandomForest |        |        |        |  |  |
| OLS                 | 0.022  | 0.249  | 0.249  |  |  |
| PLR                 | 0.097  | 0.205  | 0.180  |  |  |
| IPW                 | 1.017  | 1.046  | 0.242  |  |  |
| AIPW                | 0.255  | 0.320  | 0.194  |  |  |
| both - XGBoost      |        |        |        |  |  |
| OLS                 | 0.022  | 0.249  | 0.249  |  |  |
| PLR                 | 0.069  | 0.191  | 0.178  |  |  |
| IPW                 | 0.465  | 11.855 | 11.849 |  |  |
| AIPW                | -0.096 | 6.047  | 6.047  |  |  |
|                     |        |        |        |  |  |

| estimator             | Bias  | RMSE   | S.D.   |  |  |  |
|-----------------------|-------|--------|--------|--|--|--|
| pscore - LASSO        |       |        |        |  |  |  |
| OLS                   | 2.357 | 2.376  | 0.295  |  |  |  |
| PLR                   | 1.605 | 1.629  | 0.281  |  |  |  |
| IPW                   | 1.493 | 5.316  | 5.104  |  |  |  |
| AIPW                  | 2.020 | 21.586 | 21.497 |  |  |  |
| pscore - RandomForest |       |        |        |  |  |  |
| OLS                   | 2.357 | 2.376  | 0.295  |  |  |  |
| PLR                   | 1.197 | 1.228  | 0.273  |  |  |  |
| IPW                   | 1.017 | 1.046  | 0.242  |  |  |  |
| AIPW                  | 1.043 | 1.074  | 0.258  |  |  |  |
| pscore - XGBoost      |       |        |        |  |  |  |
| OLS                   | 2.357 | 2.376  | 0.295  |  |  |  |
| PLR                   | 0.695 | 0.736  | 0.244  |  |  |  |
| IPW                   | 0.695 | 15.178 | 15.166 |  |  |  |
| AIPW                  | 0.813 | 7.971  | 7.931  |  |  |  |
|                       |       |        |        |  |  |  |

| estimator           | Bias   | RMSE  | S.D.  |  |  |  |
|---------------------|--------|-------|-------|--|--|--|
| resp - LASSO        |        |       |       |  |  |  |
| OLS                 | 0.022  | 0.249 | 0.249 |  |  |  |
| PLR                 | 0.309  | 0.566 | 0.475 |  |  |  |
| IPW                 | 2.357  | 2.375 | 0.298 |  |  |  |
| AIPW                | 1.266  | 1.300 | 0.296 |  |  |  |
| resp - RandomForest |        |       |       |  |  |  |
| OLS                 | 0.022  | 0.249 | 0.249 |  |  |  |
| PLR                 | -1.245 | 1.254 | 0.152 |  |  |  |
| IPW                 | 2.357  | 2.378 | 0.315 |  |  |  |
| AIPW                | 0.509  | 0.545 | 0.194 |  |  |  |
| resp - XGBoost      |        |       |       |  |  |  |
| OLS                 | 0.022  | 0.249 | 0.249 |  |  |  |
| PLR                 | -1.415 | 1.424 | 0.156 |  |  |  |
| IPW                 | 2.358  | 2.376 | 0.296 |  |  |  |
| AIPW                | 0.166  | 0.251 | 0.188 |  |  |  |
|                     |        |       |       |  |  |  |

## Empirical Power ( $au=5, H_0=0$ )



# Empirical Size ( $au=5, H_0=5$ )



### Promises AIPW can/cannot keep

- AIPW is indeed doubly robust
- It works well when propensity score is not extreme
  - E.g. the spec. that only response is correctly specified
  - Higher efficiency than OLS
- But the curse is that inverse-weighting based estimators suffer from sensitivity to extreme propensity scores
  - $\circ$  It'll explode the estimate when m(X) is close to 0 or 1
  - High variance, lacks of power

### Distribution of Propensity Score



### **Conclusions**

Surprisingly, OLS (containing only 1st-order term) is not bad when relevent variables are included

Still, it does not contain treatment assignment information which we sometimes are more confident with

### Conclusions

What we want is doubly-robustness but stable to extreme propensity scores

- Key: Prevent extreme weighting
- Some refinements are done:
  - Normalized AIPW (Rostami, and Saarela 2021)
  - Overlap weighting (Li, Morgan, and Zaslavsky 2018, JASA)
    - off-the-shelf function implemented in grf R library