Capstone 2

Zoe Shim

Introduction

- Skin cancer is one of the most common cancer in US
- Early detection => 99% five-year survival, distant stage = > 23%
- ... Faster more accessible melanoma detection is needed

Data wrangling

- Download image data and their metadata from International Skin Imaging Collaboration
- Load metadata to dataframe form for EDA
- Load images and normalize
- Split the images' R,G,B channels for color analysis
- Apply gaussian filter and segment lesion using the threshold acquired via the filter
- Remove images that does not have enough contour to analyze

Data Exploratory Data Analysis

- Size of the lesion
 - Bigger the lesions, more likely it is to be malignant (D in ABCDE)
- Age of the patients
 - Removed certain dataset due to bias introduced
 - Older the patients, more likely to have malignant lesion
- Location of the lesion

 \circ

Benign vs. Malignant: Age distribution

P value of independent T - test: 0

Benign vs. Malignant: Age - w/o some data

P value of independent T - test : 9.443773241442537e-276

Benign vs. Malignant: Size of the lesion

P value of independent T - test : 2.7279515204510347e-29

ECDF of age range and size of lesion

Location of the lesion and percentage of malignancy

Image preprocessing - normalize and color split

Color channel split

Image preprocessing - Gaussian filter

Image preprocessing - Image thresholding

Binary + Otsu's binarization

Kernel = 3×3

Result of image segmentation

Problem with manual process of image segmentation

=> Very very slow

=> high chance of running into images that wouldn't work

Using UNET model for image segmentation

Getting the best model

ABC of ABCDE

Asymmetry => tilt the lesion on major axis and compare the difference when flipped horizontally or vertically.

Border=> calculate gradient from cropped image of borders

Color => draw color historgram and get standard deviation

Comparison between benign and malignant lesions

		symmetry	border	red	blue	green
malig	std	3904182.5	0.560375	16.15623	16.63434	16.25676
	mean	815379.11	1.788012	21.0908	24.06696	21.85776
beni	std	1742113.5	0.544875	13.79489	14.79579	13.51443
	mean	241452.07	1.274017	12.59589	14.1669	12.67998

Malignant

Features used for the model

- Symmetry
- Border
- Blue
- Red
- Green

=> A, B, C of ABCDE rule

Random forest classification vs. Decision tree classification

AUC of Random Forest Classifier 0.83
AUC of Decision Tree Classifier 0.60

Transfer learning

- Retraining the last layer of a pre-trained CNN to classify the images between benign and malignant images
- Faster training
- Does not require much segmentation process

Retraining steps

- Pretrained model: Inception V3 trained on ImageNet
- Training on top layer => training accuracy, validation accuracy, cross entropy
 - Cross entropy => loss function. Should be as small as possible

```
Proot@aug-27-s-4vcpu-8gb-sfo2-01: ~
                                                                         root@aug-27-s-4vcpu-8gb-sfo2-01: ~
6: Step 3980: Train accuracy = 89.0%
                                                                                     0901 02:40:10.690806 140210782562112 retrain.py:1104] 2019-09-01 02:40:10.69070
[0831 06:00:40.025869 140586214651712 retrain.py:1106] 2019-08-31 06:00:40.02584
                                                                                      Step 3980: Train accuracy = 91.0%
 : Step 3980: Cross entropy = 0.298947
                                                                                    0901 02:40:10.691081 140210782562112 retrain.py:1106] 2019-09-01 02:40:10.69105
0831 06:00:40.152009 140586214651712 retrain.py:1125] 2019-08-31 06:00:40.15187
                                                                                     Step 3980: Cross entropy = 0.180310
 Step 3980: Validation accuracy = 75.0% (N=100)
                                                                                    0901 02:40:10.815023 140210782562112 retrain.py:1125] 2019-09-01 02:40:10.8149
:0831 06:00:41.475670 140586214651712 retrain.py:1104] 2019-08-31 06:00:41.47555
                                                                                     Step 3980: Validation accuracy = 90.0% (N=100)
 Step 3990: Train accuracy = 88.0%
                                                                                    0901 02:40:12.116094 140210782562112 retrain.py:1104] 2019-09-01 02:40:12.1159
0831 06:00:41.475987 140586214651712 retrain.py:1106] 2019-08-31 06:00:41.47595
                                                                                    4: Step 3990: Train accuracy = 89.0%
                                                                                    0901 02:40:12.116367 140210782562112 retrain.py:1106] 2019-09-01 02:40:12.11634
 : Step 3990: Cross entropy = 0.314781
0831 06:00:41.601299 140586214651712 retrain.py:1125] 2019-08-31 06:00:41.60116
                                                                                     Step 3990: Cross entropy = 0.230145
 Step 3990: Validation accuracy = 83.0% (N=100)
                                                                                    0901 02:40:12.246662 140210782562112 retrain.py:1125] 2019-09-01 02:40:12.24655
0831 06:00:42 824781 140586214651712 retrain pv:1104] 2019-08-31 06:00:42.82466
                                                                                     Step 3990: Validation accuracy = 91.0% (N=100)
 Step 3999:
                                                                                     0901 02:40:13 468757 140210782562112 retrain pv:1104] 2019-09-01 02:40:13.4686
             Train accuracy = 87.0%
 0831 06:00:4
             .825133 140586214651712 retrain.py:1
                                                   06] 2019-08-31 06:00:42.82507
  Step 3999:
             Cross entropy = 0.318698
                                                                                                 3.469044 140210782562112 retrain.pv:
                                                                                                                                      106] 2019-09-01 02:40:13.4690
             .954277 140586214651712 retrain.py:1
                                                   25] 2019-08-31 06:00:42.9541
                                                                                                 Cross entropy = 0.115914
                                                                                    0901 02:40:
                                                                                                3.597385 140210782562112 retrain.pv:
                                                                                                                                      1251 2019-09-01 02:40:13.5972
019-08-31 06:00:45.402903: w tensorilow/core/graph/graph constructor.cc:1352]
mporting a graph with a lower producer version 29 into an existing graph with pr
                                                                                   2019-09-01 0z:40:10.07/810: w tensor:10w/core/graph/graph constructor.cc:1352]
                                                                                    mporting a graph with a lower producer version 29 into an existing graph with p
ducer version 38. Shape inference will have run different parts of the graph wi
h different producer versions.
                                                                                    ducer version 38. Shape inference will have run different parts of the graph w
:0831 06:00:51.382838 140586214651712 saver.py:1499] Saver not created because t
                                                                                   th different producer versions.
ere are no variables in the graph to restore
                                                                                    0901 02:40:22.443550 140210782562112 saver.py:1499] Saver not created because
0831 06:00:52.790027 140586214651712 deprecation.py:323] From /home/seo/enviror
                                                                                        are no variables in the graph to restore
```

Resized => cross entropy 0.3187 Validation accuracy 80%

Conclusion

 For the image processing problem, unless we know exactly how each image differs it is useful to use deep learning

More specific conclusion regarding things I tried and found