TD 2: Filtres analogiques

Exercice 1: Stabilité des filtres analogiques

Soit un système de réponse impulsionnelle $h(t)=e^{\alpha t}u(t)$ où u(t) est l'échelon unité.

- 1. Donner la condition sur α de stabilité du système (stabilité de sa réponse impulsionnelle).
- 2. Calculer sa fonction de transfert H(p) et en déduire la condition de stabilité sur les paramètres de H(p).
- 3. Généraliser à toute fraction rationnelle.

Exercice 2: Un filtre un peu spécial...

Soit un filtre de fonction de transfert $H(p) = \frac{p+\overline{\alpha}}{p-\alpha}$ avec $\alpha \in \mathbb{C}$.

- A quelle condition ce filtre est-il stable?
- 2. Un tel filtre stable peut-il être à minimum de phase?
- Calculer le module de la réponse en fréquence de ce filtre. Que constatez vous? Quel nom pourrait-on donner à un tel filtre?
 - 4. En utilisant la table des Transformées de Laplace du cours, calculer la réponse impulsionnelle de ce filtre.
- 5. Calculer la sortie correspondant à une fréquence pure en entrée $e(t)=e^{2i\pi f_0t}$. Montrer que cette entrée subit un simple retard τ_0 dont on précisera l'expression.
 - 6. Soit un filtre analogique stable de fonction de transfert G(p) tel que tous ses zéros sont à partie réelle négative sauf z_0 . Montrer que le filtre de fonction de transfert H(p)G(p) pour $\alpha=z_0$ est un filtre à phase minimale dont la réponse en fréquence est identique en module à celle de G(p). En déduire une méthode pour construire un filtre à phase minimale ayant la même réponse en fréquence que n'importe quel filtre stable.

Exercice 3: Synthèse de filtres de Butterworth

Filtre passe-bas

On cherche dans un premier temps à synthétiser un filtre analogique passe-bas satisfaisant le gabarit suivant.

Par la suite, on travaillera plutôt en pulsation qu'en fréquence et on notera $\hat{h}(\omega)$ la réponse en fréquence à la pulsation ω .

On donne les valeurs : $f_1=10$ kHz, $f_2=20$ kHz, $\alpha_1=-1$ dB et $\alpha_2=-20$ dB.

- A quelle atténuation en amplitude correspond une atténuation de 1dB, de 20dB, de 40dB?
 Peut-on considérer qu'une atténuation de 1 dB dans la bande passante est faible pour un filtre? De même, peut-on considérer qu'une atténuation de 20 dB dans la bande coupée est forte?
- 2. Rappeler les relations que doivent vérifier l'ordre du filtre N et la pulsation ω_c pour que le filtre satisfasse le gabarit (donc fonction de $\omega_1,\,\omega_2,\,\alpha_1$ et α_2). Quelle est la signification de ω_c ?
- 3. A partir de ces relations, calculer l'ordre N (entier) puis la pulsation ω_c .
- 4. Si l'on choisit finalement un ordre 2, quel est la valeur de la pulsation ω_c pour avoir $|\hat{h}(\omega_1)|_{\rm dB}=\alpha_1$? Quelle sera alors l'atténuation du filtre à la pulsation ω_2 ?
- 5. Rappeler l'expression du polynôme de Butterworth de degré 2 et en déduire la fonction de Transfert du filtre de Butterworth d'ordre 2 de la question précédente.

Filtre passe-haut

On cherche maintenant à synthétiser un filtre analogique passe-haut satisfaisant le gabarit suivant. Pour les mêmes valeurs : $f_1=10$ kHz, $f_2=20$ kHz, $\alpha_1=-1$ dB et $\alpha_2=-20$ dB.

La synthèse d'un tel filtre se fait par transformation d'un filtre passe-bas. et la réponse en fréquence est symétrisée horizontalement, aussi, l'ordre du filtre passe-haut est le même que l'ordre du filtre passe-bas précédent.

- 6. Quelles sont les caractéristiques de la représentation de Bode du filtre $G(p) = H(\frac{1}{p})$ ou H(p) est le filtre passe-bas satisfaisant le gabarit précédent?
- 7. Quels sont les paramètres du filtre passe-bas de Butterworth H(p) à synthétiser pour que le filtre passe-haut G(p) satisfasse le Gabarit?
- 8. En déduire la fonction de transfert du filtre passe-haut correspondant pour un ordre 2.