Lecture #1 Algorithm Analysis (1)

Algorithm
JBNU
Jinhong Jung

In This Lecture

☐ Algorithm efficiency

- What is the efficiency? Why should we care about it?
- How to measure the efficiency? What is the complexity?
- ☐ Best, average, and worst cases
 - Which case is important for algorithm analysis?
- Asymptotic analysis and notations
 - How to express complexities in simple & uniform ways?
 - While considering the large size of input at the same time
 - Concept of asymptotic notations Big-O notation

Outline

- Motivation to Algorithm Analysis
- ☐ How to Measure Efficiency
- ☐ Best, Average, and Worst Cases
- ☐ Asymptotic Analysis
- Asymptotic Notations

Efficiency Of Algorithm

- ☐ A problem can be solved by many algorithms.
 - **Problem**: What if the number n is added n times?
 - **Input**: the number *n*
 - \circ **Output**: a number that n is added n times

Algorithm A	Algorithm B	Algorithm C
sum ← 0	sum ← 0	sum ← n × n
<pre>for i in range(0, n):</pre>	<pre>for i in range(0, n):</pre>	
$sum \leftarrow sum + n$	<pre>for j in range(0, n):</pre>	
	sum ← sum + 1	

- Q: Which algorithm should we use?
 - A: The fastest and lightest one (i.e., the most efficient).
- Q. How to know which is the most efficient? ⇒ Today's topic!

Time & Space Costs

☐ A solution is said to be efficient

If it solves the problem within its resource constrains.

Resource	Time	Space	
Empirical	Wall-clock time	Memory usage	
Theoretical	Time complexity	Space complexity	

☐ The time or space cost of a solution

- The amount of time or space that the solution consumes
- ☐ Measure efficiency ⇔ Measure time & space costs

Outline

- ☐ Motivation to Algorithm Analysis
- ☐ How to Measure Efficiency
- ☐ Best, Average, and Worst Cases
- □ Asymptotic Analysis
- Asymptotic Notations

How To Measure Efficiency (1)

■ Empirical Measurement

- e.g., measure the runtime of a program
- e.g., check the maximum memory usage

Empirical Time Cost (wall-clock time)

Empirical Space Cost (memory usage)

```
start_time = tic
    Run an algorithm to be measured
run_time = toc - start_time
```

- Pros: easy-to-check
- Cons
 - Varied by environment (HW, OS, PL, ...) and implementation
 - Hard to know the tendency of performance for the size of input

How To Measure Efficiency (2)

☐ Theoretical Measurement

- Complexity analysis in terms of time & space
 - Time complexity = the number of basic operations
 - e.g., the number of additions or multiplications
 - Space complexity = the amount of memory space to be used
 - e.g., the size of an array where the input data are stored
- In general, the complexities of an algorithm depend on the size n of input data.
 - \circ T(n): time complexity (function) for given n input data
 - \circ S(n): space complexity for given n input data
 - Mostly, S(n) is linearly proportional to the input size for data structures or algorithms

Basic Operations

- ☐ Run in constant time regardless of the input size
 - Add/subtraction (+ or −) & division/multiplication (/ or ×)
 - For a + b or $a \times b$, # of operations is a constant (i.e., 1)
 - Assignment (= or ←)
 - For c = 10, # of operations is a constant (i.e., 1)
 - For $c \leftarrow a + b$, # of operations is a constant (i.e., 2)
 - Comparison (< or >)
 - For c > b, # of operations is a constant (i.e., 1)

Example Of Complexity Analysis

- \square Problem: What if the number n is added n times?
 - Let's analyze the time complexity of each algorithm

Algorithm A	Algorithm B	Algorithm C
sum ← 0	sum ← 0	sum ← n × n
<pre>for i in range(0, n):</pre>	<pre>for i in range(0, n):</pre>	
$sum \leftarrow sum + n$	for j in range(0, n):	
	sum ← sum + 1	

■ Count the number of basic operations := T(n)

	Algorithm A	Algorithm B	Algorithm C
Assignments	n+1	$n \times n + 1$	1
Additions	n	$n \times n$	
Multiplications			1
Total	2n + 1	$2n^2 + 1$	2

Performance Tendency

☐ Let's represent the # of operations as a graph

Outline

- ☐ Motivation to Algorithm Analysis
- ☐ How to Measure Efficiency
- ☐ Best, Average, and Worst Cases
- □ Asymptotic Analysis
- Asymptotic Notations

Best, Average, & Worst Cases

☐ Complexities can be different according to inputs

- Best case: input sets consuming the least resources
 - Easy to imagine, but hard to judge its general performance
- Average case: input sets exhibiting the average cost
 - Can indicate precise performance, but hard to calculate in general
- Worst case: input sets consuming the largest resources
 - Easy to imagine, but can be loosely estimated when it is rare
 - Guarantee that the algorithm for all inputs takes time/space less than or equal to the worst case

At least we should do analysis for the worst case

Example Of Cases

☐ Sequential search problem

- Input: an array of size n, having keys & a querying key
- Output: the index for the querying key in the array
 - Best case: T(n) = 1
 - The array has the querying key at the first
 - Worst case: T(n) = n
 - The array has it at the end or no the key
 - Average case: T(n) = (n+1)/2
 - The expectation for all possible cases

```
def sequential_search(array, n, key):
    for i in range(0, n):
        if array[i] == key:
            return i

throw "out-of-key"
```

```
T(n) = \frac{1}{n} \times 1 + \frac{1}{n} \times 2 + \dots + \frac{1}{n} \times i + \dots + \frac{1}{n} \times n = \frac{1}{n} \sum_{i=1}^{n} i = \frac{1}{n} \times \frac{n(n+1)}{2} = \frac{n+1}{2}
```

P(the key is at index i) # of operations searching for index i

Outline

- ☐ Motivation to Algorithm Analysis
- ☐ How to Measure Efficiency
- ☐ Best, Average, and Worst Cases
- □ Asymptotic Analysis
- Asymptotic Notations

Motivation To Asymptotic Analysis

\square Q. Which of the following is faster?

- Algorithm A: # of operations is 2^n , i.e., $T_A(n) = 2^n$
- Algorithm B: # of operations is n^{10} , i.e., $T_B(n) = n^{10}$

	n = 10	n = 60	n = 100
Algorithm A	$2^{10} = 1024$	$2^{60} \approx 1.15 \times 10^{18}$	$2^{100} \approx 10^{30}$
Algorithm B	10^{10}	$60^{10} \approx 6.05 \times 10^{17}$	$100^{10} = 10^{20}$
Faster?	Algorithm A	Algorithm B	Algorithm B

• If the input size n becomes extremely large, then Alg. B is faster "eventually" than Alg. A.

□ Asymptotic analysis

• Aim to analyze the efficiency of an algorithm when the input size becomes very large.

Asymptotic Analysis

- lacktriangle To analyze how a complexity function of the input size n changes as n becomes large
 - **Asymptotic**: to approach an infinity point (i.e., $n \to \infty$)
 - As $n \to \infty$, how the function changes is called asymptotic (or limiting/tail) behavior

Why Need To Consider ∞? (1)

☐ What if the complexity consists of multiple terms?

■ Example: $T(n) = n^2 + n + 1$

$$n = 1$$
 $T(n) = 1 + 1 + 1 = 3 (33.3\% \text{ for } n^2)$

$$n = 10$$
 $T(n) = 100 + 10 + 1 = 111 (90\% for n^2)$

$$n = 100$$
 $T(n) = 10000 + 100 + 1 = 10101 (99\% for n^2)$

$$n = 1,000 \ T(n) = 1000000 + 1000 + 1 = 1001001 (99.9\% \text{ for } n^2)$$

- In other words, T(n) is proportional to n^2 as $n \to \infty$
 - $\circ n^2$ is called a dominant factor having the largest exponent

Why Need To Consider ∞? (2)

- \square What if the dominant factor is $5n^2$, $10n^2$, or $100n^2$?
 - The term n^2 dominates its coefficient as $n \to \infty$.
 - Eventually, they show the similar tail behavior of n^2 .

☐ How can we simply describe the limiting behavior of an arbitrary complexity function?

$$T(n) = n^2$$

$$T(n) = n^2 + n + 1$$

$$T(n) = 3n^2 - 2n + 100$$

$$T(n) = 100n^2$$

All of them have the tail behavior of n^2 .

Can we represent them in one category?

Outline

- ☐ Motivation to Algorithm Analysis
- ☐ How to Measure Efficiency
- ☐ Best, Average, and Worst Cases
- □ Asymptotic Analysis
- Asymptotic Notations

Asymptotic Notations

- ☐ Simple way to represent the limiting behaviors of an arbitrary complexity function
 - Big-O notation
 - Big-Omega notation
 - Big-Theta notation

Big-O Notation (1)

\square Definition of O(f(n))

```
Oig(f(n)ig) = \{g(n) \mid \text{there exist two positive constants } c \text{ and } n_0 such that g(n) \le cf(n) for all n \ge n_0 }
```

■ Set of functions $\leq cf(n)$ for large input size n

Big-O Notation (2)

- \square Interpretation of T(n) = O(f(n))
 - The time complexity T(n) of the algorithm is in O(f(n)) for [best | average | worst] case.
 - When the input size is large enough, it always executes in less than or equal to cf(n) for the case.
 - T(n) grows asymptotically no faster than f(n) as upper bound.

Big-O Examples (1)

□ Claim)
$$T(n) = 5n^2 = O(n^2)$$

- **Proof**) Intuitively pick c and n_0 so that c=6 and $n_0=1$; then, for all $n \ge n_0=1$, $T(n)=5n^2 \le cn^2=6n^2$.
 - In this proof, $c = 6 \& n_0 = 1$ is one of numerous answer candidates.
 - Any c and n_0 can be an answer if they satisfy the definition.
 - e.g., $c = 7 \& n_0 = 1$

□ Claim) T(n) = 4 = O(1)

- Proof) Suppose c=10 and $n_0=1$; then, for all $n \ge n_0=1$, $T(n)=4 \le c \times 1=10$.
- Say "it takes constant time" in this case.

Big-O Examples (2)

$$\Box$$
 Claim) $T(n) = 3n^2 + 100 = O(n^2)$

Proof 1)

- $3n^2 + 100 \le 3n^2 + 100n^2 = 103n^2 \Rightarrow c = 103 \text{ for all } n \ge n_0 \ge 1.$
 - Any $n_0 \ge 1$ is good in this case (e.g., $n_0 = 1$ or $n_0 = 2$)

Proof 2)

- First, let c = 13; then, $3n^2 + 100 \le 13n^2 \Leftrightarrow 100 \le 10n^2 \Leftrightarrow 10 \le n^2$.
- This indicates $n \ge \sqrt{10} \approx 3.162 \Rightarrow n_0 = 4$.
- Then, for all $n \ge 4$, $3n^2 + 100 \le 13n^2$.
- \square If a polynomial has the term of largest degree $\leq n^r$, then it is $O(n^r)$.

Big-O Examples (3)

- □ Claim) $T(n) = 5n + 3 = O(n^2)$
 - Proof) Suppose c = 1; then, $5n + 3 \le n^2$ for all $n \ge n_0 = 6$.

- ☐ As above, Big-O notation can be either of strict or loose upper bound
 - By which base function f(n) is targeted,
 - i.e., $T(n) = 5n + 3 = \{O(n), O(n^2), O(n^3), O(n^4), \cdots \}.$
 - If a problem says like "estimate Big-O notation as tight as possible", you should write it like T(n) = O(n).
 - Do likewise for Big-Omega notation!

Big-O Examples (4)

- ☐ How can we simply describe the limiting behavior of an arbitrary complexity function?
 - $T(n) = n^2$
 - $T(n) = n^2 + n + 1$
 - $T(n) = 3n^2 2n + 100$
 - $T(n) = 100n^2$

- \Box The above functions are all in $O(n^2)!$
 - As $n \to \infty$, each function shows the same limiting behavior of n^2 , saying they have the same performance.

What You Need To Know

☐ Algorithm efficiency

- To compare the performance of algorithms
- Measured by time or space costs empirically & theoretically

☐ Best, average, and worst cases

Do analysis for worst case to guarantee the performance

☐ Asymptotic analysis and notations

- Aim to analyze the efficiency of an algorithm when $n \to \infty$
- O(f(n)) = a set of functions $\leq cf(n)$ for large input size n
 - T(n) = O(f(n)) means T(n) grows asymptotically no faster than f(n) as upper bound.

In Next Lecture

- ☐ Other asymptotic notations
 - Big-Omega and Big-Theta notations
- ☐ Simplifying rules on the notations
- ☐ More examples of asymptotic analysis
- ☐ How to analyze algorithms with multiple parameters

Thank You