





# MODELOS DE PREVISÃO PARA AVALIAÇÃO DE CASOS DE MALÁRIA NA AMAZÔNIA LEGAL BRASILEIRA

Natalia Santos<sup>1</sup>, Everton Silva<sup>1</sup>, Carlos Beluzo<sup>1,2</sup>, Luciana C. Alves<sup>2</sup>

Instituto Federal de São Paulo (IFSP), Campinas - SP

Instituto de Filosofia e Ciências Humanas (IFCH) Núcleo de Estudos de População "Elza Berquó" (NEPO) Universidade Estadual de Campinas (UNICAMP), Campinas - SP

r.natalia@aluno.ifsp.edu.br, everton.silva@ifsp.edu.br

cbeluzo@gmail.com, lcalves@unicamp.br





Ler mais

### **BRACIS 2022 ENIAC 2022**

concentra cerca de 34,4% dos casos da doença registrados no continente americano (ONU, 2017). Atualmente, 99% dos casos de malária no Brasil ocorrem na Amazônia, habitat natural para cerca de 50 espécies de anofelinos, dentre os quais aproximadamente 20 são potenciais vetores de málária, destacando-se a espécie Wyssorhynchus darlinar como principal vetor no Brasil (Carlos et al. 2019).



### Motivação

Métodos de **Ciência de Dados**como ferramentas de apoio à

<u>Vigilância Epidemiológica de</u>

<u>malária na Amazônia Legal</u>

<u>Brasileira</u>









### Introdução

- Malária doença infecciosa
  - Presente em <u>países em desenvolvimento</u> com <u>clima subtropical</u>
  - Centenas de milhões de vítimas, milhares delas fatais, todos os anos (WHO, 2021)
    - 240 mi em 2020, com mais de 627 mil mortes no mundo
  - Doença parasitária (protozoário Plasmodium)
  - Transmitida por mosquitos Anopheles (Guia de Tratamento de Malária MS).











### Introdução

- Brasil possui <u>2º maior número de casos</u> das Américas (Venezuela em 1º)
  - Principalmente na <u>Amazônia Legal Brasileira</u>
  - Ambiente favorável à procriação do mosquito
- Prever casos e identificar períodos de surtos <u>favorecem</u> <u>planejamento</u> da manejo da doença
  - Dimensionamento de recursos
  - Antecipação de medidas de <u>saúde pública</u> para <u>combate e tratamento</u>









#### **Proposta**

Construção de <u>série temporal mensal</u> com número de casos

- Criação de um modelo de predição
  - Utilização do método de Validação WalkFoward
    - Permite obter melhor previsão a cada passo de tempo (Tran et al., 2021)
  - Seccionados por UFs da Amazônia Legal Brasileira
  - ARIMA (Baseline)
    - Método mais utilizado em contextos epidemiológicos (Perone, 2020)
    - Maior facilidade de interpretação dos resultados







### Conjunto de dados - SIVEP-Malaria

- Programa Nacional de <u>Controle e</u>
   <u>Prevenção</u> de Malária
- Monitoramento <u>espacial</u> e <u>temporal</u> de epidemias
- Plataforma de <u>vigilância de malária</u> coleta e disseminação de dados relevantes



- Utilizado para construir <u>indicadores epidemiológicos</u>
  - Número de casos, Índice Parasitário, letalidade
  - o Perfil demográfico e socioeconômico









### Conjunto de dados - SIVEP-Malaria

| Grupo                   | Variável   | Descrição                                                        |  |  |  |  |  |
|-------------------------|------------|------------------------------------------------------------------|--|--|--|--|--|
| Dados Administrativos   | COD_NOTI   | Número da notificação                                            |  |  |  |  |  |
|                         | DT_NOTIF   | Data da notificação                                              |  |  |  |  |  |
|                         | MUN_NOTIF  | Código do município que está notificando                         |  |  |  |  |  |
|                         | UF_NOTIF   | UF do paciente de acordo com o código do IBGE                    |  |  |  |  |  |
|                         | TIPO_LAM   | Exame coletado de forma ativa ou passiva                         |  |  |  |  |  |
|                         | ID_PACIE   | Idade do paciente                                                |  |  |  |  |  |
|                         | SEXO       | Sexo do paciente                                                 |  |  |  |  |  |
| Dados do Paciente       | GESTANTE   | Tempo de gestação (para mulheres gestantes)                      |  |  |  |  |  |
| Dados do Faciente       | NIV_ESCO   | Nível de escolaridade do paciente                                |  |  |  |  |  |
|                         | RACA       | RaçaCor do paciente                                              |  |  |  |  |  |
|                         | COD_OCUP   | Principal atividade exercida pelo paciente                       |  |  |  |  |  |
|                         | VIVAX      | Paciente tratado para malária <i>vivax</i> nos últimos 60 dias   |  |  |  |  |  |
|                         | FALCIPARUM | Paciente tratado para malária falciparum nos últimos 40 dias     |  |  |  |  |  |
|                         | EXAME      | Tipo do exame realizado (Gota espessa/Esfregaço ou Teste rápido) |  |  |  |  |  |
|                         | RES_EXAME  | Espécie do plasmódio detectado                                   |  |  |  |  |  |
| Dados Epidemiológicos / | QTD_CRUZ   | Quantidade de parasitemia em cruzes)                             |  |  |  |  |  |
| Laboratoriais           | QTD_PARA   | Quantidade de parasitos por $mm^3$                               |  |  |  |  |  |
|                         | HEMOPARASI | Resultado do exame para outros parasitas pesquisados             |  |  |  |  |  |
|                         | SINTOMAS   | Presença de sintomas                                             |  |  |  |  |  |
|                         | ESQUEMA    | Código do esquema de tratamento utilizado                        |  |  |  |  |  |







#### Pré-processamento e Análise

A Figura 1 apresenta as etapas desenvolvidas antes da aplicação do método proposto. Nessa seção, serão apresentados mais detalhes sobre cada uma delas.



Figura 1. Visão geral das etapas que envolvem pré-processamento da base de dados e análise das séries temporais.







### Pré-processamento e Análise (Cenário Unificado, todas UFs)

### Série mensal de número de Casos de Malária

- Entre 2007 e 2017
   redução de 80%
- Aumento em 2018
- Nova queda em 2019



Figura 2. Série temporal unificada do número de casos de malária na região da Amazônia Legal brasileira por ano.







### Pré-processamento e Análise (Por UF)

### Série mensal de número de Casos de Malária (Por UF)

- 2007-2013: AM e RO maior queda
- 2009-2010: PA aumento importante, com nova queda em 2010-2017



Figura 3. Série temporal do número de casos de malária nos estados da Amazônia Legal brasileira.







### Pré-processamento e Análise

"Dadas as observações das diferenças de representatividade e impacto de cada um dos estados no cenário unificado, o método foi aplicado para a série unificada e também para as séries mensais individuais de cada uma das UF"







#### Análise de Estacionaridade

 Pressuposto para aplicação de modelos de previsão e métodos de inferência estatística a uma determinada série temporal (Cryer, 1986)

Tabela 2. P-valores resultantes do *Teste de raiz unitária de Dickey-Fuller aumentado* 

| Estado        | AC   | AM   | AP   | MA   | MT   | PA   | RO   | RR   | TO   | Série Unificada |
|---------------|------|------|------|------|------|------|------|------|------|-----------------|
| P-valor       | 0,01 | 0,01 | 0,05 | 0,52 | 0,00 | 0,41 | 0,15 | 0,19 | 0,00 | 0,39            |
| *nível de con |      |      |      |      |      |      |      |      |      |                 |

Dados os p-valores mostrados acima, temos que: (1) as séries temporais de AC, AM, MT e TO são estacionárias ao nível de significância de 1%; (2) as séries temporais do AP são estacionárias ao nível de significância de 5%; (3) as séries temporais de MA, PA, RO, RR e a série unificada **não** são estacionárias.







#### Análise de Estacionaridade

A abordagem aqui utilizada para tornar estacionária as séries não estacionárias, se baseia em trabalhar com as diferenças da série ao invés dos seus valores reais. Colocando em termos matemáticos, temos:

$$\Delta y_t = y_t - y_{t-1} \tag{1}$$

onde  $y_t$  é o número de casos registrados no momento t.







#### Análise de Sazonalidade

Para testar se as séries do número de casos de malária para os estados da Amazônia Legal brasileira apresentam comportamento sazonal, foi utilizada a função *check\_seasonality* do pacote *darts.utils.statistics* do Python, a qual utiliza os valores das autocorrelações para identificar a presença, ou não, de sazonalidade nos dados.

|   | Tabela 3. Horizonte sazonal, em meses, para os estados da região da Amazônia<br>Legal brasileira |    |    |    |    |    |    |    |    |    |                 |
|---|--------------------------------------------------------------------------------------------------|----|----|----|----|----|----|----|----|----|-----------------|
|   | Estado                                                                                           | AC | AM | AP | MA | MT | PA | RO | RR | TO | Série Unificada |
| - | Horizonte<br>Sazonal                                                                             | 11 | 12 | 12 | 12 | 36 | 10 | 23 | 84 | -  | 12              |





#### BRACIS 2022



o-sponsor ENIAC 2022

#### Validação Walk-Foward

"Atualiza a base de dados a medida que novas informações ficam disponíveis e treinar novamente o modelo incluindo esses dados no conjunto de treino para realizar novas previsões"

- Modelo inicial: 2007/15
- WF a partir de Jan/2016
- Conjunto de testes: 2018/19









#### Métricas e Resultados

- Modelos escolhidos e ajustados em cada etapa da previsão com a utilização da função AUTOARIMA (lib pmdarima.arima do Pyhton)
  - Identifica <u>parâmetros ótimos</u> para um modelo **ARIMA** com base em métodos estatísticos de d<u>iferenciação da série</u> e <u>minimização de erros</u>

- Métricas de avaliação
  - MAPE (Mean absolute percentage error)
  - RMSE (Root-mean-square deviation)
  - RMSLE (Root Mean Squared Log Error)







#### Métricas e Resultados

Tabela 4. Métricas de avaliação de erro para previsão do número de casos de malária nos estados da Amazônia Legal brasileira

|                 | MAPE      |       | RMSE      | ]       | RMSLE     |       |  |
|-----------------|-----------|-------|-----------|---------|-----------|-------|--|
| Estado          | VALIDAÇÃO | TESTE | VALIDAÇÃO | TESTE   | VALIDAÇÃO | TESTE |  |
| AC              | 0,13      | 0,27  | 519,35    | 536,92  | 0,02      | 0,07  |  |
| AM              | 0,19      | 0,11  | 1528,95   | 837,56  | 0,05      | 0,02  |  |
| AP              | 0,11      | 0,18  | 216,26    | 267,87  | 0,02      | 0,04  |  |
| MA              | 0,26      | 0,2   | 32,64     | 30,36   | 0,15      | 0,1   |  |
| MT              | 0,37      | 0,29  | 24,11     | 64,75   | 0,31      | 0,2   |  |
| PA              | 0,23      | 0,1   | 670,55    | 522,43  | 0,13      | 0,02  |  |
| RO              | 0,25      | 0,15  | 253,43    | 175,91  | 0,17      | 0,03  |  |
| RR              | 0,18      | 0,13  | 265,38    | 396,12  | 0,05      | 0,02  |  |
| TO              | 0,79      | 1,16  | 6,27      | 3,77    | 0,64      | 0,51  |  |
| Série Unificada | 0,12      | 0,08  | 2094,31   | 1759,78 | 0,02      | 0,01  |  |







#### Conclusão e Trabalhos Futuros

- Método proposto se mostrou adequado para previsões do número de casos de malária, na região estudada, considerando o horizonte de um mês
- Pode ser utilizado por órgãos públicos como <u>ferramenta</u> para <u>planejamento</u> de <u>distribuição</u>
   <u>de recursos</u> / <u>controle e tratamento</u> (Lima e Laporta, 2021; Ferrão et al., 2021)
- Próximo passos
  - Realizar previsões para diferentes horizontes: 2 meses a um 1 ano
  - Realizar experimentos utilizando redes neurais recorrentes
  - Realizar experimentos utilizando modelos de aprendizado de máquina
  - Incluir outras variáveis já conhecidas como correlacionadas ao problema
    - Característica temporal: índices pluviométricos, temperatura, umidade do ar

### Acknowledgment

#### **Fulfillment**











#### Support









#### Funding







