Academic Slides

a template based on Beamer, TikZ, ...

Shuqi XIAO

June 24, 2024

Outline

- Basic Examples
 - Text
 - Color
 - Figure
 - Table
 - Animation
- 2 Tikz Examples
 - Figure Annotation
 - Equation Annotation
 - \blacksquare Mindmap
 - Timeline

1

Text

测试

■ 蔽芾甘棠,**勿**翦勿伐,召伯所**茇**。

Color

Color

Figure 1: Colors supported by xcolor package with ${\tt dvipsnames}$ option

Figure

Look at figure 2 and 3.

Figure 2: Image A

Figure 3: Image B

Example Images

4

Table

Methods	LPIPS ↓	SSIM ↑	PSNR dB↑	Depth L1 cm ↓	ATE RMSE cm ↓	mloU % ↑	FPS Hz↑
NIDS-SLAM	0.011	0.980	35.76	0.56	0.80	82.37	-
DNS-SLAM	0.119	0.963	22.96	3.16	0.45	84.77	-
SNI-SLAM	0.235	0.935	29.43	0.77	0.46	87.41	-
MonoGS	0.068	0.954	34.83	-	0.58	N/A	1.7
SplaTAM	0.10	0.97	34.11	0.49	0.36	N/A	1.1
NEDS-SLAM	0.088	0.962	34.76	0.47	0.35	90.78	-
SemGauss-SLAM	0.062	0.982	35.03	0.50	0.33	94.22	-
SGS-SLAM	1.096	0.973	34.15	0.36	0.41	92.72	-
Ours	0.086	0.975	34.73	-	0.67	91.14	0.8

 ${\sf Table\ 1:\ Comparison\ of\ average\ performance\ on\ Replica\ dataset}$

Animation

TODO

TODO

7

Figure Annotation

- 1 Hello
- 2 Hi

Equation Annotation

Recommendations on Color Palette

- Marknode: super-low saturation & super-high brightness.
- Annotation: high saturation & low brightness.

A counter-example,

Mindmap

powered by forest package

thanks to Drawing Taxonomy Diagram in Latex

powered by forest package

thanks to Drawing Taxonomy Diagram in Latex

Timeline

Appendix

Appendix

References

References i

- J.-C. Shi, M. Wang, H.-B. Duan, and S.-H. Guan, Language embedded 3d gaussians for open-vocabulary scene understanding, Nov. 30, 2023. arXiv: 2311.18482[cs]. [Online]. Available: http://arxiv.org/abs/2311.18482 (visited on 06/08/2024) (cit. on p. xxvii).
- [2] M. Qin, W. Li, J. Zhou, H. Wang, and H. Pfister, LangSplat: 3d language gaussian splatting, Dec. 26, 2023. arXiv: 2312.16084[cs]. [Online]. Available: http://arxiv.org/abs/2312.16084 (visited on 02/23/2024) (cit. on p. xxvii).
- [3] S. Zhou, H. Chang, S. Jiang, et al., Feature 3dgs: Supercharging 3d gaussian splatting to enable distilled feature fields, Apr. 8, 2024. arXiv: 2312.03203[cs]. [Online]. Available: http://arxiv.org/abs/2312.03203 (visited on 05/22/2024) (cit. on p. xxvii).
- [4] M. Ye, M. Danelljan, F. Yu, and L. Ke, Gaussian grouping: Segment and edit anything in 3d scenes, Dec. 1, 2023. arXiv: 2312.00732 [cs]. [Online]. Available: http://arxiv.org/abs/2312.00732 (visited on 01/02/2024) (cit. on p. xxvii).
- [5] J. Cen, J. Fang, C. Yang, et al., Segment any 3d gaussians, Dec. 1, 2023. arXiv: 2312.00860[cs]. [Online]. Available: http://arxiv.org/abs/2312.00860 (visited on 03/12/2024) (cit. on p. xxvii).
- [6] B. Dou, T. Zhang, Y. Ma, Z. Wang, and Z. Yuan, CoSSegGaussians: Compact and swift scene segmenting 3d gaussians with dual feature fusion, Jan. 30, 2024. arXiv: 2401.05925[cs]. [Online]. Available: http://arxiv.org/abs/2401.05925 (visited on 06/08/2024) (cit. on p. xxvii).
- [7] J. Guo, X. Ma, Y. Fan, H. Liu, and Q. Li, Semantic gaussians: Open-vocabulary scene understanding with 3d gaussian splatting, Mar. 22, 2024. arXiv: 2403.15624[cs]. [Online]. Available: http://arxiv.org/abs/2403.15624 (visited on 05/20/2024) (cit. on p. xxvii).
- [8] R.-Z. Qiu, G. Yang, W. Zeng, and X. Wang, Feature splatting: Language-driven physics-based scene synthesis and editing, Apr. 1, 2024. arXiv: 2404.01223[cs]. [Online]. Available: http://arxiv.org/abs/2404.01223 (visited on 06/08/2024) (cit. on p. xxvii).
- [9] G. Liao, J. Li, Z. Bao, et al., CLIP-GS: CLIP-informed gaussian splatting for real-time and view-consistent 3d semantic understanding, Apr. 22, 2024. arXiv: 2404.14249[cs]. [Online]. Available: http://arxiv.org/abs/2404.14249 (visited on 05/20/2024) (cit. on p. xxvii).

References ii

- [10] Y. Qu, S. Dai, X. Li, et al., GOI: Find 3d gaussians of interest with an optimizable open-vocabulary semantic-space hyperplane, May 27, 2024. arXiv: 2405.17596[cs]. [Online]. Available: http://arxiv.org/abs/2405.17596 (visited on 06/08/2024) (cit. on p. xxvii).
- [11] M.-B. Jurca, R. Royen, I. Giosan, and A. Munteanu, RT-GS2: Real-time generalizable semantic segmentation for 3d gaussian representations of radiance fields, May 28, 2024. arXiv: 2405.18033[cs]. [Online]. Available: http://arxiv.org/abs/2405.18033 (visited on 06/08/2024) (cit. on p. xxvii).
- [12] B. Xiong, X. Ye, T. H. E. Tse, K. Han, S. Cui, and Z. Li, SA-GS: Semantic-aware gaussian splatting for large scene reconstruction with geometry constrain, May 28, 2024. arXiv: 2405.16923[cs]. [Online]. Available: http://arxiv.org/abs/2405.16923 (visited on 06/08/2024) (cit. on p. xxvii).
- [13] Y. Ji, H. Zhu, J. Tang, et al., FastLGS: Speeding up language embedded gaussians with feature grid mapping, Jun. 3, 2024. arXiv: 2406.01916[cs]. [Online]. Available: http://arxiv.org/abs/2406.01916 (visited on 06/08/2024) (cit. on p. xxvii).
- [14] K. Lan, H. Li, H. Shi, et al., 2d-guided 3d gaussian segmentation, Dec. 26, 2023. arXiv: 2312.16047[cs]. [Online]. Available: http://arxiv.org/abs/2312.16047 (visited on 06/08/2024).