IKERKETA OPERATIBOA 1.Talde lana

AITOR SARRIA, JON GONDRA, KERMAN SANJUAN

ENUNTZIATUA:

Enpresa batek bi produktu desberdin, p_1 eta p_2 , ekoizten ditu.

Unitate bakoitzaren irabazia 30 eta 80 unitate monetariokoa da, hurrenez hurren. (**h.f.**)

Bi produktu hauen ekoizpenerako bi baliabide ditu: pertsonen orduak (p-o) eta makinen orduak (m-o).

 p_1 produktuaren unitate bat ekoizteko 6p-o eta p_2 produktuaren unitate bat ekoizteko 4p-o behar dira, guztira erabilgarriak diren pertsonen orduak 540 izanik. (**p-o**)

Era berean, p_1 produktuaren unitate bat ekoizteko 1m-o eta p_2 produktuaren unitate bat ekoizteko 2m-o behar dira, guztira erabilgarrik diren makinen orduan 170 izanik. (**m-o**)

Finkatutako merkataritza-hitzarmenak direla eta, gutxienez guztira 100 unitate ekoiztu beharko dira.(ekoizpena)

PROBLEMAREN EKUAZIOAK LORTU

$$Max: 30p1+80p2$$
 (h.f) $p_1 o Produktu\ 1$ $6p_1+4p_2 \le 540$ (p-o) $p_2 o Produktu\ 2$ $p_1+p_2 \le 170$ (m-o) $p_1+p_2 \ge 100$ (ekoizpena) $p_1,p_2 \ge 0$

A) Enpresari irabaziak maximizatzea zigortze metodoa erabiliz:

Forma Estandarra

$$Max: 30p1 + 80p2$$
 (h.f) $6p_1 + 4p_2 \le 540$ (p-o) $p_1 + p_2 \le 170$ (m-o) $p_1 + p_2 \ge 100$ (ekoizpena) $p_1, p_2 \ge 0$ $max: 30p_1 + 80p_2$ $6p_1 + 4p_2 + p_3 = 540$ $p_1 + 2p_2 + p_4 = 170$ $p_1 + p_2 - p_5 = 100$ $p_1 + p_2 - p_5 = 100$ $p_1, p_2, p_3, p_4, p_5 \ge 0$

Forma Estandarra: Lasaiera-aldagaiak erabiliz desberdintza bat berdintza bilaka daiteke, lasaiera-aldagai hauek kostu nulua izaten duten aldagai positiboak izaten dira.

Aldagai artifizialak gaineratu

Zergatik?

Zigortze-metodoa aplikatzeko, aldagai-artifizialak gaineratu behar dira, indentitate matrizea lortu ahal izateko. Aldagai hauek "zigortze" bat dute, eta helburu funtzioan –M koefizientea izango dute (Max kasuan).

$$Max: 30p1 + 80p2$$

 $30p_1 + 80p_2$
 $6p_1 + 4p_2 + p_3 = 540$
 $p_1 + 2p_2 + p_4 = 170$
 $p_1 + p_2 - p_5 = 100$
 $non p_1, p_2, p_3, p_4, p_5 \ge 0$

$$Max: 30p_1 + 80p_2 - Mq_1$$

$$6p_1 + 4p_2 + p_3 = 540$$

$$p_1 + 2p_2 + p_4 = 170$$

$$p_1 + p_2 - p_5 + q_1 = 100$$

$$non p_1, p_2, p_3, p_4, p_5, q_1 \ge 0$$

A matrizea

$$A_{6,3} = \begin{bmatrix} 6 & 4 & 1 & 0 & 0 & 0 \\ 1 & 2 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & -1 & 1 \end{bmatrix}$$

Hasierako oinarrizko soluzio bideragarria

$$X_B = (p3,p4,q1) = (540,170,100)$$

 $X_N = (p1,p2,p5) = (0,0,0)$

Simplex taula

			30	80	0	0	0	-M
C_{oin}	A_{oin}	$B^{-1} \cdot b$	p_1	p_2	p_3	p_4	p_5	q_1
0	p_3	540	6	4	1	0	0	0
0	p_4	170	1	2	0	1	0	0
-M	q_1	100	1	1	0	0	-1	1
		Z_{j}	-M	-M	0	0	M	-M
Z = -1	Z = -100M		-30-M	-80-M	0	0	M	0

<u>Gelditze-irizpidea</u> = $\exists W_j \ge 0 \times \longrightarrow JARRAITU$

Sartze-irizpidea = min W_j = min z_k - c_k = {-30-M,-80-M} = -80-M $\rightarrow \underline{p}_2$ sartzen da

Irtetze-irizpidea = min {
$$x_{Bk}/y_{kj} | y_{kj} > 0$$
 } = min { $\frac{540}{4}, \frac{170}{2}, \frac{100}{1}$ } = {135,85,100} = 85 $\rightarrow p_4$ irtetzen da

$$\begin{cases} e_{2b} \leftarrow e_2/2 \\ e_{3b} \leftarrow e_3 - e_{2b} \\ e_{1b} \leftarrow e_1 - 4e_{2b} \end{cases}$$

			30	80	0	0	0	-M
C_{oin}	A_{oin}	$B^{-1} \cdot b$	p_1	p_2	p_3	p_4	p_5	q_1
0	p_3	200	4	0	1	-2	0	0
80	p_2	85	$\frac{1}{2}$	1	0	$\frac{1}{2}$	0	0
-M	q_1	15	$\left(\frac{1}{2}\right)$	0	0	$-\frac{1}{2}$	-1	1
Z = 68000 - 15M		Z_{j}	$40 - \frac{M}{2}$	80	0	$40 + \frac{M}{2}$	M	-M
Z = 0000	00 - 13M	$W_j = z_j - c_j$	$10 - \frac{M}{2}$	0	0	$40 + \frac{M}{2}$	M	0

<u>Gelditze-irizpidea</u> = $\exists W_j \ge 0 \times \longrightarrow JARRAITU$

Pibotea

Sartze-irizpidea = min
$$W_j$$
 = min z_k - c_k = $\{10 - \frac{M}{2}\}$ = $10 - \frac{M}{2} \rightarrow \underline{p_1 \text{ sartzen da}}$

Irtetze-irizpidea = min {
$$x_{Bk}/y_{kj} | y_{kj} > 0$$
 } = min { $\frac{200}{4}$, $\frac{85}{1/2}$, $\frac{15}{1/2}$ } = {50,170,30} = 30 $\rightarrow \underline{q_1}$ irtetzen da

$$\begin{cases} e_{3b} \leftarrow 2e_{3} \\ e_{2b} \leftarrow e_{2} - \frac{1}{2}e_{3b} \\ e_{1b} \leftarrow e_{1} - 4e_{3b} \end{cases}$$

			30	80	0	0	0	-M
C_{oin}	A_{oin}	$B^{-1} \cdot b$	p_1	p_2	p_3	p_4	p_5	q_1
0	p_3	80	0	0	1	2	8	-8
80	p_2	70	0	1	0	1	1	-1
30	p_1	30	1	0	0	-1	-1	2
		Z_{j}	30	80	0	50	20	-20
Z = 0	Z = 6500		0	0	0	50	20	-20 + M

$\underline{\text{Gelditze-irizpidea}} = \exists W_j \ge 0 \checkmark \longrightarrow \text{GELDITU}$

Soluzio optimo bakarra \rightarrow Oinarrian ez dauden aldagaien kostu murriztuak $\neq 0$ $p_1^*=30$ $p_2^*=70$ $p_3^*=80$ $p_4^*=0$ $p_5^*=0$ $q_1^*=0$ $Z^*=6500$

B) Enpresari irabaziak maximizatzea bi-faseko metodoa erabiliz ebatzi.

Nola?

Bi fasetan oinarritu egingo gara, lehenengoan, oinarrizko soluzio bideragarria lortuko dugu.

Lehenengo fasean ebatzi beharreko eredua:

$$\begin{aligned} Min: & -Z = q_1 \\ & 6p_1 + 4p_2 + p_3 = 540 \\ & p_1 + 2p_2 + p_4 = 170 \\ & p_1 + p_2 - p_5 + q_1 = 100 \\ & non\ p_1, p_2, p_3, p_4, p_5, q_1 \geq 0 \end{aligned}$$

A matrizea

$$A_{6,3} = \begin{bmatrix} 6 & 4 & 1 & 0 & 0 & 0 \\ 1 & 2 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & -1 & 1 \end{bmatrix}$$

Hasierako oinarrizko soluzio bideragarria

$$X_B = (p3,p4,q1) = (540,170,100)$$

 $X_N = (p1,p2,p5) = (0,0,0)$

1.Fasea - Simplex taula

			0	0	0	0	0	1
C_{oin}	A_{oin}	$B^{-1} \cdot b$	p_1	p_2	p_3	p_4	p_5	q_1
0	p_3	540	6	4	1	0	0	0
0	p_4	170	1	2	0	1	0	0
1	q_1	100	1	1	0	0	-1	1
Z = 100		Z_{j}	1	1	0	0	-1	1
		$W_j = z_j - c_j$	1	1	0	0	-1	0

<u>Gelditze-irizpidea</u> = $\exists W_j \le 0 \times \longrightarrow JARRAITU$

Sartze-irizpidea = max
$$W_j$$
 = max z_k - c_k = {1,1} = 1 \rightarrow \underline{p}_2 sartzen da

Irtetze-irizpidea = min {
$$x_{Bk}/y_{kj} \mid y_{kj} > 0$$
 } = min { $\frac{540}{4}$, $\frac{170}{2}$, $\frac{100}{1}$ } = {135,85,100} = 85 $\rightarrow p_4$ irtetzen da

$$\begin{cases} e_{2b} \leftarrow e_2/2 \\ e_{3b} \leftarrow e_3 - e_{2b} \\ e_{1b} \leftarrow e_1 - 4e_{2b} \end{cases}$$

	1 20		0	0	0	0	0	1
C_{oin}	A_{oin}	$B^{-1} \cdot b$	p_1	p_2	p_3	p_4	p_5	q_1
0	p_3	200	4	0	1	-2	0	0
0	p_2	85	$\frac{1}{2}$	1	0	$\frac{1}{2}$	0	0
1	q_1	15	$\left(\frac{1}{2}\right)$	0	0	$-\frac{1}{2}$	-1	1
Z = 15		Z_{j}	$\frac{1}{2}$	0	0	$-\frac{1}{2}$	-1	1
		$W_j = z_j - c_j$	$\frac{1}{2}$	0	0	$-\frac{1}{2}$	-1	0

 $\begin{aligned} & \underline{\textbf{Gelditze-irizpidea}} = \exists W_j \leq 0 \ \, \boldsymbol{\times} \longrightarrow \textbf{JARRAITU} \\ & \underline{\textbf{Sartze-irizpidea}} = \max W_j = \min z_k - c_k = \{\frac{1}{2}\} = \frac{1}{2} \longrightarrow \underline{\textbf{p}_1 \, \textbf{sartzen da}} \end{aligned}$

$$\underline{\textbf{Irtetze-irizpidea}} = \min \left\{ x_{Bk} / y_{kj} \mid y_{kj} > 0 \right\} = \min \left\{ \frac{200}{4}, \frac{85}{1/2}, \frac{15}{1/2} \right\} = \left\{ 50,170,30 \right\} = 30 \rightarrow \underline{\mathbf{q}_1 \text{ irtetzen da}}$$

$$\begin{cases}
e_{3b} \leftarrow 2e_{3b} \\
e_{2b} \leftarrow e_3 - 1/2e_{3b} \\
e_{1b} \leftarrow e_1 - 4e_{3b}
\end{cases}$$

			0	0	0	0	0	1
C_{oin}	A_{oin}	$B^{-1} \cdot b$	p_1	p_2	p_3	p_4	p_5	q_1
0	p_3	80	0	0	1	2	8	-8
0	p_2	70	0	1	0	1	1	-1
0	p_1	30	1	0	0	-1	-2	2
Z = 0		Z_{j}	0	0	0	0	0	0
		$W_j = z_j - c_j$	0	0	0	0	0	-1

Gelditze-irizpidea = $\exists W_j \le 0 \checkmark \longrightarrow GELDITU$

Lehenengo fasea amaitu eta hasierako soluzio bidearagarria topatu dugu:

$$(p_1, p_2, p_3, p_4, p_5, q_1) = (30,70,80,0,0,0)$$

 $Z = 0 \leftarrow q = 0$

2. Fasea

Nola?

Bigarren fasean, lehenengo faseko azkenengo taula erabiliko dugu, minimizazio bezala ebatziz.

Bigarren fasean ebatzi beharreko eredua:

$$\begin{aligned} Max: & 30p_1 + 80p_2 \\ & 6p_1 + 4p_2 + p_3 = 540 \\ & p_1 + 2p_2 + p_4 = 170 \\ & p_1 + p_2 - p_5 = 100 \\ & non\ p_1, p_2, p_3, p_4, p_5 \ge 0 \end{aligned}$$

2. Fasea – Simplex taula

			30	80	0	0	0
C_{oin}	A_{oin}	$B^{-1} \cdot b$	p_1	p_2	p_3	p_4	p_5
0	p_3	80	0	0	1	2	8
80	p_2	70	0	1	0	1	-1
30	p_1	30	1	0	0	-1	2
Z = 0	6500	Z_{j}	30	80	0	50	20
		$W_j = z_j - c_j$	0	0	0	50	20

Gelditze-irizpidea = $\exists W_j \ge 0$ ✓ \longrightarrow GELDITU

Soluzio optimo bakarra → Oinarrian ez dauden aldagaien kostu murriztuak ≠ 0

$$p_1^* = 30 \ p_2^* = 70 \ p_3^* = 80 \ p_4^* = 0 \ p_5^* = 0$$
 $Z^* = 6500$

AMAIERA