1 Basics

1.1 Types of combinations

- **Affine:** $\sum \lambda_i = 1$ (think infinite line $\mu(u v)$)
- Conic: $\overline{\lambda_i} \geq 0$ (think positive subsection in direction of $u \wedge v$)
- **Convex:** Affine ∧ Conic (think intersection)

1.2 Norms

Assigns non-negative "sizes" to vectors.

- 1-Norm: $\sum |v_i|$ (measures travelled dist along axis)
- 2-Norm (Euclidian): $\sqrt{\sum v_i^2}$ (geometric distance)
- p-Norm (Generalization): $\sqrt[p]{(\sum v_i^p)}$
- Max-Norm: $\max\{v_i\}$

Other:

- $||v||^2 = v \cdot v$
- $\|\mathbf{1}_n\| = \sqrt{n}$

1.3 Scalar Products

Euclidian: $u \cdot v := u^T v$

Satisfy:

- $a \cdot (b+c) = a \cdot b + a \cdot c$ (linear in second factor)
- $a \cdot (\lambda b) = \lambda (a \cdot b)$ (linear in second factor)
- $a \cdot b = b \cdot a$ (symetric for \mathbb{R}) and $a \cdot b = b^H \cdot a^H$ (hermitian for
- $\forall a \in V : a \cdot a(>0) \lor (= 0 \text{ iff } a = 0)$ (positive definite)
- $\bullet \ (x\cdot y)^2 \leq (x\cdot x)(y\cdot y)$

1.4 Angles

Given $u,v\in\mathbb{R}^n$ and $u'=\frac{u}{\|u\|},v'=\frac{v}{\|v\|}$ unitized vectors: $\cos(\alpha)=$ $u' \cdot v'$.

 $\sin: 0 \mapsto \frac{\sqrt{0}}{2}, 30 \mapsto \frac{\sqrt{1}}{2}, 45 \mapsto \frac{\sqrt{2}}{2}, 60 \mapsto \frac{\sqrt{3}}{2}, 90 \mapsto \frac{\sqrt{4}}{2}$

1.5 Inequalities

1.5.1 Cauchy-Schwarz

 $|u \cdot v| \leq \|u\| \|v\|, -1 \leq \frac{u \cdot v}{\|u\| \|v\|} \leq 1, -\|u\| \|v\| \leq u \cdot v \leq \|u\| \|v\|$

1.5.2 Triangle

 $||a+b|| \le ||a|| + ||b||$, meaning the direct way is always \le the indirect way.

1.6 Linear In/Dependence

Linear Dependence Equivalent Definitions:

- 1. $\exists u \in V : u \in \text{span}\{V \setminus \{u\}\}\$ (vector can be represented using others)
- 2. $0 \in \operatorname{span}(V)$ (0 combination)
- 3. $\exists v_i \in V : v_i \in \text{span}\{V_{1\dots i-1}\}$ (vector can be represented by previous vectors)

1.7 CR Decomposition

C: independent columns, R: combinations to get back to A. Basically run RREF on A and put identity columns into C and copy 4 Vector Spaces RREF without the ending zero-rows into R.

Linear Algebra HS24 / cs.shivi.io

2 Matrices and Linear Transformations

Given a matrix in $\mathbb{R}^{m \times n}$ (*m* rows, *n* columns), think of a function $f: \mathbb{R}^n \to \mathbb{R}^m$ and how it possibly compresses information...

2.1 Linear Transformations

- Definition: $T(\lambda a) = \lambda T(a)$ and T(a+b) = T(a) + T(b)
- Quick Checks: T(0) = 0 and T(ax + by) = aT(x) + bT(y). Basically check Homomorphism.

Any linear transformation can be represented by a matrix: A = $T(e_1)$... $T(e_n)$...

2.2 Spaces

For square we have: 1) Identity, 2) Diagonal 3) Upper/Lower 4) Symetric ($A^H = A$)

- Rank: rank(A) = number of independent vectors. (Fullrank iff intertible for square matrices)
- \rightarrow rank(A) = rank (A^TA) = rank (AA^T)
- Column Space: $C(A) = \{Ax \mid x \in \mathbb{R}^n\} \subseteq \mathbb{R}^m$, aka Image. $\dim = r$
- Row Space: $R(A) = C(A^T) = \{A^T x \mid x \in \mathbb{R}^m\} \subseteq \mathbb{R}^m$. dim =
- Null Space: $N(A) = \{x \in \mathbb{R}^n \mid Ax = 0\}$. aka Kernel. dim =
- Left Null Space: $LN(A) = N(A^T) = \{x \in \mathbb{R}^m \mid x^T A = 0\}$ $0^T \text{ or } A^T x = 0$ }. dim = m - r

A basis is defined as an independent set which spans your space. The dimension of a space is the cardinality of your basis for that space (which stays same independent of which basis represents that space).

2.3 Don't Forget

- $AB \neq BA$
- $(AB)^{-1} = B^{-1}A^{-1}$
- $(AB)^T = B^T A^T$

3 Systems of Linear Equations

Basically Ax = b.

3.1 LU Decomposition

Run REF on $A \in \mathbb{R}^{m \times n}$ to generate $L \in \mathbb{R}^{m \times n}$ and track coefficients in $U \in \mathbb{R}^{n \times n}$.

3.2 Permutation Matrices

- Each row and column have exactly one 1. They are orthogonal, hence $P^{-1}=P^T\wedge PP^T=P^TP=I$
- $\det(P) = +1$
- $P = P_1 P_2$ is also a permutation matrix
- A permutation creates a bijection from $[n] \rightarrow [n]$.

3.3 LUP Decomposition

PA = LU. If $U = E_{m-1}P_{m-1}E_{m-2}P_{m-2}...E_1P_1A \Rightarrow P = 0$ $P_{m-1} \cdot \ldots \cdot P_1$

A vector space is an algebra $(V, +, \cdot)$, where $+: V \times V \to V, \cdot:$ $\mathbb{R} \cdot V \to V$ s.t. we have 1) commutativity 2) associativity 3) a zero

vector 4) a negative vector 5) identity element $\in \mathbb{R}$ 6) compatibility of $\cdot \in \mathbb{R} \land \cdot \in \mathbb{V}$ 7) distributivity over $+ \in \mathbb{V}$ and 8) distributivity over $+ \in \mathbb{R}$

4.1 Subspace

 $U \subseteq V$ is a subset if we have 1) closure under $+: U \times U \to U$ and 2) closure under $\cdot : \mathbb{R} \times U \to U$.

4.1.1 Columns Space

See definition above. Construct by running RREF on A and select the columns of A based on the pivot columns of RREF. **Note:** R/REF changes the columnspace, make sure to pick from A.

4.1.2 Row Space

See definition above. Construct by running RREF of A and selecting all non-zero rows of that RREF. Note: R/REF doesn't change rowspace, make sure to pick from R/REF.

Lemma 4.27: Given an invertible matrix M then R(A) = R(MA)(left multiplication only).

4.1.3 Nullspace

See definition above. $N(A) \subseteq \mathbb{R}^n$. Construct by running RREF on A. For each non-pivot column set it's coefficient = 1 and find out what the coefficients of the pivot columns must be to get 0. This should yield n-r columns forming a basis of N(A).

Lemma 4.33: Given an invertible matrix M then N(A) =N(MA).

4.1.4 Left Nullspace

See definition above. LN(A) := $N(A^T) \subset \mathbb{R}^m$

4.2 Solution Space

For any Ax = b we have three options: 1) No solution 2) One solution 3) Infinite solutions.

- If *A* is not invertible and $b \notin C(A)$ then no solution can exist.
- If A is invertible $\Rightarrow N(A) = \{0\}$ then exactly one solution exist $x = A^{-1}b$
- If A is not invertible but $b \in C(A)$ then $\exists x : Ax = b$ and $\forall n \in A$ N(A): A(x+n) = b+0 = b. This can happen when our transformation f is going from a higher dimensional space to a lower dimensional space, i.e n > m.

Inverse Theorem 3.11: Let $A \in \mathbb{R}^{m \times m}$, then the following are equivalent:

1. $\exists A^{-1}$

- 2. $\forall b \in \mathbb{R}^m \exists x : Ax = b$
- 3. The columns of A are independent

5 Orthogonality

Definition: u is orthogonal to v if $u \cdot v = 0$. Two subspaces U, Vare orthogonal if $\forall u \in U \forall v \in V : u \cdot v = 0$. A basis can be used to check orthogonality.

Theorem 5.1.7: Let V, W be subspaces of \mathbb{R}^n , then the following are equivalent:

- 1. $V = W^{\perp}$
- $2. \dim(V) + \dim(W) = n$
- 3. $\forall u \in \mathbb{R}^n \exists$ unique v, w : u = v + w

5.1 Four fundamental Subspaces

- $N(A) = R(A)^{\perp}$
- Think how if Ax = 0 then each row of A "dotted" by x = 0, which means these *x*'s are orthogonal to each row and hence the rowspace of A.
- $LN(A) = C(A)^{\perp}$
- Argue with the same as above but just use A^T instead.

5.2 Properties

- Q is orthogonal (more like orthonormal) iff $Q^TQ = I$
- For square matrices $QQ^T = I$ and $Q^T = Q^{-1}$
- For non-square matrices $QQ^T = I$ may *not* hold.
- Orthonormal matrices preserve **norm** (i.e $det(Q) = \pm 1$ and ||Qx|| = ||x||
- Orthonormal matrices preserve angle.
- A^{-1} is orthonormal. AB is orthonormal (since $(AB)(AB)^T =$ $ABB^TA^T = I$

5.3 Gram-Schmidt

We are given A a basis for some space and want to orthonormalize into Q. Steps:

- 1. Normalize $v_1 \rightarrow q_1$
- 2. Subtract projection from previous vectors from current vector: 1. $v_n' = v_n \sum_{i=1}^{n-1} \operatorname{proj}_{q_i}(v_n) = v_n \sum_{i=1}^{n-1} ((v_n \cdot q_i)q_i)$ 2. $q_n = \frac{v_n'}{\|v_n'\|}$

5.4 QR Decomposition

 $A = QR \Rightarrow Q^T A = R$. Basically run Gram-Schmidt on A to generate Q and calculate R.

- R is upper triangular and invertible
- C(Q) = C(A)

6 Projections

The projection of $b \in \mathbb{R}^m$ onto a subspace $S \in \mathbb{R}^m$ is the point in S that's closest to b. i.e $\operatorname{proj}_{S}(b) = \operatorname{argmin}_{p \in S} \|b - p\|^{2}$ (yes error squared.)

- 1D Case: Let $a \in \mathbb{R}^m$ span S. Then $\operatorname{proj}_S(b) = \frac{aa^T}{a^Ta}b$ ND Case: Let S = C(A) and $b \in \mathbb{R}^m$. Then $\operatorname{proj}_S(b) = A\hat{x}$ s.t.
- $A^T A \hat{x} = A^T b.$
- If $b \in S$ iff Ax = b then \hat{x} preserves the x.
- Otherwise \hat{x} minimizes the least square error.

Linear Algebra HS24 / cs.shivi.io

Theorem 5.2.6: Let S = C(A), then $\operatorname{proj}_{S}(b) = Pb$ s.t. P = $A(A^TA)^{-1}A^T$.

- $P^2 = P$ (projecting multiple times doesn't change the
- If $\operatorname{proj}_{S}(b) = Pb$ then $\operatorname{proj}_{S^{\perp}}(b) = (I P)b$
- $(I-P)^2 = I-P$ (since projecting onto the orthogonal complement multiple times doesn't change anything)

6.1 Least Squares

Assume Ax = b does not always have a solution, however we want to get the "best" solution according $\min_{x' \in \mathbb{R}^n} \|Ax' - b\|^2$. We can solve this using projections as follows:

- First write down the equation in form of e.g $b_i = \lambda_3 x^3 + \lambda_2 x^2 + \lambda_3 x^3 + \lambda_4 x^2 + \lambda_5 x^3 + \lambda_5 x^2 + \lambda_5 x^3 + \lambda_5 x^3 + \lambda_5 x^2 + \lambda_5 x^3 + \lambda$
- Now write using matrices: $\begin{pmatrix} | & \dots & | \\ x_i^3 & \dots & 1 \\ | & \dots & | \end{pmatrix} \begin{pmatrix} \lambda_3 \\ \vdots \\ \lambda_0 \end{pmatrix} = \begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix}$ Normal Equations: $(A^TA)x' = (A^Tb) \Rightarrow Nx' = y \Rightarrow x' = 0$

7 Pseudoinverse

- Left Pseudoinverse: $A^{\dagger}A = I$
- Right Pseudoinverse: $AA^{\dagger} = I$

7.1 Left Pseudoinverse for Full Column Rank

Use a left pseudoinverse for $f : \mathbb{R}^n \to \mathbb{R}^m$ s.t. n < m, meaning we are transforming from a smaller space to a larger space. This means that we are not loosing information from the input space but we cannot represent the whole output space, meaning b will probably not lie in C(A) (A is a basis and has full column rank), hence we basically do least squares since the system is overdetermined.

Hence $A_{\text{left}}^{\dagger} = (A^T A)^{-1} A^T) \Rightarrow A^{\dagger} A = I$

7.2 Right Pseudoinverse for Full Row Rank

Use right pseudoinverse for $f: \mathbb{R}^n \to \mathbb{R}^m$ s.t. n > m, meaning we are transforming from a larger space to a smaller space and hence loosing information. This makes the system underdetermined (many possible solutions). This means that there exist a non-trivial nullspace. Here the right-pseudoinverse minimizes the norm of our solution.

Hence $A_{\text{right}}^{\dagger} = A^T (AA^T)^{-1} \Rightarrow AA^{\dagger} = I$

7.3 Left Pseudoinverse for General Matrices

For general matrices A the left pseudoinverse cannot be defined as $A^{\dagger} = (A^T A)^{-1} A^T$ because $(A^T A)^{-1}$ might not be defined. Hence 9.1 Properties we need to use a different approach.

Basically we do a CR decomposition since C has full-column rank and R has full row rank. $A = CR \Rightarrow A^{\dagger} = (CR)^{\dagger} = R^{\dagger}C^{\dagger} =$ $R^{T}(RR^{T})^{-1}(C^{T}C)^{-1}C^{T}$

This satisfies that for $Ax = b \Rightarrow \hat{x} = A^{\dagger}b$ and \hat{x} is the unique solution satisfying $\min_{x \in \mathbb{R}^n} ||x||$ s.t. $A^T A x = A^T b$.

 A^{\dagger} can be defined (using SVD) as $V\Sigma^{\dagger}U^{T}$ where Σ^{\dagger} is taking the reciprocal of non-zero singular values and then transposing the matrix.

8 Farkas Lemma

Farkas Lemma provides a way to determine if a system of linear inequalities is feasible. It essentially states that exactly one of two alternatives is true.

Geometric Intuition: Imagine a cone formed by the vectors representing the inequalities. Farkas Lemma helps determine if a given vector b is inside this cone (feasible system) or if there's a hyperplane separating b from the cone (infeasible system).

Given $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$ one and exactly one of these statements is true:

- 1. **Feasibility:** $\exists x \in \mathbb{R}^n \text{ s.t. } Ax \leq b \land x \geq 0$ (there exists a nonnegative solution)
- 2. Infeasibility Certificate: $\exists y \in \mathbb{R}^m \text{ s.t. } A^T y \geq 0 \land y \geq 0 \land b$ y < 0 (There's a non-negative linear combination of the inequalities that leads to a contradiction)

8.1 Fourier-Motzkin Elimination

Basically we want to go from m inequalities with n variables to possibly $\frac{m^2}{4}$ inequalities with n-1 variables. Geometrically this is analogous to projecting the shadow of our "cone" from n-D to n —

- 1. We seperate the variable we want to eliminate onto say the
- 2. We make sure the inequality direction is consistent for all
- 3. We normalize the equations so that the coefficients (of the variable we want to eliminate) are $0 \lor \pm 1$
- 4. We get a new set of equations by combining the $+x_i$ equations with $-x_i$ equations.
- 5. Repeat until we get to a low dimension case
 - 1. If we have an inconsistency, quit.
 - 2. Otherwise backsubstitute values to get a possible x which satisfies the equation.

9 Determinants

For 2x2: $\det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = ad - bc$. For NxN: (Cofactors:) Make $+-+\dots$ grid. Pick a row/column and calculcate $\pm A_{i,j} \det(\dots)$ recursively.

Fundamental:

- 1. $\det(I) = 1$
- 2. If we swap the rows of $A \to B$ once, then $\det(B) = -\det(A)$.
- 3. The determinant is a linear function of each row separately.
- 1. If a row of A is multiplied by a scalar t, then det(A') = $t \det(A)$.

2. If a row of A is replaced by the sum of itself and a multiple of • The set of vectors corresponding to a λ s.t. $Av = \lambda v$ are called another row, the determinant is unchanged.

Derived:

- 4. If any two rows are equal then det(A) = 0
- 5. If A has a row of zeros then det(A) = 0
- 6. Subtracting a multiple of one row from another row leaves the determinant unchanged.
- 7. If A is triangular (upper or lower), the determinant is the product of the diagonal entries.
- 8. det(A) = 0 if and only if A is singular (not invertible)
- 9. det(AB) = det(A) det(B)
- 10. $\det(A^{-1}) = \frac{1}{\det(A)}$
- 11. $\det(A) = \det(A^T)$

10 Complex Numbers

Let $z = (a + bi) \in \mathbb{C}$.

Conjugate:

- $\overline{z} = a bi$
- $z\overline{z} = ||z|| = a^2 + b^2$
- $\overline{x+y} = \overline{x} + \overline{y}$
- $\overline{xy} = \overline{xy}$

Norm:

- $||z|| = \sqrt{a^2 + b^2} \in \mathbb{R}$
- $\bullet \ \|xy\| = \|y\|\|y\|$
- $||z^n|| = ||z||^n$

Hermitian of a matrix:

Basically transpose and conjugate each entry.

Properties:

- $z + \overline{z} = 2\Re(z) = 2a$
- $z \overline{z} = 2i\Im(z) = 2ib$
- $||z|| = ||\overline{z}||$ $z^{-1} = \frac{\overline{z}}{||z||^2}$ (multiplicative inverse)
- Triangle Inequality: ||x + $|y| \le ||x|| + ||y||$

Eulers Formula:

- $e^{i\theta} = \cos\theta + i\sin\theta$
- $\theta = \arctan\left(\frac{\Im(z)}{\Re(z)}\right) =$ $\arctan(\frac{b}{a})$

11 Change of Basis

To transform a linear transformation M_A in basis A to basis B:

$$M_B = P_{A \to B}^{-1} M_A P_{B \to A}$$

Here, P is calculated as:

- Express each b_i (basis B) in terms of basis A: $[b_i]_{A} = x_i$, where
- Construct $P = ([b_1]_A \dots [b_n]_A)$.

- e_1 in basis B equals b_1 , written as $[b_1]_A = x_1$ such that $Ax_1 =$
- Transform in basis A, then "undo" the change of basis.

Example: Given $A = \begin{pmatrix} e_1 & e_2 & e_3 \end{pmatrix}$ and $B = \begin{pmatrix} b_1 & b_2 & b_3 \end{pmatrix}$:

- 1. Compute $[b_1]_A$, $[b_2]_A$, $[b_3]_A$ to find P.
- 2. Use $M_B = P^{-1} M_A P$.

12 Eigenvalues and Eigenvectors

Basically we want to find the Eigenvalues λ s.t. $Ax = \lambda x \Rightarrow (A - Ax)$ $\lambda I x = 0 \Rightarrow \det(A - \lambda I) = 0$, where the x which satisfy this for their given λ are called Eigenvectors.

Since
$$Av_i=\lambda_iv_i=v_i\lambda_i\Rightarrow AV=V\Lambda\Rightarrow A=V\Lambda V^{-1}\Rightarrow A^k=V\Lambda^kV^{-1}$$
.

12.1 Terms

- The set of Eigenvectors is called the **spectrum**.
- The characteristic polynomial is $det(A \lambda I) = 0$

Linear Algebra HS24 / cs.shivi.io

- an Eigenspace.
- Multiplicities:
 - ► The number of times an eigenvalue appears as a root of the characteristic polynomial is called **algebraic multiplicity**.
 - The **geometric multiplicity** of λ is the dimension of the Eigenspace of λ . Calculate as $\dim(N(A - \lambda I))$
- ► Key rule: Geometric multiplicity ≤ Algebraic multiplicity

12.2 Observations

- If λ is real, then it has a corresponding real Eigenvectors
- If for a real matrix (λ, v) is a complex EVal/EVec pair, then $(\overline{\lambda}, \overline{v})$ is too.
- For orthonormal matrices $\lambda \in \mathbb{C} \land |\lambda| = 1$.
- $A^k v = \lambda^k v$
- $det(A \lambda I)$ is a polynomial in λ with degree n.
- The coefficient of λ^n is $(-1)^n$.
- For k distinct Eigenvalues, there exist k independent Eigenvectors.
- The characteristic polynomial can be factored as $0 = \det(A$ xI) = $(-1)^n(x - \lambda_1) \cdot ... \cdot (x - \lambda_n)$.
- $\det(A) = \prod_{i=1}^{n} \lambda_i$ because $\det(A) = \det(A 0I) = (-1)^n \cdot (\lambda_1)$.
- $\operatorname{Tr}(A) = \sum \lambda_i$. (Also $\operatorname{Tr}(AB) = \operatorname{Tr}(BA) \wedge \operatorname{Tr}(A(BC)) =$ $\operatorname{Tr}((BC)\overline{A})$
- A projection matrix P projecting onto $U \in \mathbb{R}^n$ has two Eigenvalues of 0, 1.

Gotchas:

- Even though the Eigenvalues of A, A^T are same, their Eigenvectors differ.
- The Eigenvalues of A + B cannot be trivially determined.
- The Eigenvalues of *AB* or *BA* are not trivially determined. (Unless A, B have equal dimensional square matrices, then they share the non-zero Eigenvalues, but might have different multiplicities.)
- Gauss Elimination doesn't preserve Eigenvalues and Eigenvectors.

12.3 Dynamic Systems

Write down equation in the form of $\vec{g}_n = M\vec{g}_{n-1}$ with g_0 being the base case. Let $g \in \mathbb{R}^m$. Since $g_n = M^n g_0$ we have that $M \in$ $\mathbb{R}^{m \times m}$, hence quadratic. Let $v_1, ..., v_m$ be the Eigenvectors of M.

- 1. Check dimensions: If $\operatorname{span}\{v_1,...,v_m\} \neq \mathbb{R}^m$ quit. 2. Eigenbasis: Let $V = \begin{pmatrix} v_1 & ... & v_m \end{pmatrix}$ form the new basis of \mathbb{R}^m .
- 3. **Exponentiation:** We have $g_n = M^n g_0 = V \Lambda^n V^{-1} g_0$. Extract your solution from g_n .

13 Similar Matrices and Spectral Theorem

- A, B are called similar matrices if $\exists S$ s.t. $B = S^{-1}AS$. Similar matrices are equal dimensional square matrices. Similar matrices share Eigenvalues.
- **Spectral Theorem:** Any symetric matrix has n Eigenvalues and an orthonormal basis made out of Eigenvectors of A.

- Symetric matrices can be diagonalized as $S = V\Lambda V^{-1} =$
- The rank of a symetric matrix is the number of non-zero Eigenvalues.
- $S = \sum_{i=1}^{n} \lambda_i v_i v_i^T$.
- Symetric matrices only have real Eigenvalues.

13.1 Rayleigh Quotient

$$Av = \lambda v \Rightarrow v^T Av = \lambda v^T v \Rightarrow \lambda = R(v) = \frac{v^T Av}{v^T v}.$$

$$\lambda_{\min} \le R(v) \le \lambda_{\max}$$

14 Definiteness

- Positive Semidefinite (PSD): $\lambda_i \geq 0$
- Positive Definite (PD): $\lambda_i > 0$

Intuition: Look at the quadratic form $q(x) = x^T A x$. If it always makes a positive ellipsoid it's PD and it's postive Eigenvalues show that growth. If it touches 0 (except for origin) it's PSD.

• If A, B are PSD/PD then A + B is also PSD/PD, because $x^T A x + x^T B x \ge 0 \Rightarrow x^T (A + B) x$

15 Gram Matrices

 $G = V^T V$, G is called a Gram matrix.

Properties:

• $A^T A \in \mathbb{R}^{n \times n}$ and $AA^T \in \mathbb{R}^{m \times m}$ have the same non-zero Eigenvalues.

16 SVD

Any matrix A can be factored as $A = U\Sigma V^T$.

- U has the **left-singular vectors** and is orthonormal.
- V has the **right-singular vectors** and is orthonormal.
- Σ has the **singular values** and contains non-negative values only.

Construction:

- $A^T A = U \Lambda_1 U^T$. Here we have that $\Lambda_1 = \Sigma^T \Sigma$. $\Sigma =$ $\operatorname{diag}(\sigma_1,...,\sigma_k) \text{ s.t. } k = \min(n,m)$
- $AA^T = V\Lambda_2 V^T$. Here we have that $\Lambda_2 = \Sigma \Sigma^T$. $\Sigma =$ $\operatorname{diag}(\sigma_1, ..., \sigma_k)$ s.t. $k = \min(n, m)$
- $\sigma_i = \sqrt{\lambda_i}$.
- For both: Σ is constructed s.t. $\sigma_1 \geq ... \geq \sigma_k \geq 0$. Rank: number of non-zero singular values.