Pointless Topology 勉強ノート

中村仁宣

2024年6月13日~

1 Preliminary

1.1 Topology トポロジー

Let $\mathcal{P}(X)$ denote the power set of X.

定義 1.1 (Topology トポロジー). A topological space is an ordered pair (X, τ) , $\tau \subseteq \mathcal{P}(X)$ which satisfies the following properties

- 1. $\emptyset \in \tau$ and $X \in \tau$.
- 2. if $U, V \in \tau$, then $U \cap V \in \tau$.
- 3. if $\forall I, U_i \in \tau$ forall $i \in I$, then $\bigcup_{i \in I} U_i$.

 τ is called the **topology** of X. The members of the topology $U \in \tau$ is said to be **open** and $V \subseteq X$ is said to be closed if $\exists U$ open such that $V = U^c$.

定義 1.2 (Separation Axioms 分離公理). A space (X, τ) is called T_i , if respectively satisfies the following conditions,

- 1. $T_0: \forall x, y \in X \exists$ an open set $U \in \tau$ such that U contains one of x, y and not the other.
- 2. $T_1: \forall x, y \in X \exists a \text{ nhood of each not containing the other.}$

1.2 Posets, Lattices 半順序集合、束

定義 1.3 (Posets). A partial order (半順序) on a set X is a binary relation $R \subseteq X \times X$ satisfying,

- 1. ∀a, aRa (reflexivity, 反射律),
- 2. $\forall a, b, c, aRb \& bRc \Rightarrow aRc \ (transitivity, 推移律),$
- 3. $\forall a, b, aRb \& bRa \Rightarrow a = b \ (antisymmetry, 反対称律).$

if moreover

4. $\forall a, b \text{ either } aRb \text{ or } bRa \text{ holds},$

it is said to be a linear or total order.

A poset or partially ordered set, (X, \leq) is a set with a partial order. If the order of a poset is linear (or total), it is called a **linearly ordered set**, totally ordered set or chain. A relation that satisfies only (1) and (2) is called **preorder**.

2 Spaces and Lattices of Open Sets

We will suppose that all topological spaces that appear here will be T_0 .

参考文献

[1] Jorge Picado, Aleš Putlr, Frames and Locales:Topology without points, Birkhäuser.