Quiz: Chapter 1+2 definitions

Definition 1. The <i>in-sample error</i> is defined to be
Definition 2. The <i>out-of-sample error</i> is defined to be
Definition 3. The true label function is defined to be
Definition 4. The generalization error of a hypothesis g is defined to be
Definition 5. Let $\mathbf{x}_1,, \mathbf{x}_N \in \mathcal{X}$. The <i>dichotomies</i> generated by a hypothesis class \mathcal{H} on these points are defined by

Definition 6. The growth function for a hypothesis class \mathcal{H} is defined to be
Definition 7. We say that a hypoothesis class \mathcal{H} can shatter a dataset $\mathbf{x}_1,, \mathbf{x}_N$ if any of the following equivalent statements are true:
Definition 8. The integer k is said to be a <i>break point</i> for hypothesis class \mathcal{H} if
Definition 9. The Vapnik-Chervonenkis dimension (VC dimension) of a hypothesis class \mathcal{H} , denoted by $d_{\text{VC}}(\mathcal{H})$ or simply d_{VC} , is
Theorem 1 (VC generalization bound). For any tolerance $\delta > 0$, we have that with probability at least $1 - \delta$,