T319 - Introdução ao Aprendizado de Máquina: *Introdução*

Felipe Augusto Pereira de Figueiredo felipe.figueiredo@inatel.br

A disciplina

- Introdução ao aprendizado de máquina.
- Como o próprio nome diz, é um curso introdutório onde veremos os conceitos básicos de funcionamento de vários algoritmos de aprendizado de máquina ou do Inglês, machine learning (ML).
- O curso será o mais prático possível, com vários exercícios envolvendo o uso dos algoritmos discutidos.
- O curso será dividido em duas partes: T319 e T320.
- Não nós aprofundaremos nos conceitos matemáticos envolvidos.
- Porém, precisamos conhecer Python e alguns conceitos de álgebra linear e estatística.

Cronograma

Aula	Data	Dia	Horário	Atividade
1	13/8/2021	Sexta-feira	21:30 às 23:10	Introdução ao Aprendizado de Máquina
2	27/8/2021			Introdução ao Aprendizado de Máquina
3	10/9/2021			Introdução ao Aprendizado de Máquina
4	24/9/2021			Introdução ao Aprendizado de Máquina
5	8/10/2021			Introdução ao Aprendizado de Máquina
6	22/10/2021			Introdução ao Aprendizado de Máquina
7	5/11/2021			Introdução ao Aprendizado de Máquina
8	19/11/2021			Introdução ao Aprendizado de Máquina
9	3/12/2021			Projeto Final
10	17/12/2021			NP3

Objetivo do curso

- os conceitos fundamentais da teoria do aprendizado de máquina.
- um conjunto de ferramentas (ou seja, algoritmos) de aprendizado de máquina.
- Ao final do curso vocês devem ser capazes de
 - Entender e discutir sobre os principais algoritmos de ML.
 - Compreender a terminologia utilizada na área.
 - Aplicar algoritmos de ML para a resolução de problemas.
 - Analisar e entender novos algoritmos de ML.
 - Criar seus próprios projetos.

Avaliação do curso

- Avaliação final
 - Uma (1) atividade final valendo 85% da nota.
 - Envolvendo questões teóricas e/ou práticas.
- Atividades
 - Exercícios e quizzes valendo 15% da nota.
 - Ao longo das aulas e para casa.
 - Entregues no MS Teams.

Motivação

- **Emprego**: grandes companhias (e.g., Google, Facebook, Amazon, etc.) usam ML para resolver os mais diversos tipos de problemas e assim aumentarem sua eficiência e consequentemente os lucros.
- Pesquisa: já se prevê que ML terá um papel importante no desenvolvimento da próxima geração de redes móveis e sem-fio (e.g., 6G).

facebook

Dropbox

Definições e objetivo da IA

- **Definição**: "Capacidade de um sistema de interpretar corretamente dados externos (vindos do ambiente), aprender com esses dados e usá-los para atingir tarefas e objetivos específicos por meio de adaptação flexível." (Andreas Kaplan).
- **Objetivo**: Criar máquinas que *imitem* nossas *habilidades mentais*, ou seja, criar máquinas que são *modelos aproximados* de nossas habilidades de aprender, raciocinar, enxergar, falar, ouvir, etc.
- IA utiliza a *experiência* para adquirir *conhecimento* e também como aplicar esse conhecimento a problemas desconhecidos.

Inteligência Artificial

- IA é uma área muito ampla que *engloba* várias aplicações (ou sub-áreas ou objetivos) tais como
 - i. processamento de linguagem natural,
 - ii. representação do conhecimento,
 - iii. raciocínio automatizado,
 - iv. planejamento,
 - v. visão computacional,
 - vi. robótica,
 - vii. aprendizado de máquina, que por sua vez engloba redes neurais artificiais, deep learning, etc. e
 - viii. inteligência artificial geral.

Înteligência Artificial

Programas que podem sentir, raciocinar, agir, aprender e se adaptar como humanos

Aprendizado de Máquina

Algoritmos que permitem que uma máquina aprenda automaticamente sem ser explicitamente programada

Redes Neurais Artificiais

Multilayer perceptron, Convolutional, Recursive Networks, etc.

Algumas aplicações de IA

Algumas áreas onde IA é aplicada são:

- Transporte: veículos terrestres e aéreos autônomos, predição do tráfego, etc.
- **Negócios**: recomendação de anúncios, produtos e conteúdos (e.g., netflix), chatbots para atendimento ao cliente, etc.
- **Educação**: pontuação automatizada de fala em testes de Inglês, correção de provas, chatbots para realização de matrículas, dúvidas, etc.
- Clima: previsão do tempo (temperatura, chuva, furações, etc.).
- **Medicina**: detecção e/ou predição de doenças (câncer, Alzheimer, pneumonia, COVID-19, etc.), chatbots que auxiliam no agendamento de consultas e respondem perguntas referentes a uma doença, descoberta de novas drogas, etc.
- **Finanças**: detecção de fraudes com cartão de crédito, predição do comportamento do mercado de ações, etc.
- **Tecnologia**: filtros AntiSpam, "motores" de busca como o do Google, reconhecimento de fala, conversão de texto/fala e fala/texto, assistentes pessoais on-line (e.g., *Siri*, *Alexa*, etc.), tradução de textos.

Foco do curso

- Como vimos, IA é um termo muito amplo, abrangendo várias sub-áreas, usado para designar máquinas capazes executar tarefas de forma inteligente.
- Foco do curso: estudo dos principais algoritmos de Aprendizado de Máquina.
- Por quê?
 - Caixa de ferramentas: ML oferece ferramentas importantes para a solução e análise eficiente de vários problemas em várias áreas.
 - Redução de complexidade e custo: vários algoritmos em várias áreas que apresentam desempenho ótimo não são utilizados na prática pois possuem complexidade computacional e/ou custo proibitivos.
 - *Oportunidades*: existem muitos empregos na área de análise de dados e pesquisas inovadoras para a solução de problemas com ML.

Mas então, o que é ML?

- É uma sub-área ou objetivo da inteligência artificial.
- O termo foi cunhado em 1959, por Arthur Samuel, que o definiu como o "campo de estudo que dá aos computadores a habilidade de aprender sem serem explicitamente programados".
- Uma outra definição interessante feita por Jojo John Moolayil é "Aprendizado de máquina é o processo de induzir inteligência em uma máquina sem que ela seja explicitamente programada".
 - Indução: aprender um modelo ou padrão geral a partir de exemplos.
- Algoritmos de ML são orientados a dados, ou seja, eles aprendem automaticamente um padrão geral a partir de grandes volumes de dados.
- Exemplo: filtro de spam do Gmail.

O que é o Aprendizado de Máquina?

• "... sem serem explicitamente programados."

Programação Tradicional

Aprendizado de Máquina

Por que ML se tornou tão difundido?

Alguns dos principais motivos são:

- Vivemos na era da informação. Nessa era, um volume sem precedentes de dados (de tera a petabytes) está disponível, impossibilitando sua análise por nós seres humanos.
- Porém, para modelos de ML isso não é um problema e sim uma solução, pois quanto mais dados melhor será o aprendizado.
- Hoje em dia, dados são preciosíssimos e a extração de novas informações (úteis) vale ouro.
- O surgimento de recursos computacionais poderosos tais como GPUs, FPGAs e CPUs com múltiplos cores.
- Surgimento de novas e eficientes estratégias/técnicas de treinamento (i.e., aprendizagem), e.g., deep-learning, reinforment-learning, etc.
- Existência de frameworks e bibliotecas poderosas que facilitam o desenvolvimento de soluções com ML.

Tipos de Aprendizado de Máquina

Os algoritmos de aprendizado de máquina podem ser agrupados nas seguintes categorias:

- Supervisionado
- Não-Supervisionado
- Semi-Supervisionado
- Por Reforço
- Metaheurístico

Aprendizado Supervisionado

- No aprendizado supervisionado a máquina sabe o que aprender, ou seja, ela tem acesso às respostas esperadas.
- Neste tipo de aprendizado, os dados ou exemplos de treinamento incluem os atributos, x, que são a entrada do algoritmo de ML e as soluções desejadas, y, (i.e., as respostas corretas), chamadas de rótulos (ou labels, do Inglês).
- Tarefa: os modelos supervisionados de ML devem aprender uma função que mapeie as entradas x nas saídas y, ou seja, y = f(x).
- Esse tipo de aprendizado pode ser dividido em problemas de *Regressão* e *Classificação*.
 - **Regressão**: o rótulo, y, pertence a um *conjunto infinito* de valores, i.e., números reais.
 - Classificação: o rótulo, y, pertence a um conjunto finito de valores, i.e., conjunto finito de classes.

Principais Algoritmos para Aprendizado Supervisionado

- Regressão linear.
- Regressão logística.
- Arvores de Decisão (Decision Trees).
- Florestas Aleatórias (Random Forests).
- k vizinhos mais próximos (k-nearest neighbors k-NN).
- Máquinas de Vetores de Suporte (Support Vector Machines SVMs).
- Redes Neurais Artificiais.

Decision Tree for Loan Approval

Aprendizado Não-Supervisionado

- Neste tipo de aprendizado, as máquinas não são informadas sobre o que aprender. Elas só recebem os exemplos de treinamento, x.
- Neste caso, os algoritmos aprendem/descobrem padrões (muitas vezes ocultos) presentes nos dados de entrada sem a presença de rótulos.
- Tarefa: os modelos devem *aprender/descobrir* padrões desconhecidos se baseando apenas nos exemplos de entrada.
- Trata problemas de clusterização, redução de dimensionalidade, detecção de anomalias (*outliers*) e aprendizado de regras de associação.

Principais Algoritmos para Aprendizado Não-Supervisionado

- k-médias (*k-means*).
 - Particiona os atributos em *k* clusters (ou grupos) distintos com base na distância ao centroide de um cluster.
- Redes Neurais Artificiais, e.g., auto-encoders.
 - Os autoencoders são usados para redução ou aumento de dimensionalidade.
- Análise de Componentes Principais (Principal Component Analysis PCA).
 - Redução de dimensionalidade.

Aprendizado Semi-Supervisionado

- Neste tipo de aprendizado, as máquinas tem acesso a exemplos com e sem rótulos.
- Geralmente envolve uma *pequena quantidade de dados* rotulados e uma *grande quantidade de dados não-rotulados*.
- É de grande ajuda em casos onde se ter uma grande quantidade de dados rotulados é muito demorado, caro ou complexo.
- Algoritmos de aprendizagem semi-supervisionada são o resultado da combinação de algoritmos supervisionados e não-supervisionados.
- Uma maneira de realizar aprendizado semi-supervisionado é combinar, por exemplo, algoritmos de *clustering* e *classificação*.

Aprendizado Semi-Supervisionado

- Exemplo: Como *classificaríamos* milhões de textos *não-rotulados* da internet em categorias como economia, esportes, política, entretenimento, etc.?
- Poderíamos usar clustering para agrupar a quantidade massiva de textos e usar apenas os exemplos mais representativos de cada cluster (quantidade bem menor de textos) para rotular manualmente.
- Esses *exemplos rotulados* são usados para treinar um *classificador*.
- Após o treinamento, o *classificador* classifica automaticamente todos os textos.

Aprendizado Por Reforço

- Abordagem totalmente diferente das anteriores pois *não temos exemplos de treinamento*, sejam eles rotulados ou não.
- O algoritmo de aprendizado por reforço, chamado de agente nesse contexto, aprende como se comportar em um ambiente através de interações do tipo tentativa e erro.
- O agente observa o estado do ambiente em que está inserido, seleciona e executa ações e recebe uma recompensa (ou reforço) em consequência das ações tomadas.
- Seguindo estes passos, o agente deve aprender por si só qual a melhor estratégia, chamada de política, para obter a maior recompensa possível ao longo do tempo.
- Uma política define qual ação o agente deve escolher quando estiver em uma determinada situação, ou seja, o estado do ambiente.
- Uma política é uma função que mapeia os estados do ambiente em ações que o agente deve tomar.

Principais Algoritmos de Aprendizado Por Reforço

- Q-Learning
 - Usado para encontrar uma política ótima de seleção de ações usando a função-Q.
 - **Q**, ou **valor-Q**, representa a **qualidade** de uma dada **ação** em um determinado **estado**.
- Deep Q-Learning
 - Junção de Deep Learning + Q-Learning.
 - Redes neurais profundas possibilitam que Q-Learning seja aplicado a problemas com número gigantesco de *estados* e *ações*.
 - O Q-Learning tabela a função-Q, já o Deep Q-Learning encontra uma função que aproxime a função-Q.

Aprendizado Metaheurístico

- Uma *metaheurística* é um método *heurístico* usado para resolver de forma genérica problemas de otimização.
 - Heurística é um método ou processo criado com o objetivo de encontrar soluções, de forma rápida e muitas vezes sub-ótimas, para um problema.
- *Metaheurísticas* são geralmente aplicadas a problemas para os quais não se conhece um algoritmo eficiente (e.g., problemas NP-completos).
- Características das metaheurísticas:
 - não garantem que uma solução globalmente ótima seja encontrada, mas podem encontrar uma solução suficientemente boa.
 - são estratégias que orientam o processo de busca.
 - não são específicas do problema, ou seja, são genéricas.
 - funcionam bem mesmo com capacidade de computação limitada.

Principais Algoritmos de Aprendizado Metaheurístico

- Algoritmo Genético (Genetic Algorithm GA).
 - Inspirados pelo processo de seleção natural.
- Optimização por enxame de partículas (Particle Swarm Optimization PSO).
 - Inspirado no comportamento de cardumes de peixes e de bandos de pássaros
- Otimização da colônia de formigas (Ant Colony Optimization ACO).

• Inspirado no comportamento das formigas ao saírem de sua colônia para encontrar comida.

Figure 2. A. Ants in a pheromone trail between nest and food; B. an obstacle interrupts the trail; C. ants find two paths to go around the obstacle; D. a new pheromone trail is formed along the shorter path.

Tipos de Treinamento

Uma outra forma de se classificar algoritmos de ML é com relação se eles podem ser treinados incrementalmente ou não. Assim, os algoritmos podem ser divididos em algoritmos com teinamento:

- incremental (online).
- em batelada (batch).

Treinamento incremental

- Neste tipo de treinamento, o algoritmo *aprende incrementalmente*:
 - Os exemplos de treinamento são apresentados *sequencialmente um-a-um* ou em *pequenos grupos* chamados de mini-batches (ou mini-lotes).
- Cada iteração de treinamento é rápida possibilitando que o sistema aprenda sobre novos dados à medida que eles chegam.
- Ótima opção para casos onde os dados chegam como um fluxo contínuo ou se tem recursos computacionais limitados.
- Entretanto, como não há pré-processamento/análise, dados corrompidos ou com problemas afetam a performance do sistema.

Treinamento em batelada

- Neste tipo de treinamento, o algoritmo é treinado com todos os exemplos disponíveis.
- É um tipo de treinamento simples, de fácil implementação e obtém ótimos resultados.
- Dados podem ser pré-processados/analisados, evitando assim, dados corrompidos ou com problemas.
- O treinamento é demorado e utiliza muitos recursos computacionais (e.g., CPU, memória) quando comparado ao treinamento incremental.
- Para treinar com novos exemplos é necessário iniciar o treinamento do zero.
- Se a quantidade de dados do conjunto de treinamento for muito grande pode ser impossível treinar em batelada.

Executando códigos na nuvem

- Durante o curso, usaremos *Python* como linguagem de programação.
- Utilizaremos *notebooks Jupyter* para programar.
 - Eles são documentos virtuais usados para criar e compartilhar código juntamente com equações, gráficos e texto.
 - Notebooks permitem uma maneira interativa de programar e documentar o código.
- Para executar estes notebooks, utilizaremos o Binder ou Google Colaboratory, que são ambientes computacionais (i.e., servidores) interativos e gratuitos.
- Portanto, *vocês não precisam instalar nada*, apenas terem um navegador web e conexão com a internet.

Binder

- **Binder**: aplicação web gratuita que permite a criação e edição de *notebooks* em navegadores web.
- Suporta a execução de várias linguagens de programação: Python, C++, C#, PHP, Julia, R, etc.
- Algumas desvantagens do Jupyter são:
 - Poucos servidores disponíveis.
 - Depois de algum tempo inativo, a máquina virtual executando seu *notebook* se desconecta e você pode perder seu código.
- URL (através do Jupyter): https://jupyter.org/

Goolge Colaboratory (Colab)

- Colab: outra aplicação web gratuita, baseada no Jupyter, que permite a criação e edição de notebooks em navegadores web.
- É um produto da Google.
- Por hora, suporta apenas a execução de códigos escritos em Python.
- Vantagens sobre o Jupyter:
 - Maior número de servidores.
 - Inicialização e processamento do código mais rápidos.
 - Fornece GPUs e TPUs gratuitamente.
 - Compartilhamento de notebooks entre usários é mais fácil.
 - Notebooks podem ser salvos no seu Google Drive, evitando que você perca seu código.
- URL: https://colab.research.google.com/

Exemplos de uso dos notebooks com Binder e Colab

Histograma

```
import numpy as np
import matplotlib.pyplot as plt
np.random.seed(42) # Reseta o gerador PN.
N = 1000000 # Número de exemplos.
x = np.random.rand(N,1) # vetor coluna x, com dimensão Nx1.
w = np.sqrt(0.01)*np.random.randn(N,1) # vetor coluna w, com dimensão Nx1.
y = 1 + 2*x # Função original ou verdadeira.
y noisy = y + w # Versão ruidosa de y.
plt.plot(x, y noisy, '.b', label='Função ruidosa')
plt.plot(x, y, 'k', label='Função original')
plt.xlabel('x', fontsize=14)
plt.ylabel('y', fontsize=14)
plt.legend()
plt.show()
# histograma (pdf)
plt.subplot(1, 2, 1)
plt.title('PDF')
plt.hist(y noisy, bins=100, density=True, color='b')
# CDF empírica
plt.subplot(1, 2, 2)
plt.title('CDF')
plt.hist(y noisy, bins=100, density=True, color='g', cumulative=True)
plt.savefig('histogram.png') # salva figura em arquivo
```

Exemplo (binder): Histograma.ipynb

Exemplo (colab): Histograma.ipynb

Figura 3D

import matplotlib.pyplot as plt
facilita visualizacao de figuras 3D
from mpl_toolkits.mplot3d import axes3d # graficos 3D sao habilitados importando axes3d

para figuras interativas usar "notebook" ao inves de "inline" %matplotlib notebook

ax = plt.subplot(111, projection='3d')
X, Y, Z = axes3d.get_test_data (0.1)
ax.plot_wireframe(X, Y, Z)

salva figura em arquivo plt.savefig('figura3d.png')

Exemplo (binder): Figura_3D.ipynb

Ajuste de curva com Redes Neurais

```
from sklearn.neural network import MLPRegressor # importa classe MLPRegressor do modulo neural network
%matplotlib inline
x = np.arange(-10, 10, 0.1)
# dados originais
y = 12 + 3 * np.exp(-0.05*x) + 1.4 * np.sin(1.2*x) + 2.1 * np.sin(-2.2*x + 3)
# faz com que o gerador de numeros aleatorios sempre forneca os mesmos valores
np.random.seed(42)
# adicionando ruido aos dados originais
y_noise = y + np.random.normal(0, 0.5, size = len(y))
# trata o ajuste de curva como um problema de regressao e treina um modelo para que se ajuste aos dados.
mlp = MLPRegressor(hidden_layer_sizes=(50,25,10), max_iter=10000, solver='lbfgs', alpha=0.9, activation='tanh')
yfit = mlp.fit(x[:, None], y noise).predict(x[:, None])
plt.figure()
plt.plot(x, y_noise, 'o', label = 'dado original + ruido')
plt.plot(x, y, 'k', label = 'dado original')
plt.plot(x, yfit, '-r', label = 'curva ajustada com MLP', zorder = 10)
plt.legend()
plt.xlabel('X')
plt.ylabel('y')
# salva figura em arquivo
plt.savefig('mlp regression.png')
```

import numpy as np

import matplotlib.pyplot as plt

Exemplo (binder): Ajuste de curva com Redes Neurais.ipynb

Exemplo (colab): Ajuste de curva com Redes Neurais.ipynb

Referências

- [1] Stuart Russell and Peter Norvig, "Artificial Intelligence: A Modern Approach," Prentice Hall Series in Artificial Intelligence, 3rd ed., 2015.
- [2] Aurélien Géron, "Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems", 1st ed., O'Reilly Media, 2017.
- [3] Joseph Misiti, "Awesome Machine-Learning," on-line data base with several free and/or open-source books (https://github.com/josephmisiti/awesome-machine-learning).
- [4] Andriy Burkov, "The Hundred-Page Machine-Learning Book," Andriy Burkov 2019.
- [5] C. M. Bishop, "Pattern Recognition and Machine Learning," Springer, 1st ed., 2006.
- [6] S. Haykin, "Neural Networks and Learning Machines," Prentice Hall, 3ª ed., 2008.
- [7] Coleção de livros,

https://drive.google.com/drive/folders/1lyIIMu1w6POBhrVnw11yqXXy6BjC439j?usp=s haring

Avisos

- Entregas de exercícios devem ser feitas no MS Teams.
 - Se atentem às datas/horários de entrega no MS Teams.
- Todo material do curso será disponibilizado no MS Teams e no GitHub:
 - https://github.com/zz4fap/t319 aprendizado de maquina
- Horário de Atendimento
 - Professor: Segundas-feiras das 18:30 às 19:30 e Quartas-feiras das 15:30 às 16:30 via MS Teams.
 - Monitora (Bruna): Todas as Quintas-feiras das 17:30 às 18:30.

Tarefas

- Quiz: "T319 Quiz Introdução" que se encontra no MS Teams.
- Exercício Prático: Laboratório #1.
 - Pode ser baixado do MS Teams ou do GitHub.
 - Pode ser respondido através do link acima (na nuvem) ou localmente.
 - Instruções para resolução e entrega dos laboratórios.
 - Laboratórios podem ser feitos em grupo, mas as entregas devem ser individuais.

Obrigado!

Inteligência Artificial

Programas que podem sentir, raciocinar, agir, aprender e se adaptar como humanos

Aprendizado de Máquina

Algoritmos que permitem que uma máquina aprenda automaticamente sem ser explicitamente programada

Redes Neurais Artificiais

Multilayer perceptron, Convolutional, Recursive Networks, etc.

