

5. \\和\都满足结合律。即

$$(a \lor b) \lor c = a \lor (b \lor c), \quad (a \land b) \land c = a \land (b \land c)$$

证明:由最小上界的定义有

$$(a \lor b) \lor c \ge a \lor b \ge a \quad (1) \quad (a \lor b) \lor c \ge a \lor b \ge b \quad (2)$$
$$(a \lor b) \lor c \ge c \quad (3)$$

由式(2)和(3)有 $(a \lor b) \lor c \geq b \lor c$ (4)

由式(1)和(4)有 $(a \lor b) \lor c \geq a \lor (b \lor c)$

同理可证 $(a \lor b) \lor c \leq a \lor (b \lor c)$

根据反对称性 $(a \lor b) \lor c = a \lor (b \lor c)$

由对偶原理 $(a \land b) \land c = a \land (b \land c)$

6. \vee 和 \wedge 都满足吸收律。即 $a \vee (a \wedge b) = a$, $a \wedge (a \vee b) = a$

证明: 显然 $a \lor (a \land b) \ge a$

由 $a \leq a$, $a \wedge b \leq a$, 可得 $a \vee (a \wedge b) \leq a$

由此可得 $a \lor (a \land b) = a$; 根据对偶原理, $a \land (a \lor b) = a$

7. <A, \lor , \land >是代数系统,如果 \lor 和 \land 是满足吸收律的二元运算,则 \lor 和 \land 必满足幂等律。

证明: 任取 $a, b \in A$ 由于 \bigvee 和 \bigwedge 满足吸收律,则有 $a\bigvee(a\bigwedge b)=a$ -----(1) $a\bigwedge(a\bigvee b)=a$ -----(2)

由于上式中的b是任意的,可以令 $b=a\lor b$ 代入(1)式得 $a\lor (a\land (a\lor b))=a$,由(2)式得 $a\lor a=a$ 。

同理可证 $a \land a = a$

