Characteristic polynomials, eigenvalues and eigenvectors

TOTAL POINTS 10

1.Question 1

Given a matrix [[a b], [c d]], recall that one can calculate its eigenvalues by solving the characteristic polynomial $\lambda^2 - (a+d)\lambda + (ad-bc) = 0$. In this quiz, you will practice calculating and solving the characteristic polynomial to find the eigenvalues of simple matrices.

For the matrix $A=[[1\ 0], [0\ 2]]$, what is the characteristic polynomial, and the solutions to the characteristic polynomial?

1 / 1 point

$$^{\circ}$$
 $\lambda^{2}-3\lambda+2=0$

$$\lambda 1 = 1, \lambda 2 = 2$$

$$^{\circ}$$
 $\lambda^{2}-3\lambda-2=0$

$$\lambda 1 = 1, \lambda 2 = -2$$

$$\lambda^2+3\lambda+2=0$$

$$\lambda 1 = -1, \lambda 2 = -2$$

$$\lambda^2+3\lambda-2=0$$

$$\lambda 1 = -1, \lambda 2 = 2$$

2.Question 2

Recall that for a matrix AA, the eigenvectors of the matrix are vectors for which applying the matrix transformation is the same as scaling by some constant.

For $A=[[1\ 0],\ [0\ 2]]$ as immediately above, select all eigenvectors of this matrix.

1/1 point

3.Question 3

For the matrix A=[[3 4], [0 5]], what is the characteristic polynomial, and the solutions to the characteristic polynomial?

1 / 1 point

$$^{\circ}$$
 $\lambda^{4} = -8\lambda - 15 = 0$

$$\lambda 1 = -3, \lambda 2 = 5$$

$$^{\circ}$$
 $\lambda^{4}2+8\lambda-15=0$

$$\lambda 1 = 3, \lambda 2 = -5$$

$$^{\circ}$$
 $\lambda^{^{2}+8\lambda+15=0}$

$$\lambda 1 = -3, \lambda 2 = -5$$

•
$$\lambda^{2}-8\lambda+15=0$$

$$\lambda 1 = 3, \lambda 2 = 5$$

4.Question 4

For the matrix $A=[[3\ 4], [0\ 5]]$ as immediately above, select all eigenvectors of this matrix.

1 / 1 point

5.Question 5

For the matrix $A=[[1\ 0], [-1\ 4]]$, what is the characteristic polynomial, and the solutions to the characteristic polynomial?

1 / 1 point

$$\delta$$
 $\lambda^2 - 5\lambda + 4 = 0$

$$\lambda 1 = 1, \lambda 2 = 4$$

$$\lambda^2+5\lambda+4=0$$

$$\lambda 1 = -1, \lambda 2 = -4$$

$$\lambda^2+5\lambda-4=0$$

$$\lambda 1=1, \lambda 2=-4$$

$$^{\circ}$$
 λ^{4} 2-5 λ -4=0

$$\lambda 1 = -1, \lambda 2 = 4$$

6.Question 6

For the matrix $A=[[1\ 0], [-1\ 4]]$ as immediately above, select all eigenvectors of this matrix.

1 / 1 point

- □ [3 2]
- □ [3 -1]
- **☑** [3 1]
- [0 1]

7.Question 7

For the matrix $A=[[-3\ 8], [2\ 3]]$, what is the characteristic polynomial, and the solutions to the characteristic polynomial?

1 / 1 point

$$^{\circ}$$
 $\lambda^{2}-25=0$

$$\lambda 1=\lambda 2=5$$

$$^{\circ}$$
 $\lambda^{^{2}+25=0}$

$$\lambda 1 = -5, \lambda 2 = 5$$

$$\lambda 1 = -5, \lambda 2 = 5$$

8. Question 8

For the matrix $A=[[-3\ 8], [2\ 3]]$ as immediately above, select all eigenvectors of this matrix.

1 / 1 point

9.Question 9

For the matrix $A=[[5\ 4], [-4\ -3]]$, what is the characteristic polynomial, and the solutions to the characteristic polynomial?

1 / 1 point

$$^{\bullet}$$
 $\lambda^{2}-2\lambda+1=0$

 $\lambda 1 = \lambda 2 = 1$

$$\lambda^2-2\lambda+1=0$$

 $\lambda 1 = \lambda 2 = -1$

$$^{\circ}$$
 $\lambda^{2}-2\lambda+1=0$

 $\lambda 1 = -1, \lambda 2 = 1$

$$\lambda^2-2\lambda+1=0$$

No real solutions.

10.Question 10

For the matrix $A=[[-2 \ -3], [1 \ 1]]$, what is the characteristic polynomial, and the solutions to the characteristic polynomial?

1 / 1 point

$$^{\circ}$$
 $\lambda^{2}-\lambda+1=0$

No real solutions.

$$\lambda^2+\lambda+1=0$$

No real solutions.

 $\lambda 1 = (1 - \text{sqrt}(5))/2, \lambda 2 = (1 + \text{sqrt}(5))/2$

$$^{\circ}$$
 $\lambda^{\wedge}2+\lambda-1=0$

 $\lambda 1 = (-\text{sqrt}(5)-1)/2, \lambda 2 = (\text{sqrt}(5)-1)/2$