Complex Numbers

Paolo Bettelini

Contents

1	Ima	ginary unit
	1.1	Definition
	1.2	Properties
2	Con	mplex Numbers
	2.1	Definition
	2.2	Complex plane
	2.3	Operations
		2.3.1 Addition
		2.3.2 Subtraction
		2.3.3 Multiplication
		2.3.4 Division
		2.3.5 Real part
		2.3.6 Imaginary part
		2.3.7 Absolute value
		2.3.8 Conjugate
		2.3.9 Argument
		2.3.10 Axiomatic definition
	2.4	Trigonometric form
	2.5	Vector form
	2.6	Complex conjugate coordinates

1 Imaginary unit

1.1 Definition

The imaginary unit or imaginary number i is a solution to the quadratic equation $x^2 = -1$ and is defined as

$$i^2 = -1$$

The equation $x^2 = -1$ has two solutions: i and -i, however, there is not any algebraic difference between these two solutions.

1.2 Properties

The imaginary number i has some amazing properties when it comes to exponentiation.

$$\begin{cases} i^{0} = +1 \\ i^{1} = +i \\ i^{2} = -1 \\ i^{3} = -i \end{cases} \begin{cases} i^{4} = +1 \\ i^{5} = +i \\ i^{6} = -1 \\ i^{7} = -i \end{cases} \dots$$

The multiplicative inverse of i is -i.

$$\frac{1}{i} = \frac{1}{i} \cdot \frac{i}{i} = \frac{i}{i^2} = -i$$

2 Complex Numbers

2.1 Definition

Complex numbers are numbers in the form a+bi, where $a,b\in\mathbb{R}$ and i is the imaginary unit. This set of numbers is called \mathbb{C} .

Since every number $n \in \mathbb{R}$ can be represented as a complex number in the form n + 0i, $\mathbb{R} \subset \mathbb{C}$.

2.2 Complex plane

We can represent each complex number on a plane (Argand plane), where the horizontal axis represent the real numbers \mathbb{R} and the vertical axis represents every scalar multiple of the imaginary unit i.

2.3 Operations

2.3.1 Addition

$$(a + bi) + (c + di) = a + bi + c + di = (a + c) + (b + d)i$$

2.3.2 Subtraction

$$(a+bi) - (c+di) = a+bi-c-di = (a-c)+(b-d)i$$

2.3.3 Multiplication

$$(a+bi)(c+di) = ac + adi + bci + bdi^{2} = (ac - db) + (ad + bc)i$$

2.3.4 Division

$$\frac{a+bi}{c+di} = \frac{a+bi}{c+di} \cdot \frac{c-di}{c-di} = \frac{ac-adi+bci-bdi^2}{c^2-d^2i^2}$$
$$= \frac{ac+bd+(bc-ad)i}{c^2+d^2}$$
$$= \frac{ac+bd}{c^2+d^2} + \frac{bc-ad}{c^2+d^2}i$$

2.3.5 Real part

The real part of a complex number s is denoted as Re(s) or $\Re(s)$.

$$Re(a + bi) = a$$

2.3.6 Imaginary part

The imaginary part of a complex number s is denoted as Im(s) or $\Im(s)$.

$$Im(a + bi) = b$$

2.3.7 Absolute value

The absolute value (or module) of a complex number is its distance from the origin.

$$|a+bi| = \sqrt{a^2 + b^2}$$

2.3.8 Conjugate

The complex conjugate of a number s = a + bi is denoted as s^* or \bar{s} . It is defined as

$$\overline{a+bi} = a-bi$$

Geometrically, s^* is the reflection about the real axis in the complex plane.

We also have the following trivial properties.

$$\overline{\overline{s}} = s$$

$$Re(\overline{s}) = Re(s)$$

$$Im(\overline{s}) = -Im(s)$$

2.3.9 Argument

The argument of a complex number is the angle formed with the x-axis in the complex plane

$$\arg(a+bi) = \arctan\left(\frac{b}{a}\right)$$

2.3.10 Axiomatic definition

A complex number is a tuple (a, b) where $a \in \mathbb{R}$ and $b \in \mathbb{R}$.

equality

$$(a,b) = (c,d) \implies a = c \land b = d$$

Addition

$$(a,b) + (c,d) = (a+c,b+d)$$

Multiplication

$$(a,b) \cdot (c,d) = (ac - db, ad + bc)$$
$$m(a,b) = (ma, mb)$$

If $z_1, z_2, z_3 \in \mathbb{C}$.

- 1. $z_1 + z_2$ and $z_1 z_2$ are also in \mathbb{C}
- 2. $z_1 + z_2 = z_2 + z_1$
- 3. $z_1 + (z_2 + z_3) = (z_1 + z_2) + z_3$
- 4. $z_1 z_2 = z_2 z_1$
- 5. $z_1(z_2z-3) = (z_1z_2)z_3$
- 6. $z_1(z_2+z_3)=z_1z_2+z_1z_3$
- 7. $z_1 + 0 = z_1$
- 8. $z_1 \cdot 1 = z_1$
- 9. $\exists !z \mid z+z_1=0$
- 10. $\exists !z \mid z \cdot z_1 = 1$

2.4 Trigonometric form

Any complex number can be represented in a trigonometric form

$$a + bi = r(\cos\theta + i\sin\theta)$$

where r is the absolute value and θ is the argument.

2.5 Vector form

Any complex number a + bi can be represented by a vector (a, b).

Scalar product The scalar product between $z_1 = a + bi$ and $z_2 = c + di$ is given by

$$z_1 \circ z_2 = |z_1| |z_2| \cos \theta = ac + bd = \Re(z_1^* z_2) = \frac{1}{2} (z_1^* z_2 + z_1 z_2^*)$$

where θ is the angle formed by the two vectors.

Vector product The vector product between $z_1 = a + bi$ and $z_2 = c + di$ is given by

$$z_1 \times z_2 = |z_1| |z_2| \sin \theta = ad - cb = \Im(z_1^* z_2) = \frac{1}{2i} (z_1^* z_2 + z_1 z_2^*)$$

where θ is the angle formed by the two vectors.

We can see that

$$z_1^* z_2 = (z_1 \circ z_2) + i(z_1 \times z_2)$$

2.6 Complex conjugate coordinates

Since for any complex number z = a + bi

$$a = \frac{1}{2}(z + z^*)$$
$$b = \frac{1}{2i}(z - z^*)$$

z can also be represented by the conjugate coordinates (z, z^*) .