

AD-A051 771

COLD REGIONS RESEARCH AND ENGINEERING LAB HANOVER N H F/G 13/2
FREEZE-THAW TESTS OF LIQUID DEICING CHEMICALS ON SELECTED PAVEM--ETC(U)
NOV 77 L D MINSK

CRREL-77-28

UNCLASSIFIED

NL

| DF |
AD
A051771

END
DATE
FILED
4-78
DDC

CRREL
REPORT 77-28

AD A 051 771 Freeze-thaw tests of liquid deicing
chemicals on selected pavement materials

(1)

AD No. _____
DDC FILE COPY

*Cover: Extreme deterioration (spalling) of concrete bridge in high road salt usage area — U.S.
Route 5, Norwich, Vermont. (Photograph by Peter Sector.)*

CRREL Report 77-28

Freeze-thaw tests of liquid deicing chemicals on selected pavement materials

L. David Minsk

November 1977

Prepared for
U.S. AIR FORCE CIVIL ENGINEERING CENTER
By
CORPS OF ENGINEERS, U.S. ARMY
COLD REGIONS RESEARCH AND ENGINEERING LABORATORY
HANOVER, NEW HAMPSHIRE

Approved for public release; distribution unlimited.

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM	
1. REPORT NUMBER CRREL Report 77-28	2. GOVT ACCESSION NO. (14) CRREL-77-28	3. RECIPIENT'S CATALOG NUMBER	
4. TITLE (and Subtitle) FREEZE-THAW TESTS OF LIQUID DEICING CHEMICALS ON SELECTED PAVEMENT MATERIALS	5. TYPE OF REPORT & PERIOD COVERED		
6. AUTHOR(s) L. David Minsk	7. CONTRACT OR GRANT NUMBER(s)		
8. PERFORMING ORGANIZATION NAME AND ADDRESS U.S. Army Cold Regions Research and Engineering Laboratory Hanover, New Hampshire 03755	9. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS AFCEC Project IE 2-72-1		
10. CONTROLLING OFFICE NAME AND ADDRESS U.S. Air Force Civil Engineering Center Tyndall Air Force Base, Florida	11. REPORT DATE (11) Nov 1977	12. NUMBER OF PAGES (12) 21	13. SECURITY CLASS. (or this report) Unclassified
14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)	15. DECLASSIFICATION/DOWNGRADING SCHEDULE		
16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited.			
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)			
18. SUPPLEMENTARY NOTES			
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Concrete Deicing materials Freezing Runways Thawing			
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) Tests were conducted to assess the extent of surface degradation resulting from the application of non-chloride deicing chemicals on three types of airfield pavements. The chemicals tested were proprietary mixtures of urea, formamide, and ethylene glycol; sodium chloride, distilled water, and dry specimens were used as controls and for comparison. Pavements included new and old specimens of open-graded asphaltic concrete and old specimens of dense-graded asphaltic concrete. Portland cement concrete specimens used were new and old, with and without air-entrainment. New and old tar rubber concrete specimens were also tested. Samples were subjected to up to 60 freeze-thaw cycles with deicing chemicals flooding their upper surface. Each specimen was rated on a scale of 0-5 after every five freeze-thaw cycles. All PCC specimens showed some surface degradation, whereas the dense- and over			

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20. Abstract (cont'd)

open-graded asphaltic concretes were largely unaffected.

ACCESSION for		
NTIS	White Section <input checked="" type="checkbox"/>	
DDC	Buff Section <input type="checkbox"/>	
UNANNOUNCED	<input type="checkbox"/>	
JUSTIFICATION _____		
BY _____		
DISTRIBUTION/AVAILABILITY CODES		
Dist. AVAIL. and/or SPECIAL		
A		-

Unclassified

PREFACE

This report was prepared by L. David Minsk, Research Physical Scientist, of the Applied Research Branch, Experimental Engineering Division, U.S. Army Cold Regions Research and Engineering Laboratory. Funding for this research was provided by U.S. Air Force Civil Engineering Center Project IE 2-72-1.

Technical reviewers of the manuscript of this report were J.M. Sayward and Dr. R.L. Berg of CRREL.

Assisting with the laboratory work was Alan Zenkel. Specimens were obtained from existing pavements by Elwood Wells, Darryl Calkins, and Alan Zenkel.

The contents of this report are not to be used for advertising or promotional purposes. Citation of brand names does not constitute an official endorsement or approval of the use of such commercial products.

CONTENTS

	Page
Abstract	i
Preface	iii
Conversion factors: U.S. customary to metric (SI) units of measurement	v
Introduction	1
Test procedure	1
Pavement types	3
Deicing chemicals	3
Description of tests	5
Discussion	5
Literature cited	8
Appendix A: Test results	9
Appendix B: Portland cement concrete materials data	13

ILLUSTRATIONS

Figure

1. Typical photographs of PCC samples before testing and after 60 freeze-thaw cycles	2
2. Movable rack	3
3. Terminal surface condition ratings of old and new air-entrained and non-air-entrained PCC specimens	7
4. Abrasion apparatus.....	7
5. Cumulative loss from air-entrained PCC specimens by abrasion.....	8

TABLES

Table

I. Visual rating scheme for scaling resistance	1
II. Materials tested	3
III. Summary of PCC observations	4
IV. Abrasion test	7

**CONVERSION FACTORS: U.S. CUSTOMARY TO METRIC (SI)
UNITS OF MEASUREMENTS**

These conversion factors include all the significant digits given in the conversion tables in the ASTM *Metric Practice Guide* (E 380), which has been approved for use by the Department of Defense. Converted values should be rounded to have the same precision as the original (see E 380).

<i>Multiply</i>	<i>By</i>	<i>To obtain</i>
inch	25.4*	millimeter
foot	0.3048*	meter
foot ²	0.09290304*	meter ²
pound-mass	0.4535924	kilogram
pound-force/inch ²	6.894757	kilopascal
gallon	0.003785412	meter ³
degrees Fahrenheit	$t_{\circ C} = (t_{\circ F} - 32)/1.8$	degrees Celsius

* Exact

FREEZE-THAW TESTS OF LIQUID DEICING CHEMICALS ON SELECTED PAVEMENT MATERIALS

L. David Minsk

INTRODUCTION

Evidence that the common deicing chemicals, sodium chloride and calcium chloride, can cause surface deterioration of portland cement concrete (PCC) is well documented¹⁻⁷ (see cover). Less well demonstrated, however, is the effect of nonchloride deicing chemicals, particularly liquid chemicals, on the surface quality of both portland cement concretes and bituminous concretes. Evidence has been presented by Snyder⁶ and Verbeck and Klieger⁷ that scaling of the surface of PCC is primarily due to physical rather than chemical causes, resulting from the concentration gradient of the chemical which reverses the normal process of freezing from the outside in. However, liquids containing propylene glycol, ethylene glycol, urea, and formamide have been introduced as ice control chemicals on airfield runways to avoid the high corrosion rates on aircraft structural materials caused by chlorides, and the effects of many of these organic chemicals on pavements over a long period of time are unknown. The only previous investigation of any organic chemical was by Verbeck and Klieger⁷ who included urea and ethyl alcohol along with sodium and calcium chlorides in their tests on scaling of PCC. It was the similar scaling of the PCC with both non-chloride and chloride chemicals that led them to conclude that the degradation mechanism was identical for both, and that low concentrations of chemicals (on the order of 2-4% by weight) caused the greatest scaling.

Several proprietary liquid chemicals containing organic compounds have been developed in the United States for use on airfield runways, some of which have been used on U.S. Air Force installations. The U.S. Air Force Civil Engineering Center, Tyndall AFB, Florida, requested CRREL to perform accelerated freeze-thaw tests using a number of these liquid

deicing chemicals on typical new and old airfield runway pavements. This work was conducted in two test series between July 1972 and June 1973.

TEST PROCEDURE

The test procedure followed ASTM C 672-71T "Tentative method of test for scaling resistance of concrete surfaces to deicing chemicals" with some modifications. This method calls for 12- x 12- x 3-in. specimens; in this study specimens were either 6 x 8 x 3 in. or 6 x 10½ x 3 in. Specimens were covered with approximately ¼ in. of chemical solution held in place by wooden dikes sealed with General Electric RTV102 silicone rubber, then placed in a coldroom at 0°F for 16 hours, followed by thawing in the warm laboratory at 70°F for 8 hours. This cycle was repeated daily including weekends. At the end of every five freeze-thaw cycles, the deicing chemicals were poured off. The surface was rinsed first with tap water, then with distilled water, and the condition of the specimens was visually graded on a scale of 0-5, as shown in Table I. Distilled water was added as necessary to maintain the solution level at a depth of about ¼ in.

Table I. Visual rating scheme for scaling resistance.

<i>Rating</i>	<i>Surface condition</i>
0	No scaling
1	Very slight scaling (1/16-in. maximum depth, no coarse aggregate visible)
2	Slight to moderate scaling
3	Moderate scaling (some coarse aggregate visible)
4	Moderate to severe scaling
5	Severe scaling (coarse aggregate visible over entire surface)

Figure 1. Typical photographs of PCC samples before testing and after 60 freeze-thaw cycles.

Figure 2. Movable rack. Specimens were moved in and out of coldroom in this way.

Photographs were taken of all specimens prior to covering them with the deicing chemicals, then midway through the test sequence (after 30 freeze-thaw cycles) and at the conclusion of the test. In those cases where the test had to be terminated prior to 60 cycles because of extreme deterioration, photographs were made at the time of termination. A typical photograph is shown in Figure 1. Figure 2 shows the rack used to hold and move the specimens in and out of the coldroom.

PAVEMENT TYPES

Tests were made on the materials listed in Table II. New portland cement concrete specimens were molded by the New England Division of the Corps of Engineers using an airfield mix design. Details on the aggregates, cement, mix design, curing and strength are given in Appendix B. Old PCC specimens were cut from runways at Wright-Patterson AFB, Ohio, but no history or mix design was available. Both new and old asphaltic concrete and tar rubber concrete specimens were furnished by the Air Force, again without any design or use history. The old porous friction asphalt specimens were cut from the runway at Pease AFB, New Hampshire. The dimensions of the specimens

provided by the Air Force were $6 \times 10\frac{1}{2} \times 3$ in. Two replicates were used for each pavement/chemical combination.

Table II. Materials tested.

	<i>New</i>	<i>Old</i>
Air-entrained portland cement concrete	X	X
Non-air-entrained portland cement concrete	X	X
Dense-graded asphaltic concrete	X	X
Open-graded asphaltic concrete		X
Tar rubber concrete	X	X

DEICING CHEMICALS

Four proprietary liquid deicing chemicals and an Air Force deicing fluid were tested at concentrations specified by the Air Force on the basis of manufacturers' recommendations. These application rates are stated as spread rates: 1 gallon of undiluted deicing fluid per 1000 ft^2 and 2 gallons of deicing fluid per 1000 ft^2 (chosen according to ice thickness and temperature). These quantities were insufficient to cover the

Table III. Summary of PCC observations.

Chemical name	Symbol	Composition (principal constituents)	pH	Manufacturer	Concentration (gal./1000 ft ²) (vol. %)	Type	Age	Series	Rating after 60 cycles	Cycles when surface rating reached			Average weight change (g/cm ²) (%)	
										1	2	5		
AF deicing fluid (MIL-A-8243B)	AF	Ethylene glycol-propylene glycol	1.7	non-air	1	old	1	1	25				+0.027 +0.16	
						new	1	5	M 20 35				-0.69 -3.5	
					2	air	old	1	1				+0.006 +0.03	
						new	1	1	M				+0.043 +0.22	
						non-air	old	1	1				+0.065 +0.34	
						new	1	5	25				-1.66 -8.4	
						air	old	1	1				+0.032 +0.15	
						new	1	0	M 30 35				+0.069 +0.37	
MCS 1082	MCS	Urea-formamide	7.6	Monsanto Co.	1	non-air	old	1	2	25	50	20	+0.053 +0.31	
						new	1	5		-0.70 -3.5	+0.018 +0.10			
					2	air	old	1	1				-0.016 -0.085	
						new	1	2	20 25				+0.058 +0.34	
						non-air	old	1	1				-1.17 -5.9	
						new	1	5	M M 20				+0.005 +0.03	
						air	old	1	1				+0.028 +0.15	
UCAR runway deicer (PM-5197)	UCAR	Ethylene glycol-urea	9.1	Union Carbide Corp.	1	non-air	old	2	3	25	35	30	-0.57 -4.1	
						new	2	5	5 10 30	-0.51 -2.4				
					2	air	old	2	1				+0.076 +0.56	
						new	2	1	35				+0.10 +0.51	
						non-air	old	2	3				-0.38 -2.8	
						new	2	3	5 15				-0.032 -0.16	
						air	old	2	1				+0.13 +1.0	
						new	2	1	35				+0.24 +1.2	
NC 2207.1	NC	Propylene glycol	7.9	Dow Chemical Co.	1	non-air	old	2	3	20	35	20	-0.23 -1.7	
						new	2	4	5 20	-0.18 -0.87				
					2	air	old	2	1				+0.11 +0.40	
						new	2	1	35				+0.14 +0.65	
						non-air	old	2	4	25	35	50	-1.21 -8.0	
						new	2	4	5 20	-0.32 -1.6				
						air	old	2	1				+0.10 +0.74	
						new	2	1	35				+0.24 +1.2	
ISOLV	ISO	Urea-formamide	6.8	Kaiser Agricultural Chemicals, Inc.	1	non-air	old	2	3	25	30	40	-0.23 -1.5	
						new	2	5	5 15 40	-0.63 -3.0				
					2	air	old	2	1				+0.071 +0.51	
						new	2	2	40				+0.075 +0.36	
						non-air	old	2	5	25	35	50	-0.070 -4.6	
						new	2	5	5 10 45	-0.51 -2.4				
						air	old	2	1				+0.16 +1.1	
						new	2	2	30				+0.13 +0.62	
Ethylene glycol	EG	(reagent grade, L715)		J.T. Baker Co.	2	3.4	non-air	new	1	5	M 20 35	35	-2.0 -6.7	
						air	new	1	1	M	M		-0.016 -0.07	
Sodium chloride	SC	(reagent grade, S-271)		Fisher Scientific Co.	0.48 wt % (0.083 molal)		non-air	new	1	5	M M 35	35	-1.5 -5.6	
						air	new	1	1	M	M		+0.023 +0.09	
Dry control						non-air	old	2	0			0	-0.032 -0.15	
						new	2	0			-0.01 -0.04			
						air	old	2	0			-0.058 -0.35		
						new	2	0			+0.019 +0.08			
Distilled water						non-air	new	1	0			0	-0.17 -0.60	
						air	new	1	0				-0.019 -0.076	
						non-air	old	2	0				-0.007 -0.086	
						new	2	0					-0.18 +0.66	
						air	old	2	0				+0.074 +0.34	
						new	2	0					+0.18 +0.68	

specimens to the desired $\frac{1}{4}$ -in. depth (the application rate for 2 gal./1000 ft² works out to a depth of about 0.003 in.). Furthermore, merely placing twice as much undiluted fluid on the specimens would not change the concentration (concentration is an intensive variable). The assumption was made, therefore, that the deicing chemicals would be applied on a film of ice about $\frac{1}{16}$ in. thick with a water equivalent of 39 gal./1000 ft². The Air Force deicing fluid is normally diluted before spreading at the rate of 7 parts fluid to 3 parts water, so the test concentration was adjusted accordingly. In addition to these liquid deicing chemical mixtures, laboratory grade ethylene glycol and sodium chloride were also tested on some of the specimens. Concentration of the sodium chloride was based on an application rate of 400 lb of dry chemical per 2-lane (24-ft-wide) mile of highway covered with $\frac{1}{8}$ in. of ice. Controls were either dry specimens or specimens covered with distilled water.

Table III lists the chemicals used, their compositions and concentrations. The formulation of the proprietary chemicals is unknown, and neither molecular weight nor freezing point was determined.

DESCRIPTION OF TESTS

Two test series were run; thus, variability results from the different origins of the old pavement specimens and the different cements and aggregates used in molding the new PCC specimens. The first series consisted of tests on Air Force deicing fluid, Monsanto MCS 1082, laboratory grade ethylene glycol, sodium chloride, distilled water and a dry control. (The ethylene glycol, NaCl and distilled water were tested only on new PCC specimens since insufficient old specimens had been provided.) The second series was run on Union Carbide UCAR, Dow NC 2207.1, and Kaiser ISOLV, with distilled water and dry controls for all pavement types. A summary of the visual observations and weight changes for the PCC specimens is included in Table III. Table A1 is the complete listing of observations including the replicates; only averages of the surface ratings and weight changes are given in Table III. Figure 3 shows the surface ratings of the PCC specimens for all chemicals.

It was recognized in designing the experiment that depression of the freezing point by chemical action is only one factor in the surface deterioration of a pavement, and that abrasion from a blade or a steel-bristle broom may contribute significantly to pavement wear. An apparatus was constructed (Fig. 4) to simulate in the laboratory the scraping action of a blade.

Specimens of new air-entrained PCC were mounted vertically in a movable carriage and pulled past a stationary blade 10 times after every five freeze-thaw cycles. Blade contact pressure was obtained by translating the load of a hanging weight to a horizontal force by a cable passing over a pulley. Materials lost during the wash-up following every five freeze-thaw cycles and the subsequent wet abrasion test were collected separately on a number 100 sieve, oven-dried, and weighed. Two sets of normal forces were applied to the blade: for the first 25 cycles (five abrasion tests) a 6- \times $\frac{1}{16}$ -in. aluminum blade was used with loads of 1 kg and 2 kg, giving contact pressures of 0.41 and 0.83 kgf/cm² (5.88 and 11.8 lbf/in.²), respectively. When it was observed that very little concrete wear was occurring although the aluminum blade was wearing excessively, a 6- \times $\frac{1}{8}$ -in. steel blade was substituted and the loads increased to 5 and 10 kg, giving contact pressures of 1.03 and 2.07 kgf/cm² (14.7 to 29.4 lbf/in.²), respectively. Two chemicals were used: UCAR (concentration 2/1000) and NaCl (the latter at only one force however).

The results are given in Table IV and Figure 5. The losses were very small, and surface condition ratings for all samples were 0 except for the last 10 cycles of the higher force UCAR specimens. Since losses did increase with higher blade contact pressure, abrasion is clearly a factor in surface degradation, though the degree of this influence has not been demonstrated by this test. However, abrasion should be considered seriously as an experimental parameter in any future tests.

DISCUSSION

Deterioration of the bituminous concrete specimens was insignificant; only an occasional piece of aggregate near the surface failed. Scaling of the portland cement concrete specimens was frequent with all chemicals used. The effects of age of sample and of air-entrainment were significant: old air-entrained specimens showed the least deterioration with the exception of one sample (new PCC exposed to AF deicing fluid at a concentration of 2/1000). Little effect was demonstrated by the concentrations of chemicals applied: in the low concentrations used, a factor of two in their levels was not significant.

A distinct odor of ammonia was detected during the rinsing of both urea-containing chemicals (Monsanto MCS 1082 and Kaiser ISOLV) from the PCC specimens. No such odor was detected with the asphaltic concrete specimens, suggesting that a

Figure 3. Terminal surface condition ratings of old and new air-entrained and non-air-entrained PCC specimens.

Figure 4. Abrasion apparatus.

Table IV. Abrasion test.
Weight loss (g) W - wash-up; A - abrasion S - Surface condition rating: 1-5

Force chemical	Cycle	Weight loss (g)										Wash-up				Surface condition rating				Totals										
		5 W	5 A	10 W	10 A	15 W	15 A	20 W	20 A	25 W	25 A	30 W	30 A	35 W	35 A	40 W	40 A	45 W	45 A	50 W	50 A	55 W	55 A	60 W	60 A	S	W	A	W+A	
1	UCAR	0.02	0.08	0.02	0.03	0.02	0.01	0.01	0.02	0.02	0.01	0.04	0.02	0.01	0.01	0.02	0.02	0.01	0.01	0.01	0.02	0.01	0.01	0.01	0.01	0.01	0.17	0.30	0.47	
	UCAR	0.02	0.11	0.01	0.04	0.02	0.01	0.01	0.01	0.02	0.01	0.05	0.01	0.02	0.01	0.01	0.02	0.01	0.01	0.02	0.01	0.01	0.02	0.01	0.01	0.16	0.32	0.48		
2	UCAR	0.02	.027	0.05	0.09	0.04	0.03	0.02	0.01	0.01	0.02	0.02	0.03	0.06	0.04	0.02	0.03	0.01	0.11	0.03	0.03	0.03	0.03	1	0.03	0.01	1	0.34	0.70	1.04
	UCAR	0.02	0.20	0.12	0.15	0.06	0.05	0.02	0.02	0.03	0.02	0.02	0.10	0.04	0.06	0.03	0.04	0.03	0.04	0.02	0.02	0.03	1	0.03	0.01	1	0.46	0.73	1.19	
NaCl	0.01	0.22	0.03	0.04	0.03	0.03	0.02	0.01	0.01	0	0.02	0.05	0.01	0.05	0.03	0.04	0.01	0.01	0.02	0.02	0	0.01	0.01	0.01	0.22	0.53	0.75			

Figure 5. Cumulative loss from air-entrained PCC specimens by abrasion.

chemical reaction occurred with the PCC. There was no correlation between strength of odor and degree of deterioration, however.

7. Verbeck, G.J. and P. Klieger (1957) Studies of salt scaling of concrete. Bulletin 150, Highway Research Board, Washington.

LITERATURE CITED

1. Bergstrom, S.G. (1959) Deterioration of concrete pavements due to salting in winter time. Swedish Cement and Concrete Institute, Royal Institute of Technology, Stockholm. Translation FSTC-HT-23-375-69, U.S. Army Foreign Science and Technology Center.
2. Boies, David B. and S. Bortz (1965) Economical and effective deicing agents for use on highway structures. National Cooperative Highway Research Program Report 19, Highway Research Board, Washington.
3. Malisch, W.R., D.A. Raecke, D.M. Fischer, J.L. Lott, T.W. Kennedy and C.E. Kesler (1966) Physical factors influencing resistance of concrete to deicing agents. National Cooperative Highway Research Program Report 27, Highway Research Board, Washington.
4. Pattengill, M.G. (1971) The deterioration of concrete and aggregate used in roadways and bridge decks. *Mineral Industries Bulletin*, vol. 14, p. 3, Colorado School of Mines Research Institute.
5. Portland Cement Association (1968) Design and control of concrete mixtures. 11th ed.
6. Snyder, M.J. (1965) Protective coatings to prevent deterioration of concrete by deicing chemicals. National Cooperative Highway Research Program Report 16, Highway Research Board, Washington.

APPENDIX A: TEST RESULTS

Table A1. Results of freeze-thaw cycling tests; double entries (separated by a comma) are the values for replicates.

Chemical	Concentration (gal / 1000 ft ²)	Pavement type	Age	Surface condition rating						Wt. Change g (%)
				15	20	25	30	35	CYCLE	
1/1000	PCC non-air-entrained	Old	0,0	0,0	1,1	1,1	1,1	1,1	1,1	+10(.16), +7(.15)
		New	M,M	1,2	1,2	2,2	5,5	5,5	5,5	-260(3.2), -302(3.8)
	PCC air-entrained	Old	0,0	0,0	0,0	0,1	0,1	0,1	0,1	-8(.15), +12(.21)
		New	M	1,1	1,1	1,1	1,1	1,1	1,1	+20(.26), +15(.19)
	Asphaltic concrete	Old	0,0							+4(.11), +11(.28)
		New	0,0							+8(.16), +10(.21)
	Tar rubber concrete	Old	0,0							+12(.33), -17(.53)
		New	0,0	0,0	0,0	0,0	1,0	1,0	1,0	+4 (.15), 0
AF deicing fluid	PCC non-air-entrained	Old	0,0	0,0	1,1	1,1	1,1	1,1	1,1	+21(.34), +18(.33)
		New	M,M	1,1	1,1	2,2	5,5	5,5	5,5	-984(12.3), -364(4.5)
	PCC air-entrained	Old	0,0	0,0	0,0	0,0	1,1	1,1	1,1	+7(.11), +12(.19)
		New	M	0,0						+28(.36), +28(.37)
	Asphaltic concrete	Old	0,0							+14(.35), +18(.44)
		New	0,0							+45(.88), +45(.90)
	Tar rubber concrete	Old	0,0							+2 (.06), +14 (.38)
		New	0,0							+5 (.18), +11 (.40)

Table A1 (cont'd). Results of freeze-thaw cycling tests; double entries (separated by a comma) are the values for replicates.

Chemical	Concentration (gal / 1000 ft ²)	Pavement Type	Age	Surface condition rating						Wt. Change g (%)	
				15	20	25	30	35	CYCLE 40	45	
1/1000	PCC non-air-entrained	Old	0,0	0,0	0,1	1,1	1,1	1,1	1,2	1,2	+26 (.49), +7 (.13)
		New	4,4	5,5	5,5	5,5	*	x	x	x	-294 (3.6), -277 (3.4)
	PCC air-entrained	Old	0,0	0,0	0,1	0,1	0,1	0,1	0,1	0,1	+3 (.05), +8 (.14)
		New	M	1,1	2,2	2,2	2,2	2,2	2,2	2,2	-5 (.06), -8 (.11)
	Asphaltic concrete	Old	0,0							0,0	+3 (.07), 0
		New	0,0							0,0	-5 (.10), -4 (.08)
	Tar rubber concrete	Old	0,0							0,0	+2 (.05), +4 (.11)
		New	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	0, -5 (.19)
	MCS 1082										
	PCC non-air-entrained	Old	0,0	0,0	0,0	1,1	1,1	1,1	1,1	1,1	+16 (.29), +20 (.39)
2/1000		New	4,4	5,5	5,5	5,5	*	x	x	x	-479 (5.9), -475 (5.8)
	PCC air-entrained	Old	0,0	0,0	0,0	1,1	1,1	1,1	1,1	1,1	-5 (.08), +8 (.14)
		New	M	1,1	1,1	1,1	1,1	2,2	2,2	2,2	+12 (-.15), +11 (.14)
	Asphaltic concrete	Old	0,0	0,0	0,0	1,1	1,1	1,1	1,1	1,1	-1 (-.02), +2 (.05)
		New	0,0							0,0	+4 (.08), +12 (.24)
	Tar rubber concrete	Old	0,0							0,0	+3 (.09), +4 (.12)
		New	1,0	1,0	1,0	1,0	1,1	1,1	1,1	1,1	+4 (.16), +2 (.07)
	PCC non-air-entrained	New	M	2	3	3	5	5	5	5*	-526 (6.7)
	PCC air-entrained	New	M	1	1	1	1	1	1	1	-5 (.07)
	PCC non-air-entrained	New	M	4	4	4	5	5	5	5	-457 (5.6)
Distilled water	PCC air-entrained	New	M	1	1	1	1	1	1	1	+7 (.09)
	PCC non-air-entrained	New	M	0						0	-53 (-.6)
	PCC air-entrained	New	M	0						0	-6 (.08)
	PCC non-air-entrained	Old	0							0	-10 (.15)
	PCC air-entrained	New	0							0	-3 (.04)
Dry Control	Asphaltic concrete	Old	0							0	-18 (-.35)
		New	0							0	+6 (.08)
	Tar rubber concrete	Old	0							0	-8 (.20)
		New	0							0	-5 (.10)
										0	-6 (.17)
										0	-2 (.07)

* Test terminated at this point because of extreme deterioration of specimen.

Table A1 (cont'd).

Chemical	Concentration (gal/1000 ft ²)	Pavement type	Age	Surface condition rating										Wt. Change g (%)
				5	10	15	20	25	30 CYCLE	35	40	45	50	
1/1000	PCC non-air-entrained	Old	0.0	0,0	0,0	0,0	1,1	1,1	2,2	3,3	3,3	3,3	3,3	-187(4.4), -168(3.9)
		New	1,1	2,1	2,2	3,2	4,3	5,4	5,4	5,4	5,4	5,4	5,5	-266(3.1), -149(1.7)
	PCC air-entrained	Old	0.0	0,0	0,0	0,0	0,0	1,1	1,1	1,1	1,1	1,1	1,1	+30(-72), +17(-40)
		New	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	+48(-57), +37(-44)
	Asphaltic concrete	Old	0,0											+20(-36), +13(-29)
		New	0,0											+3(-15), +1(-04)
	Tar rubber concrete	Old	0,0											+5(-10), +16(-34)
		New	0,0											+6(-12), +14(-34)
	Porous friction concrete -	0,0												+34(2.4), +24(1.8)
UCAR	PCC non-air-entrained	Old	0,0	0,0	0,0	0,0	1,1	1,1	2,2	2,2	2,2	2,2	2,2	-167(3.9), -68(1.7)
		New	1,1	2,2	2,2	2,2	2,2	2,2	2,2	2,2	2,2	2,2	2,3	+13(-15), -39(-46)
	PCC air-entrained	Old	0,0	0,0	0,0	0,0	0,0	1,1	1,1	1,1	1,1	1,1	1,1	+48(1.1), +35(-98)
		New	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	+105(1.3), +94(1.1)
	Asphaltic concrete	Old	0,0											+31(-60), +25(-51)
		New	0,0											+19(-83), +13(-60)
	Tar rubber concrete	Old	0,0											+19(-41), +22(-45)
		New	0,0											+18(-45), +25(-62)
	Porous friction concrete -	0,0												+27(1.7), +28(1.8)
2/1000	PCC non-air-entrained	Old	0,0	0,0	0,0	0,0	1,1	1,1	2,2	3,3	3,3	3,3	3,3	-89(2.1), -54(1.3)
		New	1,1	1,1	1,2	1,2	2,3	2,3	2,3	2,4	2,4	2,4	2,4	+23(-26), -167(2.0)
	PCC air-entrained	Old	0,0	0,0	0,0	0,0	0,0	0,0	1,1	1,1	1,1	1,1	1,1	+19(-52), +14(-28)
		New	0,0	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	+33(-40), +77(-90)
	Asphaltic concrete	Old	0,0											+18(-36), +19(-39)
		New	0,0											+8(-39), +7(-32)
	Tar rubber concrete	Old	0,0											+19(-37), +23(-45)
		New	0,0											+21(-44), +17(-39)
	Porous friction concrete -	0,0												+24(1.9), +28(2.2)
NC 2207.1	PCC non-air-entrained	Old	0,0	0,0	0,0	0,0	1,1	1,1	2,2	2,2	2,2	2,2	3,4	-252(5.4), -497(1.1)
		New	0,1	1,1	1,2	1,2	1,2	1,2	2,3	2,3	2,3	2,3	4,3	-100(1.2), -161(1.9)
	PCC air-entrained	Old	0,0	0,0	0,0	0,0	0,0	1,1	1,1	1,1	1,1	1,1	1,1	+42(-94), +22(-53)
		New	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	+92(1.1), +99(1.2)
	Asphaltic concrete	Old	0,0											+40(-76), +60(1.2)
		New	0,0											+17(-85), +24(1.1)
2/1000	Tar rubber concrete	Old	0,0											+9(-19), +12(-26)
		New	0,0											+200(4.2), +43(1.1)
	Porous friction concrete -	0,0												+33(2.0), +23(1.9)

Table A1 (cont'd). Results of freeze-thaw cycling tests; double entries (separated by a comma) are the values for replicates.

Chemical	Concentration (gal/1000 ft ²)	Pavement type	Age	Surface condition rating					Wt. Change g (%)			
				5	10	15	20	25	30 CYCLE	35	40	45
1/1000	PCC non-air entrained	Old	0,0	0,0	0,0	1,1	2,2	3,3	3,3	3,3	3,3	-79(1.6), 5,5
		New	1,1	1,1	2,2	2,2	3,3	4,4	4,5	5,5	5,5	-248(2.9), 5,5
	PCC air-entrained	Old	0,0	0,0	0,0	0,0	0,0	0,0	0,1	0,1	0,1	+10(.22)
		New	1,1	1,1	1,1	1,1	2,2	2,2	2,2	2,2	2,2	+31(.36), +30(.36)
	Asphaltic concrete	Old	0,0									+34(.79), 0,0
		New	0,0									+31(.36), +30(.36)
ISOLV	Tar rubber concrete	Old	0,0									+13(.25)
		New	0,0									+38(1.7)
	Porous friction concrete -	0,0										+19(1.5)
	PCC non-air-entrained	Old	0,0	0,0	0,0	0,0	1,1	1,2	2,3	2,3	2,4	*73(1.6), 5,4
		New	1,1	2,1	2,2	2,2	3,2	4,3	4,3	5,3	5,4	-362(.7), -247(2.9), 5,4
	PCC air-entrained	Old	0,0	0,0	0,0	0,0	0,1	0,1	0,1	0,1	0,1	+45(1.1), +44(.53), +61(.72)
2/1000	Asphaltic concrete	Old	0,0									+42(.77), 0,0
		New	0,0									+83(3.2), 0,0
	Tar rubber concrete	Old	0,0									+35(.68), 0,0
		New	0,0									+137(3.2), 0,0
	Porous friction concrete -	0,0										+150(3.4)
	PCC non-air-entrained	Old	0									+24(1.9), 0,0
Distilled Water		New	0									+42(3.2)
	PCC air-entrained	Old	0									-3(.09)
		New	0									+58(.67), 0
	Asphaltic concrete	Old	0									+18(.43), 0
		New	0									+53(.63), 0
	Tar rubber concrete	Old	0									+60(.73)
Dry Control	Porous friction concrete -	0										+9(.19), 0
	PCC non-air-entrained	Old	-									+5(.13), 0
		New	-									+24(1.9), 0
	PCC air-entrained	Old	-									-26(.62)
		New	-									-21(.26)
	Asphaltic concrete	Old	-									-11(.40)
	Tar rubber concrete	Old	-									-25(.32)
		New	-									-1 (.05)
	Porous friction concrete -	-										-1 (.03)

^a Test terminated at this point because of extreme deterioration of specimen.

APPENDIX B: PORTLAND CEMENT CONCRETE MATERIALS DATA

(*) Saturated surface dry weights
 (**) Does not include water of absorption in aggregates.

line of negotiates.

NOTES AND OR REMARKS

NEO 300

SUMMARY SHEET - LABORATORY CONCRETE MIX DESIGN																	
PROJECT CRREL Delisting Project,		CONTRACT NO. CRREL Work Order No. 73-25		MIX NO. CR		TYPE MIX Airfield Pavement Concrete		TESTING LABORATORY New England Division									
Preparation of Concrete Specimens		CRREL Work Order No. 73-25		COPPER Aggregate		SIZES 1½" 50-133-1		TYPE I Portland CEMENT									
PROCESSED Natural Sand		TYPE Crushed Quarry Stone		LAB. SERIAL NOS. 50-133-1		LAB. SER. NO. 76-290-4		BRAND Martin-Marietta									
LAB. SERIAL NO. 50-133-3		SOURCE Appalachian Stone Co.		50-133-2		SOURCE Martin-Marietta Cement		LAB. SER. NO. 76-290-5									
SOURCE Atlantic Coast Aggregates		Haverstraw, N.Y.		BLEND 45% - 1½" and 55% - 3/4"		SUMMIT, New Jersey		SOURCE Chemcor Inc.,									
Northampton, Pa. (1)																	
TEST RESULTS ON HARDENED CONCRETE																	
TRIAL MIXTURE DATA																	
DESIGN DATA		TEMPERATURE (°F)		TEST		AIR CONT. (%)		AT AGE 7 DAYS									
CEMENT FACTOR (CMW/GY)		SYMBOLS		TESTING		COMPR. STRENGTH (PSI)		AT AGE 14 DAYS									
WATER-CEMENT RATIO		CYLINDER SPECIMENS PER BATCH		MIXING WATER		SPECIMEN NO.		AT AGE 28 DAYS									
CEMENT FACTOR (CMW/GY)		AMOUNT OF WATER (OZ./GY)		LABORATORY CONCRETE TESTED		COMPR. STRENGTH (PSI)		AT AGE 28 DAYS									
WATER-CEMENT RATIO		AMOUNT OF WATER (OZ./GY)		TEST DENSITY (G/CF)		SPECIMEN NO.		AT AGE 28 DAYS									
CEMENT FACTOR (CMW/GY)		AMOUNT OF WATER (OZ./GY)		TEST DENSITY (G/CF)		COMPR. STRENGTH (PSI)		AT AGE 28 DAYS									
WATER-CEMENT RATIO		AMOUNT OF WATER (OZ./GY)		TEST DENSITY (G/CF)		SPECIMEN NO.		AT AGE 28 DAYS									
CEMENT FACTOR (CMW/GY)		AMOUNT OF WATER (OZ./GY)		TEST DENSITY (G/CF)		COMPR. STRENGTH (PSI)		AT AGE 28 DAYS									
WATER-CEMENT RATIO		AMOUNT OF WATER (OZ./GY)		TEST DENSITY (G/CF)		SPECIMEN NO.		AT AGE 28 DAYS									
CEMENT FACTOR (CMW/GY)		AMOUNT OF WATER (OZ./GY)		TEST DENSITY (G/CF)		COMPR. STRENGTH (PSI)		AT AGE 28 DAYS									
WATER-CEMENT RATIO		AMOUNT OF WATER (OZ./GY)		TEST DENSITY (G/CF)		SPECIMEN NO.		AT AGE 28 DAYS									
CEMENT FACTOR (CMW/GY)		AMOUNT OF WATER (OZ./GY)		TEST DENSITY (G/CF)		COMPR. STRENGTH (PSI)		AT AGE 28 DAYS									
WATER-CEMENT RATIO		AMOUNT OF WATER (OZ./GY)		TEST DENSITY (G/CF)		SPECIMEN NO.		AT AGE 28 DAYS									
CEMENT FACTOR (CMW/GY)		AMOUNT OF WATER (OZ./GY)		TEST DENSITY (G/CF)		COMPR. STRENGTH (PSI)		AT AGE 28 DAYS									
WATER-CEMENT RATIO		AMOUNT OF WATER (OZ./GY)		TEST DENSITY (G/CF)		SPECIMEN NO.		AT AGE 28 DAYS									
CEMENT FACTOR (CMW/GY)		AMOUNT OF WATER (OZ./GY)		TEST DENSITY (G/CF)		COMPR. STRENGTH (PSI)		AT AGE 28 DAYS									
WATER-CEMENT RATIO		AMOUNT OF WATER (OZ./GY)		TEST DENSITY (G/CF)		SPECIMEN NO.		AT AGE 28 DAYS									
CEMENT FACTOR (CMW/GY)		AMOUNT OF WATER (OZ./GY)		TEST DENSITY (G/CF)		COMPR. STRENGTH (PSI)		AT AGE 28 DAYS									
WATER-CEMENT RATIO		AMOUNT OF WATER (OZ./GY)		TEST DENSITY (G/CF)		SPECIMEN NO.		AT AGE 28 DAYS									
CEMENT FACTOR (CMW/GY)		AMOUNT OF WATER (OZ./GY)		TEST DENSITY (G/CF)		COMPR. STRENGTH (PSI)		AT AGE 28 DAYS									
WATER-CEMENT RATIO		AMOUNT OF WATER (OZ./GY)		TEST DENSITY (G/CF)		SPECIMEN NO.		AT AGE 28 DAYS									
CEMENT FACTOR (CMW/GY)		AMOUNT OF WATER (OZ./GY)		TEST DENSITY (G/CF)		COMPR. STRENGTH (PSI)		AT AGE 28 DAYS									
WATER-CEMENT RATIO		AMOUNT OF WATER (OZ./GY)		TEST DENSITY (G/CF)		SPECIMEN NO.		AT AGE 28 DAYS									
CEMENT FACTOR (CMW/GY)		AMOUNT OF WATER (OZ./GY)		TEST DENSITY (G/CF)		COMPR. STRENGTH (PSI)		AT AGE 28 DAYS									
WATER-CEMENT RATIO		AMOUNT OF WATER (OZ./GY)		TEST DENSITY (G/CF)		SPECIMEN NO.		AT AGE 28 DAYS									
CEMENT FACTOR (CMW/GY)		AMOUNT OF WATER (OZ./GY)		TEST DENSITY (G/CF)		COMPR. STRENGTH (PSI)		AT AGE 28 DAYS									
WATER-CEMENT RATIO		AMOUNT OF WATER (OZ./GY)		TEST DENSITY (G/CF)		SPECIMEN NO.		AT AGE 28 DAYS									
CEMENT FACTOR (CMW/GY)		AMOUNT OF WATER (OZ./GY)		TEST DENSITY (G/CF)		COMPR. STRENGTH (PSI)		AT AGE 28 DAYS									
WATER-CEMENT RATIO		AMOUNT OF WATER (OZ./GY)		TEST DENSITY (G/CF)		SPECIMEN NO.		AT AGE 28 DAYS									
CEMENT FACTOR (CMW/GY)		AMOUNT OF WATER (OZ./GY)		TEST DENSITY (G/CF)		COMPR. STRENGTH (PSI)		AT AGE 28 DAYS									
WATER-CEMENT RATIO		AMOUNT OF WATER (OZ./GY)		TEST DENSITY (G/CF)		SPECIMEN NO.		AT AGE 28 DAYS									
CEMENT FACTOR (CMW/GY)		AMOUNT OF WATER (OZ./GY)		TEST DENSITY (G/CF)		COMPR. STRENGTH (PSI)		AT AGE 28 DAYS									
WATER-CEMENT RATIO		AMOUNT OF WATER (OZ./GY)		TEST DENSITY (G/CF)		SPECIMEN NO.		AT AGE 28 DAYS									
CEMENT FACTOR (CMW/GY)		AMOUNT OF WATER (OZ./GY)		TEST DENSITY (G/CF)		COMPR. STRENGTH (PSI)		AT AGE 28 DAYS									
WATER-CEMENT RATIO		AMOUNT OF WATER (OZ./GY)		TEST DENSITY (G/CF)		SPECIMEN NO.		AT AGE 28 DAYS									
CEMENT FACTOR (CMW/GY)		AMOUNT OF WATER (OZ./GY)		TEST DENSITY (G/CF)		COMPR. STRENGTH (PSI)		AT AGE 28 DAYS									
WATER-CEMENT RATIO		AMOUNT OF WATER (OZ./GY)		TEST DENSITY (G/CF)		SPECIMEN NO.		AT AGE 28 DAYS									
CEMENT FACTOR (CMW/GY)		AMOUNT OF WATER (OZ./GY)		TEST DENSITY (G/CF)		COMPR. STRENGTH (PSI)		AT AGE 28 DAYS									
WATER-CEMENT RATIO		AMOUNT OF WATER (OZ./GY)		TEST DENSITY (G/CF)		SPECIMEN NO.		AT AGE 28 DAYS									
CEMENT FACTOR (CMW/GY)		AMOUNT OF WATER (OZ./GY)		TEST DENSITY (G/CF)		COMPR. STRENGTH (PSI)		AT AGE 28 DAYS									
WATER-CEMENT RATIO		AMOUNT OF WATER (OZ./GY)		TEST DENSITY (G/CF)		SPECIMEN NO.		AT AGE 28 DAYS									
CEMENT FACTOR (CMW/GY)		AMOUNT OF WATER (OZ./GY)		TEST DENSITY (G/CF)		COMPR. STRENGTH (PSI)		AT AGE 28 DAYS									
WATER-CEMENT RATIO		AMOUNT OF WATER (OZ./GY)		TEST DENSITY (G/CF)		SPECIMEN NO.		AT AGE 28 DAYS									
CEMENT FACTOR (CMW/GY)		AMOUNT OF WATER (OZ./GY)		TEST DENSITY (G/CF)		COMPR. STRENGTH (PSI)		AT AGE 28 DAYS									
WATER-CEMENT RATIO		AMOUNT OF WATER (OZ./GY)		TEST DENSITY (G/CF)		SPECIMEN NO.		AT AGE 28 DAYS									
CEMENT FACTOR (CMW/GY)		AMOUNT OF WATER (OZ./GY)		TEST DENSITY (G/CF)		COMPR. STRENGTH (PSI)		AT AGE 28 DAYS									
WATER-CEMENT RATIO		AMOUNT OF WATER (OZ./GY)		TEST DENSITY (G/CF)		SPECIMEN NO.		AT AGE 28 DAYS									
CEMENT FACTOR (CMW/GY)		AMOUNT OF WATER (OZ./GY)		TEST DENSITY (G/CF)		COMPR. STRENGTH (PSI)		AT AGE 28 DAYS									
WATER-CEMENT RATIO		AMOUNT OF WATER (OZ./GY)		TEST DENSITY (G/CF)		SPECIMEN NO.		AT AGE 28 DAYS									
CEMENT FACTOR (CMW/GY)		AMOUNT OF WATER (OZ./GY)		TEST DENSITY (G/CF)		COMPR. STRENGTH (PSI)		AT AGE 28 DAYS									
WATER-CEMENT RATIO		AMOUNT OF WATER (OZ./GY)		TEST DENSITY (G/CF)		SPECIMEN NO.		AT AGE 28 DAYS									
CEMENT FACTOR (CMW/GY)		AMOUNT OF WATER (OZ./GY)		TEST DENSITY (G/CF)		COMPR. STRENGTH (PSI)		AT AGE 28 DAYS									
WATER-CEMENT RATIO		AMOUNT OF WATER (OZ./GY)		TEST DENSITY (G/CF)		SPECIMEN NO.		AT AGE 28 DAYS									
CEMENT FACTOR (CMW/GY)		AMOUNT OF WATER (OZ./GY)		TEST DENSITY (G/CF)		COMPR. STRENGTH (PSI)		AT AGE 28 DAYS									
WATER-CEMENT RATIO		AMOUNT OF WATER (OZ./GY)		TEST DENSITY (G/CF)		SPECIMEN NO.		AT AGE 28 DAYS									
CEMENT FACTOR (CMW/GY)		AMOUNT OF WATER (OZ./GY)		TEST DENSITY (G/CF)		COMPR. STRENGTH (PSI)		AT AGE 28 DAYS									
WATER-CEMENT RATIO		AMOUNT OF WATER (OZ./GY)		TEST DENSITY (G/CF)		SPECIMEN NO.		AT AGE 28 DAYS									
CEMENT FACTOR (CMW/GY)		AMOUNT OF WATER (OZ./GY)		TEST DENSITY (G/CF)		COMPR. STRENGTH (PSI)		AT AGE 28 DAYS									
WATER-CEMENT RATIO		AMOUNT OF WATER (OZ./GY)		TEST DENSITY (G/CF)		SPECIMEN NO.		AT AGE 28 DAYS									
CEMENT FACTOR (CMW/GY)		AMOUNT OF WATER (OZ./GY)		TEST DENSITY (G/CF)		COMPR. STRENGTH (PSI)		AT AGE 28 DAYS									
WATER-CEMENT RATIO		AMOUNT OF WATER (OZ./GY)		TEST DENSITY (G/CF)		SPECIMEN NO.		AT AGE 28 DAYS									
CEMENT FACTOR (CMW/GY)		AMOUNT OF WATER (OZ./GY)		TEST DENSITY (G/CF)		COMPR. STRENGTH (PSI)		AT AGE 28 DAYS									
WATER-CEMENT RATIO		AMOUNT OF WATER (OZ./GY)		TEST DENSITY (G/CF)		SPECIMEN NO.</td											

AGGREGATE TEST RESULTS

PROJECT: CRREL Deicing Project SPECIFICATION NO. _____

REQUIRED USE: Preparation of Concrete Specimens CONTRACT NO. _____

TYPE MATERIAL: Fine Concrete Aggregate CLASSIFICATION: Processed Natural Sand

SOURCE: Atlantic Coast Aggregates LOCATION: Woodbury, New York

TESTING AGENCY: NED Laboratory PROJECT LAB. NO. 73-JO-1

MECHANICAL ANALYSIS PER CENT PASSING, BY WEIGHT

Sieve Designation	50-133-3	76-282-1 (*)	Sample Lab. No.
3 - inch			
2-1/2 - inch			
2 - inch			
1-1/2 - inch			
1 - inch			
3/4 - inch			
1/2 - inch			
3/8 - inch			
No. 4	100	100	
No. 8	88	87	
No. 16	74	69	
No. 30	56	48	
No. 50	31	24	
No. 100	7	5	
No. 200	1	2	

PHYSICAL PROPERTIES

Fineness Modulus	2.44	2.67	
Specific Gravity			
Bulk Oven Dry	2.57	2.56	
Bulk S. S. Dry	2.63	2.62	
Apparent	2.73	2.72	
Absorption %	2.3	2.3	
Organic Color Test			
L. A. Abrasion Test (% Loss - 500 Rev.)			
Soundness ($MgSO_4$) (% Loss - 5 cycles)			
Flat & Elongated Particles (% by Wt. - 3 to 1 Ratio)			
Cube Compressive Strength			
% of Stand. 3-Days			
% of Stand. 7-Days			
% of Stand. 28-Days			

(*) Data for material used in fabricating original specimens on 10 May 1972

R.J. STRONG, Chief, NED Laboratory

8 January 1973

SIGNATURE:

DATE:

N.E.D. FORM 354
1 JUNE 55

AGGREGATE TEST RESULTS

PROJECT: CRREL Deicing Project SPECIFICATION NO. _____

REQUIRED USE: Preparation of Concrete Specimens CONTRACT NO. _____

TYPE MATERIAL: Coarse Concrete Aggregates CLASSIFICATION: Crushed Quarry Stone

SOURCE: Appalachian Stone Co. LOCATION: Haverstraw, New York

TESTING AGENCY: NED Laboratory PROJECT LAB. NO. 73-JO-1

MECHANICAL ANALYSIS PER CENT PASSING, BY WEIGHT

Sieve Designation	Sample Lab. No.				
	50-133-1	76-280-1	50-133-2	76-280-2	As Blended for Mix
3 -Inch	1 1/2"	1 1/2" (*)	3/4"	3/4" (*)	133-1 & 2 (*)
2-1/2- inch					
2- inch					
1-1/2-inch	100	100			100
1- inch	55	53	100	100	80
3/4-inch	3	7	94	98	54
1/2-inch	1	3	62	73	35
3/8-inch	1	2	29	50	16
No. 4	1	1	4	4	2
No. 8					
No. 16					
No. 30					
No. 50					
No. 100					
No. 200					

PHYSICAL PROPERTIES

Fineness Modulus					
Specific Gravity					
Bulk Oven Dry					
Bulk S. S. Dry					
Apparent					
Absorption %					
Organic Color Test					
L. A. Abrasion Test (% Loss - 500 Rev.)					
Soundness ($MgSO_4$) (% Loss - 5 cycles)					
Flat & Elongated Particles (% by Wt.-3 to 1 Ratio)					
Cube Compressive Strength					
% of Stand. 3-Days					
% of Stand. 7-Days					
% of Stand. 28- Days					

(*) Gradation of materials used in fabricating original specimens on 10 May 1972

R. L. STRONG, Chief, NED Laboratory

SIGNATURE:

8 January 1973

DATE:

N.E.D.FORM
1 JUNE 55 354

*U.S. GOVERNMENT PRINTING OFFICE: 1977-701-841/225

78