Reiknirit Bellmans og Fords (1958 og 1956)

Bergur Snorrason

1. mars 2021

► Hvað gerum við ef við viljum nota reinkirit Dijkstras en það mega vera neikvæðar vigtir á leggjunum.

- Hvað gerum við ef við viljum nota reinkirit Dijkstras en það mega vera neikvæðar vigtir á leggjunum.
- ▶ Við getum þá notað reiknirit sem er kennt við Bellman og Ford.

- Hvað gerum við ef við viljum nota reinkirit Dijkstras en það mega vera neikvæðar vigtir á leggjunum.
- ▶ Við getum þá notað reiknirit sem er kennt við Bellman og Ford.
- Við þurfum þó að fórna keyrslutíma.

▶ Petta reiknirit er að vissu leiti einfaldara en reiknirit Dijkstras.

- ▶ Þetta reiknirit er að vissu leiti einfaldara en reiknirit Dijkstras.
- ▶ Við notum kvika bestun og svörum spurningunni "Hver er stysta leiðin frá u til v sem fer að mestu í k hnúta?".

- ▶ Þetta reiknirit er að vissu leiti einfaldara en reiknirit Dijkstras.
- ▶ Við notum kvika bestun og svörum spurningunni "Hver er stysta leiðin frá u til v sem fer að mestu í k hnúta?".
- Hér táknar u upphafsnóðuna á meðan v og k eru frjálsar breytur.

- ▶ Þetta reiknirit er að vissu leiti einfaldara en reiknirit Dijkstras.
- ▶ Við notum kvika bestun og svörum spurningunni "Hver er stysta leiðin frá u til v sem fer að mestu í k hnúta?".
- Hér táknar u upphafsnóðuna á meðan v og k eru frjálsar breytur.

- ▶ Þetta reiknirit er að vissu leiti einfaldara en reiknirit Dijkstras.
- Við notum kvika bestun og svörum spurningunni "Hver er stysta leiðin frá u til v sem fer að mestu í k hnúta?".
- Hér táknar u upphafsnóðuna á meðan v og k eru frjálsar breytur.
- Látum þá f(v, k) tákna systa veg frá hnútnum u til hnútsins v sem fer ekki í fleiri en k hnúta.

- ▶ Petta reiknirit er að vissu leiti einfaldara en reiknirit Dijkstras.
- Við notum kvika bestun og svörum spurningunni "Hver er stysta leiðin frá u til v sem fer að mestu í k hnúta?".
- Hér táknar u upphafsnóðuna á meðan v og k eru frjálsar breytur.
- Látum þá f(v, k) tákna systa veg frá hnútnum u til hnútsins v sem fer ekki í fleiri en k hnúta.
- ► Til að einfalda skriftir þá skilgreinum við

$$E_u = \{ v \in V : (u, v) \in E \}$$

og

$$E^{v} = \{u \in V : (u, v) \in E\}.$$

- Petta reiknirit er að vissu leiti einfaldara en reiknirit Dijkstras.
- Við notum kvika bestun og svörum spurningunni "Hver er stysta leiðin frá u til v sem fer að mestu í k hnúta?".
- Hér táknar u upphafsnóðuna á meðan v og k eru frjálsar breytur.
- Látum þá f(v, k) tákna systa veg frá hnútnum u til hnútsins v sem fer ekki í fleiri en k hnúta.
- Til að einfalda skriftir þá skilgreinum við

$$E_u = \{ v \in V : (u, v) \in E \}$$

og

$$E^{v} = \{u \in V : (u, v) \in E\}.$$

Við fáum að

$$f(v,k) = \begin{cases} 0, & \text{ef } u = v \text{ og } k = 0 \\ \infty, & \text{ef } u \neq v \text{ og } k = 0 \\ \min(f(v,k-1), & \min_{u \in E^v} w((u,v)) + f(u,k-1)), & \text{ef } u \neq v \text{ og } k = 0 \end{cases}$$

▶ Við munum leysa þetta með neðansækinni kvikri bestun.

- ▶ Við munum leysa þetta með neðansækinni kvikri bestun.
- ► Gerum ráð fyrir að taflan sem við notum fyrir minnun hafi dálk sem svari til *k* breytunnar.

- ▶ Við munum leysa þetta með neðansækinni kvikri bestun.
- ► Gerum ráð fyrir að taflan sem við notum fyrir minnun hafi dálk sem svari til *k* breytunnar.
- Þá er hver staða aðeins háð stöðum í röðinni fyrir ofan sig.

- Við munum leysa þetta með neðansækinni kvikri bestun.
- Gerum ráð fyrir að taflan sem við notum fyrir minnun hafi dálk sem svari til k breytunnar.
- Þá er hver staða aðeins háð stöðum í röðinni fyrir ofan sig.
- Við notum því aðeins síðustu línu fylkisins þegar við fyllum inn í töfluna.

- Við munum leysa þetta með neðansækinni kvikri bestun.
- ► Gerum ráð fyrir að taflan sem við notum fyrir minnun hafi dálk sem svari til *k* breytunnar.
- ▶ Þá er hver staða aðeins háð stöðum í röðinni fyrir ofan sig.
- Við notum því aðeins síðustu línu fylkisins þegar við fyllum inn í töfluna.
- Því má geyma tvívíða fylkið sem einvítt fylki.

Við erum ekki búin þegar við höfum reiknað öll gildin á f(v, k).

- Við erum ekki búin þegar við höfum reiknað öll gildin á f(v, k).
- ► Hvað með neikvæðar rásir?

- Við erum ekki búin þegar við höfum reiknað öll gildin á f(v, k).
- Hvað með neikvæðar rásir?
- ► Takið fyrst eftir að ef það er ekki neikvæð rás í netinu þá heimsækir systi vegur milli hnúta engan hnúta tvisvar.

- Við erum ekki búin þegar við höfum reiknað öll gildin á f(v, k).
- Hvað með neikvæðar rásir?
- ► Takið fyrst eftir að ef það er ekki neikvæð rás í netinu þá heimsækir systi vegur milli hnúta engan hnúta tvisvar.
- Einnig er ekki nóg að það sé neikvæð rás í netinu heldur þarf að vera hægt að komast í hana frá upphafshnútnum og svo má vera að það sé ekki hægt að komast frá rásinni í alla aðra hnúta.

- Við erum ekki búin þegar við höfum reiknað öll gildin á f(v, k).
- Hvað með neikvæðar rásir?
- ► Takið fyrst eftir að ef það er ekki neikvæð rás í netinu þá heimsækir systi vegur milli hnúta engan hnúta tvisvar.
- Einnig er ekki nóg að það sé neikvæð rás í netinu heldur þarf að vera hægt að komast í hana frá upphafshnútnum og svo má vera að það sé ekki hægt að komast frá rásinni í alla aðra hnúta.
- Við getum einfaldlega prófað að lengja vegina um |V|-1 hnúta í viðbót.

- Við erum ekki búin þegar við höfum reiknað öll gildin á f(v, k).
- Hvað með neikvæðar rásir?
- ► Takið fyrst eftir að ef það er ekki neikvæð rás í netinu þá heimsækir systi vegur milli hnúta engan hnúta tvisvar.
- Einnig er ekki nóg að það sé neikvæð rás í netinu heldur þarf að vera hægt að komast í hana frá upphafshnútnum og svo má vera að það sé ekki hægt að komast frá rásinni í alla aðra hnúta.
- Við getum einfaldlega prófað að lengja vegina um |V|-1 hnúta í viðbót.
- Ef vegalengdin styttist einhverntíman þá er betra að heimsækja einhvern hnút oftar en einu sinni, sem þýðir að það sé neikvæð rás á leiðinni.

k

k

k

k	1	2	3	4	5	6	7	8	9
0	0	∞	∞ -4 -4	∞	∞	∞	∞	∞	∞
1	0	∞	-4	∞	3	∞	∞	∞	∞
2	0	∞	-4	4	-2	∞	∞	∞	∞
3	U	13	-4	-1	-2	- 1	12	∞	∞
4	0	8	-4	-1	-2	2	7	12	∞
5	0	8	-4	-1	-2	2	7	7	13
6	0	8	-4	-1	-2	2	7	7	8
7	0	8	-4	-1	-2	1	7	7	8

			3						
0	0	∞	∞	∞	∞	∞	∞	∞	∞
1	0	∞	-4	∞	3	∞	∞	∞	∞
2	0	∞	-4	4	-2	∞	∞	∞	∞
3	0	13	-4 -4	-1	-2	7	12	∞	∞
4	0	8	-4	-1	-2	2	7	12	∞
5	0	8	-4	-1	-2	2	7	7	13
6	0	8	-4	-1	-2	2	7	7	8
7	0	8	-4	-1	-2	1	7	7	8
8	0	8	-4	-1	-2	1	7	6	8

k	1			4				8	9
0	0	∞		∞			∞	∞	∞
1	0	∞		∞			∞	∞	∞
2	0			4				∞	∞
3	0	13	-4	-1	-2	7	12	∞	∞
4	0	8		-1					
5	0	8		-1					13
6	0	8	-4	-1	-2	2		7	8
7	0	8	-4	-1	-2	1	7	7	8
8	0	8		-1					8
9	0	8	-4	-1	-2	1	7	6	7

```
10 vi bellman ford (vvii&g, ints)
11 {
12
       int i, j, k, n = g.size(), x, w;
13
       vi d(g.size(), INF);
       d[s] = 0;
14
       rep(i, n-1) rep(j, n) if (d[j] != INF) rep(k, g[j]. size())
15
           d[g[j][k]. first] = min(d[g[j][k]. first], d[j] + g[j][k]. second);
16
       rep(i, n-1) rep(j, n) if (d[j]!= INF) rep(k, g[j].size())
17
18
19
           x = g[j][k]. first, w = g[j][k]. second;
           if (d[x] != -INF \&\& d[j] + w < d[x]) d[x] = -INF;
20
21
22
       return d;
23 }
```

ightharpoonup Sjáum að í fyrri hluta reikniritsins ýtrum við í gegnum alla leggi og allar nóður (|V|-1)-sinnum.

- Sjáum að í fyrri hluta reikniritsins ýtrum við í gegnum alla leggi og allar nóður (|V|-1)-sinnum.
- Tímaflækjan á þeim hluta er því $\mathcal{O}($).

- Sjáum að í fyrri hluta reikniritsins ýtrum við í gegnum alla leggi og allar nóður (|V|-1)-sinnum.
- ▶ Tímaflækjan á þeim hluta er því $\mathcal{O}(E \cdot V)$.

- Sjáum að í fyrri hluta reikniritsins ýtrum við í gegnum alla leggi og allar nóður (|V|-1)-sinnum.
- ▶ Tímaflækjan á þeim hluta er því $\mathcal{O}(E \cdot V)$.
- Seinni hlutinn er svo að ítra yfir nákvæmlega það sama, svo tímaflækja þar er eins.

- Sjáum að í fyrri hluta reikniritsins ýtrum við í gegnum alla leggi og allar nóður (|V|-1)-sinnum.
- ▶ Tímaflækjan á þeim hluta er því $\mathcal{O}(E \cdot V)$.
- Seinni hlutinn er svo að ítra yfir nákvæmlega það sama, svo tímaflækja þar er eins.
- ightharpoonup Því fæst að reikniritið er í heildina $\mathcal{O}($

- Sjáum að í fyrri hluta reikniritsins ýtrum við í gegnum alla leggi og allar nóður (|V|-1)-sinnum.
- ► Tímaflækjan á þeim hluta er því $\mathcal{O}(E \cdot V)$.
- Seinni hlutinn er svo að ítra yfir nákvæmlega það sama, svo tímaflækja þar er eins.
- ▶ Því fæst að reikniritið er í heildina $\mathcal{O}(E \cdot V)$.

- Sjáum að í fyrri hluta reikniritsins ýtrum við í gegnum alla leggi og allar nóður (|V|-1)-sinnum.
- ▶ Tímaflækjan á þeim hluta er því $\mathcal{O}(E \cdot V)$.
- Seinni hlutinn er svo að ítra yfir nákvæmlega það sama, svo tímaflækja þar er eins.
- ▶ Því fæst að reikniritið er í heildina $\mathcal{O}(E \cdot V)$.
- ▶ Petta er töluvert verra en reiknirit Dijkstras (svipað og að fara úr $\mathcal{O}(n \cdot \log n)$ í $\mathcal{O}(n^2)$).