T2 - Análise de circuitos corrente alternada

1 Introdução

Neste trabalho iremos analisar comportamento de um circuito de corrente alternada, explorando os conceitos de fasor, impedância, potência activa e reativa.

1.1 Análise circuitos de corrente alternada sinusoidal

Uma fonte de tensão (ou corrente) sinusoidal produz uma tensão (ou corrente) aos seus terminais que varia no tempo de acordo com a seguinte lei:

$$v(t) = V_m \cos(\omega t + \phi)$$

onde V_m é a amplitude, ω a frequência angular (em rad/s), e ϕ o ângulo de fase.

Num circuito de corrente alternada em estado estacionário, todos os sinais de interesse no circuito têm a mesma frequência. Assim, é suficiente representar os sinais em termos da sua amplitude e ângulo de fase. Esta representação de sinais sinusoidais designa-se por fasor:

$$V = V_m e^{j\phi} = V_m \Delta \phi = V_m \cos \phi + j V_m \sin \phi = P[V_m \cos(\omega t + \phi)]$$

onde P é a transformada fasor (do dominio do tempo para o dominio da frequência).

Usando a representação de fasor para grandezas sinusoidais, as leis usadas na descrição de circuitos de corrente contínua são igualmente válidas em corrente alternada. Assim a lei de Ohm em corrente alternada estabelece uma relação entre o fasor da corrente e da tensão para vários elementos do circuito:

$$\mathbf{A} = \mathbf{Z} \times \mathbf{I}$$

onde **Z** é a impedância, sendo em geral um n° complexo. A parte imaginária da impedância designa-se por reactância e a parte real a representa a resistência.

Na tabela 1 estão sumarizados os valores da impedância e reactância para resistências, bobines e condensadores.

Elemento	Impedância	Reactância
Resistência	R	_
Bobine	jωL	ωL
Condensador	(jωC) ⁻¹	-(ωC) ⁻¹

Tabela 1

Os diagramas de fasores são usados para visualizar a relação entre as várias grandezas sinusoidais, usando-se o fasor da tensão aos terminais de um dos geradores presentes no circuito como referência (fase 0°).

1.2 Potência em corrente alternada

Num circuito elétrico é frequentemente desejável determiner a potência fornecida e dissipada no circuito. Num circuito de corrente alternada há város tipos de potência a considerar:

Potência instantânea

A potência instantânea (em W) fornecida a uma carga é uma função do tempo definida pelo produto da tensão instantânea aos terminais da carga e da corrente:

$$p(t) = v(t)i(t)$$
.

A potência instantânea pode ser positiva ou negativa e tem uma frequência que é o dobro da frequência da tensão.

• Potência média ou activa.

A média da potência instantânea num período designa-se por potência activa (em W), e corresponde à potência dissipada no circuito:

$$P = \frac{1}{2}V_m I_m \cos(\theta_v - \theta_i) = V_{rms}I_{rms} \cos(\theta_v - \theta_i)$$

• Potência reactiva

A potência reactiva é a potência elétrica trocada entre as reactâncias (bobines, condensadores) e a fonte de energia do circuito, não sendo nunca convertida em energia não-elétrica. A unidade de potência Reactiva é o VAR (Volt-Ampére reactivos) e expressa-se por:

$$Q = \frac{1}{2}V_mI_m \sin(\theta_v - \theta_i) = V_{rms}I_{rms}\sin(\theta_v - \theta_i)$$

• Potência total, potência aparente

A potência total complexa, tem como unidade VA (volt-amp), e representa-se:

$$S = P + jQ = \frac{1}{2}\mathbf{V}\mathbf{I}^* = \mathbf{V}_{rms}\mathbf{I}_{rms}^* = I_{rms}^2Z = \frac{V_{rms}^2}{Z^*}$$

O módulo da potência total designa-se por potência aparente:

$$|S| = \sqrt{P^2 + Q^2}$$

O factor de potência do circuito:

$$pf = cos(\theta_v - \theta_i)$$

Em geral procura-se que o factor de potência de um circuito de corrente alternada seja próximo de 1, de modo que a potência a minimizar a potência total fornecida à carga.

2 Procedimento experimental

Material necessário

Resistências (100 Ω)

Condensador (10 nF)

Bobine (40 mH)

Gerador de Funções

Multímetro

Oscilocópio

Fios de ligação

Parâmetro	Valor	Parâmetro	Valor
R _S (Ω)	50	Vs (V)	10
R_L (Ω)	100	L (mH)	1
R_{C} (Ω)	100	C (µF)	1

Figura 1

- Monte o circuito representado na figura 1.
- Compare os valores medidos dos fasores das várias grandezas com os valores teóricos.

Frequência	Fasor		
(kHz)			Fase
2	$V_{\rm in}$		0
	V_1		
	V_2		
	I_{in}		
	I_1		
	I_2		
20	$V_{\rm in}$		0
	V_1		
	V_2		
	I_{in}		
	I_1		
	I_2		

- Determine a impedância total do circuito, a reactância total e resistência total do circuito.

- Verifique se as leis de Kirchoff das malhas e dos nós se verificam.
- Determine a potência activa, reactiva e o factor de potência do circuito.

pf	_	
P	W	
Q	VAR	
S	VA	

- Qual o valor do condensador C1 a colocar em paralelo com o gerador, de modo que o factor de potência seja unitário. Verifique medindo o desfasamento entre $I_{\rm in}$ e $V_{\rm in}$.

Apêndice.

A medição da fase de um fasor (I), em relação ao fasor de referência (V), faz-se usando o osciloscópio medindo a diferença no tempo entre as passagens por zero dos 2 sinais.

Figura 2

O período dos sinais da figura 2 é 16 ms e a diferença no tempo entre os sinais d = 1.6 ms. O desfasamento é assim:

$$\Delta\Phi$$
 = 360.f.d= 360 x 62.5 x 1.6= 36°