Name:

Tutorial day and time:

Number of the *completed* problem you want feedback on:

1. Calculate the four 4th roots of the complex number $z=-2\sqrt{3}+2i$.

- 2. Let P = (1, 0, -2), Q = (-3, 2, 4), and R = (0, 5, -1) be points in \mathbb{R}^3 .
 - (a) Calculate the vectors $\vec{u} = \overrightarrow{PQ}$, $\vec{v} = \overrightarrow{QR}$, and $\vec{w} = \overrightarrow{PR}$.

- (b) Check that $\vec{u} + \vec{v} = \vec{w}$.
- (c) Explain, with a diagram, why your result in part (b) makes sense. (You do not have to accurately plot the points P, Q, R.)

- 3. Let $\vec{a}=\langle 2,-4,3\rangle,\, \vec{b}=\langle -5,2,7\rangle,$ and $\vec{c}=\langle 1,0,-3\rangle.$ Calculate the following:
 - (a) $4\vec{a} 3\vec{b}$
 - (b) $||3\vec{c}||$
 - (c) $3\|\vec{c}\|$
 - (d) $\vec{a} \cdot (2\vec{b} \vec{c})$

(e) $2(\vec{a} \cdot \vec{b}) - \vec{a} \cdot \vec{c}$

4. Referring to the diagram below, argue that the indicated distance d is given by $d = \frac{\vec{a} \cdot \vec{b}}{\|\vec{a}\|}$.

