ASYMPTOTIC PROOFS

CS2009- Design and Analysis of Algorithms

Example:
$$n^2 + n = O(n^3)$$

- Here, we have $f(n) = n^2 + n$, and $g(n) = n^3$
- Notice that if $n \ge 1$, $n \le n^3$ is clear.
- Also, notice that if $n \ge 1$, $n^2 \le n^3$ is clear.
- Side Note: In general, if $a \le b$, then $n^a \le n^b$ whenever $n \ge 1$. This fact is used often in these types of proofs.

• Therefore,

$$n^2 + n \le n^3 + n^3 = 2n^3$$

We have just shown that

$$n^2 + n \le 2n^3$$
 for all $n \ge 1$

• Thus, we have shown that $n^2 + n = O(n^3)$ (by definition of Big-O, with $n_0 = 1$, and c = 2.)

Example:
$$n^{3} + 4n^{2} = \Omega(n^{2})$$

- Here, we have $f(n) = n^3 + 4n^2$, and $g(n) = n^2$
- It is not too hard to see that if $n \ge 0$,

$$n^3 \le n^3 + 4n^2$$

• We have already seen that if $n \ge 1$,

$$n^2 < n^3$$

Thus when $n \geq 1$,

$$n^2 \le n^3 \le n^3 + 4n^2$$

Therefore,

$$1n^2 \le n^3 + 4n^2$$
 for all $n \ge 1$

Thus, we have shown that $n^3 + 4n^2 = \Omega(n^2)$ (by definition of Big- Ω , with $n_0 = 1$, and c = 1.)

Example:
$$n^2 + 5n + 7 = \Theta(n^2)$$

• When $n \geq 1$,

$$n^2 + 5n + 7 \le n^2 + 5n^2 + 7n^2 \le 13n^2$$

• When $n \geq 0$,

$$n^2 \le n^2 + 5n + 7$$

• Thus, when $n \ge 1$

$$1n^2 \le n^2 + 5n + 7 \le 13n^2$$

Thus, we have shown that $n^2 + 5n + 7 = \Theta(n^2)$ (by definition of Big- Θ , with $n_0 = 1$, $c_1 = 1$, and $c_2 = 13$.)

Show that
$$\frac{1}{2}n^2 + 3n = \Theta(n^2)$$

• Notice that if $n \ge 1$,

$$\frac{1}{2}n^2 + 3n \le \frac{1}{2}n^2 + 3n^2 = \frac{7}{2}n^2$$

• Thus,

$$\frac{1}{2}n^2 + 3n = O(n^2)$$

• Also, when $n \ge 0$,

Also, when $n \geq 0$,

$$\frac{1}{2}n^2 \le \frac{1}{2}n^2 + 3n$$

So

$$\frac{1}{2}n^2 + 3n = \Omega(n^2)$$

Since $\frac{1}{2}n^2 + 3n = O(n^2)$ and $\frac{1}{2}n^2 + 3n = \Omega(n^2)$,

$$\frac{1}{2}n^2 + 3n = \Theta(n^2)$$

Show that
$$(n \log n - 2n + 13) = \Omega(n \log n)$$

Proof: We need to show that there exist positive constants c and n_0 such that

$$0 \le c n \log n \le n \log n - 2n + 13$$
 for all $n \ge n_0$.

Since $n \log n - 2n \le n \log n - 2n + 13$, we will instead show that

$$c \, n \log n \le n \log n - 2 \, n,$$

which is equivalent to

$$c \le 1 - \frac{2}{\log n}$$
, when $n > 1$.

If $n \ge 8$, then $2/(\log n) \le 2/3$, and picking c = 1/3 suffices. Thus if c = 1/3 and $n_0 = 8$, then for all $n \ge n_0$, we have

$$0 \le c n \log n \le n \log n - 2n \le n \log n - 2n + 13.$$

Thus
$$(n \log n - 2n + 13) = \Omega(n \log n)$$
.

Show that
$$\frac{1}{2}n^2 - 3n = \Theta(n^2)$$

• We need to find positive constants c_1 , c_2 , and n_0 such that

$$0 \le c_1 n^2 \le \frac{1}{2} n^2 - 3n \le c_2 n^2 \text{ for all } n \ge n_0$$

• Dividing by n^2 , we get

$$0 \le c_1 \le \frac{1}{2} - \frac{3}{n} \le c_2$$

- $c_1 \le \frac{1}{2} \frac{3}{n}$ holds for $n \ge 10$ and $c_1 = 1/5$
- $\frac{1}{2} \frac{3}{n} \le c_2$ holds for $n \ge 10$ and $c_2 = 1$.
- Thus, if $c_1 = 1/5$, $c_2 = 1$, and $n_0 = 10$, then for all $n \ge n_0$,

$$0 \le c_1 n^2 \le \frac{1}{2} n^2 - 3n \le c_2 n^2 \text{ for all } n \ge n_0.$$

Thus we have shown that $\frac{1}{2}n^2 - 3n = \Theta(n^2)$.

► Prove $5n \log_2 n + 8n - 200 = O(n \log_2 n)$

$$5n \log_2 n + 8n - 200 \le 5n \log_2 n + 8n$$

 $\le 5n \log_2 n + 8n \log_2 n$ for $n \ge 2 (\log_2 n \ge 1)$
 $\le 13n \log_2 n$

- ► $5n \log_2 n + 8n 200 \le 13n \log_2 n$ for all $n \ge 2$
- $ightharpoonup 5n \log_2 n + 8n 200 = O(n \log_2 n) [c = 13, n_0 = 2]$

Prove $n^2 + 42n + 7 = O(n^2)$

$$n^2 + 42n + 7 \le n^2 + 42n^2 + 7n^2$$
 for $n \ge 1$
= $50n^2$

- ► So, $n^2 + 42n + 7 \le 50n^2$ for all $n \ge 1$
- $n^2 + 42n^2 + 7n^2 = O(n^2) [c = 50, n_0 = 1]$

Decide whether these statements are **True** or **False**. You must briefly justify all your answers to receive full credit.

1. If
$$f(n) = \Theta(g(n))$$
 and $g(n) = \Theta(h(n))$, then $h(n) = \Theta(f(n))$

Solution: True. Θ is transitive.

2. If
$$f(n) = O(g(n))$$
 and $g(n) = O(h(n))$, then $h(n) = \Omega(f(n))$

Solution: True. O is transitive, and $h(n) = \Omega(f(n))$ is the same as f(n) = O(h(n))

3. If
$$f(n) = O(g(n))$$
 and $g(n) = O(f(n))$ then $f(n) = g(n)$

Solution: False: f(n) = n and g(n) = n + 1.

$$4. \ \frac{n}{100} = \Omega(n)$$

Solution: True. $\frac{n}{100} < c * n$ for $c = \frac{1}{200}$.

F For all positive f(n), $f(n) + o(f(n)) = \Theta(f(n))$.

Let $f(n) = n^2$

Then, $n^2+o(n^2)=\Theta(\ n^2)$, For small o, f(n)< cg(n) i.e. $o(n^2)$ should be less than n^2 . Thus, Equation

F For all positive f(n), g(n) and h(n), if f(n) = O(g(n)) and $f(n) = \Omega(h(n))$, then $g(n) + h(n) = \Omega(f(n))$

f(n) = n, g(n) = nlogn, h(n) = logn, Thus, $nlogn + logn = \Omega(n)$, Thus Equation is True

F If f(n) = O(g(n)) and $f(n) = \Omega(g(n))$, then we have $(f(n))^2 = \Theta(g(n))^2$

If f(n) = 2n, g(n) can be n or (2n-1) or any equation with linear n in order satisfy both f(n) = O(g(n)) and $f(n) = \Omega(g(n))$ simultaneously. Thus True

T If f(n) = O(g(n)) and $f(n) = \Omega(g(n))$, then we have f(n) = g(n)

From above statement, it is clear that f(n) and g(n) can be different