

SESA2023 Propulsion

Lecture 0: Module Information and Organization

Ivo Peters i.r.peters@soton.ac.uk

PROPULSION CONTENT OVERVIEW

Section 1: Introduction and Fundamentals	3 weeks, Ivo Peters
Section 2: Ramjets, Combustion, Rockets	3 weeks, Ivo Peters
Section 3: Gas Turbines, Turbojets, and Turbofans	2 weeks, Ed Richardson
Section 4: Turbomachinery and Propellers	3 weeks, Ed Richardson

YOUR FINAL MARK

- 5 Summative courseworks (20%)
 - Three quizzes (3% each)
 - Two Labs (5.5% each)
- Exam (80%)
 - Sit down(!) exam

15 CATS = 150 hours

A WEEK IN SESA2023...

150 / 12 = 12.5 hours / week

Lectures: Concepts and examples 3 hours

Reading: Lecture notes
 2 hours

Practice material: Weekly problem sheet
 5 hours

Formative or summative assessment submission 2.5 hours

PROPULSION LABS

- Nozzle Lab: Compressible flow
- Propulsion Lab: Ramjet, (rocket), combustion
- Can't attend at your timetabled slot? Agree to switch with a colleague.
- Assessment: Summative Blackboard Tests
- Questions: Discussion Board

BLACKBOARD OVERVIEW

▼ 21-22-Propulsion-31358 🏫

Announcements

Course Content

Problem Sheets

Labs

Weekly Quizzes

Recorded Sessions

Module Information

Staff Information

My Marks

Reading List

Discussion Board

Bb Collaborate

BLACKBOARD: COURSE CONTENT

Lecture handouts This folder contains the lecture handouts for each week.
<u>Lecture slides</u>
Additional content Here you will find additional content for each week, such as videos, bits of code, further reading, etc.
Data books

BLACKBOARD: MODULE INFORMATION

▼ 21-22-Propulsion-31358 🏫

Announcements

Course Content

Problem Sheets

Labs

Weekly Quizzes

Recorded Sessions

Module Information

Staff Information

My Marks

Reading List

Discussion Board

Bb Collaborate

BLACKBOARD: MODULE AND ASSESSMENT SCHEDULE

▼ 21-22-Propulsion-31358 🏫

Announcements

Course Content

Problem Sheets

Labs

Weekly Quizzes

Recorded Sessions

Module Information

Staff Information

My Marks

Reading List

Discussion Board

Bb Collaborate

Semester week	Week/c	Uni week	Section	Quiz	Lab coursework	Weight
1	30/1/2023	18	1			
2	6/2/2023	19	1	Summative	3	3%
3	13/2/2023	20	1	Formative		
4	20/2/2023	21	2	Summative		3%
5	27/2/2023	22	2	Formative		
6	6/3/2023	23	2	Formative	Nozzle	5.5%
7	14/3/2023	24	3	Formative		
8	20/3/2023	25	3	Formative	Propulsion	5.5%
		E	ASTER BRI	EAK		
9	24/4/2023	30	4	Formative		
10	1/5/2023	31	4	Summative		3%
11	8/5/2023	32	4	Formative		
12	15/5/2023	33	Revision	Formative		

#	Assessment	Set Date	Due Date	Feedback Date	Weighted Mark
1	Quiz Week 1	30/01/2023	10/02/2023	17/02/2023	3%
2	Quiz Week 3	13/02/2023	24/02/2023	03/03/2023	3%
3	Nozzle Lab	13/02/2023	10/03/2023	24/03/2023	5.5%
4	Propulsion Lab	27/02/2023	24/03/2023	07/04/2023	5.5%
5	Quiz Week 9	24/04/2023	05/05/2023	12/05/2022	3%
6	Exam				80%

I NEED HELP!

SUMMARY

- Content in 4 sections
- Weekly set of material (hand-out, problem sheet, quiz)
- Mark: 20% coursework, 80% exam
 - Quizzes: 9%
 - Labs: 11%
- Questions on Discussion Board
- Any feedback is much appreciated!

SESA2023 Propulsion

Lecture 1: Introduction & Brief History

Ivo Peters i.r.peters@soton.ac.uk

Source: "Sustainable energy without the hot air" by David MacKay

This work should identify and evaluate existing, foreseen, and innovative in-sector measures in technology, fuels and operations, and their enablers, including information of probable costs. This will assist in identifying gaps, and information and expertise needed, in order to complete a thorough assessment of all in sector CO₂ reductions for international aviation. This should include timing, readiness, attainability and the quantity of CO₂ reduction possible, based on a feasible roll out into the aviation sector:

Sustainable Aviation Fuels (SAF), Low Carbon Aviation Fuels (LCAF), E-Fuels. (cons made by Freepik from www.flaticon.com

Source: ICAO (International Civil Aviation Organization)

WHAT IS PROPULSION?

- Drive "something" forward
- Aircraft propulsion:
 - Accelerate a working fluid (air)
- Momentum conservation

METHODS OF PROPULSION

Air breathing

Non air breathing

ROCKET PROPULSION

- No momentum in:
 - Momentum out is pure thrust!
- Disadvantage:
 - Carry all the oxidizer

AIR-BREATHING PROPULSION

- Capture mass (air) and accelerate it
- Carry only fuel

Brief History

18 & 19TH CENTURY

Figure 1.—Reproduction of Launay and Blenvenue belicopter (NASM 1930-15), using bentbow propulsion, 1784. (Photo A-18232)

Figure 2.—Pénaud's Planaphore (NASM 1930-17), using rubber-band propulsion, 1871. (Pnote A-19627)

Figure 4.—Giffard airship, steam-engine powered, 1852. (Photo A-19889)

Source: Smithsonian Annals of Flight

THE EARLY YEARS

1903: The Wright Flyer

Figure 15.-Antoinette monoplane with Levavasseur Antoinette engine, 1909. (Photo A-3099)

1909: Antoinette monoplane

Source: Smithsonian Annals of Flight

1920's: PROPELLER PROPULSION

1930's: SUPERCHARGING

- Focus on increasing power
- Evolutionary advancements on traditional engines

WHITTLE ENGINE

Whittle's 1930 Patent Application, allowed to lapse in 1935

EXPERT OPINIONS

"Scientific investigation into the possibilities of jet propulsion has given no indication that this method can be a serious competitor to the airscrew/engine combination."

British Under-Secretary of State for Air, 1934

"In its present state, and even considering the improvements possible when adopting the higher temperatures proposed for the immediate future, the gas-turbine engine could hardly be considered a feasible application to airplanes."

Committee on Gas Turbines, US National Academy of Sciences, June 1941

FIRST FLIGHT IN THE UK

Gloster E28/39 powered by the W1 ~ 15th May 1941

... **NOW**

- Speed
- Capacity
- Distance
- Efficiency
- Pollution
- Noise

SESA2023 Propulsion

Lecture 2: Thrust, fuel consumption and range

Ivo Peters i.r.peters@soton.ac.uk

THIS LECTURE

- Apply momentum conservation to rockets and gas turbines
- Investigate the significance of fuel flow in thrust
- Derive the Breguet range equation

MOMENTUM CONSERVATION

CONTROL VOLUME
Proportion

Pro

RECAP:
- Pressure acts

normal to control volume

- Mass flow

All needed for momentum conservation

This is the starting point we'll use for most engine analysis

mout = ma + mf ofuel Mount-Main = EFx Pressure Net force $-d+m \mid V_{5}(\dot{m}_{a}+\dot{m}_{t})-V_{o}\dot{m}_{o}=A_{5}(P_{A}-P_{5})+T$ -new variable: fuel to air ratio: $\xi = \frac{m_f}{m_q}$ $\xi = \frac{m_f}{m_q}$

'dt $\int \frac{dW}{dt} = -gTSFCW(\frac{2}{L})Qt$ $\int \frac{dW}{dt} = -gTSFCW(\frac{2}{L})Qt$

-Thrugh specific fuel consumption TSFC = mg -O: QW=-TSFC xFxg

$$S = \begin{pmatrix} L \\ D \end{pmatrix} = -g TSFC W \begin{pmatrix} d \\ L \end{pmatrix} V_{XS}$$

$$S = \begin{pmatrix} L \\ D \end{pmatrix} \frac{V}{g \times TSFC} \ln \left(\frac{W_1}{W_2} \right)$$

Wi=Wftw, Wz= Wo

32

777 RANGE

• Empty mass: 145,150 kg

• Fuel capacity: 145,538 kg

Cruise speed: 248 m/s

• Range: 15,843 km

• L/D: 25

Estimate the following:

- Mass flow rate of fuel
- Thrust-specific fuel consumption
- Thrust

$$\dot{m}_f = 2.28 \text{ kg/s}$$
 $TSFC = 2.77 \cdot 10^{-5} \text{ kg s}^{-1} \text{N}^{-1}$
 $F = 82.2 \text{ kN}$

SUMMARY

Momentum conservation

$$\dot{M}_{x,out} - \dot{M}_{x,in} = \Sigma F_x$$

– Rockets:

$$F = \dot{m}V_j + A_j(P_j - P_A)$$

– Air-breathing propulsion systems:

$$F = \dot{m}_a \left[(1+f)V_j - V \right]$$

Breguet range equation

$$s = -\frac{L}{D} \frac{V}{g_0 \times \text{TSFC}} \ln \left(\frac{W_2}{W_1} \right)$$

SESA2023 Propulsion

Lecture 3: Efficiency, altitude tables

Ivo Peters i.r.peters@soton.ac.uk

THIS LECTURE

- Define efficiency parameters for propulsion systems
 - Thermal efficiency
 - Propulsive efficiency
 - Overall efficiency
- How does efficiency concerns influence engine design?
- Usage of altitude tables + computational tool

EFFICIENCY

Heat Thermal Efficiency Jet Power **Overall Efficiency** Propulsive Efficiency Aircraft Power

work of thruster Propulsive officiency use fact Mp = Wair craft
Wisc+ Woir(rut = FxV,) by thrust - 12 (Ma + MF) VJ - 12 ma Vo

[wainy fuel ration f = 1 ma ((1+f) V3 - V0)

teason why V; > Vo often, because of Min + hreist requirement 5 high moss flow rate

PROPULSIVE EFFICIENCY

PROPULSIVE EFFICIENCY

$$\eta_P = \frac{2}{\frac{V_j}{V} + 1}$$

$$F = \dot{m}_a(V_j - V)$$

PROPULSIVE EFFICIENCY: INCREASE MASS FLOW RATE

$$F = \dot{m}_a(V_j - V)$$

Junkers Jumo 004 (1940)

General Electric GE90 (1993-current)

IAI ANI) ()VFRAII FFF

49 seell in industry

THERMAL EFFICIENCY: PRESSURES AND TEMPERATURES

BOEING 777 EFFICIENCY

Cruise speed: 905 km/h Unit cost: \$259-315m

Engine - PW4098 \$24 million

General characteristics

- Type: Two spool high bypass ratio Turbofan
- Length: 4.14 m Diameter: 2.8 m (fan)
- Compressor: 1 stage fan, 5 stage low pressure compressor, 15 stage (5 variable) high pressure compressor
- Combustors: Annular
- Turbine: 2 stage high pressure turbine, 5 stage low pressure turbine
- Overall pressure ratio: 32.0:1 35.4:1
- Bypass ratio: 5.3:1

Performance

- Air consumed: 1295 kg per second
- Lower calorific value of = 44.65 MJ/kg
- Aircraft velocity at cruise V = 251 m/s
- Jet velocity at cruise $V_i = 299 \text{ m/s}$
- Fuel flow at cruise = 0.58kg/s

ALTITUDE TABLES

- Engine design for use at altitude
- Atmospheric conditions change (temperature & pressure)
- International Standard Atmosphere (ISA) provides a consistent approach

h, km	δ , $P/P_{\rm std}$	Standard day θ , $T/T_{\rm std}$	Cold day θ , T/T_{std}	Hot day θ , T/T_{std}	Tropical day θ , $T/T_{\rm std}$	h, km
0	1.0000	1.0000	0.7708	1.0849	1.0594	0
0.25	0.9707	0.9944	0.7925	1.0788	1.0534	0.25
0.50	0.9421	0.9887	0.8142	1.0727	1.0473	0.50
0.75	0.9142	0.9831	0.8358	1.0666	1.0412	0.75
1.00	0.8870	0.9774	0.8575	1.0606	1.0352	1.00
1.25	0.8604	0.9718	0.8575	1.0545	1.0291	1.25

^aDensity: $\rho = \rho_{\text{std}} \ \sigma = \rho_{\text{std}} (\delta/\theta)$. Speed of sound: $a = a_{\text{std}} \sqrt{\theta}$. Reference values: $P_{\text{std}} = 101,325 \text{ N/m}^2$; $T_{\text{std}} = 288.15 \text{ K}$; $\rho_{\text{std}} = 1.225 \text{ kg/m}^3$; $a_{\text{std}} = 340.3 \text{ m/s}$.

ISA: COMPUTATIONAL

- See pages after the altitude tables
- Implementation in Jupyter notebook on blackboard (additional material)

In [13]: h = 15000 delta = P(h)/P_0 theta = T(h)/T_0 print('delta = %0.4f' % delta) print('theta = %0.4f' % theta) delta = 0.1195 theta = 0.7519

45

SUMMARY

- Overall efficiency
 - Propulsive efficiency, engine design
 - Thermal efficiency, engine design

- International Standard Atmosphere
 - Tables and computational methods