

Apprentissage Automatique

Introduction-II

jean-francois.bonastre@univ-avignon.fr www.lia.univ-avignon.fr

I Un cadre probabiliste

- Définitions
- Formalisation
- Notations
- Règles de décision
- Erreur de classification
- Remarques

Définitions

- Trois objets
 - Les éléments
 - Les classes
 - Les descripteurs
- On suppose qu'il existe un classement correct, soit une application qui associe une classe à tout élément
- Apprendre = Associer une classe à une liste de descripteurs de telle manière que cette association corresponde au classement défini ci-dessus.

J.F. Bonastre

3

Formalisation (1)

- Π est la population, D est l'ensemble des descriptions, et l'ensemble des classes est $\{1,...,c\}$.
- $X: \Pi \to D$ est la fonction qui associe une description à tout élément de la population.
- $Y: \Pi \to \{1,...,c\}$ est la fonction de classement qui associe une classe à tout élément de la population.
- une fonction $C: D \rightarrow \{1,...,c\}$ sera appelée fonction de classement ou procédure de classification.

J.F. Bonastre

IUF

Formalisation (2)

- Le but de l'apprentissage est de rechercher une procédure de classification C, C X = Y
- lacktriangle De manière plus réaliste, telle que \mathcal{C}° X soit une bonne approximation de Y

Formalisation (3)

- ightharpoonup Ensemble d'attributs A_1, \ldots, A_n logiques, symboliques ou numériques qui prennent leurs valeurs dans des domaines D_1, \ldots, D_n
- En parole, les attributs sont souvent les différents coefficients des vecteurs acoustiques
- Décrire un élément de la population = attribuer une valeur à chacun de ces attributs.

IUF

Notations

- P(d) la probabilité qu'un élément de Π ait d pour description, soit encore $P(d) = P(X^1(d))$
- P(k) la prob. qu'un élément de Π soit de classe k, soit encore $P(k) = P(Y^1(k))$
- P(d/k) la prob. qu'un élément de classe k ait d pour description, soit encore $P(d/k) = P(X^1(d)/Y^1(k))$ (définie si P(k) est non nulle)
- P(k/d) la prob. qu'un élément ayant d pour description soit de classe k, soit encore $P(k/d) = P(Y^1(k)/X^1(d))$. Définie siP(d/k) est non nulle; par Bayes :

P(k/d) = P(d/k)P(k) / P(d)

(Π a été « probabilisé » et D est estimé discret)

J.F. Bonastre

7

Règles de décision

- Règle Majoritaire
 - attribuer à chaque description la classe majoritaire
 - Cmaj associe à tout élément d de D la classe k de {1,...,c} telle que P(k) soit maximum
- Règle du Maximum de Vraisemblance (ML) si j'observe d, je choisis la classe pour laquelle cette observation est la plus probable
 - Cvraisemblance associe à d la classe k telle que P(d/k) soit max.
- Règle de Bayes (MAP)

d se voit attribuer la classe k qui max. la probabilité P(k/d)

- Par Bayes : choisir la classe k qui maximise le produit P(d/k)P(k)
- CBayes associe à tout élément d la classe k telle que P(k/d) soit maximum, i.e. P(d/k)P(k) soit maximum

J.F. Bonastre

Erreur de classification

- E(d), la probabilité qu'un élément de la population Π de description d soit mal classé par C
 - $E(d) = P(Y \neq X / X=d)$
- E(C) est la moyenne pondérée des erreurs sur les descriptions d
 - $E(C) = \sum d \in D, E(d).P(X=d)$
- CBayes -> Erreur de classification minimale

$$E(d) = P(Y \neq X / X=d) = 1 - P(Y = X / X=d)$$

CBayes maximise $P(Y = k / X=d)$

J.F. Bonastre

9

Remarques

- ♠ E(C)=0 -> E(CBayes)=0
 - La probabilité que des individus appartenant à des classes différentes aient des descriptions identiques est nulle.
 - Problème déterministe
 - Rare !
- En parole, bruits, variabilités...

J.F. Bonastre

II Problèmes et généralités

- Supervisé vs non Supervisé
- Hiérarchique ou non
- Rescaling
- Sélection des paramètres
- Partionnement hard ou soft
- Nombre de classes
- Qualité d'une partition/segmentation

J.F. Bonastre

11

Supervisé vs non supervisé (1)

- On observe un phénomène régit par des lois inconnues
 - Des données observées aux connaissances
- Supervisé :
 - Les données sont accompagnées de la connaissance à inférer (classe ou valeur)
 - On va vouloir généraliser à d'autres ensembles de données
- Non supervisé
 - Les données seules sont observées

IUF

Supervisé vs non supervisé (2)

- Approche orientée connaissance
 - On utilise les connaissances d'un expert
- Approche à apprentissage à partir d'exemples
 - La procédure de classification est extraite automatiquement à partir d'un ensemble de couples (exemple,classe)
 - Problème de généralisation et de sur apprentissage
- Approche à apprentissage non supervisé (clustering/ partitionnement)
 - Séparer en classes un ensemble de données
 - Métrique, Nombre de classes
 - A priori sur les classes (méthodes paramétriques) ou non (méthodes non paramétriques)

J.F. Bonastre

Hiérarchique ou non?

- Algorithmes hiérarchiques
 - itératif
 - Ascendant : on regroupe des classes à chaque étape
 - Descendant : on coupe des classes
 - Efficace (toutes les part.)
 - Mais
 - un a priori non remis en question
 - partitionnement

- Algorithmes non hiérarchiques
 - Toutes les classes sont calculées/optimisées simultanément
 - Peu efficaces car tous les éléments sont utilisés
 - Doit être recalculé pour chaque nombre de classe
 - Une erreur peut être corrigée
 - Décision Soft ou Hard

J.F. Bonastre

15

Rescaling La proximité entre deux éléments dépend du point de vue... ***STREET SCREETING** DEFORTE SCREETING** J.F. Bonastre 16

Sélection des paramètres (1)

- Un élément est représenté par un descripteur
 - Dimension du descripteur
 - Nature du descripteur
- En parole, étape de paramétrisation acoustique : du signal vers un vecteur de paramètre par fenêtre temporelle

J.F. Bonastre

17

Sélection des paramètres (2)

- Problème
 - La dimension peut être très grande (~100 en parole, ~10000 en texte)
 - Grande dimension = couteux
 - Souvent, il y a du « bruit »
 - Perte d'efficacité
 - Perte du potentiel d'interprétation
- La capacité du classifieur dépend des paramètres
 - -> Sélectionner les meilleurs paramètres

J.F. Bonastre

IUF

Sélection des paramètres (3)

- Deux approches
 - Sélectionner les meilleurs paramètres suivant un critère a priori, indépendant du problème (filtrage)
 - Sélectionner le meilleur sous ensemble en fonction des résultats pour le problème visé (sélection)
- Dans tous les cas, le nombre de combinaison est :

Sélection des paramètres (4) filtrage

- Diminuer la corrélation
 - PCA
 - LDA
 - ICA
- Meilleure corrélation avec la cible
 - Corrélation linéaire
 - Mutual Information

Sélection des paramètres (5) Sélection descendante

- Algorithme de knock-out
 - On a un ensemble N de n paramètres
 - Construire n sets, N_i, en retirant de N le ième élément
 - Faire n expériences (apprentissage+validation!)
 - Sélectionner le ième paramètre, correspondant au set N_i avec les moins bonnes performances (le ième paramètre n'était pas dans le set N_i)
 - Remplacer N par N_i
 - Réitérer
 - Cher!

J.F. Bonastre

21

Sélection des paramètres (6) Sélection Ascendante

- Partir avec un sous ensemble Q de dimension q
 - Réaliser n-q sets en ajoutant un paramètre
 - Mesurer les performances (app + validation)
 - Sélectionner le paramètre menant à la meilleur performance et le rajouter dans Q
 - Réitérer
- Attention à l'initialisation
 - Valeur pour q
 - Réitérer l'algorithme pour chaque sous ensemble Q initial (de dimension q)

Sélection des paramètres (7) Autres solutions

- Pondérer (en continu) les paramètres
 - Descente de gradient
 - Algorithmes génétiques
- Arbres de décision
- ◈ ...

J.F. Bonastre

Nombre de classes (1)

- Un problème ouvert, très difficile
- Incontournable en classification non supervisée
- Mais aussi présent en supervisé, pour décider par exemple de la complexité d'un modèle (GMM)
- Approches
 - Inertie/Entropie
 - MDL
 - Pureté
 - Bayésienne (BIC)

J.F. Bonastre

25

Nombre de classes (2)

- Première approche
 - essayer n solutions avec un nombre de classe différent
 - Mesurer la « qualité » de chacune des solutions et choisir la meilleure (BIC ou inertie)
- Deuxième approche (classification hiérarchique)
 - Optimiser un paramètre pour la coupure ou l'élagage (pureté estimée ou entropie)
 - Revient à la 1ère approche car tous les regroupements, de 1 à n classes, sont déjà effectués

J.F. Bonastre

Qualité ◆ Validation expérimentale J.F. Bonastre 29

III Quelques algorithmes et approches

- Regroupement Hiérarchique
- Kmeans
- Isodata
- Fuzzy C Means
- KNN
- Les mixtures de Gaussiennes en classification non supervisée
- Le classifieur naif de Bayes
- Les arbres de décisions
- Evaluation des performances

J.F. Bonastre

31

Regroupement Hiérarchique (1) Principes

- Non supervisé
- Au départ, chaque élément constitue une classe
- Iteratif : regroupement à chaque étape des deux classes les plus proches
- Problèmes
 - Distance inter classes
 - Distance/Similarité inter éléments
 - Nombre de classe

J.F. Bonastre

Regroupement Hiérarchique (2) Algorithme

- D = [d(i,j)] est la matrice de proximité inter éléments (N*N)
- Les regroupements sont numérotés séquentiellement : 0,1,...., (n-1) et L(k) est le degré du kème regroupement
- ◆ D(m) : une classe de numéro de séquence m
- d [(r),(s)] est la proximité entre les classes (r) et (s)

J.F. Bonastre

33

Regroupement Hiérarchique (3) Algorithme

- 1. Début avec une classe par élément, degré de regroupement L(0)=0, num. de séquence m=0
- 2. Trouver les 2 classes (r) et (s) telles que d[(r),(s)] = min d[(i),(j)]
- m = m +1, on regroupe (r) et (s), le degré de regroupement est fixé à :
 L(m) = d[(r),(s)]
- 4. Si une seule classe, stop, sinon aller en 2

J.F. Bonastre

Regroupement Hiérarchique (4) Distances et similarités

- La matrice de similarité (ou de dissimilarité) interéléments n'est jamais remise en cause (en général, pour des raisons d'efficacité)
- La distance inter classes correspond à
 - Single Linkage
 - Complete Linkage
 - Average Linkage
 - Ward (inertie)
 -

J.F. Bonastre

35

Regroupement Hiérarchique (5) Distances et similarités

- ♦ La mesure de similarité respecte
 - sim(u,v)=sim(v,u)
 - sim (u,v) > 0 si u différent de v
 - = sim (u,u)=0
- En parole
 - GLR/BIC cher
 - Cross Likelihood ratio
 - Cross entropy

J.F. Bonastre

Regroupement Hiérarchique (6) Linkage

Regroupement Hiérarchique (7) Représentation

- Représentation sous forme d'un arbre de regroupement
- Si la longueur des branches est proportionnelle au degré de regroupement : Dendrograme

IUF

Kmeans (1) KMoyennes

- entrée le nombre k de groupes (classes) et les données, m enregistrements $x_1^{\rightarrow}, \dots x_m^{\rightarrow}$
- 1. choisir *k* centres initiaux $c_1 \rightarrow \ldots c_k \rightarrow$
- 2. pour chacun des m enregistrements, l'affecter au groupe i dont le centre c_i^{\rightarrow} est le plus proche
- 3. si aucun élément ne change de groupe alors arrêt et sortir les groupes
- 4. calculer les nouveaux centres : pour tout i, c_i^{\rightarrow} est la moyenne des éléments du groupe i
- 5. aller en 2

Kmeans (2) Problèmes

- Mesure de similarité, entre deux enregistrements
- Nombre de classes ?
- Initialisation
- Partionnement

J.F. Bonastre

43

Kmeans (3) Définir le nombre de classes

- Minimiser la distance intra groupe et maximiser la distance entre les groupes
- Distance ?
 - le rattachement simple, single linkage = la plus petite distance entre les éléments les plus proches ;
 - le rattachement complet, complete linkage = la distance entre les membres les plus éloignés
 - la distance entre les centres

J.F. Bonastre

IUF

Isodata (1)

- Même algorithme que Kmeans
- ◆ Mais cherche à équilibrer les classes
- Fusion de deux groupes (diminution du nombre de classes) si la distance inter-centre est trop faible
- Éclatement d'un groupe si l'inertie du groupe est trop grande
- Seuils !!

J.F. Bonastre

IUF

KNN (1) N Plus Proches Voisins (nPPV)

- Méthode non paramétrique
 - pas de modèle
 - Les données sont l'information !
- entrée : y→l'élément considéré, k, le nombre de voisins, un échantillon de m enregistrements classés (x→,c(x→))
- 1. déterminer k plus proches enregistrements de $y \rightarrow$
- 2. combiner les classes de ces *k* exemples en une classe *c*
- sortie : la classe de $y \rightarrow \text{ est } c$

J.F. Bonastre

49

KNN (2) Usage

- Classe de sortie = étiquettes des k voisins
- Classe de sortie = vote majoritaire sur les k voisins
- Sortie = Moyenne/combinaison des k voisins
- ◆ Parole : voir thèse de F. Lefèvre

Les mixtures de Gaussiennes (1) en classification non supervisée

- Faire un classifieur à partir d'un estimateur de densité
 - Apprendre un estimateur de densité de probabilité sur l'ensemble des données
 - Cet estimateur est un mélange de densités plus simples
 - Chaque composante du mélange représente une classe
 - Un élément appartient à l'ensemble des classes, avec une probabilité d'appartenance
- Mélange de Gaussiennes -> Mixture de Gaussienne (GMM)

J.F. Bonastre

51

Les mixtures de gaussiennes (2) Exemple mono dimensionnel

- La courbe verte est la distribution des données
- Elle est approchée (ici exact !) par un mélange de deux composantes (bleu et rouge)

J.F. Bonastre

w.statsoft.com/index

Les mixtures de Gaussiennes (3) en classification non supervisée

- Proche de kmeans mais
 - Une observation est rattachée à toutes les classes et non plus à la plus proche
 - Probabilité de classification vs classification
 - Utilisation de résultats formels
- On peut se ramener facilement à une classification en choisissant la classe la plus probable pour chaque obs.

J.F. Bonastre

53

Le classifieur naif de Bayes

- $X = \{x_1, x_2, x_1, x_n\}$, un jeu de variable
- Cj appartenant à l'ensemble C = {c1,c2,...,ck}, les classes
- On cherche la probabilité a posteriori de l'événement
- * Avec Bayes: $p(C_j|x_1,...,x_n) = \frac{p(x_1,...,x_n|C_j).P(C_j)}{p(x_1,...,x_n)} \approx p(x_1,...,x_n|C_j).P(C_j)$
- Hypothèse du classifieur naif de Bayes : les variables sont statistiquement indépendantes :

$$p(C_j|x_1,...,x_n)=p(C_j|X)=p(C_j).\prod_{i=1}^n p(x_i|C_j)$$

J.F. Bonastre

GMM en classification supervisée

- Classifieur naif des Bayes
- Estimation des probabilités par un GMM

J.F. Bonastre

55

Les arbres de décisions (1) Définition et propriétés

- Arbre de décision
 - Représentation graphique d'une procédure de classification
 - Noeud = test sur les champs ou attributs
 - Feuilles = classes (avec répétitions)
 - Classer un enregistrement = Descendre dans l'arbre selon les réponses aux différents tests
- Propriétés importantes des arbres de décision :
 - la procédure de classification associée est compréhensible et peut être justifiée
 - les attributs apparaissant dans l'arbre sont les attributs pertinents pour le problème de classification considéré
- Un arbre de décision est un système de règles exhaustives et mutuellement exclusives

J.F. Bonastre

Les arbres de décisions (2) Avantages et Inconvénients

- lisibilité du résultat
- tout type de données
- sélection des variables
- classification efficace
- outils disponibles
- En parole/acoustique, voir R Blouet (reconnaissance du locuteur)
- sensible au nombre de classes
- Algorithme non incrémental

J.F. Bonastre

57

Classification automatique Mesure des performances (1)

- Approche théorique
 - Calcul du risque théorique
- Approche expérimentale
 - Jeu de test représentatif
 - Métriques
 - Erreurs de type I et II
 - Précision/Rappel
 - Pureté

J.F. Bonastre

Classification automatique Mesure des performances (2)

- Classification non supervisée Clustering
- Pureté d'une classe m

$$p_m = \sum_{n=1}^{m} \left(\frac{n_{mp}}{n_{mp}}\right)^2$$

- n_{mp} le nombre de document dans m releyant de l'étiquette p
- $\,\blacksquare\,\, N_{m^*}$ le nombre total de document dans la classe m
- P, le nombre d'étiquettes
- Pureté d'une classification

J.F. Bonastre

Classification automatique Mesure des performances (3)

- Classification supervisée Détection
 - Erreur de Type I, False Alarm, Fausse Acceptation (FA)
 - Erreur de type II, Miss, False Rejection, Faux Rejet (FR)
 - Probabilité de détection = power = puissance
 - Courbes FA, FR en fonction du seuil
 - ROC, DET, Erreur de type II (ou power) en fonction des erreur de type I

(IU

Classification automatique Mesure des performances (4)

- Classification supervisée Détection
 - Des points spéciaux EER, HTER, HTERmin
 - Une fonction de coût, en fonction des probabilités a priori et des coûts relatifs des erreurs

J.F. Bonastre

Classification supervisée – Recherche d'information

Rappel=#documents pertinents trouvés
documents pertinents

Précision=#documents pertinents trouvés # documents trouvés

Classification automatique Mesure des performances (7)

- Classification supervisée Recherche d'information
 - Rappel et Précision
 - Rappel en fonction de la précision
 - Précision à n documents
- Si détection, alors en nombre d'événements

J.F. Bonastre

65

Classification automatique Mesure des performances (8)

- Problèmes !!!
 - Avoir une « vérité terrain »
 - Prendre en compte la longueur des documents
 - Une erreur de frontière doit coûter combien ?
 - **.**..

J.F. Bonastre

