

System will not change, but ABCD matrices will change Pi(t) = APi(t) + bu(t) (xp-1) y(+) = cfx(+) + du(+) x(t) = P-1 APx(t) + P-1 bu(t) y(+) = cpx(+) + du(+). $\overline{A} = P^{-1}AP$ $\overline{B} = P^{-1}B$ $\overline{C} = CP$ $\overline{D} = D$ $\overline{D} = D$ $\overline{D} = D$ $\overline{D} = D$ $\overline{D} = D$ FOR SPEED CONTROL: CENTRA TOUR + CENTRA 307 (8) X $\chi = \begin{bmatrix} \chi_1 \\ \chi_2 \end{bmatrix} \begin{bmatrix} \omega \\ i\alpha \end{bmatrix}$ $\overline{x}_1 = c_0$ $\overline{x}_2 = -\omega + i\alpha$ new defination $\overline{X} = \begin{bmatrix} \overline{\chi}_1 \\ \overline{\chi}_2 \end{bmatrix} = \begin{bmatrix} \chi_1 \\ -\chi_1 + \chi_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} \chi_1 \\ \chi_2 \end{bmatrix}$ So P = [10] CALCULATING A, B, GD FOR SPEED CONTROL: $\bar{A} = \rho^{-1}AP$ b = ρ-b -> Do the calculation's later on $\bar{c} = cP$

Conver. Conversion OF STATE VARIABLE TO TRASPER FUNCTION:
- Simply take Laplace transform.
$L(x(t)) = S \times (s) - x = A \times (s) + b \circ (s)$
$\gamma(s) = c \chi(s) + d v(s)$
Transforming and manipulation
$(S_{f}-A) \times (S) = \chi^{\circ} + b(u(S))$ $\iint \text{ Finally}$
$x(s) = (s_1 - A)^{-1} x^{0} + (s_1 - A)^{-1} bu(s)$
Y(s) = c(sI-A) + (c(sI-A) - b + d 70(s)
so, if x and v(s) are know x(s) and y(s) can be
computed z
$TF = Y(S) = G(S) = C(ST - A)^{-1}b + d$
determinant of (SI-A) STRICTLY IROPEL
$\frac{G(S)}{G(S)} = \frac{c(SI - A)^{\dagger}}{c(SI - A)^{\dagger}} n P > n Z$
$(s_{-a_{11}})(s - a_{22})(s - a_{nn}) = s_{n+1}^{n-1} s_{n-1}^{n-1} + s_{2}^{n-1} s_{n-2}^{n-1}$
+ dn
$C(G) = C \left[O(n^{-1}) + O(n^{-1}) \right]$
and
st x's tt