Precision LCR Meter

LCR-800

USER MANUAL

GW INSTEK PART NO. 82CR-81900MJ1

This manual contains proprietary information, which is protected by copyright. All rights are reserved. No part of this manual may be photocopied, reproduced or translated to another language without prior written consent of the Good Will Instrument company.

The information in this manual was correct at the time of printing. However, Good Will continues to improve products and reserves the right to change specifications, equipment, and maintenance procedures at any time without notice.

Table of Contents

SAFETY INST	TRUCTIONS	5
GETTING ST	ARTED	10
	Main Features	11
	Measurement Type	12
	Front Panel Overview	
	Rear Panel Overview	16
	Power Up	18
	Fixture Connection	20
	Zeroing	24
	Component Measuring Guidelines	26
BASIC MEAS	UREMENT	29
	Measurement Item Description	30
	Parameter Configuration	
	Running Measurement	
	Store Recall	
BIN FUNCTION	ONS	48
	Binning Menu	50
	Set Bin Menu	
	Bin Summary Menu	68
RS232 REMC	DTE	72
	LCR Setup	73
	LCR Viewer	
	Terminal Connection	
PROGRAMM	ING	87
	Command Syntax	87
	Commands	

NIERACE	•••••	111
	RS232 Interface Configuration	112
	Signal Overview	116
AQ		121
PPENDIX		123
	Fuse Replacement	123
	Circuit Theory and Formula	124
	Accuracy Definitions	132
	Specifications	136

GWINSTEK

SAFETY INSTRUCTIONS

This chapter contains important safety instructions that you must follow when operating or storing the LCR-800. Read the following before any operation to insure your safety and to keep the LCR-800 in the best possible condition.

Safety Symbols

These safety symbols may appear in this manual or on the LCR-800.

! WARNING

Warning: Identifies conditions or practices that could result in injury or loss of life.

Caution: Identifies conditions or practices that could result in damage to the LCR-800 or to other properties.

DANGER High Voltage

Attention Refer to the Manual

Protective Conductor Terminal

Earth (ground) Terminal

Do not dispose electronic equipment as unsorted municipal waste. Please use a separate collection facility or contact the supplier from which this instrument was purchased.

Safety Guidelines

General Guideline

- Do not place any heavy object on the LCR-800.
- Avoid severe impact or rough handling that leads to damaging the LCR-800.
- Do not discharge static electricity to the LCR-800.
- Do not block or obstruct the cooling fan vent opening.
- Do not perform measurement at circuits directly connected to Mains (Note below).
- Do not disassemble the LCR-800 unless you are qualified as service personnel.

(Measurement categories) EN 61010-1:2001 specifies the measurement categories and their requirements as follows. LCR-800 falls under category I.

- Measurement category IV is for measurement performed at the source of low-voltage installation.
- Measurement category III is for measurement performed in the building installation.
- Measurement category II is for measurement performed on the circuits directly connected to the low voltage installation.
- Measurement category I is for measurements performed on circuits not directly connected to Mains.

Power Supply

- The power supply voltage should not fluctuate more than $110V-240V \pm 10\%$.
- Connect the protective grounding conductor of the AC power cord to an earth ground, to avoid electrical shock.

Fuse

• Fuse type: FUSE 5TT 3A/250V

• Make sure the correct type of fuse is installed before powering up.

- To ensure fire protection, replace the fuse only with the specified type and rating.
- Disconnect the power cord before fuse replacement.
- Make sure the cause of fuse blowout is fixed before fuse replacement.

- Cleaning LCR-800 Disconnect the power cord before cleaning.
 - Use a soft cloth dampened in a solution of mild detergent and water. Do not spray any liquid.
 - Do not use chemical or cleaner containing harsh material such as benzene, toluene, xylene, and acetone.

Operation Environment

- Location: Indoor, no direct sunlight, dust free, almost non-conductive pollution (Note below)
- Relative Humidity: < 85%
- Altitude: < 2000m
- Temperature: 10°C to 50°C

(Pollution Degree) EN 61010-1:2001 specifies the pollution degrees and their requirements as follows. LCR-800 falls under degree 2.

Pollution refers to "addition of foreign matter, solid, liquid, or gaseous (ionized gases), that may produce a reduction of dielectric strength or surface resistivity".

- Pollution degree 1: No pollution or only dry, non-conductive pollution occurs. The pollution has no influence.
- Pollution degree 2: Normally only non-conductive pollution occurs. Occasionally, however, a temporary conductivity caused by condensation must be expected.
- Pollution degree 3: Conductive pollution occurs, or dry, nonconductive pollution occurs which becomes conductive due to condensation which is expected. In such conditions, equipment is normally protected against exposure to direct sunlight, precipitation, and full wind pressure, but neither temperature nor humidity is controlled.

Storage environment Location: Indoor

• Relative Humidity: < 85%

• Temperature: -20°C to 60°C

Disposal

Do not dispose this instrument as unsorted municipal waste. Please use a separate collection facility or contact the supplier from which this instrument was purchased. Please make sure discarded electrical waste is properly recycled to reduce environmental impact.

Power cord for the United Kingdom

When using the LCR-800 in the United Kingdom, make sure the power cord meets the following safety instructions.

NOTE: This lead/appliance must only be wired by competent persons

WARNING: THIS APPLIANCE MUST BE EARTHED

IMPORTANT: The wires in this lead are coloured in accordance with the following code:

Green/ Yellow:

Earth

Blue: Neutral

O_N

Brown: Live (Phase)

As the colours of the wires in main leads may not correspond with the colours marking identified in your plug/appliance, proceed as follows:

The wire which is coloured Green & Yellow must be connected to the Earth terminal marked with the letter E or by the earth symbol \bigcirc or coloured Green or Green & Yellow.

The wire which is coloured Blue must be connected to the terminal which is marked with the letter N or coloured Blue or Black.

The wire which is coloured Brown must be connected to the terminal marked with the letter L or P or coloured Brown or Red.

If in doubt, consult the instructions provided with the equipment or contact the supplier.

This cable/appliance should be protected by a suitably rated and approved HBC mains fuse: refer to the rating information on the equipment and/or user instructions for details. As a guide, cable of 0.75mm2 should be protected by a 3A or 5A fuse. Larger conductors would normally require 13A types, depending on the connection method used.

Any moulded mains connector that requires removal /replacement must be destroyed by removal of any fuse & fuse carrier and disposed of immediately, as a plug with bared wires is hazardous if a engaged in live socket. Any re-wiring must be carried out in accordance with the information detailed on this label.

GETTING STARTED

This chapter describes the instrument's main features, front & rear panels, power up sequence, fixture connections and calibration.

Main Features	Main Features Model comparison	
Measurement type	Measurement item	
	Measurement combination	l 2
Panel overview	Front Panel Overview	13
Tanel overview	Rear Panel Overview	16
Setup	Power Up	
Scrup	Tilt stand	18
	Power up	
Fixture connection	Fixture Connection	20
Tixture confidention	Fixture structure	
	Fixture connection	2
Bias voltage connection	External voltage bias connection	22
Zeroing	Zeroing	24
20101116	Zeroing calibration	

Main Features

• 12Hz ~ 200kHz wide test frequency (LCR-821) Performance • 5 digit measurement resolution • 2V DC bias voltage • 0.05% basic measurement accuracy (LCR-821/819/817) • 0.1% basic measurement accuracy (LCR-829/827/826) • Automatic and manual measurements Operation • Dual measurement display • Measurement in absolute values or as a deviation from a nominal value. • Precision four wire fixture • Component Sorting • Up to 30V DC external bias voltage • Internal memory • Large Dot matrix display, 240x128 resolution • Intuitive user interface, comprehensive measurement functions • RS-232C (LCR-821), LCR-819/817/816 optional Interface

• Handler Interface (LCR-829/827/826)

Model comparison

	LCR model						
Test Frequency	821	819	829	817	827	816	826
(12Hz~200kHz)	•						
(12Hz~100kHz)		•	•				
(12Hz~10kHz)				•	•		
(100Hz~2kHz)						•	•

Measurement Types

Measurement item

Primary measurements	Capacitance (C)	Inductance (L)
	Impedance (Z)	Resistance (R)
Secondary	Dissipation factor (D)	Quality factor (Q)(=1/D)
measurements	Resistance (R)	Phase Angle (θ)

Measurement combination

•:Available, —:Not available

1st measurement	2nd measurement		Circuit model			
	Q	D	R	θ	Series	Parallel
Capacitance (C)	_	•	•	_	•	•
Inductance (L)	•	_	•	_	•	•
Impedance (Z)	_	_	_	•	•	_
Resistance (R)	•	_	_	_	•	•

*Only the LCR-821 can select L/R and Z/ θ measurement modes.

Front Panel Overview

7. Bias	7 externa display display	as key selects an internal or all bias. The bias will be yed on the bottom of the LCD or as INT.B (internal bias) or (external bias).
8.On/Off	// 0 \\	n/Off key turns the internal rnal bias on or off.
4. PPM		res Dissipation and Quality as PPM.
1. C.V	Turns of off.	constant voltage mode on or
0. R.H	Used to	o turn Range Hold On or Off.
FREQ	Used to	o enter test frequencies.
Numerical numbers		o enter numbers, decimals gative values.
Enter		nter key is used to confirm and number entries.

Start

The Start key is used to start measuring when in manual mode.

The start key can also be used to select automatic or manual measuring modes.

Hold the Start key for 3 seconds to toggle between auto and manual mode.

mo

Terminals

Force and Sense terminals

LFORCE Current return

LSENSE Low potential
HSENSE High potential

HFORCE Current output

Force and Sense terminals

Power Switch

Turns the power on or off.

On On

Off

Rear Panel Overview

LCR-819, LCR-817, LCR-816

LCR-829, LCR-827, LCR-826

LCR-821

Contrast control

The LCD contrast control

External Bias

The positive and negative external bias.

30V (35V Max voltage tolerable)

- 200mA

Max current

Fuse / Power Socket

The fuse holder contains the main fuse, 5TT 3A/250V. For fuse replacement details, see page 123.

The mains socket accepts the power cord. See page 18 for power-up details.

300V \sim CAT $\scriptstyle\rm II$

Ground

Ground input.

Handler Interface

Handler interface for binning (LCR-829/827/826 only).

RS-232 Interface

RS232 interface (LCR-821). RS232 interface is used for remote control with the LCR-Viewer software. RS232 is also available as a factory installed option (LCR-816/817/819).

Power Up

GWINSTEK

Tilt stand

Ensure the stand is up. Low Angle

High Angle

Ensure the stand is down.

Power up

Panel operation 1. Connect the power cord to the socket.

2. Press the power button. The display becomes active in 2~3 seconds.

3. Use the contrast knob on the rear panel to adjust the LCD display contrast.

COUnterclockwise: bright

e:

Clockwise: dark

LCD

L .23456 mH	SPEED SLOW DISPLAY	L	.23456	6 mH
Q .6789	MODE L/Q	Q	.6789	
F: 100,000 kHz R.H OFF V: 1,000V C.V OFF AUTOMANU INT.B OFF	CIRCUIT SERIES MENU	F : 100 V : 1.0 AUTO		TESTIN RH OF C.V OF INT.B OF

Fixture Connection

Fixture structure

Background

The standard fixture is a four-wire type (Kelvin 4 wire). The outer terminals (Hforce and Lforce) provide the current and the inner terminals (Hsense and Lsense) measures the potential.

Description

HFORCE

Carries the signal current source.

Connected to the + side of the device

under test.

HSENSE Together with Lsense, monitors the

Potential. Connected to the + side of

the device under test.

LSENSE Together with Hsense, monitors the

Potential. Connected to the - side of

the device under test.

LFORCE Accepts the signal current return.

Connected to the – side of the device

under test.

GND If the test component has a large

metal area NOT connected to either of the terminals, connect to the GND

input to minimize noise level.

Fixture connection

- Panel operation 1. Discharge the test component before connecting the fixture set.
 - 2. Connect the Kelvin clip test lead into the front terminals. Line the lead fixture up to the front terminals and slide in. Turn the BNC handle counter clockwise to unlock the fixture. Turn the handles clockwise to lock the fixture.

3. Connect the fixture to the test component. If the component has polarity, connect the H side to the positive lead and the L side to the negative lead. Make sure the distance between the lead base and fixture clip is short enough.

4. If the test component has an outer case unconnected to either of the leads, connect to the ground terminal for noise level reduction.

External voltage bias connection

Background

An external voltage bias of 0-30 volts with a maximum of 200mA can be applied to the external voltage bias terminals on the rear panel. The external bias voltage must be floating and not connected to ground. For details for setting the external bias voltage see page 34.

1. Connect the voltage bias terminals to a bias voltage. Leave ground floating.

<₽

Don't connect

Power

Supply

GWINSTEK

Zeroing calibration

Background

Open and short circuit calibration (zeroing) should be performed on a daily basis to correct for cable and fixture errors before taking measurements. When test fixtures or test cables are changed, the zeroing process should be performed again. All data performed during the calibration is stored in the internal memory of the LCR-800.

The Open circuit calibration determines the stray admittance and compensates high impedance measurements. The short calibration determines the residual impedance and is used when determining low impedance measurements.

Open circuit

The Open circuit calibration measures the stray admittance of the test fixture. This is used for high impedance measurements.

Procedure

1. Insert the test fixture or cable. Ensure the cables are not shorted and are open.

2. Press the MENU key, then OFFSET, followed by CAP OFFSET.

3. Wait for the calibration to finish. If the OPEN TEST was successful, the screen will display the following message:

OPEN TEST

OK

Warning

If the test failed, ensure your cables or test fixtures are shorted. Ensure R.H is OFF. After inspection try again.

7. Press EXIT when both tests are OK.

Warning

Failure to pass both tests will result in erroneous measurements.

Component Measuring Guidelines

Background

For measuring Impedance, Capacitance, Inductance, and Resistance, series or parallel equivalent circuit models are available. Usually a component manufacturer will specify how a component should be measured and at what frequency. If not, use the guidelines below. Select the equivalent circuit and frequency according to the component value. For more information about equivalent circuit models and theory see page 124.

General Inductors Inductors have always traditionally been measured in series equivalent circuits. For large inductors a lower test frequency yields more accurate results. For small inductors, higher frequencies are more accurate.

Test		Expected In	nductance	
Frequency	<10uH	10uH~1mH	1mH~1H	>1H
0.1kHz	_	_	_	Series
1kHz	_	_	Series	_
10kHz	_	Series	_	_
100kHz	Series	_	_	_

General Capacitors

Capacitors are usually measured in series except for extremely small capacitance. Like with inductors, larger capacitors should be measured with low frequencies. Small capacitors with high frequencies.

Test		Expected C	apacitance	
Frequency	<10pF	10pF~400pF	400pF~1uF	>1uF
0.1~0.12 kHz	_	_	_	Series
1kHz	_	_	Series	_
10kHz	_	Series or Parallel	_	_
100kHz	Parallel	_		_

General Resistors A series inductance circuit is the best equivalent circuit for low resistance ($<1k\Omega$) and a parallel capacitance circuit for high resistances (> $10M\Omega$).

Test		Expected Resistance	
Frequency	$<1k\Omega$	$1k\Omega{\sim}10M\Omega$	>10MΩ
0.03kHz	_	_	Parallel
0.25kHz	_	Parallel	_
1kHz	Series	_	_

case connection

Metal component A large area of metal can add noise to the measurement. Here is how to minimize the effect.

> If the metal is connected to one of the terminals, this should be connected to the Hforce terminal side.

If the metal is NOT connected to either of the terminals, connect to the GND terminal.

Wire capacitance When measuring the wire capacitance, the fixture clips that are marked with H_F(High Force)/H_S (High Sense) should always be connected to the point that is influenced the most by noise.

GW INSTEK

Air-cored coils

Air-cored coils can pick up noise very easily, therefore they should be kept well clear of any test equipment that may contain power transformers or display scan circuitry. Also, keep the coils away from metal objects which may modify inductor characteristics.

Iron-cored and ferrite inductor

The effective value of iron-cored and ferrite inductors can vary widely with magnetization and test signal level. Measure them at the AC level and frequency in use. Unlike most inductors, a parallel equivalent circuit is most suitable for iron-cored inductors. When core materials are damaged by excessive magnetization (for example: tape heads and microphone transformers), check that the test signal is acceptable before connection.

BASIC MEASUREMENT

Basic Measurement details how to measure individual components and how to configure the LCR-800 settings. Basic Measurement also describes how to save and recall memory. Advanced functions such as the handler menu or remote control are detailed on page 48 and 72, respectively.

Measurement	Measurement Item Description	30
Description	Measurement combination	30
2 es epe	Display overview	30
Configuration	Parameter Configuration	31
	Measurement Speed	31
	Select equivalent circuit type	33
	Set Bias voltage	
	Set measurement frequency	
	Set measurement voltage	
	Set PPM for D/Q measurements	
	Set constant voltage source	
	Set Range hold	
	Set Average	
	Set Nominal Values	41
Measurement	Running Measurement	
Measurement	Select Single measurement	
	Select Automatic measurement	
Store/Recall	Store Recall	45
ovo. o _j . vocan	Store or Recall Memory Settings	45
	Recall Calibration Settings	

Measurement Item Description

In general, two measurement items, primary and secondary, are combined in a single measurement. The following table shows the available combinations. Details of the measurement modes and the circuit theory and formula can be found in the appendix, page 124.

Measurement combination

•:Available, —:Not available

1st measurement	2nd	d mea	surem	ent	Circui	t model
	Q	D	R	θ	Series	Parallel
Capacitance (C)	_	•	•	_	•	•
Inductance (L)	•	_	•*	_	•	•
Impedance (Z)	_	_	_	•*	•	_
Resistance (R)	•	_	_	_	•	•
*LCR-821						

Display overview

Normal mode

Parameter Configuration

Measurement Speed

Measurement Speed

The LCR-800 series support 3 different measurement speeds: slow, medium or fast at approximately 1, 5 or 12 (LCR-829/827/826) measurements per second. The faster the measurement speed, the lower the accuracy. Conversely the slower the measurement speed, the higher the accuracy. The measurement speed and accuracy are dependent on the mode, voltage and frequency. For detailed information, see the specification table on page 136.

1	1.0	
LCR-817/ 819/ 821	Accuracy	Measurements/second
Slow	0.05%	At least 1
Medium	0.1%	At least 3
Fast	0.24%	At least 7
LCR-816/826/827/829	Accuracy	Measurements/second
Slow	0.1%	At least 1
Medium	0.2%	At least 3
Fast	0.48%	At least 7

Panel operation

1. From the main menu, press the SPEED menu key to cycle between the various speeds.

Displayed measurement unit

Measurement units

All measurement unit results can be displayed as the absolute values, delta values or delta percentage values.

Value will show the absolute value of the measurement in Ohms (Ω) , Henries (H) or Farads (F). The primary measurement has resolution of 5 digits; the secondary has a resolution of 4 digits (θ , 2 digits).

Delta% will show the percentage deviation of L, C, R or Z from a nominal (stored) value.

Delta will show the deviation from a nominal value as an absolute value in Ohms (Ω), Henries (H) or Farads (F).

Units Ω , H, F Value

Absolute deviation (Ω , H, F) Delta

% deviation Delta%

Panel operation 1. From the main menu, press the DISPLAY menu key to cycle between the display types.

Measurement Modes

Measurement mode

The LCR-800 has a number of different measurement modes. Primary and secondary measurements are displayed on the screen simultaneously. For detailed information regarding the measurement combinations, see the specifications on page 136. The measurement combinations are shown in the table below.

(C/D)	Capacitance/Dissipation	
(C/R)	Capacitance/Resistance	
(L/R)*	Inductance/Resistance	
(L/Q)	Inductance/Quality factor	
(Z/θ)*	Impedance/Angle	
(R/O)	Resistance/Quality factor	

Panel operation 1. From the main menu, press the MODE menu key to cycle between the different modes.

*Only the LCR-821 can select L/R and Z/ θ measurement modes.

Select Equivalent Circuit Type

Background

Series or Parallel equivalent circuits can be selected. Not all measurement modes can be used with both series and parallel equivalent circuits. For details about circuit types see the circuit theory chapter on page 124

chapter on page 12	- 1.	
Measurement	Series	Parallel
type		
Capacitance (C)	•	•
Inductance (L)	•	•
Impedance (Z)	•	_
Resistance (R)	•	•

Panel operation 1. From the main menu, press the CIRCUIT menu key to cycle between the series or parallel equivalent circuits.

Set Bias voltage

Background

Voltage bias can be set internally or externally. An internal voltage bias of 2 volts is normally applied to a DUT. External voltage bias is able to accept 0 to 30 volts with a maximum current of 200mA. For external bias voltage connections see page 22. When measuring a DUT, please allow 1 second to stabilize a DUT after a bias voltage is applied. In general a bias voltage should only be applied to capacitors. If a bias voltage is applied to devices with low impedance, inaccurate measurements will occur.

When an external voltage is applied, constant voltage mode (C.V.ON) must be enabled, page 39.

Panel operation 1. Press the 7/Bias key on the number pad to cycle from internal to external bias. The bottom of the screen will display internal or external bias.

Press 8/ON/OFF to turn the bias voltage on or off. The bottom of the screen will display the internal or external bias as on or off.

Set measurement frequency

Background

The measurement frequency, together with the measurement voltage is used to define the electrical characteristics of each measurement item. Make sure the appropriate frequency is selected according to the component characteristics.

The frequency range of each model is as follows:

The frequency runge	01 000011 1110 0101 10 010 10110 1101	
100Hz~2kHz	LCR-816/826	
12Hz~10kHz	LCR-817/827	
12Hz~100kHz	LCR-819/829	
12Hz~200kHz	LCR-821	

The LCR-821 can provide 504 different frequencies with a 5 digit resolution including decimal places. Any frequency can be keyed from the number pad, and the closest available frequency (of 504) will be selected automatically. The LCR-818/829 has 503 different frequencies and the LCR-817/827 and LCR-816/826 have 489 and 245, respectively.

To calculate the different possible frequencies, use the tables below.

	Frequenc	y rar	nge	Formula	n range
LCR-821	0.012	То	0.23077kHz	3kHz/n	13 to 250
	0.23438	То	15kHz	60kHz/n	4 to 256
	15.385	То	200kHz	200kHz/n	1 to 13
	Frequenc	y rar	nge	Formula	n range
LCR-819/829	0.012	То	0.23077kHz	3kHz/n	13 to 250
	0.23438	То	15kHz	60kHz/n	4 to 256
	15.385	То	100kHz	200kHz/n	2 to 13
	Frequenc	y rar	nge	Formula	n range
LCR-817/827	0.012	То	0.23077kHz	3kHz/n	13 to 250
	0.23438	То	10kHz	60kHz/n	6 to 256
	Frequenc	y rar	nge	Formula	n range
LCR-816/826	0.10000	То	0.23077kHz	3kHz/n	13 to 30
	0.23438	То	2kHz	60kHz/n	30 to 256

Panel operation 1. Press the -/FREQ key on the number pad.

2. Enter the frequency using the numerical keys, and then press ENTER.

1.0kHz

1.1kHz

The nearest frequency will be selected from the 504(LCR-281) nominal frequencies, and updated in the display. Here, the nearest frequency to 1.1kHz is 1.0909kHz.

F:1.0909 kHz

After the test frequency has been changed, the zeroing must be performed again. See page 24

Set measurement voltage

Background

Along with frequency, voltage can be set. Make sure the appropriate voltage is selected, according to the component characteristics.

 $5mV \sim 1.275V (5mV steps) < 200kHz$ Range 100mV ~ 1.275 (5mV steps) @200kHz

Voltage setting

1. From the main menu, press MENU (F5) followed by SETTING (F3) and VOLT (F2)

2. Enter the voltage using the numerical keys, and then press ENTER.

100mV

1٧ C.V

MEMORY MEMORY NO: 1 VOLTAGE= 1.000 1.000 AVGE AVERAGE= RECALL CALIBRATION **RECALL EXIT**

The voltage is updated in the display. If the voltage entered is outside the allowable voltage range, the nearest voltage is selected.

3. Press (F5) EXIT to exit the Setting menu.

Set PPM for D/Q measurements

Background

Dissipation and Quality Factor (D/Q) measurements can be shown in parts per million (PPM) if D/Q is less than 0.0100. This increases the resolution by a factor of 100. The units of D and Q are dimensionless and are expressed as a decimal ratio with a multiplier of 1,000,000.

Ensure the operating mode has a D or Q component. See page 33.

Panel operation 1. Press 4/PPM to turn PPM on or off for all D/Q measurements

PPM will be displayed on the right hand side of the screen, next to mode.

Set constant voltage source

Background

If a DUT needs to be tested at a set voltage, the constant voltage function can be used. Using the C.V. function the LCR will maintain a source resistance of 25Ω . Therefore the test voltage is constant for any DUT impedance greater than 25Ω . Using the constant voltage feature will reduce the accuracy of measurements by a factor of 3.

Panel operation

1. Press 1/C.V to turn constant voltage on or off.

V: 1.000V

AUTO MANU

C.V ON / OFF is toggled each time the 1/C.V button is pressed.

C.V

ON

Set Range hold

Background

When DUTs are disconnected from the test cables/fixtures during continuous testing, Range Hold can be used to avoid range switching. This is particularly useful for repetitively testing a number of DUTs. For more information on Range and range hold, see the specifications, page 136.

Panel operation

1. Press 0/R.H to turn Range Hold on or off.

R.H ON / OFF is toggled each time the 0/R.H button is pressed.

Set Average

Background

An arbitrary number of tests can be averaged to produce an averaged test result. 1-255 tests can be averaged. The larger the number of tests that are averaged, the longer the test time.

Panel operation

1. From the main menu, press MENU, followed by SETTING and AVGE.

2. Enter the number of number of averages (tests) using the numerical keys, and then press ENTER.

The average of 10 tests

MEMORY NO: 1

VOLTAGE=

1.000

AVERAGE= 10

RECALL CALIBRATION

The number of averages is displayed in the main panel and in the AVGE menu icon after a short processing time.

2. Press EXIT to exit to the main menu.

Set Nominal Values

Background

The LCR-800 series are able to set nominal values when using the DELTA and DELTA% measuring modes. Nominal values can be set to up to 5 digits including decimal places. Each primary measuring unit can have the nominal value set.

Panel operation

1. From the main menu, choose the measuring mode that you wish to change by pressing (F3) MODE until the correct measuring mode is displayed.

For example, if L/Q mode is selected, an inductance (mH) nominal value can be set.

 $\begin{array}{lll} \text{Inductance (L)} & \text{H, mH} \\ \text{Capacitance (C)} & \text{nF, uF, pF} \\ \text{Impedance (Z)} & \Omega, \text{K}\Omega \\ \text{Resistance (R)} & \Omega, \text{K}\Omega \end{array}$

3. Press MENU (F5), followed by SORT (F2) and NOM.VAL (F1).

3. Enter the nominal number using the numerical pad, followed by ENTER. Up to 5 digits can be entered.

The NOM.VAL key and screen will be updated when a nominal value is entered.

4. Press EXIT to exit to the main menu.

GW INSTEK

S

Т

Α

R

Т

Running Measurement

Select Single measurement

Background

Measurements can be manually controlled (MANU) or automatically updated (AUTO).

In manual mode, one measurement is performed by pressing the start key.

Panel operation 1. Press the START key to manually perform a measurement when in manual mode.

SPEED .23456 mH .6789 MODE L/Q TESTING CIRCUIT
R.H OFF SERIES F: 100.000 kHz C.V OFF V: 1.000V **AUTO MANU** INT.B OFF MENU

TESTING will appear on the screen, followed by the measurement results. The duration of the test will depend on the measurement accuracy and the number of averages used.

Select Automatic measurement

Background

Measurement can be manually controlled (MANU) or automatically updated (AUTO).

In continuous mode (AUTO), measurements are automatically done and the display is updated according to the measurement speed setting.

Panel operation

1. Hold the START key for a few seconds to toggle between automatic (AUTO) and manual (MANU) mode.

2. When in AUTO mode, measurements will start automatically until AUTO mode is switched back to MANU.

The bottom of the screen will indicate if AUTO or MANU mode is activated.

Testing will appear on the screen each time a measurement is completed.

Store Recall

Store or Recall Memory Settings

Background

The LCR-800 series have 100 blocks of memory available for saving settings.

¹!_{Note}

All memory is stored using an internal battery. The battery should last 3 years before replacement. If any files cannot be saved or recalled, please contact your local GW Instek distributor to have the battery changed.

The LCR-827/829 can also use the stored memory settings for Binning (page 48)

Panel operation 1. From the main menu, press MENU, SETTING AND MEMORY.

Press 2 to save the current measurement settings, or 1 to recall a previously saved memory setting. OR

3. Use the number pad to select a memory number and ENTER to confirm the selection. Range: 1~100

Memory slot 10

4. The RECALL NO. or STORE NO. will be set accordingly.

MEMORY RECALL NO: 10 **VOLTAGE=** 1.000 1.000 AVGE AVERAGE= **RECALL CALIBRATION** RECALL **EXIT**

5. Press EXIT to exit to the main menu.

Cancel

6. Press ENTER at any of the memory options to cancel.

Recall Calibration Settings

Background When measurement values are inaccurate, original calibration settings can be recalled.

Panel operation 1. From the main menu, press MENU, SETTING AND RECALL.

2. Press 1 to recall the calibration settings or 2 to cancel.

OR

- 3. When the status bar has completed, the calibration settings are recalled.
- 4. Press EXIT to exit to the main menu.

If the function keys are not active after calibration settings have been recalled, DO NOT turn off the instrument. Wait a few minutes and try again.

BIN FUNCTIONS

The Handler interface is used to sort components into different bins. The handler menu compares results from a number of different user defined limits. Component sorting can be accomplished in either manual or automatic mode. For more information on using the handler interface to sort components please see page 114.

Bin Functions	Handler Menu Overview	50
J dev.oo	Handler Menu	52
	Mode Setting	52
	Circuit Setting	
	Speed Setting	
	Display Setting	
	Frequency Setting	
	Select/Run Auto/Manu Sorting	
	Voltage Setting	
	Bias Setting	
	Constant Voltage Setting	58
	Delay Setting	
	Average Setting	60
Set Bin Menu	Set Bin Menu Overview	61
Set Bill Wella	Bin Menu	62
	Sort Type	63
	Bin Number	64
	Set Nominal Value	64
	Set Max/Min Absolute Limit	65
	Set Max/Min Percentage Limit	65
	Set Max/Min Secondary Measurement Limits	
	Clear Bins	
	Exit Set Bin Menu	

<u>GW</u>	IN5	TEK

BIN FUNCTIONS

Bin Summary	Bin Summary Menu Overview	68
Menu	Bin Summary/Results	70

LCR-800 User Manual

Binning Menu

Handler Menu Overview

Mode Setting

The mode setting area shows basic settings for the current bin mode.

SET BIN Configures the Bin settings MODE Measurement mode SPEED Measurement speed Displays the Bin test results BIN SUM **CIRCUIT** Selects between serial and parallel circuits Selects what measurement unit is **DISPLAY** displayed. Parameter BIN, VALUE, OFF

Measurement Results

Settings

The primary and secondary measurement results are

displayed.

The testing settings for the DUT can be edited here.

Frequency - model dependant
 Voltage – model dependant
 Range Displays the current range

		Parameter 1,2,3,4
	Delay	Delay between each measurement
		Parameter 0~99999 ms
	MANU/ AUTO	Selects between automatic and manual mode
		Parameter Auto, Manu
	INT.B/EXT.B	Internal and External voltage Bias
		Parameter INT.B, EXT.B
	C.V	Constant voltage
		Parameter On, Off
	AVG	Number of Averages
		Parameter 1-255
Menu Keys	1	Scroll up through the menu items
	•	Scroll down through the menu items
	SET	Edit the menu items
	EXIT	Exit the menu

Handler Menu

Background Before Bin Sorting, the measurement settings must be configured.

Panel operation 1. To access the handler menu, press MENU, SORT, HANDLER from the main menu.

2. The Handler menu appears.

SET BIN MODE :R/Q	BIN SUM CIRCUIT :SER.	1
SPEED:FAST	DISPLAY :VAL	+
R	Q	
24.83 Ω	.0000	SET
F: 1.0000 kHz	MANU	
V : 1.000 V	INT.B OFF	
RANGE: 1	C.V : OFF	EXIT
DELAY: 00000mS	AVG: 1	LAII

Mode Setting

Background Use the mode setting to change the measurement mode in the handler menu.

Panel Operation 1. Use the arrow menu keys (F1/F2) to move the cursor to MODE.

MODE :R/Q

2. Press SET repeatedly to scroll through the different modes.

Circuit Setting

Background Use Circuit setting to change the equivalent circuit.

Panel Operation 1. Use the arrow menu keys (F1/F2) to move the cursor to CIRCUIT.

CIRCUIT :SER.

2. Press SET repeatedly to select either serial or parallel circuits.

SER. Serial Circuit Parallel Circuit PAR.

Speed Setting

Background Use the Speed setting to change the measurement speed.

Panel Operation 1. Use the arrow menu keys (F1/F2)to move the cursor to SPEED.

SPEED: FAST

2. Press SET repeatedly to select FAST, MEDIUM or SLOW.

Display Setting

GWINSTEK

Background Use the Display setting to change the measurement results as values or bins.

Panel Operation 1. Use the arrow menu keys (F1/F2) to move the cursor to Display.

2. Press SET repeatedly to make a selection.

SET

VAL. Display the primary and secondary measurement results as values. Display the bin result (BIN1~13) BIN OFF Don't display results

Frequency Setting

Background Set the testing frequency.

Panel Operation 1. Use the arrow menu keys (F1/F2)to move the cursor to F (Frequency)

1: 1.0000

kHz

2. Use the number pad to enter a frequency and press ENTER to confirm.

1.0000kHz

Select/Run Auto/Manu Sorting

Background Set the test mode from manual to automatic.

Panel operation 1. Hold the START key for a few seconds to toggle from automatic or manual bin sorting.

The center of the screen will indicate if AUTO or MANU mode is activated.

2. To test in MANU mode, press the START key for each test. Testing will begin automatically in AUTO mode.

3. Results will be updated in the display, depending on the settings. Each time a test result has been completed, an asterisk will appear on the screen.

R Q .0000 24.83 F:1.0000 kHz MANU

Voltage Setting

Set the testing voltage. Background

Panel Operation 1. Use the arrow menu keys (F1/F2) to move the cursor to V (Voltage)

W: 1.000

2. Use the number pad to enter a voltage and press ENTER to confirm.

1.000 V

Bias Setting

Background Set internal or external bias voltage.

Panel Operation 1. Use the arrow menu keys (F1/F2)to move the cursor to INT.B or EXT.B.

2. Press INT (F3) to use internal biasing.

3. Press EXT (F4) to use external biasing.

4. Use the arrow menu keys to highlight OFF/ON.

INT.B OFF

6. Press OFF (F4) to turn bias voltage off.

Range Setting

GWINSTEK

Background

The range can be selected from 1 to 4. Different ranges should be used for different components and component values and to ensure accurate readings.

_		Component	
_	Inductor	Capacitor	Resistor
Range1	1~16mH/f	1.6~25uF/f	6.25~100Ω
Range2	16~256mH/f	100~1600nF/f	0.1~1.6kΩ
Range3	256~4100mH/f	6.4~100nF/f	1.6~25.6k Ω
Range4*	4.1~65H/f	400~6400pF/f	$25.6\sim410k\Omega$
<u>c</u>	Anna for account to little	•	·

f = test frequency in kHz

Panel Operation 1. Use the arrow menu keys (F1/F2) to move the cursor to RANGE.

2. Press F3 (UP) to increase the range or F4 (DOWN) to decrease the range.

Constant Voltage Setting

Background

Constant voltage is usually used when a set voltage is needed. For details about constant voltage, see page 39.

Panel Operation 1. Use the arrow menu keys (F1/F2)to move the cursor to C.V.

^{*} This range is not used above 20 kHz

2. Press ON (F3) to turn constant voltage on.

3. Press OFF (F4) to turn constant voltage off.

Delay Setting

Background

The Delay Setting determines the delay time in milliseconds between each measurement.

Delay time can also delay the menu response. When the instrument is in AUTO mode, any panel key presses will be delayed as well. This will result in a delay proportional to the Delay Settings.

Panel Operation 1. Use the arrow menu keys (F1/F2)to move the cursor to DELAY.

DELAY: 00000mS

2. Use the number pad to enter the delay time followed by the Enter key

100ms

Average Setting

Background

The average function chooses how many averages (1-255) are used for each measurement.

Panel Operation 1. Use the arrow menu keys (F1/F2)to move the cursor to AVERAGE.

AVG: 1

2. Use the number pad to enter the number of averages followed by the Enter key

100 averages

Set Bin Menu

Set Bin Menu Overview

Bin Menu

GWINSTEK

Background Before Bin Sorting, the measurement settings must be configured

Panel operation 1. To access the handler menu, press MENU, SORT, HANDLER.

2. The Handler menu appears.

Use the arrow menu keys (F1/F2) to move the cursor to SET BIN.

4. Press SET (F3).

The Bin menu appears.

Sort Type

Background

Depending on the measurement mode, items can be sorted by either the primary or secondary measurements.

Panel operation 1. Move the cursor to SORT BY in the Bin menu.

SORT BY R

Press F3 to switch from primary or secondary sorting.

 $R \leftrightarrow Q$, $C \leftrightarrow D$, $C \leftrightarrow R$, $L \leftrightarrow Q$

Bin Number

Background

Up to 13 sorting bins can be configured, with a minimum of 1 bin.

Panel operation 1. Move the cursor to TOT_BIN in the Bin menu.

2. Use the number pad to enter the amount of sort bins.

10 bins

Set Nominal Value

Background

Depending on the measurement mode, a nominal value can be set. The nominal value unit depends on the measurement type, see Sort Type, page 63.

Panel operation 1. Move the cursor to Nom.Val in the Bin menu.

2. Use the number pad to enter a nominal value for the current sort bin.

For example: 20 Ω.

Set Max/Min Absolute Limit

Background

The maximum and minimum absolute limits of the current bin can be set. The limit units depend on the measurement type, see Sort Type, page 63.

Panel operation 1. Move the cursor to MAX to set the absolute maximum limit.

Use the number pad to enter the maximum absolute value for the current sort bin.

For example:

20 Ω.

Repeat the above procedure for MIN.

Set Max/Min Percentage Limit

Background

The maximum and minimum limits of the current bin can be set as a percentage of the nominal value. The limit units depend on the measurement type, see Sort Type, page 63.

Panel operation 1. Move the cursor to +% to set the positive percentage limit.

2. Use the number pad to enter the maximum percentage value for the current sort bin.

For example: 10%.

3. Repeat the above procedure for -%.

Set Max/Min Secondary Measurement Limits

Background

The absolute maximum and absolute minimum limits of the secondary measurements can also be set.

Panel operation

1. Move the cursor to X_MAX, where X is the secondary measurement item.

2. Use the number pad to enter the maximum value for the current sort bin.

For example: 0.1000

3. Repeat the above procedure for X_MIN. Ensure that MIN is smaller than or negative compared to MAX.

Clear Bins

Background

All the bin settings can be cleared for all the bins.

Panel operation

1. Press NEXT BIN until BIN1 is the current bin.

Move the cursor to SORT BY in the Bin menu.

Press F1 to clear all the bin settings.

4. Press F2(YES ->) to confirm the clear or press F1(NO->) to cancel. NO ->

Or

YES->

Bin settings can only be cleared from Bin1.

Exit Set Bin Menu

Panel operation 1. Press EXIT at any time to exit the Bin Set menu.

Bin Summary Menu

Bin Summary Menu Overview

Bin Parameters

Shows the basic bin parameters used for the bin sorting.

Displays what measurement was used. **SORT BY**

Displays the nominal value NOM_VAL

*_MIN Displays the secondary measurement

sort limits. * MAX

Test Results- Fail

Shows all the failed test results. Any tests that failed bin sorting will appear here.

	PHI	Indicates that a test result is greater than the maximum limit.	
		PHI= Primary Hi	
	PLO	Indicates that a test result is less than the minimum limit.	
		PLO = Primary Lo	
	SREJ	The secondary limit is out of range (NG).	
		SREJ = Secondary Rejection	
	TOTAL	Displays the total amount of failed test results.	
Test Results- Pass Shows the total amount of passed results.			
	Bin1-Bin2	Displays the bin range and the total amount of passed test results.	
Bin Results	Shows the results for each Bin.		
	BIN	Shows the Bin number	
	MAX X	Displays the maximum limit for each bin	
	MIN X	Displays the minimum limit each bin.	
	TOTAL	Displays the total results for each bin.	
Menu Keys	NEXT PAGE	Goes to the next results page.	
	LAST PAGE	Goes to the previous results page.	
	CLR.	Clears the results.	
	EXIT	Exits the Bin Summary menu.	

Bin Summary/Results

Background

After the bins have been set up (page 61) and sorting has been completed (page 55) the measurement results/summary can be shown.

Panel Operation 1. Use the arrow menu keys (F1/F2) to move the cursor to BIN SUM.

2. Press SET to enter the BIN SUM menu.

3. The BIN SUM menu appears

SORT BY R Q_MIN:1000		NOM_VAL: Q_MAX:		
FAIL_ITEM	TEST RESUL	LT	TOTAL	NEXT PAGE
PHI PLO SREJ TOTAL	(R>MAX) (R⊲MAX) (QNG)		2 32 34	
PASS_ITEM	Max:		TOTAL	CLR.
BIN 1 – BIN 2	2		855	EXIT

4. Press NEXT PAGE or LAST PAGE to navigate the result pages.

5. To clear the test results, press CLR followed by F3 (YES->) to confirm.

6. Press EXIT to exit the bin summary results.

RS232 REMOTE

GWINSTEK

The LCR-821 (LCR-816/817/819 as options) includes RS232C remote connectivity. With the RS232 VIEWER software, the LCR meter can be remotely controlled and all test results can be saved to a PC.

LCR Setup	RS232 Settings	
LCR Viewer	LCR VIEWER Display OverviewLCR Viewer Connection and File Settings	74 75
	LCR Viewer File SettingsLCR Viewer Remote Measurement	
	View Data	81
Terminal Connection	Configure Terminal Connection	84

LCR Setup

RS232 Settings

Background

RS232 must first be enabled on the LCR-800 before trying to connect with a PC.

Panel operation 1. From the main menu, press MENU, SORT AND RS232.

Press F1 to turn the RS232 interface ON ON or F2 to turn RS232 OFF.

OR

3. RS232 status will be shown on the display.

4. Press EXIT to return to the main menu.

GWINSTEK

LCR Viewer

LCR VIEWER Display Overview

Background LCR-Viewer mimics the LCR-800 series front panel

and operates in a similar manner.

Message Display Key Message Area Configures all PC settings, connection settings and Menu Bar

shows data results. Virtual Panel Simulates the LCR-800 series front panel. Meter The current time, used to tag test results. Time

0k

Message Area	The message area displays the current status of connection, results, files saved and restored.
Message Display Key	The Message Display Key turns the Message Area on/off.

LCR Viewer Connection and File Settings

Background	Before LCR Viewer can be used the connection
	settings and file settings must be set appropriately.
	Please ensure LCR Viewer has been installed.

Connection Settings

- 1. Connect the LCR meter to the PC with an RS232 cable.
- 2. Ensure the LCR-800 is set to Page 43 manual (single) measurement mode.
- 3. Ensure RS232 has been enabled on Page 73 the LCR meter.
- 4. Run the LCR Viewer program.
- 5. Go to the <u>Option</u>→Settings menu.
- 6. The Settings panel appears.

- 7. Choose the COM port. Please see the Windows Device Manager for the applicable COM port setting.
- 8. Choose the baud rate. (Default 38400)
- 9. Left click OK to confirm the connection settings.

RS232 ONLINE

DataBits, StopBits, Parity and Flowcontrol cannot be edited.

All file menus (File, Option, Data, Help) are restricted in Auto mode. To change to manual mode see page 43 or 80 to change to Manual mode manually or remotely.

LCR Viewer File Settings

Background

The LCR Viewer file system stores 10000 test results per file. The files are comprised of the file name identifier and file number identifier.

LCR_	_0001	l.txt	
$\overline{}$	<u> </u>	Ţ	
1	2	3	

- file name identifier
- 2 file number identifier
- 3 TXT File extension

The file name identifier consists of 4 user-defined characters. The file number identifier is incremented per 10000 test results. If LCR Viewer is terminated before 10000 test results, the data will be saved and then the next file will start anew. The file number identifier starts at 0001 and increments to a maximum of 9999. The file number identifier cannot be user-defined, but can be reset to 0001.

	File Name Identifier	File Number Identifier	
Test Result	File_Name	File_Num	Filename
1~10000	LCR_	0001	LCR_0001.txt
10001~20000	LCR_	0002	LCR_0002.txt
99980001~	LCR_	9999	LCR_9999.txt
99990000			

- 1. Ensure the LCR-800 is set to manual (single) measurement mode.
- Page 80
- 2. Go to the <u>Option</u>→Settings menu.

File Settings

Choose a drive and directory from the drop down selections.

4. Type a file name identifier in the File Name panel. LCR_ is the default.

Check FileNum Reset if you want the file number identifier to be reset to 0001. Then left-click Yes to confirm.

Confirm Settings 6. Left click OK to confirm the connection and file settings.

/!_Note

All file menus (File, Option, Data, Help) are restricted in Auto mode. To change to manual mode see page 80 to change to Manual mode remotely.

LCR Viewer Remote Measurement

Background

The LCR Viewer Software mimics the LCR-800 meter front panel. Remote operation is identical.

To operate any of the controls remotely, a mouse must be used. A keyboard cannot be used. Operation of LCR Viewer is the same as the operation of the LCR meter.

If a button is grayed-out, the key or operation is not currently selectable.

Operation

- 1. To choose a menu key, click any F1~F5 menu key.
- 2. To use a number key, click any of the number keys.

Fl

C.U

- 4. To run a measurement in manual mode, click the start button.
- 5. To stop measuring in Auto mode, right click the start button and click the AUTO/MANU pop-up button.

6. To exit LCR Viewer, press the POWER button or go to the File→ Exit menu.

7. To turn the message area on or off press the Message button.

View Data

Background

Up to 10000 test results are stored in each file. Each test result is stored as comma separated variables in a text file. Each test result stores the test number, mode, primary and secondary measurements and the time.

For more information on the way the files store test results see page 78.

1. Ensure the LCR-800 is set to manual (single) measurement mode.

Page 80

Operation

- To view the test result data, go to the <u>D</u>ata→result menu.
- 3. The test results appear in the data window.

4. To exit the data window, click Exit.

All file menus (File, Option, Data, Help) are restricted in Auto mode. To change to manual mode see page 80 to change to Manual mode remotely.

View Help

Background

The Help menu is to view the software version and copyright information

Operation

- 1. Ensure the LCR-800 is set to manual (single) measurement mode.
- Page 80
- 2. Go to the \underline{H} elp \rightarrow About menu.
- 3. The About information appears

4. Press OK to exit.

All file menus (File, Option, Data, Help) are restricted in Auto mode. To change to manual mode see page 80 to change to Manual mode remotely.

Exit LCR Viewer

Operation

1. Press the POWER software button or go to File→Exit when in manual mode.

All file menus (File, Option, Data, Help) are restricted in Auto mode. To change to manual mode see page 80 to change to Manual mode remotely.

Terminal Connection

Configure Terminal Connection

Background

To connect the LCR-800 to a terminal program, follow the instructions below.

Connection Settings

1. Connect the LCR meter to the PC with an RS232 cable.

2. Ensure the LCR-800 is set to manual (single) measurement mode.

Page 43

3. Ensure RS232 has been enabled on Page 73 the LCR meter.

4. Open a terminal program such as MTTTY (Multithreaded TTY).

5. Check the COM port settings on the PC. In Windows use Device Manager. Go to the Control Panel→System→Hardware tab to see the COM port settings.

- 6. Connect to the terminal program with the following configuration settings:
 - COM port (as per PC)
 - Baud rate- 38400
 - Data bits-8
 - Stop bit-1
 - Parity-none
 - Flow control- none

Terminal Initiation

7. From the terminal program enter the following commands, with ^END^M or ^J^M as the terminal characters.

Terminal command: COMU?

LCR Return: COMU:ON..

Terminal command: COMU:OVER

LCR Return: COMU:OVER

8. The LCR-800 will display RS232 ONLINE when the connection is successful.

RS232 ONLINE

9. See the Programming chapter for Page 8 remote programming details.

Disconnection 10. To disconnect remote control send the following command with

the following command with $^{\rm END^{\rm M}}$ or $^{\rm J^{\rm M}}$ as the terminal

character.

Terminal command: COMU:OFF.

LCR Return: COMU:OFF.

PROGRAMMING

Command overview lists all the LCR-800 commands and command queries. The command syntax section shows you the basic rules you have to apply when using commands.

Command Syntax

Command
Background

There are a number of different instrument commands and queries. A command sends instructions or data to the LCR meter and a query receives data or status information from the LCR meter. Measurements are automatically sent when a measurement is made in manual or automatic mode.

mode.	
Command Types	
Command	Two or more commands separated by a colon (:) with/without a parameter
Example	e MEMO:STOR 100.<^END^M>
Query	A query is a compound command followed by a question mark (?). A parameter (data) is returned.
Example	e SORT:NOMV?<^END^M>
Measurement	Returns measurement data. Can be manually or automatically updated.
Example	e MAIN:PRIM 32.705<^END>

Command forms	Commands a ASCII or hex		can be wri	tten in either
	Below are exacommands	amples of A	SCII and l	nexadecimal
ASCII	SORT:NOMV	+32.0000< <u>/</u>	<u>END∧M</u> >	or <u><∧J∧M</u> >
Hex	53 4F 52 54 3A oA oD	4E 4F 4D 56	20 2B 33 3	22 2E 30 30 30 30
Command format			1: comm	and header
	1 2	3 4	2: single	space
			3: param	eter
			4: messa	ge terminator
Parameter	Туре	Description	on	Example
	<string></string>	Characte	r string	SLOW
	<nr1></nr1>	Integers		0, 1, 2, 3
	<variable></variable>	number	data	0.1, 3.14, 8.5
Message terminators	<nl∧end> Or</nl∧end>		e or ASCI r (HEX 0A	I line feed .)
	<nl∧j></nl∧j>			
	<cr∧m></cr∧m>	Carry ret	turn chara	cter (Hex 0D)
Input Output value differences	somewhat w	hen dealing of character	with posi s used for	t values differ tive values. The each variable
		Number	ASCII	HEX
	Input	1.0000	+1.0000	2B 31 2E 30 30 30 30
	Output	1.0000	sp1.0000	20 31 2E 30 30 30 30

-1.0000

Input

-1.0000

2D 31 2E 30

30 30 30

Output -1.0000 -1.0000 2D 31 2E 30 30 35 As can be seen above, positive input numbers use

As can be seen above, positive input numbers use the ASCII "+" whilst the output will use a "sp" space character to represent a positive number. Negative numbers are identical for both input and output.

Combining Commands

Commands and queries can be combined to form a large continuous command.

Each command must be separated with a line feed character< \land END>(or $<\land$]>). The combined command must be terminated with a line feed and carriage return character< \land END \land M>(or $<\land$] \land M>). All messages and parameters will be returned sequentially with a line feed character ($<\land$ END>(or $<\land$]>)separator.

ASCII example

MAIN:FREQ 1.00000< \land END> (or < \land |>) MAIN:VOLT 1.000< \land END> (or < \land |>) MAIN:SPEE:FAST< \land END \land M> (or < \land | \land M>)

Hex example

4D 41 49 4E 3A 46 52 45 51 20 31 2E 30 30 30 30 30 30 <u>oA</u> 4D 41 49 4E 3A 56 4F 4C 54 20 31 2E 30 30 30 <u>oA</u> 4D 41 49 4E 3A 55 50 45 45 3A 46 41 53 54 <u>oA oD</u> (Hex format)

Commands

SPEED	91
DISPLAY	
MODE	
CIRCUIT	93
FREQUENCY	
VOLTAGE	
AUTO/MANU	95
START	
RANGE HOLD	
C.V	97
BIAS	
INT.B	98
EXT.B	
PPM	
OPEN	
SHORT	
NOM.VAL	
RECALL	
STORE	
AVERAGE	
RECALL CALIBRATION	
BAUD RATE	
MODEL NUMBER	
ON-LINE	. 105
MEASURE HOLD	
MEASURE RECOVER	
LEVEL DISPLAY	
PRIMARY FACTOR	
PRIMARY OVER	
PRIMARY OVER SECONDARY OVER	
SECONDARY FACTOR & PRIMARY UNIT	
SECONDARY OVER & PRIMARY UNIT	. 108
SECONDARY FACTOR, PRIMARY UNIT,	
SECONDARY UNIT	
SECONDARY OVER, PRIMARY UNIT, SECONDAR	
UNIT	
INITIATION HAS FINISHED (Initiate)	. 110
OFFLINE	

SPEED Command/Query

The speed command sets the measurement speed of the instrument. The faster the measurement speed the lower the accuracy. This command also queries the current measurement speed.

	-	
Syntax	MAIN:SPEE: <string><^E</string>	ND^M>or<^J^M>
Parameter		
<string></string>		Speed
SLOW		Slow
MEDI		Medium
FAST		Fast
Example	MAIN:SPEE:SLOW<\\EN	D∧M>
	Set the measurement spe	eed to slow.
Query Syntax	MAIN:SPEE?<<\END\M>	or
Return String		
<string></string>		Speed
MAIN:SPEE:SLO	W<∧END>	Slow
MAIN:SPEE:MED	DI<∧END>	Medium
MAIN:SPEE:FAST	T<∧END>	Fast
Query Example	MAIN:SPEE?<<\END\M> MAIN:SPEE:MEDI<\END	
	Medium measuring spee	d is returned.

DISPLAY Command/Query

The display command sets the displayed measurement as a value or as an offset from a nominal value (Delta or Delta%)

Syntax	MAIN:DISP: <string><\END\M>or<\J\M></string>
Parameter	

GI INSTEK

<string></string>		Display
VALU		Unit Value
DELP		Delta %
DELT		Delta
Example	MAIN:DISP:VALU<\\END\	∧M>
	Set the display to Value	
Query Syntax	MAIN:DISP?<\END\M>c	or<^J^M>
Return String		
<string></string>		Display
MAIN:DISP:VALU	U<^END>	Value
MAIN:DISP:DEL	P<^END>	Delta %
MAIN:DISP:DEL	T<^END>	Delta
Query Example	MAIN:DISP?<\END\M> MAIN:DISP:VALU<\END:	>
	Currently the display is se	t at value.

MODE Command/Query

The mode command sets the measurement mode of the LCR-800. Syntax MAIN:MODE:<string>< \wedge END \wedge M>or< \wedge J \wedge M> Parameter <string> Primary Measurement Secondary Measurement Quality factor RQ Resistance CDCapacitance Dissipation factor CR Capacitance Resistance LQ Quality factor Inductance LR* Inductance Resistance ZQ* Impedance Angle *For the LCR-821 only

Example	MAIN:MODE:RQ<^E	ND _\ M>
	Sets the mode to R/Q	(Resistance/Quality factor)
Query Syntax	MAIN:MODE?<^END)ΛM>or<ΛJΛM>
Return String		
<string></string>		Current measurement mode
MAIN:MODE:RO	Q<^END>	R/Q
MAIN:MODE:CE	O<∧END>	C/D
MAIN:MODE:LQ	Q<∧END>	L/Q
MAIN:MODE:LR	R<∧END>	L/R
MAIN:MODE:ZO	Q<^END>	Z/Q
Query Example	MAIN:MODE?<^END	
	MAIN:MODE:RQ<\\E	ND>
	·	ND> neasurement mode as R/Q
	·	neasurement mode as R/Q
CIRCUIT	·	
	Returns the current m	neasurement mode as R/Q
	Returns the current m	Command/Query nt circuit to series or parallel.
The mode comr	Returns the current m	Command/Query nt circuit to series or parallel.
The mode comm	Returns the current m	Command/Query nt circuit to series or parallel.
The mode comr Syntax Parameter	Returns the current m	Command/Query nt circuit to series or parallel. AENDAM>or <ajam></ajam>
The mode common Syntax Parameter <string></string>	Returns the current m	Command/Query nt circuit to series or parallel.

GINSTEK		LCR-800 User Manual
MAIN:CIRC:PARA	<ΛEND>	Parallel
Query Example	MAIN:CIRC?<\END\M> MAIN:CIRC:PARA<\END>	>
	Returns a parallel equivale setting.	nt circuit as the current
FREQUENCY		Command/Query
Set or queries the	e test frequency.	
Syntax	MAIN:FREQ <variable><^</variable>	ENDAM>or <ajam></ajam>
Parameter		
<variable></variable>		Frequency (kHz)
0.01200~100.000	(7 characters, including a decimal)	12 Hz~100kHz
Example	MAIN:FREQ 0.01200 <aen< td=""><td>ID∧M></td></aen<>	ID∧M>
	Sets the frequency to 12Hz	z (0.012 kHz)
Query Syntax	MAIN:FREQ?<\END\M>	or<^J^M>
Return String		
<string></string>		Frequency
MAIN:FREQ < var (<variable>=0.01</variable>		Returns the test frequency in kHz.
Query Example	MAIN:FREQ?<\END\M> MAIN:FREQ 0.01200<\EN	ID>
	Returns the current test fre	equency in kHz (12 Hz).
VOLTAGE		Command/Query
Set or queries the	e test signal voltage.	

CM I	nsi	LEK
ر کی	1131	

PROGRAMMING

0.005~1.275	(5 characters, includi decimal)	ng a 5mV~1.275	
Example	,	MAIN:VOLT 0.005<\/END\AM>	
	Sets the test signal vo	oltage to 5mV.	
Query Syntax	MAIN:VOLT?<\END\M>or<\J\M>		
Return String			
<string></string>		Voltage	
MAIN:VOLT :< variable >< \END> (<variable>= 0.005~1.275)</variable>		Returns the test voltage.	

Query Example

MAIN:VOLT?<\^END\M> MAIN:VOLT 0.005<\^END> Returns the test voltage (5mV)

AUTO/MANU

Command/Query

Sets automatic or manual measurement mode.		
Syntax	MAIN:TRIG: <string><\END\M>or<\J\M></string>	
Parameter		
<string></string>		Test mode
AUTO		Automatic mode
MANU		Manual mode
Example	MAIN:TRIG:MANU<\END\M>	
	Sets the measuring mode	to manual
Query Syntax	MAIN:TRIG?<\END\M>or<\J\M>	
Return String		
<string></string>		Voltage
MAIN:TRIG:AUTO<\END>		Returns automatic mode
MAIN:TRIG:MANU<\END>		Returns manual mode
Query Example	MAIN:TRIG?<\END\M>	

MAIN:TRIG:AUTO<^END>

GWINSTEK

LCR-800 User Manual

	<u> </u>	LCR-800 User Manual
	Returns Auto mode as the mode.	current measurement
START		Command
Starts a measure	ement in manual mode.	
Syntax	MAIN:STAR<\\END\\M>o	r<^J^M>
Example	MAIN:STAR<\\END\\M>	
	Starts the measurement	
RANGE HOLD)	Command/Query
Turns range hol	d on or off or queries the r	ange hold status.
Syntax	MAIN:R.H.: <string><^EN</string>	D\AM>or<\J\AM>
Parameter		
<string></string>		Range hold
OFF.		Off
ON		On
Example	MAIN:R.H.:OFF.<\END\N	1 >
	Turn range hold off	
Query Syntax	MAIN:R.H.?<\END\M>or	<\J\M>
Return String		
<string></string>		Range Hold status
MAIN:R.H.:OFF.	<^END>	Range hold is off
MAIN:R.H.:ON	<^END>	Range hold is on
Query Example	MAIN:R.H.?<\END\M> MAIN:R.H.:ON<\END>	

Returns the Range Hold status (On)

C.V		Command/Query
Turns Constant status.	Voltage on or off. Queries	the constant voltage
Syntax	MAIN:C.V.: <string> <\EN</string>	D^M>or<^J^M>
Parameter		
<string></string>		Constant Voltage
OFF.		Off
ON		On
Example	MAIN:C.V.:OFF.<\END\N	1>
	Turns Constant Voltage of	f
Query Syntax	MAIN:C.V.?<\END\M>or<\J\M>	
Return String		
<string></string>		Constant Voltage status
MAIN:C.V.:OFF.<\END>		Constant voltage is off Constant Voltage is on
Query Example	MAIN:C.V.?<\END\M> MAIN:C.V.:OFF.<\END>	Ţ,
	Returns the Constant Volta	age status (Off)
BIAS		Query
Queries the Bias	status.	
Query Syntax	MAIN:BIAS?<\END\M>o	r<^J^M>
Return String		
<string></string>		Bias Status
MAIN:INTB:ON.	.<∧END>	Internal Bias is on
MAIN:INTB:OFF		Internal Bias is off
MAIN:EXTB:ON. MAIN:EXTB:OFF		External Bias is on
		External Bias is off

ŒW	INS	TEK

Query Example MAIN:BIAS?<\END\M> MAIN:EXTB:ON..<\END>

Returns the Bias Status (External Bias is on).

INT.B		Command/Query
Sets and queries	s the internal bias.	
Syntax	MAIN:INTB: <string><^EN</string>	ID^M>or<^J^M>
Parameter		
<string></string>		Internal Bias
OFF.		Off
ON		On
Example	MAIN:INTB:OFF.<<\END\M>	
	Turn Internal Bias off.	
Query Syntax	MAIN:INTB?<\END\M>or<\J\M>	
Return String		
<string></string>		Internal Bias Status
MAIN:INTB:OFF MAIN:INTB:ON.		Off On
Query Example	MAIN:INTB?<\END\M> MAIN:INTB:OFF.<\END>	
	Returns the Internal Bias s	tatus (Off).

EXT.B	Command/Query		
Sets and quer	Sets and queries the External Bias.		
Syntax	$MAIN: EXTB: < string > < \land END \land M > or < \land J \land M >$		
Parameter			
<string></string>	External Bias		
OFF.	Off		
ON	On		

Example	MAIN:EXTB:OFF.<\\END\\M>	
	Turn External Bias off.	
Query Syntax	MAIN:EXTB?<\END\M>or<\J\M>	
Return String		
<string></string>		External Bias status
MAIN:EXTB:OFF.<\END>		Off
MAIN:EXTB:ON	//AIN:EXTB:ON<∧END> On	
Query Example	MAIN:EXTB?<\END\M> MAIN:EXTB:ON<\END>	
	Returns the External Bias status (On).	

PPM		Command/Query
Turns PPM on or off for Dissipation (D) or Quality factor (Q) measurements.		
Syntax	MAIN:PPM.: <string><^EN</string>	ID^M>or<^J^M>
Parameter		
<string></string>		PPM
OFF.		Off
ON		On
Example	MAIN:PPM.:OFF.<\END\M>	
	Turns PPM off.	
Query Syntax	MAIN:PPM.?<\END\M>or<\J\M>	
Return String		
<string></string>		PPM status
		Off On
Query Example	MAIN:PPM.?<\END\M> MAIN:PPM.:ON<\END>	
	Returns PPM status (On).	

OPEN Command This command will perform an open circuit calibration. A return string will indicate if the calibration was successful or not. OFFS:OPEN< \wedge END \wedge M>or< \wedge J \wedge M>Syntax Return String

Open calibration attempt <string> OPEN:OK<\\END> Successful OPEN:FAIL<\\END> Failure

OFFS:OPEN<\END\M> Example OPEN:OK<\\END>

Returns the open circuit calibration attempt

(Successful).

SHORT Command

This command will perform a closed (short) circuit calibration. A return string will indicate if the calibration was successful or not.

Return String <string> Short calibration attempt SHOR:OK<\nEND> Successful

OFFS:SHOR< \wedge END \wedge M>or< \wedge J \wedge M>

SHOR:FAIL<\rightarrowEND> OFFS:SHOR<\\END\\M> Example SHOR:OK<\nEND>

Returns the closed circuit calibration attempt

Failure

(Successful).

NOM.VAL Command/Query

Sets or queries the nominal value. The nominal value unit depends on the measurement mode.

Syntax SORT:NOMV<variable>< \wedge END \wedge M>or< \wedge J \wedge M>

Syntax

Parameter		
< variable >		Nominal Value
-XXXXXXX ~ +XXXXXXX	Must be any 8 digit character including a decimal place and sign (- or +).	+XXXXXX~-XXXXXX (Mode dependant)
Example	SORT:NOMV -0.12345	5<∧END∧M>
	Sets the nominal value	to -0.12345
Query Syntax	SORT:NOMV?<\END\M>or<\J\M>	
Return String		
<string></string>		Nominal Value
SORT:NOMV < v (<variable>=any</variable>	variable ><^END> · 8 digit number)	Returns the nominal value.
Query Example	SORT:NOMV?<\END\ SORT:NOMV 0.00200<	
	Returns the nominal va	alue 2 Ω .

RECALL	Command/Query

Syntax	$MEMO:RECA < variable > < \land END \land M > or < \land J \land M >$	
Parameter		
<variable></variable>		Memory slot
1.00-100.	(integer values)	1-100
Note	Ensure the number has a total of 4 characters. If a number does not use 4 characters, use a "." and "0" to "pad out" the number. Example $10 = 10.0$	
Example	MEMO:RECA 100. <\\END\\M>	
	Recalls saved settings	from memory slot 100
Query Syntax	MEMO:NUMB?<\END\M>or<\J\M>	
Return String		

<string> MEMO:NUMB <variable><\END> (<variable>= 1spsp~100) sp=space character MEMO:RECA:EMPT<\END></variable></variable></string>		Memory recall status OK. Returns the memory slot used.
		Not Ok. The memory slot is empty, therefore no data to recall.
Query Example	MEMO:NUMB?<∧END∧M> MEMO:NUMB:100<∧END> Data was recalled from memory slot 100.	

STORE		Command
	ent settings to one of 100 m cate the save slot used.	emory slots. A return
Syntax	MEMO:STOR <variable><</variable>	<^END^M>or<^J^M>
Parameter		
<variable></variable>		Memory slot
1.00~100.	(integer values)	1-100
Note	Ensure the number has a total of 4 characters. If a number does not use 4 characters, use a "." and additional zero's (0) to "pad out" the number. Example $10 = 10.0$	
Return String		
<string></string>		Memory save slot
	variable><\END> osp~100) sp=space character	Returns the save slot used.
Example	MEMO:STOR 100.<\END MEMO:STOR 100<\END	
	Data was saved to memor	ry slot 100.

AVERAGE

Command/Query

Sets the average number from 1~255. The average number indicates how many test samples are used to create an averaged test result.

Syntax	SETP:AVER <variable><\END\M>or<\J\M></variable>	
Parameter		
<variable></variable>		Average number
1.00~255.	(integer values)	1~255
Note	Ensure the number has a total of 4 characters. If a number does not use 4 characters, use a "." and additional zero's (0) to "pad out" the number. Example $10 = 10.0$	
Example	SETP:AVER 255.<\END\M>	
	Average is set to 255 samples.	
Query Syntax	SETP:AVER?<\END\M>or<\J\M>	
Return String		
<string></string>		Current average setting
SETP:AVER <variable><\END> (<variable>= 1.00 ~255.)</variable></variable>		Returns the average number.
Query Example	SETP:AVER?<\\ END\\ M > SETP:AVER 255.<\\ END\>	
	The average number is cur	rently 255.

RECALL CALIBRATION

Command

Recalls the calibration settings from memory. A return string indicates if the command was successful.

marates if the command was successful.		
Syntax	STEP:RECA<\\END\\M>or<\\J\\M>	
Return String	ing	
<string></string>	Recall calibration	
RECA:OK<\ENI	O> Successful	

GWINSTEK

STEP:RECA< \wedge END \wedge M>or< \wedge J \wedge M> Example RECA:OK<\\END>

Calibration was recalled successfully

DALID DATE

BAUD RATE		Command
Sets the baud ra	te of the RS232 connection	l.
Syntax	COMU: <value><\END\M>or<\J\M></value>	
Parameter		
<value></value>		Baud rate
9600		9600
19.2		19200
38.4		38400
57.6		57600
1152		115200
Return String		
<string></string>		Baud rate
COMU: <value>< <value>= baud ra</value></value>		Returns the baud rate setting.
Query Example	COMU:1152<\\text{END\\M}> COMU:1152<\\\text{END}>	
	The baud rate is set to 115	5200.

MODEL NUMBER

Query

This query returns the model number of the LCR-800.		
Query Syntax COMU:MON	Query Syntax COMU:MONO?<\END\M>or<\J\M>	
Return String		
<string></string>	Model number	
COMU:MONO:816.<\END>	LCR-816	
COMU:MONO:817.<\END>	LCR-817	

PROGRAMMING

COMU:MONO:819.<\END> LCR-819 COMU:MONO:821.<\rightarrowEND> LCR-821 COMU:MONO?<\END\M>

Query Example COMU:MONO:816.<\rightarrowFND>

The model number is LCR-816

ON-LINE Query

The On-line function queries the RS232 connection status.

Query Syntax COMU?<\END\M>or<\J\M>

Return String

RS232 connection <string> COMU:ON..<\END> Connection on COMU:OFF.<\END> Connection off

COMU?<\END\M>> Query Example COMU:ON..<\END>

The RS232 connection is on.

MEASURE HOLD

Command

The Measure hold command is used to suspend measurement to issue a new command when the LCR meter is busy. When the new command is issued the Measure Recover command can be used to resume measurement.

COMU:HOLD<\\ END\\ M>or<\\ J\\ M> Syntax COMU:HOLD<\rightarrowEND\rightarrowM> Example Measurement is suspended.

MEASURE RECOVER

Command

The Measure Recover command is used to resume measurements after the Measure Hold command has been used.

COMU:RECO< \wedge END \wedge M>or< \wedge J \wedge M> Syntax

GWINSTEK

LCR-800 User Manual

COMU:RECO<\nEND\nM> Example Resume measurement. (recover measurement).

LEVEL DISPLAY

Command

Displays a menu level on the LCR-800 display. Returns the menu level.

Syntax	LEVE: <string><\END\M></string>	·or
Parameter		
<string></string>		Menu Level
MAIN		Main display
MENU		menu display
PARA		Setting (Parameter) menu
SORT		Sort (Handler) menu
OFFS		Offset menu.
Return String		
<string></string>		Menu level
LEVE:MAIN<\EN	D>	Main display
LEVE:MENU<\END>		Menu display
LEVE:PARA<∧EN	D>	Setting (Parameter) menu
LEVE:SORT<∧EN	D>	Sort (Handler) menu
LEVE:OFFS<\\END>		Offset menu.
Example	LEVE:MAIN<\\END\\M> LEVE:MAIN<\\END>	
	Set the display to the mair	n display.

PRIMARY FACTOR

Measurement

Primary factor returns the primary measurement result, sans the measurement unit. This measurement is the first measurement displayed after measurements have been started.

Return Syntax MAIN:PRIM <value><\END>

GWINSTEK	
----------	--

PROGRAMMING

<value></value>		Test result
Any 7 digit ASCII including sp (+) or – characters and a decimal point.		Primary measurement value
Example	MAIN:PRIM 32.705<	END>
	The primary measurem	nent is 32.705 (primary

PRIMARY OV01

Measurement

Primary OV01 indicates that the primary measurement exceeds the measurement range of the LCR meter. For example: If the impedance of the DUT is less than the measurement range.

Return Syntax	PRIM:OV01<\END>
Example	PRIM:OV01<\END>
	Note, no units are returned

PRIMARY OVER SECONDARY OVER

Measurement

When both the primary and secondary factors exceed the range (OVER), OVER will be returned.

Return Syntax	PRIM:OVER <end></end>
Example	PRIM:OVER <end></end>
	Note, no units are returned

SECONDARY FACTOR & PRIMARY UNIT Measurement

Returns the secondary measurement results and the primary unit $(R/Q\ C/D\ L/Q\ only)$. This measurement is the second measurement displayed after measurements have been started.

Return Syntax	MAIN:SECO <value><unit< th=""><th>l><∧END></th></unit<></value>	l><∧END>
<value></value>		Test Result
Any 6 digit ASCII - characters and a	character including sp (+) or a decimal point.	Secondary measurement value

LCR-800 User Manual

<unit1></unit1>		Primary unit
nF, pF, uF		nanofarads, picofarads, microfarads
ksp, spsp (sp=space	e character)	$k\Omega,\Omega$
mH, H _{sp}		millihenry, henry
Example	MAIN:SECO .004	5nF<\END>
	The secondary me the primary measu	asurement is .0045 (D) and nF is irement unit.

SECONDARY OVER & PRIMARY UNIT

Measurement

Secondary Over indicates that the secondary measurement exceeds the measurement range of the LCR meter. The unit returned refers to the primary measurement. Applicable for $(R/Q, C/D, L/Q, Z/\theta)$ equivalent circuits.

Return Syntax	SECO:OVER <unit1><\\END></unit1>		
<unit1></unit1>		Primary unit	
nF, Pf, uF		nanofarads, picofarads, microfarads	
ksp, spsp (sp= space character)		$k\Omega$, Ω	
mH, H _{sp}		millihenry, henry	
Example	SECO:OVER nF<∧END>		
	The secondary measurement is OVER(exceeds range) and nF is the primary measurement unit.		

SECONDARY FACTOR, PRIMARY UNIT, SECONDARY UNIT

Measurement

Secondary measurement result is returned along with the primary unit and secondary unit (C/R, L/R only). This measurement is the second measurement displayed after measurements have been started.

Return Syntax	MAIN:SECO <value><unit1><unit2><<\END></unit2></unit1></value>		
<value></value>		Test result	
Any 6 digit ASCII – characters and a	character including sp(+) or a decimal point.	Secondary measurement value	
<unit1></unit1>		Primary units	
nF,Pf, uF		nanofarads, picofarads, microfarads	
<unit2></unit2>		Secondary units	
k, sp		$k\Omega$, Ω	
Example	MAIN:SECO .0045nFk<\END>		
	The secondary measurement result is .0045 with $k\Omega$ as the unit. The primary unit is nF.		

SECONDARY OVER, PRIMARY UNIT, SECONDARY UNIT

Measurement

Secondary Over indicates that the secondary measurement exceeds the measurement range of the LCR meter. Applicable for C/R & L/R equivalent circuits with the display set to Value.

Return Syntax	SECO:OVER <unit1><unit2><<\END></unit2></unit1>		
<unit1></unit1>		Primary units	
nF,Pf, uF, mH, Hsp	(sp=space)	nanofarads, picofarads, microfarads, millihenry, henry	

<unit2></unit2>		Secondary units
k, sp		kΩ, Ω
Example	SECO:OVER nFk<\\END>	
	The secondary measureme	ant recult exceeds the range

	The secondary measurement result exceeds the range $k\Omega$ is the secondary unit and nF is the primary unit.		
INITIATIOI	N HAS FINISHED (Initiate	e) Command	
	RS232 connection. A string is been completed.	returned when the	
Syntax	COMU:OVER<\END\M>	or<∧J∧M>	
Return String			
<string></string>		Menu level	
COMU:OVER<^END>		Connection initiation finished	
Example	COMU:OVER<\END\M> COMU:OVER<\END>	COMU:OVER<\END\M> COMU:OVER<\END>	
	Communication initiation	Communication initiation has completed.	
	"RS232 ONLINE" will be display panel.	"RS232 ONLINE" will be displayed on the LCR-800 display panel.	

OFF LINE Command

Terminates the RS232 connection. A string is returned when the initiation has been completed.

Syntax	COMU:OFF.<\END\M>	COMU:OFF.<\END\M>or<\J\M>	
Return String			
<string></string>		RS232 connection	
COMU:OFF.<\END>		Terminated	
Example	cxample COMU:OFF.<\END\M> COMU:OFF.<\END>		
The RS232 connection has been terminated.		as been terminated.	

NTERACE

This chapter describes basic interface aspects of the RS-232 and Handler interfaces.

	Configure RS-232 interface Handler interface	
Signal Characteristics	Signal Overview Handler Timing	

RS232 Interface Configuration

Configure RS-232 interface

RS-232 configuration

Connector

DB-9, Male

on Baud rate

38400 (default)

Parity None

Data bit 8
Stop bit 1

Connect the RS-232 cable to the

rear panel port: DB-9 male

connector.

Pin assignment

1: DCD (Data Carrier Detect)

2: RxD (Receive Data)

3: TxD (Transmit Data)

4: DTR (Data Terminal

Ready)

5: GND

6: DSR (Data Set Ready)

7: RTS (Request To Send)

8: CTS (Clear To Send)

9: No connection

Canadatian	I	PC		LCR Meter	
Connection	DB9 Pin	Signal	Signal	DB9 Pin	
	2	RxD	TxD	3	
	3	TxD	RxD	2	
	4	DTR	DSR, DCD	6,1	
	5	GND	GND	5	
	6,1	DSR, DCD	DTR	4	
	7	RTS	CTS	8	
	8	CTS	RTS	7	

Handler interface

Connection

Connect the male DSUB 25 pin cable to the Handler interface socket.

Pin assignment

HANDLER INTERFACE

	Signal	Function
Pin1	/O_BIN_1	Go, Assigned BIN 1
Pin2	/O_BIN_2	Go, Assigned BIN 2
Pin3	/O_BIN_3	Go, Assigned BIN 3
Pin4	/O_BIN_4	Go, Assigned BIN 4
Pin5	/O_BIN_5	Go, Assigned BIN 5
Pin6	/O_BIN_6	Go, Assigned BIN 6
Pin7	/O_BIN_7	Go, Assigned BIN 7
Pin8	/O_BIN_8	Go, Assigned BIN 8
Pin9	/O_BIN_9	Go, Assigned BIN 9
Pin10	/O_BIN_10	Go, Assigned BIN 10

Pin11 /	O_BIN_11	Go, Assigned BIN 11
Pin12 /	O_BIN_12	Go, Assigned BIN 12
Pin13 /	O_BIN_13	Go, Assigned BIN 13
Pin14 /	O_S_OVER	No-Go/D or Q fail
Pin15 /	O_P_OVER	RLC FAIL(O)
Pin16 C	GND	GROUND
Pin17 \	VCC	VCC
Pin18 (GND	GROUND
Pin19 /	O_P_HI	RLC FAIL(O)
Pin20 /	O_P_LO	RLC FAIL(O)
Pin21 /	O_S_REJ	No-Go/D or Q fail
Pin22 /	O_INDEX	Data acquisition over, OK to remove DUT(O)
Pin23 /	O_EOM	End of Test(O)
Pin24 /	'I_E_TRIG	Start Measurement(I)
Pin25 /	'I_K_LOCK	Panel Lock

Signal Overview

GWINSTEK

Background	The signal overview section describes the functions and the overall characteristics of the signals used in the handler interface.	
Parameter	Output Signals	
	/O_INDEX	The Index signal will become low when the Analog measurement time has completed. When the Index signal is low, the test component can be replaced with the next component. The signal goes high when the next trigger is active.
	/O_BIN_1 ~ /O_BIN_13	The Bin Go/No-Go signals go active low when a successful comparison has been made. For example if a component is assigned to Bin_1, /O_BIN_1 signal goes low until time T4. All the remaining signals (/O_BIN_2~/O_BIN_13) remain high.
	/O_P_HI	When the primary measurement is higher than the MAX limit, O_P_HI will go low until time T4.
	/O_P_LO	When the primary measurement is lower than the MIN limit, O_P_LO will go low until time T4.
	/O_P_OVER	When the primary measurement is higher or lower than the MAX/MIN, O_P_OVER will go low until time T4.

	/O_S_REJ /O_S_OVER	will go low measureme under D_M	REJ or /O_S_O when the secor ent is over D_N lin, whilst in C/ mode. The sign e T4	ndary Max or D , R/Q,
/O_EOM The End of M becomes act comparison/completed. T		Measurement signal ctive low when the Bin nassignment has The signal goes high at time I_E_TRIG is active		
Electrical Characteristics	Output Characte	aracteristics		
	Output Voltage			
	Signal	Low	High	Max current
	/O_BIN1-BIN13			
	/O_S_OVER			
	O_S_REJ			
	/O_P_OVER			
	/O_P_LO	≤0.5V	+5V~+24V*	5mA*
	/O_P_HI			
	Control Signals			
	/O_INDEX			
	/O_EOM			
	* Pull-up resisto output greater th		27 must be repl	aced to

Parameter	Input Signals				
	/I_E_TRIG Measurement start signal. This signal will trigger the LCR-800 to start a measurement when the signal is pulsed for at least 5us. I is triggered by the falling edge of the pulse.		R-800 to n the st 5us. It		
	/I_K_LOCK	panel and e	ey lock sigr keys when nables the p gnal is high	the signa anel key	al is low,
Electrical Characteristics	Input Character	cteristics			
		Input Voltage Input Current (Lo Pull up voltage			
	Signal	Low	High	5V	12V
	/I_E_TRIG	≤1V	+5V~15V	5mA	12mA
	/I_K_LOCK	≤1V	+5V~15V	5mA	12mA

Handler Timing

Background

The handler timing characteristics are described in the timing diagram. Times T1 to T6 are described in the relevant tables.

•	Timing Characteris	tics
Trigger Pulse Width	n T1	ľ

Measurement start delay time
/O_EOM Delay Time After Data Output
Calculation and binning time

	T1	MIN	MAX
		5us	~
	T2	MIN	MAX
		140us	~
	T3	MIN	MAX
		5us	~
e	T4	MIN	MAX
		6ms	~

Analog	T5		Slow	Medium	Fast
Measurement		0.012kHz	817ms	817ms	817ms
time		0.1kHz	901ms	125ms	125ms
		0.12kHz	901ms	105ms	103ms
		1kHz	903ms	59ms	27ms
		10kHz	873ms	53ms	17ms
		100kHz	873ms	53ms	17ms
Trigger Wait Time	T6		Slow	Medium	Fast
After /O_EOM Output		OFF	2ms	2ms	2ms
		BIN	4ms	4ms	4ms
0 a.tp a.t		VALUE	16ms	16ms	16ms

Binning Accuracy

GWINSTEK

	Fast	Medium	Slow
LCR_827	0.5%	0.2%	0.1%
LCR_829	0.5%	0.2%	0.1%
LCR_826	0.5%	0.2%	0.1%

FAQ

Q1. What is the correct procedure for Open/Short Zeroing when using the LCR-06A test fixture?

A1. The LCR-06A test fixture is very sensitive and thus must be used correctly.

- For Open Zeroing, make sure that the test fixture wires do not move and that there is nothing in close proximity to the test clips.
- For Short Zeroing ensure the clips are properly shorted. See page 24 for details.

Q2. Why does Short Zeroing fail?

A2. There are two possible reasons that Short Zeroing can fail.

- The test fixture has an open circuit between the wires and terminal.
- Some functions can impede the short test. Ensure Range Hold and Internal/External Bias (R.H and INT.B/EXT.B) are disabled. See pages 40, 39 & 34.

Q3. I cannot see the display clearly.

A3. Use the display contrast control on the rear panel to adjust the contrast.

Q4. When using a terminal program I cannot execute a command.

A4. Make sure the correct terminal characters are used. For example use "CTRL J" "CTRL M" as the <^J^M> message terminator in a terminal session.

For more information, contact your local dealer or GW Instek at www.gwinstek.com / marketing@goodwill.com.tw.

PPENDIX

Fuse Replacement

Step

1. Disconnect the power cord and then remove the fuse socket using a flat screwdriver.

Replace the fuse in the holder.

Rating

5TT 3A/250V

Circuit Theory and Formula

Series/Parallel circuit models

Background

Below are the circuit diagrams and formulas describing the six types of series and parallel equivalent circuits: Capacitive, Inductive and Resistive. The formulas for all the primary and secondary measurement types are also shown.

Capacitance (C)

Series diagram

Parallel diagram

Series formula

$$C_S = C_P \left(1 + D^2 \right)$$

D=dissipation factor

Parallel formula

$$C_P = \frac{C_S}{\left(1 + D^2\right)}$$

D=dissipation factor

Inductance (L)

Series diagram

Series formula

$$L_S = \frac{L_P}{\left(1 + \frac{1}{O^2}\right)}$$

Q=quality factor

Parallel formula

$$L_P = L_S \left(1 + \frac{1}{Q^2} \right)$$

Q=quality factor

Series diagram Resistance (R)

Series formula

$$R_S = \frac{R_P}{\left(1 + Q^2\right)}$$

Q=quality factor

Parallel formula

Parallel diagram

$$R_P = R_S \left(1 + Q^2 \right)$$

Q=quality factor

Resistance (R) and Conductance (G = 1/R) Formula

Background

Resistance measures how difficult it is for the electricity to flow between two terminals. Conductance is the reciprocal of Resistance and measures how easily the electricity flows.

Note

Conductance is only shown for its relation to Resistance, Conductance is not a measurable feature of the LCR-800 series.

Type

Resistance

Conductance

- Series Resistance Rs
- Parallel Resistance R_P
- DC Resistance R_{dc}

• Parallel Conductance

 $G_P (= 1/R_P)$

Formula

$$R = \frac{V}{I} = \frac{1}{G} = Z_S - jX \qquad G_P = \frac{I}{V} = \frac{1}{R} = Y_P - jB$$

$$= Z_S - j\varpi L = Z_S + \frac{j}{\varpi C} = Y_P - j\varpi C = Y_P + \frac{j}{\varpi L}$$

$$|Z_S| = \sqrt{(R^2 + X^2)} \qquad |Y_S| = \frac{GB}{\sqrt{(G^2 + B^2)}}$$

$$|Z_P| = \frac{RX}{\sqrt{(R^2 + X^2)}} \qquad |Y_P| = \sqrt{(G^2 + B^2)}$$

$$R_S = |Z|\cos\theta \qquad G_P = |Y|\cos\theta$$

Capacitance (C) Formula

Background	Capacitance measures the amount of electronic
	charge stored between two terminals.

Type • Series Capacitance
$$C_S$$
 • Parallel Capacitance C_P

Formula
$$Z_S=R-\frac{j}{\varpi C} \qquad Y_P=G+j\varpi C \\ Q=\frac{1}{\varpi C_SR_S} \qquad Q=\varpi C_PR_P \ D=\frac{G_P}{\varpi C_P} \\ D=\varpi C_SR_S$$

Inductance (L) Formula

Background	Inductance measures the amount of magnetic flux
	generated in certain electrical current.

Type • Series Inductance
$$L_S$$
 • Parallel Inductance L_P

Formula
$$Z_S = R + j \varpi L \qquad Y_P = G - \frac{j}{\varpi L}$$

$$Q = \frac{\varpi L_S}{R_S}, \ D = \frac{R_S}{\varpi L_S} \qquad Q = \frac{R_P}{\varpi L_P}, \ D = \varpi L_P G_P$$

Reactance (X) and Susceptance (B = 1/X) Formula

Background	Reactance measures the imaginary part of Impedance (Z) caused by capacitors or inductors. Susceptance is the reciprocal of Reactance and measures the imaginary part of Admittance (Y), which is the reciprocal of Impedance.		
Note	Reactance and Susceptance is only shown for their relation to impedance. Reactance and Susceptance are not measurable features of the LCR-800 series.		
Туре	Series Reactance (X _S)	Parallel Susceptance (B _P)	
Formula	$X = \frac{1}{B} = Z \sin \theta$	$B = \frac{1}{X} = Y \sin \theta$	
	$\left Z_{S}\right = \sqrt{\left(R^{2} + X^{2}\right)}$	$ Y_S = \frac{GB}{\sqrt{(G^2 + B^2)}}$	
	$\left Z_{P}\right = \frac{RX}{\sqrt{\left(R^{2} + X^{2}\right)}}$	$ Y_P = \sqrt{\left(G^2 + B^2\right)}$	
	$X_{\rm s} = Z \sin \theta$	$B_{P} = Y \sin \theta$	

Impedance (Z) and Admittance (Y = 1/Z) Formula

Background	Impedance measures the total amount of opposition between two terminals in an AC circuit. Admittance is the reciprocal of Impedance and measures how easily the electricity flows in an AC circuit.				
Note	Admittance is only shown for its relation to impedance. Admittance is not measurable with the LCR-800 series.				
Туре	Impedance (Z)	Admittance (Y)			
Formula	$Z = \frac{E}{I} = \frac{1}{Y}$ $Z_S = R + jX$	$Y = \frac{I}{E} = \frac{1}{Z}$ $Y_P = G + jB$			
	$= R + j \varpi L = R - \frac{j}{\varpi C}$	$= G + j \varpi C = G - \frac{j}{\varpi L}$			
	$\left Z_{S}\right = \sqrt{\left(R^{2} + X^{2}\right)}$	$ Y_S = \frac{GB}{\sqrt{(G^2 + B^2)}}$			
	$\left Z_{P}\right = \frac{RX}{\sqrt{\left(R^{2} + X^{2}\right)}}$	$\left Y_{P}\right = \sqrt{\left(G^{2} + B^{2}\right)}$			
	$R_S = Z \cos\theta \qquad G_P = Y \cos\theta$				
	$X_{s} = Z \sin\theta$ $B_{p} = Y \sin\theta$				

GWINSTEK

Quality factor (Q) and Dissipation factor (D) Formula

Background

Both Quality factor and its reciprocal, Dissipation factor, are used for measuring the rate of energy dissipation relative to the measurement frequency.

- Low energy dissipation: high Q, low D
- High energy dissipation: low Q, high D

Type

Quality factor (Q)

Dissipation factor (D)

Formula

$$Q = \frac{\varpi L_S}{R_S} = \frac{1}{\varpi C_S R_S} \qquad D = \frac{R_S}{\varpi L_S} = \varpi C_S R_S$$

$$= \frac{R_P}{\varpi L_P} = \varpi C_P R_P \qquad = \frac{G_P}{\varpi C_P} = \varpi L_P G_P$$

$$= \frac{1}{\tan(90 - \theta)^\circ} = \frac{1}{D} \qquad = \tan(90 - \theta)^\circ = \frac{1}{Q}$$

Angle (θ) Formula

Background	The Angle (θ) measures the phase on which
	Impedance (Z), Admittance (Y), Quality factor (Q),
	and Dissipation factor (D) are measured.

Type Angle (θ)

Formula

$$Z_{S} = R + jX Y_{P} = G + jB$$

$$= R + j\varpi L = R - \frac{j}{\varpi C} = G + j\varpi C = G - \frac{j}{\varpi L}$$

$$Q = \frac{1}{\tan(90 - \theta)^{\circ}} = \frac{1}{D} D = \tan(90 - \theta)^{\circ} = \frac{1}{Q}$$

$$R_{S} = |Z|\cos\theta G_{P} = |Y|\cos\theta$$

$$X_{S} = |Z|\sin\theta B_{P} = |Y|\sin\theta$$

Accuracy Definitions

GWINSTEK

		·
Primary M	easurement f	Readout Error Formula
С	2 counts	±0.03%+0.02%[(1+Ka) [#] or (X/Ymax) [#] or
	(Ymin/X) [#]] (1+ D) (1+Kb+Kc)
R	2 counts	$\pm 0.03\% + 0.02\% [(1+Ka)^{\#} \text{ or } (X/Ymax)^{\#} \text{ or }$
	(Ymin/X) [#]] (1+ Q) (1+Kb+Kc)
L	2 counts	$\pm 0.03\% + 0.02\% [(1+Ka)^{\#} or(X/Ymax)^{\#} or(Ymin/X)^{\#}]$
] (1+1/	Q)(1+Kb+Kc)
Z	Ze = De	pends on whether the component is a
	capacito	r(C), resistor(R) or inductor(L):
	Circuit	Formula for relevant circuit
	C	$Ze = 2 counts \pm$
		0.03%+0.02%[(1+Ka)*or(X/Ymax)*or(Ymin/X)*]
		(1+ D)(1+Kb+Kc)
	R	$Ze = 2 counts \pm$
		0.03%+0.02%[(1+Ka)*or(X/Ymax)*or(Ymin/X)*]
		(1+ Q)(1+Kb+Kc)
	L	Ze=2 counts \pm
		$0.03\%+0.02\%[(1+Ka)^{\#}or(X/Ymax)^{\#}or(Ymin/X)^{\#}]$
		(1+ 1 / Q)(1+Kb+Kc)

D(C/D)	2counts	asurement Readout Error Formula 2counts ± 0.0003 + 0.0002[(1+Ka)* or (X/Ymax) * or			
		K) #] (1+ D +D²)(1+Kb+Kc)			
Q (R/Q)	2counts	$s \pm 0.0003 + 0.0002[(1+Ka) * or (X/Ymax) * or$			
	(Ymin/	$(1 + Q + Q^2)(1 + Kb + Kc)$			
Q (L/Q)	2counts	s±0.0003 + 0.0002[(1+Ka) # or (X/Ymax) # or			
	(Ymin/	$(Ymin/X)^{\#}](1+ Q +Q^2)(1+Kb+Kc)$			
$\theta(Z/\theta)$	$\theta = (180)$	0/π) x (Ze/100)			
R(C/R)	D≧1	2counts + 0.02%[(1+Ka)* or (Rx/Rmax)* or			
		(Rmin/Rx)*] (1+1/ D)(1+Kb+Kc)+0.03%			
	D≦1	2counts + 0.02%[(1+Ka)** or (Cx/Cmax)** or			
		(Cmin/Cx)**] (1+1/ D) (1+Kb+Kc)+0.03%			

		-
R(L/R)	Q≦1	2counts + 0.02%[(1+Ka)* or (Rx/Rmax)* or
		(Rmin/Rx)*] (1+ Q) (1+Kb+Kc)+0.03%
	Q≧1	2counts + 0.02%[(1+Ka)** or (Lx/Lmax)** or
		(Lmin/Lx)**] (1+ Q) (1+Kb+Kc)+0.03%

	(Lmin/Lx)**] (1+ Q) (1+Kb+Kc)+0.03%
Conditions	# 1. if X>Ymax, please select (X/Ymax)
	2. if X <ymin, (ymin="" please="" select="" td="" x)<=""></ymin,>
	 if Ymin≤X≤Ymax, please select (1+Ka)
	4. Ze is impedance error
	5. θ e is θ error
	* 1. If Rx≥Rmax, please select (Rx/Rmax)
	2. if Rx≤Rmin, please select (Rmin/Rx)
	3. if Rmin≤Rx≤Rmax, please select (1+Ka)
	** 1. If Cx>Cmax, please select (Cx/Cmax)
	2. if Cx <cmin, (cmin="" cx)<="" please="" select="" td=""></cmin,>
	3. if Cmin≦Cx≦Cmax, please select (1+Ka)

Variables	Ka	Constant Voltage factor
		Constant Voltage On, Ka = 2
		Constant Voltage Off, Ka = 0
	Kb	Test Speed factor
		Speed = SLOW, $Kb = 0$
		Speed = MEDIUM, Kb = 3
		Speed = FAST, Kb = 10
	Kc	Frequency & RMS Voltage factor (refer to table1&2)
	X	X is value of the component being tested.
	Cx	Value of the component being tested (capacitance)
	Rx	Value of the component being tested (resistance)
	Lx	Value of the component being tested (inductance)
	Cmax	Range constant for Capacitor Max table 3/4
	Cmin	Range constant for Capacitor Min in table 3/4
	Rmax	Range constant for Resistor Max in table 3/4
	Rmin	Range constant for Resistor Min in table 3/4
	Lmax	Range constant for Inductor Max in table 3/4
	Lmin	Range constant for Inductor Min in table 3/4
	Ymax	Range constant for either Capacitor/Resistor or
		Inductor Max in table 3/4
	Ymin	Y range constant for either Capacitor/Resistor or
		Inductor Min in table 3/4

Table 1 KC (Ranges 1,2,3) Frequency & RMS Voltage factor Voltage

			J	
Frequency	0.03≦V<0.1	0.1≦V<0.25	0.25≦V<1	1≦V≦1.265
$0.012 \le f < 0.03$	35	12	9	7
0.030≦f<0.1	30	8	5	3
0.1≦f<0.25	25	6	3	2
0.25≦f<1	20	5	2	1
1	14	4	1	0
1 <f≦3< td=""><td>15</td><td>5</td><td>2</td><td>1</td></f≦3<>	15	5	2	1
3 <f≦6< td=""><td>15</td><td>6</td><td>3</td><td>2</td></f≦6<>	15	6	3	2
6 <f≦10< td=""><td>15</td><td>8</td><td>5</td><td>3</td></f≦10<>	15	8	5	3
10 <f≦20< td=""><td>20</td><td>10</td><td>6</td><td>5</td></f≦20<>	20	10	6	5
20 <f≦50< td=""><td>30</td><td>22</td><td>18</td><td>15</td></f≦50<>	30	22	18	15
50 <f≦100< td=""><td>50</td><td>40</td><td>35</td><td>30</td></f≦100<>	50	40	35	30
200	Not applicable	80	50	45
f= frequency in	kHz.			

Table2
KC (Range 4) Frequency & RMS Voltage factor

		Vol	tage			
Frequency	0.03 \le V < 0.1	$0.1 \le V \le 0.25$	0.25≦V<1	1≦V≦1.265		
$0.012 \le f < 0.03$	70	20	10	7		
0.030≦f<0.1	50	13	6	3		
$0.1 \le f < 0.25$	35	9	4	2		
0.25≦f<1	25	6	2	1		
1	15	4	1	0		
1 <f≦3< td=""><td>17</td><td>6</td><td>3</td><td>2</td></f≦3<>	17	6	3	2		
3 <f≦6< td=""><td>25</td><td>15</td><td>10</td><td>6</td></f≦6<>	25	15	10	6		
6 <f≦10< td=""><td>60</td><td>30</td><td>20</td><td>15</td></f≦10<>	60	30	20	15		
10 <f≦20< td=""><td>Not specified</td><td>100</td><td>65</td><td>50</td></f≦20<>	Not specified	100	65	50		
20 <f≦50< td=""><td colspan="6">This range is not used above 20kHz</td></f≦50<>	This range is not used above 20kHz					
50 <f≦200< td=""><td colspan="6">50<f≦200 20khz<="" above="" is="" not="" range="" td="" this="" used=""></f≦200></td></f≦200<>	50 <f≦200 20khz<="" above="" is="" not="" range="" td="" this="" used=""></f≦200>					
f= frequency in k	Hz.					

-		
la	h	ነቀና

Y Range constant- Range Hold

	Component					
	Indu	ctor	Capacitor		Resistor	
Range	Max	Min	Max	Min	Max	Min
Range1	16mH/f	1mH/f	25uF/f	1.6uF/f	100 Ω	6.25Ω
Range2	256mH/f	16mH/f	1600nF/f	100nF/f	1.6k Ω	$0.1k\Omega$
Range3	4100mH/f	256mH/f	100nF/f	6.4nF/f	25.6k Ω	1.6k Ω
Range4*	65H/f	4.1H/f	6400pF/f	400pF/f	410k Ω	25.6k Ω
f= test frequ	ency in kHz					

^{*} This range is not used above 20 kHz

Table4

Y Range constant- Auto Range

			Com	oonent		
	Inductor		Capacitor		Resistor	
Range	Max	Min	Max	Min	Max	Min
Auto range	65H/f**	1mH/f	25uF/f	400pF/f**	410k Ω **	6.25 Ω **
**: Above 20	kHz, Cmin =	= 6.4 nF/f, a	nd Lmax =	4100mH/f		
f = test freque	ency in kHz.					

Specifications

Specification accuracy is only applicable when the LCR meter has been warmed up for 30 minutes with an operating temperature of $18^{\circ}\text{C} \sim 28^{\circ}\text{C}$.

Measurement Parameters	Inductance (Ls/Lp)*, Capacitance (Cs/Cp), Resistance (Rs/Rp), Dissipation (D), Quality Factors (Q), Equivalent Series Resistance (ESR) and Equivalent Parallel Resistance (EPR), Impedance (Z), Phase angle of Impedance [degree] (θ).		
Measurement Modes	R/Q , C/D , C/R , L/Q , Z/θ , L/R		
Display Ranges	Primary Display	Inductance (L)	0.00001mH \sim 99999H
	. ,	Capacitance (C)	0.00001pF \sim 99999 μ F
Seconda Display		Resistance (R)	0.00001 $\Omega\sim 99999 k\Omega$
			0.00001 $\Omega \sim$ 99999 $k\Omega$
	Secondary Display		0.0001 ~ 9999
		Quality factor (Q)**	$0.0001 \sim 9999$
			-180.00° ∼ 180.00°
		Equivalent Series Resistance (ESR)+	0.0001 $\Omega\sim$ 9999 k Ω
		Equivalent Parallel Resistance (EPR)+	0.0001 $\Omega\sim$ 9999 k Ω

	•		711 211017	
		Dissipation factor (D) ⁺ in ppm	1 ppm \sim 9999 ppm	
		Quality factor (Q)** in ppm	1 ppm \sim 9999 ppm	
		DELTA %	$0.00001\% \sim 99999\%$	
	*s=series, p=p ** with L or R	oarallel ESR=Rs	5	
	+ with C Note: Only LCR-821 has Z/θ and L/R me parameters.			
	indicator is dis	splayed.	egative, the "-" negative	
Accuracy	LCR-821/819/	817		
		R, L, C, Z	0.05%(Basic)	
		D, Q	0.0005 (Basic)	
		θ	0.03° (Basic)	
	LCR-829/827/826/816			
		R, L, C, Z	0.10%(Basic)	
		D, Q	0.001	
		Please refer to on page 132	to the accuracy definition for details.	
Basic Accuracy	0.05%	LCR-821/819		
,	0.1%	LCR-829/827	•	
Test Frequency	LCR-821		Iz (504 Steps)	
	LCR-819/829		Iz (503 Steps)	
	LCR-817/827	12Hz~10kHz	• • •	
	LCR-816/826	100Hz~2kHz		
Measurement displays	Value	R/Q, C/D, C *The resolut C, R or Z) is *The resolut (D, Q, R with L) is four dig *The resolut	/R, L/Q, Z/ θ , L/R ion of primary display (L, five digits. ion of secondary display in C, or R with	

	Delta%	DELTA% shows the percent deviation of the measured L, C, R or Z value from a saved NOMINAL VALUE. The deviation is indicated.		
	Delta	Delta is similar to the DELTA% except that the deviation is shown in suitable units (ohms, henries, etc.)		
Measurement Speed	Speed	LCR- 816/817/819/821	LCR-826/827/829	
	Slow	896ms	Please refer to the	
	Medium	286ms	Handler timing	
	Fast	135ms	diagram on page 119 for details.	
Equivalent circuit	Parallel	L/R, L/Q, C/D, C/R,	R/Q	
•	Serial	L/R, L/Q, C/D, C/R,		
Trigger	Auto/Manual			
Average	1-255			
Battery	3V-DC lithium ion (*BR-2/3A) used for memory and calibration data backup. (Recommended replacement every three years. *The battery should only be replaced by a GW Instek approved service center.			
Memory	100 blocks of memory			
Display	240X128 dot matrix C.C.F.L. back lit LCD (contrast adjustable)			
Test voltage	LCR-817/819/827/829/821 LCR-816/826			
	5mV~1.275V (5mV steps) 0.1V~1.275V (5mV steps) Note: When the test frequency is at 200kHz, test voltage must be greater than 100mV.			
DC bias	Internal	2V		
	External	Up to 30VDC (200m up to 35VDC.	nA max), tolerable	
Operation	Indoor use			
Environment	Altitude up to 2	2000M		
	Installation category II			
	Pollution degree 2			
	Operating temperature 10°C~50°C, <85% relative humidity			
Storage	-20°C~60°C			
Environment				

GWINSTEK

Power Source	Line Voltage	100V~240V AC, 50~60Hz/ 400Hz
	Power Consumption	45 Watts maximum
	Fuse	Slow-blow 5X20 mm,
		3A/250V UL/CSA 5TT
		GMD
Dimensions	330mm (W) × 149mm (H) × 437mm (D)	
Weight	5.5kg	

GWINSTEK

EC Declaration of Conformity

We

GOOD WILL INSTRUMENT CO., LTD.

No. 7-1, Jhongsing Rd., Tucheng City, Taipei County 236, Taiwan GOOD WILL INSTRUMENT (SUZHOU) CO., LTD.

No. 69 Lushan Road, Suzhou New District Jiangsu, China.

declare that the below mentioned products:

LCR-817/819/827/829/816/826/821

are herewith confirmed to comply with the requirements set out in the Council Directive on the Approximation of the Law of Member States relating to Electromagnetic Compatibility (2004/108/EC) and Low Voltage Equipment Directive (2006/95/EC).

© EMC

⊕ EIVIC			
EN 61326-1	Electrical equipment for measurement, control and		
	laboratory use EMC requirements 2006		
Conducted and Radiated Emissions		Electrostatic Discharge	
CISPR11: 2003+	A1: 2004+A2: 2006	IEC 61000-4-2: 2001	
	Class A		
Current Harmon	nic	Radiated Immunity	
EN 61000-3-2: 20	006	IEC 61000-4-3: 2006+A1: 2007	
Voltage Fluctua	tion	Electrical Fast Transients	
EN 61000-3-3: 19	95+A1: 2001+A2:	IEC 61000-4-4: 2004 +Corr.1: 2006	
2005		+Corr.2: 2007	
		Surge Immunity	
		IEC 61000-4-5: 2005	
		Conducted Susceptibility	
		IEC 61000-4-6: 2003+A1: 2004+A2:	
		2006	
		Power Frequency Magnetic field	
		IEC 61000-4-8: 1993+A1: 2000	
		Voltage Dips/ Interrupts	
		IEC 61000-4-11: 2004	

◎ Safety

Low Voltage Equipment Directive 2006/95/EC
Safety Requirements
IEC/EN 61010-1:2001

NDEX

Absolute limit settings
set bin menu65
Admittance
overview129
Angle overview131
Auto/Manual settings
handler menu55
Automatic mode
basic measurement44
Average setting
basic measurement40
Average settings
handler menu60
Bais voltage34
Basic accuracy
specification137
Basic measurement29
combination30
Bias settings
handler menu57
Bias voltage
specification138
Bin functions48
Bin menu overview50
Bin number
set bin menu64
Bin summary70
Bin summary overview68
Calibration
open circuit24
short circuit25
zeroing24
Capacitance
accuracy definition132
overview127

series/parallel model124
Caution symbol5
Circuit settings
handler menu53
Circuit theory and formula124
Cleaning the instrument7
Clear bin
set bin menu67
Command
combining89
format88
forms88
input/output88
list90
parameter88
syntax87
terminators88
types87
Conductance
overview126
Constant voltage factor
accuracy definition133
constant voltage setting
basic measurement39
Constant voltage settings
handler menu58
Declaration of conformity140
Delay settings
handler menu59
Dimensions
specification139
Display
overview30
specification138
Display ranges

specification136	timing119
Display unit settings	Handler menu52
handler menu 54	Impedance
Dissipation	accuracy definition132
accuracy definition	overview129
Dissipation factor	Inductance
overview130	accuracy definition132
EN61010	overview127
measurement category6	series/parallel model124
pollution degree7	Interface 111
Environment	LCR viewer
operation7	file settings78
storage 8	LCR Viewer
Equivalent circuit model	connection 75, 84
overview124	overview74
Equivalent circuit type33	remote measurement80
Equivalent circuits	view data81, 82
specification 138	Limit settings
Exit	set bin menu65
set bin menu67	Manual measurement
External voltage bias	basic measurement43
connection22	Measurement
Features 11	accuracy definition132
Fixture	basic measurement29
connection21	item and combination12
overview20	Measurement displays
Frequency and voltage factor	specification137
accuracy definition	Measurement mode 33
table1134	Measurement modes
table2134	specification138
	Measurement parameters
Frequency setting basic measurement35	specification136
Frequency settings	Measurement speed
handler menu	specification
Front panel overview	
Fuse	Measuring
replacement	air-cored coils
safety instruction6	Capacitors27
Ground symbol5	Component cases
Handler interface	Guidlines
configuration 114	Indcutors26 iron-core inductors28
Handler Interface	
signal overview116	Resistors27

wire capacitance27	R
Memory	
specification138	
Mode settings	
handler menu52	R
Nominal value	
set bin menu64	R
Nominal value setting	
basic measurement41	R
Operation environment	R
specification138	R
Parallel circuit selection33	R
Percentage limit settings	
set bin menu65	R
Power source	
specification 139	S
Power supply	
safety instruction6	S
socket overview17	
Power up sequence18	S
PPM setting	S
basic measurement38	S
Primary measurement	S
accuracy definition132	S
Quality factor	
accuracy definition132	S
overview130	
Range constant	S
table3135	S
table4135	Ü
Range hold setting	S
basic measurement40	
Range settings	S
handler menu58	S
Reactance	Ü
overview128	Т
Rear panel overview16	•
Recall calibration settings46	Т
Recall memory settings45	•
Remote	Т
faq121	•
remote control	Т
interface configuration 112	•

Resistance
accuracy definition132
overview126
series/parallel model125
Resistance (C/R, L/R)
accuracy definition132
Results
bin summary70
RS-232 configuration112
RS232 remote72
RS232 Settings73
Run measurement
basic measurement43
Run measurements
handler menu55
Secondary limits
set bin menu66
Secondary measurement
accuracy definition132
Series circuit selection33
Service contanct point122
Set Bin menu62
Set Bin menu overview61
Single mode
basic measurement43
Sort settings
set bin menu63
Specification136
Speed settings
handler menu53
Storage environment
specification138
Store memory settings45
Susceptance
overview128
Terminal command
faq121
Test fixture
faq121
Test frequency
specification137
Test speed factor
accuracy definition 133

Test voltage		Weight
specification	. 138	specification139
Tilt stand	18	X variable
UK power cord	9	accuracy definition133
Voltage setting		Zeroing
basic measurement	37	faq121
Voltage settings		Zeroing Calibration24
handler menu	56	θ
Warning symbol	5	accuracy definition132

GWINSTEK