Europäisches Patentamt

European Patent Office

Office européen des brevets

EP 0 534 396 B1

(12)

EUROPEAN PATENT SPECIFICATION

- (45) Date of publication and mention of the grant of the patent: 09.10.1996 Bulletin 1996/41
- (51) Int Cl.6: C07K 5/078, A61K 38/05

(11)

- (21) Application number: 92116264:0
- (22) Date of filing: 23.09.1992
- (54) 2-Substituted indane-2-carboxyalkyl derivatives useful as inhibitors of enkephalinase and ace 2-Substituierte Indane-2-Carboxyalkyl-Verbindungen mit Enkephalinase und ACE-Hemmwirkung Dérivés d'indane-2-carboxyalkyl ayant une activité inhibante d'enképhalinase et d'ACE
- (84) Designated Contracting States:
 AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL
 PT SE
- (30) Priority: 27.09.1991 US 767289 20.08.1992 US 929482
- (43) Date of publication of application: 31.03.1993 Bulletin 1993/13
- (73) Proprietor: MERRELL PHARMACEUTICALS INC. Cincinnati Ohio 45215 (US)
- (72) Inventors:
 - Warshawsky, Alan W.
 Cincinnatl, Ohio 45242 (US)

- Flynn, Gary Alan Cincinnati, Ohio 45243 (US)
- (74) Representative: VOSSIUS & PARTNER
 Postfach 86 07 67
 81634 München (DE)
- (56) References cited:

EP-A- 0 128 728

EP-A- 0 249 223

EP-A- 0 249 224

EP-A- 0 481 522

PEPTIDE CHEMISTRY 1987, OSAKA pages 631 - 636 G.A.FLYNN ET AL 'AN ACYL-IMINIUM ION CYCLIZATION ROUTE TO NOVEL CONFORMATIONAL RESTRICTED DIPEPTIDE MIMICS'

P 0 534 396 B1

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Description

5

10

15

20

25

30

35

Enkephalinase or, more specifically, endopeptidase-24.11, is a mammalian ectoenzyme which is involved in the metabolic degradation of certain circulating regulatory peptides. This enzyme, which is a Zn+2-metallopeptidase, exerts its effect by cleaving the extracellular peptides at the amino group of hydrophobic residues and thus inactivates the peptides as regulatory messengers.

Enkephalinase is involved in the metabolic degradation of a variety of circulating regulatory peptides including endorphins, such as β-endorphin and the enkephalins, atrial natriuretic peptide (ANP), and other-circulating regulatory peptides.

Endorphins are naturally-occurring polypeptides which bind to opiate receptors in various areas of the brain and thereby provide an analgesic effect by raising the pain threshold. Endorphins occur in various forms including α-endorphin, β-endorphin as well as the enkephalins. The enkephalins, i.e., Met-enkephalin and Leu-enkephalin, are pentapeptides which occur in nerve endings of brain tissue, spinal cord and the gastrointestinal tract. Like the other endorphins, the enkephalins provide an analgesic effect by binding to the opiate receptors in the brain. By inhibiting enkephalinase, the metabolic degradation of the naturally-occurring endorphins and enkephalins are inhibited, thereby providing a potent endorphin- or enkephalin-mediated analgesic effect. Inhibition of enkephalinase would therefore be useful in a patient suffering from acute or chronic pain. Inhibition of enkephalinase would also be useful in providing an antidepressant effect and in providing a reduction in severity of withdrawal symptoms associated with termination of opiate or morphine administration.

ANP refers to a family of naturally-occurring peptides which are involved in the homeostatic regulation of blood pressure, as well as sodium and water levels. ANPs have been found to vary in length from about 21 to about 126 amino acids with a common structural feature being one or more disulfide-looped sequences of 17 amino acids with various amino- and carboxy-terminal sequences attached to the cystine moiety. ANPs have been found to bind to specific binding sites in various tissues including kidney, adrenal, aorta, and vascular smooth muscle with affinities ranging from about 50 pico-molar (pM) to about 500 nanomolar (nM) [Needleman, Hypertension 7, 469 (1985)]. In addition, it is believed that ANPs bind to specific receptors in the brain and possibly serve as neuromodulator as well as a conventional peripheral hormones.

The biological properties of ANP involve potent diuretic/natriuretic and vasodilatory/hypotensive effects as well as an inhibitory effect on renin and aldosterone secretion [deBold, Science 230, 767 (1985)]. By inhibiting enkephalinase, the metabolic degradation of the naturally-occurring ANP is inhibited, thereby providing a potent ANP-mediated diuretic, natriuretic, hypotensive, hypoaldosteronemic effects. Inhibition of enkephalinase would therefore be useful in a patient suffering from disease states characterized by abnormalities in fluid, electrolyte, blood pressure, intraocular pressure, renin, or aldosterone homeostasis, such as, but not limited to, hypertension, renal diseases, hyperaldosteronemia, cardiac hypertrophy, glaucoma and congestive heart failure.

In addition, the compounds of the present invention are inhibitors of Angiotensin-Converting Enzyme (ACE). ACE is a peptidyl dipeptidase which catalyzes the conversion of angiotensin I to angiotensin II. Angiotensin II is a vasoconstrictor which also stimulates aldosterone secretion by the adrenal cortex. Inhibition of ACE would therefore be useful in a patient suffering from disease states such as hypertension and congestive heart-failure [See William W. Douglas, "Polypeptides - Angiotensin, Plasma Kinins, and Others", Chapter 27, in GOODMAN AND GILLMAN'S THE PHARMACOLOGICAL BASIS OF THERAPEUTICS, 7th edition, 1985, pp. 652-3, MacMillan Publishing Co., New York, New York]. In addition, it has been disclosed that ACE inhibitors are useful in treating cognitive disorders [German Application No. 3901-291-A, published August 3, 1989].

EP-A-0 128 728 describes substituted lactam derivatives which are useful as angiotensinase and enkephalinase inhibitors. EP-A-0 481 522 discloses mercaptoacetylamide derivatives which are useful as inhibitors of enkephalinase and ACE.

The present invention provides novel compounds of the Formula (I)

50

$$\begin{array}{c|c}
B_1 \\
B_2 \\
R \\
Q - (CH_2)_m - CO_2R_1
\end{array}$$

$$\begin{array}{c|c}
CO_2R_3
\end{array}$$

wherein

 B_1 and B_2 are each independently hydrogen, hydroxy or -OR₂ wherein R₂ is a C₁-C₄ alkyl or an Ar-Y group wherein Ar is a phenyl or naphthyl group unsubstituted or substituted with from one to three substituents selected from the group consisting of methylenedioxy, hydroxy, C₁-C₄ alkoxy, fluoro and chloro and Y is a hydrogen or C₁-C₄ alkyl; or, where B₁ and B₂ are attached to adjacent carbon atoms, B₁ and B₂ can be taken together with said adjacent carbons to form a benzene ring or methylenedioxy;

A is a bond, methylene, oxygen, sulfur, NR_4 or $NCOR_5$ wherein R_4 is hydrogen, a C_1 - C_4 alkyl or an Ar-Y- group and R_5 is -CF₃ or a C_1 - C_{10} alkyl or an Ar-Y group, R_3 is hydrogen or -CH₂OC(O)C(CH₃)₃; R_1 is hydrogen, C_1 - C_4 alkyl, or -CH₂OC(O)C(CH₃)₃,

m is an integer 1 to 3; and

Q is a group of the formulae

Q is a group or the formula

30

35

40

45

50

55

5

10

15

20

25

$$B_1$$
 CH_2 CH_2 CH_2 CH_2 CH_2 CH_3 CH_2 CH_3 C

OI

wherein Z is O, NH or S; and n is an integer 1 to 5.

The present invention further provides a compound of Formula(I) for use in inhibiting enkephalinase in a patient in need thereof comprising administering to said patient an effective enkephalinase inhibitory amount of a compound of Formula (I).

The present invention also provides a compound of Formula (I) for use in inhibiting ACE in a patient in need thereof comprising administering to said patient an effective ACE inhibitory amount of a compound of Formula (I).

In addition, the present invention provides a composition comprising an assayable amount of a compound of Formula (I) in admixture or otherwise in association with an inert carrier. The present invention also provides a pharmaceutical composition comprising an effective inhibitory amount of a compound of Formula (I) in admixture or otherwise in association with one or more pharmaceutically acceptable carriers or excipients.

As used herein, the term "C₁-C₄ alkyl" refers to a saturated straight or branched chain hydrocarbyl radical of one to four carbon atoms and includes methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, tertiary butyl and the like. The terms "C₁-C₈ alkyl" and "C₁-C₁₀ alkyl" refer to saturated straight or branched chain hydrocarbyl radicals of one to eight and one to ten carbon atoms, respectively, including methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, tertiary butyl, pentyl, isopentyl, hexyl, 2,3-dimethyl-2-butyl, heptyl, 2,2-dimethyl-3-pentyl, 2-methyl-2-hexyl, octyl, 4-methyl-3-heptyl and the like. The term "halogen", "halo", "halide" or "X" refers to a chlorine, bromine, or iodine atom.

As used herein, the term "Ar-Y-" refers to a radical wherein Ar is an aryl group and Y is a C₀-C₄ alkyl. The term "Ar" refers to a phenyl or naphthyl group unsubstituted or substituted with from one to three substituents selected from the group consisting of methylenedioxy, hydroxy, C₁-C₄ alkoxy, fluoro and chloro. The term "C₀-C₄ alkyl" refers to a saturated straight or branched chain hydrocarbyl radical of zero to four carbon atoms and includes a bond, methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, tertiary butyl and the like. Specifically included within the scope of the term "Ar-Y-" are phenyl, naphthyl, phenylmethyl or benzyl, phenylethyl, p-methoxybenzyl, p-fluorobenzyl and p-chlorobenzyl.

As used herein, the designation "" refers to a bond to a chiral atom for which the stereochemistry is not designated and compounds of Formula I wherein A is a bond is understood to be a 5-membered ring.

The compounds of Formula I wherein A is a bond, methylene, oxygen, sulfur or NH can be prepared by utilizing procedures and techniques well known and appreciated by one of ordinary skill in the art. A general synthetic scheme for preparing these compounds is set forth in Scheme A wherein all substituents, unless otherwise indicated, are previously defined.

Scheme A

A' = a bond, -CH2-,O, S or NH

5

10

20

55

The compounds of Formula I wherein A is a bond, methylene, oxygen, sulfur or NH can be prepared by reacting the appropriate ester/carboxylic acid compound of structure 2 with the appropriate amino compound of structure 1 can be reacted with the appropriate ester/carboxylic acid compound of structure 2 in the presence of a coupling reagent such as EDC (1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride), DCC (1,3-dicyclohexylcarbodiimide), or diethylcyanophosphonate in a suitable aprotic sol-

vent, such as methylene chloride to give the appropriate tricyclic compound of structure 3.

5

15

20

25

30

35

40

45

50

Alternatively, the ester/carboxylic acid compound of structure 2-can be converted to the corresponding ester/acid chloride, followed by reaction with the appropriate amino compound of structure 1 to give the appropriate-compound of Formula I.

As summarized in Table 1, the $\rm R_1$ and $\rm R_3$ groups on the compounds Formula I can be manipulated using techniques and procedures well known and appreciated by one of ordinary skill in the art to give the corresponding compounds of structures 4 through 9.

For example, both the diphenylmethyl ester functionality and the t-butyl ester functionality of the appropriate tricyclic compound of structure $\underline{3}$, wherein R_1 is t-butyl and R_3 is diphenylmethyl, can be removed using trifluoroacetic acid to give the appropriate dicarboxylic acid compound of structure $\underline{4}$.

For example, the appropriate tricyclic compound of structure 3, wherein R₁ is t-butyl and R₃ is diphenylmethyl, is contacted in an appropriate acidic solvent such as trifluoroacetic acid. The reactants are typically stirred together at room temperature for a period of time ranging from 1-24 hours. The dicarboxylic acid compound of structure 4 is recovered from the reaction zone by extractive methods as is known in the art. It can be purified by silica gel chromatography.

Both the carboxylic acid functionalities of the appropriate dicarboxylic acid compound of structure 4 can be reesterified using techniques and procedures well known and appreciated in the art. For example, a dipivaloyloxymethyl ester compound of structure 5 can be prepared by treating the dicarboxylic acid compound of structure 4 with 2 molar equivalents of chloromethyl pivalate in a suitable aprotic solvent, such as dimethylformamide along with a non-nucleophilic base, such as cesium carbonate.

The diphenylmethyl ester functionality of the appropriate tricyclic compound of structure $\underline{3}$, wherein R_1 is C_1 - C_4 alkyl and R_3 is diphenylmethyl can be selectively removed using catalytic hydrogenation as is known in the art to give the appropriate C_1 - C_4 alkyl ester/carboxylic acid compound of structure $\underline{6}$. For example, the C_1 - C_4 alkyl ester/carboxylic acid compound of structure $\underline{6}$ can be prepared by treating the appropriate tricyclic compound of structure $\underline{3}$, wherein R_1 is C_1 - C_4 alkyl and R_3 is diphenylmethyl with a catalytic amount of palladium/carbon and a molar excess of ammonium formate. The reactants are typically contacted in a suitable polar organic solvent such as methanol. The reactants are typically contacted at room temperature for a period of time ranging from 3 minutes to 24 hours. The C_1 - C_4 alkyl ester/carboxylic acid compound of structure $\underline{6}$ can be recovered from the reaction zone by filtration and evaporation of the solvent.

The carboxylic acid functionality of the appropriate C_1 - C_4 alkyl ester/carboxylic acid compound of structure <u>6</u> can be reesterified to give the appropriate C_1 - C_4 alkyl ester/pivaloyl methyl ether ester of structure <u>7</u>. For example, a C_1 - C_4 alkyl ester/pivaloyloxymethyl ester compound of structure <u>7</u> can be prepared by treating the appropriate C_1 - C_4 alkyl ester/carboxylic acid compound of structure <u>6</u> with 1 molar equivalent of chloromethyl pivalate in a suitable aprotic solvent, such as dimethylformamide along with a non-nucleophilic base, such as cesium carbonate.

The C_1 - C_4 alkyl ester functionality of the appropriate C_1 - C_4 alkyl ester/pivaloyl methyl ether ester of structure $\underline{7}$, wherein the C_1 - C_4 alkyl ester is not t-butyl, can be hydrolyzed under basic conditions, such as lithium hydroxide in methanol, as is known in the art, to give the carboxylic acid/pivaloyl methyl ether ester of structure $\underline{8}$.

The compounds of Formula I wherein R_1 is pivaloyloxymethyl ester and R_3 is hydrogen can be prepared in a multi-step process.

For example, the C_1 - C_4 alkyl ester functionality of the appropriate C_1 - C_4 alkyl ester/diphenylmethyl ester of the appropriate tricyclic compound of structure $\underline{3}$, wherein the C_1 - C_4 alkyl ester is not t-butyl can be hydrolyzed under basic conditions, such as lithium hydroxide in methanol, as is known in the art, to give the intermediate carboxylic acid/diphenylmethyl ester compound.

The carboxylic acid functionality of the appropriate intermediate carboxylic acid/diphenylmethyl ester compound can then be reesterified to give the intermediate pivaloyloxymethyl ester/diphenylmethyl ester compound. For example, an intermediate pivaloyloxymethyl/diphenylmethyl ester compound can be prepared by treating the appropriate intermediate carboxylic acid/diphenylmethyl ester compound with 1 molar equivalent of chloromethyl pivalate in a suitable aprotic solvent, such as dimethylformamide along with a non-nucleophilic base, such as cesium carbonate.

The diphenylmethyl ester functionality of the appropriate intermediate pivaloyloxymethyl/diphenylmethyl ester compound can be removed by hydrogenation as is known in the art to give the pivaloyloxymethyl/carboxylic acid compound of structure $\underline{9}$. For example, the pivaloyloxymethyl/carboxylic acid compound of structure $\underline{9}$ can be prepared by treating the appropriate intermediate pivaloyloxymethyl/diphenylmethyl ester compound with a catalytic amount of palladium/carbon and a molar excess of ammonium formate. The reactants are typically contacted in a suitable polar organic solvent such as methanol. The reactants are typically contacted at room temperature for a period of time ranging from 3 minutes to 24 hours. The pivaloyloxymethyl/carboxylic acid compound of structure $\underline{9}$ can be recovered from the reaction zone by filtration and evaporation of the solvent.

TABLE 1

MANIPULATION OF R1 AND R3					
Compound	₽1	Fl₃			
4	Н	н			
<u>5</u>	CH ₂ OCOC(CH ₃) ₃	CH ₂ OCOC(CH ₃) ₃			
<u>6</u>	C ₁ -C ₄ alkyl	Н			
7	C ₁ -C ₄ alkyl	-CH2OCOC(CH3)3			
8	н	CH ₂ OCOC(CH ₃) ₃			
9	CH ₂ OCOC(CH ₃) ₃	н			

The compounds of Formula I wherein A is -NR₄ can be prepared by techniques and procedures well known and appreciated by one of ordinary skill in the art. A general synthetic procedure for preparing these compounds is set forth in Scheme B. In Scheme B, all substituents unless otherwise indicated are as previously defined.

Scheme B

$$B_1$$
 $A_{R_{(n-1)}}CHO$ 11

 A_{NH}
 $A_{(n-1)}CHO$ 11

 $A_{(n-1)}CHO$ 11

Scheme B provides a general synthetic procedure for preparing the compounds of Formula I wherein A is -NR₄. The amino functionality of the appropriate amino compound of structure <u>10</u> is subjected to reductive alkylation with the appropriate aldehyde of structure <u>11</u> using sodium cyanoborohydride, as is well known in the art, to give the corresponding N-alkylamino compound of structure <u>12</u>.

The $\rm R_1$ and $\rm R_3$ groups on the compounds of Formula 1 wherein A is -NR $_4$ -can be manipulated as described previously in Scheme A and Table 1.

The compounds of Formula I wherein A is -NCOR₅ can be prepared by techniques and procedures well known and appreciated by one of ordinary skill in the art. A general synthetic procedure for preparing these compounds is set forth in Scheme C. In Scheme C, all substituents unless otherwise indicated are as previously defined.

Scheme C

15

B₁

B₂

R₅CO-Cl 13

or (R₅CO)₂-O 14

O N

NH

CO₂R₃

10

B₁

$$R_5$$
 R_5
 R_5

5

40

45

50

55

Scheme C provides a general synthetic procedure for preparing the compounds of Formula I wherein A is -NCOR₅. The appropriate amino-compound of structure <u>10</u> is acylated using the appropriate acyl-chloride of structure <u>13</u> or the appropriate anhydride of structure <u>14</u>, as is well known in the art, to give the corresponding N-acylamino compound of structure <u>15</u>.

The groups R_1 and R_3 may be manipulated by techniques and procedures well known and appreciated in the art and described previously in Scheme A and shown in Table 1.

Starting materials for use in Scheme A through Scheme C are readily available to one of ordinary skill in the art. For example, certain tricyclic amino compounds of structure 1 wherein X is S are described in European Patent Application 0 249 223 (December 16, 1987) and certain other tricyclic amino compounds of structure 1 wherein A is methylene may also be prepared as described in said European Patent Application of Flynn and Beight.

Tricyclic amino compounds of structure 1 wherein A is O may be prepared as described in Scheme D. In Scheme D, all substituents unless otherwise indicated are as previously defined.

Scheme D

Scheme D

B1

B1

DEPROTECTION

PhthN

O

CO₂CHPh₂

20 B_1 B_1 B_2 B_2 CO_2 CHPh₂ CO_2 CHPh₂ CO_2 CHPh₂ CO_2 CHPh₂

25

30

35

40

45

50

55

Scheme D provides a general synthetic procedure for preparing amino compounds of structure 1 wherein A is O. In step a, the appropriate phthalimide blocked (S)-phenylalanine derivative of structure 16 is converted to the corresponding acid chloride, then reacted with the appropriate L-serine methyl ester of structure 17 to give the corresponding 1-oxo-3-phenylpropyl-L-serine methyl ester of structure 18.

For example, the appropriate phthalimide blocked (S)-phenylalanine derivative of structure <u>16</u> can be reacted with oxalyl chloride in a suitable aprotic solvent, such as methylene chloride. The resulting acid chloride can then be coupled with the appropriate L-serine methyl ester of structure <u>17</u> using N-methylmorpholine in a suitable aprotic solvent, such as dimethylformamide, to give the appropriate 1-oxo-3-phenylpropyl-L-serine methyl ester of structure <u>18</u>.

In step b, the hydroxy functionality of the appropriate 1-oxo-3-phenylpropyl-L-serine methyl ester of structure 18 is allylated with the allyl imidate of structure 19 to give the corresponding 1-oxo-3-phenylpropyl-L-serine-O-allyl methyl ester of structure 20.

For example, the appropriate 1-oxo-3-phenylpropyl-L-serine methyl ester of structure 18 is contacted with 2 molar equivalents of the allyl imidate of structure 19 and a molar equivalent of a suitable acid such as trifluoromethanesulfonic acid. The reactants are typically contacted in a suitable organic solvent mixture such as methylene chloride/cyclohexane. The reactants are typically stirred together at room temperature under an inert atmosphere for a period of time ranging from 2-24 hours. The 1-oxo-3-phenylpropyl-L-serine-O-allyl methyl ester of structure 20 is recovered from the reaction zone by extractive methods as is known in the art. It may be purified by silica gel chromatography or crystallization.

In step c, the appropriate 1-oxo-3-phenylpropyl-L-serine-O-allyl methyl ester of structure 20 is cyclized to give the corresponding (4S)-enamine of structure 21.

For example, the appropriate 1-oxo-3-phenylpropyl-L-serine-O-allyl methyl ester of structure 20 is first contacted with a molar excess of a mixture of ozone/oxygen. The reactants are typically contacted in a suitable organic solvent mixture such as methylene chloride/methanol. The reactants are typically stirred together for a period of time ranging from 5 minutes to 30 minutes or until a blue color persists and at a temperature range of from -78°C to -40°C. The reaction is quenched with an excess of methylsulfide and the intermediate aldehyde compound recovered from the reaction zone by extractive methods as is known in the art.

The intermediate aldehyde compound is then contacted with trifluoroacetic acid in a suitable aprotic solvent, such as methylene chloride to give the corresponding (4S)-enamine of structure <u>21</u>.

In step d, the appropriate (4S)-enamine of structure <u>21</u> is cyclized to give the corresponding (4S)-tricyclic compound of structure <u>22</u> by an acid catalyzed Friedel-Crafts reaction. For example, the appropriate (4S)-enamine of structure <u>21</u> can be converted to the corresponding (4S)-tricyclic compound of structure <u>22</u> by treatment with a mixture of trifluoromethane sulfonic acid and trifluoroacetic anhydride in a suitable aprotic solvent, such as methylene-chloride.

In step d, it may be necessary to reesterify the carboxy functionality due to the conditions of the work-up. For example, treatment of the crude product with bromodiphenylmethane in a suitable aprotic solvent, such as dimethyl-formamide along with a non-nucleophilic base, such as cesium carbonate, may be used to give the corresponding

(4S)-diphenylmethyl ester.

5

10

40

45

50

55

In step e, the phthalimide protecting group of the appropriate (4S)-tricyclic compound of structure <u>22</u> is removed to give the corresponding amino compound of structure <u>23</u> wherein X is O. For example, the phthalimide protecting group of the appropriate (4S)-tricyclic compound of structure <u>22</u> can be removed using hydrazine monohydrate in a suitable protic solvent such as methanol, to give the corresponding (4S)-tricyclic amino compound of structure <u>23</u>.

Tricyclic amino compounds of structure 1 wherein A is NH may be prepared as described in Scheme E. In Scheme E, all substituents unless otherwise indicated are as previously defined.

Scheme £

PhthN
$$\frac{B_1}{O}$$
 $\frac{CYCLIZATION}{Step c}$ $\frac{B_1}{O}$ $\frac{B_2}{N}$ $\frac{B_2}{N}$ $\frac{B_2}{N}$ $\frac{B_1}{N}$ $\frac{B_2}{N}$ $\frac{B_2}{N}$

Scheme E

PhthN

PhthN

NCOCF3

Step d

DEPROTECTION

NCOCF3

Step d

DEPROTECTION

NE

CO₂CHPh₂

28

25

30

35

40

45

50

55

Scheme E provides an alternative general synthetic procedure for preparing amino compounds of structure 1 wherein A is NH.

In step a, the appropriate phthalimide blocked (S)-phenylalanine derivative of structure <u>16</u> is converted to the corresponding acid chloride, then reacted with the appropriate 3-trifluoracetylamino-3-allyl-L-2-aminopropionic acid, methyl ester of structure <u>24</u> to give the corresponding 1-oxo-3-phenylpropyl-N-trifluoracetyl-N-allyl-L-amino acid, methyl ester of structure <u>25</u> as described previously in Scheme D, step a.

In step b, the appropriate 1-oxo-3-phenylpropyl-N-trifluoracetyl-N-allyl-L-amino acid methyl ester of structure $\underline{25}$ is cyclized to give the corresponding enamine of structure $\underline{26}$ as described previously in Scheme D, step c.

In step c, the appropriate (4S)-enamine of structure 26 is cyclized to give the corresponding (4S)-tricyclic compound of structure 27 as described previously in Scheme D, step d.

In step d, the phthalimide protecting group of the appropriate (4S)-tricyclic compound of structure <u>27</u> is removed to give the corresponding (4S)-amino compound of structure <u>28</u> wherein X is NH as described in Scheme D, step e.

Tricyclic amino compounds of structure 1 wherein A is methylene may be prepared as described in Scheme F. In Scheme F, all substituents unless otherwise indicated are as previously defined.

Scheme F

5 B_1 1)oxalyl chloride 2) 10 step a 29 15 16 81 B_1 20 Oxidation 25 step b **PhthN** CO₂Me 31 30 CO₂Me 30

35

40

45

50

55

0

Scheme F cont.

20

25

30

35

Scheme F provides a general synthetic procedure for preparing the tricyclic amino compounds of structure 1 wherein A is methylene.

In step a, the appropriate phthalimide blocked (S)-phenylalanine derivative of structure 16 can be converted to the corresponding acid chloride, then reacted with the appropriate amino acid methyl ester of structure 29 in a coupling reaction. For example, the appropriate phthalimide blocked (S)-phenylalanine derivative of structure 16 can be reacted with oxalyl chloride in a suitable aprotic solvent, such as methylene chloride. The resulting acid chloride can then be coupled with the appropriate amino acid methyl ester of structure 29 using N-methylmorpholine in a suitable aprotic solvent, such as dimethylformamide, to give the appropriate 1-oxo-3-phenylpropyl-amino acid methyl ester derivative of structure 30.

In step b, the hydroxymethylene functionality of the appropriate 1-oxo-3-phenylpropyl-amino acid methyl ester derivative of structure 30 can be oxidized to the appropriate aldehyde of structure 31 by oxidation techniques well known and appreciated in the art. For example, the hydroxymethylene functionality of the appropriate 1-oxo-3-phenyl-propyl-amino acid methyl ester derivative of structure 30 can be oxidized to the appropriate aldehyde of structure 31 by means of a Swern oxidation using oxalyl-chloride and dimethylsulfoxide in a suitable aprotic solvent, such as methylene chloride.

In step c, the appropriate aldehyde of structure <u>31</u> can be cyclized to the appropriate enamine of structure <u>32</u> by acid catalysis. For example, the appropriate aldehyde of structure <u>31</u> can be cyclized to the appropriate enamine of structure <u>32</u> by treatment with trifluroacetic acid in a suitable aprotic solvent, such as methylene chloride.

In step d, the appropriate enamine of structure <u>32</u> can be converted to the corresponding tricyclic compound of structure <u>33</u> by an acid catalyzed Friedel-Crafts reaction. For example, the appropriate enamine of structure <u>32</u> can be converted to the corresponding tricyclic compound of structure <u>33</u> by treatment with a mixture of trifluoromethane sulfonic acid and trifluoroacetic anhydride in a suitable aprotic solvent, such as methylene chloride.

In step d, it may be necessary to reesterify the carboxy functionality due to the conditions of the work-up. For example, treatment of the crude product with bromodiphenylmethane in a suitable aprotic solvent, such as dimethyl-formamide along with a non-nucleophilic base, such as cesium carbonate, may be used to give the corresponding diphenylmethyl ester.

In step e, the phthalimide protecting group of the appropriate tricyclic compound of structure <u>33</u> can be removed using techniques and procedures well known in the art. For example, the phthalimide protecting group of the appropriate tricyclic compound of structure <u>33</u> can be removed using hydrazine monohydrate in a suitable protic solvent such as methanol, to give the corresponding amino compound of structure <u>34</u>.

The compounds of Formula I wherein A is a bond can be prepared by utilizing procedures and techniques well known and appreciated by one of ordinary skill in the art. A general synthetic scheme for preparing these compounds is set forth in Scheme G wherein all substituents, unless otherwise indicated, are previously defined.

55

Scheme G

5

10

15

20

25

50

55

Scheme G provides a general synthetic procedure for preparing compounds of Formula I wherein A is a bond.

In step a, the N-(phenylmethylene)glycine methyl ester of structure <u>35</u> can be treated with one equivalent of a non-nucleophilic base, such as lithium diisopropylamide, in a suitable aprotic solvent, such as tetrahydrofuran, followed by addition of a 4-halobutene of structure <u>36</u> to give 2-(3-butenyl)-N-(phenylmethylene)glycine methyl ester of structure <u>37</u>.

In step b, the N-(phenylmethylene) functionality of 2-(3-butenyl)-N-(phenylmethylene)glycine methyl ester of structure 37 can be hydrolyzed under acidic conditions, such as with hydrochloric acid in a suitable aprotic solvent, such as ethyl ether to give 2-(3-butenyl)-glycine methyl ester of structure 38.

In step c, the appropriate amide compound of structure 38 can be prepared by reacting the appropriate phthalimide protected (S)-phenylalanine compound of structure 16 with 2-(3-butenyl)-glycine methyl ester of structure 39 under coupling reaction conditions, such as with EEDQ, in a suitable aprotic solvent, such as methylene chloride.

In step d, the olefin functionality of the appropriate amide compound of structure 39 can be converted to the ap-

propriate aldehyde compound of structure <u>40</u> under conditions of oxidative cleavage, such as treatment with ozone in a suitable solvent mixture, such as methylene chloride and methanol.

The compounds of Formula I wherein A is a bond can be prepared from an appropriate aldehyde of structure <u>40</u> in a process as outlined previously in Scheme F, steps c-e and Scheme A.

The individual 3(S) and 3(R) esters of the compounds of Formula I wherein A is a bond can be prepared from an appropriate aldehyde of structure <u>40</u> in a process as outlined previously in Scheme F, step c, separating the 3(S) and 3(R) esters of the enamine compounds formed from the cyclization reaction described in Scheme F, step c and completing the process as outlined in Scheme F, steps d-e and Scheme A.

The groups R_1 and R_3 may be manipulated by techniques and procedures well known and appreciated in the art and described previously in Scheme A and Table 1.

Starting materials for use in the general synthetic procedures outlined in Schemes D and F are readily available to one of ordinary skill in the art. For example, N^α -(benzyloxycarbonyl)-β-(amino)-L-alanine is described in *J. Am. Chem. Soc.*, 107(24) 7105 1985, N-(phenylmethylene)glycine methyl ester is described in *J.Org.Chem.* 41, 3491 1976 and allyl trichloroacetimidate is described in *J.Chem. Soc. Perkin Trans.* 1(11) 2247 1985, 3,4-(Dicarboethoxy)thiophene is described in *Bull. Chem. Soc. Jpn.* 41 2532 1968 and 3,4-(dicarboethoxy)pyrrole is described in *Tetrahedron Lett.* 3165 1971

The following examples present typical syntheses as described in Schemes A through G. These examples are understood to be illustrative only and are not intended to limit the scope of the present invention in any way. As used herein, the following terms have the indicated meanings: "g" refers to grams; "mmol" refers to millimoles; "mL" refers to milliliters; "bp" refers to boiling point; "mp" refers to melting point; "C" refers to degrees Celsius; "mm Hg" refers to millimeters of mercury; "µL" refers to microliters; "µg" refers to micrograms; and "µM" refers to micromolar.

Example 1 MDL 102,353

5

20

30

40

45

55

[4S-[4α, 7α(R*), 12bβ]]-7-[(2-Carboxymethyl-indan-2-yl)carbonylamino]-1,2,3,4,6,7,8,12b-octahydro-6 -oxopyrido [2,1-a][2]benzazepine-4-carboxylic acid

Scheme F, Step a: (S)-N-[(2-(1,3-Dihydro-1,3-dioxo-2H-isoindol-2-yl)-1-oxo-3-phenylpropyl]-6-hydroxy-(S) - norleucine, methyl ester

Mix phthalic anhydride (1.82kgs, 12.3mole), (S)-phenylalanine (1.84kgs, 11.1 moles) and anhydrous dimethylformamide (2.26L). Stir at 115-120°C for 2 hours under a nitrogen atmosphere. Pour into rapidly stirring water (32.6L) and cool overnight at 0°C. Filter, wash with cold water (2X2L) and air dry. Dissolve in a mixture of 9A ethanol (8.05L) and water (8.05L) and heat at reflux temperature. Gravity filter, cool to ambient temperature and refrigerate overnight at about 0°C. Filter the crystallized product, wash with cold 50:50 9A ethanol/water (2X2L) and air-dry to yield 2.96kg (90.3%) of N-phthaloyl-(S)-phenylalanine; mp 177-179°C.

Mix N-phthaloyl-(S)-phenylalanine (50.2g, 0.17mole), methylene chloride (660mL) and dimethylformamide (0.5mL) under a nitrogen atmosphere. Add oxalyl chloride (17.7mL, 0.2mole) over about 5 minutes with stirring. Stir at ambient temperature for 3 hours and evaporate the solvent in vacuo to leave N-phthaloyl-(S)-phenylalanine, acid chloride as a solid (54.3g, 101.9%).

Mix 6-hydroxy-(S)-norleucine, methyl ester, hydrochloride salt (33.5g, 0.1 mole) and dimethylformamide (201mL), cool to about 0°C and place under a nitrogen atmosphere. Add by dropwise addition, N-methylmorpholine (51mL, 0.46mole) with cooling so that the pot temperature stays at 0-5°C. Stir at 0-5°C for an additional 10 minutes, than add a solution of N-phthaloyl-(S)-phenylalanine, acid chloride (53.5g, 0.17mole) in methylene chloride (270mL) over 30 minutes with cooling so that the temperature stays at 0-5°C. Remove the cooling bath and stir at room temperature for 18 hours.

Evaporate the methylene chloride in vacuo and dilute the remaining residue with ethyl acetate (800mL). Extract the resulting mixture with water (800mL), separate the organic layer and extract with 1N hydrochloric acid (270mL), followed by water (3X500mL). Dry the organic layer (MgSO₄), filter and evaporate in vacuo to yield crude product (76g, 98%). Dissolve the crude product in hot toluene (223.5mL), cool to room temperature, then cool overnight at about 0°C. Filter the crystallized product, wash with cold toluene and air dry to yield 56.6g.(76%) of the title compound; mp 128-130°C.

Scheme F, Step b: 2-{1,3-Dihydro-1,3-dioxo-2H-isoindol-2-yl}-1-oxo-3-phenylpropyl-6-oxo-(S)-norleucine, methylester

Mix oxalyl chloride (80mL, 0.92mole) and methylene chloride (2L) and place under a nitrogen atmosphere. Cool below -50°C and add a solution of dimethyl sulfoxide (65.4mL, 0.92mole) in methylene chloride (425mL). Stir for 15

minutes and add a solution of (S)-N-[2-(1,3-dihydro-1,3-dioxo-2H-isoindol-2-yl)-1-oxo-3-phenylpropyl]-6-hydroxy-(S)-norleucine, methyl ester (200g, 0.456mole) in methylene chloride (800mL) over about 45 minutes, keeping the pot temperature below -50°C for 30 minutes. Add triethylamine (420mL, 3.01mole) over 30 minutes. Stir while warming to 0°C over 1.25 hours. Transfer the reaction mixture to a 12-liter flask. Stir and cool while adding a solution of OXONE (potassium peroxymonosulfate) (566g) in water (6.74L) at such a rate that the pot temperature stays below 15°C. Stir for 5 minutes, separate the organic layer and extract the aqueous layer with methylene chloride (1L). Combine the organic phases, dry (MgSO_A) and filter to yield the title compound as a solution.

Scheme F, Step c: [S-(R*,R*)]-N-[2-(1,3-Dihydro-1,3-dioxo-2H-isoindol-2-yl)-1-oxo-3-phenylpropyl]-1,2,3,4-tetrahydro
-2-pyridinecarboxylic acid, methyl ester

Transfer the solution of 2-(1,3-dihydro-1,3-dioxo-2H-isoindol-2-yl)-1-oxo-3-phenylpropyl]-6-oxo-(S)-norleucine, methyl ester in methylene chloride (volume about 4.5L) to a 12-liter flask and place under a nitrogen atmosphere. Stir and add trifluoroacetic acid (440mL, 5.71mole) in one portion. Stir the resulting mixture at room temperature for one hour, then rapidly cool to about 0°C. Add a solution of sodium hydroxide (240g, 6.0mole) in water (3.4L) in a-slow stream to the vigorously stirred mixture at such a rate that the pot temperature stays at about 0°C. Separate the organic phase and extract the aqueous phase with methylene chloride (1L). "Combine the organic phases and dry (MgSO₄). Filter and remove the solvent in vacuo to leave a residue (262g, 137%).

Dissolve the above residue in diethyl ether (1L) and wash with water (5X500mL). Evaporate the organic phase in vacuo to leave a residue of 229g. Dilute the residue with methylene chloride (200mL) and purify by silica gel chromatography (methylene chloride) to yield a viscous residue of 225g.

20

35

50

Dilute the above residue with diethyl ether (250mL) and allow to stand at room temperature for 24 hours. Filter the solid, wash with diethyl ether, and air dry to yield 123,2g; mp 140-142.5°C. Recrystallize (methylene chloride (125mL) /isopropanol (615mL)) by boiling off the solvent until the pot temperature reaches 75°C and allowing the resulting sample to stand at room temperature for 24 hours. Filter, wash with cold isopropanol and air dry to yield 101.5g of the title compound; mp 144-146°C.

Evaporate the filtrate from the 101.5g in vacuo to yield 24g. Recrystallize (isopropanol) to yield an additional 3.5g of the title compound.

Evaporate the filtrate from the 123.2g in vacuo to leave 62g of oil. Purify by silica gel chromatography (25% ethyl acetate/75% hexane), collecting 21-500mL fractions. Combine fractions 9-20 and evaporate in vacuo to yield 35g of a viscous oil. Recrystallize three times (isopropanol/5mL/g) to yield an additional 11.9g of the title compound; mp 142.5-144.5°C. Total yield of useful material: 116.9g (61.3%).

Scheme F, Step d: [4S-[4 α , 7 α (R*), 12b β]]-7-[(1,3-Dihydro-1,3-dioxo-2H-isoindol-2-yl)]-1,2,3,4,6,7,8,12b-octahydro-6-oxopyrido[2,1-a][2]benzazepine-4-carboxylic acid, diphenylmethyl ester

Mix trifluoromethanesulfonic acid (500g, 3.33mole) and trifluoroacetic anhydride (74.8mL, 0.53mole) and place under a nitrogen atmosphere. Stir and add a solution of [S(R*,R*)]-N-{2-(1,3-dihydro-1,3-dioxo-2H-isoindol-2-yl)-1-oxo-3-phenylpropyl]-1,2,3,4-tetrahydro-2-pyridinecarboxylic acid, methyl ester (200g, 0.48mole) in methylene chloride (1L) with cooling at such a rate as to keep the pot temperature below 35°C. Stir at ambient temperature for 2 days. Pour into vigorously stirring ice water (5L) and stir for 30 minutes. Extract with ethyl acetate (3X1L), combine the organic phases and wash with water (3x500mL). Evaporate in vacuo to a residue. Dissolve the residue in ethyl acetate (4L) and extract with 1/4 saturated potassium hydrogen carbonate (1L), then 1/3 saturated potassium hydrogen carbonate (7X1L). Combine the aqueous extracts and dilute with ethyl acetate (2L). Stir the resulting mixture and cool to 5-10°C. Adjust to pH 2 using concentrated hydrochloric acid-(about 750mL).

Separate the organic phase and extract the aqueous phase with ethyl acetate (3X1L). Combine the ethyl acetate extracts, wash with water (3X1L), then saturated sodium chloride (0.8L), and dry (MgSO₄). Filter and wash with ethyl acetate (3X200mL). Evaporate in vacuo to leave (188.3g, 101.5%) [4S- $\{4\alpha, 7\alpha(R^*), 12b\beta\}\}$ -7- $\{(1,3-dihydro-1,3-dioxo-2H-isoindol-2-yl)\}$ -1,2,3,4,6,7,8,12b-octahydro-6-oxopyrido[2,1-a][2]benzazepine-4-carboxylic acid as a colorless foam.

Dissolve [4S-[4 α , 7α (R*), 12b β]]-7-[(1,3-dihydro-1,3-dioxo-2H-isoindol-2-yl)]-1,2,3,4,6,7,8,12b-octahydro-6-ox-opyrido[2,1-a][2]benzazepine-4-carboxylic acid (113.9g, 0.28mole) in methylene chloride (1.2L) and dry over anhydrous MgSO₄ (60g). Filter and wash with methylene chloride (3X200mL). Evaporate in vacuo to a residue. Dissolve the residue in anhydrous dimethylformamide (860mL) and place under a nitrogen atmosphere. Add cesium-carbonate (98.9g, 0.3mole) in one portion. Stir for 45 minutes at ambient temperature. Add bromodiphenylmethane (164.8g, 0.67mole). Stir the resulting mixture at ambient temperature for 18 hours. Quench the reaction with ethyl acetate (2.464L) and water (630mL). Separate the organic phase and wash with water (7X625mL), 1/4 saturated potassium hydrogen carbonate (625mL), water (625mL), and saturated sodium chloride (625mL). Dry (MgSO₄), filter and evap-

orate in vacuo to yield 214.4g of an oil. Extract the combined aqueous washings with ethyl acetate (3X500mL), wash with water (4X300mL) and dry (MgSO₄). Filter and evaporate in vacuo to yield an additional 20.2g of an oil.

Dissolve the crude product (234.6g) in methylene chloride (200mL) and filter through a plug-of silica gel (213g), eluting with methylene chloride (2L). Boil off the solvent and replace with hexane (3L), with the pot temperature reaching a maximum of 65°C. Cool to ambient temperature, decant off the precipitated oil and crystallize (9A ethanol) to yield 96.6g (60%) of the title compound; mp 153-155°C.

5

10

20

30

35

40

50

Scheme F, Step e: [4S-[4α, 7α(R*), 12bβ]]-7-(Amino)-1,2,3,4,6,7,8,12b-octahydro-6-oxopyrido[2,1 -a][2]benzazepine-4-carboxylic acid, diphenylmethyl ester

Mix [4S-[4α, 7α(R*), 12bβ]]-7-[(1,3-dihydro-1,3-dioxo-2H-isoindol-2-yl)]-1,2,3,4,6,7,8,12b-octahydro-6-oxopyrido [2,1-a][2]benzazepine-4-carboxylic acid, diphenylmethyl ester (170.9g, 0.3mole), hydrazine monohydrate (34.4g, 0.68mole) and methanol (3.4L) under a nitrogen atmosphere. Heat at reflux for 5 hours. Cool to ambient temperature and filter to remove phthaloyl hydrazide. Evaporate the filtrate in vacuo to a residue and slurry in chloroform (600mL). Remove insoluble phthaloyl hydrazide by filtration and wash with chloroform (4X210mL). Wash the filtrate with water (4X429mL), dry (MgSO₄), and filter. Evaporate the filtrate to a solid residue of the title compound weighing 142g (107.7%).

Scheme A: [4S-[4α, 7α(R*), 12bβ]]-7-2-Carboxymethyl-indan-2-yl)carbonylamino]-1,2,3,4,6,7,8,12b-octahydro-6 - oxopyrido[2,1-a][2]benzazepine-4-carboxylic acid

Dissolve diethylmalonate (15.2mL, 0.100mol) in tetrahydrofuran (800mL). Cool in an ice bath and treat with sodium hydride (3.0g, 0.10mol, 80% in mineral oil). Stir until solution attained and add α , α '-dibromo-o-xylene (26.4g, 0.100mol). Stir for 30 minutes then add additional sodium hydride (3.0g, 0.10mol). Stir at room temperature for 20 hours, filter through filter aid and evaporate the solvent in vacuo. Purify by silica gel chromatography to give 2,2-(dicarboethoxy) indan as a pale yellow oil (16.0g, 61.5%).

Dissolve 2,2-(dicarboethoxy)indan (15.9g, 60.6mmol) in dimethylsulfoxide (140ml). Add water (14mL) and lithium chloride (7.0g, 0.16mol). Heat at reflux for 4 hours, cool and partition between water (150mL) and methylene-chloride (2X150mL). Wash the organic phase with water (150mL), dry (MgSO₄) and pass through a silica get plug to give 2-(carboethoxy)indan as an amber oil (6.49g, 56%).

Dissolve 2-(carboethoxy)indan (6.49g, 34.1mmol) in ethanol (95%, 150mL) and water (75mL). Add potassium hydroxide (9.5g, 0.17mol) and stir at room temperature for 1 hour. Partition between water (150mL) and ethyl ether (2X150mL). Acidify the aqueous phase with hydrochloric acid to pH 1. Extract with methylene chloride (2X150mL), dry (Na₂SO₄) and evaporate the solvent in vacuo to give 2-carboxyindanlic acid as a tan solid (3.82g, 69%).

Dissolve 2-carboxyindanlic acid (3.82g, 23.5mmol) in methanol (60mL) and treat with dimethoxypropane (5.8mL, 47mmol) and sulfuric acid (0.8mL). Stir at room temperature for 15 hours. Evaporate the solvent in vacuo, dilute with methylene chloride (75mL) and wash with saturated sodium hydrogen carbonate (35mL). Extract the aqueous phase with methylene chloride (30mL), wash combined organics with brine (30mL) and dry (Na₂SO₄). Evaporate the solvent in vacuo and pass through a plug of silica gel to give 2-(carbomethoxy)indan as a yellow oil (3.98g, 95.9%).

Dissolve diisopropylamine (0.88mL, 6.28mmol) in tetrahydrofuran (7.5mL). Cool in an ice bath and add, by dropwise addition, n-butyllithium (3.6mL of a 1.6M solution in hexanes, 5.75mmol). Stir for 15 minutes, then cool to -78°C. Add a solution of 2-(carbomethoxy)indan (888mg, 5.04mmol) in tetrahydrofuran (5mL). Stir for 45 minutes then add t-butyl bromoacetate (1.0mL, 6.2mmol). Stir for 3 hours, add saturated ammonium chloride (6mL) and warm to room temperature. Partition between ethyl ether (75mL) and water (10mL). Dry (Na₂SO₄), evaporate the solvent in vacuo and purify by silica gel chromatography (7:1 hexane/ethyl acetate) to give 2-(carbomethoxy)-2-(carbo-t-butyloxymethyl) indan as a pale yellow solid (1.28g, 73.1%).

Dissolve 2-(carbomethoxy)-2-(carbo-t-butyloxymethyl)indan (1.28g, 4.41mmol) in 95% ethanol (30mL) and water (15mL). Treat with potassium hydroxide (1.4g, 25mmol) and stir at room temperature for 3 hours. Add water (40mL) and extract with ethyl ether (2X30mL) and acidify the aqueous phase to pH 3 with solid tartaric acid: Extract with ethyl acetate (2X100mL), dry (Na₂SO₄) and evaporate the solvent in vacuo to give 2-carboxy-2-(carbo-t-butyloxymethyl) indan as a pale yellow solid (1.08g, 88:6%).

Dissolve [4S-[4α, 7α(R*), 12bβ]]-7-(amino)-1,2,3,4,6,7;8,12b-octahydro-6-oxopyrido[2,1-a][2]benzazepine-4-carboxylic acid, diphenylmethyl ester (150mg, 0.34mmol) and EDC (98mg, 0.50mmol) in tetrahydrofuran (5mL). Treat with 2-carboxy-2-(carbo-t-butyloxymethyl)indan (118mg, 0.426mmol). Stir at room temperature for 15 hours and evaporate the solvent in vacuo. Partition the residue between ethyl acetate (35mL) and 1N hydrochloric acid (6ml). Wash the organic phase with saturated sodium hydrogen carbonate (6mL). Dry (Na₂SO₄) and evaporate the solvent in vacuo. Purify by silica gel chromatography (2:1 hexane/ethyl acetate) to give [4S-[4α, 7α(R*), 12bβ]]-7-[(2-(carbo-t-butyloxymethyl)-indan-2-yl)carbonylamino]-1,2,3,4,6,7,8,12b-octahydro-6-oxopyrido[2,1-a][2]benzazepine-4-carboxlic

acid, diphenylmethyl ester as a white solid (208mg, 87.4%).

Dissolve [4S-[4α, 7α(R*), 12bβ]]-7-[(2-(carbo-t-butyloxymethyl)-indan-2-yl)carbonylamino]-1,2,3,4,6,7,8,12b-octahydro-6-oxopyrido[2,1-a][2]benzazepine-4-carboxylic acid, diphenylmethyl ester (205mg, 0.293mmol) in methylene chloride (3mL) and cool to 0°C. Treat with trifluoroacetic acid (0.8mL, 1mmol) and anisole (0.2mL, 1.8mmol). Stir at room temperature for 18 hours, dilute with ethyl acetate (50mL) and wash with brine (2X15mL). Dry (Na₂SO₄) and evaporate the solvent in vacuo. Purify by silica gel chromatography (2:1 hexane/ethyl acetate to 1:1 hexane/ethyl acetate with 5% acetic acid) to give the title compound as a white powder (110mg, 78.6%).

Example 2

5

10

20

25

35

40

45

Dissolve [4S-[4 α , $7\alpha(R^*)$, 12b β]]-7-[(2-carboxymethyl-indan-2-yl)carbonylamino]-1,2,3,4,6,7,8,12b-octahydro-6-oxopyrido[2,1-a][2]benzazepine-4-carboxylic acid (67mg, 0.14mmol) in methylene chloride (1mL) and dry over anhydrous MgSO₄ (60mg). Filter and wash with methylene-chloride (3X20mL). Evaporate <u>in vacuo</u> to a residue. Dissolve the residue in anhydrous dimethylformamide (10mL) and place under nitrogen atmosphere. Add cesium carbonate (100mg, 0.3mmol) in one portion. Stir for 45 minutes at ambient temperature. Add chloromethyl pivalate (42mg, 0.28mmol). Stir the resulting mixture at ambient temperature for 18 hours. Quench the reaction with ethyl acetate (3mL) and water (10mL). Separate the organic phase and wash with water (7X10mL), 1/4 saturated potassium hydrogen carbonate (10mL), water (10mL), and saturated sodium chloride (10mL). Dry (MgSO₄), filter and evaporate <u>in vacuo</u> to yield the title compound.

Example 3

Example

[4S-[4α, 7α (R*) 12bβ]]-7-[(2-2-(carbomethoxymethyl-indan-2-yl)carbonylamino]-1,2,3,4,6,7,8,12b-octahydro-6-oxopyrido[2,1-a][2]benzazepine-4-carboxylic acid

Dissolve 2-carboxyindanlic acid (1.62g, 10mmol) in dimethylformamide (5mL) and add t-butyldimethylsilyl chloride (7.5g, 50mmol) and imidazole (6.8g, 0.1mol). Stir for 48 hours at room temperature, pour into ethyl ether and water and separate the organic phase. Dry (MgSO₄) and evaporate the solvent in vacuo to give 2-(carbo-t-butyldimethylsilyloxy)indan.

Dissolve diisopropylamine (0.88mL, 6.28mmol) in tetrahydrofuran (7.5mL) and place under a nitrogen atmosphere. Cool in an ice bath and add, by dropwise addition, n-butyllithium (3.6mL of a 1.6M solution in hexanes, 5.75mmol). Stir for 15 minutes, then cool to -78°C. Add a solution of 2-(carbo-t-butyldimethylsilyloxy)indan (1.39g, 5.04mmol) in tetrahydrofuran (5mL). Stir for 45 minutes then add methyl bromoacetate (949mg, 6.2mmol). Stir for 3 hours, add saturated ammonium chloride (6mL) and warm to room temperature. Partition between ethyl ether (75mL) and water (10mL). Dry (Na₂SO₄), evaporate the solvent <u>in vacuo</u> and purify by silica gel chromatography to give 2-(carbo-t-butyldimethylsilyloxy)-2-(carbomethoxymethyl)indan.

Dissolve 2-(carbo-t-butyldimethylsilyloxy)-2-(carbomethoxymethyl)indan (3.17g, 9.13mmol) in tetrahydrofuran (11mL) and place under an argon atmosphere. Add, by dropwise addition, tetra-n-butylammonium fluoride (11mL of a 1M solution in tetrahydrofuran, 11mmol). Stir for 1 hour at room temperature and partition between ethyl ether and water. Separate the organic phase, wash with saturated aqueous sodium chloride, dry (MgSO4), filter and evaporate the solvent in vacuo to give 2-carboxy-2-(carbomethoxymethyl)indan.

Dissolve [4S-[4 α , 7 α (R*), 12b β]]-7-(amino)-1,2,3,4,6,7,8,12b-octahydro=6-oxopyrido[2,1-a][2]benzazepine-4-carboxylic acid, diphenylmethyl ester (150mg, 0.34mmol) and EDC (98mg, 0.50mmol) in tetrahydrofuran (5mL). Treat with 2-carboxy-2-(carbomethoxymethyl)indan (100mg, 0.426mmol). Stir at room temperature for 15 hours and evaporate the solvent in vacuo. Partition the residue between ethyl acetate (35mL) and 1N hydrochloric acid-(6ml). Wash the organic phase with saturated sodium hydrogen carbonate (6mL). Dry (Na₂SO₄) and evaporate the solvent in vacuo. Purify by silica gel chromatography to give [4S-[4 α , 7 α (R*), 12b β]-7-[(2-(carbomethoxymethyl)-indan-2-yl)carbonylamino]-1,2,3,4,6,7,8,12b-octahydro-6-oxopyrido[2,1-a][2]benzazepine-4-carboxylic acid, diphenylmethyl ester.

Suspend [4S-[4 α , 7 α (R*), 12b β]]-7-[(2-carbomethoxymethyl-indan-2-yl)carbonylamino]-1,2,3,4,6,7,8,12b-octahydro-6-oxopyrido[2,1-a][2]benzazepine-4-carboxylic acid, diphenylmethyl ester (3.28g, 5mmol) in anhydrous methanol (10mL) and add 10% palladium/carbon (0.2-0.3g). Add anhydrous ammonium formate (23mmol) in a single portion under an argon atmosphere. Stir at room temperature for 3-40 minutes, remove the catalyst by filtration through filter aid and wash with dry methanol (10mL). Evaporate the solvent in vacuo, extract into ethyl acetate and dry (Na₂SO₄). Evaporate the solvent in vacuo and purify by silica gel chromatography to give the title compound.

Example 4

5

15

20

50

[4S-[4α, 7α(R*), 12bβ]]-7-[(2-Carbomethoxymethyl-indan-2-yl)carbonylamino]-1,2,3,4,6,7,8,12b-octahydro-6 - oxopyrido[2,1-a][2]benzazepine-4-carboxylic acid, pivaloyloxymethyl ester

Dissolve [4S-[4 α , 7 α (R*), 12b β]]-7-{(2-carbomethoxymethyl-indan-2-yl)cabonylamino]-1,2,3,4,6,7,8,12b-octahydro-6-oxopyrido[2,1-a][2]benzazepine-4-carboxylic acid (137mg, 0.28mmol) in methylene chloride (1mL) and dry over anhydrous MgSO₄ (60mg). Filter and wash with methylene chloride (3X20mL). Evaporate in vacuo to a residue. Dissolve the residue in anhydrous dimethylformamide (10mL) and place under nitrogen atmosphere. Add cesium carbonate (100mg, 0.3mmol) in one portion. Stir for 45 minutes at ambient temperature. Add chloromethyl pivalate (42mg, 0.28mmol). Stir the resulting mixture at ambient temperature for 18 hours. Quench the reaction with ethyl acetate (3mL) and water (10mL). Separate the organic phase and wash with water (7X10mL), 1/4 saturated potassium hydrogen carbonate (10mL), water (10mL), and saturated sodium chloride (10mL). Dry (MgSO₄), filter and evaporate in vacuo to yield the title compound.

Example 5

[4S-[4α, 7α(R*), 12bβ]]-7-[(2-Carboxymethyl-indan-2-yl)carbonylamino]-1,2,3,4,6,7,8,12b-octahydro-6 -oxopyrido [2,1-a][2]benzazepine-4-carboxylic acid, pivaloyloxymethyl ester

Dissolve [4S-[4α, 7α(R*), 12bβ]]-7-[(2-carbomethoxymethyl-indan-2-yl)carbonylamino]-1,2,3,4;6,7;8,12b-octahydro-6-oxopyrido[2,1-a][2]benzazepine-4-carboxylic acid, pivaloyloxymethyl-ester (72mg, 0.12mmol) in methanol (3mL) and 1N aqueous lithium hydroxide (0.50mL, 0.50mmol). Stir for 30 minutes under an argon atmosphere at ambient temperature. Reduce in volume to 1.5mL in vacuo, then add, by dropwise addition, to a rapidly stirring solution of 2N hydrochloric acid (2mL). Collect the resulting precipitate, wash with water and dry in a vacuum dessicator for 1 hour. Dry at 35°C overnight to give the title compound.

Example 6

 $[4S-[4\alpha, 7\alpha(R^*), 12b\beta]]$ -7-[(2-Pivaloyloxymethylcarboxymethyl-indan-2-yl)carbonylamino] -1,2,3,4,6,7,8,12b-octahydro-6-oxopyrido[2,1 -a][2]benzazepine-4-carboxylic acid

Dissolve [4S- $[4\alpha, 7\alpha(R^*), 12b\beta]]$ -7-[(2-(carbomethoxymethyl)-indan-2-yl)carbonylamino]-1,2,3,4;6,7,8,12b-octahydro-6-oxopyrido[2,1-a][2]benzazepine-4-carboxylic acid, diphenylmethyl ester (79mg, 0.12mmol) in methanol (3mL) and aqueous 1N lithium hydroxide (0.50mL, 0.50mmol). Stir for 30 minutes under an argon atmosphere at ambient temperature. Reduce in volume to 1.5mL in vacuo, then add, by dropwise addition, to a rapidly stirring solution of 2N hydrochloric acid (2mL). Collect the resulting precipitate, wash with water and dry in a vacuum dessicator for 1 hour. Dry at 35°C overnight to give [4S- $[4\alpha, 7\alpha(R^*), 12b\beta]]$ -7-[(2-(carboxymethyl)-indan-2-yl)carbonylamino]-1,2,3,4,6,7,8,12b-octahydro-6-oxopyrido[2,1-a][2]benzazepine-4-carboxylic acid, diphenylmethyl ester.

Dissolve [4S-[4 α , $7\alpha(R^*)$, $12b\beta$]-7-[(2-carboxymethyl-indan-2-yl)carbonylamino]-1,2,3,4;6,7,8,12b-octahydro-6-oxopyrido[2,1-a][2]benzazepine-4-carboxylic acid, diphenylmethyl ester (180mg, 0.28mmol) in methylene chloride (1mL) and dry over anhydrous MgSO₄-(60mg). Filter and wash with methylene chloride (3X20mL). Evaporate in vacuo to a residue. Dissolve the residue in anhydrous dimethylformamide (10mL) and place under a nitrogen atmosphere. Add cesium carbonate (100mg, 0.3mmol) in one portion. Stir for 45 minutes at ambient temperature. Add chloromethyl pivalate (42mg, 0.28mmol). Stir the resulting mixture at ambient temperature for 18 hours. Quench the reaction with ethyl acetate (3mL) and water (10mL). Separate the organic phase and wash with water (7x10mL), 1/4 saturated potassium hydrogen carbonate (10mL), water (10mL), and saturated sodium chloride (10mL). Dry (MgSO₄), filter and evaporate in vacuo to give [4S-[4 α , $7\alpha(R^*)$, 12b β]]-7-[(2-pivaloyloxymethylcarboxymethyl-indan-2-yl)carbonylamino]-1,2,3,4,6,7,8,12b-octahydro-6-oxopyrido[2,1-a][2]benzazepine-4-carboxylic acid, diphenylmethyl ester.

Suspend $[4S-[4\alpha, 7\alpha(R^*), 12b\beta]]$ -7-[(2-pivaloyloxymethylcarboxymethyl-indan-2-yl)carbonylamino]-1,2,3,4,6,7,8,12b-octahydro-6-oxopyrido[2,1-a][2]benzazepine-4-carboxylic acid, diphenylmethyl ester-(3.78g, 5mmol) in anhydrous methanol (10mL) and add 10% palladium/carbon (0.2-0.3g). Add anhydrous ammonium formate (23mmol) in a single portion under an argon atmosphere. Stir at room temperature for 3-40 minutes, remove the catalyst by filtration through filter aid and wash with dry methanol (10mL). Evaporate the solvent in vacuo, extract into ethyl acetate and dry (Na₂SO₄). Evaporate the solvent in vacuo and purify by silica gel chromatography to give the title compound.

Example 7

-[4S-[4α, 7α(R*) 12bβ]}-7-[(1-Carboxymethyl-cyclopent-1-yl)carbonylamino]-1,2,3,4,6,7,8,12b-octahydro-6 -oxopyrido [2,1-a][2]benzazepine-4-carboxplic acid

Dissolve diisopropylamine (1.4mL, 10mmol) in tetrahydrofuran (20mL) and cool in an ice bath. Add, by dropwise addition, n-butyllithium (5.4mL of a 1.6M solution in hexanes, 8.6mmol). Stir for 15 minutes, cool to -78°C and add a solution of methyl cyclopentanecarboxylate (966mg, 7.54mmol) in tetrahydrofuran (10mL). Stir for 45 minutes then treat with 1,3-dimethyl-3,4,5,6-tetrahydro-2(1H)-pyrimidinone (DMPU) (1.2mL, 10mmol). Stir for 5 minutes then add thutyl bromoacetate (1.46mL, 9.04mmol). Stir for 5 hours at -78°C, remove the cold bath and quench with saturated aqueous ammonium chloride (5mL) after 10 minutes. Partition between water (50mL) and ethyl acetate (100mL). Dry (Na₂SO₄) and pass through a plug of silica gel (4:1 hexane/ethylacetate) to give 1-(carbomethoxy)-1-(carbo-1-buty-

loxymethyl)cyclopentane.

Dissolve 1-(carbomethoxy)-1-(carbo-t-butyloxymethyl)cyclopentane (1.84g, 7.59mmol) in 95% ethanol (50mL) and water (25mL). Treat with potassium hydroxide (2:6g, 46mmol). Stir at room temperature for 48 hours and evaporate the solvent in vacuo. Partition between water (50mL) and ethyl ether (150mL). Acidify the aqueous phase with solid tartaric acid and extract with methylene chloride (125mL). Wash the organic phase with brine (50mL), dry (Na₂SO₄) and evaporate the solvent in vacuo to give 1-(carboxy)-1-(carbo-t-butyloxymethyl)cyclopentane as a pale yellow oil

(1.23g, 71%).

Dissolve [4S- $\{4\alpha, 7\alpha(R^*), 12b\beta\}\}$ -7-(amino)-1,2,3,4,6,7,8,12b-octahydro-6-oxopyrido[2,1-a][2]benzazepine-4-caroxylic acid, diphenylmethyl ester (220mg, 0.50mmol, EDC (144mg, 0.75mmol) and 1-(carboxy)-1-(carbo-t-butyloxymethyl)cyclopentane (130mg, 0.57mmol) in tetrahydrofuran (5mL). Stir at room temperature for 18 hours and evaporate the solvent in vacuo. Partition the residue between water (3mL), ethyl acetate (30mL) and 5% sulfuric acid (20mL). Separate the organic phase and wash with saturated sodium hydrogen carbonate (15mL). Back extract the acidic phase with ethyl acetate (20mL), combine the organic phases and dry (Na₂SO₄). Evaporate the solvent in vacuo and purify by silica gel chromatography (2:1 hexane/ethyl acetate to 3:2 hexane/ethyl acetate) to give $\{4S-\{4\alpha, 7\alpha(R^*), 12b\beta\}\}$ -7- $\{(1-carbo-t-butyloxymethyl-cyclopent-1-yl)carbonylamino]-1,2,3,4,6,7,8,12b-octahydro-6-oxopyrido[2,1-a][2] benzazepine-4-carboxylic acid, diphenylmethyl ester as a white foam (170mg, 52%).$

Dissolve [4S-[4 α , 7α (R*), $12b\beta$]]-7-[(1-carbo-t-butyloxymethyl-cyclopent-1-yl)carbonylamino]-1,2,3,4,6,7,8,12b-octahydro-6-oxopyrido[2,1-a][2]benzazepine-4-carboxylic acid, diphenylmethyl ester (170mg, 0.261mmol) in methylene chloride (3mL) and treat with anisole (0.28mL, 2.6mmol). Cool in an ice-methanol-bath and add trifluoroacetic acid (0.8mL, 1mmol) and stir for 18 hours. Partition between ethyl acetate (75mL) and brine (2X20mL). Separate the organic phase and wash with brine (15mL). Dry (Na₂SO₄), evaporate the solvent in vacuo and purify by silica gel chromatography (2:1 hexane/ethyl acetate) to give the title compound as a white powder.

35

10

20

Example 8

[4S-[4α, 7α(R*), 12bβ]]-7-[(5-Carboxymethyl-1,4,5,6-tetrahydrocyclopentimidazole-5-yl)carbonylamino]-3,4,6,7,8,12b-hexahydro-6 -oxo-1H-[1,4]-oxazino[3,4-a][2]benzazepine-4-carboxylic acid

40

Scheme D, step a: N-[2:(1,3-Dihydro-1,3-dioxo-2H-isoindol-2-yl)-1-oxo-3-phenylpropyl-L-serine, methyl ester

Slurry N-phthaloyl-(S)-phenylalanine (90g, 0.3mol) in methylene chloride (450mL) and add, by dropwise addition, oxalyl chloride (54mL, 0.62mol). Place under a dry atmosphere (CaSO₄ tube) and treat with dimethylformamide (10μL). Stir for 5 hours, filter and concentrate <u>in vacuo</u> to give N-phthaloyl-(S)-phenylalanine, acid chloride as an off white amorphous solid.

Dissolve serine methyl ester hydrochloride (56g, 0.36mol) in tetrahydrofuran (300mL) then cool to 0°C and add 4-methylmorpholine (88mL, 0.8mol). Add, by dropwise addition, a solution of the N-phthaloyl-(S)-phenylalanine, acid chloride in tetrahydrofuran (200mL). Allow to warm to room temperature and stir for 3 hours. Filter and concentrate the filtrate <u>in vacuo</u>. Dissolve the residue in ethyl acetate and separate the organic phase. Wash with water then saturated sodium chloride and dry (MgSO₄). Evaporate the solvent <u>in vacuo</u> to give an oil. Purify by silica gel chromatography (gradient 50% ethyl acetate/hexane to ethyl acetate) to give the title compound (80.8g, 67%) mp 129-132°C.

Scheme D, step b: N-[2-(1,3-Dihydro-1,3-dioxo-2H-isoindol-2-yl)-1-oxo-3-phenylpropyll-O-2-propenyl-L-serine,
methyl ester

Dissolve N-[2-(1,3-dihydro-1,3-dioxo-2H-isoindol-2-yl)-1-oxo-3-phenylpropyl]-L-serine, methyl ester (25g, 63mmol) in methylene chloride/cyclohexane (1:1, 600mL). Add allyl trichloroacetimidate (26g, 128mmol) and trifluor-

omethanesulfonic acid-(5mL, 56:6mmol). Stir at room temperature under a nitrogen atmosphere for 5 hours and dilute with methylene chloride. Wash with saturated aqueous sodium hydrogen carbonate, water, dry (MgSO₄) and evaporate the solvent in vacuo. Purify by silica gel chromatography (gradient 20% ethyl acetate/hexane to 35% ethyl acetate/hexane) to give the title-compound; mp 95-97°C.

Scheme D, step c: [S-{R*, R*)}-N-{2-(1,3-Dihydro-1,3-dioxo-2H-isoindol-2-yl}-1-oxo-3-phenylpropyl}-3,4-dihydro-2H-1,4-oxazine-3-carboxylic acid, methyl ester

5

10

20

35

40

45

50

Dissolve N-[2-(1,3-dihydro-1,3-dioxo-2H-isoindol-2-yl)-1-oxo-3-phenylpropyl]-O-2-propenyl-L-serine, methyl ester (13g, 29.8mmol) in methylene chloride/methanol (10:1, 220mL). Cool to -78°C and sparge with a mixture of ozone/ oxygen for approximately 10 minutes until a blue color persists. Sparge with nitrogen for 10 minutes at -78°C to remove excess ozone. Treat with methyl sulfide (60mL, 0.82mol) and allow to warm to room temperature. Stir at room temperature for 2.5 hours, evaporate the solvent in vacuo and dissolve the residue in ethyl acetate (200mL). Wash with water, saturated sodium chloride, dry (MgSO₄) and evaporate the solvent in vacuo to give the intermediate N-[2-(1,3-dihydro-1,3-dioxo-2H-isoindol-2-yl)-1-oxo-3-phenylpropyl]-O-2-oxoethyl-L-serine, methyl ester as a foam (13.6g).

Dissolve N-[2-(1,3-dihydro-1,3-dioxo-2H-isoindol-2-yl)-1-oxo-3-phenylpropyl]-O-2-oxoethyl-L-serine, methyl ester (13.6g) in methylene chloride/trifluoroacetic acid (10:1/330mL). Stir at room temperature for 2.5 hours and evaporate the solvent in vacuo. Purify by silica gel chromatography (35% ethyl acetate/hexane) and recrystallize (ethyl acetate/hexane) to give the title compound (8.52g, 68%); mp 70-72°C.

Scheme D, step d: [4S-[4\alpha, 7\alpha(R*), 12b\bar\]-7-[(1,3-Dihydro-1,3-dioxo-2H-isoindol-2-yl)]-3,4,6,7,8,12b-hexahydro-6-oxo -1H-[1,4]-oxazino[3,4-a][2]benzazepine-4-carboxylic acid, diphenylmethyl ester

Dissolve [S-(R*, R*)]-N-[2-(1,3-dihydro-1,3-dioxo-2H-isoindol-2-yl)-1-oxo-3-phenylpropyl]-3,4-dihydro-2H-1,4-ox-azine-3-carboxylic acid, methyl ester (2.5g, 5.9mmol) in methylene chloride (5mL) and add, by dropwise addition, to a previously prepared solution of trifluoromethanesulfonic acid (4.0mL, 45mmol) and trifluoroacetic anhydride (1.0mL, 7.1mmol). Place under a nitrogen atmosphere and stir at room temperature for 123 hours. Pour into a separatory funnel containing ice (200g) and ethyl acetate (200mL). Separate the organic phase, wash with water-(3X200mL) and saturated aqueous sodium chloride (100mL). Extract the organic phase with 10% wt. potassium hydrogen-carbonate (4X40mL) and water (40mL). Layer the combined basic aqueous phases with ethyl acetate (100mL) and cool in an ice bath. Add, by dropwise addition, 6N hydrochloric acid to adjust the pH to 1 while maintaining the temperature at 5-10°C. Separate the organic phase and extract the aqueous phase with ethyl acetate (3X200mL), wash with saturated sodium chloride and dry (MgSO₄). Evaporate the solvent in vacuo and dry the residue under high vacuum at 56°C for 24 hours to give the intermediate [4S-[4α, 7α(R*), 12bβ]]-7-[(1,3-dihydro-1,3-dioxo-2H-isoindol-2-yl)]-3,4,6,7;8,12b-hexahydro-6-oxo-1H-[1,4]-oxazino [3,4-a][2]benzazepine-4-carboxylic acid (1.75g, 73%).

Dissolve [$4S=\{4\alpha, 7\alpha(R^*), 12b\beta\}$]-7-1[(1,3-dihydro-1,3-dioxo2H-isoindol-2-yl)]-3,4,6,7,8,12b-hexahydro-6-oxo-1H-[1,4]-oxazino[3,4-a][2]benzazepine-4-carboxylic acid (500mg, 1.23mmol) in methylene chloride (12mL) and treat with diphenyldiazomethane (360mg, 1.86mmol). Stir for 5.5 hours and evaporate the solvent in vacuo. Purify by silica gel chromatography (gradient 20% ethyl acetate/hexane to 35% ethyl acetate/hexane) to give the title compound (563mg, 80%); mp 178-181°C (isopropanol).

Scheme D, step e: [4S-[4α, 7α(R*), 12bβ]]-7-(Amino)-3,4,6,7,8,12b-hexahydro-6-oxo-1H-[1,4]-oxazino[3,4-a][2] benzazepine-4-carboxylic acid, diphenylmethyl ester

Dissolve [4S- $[4\alpha, 7\alpha(R^*), 12b\beta]]$ -7-[(1,3-dihydro-1,3-dioxo-2H-isoindol-2-yl)]-3,4,6,7,8,12b-hexahydro-6-oxo-1H-[1,4]-oxazino[3,4-a][2]benzazepine-4-carboxylic acid, diphenylmethyl ester (296mg, 0.517mmol) in methanol (5mL) and treat with hydrazine monohydrate (1.1mL of a 1M-solution in methanol, 1,1mmol). Stir at room temperature for 44 hours, evaporate the solvent <u>in vacuo</u> and slurry the residue in methylene chloride (10mL). Filter and evaporate the solvent <u>in vacuo</u> to give the title compound (218mg, 95%).

Scheme A: [4S-[4α, 7α (R*), 12bβ]]-7-[(5-Carboxymethyl-1,4,5,6-tetrahydro-cyclopentimidazole-5-yl)carbonylamino-3,4,6,7,8,12b-hexahydro -6-oxo-1H-[1,4]-oxazino[3,4-a][2]benzazepine-4-carboxylic acid

Dissolve 4,5-imidazoledicarboxylic acid (31.2g, 0.2mol) in ethanol (500mL) and treat with concentrated sulfuric acid (0.5mL). Heat to 60°C for 16 hours, cool and reduce the solvent by 50% in vacuo. Dilute with ethyl ether (500mL), wash with saturated sodium hydrogen carbonate, then brine. Dry (MgSO₄) and evaporate the solvent in vacuo to give 4,5- (dicarboethoxy)imidazole.

Dissolve 4,5-(dicarboethoxy)imidazole (1.06g, 5mmol) and triethylamine (1:5mL, 7:5mmol) in 50/50 dioxane/water

(25mL). Add 2-(tert-butyloxycarbonyloxyimino)-2-phenylacetonitrile (1.36g, 5.5 mmol) and stir at room temperature for 2 hours. Add water (7.5mL) and ethyl acetate (10mL), separate the aqueous phase and wash with ethyl acetate (10mL). Combine the organic phases, dry (MgSO₄) and evaporate the solvent in vacuo. Purify the residue by silica gel-chromatography to give N-(carbo-t-butyloxy)-4,5-(dicarboethoxy)imidazole.

Dissolve N-(carbo-t-butyloxy)-4,5-(dicarboethoxy)imidazole (3.12g, 10mmol) in anhydrous tetrahydrofuran (30mL) and cool to -20°C. Treat with lithium borohydride (7mL of a 2N solution) and stir under a nitrogen atmosphere for several days. Carefully add water and partition between ethyl acetate and 5% hydrochloric acid. Separate the organic phase, wash with brine and dry (MgSO₄). Evaporate the solvent <u>in vacuo</u> and purify by silica gel chromatography to give N-(carbo-t-butyloxy)-4,5-(dihydroxymethyl)imidazole.

Dissolve N-bromosuccinimide (1.78g, 0.01mol) in tetrahydrofuran (60mL) and add a solution of triphenylphosphine (2.62g, 0.01mol) in tetrahydrofuran. Add a solution of N-(carbo-t-butyloxy)-4,5- (dihydroxymethyl)imidazole (1.14g, 5mmol) in tetrahydrofuran (25mL) and stir until most of the solid goes into solution. Evaporate the solvent in vacuo and partition the residue between water and ethyl ether. Separate the organic phase and wash with water. Dry (Na₂SO₄) and evaporate the solvent in vacuo. Purify by silica gel chromatography to give N-(carbo-t-butyloxy)-4,5-(dibromomethyl)imidazole.

10

20

25

30

35

Dissolve diethylmalonate (15.2mL, 0,100mol) in tetrahydrofuran (800mL). Cool in an ice bath and treat with sodium hydride (3.0g, 0.10mol, 80% in mineral oil). Stir until solution attained and add N-(carbo-t-butyloxy)-4,5-(dibromomethyl) imidazole (35.4g, 0.100mol). Stir for 30 minutes then add additional sodium hydride (3.0g, 0,10mol). Stir at room temperature for 20 hours, filter through filter aid and evaporate the solvent in vacuo. Purify by silica gel chromatography to give 5,5-(dicarboethoxy)-1-(carbo-t-butyloxy)-cyclopentimidazole.

Dissolve 5,5-(dicarboethoxy)-1-(carbo-t-butyloxy)-cyclopentimidazole (21.3g, 60:6mmol) in dimethylsulfoxide (140ml). Add water (14mL) and lithium chloride (7.0g, 0,16mol). Heat at reflux for 4 hours, cool and partition between water (150mL) and methylene chloride (2X150mL). Wash the organic phase with water (150mL), dry (Mg_eO_4) and pass through a silica gel plug to give 5-(carboethoxy)-1-(carbo-t-butyloxy)-cyclopentimidazole.

Dissolve 5-(carboethoxy)-1-(carbo-t-butyloxy)-cyclopentimidazole (9.5g, 34.1mmol) in ethanol (95%, 150mL) and water (75mL). Add potassium hydroxide (9.5g, 0.17mol) and stir at room temperature for 1 hour. Partition between water (150mL) and ethyl ether (2X150mL). Acidify the aqueous phase with hydrochloric acid to pH 1. Extract with methylene chloride (2X150mL), dry (Na₂SO₄) and evaporate the solvent in vacuo to give 5-(carboxy)-1-(carbo-1-butyloxy)-cyclopentimidazole.

Dissolve 5-(carboxy)-1-(carbo-t-butyloxy)-cyclopentimidazole (5.9g, 23.5mmol) in methanol (60mL) and treat with dimethoxypropane (5.8mL, 47mmol) and sulfuric acid (0.8mL). Stir at room temperature for 1 day. Evaporate the solvent in vacuo, dilute with methylene chloride (75mL) and wash with saturated sodium hydrogen carbonate (35mL). Extract the aqueous phase with methylene chloride (30mL), wash combined organics with brine (30mL) and dry (Na₂SO₄). Evaporate the solvent in vacuo and pass through a plug of silica gel to give 5-(carbomethoxy)-1-(carbo-t-butyloxy)-cyclopentimidazole.

Dissolve diisopropylamine (3.5mL, 25mmol) in tetrahydrofuran (30mL). Add n-butyllithium (14mL of a 1.6M solution in hexane, 22.4mmol). Stir for 15 minutes and cool to -78°C. Add, by dropwise addition, 5-(carbomethoxy)-1-(carbot-butyloxy)-cyclopentimidazole (5.32g, 20mmol) and stir for 30 minutes. Add t-butyl bromoacetate (4.0mL, 25mmol) and gradually warm to room temperature overnight. Quench the solution with ammonium chloride solution (10mL) and partition between water (25mL) and ethyl ether (50mL). Separate the organic phase, dry (MgSO₄) and evaporate the solvent in vacuo. Purify by silica gel chromatography to give 5-(carbomethoxy)-1-(carbo-t-butyloxy)-5-{carbo-t-butyloxymethyl}-cyclopentimidazole.

Dissolve 5-(carbomethoxy)-1-(carbo-t-butyloxy)-5-(carbo-t-butyloxymethyl)-cyclopentimidazole .(3.48g, 9.17mmol) in ethanol (95%, 60mL) and water (30mL). Treat with potassium hydroxide (2.94g, 52mmol). Stir at room temperature for 3 hours. Add water (75mL) and extract with ethyl ether (2X50mL). Extract the combined ethereal phases with water (75mL) and acidify the combined aqueous phases with aqueous 1M tartaric acid (pH 2-3). Extract with ethyl acetate (2X125mL), dry (Na₂SO₄) and evaporate the solvent in vacuo. Take the residue up in methylene chloride and filter to give 5-(carboxy)-1-(carbo-t-butyloxy)-5-(carbo-t-butyloxymethyl)-cyclopentimidazole.

Dissolve $[4S-[4\alpha, 7\alpha(R^*), 12b\beta]]$ -7-(amino)-3,4,6,7,8,12b-hexahydro-6-oxo-1H-[1,4]-oxazino[3,4-a][2]ben-zazepine-4-carboxylic acid, diphenylmethyl ester (200mg, 0.454mmol) and EDC (130mg, 0.68mmol) in tetrahydrofuran (5mL). Treat with 5-(carboxy)-1-(carbo-t-butyloxy)-5-(carbo-t-butyloxymethyl)-cyclopentimidazole (166mg, 0.454mmol). Stir at room temperature for 20 hours and evaporate the solvent <u>in vacuo.</u> Dissolve the residue in ethyl acetate (50mL) and wash with 5% sulfuric acid (15ml) then saturated sodium hydrogen carbonate (15mL). Dry (Na₂SO₄) and evaporate the solvent <u>in vacuo.</u> Purify by silica gel chromatography to give $[4S-[4\alpha, 7\alpha(R^*), 12b\beta]]$ -7-[(5-(carbo-t-butyloxymethyl)-1-(carbo-t-butyloxy)-cyclopentimidazole-5-yl)carbonyl amino] 1-3,4,6,7,8,12b-hexahydro-6-oxo-1H-[1,4]-oxazino[3,4-a][2]benzazepine-4-carboxylic acid, diphenylmethyl ester.

Dissolve [4S-[4α, 7α(R*), 12bβ]]-7-[(5-(carbo-t-butyloxymethyl)-1-(carbo-t-butyloxy)-cyclopentimidazole-5-yl)car-bonylamino]-3,4,6,7,8,12b-hexahydro-6-oxo-1H-[1,4]-oxazino[3,4-a][2]benzazepine-4-carboxylic acid, diphenylme-

thyl ester (129mg, 0.163mmol) in methylene chloride (3mL) and treat with anisole (0.19mL, 1.7mmol). Cool in an ice-methanol bath and add trifluoroacetic acid (0.8mL, 10mmol) and stir for 2.5 hours at 0°C. Partition between ethyl acetate (25mL) and brine (15mL). Separate the organic phase and wash with brine (15mL). Dry (Na₂SO₄), evaporate the solvent in vacuo and purify by silica gel-chromatography to give the title compound.

Example 9

5

10

15

25

30

35

Preparation of [4S-[4α, 7α (R*), 12bβ]]-7-5-Carboxymethyl-4,5,6-trihydro-cyclopenta[c](uran-5-yl)carbonylamino] - 3,4,6,7,8,12b-hexahydro-6-oxo-1H-[1,4]-thiazino [3,4-a][2]benzazepine-4-carboxylic acid

Dissolve 3,4-(dicarboethoxy)furan (2.12g, 10mmol) in anhydrous tetrahydrofuran (30mL) and cool to -20°C. Treat with lithium borohydride (7mL of a 2N solution) and stir under a nitrogen atmosphere for several days. Carefully add water and partition between ethyl acetate and 5% hydrochloric acid. Separate the organic phase, wash with brine and dry (MgSO₄). Evaporate the solvent in vacuo and purify by silica gel chromatography to give 3,4-(dihydroxymethyl) furan.

Dissolve 3,4-(dihydroxymethyl)furan (11.9g, 0.093mol) in 2,4;6-collidine (12.4g) and add a solution of lithium bromide (7.9g, 91mmol) in dimethylformamide (80mL). 'Cool to -50°C and place under a nitrogen atmosphere. Add methanesulfonyl chloride (11.8g) at a rate which keeps the temperature under 0°C. Stir at 0°C for 2 hours and pour onto ice water. Extract with ethyl ether, dry (MgSO₄), evaporate the solvent <u>in vacuo</u> and purify by silica gel-chromatography to give 3,4-(dibromomethyl)furan.

Dissolve diethylmalonate (15.2mL, 0,100mol) in tetrahydrofuran (800mL). Cool in an ice bath and treat with sodium hydride (3.0g, 0.10mol, 80% in mineral oil). Stir until solution attained and add 3,4-(dibromomethyl)furan (23.8g, 0.100mol). Stir for 30 minutes then add additional sodium hydride (3.0g, 0.10mol). Stir at room temperature for 20 hours, filter through filter aid and evaporate the solvent <u>in vacuo</u>. Purify by silica gel chromatography to give 5,5-(dicarboethoxy)-2,4,5,6-tetrahydro-cyclopenta[c]furan.

Dissolve 5,5-(dicarboethoxy).-2,4,5,6-tetrahydro-cyclopenta[c]furan (15.3g, 60.6mmol) in dimethylsulfoxide (140ml). Add water (14mL) and lithium chloride (7.0g, 0.16mol). Heat at reflux for 4 hours, cool and partition between water (150mL) and methylene chloride (2X150mL). Wash the organic phase with water (150mL), dry (Mg_sO₄) and pass through a silica gel plug to give 5-(carboethoxy)-2,4,5,6-tetrahydro-cyclopenta[c]furan.

Dissolve 5-(carboethoxy)-2,4,5,6-tetrahydro-cyclopenta[c]furan (6.2g, 34.1mmol) in ethanol (95%, 150mL) and water (75mL). Add potassium hydroxide (9.5g, 0.17mol) and stir at room temperature for 1 hour. Partition between water (150mL) and ethyl ether (2X150mL). Acidify the aqueous phase with hydrochloric acid to pH 1. Extract with methylene chloride (2X150mL), dry (Na₂SO₄) and evaporate the solvent in vacuo to give 5-(carboxy)-2,4,5,6-tetrahydrocyclopenta[c]furan.

Dissolve 5-(carboxy)-2,4,5,6-tetrahydro-cyclopenta[c]furan (3.6g, 23.5mmol) in methanol (60mL) and treat with dimethoxypropane (5.8mL, 47mmol) and sulfuric acid (0.8mL). Stir at room temperature for 1 day. Evaporate the solvent in vacuo, dilute with methylene chloride (75mL) and wash with saturated sodium hydrogen carbonate (35mL). Extract the aqueous phase with methylene chloride (30mL), wash combined organics with brine (30mL) and dry (Na₂SO₄). Evaporate the solvent in vacuo and pass through a plug of silica gel to give 5-(carbomethoxy)-2,4,5;6-tetrahydrocyclopenta[c]furan.

Dissolve diisopropylamine (3.5mL, 25mmol) in tetrahydrofuran (30mL). Add n-butyllithium (14mL of a 1.6M-solution in hexane, 22.4mmol). Stir for 15 minutes and cool to -78°C. Add, by dropwise addition, 5-(carbomethoxy)-2,4,5,6-tetrahydro-cyclopenta[c]furan (3.32g, 20mmol) and stir for 30 minutes. Add t-butyl bromoacetate (4.0mL, 25mmol) and gradually warm to room temperature overnight. Quench the solution with ammonium-chloride solution (10mL) and partition between water (25mL) and ethyl ether (50mL). Separate the organic phase, dry (MgSO₄) and evaporate the solvent in vacuo. Purify by silica gel chromatography to give 5-(carbomethoxy)-5-(carbo-t-butyloxymethyl)-2,4,5,6-tetrahydro-cyclopenta[c]furan.

Dissolve 5-(carbomethoxy)-5-(carbo-t-butyloxymethyl)-2,4,5,6-tetrahydro-cyclopenta[c]furan.(2.6g, 9,17mmol) in ethanol (95%, 60mL) and water (30mL). Treat with potassium hydroxide (2.94g, 52mmol). Stir at room temperature for 3 hours. Add water (75mL) and extract with ethyl ether (2X50mL). Extract the combined ethereal phases with water (75mL) and acidify the combined aqueous phases with aqueous 1M tartaric acid (pH 2-3). Extract with ethyl acetate (2x125mL), dry (Na₂SO₄) and evaporate the solvent <u>in vacuo</u>. Take the residue up in methylene chloride and filter to give 5-(carboxy)-5-(carbo-t-butyloxymethyl)-2,4,5,6-tetrahydro-cyclopenta[c]furan.

Dissolve [4S-[4α, 7α(R*), 12bβ]]-7-(amino)-3,4,6,7,8,12b-hexahydro-6-oxo-1H-[1,4]-thiazino[3,4-a][2]ben-zazepine-4-carboxylic acid, diphenylmethyl ester (208mg, 0.454mmol) and EDC (130mg, 0.68mmol) in tetrahydrofuran (5mL). Treat with 5-(carboxy)-5-(carbo-t-butyloxymethyl)-2,4,5,6-tetrahydrocyclopenta[c]furan (121mg, 0.454mmol). Stir at room temperature for 20 hours and evaporate the solvent in vacuo. Dissolve the residue in ethyl acetate (50mL) and wash with 5% sulfuric acid (15ml) then saturated sodium hydrogen carbonate (15mL). Dry (Na₂SO₄) and evaporate

the solvent <u>in vacuo</u>. Purify by silica gel chromatography to give [4S- $\{4\alpha, 7\alpha(R^*), 12b\beta\}\}$]-7- $\{(5-carbo-t-butyloxymethyl-2,4,5,6-tetrahydro-cyclopenta[c] furan-5yl)carbonylamino]-3,4,6,7,8,12b-hexahydro-6-oxo-1H-<math>\{1,4\}$ -thiazino $\{3,4-a\}$ [2] benzazepine-4-carboxylic acid, diphenylmethyl ester.

Dissolve [4S-[4α, 7α (R*), 12bβ]]-7-[(5-carbo-t-butyloxymethyl-2,4,5;6-tetrahydro-cyclopenta[c][uran-5-yl]carbon-ylamino]-3,4,6,7,8,12b-hexahydro-6-oxo-1H-[1,4]-thiazino[3,4-a][2]benzazepine-4-carboxylic acid, diphenylmethyl ester (115mg, 0.163mmol) in methylene chloride (3mL) and treat with anisole (0.19mL, 1.7mmol). Cool in an ice-methanol bath and add trifluoroacetic acid (0.8mL, 10mmol) and stir for 2.5 hours at 0°C. Partition between ethyl acetate (25mL) and brine (15mL). Separate the organic phase and wash with brine (15mL). Dry (Na₂SO₄), evaporate the solvent in vacuo and purify by silica gel chromatography to give the title compound.

Example 10

10

15

20

25

30

35

40

50

Preparation of [4S-[4α, 7α (R*), 12bβ]]-7-[(5-Carboxymethyl-4,5,6-trihydro-cyclopenta[c]thiophene-5-yl) carbonylamino]-3,4,6,7,8,12b-hexahydro-6-oxo-1H-[1,4]-thiazino[3,4-a][2]benzazepine-4-carboxylic acid

Dissolve 3,4-(dicarboethoxy)thiophene (2.28g, 10mmol) in anhydrous tetrahydrofuran (30mL) and cool to -20°C. Treat with lithium borohydride (7mL of a 2N solution) and stir under a nitrogen atmosphere for several days. Carefully add water and partition between ethyl acetate and 5% hydrochloric acid. Separate the organic phase, wash with brine and dry (MgSO₄). Evaporate the solvent in vacuo and purify by silica gel chromatography to give 3,4-(dihydroxymethyl) thiophene.

Dissolve 3,4-(dihydroxymethyl)thiophene (13.4g, 0.093mol) in 2,4,6-collidine (12.4g) and add a solution of lithium bromide (7.9g, 91mmol) in dimethylformamide (80mL). Cool to -50°C and place under a nitrogen atmosphere. Add methanesulfonyl chloride (11.8g) at a rate which keeps the temperature under 0°C. Stir at 0°C for 2 hours and pour onto ice water. Extract with ethyl ether, dry (MgSO₄), evaporate the solvent in vacuo and purify by silica gel chromatography to give 3,4-(dibromomethyl)thiophene.

Dissolve diethylmalonate (15.2mL, 0.100mol) in tetrahydrofuran (800mL). Cool in an ice bath and treat with sodium hydride (3.0g, 0.10mol, 80% in mineral oil). Stir until solution attained and add 3,4-(dibromomethyl)thiophene (25.4g, 0.100mol). Stir for 30 minutes then add additional sodium hydride (3.0g, 0.10mol). Stir at room temperature for 20 hours, filter through filter aid and evaporate the solvent in vacuo. Purify by silica gel-chromatography to give 5,5-(dicarboethoxy)-2,4,5,6-tetrahydro-cyclopenta[c]thiophene.

Dissolve 5,5-(dicarboethoxy)-2,4,5,6-tetrahydro-cyclopenta[c]thiophene (16:2g, 60:6mmol) in dimethylsulfoxide (140ml). Add water (14mL) and lithium chloride (7.0g, 0.16mol). Heat at reflux for 4 hours, cool and partition between water (150mL) and methylene chloride (2X150mL). Wash the organic phase with water (150mL), dry-(MgSO₄) and pass through a silica gel plug to give 5-(carboethoxy)-2,4,5;6-tetrahydro-cyclopenta[c]thiophene.

Dissolve 5-(carboethoxy)-2,4,5,6-tetrahydro-cyclopenta[c]thiophene (6.68g, 34.1mmol) in ethanol (95%, 150mL) and water (75mL). Add potassium hydroxide (9.5g, 0.17mol) and stir at room temperature for 1 hour. Partition between water (150mL) and ethyl ether (2X150mL). Acidify the aqueous phase with hydrochloric acid to pH 1. Extract with methylene chloride (2X150mL), dry (Na₂SO₄) and evaporate the solvent in vacuo to give 5-(carboxy)-2,4,5,6-tetrahydrocyclopenta[c]thiophene.

Dissolve 5-(carboxy)-2,4,5,6-tetrahydro-cyclopenta[c]thiophene (3.95g, 23.5mmol) in methanol (60mL) and treat with dimethoxypropane (5.8mL, 47mmol) and sulfuric acid (0.8mL). Stir at room temperature for 6 days. Evaporate the solvent <u>in vacuo</u>, dilute with methylene chloride (75mL) and wash with saturated sodium hydrogen-carbonate (35mL). Extract the aqueous phase with methylene chloride (30mL), wash combined organics with brine (30mL) and dry (Na₂SO₄). Evaporate the solvent <u>in vacuo</u> and pass through a plug of silica gel to give 5-(carbomethoxy)-2,4,5;6-tetrahydro-cyclopenta[c]thiophene.

Dissolve diisopropylamine (3.5mL, 25mmol) in tetrahydrofuran (30mL). Add n-butyllithium (14mL-of a 1.6M solution in hexane, 22.4mmol). Stir for 15 minutes and cool to -78°C. Add, by dropwise addition, 5-(carbomethoxy)-2,4,5;6-tetrahydro-cyclopenta[c]thiophene (3.64g, 20mmol) and stir for 30 minutes. Add t-butyl bromoacetate (4.0mL, 25mmol) and gradually warm to room temperature overnight. Quench the solution with ammonium chloride solution (10mL) and partition between water (25mL) and ethyl ether (50mL). Separate the organic phase, dry (MgSO₄) and evaporate the solvent in vacuo. Purify by silica gel chromatography to give 5-(carbomethoxy)-5-(carbo-t-butyloxymethyl)-2,4,5;6-tetrahydro-cyclopenta[c]thiophene.

Dissolve 5-(carbomethoxy)-5-(carbo-t-butyloxymethyl)-2,4,5,6-tetrahydro-cyclopenta[c]thiophene (2.7g, 9.17mmol) in ethanol (95%, 60mL) and water (30mL). Treat with potassium hydroxide (2.94g, 52mmol). Stir at room temperature for 3 hours. Add water (75mL) and extract with ethyl ether (2X50mL). Extract the combined ethereal phases with water (75mL) and acidify the combined aqueous phases with aqueous 1M tartaric acid (pH 2-3). Extract with ethyl acetate (2X125mL), dry (Na₂SO₄) and evaporate the solvent in vacuo. Take the residue up in methylene chloride and filter to give 5-(carboxy)-5-(carbo-t-butyloxymethyl)-2,4,5,6-tetrahydro-cyclopenta[c]thiophene.

Dissolve $\{4S-\{4\alpha, 7\alpha(R^*), 12b\beta\}\}$ -7-(amino)-3,4;6,7,8,12b-hexahydro-6-oxo-1H- $\{1,4\}$ -thiazino[3,4-a][2]benzazepine-4-carboxylic acid, diphenylmethyl ester (208mg, 0.454mmol) and EDC (130mg, 0:68mmol) in tetrahydrofuran (5mL). Treat with 5-(carboxy)-5-(carbo-t-butyloxymethyl)-2,4,5;6-tetrahydro-cyclopenta[c]thiophene (128mg, 0.454mmol). Stir at room temperature for 20 hours and evaporate the solvent in vacuo. Dissolve the residue in ethyl acetate (50mL) and wash with 5% sulfuric acid (15ml) then saturated sodium hydrogen carbonate (15mL). Dry (Na₂SO₄) and evaporate the solvent in vacuo. Purify by silica gel chromatography to give [4S-[4α, 7α(R*), 12bβ]]-7-[(5-(carbot-butyloxymethyl)-2,4,5,6-tetrahydro-cyclopenta[c]thiopene-5-yl)carbonylamino]-3,4,6,7,8,12b-hexahydro-6-oxo-1H-[1,4]-thiazino[3,4-a][2]benzazepine-4-carboxylic acid, diphenylmethyl ester.

Dissolve [4S-[4α, 7α(R*), 12bβ]]-7-[(5-(carbo-t-butyloxymethyl)- 2,4,5,6-tetrahydro-cyclopenta(c)thiophene-5-yl) carbonylamino]-3,4,6,7,8,12b-hexahydro-6-oxo-1H-[1,4]-thiazino[3,4-a][2]benzazepine-4-carboxylic acid, diphenylmethyl ester (118mg, 0.163mmol) in methylene chloride (3mL) and treat with anisole (0.19mL, 1.7mmol). Cool in an ice-methanol bath and add trifluoroacetic acid (0.8mL, 10mmol) and stir for 2.5 hours at 0°C. Partition between ethyl acetate (25mL) and brine (15mL). Separate the organic phase and wash with brine (15mL). Dry (Na2SO4), evaporate the solvent in vacuo and purify by silica gel chromatography to give the title compound.

15

10

Example 11

Preparation of [4S-]4α, 7α(R*), 12bβ]]-7-[(5-Carboxymethyl-2,4,5, 6-tetrahydro-cyclonenta[c]pyrrole-5yl) carbonylamino]-3,4,6,7,8,12b-hexahydro-6-oxo-1H-[1,4]-azazino[3,4-a][2]benzazepine-4-carboxylic acid

20

30

40

Scheme E, step a: N-[2-(1,3-Dihydro-1,3-dioxo-2H-isoindol-2-yl)-1-oxo-3-phenylpropyl]-(S)-3-[(trifluoroacetyl-2 propenyl)amino]-2-amino-propionic acid, methyl ester

25

Dissolve Nα-(carbobenzyloxy)-β-(amino)-L-alanine (47.6g, 0.2mol) in methanol (500mL) and treat with concentrated sulfuric acid (0.5mL). Heat to 60°C for 16 hours, cool and reduce the solvent by 50% in vacuo. Dilute with ethyl ether (500mL), wash with saturated sodium hydrogen carbonate, then brine. Dry (MgSO₄) and evaporate the solvent in vacuo to give N^{α} -(carbobenzyloxy)- β -(amino)-L-alanine, methyl ester.

Dissolve Nα-(carbobenzyloxy)-β-(amino)-L-alanine, methyl ester (15.9g, 63mmol) in methylene chloride/cyclohexane (1:1, 600mL). Add allyl trichloroacetimidate (26g, 128mmol) and trifluoromethanesulfonic acid (5mL), 56.6mmol). Stir at room temperature under a nitrogen atmosphere for 5 hours and dilute with methylene chloride. Wash with saturated aqueous sodium hydrogen carbonate, water, dry (MgSO₄) and evaporate the solvent in vacuo. Purify by silica gel chromatography to give N^{α} -(carbobenzyloxy)- β -(allylamino)-L-alanine, methyl ester.

Dissolve Nα (carbobenzyloxy)-β-(allylamino)-L-alanine, methyl ester (663mg, 2.27mmol) in anhydrous tetrahydrofuran (15mL). Treat with pyridine (183µL, 2.27mmol) followed by trifluoroacetic anhydride (321µL, 2.27mmol) and stir at room temperature overnight. Partition between ethyl ether and water. Separate the organic phase, dry (MgSO₄) and evaporate the solvent in vacuo. Purify by silica gel chromatography to give N^{α} -(carbobenzyloxy)- β -(trifluoroacetylallylamino)-L-alanine, methyl ester.

Place boron tribromide (215mg, 0.86mmol) in a flask and cool to 0°C. Cautiously add trifluoroacetic acid (5mL) with stirring. Evaporate the solvent to give boron tris(trifluoroacetate).

Dissolve boron tris(trifluoroacetate) (0.3g, 0.86mmol) in trifluoroacetic acid (10mL) and add Nα-(carbobenzyloxy)β-(trifluoroacetyl-allylamino)-L-alanine, methyl ester (105mg, 0.27mmol). Stir under an argon atmosphere for 1 hour then evaporate the solvent in vacuo at room temperature. Add methanol and evaporate repeatedly. Purify by silica gel chromatography to give β -(trifluoroacetyl-allylamino)-L-alanine, methyl ester, hydrochloride.

Dissolve β -(trifluoroacetyl-allylamino)-L-alanine, methyl ester, hydrochloride (104.8g, 0.36mol) in tetrahydrofuran (300mL) then cool to 0°C and add 4-methylmorpholine (88mL, 0.8mol). Add, by dropwise addition, a solution of the N-phthaloyl-(S)-phenylalanine, acid chloride (108.7g, 0.36mol) in tetrahydrofuran (200mL). Allow to warm to room temperature and stir for 3 hours. Filter and concentrate the filtrate in vacuo. Dissolve the residue in ethyl acetate and separate the organic phase. Wash with water then saturated sodium chloride and dry (MgSO₄). Evaporate the solvent in vacuo to give an oil. Purify by silica gel chromatography to give the title compound.

50

Scheme E, step b: [S-(R*, R*)]-N-[2-(1,3-Dihydro-1,3-dioxo-2H-isoindol-2-yl)-1-oxo-3-phenylpropyl]-3,4-dihydro-2H-4 -trifluoroacetyl-1,4-azazine-3-carboxylic acid, methyl ester

Dissolve N-[2-(1,3-dihydro-1,3-dioxo-2H-isoindol-2-yl)-1-oxo-3-phenylpropyl]-(S)-3-[(trifluoroacetyl-2-propenyl) amino]-2-amino-propionic acid, methyl ester (15.8g, 29.8mmol) in methylene chloride/methanol (10:1, -220mL). Cool to -78°C and sparge with a mixture of ozone/oxygen for approximately 10 minutes until a blue-color persists. Sparge with nitrogen for 10 minutes at -78°C to remove excess ozone. Treat with methyl sulfide (60mL, 0.82mol) and allow to warm to room temperature. Stir at room temperature for 2.5 hours, evaporate the solvent in vacuo and dissolve the

residue in ethyl acetate (200mL). Wash with water, saturated sodium chloride, dry.(MgSO₄) and evaporate the solvent in vacuo to give the intermediate N-{2-(1,3-dihydro-1,3-dioxo-2H-isoindol-2-yl)-1-oxo-3-phenylpropyl]-N-2-oxoethyl, methyl ester.

Dissolve N-[2-(1,3-dihydro-1,3-dioxo-2H-isoindol-1-oxo-3-phenylpropyl]-(S)-3-[(trifluoroacetyl-2-oxoethyl)amino]-2-amino-propionic acid, methyl ester (15.9g, 29:8mmol) in methylene chloride/trifluoroacetic acid (10:1/330mL). Stir at room temperature for 2.5 hours and evaporate the solvent in vacuo. Purify by silica gel chromatography to give the title compound.

Scheme E, step c: [4S-[4α, 7α(R*), 12bβ]]-7-[(1,3-Dihydro-1,3-dioxo-2H-isoindol-2-yl)]-3,4,6,7,8,12b-hexahydro-6-oxo -1H-4-trifluoroacetyl-[1,4]-azazino[3,4-a][2]benzazepine-4-carboxylic acid, diphenylmethyl ester

10

30

40

Dissolve [S-(R*, R*)]-N-[2-(1,3-dihydro-1,3-dioxo-2H-isoindol-2-yl)-1-oxo-3-phenylpropyl]-3,4-dihydro-2H-4-trifluoracetyl-1,4-azazine-3-carboxylic acid, methyl ester (3.04g, 5.9mmol) in methylene chloride (5mL) and add, by dropwise addition, to a previously prepared solution of trifluoromethanesulfonic acid (4.0mL, 45mmol) and trifluoroacetic anihydride (1.0mL, 7.1mmol). Place under a nitrogen atmosphere and stir at room temperature for 123 hours. Pour into a separatory funnel containing ice (200g) and ethyl acetate (200mL). Separate the organic phase, wash with water (3X200mL) and saturated aqueous sodium chloride (100mL). Extract the organic phase with 10% wt. potassium hydrogen carbonate (4X40mL) and water (40mL). Layer the combined basic aqueous phases with ethyl acetate (100mL) and cool in an ice bath. Add, by dropwise addition, 6N hydrochloric acid to adjust the pH to 1 while maintaining the temperature at 5-10°C. Separate the organic phase and extract the aqueous phase with ethyl acetate (3X200mL), wash with saturated sodium chloride and dry (MgSO₄). Evaporate the solvent in vacuo and dry the residue under high vacuum at 56°C for 24 hours to give the intermediate [4S-[4α, 7α(R*), 12bβ]]-7-[(1,3-dihydro-1,3-dioxo-2H-isoindol-2-yl)]-3,4,6,7,8,12b-hexahydro-6-oxo-1H-4-trifluoroacetyl-[1,4]-azazino[3,4-a][2]benzazepine-4-carboxylic acid.

Dissolve [4S-[4α, 7α(R*), 12bβ]]-7-[(1,3-dihydro-1,3-dioxo-2H-isoindol-2-yl)]-3,4,6,7,8,12b-hexahydro-6-oxo-1H-4-trifluoroacetyl-[1,4]-azazino[3,4-a][2]benzazepine-4-carboxylic acid (616mg, 1.23mmol) in methylene chloride (12mL) and treat with diphenyldiazomethane (360mg, 1.86mmol). Stir for 5.5 hours and evaporate the solvent in vacuo. Purify by silica gel chromatography to give the title compound.

Scheme E, step e: [4S-[4α, 7α(R*), 12bβ]]-7-(Amino)-3,4,6,7,8,12b-hexahydro-6-oxo-1H-[1,4]-azazino[3,4-a][2] benzazepine-4-carboxylic acid, diphenylmethyl ester

Dissolve [4S-[4 α , 7 α (R*), 12b β]]-7-[(1,3-dihydro-1,3-dioxo-2H-isoindol-2-yl)]-3,4;6,7,8,12b-hexahydro-6-oxo-1H-4-trifluoroacetyl-[1,4]-azazino[3,4-a][2]benzazepine-4-carboxylic acid, diphenylmethyl ester (34Smg, 0:517mmol) in methanol (5mL) and treat with hydrazine monohydrate (1.1mL of a 1M solution in methanol, 1.1mmol). Stir at room temperature for 44 hours, evaporate the solvent in vacuo and slurry the residue in methylene chloride (10mL). Filter and evaporate the solvent in vacuo to give the title compound.

Scheme A: [4S-[4α, 7α.(R*), 12bβ]]-7-[(5-Carboxymethyl -2,4,5,6-tetrahydro-cyclopenta[c]pyrrole-5-yl) carbonylamino]-3,4,6,7,8,12b-hexahydro-6-oxo-1H-[1,4]-azazino[3,4-a][2]benzazepine-4-carboxylic acid

Dissolve 3,4-(dicarboethoxy)pyrrole (1.06g, 5mmol) in 50/50 dioxane/water (25mL) and buffer to pH 10 with 1N sodium hydroxide. Add, by dropwise addition, an ether solution of di-t-butyl dicarbonate (1.2g, 5.5mmol) at 10°C. Allow to warm to room temperature and buffer occasionally to retain pH 10. Acidify with a sodium citrate/citric acid buffer to pH 5, extract with ethyl ether (3X), dry (MgSO₄) and evaporate the solvent in vacuo. Purify the residue by silica gel chromatography to give N-(carbo-t-butyloxy)-3,4-(dicarboethoxy)pyrrole.

Dissolve N-(carbo-t-butyloxy)-3,4-(dicarboethoxy)pyrrole (3,11g, 10mmol) in anhydrous tetrahydrofuran (30mL) and cool to -20°C. Treat with lithium borohydride (7mL of a 2N solution) and stir under a nitrogen atmosphere for several days. Carefully add water and partition between ethyl acetate and 5% hydrochloric acid. Separate the organic phase, wash with brine and dry (MgSO₄). Evaporate the solvent in vacuo and purify by silica gel chromatography to give N-(carbo-t-butyloxy)-3,4-(dihydroxymethyl)pyrrole.

Dissolve N-bromosuccinimide (1.78g, 0.01mol) in tetrahydrofuran (60mL) and add a solution of triphenylphosphine (2.62g, 0.01mol) in tetrahydrofuran. Add a solution of N-(carbo-t-butyloxy)-3,4-(dihydroxymethyl)pyrrole (1.14g, 5mmol) in tetrahydrofuran (25mL) and stir until most of the solid goes into solution. Evaporate the solvent in vacuo and partition the residue between water and ethyl ether. Separate the organic phase and wash with water. Dry (Na₂SO₄) and evaporate the solvent in vacuo. Purify by silica gel chromatography to give N-(carbo-t-butyloxy)-3,4-(dibromomethyl)pyrrole.

Dissolve diethylmalonate (15.2mL, 0,100mol) in tetrahydrofuran.(800mL). Cool in an ice-bath and treat with sodium hydride (3.0g, 0.10mol, 80% in mineral oil). Stir until solution attained and add N-(t-butyloxy)-3,4-(dibromomethyl)

pyrrole (35.3g, 0.100mol). Stir for 30 minutes then add additional sodium hydride (3.0g, 0.10mol). Stir at room temperature for 20 hours, filter through filter aid and evaporate the solvent in vacuo. Purify by silica gel chromatography to give 5,5-(dicarboethoxy)-2-(carbo-t-butyloxy)-2,4,5,6-tetrahydro-cyclopenta[c]pyrrole.

Dissolve 5,5-(dicarboethoxy)-2-(carbo-t-butyloxy)-2,4,5,6-tetrahydro-cyclopenta[c]pyrrole (21.3g, 60:6mmol) in dimethylsulfoxide (140ml). Add water (14mL) and lithium chloride (7.0g, 0.16mol). Heat at reflux for 4 hours, cool and partition between water (150mL) and methylene chloride (2X150mL). Wash the organic phase with water (150mL), dry (Mg_sO₄) and pass through a silica gel plug to give 5-(carboethoxy)-2-(carbo-t-butyloxy)-2,4,5;6-tetrahydro-cyclopenta [c]pyrrole.

Dissolve 5-(carboethoxy)-2-(carbo-t-butyloxy)-2,4,5,6-tetrahydro-cyclopenta[c]pyrrole (9.5g, 34.1mmol) in ethanol (95%, 150mL) and water (75mL). Add potassium hydroxide (9.5g, 0.17mol) and stir at room temperature for 1 hour. Partition between water (150mL) and ethyl ether (2X150mL). Acidify the aqueous-phase with hydrochloric acid to pH 1. Extract with methylene chloride (2X150mL), dry (Na₂SO₄) and evaporate the solvent in vacuo to give 5-(carboxy)-2-(carbo-t-butyloxy)-2,4,5,6-tetrahydro-cyclopenta[c]pyrrole.

Dissolve 5-(carboxy)-2-(carbo-t-butyloxy)-2,4,5,6-tetrahydro-cyclopenta[c]pyrrole (5.9g, ·23.5mmol) in methanol (60mL) and treat with dimethoxypropane (5.8mL, 47mmol) and sulfuric acid (0.8mL). Stir at room temperature for 1 day. Evaporate the solvent <u>in vacuo</u>, dilute with methylene chloride (75mL) and wash with saturated sodium hydrogen carbonate (35mL). Extract the aqueous phase with methylene chloride (30mL), wash combined organics with brine (30mL) and dry (Na₂SO₄). Evaporate the solvent <u>in vacuo</u> and pass through a plug of silica gel to give 5-(carbomethoxy)-2-(carbo-t-butyloxy)-2,4,5,6-tetrahydro-cyclopenta[c]pyrrole.

Dissolve diisopropylamine (3.5mL, 25mmol) in tetrahydrofuran (30mL). Add n-butyllithium (14mL of a 1.6M solution in hexane, 22.4mmol). Stir for 15 minutes and cool to -78°C. Add, by dropwise addition, 5-(carbomethoxy)-2-(carbot-butyloxy)-2,4,5,6-tetrahydro-cyclopenta[c]pyrrole (5.3g, 20mmol) and stir for 30 minutes. Add t-butyl bromoacetate (4.0mL, 25mmol) and gradually warm to room temperature overnight. Quench the solution with ammonium chloride solution (10mL) and partition between water (25mL) and ethyl ether (50mL). Separate the organic phase, dry (MgSO₄) and evaporate the solvent in vacuo. Purify by silica gel chromatography to give 5-(carbomethoxy)-5-(carbo-t-butyloxymethyl)-2-(carbo-t-butyloxy)-2,4,5,6-tetrahydro-cyclopenta[c]pyrrole.

Dissolve 5-(carbomethoxy)-5-(carbo-t-butyloxymethyl)-2-(carbo-t-butyloxy)-2,4,5,6-tetrahydro-cyclopenta[c]pyrrole (2.92g, 9.17mmol) in ethanol (95%, 60mL) and water (30mL). Treat with potassium hydroxide (2.94g, 52mmol). Stir at room temperature for 3 hours. Add water (75mL) and extract with ethyl ether (2X50mL). Extract the combined ethereal phases with water (75mL) and acidify the combined aqueous phases with aqueous 1M tartaric acid (pH·2-3). Extract with ethyl acetate (2X125mL), dry (Na₂SO₄) and evaporate the solvent in vacuo. Take the residue up in methylene chloride and filter to give 5-(carboxy)-5-(carbo-t-butyloxymethyl)-2-(carbo-t-butyloxy)-2,4,5,6-tetrahydro-cyclopenta[c]pyrrole.

Dissolve [4S-[4 α , 7 α (R*), 12b β]-7-(amino)-3,4,6,7,8,12b-hexahydro-6-oxo-1H-[1,4]-azazino[3,4-a][2]ben-zazepine-4-carboxylic acid, diphenylmethyl ester (200mg, 0.454mmol) and EDC (130mg, 0.68mmol) in tetrahydrofuran (5mL). Treat with 5-(carboxy)-5-(carbo-t-butyloxymethyl)-2-(carbo-t-butyloxy)-2,4,5,6-tetrahydro-cyclopenta[c]pyrrole (166mg, 0.454mmol). Stir at room temperature for 20 hours and evaporate the solvent in vacuo. Dissolve the residue in ethyl acetate (50mL) and wash with 5% sulfuric acid (15ml) then saturated sodium hydrogen-carbonate (15mL). Dry (Na₂SO₄) and evaporate the solvent in vacuo. Purify by silica gel chromatography to give [4S-[4a, 7α (R*), 12b β]]-7-[(5-(carbo-t-butyloxymethyl)-2-(carbo-t-butyloxy)-2,4,5;6-tetrahydro-cyclopenta[c]pyrrole-5-carbonylamino]-3,4,6,7,8,12b-hexahydro-6-oxo-1H-[1,4]-azazino[3,4-a][2]benzazepine-4-carboxylic acid, diphenylmethyl ester.

Dissolve [4S-[4α, 7α(R*), 12bβ]]-7-[(5-(carbo-t-butyloxymethyl)-2-(carbo-t-butyloxy)-2,4,5;6-tetrahydro-cyclopenta[c]pyrrole-5-yl)carbonylamino]-3,4,6,7,8,12b-hexahydro-6-oxo-1H-[1,4]-azazino[3,4-a][2]benzazepine-4-carboxylic acid, diphenylmethyl ester (128mg, 0.163mmol) in methylene chloride (3mL) and treat with anisole (0.19mL, 1.7mmol). Cool in an ice-methanol bath and add trifluoroacetic acid (0.8mL, 10mmol) and stir for 2.5 hours at 0°C. Partition between ethyl acetate (25mL) and brine (15mL). Separate the organic phase and wash with brine (15mL). Dry (Na₂SO₄), evaporate the solvent in vacuo and purify by silica gel chromatography to give the title compound.

Example 12

10

15

25

30

35

50

55

Preparation of [4S-[4 α ,7 α (R*), 12b β]]-7-[(5-Carboxymethyl-2,4,5,6-tetrahydro-cyclopenta[c]pyrrole-5-yl) carbonylamino]-3,4,6,7,8,12b-hexahydro-6-oxo-1H-[1,4]-N₄-trifluoroacetyl-azazino[3,4-a][2]benzazepine-4-carboxylic acid

Dissolve [4S-[4α , 7α (R*), $12b\beta$]]-7-[(5-(carbo-t-butyloxymethyl)-2-(carbo-t-butyloxy)-2,4,5,6-tetrahydro-cyclopenta[c]pyrrole-5-yl)carbonylamino]-3,4,6,7,8,12b-hexahydro-6-oxo-1H-[1,4]-azazino[3,4-a][2]benzazepine-4-carboxylic acid, diphenylmethyl ester (1.79g, 2.27mmol) in anhydrous tetrahydrofuran (15mL). Treat with pyridine (183 μ L, 2.27mmol) followed by trifluoroacetic anhydride (321 μ L, 2.27mmol) and stir at room temperature overnight. Partition

between ethyl ether and water. Separate the organic phase, dry (MgSO₄) and evaporate the solvent in vacuo. Purify by silica gel chromatography to give [4S-[4α, 7α(R*), 12bβ]]-7-[(5-(carbo-t-butyloxymethyl)-2-(carbo-t-butyloxy)-2,4,5,6-tetrahydro-cyclopenta[c]pyrrole-5-yl)carbonylamino]-3,4,6,7,8,12b-hexahydro-6-oxo-1H-[1,4]-N⁴-trifluoro-acetyl-azazino[3,4-a][2]benzazepine-4-carboxylic acid, diphenylmethyl ester.

Dissolve [4S-[4α, 7α(R*), 12bβ]]-7-[(5-(carbo-t-butyloxymethyl)-2-(carbo-t-butyloxy)-2,4,5,6-tetrahydro-cyclopenta[c]pyrrole-5-yl)carbonylamino]-3,4,6,7,8,12b-hexahydro-6-oxo-1H-[1,4]-N⁴-trifluoroacetyl-azazino[3,4-a][2]ben-zazepine-4-carboxylic acid, diphenylmethyl ester (141mg, 0.163mmol) in methylene chloride (3mL) and treat with anisole (0.19mL, 1.7mmol). Cool in an ice-methanol bath and add trifluoroacetic acid (0.8mL, 10mmol) and stir for 2.5 hours at 0°C. Partition between ethyl acetate (25mL) and brine (15mL). Separate the organic phase and wash with brine (15mL). Dry (Na₂SO₄), evaporate the solvent in vacuo and purify by silica gel chromatography to give the title compound.

Example 13

20

30

40

45

[6α(R*), 11bβ]-6-[(S)-(5-Carboxymethyl-2,4,5,6-tetrahydro-cyclopenta[c]pyrrole-5-yl)carbonylamino] -1,2,3,5,6,7,11b-heptahydro-5-oxo-pyrrolo[2,1 -a][2]benzazepine-3(S)-carboxylic acid, methyl ester

Scheme G, step a: N-(Phenylmethylene)-2-(3-butenyl)glycine methyl ester

Dissolve diisopropylamine (15.4mL, 110mmol) in tetrahydrofuran (250mL), place under a nitrogen atmosphere and cool to -78°C. Add n-butyllithium (39mL of a 2.7M solution in hexane, 105mmol). Stir for 30 minutes and add, by dropwise addition, a solution of N-(phenylmethylene)glycine methyl ester (17.7g, 100mmol) in tetrahydrofuran (25mL). Stir for 15 minutes and add 4-bromobutene (13.5g, 100mmol) and allow to warm slowly to room temperature. Add hexamethylphosphoramide (20mL, 100mmol) and stir under a nitrogen atmosphere for 3 hours. Pour into water, extract into ethyl ether and wash with brine several times. Dry (MgSO₄) and evaporate the solvent in vacuo to give the title compound as an amber oil (25g).

Scheme G, step b: 2-(3-Butenyl)glycine methyl ester

Dissolve N-(phenylmethylene)-2-(3-butenyl)glycine methyl ester (25g) in ethyl ether (400mL) and stir with 1N hydrochloric acid (150mL) and water (150mL). Place under an argon atmosphere and stir for 2 hours. Separate the aqueous phase and adjust to pH 9, extract into chloroform, dry and evaporate the solvent in vacuo to give the title compound as a light oil (4.5g).

35 Scheme G, step c: (S)-N-[2-(1,3-Dihydro-1,3-dioxo-2H-isoindol-2-yl)-1-oxo-3-phenylpropyl]-2-(3-butenyl)-glycine, methyl esters

Dissolve N-phthaloyl-(S)-phenylalanine (2) (6.0g, 20mmol) and EEDQ (6.0g, 24mmol) in methylene chloride (30mL). Add 2-(3-butenyl)glycine methyl ester (3.0g, 21mmol) and stir for 18 hours. Pour into methylene chloride, wash with 10% hydrochloric acid (2X100mL) then saturated sodium hydrogen carbonate. Dry and evaporate the solvent in vacuo to give 8.3g yellow oil. Purify by silica gel chromatography (25% ethyl acetate/hexane) to give a diastereomeric mixture of the title compounds as foam (5:2g).

Scheme G, step d: (S)-N-[2-(1,3-Dihydro-1,3-dioxo-2H-isoindol-2-yl)]-(S)-phenylalanyl]-2-(3-oxopropyl)glycine, methyl esters

Dissolve the diastereomeric mixture of (S)-N-[2-(1,3-dihydro-1,3-dioxo-2H-isoindol-2-yl)-1-oxo-3-phenylpropyl]-2-(3-butenyl)-glycine, methyl esters (4.2g, 10mmol) in methylene-chloride (100mL) and absolute methanol (10mL). Cool to -78°C and treat with ozone until blue. Degas with oxygen and add methyl sulfide (10mL) and pyridine (0.5mL). Allow to warm slowly to room temperature and stir for 18 hours. Wash with 10% hydrochloric acid then brine. Dry and evaporate the solvent in vacuo to give a diastereomeric mixture of the title compounds as an oil (4.5g).

Scheme F, step c: (S)-N-[2-{1,3-Dihydro-1,3-dioxo-2H-isoindol-2-yl)]-1-oxo-3-phenylpropyl-1,2,3-trihydro-2(S) - pyrrolecarboxylic acid, methyl ester and (S)-N-[2-(1,3-Dihydro-1,3-dioxo-2H-isoindol-2-yl)]-1-oxo-3-phenylpropyl-1,2,3-trihydro-2(R)-pyrrolecarboxylic acid, methyl ester

Dissolve the diastereomeric mixture of (S)-N-[2-(1,3-dihydro-1,3-dioxo-2H-isoindol-2-yl)]-(S)-phenylalanyl]-2-(3-oxopropyl)glycine, methyl esters (4.5g) in 1,1,1-trichloroethane (150mL) and treat with trifluoroacetic acid (0.5mL).

Heat at reflux for 18 hours, evaporate the solvent and purify by silica gel-chromatography (80% ethyl acetate/hexane) to give the 2(S)-title compound (700mg) and the 2(R)-title compound (600mg).

Scheme F, Step d: [6α(R*), 11bβ]-6-[(S)-(1,3-Dihydro-1,3-dioxo-2H-isoindol-2-yl)]-1,2,3,5,6,7,11b-heptahydro-5-oxo-pyrrolo[2,1-a][2]benzazepine-3(S)-carboxylic acid, methyl ester

Dissolve (S)-N-[2-(1,3-dihydro-1,3-dioxo-2H-isoindol-2-yl)]-1-oxo-3-phenylpropyl-1,2,3-trihydro-2(S)-pyrrolecar-boxylic acid, methyl ester (338mg, 0.836mmol) in anhydrous methylene chloride (10mL) and add to trifluorometh-anesulfonic acid (5mL). Stir for 3.5 hours, cool in an ice bath and carefully add water (25mL). Extract with ethyl acetate (75mL) and wash with saturated sodium hydrogen carbonate (25mL). Dry (Na₂SO₄) and evaporate the solvent in vacuo. Purify by silica gel chromatography (1:1 ethyl acetate/hexane to 2:1 ethyl acetate/hexane) to give the title compound as a white foam (314mg, 93%).

Scheme F, Step e: [6α(R*), 11bβ]-6-[(S)-Amino]-1,2,3,5,6,7,11b-heptahydro-5-oxo-pyrrolo[2,1-a][2]benzazepine-3(S)-carboxylic acid, methyl ester

Dissolve $[6\alpha(R^*), 11b\beta]$ -6-[(S)-(1,3-dihydro-1,3-dioxo-2H-isoindol-2-yl)]-1,2,3,5,6,7,11b-heptahydro-5-oxo-pyrrolo [2,1-a][2]benzazepine-3(S)-carboxylic acid, methyl ester (244mg, 0.603mmol) in methanol-(3mL) and treat with hydrazine monohydrate (0.70mL of a 1M solution in methanol) and stir at room temperature for 24 hours. Add additional hydrazine monohydrate (0.3mL of a 1M solution in methanol) and stir for 48 hours. Filter through filter aid, evaporate the solvent in vacuo and add methylene chloride. Filter slowly through a mixture of filter aid and MgSO₄ then evaporate the solvent in vacuo to give the title compound as a yellow oil (181mg).

Scheme A: [6α(R*), 11bβ]-6-[(S)-(5-Carboxymethyl-2,4,5,6-tetrahydro-cyclopenta[c]pyrrole-5-yl)carbonylamino] - 1,2,3,5,6,7,11b-heptahydro-5-oxo-pyrrolo[2,1-a][2]benzazepine-3(S)-carboxylic acid, methyl ester

Dissolve 5-(carboxy)-2-(carbo-t-butyloxy)-5-(carbo-t-butyloxymethyl)-2,4,5,6-tetrahydro-cyclopenta[c]pyrrole (308mg, 0.845mmol) in methylene chloride (6mL), cool in an ice-methanol bath and treat with oxalyl-chloride (0.94mL, 11mmol). Stir for 1.5 hours, evaporate the solvent in vacuo at 0-5°C. Dilute the residue with methylene chloride (3mL) and add a solution of $\{6\alpha(R^*), 11b\beta\}$ -6- $\{(S)$ -amino]-1,2,3,5,6,7,11b-heptahydro-5-oxo-pyrrolo[2,1-a][2]benzazepine-3 (S)-carboxylic acid, methyl ester (155mg, 0.565mmol) in methylene chloride (6mL). Add pyridine (68µL, 0.85mmol) and stir for 2 hours. Dilute with ethyl acetate (60mL) and wash with 1N hydrochloric acid (30mL) and saturated sodium hydrogen carbonate (2X30mL). Dry (MgSO₄), evaporate the solvent in vacuo and purify by silica gel chromatography to give $[6\alpha(R^*), 11b\beta]$ -6- $\{(S)$ -(5-(carbo-t-butyloxymethyl)-2-(carbo-t-butyloxy)-2,4,5,6-tetrahydro-cyclopenta[c]pyrrole-5-yl)carbonylamino]-1,2,3,5,6,7,11b-heptahydro-5-oxo-pyrrolo[2,1-a][2]benzazepine-3(S)-carboxylic acid, methyl ester

Dissolve [6α(R*), 11bβ]-6-{(S)-(5-(carbo-t-butyloxymethyl)-2-(carbo-t-butyloxy)-2,4,5,6-tetrahydro-cyclopenta[c] pyrrole-5-yl)carbonylamino]-1,2,3,5,6,7,11b-heptahydro-5-oxo-pyrrolo[2,1-a][2]benzazepine-3(S)-carboxylic acid, methyl ester (101mg, 0.163mmol) in methylene chloride (3mL) and treat with anisole (0.19mL, 1.7mmol). 'Cool in an ice-methanol bath and add trifluoroacetic acid (0.8mL, 10mmol) and stir for 2.5 hours at 0°C. Partition between ethyl acetate (25mL) and brine (15mL). Separate the organic phase and wash with brine (15mL). Dry (Na₂SO₄), evaporate the solvent in vacuo and purify by silica gel chromatography to give the title compound.

Example 14

20

25

40

45

55

Preparation of [6α(R*), 11bβ]-6-{(S)-(5-Carboxymethyl-2,4,5,6-tetrahydro-cyclopenta[c]pyrrole-5-yl]carbonylamino] - 1,2,3,5,6,7,11b-heptahydro-5-oxo-pyrrolo[2,1 -a][2]benzazepine-3(S)-carboxylic acid

Dissolve $[6\alpha(R^*), 11b\beta]$ -6-[(S)-(5-carboxymethyl-2,4,5;6-tetrahydro-cyclopenta[c]pyrrole-5-yl)carbonylamino]-1,2,3,5,6,7,11b-heptahydro-5-oxo-pyrrolo[2,1-a][2]benzazepine-3(S)-carboxylic acid, methyl ester(46mg, 0:098mmol) in methanol (1.5mL) at 0°C and add aqueous 1N lithium hydroxide (0.6mL, 0.6mmol) at 0°C. Add tetrahydrofuran to obtain solution (4mL) and stir for 17 hours at room temperature, cool in an ice-bath and add 1N hydrochloric acid-(1mL). Partition between methylene chloride (30mL) and water (15mL) and separate the organic phase. Dry (Na₂SO₄), evaporate the solvent in vacuo and purify by silica gel chromatography to give the title compound.

In a further embodiment, the present invention provides a compound of Formula (I) for use in inhibiting enkephalinase in a patient in need thereof comprising administering to said patient an effective enkephalinase inhibitory amount of a compound of Formula (I).

As used herein, the term "patient" refers to warm-blooded animals or mammals, including mice, rats and humans.

A patient is in need of treatment to inhibit enkephalinase when the patient is suffering from acute or chronic pain and is in need of an endorphin- or enkephalin-mediated analgesic effect. In addition, a patient is in need of treatment to inhibit enkephalinase when the patient is suffering from a disease state characterized by abnormalities in fluid, electrolyte, blood pressure, intraocular pressure, renin, or aldosterone homeostasis, such as, but not limited to, hypertension, renal diseases, hyperaldosteronemia, cardiac hypertrophy, glaucoma and congestive heart failure. In these instances the patient is in need of an ANP-mediated diuretic, natriuretic, hypotensive, hypoaldosteronemic effect. Inhibition of enkephalinase would provide an endorphin- or enkephalin-mediated analgesic effect by inhibiting the metabolic degradation of endorphins and enkephalins. Inhibition of enkephalinase would provide an ANP-mediated diuretic, natriuretic, hypotensive, hypoaldosteronemic effect by inhibiting the metabolic degradation of ANP.

In addition, a patient is in need of treatment to inhibit enkephalinase when the patient is in need of an antidepressant effect or a reduction in severity of withdrawal symptoms associated with termination of opiate or morphine administration

10

20

25

35

40

45

The identification of those patients who are in need of treatment to inhibit enkephalinase is well within the ability and knowledge of one skilled in the art. A-clinician skilled in the art can readily identify, by the use of clinical tests, physical examination and medical/family history, those patients who are in need of an endorphin- or enkephalin-mediated analgesic effect or who are in need of an ANP-mediated diuretic, natriuretic, hypotensive or hypoaldosteronemic effect.

An effective enkephalinase inhibitory amount of a compound of Formula (I) is an amount which is effective in inhibiting enkephalinase and in thus inhibiting the metabolic degradation of the naturally-occurring circulating regulatory peptides such as the endorphins, including enkephalins, and ANP. Successful treatment is also understood to include prophylaxis in treating a patient in those instances such as, for example, in a pre-operative procedure, where a patient will be suffering from acute or chronic pain in the near future.

An effective enkephalinase inhibitory amount of a compound of Formula (I) is an amount which is effective in inhibiting enkephalinase in a patient in need thereof which results, for example, in endorphin- or enkephalin-mediated analogsic effects or in ANP-mediated diuretic, natriuretic, hypotensive, hypoaldosteronemic effect.

An effective enkephalinase inhibitory dose can be readily determined by the use of conventional techniques and by observing results obtained under analogous circumstances. In determining the effective dose, a number of factors are considered including, but not limited to: the species of patient; its size, age, and general health; the specific disease involved; the degree of or involvement or the severity of the disease; the response of the individual patient; the particular compound administered; the mode of administration; the bioavailability characteristics of the preparation administered; the dose regimen selected; and the use of concomitant medication.

An effective enkephalinase inhibitory amount of a compound of Formula (I) will generally vary from about 0.01 milligram per kilogram of body weight per day (mg/kg/day) to about 20 mg/kg/day. A daily dose of from about 0.1 mg/kg to about 10 mg/kg is preferred.

In addition, the present invention further provides a compound of general Formula (I) for use in inhibiting ACE in a patient in need thereof comprising administering to said patient an effective ACE inhibitory amount of a compound of Formula (I). A patient is in need of treatment to inhibit ACE when the patient is suffering from hypertension, chronic congestive heart failure, hyperaldosteronemia or cognitive disorders. Inhibition of ACE reduces levels of angiotensin II and thus inhibits the vasopressor, hypertensive and hyper-aldosteronemic effects caused thereby. An effective ACE inhibitory amount of a compound of Formula (I) is that amount which is effective in inhibiting ACE in a patient in need thereof which results, for example, in a hypotensive effect. An effective ACE inhibitory amount and an effective ACE inhibitory dose are the same as that described above for an effective enkephalinase inhibitory amount and dose.

In effecting treatment of a patient, compounds of Formula (I) can be administered in any form or mode which makes the compound bioavailable in effective amounts, including oral and parenteral routes. For example, the compound can be administered orally, subcutaneously, intramuscularly, intravenously, transdermally, intranasally, rectally, and the like. Oral administration is generally preferred. One skilled in the art of preparing Formulations can readily select the proper form and mode of administration depending upon the disease state to be treated, the stage of the disease, and other relevant circumstances.

Compounds of Formula (I) can be administered in the form of pharmaceutical compositions or medicaments which are made by combining the compounds of Formula (I) with pharmaceutically acceptable carriers or excipients, the proportion and nature of which are determined by the chosen route of administration, and standard pharmaceutical practice.

In another embodiment, the present invention provides compositions comprising a compound of Formula (I) in admixture or otherwise in association with one or more inert carriers. These compositions are useful, for example, as assay standards, as convenient means of making bulk shipments, or as pharmaceutical compositions. An assayable amount of a compound of Formula (I) is an amount which is readily measurable by standard assay procedures and techniques as are well known and appreciated by those skilled in the art. Assayable amounts of a compound of Formula (I) will generally vary from about 0.001% to about 75% of the composition by weight. Inert carriers can be any material

which does not degrade or otherwise covalently react with a compound of Formula (I). Examples of suitable inert carriers are water; aqueous buffers, such as those which are generally useful in High Performance Liquid Chromatography (HPLC) analysis; organic solvents, such as acetonitrile, ethyl acetate, hexane and the like; and pharmaceutically acceptable carriers or excipients.

More particularly, the present invention provides pharmaceutical compositions comprising an effective amount of a compound of Formula (I) in admixture or otherwise in association with one or more pharmaceutically acceptable carriers or excipients.

5

10

15

20

25

30

35

40

45

50

55

The pharmaceutical compositions or medicaments are prepared in a manner well known in the pharmaceutical art. The carrier or excipient may be a solid, semi-solid, or liquid material which can serve as a vehicle or medium for the active ingredient. Suitable carriers or excipients are well known in the art. The pharmaceutical composition may be adapted for oral or parenteral use and may be administered to the patient in the form of tablets, capsules, suppositories, solution, suspensions, or the like.

The pharmaceutical compositions may be administered orally, for example, with an inert diluent or with an edible carrier. They may be enclosed in gelatin capsules or compressed into tablets. For the purpose of oral therapeutic administration, the compounds of Formula (I) may be incorporated with excipients and used in the form of tablets, troches, capsules, elixirs, suspensions, syrups, wafers, chewing gums and the like. These preparations should contain at least 4% of the compound of Formula (I), the active ingredient, but may be varied depending upon the particular form and may conveniently be between 4% to about 70% of the weight of the unit. The amount of the active ingredient present in compositions is such that a unit dosage form suitable for administration will be obtained.

The tablets, pills, capsules, troches and the like may also contain one or more of the following adjuvants: binders, such as microcrystalline cellulose, gum tragacanth or gelatin; excipients, such as starch or lactose, disintegrating agents such as alginic acid, Primogel, com starch and the like; lubricants, such as magnesium stearate or Sterotex; glidants, such as colloidal silicon dioxide; and sweetening agents, such as sucrose or saccharin may be added or flavoring agents, such as peppermint, methyl salicylate or orange flavoring. When the dosage unit form is a capsule, it may contain, in addition to materials of the above type, a liquid carrier such as polyethylene glycol or a fatty oil. Other dosage unit forms may contain other various materials which modify the physical form of the dosage unit, for example, as coatings. Thus, tablets or pills may be coated with sugar, shellac, or other enteric coating agents. A syrup may contain, in addition to the active ingredient, sucrose as a sweetening agent and certain preservatives, dyes and colorings and flavors. Materials used in preparing these various compositions should be pharmaceutically pure and nontoxic in the amounts used.

For the purpose of parenteral administration, the compounds of Formula (I) may be incorporated into a solution or suspension. These preparations should contain at least 0.1% of a compound of the invention, but may be varied to be between 0.1 and about 50% of the weight thereof. The amount of the active ingredient present in such-compositions is such that a suitable dosage will be obtained.

The solutions or suspensions may also include one or more of the following adjuvants: sterile diluents such as water for injection, saline solution, fixed oils, polyethylene glycols, glycerine, propylene glycol or other synthetic solvents; antibacterial agents such as benzyl alcohol or methyl paraben; antioxidants such as ascorbic acid or sodium bisulfite; chelating agents such as ethylene diaminetetraacetic acid; buffers such as acetates, citrates or phosphates and agents for the adjustment of tonicity such as sodium chloride or dextrose. The parenteral preparation can be enclosed in ampules, disposable syringes or multiple dose vials made of glass or plastic.

As with any group of structurally related compounds which possess a particular generic utility, certain groups and configurations are preferred for compounds of Formula (I) in their end-use application.

The compounds of Formula (1) wherein B_1 is hydrogen or alkoxy are preferred. The compounds of Formula (1) wherein B_2 is hydrogen or alkoxy are preferred. Compounds of Formula (1) wherein B_1 and B_3 are hydrogen and n is 0 are preferred.

It is, of course, understood that the compounds of Formula (I) may exist in a variety of isomeric configurations including structural as well as stereo isomers. It is further understood that the present invention encompasses those compounds of Formula (I) in each of their various structural and stereo isomeric configurations as individual isomers and as mixtures of isomers.

The following specific compounds of Formula (1) are particularly preferred in the end-use application of the compounds of the present invention:

[4S- $[4\alpha, 7\alpha(R^*), 12b\beta]$]-7-[(2-carboxymethyl-indan-2-yl)carbonylamino]-1,2,3,4,6,7;8,12b-octahydro-6-oxopyrido [2,1-a][2]benzazepine-4-carboxylic acid;

[4S-[4 α , 7 α (R*), 12b β]]-7-[(2-pivaloyloxymethylcarboxymethyl-indan-2-yl)carbonylamino]-1,2,3,4,6,7;8,12b-oc-tahydro-6-oxopyrido[2,1-a][2]benzazepine-4-carboxylic acid;

[4\$-[4 α , 7 α (R*), 12b β]]-7-[(2-carboxymethyl-indan-2-yl-)carbonylamino]-1,2,3,4,6,7,8,12b-octahydro-6-oxopyrido [2,1-a][2]benzazepine-4-carboxylic acid, pivaloyloxymethyl ester;

[4S- $(4\alpha, 7\alpha(R^*), 12b\beta)$]-7-(2-pivaloyloxymethylcarboxymethyl-indan-2-yl)carbonylamino]-1,2,3,4,6,7,8,12b-octahydro-6-oxopyrido[2,1-a][2]benzazepine-4-carboxylic acid, pivaloyloxymethyl ester.

The following studies illustrate the utility of the compounds of the present invention as enkephalinase inhibitors and as ACE inhibitors.

Enkephalinase is partially purified from rat kidney. The enzyme is extracted from the microvilli fraction by using Triton X-100 according to the method of Malfroy and Schwartz [*J.Biol.Chem.* 259, 14365-14370 (1984)] or by using a proteolytic treatment according to the method of Almenoff and Orlowski [*Biochem.* 22, 590-599 (1983)]. The enzyme is further purified by anion exchange chromatography (MonoQ™ column, Pharmacia) using a Pharmacia FPLC system. The enzyme activity may be measured by the fluorometric methods of Florentin et al. [*Anal.Biochem.* 141, 62-69 (1984)] or of Almenoff and Orlowski [*J.Neurochemistry* 42, 151-157 (1984)]. The enzyme is assayed in 50mM HEPES buffer (pH 7.4) in a 3.0 mL reaction volume containing 12 μM of the substrate dansyl-D-AlaGly(p-nitro)PheGly (K_m=40μM) at 25°C. The substrate (and inhibitor) is added from a concentrated stock solution in DMSO (up to 0.1 mL DMSO final volume). The enzyme in a small volume (approximately 0.1 μg of FPLC purified protein) is added to initiate the reaction and the rate of fluorescense increase is recorded continuously using a fluorometer (excitation at 339nm, emission at 562nm)

The enzymatic activity of ACE is monitored using the spectrophotometric substrate described by Holmquist et al. [Anal.Biochem. 95, 540-548 (1979)] and the buffer system described by Ryan [Methods of Enzymatic Analysis, 3rd ed., H. U. Bergmeyer, editor; vol. V, Verlag Chemie, Weinheim, 1983, pp. 20-34].

The results of the analysis of enzymatic activity as described in Table 1 indicate that the compounds of the present invention are inhibitors of enkephalinase as well as inhibitors of ACE.

Table 1

Γ	K _i 's of Compounds of Formula (I) as Inhibitors of Enkephalinase and of ACE			
	Compound of Formula (1)	Enkephalinase, K _i (nM)	ACE, K _i (nM)	
r	102,353	<0.2	<104	
上	100,137	0.4		

102,353 = [45-[4α, 7α(R*), 12bβ]]-7-[(2-Carboxymethyl-indan-2-yl)carbonylamino]-1,2,3,4.6,7,8,12b-octahydro-6-oxopyrido[2,1-a][2]benzazepine 4-carboxylic acid

100,137 = [4S-[4α, 7α(R*), 12bβ]}-7-[(1-Carboxymethyl-cyclopent-1-yl)carbonytamino]-1,2,3,4,6,7,8,12b-octahydro-6-oxopyrido[2,1-a][2]ben-zazepine-4-carboxylic acid

Claims

5

20

30

35

45

50

55

Claims for the following Contracting States: AT, BE, CH, LI, DE, DK, FR, GB, GR, IR, IT, LU, MC, NL, PT, SE

1. A compound of the formula

wherein

 B_1 and B_2 are each independently hydrogen, hydroxy or $-OR_2$ wherein R_2 is a C_1-C_4 alkyl or an Ar-Y group wherein Ar is a phenyl or naphthyl group unsubstituted or substituted with from one to three substituents selected from the group consisting of methylenedioxy, hydroxy, C_1-C_4 alkoxy, fluoro and chloro and Y is a hydrogen or C_1-C_4 alkyl; or, where B_1 and B_2 are attached to adjacent carbon atoms, B_1 and B_2 can be taken together with said adjacent carbons to form a benzene ring or methylenedioxy;

A is a bond, methylene, oxygen, sulfur, NR_4 or $NCOR_5$ wherein R_4 is hydrogen, a C_1 - C_4 alkyl or an Ar-Y- group; and R_5 is -CF₃ or a C_1 - C_{10} alkyl or an Ar-Y group;

R₃ is hydrogen or -CH₂OC(O)C(CH₃)₃;

R₁ is hydrogen, C₁-C₄ alkyl, or -CH₂OC(O)C(CH₃)₃;

m is an integer 1 to 3; and

Q is a group of the formulae

 B_1 CH_3 CH_3 CH_2 B_2 CH_3

or

5

10

15

20

25

30

35

40

50

wherein Z is O, NH or S; and n is an integer 1 to 5.

2. A compound according to Claim 1 wherein Q is

 B_1

3. A compound according to Claim 2 wherein A is methylene.

4. A compound according to Claim 3 wherein R₁ and R₃ are hydrogen.

45 5. A compound according to Claim 4 wherein m is 3.

6. A compound according to Claim 4 wherein m is 1.

7. A compound according to Claim 4 wherein m is 2.

8. A compound according to Claim 1 wherein Q is

55

9. A compound according to Claim 8 wherein A is methylene.

- 10. A compound according to Claim 9 wherein R₁ and R₃ are hydrogen.
- 11. A compound according to Claim 10 wherein m is 1.
- 5 12. A compound according to Claim 1 wherein A is -O-.
 - 13. A compound according to Claim 1 wherein A is -S-.
 - 14. A compound according to Claim 1 wherein A is -NH-.

10

15

20

- 15. A compound according to Claim 1 wherein the compound is
 - [4S-[4 α , 7α (R*), 12b β]]-7-[(2-carboxymethyl-indan-2-yl)carbonylamino]-1,2,3,4,6,7,8,12b-octahydro-6-oxopyrido[2,1-a][2]benzazepine-4-carboxylic acid;
 - [4S-[4α, 7α(R*), 12bβ]]-7-[(2-carboxymethyl-indan-2-yl)carbonylamino]-1,2,3,4,6,7,8,12b-octahydro-6-ox-opyrido[2,1-a][2]benzazepine-4-carboxylic acid, pivaloyloxymethyl ester;
 - [4S- $[4\alpha, 7\alpha(R^*), 12b\beta]]$ -7-[(2-pivaloyloxymethylcarboxymethyl-indan-2-yl)carbonylamino]-1,2,3,4,6,7,8,12b-octahydro-6-oxopyrido[2,1-a][2]benzazepine-4-carboxylic acid, pivaloyloxymethyl ester;
 - [4S-[4 α , $7\alpha(R^*)$, 12b β]]-7-[(2-pivaloyloxymethylcarboxymethyl-indan-2-yl)carbonylamino]-1,2,3,4,6,7,8,12b-octahyaro-6-oxopyrido[2,1-a][2]benzazepine-4-carboxylic acid; or
 - [4S-[4 α , 7α (R*), 12b β]]-7-[(1-carboxymethyl-cyclopent-1yl)carbonylamino]-1,2,3,4;6,7,8,12b-octahydro-6-oxopyrido[2,1-a][2]benzazepine-4-carboxylic acid.
- 16. A compound according to any of Claims 1 to 15 for use as a pharmaceutically active agent.

25

- 17. A compound according to Claim 16 for use in inhibiting enkephalinase.
- 18. A compound according to Claim 17 for use as an endorphin- or enkephalin-mediated analgesic agent.
- 30 19. A compound according to Claim 17 for use as an ANP-mediated hypotensive agent.
 - 20. A compound according to Claim 17 for use as an ANP-mediated diuretic agent.
 - 21. A compound according to Claim 17 for use in treating congestive heart failure.

35

- 22. A compound according to Claim 16 for use in inhibiting ACE.
- 23. A compound according to Claim 22 for use as a hypotensive agent.
- 40 24. A compound according to Claim 22 for use as a cognition enhancing agent.
 - 25. A compound according to Claim 22 for use in treating congestive heart failure.
- 26. A composition comprising an assayable amount of a compound according to any of Claims 1 to 15 in admixture or otherwise in association with an inert carrier.
 - 27. A pharmaceutical composition comprising an effective immunosuppressive amount of a compound according to any of Claims 1 to 15 in admixture or otherwise in association with one or more pharmaceutically acceptable carriers or excipients.

50

Claims for the following Contracting State: ES

1. A process for preparing the compounds of formula

$$Q-(CH_2)_m-CO_2R_1$$

$$Q-(CH_2)_m$$

$$Q-(CH_2)_m$$

15

20

25

30

35

45

5

10

wherein

 B_1 and B_2 are each independently hydrogen, hydroxy or $-OR_2$ wherein R_2 is a C_1 - C_4 alkyl or an Ar-Y group wherein Ar is a phenyl or naphthyl group unsubstituted or substituted with from one to three substituents selected from the group consisting of methylenedioxy, hydroxy, C_1 - C_4 alkoxy, fluoro and chloro and X is a hydrogen or C_1 - C_4 alkyl; or, where B_1 and B_2 are attached to adjacent carbon atoms, B_1 and B_2 -can be taken together with said adjacent carbons to form a benzene ring or methylenedioxy;

A is a bond, methylene, oxygen, sulfur, NR_4 or $NGOR_5$ wherein R_4 is hydrogen, a C_1 - C_4 alkyl or an Ar-Y- group and

R₅ is -CF₃ or a C₁-C₁₀ alkyl or an Ar-Y group;

R₃ is hydrogen;

R₁ is hydrogen;

m is an integer 1 to 3; and

Q is a group of the formulae

H₃C CH₃ - (CH₂) n

B₁ B₂

40 or

wherein Z is O, NH or S; and n is an integer 1 to 5;

comprising reacting a compound of the formula

55

$$B_1$$
 B_2
 CO_2 CHPh₂
 CO_2 CHPh₂

wherein B_1 , B_2 , A and m are as defined above and R_1 is t-butyl with an acid.

2. A process for preparing the compounds of formula

$$O \longrightarrow N$$
 $O \longrightarrow N$
 $O \longrightarrow$

wherein

5

10

15

20

25

30

35

40

45

50

 B_1 and B_2 are each independently hydrogen, hydroxy or $-OR_2$ wherein R_2 is a C_1-C_4 alkyl or an Ar-Y group wherein Ar is a phenyl or naphthyl group unsubstituted or substituted with from one to three substituents selected from the group consisting of methylenedioxy, hydroxy, C_1-C_4 alkoxy, fluoro and chloro and Y is a hydrogen or C_1-C_4 alkyl; or, where B_1 and B_2 are attached to adjacent carbon atoms, B_1 and B_2 -can be taken together with said adjacent carbons to form a benzene ring or methylenedioxy;

A is a bond, methylene, oxygen, sulfur, NR_4 or $NCOR_5$ wherein R_4 is hydrogen, a C_1 - C_4 alkyl or an Ar-Y- group and R_5 is -CF₃ or a C_1 - C_{10} alkyl or an Ar-Y group;

 R_3 is -CH₂OC(O)C(CH₃)₃, R_1 is -CH₂OC(O)C(CH₃)₃, m is an integer 1 to 3; and Q is a group of the formulae

10

5

wherein Z is O, NH or S; and n is an integer 1 to 5;

comprising reacting a compound of the formula

15

20

$$Q-(CH_2)_m-CO_2R_1$$

$$Q-CO_2R_3$$

25

30

wherein B₁, B₂, A and m are as defined above and R₁ and R₃ are hydrogen with chloromethyl pivalate in the presence of a suitable base.

35

A process for preparing the compounds of formula

40

45

50

91 Q-(CH2)m-CO2R1

wherein

55

B₁ and B₂ are each independently hydrogen, hydroxy or -OR₂ wherein R₂ is a C₁-C₄ alkyl or an Ar-Y group wherein Ar is a phenyl or naphthyl group unsubstituted or substituted with from one to three substituents selected from the group consisting of methylenedioxy, hydroxy, C1-C4 alkoxy, fluoro and chloro and Y is a hydrogen or C1-C4 alkyl; or, where B1 and B2 are attached to adjacent carbon atoms, B1 and B2 can be taken

together with said adjacent carbons to form a benzene ring or methylenedioxy; A is a bond, methylene, oxygen, sulfur, NR₄ or NCOR₅ wherein R₄ is hydrogen, a C₁-C₄ alkyl or an Ar-Y- group and R₅ is -CF₃ or a C₁-C₁₀ alkyl or an Ar-Y group; R₃ is hydrogen;

R₁ is C₁-C₄ alkyl; m is an integer 1 to 3; and Q is a group of the formulae

10 15

or

5

30

40

55

20 25

wherein Z is O, NH or S; and n is an integer 1 to 5;

comprising reacting a compound of the formula

Bı 35 -(CE2)m-CO2R1 CO2CHPh2 45

> wherein B1, B2, A and m are as defined above and R1 is C1-C4 alkyl with palladium/carbon in the presence of hydrogen.

A process for preparing the compounds of formula 50

$$B_1$$
 $Q-(CH_2)_m-CO_2R_1$
 CO_2R_3

wherein

5

10

15

20

25

30

35

40

45

50

 B_1 and B_2 are each independently hydrogen, hydroxy or $-OR_2$ wherein R_2 is a C_1-C_4 alkyl or an Ar-Y group wherein Ar is a phenyl or naphthyl group unsubstituted or substituted with from one to three substituents selected from the group consisting of methylenedioxy, hydroxy, C_1-C_4 alkoxy, fluoro and chloro and Y is a hydrogen or C_1-C_4 alkyl; or, where B_1 and B_2 are attached to adjacent carbon atoms, B_1 and B_2 -can be taken together with said adjacent carbons to form a benzene ring or methylenedioxy;

A is a bond, methylene, oxygen, sulfur, NR₄ or NCOR₅ wherein R₄ is hydrogen, a C₁-C₄ alkyl or an Ar-Y- group and

R₅ is -CF₃ or a C₁-C₁₀ alkyl or an Ar-Y group;

R₃ is -CH₂OC(O)C(CH₃)₃;

R₁ is C₁-C₄ alkyl;

m is an integer 1 to 3; and

Q is a group of the formulae

or

wherein Z is O, NH or S; and n is an integer 1 to 5;

comprising reacting a compound of the formula

$$Q-(C\Xi_2)_m-CO_2R_1$$

$$CO_2R_3$$

wherein B_1 , B_2 , A, m and B_1 are as defined above and B_3 is hydrogen with chloromethyl pivalate in the presence of a suitable base.

5. A process for preparing the compounds of formula

wherein

40

5

10

15

20

 B_1 and B_2 are each independently hydrogen, hydroxy or $\circ OR_2$ wherein R_2 is a $C_1 \circ C_4$ alkyl or an Ar-Y group wherein Ar is a phenyl or naphthyl group unsubstituted or substituted with from one to three substituents selected from the group consisting of methylenedioxy, hydroxy, $C_1 \circ C_4$ alkoxy, fluoro and chloro and Y is a hydrogen or $C_1 \circ C_4$ alkyl; or, where B_1 and B_2 are attached to adjacent carbon atoms, B_1 and B_2 can be taken together with said adjacent carbons to form a benzene ring or methylenedioxy;

A is a bond, methylene, oxygen, sulfur, NR₄ or NCOR₅ wherein R₄ is hydrogen, a C₁-C₄ alkyl or an Ar-Y- group and

R₅ is -CF₃ or a C₁-C₁₀ alkyl or an Ar-Y group;

H₃ is -CH₂OC(O)C(CH₃)₃;

R₁ is hydrogen;

m is an integer 1 to 3; and

Q is a group of the formulae

55

45

10 N

wherein Z is O, NH or S; and n is an integer 1 to 5;

comprising reacting a compound of the formula

15

20

40

wherein B₁, B₂, A, m and R₃ are defined as above and R₁ is C_1 - C_4 alkyl with a base.

6. A process for preparing the compounds of formula

50 H H H CO₂R₁ CO₂R₃

wherein

 B_1 and B_2 are each independently hydrogen, hydroxy or -OR $_2$ wherein R $_2$ is a C_1 - C_4 alkyl or an Ar-Y-group wherein Ar is a phenyl or naphthyl group unsubstituted or substituted with from one to three substituents selected from the group consisting of methylenedioxy, hydroxy, C_1 - C_4 alkoxy, fluoro and chloro and Y is a hydrogen or C_1 - C_4 alkyl; or, where B_1 and B_2 are attached to adjacent carbon atoms, B_1 and B_2 can be taken together with said adjacent carbons to form a benzene ring or methylenedioxy;

A is a bond, methylene, oxygen, sulfur, NR_4 or $NCOR_5$ wherein R_4 is hydrogen, a C_1 - C_4 alkyl or an Ar-Y- group and

R₅ is -CF₃ or a C₁-C₁₀ alkyl or an Ar-Y group;

R₃ is hydrogen;

R₁ is -CH₂OC(O)C(CH₃)₃;

m is an integer 1 to 3; and

Q is a group of the formulae

15

20

25

30

5

10

or

wherein Z is O, NH or S; and n is an integer 1 to 5;

35

55

comprising reacting a compound of the formula

wherein B_1 , B_2 , A and m are as defined above and R_1 is $CH_2OC(O)C(CH_3)_3$ with palladium/carbon in the presence of hydrogen.

7. A process according to any of Claims 1 to 6 wherein Q is

8. A process according to Claim 7 wherein A is methylene.

9. A process according to Claim 1 wherein $\rm R_1$ and $\rm R_3$ are hydrogen, $\rm Q$ is

 B_1

and A is methylene.

5

10

15

20

30

35

40

45

55

10. A process according to Claim 9 wherein m is 3.

25 11. A process according to Claim 9 wherein m is 1.

12. A process according to Claim 9 wherein m is 2.

13. A process according to any of Claims 1 to 6 wherein Q is

14. A process according to Claim 13 wherein A is methylene.

15. A process according to Claim 1 wherein R₁ and R₃ are hydrogen, Q is

and A is methylene.

16. A process according to Claim 15 wherein m is 1.

17. A process according to any of Claims 1 to 6 wherein A is -O-.

18. A process according to any of Claims 1 to 6 wherein A is -S-.

19. A process according to any of Claims 1 to 6 wherein A is -NH-.

20. A process according to any of Claims 1 to 6 wherein the compound to be produced is

[4S- [4 α , $7\alpha(R^*)$, $12b\beta$]]-7-[(2-carboxymethyl-indan-2-yl)carbonylamino]-1,2,3,4,6,7,8,12b-octahydro-6-ox-

opyrido[2,1-a][2]benzazepine-4-carboxylic acid;

 $[4S-[4\alpha, 7\alpha(R^*), 12b\beta]]$ -7-((2-carboxymethyl-indan-2-yl)carbonylamino]-1,2,3,4,6,7,8,12b-octahydro-6-oxopyrido[2,1-a][2]benzazepine-4-carboxylic acid, pivaloyloxymethyl ester;

octahydro-6-oxopyrido[2,1-a][2]benzazepine-4-carboxylic acid, pivaloyloxymethyl-ester;

octahydro-6-oxopyrido[2,1-a][2]benzazepine-4-carboxylic acid; or

[4S-[4 α , 7 α (R*), 12b β]]-7-[(1-carboxymethyl-cyclopent-1-yl)carbonylamino]-1;2,3,4,6,7,8,12b-octahydro-6-oxopyrido[2,1-a][2]benzazepine-4-carboxylic acid.

21. A composition for nonpharmaceutical purposes comprising an assayable amount of a compound obtainable according to the process of any of Claims 1 to 20 in admixture or otherwise in association with an inert carrier.

22. A process for producing a pharmaceutical composition comprising mixing an effective immunosuppressive amount of a compound obtainable according to the process of any of Claims 1 to 20 with one or more pharmaceutically acceptable carriers or excipients.

Patentansprüche

20

25

5

10

15

Patentansprüche für folgende Vertragsstaaten : AT, BE, CH, LI, DE, DK, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE

Verbindung der Formel

30

(CH2)m-CO2R1

B₁ und B₂ jeweils unabhängig voneinander ein Wasserstoffatom, eine Hydroxylgruppe oder ein Rest -OR₂ sind, wobei R2 ein C1-C4-Alkylrest oder ein Rest Ar-Y ist, in dem Ar ein unsubstituierter oder substituierter Phenyl- oder Naphthylrest mit einem bis drei Substituenten ist, die aus Methylendioxy-, Hydroxylgruppen, C₁-

C₄-Alkoxyresten, Fluor- und Chloratomen ausgewählt sind und Y-ein Wasserstoffatom oder ein C₁-C₄-Alkytrest ist; oder wenn B₁ und B₂ an benachbarte Kohlenstoffatome gebunden sind, B₁ und B₂ zusammen mit den

A eine Bindung, eine Methylengruppe, ein Sauerstoffatom, ein Schwefelatom, ein Rest NR4 oder NCOR5 ist, wobei R4 ein Wasserstoffatom, ein C1-C4-Alkylrest oder ein Rest Ar-Y- ist und R5 eine Gruppe -CF3 oder ein

benachbarten Kohlenstoffatomen einen Benzolring oder eine Methylendioxygruppe bilden können;

81

CO2R3

40

35

in der

45

50

55

C1-C10-Alkylrest oder ein Rest Ar-Y ist; R₃ ein Wasserstoffatorn oder eine Gruppe -CH₂OC(O)C(CH₃)₃ ist;

R₁ ein Wasserstoffatom, ein C₁-C₄-Alkylrest oder eine Gruppe -CH₂OC(O)C(CH₃)₃ ist; m eine ganze Zahl von 1 bis 3 ist; und

Q eine Gruppe der Formeln

$$B_1$$
 CH_2 B_2 B_2

oder

10

5

15

ist, wobei Z ein Sauerstoffatom, eine Gruppe NH oder ein Schwefelatom ist; und n eine ganze Zahl von 1 bis 5 ist.

20

Verbindung nach Anspruch 1, in der Q ein Rest

25

30 ist.

3. Verbindung nach Anspruch 2, in der A eine Methylengruppe ist.

4. Verbindung nach Anspruch 3, in der R₁ und R₃ Wasserstoffatome sind.

35

5. Verbindung nach Anspruch 4, in der m die Bedeutung 3 hat.

6. Verbindung nach Anspruch 4, in der m die Bedeutung 1 hat.

7. Verbindung nach Anspruch 4, in der m die Bedeutung 2 hat.

8. Verbindung nach Anspruch 1, in der Q eine Gruppe

45

ist.

50

55

9. Verbindung nach Anspruch 8, in der A eine Methylengruppe ist.

10. Verbindung nach Anspruch 9, in der R₁ und R₃ Wasserstoffatome sind.

11. Verbindung nach Anspruch 10, in der m die Bedeutung 1 hat.

12. Verbindung nach Anspruch 1, in der A ein Rest -O- ist.

- 13. Verbindung nach Anspruch 1, in der A ein Rest -S- ist.
- 14. Verbindung nach Anspruch 1, in der A ein Rest -NH- ist.
- 5 15. Verbindung nach Anspruch 1, nämlich [4S-[4α,7α(R*),12bβ]]-7-[(2-Carboxymethyl-indan-2-yl)carbonylamino]-1,2,3,4,6,7,8,12b-octahydro-6-oxopyrido[2,1-a][2]benzazepin-4-carbonsäure;

octahydro-6-oxopyrido[2,1-a][2]benzazepin-4-carbonsäure oder

[4S-[4α,7α(R*),12bβ]]-7-[(1-Carboxymethylcyclopent-1-yl)carbonylamino]-1,2,3,4,6,7, 8,12b-octahydro-6-oxopyrido[2,1-a][2]benzazepin-4-carbonsäure.

- 16. Verbindung nach einem der Ansprüche 1 bis 15 zur Verwendung als Arzneistoff.
- 17. Verbindung nach Anspruch 16 zur Verwendung zur Enkephalinasehemmung.
- 18. Verbindung nach Anspruch 17 zur Verwendung als ein Endorphin oder Enkephalin vermitteltes Analgetikum.
- 19. Verbindung nach Anspruch 17 zur Verwendung als ein ANP vermitteltes Antihypertonikum.
- 25. Verbindung nach Anspruch 17 zur Verwendung als ein ANP vermitteltes Diuretikum.
 - 21. Verbindung nach Anspruch 17 zur Verwendung zur Behandlung von congestiver Herzinsuffizienz.
 - 22. Verbindung nach Anspruch 16 zur Verwendung zur ACE-Hemmung.
 - 23. Verbindung nach Anspruch 22 zur Verwendung als ein Antihypertonikum.
 - 24. Verbindung nach Anspruch 22 zur Verwendung als ein Mittel zur Steigerung der Wahrnehmung.
- 35 25. Verbindung nach Anspruch 22 zur Verwendung zur Behandlung von congestiver Herzinsuffizienz.
 - 26. Zusammensetzung umfassend eine nachweisbare Menge einer Verbindung nach einem der Ansprüche 1 bis 15 im Gemisch oder anderweitig in Verbindung mit einem inerten Träger.
- 27. Arzneimittel umfassend eine wirksame immunsuppresive Menge einer Verbindung nach einem der Ansprüche 1 bis 15 im Gemisch oder anderweitig in Verbindung mit einem oder mehreren pharmazeutisch verträglichen Trägern oder Arzneinüttelträgem.
- 45 Patentansprüche für folgenden Vertragsstaat : ES
 - 1. Verfahren zur Herstellung der Verbindungen der Formel

55

50

10

15

20

$$Q = \{C\mathfrak{A}_2\}_m = CO_2\mathfrak{A}_1$$

15

20

25

30

5

10

in der

B₁ und B₂ jeweils unabhängig voneinander ein Wasserstoffatom, eine Hydroxylgruppe oder ein Rest -OR₂ sind, wobei R₂ ein C₁-C₄-Alkylrest oder ein Rest Ar-Y ist, in dem Ar ein unsubstituierter oder substituierter Phenyl- oder Naphthylrest mit einem bis drei Substituenten ist, die aus Methylendioxy-, Hydroxylgruppen, C₁-C₄-Alkoxyresten, Fluor- und Chloratomen ausgewählt sind und Y ein Wasserstoffatom oder ein C₁-C₄-Alkylrest ist; oder wenn B₁ und B₂ an benachbarte Kohlenstoffatome gebunden sind, B₁ und B₂ zusammen mit den benachbarten Kohlenstoffatomen einen Benzolring oder eine Methylendioxygruppe bilden können;

A eine Bindung, eine Methylengruppe, ein Sauerstoffatom, ein Schwefelatom, ein Rest NR_4 oder $NCOR_5$ ist, wobei R_4 ein Wasserstoffatom, ein C_1 - C_4 -Alkylrest oder ein Rest Ar-Y- ist und R_5 eine Gruppe - CF_3 oder-ein C_1 - C_{10} -Alkylrest oder ein Rest Ar-Y ist;

R₃ ein Wasserstoffatom ist;

R₁ ein Wasserstoffatom ist;

m eine ganze Zahl von 1 bis 3 ist; und

Q eine Gruppe der Formeln

35

40

45

91

oder

50

ist, wobei Z ein Sauerstoffatom, eine Gruppe NH oder ein Schwefelatom ist; und n eine ganze Zahl von 1 bis 5 ist;

umfassend das Umsetzen einer Verbindung der Formel

15

5

10

wobei B₁, B₂, A und m wie vorstehend definiert sind und R₁ eine t-Butylgruppe ist, mit einer Säure.

2. Verfahren zur Herstellung der Verbindungen der Formel

20

25

30

 B_1 und B_2 jeweils unabhängig voneinander ein Wasserstoffatom, eine Hydroxylgruppe oder ein Rest -OR₂ sind, wobei R₂ ein C₁-C₄-Alkylrest oder ein Rest Ar-Y ist, in dem Ar ein unsubstituierter oder substituierter

CO2R3

35

in der

40

Phenyl- oder Naphthylrest mit einem bis drei Substituenten ist, die aus Methylendioxy-, Hydroxylgruppen, C_1 - C_4 -Alkoxyresten, Fluor- und Chloratomen ausgewählt sind und Y ein Wasserstoffatom oder ein- C_1 - C_4 -Alkylrest ist; oder wenn B_1 und B_2 an benachbarte Kohlenstoffatome gebunden sind, B_1 und B_2 zusammen mit den benachbarten Kohlenstoffatomen einen Benzolring oder eine Methylendioxygruppe bilden können; A eine Bindung, eine Methylengruppe, ein Sauerstoffatom, ein Schwefelatom, ein Rest NR $_4$ oder NCOR $_5$ ist, wobei R_4 ein Wasserstoffatom, ein C_1 - C_4 -Alkylrest oder ein Rest Ar-Y- ist und R_5 eine Gruppe - CF_3 oder ein C_1 - C_4 -Alkylrest oder ein Rest Ar-Y- ist und R_5 eine Gruppe - CF_3 oder ein C_1 - C_4 -Alkylrest oder ein Rest Ar-Y- ist und C_1 - C_4 -Alkylrest oder ein Rest Ar-Y- ist u

50

45

 $\rm R_1$ eine Gruppe -CH₂OC(O)C(CH₃)₃ ist; m eine ganze Zahl von 1 bis 3 ist; und

Q eine Gruppe der Formeln

oder

ist, wobei Z ein Sauerstoffatom, eine Gruppe NH oder ein Schwefelatom ist; und n eine ganze Zahl von 1 bis 5 ist;

umfassend das Umsetzen einer Verbindung der Formel

wobei B_1 , B_2 , A und m wie vorstehend definiert sind und B_1 und B_3 Wasserstoffatome sind, mit-Chlormethylpivalat in Gegenwart einer geeigneten Base.

3. Verfahren zur Herstellung der Verbindungen der Formel

$$Q = (CH_2)_m = CO_2R_1$$

$$Q = CO_2R_3$$

in der

5

10

15

30

35

40

45

50

55

B₁ und B₂ jeweils unabhängig voneinander ein Wasserstoffatom, eine Hydroxylgruppe oder ein Rest -OR₂ sind, wobei R₂ ein C₁-C₄-Alkylrest oder ein Rest Ar-Y ist, in dem Ar ein unsubstituierter oder substituierter Phenyl- oder Naphthylrest mit einem bis drei Substituenten ist, die aus Methylendioxy-, Hydroxylgruppen, 'C₁-C₄-Alkoxyresten, Fluor- und Chloratomen ausgewählt sind und Y ein Wasserstoffatom oder ein C₁-C₄-Alkylrest ist; oder wenn B₁ und B₂ an benachbarte Kohlenstoffatome gebunden sind, B₁ und B₂ zusammen mit den benachbarten Kohlenstoffatomen einen Benzolring oder eine Methylendioxygruppe bilden können;

A eine Bindung, eine Methylengruppe, ein Sauerstoffatom, ein Schwefelatom, ein Rest NR_4 oder $NCOR_5$ ist, wobei R_4 ein Wasserstoffatom, ein C_1 - C_4 -Alkylrest oder ein Rest Ar-Y- ist und R_5 eine Gruppe - CF_3 oder ein C_1 - C_{10} -Alkylrest oder ein Rest Ar-Y ist;

R₃ ein Wasserstoffatom ist; R₁ ein C₁-C₄-Alkylrest ist; m eine ganze Zahl von 1 bis 3 ist; und

Q eine Gruppe der Formeln

 H_3C CH_3 J_1 J_2 J_3 J_4 J_5 $J_$

oder

₩ L

ist, wobei Z ein Sauerstoffatom, eine Gruppe NH oder ein Schwefelatom ist; und n eine ganze Zahl von 1 bis 5 ist;

umfassend das Umsetzen einer Verbindung der Formel

$$\mathbb{E} \qquad \mathbb{E} \qquad$$

15

20

5

10

wobei B₁, B₂, A und m wie vorstehend definiert sind und R₁ ein C₁-C₄-Alkylrest ist, mit Palladium/Kohle in Gegenwart von Wasserstoff.

B₁ und B₂ jeweils unabhängig voneinander ein Wasserstoffatom, eine Hydroxylgruppe oder ein Rest -OR₂

sind, wobei R₂ ein C₁-C₄-Alkylrest oder ein Rest Ar-Y ist, in dem Ar ein unsubstituierter oder substituierter

Verfahren zur Herstellung der Verbindungen der Formel

35

40

in der

45

Phenyl- oder Naphthylrest mit einem bis drei Substituenten ist, die aus Methylendioxy-, Hydroxylgruppen, C₁- $\textbf{C}_4\text{-}\textbf{Alkoxyresten}, \textbf{Fluor-und-Chloratomen ausgewählt sind und Y-ein Wasserstoffatom oder ein } \textbf{C}_1\textbf{-}\textbf{C}_4\textbf{-}\textbf{Alkylrest}$ ist; oder wenn B₁ und B₂ an benachbarte Kohlenstoffatome gebunden sind, B₁ und B₂ zusammen mit den benachbarten Kohlenstoffatomen einen Benzolring oder eine Methylendioxygruppe bilden können; A eine Bindung, eine Methylengruppe, ein Sauerstoffatom, ein Schwefelatom, ein Rest NR₄ oder NCOR₅ ist, wobei R4 ein Wasserstoffatom, ein C1-C4-Alkylrest oder ein Rest Ar-Y- ist und R5 eine Gruppe -CF3 oder ein C1-C10-Alkylrest oder ein Rest Ar-Y ist; H₃ eine Gruppe -CH₂OC(O)C(CH₃)₃ ist; R₁ ein C₁-C₄-Alkylrest ist; m eine ganze Zahl von 1 bis 3 ist; und

Q eine Gruppe der Formeln

55

10 oder

40

45

50

55

ist, wobei Z ein Sauerstoffatom, eine Gruppe NH oder ein Schwefelatom ist; und n eine ganze Zahl von 1 bis 5 ist;

umfassend das Umsetzen einer Verbindung der Formel

30
$$\begin{array}{c}
B_1 \\
A \\
CO_2R_3
\end{array}$$

wobei B_1 , B_2 , A_1 m und R_1 wie vorstehend definiert sind und R_3 ein Wasserstoffatom ist, mit Chlormethylpivalat in Gegenwart einer geeigneten Base.

5. Verfahren zur Herstellung der Verbindungen der Formel

$$Q-(C\Xi_2)_n-CO_2R_1$$

$$Q-(C\Xi_2)_n-CO_2R_1$$

$$CO_2R_3$$

in der

B₁ und B₂ jeweils unabhängig voneinander ein Wasserstoffatom, eine Hydroxylgruppe oder ein Rest -OR₂ sind, wobei R₂ ein C₁-C₄-Alkylrest oder ein Rest Ar-Y ist, in dem Ar ein unsubstituierter oder substituierter Phenyl- oder Naphthylrest mit einem bis drei Substituenten ist, die aus Methylendioxy-, Hydroxylgruppen, C₁-C₄-Alkoxyresten, Fluor- und Chloratomen ausgewählt sind und Y ein Wasserstoffatom oder ein-C₁-C₄-Alkylrest ist; oder wenn B₁ und B₂ an benachbarte Kohlenstoffatome gebunden sind, B₁ und B₂ zusammen mit den benachbarten Kohlenstoffatomen einen Benzolring oder eine Methylendioxygruppe bilden können; A eine Bindung, eine Methylengruppe, ein Sauerstoffatom, ein Schwefelatom, ein Rest NR₄ oder NCOR₅ ist, wobei R₄ ein Wasserstoffatom, ein C₁-C₄-Alkylrest oder ein Rest Ar-Y- ist und R₅ eine Gruppe -CF₃ oder ein C₁-C₁₀-Alkylrest oder ein Rest Ar-Y ist; R₃ eine Gruppe -CH₂OC(O)C(CH₃)₃ ist; R₁ ein Wasserstoffatom ist; m eine ganze Zahl von 1 bis 3 ist; und

oder

Q eine Gruppe der Formeln

ist, wobei Z ein Sauerstoffatom, eine Gruppe NH oder ein Schwefelatom ist; und n eine ganze Zahl von 1 bis 5 ist;

umfassend das Umsetzen einer Verbindung der Formel

$$Q-(C\Xi_2)_m-CO_2R_1$$
 Q
 A
 CO_2R_3

15

5

10

wobei B₁, B₂, A, m und R₃ vorstehend definiert sind und R₁ ein C₁-C₄-Alkylrest ist, mit einer Base.

Verfahren zur Herstellung der Verbindungen der Formel

20

25

30

$$Q = (CH_2)_m = CO_2R_1$$

35

40

in der

45

 B_1 und B_2 jeweils unabhängig voneinander ein Wasserstoffatom, eine Hydroxylgruppe oder ein Rest -OR2 sind, wobei R_2 ein C_1 - C_4 -Alkylrest oder ein Rest Ar-Y ist, in dem Ar ein unsubstituierter oder substituierter Phenyl- oder Naphthylrest mit einem bis drei Substituenten ist, die aus Methylendioxy-, Hydroxylgruppen, C_1 - C_4 -Alkoxyresten, Fluor- und Chloratomen ausgewählt sind und Y ein Wasserstoffatom oder ein C_1 - C_4 -Alkylrest ist; oder wenn B_1 und B_2 an benachbarte Kohlenstoffatome gebunden sind, B_1 und B_2 zusammen mit den benachbarten Kohlenstoffatomen einen Benzolring oder eine Methylendioxygruppe bilden können; A eine Bindung, eine Methylengruppe, ein Sauerstoffatom, ein Schwefelatom, ein Rest NR $_4$ oder NCOR $_5$ ist, wobei R_4 ein Wasserstoffatom, ein C_1 - C_4 -Alkylrest oder ein Rest Ar-Y- ist und R_5 eine Gruppe -CF $_3$ oder ein

C₁-C₁₀-Alkylrest oder ein Rest Ar-Y ist; R₃ ein Wasserstoffatom ist;

R₁ eine Gruppe -CH₂OC(O)C(CH₃)₃ ist; m eine ganze Zahl von 1 bis 3 ist; und

Q eine Gruppe der Formeln

55

10 oder

15

40

50

ist, wobei Z ein Sauerstoffatom, eine Gruppe NH oder ein Schwefelatom ist; und n eine ganze Zahl von 1 bis 5 ist;

umfassend das Umsetzen einer Verbindung der Formel

wobei B_1 , B_2 , A und m wie vorstehend definiert sind und B_1 eine-Gruppe - $CH_2OC(O)C(CH_3)_3$ ist, mit Palladium/ Kohle in Gegenwart von Wasserstoff.

45 7. Verfahren nach einem der Ansprüche 1 bis 6, wobei Q

55 bedeutet.

8. Verfahren nach Anspruch 7, wobei A eine Methylengruppe ist.

9. Verfahren nach Anspruch 1, wobei R1 und R3 Wasserstoffatome sind, Q

- 10 bedeutet und A eine Methylengruppe ist.
 - 10. Verfahren nach Anspruch 9, wobei m die Bedeutung 3 hat.
 - 11. Verfahren nach Anspruch 9, wobei m die Bedeutung 1 hat.
 - 12. Verfahren nach Anspruch 9, wobei m die Bedeutung 2 hat.
 - 13. Verfahren nach einem der Ansprüche 1 bis 6, wobei Q

20

15

5

- 25 bedeutet.
 - 14. Verfahren nach Anspruch 13, wobei A eine Methylengruppe ist.
 - 15. Verfahren nach Anspruch 1, wobei R₁ und R₃ Wasserstoffatome sind, Q

35

45

50

55

30

bedeutet und A eine Methylengruppe ist.

- 16. Verfahren nach Anspruch 15, wobei m die Bedeutung 1 hat.
- 17. Verfahren nach einem der Ansprüche 1 bis 6, wobei A ein Rest -O- ist.
 - 18. Verfahren nach einem der Ansprüche 1 bis 6, wobei A ein Rest -S- ist.
 - 19. Verfahren nach einem der Ansprüche 1 bis 6, wobei A ein Rest -NH- ist.
 - Verfahren nach einem der Ansprüche 1 bis 6, wobei die herzustellende Verbindung [4S-[4α,7α(R*),12bβ]]-7-[(2-Carboxymethylindan-2-yl)carbonylamino]-1,2,3,4,6,7,8,12b-octahydro-6-oxopyrido[2,1-a][2]benzazepin-4-carbonsäure;

[4S-[4α,7α(R*),12bβ]]-7-[(2-Carboxymethylindan-2-yl)carbonylamino]-1,2,3,4,6,7,8, 12b-octahydro-6-oxopy-rido[2,1-a][2]benzazepin-4-carbonsäurepivaloyloxymethylester; [4S-[4α,7α(R*),12bβ]]-7-[(2-Pivaloyloxymethylcarboxymethylindan-2-yl)carbonylamino]-1,2,3,4,6,7,8,12b-octahydro-6-oxopyrido[2,1-a][2]benzazepin-4-carbonsäurepivaloyloxymethylester; [4S-[4α,7α(R*),12bβ]]-7-[(2-Pivaloyloxymethylcarboxymethylindan-2-yl)carbonylamino]-1,2,3,4,6,7,8,12b-octahydro-6-oxopyrido[2,1-a][2]benzazepin-4-carbonsäure oder [4S-[4α,7α(R*),12bβ]]-7-[(1-Carboxymethylcyclopent-1-yl)carbonylamino]-1,2,3,4,6,7, 8,12b-octahydro-6-oxopyrido[2,1-a][2]benzazepin-4-carbonsäure ist.

- 21. Zusammensetzung für nicht-pharmazeutische Zwecke, umfassend eine nachweisbare Menge einer Verbindung, die nach dem Verfahren nach einem der Ansprüche 1 bis 20 erhältlich ist, im Gemisch oder anderweitig in Verbindung mit einem inerten Träger.
- 22. Verfahren zur Herstellung eines Arzneimittel, umfassend das Mischen einer wirksamen immunsuppresiven Menge einer Verbindung, erhältlich nach dem Verfahren nach einem der Ansprüche 1 bis 20, mit einem oder mehreren pharmazeutisch verträglichen Trägern oder Arzneimittel trägem.

10 Revendications

15

35

40

45

50

55

Revendications pour les Etats contractants suivants : AT, BE, CH, LI, DE, DK, FR, GB, GR, IR, IT, LU, MC, NL, PT. SE

1. Composé de formule

dans laquelle

 B_1 et B_2 représentent chacun indépendamment un atome d'hydrogène, un groupe hydroxy ou ${}^{\circ}OR_2$, dans lequel R_2 représente un groupe alkyle en C_{1-4} ou un groupe Ar-Y, dans lequel Ar représente un groupe phényle ou naphtyle non substitué ou substitué par un à trois substituants choisis dans l'ensemble constitué de groupes méthylènedioxy, hydroxy, alcoxy en C_{1-4} , fluoro et chloro et Y représente un atome d'hydrogène ou un groupe alkyle en C_{1-4} ; ou, lorsque B_1 et B_2 sont attachés à des atomes de carbone adjacents, B_1 et B_2 peuvent être pris ensemble avec lesdits atomes de carbone adjacents pour former un cycle benzène ou un groupe méthylènedioxy;

CO2R3

A représente une liaison, un groupe méthylène, un atome d'oxygène, de soufre, NR_4 ou $NCOR_5$, dans lequel R_4 représente un atome d'hydrogène, un groupe alkyle en C_{1-4} ou un groupe Ar-Y- et R_5 représente CF_3 ou un groupe alkyle en C_{1-10} ou un groupe Ar-Y-;

R₃ représente un atome d'hydrogène ou -CH₂OC(O)C(CH₃)₃;

 $\rm R_1$ représente un atome d'hydrogène, un groupe alkyle en $\rm C_{1-4}$ ou -CH₂OC(O)C(CH₃)₃; m est un nombre entier compris entre 1 et 3; et

Q représente un groupe correspondant à une des formules

ou

dans lesquelles Z représente O, NH ou S; et n est un nombre entier compris entre 1 et 5.

10 2. Composé conforme à la revendication 1, dans lequel Q représente

5

15

20

30

35

45

55

- 3. Composé conforme à la revendication 2, dans lequel A représente un groupe méthylène.
- 4. Composé conforme à la revendication 3, dans lequel R₁ et R₃ représentent des atomes d'hydrogène.
- 5. Composé conforme à la revendication 4, dans lequel m vaut 3.
- 25 6. Composé conforme à la revendication 4, dans lequel m vaut 1.
 - 7. Composé conforme à la revendication 4, dans lequel m vaut 2.
 - 8. Composé conforme à la revendication 1, dans lequel-Q représente

- 9. Composé conforme à la revendication 8, dans lequel A représente un groupe méthylène.
 - Composé conforme à la revendication 9, dans lequel R₁ et R₃ représentent des atomes d'hydrogène.
- 40 11. Composé conforme à la revendication 10, dans lequel m vaut 1.
 - 12. Composé conforme à la revendication 1, dans lequel A représente -O-.
 - 13. Composé conforme à la revendication 1, dans lequel A représente -S-.
 - 14. Composé conforme à la revendication 1, dans lequel A représente -NH-.
 - 15. Composé conforme à la revendication 1, le composé étant

l'acide [4S-[4α, 7α(R*), 12bβ]]-7-[(2-carboxyméthyl-indan-2-yl)carbonylamino]-1,2,3,4,6,7,8,12b-octahydro-6-oxopyrido[2,1-a][2]benzazépine-4-carboxylique;
l'acide [4S-[4α, 7α(R*), 12bβ]]-7-[(2-carboxyméthyl-indan-2-yl)carbonylamino]-1,2,3,4;6,7,8,12b-octahydro-6-oxopyrido[2,1-a][2]benzazépine-4-carboxylique, ester pivaloyloxyméthylique;

l'acide [4S-[4 α , 7 α (R*), 12b β]]-7-[(2-pivaloyloxyméthylcarboxyméthyl-indan-2-yl)carbonylamino]-1,2,3,4,6,7,8,12b-octahydro-6-oxopyrido[2,1-a][2]benzazépine-4-carboxylique, ester pivaloyloxyméthylique; l'acide [4S-[4 α , 7 α (R*), 12b β]]-7-[(2-pivaloyloxyméthylcarboxyméthyl-indan-2-yl)carbonylamino]-1,2,3,4,6,7,8,12b-octahydro-6-oxopyrido[2,1-a][2]benzazépine-4-carboxylique ou

['acide [4S-[4α, 7α(R*), 12bβ]]-7-[(1-carboxyméthyl-cyclopent-1-yl)carbonylamino]-1,2,3,4;6,7,8,12b-octa-

hydro-6-oxopyrido[2,1-a][2]benzazépine-4-carboxylique.

5

10

25

35

40

45

50

55

- 16. Composé conforme à l'une quelconque des revendications 1 à 15, destiné à être utilisé-comme agent actif du point de vue pharmaceutique.
- 17. Composé conforme à la revendication 16, destiné à être utilisé pour inhiber l'enképhalinase.
- 18. Composé conforme à la revendication 17, destiné à être utilisé comme agent analgésique avec une médiation assurée par une endorphine ou une enképhaline.
- Composé conforme à la revendication 17, destiné à être utilisé comme agent hypotensif avec une médiation assurée par l'ANP.
- 20. Composé conforme à la revendication 17, destiné à être utilisé comme agent diurétique avec une médiation assurée par l'ANP.
 - 21. Composé conforme à la revendication 17, destiné à être utilisé pour le traitement de l'insuffisance cardiaque congestive.
- 20 22. Composé conforme à la revendication 16, destiné à être utilisé pour inhiber l'ACE.
 - 23. Composé conforme à la revendication 22, destiné à être utilisé comme agent hypotensif.
 - 24. Composé conforme à la revendication 22, destiné à être utilisé comme agent d'activation de la cognition.
 - 25. Composé conforme à la revendication 22, destiné à être utilisé dans le traitement de l'insuffisance cardiaque congestive.
- 26. Composition comprenant une quantité dosable d'un composé conforme à l'une quelconque des revendications 1
 à 15, mélangée ou associée d'une autre manière avec un véhicule inerte.
 - 27. Composition pharmaceutique comprenant une quantité immunosuppressive efficace d'un composé conforme à l'une quelconque des revendications 1 à 15 en mélange ou associée d'une autre façon avec un ou plusieurs véhicules ou excipients acceptables du point de vue pharmaceutique.

Revendications pour l'Etat contractant suivant : ES

1. Procédé de préparation des composés de formule

dans laquelle

B₁ et B₂ représentent chacun indépendamment un atome d'hydrogène, un groupe hydroxy ou CR₂, dans

lequel R_2 représente un groupe alkyle en C_{1-4} ou un groupe Ar-Y, dans lequel Ar représente un groupe phényle ou naphtyle non substitué ou substitué par un à trois substituants choisis dans l'ensemble-constitué de groupes méthylènedioxy, hydroxy, alcoxy en C_{1-4} , fluoro et chloro et Y représente un atome d'hydrogène ou un groupe alkyle en C_{1-4} ; ou, lorsque B_1 et B_2 sont attachés à des atomes de carbone adjacents, B_1 et B_2 peuvent être pris ensemble avec lesdits atomes de carbone adjacents pour former un cycle benzène ou un groupe méthylénedioxy;

A représente une liaison, un groupe méthylène, un atome d'oxygène, de soufre, NR₄ ou NCOR₅, dans lequel R_4 représente un atome d'hydrogène, un groupe alkyle en C_{1-4} ou un groupe Ar-Y- et R_5 représente C_3 ou un groupe alkyle en C_{1-10} ou un groupe Ar-Y;

Ra représente un atome d'hydrogène;

R₁ représente un atome d'hydrogène ;

m est un nombre entier compris entre 1 et 3; et

Q représente un groupe correspondant à une des formules

15

20

5

10

B₁ €

ou

25

30

dans lesquelles Z représente O, NH ou S; et n est un nombre entier compris entre 1 et 5;

comprenant la réaction d'un composé de formule

35

40

45

50

dans laquelle B_1 , B_2 , A et m sont tels que définis ci-dessus et R_1 représente un groupe tertio-butyle, avec un acide.

2. Procédé de préparation des composés de formule

15

20

25

30

35

40

45

5

10

dans laquelle

 B_1 et B_2 représentent chacun indépendamment un atome d'hydrogène, un groupe hydroxy ou $-OR_2$, dans lequel R_2 représente un groupe alkyle en C_{1-4} ou un groupe Ar-Y, dans lequel Ar représente un groupe phényle ou naphtyle non substitué ou substitué par un à trois substituants choisis dans l'ensemble constitué de groupes méthylènedioxy, hydroxy, alcoxy en C_{1-4} , fluoro et chloro et Y représente un atome d'hydrogène ou un groupe alkyle en C_{1-4} ; ou, lorsque B_1 et B_2 sont attachés à des atomes de carbone adjacents, B_1 et B_2 peuvent être pris ensemble avec lesdits atomes de carbone adjacents pour former un cycle benzène ou un groupe méthylènedioxy;

A représente une liaison, un groupe méthylène, un atome d'oxygène, de soufre, NR₄ ou NCOR₅, dans lequel R_4 représente un atome d'hydrogène, un groupe alkyle en C_{1-4} ou un groupe Ar-Y- et R_5 représente C_{3} ou un groupe alkyle en C_{1-10} ou un groupe Ar-Y;

R₃ représente -CH₂OC(O)C(CH₃)₃;

R₁ représente -CH₂OC(O)C(CH₃)₃;

m est un nombre entier compris entre 1 et 3; et

Q représente un groupe correspondant à une des formules

H₃C CH

οu

50

dans lesquelles Z représente O, NH ou S; et n est un nombre entier compris entre 1 et 5;

comprenant la réaction d'un composé de formule

$$Q-(CH_2)_m-CO_2R_1$$

$$Q-(CH_2)_m$$

$$Q-(CH_2)_m$$

dans laquelle B₁, B₂, A et m sont tels que définis ci-dessus et R₁ et R₃ représentent un atome d'hydrogène, avec du pivalate de chlorométhyle en présence d'une base appropriée.

3. Procédé de préparation des composés de formule

dans laquelle

5

10

15

20

25

30

35

40

45

50

 B_1 et B_2 représentent chacun indépendamment un atome d'hydrogène, un groupe hydroxy ou ${}^{\bot}OR_2$, dans lequel R_2 représente un groupe alkyle en $C_{1-4}{}^{\bot}Ou$ un groupe Ar-Y, dans lequel Ar représente un groupe phényle ou naphtyle non substitué ou substitué par un à trois substituants choisis dans l'ensemble constitué de groupes méthylènedioxy, hydroxy, alcoxy en $C_{1-4}{}^{\bot}$, fluoro et chloro et Y représente un atome d'hydrogène ou un groupe alkyle en $C_{1-4}{}^{\bot}$; ou, lorsque B_1 et B_2 sont attachés à des atomes de carbone adjacents, B_1 et B_2 peuvent être pris ensemble avec lesdits atomes de carbone adjacents pour former un cycle benzène ou un groupe méthylènedioxy ;

A représente une liaison, un groupe méthylène, un atome d'oxygène, de soufre, NR_4 ou $NCOR_5$, dans lequel R_4 représente un atome d'hydrogène, un groupe alkyle en C_{1-4} ou un groupe Ar-Y- et R_5 représente $-CF_3$ ou un groupe alkyle en C_{1-10} ou un groupe Ar-Y-;

Ra représente un atome d'hydrogène;

R1 représente un groupe alkyle en C1-4;

m est un nombre entier compris entre 1 et 3; et

Q représente un groupe correspondant à une des formules

ou

5

10

15

20

25

30

35

40

45

50

55

dans lesquelles Z représente O, NH ou S; et n est un nombre entier compris entre 1 et 5;

comprenant la réaction d'un composé de formule

$$B_1$$
 B_2
 $Q-\{CH_2\}_m-CO_2R_1$
 CO_2CHPh_2

dans laquelle B₁, B₂, A et m sont tels que définis ci-dessus et R₁ représente un groupe alkyle en C₁₋₄, avec du palladium/carbone en présence d'hydrogène.

4. Procédé de préparation des composés de formule

$$O \longrightarrow N \longrightarrow N \longrightarrow N \longrightarrow R$$

$$O \longrightarrow N \longrightarrow N \longrightarrow R$$

$$CO_2R_1 \longrightarrow CO_2R_3$$

dans laquelle

 B_1 et B_2 représentent chacun indépendamment un atome d'hydrogène, un groupe hydroxy ou ${}^{\circ}OR_2$, dans lequel R_2 représente un groupe alkyle en C_{1-4} ou un groupe Ar-Y, dans lequel Ar représente un groupe phényle ou naphtyle non substitué ou substitué par un à trois substituants choisis dans l'ensemble constitué de groupes méthylènedioxy, hydroxy, alcoxy en C_{1-4} , fluoro et chloro et Y représente un atome d'hydrogène ou un groupe alkyle en C_{1-4} ; ou, lorsque B_1 et B_2 sont attachés à des atomes de carbone adjacents, B_1 et B_2 peuvent être pris ensemble avec lesdits atomes de carbone adjacents pour former un cycle benzène ou un groupe méthylènedioxy;

A représente une liaison, un groupe méthylène, un atome d'oxygène, de soufre, NR4 ou NCOR5, dans lequel

 R_4 représente un atome d'hydrogène, un groupe alkyle en C_{1-4} ou un groupe Ar-Y- et R_5 représente = CF_3 ou un groupe alkyle en C_{1-10} ou un groupe Ar-Y;

R₃ représente -CH₂OC(O)C(CH₃)₃;

R₁ représente un groupe alkyle en C₁₋₄;

m est un nombre entier compris entre 1 et 3; et

Q représente un groupe correspondant à une des formules

10 H₃C CH

15 OU

5

20

25

30

35

40

45

50

55

dans lesquelles Z représente O, NH ou S; et n est un nombre entier compris entre 1 et 5;

comprenant la réaction d'un composé de formule

 $\begin{array}{c|c}
B_1 \\
B_2 \\
O \\
O \\
O \\
O \\
CO_2R_1
\end{array}$

dans laquelle B_1 , B_2 , A, m et R_1 sont tels que définis ci-dessus et R_3 représente un atome d'hydrogène, avec du pivalate de chlorométhyle en présence d'une base appropriée.

5. Procédé de préparation des composés de formule

$$O \longrightarrow N \longrightarrow N \longrightarrow R$$

$$Q - (CE_2)_m - CO_2R_1 \longrightarrow CO_2R_3$$

dans laquelle

5

10

15

20

25

30

35

40

45

 B_1 et B_2 représentent chacun indépendamment un atome d'hydrogène, un groupe hydroxy ou ${}^{\omega}OR_2$, dans lequel R_2 représente un groupe alkyle en C_{1-4} ou un groupe Ar-Y, dans lequel Ar représente un groupe phényle ou naphtyle non substitué ou substitué par un à trois substituants choisis dans l'ensemble constitué de groupes méthylènedioxy, hydroxy, alcoxy en C_{1-4} , fluoro et chloro et Y représente un atome d'hydrogène ou un groupe alkyle en C_{1-4} ; ou, lorsque B_1 et B_2 sont attachés à des atomes de carbone adjacents, B_1 et B_2 peuvent être pris ensemble avec lesdits atomes de carbone adjacents pour former un cycle benzène ou un groupe méthylènedioxy;

A représente une liaison, un groupe méthylène, un atome d'oxygène, de soufre, NR_4 ou $NCOR_5$, dans lequel R_4 représente un atome d'hydrogène, un groupe alkyle en C_{1-4} ou un groupe Ar-Y- et R_5 représente $-CF_3$ ou un groupe alkyle en C_{1-10} ou un groupe Ar-Y-;

R₃ représente -CH₂OC(O)C(CH₃)₃;

R, représente un atome d'hydrogène;

m est un nombre entier compris entre 1 et 3; et

Q représente un groupe correspondant à une des formules

ou

dans lesquelles Z représente O, NH ou S; et n est un nombre entier compris entre 1 et 5;

comprenant la réaction d'un composé de formule

55

$$Q-(CH_2)_m-CO_2R_1$$

$$Q-(CH_2)_m$$

$$Q-(CH_2)_m$$

dans laquelle B_1 , B_2 , A, m et R_3 sont tels que définis ci-dessus et R_1 représente un groupe alkyle en C_{1-4} avec une base.

6. Procédé de préparation des composés de formule

dans laquelle

 B_1 et B_2 représentent chacun indépendamment un atome d'hydrogène, un groupe hydroxy ou ${}^\circ OR_2$, dans lequel R_2 représente un groupe alkyle en $C_{1\!-\!4}$ ou un groupe Ar-Y, dans lequel Ar représente un groupe phényle ou naphtyle non substitué ou substitué par un à trois substituants choisis dans l'ensemble-constitué de groupes méthylènedioxy, hydroxy, alcoxy en $C_{1\!-\!4}$, fluoro et chloro et Y représente un atome d'hydrogène ou un groupe alkyle en $C_{1\!-\!4}$; ou, lorsque B_1 et B_2 sont attachés à des atomes de carbone adjacents, B_1 et B_2 peuvent être pris ensemble avec lesdits atomes de carbone adjacents pour former un cycle benzène ou un groupe méthylènedioxy;

A représente une liaison, un groupe méthylène, un atome d'oxygène, de soufre, NR $_4$ ou NCOR $_5$, dans lequel R $_4$ représente un atome d'hydrogène, un groupe alkyle en C $_{1-4}$ ou un groupe Ar-Y- et R $_5$ représente =CF $_3$ ou un groupe alkyle en C $_{1-10}$ ou un groupe Ar-Y;

R₃ représente un atome d'hydrogène ;

 H_1 représente - $CH_2OC(O)C(CH_3)_3$;

m est un nombre entier compris entre 1 et 3; et

Q représente un groupe correspondant à une des formules

55

50

5

10

15

20

25

30

35

40

ou

dans lesquelles Z représente O, NH ou S ; et n est un nombre entier compris entre 1 et 5 ;

comprenant la réaction d'un composé de formule

O-(CE₂)_m-CO₂R₁

$$B_1$$
 B_2
 CO_2 CHPh₂

dans laquelle B₁, B₂, A et m sont tels que définis ci-dessus et R₁ représente CH₂OC(O)C(CH₃)₃, avec du palladium/carbone en présence d'hydrogène.

7. Procédé conforme à l'une quelconque des revendications 1 à 6, dans laquelle Q représente

- 8. Procédé conforme à la revendication 7, dans lequel A représente un groupe méthylène.
- . Procédé conforme à la revendication 1, dans lequel R_1 et R_3 représentent des atomes d'hydrogène; Q représente

et A représente un groupe méthylène.

- 10. Procédé conforme à la revendication 9, dans lequel m vaut 3.
- 11. Procédé conforme à la revendication 9, dans lequel m vaut 1.
 - 12. Procédé conforme à la revendication 9, dans lequel m vaut 2.
 - 13. Procédé conforme à l'une quelconque des revendications 1 à 6, dans lequel Q représente

 $\bigcirc \times$

15

5

10

- 14. Procédé conforme à la revendication 13, dans lequel A représente un groupe méthylène.
- 15. Composé conforme à la revendication 1, dans lequel R₁ et R₃ représentent des atomes d'hydrogène, Q représente

20

25

et A représente un groupe méthylène.

- 16. Procédé conforme à la revendication 15, dans lequel m vaut 1.
- 17. Procédé conforme à l'une quelconque des revendications 1 à 6, dans lequel A représente -O-.

30

- 18. Procédé conforme à l'une quelconque des revendications 1 à 6, dans lequel A représente -S-.
- 19. Procédé conforme à l'une quelconque des revendications 1 à 6, dans lequel A représente -NH-.
- 20. Procédé conforme à l'une quelconque des revendications 1 à 6, dans lequel le-composé produit est l'acide [4S-[4α, 7α(R*), 12bβ]]-7-[(2-carboxyméthyl-indan-2-yl)carbonylamino]-1,2,3,4,6,7,8,12b-octahydro-6-oxopyrido [2,1-a][2]benzazépine-4-carboxylique;

40

l'acide [4S-[4 α , 7 α (R*), 12b β]]-7-[(2-carboxyméthyl-indan-2-yl)carbonylamino]-1,2,3,4,6,7,8,12b-octahydro-6-oxopyrido[2,1-a] [2]benzazépine-4-carboxylique, ester pivaloyloxyméthylique ; l'acide [4S-[4 α , 7 α (R*), 12b β]]-7-[(2-pivaloyloxyméthylcarboxyméthylindan-2-yl)carbonylamino]-1,2,3,4,6,7,8,12b-octahydro-6-oxopyrido[2,1-a][2]benzazépine-4-carboxylique, ester pivaloyloxyméthylique ; l'acide [4S-[4 α , 7 α (R*), 12b β]]-7-[(2-pivaloyloxyméthylcarboxyméthylindan-2-yl)carbonylamino]-1,2,3,4,6,7,8,12b-octahydro-6-oxopyrido[2,1-a][2]benzazépine-4-carboxylique ou l'acide [4S-[4 α , 7 α (R*), 12b β]]-7-[(1-carboxyméthyl-cyclopent-1-yl)carbonylamino]-1,2,3,4,6,7,8,12b-octahydro-6-oxopyrido[2,1-a][2]benzazépine-4-carboxylique.

45

- 21. Composition destinée à des objectifs non pharmaceutiques comprenant une quantité dosable d'un composé pouvant être obtenu conformément au procédé de l'une quelconque des revendications 1 à 20, en mélange ou associée d'une autre façon avec un véhicule inerte.
- 50
- 22. Procédé de production d'une composition pharmaceutique comprenant le mélange d'une quantité immunosuppressive efficace d'un composé pouvant être obtenu conformément au procédé de l'une quelconque des revendications 1 à 20 avec un ou plusieurs véhicules ou excipients acceptables du point de vue pharmaceutique.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

PADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.