Politecnico di Milano Facoltà di Ingegneria dei Sistemi

Esame di Statistica Applicata

Milano, 8 Febbraio 2006

©I diritti d'autore sono riservati. Ogni sfruttamento commerciale non autorizzato sarà perseguito.

Indice

$1 \quad qw$

Esercizio 1

Siano $X_1 \sim N_1(1,2)$ e $X_2 \sim N_1(1,2)$.

Cosa possiamo asserire riguardo alla distribuzione congiunta di $\begin{pmatrix} X_1 + X_2 \\ X_2 \end{pmatrix}$ rispettivamente nel caso in cui:

- 1. $E[X_1X_2] = 1$
- 2. $E[X_1X_2] = 0$
- 3. $E[X_1X_2] = -1$

Esercizio 2

Nella seguente tabella sono riportate altezza, peso ed età dei 5 dottorandi in Ingegneria Matematica del XX ciclo:

Nome	Altezza (cm)	Peso (kg)	Età (anni)
A	160	60	25
В	165	60	28
С	180	65	26
D	185	70	26
Е	185	85	26

Si vuole effettuare una clusterizzazione dei dottorandi utilizzando un algoritmo gerarchico agglomerativo di tipo Single-Linkage, utilizzando esclusivamente le variabili Altezza e Peso ed utilizzando la distanza Manhattan per descrivere la dissimilarità tra i dottorandi:

- 1. Disegnate il dendrogramma corrispondente mettendo bene in evidenza ascisse ad ordinate.
- 2. Calcolate il coefficiente cofenetico e commentatene il valore.
- 3. Partendo dalla dichiarazione della matrice dei dati, riportate i comandi R necessari al fine di ottenere il grafico del dendrogramma.

Esercizio 3

Un campione casuale di ampiezza uguale a 30 è estratto da una popolazione normale bivariata di media μ e matrice di covarianza Σ ignote.

La matrice di covarianza campionaria osservata è:

$$S = \left(\begin{array}{cc} 3 & \sqrt{5/4} \\ \sqrt{5/4} & 1 \end{array}\right)$$

Dato S come sopra, rappresentate come funzione della media campionaria la regione critica dei seguenti test:

1. Test (livello 5%) per la media:

$$H_0: \mu = 0 \ vs \ H_1: \mu \neq 0$$

2. Test simultanei (livello globale 5%) per le componenti della media basato sugli intervalli- T^2 :

$$H_{0i}: \mu_i = 0 \ vs \ H_{1i}: \mu_i \neq 0 \ \text{con} \ i = 1, 2$$

3. Test simultanei (livello globale 5%) per le componenti della media basato sugli intervalli di Bonferroni:

$$H_{0i}: \mu_i = 0 \ vs \ H_{1i}: \mu_i \neq 0 \ con \ i = 1, 2$$

Sebbene in tutti e tre i test il livello nominale sia pari a 5%, sappiamo che il livello reale potrebbe anche non coincidere con quello dichiarato.

- 4. Ordinate in senso crescente i livelli reali dei test 1, 2 e 3.
- 5. Cosa possiamo affermare invece riguardo alle potenze dei test 1, 2 e 3?

Giustificate brevemente le risposte alle domande 4 e 5.

Esercizio 4

In un piccolo ospedale viene organizzato un esperimento clinico per testare l'efficacia di un farmaco contro l'ipertensione: il DePression.

Vengono scelti casualmente per l'esperimento 9 pazienti soggetti ad ipertensione. A 6 di questi viene somministrato per un mese il DePression, mentre ai rimanenti un placebo.

A fine mese viene misurata ai 9 pazienti la pressione:

Paziente	Pressione	Trattamento
Pz1	100	Farmaco
Pz2	102	Farmaco
:	:	
Pz6	110	Farmaco
Pz7	130	Placebo
Pz8	127	Placebo
Pz9	120	Placebo

Si decide di effettuare un'analisi della varianza tramite un modello lineare del tipo:

$$Pressione = \beta_0 X_0 + \beta_1 X_1 + \epsilon$$

ove X_0 e X_1 sono variabili dummy opportune e $\epsilon \sim N(0, \sigma^2)$.

Sono proposte tre matrici disegno di rango pieno:

Matrice A	X_0	X_1	Matrice B	X_0	X_1	Matrice C	X_0	X_1
Pz1	1	1	Pz1	1	1	Pz1	1	-1/2
Pz2	1	1	Pz2	1	1	Pz2	1	-1/2
:	:	:	:	:	:	:	:	:
Pz6	1	1	Pz6	1	1	Pz6	1	-1/2
Pz7	1	-2	Pz7	1	0	Pz7	1	1
Pz8	1	-2	Pz8	1	0	Pz8	1	1
Pz9	1	-2	Pz9	1	0	Pz9	1	1

Indichiamo con μ_F il valor medio della pressione per la popolazione che ha ricevuto il farmaco e con μ_P il valor medio della pressione per la popolazione che ha ricevuto il placebo ed esprimiamo μ_F e μ_P in funzione di tre nuovi parametri:

$$\mu_F = \mu + \tau_F$$
$$\mu_P = \mu + \tau_P$$

Per ciascuna delle tre matrici disegno:

- 1. Si descriva in dettaglio il significato dei coefficienti β_0 e β_1 .
- 2. Si esprimano la relazioni che nei tre casi legano i coefficienti β_0 e β_1 ai parametri μ , μ_F e μ_P mettendo in evidenza anche il vincolo imposto sui parametri τ_F e τ_P .

Presso l'ospedale vengono implementati in R i seguenti comandi (i valori di pressione sono registrati nel file Pressione.txt):

```
> y <- read.table('Pressione.txt')
> y <- as.vector(as.matrix(y))
> x <- c(rep(1,6),rep(0,3))
> fit <- lm(y~x)
> summary(fit)
```

Call:

lm(formula = y ~ x)

Residuals:

Min 1Q Median 3Q Max -8.18566 0.02980 0.37587 3.23867 5.76133

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 122.047 2.858 42.706 1.01e-09 ***
x -15.732 3.500 -4.495 0.00282 **

Signif. codes: 0 '*** 0.001 '** 0.01 '*, 0.05 '.' 0.1 ', 1

Residual standard error: 4.95 on 7 degrees of freedom Multiple R-Squared: 0.7427, Adjusted R-squared: 0.7059 F-statistic: 20.2 on 1 and 7 DF, p-value: 0.002817

> influence(fit)\$hat

1 2 3 4 5 6 0.1666667 0.1666667 0.1666667 0.1666667 0.1666667 7 8 9 0.3333333 0.3333333 0.3333333

- 3. Individuate la matrice disegno utilizzata.
- 4. Fornite le stime di μ , μ_F , μ_P , τ_F e τ_P .
- 5. Fornite il *p-value* ed interpretate il significato del test:

$$H_0: \beta_1 = 0 \ vs \ H_1: \beta_1 \neq 0$$

6. Fornite il p-value ed interpretate il significato del test:

$$H_0: \beta_1 = 0 \ vs \ H_1: \beta_1 < 0$$

- 7. Costruite la tabella ANOVA, ovvero fornite i valori di SS_{cor} , SS_{tr} e SS_{res} .
- 8. Fornite delle stime non distorte delle varianze dei residui $\hat{\epsilon}_1$, $\hat{\epsilon}_2$, $\hat{\epsilon}_3$, $\hat{\epsilon}_4$, $\hat{\epsilon}_5$, $\hat{\epsilon}_6$, $\hat{\epsilon}_7$, $\hat{\epsilon}_8$ e $\hat{\epsilon}_9$. Commentare tali stime.

Esercizio 5

Sia X una variabile aleatoria a valori in \Re^6 di legge $N_6(0,\Sigma)$ con:

$$\Sigma = \begin{pmatrix} 1 & 1/\sqrt{2} & 0 & 0 & 0 & 0\\ 1/\sqrt{2} & 1 & 1/\sqrt{2} & 0 & 0 & 0\\ 0 & 1/\sqrt{2} & 1 & 0 & 0 & 0\\ 0 & 0 & 0 & 1 & 1/\sqrt{2} & 0\\ 0 & 0 & 0 & 1/\sqrt{2} & 1 & 1/\sqrt{2}\\ 0 & 0 & 0 & 0 & 1/\sqrt{2} & 1 \end{pmatrix}$$

Si individuino le componenti principali e le relative varianze. Si commenti il risultato dell'analisi.