MA2252 Introduction to computing

lectures 11-12

Searching algorithms and complexity

Matias Ruiz

October 2023

Searching: searching algorithms

Given an array arr and an element key, find (one or many) k such that a(k) = key.

Example:

```
arr = ['dog' 'horse' 'rabit' 'dragon' 'cat']
result = mySrearchingAlgorithm(arr, 'dragon')
result = 4
```

Searching: Sequential Search

An intuitive algorithm: Loop through the array, comparing one-by-one.

```
function index = sequentialSearch(arr, key)
len = length(arr);
index = 0;
for i = 1:len
    if arr(i) == key
        index = i;
        break
    end
end
```

Note: Doesn't need to be a double array. Work's with any variable type.

Searching: binary search

Assumes that the array is sorted

1. Example for the following array with key=4:

2. Set two pointers, *low* and *high*, at the lowest and highest positions respectively

3. Find the middle element of the array

Searching: binary search

4 Modify the high pointer to mid-1

5 Repeat the previous steps using the same logic

6 The key is found

Searching: binary search

Two possible implementations

- Recursive
- Iterative

Searching: Binary Search (iterative)

```
function outind = binarySearch(arr, key)
low = 1;
high = length(arr);
outind = -1;
while low <= high && outind == -1
    mid = floor((low + high)/2);
    if arr(mid) == key
        outind = mid;
    elseif key < arr(mid)</pre>
        high = mid - 1;
    else
        low = mid + 1;
    end
end
end
```

Complexity

Complexity: efficiency of a program

How much time does it take to my program to complete its task?

It's hard to answer exactly \Rightarrow depends on the coding style, programing lenguage, your computer, etc.

Better question: How does the runtime of this function grows as the input parameter grows?

Answer: The 'big' O notation, also known as Landau notation.

Complexity: big O notation

Say we have two algorithms taking in total

$$T1 = a_1 n + b_1$$
seconds,

and

$$T2 = a_2n + b_2$$
 secs,

How does the scaling of these algorithms behave?

Say we have another algorithm that takes

$$T3 = a_3 n^2 + b_3$$
 secs.

How does this last algorithm compare to the first two?

Complexity: big O (and small o) notation

Definition (big *O*)

Given two functions f(n) and g(n), we say that f(n) = O(g(n)) if there exist a constant N > 0 and a constant C > 0 such that for every n > N,

$$|f(n)| \leq C|g(n)|.$$

Definition (small o)

Given two functions f(n) and g(n), we say that f(n) = o(g(n)) if for all C > 0 there exist an N such that for every n > N,

$$|f(n)| \leq C|g(n)|.$$

Complexity: big *O* notation (and other)

Common types of complexity:

- ightharpoonup O(1) = constant
- $ightharpoonup O(\log n) = \operatorname{logarithmic}$
- ightharpoonup O(n) = linear
- $ightharpoonup O(n^2) = quadratic$
- $ightharpoonup O(n^c) = polynomial$
- $ightharpoonup O(c^n) = exponential$

Complexity: O(1) operations

The following constitute O(1) operations:

- ► Addition, substraction, multiplication, and division between two numbers.
- Variable assignement.
- ► Function call

Complexity: big O notation

How to compute it? \Rightarrow calculate the number of O(1) operations. **Example:** What is the complexity of the following algorithm

```
function out = f(n)
out = 0;
for i=1:n
     for j = 1:n
          out = out + i*j;
end
end
additions: n^2, subtractions: 0, multiplications: n^2, divisions: 0,
```

assignments: $2n^2 + 1$, function calls: 0, total: $4n^2 + 1 = O(n^2)$.

Complexity: another example

Example: What is the complexity of the following algorithm?

```
function out = divideByTwo(n)

out = 0;
while n>1
    n = n/2;
    out = out + ;
end
```

end

The total number of operations is proportional to the number of iterations I(n), which satisfies $\frac{n}{2^{I(n)}} = 1 \Rightarrow I(n) = \log n$. The complexity is $O(\log n)$.

Complexity: complexity of recursive Fibonacci?

```
function F = recursiveFibonacci(n)
    if n==1
        F = 1;
    elseif n==2
        F = 1;
    else
        F = recursiveFibonacci(n-1) +
           recursiveFibonacci(n-2);
    end
```

end

Complexity: complexity of iterative Fibonacci?

```
function out = iterativeFibonacci(n)
F = ones(n,1);
for i = 3:n
    F(i) = F(i-1) + F(i-2);
end

out = F(n);
end
```