Robótica Móvil

José María Cañas

josemaria.plaza@urjc.es

Grado Ingeniería Robótica Software, Curso 2022-2023

Mapas robóticos

Índice

- Introducción
- Tipos de mapas: topológicos vs métricos, rejilla vs elementos ...
- Construcción autónoma rejilla de ocupación
 - Probabilística: modelo sensorial, regla de Bayes
 - Histográmica: regla de fusión
- Construcción autónoma mapas de elementos geométricos
 - Segmentos 2D desde ultrasonidos
 - Construcción mapas de puntos 3D desde visión estéreo
 - Mapas de segmentos 3D desde visión estéreo

Introducción

- Una de las habilidades principales en robótica es el movimiento
- Es necesario tener una representación del entorno para moverse adecuadamente
- Los mapas son una representación del entorno
- Propiedades del entorno: ocupación (para no chocar contra los obstáculos), color, etc.
- Los humanos también utilizamos mapas
- ¿Para qué se utiliza un mapa? navegación, por ejemplo comportamiento ir-a-punto
- Históricamente introducidos a mano, recientemente construcción automática desde los sensores

Introducción

Representación interna del entorno

- Sobre ella se toman decisiones (autónomas) de movimiento
- Mapas: estructura, obstáculos estáticos, largo alcance
- Sensores: información instantánea, obstáculos dinámicos, entorno local

¿Por qué no valen los sensores directamente?

SENSORES

- Tienen ruido e incertidumbre
- Dan información parcial del estímulo relevante, p.e.: sonars y pared
- Alcance limitado, sin memoria

REPRESENTACIÓN INTERNA

- Ayuda a filtrar
- Permite acumular evidencias parciales
- Memoria, alcance ilimitado

Tipos de mapas

- Hay muchos tipos de mapas.
- Locales vs globales.
- Topológicos vs métricos.
- Rejilla vs elementos geométricos.
- Estáticos vs dinámicos.
- Bidimensionales vs 3D.

Mapas globales y locales

- Global: representa **toda** el área de movimiento del robot.
- Local: sólo el entorno próximo a la ubicación actual.

Mapas topológicos

- Grafos cíclicos con nodos y arcos. Nodos son lugares relevantes y arcos los pasajes entre nodos.
- No se pueden inferir distancias precisas.
- Conectividad, se puede planificar trayectoria.

Mapas métricos

- Se pueden inferir distancias y ángulos.
- Necesitan un sistema de coordenadas.

Mapas de elementos geométricos

- Primitivas de percepción: esquinas, segmentos, etc.
- La observaciones sensoriales se relacionan con las primitivas.
- La posición de los elementos se estima continuamente.

Mapas de rejilla

- No hay primitivas, sólo celdillas.
- La observaciones sensoriales se relacionan con las celdillas.
- El estado de cada celdilla se estima continuamente.

Ejemplo

- ¿Global o local?.
- ¿Topológico o métrico?
- ¿Elementos geométricos o rejilla?
- ¿Dinámico o estático?
- ¿Bidimensional o 3D?

Construcción automática de mapas de rejilla

- Se construye desde los datos sensoriales
- Aumentan la autonomía del robot
- Modelo sensorial: cómo se interpreta la información proporcionada por el sensor
- Regla de actualización: cómo se integra la información sensorial actual con las anteriores
- La Localización es muy importante:
 - Necesaria para integrar la información sensorial en el mapa
 - Se puede conseguir con sensores explícitos de posición: GPS
 - O inferirla usando sensores como el de rotación
- Fase de exploración y fase de explotación, separadas o imbricadas

- Particionan el espacio en un mallado regular de celdillas.
- La ocupación de cada celdilla se estima desde las observaciones sensoriales.
- Facilita la fusión sensorial: utilización de varios sensores o incluso de distinta naturaleza (por ejemplo sonars, visión, láser).
- Permite compensar medidas ruidosas.
- Alberto Elfes y Hans Moravec[89-92].
- Necesita localización buena, error menor que el tamaño de la celdilla.

Aproximación probabilística

Modelo de observación: geometría modelo sonar

- Tiempo de vuelo y umbral de recepción.
- Información de ocupación y de vacío.
- Reflexiones especulares, incertidumbre angular y radial.
- Geometría axial, cónica o lobular.

ACTUALIZACIÓN CON REGLA DE BAYES

El estado de ocupación depende de la observación en t y las anteriores:

$$p_{ocupada}(C_{(x,y)},t) = p(ocupada/obs(t), data(t-1))$$

- El valor de p(ocupada/obs(t)) depende del modelo de sensor. El de la figura es el modelo de Elfes, hay muchos otros
- Ratios de probabilidad: $\rho_{ocupada} = \frac{p(ocupada)}{p(\overline{ocupada})} = \frac{p(ocupada)}{1 p(ocupada)}$

Actualización con regla de Bayes:

$$\rho_{mapa}(C_{(x,y)},t) = \frac{\rho_{obs}}{\rho_{apriori}} * \rho_{mapa}(C_{(x,y)},t-1)$$

- $\rho_{apriori}$ es una cte.: $\rho_{apriori} = \frac{p(ocupada_{apriori})}{1 p(ocupada_{apriori})}$
- ρ_{obs} Viene dada por el modelo de sensor:

$$\rho_{obs} = \frac{p(ocupada/t)}{1 - p(ocupada/t)}$$

■ Incialmente suele ser p(ocupada) = 0.5 entonces:

$$\rho_{apriori} = 1$$

- Según la lectura sonar para la $C_{(x,y)}$:
 - ullet Si p(ocupada/obs(t))=0.5 $ho_{obs}=1$ y no cambiamos la creencia
 - Si $p(ocupada/obs(t)) > 0.5 \rho_{obs} > 1$ y aumentamos la creencia
 - ullet Si $p(ocupada/obs(t)) < 0.5 ~
 ho_{obs} < 1$ y disminuimos la creencia

DINAMISMO DE LA APROXIMACIÓN PROBABILÍSTICA

- Para compensar 10 lecturas de vacio hacen falta 10 de ocupación
- Si p(ocupada/obs(t)) = 1 o p(ocupada/obs(t)) = 0 se satura
- La inercia depende de la certeza acumulada

Enfoque histográmico

- Johann Borenstein[91].
- Valor de certidumbre $CV \in [0, 15]$.
- Modelo sensorial:

$$\Delta(t) = +3, -1.$$

■ Regla aditiva:

$$CV_{i,j}(t+1) = CV_{i,j}(t) + \Delta(t)$$

DINAMISMO DE LA APROXIMACIÓN HISTOGRÁMICA

- Se tarda menos en incorporar un obstáculo que un hueco
- Una vez saturado, nuevas evidencias en el mismo sentido no cambian nada

Aproximación borrosa

- Conjunto borroso de celdillas libres ε y el de zonas ocupadas o. Cada celdilla tiene un grado de pertenencia a cada uno de ellos $\mu_{\varepsilon}(x,y)$, $\mu_o(x,y)$, entre 0 y 1
- \blacksquare Modelo sensor como conjunto borroso ε^k y o^k

Actualización con operador borroso unión que es asociativo:

$$\varepsilon = \bigcup_{i=1}^{i=k} \varepsilon^i = (\bigcup_{i=1}^{i=k-1} \varepsilon^i) \cup \varepsilon^k$$

- El operador de unión se puede definir de muchas formas:
 - Por ejemplo: $(A \cup B)(x) = \mu_A(x) + \mu_B(x) \mu_A(x) * \mu_B(x)$
 - Por ejemplo: $(A \cup B)(x) = min(1, \mu_A(x) + \mu_B(x))$

Enfoques dinámicos

- Dinamismo de la creencia de ocupación.
- Obstáculos móviles también se mueven en la representación.
- Probabilístico, borroso en ventana temporal.
- Las aproximaciones estáticas tienen los problemas ya vistos

Propuestas de solución:

- Actualización con ecuación diferencial.
- Decisión por mayoría en ventana.

Grids dinámicos con ecuación diferencial

- Valor de certidumbre $e(C_{(x,y)},t) \in [-Emax, Emax]$
- Modelo sensorial $\Delta(t) \in [-1, +1]$
- $e(C_{(x,y)},t) = e(C_{(x,y)},t-1) + \Delta(t) * |E_{max} e(C_{(x,y)},t-1)| * speed$

Grids dinámicos por mayoría

- Cada celdilla tiene una memoria acotada FIFO con las últimas lecturas
- Se decide por mayoría entre las lecturas en cada instante
- Se crean umbrales de ruido y de saturación
- Es posible dar mayor peso a las lecturas recientes que a las antíguas
- Se añade un mecanismo artificial de olvido

Grids 3D

- Moravec: desde visión. http://www.ri.cmu.edu/~hpm
- Thrun: con 2 laser ortogonales. http://www-2.cs.cmu.edu/~thrun/
- Kanade: virtualized reality.

Mapas con elementos geométricos

Segmentos borrosos desde ultrasonidos

- Primitiva útil para entornos de interiores
- Hay que anclar su definición en los datos sensoriales

Cosntrucción mapas 3D de puntos desde visión estéreo

Modelo Pin-Hole de Cámaras

- Parámetros intrínsecos
 - Distancia focal f_x, f_y
 - Centro óptico (U_0, V_0)
 - Skew (distorsion...)
- Parámetros extrínsecos: posición y orientación
- Permite sacar información espacial

Matriz genérica de proyección

$$P_{im} = K \cdot R \cdot T \cdot P_w = H \cdot P_w \tag{1}$$

$$\begin{bmatrix} u \\ v \\ 1 \end{bmatrix}_{im} = \begin{bmatrix} f_x & 0 & U_0 & 0 \\ 0 & f_y & V_0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_x \\ r_{21} & r_{22} & r_{23} & t_y \\ r_{31} & r_{32} & r_{33} & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}_{w}$$
(2)

$$\begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} h_{11} & h_{12} & h_{13} & h_{14} \\ h_{21} & h_{22} & h_{23} & h_{24} \\ h_{31} & h_{32} & h_{33} & h_{34} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}_{w}$$
(3)

LA TÉCNICA DLT

- (Direct Linear Transformation). Técnica clásica de calibración.
- Estudiar el paso $3D \rightarrow 2D$ de una patrón de calibración 3D
- **31** puntos de control

RECONSTRUCCIÓN 3D DESDE VISIÓN ESTÉREO

- Búsqueda del punto homólogo
- Triangulación
- Representación

Puntos de Interés

- Bordes
- Movimiento, color...

Búsqueda del punto homólogo: epipolar

Restricción Epipolar

Restricción Epipolar y Franja Epipolar

Búsqueda del punto homólogo: punto de interés

Restricción Atentiva

Búsqueda del punto homólogo: correspondencias

<u>Triangulación</u>

Mediante la rectas de retro-proyección de ambas cámaras obtendremos el punto 3D en el espacio

Representación 3D

Mapas de segmentos desde visión estéreo

■ Elementos 3D instantáneos

- Elementos 3D memorizados
- Más extensión
- Persistencia temporal, memoria
- Estímulos complejos desde observaciones parciales

Corrección de segmentos memorizados

Predicciones y actualizaciones

