TD/TME semaine 2 : Simulation Électrique – eldo

Objectif(s)

- ★ Dans un premier temps, vous allez utiliser le simulateur électrique **eldo** ¹ et l'interface de visualisation **ezwave** pour observer les caractéristiques statiques et dynamiques du transistor NMOS et de l'inverseur CMOS.
- ★ Dans un second temps vous allez étudier l'influence de la charge (nb de portes attaquées) sur le temps de propagation d'un inverseur puis d'un inverseur suivi d'un buffer.
- ★ En dernier lieu, vous allez observer l'influence de la résistance des fils d'interconnexion sur les temps de propagation

Pour utiliser les outils eldo 1 et ezwave et avoir "sourcer" le fichier \sim mentor/ams-2017.1_1.csh (il faut être sous shell tcsh).

En résumé en début de séance effectuez dans l'ordre :

- 1. Ouvrir un terminal,
- 2. Saisir la commande tcsh
- 3. Saisir la commande source ~mentor/ams-2017.1_1.csh

Exercice(s)

La plupart des fichiers sont fournis, vous n'aurez que quelques modifications mineures à effectuer. Les fichiers se trouvent dans le répertoire suivant :

/users/enseig/galayko/VLSI/TP2

Exercice 1 – Caractéristiques du transistor NMOS

Nous souhaitons caractériser le transistor nMOS. On simule le schéma donné fig. 1. Le circuit est modélisé dans la netlist polar_nmos.cir. Dans cet exercice on va faire varier les tensions V_g and V_d pour comprendre leur influence sur le courant I_d .

Question 1

Affichez la caractéristique $I_d(V_g)$ pour $V_d=3.3V$. Est-ce que vous observez une dépendance $I_d(V_g)$ quadratique ou linéaire?

Question 2

Avec la calulette de **ezwave**, tracez la racine carrée de la caractéristique $\sqrt{I_d(V_g)}$ et estimez la tension de seuil.

Question 3

Tracez la caractéristique $I_d(V_d)$ for $V_q = 3.3V$. À partir de quelle tension V_d le transistor entre en saturation?

^{1.} La documentation se trouve dans le répertoire /users/soft/mentor/ams-2017.1_1/docs/pdfdocs/, consultez le fichier eldo_user.pdf

UE VLSI – page 2/3

FIGURE 1 -

Question 4

Tracez la famille de caractéristiques $I_d(V_d)$ for $V_q = 0, 0.5, ... 3.5V$.

Exercice 2 – Simulation statique de l'inverseur CMOS

La netslit mon_inv.spi décrit le modèle d'un inverseur CMOS. La netlist inv_statique.cir décrit un circuit de test pour cet inverseur (cf. fig. 2 a) et b)).

Ouestion 1

Tracez la caractéristique d'entrée-sortie de l'inverseur, $V_{out}(V_{in})$.

Question 2

Qu'observez-vous, cet inverseur vous parait-il équilibré? Justifiez votre réponse.

Question 3

En variant le paramètre W_p (la largeur du transistor pMOS), équilibrez l'inverseur pour que sa tension de seuil soit égale à $V_{dd}/2$.

Exercice 3 – Simulation dynamique de l'inverseur CMOS

La netlist inv_dynamique.spi décrit un inverseur connecté à une charge capacitive (cf. fig. ??).

Question 1

Simulez le circuit avec la charge capacitive de 90 fF. Calculez le délai correspondant.

UE VLSI – page 3/3

FIGURE 3 – Buffer à insérer.

Ouestion 2

Refaites la simulation pour les valeurs de capacité de 0, 50fF, ... 300 fF en faisant une simulation paramétrique. Affichez le graph "delai en fonction de la capacité".

Exercice 4 – Insertion d'un buffer

La netlist <code>buf_x8.spi</code> réalise un buffer (un amplificateur) qui permettra de réduire le délai de propagation lorsque la charge capacitive est élevée. Modifiez la netlist <code>inv_dynamique.spi</code> en créant la nouvelle netlist <code>invplusbuf.spi</code> qui ajoute un buffer <code>buf_x8</code> entre la sortie de l'inverseur et la capacité de charge. Le schéma de principe du buffer est donné fig. 3.

Question 1

Simulez ce nouveau circuit en faisant varier la capacité de charge comme pour l'exercice précédent.

Question 2

A partir de quelle valeur de charge, l'insertion d'un buffer est utile au temps de propagation global?

Question 3

A combien d'inverseurs de taille minimale correspond cette charge?

Exercice 5 – Influence de la resistance des fils d'interconnexion

Créez maintenant deux nouveaux fichiers (inv_dynamique_resist.spi et invplusbuff_resist.spi en ajoutant une résistance de 3500 Ohms correspondant aux fils d'interconnexion reliant la sortie de l'inverseur ou du buffeur à la capacité de charge.

Ouestion 1

Simulez ces nouveaux circuits en fixant la capacité de charge à 90 ff. Qu'observez vous? Proposez une explication.