18 19112024-141700

Ко входу двойного балансного смесителя подключён генератор с внутренним сопротивлением 50 Ом и доступной мощностью -2.2 дБм.

В смесителе использованы диоды с сопротивлением в открытом состоянии 18 Ом. На выходе смесителя путём преобразования на первой гармонике гетеродина получено колебание мощностью $-2.2~\mathrm{дБм}$.

Какова величина потерь в трансформаторе? (Это потери при передаче мощности от генератора с внутренним сопротивлением 50 Ом, подключённого в первичной обмотке, в нагрузку 50 Ом, подключённую к одной из половин вторичной обмотке при условии, что цепь второй половины вторичной обмотки разомкнута. Схема дана на рисунке 1.)

Рисунок 1 – Схема измерения потерь в трансформаторе

- 1) 4.1 дБ
- 2) 2.8 дБ
- 3) 1.2 дБ
- 4) 2.3 дБ

Ко входам ПЧ квадратурного смесителя подключён согласованный по всем плечам делитель мощности. Развязанные плечи 2 и 3 делителя подключены соответственно к синфазному и квадратурному входам ПЧ. Известно, что:

$$s_{21} = 0.347 + 0.376i, \, s_{31} = -0.384 + 0.355i.$$

Внутри смесителя квадратура выдержана идеально точно.

Какой относительный уровень мощности будет иметь верхняя боковая составляющая при преобразовании частоты вверх?

- 1) -35 дБн
- 2) -33 дБн
- 3) -39 дБн
- 4) -51 дБн

Чему равна промежуточная частота при преобразовании частоты вверх с использованием двойного балансного смесителя, если спектр на выходе РЧ таков, как изображён на рисунке 2?

(Значения частот, считываемые с экрана анализатора, округлять до единиц МГц.)

Рисунок 2 – Экран анализатора спектра

- 80 MΓ
- 2) 50 MΓ_Ц
- 3) 90 МГц
- 4) 30 MΓ_Ц

На рисунке 3 изображён двойной балансный смеситель. Диоды в этом смесителе представляют собой разрыв при подаче отрицательного напряжения и сопротивление r_i при положительном смещении. Известно, что $r_1=r_2$ и что сопротивления двух других диодов также равны. Колебание гетеродина переключает диоды из открытого в закрытое состояние и обратно меновенно.

Рисунок 3 – Двойной балансный смеситель

Частота гетеродина 255 МГц, частота ПЧ 35 МГц.

Колебание какой частоты отсутствует на выходе РЧ?

- 1) 510 MΓ_Ц
- 2) 220 MΓ_{II}
- 3) 800 МГц
- 4) 35 MΓ_{II}.

Ко входу гетеродина двойного балансного смесителя подключён генератор синусоидального колебания частотой $1070~\mathrm{MF}$ ц с внутренним сопротивлением $50~\mathrm{Om}$ и доступной мощностью $8~\mathrm{дБм}$.

Ко входу ПЧ подключён генератор меандра частотой 217 МГц с внутренним сопротивлением 50 Ом и доступной мощностью первой гармоники -2 дБм. РЧ выход смесителя подключён в анализатору спектра с входным сопротивлением 50 Ом. Диапазон частот анализа от 1248 МГц до 1329 МГц.

Какова будет мощность наибольшей побочной составляющей, наблюдаемой на экране анализатора спектра? Варианты ОТВЕТА:

- 1) -72 дБм
- 2) -67 дБм
- 3) -76 дБм
- 4) -70 дБм

Для

- выделения нижней боковой составляющей при преобразовании вверх
- и полного подавления другой боковой

используются квадратурный смеситель и согласованный по всем плечам делитель мощности. Плечи 2 и 3 делителя развязаны. Известно, что: $s_{21} = s_{31}$.

Плечо 2 подключено непосредственно к синфазному входу ПЧ. Между плечом 3 и квадратурным входом ПЧ включён фазовращатель. В качестве фазовращателя используется симметричный реактивный Т-образный четырёхполюсник, выполненный с помощью сосредоточенных компонентов. Известно, что между синфазным и квадратурным колебаниями гетеродина внутри смесителя существует ошибка квадратуры равная -31 градусов.

Чему равна индуктивность компонента фазовращателя, если частота $\Pi \Psi$ равна 75 М Γ_{Π} ?

- 79 нГн
- 2) 20 нГн
- 3) 188 нГн
- 104 нΓн