(19) 日本国特許庁(JP)

(12) 公開特許公報 (A) (11) 特許出願公開番号

特開平11-312801

(43) 公開日 平成11年(1999) 11月9日

(51) Int. Cl. ⁶ H 0 1 L	29/43 21/203 27/04 21/822 27/10	識別記号 ・ 451 未請求 請求項の数6	FD	FI H01L	21/203 27/10			最終頁に続	売く
(21) 出願番号	•	質平10-134634 支10年 (1998) 4月28日		(71) 出願人 (72) 発明者 (72) 発明者 (74) 代理人	テ東野東一矢東一イ京 口京 デ野京デ	ディーケック 中央 中 中 中 ウ ナ ナ ナ ナ ナ ナ ナ ナ ナ ナ ナ ナ ナ ナ ナ ナ	本橋1丁目 本橋一丁目 大会社内 本橋一丁目 本橋一丁目		

(54) 【発明の名称】積層薄膜

(57) 【要約】

【課題】 結晶性の良好な単一配向金属薄膜を含む積層 薄膜を提供する。

【解決手段】 立方晶(100)単一配向のエピタキシ ャル膜である金属薄膜と、この金属薄膜と接する界面に {111} ファセット面が存在するバッファ層とを有す る積層薄膜。前記バッファ層は、希土類元素酸化物、酸 化ジルコニウム、またはZrの一部を希土類元素もしく はアルカリ土類元素で置換した酸化ジルコニウムを含有 する。

2

【特許請求の範囲】

【請求項1】 立方晶(100)単一配向のエピタキシャル膜である金属薄膜と、この金属薄膜と接する界面に {111} ファセット面が存在するバッファ層とを有する積層薄膜。

1

【請求項2】 前記バッファ層が、希土類元素酸化物、酸化ジルコニウム、または2rの一部を希土類元素もしくはアルカリ土類元素で置換した酸化ジルコニウムを含有する請求項1の積層薄膜。

【請求項3】 希土類元素およびアルカリ土類元素をRで表したとき、前記パッファ層において原子比R/(Zr+R)が0.2~0.75である請求項2の積層薄膜。

【請求項4】 前記パッファ層を挟んで前記金属薄膜の反対側に下地層を有し、この下地層が、酸化ジルコニウム、またはZrの一部を希土類元素もしくはアルカリ土類元素で置換した酸化ジルコニウムを含有し、希土類元素およびアルカリ土類元素をRで表したとき、この下地層における原子比R/(Zr+R)が、前記パッファ層における原子比R/(Zr+R)よりも小さい請求項2の積層薄膜。

【請求項5】 前記金属薄膜がPt、Ir、Pdおよび Rhの少なくとも1種を含有する請求項 $1\sim4$ のいずれ かの積層薄膜。

【請求項6】 表面がSi(100)単結晶から構成される基板上に存在する請求項 $1\sim5$ のいずれかの積層薄膜。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、金属薄膜を含む積 30 層薄膜に関する。

[0002]

【従来の技術】半導体結晶基板であるSi基板上に、超伝導膜、誘電体膜、強誘電体膜、圧電膜等の各種機能膜を形成、集積化した電子デバイスが考案されている。例えば、半導体と超伝導体との組み合わせでは、SQUID、ジョセフソン素子、超伝導トランジスタ、電磁波センサーおよび超伝導配線LSI等が挙げられ、半導体と誘電体との組み合わせでは、集積度のさらに高いLSI、SOI技術による誘電体分離LSIが挙げられ、半40導体と強誘電体との組み合わせでは、不揮発性メモリー、赤外線センサー、光変調器、光スイッチ、OEIC(光・電子集積回路:0PTO-ELECTRONIC INTEGRATED CIR CUITS)等が挙げられる。

【0003】これらの電子デバイスにおいて、最適なデバイス特性およびその再現性を確保するためには、機能膜ができるだけ完全な単結晶に近いエピタキシャル膜であることが望まれる。多結晶体では粒界による物理量の撹乱のため、良好なデバイス特性を得ることが難しい。

【0004】ところで、Si基板と機能膜との間には、

通常、電極膜を設ける。結晶性の良好な機能膜を得るた めには、電極膜を単結晶に近いエピタキシャル膜として 形成することが必要となる。このような要求に対し本発 明者らは、特開平9-110592号公報において、S i 単結晶基板上に(001)配向の2r○₂薄膜、安定 化ジルコニア薄膜、希土類元素酸化物薄膜等を含むバッ ファ層を設け、このバッファ層上に、BaTiO3等か らなる(001)配向のペロブスカイト層を形成し、こ のペロブスカイト層上にPt等からなる金属薄膜を電極 膜として形成することを提案している。ペロブスカイト 層を設けるのは、ZrO2(001)薄膜上にPt薄膜 を直接形成すると、Ptは(111)配向または多結晶 となり、Pt(100)単一配向膜を形成することがで きないからである。これは、2 r O2 (001) 面とP t (100) 面の格子不整合が大きいために、Ptはエ ピタキシャル成長するよりも、すなわち(100)面を 成長面として成長するよりも、エネルギー的に安定な (111) 面を成長面として成長するからである。

【0005】しかし、ペロブスカイト層の形成には手間20がかかり、特に、均質で、設計通りの組成をもつペロブスカイト層を形成することは難しい。具体的には、2 rを含有するバッファ層上にB a T i O 3 薄膜を形成する際には、B a Z r O 3 等の(110)配向しやすい物質が形成されやすい。また、特開平9-110592号公報では、大面積の均質な薄膜が形成できる方法として、酸化性ガス中で金属蒸気を基板表面に供給する蒸着法を用いているが、この方法でB a T i O 3 薄膜を形成する場合、基板表面に酸化物として堆積したときにB a D i D 1 に D 2 を D 3 で D 3 で D 4 で D 3 で D 4 で D 4 で D 5 で D 6 で D 8 を D 6 で D 7 で D 8 を D 8 を D 8 を D 8 で D 9 で

【0006】したがって、ペロブスカイト層を設けることなく結晶性の良好な(100)配向金属薄膜を形成できれば、低コスト化、品質向上、歩留まり向上の点で大きな進歩となる。

[0007]

【発明が解決しようとする課題】本発明の目的は、結晶性の良好な単一配向金属薄膜を含む積層薄膜を提供することである。

[0008]

50

【課題を解決するための手段】このような目的は、下記 $(1) \sim (6)$ の本発明により達成される。

- (1) 立方晶(100)単一配向のエピタキシャル膜である金属薄膜と、この金属薄膜と接する界面に{11}ファセット面が存在するバッファ層とを有する積層薄膜。
- (2) 前記パッファ層が、希土類元素酸化物、酸化ジルコニウム、または2rの一部を希土類元素もしくはアルカリ土類元素で置換した酸化ジルコニウムを含有する上記(1)の積層薄膜。
- (3) 希土類元素およびアルカリ土類元素をRで表し

たとき、前記パッファ層において原子比R/(Zr+ R) が0.2~0.75である上記(2)の積層薄膜。

- 前記バッファ層を挟んで前記金属薄膜の反対側 に下地層を有し、この下地層が、酸化ジルコニウム、ま たは2rの一部を希土類元素もしくはアルカリ土類元素 で置換した酸化ジルコニウムを含有し、希土類元素およ びアルカリ土類元素をRで表したとき、この下地層にお ける原子比R/(Zr+R)が、前記パッファ層におけ る原子比R/(Zr+R)よりも小さい上記(2)の積 層薄膜。
- (5) 前記金属薄膜がPt、Ir、PdおよびRhの 少なくとも1種を含有する上記(1)~(4)のいずれ かの積層薄膜。
- (6) 表面がSi(100)単結晶から構成される基 板上に存在する上記(1)~(5)のいずれかの積層薄

[0009]

【発明の実施の形態】本発明の積層薄膜は、Si単結晶 等からなる基板上に形成されており、基板側にバッファ 層を有し、このバッファ層に接して金属薄膜を有する。 【0010】バッファ層

バッファ層は、金属薄膜と基板との間に設けられる。な お、バッファ層は、絶縁体としても機能する。

【0011】バッファ層は、金属薄膜との界面が {11 1) ファセット面を含むことが特徴である。図1 (a) に、バッファ層表面のファセット面の模式図を示す。図 1 (b) に、このファセット面を拡大して示す。バッフ ァ層は、立方晶(100)配向、正方晶(001)配向 または単斜晶(001)配向のエピタキシャル膜なの で、このファセット面は、 {111} ファセット面であ る。金属薄膜は、バッファ層の {111} ファセット面 上に {111} 配向膜としてエピタキシャル成長する。 金属薄膜の成長に伴って、ファセット面により構成され る凹部は埋められ、最終的に、図1 (c) に示すように 金属薄膜の表面は平坦となり、かつ、この表面は基板表 面に平行となる。この表面は、立方晶(100)面とな るが、結晶格子の歪み等により正方晶(001)面とな ることもある。

【0012】バッファ層表面にファセット面を存在さ せ、このファセット面上に、立方晶となる金属からなる 40 金属薄膜を形成したときに、この金属薄膜が立方晶(1 00)配向のエピタキシャル膜となることは、従来報告 されておらず、本発明において初めて見いだされたこと である。前述したように、従来も2r○₂薄膜や希土類 元素酸化物薄膜をバッファ層として用いることは知られ ていたが、平坦なバッファ層上に金属薄膜を直接形成し た場合、良質な立方晶(100)配向エピタキシャル膜 は得られていない。

【0013】ファセット面の寸法は特に限定されない が、ファセット面の高さ、すなわち、バッファ層の面内

と直交する平面に投影したときの寸法が小さすぎると、 バッファ層表面にファセット面を設けたことによる効果 が小さくなるので、投影寸法は5nm以上であることが好 ましい。一方、この投影寸法が大きい場合、それに伴っ て金属薄膜を厚くしないと金属薄膜表面が平坦にならな くなる。しかし、金属薄膜を厚くするとクラックが発生 しやすくなるので、上記投影寸法は30m以下であるこ とが好ましい。なお、上記投影寸法は、バッファ層断面 の透過型電子顕微鏡写真から求める。

【0014】上記界面におけるファセット面の比率は、 好ましくは80%以上、より好ましくは90%以上であ る。ファセット面の比率が低すぎると、金属薄膜を良質 なエピタキシャル膜として成長させることが困難とな る。なお、本明細書におけるファセット面の比率は、バ ッファ層断面の透過型電子顕微鏡写真から以下のように して求めた面積比である。バッファ層表面の測定対象領 域の長さ(面内方向の長さ)をBとし、面内と平行な表 面(ファセット面以外)の合計長さをHとすると、上記 比率は、[1-(H/B)²]で表される。上記測定対 20 象領域の長さBは、1 μm以上とする。

【0015】表面に {111} ファセット面を形成する ために、バッファ層は、希土類元素酸化物を主成分とす るか、酸化ジルコニウムを主成分とするか、Zrの一部 を希土類元素もしくはアルカリ土類元素で置換した酸化 ジルコニウムを主成分とすることが好ましい。なお、本 明細書における希土類元素は、ScおよびYを含むもの とする。このようなバッファ層は、立方晶(100)配 向または単斜晶(001)配向のとき、表面にファセッ ト面を出現させることが可能である。

【0016】希土類元素およびアルカリ土類元素をRで 表すと、バッファ層の組成は、 $Z_{r_{1-x}}R_xO_{2-}\delta$ で表す ことができる。x = 0 である酸化ジルコニウム(Z r O2) は、高温から室温にかけて立方晶→正方晶→単斜晶 と相転移を生じるが、希土類元素またはアルカリ土類元 素の添加により立方晶は安定化する。 ZrO₂に希土類 元素またはアルカリ土類元素を添加した酸化物は、一般 に安定化ジルコニアと呼ばれる。本発明では、ZrO2 安定化のための元素として希土類元素を用いることが好 ましい。

【0017】本発明では、ファセット面が形成可能であ れば $Z_{r_{1-x}}R_{x}O_{2-}\delta$ における x は特に限定されない。 ただし、Jpn. J. Appl. Phys. 27 (8) L1404-L1405 (1988) に は、希土類元素安定化ジルコニアにおいてxが0.2未 満である組成域では正方晶または単斜晶の結晶になるこ とが報告されており、また、J. Appl. Phys. 58 (6) 2407-24 09(1985)には、正方晶または単斜晶となる組成域におい ては、得ようとするもの以外の配向面が混入し、単一配 向のエピタキシャル膜が得られないことが報告されてい る。しかし、本発明者らが検討を重ねた結果、後述する 蒸着法を利用することにより、xが0.2未満の組成で 50

50

もエピタキシャル成長が可能となり、良好な結晶性が得られることがわかった。高純度のZrO₂膜は、絶縁抵抗が高くなり、リーク電流が小さくなるので、絶縁特性を必要とする場合には好ましい。ただし、ファセット面の形成を容易にするためには、xを0.2以上とすることが好ましい。

【0018】一方、バッファ層をSi単結晶基板に接して形成する場合、xが0.75を超える組成域では、立方晶ではあるが、(100)単一配向が得られにくく、(111)配向の結晶が混入したり、(111)単一配 10向となったりしてしまう。したがって、Si単結晶基板上にバッファ層を直接形成する際には、Zr_{1-x}R_xO₂₋ δ においてx \leq 0.75以下、特に0.50以下とすることが好ましい。

【0019】ただし、Si単結晶基板上に、適当な下地層を介してバッファ層を形成することにより、xが大きい場合でもバッファ層を立方晶(100)単一配向とすることができる。このような下地層としては、酸化ジルコニウムまたは安定化ジルコニアからなる立方晶(100)配向、正方晶(001)配向または単斜晶(001)配向の薄膜が好ましい。なお、下地層では、バッファ層よりもxを小さい値に設定することになる。

【0020】安定化ジルコニア薄膜が含む希土類元素は、安定化ジルコニア薄膜に接する薄膜または基板の格子定数に応じ、これらと安定化ジルコニア薄膜との格子定数がマッチングするように適宜選択すればよい。希土類元素の種類を固定したままxを変更すれば安定化ジルコニアの格子定数を変えることができるが、xだけの変更ではマッチング調整可能領域が狭い。しかし、希土類元素を変更すれば格子定数を比較的大きく変更すること 30ができるので、マッチングの最適化が容易となる。例えばYに替えてPrを用いれば、格子定数を大きくすることができる。

【0021】なお、酸素欠陥を含まない酸化ジルコニウムは化学式 ZrO_2 で表わされるが、安定化ジルコニアは、添加した安定化元素の種類、量および価数により酸素の量が変化し、 $Zr_{1-x}R_xO_{2-}\delta$ における δ は、通常、 $0\sim1$. 0となる。

【0022】バッファ層は、組成が連続的ないし段階的に変化する傾斜組成構造であってもよい。傾斜組成構造とする場合、 $2r_{1-x}R_xO_{2-}\delta$ におけるxが、バッファ層の裏面側から表面側(金属薄膜側)に向かって増大する構成とすることが好ましい。上記した下地層を設ける場合、下地層がバッファ層の一部と考えれば、このバッファ層は、組成が段階的に変化するものといえる。

【0023】バッファ層に用いる希土類元素は、Sc、Y、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、YbおよびLuの少なくとも1種を選択すればよいが、希土類元素酸化物には、六方晶である希土類a型構造となりやすいものが存在するの

で、安定して立方晶の酸化物となる元素を選択することが好ましい。具体的には、Sc、Y、Ce、Eu、Gd、Tb、Dy、Ho、Er、Tm、YbおよびLuの少なくとも1種が好ましく、これらのうちから、酸化物としたときの格子定数やその他の条件に応じて適宜選択すればよい。

【0024】バッファ層には、特性改善のために添加物 を導入してもよい。例えば、AlおよびSiは、膜の抵 抗率を向上させる効果がある。さらに、Mn、Fe、C o、Niなどの遷移金属元素は、膜中において不純物に よる準位(トラップ準位)を形成することができ、この 準位を利用することにより導電性の制御が可能になる。 【0025】なお、下地層やバッファ層として用いる2 r O₂薄膜において、Zrの比率の上限は現在のところ 99.9 mol%程度である。また、現在の高純度化技術 ではZrO2とHfO2との分離は難しいので、ZrO2 の純度は、通常、Zr+Hfでの純度を指している。し たがって、本明細書におけるZrO₂の純度は、Hfと Zrとを同元素とみなして算出された値であるが、Hf ○2は本発明におけるZrO2薄膜においてZrO2と全 く同様に機能するため、問題はない。また、このこと は、上記安定化ジルコニアにおいても同様である。

【0026】パッファ層の厚さは特に限定されず、適切な寸法のファセット面が形成されるように適宜設定すればよいが、好ましくは $5\sim1000\,\mathrm{nm}$ 、より好ましくは $25\sim100\,\mathrm{nm}$ である。パッファ層が薄すぎると均一なファセット面を形成することが困難であり、厚すぎるとバッファ層にクラックが発生することがある。なお、下地層の厚さは、下地層が均質なエピタキシャル膜となり、表面が平坦で、クラックが発生しないように適宜決定すればよいが、通常、 $2\sim50\,\mathrm{nm}$ とすることが好ましい。

【0027】金属薄膜

金属薄膜を設ける理由は、以下の通りである。本発明の 積層薄膜を電子デバイスの構成要素として利用する場 合、金属薄膜は主に電極として機能する。本発明によっ て得られた結晶性および表面性の良好な金属薄膜上に、 機能膜として圧電薄膜等を形成すれば、特性の良好な薄 膜バルク共振器等の各種電子デバイスが実現する。ま た、LEDやレーザーダイオード等の発光素子では、高 輝度化が重要であるが、素子中に発光光を反射する機能 を設ければ、高輝度化を容易に達成できることがある。 例えば、反射層として働く薄膜を素子中の適当な位置に 配置して、素子外部への発光の放出を助長することが可 能である。本発明における金属薄膜は、このような反射 層として機能させることもできる。また、金属薄膜は、 薄膜積層体中において応力を吸収する役割を果たすの で、金属薄膜の上に形成される薄膜のクラック発生を防 ぐ効果も示す。

【0028】パッファ層のファセット面が存在する表面

に設けられる金属薄膜は、前述したように、ファセット面により構成される凹部を埋めながら成長し、最終的に金属薄膜表面は平坦となり、かつ、基板表面に平行となる。このとき金属薄膜は、通常、膜面と平行に(100)面が配向した立方晶エピタキシャル膜となっているが、応力によって結晶が変形して、例えば正方晶(00

【0029】金属薄膜は、Pt、Ir、PdおよびRhの少なくとも1種を主成分とすることが好ましく、これらの金属の単体またはこれらの金属を含む合金から構成 10されることが好ましい。また、金属薄膜は、組成の異なる2種以上の薄膜から構成されていてもよい。

1) 配向のエピタキシャル膜となることもある。

【0030】金属薄膜の厚さは用途により異なるが、好ましくは $10\sim500$ nm、より好ましくは $50\sim150$ nmであり、結晶性、表面性を損なわない程度に薄いことが好ましい。より具体的には、バッファ層のファセット面により構成される凹凸を埋めるためには、厚さを30 nm以上とすることが好ましく、100 nm以上の厚さとすれば、十分な表面平坦性が得られる。また、電極として十分に機能させるためには、厚さを $50\sim500$ nmとすることが好ましい。

【0031】なお、金属薄膜の比抵抗は、好ましくは $10^{-7}\sim10^{3}\Omega$ cm、より好ましくは $10^{-7}\sim10^{-2}\Omega$ cm である。

【0032】結晶性および表面性

バッファ層、金属薄膜および下地層の結晶性は、XRD (X線回折)における反射ピークのロッキングカーブの半値幅や、RHEED像のパターンで評価することができる。また、表面性は、RHEED像のパターンおよび透過型電子顕微鏡で評価することができる。なお、RH 30 EEDとは、反射高速電子線回折(Refletion High Energy Electron Diffraction)である。

【0033】具体的には、X線回折において、(200)面または(002)面[希土類c型構造のバッファ層では(400)面]の反射のロッキングカーブの半値幅がいずれも1.50°以下となる程度の結晶性を有していることが好ましい。なお、ロッキングカーブの半値幅の下限値は特になく、小さいほど好ましいが、現在のところ、前記下限値は一般に0.7°程度、特に0.4°程度である。また、RHEEDにおいては、像がスポー40ット状である場合、表面に凹凸が存在していることになり、ストリーク状である場合、表面が平坦であることになる。そして、いずれも場合でも、RHEED像がシャープであれば、結晶性に優れていることになる。

【0034】本発明の積層薄膜において、バッファ層、 金属薄膜および下地層は、エピタキシャル膜である。本 明細書におけるエピタキシャル膜は、第一に、単一配向 膜である必要がある。この場合の単一配向膜とは、X線 回折による測定を行ったとき、目的とする面以外のもの の反射のピーク強度が目的とする面の最大ピーク強度の 50

10%以下、好ましくは5%以下である膜である。例え ば、(k00)単一配向膜、すなわちa面単一配向膜で は、膜の $2\theta - \theta X$ 線回折で(k00)面以外の反射ピ ークの強度が、(k00)面反射の最大ピーク強度の1 0%以下、好ましくは5%以下である。なお、本明細書 において(k00)は、(100)や(200)などの 等価な面を総称する表示である。本明細書におけるエピ タキシャル膜の第二の条件は、膜面内をx-y面とし、 膜厚方向を z 軸としたとき、結晶が x 軸方向、 y 軸方向 および2軸方向に共に揃って配向していることである。 このような配向は、RHEED評価でスポット状または ストリーク状のシャープなパターンを示すことで確認で きる。例えば、表面に凹凸が存在するバッファ層におい て結晶配向に乱れがある場合、RHEED像はシャープ・ なスポット状とはならず、リング状に伸びる傾向を示 す。上記した二つの条件を満足すれば、エピタキシャル 膜といえる。

8

【0035】基板

本発明で用いる基板は、Si、MgO、 $SrTiO_3$ 等の各種単結晶から選択することができるが、Si (100)単結晶表面を有する基板が最も好ましい。Si 単結晶基板を用いる場合、基板と積層薄膜とは、それぞれの面内に存在する軸同士も平行であることが好ましい。

【0036】製造方法

バッファ層、金属薄膜および下地層の形成方法は特に限定されず、基板上、特にSi単結晶基板上に、これらをエピタキシャル膜として形成可能な方法から適宜選択すればよいが、好ましくは蒸着法、特に、前記特開平9-110592号公報や、本出願人による特願平9-106776号等に開示されている蒸着法を用いることが好ましい。

【0037】以下、製造方法の具体例として、安定化ジルコニアからなるバッファ層の形成について説明する。 【0038】この製造方法を実施するにあたっては、例えば図8に示すような構成の蒸着装置1を用いることが望ましい。

【0039】この蒸着装置1は、真空ポンプPが設けられた真空槽1aを有し、この真空槽1a内には、下部に基板2を保持するホルダ3が配置されている。このホルダ3は、回転軸4を介してモータ5に接続されており、このモータ5によって回転され、基板2をその面内で回転させることができるようになっている。上記ホルダ3は、基板2を加熱するヒータ6を内蔵している。

【0040】蒸着装置1は、酸化性ガス供給装置7を備えており、この酸化性ガス供給装置7のノズル8は、上記ホルダ3の直ぐ下方に配置されている。これによって、酸化性ガスは、基板2近傍でその分圧が高くされるようになっている。ホルダ3のさらに下方には、2r蒸発部9および希土類元素蒸発部10が配置されている。これら各蒸発部には、それぞれの蒸発源の他に、蒸発の

ためのエネルギーを供給するエネルギー供給装置(電子 線発生装置、抵抗加熱装置等)が配置されている。

【0041】まず、上記ホルダに基板をセットする。こ の製造方法では、均質な薄膜を大面積基板、例えば10 cm²以上の面積を持つ基板上に形成することができる。 これにより、本発明の積層薄膜を有する電子デバイス を、従来に比べて極めて安価なものとすることができ る。なお、基板の面積の上限は特にないが、現状では4 00cm²程度である。現状の半導体プロセスは2~8イ ンチのSiウエハ、特に6インチタイプのウエハを用い 10 たものが主流であるが、この方法ではこれに対応が可能 である。また、ウエハ全面ではなく、部分的にマスク等 で選択して積層薄膜を形成することも可能である。

【0042】Si単結晶基板を用いる場合、バッファ層 の形成前に、基板に表面処理を施すことが好ましい。基 板の表面処理は、例えば前記特開平9-110592号 公報や、本出願人による特願平9-106776号など に記載された処理方法を利用することが好ましい。

【0043】このような表面処理後、基板表面のSi結 晶はSi酸化物層により被覆されて保護された状態とな っている。そして、このSi酸化物層は、バッファ層形 成の際に基板表面に供給されるZr等の金属によって還 元され、除去される。

【0044】次に、基板を真空中で加熱し、Zrおよび 希土類元素と、酸化性ガスとを基板表面に供給すること により、バッファ層を形成していく。加熱温度は、良好 な結晶性が得られ、かつファセット面が形成されるよう に適宜設定すればよい。具体的には、結晶化するために は400℃以上であることが望ましく、750℃以上で あれば結晶性に優れた膜が得られる。また、ファセット 面の寸法は、加熱温度によって制御できる。加熱温度の 上限は、基板の耐熱性によっても異なるが、通常、13 00℃程度である。ここで用いる酸化性ガスとしては、 酸素、オゾン、原子状酸素、NO₂、ラジカル酸素等の いずれであってもよいが、以下の説明では、酸素を例に 挙げる。

【0045】バッファ層の形成に際しては、真空ポンプ で継続的に真空槽内を排気しながら、酸素ガスを真空蒸 着槽内に継続的に供給する。基板近傍における酸素分圧 は、10⁻³~10⁻¹Torr程度であることが好ましい。酸 40 素分圧の上限を10-Torrとしたのは、真空槽内にある 蒸発源中の金属を劣化させることなく、かつその蒸発速 度を一定に保つためである。真空蒸着槽に酸素ガスを導 入するに際しては、基板の表面にその近傍からガスを噴 射し、基板近傍だけに高い酸素分圧の雰囲気をつくると よく、これにより少ないガス導入量で基板上での反応を より促進させることができる。このとき真空槽内は継続 的に排気されているので、真空槽のほとんどの部分は1 0⁻⁴~10⁻⁶Torrの低い圧力になっている。酸素ガスの 供給量は、好ましくは2~50cc/分、より好ましくは 50 やすい。なお、蒸着時に真空槽内に微量の酸素を流しな

5~25cc/分である。酸素ガス供給量を制御すること により、ファセット面を容易に形成することが可能とな り、また、ファセット面の寸法を変更することができ る。酸素ガスの最適供給量は、真空槽の容積、ポンプの 排気速度その他の要因により決まるので、あらかじめ適 当な供給量を求めておく。

10

【0046】各蒸発源は、電子ビーム等で加熱して蒸発 させ、基板に供給する。均質でかつファセット面を有す る薄膜を形成するために、成膜速度は、0.05~1. 00nm/s、特に0.100~0.500nm/sとすること が好ましい。成膜速度を制御することにより、ファセッ ト面を容易に形成することが可能となり、また、ファセ ット面の寸法を変更することができる。

【0047】成膜面積が10cm²程度以上である場合、 例えば直径2インチの基板の表面に成膜するときには、 図8に示すように基板を回転させ、酸素ガスを基板表面 の全域に万遍なく供給することにより、成膜領域全域で 酸化反応を促進させることができる。これにより、大面 積でしかも均質な膜の形成が可能となる。このとき、基 板の回転数は10rpm以上であることが望ましい。回転 数が低いと、基板面内で膜厚の分布が生じやすい。基板 の回転数の上限は特にないが、通常は真空装置の機構上 120rpm程度となる。

【0048】希土類元素酸化物からなる薄膜や酸化ジル コニウムからなる薄膜についても、上記した安定化ジル コニア薄膜の場合に準じて形成すればよい。また、例え ば、酸化ジルコニウム薄膜上に希土類元素酸化物薄膜を 形成する際に、両薄膜において同一の希土類元素を使用 する場合には、酸化ジルコニウム薄膜が所定の厚さに形 成されたときにZrの供給を停止し、希土類元素だけを 引き続いて供給することにより、連続して両薄膜を形成 することができる。また、バッファ層を傾斜組成構造と する場合には、Zrの供給量を徐々に減らし、最後には ゼロとして、希土類元素酸化物薄膜の形成に移行すれば よい。

【0049】上記した製造方法は、従来の真空蒸着法、 スパッタリング法、レーザーアブレージョン法などとの 比較において特に明確なように、不純物の介在の余地の ない、しかも制御しやすい操作条件下で実施しうるた め、再現性よく完全性が高い目的物を大面積で得るのに 好滴である。

【0050】なお、この方法においてMBE装置を用い た場合でも、全く同様にして目的とする薄膜を得ること ができる。

【0051】金属薄膜の形成方法

金属薄膜は、蒸着により形成することが好ましい。蒸着 時の基板温度は500~750℃とすることが好まし い。基板温度が低すぎると結晶性の高い膜が得られにく く、基板温度が高すぎると膜の表面の凹凸が大きくなり

キシャル膜であることが確認された。

がらRfプラズマを導入することにより、さらに結晶性を向上させることができる。具体的には、例えばPt 薄膜において、(100)配向結晶中に(111)配向結晶が混入することを防ぐ効果がある。

【0052】本発明では、金属薄膜表面の平坦度は一般に良好となるが、金属薄膜の厚さや形成方法によっては十分な平坦度が得られないこともある。そのような場合には、金属薄膜表面を研磨して平坦化することができる。研磨には、アルカリ溶液等を用いる化学的研磨、コロイダルシリカ等を用いる機械的研磨、化学的研磨と機 10 械的研磨との併用などを用いればよい。

【0053】積層薄膜表面を研磨すると、研磨歪が残留することがある。研磨歪を除去する必要がある場合、積層薄膜にアニールを施すことが好ましい。アニールは、好ましくは300~850℃、より好ましくは400~750℃で、好ましくは1秒間~30分間、より好ましくは5~15分間行う。

[0054]

【実施例】以下、本発明の具体的実施例を示し、本発明 をさらに詳細に説明する。

【0055】 実施例1

Si(100) 単結晶基板上に、 ZrO_2 薄膜、 Y_2O_3 薄膜、Pt 薄膜がこの順で積層された積層薄膜を、以下の手順で形成した。

【0056】まず、表面が(100)面となるように切断して鏡面研磨したSi単結晶ウエハ(直径2インチ、厚さ250 μ mの円板状)を用意した。このウエハ表面を40%フッ化アンモニウム水溶液により、エッチング洗浄した。

【0057】次に、図8に示す蒸着装置1を用い、真空槽1a内に設置された回転および加熱機構を備えた基板ホルダ3に上記単結晶基板2を固定し、真空槽を10⁻⁶ Torrまで油拡散ポンプにより排気した後、基板洗浄面をSi酸化物を用いて保護するため、基板を20rpmで回転させ、酸素を基板付近にノズル8から10cc/分の割合で導入しつつ、600℃に加熱した。これにより基板表面が熱酸化され、基板表面に厚さ約1nmのSi酸化物膜が形成された。

【0058】次いで、基板を900℃に加熱し、回転させた。回転数は20rpmとした。このとき、ノズルから酸素ガスを10cc/分の割合で導入すると共に、金属2rを蒸発源から蒸発させて前記基板表面に供給し、前工程で形成したSi酸化物の還元と薄膜形成とを行った。なお、金属2rの供給量は、 ZrO_2 の膜厚に換算して10mmとした。この薄膜は、X線回折において ZrO_2 の(002)ピークが明瞭に観察され、(001)単一配向で高結晶性の ZrO_2 薄膜であることが確認された。また、この ZrO_2 薄膜は、図2に示すように、RHEEDにおいて完全なストリークパターンを示し、表面が分子レベルで平坦であって、かつ高結晶性のエピタ

【0059】次に、この ZrO_2 薄膜を形成した単結晶 基板を基板とし、基板温度900℃、基板回転数20rp m、酸素ガス導入量10cc/分の条件で、基板表面に金属Yを供給することにより、 Y_2O_3 薄膜を形成した。金属Yの供給量は、 Y_2O_3 に換算して40 nmとした。この Y_2O_3 薄膜のRHEED像は、図3 に示されるようにシャープなスポット状であった。このことから、この Y_2 O_3 薄膜は、結晶性が良好なエピタキシャル膜であり、かつ、表面に凹凸が存在することがわかる。この Y_2O_3 薄膜の断面を、透過型電子顕微鏡により観察したところ、高さ10 nmのファセット面が存在し、ファセット面の比率は95 %以上であった。

12

【0060】次に、 Y_2O_3 薄膜上に厚さ100nmのPt 薄膜を形成した。基板温度は700℃、基板回転数は20 rpmとした。このPt 薄膜のRHEED像は、図4に示されるようにシャープなストリーク状であった。このことから、このPt 薄膜は、結晶性が良好なエピタキシャル膜であり、かつ、表面が分子レベルで平坦であることがわかる。

【0061】また、Pt 薄膜表面について、JIS B 0610 による十点平均粗さRz (基準長さ1000nm) を測定したところ、 $1.1\sim1$. 8nmであり、平坦性に優れていることが直接確認できた。

【0062】このようにして得られた $Pt/Y_2O_3/TrO_2/Si$ (100) 積層構造体のX線回折チャートを、図5に示す。図5には各薄膜について(100) と等価な面のピークおよび(001) と等価な面のピークだけが認められ、これから、各薄膜が(100) 単一配向または(001) 単一配向であることがわかる。図5において、Pt (200) 反射のロッキングカープの半値幅は 1.1° であり、配向性に優れていることが確認された。

 $2 \text{ r } O_2$ 薄膜および Y_2O_3 薄膜に替えて安定化ジルコニア薄膜を形成したほかは実施例 1 と同様にして、Pt/安定化ジルコニア/Si (100) 積層構造体を作製した。安定化ジルコニア薄膜の組成は、 $2 \text{ r } O_1$ $3 O_2-\delta$ とし、安定化ジルコニア薄膜を形成する際の基板温度、基板回転数および酸素導入量は、実施例 1 における $2 \text{ r } O_2$ 薄膜 $2 \text{ r } O_2$ 形成の際と同じとした。

【0063】実施例2

【0064】この安定化ジルコニア薄膜のRHEED像は、図6に示されるようにシャープなスポット状であった。このことから、この安定化ジルコニア薄膜は、結晶性が良好なエピタキシャル膜であり、かつ、表面に凹凸が存在することがわかる。この安定化ジルコニア薄膜断面の透過型電子顕微鏡写真を、図7に示す。図7において、右側がSi単結晶基板側である。バッファ層の金属薄膜との界面は、基板表面に平行な面(図中において垂直な面)がほとんどなく、大部分がファセット面から構50成されていることがわかる。この安定化ジルコニア薄膜

のファセット面の比率は、90%以上であった。 【0065】

【発明の効果】本発明では、Zr酸化物および希土類元素酸化物の少なくとも1種を含有するバッファ層を設け、このバッファ層の表面にファセット面を存在させる。このバッファ層表面に金属薄膜を直接形成したとき、金属薄膜は(100)単一配向で結晶性の良好な膜となり、しかも、金属薄膜の表面は分子レベルで平坦となる。また、ファセット面の存在によりバッファ層と金属薄膜との接触面積が増すので、金属薄膜の剥離を抑制できる。

【0066】また、本発明では、前記特開平9-110592号公報と異なり、バッファ層と金属薄膜との間に BaTiO $_3$ 等からなるペロプスカイト層を設ける必要がないため、製造工程が簡略化される。また、本発明におけるバッファ層は、ペロブスカイト層に比べ、より高い結晶性が安定して得られるため、バッファ層としての機能が高い。また、本発明におけるバッファ層は、BaTiO $_3$ 層に比べピンホールが発生しにくい。

【0067】本発明の積層薄膜を設けた基板上に、強誘電体、圧電体、超伝導体等からなる機能膜を積層することにより、不揮発性メモリ、赤外線センサ、光変調器、光スイッチ、OEIC、SAW素子、コンボルバ、コリメータ、メモリ素子、イメージスキャナ、薄膜バルク共振子、フィルタ、SQUID、ジョセフソン素子、超伝導トランジスタ、電磁波センサ、超伝導配線LSIなどが作製可能である。

【図面の簡単な説明】

【図1】(a)は、バッファ層表面の{111}ファセット面の模式図であり、(b)は、その拡大図であり、(c)は、このファセット面上に金属薄膜を形成した状態を示す模式図である。

【図2】

図面代用写真

14

【図2】結晶構造を示す図面代用写真であって、Si単結晶基板上に形成されたZrO₂薄膜のRHEED像である。

【図3】結晶構造を示す図面代用写真であって、図2に RHEED像を示す ZrO_2 薄膜上に形成された Y_2O_3 薄膜のRHEED像である。

【図4】結晶構造を示す図面代用写真であって、図3に RHEED像を示す Y_2O_3 薄膜上に形成された P_t 薄膜のRHEED像である。

0 【図5】Pt/Y₂0₃/Zr0₂/Si (100) 積層構造体のX線回折チャートである。

【図6】結晶構造を示す図面代用写真であって、Si単結晶基板上に形成された安定化ジルコニア薄膜のRHE ED像である。

【図7】結晶構造を示す図面代用写真であって、Si単結晶基板上に形成された安定化ジルコニア薄膜の断面の透過型電子顕微鏡写真である。

【図8】本発明の積層薄膜の形成に用いられる蒸着装置の一例を示す説明図である。

20 【符号の説明】

- 1 蒸着装置
- 1 a 真空槽
- 2 基板
- 3 ホルダ
- 4 回転軸
- 5 モータ
- 6 ヒータ
- 7 酸化性ガス供給装置
- 8 ノズル
- 9 Zr蒸発部
- 10 希土類元素蒸発部

【図4】

図面代用写真

BEST AVAILABLE COPY

【図1】

【図5】

【図3】

図面代用写真

【図6】

図面代用写真

BEST AVAILABLE CUTT

[図7]

図面代用写真

【図8】

BEST AVAILABLE COPY

フロントページの続き

(51) Int. Cl. ⁶		識別記号	FΙ		
H 0 1 L	27/108		H 0 1 L	27/04	С
	21/8242		•	27/10	6 5 1
	39/02	ZAA			
	39/24	ZAA		•	

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

11-312801

(43) Date of publication of application: 09.11.1999

(51)Int.CI.

H01L 29/43 H01L 21/203 H01L 27/04 H01L 21/822 H01L 27/10 H01L 27/108 H01L 21/8242 H01L 39/02 H01L 39/24

(21)Application number: 10-134634

(71)Applicant: TDK CORP

(22)Date of filing:

28.04.1998

(72)Inventor: NOGUCHI TAKAO

YANO YOSHIHIKO

(54) LAMINATED THIN FILM

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a laminated thin film having satisfactory crystallinity and containing a single orientation metal thin film.

SOLUTION: This laminated thin film has a metal thin film. which is an epitaxial film of cubic crystal (100) single orientation, and a buffer layer where a (111) facet surface is present on the interface which comes in contact with the metal thin film. The buffer laver contains zirconium oxide in which a rare- earth element oxide, zirconium oxide or a part of Zr is substituted with a rare- earth element or alkaline earth element.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]
[Date of requesting appeal against examiner's decision of rejection]
[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office