The Parking Lot Predicament

APS360 - Group 21

Michael Boyadjian, Matthew Ing, Scott Oxholm, and Olivia Tracey

Current Solutions

Current Solutions

The Problem

Possible Roadblocks

Camera Angle and Image Quality

Incorrect Parking (Double counting of cars)

Interference

SOLUTION: The Data

Source of Data

Segmentation Approaches

XML Files

```
<parking id="pucpr">
  <space id="1" occupied="1">
   <rotatedRect>
      <center x="300" y="207" />
     <size w="55" h="32" />
     <angle d="-74" />
   </rotatedRect>
   <contour>
     <point x="278" y="230" />
     <point x="290" y="186" />
     <point x="324" y="185" />
     <point x="308" y="230" />
    </contour>
  </space>
```

SpaceID	Occupied	SizeX	SizeY	SizeW	SizeH	Angle	PointAX	Poin
1	0	300	207	55	32	-74	278	
2	0	332	209	56	33	-77	325	
3	0	366	208	52	32	-77	355	
4	0	398	207	54	36	-79	389	
5	0	430	210	50	31	-75	421	
•	_		_			_	⊐	
1		0	J					

Segmentation Approaches

Sliding Window Method

Preprocessing the Lot

Empty Lot → Sharpening → Thresholding → Denoising → Contouring

Preprocessing the Lot

Data Classes

Data Classes

SOLUTION: The Model

Classification Of Parking Spots

CNN Classification

Weight Sharing During Less Computation Accuracy Convolutions

AlexNet CNN Classification

60 Million Parassification Accultation Over 90 Epochsputation Days of Training!

Transfer Learning Process

Scott's Thought?

Transfer Learning Process

Transfer Learning Process

Details and Choices

Initial Quantitative Analysis

RESULTS

Training Accuracy: 96.48%

Validation Accuracy: 93.33%

Test Accuracy: 93%

DEMONSTRATION

SOLUTION: The Results

Quantitative Outputs

ACTUAL

		ACIOAL					
		Occupied	Empty				
רהבעוכורט	Occupied	43	0				
	Етрту	2	63				

Sensitivity = 95.56%

Specificity = 100%

Precision = 100%

Accuracy = 98.14%

Qualitative Outputs

- 1) Total number of cars present
- 2) Pictures of all cars that are present:

Peculiarities

SOLUTION: Analysis and Discussion

Why was this a success?!?!?

Our Model Accuracy

~98%

SVM Baseline Model Accuracy

~84%

Extensions

1) Other Possible Applications

Sensor System (Vendor)	Time Accuracy
Radar/Magnetometer (Fybr)	78%
Radar (Sensys)	98%
Infrared (CPT)	92%
Image Recognition (Cysen)	77%
Magnetometer (StreetSmart)	81%

2) Comparison to Related Work

→ Textual Based Classifiers

Local Binary Patterns (LBP)

Local Phase Quantization (LPQ)

89%

Outlook on Overall Performance

