MACM 201 Homework 3 (Quiz Sep. 26)

Textbook problems:

Section	Question
11.2	16
12.1	4
12.1	16
12.2	2
12.2	4
12.2	10
12.2	12
12.2	20

Instructor question(s):

- 1. Let G = (V, E) be a loopless graph with |V| = n. The **complement** \overline{G} of G is the loopless graph $\overline{G} = (V, \overline{E})$ where $\overline{E} = \{\{x, y\} \mid x \neq y \text{ and } \{x, y\} \notin E\}$. In other words, the edge set of \overline{G} is the set of all edges that are not in G. See Fig. 11.9 in your textbook for an illustration.
 - (a) If $|E| = |\overline{E}|$ what is |E| in terms of n?
 - (b) If $|E| = |\overline{E}|$ show that either n = 4k or n = 4k + 1 for some integer k.
 - (c) Draw a graph on 5 vertices that is isomorphic to its complement.
 - (d) Prove that if a graph G is not connected, then \overline{G} is connected. (Hint: draw a small example with n=5,6 where G is not connected. Try to see why \overline{G} is connected)
- 2. In this problem we consider spanning trees in the complete graph K_n
 - (a) Draw all spanning trees of K_4
 - (b) Let v be an arbitrary vertex of K_n . Find a formula for the number of spanning trees where v is a pendant vertex.