C++ arrays

Tessellation

Vertex array

Index array

Circle ring

Sphere

Sphere

Interpolation

Cubic

Assignment 2

Tessellation Interpolation

Tessellation & Interpolation

EDAF80: Computer Graphics

Rikard Olajos

AGENDA

1 C++ arrays

Tessellation

Interpolation

Assignment 2

RAW ARRAYS: STACK & HEAP ALLOCATION

C++ arrays

Vertex array
Index array
Parametric surfaces
Circle ring
Sphere
Torus

Interpolation Linear Cubic

Assignment .
Tessellation

Tessellation Interpolation Demo

Stack

```
float numbers[3];
numbers[0] = 1.0f;
...
```

Stack: direct initialization

```
float numbers[3] = { 1.0f, 2.0f, 3.0f };
```

Heap

```
float* numbers = new float[3];
number[0] = 1.0f;
...
delete[] numbers;
```

STL ARRAYS: VECTOR & ARRAY

C++ arrays

Vertex array Index array Parametric surfaces Circle ring Sphere

Interpolation Linear Cubic

Assignment 2
Tessellation
Interpolation

Includes

```
#include <array>
#include <vector>
```

Initialization

```
std::array<int, 3> arr;  // Static array with 3 integers
std::vector<float> vec;  // Dynamic array with floats (on the heap)
```

Element access & size

```
arr[0] = 1;  // Set first element to 1
vec.push_back(1.0f);  // Add 1.0f to end of vector
std::cout << vec[0];  // Print first element of 'vec'
std::cout << vec.size();  // Print number of elements in 'vec'</pre>
```

TESSELLATION

Tessellation

Vertex array
Index array
Parametric surfa

Sphere
Torus

iterpolation

Linear

A --!----

Tossellation

Interpolation

- Setup vertex array
- Setup index array (triangulate)

CREATE VERTEX ARRAY

C++ arrays

Vertex array Index array Parametric surfaces

Circle ring Sphere

Interpolation Linear

Assignment

Tessellation Interpolation • Create vertex array (e.g. 3×3 vertices)

```
auto vertices = std::vector<glm::vec3>(9);
```

Assign vertex

```
vertices[index] = glm::vec3(x, y, z);
```

VERTEX ARRAY LAYOUT

Vertex array

TRIANGULATION

Index array

• Create index array $(2 \times (3-1)(3-1))$ triangles)

```
auto indices = std::vector<glm::uvec3>(8);
```

Define triangle (indices for the three vertices)

```
indices[index] = glm::uvec3(v0, v1, v2);
```


C++ arrays

Tossollatio

Vertex arra

Index array
Parametric surface
Circle ring

Sphere Torus

nterpolatio

Cubic

Assignme

Tessellation

Demo

INDEX ARRAY LAYOUT

- Indices in counter-clockwise order (CCW)
- Backface culling is off by default, turn it on to improve performance!

```
indices[0].x = 0;
indices[0].y = 1;
indices[0].z = 4;
indices[1].x = 0;
indices[1].y = 4;
indices[1].z = 3;
```


PARAMETRIC SURFACES

C++ arrays

Taccallation

Vertex array

Parametric surfaces

Circle rin

Spnere

nterpolatio

Cubic

A ---!-----

, toolgrilleric

ressellation

Demo

C++ arrays

Tossallation

Vertex array

Parametric surfaces

Circle ring Sphere

iorus

Interpolation

Linear

Assignmen

Tessellation Interpolation

PARAMETRIC SURFACE & TANGENT SPACE

• Map surface from 2D:

$$\bar{p}(x,y,z) = \bar{p}(u,v)$$

• $\mathbb{R}^2 \mapsto \mathbb{R}^3$

PARAMETRIC SURFACE & TANGENT SPACE

C++ arrays

Toscollation

Vertex array

Parametric surfaces

Circle ring

Sphere

lakawa a laki

Linear

Cubic

Assignmen

Tessellation Interpolation Map surface from 2D:

$$\bar{p}(x,y,z) = \bar{p}(u,v)$$

- $\mathbb{R}^2 \mapsto \mathbb{R}^3$
 - Tangent $t = \frac{\partial \bar{p}}{\partial u}$

PARAMETRIC SURFACE & TANGENT SPACE

Parametric surfaces

• Map surface from 2D:

$$\bar{p}(x,y,z) = \bar{p}(u,v)$$

- $\mathbb{R}^2 \mapsto \mathbb{R}^3$
 - Tangent $t = \frac{\partial \bar{p}}{\partial u}$ Binormal $b = \frac{\partial \bar{p}}{\partial v}$

PARAMETRIC SURFACE & TANGENT SPACE

Parametric surfaces

• Map surface from 2D:

$$\bar{p}(x,y,z) = \bar{p}(u,v)$$

- $\mathbb{R}^2 \mapsto \mathbb{R}^3$
 - Tangent $t = \frac{\partial \bar{p}}{\partial u}$

 - Binormal $b = \frac{\partial \bar{p}}{\partial v}$ Normal $n = \frac{\partial \bar{p}}{\partial u} \times \frac{\partial \bar{p}}{\partial v}$

CIRCLE RING

Circle ring

$$\bar{\pmb{\rho}}(\pmb{r},\theta) = \left\{\begin{matrix} \pmb{r}\cos(\theta) \\ \pmb{r}\sin(\theta) \\ 0 \end{matrix}\right\} \text{ for } \begin{matrix} \pmb{r}_1 \leq \pmb{r} \leq \pmb{r}_2 \\ 0 \leq \theta < 2\pi \end{matrix}$$

$$t = rac{\partial ar{p}}{\partial r} = egin{cases} \cos(heta) \ \sin(heta) \ 0 \end{cases}$$

$$b = \frac{\partial \bar{p}}{\partial \theta} = \begin{cases} -r\sin(\theta) \\ r\cos(\theta) \\ 0 \end{cases}$$

SPHERE

C++ arrays

Tassallatio

Vertex array Index array

Parametric surface

Circle ring Sphere

Torus

nterpolation

Assignment

Tessellation

Interpolation

$$\bar{\boldsymbol{\rho}}(\theta,\varphi) = \begin{cases} r\sin(\theta)\sin(\varphi) \\ -r\cos(\varphi) \\ r\cos(\theta)\sin(\varphi) \end{cases} \text{ for } \begin{array}{l} 0 \leq \theta \leq 2\pi \\ 0 \leq \varphi \leq \pi \end{array}$$

$$egin{aligned} oldsymbol{t} &= rac{\partial ar{p}}{\partial heta} = \left\{ egin{aligned} oldsymbol{r}\cos(heta)\sin(arphi) \ -oldsymbol{r}\sin(heta)\sin(arphi) \end{array}
ight\} \end{aligned}$$

$$b = \frac{\partial \bar{p}}{\partial \varphi} = \begin{cases} r \sin(\theta) \cos(\varphi) \\ r \sin(\varphi) \\ r \cos(\theta) \cos(\varphi) \end{cases}$$

SPHERE

C++ arrays

Vertex array Index array

Circle ring

Sphere

Interpolation

Cubic

Assignment

Tessellation Interpolation Demo

$$\bar{\pmb{\rho}}(\theta,\varphi) = \begin{cases} r\sin(\theta)\sin(\varphi) \\ -r\cos(\varphi) \\ r\cos(\theta)\sin(\varphi) \end{cases} \text{ for } \begin{array}{l} 0 \leq \theta \leq 2\pi \\ 0 \leq \varphi \leq \pi \end{array}$$

$$egin{aligned} oldsymbol{t} = rac{\partial ar{oldsymbol{p}}}{\partial heta} = \left\{ egin{aligned} oldsymbol{r}\cos(heta)\sin(arphi) \ -oldsymbol{r}\sin(heta)\sin(arphi) \end{array}
ight\} \end{aligned}$$

$$b = \frac{\partial \bar{p}}{\partial \varphi} = \begin{cases} r \sin(\theta) \cos(\varphi) \\ r \sin(\varphi) \\ r \cos(\theta) \cos(\varphi) \end{cases}$$

- t and b can be simplified since only direction is important
- t needs to be simplified, or it will be undefined for $\varphi = 0$

$$\bar{p}(\theta,\varphi) = \begin{cases} (r_{a} + r_{b}\cos(\theta))\cos(\varphi) \\ (r_{a} + r_{b}\cos(\theta))\sin(\varphi) \\ -r_{b}\sin(\theta) \end{cases} \text{ for } \begin{array}{l} 0 \leq \theta \leq 2\pi \\ 0 \leq \varphi \leq 2\pi \end{array}$$

$$t = \frac{\partial \bar{p}}{\partial \theta} = \begin{cases} -r_b \sin(\theta) \cos(\varphi) \\ -r_b \sin(\theta) \sin(\varphi) \\ -r_b \cos(\theta) \end{cases}$$

$$b = \frac{\partial \bar{p}}{\partial \varphi} = \begin{cases} -(r_a + r_b \cos(\theta)) \sin(\varphi) \\ (r_a + r_b \cos(\theta)) \cos(\varphi) \\ 0 \end{cases}$$

TORUS

C++ arrays

Toccollation

Vertex array

Index array

Circle ring

Sphere

nterpolation

Linear

Assignmen

Tessellation

Demo

$$\bar{\boldsymbol{\rho}}(\boldsymbol{x}) = \begin{bmatrix} 1 & \boldsymbol{x} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} \bar{\boldsymbol{\rho}}_i \\ \bar{\boldsymbol{\rho}}_{i+1} \end{bmatrix} \text{ for } \boldsymbol{x} \in [0,1]$$

C++ arrays

Toccollation

Vertex array

Index array

Circle ring

Sphere

nterpolation

Linear

Assignmen

Tessellation

Demo

$$\bar{\pmb{p}}(\pmb{x}) = \begin{bmatrix} 1 & \pmb{x} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} \bar{\pmb{p}}_i \\ \bar{\pmb{p}}_{i+1} \end{bmatrix}$$
 for $\pmb{x} \in [0,1]$

$$\bar{\boldsymbol{p}}(\boldsymbol{x}) = (1 - \boldsymbol{x})\bar{\boldsymbol{p}}_i + \boldsymbol{x}\bar{\boldsymbol{p}}_{i+1}$$

C++ arrays

Tanadlatian

Vertex array

Index array

Circle ring

Sphere

nterpolation

Linear

Assianmen:

Tessellation

Interpolation

$$\bar{\pmb{\rho}}(\pmb{x}) = \begin{bmatrix} 1 & \pmb{x} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} \bar{\pmb{\rho}}_i \\ \bar{\pmb{\rho}}_{i+1} \end{bmatrix} \text{ for } \pmb{x} \in [0,1]$$

$$\bar{\boldsymbol{p}}(\boldsymbol{x}) = (1 - \boldsymbol{x})\bar{\boldsymbol{p}}_i + \boldsymbol{x}\bar{\boldsymbol{p}}_{i+1}$$

C++ arrays

Tossallation

Vertex array Index array Parametric surfaces Circle ring

nternolatio

Linear

Assignm

Tessellation

Demo

$$\bar{\boldsymbol{p}}(\boldsymbol{x}) = \begin{bmatrix} 1 & \boldsymbol{x} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} \bar{\boldsymbol{p}}_i \\ \bar{\boldsymbol{p}}_{i+1} \end{bmatrix}$$
 for $\boldsymbol{x} \in [0, 1]$

$$\bar{\boldsymbol{p}}(\boldsymbol{x}) = (1 - \boldsymbol{x})\bar{\boldsymbol{p}}_i + \boldsymbol{x}\bar{\boldsymbol{p}}_{i+1}$$

C++ arrays

Tossollation

Vertex array Index array Parametric surfaces Circle ring

nternolation

Linear

Assignment

Tessellation Interpolation

$$ar{m{p}}(m{x}) = egin{bmatrix} 1 & m{x} \end{bmatrix} egin{bmatrix} 1 & 0 \ -1 & 1 \end{bmatrix} egin{bmatrix} ar{m{p}}_i \ ar{m{p}}_{i+1} \end{bmatrix}$$
 for $m{x} \in [0,1]$

$$\bar{\boldsymbol{p}}(\boldsymbol{x}) = (1 - \boldsymbol{x})\bar{\boldsymbol{p}}_i + \boldsymbol{x}\bar{\boldsymbol{p}}_{i+1}$$

C++ arrays

Tossollation

Vertex array Index array Parametric surface: Circle ring

nternolatio

Linear

Assignmen

Tessellation Interpolation

$$\bar{\pmb{p}}(\pmb{x}) = \begin{bmatrix} 1 & \pmb{x} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} \bar{\pmb{p}}_i \\ \bar{\pmb{p}}_{i+1} \end{bmatrix}$$
 for $\pmb{x} \in [0,1]$

$$\bar{\boldsymbol{p}}(\boldsymbol{x}) = (1 - \boldsymbol{x})\bar{\boldsymbol{p}}_i + \boldsymbol{x}\bar{\boldsymbol{p}}_{i+1}$$

C++ arrays

Tossallation

Vertex array Index array Parametric surface

Sphere Torus

nterpolation

Linear

Assignmen

Tessellation Interpolation

$$\bar{\pmb{\rho}}(\pmb{x}) = \begin{bmatrix} 1 & \pmb{x} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} \bar{\pmb{\rho}}_i \\ \bar{\pmb{\rho}}_{i+1} \end{bmatrix} \text{ for } \pmb{x} \in [0,1]$$

$$\bar{\boldsymbol{p}}(\boldsymbol{x}) = (1 - \boldsymbol{x})\bar{\boldsymbol{p}}_i + \boldsymbol{x}\bar{\boldsymbol{p}}_{i+1}$$

C++ arrays

Tossallation

Vertex array Index array

Parametric surfac

Sphere Torus

nterpolation

Linear

Assignmen

Tessellation Interpolation

$$ar{m{p}}(m{x}) = egin{bmatrix} 1 & m{x} \end{bmatrix} egin{bmatrix} 1 & 0 \ -1 & 1 \end{bmatrix} egin{bmatrix} ar{m{p}}_i \ ar{m{p}}_{i+1} \end{bmatrix}$$
 for $m{x} \in [0,1]$

$$\bar{\boldsymbol{p}}(\boldsymbol{x}) = (1 - \boldsymbol{x})\bar{\boldsymbol{p}}_i + \boldsymbol{x}\bar{\boldsymbol{p}}_{i+1}$$

C++ arrays

Toccollation

Vertex array Index array

Circle ring
Sphere

Interpolation

Cubic

Assiann

Tessellation Interpolation

CUBIC INTERPOLATION (CATMULL-ROM)

$$\bar{q}(\mathbf{x}) = \begin{bmatrix} 1 & \mathbf{x} & \mathbf{x}^2 & \mathbf{x}^3 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 & 0 \\ -\tau & 0 & \tau & 0 \\ 2\tau & \tau - 3 & 3 - 2\tau & -\tau \\ -\tau & 2 - \tau & \tau - 2 & \tau \end{bmatrix} \begin{bmatrix} \bar{p}_{i-1} \\ \bar{p}_{i} \\ \bar{p}_{i+1} \\ \bar{p}_{i+2} \end{bmatrix} \text{ for } \mathbf{x} \in [0, 1]$$

C++ arrays

Tossallation

Index array
Parametric surface
Circle ring
Sphere

Interpolation

Cubic

Assignmen

Tessellation Interpolation Demo

$$\bar{q}(\mathbf{x}) = \begin{bmatrix} 1 & \mathbf{x} & \mathbf{x}^2 & \mathbf{x}^3 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 & 0 \\ -\tau & 0 & \tau & 0 \\ 2\tau & \tau - 3 & 3 - 2\tau & -\tau \\ -\tau & 2 - \tau & \tau - 2 & \tau \end{bmatrix} \begin{bmatrix} \bar{\mathbf{p}}_{i-1} \\ \bar{\mathbf{p}}_{i} \\ \bar{\mathbf{p}}_{i+1} \\ \bar{\mathbf{p}}_{i+2} \end{bmatrix} \text{ for } \mathbf{x} \in [0, 1]$$

C++ arrays

lessellation
Vertex array
Index array
Parametric surface
Circle ring
Sphere

Interpolation Linear

Linear Cubic

Assignment 2
Tessellation
Interpolation

$$\bar{q}(\mathbf{x}) = \begin{bmatrix} 1 & \mathbf{x} & \mathbf{x}^2 & \mathbf{x}^3 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 & 0 \\ -\tau & 0 & \tau & 0 \\ 2\tau & \tau - 3 & 3 - 2\tau & -\tau \\ -\tau & 2 - \tau & \tau - 2 & \tau \end{bmatrix} \begin{bmatrix} \bar{\mathbf{p}}_{i-1} \\ \bar{\mathbf{p}}_{i} \\ \bar{\mathbf{p}}_{i+1} \\ \bar{\mathbf{p}}_{i+2} \end{bmatrix} \text{ for } \mathbf{x} \in [0, 1]$$

- ullet au= tension, how "stiff" the curve is at the control points
- Keep within [0, 1]
- Good initial value: 0.5

ASSIGNMENT 2

C++ array

Vertex array Index array Parametric surfaces Circle ring Sphere

Linear Cubic

Assignment 2

Tessellation Interpolation Demo

- Tessellate objects from parametric equations
- Linear and cubic interpolation
- Files you have to modify
 - src/EDAF80/assignment2.cpp
 - src/EDAF80/parametric_shapes.cpp
 - src/EDAF80/interpolation.cpp

TESSELLATION

C++ array

Vertex array Index array Parametric surface Circle ring

Torus

Linear

Assignment

Tessellation Interpolation • Implement function bodies in src/EDAF80/parametric_shapes.cpp

```
bonobo::mesh_data parametric_shapes::createQuad(...);
bonobo::mesh_data parametric_shapes::createSphere(...);
bonobo::mesh_data parametric_shapes::createTorus(...); // Optional
```

TESSELLATION

C++ arrays

Vertex array Index array Parametric surfaces Circle ring Sphere

Interpolation Linear

Assignment :

Tessellation

Implement function bodies in src/EDAF80/parametric_shapes.cpp

```
bonobo::mesh_data parametric_shapes::createQuad(...);
bonobo::mesh_data parametric_shapes::createSphere(...);
bonobo::mesh_data parametric_shapes::createTorus(...); // Optional
```

- Look at createCircleRing(...) in the same file for guidance
- Make sure parameter definitions and ranges are correct
 - Circle ring: $0 \le \theta < 2\pi, r_1 \le r \le r_2$
 - Sphere: $0 \le \theta \le 2\pi, 0 \le \varphi \le \pi$

DEBUGGING NORMALS

C++ arrays

Vortov array

Index array
Parametric surface
Circle ring
Sphere

Interpolation

Cubic

Assignmen

Tessellation

Interpolation Demo

- Colourize, use the "Normals" shader to represent normals as RGB values
- Inspect illumination, is illumination consistent with the location of the light source?

COLOURIZING NORMALS

C++ arrays

• Map from [-1,1] to [0,1]

• $(N \cdot 0.5) + 0.5$

• Example: Z axis (0,0,1) becomes (0.5,0.5,1)

• Values are normalized: $(1,1,1)\mapsto (\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}})$

Interpolation

Assianment

Assignment . Tessellation

Tessellation Interpolation

$$(1,1,1) \mapsto (1,1,1)$$

$$(-1, -1, -1) \mapsto (0, 0, 0)$$

$$(1,0,0) \mapsto (1,0.5,0.5)$$

TOOLS IN GUI

Tessellation

- Change cull mode: Disabled, Back faces, Front faces
- Change polygon mode: Fill, Line, Point
- Change shaders: Fallback, Diffuse, Normal, Tangent, Bitangent, Texture coords

INTERPOLATION

C++ arrays

Vertex array Index array Parametric surfaces Circle ring

Interpolation

Cubic

Tessellation

Interpolation

- Implement linear and cubic interpolation
- Implement function bodies in src/EDAF80/interpolation.cpp

```
glm::vec3 interpolation::evalLERP(...);
glm::vec3 interpolation::evalCatmullRom(...);
```

- Test with just 2 (LERP) or 4 (cubic) points first
- Animate an object along the path using both function and the predefined control points
- use_linear and catmull_rom_tension variables are bound to the GUI and should be used

IMPLEMENTATION SKETCH

Tessellation
Vertex array
Index array
Parametric surfaces
Circle ring
Sphere

Interpolation Linear

Assignment

Tessellation Interpolation

```
// Tnit:
std::array<glm::vec3, N> control points = { ... };
float path_pos = 0.0f;
float velocity = ...
// Main loop:
    int i = floor(path pos);
    // Pick indices for interpolation: i-1, i, i+1, i+2
    // Make sure indices wrap: 0, 1, .... N-1. 0, 1. ...
    // Call interpolation function with points from control points
    path_pos += velocity;
```

DEMO

C++ arrays

Tessellation

Vertex array

Index array

Circle ring

Sphere

taka wa a bakta i

riccipolatio

Cubic

Assignment 2

Tessellation

Interpolation

Demo

