Project Ballbot

Markus Lamprecht Florian Müller Michael Suffel

TU Darmstadt, RTM

In halts verzeichn is

1	Iten	n - List
2	Sim	ulation
	2.1	Launch
	2.2	Gazebo - Controller Synchronization
	2.3	Simulation design
	2.4	Gazebo Parameters
	2.5	How to model an omni wheel gazebo:
	2.6	omni wheel controllers
	2.7	Control
		2.7.1 Plugins
		2.7.2 Launch
	2.8	Sensors
		2.8.1 IMU
3	3 Moo	del
	3.1	Composition
	3.2	Assumptions
	3.3	•

1 Item - List				
Item	#	W.[g]	Weblink	Picture
OpenCR Board (Controlling the motors, IMU)	1	60	github_wiki	Manuary and the state of the st
UpBoard (Main PC)	1	96	127€	
Intel RealSense R200	1	9.4	datasheet, 84.15€	
Laser Distance Sensor	1	124	specs, 100€	
				USO 2 to selected a late of to brain and of the selected and the selected
Battery: LI-PO 11.1 1800mAh LB-12 19 Turtlebot3 Layers(125cmx125cm)	$\frac{1}{4}$	132	44.90€	
				3) Dhuog
XM430-W350-R Dynamixel (Motors)	3	82	robotis,250€	X-Sories Q
Ball(alum., dia.: 140mm, material thickness 2.5mm)	1	400	ball-tech gmbh, 40 €.	
				3
Omni wheels (dia: 60mm , thickness: 25mm)	3	51.46	10.38€	
Kreisring (PLA, 3D printeted)	1	28		Although Time.
H. I. (DI A. oD. ot. ot. 1)		10		
Halterung (PLA, 3D printeted)	3	18		
Mitnehmer (PLA, 3D printeted)	3	8		
Plain washer (Beilagscheibe),(PLA, 3D printeted)	3	0.45		•
M3 (Mutter-Halterung-Kreisring-Layer)	9	0.10		
M2.5 (Kreisring-Layer)	2			
M3x8mm Halterung	6		Zylinderkopf (Imbus)	
M3x22mm Layer	3	1.34	Zylinderkopf (Imbus)	
M2.5x22 (Motoren-Halterung)	12		Sechskant	
M2.5x38 (Motoren-Rad)	3		Zylinderkopf (Imbus)	
M2.5x24 (Layer)	2		Zylinderkopf (Imbus)	
M2x6mm (Mitnehmer-Motor)	12		Zylinderkopf (Imbus)	
Distanzbolzen	???	4.	???	
Total Cost: 1176€ + Cost of opencr board and all	plastic	c (incl. t	b3 structure) and scrwes	

Tabelle 1.1: Screws:

Tabelle 1.1. Selews.				
Type	Size	Amount	Place	
Cylinderhead screw	$M3 \times 11 mm$	8	Motor mounts	
Cylinderhead screw	$M2,5 \times 22 mm$	16	Motor plate	
Cylinderhead screw	$M2 \times 6 \text{ mm}$	18	Wheel shaft	
Cylinderhead screw	M2,5 x 36 mm (38 mm)	5	Wheel shaft cover	
Cylinderhead screw	$M3 \times 20 \text{ mm}$ (21mm)	4	Layer mounting	
Nut	M2	5	Layer mounting	
Cylinderhead screw	$\begin{array}{c} \rm M2.5~x~22mm\\ (23mm) \end{array}$	4	Layer mounting	

2 Simulation

TODO: check if controller works check why imu fails

2.1 Launch

These files are executed one after another:

1. bb simulation: ballbot.launch

2. bb_description: bb_description.launch

3. bb description -> urdf: bb.xacro

4. bb description -> urdf: bb.urdf.xacro

5. bb description -> urdf: common properties.xacro

6. bb description -> urdf: bb.gazebo.xacro

2.2 Gazebo - Controller Synchronization

The calculation of the 2D torques takes around: 0.000187 s.

Consider to take the right joint states as also all subwheel states are published.

Erst wenn das Motordrehmoment grosser als die wheel joint friction ist, bewegt sich das rad!.

Denke daran die joint states position und velocity in einen winkel und winkelgeschwindigkeit umzurechnen.

The state of each joint (revolute or prismatic) is defined by:

the position of the joint (rad or m),

the velocity of the joint (rad/s or m/s) and

the effort that is applied in the joint (Nm or N).

Muss ich nun in winkelgeschwindigkeit umrechnen oder nicht?!

Das seltsame: Ich kann keinen kontinuierlichen effort draufgeben. UnabhÃd'ngig von der publish rate, es wird of 3 mal eine 1 drauf gegeben und anschlieçend eine 0.

Groesstes Problem bleibt: Die motor commands (torques) koennen nicht kontinuierlich rausgeschickt werden. Es werden immer wieder 0 rausgschickt - warum ist das so?

2.3 Simulation design

Ballbot SDF Reference: Ballbotmodel

We use not the sdf but the xacro description as in this example here.

Gazebo uses different physics engines:

- Open Dynamics Engine (ODE) (Default)
- Bullet
- Dynamic Animation and Robotics Toolkit (DART)
- Simbody

which all have different friction etc. models.

Files:

- bb.urdf.xacro: Link's: Visual description of the Robot and its collision model(STL file). Pose Mass and Inertias. Joint's: Pose, axis, effort and velocity limits, friction.
- common properties.xacro: Macros for color definition.
- bb.gazebo.xacro: gazebo references dynamics of the links: friction parameters (mu1,mu2),

Gazebo Para	ameter's List:		
name(xacro)	description	value	sdf group
mu1	is the Coulomb friction coefficient for the first friction direction	1.0	ode
mu2	is the friction coefficient for the second friction direction (perpendicular to the first friction direction)	2.0	ode
fdir1	3-tuple specifying direction of mu1 in the collision local reference frame. fdir1 is the vector that defines the direction of mu1, which is the principal contact direction	0 0 0	ode
kp	spring constant equivalents of a contact as a function of SurfaceParams::cfm and SurfaceParams::erp		ode
kd	spring damping constant equivalents of a contact as a function of SurfaceParams::cfm and SurfaceParams::erp.		ode
cfm	Constraint Force Mixing parameter.		ode
erp	Error Reduction Parameter.		ode
\min_{depth}	Minimum depth before ERP takes effect.		ode
max_Vel	Maximum interpenetration error correction velocity. If set to 0, two objects interpenetrating each other will not be pushed apart.		ode
slip1	Artificial contact slip in the primary friction direction		ode
slip2	Artificial contact slip in the secondary friction direction.		ode
See: ODES	urfaceParams		

Urdf Parameter's List: JOINT TAGS:

name(xacro tag) description value

axis this is the axis around the joint is revolting or linear xyz="0 1 0"

dynamics set the friction and the damping friction="0.7" damping = "0.0"

2.4 Gazebo Parameters

2.5 How to model an omni wheel gazebo:

- http://answers.gazebosim.org/question/5562/modeling-omni-wheels/
- 2. http://answers.gazebosim.org/question/5562/modeling-omni-wheels/
- $3. \ \text{http://answers.gazebosim.org/question/5476/parameters-for-a-skid-steering simulated-tracked and the steering simulated and simulated and simulated and simulated and simulated$
- 4. https://bitbucket.org/osrf/gazebo/pull-requests/2652/added-support-for-tracked-vehicles/diff
- 5. https://bitbucket.org/osrf/gazebo/pull-requests/2652/added-support-for-tracked-vehicles/diff
- 6. https://bitbucket.org/osrf/gazebo/issues/2068/directional-friction-still-broken
- 7. https://answers.ros.org/question/212889/gazebo-planar-move-plugin-for-omni-directional-wiFor instance, the PR2 and Care-O-Bot are omnidirectional drive robots available for simulation in
 gazebo. Both use a system of four steered and driven casters (for a total of 8 motors) to achieve
 omnidirectional mobility. If you're interested in simulation of a meccanum-wheel drive robot, I'm
 not sure there is one available for gazebo. Last time I looked, the youbot for gazebo used no true
 meccanum wheels, but a similar system to the two robots I mentioned above.

2.6 omni wheel controllers

libgazebo_ros_skid_steer_drive.so https://github.com/fsuarez6/labrob/blob/master/labrob_description/urdf/labrob.urdf.xacro

2.7 Control

sobald diff drive plugin angeschaltet drehen sich die raeder viel zu schnell

Diff Drive in ballbot.launch an oder ausschalten.

in bb.gazebo.xacro transmission und controller festlegen.

zudem yaml file(currently I use: effort controllers/JointVelocityController)

Effort Joint Interface as Hardware Interface is used.

Do this example first: http://gazebosim.org/tutorials/?tut=ros_control

Also try this bb8 gazebo tutorial: https://www.youtube.com/watch?v=j5qC91448p8

2.7.1 Plugins

- gazebo-ros-control
- diff drive

2.7.2 Launch

roslaunch rrbot_control rrbot_control.launch

These files are executed one after another:

- 1. load config
- 2. controller spawner

2.8 Sensors

2.8.1 IMU

We want to simulate the IMU of the opencr board. STRG+T to see imu topic values! Imu of opencr board simulated

Simulate like this: rviz rviz dann als fixed frame nimm: imu_link. Und add topic imu und waehle als topic ballbot/sensor/imu

The simulated IMU outputs values like: orientation (x,y,z,w), angluar velocity(x,y,z), linear velocity(x,y,z), linear acceleration(x,y,z).

The opencr real IMU gives values like: orientation(x,y,z,w), angular velocity(x,y,z), linear acceleration(x,y,z) see $\frac{\text{http:}}{\text{turtlebot3.readthedocs.io/en/latest/appendix_opencr.html}}$

3 Model

3.1 Composition

The Ballbot consists of three parts, which are depicted in Figure 3.1.

- \bullet Body with motors
- 3 omni-directional wheels
- Ball

Abbildung 3.1: Parts for the 3D-Model

3.2 Assumptions

To reduce the complexity of the system, the following assumptions are made:

- No slip between the contact points between the ball/ground and wheels/ball
- No friction; except the friction, which occurs at the rotation of the ball around the z-axis
- No deformation
- Fast motor dynamics; The controlling of the motor is much faster than the controller of the Ballbot
- Ball moves only horizontal

3.3 Model Parameters

Traegheitsmoment kugel Hohlzylinder: $J=m\frac{r_i^2+r_a^2}{2}=0.4*\frac{65^2+70^2}{2}kg*10^{-6}m^2=1.825*10^{-3}kgm^2$ Traegheitsmoment wheel Vollzylinder: $J=m\frac{1}{2}r^2=0.05146*0.020^2=1.0292*10^{-4}kgm^2$

Tabelle 3.1: My caption

Parameter	Variable	Value	Source
T di dilitata	Variable	l varue	l Source
Mass of the ball	m_K	0,4 kg	Datasheet
Mass of the ball	m_K	0.397 kg	Measured
Mass of the ball	m_K	0,631 kg	SolidEdge
Mass of the body, complete			
(with motors/wheels)	m_B	?	Measured
Mass of the body, complete		1 705 1	G 1: 1D 1
(with motors/wheels)	m_B	1,785 kg	SolidEdge
Mass of the body	m	?	Measured
(without motors/wheels)	m_B	:	Measured
Mass of the body	m_	1,394 kg	SolidEdge
(without motors/wheels)	m_B		_
Mass of Omniwheel	m_{OW}	0,050 kg	Measured
Mass of Omniwheel	m_{OW}	0,046 kg	SolidEdge
Mass of the virtual wheel	m_{VW}	0,384 kg	Measured
Mass of the substructure, complete	m_S	0,506 kg	Measured
(with motors/wheels)	ms	0,000 kg	Wicasarca
Mass of the substructure, complete	m_S	0.457 kg	SolidEdge
(with motors/wheels)	5	, ,	J
Mass of plate	m_P	0,078 kg	Measured
Mass of plate	m_P	?	SolidEdge
	T	0.05	D . 1 .
Radius of the ball	r_{K}	0,07 m	Datasheet
Radius of the body	r_B	0,0703 m	Measured
Radius of the Wheels	r_W	0,03 m	Datasheet
Height of the center of gravity	1	0,24045 m	SolidEdge
Height of the body	h	0,34294 m	SolidEdge
Inertia of the Ball	Θ_{K}	$0.00131 \ kgm^2$	Computed
Inertia of the Body (x-axis)	Θ_{Bx}	$0.08751 \ kgm^2$	SolidEdge
Inertia of the Body (y-axis)	Θ_{By}	$0.08788 \ kgm^2$	SolidEdge
Inertia of the body (z-axis)	Θ_{Bz}	$0.00329 \ kgm^2$	SolidEdge
Inertia of the body (xy plane)	Θ_{Bxy}	$-0.00001 \ kgm^2$	SolidEdge
Inertia of the body (xz plane)	Θ_{Bxz}	$0,00203 \ kgm^2$	SolidEdge
Inertia of the body(zy plane)	Θ_{Bzy}	$0,00018 \ kgm^2$	SolidEdge
Inertia of the rotor (motor)	Θ_M	$0,444e-6 \ kgm^2$	Adoption
Inertia of Omniwheel	Θ_{OW}	$0.000023157 \ kgm^2$	Computed
Inertia of the actuating wheel in yz/xz	Θ_W	$0.058873 \ kgm^2$	Computed
Inertia of the actuating wheel in xy	Θ_{Wxy}	$0,16656 \; kgm^2$	Computed
			T = -
Gear ratio	i	353,5	Datasheet
Gravitational acceleration	g	$9,81 \ m/s^2$	BachelorThesis