

Navigating the TIVA Datasheet

So, you want to use the datasheet better?

Download It

- In-text hyperlinks
- Navigation side-bar

Skim It

Don't read it from cover to cover like a textbook.

CTRL-F Carefully

Too many results. There are more efficient ways to navigate

Know **Chapters**

\Rightarrow 5 System Control \Rightarrow 10-2 GPIO

- 10 GPIO
- ⇒ 11 Timers
- ⇒ 13 ADC
- \Rightarrow 20 PWM

Locate **Tables**

- - alternate
 - functions
- ⇒ 11-2 Timers

Register Maps

Looking for a certain register?

- Map before each register description section
- Page numbers hyperlinked
- Find address offsets easily

Ю	Pin	Analog Function	Digital Function (GPIOPCTL PMCx Bit Field Encoding) ^a										
			1	2	3	4	5	6	7	8	9	14	15
PA0	17	-	U0Rx		-		-		-	CAN1Rx	-	-	-
PA1	18	-	UOTx		-		-			CAN1Tx	-	-	-
PA2	19	-		SSIOC1k									
PA3	20	-		SSIOFss									
PA4	21	-		SSIORx							-	-	
PA5	22	-	-	SSIOTX	-		-				-	-	
PA6	23	-			I2C1SCL		M1PWM2						
PA7	24		-	-	I2C1SDA		M1PWM3				-	-	

Register Fields

Setting bit to 1/0? ex. PB5 DIR

- Find its bit field with the register diagram... ex. 5
- Use it for at-a-glance ex. 0b100000 checking your mask values or 0x20

Offset	Name	Туре	Reset	Description	See pag
System C	Control Registers				
0x000	DID0	RO	-	Device Identification 0	238
0x004	DID1	RO	0x10A1.606E	Device Identification 1	240
0x030	PBORCTL	RW	0x0000.7FFF	Brown-Out Reset Control	243
0x050	RIS	RO	0x0000.0000	Raw Interrupt Status	24
0x054	IMC	RW	0x0000.0000	Interrupt Mask Control	24
0x058	MISC	RW1C	0x0000.0000	Masked Interrupt Status and Clear	24
0x05C	RESC	RW		Reset Cause	25
0x060	RCC	RW	0x078E.3AD1	Run-Mode Clock Configuration	25
0x06C	GPIOHBCTL	RW	0x0000.7E00	GPIO High-Performance Bus Control	25
0x070	RCC2	RW	0x07C0.6810	Run-Mode Clock Configuration 2	26
0x07C	MOSCCTL	RW	0x0000.0000	Main Oscillator Control	26

Register Description

Should you set the bit to 1 or 0?

- Look under the register diagram for the description
- Last column states what happens with a 1 or a 0

	Bit/Field	Name	Туре	Reset	Description		
	7	TXFE	RO	1	UART Transmit FIFO Empty		
					The meaning of this bit depends on the state of the ${\tt FEN}$ bit in the ${\tt UARTLCRH}$ register.		
					Value Description		
4					0 The transmitter has data to transmit.		
					1 If the FIFO is disabled (FEN is 0), the transmit holding register is empty.		
					If the FIFO is enabled (FEN is 1), the transmit FIFO is empty.		

1/0

RO 0

DIR

RW 0

Initialization Steps

Need to write an init function?

- Instructions at the beginning of each section
- Order to do it in

Initialization and Configuration

The GPIO modules may be accessed via two different memory apertures. The legacy aperture, the Advanced Peripheral Bus (APB), is backwards-compatible with previous devices. The other aperture, the Advanced High-Performance Bus (AHB), offers the same register map but provides better back-to-back access performance than the APB bus. These apertures are mutually exclusive. The aperture enabled for a given GPIO port is controlled by the appropriate bit in the GPIOHBETL register (see page 258). Note that GPIO can only be accessed through the AHB aperture.

To configure the GPIO pins of a particular port, follow these steps:

- Enable the clock to the port by setting the appropriate bits in the RCGCGPIO register (see page 340). In addition, the SCGCGPIO and DCGCGPIO registers can be programmed in the same manner to enable clocking in Sleep and Deep-Sleep modes.
- Set the direction of the GPIO port pins by programming the GPIODIR register. A write of a 1 indicates output and a write of a 0 indicates input.