PROJET ESE LIDAR:

<u>Datasheet</u>: https://www.slamtec.com/en/Support#rplidar-a-series (à télécharger)

Figure 2-4 RPLIDAR Scanning Data Coordinate System Definition

Communication interface

The RPLIDAR A2 uses separate 5V DC power for powering the range scanner core and the motor system. And the standard RPLIDAR A2 uses XH2.54-5P male socket. Detailed interface definition is shown in the following figure:

Figure 2-5 RPLIDAR Power Interface Definition

Color	Signal Name	Туре	Description	Min	Typical	Max
Red	VCC	Power	Total Power	4.9V	5V	5.5V
Yellow	TX	Output	Serial port output of the scanner core	0V	3.3V	3.5V
Green	RX	Input	Serial port input of the scanner core	0V	3.3V	3.5V
Black	GND	Power	GND	0V	0V	0V
Blue	MOTOCTL	Input	Scan motor /PWM Control Signal (active high, internal pull down)	0V	3.3V	5V

Figure 2-6 RPLIDAR External Interface Signal Definition

Le LIDAR communique en UART 3.3V

Pour contrôler le scan du moteur, regarder la p12-13 de la datasheet.

Pour démarrer le LIDAR, il faut lui dire, il ne le fait pas lui-même.

Quand on envoie une requête, le LIDAR répond, il ne faut pas le surcharger, il faut attendre qu'il réponde avant d'envoyer de nouvelles requêtes.

COMMUNICATION:

Voir p6 rplidar_protocole à télécharger sur le site au début du doc

All request packets sent by a host system share the following common format. Little endian byte order is used.

Figure 2-4 RPLIDAR Request Packets' Format

Request Name	Value	Paylo ad	Response Mode	RPLIDAR Operation	Supporte d Firmware Version
STOP	0x25	N/A	No	Exit the current state and enter the idle state	1.0
RESET	0x40	N/A	response	Reset(reboot) the RPLIDAR core	1.0
SCAN	0x20	N/A		Enter the scanning state	1.0
EXPRESS_SCAN	0x82	YES	Multiple	Enter the scanning state and working at the highest speed	1.17
FORCE_SCAN	0x21	N/A	response	Enter the scanning state and force data output without checking rotation speed	1.0
GET_INFO	0x50	N/A	Single	Send out the device info (e.g. serial number)	1.0
GET_HEALTH	0x52	N/A		Send out the device health info	1.0
GET_SAMPLERA TE	0x59 N/A	response	Send out single sampling time	1.17	
GET_LIDAR_CON F	0x84	YES		Get LIDAR configuration	1.24

Figure 4-1 The Available Requests of RPLIDAR

Requête à envoyer pour démarrer le scan en mode express :

Avec C le checksum et M le mode (différent de 0 pour le mode extented, ou 0 pour mode legacy)

En mode legacy ça donne :

J'ai essayé d'envoyer des trames mais le LIDAR ne répond pas, sur les conseilles de Césair, je vais essayer de brancher une pwm au pin MOTOCTL.

Update:

Dans la doc j'ai vu qu'on pouvait contrôler la vitesse de rotation du LIDAR avec le MOTOCTL, mais si on a juste besoin de contrôler le start et le stop du moteur, on peut seulement envoyer du high level (3.3V ici) au MOTOCTL. Pour stopper la rotation, envoyer du low level (0V).

Update:

Il faut obligatoirement une PWM pour faire fonctionner le LIDAR, j'ai donc créé un timer dans le code pour faire cette PWM sur la broche 2.5. Ainsi, le LIDAR tourne dès qu'il est alimenté + PWM.

Il faut maintenant récupérer les informations qu'il envoie et les traiter.

Pour récupérer les trames, il faut envoyer un start scan pour qu'il commence à scanner. Cela doit être fait car même si le LIDAR tourne, la PWM ne contrôle que le moteur, donc le LIDAR ne scan encore rien.

Commande du scan normal :

Réponse attendue :

Format of the Data Response Packets:

Figure 4-4 Format of a RPLIDAR Measurement Result Data Response Packet

Il faut coder cela.

Tableau des fonctions du LIDAR complété au fur et à mesure :

Fonction	Test valide ?	Utilise autre ft ?	Commentaire	
Lidar_Start_Scan	Oui	Oui	1	
Lidar_Stop_Scan	Oui	Oui	1	
Send_Lidar_Command	Oui pour no payload	Non	Pas testée pour avec payload	
Receive_Lidar	Oui	Non	/	

J'ai créé la fonction Lidar_Start_Scan qui marche très bien après vérification à l'oscillo. La fonction utilise la fonction Send_Lidar_Commande qui ducoup marche également bien pour le case sans payload.

J'observe bien les trames que le LIDAR envoie grâce à l'oscilloscope, maintenant il faut trouver comment les traiter.

Pour cela, comme le LIDAR envoie beaucoup de trames, il ne faut pas surcharger le processeur, donc peut-être baisser la vitesse du LIDAR.

Traitement des données du LIDAR :

Pour commencer, je vais regarder en combien de trames (une trame = les 5 octets) le LIDAR scan-t-il tout l'environnement ? (car en 1 tour, il ne scan pas tout, il faut faire plusieurs tours)

Pour cela, je commence un scan pour 150 échantillons et ensuite je stop le scan. Je vais traiter les données collectées et voir la conclusion que je peux en faire.