Санкт-Петербургский политехнический университет Петра Великого

Физико-механический иститут

Кафедра «Прикладная математика»

Отчёт по курсовой работе по дисциплине «Анализ данных с интервальной неопределённостью»

Выполнил студент: Игнатьев Даниил Дмитриевич группа: 5040102/20201

Проверил: к.ф.-м.н., доцент Баженов Александр Николаевич

Санкт-Петербург 2023 г.

Содержание

1	Пос	тановка задачи	2
2	Teo : 2.1 2.2	рия Точечная линейная регрессия	2 2 2
3	Pea	лизация	3
4	Рез	ультаты	3
5	Обс	уждение	13
C	Спис	сок иллюстраций	
	1	Визуальзация выборки Y_1	4
	2	Визуальзация выборки Y_2	4
	3	Визуальзация выборки Y_3	5
	4	Визуальзация выборки Y_4	5
	5	Визуальзация выборки Y_5	6
	6	Визуальзация выборки Y_6	6
	7	Визуальзация выборки Y_7	7
	8	Визуальзация выборки Y_8	7
	9	Визуальзация выборки Y_9	8
	10	Точечная линейная регрессия для Y_1	8
	11	Точечная линейная регрессия для Y_2	9
	12	Точечная линейная регрессия для Y_3	9
	13	Точечная линейная регрессия для Y_4	10
	14	Точечная линейная регрессия для Y_5	10
	15	Точечная линейная регрессия для Y_6	11
	16	Точечная линейная регрессия для Y_7	11
	17	Точечная линейная регрессия для Y_8	12
	18	Точечная линейная регрессия для Y_0	12

1 Постановка задачи

Необходимо для заданных выборок найти точную линейную регрессию, информационные множества и коридоры решений. Сравнить полученные результаты.

2 Теория

2.1 Точечная линейная регрессия

Рассматривается задача восстановления зависимости для выборки (X, (Y)), $X = \{x_i\}_{i=1}^n, \mathbf{Y} = \{\mathbf{y}_i\}_{i=1}^n, x_i$ - точеный, \mathbf{y}_i - интервальный. Пусть искомая модель задана в классе линейных функций

$$y = \beta_0 + \beta_1 x \tag{1}$$

Поставим задачу оптимизацию 2 для нахождения точечных оценок параметров β_0, β_1 .

$$\sum_{i=1}^{m} w_{i} \to \min$$

$$\operatorname{mid}\mathbf{y}_{i} - w_{i} \cdot \operatorname{rad}\mathbf{y}_{i} \leq X\beta \leq \operatorname{mid}\mathbf{y}_{i} + w_{i} \cdot \operatorname{rad}\mathbf{y}_{i}$$

$$w_{i} \geq 0, i = 1, ..., m$$

$$w, \beta - ?$$

$$(2)$$

Задачу 2 можно решить методами линейного программирования.

2.2 Информационное множество

Информационным множеством задачи восстановления зависимости будем называть множество значений всех параметров зависимости, совместных с данными в каком-то смысле.

Коридором совместных зависимостей задачи восстановления зависимости называется многозначное множество отображений Υ , сопоставляющее каждому значению аргумента x множество

$$\Upsilon(x) = \bigcup_{\beta \in \Omega} f(x, \beta) \tag{3}$$

, где Ω - информационное множество, x - вектор переменных, β - вектор оцениваемых параметров.

Информационное множество может быть построено, как пересечение полос, заданных

$$\mathbf{y}_{i} \le \beta_{0} + \beta_{1} x_{i1} + \dots + \beta_{m} x_{im} \le \overline{\mathbf{y}_{i}} \tag{4}$$

, где $i=\overline{1,n}\mathbf{y}_i\in\mathbf{Y}, x_i\in X, X$ - точечная выборка переменных, \mathbf{Y} - интервальная выборка откликов.

3 Реализация

Проект реализован на языке Python v. 3.2.5. GitHub.

4 Результаты

Данные S_X были взяты из файлов $data/poly_i.csv$, где $i \in \{0, 1, ..., 9\}$.

Набор значений X точечный и одинаков для всех выборок.

X = [-0.5, -0.35714286, -0.21428571, -0.07142857, 0.07142857, 0.21428571, 0.35714286, 0.5]. Набор значений отклика Y - интервальный.

Построим линейную регрессию и найдём информационное множество.

Рассмотрим выборку Y следующим образом. $y = [\min_{t \in S_i} S_i, \max_{t \in S_i} S_i],$ $y_i \in Y_1$.

Рис. 1: Визуальзация выборки Y_1

Индекс Жаккара выборки равен $JK(Y_1) = -0.052$

Рис. 2: Визуальзация выборки Y_2

Индекс Жаккара выборки равен $JK(Y_2) = -0.088$

Рис. 3: Визуальзация выборки Y_3

Индекс Жаккара выборки равен $JK(Y_3) = -0.057$

Рис. 4: Визуальзация выборки Y_4

Индекс Жаккара выборки равен $JK(Y_4) = -0.036$

Рис. 5: Визуальзация выборки Y_5

Индекс Жаккара выборки равен $JK(Y_5) = -0.04271$

Рис. 6: Визуальзация выборки Y_6

Индекс Жаккара выборки равен $JK(Y_6) = -0.0381$

Рис. 7: Визуальзация выборки Y_7

Индекс Жаккара выборки равен $JK(Y_7) = -0.0369$

Рис. 8: Визуальзация выборки Y_8

Индекс Жаккара выборки равен $JK(Y_8) = -0.0431$

Рис. 9: Визуальзация выборки Y_9

Индекс Жаккара выборки равен $JK(Y_9) = -0.0537$ Построим линейную регрессию, решив задачу 2 для выборок.

Рис. 10: Точечная линейная регрессия для Y_1

Для выборки Y_1 были получены оценки: $\beta_0=18.333, \beta_1=19.467.$ Тогда полученная модель имеет вид y=18.333+19.467x.

Рис. 11: Точечная линейная регрессия для Y_2

Для выборки Y_2 были получены оценки: $\beta_0=54.28, \beta_1=-10.53.$ Тогда полученная модель имеет вид y=54.28-10.53x.

Рис. 12: Точечная линейная регрессия для Y_3

Для выборки Y_3 были получены оценки: $\beta_0=92.58, \beta_1=-38.9.$ Тогда полученная модель имеет вид y=92.58-38.93x.

Рис. 13: Точечная линейная регрессия для Y_4

Для выборки Y_4 были получены оценки: $\beta_0=77.60,$ $\beta_1=221.90.$ Тогда полученная модель имеет вид y=77.60+221.90x.

Рис. 14: Точечная линейная регрессия для Y_5

Для выборки Y_5 были получены оценки: $\beta_0=82.68, \beta_1=513.76.$ Тогда полученная модель имеет вид y=82.68+513.76x.

Рис. 15: Точечная линейная регрессия для Y_6

Для выборки Y_6 были получены оценки: $\beta_0=217.43, \beta_1=-33.54.$ Тогда полученная модель имеет вид y=217.43-33.54x.

Рис. 16: Точечная линейная регрессия для Y_7

Для выборки Y_7 были получены оценки: $\beta_0=140.21, \beta_1=391.8.$ Тогда полученная модель имеет вид y=140.21+391.8x.

Рис. 17: Точечная линейная регрессия для Y_8

Для выборки Y_8 были получены оценки: $\beta_0=200.545, \beta_1=32.89.$ Тогда полученная модель имеет вид y=200.545+32.89x.

Рис. 18: Точечная линейная регрессия для Y_9

Для выборки Y_9 были получены оценки: $\beta_0=175.14, \beta_1=59.28.$ Тогда полученная модель имеет вид y=175.14+59.28x.

Информационные множества для данных выборок построить не получилось в виду несовместимости данных.

5 Обсуждение

Из полученных результатов в виде отрицательных индексов Жаккара для всех выборок и больших параметров β_0, β_1 можно сделать выводы о несовместимости данных.