Problema de la Mochila (0,1)

1) Definir los dimensiones

Un objeto entra completo, no una parte

- El pero de la mochila P.
- El peso de los objetos p;
 El volor de los objetos v;
 Conjunto de objetos.

Dimensiones del problema: <P, {obj, obj, ...}>.

2) Instancios triviales

Se louscan los cosos extremos, donde la solución es obvia.

Porque resulta imposible

$$\begin{cases} Peso = n \\ Objetos = \{ \} = \emptyset \end{cases}$$

En la mochila caben ∞ objetos para que pese P.

$$\begin{cases} Peso = 0 \\ Objetos = \{obj_s, obj_{z,...} \} \end{cases}$$

En la mochila caben 0 objetos, ya que P, pi > 0.

3) Representación de las soluciones triviales

						, , ,
Tabla A	0	1	Z	3	4	5
{ }	0	O	0	0	0	0
{ 1 }	0			os, pero		
{1, 2}	0			se ve m		
{1,2,3}	0					
{1,2,3,4}	0					

	En	este	ejem	plo,
	los	date	ns 30	9u :
Ī				، ۔ ا

ID	pero	volor	P = 5
1	2	12	
2	1	10	
3	3	20	
4	2	15	

Los soluciones intermedias se van razonando.

Tabla A	0	1	2	3	4	$\xrightarrow{\dots}$ \xrightarrow{n}
{}	0	O	0	0	0	0
{ t }	0	0	12	12	12	12
{1, 2}	O	10	12	22	22	22
{1,2,3}	0	10	12	22	30	32
{1,2,3,4}	0	10	15	25	30	3 7 10 2 0 4

Cada posición simboliza el volor máximo de la mochila para una capacidad concreta y disponiendo de los objetos (pi, vi) indicados.

4) Ecuación de Bellman

Partiendo de las soluciones triviales descritos en el paso 2 y representadas en la tabla, resulta:

$$A_{f,c} = \begin{cases} 0 & \text{si} \quad f = 0 \lor c = 0 \end{cases}$$
 Esto es obvio, por lo razonado antes

Ahora, para los pasos intermedios, la lógica que se ha seguido al rellenar la tabla ha sido: « Cuando el pi del objeto nuevo es mayor que la capacidad en ese momento, se usa el valor anterior; y par otra parte, con un objeto nuevo puede que no se meta (ya mencionado) o si, entonces será el máximo entre eso y lo nuevo».

El razonamiento (ejemplo: P=5) es el siguiente: Como se busca el valor (va+vb+...+vn) máximo que quepa en la mochila, hay que ver si el resultado de un paso es mayor que otro anterior.

- En $\{1,2,3,4\}$ para [5] se tiene que 5-3=2, por lo que hay que ver si en $\{1,2,3\}$ hay \times valor acumulado como para que sea solución óptima.
 - O Se acaba de usar vy = 15, <u>la solución ya lleva 15 de valor</u>.