2.76 / 2.760 Lecture 5: Large/micro scale

Constraints

Micro-fabrication

Micro-physics scaling

Assignment

Purpose of today

$$\begin{vmatrix} O_{Macro} \\ O_{Meso} \\ = \begin{vmatrix} f_{11} \left(SR_{\frac{Nano}{Macro}} \right) & f_{12} \left(SR_{\frac{Nano}{Macro}} \right) & f_{13} \left(SR_{\frac{Micro}{Macro}} \right) & f_{14} \left(SR_{\frac{Nano}{Macro}} \right) \\ I_{Macro} \\ I_{Macro} \\ I_{Meso} \\ I_{Meso} \\ I_{Meso} \\ I_{Meso} \\ I_{Meso} \\ I_{Meso} \\ I_{Macro} \\$$

Finish mechanical gain factors to make big machines work with little machines

Micro-scale flow/interface dominators

- Micro-scale fabrication
- Micro-scale surface/volume physics

Constraints

Constraint-based design

Constraint-based compliant mechanism design

STEP 1: Design requirements

Motion path, stiffness, load capacity, etc...

STEP 2: Motion path decomposition

Arcs, lines, rotation pts. sub-paths

STEP 3:Kinematic parametric concepts

Motions, constraint metric, symmetry, etc.

STEP 4:Constraint-motion addition rules

Serial, parallel, hybrid

STEP 5: Topology concept generation

Path & constraint driven

STEP 6: Concept selection phase I

Path errors & over constraint

STEP 7: Size and shape optimization

Stiffness, load capacity, efficiency, etc...

STEP 8: Concept selection phase II

Direct comparison with design requirements

Photo removed for copyright reasons. Compliant test rig for automotive steering column.

Exact constraint

At some scale, everything is a mechanism

Exact constraint: Achieve desired motion

- ☐ By applying minimum number of constraints
- ☐ Arranging constraints in optimum topology
- Adding constraints only when necessary

Visualization is critical, this is not cookbook

For now:

- ☐ Start with ideal constraints
- ☐ Considering small motions
- \square Constraints = lines

Figure: Layton Hales PhD Thesis, MIT.

Constraint fundamentals

Rigid bodies have 6 DOF

DOC = # of linearly independent constraints

$$DOF = 6 - DOC$$

Figure: Layton Hales PhD Thesis, MIT.

A linear displacement can be visualized as a rotation about a point which is "far" away

Statements

Points on a constraint line move perpendicular to the constraint line

Figure: Layton Hales PhD Thesis, MIT.

Constraints along this line are equivalent

Diagram removed for copyright reasons. Source: Blanding, D. L. *Exact Constraint: Machine Design using Kinematic Principles*. New York: ASME Press, 1999.

Statements

Intersecting, same-plane constraints are equivalent to other same-plane intersecting constraints

Instant centers are powerful tool for visualization, diagnosis, & synthesis

Abbe error

Error due to magnified moment arm

Statements

Constraints remove rotational degree of freedom

Length of moment arm determines the quality of the rotational constraint

Statements

Parallel constraints may be visualized/treated as intersecting at infinity

Basic elements

Bars Beams Plates

Diagrams removed for copyright reasons. Source: Blanding, D. L. Exact Constraint: Machine Design using Kinematic Principles. New York: ASME Press, 1999.

Notch Hinge

X

Do you really get δz ?

Series: Add DOF

Follow the serial chain

Pick up every DOF

Differentiate series by Load path

Shared load path = Series

This could be 5 DOF

Depends on blade length

Parallel: Add Constraints

Where there is a common DOF, then have mechanism DOF

There are no conflicts in circumferential displacement To θz

Non-shared load paths = parallel

Theta z is a common Degree of freedom

All others conflict

 δz is a common Degree of freedom

All others conflict

Rotation arms cause Conflict in out-of-plane rotations

Over constraint

Flexures are often forgiving of over constraint

Over constraint = redundant constraint

Identifying over constraint

☐ How much energy is stored?

General metric relating constraint stiffness to motion along constraint

$$\frac{K_{\parallel}}{K_{\perp}} \cdot \frac{\delta_{\perp}}{\delta_{\parallel}} \to CM_{k} \cdot CM_{\delta} << 1$$

Extension: Fixtures

You will need to build a Passive fixture for your STM

Kelvin

Fixtures as mechanisms

Details of QKC element geometry

Figure: Layton Hales PhD Thesis, MIT.

Consequences of friction

Are kinematic couplings perfect?

Ideal in-plane constraints

Real in-plane constraints

Flexure grooves reduce friction effect

Instant center visualization example

Instant center can help you identify how to best constrain or free up a mechanism

$$\frac{K_{\parallel}}{K_{\perp}} \cdot \frac{\delta_{\perp}}{\delta_{\parallel}} \to CM_k \cdot CM_{\delta} << 1$$

Diagram removed for copyright reasons. Source: Alex Slocum, *Precision Machine Design*.

Poor

Good

Is it a wise idea to put three balls in three cones while the balls are rigidly attached to a rigid part?

$$\frac{K_{\parallel}}{K_{\perp}} \cdot \frac{\delta_{\perp}}{\delta_{\parallel}} \to CM_k \cdot CM_{\delta} << 1$$

In-plane use of flexures

Three balls in three cones What does the constraint diagram look like?

Use of flexures to avoid over constraint

Flexures provide a very low CM for each joint

- ☐ Energy stored due to over constraint is minimized
- ☐ Energy is channeled through continuously variable
- ☐ Is possible to reach a true minimum

Low-cost couplings

Kinematic elements

Manufacturing

Diagrams removed for copyright reasons. "Cast + Form Tool = Finished"

Constraint diagrams

Metrics

2.76 Multi-scale System Design & Manufacturing

Case study: Duratec engine

Components

Block

Bedplate

Pinned joint Assembly Bolts

QKC

2.76 Multi-scale System Design & Manufacturing

Micro-scale systems

Cross-scale coupling

Macro

Meso

Micro

Nano

-Function

_Form

-Flows

-Physics

—Fabrication

		4		
пп	n	CT		
u		UL	IU	

What

Who

Why

Where

Etc...

Form

Geometry

Motion

Interfaces

Constraints

Etc...

Flow

Mass

Momentum

Energy

Information

Etc...

Physics

Application

Modeling

Limiting

Dominant

Etc...

Fabrication

Compatibility

Quality

Rate

Cost

Etc...

2.76 Multi-scale System Design & Manufacturing

Micro-scale MuSS main challenges

Fabrication is fundamentally different

- ☐ Chemical
- □ Molecular
- **□** Ballistic
- ☐ Finished geometry
- ☐ Possible geometries

Physics "rounding" is no longer acceptable

- ☐ Surface forces
- ☐ Thermal time constants
- □ Strains

General process

Bulk micromachining = Removal of the wafer

Surface micromachining = Add/remove layers

MiHx fabrication

Step	Recipe/Description
	Double deck SOIOI; Device layers @ 8 microns thickness; Oxide at 1 micron thickness
	Photoresist and pattern
	DRIE (Si) and BOE Oxide
	Pattern AL contacts at 350 nm thickness
	Photoresist and pattern
	DRIE (Si) and BOE Oxide and DRIE (Si)
	Pattern handle wafer; Mount to quartz wafer; DRIE backside etch
	Release with vapor HF
	Remove resist via plasma etch

Micro-scale physics

For strong dependence on characteristic length, importance of phenomena decreases with characteristic dimension

 \square Body L^3

For weaker dependence on characteristic length, phenomena become dominate at

small scale

 \Box Electrostatic L²

☐ Thermal L

 \square Surface tension L²

Micro-scale physics

Find the parts ALL of the flows that could exist.

Until you gain intuition you must analyze them all with OOM and ratios...

Take ratio of important flows

Apply physics without physics "rounding"

Clean rooms and particles

class		meter gı	ıbic foot	typical uses			
	0.1 μm	0.2 μm	0.3 μm	0.5 μm	5.0 μm		
1	35	7.5	3	1	_	integrated circuits	
10	350	75	30	10	_		
100	_	7502	300	100	_	miniature ball bearings; photo labs; medical implants	
1000	_	_	_	1000	7		
10000	_	_	_	10000	70	color TV tubes; hospital operating room	
100000	_	_	_	100000	700	ball bearings	

Micro-scale physics: Electrostatics

How does electrostatic physics scale?

$$U_E = \frac{\varepsilon_o \cdot L \cdot L \cdot V^2}{2 \cdot z}$$

How does ratio of $F_{Electric}$ scale to F_{Body} ?

$$\left| rac{F_{Electric}}{F_{Body}}
ight| \sim rac{1}{L}$$

What does this mean for MuSS interaction?

☐ What happens if you downsize each by factor of 10?

What does this mean for the STM project?

Micro-scale physics: Thermal

How does thermal physics scale?

$$-h \cdot A \cdot (T - T_{\inf}) = \rho \cdot c \cdot \mathcal{V} \cdot \frac{dT}{dt}$$

$$Bi = \frac{h \cdot L}{k}$$

$$e^{\left[-\left(\frac{h\cdot A}{\rho\cdot \cancel{\vdash}\cdot c}\right)\cdot t\right]} = \frac{\theta}{\theta_{\inf}} = \frac{T - T_{\inf}}{T_{initial} - T_{\inf}}$$

$$\tau \sim \frac{\rho \cdot \cancel{\vdash} \cdot c}{h \cdot A} \to L$$

Is this a good or a bad thing for MEMS actuators?

For the STM?

Micro-scale physics: Thermal

Cooling...

Heating...

Assignment

What are the implications for rinsing suspended MEMS devices clean of acids in distilled water? For example you might model a cantilever which of course has a finite stiffness...

Comment on humidity and MEMS devices

1 page maximum!!!

Matweb.com

Email to course secretary by Wednesday 5pm.