

TRENARY - T81 TISC "Opcodes"

This document outlines optimized opcodes for TISC (Ternary Instruction Set Computer) across five major categories:

Mathematical Theorems
Cryptography & Security
AI & Machine Learning
Physics & Simulation
Parallel Processing & Optimization

Each opcode is optimized for **ternary computing (Base-81)**, leveraging its natural affinity for **recursive processing, modular arithmetic, logarithmic efficiency, and AI acceleration**.

In the evolving landscape of computer architecture, T81 TISC (Ternary Instruction Set Computer) emerges as a revolutionary approach to computing, leveraging the natural advantages of Base-81 ternary arithmetic. Unlike traditional CISC or RISC architectures, which rely on binary logic, T81TISC is designed from the ground up for AI-driven computation, cryptographic efficiency, and parallel processing. By integrating recursive processing, modular arithmetic, and logarithmic efficiency directly into its instruction set, T81TISC is not just a step forward—it represents an entirely new paradigm. This instruction set introduces native support for neural networks, high-performance physics simulations, ternary cryptography, and self-optimizing execution, making it uniquely suited for next-generation AI, scientific computing, and high-speed algorithmic processing. As we explore the opcodes and system-level design of T81TISC, we uncover a future-proof architecture built for the era of autonomous computing and intelligent systems.

Intel® and ARM® should seriously consider adopting the T81 TISC specification because it represents a fundamental leap beyond binary computing, offering unparalleled efficiency for AI, cryptography, and high-performance parallel processing. Unlike traditional CISC and RISC architectures, which are inherently limited by binary logic and carry-heavy arithmetic, TISC's Base-81 ternary system enables logarithmic efficiency, reduced memory footprint, and lower power consumption—key factors in scaling modern computing. With native support for ternary neural networks, self-optimizing execution, and AI-driven resource allocation, T81TISC can drastically accelerate AI workloads, cryptographic operations, and scientific simulations, outperforming current architectures in emerging fields like quantum computing integration, real-time data inference, and autonomous AI systems. By adopting TISC, Intel® and ARM® could future-proof their architectures, breaking away from Moore's Law stagnation and positioning themselves as leaders in the next era of AI-optimized, energy-efficient, and high-performance computing.

A. Key Opcode Categories	6
Mathematical Theorems & Computational Arithmetic	6
Cryptography & Security	6
Al & Machine Learning (Ternary Neural Networks)	6
Physics & Scientific Computing	6
Parallel Processing & Optimization	6
Recursive & Algorithmic Opcodes	6
System-Level & Memory Management Instructions	7
I/O & Low-Level Operations	7
Control Flow & Branching	7
Self-Optimizing Opcodes	7
Why T81 TISC?	7
B.Theorem Set Opcodes for TISC	8
C.Recursive Algorithm Opcodes for TISC	9
D.Combinatorial & Mathematical Optimization Opcodes for TISC	9
E. Parallel Processing & Al Opcodes for TISC	10
Theorem Set Opcodes for TISC	11
1. Affinity for Ternary-Friendly Arithmetic	11
2. Theorems for Cryptography & Security	11
3. Al & Machine Learning (Ternary Neural Networks)	12
4. Theorems for Physics & Simulation	12
5. Number Theory & Computational Mathematics	12
Ternary Affinity Analysis	13
Recursive Algorithm Opcodes for TISC	15
6. FACT – Factorial Computation	15
7. FIB – Fibonacci Sequence	15
8. GCD - Euclidean Algorithm for Greatest Common Divisor	15

9. ACK - Ackermann Function	16
10.TOWER - Tower of Hanoi Solver	16
11.DFS - Depth-First Search (Recursive Graph Traversal)	16
12.BACKTRACK - Recursive Backtracking Solver	16
13.MERGE - Merge Sort (Recursive Sorting Algorithm)	16
14.MATFAC - Recursive Matrix Factorization	17
15.LCS – Longest Common Subsequence	17
Combinatorial & Mathematical Optimization Opcodes for TISe	C 19
16.PERM – Permutation Computation	19
17.COMB - Combination Computation	19
18.BINOM - Binomial Coefficient Computation	20
19.KNAPSACK - 0/1 Knapsack Optimization	20
20.LAGRANGE - Lagrange Interpolation	20
21.SIMPLEX - Linear Programming Solver	21
22.HAMMING - Hamming Distance Computation	21
23.FASTMOD - Modular Inverse Computation	22
24.MATCH - Maximum Bipartite Matching	22
25.TRAVEL - Traveling Salesman Problem (TSP) Approxim	nation 22
Parallel Processing & Al Opcodes for TISC	24
26.VECADD - Parallel Vector Addition	24
27.VECMUL - Parallel Vector Multiplication	24
28.DOT - Parallel Dot Product	24
29.MATMUL - Matrix Multiplication (Al Tensor Ops)	24
30.TRANSPOSE - Matrix Transposition	25
32.BP - Backpropagation for Al Neural Networks	25
33.ACTIVATION - Activation Function Computation	26
34.TNN - Ternary Neural Network Inference	26

35.QLEARN – Reinforcement Learning Q-Learning Update	26
37.Stack & Heap Memory Management	28
38.Interrupt Handling & Context Switching	28
39.Ternary Virtual Memory Management (T81 Paging)	29
40.I/O HANDLING & PERIPHERAL COMMUNICATION	29
41.BITWISE & LOW-LEVEL MEMORY HANDLING	29
42.CONTROL FLOW & BRANCHING	30
43.ERROR HANDLING & FAULT TOLERANCE	30
44.SELF-OPTIMIZING OPCODES	30
T81TISC vs. CISC/RISC:	31
T81TISC is now:	31

A. Key Opcode Categories

Mathematical Theorems & Computational Arithmetic

- **Ternary-specific operations** (e.g., **T81ADD** for carry-free ternary addition, **MOD3** for modulo operations).
- Number theory optimizations (e.g., Fermat's Theorem, Wilson's Theorem, Lagrange Interpolation).

Cryptography & Security

- **Efficient cryptographic operations** (e.g., **ECC** for elliptic curve cryptography, **CRT** for modular reduction).
- **Fast prime checking** using **MILLER** (Miller-Rabin Primality Test) and **FERMAT** (Fermat's Theorem).

Al & Machine Learning (Ternary Neural Networks)

- Deep learning support with BP (Backpropagation), ACTIVATION (Activation functions), and TNN (Ternary Neural Networks).
- AI optimization functions such as Kolmogorov Complexity (KOLMO) for AI compression and Shannon Entropy (ENTROPY) for learning-based optimizations.

Physics & Scientific Computing

 Optimized physics simulations with Kepler's Laws, Navier-Stokes Equations, Maxwell's Equations, and Lorentz Transformations for fluid dynamics, electromagnetism, and relativity.

Parallel Processing & Optimization

- Vectorized and matrix-based computing (VECADD, VECMUL, MATMUL, DOT).
- Fast Fourier Transform (FFT) and Reinforcement Learning (QLEARN) for highperformance AI workloads.

Recursive & Algorithmic Opcodes

- Recursive problem solving (FACT for factorial, FIB for Fibonacci, TOWER for Tower of Hanoi, DFS for graph traversal).
- **Sorting and optimization algorithms** (**MERGE** for Merge Sort, **LCS** for sequence alignment, **SIMPLEX** for linear programming).

System-Level & Memory Management Instructions

- Stack & Heap Management (PUSH, POP, CALL, RET, ALLOC, FREE).
- Interrupt Handling & Context Switching (INT, IRET, SWITCH, SAVECTX, LOADCTX).
- Virtual Memory Management (T81PAGE, MAPADDR, UNMAPADDR, MMUPROT).

I/O & Low-Level Operations

- Peripheral communication (INP, OUTP, DMA Xfer, POLLEVENT).
- Bitwise and memory handling (T81AND, T81OR, T81XOR, T81SHL, T81SHR, BITSET, BITCLR).
- Error detection and correction (T81ECC, T81PARITY, ROLLBACK, HARDFAIL).

Control Flow & Branching

- Conditional execution (JMP, JNZ, JZ, CMOV).
- Ternary loop constructs (T81LOOP, T81SWITCH).

Self-Optimizing Opcodes

- **AI-driven execution improvements** (**T81PROFILE** for performance tracking, **T81OPTIMIZE** for real-time AI-based optimization).
- **Self-modifying code support** (**SELFMOD** for adaptive execution changes).
- Dynamic memory allocation based on AI profiling (T81DYNALLOC).

Why T81 TISC?

T81TISC is designed as a future-proof, AI-optimized, ternary instruction set that offers:

- -Ternary Affinity Algorithms that naturally fit Base-81 computing.
- -AI & Neural Network Optimization Built-in support for machine learning and deep learning workloads.
- -Parallel Processing & SIMD Vectorization High-speed computing for AI, physics, and cryptography.
- -Logarithmic Efficiency Ternary operations reduce carry propagation and memory footprint.
- -Full System Support Unlike traditional specialized ISAs, T81TISC includes OS-level, I/O, and memory management instructions.

B.Theorem Set Opcodes for TISC

A set of **key mathematical theorems** implemented as **TISC opcodes**.

Affinity for Ternary-Friendly Arithmetic

- Ternary Addition (Carry-Free) T81ADD
- Modulo 3 Properties MOD3
- Balanced Ternary Representation T81CONV
- Hamming Weight Computation HAMMING
- Lucas Theorem for Combinatorics LUCAS

Cryptography & Security

- Fermat's Little Theorem FERMAT (Fast prime checking)
- Miller-Rabin Primality Test MILLER (Cryptographic key generation)
- Elliptic Curve Cryptography ECC (Ternary curve operations)
- **Chinese Remainder Theorem CRT** (Efficient modular reduction)
- Lagrange Interpolation LAGRANGE (Polynomial reconstruction in encryption)

AI & Machine Learning (Ternary Neural Networks)

- **Backpropagation BP** (Gradient-based learning)
- Kolmogorov Complexity KOLMO (AI compression)
- **Shannon Entropy ENTROPY** (AI optimization)
- **Bayes' Theorem BAYES** (AI predictions)
- Matrix Factorization MATFAC (AI & PCA computations)
- Ternary Neural Network Execution TNN (Optimized inference)

Theorems for Physics & Simulation

- **Kepler's Laws KEPLER** (Orbital motion)
- Navier-Stokes Equations NAVIER (Fluid dynamics)
- **Maxwell's Equations MAXWELL** (Electromagnetism)
- **Lorentz Transformations LORENTZ** (Special relativity)
- Wave Equation WAVEQ (Quantum mechanics)
- Fourier Transform FFT (Signal processing)

Number Theory & Computational Mathematics

- Wilson's Theorem WILSON (Prime checking)
- Ramanujan's Identities RAMANUJAN (Mathematical series)
- Goldbach's Conjecture GOLDBACH (Prime sum)
- Lucas-Lehmer Test LUCASPRIME (Mersenne primes)
- Modular Exponentiation MODEXP (RSA encryption)

C.Recursive Algorithm Opcodes for TISC

Recursive algorithms leverage ternary depth tracking and efficient branching.

- **Factorial FACT** (Combinatorics, probability)
- **Fibonacci FIB** (AI sequence modeling)
- GCD GCD (Greatest common divisor)
- Ackermann Function ACK (Deep recursion benchmarking)
- **Tower of Hanoi TOWER** (AI state-based search)
- **Depth-First Search DFS** (Recursive graph traversal)
- Backtracking BACKTRACK (Sudoku, AI puzzle solving)
- Merge Sort MERGE (Efficient recursive sorting)
- Matrix Factorization MATFAC (Recursive AI computations)
- Longest Common Subsequence LCS (AI pattern recognition)

D.Combinatorial & Mathematical Optimization Opcodes for TISC

Used for AI search spaces, logistics, financial modeling, and cryptography.

- **Permutation Computation PERM** (AI scheduling)
- **Combination Computation COMB** (Probability modeling)
- **Binomial Coefficient BINOM** (Pascal's Triangle, decision trees)
- Knapsack Problem KNAPSACK (Logistics, resource allocation)
- Lagrange Interpolation LAGRANGE (Cryptography, AI)
- Linear Programming Solver SIMPLEX (Optimization)
- Hamming Distance HAMMING (Error correction, AI)
- Modular Inverse FASTMOD (Cryptographic operations)
- Maximum Bipartite Matching MATCH (AI resource pairing)
- Traveling Salesman Problem TRAVEL (Logistics, AI routing)

E.Parallel Processing & Al Opcodes for TISC

Parallel AI workloads require optimized numerical operations & efficient memory access.

- **Vector Addition VECADD** (AI, physics simulations)
- Vector Multiplication VECMUL (Machine learning)
- **Dot Product DOT** (Neural networks, physics)
- Matrix Multiplication MATMUL (Deep learning, scientific computing)
- Matrix Transposition TRANSPOSE (Cryptography, AI)
- Fast Fourier Transform FFT (Signal processing)
- **Backpropagation BP** (AI deep learning)
- Activation Functions ACTIVATION (Neural networks)
- Ternary Neural Network Inference TNN (AI optimization)
- Reinforcement Learning (Q-Learning) QLEARN (AI decision-making)

Final Thoughts: Why Ternary TISC?

Ternary Affinity – Many theorems naturally align with ternary logic (**Hamming Weight, Shannon Entropy, Fermat's Theorem**).

AI-Optimized – Direct support for **TNNs**, backpropagation, reinforcement learning, and matrix operations.

Parallelism – Opcodes allow SIMD vectorization, GPU acceleration, and distributed computing.

Logarithmic Efficiency – Base-81 arithmetic provides **compact storage**, **fewer carry operations**, and modular arithmetic advantages.

Future-Proof – These low-level optimizations bring TISC computing closer to real-world AI acceleration, cryptography, and scientific computing.

Theorem Set Opcodes for TISC

Here is a **more extensive list** of theorems that can be **implemented as opcodes**, categorized by computational efficiency and affinity to ternary logic.

1. Affinity for Ternary-Friendly Arithmetic

These theorems benefit from ternary logic because they naturally align with Base-81 computations or exploit balanced ternary properties.

Theorem	Formula	TISC Opcode	Use Case
Balanced Ternary Conversion	$N = \sum d_i * 3^i \text{ where}$ $d_i \in \{-1, 0, 1\}$	T81CONV	Efficient ternary arithmetic
Ternary Addition (Carry-Free)	a + b using {-1,0,1} representation	T81ADD	Faster addition in ternary
Modulo 3 Properties	N mod 3 = Σ (digits) mod 3	MOD3	Cryptography, ternary hash functions
Lucas Theorem (Combinatorics)	C(n, k) mod p	LUCAS	AI (pattern recognition), combinatorics
Hamming Weight (Ternary Weight Count)	<pre>w(x) = count(nonzero trits)</pre>	HAMMING	Error correction, ML optimization

2. Theorems for Cryptography & Security

These theorems **enable efficient ternary cryptographic operations**, leveraging base-81 properties.

Theorem	Formula	TISC Opcode	Use Case
Fermat's Little Theorem	$a^{(p-1)} \equiv 1 \pmod{p}$	FERMAT	Fast primality testing
Miller-Rabin Primality Test	Probabilistic prime verification	MILLER	RSA keygen, cryptography
Elliptic Curve Arithmetic	$y^2 = x^3 + ax + b$	ECC	Ternary elliptic curve cryptography
Chinese Remainder Theorem (CRT)	$x \equiv a \pmod{m1}, x \equiv b \pmod{m2}$	CRT	Cryptographic acceleration

Lagrange Interpolation	$P(x) = \sum (y_i *$	LAGRANG	Secure multi-party
Lagrange Interpolation	L_i(x))	E	computation

3. Al & Machine Learning (Ternary Neural Networks)

These theorems optimize AI workloads and tensor-based computation.

Theorem	Formula	TISC Opcode	Use Case
Backpropagation for Neural Networks	Gradient Descent: $w = w - \eta * \nabla L(w)$	ВР	Ternary AI learning
Kolmogorov Complexity	K(x) = min(p	: U(p) = x)`
Shannon Entropy	$H(X) = -\Sigma p(x) \log p(x)$	ENTROPY	Data compression, AI
Bayes' Theorem	`P(A	B) = P(B	A) * P(A) / P(B)`
Matrix Factorization for AI	$A \approx U \Sigma V^{T}$	MATFAC	Neural networks, PCA

4. Theorems for Physics & Simulation

These theorems optimize ternary-based scientific computing.

Theorem	Formula	TISC Opcode	Use Case
Kepler's Laws (Orbital Motion)	T^2 ∝ r^3	KEPLER	Physics engines
Navier-Stokes Equations (Fluid Dynamics)	$\partial \mathbf{u}/\partial \mathbf{t} + \mathbf{u} \cdot \nabla \mathbf{u} = -\nabla \mathbf{p} + \mathbf{v} \nabla^2 \mathbf{u}$	NAVIER	Fluid physics
Maxwell's Equations (Electromagnetism)	$\nabla \bullet E = \rho/\epsilon_0$, $\nabla \times E = -\partial B/\partial t$	MAXWELL	AI-based physics
Lorentz Transformations (Relativity)	$t' = \gamma(t - vx/c^2)$	LORENTZ	Quantum computing
Wave Equation (Quantum Mechanics)	$\partial^2 \psi / \partial t^2 = v^2 \nabla^2 \psi$	WAVEQ	Quantum AI

5. Number Theory & Computational Mathematics

These theorems **improve number-theoretic computations**, crucial for AI, cryptography, and simulations.

Theorem	Formula	TISC Opcode	Use Case
Wilson's Theorem (Prime Check)	$(p-1)! \equiv -1 \mod p$	WILSON	Cryptography
Catalan's Conjecture (Powers Difference)	$x^a - y^b = 1$	CATALAN	AI complexity
Ramanujan's Identities (Integer Sequences)	$\sum (1/n^s) = \zeta(s)$	RAMANUJAN	ML feature engineering
Goldbach's Conjecture (Prime Pairing)	2n = p + q	GOLDBACH	Number theory
Lucas-Lehmer Test (Mersenne Primes)	$S_n = S_{n-1}^2 - 2 \mod M_p$	LUCASPRIME	Cryptography

Ternary Affinity Analysis

Some theorems naturally align with ternary computing due to: $\[\]$ Balanced Ternary Structure – Theorems like Hamming Weight, Lucas Theorem, and Modulo 3 Arithmetic are optimized in ternary due to their use of $\{-1, 0, 1\}$.

✓ Logarithmic Efficiency – **Kolmogorov Complexity, Shannon Entropy, and Wave Equations** map well to ternary-based AI and physics simulations.

Modular Arithmetic in Cryptography – Chinese Remainder Theorem, Fermat's Little Theorem, and Elliptic Curves benefit from ternary representation for efficient cryptographic key generation.

Optimized Microcode Example: Miller-Rabin Primality Test (MILLER)

To implement **Miller-Rabin Primality Test** as a **TISC opcode**, we break it down into micro-operations:

```
assembly CopyEdit

LOAD Ra, 101t81 ; Candidate number

LOAD Rb, 2t81 ; Base for testing

MILLER Ra, Rb, Rc ; Perform primality test

STORE Rc, result

\overrightarrow{V} Rc = 1t81 \rightarrow Prime

\overrightarrow{V} Rc = 0t81 \rightarrow Not Prime
```

Micro-operations:

- 1. Compute d = n-1 and s such that $d = 2^s * m$
- 2. Perform **modular exponentiation** using MODEXP
- 3. Verify a^d mod n = 1 or a^(2^r * d) mod n = n-1
- 4. If any test fails, return "Composite" (Rc = 0t81)
- 5. If all tests pass, return "**Prime**" (Rc = 1t81)

Recursive Algorithm Opcodes for TISC

Recursive algorithms benefit from **ternary logic** due to **efficient branching, depth tracking, and state-based computation**. Below are optimized **TISC** (**Ternary Instruction Set Computer**) **opcodes** for handling **common recursive problems**.

6. FACT - Factorial Computation

Formula:

```
n!=n\times(n-1)!
```

Opcode: FACT

- Computes factorial using recursion.
- Used in combinatorics, AI search problems, probability calculations.

7. FIB - Fibonacci Sequence

Formula:

```
F(n)=F(n-1)+F(n-2)
```

Opcode: FIB

- Computes **Fibonacci numbers recursively**.
- Used in AI (sequence modeling), cryptography, optimization problems.

8. GCD – Euclidean Algorithm for Greatest Common Divisor Formula:

gcd(a,b)={b,gcd(b,amodb), if amodb=0otherwise

Opcode: GCD

- Computes GCD recursively.
- Used in cryptography, modular arithmetic, AI optimizations.

9. ACK - Ackermann Function

Formula (Deep Recursion):

$$A(m,n) = egin{cases} n+1, & ext{if } m=0 \ A(m-1,1), & ext{if } n=0 \ A(m-1,A(m,n-1)), & ext{otherwise} \end{cases}$$

Opcode: ACK

- Used for **AI recursive depth management**.
- Common in benchmarking computational limits.

10.TOWER - Tower of Hanoi Solver

Formula (Recursive Move Computation):

T(n)=2T(n-1)+1**Opcode**: TOWER

- Computes **minimum moves needed**.
- Used in **AI decision trees**, pathfinding, state-based search.

11.DFS - Depth-First Search (Recursive Graph Traversal)

Formula:

DFS(v)=Visit v,then recursively visit all unvisited neighbors

Opcode: DFS

• Used in graph traversal, AI pathfinding, decision trees.

12.BACKTRACK – Recursive Backtracking Solver

Formula:

Recursive backtracking explores all possibilities and backtracks when a condition fails. **Opcode**: BACKTRACK

• Used in sudoku, AI puzzle solving, constraint satisfaction problems.

13.MERGE – Merge Sort (Recursive Sorting Algorithm)

Formula:

$$\operatorname{MergeSort}(A) = egin{cases} A, & ext{if } |A| = 1 \ \operatorname{MergeSort}(L), \operatorname{MergeSort}(R)), & ext{otherwise} \end{cases}$$

Opcode: MERGE

• Used for **sorting large datasets** recursively.

14.MATFAC - Recursive Matrix Factorization

Formula:

 $A=U\Sigma VT$

Opcode: MATFAC

• Used in machine learning, AI matrix computations.

15. LCS - Longest Common Subsequence

Formula:

$$LCS(X,Y) = egin{cases} 0, & ext{if } m=0 ext{ or } n=0 \ 1+LCS(X_{m-1},Y_{n-1}), & ext{if } X_m=Y_n \ \max(LCS(X_{m-1},Y_n),LCS(X_m,Y_{n-1})), & ext{otherwise} \end{cases}$$

Opcode: LCS

• Used in **DNA sequence alignment**, **AI pattern recognition**.

Final Thoughts

Recursive Opcodes for TISC

Opcode	Algorithm	Use Case
FACT	Factorial	Combinatorics, probability
FIB	Fibonacci	AI sequence modeling
GCD	Euclidean Algorithm	Cryptography, number theory
ACK	Ackermann Function	Benchmarking, AI recursion
TOWER	Tower of Hanoi	AI decision trees
DFS	Depth-First Search	Pathfinding, AI graph traversal
BACKTRACK	Recursive Backtracking	AI puzzle solvers
MERGE	Merge Sort	Efficient sorting
MATFAC	Matrix Factorization	Machine learning, AI
LCS	Longest Common Subsequence	AI pattern recognition

Combinatorial & Mathematical Optimization Opcodes for TISC

Combinatorial and mathematical optimization problems are crucial in **AI**, machine learning, cryptography, scheduling, and scientific computing. These problems often involve constraint satisfaction, state-space exploration, and computational efficiency, making them ideal for ternary computing.

16.PERM – Permutation Computation

Formula:

$$P(n,k) = \frac{n!}{(n-k)!}$$

Opcode: PERM

- Computes the number of ways to arrange k objects from n.
- Used in AI (search spaces), scheduling, cryptography.

17.COMB - Combination Computation

Formula:

$$C(n,k)=rac{n!}{k!(n-k)!}$$

Opcode: COMB

- Computes the number of ways to choose k objects from n without ordering.
- Used in probability, AI feature selection, and combinatorial optimization.

18.BINOM – Binomial Coefficient Computation

Formula (Pascal's Identity):

$$inom{n}{k} = inom{n-1}{k} + inom{n-1}{k-1}$$

19.KNAPSACK – 0/1 Knapsack Optimization Formula:

$$\max \sum v_i x_i \quad ext{subject to} \quad \sum w_i x_i \leq W$$

Opcode: KNAPSACK

- Solves the **0/1 knapsack problem** for **optimal resource allocation**.
- Used in **AI**, **logistics**, **financial planning**.

20.LAGRANGE – Lagrange Interpolation

Formula:

$$P(x) = \sum y_i rac{x - x^j}{x_i - x^j}$$

Opcode: LAGRANGE

- Computes **Lagrange interpolation** for polynomial approximation.
- Used in cryptography, error correction codes (Shamir's Secret Sharing), AI regression models.

21.SIMPLEX – Linear Programming Solver

Formula (Linear Optimization):

$$\max c^T x, \quad ext{subject to } Ax \leq b$$

Opcode: SIMPLEX

- Solves linear programming for optimization problems.
- Used in supply chain optimization, AI decision-making, financial modeling.

22.HAMMING – Hamming Distance Computation Formula:

$$d(x,y) = \sum (x_i \neq y_i)$$

Opcode: HAMMING

- Computes **Hamming distance** between binary/ternary strings.
- Used in error correction, AI pattern recognition, cryptography.

23.FASTMOD – Modular Inverse Computation Formula:

$$a^{-1} \equiv a^{p-2} \mod p$$

Opcode: FASTMOD

- Computes modular inverse using Fermat's Little Theorem.
- Used in cryptography, number theory, AI optimization.

24.MATCH – Maximum Bipartite Matching Formula (Graph Theory):

$$\max \sum x^{ij}, \quad x^{ij} \in \{0,1\}$$

25.TRAVEL – Traveling Salesman Problem (TSP) Approximation Opcode: TRAVEL

- Solves **TSP** using nearest neighbor heuristics.
- Used in **logistics**, **AI routing** algorithms, graph theory.

$$\min \sum d(x_i,x_{i+1})$$

Final Thoughts

Optimized Combinatorial & Mathematical Opcodes for TISC

Opcode	Algorithm	Use Case
PERM	Permutations	AI search spaces, scheduling
COMB	Combinations	Probability, AI feature selection
BINOM	Binomial Coefficient	AI decision trees
KNAPSACK	0/1 Knapsack	Resource allocation, logistics
LAGRANGE	Lagrange Interpolation	Cryptography, error correction
SIMPLEX	Linear Programming	Optimization, decision-making
HAMMING	Hamming Distance	Error correction, AI pattern recognition
FASTMOD	Modular Inverse	Cryptography, AI
MATCH	Bipartite Matching	AI pairing, scheduling
TRAVEL	Traveling Salesman	Logistics, AI routing

Parallel Processing & Al Opcodes for TISC

Parallel computing and AI require high-performance numerical operations, optimized memory access, and efficient data structures. Ternary computing (Base-81) offers advantages in SIMD vectorization, matrix operations, and neural network computations.

26.VECADD - Parallel Vector Addition

Formula:

C=A+B

Opcode: VECADD

- Performs **element-wise vector addition**.
- Used in AI, physics simulations, graphics processing.

27.VECMUL - Parallel Vector Multiplication

Formula:

 $C=A\times B$

Opcode: VECMUL

- Performs **element-wise vector multiplication**.
- Used in machine learning, AI acceleration, graphics rendering.

28.DOT - Parallel Dot Product

Formula:

C=∑Ai ×Bi **Opcode**: DOT

• Computes dot product for neural networks, physics engines, AI models.

29.MATMUL - Matrix Multiplication (AI Tensor Ops)

Formula:

Opcode: MATMUL

• Accelerates AI workloads, deep learning, scientific computing.

30.TRANSPOSE – Matrix Transposition

Formula:

(AT)ij = Aji

Opcode: TRANSPOSE

 Used for AI, graphics, cryptography, and neural networks.

$$(A^T)^{ij}=A^{ji}$$

31.FFT – Fast Fourier Transform

Formula:

$$X_k = \sum_{n=0}^{N-1} x_n e^{-2\pi i k n/N}$$

32.BP - Backpropagation for Al Neural Networks

Formula:

Opcode: BP

• Computes backpropagation gradients for AI training.

$$w=w-\etarac{\partial L}{\partial w}$$

33.ACTIVATION – Activation Function Computation Opcodes:

- RELU → Rectified Linear Unit
- SIGMOID \rightarrow Sigmoid function
- TANH → Hyperbolic tangent

34.TNN - Ternary Neural Network Inference

Opcode: TNN

• Computes ternary-weighted neural network inference.

35.QLEARN – Reinforcement Learning Q-Learning Update

Formula:

 $Q(s,a)=Q(s,a)+\alpha[r+\gamma maxQ(s',a')-Q(s,a)]$

Opcode: QLEARN

• Used in autonomous AI decision-making.

36.Optimized Parallel Processing & AI Opcodes for TISC

Opcode	Algorithm	Use Case
VECADD	Parallel Vector Addition	AI, physics, graphics
VECMUL	Parallel Vector Multiplication	AI, ML, simulations
DOT	Parallel Dot Product	AI, neural networks
MATMUL	Matrix Multiplication	AI, deep learning
TRANSPOSE	Matrix Transposition	Cryptography, AI
FFT	Fourier Transform	Signal processing, AI
BP	Backpropagation	AI training
ACTIVATION	Activation Functions	AI inference
TNN	Ternary Neural Networks	Deep learning
QLEARN	Reinforcement Learning	AI decision-making

37.Stack & Heap Memory Management

Opcode	Description			
PUSH Ra	Pushes register Ra onto the stack			
POP Ra	Pops the top of the stack into register Ra			
CALL addr	Pushes return address onto the stack and jumps to addr (subroutin call)			
RET	Pops return address from stack and jumps back			
ALLOC Rn, size	Allocates size bytes on heap and stores pointer in Rn			
FREE Rn	Frees memory block pointed to by Rn			

38.Interrupt Handling & Context Switching

Opcode	Description		
INT id	Triggers software interrupt id (system calls, I/O handling)		
IRET	Returns from an interrupt, restoring previous context		
SAVECTX Rn	Saves current CPU state into memory block pointed by Rn		
LOADCTX Rn	Restores CPU state from memory block pointed by Rn		
SWITCH Th	Context switch to thread/process Th		

39.Ternary Virtual Memory Management (T81 Paging)

	, , , , , , , , , , , , , , , , , , ,				
Opcode	Description				
MAPADDR Va, Pa	Maps virtual address Va to physical address Pa				
UNMAPADDR Va	Unmaps virtual address Va from memory				
T81PAGE Rn, flags	Allocates a ternary page in virtual memory with flags (Read/Write/Execute)				
TLBFLUSH	Flushes Translation Lookaside Buffer (TLB)				
PAGEMISS	Handles page faults dynamically				
MMUPROT	Modifies memory protection flags for a given page				

40.I/O HANDLING & PERIPHERAL COMMUNICATION

Opcode	Description		
INP Rn, Port	Reads data from I/O Port into register Rn		
OUTP Rn, Port	Writes data from register Rn to I/O Port		
DMA Xfer Rsrc, Rdest, size Performs Direct Memory Access (DMA) transfer			
WAITIO	Pauses execution until I/O operation is complete		
SIGEVENT Ev	Sends event signal Ev to an external device		
POLLEVENT Ev, Rn	Checks for event Ev and stores status in Rn		

41.BITWISE & LOW-LEVEL MEMORY HANDLING

Opcode	Description		
T81AND Ra, Rb, Rc	Bitwise AND: Rc = Ra & Rb		
T81OR Ra, Rb, Rc	Bitwise OR: `Rc = Ra		
T81XOR Ra, Rb, Rc	Bitwise XOR: Rc = Ra ^ Rb		
T81NOT Ra, Rc	Bitwise NOT: Rc = ~Ra		
T81SHL Ra, n, Rc	Shift left Ra by n places (Rc = Ra $<<$ n)		
T81SHR Ra, n, Rc	Shift right Ra by n places (Rc = Ra >> n)		
BITSET Ra, n	Sets bit n in Ra		
BITCLR Ra, n	Clears bit n in Ra		
BITTST Ra, n, Rc	Tests bit n in Ra, result in Rc (1 if set, 0 if not)		

42.CONTROL FLOW & BRANCHING

Opcode	Description	
JMP addr	Unconditional jump to addr	
JNZ Ra, addr	Jump to addr if Ra \neq 0	
JZ Ra, addr	Jump to addr if $Ra == 0$	
CMOV Rdest, Rsrc, Cond	Move Rsrc to Rdest only if Cond is met	
T81LOOP Rn, addr	Loop execution until Rn == 0	
T81SWITCH CaseTable, Rn	Branch based on value of Rn (ternary switch statement)	

43.ERROR HANDLING & FAULT TOLERANCE

Opcode	Description		
CHKERR Rn, addr	Checks if Rn has an error flag, jumps to addr if set		
T81ECC Ra, Rc	Ternary ECC (Error Correction Code) operation on Ra, result in Rc		
T81PARITY Ra, Rc	Computes parity of Ra, result in Rc		
ROLLBACK Ctx	Rolls back execution state to Ctx (error recovery)		
HARDFAIL addr	Forces a hardware failure event, jumps to addr for fault handling		

44.SELF-OPTIMIZING OPCODES

(TISC AI-driven adaptive execution)

Opcode	Description		
T81PROFILE addr,	Collects performance data from execution at addr		
T81OPTIMIZE addr	AI-driven optimization of execution path at addr		
T81DYNALLOC Rn,	AI-managed dynamic memory allocation based on runtime		
SELFMOD addr,	Self-modifying code execution at addr		
T81CACHEOPT level, flags	Adjusts cache prefetching & memory optimizations based on AI analysis		

T81TISC vs. CISC/RISC:

With this new opcode set, TISC fully rivals CISC and RISC architectures, adding OS-level system instructions, memory management, I/O handling, low-level bitwise operations, error correction, and Al-driven self-optimization.

T81TISC is now:

- A full computing stack with memory, I/O, and process control
- AI-optimized for learning-based execution improvements
- **Designed for reliability** with fault tolerance and self-recovery
- Capable of dynamic execution changes (JIT-style optimizations)