Part I Алгебра

Chapter 1

Линейная алгебра. Векторные пространства

1.1 Лекция 1

X - множество $*: X \times X \to X$ $(x,y) \mapsto x * y$

Аксиомы:

- 1. $\forall x, y, z \in X : x * (y * z) = (x * y) * z$ (ассоциативность)
- 2. $\exists e \in X \ \forall a \in X : e * a = a * e = a \ ($ нейтральный элемент)
- 3. $\forall a \in X \; \exists a' \in X : a * a' = a' * a = e \; (обратный элемент)$
- 4. $\forall a, b \in X : a * b = b * a$ (коммутативность)

Определение 1. Множество X с операцией * , удовлетворяющее аксиоме 1, называется полугруппой

Определение 2. Множество X с операцией * , удовлетворяющее аксиомам 1-2, называется **моноидом**

Определение 3. Множество X с операцией * , удовлетворяющее аксиомам 1-3, называется группой

Определение 4. Множество X с операцией * , удовлетворяющее аксиомам 1-4, называется коммутативной или абелевой группой

Примеры.

- 1. $(\mathbb{Z}, +)$ группа
- 2. (№, +) полугруппа
- 3. $(\mathbb{N}_0, +)$ моноид

4. $(\mathbb{R}\setminus\{0\},\cdot)$ – группа

5. Пусть A - множество

X:= множество биективных отображений $A \to A$ id_A — нейтральный элемент Если f(x)=y, то $\tilde{f}(y)=x$ — обратная функция $(f\circ \tilde{f}=\tilde{f}\circ f=id_A)$. $f(x)=x+1,\ g(x)-2x,\ id_A(x)=x$ $f\circ g(x)=f(g(x))=f(2x)=2x+1$ $g\circ f(x)=g(f(x))=g(x+1)=2x+2\neq 2x+1$

Следовательно, (X, \circ) – не коммутативная группа

Обозначение.

• · - мультипликативность, $1, x^{-1}$

• + -аддитивность, 0, -x

• \circ – относительно композиции, id, x^{-1}

• * – абстрактная операция, e, x^{-1}

Пусть (R, +) – абелева группа Определим отображение

$$\cdot: R \times R \to R$$

 $(a,b) \mapsto a \cdot b$

Для $(R, +, \cdot)$ могут быть верны следующие аксиомы:

5. a(b+c) = ab + ac(b+c)a = ba + ca (дистрибутивность)

6. a(bc) = (ab)c (ассоциативность)

7. $\exists 1_R \, \forall a \in R : 1_R \cdot a = a \cdot 1_R = a \; (\text{нейтральный элемент})$

8. ab = ba (коммутативность)

9. $0_R \neq 1_R$

10. $\forall a \neq 0_R \; \exists a^{-1} : a \cdot a^{-1} = a^{-1} \cdot a = 1_R \; (\text{обратный элемент})$

1.2 Лекция 2

Определение 5. $(R, +, \cdot)$, удовлетворяющее аксиоме 5, называется **не ассоциативным** кольцом без единицы.

Определение 6. $(R,+,\cdot)$, удовлетворяющее аксиомам 5-6, называется ассоциативным кольцом без единицы.

Определение 7. $(R, +, \cdot)$, удовлетворяющее аксиоме 5-7, называется ассоциативным кольцом с единицей.

Определение 8. $(R, +, \cdot)$, удовлетворяющее аксиомам 5-8, называется **коммутативным кольцом**.

Примеры.

- 1. \mathbb{Z} –коммутативное кольцо
- $2. \mathbb{Q}, \mathbb{R}, \mathbb{C}$ поля
- 3. Рассмотрим $\mathbb{Z}_n = 0, \dots, n-1$ с операциями $+_n, \cdot_n$: $a +_n b = (a + b)\% n$ $a \cdot_n b = (a \cdot b)\% n$ Обратимые элементы: ax = 1 + ny ax ny = 1 Если (a, n) = 1, есть решение, иначе нет. \mathbb{Z}_p поле $\Leftrightarrow p \in \mathbb{P}$

Определение 9. V – векторное пространство над полем F , если (V,+) – абелева группа, задано отображение $V \times F \to V$

 $(x,\alpha)\mapsto x\cdot\alpha$, удовлетворяющее аксиомам $\forall x,y\in V, \forall a,b\in F$:

5.
$$x \cdot (\alpha \cdot \beta) = (x \cdot \alpha) \cdot \beta$$

6.
$$(x+y) \cdot \alpha = x \cdot \alpha + y \cdot \alpha$$

 $x \cdot (\alpha + \beta) = x \cdot \alpha + x \cdot \beta$

7.
$$x \cdot 1_F = x$$

$$A \in M_n(F), \alpha \in F$$
$$(A, \alpha)_{ij} = a_{ij} \cdot \alpha$$
$$(AB)\alpha = A(B\alpha)$$

Примеры.

1. Множество векторов в \mathbb{R}^3

2.
$$F^{n} = \left\{ \begin{pmatrix} a_{1} \\ a_{2} \\ \vdots \\ a_{n} \end{pmatrix} \mid a_{i} \in F \right\}$$
$$\begin{pmatrix} a_{1} \\ \vdots \\ a_{n} \end{pmatrix} + \begin{pmatrix} b_{1} \\ \vdots \\ b_{n} \end{pmatrix} = \begin{pmatrix} a_{1} + b_{1} \\ \vdots \\ a_{n} + b_{n} \end{pmatrix}$$

3.
$$X$$
 - множество, $F^X = \{f \mid f : X \to F\}$
 $f, g : X \to F$
 $(f + g)(x) = f(x) + g(x)$
 $(f\alpha)(x) = f(x)\alpha$

- 4. F[t] многочлены от одной переменной t
- 5. V абелева группа, в которой $\forall a \in V: \underbrace{a+a+\ldots+a}_{p \in \mathbb{P}} = 0$ Тогда V векторное пространство над $\mathbb{Z}_p \ k \cdot a = \underbrace{a + \ldots + a}_{k}$

Лекция 3 1.3

Определение 10. Алгебра A над полем F – кольцо, являющееся векторным пространством над F ("+" - операция в кольце и в векторном пространстве), такое что $(ab)\alpha =$ $a, b \in A, \alpha \in F$ $a(b\alpha)$

Пример. $(\mathbb{R}^3,+,\times)$ - не ассоциативная алгебра на $\mathbb R$

Определение 11. Матрица размера $I \times J$ (I, J - множества индексов) над множеством X - это функция

$$A: I \times J \to X, \qquad (i,j) \to a_{ij}.$$

Пусть определено умножение $X \times Y \to Z, \qquad (x,y) \to xy$ (Z - коммутативный моноид относительно "+")

Определение 12. Строка - матрица размера $\{1\} \times J$ Столбец - матрица размера $J \times \{1\}$

A - строка длины J над X

B - строка длины J над Y

Тогда произведение $AB = \sum\limits_{j \in J} a_{1j}b_{j1} \in Z$ $x \to x_e$ - координаты вектора x

$$\underbrace{x \cdot y}_{e} = x_e^T \cdot y_e$$

скалярное произведение

Определение 13. Транспонирование матрицы.

D - матрица $I \times J$ над X

$$D^T$$
 - матрица $J imes I$ над $X : (D^T)_{ij} = (D)_{ji}$

3амечание. Пусть в X есть элемент $0:0\cdot y=0\quad \forall y\in Y$. Все кроме конечного числа $a_i = 0$. Тогда AB имеет смысл, даже когда $|J| = \infty$. "почти все" = кроме конечного количества

Обозначение.

$$a_{i*}$$
 - i -я строка матрицы A a_{*j} - j -й столбец матрицы A

1.3.1 Произведение матриц

$$A$$
 - матрица $I \times J$ над X .

$$B$$
 - матрица $J \times K$ над Y .

$$AB$$
 - матрица $I \times K$ над $Z = X \cdot Y,$ $(AB)_{ik} = a_{i*} \cdot b_{*k} = \sum_{j \in J} a_{ij} \cdot b_{jk}.$

$$(x_1, \dots x_n) \cdot \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} = va, \qquad v \in V, a \in F.$$

1.4 Лекция 4

Определение 14. (G, *), (H, #)– группа $\varphi : G \to H$ - гомоморфизм, если:

$$\varphi(g_1 * g_2) = \varphi(g_1) \# \varphi(g_2)$$

Определение 15. R, S -кольца $\varphi: R \to S$ - гомоморфизм, если:

$$\varphi(r_1 + r_2) = \varphi(r_1) + \varphi(r_2)$$

$$\varphi(r_1 \cdot r_2) = \varphi(r_1) \cdot \varphi(r_2)$$

Для колец с 1: $\varphi(1)=1$

Определение 16. U, V - векторные пространства над F $\varphi: U \to V$ - линейное отображение, если:

$$\varphi(u_1 + u_2) = \varphi(u_1) + \varphi(u_2)$$
$$\varphi(u\alpha) = \varphi(u)\alpha$$

Замечание. Изоморфизм – биективный гомоморфизм.

Определение 17. V - векторное пространство над полем F v - строка элементов "длины" I над V a - столбец "высоты" I, почти все элементы которого равны 0 Тогда va - линейная комбинация набора v с коэффициентами .

 $Замечание.\ U \subset V$

U является векторным пространством относительно тех же операций, которые заданы в V. Тогда U - подпространство V

Лемма. $U \subseteq V$

 $\forall u_1, u_2 \in U, \alpha \in F:$

 $u_1 + u_2 \in U, u_1\alpha \in U$ Тогда U - подпространство. Если U - подпространство в V, то пишут $U \subseteq V$.

Определение 18. $v = \{v_i | i \in I\}$, где $v_i \in V \ \forall i \in I$

< v > - наименьшее подпространство, содержащее все v_i

Лемма. $< v >= \{ va | a - cmoлбец высоты I над F, где почти всюду элементы равны нулю \} = U$

Доказательство. $v_i \in \langle v \rangle \Rightarrow v_i a_i \in \langle v \rangle$

 $\Rightarrow v_{i_1} a_{i_1} a + ... + v_{i_k} a_{i_k} \in < v >$

 $\Rightarrow < v >$ содержит все варианты комбинаций. $va + vb = v(a + b) \in U$

 $(va)\alpha = v(a\alpha) \in U$

 \Rightarrow множество линейных комбинаций – подпространство U - подпространство, содержащее $v_i \forall i \in I$

< v >а – наименьшее подпространство, содержащее v_i

 $\Rightarrow < v > \subseteq U$ тогда < v > = U

Определение 19. Если < v>= V, то v – система образующих пространство V Базис – система образующих.

Обозначение. F^I – множество функций из I в F = множество столбцов высоты I IV – множество строк длины I

Набор элементов из V , заиндексирванных множеством I – это функция $f:I\to V$ $i\mapsto f_c$

Определение 20. $v \in {}^{I}V$

v – **линейно независим**, если $\forall a \in F^I, a \neq 0 \Rightarrow va \neq 0$

Теорема 1.4.1. $v \subseteq V$ (можно считать, что v - строка длины v Следующие утверждения эквивалентны:

- 1. v линейно независимая система образующих
- 2. v максимальная линейно-независимая система
- 3. v минимальная система образующих
- 4. $\forall x \in V \exists ! a \in F^v : x = va = \sum_{t \in v} t \cdot a_t$ (почти все элементы равны 0)

Доказательство. $(1) \Rightarrow (4)$ – доказали ранее $(1) \Rightarrow (2)$

$$x \in V \setminus v$$

$$x = va(a \in F^v)$$

 $va = x \cdot 1 = 0$ – линейная зависимость набора $v \cup x$

Т.о. любой набор , строго содержащий v, динейно зависим $\Rightarrow v$ – максимальный.

```
(1)\Rightarrow (2) x\in V\setminus v\subseteq V\cup x-линейно зависим va+xa_x=0 a\neq 0 Если a_x=0\Rightarrow va=0\Rightarrow a=0?! Значит a_x\neq 0 va=c\cdot (-a_x) x=v\cdot \frac{a}{-a_x}\Rightarrow v-система образующих.
```

Лемма. (Цорн) Пусть \mathbb{A} – набор подмножеств (не всех) множества X. Если объединение любой цепи из \mathbb{A} , принадлежащей \mathbb{A} , то в \mathbb{A} существует максимальный элемент.

 $M \in \mathbb{C}$ - максимальная, если $M \subseteq M' \subseteq \mathbb{A} \Rightarrow M = M'$

Теорема 1.4.2. (о существовании базиса) V – векторное пространства

X – линейное независимое подмножество V

Y – cucmema образующих V

X < Y

Тогда существует базис Z пространства $V:X\leq Z\leq Y$

Доказательство. $\mathbb{A}-$ множество всех линейно независимых подмножеств, лежащих между X и Y . $X \in \mathbb{A}$

 $\mathbb{C} \leq \mathbb{A}$

 $X < \cup C \in \mathbb{C} < Y$

Пусть $\cup C \in \mathbb{C}$ – линейно зависимый. То есть $\exists u_1,...,u_2 \in /...$

. . .

Пусть v - базис V.

$$\forall x \in V \exists ! x_v \in F^v : x = v \cdot x_v$$
$$v = (v_1, \dots, v_n), \ x_v = ;$$

$$x = v_1 \alpha_1 + \ldots = v \cdot x_v$$

1.5 Лекция 5

1.6 Лекция 6

1.7 Лекция 7

Утверждение.

$$U < W \quad \exists V < W : W = U \oplus V$$

Доказательство. Выберем базис u в U. Дополним до базиса $u \cup v$ пространства W и положим $V = \langle v \rangle$.

$$< u >= U < v >= V < u \cup v >= < u > + < v >= U \oplus V = W$$

 $x\in U\cap V\Rightarrow x=ua=vb\Leftrightarrow ua-vb=0\Rightarrow a=0, b=0(u\cup v$ – линейно независимый

Следствие.

$$u$$
 — базис U,v — базис $V,U,V \leq W$ $u \cup v$ — базис $W \Leftrightarrow U \oplus V$

25.09.2019

1.8 Лекция 8

$$v - (v_1, v_2, \dots v_n) \in n^V$$

 $M_n(F)$ — алгебра матриц размера $n \times n$ над F

 $GL_n(F) = M_n(F)^* -$ полная линейная группа степени n над F

Лемма.

$$v \in n^V, A \in GL_n(F)$$

v- линейно независимый $\Leftrightarrow vA-$ линейно независимый

$$< v > = < vA >$$

Доказательство. $(vA)A^{-1} = v(AA^{-1}) = vE = v$, поэтому можно доказывать только в одну строну.

v - линейно независимый.

 $vAb=0\Rightarrow A^{-1}Ab=0\Rightarrow b=0,$ т.е vA - линейно независимый.

$$(vA)b = v(Ab) \in \langle v \rangle, \langle vA \rangle \leq \langle v \rangle$$

Утверждение. u, v - два разных базиса пространства V.

Тогда \exists ! матрица $A \in GL_n(F) : u = vA$

При этом $a_{*k} = (u_k)_v$ $\forall k = 1, \dots n$. Такая матрица обозначается $C_{v \to u}$ и называется матрицей перехода от v κ u.

$$C_{v\to u}C_{u\to v} = C_{v\to u}C_{u\to v} = E$$

Доказательство. Положим $a_{*k}=(a_k)_v\Rightarrow u_k=va_{*k}\Rightarrow u=vA.$ $vA=vB\Leftrightarrow A=B$ то есть A - единственно. Далее:

$$u = vC_{v \to u} v = uC_{u \to v}$$

$$uE - uC_{v \to u}C_{v \to u}$$

$$E = C_{u \to v}C_{v \to u}$$

Следствие. v - базис V

 $f:GL_n(F) o$ множество базисов пространства V f(A)=vA - биекция.

Доказательство.

$$|F|=q \qquad \dim V=u$$
 $(q^n-1)(q^n-q)\dots (q^n-q^{n-1})$ — количество базисов

 \mathbb{F} - поле из q элементов.

Утверждение. Если матрица двусторонне обратима, то она квадратная.

Следствие. u,v - базисы V

$$x = C_{u \to v} x_v$$

Доказательство.

$$x = ux_u = vx_v$$

$$v = uC_{u \to v}$$

$$ux_u = uC_{u \to v}x_v \Rightarrow x_u = C_{u \to v}x_v$$

Следствие. (Матричные линейные отображения)

$$L: U \to V$$
, u — базис U, v — базис V

Тогда $\exists !$ матрица $L_{v,u}(L_u^v : \forall x \in UL(x)_v = L_u^v x_u$ При этом $(L_u^v)_{*k} = L(u_k)_v$

Замечание.

$$u = (u_1, \dots u_n) \in n^U$$

$$L : U \to V$$

$$L(a) := (L(u_1), \dots, L(u_n))$$

$$L(ua) = L(u)a \qquad a \in F^n$$

$$\varphi_v: V \to F^n$$

$$\varphi_v(g) = y_v \qquad \forall q \in V$$

 φ_v - линейно $\Rightarrow (L(u)a)_v = L(u)_v a$

$$L(u)_v := (L(u_1)_v, \dots L(u_n))v)$$

Доказательство.

$$x = ux_u$$

$$L(x) = L(u)x_u$$

$$L(x)_v = L(u)_v x_u$$

Положим $L_u^v := L(u)_v$.

$$orall x\in U: L(x)_v=L_u^v x_u$$
 При $x=u_k: L(u_k)_v=L_u^v (u_k)_u=(L_u^v)_k$ Замечание. Если $Ax=Bx \quad \forall x\in F^n,$ то $A=B$ 26.09.2019

1.9 Лекция 9

Примеры.

1. $V=\mathbb{R}[t]_3$ - многочлены степени не более 3

$$D(p) = p' V \to V$$

$$v = (1, t, t^2, t^3).$$

$$D(1) = 0, D(t) = 1, D(t^2) = 2t.$$

$$D_v = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

$$v^{(1)} = (1, \frac{t}{1!}, \frac{t^2}{2!}, \frac{t^3}{3!}).$$

$$v = (1, t, \frac{t^2}{2!}, \frac{t^n}{3!}).$$

2.
$$V = \mathbb{R}[t]$$

$$v = (1, t, \frac{t^2}{2}, \dots, \frac{t^n}{n!}, \dots).$$

$$D(v_0) = 0, D(v_k) = v_{k-1}.$$

$$\left(\begin{array}{cccc}
0 & 1 & & \cdots \\
& 0 & 1 & \cdots \\
& & 0 & 1 \\
\vdots & \vdots & & \ddots
\end{array}\right)$$

$$V = \mathbb{R}^3$$
 $|L(a)| = |a|$ $L(a)$ e_1 \vec{a} \vec{a} e_2 \vec{a} $L(a) = \varphi$ $e = (e_1, e_2)$ - базис

$$L(e_1)_e = \begin{pmatrix} \cos \varphi \\ \sin \varphi \end{pmatrix}$$

$$L(e_2)_e = \begin{pmatrix} -\sin \varphi \\ \cos \varphi \end{pmatrix}$$

$$L_e = \begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix}.$$

$$a_e = \begin{pmatrix} \cos \psi \\ \sin \varphi \end{pmatrix}$$

$$L(a)_e = \begin{pmatrix} \cos(\psi + \varphi) \\ \sin(\psi + \varphi) \end{pmatrix}.$$

$$L(a)_e = L_e \cdot a_e = \begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix} \cdot \begin{pmatrix} \cos \psi \\ \sin \psi \end{pmatrix} = \begin{pmatrix} \cos \varphi \cos \psi - \sin \varphi \sin \psi \\ \cos \varphi \sin \psi + \sin \varphi \cos \psi \end{pmatrix}.$$

Утверждение. $L:U \to V$

$$u, u' - \textit{basuc } U$$
 $v, v' - \textit{basuc } V$
 $Torda \ L_{u'}^{v'} = C_{v' o v} \quad L_u^v C_{u o u'}$

Доказательство.

$$L(x)_v = L_u^v x_u.$$

$$C_{v' \to v} L(x)_v = L(x)_{v_1} = L_{u'}^{v'} x_{u'} = L_{u'}^{v'} C_{u' \to u} x_u.$$

 $\forall x_u \in F^{dimU}$

$$L(x)_{v} = C_{v \to v'} L_{u'}^{v'} C_{u' \to u} x_{k}.$$

$$L_{u}^{v} = C_{v \to v'} L_{u'}^{v'} C_{u' \to u}.$$

Замечание.

Если
$$U = V$$
 $u = v, u' = v'.$
$$L_{u'} = C_{u' \to u} L_u C_{u \to u'}.$$

Утверждение. Линейное отображение однозначно определяется образом базисных векторов.

$$u = (u_1, \dots u_n) -$$
 базис U

Для любого векторного пространства V:

$$\forall v_1, \dots v_n = V$$

 $\exists !$ линейное отображение (*) $L: U \to V: L(u_k) = v_k \quad \forall k$

Доказательство.

$$L(ua) := va$$

$$\forall L^* : L(ua) = L(u)a = va$$

При этом L - инъективно тогда и только тогда, когда v - линейно независимый L - сюрьективно тогда и только тогда, когда v - система образующих L - изоморфизм тогда и тоько тогда, когда v - базис.

Утверждение. V, v, v' — базис V

$$L:V \to V$$
 — линейно

$$L(v_k) = v_k' \qquad \forall k$$

$$(L_v)_k = L(v_k)_v = (v_k')_v$$

$$L_v = C_{v \to v'}.$$

(по другому)

$$(Id_{v'}^v)_k = Id(v'_k)_v = (v'_k)_v.$$

Тогда $L_v = C_{v \to v'} = Id_{v'}^v$

Определение 21. $f: X \to Y$

$$Im f = \{ f(x) \mid x \in X \}$$

 $L:U \to V$ - линейное отображение

$$ImL = \{L(x) \mid x \in U\}$$

$$\ker L = L^{-1}(0) = \{ x \in U \mid L(x) = 0 \}$$

Лемма.

$$\begin{split} im L &\leq V \\ \ker L &\leq U \\ \varPi y cm \upsilon \ L(x) &= y \end{split}$$

$$\forall y \in V : L^{-1} = x + \ker L$$
$$L^{-1}(y) = \{z \in U \mid L(z) = y\}$$
$$x + \ker L = \{x + z \mid z \in \ker L\}$$