Network Security – prof. Giuseppe Bianchi – 3rd term exam, 14 February 2020

Name+Surname:	Univ. Code:
Q1 - Let P be an EC point. What is th more specifically which are these ope	ne minimum number of EC operations necessary to compute [63]P? And erations?
63,0 = 32+16+8+4+2+1 = 11171112 ~6	6it, 6'2' double rundt
Computo allora 10 operazioni:	
Computo allow 10 operazioni: 5 double (1 V bit) c 5 sum (1 V bit: 2)	$ \begin{array}{cccc} 1 & 2P \longrightarrow & 3P \\ 1 & 4P \longrightarrow & 7P \\ 1 & 8P \longrightarrow & 17P \\ 1 & 16P \longrightarrow & 3P \\ 1 & 32P \longrightarrow & 63P \end{array} $
"commit" a value x. Under which (ever Feldman Pedersen O O O O O O O O O O O O O O O O O O O	introduced in our classes (Feldman and Pedersen), and assume they ventually different) assumptions they can be considered secure? a) no specific assumptions b) must use a large prime p in the modular exponentiations c) require that the committed value x is drawn from a large space d) both large prime p and x drawn from large space 1 (X < p-1) fer per feet 3 nd, 1 (X < p-1) fer per feet 3 nd, 1 (X < p-1) fer per feet 3 nd, 1 (X < p-1) fer per feet 3 nd, 2 (X < p-1) fer per feet 3 nd, 3 (X < p-1) fer per feet 3 nd, 3 (X < p-1) fer per feet 3 nd, 4 (X < p-1) fer per feet 3 nd, 4 (X < p-1) fer per feet 3 nd, 5 (X < p-1) fer per feet 3 nd, 6 (X < p-1) fer per feet 3 nd, 6 (X < p-1) fer per feet 3 nd, 6 (X < p-1) fer per feet 3 nd, 6 (X < p-1) fer per feet 3 nd, 7 (X < p-1) fer per feet 3 nd, 8 (X < p-1) fer per feet 3 nd, 8 (X < p-1) fer per feet 3 nd, 8 (X < p-1) fer per feet 3 nd, 8 (X < p-1) fer per feet 3 nd, 9 (X < p-1) fer per feet 3 nd, 9 (X < p-1) fer per feet 3 nd, 10 (X < p-1) fer per feet 3 nd, 10 (X < p-1) fer per feet 3 nd, 10 (X < p-1) fer per feet 3 nd, 10 (X < p-1) fer per feet 3 nd, 10 (X < p-1) fer per feet 3 nd, 10 (X < p-1) fer per feet 3 nd, 10 (X < p-1) fer per feet 3 nd, 10 (X < p-1) fer per feet 3 nd, 10 (X < p-1) fer per feet 3 nd, 10 (X < p-1) fer per feet 3 nd, 10 (X < p-1) fer per feet 3 nd, 10 (X < p-1) fer per feet 3 nd, 10 (X < p-1) fer per feet 4 nd, 10 (X < p-1) fer per feet 4 nd, 10 (X < p-1) fer per feet 4 nd, 10 (X < p-1) fer per feet 4 nd, 10 (X < p-1) fer per feet 4 nd, 10 (X < p-1) fer per feet 4 nd, 10 (X < p-1) fer per feet 4 nd, 10 (X < p-1) fer per feet 4 nd, 10 (X < p-1) fer per feet 4 nd, 10 (X < p-1) fer per feet 4 nd, 10 (X < p-1) fer per feet 4 nd, 10 (X < p-1) fer per feet 4 nd, 10 (X < p-1) fer per feet 4 nd, 10 (X < p-1) fer per feet 4 nd, 10 (X < p-1) fer per feet 4 nd, 10 (

Network Security - prof. Giuseppe Bianchi - 3rd term exam, 14 February 2020

Name+Surname: Univ. Code:

Q5 - Consider an RSA digital signature based on a (2,2) secret sharing, and assume all following operations are based on modulo n, with n being the RSA parameter. The tag $H(m)^d$ is reconstructed by:

- O a) Summing the tags constructed using the two shares
- **⊘** b) Multiplying the tags constructed using the two shares
- O c) Interpolating the tags constructed using the two shares using Lagrange coefficients
- O d) Using a special approach proposed by Shoup.

Q6 - **Assume arithmetic modulus 100.** A Linear secret sharing scheme involving 3 parties is described by the following access control matrix:

A: 1 1 0 $2(110) - 1(011) - 1(00-1) = (100) \times B$: 0 1 1 [1(51) - 1(63) - 1(11)] med 100 = 77 = 5

Assume that the following shares are revealed:

- $A \rightarrow 51$
- $B \rightarrow 63$
- $D \rightarrow 11$

What is the secret?

(a) 1 (b) 3 (c) 23 (d) 25 (e) 75 (f) 77 (g) 97 (h) 99 (i) another result = ______

Q7 - A same message M is RSA-encrypted using two different public keys e1 = 5 and e2 = 7, but same RSA modulus n=143. The two resulting ciphertexts are: c1=23 and c2=4. Decrypt the message applying the Common Modulus Attack (show the detailed computations required).

Just in case you need to rapidly compute inverses modulus 143, here a few ones:

 $x = \{4,5,7,17,20,23,29,92\} \rightarrow x^{-1} \mod 143 = \{36,86,41,101,93,56,74,14\}$

$$M^{5} \mod 143 = 23 \mod 143$$

$$M^{7} \mod 143 = 4 \mod 143$$

$$find R, S = 7 \cdot R + 5 \cdot S = 1$$

$$0 | 6 | Vol | R$$

$$23 \cdot 4 \mod 143 = 0 | 1 | 5 | 1$$

$$23 \cdot 36^{2} \mod 143 = 108 = M$$

$$7(-2) + 5(3) = 1$$

Network Security - prof. Giuseppe Bianchi - 3rd term exam, 14 February 2020

Name+Surname: Univ. Code:

- **Q8** A Shamir Secret Sharing scheme uses a non-prime modulus p=55 (if you need modular inverses see table on the right). Of the 5 participating parties P_1, \ldots, P_5 , with respective x coordinates $x_i = \{1, 2, 3, 4, 5\}$, parties P_1, P_3 and P_5 aim at reconstructing the secret.
- a) compute the Lagrange Interpolation coefficients for parties 1,3,5;
- b) Reconstruct the secret, assuming that the shares are:
 - $P_1 \rightarrow 46$
 - $P_3 \rightarrow 51$
 - $P_5 \rightarrow 2$
- c) Prove that the system is NOT unconditionally secure, by showing that the knowledge of the two shares P_3 and P_5 leak information about the secret specifically, after knowing shares P_3 and P_5 which would be the only possible remaining secret values?

$$\Lambda_{3} = \frac{-3}{1-3} \cdot \frac{-5}{1-5} = \frac{15}{-2 \cdot (-5)} = \frac{15}{8} \mod 55 = 15.7 \mod 55 = 50$$

$$\Lambda_{3} = \frac{-1}{3-1} \cdot \frac{-5}{3-5} = \frac{5}{2(-2)} = -5.5 \mod 55 = 40$$

$$1.5 = \frac{1}{5-1} \cdot \frac{3}{5-3} = \frac{2}{5\cdot 2} = 3.7 \text{ mod } 55 = 21$$

$$[1(50.46 + 40.51 + 21.2)]$$
 mod $55 = 4382$ mod $55 = 37=5$
 $(50.46 + 40.51 + 21.2)$ mod $55 = (47+500)$ mod $55 = 37=5$

Х	1/x mod 55
1	1
2	28
3	37
4	14
6	46
7	8
8	7
9	49
12	23
13	17
14	4
16	31
17	13
18	13 52
19	29
21	21
23	12
24	39
26	36
27	53
28	2
29	19
29 31	16
32	43
34	34
36	26
37	3
37 38	42
39	24
41	51
42	38
43	32
46	6
47	48
48	47
49	9
51	41
52	18
53	27
E /1	54

Name+Surname: Univ. Code:

Q9 - Prove that <u>any</u> linear secret sharing scheme is homomorphic with respect to the sum operation.

$$\begin{cases} A \times \alpha = \gamma_{a} & \times \alpha = (\infty, \alpha_{1}, \dots) \\ A \times B = \gamma_{B} & \times b = (S_{b}, b_{1}, \dots) \end{cases} \quad \forall_{a} = (shore 10, \dots)$$

$$\forall_{a} + \gamma_{b} = A(x_{a} + x_{B}) = A(S_{a} + S_{b}, o_{1} + b_{1}, \dots)$$

Q10 – 1) Determine the access control matrix that implements the policy: $\pi = (A \cap B) \cup (C \cap D \cap E)$, and then 2) turn it into a linear secret sharing scheme, by computing the shares to assigned to the 5 parties (use modulus 100, share secret S=10, inventiyour own random values if/when necessary)