Perturbaciones experimentales

Juan Hirschmann - jhirschmann@fi.uba.ar

1. Introducción

El método de perturbaciones experimentales consiste en estimar el número de condición del algoritmo alterando, de manera conocida y secuencial, los datos de entrada de la función que se quiere analizar y la precisión de cálculo. Esta estimación resulta especialmente conveniente cuando la función tiene una gráfica de procesos compleja o no se tiene la función de manera analítica. Según la metodología implementada, se puede separar el método en dos partes: la estimación del número de condición del problema y la estimación del factor global de amplificación de errores de redondeo.

1.1. Notación utilizada en el apunte

Como convención de notación, se define al error relativo total como suma de dos términos, uno asociado a los errores de entrada, y el otro asociado a los errores de redondeo:

$$E_r = C_p R + F_u \mu \begin{cases} C_p : \text{Número de condición del problema} \\ R : \text{Cota para el error relativo} \\ F_u : \text{Factor global de amplificación} \\ \mu : \text{Unidad de máquina} \end{cases} \tag{1}$$

De esta manera, y bajo ciertas hipótesis, se puede aproximar tanto C_p como F_u de la siguiente forma:

$$Cp \approx \left| \frac{E_r}{R} \right|$$
, para n indefinida $Cp \approx \sum_{i=0}^{n} \left| \frac{E_{r_i}}{R_i} \right|$

$$F_u \approx \frac{Y_t - Y_s}{Y_t \left(\mu_s - \mu_t\right)} \quad t > s$$
(2)

En donde R_i representa la perturbación relativa asociada a la variable x_i y E_{r_i} es el error relativo observado al perturbar la variable i respecto a su valor sin perturbar. Por su parte, Y_t e Y_s son las soluciones obtenidas a t y s dígitos significativos respectivamente.

2. Ejemplo: estimación de parámetros vs. gráfica de procesos

En este ejemplo se calcularán y estimarán las características de la función a continuación utilizando cierto algoritmo en común:

$$F(x,y) = \sqrt{x+y} \tag{3}$$

En la resolución se asumirá que ambas variables están afectadas por errores de entrada.

2.1. Cálculo del error relativo mediante gráfica de procesos

Se propone usar, en el cálculo de F(x,y), el siguiente algoritmo:

Después de realizar todos los productos implicados y separar en términos, se obtiene que C_p y F_u son independientes de ambas variables y tienen un valor de 0,5 y 1,5 respectivamente. Como ejercicio adicional, se puede verificar ello. De esta forma, se observa que el problema esta bien condicionado, pues $C_p < 1$ y el algoritmo es relativamente estable dado que $C_a \gg 1$.

2.2. Estimación del error relativo mediante perturbaciones experimentales

En esta sección se resolverá el ejercicio anterior por método de perturbaciones experimentales.

2.2.1. Estimación del número de condición del problema

Si bien, para este caso C_p y F_u son constantes para cualquier punto, se necesita evaluar el algoritmo para poder perturbarlo. Por ese motivo, se eligió el punto (3,5) y la perturbación del 1% para ambas variables. Habiendo definido ello, se evaluó la función en tres instancias diferentes:

Instancia	F(x,y)	Error relativo	Factor de amplificación
x=3 $y=5$	2,82842	-	-
x=3.03 y=5	2,83372	-0,00187325	0,187325
x=3 $y=5,05$	2,83725	-0,00312013	0,312013

De esta manera, al aplicar la ecuación 2, el número de condición del problema resulta aproximadamente la suma de ambos factores de amplificación, 0.499338.

2.2.2. Estimación del factor global de amplificación

Para mayor claridad, se denotará el caso donde se use una determinada precisión como $F_t(x, y)$, en donde t es el grado de precisión. Utilizando el algoritmo expuesto en la gráfica de procesos, se obtiene el factor global de amplificación de la siguiente manera:

$$F_u \approx \left| \frac{F_8(3,5) - F_4(3,5)}{F_8(3,5) \left(\mu_4 - \mu_8\right)} \right| \tag{4}$$

Si

$$F_8(3,5) = 2,8284271 \quad ; \quad F_4(3,5) = 2,828$$
 (5)

Entonces se obtiene un factor de amplificación de aproximadamente 1,510.

3. Análisis de resultados

3.1. Comparación entre ambos métodos

La siguiente tabla sintetiza todos los resultados obtenidos a lo largo del ejercicio:

Método	F_u	C_p	C_a
Gráfica de procesos	1,5	0,5	3
Perturbaciones experimentales	1,510	0.499338	3,024

Se observa que, en este caso, las aproximaciones resultan exactas a dos dígitos significativos. Sin embargo, es importante notar que si no se conoce C_p ni F_u de manera analítica, no se puede saber que error se comete al aproximar.

3.2. Comportamiento del método experimental

Para estudiar que tan fiable es la aproximación del C_p , se gráfico el error cometido al estimar este parámetro utilizando distintas perturbaciones:

 $^{^{1}}$ En este caso la unidad de máquina utilizada fue $\mu_{i} = 1 \times 10^{-i}$, correspondiente al redondeo por truncamiento

Figura 1: Error en el C_p estimado para cada perturbación relativa (t=15)

Realizando un análisis sencillo, se observa que el error es bajo para valores intermedios de perturbación relativa. Por este motivo, y como regla general, es recomendable elegir una perturbación mucho mayor al número de máquina pero mucho menor al $100\,\%$.

4. Cuadro comparativo

Perturbaciones experimentales			Gráfica de procesos	
Ventajas	Desventajas	Ventajas	Desventajas	
Veloz	Estimativo	Análitico	Lento	
Fácil implementación	Depende del propio algoritmo (y su condición)	Preciso	Difícil implementación	
No necesita de la función analítica	Utilizar dos precisiones distintas para el cálculo de F_u puede no ser posible ² La perturbación escogida puede no ser adecuada		Siempre necesita de la función analítica	

 $^{^2}$ Especialmente para casos donde se desea caracterizar el error en un programa que únicamente toma datos de entrada y devuelve resultados, sin opciones para la precisión de cálculo