Matematică *M_tehnologic*

BAREM DE EVALUARE ŞI DE NOTARE

Varianta 9

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$2 - \frac{1}{2} = \frac{3}{2}$	2p
	$\frac{3}{2}:\frac{1}{2}=\frac{3}{2}\cdot\frac{2}{1}=3$	3р
2.	J (-) -	2p
	$f(1) = 2 \Rightarrow f(-1) \cdot f(1) = 4$	3 p
3.	2x+2=2	3p
	x = 0	2p
4.	Mulțimea A are 9 elemente, deci sunt 9 cazuri posibile	2p
	Multiplii de 2 din mulțimea A sunt 22, 44, 66 și 88, deci sunt 4 cazuri favorabile	2p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{cazuri favorabile}} = \frac{4}{100}$	1
	nr. cazuri posibile 9	1p
5.	$AO = \sqrt{5}$	2p
	$BO = \sqrt{5} \Rightarrow AO = BO$	3 p
6.	$\sin 45^\circ = \frac{\sqrt{2}}{2}, \cos 60^\circ = \frac{1}{2}$	2p
	$\sin^2 45^\circ - \cos^2 60^\circ = \left(\frac{\sqrt{2}}{2}\right)^2 - \left(\frac{1}{2}\right)^2 = \frac{2}{4} - \frac{1}{4} = \frac{1}{4}$	3p

1.a)	$\det A = \begin{vmatrix} 1 & 3 \\ 3 & 1 \end{vmatrix} = 1 \cdot 1 - 3 \cdot 3 =$	3p
	=1-9=-8	2p
b)	$A \cdot A = \begin{pmatrix} 10 & 6 \\ 6 & 10 \end{pmatrix}, \ 2A = \begin{pmatrix} 2 & 6 \\ 6 & 2 \end{pmatrix}$	3 p
	$A \cdot A - 2A = \begin{pmatrix} 10 & 6 \\ 6 & 10 \end{pmatrix} - \begin{pmatrix} 2 & 6 \\ 6 & 2 \end{pmatrix} = \begin{pmatrix} 8 & 0 \\ 0 & 8 \end{pmatrix} = 8 \cdot \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = 8I_2$	2 p
c)	$A \cdot B = \begin{pmatrix} 6 & 2+3x \\ 2 & 6+x \end{pmatrix}, B \cdot A = \begin{pmatrix} 6 & 2 \\ 2+3x & 6+x \end{pmatrix}$	2p
	$\begin{vmatrix} A \cdot B - B \cdot A = \begin{pmatrix} 0 & 3x \\ -3x & 0 \end{pmatrix} \Rightarrow \det(A \cdot B - B \cdot A) = \begin{vmatrix} 0 & 3x \\ -3x & 0 \end{vmatrix} = 9x^2 \ge 0, \text{ pentru orice număr real } x$	3 p

2.a)	$f(1) = 2 \cdot 1^3 + 3 \cdot 1^2 - 1 - 2 =$	3p
	=2+3-1-2=2	2p
b)	Câtul este $2X^2 + X - 2$	3 p
	Restul este 0	2 p
c)	$f = (X+1)(2X^2 + X - 2)$	2p
	$x_1 = -1$, $x_2 = \frac{-1 - \sqrt{17}}{4}$ și $x_3 = \frac{-1 + \sqrt{17}}{4}$ sunt rădăcinile polinomului f	3 p

SUBIECTUL al III-lea

1.a)	$f'(x) = 4x^3 - 4x =$	3 p
	$=4x(x^{2}-1)=4x(x-1)(x+1), x \in \mathbb{R}$	2p
b)	$\lim_{x \to +\infty} \frac{x^2 + 1}{f(x) - x^4} = \lim_{x \to +\infty} \frac{x^2 + 1}{-2x^2 + 12} =$	2 p
	$= \lim_{x \to +\infty} \frac{1 + \frac{1}{x^2}}{-2 + \frac{12}{x^2}} = -\frac{1}{2}$	3 p
c)	f(1)=11, f'(1)=0	2p
	Ecuația tangentei este $y - f(1) = f'(1)(x-1)$, adică $y = 11$	3 p
2.a)	$\int_{1}^{2} (f(x) - 2x + 4) dx = \int_{1}^{2} (3x^{2} + 2x - 4 - 2x + 4) dx = \int_{1}^{2} 3x^{2} dx =$	2p
	$=x^3\begin{vmatrix} 2\\1=8-1=7 \end{vmatrix}$	3 p
b)	$F: \mathbb{R} \to \mathbb{R}$, $F(x) = x^3 + x^2 - 4x + c$, unde $c \in \mathbb{R}$	3p
	$F(1) = 2017 \Rightarrow c = 2019$, deci $F(x) = x^3 + x^2 - 4x + 2019$	2 p
c)	$\int_{1}^{a} f(x)dx = \left(x^{3} + x^{2} - 4x\right) \Big _{1}^{a} = a^{3} + a^{2} - 4a + 2$	3p
	$a^{3} + a^{2} - 4a + 2 = a^{3} - 2 \Leftrightarrow (a - 2)^{2} = 0$, deci $a = 2$	2p

Matematică M_tehnologic

Varianta 9

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Arătați că $\left(2 \frac{1}{2}\right) : \frac{1}{2} = 3$.
- **5p** 2. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 + 1$. Calculați $f(-1) \cdot f(1)$.
- **5p 3.** Rezolvați în mulțimea numerelor reale ecuația $3^{2x+2} = 9$.
- **5p 4.** Calculați probabilitatea ca, alegând un număr din mulțimea $A = \{11, 22, 33, 44, 55, 66, 77, 88, 99\}$, acesta să fie multiplu de 2.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(2,1) și B(2,-1). Arătați că AO = OB.
- **5p 6.** Arătați că $\sin^2 45^\circ \cos^2 60^\circ = \frac{1}{4}$.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricele $A = \begin{pmatrix} 1 & 3 \\ 3 & 1 \end{pmatrix}$ și $B = \begin{pmatrix} 0 & 2 \\ 2 & x \end{pmatrix}$, unde x este număr real.
- **5p** a) Arătați că det A = -8.
- **5p b)** Arătați că $A \cdot A 2A = 8I_2$, unde $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.
- **5p** c) Demonstrați că $\det(A \cdot B B \cdot A) \ge 0$, pentru orice număr real x.
 - **2.** Se consideră polinomul $f = 2X^3 + 3X^2 X 2$.
- **5p a**) Arătați că f(1) = 2.
- **5p b**) Determinați câtul și restul împărțirii polinomului f la polinomul X + 1.
- **5p** $| \mathbf{c} |$ Determinați rădăcinile polinomului f.

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^4 2x^2 + 12$.
- **5p** a) Arătați că $f'(x) = 4x(x-1)(x+1), x \in \mathbb{R}$.
- **5p b)** Arătați că $\lim_{x \to +\infty} \frac{x^2 + 1}{f(x) x^4} = -\frac{1}{2}$.
- **5p c**) Determinați ecuația tangentei la graficul funcției f în punctul de abscisă x=1, situat pe graficul funcției f.
 - **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = 3x^2 + 2x 4$.
- **5p** a) Arătați că $\int_{1}^{2} (f(x) 2x + 4) dx = 7$.
- **5p b**) Determinați primitiva F a funcției f pentru care F(1) = 2017.
- **5p** c) Determinați numărul real a pentru care $\int_{1}^{a} f(x) dx = a^{3} 2$.

Matematică *M_tehnologic*

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 2

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$2 + \frac{1}{2} = \frac{5}{2}$	3p
	$\frac{5}{2} \cdot \frac{4}{5} = 2$	2p
2.	$x_1 + x_2 = 4$, $x_1 x_2 = 3$	2p
	$\frac{x_1 + x_2 - 1}{x_1 x_2} = \frac{4 - 1}{3} = 1$	3 p
3.	$2^{x+1} = 2^3 \Leftrightarrow x+1=3$	3p
	x=2	2p
4.	Mulțimea A are 9 elemente, deci sunt 9 cazuri posibile	2p
	Multiplii de 4 din mulțimea A sunt 4 și 8, deci sunt 2 cazuri favorabile	2p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{2}{9}$	1p
		-P
5.	$AB = \sqrt{(4-0)^2 + (0-3)^2} = 5$, $AO = 3$, $BO = 4$	3 p
	$P_{\Delta AOB} = AB + AO + BO = 5 + 3 + 4 = 12$	2p
6.	$\sin 150^\circ = \frac{1}{2}$, $\sin 60^\circ = \frac{\sqrt{3}}{2}$	3p
	$\sin^2 150^\circ + \sin^2 60^\circ = \left(\frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2 = \frac{1}{4} + \frac{3}{4} = 1$	2p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$\det A = \begin{vmatrix} 3 & 2 \\ 2 & 3 \end{vmatrix} = 3 \cdot 3 - 2 \cdot 2 =$	3 p
	=9-4=5	2p
b)	$B \cdot B = \begin{pmatrix} 2 & a+1 \\ a+1 & a^2+1 \end{pmatrix}$	2p
	$2B = \begin{pmatrix} 2 & 2 \\ 2 & 2a \end{pmatrix}$, deci $B \cdot B = 2B \Leftrightarrow a = 1$	3 p
c)	$A \cdot B - B \cdot A = \begin{pmatrix} 5 & 3+2a \\ 5 & 2+3a \end{pmatrix} - \begin{pmatrix} 5 & 5 \\ 3+2a & 2+3a \end{pmatrix} = \begin{pmatrix} 0 & 2a-2 \\ 2-2a & 0 \end{pmatrix}$	3р
	$\det(A \cdot B - B \cdot A) = \begin{vmatrix} 0 & 2a - 2 \\ 2 - 2a & 0 \end{vmatrix} = (2a - 2)^2 \ge 0, \text{ pentru orice număr real } a$	2p

Probă scrisă la matematică *M_tehnologic*

Barem de evaluare și de notare

Varianta 2

2.a)	$1 \circ 3 = 1 \cdot 3 - 3 \cdot 1 - 3 \cdot 3 + 12 =$	3 p
	=3-3-9+12=3	2 p
b)	$x \circ y = xy - 3x - 3y + 9 + 3 =$	2 p
	= x(y-3)-3(y-3)+3=(x-3)(y-3)+3, pentru orice numere reale x şi y	3 p
c)	$x \circ x = (x-3)^2 + 3$, $(x \circ x) \circ x = (x-3)^3 + 3$	3 p
	$(x-3)^3 + 3 = 3 \Leftrightarrow x = 3$	2 p

SUBIECTUL al III-lea

1.a)	$f'(x) = (x^3)' + (6x)' + (2)' =$	2p
	$=3x^2+6=3(x^2+2), x \in \mathbb{R}$	3 p
b)	$\lim_{x \to 0} \frac{f'(x)}{x+2} = \lim_{x \to 0} \frac{3(x^2+2)}{x+2} =$	2p
	$=\frac{3(0^2+2)}{0+2}=3$	3p
c)	$x \in [-1,1] \Rightarrow f'(x) > 0$, deci f este crescătoare pe $[-1,1]$	2 p
	Cum $f(-1) = -5$ și $f(1) = 9$, obținem $-5 \le f(x) \le 9$, pentru orice $x \in [-1,1]$	3 p
2.a)	$\int_{0}^{1} (f(x) + x) dx = \int_{0}^{1} (4x^{3} - x + x) dx = \int_{0}^{1} 4x^{3} dx =$	2p
	$= x^4 \begin{vmatrix} 1 \\ 0 \end{vmatrix} = 1$	3p
b)	$\int_{0}^{1} (4x^{3} - f(x))e^{x} dx = \int_{0}^{1} (4x^{3} - 4x^{3} + x)e^{x} dx = \int_{0}^{1} xe^{x} dx =$	2p
	$=(x-1)e^{x}\begin{vmatrix}1\\0\\1\end{vmatrix}=1$	3p
c)	$\mathcal{A} = \int_{1}^{3} f(x) dx = \int_{1}^{3} (4x^{3} - x) dx = \left(x^{4} - \frac{x^{2}}{2}\right) \Big _{1}^{3} =$	3p
	$=81-\frac{9}{2}-1+\frac{1}{2}=76$	2 p

Matematică M_tehnologic

Varianta 2

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Arătați că $\left(2 + \frac{1}{2}\right) \cdot \frac{4}{5} = 2$.
- **5p** 2. Arătați că $\frac{x_1 + x_2 1}{x_1 x_2} = 1$, unde x_1 și x_2 sunt soluțiile ecuației $x^2 4x + 3 = 0$.
- **5p 3.** Rezolvați în mulțimea numerelor reale ecuația $2^{x+1} = 8$.
- **5p 4.** Calculați probabilitatea ca, alegând un număr din mulțimea $A = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$, acesta să fie multiplu de 4.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(0,3) și B(4,0). Calculați perimetrul triunghiului OAB.
- **5p 6.** Arătați că $\sin^2 150^\circ + \sin^2 60^\circ = 1$.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricele $A = \begin{pmatrix} 3 & 2 \\ 2 & 3 \end{pmatrix}$ și $B = \begin{pmatrix} 1 & 1 \\ 1 & a \end{pmatrix}$, unde a este număr real.
- **5p** a) Arătați că det A = 5.
- **5p b)** Determinați numărul real a pentru care $B \cdot B = 2B$.
- **5p c**) Arătați că $\det(A \cdot B B \cdot A) \ge 0$, pentru orice număr real a.
 - 2. Pe mulțimea numerelor reale se definește legea de compoziție $x \circ y = xy 3x 3y + 12$.
- **5p** a) Arătați că $1 \circ 3 = 3$.
- **5p b)** Demonstrați că $x \circ y = (x-3)(y-3)+3$, pentru orice numere reale x și y.
- **5p** c) Determinați numărul real x, pentru care $(x \circ x) \circ x = 3$.

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^3 + 6x + 2$.
- **5p** a) Arătați că $f'(x) = 3(x^2 + 2), x \in \mathbb{R}$.
- **5p b)** Arătați că $\lim_{x\to 0} \frac{f'(x)}{x+2} = 3$.
- **5p** c) Demonstrați că $-5 \le f(x) \le 9$, pentru orice $x \in [-1,1]$.
 - **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = 4x^3 x$.
- **5p a)** Arătați că $\int_{0}^{1} (f(x) + x) dx = 1.$
- **5p b)** Arătați că $\int_{0}^{1} \left(4x^3 f(x)\right) e^x dx = 1.$
- **5p** c) Determinați aria suprafeței plane delimitate de graficul funcției f, axa Ox și dreptele de ecuații x = 1 și x = 3.

Matematică *M_tehnologic*BAREM DE EVALUARE ȘI DE NOTARE

Varianta 10

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$4 - \frac{1}{4} = \frac{15}{4}$	3 p
	$\frac{15}{4} \cdot \frac{8}{15} = 2$	2p
2.	$f(1) = 5 \Leftrightarrow 1 + m = 5$	3p
	m=4	2p
3.	$x^2 + x + 1 = 1 \Leftrightarrow x^2 + x = 0$	2p
	x = -1 sau $x = 0$, care convin	3 p
4.	Mulțimea A are 9 elemente, deci sunt 9 cazuri posibile	1p
	Numerele din mulțimea A care verifică egalitatea dată sunt 2 și 4, deci sunt 2 cazuri	2p
	favorabile	2 p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{2}{9}$	2n
	nr. cazuri posibile 9	2p
5.	MN = 4, $NP = 3$, $MP = 5$	3 p
	$P_{\Delta MNP} = 4 + 3 + 5 = 12$	2p
6.	$\sin 120^\circ = \frac{\sqrt{3}}{2}, \cos 30^\circ = \frac{\sqrt{3}}{2}$	2p
	$\sin^2 120^\circ - \cos^2 30^\circ = \left(\frac{\sqrt{3}}{2}\right)^2 - \left(\frac{\sqrt{3}}{2}\right)^2 = 0$	3 p

SUBIECTUL al II-lea

(30 de puncte)

1.a)	$\det A = \begin{vmatrix} 1 & 3 \\ 3 & -4 \end{vmatrix} = 1 \cdot (-4) - 3 \cdot 3 =$	3p
	=-4-9=-13	2p
b)	$A \cdot B = \begin{pmatrix} 8 & 8 \\ -2 & -2 \end{pmatrix}$	2p
	$B \cdot A = \begin{pmatrix} 8 & -2 \\ 8 & -2 \end{pmatrix} \Rightarrow A \cdot B - B \cdot A = \begin{pmatrix} 0 & 10 \\ -10 & 0 \end{pmatrix}$	3p
c)	$ B \cdot B = \begin{pmatrix} 8 & 8 \\ 8 & 8 \end{pmatrix}, B \cdot B - xI_2 = \begin{pmatrix} 8 - x & 8 \\ 8 & 8 - x \end{pmatrix} \Rightarrow \det(B \cdot B - xI_2) = \begin{vmatrix} 8 - x & 8 \\ 8 & 8 - x \end{vmatrix} = x^2 - 16x $	3p
	$x^2 - 16x = 0 \Leftrightarrow x = 0 \text{ sau } x = 16$	2 p
2.a)	$f(1) = 1^3 + 3 \cdot 1^2 - 1 - 3 =$	3p
	=1+3-1-3=0	2 p
b)	Câtul este $X^2 + 5X + 9$	3 p
	Restul este 15	2p

Probă scrisă la matematică *M_tehnologic*

Varianta 10

Barem de evaluare și de notare

Ministerul Educației Naționale Centrul Național de Evaluare și Examinare

Ī	c)	$x_1 + x_2 + x_3 = -3$, $x_1x_2 + x_2x_3 + x_3x_1 = -1$	2p
		$x_1^2 + x_2^2 + x_3^2 = (x_1 + x_2 + x_3)^2 - 2(x_1x_2 + x_2x_3 + x_3x_1) = 9 - 2 \cdot (-1) = 11$	3 p

1.a)	$f'(x) = 6x^2 - 6 =$	3 p
	$=6(x^2-1)=6(x-1)(x+1), x \in \mathbb{R}$	2p
b)	$\lim_{x \to 1} \frac{f(x)}{x - 1} = \lim_{x \to 1} \frac{f(x) - f(1)}{x - 1} =$	2p
	= f'(1) = 0	3 p
c)	$x \in [-1,1] \Rightarrow f'(x) \le 0$, deci f este descrescătoare pe $[-1,1]$	2p
	Cum $f(-1) = 8$ și $f(1) = 0$, obținem $0 \le f(x) \le 8$, pentru orice $x \in [-1,1]$	3 p
2.a)	$\int_{0}^{1} (f(x) - 5x) dx = \int_{0}^{1} (x^{2} + 5x - 5x) dx = \int_{0}^{1} x^{2} dx =$	2p
	$=\frac{x^3}{3}\Big _{0}^{1}=\frac{1}{3}-0=\frac{1}{3}$	3 p

b)	$F'(x) = \left(\frac{1}{3}x^3 + \frac{5}{2}x^2 + 2017\right)' = \frac{1}{3} \cdot 3x^2 + \frac{5}{2} \cdot 2x =$	3 p
	$=x^2+5x=f(x)$ $x \in \mathbb{R}$	2n

c)
$$g(x) = x + 5 \Rightarrow V = \pi \int_{1}^{2} g^{2}(x) dx = \pi \int_{1}^{2} (x^{2} + 10x + 25) dx =$$

$$\begin{cases} x^{3} - 2 & 2 \\ 0 & 1 \end{cases} \begin{vmatrix} 2 & 127\pi \\ 0 & 1 \end{vmatrix} = 127\pi$$

$= \pi \left(\frac{x^3}{3} + 5x^2 + 25x \right)$	$\left \frac{2}{1} = \frac{127\pi}{3} \right $	2p

(30 de puncte)

SUBIECTUL al III-lea

 $3 \mid_{0}^{-} 3$

Matematică M tehnologic

Varianta 10

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I

(30 de puncte)

- **5p 1.** Arătați că $\left(4 \frac{1}{4}\right) \cdot \frac{8}{15} = 2$.
- **5p 2.** Determinați numărul real m, știind că punctul A(1,5) aparține graficului funcției $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 + m$.
- **5p 3.** Rezolvați în mulțimea numerelor reale ecuația $\sqrt{x^2 + x + 1} = 1$.
- **5p 4.** Calculați probabilitatea ca, alegând un număr n din mulțimea $A = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$, acesta să verifice egalitatea (n-2)(n-4)=0.
- **5p 5.** În reperul cartezian xOy se consideră punctele M(0,3), N(4,3) și P(4,0). Calculați perimetrul triunghiului MNP.
- **5p 6.** Arătați că $\sin^2 120^\circ \cos^2 30^\circ = 0$.

SUBIECTUL al II-lea

(30 de puncte)

- **1.** Se consideră matricele $A = \begin{pmatrix} 1 & 3 \\ 3 & -4 \end{pmatrix}$ și $B = \begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix}$.
- **5p** a) Arătați că det A = -13.
- **5p b**) Arătați că $A \cdot B B \cdot A = \begin{pmatrix} 0 & 10 \\ -10 & 0 \end{pmatrix}$.
- **5p** c) Determinați numerele reale x pentru care $\det(B \cdot B xI_2) = 0$, unde $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.
 - **2.** Se consideră polinomul $f = X^3 + 3X^2 X 3$.
- **5p** a) Arătați că f(1) = 0.
- **5p b**) Determinați câtul și restul împărțirii polinomului f la polinomul X-2.
- **5p** c) Demonstrați că $x_1^2 + x_2^2 + x_3^2 = 11$, unde x_1 , x_2 și x_3 sunt rădăcinile polinomului f.

SUBIECTUL al III-lea

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = 2x^3 6x + 4$
- **5p a)** Arătați că $f'(x) = 6(x-1)(x+1), x \in \mathbb{R}$.
- **5p b)** Arătați că $\lim_{x \to 1} \frac{f(x)}{x-1} = 0$.
- **5p** c) Demonstrați că $0 \le f(x) \le 8$, pentru orice $x \in [-1,1]$.
 - **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 + 5x$.
- **5p** a) Arătați că $\int_{0}^{1} (f(x) 5x) dx = \frac{1}{3}.$
- **5p b)** Arătați că funcția $F: \mathbb{R} \to \mathbb{R}$, $F(x) = \frac{1}{3}x^3 + \frac{5}{2}x^2 + 2017$ este o primitivă a funcției f.
- **5p c**) Demonstrați că volumul corpului obținut prin rotația în jurul axei Ox a graficului funcției $g:[1,2] \to \mathbb{R}$, $g(x) = \frac{f(x)}{x}$ este egal cu $\frac{127\pi}{3}$.

Examenul de bacalaureat național 2017

Proba E. c)

Matematică *M_tehnologic*

BAREM DE EVALUARE ŞI DE NOTARE

Model

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$\frac{1}{2} + \frac{1}{3} = \frac{5}{6}$	3p
	$\frac{5}{6} : \frac{5}{6} = 1$	2p
2.	f(0)=3	3p
	Coordonatele punctului de intersecție cu axa Oy sunt $x = 0$ și $y = 3$	2p
3.	$x^2 + 5 = 9 \Rightarrow x^2 - 4 = 0$	2p
	x = -2 sau $x = 2$, care verifică ecuația	3p
4.	$p-10\% \cdot p = 270$, unde p este prețul obiectului înainte de ieftinire	3 p
	p = 300 de lei	2p
5.	M(3,3), unde punctul M este mijlocul segmentului AB	2p
	$OM = \sqrt{(3-0)^2 + (3-0)^2} = 3\sqrt{2}$	3p
6.	$\sin^2 x = 1 - \left(\frac{\sqrt{2}}{2}\right)^2 = \frac{1}{2} \text{ si, cum } x \in \left(0, \frac{\pi}{2}\right), \text{ obținem } \sin x = \frac{\sqrt{2}}{2}$	3 p
	$\operatorname{tg} x = \frac{\sin x}{\cos x} = \frac{\sqrt{2}}{2} \cdot \frac{2}{\sqrt{2}} = 1$	2p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$\det A = \begin{vmatrix} 1 & 2 \\ 4 & 8 \end{vmatrix} = 1 \cdot 8 - 2 \cdot 4 =$	3p
	=8-8=0	2p
b)	$A \cdot B + B \cdot A = \begin{pmatrix} 12 & 6 \\ 48 & 24 \end{pmatrix} + \begin{pmatrix} 24 & 48 \\ 6 & 12 \end{pmatrix} = \begin{pmatrix} 36 & 54 \\ 54 & 36 \end{pmatrix}$	3 p
	$9(A+B) - (A \cdot B + B \cdot A) = 9 \begin{pmatrix} 9 & 6 \\ 6 & 9 \end{pmatrix} - \begin{pmatrix} 36 & 54 \\ 54 & 36 \end{pmatrix} = \begin{pmatrix} 45 & 0 \\ 0 & 45 \end{pmatrix} = 45 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = 45I_2$	2p
c)	$A + xI_2 = \begin{pmatrix} 1+x & 2\\ 4 & 8+x \end{pmatrix} \Rightarrow \det(A + xI_2) = \begin{vmatrix} 1+x & 2\\ 4 & 8+x \end{vmatrix} = x^2 + 9x$	3 p
	$x^2 + 9x = 0 \Leftrightarrow x = -9 \text{ sau } x = 0$	2p
2.a)	$f(2) = 2^3 - 3 \cdot 2^2 - 6 \cdot 2 + 8 =$	3 p
	=8-12-12+8=-8	2p
b)	Câtul este $X^2 - 2X - 8$	3p
	Restul este 0	2p

Probă scrisă la matematică *M_tehnologic*

Barem de evaluare și de notare

Model

c)
$$x_1 + x_2 + x_3 = 3$$
, $x_1x_2 + x_1x_3 + x_2x_3 = -6 \Rightarrow x_1^2 + x_2^2 + x_3^2 = 3^2 - 2 \cdot (-6) = 21$ 3p $(x_1 + 1)^2 + (x_2 + 1)^2 + (x_3 + 1)^2 = (x_1^2 + x_2^2 + x_3^2) + 2(x_1 + x_2 + x_3) + 3 = 21 + 2 \cdot 3 + 3 = 30$ 2p

1.a)	$f'(x) = 6x^2 - 18x + 12 =$	3 p
	$= 6(x^2 - 3x + 2) = 6(x - 1)(x - 2), x \in \mathbb{R}$	2p
b)	$\lim_{x \to +\infty} \frac{2x^3 - f(x)}{f'(x)} = \lim_{x \to +\infty} \frac{9x^2 - 12x - 1}{6x^2 - 18x + 12} =$	2p
	$= \lim_{x \to +\infty} \frac{9 - \frac{12}{x} - \frac{1}{x^2}}{6 - \frac{18}{x} + \frac{12}{x^2}} = \frac{3}{2}$	3 p
c)	f(1) = 6, $f'(1) = 0$	2p
	Ecuația tangentei este $y - f(1) = f'(1)(x-1)$, adică $y = 6$	3 p
2.a)	$\int_{-1}^{1} (f(x) + 2x) dx = \int_{-1}^{1} (x^2 - 2x + 2x) dx = \int_{-1}^{1} x^2 dx =$	2p
	$=\frac{x^3}{3}\Big _{-1}^1 = \frac{1}{3} - \left(-\frac{1}{3}\right) = \frac{2}{3}$	3 p
b)	$\int_{0}^{1} e^{x} (x^{2} - f(x)) dx = \int_{0}^{1} 2x e^{x} dx = 2x e^{x} \Big _{0}^{1} - 2 \int_{0}^{1} e^{x} dx =$	3 p
	$=2e-2e^{x}\begin{vmatrix}1\\0\\=2e-2e+2=2\end{vmatrix}$	2p
c)	$\mathcal{A} = \int_{0}^{1} f(x) dx = \int_{0}^{1} (2x - x^{2}) dx = x^{2} \left \frac{1}{0} - \frac{x^{3}}{3} \right _{0}^{1} =$	3 p
	$=1-\frac{1}{3}=\frac{2}{3}$	2p

Examenul de bacalaureat național 2017 Proba E. c) Matematică *M tehnologic*

Model

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Arătați că $\left(\frac{1}{2} + \frac{1}{3}\right)$: $\frac{5}{6} = 1$.
- **5p 2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, f(x) = 2x + 3. Determinați coordonatele punctului de intersecție a graficului funcției f cu axa Oy.
- **5p** 3. Rezolvați în mulțimea numerelor reale ecuația $\lg(x^2 + 5) = \lg 9$.
- **5p 4.** După o ieftinire cu 10%, prețul unui obiect este 270 de lei. Calculați prețul obiectului înainte de ieftinire.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(3,1) și B(3,5). Calculați distanța de la punctul O(0,0) la mijlocul segmentului AB.
- **5p** 6. Dacă $x \in \left(0, \frac{\pi}{2}\right)$ și $\cos x = \frac{\sqrt{2}}{2}$, arătați că $\lg x = 1$.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricele $A = \begin{pmatrix} 1 & 2 \\ 4 & 8 \end{pmatrix}$, $B = \begin{pmatrix} 8 & 4 \\ 2 & 1 \end{pmatrix}$ și $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.
- **5p** a) Calculați det A.
- **5p b)** Arătați că $9(A+B)-(A \cdot B + B \cdot A) = 45I_2$.
- **5p** c) Determinați numerele reale x, pentru care $\det(A + xI_2) = 0$.
 - **2.** Se consideră polinomul $f = X^3 3X^2 6X + 8$.
- **5p a)** Arătați că f(2) = -8.
- **5p b)** Determinați câtul și restul împărțirii polinomului f la polinomul X-1.
- **5p** c) Demonstrați că $(x_1 + 1)^2 + (x_2 + 1)^2 + (x_3 + 1)^2 = 30$, unde x_1, x_2 și x_3 sunt rădăcinile polinomului f.

- 1. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = 2x^3 9x^2 + 12x + 1$.
- **5p** | **a)** Arătați că $f'(x) = 6(x-1)(x-2), x \in \mathbb{R}$
- **5p b)** Calculați $\lim_{x \to +\infty} \frac{2x^3 f(x)}{f'(x)}$.
- **5p** c) Determinați ecuația tangentei la graficul funcției f în punctul de abscisă x = 1, situat pe graficul funcției f.
 - **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 2x$.
- **5p a)** Arătați că $\int_{-1}^{1} (f(x) + 2x) dx = \frac{2}{3}$.
- **5p b)** Calculați $\int_{0}^{1} e^{x} \left(x^{2} f(x)\right) dx$.
- **5p** c) Demonstrați că suprafața plană delimitată de graficul funcției f, axa Ox și dreptele de ecuații x = 0 și x = 1 are aria egală cu $\frac{2}{3}$.

Matematică *M_tehnologic*

Clasa a XII-a BAREM DE EVALUARE ȘI DE NOTARE

Simulare

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$(2+\sqrt{3})^2 = 7 + 4\sqrt{3}$	2p
	$(1-2\sqrt{3})^2 = 13-4\sqrt{3} \Rightarrow (2+\sqrt{3})^2 + (1-2\sqrt{3})^2 = 7+4\sqrt{3}+13-4\sqrt{3} = 20$	3р
2.	f(3) = 0	3 p
	$f(1) \cdot f(2) \cdot f(3) \cdot f(4) = 0$	2p
3.	$2^{3x} = 2^{4x+2} \Leftrightarrow 3x = 4x + 2$	3p
	x = -2	2p
4.	$p + \frac{25}{100} \cdot p = 250$, unde p este prețul obiectului înainte de scumpire	2p
	p = 200 de lei	3 p
5.	AB = 4	2p
	$AC = 4 \Rightarrow AB = AC$, deci triunghiul ABC este isoscel	3 p
6.	$\sin 60^{\circ} = \cos 30^{\circ}$	2p
	$tg 45^{\circ} = ctg 45^{\circ} \Rightarrow \sin 60^{\circ} + tg 45^{\circ} = \cos 30^{\circ} + ctg 45^{\circ}$	3p

1.a)	$A(3) = \begin{pmatrix} 3 & 2 \\ 3 & 3 \end{pmatrix} \Rightarrow \det(A(3)) = \begin{vmatrix} 3 & 2 \\ 3 & 3 \end{vmatrix} = 3 \cdot 3 - 3 \cdot 2 =$	3p
	=9-6=3	2p
b)	$A(2017+x)+A(2017-x) = \begin{pmatrix} 2017+x & 2 \\ 2017+x & 2017+x \end{pmatrix} + \begin{pmatrix} 2017-x & 2 \\ 2017-x & 2017-x \end{pmatrix} = \begin{pmatrix} 4034 & 4 \\ 4034 & 4034 \end{pmatrix} = \begin{pmatrix} 4034 & 4 \\ 4034 & 4 \end{pmatrix} = \begin{pmatrix} 4034 & 4 \\ 4034 $	3p
	$=2\begin{pmatrix} 2017 & 2\\ 2017 & 2017 \end{pmatrix} = 2A(2017)$, pentru orice număr real x	2p
c)	$A(2) + mA(1) = \begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix} + \begin{pmatrix} m & 2m \\ m & m \end{pmatrix} = \begin{pmatrix} 2+m & 2+2m \\ 2+m & 2+m \end{pmatrix} \Rightarrow \det(A(2) + mA(1)) = -m(m+2)$	3p
	$m(m+2) = 0 \Leftrightarrow m = -2 \text{ sau } m = 0$	2p
2.a)	x * y = 2xy + 6x + 6y + 18 - 3 =	2p
	=2x(y+3)+6(y+3)-3=2(x+3)(y+3)-3, pentru orice numere reale x şi y	3p
b)	$7*98 = 2(7+3)(98+3) - 3 = 2 \cdot 10 \cdot 101 - 3 =$	3p
	=2020-3=2017	2 p
c)	$2(x+3)(x+2+3)-3=3 \Leftrightarrow x^2+8x+12=0$	3 p
	x = -6 sau $x = -2$	2 p

		icic)
1.a)	$\lim_{x \to 3} \frac{f(x) - f(3)}{x - 3} = f'(3)$	2p
	$f'(x) = 1 - \frac{1}{(x-2)^2}$, $x \in (2,+\infty) \Rightarrow f'(3) = 0$, deci $\lim_{x \to 3} \frac{f(x) - f(3)}{x-3} = 0$	3 p
b)	$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \left(1 + \frac{1}{x} + \frac{1}{x(x-2)} \right) = 1$	2p
	$\lim_{x \to +\infty} (f(x) - x) = \lim_{x \to +\infty} \left(1 + \frac{1}{x - 2} \right) = 1, \text{ deci dreapta de ecuație } y = x + 1 \text{ este asimptotă}$	3 p
	oblică spre $+\infty$ la graficul funcției f	
c)	$f''(x) = \frac{2}{(x-2)^3}, x \in (2,+\infty)$	3p
	$f''(x) > 0$, pentru orice $x \in (2, +\infty)$, deci funcția f este convexă pe intervalul $(2, +\infty)$	2 p
2.a)	$\int_{1}^{e} (f(x) - \ln x) dx = \int_{1}^{e} 1 dx = x \Big _{1}^{e} = 1$	3p
	=e-1	2p
b)	F este derivabilă și $F'(x) = (x \ln x)' = \ln x + x \cdot \frac{1}{x} =$	3p
	= $\ln x + 1 = f(x)$, pentru orice $x \in (0, +\infty)$, deci F este o primitivă a funcției f	2p
c)	$\int_{1}^{e} f(x) F(x) dx = \frac{1}{2} F^{2}(x) \Big _{1}^{e} =$	3p
	$= \frac{1}{2}F^{2}(e) - \frac{1}{2}F^{2}(1) = \frac{e^{2}}{2}$	2p

Matematică *M_tehnologic* Clasa a XII-a

Simulare

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Arătați că $(2+\sqrt{3})^2 + (1-2\sqrt{3})^2 = 20$.
- **5p** 2. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 3x$. Calculați $f(1) \cdot f(2) \cdot f(3) \cdot f(4)$.
- **5p 3.** Rezolvați în mulțimea numerelor reale ecuația $8^x = 4^{2x+1}$.
- **5p 4.** După o scumpire cu 25%, prețul unui obiect este 250 de lei. Calculați prețul obiectului înainte de scumpire.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(1,5), B(1,1) și C(5,5). Arătați că triunghiul ABC este isoscel.
- **5p 6.** Arătați că $\sin 60^{\circ} + \lg 45^{\circ} = \cos 30^{\circ} + \operatorname{ctg} 45^{\circ}$.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricea $A(x) = \begin{pmatrix} x & 2 \\ x & x \end{pmatrix}$, unde x este număr real.
- **5p a**) Arătați că $\det(A(3)) = 3$.
- **5p b)** Arătați că A(2017 + x) + A(2017 x) = 2A(2017), pentru orice număr real x.
- **5p** c) Determinați numerele reale m pentru care $\det(A(2) + mA(1)) = 0$.
 - 2. Pe mulțimea numerelor reale se definește legea de compoziție x * y = 2xy + 6x + 6y + 15.
- **5p** a) Arătați că x * y = 2(x+3)(y+3)-3, pentru orice numere reale x și y.
- **5p b**) Arătați că 7*98 = 2017.
- **5p** c) Determinați numerele reale x, pentru care x*(x+2)=3.

- **1.** Se consideră funcția $f:(2,+\infty) \to \mathbb{R}$, $f(x) = x+1+\frac{1}{x-2}$.
- **5p** a) Arătați că $\lim_{x \to 3} \frac{f(x) f(3)}{x 3} = 0$.
- **5p b**) Determinați ecuația asimptotei oblice spre $+\infty$ la graficul funcției f.
- **5p** c) Demonstrați că funcția f este convexă pe intervalul $(2,+\infty)$.
 - **2.** Se consideră funcțiile $f:(0,+\infty)\to\mathbb{R}$, $f(x)=1+\ln x$ și $F:(0,+\infty)\to\mathbb{R}$, $F(x)=x\ln x$.
- **5p** a) Calculați $\int_{1}^{e} (f(x) \ln x) dx$.
- **5p b**) Arătați că F este o primitivă a funcției f.
- **5p** c) Arătați că $\int_{1}^{e} f(x) F(x) dx = \frac{e^2}{2}$.

Matematică *M_tehnologic*

Clasa a XI-a

BAREM DE EVALUARE ȘI DE NOTARE

Simulare

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$a_1 = (a_1 + 2r) - 6$	2p
	r = 3	3 p
2.	$f(1) = 3 \Leftrightarrow 2 + m = 3$	3 p
	m=1	2p
3.	$3^x \left(1 + 3^2\right) = 10 \Leftrightarrow 3^x = 1$	3 p
	x = 0	2 p
4.	$p - \frac{15}{100} \cdot p = 17$, unde p este prețul stiloului înainte de ieftinire	2 p
	p = 20 de lei	3 p
5.	$m_d = -1, \ m_{d'} = a$	2p
	$(-1) \cdot a = -1 \Leftrightarrow a = 1$	3p
6.	$\frac{AC}{AB} = \frac{3}{4} \Rightarrow AB = 20$	2p
	$\mathcal{A}_{\Delta ABC} = \frac{20 \cdot 15}{2} = 150$	3 p

SUBIECTUL al II-lea

1.a)	$D(0) = \begin{vmatrix} 3 & 1 & 2 \\ 1 & 0 & 2 \\ 1 & 3 & 2 \end{vmatrix} =$	2p
	= 0 + 6 + 2 - 0 - 18 - 2 = -12	3р
b)	D(a) = 6a + 6(a+1) + 2 - 2a - 18 - 2(a+1) = 8a - 12	2p
	$a^2 - 8a + 12 = 0 \Leftrightarrow a = 2 \text{ sau } a = 6$	3 p
c)	$\begin{vmatrix} 3 & 1 & 1 \\ n+1 & n & 1 \\ 1 & 3 & 1 \end{vmatrix} = \frac{1}{2}D(n) \Rightarrow \mathcal{A}_{\Delta ABC} = \frac{1}{2} \cdot \frac{1}{2} D(n) = 2n-3 $	3 p
	2n-3 =1, de unde obținem $n=1$ sau $n=2$	2p
2.a)	$A(0) + A(2) = \begin{pmatrix} -1 & 0 \\ 2 & -3 \end{pmatrix} + \begin{pmatrix} -1 & 2 \\ 2 & -1 \end{pmatrix} = \begin{pmatrix} -2 & 2 \\ 4 & -4 \end{pmatrix} =$	3p
	$=2\begin{pmatrix} -1 & 1\\ 2 & -2 \end{pmatrix} = 2A(1)$	2p

b)	$A(1) \cdot A(x) = \begin{pmatrix} -1 & 1 \\ 2 & -2 \end{pmatrix} \cdot \begin{pmatrix} -1 & x \\ 2 & x - 3 \end{pmatrix} = \begin{pmatrix} 3 & -3 \\ -6 & 6 \end{pmatrix}$	3p
	$A(1) \cdot A(x) + 3A(1) = \begin{pmatrix} 3 & -3 \\ -6 & 6 \end{pmatrix} + \begin{pmatrix} -3 & 3 \\ 6 & -6 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = O_2, \text{ pentru orice număr real } x$	2 p
c)	$B = \begin{pmatrix} 1-a & a \\ 2a & 1-2a \end{pmatrix}, \text{ deci det } B = \begin{vmatrix} 1-a & a \\ 2a & 1-2a \end{vmatrix} = 1-3a$	3p
	$1-3a=0 \Leftrightarrow a=\frac{1}{3}$, deci matricea B este inversabilă pentru orice $a \in \mathbb{R} \setminus \left\{\frac{1}{3}\right\}$	2p

SUBIECTUL al III-lea

	2p
b) $x^2 \left(2 - \frac{1}{2}\right) \left(1 + \frac{5}{2}\right)$	
$\lim_{x \to +\infty} ((2x-1)f(x)) = \lim_{x \to +\infty} \frac{(2x-1)(x+5)}{x^2 + x + 2} = \lim_{x \to +\infty} \frac{x^2 \left(2 - \frac{1}{x}\right) \left(1 + \frac{5}{x}\right)}{x^2 \left(1 + \frac{1}{x} + \frac{2}{x^2}\right)} =$	3p
= 2 c) 5	2p
$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{x+5}{x^2 + x + 2} = \lim_{x \to +\infty} \frac{1 + \frac{3}{x}}{x \left(1 + \frac{1}{x} + \frac{2}{x^2}\right)} = 0$	3р
Dreapta de ecuație $y = 0$ este asimptotă orizontală spre $+\infty$ la graficul funcției f	2 p
2.a) $f(-2) = -7$	2 p
$f(5) = 4 \Rightarrow f(-2) \cdot f(5) = -28$	3 p
b) $\lim_{\substack{x \to 0 \\ x < 0}} f(x) = \lim_{\substack{x \to 0 \\ x < 0}} (x^3 + 1) = 1$	1p
$\lim_{\substack{x \to 0 \\ x > 0}} f(x) = \lim_{\substack{x \to 0 \\ x > 0}} \left(\sqrt{3x + 1}\right) = 1$	1p
Cum $f(0) = 1$, obținem $\lim_{x \to 0} f(x) = f(0)$, deci funcția f este continuă în punctul $x = 0$	3 p
c) $f(x) = 0 \Leftrightarrow x = -1$ și, cum funcția f este continuă pe \mathbb{R} , obținem că funcția f are se	nn
constant pe fiecare din intervalele $(-\infty, -1)$ şi $(-1, +\infty)$, şi cum $f(-2) < 0$ şi $f(5) > 0$	0, 3p
obținem $f(x) < 0$ pentru $x \in (-\infty, -1)$ și $f(x) > 0$ pentru $x \in (-1, +\infty)$	
$(p+1)(q+1) < 0 \Rightarrow p \in (-\infty, -1)$ şi $q \in (-1, +\infty)$ sau $p \in (-1, +\infty)$ şi $q \in (-\infty, -1)$, de un	de
obținem că $f(p)$ și $f(q)$ au semne diferite, deci $f(p) \cdot f(q) < 0$	2p

Examenul de bacalaureat național 2017 Proba E. c) Matematică *M_tehnologic* Clasa a XI-a

Simulare

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Calculați rația progresiei aritmetice $(a_n)_{n\geq 1}$, știind că $a_1 = a_3 6$.
- **5p 2.** Se consideră funcția $f : \mathbb{R} \to \mathbb{R}$, f(x) = 2x + m, unde m este număr real. Determinați numărul real m pentru care punctul A(1,3) este situat pe graficul funcției f.
- **5p 3.** Rezolvați în mulțimea numerelor reale ecuația $3^x + 3^{x+2} = 10$.
- **5p 4.** După o ieftinire cu 15%, prețul unui stilou este de 17 lei. Calculați prețul stiloului înainte de ieftinire.
- **5p 5.** În reperul cartezian xOy se consideră dreapta d de ecuație y = -x + 3. Determinați numărul real a, știind că dreapta d' de ecuație y = ax 5 este perpendiculară pe dreapta d.
- **5p 6.** Calculați aria triunghiului ABC, știind că $m(A) = 90^{\circ}$, $tg B = \frac{3}{4}$ și AC = 15.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră determinantul $D(a) = \begin{vmatrix} 3 & 1 & 2 \\ a+1 & a & 2 \\ 1 & 3 & 2 \end{vmatrix}$, unde a este număr real.
- **5p a**) Arătați că D(0) = -12.
- **5p b)** Determinați numerele reale a pentru care $D(a) = a^2$.
- **5p** c) În reperul cartezian xOy se consideră punctele A(3,1), B(n+1,n), unde n este număr natural și C(1,3). Determinați numerele naturale n, știind că punctele A, B și C sunt vârfurile unui triunghi care are aria egală cu 1.
 - **2.** Se consideră matricea $A(x) = \begin{pmatrix} -1 & x \\ 2 & x-3 \end{pmatrix}$, unde x este număr real.
- **5p** a) Arătați că A(0) + A(2) = 2A(1).
- **5p b**) Demonstrați că $A(1) \cdot A(x) + 3A(1) = O_2$, pentru orice număr real x, unde $O_2 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$.
- **5p** c) Determinați valorile reale ale lui a pentru care matricea $B = I_2 + aA(1)$ este inversabilă, unde $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{x+5}{x^2+x+2}$.
- **5p a)** Arătați că $\lim_{x \to -1} f(x) = 2$.
- **5p b**) Calculați $\lim_{x \to +\infty} ((2x-1) f(x))$.
- **5p** $| \mathbf{c} |$ Determinați ecuația asimptotei spre $+\infty$ la graficul funcției f.

2. Se consideră funcția
$$f: \mathbb{R} \to \mathbb{R}$$
, $f(x) = \begin{cases} x^3 + 1, & x \in (-\infty, 0] \\ \sqrt{3x + 1}, & x \in (0, +\infty) \end{cases}$.

- **5p** a) Arătați că $f(-2) \cdot f(5) = -28$.
- **5p b**) Demonstrați că funcția f este continuă în punctul x = 0.
- **5p** c) Arătați că, dacă p și q sunt numere reale astfel încât $(p+1)\cdot(q+1)<0$, atunci $f(p)\cdot f(q)<0$.

Matematică *M_tehnologic*

BAREM DE EVALUARE ŞI DE NOTARE

Varianta 4

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$2 + \frac{1}{3} = \frac{7}{3}$	3p
	$\frac{7}{3}:\frac{7}{6}=\frac{7}{3}\cdot\frac{6}{7}=2$	2p
2.	$x_1 + x_2 = 5$, $x_1 x_2 = 4$	2p
	$(x_1 + x_2)^2 - 6x_1x_2 = 25 - 24 = 1$	3p
3.	3x - 5 = 4	3 p
	x = 3, care convine	2p
4.	$p-25\% \cdot p = 600$, unde p este prețul televizorului înainte de ieftinire	3 p
	p = 800 de lei	2p
5.	$OM = \sqrt{(8-0)^2 + (6-0)^2} =$	3 p
	=10	2p
6.	$\sin 135^\circ = \frac{\sqrt{2}}{2}, \ \sin 45^\circ = \frac{\sqrt{2}}{2}$	2p
	$\sin^2 135^\circ + \sin^2 45^\circ = \left(\frac{\sqrt{2}}{2}\right)^2 + \left(\frac{\sqrt{2}}{2}\right)^2 = \frac{1}{2} + \frac{1}{2} = 1$	3 p

1.a)	$\det A = \begin{vmatrix} 1 & 2 \\ 0 & 2 \end{vmatrix} = 1 \cdot 2 - 0 \cdot 2 =$	3p
	=2-0=2	2 p
b)	$A + B = \begin{pmatrix} 0 & 0 \\ 2 & 2 \end{pmatrix}$	2 p
	$B - A = \begin{pmatrix} -2 & -4 \\ 2 & -2 \end{pmatrix} \Rightarrow (A+B)(B-A) = \begin{pmatrix} 0 & 0 \\ 0 & -8-4 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & -12 \end{pmatrix}$	3 p
c)	$\det A \neq 0 , \ A^{-1} = \begin{pmatrix} 1 & -1 \\ 0 & \frac{1}{2} \end{pmatrix}$	3 p
	$X = A^{-1} \cdot B \Rightarrow X = \begin{pmatrix} -3 & -2 \\ 1 & 0 \end{pmatrix}$	2 p
2.a)	1*2=1+2-3=	3 p
	=3-3=0	2p

	b)	$x^2 + x - 3 = -1 \Leftrightarrow x^2 + x - 2 = 0$	3p
-	c)	x = -2 sau x = 1 $n * n * n * n = 4n - 9$	2p 2p
		$4n-9 < 3 \Rightarrow n < 3$ şi, cum <i>n</i> este număr natural nenul, obținem $n=1$ sau $n=2$	3p

SUBIECTUL al III-lea

1.a)	$f'(x) = (x^3)' + (2x^2)' + (x)' =$	2p
		2p
	$=3x^2+4x+1=(x+1)(3x+1), x \in \mathbb{R}$	3 p
b)	$\lim_{x \to +\infty} \frac{f(x)}{x f'(x)} = \lim_{x \to +\infty} \frac{x^3 + 2x^2 + x}{x(x+1)(3x+1)} =$	2p
	$= \lim_{x \to +\infty} \frac{1 + \frac{2}{x} + \frac{1}{x^2}}{\left(1 + \frac{1}{x}\right)\left(3 + \frac{1}{x}\right)} = \frac{1}{3}$	3 p
c)	$f'(x) = 0 \Leftrightarrow x = -1 \text{ sau } x = -\frac{1}{3}$	1p
	$x \in \left[-1, -\frac{1}{3}\right] \Rightarrow f'(x) \le 0$, deci funcția f este descrescătoare pe $\left[-1, -\frac{1}{3}\right]$ și $x \in \left[-\frac{1}{3}, +\infty\right] \Rightarrow f'(x) \ge 0$, deci funcția f este crescătoare pe $\left[-\frac{1}{3}, +\infty\right]$	2 p
	$f(x) \ge f\left(-\frac{1}{3}\right)$ pentru orice $x \in [-1, +\infty)$ și, cum $f\left(-\frac{1}{3}\right) = -\frac{4}{27}$, obținem $f(x) \ge -\frac{4}{27}$, pentru orice $x \in [-1, +\infty)$	2 p
2.a)	pentru orice $x \in [-1, +\infty)$ $\int_{0}^{1} (f(x) - x^{2} - 1) dx = \int_{0}^{1} (x^{2} + x + 1 - x^{2} - 1) dx = \int_{0}^{1} x dx =$	2p
	$=\frac{x^2}{2}\bigg _0^1 = \frac{1}{2} - 0 = \frac{1}{2}$	3 p
b)	$F'(x) = \left(\frac{1}{3}x^3 + \frac{1}{2}x^2 + x + 2017\right)' = \frac{1}{3} \cdot 3x^2 + \frac{1}{2} \cdot 2x + 1 =$	3p
	$= x^2 + x + 1 = f(x), x \in \mathbb{R}$	2p
c)	$= x^{2} + x + 1 = f(x), x \in \mathbb{R}$ $\mathcal{A} = \int_{0}^{2} f(x) dx = \int_{0}^{2} (x^{2} + x + 1) dx = \left(\frac{x^{3}}{3} + \frac{x^{2}}{2} + x\right) \Big _{0}^{2} = \frac{20}{3}$	3p
	Cum n este număr natural, din $n^2 - \frac{7}{3} = \frac{20}{3}$, obținem $n = 3$	2p

Matematică M_tehnologic

Varianta 4

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Arătați că $\left(2+\frac{1}{3}\right):\frac{7}{6}=2$.
- **5p** 2. Arătați că $(x_1 + x_2)^2 6x_1x_2 = 1$, unde x_1 și x_2 sunt soluțiile ecuației $x^2 5x + 4 = 0$.
- **5p** 3. Rezolvați în mulțimea numerelor reale ecuația $\sqrt{3x-5} = 2$.
- **5p 4.** După o ieftinire cu 25%, prețul unui televizor este 600 de lei. Determinați prețul televizorului înainte de ieftinire.
- **5p 5.** În reperul cartezian xOy se consideră punctele O(0,0) și M(8,6). Calculați distanța dintre punctele O și M.
- **5p 6.** Arătați că $\sin^2 135^\circ + \sin^2 45^\circ = 1$.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricele $A = \begin{pmatrix} 1 & 2 \\ 0 & 2 \end{pmatrix}$ și $B = \begin{pmatrix} -1 & -2 \\ 2 & 0 \end{pmatrix}$.
- **5p** a) Arătați că det A = 2.
- **5p b)** Arătați că $(A+B)(B-A) = \begin{pmatrix} 0 & 0 \\ 0 & -12 \end{pmatrix}$.
- **5p** c) Determinați matricea $X \in \mathcal{M}_2(\mathbb{R})$, știind că $A \cdot X = B$.
 - **2.** Pe mulțimea numerelor reale se definește legea de compoziție asociativă x * y = x + y 3.
- **5p** | **a**) Arătați că 1*2=0.
- **5p b**) Determinați numerele reale x pentru care $(x^2) * x = -1$.
- **5p** | **c**) Determinați numerele naturale nenule n pentru care n*n*n*n<3.

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^3 + 2x^2 + x$.
- **5p a)** Arătați că $f'(x) = (x+1)(3x+1), x \in \mathbb{R}$.
- **5p b**) Arătați că $\lim_{x \to +\infty} \frac{f(x)}{x f'(x)} = \frac{1}{3}$.
- **5p** c) Demonstrați că $f(x) \ge -\frac{4}{27}$, pentru orice $x \in [-1, +\infty)$.
 - **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 + x + 1$.
- **5p** a) Arătați că $\int_{0}^{1} (f(x) x^{2} 1) dx = \frac{1}{2}$.
- **5p b**) Demonstrați că funcția $F: \mathbb{R} \to \mathbb{R}$, $F(x) = \frac{1}{3}x^3 + \frac{1}{2}x^2 + x + 2017$ este o primitivă a funcției f.
- **5p c**) Determinați numărul natural n, știind că suprafața plană delimitată de graficul funcției f, axa Ox și dreptele de ecuații x = 0 și x = 2 are aria egală cu $n^2 \frac{7}{3}$.