Computing Graph Edit Distance via Neural Graph Matching

Chengzhi Piao¹, Tingyang Xu², Xiangguo Sun¹, Yu Rong², Kangfei Zhao², Hong Cheng¹

¹The Chinese University of Hong Kong

²Tencent Al Lab

Computing Graph Edit Distance via Neural Graph Matching

Graph Edit Distance

- □ Given a graph pair (G1, G2), the minimum number of edit operations that transforms G1 to G2 is called the graph edit distance, GED(G1, G2).
- The sequence of edit operations is called an edit path.

Task

- Graph edit distance (GED) is an NP-hard problem.
- Inexact GED computation: finding an edit path as short as possible.

Example

- a, b: An instance of graph edit path.
- c, d: Solving GED via bipartite matching.

Existing Methods

	Time Complexity	Solution Quality	Finding an Edit Path		
A*-beam Search	Exponential	Depending on $beamsize$	Yes		
Greedy Algorithms	$O(n^3)$	Low	Yes		
Learning Models	O(n+m)	High	No		

- Edit Path:
 - Interpretability
 - Usability

Solution Overview

- A Two-step Framework:
 - Using GNN to predict a GED and generate a node matching matrix.
 - Post-processing the node matching matrix to find a short edit path.

Step 1: GEDGNN Architecture

Cross Matrix Module

- Input:
 - □ node embedding H₁ and H₂ of the given graph pair
- Output:
 - \square A matrix of size $|V_1| \times |V_2|$
- Target:
 - □ Capture the node-to-node correspondence between H₁ and H₂;
 - Further generate node matching (edit path).
- Structure

$$A = H_1 W H_2^{\top}.$$

$$A = [H_1 W_1 H_2^{\mathsf{T}}, H_1 W_2 H_2^{\mathsf{T}}, \cdots, H_1 W_c H_2^{\mathsf{T}}],$$

MLP(c -> 1)

The Matching Matrix

- A matching matrix A_{match} is a prediction of the ground-truth matching matrix and reflects the extent of matching of different node pairs.
- Its generation is supervised by the ground-truth matching matrix M^* . During the training process, a binary cross entropy loss is used to minimize the difference between A_{match} and M^* .

$$\begin{split} \mathcal{L}_{match} &= \text{BCELoss}(A_{match}, \ M_{01}^*) \\ &= \frac{1}{|V_1| \cdot |V_2|} \sum_{u,v} (\ M_{01}^*[u][v] \cdot \log A_{match}[u][v] \\ &+ (1 - M_{01}^*[u][v]) \cdot \log (1 - A_{match}[u][v]) \). \end{split}$$

The Cost Matrix

The cost matrix A_{cost} has size $|V_1| \times |V_2|$ in which an element $A_{cost}[u][v]$ denotes the cost of edit operations for matching $u \in V_1$ with $v \in V_2$.

With these two matrices, we predict the GED value by:

$$GED(G_1, G_2) = f(Softmax(A_{match}) \cdot A_{cost} + bias)$$

Step 2: Post-processing

Extracting the node matching from A_{match}.

From A_{match} to Node Matching

Extracting the node matching from A_{match} can be formulated as a weighted bipartite matching problem.

• We can construct a bipartite graph $G=(V_1, V_2, V_1xV_2, A_{match})$ and then find the maximum weight matching on G.

To further increase the chance of finding a short edit path, we explore k-best matching instead of only the maximum weight one.

Post-processing Algorithm: k-best Matching

to match node 0 of V_2 .

Matching Matrix A_{match}

 M_2

Maximum Weight Matching M_1 W(M_1) = 3298 GED(M_1) = 5

2nd-best Matching M_2 $W(M_2) = 3265$ **GED** $(M_2) = 2$

3rd-best Matching (M_3) $W(M_3) = 2932 \quad GED(M_3) = 10$

match edge (1,0) of E_2 .

4th-best Matching (M_4) $W(M_4) = 2926 \text{ GED}(M_4) = 10$

V_1	V ₂	2	2	2	
0	6	$0 \qquad \overset{2}{\circ}$	0 6	0 6 0	6
<u> </u>	4	4	0 1 4 0	1 4 4	> ;
2	2			Isomorphism	I I
3	5	$\sqrt{3}$ 5/	$\sqrt{3}$ 5/	3 5	ļ
I 4	1				ļ
5	3	$G_1 = (V_1, E_1, L_1)$	Add an extra node (6)	Add an edge (4,6) to $G_2 = (V_2, E_2, L_2)$) <mark> </mark>

k-best Matching Algorithm

Solution Space:

The set of possible matchings.

Splitting

- Whole Solution Space S: the set of all node matchings
- We can easily split S into two parts by branching on a node pair.
- □ For a given node pair (u, v), $u \in V1$ and $v \in V2$:
 - Subspace S1: {M | M ∈ S and M contains (u, v)}
 - Subspace S2: {M | M ∈ S and M does not contain (u, v)}

k-best Matching Algorithm

- Suppose we have a solution space partition:
 - $\square S = S_1 \cup S_2 \cup \cdots \cup S_k$
 - □ The best matching of S_i is exactly the i-th best matching of the whole solution space S.
 - □ The (k+1)-th best matching is the best one among the second-best matchings of each subspace.

Maintain s sequence of subspaces.

S1 S1.best S1.second S2 S2.best S2.second

S3 S3.best S3.second

S4 S4.best S4.second

 The best one of {S1.second, S2.second, S3.second, S4.second} becomes S5.best.

S1 S1.best S1.second

Solution Space Splitting

- Find K-best matchings
 - Iteratively find second-best matchings in solution subspaces
 - One iteration: second-best matching O(n³)
 - K iterations: O(Kn³)

Experimental Studies

Tested our method on three real graph data sets (AIDS, Linux and IMDB) and synthetic power-law graphs.

AIDS:

- Chemical compound.
- Node label: C, N, O, Cu, …

Linux:

Program dependence graphs of Linux kernel functions

IMDB

Ego-networks of co-star relations.

Statistics of Graph Data Sets

	#graphs	$\overline{ V }$	$\overline{ E }$	$ V _{max}$	$ E _{max}$
AIDS	700	8.9	8.8	10	14
Linux	1000	7.6	6.9	10	13
IMDB	1500	13	65.9	89	1467
IMDB-small	148	8.1	25.2	10	45
IMDB-large	152	19.1	117.1	54	858

■ The synthetic graphs contain 25 ~ 400 nodes.

Groundtruth data Generation

- Small Graphs (less than 10 nodes)
 - Exhaustive search for an arbitrary graph pair.
 - □ Input: (G1, G2)
 - Output: GED(G1, G2) and corresponding edit path

- Large Graphs (more than 10 nodes)
 - Generate synthetic pairs for each large graph.
 - □ Input: (G1, t)
 - Output: G2 (randomly conduct t edit operations on G1)

Ę

Overall Performance

AIDS	GED		Ranking				Graph Edit Path			Feasible	Time
AiDS	MAE	Accuracy	ρ	τ	p@10	p@20	Precision	Recall	F1	Rate	(s/100p)
SimGNN	0.914	33.8%	0.832	0.693	62.4%	72.0%	-	-	-	67.6%	0.283
TaGSim	0.841	36.6%	0.850	0.715	64.6%	74.6%	-	-	-	66.2%	0.123
GPN	0.902	35.3%	0.822	0.684	58.6%	70.4%	-	-	-	66.8%	0.326
GEDGNN-value	0.773	39.7%	0.876	0.751	71.6%	77.9%	-	-	-	62.2%	0.408
Greedy	9.227	1.3%	0.464	0.362	50.2%	57.2%	32.5%	59.6%	41.2%	100.0%	110.000
Noah	3.078	6.3%	0.730	0.610	70.9%	75.1%	49.9%	62.0%	54.7%	100.0%	168.390
GEDGNN-matching	1.427	44.3%	0.806	0.704	85.5%	85.0%	68.5%	74.3%	71.0 %	100.0%	122.900

IMDB-large	GED		Ranking				Graph Edit Path			Feasible	Time
INIDD-large	MAE	Accuracy	ρ	τ	p@10	p@20	Precision	Recall	F1	Rate	(s/100p)
SimGNN	1.470	23.2%	0.480	0.364	57.8%	63.0%	-	-	-	54.1%	0.258
TaGSim	3.752	7.4%	0.115	0.090	43.3%	50.3%	-	-	-	20.3%	0.113
GPN	1.591	27.7%	0.551	0.456	54.6%	59.0%	-	-	-	57.5%	0.331
GEDGNN-value	1.398	26.9%	0.629	0.500	69.6%	71.5%	-	-	-	68.5%	0.414
Greedy	24.961	40.4%	0.671	0.602	73.8%	72.4%	42.3%	75.8%	45.3%	100.0%	4.000
Noah	18.596	49.5%	0.547	0.525	60.3%	65.8%	45.5%	80.4%	48.9%	100.0%	10132.777
GEDGNN-matching	6.078	67.9%	0.795	0.751	86.6%	84.8%	74.6%	91.4%	77.3%	99.9%	264.800

Evaluation of k-best Matching Framework

Summary

- Proposed a novel deep learning framework that solves the GED problem in a two-step manner:
 - 1) The graph neural network GEDGNN is in charge of predicting the GED value and a matching matrix;
 - ullet 2) A post-processing algorithm based on k-best matching is used to extract multiple node matchings from the matching matrix generated by GEDGNN. The best of them will finally lead to a high-quality edit path.
- The post-processing algorithm is a key innovation that makes up the gap between what graph neural networks can produce (i.e., the matching matrix) and an actual solution to the GED problem.

Thank you!