Homework 1 Honors Analysis II

Homework 1

ALECK ZHAO

February 3, 2018

Chapter 13: Functions of Bounded Variation

- 1. Show that $V_a^b(\chi_{\mathbb{Q}}) = +\infty$ on any interval [a, b].
- 3. If f has a bounded derivative on [a,b], show that $V_a^b f \leq \|f'\|_{\infty} (b-a)$.
- 5. Complete the proof of Lemma 13.3.
- 6. We can test several of the inclusions explicit in our discussion up to this point by means of a single family of functions. For $\alpha \in \mathbb{R}$, and $\beta > 0$, set $f(x) = x^{\alpha} \sin(x^{-\beta})$, for $0 < x \le 1$, and f(0) = 0. Show that .
 - (a) f is bounded if and only if $\alpha \geq 0$
 - (b) f is continuous if and only if $\alpha > 0$
 - (c) f'(0) exists if and only if $\alpha > 1$
 - (d) f' is bounded if and only if $\alpha \geq 1 + \beta$
 - (e) If $\alpha > 0$, then $f \in BV[0,1]$ for $0 < \beta < \alpha$ and $f \notin BV[0,1]$ for $\beta \ge \alpha$. (Hint: Try a few easy cases first, say $\alpha = \beta = 2$.)
- 11. If $f_n \to f$ pointwise on [a,b], show that $V(f_n,P) \to V(f,P)$ for any partition P of [a,b]. In particular, if we also have $V_a^b f_n \le K$ for all n, then $V_a^b f \le K$ too.
- 14. Let I(x)=0 if x<0 and I(x)=1 if $x\geq 0$. Given a sequence of scalars (c_n) with $\sum_{n=1}^{\infty}|c_n|<\infty$ and a sequence of distinct points (x_n) in (a,b], define $f(x)=\sum_{n=1}^{\infty}c_nI(x-x_n)$ for $x\in [a,b]$. Show that $f\in BV[a,b]$ and that $V_a^bf=\sum_{n=1}^{\infty}|c_n|$.
- 15. Show that $f \in C[a, b] \cap BV[a, b]$ if and only if f can be written as the difference of two strictly increasing continuous functions.