

- Métodos computacionales: Alejandro Segura
- Estadística
 - a) Incluir el código Notebook (.ipynb).
 - b) Guardar la información en una carpeta llamada Semana12_Nombre1_Nombre2
 - c) Hacer una sola entrega por grupo.

Contents

1	\mathbf{Est}	adística	3
	1.1	Momentos de una combinación lineal de variables aleatorias	4

List of Figures

1 Estadística

1.1 Momentos de una combinación lineal de variables aleatorias

1. Considere la variable aleatoria definida por una combinación lineal de otras variables aleatorias: $X = a_1X_1 + a_2X_2 + ...a_nX_n$, donde las variables aleatorias (X_i) no son necesariamente idénticamente distribuidas, y las componentes $[a_1, a_2, ..., a_n] \in \mathbb{R}$. La variable aleatoria X puede ser escrita como: $X = a^T \vec{X}$ con la definición usual de producto interno entre vectores. El primer y segundo momento de la variable X queda entonces expresados por:

$$E(X) = E(a^T \vec{X}) = a^T E(\vec{X})$$

$$Var(X) = Var(a^T \vec{X}) = a^T Cov(\vec{X})a$$
(1)

Donde $Cov(\vec{X})$ es la matriz de covarianza de \vec{X} . Sea $X_1 \sim \Gamma(2,3)$, $X_2 \sim N(5,2)$ y $X_3 \sim U(0,10)$, Genere $N=10^4$ eventos (que estabilice el valor de los momentos) para obtener la distribución de $X=X_1+2X_2-X_3$. Calcule el primer y segundo momento de X a través de dos estrategias:

- a) Usando directamente el array de X.
- b) Usando las definiciones generales dadas en la Ecuación (1).
- c) Calcule el coeficiente de correlación de Pearson para las tres variables.
- d) Demuestre que la formula de la varianza de la media se puede escribir escalarmente como:

$$Var(\frac{1}{N}\sum_{i=1}^{N}X_{i}) = \frac{1}{N^{2}}\sum_{i=1}^{N}Var(X_{i}) + \frac{2}{N^{2}}\sum_{i=1}^{N}\sum_{j=i+1}^{N}Cov(X_{i}, X_{j})$$
(2)

Hint: Encuentre el resultados para N=2 y use la intuición adquirida para el caso general.

Solo realizar item c) y d)

2. Dada la función de probabilidad conjunta ():

$$f(x,y) = \begin{cases} \frac{2}{3}(x+2y) & 0 \le x \le 1, 0 \le y \le 1. \\ 0 & \text{otro caso} \end{cases}$$
 (3)

encuentre analíticamente y a través del paquete SymPy los siguientes valores:

- a) Verifique que sea una función de densidad conjunta válida.
- b) Hallar las distribuciones marginales g(x) y h(y).
- c) Son las variables x and y independientes?
- d) $\mathbb{E}(x) = \frac{10}{18}$
- e) $\mathbb{E}(y) = \frac{11}{18}$
- f) Calcular la covarianza usando: $\sigma_{xy} = \mathbb{E}(xy) \mathbb{E}(x)\mathbb{E}(y) = -0.00617$
- g) Calcular la covarianza usando: $\sigma_{xy} = \mathbb{E}((x \mu_x)(y \mu_y)) = -0.00617$