

Universidad Nacional del Nordeste Facultad de Ciencias Exactas y Naturales y Agrimensura

Unidad 5: Análisis Combinatorio

LA FUNCIÓN FACTORIAL

La Función Factorial es una función con dominio en los enteros no negativos y con imagen en los números naturales:

$$f: N_0 \to N \ definida \ por$$

$$f: N_0 \rightarrow N \ definida \ por \quad \begin{cases} 0!=1 \\ 1!=1 \\ n!=1.2.3.4....(n-1).n \end{cases}$$

Por ejemplo:

$$5! = 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 120$$

M

ARREGLOS SIMPLES

Problema 1: Con los dígitos 1,2,3,4 y 5. a) ¿Cuántos números diferentes de 2 cifras distintas se pueden formar?

Para resolver este problema es posible utilizar el Diagrama de árbol:

Se tiene 5 dígitos y se desea formar números de 2 cifras distintas:

Para ocupar el primer lugar se tiene 5 posibilidades y para el segundo lugar 4 posibilidades (porque no se pueden repetir) por cada una de las anteriores.

Por lo tanto la cantidad total de números que se pueden formar es:

$$A_2^5 = 5.4 = 20$$

Νź

ARREGLOS SIMPLES

Problema 1: Con los dígitos 1,2,3,4 y 5. b) ¿Cuántos números diferentes de 3 cifras distintas se pueden formar?

Mediante el diagrama de árbol se tiene:

Se tiene 5 dígitos y se desea formar números de 3 cifras distintas:

Para ocupar el primer lugar se tiene 5 posibilidades; para el segundo lugar 4 posibilidades (porque no se pueden repetir) por cada una de las anteriores y para ocupar el tercer lugar se tienen 3 posibilidades por cada una de las anteriores.

Por lo tanto la cantidad total de números que se pueden formar es:

$$A_3^5 = 5.4.3 = 60$$

M

ARREGLOS SIMPLES

Problema 1: Con los dígitos 1,2,3,4 y 5.

c) ¿Cuántos números diferentes de 4 cifras distintas se pueden formar?

м

Mediante el Diagrama de árbol, se tiene:

Se tiene 5 dígitos y se desea formar números de 4 cifras distintas:

Para ocupar el primer lugar se tiene 5 posibilidades; para el segundo lugar 4 posibilidades por cada una de las anteriores, para ocupar el tercer lugar se tienen 3 posibilidades por cada una de las anteriores y para ocupar el cuarto lugar se tienen 2 posibilidades por cada una de las anteriores.

Por lo tanto la cantidad total de números que se pueden formar es:

$$A_{4}^{5} = 5.4.3.2 = 120$$

Si se tiene m dígitos y se desea formar números de n cifras distintas:

Para ocupar el primer lugar se tiene m posibilidades; para el segundo lugar se tiene (m - 1) posibilidades por cada una de las anteriores, para el tercer lugar (m - 2) por cada una de las anteriores y así sucesivamente hasta llegar al último lugar, en el cual como ya se usaron (n - 1) números, quedan (n - 1) posibilidades por cada una de las anteriores.

Por lo tanto la cantidad total de números que se pueden formar es: $A_n^m = m.(m-1).(m-2).....[m-(n-1)]$

$$A_n^m = m.(m-1).(m-2)....(m-n+1)$$

Si se tiene m dígitos y se desea formar números de n cifras distintas, la cantidad total de números que se pueden formar es:

$$A_n^m = m.(m-1).(m-2)....(m-n+1)$$

Como:

$$m! = \underbrace{m.(m-1).(m-2)...(m-n+1).(m-n).(m-n-1)...3.2.1}_{A_n^m}$$

$$m!=A_n^m.(m-n)! \implies A_n^m=\frac{m!}{(m-n)!}$$

ARREGLOS SIMPLES

Llamamos Arreglos simples de los m elementos de un conjunto tomados de a n, siendo n ≤ m, a todos y cada uno de los grupos diferentes que se pueden formar de modo que:

- Cada grupo está formado por n elementos distintos de los m dados.
- Dos grupos se considerarán distintos si y solo sí difieren en algún elemento o si teniendo los mismos elementos, difieren en el orden de los mismos.

$$A_n^m = m.(m-1).(m-2)...(m-n+1) = \frac{m!}{(m-n)!}$$

ΝĄ

PERMUTACIONES SIMPLES

Problema 2: Con los dígitos 1,2,3,4 y 5. ¿Cuántos números de 5 cifras distintas se pueden formar?

$$A_5^5 = \frac{5!}{0!} = \frac{120}{1} = 5!$$

Como caso particular de los arreglos, si m y n son iguales, los grupos se llaman permutaciones y la fórmula correspondiente es: $P_m = m!$

Llamamos **Permutaciones simples de m elementos** de un conjunto a todos y cada uno de los arreglos simples que se pueden formar utilizando la totalidad de esos m elementos.

En general:
$$A_m^m = \frac{m!}{(m-m)!} = \frac{m!}{0!} = m! = P_m$$

COMBINACIONES SIMPLES

Problema 3: De 5 alumnos preseleccionados se debe elegir 3 alumnos que serán beneficiarios de una beca de \$5000 para el primero, \$2000 para el segundo y \$500 para el tercero. ¿De cuántas maneras diferentes se puede elegir?

Problema 4: De 5 alumnos preseleccionados se debe elegir 3 alumnos que serán beneficiarios de una beca de \$3000 cada uno. ¿De cuántas maneras diferentes se puede elegir?

Problema 3:

$$A_3^5 = \frac{5!}{(5-3)!} = \frac{120}{2} = 60$$

123	213	312	412	512
124	214	314	413	513
125	215	315	415	514
132	231	321	421	521
134	234	324	423	523
135	235	325	425	524
142	241	341	431	531
143	243	342	432	532
145	245	345	435	534
152	251	351	451	541
153	253	352	452	542
154	254	354	453	543

Problema 4: De 5 alumnos preseleccionados se debe elegir 3 alumnos que serán beneficiarios de una beca de \$3000 cada uno. ¿De cuántas maneras diferentes se puede elegir?

123	124	125	134	135	145	234	235	245	345
132	142	152							
213	214	215							
231	241	251							
312	412	512							
321	421	521							

Como en este caso no interesa el orden de los elementos, el resultado sería igual al número de columnas ya que en cada columna aparecen los mismos elementos.

Número total de grupos es: $A_3^5 = 60$

En cada columna hay 6 elementos: $P_3 = 6$

$$\frac{60 \ elementos}{6 \ elementos} = 10 \ columnas$$

$$\frac{N\acute{u}mero\ total\ de\ grupos}{n^{\circ}\ de\ grupos\ de\ cada\ columna} = \frac{A_{n}^{m}}{P_{n}} = \frac{\frac{m!}{(m-n)!}}{n!} = \frac{m!}{n!(m-n)!} = C_{n}^{m}$$

М

COMBINACIONES SIMPLES

Llamamos Combinaciones simples de los m elementos de un conjunto tomados de a n, siendo n ≤ m, a todos y cada uno de los grupos diferentes que se pueden formar de modo que:

- Cada grupo está formado por n elementos distintos de los m dados.
- Dos grupos se considerarán distintos si y solo sí difieren en alguno de sus elementos.

El número total de combinaciones simples de m elementos tomados de a n es: m!

 $\mathcal{L}_n^m = \frac{1}{n!(m-n)}$

W

ARREGLOS CON REPETICIÓN

Llamamos arreglos de los m elementos distintos, que se pueden repetir hasta n veces, a todos y cada uno de los grupos diferentes que se pueden formar de modo que:

- cada grupo está formado por n elementos, no necesariamente distintos de los m dados.
- Dos grupos se considerarán distintos si difieren al menos en algún elemento, o si teniendo los mismos elementos, difieren en el orden de los mismos.

$$A_{n,r}^m = \underbrace{m.m.m..m}_{n \text{ veces}} = m^n$$

м

Problema 5: Un cuestionario tiene 8 preguntas con 3 opciones por cada pregunta. ¿De cuántas maneras se puede responder el cuestionario?

Problema 6: ¿Cuántos números de tres cifras se pueden formar con los dígitos 0, 1, 2, 3, 4, 5 ?

PERMUTACIONES CON REPETICIÓN

Llamamos permutaciones con repetición de m elementos entre los cuales hay α de una clase, β de otra clase, ..., γ de otra clase, siendo

$$\alpha + \beta + ... + \gamma = m$$

a todos y cada uno de los grupos diferentes que se pueden formar de modo que:

- Cada grupo está formado por los m elementos dados.
- Dos grupos se consideran diferentes si y sólo si difieren en el orden de sus elementos.

$$P^m_{lpha,eta,...,\gamma} = rac{m!}{lpha!\,eta!...\gamma!}$$

Problema 7: ¿Cuántas palabras se pueden formar con las letras de la palabra BANANA?

Problema 8: ¿Cuántos números de diez cifras se pueden formar con los dígitos de 1233455122?

PERMUTACIONES CON REPETICIÓN

Problema 9: Con dos banderines rojos y tres verdes. ¿Cuántos señales distintas se pueden formar?

М

COMBINACIONES CON REPETICIÓN

Llamamos combinaciones de los m elementos distintos, que se pueden repetir hasta n veces, a todos y cada uno de los grupos diferentes que se pueden formar de modo que:

- Cada grupo está formado por n elementos, no necesariamente distintos de los m dados.
- Dos grupos se considerarán distintos si y sólo si difieren al menos en algún elemento.

$$C_{n,r}^{m} = \frac{(m+n-1)!}{n!(m-1)!}$$

Problema 10: Se tienen diez caramelos de fresa, diez de menta y diez de limón. ¿De cuántas maneras se pueden seleccionar diez caramelos?

Problema 11: En una bodega hay 5 tipos diferentes de botellas, y se desea elegir 4 botellas. ¿De cuántas maneras se puede hacer la elección?

NÚMERO COMBINATORIO

Dados dos enteros no negativos m y n, siendo n \leq m, llamamos número combinatorio m sobre n y lo anotamos $\binom{m}{n}$ al número que se obtiene así:

$$\binom{m}{n} = \frac{m!}{n!(m-n)!}$$

M.,

PROPIEDADES

1) Todo número combinatorio de denominador 0 es igual a 1:

 $\binom{m}{0} = \frac{m!}{0!m!} = 1$

2) Todo número combinatorio de denominador 1 es igual al numerador:

$$\binom{m}{1} = \frac{m!}{1!(m-1)!} = \frac{m.(m-1)!}{(m-1)!} = m$$

3) Todo número combinatorio cuyo numerador es igual al denominador es igual a 1:

$$\binom{m}{m} = \frac{m!}{m!(m-m)!} = 1$$

PROPIEDADES

Dos números combinatorios se dicen complementarios si tienen el mismo numerador y la suma de sus denominadores es igual al numerador.

4) Dos números combinatorios complementarios son iguales.

$$\binom{m}{n}y\binom{m}{m-n}$$
 son complementarios

$$\binom{m}{n} = \frac{m!}{n!(m-n)!} = \frac{m!}{(m-n)!n!} = \binom{m}{m-n}$$

м

FÓRMULA DE STIEFFEL

La suma de dos números combinatorios en general no es un número combinatorio, pero si sus numeradores son iguales y sus denominadores son consecutivos vale la fórmula:

$$\binom{m-1}{n-1} + \binom{m-1}{n} = \binom{m}{n}$$

Ejemplo:

$$\binom{9}{3} + \binom{9}{4} = \binom{10}{4}$$

Triángulo de Pascal

Es una disposición ordenada de todos los números combinatorios de la siguiente manera:

- En el primer renglón están todos los números combinatorios de numerador 0; en el segundo renglón están todos los números combinatorios de numerador 1; en el tercer renglón los de numerador 2; etc.
- En cada renglón los denominadores crecen desde 0 hasta el numerador correspondiente a ese renglón.

м

Triángulo de Pascal

El triángulo así formado tiene dos características importantes:

- Todos los números combinatorios de los laterales del triángulo son iguales a 1.
- Cada número combinatorio del interior es igual a la suma de los dos de arriba según la fórmula de Stieffel.

Potencias de un binomio:

Para ello veamos como se van desarrollando las potencias de (a+b)

$$(a+b)^1 = a+b$$

$$(a+b)^2 = (a+b).(a+b) = a^2 + 2ab + b^2$$

$$(a+b)^3 = (a+b)^2 \cdot (a+b) = (a^2 + 2ab + b^2) \cdot (a+b) = a^3 + 3a^2b + 3ab^2 + b^3$$

$$(a+b)^4 =$$

• • • • • • • • • • • •

$$(a+b)^n =$$

$$(a+b)^{n} = \binom{n}{0}a^{n}b^{0} + \binom{n}{1}a^{n-1}b^{1} + \binom{n}{2}a^{n-2}b^{2} + \dots + \binom{n}{n-1}a^{n-(n-1)}b^{n-1} + \binom{n}{n}a^{n-n}b^{n}$$

En forma abreviada:

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$$

El desarrollo ordenado de $(a+b)^n$:

- 1) Contiene (n + 1) términos no semejantes.
- 2) Cada término es el producto de tres factores, un número combinatorio, una potencia de a y una potencia de b, esto es: $\binom{n}{k} a^{n-k} b^k$
- 3) Los números combinatorios son todos de numerador n y los denominadores toman valores que van de 0 a n.

El desarrollo ordenado de $(a+b)^n$:

4) En cada término, el exponente de a decrece de n a 0 y el exponente de b crece de 0 a n.

5) La suma de los exponentes de a y de b es, en todos los términos igual a n.

- 6) Los términos equidistantes de los extremos contienen números combinatorios complementarios y por lo tanto son iguales; los de los extremos son iguales a 1.
- 7) Un término cualquiera de lugar k en el desarrollo, al que llamamos término k-ésimo es:

$$T_k = \binom{n}{k-1} a^{n-(k-1)} b^{(k-1)}$$

8) Si n es par, el desarrollo tiene un número impar de términos y por lo tanto existe un único término central que ocupa el lugar:

$$k = \frac{n}{2} + 1$$

9) Si n es impar, el desarrollo tiene un número par de términos y por lo tanto existen dos términos centrales que ocupan los lugares:

$$k_1 = \frac{n+1}{2} y k_2 = \frac{n+3}{2}$$