Quiz 6

Game of craps:

If sum is:

2,3 shooter loses

• 11, 12 shooter wins

• i, 4≤i≤10 : wins if shooter makes same point;

Loses if he gets 2, 3, 11, 12

Repeat otherwise

a) What is the conditional probability that shooter gets 11 if he wins the first round?

p (shooter gets 11 | wins the first round)= 2/3

b) Find probability of winning?

p (win) =p (win | 11, 12) p(11, 12) + p (win | i for
$$4 \le i \le 10$$
) p(i) p (win) =1 (3/36)+p (win | i for $4 \le i \le 10$) p(i)

$$p(win | i) = \sum_{k=0}^{\infty} p(not(2,3,11,12) and not(i) | i)^{k} p(i) =$$

$$p(i) \cdot \frac{1}{1 - p(not(2,3,11,12) and not(i))} =$$

$$p(i) \cdot \frac{1}{p((2,3,11,12) or i)} =$$

$$p(i) \cdot \frac{1}{p(2,3,11,12) + p(i)}$$

Hence,

$$p(win) = 1/12 + p(win | i).p(i) = 1/12 + \sum_{i=4}^{10} \frac{p(i).p(i)}{p(2,3,11,12) + p(i)}$$
$$p(i) = \frac{6 - |i - 7|}{36}$$

i	4	5	6	7	8	9	10
p(i)	3/36	4/36	5/36	6/36	5/36	4/36	3/36
p(win i)	1/3	2/5	5/11	1/2	5/11	2/5	1/3
p(win i) p(i)	1/36	2/45	6/95	1/12	6/95	2/45	1/36

17/48

$$p(win) = 1/12 + 17/48 = 7/16 = 0.44$$