Metody Optymalizacji Karol Janic 1 maja 2025

Spis treści

		lanie 1			-	•
	1.1	Cel.			. 2	2
	1.2	Model	[. 2	2
		1.2.1	Generowanie możliwych cięć		. 2	2
		1.2.2	Zmienne decyzyjne			
		1.2.3	Funkcja celu			
		1.2.4	Ograniczenia			
	1.3		· · · · · · · · · · · · · · · · · · ·			
	1.4		i			
	1.4	vvymk	М	•	. 4	-
2	Zad	lanie 2			•	3
	2.1	Cel.			. :	3
	2.2	Model	[. :	3
		2.2.1	Zmienne decyzyjne			
		2.2.2	Funkcja celu			
		2.2.3	Ograniczenia			
	2.3		· · · · · · · · · · · · · · · · · · ·			
	$\frac{2.3}{2.4}$		di			
	2.4	vvyiiik		•		1
3	Zad	lanie 3			4	4
	3.1	α 1			. 4	4
	0.1	Cei			•	
	3.2					4
					. 4	
		Model	[. 4	4
		Model 3.2.1	Zmienne decyzyjne		. 4	4
	3.2	Model 3.2.1 3.2.2 3.2.3	Zmienne decyzyjne		. 4	4
	3.2	Model 3.2.1 3.2.2 3.2.3 Dane	Zmienne decyzyjne		. 4	4 4 5
	3.2	Model 3.2.1 3.2.2 3.2.3 Dane	Zmienne decyzyjne		. 4	$\frac{4}{4}$
4	3.2 3.3 3.4	Model 3.2.1 3.2.2 3.2.3 Dane Wynik	Zmienne decyzyjne Funkcja celu Ograniczenia		. 4	4 4 5
4	3.2 3.3 3.4	Model 3.2.1 3.2.2 3.2.3 Dane Wynik	Zmienne decyzyjne Funkcja celu Ograniczenia		. 4	4 4 5
4	3.2 3.3 3.4 Zad	Model 3.2.1 3.2.2 3.2.3 Dane Wynik lanie 4	Zmienne decyzyjne Funkcja celu Ograniczenia			44455
4	3.2 3.3 3.4 Za d 4.1	Model 3.2.1 3.2.2 3.2.3 Dane Wynik lanie 4	Zmienne decyzyjne Funkcja celu Ograniczenia		. 44	44455 556
4	3.2 3.3 3.4 Za d 4.1	Model 3.2.1 3.2.2 3.2.3 Dane Wynik lanie 4 Cel Model	Zmienne decyzyjne Funkcja celu Ograniczenia		. 44. 44	44455 55666
4	3.2 3.3 3.4 Za d 4.1	Model 3.2.1 3.2.2 3.2.3 Dane Wynik lanie 4 Cel . Model 4.2.1	Zmienne decyzyjne Funkcja celu Ograniczenia Zmienne decyzyjne		. 4.	44455
4	3.2 3.3 3.4 Za d 4.1	Model 3.2.1 3.2.2 3.2.3 Dane Wynik lanie 4 Cel Model 4.2.1 4.2.2 4.2.3	Zmienne decyzyjne Funkcja celu Ograniczenia ci Zmienne decyzyjne Funkcja celu		. 4	$\frac{4}{4}$

1 Zadanie 1

1.1 Cel

Celem zadania jest zaplanowanie produkcji desek w tartatu w taki sposób aby zminimalzować liczbę odpadów. Deski mają stałą szerokośc i należy poprzecinać je w taki sposób aby zaspokoić zapotrzebowanie klientów na deski, które mogą być krótsze.

1.2 Model

Model parametryzowany jest szerokością desek $L \in \mathbb{R}_+$ (w calach), z której produkowane są wyroby oraz zapotrzebowaniem wyrażonym ciągiem par (l_i, n_i) , gdzie $1 \le i \le N$, l_i jest szerokością deski a n_i ich liczbą. Cięcia te generowane są przy użyciu rekurencyjnego algorytmu, który w każdym kroku sprawdza czy szerokość deski jest większa od l_i i jeżeli tak to odejmuje l_i od szerokości deski i wywołuje się rekurencyjnie na pozostałej szerokości deski.

1.2.1 Generowanie możliwych cięć

W fazie preprocesingu generowane są wszystkie możliwe cięcia, które mogą być wykonane na desce o szerokości L. Numerujemy je od 1 do M. Przez C_m^r oznaczamy liczbę odpadów a $C_m^{l_i}$ liczbę desek l_i w cięciu m-tym.

1.2.2 Zmienne decyzyjne

Całkowitoliczbowe zmienne decyzyjne x_m , gdzie $1 \le m \le M$ o wartościach nieujemnych określają dla każdego możliwego cięcia liczbę desek pociętych w ten sposób.

1.2.3 Funkcja celu

Funkcją celu jest minimalizacja sumy odpadów po cięciach i sumy długości desek wyprodukowanych ponad zapotrzebowanie:

$$\sum_{m=1}^{M} x_m \cdot C_m^r + \sum_{i=1}^{N} \left(\sum_{m=1}^{M} x_m \cdot C_m^{l_i} - n_i \right) \cdot l_i$$

1.2.4 Ograniczenia

Jedyna grupa ograniczeń wymusza spełnienie zapotrzebowania na każdą szerokośc deski:

$$\sum_{m=1}^{M} C_m^{l_i} \le n_i, \qquad 1 \le i \le N$$

1.3 Dane

Zadana została długość deski L=22 oraz zapotrzebowanie w tabeli 1.

				(ecie
i	1	2	3	3	5 7
l_i	3	5	7	5) 1
i	80	120	110	1	1 2
				Ω	≀ 1

Tabela 1: Zapotrzebowanie na deski

Tabela 2: Wyznaczone cięcia i liczby sztuk

1.4 Wyniki

Zapisano model programowania liniowego i wyznaczono optymalne rozwiązanie dla danych. Wyniki przedstawiono w tabeli 2. Taka produkcja generuje 18 cali odpadów. Łatwo sprawdzić, że jest to rozwiązanie dopuszczalne, ponieważ każde zapotrzebowanie zostało spełnione.

2 Zadanie 2

2.1 Cel

Celem zadania jest zaplanowanie kolejności wykonywania zadań na jednej maszynie w taki sposób aby zminimalizować sumę czasu zakończenia wszystkich zadań przemnożoną przez ich wagi. Dodatkowo każde zadanie ma czas najwcześniejszego rozpoczęcia, który musi być spełniony.

2.2 Model

Model parametryzowany jest liczbą zadań $N \in \mathbb{N}_+$ czasami ich wykonania $p_i \in \mathbb{R}$, wagami $w_i \in \mathbb{R}$ oraz czasami najwcześniejszego ich rozpoczęcia $r_i \in \mathbb{R}$, gdzie $1 \le i \le N$.

2.2.1 Zmienne decyzyjne

Nieujemne zmienne decyzyjne x_i , gdzie $1 \le i \le N$ określają czas rozpoczęcia i-tego zadania. Dodatkowo binarne zmienne decyzyjne y_{ij} , gdzie $1 \le i, j \le N$ określają kolejność wykonywania zadań - 1 jeżeli zadanie i jest przed zadaniem j oraz 0 w przeciwnym przypadku.

2.2.2 Funkcja celu

Funkcją celu jest minimalizacja sumy czasów zakończenia wszystkich zadań przemnożoną przez ich wagi:

$$\sum_{i=1}^{N} w_i \cdot (x_i + p_i)$$

2.2.3 Ograniczenia

Pierwsza grupa ograniczeń wymusza spełnienie czasów najwcześniejszego rozpoczęcia zadań:

$$x_i \ge r_i, \qquad 1 \le i \le N$$

Druga grupa ograniczeń wymusza, że kolejność wykonywania zadań jest spójna:

$$y_{ii} = 0,$$

$$1 \le i \le N$$

$$y_{ij} + y_{ji} = 1,$$

$$1 \le i < j \le N$$

Ostatnia grupa ograniczeń wymusza, że każde zadanie może być rozpoczęte tylko po zakończeniu poprzedniego:

$$x_i + p_i \le x_j + M \cdot (1 - y_{ij}),$$
 $1 \le i < j \le N$
 $x_j + p_j \le x_i + M \cdot y_{ij},$ $1 \le i < j \le N$

gdzie M jest dużą liczbą - w tym przypadku $M=\max_{1\leq i\leq N}r_i+\sum_{i=1}^Np_i+1$. Jest ono wykorzystywane do zamodelowania implikacji, że jeżeli zadanie i jest przed zadaniem j to zadanie j może być rozpoczęte tylko po zakończeniu zadania i.

2.3 Dane

Zadane zostały czasy wykonania p_i , wagi w_i oraz czasy gotowości r_i dla 10 zadań, które przedstawione są w tabeli 3.

Zadanie i	Czas (p_i)	Waga (w_i)	Gotowość (r_i)	Zadanie	Rozpoczęcie	Zakończenie
1	4	5	0	6	0	1
2	3	2	2	9	1	4
3	2	7	5	3	5	7
4	6	4	3	8	7	9
5	5	1	7	1	9	13
6	1	9	0	2	13	16
7	7	3	4	4	16	22
8	2	6	6	10	22	26
9	3	8	1	7	26	33
10	4	2	8	5	33	38

Tabela 3: Parametry zadań: p_i , w_i , r_i

Tabela 4: Czasy rozpoczęcia i zakończenia zadań

2.4 Wyniki

Zapisano model programowania liniowego i wyznaczono optymalne rozwiązanie dla danych. Optymalna kolejność wykonywania zadań została przedstawiona w tabeli 4. Koszt całkowity wynosi 518 jednostki. Łatwo sprawdzić, że jest to rozwiązanie dopuszczalne, ponieważ każde zadanie zostało rozpoczęte po jego czasie gotowości i trwało odpowiednio długo.

3 Zadanie 3

3.1 Cel

Celem zadania jest zaplanowanie kolejności wykonywania zadań na wielu maszynach w taki sposób aby zminimalizować czas zakończenia wszystkich zadań. Dodatkowo każde zadanie ma określoną listę poprzedników, które muszą być zakończone przed jego rozpoczęciem.

3.2 Model

Model parametryzowany jest liczbą maszyn $M \in \mathbb{N}_+$, liczbą zadań $N \in \mathbb{N}_+$, czasami ich wykonania $p_i \in \mathbb{R}$ oraz listą poprzedników zadań $P_i \subseteq \{1, 2, \dots, N\}$, gdzie $1 \leq i \leq N$.

3.2.1 Zmienne decyzyjne

Nieujemne zmienne decyzyjne x_i , gdzie $1 \le i \le N$ określają czas rozpoczęcia i-tego zadania. Binarne zmienne decyzyjne $y_{m,i,j}$, gdzie $1 \le m \le M$, $1 \le i,j \le N$ określają kolejność wykonywania zadań - 1 jeżeli zadanie i jest przed zadaniem j oraz 0 w przeciwnym przypadku. Binarne zmienne decyzyjne $a_{m,i}$, gdzie $1 \le m \le M$ oraz $1 \le i \le N$ określają czay na m-tej maszynie wykonywane jest i-te zadanie. Dodatkowo jest zmienna decyzyjna $t \in \mathbb{R}$, która określa czas zakończenia wszystkich zadań.

3.2.2 Funkcja celu

Funkcją celu jest minimalizacja czasu zakończenia wszystkich zadań t.

3.2.3 Ograniczenia

Pierwsza grupa ograniczeń wymusza przypisanie zadania do tylko jednej maszyny:

$$\sum_{m=1}^{M} a_{m,i} = 1, \qquad 1 \le i \le N$$

Druga grupa ograniczeń wymusza, że każde zadanie może być rozpoczęte tylko po zakończeniu poprzedników:

$$x_i \ge x_p + p_p, \qquad 1 \le i \le N, p \in P_i$$

Każde zadanie musi być zakończone przed czasem t:

$$x_i + p_i \le t, \qquad 1 \le i \le N$$

Ostatnia grupa ograniczeń zapewnia, że zadania na jednej maszynie nie mogą się nakładać:

$$x_i + p_i \le x_j + M \cdot (1 - y_{m,i,j}) + M \cdot (2 - a_{m,i} - a_{m,j}), \qquad 1 \le i < j \le N, 1 \le m \le M$$

$$x_j + p_j \le x_i + M \cdot y_{m,i,j} + M \cdot (2 - a_{m,i} - a_{m,j}), \qquad 1 \le i < j \le N, 1 \le m \le M$$

gdzie M jest dużą liczbą - w tym przypadku $M=\sum_{i=1}^N p_i+1$. Jest ono wykorzystywane do zamodelowania implikacji, że jeżeli zadanie i jest przed zadaniem j to zadanie j może być rozpoczęte tylko po zakończeniu zadania i oraz czy zadania i i j są przypisane do tej samej maszyny m.

3.3 Dane

Zadane zostały M=3 maszyny oraz N=9 zadań, które mają czasy wykonania i listy poprzedników jak w tabeli 5.

Zadanie	Czas trwania	Poprzednicy
1	1	_
2	2	_
3	1	_
4	2	1, 2, 3
5	1	1, 2, 3 $2, 3$
6	1	4
7	3	4, 5
8	6	5
9	2	6, 7

Tabela 5: Zadania z czasem trwania i poprzednikami

Rysunek 1: Wizualizacja zależności między zadaniami na wielu maszynach

3.4 Wyniki

Zapisano model programowania liniowego i wyznaczono optymalne rozwiązanie dla danych. Optymalna kolejność wykonywania zadań została przedstawiona na rysunku 1. Czas zakończenia wszystkich zadań wynosi 9 jednostek czasu. Porównując wyznaczone zależności z tabelką 5 można sprawdzić że rozwiązanie jest dopuszczalne, ponieważ każde zadanie zostało rozpoczęte po zakończeniu poprzedników i trwało odpowiednio długo.

4 Zadanie 4

4.1 Cel

Celem zadania jest rozdzielenie zasobów do zadań w taki sposób aby zminimalizować całkowity czas zakończenia wszystkich zadań. Każde zadanie ma określone wymagania na zasoby, czas ich wykonania oraz listę poprzedników, które muszą być zakończone przed jego rozpoczęciem.

4.2 Model

Model parametryzowany jest specifikacją zasobów i zadań. Każde z R zasobów ma określony swój limit r_i , gdzie $1 \le i \le R$. Każde z N zadań ma zadany swój czas wykonania $p_i \in \mathbb{R}$, wymagania na zasoby $w_r \in \mathbb{N}_+$ oraz listę poprzedników $P_i \subseteq \{1, 2, \dots, N\}$, gdzie $1 \le i \le N$ oraz $1 \le r \le R$.

4.2.1 Zmienne decyzyjne

Nieujemne zmienne decyzyjne t_i , gdzie $1 \le i \le N$ określają momenty rozpoczęcia pewnego zadania - jednego lub wielu. Binarne zmienne decyzyjne $x_{i,e}$, gdzie $1 \le i, e \le N$ określają czy zadanie i jest aktywne w momencie e-tym. Zmienna $t_{\text{MAX}} \in \mathbb{R}_+$ określa czas zakończenia wszystkich zadań.

4.2.2 Funkcja celu

Funkcją celu jest minimalizacja czasu zakończenia wszystkich zadań $t_{\rm MAX}$.

4.2.3 Ograniczenia

Pierwsza grupa ograniczeń wymusza przypisanie każdego zadania do conajmniej jednego momentu, aby każde zadanie zostało wykonane:

$$\sum_{e=1}^{N} x_{i,e} \ge 1, \qquad 1 \le i \le N$$

Druga grupa ograniczeń wymusza monotoniczność czasów momentów:

$$t_i = 0, i = 1$$

$$t_i \ge t_{i-1}, 2 \le i < N$$

Trzecia grupa ograniczeń wyznacza czas zakończenia każdego zadania:

$$t_{\text{MAX}} >= t_e + (x_{i,e} - x_{i,e-1}) \cdot p_i,$$
 $1 \le i, e \le N$

Kolejna grupa ograniczeń zapewnia czas trwania każdego zadania:

$$t_j \ge t_i + p_i \cdot (x_{i,e} - x_{i,e-1} - x_{j,e} + x_{j,e-1}),$$
 $1 \le i, j \le N, 1 \le e \le N$

Następna grupa zadań zapewnia ciągłość zadań w czasie:

$$\sum_{f=1}^{e-1} x_{i,f} \ge M \cdot (1 - x_{i,e} + x_{i,e-1}), \qquad 1 \le i \le N, 2 \le e \le N$$

$$\sum_{f=e}^{N} x_{i,f} \ge M \cdot (1 + x_{i,e} - x_{i,e-1}), \qquad 1 \le i \le N, 2 \le e \le N$$

Przedostatnia grupa ograniczeń wymusza, że każde zadanie może być rozpoczęte tylko po zakończeniu poprzedników:

$$x_{p,e} + \sum_{f=1}^{e} x_{i,f} \ge 1 + M \cdot (1 - x_{i,e}),$$
 $1 \le i \le N, p \in P_i, 1 \le e \le N$

Ostatnia grupa ograniczeń wymusza, że w żadnym momencie nie można przekroczyć limitu zasobów:

$$\sum_{i=1}^{N} w_r \cdot x_{i,e} \le r_r, \qquad 1 \le r \le R, 1 \le e \le N$$

Zadanie	Czas	Poprzednicy	Zapotrzebowanie
1	50	_	1: 9
2	47	1	1: 17
3	55	1	1: 11
4	46	1	1: 4
5	32	2	1: 13
6	57	3, 4	1: 7
7	15	4	1: 7
8	62	5, 6, 7	1: 17

Tabela 6: Zadania z czasem, poprzednikami i zapotrzebowaniem

Rysunek 2: Wizualizacja rozdziału zasobów do zadań

4.3 Dane

Zadane zostały R=1 zasób z limitem $r_1=30$ oraz N=8 zadań, które mają czasy wykonania, wymagania na zasoby i listy poprzedników jak w tabeli 6.

4.4 Wyniki

Zapisano model programowania liniowego i wyznaczono optymalne rozwiązanie dla danych. Optymalna kolejność wykonywania zadań została przedstawiona na rysunku 2. Porównując wyznaczone zależności z tabelką 6 można sprawdzić że rozwiązanie jest dopuszczalne, ponieważ każde zadanie zostało rozpoczęte po zakończeniu poprzedników i trwało odpowiednio długo. Dodatkowo w żadnym momencie nie przekroczono limitu zasobów. Całkowity czas zakończenia wszystkich zadań wynosi 237 jednostek czasu.