PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:		(11) International Publication Number: WO 95/13993
C03C 3/087, 3/095, 3/11	A1	(43) International Publication Date: 26 May 1995 (26.05.95
(21) International Application Number: PCT/CZ (22) International Filing Date: 26 November 1993 (JP, KR, NO, NZ, PL, RO, RU, UA, US, European paten
(30) Priority Data: 2338-93 3 November 1993 (03.11.93	3) (Published With international search report.
(71) Applicant (for all designated States except US): ŠKOLA CHEMICKO - TECHNOLOGICKÁ Technická 1905/5, 166 28 Praha 6 (CZ).		
(72) Inventors; and (75) Inventors/Applicants (for US only): RADA, [CZ/CZ]; Americká 247, 345 61 Staňkov (CZ). Ladislav [CZ/CZ]; U Petřin 1858/3, 162 00 Prah ŠAŠEK, Ladislav [CZ/CZ]; Mečíkova 2855/2, Praha 10 (CZ).	. ŠAŠE a 6 (C	K, Z).
(74) Agent: SMRČKOVÁ, Marie; Ctiradova 1, 140 54 (CZ).	4 Praha	4
(54) Titles LEAD EDGE CRYCTAL CLASS WITH TH		

(54) Title: LEAD-FREE CRYSTAL GLASS WITH THE REFRACTIVE INDEX HIGHER THAN 1,52

(57) Abstract

Lead-free cyrstal glass with the refractive index higher than 1,52, designated for the production of man-made and machine-made utility glass especially of luxurious character with high light transmittance, perfect clearness and elevated hydrolitical resistance which is suitable particularly for decorating by cutting, engraving and other decorating techniques and is well polishable by using both chemical and mechanical processes, containing in % by weight from 50 to 75 of silicon dioxide SiO₂, from 0,05 to 10 of aluminium oxide Al₂O₃, from 0,05 to 15 of zirconium dioxide ZrO₂, from 0,001 to 2,5 of hafnium dioxide HfO₂, from 0,001 to 5 of titanium dioxide TiO₂, from 2 to 9 of calcium oxide CaO, from 0,001 to 6 of magnesium oxide MgO, from 0,05 to 10 of zinc oxide ZnO, from 0,1 to 10 of potassium oxide K₂O, from 5 to 16 of sodium oxide Na₂O, from 0,05 to 2,5 of entimony trioxide Sb₂O₃ and the total amount of iron expressed as iron trioxide Fe₂O₃ ranges from 0,005 to 0,035 % by weight, while this glass further contains in % by weight from 0,001 to 1,25 of sulphates SO₄²⁻ and chlorides Cl⁻ and from 0,000005 to 0,8105 at least one component from the group comprising erbium oxide Er₂O₃, neodymium oxide Nd₂O₃, ceric oxide CeO₂, cobaltous oxide CoO, nickel oxide NiO, manganese oxides and selenium compounds. In any case, sum of all components mentioned totals at lest 99,6 % by weight.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MR	Mauritania
AU	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Faso	HU	Hungary	NO	Norway
BG	Bulgaria	IE	Ireland	NZ	New Zealand
BJ	Benin	rt	Italy	PL	Poland
BR	Brazil	JP	Japan	PT	Portugal
BY	Belarus	KE	Kenya	RO	Romania
CA	Canada	KG	Kyrgystan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic	SD	Sudan
CG	Congo		of Korea	SE	Sweden
CH	Switzerland	KR	Republic of Korea	SI	Slovenia
CI	Côte d'Ivoire	KZ	Kazakhstan	sk	Slovakia
CM	Cameroon	LI	Liechtenstein	SN	Senegal
CN	China	LK	Sri Lanka	TD	Chad
CS	Czechoslovakia	LU	Luxembourg	TG	Togo
CZ	Czech Republic	LV	Latvia	TJ	Tajikistan
DE	Germany	MC	Monaco	TT	Trinidad and Tobago
DK	Denmark	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	US	United States of America
FI	Finland	ML	Mali	UZ	Uzbekistan
FR	France	MN	Mongolia	VN	Viet Nam
GA	Gabon		-		

1

Lead-free crystal glass with the refractive index higher than 1,52

5 Technical field

10

15

This invention relates to lead-free crystal glass with the refractive index higher than 1,52 which is intended for the man-made and machine-made utility glassware, especially those of luxurious character. with high lustre and light transmittance. The glass contains silicon dioxide SiO,, aluminium oxide Al₂O₃, zirconium dioxide ZrO₂, hafnium dioxide HfO2, titanium dioxide TiO2, calcium oxide CaO, magnesium oxide MgO, zinc oxide ZnO, potassium oxide K_2O , sodium oxide Na_2O , antimony trioxide Sb_2O_3 , iron trioxide Fe₂O₃, sulphates, chlorides and least at one component from the group incorporating erbium oxide $\mathrm{Er_2O_3}$, neodymium oxide $\mathrm{Nd_2O_3}$, ceric oxide CeO2, cobaltous oxide CoO, nickel oxide NiO, manganese oxides and selenium compounds.

20 Background art

For the products from so called cheap crystal glass accentuated by a low price the refractory index fluctuates about a value of 1,51 and, barium oxide BaO and lead oxide PbO are being used by some manufacturers but in smaller amounts only, as was stated by A.Smrček in the journal Sklář a keramik <u>38</u> , 25 (1988), p. 286-294. The group of special crystal glass types represents already more refined products in which the refractive index is under control and has to be maintained close to the value 1,52. This can be achieved by addition of barium oxide BaO, zinc oxide ZnO and, as the case may be, in smaller amounts 30 even of lead oxide PbO, as it was stated e.g. in DE-patent from 1987 No. 2839645, such a glass according to said patent contains in % by weight as follows: silicon dioxide SiO_2 65 to 75, aluminium oxide Al_2O_3 0,1 to 2, calcium oxide CaO 2 to 12, magnesium oxide MgO 0 to 8, sodium oxide $\mathrm{Na_{2}O}$ 7 to 15, potassium 35

5

10

15

20

25

30

35

2

oxide K₂O O to 10, lithium oxide Li₂O O to 3, barium oxide BaO 1 to 6, zinc oxide ZnO 0,2 to 3,1ead oxide PbO 0 to 10 and titanium dioxide TiO2 0,2 to 5. This invention covers by its chemical composition, with the exception of titanium dioxide TiO2 most of crystal glass of types being produced excepting of lead and high-lead crystal glass produced with the content of lead oxide PbO ≥ 24 % by weight. It is also necessary to refer to the published Japanese patent application from 1986 No. 61270234, though relating to glass types for fluorescent lamps. but with the composition analogous to crystal glasses. The glass types according to this invention contain in % by weight from 65 to 75 of silicon dioxide SiO2, from 1 to 2,5 of aluminium oxide Al_2O_3 , from 0,001 to 0,02 of iron trioxide Fe_2O_3 , from 10 to 18 of sodium oxide Na_2O , from 0 to 2 of potassium oxide K_2O , while the sum of sodium and potassium oxides ranges between 10 and 18, from 1 to 10 of calcium oxide CaO, from 0,5 to 6 of magnesium oxide MgO, while the sum of calcium and oxides ranges between 2 an 15, from 0,1 to 2 of barium oxide BaO, from 1 to 3 of boron oxide B_2O_3 and 0,2 to 2 of antimony trioxide Sb₂O₃, while the sum of barium, boron and antimony oxides ranges between 1,4 and 6 % by weight.

For the products of luxurious character which are decorated predominatingly by cutting the lead and high-lead crystal glass types are used where the refractive index value 2 1,545 is required. At the present time the unharmful hygienic properties of glass are being preferred particularly concerning the content of lead and barium in the leaching, as important also the purity of the atmosphere and effluents is regarded. With regard to the fact that in the production of those special crystal glass types the refractive index of the desired value is being elevated largely by an increased amount of lead oxide PbO and barium oxide BaO, the said hygiene properties that are required induce hardly solvable problems in the production of such glass types.

The disadvantages mentioned will be improved according to published Czechoslovak patent application No. 1344-91 which

5

10

25

30

35

3

corresponds to European patent application No. 92909183.3, the proposed chemical composition of crystal lead-free glasses conforming with it contains in % by weight from 50 to 65 of silicon dioxide SiO_2 , from 0,1 to 10 of aluminium oxide Al_2O_3 , from 0,5 to 17 of zirconium dioxide ZrO_2 , from 10 to 22 of potassium oxide K_2O and/or sodium oxide Na_2O , from 2 to 10 of calcium oxide CaO and/or magnesium oxide CaO and from 0,01 to 0,025 of iron trioxide CaO and individually or in a combination it contains from 0,1 to 10 % by weight of barium oxide CaO and traces to 1% by weight of antimony trioxide CaO3. As further modifiers individually or in a combination titanium dioxide CaO3 and stannic dioxide CaO3 are present in the range of traces to 1% by weight.

The composition of a lead-free zinc-silicon crystal glass is presented also in the published patent application EP from 1991 No. 91121730.5. The glass according to this invention contains in % by weight from 65 to 70 of silicon dioxide SiO₂, from 6 to 9 of calcium oxide CaO, from 4 to 12 of potassium oxide K₂O, from 4 to 12 of sodium oxide Na₂O, from 0,5 to 5 of boron oxide B₂O₃, from 4 to 7 of zinc oxide ZnO, from 0,1 to 1 of antimony trioxide Sb₂O₃ and from 1 to 6 of zirconium dioxide ZrO₂ and/or titanium dioxide TiO₂.

Zirconium dioxide ZrO_2 according to the published Japanese patent application from 1988 No. 63147843 can be used as a component also in a chemically resistent glass which composition in % by weight is as follows: from 63 to 67 of silicon dioxide SiO_2 , from 4 to 4,8 of boron oxide B_2O_3 , from 4 to 5,5 of aluminium oxide Al_2O_3 , from 0 to 4 of titanium dioxide TiO_2 , from 2,5 to 3,6 of magnesium oxide MgO, from 4,7 to 8,7 of calcium oxide CaO, from 0 to 5 of barium oxide CaO, from 0 to 5 of barium oxide CaO, from 0 to 5 of potassium oxide CaO, while the sum of sodium and potassium oxides ranges from 8 to 15,5, from 0 to 1 of iron trioxide CaO_3 and from 0 to 5 of zirconium dioxide CaO_3 .

5

10

15

20

25

30

35

4

The next group is composed of inventions, in which besides zirconium dioxide ZrO, also strontium oxide SrO is incorporated. This category according to the U.S. patent from 1977 No. 4065317 includes glasses with a high chemical resistance which are suitable for pharmaceutical purposes, scientific and biological branches. The composition of these glass types is as follows (in mol.%): from 75 to 82 of silicon dioxide SiO2, from 2 to 8 of zirconium dioxide ZrO2, from 1 to 5 of aluminium oxide Al2O3, from 2 to 10 of sodium oxide Na₂O, from 2 to 10 of potassium oxide K₂O, from 2 to 10 of calcium oxide CaO, from 2 to 10 of strontium oxide SrO, from 2 to 10 of barium oxide BaO, without boron oxide B₂O₃. According to the European patent application from 1991 No. 405579 strontium oxide SrO is used as a component also in packing glass with the composition as follows (in % by weight): from 45 to 70 of silicon dioxide SiO2, from 5 to 16 of zirconium dioxide ZrO2, with 10 to 30 of alkaline metal oxides, over 12 oxides of divalent metals, and over 5 oxides of trivalent metals, while as alkaline metals sodium Na, potassium K or lithium Li are being regarded, and magnesium Mg, calcium Ca, strontium Sr, zinc Zn or barium Ba being classified among divalent metals and aluminium Al, iron Fe or boron B among trivalent metals. Strontium oxide SrO acts as a component in packing glass also in USSR patent from 1972 No. 330119. The complete composition is as follows (in % by weight): from 68 to 73 of silicon dioxide SiO_2 , from 1,8 to 4,5 of aluminium oxide Al_2O_3 , from 0,02 to 1,5 of iron trioxide Fe_2O_3 , from 0,5 to 4 of magnesium oxide MgO, from 4 to 9,5 of calcium oxide CaO, from 2 to 5,2 of strontium oxide SrO, from 11 to 13 of sodium oxide Na₂O, from 0,5 to 2 of potassium oxide K₂O and from 0,2 to 2 of zirconium dioxide ZrO2.

According to the published Japanese application from 1976 No. 51055310 zirconium dioxide ZrO_2 is included in watch covering glasses, the composition of which in % by weight varies in the range between 4 to 10 of aluminium oxide Al_2O_3 , 0 to 5 of magnesium oxide MgO, 10 to 20 of sodium oxide Na_2O_3 , 2 to 10 of

5

potassium oxide K_2O , 0 to 10 of boron oxide B_2O_3 . The actual composition contains (in % by weight): 65 of silicon dioxide SiO_2 , 4 of aluminium oxide Al_2O_3 , 0.017 of iron trioxide Fe_2O_3 , 0.55 of titanium dioxide TiO_2 , 0.7 of magnesium oxide MgO, 3.96 of zirconium dioxide ZrO_2 , 0.65 of arsenic trioxide As_2O_3 , 10 of sodium oxide Na_2O , 9.5 of potassium oxide K_2O , 3.62 of boron oxide B_2O_3 and 3.92 of zinc oxide ZrO_2 .

The lead-free crystal glass types mentioned in the survey according to the Czechoslovak patent application No.1344-91 which corresponds to the European patent application No.92909183.3 are designated for the man-made and machine-made utility glassware of plain type or decorated by engraving, cutting and other decorative techniques. These glass types that are well polishable mainly by chemical processes are suitable above all for cutting by diamond tools.

Disclosure of the invention

5

10

15

This invention relates to the composition of crystal lead-free glass with the refractive index higher than 1.52 contains 50 to 75 % by weight of silicon dioxide SiO2, 0,05 to 20 10 % by weight of aluminium oxide $\mathrm{Al}_2\mathrm{O}_3$, 0,05 to 15 % by weight of zirconium dioxide ZrO2, 0,001 to 2,5 % by weight of hafnium dioxide HfO2, 0.001 to 5 % by weight of titanium dioxide TiO2, 2 to 9 % by weight of calcium oxide CaO, 0,001 to 6 % by weight of magnesium oxide MgO, 0.05 to 10 % by weight of zinc oxide 25 ZnO, 0,1 to 10 % by weight of potassium oxide K_2O , 5 to 16 % by weight of sodium oxide Na_2O , 0,05 to 2,5 % by weight of antimony trioxide Sb₂O₃ and total content of iron expressed as iron trioxide Fe_2O_3 varies between 0,005 and 0,035 % by weight while this glass further contains 0,0001 to 1,25 % by weight of 30 sulphates SO_4^{2-} and chlorides Cl and 0,000005 to 0,8105 % by weight of at least one component from the group including erbium oxide $\mathrm{Er_2O_3}$, neodymium oxide $\mathrm{Nd_2O_3}$, ceric oxide $\mathrm{CeO_2}$, cobaltous oxide CoO, nickel oxide NiO, manganese oxides and selenium compounds. In any case the total of all these components is at 35

6

least 99,6 % by weight.

5

10

15

20

25

30

35

As impurities amounting maximum of 0,4% by weight the compounds carried in above all by usual glass raw materials can be present such as strontium oxide SrO, lead oxide PbO, cadmium oxide CdO, cupric oxide CuO, arsenic trioxide As_2O_3 , praseodymium trioxide Pr_2O_3 , samarium oxide Sm_2O_3 , chrome oxide Cr_2O_3 , vanadic oxide V_2O_5 , uranium trioxide UO_3 , thorium dioxide ThO_2 , fluorides, etc.

Glass refining by antimony trioxide Sb_2O_3 or if needed by antimonitans introduced usually into glass batch in common with nitrates will be more intensive at the presence of sulphates SO_4^{2-} varying between 0,0001 and 0,75 % by weight and chlorides $C1^-$ between 0,001 and 0,5 % by weight.

High light transmittance and perfect clearness is achieved at the presence at least one component from the group comprising 0,0001 to 0,2 % by weight of erbium oxide $\rm Er_2O_3$, 0,0001 to 0,2 % by weight of neodymium oxide $\rm Nd_2O_3$, 0,001 to 0,2 % by weight of ceric oxide $\rm CeO_2$, 0,000005 to 0,0005 % by weight of cobaltous oxide $\rm CoO$, 0,00001 to 0,005 % by weight of nickel oxide $\rm NiO$, 0,001 to 0,200 % by weight of manganese oxide $\rm MnO_2$ expressing in re-count manganese oxides and, selenium amount of 0,00001 to 0,005 % by weight, expressing in re-count selenium compounds.

Utility and technological properties particularly the meltableness and partly also the refractive index of glass, its chemical resistance and the liquidus temperature are advantageously modified by at least one oxide from the group comprising 0.05 to 6 % by weight of barium oxide BaO, 0.001 to 5 % by weight of boron oxide B_2O_3 , 0.001 to 1.5 of phosphoric oxide P_2O_5 and 0.001 to 1.5 % by weight of lithium oxide Li_2O .

As further modifiers, with the respect to the refractive index, partly to the mean dispersion and to the surface tension, this glass can contain with advantage at least one oxide from the group comprising 0.05 to 5 % by weight of stannic dioxide SnO_2 , 0.05 to 2 % by weight of lanthanum oxide $\mathrm{La}_2\mathrm{O}_3$, 0.05 to 10 % by weight of bismuth oxide $\mathrm{Bi}_2\mathrm{O}_3$, 0.001 to 0.1 % by weight of

7

molybdic oxide MoO_3 and 0,001 to 0,5 % by weight of tungstic oxide WO_3 .

Among dominant advantages of this glass type belong good cutting and engraving abilities, namely by diamond, carborundum, electrite, etc. tools, good polishing ability by using both chemical and mechanical processes, excellent optical properties, especially high light transmittance and perfect clearness. From the point of view concerning crystal glass types its excellent chemical resistance is also of importance and as favourable the comparable or more advantageous melting, refining, forming and cooling temperatures and also convenient crystallization properties can be regarded. But its major preference consists in the absence of hygienic and environmentally harmful lead oxide. During the melting process do not volatilize environmentally irregular lead oxides and arsenic that are used in the manufacture of lead crystal glasses. As it is completely lead-free and is designated above all for the utility glass and consequently for beverage glass and household use it involves the significant advantage that no undesired and healthy damaging lead oxide will pass over into the leaching.

Examples of carrying out invention

5

10

15

20

25

This invention will be explained in more detail in the following examples of carrying out.

Example No. Glass components	1 con	2 tent in	3 % by wei	4 ght	
Silicium dioxide SiO ₂	63,883	64,857	63,170	64,363	
O Aluminium oxide Al ₂ O ₃	0,108	0,117	1,800	0,117	
Zirconium dioxide ZrO ₂	7,522	6,111	5,820	5,081	
Hafnium dioxide HfO2	0,233	0,189	0,180	2,219	
Titanium dioxide ${ m TiO_2}$	0,012	0,010	0,009	0,011	
Calcium oxide CaO	5,500	6,500	5,800	6,500	
5 Magnesium oxide MgO	0,087	0,103	4,072	0,103	

		8			
Zinc ox	ide ZnO	3,000	5,500	2,500	3,000
Potassi	ım oxide K ₂ O	6,000	4,000	4,000	4,000
Sodium	oxide Na ₂ O	13,000	12,000	12,000	12,000
Antimon	y trioxide Sb ₂ O ₃	0,500	0,500	0,500	0,500
Iron con	ntent expressed				
by cont	ent of				
iron tr	ioxide Fe ₂ O ₃	0,015	0,015	0,018	0,015
Sulphat	es SO ₄ ²⁻	0,004	0,003	0,003	0,004
Chlorid	es Cl	0,086	0,029	0,078	0,043
Erbium	oxide Er ₂ O ₃	0,040	-	0,042	0,044
Neodymi	um oxide Nd ₂ O ₃	0,010	_	0,008	- "
Cobalto	us oxide CoO	0,0000	3 0,0000	5 0,0000	3 0,00004
Mangane	se oxides				
express	ed by content		•		
of mang	anese oxide MnO	· 2 —	0,066	-	- ·
Boron o	xide B ₂ O ₃	-	. · <u>-</u> ·		2,000
Σ compo	nents	100,000	100,000	100,000	100,000
Refract	ive index				
at 589,	3 nm	1,5469	1,5456	1,5454	1,5450
t _{logn=2}	[°C]	1444	1470	1447	1426
t _{logn=3}	[°C]	1202	1222	1219	1194
t _{logn=4}	[°C]	1050	1068	1076	1050
t _{logn=7,6}	₅ [°C]	765	776	803	774
t _{10gη=13}	[°C]	578	585	620	593
t _{10gn=14} ,	₅ [°C]	542	550	587	558
t _{liquidus}	. [°C]	930	960	960	915
hydrol	itical resistanc	e			
in ml	$[C=0,01mo1.1^{-1}]$	HC1 0,60	0,40	0,40	0,32

9

	Example No.	5	6	7	8 .
	Glass components	con	tent in	% by wei	ght
	Silicium dioxide SiO ₂	70,739	61,632	64,015	71,497
5	Aluminium oxide Al ₂ O ₃	2,000	0,063	0,065	0,125
	Zirconium dioxide ZrO ₂	0,970	6,275	7,178	1,096
	Hafnium dioxide HfO2	0,030	1,225	0,222	0,034
	Titanium dioxide TiO2	0,027	1,000	0,011	0,027
	Calcium oxide CaO	7,640	6,000	5,000	6,640
10	Magnesium oxide MgO	0,020	0,016	0,013	0,018
	Zinc oxide ZnO	1,500	1,500	5,000	3,500
	Potassium oxide K ₂ O	3,400	5,800	4,500	3,600
	Sodium oxide Na ₂ O	12,570	13,000	12,000	12,570
	Antimony trioxide Sb ₂ O ₃	0,600	0,500	0,500	0,600
15	Iron content expressed				
	by content of				
	iron trioxide Fe ₂ O ₃	0,008	0,008	0,010	0,008
	Sulphates SO ₄ ²⁻	0,225	0,300	0,003	0,225
	Chlorides Cl	0,043	0,131	0,040	0,038
20	Erbium oxide Er ₂ O ₃	0,020	0,050	0,085	0,022
	Neodymium oxide Nd ₂ O ₃	0,008	_	_	_
	Ceric oxide CeO ₂	-	-	0,008	_
	Cobaltous oxide CoO	0,00001	5 0,0000	5 -	0,00002
	Nickel oxide NiO	_	_	_	0,0003
25	Boron oxide B ₂ O ₃	-	_	1,000	-
	Lithium oxide Li ₂ O	0,200	· _	_	
	Stannic dioxide SnO ₂	_	0,500	-	-
	Bismuth oxide Bi ₂ O ₃	-	2,000	_	_
	Molybdic oxide MoO_3	-	_	0,050	-
30,	Tungstic oxide WO ₃		-	0,300	- .
	Σ components	100,000	100,000	100,000	100,000
	Refractive index				
35	at 589,3 nm	1,5204	1,5519	1,5408	1,5200

10

t _{logn=2}	[°C]	1466	1423	1453	1473
t _{10gn=3}	[°C]	1194	1191	1209	1200
t _{logn=4}	[°C]	1027	1046	1057	1032
t _{10gn=7,65}	[°C]	717	770	769	721
t _{10gn=13}	[°C]	520	588	581	523
t _{logn=14,5}	[°C]	484	555	547	487
t _{liquidus}	[°C]	920	895	897	920
	l resistance				
in m1[C=0.0	1mol.1 ⁻¹ 1 HC1	0.51	0.75	0.34	0.62

10

5

In examples carrying out corresponds $t_{\log n=2}$ to the melting temperature, $t_{\log n=4}$ to the working temperature, $t_{\log n=7.65}$ to the softening point temperature, $t_{\log n=13}$ to the upper annealing temperature and $t_{\log n=14.5}$ to the lower annealing temperature.

15

20

The values of hydrolitical resistance expressed in the consumption of 0,01 molar hydrochloric acid in mililitres show that all glasses mentioned fulfil the condition desired for classification in the third class of hydrolitical resistance. By rising the amount of zirconium dioxide ZrO_2 , hafnium dioxide HfO_2 and zinc oxide ZrO_3 in glasses mentioned the condition is given for the classification in the second class of hydrolitical resistance.

25

The given composition of lead-free glass types according to this invention can be also applied into basic composition of coloured glass types that are coloured by using usual procedures and known types of colouring substances and their combinations in current concentrations as well.

30

11

Industrial applicability

5

10

15

20

The lead-free crystal glass with the refractive index higher than 1,52 according to this invention is assigned to the production of man-made and machine-made utility glass, for the luxurious character in plain but products of decorated designs using engraving, cutting and further decorative techniques. This type of glass is suitable for processing by diamond, carborundum, electrite, atc. tools, it is well polishable by chemical and mechanical treatment and features a high light transmittance and perfect clearness. It can be applied as initial basis for coloured glass types. This is hygienic unharmful concerning the content glass detrimental substances in the leaching and by its brilliance can compete with the products made of lead crystal glass.

In question is the production of glass objects used in households and restaurants, e.g. small cups, tumblers, carafes, bowls and, vessels of various shapes and sizes used for decorative purposes such as vases, dishes, etc., including applied art designs and objects of art.

PCT/CZ93/00027

35

12

Claims

- 1. Lead-free crystal glass with the refractive index higher than 1,52 suitable especially for production of man-made and 5 machine-made utility glass containing silicon dioxide SiO2, aluminium oxide Al₂O₃, zirconium dioxide ZrO₂, hafnium dioxide HfO2, titanium dioxide TiO2, calcium oxide CaO, magnesium oxide MgO, zinc oxide ZnO, potassium oxide K2O, sodium oxide Na2O, Sb_2O_3 , iron trioxide Fe₂O₃, sulphates, antimony trioxide chlorides and at least one component from the group including 10 erbium oxide Er₂O₃, neodymium oxide Nd₂O₃, ceric oxide CeO₂, cobaltous oxide CoO, nickel oxide NiO, manganese oxides and selenium compounds, characterized by its composition, with the content 50 to 75 % by weight of silicon dioxide SiO₂, 0,05 to 10 % by weight of aluminium oxide Al₂O₃, 0,05 to 15 15 % by weight of zirconium dioxide ZrO2, 0,001 to 2,5 % by weight of hafnium dioxide HfO2, 0,001 to 5 % by weight of titanium dioxide TiO2, 2 to 9 % by weight of calcium oxide CaO, 0,001 to 6 % by weight of magnesium oxide MgO, 0,05 to 10 % by weight of zinc oxide ZnO, 0,1 to 10 % by weight of 20 potassium oxide K2O, 5 to 16 % by weight of sodium oxide Na2O, 0.05 to 2.5 % by weight of antimony trioxide Sb₂O₃, the total amount of iron expressed as iron trioxide Fe2O3 being ranged from 0,005 to 0,035 % by weight, while this glass further contains 0,0001 to 1,25 % by weight of sulphates SO₄²⁻ and 25 chlorides C1 and 0,000005 to 0,8105 % by weight of at least one component from the group comprising erbium oxide Er2O3, neodymium oxide Nd₂O₃, ceric oxide CeO₂, cobaltous oxide CoO, nickel oxide NiO, manganese oxides and selenium compounds, the total of all components mentioned being at least 99,6 % 30 by weight.
 - 2. Crystal lead-free glass with the refractive index higher than 1,52 according to claim 1, characterized by its composition, with the content of 0,0001 to 0,75 % by weight of sulphates

13

 SO_4^{2-} and 0,001 to 0,5 % by weight of chlorides Cl⁻.

5

10

- 3. Crystal lead-free glass with the refractive index higher than 1,52 according to claims 1 and 2, characterized by its composition, with the content at least of one component from the group comprising 0,0001 to 0,2 % by weight of erbium oxide Er₂O₃, 0,0001 to 0,2 % by weight of neodymium oxide Nd₂O₃, 0,001 to 0,2 % by weight of ceric oxide CeO₂, 0,000005 to 0,0005 % by weight of cobaltous oxide CoO, 0,00001 to 0,005 % by weight of nickel oxide NiO, 0,001 to 0,200 % by weight of manganese oxide MnO₂ expressing in re-count manganese oxides and 0,00001 to 0,005 % by weight of selenium expressing in re-count selenium compounds.
- 4. Crystal lead-free glass with the refractive index higher than 1,52 according to claims 1 to 3, characterized by its composition, with the content at least of one oxide from the group comprising 0,05 to 6 % by weight of barium oxide BaO, 0,001 to 5 % by weight of boron oxide B₂O₃, 0,001 to 1,5 % by weight of phosphoric oxide P₂O₅ and 0,001 to 1,5 % by weight of lithium oxide Li₂O.
- 5. Crystal lead-free glass with the refractive index higher than 1,52 according to claims 1 to 3 or according to claims 1 to 4, characterized by its composition, with the content at least one component from the group comprising 0,05 to 5 % by weight of stannic dioxide SnO₂, 0,05 to 2 % by weight of lanthanum oxide La₂O₃, 0,05 to 10 % by weight of bismuth oxide Bi₂O₃, 0,001 to 0,1 % by weight of molybdic oxide MoO₃ and 0,001 to 0,5 % by weight of tungstic oxide WO₃.

INTERNATIONAL SEARCH REPORT

Intern al Application No PCT/CZ 93/00027

A. CLASS IPC 6	IFICATION OF SUBJECT MATTER C03C3/087 C03C3/095 C03C3/11		
According	to International Patent Classification (IPC) or to both national classifi	cation and IPC	
	S SEARCHED		
Minimum of IPC 6	documentation searched (classification system followed by classification CO3C	on symbols)	
Documenta	tion searched other than minimum documentation to the extent that ${f s}$	uch documents are included in the fields se	arched
Electronic	data base consulted during the international search (name of data base	and, where practical, search terms used)	
C. DOCU	MENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the re	levant passages	Relevant to claim No.
A	EP,A,O 564 802 (SCHOTT GLASSWERKE October 1993 see page 3, line 21 - page 4, lin		1-5
A	WO,A,92 19559 (VYSOKA SKOLA CHEMICKO-TECHNOLOGICKA USTAV SKLA KERAMIKY) 12 November 1992 cited in the application see page 2, line 36 - page 4, lin	·	1-5
A	EP,A,O 547 263 (INN CRYSTAL GLASS June 1993 cited in the application see page 2, line 26 - page 3, lin		1-5
A	EP,A,O 553 586 (COMPAGNIE DES CRISTALLERIES DE BACCARAT) 4 Augusee page 2, line 28 - page 3, line	ust 1993 ne 45	1-5
Fu	rther documents are listed in the continuation of box C.	X Patent family members are listed	in annex.
* Special *A* docucons *E* carlie	categories of cited documents; unent defining the general state of the art which is not idered to be of particular relevance er document but published on or after the international	T later document published after the int of priority date and not in conflict we cited to understand the principle or t invention X document of particular relevance; the	emational filing date ith the application but heory underlying the
"L" docu which citat "O" docu othe	g date ment which may throw doubts on priority claim(s) or th is cited to establish the publication date of another tion or other special reason (as specified) ment referring to an oral disclosure, use, exhibition or or means	cannot be considered novel or cannot involve an inventive step when the d "Y" document of particular relevance; the cannot be considered to involve an it document is combined with one or ments, such combination being obvi	ot be considered to ocument is taken alone e claimed invention oventive step when the nore other such docu-
late	ment published prior to the international filing date but r than the priority date claimed	in the art. "&" document member of the same pater	
Date of the	he actual completion of the international search 10 June 1994	Date of mailing of the international s	
Name an	d mailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2	Authorized officer	
	NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Van Bommel, L	

INTERNATIONAL SEARCH REPORT

autormation on patent family members

Intern. .al Application No PCT/CZ 93/00027

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
EP-A-0564802	13-10-93	JP-A- PL-A-	4303474 6009241 298472 9300193	14-10-93 18-01-94 27-12-93 31-12-93
W0-A-9219559	12-11-92	NONE		
EP-A-0547263	23-06-93	NONE		2 W C C C M (C C C C C C C C C C C C C C C
EP-A-0553586	04-08-93	DE-D- 6 DE-T- 6	3635293 9200011 9200011 9316964	13-09-93 14-10-93 03-03-94 02-09-93