

Alexander Neuwirth

 Z^0 Resonanz Z^0 Resonanz

Z⁰-Resonanz
Alexander fresentith

wissen,leben

- 1. Begrüßung
- 2. Thema

wissen.leben

Gliederung

Historischer Überblick

Theorie

Experimentelle Untersuchung

Zusammenfassung

1. Historie 2. Theorie

3. Messung/Experiment 4. Zusammenfasssung

Gliederung

Z⁰ Resonanz —Gliederun

Gliederung

-Historischer Überblick

• Zunächst Historie

Z⁰ Resonanz Historisch

2018-12

Historischer Überblick

2018

Z⁰ Resonanz

Historischer Überblick

1979 Nobelpreis an Steven Weinberg, Sheldon Glashow und Abdus Salam [1]

Alexander Neuwirth 3

Z^o Resonanz Historischer Überblick

└─Historischer Überblick

- 1. Vereinheitlichung von elektr.magn. + schwache WW. Kräfteaustausch durch Photon, W^{\pm} , Z^{0}
- 2. 1979 Nobelpreis für GWS

Historischer Überblick

Z⁰ Resonanz Historischer Überblick ☐ Historischer Überblick

2018 -

1. Gargamelle-Blasenkammer am CERN

Historischer Überblick

Meer [2]

Z⁰ Resonanz Historischer Überblick

- 1. Am Large Electron Positorn Collider, fokus
- 2. Nobelpreis für Carlo Rubbia and Simon van der Meer für experimentelle Beitrag Proton-Antiproton-Kollisionen
- 3. Mehr später
- 4. Weil führte mit zum Nachweis der Z und W Bosonen

Historischer Überblick

Z⁰ Resonanz
Historischer Überblick

Historischer Überblick

- 1. Large Electron Positron Ring (CERN) Präzessionsmessungen
- 2. weiter Bestätigung der Theorie/Standardmodell und W-Z-Bosonen
- 3. bis 2000

Historischer Überblick

Z⁰ Resonanz

Historischer Überblick

Historischer Überblick

- 1. Higgs Theorie in 60er-Jahren
- 2. 2013 Francois Englert und Peter Higgs Nobelpreis
- 3. Alle Nachweise am CERN!
- 4. Randnotitz

Alexander Neuwirth

3

Z⁰ Resonanz -7-0-27-9 -7-7-17-9 -7-7-17-9 -7-7-17-9 -7-7-17-9 -7-7-17-9 -7-7-17-9 -7-7-17-9 -7-7-17-9 -7-7-17-9 -7-7-17-9 -7-9 -7-9 -

Theorie
Einondnung im Standardmodell der Elementarteilchen
Eisktroschwache Vereinheitlichung
Einomanne der Einomannen
Einomannen der Einomannen
Einomannen der Einomannen
Einomannen der Einomannen
Einomannen der Einomannen

Historischer Überblich

Theorie

Einordnung im Standardmodell der Elementarteilchen Elektroschwache Vereinheitlichung

Experimentelle Untersuchung

Zusammenfassui

4

Einordnung im Standardmodell der Elementarteilchen

 Z^0 -Boson:

- ► Halbwertszeit $t_{1/2} \approx 3 \cdot 10^{-25} \, s$
- ungeladen
- eigenes Antiteilchen

Standardmodell[3]

Z⁰ Resonanz

Theorie

Einordnung im Standardmodell der

Elementarteilchen

Einordnung im Standardmodell der

- lila(Quarks), grün(Leptonen), rot(Eichbosonen), gelb(Higgs)
- Generationen, Fermion, s=1/2
- Boson s=1
- Ladung Fermionen 2/3 -1/3 0 1 Bosonen 0 außer W ±1
- Antiteilchen invers
- •
- Masse steigt mit Generation
- schwache WW
 W+- => elek, Teilchen WW (beta Zerfall)
- Z0 => auch neutral Teilchen WW (Neutrino)
- Z0 eigenes Antiteilchen
- Higgs aus Vollständigkeit
- Nur durch Z-Boson lässt sich Neutrino-Neutrino-WW erklären, da sie nicht elektrisch sind.

Elektroschwache VereinheitlichungAustauschteilchen

- ightharpoonup Photon ightharpoonup elektromagnetische Wechselwirkung
- ► Gluon → starke Wechselwirkung
- **>** W,Z-Boson → schwache Wechselwirkung

Elektroschwache Vereinheitlichung Austauschteilchen

Photon → elektromagnetische Wechselwirkung
 Gluon → starke Wechselwirkung
 W,Z-Boson → schwache Wechselwirkung

- 1. Warum? Weil Divergenzen in höherer Ordnung/Energien auftreten
- 2. Vereint QED mit schwacher WW.
- 3. Kräfte durch Austauschteilchen
- 4. Photon elektro magn. beispielweise Elektron-Elektron-Streuung, Rutherford Streuung
- 5. W,Z bsplw. Beta-Zerfall, Elektron-Positron-Streuung (Energieabhänig)
- 6. Gluon Kernzusammenhalt, Farbladung, 8 (n-p-Anziehung), Quarkanziehung

Elektroschwache Vereinheitlichung Schwacher Isospin

	Fermionmultipletts			T	T_3	$z_{ m f}$
Leptonen	$\begin{pmatrix} \nu_{\rm e} \\ {\rm e} \end{pmatrix}_{\rm L}$	$\left(\begin{array}{c} \nu_{\mu} \\ \mu \end{array}\right)_{\mathrm{L}}$	$\left(\begin{array}{c} \nu_{ au} \\ au \end{array} ight)_{ ext{L}}$	1/2	$^{+1/2}_{-1/2}$	$0 \\ -1$
Lej	e_{R}	$\mu_{ m R}$	$ au_{ m R}$	0	0	-1
rks	$\begin{pmatrix} u \\ d' \end{pmatrix}_L$	$\begin{pmatrix} c \\ s' \end{pmatrix}_L$	$\left(\begin{array}{c} t \\ b' \end{array} \right)_L$	1/2	$^{+1/2}_{-1/2}$	$+2/3 \\ -1/3$
Quarks	u_{R}	c_{R}	t_{R}	0	0	+2/3
	d_{R}	s_{R}	b_{R}	0	0	-1/3

Schwacher Isospin[4]

Z⁰ Resonanz

Theorie

Elektroschwache Vereinheitlichung

Elektroschwache Vereinheitlichung

- 1. Einführung von schwachem Isospin, analogon zu starkem Isospin
- 2. Chiralität Index R/L formal: Zerlegung von Dirac-Spinoren in orthogonale Zustände die unter Paritätsoperationen ineinander übergehen. Eigenzustände ± 1
- 3. Rechtshändige e, μ, τ Singulett Zustand.
- 4. Chiralität (l/r), Spinor Symmetrie
- 5. Rechtshändige Neutrinos $T_3 = z = 0$, keine WW, Auftreten in Natur unbekannt
- 6. Der' bedeuted != Masseneigenzustände, sondern Quarkmisch-Matrix CKM
- 7. T_3 Werte Bereich analog zu anderen Spins
- 8. z_f beschreibt Ladung 9. invers für Antiteilchen: rechshändige Fermionen (linkshändige Antifermionen) Singulettt ($T = 0 = T_3$)
- 10. Umwandung durch Absorption von W^{\pm} -Boson innerhalb Multiplett (darin Ladungsdifferenz = 1)

Alexander Neuwirth

7

Elektroschwache Vereinheitlichung Schwacher Isospin

Z⁰ Resonanz
—Theorie
—Elektroschwache Vereinheitlichung
—Elektroschwache Vereinheitlichung

- 1. Bekannt aus schwacher WW
- 2. $d\rightarrow u + W^-$

Elektroschwache Vereinheitlichung Schwacher Isospin

Z⁰ Resonanz
Theorie
Elektroschwache Vereinheitlichung
Elektroschwache Vereinheitlichung

1. T₃ Erhaltungsgröße

Elektroschwache Vereinheitlichung

Schwacher Isospin

 $ightharpoonup T_3$ soll erhalten bleiben

$$W^-: T_3 = -1$$

 β^- -Zerfall[5]

2018-12

Z⁰ Resonanz

Theorie
Elektroschwache Vereinheitlichung
Elektroschwache Vereinheitlichung

- 1. T: d(-1/2)=W(?)+u(1/2)
- 2. T: W(?)=e(-1/2)+v(-1/2)

Elektroschwache Vereinheitlichung Schwacher Isospin

- $ightharpoonup T_3$ soll erhalten bleiben
- $W^-: T_3 = -1$
- $W^+: T_3 = 1$

 β^- -Zerfall[5]

Z⁰ Resonanz —Theorie -Elektroschwache Vereinheitlichung -Elektroschwache Vereinheitlichung

1. analog u \rightarrow d + W^+

Elektroschwache Vereinheitlichung

Schwacher Isospin

- $ightharpoonup T_3$ soll erhalten bleiben
- $W^-: T_3 = -1$
- $W^+: T_3 = 1$
- W^0 : $(T = 1, T_3 = 0)$
- $\triangleright B^0$: $(T = 0, T_3 = 0)$

 β^- -Zerfall[5]

- 1. B^0 postuliert
- 2. Mehr zum Beta-Zerfall nächste Woche (+Paritätsverletzung)

Elektroschwache Vereinheitlichung

▶ Photon und Z^0 als orthogonale Linearkombination von B^0 und W^0 :

$$|\gamma\rangle = +\cos\theta_{\mathrm{W}}|B^{0}\rangle + \sin\theta_{\mathrm{W}}|W^{0}\rangle$$

 $|Z^{0}\rangle = -\sin\theta_{\mathrm{W}}|B^{0}\rangle + \cos\theta_{\mathrm{W}}|W^{0}\rangle$

Hektroschwache Vereinheitlichung

Photon und Z^0 als orthogonale Linearkombination von B^0 und W^0 : $|Y\rangle = +\cos\theta_W |B^0\rangle + \sin\theta_W |W^0\rangle$ $|Z^0\rangle = -\sin\theta_W |B^0\rangle + \cos\theta_W |W^0\rangle$

- 1. Drehung um Weinberg-Winkel/elektroschwachen Mischungswinkel, Naturkonstante
- 2. spontane Symmetriebrechung, diagonaliesierung der Massematrix führt zu diesen.
- 3. orthogonal + linear Kombination

Elektroschwache Vereinheitlichung

▶ Photon und Z^0 als orthogonale Linearkombination von B^0 und W^0 :

$$|\gamma\rangle = +\cos\theta_{\mathrm{W}} |B^{0}\rangle + \sin\theta_{\mathrm{W}} |W^{0}\rangle$$

 $|Z^{0}\rangle = -\sin\theta_{\mathrm{W}} |B^{0}\rangle + \cos\theta_{\mathrm{W}} |W^{0}\rangle$

► Weinbergwinkel:

$$\cos \theta_{
m W} = rac{M_{
m W}}{M_{
m Z}} pprox 0.88$$

Liektroschwache Vereinnertuchung

▶ Photon und Z^0 als ortogonale Linearkombination von B^0 und W^0 $|y'\rangle = +\cos\theta_W |B^0\rangle + \sin\theta_W |W^0\rangle$ $|Z^0\rangle = -\sin\theta_W |B^0\rangle + \cos\theta_W |W^0\rangle$

 $\cos \theta_W = \frac{M_W}{M_Z} \approx 0.88$

- 1. experimentelle Bestimmung, später mehr
- 2. Masse für Z⁰ leichter zu Bestimmen, da W-Boson in Neutrino zerfällt. => bestimmung über fehlenden Transversalimpuls

Elektroschwache Vereinheitlichung

Photon und Z^0 als orthogonale Linearkombination von B^0 und W^0 :

$$|\gamma\rangle = +\cos\theta_{\mathrm{W}}|B^{0}\rangle + \sin\theta_{\mathrm{W}}|W^{0}\rangle$$

 $|Z^{0}\rangle = -\sin\theta_{\mathrm{W}}|B^{0}\rangle + \cos\theta_{\mathrm{W}}|W^{0}\rangle$

➤ Weinbergwinkel:

$$\cos heta_{
m W} = rac{M_{
m W}}{M_{
m Z}} pprox 0.88$$

► Gekoppelte Ladungen:

$$e=g\cdot sin heta_{\scriptscriptstyle \mathrm{W}}$$

- 1. schwache Ladung g (Analogon zu e) aus schwache WW. aus QFT
- 2. beschreibbar durch elektrische und schwache Ladung
- 3. Umformung zu e/g und M/M

10

Historischer Überblic

Theorie

Experimentelle Untersuchung

Erzeugung

Nachweis

Präzisionsmessungen

Eigenschaften

Anzahl Neutrinogenerationen

7usammenfassun

Z⁰ Resonanz Experimentelle Untersuchung

ng

Experimental between the control of the control

Erzeugung

Feynman-Diagramme

- W/Z-Boson durch Antilepton+Lepton/AntiQuark+Quark Reaktion
- kollidierende Teilchenstrahlen
- feynman diagram
- Zeit nach rechts
- Antiteilchen Zeitlich invers (Aus Dirac-Gleichung (Schrödinger gleichung mit eingesetzter Impuls/Energie Relation wirkt auf vier komponentigen Dirac Spinor) ergeben sich positive und negative Lösungen für die Energie) (bzw. Klein Gordon Gleichung (entkoppelt))
- nach Stückelberg-Feynman-Interpretation, bsplw. E-Feld e⁻ vs e⁺ mit anderer Richtung ist gleich. (Dirac sagte Antiteilchen vorher/definierte, wobei negative Energien besetzt sind und Löcher sich ausbreiten basierend auf Pauli-Ausschlussprinzip, da Bosonen nicht gehorchen ⇒ reverse Zeit Interpretation)
 über yoder Z zu Fermion und Antifermion paar.
- bei passender Energie approx M_Z dominiert Z^0 , aus QFT+Feynmanregeln

Erzeugung

- ► LEP
 - $ho e^- + e^+
 ightarrow Z^0$: Schwerpunktsenergie $\sqrt{s} = 2E_{\rho} \ge M_7 c^2 \approx 91,6 \, GeV$
- $e^+ + e^- \rightarrow W^+ + W^-$: benötigt $2E_e \ge 2M_W c^2 \approx 160.8 \text{ GeV}$

Z⁰ Resonanz
—Experimentelle Untersuchung
—Erzeugung
—Erzeugung

Erzeugung

▶ LEP

▶ $e^- + e^+ \rightarrow Z^0$: Schwerpunktsenergie $\sqrt{s} = 2E_g \ge M_g e^2 \approx 91.6$ GeV

▶ $e^+ + e^- \rightarrow W^+ + W^-$: benddigt $2E_g \ge 2M_g e^2 \approx 160.8$ GeV

- 1. 1989 am Stanford Linear Collider und LEP
- 2. Tritt nicht auf bei Energien $\approx 100~GeV$
- 3. 1996 am LEP, 50 ightarrow 86 ightarrow 104,6 GeV

Erzeugung

- **LEP**
 - $ightharpoonup e^- + e^+
 ightharpoonup Z^0$: Schwerpunktsenergie $\sqrt{s} = 2E_e > M_7c^2 \approx 91.6 \, GeV$
 - $ightharpoonup e^+ + e^-
 ightharpoonup W^+ + W^-$: benötigt $2E_e \ge 2M_Wc^2 \approx 160.8 \, GeV$
- ► SPS/SppS
 - $ightharpoonup u + \overline{u}
 ightharpoonup Z^0$: pp-Kollision benötigt $E_p \gtrapprox 600 \, GeV$
 - ▶ $u + \overline{u} \rightarrow Z^0$: $p\overline{p}$ -Kollision benötigt $E_p \approx 300 \text{ GeV}$

 $\begin{array}{l} \mathbf{L} E \\ \mathbf{b} = e^{-x} - Z^{n} \cdot \mathbf{Schwerpulitionergia} \cdot \sqrt{x} = 2 I_{n} \geq M_{g} e^{x} - 91.6. \, \mathrm{GeV} \\ \mathbf{b} = e^{-x} - E^{-x} \cdot \mathbf{b}^{n} - \mathbf{b}^{n} \cdot \mathbf{b}^{n} - \mathbf{b} \mathrm{configura}^{2} I_{n} \geq 2 M_{g} e^{x} - 60.6 \, \mathrm{GeV} \\ \mathbf{b} = S^{n} S_{0} \cdot \mathbf{b}^{n} - \mathbf{b} \mathrm{configura}^{2} \cdot \mathbf{b}^{n} = \frac{1}{2} \cdot \mathbf{configura}^{2} \cdot \mathbf{b}^{n} \\ \mathbf{b} = 1 - 2^{n} \cdot \mathbf{g}^{n} \cdot \mathbf{configura}^{2} \cdot \mathbf{b}^{n} - \mathbf{configura}^{2} \cdot \mathbf{b}^{n} = \frac{1}{2} \cdot \mathbf{configura}^{2} \cdot \mathbf{configur$

Erzeugune

- 1. Energie muss in Quarks enthalten sein \rightarrow sehr viel mehr Energie auf Protonen (analog mit d) => e-e+ Kollision einfacher
- 2. Besser Proton-Antiproton, da weniger Enrgie notwendig.
- 3. in Beschleuniger inverse Rotation

Erzeugung

Einfluss auf Beschleuniger durch Gezeiten

LEP Ausdehnung[7]

Z⁰ Resonanz
Experimentelle Untersuchung
Erzeugung
Erzeugung

- 1. weiter relevanter Effekt
- 2. Energie schwankt im Tagesverlauf
- 3. Güne Linie ist grob Erdrotation

Erzeugung

Einfluss auf Beschleuniger durch Gezeiten

Relative Strahlenergieänderung[8]

- 1. Resonante depolarisation genaue Enrgiemessung (notwendig)
- 2. Über Verhalten des Spins der beschleunigten Elektronen
- 3. Größe primär relevant für Energie (+Synchrotron strahlung)

Nachweis durch neutrale Ströme

- Neutrinostrahl durch $\pi^+ \rightarrow \mu^+ + \overline{\nu}_{\mu}$
- ▶ Blasenkammer: $\bar{v}_{\mu} + e^{-} \rightarrow \bar{v}_{\mu} + e^{-}$
- ► Elektron sendet Bremsstrahlung aus
- e^-e^+ -Paarbildung o elektromagnetischer Schauer

[9][10]

- 1. Striche und Kreise sind Lamben und Spiegel Reflexionen
- 2. Myonlose Neutrinoreaktion
- 3. Neutrale Ströme von links nach rechts Antineutrinostrahl in Blasenkammer.
- 4. Neutrionstrahl durch bsplw. $\pi^+ o \mu^+ + \overline{v}_\mu$ und Ladungsfilter
- 5. Photon nur bei elektr. Prozessen. (=> neutraler Strom, Z)
- 6. Vorhergesagter Winkel und 1/3 Energie des *e*⁻ impliziert Wechselwirkung durch neutrale Ströme.
- 7. 700000 Bilder überprüft. Spiral/Bremsstrahlung.

Nachweis

Entdeckung des Z⁰ Bosons

"Lego-Diagramm" $q + \overline{q} \rightarrow Z^0 \rightarrow e^+ + e^-$ [4]

- ▶ 1983 UA2 Detektor am SppS
- ➤ Masse des Z⁰-Bosons entspricht der Summe der Energie von e⁻ und e⁺
- Entgegengesetzte Impulse von e^- und e^+

Z⁰ Resonanz
C-21.8
Experimentelle Untersuchung
Nachweis
Nachweis

- nicht L3, aber analog
- Beispiel Event einer der ersten Messung
- Plane unten sind Kaloriemeterzellen
- Energie Summe = Masse Z^0
- Winkel 180° => entgegen gesetzte Richtungen

Präzisionsmessungen

Large Electron Positron Collider (LEP, 1989-2000)

Beschleuniger am CERN 1996 [11]

Z⁰ Resonanz
Experimentelle Untersuchung
Präzisionsmessungen
Präzisionsmessungen

- 1. LEP wurde zu LHC
- 2. L3 wurde zu ALICE
- 3. SppS von 1981 bis 1991 anstelle von SPS
- 4. Erzeugung, Lineare Beschleuniger und Vorstufen

Präzisionsmessungen L3 Detektoraufbau am LEP

L3 Detektor [8]

Von Innen nach Außen:

- 1. Spurdetektor
- 2. Elektromagnetisches Kalorimeter
- 3. Hadronisches Kalorimeter
- 4. Myonkammer

Alexander Neuwirth 17

Z⁰ Resonanz

Experimentelle Untersuchung

Präzisionsmessungen

Präzisionsmessungen

- 1. Alles in Magnetfeld
- 2. Spurdetektor: misst elektrische Teilchen
- 3. Krümmung gibt Impuls und Ladung
- 4. EM Kalorimeter: Energie von Elektron und Photon, EM Teilchen wird absorbiert
- 5. Had Kalorimeter: Energie von Hadronen, starke WW Teilchen werden absorbiert
- 6. Myonkammern: Für Myonen, groß, weil geringe WW
- 7. Vortrag speziell zur Teilchendetektion

Präzisionsmessungen L3 Detektoraufbau am LEP

L3 Detektor [8]

Z⁰ Resonanz
Experimentelle Untersuchung
Präzisionsmessungen
Präzisionsmessungen

- 1. Mensch für Größenverhältnis.
- 2. Magnet im ALICE wieder verwendet.

19

Präzisionsmessungen

L3 Detektor (1993 am LEP)

- Energiemessung im elm. Kalorimeter
- ► Entgegengesetzte Ausbreitung

$$e^- + e^+ \to Z^0 \to e^- + e^+$$
 [8]

Z⁰ Resonanz
Experimentelle Untersuchung
Präzisionsmessungen
Präzisionsmessungen

- 1. L3 Detektor LEP
- 2. beispielhafte Ereignisse
- 3. entlang der Strahlachse
- 4. analog zu Lego
- 5. herausgezoomt, weil Enrgie weniger verteilt
- 6. Winkel 180° ⇒ entgegen gesetzte Richtungen
- 7. Balken sind die Energien die Kaloriemeter messen

Präzisionsmessungen

L3 Detektor (1993 am LEP)

- Einzelnes Quark führt zu Quark-Antiquark-Paar Erzeugung, um isolierte Farbladung zu verhindern (Confinement)
- Reaktion äußert sich in hadronische Jets
- ► Energiemessung im Hadronischen Kalorimeter

$$e^- + e^+ \rightarrow Z^0 \rightarrow \text{hadronische Jets [8]}$$

Z⁰ Resonanz
—Experimentelle Untersuchung
—Präzisionsmessungen
—Präzisionsmessungen

1. Hadronische Jets, Farbladung nicht aleine vorkommend, immmer neue Quark-Antiquark-Paare (Confinment)

Präzisionsmessungen

L3 Detektor (1993 am LEP)

- Messung der Myon Spur durch mehrere Myonkammern
- ► I.A. Keine Absorption

$$e^- + e^+ \to Z^0 \to \mu^+ + \mu^-$$
 [8]

Z⁰ Resonanz
Experimentelle Untersuchung
Präzisionsmessungen
Präzisionsmessungen

1. Muon erst an äußeren Platten detektiert

Präzisionsmessungen

 $ightharpoonup Z^0$ Resonanz bei $pprox 92 \, GeV$

Wirkungsquerschnitte bei e^-e^+ Kollision [12]

- 1. Achsen + Farbliche Zuordnung
- 2. Z⁰ Resonanz und weitere Messungen

Eigenschaften

Experimentelle Bestimmung

- Messung:
 - $M_7 = 91,188(2) \, GeV/c^2$
 - $\Gamma_7 = 2,495(2) \, GeV$

Z⁰ Resonanz

Experimentelle Untersuchung

Eigenschaften

Eigenschaften

Eigenschaften
Experimentelle Bestimmung

▶ Messung:

▶ M₂ = 91,188(2) GeV/c²

▶ Γ₂ = 2,495(2) GeV

- 1. Über Wirkungsquerschnitt? src [PD12]
- 2. Breite + Maximalstelle

Eigenschaften

Experimentelle Bestimmung

- Messung:
 - $M_7 = 91,188(2) \, GeV/c^2$
 - $\Gamma_7 = 2,495(2) \, GeV$
- > Zerfall:

$$Z^{0} \rightarrow e^{-} + e^{+} \qquad \qquad 3,363(4) \% \\ \mu^{-} + \mu^{+} \qquad \qquad 3,366(7) \% \\ \tau^{-} + \tau^{+} \qquad \qquad 3,370(8) \% \\ v_{e,\mu,\tau} + \overline{v}_{e,\mu,\tau} \qquad \qquad 20,0(6) \% \\ \text{Hadronen} \qquad \qquad 69,91(6) \%$$

Z⁰ Resonanz
Experimentelle Untersuchung
Eigenschaften
Eigenschaften

- 1. Hadronen (idR. Anti+Quark) nicht unterscheidbar
- 2. Anti+Neutrino schwer detektierbar \Rightarrow % über Γ_{tot}

Anzahl Neutrinogenerationen

Wirkungsquerschnitt

$$\sigma_f \propto rac{\Gamma_f \cdot \Gamma_e}{(s - M_Z^2)^2 + M_Z^2 \Gamma_Z^2}$$

Z⁰ Resonanz
Experimentelle Untersuchung
Anzahl Neutrinogenerationen
Anzahl Neutrinogenerationen

Anzahl Neutrinogenerationer Wirkungsquerschnitt

 $\sigma_f \propto \frac{\Gamma_f \cdot \Gamma_\sigma}{(s-M_Z^2)^2 + M_Z^2 \Gamma_Z^2}$

- 1. Formel für σ Breit-Wigner
- 2. Einheiten *h* und *c* multiplizieren
- 3. Abhängig von ...
- 4. γ unterdrückt

Anzahl Neutrinogenerationen Zerfallsbreite

$$\Gamma_Z = \sum_f \Gamma_{Z o f ar f}$$

Z⁰ Resonanz

Experimentelle Untersuchung

Anzahl Neutrinogenerationen

Anzahl Neutrinogenerationen

Anzahl Neutrinogenerationen Zerfallsbreite $\Gamma_Z = \sum_{j} \Gamma_{Z \to j j}$

1. Breite ergibt sich aus Partial Breiten

Anzahl Neutrinogenerationen

Zerfallsbreite

$$\begin{split} \Gamma_{Z} &= \sum_{f} \Gamma_{Z \to f\bar{f}} \\ &= \Gamma_{\mathsf{u,c,d,s,b}} + \Gamma_{\mathsf{e},\mu,\tau} + \Gamma_{\nu_{e},\nu_{\mu},\nu_{\tau}} \end{split}$$

Z⁰ Resonanz
Experimentelle Untersuchung
Anzahl Neutrinogenerationen
Anzahl Neutrinogenerationen

1. kein top-Quark, da t-Masse ($\approx 175 \, GeV$)größer als Z^0 -Masse ist

Anzahl Neutrinogenerationen

Zerfallsbreite

$$\begin{split} \Gamma_Z &= \sum_f \Gamma_{Z \to f\bar{f}} & \Gamma_f = \frac{G_F M_Z^3}{24\sqrt{2}\pi} \cdot (1 + (1 - e|Q_f|\sin^2\theta_W)^2) \\ &= \Gamma_{\text{u,c,d,s,b}} + \Gamma_{\text{e,}\mu,\tau} + \Gamma_{\nu_e,\nu_\mu,\nu_\tau} \\ &= N_C \cdot 2 \cdot \Gamma_u + N_C \cdot 3 \cdot \Gamma_d + 3 \cdot \Gamma_e + N_v \cdot \Gamma_v \end{split}$$

Z⁰ Resonanz
Experimentelle Untersuchung
Anzahl Neutrinogenerationen
Anzahl Neutrinogenerationen

1.
$$\Gamma_f = \frac{G_F M_Z^2}{24\sqrt{2}\pi} \cdot (1 + (1 - e|Q_f|\sin^2\theta_W)^2)$$

2. *G_F* Fermikonstante

3. Q_f Ladung des Fermions

4. Quantenmechanisch Herleitung der Formel nicht notwendig

5. primär von Ladung abhängig

6. Lep: e^{\pm} , μ^{\pm} , τ^{\pm}

7. Had: u,c=2/3; d,s,b=-1/3

8. Neutrinos

9. N_C Anzahl Farbledungsnmöglichkeiten

Anzahl Neutrinogenerationen

Zerfallsbreite

$$\begin{split} \Gamma_{Z} &= \sum_{f} \Gamma_{Z \to f\bar{f}} & \Gamma_{f} = \frac{G_{F} M_{Z}^{3}}{24 \sqrt{2} \pi} \cdot (1 + (1 - e|Q_{f}|\sin^{2}\theta_{W})^{2}) \\ &= \Gamma_{\text{u,c,d,s,b}} + \Gamma_{\text{e,\mu,\tau}} + \Gamma_{v_{e},v_{\mu},v_{\tau}} \\ &= N_{C} \cdot 2 \cdot \Gamma_{u} + N_{C} \cdot 3 \cdot \Gamma_{d} + 3 \cdot \Gamma_{e} + N_{v} \cdot \Gamma_{v} \\ &= 3 \cdot 2 \cdot 94,9 \, \text{MeV} + 3 \cdot 3 \cdot 122,4 \, \text{MeV} + 3 \cdot 83,3 \, \text{MeV} + 3 \cdot 165,8 \, \text{MeV} \end{split}$$

Z⁰ Resonanz
Experimentelle Untersuchung
Anzahl Neutrinogenerationen
Anzahl Neutrinogenerationen

$$\begin{split} & \text{Anzah Neutrinogenerationen} \\ & F_p = \sum_{i} F_{i \sim i} \\ & = -i \zeta_{i,i,k,k} + \Gamma_{i,k,k} + \Gamma_{i,k,k,k} \\ & = -i \zeta_{i,k,k,k} + \Gamma_{i,k,k} + \Gamma_{i,k,k,k} + \Gamma_{i,k} \\ & = -N_i - 2 \cdot \Gamma_{i} + N_i - 3 \cdot \Gamma_{i} + N_i \cdot \Gamma_{i} \\ & = -3 \cdot 2 \cdot 94 \cdot 9 \cdot 869 \cdot 4 \cdot 3 \cdot 3 \cdot 1224 \cdot 869 \cdot 4 \cdot 3 \cdot 83 \cdot 3869 \cdot 4 \cdot 3 \cdot 165 \cdot 8 \cdot 869 \end{split}$$

1. Einsetzen, vgl Maximal für minimale Ladung

25

Anzahl Neutrinogenerationen

Zerfallsbreite

$$\begin{split} \Gamma_{Z} &= \sum_{f} \Gamma_{Z \to f\bar{f}} & \Gamma_{f} &= \frac{G_{F} M_{Z}^{3}}{24 \sqrt{2} \pi} \cdot (1 + (1 - e|Q_{f}|\sin^{2}\theta_{W})^{2}) \\ &= \Gamma_{u,c,d,s,b} + \Gamma_{e,\mu,\tau} + \Gamma_{v_{e},v_{\mu},v_{\tau}} \\ &= N_{C} \cdot 2 \cdot \Gamma_{u} + N_{C} \cdot 3 \cdot \Gamma_{d} + 3 \cdot \Gamma_{e} + N_{v} \cdot \Gamma_{v} \\ &= 3 \cdot 2 \cdot 94,9 \, \text{MeV} + 3 \cdot 3 \cdot 122,4 \, \text{MeV} + 3 \cdot 83,3 \, \text{MeV} + 3 \cdot 165,8 \, \text{MeV} \\ &= 2,42 \, \text{GeV} \end{split}$$

Z⁰ Resonanz
Experimentelle Untersuchung
Anzahl Neutrinogenerationen
Anzahl Neutrinogenerationen

Anzah I Neutrinogenerationen Zerfalbereite $t_2 = \sum_{r} t_{r,-\theta}$ $= t_{n,d,s,h} + t_{n,d} + t_{n,d,s,h}$ $-t_{n,d} + t_{n,d} + t_{n,d} + t_{n,d,s}$ $-t_{n,d} + t_{n,d} + t_{n,d} + t_{n,d} + t_{n,d}$ $-1, 2, 1, 4, 6, 3, 1, 2, 4, MeV + 3 \cdot 83, 3, MeV + 3 \cdot 155, 8MeV$ -2.47 GeV

1. Summe

Anzahl Neutrinogenerationen

Zerfallsbreite

$$\begin{split} & \Gamma_{\!Z} = \sum_{f} \Gamma_{\!Z \to f\bar{f}} & \Gamma_{\!f} = \frac{G_F M_Z^3}{24 \sqrt{2} \pi} \cdot (1 + (1 - e|Q_f| \sin^2 \theta_W)^2) \\ & = \Gamma_{\rm u,c,d,s,b} + \Gamma_{\rm e,\mu,\tau} + \Gamma_{\rm v_e,v_\mu,v_\tau} \\ & = N_C \cdot 2 \cdot \Gamma_u + N_C \cdot 3 \cdot \Gamma_d + 3 \cdot \Gamma_e + N_v \cdot \Gamma_v \\ & = 3 \cdot 2 \cdot 94,9 \, \text{MeV} + 3 \cdot 3 \cdot 122,4 \, \text{MeV} + 3 \cdot 83,3 \, \text{MeV} + 3 \cdot 165,8 \, \text{MeV} \\ & = 2,42 \, \text{GeV} \\ & \xrightarrow{\text{Strahlungs-}} 2,497 \, \text{GeV} \end{split}$$

Z⁰ Resonanz
Experimentelle Untersuchung
Anzahl Neutrinogenerationen
Anzahl Neutrinogenerationen

Anzahi Neutrinogenerationen 2rrialiberie $\Gamma_2 = \sum_{i} \Gamma_{i-i} G_{i-i}$ $-\Gamma_{i-i,i,j,k} + \Gamma_{i,i,j-k} + \Gamma_{i,i,j-k}$ $-N_i \ge \Gamma_i \cdot N_i \cdot \Sigma_i \cdot \Sigma_i + 3 \cdot \Gamma_i \cdot N_i \cdot \Gamma_i$ $-N_i \ge \Gamma_i \cdot N_i \cdot \Sigma_i \cdot \Sigma_i + 3 \cdot \Gamma_i \cdot N_i \cdot \Gamma_i$ $-2.3 \cdot 200 \cdot N_i \cdot N$

- 1. Korrekturen aus QFT, höherer Ordungen, Strahlungskorrektur
- 2. Passt mit Unsicherheiten zu Exp. (nicht auf Folie)
- 3. $\Gamma_e/\Gamma_{tot}=3,37\%$ passt auch zu Exp.

Anzahl Neutrinogenerationen

Vergleich Theorie und Experiment

Z ⁰ Zerfall	theoretisch	experimentell
$e^- + e^+$	3,34%	3,363(4) %
$V + \overline{V}$	19,92%	20,0(6)%
Hadronen	66,92%	69,91(6)%
ΓΖ	2,497 GeV	2,495(2) GeV

Alexander Neuwirth 26

Z⁰ Resonanz

Experimentelle Untersuchung

Anzahl Neutrinogenerationen

Anzahl Neutrinogenerationen

Anzahl Neutrinogenerationen Vergleich Theorie und Experiment

Zº Zerfall	theoretisch	experimentel
$e^- + e^+$	3,34 %	3,363(4)%
$V + \overline{V}$	19,92%	20,0(6)%
Hadronen	66,92%	69,91(6)%
T ₂	2,497 GeV	2,495(2) GeV

- 1. e⁻ exemplarisch für Leptonen
- 2. passt alles gut

Anzahl Neutrinogenerationen

- ► OPAL-Detektor am LEP
- ➤ 3 Neutrinogenerationen passen zu Messungen
- ► Hinweis für 3 Generationen von Leptonen und Quarks

Wirkungsquerschnitt $e^+e^- \rightarrow \text{Hadronen}$ [4]

- 1. Cern Experiment
- 2. Wirkungsquerschnitt gegen Schwerpunktenergie
- 3. Ähnlich der Breit Wigner Funktion aber nicht passend symmetrisch durch Korrekturen höherer Ordnung udn Bremstrahlung durch e^-
- 4. Verschiedene Anzahl-Neutrinogenerationen-Kurven
- 5. 3 Neutrinogenerationen \rightarrow 3 Leptonen 3 Quarks Generationen

28

Z⁰ Resonanz — Zusamme -Zusammenfassung

Zusammenfassung

Zusammenfassung

- ightharpoonup Weinbergwinkel $\cos \theta_{\rm W} \approx 0.88$
- ightharpoonup Zerfallsbreite $\Gamma_Z \approx 2,4 \, GeV$
- ▶ 3 Neutrinogeneration

- 1. Weinbergwinkel Massenverhältniss W,Z Boson
- 2. Zerfallsbreite aus QFT großer Erfolg in Übereinstimmung mit Experiment
- 3. Bestätigung, dass es 3 Neutrinogenerationen gibt
- 4. Weiterfüherend Große Vereinheitlichung Analog ab 10¹⁶ GeV ⇒ keine Differenzierung Fermionen, Quarks und Leptonen. (Astrovorträge, Universumentwicklungröhre)
- 5. Noch Weiterfüherend Quantengravitation kombiniert mit GUT

Quellen I

Sheldon Glashow, Abdus Salam and Steven Weinberg. URL: http://thescientificodyssey.libsyn.com/episode-225-puttingthe-puzzle-together (besucht am 12.11.2018).

The Nobel Prize in Physics 1984. URL: https://www.nobelprize.org/prizes/physics/1984/summary/ (besucht am 03. 12. 2018).

Standardmodell. URL: https://de.wikipedia.org/wiki/Standardmodell (besucht am 12.11.2018).

Povh et al. Teilchen und Kerne. Springer Spektrum, 2014. Kap. 12.

Z⁰ Resonanz Zusammenfassung $\dot{\infty}$ -Quellen

Ouellen I

Sheldon Glashow, Abdus Salam and Steven Weinberg, uss.

The Nobel Prize in Physics 1984, upp.

Standardmodell. uss:

Povh et al. Teilchen und Keme. Springer Spektrum, 2014. Kap. 12.

Quellen II

Versuch ZO-Resonanz. URL: https://www.physik.hu-berlin.de/de/eephys/teaching/lab/zOresonance/index_html (besucht am 25.11.2018).

Z⁰ Resonanz

Zusammenfassung

Dealth Physics Control of the State of the of the St

Quellen III

The LEP Accelerator, URL: http://www.hep.ucl.ac.uk/~jpc/all/ulthesis/node15.html (besucht am 03. 12. 2018).

L3 Home Page. URL: http://l3.web.cern.ch/l3/ (besucht am 03.12.2018).

Z⁰ Resonanz Zusammenfassung $\dot{\infty}$ -Quellen

F.J. Hasert u.a. "Search for elastic muon-neutrino electron scattering".

Weak neutral current up -

The LEP Accelerator, usu:

L3 Home Page, URL: http://l3.web.cem.ch/13/(besucht am

nz

Z⁰ Resonanz -Zusammenfassung

Vielen Dank für eure Aufmerksamkeit!

Fragen?

Vielen Dank für eure Aufmerksamkeit!

Fragen?