```
import pandas as pd
import seaborn as sns
```

dt = pd.read_csv('/content/iris.csv')

dt

→		sepal.length	sepal.width	petal.length	petal.width	variety
	0	5.1	3.5	1.4	0.2	Setosa
	1	4.9	3.0	1.4	0.2	Setosa
	2	4.7	3.2	1.3	0.2	Setosa
	3	4.6	3.1	1.5	0.2	Setosa
	4	5.0	3.6	1.4	0.2	Setosa
	145	6.7	3.0	5.2	2.3	Virginica
	146	6.3	2.5	5.0	1.9	Virginica
	147	6.5	3.0	5.2	2.0	Virginica
	148	6.2	3.4	5.4	2.3	Virginica
	149	5.9	3.0	5.1	1.8	Virginica

dt.describe()

150 rows × 5 columns

₹		sepal.length	sepal.width	petal.length	petal.width
	count	150.000000	150.000000	150.000000	150.000000
	mean	5.843333	3.057333	3.758000	1.199333
	std	0.828066	0.435866	1.765298	0.762238
	min	4.300000	2.000000	1.000000	0.100000
	25%	5.100000	2.800000	1.600000	0.300000
	50%	5.800000	3.000000	4.350000	1.300000
	75%	6.400000	3.300000	5.100000	1.800000
	max	7.900000	4.400000	6.900000	2.500000

dt.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 5 columns):
```

Column Non-Null Count Dtype

0 sepal.length 150 non-null float64
1 sepal.width 150 non-null float64
2 petal.length 150 non-null float64
3 petal.width 150 non-null float64
4 variety 150 non-null object

dtypes: float64(4), object(1)
memory usage: 6.0+ KB

dt['variety'].unique()

→ array(['Setosa', 'Versicolor', 'Virginica'], dtype=object)

from sklearn.preprocessing import LabelEncoder

1 = LabelEncoder()

dt['variety'] = 1.fit_transform(dt['variety'])

dt['variety'].unique()

 \rightarrow array([0, 1, 2])

dt

	sepal.length	sepal.width	petal.length	petal.width	variety
0	5.1	3.5	1.4	0.2	0
1	4.9	3.0	1.4	0.2	0
2	4.7	3.2	1.3	0.2	0
3	4.6	3.1	1.5	0.2	0
4	5.0	3.6	1.4	0.2	0
145	6.7	3.0	5.2	2.3	2
146	6.3	2.5	5.0	1.9	2
147	6.5	3.0	5.2	2.0	2
148	6.2	3.4	5.4	2.3	2
149	5.9	3.0	5.1	1.8	2

from sklearn.model_selection import train_test_split

x = dt.drop(['variety'],axis=1)

150 rows × 5 columns

y = dt['variety']

Х

		sepal.length	sepal.width	petal.length	petal.width
	0	5.1	3.5	1.4	0.2
	1	4.9	3.0	1.4	0.2
	2	4.7	3.2	1.3	0.2
	3	4.6	3.1	1.5	0.2
	4	5.0	3.6	1.4	0.2
	145	6.7	3.0	5.2	2.3
	146	6.3	2.5	5.0	1.9
	147	6.5	3.0	5.2	2.0
	148	6.2	3.4	5.4	2.3
	149	5.9	3.0	5.1	1.8

150 rows × 4 columns

dt.corr()

→		sepal.length	sepal.width	petal.length	petal.width	variety
	sepal.length	1.000000	-0.117570	0.871754	0.817941	0.782561
	sepal.width	-0.117570	1.000000	-0.428440	-0.366126	-0.426658
	petal.length	0.871754	-0.428440	1.000000	0.962865	0.949035
	petal.width	0.817941	-0.366126	0.962865	1.000000	0.956547
	variety	0.782561	-0.426658	0.949035	0.956547	1.000000

xtrain, xtest, ytrain, ytest = train_test_split(x,y, test_size=0.25)

xtest

	sepal.length	sepal.width	petal.length	petal.width
80	5.5	2.4	3.8	1.1
67	5.8	2.7	4.1	1.0
6	4.6	3.4	1.4	0.3
103	6.3	2.9	5.6	1.8
118	7.7	2.6	6.9	2.3
127	6.1	3.0	4.9	1.8
111	6.4	2.7	5.3	1.9
141	6.9	3.1	5.1	2.3
0	5.1	3.5	1.4	0.2
104	6.5	3.0	5.8	2.2
89	5.5	2.5	4.0	1.3
149	5.9	3.0	5.1	1.8
30	4.8	3.1	1.6	0.2
144	6.7	3.3	5.7	2.5
52	6.9	3.1	4.9	1.5
117	7.7	3.8	6.7	2.2
142	5.8	2.7	5.1	1.9
62	6.0	2.2	4.0	1.0
131	7.9	3.8	6.4	2.0
143	6.8	3.2	5.9	2.3
107	7.3	2.9	6.3	1.8
147	6.5	3.0	5.2	2.0
51	6.4	3.2	4.5	1.5
83	6.0	2.7	5.1	1.6
124	6.7	3.3	5.7	2.1
135	7.7	3.0	6.1	2.3
69	5.6	2.5	3.9	1.1
113	5.7	2.5	5.0	2.0
81	5.5	2.4	3.7	1.0
121	5.6	2.8	4.9	2.0
137	6.4	3.1	5.5	1.8
sns.pairp	lot(dt, hue='va	ariety')		
60	5.0	2.0	3.5	1.0
74	6.4	2.9	4.3	1.3
2	4.7	3.2	1.3	0.2
39	5.1	3.4	1.5	0.2
106		2.5	4.5	1.7
138	6.0	3.0	4.8	1.8

from sklearn.linear_model import LogisticRegression

lr = LogisticRegression()

lr.fit(xtrain,ytrain)

ypred = lr.predict(xtest)

from sklearn.metrics import accuracy_score

accuracy_score(ytest,ypred)

→ 0.8947368421052632

import pickle

pickle.dump(lr,open('iris.pkl','wb'))

Start coding or generate with AI.