अध्याय-1

जीवन की मौलिक ईकाई – कोशिका

The Fundamental unit of Life-Cell

Biology-IX

कोशिका से आप क्या समझते है?

उत्तर – जीवों के शरीर की रचनात्मक एवं क्रियात्मक ईकाई को कोशिका कहते हैं।

सभी जीव-जन्तुओं की रचना कोशिकाओं से हुई है।

2. रचना के आधार पर कोशिकाओं को कितने भागों में बाँटा गया है वर्णन करें?

उत्तर – कोशिकीय रचना के आधार पर दो समूहों में बाँटा गया है: –

- (i) एक कोशिकीय जीव (Un Cellular Organism)- ऐसे जीव जिनकी जैविक क्रियायें जैसे-पोषण, श्वसन, उत्सर्जन, जनन आदि एक कोशिका द्वारा सम्पादित होती है। उसे एक कोशिकीय जीव कहते हैं। जैसे-अमीबा, पैरामीशियम, युग्लीना, जीवाणु इत्यादि।
- (ii) बहु कोशीय जीव (Multi Cellular Organisms)- ऐसे जीव जिनकी जैविक क्रियाओं के सम्पादन के लिए अलग अलग अंग तथा अंग तंत्र होते हैं। उसे बहु कोशीय जीव कहते है। जैसे कवक, पादप विकसित जन्तु इत्यादि।
- 3. कोशिका की खोज के बारे में लिखें?

उत्तर-सन् 1665 ई० में रॉबर्ट हुक नामक अंग्रेज वैज्ञानिक ने स्व-निर्मित सुक्ष्मदर्शी से कॉर्क की रचना का अध्ययन करते समय मधु मक्खी के छते के समान निर्जीव रचनाओं को देखा। उन्होंने इस छते के समान रचना के अंदर पायी जाने वाली छोटी षट् कोणीय रचनाओं को कोशिका कहा। सन् 1833 ई० में राबर्ट बाउन ने कोशिका के भीतर गोलाकार रचनाओं को देखा। जिन्हें केन्द्रक कहा गया। दुर्जीदिन ने कोशिका के भीतर जीवित पदार्थ होने का पता लगाया। पुरिकंजे ने सन् 1839 ई० में जीवद्रव्य नाम रखा। इलेक्ट्रॉन सुक्ष्मदर्शी के खोज के बाद कोशिका के संबंध में पूरी जानकारी प्राप्त की गयी।

4. कोशिका सिद्धान्त से आप क्या समझते है? वर्णन करें।

उत्तर सन् 1838 ई० में जर्मन वैज्ञानिक एम० जे० श्लाइडेन एवं 1839 ई० में टी० श्वान ने कोशिका सिद्धान्त का प्रतिपादन किया।

इस सिद्धान्त के अनुसार

- i. सभी जीवों की रचना कोशिकाओं से हुई है।
- ii. उपापचय संबंधी क्रियायें कोशिकाओं से होती है।
- 5. कोशिका कितने प्रकार की होती हैं? वर्णन करें। उत्तर कोशिका दो प्रकार की होती है:-
- i. प्रोकैरियोटी कोशिकायें (Prokaryotic Cells):- वे अविकसित कोशिकायें जिनमें पूर्णतः और व्यवस्थित केन्द्र नहीं पाये जाते हैं। ऐसी कोशिकाओं को पुरातन या अविकसित अथवा प्रोकैरियोटी कोशिका कहा जाता है।
- ii. यूकैरियोटी कोशिका (Eukaryotic Cells):- वे कोशिकायें जिनमे पूर्ण विकसित केन्द्रक तथा सभी कोशिकांग पाये जाते हैं। जो कोशिकायें सभी विकसित और जटिल जीवों में पाये जाते हैं। ऐसी कोशिकाओं को विकसित कोशिकायें या यूकैरियोटी कोशिका कहते हैं।
- 6. प्राकैरियोटी तथा यूकैरियोटी कोशिका में अंतर स्पष्ट करें? उत्तर कोशिका दो प्रकार की होती है:-

क्र0सं0	प्राकैरियोटी कोशिका 🗼	🚺 🍑 यूकैरियोटी कोशिका
1	इन कोशिकाओं का आकार छोटा होता	इनका आकार प्रायः बड़ा होता है।
	है। 1 माइक्रॉन और 10 माइक्रॉन के बीच	5 माइक्रॉन से 100 माइक्रॉन के बीच
	$1\mu m = 10^6 m$	
	इनमें एक गुणसूत्र पाया जाता है।	इनमें एक से अधिक गुणसूत्र पाया जाता है।
3	इनमें केन्द्रिका नहीं पायी जाती है।	इनमें केन्द्रिका पायी जाती है।
4	इसमें कोशिकांग नहीं पाये जाते हैं।	इनमें कोशिकांग पाये जाते हैं।

- 7. कोशिका को जीवन की रचनात्मक एवं क्रियात्मक ईकाई क्यों कहा जाता है? उत्तर कई कोशिकाओं के मिलने से शरीर की रचना होती है। पूरे शरीर के कार्य कोशिकाओं के ही कार्यों के प्रतिफल होते हैं। सभी जीव जन्तुओं की रचनायें कोशिकाओं से हुई है। अतः कोशिका को जीवन की रचनात्मक एवं क्रियात्मक ईकाई कहा जाता है।
- 8. कोशिका सिद्धान्त का वर्णन करें?
 उत्तर सन् 1932 ई० में जर्मनी के वैज्ञानिक एम० नॉल तथा रस्का ने इलेक्ट्रॉन सुक्ष्मदर्शी के आधार पर कोशिका की रचना की। बनावट तथा उसके आकार के बारे में बताया।
 कुछ कोशिकायें गोलाकार, अंडाकार तथा अनियमित होती हैं। अमीबा की कोशिका

तथा श्वेत रक्त कोशिकाओं का आकर बदलता रहता हैं। कोशिकाओं का आकार एक सीमा तक उनके कार्य पर निर्भर करते हैं। अलग – अलग जीवों में इनकी संख्या अलग – अलग होती हैं।

9. कोशिकाओं को कितने भागों में बाँटा गया है?

उत्तर कोशिकाओं को तीन भागों में बाँटा गया हैं:-

- i. कोशिका झिल्ली
- ii. कोशिका द्रव्य
- iii. केन्द्रक

10. कोशिका झिल्ली से आप क्य समझते हैं? उसके कार्यो को लिखें?

उत्तर प्रत्येक कोशिका के बाहर एक पतली मुलायम तथा लचीली झिल्ली होती है। जिसे कोशिका झिल्ली या प्लाज्मा झिल्ली कहते हैं।

कोशिका झिल्ली लिपिड तथा प्रोटीन का बना होता है। इसमें दो परंत प्रोटीन तथा एक परंत लिपिड पाया जाता है। यह जीवित एवं अर्द्धपारगम्य झिल्ली होता है।

इसके कार्य निम्नलिखित हैं:-

- i. यह एक सीमित झिल्ली का कार्य करता है।
- ii. यह कोशिका को एक निश्चित आकार बनाये रखने में सहायता करता है।
- iii. यह कोशिका को यांत्रिक सहायता प्रदान करता है।
- iv. यह विभिन्न प्रकार के अणुओं को निकालने एवं अंदर आने में नियंत्रण करती है।

11. कोशिका द्रव्य से आप क्या समझते हैं? इसके महत्वपूर्ण कार्यो को लिखें?

उत्तर जीव द्रव्य का वह भाग जो कोशिका भित्ति एवं केन्द्रक के बीच होता है। उसे कोशिका द्रव्य कहते हैं। इसमें प्रत्येक अकार्बनिक पदार्थ जैसे-खिनज लवण और जल तथा कार्बिनक पदार्थ कार्बोहाइड्रेट, वसा, प्रोटीन होते हैं।

कोशिका द्रव्य एक बहुत ही गाढ़ा, पारभासी एवं चिपचिपा पदार्थ होता है।

- i. यह एक कोशिका से दूसरी कोशिका में और कोशिका के भीतर भी पोषक तथा अन्य जटिल रसायनिक पुदार्थी, केन्द्रीय अम्लों तथा प्रोटीनों का परिवहन और वितरण करता है।
- ii. वसीय अम्लों, केन्द्रीय अम्लों और प्रोटीनों का संश्लेषण तथा ग्लूकोज का अपघटन कोशिका द्रव्य में ही होता है।

12. केन्द्रक से आप क्या समझते हैं, इसके महत्वपूर्ण कार्यो को लिखें?

उत्तर कोशिका द्रव्य के बीच एक बड़ी, गोल, गाढ़ी संरचना पायी जाती है। जिसे केन्द्रक या न्युक्लियस कहते हैं। सभी जीवित कोशिकाओं में केन्द्रक मौजूद रहता है। जिसके चारों ओर दोहरी परत की एक झिल्ली रहती है। जिसे केन्द्रक झिल्ली कहते हैं। इसमें अनेक केन्द्रक छिद्र होते हैं। इन छिद्रों के द्वारा केन्द्रक द्रव्य तथा कोशिका द्रव्य के बीच पदार्थों का आदान - प्रदान होता है।

कार्य :-

- केन्द्रक कोशिका की रक्षा करता है। कोशिका विभाजन में भाग लेता हैं।
- ii. केन्द्रक कोशिका के भीतर सम्पन्न होने वाली सभी उपापचयी, जैविक तथा रसायनिक क्रियाओं का नियंत्रण करता है।
- iii. कुछ जीवों में कोशिकीय जनन में महत्वपूर्ण भूमिका निभाता है।
- iv. यह कोशिका के विकास तथा परिपक्वन को निर्धारित करता है।

13. CO, तथा पानी जैसे पदार्थ कोशिका में कैसे अंदर तथा बाहर जाते हैं?

उत्तर – CO_2 एक कोशिकीय अपशिष्ट पदार्थ है। अतः इसका निष्कासन अत्यन्त आवश्यक होता है। जब CO_2 कोशिका में एकत्र हो जाता है, तो वातावरण में सान्द्रता बढ़ जाती है। उसके अंदर की सान्द्रता बढ़ जाती है। बाहरी वातावरण में सांद्रता कम हो जाती है। जैसे ही अन्दर तथा बाहर CO_2 की सांद्रता में अन्तर आता है। उसी समय उच्च सान्द्रता से निम्न सांद्रता की ओर विसरण द्वारा कोशिका से बाहर निकल जाती है। उसी समय कोशिका में O_2 की मात्रा कम हो जाती है तो O_2 बाहर से कोशिका द्वारा अन्दर चली जाती है। इस प्रकार गैसों का आदान – प्रदान होता है।

जल भी विसरण की क्रिया द्वारा बाहर कर दिया जाता है। जल के अणु वर्णात्मक पारगम्य झिल्ली द्वारा उच्च सांद्रता से निम्न सांद्रता की ओर परासरण क्रिया द्वारा बाहर तथा अन्दर जाते हैं।

14. प्लाज्मा झिल्ली को वर्णात्मक पारगम्य झिल्ली क्यों कहते हैं?

उत्तर-प्लाज्मा झिल्ली जन्तु कोशिका का बाह्य आवरण होता है। यह जीवित, पतली, कोमल, लचीली, अर्द्धपारगम्य झिल्ली होती है। प्लाज्मा झिल्ली कोशिका के भीतर के वातावरण को बाह्य वातावरण से अलग करती है। प्लाज्मा झिल्ली के द्वारा कुछ विशेष प्रकार के पदार्थी का आवागमन होता है। परन्तु अन्य पदार्थी को भीतर प्रवेश करने से रोकती है। इसलिए प्लाज्मा झिल्ली को चयनात्मक पारगम्य झिल्ली कहा जाता है।

15. कोशिका भित्ति क्या है? इसके कार्यों को लिखें?

उत्तर-पादप कोशिका चारो तरफ से एक मोटे तथा कड़े आवरण से घिरी होती है। इस आवरण को कोशिका भित्ति कहते हैं। यह सेल्यूलोज की बनी तथा पारगम्य होती है। कार्य-

- यह कोशिका को निश्चित रूप प्रदान करती है।
- ii. यह कोशिका को सुरक्षा तथा सहारा प्रदान करती है।
- iii. यह कोशिका की रक्षा करती है।
- iv. यह कोशिका को सूखने से बचाती है।

16. एक प्रारूपी पादप कोशिका का नामांकित चित्र बनावें? (वर्णन की आवश्यकता नहीं) उत्तर – Page No.-72, Fig. No.-5.6

17. एक जन्तु कोशिका का नामांकित चित्र बनावे, (वर्णन की आवश्यकता नहीं) उत्तर-Page No.-71, Fig. No.-5.5

18. माइट्रोकोंडिया की रचना एवं कार्यों का संक्षिप्त वर्णन करें?

उत्तर – माइट्रोकौंडिया कोशिका द्रव्य में पायी जाने वाली बहुत महत्वपूर्ण रचना होती है। जो कोशिका द्रव्य में विखरी रहती है। प्रकाश सुक्ष्मदर्शी में ये सुक्ष्म छड़ों या धागेनुमा, दानेदार या गोलाकार दिखाई देते हैं। पादप कोशिका में इसकी संख्या, जन्तु कोशिका से कम होती है। प्रत्येक माइट्रोकौडिया एक बाहरी झिल्ली एवं एक अंतः झिल्ली के चारों ओर से घिरी होती है तथा इसके बीच में एक तरल युक्त गुहा होता है। जिसे माइट्रोकौडियल गुहा कहते हैं। माइट्रोकौंडिया की भीतरी दीवार से अनेक प्रवर्ध निकलकर माइट्रोकौंडियल गुहा में लटके रहते हैं। जिन्हें क्रिस्टी कहते हैं। जिन्हें कोशिकीय श्वसन के एञ्जाइम के चलते भोजन का ऑक्सीकरण होता है। कार्य: –

- i. इनमें उपस्थित कोशिकीय श्वसन के एञ्जाइम के चलते भोजन का ऑक्सीकरण होता है।
- ii. यह A.T.P (Adenosine triphosphate) के रूप में जमा रहता है। कोशिका नये यौगिक के निर्माण के समय A.T.P में संचित ऊर्जा का इस्तेमाल करती है।
- iii. क्रिस्टी के अंदर की झिल्ली क्षेत्र बढ़ता है।
- 19. हरित लवक की रचना का वर्णन करें?

उत्तर – हरित लवक मुख्यतः पत्तियों तथा तनों में पाये जाते हैं। इन्हीं के कारण पत्तियाँ तथा तने हरे रंग के होते हैं इनका हरा रंग इनमें उपस्थित हरि लवक या क्लोरोफिल के कारण होता हैं एक सामान्य पादप कोशिका में । से 80 तक की संख्या में हरित लवक पाये जाते हैं। यह प्रकाश संश्लेषण में सहायक होता है। इसलिए इसे पादप कोशिका का रसोईघर (Kitchen of plant cell) कहा जाता है। प्रत्येक हरित लवक दोहरी झिल्ली से ढ़ँका होता है। हरित लवक सौर ऊर्जा को ग्रहण करते हैं और रसायनिक बंधन ऊर्जा में स्थानान्तरित कर देते हैं। हरितलवक अपने प्रोटीन का संश्लेषण स्वयं कर सकता है। इसे सजीव रचना मानते हैं।

- 20. माइट्रोकौडिया को कोशिका का ऊर्जा गृह (Power House) क्यों कहा जाता है? उत्तर-माइट्रोकौडिया कोशिकीय श्वसन के सक्रिय स्थल हैं। जहाँ कोशिकीय श्वसन प्रक्रम सम्पन्न होता है। जिसके फलस्वरूप जीवों के लिए अति आवश्यक ऊर्जा युक्त होती हैं यही कारण है कि माइट्रोकौंडिया को कोशिका का ऊर्जा गृह कहते हैं।
- 21. लवक कितने प्रकार के होते हैं एवं उनके क्या कार्य हैं? उत्तर-पौधों में तीन प्रकार के लवक पाये जाते हैं-
- i. क्लोरोप्लास्ट इनमें क्लोरोफिल या हरा वर्ण पाया जाता है।
- ii. क्रोमोप्लास्ट-ये नीले, पीले तथा काले होते हैं। परन्तु हरे नहीं होते।
- iii. ल्यूकोप्लास्ट ये रंगहीन या सफेद होते हैं। अधिक समय तक धूप में रहने पर हरे हो जाते हैं।

कार्य -

- i. ल्यूकोप्लास्ट स्टार्च, प्रोटीन लिपिड संचय करती है।
- ii. क्लोरोप्लास्ट सौर ऊर्जा ग्रहण करके प्रकाश संश्लेषण करते हैं।
- iii. क्रोमोप्लास्ट फलों तथा फूलों को विभिन्न रंग देते हैं।

22. लाइसोसोम क्या है? इसके कार्यों को लिखें?

उत्तर – ये बहुत सुक्ष्म कोशिकांग है। जिसे सर्वप्रथम क्रिश्चियन डि डवे ने देखा। ये छोटी – छोटी पुटिकाओं में पाये जाते हैं। जिसके चारों तरफ एक पतली झिल्ली होती है। इसका आकार बहुत छोटा तथा थैली जैसा होता है।

कार्य -

- i. कोशिका में प्रवेश करने वाले बड़े कणों एवं बाह्य पदार्थी का पाचन करता है।
- ii. जीवाणु तथा वायरस से रक्षा करता है।

23. लाइसो सोम को आत्म हत्या की थैली क्यों कहते 📆

उत्तर-लाइसोसोम में ऐसे एञ्जाइम पाये जाते हैं जिनमें जीवद्रव्य की घुला देने या नष्ट कर देने की क्षमता होती है। यदि लाइसो सोम किसी कारण वश फट जाए तो मौजूद एञ्जाइम फैलकर जीवों को घुला देते हैं। जिससे कोशिका की मृत्यु हो जाती है। यही कारण है कि लाइसो सोम को आत्महत्या की थैली कहते हैं।

24. राइबोसोम क्या है? इसके महत्वपूर्ण कार्यों को लिखें?

उत्तर-राइबोसोम ऐसे कण हैं जो इलैक्ट्रॉन सुक्ष्मदर्शी में दिखाई पड़ते हैं। ये अंतः प्रदव्यी जालिका की झिल्लियों की सतह पर सटे रहते हैं। अकेले या गुच्छों में कोशिका द्रव्य में बिखरे रहते हैं। ऐसे राइबोसोम जो गुच्छों में मिलते हैं, पॉली राइबोसोम कहते हैं। ये रचनायें प्रोटीन तथा R.N.A की बनी होती है।

कार्य – ये प्रोटीन संश्लेषण में सहायता करते हैं।

25. गॉल्जी उपकरण या गॅल्जीकाय से आप क्या समझते हैं? इसके कार्यों को लिखें?

उत्तर – गॉल्जी उपकरण का सबसे पहले विवरण कैमिलो गॉल्जी ने किया था। गॉल्जी उपकरण झिल्लीयुक्त पुटिका होती है। कोशिका द्रव्य में झिल्लियों से घिरे हुए नालिकाओं के समूह को गॉल्जी उपकरण कहते हैं ये प्राय: जन्तु कोशिकाओं में पाये जाते हैं। पादप कोशिकाओं में गॉल्जी उपकरण की तरह रचनायें पायी जाती है। जिन्हें डिक्टियोसोम कहते हैं।

गॉल्जी उपकरण विशेष पदार्थों का संश्लेषण तथा संग्रह करते हैं। इनके द्वारा संश्लेषित प्रोटीन एवं लिपिड दानेदार स्वरूपों में परिवर्तित करके कोशिका द्रव्य में छोड़ दिये जाते हैं। गॉल्जी उपकरण प्लाज्मा झिल्ली की मरम्मत, लाइसोसोम की रचना तथा कोशिका भित्ति में रचना में सहायक होते हैं। इसके अतिरिक्त यह कोशिकाओं में बने पदार्थों का संचयन, रूपान्तरण तथा पैकेजिंग करता है।

26. यदि गॉल्जी उपकरण न हो तो कोशिका के जीवन में क्या होगा?

उत्तर – कोशिका द्रव्य में झिल्लियों से धिरे हुए नालिका गॉल्जी उपकरण कहते हैं।

अंतप्रदव्यी जालिका में संश्लेषित पदार्थ गॉल्जी उपकरण में जमा किये जाते हैं। और उन्हें कोशिका के बाहर तथा अन्दर विभिन्न भागों को भेज दिया जाता है। लाइसोसीम का निर्माण भी गॉल्जी उपकरण के द्वारा होता है। यदि गॉल्जी उपकरण न हो तो सवण का कार्य संश्लेषित पदार्थों के पैकेज बनाकर अन्दर तथा बाहर स्थानान्तरण तथा लाइसोसोम के निर्माण कार्य नहीं हो पाएगा।

27. विसरण तथा परासरण में अन्तर स्पष्ट करें?

उत्तर-विसरण तथा परासरण में निम्नलिखित अंतर हैं:-

क्र0सं0	विसरण	परासरण
i	यह किसी भी माध्यम में हो सकता है।	यह केवल द्रवीय माध्यम में होता है।
ii	यह ठोस, द्रव तथा गैस किसी भी माध्यम	परासरण सिर्फ विलायक अणुओं में होता है।
	में हो सकता है।	
iii	विसरण की क्रिया में अर्द्धपारगम्य झिल्ली	परासरण की क्रिया में पारगम्य झिल्ली के
	की आवश्यकता नहीं होती।	द्वारा होती है।
iv		परासरण की क्रिया में विलायक अणुओं में
	ऊर्जा का उपयोग होता है।	उपस्थित मूल अणुओं की मात्रा परासरण
		की क्रिया को प्रभावित करते हैं।

28. जल में रखने पर किशमिश क्यों फूल जाता है?

उत्तर-किशमिश के अंदर ग्लूकोज की सांद्रता बहुत अधिक होती है। यह एक विभेदक पारगम्य झिल्ली द्वारा धिरा रहता है। अतः परासरण की क्रिया जल विभेदक झिल्ली द्वारा किशमिश के अंदर प्रवेश करता है। और यह फूल जाता है।

29. जल में रखने पर अंगूर क्यों सिक्ड जाता है?

उत्तर – अंगूर के अंदर शर्करा की सांद्रता बाहर अवस्थित शर्करा के घोल से कम होती है। विहः परासरण की क्रिया द्वारा अंगूर के अन्दर से जल, अंगूर की विभेदक, पारगम्य झिल्ली द्वारा बाहर निकलता है और अंदर संकुचत हो जाता है।

30. कोशिका के अंदर प्रोटीन की संश्लेषण कहाँ होता है?

उत्तर – केन्द्रिका में ही राइबोसोम का संश्लेषण होता है। ये राइबोसोम प्रोटीन का संश्लेषण करते हैं।

31. किसी कोशिका का संगठन किसी भौतिक या रसायनिक प्रभाव के कारण नष्ट हो जाता है तो क्या होगा?

उत्तर-यदि किसी भौतिक या रसायनिक प्रभाव के कारण कोशिका जैविक संगठन नष्ट हो जाता है तो कोशिका मृत हो जाएगी।

32. अमीबा अपना भोजन कैसे प्राप्त करता है?

उत्तर-अमीबा अन्तः ग्रहण विधि द्वारा अपना भोजन प्राप्त करता है। इसकी कोशिका झिल्ली अधिक लचीली होती है। जिसके कारण यह बाहर के वातावरण से भोजन के कण तथा अन्य पदार्थ ग्रहण कर लेता है। इस कार्य के लिए इसके कूटपाद आगे की ओर बढ़कर भोजन के कण को पूरा घेर लेते हैं तथा इस प्रकार भोजन जीवद्रव्य में पहुँच जाता है।

33. गुण सूत्र से आप क्या समझते हैं?

उत्तर – जीव के कोशिका के केन्द्रक में पायी जानेवाली जटिल तन्तुवत रचना जो केन्द्रक के विभाजन के समय स्पष्ट दिखाई पड़ती है। और जिनपर आनुवांशिक गुणों की वाहक ईकाईयाँ पायी जाती है। उसे गुणसूत्र कहते हैं। मनुष्य में 46 गुणसूत्र होते हैं।

34. जीन क्या है ये कहाँ स्थित होते हैं? इसके कार्य लिखें?

उत्तर – भौतिक ईकाईयाँ जो पैतृक गुणों के वाहक होते हैं और गुणसूत्रों पर पायी जाती है। उसे जीन कहते हैं।

ये गुणसूत्रों की लंबाई में एक रैखिक क्रम में व्यवस्थित होते हैं। कार्यः -

- i. एक जीन एक गुण को नियंत्रित करता है।
- ii. ये आनुवंशिक गुणों के वाहक होते हैं।

35. R.N.A तथा D.N.A से आप क्या समझते हैं?

उत्तर – R.N.A (राइबोज न्यूक्लिक एसिड): – यह एक ऐसा न्युक्लिक अम्ल है जो कोशिका में पाया जाता है तथा प्रोटीन संश्लेषण में सहायक होता है।

D.N.A (डाईऑक्सी राइबो एसिड): - इसके गुणसूत्र तथा जीन बनते हैं। ये आनुवंशिक गुणों के वाहक होते हैं।

36. जीन को आनुवंशिक ईकाई क्यों कहते हैं?

उत्तर – जीन पैत्रिक लक्षणों को एक पीढ़ी से दूसरी पीढ़ी में ले जाती है। जीनों में उपापचय वृद्धि एवं जनन से संबंधित सारी सूचनायें संग्रहित रहती हैं। अतः इसे आनुवंशिक ईकाई कहा जाता है। 37. एण्डो साइटोसिस किसे कहते हैं?

उत्तर – कुछ एक कोशिकीय जीवों में जैसे – अमीबा में कोशिका झिल्ली का लचीलापन इस योग्य बनाता है कि अपने बाहरी वातावरण से ये भोजन तथा अन्य खाद्य पदार्थों का अधिग्रहण कर सकती है। कोशिक झिल्ली द्वारा सम्पन्न होने वाली इस क्रिया को एंडोसाइटोसिस कहते हैं।

38. पादप कोशिका तथा जन्तु कोशिका में अन्तर स्पष्ट करें?

उत्तर – पादप तथा जन्तु कोशिका में निम्नलिखित अंतर हैं: –

क्र०सं०	पादप कोशिका	जन्तु कोशिका
		इसमें कोशिका भित्ति नहीं पायी जाती।
2	इसमें किसी-न-किसी प्रकार के	इसमें लवक नहीं पाये जाते हैं।
	लवक पाये जाते हैं।	
3	माइट्रोकॉडिया की मात्रा कम होती है।	माइट्रोकौडिया की मात्रा अधिक होती है।

क्र०संठ	पादप कोशिका	जन्तु कोशिका
4	इसमें तारककाय नहीं पाये जाते हैं।	इसमें तारककाय पाये जाते हैं।
5	अक्सर जल भरी रिक्तिकायें पायी	रिक्तिकायें कभी – कभी पायी जाती है।
	जाती है।	
6	मोटी एवं कड़ी कोशिका भित्ति के कारण	इसमें कोशिका का अनियमित आकार
	कोशिका का नियमित आकार होता है।	होता है।

- **39.** अंतः प्रदव्यी जालिका क्या है? कोशिका में यह कितने प्रकार का होता है, वर्णन करें? उत्तर अंतः प्रदव्यी जालिका एक तरल से भरी हुई कोशिका को घेरे झिल्लीदार जाली होती है। यह दो प्रकार की होती है: –
- i. खुरदरी अन्तः प्रदव्यी जालिकाः इसकी सतह पर राइबोसोम जुड़े रहते हैं। जो प्रोटीन संश्लेषण का कार्य करते हैं?
- ii. चिकनी अंतः प्रदव्यी जालिकाः इसकी सतह चिकनी होती है। क्योंकि इसमें राइबोसोम चिपके रहते हैं।
- 40. समसूत्री विभाजन तथा अर्द्धसूत्री विभाजन में अंतर स्पष्ट करें? उत्तर-समसूत्री विभाजन तथा अर्द्धसूत्री विभाजन में निम्नलिखित अंतर है:-

क्र०सं०	समसूत्री विभाजन (माइटोसिस) 🚄	जन्तु कोशिका (मिओसिस)
1	यह सभी कोशिकाओं में सम्पन्न होता है।	केवल जनन कोशिकाओं में सम्पन्न होता है।
2		सम्पूर्ण प्रक्रम दो उपविभाजनों में सम्पन्न
	सम्पन्न होता है।	होता है।
3	इसमें प्रोफेज अवस्था संक्षिप्त होती है।	प्रोफेज अवस्था विलंबित तथा पाँच चरणों
		में सम्पन्न होती है।
4		मिओसिस प्रक्रम पूर्ण होने के बाद चार
	संतति कोशिकाओं का निर्माण होता है।	संतति कोशिकाओं का निर्माण होता है।
5		वंशजों में आनुवंशिक विभिन्नता पायी
	नहीं पायी जाती है।	जाती है।

41. विसरण तथा परासरण का क्या सहत्व है?

उत्तर-विसरण तथा परासरण का महत्व निम्नलिखित है:-

- i. विसरण के द्वारा गैसों O_2 तथा CO_2 का आदान प्रदान कोशिका तथा बाहरी वातावरण के बीच होता रहता है।
- वाष्पोत्सर्जन में जलवाष्प का बाहर निकलना विसरण द्वारा सम्पन्न होता है।
- iii. कोशिका को अपने बाहरी वातावरण से पोषण ग्रहण करने में विसरण मदद करता है।
- iv. परासरण के द्वारा पौधे मूलरोम से जल अवशोषित करते हैं।
- v. रंधों के खुलने तथा बंद होने में परासरण की मुख्य भूमिका होती है।

42. निम्न कोशिकाओं के कार्यों का उल्लेख करें:-

उत्तर-

- i. कोशिका भित्ति यह कोशिका को निश्चित रूप प्रदान करता है। कोशिका को सुरक्षा तथा सहारा प्रदान करता है।
- ii. प्लाज्मा झिल्ली एक कोशिका से दूसरी कोशिका में पदार्थों के अभिगमन पर नियंत्रण रखता है।
- iii. अंतः प्रदव्यी जालिका-यह कोशिका के भीतर पदार्थों का संचार करता है।
- iv. माइट्रोकोंडिया-यह कोशिकीय श्वसन का सक्रिय स्थल है तथा कोशिका निर्माण में भाग लेता है।
- v. गॉल्जी उपकरण-विशिष्ट पदार्थों का संचय, सवण और उनके कोशिका के बाहर निष्कासन में सहायता करता है।
- vi. राइबोसोम-ये प्रोटीन संश्लेषण के सक्रिय स्थल है।
- vii लाइसोसोम-इसे आत्म हत्या की थैली कहते हैं।
- viii. सेन्ट्रोसोम-यह कोशिका विभाजन में सहायता करता है।
- ix. हरितलवक ये मंड संश्लेषण के सक्रिय स्थल है। प्रकाश संश्लेषण के सक्रिय स्थल है।
- x. अवर्णी लवक ये खाद्य संग्रह में सहायता करता है।
- xi. वर्णी लवक यह फूलों, फलों, बीजों को आकर्षक रंग प्रदान करता है।
- xii. केन्द्रक कोशिका के उपापचयी कार्यों का नियंत्रण एवं कोशिका विभाजन में सहायता होता है।
- xiii. गुणसूत्र-ये जीन वाहक तथा कोशिकीय कार्यों का नियंत्रण करते हैं।
- xiv. केन्द्रिका ये प्रोटीन संश्लेषण तथा R.N.A संश्लेषण में सहायक होते हैं।
- xv. केन्द्रक झिल्ली कोशिका द्रव्य में पुदार्थी के अभिगमन पर नियंत्रण रखते हैं।
- **43.** अल्प परासरण दाबी विलयन, समपरासरी विलयन तथा अति परासरण दाबी विलयन की परिभाषा दें?
- उत्तर i. अल्प परासरण दार्बी विलयन वह विलयन जो अल्प परासरण दाब उत्पन्न करता है। उसे अल्प परासरण दार्बी विलयन कहते हैं।

अल्प परासरण दाबी विलयन की घटना से कोशिका फूल जाती है।

- ii. समपरासरी विलयन ऐसा विलयन जिसकी सांद्रता कोशिका के पदार्थ की सांद्रता के ठीक बराबर हो जाती हैं ऐसे विलयन को समपरासरी विलयन कहते हैं।
- iii. अति परासरण दाबी विलयन यदि कोशिका के बाहर स्थित विलयन कोशिका के अंदर के पदार्थ से अधिक सांद्र या गाढ़ा है तो कोशिका के स्थित जल परासरण द्वारा बाहर आने लगता है। ऐसे विलयन को अति परासरण दाबी विलयन कहते हैं।

इस विलयन में रखने पर कोशिका से अधिक मात्रा में जल बाहर आ जाता है। अतः कोशिका संकुचित हो जाती है।

44. नामांकित चित्र की सहायता से पादप कोशिका तथा जन्तु कोशिका में अन्तर स्पष्ट करें।

उत्तर-

