Recurrence Relations

CS 4102: Algorithms

Fall 2021

Mark Floryan and Tom Horton

Recurrence Relations

Solving Recurrence Relations

- Several (four) methods for solving:
 - Directly Solve
 - Substitution method
 - In short, guess the runtime and solve by induction
 - Recurrence trees
 - We won't see this in great detail, but a graphical view of the recurrence
 - Sometimes a picture is worth 2¹⁰ words!
 - "Master" theorem
 - ▶ Easy to find Order-Class for a number of common cases
 - Different variations are called different things, depending on the source

Directly Solving (or Iteration Method)

Directly Solve (unrolling the recurrence)

▶ For Mergesort:

- T(n) = 2*T(n/2) + n
- ▶ Do it on board →

Another Example!!

▶ Consider:

T(n) = 3*T(n/4) + n

- T(n) = 3*T(n/4) + n
 T(n) = 3*[3*T(n/16)+n/4] + n
 = 9T(n/16) + (7/4)n
- T(n) = 9T(n/16) + (7/4)n
- T(n) = 9[3T(n/64) + n/16] + (7/4)n
- T(n) = 27*T(n/64) + 9n/16 + 7n/4
- T(n) = 27*T(n/64) + 37n/16

//Pattern??

► $T(n) = 3^d * T(n/4^d) + n * \sum (3/4)^{d-1}$ sum from 0 to d

$$T(n) = 3^d * T(n/4^d) + n * \sum (3/4)^{d-1}$$

- We hit base case when:

 - $n = 4^d$
 - $d = log_4(n)$ //seem familiar??

$$T(n) = 3^d * T(n/4^d) + n * \sum (3/4)^d$$

- Let's do one term at a time.
- \rightarrow 3^d *T(n/4^d)
- \rightarrow 3^{log4(n)} *T(1)

//huh? this is a log rule

$$T(n) = 3^d * T(n/(4^d)) + n * \sum (3/4)^{d-1}$$

- Let's do one term at a time.
 - ▶ n * $\sum (3/4)^{d-1}$ //note summation part approaches 4 as d grows
 - ▶ $n * \sum (3/4)^{d-1} \le 4*n = \Theta(n)$

$$T(n) = 3^d * T(n/4^d) + n * \sum (3/4)^d$$

- $T(n) = 3^{\log 4(n)} + \Theta(n)$
- $T(n) = n^{\log 4(3)} + \Theta(n)$ //log rules
- $T(n) = o(n) + \Theta(n)$
- $T(n) = \Theta(n)$

Substitution Method

Iteration or Substitution Method

Strategy

- I. Consider Mergesort Recurrence
 - T(n) = 2*T(n/2) + n
- 2. Guess the solution
 - Let's go with n*log(n) **Remember logs are all base 2 (usually)
- > 3. Inductively Prove that recurrence is in proper order class
 - For n*log(n), we need to prove that $T(n) \le c*n*log(n)$
 - For some 'c' constant and for all n >= n0
 - Remember, we get to choose the 'c' and 'n0' values
- ▶ Do it on board →

Consider:

$$T(n) = 2*T(n/2) + 1$$

$$T(I)=I$$

- Let's make our guess:
 - We are thinking O(n)
- Try to prove:
 - $T(n) \le c*n$
- What happens? How do we fix this issue?
- \rightarrow On board \rightarrow

▶ Consider:

T(n) = 2*T(n/2) + 1

Summary of the problem / issue:

- T(n) = 2*T(n/2) + 1
- $T(n) \le 2(c*(n/2)) + 1$
- $T(n) \le c*n + 1$
- What is the issue here?
- Need to prove exact form of inductive hypothesis

- Here is how we fix the issue. Subtract lower order term.
- Inductive Hypothesis:
 - T(n) $\leq c^*n d$ //d is a constant term. Note $c^*n d \leq c^*n$
- Fix:
 - T(n) = 2*T(n/2) + 1
 - $T(n) \le 2(c*(n/2) d) + 1$
 - $T(n) \le c*n -2d + 1 \le c*n$

//as long as $d \ge 1/2$

Substitution Method: Another Pitfall

- ▶ Consider Mergesort recurrence again:
 - T(n) = 2*T(n/2) + n
- Let's make our guess:
 - ▶ We are thinking $O(n) \leftarrow Note$ that this is INCORRECT!
- Try to prove:
 - $T(n) \le c*n$
- What happens?
- \rightarrow On board \rightarrow

Substitution Method: Another Pitfall

- ▶ Consider Mergesort recurrence again:
 - T(n) = 2*T(n/2) + n

Substitution Method: Pitfall Example

Attempt to prove:

- T(n) = 2*T(n/2) + n
- $T(n) \le 2*(c*n/2) + n$
- $T(n) \le c*n + n$
- Again, need to prove EXACT form of inductive hypothesis.
- Subtracting off a lower order term won't help.
 - Why?

Recursion Tree Method

Recursion Tree Method

- Evaluate: T(n) = 2*T(n/2) + n
 - Work copy:T(k) = T(k/2) + T(k/2) + k
 - For k=n/2, T(n/2) = T(n/4) + T(n/4) + (n/2)
- [size non-recursive cost]

Recursion Tree: Total Cost

- To evaluate the total cost of the recursion tree
 - sum all the non-recursive costs of all nodes
 - = Sum (rowSum(cost of all nodes at the same depth))
- Determine the maximum depth of the recursion tree:
 - For our example, at tree depth d the size parameter is $n/(2^d)$
 - the size parameter converging to base case, i.e. case 1
 - > such that, $n/(2^d) = I$,
 - \rightarrow d = $\lg(n)$
 - The rowSum for each row is n
- ▶ Therefore, the total cost, $T(n) = n \lg(n)$

The Master Theorem

The Master Theorem

- Given: a divide and conquer algorithm
 - An algorithm that divides the problem of size n into a subproblems, each of size n/b
 - Let the cost of each stage (i.e., the work to divide the problem + combine solved subproblems) be described by the function f(n)
- Then, the Master Theorem gives us a cookbook for the algorithm's running time
 - Some textbooks has a simpler version they call the "Main Recurrence Theorem"
 - We'll splits it into individual parts

The Master Theorem (from Cormen)

- If T(n) = a T(n/b) + f(n)
 - then let $k = \lg a / \lg b = \log_b(a)$ (critical exponent)
- ▶ Then three common cases:
 - If $f(n) \in O(n^{k-\epsilon})$ for some positive ϵ , then $T(n) \in \Theta(n^k)$
 - If $f(n) \in \Theta(n^k)$ then $T(n) \in \Theta(f(n) \log(n)) = \Theta(n^k \log(n))$
 - If $f(n) \in \Omega(n^{k+\epsilon})$ for some positive ϵ , and $a \ f(n/b) \le c \ f(n)$ for some c < 1 and sufficiently large n, then $T(n) \in \Theta(f(n))$
- Note: none of these cases may apply

Using the Master Theorem

- T(n) = 9T(n/3) + n
 - A = 9, b = 3, f(n) = n

Master Theorem

- $k = \lg 9 / \lg 3 = \log_3 9 = 2$
- Since $f(n) = O(n^{\log_3 9 \epsilon})$, where $\epsilon = 1$, case 1 applies: $T(n) \in \Theta(n^k)$
- Thus the solution is $T(n) = \Theta(n^2)$ since k=2

Problems to Try

- Can you use a theorem on these?
- \blacktriangleright Assume T(I) = I
- $T(n) = T(n/2) + \lg n$
- T(n) = T(n/2) + n
- T(n) = 2T(n/2) + n (like Mergesort)
- $T(n) = 2T(n/2) + n \lg n$

More Master Theorem Examples

Problems to Try

Let's try these?

- $T(n) = 7T(n/3) + n^2$
- T(n) = 3T(n/3) + n/2
- T(n) = 4T(n/2) + n / log(n)
- T(n) = 3T(n/3) + n / log(n)

- $T(n) = 7T(n/3) + n^2$
 - k = log3(7) = 1.77
 - $n^k = n^1.77$

n^2

▶ Case 3: n^2

regularity:
$$7*f(n/3) \le c*f(n)$$

 $7*n^2/9 \le c*n^2$
 $(7/9)n^2 \le cn^2$ //YES

- T(n) = 3T(n/3) + n/2
 - k = log3(3) = 1
 - $n^k = n$

n/2

Case 2: nlogn

- T(n) = 4T(n/2) + n / log(n)
 - k = log 2(4) = 2
 - n^2
 n / log(n)
 - ▶ Case I: n^2

- T(n) = 3T(n/3) + n / log(n)
 - k = log3(3) = 1
 - n / log(n)
 - Case I doesn't apply because f(n) not polynomially smaller
 - e.g., $n / log(n) ! <= n^0.99$ for large n