第9回 化学平衡 (chemical equilibrium)

- 9.1 化学平衡
- 9.2 ギブズエネルギーと平衡定数
- 9.3 ルシャトリエの法則 平衡状態の変化
- 9.4 ファントホフの式 平衡定数と温度との関係
- 9.5 化学平衡の応用



### 9.1 化学平衡

### ・酸とアルコールのエステル化反応



・エステルの加水分解反応 (エステル化反応の逆反応)



### • 各反応の反応速度

$$k_a$$

$$CH_3COOH + C_2H_5OH \rightarrow CH_3COOC_2H_5 + H_2O$$
 (1)

$$CH_3COOC_2H_5 + H_2O \xrightarrow{k_b} CH_3COOH + C_2H_5OH$$
 (2)

$$-\frac{1}{a}\frac{d[A]}{dt} = k[A]^a[B]^b$$

- (1) の反応速度= $k_a$  [CH<sub>3</sub>COOH] [C<sub>2</sub>H<sub>5</sub>OH]
- (2) の反応速度= $k_b$  [CH<sub>3</sub>COOC<sub>2</sub>H<sub>5</sub>] [H<sub>2</sub>O]

#### ●平衡定数

$$CH_{3}COOH + C_{2}H_{5}OH \stackrel{k_{a}}{\rightleftharpoons} CH_{3}COOC_{2}H_{5} + H_{2}O$$

$$\frac{k_{b}}{k_{b}}$$

反応速度= $k_a$  [CH<sub>3</sub>COOH] [C<sub>2</sub>H<sub>5</sub>OH] =  $k_b$  [CH<sub>3</sub>COOC<sub>2</sub>H<sub>5</sub>] [H<sub>2</sub>O]

$$t=\infty$$

 $t = \infty$  1/3 mol

1/3 mol

2/3 mol

2/3 mol









$$\frac{\text{[CH_3COOC_2H_5][H_2O]}}{\text{[CH_3COOH][C_2H_5OH]}} = \frac{k_a}{k_b} =$$
**平衡定数**  $K = \frac{(2/3) \times (2/3)}{(1/3) \times (1/3)} = 4$ 

Kは(一定温度・圧力では)濃度に無関係 (反応式の左辺→分母)

Kが大  $\Rightarrow$  平衡は右辺にかたよる

Kが小  $\Rightarrow$  平衡が左辺にかたよる

#### ・一定温度で次のような化学平衡が成り立つ場合

$$aA + bB + \dots \rightleftharpoons pP + qQ + \dots$$

平衡定数 
$$K = \frac{[P]^p [Q]^q ....}{[A]^a [B]^b ...}$$

左辺の物質の濃度を分母 右辺の物質の濃度を分子

気体反応の場合

$$K_{p} = \frac{(p(P)/p^{o})^{p}(p(Q)/p^{o})^{q}...}{(p(A)/p^{o})^{a}(p(B)/p^{o})^{b}...}$$

*p*(*i*): 気体 *i* の分圧、*p*°: 標準圧力 (1 bar)

演習1  $25^{\circ}$ Cで $N_2O_4$ が $NO_2$ に分解するときの反応率 $\alpha$ を求めよ。 ただし、 $N_2O_4(g) 
ightharpine 2NO_2(g)$ の平衡定数  $K_p$ は 0.15 である。また、平衡時の全圧は1 barである。

$$N_2O_4(g) \rightleftharpoons 2NO_2(g)$$

反応前 1 mol 0 mol 合計 1 mol 平衡  $(1-\alpha)$  mol  $2\alpha$  mol 合計  $1+\alpha$  mol

$$K_p = (p(NO_2)/p^{o})^2 / (p(N_2O_4)/p^{o})$$

#### 平衡時の全圧をPとおくと

$$p (N_2O_4) = [(1-\alpha)/(1+\alpha)] P$$
  
 $p (NO_2) = [2\alpha/(1+\alpha)] P$ 

P=1 barであるとき

$$K_p = (p(\text{NO}_2)/p^{\circ})^2 / (p(\text{N}_2\text{O}_4)/p^{\circ}) = [4\alpha^2 / (1-\alpha^2)] = 0.15$$
  
 $\alpha^2 = 0.15 / (4+0.15)$   
 $\alpha = 0.19$ 

# 9.2 ギブズエネルギーと平衡状態





$$CH_3COOH + C_2H_5OH$$
 $\uparrow \downarrow$ 
 $CH_3COOC_2H_5 + H_2O$ 

$$G$$
 (AB)  $\Delta_{\rm r}G = 0$   $G$  (PQ)

$$CH_3COOH + C_2H_5OH$$
 $\uparrow$ 
 $CH_3COOC_2H_5 + H_2O$ 



• 反応ギブズエネルギー

$$\Delta_{\mathbf{r}}G = \left(\frac{\partial G}{\partial \xi}\right)_{p,T}$$

ここでは *G* の ξ に関する勾配

全ギブズエネルギー G



反応進行度  $\xi$ 

- ギブスエネルギーの極小  $\Delta_r G = 0$ 
  - → 反応混合物の平衡組成

• 反応ギブズエネルギーと反応比

$$\Delta_{\rm r}G = \Delta_{\rm r}G^{\Theta} + RT \ln Q$$

反応比 
$$Q = \frac{$$
生成物の活量 $}{$ 反応物の活量 $} = \frac{[P]^p[Q]^q....}{[A]^a[B]^b...}$ 

•標準反応ギブスエネルギーと平衡定数

平衡では  $\Delta_r G = 0$ 

$$RT \ln K = -\Delta_{\mathbf{r}} G^{\Theta} \qquad K = \frac{[P]^{p} [Q]^{q} \dots}{[A]^{a} [B]^{b} \dots}$$

## 9.3 ルシャトリエの原理 (Le Chaterier's principle)

### ●平衡状態の変化

平衡状態にある系が外部からの作用によって平衡が乱された場合 この作用による効果を弱める方向にその系の状態が変化する

演習2 
$$N_2 + 3H_2 \rightleftharpoons 2NH_3 \quad \Delta H = -92 \text{ kJ mol}^{-1}$$
 (発熱反応)

- (1) 温度 Tを上げると、どちらの方向に反応が起こるか?
- (2) 全圧 Pを増加させると、どちらの方向に反応が起こるか?

$$K_p = \frac{(x(NH_3)P/p^o)^2}{(x(N_2)P/p^o)(x(H_2)P/p^o)^3}$$
  $K_p$ を一定にするように反応が起こる

全圧が n 倍になったとすると

$$K_{p} = \frac{n^{2}(x'(NH_{3})P/p^{o})^{2}}{n(x'(N_{2})P)/p^{o})n^{3}((x'(H_{2})P)/p^{o})^{3}} = \frac{\left(\frac{1}{n^{2}}\right)(x'(NH_{3})P/p^{o})^{2}}{(x'(N_{2})P/p^{o})(x'(H_{2})P/p^{o})^{3}}$$

n>1 (全圧増加)であれば  $K_p$ 一定のためには x'(NH3) > x(NH3) NH3を増加させるために、右方向への反応が起こる

# 9.3 ファントホフの式 (van't Hoff's equation)

### ●平衡定数と温度との関係

$$\frac{\mathrm{d} \ln K}{\mathrm{d} (1/T)} = -(q/R)$$

温度  $T_1$  のときの平衡定数  $K_1$ 、温度  $T_2$  のときの  $K_2$ とすると

$$\ln K_1 - \ln K_2 = -(q/R)(1/T_1 - 1/T_2)$$



定容:  $q = \Delta U$ 

定圧:  $q = \Delta H$ 

T<sub>1</sub>, T<sub>2</sub>: 温度 [K]

$$\ln K_1 - \ln K_2 = -(q/R)(1/T_1 - 1/T_2)$$

右へ進む反応が発熱( $\Delta H < 0$ )である場合に、

 $T_1$  から $T_2$ へ温度を上昇させると( $T_1 < T_2$ )、 $K_1 > K_2$  となり、

平衡定数は減少する



左に反応が進む

=温度上昇を弱めるように左へ進む吸熱反応が起こる



化学C-9-14

演習3 温度を変化させたときの $N_2+3H_2 \rightleftarrows 2NH_3$ の $K_p$ は表のように変化した。この反応エンタルピー $\Delta H$ を求めよ。

| T (°C)                                       | 350    | 400    | 450    | 500     |
|----------------------------------------------|--------|--------|--------|---------|
| $K_{\rm p}(10^{-4})$                         | 7.73   | 1.69   | 0.476  | 0.150   |
|                                              |        |        |        |         |
| $T^{-1}$ (10 <sup>-3</sup> K <sup>-1</sup> ) | 1.605  | 1.486  | 1.383  | 1.294   |
| $\ln K_{\rm p}$                              | -7.165 | -8.686 | -9.953 | -11.107 |



### 9.5 化学平衡の応用

#### ●水の電離(解離)

$$H_2O \rightleftharpoons H^+ + OH^-$$

$$K = \frac{[H^+][OH^-]}{[H_2O]}$$
  $H^+ + H_2O \rightarrow H_3O^+$   $4 + y = 0 + 1$ 

[H<sub>2</sub>O]は多量にあるので一定と見なせる

$$K_{\rm W}$$
= $K$ [H<sub>2</sub>O]=[H<sup>+</sup>][OH<sup>-</sup>]=1.0×10<sup>-14</sup>(25°C) 水のイオン積

オキソニウムイオン

$$pH = -\log_{10}[H^+] = 7$$

●酸の電離(解離)定数 (dissociation constant)

共役酸塩基対

$$CH_3COOH + H_2O \rightleftharpoons CH_3COO^- + H_3O^+$$

$$K_{\rm a} = \frac{[\mathrm{CH_{3}COO^{-}}][\mathrm{H_{3}O^{+}}]}{[\mathrm{CH_{3}COOH}][\mathrm{H_{2}O}]}$$

$$K_a = 1.75 \times 10^{-5} (25^{\circ}C)$$
 酸の電離定数(解離定数)

$$pH$$
と同様に、 $pK_a = -\log_{10}K_a$ 

pKa: 解離指数 (dissociation index)

演習4  $2NO(g) + O_2(g) \rightleftarrows 2NO_2(g)$  の427°Cにおける平衡定数 $K_1$ は $1 \times 10^5$ 、この反応エンタルピーは $-114 \text{ kJmol}^{-1}$ である。25°Cにおける平衡定数  $K_2(\ln K_2)$  を求めよ。

$$\ln K_2 - \ln K_1 = -(\Delta H / R) (1/T_2 - 1/T_1)$$

$$\ln K_2 - \ln 10^5 = -(-114 \times 10^3 / 8.314) (1/(298) - 1/(273 + 427))$$

$$=$$

$$\ln K_2 =$$

$$K_2 =$$