MaLo		Marc Ludevid	405401
SS 2021	Übungsblatt 11	Andrés Montoya	405409
11. Juli 2021	<u> </u>	Til Mohr	405959

Aufgabe 1

E-Test

Aufgabe 2

Wir suchen ein unendliches Axiomensystem Ψ , welches die Klasse \mathcal{K} widerspricht. Ψ soll also genau die Klasse der ungerichteten Graphen G axiomatisieren, welche eine unendliche Clique enthalten. Enthält G eine unendliche Clique, so enthält G offensichtlich für jedes $n \in \mathbb{N} \setminus \{0\}$ eine Clique der Länge n. Wir können Ψ also wie folgt aufstellen:

$$\Psi := \{ \forall x (\neg Exx), \forall x \forall y (Exy \to Eyx) \} \cup \{ \psi_n \mid n \in \mathbb{N} \setminus \{0\} \}$$

, wobei $\psi_n := \exists x_1 \dots \exists x_n (\bigwedge_{1 \leq i < j \leq n} x_i \neq x_j \wedge Ex_i x_j)$ für alle $n \in \mathbb{N} \setminus \{0\}$ die Hilfsformel für eine Clique der Länge n ist.

Nehmen wir nun an, es gibt ein Axiomensystem Φ , welches \mathcal{K} axiomatisiert. Dann ist $\Phi \cup \Psi$ unerfüllbar. Nach dem KS existiert eine endliche Teilmenge $\Theta_0 \subseteq \Phi \cup \Psi$, welches bereits unerfüllbar ist.

Sei $\Psi_0 := \Theta_0 \cap \Psi$. Es existert wegen Endlichkeit ein $m \in \mathbb{N} \setminus \{0\}$, sodass $\psi_n \notin \Psi_0$ für alle $n \geq m$. Es folgt $\Psi_0 \subseteq \{ \forall x (\neg Exx), \forall x \forall y (Exy \to Eyx) \} \cup \{ \psi_n \mid n < m \}$

Betrachte $\mathfrak{A} := (V := \mathbb{N}, E := \mathbb{N} \times \mathbb{N})$. \mathfrak{A} ist dann also ein ungerichteter Graph, welcher eine Clique mit unendlicher Länge ist. Es gilt also $\mathfrak{A} \in \mathcal{K}$, weshalb auch $\mathfrak{A} \models \Phi$ gilt. Jedoch gilt auch $\mathfrak{A} \models \Psi_0$ offensichtlich. Also folgt $\mathfrak{A} \models \Theta_0$. Jedoch soll Θ_0 unerfüllbar sein.

Dies ist ein Widerspruch. Also ist K nicht axiomatisierbar.

Aufgabe 3

(a)

(b)

$$\Phi_b := \{ \forall x \forall z \exists y (x + y = z), \\
\exists x \forall y (x + y = y), \\
\forall x \forall y (x + y = y + x), \\
\exists x_1 \dots \exists x_n ((\bigwedge_{1 \le i < j \le n} x_i \ne x_y) \land (\forall y \bigvee_{1 \le i \le n} y = x_i)) \}$$

??? Darf man so Endlichkeit ausdrücken?

(c) U muss hier einelementig sein. Angenommen U ist mindestens zweielementig, aber immer noch endlich. Dann gilt ja für alle $x,y \in U$ mit x < y, dass ein z existiert, sodass $x < z \land z < y$. Per Induktion stellt man schnell fest, dass U unendlich sein muss. Dies ist ein Widerspruch.

Man kann die Klasse \mathcal{K}_c axiomatisieren durch:

$$\Phi_c := \{ \forall x \forall y (x = y) \}$$

(d) Da $f(U) \subseteq U$, gilt auch $|f(U)| \leq |U|$. Da f(U) unendlich ist, ist folglich auch U unendlich.

Sei φ_n eine Hilfsformel, dass mindestens n verschiedene Elemente in U existieren:

$$\varphi_n \coloneqq \exists x_1 \dots \exists x_n (\bigwedge_{1 \le i \le j \le n} x_i \ne x_j)$$

Sei φ'_n eine Hilfsformel, dass mindestens n verschiedene Elemente in f(U) existieren: $\varphi'_n := \exists x_1 \dots \exists x_n (\bigwedge_{1 \le i < j \le n} x_i \ne x_j \land f(x_i) \ne f(x_j))$

Dann ist Φ_d ein unendliches Axiomensystem mit:

$$\Phi_d := \{ \varphi_n \mid n \in \mathbb{N} \setminus \{0\} \} \cup \{ \varphi'_n \mid n \in \mathbb{N} \setminus \{0\} \}$$

 \mathcal{K}_d ist nach dem Kompaktheitssatz nicht endlich axiomatisierbar, weil keine endliche Teilmenge von Φ_d existiert, welches \mathcal{K}_d axiomatisiert.

Angenommen $\Phi_0 \subseteq \Phi_d$ sei eine Formel, die \mathcal{K}_d endlich axiomatisiert. Dann gibt es ein $m, m' \in \mathbb{N}$, sodass m der Index der größten Hilfsformel φ_n in Φ_0 ist. Wenn kein φ_n in Φ_0 ist, dann kann Φ_0 \mathcal{K}_d offensichtlich nicht axiomatisieren, weil die Unendlichkeit von U nicht gegeben ist. Sei m' der Index der größten Hilfsformel φ'_n in Φ_0 . Wenn kein φ'_n in Φ_0 ist, dann kann Φ_0 \mathcal{K}_d offensichtlich nicht axiomatisieren, weil die Unendlichkeit von f(U) nicht gegeben ist.

Sei $\mathfrak{A} := (\{0, \dots, \max(m, m') + 1\}, \mathbb{1}, 0)$. Dann gilt offensichtlich $\mathfrak{A} \models \Phi_0$, aber, da \mathfrak{A} endlich ist, ist $\mathfrak{A} \notin \mathcal{K}_d$.

Nach dem KS ist \mathcal{K}_d nicht endlich axiomatisierbar.

(e)

(f)

(g) Die Signatur ist mit $\tau_g := ((R_n)_{n \in \mathbb{N}})$ offensichtlich abzählbar. Wegen der Definition von R_n sind alle a_S unterscheidbar. Man kann also von jedem a_S auf ein $S \subseteq \mathbb{N}$ schließen (bijektiv). Deshalb gilt: $|A| = |\operatorname{Pot}(\mathbb{N})|$ überabzählbar. Satz von LS \downarrow :

Angenommen es gibt ein Φ_g , welches \mathcal{K}_g axiomatisiert. Da die Signatur abzählbar ist, ist Φ_g abzählbar. Nach LS \downarrow hat \mathcal{K}_g ein abzählbares Modell. Jedoch gibt es in \mathcal{K}_g keine endlichen Strukturen.

Widerspruch. \mathcal{K}_g ist nicht axiomatisierbar.

Aufgabe 4

Da die Klasse der Cliquen aufzählbar ist (für jedes $n \in \mathbb{N}$ gibt es bis auf Isomorphie genau ein Element in der Klasse der Cliquen mit n Knoten) kann der Algorithmus einfach alle Cliquen durchlaufen und wird auf jeden Fall die Clique G finden die φ erfüllt.

Zu klären ist aber noch wann dieser Algorithmus terminieren soll, wenn es solch eine Clique nicht gibt. Dafür verwenden wir den Quantorenrang des Satzes φ . Für Quantorenrang m kann der Algorithmus nach m Schritten aufhören, weil ...

Idee: Duplikatorin kann immer nachahmen solange es genügend Knoten zum auswählen gibt, weil es immer irrelevant ist welchen Knoten aus der Clique sie wählt weil alle isomorph zueinander sind.

Aufgabe 5*

- (a) (i) z.z.: Für alle $\mathfrak{A} \in K$ gilt: $\mathfrak{A} \in K^*$. Folgt aus Definition von Th(\mathcal{K}). Th(\mathcal{K}) := { $\varphi \in FO(\tau) \mid \mathfrak{A} \models \varphi, \forall \mathfrak{A} \in \mathcal{K}$ }, also gilt für alle $\mathfrak{A} \in \mathcal{K}$ offensichtlich auch $\mathfrak{A} \in \operatorname{Mod}(\operatorname{Th}(\mathcal{K}))$.
 - (ii) z.z.: Für jedes Axiomensystem Φ sodass $K \subseteq \operatorname{Mod}(\Phi)$ gilt auch $\operatorname{Mod}(\operatorname{Th}(\mathcal{K})) \subseteq$ $Mod(\Phi)$. Sei also Φ beliebig sodass für jedes $\mathfrak{A} \in \mathcal{K}$ gilt: $\mathfrak{A} \models \Phi$. Dann gilt für jedes

 $\varphi \in Phi$: $\varphi \in Th(\mathcal{K})$ wegen definition von der Theorie einer Klasse. Also gilt

offensichtlich auch $Mod(Th(\mathcal{K})) \subseteq Mod(\Phi)$

(b)