

UNIVERSITÀ DEGLI STUDI DI CATANIA

DIPARTIMENTO DI FISICA E ASTRONOMIA "ETTORE MAJORANA"

CORSO DI LAUREA IN FISICA

Relazioni di Laboratorio di Fisica 3

LE QUATTRO COSE

Indice

Indice								
So	ommario Misura di resistenze con un multimetro digitale 1.1 Il multimetro		ii					
1	Mis	ura di resistenze con un multimetro digitale	1					
	1.2	Resistori	1					
	1.3	Altre misure di resistenze	3					
\mathbf{B}	ibliog	grafia	6					

Sommario

In QUESTO documento sono raccolte le quattro relazioni brevi da svolgere durante il corso annuale di *Laboratorio di Fisica 3* del Corso di Laurea in *Fisica* presso l'Università degli Studi di Catania.

Le esperienze sono esposte nei quattro capitoli seguenti:

- 1. Implementazione numerica della formula di Bethe-Bloch. Attraverso un codice in C che implementa numericamente la formula di Bethe-Bloch ho simulato il passaggio di una particella α a 5 MeV attraverso un sottile foglio di alluminio, realizzando un grafico che rappresenta l'energia della particella e la quantità di energia ceduta in funzione della distanza percorsa dentro il materiale.
- 2. Misura di temperature con Arduino. Attraverso l'uso di un microcontrollore Arduino, un sensore di temperatura e un semplice codice ho misurato la variazione di temperatura di una stanza in seguito all'accensione del riscaldamento. Nella relazione analizzo qualitativamente i dati raccolti ed estrapolo una possibile funzione che ne modelli l'andamento.
- 3. Misura di resistenze con un multimetro digitale.
- 4. Accettanza geometrica di un rivelatore.

1 Misura di resistenze con un multimetro digitale

Tra le esperienze svolte con il multimetro digitale riporto la misura delle resistenze di vari oggetti, tra cui un anello, il corpo umano e alcuni resistori. Ai resistori dedico una sezione più approfondita in quanto ho preso 50 misure su resistori distinti—ma teoricamente con resistenza uguale—per verificare la distribuzione delle misure di resistenza.

1.1 Il multimetro

Lo strumento utilizzato per l'interezza dell'esperienza è un multimetro digitale della serie DVM841 della $Velleman^{\textcircled{r}}$ [2]. Il multimetro è in grado di misurare tensione e corrente continua e alternata, resistenza, frequenza e temperatura. Avendo una risoluzione di 2000 punti, il display del multimetro può visualizzare un massimo di 1999 unità.

1.2 Resistori

Il kit presenta N=50 resistori distinti—come quelli in Fig. 1.1—il cui codice colore restituisce un valore¹ teorico di $820\,\Omega\pm5\,\%$, ovvero $820(40)\,\Omega$.

Ho effettuato le misure impostando il multimetro in modalità ohm, alla portata di $2\,\mathrm{k}\Omega$, poggiando i puntali sui terminali di ciascun resistore e aspettando di volta in volta che la lettura si stabilizzasse. I dati raccolti sono riportati in ordine crescente in Tab. 1.1.

1.2.1 Considerazioni preliminari

Notiamo subito che la resistenza media è $R_{\rm m}=808.6\,\Omega$ con una deviazione standard di $\sigma=2.3\,\Omega$; l'errore sul valor medio è quindi $\sigma_R=\sigma/\sqrt{N-1}=0.33\,\Omega$, che è confrontabile con la sensibilità dello strumento $\delta R_{\rm s}=1\,\Omega$.

 $^{^{1}\}mathrm{Lo}$ si può dedurre da qualunque legenda fedele allo standard IEC 60062.

Figura 1.1: A sinistra alcuni dei 50 resistori da $820\,\Omega$. A destra un dettaglio dove è visibile il codice colore.

	Resistenze (Ω)								
797	806	806	807	807	807	807	807	807	807
807	808	808	808	808	808	808	808	808	808
808	808	808	809	809	809	809	809	809	809
809	809	809	809	809	809	810	810	810	810
810	810	810	811	811	812	812	812	812	813

Tabella 1.1: Misure di resistenza effettuate su 50 resistori distinti.

Questi valori rientrano completamete nell'intervallo fornito dal costruttore; tuttavia, il fatto che tutte le misure siano inferiori a 820 Ω suggerisce la presenza di un errore sistematico.²

Il dato di resistenza minima di 797 Ω può essere scartato secondo il cirerio di Chauvenet. Esso dista più di 4σ dal valor medio (ca. 4.17σ) e il numero di dati atteso³ su un campione di N=50 elementi a una distanza maggiore o uguale a 4σ è pari a $0.003 \ll 1/2$. Scartando questo dato la nuova media e la nuova deviazione standard sono:

$$R_{\rm m} = 808.8 \,\Omega$$
 $\sigma = 1.633 \,\Omega$.

La nuova incertezza sul valor medio è $\sigma_R = 0.24 \,\Omega \lesssim \delta R_{\rm s} = 1 \,\Omega$, che è ancora confrontabile con la sensibilità dello strumento. Se tuttavia consideriamo la somma in quadratura delle due incertezze troviamo

$$\overline{\sigma} = \sqrt{\sigma_R^2 + \delta R_s^2} = 1.02 \,\Omega \simeq 1 \,\Omega \,,$$

per cui assumo $\overline{\sigma} = 1 \Omega$ come incertezza sul valor medio.

 $^{^2\}mathrm{Se}$ si trattasse di errori casuali dovuti a imprecisioni di fabbricazione, mi aspetterei letture sia al di sopra che al di sotto del valore di riferimento; è poco probabile che tutte le resistenze devino dal valore teorico allo stesso modo a meno che non si sia verificato un evento che ha alterato tutte le resistenze—un lotto prodotto con lo stesso materiale meno resistente, seppur entro il margine del $5\,\%$, o deterioramento nel tempo.

³Per il calcolo di questa probabilità ho fatto riferimento a [INSERIRE TAYLOR!!!]

	In	O_k	E_k			
		\overline{R}	<	806.5	2	4.133
806.5	<	R	<	807.5	8	5.735
807.5	<	R	<	808.5	12	6.925
808.5	<	R	<	809.5	13	7.278
809.5	<	R	<	810.5	6	6.655
810.5	<	R	<	811.5	2	5.297
811.5	<	R	<	812.5	4	3.668
812.5	<	R			1	2.211

Tabella 1.2: Suddivisione dei dati per il test del χ^2 . Ometto le unità di misura per chiarezza espositiva e semplicità dei calcoli.

1.2.2 Test del χ^2

Supponiamo che le misure seguano, con una significatività $\alpha=0.05$, la distribuzione normale centrata in $R_{\rm m}$ e di ampiezza σ :

$$N(x; R_{\rm m}, \sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp \left[-\frac{1}{2} \left(\frac{x - R_{\rm m}}{\sigma} \right)^2 \right].$$

Costruiamo quindi un istogramma dei dati. Visto l'intervallo contenuto in cui le misure variano, ho scelto di raccogliere i dati in bin di ampiezza 1Ω , uno per ciascun valore misurato; ciascun bin si estende da mezza unità prima del valore di interesse a mezza unità dopo. In Tab. 1.2 sono riportati i bin e le frequenze osservate O_k .

Nella stessa tabella sono riportati i valori attesi E_k per ciascun bin, calcolati moltiplicando la dimensione del campione N=49 per l'integrale di ciascun intervallo della gaussiana. Ho ottenuto gli intervalli convertendo gli estremi in variabili normali standardizzate e ho ricavato l'integrale attraverso un foglio di calcolo.

È adesso possibile calcolare il χ^2 per definizione:

$$\chi^2 = \sum_{k=1}^8 \frac{(O_k - E_k)^2}{E_k} = 12.98.$$

essendo d=n-c=6 il numero di gradi di libertà, n=8 il numero di bin e c=2 il numero di parametri stimati—media e deviazione standard. Il valore critico per il test del χ^2 è $\chi^2_{\rm crit}=12.59$ [1], posso quindi rigettare l'ipotesi nulla che le misure seguano la distribuzione gaussiana.

1.3 Altre misure di resistenze

Riporto altre misure eseguite con il multimetro su vari materiali.

Figura 1.2: Illustrazione rappresentativa dei resistori montati in parallelo su una breadboard.

\overline{n}	$R_{\rm o}$	$\delta R_{ m s}$	$R_{\rm e}$	$\delta R_{ m e}$
1	815	1	808.8	1
2	410	1	404.4	0.5
3	272	1	269.6	0.3

Tabella 1.3: Resistenze equivalenti misurate su resistori in parallelo e relative incertezze. Tutti i valori sono espressi in Ω .

1.3.1 Resistenze in parallelo

Usando n=1,2,3 resistori scelti casualmente tra quelli studiati al punto $\S1.2$, ho misurato la resistenza equivalente $R_{\rm o}$ dei resistori montati in parallelo su una breadboard come in Fig. 1.2. I risultati sono riportati in Tab. 1.3, insieme ai valori teorici, calcolati a partire dalla $R_{\rm m}$ del punto precedente come

$$\frac{1}{R_{\rm e}} = \frac{n}{R_{\rm m}} \iff R_{\rm e} = \frac{R_{\rm m}}{n} \,,$$

e alle incertezze $\delta R_{\rm s}$ e $\delta R_{\rm e}$. La prima è ancora la sensibilità dello strumento, mentre la seconda è calcolata propagando l'incertezza $\overline{\sigma}$ sul valor medio $R_{\rm m}$ trovata al punto §1.2:

$$\delta R_{\rm e} = \left| \frac{\partial R_{\rm e}}{\partial R} \right| \overline{\sigma} = \frac{\overline{\sigma}}{n},$$

Osservando i dati si nota che la resistenza equivalente osservata $R_{\rm o}$ è sempre maggiore della resistenza teorica $R_{\rm e}$. Questo può essere dovuto alla presenza di una resistenza di contatto con la breadboard, che non ho considerato nel calcolo di $R_{\rm e}$.

1.3.2 Resistività di un anello

Ho misurato la resistenza di un anello metallico che suppongo essere in argento. L'anello è di forma circolare ma presenta un'apertura in basso Ho calcolato la resistività $\rho_{1,2}$ dei due materiali a partire dalle resistenze misurate $R_{1,2}$ dalle

Figura 1.3: Fotografia dell'anello. I tratti in rosso indicano il punti in cui sono stati poggiati i puntali del multimetro.

dimensioni dell'anello, misurate con un calibro digitale. Ho ricavato l'espressione per la resistività a partire dalla legge di Ohm:

$$\rho = R \frac{S}{L} \,,$$

dove S è la sezione dell'anello e L la lunghezza equivalente.

I due anelli hanno forma diversa. Quello in acciaio

Bibliografia

- [1] National Institute of Standards and Technology (NIST). Critical Values of the Chi-Square Distribution. NIST. URL: https://www.itl.nist.gov/div898/handbook/eda/section3/eda3674.htm.
- [2] Velleman. DVM841 Digital Multimeter. Velleman. 2021. URL: https://cdn.velleman.eu/downloads/1/dvm841a6v04.pdf.