TEST (n) is:

- 1. Find biggest k, k > 0, so that $(n-1) = 2^k q$
- 2. Select a random integer a, 1 < a < n-1
- 3. if $a^q \mod n = 1$ then return ("maybe prime");
- 4. for j = 0 to k 1 do
 - 5. **if** $(a^{2^{j}q} \mod n = n-1)$

then return(" maybe prime ")

6. return ("composite")

a mod
$$n = 1 \times$$

2 mod $n = n-1 \times$

22 mod $n = n-1 \times$

24 mod $n = n-1 \times$

28 mod $n = n-1$

282 mod $n = n-1$

282 mod $n = n-1$

292 mod $n = n-1$

292 mod $n = n-1$

292 mod $n = n-1$

9: cheele 1729 zis prime using Miller-Ration test?

1729-1=1728=26×27 K=6, 2=27 j=0,1,2,3,4,5 a mod n = 671 mod 1729 = 1084 22 mod n = (1084) mod 1729 = 1065 a⁴² mod n = (1065)² mod 1729=<u>1</u> Composite.

0:
$$n = 104513$$
 | What it Miller-Rabin Test Decision?
 $a = 3$ | What it Miller-Rabin Test Decision?
 $n-1 = 104512 = 26 \times 1633$, $j = 0,1,2,3,4,5$
 $a^2 = 3^{6/33}$ (mod n) = 88958 ± 1
 $\pm n-1$
 $a^2 = (88958)^2$ (mod n) = 10430 $\pm n-1$
 $a^{27} = (10430)^2$ mod $n = 91380 \pm n-1$
 $a^{27} = (10430)^2$ mod $n = 29239 \pm n-1$
 $a^{27} = (29239)^2$ mod $n = 2981 \pm n-1$
 $a^{27} = (29239)^2$ mod $n = 2981 \pm n-1$
 $a^{27} = (29239)^2$ mod $n = 2981 \pm n-1$
 $a^{27} = (29239)^2$ mod $n = 104512 = n-1$

 $Q: N = 280001, \alpha = 105532$ cheek the dea-sion of miller-Robin Tost? $\gamma - 1 = 280000 = 2^6 \times 4375$ $\frac{9}{a} = (105532)$ mod $n = 236926 \pm 1$ $a^{29} = (236926)^2 \text{ mod } n = 168999 \pm n-1$ $a^{2^{2}}$ = $(168999)^{2}$ mod n = 280600 = n-1

Conclusion: may be poine.