UNIVERSITY OF AARHUS

Faculty of Science

Department of Engineering

Indlejret Software Udvikling Eksamens Dispositioner

Bjørn Nørgaard IKT 201370248 bjornnorgaard@post.au.dk Joachim Andersen IKT 20137032 joachimdam@post.au.dk

Sidste ændring: December 14, 2015 \LaTeX kan findes her¹

¹https://github.com/BjornNorgaard/I3ISU/tree/master/Eksamen

Todo list

Ind holds for tegnelse

1	Pro	grams in relation to the OS and the kernel	
	1.1	Sub topics	
	1.2	Curriculum	
	1.3	Exercises	
		1.3.1 Processes and threads	
		1.3.2 Threading model	
		1.3.3 Process anatomy	
		1.3.4 Virtual memory	
		1.3.5 Threads being executed on CPU, the associated scheduler and cache	
2	Svn	chronization and protection	
	2.1	Sub topics	
	2.2	Curriculum	
	2.3	Exercises	
3	Thr	read communication	
•	3.1	Sub topic	
3	3.2	Curriculum	
	3.3	Exercises	
4	OG	API	
4			
	4.1	Sub topics	
		Curriculum	
	4.3	Exercises	
5		ssage Distribution System (MDS)	
	5.1	Sub topics	
	5.2	Curriculum	
	5.3	Exercises	
6	Resource handling		
	6.1	Sub topics	
	6.2	Curriculum	
	6.3	Exercises	

List of Figures

1 Programs in relation to the OS and the kernel

1.1 Sub topics

- Processes and threads.
- Threading model.
- Process anatomy.
- Virtual memory.
- Threads being executed on CPU, the associated scheduler and cache.

1.2 Curriculum

- Slides "Intro to OS's".
- Slides "Parallel programs, processes and threads".
- OLA: "Anatomy of a program in memory", Gustavo Duarte.
- OLA: "The free lunch is over".
- OLA: "Virtual memory", pages 131-141.
- OLA: " Introduction to operating systems".
- OLA: "Multithreading".
- Kerrisk: Ch. 3-3.4 System programming concepts.
- Kerrisk: Ch. 29 Threads: Introduction.

1.3 Exercises

- Posix Threads.
- 1.4 Processes and threads
- 1.5 Threading model
- 1.6 Process anatomy
- 1.7 Virtual memory
- 1.8 Threads being executed on CPU, the associated scheduler and cache

2 Synchronization and protection

2.1 Sub topics

- Data integrity Concurrency challenge.
- Mutex and Semaphore.
- Mutex and Conditionals.
- Producer / Consumer problem.
- Dining philosophers.
- Dead locks.

2.2 Curriculum

- Slides: "Thread Synchronization I and II".
- Kerrisk: Chapter 30: Thread Synchronization.
- Kerrisk: Chapter 31: Thread Safety and Per-Thread Storage (Speed read)".
- Kerrisk: Chapter 32: Thread Safety and Per-Thread Storage (Speed read)".
- Kerrisk: Chapter 53: Posix Semaphores (Named not in focus for this exercise)".
- OLA: "pthread-Tutorial" chapters 4-6.
- OLA: "Producer/Consumer problem".
- OLA: "Dining Philosophers problem".

2.3 Exercises

- Posix Threads
- Thread Synchronization I & II

3 Thread communication

3.1 Sub topic

- The challenges performing intra-process communication.
- Message queue.
 - The premises for designing it.
 - Various design solutions Which one chosen and why.
 - Its design and implementation.
- Impact on design/implementation between before and after the Message Queue.
- Event Driven Programming.
 - Basic idea.
 - Reactiveness.
 - Design e.g. from sequence diagrams to code (or vice versa).

3.2 Curriculum

- Slides: "Inter-Thread Communication".
- OLA: "Event Driven Programming: Introduction, Tutorial, History Pages 1-19 & 30-51".
- OLA: "Programming with Threads chapters 4 & 6".

3.3 Exercises

• Thread Communication

4 OS API

4.1 Sub topics

- The design philosophy Why OO and OS Api?
- Elaborate on the challenge of building it and its currenct design:
 - The PIMPL / Cheshire Cat idiom The how and why.
 - CPU / OS Architecture.
- Effect on design/implementation:
 - MQs (Message queues) used with pthreads contra MQ used in OO OS Api.
 - RAII in use.
 - Using Threads before and now.
- UML Diagrams to implementation (class and sequence) How?

4.2 Curriculum

- Slides: OS Api".
- OLA: OSAL SERNA SAC10".
- OLA: Specification of an OS Api".
- Kerrisk: Chapter 35: Process Priorities and Schedul-ing".

4.3 Exercises

• OS API.

5 Message Distribution System (MDS)

5.1 Sub topics

- Messaging distribution system Why & how?
- The PostOffice design Why and how?
- Decoupling achieved.
- \bullet Design considerations & implementation.
- Patterns per design and in relation to the MDS and PostOffice design:
 - GoF Singleton Pattern
 - GoF Observer Pattern
 - GoF Mediator Pattern

5.2 Curriculum

- Slides: "A message system".
- OLA: "GoF Singleton pattern".
- OLA: "GoF Observer pattern".
- OLA: "GoF Mediator pattern".

5.3 Exercises

• The Message Distribution System

6 Resource handling

6.1 Sub topics

- RAII What and why?
- Copy construction and the assignment operator.
- What is the concept begind a Counted SmartPointer?
- What is $boost :: shared_ptr <>$ and how do you use it?

6.2 Curriculum

- Slides: "Resource Handling".
- OLA: "RAII Resource Acquisition Is Initialiation".
- OLA: "SmartPointer".
- OLA: "Counted Body".
- $\bullet \ \ {\rm OLA:} \ "boost :: shared_ptr".$
- OLA: "Rule of 3".

6.3 Exercises

• Resource Handling.