Esame scritto di Geometria 2

Università degli Studi di Trento Corso di laurea in Matematica A.A. 2013/2014 12 giugno 2014

Esercizio 1

Sia \mathbb{E}^3 lo spazio euclideo tridimensionale reale dotato di un riferimento cartesiano ortonormale di coordinate (x, y, z). Si considerino i punti P = (2, 3, -1) e Q = (0, 1, 0), il vettore d = (1, -1, 1) e il piano π_k di equazione

$$2x + ky + 2z = 1$$

dove k è un parametro reale.

- 1) Si indichi con r la retta passante per P con direttrice d e con s_k la retta per Q ortogonale a π_k . Scrivere delle equazioni cartesiane per r e delle equazioni parametriche per s_k .
- 2) Ricavare, al variare di k, la posizione reciproca di r e di s_k .
- 3) Sia R il punto di r che dista $2\sqrt{3}$ da P e che ha coordinata z positiva. Ricavare le coordinate di R.
- 4) Sia T il punto di coordinate $(4+\sqrt{2},1,1-\sqrt{2})$. Ricavare angoli ed area del triangolo di vertici P,R,T.

Esercizio 2

Sia \mathbb{P}^2 il piano proiettivo reale dotato del riferimento proiettivo standard di coordinate omogenee $[x_0, x_1, x_2]$. Si consideri la retta r_{∞} descritta dalla relazione $x_0 = 0$ e sia $\mathbb{A}^2 = \mathbb{P}^2 \setminus r_{\infty}$ il piano affine reale con coordinate affini $(y_1, y_2) = (x_1/x_0, x_2/x_0)$. Si consideri, al variare del parametro k, la conica proiettiva C_k descritta dall'equazione

$$C_k: x_0^2 + x_1^2 + x_2^2 + 2x_0x_2 + 2kx_1x_2 = 0.$$

- 1) Per quali valori di k, C_k è non degenere?
- 2) Ricavare la forma canonica di C_k al variare di k.
- 3) Si scriva l'equazione della curva affine \mathcal{D} associata alla conica \mathcal{C}_1 . Ricavare la forma canonica affine di \mathcal{D} e dire di che tipo di conica si tratta.
- 4) Scrivere una proiettività che manda \mathcal{C}_3 nella sua forma canonica.

Esercizio 3

Sia I := [0, 1) e si consideri lo spazio topologico $X = (I, \tau)$ dove τ è la topologia generata dalla seguente collezione di sottoinsiemi di I:

$$\{(0,\delta) \mid \delta \in (0,1]\}.$$

Si consideri il sottospazio $Y = (\{0\} \cup (1/2, 1), \tau_Y)$ con τ_Y topologia indotta da quella su X.

- 1) Dimostrare che X è connesso e T_0 .
- 2) $X \in T_1$? $X \in Compatto$?
- 3) Calcolare la chiusura di $\{0\}$ e di $\{3/4\}$ in Y.
- 4) Esibire, se possibile, un arco continuo in Y che collega 0 a 3/4.

Esercizio 4

Si consideri l'insieme

$$X = \{\underline{x} = (x_1, x_2, x_3, \dots) \mid x_n \in \{0, 1\} \quad \forall n > 0\}$$

e si consideri la funzione $d: X \times X \to \mathbb{R}$ definita dalla relazione $d(\underline{x}, \underline{y}) = 2^{-n}$ se il primo intero per cui si ha $x_k \neq y_k$ è n (cioè per tutti gli interi minori di n si ha che $x_k = y_k$) e da $d(\underline{x}, \underline{x}) = 0$. Sia P il punto di X che corrisponde alla successione composta solo da zeri: $P = (0, 0, 0, \dots)$.

- 1) Si dimostri che (X,d) è uno spazio metrico e se ne ricavi il diametro.
- 2) Ricordando che con $B_r(x)$ si indica la palla aperta di centro x e raggio r rispetto alla distanza d, si ricavi la chiusura, l'interno e il bordo dei seguenti insiemi:

$$\{P\}, B_{1/4}(P) \in B_{1/6}(P).$$

- 3) Si dica se (X, τ) è connesso.
- 4) Si dimostri che (X, d) è totalmente limitato.

Soluzione dell'esercizio 1

Delle equazioni parametriche per $r \in s$ sono

$$r: \left\{ \begin{array}{ll} x=2+t & & \\ y=3-t & & s_k: \left\{ \begin{array}{ll} x=2t & \\ y=1+kt & . \\ z=2t \end{array} \right. \right.$$

Esplicitando t dalla prima equazione dell'espressione parametrica ricavata per r si ottengono delle equazioni cartesiane per r:

$$\begin{cases} t = x - 2 \\ y = 3 - x + 2 \\ z = -1 + x - 2 \end{cases} \implies \begin{cases} x + y - 5 = 0 \\ z - x + 3 = 0 \end{cases}.$$

Notiamo che le direttrici delle rette r e s_k sono proporzionali se e solo se k=-2. Siccome la coordinate di Q non soddisfano l'equazione cartesiana di r abbiamo che per k=-2 le due rette sono parallele. Per gli altri valori possiamo sostituire l'espressione parametrica di s_k nell'equazione cartesiana di r per vedere se sono incidenti. Il sistema risultante

$$\begin{cases} 2t+1+kt-5=0\\ 2t-2t+3=3=0 \end{cases}.$$

non ha mai soluzioni quindi le due rette sono disgiunte e, per $k \neq -2$, con direzioni non proporzionali: r e s_k sono sghembe.

Il punto R cercato sarà un punto del tipo R = (2 + t, 3 - t, -1 + t) perchè è un punto di r. Perchè la distanza sia quella richiesta dobbiamo avere

$$2\sqrt{3} = d(P,R) = |(2+t-2,3-t-3,-1+t+1)| = \sqrt{3t^2}$$

da cui ricaviamo |t|=2. Siccome vogliamo z=-1+t>0 dobbiamo prendere t=2 ottenendo il punto R=(4,1,1).

Incominciamo ricavando i tre vettori $\overrightarrow{PR},\overrightarrow{RT}$ e \overrightarrow{PT} :

$$\overrightarrow{PR} = R - P = (2, -2, 2)$$

$$\overrightarrow{RT} = T - R = (\sqrt{2}, 0, -\sqrt{2})$$

$$\overrightarrow{PT} = T - P = (2 + \sqrt{2}, -2, 2 - \sqrt{2}).$$

Si ha

$$\begin{split} |\overrightarrow{PR}| &= 2\sqrt{3} \\ |\overrightarrow{RT}| &= 2 \\ |\overrightarrow{PT}| &= 4 \\ < \overrightarrow{PR}, \overrightarrow{RT} > &= 2\sqrt{2} - 2\sqrt{2} = 0 \\ < \overrightarrow{PR}, \overrightarrow{PT} > &= 2(2 + \sqrt{2}) + 4 + 2(2 - \sqrt{2}) = 12 \end{split}$$

da cui deduciamo che l'angolo in R è retto e che l'area del triangolo è

$$A_{PRT} = \frac{1}{2} |\overrightarrow{PR}| |\overrightarrow{RT}| = 2\sqrt{3}.$$

L'angolo θ_P in P soddisfa

$$\cos(\theta_P) = \frac{\langle \overrightarrow{PR}, \overrightarrow{PT} \rangle}{|\overrightarrow{PR}||\overrightarrow{PT}|} = \frac{12}{8\sqrt{3}} = \sqrt{3}/2$$

e quindi $\theta_P = \pi/6$. Il terzo angolo vale di conseguenza $\theta_T = \pi/3$.

Soluzione dell'esercizio 2

La matrice associata alla conica C_k è

$$A_k := \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & k \\ 1 & k & 1 \end{bmatrix}$$

che ha determinante $\text{Det}(A) = -k^2$. Si ha quindi che \mathcal{C}_k è degenere se e solo se k = 0. Il polinomio caratteristico di A_k è

$$\chi_{A_k}(\lambda) = -\lambda^3 + 3\lambda^2 + \lambda k^2 - 2\lambda - k^2 = -(\lambda - 1)(\lambda^2 - 2\lambda - k^2).$$

Gli autovalori di A_k sono quindi

$$\lambda_1 = 1 + \sqrt{1 + k^2}$$
 $\lambda_2 = 1 - \sqrt{1 + k^2}$ $\lambda_3 = 1$.

Per $k \neq 0$ la forma canonica di C_k è quindi

$$C'_k: x_0^2 + x_1^2 - x_2^2 = 0.$$

Per k=0 la matrice A_0 ha rango 2 e gli autovalori non nulli di A_0 hanno segno concorde quindi la forma canonica è

$$\mathcal{C}_k': x_0^2 + x_1^2 = 0.$$

L'equazione richiesta si ottiene de
omogeneizzando rispetto a \boldsymbol{x}_0 :

$$\mathcal{D}: 1 + y_1^2 + y_2^2 + 2y_2 + 2y_1y_2 = 0.$$

La matrice associata è

$$\begin{bmatrix}
1 & 0 & 1 \\
0 & 1 & 1 \\
1 & 1 & 1
\end{bmatrix}$$

Siccome la sottomatrice dei termini di grado 2 ha rango 1 (e siccome sappiamo che la conica non è degenere), \mathcal{D} è una parabola e ha equazione canonica \mathcal{D} è $y_2 - y_1^2 = 0$.

Applichiamo il metodo del completamento dei quadrati per ricavare la forma canonica di C_3 :

$$x_0^2 + x_1^2 + x_2^2 + 2x_0x_2 + 6x_1x_2 =$$

$$= (x_0^2 + 2x_0x_2 + x_2^2) + x_1^2 + 6x_1x_2 + 9x_2^2 - 9x_2^2 =$$

$$= (x_0 + x_2)^2 + (x_1 + 3x_2)^2 - 9x_2^2 \quad (1)$$

Se definiamo quindi la proiettività

$$F: [x_0, x_1, x_2] \mapsto [x_0 + x_2, x_1 + 3x_2, 3x_2]$$

avremo che F ci permette di scrivere la conica in forma canonica. Esplicitamente, se abbiamo

$$[X_0, X_1, X_2] = F([x_0, x_1, x_2]),$$

per i conti appena fatti avremo

$$x_0^2 + x_1^2 + x_2^2 + 2x_0x_2 + 6x_1x_2 = [...] =$$

$$= (x_0 + x_2)^2 + (x_1 + 3x_2)^2 - 9x_2^2 = X_0^2 + X_1^2 - X_2^2. \quad (2)$$

Soluzione dell'esercizio 3

La topologia τ è composta, oltre che da X e dall'insieme vuoto, di tutti e soli gli insiemi del tipo $(0, \delta)$ con $\delta \in (0, 1]$. Questo vuol dire che ogni aperto di X è anche un aperto di (I, τ_e) dove τ_e è la topologia indotta da quella euclidea su I. Siamo quindi di fronte a due topologie confrontabili con quella di X che è più debole. Tra le varie conseguenze di questo fatto, abbiamo che ogni funzione $f:[0,1] \to I$ (stiamo munendo [0,1] della topologia euclidea) che è continua per la topologia euclidea è continua con τ . In particolare, siccome (I, τ_e) è connesso per archi, anche X lo è. Lo stesso vale per la connessione.

Mostriamo che X è T_0 . Siano a, b due punti distinti di X. Se a = 0 allora ogni intorno di b diverso da X non contiene a. Se entrambi sono diversi da 0 posso assumere a < b: l'insieme (0, (a + b)/2) è un aperto in X che contiene a ma non b. Abbiamo mostrato che per ogni coppia di punti esiste un aperto che contiene uno dei due ma non l'altro: questa è la definizione di spazio topologico T_0 .

X è compatto infatti se $\{U_j\}_{j\in J}$ è una collezione di aperti di X che copre X allora esiste almeno un $\bar{j}\in J$ tale che $0\in U_{\bar{j}}$. Ma l'unico aperto di X che contiene 0 è X quindi ogni ricoprimento aperto contiene X. Un sottoricoprimento finito è quindi $\{U_{\bar{i}}\}=\{X\}$.

Mostrare che $P = \{3/4\}$ non è chiuso è semplice infatti il suo complementare non è aperto. Questo basta per concludere che X non è T_1 (e di conseguenza nemmeno di Hausdorff). Siccome gli aperti non banali sono tutti e soli gli insiemi del tipo $(0, \delta)$, i chiusi in X diversi da X e dal vuoto sono del tipo

$$\{0\} \cup [\delta,1)$$

con $\delta \in (0,1]$ e $\{0\}$. I chiusi di Y sono della stessa forma con $\delta \in (1/2,1]$. Di conseguenza la chiusura di P in $Y \in \overline{P} = \{0\} \cup [3/4,1)$.

Il punto $Q = \{0\}$ è chiuso in X infatti il suo complementare è (0,1) che è un aperto. Di conseguenza Q è anche un chiuso in Y infatti $Q = Q \cap Y$ (tutti i chiusi di Y sono di questo tipo).

Si consideri l'arco $f:[0,1] \to Y$ tale che f(0)=0 e f(t)=1/2+t/4 (si ha quindi f(1)=3/4). Mostriamo che f è un arco continuo in Y. Definiamo, per comodità, $U_{\delta}=(1/2,\delta)$ con $\delta\in(1/2,1]$ e $U_0=Y$. Questi sono tutti e soli gli aperti non vuoti di Y. Si ha

$$f^{-1}(U_{\delta}) = \begin{cases} \text{se } \delta = 0 & f^{-1}(Y) = [0, 1] \\ \text{se } \delta < 3/4 & (0, 4\delta - 2) \\ \text{se } \delta \ge 3/4 & (0, 1] \end{cases}$$

quindi la controimmagine di ogni aperto di Y è un aperto di [0,1] con la topologia indotta da quella euclidea: f è un arco continuo in Y che collega 0 e 3/4.

Soluzione dell'esercizio 4

Presi due punti distinti \underline{x} e \underline{y} in X, esiste il più piccolo intero $n \ge 1$ tale che $x_k \ne y_k$. Di conseguenza $d(\underline{x}, y) = 2^{-n} \ne 0$. Questo mostra che d soddisfa la proprietà di annullamento.

Siccome d è chiaramente simmetrica, per mostrare che è una distanza su X basta vedere che soddisfa la disuguaglianza triangolare. Supponiamo che $\underline{x}, \underline{y}$ e \underline{z} siano tre punti distinti. Se $d(\underline{x}, \underline{y}) = 2^{-n}$ allora il più piccolo intero per cui $x_k \neq y_k$ è n. Se il più piccolo intero per cui $x_k \neq z_k$ è m distinguiamo due casi. Se $m \leq n$ abbiamo $2^{-n} \leq 2^{-m}$ e quindi

$$d(\underline{x}, y) \le d(\underline{x}, \underline{z}) \le d(\underline{x}, \underline{z}) + d(\underline{z}, y).$$

Se invece m > n avremo $z_n = x_n \neq y_n$ da cui $d(\underline{y}, \underline{z}) = 2^{-n}$ che rende vera la disuguaglianza triangolare anche in questo caso. Questo mostra che (X, d) è uno spazio metrico.

Per definizione la massima distanza tra due punti di X si ha quando i termini iniziali delle due successioni sono distinti: in questo caso si ha $d(\underline{x}, \underline{y}) = 2^{-1} = 1/2$ quindi il diametro di $X \in 1/2$.

Essendo uno spazio metrico uno spazio topologico di Hausdorff abbiamo che $\{P\}$ coincide con la sua chiusura e con la sua frontiera mentre il suo interno è vuoto. Avremo

- $B_{1/4}(P) = (B_{1/4}(P))^o = \{(0, 0, x_2, \dots) \mid x_i \in \{0, 1\}\}$ infatti per definizione $B_{1/4}(P)$ è aperto.
- $B_{1/4}(P) = \overline{B_{1/4}(P)}$ poichè ogni punto Q con distanza da P maggiore o uguale a 1/4 è del tipo $Q = (x_1, x_2, x_3, \dots)$ con $(x_1, x_2) \neq (0, 0)$. In particolare, infatti, si ha che la distanza di Q da ogni punto di $B_{1/4}(P)$ è 1/2 o 1/4 e questo dimostra che la palla di centro Q e raggio r < 1/4 è interamente contenuta nel complementare di $B_{1/4}(P)$: Q è punto esterno a $B_{1/4}(P)$.
- $\partial B_{1/4}(P) = \emptyset$ per quanto visto nei punti precedenti.

Per $B_{1/6}(P)$ la cosa è analoga:

- $\partial \left(B_{1/6}(P)\right) = \emptyset$
- $B_{1/6}(P) = (B_{1/6}(P))^o = \overline{B_{1/6}(P)} = \{(0,0,0,x_i,\dots) \mid x_i \in \{0,1\}\}$

Quest'ultimo punto ci permette anche di rispondere all'ultima domanda infatti abbiamo un insieme diverso da X e dal vuoto che è contemporaneamente aperto e chiuso: $B_{1/6}(P)$. Questo è equivalente a dire che X non è connesso.

Per dimostrare che X è totalmente limitato, basta dimostrare che per ogni n bastano un numero finito di palle di raggio 2^{-n} per coprire X. Siccome le successioni \underline{y} che appartengono alla palla di centro \underline{x} e raggio 2^{-n} sono tutte e sole quelle che hanno i primi n termini uguali ai corrispondenti termini di \underline{x} (cioè $x_k = y_k$ per $k \leq n$) possiamo considerare le 2^n successioni di X che hanno $x_k = 0$ per k > n. Ad esempio, per n = 2, avremo che ogni punto dello spazio appartiene a una delle palle di raggio r e centro uno dei seguenti 4 punti:

$$(0,0,\underline{0},\ldots),(0,1,\underline{0},\ldots),(1,0,\underline{0},\ldots),(1,1,\underline{0},\ldots)$$

(dove con $\underline{0}$ intendiamo che la successione continua con una sequenza infinita di 0). Questo perchè una successione \underline{y} inizia nello stesso modo di una delle quattro successioni scritte qui sopra e quindi la distanza tra \underline{y} e questa sarà minore di 2^{-2} . Questo ragionamento mostra che X è totalmente limitato.