

RELATÓRIO DE PROJETO **HARDWARE**

Nome do Projeto:	Placa de medida de tensão CC ou CA
Nome na Placa:	MedCF-V/CC-CA_V1
Autor:	Clecio Fischer Guilherme Sebastião da Silva
Versão:	V1
Data:	16/01/2013
Descrição:	Placa de medição de tensão CC ou CA com alimentação isolada

1. Especificações do projeto

Característica	Especificação					
Sinal de medida	O sinal de tensão a ser medido pode ser contínuo ou alternado, onde na placa há um jumper de seleção CC/CA, bem como um circuito de <i>offset</i> , caso a medida seja CA. O circuito de condicionamento é conectado através de uma barra de pinos ao circuito de potência.					
Isolação	Os sinais são isolados por um opto-acoplador. Assim, o circuito necessita de uma fonte isolada para o estágio de entrada.					
Transmissão	Os sinais medidos podem ser enviados na forma de corrente para as placas de condicionamento da placa mãe do DSP.					

2. Entradas e saídas da placa

Descrição de todas as entradas e saídas da placa.

Nome do conector	Tipo de conector	Sentido	Função	Faixa de tensão	Faixa de corrente
CON1	Barra de Pinos	Entrada	Conexão da tensão diferencial a ser medida, bem como os sinais da alimentação simétrica necessária (deve ser isolada)	0-500 V (tensão medida)	-
CON2	Barra de Pinos	Saída	Disponibilidade da medida bem como os sinais da alimentação simétrica necessária (mesma do circuito de controle)	0-10 V (tensão medida)	-

Legenda:

Nome do conector: Nome no esquemático e escrito na placa (ou em anilha) para identificar o conector

Tipo de conector: Rebite / Flat / DB9 / etc.

Sentido: I - Entrada, O - Saída, I/O - Entrada e saída

Função: Alimentação CA / Alimentação CC / Potência CC / Potência CA / Medida / Digital / Analógico

Faixa de tensão: Tensão mínima e máxima no componente (ex.: 0-5V) Faixa de corrente: Corrente mínima e máxima no componente (ex.: 4-20mA)

3. Interruptores, botões e chaves seletoras

Descrição de todos os interruptores, botões e chaves seletoras existentes na placa.

Nome do Interruptor	Tipo do Interruptor	Polaridade do sinal	Função		
J1	Jumper	-	Ativar medição CC ou CA		

Legenda:

Nome do interruptor: Nome no esquemático e escrito na placa (ou em anilha) para identificar o interruptor

Tipo do interruptor: Push-button / alavanca / deslizantes / dip-switch / rotativas / etc

Polaridade do sinal: CC / CA

Função: Liga-desliga / reset / seletor de tensão / etc.

4. LEDs indicadores

Descrição de todos os LEDs indicadores existentes na placa.

Nome do LED	Tipo do LED	Cor do LED	Função
Led1	SMD	Vermelho	Tensão de +12 V do lado de potência
Led2	SMD	Vermelho	Tensão de –12 V do lado de potência

Legenda:

Nome do LED: Nome no esquemático e escrito na placa (ou em anilha) para identificar o LED. Tipo do LED: retangular / redondo 3mm / redondo 5mm Cor do LED: Vermelho / Verde / Laranja / Branco / Azul / etc Função: Tensão de 5V / Falha de comunicação / Sobretensão / etc.

5. Esquemático

Desenho esquemático do circuito.

6. Lista de componentes

Descrição detalhadas de todos os componentes

Nome do componente	Tipo do componente	Tecnologia do componente	Modelo		
Con1	Barra de pinos	Macho	Header 2X10 90° Dupla		
Con2	Barra de pinos	Macho	Header 2X6 90° Dupla		
J1	Barra de pinos	Macho	Header 1X3 180° Simples		
TL_E1	Amp. Op.	THT	TL082CP		
TL_S1	Amp. Op.	THT	TL082CP		
LM_E1	Amp. Op	THT	LM318N		
LM_S1	Amp. Op	THT	LM318N		
Opto	Optoisolador	THT	HCNR201		
Q1	Trransistor	THT	2n2906		
RL1 e RL2	Regulador	THT	78L12		
D1 a D8	Diodo	SMD	1n4148		
Led1 e Led2	Led	SMD	Vermelho		
L1 a L7	Ferrite Bead	SMD	Núcleo de Ferrite		
R1, R2, R4, R6	Resistor	SMD, precisão 1%	Ver Tabela 1		
R3	Resistor	SMD, precisão 1%	100 kΩ		
R10	Resistor	THT, precisão 1%	100 kΩ		
R5	Resistor	SMD	470 Ω		
R7, R8, R9, R11	Resistor	SMD	100 kΩ		
R12	Resistor	THT, precisão 1%	100 kΩ		
R14	Resistor	SMD, precisão 1%	100 kΩ		
R13 e R18	Resistor	SMD	1 kΩ		
R15, R16, R17	Resistor	THT 1/2 W Precisão 1%	Ver Tabela 1		
R19 e R20	Resistor	SMD	2,7 kΩ		
C1, C2, C6, C8, C9, C10, C11, C12, C17, C18, C19	Capacitor	SMD	100 nF		
C3 e C4	Capacitor	THT	1,5 pF		
C5 e C7	Capacitor	THT	3,3 pF		
C13,C14 Capacitor		SMD	470 nF		

Legenda:

Nome do interruptor: Nome no esquemático e escrito na placa (ou em anilha) para identificar o componente Tipo do interruptor: Resistor / capacitor / transistor / diodo / diodo zener / etc Tecnologia do componente: eletrolítico / poliéster / tântalo / etc

Modelo: 2N2222 / 1N4148 / 1 k ohm 1/2W

7. Layout da placa

Mapa de localização dos componentes Silkscreen Top

Silkscreen Bottom

Máscara da placa (indicações sobre a placa feita com a fresadora)

Face superior Copper Top

Face inferior Copper Bottom (Espelhada)

8. Descrição de funcionamento

De uma forma geral, a placa de medição isolada de tensão pode ser dividida em quatro estágios: (i) o primeiro estágio possui um divisor resistivo para adequar o nível de tensão medido, fazendo com que o mesmo fique dentro dos limites de operação do segundo estágio; (ii) o segundo estágio apresenta um somador para a inserção de um offset na medida (em caso de medição CA); (iii) estágio isolador, que faz uso de um opto-acoplador com compensação da não-linearidade do dispositivo; (iv) estágio de condicionamento para transformar a medida em sinal de corrente para envio à placa de condicionamento e proteção.

9. Modos de utilização

A placa de condicionamento e isolação apresenta duas opções de medida: (i) modo tensão CC; e (ii) modo tensão CA. Estes modos são ajustados através do jumper J1, onde a posição 1-2 é utilizada para a medição CC e posição 2-3 para a medição CA. Caso a tensão de medição seja contínua, não é necessário soldar os seguintes componentes: TL_E1, R1, R2, R4, R6, R7, R8, R9, R11

Uma vez definida a faixa de tensão a ser medida, deve-se projetar o estágio de entrada composto por um divisor resistivo (R15-R17). Estes resistores estão especificados na Tabela 1 para diferentes tipos de medição e níveis de tensão. A faixa de operação projetada considera a operação nominal com 60% (2-8 V) de excursão na faixa de operação de saída (0-10 V).

		7 (2000)								
Tipo de Medida	Faixa de operação¹	Faixa de operação²	Faixa nominal	R15	R16	R17	R1	R2	R5	R6
CC	0-300 V	0-10 V	0-8 V	100 kΩ	100 kΩ	5,6 kΩ	-	-	1	ī
СС	0-400 V	0-10 V	0-8 V	120 kΩ	150 kΩ	5,6 kΩ	-	-	-	-
СС	0-500 V	0-10 V	0-8 V	150 kΩ	180 kΩ	5,6 kΩ	-	-	-	-
CA	–179,6 a 179,6 V	0-10 V	2-8 V	100 kΩ	220 kΩ	5,6 kΩ	10 kΩ	6,8 kΩ	330 Ω	12 Ω
CA	–311,1 a 311,1 V	0-10 V	2-8 V	270 kΩ	270 kΩ	5,6 kΩ	10 kΩ	6,8 kΩ	330 Ω	12 Ω

Tabela 1. Resistores para diferentes faixas de tensão e tipos de medida.

Os resistores R3 e R10 possuem a mesma função, sendo um SMD e outro THT, da mesma forma que os resistores R12 e R14. Deste modo, fica a critério do projetista qual utilizar.

A fonte utilizada para a alimentação do estágio de entrada (lado de potência) pode ser obtida diretamente de outra fonte isolada (isolada do lado de controle) conectada a ponte de diodos, desde que seja uma fonte com tensão suficiente para os reguladores de +12 V e -12 V.

10. Precauções

Cuidados a serem tomados na montagem e/ou uso.

¹ Entrada

² Saída.