

학습 목표

병합(Merge) 정렬의 알고리즘을 이해하고 시간복잡도를 계산할 수 있다

Data Structures in Python Chapter 5 - 2

- Merge sort
- Quick sort Algorithm
- Quick sort Analysis
- Empirical Analysis

Agenda & Readings

- Agenda
 - Merge sort $O(n \log n)$ sorting algorithm
- Reference:
 - Problem Solving with Algorithms and Data Structures
 - Chapter 5 Search, Sorting and Hashing
 - Analysis of merge sort
 - [알고리즘] 합병정렬

Merge sort

- Divide and conquer algorithm
 - We have already seen the divide and conquer algorithm using binary search on a sorted collection of items.
- Recursive or non-recursive(Iteration) implementation
- It was implemented on the first general purpose computer and is still running.

the first general purpose computer and its inventor,

Merge sort: Algorithm

- Divide array into two halves.
- Recursively sort each half.
- Merge two halves.

Goal: Given two sorted subarrays a[lo] to a[mi] and a[mi+1] to a[hi], replace with sorted subarray a[lo] to a[hi].

copy to auxiliary array

- If your array is empty or has one element, it is sorted.
- If it has two elements, sort it by swapping as appropriate.
- If it has more than two elements, do this:
 - split the array in half at the midpoint mi;
 - call mergesort() on the left half;
 - call mergesort() on the right half;
 - merge() the arrays by picking the smallest head element from the two sub-arrays until they are exhausted.

Merge sort

Below is the call tree for the merge sort algorithm:

Merge sort

Below is the tree of the merged parts returned by the merge sort algorithm:

Merge sort - Splitting list

• Slicing will be useful when halving the list in the merge sort code:

Merge sort - Merging the two halves of the list

```
def merge(a, le, ri):
    i = j = k = 0
    while i < len(le) and j < len(ri):
        if le[i] < ri[j]:</pre>
            a[k] = le[i]
            i = i + 1
        else:
            a[k] = ri[j]
            j = j + 1
        k = k + 1
    while i < len(le):
        a[k] = le[i]
        i = i + 1
        k = k + 1
    while j < len(ri):</pre>
        a[k] = ri[j]
                                             [54, 26, 93, 17, 20] [54, 26] [93, 17, 20]
        j = j + 1
        k = k + 1
```

Merge sort - Merging the two halves of the list

Merge sort Code

Use the function merge() defined previously to merge two halves.

```
def merge_sort(a):
    if len(a) > 1:
        mi = len(a) // 2
        le = a[:mi]
        ri = a[mi:]
        merge_sort(le)
        merge_sort(ri)
        merge(a, le, ri)
if __name__ == "__main__":
    a = [54, 26, 93, 17, 77, 31, 44, 55, 20]
    print("before:", a)
    merge_sort(a)
                                            before: [54, 26, 93, 17, 77, 31, 44, 55, 20]
    print(" after:", a)
                                             after: [17, 20, 26, 31, 44, 54, 55, 77, 93]
```

- To analyze the complexity of merge sort, you can look at its two steps separately:
 - Split Step: (Divide)
 Since the array is halved until a single element remains, the total number of halving operations performed ($\log_2 n$) times. Since there are no comparisons, however, swap nor shift operations during this step, we may consider this step takes constant time O(1) regardless of the subarray size.
 - Merge Step: (Conquer and Combine)
 It receives two arrays whose combined length is at most n (the length of the original input array), and it combines both arrays by looking at each element at most once for the comparison. This leads to a runtime complexity of O(n). Since we have split the input array $\log_2 n$ times, we also must merge $\log_2 n$ times as well. Then we get a total time complexity of $O(n \log_2 n)$.
- Therefore, The time complexity of the merge sort becomes $O(n \log_2 n)$.

To analyze the time complexity of merge sort:

Therefore, the time complexity of the merge sort becomes $O(n \log_2 n)$.

- Let T(n) be the total time taken by the Merge sort algorithm.
 - Sorting two halves will take at the most 2 T(n/2) time.
 - When we merge the sorted lists, we come up with a total n-1 comparison because the last element which is left will need to be copied down in the combined list, and there will be no comparison.
 - Thus, the recurrence relation will be:

$$T(n) = 2T(\frac{n}{2}) + n - 1 \tag{1}$$

$$=2T(\frac{n}{2})+n\tag{2}$$

• The timing a list of size 1 is constant, i.e., T(1) = 1.

$$T(n) = 2T(\frac{n}{2}) + n \tag{1}$$

$$= 2(2T(\frac{n}{2^2})) + n + n \tag{2}$$

$$= 2(2(2T(\frac{n}{2^3}))) + n + n + n \tag{3}$$

$$=2^{4}T(\frac{n}{2^{4}})+4n\tag{4}$$

$$= \dots (5)$$

$$=2^k T(\frac{n}{2^k}) + kn \tag{6}$$

• Since the base case, $T(1) = T(\frac{n}{2^k})$, occurs when $n = 2^k$. That is, $k = \log n$.

$$T(n) = n \cdot T(\frac{n}{n}) + n \cdot \log_2 n = n + n \cdot \log_2 n \tag{1}$$

• Therefore, Big O of Merge sort is $O(n \log_2 n)$.

Summary

Algorithm	Best	Worst	Average	Extra Memory	
Bubble	$O(n^2)$	$O(n^2)$	$O(n^2)$	0(1)	slow
Selection	$O(n^2)$	$O(n^2)$	$O(n^2)$	0(1)	
Insertion	O (n)	$O(n^2)$	$O(n^2)$	0(1)	Good if often almost sorted
Shell	O (n)	$O(n (\log n)^2)$	$O(n (\log n)^2)$	O (1)	
Merge	$O(n \log n)$	$O(n \log n)$	$O(n \log n)$	O (n)	Good for very large datasets
Quick	$O(n \log n)$	$O(n^2)$	$O(n \log n)$	O (n)	Faster than merge sort in general
Неар	$O(n \log n)$	$O(n \log n)$	$O(n \log n)$	0(1)	Best if $O(n \log n)$ required
Tim	O (n)	$O(n \log n)$	$O(n \log n)$	O (n)	used in Python, hybrid of merge sort and insertion sort

• Note: A comparison-based sorting algorithm cannot be better than $O(n \log n)$ in the average and worst case.

학습 정리

- 1) 병합 정렬은 대표적인 안정 정렬 중 하나이다
- 2) 병합 정렬은 $O(n \log n)$ 의 시간복잡도를 가진다
- 3) 정렬해야 할 데이터의 사이즈가 클 때도 유용하게 사용된다

