Mark Scheme (Results) January 2007

GCE

GCE Mathematics

Statistics S2 (6684)

January 2007 6684 Statistics S2 Mark Scheme

Question Number	Scheme	Marks
1. (a)	A random variable; function of known observations (from a population). data OK	B1 B1 (2)
(b) (i)	Yes	B1
(ii)	No	(1) B1 (1)
		Total 4
2.		
(a)	$P(J \ge 10) = 1 - P(J \le 9)$ or =1-P(J<10)	M1
	= 1 - 0.9919 implies method	
	= 0.0081 awrt 0.0081	A1 (2)
(b)	$P(K \le 1) = P(K = 0) + P(K = 1)$ both, implied below even with '25' missing	M1
	= $(0.73)^{25} + 25(0.73)^{24}(0.27)$ clear attempt at '25' required	M1
	= 0.00392 awrt 0.0039 implies M	A1 (3) Total 5

Question Number		Scheme	Marks
3. (a)	Let W represent the number of whi $W \sim B(12,0.45)$ $P(W=5) = P(W \le 5) - P(W \le 4)$ = 0.5269 - 0.3044	use of	B1 M1
	= 0.2225	awrt 0.222(5)	A1 (3)
(b)	$P(W \ge 7) = 1 - P(W \le 6)$	or =1- $P(W < 7)$	M1
	=1-0.7393	implies method	
	= 0.2607	awrt 0.261	A1 (2)
(c)	P(3 contain more white than colou	ared)= $\frac{10!}{3!7!}$ (0.2607) ³ (1 – 0.2607) ⁷ use of B,n=10	M1A1∫
		= 0.256654 awrt 0.257	A1 (3)
(d)	mean = $np = 22.5$; $var = npq = 12$.375	B1B1
	$P(W > 25) \approx P\left(Z > \frac{25.5 - 22.5}{\sqrt{12.375}}\right)$	\pm standardise with σ and $\mu; \pm 0.5$ c.c.	M1;M1
	$\approx P(Z > 0.8528)$	awrt 0.85	A1
	≈ 1 − 0.8023	'one minus'	M1
	≈0.1977	awrt 0.197 or 0.198	A1
			(7)
			Total 15

Question Number	Scheme		Marks
4. (a)	$\lambda > 10$ or large	μ ok	B1
(b)	The Poisson is discrete and the norma	·	(1) B1 (1)
(c)	Let <i>Y</i> represent the number of yachts hired in winter		
	$P(Y<3) = P(Y \le 2)$	$P(Y \le 2) \& Po(5)$	M1
	= 0.1247	awrt 0.125	A1 (2)
(d)	Let <i>X</i> represent the number of yachts hired in summer $X \sim Po(25)$.		
	N(25,25) all correct, ca	n be implied by standardisation below	B1
	$P(X > 30) \approx P\left(Z > \frac{30.5 - 25}{5}\right)$	± standardise with 25 & 5; ±0.5 c.c.	M1;M1
	$\approx P(Z > 1.1)$	1.1	A1
	≈ 1 − 0.8643	'one minus'	M1
	≈ 0.1357	awrt 0.136	A1 (6)
(e)	no. of weeks $= 0.1357 \times 16$	ANS (d)x16	M1
	= 2.17 or 2 or 3	ans>16 M0A0	A1 (2) Total 12

Question Number	Scheme	Marks
5. (a)	$f(x) = \begin{cases} \frac{1}{\beta - \alpha}, & \alpha < x < \beta, \\ 0, & \text{otherwise.} \end{cases}$ function including inequality, 0 otherwise	B1,B1 (2)
(b)	$\frac{\alpha + \beta}{2} = 2, \frac{3 - \alpha}{\beta - \alpha} = \frac{5}{8}$ or equivalent	B1,B1
	$\alpha + \beta = 4$ $3\alpha + 5\beta = 24$ $3(4 - \beta) + 5\beta = 24$ attempt to solve 2 eqns	MI
	$2\beta = 12$ $\beta = 6$ $\alpha = -2$ both	M1 A1
	00til	(4)
(c)	$E(X) = \frac{150 + 0}{2} = 75 \text{ cm}$ 75	B1 (1)
(d)	Standard deviation = $\sqrt{\frac{1}{12}(150-0)^2}$	M1
	$= 43.30127$ cm $25\sqrt{3}$ or awrt 43.3	A1 (2)
(e)	$P(X < 30) + P(X > 120) = \frac{30}{150} + \frac{30}{150}$ 1st or at least one fraction, + or double	M1,M1
	$= \frac{60}{150} \text{ or } \frac{2}{5} \text{ or } 0.4 \text{ or equivalent fraction}$	A1
		(3)
		Total 12

Question Number	Scheme	Marks
6. (a)	$H_0: p = 0.20, H_1: p < 0.20$	
	Let X represent the number of people buying family size bar. $X \sim B$ (30, 0.20)	
	$P(X \le 2) = 0.0442$ or $P(X \le 2) = 0.0442$ awrt 0.044 $P(X \le 3) = 0.1227$	M1A1
	$CR X \leq 2$ 0.0442 < 5%, so significant. Significant	M1
	There is evidence that the no. of family size bars sold is lower than usual.	A1 (6)
(b)	$H_0: p = 0.02, H_1: p \neq 0.02$	B1
	Let <i>Y</i> represent the number of gigantic bars sold.	
	$Y \sim B (200, 0.02) \Rightarrow Y \sim Po (4)$ can be implied below	M1
	$P(Y = 0) = 0.0183$ and $P(Y \le 8) = 0.9786 \Rightarrow P(Y \ge 9) = 0.0214$ first, either	B1,B1
	Critical region $Y = 0 \cup Y \ge 9$ $Y \le 0$ ok	B1,B1
	N.B. Accept exact Bin: 0.0176 and 0.0202	
(c)	Significance level = $0.0183 + 0.0214 = 0.0397$ awrt 0.04	B1 (1)
		Total 13

Question Number	Scheme	
7. (a)	$1 - F(0.3) = 1 - (2 \times 0.3^{2} - 0.3^{3})$ 'one minus' required = 0.847	M1 A1 (2)
(b)	F(0.60) = 0.5040 $F(0.59) = 0.4908$ both required awrt 0.5, 0.49 $0.5 lies between therefore median value lies between 0.59 and 0.60.$	M1A1 B1 (3)
(c)	$f(x) = \begin{cases} -3x^2 + 4x, & 0 \le x \le 1, \\ 0, & \text{otherwise.} \end{cases}$ attempt to differentiate, all correct	M1A1 (2)
(d)	$\int_0^1 x f(x) dx = \int_0^1 -3x^3 + 4x^2 dx$ attempt to integrate $x f(x)$	M1
	$= \left[\frac{-3x^4}{4} + \frac{4x^3}{3} \right]_0^1$ sub in limits	M1
	$= \frac{7}{12} \text{ or } 0.58\dot{3} \text{ or } 0.583 \text{ or equivalent fraction}$	A1 (3)
(e)	$\frac{\mathrm{df}(x)}{\mathrm{d}x} = -6x + 4 = 0$ attempt to differentiate f(x) and equate to 0	M1
	$x = \frac{2}{3}$ or $0.\dot{6}$ or 0.667	A1 (2)
(f)	mean < median < mode, therefore negative skew. Any pair, cao	B1,B1 (2)
		Total 14