

INTRODUCTION As is seen, quantity of information is grown in a rampant manner. Correspondingly written information soars with social media apps day by day. Tweets, comments, tags give a great contribution to that bulk of written information.

9/3/2021

EMREHAN

MOTIVATION

- ▶ Documents (docs) in this context are sentences. Sentences are composed of ordered words. One computes frequency of a word in sentences with known label (in train set) by labels.
- ▶ Frequency of words can give an idea about label of sentences in which they are. My models in this study are based on that approach.
- A set of solutions for those problems (labelling and imbalanced data) is proposed in this study.
- ► This study is aimed to be a contribution to Supervised Learning Literature as a bunch of Prediction models for Text Mining.

EMREHAN 9/3/2021

METHOD (Word to Stem)

- ▶ Using words for prediction of a sentence entails an approach based on structure of relevant language. This study focuses on the agglutinative language (ex. Turkish, Hungarian, Estonian, Basque, Japanese, Korean etc.)
- ▶ Naturally, in agglutinative language, stem of a word is core part to create «meaning». In most cases, word is in form of stem with derivational or/and inflectional affixes (morphemes).
- But to use word for computing frequencies may not be efficient on account of specific derivational and inflectional forms of word.
- ► For this reason, to use stem is more convenient than to use word because the stem involves meaning or concept which word bear in pure form (without fixes).

EMREHAN 9/3/2021

METHOD (Stem to Max-Stem)

- As length of a stem decreases, its meaning scope of the stem expands semantically. Stem may involve broad which goes over the limit of scope of word.
- ▶ In such cases, to choose derivational form of the stem with maximum length but which the word includes fits for purpose in terms of reasonably marking off scope of meaning of the word.
- ► That approach is extended to whole cases in order to guarantee saving the meaning of the word. (for more discussion: Step1_turkish_stems_ReadMe.txt)

EMREHAN

9/3/2021

COMPONENTS OF MODELS

- ▶ p: index of categories (or labels)
- ► Label^p: category wit p index
- ▶ n: counts of categories (or labels)
- ▶ doci: document, in test set, wit index i as a sentences or just a eadline
- ightharpoonup stem wit index j of doc_i (stem can be c osen as max stem mentioned previous slides.)
- \rightarrow m_i : counts of stem_{ij}
- $ightharpoonup \Sigma^p$: counts of documents labelled wit category wit index p in train set
- Σ_{ij}^p : counts of documents, w ic include stem $_{ij}$, labelled wit category wit index p in train set

EMREHAN

9/3/2021

COMPONENTS OF MODELS

- $ightharpoonup \Lambda_i^p$: counts of Λ_{ij} w ic equals to $Label^p$
- $\triangleright \lambda_{ij}$: lengt of stem_{ij}
- $in case t at \Sigma^p = 0, \rho_i^p := 0$
- $\begin{array}{ll} \blacktriangleright & \Pi_{ij}^p & \frac{\Sigma_{ij}^p}{\sum_{q=1}^n \Sigma_{ij}^q} \\ & \text{(it can be considered as probability of stem}_{ij} \ labelled \ wit \ \ category \ wit \ \ p \ index) \end{array}$

EMREHAN 9/3

COMPONENTS OF MODELS

- $\overline{\Pi_i^p} := average_j \ \left(\Pi_{ij}^p \right) suc \ t \ at \ all \ "j \ "s \ meet \ t \ e \ condition \ \Pi_{ij}^p > 0$ in case that $\Sigma_{ij}^p = 0 \ for \ all \ p = 1,2,...n, \overline{\Pi_i^p} = 0$
- $\blacktriangleright \widehat{\Pi_i^p} \quad \max_j(\Pi_{ij}^p)$

EMREHAN

9/3/2021

 $\begin{aligned} \text{$\blacktriangleright$ $predict}_1(doc_i) = \begin{cases} Label^q & \text{$if $\Sigma_{ij}^p = 0 < \Sigma_{ij}^q$ for all $p \neq q$} \\ Label^q w & \text{$ere $q = $arg $2nd max_p Λ_i^p ot $erwise} \end{cases} \\ & \text{$in case t at q is not uniqe, q is c osen as t e minimum index meeting t e condition} \end{aligned}$

Model 2

ightharpoonup predict₂(doc_i) = Label^q w ere q = arg max_p ρ_i^p

9/3/2021

EMREHAN

Model 5

 $\qquad \qquad predict_5(doc_i) = Label^q \ w \ ere \ q = \arg\max_p \left(max_j \left(\lambda_{ij} \ \frac{z_{ij}^p}{\Sigma^p} \right) \right)$

EMREHAN

9/3/2021

17

Case «No Prediction»

- ▶ No stem of a document may not be included by any document in train set, in some cases. Trivially prediction functions generate label as «No Prediction». This probability is nearly zero if size of train set is sufficiently large.
- ▶ However there is a higher probability of label «No Prediction» in model having Combinatorial Approach in the study. Because probability of that all elements of a combination (a bunch of stems in a document in test set) are in same document (in train set) is obviously lower than probability of a stem (involved by document in test set) in a document (in train set).
- ▶ Some examples of that case is observed in Episode two.

EMREHAN

9/3/2021

Case «Not Unique» In some cases, values generating predictions, like "arg $max_p \widehat{\Pi}_t^{p,n}$ and "arg $2nd \ max_p \ \Lambda_t^{p,n}$, may not be unique because of equal values. Then models choose label indexed with minimum argument as a prediction corresponding list structure in Python. I use extra parameters (figuratively considered as tiebreaker), Σ_{ij}^p and $\Sigma_j \Sigma_{ij}^r$, on the purpose of avoiding that case. Moreover as train set gets large, probability of exitence of equal values is expected to diminish.

Application (computations)

- $\rho_i^p: \rho_i^1 = \frac{311}{7384} = 0.042, \ \rho_i^2 = \frac{99}{1568} = 0.063, \ \rho_i^3 = \frac{29}{229} = 0.127, \ \rho_i^4 = \frac{8}{116} = 0.069$ $\overline{\Pi}_i^p: \overline{\Pi}_i^1 = \frac{0.88 + 0.21 + 0.43 + 0.53 + 0.81 + 0.81}{6} = 0.612, \ \overline{\Pi}_i^2 = \frac{0.12 + 0.77 + 0.0 + 0.12 + 0.13}{5} = 0.24$ $\overline{\Pi}_i^3 = \frac{0.01 + 0.57 + 0.41 + 0.04 + 0.04}{5} = 0.214, \ \overline{\Pi}_i^4 = \frac{0.03 + 0.02}{2} = 0.0.025$
- $\widehat{\Pi_i^p}$: $\widehat{\Pi_i^1} = 0.88$, $\widehat{\Pi_i^2} = 0.77$, $\widehat{\Pi_i^3} = 0.57$, $\widehat{\Pi_i^4} = 0.03$

EMREHAN 9/3/2021

Application (computations)

Some Notes:

Algorithm to find stem of word is not be said to work perfectly due to morphological nature of Turkish language:

 $word: \ yıldır[....for\ a\ year] \rightarrow stem: \ yıl[year]\ but\ algorithm\ gives:\ yıldır(mak)[(to)discourage]$

 $word: \ \, \text{$\operatorname{calişiyor}$ [(They) try to]$} \rightarrow \text{$\operatorname{stem}: $\operatorname{calis}(mak)[(to) try (to do something)]$} \ \, \text{$\operatorname{bush}$} \ \, \text{$\operatorname{bush}$} \ \, \text{$\operatorname{calisiyor}$} \ \, \text{$\operatorname{calisiyon}$} \ \, \text{$\operatorname{calisi$

But it is reasonably well:

word: müzesine [to museum] \rightarrow stem: müze [museum]

word: girmeye [for the purpose of entering] \rightarrow stem: gir(mek) [(to) enter]

The reason of imperfect cases is turkish stem list which algorithm uses. Because excluding derivational forms in turkish stem list may give rise to losing of true stem:

for example çalışıyor \rightarrow çalış(mak) (true stem but in derivational form then excluded) \rightarrow çalı(mak) (original stem but not related modern meaning of çalış(mak). Among these structures, algorithm gives "çalı", having different meaning but covered by "çalış(mak)". However it is not big deal that is why nearly all documents including "çalı" related to "çalış(mak)", because "çalı" is not popular word in modern turkish.

 $This morphological problem in this point is related to computing {\it ``elarger' meaning scope than it should be ``elarger' in the computing {\it ``elarger' meaning scope than it should be ``elarger' in the computing {\it ``elarger' meaning scope than it should be ``elarger' in the computing {\it ``elarger' meaning scope than it should be ``elarger' in the computing {\it ``elarger' meaning scope than it should be ``elarger' in the computing {\it ``elarger' meaning scope than it should be ``elarger' in the computing {\it ``elarger' meaning scope than it should be ``elarger' in the computing {\it ``elarger' meaning scope than it should be ``elarger' in the computing {\it ``elarger' meaning scope than it should be ``elarger' in the computing {\it ``elarger' meaning scope than it should be ``elarger' in the computing {\it ``elarger' meaning scope than it should be ``elarger' in the computing {\it ``elarger' meaning scope than it should be ``elarger' in the computing {\it ``elarger' meaning scope than it should be ``elarger' in the computing {\it ``elarger' meaning scope than it should be ``elarger' in the computing {\it ``elarger' meaning scope than it should be {\it `elarger' meaning scope than it should be {\it `elarger' meaning sco$ than it should be».

EMREHAN 9/3/2021

