Relatório 1º projecto ASA 2024/2025

Grupo: AL099

Alunos: Diogo Lobo (109293) e Tomás Lopes (110210)

Descrição do Problema e da Solução

O Problema

O problema consiste em uma matriz de tamanho nxn e uma operação com m elementos menores que n. A matriz contém o resultado de todas as operações possíveis com números de 1 a n. O objetivo é encontrar a parametrização mais à esquerda da operação que dê um dado resultado.

A solução

A solução consiste na utilização de uma tabela mxm que é preenchida, diagonal a diagonal, com as combinações possíveis de resultados em cada grupo de elementos adjacentes. Cada combinação guarda também a divisão da parametrização e o index das combinações usadas para o elemento esquerdo e direito da operação que dá origem ao valor dessa combinação. Estas informações são posteriormente utilizadas para reconstruir a parametrização de forma recursiva.

Análise Teórica

- Leitura de dados de entrada: Leitura simples, com ciclos a depender quadraticamente de n e linearmente de m. $O(n^2 + m)$
- Reconstrução da string a partir de tabela: Operação recursiva que divide problema de um certo tamanho em dois problemas de metade do tamanho, e o custo para gerar os subproblemas é 1. Logo pelo teorema mestre:

$$a=2$$
, $b=2$, $d=0\log\log\log_b a=1$, $1>d$ e a complexidade é $O(m^1)=O(m)$

 Cálculo da string: O cálculo da string consiste em percorrer m diagonais de uma tabela mxm e em cada uma, calcular em cada célula da diagonal, todas as de combinações não repetidas (no máximo n em cada) entre cada, no máximo, m pares de células à esquerda e abaixo da célula que está a ser calculada. No final utiliza-se a função de reconstrução. A complexidade pode ser resumida na

seguinte expressão:
$$O(m + n^2 \cdot \sum_{k=1}^{m} k(m-k))$$

O somatório pode ser simplificado:

$$\sum_{k=1}^{m} k(m-k) = m \sum_{k=1}^{m} t - \sum_{k=1}^{m} t^2 = \frac{1}{2} m^2 (m+1) - \frac{1}{6} m(m+1)(2m+1) = \frac{1}{6} (m^3 - m)$$

Relatório 1º projecto ASA 2024/2025

Grupo: AL099

Alunos: Diogo Lobo (109293) e Tomás Lopes (110210)

Logo a complexidade é: $O(\frac{1}{6}(m^3 - m) \cdot n^2 + m) = O(m^3 \cdot n^2)$

- Escrita de dados de saída: Escrita de uma string. O(1)
- Complexidade final: $O(m^3 \cdot n^2 + n^2 + m + m + 1) = O(m^3 \cdot n^2) = f(n, m)$

Avaliação Experimental dos Resultados

Resultados dos Testes

Notalitation and Fostor			
n	m	f(n, m)	Tempos
5	10	2.5000e+04	0.0024
10	55	1.6638e+07	0.0019
15	100	2.2500e+08	0.0047
20	160	1.6384e+09	0.0182
25	205	5.3845e+09	0.0364
30	265	1.6749e+10	0.0779
35	310	3.6494e+10	0.1205
40	370	8.1045e+10	0.1998
45	415	1.4473e+11	0.2884
50	475	2.6793e+11	0.4475
55	520	4.2534e+11	0.6416
60	580	7.0240e+11	0.9245
65	625	1.0315e+12	1.1763
70	685	1.5750e+12	1.6096
75	730	2.1882e+12	1.9807
80	790	3.1554e+12	2.6302
85	835	4.2063e+12	3.1517
90	895	5.8070e+12	4.0238
95	940	7.4960e+12	6.9018
100	1000	1.0000e+13	5.5740

Tabela de resultados: n varia de 5 em 5 e m é proveniente da mediana de vários resultados com o mesmo n e m a variar de 15 em 15.