

University of Applied Sciences Trier.

BACHELOR PROJEKTARBEIT

Entwicklung und Implementierung eines Can-Interfaces zur präzisen Lageregelung eines Portalkrans

BACHELOR OF ENGINEERING

ELEKTROTECHNIK
INFORMATIONSTECHNOLOGIE UND ELEKTRONIK

verfasst von: Torsten ZIMMERMANN. [966352]

> Teamprojekt mit: Steave DAHM. [969471]

> > betreut von:

Prof. Dr. Ing. Matthias Scherer Andreas Reis, M. Sc.

Abgabedatum: 13. Oktober 2020

University of Applied Sciences Trier

MASTER THESIS

N-Body Langevin-Dynamic-Simulation of magnetic Nanoparticles with MATLAB

MASTER OF SCIENCE

ELECTRICAL ENGINEERING INFORMATION TECHNOLOGY AND ELECTRONICS

author:

Michael P. Adams, B. Eng. [957815]

supervisors:

Prof. Dr. Ing. Hellmut HUPE Jörg FUSENIG, M. Sc.

submission date: 29. February 2020

Eidesstattliche Erklärung

Ich versichere, die Master-Thesis selbstständig und lediglich unter Benutzung der angegebenen Quellen und Hilfsmittel verfasst zu haben.

Ich erkläre weiterhin, dass die vorliegende Arbeit noch nicht im Rahmen eines anderen Prüfungsverfahrens eingereicht wurde.

Ort, Datum

Danksagung

An dieser Stelle möchte ich mich bei all denjenigen bedanken, die mich während der Anfertigung dieser Master-Thesis unterstützt und motiviert haben.

Zuerst gebührt mein Dank Herrn Prof. Dr.-Ing. Hellmut HUPE und Herrn Jörg FU-SENIG, der meine Master-Thesis richtungsweisend und mit viel Engagement betreut hat. Für die hilfreichen Anregungen und die konstruktive Kritik bei der Erstellung dieser Arbeit möchte ich mich herzlich bedanken.

Insbesondere möchte ich mich bei meinen Eltern Egon und Cäcilia Adams bedanken, die mir mein Studium durch ihre finanzielle Unterstützung ermöglicht haben und stets ein offenes Ohr für meine Sorgen hatten.

Michael P. Adams, Trier, 13. Oktober 2020

Inhaltsverzeichnis

Sy	ymbolverzeichnis	6
Αl	bbildungsverzeichnis	11
Ta	abellenverzeichnis	12
1	Title 1.1 Title	13
Li	teraturverzeichnis	14

Symbolverzeichnis

Mathematische Symbole und Operatoren

Symbol	Bezeichnung
∇	Nabla-Operator
Δ	Laplace-Operator
$\mathbf{J}_{\underline{u}}\left(\underline{F} ight)$	Jacobi-Matrix angewandt auf \underline{F} bezüglich \underline{u}
$\mathcal{O}(\cdot)$	Landau-Symbol
0	Nullmatrix
$\overline{\operatorname{diag}(a_{11},\cdots,a_{nn})}$	Diagonalmatrix
$\delta(\cdot)$	Delta-Distribution
×	Kreuzprodukt
\otimes	Dyadisches Produkt
\overrightarrow{a}	Physikalischer 3D-Vektor
$\underline{\underline{a}}$	Generalisierter Vektor
E {·}	Erwartungswert-Operator
$\overline{\qquad \qquad \text{VAR}\left\{\cdot\right\}}$	Varianz-Operator
Σ	Kovarianz-Matrix
Λ_{jj}	Eigenwerte der Kovarianz-Matrix
Λ	Diagonalisierte Kovarianz-Matrix
$oxed{\Upsilon_{ij}}$	Komponenten der Eigenvektor-Matrix der Kovarianz-Matrix
Υ	Eigenvektor-Matrix der Kovarianz-Matrix

Physikalische Konstanten

Symbol & Wert	Bezeichnung
$\mu_0 = 4\pi \cdot 10^{-7} \frac{\text{Vs}}{\text{Am}}$	Magnetische Feldkonstante
$k_B = 1.380649 \cdot 10^{-23} \text{J/K}$	Boltzmann-Konstante
$A \approx 10^{-19} \text{J}$	Hamaker-Konstante

Physikalische Größen

Symbol	Einheit	Bezeichnung
$\overline{\psi_H}$	$A \cdot m^2$	Skalarpotential der magnetischen Feldstärke
$\overline{\psi_B}$	$T \cdot m$	Skalarpotential der magnetischen Flussdichte
\overrightarrow{H}	$A \cdot m$	Magnetische Feldstärke
$\overrightarrow{\overline{B}}$	Т	Magnetische Flussdichte
\overrightarrow{m}	${ m A\cdot m^2}$	Magnetisches Moment
\overrightarrow{M}	A/m	Magnetisierung
\overline{M}	A/m	Betrag der Magnetisierung
Φ	Wb	Magnetischer Remanenzfluss
\overrightarrow{l}	m	Dipol-Achsenvektor
\overrightarrow{e}	-	Dipol-Achseneinheitsvektor
\overrightarrow{F}	N	Kraft
\overrightarrow{T}	$N \cdot m$	Drehmoment
$\overrightarrow{F_{ij}}^D$	N	Magnetische Dipol-Dipol-Kraft
$\overrightarrow{T_{ij}}^D$	$N \cdot m$	Magnetisches Dipol-Dipol-Drehmoment
$\overrightarrow{F_{ij}}^H$	N	Hamaker-Kraft
$\overrightarrow{F_{ij}}^S$	N	Sterisch-repulsive Kraft
V_{ij}^H	J	Hamaker-Potential
$\overline{V_{ij}^S}$	J	Potentielle Energie der sterischen Repulsion

Symbol	Einheit	Bezeichnung
\underline{q}	_	Ortsvektor der generalisierten Koordinaten
$ \dot{q}$	_	Geschwindigkeitsvektor der generalisierten Koordinaten
$\dfrac{\ddot{q}}{}$	_	Beschleunigungsvektor der generalisierten Koordinaten
$\lambda_1, \lambda_2, \lambda_3$	_	Körperfeste Kugelkoordinaten
\mathcal{J}	-	Jacobi-Matrix (d'Alembert'sches Prinzip)
\mathcal{M}	-	Massenmatrix (d'Alembert'sches Prinzip)
\mathcal{R}	-	Relativmatrix (D'ALEMBERT'sches Prinzip)
<u>F</u>	-	Generalisierter Kraftvektor (D'Alembert'sches Prinzip)
$\overline{x,y,z}$	m	Kartesische Koorindaten
α	rad	Azimut-Winkel
β	rad	Zenit-Winkel
$\overrightarrow{r_{ij}}$	m	Abstandsvektor von i zu j
η	kg/(m·s)	Dynamische Viskosität
T	K	Temperatur
R	m	Partikel-Radius
ρ	${\rm kg/m^3}$	Massendichte
\overline{m}	kg	Masse
\overline{V}	m^3	Partikel-Volumen
γ_t	kg/s	Transversale Stokes'sche Reibungskonstante
$\overline{\gamma_r}$	$(\mathrm{kg}\cdot\mathrm{m}^2)/\mathrm{s}$	Rotatorische Stokes'sche Reibungskonstante
ξ	$1/\mathrm{m}^2$	Dichte der Tensidschicht
δ	m	Dicke der Tensidschicht

Primäre Skalierungs-Konstanten

 \mathbf{Symbol}	Einheit	Bezeichnung
$T_{ m ch}$	s	Zeitlicher Skalierungsfaktor
R	m	Räumlicher Skalierungsfaktor

Skalierte Kofaktoren der Kräfte

Symbol	Einheit	Bezeichnung
C_H	_	Kofaktor der Hamaker-Kraft
C_S	_	Kofaktor 1 der sterischen Repulsion
c_S	_	Kofaktor 2 der sterischen Repulsion
C_{FD}	_	Kofaktor der magn. Dipol-Dipol-Kraft
C_{TD}	_	Kofaktor des magn. Dipol-Dipol-Drehmoment
C_{FB}	$\frac{s^2 \cdot m \cdot A}{kg}$	Kofaktor äußerer magn. Kräfte
C_{TB}	$\frac{\mathrm{s}^2 \cdot \mathrm{A}}{\mathrm{kg}}$	Kofaktor äußerer magn. Drehmomente

Seite: 10

Abbildungsverzeichnis

Tabellenverzeichnis

1 Title

1.1 Title

Literaturverzeichnis