

#5: Intention Detection

Claudio CASTELLINI, Sabine THÜRAUF

http://cyberneticzoo.com/man-amplifiers/1966-69-g-e-hardiman-i-ralph-mosher-american/

The HAL Lumbar by Cyberdyne, Inc., 2017

https://roboticsandautomationnews.com/2017/10/02/cyb erdyne-launches-new-version-of-its-exoskeleton/14360/

Theory Recap

Theory Recap

Theory Recap

1. Pre-Processing – Example filtering

Input signal might be very noisy, have outliers, etc.

Task 1: How can we filter the signal to gain a "clean" input signal?

1. Pre-Processing – Example filtering

Input signal might be very noisy, have outliers, etc.

Task 1: How can we filter the signal to gain a "clean" input signal?

Task 2: Apply a sliding median filter with a window size of 5 for the following data set:

Time	1	2	3	4	5	6	7	8
Signal	0.5	3.4	2.1	1.5	4.2	-2.0	7.3	2.1

1. Pre-Processing – Example filtering

Input signal might be very noisy, have outliers, etc.

Task 1: How can we filter the signal to gain a "clean" input signal?

Task 2: Apply a sliding median filter with a window size of 5 for the following data set:

Time	1	2	3	4	5	6	7	8
Signal	0.5	3.4	2.1	1.5	4.2	-2.0	7.3	2.1
Mean			2.1	2.1	2.1	2.1		

0.5, 1.5, 2.1, 2.1, 2.1, 2.1, 2.1

Theory Recap

2. Feature Extraction

What are features?

Flower:

- Color
- Size
- Number of petals
- •

Image

- Size
- Color channels
- •

2. Feature Extraction

What are features?

2. Feature Extraction

- 1. Features are not always that obvious like in the flower image
- 2. Relevant features need to be selected
- 3. Features can be extracted from a signal using different algorithms

Eigenvalues/Eigenvectors and Co-Variances are often a good starting point!

2. Feature Extraction

For input
$$X = [x_1^T ... x_n^T]^T \in \mathbb{R}^{n \times d}$$
 with $x_i = [x_{1,i} ... x_{m,i}]^T i \in [1, ..., n]$

Standardization

$$\widetilde{x_{i,j}} = \frac{x_{i,j} - \overline{x_i}}{\sigma}$$

Covariance two features/channels

$$\sigma(x_1, x_2) = \frac{\sum_{k=1}^{m} (x_{k,1} - \overline{x_1})(x_{k,2} - \overline{x_2})}{m}$$

Covariance matrix of two features

$$C_{1,2} = \begin{pmatrix} \sigma(x_1, x_1) & \sigma(x_1, x_2) \\ \sigma(x_2, x_1) & \sigma(x_2, x_2) \end{pmatrix}$$

Eigenvalues & -vectors $Ax = \lambda x \Leftrightarrow Ax - \lambda x = 0 \Leftrightarrow (A - \lambda I) \cdot x = 0$

2. Feature Extraction

2. Feature Extraction

2. Feature Extraction

Principal Component Analysis (PCA)

https://www.youtube.com/watch?v=FgakZw6K1QQ

2. Feature Extraction

Theory Recap

3. Classification

How do we classify our features?

- Decision Trees
- K-Nearest Neighbours (k-NN)
- Support Vector Machines (SVM)

3. Classification

How do we classify our features?

Decision Trees

3. Classification

How do we classify our features?

Decision Trees

https://www.caliberdesign.co.nz/wp-content/uploads/2015/11/engineering-flowchart.jpg

3. Classification

How do we classify our features?

- Decision Trees
- K-Nearest Neighbours (k-NN)

https://www.jcchouinard.com/wp-content/uploads/2021/08/image-8.png

3. Classification

How do we classify our features?

- Decision Trees
- K-Nearest Neighbours (k-NN)

Rehabilitation and assistive Robotics

3. Classification

How do we classify our features?

- Decision Trees
- K-Nearest Neighbours (k-NN)
- Support Vector Machines (SVM)

3. Classification

How do we classify our features?

3. Classification

How to prevent overfitting?

Rehabilitation and assistive Robotics

3. Classification

How do we classify our features?

- Decision Trees
- K-Nearest Neighbours (k-NN)
- Support Vector Machines (SVM)
- Neural Networks

$$y = h(x)$$

$$h(x_1, x_2) \rightarrow (y_1, y_2)$$

- There can be multiple hidden layers
- At least 3 layers ▶ deep learning

Summary

