Trig Final (SLTN v629)

- You can use a calculator (like Desmos)
- You should have a unit-circle with special angles and coordinates marked.

Question 1

In the figure below, we see a circle and a central angle that subtends an arc. The radius is 95 meters. The angle measure is 1.8 radians. How long is the arc in meters?

$$\theta = \frac{L}{r} \qquad r = \frac{L}{\theta} \qquad L = r\theta$$

L = 171 meters.

Question 2

Consider angles $\frac{9\pi}{4}$ and $\frac{-23\pi}{6}$. For each angle, use a spiral with an arrow head to \mathbf{mark} the angle on a circle below in standard position. Then, find \mathbf{exact} expressions for $\cos\left(\frac{9\pi}{4}\right)$ and $\sin\left(\frac{-23\pi}{6}\right)$ by using a unit circle (provided separately).

Find $cos(9\pi/4)$

$$\cos(9\pi/4) = \frac{\sqrt{2}}{2}$$

Find $\sin(-23\pi/6)$

$$\sin(-23\pi/6) = \frac{1}{2}$$

Question 3

If $\tan(\theta) = \frac{-35}{12}$, and θ is in quadrant IV, determine an exact value for $\sin(\theta)$.

Ignore any negatives and the quadrant, and draw a right triangle (based on SOHCAHTOA) in standard (quadrant I) orientation.

Solve the Pythagorean Equation

$$12^{2} + 35^{2} = C^{2}$$

$$C = \sqrt{12^{2} + 35^{2}}$$

$$C = 37$$

Rescale the triangle so the hypotenuse is 1. Reflect the triangle into Quadrant IV in a unit circle.

$$\sin(\theta) = \frac{-35}{37}$$

Question 4

A mass-spring system oscillates vertically with an amplitude of 3.43 meters, a frequency of 4.77 Hz, and a midline at y = 6.31 meters. At t = 0, the mass is at the maximum height. Write an equation to model the height (y in meters) as a function of time (t in seconds).

Any of these equations would get full credit.

$$y = 3.43\cos(2\pi 4.77t) + 6.31$$

or

$$y = 3.43\cos(9.54\pi t) + 6.31$$

or

$$y = 3.43\cos(29.97t) + 6.31$$