Greatest hits in Ramsey theory

Alan Li¹ advised by Prof. David Zureick-Brown²

¹Amherst College

²Amherst College

Thesis Defense, April 2024

Table of Contents

Introduction

Ramsey numbers

3 Arithmetic Progressions

Table of Contents

Introduction

Ramsey numbers

3 Arithmetic Progressions

Introduction

What is Ramsey theory?

• "Finding ordered substructures in large structures"

Introduction

What is Ramsey theory?

- "Finding ordered substructures in large structures"
- Given substructure Y, how large must structure X be until it is forced to contain Y?

Table of Contents

Introduction

Ramsey numbers

Arithmetic Progressions

Primer on Graph Theory

Figure: Examples of graphs.

Complete graph K_n : a graph with n vertices and an edge between every pair of vertices. As a subgraph of a graph, also known as a *clique*.

There are *n* students at a party, where any two students are either friends or strangers. Must there be three students who are all either mutually friends or mutually strangers?

There are *n* students at a party, where any two students are either friends or strangers. Must there be three students who are all either mutually friends or mutually strangers?

Equivalently, given a 2-colored K_n , must there be a monochromatic K_3 ?

$$n = 5$$
:

Figure: Example of 5 people, with no 3 people friends or strangers

Figure: Proof that with 6 people, there exists 3 people either friends or strangers

n = 6:

Figure: Proof that with 6 people, there exists 3 people either friends or strangers

n = 6:

Figure: Proof that with 6 people, there exists 3 people either friends or strangers

Generalization: What if we want to find ℓ mutual friends or strangers, or equivalently a monochromatic K_{ℓ} ? What if we have r categories (instead of friends/strangers), or equivalently an r-colored K_n ?

Ramsey's Theorem

Let r be any positive integer. For any $\ell_1,...,\ell_r \in \mathbb{Z}^+$, there exists an $n \in \mathbb{Z}^+$ such that any r-coloring (with colors $c_1,...,c_r$) of K_n contains an ℓ_i -clique of color c_i for some $1 \le i \le n$. Denote the smallest such n to be $R(\ell_1,...,\ell_r)$, known as $Ramsey\ numbers$.

Proof of Ramsey's Theorem (when r = 2):

• Base case: $R(1, \ell)$ and $R(\ell, 1)$.

Proof of Ramsey's Theorem (when r = 2):

- Base case: $R(1, \ell)$ and $R(\ell, 1)$.
- Inductive step: If $R(\ell_1-1,\ell_2)$ and $R(\ell_1,\ell_2-1)$ exist, then $R(\ell_1,\ell_2)$ exists, for all $\ell_1,\ell_2 \in \mathbb{Z}^+$.

Proof of Ramsey's Theorem (when r = 2):

- Base case: $R(1, \ell)$ and $R(\ell, 1)$.
- Inductive step: If $R(\ell_1-1,\ell_2)$ and $R(\ell_1,\ell_2-1)$ exist, then $R(\ell_1,\ell_2)$ exists, for all $\ell_1,\ell_2\in\mathbb{Z}^+$.
- Consider 2-coloring on complete graph with $R(\ell_1 1, \ell_2) + R(\ell_1, \ell_2 1)$ vertices.

Proof of Ramsey's Theorem (when r = 2):

- Base case: $R(1, \ell)$ and $R(\ell, 1)$.
- Inductive step: If $R(\ell_1-1,\ell_2)$ and $R(\ell_1,\ell_2-1)$ exist, then $R(\ell_1,\ell_2)$ exists, for all $\ell_1,\ell_2\in\mathbb{Z}^+$.
- Consider 2-coloring on complete graph with $R(\ell_1 1, \ell_2) + R(\ell_1, \ell_2 1)$ vertices.
- Choose $x \in G$; either x has $\geq R(\ell_1 1, \ell_2)$ red neighbours or $\geq R(\ell_1, \ell_2 1)$ blue neighbours.

Proof of Ramsey's Theorem (when r = 2):

- Base case: $R(1, \ell)$ and $R(\ell, 1)$.
- Inductive step: If $R(\ell_1-1,\ell_2)$ and $R(\ell_1,\ell_2-1)$ exist, then $R(\ell_1,\ell_2)$ exists, for all $\ell_1,\ell_2\in\mathbb{Z}^+$.
- Consider 2-coloring on complete graph with $R(\ell_1-1,\ell_2)+R(\ell_1,\ell_2-1)$ vertices.
- Choose $x \in G$; either x has $\geq R(\ell_1 1, \ell_2)$ red neighbours or $\geq R(\ell_1, \ell_2 1)$ blue neighbours.

Note that this also shows that $R(\ell_1, \ell_2) \leq R(\ell_1 - 1, \ell_2) + R(\ell_1, \ell_2 - 1)$.

Corollary

For all $\ell_1, \ell_2 \in \mathbb{Z}^+$, we have:

$$R(\ell_1,\ell_2) \leq \binom{\ell_1+\ell_2}{\ell_1}.$$

Corollary

For all $\ell_1, \ell_2 \in \mathbb{Z}^+$, we have:

$$R(\ell_1,\ell_2) \leq \binom{\ell_1+\ell_2}{\ell_1}.$$

Proof:

• Base case: $R(1,\ell)$ and $R(\ell,1)$.

Corollary

For all $\ell_1, \ell_2 \in \mathbb{Z}^+$, we have:

$$R(\ell_1,\ell_2) \leq \binom{\ell_1+\ell_2}{\ell_1}.$$

Proof:

- Base case: $R(1,\ell)$ and $R(\ell,1)$.
- Inductive step:

$$R(\ell_{1}, \ell_{2}) \leq R(\ell_{1} - 1, \ell_{2}) + R(\ell_{1}, \ell_{2} - 1)$$

$$\leq {\ell_{1} + \ell_{2} - 1 \choose \ell_{1} - 1} + {\ell_{1} + \ell_{2} - 1 \choose \ell_{2} - 1}$$

$$= {\ell_{1} + \ell_{2} \choose \ell_{1}}.$$
(1)

There is more interest in the case where $\ell_1 = \ell_2$, known as the *diagonal Ramsey numbers*.

In this case, we have $R(\ell,\ell) \leq {2\ell \choose \ell} \leq 4^{\ell}$.

Can we do better?

Marcelo Campos, Simon Griffiths, Robert Morris, and Julian Sahasrabudhe [2023]

For all sufficiently large $\ell \in \mathbb{Z}^+$, we have:

$$R(\ell,\ell) \leq (4-\epsilon)^{\ell}$$

for some $\epsilon > 2^{-7}$.

In the following slides we will give a high level overview of the proof.

Erdos-Szekeres Algorithm

Given G = (V, E) and $\ell_1, \ell_2 \in \mathbb{Z}^+$, the algorithm is as follows:

- Initiate $a = \ell_1$, $b = \ell_2$, X = V, and $A, B = \emptyset$.
- IF a = 0: RETURN A.
- IF b = 0: RETURN B.
- ELSE: Pick any $v \in X$, and let $N_R(v)$ be its red neighbours.
 - IF $|N_R(v) \cap X| \ge \frac{a}{a+b}|X|$: add v to A, replace X with $N_R(x) \cap X$, and decrement ℓ_1 .
 - ELSE IF $|N_R(v) \cap X| < \frac{a}{a+b}|X|$: add v to B, replace X with $N_B(x) \cap X$, and decrement ℓ_2 .
- Repeat.

Figure: Schematic diagram for the Erdos–Szekeres Algorithm: at any point the set A forms a red clique, the set B forms a blue clique, and the set X is only connected to A with red edges and B with blue edges.

This algorithm is inefficient: this paper lowers the upper bound by improving the algorithm.

Definition

Given a 2-coloring of a graph G = (V, E), a **book** is a disjoint pair (S, T) where $S, T \in V$, and where S forms a monochromatic clique (WLOG of the color red), and all edges between S and T are red.

The key observation is that if T contains a red clique of size $\ell - |S|$, then we have a red clique of size ℓ by "adding" it to S.

So we want a modified algorithm (the **Book Algorithm**) that keeps track of a red book.

Figure: Schematic diagram for our modified algorithm: at any point the set A forms a red clique, the set B forms a blue clique, and the set X is only connected to A with red edges and B with blue edges, and the set Y is only connected to A with red edges.

Book algorithm

Given a graph G=(V,E), a 2-coloring on G, $\ell_1,\ell_2\in\mathbb{Z}^+$, and $\mu\in(\frac{1}{2},1)$, the **book algorithm** is as follows:

- 0) Initialize sets X, Y as equipartition of V, and initialize $A, B = \emptyset$.
- 1) Degree Regularization
- 2) Big blue step
- 3) Red step
- 4) Density boost

Book algorithm

Given a graph G=(V,E), a 2-coloring on G, $\ell_1,\ell_2\in\mathbb{Z}^+$, and $\mu\in(\frac{1}{2},1)$, the **book algorithm** is as follows:

- 0) Initialize sets X, Y as equipartition of V, and initialize $A, B = \emptyset$.
- 1) Degree Regularization

While X is nonempty, replace X with

 $\{x \in X : |N_R(x) \cap Y| \ge (p - \epsilon^{-\frac{1}{2}}\alpha_h)|Y|\}$, where ϵ and α_h are carefully chosen values, and p is the current red density between X and Y.

- 2) Big blue step
- 3) Red step
- 4) Density boost

Book algorithm

Given a graph G=(V,E), a 2-coloring on G, $\ell_1,\ell_2\in\mathbb{Z}^+$, and $\mu\in(\frac{1}{2},1)$, the **book algorithm** is as follows:

- 0) Initialize sets X, Y as equipartition of V, and initialize $A, B = \emptyset$.
- 1) Degree Regularization
- 2) Big blue step

If "many" vertices of X have "high" blue degree in X, then there exists a "large" blue book (S, T) in X. Replace B with $B \cup S$, and replace X with T. Then, go back to 1). Otherwise, skip to 3).

- 3) Red step
- 4) Density boost

Book algorithm

Given a graph G=(V,E), a 2-coloring on G, $\ell_1,\ell_2\in\mathbb{Z}^+$, and $\mu\in(\frac{1}{2},1)$, the **book algorithm** is as follows:

- 0) Initialize sets X, Y as equipartition of V, and initialize $A, B = \emptyset$.
- 1) Degree Regularization
- 2) Big blue step
- 3) Red step

Choose a "specific" $x \in X$ such that $|N_B(x) \cap X| \leq \mu |X|$. If the red density between $X \cap N_R(x)$, $Y \cap N_R(x)$ is "high enough", then put x into A, and replace X, Y with $X \cap N_R(x)$, $Y \cap N_R(x)$ respectively. Go back to

- 1). Else: skip to 5).
- 4) Density boost

Book algorithm

Given a graph G=(V,E), a 2-coloring on G, $\ell_1,\ell_2\in\mathbb{Z}^+$, and $\mu\in(\frac{1}{2},1)$, the **book algorithm** is as follows:

- 0) Initialize sets X, Y as equipartition of V, and initialize $A, B = \emptyset$.
- 1) Degree Regularization
- 2) Big blue step
- 3) Red step
- 4) Density boost

put x into B, and replace X, Y with $X \cap N_B(x)$, $Y \cap N_R(x)$ respectively. Go back to 1).

What can go wrong with the Book Algorithm?

• $N_R(x) \cap X$ is too small, so that X shrinks too fast.

What can go wrong with the Book Algorithm?

- $N_R(x) \cap X$ is too small, so that X shrinks too fast.
- $N_R(x) \cap Y$ is too small, so that Y shrinks too fast.

What can go wrong with the Book Algorithm?

- $N_R(x) \cap X$ is too small, so that X shrinks too fast.
- $N_R(x) \cap Y$ is too small, so that Y shrinks too fast.
- the red density between $N_R(x) \cap X$ and $N_R(x) \cap Y$ is "too low".

Figure: Schematic diagram for the "Density boost" step

Figure: The blue region represents when $n \geq (4+o(1))^\ell$, and the red region represents when outside of which there is either a red ℓ -clique or a blue ℓ -clique. Note that they do not overlap: so we have an exponential improvement.

Lower bounds:

Erdős [1947]

For all $k \ge 3$, we have

$$R(\ell,\ell) > \lfloor 2^{\frac{\ell}{2}} \rfloor$$
.

Proof was instrumental to the development of the Probabilistic method!

Table of Contents

Introduction

2 Ramsey numbers

3 Arithmetic Progressions

Ramsey theory is not just about graphs! Can also look at arithmetic progressions in subsets of \mathbb{Z}^+ and \mathbb{F}_p^n .

Ramsey theory is not just about graphs! Can also look at arithmetic progressions in subsets of \mathbb{Z}^+ and \mathbb{F}_p^n .

Van der Waerden's Theorem

For all $k, r \in \mathbb{Z}^+$, there exists $W(k, r) \in \mathbb{Z}^+$ such that if [W(k, r)] is r-colored, then there exists a monochromatic k-AP.

Ramsey theory is not just about graphs! Can also look at arithmetic progressions in subsets of \mathbb{Z}^+ and \mathbb{F}_p^n .

Van der Waerden's Theorem

For all $k, r \in \mathbb{Z}^+$, there exists $W(k, r) \in \mathbb{Z}^+$ such that if [W(k, r)] is r-colored, then there exists a monochromatic k-AP.

Roth's Theorem

If $A \subset \mathbb{Z}^+$ has nonzero "upper density", then A contains a 3-AP.

Ramsey theory is not just about graphs! Can also look at arithmetic progressions in subsets of \mathbb{Z}^+ and \mathbb{F}_p^n .

Van der Waerden's Theorem

For all $k, r \in \mathbb{Z}^+$, there exists $W(k, r) \in \mathbb{Z}^+$ such that if [W(k, r)] is r-colored, then there exists a monochromatic k-AP.

Roth's Theorem

If $A \subset \mathbb{Z}^+$ has nonzero "upper density", then A contains a 3-AP.

Ellenberg and Gijswijt [2017]

Let $r_3(\mathbb{F}_3^n)$ denote the largest 3-AP free subset of \mathbb{F}_3^n . Then $r_3(\mathbb{F}_3^n) = O(2.76^n)$.

Van der Waerden's Theorem

For all $k, r \in \mathbb{Z}^+$, there exists $W(k, r) \in \mathbb{Z}^+$ such that if [W(k, r)] is r-colored, then there exists a monochromatic k-AP.

Proof.

W(2,r) and W(k,1) is trivial, so we first try to prove the existence of W(3,2).

Outline of Proof of W(3,2)

• $A = \{1, 2, 3, 4, 5\} \subset \mathbb{Z}^+$

- $A = \{1, 2, 3, 4, 5\} \subset \mathbb{Z}^+$
- There exists $a, a+d, a+2d \in A$ such that a, a+d is red, and a+2d is blue; this true for all translates A+n where $n \in \mathbb{Z}^+$.

- $A = \{1, 2, 3, 4, 5\} \subset \mathbb{Z}^+$
- There exists $a, a+d, a+2d \in A$ such that a, a+d is red, and a+2d is blue; this true for all translates A+n where $n \in \mathbb{Z}^+$.
- Define an induced 32-coloring of \mathbb{Z}^+ where n is colored based on the coloring of A + n.

- $A = \{1, 2, 3, 4, 5\} \subset \mathbb{Z}^+$
- There exists $a, a+d, a+2d \in A$ such that a, a+d is red, and a+2d is blue; this true for all translates A+n where $n \in \mathbb{Z}^+$.
- Define an induced 32-coloring of \mathbb{Z}^+ where n is colored based on the coloring of A + n.
- W(32,2) exists \Rightarrow exists $n, d_1 \in \mathbb{Z}^+$ where A+n and $A+n+d_1$ have the same coloring.

- $A = \{1, 2, 3, 4, 5\} \subset \mathbb{Z}^+$
- There exists $a, a+d, a+2d \in A$ such that a, a+d is red, and a+2d is blue; this true for all translates A+n where $n \in \mathbb{Z}^+$.
- Define an induced 32-coloring of \mathbb{Z}^+ where n is colored based on the coloring of A + n.
- W(32,2) exists \Rightarrow exists $n, d_1 \in \mathbb{Z}^+$ where A+n and $A+n+d_1$ have the same coloring.
- Then either $\{a+n, (a+d)+n+d_1, (a+2d)+n+2d_1\}$ or $\{(a+2d)+n, (a+2d)+n+d_1, (a+2d)+n+2d_1\}$ form a monochromatic 3-AP!

Figure: This is the schematic proof for W(3,2). Each rectangular block denotes (a translate of) A, with a 3-AP consisting of red, red, and blue. Given that we can find two such identical rectangular blocks, we can find a blue 2-AP and a red 2-AP that "converges" to the same point.

This method generalizes to proving the existence of W(k, r):

• Induct from $W(k-1,r^*) \forall r^* \in \mathbb{Z}^+$ to W(k,r)

This method generalizes to proving the existence of W(k, r):

- Induct from $W(k-1,r^*)\forall r^* \in \mathbb{Z}^+$ to W(k,r)
- Use "induced coloring" idea to iteratively "stack" monochromatic (k-1)-APs until we a force a monochromatic k-AP.

Figure: This is the schematic proof for W(4,2)...

The End

Thank you!