

Declarada de Utilidade Pública Federal - Decreto nº 86.431 de 02/10/1981

TCC 2015 - Engenharia da Computação **DOCUMENTO DE PROJETO**

IDENTIFICAÇÃO

No	NOME
111693	Rodrigo Vieira da Silva

e-mails	Fone / Cel.
FACENS: 111693@li.facens.br	15 3213-2014
particular: rodvieirasilva@gmail.com	15 9 9777-1897

TÍTULO: Framework para construção de compiladores com conceitos Fuzzy.

ORIENTADOR: Marcos Maurício Lombardi Pellini Fernandes

Data da Entrega: 08 / 06 /2015

Visto do Orientador

Reconhecida pela Portaria Ministerial n° 367 de 03/06/1980 MANTIDA PELA Associação Cultural de Renovação Tecnológica Sorocabana

Declarada de Utilidade Pública Federal - Decreto nº 86.431 de 02/10/1981

Sumário

1.	CENÁRIO	3
1.1	Compilador	3
1.2	Lógica Fuzzy	4
1.3	Conceitos Fuzzy aplicado a compiladores	4
1.3.1	Análise Léxica	4
1.3.2	Análise Sintática	5
1.3.3	Geração de Código	5
2.	PESQUISA DE MERCADO	5
2.1	Ferramentas tradicionais	
2.2	Conceitos Fuzzy	6
3.	TESTE DE HIPÓTESE	6
4.	O QUE SERÁ FEITO	7
5.	O QUE NÃO SERÁ FEITO	7
6.	BENEFÍCIOS	7
7.	METAS GLOBAIS	8
8.	METAS INTERMEDIÁRIAS	8
9.	RECURSOS UTILIZADOS	8
10.	BIBLIOGRAFIA	9

Declarada de Utilidade Pública Federal - Decreto nº 86.431 de 02/10/1981

1. CENÁRIO

1.1 Compilador

Um compilador é essencial para maior eficiência na construção de um software, por possuir etapas bem definidas é possível a sua modularização e generalização em diversos itens como demonstra a figura 1.

Figura 1 – Diferentes etapas de um compilador

eclarada de Utilidade Pública Federal - Decreto nº 86.431 de 02/10/1981

1.2 Lógica Fuzzy

A Lógica fuzzy ou lógica nebulosa, diferente da lógica clássica que possui valores lógicos 0 e 1 (pertence ou não pertence), admite valores intermediários entre 0 e 1, assim sendo um grau de pertinência de determinado valor a um determinado conjunto.

A figura 2 demonstra as diferentes pertinências dos valores 0, 50 e 100 no conjunto "Grande", onde branco representa pertinência 0 (mínima) e verde pertinência 1 (máxima).

Figura 2 – Pertinências de 0, 50 e 100 no conjunto Nebuloso "Grande".

1.3 Conceitos Fuzzy aplicado a compiladores

Esse trabalho possui como objetivo unir os dois conceitos apresentados aplicando a lógica fuzzy nas seguintes etapas de compilação:

1.3.1 Análise Léxica

É a primeira fase de um compilador, responsável por ler o fluxo de caracteres que compõe o arquivo de entrada e os agrupar em sequências significativas em que cada elemento da sequência possui um token (Nome e valor).

Ao aplicar o conceito fuzzy será substituído o autômato convencional utilizado para um autômato fuzzy, com essa alteração o analisador será capaz de aceitar erros léxicos, identificando o token que mais se aproxima com a palavra errada.

eclarada de Utilidade Pública Federal - Decreto nº 86.431 de 02/10/1981

1.3.2 Análise Sintática

É a segunda fase do compilador, a partir dos tokens gerados da análise léxica essa etapa é responsável por gerar uma representação intermediária em formato de árvore.

Com os conceitos fuzzy aplicados o algoritmo de validação sintática será trocado por um algoritmo capaz de aceitar e se recuperar de erros sintáticos, para isso ao invés de uma gramática livre de contexto convencional será necessário a definição de uma gramática livre de contexto fuzzy.

1.3.3 Gerador de Código

A partir de uma representação intermediária essa camada realiza a conversão de um código origem em um código destino.

Será disponibilizado uma interface simples para que a geração de código seja facilitada para os usuários da framework.

2. PESQUISA DE MERCADO

Embora existam conceitos de aplicação de lógica fuzzy em compiladores, nenhuma obteve tanta visibilidade quanto as ferramentas de auxílio a compilação tradicionais. Segue alguns exemplos:

2.1 Ferramentas tradicionais

Flex (Faster Lex): Ferramenta de geração de analisadores léxicos e sintáticos.

Antlr (ANother Tool for Language Recognition): Gerador de análises léxica, sintática e semântica.

Yacc (Yet Another Compiler-Compiler): Programa criador de compiladores

Xtext: Framework baseada em JAVA para desenvolvimento de compiladores

eclarada de Utilidade Pública Federal - Decreto nº 86.431 de 02/10/1981

2.2 Conceitos Fuzzy

Flex (Fuzzy Lexical Analyser): Conceito proposto por Alexandru Mateescu, Arto Salomaa, Kai Salomma e Sheng Yu publicado em 14/05/1995 no JUCS ("Journal of Universal Computer" Science").

Representação Gramatical Nebulosa Livre de Contexto: Conceito que envolve o reconhecimento fuzzy de gramáticas, proposto por diversos autores nos últimos anos.

3. TESTE DE HIPÓTESE

Existem diversas plataforma livres por que a escolha de ambiente .NET e linguagem de programação C#?

A *Microsoft* surpreendeu a todos ao abrir os fontes da *framework* .*NET*, porém a plataforma ainda continua proprietária. Esse ambiente foi escolhido devido à ausência de ferramentas para a mesma, a facilidade no desenvolvimento e o conhecimento prévio adquirido. Todavia o mais importante da biblioteca será os algoritmos desenvolvidos que poderão ser facilmente migrados para outras plataformas.

Qual a aplicação prática da ferramenta e dos conceitos fuzzy abordados nos algoritmos?

Com os conceitos fuzzy em uma framework será possível gerar um compilador suscetível a erros e com isso existem diversas possíveis aplicações práticas:

- Após o OCR (Optical Character Recognition) Posteriormente ao reconhecimento de caracteres será possível passar por um compilador para validar e corrigir a sentença lida, conforme os parâmetros esperados
- Linguagem de programação para iniciantes Uma linguagem simplificada que tolera e corrige erros de programadores iniciantes auxiliando-os e ensinando-os.
- Acesso a informações em banco de dados Uma ferramenta que interprete uma linguagem natural e assim qualquer usuário final conseguirá consultar,

Declarada de Utilidade Pública Federal - Decreto nº 86.431 de 02/10/1981

sem a necessidade de conhecer a ferramenta em que os dados estão guardados

Automação doméstica – Reconhecedor de comandos de linguagens naturais para ser interpretados por um hardware que controle os componentes eletrônicos domésticos.

Enfim a ferramenta poderá ser abordada nas mais diversas aplicações e quando a linguagem de entrada é uma linguagem natural os resultados se tornam ainda mais interessantes.

4. O QUE SERÁ FEITO

Na primeira apresentação será demonstrado a implementação de automatos Fuzzy, o reconhecimento parcial de cadeias de textos e por fim um protótipo da framework com uma aplicação de testes, com as seguintes etapas parcialmente desenvolvidas:

- Análise Léxica Fuzzy
- Análise Sintática LR(1) Fuzzy Modificada
- Parser Sintático para código destino

Ao término do projeto será disponibilizado um exemplo completo de utilização da Framework e diversos testes de gramáticas para demonstrar o correto funcionamento da biblioteca.

5. O QUE NÃO SERÁ FEITO

Nesse trabalho não será abordado um estudo sobre performance e otimização de algoritmos nas diferentes análises.

6. BENEFÍCIOS

Embora existam diversas ferramentas que auxiliam na criação de compiladores a sua configuração e utilização complexa acaba desmotivando os desenvolvedores a criar um compilador (seja para estudo ou para aplicações do mercado), uma vez a ferramenta

eclarada de Utilidade Pública Federal - Decreto nº 86.431 de 02/10/1981

disponibilizada e tendo como premissa a simplificação os desenvolvedores se sentirão mais confortáveis quando for necessário a construção de um compilador.

Ainda como benefício está a disponibilização de uma ferramenta com conceitos fuzzy completa, as aplicações disponíveis que possuem o conceito não abordam todo o processo de compilação.

7. METAS GLOBAIS

As principais metas desse trabalho é o desenvolvimento de uma ferramenta de fácil extensão e utilização para a construção de compiladores e o estudo dos conceitos fuzzy aplicado a diferentes partes do processo de compilação.

Demonstrar a utilização da *framework* e disponibilizar como software livre na comunidade.

8. METAS INTERMEDIÁRIAS

Comparação entre as diferentes ferramentas do mercado que auxiliam a criação de compiladores.

Comparação entre os algoritmos que abordam análises sintática e léxica com conceitos fuzzy.

9. RECURSOS UTILIZADOS

Durante o desenvolvimento do projeto será utilizado a plataforma .NET, IDE (Integrated Development Environment) Visual Studio 2013, C# como linguagem de programação, ambiente desktop (Área de trabalho Windows) para demonstração de exemplos e aplicações.

Ainda será utilizado XML(eXtensible Markup Language) como linguagem para configuração e definição da gramática e demais parâmetros da ferramenta.

Reconhecida pela Portaria Ministerial n° 367 de 03/06/1980 MANTIDA PELA

Associação Cultural de Renovação Tecnológica SorocabanaDeclarada de Utilidade Pública Federal - Decreto n° 86.431 de 02/10/1981

10. BIBLIOGRAFIA

AHO, A. V.; Lam, M. S.; Sethi R.; Ullman, J. D. Compiladores, Princípios, técnicas e ferramentas. 2.ed. São Paulo: Pearson Education do Brasil, 2008. 633 p.

BEDREGAL, B. C.; CORREA, C. λ-ALN: autômatos lineares não-determinísticos com λ-transições. In: XXXIII CNMAC, 33. 2010, Águas de Lindóia, SP. **Anais.**; São Carlos, SP; 2011.

FUINI, M. G. Sistema de Recuperação de Imagens Baseado na Teoria Computacional das Percepções e em Linguagens Formais Fuzzy. 2006. 106 f. Dissertação (Mestrado em Engenharia de Computação) – Universidade Estadual de Campinas, Campinas, 2006.

JIN, J.; LI, Q.; LI, C. On Intuitionistic Fuzzy Context-Free Languages. **Hindawi Publishing** Corporation Journal of Applied Mathematics New York, NY, v. 2013 p. 1-16, dez. 2012.

LOUDEN, k. L. **Compiladores, princípios e práticas**. 1.ed. São Paulo: Cenage Learning, 2004, 569 p.

RIGNEL, D. G. de S.; CHENCI, G. P.; LUCAS, C. A. Uma Introdução a lógica Fuzzy. **Revista Eletrônica de Sistemas de Informação e Gestão Tecnológica**, v. 01, n. 1 p. 1-28, dez. 2011.

MARCIEL, A. Aplicação de autômatos finitos nebulosos no reconhecimento aproximado de cadeias. 2006. 63 f. Dissertação (Mestrado em Sistemas Digitais) – Escola Politécnica da Universidade de São Paulo, São Paulo, 2006.

SAKATA, T. C. Análise Sintática Descendente. Disponível em: http://www.li.facens.br/~tiemi/Tc1/analise-desc.pdf>. Acesso em: 02 fevereiro 2015.

SAKATA, T. C. Análise Sintática LR(1) e LALR. Disponível em: http://www.li.facens.br/~tiemi/Tc1/analise-lr1.pdf>. Acesso em: 03 fevereiro 2015.

SANDRI, S.; Correa, C. Lógica Nebulosa. In: V Escola de Redes Neurais, 5. 1999, São José dos Campos, SP. **Anais.**; São José dos Campos, SP; ITA, 1999.