Sayı Sistemleri

Arif GÜNEL

Sayı Sistemleri

• Dijital elektronikte dört çeşit sayı sistemi kullanılmaktadır. Bunlar :

- a) Desimal Sayı Sistemi
- b) Binary Sayı Sistemi
- c) Oktal Sayı Sistemi
- d) Hexadesimal Sayı Sistemi

Desimal Sayı Sistemi

- Desimal sayı sistemi normal sayma sayılardan oluşur. Yani, 0 1 2 3 4 5 6 7 8
 9 sayılarından oluşur.
- On adet sayı bulunduğu için bu sayı sisteminin tabanı 10'dur.
- (158)₁₀ şeklinde yazılır.
- Bu sayı sisteminde ise dört matematiksel işlem bilindiği gibidir.
 - Decimal (Onlu 0,1,2,3,4,5,6,7,8,9 On adet digit) Dile gösterilir.

Binary(İkili) Sayı Sistemi

Binary sayı sisteminde iki adet sayı bulunur. Bunlar 0 ve 1 dir.

Bu yüzden Binary sayı sisteminin tabanı 2'dir. $(1011)_2$ şeklinde yazılır.

Binary (İkili 0,1 iki adet digit) B ile gösterilir.

Oktal (sekizlik) Sayı Sistemi

• Oktal sayı sisteminde sadece O'dan 7'ye kadar olan rakamlar kullanılır.

0, 1, 2, 3, 4, 5, 6, 7

⊙ Oktal (Sekizli 0,1,2,3,4,5,6,7 sekiz adet digit) O ile gösterilir.

- o Kimi eski tip bilgisayarlarda bu sayı sistemi kullanılmaktadır.
- Oktal sayı sisteminde 8 adet sembol vardır.
- Bunlar, 0 1 2 3 4 5 6 7'dir.
- Bu sembollerin dışında sembol kullanılmaz.
- Oktal sayı sisteminin avantajı dogrudan 3 bite ayrılan binary rakamların kolaylıkla çevrilebilmesidir.

Soru ve Cevaplar

Hexadesimal Sayı Sistemi

- Hexadecimal sistemin tabanı 16 dır.
- Bu sistemdeki sayı sınırı 0-15 arasındadır.
- Hekxadesimal sayı sisteminde O'dan 9'a kadar olan sayılar ve A'dan F'ye kadar olan harfler kullanılır.

- Günümüzde Hexadesimal sayı sistemi, bilgisayarlarda, makine kodlarını yazmak için kullanır.
- HexaDecimal (Onaltılı 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F, Onaltı adet digit) H ile gösterilir.

• 4 sayı sistemi arasındaki farklılıklar.

Onluk Sayı Sistemi	İkilik Sayı Sistemi	Onaltılık Sayı Sistemi	Sekizlik Sayı Sistemi
0	0	0	0
1	1	1	1
2	10	2	2
3	11	3	3
4	100	4	4
5	101	5	5
6	110	6	6
7	111	7	7
8	1000	8	10
9	1001	9	11
10	1010	Α	12
11	1011	В	13
12	1100	С	14
13	1101	D	15
14	1110	Е	16

Sayı Sistemlerinin Birbirlerine Dönüşümleri

- İşlemci elektrik sinyalleri ile çalışır, bu elektrik sinyallerini 1/0 seklinde yorumlayarak islemcide olup bitenler anlasılabilir hale getirilir.
- Böylece gerçek hayattaki bilgileri 1/0 seklinde kodlayarak islemcide kullanılabilir.

- Benzer sekilde, islemcide elde edilen elektrik sinyallerini de bu sekilde rakamlara dökerek kolayca yorumlayabiliriz.
- Yani elektrik sinyallerini rakamlara (1/0) dökmüş oluruz.
- Böylece günlük hayattaki bilgileri sayısal olarak ifade ederek bilgisayar ortamında kullanırız.
- Bu durumda sayı sistemleri arasındaki dönüsüm yapmak gerekmektedir.

Oktal Sayının Binary Sayıya Çevrilmesi

- Bilgisayar sistemlerinde oktal sayıları binary sayıya çevirirken her rakam 3 bitlik binary sayı ile ifade
 edilir.
- Örnegin (47)8 sayısını çevirirken oktal sayı sistemindeki 4 rakamı binary de 100'a ve 7 rakamı 111'e
 karsılık gelir ve sonuç,
- (47)8 = (100111)2 olur.

Soru ve Cevaplar

Binary Sayının Oktal Sayıya Çevrilmesi

o (101011110)₂ sayısının oktal sayıya çevrilmesine bakalım.

 Binary rakamlar öncelikle binary noktadan sola dogru üçlü gruplara bölünür ve bu gruplar oktal sayılara çevrilir.

Oktal Sayının Desimal Sayıya Çevrilmesi

- (573)₈ Oktal sayısını desimal sayıya çevrilmesine bakalım.
- Ilk önce X tabanına göre konum açılımı yapılır,
- Sonra basamak çarpım işlemleri yapılarak toplanır.

Oktal Sayının Desimal Sayıya Çevrilmesi

Desimal Sayının Oktal Sayıya Çevrilmesi

- o (273)10 sayısını oktal sayıya çevrilmesine bakalım.
- Buradaki yöntem ise sayıyı bölüm 0 olana kadar 8'e bölmektir.
- √ 273 sayısının 8'e bölümünden bölüm 34, kalan 1 dir.
 - ✓ 34 sayısının 8'e bölümünden de bölüm 4, kalan 2'dir.
 - √ 4'ün 8'e bölünmesinden bölüm 0, kalan 4'tür.
 - ✓ Sondan başlayarak kalanları yazarsak oktal sayı sistemindeki (421)₈ sayısı bulunur.
 - ✓ Bu durumda (273)₁₀ = (421)₈ olur.

Onaltılı (HexaDesimal) Sayı Sistemi

Binary sayı sistemi bilgisayarın anladıgı tek sayı sistemidir.

Bilgisayardan girdigimiz tüm yazı, sayı ve islemler binary sayıya çevrilerek bilgisayar tarafından algılanır.

Fakat binary sayı sisteminde yalnızca 2 rakam olduğu için büyük sayıları ifade etmek oldukça fazla rakamla mümkün olur.

Onaltılı (HexaDesimal) Sayı Sistemi

Örnegin desimal sayı olan 202 sayısını 3 rakam kullanarak ifade edebilirken,

aynı sayıyı binary sayı sisteminde 11001010 seklinde yazarız ki bu bizim 8 rakam kullandığımızı gösterir.

Onaltılı (HexaDesimal) Sayı Sistemi

- Bilgisayar üreticileri bu sorunu heksadesimal sayı sistemini geliştirerek çözmüşler.
- Bu sayı sisteminde sayılar daha az rakam kullanılarak ifade edilebilmektedir.
- Ayrıca bu sayı sisteminin ayrı bir üstünlügü de binary sayıya geçis ve binary sayıdan heksadesimal sayıya geçisin kolay olmasıdır.

Sayı Sistemleri

Onaltılı (HexaDesimal) Sayı Sistemi

Heksadesimal sayı sisteminde 16 sembol kullanılır. Bunlar;

0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F dir.

'A' harfi 10 sayısına, 'B' harfi 11 sayısına, 'C' harfi 12 sayısına, 'D' harfi 13 sayısına, 'E' harfi 14 sayısına ve 'F' harfi de 15 sayısına karsılık gelir.

Sayı

Onluk	İkilik	Onaltılık
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
10	1010	Α
11	1011	В
12	1100	С
13	1101	D
14	1110	E
15	1111	F
15	1111	F
14	1110	E

• Onaltılı (HexaDesimal) Sayı Sistemi

Her Hexadecimal digit 4 bit ile ifade edilir.

0->0000, 9->1001, F->1111 gibi

Binary sistemi, Hexadecimal sisteme dönüstürme.

- 。 (1 1 0 0 0 1 0 1)₂ Binary sayısını hexadecimal sayıya çevrilmesine bakalım.
- Öncelikle sayı gurubunu 4 bitlik guruplara bölmek ve daha sonra onların karşılıklarını bulmak gerekmektedir.
- Her HexaDecimal digit 4 bit (binary digit) ile ifade edildiginden, verilen sayı binary sayı SAGDAN
 itibaren dörder bit ayrılarak her bitin karsılık geldigi HexaDecimal sayı bulunur.

Binary sistemi, Hexadecimal sisteme dönüstürme.

Binary sistemi, Hexadecimal sisteme dönüstürme.

HexaDecimal sistemi Binary sisteme dönüştürme.

- o (C5)16 Hexadecimal sayısını binary sayıya çevrilmesine bakalım.
- Her bir heksadesimal rakam binaryde 4 bitlik bir yer kaplar.
- Heksadesimal C(12) rakamının binary de karşılığı 1100 ve diger heksadesimal rakam olan 5'in binary karsılıgı 0101 dır.
- Bu iki gurup birleştirilerek (C5)₁6 = (11000101)₂ elde edilir.

HexaDecimal sistemi Binary sisteme dönüştürme.

HexaDecimal sayının Desimal sayıya dönüştürme

- (8EA)₁₆ sayısını desimal sayıya çevirme yöntemi de yine aynıdır.
- A rakamının desimalde 10'a ve E rakamının da 14'e karşılık geldiğini önceden biliyorduk.
- Bu durumda 8EA sayısı desimal sayıya;

$$\sqrt{8.16^2 + E.16^1 + A.16^0} = (2282)_{10}$$
 seklinde çevrilir.

HexaDecimal sayının Desimal sayıya dönüştürme

Desimal sayının HexaDecimal sayıya dönüştürme

- Desimal olarak verilen sayı sürekli 16'ya bölünür kalan 0 oluncaya dek devam edilir. Bu kalanlar sondan baslanarak yazıldığında heksadesimal sayı elde edilir.
- o (69)10 sayısını hexadesimal sayıya çevirme yöntemine bakalım.
 - √ 69'u 16'ya böldüğümüzde bölüm 4, kalan 5'tir,
 - √ 4'ün 16'ya bölümünde, bölüm 0 kalan 4 tür.
 - ✓ Kalanları sondan başlayarak yazarsak heksadesimal (45)₁₆ sayısı elde edilir.
 - \checkmark (69)₁₀ = (45)₁₆

Soru ve Cevaplar 28

Desimal sayının HexaDecimal sayıya dönüştürme

Soru ve Cevaplar

Soru

$$(110)_2 = (??)_{10}$$

$$(110)_2 = 1x 2^2 + 1 x 2^1 + 0 x 2^0 => 1 x 4 + 1 x 2 + 0 x 1 = 4 + 2 + 0 = (6)_{10}$$
 bulunur.

Not: Her bir bit kendi kuvveti ile çarpılır ve hepsi toplanır.

Örnek olarak $(101)_2$ ve $(111)_2$ sayılarını onlu sayıya çevirelim.

$$(101)_2 = 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0 = 4 + 0 + 1 = (5)_{10}$$

$$(111)_2 = 1 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0 = 4 + 2 + 1 = (7)_{10}$$

Soru

$$(12)_{10} = (??)_2$$

 $(12)_{10} = (1100)_2$ olur.

Heksadesimal A5 sayısının binary karsılıgı asagıdakilerden hangisidir?

A) 1010 0101 B) 1010 0100 C) 1000 0100 D) 1110 0101

Çözüm

CEVAP: A

$$(307)_8 = (??)_{10}$$

Cevap

Soru

$$(307)_8 = (??)_{10}$$

$$(307)_8 = 3 \times 8^2 + 0 \times 8^1 + 7 \times 8^0$$

= 3 \times 16 + 0 \times 8 + 7 \times 1
= 192 + 0 + 7
= (199)_{10}

$$(3BF)_{16}=(??)_{10}$$

$$(3BF)_{16} = 3x 16^{2} + Bx16^{1} + Fx 16^{0}$$

$$= 3 x 256 + 11 x 16 + 15 x 1$$

$$= 768 + 176 + 15$$

$$= (959)_{10}$$

$$(199)_{10} = (??)_{8}$$

$$(199)_{10} = (??)_{8}$$

Cevap

199:8 = 24 kalan 7

24:8=3 kalan 0

3:8 = ? kalan $3 \rightarrow (199)_{10} = (307)_{8}$

Soru ve Cevaplar 42

$$(709)_{10} = (??)_{16}$$

$$(709)_{10} = (??)_{16}$$

$$(52)_8 = (??)_2$$

$$(52)_8 = (??)_2$$

$$(5 \ 2)_8$$
 \downarrow
 \downarrow
 $(101 \ 2)_8 = (101010)_2$

$$(111100)_2 = (??)_8$$

$$(111100)_2 = (??)_8$$

(111 100)₂

$$\downarrow \qquad \qquad \downarrow$$
(7 8 (111100)₂ = (74)₈

Bilinmesi Gereken İngilizce Kelimeler

- Computer: Bilgisayar
- Data Processing: Veri işlemek Data Processing: Veri işlemek
- İnput: Girdi
- Output: Çıktı
- Electronic :Elektronik
- Numerical :Nümerik, sayısal
- Integrator: Toplayıcı

- Computer: Bilgisayar

Kaynakça:

- http://www.dersimiz.com/ders_notlari/Bilgisayarin-Tarihi-oku-22391.html
- http://www.computersciencelab.com
- http://tr.wikibooks.org/wiki/Bilgisayar
- http://www.teknolojide.com
- http://www.ymm.net/eticaret/bilgisayartarihi1.html
- http://www.zet10.com/
- http://www.education.ankara.edu.tr/ebfdergi/pdfler/1983-16-1/341-372.pdf
- MİKROİŞLEMCİ SİSTEMLERİ Yrd. Doç. Dr. Şule Gündüz Öğüdücü http://www3.itu.edu.tr/~sgunduz/courses/mikroisl/