Investigation of Resource Reallocation Capabilities of KVM and OpenStack

Bachelor Thesis Presentation 26.08.2015

Andreas Gruhler <andreas.gruhler@uzh.ch>
Supervisor: Patrick Gwydion Poullie, Dr. Thomas Bocek

University of Zurich

Department of Informatics (IFI)

Communication Systems Group, Prof. Dr. Burkhard Stiller

- 1. Research Questions and Introduction
- libvirt Hard and Soft Limits
- 3. VM Resizing and Resource Reallocation
- OpenStack Extension Design and Implementation
- 5. OpenStack Extension Evaluation
- Conclusion
- 7. Future Work and Outlook

1. Research Questions

- How are physical resources (PR) reallocated in cloud computing?
- Which resources can be reallocated in KVM/OpenStack?
- Which methods are used in KVM/OpenStack to reallocate resources?

1. Introduction to Cloud Layers

- OpenStack: scheduling and deployment of VMs
- libvirt API: uniform access to resource limits
- Kernel based virtual machine (KVM): provisions the PRs to the VMs
- Each VM has a hardware template referred to as its flavor.

- 1. Research Questions and Introduction
- 2. libvirt Hard and Soft Limits
- 3. VM Resizing and Resource Reallocation
- OpenStack Extension Design and Implementation
- 5. OpenStack Extension Evaluation
- Conclusion
- 7. Future Work and Outlook

2. libvirt Hard and Soft Limits

- Hard limit:
 - always active
 - upper boundary of the soft limit
- Soft limit:
 - only enforced if resource is scarce
 - thesis focus
- The libvirt API provides soft limits for
 - CPU
 - RAM
 - and disk IO
- tc's htb qdiscs allow to priorize network bandwidth

- 1. Research Questions and Introduction
- libvirt Hard and Soft Limits
- 3. VM Resizing and Resource Reallocation
- OpenStack Extension Design and Implementation
- 5. OpenStack Extension Evaluation
- Conclusion
- 7. Future Work and Outlook

3. VM Resizing and PR Reallocation

VM resizing

- describes a flavor change
- hard limits change
- rescheduling needed
- implemented in OpenStack

Resource reallocation

- can be flavor independent
- e.g. a change in VM resource priorities (soft limits)
- no rescheduling needed

- 1. Research Questions and Introduction
- 2. libvirt Hard and Soft Limits
- 3. VM Resizing and Resource Reallocation
- 4. OpenStack Extension Design and Implementation
- 5. OpenStack Extension Evaluation
- Conclusion
- 7. Future Work and Outlook

4. OpenStack Extension: Conceptual Formulation

- Design, implementation, evaluation and documentation of an OpenStack extension to control the PR allocation to VMs of individual PMs.
- Extend the OpenStack nova API to allow changes of libvirt's
 - CPU
 - RAM
 - disk IO
 - and tc's network bandwidth soft limits at run-time.
- Extend the nova python client to make use of the new nova API methods.

4. OpenStack Extension: High Level Design

Now:

- flavor bound, boot-time resource limits (soft and hard)
- no network bandwidth soft limit

With extension:

 instance bound, run-time soft limit manipulation for all four resources

4. OpenStack Extension: Implementation

- Different extension architectures in OpenStack
 API version 2 and version 2.1
- Incomplete documentation and fuzzy entry points
- Extension is based on the stable kilo
 OpenStack release and the legacy OpenStack
 API version 2
- Devstack development environment (1 host)

- 1. Research Questions and Introduction
- 2. libvirt Hard and Soft Limits
- 3. VM Resizing and Resource Reallocation
- OpenStack Extension Design and Implementation
- 5. OpenStack Extension Evaluation
- Conclusion
- 7. Future Work and Outlook

5. Evaluation

 The data series in blue, green and red on the following slides represent different VM workloads.

5. Evaluation: CPU Shares

Priorities: 100 500 1'000

- 1 2 priorities are applied
 - 3 constant usage

5. Evaluation: Memory Soft Limit

- best-effort feature
- balancing reclaimed memory takes time (slow adaption)

5. Evaluation: Memory Hard Limit

- always active
- upper boundary for the soft limit
- fast adaption

5. Evaluation: Disk IO Soft Limit

early start, late finish

early start, early finish

late start, late finish

5. Evaluation: Network Bandwidth Soft Limit

- 1 starvation of low priorities
- 2 unreliable, unexpected behaviour

5. Evaluation: Network Bandwidth Soft Limit

Priorities:

39 26 15

- 1. Research Questions and Introduction
- 2. libvirt Hard and Soft Limits
- 3. VM Resizing and Resource Reallocation
- OpenStack Extension Design and Implementation
- 5. OpenStack Extension Evaluation
- 6. Conclusion
- 7. Future Work and Outlook

6. Conclusion

All four resources,

- CPU,
- disk IO,
- RAM and
- network bandwidth

can be reallocated between VMs competing for scarce resources with the help of libvirt's soft limits and tc's htb qdisc.

6. Conclusion

- How are PRs reallocated in cloud computing?
 - libvirt virtualization API
 - tc
- Which resources can be reallocated in KVM/OpenStack?
 - All four resources, CPU, disk IO, RAM and network bandwidth
- Which methods are used in KVM/OpenStack to reallocate resources?
 - Resizing (live migration)

- 1. Research Questions and Introduction
- 2. libvirt Hard and Soft Limits
- 3. VM Resizing and Resource Reallocation
- OpenStack Extension Design and Implementation
- 5. OpenStack Extension Evaluation
- Conclusion
- 7. Future Work and Outlook

7. Future Work

- Test the new API extension in a "real world" environment with multiple compute nodes
- Reset network priorities (delete tc qdiscs)
- Improve nova client usability
 - RAM limits: different units (chosen by the user)
 - Uniform priority scale for CPU, disk IO and network bandwidth
 - Priority based RAM reallocation (to be consistent with the other three resources)
- Rewrite extension for the OpenStack API version 2.1 (new microframework plugin architecture)

7. Outlook

- Flavor change at run-time will not be part of the next stable OpenStack release.
 - Maybe resource priorities soon will?
- Is there interest in resource reallocation with soft limits?

Thank You for Your Attention!

Andreas Gruhler <andreas.gruhler@uzh.ch>