Elements of Probability Theory (Part IV)

Prof. Americo Cunha Jr.

Rio de Janeiro State University - UERJ

americo.cunha@uerj.br

www.americocunha.org

Convergence of Random Variables

Sure convergence

Let $\{X_1, X_2, X_3, \dots, X_n \dots\}$ be a sequence of random variables defined on probability space $(\Omega, \Sigma, \mathcal{P})$.

Such a sequence is said to $\underline{\text{converge surely}}$ towards the random variable X if

$$\lim_{n\to\infty}X_n(\omega)=X(\omega),$$

for all $\omega \in \Omega$.

Notation: $X_n \xrightarrow{s} X$

An example on sure convergence

Probability space:

 $(\Omega, \Sigma, \mathcal{P})$ where $\Omega = [0, 1)$ and $\mathcal{P}\{[0, \omega)\} = \omega$, for $\omega \in \Omega$.

Random variables:

$$X_n(\omega) = \omega + \omega^n$$
 and $X(\omega) = \omega$.

For every $\omega \in [0,1)$ one has $\omega^n \to 0$ as $n \to \infty$, so that

$$X_n(\omega) \to X(\omega) = \omega.$$

Therefore,

$$X_n \xrightarrow{s} X$$
.

Almost sure convergence

Let $\{X_1, X_2, X_3, \dots, X_n \dots\}$ be a sequence of random variables defined on probability space $(\Omega, \Sigma, \mathcal{P})$.

Such a sequence is said to $\underline{\text{converge almost surely}}$ towards the random variable X if

$$\mathcal{P}\left\{\omega\in\Omega:\lim_{n\to\infty}X_n(\omega)=X(\omega)\right\}=1.$$

Notation: $X_n \xrightarrow{a.s.} X$

An example on almost sure convergence

Probability space:

 $(\Omega, \Sigma, \mathcal{P})$ where $\Omega = [0, 1]$ and $\mathcal{P}\{[0, \omega)\} = \omega$, for $\omega \in \Omega$.

Random variables:

$$X_n(\omega) = \omega + \omega^n$$
 and $X(\omega) = \omega$.

For every $\omega \in [0,1)$ one has $\omega^n \to 0$ as $n \to \infty$, so that

$$X_n(\omega) \to X(\omega) = \omega.$$

However, $X_n(1) = 2$ for every n, so that $X_n(1) \not\to X(1) = 1$.

But since $X_n o X$ on [0,1) and $\mathcal{P}\left\{[0,1)\right\} = 1$, one has

$$X_n \xrightarrow{a.s.} X$$
.

Convergence in probability

Let $\{X_1, X_2, X_3, \dots, X_n \dots\}$ be a sequence of random variables defined on probability space $(\Omega, \Sigma, \mathcal{P})$.

Such a sequence is said to $\underline{\text{converge in probability}}$ towards the random variable X if

$$\lim_{n\to\infty} \mathcal{P}\left\{ |X_n - X| \ge \epsilon \right\} = 0,$$

or, equivalently,

$$\lim_{n\to\infty} \mathcal{P}\left\{ \left| X_n - X \right| < \epsilon \right\} = 1,$$

for all $\epsilon > 0$.

Notation: $X_n \xrightarrow{p} X$

An example on convergence in probability

Random variables:

X is the zero random variable, i.e., $X\equiv 0$ X_n is exponentially distributed with $\lambda^{-1}=n$, i.e., $X_n\sim Exp(\lambda=1/n)$

Distribution function:

$$F_{X_n}(x) = 1 - e^{-nx}/n, x > 0$$

Once

$$\mathcal{P}\left\{ \left. |X_n - X| \ge \epsilon \right. \right\} = 1 - F_{X_n}(x) = e^{-nx}/n,$$

one has

$$\lim_{n\to\infty} \mathcal{P}\left\{ |X_n - X| \ge \epsilon \right\} = 0.$$

Therefore.

$$X_n \xrightarrow{p} X$$
.

Convergence in distribution

Let $\{X_1, X_2, X_3, \cdots, X_n \cdots\}$ be a sequence of random variables defined on probability space $(\Omega, \Sigma, \mathcal{P})$, and denote by F_n the distribution function of X_n

Such a sequence is said to <u>converge in distribution</u> towards the random variable X, with distribution function F, if

$$\lim_{n\to\infty}F_n(x)=F(x),$$

for every $x \in \mathbb{R}$ where F is continuous.

Notation: $X_n \xrightarrow{d} X$

An example on convergence in distribution

Random variables:

X is defined on the support $\operatorname{Supp} X = (0, +\infty)$ X_n is defined on the support $\operatorname{Supp} X_n = (0, n]$

Distribution functions:

$$F_X(x) = 1 - e^{-x}, x > 0 \iff X \sim Exp(\lambda = 1)$$

$$F_{X_n}(x) = 1 - \left(1 - \frac{x}{n}\right)^n, 0 < x \le n$$

The limiting support of X_n is Supp $X=(0,+\infty)$ and for all x>0

$$\lim_{n \to \infty} F_n(x) = F(x) = 1 - e^{-x}.$$

Therefore,

$$X_n \xrightarrow{d} X$$
, where $X \sim Exp(\lambda = 1)$.

Mean-square convergence

Let $\{X_1, X_2, X_3, \dots, X_n \dots\}$ be a sequence of random variables defined on probability space $(\Omega, \Sigma, \mathcal{P})$.

Such a sequence is said to converge in mean-square towards the random variable X if the moments $\mathbb{E}\left\{|X_n|^2\right\}$ and $\mathbb{E}\left\{|X|^2\right\}$ exists, and

$$\lim_{n\to\infty}\mathbb{E}\left\{|X_n-X|^2\right\}=0.$$

Notation: $X_n \xrightarrow{m.s.} X$

An example on mean-square convergence

Random variables:

X is the zero random variable, i.e., $X\equiv 0$ X_n is uniform distributed over (0,1/n), i.e., $X_n\sim \mathcal{U}(0,1/n)$

Density function:

$$p_{X_n}(x) = \begin{cases} n & \text{if } 0 \le x \le 1/n \\ 0 & \text{otherwise} \end{cases}$$

Once

$$\mathbb{E}\left\{|X_n - X|^2\right\} = \int_0^{1/n} x^2 \, n \, dx = \frac{1}{3 \, n^2},$$

one has

$$\lim_{n\to\infty}\mathbb{E}\left\{|X_n-X|^2\right\}=0.$$

Therefore,

A. Cunha Jr (UERJ)

$$X_n \xrightarrow{m.s.} X$$

Comparison of convergence notions

Important Theorems on Probability

Tchebysheff's (Chebyshev's) inequality

Let X be a random variable with finite mean value μ and non-zero finite variance σ^2 . Let $\epsilon > 0$ be an arbitrary real number.

Tchebycheff inequality says that

$$\mathcal{P}\{|X - \mu| \ge \epsilon\} \le \frac{\sigma^2}{\epsilon^2},$$

or, equivalently,

$$\mathcal{P}\{|X - \mu| < \epsilon\} \ge 1 - \frac{\sigma^2}{\epsilon^2}.$$

Interpretation: For random variables with μ and $\sigma^2 \neq 0$ finite, the real values are close to the mean.

Law of large numbers (weak version)

Let X_1, \dots, X_n be sequence of independent and identically distributed (iid) random variables, with mean μ and variance σ^2 both finite.

The sample mean of this set of random variables, defined by

$$\bar{X} = \frac{X_1 + \dots + X_n}{n},$$

is also a random variable, with mean μ and variance σ^2/n . Tchebycheff inequality says that

$$\mathcal{P}\{|\bar{X} - \mu| < \epsilon\} \ge 1 - \frac{\sigma^2}{\epsilon^2 n},$$

so that sample mean converges in probability to the mean, i.e.,

$$\mathcal{P}\{|\bar{X}-\mu|<\epsilon\}\to 1, \text{ as well as } n\to\infty.$$

Interpretation: The probability of sample mean assume values close Interpretation. to μ converge to 1 as $n \to \infty$.

Central limit theorem

Let X_1, \dots, X_n be a sequence of random variables, with mean μ and variance σ^2 , and define the normalized random variable

$$Z = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}},$$

which has zero mean and unit variance.

This normalized random variable converges in distribution to the standard normal distribution, i.e.,

$$\frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \xrightarrow{d} \mathcal{N}(0, 1)$$
, as well as $n \to \infty$.

Interpretation: The probability distribution of the sample mean tends to the Gaussian law with mean μ and variance σ^2 as $n \to \infty$.

References

G. Grimmett and D. Welsh, Probability: An Introduction. Oxford University Press, 2 edition, 2014.

J. Jacod and P. Protter, Probability Essentials. Springer, 2nd edition, 2004.

A. Klenke, Probability Theory: A Comprehensive Course. Springer, 2nd edition, 2014.

A. Papoulis and S. U. Pillai, **Probability, Random Variables and Stochastic Processes**. McGraw-Hill Europe: 4th edition, 2002.

How to cite this material?

A. Cunha Jr, *Elements of Probability Theory (Part IV)*, Rio de Janeiro State University – UERJ, 2021.

These class notes may be shared under the terms of Creative Commons BY-NC-ND 4.0 license, for educational purposes only.

