計算機構成論 第12回 一算術演算の実行(3)—

大連理工大学・立命館大学 国際情報ソフトウェア学部 大森 隆行

講義内容

- ■算術演算の実行
- ■小数の2進数表記
- ■浮動小数点数の加算
- ■(浮動小数点数の乗算)
- ■誤差と丸め

2進数の小数 復習

- ■10進数と同様に小数点を用いる
- ■小数第1位が2⁻¹に相当

■例)
$$11.11_2 = 1*2^1 + 1*2^0 + 1*2^{-1} + 1*2^{-2}$$

= $2+1+0.5+0.25$
= 3.75_{10}
 $0.0011_2 = 1*2^{-3} + 1*2^{-4}$
= $0.125+0.0625$
= 0.1875_{10}

2進数の小数の問題点 復習

- ■誤差の発生
 - ■例) $0.1_{10} = 0.000110011001100..._2$ = 0.0625 + 0.03125 + ...

10進数の有限小数を有限桁で表すことができない!

- 固定小数点形式
 - ■整数部分と小数部分のビット数を予め固定

- ■利点:わかりやすい
- ■欠点:表現可能な値の範囲が狭い
 - ■上の例での表現可能な小数部分の最小値(非零): 2-8
 - ■上の例での最大の絶対値: **2⁷-2**-8 (=127.99609375)

- ■科学記数法 (scientific notation)
 - ■整数部分は1桁のみにする
 - ■仮数 × 基数^{指数} という形式で表現

```
(例) 3.1415_{10} \rightarrow 3.1415_{10} \times 10^{0} 0.01234_{10} \rightarrow 1.234_{10} \times 10^{-2} 3.155760000_{10} \rightarrow 3.15576_{10} \times 10^{9}
```

正規化

2進数でも、 $1.010101_2 \times 2^{-2}$ のように表記

■浮動小数点 (floating point) 形式

小数点の位置が流動的

- ■表現可能な数値の幅が広い
- ■表現できる数の刻み幅が流動的
 - e.g., 1.0×2^{-64} , 1.0×2^{63}

■浮動小数点 (floating point) 形式

■表現可能な数値の幅が広い

- ■オーバーフローは発生する
 - 数値の指数が指数部分に収まりきらなくなること
- <mark>アンダーフロー</mark>も発生する
 - ■負の指数が大きすぎて指数部分に収まりきらなくなる

■ IEEE754による規定 (-1)^{符号}×(1+仮数)×2^(指数-ゲタ)

■単精度 (32bit)

C言語のfloat型に相当

■倍精度 (64bit) C言語のdouble型に相当

■単精度

(-1)^{符号}×(1+仮数)×2^(指数-ゲタ)

- ■正規化後、仮数(2進数)の先頭は必ず1
 - →仮数部分23bitの中では持たない
 - ■仮数部は0~1の小数を示す
- ■指数ビットで大小比較ができない
 - <u>-</u>1:11111111, 1:0000001
 - → <mark>最小値</mark>が0000001になるように ゲタ(bias)をはかせる

■単精度の場合、実際の値 +127 の値を指数部で保持

単精度の 最小値は、1.00..00₂×2⁻¹²⁶、最大値は、1.11..11₂×2¹²⁷

■倍精度

(-1)^{符号}×(1+仮数)×2(指数-ゲタ)

- ■正規化後、仮数(2進数)の先頭は必ず1
 - ■仮数部は0~1の小数を示す
- ■指数部分にはゲタ(1023)を履かせる

倍精度の 最小値は、1.00..00₂×2⁻¹⁰²²、最大値は、1.11..11₂×2¹⁰²³

特別な値の表現

指数	仮数	内容
全て0	0	0
全て0	≠0	土不正規化数
1-254	任意	±浮動小数点数
全て1	0	±∞
全て1	≠0	非数 (NaN)

※不正規化数:0に近い値を表現

確認問題

	符号	指数部分	仮数部分
単精度	1bit	8bit	23bit
倍精度	1bit	11bit	52bit

- (1) -0.75₁₀を単精度で表現せよ。
- (2) 0.75₁₀を倍精度で表現せよ。
- ■(3) 1.7510を単精度で表現せよ。
- (4) -∞を倍精度で表現せよ。
- ■(5)単精度の場合のNaNの指数部を答えよ。

確認問題

単精度・倍精度の符号・指数部分・仮数部分の ビット幅は覚えなくても良いですが、 **ゲタは自分で導出できるようになっておいてください** (2ⁿ⁻¹-1) (n:指数部のビット数)

講義内容

- ■算術演算の実行
 - ■小数の2進数表記

- ▶■浮動小数点数の加算
 - ■(浮動小数点数の乗算)
 - ■誤差と丸め

浮動小数点の加算

浮動小数点の加算

簡単のため、10進数で説明。 仮数4桁、指数2桁と仮定。

講義内容

- ■算術演算の実行
 - ■小数の2進数表記
 - ■浮動小数点数の加算

- ▶■(浮動小数点数の乗算)
 - ■誤差と丸め

浮動小数点の乗算 (発展)

- ■人間の乗算と同様に行う
 - ■指数同士を加算(ゲタに注意)
 - ■仮数の計算
 - ■正規化
 - ■丸め
 - ■符号の決定

■詳細は教科書で確認を (興味があれば図書館で確認してください)

講義内容

- ■算術演算の実行
 - ■小数の2進数表記
 - ■浮動小数点数の加算
 - ■(浮動小数点数の乗算)

■誤差と丸め

誤差と丸め

64=11152

- 倍精度で1と2の間で表現できる数の個数は?
 - 2⁵²-1個

- 尾盖可的性: 252一1 仓客情况
- →それ以上の個数は表現できないので、
 - 一番近い表現で表すしかない
- ■「丸める」名〉淡差
 - 数値を四捨五入or切り上げor切り捨てして、 指定した桁に収めること
 - ■四捨五入 1.4→1.0 1.5→2.0
 - ■切り上げ 1.4→2.0 1.5→2.0
 - ■切り捨て 1.4→1.0 1.5→1.0
 - ■本来表現するべき値との誤差(丸め誤差)が発生

誤差と計算

■ 仮数の有効桁を3桁とするとき、 2.26₁₀×10⁰+2.34₁₀×10²+1.26₁₀×10⁰ はどうなるか?

途中も有効桁3桁	途中は有効桁5桁	
$0.02\frac{00}{10} \times 10^2$	$0.0226_{10} \times 10^{2}$	
$2.34\frac{00}{10} \times 10^2$	$2.3400_{10} \times 10^{2}$	
$+ 0.01 \frac{00}{10} \times 10^{2}$	+ $0.0126_{10} \times 10^2$	
2.37 00 ₁₀ ×10 ²	2.3752 ₁₀ ×10 ²	
$2.37_{10} \times 10^{2}$	$2.38_{10} \times 10^{2}$	

计算中间白程的保管21至一一提高结果特定

IEEE754では、計算途中では2桁余分に保持するように規定

情報落方河德教義

$$(-1.5_{10} \times 10^{38}) + \underline{((1.5_{10} \times 10^{38}) + (1))}$$
 $\underline{((-1.5_{10} \times 10^{38}) + (1.5_{10} \times 10^{38}))} + (1)$
...+ $\underline{((1.5_{10} \times 10^{38}) + \mathbf{0.00...} \times 10^{38})}$ $\underline{0}$ +1

=0

絶対値の大きい数と小さい数を 足したとき、絶対値が小さい数が 無視されてしまう

計算の順番によって、 誤差を回避できる可能性がある 改変される。

=1

桁落ち

- ■浮動小数点数の演算において、 有効桁数が少なくなる現象

 る地域である。
 - ■ごく近い数値同士の減算、計算結果が0に 近くなる加減算によって発生

(3.1638584
$$_{10}$$
×10 1) - (3.1606961 $_{10}$ ×10 1) ←有効桁8桁 = (3.1623 $_{10}$ ×10 $^{-2}$) ←有効桁5桁 サイルが発え ? $=$ ($\frac{1}{\sqrt{1000}}$ + $\frac{1}{\sqrt{199}}$) 本語化 ?

確認問題

- 科学記数法では、(1) × (2)⁽³⁾ という形式で小数を表現する。
 表現する。
- IEEE754では、32ビットの(4)精度と64ビットの(5)精度がある。 ³
- IEEE754では、計算途中は有効桁を(6)桁余分に 保持している。
 スタ設美
- 数値を丸めることによって発生する誤差を、(7)という。
- ごく近い値の浮動小数点数の減算等において、計算結果の有効桁数が少なくなる現象を(8)という。 (8)
- 絶対値の大きい数と小さい数を足したとき、絶対値が 小さい数が0になってしまうことを、いうという。

经初度性大品品

参考文献

- ■コンピュータの構成と設計 上 第5版 David A.Patterson, John L. Hennessy 著、 成田光彰 訳、日経BP社
- ■山下茂 「計算機構成論1」講義資料