

Varianta 54

Subjectul I.

- $\mathbf{a)} \left| \cos 1 + i \cdot \sin 1 \right| = 1.$
- **b**) $CD = \sqrt{2}$.
- c) Se obțin punctele $A\left(\frac{5\sqrt{2}}{2}, -\frac{5\sqrt{2}}{2}\right)$ și $B\left(-\frac{5\sqrt{2}}{2}, \frac{5\sqrt{2}}{2}\right)$.
- **d**) Punctele L, M, N sunt coliniare, deoarece $\overrightarrow{LN} = 2 \cdot \overrightarrow{LM}$.
- **e**) $V_{ABCD} = \frac{3}{2}$.
- **f**) a = -8 și $b = 8\sqrt{3}$.

Subjectul II.

- 1
- a) Se verifică prin calcul direct.
- b) Se folosește punctul a).
- **c)** x = 0.
- **d**) Probabilitatea căutată este p=1.
- **e**) $x_1 + x_2 + x_3 + x_4 = -1$.
- 2
- a) $f'(x) = \sin x^2 + 2x^2 \cdot \cos x^2$, $\forall x \in \mathbb{R}$.
- **b**) $\int_{0}^{1} f(x) dx = \frac{1 \cos 1}{2}$.
- c) $f'(x) \ge 0$, deci f este strict crescătoare pe [0,1].
- **d**) $\lim_{x\to 0} \frac{f(x)-f(0)}{x} = 0$.
- e) $\lim_{x\to 0} \frac{f(x)}{x^3} = \lim_{x\to 0} \frac{\sin x^2}{x^2} = 1$.

Subjectul III.

- a) det(A) = 0 şi rang(A) = 2.
- **b)** $A^2 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ şi $A^3 = O_3$.
- c) Deoarece matricele I_3 și A comută, avem:

 $(I_3 + A)(I_3 - A + A^2) = I_3 + A^3 \stackrel{\text{b}}{=} I_3$ și analog $(I_3 - A + A^2)(I_3 + A) = I_3$, așadar matricea $I_3 + A$ este inversabilă, inversa sa fiind $I_3 - A + A^2$.

- d) Se arată prin calcul direct.
- e) Deoarece $\det(Z) = a^3 = 0$, rezultă a = 0 şi obținem $Z^3 = O_3$.
- **f**) Pentru U=A, $V=O_3$, avem $U\neq V$ și f(U)=f(V), așadar funcția f nu este injectivă.
- g) Presupunem că există $X \in M_3(\mathbb{C})$ astfel încât f(X) = A. Deoarece XA = AX, din d) și e) deducem că $X^3 = O_3$, deci $X^{2007} = (X^3)^{669} = O_3 \neq A$, contradicție.

Subjectul IV.

a) Se arată prin calcul direct.

b)
$$f'(x) = \frac{2x^4 + 5x^2 + 1}{(x^2 + 1)^2}, \forall x \in \mathbf{R}$$
.

c) f'(x) > 0, $\forall x \in \mathbb{R}$, deci funcția f este strict crescătoare pe \mathbb{R} .

d)
$$\int_{0}^{1} f(x) dx = \frac{2 - \ln 2}{2}$$
.

e) $\lim_{x \to \infty} f(x) = \infty$, deci f nu are asimptotă orizontală spre $+\infty$.

$$m = \lim_{x \to \infty} \frac{f(x)}{x} = 2$$
 şi $n = \lim_{x \to \infty} (f(x) - 2x) = 0$, deci dreapta $d: y = 2x$ este

asimptota oblică spre +∞ la graficul funcției.

f) Din c) știm că f este strict crescătoare, deci este injectivă pe \mathbf{R} .

Deoarece
$$\lim_{x \to \infty} f(x) = -\infty$$
, $\lim_{x \to \infty} f(x) = \infty$ şi f este continuă pe \mathbf{R} obținem că

Im $f = \mathbf{R}$, aşadar f este surjectivă. În concluzie, f este bijectivă.

g) Facem schimbarea de variabilă $f^{-1}(x) = y$ și

obținem
$$\int_{0}^{\frac{3}{2}} g(x) dx = \frac{1 + \ln 2}{2}$$
.