

- 1 Architektura SVM
- 2 Funkcja kernela i podnoszenie przestrzeni wymiarów
- 3 Przestrzeń metryczna
- 4 Parametry KNN
- 5 Uczenie nienadzorowane na przykładzie K-Means

- 1 Architektura SVM
- Funkcja kernela i podnoszenie przestrzeni wymiarów
- 3 Przestrzeń metryczna
- 4 Parametry KNN
- 5 Uczenie nienadzorowane na przykładzie K-Means

- 1 Architektura SVM
- 2 Funkcja kernela i podnoszenie przestrzeni wymiarów
- 3 Przestrzeń metryczna
- 4 Parametry KNN
- 5 Uczenie nienadzorowane na przykładzie K-Means

- 1 Architektura SVM
- 2 Funkcja kernela i podnoszenie przestrzeni wymiarów
- 3 Przestrzeń metryczna
- 4 Parametry KNN
- 5 Uczenie nienadzorowane na przykładzie K-Means

- 1 Architektura SVM
- 2 Funkcja kernela i podnoszenie przestrzeni wymiarów
- 3 Przestrzeń metryczna
- 4 Parametry KNN
- 5 Uczenie nienadzorowane na przykładzie K-Means

Opracowane w AT&T Bell Laboratories przez Vladimira Vapnika z kolegami w latach 90 tych -oparte na statystycznych ramach uczenia się lub teorii VC zaproponowanej przez Vapnika (1982, 1995) i Chervonenkisa (1974).

Idea działania

data = pd.DataFrame({'Kolor': ['CZ', 'CZ', 'CZ', 'CZ', 'CZ', 'CZ', 'CZ', 'CZ', 'CZ', 'CZ', 'NI', 'NI',

'Y': [1, 2.3, 2, 1.5, 3, 4.8, 2.3, 3.5, 4.6, .9, 10, 8.8, 6.6, 6.8, 7.9, 5.3, 6, 8.7, 9.5, 6.6, 9]})

Idea działania

```
encoder = LabelEncoder()
data['Kolor'] = encoder.fit_transform(data['Kolor'])
simple_svm = SVC(kernel='linear')
simple_svm.fit(data[['X', 'Y']], data['Kolor']);
```

plot_decision_regions(X = data[['X', 'Y']].to_numpy(), y =
data['Kolor'].to_numpy().astype(np.int), clf=simple_svm);

ML SVM, KNN, K-Means hiperplane

- Linia oddzielajaca klasy to optimal hiperplane hiperpłaszczyzna.
- Wektory na których się ją "wspiera" to tzw. Support vectors wektory nośne.
 Są to separowalne punkty w przestrzeni, które są najczęściej skrajnymi elementami klas.
- Maximum margin maksymalny margines. Celem algorytmu jest uzyskanie największego marginesu pomiędzy klasami. Im większy tym lepiej bo są wtedy maksymalnie "rożne".

ML SVM, KNN, K-Means hiperplane

Możliwe jest narysowanie wielu hiperpłaszczyzn (rys. po prawej) ale algorytm szuka optymalnej.

info Share ACADEMY

Miękki margines

info Share ACADEMY

Maszyna wektorów nośnych klasyfikuje dane wykorzystując niejawne przekształcenie zbioru treningowego do przestrzeni cech wyższego wymiaru. W nowej przestrzeni cech dopasowywana jest optymalna hiperpłaszczyzna rozdzielająca dwie klasy danych i jednocześnie maksymalizuje margines pomiędzy hiperpłaszczyzną, a punktami znajdującymi się najbliżej niej, nazywanymi wektorami nośnymi.

df = pd.read_csv("data/Advertising.csv")
df = df.drop("Unnamed: 0", axis=1)
X = df['TV']
y = df['Sales']
df.head()

		TV	Radio	Newspaper	Sales
	0	230.1	37.8	69.2	22.1
	1	44.5	39.3	45.1	10.4
	2	17.2	45.9	69.3	9.3
	3	151.5	41.3	58.5	18.5
	4	180.8	10.8	58.4	12.9

plt.scatter(X,y);

ML SVM, KNN, K-Means

SVM - regresja

infoShareAcademy.com

Zadanie 15.1 (instrukcja)

- Korzystając ze zbioru danych "Iris" dostępnego w bibliotece scikit-learn, zadanie klasyfikacji ma na celu przewidzenie gatunku irysa (Setosa, Versicolor, lub Virginica) na podstawie cech takich jak długość i szerokość płatków oraz długość i szerokość działek kielicha.
- 2. Dla tego zadania, skorzystamy z zbioru danych "Boston House Prices" dostępnego w scikit-learn. Celem jest przewidzenie cen domów w Bostonie na podstawie różnych cech, takich jak liczba pokoi, współczynnik przestępczości w okolicy, czy odległość do zatrudnienia.

Jądro - funkcja matematyczna służąca do przekształcania danych wejściowych w inną formę. Typowe funkcje jądra obejmują liniowe, nieliniowe, wielomianowe itp.

Jak odseparować od siebie klasy, które wydają się być nie do odseparowania?

Przykład liniowy:

```
X = np.linspace(-5, 5, 10)
y = np.zeros(10)
labs = np.array([0, 0, 0, 0, 1, 1, 0, 0, 0, 0])
plt.figure(figsize=(7,5))
plt.scatter(X[labs!=1], y[labs!=1])
plt.scatter(X[labs==1], y[labs==1])
plt.ylim(bottom=-1, top=1);
```


infoShareAcademy.com

Jak odseparować od siebie klasy, które wydają się być nie do odseparowania?

$x_sq = X^{**2}$

```
plt.figure(figsize=(7,5))
plt.scatter(X[labs!=1], x_sq[labs!=1])
plt.scatter(X[labs==1], x_sq[labs==1]);
```


Jak odseparować od siebie klasy, które wydają się być nie do odseparowania?

```
plt.figure(figsize=(7,5))
plt.scatter(X[labs!=1], x_sq[labs!=1])
plt.scatter(X[labs==1], x_sq[labs==1])
plt.axhline(y=1, );
```


Typy kerneli

df = datasets.make_circles(n_samples=500,random_state=0, noise =.2, factor=.1)
X = pd.DataFrame(df[0], columns=['a', 'b'])
y = df[1]
sns.scatterplot(X.a, X.b, hue = y);

info Share

Liniowy:

lin_svm = SVC(kernel='linear',gamma = 'scale')
lin_svm.fit(X,y)
plot_decision_regions(X.to_numpy(),y, clf=lin_svm);

ML SVM, KNN, K-Means Typy kerneli

Wielomianowy:

Degree=2

svm_poly2 = SVC(kernel='poly', degree=2,gamma
= 'scale').fit(X,y)
plot_decision_regions(X.to_numpy(),y, clf=svm_poly2);

ML SVM, KNN, K-Means Typy kerneli

Wielomianowy:

Degree=3

svm_poly3 = SVC(kernel='poly', degree=3,gamma = 'scale').fit(X,y)
plot_decision_regions(X.to_numpy(),y, clf=svm_poly3);

Radial (rbf):

svm_rad = SVC(kernel='rbf',gamma = 'scale').fit(X,y)
plot_decision_regions(X.to_numpy(),y, clf=svm_rad);

info Share

Zadanie 15.2 (instrukcja)

 Dla zbioru danych poniżej stwórz modele SVM z kernelem liniowym, radial i polynominal w kilku wariantach stopni wielomianu. Narysuj wykresy oraz policz skuteczność modeli. Który był najskuteczniejszy?

```
df = datasets.make_moons(n_samples=500, random_state=0, noise = .09)
X = pd.DataFrame(df[0], columns=['a', 'b'])
y = df[1]
sns.scatterplot(X.a, X.b, hue = y);
```


Dwa główne podejścia:

- one vs one (stosowany domyślnie w sklearn),
- one vs all (aby go użyć należy posłużyć się modelem sklearn.multiclass.OneVsRestClassifier).

Klasyfikacja wieloklasowa

```
df = datasets.make_blobs(n_samples=500, random_state=67,
centers=3,cluster_std=2)
X = pd.DataFrame(df[0], columns=['a', 'b'])
y = df[1]
sns.scatterplot(X.a, X.b, hue = y);
```


lin_ovo = SVC(kernel='linear')
lin_ovo.fit(X,y)
plot_decision_regions(X.to_numpy(),y, clf=lin_ovo);

lin_ovr = OneVsRestClassifier(SVC(kernel='linear')).fit(X,y) plot_decision_regions(X.to_numpy(),y, clf=lin_ovr);

Zadanie 15.3 (instrukcja)

Rozważmy zbiór danych Iris, dostępny w bibliotece scikit-learn. Zadaniem jest zastosowanie dwóch różnych podejść do klasyfikacji wieloklasowej, tj. One-vs-One (OvO) i One-vs-Rest (OvR), za pomocą klasyfikatora SVM z kernela liniowego.

- 1. One-vs-One (OvO):
 - Użyj klasyfikatora SVM z kernela liniowego w podejściu One-vs-One do klasyfikacji trzech klas (setosa, versicolor, virginica) na podstawie cech kwiatów z datasetu Iris.
 - Podziel zbiór danych na zbiór treningowy i testowy.
 - Wytrenuj model SVM za pomocą podejścia OvO.
 - Dokonaj predykcji dla danych testowych.
 - Oceń dokładność modelu.
- 2. One-vs-Rest (OvR):
 - Użyj klasyfikatora SVM z kernela liniowego w podejściu One-vs-Rest do klasyfikacji trzech klas na podstawie tych samych danych Iris.
 - Podziel zbiór danych na zbiór treningowy i testowy.
 - Wytrenuj model SVM za pomocą podejścia OvR.
 - Dokonaj predykcji dla danych testowych.
 - Oceń dokładność modelu.

info Share

ML SVM, KNN, K-Means Hiperparametry

Regularyzacja (C):

```
df = datasets.make_blobs(n_samples=300, random_state=67,
centers=2,cluster_std=2.5)
X = pd.DataFrame(df[0], columns=['a', 'b'])
y = df[1]
sns.scatterplot(X.a, X.b, hue = y);
```


ML SVM, KNN, K-Means Hiperparametry

Regularyzacja (C):

svm = SVC(kernel='rbf',gamma='auto',C=0.1)
svm.fit(X,y)
plt.title('C = 0.1')
plot_decision_regions(X.to_numpy(),y, clf=svm);

ML SVM, KNN, K-Means Hiperparametry

Regularyzacja (C):

svm = SVC(kernel='rbf',gamma='auto',C=100)
svm.fit(X,y)
plt.title('C = 100')
plot_decision_regions(X.to_numpy(),y, clf=svm);

Hiperparametry

Gamma y:

svm = SVC(kernel='rbf',gamma=0.05)
svm.fit(X,y)
plt.title('Gamma = 0.05')
plot_decision_regions(X.to_numpy(),y, clf=svm);

Hiperparametry

svm = SVC(kernel='rbf',gamma=2) svm.fit(X,y) plt.title('Gamma = 2') plot_decision_regions(X.to_numpy(),y, clf=svm);

Klasyfikacja obrazów

mnist = pd.read_csv('data/mnist_test.csv')
mnist = mnist.iloc[0:2000]

Y = mnist['label']

X = mnist.drop(columns = 'label').to_numpy()

plt.matshow(X[0].reshape(28,28));

X_train, X_test, Y_train, Y_test = train_test_split(X,Y, test_size =
0.3,random_state=50)

Regresja logistyczna:

lin = LogisticRegression().fit(X_train,Y_train)
pred = lin.predict(X_test)
print('Accuracy:',accuracy_score(Y_test,pred))

Accuracy: 0.81

SVM:

svm = SVC(kernel='poly',gamma='auto',degree=3).fit(X_train,Y_train)
pred = svm.predict(X_test)
print('Accuracy:',accuracy_score(Y_test,pred))

Accuracy: 0.89

Zbiór mnist (pierwszych 2000 obserwacji) podziel na zbiory: treningowy walidacyjny, testowy w stosunku 60%, 20% 20%. Następnie spróbuj znaleźć najlepszy model SVM. Przetestuj różne kernele i ich hiperparametry (C, gamma) sprawdzając skuteczność (accuracy score) na zbiorze walidacyjnym. Wybierz najlepszy model i na końcu policz skuteczność tego modelu na zbiorze testowym.

- Wszechstronny do funkcji jądra specyficznych dla użytkownika.
- Wydajna pamięć.
- Skuteczny w przypadkach, gdy liczba wymiarów jest większa niż liczba próbek (więcej zmiennych jak obserwacji).
- Rozwiązuje problemy liniowe i nieliniowe.

- Podatny na błędy i nadmierne dopasowanie w przypadku zaszumionych danych (np. nakładające się funkcje dla różnych etykiet) oraz outliery.
- Długi czas obliczeń w przypadku bardzo dużych zbiorów danych.
- Nie daje probabilistycznego wyjaśnienia wyników.

SVM - podsumowanie

Linear SVM

Non Linear SVM

Intuicja tzw. Nearest Neighbor Classifiers (bardzo prosta):

-"If it walks like a duck, quacks like a duck, then it's probably a duck".

Niech X będzie niepustym zbiorem, np. \mathbb{R} (oś liczbowa), $\mathbb{R}2$ (układ współrzędnych na płaszczyźnie), $\mathbb{R}3$ (układ współrzędnych w przestrzeni).

Metrykę w zbiorze X nazywamy funkcję $d:X \times X \to [0,\infty)$ spełniającą dla dowolnych elementów a, b, c ze zbioru X następujące warunki:

• Identyczność: $d(a,b) = 0 \Leftrightarrow a = b$

Symetria: d(a,b) = d(b,a)

Nierówność trójkąta: $d(a,b) \le d(a,c) + d(c,b)$

Mówimy wtedy, że para (X, d) jest przestrzenią metryczną.

Kula w przestrzeni metrycznej (X,d) o środku w punkcie O i promieniu r to zbiór wszystkich elementów, których odległość od środka jest mniejsza od długości promienia. Gdy dodamy do niej zbiór wszystkich punktów odległych dokładnie o r, otrzymamy kulę domkniętą.

Przykładowo kulą w R może być odcinek, w R2 koło, a w R3 kula.

Przykłady metryk

ML SVM, KNN, K-Means Metryka euklidesowa

Metryka euklidesowa – jest to "naturalny" sposób mierzenia odległości w przestrzeniach.

$$d_e(x,y) = \sqrt{(y_1 - x_1)^2 + \dots + (y_n - x_n)^2}$$

Kula w tej przestrzeni to wszystkie takie punkty x spełniające nierówność:

$$d_e(x, x_0) \le r^2$$

W tym przypadku to:

$$(x - x_0)^2 + (y - y_0)^2 + \dots \le r^2$$

info Share

Metryka taksówkowa

Metryka taksówkowa, zwana również Manhattan lub miejską.

Między dwoma punktami poruszamy się tylko prosto wschód-zachód i północ-południe.

$$d_e(x,y) = |x_1 - y_1| + \dots + |x_n - y_n|$$

$$|x_1 - x_2| + |y_1 - y_2| \leqslant r$$
.

info Share

ML SVM, KNN, K-Means Metryka maksimum

Metryka maksimum, zwana również Czebyszewa, nieskończoność, szachową.

$$d_e(x,y) = \max_{k=1,..n} |x_k - y_k|$$

info Share

Metryka Minkowskiego

Jest to uogólniona miara między punktami w przestrzeni euklidesowej. Nazywana również metryką $L_{\rm m}$.

$$L_m(x,y) = \left(\sum_{i=1}^n |x_i - y_i|^m\right)^{\frac{1}{m}}$$

- Odległość na powierzchni kuli (haversine) używana do mierzenia odległości punktów na powierzchni
 Ziemii: https://en.wikipedia.org/wiki/Haversine_formula
- Odległość Levenshteina opisuje ile przekształceń potrzeba by z
 jednego napisu otrzymać inny. Używana przy porównywaniu słów,
 tekstów: https://en.wikipedia.org/wiki/Levenshtein_distance

Wartości odstające

KNN jest metodą uczenia maszynowego z nadzorem.

Polega na wyszukaniu obserwacji będących w najbliższym sąsiedztwie w przestrzeni.

Może być używana zarówno do klasyfikacji jak i regresji.

ML SVM, KNN, K-Means Algorytm KNN

- 1. Zapamiętujemy położenie wszystkich punktów w zbiorze uczącym.
- Dla obserwacji, której dokonujemy predykcji wyliczamy odległości do wszystkich punktów ze zbioru uczącego.
- 3. Wybieramy K obserwacji znajdujących się najbliżej tej obserwacji.
- 4. W przypadku klasyfikacji predykcją będzie klasa najczęściej występująca
- W przypadku regresji, będzie to średnia wartość zmiennej zależnej z K najbliższych obserwacji.

Możemy też opcjonalnie również użyć odległości jako wag.

info Share

Algorytm ten stosuje się nie tylko do regresji czy klasyfikacji dzięki niemu możemy znaleźć najbliższe sąsiedztwo w przestrzeni wielowymiarowej.

Można zastosować go do różnego rodzaju rekomendacji.

iris = load_iris()
X = iris.data
y = iris.target

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
knn_classifier = KNeighborsClassifier(n_neighbors=3)
knn_classifier.fit(X_train, y_train)
y_pred = knn_classifier.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)

Zadanie 15.5 (instrukcja)

Twoim zadaniem jest zastosowanie algorytmu K-Nearest Neighbors (KNN) do klasyfikacji cech win na podstawie dostępnych pomiarów. W tym przypadku użyj zbioru danych Wine, który zawiera trzy klasy win (klasyfikacja na podstawie trzech różnych odmian win).

KNN - podsumowanie

https://vas3k.com/blog/machine learning/

K-Means

Uczenie dzielimy na z nadzorem i bez nadzoru:

Każdy przykład ma określoną etykietkę (label, target):

$$p(y \mid \vec{x})$$

target +	•	petal w *	petal I 0	sepal w +	sepal I +	•
0	0	0.2	1.4	3.5	5.1	0
0	1	0.2	1.4	3.0	4.9	1
0	2	0.2	1.3	3.2	4.7	2
0	3	0.2	1.5	3.1	4.6	3
0	4	0.2	1.4	3.6	5.0	4
				···		
2	145	2.3	5.2	3.0	6.7	145
2	146	1.9	5.0	2.5	6.3	146
2	147	2.0	5.2	3.0	6.5	147
2	148	2.3	5.4	3.4	6.2	148
2	149	1.8	5.1	3.0	5.9	149

Przykłady są tylko zbiorami cech; algorytm "uczy się" rozkładu prawdopodobieństwa, który wygenerował zbiór:

$$p(\vec{x})$$

	sepal I +	sepal w \$	petal I ¢	petal w \$	target \$
0	5.1	3.5	1.4	0.2	0
1	4.9	3.0	1.4	0.2	0
2	4.7	3.2	1.3	0.2	0
3	4.6	3.1	1.5	0.2	0
4	5.0	3.6	1.4	0.2	0
	***	***			
145	6.7	3.0	5.2	2.3	2
146	6.3	2.5	5.0	1.9	2
147	6.5	3.0	5.2	2.0	2
148	6.2	3.4	5.4	2.3	2
149	5.9	3.0	5.1	1.8	2

Jest to proces dzielenia danych na grupy (klastry) bazując na wzorcach w danych.

Podział odbywa się w taki sposób, by podobne obiekty należały do tej samej grupy, a różne obiekty do różnych.

Zastosowanie

- Segmentacja użytkowników:
 - dedykowana komunikacja (marketing)
- Segmentacja grup klientów:
 - dedykowane produkty
- Segmentacja obrazów:
 - diagnostyka obrazowa w medycynie
- Grupowanie dokumentów:
 - automatyczny podział podobnych do siebie dokumentów
- Grupowanie produktów:
 - kategorie w sklepach internetowych
- Systemy rekomendacyjne:
 - podobni do Ciebie kupili
 - podobne produkty

Algorytm k-średnich - często jest algorytmem pierwszego wyboru ze względu na jego prostotę i łatwość interpretacji.

- 1. Wybierz liczbę klastrów K.
- 2. Wybierz k losowych punktów z danych jako tzw. centroidy.
- 3. Przypisz każdą obserwację do najbliższego centroidu (klastra).
- 4. Przelicz na nowo centroidy klastrów (środki).
- 5. Powtórz kroki 3 i 4 dla nowych centroidów do czasu aż:
 - centroidy dla nowoutworzonych klastrów się nie zmieniają,
 - punkty pozostają w tym samym klastrze,

info Share

Trenowanie modelu:

from sklearn.cluster import KMeans model = KMeans(**parametry) model.fit(dane_treningowe)

Aplikacja modelu:

model.predict(nowy_data_point)

K-Means w sklearn

- n_clusters
- n_init
- Init
- tol
- max_iter
- algorithm

Optymalna liczba klastrów

Elbow Method:

Optymalna liczba klastrów

Silhouette score:

$$a(i) = rac{1}{|C_i|-1} \sum_{j \in C_i, i
eq j} d(i,j)$$

średnia odległość punktu i wewnątrz klastra

$$b(i) = \min_{k
eq i} rac{1}{|C_k|} \sum_{j \in C_k} d(i,j)$$

średnia odległość punktu i do innego klastra

$$s(i) = rac{b(i) - a(i)}{\max\{a(i), b(i)\}}$$
 , if $|C_i| > 1$

from sklearn.datasets import make_blobs from sklearn.cluster import KMeans from sklearn.metrics import silhouette_samples, silhouette_score

```
X, y = make_blobs(n_samples=500,
n_features=2,
centers=4,
cluster_std=1,
center_box=(-10.0, 10.0),
shuffle=True,
random_state=1)
```


ML SVM, KNN, K-Means Wykres Silhouette

For n_clusters = 2 The average silhouette_score is: 0.7049787496083262

For n_clusters = 3 The average silhouette_score is: 0.5882004012129721

For n_clusters = 4 The average silhouette_score is: 0.6505186632729437

For n_clusters = 5 The average silhouette_score is: 0.5745566973301872

For n_clusters = 6 The average silhouette_score is: 0.4387644975296138

info Share

Inne metody clusteringu

ML SVM, KNN, K-Means Implementacja

import matplotlib.pyplot as plt import pandas as pd import numpy as np

%matplotlib inline
%config InlineBackend.figure_format = 'retina'

data = pd.read_csv("data/synthetic-1.csv").values

ML SVM, KNN, K-Means Implementacja

from sklearn.cluster import KMeans

ks = KMeans(4, init="random", n_init=10).fit_predict(data)

ks

array([0, 3, 1, ..., 3, 0, 2])

plt.scatter(data[:,0], data[:,1], c=ks)

data = pd.read_csv("data/scales.csv").values
plt.scatter(data[:, 0], data[:, 1], 2)


```
ms = KMeans(2, init="k-means++", n_init=10)
pred = ms.fit(data).predict(data)
```

ms.cluster_centers_

plt.scatter(data[:, 0], data[:, 1], 2, c=pred)
plt.scatter(ms.cluster_centers_[:,0], ms.cluster_centers_[:,1], c="red")

Dla zbioru danych Iris z biblioteki sklearn. Zastosuj algorytm K-Means do klastrowania tych danych w celu zidentyfikowania naturalnych grup.

Inercja (Inertia).

Suma odległości wszystkich punktów w klastrze od centroidu (środka ciężkości własnego klastra - najbliższego) - odległość wewnątrz klastra.

Chcemy minimalizować.

ML SVM, KNN, K-Means Implementacja

ms.inertia_

684710802.1321297

from sklearn.preprocessing import scale

scaled_data = scale(data)

scaled_data

array([[0.88075426, -0.1969764], [-1.08605514, 2.19940887], [-0.94236542, -0.19915185],

...,

[-0.8743019, -0.11168427],

[1.25531152, -0.15825949],

[0.97803738, -3.19015715]])

ML SVM, KNN, K-Means Implementacja

ms2 = KMeans(2, init="k-means++", n_init=10)
pred2 = ms2.fit(scaled_data).predict(scaled_data)
plt.scatter(scaled_data[:, 0], scaled_data[:, 1], 2, c=pred2)
plt.scatter(ms2.cluster_centers_[:,0], ms2.cluster_centers_[:,1], c="red")

2073.7519150180733

info Share ACADEMY

Implementacja

Wybór k:

data = pd.read_csv("data/synthetic-1.csv").values

plt.scatter(data[:, 0], data[:, 1], 2)

k = 4

ms = KMeans(k).fit(data)

ms.score(data)

3953.631021978067

ms.inertia_

3953.6310219780685

[KMeans(k).fit(data).inertia_ for k in range(1, 10)]

[277695.22957089165,

96595.36113577684,

35653.3972019451,

3953.6310219780685,

3587.3712225985755,

3238.3389228632554,

2932.6509570852913,

2609.281854683741,

2400.4554721882973]

scores = [- KMeans(k).fit(data).score(data) for k in range(1, 10)]
plt.plot(range(1, 10), scores, markersize=3, marker="o")
plt.show()

Dla zbioru danych load_digits() znajdź optymalną liczbę klastrów za pomocą algorytmu K-Means i metody "łokcia".

Podsumowanie

