Année Universitaire : 2019/2020

Matière: Electronique fondamentale 1

Examen final

Pour tout le sujet <u>Des calculs sans schéma électrique avec le nécessaire</u> des tensions et des courants au-dessus, la note est zéro

La meilleure note entre les exercices 2, 3 et 4 sera comptabilisée comme interrogation

Exercice 1: (2 pts)

Répondre par vrai ou faux

Repondre par viai ou similar	
1-Le transistor a deux types de fonctionnement NPN et PNP	3-La bobine est un dipôle linéaire
2-Un dipôle a la tension toujours proportionnelle au courant	2-La loi des mailles ⇒ la somme des courants est nulle

Exercice 2: (6 pts)

Soit le circuit ci-contre avec :

$$E = 4v$$
, $I = 1A$, $R_1 = R_2 = R_3 = 10\Omega$

- 1. Calculer la tension V aux bornes de la résistance R_2 (3 pts), ensuite déduire ou calculer la tension V_I (1 pts),
- 2. Calculer la valeur de R_3 pour que R_2 consomme un quart (1/4) de la puissance délivrée par les deux sources (2 pts)

Exercice 3: (6 pts)

Soit le montage ci-contre : avec

$$V_{cc}=10, \quad h_{11}=R_b=R_e=1\,k\Omega, \qquad R=R_c=100\,\Omega, \qquad V_{be}=0.7 volt, \ h_{21}=\beta=100 \qquad \qquad h_{12}=h_{22}=0$$

- 1. Quel est le type du montage (justifier par une phrase) (0.5pts)
- 2. Calculer et tracer dans le plan (Vce, Ic), la droite de charge statique (2 pts)
- 3. Donner pour le régime dynamique le schéma équivalent du montage (1pts)
- 4. Calculer le gain en tension $G_c = v_s/v_e$ (1.5pts)
- 5. Calculer R_e pour que $v_e = 5 \cdot i_e$ (i_e :courant délivrée par la source v_e) (1pts)

Exercice 4: (6 pts)

Soit le circuit ci-contre avec $R = 1 M\Omega$ et $C = 1\mu F$:

- 1. Ecrire la sortie V_s en fonction des potentiels V_{e1} et V_{e2} (2.5 pts)
- 2. Quelle est la fonction de ce circuit (1 pts)
- 3. En utilisant la méthode des intégrateurs, représenter l'équation différentielle ci-dessous par les amplificateurs opérationnels(2.5 pts)

$$\frac{d^2y}{dt^2} - 2\frac{dy}{dt} + y = \sin(100t)$$

NB: (utiliser les montages d'un amplificateur opérationnel suivants)

Corrigé type de l'examen final électronique fondamentale 1

(d'autres méthodes de résolutions sont possibles)

1-Le transistor a deux types de fonctionnement NPN et PNP 103-La bobine est un dipôle linéaire

2-Un dipôle a la tension toujours proportionnelle au courant F 2-La loi des mailles ⇒ la somme des courants est nulle

Exercice 1: (6pts) Avec E = 4v, I = 1A, $R_1 = R_2 = R_3 = 10\Omega$,

Exercice 3: (6 pts)

1. le montage est un amplificateur base commune car l'entrée est sur l'émetteur et la sortie sur le collecteur

Exercice 4: (6 pts)

 \rightarrow Le montage fait l'intégral de la différence $\frac{1}{2}V_{e2} - V_{e1}$ et une translation de $\frac{1}{2}V_{e2}$

Soit l'équation différentielle suivante :

$$\frac{d^2y}{dt^2} - 2\frac{dy}{dt} + y = \sin(100t)$$

Première méthode par les intégrateurs

$$\frac{d^2y}{dt^2} - 2\frac{dy}{dt} + y = \sin(100t) \Rightarrow \frac{d^2y}{dt^2} = \sin(100t) + 2\frac{dy}{dt} - y = -\left(-\sin(100t) - 2\frac{dy}{dt} + y\right)$$

