Now sawé	assume derivo	that to	o functions	≠(x) and	G(x) have the
Then,	i gi		$x + \frac{1}{2} (x) = G'(x)$	•	F(x) - G(x) we
hove		H'(X) = F'(X	$E_{r}(x) = C_{r}(x)$ $V - C_{r}(x) = C_{r}(x)$	for all	*
This is there	uplies exists		ant above (X) (X) (X)		enction, that is
				(x) + c	
			howing the		
Theorem	v : Ig	F is an then the I is	antiderivative wast gen	e of Jon heral autide	an interal
	w	where c 1s	en arbition	ary constan	<i>⁄</i>
Becous	e el	the previous the previous to accompany	we theorem $F(x)$, the	en the mo	know a est general
				ative of f	
			TABLE		
FUNCTIO		DET GENERAL UITAVIRECITAL		FUNCTION	HOST GENERAL ANTIDERIVATIVE
ׄ		XN+1 + C	note that	sin(x)	-cos(x)+c
1		en 1x1 + c	is not define	Sec²(X)	tan (x) + c
×			The considering.	1 11-x2	Sin-'(x) + c
e*		e* + c		1+ ×2	ton-'(x)+c
() کمک	4)	Sin (x) + c			

In the previous table note that if we derive the most general antiderivative we get the function on its left-hand.

A quick remark on the most general antiderivative of $\frac{1}{x}$. The function $f(x) = \frac{1}{x}$ is defined over $(-\infty,0) \cup (0,\infty)$, so $ext{ln}(x)$ is not an antiderivative of f(x), because it is only defined on $(0,\infty)$.

Let us consider the function F(x) = Cin(x) = Cin(x), x>0

· for x>0 we have (lu 1x1) = (lu (x)) = 1

• for x < 0 we have $\left(\ln |x| \right)' \stackrel{!}{=} \left(\ln (-x) \right)' = \frac{1}{-x} \cdot \left(-1 \right) = \frac{1}{x}$

Therefore, for all x ($\ln |x|$)' = $\frac{1}{x}$ and $\ln |x|$ is a particular antiderivative of $\frac{1}{x}$.

Remark: If F(x) is an antiderivative of f(x) and G(x) is an antiderivative of g(x) then:

- if $C \in \mathbb{R}$, CF(X) is an antiderivative of cf(X).
- F(x) + G(x) is an antiderivative of f(x) + g(x).

Exercise: (1) Find the most general antiderivative of $g(x) = 3\cos(x) + 2e^x + \frac{-1 + 4x^6 + 2\sqrt[3]{x}}{x}$.

(2) Find the function G(x) such that G'(x) = g(x) and G(1) = 2.

Solution

(1) First we rewrite g(x):

$$g(x) = 3\cos(x) + 2e^{x} - \frac{1}{x} + \frac{4x^{6}}{x} + \frac{2\sqrt[3]{x}}{x} =$$

$$= 3\cos(x) + 2e^{x} - \frac{1}{x} + 4x^{5} + \frac{2x^{\frac{1}{3}}}{x} =$$

So the mast general antiderivative of
$$g(k)$$
 is:

$$G(X) = 3\sin(X) + 2e^{X} - 6n|X| + 4\frac{X^6}{6} + 2\frac{X^{-\frac{5}{2}+1}}{-\frac{2}{3}+1} + C = \frac{1}{2}$$

$$= 3\sin(X) + 2e^{X} - 6n|X| + \frac{2}{3} \times 6 + 6x^{\frac{1}{2}} + C$$

$$= 3\sin(X) + 2e^{X} - 6n|X| + \frac{2}{3} \times 6 + 6x^{\frac{1}{2}} + C$$

$$= 3\sin(X) + 2e^{X} - 6n|X| + \frac{2}{3} \times 6 + 6x^{\frac{1}{2}} + C$$

$$(2) \text{ The most } g \text{ eneral antiderivative } G(X) \text{ computed } (n) (1)$$
is a function such that $G(X) = g(X)$.

$$G(X) = 2$$

$$G(X) = 2$$

$$3\sin(X) + 2e^{X} - 6n|X| + \frac{2}{3} + C = 2$$

$$3\sin(X) + 2e^{X} + \frac{2}{3} + C = 2$$

$$3\sin(X) + 2e^{X} + \frac{2}{3} + C = 2$$
In conclusion:
$$G(X) = 3\sin(X) + 2e^{X} - 6n|X| + \frac{2}{3} \times 6 + 6^{3}|X| - \frac{14}{3} - 3\sin(X) - 2e$$
In conclusion:
$$G(X) = 3\sin(X) + 2e^{X} - 6n|X| + \frac{2}{3} \times 6 + 6^{3}|X| - \frac{14}{3} - 3\sin(X) - 2e$$
In conclusion:
$$G(X) = 3\sin(X) + 2e^{X} - 6n|X| + \frac{2}{3} \times 6 + 6^{3}|X| - \frac{14}{3} - 3\sin(X) - 2e$$
In conclusion:
$$G(X) = 3\sin(X) + 2e^{X} - 6n|X| + \frac{2}{3} \times 6 + 6^{3}|X| - \frac{14}{3} - 3\sin(X) - 2e$$
The previous exercise shows that given an additional condition (in our case $G(X) = 2$), there exists and an additional condition (in our case $G(X) = 2$), there exists and an additional condition (in our case $G(X) = 2$), there exists and an addition on the constant $G(X) = 2$.

Indeed the condition results in a linear equation an the constant $G(X) = 2$ which has one unique solution.

Exercise:

A particle mass in a straight line and has acceleration given by

 $\alpha(k) = 4k + 3.$

Its initial velocity is v(o) = 3 cm/s and its initial displacement is S(o) = 8 cm. Find its position function S(t).

Solution

We have a(t) = v'(t) = s''(t).

The problem can then be reformulated in the following way:

Find a function S(t) such that

$$-5^{\circ}(t) = 4t + 3$$

•
$$5''(t) = 4t + 3$$
 $\longrightarrow \pi(t) = 5'(t) = 4 \frac{t^2}{2} + 3t + c = 2t^2 + 3t + c$

$$= \int v(t) = 2t^2 + 3t + c$$

$$= \int v(t) = 2t^2 + 3t + c$$

$$= \int v(t) = 2t^2 + 3t + c$$

$$= \int v(t) = 2t^2 + 3t + c$$

•
$$v(t) = s'(t) = 2t^2 + 3t + 3$$
 $= 2t^3 + 3t^2 + 3t + d$

$$\int_{1}^{1} S(t) = \frac{2}{3}t^{3} + \frac{3}{2}t^{2} + 3t + d$$

$$\Rightarrow \int_{1}^{1} S(0) = 8$$

$$\Rightarrow d = 8 \Rightarrow S(t) = \frac{2}{3}t^{3} + 3\frac{t^{2}}{2} + 3t + 8$$

Exercise: A ball is thrown upwourd with a speed of 48 ft/s from the edge of a cliff 288 ft above the ground.

- (1) Find its height above the ground t second later.
- (2) When does it reaches its maximum height?
- (3) When does it hit the ground?

Solution

We set:

- h(t): position function of the ball (height of the ball at a time t)
- v (t): relocity of the ball
- a(t): acceleration of the ball

