

ไมโครคอนโทรลเลอร์ STM32

Serial Interface

- ่≥การส่งข้อมูลคราวละหนึ่งบิตผ่านสื่อตัวกลางไปยัง ปลายทาง
- ừ ต้นทางเตรียมข้อมูลลงใน shift registerเพื่อเลื่อน ข้อมูลออกไปยังพอร์ตขาออกคราวละหนึ่งบิต
- ฟปลายทางรับข้อมูลที่เข้ามาคราวละหนึ่งบิตเข้ามาใน
 shift register clock generator
- 🌺วงจร shift register อาศัยวงจรสร้างสัญญาณนาฬิกา เพื่อเลื่อนข้อมูลภายใน
 - (อาจมีการส่งสัญญาณนาฬิกาจากต้นทางไปยังปลายทาง ด้วย (synchronous) หรือไม่มีการส่ง (asynchronous)

Universal Synchronous and Asynchronous Receiver-Transmitter (USART)

- 🎍อุปกรณ์(วงจร) รับส่งข้อมูลแบบอนุกรมที่สามารถส่งได้ทั้งแบบ Synchronous หรือส่งแบบ Asynchronous
 - 🔐 สถานะปกติของบัสเป็น 1 ในขณะที่ไม่มีข้อมูล (หากเป็น Synchronous จะมีการส่งสัญญาณนาฬิกา (BCLK)ไปตลอดเวลา
 - ัชขอมูลถูกจัดแบ่งเป็นเฟรม (frame) มีองค์ประกอบคือ start bit (ลอจิก0) ตามด้วยบิตข้อมูล (7-8 บิต) parity bit (0-1บิต) และ stop bit (ลอจิก1 จำนวน 1-2บิต)

มาตรฐานต่างๆ ของพอร์ตอนุกรม : RS-232

№ RS-232 (ชื่อเดิม EIA232) ถูกนำมาใช้กันมากตั้งแต่ราวปี ค.ศ.196x มา จนถึงปัจจุบัน

🖖 การต่อตรงระหว่างอุปกรณ์โดยไม่ผ่านโมเด็มเรียกว่า Null-modem

🆖 ความเร็วสูงสุด 115,200 baud

มาตรฐานต่างๆ ของพอร์ตอนุกรม : RS-232

🎍 ระดับแรงดันที่ใช้อาจอยู่ในระดับ TTL (3.3v-5v) หรือสูงกว่านั้นเช่น 15v

Pin	SIG.	Signal Name	DTE (PC)
1	DCD	Data Carrier Detect	in
2	RXD	Receive Data	in
3	TXD	Transmit Data	out
4	DTR	Data Terminal Ready	out
5	GND	Signal Ground	-
6	DSR	Data Set Ready	in
7	RTS	Request to Send	out
8	CTS	Clear to Send	in
9	RI	Ring Indicator	in

มาตรฐานต่างๆ ของพอร์ตอนุกรม : RS-422 / RS-423

W RS-422 (ชื่อเดิม TIA/EIA422) นำเสนอโดย Electronic Industries Alliance

🖖 สัญญาณส่งแบบ balanced (differential signaling ลอจิกตรงกันข้ามระหว่างสอง สายสัญญาณ) สายเป็นสายตีเกลียว (twisted-pair) ระยะทางสูงสุด 1200 เมตร

Ѡ ความเร็วสูงสุดถึง 10Mbit/s สัญญาณสูงสุด -6V / 6V

🖖 RS-423 วงจรคล้ายคลึงกับ RS-422 แต่รับส่งเป็น unbalanced (ขา – อิงกับ ground แทนที่จะ

แยกเฉพาะสายข้อมูลแต่ละเส้น)

(ที่มักถูกเรียกผิดเป็น DB-9)

ที่พบเห็นในคอมพิวเตอร์สมัยเก่า

มาตรฐานต่างๆ ของพอร์ตอนุกรม : RS-485 🕆

- 날 สัญญาณส่งแบบ balanced (differential signaling ลอจิกตรงกันข้าม ระหว่างสองสายสัญญาณ) สายเป็นสายตีเกลียว (twisted-pair) ระยะทางสูงสุด 1200 เมตร
- ความเร็วสูงสุดถึง 10Mbit/s ถ้าส่งระยะใกล้ แต่หากส่งระยะไกลนิยม ส่งด้วยความเร็วต่ำ
- 🖖 อุปกรณ์แต่ละตัวพ่วงอยู่บนบัสเดียวกัน ที่ปลายสายมี R-terminate
- ฟ ถูกนำไปใช้ในหลายแหล่ง เช่นระบบควบคุมไฟเวที (DMX512) ในรถยนต์ สมัยก่อน และอื่นๆ 🗴 🛌 😜

R-termination และวงจรพื้นฐาน

USART ใน STM32

- W
- สามารถโปรแกรมได้หลากหลาย
 - 💦 ข้อมูลขนาด 7-9 บิต
 - 🔐 พาริตี้แบบ even/odd/no parity
 - 💦 stop bit ขนาด 0.5/1/1.5/2 บิต
 - 🔐 กำหนดให้ส่งบิตต่ำสุดก่อนหรือบิตสูงสุดก่อนก็ได้
 - 💦 กำหนดความเร็วข้อมูลในการส่งได้
 - () กำหนดวงจรขารับในลักษณะ oversampling ได้ แบบ x16 หรือ x8
 - 🔐 มีวงจร (hardware) flow control รองรับมาตรฐาน การส่งข้อมูลทั้งแบบ RS-232 และ RS-485 ในตัว
 - 🔐 มีวงจรบัปเฟอร์ (FIFO) ขนาด 8 ข้อมูลทั้งขาเข้าและ ขาออก

USART ใน STM32

- 🖖 รองรับทั้งแบบ full-duplex และ half-duplex
 - 🔐 Full-duplex แยกสายสัญญาณส่งและรับข้อมูลออกจากกัน
 - 🔐 Half-duplex ใช้สายสัญญาณร่วมกันทั้งรับและส่งข้อมูล
 - 💜 จึงไม่สามารถส่งและรับข้อมูลในเวลาเดียวกันได้
 - 💖 ต้องมี R-pull up
- **่**≽รองรับ ISO/IEC 7816
 - 🔐 Half-duplex ใช้กับสมารท์การ์ด
- รองรับการรับส่งสัญญาณสำหรับวงจรอินฟราเรด

สรุปหัวข้อ

- 🎍 การส่งข้อมูลแบบอนุกรม อาศัยการส่งบิตข้อมูลไปบนสายสื่อสารคราวละหนึ่งบิต
- 날 หนึ่งเฟรมข้อมูลประกอบไปด้วย start bit, data frame, parity bit, stop bit(s)
- 날 มาตรฐานของสายส่งสัญญาณมีหลายชนิด ตัวอย่างเช่น RS-232 ที่ใช้กันมากกับคอมพิวเตอร์ RS-422/423/485 ที่ยังมีใช้กันในงานอุตสาหกรรม

