1. Configuração Inicial e Carregamento dos Dados

Nesta primeira parte, o notebook se prepara para o que virá a seguir.

• Importando Ferramentas (Bibliotecas):

- o numpy e pandas: São como as "planilhas" e "calculadoras" que nos ajudam a organizar e manipular os dados.
- missingno, matplotlib.pyplot, seaborn: Ferramentas para criar gráficos e visualizar informações de forma clara, inclusive para ver se faltam dados.
- LogisticRegression, train_test_split,
 DecisionTreeClassifier: Essas são as "receitas" para construir nossos modelos de previsão.

• Carregando os Dados:

- o df =
 pd.read_csv('/content/drive/MyDrive/dscience-infinity/dad
 os/aula 9/heart_failure_clinical_records_dataset.csv'):
 Aqui, o notebook abre o arquivo que contém todos os dados sobre os
 pacientes, como idade, pressão, etc., e os guarda em uma tabela chamada
 df.
- o df.head(): Mostra as primeiras linhas dessa tabela para termos uma ideia do que ela contém.

2. Análise e Limpeza dos Dados (Preparação)

Nesta etapa, o notebook "olha" para os dados para entender o que eles significam e se há algo que precisa ser ajustado.

- df.info(): Fornece um resumo de todas as colunas da tabela, mostrando o tipo de informação em cada uma (números, texto, etc.) e se há valores faltando.
- df.describe(): Calcula estatísticas básicas como média, mínimo, máximo, etc., para cada coluna numérica. Isso nos ajuda a entender a distribuição dos dados.
- msno.matrix(df) e msno.bar(df): Essas linhas geram gráficos que nos mostram visualmente se existem dados faltando. Barras menores ou espaços em branco indicam falhas. No seu caso, parece que não há dados faltando, o que é ótimo!
- df.columns: Apenas lista os nomes das colunas da tabela.

3. Exploração dos Dados (Visualização)

Aqui, o notebook usa gráficos para nos ajudar a "enxergar" padrões e relações nos dados.

• Contagem de Óbitos:

- df['DEATH_EVENT'].value_counts(): Conta quantos pacientes faleceram (1) e quantos não (0).
- sns.countplot(x=df['DEATH_EVENT']): Cria um gráfico de barras simples para visualizar essa contagem.

• Distribuição por Idade:

 sns.displot(x=df['age'], kde=True, bins=20): Mostra como as idades dos pacientes estão distribuídas. A curva (kde) ajuda a ver a "forma" dessa distribuição.

• Correlação entre as Características:

- df.corr(): Calcula a "correlação" entre todas as colunas numéricas. A correlação nos diz o quão ligadas duas coisas estão. Por exemplo, se a idade aumenta, a pressão arterial também tende a aumentar?
- sns.heatmap(df.corr(), annot=True, cmap='RdYlGn'): Cria um mapa de calor visual das correlações. Cores mais quentes (vermelho/amarelo) indicam correlações fortes, enquanto cores mais frias (verde) indicam correlações fracas.

4. Preparação Final para o Modelo

Antes de construir o modelo de previsão, algumas coisas precisam ser organizadas.

Separando as Informações:

- X = df.drop('DEATH_EVENT', axis=1): X (as "características") recebe todas as colunas da tabela, exceto a coluna que queremos prever (DEATH_EVENT). Essas são as informações que o modelo usará para aprender.
- y = df['DEATH_EVENT']: y (o "alvo") recebe apenas a coluna
 DEATH_EVENT, que é o que queremos prever: se o paciente faleceu ou não.

• Dividindo os Dados para Treino e Teste:

- X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42): Essa é uma etapa crucial! Os dados são divididos em duas partes:
 - Treino (_train): O modelo vai "estudar" e aprender com esses dados.
 - **Teste (_test):** Depois de aprender, o modelo será "testado" com esses dados que ele nunca viu antes para ver o quão bom ele é em fazer previsões. test_size=0.3 significa que 30% dos dados serão usados para teste, e random_state=42 garante que a divisão seja a mesma sempre que o código for executado.

5. Construção e Treinamento do Modelo

Agora é a hora de ensinar o computador a prever!

- Escolhendo um Modelo (Regressão Logística):
 - model = LogisticRegression(): Aqui, o notebook escolhe um tipo de "receita" de previsão chamada Regressão Logística. Ela é boa para prever resultados de "sim" ou "não" (como "faleceu" ou "não faleceu").
- Treinando o Modelo:
 - model.fit(X_train, y_train): Esta é a parte onde o modelo
 "aprende". Ele analisa as características em X_train e os resultados
 correspondentes em y_train para encontrar os padrões que levam a um
 evento de morte. É como ensinar a um estudante com vários exemplos.

6. Avaliação do Modelo

Depois de treinar, precisamos saber se o modelo é bom.

- y_pred = model.predict(X_test): O modelo agora faz previsões nos dados de teste (X_test), que ele nunca viu antes.
- accuracy_score(y_test, y_pred): Compara as previsões do modelo (y_pred) com os resultados reais (y_test) para calcular a "acurácia", que é a porcentagem de vezes que o modelo acertou.
- print(f'Acurácia do modelo: {accuracy * 100:.2f}%'): Mostra a acurácia de forma mais fácil de ler.

7. Fazendo uma Previsão com Novos Dados

Finalmente, o notebook mostra como usar o modelo treinado para fazer uma previsão para um novo "paciente".

model.predict([[40,0,60,1,38,1,1555000,2,140,1,0,0]]): Aqui, ele simula um novo paciente com características específicas (idade 40, sem diabetes, etc.) e pede ao modelo para prever se esse paciente terá um evento de insuficiência cardíaca. O resultado (0 ou 1) indica a previsão.

Em resumo, o notebook segue um processo padrão de machine learning: carregar dados, limpar/explorar, preparar para o modelo, treinar o modelo e, finalmente, avaliar sua capacidade de fazer previsões. O objetivo é criar um sistema que possa ajudar a identificar pacientes com maior risco de insuficiência cardíaca com base em suas informações clínicas.