# PSALTer results panel

$$S = \iiint (\frac{1}{6} \left(2 \left(t_{1} - 2t_{3}\right) \mathcal{R}^{\alpha_{i}}_{\phantom{\alpha_{i}}} \mathcal{R}^{\theta}_{\phantom{\beta_{i}}} + 6 \mathcal{R}^{\alpha\beta\chi}_{\phantom{\alpha_{i}}} \sigma_{\alpha\beta\chi} + 6 f^{\alpha\beta}_{\phantom{\alpha_{i}}} \tau \left(\Delta + \mathcal{K}\right)_{\alpha\beta} - 4t_{1} \mathcal{R}^{\theta}_{\phantom{\alpha_{i}}} \partial_{i} f^{\alpha_{i}}_{\phantom{\alpha_{i}}} + 8t_{3} \mathcal{R}^{\theta}_{\phantom{\alpha_{i}}} \partial_{i} f^{\alpha_{i}}_{\phantom{\alpha_{i}}} + 4t_{1} \mathcal{R}^{\theta}_{\phantom{\beta_{i}}} \partial_{i} f^{\alpha}_{\phantom{\alpha_{i}}} - 8t_{3} \mathcal{R}^{\theta}_{\phantom{\beta_{i}}} \partial_{i} f^{\alpha}_{\phantom{\alpha_{i}}} \partial_{i} f^{\alpha}$$

### **Wave operator**

| _                                      | °. <i>9</i> 4" |                   | <sup>0</sup> . f <sup>±</sup> | <sup>0</sup> . <i>3</i> 4"                                                       |                                                |                                         |                                   |                                        |                                    |                                     |                                                           |                                                   |                                   |                                                    |
|----------------------------------------|----------------|-------------------|-------------------------------|----------------------------------------------------------------------------------|------------------------------------------------|-----------------------------------------|-----------------------------------|----------------------------------------|------------------------------------|-------------------------------------|-----------------------------------------------------------|---------------------------------------------------|-----------------------------------|----------------------------------------------------|
| ${}^{0^+}\mathcal{F}^{\parallel}$ †    | <i>t</i> . 3   | $-i\sqrt{2} kt$ . | 0                             | 0                                                                                |                                                |                                         |                                   |                                        |                                    |                                     |                                                           |                                                   |                                   |                                                    |
| <sup>0,+</sup> <i>f</i> <sup>∥</sup> † | $i\sqrt{2} kt$ | $2 k^{2} t$ .     | 0                             | 0                                                                                |                                                |                                         |                                   |                                        |                                    |                                     |                                                           |                                                   |                                   |                                                    |
| 0.+ f +                                | 0              | 0                 | 0                             | 0                                                                                |                                                |                                         |                                   |                                        |                                    |                                     |                                                           |                                                   |                                   |                                                    |
| <sup>0.</sup> ' <i>Я</i> "†            | 0              | 0                 | 0                             | $k^2 rt.$                                                                        | $^{1.}^{+}\mathcal{A}^{\parallel}{}_{lphaeta}$ | $^{1^{+}}\mathcal{F}^{\perp}_{lphaeta}$ | $1.^+f^{\parallel}_{\alpha\beta}$ | $^{1}\mathcal{A}^{\parallel}{}_{lpha}$ | $^{1}\mathcal{H}_{\ lpha}^{\perp}$ | $\frac{1}{2}f^{\parallel}_{\alpha}$ | $\frac{1}{f}f_{\alpha}$                                   |                                                   |                                   |                                                    |
|                                        |                |                   |                               | $^{1.^{+}}\mathcal{A}^{\parallel}\dagger^{lphaeta}$                              |                                                | $-\frac{t}{\sqrt{2}}$                   | $-\frac{i k t}{\sqrt{2}}$         | 0                                      | 0                                  | 0                                   | 0                                                         |                                                   |                                   |                                                    |
|                                        |                |                   |                               | $\overset{1^+}{\cdot}\mathcal{H}^{\scriptscriptstyle\perp}\dagger^{\alpha\beta}$ | $-\frac{t_1}{\sqrt{2}}$                        | 0                                       | 0                                 | 0                                      | 0                                  | 0                                   | 0                                                         |                                                   |                                   |                                                    |
|                                        |                |                   |                               | $1.^+f^{\parallel}$ † $^{\alpha\beta}$                                           | $\frac{i k t}{\sqrt{2}}$                       | 0                                       | 0                                 | 0                                      | 0                                  | 0                                   | 0                                                         |                                                   |                                   |                                                    |
|                                        |                |                   |                               | $^{1}\mathcal{A}^{\parallel}$ † $^{\alpha}$                                      | 0                                              | 0                                       | 0                                 | $\frac{1}{6}(t_1+4t_1)$                | $\frac{t2t.}{\frac{1}{3}\sqrt{2}}$ | 0                                   | $\frac{1}{3}$ i k (t 2t.)                                 |                                                   |                                   |                                                    |
|                                        |                |                   |                               | $^{1}\mathcal{H}^{\scriptscriptstyle{\perp}}\dagger^{\scriptscriptstyle{lpha}}$  | 0                                              | 0                                       | 0                                 | $\frac{t2t.}{\frac{1}{3}}$             | $\frac{t.+t.}{\frac{1}{3}}$        | 0                                   | $\frac{1}{3}i\sqrt{2}k(t_1+t_2)$                          |                                                   |                                   |                                                    |
|                                        |                |                   |                               | $f^{\parallel} \uparrow^{\alpha}$                                                | 0                                              | 0                                       | 0                                 | 0                                      | 0                                  | 0                                   | 0                                                         |                                                   |                                   |                                                    |
|                                        |                |                   |                               | $\frac{1}{2}f^{\perp}\uparrow^{\alpha}$                                          | 0                                              | 0                                       | 0                                 | $-\frac{1}{3}ik(t_1-2t_3)$             | $\frac{1}{3}i\sqrt{2}k(t_1+t_3)$   | 0                                   | $\frac{2}{3}k^2(t_1+t_2)$                                 | $^{2^{+}}\mathcal{A}^{\parallel}{}_{\alpha\beta}$ | $2^+ f^{\parallel}_{\alpha\beta}$ | $2^{-}\mathcal{A}^{\parallel}{}_{\alpha\beta\chi}$ |
|                                        |                |                   |                               |                                                                                  |                                                |                                         |                                   |                                        |                                    |                                     | $^{2^{+}}\mathcal{A}^{\parallel}$ † $^{lphaeta}$          | t.<br>1/2                                         | $-\frac{i kt}{\sqrt{2}}$          | 0                                                  |
|                                        |                |                   |                               |                                                                                  |                                                |                                         |                                   |                                        |                                    |                                     | $\overset{2^+}{\cdot}f^{\parallel}\uparrow^{\alpha\beta}$ | $\frac{i kt}{\sqrt{2}}$                           | $k^2 t$ .                         | 0                                                  |
|                                        |                |                   |                               |                                                                                  |                                                |                                         |                                   |                                        |                                    |                                     | $2^{-}\mathcal{A}^{\parallel} + ^{\alpha\beta\chi}$       | 0                                                 | 0                                 | $\frac{t}{\frac{1}{2}}$                            |

## Saturated propagator



### Source constraints

| Spin-parity form                                                                                   | Covariant form                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Multiplicities |
|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| $0^+_{\cdot} \tau^{\perp} == 0$                                                                    | $\partial_{\beta}\partial_{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}==0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1              |
| $-2 i k^{0,+} \sigma^{\parallel} + {}^{0,+} \tau^{\parallel} == 0$                                 | $\partial_{\beta}\partial_{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} == \partial_{\beta}\partial^{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha}_{\alpha} + 2\partial_{\chi}\partial^{\chi}\partial_{\beta}\sigma^{\alpha}_{\alpha}^{\beta}$                                                                                                                                                                                                                                                                                                     | 1              |
| $2ik \cdot 1 \sigma^{\perp \alpha} + 1 \tau^{\perp \alpha} == 0$                                   | $\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi}==\partial_{\chi}\partial^{\chi}\partial_{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}+2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\beta\alpha\chi}$                                                                                                                                                                                                                                                                             | 3              |
| 1- <sub>τ</sub>   α == 0                                                                           | $\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi}==\partial_{\chi}\partial^{\chi}\partial_{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}$                                                                                                                                                                                                                                                                                                                                                                        | 3              |
| $i k 1^+_{\cdot} \sigma^{\perp}^{\alpha\beta} + 1^+_{\cdot} \tau^{\parallel}^{\alpha\beta} == 0$   | $\partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi}+\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\alpha}+\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}+2\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta}+2\partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\chi\alpha\beta}==$                                                                                                                                                                 | 3              |
|                                                                                                    | $\partial_{\chi}\partial^{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\chi} + \partial_{\chi}\partial^{\chi}\tau \left(\Delta + \mathcal{K}\right)^{\beta\alpha} + 2\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\chi\alpha\delta}$                                                                                                                                                                                                                               |                |
| $-2 i k 2^{+}_{.} \sigma^{\parallel^{\alpha\beta}} + 2^{+}_{.} \tau^{\parallel^{\alpha\beta}} = 0$ | $-i\left(4\partial_{\sigma}\partial_{\chi}\partial^{\beta}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\chi\delta}+2\partial_{\sigma}\partial^{\delta}\partial^{\beta}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\chi}_{\ \chi}-3\partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi}-\right.$                                                                                                                                                                                           | 5              |
|                                                                                                    | $3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\chi\beta} - 3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau(\Delta+\mathcal{K})^{\alpha\chi} - 3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau(\Delta+\mathcal{K})^{\chi\alpha} + 3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau(\Delta+\mathcal{K})^{\alpha\beta} +$                                                                                                                                 |                |
|                                                                                                    | $3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}+4ik^{\chi}\partial_{\epsilon}\partial_{\chi}\partial^{\beta}\partial^{\alpha}\sigma^{\delta}_{\delta}{}^{\epsilon}-6ik^{\chi}\partial_{\epsilon}\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\delta\beta\epsilon}-6ik^{\chi}\partial_{\epsilon}\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\delta\alpha\epsilon}+6ik^{\chi}\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial_{\chi}\sigma^{\alpha\beta\delta}+$ |                |
|                                                                                                    | $6  i  k^{\chi}  \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\beta \alpha \delta} + 2  \eta^{\alpha \beta}  \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \tau  (\Delta + \mathcal{K})^{\chi \delta} - 2  \eta^{\alpha \beta}  \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \tau  (\Delta + \mathcal{K})^{\chi} - 4  i  \eta^{\alpha \beta}  k^{\chi}  \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\chi} \sigma^{\delta}_{\delta} = 0$                 |                |
| Total expected gauge of                                                                            | generators:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 16             |

## Massive spectrum



#### Massive particle

| Pole residue: | $-\frac{1}{\frac{r_{\cdot}}{2}} > 0$  |
|---------------|---------------------------------------|
| Square mass:  | $\frac{\frac{t}{1}}{\frac{r}{2}} > 0$ |
| Spin:         | 0                                     |
| Parity:       | Odd                                   |

### **Massless spectrum**

(No particles)

### **Unitarity conditions**

r. < 0 && t. < 0