Calculus 2 - 2022ba

Amit Bajar

Question 1

(a) Proof: using l'hopital's rule (We can because $x \to \infty$) and the fundamental theorem of calculus which states that F' = f on $[0, \infty)$ (because f is continuous on $[0, \infty)$) we can calculate the limit: $\lim_{x \to \infty} \frac{F(x)}{x} = \lim_{x \to \infty} \frac{F'(x)}{x'} = \lim_{x \to \infty} \frac{f(x)}{1} = \lim_{x \to \infty} f(x) = 1$.

(b) Disprove: define f(x) = 1 + cos(x), now $f(x) \underset{x \to \infty}{\nrightarrow} 1$ and $\lim_{x \to \infty} \frac{F(x)}{x} = \lim_{x \to \infty} \frac{x + sin(x)}{x} = 1$

Question 2

(a) Let I be a compact interval, now because f is continuous we know from the Cantor-Heine theorem that f is uniformly continuous on I. Now let $\epsilon > 0$, from uniform continuity there exists $\delta > 0$ such that $|x - y| < \delta \implies |f(x) - f(y)| < \epsilon$. Now let us take some $n > \lceil \frac{1}{\delta} \rceil$ and notice that now $x \in [x_0 - \frac{1}{n}, x_0 + \frac{1}{n}] \implies |f(x) - f(x_0)| < \epsilon$ so by the definition of the supremum and infimum we get $f(x) - \epsilon \le \inf\{f(y) : y \in [x - \frac{1}{n}, x + \frac{1}{n}]\} \le \sup\{f(y) : y \in [x - \frac{1}{n}, x + \frac{1}{n}]\} = f_n(x) \le f(x) + \epsilon$ which means that $|f_n(x) - f(x)| < \epsilon$ for all $x \in I$. This proves that $f_n \stackrel{u}{\to} f$ on I as needed.

(b) Let (a,b) be an open interval and $x_0 \in (a,b)$ be some point and $\epsilon > 0$ be some epsilon. Because $f_n \stackrel{u}{\to} f$ there exists some $N \in \mathbb{N}$ such that $n > N \implies |f_n(x) - f(x)| < \epsilon$ for all $x \in (a,b)$. This means that $\sup\{f(y): y \in [x-\frac{1}{n},x+\frac{1}{n}]\} - \epsilon < f(x) < \sup\{f(y): y \in [x-\frac{1}{n},x+\frac{1}{n}]\} + \epsilon$. Now choose $\delta = \lfloor \frac{1}{n} \rfloor$ then $|x-x_0| < \delta \implies x_0 \in (x-\frac{1}{n},x+\frac{1}{n})$ which means that $f(x_0) - \epsilon < \sup\{f(y): y \in [x-\frac{1}{n},x+\frac{1}{n}]\} - \epsilon < f(x)$. In the same way we can show that $f(x) - \epsilon < f(x_0)$ (switch x with x_0 in the inequality which follows from the uniform convergence and continue in the same fashion) for the same delta. This proves that $f(x_0) - \epsilon < f(x) < f(x_0) + \epsilon$ for $|x-x_0| < \delta$ which means f is continuous at x_0 by definition as needed.

Question 3

- (a) We have that $S_N f \stackrel{u}{\to} f$ and because uniform convergence implies pointwise convergence we also have $S_N f(x_0) \stackrel{\to}{\underset{N \to \infty}{\to}}$ $f(x_0)$ which implies $S_{N^2}f(x_0) \underset{N\to\infty}{\longrightarrow} f(x_0)$ (subsequence has the same limit) whoever we also have $S_{N^2}f(x_0) \underset{N\to\infty}{\longrightarrow} c$ so by the uniqueness of the limit we get $c = f(x_0)$
- (b) First we will prove that $\min_{a,b,c\in\mathbb{C}} ||f (a + be^{it} + ce^{-it})||_2 = ||f F_1||_2$. Let P_1 be a trigonometric polynometric mial of degree 1 and let F_1 be the Fourier approximation of degree 1 of f. Now: $||f - P_1||_2^2 = ||(f - F_1) + (F_1 - P_1)||_2^2 \stackrel{*}{=} ||f - F_1||_2^2 + ||F_1 - P_1||_2^2 \ge ||f - F_1||_2^2$ and * follows from the fact that $f - F_1 \perp F_1 - P_1$ and the *Pythagoras theorem*. Now we will find the Fourier coefficients of F_1 :

$$\langle f, e_0 \rangle = \frac{1}{2\pi} \int_{-\pi}^{\pi} t dt = 0$$

$$\langle f, e_1 \rangle = \frac{1}{2\pi} \int_{-\pi}^{\pi} t e^{it} dt = \frac{1}{2\pi} (t \frac{e^{it}}{i} |_{-\pi}^{\pi} - \int_{-\pi}^{\pi} \frac{e^{it}}{i}) = \frac{1}{2\pi} (\frac{-2\pi}{i} - 0) = i$$

$$\langle f, e_{-1} \rangle = \frac{1}{2\pi} \int_{-\pi}^{\pi} t e^{-it} dt = \begin{bmatrix} u = -t \\ du = -dt \end{bmatrix} = \frac{1}{2\pi} \int_{\pi}^{-\pi} u e^{iu} = -\langle f, e_1 \rangle = -i$$

And thus Using Parseval's identity and the Pythagoras theorem we get that:

$$||f - F_1||_2 = \sqrt{||f||_2^2 - ||F_1||_2^2} = \sqrt{\frac{1}{2\pi} \int_{-\pi}^{\pi} t^2 dt - (|i|^2 + |-i|^2 + |0|^2)} = \sqrt{\frac{\pi^2}{3} - 2}$$

Question 4

- (a) The proof that $(X, d_1 + d_2)$ is a metric space is trivial and follows immediately from the properties of d_1 and d_2 as metrics. I will now prove that $(X, d_1 + d_2)$ cannot be a compact space. Assume by contradiction that it is and let $x_n \subset X$ be a sequence from X. Now take some converging subsequence with respect to $d_1 + d_2$ (exists because we assumed by contradiction that $(X, d_1 + d_2)$ is compact) denoted by x_{n_k} . Now take another converging subsequence with respect to d_1 (exists because of compactness) denoted by $x_{n_{k_l}}$. This means that there exists $x_0 \in X$ for which it holds that $(d_1 + d_2)(x_{n_{k_l}}, x_0) \to 0$ and $d_1(x_{n_{k_l}}, x_0) \to 0$. So now by arithmetic of limits we get: $d_2(x_{n_{k_1}}, x_0) = (d_1 + d_2)(x_{n_{k_1}}, x_0) - d_1(x_{n_{k_1}}, x_0) \to 0 - 0 = 0$ which means (X, d_2) is compact in contradiction (we found a converging subsequence for a given sequence).
- (b) On one direction assume that $x^{(n)} \to x$, this means that $||x^{(n)} x||_2 \to 0$ so by the reverse triangle inequality $0 \le |||x^{(n)}||_2 ||x||_2| \le ||x^{(n)} x||_2 \to 0$ so $||x^{(n)}||_2 \to ||x||_2$. In addition $||x^{(n)} x||_2 \to 0 \implies 0 \le ||x^{(n)}_j x_j|| = \sqrt{(x_j^n x_j)^2} \le \sqrt{\sum_{i=0}^{\infty} (x_i^{(n)} x_i)^2} \to 0$ so $x_j^{(n)} \to x_j$ for all $j \in \mathbb{N}$. On the other direction assume $x_i^{(n)} \to x_j$ for all $j \in \mathbb{N}$ and $||x^{(n)}||_2 \to ||x||_2$. First i will prove that $\langle x^{(n)}, x \rangle \to \langle x, x \rangle$. This will help me prove the wanted result. Indeed:

wanted result. Indeed: $|\sum_{i=0}^{\infty} x_i^{(n)} x_i - \sum_{i=0}^{\infty} x_i^2| = |(\sum_{i=0}^{M} x_i^{(n)} x_i - \sum_{i=0}^{M} x_i^2) + (\sum_{i=M+1}^{\infty} x_i^{(n)} x_i - \sum_{i=M+1}^{\infty} x_i^2)| \leq |(\sum_{i=0}^{M} x_i^{(n)} x_i - \sum_{i=0}^{M} x_i^2)| + |(\sum_{i=M+1}^{\infty} x_i^{(n)} x_i - \sum_{i=M+1}^{\infty} x_i^2)| \text{ now because every series converges we can choose an arbitrary } M \in \mathbb{N} \text{ such that the second term is } < \epsilon/2 \text{ (the tail sum converges to zero) and also because the first term }$ converges to 0 (remember that $x_i^{(n)} \to x_i$) there is a $N \in \mathbb{N}$ such that n > N implies the second term is also $< \epsilon/2$ and thus by definition $\langle x^{(n)}, x \rangle \to \langle x, x \rangle$.

Now we get $||x^{(n)} - x||_2 = \sqrt{\langle x^{(n)} - x, x^{(n)} - x \rangle} = \sqrt{||x^{(n)}||^2 - 2\langle x^{(n)}, x \rangle + ||x||^2} \to 0$ (remember $||x^{(n)}||_2 \to ||x||_2$) so by definition we get $x^{(n)} \to x$ as needed.