Wydział	lmię i nazwisko			Rok		Grupa	Zespół
WIEIT	1.			2020		15:45	7
	2.						
PRACOWNIA	Temat:						Nr ćwiczenia
FIZYCZNA							11
WFiIS AGH							
Data wykonania	Data oddania	Zwrot do popr.	Data	a oddania	Dat	a zaliczenia	OCENA
04.11.2020	06.11.2020						

Moduł Younga

 $Dzmitry\ Mikialevich$

Wojciech Sikora

Spis treści

1	Wstęp 1.1 Cel ćwiczenia
	1.2 Opis ćwiczenia
2	Układ Pomiarowy
3	Przebiegi doświadczenia
4	Wyniki Pomiarów
	4.1 Drut stalowy
	4.2 Drut mosiężny
5	Opracowanie wyników Pomiarów
	5.1 Wykresy
	5.2 Obliczanie wartości modułu Younga
	5.2.1 Wartość modułu Younga dla stalowego drutu
	5.2.2 Wartość modułu Younga dla mosiężnego drutu
	5.3 Porównanie z wartościami tablicowymi
	5.4 Wnioski

1 Wstęp

1.1 Cel ćwiczenia

Celem doświadczenia jest wyznaczenie modułu Younga metodą statyczną za pomocą pomiaru wydłużenia drutu z badanego metalu obciążonego stałą siłą.

1.2 Opis ćwiczenia

Doświadczenie wykonujemy z wykorzystaniem równania prawa Hook'a, określającego proporcjonalność odkształcenia sprężystego do przyłożonej siły:

$$\Delta l = \frac{Fl}{ES}$$

gdzie E to stała materiałowa czyli mierzony przez nas moduł Younga.

Prawo Hooke'a dla rozciągania (lub ściskania) może być też zapisane w postaci wzoru

$$\sigma = E\varepsilon$$

gdzie σ to naprężenie normalne ($\sigma = \frac{F}{S}$), a ε to normalne odkształcenie względne ($\varepsilon = \frac{\Delta l}{I}$).

Zgodnie z prawem Hooke'a zależność $\Delta l(F)$ powinna być prostą $\Delta l=aF+b$, wobec tego współczynnik $a=\frac{l}{ES}$. Z tego otrzymujemy:

$$E = \frac{l}{aS} = \frac{4l}{\pi d^2 a}$$

Niepewność złożoną $u_c(E)$ otrzymujemy:

$$\frac{u_c(E)}{E} = \sqrt{(\frac{u(l)}{l})^2 + (-2\frac{u(d)}{d})^2 + (-\frac{u(a)}{a})^2}$$

2 Układ Pomiarowy

W skład układu pomiarowego weszły następujące elementy:

- 1. Przyrząd do pomiaru wydłużenia drutu pod wpływem stałej siły, zaopatrzony w czujnik mikrometryczny do pomiaru wydłużenia drutu.
 - 2. Zestaw odważników
 - 3. Śruba mikrometryczna
 - 4. Przymiar milimetrowy

Rysunek 1: Urządzenie do pomiaru modułu Younga metodą statyczną

3 Przebiegi doświadczenia

W ramach doświadczenia na początku zmierzyliśmy długość drutu stalowego. Za pomocą śruby mikrometrycznej zmierzyliśmy średnicę drutu, poprzez wykonanie trzech pomiarów w różnych miejscach drutu. Wyzerowaliśmy czujnik mikrometryczny i rozpoczeliśmy pomiary.

Badaliśmy wskazania czujnika mikrometrycznego obciążając szalkę odważnikami w zakresie od 0 do 10 kg, zwiększając co 0.5 kg. Następnie zmniejszając obciążenie co 0.5 kg aż do 0 badaliśmy wskazania czujnika.

Prawie taką samą procedurę pomiarów dokonaliśmy dla drutu z mosiądzu. Różnica polegała na zakresie od 0 do 6 kg, w gdzie wcześniej było to od 0 do 10 kg.

4 Wyniki Pomiarów

Niepewność czujnika przyjęliśmy dla obydwóch przypadków jako 0,01 mm. (Niepewność typu B)

4.1 Drut stalowy

Długość drutu: $l=105,9\ cm\ u(l)=1\ mm$ Średnica drutu (3 pomiary): $d_1=d_2=d_3=0,77\ mm$

Średnia średnica: $d_{sr}=0,77\,mm$ $u(d)=0,01\,mm$

Masa odważników [kg]	Czujnik ↑ [mm]	Czujnik ↓ [mm]	Sila F [N]	Wydlużenie średnie $\Delta l \ [mm]$
0,5	0,19	0,24	4,91	0,11
1	0,37	0,41	9,81	0,20
1,5	0,51	0,60	14,72	0,28
2	0,67	0,78	19,62	0,36
2,5	0,83	0,91	24,53	0,44
3	0,98	1,10	29,43	0,52
3,5	1,11	1,20	34,34	0,58
4	1,33	1,29	39,24	0,66
4,5	1,47	1,48	44,15	0,74
5	1,62	1,65	49,05	0,82
5,5	1,71	1,76	53,96	0,87
6	1,80	1,99	58,86	0,95
6,5	1,98	2,10	63,77	1,02
7	2,09	2,25	68,67	1,09
7,5	2,35	2,35	73,58	1,18
8	2,48	2,51	78,48	1,25
8,5	2,64	2,54	83,39	1,30
9	2,68	2,82	88,29	1,38
9,5	2,97	2,84	93,20	1,45
10	3,13	3,13	98,10	1,57

Tabela 1: Wyniki pomiarów dla drutu stalowego

Rysunek 2: Wykres otrzymanych wartości wydłużenia drutu w funkcji działającej siły zewnętrznej

4.2 Drut mosiężny

Długość drutu: $l = 106, 3 cm \ u(l) = 1 mm$

Średnica drutu (3 pomiary): $d_1=d_2=1,82\ mm,\ d_3=1,85\ mm$ Średnia średnica: $d_{sr}=1,83\ mm \qquad u(d)=0,01\ mm$

Masa odważników [kg]	Czujnik ↑ [mm]	Czujnik ↓ [mm]	Sila F [N]	Wydlużenie średnie $\Delta l \ [mm]$
0,5	0,27	0,31	4,91	0,15
1	0,55	0,58	9,81	0,28
1,5	0,75	0,79	14,72	0,39
2	1,00	0,98	19,62	0,50
2,5	1,11	1,12	24,53	0,56
3	1,27	1,32	29,43	0,65
3,5	1,37	1,43	34,34	0,70
4	1,54	1,64	39,24	0,80
4,5	1,67	1,67	44,15	0,84
5	1,80	1,86	49,05	0,92
5,5	1,95	1,94	53,96	0,97
6	2,05	2,00	58,86	1,01

Tabela 2: Wyniki pomiarów dla drutu mosiężnego

Rysunek 3: Wykres otrzymanych wartości wydłużenia drutu w funkcji działającej siły zewnętrznej

5 Opracowanie wyników Pomiarów

5.1 Wykresy

Za pomocą LINEST w Microsoft Excel obliczyliśmy parametry prostych na Rysunkach 4 i 5 oraz ich niepewności ze współczynnikami korelacji (Tabela 3).

Tak że ze współczynników korelacji (w obydwóch przypadkach bliskiemu 0) widać, że zależność między wartością działającej siły zewnętrznej a wartością wydłużenia drutu jest liniowa.

Rysunek 4: Wykres otrzymanych wartości v w funkcji częstotliwości drgań źródła f

Rysunek 5: Wykres otrzymanych wartości v w funkcji częstotliwości drgań źródła f

Drut	Wartość współczynnika a $\left[\frac{mm}{N}\right]$	u(a) [mm]	Wartość współczynnika b $\left[\frac{mm}{N}\right]$	u(b) [mm]	Wartość współczynnika korelacji y $\left[\frac{mm}{N}\right]$	u(y) [mm]
stalowy	0,01511	0,00011	0,0577	0,0064	0,999	0,014
mosiężny	0,01558	0,00069	0,150	0,024	0,980	0,040

Tabela 3: Parametry prostych

5.2 Obliczanie wartości modułu Younga

W celu obliczenia modułu Younga korzystamy z roboczego wzoru:

$$E = \frac{4l}{\pi d^2 a}$$

5.2.1 Wartość modułu Younga dla stalowego drutu

Dane pomiarowe z niepewnościami:

$$a = 0,00001511\left[\frac{m}{N}\right]$$

$$u(a) = 0,00000011\left[\frac{m}{N}\right]$$

$$d_s = 0,00077[m]$$

$$u(d_s) = 0,00001[m]$$

$$l = 1,059[m]$$

$$u(l) = 0,001[m]$$

$$E = \frac{4l}{\pi d^2 a} = \frac{4*1,059}{3,14*(0,00077)^2*0,00001511} = 150,548953028417 \, [GPa] \approx 150,55 \, [GPa] \approx$$

$$\frac{u(E)}{E} = \sqrt{\left(\frac{u(l)}{l}\right)^2 + \left(-2\frac{u(d)}{d}\right)^2 + \left(\frac{-u(a)}{a}\right)^2}$$

czyli

$$u(E) = E\sqrt{(\frac{u(l)}{l})^2 + (-2\frac{u(d)}{d})^2 + (\frac{-u(a)}{a})^2}$$

$$u(E) = 150548953028, 417\sqrt{(\frac{0,001}{1,059})^2 + (-2\frac{0,00001}{0,00077})^2 + (\frac{-0,00000011}{0,00001511})^2} = 4,064520139 \ [GPa] \approx 4,06 \ [GPa]$$

5.2.2 Wartość modułu Younga dla mosiężnego drutu

Dane pomiarowe z niepewnościami:

$$a = 0,00001558\left[\frac{m}{N}\right]$$

$$u(a) = 0,00000069\left[\frac{m}{N}\right]$$

$$d_m = 0,00183[m]$$

$$u(d_m) = 0,00001[m]$$

$$l = 1,063[m]$$

$$u(l) = 0,001[m]$$

$$E = \frac{4l}{\pi d^2 a} = \frac{4 * 1,063}{3,14 * (0,00183)^2 * 0,00001558} = 25,953382953 [GPa] \approx 26,0 [GPa]$$

$$\frac{u(E)}{E} = \sqrt{(\frac{u(l)}{l})^2 + (-2\frac{u(d)}{d})^2 + (\frac{-u(a)}{a})^2}$$

czyli

$$u(E) = E\sqrt{(\frac{u(l)}{l})^2 + (-2\frac{u(d)}{d})^2 + (\frac{-u(a)}{a})^2}$$

$$u(E) = 25953382953\sqrt{(\frac{0,001}{1,063})^2 + (-2\frac{0,00001}{0,00183})^2 + (\frac{-0,00000069}{0,00001558})^2} = 6,587899787 \ [GPa] \approx 6,6 \ [GPa]$$

5.3 Porównanie z wartościami tablicowymi

Material drutu	E - uzyskane [GPa]	Niepewność u(E) [GPa]	Wartość tabelaryczna E [GPa]
stal	150,55	4,06	210-220
mosiądz	26,0	6,6	100

Tabela 4: Porównanie z wartościami tabelarycznymi

5.4 Wnioski

- \bullet Wyniki pomiarów modułu Younga to 150,55 \pm 8,12 [GPa] dla drutu stalowego oraz 26,0 \pm 13,2 [GPa] dla drutu mosiężnego.
- Wyniki pomiarów w znaczący sposób odbiegają od wartości tabelarycznych, mimo uwzględnienia niepewności pomiaru.
 Prawdpodobnie jest to spowodowane faktem zużycia drutów, które podczas regularnego używania w doświadczeniach, odkształcily się, tracąc swój pierwotny kształt. Sprawia to, że ich rozciagnięcie jest łatwiejsze niż wynikałoby z teoretycznej zależności.
- Innnym powodem niedokładności wyników jest to, że w zależności od miejsca ułożenia odważników na szalce wagi czujnik pokazywał inne odchylenia. Ułożenie odważników w centrum nie zawsze było możliwe.