BSCCS2001: Practice with Solutions Week 6 1. Consider the relational schema $\mathbf{R}(A, B, C, D, E)$, where the domains of A, B, C, D and E include only atomic values. Identify the possible set of functional dependencies that \mathbf{R} can have such that \mathbf{R} is in BCNF.

[MSQ: 2 points]

```
\checkmark FD: \{AB \to CDE\}

○ FD: \{AB \to CD, B \to E\}

○ FD: \{AB \to CD, C \to D, D \to E\}

○ FD: \{AB \to CDE, D \to A, E \to B\}
```

Solution: Given that in ${\bf R}$ each attribute is a single-valued attribute. Thus ${\bf R}$ is already in 1NF.

Option-1: FD: $\{AB \to CDE\}$

The only candidate key (thus primary key) is: AB as $(AB)^+ = \{ABCDE\}$.

As all the non-prime attributes are fully functionally dependent on the candidate key, it is already in 2NF.

 $\{AB \rightarrow CDE\}$, where AB is a superkey. Thus, it is in 3NF and also in BCNF.

Option-2: $\{AB \rightarrow CD, B \rightarrow E\}$

The only candidate key (thus primary key) is: AB as $(AB)^+ = \{ABCDE\}$.

 $B \to E$ is a partial functional dependency. Thus, it is in 1NF but not in 2NF.

Option-3: FD: $\{AB \rightarrow CD, C \rightarrow D, D \rightarrow E\}$

The only candidate key (thus primary key) is: AB as $(AB)^+ = \{ABCDE\}$.

There is no partial functional dependency. Thus, it is already in 2NF.

 $AB \to CD$, where AB is superkey.

But, for $C \to D$, $D \to E$

- the functional dependencies are not trivial.
- L.H.S of the functional dependencies are not superkeys.
- R.H.S of the functional dependencies are not prime attributes.

Thus, these two FDs violate 3NF rules. So, \mathbf{R} is in 2NF but not in 3NF based on this set of FDs.

Option-4: FD: $\{AB \rightarrow CDE, D \rightarrow A, E \rightarrow B\}$

The candidate keys are: AB and DE as $(AB)^+ = \{ABCDE\}$ and $(DE)^+ = \{ABCDE\}$. The prime attributes are A, B, D, E.

There is no partial functional dependency. Thus, it is already in 2NF.

 $AB \to CDE$, where AB is superkey.

For $D \to A$, $E \to B$ R.H.S of the functional dependencies are prime attributes. Thus, it is in 3NF. However, These two FDs do not satisfy BCNF (as L.H.S are not superkeys). So, **R** is in 3NF but not in BCNF based on this set of FDs.

2. Consider the relational schema $\mathbf{R}(A,B,C,D,E,F)$, where the domains for A,B,C,D,E and F include atomic values only. If \mathbf{R} satisfies the functional dependencies $\{AB \to CDE, E \to F, BF \to A, C \to B\}$, then identify the correct statement(s).

[MSQ: 2 points]

- \bigcirc **R** is in 1NF but not in 2NF
- $\sqrt{\mathbf{R}}$ is in 2NF and also in 3NF
- $\sqrt{\mathbf{R}}$ is in 3NF but not in BCNF
- \bigcirc **R** is in 3NF also in BCNF

Solution:

Candidate keys are: AB, BF, AC, BE, CF and CE. So, prime attributes are: A, B, C, E and F. For the FDs: $E \to F$ and $C \to B$, B and F are prime attributes. Thus, there is no partial dependency, thus R is in 2NF.

 $AB \to CDE$ and $BF \to A$, as AB and BF both are candidate keys, the FDs are in 3NF.

 $C \to B$ and $E \to F$ also in 3NF, since B and F are prime attributes. Thus, R is in 3NF.

 $C \to B$ and $E \to F$ violate BCNF conditions as C and E are not superkeys. Thus, R is not in BCNF.

- 3. Consider the relational schema $\mathbf{Z}(P, Q, R, S)$ and the following functional dependencies on \mathbf{Z} . [MCQ: 2 points]
 - $P \rightarrow QRS$
 - \bullet $Q \to R$
 - $RS \rightarrow P$

Which of the following is/are correct?

- \bigcirc **Z** is in 3NF and also in BCNF
- $\sqrt{\mathbf{Z}}$ is in 3NF but not in BCNF
- \bigcirc **Z** is in 2NF but not in 3NF
- \bigcirc **Z** is in BCNF but not in 3NF

Solution: $FD = \{P \rightarrow QRS, Q \rightarrow R, RS \rightarrow P\}$

 $P^+ = PQRS$

 $RS^+ = PQRS$

 $QS^+ = PQRS$

So, candidate keys are P, QS & RS and prime attribute are P, Q, R & S.

Since the schema ${\bf Z}$ has no partial dependencies or transitive dependencies, so it is in 3NF.

Check for BCNF

 $P \to QRS \ (P \text{ is candidate key}) \checkmark$

 $Q \to R$ (Q is not candidate key) \times

 $RS \to P$ (RS is candidate key) \checkmark

So, **Z** is in 3NF but not in BCNF.

- 4. Let $\mathbf{R}(P,Q,R,S,T,U,V,W)$ be a relation (all attributes have atomic values only) with the following functional dependencies:
 - $\{PQ \rightarrow RSTU\}$
 - $\{P \rightarrow R\}$
 - $\{Q \to S\}$
 - $\{R \to UV\}$
 - $\{V \to W\}$
 - $\{W \to U\}$
 - $\{V \to U\}$

Find the highest normal form in which the relation ${\bf R}$ is in.

[MCQ: 2 points]

- $\sqrt{1NF}$
- \bigcirc 2NF
- 3NF
- BCNF

Solution: Since all attributes in \mathbf{R} have atomic values, it follows that \mathbf{R} is in 1NF.

In order to check if \mathbf{R} is in 2NF, we must find the candidate keys. Using the given FDs, we find that PQV is the only candidate key. Hence P, Q and V are the prime attributes and the rest are non-prime.

Now due to the presence of partial dependency, the relation ${\bf R}$ is not in 2NF.

Note: Partial dependency occurs when a non-prime attribute is functionally dependent on a subset of a candidate key.

5. Consider the instance of relation **Course** given in Figure 1.

MSQ: 2 point	$ \mathbf{s} $
--------------	----------------

course_name	instructor	book	edition
DBMS	Geeta	DBMS-Beginner	3
DBMS	Arjun	DBMS-Beginner	3
DBMS	Geeta	DBMS-Expert	2
DBMS	Arjun	DBMS-Expert	2
Java	Rahul	Java-Beginner	5
Java	Rahul	Java-Intermediate	3
Java	Rahul	Java-Expert	4
Java	Armaan	Java-Beginner	5
Java	Armaan	Java-Intermediate	3
Java	Armaan	Java-Expert	4

Figure 1: An instance of relation Course

Which among the following multivalued dependencies can be inferred from the given information?

```
\sqrt{course\_name} \rightarrow \rightarrow instructor
\bigcirc course\_name \rightarrow \rightarrow book
\bigcirc course\_name \rightarrow \rightarrow edition
\sqrt{course\_name} \rightarrow \rightarrow book, edition
```

Solution:

Let us first number the tuples as t_1, t_2, \dots, t_{10} .

Test for $course_name \rightarrow \rightarrow instructor$:

In relation **Course**, there exist two tuples t_1 and t_2 such that $t_1[course_name] = t_2[course_name]$.

We also have two tuples t_3 and t_4 in **Course** with the following properties:

- $t_1[course_name] = t_2[course_name] = t_3[course_name] = t_4[course_name]$,
- $\bullet \ t_3[instructor] = t_1[instructor] \ \text{and} \ t_2[instructor] = t_4[instructor], \\$
- $t_1[book, edition] = t_2[book, edition]$ and $t_3[book, edition] = t_4[book, edition]$.

Thus it satisfies MVD conditions.

In the relation **Course**, there are three tuples t_5 , t_6 and t_7 such that $t_5[course_name] = t_6[course_name] = t_7[course_name]$.

We also have three tuples t_8, t_9 and t_{10} in Course with the following properties:

• $t_5[course_name] = t_6[course_name] = t_7[course_name] = t_8[course_name] = t_9[course_name] = t_{10}[course_name],$

```
• t_5[instructor] = t_6[instructor] = t_7[instructor] and t_8[instructor] = t_9[instructor] = t_{10}[instructor],
```

```
• t_5[book, edition] = t_8[instructor, edition],

t_6[book, edition] = t_9[instructor, edition]

and t_7[book, edition] = t_{10}[book, edition].
```

Thus, MVD conditions are satisfied.

Test for $course_name \rightarrow \rightarrow book, edition$:

MVD Complementation rule: In a relation R, if $X \to Y$, then $X \to R - XY$. Since we already have $course_name \to instructor$, it follows that $course_name \to book, edition$ also correct.

If we follow the same procedures as discussed above, we will be able to show that the MVDs:

```
course\_name \rightarrow \rightarrow book

course\_name \rightarrow \rightarrow edition

are not satisfied on relation Course.
```

6. Consider the relational schema:

 $Intern(intern_code, intern_name, project, hobby).$

An intern can work in several projects and can have several hobbies. However, it maintains the FD: $intern_code \rightarrow intern_name$.

Identify the most appropriate 4NF decomposition for the given schema.

[MCQ: 2 points]

- $\bigcirc \ \mathbf{R1}(intern_code, intern_name, project, hobby), \mathbf{R2}(intern_code, project, hobby)$
- $\bigcirc \ \mathbf{R1}(intern_code, intern_name, project), \mathbf{R2}(intern_code, hobby)$
- $\bigcirc \ \mathbf{R1}(intern_code, intern_name, hobby), \mathbf{R2}(intern_code, project)$
- $\sqrt{\mathbf{R1}(intern_code, intern_name)}, \mathbf{R2}(intern_code, project), \mathbf{R3}(intern_code, hobby)$

Solution:

From the given information in the question, $intern_code$ cannot be a super key for the given relation. Thus, $intern_code \rightarrow intern_name$ violates BCNF conditions.

Thus, a possible BCNF decomposition would be:

R1(intern_code, intern_name), where intern_code is the candidate key, and

 $\mathbf{R2}(intern_code, project, hobby).$

R2 violates 4NF conditions as it has the following MVDs:

 $intern_code \rightarrow \rightarrow project$, and

 $intern_code \rightarrow \rightarrow hobby$

So the 4NF decomposition is:

 $\mathbf{R2}(intern_code, project)$, and

 $\mathbf{R3}(intern_code, hobby).$

Thus, the 4NF decomposition is:

 $\mathbf{R1}(intern_code, intern_name),$

 $\mathbf{R2}(intern_code, project),$

 $\mathbf{R3}(intern_code, hobby).$

7. Let $\mathbf{S}(Y,\ U,\ V)$ be a relation. Let $\mathbf{R}(P,\ W,\ X,\ Y,\ Z)$ be another relation with the following functional dependencies:

$$\mathcal{F} = \{X \to ZW, Y \to X, W \to P\}$$

 ${\bf R}$ contains 300 tuples and ${\bf S}$ contains 250 tuples. What is the maximum number of tuples possible as output of ${\bf R} \bowtie {\bf S}$?

[MCQ: 2 point]

- \bigcirc 75000
- $\sqrt{250}$
- \bigcirc 300
- \bigcirc 50

Solution: From the given set of functional dependencies, Y is a candidate key of relation \mathbf{R} . So all 300 values of Y must be unique in \mathbf{R} .

There is no functional dependency given for S and to get the maximum number of tuples in output, there can be two possibilities for S.

- All 250 values of Y in S are same and there is an entry in R that matches with this value. In this case, we get 250 tuples in output.
- All 100 values of Y in S are different and these values are present in R also. In this case also, we get 250 tuples.

8. Let $\mathbf{A}(T, U, V, W)$ be a relational schema with the following functional dependencies: $\mathcal{F} = \{W \to UT, UV \to W, V \to T, W \to U\}$

It is given that **A** is not in BCNF.

Suppose **A** is decomposed into two relational schemas, $\mathbf{B}(TV)$ and $\mathbf{C}(UVW)$. Which of the following statement(s) is/are correct?

[MSQ: 2 points]

- O Decomposition of schema A into B and C is dependency preserving
- $\sqrt{}$ Decomposition of schema A into B and C is lossless
- O Both B and C are in BCNF
- $\sqrt{\text{Relation B is in BCNF}}$

Solution:

- $\mathbf{B}(TV)$ preserves $\{V \to T\}$ and has V as the candidate key. So, relation \mathbf{B} is in BCNF.
- C(UVW) preserves $\{UV \to W, W \to U\}$ and has UV and VW as the candidate keys. So, relation C is in 3NF but not in BCNF, as W is not a superkey.
- The decomposition of schema **A** into two relational schemas, **B** and **C**, does not cover all the functional dependencies of the original relation **A**. Hence, it is not dependency preserving.
- The decomposition has common attribute (i.e., V) which is superkey of relation $\mathbf{B}(TV)$, so decomposition of \mathbf{A} into \mathbf{B} and \mathbf{C} is lossless join decomposition.

9. Consider the relational schema:

prescription(doctor_id, doctor_name, patient_id, patient_name, medicine_id, medicine_name), where the domains of all the attributes consist of atomic values. Consider the following FDs for the relation department.

[MCQ: 2 points]

- $doctor_id \rightarrow doctor_name$,
- $patient_id \rightarrow patient_name$,
- $medicine_id \rightarrow medicine_name$,
- $doctor_id \rightarrow \rightarrow patient_id$,
- $doctor_id \rightarrow \rightarrow medicine_id$

From among the decompositions given, identify the one that is in 4NF.

- (doctor_id, doctor_name), (patient_id, patient_name), (medicine_id, medicine_name),
- ((doctor_id, doctor_name), (patient_id, patient_name), (medicine_id, medicine_name), (doctor_id, patient_id, medicine_id)
- (doctor_id, doctor_name, patient_id, patient_name), (doctor_id, doctor_name, medicine_id, medicine_name)
- √ (doctor_id, doctor_name), (patient_id, patient_name), (medicine_id, medicine_name), (doctor_id, patient_id), (doctor_id, medicine_id)

Solution: For the given relation, the candidate key is {doctor_id, patient_id, medicine_id} and it is in 1NF. However, it is not in 2NF as the FDs:

 $doctor_id \rightarrow doctor_name$,

 $patient_id \rightarrow patient_name$,

 $medicine_id \rightarrow medicine_name$, are partial functional dependencies. Thus, a possible decomposition is:

R1(doctor_id, doctor_name), where doctor_id is the candidate key,

R2(patient_id, patient_name), where patient_id is the candidate key,

R3(medicine_id, medicine_name), where medicine_id is the candidate key,

R4(doctor_id, patient_id, medicine_id), where {doctor_id, patient_id, medicine_id} is the candidate key,

R1, R2, R3 and R4 are already in 3NF and BCNF.

R1, R2 and R3 are already in 4NF. The MVDs,

 $doctor_id \rightarrow \rightarrow patient_id$, and

 $doctor_id \rightarrow \rightarrow medicine_id$ violate 4NF conditions. Thus, **R4** is decomposed as:

 $\mathbf{R41}(doctor_id, patient_id)$ and

 $\mathbf{R42}(doctor_id, medicine_id).$

Thus, the 4NF decomposition is:

 $\mathbf{R1}(doctor_id, doctor_name),$

 $\mathbf{R2}(patient_id, patient_name),$

 $\mathbf{R3}(medicine_id, medicine_name)$

 $\mathbf{R41}(doctor_id, patient_id)$ and

 $\mathbf{R42}(doctor_id, medicine_id).$

10. Consider the relational schema \mathbf{R} as:

 $\mathbf{R}(A, B, C, D, E, F, G, H)$, where the domains of all the attributes consist of atomic values. Consider the following FDs for the relation *department*.

- \bullet $A \to D$,
- $D \to EF$,
- $BH \rightarrow CG$,
- \bullet $G \to H$,

From among the decompositions given, identify the one that is in BCNF.

[MCQ: 2 points]

- \bigcirc (A, D, E, F), (G, H), (B, C, G, H) and (A, B, H)
- \bigcirc (D, E, F), (A, D), (G, H) and (B, C, G)
- $\sqrt{(D, E, F), (A, D), (G, H), (B, C, G)}$ and (A, B, H)
- \bigcirc (D, E, F), (A, D), (B, C, G, H) and (A, B, H)

Solution: Due to atomic values, the relation \mathbf{R} is in 1NF.

Candidate key is: ABH as $(ABH)^+ = R$.

Test for 2NF: FD: $A \to D$ and $BH \to CG$ violate 2NF conditions (these are partial functional dependencies). Thus, the decomposition of **R** is:

Since $(A)^+ = ADEF$, $\mathbf{R1}(A, D, E, F)$, where A is the candidate key,

since $(BH)^+ = BHCG$, $\mathbf{R2}(B, H, C, G)$, where BH is the candidate key, and

 $\mathbf{R3}(A,B,H)$ consists of the original candidate key of R.

Now, R1, R2 and R3 are in 2NF.

Test for 3NF: In **R1**, FD $D \to EF$ violates 3NF conditions (as D is not a superkey). Thus, the decomposition is:

 $\mathbf{R11}(D, E, F)$, where D is the candidate key and $\mathbf{R12}(A, D)$, where A is the candidate key.

The relations **R3** and **R2** are already in 3NF (since in **R2**, FD: $G \to H$ satisfies 3NF conditions as H is a prime attribute).

Test for BCNF: The relations **R11**, **R12** and **R3** are already in BCNF. However, in relation **R2**, FD: $G \to H$ violates BCNF conditions as G is not a super key). Thus, the decomposition is:

 $\mathbf{R22}(G,H)$, where G is the candidate key and $\mathbf{R22}(B,C,G)$, where BCG is the candidate key.

The final relations after decomposition are:

 $\mathbf{R11}(D, E, F)$, $\mathbf{R12}(A, D)$, $\mathbf{R21}(G, H)$, $\mathbf{R22}(B, C, G)$ and $\mathbf{R3}(A, B, H)$. Please note that although the decomposition is lossless, it is not dependency preserving.

11. V	Which o	f the	following	statements	is/	are	true	regarding	temporal	relations?
-------	---------	-------	-----------	------------	-----	-----	------	-----------	----------	------------

[MSQ: 2 points]

\bigcirc	Α	uni-temporal	relation	can	have	only	valid	time.
\sim		- I				•/		

- A uni-temporal relation can have only transaction time.
- \sqrt{A} uni-temporal relation can have either valid transaction time or transaction time.
- \sqrt{A} bi-temporal relation can have both valid transaction time and transaction time.

Solution:

- An uni-temporal relations has one axis of time, either valid time or transaction time.
- A bi-temporal relation has both axis of time, valid time and transaction time. It includes valid start time, valid end time, transaction start time, transaction end time.