Math 302: Existence and uniqueness of solutions

Kameryn J Williams

University of Hawai'i at Mānoa

Spring 2021

 All semester we've been learning methods to solve differential equations.

- All semester we've been learning methods to solve differential equations.
- We haven't exhausted the topic. You could spend semesters learning more and more methods to solve more and more kinds of differential equations.

- All semester we've been learning methods to solve differential equations.
- We haven't exhausted the topic. You could spend semesters learning more and more methods to solve more and more kinds of differential equations.
- For the last topic this semester, let's step away from calculations to ask a theoretical question:
- When, in generality, can we say that a differential equation has solutions? When are solutions uniquely identified?

- All semester we've been learning methods to solve differential equations.
- We haven't exhausted the topic. You could spend semesters learning more and more methods to solve more and more kinds of differential equations.
- For the last topic this semester, let's step away from calculations to ask a theoretical question:
- When, in generality, can we say that a differential equation has solutions? When are solutions uniquely identified?

I won't go into every gritty detail. Rather, the goal is to give you a view of the broad ideas, and some techniques and tricks that are used to reason abstractly about differential equations.

$$y^{(n)} + a_{n-1}(x)y^{(n-1)} + \cdots + a_1(x)y' + a_0(x)y = b(x)$$

$$y^{(n)} + a_{n-1}(x)y^{(n-1)} + \cdots + a_1(x)y' + a_0(x)y = b(x)$$

A trick: Let's transform this from a high-order problem in one function y to a first-order problem in many functions y_1, \ldots, y_n :

$$y^{(n)} + a_{n-1}(x)y^{(n-1)} + \cdots + a_1(x)y' + a_0(x)y = b(x)$$

A trick: Let's transform this from a high-order problem in one function y to a first-order problem in many functions y_1, \ldots, y_n :

$$y_1 = y$$

 $y_2 = y' = y'_1$
 \vdots
 $y_n = y^{(n-1)} = y'_{n-1}$

$$y^{(n)} + a_{n-1}(x)y^{(n-1)} + \cdots + a_1(x)y' + a_0(x)y = b(x)$$

A trick: Let's transform this from a high-order problem in one function y to a first-order problem in many functions y_1, \ldots, y_n :

$$y_1 = y$$

 $y_2 = y' = y'_1$
 \vdots
 $y_n = y^{(n-1)} = y'_{n-1}$

We can turn our original equation into a system of equations about the derivatives of the v_i .

$$y^{(n)} + a_{n-1}(x)y^{(n-1)} + \cdots + a_1(x)y' + a_0(x)y = b(x)$$

A trick: Let's transform this from a high-order problem in one function y to a first-order problem in many functions y_1, \ldots, y_n :

$$y_1 = y$$

 $y_2 = y' = y'_1$
 \vdots
 $y_n = y^{(n-1)} = y'_{n-1}$

$$y'_{n} = -a_{n-1}y_{n} - \dots - a_{1}y_{2} - a_{0}y_{1} + b$$
 $y'_{n-1} = y_{n}$
 \vdots
 $y'_{1} = y_{2}$

So solving this system of equations gives us a solution to our original equation.

We can turn our original equation into a system of equations about the derivatives of the y_i .

$$y^{(n)} + a_{n-1}(x)y^{(n-1)} + \cdots + a_1(x)y' + a_0(x)y = b(x)$$

A trick: Let's transform this from a high-order problem in one function y to a first-order problem in many functions y_1, \ldots, y_n :

$$y_1 = y$$

 $y_2 = y' = y'_1$
 \vdots
 $y_n = y^{(n-1)} = y'_{n-1}$

We can turn our original equation into a system of equations about the derivatives of the v_i .

$$y'_{n} = -a_{n-1}y_{n} - \dots - a_{1}y_{2} - a_{0}y_{1} + b$$
 $y'_{n-1} = y_{n}$
 \vdots
 $y'_{1} = y_{2}$

So solving this system of equations gives us a solution to our original equation.

We've turned our problem into a new problem. That's kinda like progress!

We turned our *n*th-order differential equation about an unknown function *y* into a system of equations. Namely, we have

- *n* equations
- about *n* unknown functions y_1, \ldots, y_n
- where the *i*th equation describes y'_i in terms of y_1, \ldots, y_n , and x.

We turned our *n*th-order differential equation about an unknown function *y* into a system of equations. Namely, we have

- n equations
- about n unknown functions y_1, \ldots, y_n
- where the *i*th equation describes y'_i in terms of y_1, \ldots, y_n , and x.

Let's look at this in a bit more generality.

$$y'_1 = F_1(x, y_1, \dots, y_n)$$

$$\vdots$$

$$y'_n = F_n(x, y_1, \dots, y_n)$$

We turned our *n*th-order differential equation about an unknown function *y* into a system of equations. Namely, we have

- n equations
- about n unknown functions y_1, \ldots, y_n
- where the *i*th equation describes y'_i in terms of y_1, \ldots, y_n , and x.

Let's look at this in a bit more generality.

$$y'_1 = F_1(x, y_1, \dots, y_n)$$

$$\vdots$$

$$y'_n = F_n(x, y_1, \dots, y_n)$$

Think back to the beginning of the semester when we looked at slope fields.

• We had an equation y' = F(x, y), which we could think of as assigning a slope to every point in the plane.

We turned our *n*th-order differential equation about an unknown function y into a system of equations. Namely, we have

- n equations
- about *n* unknown functions y_1, \ldots, y_n
- where the *i*th equation describes y_i' in terms of y_1, \ldots, y_n , and x.

Let's look at this in a bit more generality.

$$y'_1 = F_1(x, y_1, ..., y_n)$$

 \vdots
 $y'_n = F_n(x, y_1, ..., y_n)$

Think back to the beginning of the semester when we looked at slope fields.

- We had an equation y' = F(x, y), which we could think of as assigning a slope to every point in the plane.
- What we have here is a higher dimensional version of this. Rather than one slope in 2-dimensional space, we look at n slopes in (n+1)-dimensional space.

We turned our *n*th-order differential equation about an unknown function *y* into a system of equations. Namely, we have

- n equations
- about n unknown functions y_1, \ldots, y_n
- where the *i*th equation describes y'_i in terms of y_1, \ldots, y_n , and x.

Let's look at this in a bit more generality.

$$y'_1 = F_1(x, y_1, \dots, y_n)$$

$$\vdots$$

$$y'_n = F_n(x, y_1, \dots, y_n)$$

Think back to the beginning of the semester when we looked at slope fields.

- We had an equation y' = F(x, y), which we could think of as assigning a slope to every point in the plane.
- What we have here is a higher dimensional version of this. Rather than one slope in 2-dimensional space, we look at n slopes in (n+1)-dimensional space.

If we want to think about how to solve this, it makes sense to start with the simplest case, where we have only one unknown function.

- Suppose for now that F is continuous in a rectangle R: a₀ ≤ x ≤ a₁ and b₀ ≤ y ≤ b₁.
- (We'll see later that we actually have to assume a little bit more about *F*.)
- Fix a point (x_0, y_0) in this rectangle, and suppose we have have the initial condition $y(x_0) = y_0$.

A trick: Turn the differential equation into an integral equation.

Integrate both sides, starting at x_0 , get:

$$y(x) - y(x_0) = \int_{x_0}^{x} F(t, y(t)) dt.$$

- Suppose for now that F is continuous in a rectangle R: a₀ ≤ x ≤ a₁ and b₀ ≤ y ≤ b₁.
- (We'll see later that we actually have to assume a little bit more about *F*.)
- Fix a point (x_0, y_0) in this rectangle, and suppose we have have the initial condition $y(x_0) = y_0$.

A trick: Turn the differential equation into an integral equation.

Integrate both sides, starting at x_0 , get:

$$y(x) - y(x_0) = \int_{x_0}^{x} F(t, y(t)) dt.$$

Why?

- Suppose for now that F is continuous in a rectangle R: $a_0 \le x \le a_1$ and $b_0 \le y \le b_1$.
- (We'll see later that we actually have to assume a little bit more about *F*.)
- Fix a point (x_0, y_0) in this rectangle, and suppose we have have the initial condition $y(x_0) = y_0$.

- Suppose for now that F is continuous in a rectangle R: $a_0 \le x \le a_1$ and $b_0 \le y \le b_1$.
- (We'll see later that we actually have to assume a little bit more about *F*.)
- Fix a point (x_0, y_0) in this rectangle, and suppose we have have the initial condition $y(x_0) = y_0$.

A trick: Turn the differential equation into an integral equation.

Integrate both sides, starting at x_0 , get:

$$y(x) - y(x_0) = \int_{x_0}^{x} F(t, y(t)) dt.$$

Why?

- Derivatives are easier to compute than integrals.
- But for theoretical uses, integrals are better behaved.
- Since we want a theoretical result rather than calculations, this makes things easier.

$$y(x) = y_0 + \int_{x_0}^x F(t, y(t)) dt$$

$$y(x) = y_0 + \int_{x_0}^{x} F(t, y(t)) dt$$

A stupid idea: What if we guess that

$$y(x)=y_0?$$

$$y(x) = y_0 + \int_{x_0}^{x} F(t, y(t)) dt$$

A stupid idea: What if we guess that

$$y(x)=y_0?$$

This obviously won't work, because in general

$$y_0 + \int_{x_0}^x F(t,y_0) \,\mathrm{d}t$$

is some new function, not the constant function y_0 .

$$y(x) = y_0 + \int_{x_0}^x F(t, y(t)) dt$$

A stupid idea: What if we guess that $y(x) = y_0$?

This obviously won't work, because in general

$$y_0 + \int_{x_0}^x F(t, y_0) \,\mathrm{d}t$$

is some new function, not the constant function y_0 .

But still! What if we took the output of this process, and did it again? And then kept repeating it, and hoped that the error got smaller and smaller.

$$y(x) = y_0 + \int_{x_0}^{x} F(t, y(t)) dt$$

A stupid idea: What if we guess that $y(x) = y_0$?

This obviously won't work, because in general

$$y_0 + \int_{x_0}^x F(t,y_0) \,\mathrm{d}t$$

is some new function, not the constant function y_0 .

But still! What if we took the output of this process, and did it again? And then kept repeating it, and hoped that the error got smaller and smaller.

$$y_0(x) = y_0$$

 $y_1(x) = y_0 + \int_{x_0}^x F(t, y_0(t)) dt$
 \vdots
 $y_{n+1}(x) = y_0 + \int_{x_0}^x F(t, y_n(t)) dt$

$$y(x) = y_0 + \int_{x_0}^x F(t, y(t)) dt$$

A stupid idea: What if we guess that $y(x) = y_0$?

This obviously won't work, because in general

$$y_0 + \int_{x_0}^x F(t,y_0) \,\mathrm{d}t$$

is some new function, not the constant function y_0 .

But still! What if we took the output of this process, and did it again? And then kept repeating it, and hoped that the error got smaller and smaller.

Spoiler: This stupid idea will work out (with an extra assumption on F). The error gets smaller and smaller, so these Picard approximations converge to the true solution.

An example integral equation: F(x, y) = x + y and $x_0 = y_0 = 0$

$$y(x) = y_0 + \int_{x_0}^{x} F(t, y(t)) dt$$

An example integral equation: F(x, y) = x + y and $x_0 = y_0 = 0$

$$y(x) = \int_0^x t + y(t) dt$$

• We want to prove that a linear differential equation

$$y^{(n)} + \cdots + a_1(x)y' + a_0(x)y = b(x)$$

• We want to prove that a linear differential equation

$$y^{(n)} + \cdots + a_1(x)y' + a_0(x)y = b(x)$$

has solutions.

• We reduced this problem about up to *n*th derivatives of a single function to a problem about 1st derivatives of *n* many functions.

• We want to prove that a linear differential equation

$$y^{(n)} + \cdots + a_1(x)y' + a_0(x)y = b(x)$$

- We reduced this problem about up to nth derivatives of a single function to a problem about 1st derivatives of n many functions.
- We're first trying to solve the 1 dimensional version of this problem, before looking at the general case.

• We want to prove that a linear differential equation

$$y^{(n)} + \cdots + a_1(x)y' + a_0(x)y = b(x)$$

- We reduced this problem about up to nth derivatives of a single function to a problem about 1st derivatives of n many functions.
- We're first trying to solve the 1 dimensional version of this problem, before looking at the general case.
- We turned the first-order differential equation y' = F(x, y) into an integral equation.

• We want to prove that a linear differential equation

$$y^{(n)} + \cdots + a_1(x)y' + a_0(x)y = b(x)$$

- We reduced this problem about up to nth derivatives of a single function to a problem about 1st derivatives of n many functions.
- We're first trying to solve the 1 dimensional version of this problem, before looking at the general case.
- We turned the first-order differential equation y' = F(x, y) into an integral equation.
- We want to use Picard's method to find a solution to this integral equation.

