## **CART** and bagging

Mathies Brinks Sørensen

DTU

02582 Computational Data Analysis, 2025

# **Today's lecture**

- Regression trees
- Classification trees
- Bagging

# **Classification and regression trees**

A decision tree mimics a series of decisions based on expert knowledge but is data-based rather than expert-driven.

#### **Engineering Flowchart**



### **Regression Tree - concept**



# **Regression Tree - concept**



# Regression trees - regression example



- True function y = f(x) blue
- Observations with noise:  $(x_i, y_i)$  black

# Regression trees - regression example

Let's try to fit a simple piecewise polynomial



- X = [ones(n,1) double(x>5) double(x>10)];
- A constant in each interval
- Evenly spaced knots

Let's try to make a better placement for the knots



#### Making our knot placement into an algorithm

- Choose a number of knots k.
- Try all possible positions for each knot
  - Infinite number of combinations

Let's try with 100 different positions for the knot placement on the x-axis

- 100<sup>k</sup> positions to try
- With 5 knots (k=5), we get = 10.000.000.000 combinations
- Add additional variables, and your computer blows up

#### New idea:

- Place the knots one after another
- Place each knot such that the fit is as good as possible











At this point, the regression function is pretty good!



### **Tree representation**

Each split can be represented by a parent node split into two child nodes



## More than one input variable

Handled in the simplest way possible

```
For each input variable
For each split
Evaluate split point
End
End
```

#### More than one input variable



# **Key questions**

- What is a good split?
  - We need to know this to decide where to split
- How many splits should we try?
  - ▶ We used 100 before is there a better choice?
- When do we stop splitting?

## What is a good split?

- The terminal nodes each represent an interval of the input variable(s).
- We choose to represent the outcome in this interval by a constant function.
- As for most regression problems, we say that a constant function is good if it has low residual sum of squares when compared to training outcome data.

# What is a good split?

- Prediction  $\hat{y}$  is a constant in each interval I
- Residual sum of squares (RSS) in interval *I*:  $RSS_I = \sum_{i \in I} (y_i \hat{y}_i)^2$
- Minimal when  $\hat{y} = \sum_{i \in I} y_i / n$



# How many splits?

- Optimal constant function is the average of the outcome in the interval
- Only important if observations are in the interval or not
- Split somewhere in each gap between observations



# How many splits?

In an interval with  $n_l$  observations we have  $n_l$  possible splits

- Nothing fancy here, just try them all
- Choose the one with the lowest total RSS on the interval



# **Splitting categorical predictors**

In an interval with  $n_l$  observations we have  $n_l$  possible splits

- Consider a two-category input (e.g. male-female)
  - Only one way to split, men versus women
  - Empty groups are not allowed
  - ► (male),(female) and (female),(male) is the same split
- Consider a three-category input (apple, orange, banana)
  - Three possible splits

     (apple) , (orange, banana)
     (apple, orange) , (banana)
     (apple, banana) , (orange)
- How many splits for a variable with k categories?
  - In the exercises of today!

### A complete wrap







Calculate the means (green) of each interval (c1 - left and c2 - right)

$$\hat{y}_{c1} = 10, \, \hat{y}_{c2} = 30$$

Calculate RSS for each interval (c1 - left and c2 - right):

$$RSS_{c1} = (10 - 10)^2 = 0 (1)$$

$$RSS_{c2} = (33 - 30)^2 + (31 - 30)^2 + (25 - 30)^2 + \dots = 54$$
 (2)

$$RSS_{l} = RSS_{c2} + RSS_{c1} = 54$$



Calculate the means (green) of each interval (c1 - left and c2 - right)

$$\hat{y}_{c1} = 21.5, \, \hat{y}_{c2} = 29$$

Calculate RSS for each interval (c1 - left and c2 - right):

$$RSS_{c1} = (10 - 21.5)^2 + (33 - 21.5)^2 = 264.5$$
 (4)

$$RSS_{c2} = (31-29)^2 + (25-29)^2 + (23-29)^2 + \dots = 50$$
 (5)

$$RSS_{l} = RSS_{c2} + RSS_{c1} = 314.5$$

Note down the  $RSS_{l}$  for the l'th segment.

Choose the threshold with the lowest RSS - the root node is now found



It is possible to do more splits at each side of the threshold

What do we do when we have more than one variable?



#### How large do we grow the tree?

- Stop splitting when a node contains too few observations
- For instance, do not split nodes with 10 or less observations

## **Tree-growing procedure**

- First interval (node) is the entire range of X.
- For each variable
  - ► For each splitting position, calculate RSS = RSS<sub>left</sub> + RSS<sub>right</sub>
  - Remember position with the lowest RSS
- Split the variable with the lowest RSS at the corresponding position
- This produces a left and right sub-interval (child-nodes)
  - Split each of these into child nodes as above
  - Keep splitting nodes until a node contains too few observations
- Assign a constant function to terminal nodes, the average of the observations

# Returning to the example

What happens when we set the splitting rule as not splitting nodes with 10 or less observations:



What do you think of this fit?

## Finding the right sized tree

- The tree was split too far overfitting
- How do we know when to stop splitting?
  - ► Answer: We do not A seemingly worthless split may lead to excellent splits below



First split

#### Finding the right sized tree



#### Second split



Third split

## **Pruning rule**

- We do not want to miss out on good splits
- Strategy: Grow the tree really large (small MinParent) and then decide which splits were unnecessary and remove these.
- This is called **pruning** the tree
  - Pruning a node amounts to removing its sub-tree, thereby making a terminal node or leaf node.

## **Pruning rule**

Prune the non-terminal node whose sub-tree gives the smallest **per node** reduction in RSS.

• Divide the reduction by the number of terminal nodes minus one

Weakest-link pruning: prune branches that contribute the least to lowering RSS



Weakest-link pruning: prune branches that contribute the least to lowering RSS



Weakest-link pruning: prune branches that contribute the least to lowering RSS



Weakest-link pruning: prune branches that contribute the least to lowering RSS



Weakest-link pruning: prune branches that contribute the least to lowering RSS



Weakest-link pruning: prune branches that contribute the least to lowering RSS



Weakest-link pruning: prune branches that contribute the least to lowering RSS



## When to stop pruning?

- If we keep pruning, we will end up with just the root node
- Which of all these sub-trees do we choose?
- Two approaches
  - Independent test set
  - Cross-validation

## Using an independent test set

- As we prune our way towards the root node, evaluate the performance of each sub-tree with respect to the test set.
- Continue all the way to the root node
  - Choose sub-tree with best performance





# **Using cross-validation**

Three alternatives...

- Cross validate all possible trees, does not work in practice too many trees.
- Use a tuning parameter. Choose the tree that minimizes,

$$RSS(T) + \alpha |T|$$
  
|  $T$ |= number of end-nodes

Find the tuning parameter  $\alpha$  using cross-validation

 Use the cross-validation to determine the optimal value of the minimum number of observations in a terminal node. Matlab parameter MinLeaf. Then, use the full-grown tree without pruning.

# Regression example revisited

MinParent = 20 full tree





# Regression example revisited

Best sub-tree chosen by 10-fold cross-validation.



















What do we conclude about regression trees in terms of

- Bias
- Variance

## **Classification trees - concept**



### Classification trees

The classification tree assigns a class instead of a constant.

It has an almost identical process as regression trees, but there are different criteria for splitting nodes and pruning the tree.

### **Node values**

With **regression trees** we transform a new observation into a constant.

- The constant was derived from the training data
- It was the mean of the output variable of the training observations in the node

For **classification trees**, we assign new observations to a certain class

- The class is derived from training data
- It is the majority class of the training observations in the node

### **Model error**

### Regression trees

For regression trees, we used RSS as a measure of node impurity

#### Classifcation trees

- For classification trees, we have a few options
  - Missclassification rate
  - Gini index
  - Cross-entropy
- They all favor the split that increases purity the most
  - Typically, the predictive performance is not that different
  - ▶ The shape of the trees might, however, be very different

## Node impurity for classification trees

In a specific node, representing a region R with N observations, let  $\hat{p}_k = \frac{1}{N} \sum_{\mathbf{x}_i \in B} \mathbb{1}(y_i = k)$ 

Classify observations in the node to class,

$$K = \arg\max_k \hat{p}_k$$

Measures of impurity within a node,

Misclassification error: 
$$Q = \frac{1}{N} \sum_{x_i \in R} \mathbb{1}(y_i \neq k) = 1 - \hat{p}_k$$

Gini index: 
$$Q = \sum_{k \neq k} \hat{p}_k \hat{p}'_k = \sum_k \hat{p}_k (1 - \hat{p}_k)$$

Cross-entropy (deviance):  $Q = -\sum_k \hat{p}_k log(\hat{p}_k)$ 

## From node impurity to split criterion

- The node impurity is weighted with the number of observations in each node.
- The split decision is based on the split that minimizes,

$$N_{left}Q_{left} + N_{right}Q_{right}$$

- N, the number of observations in left and right node
- Q, node impurity for left and right node

# **Comparing splits**





### **Misclassification error**

left node: 5/14 right node: 5/14

**Split Criterion** 

14(5/14)+14(5/14)=10

### Misclassification error

left node: 1/5 right node:10/23

**Split Criterion** 

5(1/5)+23(10/23)=11

The lower the impurity, the better. Now try the same with the Gini index

## Node impurity for classification trees



- Node impurity measures for a two-class problem.
- X-axis: proportion of samples belonging to class 2.
- Entropy and Gini index are better measures for growing tree because they are more sensitive to node probabilities.

## **Standard practice**

- Use Gini index as split criterion when building the tree.
- Use missclassification rate as criterion when deciding which node to prune.

### Benefits of tree structure

Interpretability!

Consider the following (classification) tree on heart diseases



## Interpretability

- CART is popular in medical sciences because it may represent the way doctors reason
- A single tree describes the entire partitioning of the input space.
- With p > 3 input variables, the partition (cf. knot positions) are difficult to visualize.
  - But a tree representation is always possible.
- A large tree might be difficult to interpret anyway...

# Missing data

Incomplete data are common in many applications.

### We can always

- Delete the observation
- Replace with mean or median

### For trees, we can

- Introduce an extra category as missing if it is a categorical variable.
- Use a surrogate variable. In each branch, have a list of alternative variables and split points as a backup.
  - Matlab does this.

## **Bagging**

- Ensemble method
- Many models on bootstrap samples
- Output from all models aggregated into one model

# **Review - bootstrapping**

Start with data

$$X = \begin{bmatrix} 1 & 2 \\ 2 & 4 \\ 3 & 6 \\ 4 & 8 \\ 5 & 10 \end{bmatrix}$$

sample with replacement

$$X_1' = \begin{bmatrix} 3 & 6 \\ 2 & 4 \\ 3 & 6 \\ 5 & 10 \\ 3 & 6 \end{bmatrix}, X_2' = \begin{bmatrix} 4 & 8 \\ 4 & 8 \\ 2 & 4 \\ 1 & 2 \\ 3 & 6 \end{bmatrix}, X_3' = \begin{bmatrix} 1 & 2 \\ 5 & 10 \\ 2 & 4 \\ 3 & 6 \\ 4 & 8 \end{bmatrix}$$

## **Bagging**

- Use bootstrap to improve prediction (not to tune parameters or assess prediction errors)
- Bagging averages predictions over a collection of bootstrap samples
- Average many noisy but approximately unbiased models and thereby reduce the variance

## **Bagging algorithm**

- Make B boostrap samples of of size N
- For b = 1 to B repeat
  - Fit a model using the bth sample and make the prediction  $\hat{y}_b$
- The bagging estimate is given by the average of the B predictions

$$\hat{y}_{bagging} = \frac{1}{B} \sum_{b=1}^{B} \hat{y}_{b}$$



100 data points with white noise added from  $y = \sin(x)$ .



Fits of a 3rd degree polynomial to 50 bootstraps of data.



Fits of a 9th degree polynomial to 50 bootstraps of data.



Fits of regression trees to 50 bootstrap samples and the bagged tree

## **Bagging bias**

The bias of the bagged trees is the same as that of the individual trees as the trees are identically distributed

$$E(\hat{y} - y) = E[\frac{1}{B} \sum_{b=1}^{B} (\hat{y}_b - y)] = \frac{1}{B} E[(\hat{y}_b - y)] = E[(\hat{y}_b - y)]$$

## **Bagging variance**

The variance of the average of the bagged estimates is ( $\rho$  is the correlation between pairs of trees)

$$ho\sigma^2 + \frac{1-
ho}{B}\sigma^2$$

The second term goes to zero as B increases. We see that the size of the correlation between pairs of bagged trees,  $(\rho)$ , is what limits the variance reduction.

## **Bagging summary**

 Particularly good for high-variance, low-bias methods such as trees

### Regression

Regression trees are fitted to bootstrap samples of the training data. The result is the average over all of the trees.

#### Classification

A committee of trees each cast a vote for the class - and the majority vote is used as the prediction.

## **Today's Exercises**

- imdb data example. Key learning: Evaluate the steps in designing and building a CART (pen and paper).
- Cleveland Heart Data. Key learning: Use existing algorithms to build and evaluate a CART.
- Zip data. Key learning: Build a bagging model and evaluate importance of bagging hyper parameters for both individual models and the bagging procedure.

### **Questions?**

Any questions for today's topic?