Punctuation Restoration with BiLSTM: A Baseline for Literary Texts

Abstract

In the task of recovering missing punctuation from literary texts, we implemented a baseline model using a deep neural network architecture. Our model consists of a Bidirectional Long Short-Term Memory (BiLSTM) followed by a linear classifier that predicts 9 types of punctuation marks commonly removed from *Sherlock Holmes* stories.

On a randomly selected validation set drawn from the training data, our model achieves a macro F1 score of 49% and a weighted average F1 score of 80%. On the test set (comprising three unseen Sherlock Holmes stories), the model scores a macro F1 of 44% and a weighted F1 of 75%. In future work, we plan to train on larger and more diverse text sources, and incorporate richer architectures such as Transformers to better capture long-range dependencies in the text.

Introduction

The goal of this project is to restore missing punctuation marks from a given input sequence of words using deep learning. The challenge is framed as a sequence labeling problem, where each <punctuation> placeholder must be replaced with the correct punctuation mark.

The evaluation is performed on three specific stories by Arthur Conan Doyle:

- A Scandal in Bohemia
- The Red-headed League
- A Case of Identity

To avoid data leakage, we were instructed to train only on **legal public-domain** data distinct from these test stories. We curated our training data primarily from *The Adventures of Sherlock Holmes* and avoided overlapping chapters with the test set.

Exploratory Data Analysis (EDA)

Before model development, we performed an extensive exploratory data analysis to better understand the structure of the data. This included computing:

- Sequence length distributions
- Per-class punctuation frequencies
- Distributional differences between train, test, and validation sets

Test Set Statistics

Metric	Value
Total sequences	617
Avg sequence length	48.31
Max sequence length	312
Median sequence length	28
Std deviation	2.18

Punctuation Frequencies in Test Set

Punctuation	Count
,	1879
;	46
:	9
!	62
?	176
	1526
,	194
"	1316
(1
)	1

Data pre-processing

Initially, we included various public-domain books (e.g., *Dracula*, *Pride and Prejudice*), but performance degraded slightly, likely due to style mismatches. We ultimately restricted the training data to Sherlock Holmes stories *excluding the test chapters*.

We preprocessed each story by:

- Removing Gutenberg boilerplate headers and footers
- Replacing ASCII quotes with UTF-8 equivalents
- Tokenizing and inserting <punctuation> markers in place of real punctuation
- Building JSON-based datasets containing [tokens, labels] pairs

Model Architecture

Given the sequential nature of the task, we implemented a **BiLSTM** model — a natural fit for capturing context around missing punctuation points.

Components

- Embedding layer: maps tokens to 128-dimensional vectors
- BiLSTM layer: hidden size 192, bidirectional
- **Dropout**: 0.4 for regularization
- Linear classifier: outputs logits over 9 punctuation classes

 $\text{Input} \rightarrow \text{Embedding} \rightarrow \text{BiLSTM} \rightarrow \text{Dropout} \rightarrow \text{Linear} \rightarrow \text{Softmax}$