Questions for the day

- How can *we* develop efficient algorithms like MergeSort and QuickSort?
- What are some challenges and shortcomings of this approach?

Introduction to algorithm design

William Hendrix

Outline

- Algorithm design strategies
 - Brute force
 - Divide-and-conquer
 - Dynamic programming

Algorithm design strategies

- "Templates" for creating algorithms
- Need to be adapted to specific problem
- Give you more tools for approaching difficult problems
- **Strategy o:** brute force
 - A.k.a., exhaustive search
 - Test all possibilities for the solution
 - Report the correct/best solution

Brute force example

Brute force sorting

```
Input: data: array to be sorted
  Input: n: length of data
  Output: permutation of data such that
            data[1] \le \ldots \le data[n]
1 Algorithm: BruteSort
2 repeat
     Find the next permutation of data to test
     if data is sorted then
         return data
5
     end
6
7 until no more permutations of data are left
8 error data cannot be sorted
```

Analysis: brute force

Pros

- Applicable to most problems
- *Always* gets the correct/optimum answer
- Easy to design and describe

Cons

- Almost always slowest solution
- Often infeasible
- Exponential or factorial number of tests are impractical for most realistic problems

Divide-and-conquer

Goal

Reduce complexity of high-complexity algorithms

Outline

- Divide large problems into one or more subproblems of roughly the same size
 - E.g., split array into 2 halves, 3 thirds, etc.
- Solve subproblems via recursion
- Combine solutions to subproblems into solution for full problem
- Solve small problems directly (base case)

Intuition

 If combining solutions is easier than solving directly, divide-andconquer solution may be faster

Divide-and-conquer examples

- General strategy
 - Divide problem into equal parts
 - Solve subproblems recursively
 - Combine solutions
 - Solve small instances directly
- MergeSort
 - Split array in half
 - Recursively sort each half
 - Merge sorted arrays
 - Base case: 0 or 1 element

$$2T(n/2)$$

$$\Theta(n)$$

$$T(n) = 2T(n/2) + \Theta(n)$$

$$T(n) = \Theta(n \lg n)$$

Searching

- Input
 - − *data*: sorted array of length *n*
 - t: target value
- **Output:** index *i* such that data[i] = t, or -1 if $t \notin data$

- Brute force
 - Check all values for t
 - Return when found
 - Worst-case: O(n)
- Optimization: stop searching if data[i] > t
 - Doesn't improve worst case

```
Input: data: sorted array to search
Input: n: length of data
Input: t: target value
Output: Index i such that data[i] = t, or
-1 if t \notin data

1 Algorithm: ExhaustiveSearch
2 for i = 1 to n do
3 | if data[i] = t then
4 | return i
5 | end
6 end
7 return -1
```

Naïve binary search

Input

- − *data*: sorted array of length *n*
- t: target value
- **Output:** index *i* such that data[i] = t, or -1 if $t \notin data$

- Split data in half
- Search each half
- Return *t* if found
- Base case: array size 1
- $T(n) = 2T(n/2) + \Theta(1)$
 - $-T(n) = \Theta(n)$ by Master Theorem
 - No better than linear search!

```
Input: data: sorted array to search
   Input: n: length of data
   Input: t: target value
   Output: Index i such that data[i] = t, or
             -1 if t \notin data
 1 Algorithm: NaïveBinSearch
2 if n=1 then
      if data[1] = t then
          return 1
 4
      else
          return -1
      end
 8 end
9 mid = |n/2|
10 lhs = Na\ddot{i}veBinSearch(data[1..mid])
11 rhs = \text{Na\"{i}veBinSearch}(data[mid + 1..n])
12 if lhs \neq -1 then
      return lhs
14 else if rhs \neq -1 then
      return mid + rhs
15
16 else
      return -1
17
                                        10
18 end
```

Better binary search

Input

- − *data*: sorted array of length *n*
- t: target value
- **Output:** index *i* such that data[i] = t, or -1 if $t \notin data$

- Observation
 - In sorted array, only one half has t
- Reduces number of recursive calls to 1
 - $T(n) = T(n/2) + \Theta(1)$
 - $T(n) = \Theta(\lg n)$ by MT

```
Input: data: sorted array to search
  Input: n: length of data
  Input: t: target value
  Output: Index i such that data[i] = t, or -1
            if t \notin data
1 Algorithm: BinSearch
2 if n=1 then
      if data[1] = t then
         return 1
      else
         return -1
      end
8 end
9 mid = |n/2|
10 if data[mid] = t then
      return mid
12 else if data[mid] > t then
     return BinSearch(data[1..mid-1])
14 else
     return mid + BinSearch(data[mid + 1..n])
16 end
```

One-sided binary search

- Binary search can be applied to many different types of problems
 - E.g., estimating a root of 2-n² between 1 and 2
 - Guess 1.5 (too high)
 - Guess 1.25 (too low)
 - Guess 1.375 (too low)
 - ...
 - Repeat until sufficiently close
- Needs upper and lower bounds

- Alternative: one-sided search
- f(1.25) = 0.4375

$$f(1.5) = -0.25$$

- Start with min value
- Double until too large
- Binary search between last success and first failure

One-sided binary search example

- Compute $\lfloor \lg n \rfloor$ for positive n
 - Lower bound?
 - Upper bound?
- Exhaustive solution
 - Try every power of 2 until you exceed n
 - $-\Theta(\lg n)$ time
- One-sided binary search
 - Double power of 2 until too high
 - Binary search between last success and first failure
 - $\Theta(\lg \lg n)$ time

```
Input: n: positive integer
Output: \lfloor \lg n \rfloor
1 Algorithm: LinearScanLog
2 f = 1
3 x = 0
4 while f < n do
5 \begin{vmatrix} f = 2f \\ 6 \end{vmatrix} x = x + 1
7 end
8 return x
```

```
Input: n: positive integer
  Output: |\lg n|
1 Algorithm: OneSidedLog
2 lo = 0
3 hi = 1
4 while 2^{hi} < n do
      lo = hi
      hi = 2hi
7 end
s while hi - lo > 1 do
      mid = |(hi - lo)/2|
      if 2^{mid} < n then
         hi = mid
11
      else
12
        lo = mid
13
      \mathbf{end}
15 end
16 return lo
```

Divide-and-conquer analysis

Pros

- Reduces complexity for several problems
- Easy to prove correctness via strong induction
- Easy to analyze with Master Theorem
- Works very well with parallel computing

Cons

- Problem must exhibit optimal substructure
 - Solution must be related to subproblem solutions
- Sometimes has poor complexity even with optimal substructure
 - *Dynamic programming* solves this problem

Divide-and-conquer exercise

- Develop an efficient algorithm for *natural number exponentiation*
- Input
 - a: base of exponent (real number)
 - n: exponent (nonnegative integer)
- **Output:** *a*^{*n*}
- Divide problem into equal parts
- Solve subproblems recursively
- Combine solutions
- Solve small instances directly
- Hint: $a^n = \underbrace{a \cdot a \cdot a \cdot a \cdot a}_{n \text{ times}}$
 - Focus on even n first
 - Think about how to handle odd n

Divide-and-conquer solution

• Develop an efficient algorithm for natural number exponentiation

Input

- a: base of exponent (real number)
- n: exponent (nonnegative integer)
- Output: a^n

```
Input: a: base of exponent (real number)
Input: n: exponent (nonnegative integer)
Output: a^n
1 Algorithm: QuickPow
2 if n = 0 then
3 | return 1
4 end
5 t = \text{QuickPow}(a, \lfloor n/2 \rfloor)
6 if n is even then
7 | return t^2
8 else
9 | return at^2
10 end
```

Divide-and-conquer application

- Consider matrix addition and multiplication:
 - Given *n*-by-*n* matrices *A* and *B*, compute the sum C = A + B
 - Given an *n*-by-*n* matrices *A* and *B*, compute the product C = AB
- Addition
 - Compute $c_{ij} = a_{ij} + b_{ij}$, for every cij
 - Complexity: $\Theta(1)\Theta(n^2) = \Theta(n^2)$
- Multiplication
 - Compute c_{ij} = sum-product of row i of A and column j of B

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$

- Complexity: $\Theta(n)\Theta(n^2) = \Theta(n^3)$
- Fastest known algorithm until 1969

Strassen's Algorithm

- Described by Volker Strassen (1969)
- Used divide-and-conquer to reduce complexity of matrix multiplication
- Divide matrices into 4 quadrants:

A ₁₁	A ₁₂	B ₁₁	B ₁₂		C ₁₁	C_{12}
A_{21}	A_{22}	B_{21}	B_{22}	_	C ₂₁	C ₂₂

Compute the following:

$$M_{1} = (A_{11} + A_{22})(B_{11} + B_{22})$$

$$M_{2} = (A_{21} + A_{22})B_{11}$$

$$M_{3} = A_{11}(B_{12} - B_{22})$$

$$M_{4} = A_{22}(B_{21} - B_{11})$$

$$M_{5} = (A_{11} + A_{12})B_{22}$$

$$M_{6} = (A_{21} - A_{11})(B_{11} + B_{12})$$

$$M_{7} = (A_{12} - A_{22})(B_{21} + B_{22})$$

• Then:

$$C_{11} = M_1 + M_4 - M_5 + M_7$$

$$C_{12} = M_3 + M_5$$

$$C_{21} = M_2 + M_4$$

$$C_{22} = M_1 - M_2 + M_3 + M_6$$

Strassen's complexity

Strassen's equations:

$$M_{1} = (A_{11} + A_{22})(B_{11} + B_{22})$$

$$C_{11} = M_{1} + M_{4} - M_{5} + M_{7}$$

$$M_{2} = (A_{21} + A_{22})B_{11}$$

$$C_{12} = M_{3} + M_{5}$$

$$C_{21} = M_{2} + M_{4}$$

$$C_{21} = M_{2} + M_{4}$$

$$C_{21} = M_{2} + M_{4}$$

$$C_{22} = M_{1} - M_{2} + M_{3} + M_{6}$$

$$M_{5} = (A_{11} + A_{12})B_{22}$$

$$M_{6} = (A_{21} - A_{11})(B_{11} + B_{12})$$

$$M_{7} = (A_{12} - A_{22})(B_{21} + B_{22})$$

$$T(n) = 7T(n/2) + \Theta(n^2)$$

- 18 additions/subtractions
- $\Theta(n^2)$

• 7 multiplications

7T(n/2)

•
$$c = \log_2(7) \approx 2.81$$

•
$$f(n)$$
 vs. $n^{2.81} \Rightarrow f(n) = O(n^{\lg 7 - 0.8})$

•
$$T(n) = \Theta(n^c) \approx \Theta(n^{2.81})$$

Dynamic programming

- Algorithm design strategy
- Similar to divide-and-conquer
- Useful when divide-and-conquer would be inefficient

Dynamic programming motivation

$$F(n) = \begin{cases} 1, & \text{if } n = 1, 2\\ F(n-1) + F(n-2), & \text{if } n > 2 \end{cases}$$

```
Input: n: index of Fibonacci number to compute Output: F_n

1 Algorithm: Fibonacci

2 if n = 1 or 2 then

3 | return 1

4 else

5 | return Fibonacci(n-1) + Fibonacci(n-2)

6 end
```

- You've probably been told that this function is inefficient
- **Review:** recursive complexity
- $T(n) = T(n-1) + T(n-2) + \Theta(1)$
- Complexity: $\Theta(\tau^n)$, where $\tau = \frac{1+\sqrt{5}}{2} \approx 1.61$
 - Calculating F_{1000} takes forever!

Why does this take so long?

- We're computing the same sub-results over and over!
- Intuition: save sub-results in a map

A better solution

Input: n: index of Fibonacci number to compute

Output: F_n

1 Algorithm: FastFib

- $\mathbf{2} \ fib = \operatorname{Array}(n)$
- **3** Initialize fib to -1
- 4 return DynamicFib(n)

```
1 Algorithm: DynamicFib(n)
2 if fib[n] = -1 then
3 | if n = 1 or 2 then
4 | fib[n] = 1
5 | else
6 | fib[n] = DynamicFib(n-1) + DynamicFib(n-2)
7 | end
8 end
9 return fib[n]
```

A better solution

1	1	2	3	5	8	13
1	2	3	4	5	6	7

Input: n: index of Fibonacci number to compute

Output: F_n

1 Algorithm: FastFib

- $\mathbf{2} \ fib = \operatorname{Array}(n)$
- **3** Initialize fib to -1
- 4 return DynamicFib(n)

```
1 Algorithm: DynamicFib(n)
2 if fib[n] = -1 then
3 | if n = 1 or 2 then
4 | fib[n] = 1
5 | else
6 | fib[n] = DynamicFib(n-1) + DynamicFib(n-2)
7 | end
8 end
9 return fib[n]
```

- Each Fibonacci number computed once
- Total complexity: $\Theta(n)$

Dynamic programming

- General algorithm design strategy
- Recursion augmented with data structure to save sub-results
 - Not always a 1D array...
 - Depends on number of parameters
- Useful when:
 - Problem has recursive structure (like divide-and-conquer)
 - More than one recursive call
 - Problems overlap
 - Typically, 1-2 levels deep in recursion tree
- **Related concept:** memoization
 - Function that stores sub-results
 - Returns immediately when calling with previously-seen value
 - *Note:* possible to memoize non-recursive functions
 - Dynamic programming can be implemented iteratively

A more complex example

Binomial coefficients ("n choose k")

- Formula:
$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

- Example:
$$\binom{20}{3} = \frac{20!}{3!(17!)}$$

$$= \frac{2432902008176640000}{6(355687428096000)}$$

$$= 1140$$

- Formula might cause overflow
- Alternative: Pascal's triangle

Binomial coefficients example

- Recursive function

Recursive function
$$\binom{n}{k} = \begin{cases} 1, \text{ if } k = 0 \text{ or } k = n \\ \binom{n-1}{k-1} + \binom{n-1}{k} \end{cases}$$

- Overlapping subproblems
 - Dynamic programming!

Binomial coefficients example

- Recursive function
- $\binom{n}{k} = \begin{cases} 1, & \text{if } k = 0 \text{ or } k = n \\ \binom{n-1}{k-1} + \binom{n-1}{k} \end{cases}$

•	Example:	C(4, 2))
---	-----------------	---------	---

	0	1	2
0			
1	C(1, 0)	C(1, 1)	
2	C(2,0)	C(2, 1)	C(2, 2)
3		C(3, 1)	C(3, 2)
4			C(4, 2)

- Overlapping subproblems
 - Dynamic programming!

- Data structure?
 - 2D array (map)

Binomial coefficients example

Recurrence:
$$\binom{n}{k} = \begin{cases} 1, & \text{if } k = 0 \text{ or } k = n \\ \binom{n-1}{k-1} + \binom{n-1}{k} \end{cases}$$

```
1 Algorithm: BasicBinom
2 if k = 0 or k = n then
3 | return 1
4 else
5 | return BasicBinom(n - 1, k - 1) + BasicBinom(n - 1, k)
6 end
```

Final answer

```
Input: n, k: binomial coefficient to compute
Output: \binom{n}{k}

1 Algorithm: DPBinom
2 binom = Array(n, k)
3 Initialize binom to 0
4 return MemoBinom(n, k)
```

• Using 2D array:

```
1 Algorithm: AlmostMemo
2 if we've already calculated binom[n, k] then
3 | return binom[n, k]
4 else if k = 0 or k = n then
5 | binom[n, k] = 1
6 else
7 | binom[n, k] = AlmostMemo(n - 1, k - 1) + AlmostMemo(n - 1, k)
8 end
9 return binom[n, k]
```

```
1 Algorithm: MemoBinom
2 if binom[n, k] > 0 then
3 | return binom[n, k]
4 else if k = 0 or k = n then
5 | binom[n, k] = 1
6 else
7 | binom[n, k] = MemoBinom(n-1, k-1)
+ MemoBinom(n-1, k)
8 end
9 return binom[n, k]
```

Memoization summary

- Five step procedure
- 1. Start with naïve recursive algorithm
 - Based on recurrence
- 2. Decide data structure and sentinel value
- 3. Add "memoization check" to the beginning of the algorithm
 - If solution is in data structure, return it
- 4. Store solution before returning
- 5. Write wrapper function to initialize data structure

$$\binom{n}{k} = \begin{cases} 1, & \text{if } k = 0 \text{ or } k = n \\ \binom{n-1}{k-1} + \binom{n-1}{k} \end{cases}$$

```
Input: n, k: binomial coefficient to compute Output: \binom{n}{k}
```

- 1 Algorithm: DPBinom
- $\mathbf{2} \ binom = \operatorname{Array}(n, k)$
- **3** Initialize binom to 0
- 4 return MemoBinom(n, k)

```
1 Algorithm: MemoBinom
2 if binom[n, k] > 0 then
3 | return binom[n, k]
4 else if k = 0 or k = n then
5 | binom[n, k] = 1
6 else
7 | binom[n, k] = \text{MemoBinom}(n-1, k-1)
+ MemoBinom(n-1, k)
8 end
9 return binom[n, k]
```

Coming up

- Dynamic programming
- Greedy algorithms
- **Recommended readings:** Sections 11.3, 11.2, 12.1, 12.2, 12.5
 - Practice problems: R-11.3, C-11.3 (complexity only), C-11.4, A-11.2,
 R-12.9, C-12.6, C-12.7, C-12.9, C-12.10, A-12.1, A-12.2, A-12.5