

Tema 1: Generalidades sobre Arquitecturas paralelas y distribuidas. PARTE 3

Universidad de Cádiz

ÍNDICE

Introducción

Paralelismo en Monoprocesadores

Paralelismo en Multiprocesadores

Generalidades sobre Redes de interconexión

Rendimiento

Planificación y balanceo de carga

Almacenamiento

ÍNDICE

Planificación y balanceo de carga

- Planificación
- Balanceo de carga
 - Técnicas de balanceo de carga
 - Estáticas
 - Dinámicas
 - Adaptativas
 - Parámetros de fluctuación

Planificación (mapeo o scheduling)

- Refiere a la etapa de asignación de recursos a los múltiples procesos que ejecutarán en paralelo
 - Dónde y cuándo se ejecutará una tarea
 - Las dependencias entre tareas definen pautas para la asignación
- Técnicas de investigación operativa para planificar la asignación de recursos de modo de optimizar un determinado criterio
 - Tiempo total de ejecución
 - Utilización de los recursos
 - Balance de cargas entre recursos

Planificación

 El algoritmo de planificación relaciona el algoritmo (grafo de tareas) con el hardware disponible (procesador, tiempo)

Planificación

- Factores a tener en cuenta
 - Topología de la red
 - Dependencias de datos
 - Las comunicaciones

Aprovechar la "localidad" de datos Reducir las comunicaciones

- Estrategias
 - Procesos que pueden ejecutar concurrentemente se colocan en procesadores diferentes
 - Procesos que se comunican con alta frecuencia se colocan en el mismo procesador, o en procesadores "cercanos"
- Existen mecanismos teóricos de asignación de recursos para los diferentes modelos de descomposición en tareas y arquitecturas paralelas estudiadas
 - Ejemplo: los grafos de algoritmos (árboles, anillos, mallas) sobre mallas 2D, hipercubos, etc.

Balanceo de carga

- Factor relevante sobre el rendimiento de aplicaciones paralelas y distribuidas ejecutando en un computador paralelo
- Objetivo: evitar que el rendimiento global del sistema se degrade a causa del retraso en tareas individuales
- El balanceo de cargas es muy importante en entornos de cómputo no dedicados

Balanceo de carga

Situación en un ambiente donde no se aplican técnicas de balanceo de carga

Técnicas de balanceo de carga

- Clasificación
 - Técnicas estáticas (planificación)
 - Técnicas dinámicas (al momento de la ejecución)
 - Técnicas adaptativas

- Principales criterios utilizados
 - Mantener los procesadores ocupados la mayor parte del tiempo
 - Minimizar las comunicaciones entre procesos

Técnicas de balanceo de carga Técnicas de asignación estáticas

- Se toman decisiones "de antemano"
- Se utilizan técnicas de planificación de investigación operativa
- Requieren una estimación (precisa) del tiempo de ejecución de cada tarea en cada recurso de cómputo
- La asignación inicial se mantiene, independientemente de lo que suceda
- Efectiva en ambientes de redes poco cargadas
- Falla en ambientes compartidos de carga variable

NO TIENEN EN CUENTA FLUCTUACIONES DE CARGA DE LA RED

Técnicas de balanceo de carga Técnicas de asignación dinámicas

- Involucran estrategias para determinar el procesador que se asigna a una tarea durante la ejecución de la aplicación
- Usuales en modelo maestro-esclavo
- La asignación se realiza en el momento de creación de una nueva tarea
- Usualmente consideran la situación en el instante de la asignación exclusivamente
- Efectivas en ambientes compartidos de carga variable

TRATAN DE APROVECHAR LAS FLUCTUACIONES DE CARGA DE LA RED

Técnicas de balanceo de carga Técnicas de asignación adaptativas

- Realizan la asignación de acuerdo al estado actual
 del sistema
- Pueden incorporar herramientas de predicción del futuro
- Utilizan técnicas de migración de procesos como mecanismo de eficiencia y para proveer tolerancia a fallos

APROVECHAN COMPLETAMENTE LAS FLUCTUACIONES DE CARGA DE LA RED

Parámetros relevantes de la fluctuación de la carga

- Consumo de CPU
 - Porcentaje de uso u operaciones/segundo
- Uso de disco
 - Bloques transferidos del controlador al dispositivo
- Tráfico de red
 - Paquetes transmitidos y recibidos

ÍNDICE

Introducción

Paralelismo en Monoprocesadores

Paralelismo en Multiprocesadores

Generalidades sobre Redes de interconexión

Rendimiento

Planificación y balanceo de carga

Almacenamiento

ÍNDICE

Almacenamiento

- Arquitecturas de Almacenamiento
 - o DAS
 - NAS
 - o SAN
- Sistemas RAID
 - Software / Hardware
 - Tipos de RAID
 - Anidamientos RAID
 - Disco SPARE
 - Paridad

• DAS (Direct Attached Storage)

• NAS (Network Attached Storage)

• SAN (Storage Area Network)

DAS (Direct Attached Storage)

- Dispositivos de almacenamiento directamente conectados a las máquinas
- Arquitectura anteriormente usada en los mainframe Actualmente los mainframe solo lo usan para SO Sustituidos por sistemas Boot On SAN
- Usados por los ordenadores personales (PC y laptops)
- Muchos inconvenientes:
 - Dispersión del almacenamiento
 - Baja tolerancia a fallos
 - Alto TCO (coste de propiedad)

SAN (Storage Area Network)

- Almacenamiento en la red.
- Necesaria una infraestructura de red de alta velocidad. Red idealmente exclusiva separada de la LAN. Tecnologías: FC (Fibre Chanel), GigabitEthernert, iSCSI Necesaria red de alta disponibilidad

(Multiplicidad de caminos)

- Alta disponibilidad de almacenamiento (mirroring y RAIDs)
- Los clientes (maquinas locales, servidores) ven los discos como si fueran discos locales
- LUNs (Logical Unit Number)

NAS (Network Attached Storage)

- Almacenamiento en la red.
- No es necesaria una infraestructura exclusiva.
 - Red idealmente exclusiva separada de la LAN.
 - Tecnologías: NFS o CIFS.
 - Puede usarse también bajo FTP incluso HTTP
- Maquina dedicada con IP propia .
- La gestión de ficheros la realiza la propia NAS.
- Una arquitectura NAS puede contener varias NAS geográficamente distribuidas.
- Un servidor NAS utilizara almacenamiento DAS o SAN.

NAS (Network Attached Storage)

- Usuarios y aplicaciones tratan ficheros y datos como locales.
- Sistema operativo distingue y trata como fichero remoto.
- Pueden ser sistemas específicos o servidores dedicados.
- Aceptable TCO, fácilmente escalable y alta disponibilidad.
- Aplicado a:
 - Almacenamiento en la Nube.
 - Copias de seguridad.
 - Compartición.
 - Servidores (web, impresión, VPN).
 - Virtualización.

Diferencia principal NAS – SAN

En el NAS...

...el sistema operativo es consciente del acceso remoto (a través de lan, man, wan)

En el SAN...

...El disco es tratado como si fuese un disco local, como si estuviese conectado un DAS en vez de un SAN. Transparente para el SO y normalmente gestionado por tarjetas especificas.

Sistemas RAID

Redundant Array of Independent Disks

- Sistema de almacenamiento de datos en tiempo real utilizando múltiples unidades de almacenamiento.
- Utilizar múltiples unidades de almacenamiento puede permitir dependiendo de la configuración usada:
 - Mayor tasa de transferencia de datos
 - Mayor redundancia
 - Mayor capacidad
 - Mayor fiabilidad

Sistemas RAID

Existen diferentes combinaciones RAID, dependiendo de cual usemos obtenemos una característica u otra.

Especialmente usadas en

- Sistemas que requieran asegurar la integridad del sistema ante cualquier fallo
- Sistemas dedicados a tareas intensivas.
- Las tecnologías RAID se pueden implementar en Software y en Hardware

RAID bajo SOFTWARE

 La principal característica es que hacen uso de la potencia de la CPU para realizar cálculos y toma de decisiones, por lo que habrá que tenerlo en cuenta en la carga de trabajo asignado al procesador, y al SO.

- Dos tipos:
 - Modelo Puro
 - Modelo Hibrido

RAID Software PURO

- + No usan hardware adicional.
- El RAID se activa una vez el SO a cargado los drivers o controladores que lo gestionan.
- + Son más económicos.
- Aumenta la carga de trabajo del procesador proporcionalmente al número de discos usados
- Problemático el cambio/actualización de SO.
- Muy vulnerables al inicio de la carga o ante reinicios
 - Integridad, defectuosos, ataques externos.

RAID Software HIBRIDO

Apoyo de hardware para cubrir deficiencias del puro

- La BIOS gestiona parte del RAID, no es necesario la carga completa del SO para que esté activo
- Coste moderado.
- Protegido durante el arranque
- Aumenta la carga de trabajo del procesador proporcionalmente al número de discos usados
- Problemático el cambio/actualización de SO.
- Muy vulnerables ante reinicios
 - Integridad, defectuosos, ataques externos.

RAID bajo HARDWARE

- Contiene todo el hardware necesario para controlar de forma dedicada la gestión del RAID.
- Pueden ser equipos dedicados o equipos generales con una tarjeta de extensión controladora.
- Normalmente tienen una BBU (Battery Backup Unit) que asegura el salvado de la memoria cache.
- Tiene mejor rendimiento

- Llamados Disk Stripping
- Distribuyen equitativamente los bloques de datos en los distintos discos que lo componen
- No gestionan paridad ni redundancia.
- Unen varios discos como si fuesen uno solo.
- Aumento del rendimiento proporcionalmente al número de discos usados.
- Los discos han de ser del mismo tipo/tamaño, en caso contrario el menor determinará el tamaño del resto.

Tamaño total = tamaño del menor * numero de discos

 No es tolerante a fallos, la caída de un disco supone la caída del sistema. No se pueden recuperar los datos.

 Los datos a gravar se desglosan en fragmentos y se distribuyen en los diferentes discos

- Llamados Mirroring (o espejo).
- Usada para la redundancia de datos, guardando la información por parejas. (o por replicación).
- Replica exacta de los discos duros.
- Si falla un disco el otro opera sin problemas mientras se sustituye el primero.
- Técnica muy cara y poco eficiente.
- Al menos la mitad del espacio total se dedica al mirror.
- Disco duro y su replica han de ser del mismo tamaño o desperdiciar el sobrante.
- En la lectura de datos puede acceder a todos los mirror mejorando prestaciones.

 Puede haber varios espejos aunque lo normal es solo 1 espejo

- División de datos a nivel de bits. Cada bit en un disco.
- Discos en paralelos.
- Usa código corrector de errores. Normalmente Hamming(7,4)
- Tasas de transferencias muy elevadas.
- Solo un acceso simultaneo. Un acceso implica la ocupación de todos los discos.
- Técnica no usada. (actualmente los discos ya usan códigos correctores)

 RAID 2
- No se usa con discos estándares.

- Conocido como Striping.
- Divide los datos a nivel de bytes. Disco de paridad dedicado.
- Discos en paralelos. No permite peticiones simultaneas.
- Tasas de transferencias muy elevadas.
- Igual que RAID2 esta técnica no es usada actualmente.
- Un disco usado para guardar la paridad.
- Permite recuperación de datos.

- Conocido como IDA.
- Divide los datos a nivel de bloques. Disco de paridad dedicado.
- Los discos trabajan independientemente.
- Permite peticiones simultaneas. (al dividir por bloques)
- Tasas de transferencias elevadas.
- Igual que RAID3 esta técnica no es usada actualmente.
- Permite recuperación de datos.

- Conocido como distribuido con paridad.
- Es el más usado. Divide los datos a nivel de bloques.
- Crea datos de paridad distribuyéndolos por todos los discos.
- Permite peticiones simultaneas.
- Generalmente con soporte hardware para calculo de paridad.
- Mejores tasas de velocidad que Raid 3 y 4.
- Suficiente redundancia de datos. Permite su recuperación.
- Es común permitir el cambio de un disco defectuoso en caliente
- La carga de trabajo del sistema en la regeneración puede provocar nuevas caídas.

- No es un nivel propio, sino una extensión del 5.
- Usa el mismo criterio en todos los aspectos del RAID 5
- Única diferencia inserta otro bloque de paridad.
- Mismas tasas de transferencia que raid 5.
- Mayor redundancia de datos.
- Permite recuperarse en vivo del fallo simultaneo de dos discos.
- Elevado coste de implementación.

Anidamientos RAID

- Es habitual ver implementaciones RAID anidadas para sumar los beneficios de cada implementación anidada
- Las anidaciones más comunes son:
 - RAID 0+1 y RAID 10
 - RAID 50

Anidamientos RAID - RAID 0+1 / 10

- Usan las ventajas de los RAID 0 y los RAID 1 anidando los niveles
- En RAID 0+1 primero se crean dos RAID 0 y estos se replican usando las técnicas del RAID 1.
- Acepta un fallo de disco, no aceptando dos simultáneos.
- La capacidad útil será la mitad de la capacidad total con las mismas limitaciones de los RAID 0 y los RAID 1

Anidamientos RAID – RAID 50

• Quizás es el nivel RAID más usado, por las prestaciones que ofrece (altas tasa de transferencia, y redundancia)

Discos SPARE

- Es habitual que las implementaciones con redundancia contengan un disco SPARE.
- Son discos vacíos y sin usar preparados para la inmediata sustitución de un disco defectuoso.
- Una vez sustituido el disco se inicia (normalmente de forma automática) su reconstrucción
- Cambiar rápidamente el disco es importante pues hasta que se haga el sistema está forzado a trabajar usando las paridades usando todos los discos para detectar y corregir el fallo.
- El SPARE puede ser:
 - HOT-SPARE: El disco está físicamente conectado y al detectar el fallo automáticamente se reconstruye.
 - STANDBY-SPARE: Se necesita la activación o sustitución manual del disco para que se realice la reconstrucción.
- Es habitual que los RAID permitan el HOT-SWAPPING, es decir poder remplazar un disco en caliente y sin desconectar el sistema

Almacenamiento – Sistemas RAID Pasos Reconstrucción por Paridad

Imaginemos 6 discos 4 de datos 1 par y 1 Spare.

Paso 1.- Datos Iniciales

Paso 2.- Calculo Paridad

Paso 3.- Caída de Disco

Paso 4.- Recuperación por Paridad

1

Disk1 (Dat)	00101010
Disk2 (Dat)	10001110
Disk3 (Dat)	11110111
Disk4 (Dat)	10110101
Disk5 (Par)	???
Disk6 (Spa)	

2

Disk1 (Dat)	00101010
Disk2 (Dat)	10001110
Disk3 (Dat)	11110111
Disk4 (Dat)	10110101
Disk5 (Par)	11100110
Disk6 (Spa)	

3

Disk1 (Dat)	00101010
Disk2 (Dat)	10001110
Disk3 (XX)	ххххххх
Disk4 (Dat)	10110101
Disk5 (Par)	11100110
Disk6 (Spa)	

4

Disk1 (Dat)	00101010
Disk2 (Dat)	10001110
Disk3 (XX)	ххххххх
Disk4 (Dat)	10110101
Disk5 (Par)	11100110
Disk6 (Spa)	11110111

200101010 XOR 10001110 XOR 11110111 XOR 10110101 = **11100110**

1000101010 XOR 10001110 XOR 11100110 XOR 10110101 = 11110111