Chapter 15. Power & Taylor Series

- 1. Sequence & Series
- 2. Power Series
- 3. Taylor & Maclaurin Series
- 4. Uniform Convergence

15-1

Sequences 수열

- Sequence: list of numbers, $\{z_n\}$
 - \vee Convergence: A series $\{z_n\}$ converges to a limit c, if $\forall \epsilon > 0$, $\exists N > 0$, such that whenever n > N, $|z_n c| < \epsilon$.
 - † Divergent 발산
- Examples

$$\forall z_n = \frac{i^n}{n} \to 0,$$

 $\vee z_n = i^n$...divergent

 $\vee z_n = (1+i)^n$...divergent

 $\vee z_n = x_n + jy_n = \left(1 - \frac{1}{n^2}\right) + j\left(2 + \frac{4}{n}\right) \to 1 + j2$... component-wise (real & imaginary part) convergent

공업수학2: 15. Power & Taylor Series

Series 급수

- $\sum_{m=1}^{\infty} z_m = z_1 + z_2 + z_3 + \dots$
 - v Partial sum 부분합, $s_n = \sum_{m=1}^n z_m = z_1 + z_2 + \dots + z_n$
 - v Remainder, $R_n = \sum_{m=n+1}^{\infty} z_m = z_{n+1} + z_{n+2} + \cdots$
 - v Convergence: A series converges if the sequence of partial sums $\{s_n\}$ converges.

†
$$s_n \to s = \sum_{m=1}^{\infty} z_m \Rightarrow R_n \to 0$$

Theorem 2. Real & imaginary-part convergence

A series $\sum_{m=1}^{\infty} z_m$ with $z_m = x_m + jy_m$ converges to s = u + jv, if and only if $\sum_{m=1}^{\infty} x_m$ converges to u and $\sum_{m=1}^{\infty} y_m$ converges to v.

공업수학2: 15. Power & Taylor Series

15-3

Test of Convergence

Theorem 3. Divergence

If a series $\sum_{m=1}^{\infty} z_m$ converges, then $\lim_{m \to \infty} z_m = 0$ (necessary condition, but not sufficient condition, for convergence).

- † Harmonic series, $1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots$, diverges $(z_m \to 0)$.
- Theorem 4. Cauchy's convergence principle

A series $\sum_{m=1}^{\infty} z_m$ converges, if and only if $\forall \epsilon > 0$, we can find N > 0, such that $|z_{n+1} + z_{n+2} + \dots + z_{n+p}| < \epsilon$, for every n > N and $p = 1, 2, \dots$

- \vee A series $\sum_{m=1}^{\infty} z_m$ is called absolutely convergent, if $\sum_{m=1}^{\infty} |z_m|$ is convergent.
 - † If a series is absolutely convergent, then it is convergent.
 - † Series, $1 \frac{1}{2} + \frac{1}{3} \frac{1}{4} + \cdots$, converges, but not absolutely convergent.

공업수학2: 15. Power & Taylor Series

Test of Convergence

Theorem 5. Comparison test

If a series $\sum_{m=1}^{\infty} z_m$ is given and we can find a convergent series $\sum_{m=1}^{\infty} b_{m}$, $b_m \geq 0$, such that $|z_1| < b_1$, $|z_2| < b_2$, ..., then the series $\lim_{m \to \infty} z_m$ is absolutely convergent (and thus convergent).

• Theorem 6. Geometric series

A series $\sum_{m=1}^{\infty}q^m=1+q+q^2+\cdots$ converges to $\frac{1}{1-q'}$ if |q|<1 and diverges if |q|>1.

† Partial sum,
$$s_n = \sum_{m=1}^n q^m = \frac{1-q^{n+1}}{1-q}$$

• Theorem 7. Ration test

Consider a series $\sum_{m=1}^{\infty} z_m$, $z_m \neq 0$. If $\exists N > 0$, such that whenever n > N, we have $\left|\frac{z_{n+1}}{z_n}\right| \leq q < 1$ (fixed q)

then the series converges absolutely. If $\left|\frac{z_{n+1}}{z_n}\right| \ge 1$, $\forall n > N$, the series diverges.

공업수학2: 15. Power & Taylor Series

15-5

Test of Convergence

• Theorem 6. Ratio test

If a series $\sum_{m=1}^{\infty} z_m$, $z_m \neq 0$ is such that $\lim_{n \to \infty} \left| \frac{z_{n+1}}{z_n} \right| = L$, then

- (a) If L < 1, the series converges absolutely.
- (b) If L > 1, the series diverges.
- (c) If L = 1, no conclusion.
- Examples. $\sum_{m=1}^{\infty} z_m$

$$\forall z_n = \frac{1}{n'} \left| \frac{z_{n+1}}{z_n} \right| = \frac{n}{n+1} < 1 \text{ and } L = 1 \text{ (divergent)}$$

$$\forall z_n = \frac{1}{n^{2'}} \left| \frac{z_{n+1}}{z_n} \right| = \frac{n^2}{(n+1)^2} < 1 \text{ and } L = 1 \text{ (convergent) ... } p\text{-series}$$

$$\vee z_n = \frac{(100+j75)^n}{n!}, \ \left| \frac{z_{n+1}}{z_n} \right| = \frac{|100+j75|}{n+1} = \frac{125}{n+1} \ \text{and} \ L = 0 \ \text{(convergent)}$$

공업수학2: 15. Power & Taylor Series

Power Series

- $\sum_{n=0}^{\infty} a_n (z-z_0)^n$
 - \vee Coefficient, c_n , and center, $z_0 \leftarrow$ Convergence depends on z.
- Examples
 - $\vee \sum_{n=0}^{\infty} z^n$: Converges, if |z| < 1
 - $\vee \sum_{n=0}^{\infty} \frac{z^n}{n!}$: $\left| \frac{z^{n+1}}{(n+1)!} \cdot \frac{n!}{z^n} \right| = \left| \frac{z}{n+1} \right| \to 0$, Converges for every z.
- Theorem 1. Convergence of a power series
 - (a) Every power series converges at the center z_0 .
 - (b) If a power series converges at a point $z=z_1\neq z_0$, it converges absolutely for all $\{z\colon |z-z_0|<|z_1-z_0|\}$.
 - (c) If a power series diverges at a point $z=z_2$, it converges absolutely for all $\{z: |z-z_0| > |z_1-z_0|\}$.

공업수학2: 15. Power & Taylor Series

15-7

ROC, Radius of Convergence

- Radius of convergence
 - \vee The power series $\sum_{n=0}^{\infty} a_n (z-z_0)^n$ converges for all z in $\{z: |z-z_0| < R\}$.
 - v Radius R of circle (region) of convergence
 - † $R = \infty \Rightarrow$ Series converges for all z.
 - † $R = 0 \Rightarrow$ Series converges only at the center z_0 .
- Examples. R = 1, convergence on the boundary
 - $\vee \sum_{n=0}^{\infty} \frac{z^n}{n^2}$... converges for all |z|=1.
 - $\vee \sum_{n=0}^{\infty} \frac{z^n}{n}$... converges at z=-1, diverges at z=1
 - $\vee \sum_{n=0}^{\infty} z^n$... diverges for all |z|=1.

공업수학2: 15. Power & Taylor Series

ROC

Theorem 2. ROC

Suppose that the sequence $\left|\frac{a_{n+1}}{a_n}\right|$, $n=1,2,\cdots$, converges with limit L^* . If $L^*=0$, then $R=\infty$. If $L^*>0$, then

$$R = \frac{1}{L^*} = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right|$$
 (Cauchy-Hadamard formula)

† If $\left|\frac{a_{n+1}}{a_n}\right|$ diverges, then R=0.

Examples

$$\vee \sum_{n=0}^{\infty} \frac{z^n}{n^{2'}} a_n = \frac{1}{n^{2'}} R = \lim_{n \to \infty} \left| \frac{(n+1)^2}{n^2} \right| = 1$$

$$\vee \sum_{n=0}^{\infty} \frac{z^n}{n'} \ a_n = \frac{1}{n'} \ R = \lim_{n \to \infty} \left| \frac{n+1}{n} \right| = 1$$

$$\vee \sum_{n=0}^{\infty} z^n$$
, $a_n = 1$, $R = 1$

$$\vee \sum_{n=0}^{\infty} \frac{(2n)!}{(n!)^2} (z-j3)^n, \ a_n = \frac{(2n)!}{(n!)^{2}}, \ R = \lim_{n \to \infty} \left| \frac{(2n)!}{(n!)^2} \cdot \frac{((n+1)!)^2}{(2n+2)!} \right| = \frac{1}{4}$$

공업수학2: 15. Power & Taylor Series

15-9

Functions & Power Series

• A function can be represented by a power series.

$$\forall f(z) = \sum_{n=0}^{\infty} a_n z^n$$
, for $|z| < R$ and $R > 0$
 \forall Unique

Theorem 1. Continuity

If a function f(z) can be represented by a power series with R > 0, then f(z) is continuous at z = 0 (center).

Theorem 2. Uniqueness

Let two power series, $\sum_{n=0}^{\infty}a_nz^n$ and $\sum_{n=0}^{\infty}b_nz^n$, both be convergent for |z| < R (R > 0) and $\sum_{n=0}^{\infty}a_nz^n = \sum_{n=0}^{\infty}a_nz^n$ for all $z \in \{z: |z| < R\}$. Then, these series are identical.

 † If a function f(z) is represented by a power series, then it is unique.

공업수학2: 15. Power & Taylor Series

Operations in Power Series

- Term-wise operations in power series
 - \vee Given $f(z)=\sum_{n=0}^{\infty}a_nz^n$ with ROC, R_1 , and $g(z)=\sum_{n=0}^{\infty}b_nz^n$ with ROC, R_2
 - v Addition & subtraction
 - † $f(z) + g(z) = \sum_{n=0}^{\infty} (a_n + b_n) z^n$ with ROC, $R_1 \cap R_2$
 - v Multiplication
 - † $f(z) \cdot g(z) = \sum_{n=0}^{\infty} c_n z^n$ with ROC, $R_1 \cap R_2$... Cauchy product
 - † where $c_n=a_0b_n+a_1b_{n-1}+\cdots+a_nb_0$
 - v Differentiation
 - † Derived series of a power series, $f'(z) = \sum_{n=1}^{\infty} n \cdot a_n z^{n-1}$, has the same ROC as the original power series.
 - v Integration
 - † Power series, $\sum_{n=0}^{\infty} \frac{a_n}{n+1} z^{n+1}$, has the same ROC as the original power series.

공업수학2: 15. Power & Taylor Series

15-11

Functions & Power Series

- Theorem 5. Analytic functions
 - A power series with ROC R > 0 represents an analytic function at every point inside its circle of convergence.
 - v The derivatives of this function are obtained by differentiating the original series term-by-term.
 - V All the series thus obtained have the same ROC as the original series and thus each of them represents an analytic function.

공업수학2: 15. Power & Taylor Series

Taylor Series

- $f(z) = \sum_{n=1}^{\infty} a_n (z z_0)^n$ $\forall a_n = \frac{1}{n!} f^{(n)}(z_0) = \frac{1}{i2\pi} \oint_C \frac{f(\alpha)}{(\alpha - z_0)^{n+1}} d\alpha$
 - † Integration CCW direction over a simple closed curve $\mathcal C$ that contains z_0 in its interior.
 - $\vee f(z)$ is analytic in a domain containing C and every point inside C.
 - \vee Maclaurin series, when $z_0 = 0$
 - v Taylor formula,

$$f(z) = f(z_0) + (z - z_0)f'(z_0) + \frac{1}{2!}(z - z_0)^2 f''(z_0) + \dots + \frac{1}{n!}(z - z_0)^n f^{(n)}(z_0) + R_n(z)$$

$$R_n(z) = \frac{1}{j2\pi}(z - z_0)^{n+1} \oint_{\mathcal{C}} \frac{f(\alpha)}{(\alpha - z_0)^{n+1}(\alpha - z)} d\alpha \dots \text{ remainder}$$

공업수학2: 15. Power & Taylor Series

15-13

Taylor Series

• Theorem 1. Taylor's theorem

Let f(z) be analytic in a domain D and let $z=z_0$ be any point in D. Then, there exists only one Taylor series with center z_0 representing f(z). This representation is valid in the largest open disk with center z_0 in which f(z) is analytic.

- † Remainder, $R_n(z) = \frac{1}{j2\pi}(z-z_0)^{n+1} \oint_C \frac{f(\alpha)}{(\alpha-z_0)^{n+1}(\alpha-z)} d\alpha$
- † $|a_n| \le \frac{M}{r^n}$, where $M = \max |f(z)|$ on a circle $|z z_0| = r$ in D.
- Singularity
 - \vee On the circle of convergence, there exists at least one singular point of f(z), a point z=c, where f(z) is not analytic.
 - \vee ROC R of the Taylor series is usually equal to the distance from z_0 to the nearest singular point of f(z).

공업수학2: 15. Power & Taylor Series

Taylor Series: Examples

• Power series vs. Taylor series

$$\forall f(z) = a_0 + a_1(z - z_0) + a_2(z - z_0)^2 + a_3(z - z_0)^3 + \cdots$$

$$\forall f(z_0) = a_0, f'(z_0) = a_1, f''(z_0) = 2! \cdot a_1, \dots, f^{(n)}(z_0) = n! \cdot a_n$$

Examples

$$\vee \frac{1}{1-z} = \sum_{n=0}^{\infty} z^n$$
, $|z| < 1$... geometric series

$$\vee e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!} |z| < \infty$$
 ... exponential function

$$\vee \cos z = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n}}{(2n)!} = 1 - \frac{z^2}{2!} + \frac{z^4}{4!} - \cdots, |z| < \infty$$

$$\vee \text{Ln}(1+z) = z - \frac{z^2}{2} + \frac{z^3}{3} - \dots, |z| < 1$$

공업수학2: 15. Power & Taylor Series

15-15

Taylor Series: Examples

Examples

$$\vee$$
 Substitution: $f(z) = \frac{1}{1+z^2}$

†
$$f(z) = \frac{1}{1+z^2} = \frac{1}{1-(-z^2)} = \frac{1}{1-z}\Big|_{z \leftarrow -z^2} = \sum_{n=0}^{\infty} z^n\Big|_{z \leftarrow -z^2} = \sum_{n=0}^{\infty} (-1)^n z^{2n}, \ |z| < 1$$

 \vee Integration: $f(z) = \tan^{-1} z$

†
$$f'(z) = \frac{1}{1+z^2}$$
 and $f(0) = 0 \Rightarrow f'(z) = \sum_{n=0}^{\infty} (-1)^n z^{2n}$

†
$$f(z) = \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} z^{2n+1}, |z| < 1$$

v Variation of geometric series, $f(z) = \frac{1}{c-z'}$ centered at $z = z_0$

$$+ \frac{1}{c-z} = \frac{1}{c-z_0 - (z-z_0)} = \frac{1}{(c-z_0)\left(1 - \frac{z-z_0}{c-z_0}\right)} = \frac{1}{c-z_0} \sum_{n=0}^{\infty} \left(\frac{z-z_0}{c-z_0}\right)^n$$

공업수학2: 15. Power & Taylor Series

Binomial Series

Negative binomial series

$$\begin{split} &\vee \frac{1}{(1+z)^m} = \sum_{n=0}^{\infty} \binom{-m}{n} z^n = 1 - mz + \frac{1}{2!} m(m+1) z^2 - \frac{1}{3!} m(m+1)(m+2) z^3 + \cdots \\ &\quad + \binom{-m}{n} = (-1)^n \binom{m+n-1}{n} = (-1)^n \frac{(m+n-1)!}{(m-1)!n!} \\ &\vee f(z) = \frac{1}{(z+2)^2} + \frac{2}{z-3}, \text{ Maclaurin series centered at } z_0 = 1 \\ &\quad + f(z) = \frac{1}{(3+(z-1))^2} + \frac{2}{2-(z-1)} = \frac{1}{9} \cdot \frac{1}{\left(1+\frac{1}{3}(z-1)\right)^2} - \frac{1}{1-\frac{1}{2}(z-1)} \\ &\quad = \frac{1}{9} \sum_{n=0}^{\infty} \binom{-m}{n} \binom{1}{3} (z-1)^n - \sum_{n=0}^{\infty} \binom{1}{2} (z-1)^n \end{split}$$

공업수학2: 15. Power & Taylor Series

15-17

Uniform Convergence

- Uniform convergence
 - \vee A series with sum s(z) is called <u>uniformly convergent</u> in a region G, if $\forall \epsilon > 0$, we can find $N(\epsilon) > 0$, independent of z, such that $|s(z) s_n(z)| < \epsilon$, for all n > N and for all $z \in G$.
- Theorem 1. Power series
 - \vee A power series $\sum_{n=0}^{\infty}a_n(z-z_0)^n$, R>0, is uniformly convergent in every circular disk, $|z-z_0|\leq r< R$.
- Properties of uniform convergence
 - v If a series of continuous terms is uniformly convergent,
 - † its sum is also continuous.
 - † Term-wise integration is permissible.

공업수학2: 15. Power & Taylor Series

Uniform Convergence

• Theorem 2. Continuity

Let the series $\sum_{m=0}^{\infty} f_m(z) = f_0(z) + f_1(z) + \cdots$ be uniformly convergent in a region G. Let F(z) be its sum. Then, if each term $f_m(z)$ is continuous at a point $z_1 \in G$, the function F(z) is also continuous at z_1 .

• Example 2. Series, $x^2 + \frac{x^2}{1+x^2} + \frac{x^2}{(1+x^2)^2} + \frac{x^2}{(1+x^2)^3} + \cdots \times x$ real

 \vee Partial sum, $s_n = x^2 \left(1 + \frac{1}{1+x^2} + \frac{1}{(1+x^2)^2} + \dots + \frac{1}{(1+x^2)^n} \right)$

$$+ \ s_n - \frac{1}{1+x^2} s_n = \frac{x^2}{1+x^2} s_n = x^2 \left(1 - \frac{1}{(1+x^2)^{n+1}} \right) \Rightarrow s_n = 1 + x^2 - \frac{1}{(1+x^2)^n}$$

 $\forall \ s = \lim_{n \to \infty} s_n = \begin{cases} 1 + x^2, & x \neq 0 \\ 0, & x = 0 \end{cases} \quad \leftarrow \text{discontinuous at } x = 0$

† The convergence cannot be uniform in an interval containing x = 0.

공업수학2: 15. Power & Taylor Series

15-19

Uniform Convergence: Term-wise integration

• Example 3. $\sum_{m=1}^{\infty} f_m(x)$

$$\forall f_m(x) = u_m(x) - u_{m-1}(x), \ u_m(x) = mxe^{-mx^2}, \ 0 \le x \le 1$$

$$\vee$$
 Partial sum, $s_n=f_1+f_2+\cdots+f_n=u_1-u_0+u_2-u_1+\cdots+u_n-u_{n-1}=u_n$

$$\vee$$
 Limit, $F(x) = \lim_{n \to \infty} s_n(x) = \lim_{n \to \infty} u_n(x) = 0$, $0 \le x \le 1$

$$\dagger \int_{x=0}^{1} F(x) dx = 0$$

Term-wise integration,

$$\sum_{m=1}^{\infty} \left(\int_{x=0}^{1} f_m(x) dx \right) = \lim_{n \to \infty} \sum_{m=1}^{n} \left(\int_{x=0}^{1} f_m(x) dx \right) = \lim_{n \to \infty} \int_{0}^{1} \left(\sum_{m=1}^{n} f_m(x) \right) dx \dots$$

$$= \lim_{n \to \infty} \int_{0}^{1} s_n(x) dx = \lim_{n \to \infty} \int_{0}^{1} u_n(x) dx = \lim_{n \to \infty} \left(-\frac{1}{2} e^{-nx^2} \right) \Big|_{x=0}^{1} = \lim_{n \to \infty} \frac{1}{2} (1 - e^{-n}) = \frac{1}{2}$$

$$\vee \int_{x=0}^{1} \left(\sum_{m=1}^{\infty} f_m(x) \right) dx \neq \sum_{m=1}^{\infty} \left(\int_{x=0}^{1} f_m(x) dx \right)$$

 $L_{m=1}^{\infty}$ $L_{m=1}^{\infty}$

공업수학2: 15. Power & Taylor Series

Uniform Convergence: Term-wise Operations

$$\forall F(z) = \sum_{m=0}^{\infty} f_m(z) = f_0(z) + f_1(z) + \cdots$$

• Theorem 3. Term-wise integration

Let F(z) be a uniformly convergent series in a region G. Let C be any path in G. Then, the series

$$\sum_{m=0}^{\infty} \left(\int_{C} f_{m}(z) dz \right) = \int_{C} f_{0}(z) dz + \int_{C} f_{1}(z) dz + \cdots$$

is convergent and has the sum $\int_C F(z)dz$.

v We can exchange integration and infinite sum, only for uniformly convergent series.

• Theorem 2. Term-wise differentiation

Let F(z) be convergent in a region G and let F(z) be its sum. If the series $f_0'(z) + f_1'(z) + \cdots$ converges uniformly in G and continuous in G, then

$$F'(z) = f'_0(z) + f'_1(z) + \dots, \ \forall z \in G$$

공업수학2: 15. Power & Taylor Series