Multiple Regression - Model Selection

Duncan's Occupational Prestige Data

```
head(Duncan, 3)
              type income education prestige occupation
##
                                          82 accountant
## accountant prof
                       62
                                 86
## pilot
              prof
                       72
                                 76
                                          83
                                                   pilot
                       75
                                 92
## architect prof
                                          90 architect
```

References:

- Fox, J. and Weisberg, S. (2011) An R Companion to Applied Regression, Second Edition, Sage.
- Duncan, O. D. (1961) A socioeconomic index for all occupations. In Reiss, A. J., Jr. (Ed.) Occupations and Social Status. Free Press [Table VI-1].

Where we left off:

```
obs_to_investigate <- c(6, 16, 27)
Duncan[obs_to_investigate, ]
##
               type income education prestige occupation
                        21
## minister
                                  84
                                            87
                                                  minister
## conductor
                        76
                                  34
                                            38
                                                 conductor
                 WC
## RR.engineer
                        81
                                  28
                                            67 RR.engineer
Duncan <- Duncan %>%
  mutate(
    suspicious = ifelse(row_number() %in% obs_to_investigate, "suspicious", "seems ok")
ggplot(data = Duncan, mapping = aes(x = education, y = income, color = suspicious)) +
  geom_point() +
  theme_bw()
```



```
Duncan_minus_suspicious <- Duncan[-obs_to_investigate, ]
lm_fit_without_suspicious <- lm(prestige ~ income + education + type, data = Duncan_minus_suspicious)
# summary(lm_fit_without_suspicious)

Duncan_minus_minister <- Duncan[-6, ]
lm_fit_without_minister <- lm(prestige ~ income + education + type, data = Duncan_minus_minister)
# summary(lm_fit_without_minister)</pre>
```

Schwarz's Bayesian Information Criterion (BIC)

- Used for model selection
- Takes a measure of lack of fit of a model (here, the residual sum of squares, SSRes) and adds a penalty for the number of terms in the model:

$$BIC = n \times \log\left(\frac{SSRes}{n}\right) + \log(n) \times (p+1)$$

• Subsets that produce smaller BIC values are better; within 2-3 points implies roughly similar performance

All subsets regression

- Involves fitting all possible subset models and identifying the ones with "best fit" as those that best satisfy some model-fitting criteria (here we are going to use BIC)
- Avoids problems with sequential variable selection techniques (i.e. forward selection, backward elimination, stepwise regression), which tend to select models with too many variables if the set contains unimportant ones

```
library(leaps)
```

```
## Warning: package 'leaps' was built under R version 3.6.3
```

```
candidate_models1 <- regsubsets(prestige ~ income + type + education, data=Duncan)
plot(candidate_models1)</pre>
```


summary(candidate_models1)

```
## Subset selection object
## Call: regsubsets.formula(prestige ~ income + type + education, data = Duncan)
## 4 Variables (and intercept)
##
             Forced in Forced out
## income
                 FALSE
                            FALSE
                            FALSE
## typeprof
                 FALSE
                 FALSE
                            FALSE
## typewc
## education
                 FALSE
                            FALSE
## 1 subsets of each size up to 4
## Selection Algorithm: exhaustive
##
            income typeprof typewc education
                                   11 11
## 1 (1)""
                   "*"
                            11 11
                                   11 11
## 2 (1) "*"
                                   "*"
                            "*"
## 3
     (1)"*"
## 4 ( 1 ) "*"
                            "*"
                                   "*"
```

str(summary(candidate_models1))

```
## List of 8
## $ which : logi [1:4, 1:5] TRUE TRUE TRUE TRUE FALSE TRUE ...
## ..- attr(*, "dimnames")=List of 2
## ....$ : chr [1:4] "1" "2" "3" "4"
```

```
....$ : chr [1:5] "(Intercept)" "income" "typeprof" "typewc" ...
## $ rsq : num [1:4] 0.737 0.891 0.901 0.913
## $ rss : num [1:4] 11500 4743 4337 3798
## $ adjr2 : num [1:4] 0.731 0.886 0.893 0.904
## $ cp
          : num [1:4] 80.12 10.95 8.67 5
## $ bic : num [1:4] -52.4 -88.5 -88.7 -90.9
## $ outmat: chr [1:4, 1:4] " " *" "*" "*" ...
    ..- attr(*, "dimnames")=List of 2
    ....$ : chr [1:4] "1 (1)" "2 (1)" "3 (1)" "4 (1)"
    ....$ : chr [1:4] "income" "typeprof" "typewc" "education"
##
## $ obj :List of 28
##
                 : int 5
    ..$ np
    ..$ nrbar
##
                 : int 10
##
    ..$ d
                : num [1:5] 45 10.8 14126.3 2.65 11891.84
##
    ..$ rbar
                : num [1:10] 0.4 52.556 0.133 41.867 47.963 ...
##
    ..$ thetab : num [1:5] 47.689 54.593 0.487 -6.5 0.598
##
    ..$ first : int 2
##
    ..$ last
                : int 5
##
    ..$ vorder : int [1:5] 1 3 5 4 2
               : num [1:5] 3.35e-09 3.65e-09 3.64e-07 2.16e-09 2.21e-07
##
    ..$ tol
##
    ..$ rss
                : num [1:5] 43688 11500 8156 8044 3798
##
    ..$ bound : num [1:5] 43688 11500 4743 4337 3798
##
    ..$ nvmax : int 5
##
    ..$ ress
                : num [1:5, 1] 43688 11500 4743 4337 3798
##
    ..$ ir
                : int 5
    ..$ nbest : int 1
##
     ..$ lopt
                : int [1:15, 1] 1 1 3 1 2 3 1 2 5 4 ...
                 : int 15
##
    ..$ il
    ..$ ier
##
                : int 0
    ..$ xnames : chr [1:5] "(Intercept)" "income" "typeprof" "typewc" ...
     ..$ method : chr "exhaustive"
##
##
    ...$ force.in : Named logi [1:5] TRUE FALSE FALSE FALSE FALSE
    ... - attr(*, "names")= chr [1:5] "" "income" "typeprof" "typewc" ...
##
     ..$ force.out: Named logi [1:5] FALSE FALSE FALSE FALSE
##
     ....- attr(*, "names")= chr [1:5] "" "income" "typeprof" "typewc" ...
##
##
    ..$ sserr
                : num 3798
##
    ..$ intercept: logi TRUE
##
    ...$ lindep : logi [1:5] FALSE FALSE FALSE FALSE FALSE
    ..$ nullrss : num 43688
##
##
    ..$ nn
                : int 45
                 : language regsubsets.formula(prestige ~ income + type + education, data = Duncan)
    ..$ call
     ..- attr(*, "class")= chr "regsubsets"
##
## - attr(*, "class")= chr "summary.regsubsets"
summary(candidate_models1)$bic
## [1] -52.44958 -88.49874 -88.72119 -90.88381
vis_bic1 <- data.frame(Model=1:4, BIC=summary(candidate_models1)$bic)</pre>
ggplot(data=vis_bic1, aes(x=Model, y=BIC)) +
 geom point(aes(color=BIC < - 88), size=3) +</pre>
 geom_line() +
```

```
theme_bw() +
theme(legend.position = "none")
```


Model 2, Model 3, and Model 4 have roughly similar performance.

- Model 2: income and typeprof (versus type_notprof) (BIC= -88.50)
- Model 3: income, typewc (versus type_notwc), education (BIC= -88.72)
- Model 4: income, typeprof, typewc, education (BIC= -90.88)

candidate_models2 <- regsubsets(prestige ~ income +type + education, data=Duncan_minus_suspicious)
plot(candidate_models2)</pre>


```
## Subset selection object
## Call: regsubsets.formula(prestige ~ income + type + education, data = Duncan_minus_suspicious)
## 4 Variables (and intercept)
##
             Forced in Forced out
## income
                 FALSE
                            FALSE
                            FALSE
## typeprof
                 FALSE
## typewc
                 FALSE
                            FALSE
                 FALSE
                            FALSE
## education
## 1 subsets of each size up to 4
## Selection Algorithm: exhaustive
##
            income typeprof typewc education
     (1)"*"
## 1
                            11 11
                                   11 11
     (1)"*"
## 2
                            "*"
                                   11 11
## 3
     (1)"*"
                   "*"
## 4 (1) "*"
                                   "*"
# str(summary(candidate_models2))
```

```
## [1] -74.73726 -99.45390 -97.28478 -97.28789
```

summary(candidate_models2)\$bic

summary(candidate_models2)

```
vis_bic1 <- data.frame(Model=1:4, BIC=summary(candidate_models2)$bic)</pre>
```

Model 2, Model 3, and Model 4 have roughly similar performance.

- Model 2: income and typeprof (versus type_notprof) (BIC= -99.45)
- Model 3: income, typeprof, typewc (BIC=-97.28)
- Model 4: income, typeprof, typewc, education (-97.29)

```
candidate_models3 <- regsubsets(prestige ~ income +type + education, data=Duncan_minus_minister)
plot(candidate_models3)</pre>
```


summary(candidate_models3)

```
## Subset selection object
## Call: regsubsets.formula(prestige ~ income + type + education, data = Duncan_minus_minister)
## 4 Variables (and intercept)
##
             Forced in Forced out
                 FALSE
                            FALSE
## income
## typeprof
                 FALSE
                            FALSE
                 FALSE
                            FALSE
## typewc
## education
                 FALSE
                            FALSE
## 1 subsets of each size up to 4
```

```
## Selection Algorithm: exhaustive
##
            income typeprof typewc education
                             11 11
                                     11 11
## 1 ( 1 ) "*"
## 2 (1) "*"
                    "*"
                             11 11
                                     11 11
     (1)"*"
                    11 11
                             "*"
                                     11 * 11
                             "*"
## 4 (1) "*"
                    "*"
                                     "*"
# str(summary(candidate_models3))
summary(candidate_models3)$bic
```

```
## [1] -60.11700 -97.28833 -99.59875 -100.97645
```

Model 2, Model 3, and Model 4 have roughly similar performance.

- Model 2: income, typeprof (versus type_notprof) (BIC= -97.29)
- Model 3: income, typewc (versus type_notwc), education (BIC= -99.60)
- Model 4: income, typeprof, typewc, education (BIC= -100.98)

Consistency across analyses

```
Duncan <- Duncan %>%
  mutate(
    type_reduced_prof = ifelse(type %in% c("wc", "bc"), "other", "prof"),
    type_reduced_wc = ifelse(type %in% c("prof", "bc"), "other", "wc")
)

fit1a <- lm(prestige ~ income + type_reduced_prof, data=Duncan)
summary(fit1a)</pre>
```

```
##
## Call:
## lm(formula = prestige ~ income + type_reduced_prof, data = Duncan)
## Residuals:
##
      Min
               1Q Median
                               3Q
                                      Max
## -23.836 -6.374 -0.124
                            3.769 31.666
##
## Coefficients:
##
                        Estimate Std. Error t value Pr(>|t|)
                          6.73045
                                    3.20828
                                              2.098
## (Intercept)
                                                       0.042 *
                         0.64294
                                    0.08312
                                              7.735 1.31e-09 ***
## income
## type_reduced_profprof 35.10210
                                    4.09938
                                              8.563 9.31e-11 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 10.63 on 42 degrees of freedom
## Multiple R-squared: 0.8914, Adjusted R-squared: 0.8863
## F-statistic: 172.4 on 2 and 42 DF, p-value: < 2.2e-16
```

```
fit2a <- lm(prestige ~ income + type_reduced_wc, data=Duncan)</pre>
summary(fit2a)
##
## Call:
## lm(formula = prestige ~ income + type_reduced_wc, data = Duncan)
## Residuals:
##
      Min
               1Q Median
                               3Q
                                      Max
## -32.064 -3.965 -1.032
                            7.551 59.645
##
## Coefficients:
                    Estimate Std. Error t value Pr(>|t|)
                                4.6243 0.788 0.43486
## (Intercept)
                      3.6460
## income
                      1.1290
                                 0.0964 11.712 8.18e-15 ***
                               6.8518 -3.529 0.00103 **
## type_reduced_wcwc -24.1815
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 15.46 on 42 degrees of freedom
## Multiple R-squared: 0.7701, Adjusted R-squared: 0.7591
## F-statistic: 70.34 on 2 and 42 DF, p-value: 3.914e-14
fit3a <- lm(prestige ~ income + type + education, data=Duncan)
summary(fit3a)
##
## Call:
## lm(formula = prestige ~ income + type + education, data = Duncan)
##
## Residuals:
##
      Min
               1Q Median
                               ЗQ
                                      Max
## -14.890 -5.740 -1.754 5.442 28.972
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) -0.18503 3.71377 -0.050 0.96051
## income
                0.59755
                           0.08936 6.687 5.12e-08 ***
                           6.99301
                                     2.382 0.02206 *
## typeprof
               16.65751
                           6.10877 -2.400 0.02114 *
## typewc
              -14.66113
## education
               0.34532
                           0.11361 3.040 0.00416 **
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 9.744 on 40 degrees of freedom
## Multiple R-squared: 0.9131, Adjusted R-squared: 0.9044
## F-statistic: 105 on 4 and 40 DF, p-value: < 2.2e-16
Duncan_minus_suspicious <- Duncan_minus_suspicious %>%
 mutate(
   type_reduced_prof = ifelse(type %in% c("wc", "bc"), "other", "prof"),
   type_reduced_wc = ifelse(type %in% c("prof", "bc"), "other", "wc")
```

```
fit1b <- lm(prestige ~ income + type_reduced_prof, data=Duncan_minus_suspicious)
summary(fit1b)
##
## Call:
## lm(formula = prestige ~ income + type_reduced_prof, data = Duncan_minus_suspicious)
## Residuals:
                1Q Median
##
       Min
                                 3Q
                                         Max
## -18.2775 -6.1224 -0.0996 4.6799 24.9029
##
## Coefficients:
##
                       Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                        2.41453
                                 2.89732 0.833
                                                     0.41
## income
                        0.82451
                                0.08937 9.226 2.38e-11 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 8.749 on 39 degrees of freedom
## Multiple R-squared: 0.9283, Adjusted R-squared: 0.9246
## F-statistic: 252.4 on 2 and 39 DF, p-value: < 2.2e-16
fit2b <- lm(prestige ~ income + type_reduced_wc, data=Duncan_minus_suspicious)
summary(fit2b)
##
## Call:
## lm(formula = prestige ~ income + type_reduced_wc, data = Duncan_minus_suspicious)
##
## Residuals:
      Min
              1Q Median
                             30
                                    Max
## -31.490 -5.688 0.611 7.437 23.594
## Coefficients:
                    Estimate Std. Error t value Pr(>|t|)
                             3.28478 -0.800 0.428539
## (Intercept)
                    -2.62792
## income
                     1.26470
                               0.06979 18.123 < 2e-16 ***
## type_reduced_wcwc -18.64260
                               5.05091 -3.691 0.000682 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 10.57 on 39 degrees of freedom
## Multiple R-squared: 0.8953, Adjusted R-squared:
## F-statistic: 166.8 on 2 and 39 DF, p-value: < 2.2e-16
fit3b <- lm(prestige ~ income + type + education, data=Duncan_minus_suspicious)
summary(fit3b)
```

```
## Call:
## lm(formula = prestige ~ income + type + education, data = Duncan_minus_suspicious)
## Residuals:
       Min
                 1Q Median
                                  3Q
## -18.0415 -5.3802 -0.6189 5.0992 23.2906
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
                        3.2745 -0.338 0.7376
## (Intercept) -1.1053
## income
               0.7733
                          0.1171 6.607 9.53e-08 ***
                          6.4123 2.378 0.0227 *
## typeprof
              15.2512
## typewc
              -12.3622
                          5.9478 -2.078 0.0447 *
## education
              0.2180
                          0.1174 1.857 0.0714 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 8.432 on 37 degrees of freedom
## Multiple R-squared: 0.9368, Adjusted R-squared: 0.93
## F-statistic: 137.1 on 4 and 37 DF, p-value: < 2.2e-16
Duncan_minus_minister <- Duncan_minus_minister %>%
 mutate(
   type_reduced_prof = ifelse(type %in% c("wc", "bc"), "other", "prof"),
   type_reduced_wc = ifelse(type %in% c("prof", "bc"), "other", "wc")
fit1c <- lm(prestige ~ income + type reduced prof, data=Duncan minus minister)
summary(fit1c)
##
## Call:
## lm(formula = prestige ~ income + type_reduced_prof, data = Duncan_minus_minister)
##
## Residuals:
       Min
                 1Q Median
                                  3Q
                                          Max
## -21.7057 -5.4561 0.2744 4.2892 26.5674
##
## Coefficients:
                        Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                                 2.90531 1.407
                         4.08674
                                                      0.167
## income
                         0.73183
                                   0.07683
                                            9.526 5.99e-12 ***
## type_reduced_profprof 30.34045
                                   3.82257
                                           7.937 8.10e-10 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 9.324 on 41 degrees of freedom
## Multiple R-squared: 0.9153, Adjusted R-squared: 0.9112
## F-statistic: 221.6 on 2 and 41 DF, p-value: < 2.2e-16
fit2c <- lm(prestige ~ income + type_reduced_wc, data=Duncan_minus_minister)</pre>
summary(fit2c)
```

```
##
## Call:
## lm(formula = prestige ~ income + type_reduced_wc, data = Duncan_minus_minister)
## Residuals:
##
       \mathtt{Min}
                 1Q
                     Median
                                   3Q
                                           Max
## -30.5399 -4.3093
                     0.0511
                              7.6437 27.8159
##
## Coefficients:
##
                     Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                      0.14288
                                 3.78568
                                           0.038 0.970077
                                 0.07809 15.061 < 2e-16 ***
                      1.17612
## income
## type_reduced_wcwc -23.06628
                                 5.51298 -4.184 0.000147 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 12.43 on 41 degrees of freedom
## Multiple R-squared: 0.8495, Adjusted R-squared: 0.8422
## F-statistic: 115.7 on 2 and 41 DF, p-value: < 2.2e-16
fit3c <- lm(prestige ~ income + type + education, data=Duncan_minus_minister)</pre>
summary(fit3c)
##
## Call:
## lm(formula = prestige ~ income + type + education, data = Duncan_minus_minister)
##
## Residuals:
       Min
                 1Q
                     Median
                                    3Q
                                            Max
## -17.0521 -6.4105 -0.7819
                               4.6552 23.5212
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.62984
                           3.22841 -0.505 0.61651
                0.71813
                           0.08332
                                    8.619 1.44e-10 ***
## income
## typeprof
               13.43111
                           6.09592
                                    2.203 0.03355 *
## typewc
              -15.87744
                           5.28357 -3.005 0.00462 **
                0.28924
                           0.09917
                                    2.917 0.00584 **
## education
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 8.413 on 39 degrees of freedom
## Multiple R-squared: 0.9344, Adjusted R-squared: 0.9277
## F-statistic: 139 on 4 and 39 DF, p-value: < 2.2e-16
```

Added variable plots

- Also called partial regression plots
- Used to examine the effect of adding another explanatory variable to a model that already has one or more explanatory variables
- Strong linear relationship indicates that adding variable will likely be of value
- Can be used to identify influential points (6, 16, and 17 were already identified through other diagnostics)

Generating with avPlots (from R package car)

```
fit_prestige <- lm(prestige ~ income + education, data=Duncan)
avPlots(fit_prestige)</pre>
```

Added-Variable Plots

Generating by hand

```
fit_prestige1 <- lm(prestige ~ education, data=Duncan)
fit_inc <- lm(education ~ income, data=Duncan)
fit_prestige2 <- lm(prestige ~ income, data=Duncan)</pre>
```

```
fit_edu <- lm(income ~ education, data=Duncan)</pre>
Duncan <- Duncan %>%
 mutate(
    resid_inc = residuals(fit_inc),
    resid_edu = residuals(fit_edu),
   resid_prestige1 = residuals(fit_prestige1),
   resid_prestige2 = residuals(fit_prestige2),
   id = 1:nrow(Duncan)
p1 <- ggplot(data=Duncan, aes(x=resid_edu, y=resid_prestige1)) +</pre>
        geom_point(aes(color=id %in% c(6, 9, 16, 27)), size=2) +
        theme_bw() +
        theme(legend.position="none") +
        ylab("prestige | education") +
        xlab("education | income")
p2 <- ggplot(data=Duncan, aes(x=resid_inc, y=resid_prestige2)) +</pre>
        geom_point(aes(color=id %in% c(6, 9, 27)), size=2) +
        theme_bw() +
        theme(legend.position="none") +
        ylab("prestige | income") +
        xlab("income | education")
grid.arrange(p1, p2, nrow=1)
```


These plots help us determine whether we should add another variable to the linear model. Here, the linear relationship between the residuals from the model prestige \sim education and the residuals of education \sim income indicate that income should be added to the model prestige \sim education. The potential outliers and influential points are also easier to see here than they are in a typical scatterplot because the residuals have some of the noise (i.e. variation) removed already.