

TC4056A(文件编号: S&CIC1103)

1A 线性锂离子电池充电器

#### 一、产品描述

TC4056A 是一款完整的单节锂离子电池采用恒定电流/恒定电压线性充电器。其底部带有散热片的 ESOP8/DIP8 封装与较少的外部元件数目使得 TC4056A 成为便携式应用的理想选择。TC4056A 可以适合 USB 电 源和适配器电源工作。

由于采用了内部 PMOSFET 架构,加上防倒充电路,所以不需要外部隔离二极管。热反馈可对充电电流进 行自动调节,以便在大功率操作或高环境温度条件下对芯片温度加以限制。充电电压固定于 4.2V,而充电电流可 通过一个电阻器进行外部设置。当充电电流在达到最终浮充电压之后降至设定值 1/10 时, TC4056A 将自动终止充 循环。

当输入电压(交流适配器或 USB 电源)被拿掉时, TC4056A 自动进入一个低电流状态, 将电池漏电流降至 2uA 以下。TC4056A 在有电源时也可置于停机模式,以而将供电电流降至 55uA。TC4056A 的其他特点包括电池 温度检测、欠压闭锁、自动再充电和两个用于指示充电、结束的 LED 状态引脚。

#### 二、特点

- ▶ 高达 1000mA 的可编程充电电流
- 无需 MOSFET、检测电阻器或隔离二极管
- 用于单节锂离子电池、采用 SOP 封装的完整线性充电器
- 恒定电流/恒定电压操作,并具有可在无过热危险的情况下实现充电速率最大化的热调节功能
- 精度达到±1.5%的 4.2V 预设充电电压
- 用于电池电量检测的充电电流监控器输出
- 自动再充电
- 充电状态双输出、无电池和故障状态显示
- C/10 充电终止
- 待机模式下的供电电流为 55uA
- 2.9V 涓流充电器件版本
- 软启动限制了浪涌电流
- 电池温度监测功能
- ➤ 采用 8 引脚封装 (ESOP-8, DIP-8)

#### 三、产品应用

- ▶ 移动电话、PDA
- ➤ MP3、MP4 播放器
- ▶ 数码相机

#### 四、绝对最大额定值

- ➤ 输入电源电压 (Vcc): -0.3V~8V
- PROG: -0.3V~ Vcc +0.3V
- BAT: -0.3V~ 7V
- GHRG: -0.3V~ 10V
- STDBY: -0.3V~ 7V
- TEMP: -0.3V~ 7V
- ➤ CE: -0.3V~ 7V

- ▶ 电子词典
- **GPS**
- 便携式设备、各种充电器
- BAT 短路持续时间:连续
- BAT 引脚电流: 1200mA
- PROG 引脚电流: 1200uA
- 最大结温: 145℃
- 工作环境温度范围: -40℃~85℃
- 贮存温度范围: -65℃~125℃
- ▶ 引脚温度 (焊接时间 10 秒): 260℃

www.superchip.cn 第 1 页 共 20 页 Version 1.1



TC4056A(文件编号: S&CIC1103)

1A 线性锂离子电池充电器

#### 五、完整的充电循环(1000mAh 电池)



#### 六、封装/订购信息及功能



- TEMP (引脚 1): 电池温度检测输入端。将 TEMP 管脚接到电流的 NTC 传感器的输出端。如果 TEMP 管脚的 电压小于输入电压的 45%或者大于输入电压的 80%, 意味着电池温度过低或过高,则充电被暂停。
- 如果 TEMP 直接接 GND, 电池温度检测功能取消, 其他充电功能正常。
- PROG (引脚 2): 恒流充电电流设置和充电电流监测端。从 PROG 管脚连接一个外部电阻到地端可以对充电 电流进行编程。在预充电阶段,此管脚的电压被调制在 0.1V; 在恒流充电阶段,此管脚的电压被固定在 1V。 在充电状态的所有模式,测量该管脚的电压都可以根据下面的公式来估算充电电流:

$$I_{BAT} = \frac{V_{PROG}}{R_{PROG}} \times 1200$$

- GND (引脚 3): 电源地。
- VCC(引脚 4): 输入电压正输入端。此管脚的电压为内部电路的工作电源。当 Vcc 与 BAT 管脚的电压差小于 30mV时, TC4056A将进入低功耗的停机模式,此时BAT管脚的电流小于2uA。
- BAT (引脚 5): 电池连接端。将电池的正端连接到此管脚。在芯片被禁止工作或者睡眠模式, BAT 管脚的漏 电流小于 2uA。BAT 管脚向电池提供充电电流和 4.2V 的限制电压。



#### **TC4056A**(文件编号: S&CIC1103)

#### 1A 线性锂离子电池充电器

- STDBY (引脚 6): 电池充电完成指示端。当电流充电完成时 STDBY 被内部开关拉到低电平,表示充电完成。 除此之外, STDBY 管脚将处于高阻态。
- ▶ GHRG (引脚 7)漏极开路输出的充电状态指示端。当充电器向电池充电时,CHRG 管脚被内部开关拉到低电 平,表示充电正在进行;否则 CHRG 管脚处于高阻态。
- ➤ CE(引脚 8) 芯片始能输入端。高输入电平将使 TC4056A 处于正常工作状态: 低输入电平使 TC4056A 处于 被禁止充电状态。CE 管脚可以被 TTL 电平或者 CMOS 电平驱动。

#### 七、电特性

凡表注●表示该指标适合整个工作温度范围,否则仅指 TA=25℃, Vcc=5V, 除非特别注明。

| 符号                  | 参数            | 条件                                                                                                          |   | 最小值  | 典型值  | 最大值       | 单位   |
|---------------------|---------------|-------------------------------------------------------------------------------------------------------------|---|------|------|-----------|------|
| VCC                 | 输入电源电压        |                                                                                                             | • | 4.0  | 5    | 8.0       | V    |
|                     |               | 充电模式,RPROG=1.2K                                                                                             | • |      | 150  | 500       | μA   |
|                     |               | 待机模式(充电终止)                                                                                                  | • |      | 55   | 100       | μA   |
| ICC                 | 输入电源电流        | 停机模式(RPROG 未连接,                                                                                             | • |      | 55   | 100       | μA   |
|                     |               | VCC <vbat,或 td="" vcc<vuv)<=""><td></td><td></td><td>55</td><td>100</td><td></td></vbat,或>                  |   |      | 55   | 100       |      |
| VFLOAL              | 稳定输出(浮充)电压    | 0°C≤TA≤85°C,                                                                                                |   | 4.16 | 4.2  | 4.24      | V    |
|                     |               | RPROG=2.4K,电流模式                                                                                             | • | 450  | 500  | 550       | mA   |
|                     | BAT 引脚电流:     | RPROG=1.2K,电流模式                                                                                             | • | 950  | 1000 | 1050      | mA   |
| IBAT                | (电流模式测试条件是    | 待机模式,VBAT=4.2V                                                                                              | • | 0    | -2.5 | <b>-6</b> | μA   |
|                     | VBAT=4.0V)    | 停机模式(RPROG 未连接)                                                                                             |   |      | ±1   | ±2        | μA   |
|                     |               | 睡眠模式,VCC=0V                                                                                                 |   |      | -1   | -2        | μA   |
| I <sub>TRIKL</sub>  | 涓流充电电流        | VBAT <vtriklrprog=1.2k< td=""><td>•</td><td>120</td><td>130</td><td>140</td><td>mA</td></vtriklrprog=1.2k<> | • | 120  | 130  | 140       | mA   |
| V <sub>TRIKL</sub>  | 涓流充电门限电压      | RPROG=1.2K,VBAT 上升                                                                                          |   | 2.8  | 2.9  | 3.0       | V    |
| V <sub>TRHYS</sub>  | 涓流充电迟滞电压      | RPROG=1.2K                                                                                                  |   | 60   | 80   | 100       | mV   |
| V <sub>UV</sub>     | VCC 欠压闭锁门限    | 从 VCC 低至高                                                                                                   | • | 3.5  | 3.7  | 3.9       | V    |
| Vuvhys              | VCC 欠压闭锁迟滞    |                                                                                                             | • | 150  | 200  | 300       | mV   |
| V <sub>ASD</sub>    | VCC-VBAT 闭锁门限 | VCC 从低到高                                                                                                    |   | 60   | 100  | 100       | mV   |
|                     | 电压            | VCC 从高到低                                                                                                    |   | 5    | 30   | 30        | mV   |
| I <sub>TERM</sub>   | C/10 终止电流门限   | RPROG=2.4K                                                                                                  | • | 60   | 70   | 80        | mA   |
|                     |               | RPROG=1.2K                                                                                                  | • | 120  | 130  | 140       | mA   |
| $V_{PROG}$          | PROG 引脚电压     | RPROG=1.2K,电流模式                                                                                             | • | 0.9  | 1.0  | 1.1       | V    |
| V CHRG              | CHRG 引脚输出低电   | I CHRG =5mA                                                                                                 |   |      | 0.3  | 0.6       | V    |
|                     | 压             |                                                                                                             |   |      |      |           |      |
| V STDBY             | STDBY 引脚输出低电  | I STDBY =5mA                                                                                                |   |      | 0.3  | 0.6       | V    |
|                     | 平             |                                                                                                             |   |      |      |           |      |
| V <sub>TEMP-H</sub> | TEMP 引脚高端翻转   |                                                                                                             |   |      | 80   | 82        | %Vcc |
|                     | 电压            |                                                                                                             |   |      |      |           |      |
| V <sub>TEMP-L</sub> | TEMP 引脚低端翻转   |                                                                                                             |   | 43   | 45   |           | %Vcc |
|                     | 电压            |                                                                                                             |   |      |      |           |      |
| $\Delta V_{RECHRG}$ | 再充电电池门限电压     | VFLOAT-VRECHRG                                                                                              |   | 100  | 150  | 200       | mV   |

第 3 页 共 20 页 Version 1.1 www.superchip.cn



#### TC4056A(文件编号: S&CIC1103)

#### 1A 线性锂离子电池充电器

| T <sub>LIM</sub>      | 限定温度模式中的结    |                    |   |     | 145 |   | $^{\circ}$ C |
|-----------------------|--------------|--------------------|---|-----|-----|---|--------------|
|                       | 温            |                    |   |     |     |   |              |
| Ron                   | 功率 FET"导通"电阻 |                    |   |     | 650 |   | mΩ           |
|                       | (在VCC与BAT间)  |                    |   |     |     |   |              |
| t <sub>ss</sub>       | 软启动时间        | IBAT=0             | 至 |     | 20  | 4 | μs           |
|                       |              | IBAT=1200V/RPROG   |   |     |     |   |              |
| t <sub>RECHARGE</sub> | 再充电比较器滤波时    | VBAT 高至低           |   | 0.8 | 1.8 | 4 | ms           |
|                       | 间            |                    |   |     |     |   |              |
| t <sub>TERM</sub>     | 终止比较器滤波时间    | IBAT 降至 ICHG/10 以下 |   | 0.8 | 1.8 |   | ms           |
| I <sub>PROG</sub>     | PROG 引脚上拉电流  |                    |   |     | 2.0 |   | μA           |

#### 八、典型性能特征

恒定电流模式下 PROG 引脚 电压与电源电压的关系曲线



稳定输出(浮充)电压与充 电电流的关系曲线



PROG 引脚电压与温度的 关系曲线



稳定输出(浮充)电压与温 度的关系曲线



充电电流与 PROG 引脚电 压的关系曲线



稳定输出 (浮充) 电压与电 压的关系曲线





#### TC4056A(文件编号: S&CIC1103)

#### 1A 线性锂离子电池充电器



#### 九、方框图及工作原理





TC4056A(文件编号: S&CIC1103)

#### 1A 线性锂离子电池充电器

TC4056A 是专门为一节锂离子或锂聚合物电池而设计的线性充电器电路,利用芯片内部的功率晶体管对电池 进行恒流和恒压充电。充电电流可以用外部电阻编程设定,最大持续充电电流可达 1A,不需要另加阻流二极管和 电流检测电阻。TC4056A 包含两个漏极开路输出的状态指示输出端,充电状态指示端 CHRG 和电池故障状态指示 输出端 STDBY。芯片内部的功率管理电路在芯片的结温超过 145℃时自动降低充电电流,这个功能可以使用户最 大限度的利用芯片的功率处理能力,不用担心芯片过热而损坏芯片或者外部元器件。这样,用户在设计充电电流时, 可以不用考虑最坏情况,而只是根据典型情况进行设计就可以了,因为在最坏情况下,TC4056A 会自动减小充电 电流。

当输入电压大于电源低电压检测阈值和芯片使能输入端拉高电平时,TC4056A 开始对电池充电,CHRG 管脚输 出低电平,表示充电正在进行。如果电池电压低于 3V, 充电器用小电流对电池进行预充电。当电池电压超过 3V 时, 充电器采用恒流模式对电池充电, 充电电流由 PROG 管脚和 GND 之间的电阻 Renog 确定。当电池电压接近 4.2V 电压时, 充电电流逐渐减小, TC4056A 进入恒压充电模式。当充电电流减小到充电结束阈值时, 充电周期结 束, CHRG 端输出高阻态, STDBY 端输出低电位。

充电结束阈值是恒流充电电流的 10%。当电池电压降到再充电阈值以下时,自动开始新的充电周期。芯片内 部的高精度的电压基准源,误差放大器和电阻分压网络确保电池端调制电压的精度在 1.5%以内,满足了锂离子电 池和锂聚合物电池的要求。当输入电压掉电或者输入电压低于电池电压时,充电器进入低功耗的睡眠模式,电池端 消耗的电流小于 3uA,从增加了待机时间。如果将使能输入端 CE 接低电平,充电器停止充电。

#### 充电电流的设定

充电电流是彩一个连接在 PROG 引脚与地之间的电阻器来设定的。设定电阻器和充电电流采用下列公式来计 算:根据需要的充电电流来确定电阻器的阻值

$$R_{PROG} = \frac{1200}{I_{RAT}}$$
 (误差±10%)

客户应用中,可根据需求选取合适大小的 RPROG, RPROG 与充电电流的关系确定可参考下表:

| R <sub>PROG</sub> (K) | I <sub>BAT</sub> (m <b>A</b> ) |
|-----------------------|--------------------------------|
| 30                    | 50                             |
| 20                    | 70                             |
| 10                    | 130                            |
| 5                     | 250                            |
| 4                     | 300                            |
| 3                     | 400                            |
| 2                     | 580                            |
| 1. 66                 | 690                            |
| 1. 5                  | 780                            |
| 1. 33                 | 900                            |
| 1. 2                  | 1000                           |

#### 充电终止

当充电电流在达到最终浮充电压之后降至设定值的 1/10 时, 充电循环被终止。该条件是通过采用一个内部 滤波比较器对 PROG 引脚进行临控来检测的。当 PROG 引脚电压降至 100 mV 以下的时间超过 t TERM (一般为 1.8ms)时, 充电被终止。充电电流被锁断, TC4056A 进入待机模式, 此时输入电源电流降至 55UA。(注: C/10



TC4056A(文件编号: S&CIC1103)

1A 线性锂离子电池充电器

终止在涓流充电和热限制模式中失效)。

充电时,BAT 引脚上的瞬变负载会使PROG 引脚电压在DC 充电电流降至设定值的1/10 之间短暂地降至 **100mV** 以下。终止比较器上的1.8ms滤波时间(auERMt)确保这种性质的瞬变负载不会导致充电循环过早终止。 一旦平均充电电流降至设定值的1/10 以下,TC4056A即终止充电循环并停止通过BAT 引脚提供任何电流。在这种 状态下,BAT 引脚上的所有负载都必须由电池来供电。在待机模式中,TC4056A 对BAT引脚电压进行连续监控。 如果该引脚电压降到4.05V 的再充电电门限(RECHRG V)以下,则另一个充电循环开始并再次向电池供应电流。

图 1 示出了一个典型充电循环的状态图。

#### ● 充电状态指示器

TC4056A有两个漏极开路状态指示输出端,CHRG和STDBY。当充电器处于充电状态时,CHRG被拉到低电 平,在其它状态,CHRG处于高阻态。当电池的温度处于正常温度范围之外,CHRG和STDBY管脚都输出高阻态。 当TEMP端典型接法使用时, 当电池没有接到充电器时,表示故障状态: 红灯和绿灯都不亮

在TEMP端接GND时,电池温度检测不起作用,当电池没有接到充电器时,CHRG 输出脉冲信号表示没有安装电池。 当电池连接端BAT管脚的外接电容为10uF时CHRG闪烁频率约1-4秒

当不用状态指示功能时,将不用的状态指示输出端接到地。

| 充电状态                                  | 红灯 CHRG | 绿灯 STDBY |
|---------------------------------------|---------|----------|
| 正在充电状态                                | 亮       | 灭        |
| 电压充满状态                                | 灭       | 亮        |
| 欠压,电池温度过高,过低等故障状态,或无电池介入<br>(TEMP 使用) | 灭       | 灭        |
| BAT 端接 10u 电容,无电池                     | 绿灯亮,    | 红灯闪烁     |
| (TEMP=GND)                            | T=      | =1-4S    |

各种不同的充电指示状态请参考TC4056A使用注意事项及 DEMO板说明书。

#### 热限制

如果芯片温度升至约140℃的预设值以上,则一个内部热反馈环路将减小设定的充电电流.直到150℃以上减小电 流至0。该功能可防止TC4056A过热,并允许用户提高给定电路板功率处理能力的上限而没有损坏TC4056A 的风 险。在保证充电器将在最坏情况条件下自动减小电流的前提下,可根据典型(而不是最坏情况)环境温度来设定充 电电流。

#### 电池温度监测

为了防止温度过高或者过低对电池造成的损害,TC4056A 内部集成有电池温度监测电路。电池温度监测是通过 测量TEMP 管脚的电压实现的, TEMP 管脚的电压是由电池内的NTC 热敏电阻和一个电阻分压网络实现的, 如图 1 所示。

TC4056A将TEMP管脚的电压同芯片内部的两个阈值VLow和VHIGH相比较,以确认电池的温度是否超出正常范 围。在TC4056A内部,VLow被固定在45%×Vcc,VHIGH被固定在80%×Vcc。如果TEMP管脚的电压VTEMP<VLow或

VTEMP>VHIGH,则表示电池的温度太高或者太低,充电过程将被暂停;如果TEMP管脚的电压VTEMP在VLOW和 VHIGH 之间, 充电周期则继续。



TC4056A(文件编号: S&CIC1103)

1A 线性锂离子电池充电器

如果将 TEMP管脚接到地线, 电池温度监测功能将被禁止。

#### ● 确定R1和R2的值

R1和R2的值要根据电池的温度监测范围和热敏电阻的电阻值来确定,现举例说明如下: 假设设定的电池温度范围为 $TL \sim TH$ ,(其中TL < TH): 电池中使用的是负温度系数的热敏电阻(NTC),RTL为其 在温度TL时的阻值,RTH为其在温度TH时的阻值,则RTL>RTH,那么,在温度TL时,第一管脚TEMP端的电压为:

$$V_{TEMPL} = \frac{R2 \| R_{TL}}{R1 + R2 \| R_{TL}} \times VIN$$

在温度TH时,第一管脚TEMP端的电压为:

$$V_{\mathit{TEMPH}} = \frac{R2 \| R_{\mathit{TH}}}{R1 + R2 \| R_{\mathit{TH}}} \times VIN$$

然后,由VTEMPL=VHIGH=k2×Vcc (k2=0.8)  $VTEMPH = VLOW = k1 \times VCC (k1 = 0.45)$ 则可解得:

$$R1 = \frac{R_{TL}R_{TH}(K_2 - K_1)}{(R_{TL} - R_{TH})K_1K_2}$$

$$R2 = \frac{R_{TL}R_{TH}(K_2 - K_1)}{R_{TL}(K_1 - K_1K_2) - R_{TH}(K_2 - K_1K_2)}$$

同理,如果电池内部是正温度系数 (PTC) 的热敏电阻,则>,我们可以计算得到:

$$R1 = \frac{R_{TL}R_{TH}(K_2 - K_1)}{(R_{TH} - R_{TL})K_1K_2}$$

$$R2 = \frac{R_{TL}R_{TH}(K_2 - K_1)}{R_{TH}(K_1 - K_1K_2) - R_{TL}(K_2 - K_1K_2)}$$

从上面的推导中可以看出,待设定的温度范围与电源电压Vcc是无关的,仅与R1、R2、RTH、RTL有关;其中, RTH、RTL可通过查阅相关的电池手册或通过实验测试得到。在实际应用中,若只关注某一端的温度特性,比如过热 保护,则R2 可以不用,而只用R1 即可。R1 的推导也变得简单,在此不再赘述。

#### ● 欠压闭锁

一个内部欠压闭锁电路对输入电压进行监控,并在Vcc 升至欠压闭锁门限以上之前使充电器保持在停机模式。 UVLO 电路将使充电器保持在停机模式。如果UVLO 比较器发生跳变,则在Vcc升至比电池电压高100mV之前充 电器将不会退出停机模式。



TC4056A(文件编号: S&CIC1103)

1A 线性锂离子电池充电器

#### 手动停机

在充电循环中的任何时刻都能通过置CE端为低电位或去掉Rprog(从而使PROG 引脚浮置)来把TC4056A 置 于停机模式。这使得电池漏电流降至2µA 以下,且电源电流降至55µA以下。重新将CE 端置为高电位或连接设定 电阻器可启动一个新的充电循环。如果TC4056A处于欠压闭锁模式,则CHRG和引脚呈高阻抗状态:要么Vcc高 出BAT引脚电压的幅度不足100mV,要么施加在Vcc 引脚上的电压不足。

#### 自动再启动

一旦充电循环被终止,TC4056A 立即采用一个具有 1.8ms 滤波时间( RECHARGE t )的比较器来对 BAT 引脚 上的电压进行连续监控。当电池电压降至 4.05V(大致对应于电池容量的 80%至 90%)以下时, 充电循环重新开 始。这确保了电池被维持在(或接近)一个满充电状态,并免除了进行周期性充电循环启动的需要。在再充电循环 过程中, CHRG 引脚输出进入一个强下拉状态。



图1: 一个典型充电循环的状态图

#### 稳定性的考虑

在恒定电流模式中,位于反馈环路中的是PROG 引脚,而不是电池。恒定电流模式的稳定性受PROG 引脚阻 抗的影响。当PROG 引脚上没有附加电容会减小设定电阻器的最大容许阻值。PROG 引脚上的极点频率应保持在 CPROG,则可采用下式来计算RPROG的最大电阻值:

第 9 页 共 20 页 Version 1.1 www.superchip.cn



TC4056A(文件编号: S&CIC1103)

1A 线性锂离子电池充电器

$$R_{PROG} \le \frac{1}{2\pi \cdot 10^5 \cdot C_{PROG}}$$

对用户来说,他们更感兴趣的可能是充电电流,而不是瞬态电流。例如,如果一个运行在低电流模式的开关电 源与电池并联,则从BAT 引脚流出的平均电流通常比瞬态电流脉冲更加重要。在这种场合,可在PROG 引脚上采 用一个简单的RC 滤波器来测量平均的电池电流(如图2 所示)。在PROG 引脚和滤波电容器之间增设了一个10k 电阻器以确保稳定性。



图 2: 隔离PROG引脚上的容性负载和滤波电路

#### 功率损耗

TC4056A因热反馈的缘故而减小充电电流的条件可通过IC中的功率损耗来估算。这种功率损耗几乎全部都是由 内部MOSFET产生的——这可由下式近似求出:

$$P_D = (V_{CC} - V_{BAT}) \bullet I_{BAT}$$

式中的Po为耗散的功率,Vcc为输入电源电压,Vbat为电池电压,Ibat为充电电流。当热反馈开始对IC提供保护时, 环境温度近似为:

$$\begin{split} T_{A} &= 145^{\circ}C - P_{D}\theta_{JA} \\ T_{A} &= 145^{\circ}C - (V_{CC} - V_{BAT}) \bullet I_{BAT} \bullet \theta_{JA} \end{split}$$

实例:通过编程使一个从5V 电源获得工作电源的TC4056A向一个具有3.75V电压的放电锂离子电池提供800mA 满幅度电流。假设从**q** 为150℃/W(请参见电路板布局的考虑),当TC4056A 开始减小充电电流时,环境温度近 似为:

$$T_A = 145^{\circ}C - (5V - 3.75V) \bullet (800mA) \bullet 150^{\circ}C/W$$
  
 $T_A = 145^{\circ}C - 0.5W \bullet 150^{\circ}C/W = 145^{\circ}C - 75^{\circ}C$   
 $T_A = 65^{\circ}C$ 

TC4056A 可在65℃以上的环境温度条件下使用,但充电电流将被降至800mA以下。对于一个给 定的环境温度, 充电电流可有下式近似求出:



TC4056A(文件编号: S&CIC1103)

1A 线性锂离子电池充电器

$$I_{BAT} = \frac{145^{\circ}C - T_A}{(V_{CC} - V_{BAT}) \bullet \theta_{JA}}$$

正如工作原理部分所讨论的那样, 当热反馈使充电电流减小时, PROG 引脚上的电压也将成比例地减小。切记不 需要在TC4056A 应用设计中考虑最坏的热条件,这一点很重要,因为该IC将在结温达到145℃左右时自动降低功 耗。

#### 热考虑

由于 SOP8/MSOP8 封装的外形尺寸很小,因此,需要采用一个热设计精良的PC板布局以最大幅度地增加可使用 的充电电流,这一点非常重要。用于耗散IC所产生的热量的散热通路从芯片至引线框架,并通过底部的散热片到达 PC板铜面。PC板铜面为散热器。散热片相连的铜箔面积应尽可能地宽阔,并向外延伸至较大的铜面积,以便将热 量散播到周围环境中。至内部或背部铜电路层的通孔在改善充电器的总体热性能方面也是颇有用处的。当进行PC 板布局设计时,电路板上与充电器无关的其他热源也是必须予以考虑的,因为它们将对总体温升和最大充电电流有 所影响。

#### 增加热调节电流

降低内部MOSFET两端的压降能够显著减少IC中的功耗。在热调节期间,这具有增加输送至电池的电流的作用。对 策之一是通过一个外部元件(例如一个电阻器或二极管)将一部分功率耗散掉。

实例:通过编程使一个从5V交流适配器获得工作电源的TC4056A向一个具有3.75V电压的放电锂离子电池设置为 800mA 的满幅充电电流。假设 $_{M}$  q 为125 $^{\circ}$ C/W,则在25 $^{\circ}$ 的环境温度条件下,充电电流近似为:

$$I_{BAT} = \frac{145^{\circ}C - 25^{\circ}C}{(5V - 3.75V) \cdot 125^{\circ}C/W} = 768mA$$

通过降低一个与5V 交流适配器串联的电阻器两端的电压(如图3所示),可减少片上功耗,从而增大热调整的充 电电流:

$$I_{BAT} = \frac{145^{\circ}C - 25^{\circ}C}{(V_{S} - I_{BAT}R_{CC} - V_{BAT}) \bullet \theta_{JA}}$$





TC4056A(文件编号: S&CIC1103)

1A 线性锂离子电池充电器

#### 图3: 一种尽量增大热调节模式充节电流的电路

利用二次方程可求出2

$$I_{\mathit{BAT}} = \frac{(V_{\mathit{S}} - V_{\mathit{BAT}}) - \sqrt{(V_{\mathit{S}} - V_{\mathit{BAT}})^2 - \frac{4R_{\mathit{CC}}(145^{\circ}C - T_{\mathit{A}})}{\theta_{\mathit{JA}}}}}{2R_{\mathit{CC}}}$$

取Rcc=0.25 $\Omega$ 、Vs=5V、Vbat=3.75V、Ta=25 $^{\circ}$ C且125 $^{\circ}$ C/W Ja q ,我们可以计算出热调整的充电电流:Іват =948mA,结果说明该结构可以在更高的环境温度下输出800MA 满幅充电.虽然这种应用可以在热调整模式中向电 池输送更多的能量并缩短充电时间,但在电压模式中,如果Vcc变得足够低而使TC4056A 处于低压降状态,则它 实际上有可能延长充电时间。图4 示出了该电路是如何随着Rcc的变大而导致电压下降的。当为了保持较小的元件 尺寸并避免发生压降而使Rcc 值最小化时,该技术能起到最佳的作用。请牢记选择一个具有足够功率处理能力的电 阻器。



#### VCC旁路电容器

输入旁路可以使用多种类型的电容器。然而,在采用多层陶瓷电容器时必须谨慎。由于有些类型的陶瓷电容器 具有自谐振和高 Q 值的特点, 因此, 在某些启动条件下(比如将充电器输入与一个工作中的电源相连)有可能产 生高的电压瞬态信号。增加一个与 X5R 陶瓷电容器串联的 1.5Ω 电阻器将最大限度地减小启动电压瞬态信号。

#### 充电电流软启动

TC4056A 包括一个用于在充电循环开始时最大限度地减小涌入电流的软启动电路。当一个充电循环被启动 时, 充电电流将在20us 左右的时间里从0 上升至满幅全标度值。在启动过程中, 这能够起到最大限度地减小电源 上的瞬变电流负载的作用。

#### 图 5:低损耗输入反向极性保护USB 和交流适配器电源

TC4056A允许从一个交流适配器或一个USB端口进行充电。图6 示出了如何将交流适配器与USB 电源输入 加以组合的一个实例。一个P沟道MOSFET (MP1)被用于防止交流适配器接入时信号反向传入USB端口,而一个 肖特基二极管(D1)则被用于防止USB功率在经过1K下拉电阻器时产生损耗。一般来说,交流适配器能够提供比 电流限值为500mA的USB端口大得多的电流。因此,当交流适配器接入时,可采用一个N 沟道MOSFET (MN1) 和一个附加的10K 设定电阻器来把充电电流增加至600mA。

第 12 页 共 20 页 www.superchip.cn Version 1.1



TC4056A(文件编号: S&CIC1103)

1A 线性锂离子电池充电器



图 6: 交流适配器与USB 电源的组合

#### 十、封装描述

#### 8 引脚ESOP-8封装(单位mm)





#### TC4056A(文件编号: S&CIC1103)

#### 1A 线性锂离子电池充电器

| 中が | Dimensions Ir | n Millimeters | Dimensions | In Inches |
|----|---------------|---------------|------------|-----------|
| 字符 | Min           | Max           | Min        | Max       |
| Α  | 1. 350        | 1. 750        | 0. 053     | 0.069     |
| A1 | 0.050         | 0. 150        | 0. 004     | 0. 010    |
| A2 | 1. 350        | 1. 550        | 0. 053     | 0. 061    |
| b  | 0. 330        | 0. 510        | 0. 013     | 0. 020    |
| С  | 0. 170        | 0. 250        | 0.006      | 0. 010    |
| D  | 4. 700        | 5. 100        | 0. 185     | 0. 200    |
| D1 | 3. 202        | 3. 402        | 0. 126     | 0. 134    |
| Е  | 3. 800        | 4. 000        | 0. 150     | 0. 157    |
| E1 | 5. 800        | 6. 200        | 0. 228     | 0. 244    |
| E2 | 2. 313        | 2. 513        | 0. 091     | 0. 099    |
| е  | 1. 270 (BSC)  |               | 0. 050     | (BSC)     |
| L  | 0. 400        | 1. 270        | 0. 016     | 0. 050    |
| θ  | 0 °           | 8°            | 0°         | 8°        |

#### 8 引脚封装(单位mm)

#### DIP-8





#### TC4056A(文件编号: S&CIC1103)

#### 1A 线性锂离子电池充电器

| 符号    | 毫米   |      |       |  |  |  |
|-------|------|------|-------|--|--|--|
| ।<br> | 最小   | 典型   | 最大    |  |  |  |
| A     |      |      | 5.33  |  |  |  |
| A1    | 0.38 |      |       |  |  |  |
| A2    | 2.92 | 3.30 | 4.95  |  |  |  |
| b     | 0.36 | 0.46 | 0.56  |  |  |  |
| b2    | 1.14 | 1.52 | 1.78  |  |  |  |
| С     | 0.20 | 0.25 | 0.36  |  |  |  |
| D     | 9.02 | 9.27 | 10.16 |  |  |  |
| E     | 7.62 | 7.87 | 8.26  |  |  |  |
| E1    | 6.10 | 6.35 | 7.11  |  |  |  |
| е     |      | 2.54 |       |  |  |  |
| eA    |      | 7.62 |       |  |  |  |
| еВ    |      |      | 10.92 |  |  |  |
| L     | 2.92 | 3.30 | 3.81  |  |  |  |

#### 十一、典型应用



适合需要电池温度检测功能, 电池温度异常指示 和充电状态指示的应用



#### TC4056A(文件编号: S&CIC1103)

#### 1A 线性锂离子电池充电器



适合需要充电状态指示, 不需要 电池温度监测功能的应用

适合既不需要充电状态指示,也不需要 电池温度监测功能的应用



适合同时应用USB接口和墙上适配器充电

充电状态用红色LED 指示, 充电结束状态 用绿色LED 指示,增加热耗散功率电阻

#### TC4056A 使用注意事项及DEMO 板说明书

#### 一、TC4056A 使用注意事项:

- 1、TC4056A 采用SOP8/ESOP8-PP封装,使用中需将底部散热片与PCB板焊接良好,底部散热区域需要加通孔, 并有大面积铜箔散热为优。多层PCB 加充分过孔对散热有良好的效果,散热效果不佳可能引起充电电流受温 度保护而减小。在SOP8/ESOP8背面散热部分加适当的过孔,也方便了手工焊接,(可以从背面过孔处灌焊锡, 将散热面可靠焊接)。
- 2、TC4056A 应用在大电流充电(700mA 以上),为了缩短充电时间,需增加热耗散电阻(如下图R11、R12), 阻值范围0.2~0.5Ω。客户根据使用情况选取合适电阻大小。
- 3、TC4056A 应用中BAT 端的10u电容位置以靠近芯片BAT 端为优,不宜过远。
- 4、TC4056A 测试中,BAT 端应直接连接电池,不可串联电流表,电流表可接在Vcc端。
- 5、为保证各种情况下可靠使用,防止尖峰和毛刺电压引起的芯片损坏,建议在BAT 端和电源输入端各接一个0.1u 的陶瓷电容,而且在布线时十分靠近TC4056A 芯片。



#### TC4056A(文件编号: S&CIC1103)

#### 1A 线性锂离子电池充电器

#### 二、TC4056A DEMO 板电路图



#### 三、功能演示说明: (工作环境: 电源电压5V,环境温度25℃。)

1、设置充电电流。(用户可以调节电位器选择需要的充电电流)

闭合KPR1k, RPROG=1k 1300mA

闭合KPR1.2k, RPROG=1.2k 1000mA

闭合KPR2k, RPROG=2k 600mA

闭合KPR10k, RPROG=10k 130mA

闭合KPR103, RPROG=0.82k-10.5k 120mA-1300mA

2、设置指示灯,红绿双灯指示:

| 充电状态                 | 指示灯状态    |
|----------------------|----------|
| 正在充电状态               | 红灯亮,绿灯灭  |
| 电池充满状态               | 红灯灭,绿灯亮  |
| 欠压, 电池温度过高, 过低, 无电池  | 红灯灭,绿灯灭  |
| 等故障状态(TEMP 端正常连接)    |          |
| BAT端接10u电容,无电池(TEMP端 | 绿灯亮,红灯闪烁 |
| 接地)                  |          |

#### 3、模拟充电状态

闭合KPR10k, KBAT-C, KBAT-R, KT-GND

BAT端连接一电容C2 和一电阻R6 代替锂电池,模拟正在充电状态:红灯亮,绿灯灭。 说明: 此状态模拟仅限电源电压小于等于5V, 大于5V时请用锂电池实际测试。

闭合KPR10k, KBAT-C, KT-GND

BAT端连接一电容C2代替锂电池,模拟充电完成状态:绿灯亮,红灯闪烁。

说明:由于使用10uF 的电容C2 代替锂电池模拟充满状态,电容充满后缓慢放电,当电 容电压变低至再充电门限电压4.05V时,自动再次充电,则可看见红灯周期性闪烁。

4、模拟充电末端BAT 端电压闭合KPR10k, KBAT-C, KBAT-R, KT-GND测量BAT 端电压。即为充电结束时电压 4.2V ±1.5% .



#### **TC4056A**(文件编号: S&CIC1103)

#### 1A 线性锂离子电池充电器

- 5、如客户需要监测电池温度,断开KT-GND,连接TC4056A 的TEMP 端(1 脚,已预留连接孔)至锂电池温度监测 端,客户根据实际情况自定R9,R10 大小并安装。如不需要此项功能,闭合KT-GND 即可。
- 6、CE 始能端。闭合开关KCE-GND, CE 端下拉至低电平, 芯片停止充电, 打开KCE-GND, 芯片正常充电。
- 7、有的客户在应用中BAT 端无锂电池时不希望红色指示灯闪烁,闭合KBATUP,将BAT端用100k电阻连接至Vdd, 绿灯亮,可用于指示待机状态,不影响正常充电使用。
- 8、锂电池充电

将锂电池正极连接至芯片BAT 端,负极接地。需要温度监测功能请连接TEMP端(1脚),否则闭合KT-GND。设 置需要的充电电流和指示灯,断开KBATR,KCE-GND,即可开始充电。

#### 移动电源方案 (软件5V/1A)

#### 1、电路图





**TC4056A**(文件编号: S&CIC1103)

1A 线性锂离子电池充电器

#### 2、PCB 图



#### 3、BOM表

| 序号 | 元件名称  | 型長       | 号&规格        | 单位  | 用量 | 位置                 | 备注 |
|----|-------|----------|-------------|-----|----|--------------------|----|
| 1  | 印制板   | FM-2711B | 3 Vv2.0 玻纤板 | PCS | 1  | 21.6*37.7mm        |    |
| 2  | 贴片电阻  | 1.2k     | 5% 0603     | PCS | 1  | R1                 |    |
| 3  | 贴片电阻  | 10K      | 5% 0603     | PCS | 3  | R2/R10/R12         |    |
| 4  | 贴片电阻  | 1K       | 5% 0603     | PCS | 5  | R3/R14/R15/R11/R13 |    |
| 5  | 贴片电阻  | 100R     | 5% 0603     | PCS | 1  | R4                 |    |
| 6  | 贴片电阻  | 470R     | 5% 0603     | PCS | 1  | R5                 |    |
| 7  | 贴片电阻  | 30K      | 5% 0603     | PCS | 1  | R6                 |    |
| 8  | 贴片电阻  | 91K      | 1% 0805     | PCS | 2  | R7                 |    |
| 9  | 贴片电阻  | 12K      | 1% 0603     | PCS | 1  | R8                 |    |
| 10 | 贴片电阻  | 510R     | 5% 0603     | PCS | 1  | R9                 |    |
| 11 | 贴片电阻  | 2K       | 5% 0603     | PCS | 1  | R16                |    |
| 12 | 贴片电阻  | 50mR     | 5% 1206     | PCS | 1  | R17                | 毫欧 |
| 13 | 贴片电阻  | 47K      | 5% 0603     | PCS | 1  | R18                |    |
| 14 | 贴片电阻  | 43K      | 5% 0603     | PCS | 1  | R19                |    |
| 15 | 贴片电阻  | 75K      | 5% 0603     | PCS | 1  | R20                |    |
| 16 | 贴片电阻  | 51K      | 5% 0603     | PCS | 2  | R22/R21            |    |
| 17 | 贴片电容  | 22uF/10V | 10% 1206    | PCS | 3  | C1/C3/C5           |    |
| 18 | 贴片电容  | 104      | 10% 0603    | PCS | 5  | C2/C4C6/C7/C8      |    |
| 19 | 贴片电容  | 100uF    | 10V 10%     | PCS | 1  | C5A                |    |
| 20 | 贴片二极管 | SS34     | DO-214AC    | PCS | 1  | D1                 |    |
| 21 | 贴片三极管 | SS8050   | SOT-23      | PCS | 1  | Q1                 |    |
| 22 | 贴片 IC | TC4056A  | SOP-8       | PCS | 1  | U1                 |    |



#### **TC4056A**(文件编号: S&CIC1103)

#### 1A 线性锂离子电池充电器

| 23 | 贴片 IC    | DW03D             | TSSOP-8   | PCS | 1 | U2        |         |
|----|----------|-------------------|-----------|-----|---|-----------|---------|
| 24 | 贴片 IC    | TC6291            | SOT23-6   | PCS | 1 | U4        |         |
| 25 | 贴片 MCU   | 2711B V2.         | 0 SOP-14  | PCS | 1 | U5        | IC 自供   |
| 26 | 贴片 N-MOS | 2302              | SOT-23    | PCS | 2 | Q2/Q3     |         |
| 27 | 贴片电感     | 3.3uH             | 6D38-100M | PCS | 1 | L1        | 电流 3A   |
| 28 | 贴片发光二极管  | 白发蓝               | 0603      | PCS | 4 | LED1-LED4 |         |
| 29 | 发光二极管    | ¢5mm 白发白 高亮       |           | PCS | 1 | LED5      |         |
| 30 | 贴片按纽开关   | 5.2*5.2 *1.5 轻触开关 |           | PCS | 1 | K         |         |
| 31 | 插针       | 3P0.7             | 间距        | PCS | 1 | LED       | 同 FM-V3 |
| 32 | USB 母座   | Mic usb 10        | MM 短体     | PCS | 1 | USB       |         |
| 33 | 贴片母座     | 贴片迈克 5P,          | ,引脚需加长    | PCS | 1 | MIC 5P    | 全贴      |
| 34 | 电子线      | ¢1.5*40mm         | 红         | PCS | 1 | B+        |         |
| 35 | 电子线      | ¢1.5*40mm         | 黑         | PCS | 1 | B-        |         |