EM example

Helen Yannakoudakis and Oana Cocarascu

Department of Informatics King's College London

EM example

Expectation Maximisation coin-flipping example (see under Additional Reading material).

- We have a pair of coins A and B.
- Coin A will land on heads with probability θ_A and tails with $1 \theta_A$.
- Coin B will land on heads with probability θ_B and tails with $1 \theta_B$.
- How can we estimate $\theta = (\theta_A, \theta_B)$?

- We have a pair of coins A and B.
- Coin A will land on heads with probability θ_A and tails with $1 \theta_A$.
- Coin B will land on heads with probability θ_B and tails with $1 \theta_B$.
- How can we estimate $\theta = (\theta_A, \theta_B)$?
- Randomly pick a coin (with equal probability) and perform 10 independent coin tosses; Repeat this 5 times, so total 50 coin tosses.

- We have a pair of coins A and B.
- Coin A will land on heads with probability θ_A and tails with $1 \theta_A$.
- Coin B will land on heads with probability θ_B and tails with $1 \theta_B$.
- How can we estimate $\theta = (\theta_A, \theta_B)$?
- Randomly pick a coin (with equal probability) and perform 10 independent coin tosses; Repeat this 5 times, so total 50 coin tosses.
- So assuming we know which coin was used in each set of tosses:

- We have a pair of coins A and B.
- Coin A will land on heads with probability θ_A and tails with $1 \theta_A$.
- Coin B will land on heads with probability θ_B and tails with $1 \theta_B$.
- How can we estimate $\theta = (\theta_A, \theta_B)$?
- Randomly pick a coin (with equal probability) and perform 10 independent coin tosses; Repeat this 5 times, so total 50 coin tosses.
- So assuming we know which coin was used in each set of tosses:

	нтттннтнтн				
	ннннтннннн				
	нтннннтнн				
	нтнтттннтт				
	тнннтнннтн				
5 sets, 10 tosses per set					

Coin A	Coin B
	5 H, 5 T
9 H, 1 T	
8 H, 2 T	
	4 H, 6 T
7 H, 3 T	
24 H, 6 T	9 H, 11 T

- We have a pair of coins A and B.
- Coin A will land on heads with probability θ_A and tails with $1 \theta_A$.
- Coin B will land on heads with probability θ_B and tails with $1 \theta_B$.
- How can we estimate $\theta = (\theta_A, \theta_B)$?
- Randomly pick a coin (with equal probability) and perform 10 independent coin tosses; Repeat this 5 times, so total 50 coin tosses.
- So assuming we know which coin was used in each set of tosses:

0	нтттннтнтн			
A	ннннтннннн			
	нтннннтнн			
	нтнтттннтт			
	тнннтнннтн			
5 sets, 10 tosses per set				

Coin A	Coin B	
	5 H, 5 T	
9 H, 1 T		$\hat{\theta}_{A} = \frac{24}{24+6} = 0.80$
8 H, 2 T		â 9
	4 H, 6 T	$\hat{\theta}_{B} = \frac{9}{9+11} = 0.45$
7 H, 3 T		
24 H, 6 T	9 H, 11 T	

- We have a pair of coins A and B.
- Coin A will land on heads with probability θ_A and tails with $1 \theta_A$.
- Coin B will land on heads with probability θ_B and tails with $1 \theta_B$.
- How can we estimate $\theta = (\theta_A, \theta_B)$?
- Randomly pick a coin (with equal probability) and perform 10 independent coin tosses; Repeat this 5 times, so total 50 coin tosses.
- But what if we don't know which coin was used in each set of tosses?

- We have a pair of coins A and B.
- Coin A will land on heads with probability θ_A and tails with $1 \theta_A$.
- Coin B will land on heads with probability θ_B and tails with $1 \theta_B$.
- How can we estimate $\theta = (\theta_A, \theta_B)$?
- Randomly pick a coin (with equal probability) and perform 10 independent coin tosses; Repeat this 5 times, so total 50 coin tosses.
- But what if we don't know which coin was used in each set of tosses?

Coin flipping experiment – EM steps

- Start with random guesses for the parameters theta.
- E step: Using these, estimate a probability distribution over the coins for each set of tosses (your hidden variables).
- M step: Based on the above, now use maximum likelihood to estimate new parameters theta.
- Alternate between the two steps until convergence.

$$\hat{\theta}_{A}^{(1)} \approx \frac{21.3}{21.3 + 8.6} \approx 0.71$$

$$\hat{\theta}_{B}^{(1)} \approx \frac{11.7}{11.7 + 8.4} \approx 0.58$$

