

实验报告

课程名称:	电路与电子技术实验
学生姓名:	
学生学号:	
学生专业:	
开课学期:	2024-2025 学年第二学期

电力学院大学城校区电工电子实验中心(B7-4,5 楼) 2025 年 1 月

学生实验守则

实验时应保证人身安全,设备安全,爱护国家财产,培养科学作风。为此,在本实验室应遵守以下守则:

- 一、学生进入实验室做实验必须严格遵守实验室的规章制度,服从授课教师 和实验技术人员的指导。
- 二、实验前必须做好预习,明确实验的目的、内容和步骤,了解仪器设备的操作规程和实验物品的特性。
- 三、实验课不得迟到、旷课,衣冠不整不得进入实验室,不准把与实验课无 关的东西带进实验室。
 - 四、在实验室内不准喧哗、打闹和吸烟,不准乱吐乱丢杂物。
- 五、实验过程中,应正确操作,认真观察并如实记录,实验结果须经实验教 师检查并签名。
- 六、实验时要注意安全,防止发生意外。若发生事故,应及时向实验指导人 员报告,并采取相应的措施,减少事故造成的损失。
- 七、爱护仪器设备,节约用水、用电和实验材料。不许动用与本实验无关的 仪器设备及其它物品,不准私自将公物拿出实验室。

八、实验完毕,应做好仪器设备的复位工作以及关闭相关的水源、电闸和气源,清洁实验台面和仪器设备,打扫室内卫生并得到实验指导人员允许后方可离开实验室。

九、对违反实验室规章制度和实验操作规程造成事故和损失的,视其情节对责任者按章处理。

实验课安全知识须知

- 1. 规范着装。为保证实验操作过程安全、避免实验过程中意外发生,学生禁止 穿拖鞋进入实验室。
- 2. 实验前必须熟悉实验设备参数、掌握设备的技术性能以及操作规程。
- 3. 实验时人体不可接触带电线路,接线或拆线都必须在切断电源的情况下进行。
- 4. 实验中如设备发生故障,应立即切断电源,经查清问题和妥善处理故障后, 才能继续加电进行实验。

实验报告撰写要求

- 1. 预习报告部分列出该次实验使用的仪器设备;绘制实验线路图,并注明元件参数。报告中的作图(电路图、表格、曲线等)需用直尺或绘图工具绘制,且须手绘、不可打印。回答预习思考题。
- 实验总结与思考部分一方面参考思考题要求,对实验数据进行分析和整理, 说明实验结果与理论是否符合;另一方面根据实测数据和在实验中观察和发 现的问题,经过自己研究或分析讨论后写出的心得体会。
- 3. 在数据处理中,曲线的绘制必须用坐标纸画出曲线,曲线要用曲线尺或曲线 板连成光滑曲线,不在曲线上的点仍按实际数据标出其具体坐标。
- 4. 大学城电工电子实验中心学习网站: 222.201.130.196 电子仪器使用视频链接: http://222.201.130.196/eetec/mobile/equipment/

温馨提示:实验报告撰写过程中如遇预留空白不足,请在该页背面空白接续。

上课学生签名: 实验教师签名:

实验一 电路元件伏安特性的测试

专业/班级:			_ 姓	名:	
地 点:	B7-535 室	号实验台	_ 考	勤:	
实验日期与时间:			_ 评	分:	
预习检查纪录:			_ 实验	教师:	

(重点简述实验原理,画出原理图。)

三、实验器材

四、实验注意事项

一、实验目的

二、实验原理

五、实验过程与实验数据(叙述具体实验过程的步骤和方法,按表格记录实验数据。)

表 2-1-1 线性电阻及白炽灯伏安特性测量数据

电压/V	1	2	3	4	5	6
电阻电流/mA						
白炽灯电流/mA						

表 2-1-2 稳压二极管正反向伏安特性测量数据(注意:最后测试点必须使电流达到 80 毫安)

$U_{Z^+}\!/\!\mathrm{V}$	0.1	0.3	0.5	0.55	0.60	0.65	0.70	0.75	0.80	
I/mA										80
$U_{ m Z}$ -/V	-1	-1.5	-2	-2.5	-3	-3.2	-3.4	-3.6	-3.8	
I/mA										-80

表 2-1-3 稳压电源伏安特性测量数据

电流/mA	0	10	20	30	40	50	60	70	80
电压/V									

六、实验总结及思考

(1)整理实验数据,在坐标纸上按合适的比例绘出各元器件的伏安特性曲线(要求同一元件正反向曲线 绘在同一坐标平面上)。

- (2) 分析白炽灯的电阻随电流变化的规律。
- (3) 计算稳压电源串联电阻模型中的电压源 $U_{\rm S}$ 和内阻 $R_{\rm S}$ 。

实验二 基尔霍夫定律和叠加原理的验证

专业	4/班级:			_ 姓	名:	
地	点:	B7-535 室	号实验台	_ 考	勤:	
实验日	期与时间:			_ 评	分:	
预习标	金査纪录:			_ 实验	教师:	

一、实验目的

二、实验原理

(重点简述实验原理,画出原理图。)

三、实验设备

四、实验预习要求

- (1) 计算图 2-2-1 电路中各支路电流及各元件电压的理论值,用铅笔填写于表 2-2-1 中。
- (2) 若实验测量值为负值,说明什么?

Ŧi,	实验过程与实验数据	(叙述具体实验过程的步骤和方法,	记录实验数据。)
		、	

表 2-2-1 基尔霍夫定律和叠加原理的验证

测量项目 实验内容	E_1/V	E ₂ /V	I_1/mA	I ₂ /mA	I ₃ /mA	U _{FA} /V	$U_{ m AB/V}$	U _{CD} /V	$U_{ m DE}$ /V	$U_{ m DA}/{ m V}$
E ₁ 单独作用										
E ₂ 单独作用										
E ₁ 、E ₂ 共同作用										

六、实验总结及思考(按教材中实验报告要求画出相关曲线并回答思考题)

(1) 在图 2-2-1 中, 选定一个节点, 用表 2-2-1 实验数据验证 KCL 的正确性; 选定一个闭合回路, 用实验数据验证 KVL 的正确性; 用表 2-2-1 的实验数据验证叠加原理的正确性。

- (2) 比较理论计算数据和实验测量数据,分析产生误差的原因。
- (3) 实验电路中, 若将一个电阻器改为二极管, 叠加原理还成立吗? 为什么?
- (4) 若将电路中的直流电源改为交流电源,基尔霍夫定律、叠加原理还成立吗?

实验过程原始数据记录

实验名称:	学生如	性名:
实验日期与时间:		·····································

实验五 一阶 RC 电路暂态过程的研究

专业	//班级:		姓	名:	
地	点:	B7-436/531 室 号台	考	勤:	
实验日	期与时间:		评	分:	
预习机	盆查纪录:		实验	教师:	

一、实验目的

二、实验原理(重点简述实验原理,画出原理图。)

三、实验器材

四、实验预习要求

- (1) 什么是一阶电路, 在电路的激励发生跃变时, 电路中哪些物理量一般不能越跃变?
- (2) 掌握微分和积分电路的特点及组成条件,在输入信号 u_s 为 f=1kHz 的条件下, 计算满足电路要求 R 、 C 值,填写在表 2-5-1 中,从所给元器件中选择合适的电阻、电容组成相应的电路。
- (3) 观看 http://222.201.130.196/eetec/mobile/equipment/中示波器、信号发生器的使用视频
- 五、实验过程与实验数据(叙述具体实验过程的步骤和方法,记录实验数据。)

表 2-5-1 一阶 RC 暂态过程的观测 激励和响应 电路参数 波形图 T1ms $u_{\rm S}$ 输入方波脉冲 0.5 ms $t_{\rm p}$ $(f=1kH_Z)$ 5V $U_{\rm S}$ R $1 \text{ k}\Omega$ 电容电压波形 uc 及τ \overline{C} $0.1 \mu F$ 的测定 计算值 $(\tau \approx 0.2t_p)$ τ 测量值 R $u_{\mathrm{C}_{\blacktriangle}}$ 电容电压波形 uc C $(\tau > 0.2t_p)$ τ 计算值 R 电容电压波形 uc C $(\tau < 0.2t_p)$ 计算值 R $u_{\rm C}$ 微分波形 uR C τ 计算值 R C积分波形 uc τ 计算值

六、实验注意事项

七、实验总结及思考(按教材中实验报告要求回答思考题)

实验六 RLC 串联谐振电路的研究

专业/班级:		_ 姓	名:	
地 点:	B7- 436/531 室 号台	_ 考	勤:	
实验日期:		_ 评	分:	
预习检查纪录:		实验	教师:	

一、实验目的

二、实验原理(重点简述实验原理,画出原理图。)

三、实验设备

1.计算机; 2.Multisim 电路仿真软件

四、实验注意事项

五、实验预习要求

1.按照实验内容(1)给定的电路参数,计算出电路的谐振频率 f_0 ,品质因数 Q,填写于表 2-6-1 中。 2.实验内容(3)中,保持 L 为 10mH、C 为 0.01μF,要求品质因数 Q=10,计算 R 值,填写于表 2-6-1 中。

五、实验过程与实验数据

(叙述具体实验过程的步骤和方法,并画出电路图和实验数据记录表格,记录实验数据。)

表 2-6-1

RLC 串联电路谐振点测试

D(-)		测量	数据	计算值			
$R(\Omega)$	f_0 (kH _Z)	$U_{\mathbf{R}}$ (V)	$U_{\rm L}$ (V)	$U_{\rm C}$ (V)	f_0 (kH _Z)	Q	$BW(kH_Z)$
200							

表 2-6-2

RLC串联电路谐振曲线测试

$R(\Omega)$	序号	f_1	f_2	f_3	f_4	f_5	f_6	f_0	f_7	f_8	f_9	f_{10}	f_{11}	f_{12}
	f (kHz)	9.0	11.0	13.0	14.0	15.0	15.5		16.5	17.0	18.0	19.0	21.0	23.0
200	$U_{R1}(mV)$													
200	$I_1=U_{\rm R1}/R_1$													
	$U_{R2}(\text{mV})$													
	$I_2=U_{R2}/R_2$													

`	实验报告及思考	~
		٧.
/ \ \		ц,

(1)整理实验数据,用方格纸在同一坐标平面上画出不同 Q 值得两条电流谐振曲线。说明品质因数 Q 对谐振曲线的影响。

(2) 分析谐振时, $U_{\rm C}$ 、 $U_{\rm L}$ 与 $U_{\rm R}$ 、 $U_{\rm S}$ 有什么关系?

(3)根据理论计算,电路发生谐振时,应有 $U_{\rm R}=U_{\rm S}$,实际测量中,总有 $U_{\rm R}< U_{\rm S}$,分析理论计算与实际测量不同的原因?

实验过程原始数据记录

实验名称:	学生姓名:	
实验日期与时间:	实验台号:	

实验七 交流电路中元件等效参数的测量

专业/班级:			姓	名:	
地 点:	B7-535 室	号实验台	考	勤:	
实验日期:			评	分:	
预习检查纪录:			实验	 数师:	
一、实验目的					

二、实验原理(重点简述实验原理,画出原理图。)

三、实验设备

四、实验注意事项

五、实验过程与实验数据

(叙述具体实验过程的步骤和方法,记录实验数据。)

表 2-7-1

三表法测量数据

被	测量	值		计算	值	等效	[参数	
测负载	U(V)	$I(\mathbf{A})$	P (W)	$Z(\Omega)$	$\cos \varphi$	$R(\Omega)$	L (H)	C (µF)
白炽灯	150							_
镇流器	150							_
电容器	150							

表 2-7-2

三电压表法测量数据

	测量值			ì	十算值	等效参数		
被测负载	U_1 (V)	U_2 (V)	U_3 (V)	$Z(\Omega)$	cos Φ	$R(\Omega)$	L (H)	C(µF)
白炽灯	150							
镇流器	150							
电容器	150							

六、实验总结及思考

- (1) 完成表 2-7-1, 2-7-2 的测量数据、参数计算。
- (2) 比较三表法和三电压表法测得的元件参数的差别,分析其原因。

实验八 RL 串联电路及功率因数的提高

专业/班级:			_ 姓	名:		
地 点:	B7-535 室	号实验台	_ 考	勤:		
实验日期:			_ 评	分:		
预习检查纪录:			_ 实验	教师:		

一、实验目的

二、实验原理(重点简述实验原理,画出原理图。)

三、实验设备

四、实验注意事项

五、实验过程与实验数据

(叙述具体实验过程的步骤和方法,记录实验数据。)

表 2-8-1

电压及功率测量

U/V	$U_{\rm D}$ (V)	$U_{\rm rL}$ (V)	$I_{\mathrm{D}}\left(\mathbf{A}\right)$	$P(\mathbf{W})$

表 2-8-2

功率因数的提高

测量次序	C (µF)	P (W)	$I(\mathbf{A})$	$I_{\mathrm{D}}\left(\mathbf{A}\right)$	<i>I</i> _C (A)	cos¢
1	0					
2	1					
3	2.2					
4	3.67					
5	4.3					
6	4.77					
7	6.5					
8	7.5					

六、实验总结及思考

- (按教材中实验报告要求画出相关曲线并回答思考题)
- (1) 整理实验数据,并用坐标纸画出 I = f(C) 曲线和 $\cos \varphi = f(C)$ 曲线。

(2) 根据表 2–8–1、表 2-8-2 数据说明为什么 $U\neq U_{\rm D}+U_{\rm rL}\;;\;\;I\neq I_{\rm D}+I_{\rm C}$?

(3) 并联电容器提高了电路的功率因数,能否改变感性负载本身的功率因数?为什么?

(4) 要使电路的功率因数 $\cos \varphi = 1$, 应并联多大容量的电容?

(5) 提高功率因数的补偿电容器为什么要在负载端就近连接,而不在发电端集中补偿?

实验过程原始数据记录

实验名称:	学生	姓名:
实验日期与时间:	实验	··台号: ··

实验十三 晶体管共射极放大电路

专业/班级:		姓	名:	
地 点:	B7- 436/531 室 号台	_ 考	勤:	
实验日期:		评_	分:	
预习检查纪录:		实验	教师:	

一、实验目的

二、实验原理

(重点简述实验原理,画出原理图。)

三、实验设备

四、实验预习

- (1) 教材预习要求;
- (2) 观看 http://222.201.130.196/eetec/mobile/equipment/中仪器使用视频

五、实验过程与实验数据

(叙述具体实验过程的步骤和方法,记录实验数据,计算、分析电路性能指标。)

表	3-	.1	3-	1

静态工作点(V_C=7V)

测量值	$U_{\rm B}$ (V)	$U_{\rm E}$ (V)	$U_{\rm C}$ (V)
计算值	U_{BE} (V)	$U_{\rm CE}$ (V)	I _C (mA)
И 好 但. 			

表 3-13-2

输入 / 输出电阻

负载电阻	测 量 值	直(mV)	计 算 值(kΩ)
$R_{ m S}$	$u_{\rm s}$	$u_{\rm i}$	$r_i=R_S u_i/(u_S-u_i)$
1k Ω			
$R_{ m L}$	$u_{ m oc}$	$u_{\scriptscriptstyle m OL}$	$r_{\mathrm{o}}=R_{\mathrm{L}}(u_{\mathrm{OC}}-u_{\mathrm{OL}})/u_{\mathrm{OL}}$
5.1 k Ω			

表 3-13-3

电压放大倍数

测试条件	测 $u_{\rm i}$ /mV	测 <i>u</i> 。/mV	A_{u}
$R_{\rm L}=5.1$ k Ω			
$R_{\rm L}=10{\rm k}\Omega$			
$R_{\rm L} = \infty$			

表 3-14-4

静态工作点 Q 变化对输出波形的的影响

1× 3-14-4	即心工作从人文化对相山伙心的印影啊	
测试条件	输 出 波 形	失真类型
RP 适中, Q 点 合适,输出波形无 失真		
R _P 太小,Q点偏高		
R _P 太大,Q点偏低		
R _P 适中,Q点 合适, 输入信号幅值 太大		
	25	

六、实验总结 1.整理测试结果,把实际测量的静态工作点。电压放大倍数。输入电阻值、输出电阻值与理论计算值进行比较,分析产生误差的原因。
2. 总结集电极电阻 Rc、负载电阻 R _L 值及静态工作点对电压放大倍数、输入电阻、输出电阻的影响。
3. 讨论静态工作点变化对输出波形的影响。
4. 放大电路测试中,输入信号频率一般选择 1kHz,为何不选择 100kHz 或更高的频率?

5.分析并讨论在实验过程中出现的问题。

5.

实验过程原始数据记录

实验名称:	学生姓名:	
实验日期与时间:	实验台号:	

实验十五 集成运算放大器的基本运算电路

专业/班级:		_ 姓	名:	
地 点:	B7- 436/531 室 号台	_ _ 考	勤:	
实验日期:		_ 评	分:	
预习检查纪录:		实验	教师:	

一、实验目的

二、实验原理

(重点简述实验原理,计算未知电路参数,并标注在各电路原理图=号后面。)

三、实验设备

四、实验预习要求

- (1) 计算电路参数,并标注在各电路原理图=号后面。
- (2)观看 http://222.201.130.196/eetec/mobile/equipment/中示波器、信号发生器、直流稳压电源的使用视频。 五、实验注意事项

六、实验过程与实验数据

(叙述具体实验过程的步骤和方法,并画出记录实验数据的表格,记录实验数据。)

表 3-15-1	反相比例运算电路测量
700 10 1	

$U_{\rm i}$ (V)	0.5	-1	1
U _o (V)测量值			
U _o (V)理论值			

表 3-15-1 同相比例运算电路测量

$U_{\rm i}$ (V)	0.5	-1	1
<i>U</i> 。(V) 测量值			
U _o (V)理论值			

表 3-15-1 反相加法运算电路测量

$U_{\rm il}$ (V)	0.5	1	-1
U_{i2} (V)	0.5	1	0.5

表 3-15-1 差分运算电路测量

U_{i1} (V)	0.5	1	-1
U_{i2} (V)	-0.5	1.5	1.5
U。(V)测量值			
U _o (V)理论值			

- 1	1	 = \(\tau_1 \)	, 07
_	_	实验思考	그 부네
	1.		* ルバ

1. 比较测量数据与理论计算值的差异,并分析其成因。

2. 讨论运算放大电路的线性区间与电源电压的关系。

实验过程原始数据记录

实验名称:	学生姓名:	
实验日期与时间:	实验台号:	

实验十六 集成运算放大器的非线性运用

专业/班级:		_ 姓	名:	
地 点:	B7- 436/531 室 号台	_ 考	勤:	
实验日期:		_ 评	分:	
预习检查纪录:		实验:	教师:	

一、实验目的

二、实验原理

(简述实验原理, 画出原理图。)

三、实验设备

四、实验内容 (叙述具体实验过程的步骤和方法,	画出电压比较器的输入输出波形以及传输特性曲线。)	
五、实验总结 1.根据实验结果绘制过零电压比 线。比较两个电路特点,说出其	比较器和迟滞电压比较器的输入输出波形及电压传 其差别。	ē 输特性曲

实验二十 组合逻辑电路设计

专业/班级:		_ 姓	名: _	
地 点:	B7-436/531 室 号台	_ 考	勤 : _	
实验日期:		_ 评	分 : _	
预习检查纪录:		_ 实验教	师:	

一、实验目的

二、实验原理

(重点简述实验原理,画出原理图。)

三、实验设备 电子实验箱

四、实验预习及思考

画出各设计电路逻辑表达式 (用两输入与非门表示) 及逻辑电路图。

五、实验过程

(列出各设计任务逻辑真值表。写出逻辑表达式(或卡诺图),再用卡诺图或代数法化简以得到最简逻辑表达式,最后用给定的逻辑门电路实现,画出逻辑电路图并连接电路验证。)

实验二十三 计数、译码、显示电路

专业/班级:		_ 姓	名:	
地 点:	B7- 436/531 室 号台	考	勤:	
实验日期:		_ 评	分:	
预习检查纪录:		_ 实验	教师:	

一、实验目的

二、实验原理 (重点简述实验原理。)

三、实验设备

电子实验箱

四、实验预习要求

预习集成电路 74LS47、74LS160 的逻辑功能及使用方法,在 74LS160 的十进制计数器电路的基础上,通过改变电路连接,利用清零端 CLR 或置数端 LD 的功能,分别用反馈清零法和反馈置数法设计一个五进制计数器,显示 0, 1, 2, 3, 4 五位数码。(提示:可利用与非门辅助设计),分别画出逻辑电路图。

五、实验过程与实验数据

(叙述具体实验过程的步骤和方法,记录实验数据。)

表 4-23-2

十进制计数器测试

秋 1-25-2				1 30 111 101 100			
74LS47 辅助输入端 74LS160、8421 码输出端状态							
	状	态					字型
	<u></u>	$\frac{1}{DI}$	$Q_3(D)$	$Q_2(C)$	$Q_1(B)$	$Q_0(A)$	显示
LT	RBI	RI / RBO	L_4	L_3	L_2	L_1	
1	×	1					
1	×	1					
1	×	1					
1	×	1					
1	×	1					
1	×	1					
1	×	1					
1	×	1					
1	×	1					
1	×	1					
	1 1 1 1 1 1 1 1	74LS47	74LS47 辅助输入端 状态 I	74LS47 辅助输入端 状态 74 状态 IT RBI RI / RBO Q3 (D) L4 1 × 1 1 × 1 1 × 1 1 × 1 1 × 1 1 × 1 1 × 1 1 × 1 1 × 1 1 × 1 1 × 1 1 × 1 1 × 1 1 × 1	74LS47 辅助输入端 状态 74LS160、84 LT RBI RI / RBO Q3 (D) L4 Q2 (C) L3 1 × 1 1 1 × 1 1 1 × 1 1 1 × 1 1 1 × 1 1 1 × 1 1 1 × 1 1 1 × 1 1 1 × 1 1 1 × 1 1 1 × 1 1 1 × 1 1	74LS47 辅助输入端 状态 74LS160、8421 码输出部 状态 LT RBI RI / RBO Q3 (D) L4 Q2 (C) L3 Q1 (B) L2 1 × 1 1 × 1 1 × 1 1 × 1 1 × 1 1 × 1 1 × 1 1 × 1 1 × 1 1 × 1 1 × 1 1 × 1 1 × 1 1 × 1	74LS47 辅助输入端 状态 74LS160、8421 码输出端状态 正T RBI RI / RBO Q3 (D) L4 Q2 (C) L3 Q1 (B) L2 Q0 (A) L1 1 × 1 × 1 1 × 1 × 1 1 × 1 × 1 1 × 1 × 1 1 × 1 × 1 1 × 1 × 1 1 × 1 × 1 1 × 1 × 1 1 × 1 × 1 1 × 1 × 1

六、	实验	总结
/		/UN /H

1. 完善预习要求中的五进制电路图,总结反馈清零法和反馈置数法的差别及优缺点。

2. 如何用 2 片十进制计数器 74LS160 构成一个六十进制计数器?

自选综合设计实验

实验名称——

专业/班级:		_ 姓	名:	
地 点:	B7- 436/531 室 号台	_ 考	勤:	
实验日期:		_ 评	分:	
预习检查纪录:		_ 实验	教师:	

一、实验目的

二、设计任务与要求

三、设计原理

(重点叙述设计电路原理, 画出设计电路图)

四、	实验设备
<u> </u>	入业以田

五、实验过程与实验数据

(叙述具体实验过程的步骤和方法,设计整体电路图,并画出记录实验数据的表格,记录实验数据。)

六、实验总结

1. 说明实验电路工作原理;

2. 总结实验过程出现的问题并说明解决方法。

本课程实验小结

(心得体会,包括成功或失败的实验经验;遇到故障或出现问题的处理方法;针对该实验课程的具体建议,例如实验的参数如何设置更合理、实验内容的难易程度是否合适;收获等。)

实验报告毫米方格作图纸

姓名	学号	实验名称

