Professor_Bear_Image_Analysis_Edge_Detection

March 14, 2017

1 Professor Bear :: Image Analysis :: Edge Detection

1.1 Professor Bear github

Code for Professor Bear YouTube videos at https://github.com/nikbearbrown

1.2 Download Anaconda 4 for Python 2.7

Download Anaconda 4 for Python 2.7 version https://www.continuum.io/downloads Anaconda 4.3.0 includes an easy installation of Python (2.7.13, 3.4.5, 3.5.2, and/or 3.6.0) and updates of over 100 pre-built and tested scientific and analytic Python packages. These packages include NumPy, Pandas, SciPy, Matplotlib, and Jupyter. Over 620 more packages are available. https://docs.continuum.io/anaconda/pkg-docs

1.3 iPython

Go to the directory that has your iPython notebook
At the command line type
jupyter notebook notebookname
ipython notebook notebookname will also work
For example,
jupyter notebook Professor_Bear_Image_Analysis_Loading_Histograms.ipynb

```
from scipy import ndimage as nd
from scipy.ndimage import convolve
from skimage import feature
import glob # for bulk file import
# Set defaults
plt.rcParams['image.cmap'] = 'gray' # Display grayscale images in... graysc
plt.rcParams['image.interpolation'] = 'none' # Use nearest-neighbour
plt.rcParams['figure.figsize'] = 10, 10
# Import test images
imgpaths = glob.glob("./images/*.jpg") + glob.glob("./images/*.png")
# imgpaths = glob.glob("images/*.jpg") + glob.glob("images/*.png") Windows
# Windows has different relative paths than Mac/Unix
imgset = [mpimg.imread(x) for x in imgpaths]
# Display thumbnails of the images to ensure loading
plt.figure()
for i,img in enumerate(imgset):
              plt.subplot(1, len(imgset), i+1)
              plt.imshow(img, cmap = 'gray')
               a consumption of consumption of consumptions o
```

1.4 Simple Edge Detection

A simple edge detection algorithm would look for edges where there is the greatest difference amongst pixels and their neighbors. Let's try it.

```
In [2]: # Find horizontal edges using a simple shifting method
    def find_horizontal_edges(img):
        imgbw = img_as_float(color.rgb2grey(img))
        return np.abs(imgbw[:, 1:] - imgbw[:, :-1])

# Find vertical edges using a simple shifting method
    def find_vertical_edges(img):
        imgbw = img_as_float(color.rgb2grey(img))
        return np.abs(imgbw[1:, :] - imgbw[:-1, :])
In [3]: # Apply to image set
    for i,img in enumerate(imgset):
        plt.figure()
```

```
plt.subplot(1, 3, 1)
plt.title('Original')
plt.imshow(img)
plt.subplot(1, 3, 2)
plt.title('Horizontal Edges')
plt.imshow(find_horizontal_edges(img))
plt.subplot(1, 3, 3)
plt.title('Vertical Edges')
plt.imshow(find_vertical_edges(img))
```



```
In [4]: # Downsample an image by skipping indicies
        def downsample image(img, skip):
              return img[::skip,::skip]
In [5]: # Apply to image set
        for i,img in enumerate(imgset):
             img = downsample_image(img, 3) # downsample
             plt.figure()
             plt.subplot(1, 3, 1)
             plt.title('Original')
             plt.imshow(img)
             plt.subplot(1, 3, 2)
             plt.title('Horizontal Edges')
             plt.imshow(find_horizontal_edges(img))
             plt.subplot(1, 3, 3)
             plt.title('Vertical Edges')
             plt.imshow(find_vertical_edges(img))
              Original
                                   Horizontal Edges
                                                            Vertical Edges
     50
                             50
                                                     50
                            100
    100
                                                    100
    150
                            150
                                                    150
    200
                            200
                                                    200
                                                         50 100 150 200 250 300
                               0 50 100 150 200 250 300
                                                       0
       0
         50 100 150 200 250 300
```


2 Python Tutorials

```
Python 101 Beginning Python http://www.rexx.com/~dkuhlman/python_101/python_101.html
The Official Python Tutorial - [http://www.python.org/doc/current/tut/tut.html](http://www.python.org/
The Python Quick Reference -http://rgruet.free.fr/PQR2.3.html
YouTube Python Tutorials
Google Python Class - http://www.youtube.com/watch?v=tKTZoB2Vjuk
Python Fundamentals Training - Classes http://www.youtube.com/watch?v=
rKzZEtxIX14
Python 2.7 Tutorial Derek Banas - http://www.youtube.com/watch?v=UQi-L-_chcc
```

Python Programming Tutorial thenewboston - http://www.youtube.com/watch?v=

3 Evaluation

4Mf0h3HphEA

Install Anaconda 4 for Python 2.7 and get this notebook to run with a set of your images.