Mixed models applied to breeding

Alencar Xavier
March 13th - March 15th, 2019

file:///C:/Users/rd7564/Desktop/PurdueMLM/Purdue_MLM.html#1

1/170

2/18/2019

Mixed models applied to breeding

Instructors

Alencar Xavier

- · Quantitative Geneticist, Corteva Agrisciences
- · Adjunct professor, Dpt. of Agronomy, Purdue University

Luiz Brito

· Assistant Professor of Animal Sciences, Purdue University

Hinayah Oliveira

· Post-doc, Dtp. of Animal Sciences, Purdue University

Katy Rainey

· Associate Professor, Dpt. of Agronomy, Purdue University

Schedule

- · Module 1: Intro to mixed models
- · Module 2: Fitting mixed models
- · Module 3: Advanced topics
- · Module 4: Signal detection
- · Module 5: Association analysis

3/170

file:///C:/Users/rd7564/Desktop/PurdueMLM/Purdue_MLM.html#1

3/170

2/18/2019

Mixed models applied to breeding

Module 1 - Introduction to mixed models

Outline

Part 1: Concepts

- · History of mixed models
- · Mixed models in plant breeding
- · Fixed and random terms
- Model notation
- · Variance decomposition

Part 2: Applications

- · Selection models
- · Practical examples
- · Variance components
- · Ridges and Kernels

5/170

file:///C:/Users/rd7564/Desktop/PurdueMLM/Purdue_MLM.html#1

5/170

2/18/2019

Mixed models applied to breeding

Part 1 - Concepts

History of mixed models

Francis Galton - 1886: Regression and heritability

Ronald Fisher - 1918: Infinitesimal model (P = G + E)

Sewall Wright - 1922: Genetic relationship

Charles Henderson - 1968: BLUP using relationship

7/170

file:///C:/Users/rd7564/Desktop/PurdueMLM/Purdue_MLM.html#1

7/170

2/18/2019

Mixed models applied to breeding

Mixed models in plant breeding

- · Heart and soul of plant breeding (Xavier et al 2017)
- Variance components and heritability (Johnson and Thompson 1994)
- Trait associations (Gianola and Sorensen 2014)
- Estimation of genetic and breedingvalues (Piepho et al 2008)
- · Prediction of unphenotyped lines (de los Campos et al 2013)
- · Selection index (Wientjes et al. 2016)
- · Genome-wide association analysis (Yang et al 2014)
- · All sorts of inference (Robinson 1991)

Fixed and random terms

Fixed effect

- · Assumed to be invariable (often you cannot recollect the data)
- · Inferences are made upon the parameters
- · Results can not be extrapolated to other datasets
- · Example: Overall mean and environmental effects

Random effects

- · You may not have all the levels available
- · Inference are made on variance components
- · Prior assumption: coefficients are normally distributed
- · Results can not be extrapolated to other datasets
- · Example: Genetic effects

9/170

file:///C:/Users/rd7564/Desktop/PurdueMLM/Purdue_MLM.html#1

9/170

2/18/2019

Mixed models applied to breeding

Let's unleash the beast

Model notation

- Linear model: y = Xb + Zu + e
- · With variance: $y \sim N(Xb, ZKZ\sigma_u^2 + I\sigma_e^2)$

Assuming: $u \sim N(0, K\sigma_u^2)$ and $e \sim N(0, I\sigma_e^2)$

Henderson equation

$$\begin{bmatrix} X'X & Z'X \\ X'Z & Z'Z + \lambda K^{-1} \end{bmatrix} \begin{bmatrix} b \\ u \end{bmatrix} = \begin{bmatrix} X'y \\ Z'y \end{bmatrix}$$

Summary:

- We know (data): $x = \{y, X, Z, K\}$
- · We want (parameters): $heta = \{b, u, \sigma_a^2, \sigma_e^2\}$
- Estimation based on Gaussian likelihood: $L(x|\theta)$

11/170

file:///C:/Users/rd7564/Desktop/PurdueMLM/Purdue_MLM.html#1

11/170

2/18/2019

Mixed models applied to breeding

Model notation

- y = vector of observations (n)
- · X = design matrix of fixed effects (n x p)
- · Z = design (or incidence) matrix of random effects (n x p)
- · K = random effect correlation matrix (q x q)
- \mathbf{u} = vector of random effect coefficients (q)
- b = vector of fixed effect coefficients (p)
- **e** = vector of residuals (*n*)
- σ_a^2 = marker effect variance (1)
- σ_u^2 = random effect variance (1)
- σ_e^2 = residual variance (1)
- $\lambda = \sigma_e^2/\sigma_u^2$ (Regularization parameters) (1)

Model notation

The mixed model can also be notated as follows

$$y = Wg + e$$

Solved as

$$[W'W + \Sigma]g = [W'y]$$

Where

$$W = [X, Z]$$

$$g = [b, u]$$

$$\Sigma = \begin{bmatrix} 0 & 0 \\ 0 & \lambda K^{-1} \end{bmatrix}$$

13/170

file:///C:/Users/rd7564/Desktop/PurdueMLM/Purdue_MLM.html#1

13/170

2/18/2019

Mixed models applied to breeding

Variance decomposition

Part 2 - Applications

15/170

file:///C:/Users/rd7564/Desktop/PurdueMLM/Purdue_MLM.html#1

15/170

2/18/2019

Mixed models applied to breeding

Selection

- 1 Genetic values
- · BLUPs or BLUEs from replicated trials
- · Captures additive and non-additive genetics together
- 2 Breeding values
- ullet Use pedigree information to create K
- · Captures additive genetics (heritable)
- · Trials not necessarily replicated
- 3 Genomic Breeding values
- · Genotypic information replaces pedigree
- · Any signal: additivity, dominance and epistasis

- · Example 1: Balanced data, no kinship
- · Example 2: Balanced data, with kinship
- · Example 3: Unbalanced data, with kinship
- · Example 4: Balanced data, missing individual

17/170

file:///C:/Users/rd7564/Desktop/PurdueMLM/Purdue_MLM.html#1

17/170

2/18/2019

Mixed models applied to breeding

Example 1

Data:

Model: $Phenotype = Environment_{(F)} + Genotype_{(R)}$

Design matrix W:

##	EnvE1	EnvE2	EnvE3	GenG1	GenG2	GenG3	GenG4
## 1	1	0	0	1	0	0	0
## 2	1	0	0	0	1	0	0
## 3	1	0	0	0	0	1	0
## 4	1	0	0	0	0	0	1
## 5	0	1	0	1	0	0	0
## 6	0	1	0	0	1	0	0
## 7	0	1	0	0	0	1	0
## 8	0	1	0	0	0	0	1
## 9	0	0	1	1	0	0	0
## 10	0	0	1	0	1	0	0
## 11	0	0	1	0	0	1	0
## 12	0	0	1	0	0	0	1

19/170

file:///C:/Users/rd7564/Desktop/PurdueMLM/Purdue_MLM.html#1

19/170

2/18/2019

Mixed models applied to breeding

Example 1

W'W:

##	EnvE1	EnvE2	EnvE3	GenG1	GenG2	GenG3	GenG4
## EnvE1	4	0	0	1	1	1	1
## EnvE2	0	4	0	1	1	1	1
## EnvE3	0	0	4	1	1	1	1
## GenG1	1	1	1	3	0	0	0
## GenG2	1	1	1	0	3	0	0
## GenG3	1	1	1	0	0	3	0
## GenG4	1	1	1	0	0	0	3

Left-hand side ($W'W + \Sigma$):

Assuming independent individuals: K = I

```
Regularization: \lambda = \sigma_e^2/\sigma_u^2 = 1.64/9.56 = 0.17
```

21/170

file:///C:/Users/rd7564/Desktop/PurdueMLM/Purdue_MLM.html#1

21/170

2/18/2019

Mixed models applied to breeding

Example 1

Right-hand side (W'y):

```
## [,1]
## EnvE1 202
## EnvE2 204
## EnvE3 211
## GenG1 152
## GenG2 145
## GenG3 156
## GenG4 164
```

We can find coefficients through least-square solution

$$g = (LHS)^{-1}(RHS) = (W'W + \Sigma)^{-1}W'y$$

[,1] ## EnvE1 50.50 ## EnvE2 51.00 ## EnvE3 52.75 ## GenG1 -0.71

GenG2 -2.92 ## GenG3 0.55 ## GenG4 3.08

23/170

file:///C:/Users/rd7564/Desktop/PurdueMLM/Purdue_MLM.html#1

23/170

2/18/2019

Mixed models applied to breeding

Shrinkage

$$BLUE = rac{w'y}{w'w} = rac{sum}{n}$$
 = simple average

$$BLUP = rac{w'y}{w'w + \lambda} = rac{sum}{n + \lambda}$$
 = biased average = $BLUE imes h^2$

Note:

- More observations = less shrinkage
- ' Higher heritability = less shrinkage: $\lambda = \frac{h^2-1}{h^2}$

If we know the relationship among individuals:

```
## GenG1 GenG2 GenG3 GenG4

## GenG1 1.00 0.64 0.23 0.48

## GenG2 0.64 1.00 0.33 0.67

## GenG3 0.23 0.33 1.00 0.31

## GenG4 0.48 0.67 0.31 1.00
```

25/170

file:///C:/Users/rd7564/Desktop/PurdueMLM/Purdue_MLM.html#1

25/170

2/18/2019

Mixed models applied to breeding

Example 2

Then we estimate λK^{-1}

```
## GenG1 GenG2 GenG3 GenG4
## GenG1 0.15 -0.09 0.00 -0.01
## GenG2 -0.09 0.22 -0.02 -0.10
## GenG3 0.00 -0.02 0.10 -0.02
## GenG4 -0.01 -0.10 -0.02 0.17
```

Regularization: $\lambda = \sigma_e^2/\sigma_u^2 = 1.64/17.70 = 0.09$

And the left-hand side becomes

27/170

file:///C:/Users/rd7564/Desktop/PurdueMLM/Purdue_MLM.html#1

27/170

2/18/2019

Mixed models applied to breeding

Example 2

We can find coefficients through least-square solution

$$g = (LHS)^{-1}(RHS) = (W'W + \Sigma)^{-1}W'y$$

Genetic coefficients shrink more: Var(A) < Var(G)

What if we have missing data?

```
## Env Gen Phe
## 1 E1 G1 47
## 2 E1 G2 51
## 3 E1 G3 NA
## 4 E1 G4 58
## 5 E2 G1 52
## 6 E2 G2 46
## 7 E2 G3 52
## 8 E2 G4 NA
## 9 E3 G1 53
## 10 E3 G2 48
## 11 E3 G3 58
## 12 E3 G4 52
```

29/170

file:///C:/Users/rd7564/Desktop/PurdueMLM/Purdue_MLM.html#1

29/170

2/18/2019

Mixed models applied to breeding

Example 3

Rows of missing points are removed

##		EnvE1	EnvE2	EnvE3	GenG1	GenG2	GenG3	GenG4
##	1	1	0	0	1	0	0	0
##	2	1	0	0	0	1	0	0
##	4	1	0	0	0	0	0	1
##	5	0	1	0	1	0	0	0
##	6	0	1	0	0	1	0	0
##	7	0	1	0	0	0	1	0
##	9	0	0	1	1	0	0	0
##	10	0	0	1	0	1	0	0
##	11	0	0	1	0	0	1	0
##	12	0	0	1	0	0	0	1

W'W:

##	EnvE1	EnvE2	EnvE3	GenG1	GenG2	GenG3	GenG4
## EnvE1	3	0	0	1	1	0	1
## EnvE2	0	3	0	1	1	1	0
## EnvE3	0	0	4	1	1	1	1
## GenG1	1	1	1	3	0	0	0
## GenG2	1	1	1	0	3	0	0
## GenG3	0	1	1	0	0	2	0
## GenG4	1	0	1	0	0	0	2

31/170

file:///C:/Users/rd7564/Desktop/PurdueMLM/Purdue_MLM.html#1

31/170

2/18/2019

Mixed models applied to breeding

Example 3

Left-hand side ($W'W + \Sigma$):

```
## EnvE1 EnvE2 EnvE3 GenG1 GenG2 GenG4 GenG4 ## EnvE1 3 0 0 0 1.00 1.00 0.00 1.00 ## EnvE3 0 0 0 1.00 1.00 1.00 0.00 ## EnvE3 0 0 0 4 1.00 1.00 1.00 1.00 1.00 ## GenG2 1 1 1 1 3.10 -0.06 0.00 -0.01 ## GenG3 0 1 1 0 0.00 -0.01 2.07 -0.01 ## GenG4 1 0 0 1 0 0.00 -0.01 2.01 2.01
```

Regularization: $\lambda = \sigma_e^2/\sigma_u^2 = 1.21/19.61 = 0.06$

Right-hand side (W'y):

```
## [,1]
## EnvE1 156
## EnvE2 150
## EnvE3 211
## GenG1 152
## GenG2 145
## GenG4 110
```

33/170

file:///C:/Users/rd7564/Desktop/PurdueMLM/Purdue_MLM.html#1

33/170

2/18/2019

Mixed models applied to breeding

Example 3

Find coefficients through least-square solution

$$g = (LHS)^{-1}(RHS) = (W'W + \Sigma)^{-1}W'y$$

```
## EnvE1 54.14
## EnvE2 51.70
## EnvE3 53.82
## GenG1 -2.56
## GenG2 -4.68
## GenG3 2.15
## GenG4 0.81
```

What if we are missing data from a individual?

```
## Env Gen Phe
## 1 E1 G1 NA
## 2 E1 G2 51
## 3 E1 G3 46
## 4 E1 G4 58
## 5 E2 G1 NA
## 6 E2 G2 46
## 7 E2 G3 52
## 8 E2 G4 54
## 9 E3 G1 NA
## 10 E3 G2 48
## 11 E3 G3 58
## 12 E3 G4 52
```

35/170

file:///C:/Users/rd7564/Desktop/PurdueMLM/Purdue_MLM.html#1

35/170

2/18/2019

Mixed models applied to breeding

Example 4

Rows of missing points are removed

##		EnvE1	EnvE2	EnvE3	GenG1	GenG2	GenG3	GenG4
##	2	1	0	0	0	1	0	0
##	3	1	0	0	0	0	1	0
##	4	1	0	0	0	0	0	1
##	6	0	1	0	0	1	0	0
##	7	0	1	0	0	0	1	0
##	8	0	1	0	0	0	0	1
##	10	0	0	1	0	1	0	0
##	11	0	0	1	0	0	1	0
##	12	0	0	1	0	0	0	1

W'W:

##	EnvE1	EnvE2	EnvE3	GenG1	GenG2	GenG3	GenG4
## EnvE1	3	0	0	0	1	1	1
## EnvE2	0	3	0	0	1	1	1
## EnvE3	0	0	3	0	1	1	1
## GenG1	0	0	0	0	0	0	0
## GenG2	1	1	1	0	3	0	0
## GenG3	1	1	1	0	0	3	0
## GenG4	1	1	1	0	0	0	3

37/170

file:///C:/Users/rd7564/Desktop/PurdueMLM/Purdue_MLM.html#1

37/170

2/18/2019

Mixed models applied to breeding

Example 4

Left-hand side ($W'W + \Sigma$):

```
## EnvE1 EnvE2 EnvE3 GenG1 GenG2 GenG4 GenG4 ## EnvE1 3 0 0 0 0 0 0 1.00 1.00 1.00 ## EnvE3 0 3 0 0 0 0 0 1.00 1.00 1.00 ## EnvE3 0 0 0 0 0 0 1.00 1.00 1.00 ## GenG1 0 0 0 0 0 1.00 1.00 0 0.01 ## GenG2 1 1 1 0 0.00 0 0.02 3.09 0.01 ## GenG3 1 1 1 0 0.00 0.00 0.00 0.01 3.15
```

Regularization: $\lambda = \sigma_e^2/\sigma_u^2 = 1.79/22.78 = 0.08$

Right-hand side (W'y):

```
## [,1]
## EnvE1 155
## EnvE2 152
## EnvE3 158
## GenG1 0
## GenG2 145
## GenG3 156
## GenG4 164
```

39/170

file:///C:/Users/rd7564/Desktop/PurdueMLM/Purdue_MLM.html#1

39/170

2/18/2019

Mixed models applied to breeding

Example 4

Find coefficients through least-square solution

$$g = (LHS)^{-1}(RHS) = (W'W + \Sigma)^{-1}W'y$$

```
## EnvE1 52.06
## EnvE2 51.06
## EnvE3 53.06
## GenG1 -1.82
## GenG2 -3.48
## GenG3 -0.07
## GenG4 2.38
```

Variance components

Expectation-Maximization REML (1977)

$$\sigma_u^2=rac{u'K^{-1}u}{q-\lambda tr(K^{-1}C^{22})}$$
 and $\sigma_e^2=rac{e'y}{n-p}$

Bayesian Gibbs Sampling (1993)

$$\sigma_u^2=rac{u'K^{-1}u+S_u
u_u}{\chi^2(q+
u_u)}$$
 and $\sigma_e^2=rac{e'e+S_e
u_e}{\chi^2(n+
u_e)}$

Predicted Residual Error Sum of Squares (PRESS) (2017)

- $\dot{}$ $\lambda = argmin(\sum e_i^2/(1-h_{ii})^2)$
- · Where $H=(I+K\lambda)^{-1}$ and $e=y-\mu-Hy$

41/170

file:///C:/Users/rd7564/Desktop/PurdueMLM/Purdue_MLM.html#1

41/170

2/18/2019

Mixed models applied to breeding

Ridges and Kernels

Kernel methods:

- · Genetic signal is captured by the relationship matrix K
- · Random effect coefficients are the **breeding values** (BV)
- · Efficient to compute BV when $markers \gg individuals$
- Easy use and combine pedigree, markers and interactions

Ridge methods:

- \cdot Genetic signal is captured by the design matrix M
- · Random effect coefficients are the marker effects
- · Easy way to make predictions of unobserved individuals
- Enables to visualize where the QTLs are in the genome

Ridges and Kernels

Kernel

$$y = Xb + Zu + e$$
 , $u \sim N(0, K\sigma_u^2)$

Ridge

$$y = Xb + Ma + e$$
 , $a \sim N(0, I\sigma_a^2)$

Where

- · M is the genotypic matrix, $m_{ij} = \{0,1,2\}$
- $K = \alpha MM'$
- u = Ma
- $\sigma_a^2 = \alpha \sigma_u^2$

43/170

file:///C:/Users/rd7564/Desktop/PurdueMLM/Purdue_MLM.html#1

43/170

2/18/2019

Mixed models applied to breeding

Ridges and Kernels

Kernel model

$$egin{bmatrix} X'X & Z'X \ X'Z & Z'Z + K^{-1}(\sigma_e^2/\sigma_u^2) \end{bmatrix} egin{bmatrix} b \ u \end{bmatrix} = egin{bmatrix} X'y \ Z'y \end{bmatrix}$$

Ridge model

$$\left[egin{array}{cc} X'X & M'X \ X'M & M'M+I^{-1}(\sigma_e^2/\sigma_a^2) \end{array}
ight] \left[egin{array}{cc} b \ a \end{array}
ight] = \left[egin{array}{cc} X'y \ M'y \end{array}
ight]$$

Both models capture same genetic signal (de los Campos 2015)

Ridges and Kernels

```
K = tcrossprod(M)/ncol(M)
GBLUP = rem1(y=y,K=K); Kernel_GEBV = GBLUP$EBV
RRBLUP = rem1(y=y,Z=M); Ridge_GEBV = M%*%RRBLUP$EBV
plot(Kernel_GEBV,Ridge_GEBV, main='Comparing results')
```

Comparing results

45/170

file:///C:/Users/rd7564/Desktop/PurdueMLM/Purdue_MLM.html#1

45/170

2/18/2019

Mixed models applied to breeding

Break

Module 2 - Fitting mixed models

file:///C:/Users/rd7564/Desktop/PurdueMLM/Purdue_MLM.html#1

47/170

2/18/2019

Mixed models applied to breeding

Example 1 - Sorghum

Example 1 - load data

Example dataset from Kevin's agridat package

```
data(adugna.sorghum, package = 'agridat')
dt = adugna.sorghum
head(dt)

### gen trial env yield year loc
## 1 G16    T2 E01    590 2001 Mieso
## 2 G17    T2 E01    554 2001 Mieso
## 3 G18    T2 E01    586 2001 Mieso
## 4 G19    T2 E01    738 2001 Mieso
## 5 G20    T2 E01    489 2001 Mieso
## 6 G21    T2 E01    684 2001 Mieso
```

49/170

file:///C:/Users/rd7564/Desktop/PurdueMLM/Purdue_MLM.html#1

49/170

2/18/2019

Mixed models applied to breeding

Example 1 - Getting design matrix

- · Linear model: Pheotype = Env + Gen
- In algebra notation: y = Xb + Zu + e

```
y = dt$yield
X = model.matrix(y~env,dt)
Z = model.matrix(y~gen-1,dt) # "-1" means no intercept
```

Assuming:

- · $u \sim N(0, I\sigma_q^2)$
- · $e \sim N(0, I\sigma_e^2)$

Example 1 - Visualize X and Z matrices

```
SEE=function(A,...)image(t(1-A[nrow(A):1,]),axes=F,col=gray.colors(2),...)
par(mfrow=c(1,2),mar=c(1,1,3,1))
SEE(X, main=paste("X matrix (",paste(dim(X),collapse=' x '),")" ))
SEE(Z, main=paste("Z matrix (",paste(dim(Z),collapse=' x '),")" ))
```

X matrix (289 x 13)

Z matrix (289 x 28)

51/170

file:///C:/Users/rd7564/Desktop/PurdueMLM/Purdue_MLM.html#1

51/170

2/18/2019

Mixed models applied to breeding

Example 1 - Fit the model

```
# Using the NAM package (same for rrBLUP, EMMREML, BGLR)
require(NAM, quietly = TRUE)
fit1 = reml(y=y,X=X,Z=Z)

# Alternatively, you can also use formulas with NAM
fit1b = reml(y=dt$yield,X=~dt$env,Z=~dt$gen )

# Using the Lme4 package
require(lme4, quietly = TRUE)
fit2 = lmer(yield ~ env + (1|gen), data=dt)
```

Example 1 - Variance components

fit1\$VC[c(1:2)] # same with fit1b\$VC

1 189680.4 442075.6

data.frame((summary(fit2))\$varcor)\$vcov

[1] 189680.4 442075.6

· VC can be used to measure broad-sense heritability

$$H = rac{\sigma_g^2}{\sigma_q^2 + \sigma_e^2/n} = rac{189680.4}{189680.4 + 442075.6/10.32} = 0.82$$

53/170

file:///C:/Users/rd7564/Desktop/PurdueMLM/Purdue_MLM.html#1

53/170

2/18/2019

Mixed models applied to breeding

Example 1 - The coefficients

```
blue1 = fit1$Fixed[,1]; blup1 = fit1$EBV
blue2 = fit2@beta; blup2 = rowMeans(ranef(fit2)$gen)
par(mfrow=c(1,2));
plot(blue1,blue2,main="BLUE"); plot(blup1,blup2,main="BLUP")
```


Example 1 - DYI BLUPs

```
iK = diag(ncol(Z))
Lambda = 442075.6/189680.4
W = cbind(X,Z)
Sigma = as.matrix(Matrix::bdiag(diag(0,ncol(X)),iK*Lambda))
LHS = crossprod(W) + Sigma
RHS = crossprod(W,y)
g = solve(LHS,RHS)
my_blue = g[ c(1:ncol(X))]
my_blup = g[-c(1:ncol(X))]
```

55/170

file:///C:/Users/rd7564/Desktop/PurdueMLM/Purdue_MLM.html#1

55/170

2/18/2019

Mixed models applied to breeding

Example 1 - DYI BLUPs

```
par(mfrow=c(1,2))
plot(my_blue,blue1,main="BLUE")
plot(my_blup,blup1,main="BLUP")
```


Example 1 - DYI Variance components

```
\begin{split} \sigma_e^2 &= \frac{e'y}{n-p} \text{ and } \sigma_u^2 = \frac{u'K^{-1}u + tr(K^{-1}C^{22}\sigma_e^2)}{q} \\ \text{e = y - X %*% my_blue - Z %*% my_blup} \\ \text{Ve = c(y%*%e)/(length(y)-ncol(X))} \\ \text{Ve} \\ &\# \text{ [1] 442075.6} \\ \text{trKC22 = sum(diag(iK%*%(solve(LHS)[-c(1:ncol(X)),-c(1:ncol(X))])))} \\ \text{Vg = Vg = c(t(my_blup)%*%iK%*%my_blup+trKC22*Ve)/ncol(Z)} \\ \text{Vg} \\ &\# \text{ [1] 189680.4} \end{split}
```

57/170

file:///C:/Users/rd7564/Desktop/PurdueMLM/Purdue_MLM.html#1

57/170

2/18/2019

Mixed models applied to breeding

Starting from bad variance components

```
Ve = Vg = 1
for(i in 1:25){
    Lambda = Ve/Vg;
    Sigma = as.matrix(Matrix::bdiag(diag(0,ncol(X)),iK*Lambda))
    LHS = crossprod(W) + Sigma; RHS = crossprod(W,y); g = solve(LHS,RHS)
    my_blue = g[ c(1:ncol(X))]; my_blup = g[-c(1:ncol(X))]
    e = y - X%*Mmy_blue - Z%*Mmy_blup; Ve = c(y%*%e)/(length(y)-ncol(X))
    trKC22 = sum(diag(iK%*%(solve(LHS)[(ncol(X)+1):(ncol(W)),(ncol(X)+1):(ncol(W))])))
    Vg = c(t(my_blup)%*%iK%*Mmy_blup+trKC22*Ve)/ncol(Z)
    if(!i%%5){cat('It',i,'VC: Vg =',Vg,'and Ve =',Ve,'\n')}}
### It 5 VC: Vg = 191751.1 and Ve = 441110.7
### It 10 VC: Vg = 189728.4 and Ve = 442053.2
### It 15 VC: Vg = 189681.5 and Ve = 442075.6
### It 20 VC: Vg = 189680.4 and Ve = 442075.6
### It 25 VC: Vg = 189680.4 and Ve = 442075.6
```

Example 2 - Barley

59/170

file:///C:/Users/rd7564/Desktop/PurdueMLM/Purdue_MLM.html#1

59/170

2/18/2019

Mixed models applied to breeding

Example 2 - load data

Another example dataset from Kevin's agridat package

```
data(steptoe.morex.pheno,package='agridat')
dt = steptoe.morex.pheno
head(dt)
```

##	gen	env	amylase	diapow	hddate	lodging	malt	height	protein	yield
##	1 Steptoe	MN92	22.7	46	149.5	NA	73.6	84.5	10.5	5.5315
##	2 Steptoe	MTi92	30.1	72	178.0	10	76.5	NA	11.2	8.6403
##	3 Steptoe	MTd92	26.7	78	165.0	15	74.5	75.5	13.4	5.8990
##	4 Steptoe	ID91	26.2	74	179.0	NA	74.1	111.0	12.1	8.6290
##	5 Steptoe	OR91	19.6	62	191.0	NA	71.5	90.0	11.7	5.3440
##	6 Steptoe	WA91	23.6	54	181.0	NA	73.8	112.0	10.0	6.2700

Example 2 - Getting design matrix

- Linear model: Phe = Env + Gen
- In algebra notation: y = Xb + Zu + e

```
X = model.matrix(~env,dt)
Z = model.matrix(~gen-1,dt) # "-1" means no intercept
y = dt$yield
```

61/170

file:///C:/Users/rd7564/Desktop/PurdueMLM/Purdue_MLM.html#1

61/170

2/18/2019

Mixed models applied to breeding

Example 2 - Fit the model

```
# Fit
fit0 = reml(y=y,X=X,Z=Z)

# BLUE and BLUP
blue0 = fit0$Fixed[,1]
blup0 = fit0$EBV

# Get VC
fit0$VC[c(1:2)]

## Vg Ve
## 1 0.1320092 0.6379967
```

Example 2 - DYI BLUPs

```
iK = diag(ncol(Z))
Lambda = 0.637997/0.132009
W = cbind(X,Z)
Sigma = as.matrix(Matrix::bdiag(diag(0,ncol(X)),iK*Lambda))
LHS = crossprod(W) + Sigma
RHS = crossprod(W,y)
g = solve(LHS,RHS)
my_blue = g[ c(1:ncol(X))]
my_blup = g[-c(1:ncol(X))]
```

63/170

file:///C:/Users/rd7564/Desktop/PurdueMLM/Purdue_MLM.html#1

63/170

2/18/2019

Mixed models applied to breeding

Example 2 - DYI BLUPs

```
par(mfrow=c(1,2))
plot(my_blue,blue0,main="BLUE")
plot(my_blup,blup0,main="BLUP")
```


Example 2 - Check variance components

```
\begin{split} \sigma_e^2 &= \frac{e'y}{n-p} \text{ and } \sigma_u^2 = \frac{u'K^{-1}u + tr(K^{-1}C^{22}\sigma_e^2)}{q} \\ \text{e = y - X %*% my_blue - Z %*% my_blup} \\ \text{Ve = c(y%*%e)/(length(y)-ncol(X))} \\ \text{Ve} \\ &\# \text{ [1] 0.6379967} \\ \text{trKC22 = sum(diag(iK%*%(solve(LHS)[-c(1:ncol(X)),-c(1:ncol(X))])))} \\ \text{Vg = c(t(my_blup)%*%iK%*my_blup+trKC22*Ve)/ncol(Z)} \\ \text{Vg} \\ &\# \text{ [1] 0.1320091} \end{split}
```

65/170

file:///C:/Users/rd7564/Desktop/PurdueMLM/Purdue_MLM.html#1

65/170

2/18/2019

Mixed models applied to breeding

Starting from bad variance components

```
Ve = Vg = 1
for(i in 1:25){
    Lambda = Ve/Vg;
    Sigma = as.matrix(Matrix::bdiag(diag(0,ncol(X)),iK*Lambda))
    LHS = crossprod(W) + Sigma; RHS = crossprod(W,y); g = solve(LHS,RHS)
    my_blue = g[ c(1:ncol(X))]; my_blup = g[-c(1:ncol(X))]
    e = y - X%*Mmy_blue - Z%*Mmy_blup; Ve = c(y%*%e)/(length(y)-ncol(X))
    trKC22 = sum(diag(iK%*%(solve(LHS)[(ncol(X)+1):(ncol(W)),(ncol(X)+1):(ncol(W))])))
    Vg = c(t(my_blup)%*%iK%*Mmy_blup+trKC22*Ve)/ncol(Z)
    if(!i%%5){cat('It',i,'VC: Vg =',Vg,'and Ve =',Ve,'\n')}}
### It 5 VC: Vg = 0.1336139 and Ve = 0.6379751
### It 10 VC: Vg = 0.1320386 and Ve = 0.6379964
### It 20 VC: Vg = 0.1320092 and Ve = 0.6379967
### It 25 VC: Vg = 0.1320092 and Ve = 0.6379967
### It 25 VC: Vg = 0.1320092 and Ve = 0.6379967
```

Example 3 - Barley GEBV

67/170

file:///C:/Users/rd7564/Desktop/PurdueMLM/Purdue_MLM.html#1

67/170

2/18/2019

Mixed models applied to breeding

Using genomic information!

```
data(steptoe.morex.geno,package='agridat')
gen = do.call("cbind",lapply(steptoe.morex.geno$geno,function(x) x$data))
gen = rbind(0,2,gen)
rownames(gen) = c('Morex','Steptoe',as.character(steptoe.morex.geno$pheno$gen))
rownames(gen)[10] = "SM8"
gen = gen[gsub('gen','',colnames(Z)),]
K = GRM(IMP(gen),T)
```

Example 3 - Fit the model

```
# Fit model
fit0 = reml(y=y,X=X,Z=Z,K=K)

# BLUE and BLUP
blue0 = fit0$Fixed[,1]
gebv0 = fit0$EBV

# Get VC
fit0$VC[c(1:2)]

## Vg Ve
## 1 1.027988 0.6575786
```

69/170

file:///C:/Users/rd7564/Desktop/PurdueMLM/Purdue_MLM.html#1

69/170

2/18/2019

Mixed models applied to breeding

Example 3 - DYI BLUPs

```
diag(K)=diag(K)+0.01; iK = solve(K)
Lambda = 0.6575786/0.2334026
W = cbind(X,Z)
Sigma = as.matrix(Matrix::bdiag(diag(0,ncol(X)),iK*Lambda))
LHS = crossprod(W) + Sigma
RHS = crossprod(W,y)
g = solve(LHS,RHS)
my_blue = g[ c(1:ncol(X))]
my_gebv = g[-c(1:ncol(X))]
```

Example 3 - DYI BLUPs

```
par(mfrow=c(1,2))
plot(my_blue,blue0,main="BLUE")
plot(my_gebv,gebv0,main="GEBV")
```


71/170

file:///C:/Users/rd7564/Desktop/PurdueMLM/Purdue_MLM.html#1

71/170

2/18/2019

Mixed models applied to breeding

Example 3 - Check variance components

$$\sigma_e^2=rac{e'y}{n-p}$$
 and $\sigma_u^2=rac{u'K^{-1}u+tr(K^{-1}C^{22}\sigma_e^2)}{q}$

e = y - X %*% my_blue - Z %*% my_blup
Ve = c(y%*%e)/(length(y)-ncol(X))
Ve

[1] 0.6379967

[1] 2.228787

Example 4 - Soybeans

73/170

file:///C:/Users/rd7564/Desktop/PurdueMLM/Purdue_MLM.html#1

73/170

2/18/2019

Mixed models applied to breeding

snp-BLUP

```
data(tpod,package='NAM')
X = matrix(1,length(y),1)
Z = gen
dim(Z)
### [1] 196 376
```

Example 3 - Fit the model

```
# Fit using the Lme4 package
fit0 = reml(y=y,X=X,Z=Z) # same as reml(y=y,Z=gen)
marker_values = fit0$EBV
gebv0 = c(gen %*% marker_values)
# Marker effects
plot(marker_values,pch=16, xlab='SNP')
```


75/170

file:///C:/Users/rd7564/Desktop/PurdueMLM/Purdue_MLM.html#1

75/170

2/18/2019

Mixed models applied to breeding

Example 3 - DYI BLUPs

```
iK = diag(ncol(Z))
Lambda = fit0$VC[2] / fit0$VC[1]
W = cbind(X,Z)
Sigma = diag( c(0,rep(Lambda,ncol(Z))) )
LHS = crossprod(W) + Sigma
RHS = crossprod(W,y)
g = solve(LHS,RHS)
my_mu = g[ c(1:ncol(X))]
my_marker_values = g[-c(1:ncol(X))]
my_gebv = c(gen %*% my_marker_values) # GEBVs from RR
```

Example 3 - DYI BLUPs

```
par(mfrow=c(1,2))
plot(my_marker_values, marker_values, main="Markers")
plot(my_gebv, gebv0, main="GEBV")
```


77/170

file:///C:/Users/rd7564/Desktop/PurdueMLM/Purdue_MLM.html#1

77/170

2/18/2019

Mixed models applied to breeding

Example 3 - Heritability from RR

```
fit0$VC
```

```
## Vg Ve h2
## 1 1.659819e-05 0.03167014 0.0005238214

Scale=sum(apply(gen,2,var)); Va=fit0$VC[1]*Scale; Ve=fit0$VC[2]
round((Va/(Va+Ve)),2)

## Vg
## 1 0.16

K = tcrossprod(apply(gen,2,function(x) x-mean(X)))
K = K/mean(diag(K)); round(reml(y,K=K)$VC,2)

## Vg Ve h2
## 1 0.01 0.03 0.16
```

Estimate VC from bad starters

```
W = cbind(X,Z); iK = diag(ncol(Z))
Ve = Vg = 1 # Bad starting values
for(i in 1:100){ # Check the VC convergence after few iterations
    Lambda = Ve/Vg;
    Sigma = as.matrix(Matrix::bdiag(diag(0,ncol(X)),iK*Lambda))
    LHS = crossprod(W) + Sigma; RHS = crossprod(W,y); g = solve(LHS,RHS)
    my_blue = g[ c(1:ncol(X))]; my_blup = g[-c(1:ncol(X))]
    e = y - X%*%my_blue - Z%*%my_blup; Ve = c(y%*%e)/(length(y)-ncol(X))
    trKC22 = sum(diag(iK%*%(solve(LHS)[(ncol(X)+1):(ncol(W)),(ncol(X)+1):(ncol(W))])))
    Vg = c(t(my_blup)%*%iK%*%my_blup+trKC22*Ve)/ncol(Z)
    if(!i%%25){cat('It',i,'VC: Vg = ',Vg,'and Ve = ',Ve,'\n')}}
## It 25 VC: Vg = 0.0002960602 and Ve = 0.01801226
## It 50 VC: Vg = 7.428217e-05 and Ve = 0.02531553
## It 75 VC: Vg = 4.000965e-05 and Ve = 0.02818575
## It 100 VC: Vg = 2.887763e-05 and Ve = 0.02956763
```

79/170

file:///C:/Users/rd7564/Desktop/PurdueMLM/Purdue_MLM.html#1

79/170

2/18/2019

Mixed models applied to breeding

Break

Module 3 - Advanced topics

file:///C:/Users/rd7564/Desktop/PurdueMLM/Purdue_MLM.html#1

81/170

2/18/2019

Mixed models applied to breeding

Outline

- · Multivariate models
- · Bayesian methods
- · Machine learning
- · G x E interactions

2/18/2019 Mixed models applied to breeding

Multivariate models

Mixed models also enable us to evaluate multiple traits:

- · More accurate parameters: BV and variance components
- · Information: Inform how traits relate to each other
- · Constrains: May increase computation time considerably

It preserves the same formulation

$$y = Xb + Zu + e$$

However, we now stack the traits together:

$$y=\{y_1,y_2,\ldots,y_k\}$$
 , $X=\{X_1,X_2,\ldots,X_k\}'$, $b=\{b_1,b_2,\ldots,b_k\}$, $Z=\{Z_1,Z_2,\ldots,Z_k\}'$, $u=\{u_1,u_2,\ldots,u_k\}$, $e=\{e_1,e_2,\ldots,e_k\}$.

The multivariate variance looks nice at first

$$Var(y) = Var(u) + Var(e)$$

But can get ugly with a closer look:

$$Var(u)=Z(G\otimes \Sigma_a)Z'=\left[egin{array}{ccc} Z_1GZ_1'\sigma_{a_1}^2 & Z_1GZ_2'\sigma_{a_{12}}\ Z_2GZ_1'\sigma_{a_{21}} & Z_2GZ_2'\sigma_{a_2} \end{array}
ight]$$

and

$$Var(e) = R \otimes \Sigma_e = egin{bmatrix} R\sigma_{e_1}^2 & R\sigma_{e_1e_2} \ R\sigma_{e_2e_1} & R\sigma_{e_2}^2 \end{bmatrix}$$

85/170

file:///C:/Users/rd7564/Desktop/PurdueMLM/Purdue_MLM.html#1

85/170

2/18/2019

Mixed models applied to breeding

Multivariate models

You can still think the multivariate mixed model as

$$y = Wg + e$$

Where

$$y = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}, W = \begin{bmatrix} X_1 & 0 & Z_1 & 0 \\ 0 & X_2 & 0 & Z_2 \end{bmatrix}, g = \begin{bmatrix} b_1 \\ b_2 \\ u_1 \\ u_2 \end{bmatrix}, e = \begin{bmatrix} e_1 \\ e_2 \end{bmatrix}$$

Left-hand side ($W'R^{-1}W + \Sigma$)

$$\begin{bmatrix} X_1'X_1\Sigma_{e_{11}}^{-1} & X_1'X_2\Sigma_{e_{12}}^{-1} & X_1'Z_1\Sigma_{e_{11}}^{-1} & X_1'Z_2\Sigma_{e_{12}}^{-1} \\ X_2'X_1\Sigma_{e_{12}}^{-1} & X_2'X_2\Sigma_{e_{22}}^{-1} & X_2'Z_1\Sigma_{e_{12}}^{-1} & X_2'Z_2\Sigma_{e_{22}}^{-1} \\ Z_1'X_1\Sigma_{e_{11}}^{-1} & Z_1'X_2\Sigma_{e_{12}}^{-1} & G^{-1}\Sigma_{a_{11}}^{-1} + Z_1'Z_1\Sigma_{e_{11}}^{-1} & G^{-1}\Sigma_{a_{12}}^{-1} + Z_1'Z_2\Sigma_{e_{12}}^{-1} \\ Z_2'X_1\Sigma_{e_{12}}^{-1} & Z_2'X_2\Sigma_{e_{22}}^{-1} & G^{-1}\Sigma_{a_{11}}^{-1} + Z_2'Z_1\Sigma_{e_{12}}^{-1} & G^{-1}\Sigma_{a_{22}}^{-1} + Z_2'Z_2\Sigma_{e_{22}}^{-1} \end{bmatrix}$$

Right-hand side $(W'R^{-1}y)$

$$\begin{bmatrix} X_1'(y_1\Sigma_{e_1}^{-1}+y_2\Sigma_{e_12}^{-1}) \\ X_2'(y_1\Sigma_{e_22}^{-1}+y_2\Sigma_{e_12}^{-1}) \\ Z_1'(y_1\Sigma_{e_12}^{-1}+y_2\Sigma_{e_1}^{-1}) \\ Z_2'(y_1\Sigma_{e_12}^{-1}+y_2\Sigma_{e_12}^{-1}) \end{bmatrix}$$

87/170

file:///C:/Users/rd7564/Desktop/PurdueMLM/Purdue_MLM.html#1

87/170

2/18/2019

Mixed models applied to breeding

Multivariate models

```
data(wheat, package = 'BGLR')
G = NAM::GRM(wheat.X);
Y = wheat.Y; colnames(Y) = c('E1','E2','E3','E4')
mmm = NAM::reml( y = Y, K = G )
knitr::kable( round(mmm$VC$GenCor,2) )
```

	E1	E2	E3	E4
E1	1.00	-0.25	-0.22	-0.50
E2	-0.25	1.00	0.96	0.55
E3	-0.22	0.96	1.00	0.72
E4	-0.50	0.55	0.72	1.00

mmm\$VC\$Vg

```
## E1 E2 E3 E4

## E1 0.6277835 -0.1446924 -0.1102175 -0.2743640

## E2 -0.1446924 0.5440731 0.4419945 0.2822577

## E3 -0.1102175 0.4419945 0.3919626 0.3130735

## E4 -0.2743640 0.2822577 0.3130735 0.4828705
```

mmm\$VC\$Ve

```
## E1 E2 E3 E4

## E1 0.53504246 0.08247812 -0.1159118 0.06882868

## E2 0.08247812 0.56214755 0.2973841 0.15795801

## E3 -0.11591175 0.29738408 0.6714234 0.11086214

## E4 0.06882868 0.15795801 0.1108621 0.59405228
```

89/170

file:///C:/Users/rd7564/Desktop/PurdueMLM/Purdue_MLM.html#1

89/170

2/18/2019

Mixed models applied to breeding

Multivariate models

- · Selection indeces, co-heritability, indirect response to selection
- · Study residual and additive genetic association among traits

 $\label{limits} \texttt{biplot(princomp(mmm$VC\$GenCor,cor=T),xlim=c(-.4,.4),ylim=c(-.11,.11))}$

When do additional traits contribute?

```
# Fit E4, predict E2
fit_E4=bWGR::mrr(matrix(Y[,4]),wheat.X); cor(fit_E4$hat[,1],Y[,2])
## [1] 0.3988844

# Fit E4 and E1, E4 predict E2
fit_E4E1=bWGR::mrr(Y[,c(1,4)],wheat.X); cor(fit_E4E1$hat[,2],Y[,2])
## [1] 0.3931193

# Fit E4 and E3, E4 predict E2
fit_E4E3=bWGR::mrr(Y[,3:4],wheat.X); cor(fit_E4E3$hat[,2], Y[,2])
## [1] 0.5279279
```

91/170

file:///C:/Users/rd7564/Desktop/PurdueMLM/Purdue_MLM.html#1

91/170

2/18/2019

Mixed models applied to breeding

Bayesian methods

Bayesian methods

The general framework on a hierarchical Bayesian model follows:

$$p(\theta|x) \propto p(x|\theta)p(\theta)$$

Where:

- Posterior probability: $p(\theta|x)$
- · Likelihood: $p(x|\theta)$
- Prior probability: $p(\theta)$

93/170

file:///C:/Users/rd7564/Desktop/PurdueMLM/Purdue_MLM.html#1

93/170

2/18/2019

Mixed models applied to breeding

Bayesian methods

For the model:

$$y = Xb + Zu + e, \quad u \sim N(0, K\sigma_a^2), \ e \sim N(0, I\sigma_e^2)$$

- $\quad \text{ Data } (x = \{y, X, Z, K\})$
- · Parameters ($\theta = \{b, u, \sigma_a^2, \sigma_e^2\}$)

Probabilistic model:

$$p(b,u,\sigma_a^2,\sigma_e^2|y,X,Z,K) \propto N(y,X,Z,K|b,u,\sigma_a^2,\sigma_e^2) imes \ N(b,u|\sigma_a^2,\sigma_e^2) imes \chi^{-2}(\sigma_a^2,\sigma_e^2|S_a,S_e,
u_a,
u_e)$$

Bayesian methods

REML: the priors (S_a, S_e, ν_a, ν_e) are estimated from data.

Hierarchical Bayes: You provide priors. Here is how:

$$\sigma_a^2=rac{u'K^{-1}u+S_a
u_a}{\chi^2(q+
u_a)}$$

sigma2a=(t(u)%*%iK%*%u+Sa*dfa)/rchisq(df=ncol(Z)+dfa,n=1)

$$\sigma_e^2 = rac{e'e + S_e
u_e}{\chi^2 (n +
u_e)}$$

sigma2e=(t(e)%*%e+Se*dfe)/rchisq(df=length(y)+dfe,n=1)

95/170

file:///C:/Users/rd7564/Desktop/PurdueMLM/Purdue_MLM.html#1

95/170

2/18/2019

Mixed models applied to breeding

Bayesian methods

What does it mean for **you**? If your "prior knowledge" tells you that a given trait has approximately $h^2=0.5$ (nothing unreasonable). In which case, half of the phenotypic variance is due to genetics, and the other half is due to error. Your prior shape is:

$$S_a = S_e = \sigma_y^2 imes 0.5$$

We usually assign small a prior degrees of freeds. Samething like four or five prior degrees of freedom. That means that assuming $\nu_0=5$, you are yielding to your model 5 data points that support heritability 0.5

$$\nu_{a} = \nu_{e} = 5$$

Example of prior influence: In a dataset with 300 data points, 1.6% of the variance components information comes from prior (5/305), and 98.4% comes from data (300/305).

Bayesian methods

For whole-genome regression models

$$y = \mu + Ma + e$$
, $a \sim N(0, I\sigma_b^2)$, $e \sim N(0, I\sigma_e^2)$

We scale the prior genetic variance based on allele frequencies

$$S_b = rac{\sigma_y^2 imes 0.5}{2 \sum p_j (1-p_j)}$$

Two common settings:

- · All markers, one random effect: Bayesian ridge regression
- · Each markers as a random effect: BayesA

97/170

file:///C:/Users/rd7564/Desktop/PurdueMLM/Purdue_MLM.html#1

97/170

2/18/2019

Mixed models applied to breeding

Machine learning methods

- · Parametric methods for prediction: L1-L2
- · Semi-parametric methods for prediction: Kernels
- · Non-parametric methods for prediction: Trees and nets

L1-L2 machines include all mixed and Bayesian models we have seen so far. The basic framework is driven by a single (random) term model:

$$y = Xb + e$$

The univariate soltion indicates how the model is solved. A model without regularization yields the least square (LS) solution. If we regularize by deflating the nominator, we get the L1 regularization (LASSO). If we regularize by inflating the denominator, we get the L2 regularization (Ridge). For any combination of both, we get a elastic-net (EN). Thus:

$$b_{LS} = rac{x'y}{x'x}, ~~ b_{Lasso} = rac{x'y-\lambda}{x'x}, ~~ b_{Ridge} = rac{x'y}{x'x+\lambda}, ~~ b_{EN} = rac{x'y-\lambda_1}{x'x+\lambda_2}$$

Whereas the Bayesian and mixed model framework resolves the regularization as $\lambda=\sigma_e^2/\sigma_b^2$, ML methods search for λ through (k-fold) cross-validation.

99/170

file:///C:/Users/rd7564/Desktop/PurdueMLM/Purdue_MLM.html#1

99/170

2/18/2019

Mixed models applied to breeding

Machine learning methods

Common loss functions in L1-L2 machines

- · LS (no prior, no shrinkage): $argmin(\sum e_i^2)$
- ' L1 (Laplace prior with variable selection): $argmin(\sum e_i^2 + \lambda \sum |b_j|)$
- · L2 (Gaussian prior, unique solution): $argmin(\sum e_i^2 + \lambda \sum b_j^2)$

Other losses that are less popular

- ' Least absolute: $argmin(\sum |e_i|)$ based on $b_{LA} = rac{MD(x imes y)}{x'x}$
- · ϵ -loss: $argmin(\sum e_i^2, |e_i| > \epsilon)$ used in support vector machines

Cross-validations to search for best value of lambda

```
lasso = glmnet::cv.glmnet(x=wheat.X,y=rowMeans(Y),alpha=1);
ridge = glmnet::cv.glmnet(x=wheat.X,y=rowMeans(Y),alpha=0);
par(mfrow=c(1,2)); plot(ridge); plot(lasso)
```


101/170

file:///C:/Users/rd7564/Desktop/PurdueMLM/Purdue_MLM.html#1

101/170

2/18/2019

Mixed models applied to breeding

Machine learning methods

Re-fit the model using this best value

```
lasso = glmnet::glmnet(x=wheat.X,y=rowMeans(Y),lambda=lasso$lambda.min,alpha=1)
ridge = glmnet::glmnet(x=wheat.X,y=rowMeans(Y),lambda=ridge$lambda.min,alpha=0)
par(mfrow=c(1,2)); plot(lasso$beta,main='LASSO'); plot(ridge$beta,main='RIDGE');
```


Of course, the losses presented above are not limited to the application of prediction and classification. Below, we see an example of deploying LASSO for a graphical model (Markov Random Field): How the traits of the multivariate model relate in terms of additive genetics:

ADJ=huge::huge(mmm\$VC\$GenCor,.3,method='glasso',verbose=F)\$path[[1]] plot(igraph::graph.adjacency(adjmatrix=ADJ),vertex.label.cex=3)

103/170

file:///C:/Users/rd7564/Desktop/PurdueMLM/Purdue_MLM.html#1

103/170

2/18/2019

Mixed models applied to breeding

Machine learning methods

Reproducing kernel Hilbert Spaces (RKHS), is a generalization of a GBLUP... Most commonly instead of using the linear kernel ($ZZ'\alpha$), RKHS commonly uses one or more Gaussian or exponential kernels:

$$K = \exp(-\theta D^2)$$

Where D^2 is the squared Euclidean distance, and θ is a bandwidth:

- Single kernel: $1/mean(D^2)$
- Three kernels: θ ={5/q, 1/q, 0.2/q}, where q=quantile(D2,0.05)

We can use REML, PRESS (=cross-validation) or Bayesian approach to solve RKHS

2/18/2019 Mixed models applied to breeding

file:///C:/Users/rd7564/Desktop/PurdueMLM/Purdue_MLM.html#1

Machine learning methods

```
par(mfrow=c(1,3))
plot(rkhs_press,Y[,3],main=paste('PRESS, cor =',round(cor(rkhs_press,Y[,3]),4) ))
plot(rkhs_reml,Y[,3],main=paste('REML, cor =',round(cor(rkhs_reml,Y[,3]),4) ))
plot(rkhs_bgs,Y[,3],main=paste('Bayes, cor =',round(cor(rkhs_bgs,Y[,3]),4) ))
```


RKHS for epistasis and variance component analysis

Epistasis

107/170

file:///C:/Users/rd7564/Desktop/PurdueMLM/Purdue_MLM.html#1

107/170

2/18/2019

Mixed models applied to breeding

Machine learning methods

For the same task (E2 predict E3), let's check members of the Bayesian alphabet

```
fit_BRR = bWGR::wgr(Y[,2],wheat.X); cor(c(fit_BRR$hat),Y[,3])
## [1] 0.5842116

fit_BayesB = bWGR::BayesB(Y[,2],wheat.X); cor(fit_BayesB$hat,Y[,3])
## [1] 0.5355413

fit_emBayesA = bWGR::emBA(Y[,2],wheat.X); cor(fit_emBayesA$hat,Y[,3])
## [1] 0.6388318
```

Tree regression and classifiers

109/170

file:///C:/Users/rd7564/Desktop/PurdueMLM/Purdue_MLM.html#1

109/170

2/18/2019

Mixed models applied to breeding

Machine learning methods

 $\label{fit_tree} \mbox{fit_tree} = \mbox{party::ctree}(y\mbox{-.,data.frame}(y\mbox{=}Y[\mbox{,2}],\mbox{wheat.X})); \mbox{plot}(\mbox{fit_tree})$

cor(c(fit_tree@predict_response()),Y[,3])

[1] 0.265622

fit_rf = ranger::ranger(y~.,data.frame(y=Y[,2],wheat.X))
plot(fit_rf\$predictions,Y[,3],xlab='RF predictions from E2',ylab='Yield E3',pch=20)

cor(fit_rf\$predictions,Y[,3])

[1] 0.4056496

111/170

file:///C:/Users/rd7564/Desktop/PurdueMLM/Purdue_MLM.html#1

111/170

2/18/2019

Mixed models applied to breeding

Genotype-Environmnet interactions

Genotype-Environmnet interactions

```
y=as.vector(wheat.Y); Z=wheat.X; Zge=as.matrix(Matrix::bdiag(Z,Z,Z,Z))
#
fit_g = bWGR::BayesRR(rowMeans(wheat.Y),Z)
fit_ge = bWGR::BayesRR2(y,Zge)
fit_gge = bWGR::BayesRR2(y,rbind(Z,Z,Z,Z),Zge)
#
fit_g$h2
## [1] 0.4590341
fit_ge$h2
## [1] 0.6762359
## [1] 0.6580924
```

113/170

file:///C:/Users/rd7564/Desktop/PurdueMLM/Purdue_MLM.html#1

113/170

2/18/2019

Mixed models applied to breeding

Genotype-Environmnet interactions

GxE design matrix: Example of 4 environments, 30 individuals, 70 SNPs

Genotype-Environmnet interactions

GE1=matrix(fit_ge\$hat,ncol=4); GE2=matrix(fit_ge\$hat,ncol=4)
plot(data.frame(G=fit_g\$hat,GE=rowMeans(GE1),G_and_GE=rowMeans(GE2)),main='GEBV across E')

GEBV across E

115/170

file:///C:/Users/rd7564/Desktop/PurdueMLM/Purdue_MLM.html#1

115/170

2/18/2019

Mixed models applied to breeding

Genotype-Environmnet interactions

 $\label{lem:parameters} $$ par(mfrow=c(1,3))$ plot(fit_g$hat,rowMeans(Y)),4),xlab='G',ylab='0bs',pch=20)$ plot(c(GE1),y,main=round(cor(c(GE1),y),4),xlab='GE model',ylab='0bserved',pch=20)$ plot(c(GE2),y,main=round(cor(c(GE2),y),4),xlab='G+GE model',ylab='0bserved',pch=20)$ plot(c(GE2),y,main=round(cor(c(GE2),y),4),xlab='G+GE model',ylab='0bserved',pch=20)$ }$

Break

file:///C:/Users/rd7564/Desktop/PurdueMLM/Purdue_MLM.html#1

117/170

2/18/2019

Mixed models applied to breeding

Module 4 - Signal detection

Outline

- Test statistics
- · Allele coding
- · Power & resolution
- · Linkage mapping
- · LD mapping
- · Structure
- · Imputation

- · GLM
- · MLM
- · WGR
- · Rare-variants
- · Validation studies

119/170

file:///C:/Users/rd7564/Desktop/PurdueMLM/Purdue_MLM.html#1

119/170

2/18/2019

Mixed models applied to breeding

Test statistics

· Testing associations are as simple as t-test and ANOVA

Genotypic frequencies (ANCOVA)

Test statistics

· A more generalized framework: Likelihood test

$$LRT = L_0/L_1 = -2(logL_1 - logL_0)$$

For the model:

$$y = Xb + Zu + e$$

 $y \sim N(Xb, V)$

REML function is given by:

$$L(\sigma_u^2, \sigma_e^2) = -0.5(\ln|V| + \ln|X'V^{-1}X| + y'Py)$$

Where $V = ZKZ'\sigma_u^2 + I\sigma_e^2$ and y'Py = y'e

121/170

file:///C:/Users/rd7564/Desktop/PurdueMLM/Purdue_MLM.html#1

121/170

2/18/2019

Mixed models applied to breeding

Allele coding

Types of allele coding

- 1. Add. (1 df): {-1,0,1} or {0,1,2} **Very popular** (Lines, GCA)
- 2. Dom. (1 df): {0,1,0} **Popular** (Trees, clonals and Hybrids)
- 3. Jointly A+D (2 df): Popular on QTL mapping in F2s
- 4. Complete dominance (1 df): {0,0,1} or {0,1,1} Very unusual
- 5. Interactions (X df): Marker x Factor (epistasis and GxE)

Power and resolution

Power

- · Key: Number of individuals & allele frequency
- · More DF = lower power
- · Multiple testing: Bonferroni and FDR
- · Tradeoff: Power vs false positives

Resolution

- · Genotyping density
- · LD blocks
- · Recombination

123/170

file:///C:/Users/rd7564/Desktop/PurdueMLM/Purdue_MLM.html#1

123/170

2/18/2019

Mixed models applied to breeding

Power: Variance of X

Beavis effect: 1000 is just OK

Xu S. Theoretical basis of the Beavis effect. Genetics. 2003 1;165(4):2259-68.

Comparisons of predicted and observed (estimated) biases in estimated QTL effects and variances from Beavis F2 simulation experiments

Simulated conditions ^a	Variance explained			Additive effect			Average estimated
	Simulated	Observed	Predicted ^b	Simulated	Observed	Predicted	location
10-30-100	3.00	16.76	16.0537	2.45	4.96	5.6410	11.3
10-30-500	3.00	4.33	4.1890	2.45	2.89	2.8617	10.53
10-30-1000	3.00	3.02	3.1846	2.45	2.56	2.4868	10.8
10-63-100	6.25	12.65	16.5984	3.55	4.68	5.7328	10.51
10-63-500	6.25	7.08	6.5581	3.55	3.73	3.5829	10.96
10-63-1000	6.25	6.34	6.3566	3.55	3.60	3.5500	11.04
10-95-100	9.50	18.68	17.3883	4.36	5.85	5.8466	10.58
10-95-500	9.50	10.1	9.7082	4.36	4.49	4.3607	11.08
10-95-1000	9.50	9.67	9.6028	4.36	4.44	4.3600	11.19
40-30-100	0.75	15.78	15.6270	1.22	4.40	5.5436	10.83
40-30-500	0.75	3.17	3.3332	1.22	2.35	2.5671	10.17
40-30-1000	0.75	1.46	1.7961	1.22	1.85	1.8790	10.17
40-63-100	1.56	16.31	15.7983	1.77	4.71	5.5999	10.45
40-63-500	1.56	3.54	3.5783	1.77	2.59	2.6582	10.13
40-63-1000	1.56	1.96	2.1435	1.77	2.09	2.0494	10.37
40-95-100	2.40	16.55	15.9694	2.18	5.02	5.6236	10.45
40-95-500	2.40	3.97	3.9190	2.18	2.79	2.7641	10.12
40-95-1000	2.40	2.58	2.6970	2.18	2.36	2.2784	10.29

 $[^]a$ Numerical values denote the number of QTL-heritability-number of progeny. b Using Equation 17. c Using Equation 8.

125/170

file:///C:/Users/rd7564/Desktop/PurdueMLM/Purdue_MLM.html#1

125/170

2/18/2019

Mixed models applied to breeding

Multiple testing:

GWAS tests m hypothesis:

• No correction: lpha=0.05/m

· Bonferroni: lpha=0.05/m

• FDR (25%): $\alpha = 0.05/(m \times 0.75)$

Linkage mapping

- · Generally on experimental pops (F2, DH, RIL, BC)
- · Based on single-marker analysis or interval mapping
- · Recombination rates would increase power

127/170

file:///C:/Users/rd7564/Desktop/PurdueMLM/Purdue_MLM.html#1

127/170

2/18/2019

Mixed models applied to breeding

LD mapping (or association mapping)

- · Use of historical LD between marker and QTL
- · AM allowed studies on random panels
- · Dense SNP panels would increase resolution

Structure

- 1. Confounding associations with sub-populations
- 2. Major limitation of association mapping
- 3. Structure: PCs, clusters, subpopulation (eg. race)

129/170

file:///C:/Users/rd7564/Desktop/PurdueMLM/Purdue_MLM.html#1

129/170

2/18/2019

Mixed models applied to breeding

Structure

Genes mirror geography within Europe

nature Vol 456|6 November 2008|doi:10.1038/nature07331

Imputation

Less missing values = more obs. = more detection power

- · Markov models: Based on flanking markers
- · Random forest: Multiple decision trees capture LD
- · kNN & Projections: Fill with similar haplotypes

131/170

file:///C:/Users/rd7564/Desktop/PurdueMLM/Purdue_MLM.html#1

131/170

2/18/2019

Mixed models applied to breeding

GLM (generalized linear models)

• Full model (L_1):

$$y = Xb + m_j a + e$$

· Null model (L_0):

$$y = Xb + e$$

- 1. Advantage: Fast, not restricted to Gaussian traits
- 2. Popular methodology on human genetic studies
- 3. Xb includes (1) environment, (2) structure and (3) covariates

MLM (mixed linear models)

• Full model (L_1):

$$y = Xb + Zu + m_j a + e$$

· Null model (L_0):

$$y = Xb + Zu + e$$

- 1. The famous "Q+K model"
- 2. Advantage: Better control of false positives, no need for PCs
- 3. Polygenic effect (u) assumes $u \sim N(0, K\sigma_u^2)$
- 4. Faster if we don't reestimate $\lambda = \sigma_e^2/\sigma_u^2$ for each SNP

133/170

file:///C:/Users/rd7564/Desktop/PurdueMLM/Purdue_MLM.html#1

133/170

2/18/2019

Mixed models applied to breeding

cMLM (compressed MLM)

- 1. Uses the same base model as MLM
- 2. Advantage: Faster than MLM
- 3. Based on clustered individuals:
- $\cdot Z$ is indicates the subgroup
- \cdot K is the relationship among subgroup
- · Often needs PCs to complement K

WGR (whole-genome regression)

- 1. Tests all markers at once
- 2. Advantage: No double-fitting, no PCs, no Bonferroni
- · Model (BayesB, BayesC, SSVS):

$$y = Xb + Ma + e$$

· Marker effects are from a mixture of distributions

$$a_j \sim Binomial ext{ with } p(\pi) = 0 ext{ and } p(1-\pi) = a_j$$

135/170

file:///C:/Users/rd7564/Desktop/PurdueMLM/Purdue_MLM.html#1

135/170

2/18/2019

Mixed models applied to breeding

WGR (whole-genome regression)

Rare variants

- 1. Screen a set (s) of low MAF markers on NGS data
- 2. Advantage: Detect signals from low power SNPs
- 3. Applied to uncommon diseases (not seen in plant breeding)
- 4. Two possible model
- Full model 1 (L_1): $y = Xb + M_sa + e$
- Full model 2 (L_2): $y = Xb + PC_1(M_s) + e$
- Null model (L_0): y = Xb + e

Test either $LR(L_1, L_0)$ or $LR(L_2, L_0)$

137/170

file:///C:/Users/rd7564/Desktop/PurdueMLM/Purdue_MLM.html#1

137/170

2/18/2019

Mixed models applied to breeding

Validation studies

- · QTLs detected with 3 methods, across 3 mapping pops
- · Validations made on 3 unrelated populations

Figure 2 Stacked plots of GWAS and OTL results. From upper to lower panels are results from the Bayesian-based multi-variant (A) stepwise regression (B) and single variant(C) models for GWAS and the joint OTL mapping result (D). The red dashed line in the OTL plot indicates in 1,000 permutation threshold and black lines show the OTL confidence intervals. Red squares in panel (A), triangles in panel (B) and circles in

Break

file:///C:/Users/rd7564/Desktop/PurdueMLM/Purdue_MLM.html#1

139/170

2/18/2019

Mixed models applied to breeding

Module 5 - Association analysis

Prelude: Data & Structure

141/170

file:///C:/Users/rd7564/Desktop/PurdueMLM/Purdue_MLM.html#1

141/170

2/18/2019

Mixed models applied to breeding

Getting some data

Example dataset from the *SoyNAM* package. We are querying two of the forty biparental families with a shared parental IA3023, grown in 18 environment.

```
Data = SoyNAM::BLUP(trait = 'yield', family = 2:3)

## solving BLUE of checks

## solving BLUP of phenotypes

## No redundant SNPs found

## There are 312 markers with MAF below the threshold

## Removing markers with more than 50% missing values

## Imputing with expectation (based on transition prob)

## removing repeated genotypes

## solving identity matrix

## indiviual 1 had 37 duplicate(s)

## indiviual 169 had 1 duplicate(s)

## indiviual 182 had 1 duplicate(s)
```

Genomic relationship matrix

```
y = Data$Phen
M = Data$Gen
#
Z = apply(M,2,function(snp) snp-mean(snp))
ZZ = tcrossprod(Z)
Sum2pq = sum(apply(M,2,function(snp){p=mean(snp)/2; return(2*p*(1-p))}))
G = ZZ/Sum2pq
```

Kernel commonly deployed, referred in VanRaden (2008)

$$G = rac{(M-P)(M-p)'}{2\sum_{j=1}^{J} p_j (1-p_j)}$$

143/170

file:///C:/Users/rd7564/Desktop/PurdueMLM/Purdue_MLM.html#1

143/170

2/18/2019

Mixed models applied to breeding

Genomic relationship matrix

image(G[,241:1], main='GRM heatmap',xaxt='n',yaxt='n')

GRM heatmap

Structure parameters (1) PCs

```
Spectral = eigen(G,symmetric = TRUE)
PCs = Spectral$vectors[,1:5]
plot(PCs,xlab='PC 1',ylab='PC 2',main='Population on eigen spaces',col=Data$Fam,pch=20)
```

Population on eigen spaces

145/170

file:///C:/Users/rd7564/Desktop/PurdueMLM/Purdue_MLM.html#1

145/170

2/18/2019

Mixed models applied to breeding

Structure parameters (2) Clusters

```
GeneticDistance = Gdist(M,method=6)
### Modified Rogers' distance

Tree = hclust(GeneticDistance,method = 'ward.D2')
plot(Tree,labels = FALSE)
```

Cluster Dendrogram

GeneticDistance hclust (*, "ward.D2")

146/170

Single marker analysis

147/170

file:///C:/Users/rd7564/Desktop/PurdueMLM/Purdue_MLM.html#1

147/170

2/18/2019

Mixed models applied to breeding

GLM (1) - No structure

GLM (2) - Principal Components

```
reduced_model = lm( y ~ PCs )
full_model = lm( y ~ PCs + Marker )
anova( reduced_model, full_model )

## Analysis of Variance Table
##
## Model 1: y ~ PCs
## Model 2: y ~ PCs + Marker
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 235 4060362
## 2 234 3562067 1 498295 32.734 3.215e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
-log((anova( reduced_model, full_model ))$`Pr(>F)`[2],base = 10)

## [1] 7.492813
```

149/170

file:///C:/Users/rd7564/Desktop/PurdueMLM/Purdue_MLM.html#1

149/170

2/18/2019

Mixed models applied to breeding

GLM (3) - Population Clusters

```
reduced_model = lm( y ~ Clst )
full_model = lm( y ~ Clst + Marker )
anova( reduced_model, full_model )

## Analysis of Variance Table
##
## Model 1: y ~ Clst
## Model 2: y ~ Clst + Marker
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 239 4275698
## 2 238 3652041 1 623657 40.643 9.4e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
-log( anova(reduced_model,full_model)$`Pr(>F)`[2],base = 10)

## [1] 9.026884
```

MLM - K+Q model

```
Q = model.matrix(~Clst)
reduced_model = reml( y=y, X=Q, K=G)
full_model = reml( y=y, X=cbind(Q, Marker), K=G)
LRT = -2*(full_model$loglik - reduced_model$loglik)
-log(pchisq(LRT,1,lower.tail=FALSE),base=10)
### [1] 10.80903
```

151/170

file:///C:/Users/rd7564/Desktop/PurdueMLM/Purdue_MLM.html#1

151/170

2/18/2019

Mixed models applied to breeding

Whole genome screening

DYI (example with GLM)

```
reduced_model = lm( y ~ Clst )
glm_pval = apply(M,2,function(Marker){
  pval = anova(reduced_model, lm(y~Clst+Marker) )$`Pr(>F)`[2]
  return(-log(pval,base = 10))})
plot(glm_pval,pch=20,xlab='SNP',main='My first GLM GWAS')
```

My first GLM GWAS

153/170

file:///C:/Users/rd7564/Desktop/PurdueMLM/Purdue_MLM.html#1

153/170

2/18/2019

Mixed models applied to breeding

Using CRAN implementations

NAM random model: $y = \mu + Marker \times Pop + Zu + e$

```
fit_gwa = gwas3(y=y, gen=M, fam=c(Clst), chr=Data$Chrom)
```

Manhattan plot

plot(fit_gwa, pch=20, main = "My first MLM GWAS")

Chromosome

155/170

file:///C:/Users/rd7564/Desktop/PurdueMLM/Purdue_MLM.html#1

155/170

2/18/2019

Mixed models applied to breeding

Yet another R implementations

 $\label{eq:constraint} $$ \text{require(rrBLUP, quietly = TRUE); COL = fit_gwa$MAP[,1]}\%2+1 \ \# \ Color \ chromosomes $$ \text{geno=data.frame(colnames(M),fit_gwa$MAP[,1:2],t(M-1),row.names=NULL)} $$ \text{pheno=data.frame(line=colnames(geno)[-c(1:3)],Pheno=y,Clst,row.names=NULL)} $$ \text{fit_another_gwa=GWAS(pheno,geno,fixed='Clst',plot=FALSE)} $$$

```
## [1] "GWAS for trait: Pheno"
```

[1] "Variance components estimated. Testing markers."

Comparing results

mlm_pval=fit_another_gwa\$Pheno; mlm_pval[mlm_pval==0]=NA
plot(glm_pval,mlm_pval,xlab='GLM',ylab='MLM',main='Compare')

157/170

file:///C:/Users/rd7564/Desktop/PurdueMLM/Purdue_MLM.html#1

157/170

2/18/2019

Mixed models applied to breeding

Power analysis - QQ plot

```
nam_pval = fit_gwa$PolyTest$pval
par(mfrow=c(1,3))
qqman::qq(glm_pval,main='GLM')
qqman::qq(mlm_pval,main='MLM')
qqman::qq(nam_pval,main='RLM')
```


Multiple testing

159/170

file:///C:/Users/rd7564/Desktop/PurdueMLM/Purdue_MLM.html#1

159/170

2/18/2019

Mixed models applied to breeding

Multiple testing

Wikipedia: In statistics, the multiple comparisons, multiplicity or multiple testing problem occurs when one considers a set of statistical inferences simultaneously or infers a subset of parameters selected based on the observed values. In certain fields it is known as the look-elsewhere effect: The more inferences are made, the more likely erroneous inferences are to occur. Several statistical techniques have been developed to prevent this from happening, allowing significance levels for single and multiple comparisons to be directly compared. These techniques generally require a stricter significance threshold for individual comparisons, so as to compensate for the number of inferences being made.

Baseline - No correction

Base significance threshold: lpha=0.05/m

plot(fit_gwa, alpha=0.05, main = "No correction")

161/170

file:///C:/Users/rd7564/Desktop/PurdueMLM/Purdue_MLM.html#1

161/170

2/18/2019

Mixed models applied to breeding

Multiple testing correction

Bonferroni: lpha=0.05/m

plot(fit_gwa, alpha=0.05/ncol(M), main = "Bonferroni correction")

False-Discovery Rate

Benjamini-Hochberg FDR: $\alpha = \frac{0.05}{m \times (1-FDR)}$

 $plot(fit_gwa, alpha=0.05/(ncol(M)*.75), main = "FDR 25%")$

163/170

file:///C:/Users/rd7564/Desktop/PurdueMLM/Purdue_MLM.html#1

163/170

2/18/2019

Mixed models applied to breeding

False-Discovery Rate

Unique segments based on Eigenvalues: $m^* = D > 1$

```
m_star = sum(Spectral$values>1)
plot(fit_gwa, alpha=0.05/m_star, main="Bonferroni on unique segments")
```


Multi-loci analysis

165/170

file:///C:/Users/rd7564/Desktop/PurdueMLM/Purdue_MLM.html#1

165/170

2/18/2019

Mixed models applied to breeding

Whole genome regression

```
fit_wgr = bWGR::BayesDpi(y=y,X=M,it=3000); par(mfrow=c(1,2));
plot(fit_wgr$PVAL,col=COL,pch=20,ylab='-log(p)',main='GWA')
plot(fit_wgr$b,col=COL,pch=20,ylab='Marker effect',main='GWP')
```


plot(fit_wgr\$hat,y,pch=20)

WGR - No need for multiple testing

```
thr_none = -log(pchisq(qchisq(1-0.05/ncol(M),1),1,lower.tail=FALSE),base=10)
thr_bonf = -log(pchisq(qchisq(1-0.05,1),1,lower.tail=FALSE),base=10)
par(mfrow=c(1,2)); plot(fit_gwa,alpha=NULL,main="MLM",pch=20); abline(h=thr_none,col=3)
plot(fit_wgr$PVAL,col=COL,ylab='-log(p)',main="WGR",pch=20); abline(h=thr_bonf,col=3)
```


167/170

file:///C:/Users/rd7564/Desktop/PurdueMLM/Purdue_MLM.html#1

167/170

2/18/2019

Mixed models applied to breeding

Approaches are complementary

Random forest

fit_rf = ranger::ranger(y~.,data= data.frame(y=y,M),importance='impurity')
plot(fit_rf\$variable.importance,ylab='Importance',main='Random Forest',col=COL+7,pch=20)

Random Forest

169/170

file:///C:/Users/rd7564/Desktop/PurdueMLM/Purdue_MLM.html#1

169/170

2/18/2019

Mixed models applied to breeding

Break