Espacios Vectoriales

1.1 $R^n y C^n$

Definición 1.1 (Números complejos).

- Un número complejo es un par ordenado (a,b), donde $a,b \in \mathbb{R}$, pero lo escribimos como a+bi.
- El conjunto de todos los números complejos es denotado por C:

$$C=\{a+bi:a,b\in R\}.$$

• La adición y la multiplicación en C esta definida por:

$$(a + bi) + (c + di) = (a + c) + (b + d)i$$

 $(a + bi)(c + di) = (ac - bd) + (ad + bc)i$

Si $a \in \mathbf{R}$, identificamos a+0i con el número real a. Por lo que podemos decir que \mathbf{R} es un subconjunto de \mathbf{C}

Propiedad 1.1 (Propiedades aritmeticas de los complejos.).

- Conmutatividad: $\alpha + \beta = \beta + \alpha$ y $\alpha \beta = \beta \alpha$ para todo $\alpha, \beta \in \mathbb{C}$;
- **Asociatividad:** $(\alpha + \beta) + \lambda = \alpha + (\beta + \lambda)$ y $(\alpha \beta)\lambda = \alpha(\beta \lambda)$ para todo $\alpha, \beta, \lambda \in \mathbb{C}$;
- **Identidad:** $\lambda + 0 = \lambda$ y $\lambda 1 = \lambda$ para todo $\lambda \in \mathbf{C}$
- **Inverso aditivo:** Para cada $\alpha \in \mathbb{C}$, existe un único $\beta \in \mathbb{C}$ tal que $\alpha + \beta = 0$;
- **Inverso multiplicativo:** Para cada $\alpha \in \mathbf{C}$ con $\alpha \neq 0$, existe un único $\beta \in \mathbf{C}$ tal que $\alpha\beta = 1$;
- **Propiedad distributiva:** $\lambda(\alpha + \beta) = \lambda\alpha + \lambda\beta$ para todo $\lambda, \alpha, \beta \in \mathbf{C}$

Ejemplo 1.1. Demostrar que $\alpha\beta = \beta\alpha$ para todo $\alpha, \beta \in \mathbb{C}$.

Demostración.- Por la definición de multiplicación de números complejos se muestra que

$$\alpha\beta = (a+bi)(c+di) = (ac-bd) + (ad+bc)i.$$

2

y

$$\beta\alpha = (c+di)(a+bi) = (ca-db) + (ad+bc)i.$$

Las ecuaciones anteriores, la conmutatividad para la suma y la multiplicación y propiedades de números reales muestran que

$$\alpha\beta = \beta\alpha$$
.

Ejemplo 1.2. Demostrar que $\lambda + 0 = \lambda$ y $\lambda 1 = \lambda$ para todo $\lambda \in \mathbb{C}$.

Demostración.- Sean $\lambda = (a + bi)$ y 0 = (0 + 0i), para $a, b \in \mathbf{R}$. Entonces,

$$\lambda + 0 = (a + bi) + (0 + 0i)$$

= $(a + 0) + (b + 0)i$
= $a + bi$
= λ

Luego sea 1 = (1 + 0i), entonces

$$\lambda 1 = (a+bi)(1+0i)$$

= $(a1-b0) + (a0+b1)i$
= $(1a+1bi)$
= $(a+bi)$
= λ

Definición 1.2 ($-\alpha$, sustracción, $1/\alpha$). Sea α , $\beta \in \mathbf{C}$

• Sea $-\alpha$ que denota el inverso aditivo de α . Por lo tanto $-\alpha$ es el único número complejo tal que

$$\alpha + (-\alpha) = 0.$$

• Sustracción en C es definido por:

$$\beta - \alpha = \beta + (-\alpha).$$

• Para $\alpha \neq 0$, sea $1/\alpha$ denotado por el inverso multiplicativo de α . Por lo tanto $1/\alpha$ es el único número complejo tal que

$$\alpha(1/\alpha) = 1.$$

• **División** en **C** es definido por:

$$\beta/\alpha = \beta(1/\alpha)$$
.

Los elementos de F son llamados escalares.

1.1. $R^N Y C^N$

1.1.1 **Listas**

Definición 1.3 (Listas, longitud). Supóngase que n es un entero no negativo. Una lista de longitud n es una colección ordenada de n elementos (el cual podría ser números, otras listas, o mas entidades abstractas) separadas por comas y cerradas por paréntesis. Una lista de longitud n se muestra de la siguiente manera:

$$(x_1,\ldots,x_n)$$

Dos listas son iguales si y sólo si tienen la misma longitud y los mismos elementos en el mismo orden.

Las listas difieren de los conjuntos de dos maneras: en las listas, el orden importa y las repeticiones tienen significado; en conjuntos, el orden y las repeticiones son irrelevantes.

1.1.2 F^n

Definición 1.4. F^n es el conjunto de todas las listas de longitud n de elementos de F

$$F^n=\{(x_1,\ldots,x_n)\ :\ x_j\in F \text{ para cada } j=1,\ldots,n\}.$$

Para $(x_1, ..., x_n) \in \mathbf{F}$ y $j \in \{1, ..., n\}$, decimos que x_j es la j-enesima coordenada de $(x_1, ..., x_n)$.

Definición 1.5 (Adición en F^n). La adición en F^n es definido añadiendo las correspondientes coordenadas:

$$(x_1,\ldots,x_n)+(y_1,\ldots,y_n)=(x_1+y_1,\ldots,x_n+y_n)$$

Teorema 1.1 (Conmutatividad para la adición en $\mathbf{F}^{\mathbf{n}}$). Si $x, y \in \mathbf{F}^{\mathbf{n}}$, entonces x + y = y + x.

Demostración.- Suponga $x=(x_1,\ldots,x_n)$ y $y=(y_1,\ldots,y_n)$. Entonces por la definción de adición e $\mathbf{F}^{\mathbf{n}}$,

$$x + y = (x_1, ..., x_n) + (y_1, ..., y_n)$$

$$= (x_1 + y_1, ..., x_n + y_n)$$

$$= (y_1 + x_1, ..., y_n x_n)$$

$$= (y_1, ..., y_n) + (x_1, ..., x_n)$$

$$= y + x$$

donde la segunda y cuarta igualdades anteriores se cumplen debido a la definición de suma en F^n y la tercera igualdad se cumple debido a la conmutatividad habitual de la suma en F.

si $x \in \mathbf{F}^{\mathbf{n}}$, entonces hacer que x sea igual a (x_1, \dots, x_n) es una buena notación, como se muestra en la demostración anterior.

Definición 1.6 (0). Sea 0 la lista de longitud n cuyas coordenadas son todas 0:

$$0 = (0, \ldots, 0)$$

Definición 1.7 (Inverso aditivo en $\mathbf{F}^{\mathbf{n}}$). Para $x \in \mathbb{F}^n$, el inverso aditivo de x, denota por -x, es el vector $-x \in \mathbb{F}^n$ tal que

$$x + (-x) = 0$$

En otras palabras, si $x = (x_1, ..., x_n)$, entonces $-x = (-x_1, ..., -x_n)$.

Definición 1.8 (Multiplicación scalar en \mathbb{F}^n). El producto de un número λ y un vector en \mathbb{F}^n es calculado por la multiplicación de cada coordenada del vector por λ :

$$\lambda(x_1,\ldots,x_n)=(\lambda x_1,\ldots,\lambda x_n)$$

donde $\lambda \in \mathbb{F}$ y $(x_1, \ldots, x_n) \in \mathbb{F}^n$.

1.1.3 Digresión sobre campos

Un campo es un conjunto que contiene al menos dos elementos distintos llamados 0 y 1, junto con operaciones de suma y multiplicación que satisfacen todas las propiedades enumeradas en 1.3. Por lo tanto, **R** y **C** son campos, como lo es el conjunto de números racionales junto con las operaciones habituales de suma y multiplicación. Otro ejemplo de campo es el conjunto $\{0,1\}$ con las operaciones habituales de suma y multiplicación excepto que 1+1 se define como igual a 0.

1.1.4 Ejercicios 1.A

1. Supongase a y b números reales, no ambos 0. Encuentre números reales c y d tales que

$$\frac{1}{(a+bi)} = c + di.$$

Respuesta.- Supongamos $\alpha = a + bi$ y $\beta = c + di$ con $a, b, c, d \in \mathbf{R}$. Entonces,

$$\alpha\beta = (a + bi)(c + di) = (ac - bd) + (ad + bc)i = (1 + 0i)$$

Luego, por el hecho de que dos números complejos son iguales si sus correspondientes partes reales e imaginarias son iguales, entonces

$$\begin{cases} ac - db = 1 \\ ad + bc = 0 \end{cases}$$

De la segunda ecuación tenemos, $d=-\frac{bc}{a}$ y reemplazando en la ecuación 1,

$$c = \frac{a}{a^2 + b^2}.$$

Luego,

$$d = -\frac{bc}{a} = \frac{b \cdot \frac{a}{a^2 + b^2}}{a} = -\frac{b}{a^2 + b^2}.$$

1.1. $R^N Y C^N$

2. Demuestre que

$$\frac{-1+\sqrt{3}i}{2}$$

es una raíz cúbica de 1 (significa que su cubo es igual a 1).

Demostración.- Algebraicamente queremos demostrar que,

$$\frac{-1+\sqrt{3}i}{2} = \sqrt[3]{1}$$
 o $\left(\frac{-1+\sqrt{3}i}{2}\right)^3 = 1$

Por las propiedades de números complejos, sabemos que

$$\frac{-1+\sqrt{3}i}{2} = \frac{-1}{2} + \frac{\sqrt{3}i}{2}.$$

Luego, por el binomio al cubo podemos deducir que

$$\left(\frac{-1}{2} + \frac{\sqrt{3}i}{2}\right)^3 = \left(\frac{-1}{2}\right)^3 + 3 \cdot \left(\frac{-1}{2}\right)^2 \frac{\sqrt{3}i}{2} + 3 \cdot \frac{-1}{2} \left(\frac{\sqrt{3}i}{2}\right)^2 + \left(\frac{\sqrt{3}i}{2}\right)^3$$

$$= \frac{-1}{8} + \frac{3\sqrt{3}i}{8} + \frac{-3(\sqrt{3})^2(\sqrt{-1})^2}{8} + \frac{(\sqrt{3})^2\sqrt{3}(\sqrt{-1})^2\sqrt{-1}}{8}$$

$$= -\frac{1}{8} + \frac{3\sqrt{3}i}{8} + \frac{9}{8} - \frac{3\sqrt{3}i}{8}$$

$$= 1.$$

3. Encuentre dos raíces cuadradas distintas de *i*.

Respuesta.- Queremos encontrar raíces distintas de i tal que

$$x^{2} = i$$
.

Supongamos que x = a + bi para $a, b \in \mathbb{R}$. Resolvemos la ecuación cuadrática, se tiene

$$x^2 = (a+bi)^2 = (a^2 - b^2) + (ab+ba)i = (a^2 - b^2) + 2abi.$$

Luego, ya que $x^2 = i = 0 + 1i$, entonces

$$(a^2 - b^2) + 2abi = (0 + 1i)$$
 \Rightarrow $\begin{cases} a^2 - b^2 = 0 \\ 2ab = 1 \end{cases}$

para a y b números reales. Resolvamos este sistema de ecuaciones, se tiene

$$\begin{cases} b = \pm \sqrt{\frac{1}{2}} \\ a = \pm \sqrt{\frac{1}{2}} \end{cases}$$

Ya que,
$$x^2 = (a + bi)^2 = (a^2 - b^2) - 2abi = i$$
. Entonces,

$$\left[\left(\frac{1}{\sqrt{2}} \right)^2 - \left(\frac{1}{\sqrt{2}} \right)^2 \right] + 2 \cdot \frac{1}{\sqrt{2}} \cdot \frac{i}{\sqrt{2}} i = i$$

$$\left[\left(-\frac{1}{\sqrt{2}} \right)^2 - \left(-\frac{1}{\sqrt{2}} \right)^2 \right] + 2 \left(-\frac{1}{\sqrt{2}} \right) \left(- \cdot \frac{i}{\sqrt{2}} \right) i = i$$

$$\left[\left(-\frac{1}{\sqrt{2}} \right)^2 - \left(\frac{1}{\sqrt{2}} \right)^2 \right] + 2 \left(-\frac{1}{\sqrt{2}} \right) \cdot \frac{i}{\sqrt{2}} i \neq i$$

$$\left[\left(\frac{1}{\sqrt{2}} \right)^2 - \left(-\frac{1}{\sqrt{2}} \right)^2 \right] + 2 \cdot \frac{1}{\sqrt{2}} \left(-\frac{i}{\sqrt{2}} \right) i \neq i$$

De las que solo satisface $x^2 = i$ las dos primeras ecuaciones. Por lo tanto, las dos raíces distintas de i son:

$$\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i$$
 y $-\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}i$.

4. Demuestre que $\alpha + \beta = \beta + \alpha$ para todo $\alpha, \beta \in \mathbb{C}$.

Demostración.- Supóngase $\alpha = a + bi$ y $\beta = c + di$, donde $a, b, c, d \in \mathbf{R}$. Entonces por definición de suma de números complejos se muestra que

$$\alpha + \beta = (a + bi) + (c + di) = (a + c) + (b + d)i = (c + a) + (d + b)i = \beta + \alpha.$$

5. Demuestre que $(\alpha + \beta) + \lambda = \alpha + (\beta + \lambda)$ para todo $\alpha, \beta, \lambda \in \mathbb{C}$.

Demostración.- Sean,

$$\alpha = a + bi
\beta = c + di
\lambda = e + fi$$

para $a, b, c, d, e, f \in \mathbf{R}$. Entonces,

$$(\alpha + \beta) + \lambda = [(a + bi) + (c + di)] + (e + fi)$$

$$= [(a + c) + (b + d)i] + (e + fi)$$

$$= [(a + c) + e] + [(b + d) + f]i$$

$$= [a + (c + e)] + [b + (d + f)]i$$

$$= (a + bi) + [(c + e) + (d + e)i]$$

$$= (a + bi) + [(c + di) + (e + di)]$$

$$= \alpha + (\beta + \lambda)$$

6. Demuestre que $(\alpha\beta)\lambda = \alpha(\beta\lambda)$ para todo $\alpha, \beta, \lambda \in \mathbb{C}$.

Demostración.- Sean,

$$\alpha = a + bi
\beta = c + di
\lambda = e + fi$$

1.1. $R^N Y C^N$

para $a, b, c, d, e, f \in \mathbf{R}$. Entonces,

$$(\alpha\beta)\lambda = [(a+bi)(c+di)](e+fi)$$

$$= [(ac-bd) + (ad+bc)i](e+fi)$$

$$= [(ac-bd)e - (ad+bc)f] + [(ac-bd)f + (ad+bc)e]i$$

$$= [(ac)e - (bd)e - (ad)f - (bc)f] + [(ac)f - (bd)f + (ad)e + (bc)e]i$$

$$= [a(ce) - a(df) - b(cf) - b(de)] + [a(cf) + a(de) + b(ce) - b(df)]i$$

$$= [a(ce-df) - b(cf+de)] + [a(cf+de) + b(ce-df)]i$$

$$= (a+bi)[(ce-df) + (cf+de)i]$$

$$= (a+bi)[(c+di)(e+fi)]$$

7. Demuestre que para cada $\alpha \in \mathbb{C}$, existe un único $\beta \in \mathbb{C}$ tal que $\alpha + \beta = 0$.

Demostración.- Sean $\alpha = (a+bi)$ y $\beta = (c+di)$ para $a,b,c,d \in \mathbf{R}$. Por las propiedades de números reales, a y b tienen inversa, las llamaremos c y d respectivamente tales que a+c=0 y b+d=0. Por lo tanto,

$$\alpha + \beta = (a+bi) + (c+di)$$
= $(a+c) + (b+d)i$
= $0+0i$
= 0

Ahora demostremos la unicidad. Sean β y β' con c', $d' \in \mathbf{R}$ tales que $\alpha + \beta = 0$ y $\alpha + \beta' = 0$. Igualando estas ecuaciones se tiene,

$$\begin{array}{rcl}
\alpha + \beta & = & \alpha + \beta' \\
(a+bi) + (c+di) & = & (a+bi) + (c'+d'i) \\
(a+c) + (b+d)i & = & (a+c') + (b+d')i
\end{array}$$

Supongamos c = c' y d = d'. Entonces,

$$(b+d)i = (b+d')i$$

Dada que la igualdad $\alpha + \beta = \alpha + \beta'$ se cumple siempre que c = c' y d = d', concluimos que,

$$(c+di)=(c'+d'i)$$
 \Rightarrow $\beta=\beta'$.

8. Demuestre que para cada $\alpha \in \mathbb{C}$ con $\alpha \neq 0$, existe un único $\beta \in \mathbb{C}$ tal que $\alpha\beta = 1$.

Demostración.- Sean $\alpha = a + bi$ y $\beta = c + di$ con $a, b, c, d \in \mathbf{R}$. Entonces,

$$\alpha\beta = (a+bi)(c+di) = (ac-bd) + (ad+bc)i = (1+0i)$$

Supongamos que:

$$\begin{cases} ac - db = 1 \\ ad + bc = 0 \end{cases}$$

De la segunda ecuación tenemos, $d=-\frac{bc}{a}$ y reemplazando en la ecuación 1,

$$c = \frac{a}{a^2 + h^2}.$$

Luego,

$$d = -\frac{bc}{a} = \frac{b \cdot \frac{a}{a^2 + b^2}}{a} = -\frac{b}{a^2 + b^2}.$$

Por lo tanto, existe un β tal que,

$$\beta = \frac{a}{a^2 + b^2} - \frac{b}{a^2 + b^2}i = \frac{a}{a^2 + b^2} + \frac{-bi}{a^2 + b^2} = \frac{a - bi}{a^2 + b^2} = \frac{1}{a + bi}.$$

Ahora, demostremos la unicidad. Sean $\beta = c + di$ y $\beta' = c'd'i$ tales que, (a + bi)(c + di) = 1 y (a + bi)(c' + d'i) = 1. Entonces, por las propiedades de conmutatividad y asociatividad,

$$c + di = (c + di) \cdot 1 = (c + di) \cdot (a + bi)(c' + d'i) = [(a + bi)(c + di)](c' + d'i) = c' + d'i.$$

Por lo que queda demostrado que $\beta = \beta'$. Y así concluimos que α tiene inverso multiplicativo.

9. Demuestre que $\alpha(\beta + \gamma) = \alpha\beta + \alpha\gamma$ para todo $\alpha, \beta, \gamma \in \mathbb{C}$.

Demostración.- Sean $\alpha = a + bi$, $\beta = c + di$ y $\gamma = e + fi$ con $a, b, c, d, e, f \in \mathbf{R}$. Entonces,

$$\begin{array}{lll} \alpha(\beta+\gamma) & = & (a+bi)\left[(c+e)+(d+f)i\right] \\ & = & \left[a(c+e)-b(d+f)\right]+\left[a(d+f)+b(c+e)\right]i \\ & = & \left[ac+ae-bd-bf\right]+\left[ad+af+bc+be\right]i \\ & = & ac+ae-bd-bf+adi+afi+bci+bei \\ & = & \left[(ac-bd)+(ad+bc)i\right]+\left[(ae-bf)+(af+be)i\right] \\ & = & (a+bi)(c+di)+(a+bi)(e+fi) \\ & = & \alpha\beta+\alpha\gamma \end{array}$$

10. Encuentre $x \in \mathbb{R}^4$ tal que

$$(4, -3, 1, 7) + 2x = (5, 9, -6, 8).$$

Respuesta.- Sea $x = (x_1, x_2, x_3, x_4)$ con $x_1, x_2, x_3, x_4 \in \mathbf{R}$. Por definición de adición y multiplicación por un escalar en \mathbf{F} propiedades Entonces,

$$(4, -3, 1, 7) + 2(x_1, x_2, x_3, x_4) = (5, 9, -6, 8)$$

 $(4, -3, 1, 7) + (2x_1, 2x_2, 2x_3, 2x_4) = (5, 9, -6, 8)$
 $(4 + 2x_1, -3 + 2x_2, 1 + 2x_3, 7 + 2x_4) = (5, 9, -6, 8)$

Por la igualdad dada, podemos formar un sistema de ecuaciones como sigue:

$$\begin{cases} 4 + 2x_1 = 5 \\ -3 + 2x_2 = 9 \\ 1 + 2x_3 = -6 \\ 7 + 2x_4 = 8 \end{cases}$$

Resolviendo, obtenemos

$$x = (x_1, x_2, x_3, x_4) = \left(\frac{1}{2}, 2, -\frac{7}{2}, \frac{1}{2}\right).$$

1.2 Definición de espacio vectorial

La motivación para la definición de un espacio vectorial proviene de las propiedades de la suma y la multiplicación escalar en \mathbb{F}^n : la suma es conmutativa, asociativa y tiene una identidad. Todo elemento tiene un inverso aditivo. La multiplicación escalar es asociativa. La multiplicación escalar por 1 actúa como se esperaba. La suma y la multiplicación escalar están conectadas por propiedades distributivas. Definiremos un espacio vectorial como un conjunto V con una suma y una multiplicación escalar en V que satisfagan las propiedades del párrafo anterior.

Definición 1.9 (Adición y multiplicación escalar).

- Una adición en un conjunto V es una función que asigna un elemento $u+v\in V$ para cada par de elementos $u,v\in V$.
- Una multiplicación escalar en un conjunto V es una función que asigna un elemento $\lambda v \in V$ para cada $\lambda \in \mathbb{F}$ y cada $v \in V$.

Definición 1.10 (Espacio vectorial). Un espacio vectorial es un conjunto V junto con una suma en V y una multiplicación escalar en V tal que se cumplen las siguientes propiedades:

• Conmutatividad

$$u + v = v + u$$
 para todo $u, v \in V$;

Asociatividad

$$(u+v)+w=u+(v+w)$$
 y $(ab)v=a(bv)$ para todo $u,v,w\in V$ y todo $a,b\in \mathbb{F}$;

• Identidad aditiva

Existe un elemento
$$0 \in V$$
 tal que $v + 0 = v$ para todo $v \in V$;

• Inverso aditivo

Para cada
$$v \in V$$
, existe $w \in V$ tal que $v + w = 0$;

• Identidad Multiplicativa

$$1v = v$$
 para todo $v \in V$

• Propiedad distributiva

$$a(u+v) = au + av$$
 y $(a+b)v = av + bv$ para todo $a, b \in \mathbb{F}$ y todo $u, v \in V$.

Definición 1.11 (Vector, punto). Elementos de un espacio vectorial son llamados vectores o puntos.

Definición 1.12 (Espacio vectorial real, espacio vectorial complejo).

- Un espacio vectorial sobre $\mathbb R$ es llamado un espacio vectorial real.
- Un espacio vectorial sobre C es llamado un espacio vectorial complejo.

Definición 1.13 (F^S).

- Si S es un conjunto, entonces F^S se denota como el conjunto de funciones de S para F.
- Para $f,g \in F^S$, la suma $f+g \in F_S$ es la función definida por

$$(f+g)(x) = f(x) + g(x)$$

para todo $x \in S$

• Para $\lambda \in F$ y $f \in F^S$, el producto $\lambda f \in F^S$ es una función definida por

$$(\lambda f)(x) = \lambda f(x)$$

para todo $x \in S$.

La definición de un espacio vectorial requiere que tenga una identidad aditiva. El siguiente resultado establece que esta identidad es única.

Teorema 1.2. Un espacio vectorial tiene una única identidad aditiva.

Demostración.- Supóngase 0 y 0' ambos identidades aditivas para algún espacio vectorial V entonces,

$$0' = 0' + 0 = 0 + 0' = 0$$

donde se cumple la primera igualdad porque 0 es una identidad aditiva, la segunda igualdad viene de la conmutatividad, y la tercera igualdad se cumple porque 0' es una identidad aditiva. Por lo tanto 0'=0 y queda probado que V tiene una sola identidad aditiva.

Cada elemento v en un espacio vectorial tiene un inverso aditivo, un elemento w en el espacio vectorial tal que v + w = 0. El siguiente resultado muestra que cada elemento en un espacio vectorial tiene solo un inverso aditivo.

Teorema 1.3. Cada elemento en un espacio vectorial tiene un único inverso aditivo.

Demostración.- Supóngase que V es un espacio vectorial. Sea $v \in V$, w y w' inversos aditivos de v. Entonces

$$w = w + 0 = w + (v + w') = (w + v) + w' = 0 + w' = w'$$

Así w = w'.

Nota: 1.1 (-v, w - v). Sea $v, w \in V$. Entonces

- -v se denota como el inverso aditivo de v;
- w v es definido como w + (-v).

Nota: 1.2 (*V*). Por el resto del libro, *V* se define como el espacio vectorial sobre *F*.

Teorema 1.4. 0v = 0 para cada $v \in V$.

Demostración.- Para $v \in V$, tenemos

$$0v = (0+0)v = 0v + 0v$$

1.3. SUBESPACIOS 11

Luego añadiendo el inverso aditivo de 0v para ambos lados de la ecuación de arriba tenemos 0 = 0v.

Ahora establecemos que el producto de cualquier escalar y el vector 0 es igual al vector 0.

Teorema 1.5. a0 = 0 para cada $a \in \mathbb{F}$.

Demostración.- Para $a \in \mathbb{F}$, tenemos

$$a0 = a(0+0) = a0 + a0$$

Luego añadiendo el inverso aditivo de a0 para ambos lados de la ecuación de arriba tenemos 0 = a0.

Ahora mostramos que si un elemento de V se multiplica por el escalar -1, entonces el resultado es el inverso aditivo del elemento de V.

Teorema 1.6. (-1)v = -v para cada $v \in V$.

Demostración.- Para $v \in V$, tenemos

$$v + (-1)v = 1v + (-1)v = [1 + (-1)]v = 0v = 0.$$

Esta ecuación nos dice que (-1)v, cuando se suma a v da 0. Así (-1)v es el inverso aditivo de v.

1.2.1 Ejercicio 1.B

1.3 Subespacios

Definición 1.14 (Subespacio). Un subconjunto U de V es llamado un subespacio de V si U es también un espacio vectorial (Usando la misma adición y multiplicación escalar como en V).

El siguiente resultado brinda la forma más fácil de verificar si un subconjunto de un espacio vectorial es un subespacio.

Teorema 1.7. Un subconjunto U de V es un subespacio de V si y sólo si U satisface las siguientes tres condiciones:

• Identidad aditiva.

$$0 \in U$$
;

Cerrado bajo adición.

$$u, w \in U$$
 implica $u + w \in U$;

• Cerrado bajo multiplicación escalar.

$$a \in F$$
 y $u \in U$ implica $au \in U$;

Demostración.- Si U es un subespacio de V, entonces U satisface las tres condiciones de arriba por la definición de espacio vectorial.

Por el contrario, suponga que U satisface las tres condiciones anteriores. La primera condición anterior asegura que la identidad aditiva de V está en U. La segunda condición de arriba asegura que la adición tenga sentido en U. La tercera condición asegura que la multiplicación escalar tenga sentido en U.

Si $u \in U$, entonces -u es también en U por la tercera condición de arriba. Por lo tanto cada elemento de U tiene un inverso aditivo en U.

Las otras partes de la definición de un espacio vectorial, como la asociatividad y conmutatividad, se satisfacen automáticamente para U porque sostienen el espacio más grande de V. Así U es un espacio vectorial y por ende es un subespacio de V.

1.3.1 Suma de subespacios

Definición 1.15 (Suma de subespacios). Supóngase U_1, \ldots, U_m son subconjuntos de V. La suma de U_1, \ldots, U_m , denotado por $U_1 + \ldots + U_m$, es el conjunto de todas los posibles sumas de los elementos de U_1, \ldots, U_m . Más precisamente,

$$U_1 + \ldots + U_m = \{u_1 + \ldots + u_m : u_1 \in U_1, \ldots, u_m \in U_m\}$$

El siguiente resultado establece que la suma de subespacios es un subespacio y, de hecho, es el subespacio más pequeño que contiene todos los sumandos.

Teorema 1.8 (Suma de subespacios es el contenedor más pequeño de subespacios).

Supóngase que U_1, \ldots, U_m son subespacios de V. Entonces $U_1 + \ldots + U_m$ es el subepsacio más pequeño de V que contiene U_1, \ldots, U_m .

Demostración.- Es fácil ver que $0 \in U_1 + ... + U_m$ y que $U_1 + ... + U_m$ es cerrado sobre la adición y la multiplicación escalar, es decir, por las tres condiciones dadas anteriormente podemos afirmar que $U_1 + ... + U_m$ es un subespacio de V.

Claramente U_1, \ldots, U_m están todos contenidos en $U_1 + \ldots + U_m$ (para ver esto, considere las sumas $u_1 + \ldots + u_m$ donde todas menos una de las u's son 0). Por el contrario, todo subespacio de V que contenga U_1, \ldots, U_m contiene $U_1 + \ldots + U_m$ (porque los subespacios deben contener todas las sumas finitas de sus elementos). Por lo tanto $U_1 + \ldots + U_m$ es el subespacio más pequeño de V que contiene a U_1, \ldots, U_m .

1.3.2 Sumas directas

Definición 1.16 (Suma directa). Supóngase que U_1, \ldots, U_m son subespacios de V.

- La suma $U_1 + ... + U_m$ es llamada una suma directa si cada elemento de $U_1 + ... + U_m$ se puede escribir de una sola manera como una suma $u_1 + ... + u_m$ donde cada u_i esta en U_i .
- Si $U_1 + \ldots + U_m$ es una suma directa, entonces $U_1 \oplus \ldots \oplus U_m$ denota $U_1 + \ldots + U_m$ con la notación \oplus sirviendo como una indicación de que se trata de una suma directa.

El siguiente resultado muestra que al decidir si una suma de subespacios es una suma directa, solo necesitamos considerar si 0 se puede escribir únicamente como una suma apropiada.

1.3. SUBESPACIOS 13

Teorema 1.9 (Condición para una suma directa). Supóngase que U_1, \ldots, U_m son subespacios de V. Entonces $U_1 + \ldots + U_m$ es una suma directa si y sólo si la única manera de escribir 0 como una suma $u_1 + \ldots + u_m$, donde cada u_i está en U_i , es tomando cada u_i igual a 0.

Demostración.- Supóngase que $U_1 + \ldots + U_m$ es una suma directa. Entonces la definición de suma directa implica que la única manera de escribir 0 como una suma $u_1 + \ldots + u_m$, donde cada u_j está en U_j , es tomando cada u_j igual a 0. Para mostrar que $U_1 + \ldots + U_m$ es una suma directa, sea $v \in U_1 + \ldots + U_m$. Podemos escribir:

$$v = u_1 + \ldots + u_m$$

para algún $u_1 \in U_1, \dots, u_m \in U_m$. Para mostrar que esta representación es única, supongamos que también tenemos

$$v = v_1 + \ldots + v_m$$

donde $v_1 \in U_1, \dots, v_m \in U_m$. Restando estas dos ecuaciones, tenemos,

$$0 = (u_1 - v_1) + \ldots + (u_m - v_m).$$

Porque $u_1 - v_1 \in U_1, \dots U_m$, la ecuación dada implica que cada $u_j - v_j$ es igual a 0. Por lo tanto $u_1 = v_1, \dots, u_m = v_m$.

El siguiente resultado da una condición simple para probar qué pares de subespacios dan una suma directa.

Teorema 1.10 (Suma directa de dos subespacios). Supóngase que U y W son subespacios de V. Entonces U + W es una suma directa si y sólo si $U \cap W = \{0\}$.

Demostración.- Primero supóngase que U+W es una suma directa. Si $v \in U \cap W$, entonces 0=v+(-v), donde $v \in U$ y $-v \in W$. Por la única representación de 0 como la suma de un vector en U y un vector en W, tenemos v=0.