TC3020 | Machine Learning (ML) 08 Artificial Neural Networks

Profr. Rafael Pérez Torres

r.perez@tec.mx

EiC | ITESM | Campus MTY

Non-linear hypothesis

- When dealing with non-linear decision boundaries it is possible to perform feature engineering to achieve separation of classes.
 - However, this is a risky operation, we might end up with way too many features.
 - Doing that operation by hand is cumbersome.
- There should be a way to better select our features.

Artificial Neural Networks (ANN)

- Origins: algorithms that try to mimic the human brain
- It is said that mammal brains follow a single recipe to learn/process different types of stimuli
- If that is the case, it could be possible to design an algorithm to learn or process any type of information

Model representation

Model representation

- The perceptron
- Parameters are called weights
- We still add a bias unit
- We need an activation function: sigmoid $\frac{1}{1+e^{-\theta^T x}}$
 - 0 output: inhibited neuron
 - 1 output: excited neuron

$$x = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \end{bmatrix} \qquad \theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \\ \theta_3 \end{bmatrix}$$

ANN architecture

ANN's activations

 $a_i^{(j)}$ = activation of unit i in layer j

 $\theta^{(j)}$ = matrix of weights controlling the function mapping from layer j to layer j+1

Ozz : arrives to neuron 2, coming from neuron 3

$$\Theta^{(1)} \in \mathbb{R}^{3 \times 4}$$

It arrives to 3 neurons coming out from 4 neurons

$$a_1^{(2)} = g(\Theta_{10}^{(1)}x_0 + \Theta_{11}^{(1)}x_1 + \Theta_{12}^{(1)}x_2 + \Theta_{13}^{(1)}x_3)$$

 $\rightarrow h_{\Theta}(x)$

$$a_2^{(2)} = g(\Theta_{20}^{(1)}x_0 + \Theta_{21}^{(1)}x_1 + \Theta_{22}^{(1)}x_2 + \Theta_{23}^{(1)}x_3)$$

$$a_3^{(2)} = g(\Theta_{30}^{(1)}x_0 + \Theta_{31}^{(1)}x_1 + \Theta_{32}^{(1)}x_2 + \Theta_{33}^{(1)}x_3)$$

$$h_{\Theta}(x) = a_1^{(3)} = g(\Theta_{10}^{(2)} a_0^{(2)} + \Theta_{11}^{(2)} a_1^{(2)} + \Theta_{12}^{(2)} a_2^{(2)} + \Theta_{13}^{(2)} a_3^{(2)})$$

If network has s_j units in layer j, s_{j+1} units in layer j+1, then $\Theta^{(j)}$ will be of dimension $s_{j+1} \times (s_j+1)$ E.g., for $\Theta^{(2)}$. Layer 2 has 3 units, layer 3 has 1 unit. $\Theta^{(2)}$ is of size 1 x 4

ANN's operation

- Working with a neural network involves two steps:
 - Feed forward: to predict $h_{\theta}(x)$
 - Backpropagation: to adjust the weights in Θ :
 - This is the actual core of the training for an ANN.
 - When a good value of Θ has been found, the model could be exported easily (just the matrix of weights Θ plus the calculation of $h_{\theta}(x)$ is enough to predict the class for new examples).
- As we are dealing with matrixes, using vector operations can speed up and clarify the feed forward and backpropagation processes.

ANN vectorized implementation

$$a_{1}^{(2)} = g(\Theta_{10}^{(1)}x_{0} + \Theta_{11}^{(1)}x_{1} + \Theta_{12}^{(1)}x_{2} + \Theta_{13}^{(1)}x_{3})$$

$$a_{2}^{(2)} = g(\Theta_{20}^{(1)}x_{0} + \Theta_{21}^{(1)}x_{1} + \Theta_{22}^{(1)}x_{2} + \Theta_{23}^{(1)}x_{3})$$

$$a_{3}^{(2)} = g(\Theta_{30}^{(1)}x_{0} + \Theta_{31}^{(1)}x_{1} + \Theta_{32}^{(1)}x_{2} + \Theta_{33}^{(1)}x_{3})$$

$$h_{\Theta}(x) = g(\Theta_{10}^{(2)}a_{0}^{(2)} + \Theta_{11}^{(2)}a_{1}^{(2)} + \Theta_{12}^{(2)}a_{2}^{(2)} + \Theta_{13}^{(2)}a_{3}^{(2)})$$

$$x = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \end{bmatrix} \qquad z^{(2)} = \begin{bmatrix} z_1^{(2)} \\ z_2^{(2)} \\ z_3^{(2)} \end{bmatrix}$$

$$z^{(2)} = \Theta^{(1)}x$$
$$a^{(2)} = g(z^{(2)})$$

Add
$$a_0^{(2)} = 1$$

 $z^{(3)} = \Theta^{(2)}a^{(2)}$
 $h_{\Theta}(x) = a^{(3)} = g(z^{(3)})$

ANN learning its own features

- This is a lot like Logistic Regression!
- Take each perceptron (neuron) individually, we find Logistic Regressions.
- With lots of them, it is clear how ANNs produce non-linear boundaries.
- Somehow the features become something more complex during the process.

Non-linear classification example

"XNOR" function: negating the XOR

x1	x2	Xor	Xnor
0	0	0	1
0	1	1	0
1	0	1	0
1	1	0	1

Example: Simple AND gate

$$x_1, x_2 \in \{0, 1\}$$

 $y = x_1 \text{ AND } x_2$

$$h_{\theta}(x) = g(-30 + 20x_1 + 20x_2)$$

x_1	x_2	$h_{\Theta}(x)$
0	0	
0	1	
1	0	
1	1	

Example: Simple OR gate

$$h_{\theta}(x) = g(-10 + 20x_1 + 20x_2)$$

x_1	x_2	$h_{\Theta}(x)$
0	0	
0	1	
1	0	
1	1	

Example: Simple NOR gate

(NOT
$$x_1$$
) AND (NOT x_2)
1 iff both are = 0

$$h_{\theta}(x) = g(10 - 20x_1 - 20x_2)$$

x_1	x_2	$h_{\Theta}(x)$
0	0	
0	1	
1	0	
1	1	

Example: Putting it all together for XNOR

x_1	x_2	$a_1^{(2)}$	$a_2^{(2)}$	$h_{\Theta}(x)$
0	0	0	1	1
0	1	0	0	0
1	0	O	0	0
1	1	1		1

x1	x2	Xor	Xnor
0	0	0	1
0	1	1	0
1	0	1	0
1	1	0	1

Multiclass classification

Car

Motorcycle

Truck

$$h_{\Theta}(x) \in \mathbb{R}^4$$

$$h_{\Theta}(x) pprox \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}$$

when pedestrian

$$h_{\Theta}(x) pprox \begin{bmatrix} 0\\1\\0\\0 \end{bmatrix}$$

when car

$$h_{\Theta}(x) pprox \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix} \qquad h_{\Theta}(x) pprox \begin{bmatrix} 0\\1\\0\\0 \end{bmatrix} \qquad h_{\Theta}(x) pprox \begin{bmatrix} 0\\0\\1\\0 \end{bmatrix} \quad \text{etc}$$

when motorcycle

Summary

- In this session we introduced Artificial Neural Networks.
 - Its inspiration in nature.
 - Its architecture.
 - The basic process to predict a class.
 - How it can create non-linear separations.
 - How it could be linked to Logistic Regression.
 - How it helps to follow a one-vs-all approach.

^{*} Portions of this material are based on the ML course available at https://www.coursera.org/learn/machine-learning