INSTITUTO TECNOLÓGICO DE COSTA RICA

ESCUELA DE MATEMÁTICA

CURSO: Álgebra Lineal para Computación

CÓDIGO: MA-2405

Propiedades básicas de matrices

- 1. Para $\alpha, \beta \in \mathbb{R}$ y $A, B, C \in M_{m \times n}$, se cumple:
 - (a) A + B = B + A
 - (b) (A+B)+C=A+(B+C)
 - (c) $A + 0_{m \times n} = 0_{m \times n} + A = A$
 - (d) $A + (-A) = (-A) + A = 0_{m \times n}$
 - (e) $\alpha(\beta A) = (\alpha \beta)A$
 - (f) $\alpha(A+B) = \alpha A + \alpha B$
 - (g) $(\alpha + \beta)A = \alpha A + \beta A$
 - (h) 1A = A
 - (i) $(\alpha A)^t = \alpha A^t$
 - $(j) \qquad (A+B)^t = A^t + B^t$
- 2. Para $\alpha \in \mathbb{R}$, $A, B \in M_{m \times n}$, $C \in M_{n \times p}$, $D \in M_{p \times s}$, $F \in M_{r \times m}$ se cumple:
 - (a) F(A+B) = FA + FB
 - (b) (A+B)C = AC + BC
 - (c) $I_m A = A = A I_n$
 - (d) $A(\alpha C) = (\alpha A)C = \alpha (AC)$
 - (e) $(A^t)^t = A$
 - $(f) (AC)^t = C^t A^t$
 - $(g) 0_{r \times m} A = 0_{r \times n}$
 - (h) $A0_{n\times p} = 0_{m\times p}$
 - (i) (AC)D = A(CD)
- 3. Para $\alpha \in \mathbb{R}$, $A, B \in M_n$ con A y B invertibles (no singulares), se cumple:
 - $(a) I_n^{-1} = I_n$
 - (b) $(A^{-1})^{-1} = A$
 - (c) $(A^t)^{-1} = (A^{-1})^t$
 - (d) $(AB)^{-1} = B^{-1}A^{-1}$