lec03

Mathematical Preliminaries

Common Discrete Probability Distributions

Generalised Bernoulli Distribution

分类分布 (Categorical Distribution),也称广义伯努利分布

$$P(X = 1) = p_1, P(X = 2) = p_2, \dots, P(X = k) = p_k$$

其中,
$$\sum_{i=1}^k p_i = 1$$

Multinomial Distribution

多项式分布是二项分布的扩展,进行 n 次独立重复试验 ,每次试验都有 k 种可能结果

$$rac{n!}{\prod_{i=1}^k n_i!} \cdot \prod_{i=1}^k p_i^{n_i}$$

其中, n_i 表示事件 i 出现的次数, $\sum_{n_i}^k = n$, p_i 表示事件 i 发生的概率

Missing Values

ID	Height (cm)	Weight (kg)
1	175	60
2	183	80
3	183	85
4	178	65
5	203	90
6	185	78
7	155	98
8	180	75
9	173	65
10		85
11	184	80

对于这个表格,缺少一个数据,处理缺少数据的方法如下:

- discard
- fill in by hand
- set "missing value"
- mean
- predict

accept

Discard

丢弃缺失的数据对应的训练实例(在这个例子下是这一行) 然后后面两段英语我看不懂,她写了些什么玩意

- Might get away because of the redundancy in the dataset. We might have another student with the same height as student no.10 for whom we have measured the height
- Might not get away because student no.10 was the only student who had obesity. By ignoring student no.10, we lose all the information we had about the positive class

Fill in by hand

重新注释数据或重新测量缺少特征的实例

可靠

但是

- 可能无法再接触这些 subject
- 太慢
- 成本高
- 缺少值可能很多(不还是成本高和太慢吗)

Set "missingValue"

将 "缺失" 视为该特征的一个类别,并设置一些指示该确实的常量,比如 "missing Value"。 但是对于数值数据来说不可能,并不能解决问题

Mean

计算整个数据集的对应特征的均值,并填上

如果缺失值的数据点是数据集中的代表性样本,这可能是一个不错的选择 但如果这些数据点是异常值,则此方法不准确

Predict

我们可以训练一个新的分类器来首先预测数据实例中的缺失值 然后训练第二个分类器来使用所有(原始+预测的缺失值)数据点来预测目标类

Accept

(这又是在说啥,还是没看懂)

只需保留缺失值的数据点不变,然后让算法(例如分类器)以适当的方式处理缺失值

分类器可能首先尝试提出一个规则来对数据进行分类,而不使用具有缺失值的特征 如果它能以高精度做到这一点,那么就可以了,不用担心缺失值

Noisy Data

"Noisy data" 是指分散在数据中的随机误差,可能由于记录不准确、数据损坏导致

在假设 noisy data 是正确的前提下 (没有发现有 noisy data),根据数据集训练的分类器很可能会发生<mark>过拟</mark>

检测噪声

显然的噪声:

- 该数据类型与其他数据类型不一致
- 该数据值与其他数据值显著不一致

不明显的噪声:

• 打错了(0.25打成0.52)

处理噪声

- 人工
- 对数据使用聚类 (clustering) 来查找位于主聚类之外的实例或特征 (outlier detection) 并将其删除
- 使用线性回归来确定函数,然后删除那些远离预测值的函数
- 忽略低于特定频率阈值的所有值,这种方法能有效检测文本中的拼写错误
- 如果可以识别并删除噪声点,我们可以应用缺失值技术来填充缺失的特征

冗余值

一些机器学习算法可能会受到重复数据的不利影响

Over-fitting vs. Under-fitting

欠拟合解决方法

• 学习尚未收敛: 再多跑

• feature 空间太小:实现更多功能

• 训练数据质量差:进行清理与重新注释

• 算法不行: 换算法

过拟合解决方法

- Reduce the flexibility of the model:正则化 (regularisation)、删除 features
- 提前停止
- 增加数据集
- 交叉验证 (cross-validation)

Feature Normalization

[0,1]-scaling

$$\hat{x} = \frac{x - \min(x)}{\max(x) - \min(x)}$$

Gaussian Normalization

$$\hat{x} = \frac{x - \mu}{\sigma}$$

其中 μ 是均值, σ 是标准差