PAT-NO:

JP410256662A

DOCUMENT-IDENTIFIER: JP 10256662 A

TITLE:

MANUFACTURE OF NITRIDE

SEMICONDUCTOR SUBSTRATE AND

MANUFACTURE OF NITRIDE

SEMICONDUCTOR ELEMENT

PUBN-DATE:

September 25, 1998

INVENTOR-INFORMATION:

NAME

OZAKI, NORIYA

NAKAMURA, SHUJI

ASSIGNEE-INFORMATION:

NAME

COUNTRY

NICHIA CHEM IND LTD

N/A

APPL-NO:

JP09056047

APPL-DATE: March 11, 1997

INT-CL (IPC): H01S003/18, H01L033/00 , H01L021/02

, H01L021/205

ABSTRACT:

PROBLEM TO BE SOLVED: To improve crystallinity and heat radiation of an element, by growing nitride semiconductor to have a film thickness of at least a specific value, on a substrate composed of material different from the nitride semiconductor which has a thickness of at least a specific value, and eliminating the substrate after growth is finished.

SOLUTION: Nitride semiconductor is grown on a substrate 21 which is composed of a material different from the nitride semiconductor and at least 1 mm in thickness. Thereby the substrate 21 is made hard to warp at a high temperature, so that a thick nitride semiconductor film can be grown in the state of excellent crystallinity. The thickness of the substrate 21 is 1 mm or more, preferably 1.2 mm, and more preferably 1.5 The upper limit is not set but 3 mm or less is desirable. The thickness of the nitride semiconductor grown on the substrate 21 is at least 100 μ m or more, preferably 150 μ m or more, and more preferably 200 μ m. The upper limit is desirably at most 500 μ m. After that, the substrate 21 is eliminated, and the semiconductor surface is polished.

COPYRIGHT: (C) 1998, JPO

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-256662

(43)公開日 平成10年(1998)9月25日

(51) Int.Cl. ⁶	酸別記号	FΙ				
H01S 3/18	8	H01S 3	3/18			
H01L 33/00		H 0 1 L 33/00 C				
// HO1L 21/0	2	2:	В			
21/205		2	21/205			
		審査請求	未請求	請求項の数7	OL (全	8 頁)
(21)出願番号	特願平9-56047	(71)出願人	000226057			
			日亜化等	学工業株式会社		
(22) 出顧日	平成9年(1997)3月11日		徳島県阿南市上中町岡491番地100			
		(72)発明者	小崎 徳也			
			徳島県阿	可南市上中町岡4	191番地100	日亜化
			学工業材	朱式会社内		
		(72)発明者	中村 6	多二		
				可南市上中町岡4 朱式会社内	191番地100	日亜化
			1 Triver			
		l l				

(57) 【要約】

【目的】 結晶性の良い窒化物半導体よりなる基板の製造方法と、窒化物半導体基板を用いた素子の新規な製造方法を提供する。

【構成】 窒化物半導体と異なる材料よりなる厚さ $1\,\mathrm{m}$ m以上の基板の上に、窒化物半導体を $1\,0\,0\,\mu$ m以上の 膜厚で成長させた後、その基板を除去し、一方窒化物半 導体と異なる材料よりなる基板の上に、窒化物半導体を $1\,0\,0\,\mu$ m以上の膜厚で成長させる第 $1\,\mathrm{m}$ の工程後、前記基板を除去することによって窒化物半導体基板を作製する第 $2\,\mathrm{m}$ の工程後、表面の 凹凸差が $\pm 1\,\mu$ m以下になるまで窒化物半導体基板表面を研磨する第 $3\,\mathrm{m}$ の工程後、窒化物半導体基板の研磨面に新たな窒化物半導体を成長させる第 $4\,\mathrm{m}$ 工程とを備える。

【特許請求の範囲】

"

【請求項1】 窒化物半導体と異なる材料よりなる厚さ 1mm以上の基板の上に、窒化物半導体を100μm以 上の膜厚で成長させた後、その基板を除去することを特 徴とする窒化物半導体基板の製造方法。

【請求項2】 前記窒化物半導体基板の成長法がハイドライド気相成長法であることを特徴とする請求項1に記載の窒化物半導体基板の製造方法。

【請求項3】 前記窒化物半導体層を成長させる前に、その窒化物半導体層の成長温度よりも低温で0.3 μm以下の膜厚を有する窒化物半導体よりなるパッファ層を成長させることを特徴とする請求項1または2に記載の窒化物半導体基板の製造方法。

【請求項4】 前記窒化物半導体基板は、2軸結晶法に よるX線ロッキングカーブの半値幅が5分以下であるこ とを特徴とする請求項1乃至3の内のいずれか1項に記 載の記載の窒化物半導体基板の製造方法。

【請求項5】 窒化物半導体と異なる材料よりなる基板を、研磨によって除去することを特徴とする請求項1乃至4の内のいずれか1項に記載の窒化物半導体基板の製造方法。

【請求項6】 窒化物半導体と異なる材料よりなる基板の上に、窒化物半導体を100μm以上の膜厚で成長させる第1の工程と、第1の工程後、前記基板を除去することによって窒化物半導体基板を作製する第2の工程と、第2の工程後、表面の凹凸差が±1μm以下になるまで窒化物半導体基板表面を研磨する第3の工程と、第3の工程後、窒化物半導体基板の研磨面に新たな窒化物半導体を成長させる第4の工程とを備えることを特徴とする窒化物半導体素子の製造方法。

【請求項7】 前記第1の工程は窒化物半導体をハイドライド気相成長法で成長させ、前記第4の工程は窒化物半導体を有機金属気相成長法で成長させることを特徴とする請求項6に記載の窒化物半導体素子の製造方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は窒化物半導体(InxA $1 \gamma Ga_{1-X-Y}N$ 、 $0 \le X$ 、 $0 \le Y$ 、 $X+Y \le 1$)よりなる基板の製造方法と、窒化物半導体基板を用いた発光ダイオード(LED)、レーザダイオード(LD)等の発光素子、太陽電池、光センサー等の受光素子、あるいはトランジスタ等の電子デバイスに使用される窒化物半導体素子の製造方法に関する。

[0002]

【従来の技術】一般に半導体を基板上に成長させる際、その成長させる半導体と格子整合した基板を用いると半導体の結晶欠陥が少なくなって結晶性が向上することが知られている。しかし、窒化物半導体は格子整合する基板が現在世の中に存在しないことから、一般にサファイア、スピネル、炭化ケイ素のような窒化物半導体と格子

整合しない基板の上に成長されている。

【0003】一方、窒化物半導体と格子整合するGaNバルク結晶を作製する試みは、様々な研究機関において成されているが、未だに数ミリ程度のものしか得られたという報告しかされておらず、実用化には程遠い状態である。

【0004】GaN基板を作製する技術として、例えば特開平7-202265号公報、特開平7-165498号に、サファイア基板の上にZnOよりなるバッファ10層を形成して、そのバッファ層の上に窒化物半導体を成長させた後、バッファ層を溶解除去する技術が記載されている。しかしながらサファイア基板の上に成長されるZnOバッファ層の結晶性は悪く、そのバッファ層の上に窒化物半導体を成長させても良質の窒化物半導体結晶を得ることは難しい。さらに、薄膜のZnOよりなるバッファ層の上に、基板となるような厚膜の窒化物半導体を連続して成長させることも難しい。

[0005]

【発明が解決しようとする課題】LED素子、LD素 20 子、受光素子等の数々の電子デバイスに使用される窒化物半導体素子を作製する際、窒化物半導体よりなる基板を作製することができれば、その基板の上に新たな窒化物半導体を成長させて、格子欠陥が少ない窒化物半導体が成長できるので、それら素子の結晶性が飛躍的に良くなり、従来実現されていなかった素子が実現できるようになる。従って本発明の目的とするところは、まず結晶性の良い窒化物半導体よりなる基板の製造方法と、窒化物半導体基板を用いた素子の新規な製造方法とを提供することにある。

30 [0006]

【課題を解決するための手段】まず、本発明の窒化物半導体基板の製造方法は、窒化物半導体と異なる材料よりなる厚さ $1\,\mathrm{mm}$ 以上の基板の上に、窒化物半導体を $1\,\mathrm{0}$ 0 $\mu\,\mathrm{m}$ 以上の膜厚で成長させた後、その基板を除去することを特徴とする。基板としては、サファイア($A\,\mathrm{1}_2\,\mathrm{O}_3$)若しくはスピネル($M\,\mathrm{g}\,A\,\mathrm{1}_2\,\mathrm{O}_4$)を用いることが最も望ましい。また成長させる窒化物半導体は $n\,\mathrm{D}$ 不純物をドープしない(ノンドープ) $G\,\mathrm{a}\,\mathrm{N}$ か、若しくは $n\,\mathrm{D}$ 不純物を $1\,\mathrm{x}\,\mathrm{1}\,\mathrm{0}^{\,\mathrm{1}_9}/\mathrm{cm}^3$ 以下の範囲で含む $G\,\mathrm{a}\,\mathrm{N}$ を成長させることが最も望ましい。基板の厚さは $1\,\mathrm{mm}$ 以上のものを使用する必要があり、 $1\,\mathrm{mm}$ よりも薄いと、成長中に高温のため基板が反って厚膜の窒化物半導体基板を成長できない。

【0007】本発明では窒化物半導体基板の成長法がハイドライド気相成長法(HVPE)であることを特徴とする。HVPE法とは、ガリウム、アルミニウム、インジウム等の3族元素蒸気と、塩化水素等のハロゲンガスとを反応させて、3族元素の塩化物、臭化物、ヨウ化物等のハロゲン化物を得て、そのハロゲン化物をアンモニ50ア、ヒドラジン等のN源と高温で反応させて窒化物半導

体を得る方法である。塩化ガリウムとアンモニアとを反応させてGaNを得る方法が、従来より良く用いられる。また基板をMOVPE法で成長させることもできるが、HVPE法に比較して長時間を要する。

J.

【0008】本発明の基板の製法は、窒化物半導体層を成長させる前に、その窒化物半導体層の成長温度よりも低温で0.3 μm以下の膜厚を有する窒化物半導体よりなるバッファ層を成長させることを特徴とする。

【0009】本発明の基板の製法は、成長された窒化物 半導体基板は、2軸結晶法によるX線ロッキングカーブ の半値幅(Full Width at Half Maximun、以下、単に半 値幅という。)が5分以下であることを特徴とする。半 値幅が5分よりも大きいと、窒化物半導体基板の上に成 長する新規な窒化物半導体の結晶性が悪くなる。

【0010】さらに、本発明の基板の製法は、窒化物半 導体と異なる材料よりなる前記基板は、研磨によって除 去されることを特徴とする。溶解(ウエットエッチン グ)、ドライエッチング等の手段では、基板を除去しに くく、窒化物半導体基板にダメージを与えやすい傾向に ある。

【0011】本発明の窒化物半導体素子の製造方法は、窒化物半導体と異なる材料よりなる基板の上に、窒化物半導体を100μm以上の膜厚で成長させる第1の工程と、第1の工程後、前記基板を除去することによって窒化物半導体基板を作製する第2の工程と、第2の工程後、表面の凹凸差が±1μm以下になるまで窒化物半導体基板表面を研磨する第3の工程と、第3の工程後、窒化物半導体基板の研磨面に新たな窒化物半導体を成長させる第4の工程とを備えることを特徴とする。

【0012】さらに、第1の工程は窒化物半導体をHVPE法で成長させ、前記第4の工程は窒化物半導体を有機金属気相成長法(MOVPE)で成長させることを特徴とする。MOVPE法とは3族元素の有機金属化合物よりなるガスと、アンモニア、ヒドラジン等の5族元素よりなるガスとを反応させて窒化物半導体を得る方法である。

【0013】なお第4の工程において、新たな窒化物半 導体の成長面は、窒化物半導体と異なる材料よりなる基 板が接していた窒化物半導体基板の研磨面であることを 特徴とする。つまり研磨によって除去した基板側を窒化 物半導体の成長面側とすると、結晶性の良い半導体素子 が作製できやすい傾向にある。

[0014]

【発明の実施の形態】本発明の窒化物半導体基板の製造方法において、異種材料よりなる基板の上に窒化物半導体を成長させるには、ハイドライド気相成長法(HVPE)、有機金属気相成長法(MOVPE)、分子線気相成長法(MBE)等の気相成長法があるが、100μm以上の膜厚で成長させるには、好ましくはHVPE法を用いる。MOVPE、MBE法を用いても良いが、10

 0μ m以上の膜厚で成長させるには10時間以上の長時間を要するため、工業的にはあまり好ましくない。

【0015】窒化物半導体基板の製造方法において重要 なことは、1mm以上の異種基板の上に窒化物半導体を 成長させることである。窒化物半導体は通常800℃以 上、好ましくは1000℃以上の温度で成長される。こ のような高温で窒化物半導体を成長させると、成長中に 異種基板が反ってしまう。反った異種基板の上に100 μm以上の厚膜で窒化物半導体を成長させると、成長中 に窒化物半導体にクラックが入ってしまい、結晶性の良 い窒化物半導体を成長させることができない。しかしな がら、1 mm以上の異種基板を使用することにより、高一 温においても異種基板が反りにくくなるため、結晶性が 良いままで厚膜の窒化物半導体膜を成長できる。基板の 厚さは1mm以上、好ましくは1.2mm以上、さらに 好ましくは1.5mm以上の基板を用いる。上限として は特に限定するものではないが、3mm以下のものを用 いることが望ましい。3mmよりも厚いと、後で基板を 除去するのに長時間を要する。基板としては、サファイ 20 ア、スピネル、ZnO、GaAs、Si、GaP、Si C等が挙げられるが、先にも述べたように、サファイ ア、スピネルは高温に対しても非常に安定であり、窒化 物半導体を厚膜で成長させるのに適している。異種基板 の上に成長させる窒化物半導体は100μm以上で、で きるだけ厚く成長させることが望ましい。好ましくは1 50μm以上、さらに好ましくは200μm以上の膜厚 で成長させる。上限については500μm以下が望まし い。500μm以上で成長させると窒化物半導体中に再 びクラックが入りやすくなって結晶性が悪くなる傾向に 30 ある。

【0017】異種基板の上に成長させる窒化物半導体は、ノンドープのGaN、若しくはn型不純物を1×10¹⁹/cm³以下の範囲で含むGaNを成長させると、最も結晶性の良い窒化物半導体基板を作製できる。n型不純物濃度は1×10¹⁹/cm³を超えると結晶性が悪くなり、窒化物半導体のX線ロッキングカーブの半値幅も長くなるし、また結晶中にクラックが入りやすくなる。但し、HVPE法のような反応容器に石英ガラスを用いる50方法では、石英からの不純物としてSi、〇等のn型不

純物が混入する。しかしながら、不純物の混入をできるだけ少なくして前記範囲に抑えることにより結晶性の良い窒化物半導体基板が作製できる。一方、MOVPE法を用いて意図的にドープする不純物としては第4族元素、例えばSi、Ge、Sn、S等が挙げられる。

【0018】さらに、窒化物半導体のX線ロッキングカーブの半値幅が5分以内、さらに望ましくは3分以内の窒化物半導体結晶を成長させることにより、異種基板を除去する工程においても、窒化物半導体層にダメージを与えにくく、 100μ m以上の窒化物半導体が良好な結晶性を保ったまま、新規な窒化物半導体素子を作製する際の基板として用いることができる。

【0019】本発明の基板の製造方法では、窒化物半導

体と異なる材料よりなる基板を、研磨によって除去することが望ましい。研磨にはダイヤモンド、SiC等の微粉末を研磨剤に用いる。一方、ドライエッチング、ウエットエッチング等の、エッチング手段では窒化物半導体基板にダメージを与えやすい傾向にあり、研磨に比較してさらに長時間を要するため、あまり好ましくはない。【0020】一方、本発明の窒化物半導体素子の製造方法であり、本発明の素子の製造方法では異種基板の厚さは特に限定しない。重要なことは、基板を除去した後に、窒化物半導体基板の表面の凹凸差が $\pm 1~\mu$ m以下になるまで窒化物半導体基板表面を研磨する第3の工程である。凹凸差が $\pm 1~\mu$ m以上あると、窒化物半導体基板の上に成長させる窒化物半導体の膜質が不安定になりやすく、結晶性の良い素子が作製できない。

【0021】次に、本発明の素子の製造方法の第1の工 程において、異種基板の上に窒化物半導体を100μm 以上成長させるには、HVPE、MOVPE、MBE等 があるが、好ましくはHVPE、MOVPEを用い、最 も好ましくはHVPE法で成長させる。HVPE法であ れば、迅速に厚膜の窒化物半導体基板が成長させやす い。また前記第4の工程において、窒化物半導体基板の 上に素子を作製するには、HVPE方を用いても良い が、最も好ましくはMOVPE法を用いる。MOVPE は窒化物半導体の膜厚を制御しやすく、さらに、AIG a NのようなA 1を含む窒化物半導体を成長させる際 に、HVPE方に比べてクラックが入りにくくできる。 さらにHVPE方ではAlの塩化物はHVPE装置に使 用される石英ガラスと激しく反応するため、Alを含む 窒化物半導体を成長させることは困難である。そのた め、第1の工程の窒化物半導体基板はAlを含まないG aNよりなる基板を作製することが最も望ましい。

【0022】さらに、本発明の製造方法において、好ましくは窒化物半導体の成長面を、窒化物半導体と異なる材料よりなる基板が接していた窒化物半導体基板の研磨面とする。この際、異種基板の上に成長させてあるバッファ層は研磨によって除去し、バッファ層を除去した窒

化物半導体基板の研磨面を成長面とすることは当然である。なお研磨後の窒化物半導体基板のX線ロッキングカーブの半値幅は5分以下、さらに好ましくは3分以下であることが望ましい。窒化物半導体の結晶性を評価するこの半値幅は、予め第1の工程において窒化物半導体基板を成長させた時にほとんど決まっている。しかしながら、異種基板に近い側に成長させた窒化物半導体の結晶性は、異種基板に遠いに成長させた窒化物半導体よりもクラックが少なく、さらに結晶欠陥が少ない傾向にある。そのため、異種基板を除去した側の方の窒化物半導体の結晶が良くなるため、その側を新たな窒化物半導体素子の成長面とすることにより結晶性の良い窒化物半導体素子が得られる。

[0023]

【実施例】以下、本発明の窒化物半導体基板の製造方法 を説明する。

[実施例1] (HVPE)

石英よりなる反応容器管の内部にGaメタルを入れた石 英ポートを設置する。さらに石英ポートから離れた位置 20 に、斜めに傾けた厚さ1.2mm、2インチφのサファ イア基板を設置する。なお、反応容器内のGaメタルに 接近した位置にはハロゲンガス供給管が設けられ、ハロ ゲンガス供給間とは別に、サファイア基板に接近した位 置にはN源供給管が設けられている。

【0024】ハロゲンガス管より窒素キャリアガスと主に、HClガスをガスを導入する。この際Gaメタルのポートは900℃に加熱し、サファイア基板側は510℃に加熱してある。そして、HClガスとGaを反応させてGaCl3を生成させ、サファイア基板側に接近したN源供給管からはアンモニアガスを同じく窒素キャリアガスと主に供給し、サファイア基板上にGaNよりなるバッファ層を300オングストロームの膜厚で成長させる。

【0025】バッファ層成長後、サファイア基板側の温度を1050℃に上昇させ、成長速度 0.5μ m/分で10時間成長を行い、厚さ 300μ mのGaNを成長させる。

【0026】成長後、ウェーハを反応容器から取り出し、さらにGaNウェーハをGaNの分解圧以上に加圧 40 した密閉容器中で、1100℃で5分間アニーリングする。このように、GaNの分解圧以上に加圧した窒素雰囲気中でアニーリングすることによりGaNの結晶欠陥が少なくなって結晶性が良くなる傾向にある。

【0027】アニーリング後、ウェーハを研磨装置に移送し、ダイヤモンド研磨剤を用いて、サファイア基板側をラッピングし、サファイア基板とバッファ層を除去する。続いて、さらに細かいダイヤモンド研磨剤を用いてポリシングして、厚さ295μmのGaN基板を得る。

【0028】以上のようにして得られた窒化物半導体基 50 板を研磨装置より取り出し、研磨側の窒化物半導体基板 7

の凹凸を測定したところ、 $\pm 0.5 \mu m$ 以内であった。 さらに研磨面からX線ロッキングカーブの半値幅を測定するとおよそ3分であり、結晶性の良いGaN基板が得られていることが判明した。なおこのGaN基板には不純物として $Siが5 \times 10^{17}/cm^3$ 以下、 $Oが1 \times 10^{16}/cm^3$ 以下含まれていることがSIMSにより判明した。これは原料ガスのHC1、及び石英反応容器から混入したものと推察される。

【0029】 [実施例2] (MOVPE)

特開平4-164895号公報、第2図に示すMOVP E装置を用い、厚さ1.0mm、2インチφのサファイア (C面) 基板を、この装置の反応容器内にセットし、容器内を水素で十分置換した後、水素を流しながら、基板の温度を1050℃まで上昇させ、基板のクリーニングを行う。

【0030】続いて、温度を510℃まで下げ、キャリアガスに水素、原料ガスにアンモニアとTMG(トリメチルガリウム)とを用い、基板上にGaNよりなるバッファ層を200オングストロームの膜厚で成長させる。

【0031】次に、温度を1050℃まで上昇させ、原料ガスにTMG、アンモニアを用い、成長速度 0.1μ m/分で、24時間成長させ、膜厚 144μ mのノンドープGaN層を成長させる。

【0032】成長後、ウェーハを反応容器から取り出し、実施例1と同様にして、GaNウェーハをGaNの分解以上に加圧した密閉容器中で、1100℃で5分間アニーリングした後、サファイア基板側をラッピング、ポリシングして、厚さ 140μ mのGaN基板を得る。さらに、研磨側の窒化物半導体基板の凹凸を測定したところ、 $\pm0.5\mu$ m以内であった。さらに研磨面からX線ロッキングカープの半値幅を測定するとおよそ2分であり、結晶性の良いGaN基板が得られていることが判明した。

【0033】 [比較例1] 実施例1において、厚さ 900μ mのサファイア基板を用いる他は、同様にしてGa Nを成長させたところ、研磨側のGa N層のX線ロッキングカーブの半値幅が8分であり、実施例1に比較して、Ga N基板の結晶性が倍以上劣っていることが判明した。さらに、 800μ mのものは成長中に基板が割れてしまった。

【0034】次に、以下の実施例は本発明の素子について説明する。

[実施例3] 実施例1で得られたGaN基板を特開 $\Psi4$ -164895 号公報、第2 図に示すMOVPE 装置を用い、この装置の反応容器内にセットし、1050 ℃にて、 $Siを1 \times 10^{19}/cm^3$ ドープしたn 型GaN 層を 5μ mの膜厚で成長させる。なお、n 型GaN の成長面は、基板研磨面であることは言うまでもない。

【0035】次に、n型GaNの上に、Siを1×10 ¹⁹/cm³ドープしたn型Al0.2Ga0.8Nよりなる第1 の層を20オングストロームの膜厚で成長させ、続いて ノンドープのGaNよりなる第2の層を20オングスト ロームの膜厚で成長させ、総膜厚 0.4μ mの超格子よ りなるn側クラッド層を成長させる。このようにn型窒 化物半導体層を含む超格子層を活性層を成長させる前に 成長させることにより窒化物半導体素子の出力が飛躍的 に向上する。

【0036】次に800℃で、In0.4Ga0.6Nよりなる膜厚30オングストロームの単一量子井戸構造よりな10 る活性層を成長させる。

【0037】次に、活性層の上にMgを 1×10^{20} /cm 3 ドープしたp型A 10.2G a0.8Nよりなる第1の層を20オングストロームの膜厚で成長させ、続いてMgを 1×10^{19} /cm 3 ドープしたp型G a Nよりなる第2の層を20オングストロームの膜厚で成長させ、総膜厚 0.4μ mの超格子よりなるp側クラッド層を成長させる。このようにp型窒化物半導体層を含む超格子層を活性層を成長させた後に成長させることにより窒化物半導体素子の出力が飛躍的に向上する。なお超格子層はn型 層側、p型層側のいずれか一方、若しくは両方の層に存在させることができる。

【0038】次にこのp側クラッド層5の上にMgを 1×10^{20} /cm 3 ドープしたp型GaN層を 0.5μ mの 膜厚で成長させる。

【0039】反応終了後、温度を室温まで下げ、さらに 窒素雰囲気中、ウェーハを反応容器内において、700 ℃でアニーリングを行い、p型層をさらに低抵抗化す る。

【0040】アニーリング後、ウェーハを反応容器から 30 取り出し、最上層のp型GaN層にNiとAuとを含む 正電極、基板裏面側にWとSiとAuよりなる負電極と を設けた後、350μm角のチップに分離してLED素 子としたところ、If20mAにおいて520nmの緑 色発光を示し、Vfは3.2V、出力は8mWもあっ た。

【0041】 [比較例2] 実施例1 で得られたGaN基板の研磨面の凹凸が ± 1 . 5μ mのものを用いる他は実施例3と同様にしてLED素子を作製したところ、同じくIf20mAにおいて、Vf3. 2Vであったが、出力が3mWでしかなかった。これは基板凹凸が直接窒化物半導体の結晶性に影響したものであると推定する。

【0042】 [実施例4] 図1は実施例4により得られたレーザ素子の構造を示す模式的な断面図であり、レーザ光の共振方向に垂直な方向で素子を切断した際の図を示している。以下、この図面を元に本発明のレーザ素子について説明する。

【0043】実施例1で得られたGaN基板21を、特 開平4-164895号公報、第2図に示すMOVPE 装置の反応容器内にセットし、容器内を水素で十分置換 50 した後、水素を流しながら、基板の温度を1050℃ま で上昇させ、基板のクリーニングを行う。

【0044】続いて、温度を510℃まで下げ、キャリアガスに水素、原料ガスにアンモニアとTMGを用い、基板21上にGaNよりなるバッファ層22を約200オングストロームの膜厚で成長させる。バッファ層22はA1N、GaN、A1GaN、InGaN等が900℃以下の温度で、膜厚数十オングストローム~数百オングストロームで形成できる。このバッファ層は窒化物半導体の成長方法によっては省略することも可能である。

【0045】 (n側コンタクト層23) バッファ層22 成長後、TMGのみ止めて、温度を1050 ℃まで上昇させる。1050 ℃になったら、TMA とアンモニア、シランガスを用い、Si を 1×10^{19} cm^3 ドープした n 型Ga Nよりなるn 側コンタクト層 4μ μ μ μ の 膜厚で 成長させる。

【0046】(0ラック防止層24)次に、温度を800℃にして、原料ガスにTMG、TMI(トリメチルインジウム)、アンモニア、不純物ガスにシランガスを用い、 $Sie5\times10^{18}$ /cm³ドープしたIn0.1Ga0.9Nよりなるクラック防止層24を500オングストロームの膜厚で成長させる。このクラック防止層24はInを含むn型の窒化物半導体、好ましくはInGaNで成長させることにより、A1を含む窒化物半導体層中にクラックが入るのを防止することができる。なおこのクラック防止層は100 オングストローム以上、 0.5μ m以下の膜厚で成長させることが好ましい。100 オングストロームよりも薄いと前記のようにクラック防止として作用しにくく、 0.5μ mよりも厚いと、結晶自体が黒変する傾向にある。なお、このクラック防止層24は、省略することもできる。

【0047】(n側クラッド層25)次に、温度を10 50℃にして、原料ガスにTMA(トリメチルアルミニ ウム)、TMG、NH3、SiH4を用い、Siを1×1 0 19/cm3ドープしたn型A 1 0.2G a 0.8Nよりなる第 1層を20オングストロームの膜厚で成長させ、続いて シランガス、TMAを止め、ノンドープのGaNよりな る第2層を20オングストロームの膜厚で成長させる。 そして第1層+第2層+第1層+第2層+・・・という ように超格子層を構成し、それぞれ第1層を100層、 第2層を100層交互に積層し、総膜厚0.4 μmの超 格子よりなるn側クラッド層25を形成する。このよう に単一膜厚が100オングストローム以下、さらに好ま しくは70オングストローム以下、最も好ましくは40 オングストローム以下の互いに組成が異なる窒化物半導 体を積層した超格子層は、その単一層が弾性臨界膜厚以 下となっているため、結晶性が非常に良くなる。そのた めクラックの入っていない非常に結晶性の良い膜が成長 できるためレーザ素子の、n型窒化物半導体層側及びp 型窒化物半導体層側の少なくとも一方の層側に形成する ことによりレーザ素子の寿命が飛躍的に良くなる。な

お、超格子層はキャリア閉じ込め、若しくは光閉じ込め 層として作用する層に形成することが最も望ましい。 【0048】 (n側光ガイド層26) 続いて、1050 ℃でSiを5×1018/cm3ドープしたn型GaNより なるn 側光ガイド層26を0.1 μ mの膜厚で成長させ る。このn側光ガイド層26は、活性層の光ガイド層と して作用し、GaN、InGaNを成長させることが望 ましく、通常100オングストローム~5μm、さらに 好ましくは200オングストローム~1μmの膜厚で成 10 長させることが望ましい。なお、この光ガイド層26も 超格子層にすることができる。n側光ガイド層15、n 側クラッド層14を超格子層にする場合、超格子層を構 成する窒化物半導体層の平均的なバンドギャップエネル ギーは活性層よりも大きくする。超格子層とする場合に は、第1の層及び第2の層の少なくとも一方に n型不純 物をドープしてもよいし、またノンドープでも良い。 【0049】(活性層27)次に、原料ガスにTMG、 TMI、アンモニア、シランガスを用いて活性層16を 成長させる。活性層16は温度を800℃に保持して、 20 まずSiを8×10¹⁸/cm³でドープしたIn0.2Ga0. 8Nよりなる井戸層を25オングストロームの膜厚で成 温度で、Siを8×10¹⁸/cm³ドープしたIn0.01G

長させる。次にTMIのモル比を変化させるのみで同一温度で、Siを8×10¹⁸ / cm³ ドープしたIn0.01G a0.95Nよりなる障壁層を50オングストロームの膜厚で成長させる。この操作を2回繰り返し、最後に井戸層を積層した総膜厚175オングストロームの多重量子井戸構造(MQW)の活性層27を成長させる。活性層にドープする不純物は本実施例のように井戸層、障壁層両方にドープしても良く、いずれか一方にドープしてもよい。なおn型不純物をドープすると閾値が低下する傾向にある。なお活性層を多重量子井戸構造とする場合には必ずバンドギャップエネルギーの小さい井戸層と、井戸層よりもバンドギャップエネルギーが小さい障壁層とを積層するため、超格子層とは区別する。【0050】(キャップ層28)次に、温度を1050

【0050】 (キャップ層28) 次に、温度を1050 ℃に上げ、TMG、TMA、アンモニア、Cp2Mg(シクロペンタジエニルマグネシウム)を用い、活性層 27よりもバンドギャップエネルギーが大きく、Mgを 1×10^{20} / cm^3 ドープしたp型A10.1Ga0.9Nより なるキャップ層28を300オングストロームの膜厚で 成長させる。このキャップ層28はp型不純物をドープしたが、膜厚が薄いため、n型不純物をドープしてキャリアが補償された i 型としても良く、最も好ましくはp型不純物をドープした層とする。キャップ層28の膜厚は0.1 μ m以下、さらに好ましくは5007ングストローム以下、最も好ましくは3007ングストローム以下に調整する。0.1 μ mより厚い膜厚で成長させる と、キャップ層28中にクラックが入りやすくなり、結晶性の良い窒化物半導体層が成長しにくいからである。

50 またキャリアがこのエネルギーバリアをトンネル効果に

11

より通過できなくなる。また、Alo組成比が大きいAlo 1 GaN程薄く形成するとLD 素子は発振しやすくなる。例えば、Y値が0.2以上のAlv Galov であれば500 オングストローム以下に調整することが望ましい。キャップ層28 の膜厚の下限は特に限定しないが、10 オングストローム以上の膜厚で形成することが望ましい。

【0051】 (p側光ガイド層29) 続いて1050℃ で、バンドギャップエネルギーがキャップ層28よりも 小さい、 $Mgを1 \times 10^{20}/cm^3$ ドープしたp型GaNよりなるρ側光ガイド層29を0.1μmの膜厚で成長 させる。この層は、活性層の光ガイド層として作用し、 n側光ガイド層15と同じくGaN、InGaNで成長 させることが望ましい。また、この層はp側クラッド層 を成長させる際のバッファ層としても作用し、100オ ングストローム $\sim 5 \mu m$ 、さらに好ましくは200オン グストローム $\sim 1 \mu$ mの膜厚で成長させることにより、 好ましい光ガイド層として作用する。このp側光ガイド 層は通常はMg等のp型不純物をドープしてp型の導電 型とするが、特に不純物をドープしなくても良い。な お、このp側光ガイド層を超格子層とすることもでき る。超格子層とする場合には第1の層及び第2の層の少 なくとも一方にp型不純物をドープしてもよいし、また p型不純物をドープしないノンドープでも良い。

【0052】 (p型超格子層=p側クラッド層30) 続いて、1050℃でMgを 1×10^{20} /cm³ドープした p型A 10.2G a 0.8Nよりなる第1の層を20オングストロームの膜厚で成長させ、続いてTMAのみを止め、Mgを 1×10^{20} /cm³ドープしたp型G a Nよりなる第2の層を20オングストロームの膜厚で成長させる。そしてこの操作をそれぞれ100回繰り返し、総膜厚 0.4μ mの超格子層よりなるp側クラッド層30を形成する。この層はn側クラッド層25と同じくキャリア閉じ込め層として作用し、特にp型層の抵抗率を低下でせるための層として作用する。このp側クラッド層の膜厚も特に限定しないが、100オングストローム以上、 2μ m以下、さらに好ましくは500オングストローム以上、 1μ m以下で成長させることが望ましい。

【0053】本実施例のように InGaNよりなる量子構造の井戸層を有する活性層の場合、その活性層 27に接して、膜厚 0.1μ m以下のAlを含む窒化物半導体よりなる p型キャップ層 28 を設け、その p型キャップ層 28 よりも活性層から離れた位置に、p型キャップ層 28 よりもバッドギャップエネルギーが小さい p 側光ガイド層 29 よりも活性層から離れた位置に、p 側光ガイド層 29 よりも活性層から離れた位置に、p 側光ガイド層 29 よりも活性層から離れた位置に、p 側光ガイド層 29 よりも活性 ギャップが大きい Al を含む窒化物半導体を含む超格子 層よりなる p 側クラッド層 30 を設けることは非常に好ましい。しかも p 型キャップ層 17 の膜厚を 0.1μ m以下と薄く設定してあるため、キャリアのバリアとして

作用することはなく、p層から注入された正孔が、トンネル効果によりp型キャップ層17を通り抜けることができて、活性層で効率よく再結合し、LDの出力が向上する。つまり、注入されたキャリアは、p型キャップ層17のバンドギャップエネルギーが大きいため、半導体素子の温度が上昇しても、あるいは注入電流密度が増えても、キャリアは活性層をオーバーフローせず、p型キャップ層17で阻止されるため、キャリアが活性層に貯まり、効率よく発光することが可能となる。従って、半り体素子が温度上昇しても発光効率が低下することが少ないので、閾値電流の低いLDを実現することができる。

【0054】 (p側コンタクト層31) 最後に、105 0℃で、p側クラッド層30の上に、Mgを2×10²⁰ /cm³ドープしたp型GaNよりなるp側コンタクト層 31を150オングストロームの膜厚で成長させる。p 側コンタクト層31はp型のInxAlyGai-x-yN $(0 \le X, 0 \le Y, X+Y \le 1)$ で構成することができ、好 ましくはMgをドープしたGaNとすれば、p電極32 20 と最も好ましいオーミック接触が得られる。なお、p側 コンタクト層31も超格子層とすることもできる。超格 子層とする場合には、特にバンドギャップエネルギーが 異なる第1の層と第2の層とを積層し、第1+第2+第 1+第2+・・・というように積層していき、最後にバ ンドギャップエネルギーが小さい方の層が露出するよう にすると、p電極32と好ましいオーミック接触が得ら れる。p電極32の材料としては、例えばNi、Pd、 Ni/Au等を挙げることができる。また本発明の素子 ではp型AlyGal-yNを含むp側クラッド層30に接 30 して、バンドギャップエネルギーの小さい窒化物半導体 をp側コンタクト層31として、その膜厚を400オン グストローム以下と薄くしているために、実質的にp側 コンタクト層30のキャリア濃度が高くなりp電極32 と好ましいオーミックが得られて、素子の閾値電流、電 圧が低下する。

【0055】反応終了後、温度を室温まで下げ、さらに 窒素雰囲気中、ウェーハを反応容器内において、700 ℃でアニーリングを行い、p型層をさらに低抵抗化す る。

- 40 【0056】アニーリング後、ウェーハを反応容器から取り出し、図1に示すように、RIE装置により最上層のp側コンタクト層31と、p側クラッド層30とをエッチングして、4μmのストライプ幅を有するリッジ形状とする。このように、活性層よりも上部にあるp側の層をストライプ状のリッジ形状とすることにより、活性層の発光がストライプリッジの下に集中するようになって閾値が低下する。特に活性層よりも上にあるAlを含むp型窒化物半導体層以上の層をリッジ形状とすることが好ましい。
- 50 【0057】次にp側コンタクト層31のリッジ最表面

にNiとAuよりなるp電極32をストライプ状に形成する。一方、TiとAlよりなるn電極33を基板21の裏面のほぼ全面に形成する。なおほぼ全面とは80%以上の面積をいう。

【0058】電極形成後、電極裏面側をスクライブして、ストライプ状のp電極32に垂直な方向でバー状に劈開し、劈開面に共振器を作製する。なお劈開面は窒化物半導体のM面(101-0)とする。さらに、共振器面に SiO_2 と TiO_2 よりなる誘電体超格子を形成し、最後にp電極に平行な方向で、バーを切断してレーザチップとした。次にチップをフェースアップ(基板とヒートシンクとが対向した状態)でヒートシンクに設置し、それぞれの電極をワイヤーボンディングして、室温でレーザ発振を試みたところ、室温において、閾値電流密度2.5kA/ cm^2 、閾値電圧4.2Vで、発振波長405nmの連続発振が確認され、100時間以上の寿命を示した。

[0059]

【発明の効果】以上説明したように、本発明の方法によると、従来では作製できなかったGaN基板ができるようになるので、GaN素子が従来のように絶縁性基板を使用しなくても良くなる。そのため同一面側に正電極と負電極とを取り出すフリップチップ形式ではなくて、GaAsを基板にしたデバイスのように基板側から電極が

取り出せる構造となる。この窒化物半導体素子を発光デバイスにした際には、他の基板側から電極が取り出される構造のデバイスと同じ構造にできるため、端面発光型ディスプレイのような高精細画面も実現できる。またレーザ素子のような高温デバイスに使用した場合には、素子の結晶性、放熱性が良くなり素子寿命が飛躍的に向上する。

【図面の簡単な説明】

【図1】 本発明の一実施例に係るレーザ素子の構造を10 示す模式断面図。

【符号の説明】

21····GaN基板

22・・・・バッファ層

23・・・・ n側コンタクト層

24・・・クラック防止層

25・・・・n側クラッド層(超格子層)

26···・n側光ガイド層

27・・・活性層

28・・・キャップ層

20 29・・・p側光ガイド層

30・・・・p側クラッド層(超格子層)

31・・・ p側コンタクト層

32···p電極

33···n電極

【図1】

