- اندازهگیری
- حرکت در راستای خط راست

سید جواد هاشمی فر، دانشکده فیزیک، دانشگاه صنعتی اصفهان

- بردارها
- حرکت دو بعدی و سه بعدی
 - نیرو و حرکت
 - نیرو و حرکت (اصطکاک)
 - انرژی جنبشی و کار
- انرژی پتانسیل و پایستگی انرژی
 - مركز جرم وتكانة خطى
- غلتش، گشتاور نیرو و تکانهٔ زاویهای
 - 12. تعادل و كشساني
- 18. دما، گرما و قانون اول ترمودینامیک
 - 19. نظريهٔ جنبشي گازها
- 20. آنتروپی و قانون دوم ترمودینامیک

رهیافت نیوتن: نیروهای مختلف، عوامل حرکت هستند.

$$\overrightarrow{F_1} + \overrightarrow{F_2} + \dots = M \overrightarrow{a}$$

بهار ۱۴۰۰

رهیافت انرژی: انتقال و تبدیل انرژی، منشاء همه تحولات هستند.

 $\Delta E = W$

فیزیک ۱ مهندسی، انرژی

$$\Delta E_a + \Delta E_b + \dots = W_{F_1} + W_{F_2} + \dots$$

$$\Delta K = W_{F_1} + W_{F_2} + \cdots$$

قضیه کار - انرژی جنبشی:

$$\Delta K = W_{F_1} + W_{F_2} + \cdots$$

قضیه کار - انرژی جنبشی:

کار نیروی ثابت

$$W_{\mathbf{F}} = \overrightarrow{\mathbf{F}} \cdot \overrightarrow{\mathbf{d}}$$

$$\theta = 90^{\circ}$$

50 cm روی سطحی با ضریب اصطکاک جنبشی 0/25 ، تحت اثر نیروی $F = 60 \, \text{N}$ روی سطحی با ضریب اصطکاک جنبشی $M=8 \, \text{kg}$ ، تحت اثر نیروی $M=8 \, \text{kg}$ به سمت راست می $M=8 \, \text{kg}$ به اندازه $M=8 \, \text{kg}$

50 cm وی سطحی با ضریب اصطکاک جنبشی 0/25 ، تحت اثر نیروی $F = 60 \, \text{N}$ روی سطحی با ضریب اصطکاک جنبشی $F = 60 \, \text{N}$ ، تحت اثر نیروی $F = 60 \, \text{N}$ به سمت راست می لغزد. اگر جسم از حال سکون شروع به حرکت کرده باشد، سرعت نهایی آن چقدر به سمت راست می لغزد. اگر جسم $F_{\text{NL}} = 7 \, \text{F}$ از روش انرژی) $F_{\text{NL}} = 7 \, \text{F}$ (از روش انرژی) $g \approx 10 \, \text{m/s}^2$)

50 cm وی سطحی با ضریب اصطکاک جنبشی 0/25 ، تحت اثر نیروی $F = 60 \, \text{N}$ روی سطحی با ضریب اصطکاک جنبشی $F = 60 \, \text{N}$ ، تحت اثر نیروی $F = 60 \, \text{N}$ به سمت راست می لغزد. اگر جسم از حال سکون شروع به حرکت کرده باشد، سرعت نهایی آن چقدر به سمت راست می لغزد. اگر جسم $F_{\text{NL}} = 7 \, \text{F}$ از روش انرژی) $F_{\text{NL}} = 7 \, \text{F}$ (از روش انرژی) $g \approx 10 \, \text{m/s}^2$)

کار نیروی گرانش (وزن):

بهار ۱۴۰۰

کار نیروی گرانش (وزن):

کار نیروی گرانش (وزن):

بهار ۱۴۰۰

کار نیروی گرانش (وزن):

$$\mathbf{W_F} = \int_{\overrightarrow{\mathbf{r}_1}}^{\overrightarrow{\mathbf{r}_2}} \overrightarrow{\mathbf{F}} \cdot d\overrightarrow{\mathbf{r}}$$
 :کارنیروی متغیر:

16

کار نیروی فنر:

جسمی به جرم 8 kg به فنری با ثابت 200 N/m متصل شده و روی سطحی با ضریب اصطکاک جنبشی 0/25 قرار گرفته است. انتهای دیگر فنر به دیوار محکم شده است. ابتدا فنر در حال آرامش و جسم ساکن است. اگر جسم تحت اثر نیروی F به حرکت درآید، حداکثر چقدر به سمت راست می لغزد؟ (روش انرژی)

بهار ۱۴۰۰

جسمی به جرم 8 kg به فنری با ثابت 200 N/m متصل شده و روی سطحی با ضریب اصطکاک جنبشی 0/25 قرار گرفته است. انتهای دیگر فنر به دیوار محکم شده است. ابتدا فنر در حال آرامش و جسم ساکن است. اگر جسم تحت اثر نیروی F به حرکت درآید، حداکثر چقدر به سمت راست می لغزد؟ (روش انرژی)

بهار ۱۴۰۰

فیزیک ۱ مهندسی، انرژی

آهنگ انجام کار (توان):