Álgebra Lineal y Estructuras Matemáticas

Convocatoria de Febrero. Curso 2013-2014 (13/02/2014)

1. Sea $X = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ e $Y = \{0, 2, 4, 6, 8, 9\}$. En $\mathcal{P}(X)$ definimos la siguiente relación de

_____ GRUPO:____ DNI:____

equivalencia.
A R B si, y sólo si, $A \setminus Y = B \setminus Y$
Entonces el conjunto cociente $\mathcal{P}(X)/R$:
a) tiene 6 elementos
b) tiene 16 elementos
c) tiene 64 elementos
d) tiene 1024 elementos
2. Sea $B = \{(2,4); (4,0); (4,3); (7,3)\}$. Consideramos en B el orden inducido por el orden producto de
$\mathbb{N} \times \mathbb{N}$. Entonces:
a) B no tiene ínfimo y sus elementos maximales son $(4,3)$, $(7,3)$.
b) (1,1) es una cota inferior de B, y (7,3) su único elemento maximal.
c) B no tiene máximo, y sus elementos maximales son (2,4) y (7,3).
d) B tiene un único elemento maximal, que es $(7,4)$, y que coincide con el supremo.
3. Dado el sistema de congruencias:
$38x = 30 \mod 70$
$38x \equiv 30 \mod 70$ $59x \equiv 5 \mod 85$
a) Tiene solución, pero ninguna entre 1000 y 10000.
b) Tiene 15 soluciones entre 1000 y 10000.
c) Tiene 3 soluciones entre 1000 y 10000.
d) No tiene solución.
4. Sea $n = (2^5)^8 - (5^8)^4$. El resto de dividir n entre 11 es:
a) 0
b) 3
c) 6
d) 9
5. Sea el anillo $A = \mathbb{Z}_3[x]_{x^4+2x+1}$. Entonces:
a) A es un cuerpo con 3 ⁴ elementos.
b) A es un anillo con 4^3 elementos que no es un cuerpo, y en el que el inverso de $[x^2 + x + 1]$ valo
$[x^2+2x].$
c) A es un cuerpo en el cual el inverso de $[x]$ es $[2x^3 + 1]$.
d) A no es un cuerpo, pero el elemento $[x^2 + x + 1]$ tiene inverso y vale $[2x^2 + x]$.
6. Tenemos 15 caramelos (todos iguales) que queremos repartir entre 4 niños. ¿De cuántas forma
nodemos hacerlo si a cada niño hau que darle al menos un caramelo?

a) 364.b) 1365.c) 330.d) 32760.

ALEM examen final

7. Dado el sistema con coeficientes en $\mathbb R$

$$\begin{cases} ax + ay = 2 \\ (a-1)x + 2ay = 3-a \\ (a+1)x = a+1 \end{cases}$$

podemos afirmar que:

- a) es compatible determinado, independientemente del valor de a.
- b) la compatibilidad o incompatibilidad depende del valor de a.
- c) es siempre compatible, aunque depende del valor de a que sea compatible determinado o indeterminado.
- d) es incompatible, independientemente del valor de α .
- 8. Sea U_1 el subespacio de $(\mathbb{Z}_3)^4$ generado por los vectores (2,1,2,0), (2,0,2,1) y (0,2,0,1), y sea U_2 el subespacio de $(\mathbb{Z}_3)^4$ de ecuaciones

$$\begin{cases} x + y + 2z + 2t = 0 \\ x + y + t = 0 \end{cases}.$$

Entonces:

- a) $dim(U_1 \cap U_2) = 1$ y una base de $U_1 \cap U_2$ es $\{(1,0,2,2)\}$.
- b) $\dim(U_1 \cap U_2) = 0$.
- c) $dim(U_1 \cap U_2) = 1$ y una base de $U_1 \cap U_2$ es $\{(2, 2, 2, 2)\}$.
- d) $dim(U_1 \cap U_2) = 1$ y una base de $U_1 \cap U_2$ es $\{(2,1,0,0)\}$.
- 9. Sea $B = \{(1,2,3); \ (3,1,1); \ (4,2,1)\}$ una base de $(\mathbb{Z}_5)^3$, y sea $f: (\mathbb{Z}_5)^3 \to (\mathbb{Z}_5)^3$ la aplicación lineal dada por

$$f(x, y, z) = (4y + 2z, 2x + 4y + z, 3x + 2z)$$

La matriz de f en la base B es:

a)
$$\begin{pmatrix} 0 & 4 & 2 \\ 2 & 4 & 1 \\ 3 & 0 & 2 \end{pmatrix}$$
.

b)
$$\begin{pmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 3 \end{pmatrix}$$

c)
$$\begin{pmatrix} 4 & 1 & 0 \\ 3 & 1 & 2 \\ 4 & 1 & 4 \end{pmatrix}$$
.

d)
$$\begin{pmatrix} 1 & 3 & 4 \\ 2 & 1 & 2 \\ 3 & 1 & 1 \end{pmatrix}$$

10. Sea
$$A = \begin{pmatrix} 0 & 0 & 0 & 3 \\ 1 & 0 & 0 & 3 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \in M_4(\mathbb{Z}_5)$$
. Entonces:

- a) A tiene cuatro valores propios distintos y es diagonalizable.
- b) A tiene tres valores propios distintos y es diagonalizable.
- c) A tiene dos valores propios distintos y no es diagonalizable.

d) Si
$$P = \begin{pmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 1 & 3 \\ 4 & 1 & 3 & 1 \end{pmatrix}$$
 entonces $P^{-1}AP$ es una matriz diagonal.

13 de febrero de 2014 (1)