Genetics v Genomics

C. Ryan Campbell

Duke University c.ryan.campbell@duke.edu

05 Sept 2017

Overview

- Genetics v. Genomics
 - Goals
 - Genomics: Why We're Here
 - Sequencing Technologies
- In-Class Activity

Today's Goals

- What is/are Genomics?
- How have techniques changed?
- What impact has that had on biological questions?

- What is Genomics?
- How is it different than Genetics?
- What allows us to do genomics instead of genetics?

Pair up

5/24

- Pair up
- Settle on a definition of genomics (or an answer to the other questions)

- Pair up
- Settle on a definition of genomics (or an answer to the other questions)
- Post it to DotStorming

- Pair up
- Settle on a definition of genomics (or an answer to the other questions)
- Post it to DotStorming
- Vote on other answers

Brief History of Sequencing

- Allozymes
- Sanger Sequencing
- Next Generation Sequencing NGS

Allozymes

- 1960's
- Electrophoresis separates different proteins by amino acid makeup
- First (limited) look at DNA composition

Sanger Sequencing

- 1977
- Determines the sequences a single piece of DNA up to 500bp
- Highly accurate but slow

Sanger Sequencing

- Design a primer
- Run a PCR
- Chain-terminating dideoxynucleotide triphosphates

Sanger Sequencing

- Run results on a gel
- Read with a laser, determines which base ended the PCR
- Color order is sequence order

NGS Sequencing

- mid-2000's
- Many different companies and methods
- All generate far more data than Sanger

NGS Sequencing - Illumina

- Library Preparation
 - Fragment a sample of whole genomic DNA
 - Add adapters for the specific machine
- Amplify with PCR
- Read on machine (next slide)

NGS Sequencing - Illumina

- Machine attaches adapter and DNA to a fixed surface
- Amplifies single strand
- Adds a new base each cycle and images for ID

NGS Sequencing - PacBio

- Library Preparation
 - Fragment a sample of whole genomic DNA
 - Add adapters for the specific machine
- Amplify with PCR
- Read on machine

HOW IT WORKS

DNA is copied by an enzyme in PacBio's machine The DNA letters used to make the copy have been tagged to emit tiny flashes of colored light. A camera can catch these tiny flashes thanks to a 50-nanometer hole that screens out other light.

NGS Sequencing - PacBio

- A copy is made on the machine by an enzyme
- The bases used for the copy are flourescent
- As a new base is incorporated the color shows the identity

HOW IT WORKS

DNA is copied by an enzyme in PacBio's machine The DNA letters used to make the copy have been tagged to emit tiny flashes of colored light.

A camera can catch these tiny flashes thanks to a 50-nanometer hole that screens out other light.

- Output for Quality Tradeoff
 - NGS = VERY High Output / Good Quality
 - Sanger = Low Output / Best Quality

- Output for Quality Tradeoff
 - NGS = VERY High Output / Good Quality
 - Sanger = Low Output / Best Quality
- NGS Methods and Machines

- Output for Quality Tradeoff
 - NGS = VERY High Output / Good Quality
 - Sanger = Low Output / Best Quality
- NGS Methods and Machines
 - PyroSeq 454

- Output for Quality Tradeoff
 - NGS = VERY High Output / Good Quality
 - Sanger = Low Output / Best Quality
- NGS Methods and Machines
 - PyroSeq 454
 - Illumina

- Output for Quality Tradeoff
 - NGS = VERY High Output / Good Quality
 - Sanger = Low Output / Best Quality
- NGS Methods and Machines
 - PyroSeq 454
 - Illumina
 - PacBio

Brief History of Sequencing

- Allozymes
 - 1960's
- Sanger Sequencing
 - 1977
- NGS Next Generation Sequencing
 - 2000

This meme is everywhere, so I thought I'd add a biology twist to it.

7:11 PM - 25 Aug 2017

Sequencing Cost

Sequencing Output

21 / 24

Generational Shift

More and more data can be generated

Generational Shift

- More and more data can be generated
- Data length and quality are both improving

Generational Shift

- More and more data can be generated
- Data length and quality are both improving
- How does this change the scope of research?

Make 4 groups (rearrange desks)

- Make 4 groups (rearrange desks)
- Divide up the following Biological Questions

- Make 4 groups (rearrange desks)
- Divide up the following Biological Questions
 - How similar are two species?

- Make 4 groups (rearrange desks)
- Divide up the following Biological Questions
 - How similar are two species?
 - What genes underlie a specific function?

- Make 4 groups (rearrange desks)
- Divide up the following Biological Questions
 - How similar are two species?
 - What genes underlie a specific function?
 - What is the code of the human genome?

- Make 4 groups (rearrange desks)
- Divide up the following Biological Questions
 - How similar are two species?
 - What genes underlie a specific function?
 - What is the code of the human genome?
 - Group's Choice:
 - Transcription Factors
 - CpG islands
 - DNA Methylation

- Make 4 groups (rearrange desks)
- Divide up the following Biological Questions
 - How similar are two species?
 - What genes underlie a specific function?
 - What is the code of the human genome?
 - Group's Choice:
 - Transcription Factors
 - CpG islands
 - DNA Methylation
- How would your group assess this question
 - in 1997?
 - in 2017?

The End