Amendments to the Claims:

The following listing of claims will replace all prior versions, and listings, of claims in the application:

1. (Original) A ferroelectric film including a perovskite ferroelectric or a bismuth layer-structured ferroelectric shown by ABO₃ or $(Bi_2O_2)^{2+}(A_{m-1}B_mO_{3m+1})^{2-}$ (wherein A represents at least one ion selected from the group consisting of Li⁺, Na⁺, K⁺, Pb²⁺, Ca²⁺, Sr²⁺, Ba²⁺, Bi³⁺ and La³⁺, B represents at least one ion selected from the group consisting of Fe³⁺, Ti⁴⁺, Zr⁴⁺, Nb⁵⁺, Ta⁵⁺, W⁶⁺ and Mo⁶⁺, and m is a natural number),

wherein at least four-fold coordinated Si⁴⁺ or Ge⁴⁺ is included in the A site ion.

2. (Original) A ferroelectric film including a perovskite ferroelectric or a bismuth layer-structured ferroelectric shown by ABO₃ or (Bi₂O₂)²⁺(A_{m-1}B_mO_{3m+1})²⁻ (wherein A represents at least one ion selected from the group consisting of Li⁺, Na⁺, K⁺, Pb²⁺, Ca²⁺, Sr²⁺, Ba²⁺, Bi³⁺ and La³⁺, B represents at least one ion selected from the group consisting of Fe³⁺, Ti⁴⁺, Zr⁴⁺, Nb⁵⁺, Ta⁵⁺, W⁶⁺ and Mo⁶⁺, and m is a natural number),

wherein at least four-fold coordinated Si⁴⁺ or Ge⁴⁺ is included in the A site ion; and wherein the ferroelectric film is a solid solution with a dielectric shown by X₂SiO₅, X₄Si₃O₁₂, X₂GeO₅ or X₄Ge₃O₁₂ (wherein X represents Bi³⁺, Fe³⁺, Sc³⁺, Y³⁺, La³⁺, Ce³⁺, Pr³⁺, Nd³⁺, Pm³⁺, Sm³⁺, Eu³⁺, Gd³⁺, Tb³⁺, Dy³⁺, Ho³⁺, Er³⁺, Tm³⁺, Yb³⁺ or Lu³⁺).

3. (Original) A ferroelectric film including a perovskite ferroelectric or a bismuth layer-structured ferroelectric shown by ABO₃ or $(Bi_2O_2)^{2+}(A_{m-1}B_mO_{3m+1})^{2-}$ (wherein A represents at least one ion selected from the group consisting of Li⁺, Na⁺, K⁺, Pb²⁺, Ca²⁺, Sr²⁺, Ba²⁺, Bi³⁺

and La³⁺, B represents at least one ion selected from the group consisting of Fe³⁺, Ti⁴⁺, Zr⁴⁺, Nb⁵⁺, Ta⁵⁺, W⁶⁺ and Mo⁶⁺, and m is a natural number),

wherein at least four-fold coordinated Si⁴⁺ or Ge⁴⁺ is included in the A site ion; and wherein the ferroelectric film includes at least one transition element in an amount of 5 to 40 mol% in total, the transition element having the maximum positive valence which is +1 or more greater than the valence of the A site ion of the ABO₃ or (Bi₂O₂)²⁺(A_m-1B_mO_{3m+1})²⁻.

4. (Original) A ferroelectric film including a perovskite ferroelectric or a bismuth layer-structured ferroelectric shown by ABO₃ or (Bi₂O₂)²⁺(A_{m-1}B_mO_{3m+1})²⁻ (wherein A represents at least one ion selected from the group consisting of Li⁺, Na⁺, K⁺, Pb²⁺, Ca²⁺, Sr²⁺, Ba²⁺, Bi³⁺ and La³⁺, B represents at least one ion selected from the group consisting of Fe³⁺, Ti⁴⁺, Zr⁴⁺, Nb⁵⁺, Ta⁵⁺, W⁶⁺ and Mo⁶⁺, and m is a natural number),

wherein at least four-fold coordinated Si⁴⁺ or Ge⁴⁺ is included in the A site ion; and wherein the ferroelectric film includes at least one transition element in an amount of 5 to 40 mol% in total, the transition element having the maximum positive valence which is +1 or more greater than the valence of the B site ion of the ABO₃ or (Bi₂O₂)²⁺(A_{m-1}B_mO_{3m+1})²⁻

5. (Original) A ferroelectric film including a perovskite ferroelectric or a bismuth layer-structured ferroelectric shown by ABO₃ or (Bi₂O₂)²⁺(A_{m-1}B_mO_{3m+1})²⁻ (wherein A represents at least one ion selected from the group consisting of Li⁺, Na⁺, K⁺, Pb²⁺, Ca²⁺, Sr²⁺, Ba²⁺, Bi³⁺ and La³⁺, B represents at least one ion selected from the group consisting of Fe³⁺, Ti⁴⁺, Zr⁴⁺, Nb⁵⁺, Ta⁵⁺, W⁶⁺ and Mo⁶⁺, and m is a natural number),

wherein at least four-fold coordinated Si⁴⁺ or Ge⁴⁺ is included in the A site ion;

wherein the ferroelectric film includes at least one transition element having the maximum positive valence which is +1 or more greater than the valence of the B site ion of the ABO₃ or $(Bi_2O_2)^{2+}(A_{m-1}B_mO_{3m+1})^{2-}$;

wherein the ferroelectric film includes at least one transition element having the maximum positive valence which is +1 or more greater than the valence of the A site ion of the ABO₃ or $(Bi_2O_2)^{2+}(A_{m-1}B_mO_{3m+1})^{2-}$; and

wherein the transition elements are included in an amount of 5 to 40 mol% in the A and B sites in total.

6. (Original) A ferroelectric film including a perovskite ferroelectric or a bismuth layer-structured ferroelectric shown by ABO₃ or (Bi₂O₂)²⁺(A_{m-1}B_mO_{3m+1})²⁻ (wherein A represents at least one ion selected from the group consisting of Li⁺, Na⁺, K⁺, Pb²⁺, Ca²⁺, Sr²⁺, Ba²⁺, Bi³⁺ and La³⁺, B represents at least one ion selected from the group consisting of Fe³⁺, Ti⁴⁺, Zr⁴⁺, Nb⁵⁺, Ta⁵⁺, W⁶⁺ and Mo⁶⁺, and m is a natural number),

wherein at least four-fold coordinated Si⁴⁺ or Ge⁴⁺ is included in the A site ion; wherein the ferroelectric film is a solid solution with a dielectric shown by X₂SiO₅, X₄Si₃O₁₂, X₂GeO₅ or X₄Ge₃O₁₂ (wherein X represents Bi³⁺, Fe³⁺, Sc³⁺, Y³⁺, La³⁺, Ce³⁺, Pr³⁺, Nd³⁺, Pm³⁺, Sm³⁺, Eu³⁺, Gd³⁺, Tb³⁺, Dy³⁺, Ho³⁺, Er³⁺, Tm³⁺, Yb³⁺ or Lu³⁺); and

wherein the ferroelectric film includes at least one transition element in an amount of 5 to 40 mol% in total, the transition element having the maximum positive valence which is +1 or more greater than the valence of the A site ion of the ABO₃ or $(Bi_2O_2)^{2+}(A_m-1B_mO_{3m+1})^{2-}$.

7. (Original) A ferroelectric film including a perovskite ferroelectric or a bismuth layerstructured ferroelectric shown by ABO₃ or $(Bi_2O_2)^{2+}(A_{m-1}B_mO_{3m+1})^{2-}$ (wherein A represents at least one ion selected from the group consisting of Li⁺, Na⁺, K⁺, Pb²⁺, Ca²⁺, Sr²⁺, Ba²⁺, Bi³⁺ and La³⁺, B represents at least one ion selected from the group consisting of Fe³⁺, Ti⁴⁺, Zr⁴⁺, Nb⁵⁺, Ta⁵⁺, W⁶⁺ and Mo⁶⁺, and m is a natural number),

wherein at least four-fold coordinated Si⁴⁺ or Ge⁴⁺ is included in the A site ion; wherein the ferroelectric film is a solid solution with a dielectric shown by X₂SiO₅, X₄Si₃O₁₂, X₂GeO₅ or X₄Ge₃O₁₂ (wherein X represents Bi³⁺, Fe³⁺, Sc³⁺, Y³⁺, La³⁺, Ce³⁺, Pr³⁺, Nd³⁺, Pm³⁺, Sm³⁺, Eu³⁺, Gd³⁺, Tb³⁺, Dy³⁺, Ho³⁺, Er³⁺, Tm³⁺, Yb³⁺ or Lu³⁺); and

wherein the ferroelectric film includes at least one transition element in an amount of 5 to 40 mol% in total, the transition element having the maximum positive valence which is +1 or more greater than the valence of the B site ion of the ABO₃ or $(Bi_2O_2)^{2+}(A_{m-1}B_mO_{3m+1})^{2-}$

8. (Original) A ferroelectric film including a perovskite ferroelectric or a bismuth layer-structured ferroelectric shown by ABO₃ or (Bi₂O₂)²⁺(A_{m-1}B_mO_{3m+1})²⁻ (wherein A represents at least one ion selected from the group consisting of Li⁺, Na⁺, K⁺, Pb²⁺, Ca²⁺, Sr²⁺, Ba²⁺, Bi³⁺ and La³⁺, B represents at least one ion selected from the group consisting of Fe³⁺, Ti⁴⁺, Zr⁴⁺, Nb⁵⁺, Ta⁵⁺, W⁶⁺ and Mo⁶⁺, and m is a natural number),

wherein at least four-fold coordinated Si⁴⁺ or Ge⁴⁺ is included in the A site ion; wherein the ferroelectric film is a solid solution with a dielectric shown by X₂SiO₅, X₄Si₃O₁₂, X₂GeO₅ or X₄Ge₃O₁₂ (wherein X represents Bi³⁺, Fe³⁺, Sc³⁺, Y³⁺, La³⁺, Ce³⁺, Pr³⁺, Nd³⁺, Pm³⁺, Sm³⁺, Eu³⁺, Gd³⁺, Tb³⁺, Dy³⁺, Ho³⁺, Er³⁺, Tm³⁺, Yb³⁺ or Lu³⁺);

wherein the ferroelectric film includes at least one transition element having the maximum positive valence which is +1 or more greater than the valence of the B site ion of the ABO₃ or $(Bi_2O_2)^{2+}(A_{m-1}B_mO_{3m+1})^{2-}$;

wherein the ferroelectric film includes at least one transition element having the maximum positive valence which is +1 or more greater than the valence of the A site ion of the ABO₃ or $(Bi_2O_2)^{2+}(A_{m-1}B_mO_{3m+1})^{2-}$; and

wherein the transition elements are included in an amount of 5 to 40 mol% in the A and B sites in total.

- 9. (Currently Amended) The ferroelectric film as defined in any of claims 1 to 8, claim 1, wherein the ferroelectric film includes Pb(Zr, Ti)O₃ which includes at least four-fold coordinated Si⁴⁺ or Ge⁴⁺ in the A site ion in an amount of 1% or more; and wherein at least one transition element having the maximum positive valence of +3 or more is included in the A site in an amount of 5 to 40 mol% in total.
- 10. (Currently Amended) The ferroelectric film as defined in any of claims 1 to 8, claim 1, wherein the ferroelectric film includes Pb(Zr, Ti)O₃ which includes at least four-fold coordinated Si⁴⁺ or Ge⁴⁺ in the A site ion in an amount of 1% or more; and wherein at least one transition element having the maximum positive valence of +5 or more is included in the B site in an amount of 5 to 40 mol% in total.
- 11. (Original) A ferroelectric film including Pb(Zr, Ti)O₃ which includes at least four-fold coordinated Si⁴⁺ or Ge⁴⁺ in the Pb site ion in an amount of 1% or more,

wherein at least one transition element having the maximum positive valence of +3 or more is included in the Pb site;

wherein at least one transition element having the maximum positive valence of +5 or more is included in the Zr or Ti site; and

wherein the transition elements are included in an mount of 5 to 40 mol% in the Pb and Zr or Ti sites in total.

12. (Original) A ferroelectric film including Pb(Zr, Ti)O₃ which includes at least four-fold coordinated Si⁴⁺ or Ge⁴⁺ in the Pb site ion in an amount of 1% or more,

wherein at least one of La and other lanthanoid series ions is included in the Pb site in an amount of 5 to 40 mol% in total.

13. (Original) A ferroelectric film including Pb(Zr, Ti)O₃ which includes at least four-fold coordinated Si⁴⁺ or Ge⁴⁺ in the Pb site ion in an amount of 1% or more,

wherein at least one of Nb, V and W is included in the Zr or Ti site in an amount of 5 to 40 mol% in total.

14. (Original) A ferroelectric film including Pb(Zr, Ti)O₃ which includes at least four-fold coordinated Si⁴⁺ or Ge⁴⁺ in the Pb site ion in an amount of 1% or more,

wherein at least one of La and other lanthanoid series ions is included in the Pb site, and at least one of Nb, V and W is included in the Zr or Ti site, in an amount of 5 to 40 mol% in the Pb and Zr or Ti sites in total.

15. (Currently Amended) The ferroelectric film as defined in any of claim 11 to 14, claim11, further including:

at least one of Nb, V and W in the Zr or Ti site in an amount twice the amount of Pb ion vacancy in the Pb site.

- 16. (Currently Amended) The ferroelectric film as defined in any of claims 11 to 14 claim11 is included (111)-oriented tetragonal crystals.
- 17. (Currently Amended) The ferroelectric film as defined in any of claims 11 to 14 claim

 11 is included (001)-oriented rhombohedral crystals.
- 18. (Original) A method of manufacturing a ferroelectric film including Pb(Zr,Ti)O₃, the method comprising:

using a sol-gel solution for forming Pb(Zr,Ti)O₃ which includes at least four-fold coordinated Si⁴⁺ or Ge⁴⁺ in the Pb site ion in an amount of 1% or more.

19. (Original) A method of manufacturing a ferroelectric film including Pb(Zr,Ti)O₃, the method comprising:

using a sol-gel solution for forming Pb(Zr,Ti)O₃ which includes at least four-fold coordinated Si⁴⁺ or Ge⁴⁺ in the Pb site ion in an amount of 1% or more,

wherein a mixed solution prepared by mixing a sol-gel solution for forming PbZrO₃ which includes at least four-fold coordinated Si⁴⁺ or Ge⁴⁺ in the Pb site ion in an amount of 1% or more with a sol-gel solution for forming PbTiO₃ which includes at least four-fold coordinated Si⁴⁺ or Ge⁴⁺ in the Pb site ion in an amount of 1% or more is used as the sol-gel solution for forming Pb(Zr,Ti)O₃.

20. (Original) A method of manufacturing a ferroelectric film including Pb(Zr,Ti)O₃, the method comprising:

using a sol-gel solution for forming Pb(Zr,Ti)O₃ in which the amount of Pb ranges from 90 to 120% of the stoichiometric composition of Pb(Zr,Ti)O₃.

21. (Currently Amended) The ferroelectric film as defined in-any of claims 1 to 8, claim 1, wherein the ferroelectric film includes Bi₄Ti₃O₁₂ including at least four-fold coordinated Si⁴⁺ or Ge⁴⁺ in the A site ion in an amount of 1% or more; and

wherein at least one transition element having the maximum positive valence of +4 or more is included in the A site in an amount of 5 to 40 mol% in total.

22. (Currently Amended) The ferroelectric film as defined in-any of claims 1-to 8,

claim 1, wherein the ferroelectric film includes Bi₄Ti₃O₁₂ including at least four-fold

coordinated Si⁴⁺ or Ge⁴⁺ in the A site ion in an amount of 1% or more; and

wherein at least one transition element having the maximum positive valence of +5 or more is included in the B site in an amount of 5 to 40 mol% in total.

23. (Original) A ferroelectric film including Bi₄Ti₃O₁₂ including at least four-fold coordinated Si⁴⁺ or Ge⁴⁺ in the Bi site ion in an amount of 1% or more,

wherein at least one transition element having the maximum positive valence of +4 or more is included in the Bi site;

wherein at least one transition element having the maximum positive valence of +5 or more is included in the Ti site; and

wherein the transition elements are included in an amount of 5 to 40 mol% in the Bi and Ti sites in total.

24. (Original) A ferroelectric film including Bi₄Ti₃O₁₂ including at least four-fold coordinated Si⁴⁺ or Ge⁴⁺ in the Bi site ion in an amount of 1% or more,

wherein at least one of Nb, V and W is included in the Ti site in an amount of 5 to 40 mol% in total.

25. (Currently Amended) The ferroelectric film as defined in claim 23 or 24, claim 23, further including:

at least one of Nb, V, and W in the Ti site in an amount twice the amount of Bi ion vacancy in the Bi site.

- 26. (Currently Amended) The ferroelectric film as defined in claim 23 or 24 claim 23 is included (111), (110), and (117) oriented orthorhombic crystals.
- 27. (Original) A method of manufacturing a ferroelectric film including Bi₄Ti₃O₁₂, the method comprising:

using a sol-gel solution for forming Bi₄Ti₃O₁₂ which includes at least four-fold coordinated Si⁴⁺ or Ge⁴⁺ in the Bi site ion in an amount of 1% or more.

28. (Original) A method of manufacturing a ferroelectric film including Bi₄Ti₃O₁₂, the method comprising:

using a mixed solution prepared by mixing a solution prepared by mixing a sol-gel solution for forming Bi_2O_3 with a sol-gel solution for forming TiO_2 at a molar ratio of 2:3 with a sol-gel solution for forming a dielectric shown by X_2SiO_5 , $X_4Si_3O_{12}$, X_2GeO_5 , or $X_4Ge_3O_{12}$ (wherein X represents Bi^{3+} , Fe^{3+} , Sc^{3+} , Y^{3+} , La^{3+} , Ce^{3+} , Pr^{3+} , Nd^{3+} , Pm^{3+} , Sm^{3+} ,

Eu³⁺, Gd³⁺, Tb³⁺, Dy³⁺, Ho³⁺, Er³⁺, Tm³⁺, Yb³⁺, or Lu³⁺) so that Si⁴⁺ or Ge⁴⁺ is included in an amount of 1 mol% or more.

29. (Original) A method of manufacturing a ferroelectric film including Bi₄Ti₃O₁₂, the method comprising:

using a sol-gel solution for forming $Bi_4Ti_3O_{12}$ in which an excess amount of Bi ranges from 90 to 120% of the stoichiometric composition of $Bi_4Ti_3O_{12}$.

- 30. (Currently Amended) A ferroelectric memory comprising the ferroelectric film as defined in any of claims 1 to 17 and 21 to 26. claim 1.
- 31. (Currently Amended) A piezoelectric device comprising the ferroelectric film as defined in any of claims 1 to 7 and 21 to 26. claim 1.