INDIAN INSTITUTE OF TECHNOLOGY INDORE

MA 203: Complex Analysis and Differential Equations-II Autumn Semester 2023 Tutorial -2 (Complex Analysis)

- 1. Explain the geometrical meaning of the relations given in problems:
 - (a) $|z z_0| < R$, $|z z_0| > R$, $|z z_0| = R$.
 - (b) |z-2|+|z+2|=5.

Ans: An ellipse with foci at the points $z = \pm 2$ and major semi-axis 5/2.

- (c) $|z-z_1|=|z-z_2|$.
- (d) $\operatorname{Re} z \geq m$
- (e) $\operatorname{Re}z + \operatorname{Im}z < 1$.
- (f) Arg $z = \theta_0$.
- (g) $-\pi < \text{Arg } z < \pi$.
- (h) $\frac{\pi}{6} < \text{Arg } z < \frac{\pi}{4}$.
- (i) 1 < |z| < 3.
- 2. What are the boundary point(s) of a deleted neighborhood of a point $z_0 \in \mathbb{C}$?

3. Is the subset $D = \{z : 0 \le \operatorname{Arg}(z) \le \pi/4, z \ne 0\}$ open? Note that z = 0 open?

- 4. Is the subset $D = \{z : |z| < 1\} \cup \{z : |z+2| \le 1\}$ connected?
- 5. Which of the following subsets of \mathbb{C} are domain?
 - (a) $\{z: |z-1| < 1\} \cup \{z: |z-3| < 1\}.$
 - (b) $\{z: |z-1| < 1\} \cup \{z: |z-3| < 1\} \cup \{2\}.$
 - (c) $\{z : \text{Re } z \times \text{Im } z > 0\} \cup \{0\}.$
 - (d) $\{z : \text{Re } z \times \text{Im } z > 0\}.$
- 6. (a) Is the interval (0,1) open (subset) of \mathbb{R} ?.
 - (b) Is the subset $D = \{z : x \in (0,1), y = 0\}$ open (subset) of \mathbb{C} ?.
- 7. What are the boundary point(s) of a deleted neighborhood of a point $z_0 \in \mathbb{C}$?
- 8. Is the subset $D = \{z : 0 \le \operatorname{Arg}(z) \le \pi/4, z \ne 0\}$ open?
- 9. Is the subset $D = \{z : |z| < 1\} \cup \{z : |z+2| \le 1\}$ connected?
- 10. Prove that the subset $D = \{z : |z| < 1\}$ is an open set.
- 11. Let c_0 be a limit point of S. Then prove that every neighbourhood of c_0 contains infinitely many points of S.

____ × ____