SPRINT 1

DATE	8 NOVEMBER 2022
TEAM ID	PNT2022TMID10129
PROJECT TITLE	CRUDE OIL PRICE PREDICTION

<pre>import pandas as pd import numpy as np import matplotlib.pyplot as plt</pre>	
data=pd.read_excel("/content/Crude Oil Prices Daily.xlsx")	In [2]:
	In [3]:
data.isnull().any()	Out[3]:
Date False Closing Value True dtype:	
bool	In [4]:
data.isnull().sum()	Out[4]:
Date 0 Closing Value 7 dtype: int64	
data.dropna(axis=0,inplace= True)	In [5]:
data.isnull().sum()	In [6]:
Date 0 Closing Value 0 dtype:	Out[6]:
int64	In [7]:
data_oil=data_reset_index()['Closing Value'] data_oil	Out[7]:
0 25.56	

```
26.00
1
2
     26.53
3
     25.85
4
     25.87
8211 73.89
8212 74.19
8213 73.05
8214 73.78
8215 73.93
Name: Closing Value, Length: 8216, dtype: float64
                                                                                     In [8]:
from sklearn.preprocessing import MinMaxScaler scaler=MinMaxScaler(feature_range=(0,1))
data_oil=scaler.fit_transform(np.array(data_oil).reshape(-1,1))
                                                                                     In [9]:
data_oil
                                                                                    Out[9]:
array([[0.11335703],
                        [0.11661484],
    [0.12053902],
    [0.46497853],
    [0.47038353],
    [0.47149415]])
                                                                                    In [10]:
plt.plot(data_oil)
                                                                                   Out[10]:
[]
```


time_step=10

x_train,y_train=create_dataset(train_data,time_step)

x_test,y_test=create_dataset(test_data,time_step)

In [16]: print(x_train.shape),print(y_train.shape)

(5329, 10) (5329,)

```
Out[16]:
(None, None)
                                                 In [17]: print(x_test.shape),print(y_test.shape)
(2865, 10)(2865,)
                                                                                     Out[17]:
(None, None)
                                                                                      In [18]:
x_train
            Out[18]: array([[0.11335703, 0.11661484, 0.12053902, ..., 0.10980305, 0.1089886]
    0.110543461,
    [0.11661484, 0.12053902, 0.11550422, ..., 0.1089886, 0.11054346,
    0.10165852],
    [0.12053902, 0.11550422, 0.1156523, ..., 0.11054346, 0.10165852,
    0.09906708],
    [0.36731823, 0.35176958, 0.36080261, ..., 0.36391234, 0.37042796,
    0.37042796],
    [0.35176958, 0.36080261, 0.35354657, ..., 0.37042796, 0.37042796,
    0.37879461],
    [0.36080261, 0.35354657, 0.35295424, ..., 0.37042796, 0.37879461,
0.37916482]])
                                                                                     In [19]:
x_train=x_train.reshape(x_train.shape[0],x_train.shape[1],1)
```

x_test=x_test.reshape(x_test.shape[0],x_test.shape[1],1)