Exercise

P3

Consider the following network. With the indicated link costs, use Dijkstra's shortest-path algorithm to compute the shortest path from *x* to all network nodes. Show how the algorithm works by computing a table similar to Table 5.1.

Answer

Step	N'	D(y),p(y)	D(z),p(z)	D(u),p(u)	D(v),p(v)	D(w),p(w)	D(t),p(t)
0	Х	6,x	8,x	∞,X	3,x	6,x	∞,X
1	XV	6,x	8,x	6,v	3,x	6,x	7,v
2	xvy	6,x	8,x	6,v	3,x	6,x	7,v
3	xvyu	6,x	8,x	6,v	3,x	6,x	7,v
4	xvyuw	6,x	8,x	6,v	3,x	6,x	7,v
5	xvyuwt	6,x	8,x	6,v	3,x	6,x	7,v
6	xvyuwtz	6,x	8,x	6,v	3,x	6,x	7,v

P5

Consider the network shown below, and assume that each node initially knows the costs to each of its neighbors. Consider the distance-vector algorithm and show the distance table entries at node *z*.

Answer

	u	V	x	у	Z
V	∞	∞	∞	∞	∞
Х	∞	∞	∞	∞	∞
Z	∞	6	2	∞	0
				'	

	u	V	x	у	z
V	1	0	3	∞	6
Х	∞	3	0	3	2
Z	7	5	2	5	0

	u	V	х	у	z
V	1	0	3	3	5
Х	4	3	0	3	2
Z	6	5	2	5	0

P7

Consider the network fragment shown below. x has only two attached neighbors, w and y. w has a minimum-cost path to destination u (not shown) of 5, and y has a minimum-cost path to u of 6. The complete paths from w and y to u (and between w and y) are not shown. All link costs in the network have strictly positive integer values.

a. Give x's distance vector for destinations w, y, and u.

b. Give a link-cost change for either c(x, w) or c(x, y) such that x will inform its neighbors of a new minimum-cost path to u as a result of executing the distance-vector algorithm.

c. Give a link-cost change for either c(x,w) or c(x,y) such that x will *not* inform its neighbors of a new minimum-cost path to u as a result of executing the distance-vector algorithm.

Answer

a. Dx(w)=2, Dx(y)=4, Dx(u)=7

b. If c(x,w) changes. If c(x,w)>6, the least cost path will pass through y and cost 11. x will inform its neighbours. If c(x,w)<2, the least cost path will be the same one but cost 5+c(x,w). x will inform its neighbours as well.

If c(x,y) changes. If c(x,y)<1, the lesat cost path will pass through y and cost 6+c(x,w). x will inform its neighbours.

c. If c(x,y) changes. If $c(x,y) \ge 1$, x won't inform its neighbours.

If c(x,w) changes. If c(x,w)>=2 and c(x,w)<6, x won't inform its neighbours.

P12

Describe how to detect a loop in BGP.

Answer

If a BGP peers receive a BGP message that the AS path contains its own AS number, then using that loop will result in a loop.

P14

Consider the network shown below. Suppose AS3 and AS2 are running OSPF for their intra-AS routing protocol. Suppose AS1 and AS4 are running RIP for their intra-AS routing protocol. Suppose eBGP and iBGP are used for the inter-AS routing protocol. Initially suppose there is *no* physical link between AS2 and AS4.

- a. Router 3c learns about prefix x from which routing protocol: OSPF, RIP, eBGP, or iBGP?
- b. Router 3a learns about *x* from which routing protocol?
- c. Router 1c learns about *x* from which routing protocol?
- d. Router 1d learns about *x* from which routing protocol?

Answer

- a. eBGP
- b. iBGP
- c. eBGP
- d. iBGP