TAREA 4 DE RG

20 de Noviembre/2020. Resuelva todos los ejercicios posibles. Fecha de entrega: 2 de Diciembre/2020.

- 1. Resuelva los siguientes ejercicios del capítulo 5 en el libro de Schutz. Los paréntesis cuentan 1 punto.
- 7 Calculate all elements of the transformation matrices $\Lambda^{\alpha'}{}_{\beta}$ and $\Lambda^{\mu}{}_{\nu'}$ for the transformation from Cartesian (x,y) the unprimed indices to polar (r,θ) the primed indices.
- **8** (a) (Uses the result of Exer. 7.) Let $f = x^2 + y^2 + 2xy$, and in Cartesian coordinates $\vec{V} \to (x^2 + 3y, y^2 + 3x)$, $\vec{W} \to (1, 1)$. Compute f as a function of r and θ , and find the components of \vec{V} and \vec{W} on the polar basis, expressing them as functions of r and θ .
 - (b) Find the components of df in Cartesian coordinates and obtain them in polars (i) by direct calculation in polars, and (ii) by transforming components from Cartesian.
 - (c) (i) Use the metric tensor in polar coordinates to find the polar components of the one-forms \tilde{V} and \tilde{W} associated with \vec{V} and \vec{W} . (ii) Obtain the polar components of \tilde{V} and \tilde{W} by transformation of their Cartesian components.
- 11 (Uses the result of Exers. 7 and 8.) For the vector field \vec{V} whose Cartesian components are (x^2+3y,y^2+3x) , compute: (a) $V^{\alpha}_{,\beta}$ in Cartesian; (b) the transformation $\Lambda^{\mu'}_{\alpha}\Lambda^{\beta}_{\nu'}V^{\alpha}_{,\beta}$ to polars; (c) the components $V^{\mu'}_{;\nu'}$ directly in polars using the Christoffel symbols, Eq. (5.45), in Eq. (5.50); (d) the divergence $V^{\alpha}_{,\alpha}$ using your results in (a); (e) the divergence $V^{\mu'}_{;\mu'}$ using your results in either (b) or (c); (f) the divergence $V^{\mu'}_{;\mu'}$ using Eq. (5.56) directly.
- 12 For the one-form field \tilde{p} whose Cartesian components are $(x^2 + 3y, y^2 + 3x)$, compute: (a) $p_{\alpha,\beta}$ in Cartesian; (b) the transformation $\Lambda^{\alpha}_{\mu'}\Lambda^{\beta}_{\nu'}$ $p_{\alpha,\beta}$ to polars; (c) the components $p_{\mu';\nu'}$ directly in polars using the Christoffel symbols, Eq. (5.45), in Eq. (5.63).
- **14** For the tensor whose polar components are $(A^{rr} = r^2, A^{r\theta} = r \sin \theta, A^{\theta r} = r \cos \theta, A^{\theta \theta} = \tan \theta)$, compute Eq. (5.65) in polars for all possible indices.
- 15 For the vector whose polar components are $(V^r = 1, V^{\theta} = 0)$, compute in polars all components of the second covariant derivative $V^{\alpha}_{;\mu;\nu}$. (Hint: to find the second derivative, treat the first derivative $V^{\alpha}_{;\mu}$ as any $\binom{1}{1}$ tensor: Eq. (5.66).)