

	GACAACGCCTTCTTTTTCTC CTGTTGCGGAAGAAAAAAGAG	M S S I e F I I CTTACTATCTCCTTTA		SM M pa s ee e II I TTGATAAACTAGTTAAGTAAGC	FIG. 3A cc ca II CGTATACTATCGTTAGT CCATATGATACCAATCA 100
a: b: c:	T sM pn El II	T t t t t t t t t t t t t t t t t t t t	S a u D A 3 p 1 A n w I I I	C T vM s is p Je E II I	C Av li uJ II
a: b:	TAGCGAAATTAGAAAAGAGGA(01+	GTTCGTATACTTAGATG	TTGGATCAAGACGGGTTTTTTCTA -+	TTTTACAGCCGATCATTTAA	TICAATGGTAGCICTT+ 200 AAGTTACCATCGAGAA -
č:	C Cav BveigiI J J J I I I I I	MetAsnLeuLe M T a s e p I 4 I 5 I I	euGlySerArgArgValPheSerLy B s r I	ysLysCysArgLeuValLysPho T t EUh cb1 oal 321 161 III	eSerMetValAlaLeu - H i n H P h 1 a I I
a: b: c:	CATAGTCGGTGTTACCGACATT	GTTGTCAGTGTGAACTT	AATACTGCACTGGCACGACAAACA +		-
30	C 1 VR 1 is 1 Qa I II I GCAAGTACCTAAACGAAGCATTA CGTTCATGGATTGCTTCGTAAA	C Av li uJ II AGCTTGGACATTCAATGATGATGATGATGATGATGATGATGATTAGATGAT	ACAGTCCTAACTATTACAAAACTT + TGTCAGGATTGATAATGTTTTGAA	C Gyrms sissp uQaee IIIII // TAGGTACTAGTCAGATTACTCC	E C O N I AGCACTCTTTCCTAA+ 400 TCGTGAGAAAGGATT
a: b: c:	LysTyrLeuAsnGluAlaLeu	ıAlaTrpThrPheAsnAs	spSerProAsnTyrTyrLysThrLe	euGlyThrSerGlnIleThrPro	oAlaLeuPheProLys -

AMINO ACID SEQUENCE OF CLONED S. PYOGENES DNase

```
R-Q-T-Q-V-S-N-D-V-V-L-N-D-G-A-S-K-Y-L-N-E-A-L-A-W-T-F-N-D-S-P-N-Y-Y-K-T-L-G-T-S-Q-I-T-P-A-L-F-P-K-A-G-D-I-L-Y-S-K-L-D-E-L-G-R-T-R-T-A-R-G-T-L-T-Y-A-N-V-E-G-S-Y-G-V-R-Q-S-F-G-K-N-Q-N-P-A-G-W-T-G-N-P-N-H-V-K-Y-K-I-E-W-L-N-G-L-S-Y-V-G-D-F-W-N-R-S-H-L-I-A-D-S-L-G-G-D-A-L-R-V-N-A-V-T-G-T-R-T-Q-N-V-G-G-R-D-Q-K-G-G-M-R-Y-T-E-Q-R-A-Q-E-W-L-E-A-N-R-D-G-Y-L-Y-Y-E-V-A-P-I-Y-N-A-D-E-L-I-P-R-A-V-V-V-S-M-Q-S-S-D-N-T-I-N-E-K-V-L-V-Y-N-T-A-N-G-Y-T-I-N-Y-H-N-G-T-P-T-Q-K
```

(SEQ ID NO: 9)

FIG. 4

PCR OLIGONUCLEOTIDE

		· ·	
5,	T	AACGGATCCGAATCTACTTGGATCAAGACGGGTTTTTTCT 3' (SEQ. ID NO: 2)	
		ATGGATCCGAATCTACTTGGATCAAGACGGGTTTTTTCTAAAAAATGTCGGCTAGTAAAA	60
	ı	TACCTAGGCTTAGATGAACCTAGTTCTGCCCAAAAAAGATTTTTTACAGCCGATCATTTT	80
		${\tt MetAspProAsnLeuLeuGlySerArgArgValPheSerLysLysCysArgLeuValLys}$	
		TTTTCAATGGTAGCTCTTGTATCAGCCACAATGGCTGTAACAACAGTCACACTTGAAAAT	120
	61	AAAAGTTACCATCGAGAACATAGTCGGTGTTACCGACATTGTTGTCAGTGTGAACTTTTA	
		$Phe Ser /\!$	
1		ACTGCACTGGCACGACAAACACAGGTCTCAAATGATGTTGTTCTAAATGATGGCGCAAGC	180
	121	TGACGTGACCGTGCTGTTTGTGTCCAGAGTTTACTACAACAAGATTTACTACCGCGTTCG	
		Thr A la Leu A la Arg G ln Thr G ln Va l Ser Asn Asp Va l Va l Leu Asn Asp G ly A la Ser	
		AAGTACCTAAACGAAGCATTAGCTTGGACATTCAATGACAGTCCTAACTATTACAAAACT	240
	181	TTCATGGATTTGCTTCGTAATCGAACCTGTAAGTTACTGTCAGGATTGATAATGTTTTGA	±≈U
		$Lys Tyr Leu Asn Glu \Lambda la Leu Ala Trp Thr Phe \Lambda sn Asp Ser Pro Asn Tyr Tyr Lys Thr Phe Nove Phe Nove$	
		TTAGGTACTAGTCAGATTACTCCAGCACTCTTTCCTAAAGCAGGAGATATTCTCTATAGC	300
•	241	AATCCATGATCAGTCTAATGAGGTCGTGAGAAAGGATTTCGTCCTCTATAAGAGATATCG	
		LeuGlyThrSerGinileThrProAlaLeuPheProLysAlaGlyAspileLeuTyrSer	
		AAATTAGATGAGTTAGGAAGGACGCGTACTGCTAGAGGTACATTGACTTATGCCAATGTT	
•	301	TTTAATCTACTCAATCCTTCCTGCGCATGACGATCTCCATGTAACTGAATACGGTTACAA	360
		Lys Leu Asp Gtu Leu Gty Arg Thr Arg Thr Ata Arg Gty Thr Leu Thr Tyr Ata Asn Value (1991) and the contraction of the contracti	
	361	GAAGGTAGCTACGGTGTTAGACAATCTTTCGGTAAAAATCAAAACCCCGCAGGATGGACT	420
•	,01	CTTCCATCGATGCCACAATCTGTTAGAAAGCCATTTTTAGTTTTGGGGGCGTCCTACCTGA	720
		GluGlySerTyrGlyValArgGlnSerPheGlyLysAsnGlnAsnProAlaGlyTrpThr	
42	(24	GGAAACCCTAATCATGTCAAATATAAAATTGAATGGTTAAATGGTCTATCTTATGTCGGA	480
	141	CCTTTGGGATTAGTACAGTTTATATTTTAACTTACCAATTTACCAGATAGAATACAGCCT	400
		GIVASOProASOHISVOII VSTVRI VSI LEGIUTROL EUASOGIVI EUSERTVRVOIGIV	

FIG. 5A

481	GATTTCTGGAATAGAAGTCATCTCATTGCAGATAGTCTCGGTGGAGATGCACTCAGAGTC	540
	CTAAAGACCTTATCTTCAGTAGAGTAACGTCTATCAGAGCCACCTCTACGTGAGTCTCAG	
	AspPheTrpAsnArgSerHisLeuIleAlaAspSerLeuGlyGlyAspAlaLeuArgVal	
541	AATGCCGTTACAGGAACACGTACCCAAAATGTAGGAGGTCGTGACCAAAAAGGCGGCATG	600
	TTACGGCAATGTCCTTGTGCATGGGTTTTACATCCTCCAGCACTGGTTTTTCCGCCGTAC	•••
	As nAla ValThr Gly Thr Arg Thr Gln As nVal Gly Gly Arg Asp Gln Lys Gly Gly Met	
601	CGCTATACCGAACAAAGAGCTCAAGAATGGTTAGAAGCAAATCGTGATGGCTATCTTTAT	660
	GCGATATGGCTTGTTTCTCGAGTTCTTACCAATCTTCGTTTAGCACTACCGATAGAAATA	000
	Arg Tyr Thr Glu Gln Arg Ala Gln Glu Trp Leu Glu Ala Asn Arg Asp Gly Tyr Leu Tyr	
661	TATGAAGTCGCTCCAATCTACAACGCAGACGAGTTGATTCCAAGAGCTGTCGTGGTATCA	720
001	ATACTTCAGCGAGGTTAGATGTTGCGTCTGGTCAACTAAGGTTCTCGACAGCACCATAGT	720
	$\label{thm:condition} \textbf{TyrGluValAlaProIieTyrAsnAlaAspGluLeuIleProArgAlaValValValSer}$	
721	ATGCAATCTTCTGATAATACCATCAACGAGAAAGTATTAGTTTAGAACAGAGCTAATGGC	780
	TACGTTAGAAGACTATTATGGTAGTTGCTCTTTCATAATCAAATGTTGTGTCGATTACCG	
	${\tt MetGInSerSerAspAsnThrIleAsnGluLysValLeuValTyrAsnThrAlaAsnGly}$	
781	TACACCATTAACTACCATAACGGTACACCTACTCAAAAATAATACCAAAAGGCTAGACCT	840
,	ATGTGGTAATTGATGGTATTGCCATGTGGATGAGTTTTTATTATGGTTTTCCGATCTGGA	040
	TyrThrIleAsnTyrHIsAsnGlyThrProThrGlnLysEndTyrGlnLysAlaArgPro	
841	CTGCTCACTAGGCCTAGCTTTTTACATCAAAAAAAGCAATGACTATAGAAAGTAAAAATA	900
	GACGAGTGATCCGGATCGAAAAATGTAGTTTTTTTCGTTACTGATATCTTTCATTTTTAT	
	LeuLeuThrArgProSerPheLeuHIsGlnLysLysGlnEnd	
901	CTAGAAAAAGCAATGATTGCCGTCATTGCCCCGGGTCGACCCGG	1)
- - '	GATCTTTTCGTTACTAACGGCAGTAACGGGGCCCAGCTGGGCC	-,
	3' TCTTTTTCGTTACTAACGGCAGTAACGGGGCCCAGCTGGGCC 5' (SEQ. ID NO:	3)

FIG. 5B

PCR OLIGONUCLEOTIDE

A=STREPTONASE B
B=STREPTONASE B + ANTIBODY
C=DNase1-1
D=DNase1-1 + ANTIBODY
E=DNase B2-6
F=DNase B2-6 + ANTIBODY

FIG. 6

101 TAGCGAAATTAGAAAAGAGGACAAGCATATGAATCTACTTGGATCAAGACGGGTTTTTTCTAAAAAATGTCGGCTAGTAAAATTTTCAATGGTAGCTCTT

(SEQ. 10 NO: 10)

CONSENSUS SEQUENCE OF ESCHERICHIA COLI PROMOTER REGION:

-35 tcTTGACat

-10 TAtAaT

CORRELATION CURVE OF ACTIVITY ASSAYS BASED ON RECOMBINANT AND NATURAL (STREPTONASE B) DNAgse B

FIG. 8

!

SEQUENCE OF CONSTRUCTION PRODUCING DNASE B PROCESSED IDENTICALLY TO NATURAL DNASE B

3	ROCESSED IDENTICADE TO MILETE	
PCR OLIGONUCLEOTIDE	S (SEQ ID NO: 12	
'AGGCAATGGATCCGAACCT	rgctgggttcccgtcgtgttttctccaaaaaatgccgtctggttaaattctccat	
	rgctgggttcccgtcgtgtttctccaaaaaatgccgtctggttaaattctccat atgaacctagttctgcccaaaaaagattttttacagccgatcattttaaaagtta	60
	euLeuGlySerArgArgValPheSerLysLysCysArgLeuValLysPheSerMet	
MECASPPIOASIDE	TCTGGTTTCCGCTACCATGGCTGTTACCACCGTTACCCTGGAAAACACCGCTCT	
	TCTGGTTTCCGCTACCATGGCTGTTACCACCGTTACCCTGGAAAACACCGCTCT	
61 CCATCO	GAGAACATAGTCGGTGTTACCGACATTGTTGTCAGTGTGAACTTTTATGACGTGA	120
ValAla	aLeuValSerAlaThrMetAlaValThrThrValThrLeuGluAsnThrAlaLeu	•
GGCT**	**CAGACACAGGTCTCAAATGATGTTGTTAAATGATGGCGCAAGCTTCATGGA	
121 CCGTGC	**CAGACACAGGTCTCAAATGATGTTGTTCTAAATGATGGCGCAAGCAA	180
	GGlnThrGlnValSerAsnAspValValLeuAsnAspGlyAlaSerLysTyrLeu	-
	AAGCATTAGCTTGGACATTCAATGACAGTCCTAACTATTACAAAACTTTAGGTAC TTCGTAATCGAACCTGTAAGTTACTGTCAGGATTGATAATGTTTTGAAATCCATG	240
AsnGlu	JAlaLeuAlaTrpThrPheAsnAspSerProAsnTyrTyrLysThrLeuGlyThr	-
0.44	AGATTACTCCAGCACTCTTTCCTAAAGCAGGAGATATTCTCTATAGCAAATTAGA TCTAATGAGGTCGTGAGAAAGGATTTCGTCCTCTATAAGAGATATCGTTTAATCT	300
SerGln	illeThrProAlaLeuPheProLysAlaGlyAspIleLeuTyrSerLysLeuAsp	-
3.01	PAGGAAGGACGCGTACTGCTAGAGGTACATTGACTTATGCCAATGTTGAAGGTAG	360
GluLeu	GlyArgThrArgThrAlaArgGlyThrLeuThrTyrAlaAsnValGluGlySer	-
	TGTTAGACAATCTTTCGGTAAAAATCAAAACCCCGCAGGATGGACTGGAAACCC ACAATCTGTTAGAAAGCCATTTTTAGTTTTTGGGGCGTCCTACCTGACCTTTTGG	420
TyrGly	ValArgGlnSerPheGlyLysAsnGlnAsnProAlaGlyTrpThrGlyAsnPro	•
421 ATTAGT	TGTCAAATATAAAATTGAATGGTTAAATGGTCTATCTTATGTCGGAGATTTCTG ACAGTTTATATTTTAACTTACCAATTTACCAGATAGAATACAGCCTCTAAAGAC	480
AsnHis	ValLysTyrLysIleGluTrpLeuAsnGlyLeuSerTyrValGlyAspPheTrp	-
	AAGTCATCTCATTGCAGATAGTCTCGGTGGAGATGCACTCAGAGTCAATGCCGT TTCAGTAGAGTAACGTCTATCAGAGCCACCTCTACGTGAGTCTCAGTTACGGCA	540
AsnArg	SerHisLeuIleAlaAspSerLeuGlyGlyAspAlaLeuArgValAsnAlaVal	•

541	TACAGGAACACGTACCCAAAATGTAGGAGGTCGTGACCAAAAAAGGCGGCATGCGCTATAC ATGTCCTTGTGCATGGGTTTTACATCCTCCAGCACTGGTTTTTCCGCCGTACGCGATATG	600
	Thr Gly Thr Arg Thr Gln As n Val Gly Gly Arg Asp Gln Lys Gly Met Arg Tyr Thr	•
601	CGAACAAAGAGCTCAAGAATGGTTAGAAGCAAATCGTGATGGCTATCTTTATTATGAAGT GCTTGTTTCTCGAGTTCTTACCAATCTTCGTTTAGCACTACCGATAGAAATAATACTTCA	660
	${\tt GluGlnArgAlaGlnGluTrpLeuGluAlaAsnArgAspGlyTyrLeuTyrTyrGluVal}$	•
661	CGCTCCAATCTACAACGCAGACGAGTTGATTCCAAGAGCTGTCGTGGTATCAATGCAATC GCGAGGTTAGATGTTGCGTCTGCTCAACTAAGGTTCTCGACAGCACCATAGTTACGTTAG	720
	${\tt AlaProIleTyrAsnAlaAspGluLeuIleProArgAlaValValSerMetGlnSer}$	-
721	TTCTGATAATACCATCAACGAGAAAGTATTAGTTTACAACACAGCTAATGGCTACACCAT AAGACTATTATGGTAGTTGCTCTTTCATAATCAAATGTTGTGTCGATTACCGATGTGGTA	780
	SerAspAsnThrIleAsnGluLysValLeuValTyrAsnThrAlaAsnGlyTyrThrIle	-
781	TAACTACCATAACGGTACACCTACTCAAAAATAATACCAAAAGGCTAGACCTCTGCTCAC ATTGATGGTATTGCCATGTGGATGAGTTTTTATTATGGTTTTCCGATCTGGAGACGAGTG	840
	AsnTyrHisAsnGlyThrProThrGlnLysEnd (SEQ ID NO: 15)	
841	TAGGCCTAGCTTTTTACATCAAAAAAAGCAATGACTATAGAAAAGTAAAAATACTAGAAAAA ATCCGGATCGAAAAATGTAGTTTTTTTCGTTACTGATATCTTTCATTTTTATGATCTTTT	900
	3' TCTTTT	
901	AGCAATGATTGCCGTCATTGCCCCGGGTCGAC (SEQ ID NO: 14) TCGTTACTAACGGCAGTAACGGGGCCCAGCTG	
	TCGTTACTAACGGCAGTAACGGGGCCCAGCTGGGCC 5' (SEQ ID NO: 13) PCR OLIGONUCLEOTIDE	

FIG. 10B