Teoria da Decisão Projeto Prático Assistido Por Otimização Multiobjetivo e Métodos de Auxílio à Tomada de Decisão

Rafael Carneiro de Castro

Vinícius Felicíssimo Campos

Davi Pinheiro Viana

Eng. de Sistemas - UFMG Matrícula: 2013030210 Email: rafaelcarneiroget@hotmail.com

Eng. de Controle e Automação - UFMG Matrícula: 2015035235

Email: viniciusfc95@gmail.com Email

Eng. de Sistemas - UFMG Matrícula: 2013029912 Email: daviviana22@gmail.com

Resumo—Abordagem de forma conjunta de grande parte dos conceitos vistos na disciplina "ELE088 - Teoria da Decisão", através de um problema relacionado ao gerenciamento ótimo da política de manutenção de um conjunto de equipamentos de uma empresa. O problema foi resolvido através de modelagem e implementação multiobjetivo e, para verificar a resolução do problema, é apresentado um indicador de qualidade. Além disso, foram utilizados alguns métodos de auxílio à tomada de decisão.

I. INTRODUÇÃO

O presente trabalho tem o objetivo de resolver um problema de otimização multiobjetivo e, utilizando técnicas escalares de decisão assistida estudadas em sala de aula, encontrar a melhor solução para este problema, colocando em prática grande parte dos conceitos da matéria.

O problema a ser resolvido é o seguinte: Deseja-se determinar a política de manutenção ótima para cada um dos 500 equipamentos de uma empresa, considerando-se a minimização do custo de manutenção e a minimização do custo de falha esperado.

No problema, o custo de manutenção total é a soma dos custos dos planos de manutenção adotados para todos os equipamentos. Sendo que, o valor do custo de cada plano de manutenção é dado. O custo esperado de falha de cada equipamento i, sob o plano de manutenção j, é o produto da probabilidade de falha $(p_{i,j})$ e o custo de falha do equipamento (este último é dado). O custo esperado de falha total é a soma dos custos esperados de falha de todos os equipamentos.

Deve ser feita a formulação e resolução do problema multiobjetivo e o resultado encontrado deve ser avaliado baseado no indicador de qualidade hipervolume (s-metric). Esse indicador é utilizado para mensurar as propriedades de convergência e diversidade da fronteira Pareto "aproximada" obtida.

Além disso, deve ser aplicada também a utilização de técnicas de análise de decisão ELECTRE II, PRO-METHEE II *fuzzy* e AHP para decidir qual a melhor solução dentre as encontradas para o problema.

II. DESENVOLVIMENTO

A. Formulação do Problema:

A formulação do problema foi dividida em duas partes, como é discutido a seguir:

1) Minimização do custo de manutenção total: Em primeiro momento, é preciso construir uma função objetivo e suas eventuais restrições para minimização do custo de manutenção total. Considerando $C_{m_i}(x_i)$ como o custo de manutenção do equipamento i em função do plano de manutenção x_i , têm-se a seguinte formulação:

$$\min \sum_{i=1}^{n} C_{m_i}(x_i) \tag{1}$$

sujeito a:

$$x_i \in \mathcal{X} \ \forall i \in 1, ..., n$$
 (2)

$$C_{m_i} \in \mathcal{C}_m \ \forall i \in 1, ..., n$$
 (3)

Em que n é o número de equipamentos que, no caso do problema a ser resolvido, é igual a 500. A equação 1 representa o custo de manutenção total que é o somatório dos custos de manutenção de cada equipamento i. A restrição 2 indica que cada equipamento i pode ter um plano de manutenção x_i que esteja dentro do conjunto $\mathcal X$ de planos pré-definidos, no caso do problema, $\mathcal X = \{1,2,3\}$. A restrição 3 indica que o custo de manutenção de cada equipamento também deve estar dentro de um conjunto pré-definido $\mathcal C_m$, sendo que o valor depende do plano de manutenção.

2) Minimização do custo esperado de falha total: Agora, uma função objetivo para tratar a minimização do custo esperado de falha total é formulada. Considerando $C_{f_i}(x_i)$ como o custo de falha do equipamento i em função do plano de manutenção x_i , têm-se a seguinte formulação:

$$C_{f_i} = p_{i,x_i} \cdot c_{f_i} \tag{4}$$

Onde p_{i,x_i} é a probabilidade de falha de um equipamento i, sob o plano de manutenção x_i , até um dado horizonte de planejamento da manutenção Δt . Ela é estimada pela equação 5 que determina a probabilidade de falha de um equipamento até Δt dado que ele não falhou até a data atual (t_0) . No caso do problema, será utilizado $\Delta t = 5$ anos.

$$p_{i,x_i} = \frac{F_i(t_0 + x_i \Delta t) - F_i(t_0)}{1 - F_i(t_0)}$$
 (5)

Em que:

$$F_i(t) = 1 - \exp\left[-\left(\frac{t}{\eta_i}\right)^{\beta_i}\right] \tag{6}$$

Os parâmetros η , β dependem também do plano de manutenção i e são dados. Com isso, têm-se o seguinte modelo:

$$\min \sum_{i=1}^{n} C_{f_i}(x_i) \tag{7}$$

sujeito a:

$$x_i \in \mathcal{X} \ \forall i \in 1, ..., n$$
 (8)

$$c_{f_i} \in \mathcal{C}_f \ \forall i \in 1, ..., n$$
 (9)

$$\beta_i \in \mathcal{B} \ \forall i \in 1, ..., n$$
 (10)

$$\eta_i \in \mathcal{N} \ \forall i \in 1, ..., n$$
(11)

Em que n é o número de equipamentos que, no caso do problema a ser resolvido, é igual a 500. A equação 7 representa o custo esperado de falha total que é o somatório dos custos esperados de falha de cada equipamento i. A restrição 8 indica que cada equipamento i pode ter um plano de manutenção x_i que esteja dentro do conjunto \mathcal{X} de planos pré-definidos, no caso do problema, $\mathcal{X} = \{1,2,3\}$. As restrições 9, 10 e 11 indicam, respectivamente que c_{f_i} , β_i , η_i devem estar dentro de conjuntos pré-definidos, sendo que o valor depende do plano de manutenção.

3) Minimização de ambos os custos: O problema a ser resolvido envolve a minimização do custo de manutenção total *e também* do custo de falha total, logo, é necessária a formulação de um problema biobjetivo para o problema. Para a formulação, foi escolhido o método *Soma Ponderada*. Nele, a função biobjetivo é formada por uma

soma das funções objetivos anteriores, sendo cada uma multiplicada por um peso. A variação desses pesos é que faz com que a fronteira Pareto seja formada. Esse método foi escolhido por ser de fácil implementação. Com isso, a formulação do problema biobjetivo é a seguinte:

$$\min w_1 \cdot \sum_{i=1}^n C_{m_i}(x_i) + w_2 \cdot \sum_{i=1}^n C_{f_i}(x_i)$$
 (12)

sujeito a:

$$x_i \in \mathcal{X} \ \forall i \in 1, ..., n$$
 (13)

$$c_{f_i} \in \mathcal{C}_f \ \forall i \in 1, ..., n$$
 (14)

$$\beta_i \in \mathcal{B} \ \forall i \in 1, ..., n$$
 (15)

$$\eta_i \in \mathcal{N} \ \forall i \in 1, ..., n$$
(16)

B. Algoritmo de Solução:

Nesta seção serão discutidos e exibidos os algoritmos para solução do problema multiobjetivo.

Olhando para a equação 12 é possível perceber que, minimizando o custo de cada equipamento, minimiza-se também o somatório dos custos. Assim, para resolução do problema biobjetivo foi utilizada uma estratégia gulosa. Nela, para cada equipamento, é feito um teste com cada um dos planos de manutenção e é escolhido aquele que gera menor custo. Têm-se então, um algoritmo cuja complexidade é $O(n \cdot m)$ em que n é o número de equipamentos e m é o número de planos de manutenção. No caso do problema a ser resolvido no trabalho, para cada par de pesos escolhido (encontrar solução da fronteira Pareto), são feitas 1500 avaliações da função objetivo. Segue, abaixo, um pseudocódigo do funcionamento do algoritmo:

Algorithm 1 Estratégia gulosa

```
1: for i = 1 to n do
2: cBest = w_1 \cdot c_m(\mathcal{X}_1) + w_2 \cdot c_f(\mathcal{X}_1)
3: x_i = \mathcal{X}_1
4: for j = 2 to m do
5: if (w_1 \cdot c_m(\mathcal{X}_j) + w_2 \cdot c_f(\mathcal{X}_j)) < cBest then
6: cBest = w_1 \cdot c_m(\mathcal{X}_j) + w_2 \cdot c_f(\mathcal{X}_j)
7: x_i = \mathcal{X}_j
8: end if
9: end for
10: end for
```

Essa estratégia foi escolhida por ser simples de implementar e por retornar uma solução exata para o problema. Além disso, é uma solução relativamente barata computacionalmente e que retorna o resultado rapidamente.

O algoritmo que utiliza a estratégia gulosa para resolver a função objetivo pode ser encontrado no arquivo Guloso.m e o algoritmo que implementa a *Soma Ponderada* variando os pesos da função objetivo pode ser

encontrado no arquivo SomaPonderada.m, ambos no mesmo diretório deste relatório.

C. Resultados:

Os algoritmos foram implementados e, na *Soma Ponderada*, foram encontradas 1000 soluções na fronteira pareto, variando os pesos da seguinte forma: w_1 varia de 0 a 1 com o passo igual a 0,001 e $w_2=1-w_1$. Foi encontrada a seguinte fronteira Pareto:

Figura 1. Froteira Pareto encontrada

D. Análise baseada no Hipervolume:

Com o objetivo de avaliar a Fronteira Pareto encontrada, foi utilizada a análise baseada no indicador de qualidade hipervolume (s-metric). Segundo a especificação do trabalho, um bom valor para o HVI (Valor do Hipervolume) deveria estar acima de 0, 6. Utilizando o algoritmo fornecido pelo professor, foi feita uma execução com a Fronteira Pareto encontrada e o valor de HVI foi igual a 0,621246. Conclui-se, então, que a fronteira encontrada convergiu para uma quantidade boa de soluções e que pode ser utilizada na análise de tomada de decisão da melhor solução.

III. TOMADA DE DECISÃO ASSISTIDA:

A. Electre II:

B. Promethee II Fuzzy:

Conforme estudado em sala de aula, o método Promethee II se baseia na comparação da avaliação de alternativas nos critérios tomando como base uma função de generalização de critérios. No caso deste trabalho, escolheu-se utilizar o Critério Usual, uma função que retorna 1 caso $c_j(a_i)-c_j(a_k)>0$, ou seja, caso a avaliação no critério c_j de a_i seja melhor que a avaliação a_k no critérios c_j , por ser uma generalização de critérios mais intuitiva. Como no problema em estudo os critérios de custos são melhores quanto menor for o

valor, apenas precisamos adaptar o Critério Usual para retornar 1 quando $custo(a_k)-custo(a_i)>0$. Assim, cria-se as matrizes P_j com a comparação par a par de todas as alternativas da fronteira Pareto em cada um dos dois critérios, preenchendo com os resultados da generalização de critérios de cada par. Agora, a matriz P, que será útil para os cálculos de fluxos de preferências entre as alternativas, é calculada a partir da relação:

$$P(a_i, a_k) = \frac{\sum_{j=1}^2 w_j \cdot P_j(a_i, a_k)}{\sum_{j=1}^2 w_j}$$
(17)

Muito se discute na literatura sobre formas nebulosas de se implementar o Promethee II. Uma das possíveis abordagens, e que se encaixa no problema em questão, é utilizar os pesos dos critérios como números nebulosos, representando a imprecisão do decisor em escolher pesos para cada critério. Assim, os valores de w_i no somatória do denominador da relação são números nebulosos.

Por fim, o fluxo de preferência em cada alternativa é calculado pela subtração entre o fluxo que entra no nó de uma alternativa e o fluxo que sai do nó dessa alternativa. Uma alternativa sobreclassifica outra se o seu fluxo de preferência for maior. Elas são indiferentes entre si se possuem o mesmo fluxo. Toda esta lógica do Promethee II fuzzy pode ser vista no arquivo FPrometheeII.m. O arquivo cria uma matriz de sobreclassificação, que vai ter o número 1 em uma célula caso a alternativa daquela linha sobreclassifique a alternativa da coluna, 0 caso sejam indiferentes, e -1 caso a alternativa da coluna sobreclassifique a da linha. As alternativas que mais sobreclassificam outras alternativas são tidas então como as melhores opções. No problema estudado, segundo o algoritmo do Promethee II fuzzy, as melhores alternativas possuem custo de manutenção total igual a 1000 e custo esperado de falha total igual a 1048.2, considerando os respectivos pesos igual a 0.7 e 0.3.

C. AHP:

O método AHP utilizado aqui é o mesmo que o estudado em sala de aula. Para tanto, escolheu-se 5 soluções da fronteira de Pareto encontrada na otimização biobjetivo. Chamaremos aqui de *c1* (critério 1) o custo de manutenção total, e de *c2* (critério 2) o custo esperado de falha total. Os valores destes critérios para as 5 soluções escolhidas podem ser vistos na Tabela I.

Agora, para a definição das prioridades de cada alternativa em cada critério, faz-se as tabelas de prioridade dando notas às alternativas. Para o primeiro critério, a tabela construída é a Tabela II. Para o segundo critério, a tabela construída é a Tabela III.

Como visto em sala de aula, as prioridades são calculadas a partir da normalização dos termos nas colunas, tirando a média de cada linha. Agora escolhendo o peso do custo de manutenção total como sendo 0.4 e o peso do

Alternativa	c1	c2
a1	1000	1048,2
a2	622	1184,3
a3	396	1340,9
a4	40	1695,3
a5	0	1745,5

Tabela I AVALIAÇÃO DAS ALTERNATIVAS NOS CRITÉRIOS.

c1	a1	a2	a3	a4	a5	Prioridades
a1	1	3	5	8	9	0.5029
a2	0.333	1	3	6	7	0.2623
a3	0.2	0.333	1	4	5	0.1395
a4	0.125	0.167	0.25	1	3	0.0610
a5	0.111	0.143	0.2	0.333	1	0.0344

Tabela III PRIORIDADES CRITÉRIO 2.

c1	a1	a2	a3	a4	a5	Prioridades
a1	1	0.333	0.2	0.143	0.111	0.0348
a2	3	1	0.333	0.2	0.143	0.0678
a3	5	3	1	0.333	0.2	0.1343
a4	7	5	3	1	0.333	0.2602
a4	9	7	5	3	1	0.5028

Tabela II PRIORIDADES CRITÉRIO 1.

Alternativa	Prioridade Final
a1	0.3156
a2	0.1845
a3	0.1374
a4	0.1407
a5	0.2218

PRIORIDADES CRITÉRIO 2.

custo esperado de falha total como sendo 0.6 (consideramos que o custo de falha tem maior impacto), para cada alternativa basta multiplicar pelos pesos dos critérios cada uma de suas prioridades e somar, comparando assim o resultado obtido para todas:

$$p_{i} = \sum_{j=1}^{2} w_{j} \cdot P_{ij} \tag{18}$$

O código do arquivo AHP.m lê as matrizes de prioridade dos arquivos *AHP criterio1.csv* e *AHP criterio2.csv*, faz os cálculos de prioridade apresentados e calcula o somatório para as comparações finais. Este somatório para cada alternativa pode ser visto na Tabela IV.

Como se pode notar, para os pesos escolhidos para os dois critérios, a alternativa 1 se mostrou a mais promissora, mas a alternativa 5 também está próxima desta. Um ajuste dos pesos poderia trazer um resultado final diferente.

IV. Conclusão:

Estratégias de decisão multiobjetivo são ferramentas muito úteis e poderosas para a tomada de decisões. Muitas abordagens e formulações podem ser seguidas, e concluímos que atingimos de forma satisfatória os objetivos buscados com a abordagem apresentada para o problema discutido. Obstáculos foram encontrados sobretudo na definição de métodos para a soluções do problema de otimização multiobjetivo, mas todos estes obstáculos foram superados para se chegar ao resultado final.

REFERÊNCIAS

[1] Notas de aula do professor Lucas Batista da disciplina *ELE088 Teoria da Decisão*. 2017.

[2] ARENALES, Marcos et al. Pesquisa operacional: para cursos de engenharia. Rio de Janeiro: Elsevier, 2007