Formale Grundlagen der Informatik I 2. Übungsblatt

Fachbereich Mathematik Prof. Dr. Martin Ziegler Davorin Lešnik, Ph.D.

Sommersemester 2013 22. 04. 2013

Gruppenübung

Carsten Rösnick

Aufgabe G4 (Stern-Operation)

L und M seien Σ -Sprachen.

- (a) Zeigen Sie, dass $L \subseteq L^*$ und $(L \subseteq M^* \implies L^* \subseteq M^*)$.
- (b) Schließen Sie aus (a), dass $(L^*)^* = L^*$ und $(L \subseteq M \implies L^* \subseteq M^*)$.
- (c) Zeigen Sie, dass $(L \cup M)^* = (L^*M^*)^*$.

Lösung:

(a) Wir erinnern uns an die Definition des Stern-Operators:

$$L^* = \{l_1 \cdot \ldots \cdot l_n \mid l_1, \ldots, l_n \in L, n \in \mathbb{N}\}.$$

Für n=0 heißt das, dass $\varepsilon \in L^*$, und für n=1, dass $L=\{l_1 \mid l_1 \in L\} \subseteq L^*$.

Nehmen wir jetzt an, dass $L\subseteq M^*$, und sei $l\in L^*$. Das heißt, dass es ein $n\in\mathbb{N}$ und $l_1,\ldots,l_n\in L$ gibt, so dass sich l als $l=l_1\cdot\ldots\cdot l_n$ schreiben lässt. Da $L\subseteq M^*$ ist jedes l_i Element von M^* und kann deshalb als $l_i=m_{i,1}\cdot\ldots\cdot m_{i,k_i}$ für bestimme $k_1,\ldots,k_n\in\mathbb{N}$ geschrieben werden. Deshalb ist

$$l = \underbrace{\left(m_{1,1} \cdot \ldots \cdot m_{1,k_1}\right)}_{=l_1} \cdot \left(\ldots\right) \cdot \underbrace{\left(m_{n,1} \cdot \ldots \cdot m_{n,k_n}\right)}_{=l_n} \in M^*.$$

Damit gilt $L \subseteq M^* \implies L^* \subseteq M^*$.

- (b) Zur ersten Aussage: Mit der ersten Aussage aus (a) folgt zunächst $(L^*) \subseteq (L^*)^*$. Für die verbleibende Inklusion, $(L^*)^* \subseteq (L^*)$, nutzen wir die zweite Aussage aus (a): $((L^*) \subseteq L^*) \Longrightarrow ((L^*)^* \subseteq L^*)$. Zur zweiten Aussage: Aus $L \subseteq M$ folgt, dass $L \subseteq M \subseteq M^*$ und (mit (a)) $L^* \subseteq M^*$.
- (c) $(L \cup M)^* \subseteq (L^*M^*)^*$: es genügt zu beweisen, dass $L \cup M \subseteq L^*M^*$. Sei deshalb $w \in L \cup M$. Dann gilt $w \in L$ oder $w \in M$. Nehmen wir erst an, dass $w \in L$. Dann auch $w \in L^*$, und $w = w \cdot \varepsilon \in L^*M^*$. Der Fall $w \in M$ geht analog.

 $(L^*M^*)^*\subseteq (L\cup M)^*$: es genügt zu beweisen, dass $L^*M^*\subseteq (L\cup M)^*$. Aus $L\subseteq L\cup M\subseteq (L\cup M)^*$ folgt, dass $L^*\subseteq (L\cup M)^*$. Analog gilt auch $M^*\subseteq (L\cup M)^*$, woraus $L^*M^*\subseteq (L\cup M)^*$ folgt. (Hier haben wir das folgende Prinzip verwendet:

$$L \subseteq N^*, M \subseteq N^* \implies LM \subseteq N^*.$$

Beweis: nehmen wir an $L\subseteq N^*$ und $M\subseteq N^*$, und sei $w\in LM$. Letztes heißt, dass w=lm mit $l\in L$ und $m\in M$. Weil $L\subseteq N^*$ und $M\subseteq N^*$, können wir $l=n_1\cdot\ldots n_j$ und $m=n'_1\cdot\ldots n'_k$ schreiben mit $n_i,n'_i\in N$. Deshalb $w=n_1\cdot\ldots n_j\cdot n'_1\cdot\ldots n'_k\in N^*$.)

Aufgabe G5 (Wahrheitswertetafeln)

Zeigen Sie anhand von Wahrheitswertetafeln, dass die folgenden aussagenlogischen Formeln äquivalent sind:

$$\neg (p \to q), \qquad p \land \neg q, \qquad (p \lor q) \land \neg q.$$

Lösung:

p	$\mid q \mid$	$p \rightarrow q$	$ \neg(p \to q) $	$\neg q$	$p \land \neg q$	$p \lor q$	$\mid (p \vee q) \wedge \neg q$
0	0	1	0	1	0	0	0
0	1	1	0	0	0	1	0
1	0	0	1	1	1	1	1
1	1	1	0	0	0	1	0

Aufgabe G6 (Graphhomomorphismen)

Ein gerichteter Graph G=(V,E) besteht aus einer endlichen Menge V von Knoten und einer Teilmenge $E\subseteq V\times V$ von Kanten. Gegeben seien die folgenden fünf gerichteten Graphen:

Der Graph $G_1 = (V_1, E_1)$ ist beispielsweise wie folgt formal gegeben:

$$V_1 = \{a, b, c, d\}$$

$$E_1 = \{(d, a), (d, b), (b, c), (c, d)\}$$

Geben Sie an, zwischen welchen der Graphen Homomorphismen existieren, und geben Sie auch gegebenenfalls einen Homomorphismus an.

Lösung: Zur Erinnerung: Ein Homomorphismus zwischen zwei Graphen G=(V,E),G'=(V',E') ist eine Abbildung $\varphi\colon V\to V'$, für die gilt

$$(x,y) \in E \implies (\varphi(x), \varphi(y)) \in E'.$$
 (1)

- Von dem Graphen G_3 gibt es Homomorphismen in alle anderen Graphen. Das liegt daran, dass G_3 keine Kanten enthält, die Bedingung (1) damit immer wahr ist und für φ eine beliebige Abbildung gewählt werden kann. Z.B. wäre ein Homomorphismus von G_3 zu G_1 die Abbildung $\varphi\colon V_3\to V_1$ mit $\varphi(x)=a$.
 - Es gibt keinen Homomorphismus in den Graphen G_3 , denn jeder andere Graph besitzt mindestens eine Kante, die nach (1) wieder auf eine Kante in G_3 abgebildet werden müsste.
- G_1 , G_2 : Angenommen es gäbe einen Homomorphismus φ von G_1 nach G_2 . Da G_2 symmetrisch ist, dürfen wir ohne Beschränkung der Allgemeinheit annehmen, dass $\varphi(b)=f$ gilt. Da $(b,c)\in E_1$, müsste auch $\varphi(c)=g$ gelten und damit auch $\varphi(d)=h$. Da $(d,b)\in E_1$ müsse jetzt auch $(h,f)\in E_2$. Das ist aber nicht der Fall. Also existiert ein solcher Homomorphismus nicht.

Ähnlich kann man auch sehen, dass es keinen Homomorphismus von G_2 nach G_1 gibt.

- G_1 nach G_4 : Setze $\varphi(a) = \varphi(b) = \varphi(d) = l$, $\varphi(c) = m$.
- G_2 nach G_4 : Setze $\varphi(e) = \varphi(f) = \varphi(g) = l$, $\varphi(h) = m$.

- G_4 nach G_5 : Setze $\varphi(l) = \varphi(m) = n$.
- G_4, G_5 nach G_1, G_2 : Sowohl G_1 als auch G_2 enthalten keine Schleifen. Deswegen kann es keinen Homomorphismus von G_4 oder G_5 nach G_1 oder G_2 geben.
- G_5 nach G_4 : Setze $\varphi(n) = l$.

Alle anderen Aussagen (beispielsweise die Existenz eines Homomorphismus von G_1 nach G_5) folgen per Transitivität aus den obigen.

Hausübung

Aufgabe H3 (Äquivalenzrelationen, Injektivität, Surjektivität, Bijektivität) (6 Punkte) Sei $f \colon A \to B$ eine beliebige Abbildung.

(a) Sei auf A durch

$$x \sim y :\Leftrightarrow f(x) = f(y)$$

für $x,y \in A$ die Relation \sim definiert. Zeigen Sie, dass \sim eine Äquivalenzrelation ist.

- (b) Sei $q: A \to A/\sim$ durch $q(x) := [x]_{\sim}$ definiert. Zeigen Sie, dass q eine surjektive Abbildung ist.
- (c) Zeigen Sie, dass die Inklusionsabbildung i: Bild $(f) \to B$, i(x) := x, injektiv ist.
- (d) Sei durch $\overline{f}([x]) := f(x)$ eine Abbildung $\overline{f} : A/\sim \to \operatorname{Bild}(f)$ definiert. Zeigen Sie, dass \overline{f} wohldefiniert ist und dass sie bijektiv ist.
- (e) Schließen Sie, dass sich jede Abbildung als eine Verkettung einer surjektiven, bijektiven und injektiven Abbildung darstellen lässt.

Lösung:

- (b) $\lfloor 1 \ P \rfloor$ Die Elemente von A/\sim sind genau die Äquivalenzklassen $[x]_\sim$, wo $x \in A$. Um Surjektivität von q zu zeigen, müssen wir für jedes solche $[x]_\sim$ ein Element aus A finden, das mit q zu $[x]_\sim$ abgebildet wird. Das haben wir, denn $q(x) = [x]_\sim$.
- (c) $[1 \ P]$ Injektivität einer Funktion g bedeutet $g(x) = g(y) \implies x = y$ für alle x, y. Für i bekommen wir die Bedingung $x = y \implies x = y$, was natürlich stimmt.

$$[x]_{\sim} = [y]_{\sim} \implies x \sim y \implies f(x) = f(y) \implies \overline{f}([x]_{\sim}) = \overline{f}([y]_{\sim}).$$

- $\fbox{1 P.}$ Beachte, dass alle diese Implikationen eigentlich Äquivalenzen sind, also haben wir auch die Implikation in die andere Richtung $\overline{f}([x]_\sim) = \overline{f}([y]_\sim) \implies [x]_\sim = [y]_\sim$ und somit ist \overline{f} injektiv. Für beliebiges Element $b \in \operatorname{Bild}(f)$ existiert nach Definition des Bildes ein $x \in A$ mit f(x) = b. Das heißt $\overline{f}([x]_\sim) = b$ und somit ist \overline{f} surjektiv.
- (e) 1 P Für beliebiges $x \in A$ haben wir

$$i\Big(\overline{f}\big(q(x)\big)\Big) = i\Big(\overline{f}\big([x]_{\sim}\big)\Big) = i\big(f(x)\big) = f(x).$$

Also kann jede beliebige Funktion $f\colon A\to B$ als Verkettung $f=i\circ \overline{f}\circ q$ geschrieben werden, wo q surjektiv, \overline{f} bijektiv und i injektiv ist.

Aufgabe H4 (4 Punkte)

Sei $\Sigma := \{a, b\}$.

- (a) Sei L_1 die kleinste Sprache über Alphabet Σ , für die gilt:
 - $aaaababa \in L_1$,
 - wenn das Wort aw ($w \in \Sigma^*$) zu L_1 gehört, so auch $w \in L_1$,
 - wenn das Wort wa ($w \in \Sigma^*$) zu L_1 gehört, so auch $w \in L_1$.

Geben Sie alle Wörter in der Sprache L_1 an.

(b) Sei noch eine Sprache L_2 definiert durch $w \in L_2 \iff ww \in L_1$. Geben Sie $L_2, L_1 \cup L_2$ und $L_1 \cdot L_2$ an.

Lösung:

(a) $\boxed{1 \text{ P}}$ Die Wörter in L_1 sind genau die, die man aus aaaababa so bekommen kann, dass man ein paar a am Anfang und/oder am Ende löscht. Also

 $L_1 = \{aaaababa, aaababa, aababa, aababa, aababa, aababa, aabab, aabab, abab, bab\}.$

(b)
$$\boxed{1 \text{ P}} L_2 = \{ba, ab\}$$

 $\overline{L_1} \cup L_2 = \{aaaababa, aaababa, aababa, ababa, baba, aaaabab, aaabab, aabab, abab, bab, ba, ab\}$

 $L_1 \cdot L_2 = \{aaaabababa, aaabababa, aabababa, abababa, bababa, aaababba, aaababba, aababba, ababba, babba, aaababaab, aababaab, aababaab, ababaab, babaab, aaababab, aaababab, aababab, babaab, babab\}$

Minitest

Aufgabe M4

Sei $\Sigma = \{a, b, c\}$. Die Relation $R_1 = \{(v, w) \in \Sigma^* \times \Sigma^* \mid v \text{ ist Präfix von } w\}$ ist

- □ reflexiv
- □ symmetrisch
- □ transitiv

Lösung:

- □ reflexiv
- □ symmetrisch

		• . •
\square	tron	C1117

Reflexiv, da jedes Wort Präfix von sich selbst ist.

Nicht symmetrisch, denn jedes (nicht leere) Wort $a \in \Sigma^*$ ist Präfix von $a \cdot a$, aber nicht umgekehrt. Transitiv, denn wenn u Präfix von v und v Präfix von w ist, dann gilt per Definition $v = u \cdot v'$ für ein Wort v' und $v = v \cdot v'$ für ein Wort v'. Zusammen also $v = u \cdot v' \cdot v'$ und damit ist v = v' auch Präfix von v = v' von v = v

Aufgabe M5

Die Relation $R_2 = \{(a, b) \in \mathbb{Z} \times \mathbb{Z} \mid a \cdot b \neq 0\}$ ist

- □ reflexiv
- □ symmetrisch
- □ transitiv

Lösung:

- □ reflexiv

Nicht reflexiv: $(0,0) \notin R_2$. Symmetrie und Transitivität folgen aus der Beobachtung, dass $(a,b) \in R_1$ genau dann, wenn $a \neq 0$ und $b \neq 0$.

Aufgabe M6

Seien A und B endliche Mengen und $f \colon A \to B$ eine Funktion.

- (a) Ist f injektiv, so folgt stets
 - $\Box |A| \leq |B|$
 - $\Box |A| \geq |B|$
- (b) Ist f surjektiv, so folgt stets
 - $\Box |A| \leq |B|$
 - $\Box |A| \geq |B|$

Lösung:

(a) $\boxtimes |A| \leq |B|$

$$\Box |A| \ge |B|$$

Wenn f injektiv ist, dann gibt es für jedes $y \in B$ maximal ein $x \in A$, so dass f(x) = y. Damit kann es nicht mehr Elemente in A geben als in B.

(b) $\square |A| \leq |B|$

$$\boxtimes |A| \ge |B|$$

Wenn f surjektiv ist, dann gibt es für jedes $y \in B$ mindestens ein $x \in A$, so dass f(x) = y. Damit kann A nicht weniger Elemente als B enthalten.