M/M/1 queue

Steady state probabilities

We continue the analysis of the M/M/1 queue with the computation of the steady state probabilities.

Stability condition for the steady state behavior

- under what conditions is a steady state established?
- the stability condition is:

• $\rho = \lambda/\mu$ is called *traffic intensity* or *load*.

The queue is stable if $\rho < 1$, otherwise it is overloaded.

We focus on the stability conditions to establish a steady-state behavior. So the question is: under what conditions does the steady-state behavior exist?

The response is that the system must verify the stability condition. In the case of the M/M/1 queue, the stability condition is: "the arrival rate λ is lower than the service rate μ ". We denote by ρ the fraction $\frac{\lambda}{\mu}$. It is called the traffic intensity or the load. So the M/M/1 queue is stable if ρ is strictly lower than 1, otherwise it is unstable, or overloaded.

Steady state probabilities of the M/M/1

- $\pi_i = (\frac{\lambda}{\mu})^i \pi_0 = \rho^i \pi_0$, for $i \ge 1$
- from the normalizing condition $\sum_{i=0}^{\infty} \pi_i = 1$ we have: $\sum_{i=0}^{\infty} \pi_0 \rho^i = 1$
- we obtain:

$$\pi_0 = \frac{1}{\sum_{i=0}^{+\infty} \rho^i}$$

- if ρ < 1:
 - the sum $\sum_{i=0}^{+\infty}
 ho^i$ converges to 1/(1ho) .
 - ► so

$$\pi_0 = \frac{1}{\sum_{i=0}^{+\infty} \rho^i} = 1 - \rho$$

▶ the steady state probabilities of the number of customers is:

$$\pi_i = (1 - \rho)\rho^i, i = 0, 1, 2, \dots$$

The steady-state probabilities π_i for all i, are equal to $(\lambda/\mu)^i$ multiplied by π_0 , or ρ^i multiplied by π_0 , for i greater than or equal to 1.

From the normalizing condition, the sum of the probabilities π_i , for i varying from 0 to infinity is equal to 1. So we have π_0 times the sum of ρ^i over all nonnegative i equals 1, and we deduce that π_0 equals 1 divided by that sum.

We know that if ρ is lower than 1, then the sum to $\frac{1}{1-\rho}$.

So we can deduce that π_0 equals $1 - \rho$. It results that the steady-state probability π_i is $(1 - \rho)\rho^i$, for all i, corresponding to the geometric probability distribution.

What is an unstable queue ?

Unstable (Overloaded) queue

- ullet an M/M/1 queue is unstable if $ho \geq 1$
- customers arrive faster than the server's processing speed $(\lambda \ge \mu)$
- the queue is unstable, the number of customers in the queue increases indefinitely, there is no stationary behavior

The question now is what is an unstable M/M/1 queue or an overloaded M/M/1 queue? The M/M/1 queue is unstable if ρ is greater than or equal to 1. In this case, customers arrive faster than the server's processing speed, so λ is greater than or equal to μ . The number of customers in the queue increases indefinitely, so there is no stationary behavior when time goes to infinity.

We can see in the figure, that when time t tends to infinity, the number of customers N(t) increases indefinitely.

Stability of the M/M/1 queue

N(t) the number of customers, for stable $(\lambda < \mu)$, and unstable $(\lambda \ge \mu)$ queues

To finish with the stability of the M/M/1 queue, in the present figures, we compare the behavior of a stable queue on the left where λ is lower than μ , and the unstable queue on the right when λ is greater than or equal to μ . We can see that the number of customers on the left is finite, while on the right it goes to infinity.