Improved enumeration of simple topological graphs

Jan Kynčl

Charles University, Prague

Graph: $G = (V, E), V \text{ finite, } E \subseteq \binom{V}{2}$

Topological graph: drawing of an (abstract) graph in the

plane

vertices = points edges = simple curves

forbidden:

simple: any two edges have at most one common point

or

complete: $E = \binom{V}{2}$

topological graph

simple complete topological graph

Topological graphs G, H are

- **isomorphic** if there exists a homeomorphism (of the sphere) which maps *G* onto *H*
- weakly isomorphic if the same pairs of edges cross in G and H

Topological graphs G, H are

- **isomorphic** if there exists a homeomorphism (of the sphere) which maps *G* onto *H*
- weakly isomorphic if the same pairs of edges cross in G and H

Topological graphs G, H are

- **isomorphic** if there exists a homeomorphism (of the sphere) which maps *G* onto *H*
- weakly isomorphic if the same pairs of edges cross in G and H

Weak isomorphism classes

 $T_{w}(G)$ = number of weak isomorphism classes of simple topological graphs that realize G

Complete graphs

Theorem: (J. Pach and G. Tóth, 2006)

$$2^{\Omega(n^2)} \leq T_{\mathbf{w}}(K_n) \leq 2^{O(n^2 \log n)}$$

Weak isomorphism classes

 $T_{w}(G)$ = number of weak isomorphism classes of simple topological graphs that realize G

Complete graphs

Theorem: (J. Pach and G. Tóth, 2006)

$$2^{\Omega(n^2)} \leq T_{\mathbf{w}}(K_n) \leq 2^{O(n^2 \log n)}$$

Main Theorem 1:

$$T_{\mathrm{w}}(K_n) \leq 2^{n^2 \cdot \alpha(n)^{O(1)}}$$

Weak isomorphism classes, complete graphs

tools:

Weak isomorphism classes, complete graphs

tools:

- (J. Pach, J. Solymosi and G. Tóth, 2003)
 Every simple complete topological graph with 4³⁰⁴
 vertices contains one of the following subgraphs:

 an upper bound on the size of a set of permutations with bounded VC-dimension (J. Cibulka and JK, 2012)

Main Theorem 2: Let *G* be a graph with *n* vertices and *m* edges. Then

$$T_{\mathrm{w}}(G) \leq 2^{O(n^2 \log(m/n))}$$
.

If $m < n^{3/2}$, then

$$T_{\mathrm{w}}(G) \leq 2^{O(mn^{1/2}\log n)}$$
.

Main Theorem 2: Let *G* be a graph with *n* vertices and *m* edges. Then

$$T_{\mathrm{w}}(G) \leq 2^{O(n^2 \log(m/n))}$$
.

If $m < n^{3/2}$, then

$$T_{\mathrm{w}}(G) \leq 2^{O(mn^{1/2}\log n)}.$$

Let $\varepsilon > 0$. If *G* is a graph with no isolated vertices and satisfies $m > (1 + \varepsilon)n$ or $\Delta(G) < (1 - \varepsilon)n$, then

$$\mathcal{T}_{\mathrm{w}}(G) \geq 2^{\Omega(\max(m, n \log n))}.$$

Main Theorem 2: Let *G* be a graph with *n* vertices and *m* edges. Then

$$T_{\mathrm{w}}(G) \leq 2^{O(n^2 \log(m/n))}$$
.

If $m < n^{3/2}$, then

$$T_{\mathbf{w}}(G) \leq 2^{O(mn^{1/2}\log n)}.$$

Let $\varepsilon > 0$. If *G* is a graph with no isolated vertices and satisfies $m > (1 + \varepsilon)n$ or $\Delta(G) < (1 - \varepsilon)n$, then

$$T_{\mathrm{w}}(G) \geq 2^{\Omega(\max(m,n\log n))}$$
.

Corollary: There are at most $2^{O(n^{3/2} \log n)}$ intersection graphs of n pseudosegments.

Weak isomorphism classes, general graphs

tools for upper bounds:

ullet topological spanning tree ${\mathcal T}$

Weak isomorphism classes, general graphs

tools for upper bounds:

ullet topological spanning tree ${\mathcal T}$

Weak isomorphism classes, general graphs tools for upper bounds:

• topological spanning tree \mathcal{T} — \mathcal{T} -representation

- types of (pseudo)chords ⇒ pairs of crossing edges
- bounded number of crossings of the pseudochords

Isomorphism classes

T(G) = number of isomorphism classes of simple topological graphs that realize G

Complete graphs

Theorem: (JK, 2009)

$$2^{\Omega(n^4)} < T(K_n) < 2^{(1/12+o(1))(n^4)}$$

Theorem: Let *G* be a graph with *n* vertices, *m* edges and no isolated vertices. Then

$$T(G) \leq 2^{1 \cdot m^2 + O(mn)}.$$

Theorem: Let *G* be a graph with *n* vertices, *m* edges and no isolated vertices. Then

$$T(G) \le 2^{m^2+11.51mn+O(n\log n)} \le 2^{23.118m^2}+c, \text{ and}$$
 $T(G) \le 2^{m^2+2mn(\log(1+\frac{m}{4n})+3.443)+O(n\log n)} \le 2^{11.265m^2}+c.$

Theorem: Let *G* be a graph with *n* vertices, *m* edges and no isolated vertices. Then

$$T(G) \le 2^{m^2+11.51mn+O(n\log n)} \le 2^{23.118m^2} + c$$
, and $T(G) \le 2^{m^2+2mn(\log(1+\frac{m}{4n})+3.443)+O(n\log n)} \le 2^{11.265m^2} + c$.

Let $\varepsilon > 0$. For graphs G with $m > (6 + \varepsilon)n$ we have $T(G) > 2^{\Omega(m^2)}.$

Theorem: Let *G* be a graph with *n* vertices, *m* edges and no isolated vertices. Then

$$T(G) \le 2^{m^2+11.51mn+O(n\log n)} \le 2^{23.118m^2} + c$$
, and $T(G) \le 2^{m^2+2mn(\log(1+\frac{m}{4n})+3.443)+O(n\log n)} \le 2^{11.265m^2} + c$.

Let $\varepsilon > 0$. For graphs *G* with $m > (6 + \varepsilon)n$ we have

$$T(G) \geq 2^{\Omega(m^2)}$$
.

For graphs *G* with $m > \omega(n)$ we have

$$T(G)\geq 2^{m^2/60}-c.$$

Theorem: Let *G* be a graph with *n* vertices, *m* edges and no isolated vertices. Then

$$T(G) \le 2^{m^2 + 11.51mn + O(n\log n)} \le 2^{23.118m^2} + c$$
, and $T(G) \le 2^{m^2 + 2mn(\log(1 + \frac{m}{4n}) + 3.443) + O(n\log n)} \le 2^{11.265m^2} + c$.

Let $\varepsilon > 0$. For graphs *G* with $m > (6 + \varepsilon)n$ we have

$$T(G) \geq 2^{\Omega(m^2)}$$
.

For graphs *G* with $m > \omega(n)$ we have

$$T(G) \geq 2^{m^2/60} - c.$$

"very sparse" graphs \rightarrow rooted connected planar loopless maps (T.R.S. Walsh and A. B. Lehman, 1975)

$$T(G) \le 2^{(\log_2(256/27) + o(1))m^2} \le 2^{3.246m^2} + c$$

Isomorphism classes, general graphs

tools for upper bounds:

- topological spanning tree and \mathcal{T} -representation
- simple quadrangulations of a disc (R. C. Mullin and P. J. Schellenberg, 1968)

 chord diagrams (R. C. Read, 1979) and arrangements of pseudochords with fixed boundary

Open questions

- Is T_w(G) maximal for G = K_n, among graphs G with n vertices?
- Or, more generally, is $T_w(H) \leq T_w(G)$ for $H \subseteq G$?

 What is the number of weak isomorphism classes of drawings of G where every two edges have at most two common points?