Attacking and Defending Serverless Applications Workshop

Ryan Nicholson | Blue Mountain Cyber, LLC

SEC488/SEC541 Author and SANS Certified Instructor

Agenda (1/2)

- Workshop Pre-Requisites
- Evidence-App Overview
 - Exercise 1: Deploying the Serverless Application
- Serverless ATT&CK Techniques
 - Exercise 2: Reconnaissance of Evidence-App
 - Exercise 3: Discovering Evidence-App Vulnerability
 - Exercise 4: Exploiting Evidence-App and Pivoting to Cloud Account

Agenda (2/2)

- Investigating Serverless ATT&CK techniques
 - Exercise 5: Identifying Reconnaissance
 - Exercise 6: Identifying Vulnerability Discovery
 - Exercise 7: Identifying Exploitation and Pivot
- Conclusion
 - Exercise 8: Tearing Down Serverless Application

Pre-Requisites For This Workshop

- AWS Account with root or AdministratorAccess privileges
- Supported Web Browser
 - Preferably Chrome or Firefox
- Exercise Instructions
 - https://attack-defend-serverless.sanscloudwars.com
- Have watched Sherlock (the good one...)
 - Just kidding \(\exists\)

Evidence-App Overview

• This serverless web application is used by Sherlock's blue team to import evidence data, generate MD5 and SHA1 hashes of the uploaded files, and save the files in a safe location.

File name MD5Sum SHA1Sum EICAR.txt 44d88612fea8a8f36de82e1278abb02f 3395856ce81f2b7382dee72602f798b642f14140

Source Code: https://github.com/bluemountaincyber/evidence-app

So... what's in that repo?

- EVERYTHING as Code
 - Application Source Code (HTML, CSS, JavaScript, and Python 3)
 - Infrastructure as Code (IaC) to build cloud resources and deploy application (Terraform and CloudFormation)
 - Exercise documentation for this workshop (mkdocs)
 - In case you want to work on this afterwards or share with your friends/co-workers
 - This presentation (marp)
- LOTS of opportunity for a coding mistake...

DevSecOps

Deploying the Evidence-App

From AWS CloudShell:

Download Source Code:

```
git clone https://github.com/bluemountaincyber/evidence-app.git
cd /home/cloudshell-user/evidence-app
```

Execute cloudformation-deploy.sh:

```
./cloudformation-deploy.sh
```

Sit back and relax for ~5 mins

https://attack-defend-serverless.sanscloudwars.com

Complete Exercise 1 and then STOP!

MITRE | ATT&CK®

- MITRE ATT&CK® is a globally-accessible knowledge base of adversary tactics and techniques based on real-world observations
- Tactics include:

Reconnaissance	Privilege Escalation	Collection
Resource Development	Defense Evasion	Command and Control
Initial Access	Credential Access	Exfiltration
Execution	Discovery	Impact
Persistence	Lateral Movement	

MITRE | ATT&CK®

You will leverage and analyze common ATT&CK techniques

- Active Scanning (T1595)
- Cloud Infrastructure Discovery (T1580)
- Exploit Public-Facing Application (T1190)
- Command and Scripting Interpreter: Unix Shell (T1059.003)
- Unsecured Credentials (T1552)
- Data Destruction (T1485)
- Defacement: External Defacement (T1491.002)

Custom Tooling

- Custom Python script to fuzz this application
 - // / home/cloudshell-user/evidence-app/scripts/fuzz_evidence_app.py
- Tests popular command injection payloads
 - https://github.com/payloadbox/command-injection-payload-list

```
$ /home/cloudshell-user/evidence-app/scripts/fuzz_evidence_app.py --target $TARGET/api/
;id; worked as command injection for the file_name parameter!
Here is a curl command:
```

curl -X POST https://djm72vhitom0v.cloudfront.net/api/ -H 'Content-Type: application/x-wwwform-urlencoded; charset=UTF-8' -d '{"file_name":";id;","file_data":"dGVzdAo="}'

Attack Sequence

- 1. Use application as a normal user would
- 2. Spider web application
- 3. Interact with and learn more about newly-discovered endpoints
- 4. Fuzz the application to discover command injection
- 5. Use **remote code execution** to uncover cloud credentials
- 6. Pivot to cloud account and perform discovery
- 7. Be extra evil by destroying data and defacing the application

Complete Exercise 2, 3, and 4 and then STOP!

Investigating the Attack

- Web interactions can be found in a few places:
 - CloudFront logs in aws-logs S3 bucket
 - API Gateway (requests to /api) logs in /aws/api_gw/evidence_api
 CloudWatch log group
- Server-side execution data (Lambda) found in /aws/lambda/evidence
 CloudWatch log group
- API calls by stolen credentials found in aws-logs S3 bucket
 - S3 data events also enabled and stored here
- AWS CLI and Linux Kung-Fu for the win!

Complete Exercise 5, 6, and 7 and then STOP!

Conclusion

You did a LOT in this workshop by attacking and detecting:

- Active Scanning (T1595)
- Cloud Infrastructure Discovery (T1580)
- Exploit Public-Facing Application (T1190)
- Command and Scripting Interpreter: Unix Shell (T1059.003)
- Unsecured Credentials (T1552)
- Data Destruction (T1485)
- Defacement: External Defacement (T1491.002)

Complete Exercise 8 and... you're done!

Thanks for attending and please feel free to ask any questions!

