Math for Applied Biomedical Engineering Midterm Exam [Points - 100] Dr. Daniel Rio, Sprg 2021

All work must be done independently- Points in brackets

- 1. [15] a. Graph the following function f(x)=x, 0 < x < 2, whose primary period is from -2 to 2, L=4 assuming an **even** extension.
 - b. Assume this even function is periodic and find its Fourier series show all steps.
 - c. Present the coefficients solved for in part b. and given the following form for Parseval's identity for Fourier series

$$\frac{1}{L} \int_{x_0}^{x_0+L} \left[f(x) \right]^2 dx = \frac{a_0^2}{4} + \frac{1}{2} \sum_{n=1}^{\infty} \left(a_n^2 + b_n^2 \right)$$

derive the following summation formula (show all steps) $\sum_{n=0}^{\infty} \frac{1}{(2n+1)^4} = \frac{\pi^4}{96}$

- 2. [10] a. Graph the function $f(t) = \begin{cases} A & 0 < t < \tau \\ 0 & \text{otherwise} \end{cases}$
 - b. Represent this function in terms of the Heaviside functions.
 - c. Find the Fourier transform (not the series) for the function represented in b.
 - d. Letting $A = \frac{1}{\tau}$ in the answer from part c. find the Fourier transform of $\lim_{\tau \to 0} f(t)$.
 - e. Compare your answer to the Fourier transform representation for $\delta(t)$ in the book, Eq. 5.27.
- 3. [15] a. Use the basic integral definition to find the Laplace transform for $g(t) = \sin 5t$
 - b. Find the Laplace transform of $g(t) = t \sin 5t$ using just the Laplace transform table and properties from the book. Do not use the basic integral definition.
 - c. Compute the convolution of the functions f(t) = t and $g(t) = e^{-t}$ using the integral definition.

Extra credit [3]: Use the Laplace transform to calculate the convolution of the functions in c.

4. [10] Solve the following differential equation by Laplace transform:

$$y'' + 4y' - 5y = \delta(t-1); y(0) = 0, y'(0) = 3$$

[Note: the Laplace transform of $\,\delta(t\text{-}1)$ is $\,e^{-s}\,]$

by the following steps:

- a. Write the differential equation after the transform has been applied as a function of s.
- b. Solve for $\tilde{y}(s)$
- c. Solve for y(t) using part b.

5. [20] A simple model for a membrane system is represented by the following diagram.

The transport in both directions is at the same rate for the salt concentrate in the reservoirs A, B and C and represented by the arrows to the left and right.

That is $A \rightarrow B$, $A \leftarrow B$, $C \rightarrow B$, $C \leftarrow B$, $A \rightarrow C$, $A \leftarrow C$ all rates are 10min^{-1} and the reservoirs A, B and C are the same size (containing either water or salt water). You can take the movement of salt across the membranes in units of g/min.

Reservoirs B and C contain NO salt dissolved in fresh water at time t = 0. Reservoir A contains 20g of salt dissolved in fresh water at time t = 0.

- a. Write down the differential equations and initial conditions that describe this system.
- b. Take the Laplace transform of the equations a. and present their representation in s space
- c. Solve the equations from part b. in s space show all steps.
- d. Finish the problem by finding the solutions for A(t), B(t) and C(t) show all steps. Extra credit [2] By the way what are the values of A(t), B(t) and C(t) as $t \to \infty$?

6. [10] Another special function generated by a Sturm-Liouville differential equation is that for the Laguerre polynomials. They can be generated by the following formulation:

$$L_0(x) = 1$$
 and $L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (x^n e^{-x})$ $n = 1, 2, \dots$

Show by using the above formulation that: (Note, show all steps)

$$L_1(x) = 1 - x$$
, $L_2(x) = 1 - 2x + \frac{x^2}{2}$ and $L_3(x) = 1 - 3x + \frac{3x^2}{2} - \frac{x^3}{6}$

Extra credit [10] Show that the Laguerre polynomials are orthogonal on the positive axis $0 \le x < \infty$ with respect to the weight function e^{-x} . It suffices to show that the following

integral $\int e^{-x} x^k L_n(x) = 0$ since the highest power of L_n is x^{n_n} and taking k < n.

7. [20] For the differential equation
$$x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} - y = x$$
, $y(x)\Big|_{x=e} = y(e) = 0$, $y'(x)\Big|_{x=e} = 2$

- a. Make the usual substitution (show all work), $x = e^t$ to restructure this equation as a differential equation with constant coefficients with respect to the variable t present this equation in terms of the variable t.
- b. For this equation in part a., written now as a function of t, solve for the homogeneous solution (need not show steps the easy way!).
- c. Solve the same homogenous equation that was solved in part b. (function of t), however this time use the method of series solution show all steps. [Hint: To find the two independent solutions for this homogenous equation first take $a_0 = 1$; $a_1 = 1$ then take $a_0 = 1$; $a_1 = -1$]

Extra credit [5] Show that the answers in parts b. and c. are equivalent (provided you make certain assumptions and use additional derivation).

- d. Using the inhomogeneous differential equation from part a. in terms of the variable t and using the homogeneous solution from part b. solve for the particular solution in terms of the variable t using variation of parameters.
- e. Write the total solution y(t) to the differential equation in the variable t derived in part a. using the solutions from parts b. and d. Then write it in terms of the variable x.
- f. Apply the initial conditions to the total solution in part e. and finish solving for the coefficients associated with the homogeneous part of the solution.