Chapter 6

Block Cipher Operation

Dr. Shin-Ming Cheng

ON ECTIFITY LAB

CS4003701

Block Ciphers

- A block cipher is much more than just an encryption algorithm
 - build different types of block-based encryption schemes
 - realize stream ciphers
 - construct hash functions
 - make message authentication codes
 - build key establishment protocols
 - make a pseudo-random number generator
- > The security of block cipher is increased by
 - key whitening
 - multiple encryption

Content of this Chapter

- > Encryption with Block Ciphers/Modes of Operation
 - Electronic Code Book mode (ECB)
 - Cipher Block Chaining mode (CBC)
 - Output Feedback mode (OFB)
 - Cipher Feedback mode (CFB)
 - Counter mode (CTR)
- > Exhaustive Key Search Revisited
- > Increasing the Security of Block Ciphers

Encryption with Block Ciphers

- > Ways of encrypting long plaintexts with a block cipher (modes of operation)
 - Electronic Code Book mode (ECB) / Cipher Block
 Chaining mode (CBC) / Output Feedback mode (OFB)
 /Cipher Feedback mode (CFB) / Counter mode (CTR)
- > All of the 5 modes have one goal:
 - In addition to confidentiality, they provide authenticity/ 認證性 and integrity/完整性:
 - Is the message really coming from the original sender? (authenticity)
 - > Was the ciphertext altered during transmission? (integrity)

Electronic Code Book mode (ECB)

- $e_k(x_i)$ denotes the encryption of a b-bit plaintext block x_i with key k
- $> e_k^{-1}(y_i)$ denotes the decryption of b-bit ciphertext block y_i with key k
- Messages which exceed b bits are partitioned into b-bit blocks
- > Each Block is encrypted separately

Encryption: $y_i = e_k(x_i), i \ge 1$

Decryption: $x_i = e_k^{-1}(y_i) = e_k^{-1}(e_k(x_i)), i \ge 1$

ECB Mode

> Encryption

> Decryption

ECB Mode

- > Advantages
 - Bit errors caused by noisy channels only affect the corresponding block but not succeeding blocks
 - Block cipher operating can be parallelized
 - > advantage for high-speed implementations

ECB Mode

- > Disadvantages
 - ECB encrypts highly deterministically
 - > identical plaintexts result in identical ciphertexts
 - > an attacker recognizes if the same message has been sent twice
 - > plaintext blocks are encrypted independently of previous blocks
 - an attacker may reorder ciphertext blocks which results in valid plaintext

Substitution Attack on ECB (1/2)

- > Once a particular plaintext to ciphertext block mapping $x_i \rightarrow y_i$ is known, a sequence of ciphertext blocks can easily be manipulated
- > Suppose an electronic bank transfer

Block#	1	2	3	4	5
	Sending	Sending	Receiving	Receiving	Amount
	Bank A	Account #	Bank B	Account #	\$

 the encryption key between the two banks does not change too frequently

Substitution Attack on ECB (2/2)

- The attacker sends \$1.00 transfers from his account at bank A to his account at bank B repeatedly
 - > He can check for ciphertext blocks that repeat, and he stores blocks 1,3 and 4 of these transfers
- He now simply replaces block 4 of other transfers with the block 4 that he stored before
 - > all transfers from some account of bank A to some account of bank B are redirected to go into the attacker's B account!

Example of encrypting bitmaps in ECB mode

Identical plaintexts are mapped to identical ciphertexts

CRYPTOGRAPHY AND DATA SECURITY

CRYPTENGRAPHY AND DATA SECURITY

> Statistical properties in the plaintext are preserved in the ciphertext

Cipher Block Chaining mode (CBC)

- > Two main ideas behind the CBC mode:
 - The encryption of all blocks are chained together
 - > ciphertext y_i depends not only on block x_i but on all previous plaintext blocks as well
 - Initialization vector (IV)
 - > Randomizes the encryption
 - Same plaintext can get different ciphertext
 - > Can be public

Encryption (first block): $y_1 = e_k(x_1 \oplus IV)$

Encryption (general block): $y_i = e_k(x_i \oplus y_{i-1}), i \ge 2$

Decryption (first block): $x_1 = e_k^{-1}(y_1) \oplus IV$

Decryption (general block): $x_i = e_k^{-1}(y_i) \oplus y_{i-1}$, $i \ge 2$

CBC Mode

ECB vs CBC

- > Plaintext
 - Original →
- Ciphertext
 - Encrypted by ECB ↘
 - Encrypted by CBC ↓

ECB vs CBC

- > Plaintext:
 - Original →
- > Ciphertext :
 - Encrypted by ECB ↘
 - Encrypted by CBC ↓

Substitution Attack on CBC (1/2)

- Suppose the last example (electronic bank transfer)
 - If the IV is properly chosen for every wire transfer,
 the attack will not work at all
 - If the IV is kept the same for several transfers, the attacker would recognize the transfers from his account at bank A to back B

Substitution Attack on CBC (2/2)

- If we choose a new IV every time we encrypt, the CBC mode becomes a probabilistic encryption scheme
 - two encryptions of the same plaintext look entirely different
- It is not needed to keep the IV secret!
- > Typically, the IV should be a non-secret nonce (value used only once)

(b) Decryption

Output Feedback mode (OFB)

- > It is used to build a synchronous stream cipher from a block cipher.
- The key stream is not generated bitwise but instead in a blockwise fashion
- > The output of the cipher gives us key stream bits S_i with which we can encrypt plaintext bits using the XOR operation

Output Feedback mode (OFB)

- > Advantages
 - Encryption and decryption can have immediacy
 - If there is a bit error in the plaintext => ciphertext only one bit error
 - All blocks are only used to encrypt (can reduce the cost of the hardware device)
- > Disadvantages
 - Keystream generated in cycles

Cipher Feedback mode (CFB)

- > Ciphertext Feedback Mode
 - It uses a block cipher as a building block for an asynchronous stream cipher (similar to the OFB mode)
 - The key stream S_i is generated in a blockwise fashion and is also a function of the ciphertext
- As a result of the use of an IV, the CFB encryption is also nondeterministic
- It can be used in situations where short plaintext blocks are to be encrypted

Counter mode (CTR)

Counter mode (CTR)

- > It uses a block cipher as a stream cipher (like the OFB and CFB modes)
- The key stream is computed in a blockwise fashion
- The input to the block cipher is a counter which assumes a different value every time the block cipher computes a new key stream block
- Unlike CFB and OFB modes, the CTR mode can be parallelized since the 2nd encryption can begin before the 1st one has finished

Exhaustive Key Search Revisited (1/4)

> A simple exhaustive search for a DES key knowing one pair (x_1, y_1) :

$$DES_k^{(i)}(x_1) \stackrel{?}{=} y_1, i = 0, 1, ..., 2^{56} - 1$$

- However, for most other block ciphers a key search is somewhat more complicated
- > A brute-force attack can produce **false positive results /假正面結果** (block<key)
 - keys k_i that are found are not the one used for the encryption

Exhaustive Key Search Revisited (2/4)

- > The likelihood of this is related to the relative size of the key space and the plaintext space
- > A brute-force attack is still possible, but several pairs of plaintext-ciphertext are needed

Exhaustive Key Search Revisited (3/4)

- > Assume a cipher with a block width of 64 bit and a key size of 80 bit
- > If we encrypt x_1 under all possible 2^{80} keys, we obtain 2^{80} ciphertexts
 - However, there exist only 2⁶⁴ different ones
- > If we run through all keys for a given plaintext-ciphertext pair, we find on average $\frac{2^{80}}{2^{64}} = 2^{16}$ keys that perform the mapping $e_k(x_1) = y_1$

Exhaustive Key Search Revisited (4/4)

Given a block cipher with a key length of k bits and block size of n bits, as well as t plaintext-ciphertext pairs $(x_1, y_1), ..., (x_t, y_t)$, the expected number of *false* keys which encrypt all plaintexts to the corresponding ciphertexts is:

Assuming two plaintext-ciphertext pairs, the likelihood is

$$2^{80-2*64} = 2^{-48}$$

 for almost all practical purposes two plaintextciphertext pairs are sufficient

Increasing the Security of Block Ciphers

- In some situations we wish to increase the security of block ciphers, e.g., if a cipher such as DES is available in hardware or software for legacy reasons in a given application
- > Two approaches are possible
 - Multiple encryption/多重加密
 - theoretically much more secure, but sometimes in practice increases the security very little
 - Key whitening/增加key的長度

Double Encryption

> A plaintext x is first encrypted with a key k_L , and the resulting ciphertext is encrypted again using a second key k_R

> Assuming a key length of k bits, an exhaustive key search would require $2^k \cdot 2^k = 2^{2k}$ encryptions or decryptions

Pigeonhole principle/鴿籠原理

> If n items are put into m pigeonholes with n > m, then at least one pigeonhole must contain more than one item.

Meet-in-the-Middle Attack (1/2)

> A Meet-in-the-Middle attack requires $2^k + 2^k = 2^{k+1}$ operations!

- **Phase I:** for the given (x_1, y_1) the **left** encryption is brute-forced for all $k_{L,i}$, $i=1,2,...,2^k$ and a lookup table with 2^k entry (each n+k bits wide) is computed
 - > the lookup table should be ordered by the result of the encryption $(z_{L,i})$

Meet-in-the-Middle Attack (2/2)

- **Phase II:** the **right** encryption is brute-forced (using decryption) and for each $z_{R,i}$ it is checked whether $z_{R,i}$ is equal to any $z_{L,i}$ value in the table of the first phase
- > Pigeonhole principle/鴿籠原理
 - If n items are put into m pigeonholes with n>m, then at least one pigeonhole must contain more than one item.
- Computational Complexity
 - Number of encryptions and decryptions = $2^k + 2^k = 2^{k+1}$
 - Number of storage location = 2^k
- > Double encryption is not much more secure then single encryption!

Triple Encryption (1/2)

> The encryption of a block three times $y = e_{k3}(e_{k2}(e_{k1}(x)))$

 In practice a variant scheme is often used EDE (encryption-decryption-encryption)

$$y = e_{k3}(e_{k2}^{-1}(e_{k1}(x)))$$

> Advantage: choosing k1 = k2 = k3 performs single DES encryption

Triple Encryption (2/2)

- > Still we can perform a meet-in-the middle attack, and it reduces the effective key length of triple encryption from 3K to 2K!
 - The attacker must run 2¹¹² tests in the case of 3DES

> Triple encryption effectively doubles the key length

Key Whitening (1/2)

- Makes block ciphers such as DES much more resistant against brute-force attacks
- > n addition to the regular cipher key k, two whitening keys k_1 and k_2 are used to XOR-mask the plaintext and ciphertext

Key Whitening (2/2)

- > It does not strengthen block ciphers against most analytical attacks such as linear and differential cryptanalysis
- > It is not a "cure" for inherently weak ciphers
- > The additional computational load is negligible
- > Its main application is ciphers that are relatively strong against analytical attacks but possess too short a key space especially DES
 - a variant of DES which uses key whitening is called DESX