Симметричные семейства алгоритмов

 $\mathbb{X} = (x_i)_{i=1}^L$ — генеральная выборка из L объектов; $[\mathbb{X}]^\ell$ — множество всех разбиений полной выборки \mathbb{X} на (X^ℓ, X^k) . Алгоритм — бинарный вектор $a \equiv (a(x_i))_{i=1}^L$ длины L; $\mathbb{A} = \{0,1\}^L$ — множество всех алгоритмов длины L; Детерминированный метод обучения — отображение вида $\mu \colon 2^\mathbb{A} \times [\mathbb{X}]^\ell \to \mathbb{A}$; Рандомизированный метод обучения — отображение вида $\mu \colon 2^\mathbb{A} \times [\mathbb{X}]^\ell \times \mathbb{A} \to [0,1]$;

Рандомизированная минимизация эмпирического риска — отображение, заданное как

$$\mu(A, X, a) = \begin{cases} \frac{1}{|A(X)|}, & a \in A(X), \\ 0, & a \notin A(X); \end{cases}$$
 (1)

где $A(X) = \underset{a \in A}{\operatorname{Argmin}} n(a, X);$

Вероятность получить a в результате обучения: $P_{\mu}(a,A) = \frac{1}{C_L^{\ell}} \sum_{X \in [\mathbb{X}]^{\ell}} \mu(A,X,a);$

Уклонение частот — $\delta(a, X^{\ell}) = \nu(a, X^{k}) - \nu(a, X^{\ell})$, где $\nu(a, X) = \frac{1}{|X|} n(a, X)$;

Bкла θ а в вероятность переобучения: $Q_{\mu}(a,A) = \frac{1}{C_{\ell}^{\ell}} \sum_{X \in [\mathbb{X}]^{\ell}} \mu(A,X,a) \left[\delta(a,X) \geq \varepsilon \right]$

Вероятность переобучения: $Q_{\mu}(A) = \sum_{a \in A} Q_{\mu}(a, A)$, т.е. сумма вкладов алгоритмов.

 $\Gamma pa\phi$ смежености множества алгоритмов — направленный граф T(A)=(A,E), вершины которого соответствуют алгоритмам из A, а ребро $(a_1,a_2)\in E$ соединяет пары алгоритмов, чьи вектора ошибок отличаются только на одном объекте: $\rho(a_1,a_2)=1$, причем число ошибок алгоритма a_2 на единицу больше, чем у a_1 .

Определение 1. Группой автоморфизма графа смежности T(A) = (A, E) множества алгоритмов A называют подгруппу Aut(T(A)) группы перестановок вершин графа, такую что каждый ее элемент $\pi \in Aut(T(A))$ удовлетворяет двум условиям:

• Сохранение ребер графа и их ориентации:

$$(a_1, a_2) \in E \to (\pi(a_1), \pi(a_2)) \in E;$$
 (2)

• Сохранение числа ошибок алгоритмов:

$$n(a, \mathbb{X}) = n(\pi(a), \mathbb{X}). \tag{3}$$

Определение 2. Группой симметрий множества алгоритмов $A \in 2^{\mathbb{A}}$ назовем подгруппу S(A) группы перестановок объектов выборки, такую что для всякого $\pi \in S(A)$ выполнено $\pi(A) = A$.

Классы идентичных алгоритмов — орбиты действия группы симметрий S(A) на множестве алгоритмов $A.\ \Omega(A)$ — совокупность всех орбит множества алгоритмов $A.\ a_{\omega} \in A$ — представитель орбиты $\omega \in \Omega(A)$.

Теорема 1. Идентичные алгоритмы дают равный вклад в вероятность переобучения:

$$Q_{\mu}(A) = \sum_{\omega \in \Omega(A)} |\omega| Q_{\mu}(A, a_{\omega}). \tag{4}$$

Задача 1. Приведите нетривиальный пример рандомизированного метода обучения, отличный от рандомизированной минимизации эмпирического риска.

Задача 2. Приведите пример множества алгоритмов, в котором все алгоритмы имеют равную вероятность реализоваться в результате обучения методом минимизации эмпирического риска $P_{\mu}(a,A)$? Можете ли вы доказать свое утверждение? Останется ли справедливым ваше утверждение, если вместо рандомизированной минимизации эмпирического риска рассматривать произвольный рандомизированный метод обучения?

Задача 3. В каких пределах может меняться уклонение частот $\delta(a, X^{\ell})$?

Задача 4. Докажите, что группа симметрии семейства алгоритмов равна пересечению групп симметрии слоев данного семейства.

Задача 5. Найдите группу симметрии множества, состоящего из одного алгоритма а c числом ошибок m = n(a, X).

Задача 6. Пусть известны группы симметрии множества алгоритмов A_1 и A_2 . Найдите группу симметрии множества алгоритмов $A = \begin{pmatrix} A_1 & 0 \\ 0 & A_2 \end{pmatrix}$.

Задача 7. Найдите группу симметрии для следующего множества алгоритмов:

$$\begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 & 1 \end{pmatrix}$$

Задача 8. Докажите теорему о равном вкладе идентичных алгоритмов в вероятность переобучения для случая, когда вместо группы симметрии вам известна только некоторая ее подгруппа $G \subset S(A)$.

Задача 9. Найдите группу симметрии шара алгоритмов $A_r(a_0) = \{a \colon \rho(a,a_0) \leq r\}.$ Опишите классы идентичных алгоритмов.

Задача 10. Найти группу симметрии монотонной и унимодальной сетки (определения см. в статье П. Ботова, ММРО'09)

Задача 11. Покажите, что для множества алгоритмов со связным графом смежности в приведенном выше определении условие 3 является избыточным.

Задача 12. Доказать, что группа симметрии множества алгоритмов A изоморфно вкладывается в Aut(T(A)).

Задача 13. Докажите, что для любого множества алгоритмов $A \in 2^{\mathbb{A}}$ и любой перестановки $\pi \in S_L$ группы S(A) и $S(\pi(A))$ изоморфны. Подсказка: докажите, что они сопряжены $S(\pi(A)) = \pi \circ S(A) \circ \pi^{-1}$ и проверьте, что сопряжение устанавливает изоморфизм групп.

Задача 14. (*) Согласно теореме Келли любая конечная группа вкладывается в группу перестановок S_L (при достаточно большом L). Верно ли, что любую конечную группу можно представить как группу симметрии некоторого множества алгоритмов?