Total No. of Questions : 4]	200	SEAT No. :
P-5371		[Total No. of Pages : 2
	[61 95] 5 1	

[6185]-54 F.E. (All Branches) (Insem.)

BASIC ELECTRICAL ENGINEERING

(2019 Pattern) (Semester - I) (103004)

Time: 1 Hour]	100	[Max. Marks : 30
	_ \ "	

Instructions to the candidates:

- 1) Solve Q1 or Q2 and Q3 or Q4.
- 2) Figures to the right indicate full marks.
- 3) Neat diagrams must be drawn wherever necessary.
- 4) Assume suitable data, if necessary.
- 5) Use of non-programmable calculator is allowed.
- Q1) a) Derive an expression for Energy stored per unit volume in the magnetic field. [7]
 - b) Two coils having turns 1000 and 1500 are placed on common magnetic circuit. A current of 5A in coil-1 produces a flux of 0.2 mWb and 80% of this flux links to coil-2. Find [8]
 - i) Self Inductance of coil-1
 - ii) Mutual Inductance between them
 - iii) If this current in first coil is interrupted in 0.01 sec find emf induced in coil-1 and coil-2

OR

- Q2) a) Obtain an expression for coefficient of coupling between two magnetically coupled coils. [7]
 - b) i) Derive the expression for flux, for iron ring wound with N turns & current is passed through it.
 - ii) Define the reluctance & state the factors on which it depends.

[8]

P.T.O.

<i>Q3</i>)	a)		ne the RMS value of current and obtain the expression for RMS e of sinusoidally varying alternating current in terms of its peak e. [7]		
	b)		air capacitor has two parallel plates of $10 \text{ cm} \times 10 \text{ cm}$ and plates are parated by 1 cm. Find [8]		
		i)	Capacitance		
		ii)	Potential difference, when charge of 500 µC is applied.		
		iii)	If air is replaced by dielectric material having relative permittivity of = 4, find new value of capacitance & potential difference when same charge is applied.		
			OR		
<i>Q4</i>)	a)	Expl	ain the concept of phase lag & phase lead by using: [7]		
		i) 💸	mathematical equations		
	8	ii)	waveform and		
		iii)	phasor diagram.		
	b)		nusoidally varying alternating voltage of 100 V (rms value) with Iz frequency is applied to a circuit find: [8]		
		i)	The mathematical equation of the voltage;		
		ii)	Time Period		
		iii)	The instantaneous voltage when $t = 1.667$ ms;		
		iv)	The time when instantaneous voltage is 100 V;		
		v)	Average value of the voltage		
		vi)	Maximum value of the voltage.		
			Time Period The instantaneous voltage when t = 1.667 ms; The time when instantaneous voltage is 100 V; Average value of the voltage Maximum value of the voltage.		
[618	5]-54		2		