

Ensemble Learning: Overview

Pilsung Kang
School of Industrial Management Engineering
Korea University

Backgrounds

Seni and Elder (2010)

- Can we have a superior algorithm for all datasets?
 - ✓ Every algorithm scored best or next-to-best on at least two of the six data sets.

Backgrounds

- No Free Lunch Theorem
 - ✓ Can we expect any classification method to be superior or inferior overall?
 - ✓ No Free Lunch Theorem: No
 - ✓ If the goal is to obtain good generalization performance, there is no context-independent or usage-independent reasons to favor one algorithm over others
 - ✓ If one algorithm seems to outperform another in a particular situation, it is a consequence of its fit to a particular pattern recognition problem
 - ✓ In practice, experience with a broad range of techniques is the best insurance for solving arbitrary new classification problems

Motivation

- However, if they are properly combined...
 - ✓ Every ensemble method competes well against the best of the individual algorithms

Opitz and Maclin (1999)

• Empirical study 1: Single vs. Ensemble algorithms for 23 datasets

			Feat	ures		Neural	Network	
Data Set	Cases	Class	Cont	Disc	Inputs	Outputs	$\operatorname{Hiddens}$	Epochs
breast-cancer-w	699	2	9	-	9	1	5	20
credit-a	690	2	6	9	47	1	10	35
credit-g	1000	2	7	13	63	1	10	30
diabetes	768	2	9	-	8	1	5	30
glass	214	6	9	-	9	6	10	80
heart-cleveland	303	2	8	5	13	1	5	40
hepatitis	155	2	6	13	32	1	10	60
house-votes-84	435	2	-	16	16	1	5	40
hypo	3772	5	7	22	55	5	15	40
ionosphere	351	2	34	-	34	1	10	40
iris	159	3	4	-	4	3	5	80
kr-vs-kp	3196	2	-	36	74	1	15	20
labor	57	2	8	8	29	1	10	80
letter	20000	26	16	-	16	26	40	30
promoters-936	936	2	-	57	228	1	20	30
ribosome-bind	1877	2	-	49	196	1	20	35
satellite	6435	6	36	-	36	6	15	30
segmentation	2310	7	19	-	19	7	15	20
sick	3772	2	7	22	55	1	10	40
sonar	208	2	60	-	60	1	10	60
soybean	683	19	-	35	134	19	25	40
splice	3190	3	-	60	240	2	25	30
vehicle	846	4	18	-	18	4	10	40

• Empirical study I: Single vs. Ensemble algorithms for 23 datasets

✓ Error rate: the lower, the better

		Neur	al Netw	ork			C4	1.5	
				Boos	sting			Boos	sting
Data Set	Stan	Simp	Bag	Arc	Ada	Stan	Bag	Arc	Ada
breast-cancer-w	3.4	3.5	3.4	3.8	4.0	5.0	3.7	3.5	3.5
credit-a	14.8	13.7	13.8	15.8	15.7	14.9	13.4	14.0	13.7
credit-g	27.9	24.7	24.2	25.2	25.3	29.6	25.2	25.9	26.7
diabetes	23.9	23.0	22.8	24.4	23.3	27.8	24.4	26.0	25.7
glass	38.6	35.2	33.1	32.0	31.1	31.3	25.8	25.5	23.3
heart-cleveland	18.6	17.4	17.0	20.7	21.1	24.3	19.5	21.5	20.8
hepatitis	20.1	19.5	17.8	19.0	19.7	21.2	17.3	16.9	17.2
house-votes-84	4.9	4.8	4.1	5.1	5.3	3.6	3.6	5.0	4.8
hypo	6.4	6.2	6.2	6.2	6.2	0.5	0.4	0.4	0.4
ionosphere	9.7	7.5	9.2	7.6	8.3	8.1	6.4	6.0	6.1
iris	4.3	3.9	4.0	3.7	3.9	5.2	4.9	5.1	5.6
kr-vs-kp	2.3	0.8	0.8	0.4	0.3	0.6	0.6	0.3	0.4
labor	6.1	3.2	4.2	3.2	3.2	16.5	13.7	13.0	11.6
letter	18.0	12.8	10.5	5.7	4.6	14.0	7.0	4.1	3.9
promoters-936	5.3	4.8	4.0	4.5	4.6	12.8	10.6	6.8	6.4
ribosome-bind	9.3	8.5	8.4	8.1	8.2	11.2	10.2	9.3	9.6
satellite	13.0	10.9	10.6	9.9	10.0	13.8	9.9	8.6	8.4
segmentation	6.6	5.3	5.4	3.5	3.3	3.7	3.0	1.7	1.5
sick	5.9	5.7	5.7	4.7	4.5	1.3	1.2	1.1	1.0
sonar	16.6	15.9	16.8	12.9	13.0	29.7	25.3	21.5	21.7
soybean	9.2	6.7	6.9	6.7	6.3	8.0	7.9	7.2	6.7
splice	4.7	4.0	3.9	4.0	4.2	5.9	5.4	5.1	5.3
vehicle	24.9	21.2	20.7	19.1	19.7	29.4	27.1	22.5	22.9

Caruana and Niculescu-Mizil (2006)

- Empirical study 2: 8 algorithms on 11 datasets
 - ✓ Algorithms
 - SVM, ANN, Logistic regression (LOGREG), Naïve Bayes (NB), KNN, Random Forests (RF), Decision Trees (DT), Bagged trees (BAG-DT), Boosted trees (BST-DT), Boosted stumps (BST-STMP)
 - ✓ Data sets

PROBLEM	#ATTR	TRAIN SIZE	TEST SIZE	%Poz
ADULT BACT COD CALHOUS COV_TYPE HS LETTER.P1 LETTER.P2 MEDIS MG SLAC	14/104 $11/170$ $15/60$ 9 54 200 16 16 63 124 59	5000 5000 5000 5000 5000 5000 5000 500	35222 34262 14000 14640 25000 4366 14000 14000 8199 12807 25000	25% 69% 50% 52% 36% 24% 3% 53% 11% 17% 50%

- Empirical study 2: 8 algorithms on 11 datasets
 - √ Normalized score by datasets

MODEL	CAL	COVT	ADULT	LTR.P1	LTR.P2	MEDIS	SLAC	HS	$_{ m MG}$	CALHOU	S COD	BACT	MEAN
BST-DT	PLT	.938	.857	.959	.976	.700	.869	.933	.855	.974	.915	.878*	.896*
RF	PLT	.876	.930	.897	.941	.810	.907*	.884	.883	.937	.903*	.847	.892
BAG-DT	_	.878	.944*	.883	.911	.762	.898*	.856	.898	.948	.856	.926	.887*
BST-DT	ISO	.922*	.865	.901*	.969	.692*	.878	.927	.845	.965	.912*	.861	.885*
RF	_	.876	.946 *	.883	.922	.785	.912*	.871	.891*	.941	.874	.824	.884
BAG-DT	PLT	.873	.931	.877	.920	.752	.885	.863	.884	.944	.865	.912*	.882
RF	ISO	.865	.934	.851	.935	.767*	.920	.877	.876	.933	.897*	.821	.880
BAG-DT	ISO	.867	.933	.840	.915	.749	.897	.856	.884	.940	.859	.907*	.877
SVM	PLT	.765	.886	.936	.962	.733	.866	.913*	.816	.897	.900*	.807	.862
ANN	_	.764	.884	.913	.901	.791 *	.881	.932*	.859	.923	.667	.882	.854
SVM	ISO	.758	.882	.899	.954	.693 *	.878	.907	.827	.897	.900*	.778	.852
ANN	PLT	.766	.872	.898	.894	.775	.871	.929*	.846	.919	.665	.871	.846
ANN	ISO	.767	.882	.821	.891	.785*	.895	.926*	.841	.915	.672	.862	.842
BST-DT	_	.874	.842	.875	.913	.523	.807	.860	.785	.933	.835	.858	.828
KNN	PLT	.819	.785	.920	.937	.626	.777	.803	.844	.827	.774	.855	.815
KNN	_	.807	.780	.912	.936	.598	.800	.801	.853	.827	.748	.852	.810
KNN	ISO	.814	.784	.879	.935	.633	.791	.794	.832	.824	.777	.833	.809
BST-STMP	PLT	.644	.949	.767	.688	.723	.806	.800	.862	.923	.622	.915*	.791
SVM	_	.696	.819	.731	.860	.600	.859	.788	.776	.833	.864	.763	.781
BST-STMP	ISO	.639	.941	.700	.681	.711	.807	.793	.862	.912	.632	.902*	.780
BST-STMP	_	.605	.865	.540	.615	.624	.779	.683	.799	.817	.581	.906*	.710
DT	ISO	.671	.869	.729	.760	.424	.777	.622	.815	.832	.415	.884	.709
DT	_	.652	.872	.723	.763	.449	.769	.609	.829	.831	.389	.899*	.708
DT	PLT	.661	.863	.734	.756	.416	.779	.607	.822	.826	.407	.890 *	.706
LR	_	.625	.886	.195	.448	.777*	.852	.675	.849	.838	.647	.905*	.700
LR	ISO	.616	.881	.229	.440	.763 *	.834	.659	.827	.833	.636	.889*	.692
$_{ m LR}$	PLT	.610	.870	.185	.446	.738	.835	.667	.823	.832	.633	.895	.685
NB	ISO	.574	.904	.674	.557	.709	.724	.205	.687	.758	.633	.770	.654
NB	PLT	.572	.892	.648	.561	.694	.732	.213	.690	.755	.632	.756	.650
NB	_	.552	.843	.534	.556	.011	.714	654	.655	.759	.636	.688	.481

- Empirical study 2: 8 algorithms on 11 datasets
 - ✓ Normalized score by various metrics

MODEL	CAL	ACC	FSC	LFT	ROC	APR	BEP	RMS	MXE	MEAN	OPT-SEL
BST-DT	PLT	.843*	.779	.939	.963	.938	.929*	.880	.896	.896	.917
RF	PLT	.872 *	.805	.934*	.957	.931	.930	.851	.858	.892	.898
BAG-DT	_	.846	.781	.938*	.962*	.937*	.918	.845	.872	.887*	.899
BST-DT	ISO	.826 *	.860*	.929*	.952	.921	.925*	.854	.815	.885	.917*
RF	_	.872	.790	.934*	.957	.931	.930	.829	.830	.884	.890
BAG-DT	PLT	.841	.774	.938*	.962*	.937*	.918	.836	.852	.882	.895
RF	ISO	.861 *	.861	.923	.946	.910	.925	.836	.776	.880	.895
BAG-DT	ISO	.826	.843*	.933*	.954	.921	.915	.832	.791	.877	.894
SVM	PLT	.824	.760	.895	.938	.898	.913	.831	.836	.862	.880
ANN	_	.803	.762	.910	.936	.892	.899	.811	.821	.854	.885
SVM	ISO	.813	.836 *	.892	.925	.882	.911	.814	.744	.852	.882
ANN	PLT	.815	.748	.910	.936	.892	.899	.783	.785	.846	.875
ANN	ISO	.803	.836	.908	.924	.876	.891	.777	.718	.842	.884
BST-DT	_	.834 *	.816	.939	.963	.938	.929*	.598	.605	.828	.851
KNN	PLT	.757	.707	.889	.918	.872	.872	.742	.764	.815	.837
KNN	_	.756	.728	.889	.918	.872	.872	.729	.718	.810	.830
KNN	ISO	.755	.758	.882	.907	.854	.869	.738	.706	.809	.844
BST-STMP	PLT	.724	.651	.876	.908	.853	.845	.716	.754	.791	.808
SVM	_	.817	.804	.895	.938	.899	.913	.514	.467	.781	.810
BST-STMP	ISO	.709	.744	.873	.899	.835	.840	.695	.646	.780	.810
BST-STMP	_	.741	.684	.876	.908	.853	.845	.394	.382	.710	.726
DT	ISO	.648	.654	.818	.838	.756	.778	.590	.589	.709	.774
DT	_	.647	.639	.824	.843	.762	.777	.562	.607	.708	.763
DT	PLT	.651	.618	.824	.843	.762	.777	.575	.594	.706	.761
LR	_	.636	.545	.823	.852	.743	.734	.620	.645	.700	.710
LR	ISO	.627	.567	.818	.847	.735	.742	.608	.589	.692	.703
LR	PLT	.630	.500	.823	.852	.743	.734	.593	.604	.685	.695
NB	ISO	.579	.468	.779	.820	.727	.733	.572	.555	.654	.661
NB	PLT	.576	.448	.780	.824	.738	.735	.537	.559	.650	.654
NB	_	.496	.562	.781	.825	.738	.735	.347	633	.481	.489

Fernández-Delgado et al. (2014)

No Free Lunch Theorem

- ✔ 어떤 알고리즘도 모든 상황에서 다른 알고리즘보다 우월하다는 결론을 내릴 수 없다.
- ✓ 문제의 목적, 데이터 형태 등을 종합적으로 고려하여 최적의 알고리즘을 선택할 필요가 있음

Journal of Machine Learning Research 15 (2014) 3133-3181

Submitted 11/13; Revised 4/14; Published 10/14

Do we Need Hundreds of Classifiers to Solve Real World Classification Problems?

Manuel Fernández-Delgado Eva Cernadas

MANUEL.FERNANDEZ.DELGADO@USC.ES EVA.CERNADAS@USC.ES

Senén Barro

SENEN.BARRO@USC.ES

CITIUS: Centro de Investigación en Tecnoloxías da Información da USC

University of Santiago de Compostela

Campus Vida, 15872, Santiago de Compostela, Spain

Dinani Amorim

DINANIAMORIM@GMAIL.COM

Departamento de Tecnologia e Ciências Sociais- DTCS

Universidade do Estado da Bahia

Av. Edgard Chastinet S/N - São Geraldo - Juazeiro-BA, CEP: 48.305-680, Brasil

Fernández-Delgado et al. (2014)

#cl. %Maj. 13.0 60.667.150.0 67.870.0 55.614.324.278.425.834.716.734.492.565.367.7 50.050.067.7 48.4 40.433.933.8 39.9 42.644.9

Empirical study 3: 179 algorithms on 121 datasets

Data set	#pat.	#inp.	#cl.	%Maj.	Data set	#pat.	#inp.	#cl.	%Maj.	Data set	#pat.	#inp.	#cl.	%Maj.	Data set	#pat.	#inp
abalone	4177	8	3	34.6	energy-y1	768	8	3	46.9	monks-2	169	6	2	62.1	soybean	307	35
ac-inflam	120	6	2	50.8	energy-y2	768	8	3	49.9	monks-3	3190	6	2	50.8	spambase	4601	57
acute-nephritis	120	6	2	58.3	fertility	100	9	2	88.0	mushroom	8124	21	2	51.8	spect	80	22
adult	48842	14	2	75.9	flags	194	28	8	30.9	musk-1	476	166	2	56.5	spectf	80	44
annealing	798	38	6	76.2	glass	214	9	6	35.5	musk-2	6598	166	2	84.6	st-australian-credit	690	14
arrhythmia	452	262	13	54.2	haberman-survival	306	3	2	73.5	nursery	12960	8	5	33.3	st-german-credit	1000	24
audiology-std	226	59	18	26.3	hayes-roth	132	3	3	38.6	oocMerl2F	1022	25	3	67.0	st-heart	270	13
balance-scale	625	4	3	46.1	heart-cleveland	303	13	5	54.1	oocMerl4D	1022	41	2	68.7	st-image	2310	18
balloons	16	4	2	56.2	heart-hungarian	294	12	2	63.9	oocTris2F	912	25	2	57.8	st-landsat	4435	36
bank	45211	17	2	88.5	heart-switzerland	123	12	2	39.0	oocTris5B	912	32	3	57.6	st-shuttle	43500	9
blood	748	4	2	76.2	heart-va	200	12	5	28.0	optical	3823	62	10	10.2	st-vehicle	846	18
breast-cancer	286	9	2	70.3	hepatitis	155	19	2	79.3	ozone	2536	72	2	97.1	steel-plates	1941	27
bc-wisc	699	9	2	65.5	hill-valley	606	100	2	50.7	page-blocks	5473	10	5	89.8	synthetic-control	600	60
bc-wisc-diag	569	30	2	62.7	horse-colic	300	25	2	63.7	page-blocks parkinsons	195	22	2	75.4	teaching	151	5
bc-wisc-prog	198	33	2	76.3	ilpd-indian-liver	583	9	2	71.4	pendigits	7494	16	10	10.4	thyroid	3772	21
breast-tissue	106	9	6	20.7	image-segmentation	210	19	7	14.3	pima	768	8	2	65.1	tic-tac-toe	958	9
car	1728	6	4	70.0	ionosphere	351	33	2	64.1	pb-MATERIAL	106	4	3	74.5	titanic	2201	3
ctg-10classes	2126	21	10	27.2	iris	150	4	3	33.3	*		_		51.5		10	
ctg-3classes	2126	21	3	77.8	led-display	1000	7	10	11.1	pb-REL-L	103	4	3		trains		28
chess-krvk	28056	6	18	16.2	lenses	24	4	3	62.5	pb-SPAN	92	4	3	52.2	twonorm	7400	20
chess-krvkp	3196	36	2	52.2	letter	20000	16	26	4.1	pb-T-OR-D	102	4	2	86.3	vc-2classes	310	6
congress-voting	435	16	2	61.4	libras	360	90	15	6.7	pb-TYPE	105	4	6	41.9	vc-3classes	310	6
conn-bench-sonar	208	60	2	53.4	low-res-spect	531	100	9	51.9	planning	182	12	2	71.4	wall-following	5456	24
conn-bench-vowel	528	11	11	9.1	lung-cancer	32	56	3	40.6	plant-margin	1600	64	100	1.0	waveform	5000	21
connect-4	67557	42	2	75.4	lymphography	148	18	4	54.7	plant-shape	1600	64	100	1.0	waveform-noise	5000	40
contrac	1473	9	3	42.7	magic	19020	10	2	64.8	plant-texture	1600	64	100	1.0	wine	179	13
credit-approval	690	15	2	55.5	mammographic	961	5	2	53.7	post-operative	90	8	3	71.1	wine-quality-red	1599	11
cylinder-bands	512	35	2	60.9	miniboone	130064	50	2	71.9	primary-tumor	330	17	15	25.4	wine-quality-white	4898	11
dermatology	366	34	6	30.6	molec-biol-promoter	106	57	2	50.0	ringnorm	7400	20	2	50.5	yeast	1484	8
echocardiogram	131	10	2	67.2	molec-biol-splice	3190	60	3	51.9	seeds	210	7	3	33.3	ZOO	101	16
ecoli	336	7	8	42.6	monks-1	124	6	2	50.0	semeion	1593	256	10	10.2			

10

 $31.2 \\ 40.6$

• Empirical study 3: 179 algorithms on 121 datasets

Rank	Acc.	κ	Classifier	Rank	Acc.	κ	Classifier	
32.9	82.0	63.5	parRF_t (RF)	67.3	77.7	55.6	pda_t (DA)	
33.1	82.3	63.6	rf_t (RF)	67.6	78.7	55.2	elm_m (NNET)	
36.8	81.8	62.2	svm_C (SVM)	67.6	77.8	54.2	SimpleLogistic_w (LMR)	
38.0	81.2	60.1	svmPoly_t (SVM)	69.2	78.3	57.4	MAB_J48_w (BST)	
39.4	81.9	62.5	rforest_R (RF)	69.8	78.8	56.7	BC_REPTree_w (BAC)	
39.6	82.0	62.0	elm_kernel_m (NNET)	69.8	78.1	55.4	SMO _{-w} (SVM)	
40.3	81.4	61.1	svmRadialCost_t (SVM)	70.6	78.3	58.0	MLP_w (NNET)	
42.5	81.0	60.0	svmRadial_t (SVM)	71.0	78.8	58.23	BG_RandomTree_w (BAG)	
42.9	80.6	61.0	C5.0-t (BST)	71.0	77.1	55.1	mlm_R (GLM)	
44.1	79.4	60.5	avNNet_t (NNET)	71.0	77.8	56.2	BG_J48_w (BAG)	
45.5	79.5	61.0	nnet_t (NNET)	72.0	75.7	52.6	rbf_t (NNET)	
47.0	78.7	59.4	$pcaNNet_t (NNET)$	72.1	77.1	54.8	fda_R (DA)	
47.1	80.8	53.0	BG_LibSVM_w (BAG)	72.4	77.0	54.7	lda_R (DA)	
47.3	80.3	62.0	mlp_t (NNET)	72.4	79.1	55.6	svmlight_C (NNET)	
47.6	80.6	60.0	RotationForest_w (RF)	72.6	78.4	57.9	AdaBoostM1_J48_w (BST)	
50.1	80.9	61.6	RRF_t (RF)	72.7	78.4	56.2	BG_IBk_w (BAG)	
51.6	80.7	61.4	RRFglobal_t (RF)	72.9	77.1	54.6	ldaBag_R (BAG)	
52.5	80.6	58.0	MAB_LibSVM_w (BST)	73.2	78.3	56.2	BG_LWL_w (BAG)	
52.6	79.9	56.9	LibSVM_w (SVM)	73.7	77.9	56.0	MAB_REPTree_w (BST)	
57.6	79.1	59.3	adaboost_R (BST)	74.0	77.4	52.6	RandomSubSpace_w (DT)	
58.5	79.7	57.2	pnn_m (NNET)	74.4	76.9	54.2	lda2_t (DA)	
58.9	78.5	54.7	cforest_t (RF)	74.6	74.1	51.8	svmBag_R (BAG)	
59.9	79.7	42.6	dkp_C (NNET)	74.6	77.5	55.2	LibLINEAR _{-w} (SVM)	
60.4	80.1	55.8	gaussprRadial_R (OM)	75.9	77.2	55.6	rbfDDA_t (NNET)	
60.5	80.0	57.4	$RandomForest_w (RF)$	76.5	76.9	53.8	sda_t (DA)	
62.1	78.7	56.0	svmLinear_t (SVM)	76.6	78.1	56.5	END _{-w} (OEN)	
62.5	78.4	57.5	fda_t (DA)	76.6	77.3	54.8	LogitBoost_w (BST)	
62.6	78.6	56.0	knn_t (NN)	76.6	78.2	57.3	MAB_RandomTree_w (BST)	
62.8	78.5	58.1	mlp_C (NNET)	77.1	78.4	54.0	BG_RandomForest_w (BAG)	
63.0	79.9	59.4	RandomCommittee_w (OEN)	78.5	76.5	53.7	Logistic-w (LMR)	
63.4	78.7	58.4	Decorate_w (OEN)	78.7	76.6	50.5	ctreeBag_R (BAG)	
63.6	76.9	56.0	$mlpWeightDecay_t$ (NNET)	79.0	76.8	53.5	BG_Logistic_w (BAG)	
63.8	78.7	56.7	rda_R (DA)	79.1	77.4	53.0	lvq-t (NNET)	
64.0	79.0	58.6	MAB_MLP_w (BST)	79.1	74.4	50.7	pls_t (PLSR)	
64.1	79.9	56.9	MAB_RandomForest_w (BST)	79.8	76.9	54.7	hdda_R (DA)	
65.0	79.0	56.8	knn_R (NN)	80.6	75.9	53.3	MCC _w (OEN)	
65.2	77.9	56.2	$multinom_t (LMR)$	80.9	76.9	54.5	mda_R (DA)	
65.5	77.4	56.6	gcvEarth_t (MARS)	81.4	76.7	55.2	C5.0Rules_t (RL)	
65.5	77.8	55.7	$glmnet_R (GLM)$	81.6	78.3	55.8	lssvmRadial_t (SVM)	
65.6	78.6	58.4	MAB-PART-w (BST)	81.7	75.6	50.9	JRip-t (RL)	
66.0	78.5	56.5	CVR_w (OM)	82.0	76.1	53.3	MAB_Logistic_w (BST)	
66.4	79.2	58.9	$treebag_t (BAG)$	84.2	75.8	53.9	C5.0Tree_t (DT)	
66.6	78.2	56.8	BG_PART_w (BAG)	84.6	75.7	50.8	BG-DecisionTable-w (BAG)	
66.7	75.5	55.2	mda_t (DA)	84.9	76.5	53.4	NBTree_w (DT)	

Rank	Acc.	κ	Classifier
32.9	82.0	63.5	parRF_t (RF)
33.1	82.3	63.6	rf_t (RF)
36.8	81.8	62.2	$svm_C (SVM)$
38.0	81.2	60.1	svmPoly_t (SVM)
39.4	81.9	62.5	rforest_R (RF)

<u>논문의 결론</u>

121개의 공개 데이터셋에 대한 실험 결과

→ Random Forests (의사결정나무의 앙상블)과 SVM 계열이 상대적으로 분류 성능이 높게 나타남

• Credit card scoring

✓ Mean error reduces with increasing degree of combination

- Large Scale Visual Recognition Challenge
 - ✓ With given these images...

Russakovsky et al. (2015)

- Large Scale Visual Recognition Challenge
 - ✓ Tasks

Single-object localization

Accuracy: 1

Accuracy: 0

Accuracy: 0

Object detection

AP: 1.0 1.0 1.0 1.0

AP: 0.0 0.5 1.0 0.3

AP: 1.0 0.7 0.5 0.9

• Large Scale Visual Recognition Challenge (~ ILSVRC2015)

ImageNet Classification top-5 error (%)

• Large Scale Visual Recognition Challenge (~ ILSVRC2015)

Alexnet

Relu (op#1)

MaxPool (op#2)

LRN (op#3)

Conv (op#4)

Relu (op#5)

Conv (op#6)

34-layer residual

• Large Scale Visual Recognition Challenge (ILSVRC2016 ~)

√2016

Object detection (DET)[top]

Task 1a: Object detection with provided training data

Ordered by number of categories won

Team name	Entry description	Number of object categories won	mean AP
CUlmage	Ensemble of 6 models using provided data	109	0.662751
	Ensemble A of 3 RPN and 6 FRCN models, mAP is 67 on val2	30	0.652704
	Ensemble B of 3 RPN and 5 FRCN models, mean AP is 66.9, median AP is 69.3 on val2	18	0.652003

Object localization (LOC)[top]

Task 2a: Classification+localization with provided training data

Ordered by localization error

Team name	IENTRY description		Classification error
Trimps-Soushen	Ensemble 3	0.077087	0.02991
Trimps-Soushen	Ensemble 4	0.077429	0.02991
Trimps-Soushen	Ensemble 2	0.077668	0.02991
Trimps-Soushen	Ensemble 1	0.079068	0.03144

√ 2017

Object detection (DET)[top]

Task 1a: Object detection with provided training data

Ordered by number of categories won

Team name	Entry description	Number of object categories won	mean AP
BDAT	submission4	85	0.731392
BDAT	submission3	65	0.732227
BDAT	submission2	30	0.723712
DeepView(ETRI)	Ensemble_A	10	0.593084
NUS- Qihoo_DPNs (DET)	Ensemble of DPN models	9	0.656932
KAISTNIA_ETRI	Ensemble Model5	1	0.61022
KAISTNIA_ETRI	Ensemble Model4	0	0.609402
KAISTNIA_ETRI	Ensemble Model2	0	0.608299
KAISTNIA_ETRI	Ensemble Model1	0	0.608278
KAISTNIA_ETRI	Ensemble Model3	0	0.60631

Object localization (LOC)[top]

Task 2a: Classification+localization with provided training data

Ordered by localization error

Team name	Entry description	Localization error	Classification error
NUS- Qihoo_DPNs (CLS-LOC)	[E3] LOC:: Dual Path Networks + Basic Ensemble	0.062263	0.03413
Trimps-Soushen	Result-3	0.064991	0.02481
Trimps-Soushen	Result-2	0.06525	0.02481
Trimps-Soushen	Result-4	0.065261	0.02481
Trimps-Soushen	Result-5	0.065302	0.02481
Trimps-Soushen	Result-1	0.067698	0.02481

- The 10 main takeaways from MLConf SF (2016)
 - ✓ It's (still) not all about Deep Learning
 - ✓ Choose the right problem to solve, with the right metric
 - ✓ Fine tuning your models is 5% of a project

✓ Ensembles almost always work better

- √ The trend towards personalization
- ✓ Manual curation of content is still used in practice
- ✓ Avoid the curse of complexity
- ✓ Learn the best practices from established players
- ✓ Everybody is using open source
- ✓ Make sure you have support from the executives

