Глава XII. Квадрики в пространстве

§ 45. Цилиндрические и конические поверхности

Б.М.Верников

Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики

Определение цилиндрической поверхности

Оставшиеся четыре параграфа посвящены квадрикам в пространстве, т. е. поверхностям, которые задаются уравнениями второго порядка. В данном параграфе вводятся в рассмотрение два широких класса поверхностей, указанных в названии лекции. Оба этих класса содержат далеко не только поверхности второго порядка. В каждом из них мы указываем некоторые конкретные поверхности второго порядка (три цилиндрические и одну коническую).

Определение

Пусть в пространстве заданы кривая ℓ и ненулевой вектор \vec{a} . Поверхность, образованная прямыми, проходящими через всевозможные точки кривой ℓ и коллинеарными вектору \vec{a} , называется *цилиндрической*. Кривая ℓ называется *направляющей* цилиндрической поверхности, а упомянутые выше прямые — ее *образующими*.

Общий вид цилиндрической поверхности изображен на рис. 1 на следующем слайде.

Общий вид цилиндрической поверхности

Рис. 1. Произвольная цилиндрическая поверхность

Выбор плоской направляющей для цилиндрической поверхности

Пусть σ — цилиндрическая поверхность с направляющей ℓ , образующие которой параллельны вектору \vec{a} , а μ — плоскость, неколлинеарная \vec{a} и пересекающая σ по некоторой кривой s. Очевидно, что σ совпадает с цилиндрической поверхностью, направляющей которой является s, а образующие параллельны \vec{a} (см. рис. 2 на следующем слайде). Кривая s, очевидно, является плоской. Таким образом, справедливо следующее

Замечание о направляющей цилиндрической поверхности

Любая цилиндрическая поверхность имеет направляющую, являющуюся плоской кривой.

Выбор плоской направляющей для цилиндрической поверхности (рисунок)

Рис. 2. Сечение цилиндрической поверхности плоскостью

Общее уравнение цилиндрической поверхности (1)

Следующая теорема показывает, как выглядит общее уравнение произвольной цилиндрической поверхности в подходящей системе координат.

Теорема о цилиндрической поверхности

Произвольная цилиндрическая поверхность может быть задана в подходящей системе координат общим уравнением вида F(x,y)=0, где F(x,y) — некоторая функция от двух переменных. Обратно, уравнение вида F(x,y)=0, где F(x,y) — произвольная функция от двух переменных, задает в пространстве цилиндрическую поверхность.

Доказательство. Докажем первое утверждение. Пусть σ — цилиндрическая поверхность, образующие которой параллельны вектору \vec{a} . Обозначим через m произвольную прямую, коллинеарную вектору \vec{a} , а через O — произвольную точку на этой прямой. Возьмем точку O в качестве начала координат. Далее, проведем через точку O плоскость π , перпендикулярную к прямой m, и выберем в этой плоскости произвольный базис, векторы которого обозначим через \vec{b} и \vec{c} . Посмотрим, как выглядит уравнение поверхности σ в системе координат $O(\vec{b}, \vec{c}, \vec{a})$. Обозначим через ℓ кривую, по которой плоскость ℓ пересекает поверхность ℓ . Ясно, что ℓ — плоская кривая, являющаяся направляющей поверхности ℓ . Эта кривая задается в плоскости ℓ некоторым общим уравнением ℓ (ℓ , ℓ) = ℓ

Общее уравнение цилиндрической поверхности (2)

Пусть $M \in \sigma$. Обозначим координаты точки M через (x_0,y_0,z_0) . Существует точка $M' \in \ell$ такая, что прямая MM' коллинеарна \vec{a} . Ясно, что точка M' имеет координаты $(x_0,y_0,0)$. Поскольку $M' \in \ell$, получаем, что $F(x_0,y_0)=0$. Итак, координаты любой точки, лежащей на поверхности σ , удовлетворяют уравнению F(x,y)=0. Пусть теперь точка M с координатами (x_0,y_0,z_0) не лежит на σ . Проведем через M прямую, коллинеарную \vec{a} , и обозначим через M'' точку пересечения этой прямой с плоскостью Oxy. Ясно, что точка M'' имеет координаты $(x_0,y_0,0)$. Поскольку $M \notin \sigma$, получаем, что $M'' \notin \ell$. Следовательно, $F(x_0,y_0) \neq 0$. Таким образом, точка пространства принадлежит σ тогда и только тогда, когда ее координаты удовлетворяют уравнению F(x,y)=0. Первое утверждение теоремы доказано.

Докажем второе утверждение. Предположим, что поверхность σ имеет в некоторой системе координат уравнение F(x,y)=0. Обозначим через ℓ пересечение σ с плоскостью Oxy и положим $\vec{a}=(0,0,1)$. Произвольная точка пространства M лежит на σ тогда и только тогда, когда координаты ее проекции на плоскость Oxy (при проектировании вдоль оси Oz) удовлетворяют уравнению F(x,y)=0. Следовательно, σ — цилиндрическая поверхность с направляющей ℓ , образующие которой коллинеарны вектору \vec{a} .

Цилиндрические квадрики

Теорема о цилиндрической поверхности показывает, что канонические уравнения эллипса, гиперболы и параболы, рассматриваемые как уравнения поверхностей, задают в пространстве цилиндрические поверхности. Укажем названия этих поверхностей.

Определения

Эллиптическим цилиндром называется множество всех точек пространства, координаты которых в подходящей системе координат удовлетворяют уравнению вида $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, где a,b>0 и $a\geqslant b$. Гиперболическим цилиндром называется множество всех точек пространства, координаты которых в подходящей системе координат удовлетворяют уравнению вида $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$, где a,b>0. Параболическим цилиндром называется множество всех точек пространства, координаты которых в подходящей системе координат удовлетворяют уравнению вида $y^2 = 2px$, где p>0. Каждое из этих трех уравнений называется каноническим уравнением той поверхности, которую оно задает.

«Внешний вид» эллиптического, гиперболического и параболического цилиндров указан на рис. 3, 4 и 5 соответственно (см. следующие три слайда).

Эллиптический цилиндр

Рис. 3. Эллиптический цилиндр

Гиперболический цилиндр

Рис. 4. Гиперболический цилиндр

Параболический цилиндр

Рис. 5. Параболический цилиндр

Определение конической поверхности

Определение

Пусть в пространстве заданы кривая ℓ и точка P, не лежащая на ℓ . Поверхность, образованная прямыми, проходящими через точку P и всевозможные точки кривой ℓ , называется конической. Кривая ℓ называется направляющей конической поверхности, упомянутые выше прямые — ее образующими, а точка P — ее вершиной.

Общий вид конической поверхности изображен на рис. 6 на следующем слайде.

Класс конических поверхностей (как и класс цилиндрических поверхностей) весьма обширен, поскольку в качестве ℓ можно брать произвольную кривую в пространстве. В дальнейшем нас будет интересовать лишь одна поверхность из этого класса, определение которой дано на слайде, следующем после слайда с рис. 6.

Общий вид конической поверхности

Рис. 6. Произвольная коническая поверхность

Конус (1)

Определение

Конусом называется множество всех точек пространства, координаты которых в подходящей системе координат удовлетворяют уравнению вида

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 0, (1)$$

где a,b,c>0. Это уравнение называется *каноническим уравнением* конуса.

Очевидно, что конус является квадрикой, но из его определения никоим образом не вытекает, что он является конической поверхностью. Докажем, что это так.

Теорема о конусе

Конус, заданный уравнением (1), является конической поверхностью с вершиной в начале координат, направляющая которой задана уравнениями

$$\begin{cases} \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, \\ z = c, \end{cases}$$
 (2)

где $c \neq 0$.

Конус (2)

Заметим, что, в силу теоремы о конусе, направляющая конуса является эллипсом.

Доказательство теоремы о конусе. Пусть σ — коническая поверхность с вершиной в начале координат и направляющей (2). Как и ранее, вершину будем обозначать буквой P. Ясно, что координаты вершины поверхности σ удовлетворяют уравнению (1). Если $M(x_0, y_0, z_0)$ — точка этой конической поверхности, отличная от вершины, то образующая PM имеет уравнения

$$\begin{cases} x = x_0 t, \\ y = y_0 t, \\ z = z_0 t. \end{cases}$$

Легко понять, что точка пересечения образующей PM и плоскости z=c имеет координаты $\left(\frac{c x_0}{z_0},\frac{c y_0}{z_0},c\right)$. Подставив их в уравнение $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$, получим равенство $\frac{c^2 x_0^2}{z_0^2 a^2}+\frac{c^2 y_0^2}{z_0^2 b^2}=1$, откуда

$$\frac{x_0^2}{a^2} + \frac{y_0^2}{b^2} = \frac{z_0^2}{c^2}. (3)$$

Таким образом, координаты точки M удовлетворяют уравнению (1). Мы показали, что если точка принадлежит σ , то ее координаты удовлетворяют уравнению (1).

Конус (3)

Проверим обратное утверждение. Пусть $M(x_0,y_0,z_0)$ — точка, координаты которой удовлетворяют уравнению (1). Тогда выполнено равенство (3). Если $z_0=0$, то $\frac{x_0^2}{a^2}+\frac{y_0^2}{b^2}=0$, откуда $x_0=y_0=0$. Но тогда M — начало координат, и потому $M\in\sigma$. Пусть теперь $z_0\neq 0$. Рассмотрим точку $M'(\frac{x_0c}{z_0},\frac{y_0c}{z_0},c)$. Точка M' принадлежит направляющей (2). В самом деле, ее третья координата равна c, а из равенства (3) вытекает, что

$$\frac{x_0^2c^2}{z_0^2a^2} + \frac{y_0^2c^2}{z_0^2b^2} = \left(\frac{x_0^2}{a^2} + \frac{y_0^2}{b^2}\right) \cdot \frac{c^2}{z_0^2} = \left(\frac{x_0^2}{a^2} + \frac{y_0^2}{b^2}\right) \cdot \frac{1}{\frac{x_0^2}{a^2} + \frac{y_0^2}{b^2}} = 1.$$

Поэтому осталось проверить, что точка M принадлежит прямой OM'. В самом деле, эта прямая имеет уравнения

$$\begin{cases} x = \frac{x_0 c}{z_0} \cdot t, \\ y = \frac{y_0 c}{z_0} \cdot t, \\ z = c \cdot t. \end{cases}$$

Подставляя в эти уравнения $\frac{z_0}{c}$ вместо t, имеем $x=x_0$, $y=y_0$ и $z=z_0$. Следовательно, $M\in OM'$. Таким образом, если кординаты точки M удовлетворяют уравнению (1), то $M\in \sigma$. Объединяя это с доказанным на предыдущем слайде, получаем, что конус совпадает с конической поверхностью σ .

Конус (рисунок)

«Внешний вид» конуса указан на рис. 7.

Рис. 7. Конус