# CMPE 185 Autonomous Mobile Robots

Mobile Robot Odometry

Dr. Wencen Wu

Computer Engineering Department

#### Mobile Robot Kinematics in Practice – Wheel Encoders

- In practice, the forward velocities of the wheels  $v_1$  and  $v_2$ / angular velocities of wheels  $\dot{\phi}_1$  and  $\dot{\phi}_2$  are difficult to measure directly and accurately
- The rotation of each wheel can be measured by wheel encoders
- A rotary encoder, also called a shaft encoder, is an electromechanical device that converts the angular position or motion of a shaft or axle to analog or digital output signals.

#### Encoders

- Purpose
  - To measure turning distance of motors (in terms of rotations),
     which can be converted to robot translation/rotation distance
- A digital optical encoder is a device that converts motion into a sequence of digital pulses. By counting a single bit or by decoding a set of bits, the pulses can be converted to relative or absolute position measurements
- If wheel size is known, number of motor turns ->
   number of wheel turns -> estimation of distance robot
   has traveled

#### Encoders

#### There are two types of encoders

- Absolute encoders
  - measure the current orientation of a wheel
- Incremental encoders
  - measure the change in orientation of a wheel

• Basic idea in hardware implementation

Device to count number of "spokes" passing by

#### How an incremental encoder works?



## **Encoders and Dead Reckoning**

- Odometry
  - Use wheel encoders to update position

- Dead reckoning
  - The process of estimating one's current position based upon a previously determined position and advancing that position based upon known speed, elapsed time, and course
- Straight forward to implement

- Wheel encoders will give the distance moved by each wheel
- If a robot starts from a position p, and the right and left wheels move respective distances  $\Delta s_r$  and  $\Delta s_l$ , what is the resulting new position p'?



- To start, let's model the change in angle  $\Delta\theta$  and distance travelled  $\Delta s$  by the robot
- Assume the robot is travelling on a circular arc of constant radius



Begin by noting the following holds for circular arcs:

$$\Delta s_{l} = R\alpha$$

$$\Delta s_{r} = (R + 2L)\alpha$$

$$\Delta s = (R + L)\alpha$$

$$2L$$

$$\Delta s_{r}$$

Now manipulate first two equations

$$\Delta s_{l} = R\alpha$$

$$\Delta s_{r} = (R + 2L)\alpha$$

$$R\alpha = \Delta s_{l}$$

$$L\alpha = \frac{(\Delta s_{r} - R\alpha)}{2} = \frac{\Delta s_{r}}{2} - \frac{\Delta s_{l}}{2}$$



• Substitute this into last equation for delta for  $\Delta s$ :

$$\Delta s = (R + L)\alpha = R\alpha + L\alpha = \Delta s_l + \frac{\Delta s_r}{2} - \frac{\Delta s_l}{2} = \frac{\Delta s_l}{2} + \frac{\Delta s_r}{2}$$
$$= \frac{\Delta s_l + \Delta s_r}{2}$$

To

 Or, note the distance the center travelled is simply the average distance of each wheel

$$\Delta s = \frac{\Delta s_l + \Delta s_r}{2}$$



• To calculate the change in angle  $\Delta\theta$ , observe that it equals the rotation about the circular arc's center point



• We solve for  $\alpha$  by equating  $\alpha$  from the first two equations:

$$\Delta s_{l} = R\alpha$$

$$\frac{\Delta s_{l}}{R} = \frac{\Delta s_{r}}{(R+2L)}$$

$$\Delta s_{r} = (R+2L)\alpha$$

$$(R+2L) \Delta s_{l} = R \Delta s_{r}$$

$$2L \Delta s_{l} = R (\Delta s_{r} - \Delta s_{l})$$

• This results in 
$$\frac{2L \Delta s_l}{(\Delta s_n - \Delta s_l)} = R$$

• Substitute R into

$$\alpha = \frac{\Delta s_l}{R}$$

$$= \frac{\Delta s_l (\Delta s_r - \Delta s_l)}{2L \Delta s_l}$$

$$= \frac{(\Delta s_r - \Delta s_l)}{2L}$$

• So...

$$\Delta\theta = \frac{(\Delta s_r - \Delta s_l)}{2L}$$

- Now that we have  $\Delta\theta$  and  $\Delta s$ , we can calculate the position change in global coordinates
- We use a new segment of length  $\Delta d$



• Assume  $\Delta\theta$  is relatively small, so...



• Now calculate the change in position as a function of  $\Delta d$ 

Using Trigonometry

$$\Delta x = \Delta d \cos(\theta + \frac{\Delta \theta}{2})$$

$$\Delta y = \Delta d \sin(\theta + \frac{\Delta \theta}{2})$$

$$Y_{1}$$

$$\frac{\Delta d}{\theta + \Delta \theta/2} \Delta x$$

$$\Delta x$$

• Now if we assume that the motion is small, then we can assume that  $\Delta d \approx \Delta s$ 



• So...

$$\Delta x = \Delta s \cos(\theta + \frac{\Delta \theta}{2})$$
$$\Delta y = \Delta s \sin(\theta + \frac{\Delta \theta}{2})$$

#### **Summary**

$$\Delta x = \Delta s \cos(\theta + \frac{\Delta \theta}{2})$$

$$\Delta y = \Delta s \sin(\theta + \frac{\Delta \theta}{2})$$

$$\Delta \theta = \frac{\Delta s_r - \Delta s_l}{2L}$$

$$\Delta s = \frac{\Delta s_l + \Delta s_r}{2} \qquad \Delta \theta = \frac{(\Delta s_r - \Delta s_l)}{2L}$$

## Recall: Modeling Motion

- Wheel encoders will give the distance moved by each wheel
- If a robot starts from a position p, and the right and left wheels move respective distances  $\Delta s_r$  and  $\Delta s_l$ , what is the resulting new position p'?



So from...

$$p' = p + \begin{pmatrix} \Delta x \\ \Delta y \\ \Delta \theta \end{pmatrix}$$

$$\Delta x = \Delta s \cos(\theta + \frac{\Delta \theta}{2})$$

$$p' = p + \begin{pmatrix} \Delta x \\ \Delta y \\ \Delta \theta \end{pmatrix}$$

$$\Delta y = \Delta s \sin(\theta + \frac{\Delta \theta}{2})$$

$$\Delta \theta = \frac{\Delta s_r - \Delta s_l}{2L}$$

$$\Delta \theta = \frac{\Delta s_r - \Delta s_l}{2L}$$

$$\Delta s = \frac{\Delta s_l + \Delta s_r}{2}$$
$$\Delta \theta = \frac{(\Delta s_r - \Delta s_l)}{2L}$$

We can calculate the new position as

$$p' = f(x, y, \theta, \Delta s_r, \Delta s_l) = \begin{bmatrix} x \\ y \\ \theta \end{bmatrix} + \begin{bmatrix} \frac{\Delta s_r + \Delta s_l}{2} \cos(\theta + \frac{\Delta s_r - \Delta s_l}{4L}) \\ \frac{\Delta s_r + \Delta s_l}{2} \sin(\theta + \frac{\Delta s_r - \Delta s_l}{4L}) \\ \frac{\Delta s_r - \Delta s_l}{2L} \end{bmatrix}$$

#### Mobile Robot Kinematics in Practice – Wheel Encoders

- Wheel encoders will give the distance moved by each wheel
- But how do we know how far each wheel has moved?
- Assume each wheel has N "ticks" per revolution
- Most wheel encoders give the total tick count since the beginning



For both wheels:

$$\Delta tick = tick' - tick$$
$$\Delta s = 2\pi r \frac{\Delta tick}{N}$$

For each wheel:

$$\Delta s_l = 2\pi r \frac{\Delta tick_l}{N}$$

$$\Delta s_r = 2\pi r \frac{\Delta tick_l}{N}$$

## An Odometry Example

• If my robot starts at the origin (position =  $[0, 0]_{T_i}$  and orientation is 0), where is it located after 0.1s, given that 10 ticks were recorded for the right wheel and 6 ticks for the left wheel. The wheel radius is 2m, the total ticks per revolution is 100. The distance between wheels is 4m.

$$p' = f(x, y, \theta, \Delta s_r, \Delta s_l) = \begin{bmatrix} x \\ y \\ \theta \end{bmatrix} + \begin{bmatrix} \frac{\Delta s_r + \Delta s_l}{2} \cos(\theta + \frac{\Delta s_r - \Delta s_l}{4L}) \\ \frac{\Delta s_r + \Delta s_l}{2} \sin(\theta + \frac{\Delta s_r - \Delta s_l}{4L}) \\ \frac{\Delta s_r - \Delta s_l}{2L} \end{bmatrix}$$

For each wheel:

$$\Delta s_l = 2\pi r \frac{\Delta tick_l}{N}$$

$$\Delta s_r = 2\pi r \frac{\Delta tick_r}{N}$$

## Odometry & Dead Reckoning

#### Odometry error sources

- Limited resolution during integration (time increments, measurement resolution)
- Unequal wheel diameter (deterministic)
- Variation in the contact point of the wheel (deterministic)
- Unequal floor contact and variable friction can lead to slipping (nondeterministic)

#### Odometry errors

- Deterministic errors can be eliminated through proper calibration
- Non-deterministic errors have to be described by error models and will always lead to uncertain position estimate

- Let's look at delta terms as errors in wheel motion, and see how they propagate into positioning errors
- Example: the robot is trying to move forward 1 m on the x axis

where is the robot after the movement?



$$\Delta s = 1 + e_s$$

$$\Delta\theta = 0 + e_{\theta}$$

where  $e_s$  and  $e_\theta$  are error terms

• According to the following equations, the error  $e_s$  = 0.001m produces errors in the direction of motion

$$\Delta x = \Delta s \cos(\theta + \frac{\Delta \theta}{2})$$

$$\Delta y = \Delta s \sin(\theta + \frac{\Delta \theta}{2})$$

- However, the  $\Delta\theta$  term affects each direction differently
- If  $e_{\theta}$  = 2 deg and  $e_{s}$  = 0 meters, then

$$\cos\left(\theta + \frac{\Delta\theta}{2}\right) = 0.9998$$

$$\sin\left(\theta + \frac{\Delta\theta}{2}\right) = 0.0175$$

So

$$\Delta x = 0.9998$$
$$\Delta y = 0.0175$$

 But the robot is supposed to go to x = 1, y = 0, so the errors in each direction are

$$\Delta e_x = +0.0002$$
  
 $\Delta e_y = -0.0175$ 

THE ERROR IS BIGGER IN THE "Y" DIRECTION

Errors perpendicular to the direction grow much larger

Simple error model from kinematics



Error ellipse does not remain perpendicular to direction



## Dead Reckoning Errors

- Challenges/issues:
  - Errors are integrated, unbounded
  - Motion of wheels not corresponding to robot motion, e.g., due to wheel spinning
  - Wheels don't move but robot does, e.g., due to robot sliding



## Robot Navigation: Dead-reckoning Error

• Error accumulates quickly, especially due to turning



• Thank you!