SK네트웍스 Family AI 과정 12기

데이터 전처리 인공지능 학습 결과서

산출물 단계	데이터 전처리
평가 산출물	인공지능 학습 결과서
제출 일자	2025.07.20
깃허브 경로	https://github.com/SKNETWORKS-FAMILY-AICAMP/SKN12-FINAL-6TEAM
작성 팀원	이정민, 이지복

1. 모델 비교 및 선정 이유

• 비교 대상 모델:

모델명	종류	선정 이유
KoBERT	Transformer 기반 사전학습 모델	한국어 문장 의미 파악과 분류에 강한 한국어 사전학습 BERT 기반 모델
KoGPT	GPT 기반 사전학습 모델	자연스러운 한국어 문장 생성에 유리함. 대화, 요약, 스토리 작성 등 생성 중심 작업에 적합

• 실험 모델 수: 총 **2**종

• 최종 선정 모델: KoBERT

2. 모델 구조 및 아키텍처

2.1 모델 아키텍처 도식

• 입력층 \rightarrow KoBERT Tokenizer \rightarrow BERT 인코더 블록 \rightarrow Linear Classifier \rightarrow Softmax 출력

2.2 구성 요소 설명:

계층명	역할	구성 요소	
Embedding	그림분석 문장을 토큰 벡터로 변환	토큰 임베딩, 세그먼트 임베딩, 포지션 임베딩	
Encoder	입력된 벡터의 문맥 정보를 양방향으로 반영하여 벡터로 변환	KoBERT 모델 (Multi-Head Attention)	
Classification Head	감정 유형 분류 출력	Linear Layer + Softmax	

3. 학습 설정 및 하이퍼파라미터

항목	값	
학습 데이터 수	468건	
검증 데이터 수	201건	
에폭(Epoch) 수	15	
배치 크기 (Batch Size)	학습: 8 / 검증: 16	
학습률 (Learning Rate)	2e-5	
옵티마이저	AdamW	
손실 함수	CrossEntropyLoss	
평가 지표	macro_f1	
조기 종료 기준	Loss 값이 3 회 연속 감소하지 않으면 종료	

• 학습 데이터는 더 작은 배치로 자주 가중치를 업데이트해서 학습의 안정성을 향상하고, 검증 데이터는 큰 배치로 빠르게 평가하여 시간을 단축함.

4. 학습 결과 및 성능 평가

4.1. 학습 결과 요약

모델	Accuracy	Precision	Recall	F1 Score
KoBERT	0.965	0.97	0.96	0.967
KoGPT	0.940	0.95	0.94	0.943

4.2. 그래프: 학습/검증 loss 변화, accuracy 변화 등

4.3 해석 및 분석

- F1 Score가 더 높은 모델: KoBERT
- Accuracy, Precision, Recall 등 주요 정량 지표 전반에서 높은 수치를 기록하였으며, 특히 Eval Loss가 낮고 과적합 없이 안정적으로 수렴하는 양상을 보임. 이는 감정 키워드 기반 문장 분류 과제에 있어 KoBERT가 높은 분류 정확도와 신뢰도를 가지는것을 시사함.
 - 따라서, 모델 자체의 성능을 기반으로 KoBERT를 최종 분류 모델로 선정함.
- 향후 검증 예정 : 본 평가 결과는 고정된 학습/검증 데이터셋을 기준으로 도출된수치이며, 실제 서비스에서는 LLM(GPT-4 모델)이 생성하는 해석 응답이 매실행마다 표현이 달라질 수 있는 비결정적 특성을 가짐. 이는 감정 유형 분류 모델의 입력 문장에 변동성을 유발하며, 결과적으로 예측 성능의 일관성에도 영향을 미칠수 있음. 따라서 추후에는 LLM 응답을 기반으로 한 테스트 데이터를 10회 생성하고, 동일한 분류 모델에 입력하여 얻은 결과의 평균 성능을 기준으로 모델의 강건성과일관성을 추가 검증할 예정임. 이를 통해 실사용 환경에서의 적용 가능성과 예측안정성 확보 여부를 종합적으로 판단하고자 함.

5. 과적합/과소적합 대응

• 적용기법:

기법	설명	적용 여부	
Dropout	과적합 방지를 위해 일부 뉴런 제거	O (KoBERT 내부에 내장됨)	
조기 종료	validation 성능 저하 시 학습 중단	O(Loss 값이 3회 연속 감소하지 않으면 종료)	
학습률 감소	Plateau 시 학습률 자동 감소	O (ReduceLROnPlateau 사용)	
교차 검증	다양한 데이터 분포 반영	X (단일 validation set 사용)	

6. 결론 및 향후 계획

- 최종 선정 모델: KoBERT
- 활용 방안:
 - 사용자 감정 분석 결과를 5가지 유형(내면형, 안정형, 쾌락형, 관계형, 추진형)으로 분류
 - 분류 결과를 RAG 기반 페르소나 챗봇에 연동
 - 감정 유형별 맞춤형 응답 제공
- 향후 계획:
 - LLM 응답 기반 테스트셋을 10회 반복 실행하여 평균 성능 검증
 - FastAPI 연동 및 REST API 서비스화
 - 모델 경량화 및 실사용 환경 최적화 예정

7. 부록

- 학습 코드 경로: train_and_eval_kobert.py
- 데이터 파일: ../backend/data/personality_keywords_dataset_v2.json
- 라벨 매핑: { "추진형": 0, "내면형": 1, "안정형": 2, "관계형": 3, "쾌락형": 4 }
- 모델 및 로그 저장 경로: ./backend/llm/model/kobert model/, ./logs/
- Tokenizer: skt/kobert-base-v1
- 전체 학습 로그 캡처 또는 파일: ./backend/llm/model/kobert_training_analysis.png
- 학습 코드 경로 또는 GitHub 링크: https://github.com/SKNETWORKS-FAMILY-AICAMP/SKN12-FINAL-6TEAM/blob/bac kend/backend/llm/model/train and eval kobert.py

• 주요 파라미터 설정 config.json

```
"model_name": "skt/kobert-base-v1",
   "architecture": "BertForSequenceClassification",
   "problem_type": "single_label_classification",
   "num_labels": 5,
   "hidden_size": 768,
   "num_hidden_layers": 12,
   "num_attention_heads": 12,
   "hidden_act": "gelu",
   "dropout": 0.1,
   "max_position_embeddings": 512,
   "vocab_size": 8002,
   "initializer_range": 0.02,
   "transformers_version": "4.40.2"
}
```