Exercise 4.3.1 This Markov Chain can be described by the following diagram.

Here, we see that every state communicates and hence their is only one equivalence class $\{0,1,\ldots,7\}$. Therefore, any class property (e.g. periodicity) applies to the entire Markov Chain. Starting at state 0, we see we can return in 5 steps corresponding to $0 \to 1 \to 2 \to 3 \to 4 \to 0$ and 8 steps corresponding to $0 \to 1 \to \cdots \to 7 \to 0$. Hence

$${n \le 20 : P_{00}^{(n)} > 0} = {5, 8, 10, 13, 15, 16, 18, 20}$$

Note that for $n \ge 40$ we have $P_{00}^{(n)} > 0$. So for n = 41 and n = 43, say (both primes), we have gcd(41,43) = 1. As $41,43 \in \{n \in \mathbb{N} : P_{00}^{(n)} > 0\}$ we see that the period of this state is d(0) = 1. As there is only one communication class, this Markov Chain is aperiodic.

Exercise 4.3.2 Recall that we need only consider the sum $\sum_{n=1}^{\infty} P_{ii}^{(n)}$ to classify states as either recurrent or transient. First note that we can decompose this Markov Chain's state space S into its communication classes as $S = \{0\} \cup \{1\} \cup \{2,4\} \cup \{3\} \cup \{5\}$. As transient/recurrent are class properties, we need only compute the above quantity for one state in each class.

- State 0: $\sum_{n=1}^{\infty} P_{00}^{(n)} = \sum_{n=1}^{\infty} (1/3)^n = 3/2 1 = 1/2 < \infty$ Transient
- State 1: $\sum_{n=1}^{\infty} P_{11}^{(n)} = \sum_{n=1}^{\infty} (1/4)^n = 4/3 1 = 1/3 < \infty$ Transient
- State 2: $\sum_{n=1}^{\infty} P_{22}^{(n)} = \sum_{n=1}^{\infty} (1)^{2n} = \infty$ Recurrent
- State 3: $\sum_{n=1}^{\infty} P_{33}^{(n)} = \sum_{n=1}^{\infty} 0 = 0$ Transient
- State 5: $\sum_{n=1}^{\infty} P_{55}^{(n)} = \sum_{n=1}^{\infty} (1) = \infty$ Recurrent

Hence, we see that $\{0,1,3\}$ are transient states and $\{2,4,5\}$ are recurrent states.

Problem 4.3.2 First recall that if a Markov Chain is irreducible then all its states must communicate by definition. That is for each (i,j) there exists $k_{(i,j)} \in \mathbb{N}$ such that $P_{ij}^{k_{ij}} > 0$. Let $k = \max_{(i,j) \in S \times S} k_{ij}$. We know that $k < \infty$ as it is a maximum over a finite set of finite elements. This then implies that $P_{ij}^k > 0$ for all $i, j \in S$. That is, P is regular.

Again, since all states communicate, there is only one communication class. As a result, we need only show that there exists $j \in S$ such that j is recurrent. Well, with

|S| = m we can write

$$\sum_{j=1}^{m} P_{ij}^{n} = 1$$

$$\sum_{n=1}^{\infty} \sum_{j=1}^{m} P_{ij}^{n} = \infty$$

$$\sum_{j=1}^{m} \sum_{n=1}^{\infty} P_{ij}^{n} = \infty$$

Note we can change the order of summation as it is a finite sum of positive elements. As this is a finite sum, there exists j* such that $\sum_{n=1}^{\infty} P_{ij*}^n = \infty$. With this in mind, we can also condition on the arrival of the chain to state j* as follows

$$\infty = \sum_{n=1}^{\infty} P_{ij*}^n = \sum_{n=1}^{\infty} \sum_{m=1}^n P_{j*j*}^{(n-m)} f_{ij*}^{(m)} = \sum_{m=1}^{\infty} f_{ij*}^{(m)} \sum_{n=m}^{\infty} P_{j*j*}^{(n)}$$

Now, notice that $\sum_{m=1}^{\infty} f_{ij*}^{(m)}$ is just the probability of going $i \to j*$ or f_{ij*} . Moreover, we know that $f_{ij*} \le 1$ hence

$$\infty = \sum_{m=1}^{\infty} f_{ij*}^{(m)} \sum_{n=m}^{\infty} P_{j*j*}^{(n)} = f_{ij*} \sum_{n=1}^{\infty} P_{j*j*}^{(n)}$$

Therefore, we see that $\sum_{n=1}^{\infty} P_{j*j*}^{(n)} = \infty$ and j* is recurrent. As j* is recurrent, so are all states in S. Therefore this aperiodic, irreducible Markov Chain is recurrent.