ABSTRACT ALGEBRA II IDEALS & FACTOR RINGS

MARIO L. GUTIERREZ ABED

HOMOMORPHISMS & FACTOR RINGS

Theorem. Let $\phi: \mathcal{R} \longrightarrow \mathcal{R}'$ be a ring homomorphism with kernel H. Then the additive cosets of H form a ring \mathcal{R}/H whose binary operations, defined by choosing coset representatives, are the usual operations of addition and multiplication of cosets. In addition, the map $\mu: \mathcal{R}/H \longrightarrow \phi[\mathcal{R}]$ defined by $\mu(a+H) = \phi(a)$ is an isomorphism.

<u>Remark:</u> It can be shown that the map $\phi: \mathbb{Z} \longrightarrow \mathbb{Z}_n$ defined by $\phi(m) = r$ (where $m \in \mathbb{Z}$ and r is the remainder of m when divided by n) is a homomorphism. Since $\ker(\phi) = n\mathbb{Z}$, the above theorem tells us that the ring $\mathbb{Z}/n\mathbb{Z}$ is isomorphic to \mathbb{Z}_n .

The above theorem can be extended to subrings of a ring \mathcal{R} other than the kernel. That is, it generally applies to ideals¹:

Theorem. Let \mathcal{I} be an ideal of of a ring \mathcal{R} . Then the additive cosets of \mathcal{I} form a ring \mathcal{R}/\mathcal{I} whose binary operations, defined by choosing coset representatives, are the usual operations of addition and multiplication of cosets. This ring \mathcal{R}/\mathcal{I} is called the **factor ring** (or **quotient ring**) of \mathcal{R} by \mathcal{I} .

Theorem. Let \mathcal{I} be an ideal of of a ring \mathcal{R} . Then $\gamma \colon \mathcal{R} \to \mathcal{R}/\mathcal{I}$, given by $\gamma(x) = x + \mathcal{I}$ is a ring homomorphism with kernel \mathcal{I} .

Theorem (Fundamental Ring Homomorphism Theorem). Let $\phi \colon \mathcal{R} \to \mathcal{R}'$ be a ring homomorphism with kernel \mathcal{I} . Then $\phi[\mathcal{R}]$ is a ring, and the map $\mu \colon \mathcal{R}/\mathcal{I} \to \phi[\mathcal{R}]$ given by $\mu(x+\mathcal{I}) = \phi(x)$ is an isomorphism. If $\gamma \colon \mathcal{R} \to \mathcal{R}/\mathcal{I}$ is the homomorphism given by $\gamma(x) = x + \mathcal{I}$, then for each $x \in \mathcal{R}$, we have $\phi(x) = \mu \gamma(x)$.

Prime & Maximal Ideals

The following examples show that a ring \mathcal{R} and a factor ring \mathcal{R}/\mathcal{I} may have very different structural properties:

<u>Example:</u> We know that \mathbb{Z} is an integral domain but not a field. Now let p be a prime, so that \mathbb{Z}_p is a field. But \mathbb{Z}_p is isomorphic to $\mathbb{Z}/p\mathbb{Z}$, so we have that a factor ring of an integral domain may be a field.

¹Recall that an *ideal* is an additive subgroup (which is also a subring) \mathcal{I} of a ring \mathcal{R} satisfying the properties $a\mathcal{I} \subseteq \mathcal{I}$ and $\mathcal{I}b \subseteq \mathcal{I}$ $\forall a, b \in \mathcal{R}$.

Example: We know that $\mathbb{Z} \times \mathbb{Z}$ is not an integral domain because

$$(0,1)(1,0) = (0,0),$$

showing that (0,1) and (1,0) are zero divisors.

Now let $\mathcal{I} = \{(0, n) \mid n \in \mathbb{Z}\}$, which is an ideal of $\mathbb{Z} \times \mathbb{Z}$, and notice that $(\mathbb{Z} \times \mathbb{Z})/\mathcal{I}$ is isomorphic to \mathbb{Z} under the correspondence $[(m, 0) + \mathcal{I}] \leftrightarrow m$, where $m \in \mathbb{Z}$. Thus we have that a factor ring of a ring may be an integral domain, even though the original ring is not.

<u>Example:</u> The subset $\mathcal{I} = \{0,3\}$ of \mathbb{Z}_6 is easily seen to be an ideal of \mathbb{Z}_6 , and \mathbb{Z}_6/\mathcal{I} has three elements, namely $0 + \mathcal{I}$, $1 + \mathcal{I}$, and $2 + \mathcal{I}$. These add and multiply in such a fashion as to show that $\mathbb{Z}_6/\mathcal{I} \simeq \mathbb{Z}_3$ under the correspondence

$$(0 + \mathcal{I}) \leftrightarrow 0, \qquad (1 + \mathcal{I}) \leftrightarrow 1, \qquad (2 + \mathcal{I}) \leftrightarrow 2.$$

This example shows that even if \mathcal{R} is not an integral domain, it is still possible for \mathcal{R}/\mathcal{I} to be a field.

<u>Reamrk:</u> Note that while \mathbb{Z} is an integral domain, $\mathbb{Z}/6\mathbb{Z} \simeq \mathbb{Z}_6$ is not. So whereas the preceding examples showed that a factor ring may have a structure that seems "better" than the original ring, this example indicates that the structure of a factor ring may seem "worse" than that of the original ring.

Theorem. If \mathcal{R} is a ring with unity, and \mathcal{I} is an ideal of \mathcal{R} containing a unit, then $\mathcal{I} = \mathcal{R}$.

Proof. Let \mathcal{I} be an ideal of \mathcal{R} , and suppose that $u \in \mathcal{I}$ for some unit u in \mathcal{R} . Then the condition

$$(\dagger) r\mathcal{I} \subseteq \mathcal{I} \quad \forall r \in \mathcal{R}$$

implies, if we take $r = u^{-1}$ and $u \in \mathcal{I}$, that $1 = u^{-1}u$ is in \mathcal{I} . But then (†) implies that r1 = r is in \mathcal{I} for all $r \in \mathcal{R}$, so $\mathcal{I} = \mathcal{R}$.

Corollary. A field contains no proper nontrivial ideals.

Proof. Since every nonzero elements of a field is a unit, it follows from the above theorem that an ideal of a field F is either $\{0\}$ or all of F.

Definition. An ideal \mathcal{I} in a ring \mathcal{R} is said to be a **maximal ideal** if $\mathcal{I} \neq \mathcal{R}$ and if whenever \mathcal{J} is an ideal satisfying $\mathcal{I} \subseteq \mathcal{J} \subseteq \mathcal{R}$ then either $\mathcal{J} = \mathcal{I}$ or $\mathcal{J} = \mathcal{R}$.

Here is one reason why maximal ideals are important:

Theorem. Let \mathcal{R} be a commutative ring with unity and let \mathcal{I} be an ideal in \mathcal{R} . Then the quotient ring \mathcal{R}/\mathcal{I} is a field if and only if \mathcal{I} is a maximal ideal.

Proof. (\Rightarrow) Suppose that \mathcal{R}/\mathcal{I} is a field. By a previous proposition we know that if \mathcal{N} is any ideal of \mathcal{R} such that $\mathcal{I} \subset \mathcal{N} \subset \mathcal{R}$ and $\gamma \colon \mathcal{R} \to \mathcal{R}/\mathcal{I}$ is the canonical homomorphism of \mathcal{R} onto \mathcal{R}/\mathcal{I} , then $\gamma[\mathcal{N}]$ is an ideal of \mathcal{R}/\mathcal{I} with

$$\{(0+\mathcal{I})\}\subset\gamma[\mathcal{N}]\subset\mathcal{R}/\mathcal{I}.$$

But this is contrary to a previous corollary which says that a field does not contain any proper nontrivial ideals. Hence if \mathcal{R}/\mathcal{I} is a field, then the ideal \mathcal{I} is maximal.

 (\Leftarrow) Conversely, suppose \mathcal{I} is maximal in \mathcal{R} . Observe that if \mathcal{R} is a commutative ring with unity, then \mathcal{R}/\mathcal{I} is also a nonzero commutative ring with unity if $\mathcal{I} \neq \mathcal{R}$, which is indeed the case if \mathcal{I} is maximal.

Now let $(a + \mathcal{I}) \in \mathcal{R}/\mathcal{I}$, with $a \notin \mathcal{I}$, so that $a + \mathcal{I}$ is not the additive identity element in \mathcal{R}/\mathcal{I} . Suppose that $a + \mathcal{I}$ has no multiplicative inverse in \mathcal{R}/\mathcal{I} . Then the set

$$(\mathcal{R}/\mathcal{I})(a+\mathcal{I}) = \{(r+\mathcal{I})(a+\mathcal{I}) \mid (r+\mathcal{I}) \in \mathcal{R}/\mathcal{I}\}$$

does not contain $1 + \mathcal{I}$. We can easily see that $(\mathcal{R}/\mathcal{I})(a + \mathcal{I})$ is an ideal of \mathcal{R}/\mathcal{I} , which is nontrivial because $a \notin \mathcal{I}$ and it is also proper because it does not contain $1 + \mathcal{I}$.

Now consider the canonical homomorphism $\gamma \colon \mathcal{R} \to \mathcal{R}/\mathcal{I}$ and notice that $\gamma^{-1}[(\mathcal{R}/\mathcal{I})(a+\mathcal{I})]$ is a proper ideal of \mathcal{R} properly containing \mathcal{I} . But this contradicts our assumption that \mathcal{I} is maximal, so $a + \mathcal{I}$ must have a multiplicative inverse in \mathcal{R}/\mathcal{I} , and thus \mathcal{R}/\mathcal{I} must be a field.

<u>Example</u>: Since $\mathbb{Z}/n\mathbb{Z}$ is isomorphic to \mathbb{Z}_n , and \mathbb{Z}_n itself is a field if and only if n is a prime, we see that the maximal ideals of \mathbb{Z} are precisely the ideals $p\mathbb{Z}$ for prime positive integers p.

Corollary. A commutative ring with unity is a field if and only if it has no proper nontrivial ideals.

Definition. An ideal $\mathcal{I} \neq \mathcal{R}$ in a commutative ring \mathcal{R} is a **prime ideal** if $ab \in \mathcal{I}$ implies either $a \in \mathcal{I}$ or $b \in \mathcal{I}$ for $a, b \in \mathcal{R}$.

<u>Example</u>: Note that $\mathbb{Z} \times \{0\}$ is a prime ideal of $\mathbb{Z} \times \mathbb{Z}$, for if $(a,b)(c,d) \in \mathbb{Z} \times \{0\}$, then we must have $\overline{bd} = 0$ in \mathbb{Z} . This implies that either b = 0, so that $(a,b) \in \mathbb{Z} \times \{0\}$, or d = 0, so that $(c,d) \in \mathbb{Z} \times \{0\}$. Note that

$$(\mathbb{Z} \times \mathbb{Z})/(\mathbb{Z} \times \{0\}) \cong \mathbb{Z},$$

which is an integral domain.

Theorem. Let \mathcal{R} be a commutative ring with unity, and let $\mathcal{I} \neq \mathcal{R}$ be an ideal in \mathcal{R} . Then \mathcal{R}/\mathcal{I} is an integral domain if and only if \mathcal{I} is a prime ideal in \mathcal{R} .

Proof. This is a painfully trivial result. Let \mathcal{R}/\mathcal{I} be an integral domain and notice that for any two elements $a + \mathcal{I}, b + \mathcal{I} \in \mathcal{R}/\mathcal{I}$, where $a, b \in \mathcal{R}$, we have

$$(a+\mathcal{I})(b+\mathcal{I}) = ab + \mathcal{I}.$$

Now notice that if $ab + \mathcal{I} = \mathcal{I}$, then we must have that either $a \in \mathcal{I}$ or $b \in \mathcal{I}$, since the coset \mathcal{I} plays the role of 0 in \mathcal{R}/\mathcal{I} , and by the definition of an integral domain \mathcal{R}/\mathcal{I} has no zero divisors. But looking at the coset representatives, we see that this condition amounts to saying that $ab \in \mathcal{I}$ implies that either $a \in \mathcal{I}$ or $b \in \mathcal{I}$, which is in fact the definition of a prime ideal.

Corollary. Every maximal ideal in a commutative ring R with unity is a prime ideal.

Remember well the following results:

For a commutative ring \mathcal{R} with unity:

- An ideal \mathcal{I} of \mathcal{R} is maximal $\iff \mathcal{R}/\mathcal{I}$ is a field.
- An ideal \mathcal{I} of \mathcal{R} is prime $\iff \mathcal{R}/\mathcal{I}$ is an integral domain.
- Every maximal ideal of \mathcal{R} is a prime ideal.

PRIME FIELDS

Theorem. If \mathcal{R} is a ring with unity 1, then the map $\phi \colon \mathbb{Z} \to \mathcal{R}$ given by

$$\phi(n) = n \cdot 1 \qquad \forall n \in \mathbb{Z}$$

is a homomorphism from \mathbb{Z} into \mathcal{R} .

Corollary. If \mathcal{R} is a ring with unity and characteristic n > 1, then \mathcal{R} contains a subring isomorphic to \mathbb{Z}_n . If \mathcal{R} has characteristic 0, then \mathcal{R} contains a subring that is isomorphic to \mathbb{Z} .

Theorem. A field F is either of prime characteristic p and contains a subfield isomorphic to \mathbb{Z}_p , or of characteristic 0 and contains a subfield isomorphic to \mathbb{Q} .

<u>Note</u>: The above results indicate that every field contains either a subfield isomorphic to \mathbb{Z}_p for some prime p, or a subfield isomorphic to \mathbb{Q} . Hence these fields \mathbb{Z}_p and \mathbb{Q} are the fundamental building blocks on which all fields rest:

Definition. The fields \mathbb{Z}_p and \mathbb{Q} are **prime** fields.

Definition. Let \mathcal{R} be a ring with identity and let $a \in \mathcal{R}$. The **principal ideal** generated by a is the ideal

$$\langle a \rangle = \{ ra \mid r \in \mathcal{R} \}.$$

An integral domain \mathcal{R} in which every ideal is a principal ideal is called a **principal ideal domain**.

Example: Every ideal of the ring \mathbb{Z} is of the form $n\mathbb{Z}$, which is generated by n. Thus every ideal of \mathbb{Z} is a principal ideal.

Example: The ideal $\langle x \rangle \in F[x]$ consists of all polynomials in F[x] having zero constant term.

<u>Note</u>: The next theorem is another simple but very important application of the division algorithm for F[x]:

Theorem. If F is a field, every ideal in F[x] is principal.

Proof. See page 250, Fraleigh's.

<u>Note</u>: We can now characterize the maximal ideals of F[x]. This is a crucial step in achieving our basic goal: to show that any nonconstant polynomial $f(x) \in F[x]$ has a zero in some field E containing F.

Theorem. An ideal $\langle p(x) \rangle \neq \{0\}$ of F[x] is maximal if and only if p(x) is irreducible over F.

Proof. (\Rightarrow) Suppose that $\langle p(x) \rangle \neq \{0\}$ is a maximal ideal of F[x]. Then $\langle p(x) \rangle \neq F[x]$, so $p(x) \notin F$. Now let p(x) = f(x)g(x) be a factorization of p(x) in F[x]. Since $\langle p(x) \rangle$ is a maximal ideal and in turn also a prime ideal, we have that

$$f(x)g(x) \in \langle p(x) \rangle \implies f(x) \in \langle p(x) \rangle \text{ or } g(x) \in \langle p(x) \rangle.$$

In other words, we must have that either f(x) or g(x) has p(x) as a factor. But then we cannot have the degrees of both f(x) and g(x) less than the degree of p(x). This shows that p(x) is irreducible over F.

 (\Leftarrow) Conversely, if p(x) is irreducible over F, suppose that \mathcal{I} is an ideal such that $\langle p(x) \rangle \subseteq \mathcal{I} \subseteq F[x]$. Now we have that \mathcal{I} is a principal ideal, so that $\mathcal{I} = \langle g(x) \rangle$ for some $g(x) \in \mathcal{I}$. But then

$$p(x) \in \mathcal{I} \implies p(x) = g(x)q(x) \text{ for some } q(x) \in F[x].$$

But p(x) is irreducible, which implies that either g(x) or g(x) is of degree 0.

If g(x) is of degree 0, that is, a nonzero constant in F, then g(x) is a unit in F[x], so $\langle p(x) \rangle = \mathcal{I} = F[x]$.

If on the other hand, q(x) is of degree 0, then q(x) = c, where $c \in F$, and g(x) = (1/c)p(x) is in $\langle p(x) \rangle$, so $\mathcal{I} = \langle p(x) \rangle$. Thus $\langle p(x) \rangle \subset \mathcal{I} \subset F[x]$ is impossible, so $\langle p(x) \rangle$ is maximal.

<u>Example</u>: As we have shown on the section on factorization of polynomials over a field, the polynomial $f(x) = x^3 + 3x + 2$ is irreducible in $\mathbb{Z}_5[x]$, so $\mathbb{Z}_5[x]/\langle x^3 + 3x + 2 \rangle$ is a field.

As another example, the polynomial x^2-2 is irreducible in $\mathbb{Q}[x]$, so $\mathbb{Q}[x]/\langle x^2-2\rangle$ is a field. \blacktriangle