Course: Electronic Circuits for Mechatronics (ELCT 609)

Dr. Eman Azab

Sheet 2: PN Junctions

Problem 1:

For the following circuits employing ideal diodes, find the labeled currents I and voltages V measured with respect to ground?

Problem 2:

1. A small discrete silicon diode is found to conduct 100 µA at 0.7 V and 1mA at 0.815 V. Find the values of I_S and η which correspond.

(Ans. $I_S=8.32 \times 10-11 \text{A}, \, \eta \approx 2$)

2. A diode for which $\eta=1$ conducts 0.1mA at 0.7 V. Find its voltage drop at 1mA. For what current is its voltage drop equal 0.815V?

(Ans.0.758V,9.95mA)

Course: Electronic Circuits for Mechatronics (ELCT 609)

Dr. Eman Azab

Spring 2021

Problem 3:

A diode described by the exponential characteristic and the battery & resistor model of Fig.1 is connected to a source as shown in Fig.2. Draw the load line and find operating points (I_D and V_D) for:

- (a) $V_{DD} = 1V$, $R = 100 \Omega$
- (b) $V_{DD} = 0.9V$, $R = 100 \Omega$
- (c) $V_{DD} = 0.9V$, $R = 90 \Omega$

(Ans:(a) $V_D=0.75V$, $I_D=2.5mA$, (b) $V_D=0.73V$, $I_D=1.7mA$, (c) $V_D=0.74V$, $I_D=1.8mA$)

Problem 4:

For the circuit shown in Fig.3, find the current 'I'? $[V_{Threshold} = 0.6V]$

(Ans: I=0.9mA)

Course: Electronic Circuits for Mechatronics (ELCT 609)

Dr. Eman Azab

Spring 2021

Problem 5:

For the passive symmetric hard limiter shown in Fig.4:

- a. Find the upper and lower limiting levels (including a 0.7 V diode drop), the gain, and the upper and lower input thresholds levels.
- b. What is the input current required at twice the upper threshold value?
- c. Sketch the output voltage versus time at sinusoidal signal input voltage of amplitude 15V and frequency 1KHz

(Ans.: 3V, -3V, 0.5, 6V, -6V, 0.9mA)

Problem 6:

Sketch the I-V Input characteristic of the circuit of Fig.5 When:

- 1. The switch is open
- 2. The switch is closed

(Assuming the Diode is ideal)

Course: Electronic Circuits for Mechatronics (ELCT 609)

Dr. Eman Azab

Spring 2021

Problem 7:

For the following circuits, assume the diodes are ideal diodes, find 'V_o'? Draw 'V_o' versus 'V_i'

Course: Electronic Circuits for Mechatronics (ELCT 609)

Dr. Eman Azab

Spring 2021

Problem 8:

Sketch the waveform resulting at 'Vo' for 'Vi' is a 1-kHz 10-V peak sine wave (assuming ideal diode approximation)

Problem 9:

The circuit shown is a model for a battery charger, 'V_i' is a 10-V peak sine wave, D₁ and D₂ are ideal diodes, I is a 100-mA current Source and B is a 4.5-V battery. Sketch the waveform of the battery current.

Page **5** of **5**