Key Definition (2)

- Interpretation: An interpretation is an assignment of values to all variables
- **Model**: A model is an interpretation that satisfies the constraints
 - A model also refers to a possible world in which a sentence (or set of sentences) is true

Examples:

- On the right, {(P=0, Q=0), (P=0, Q=1), (P=1, Q=0), (P=1, Q=1)} are 4 different interpretations
- Among all interpretations, model = {(P=0, Q=0), (P=0, Q=1), (P=1, Q=0)}, since only these interpretations satisfy the constraints (make the statement true)

Р	Q	(P ∧ Q)	¬(P ∧ Q)
0	0	0	1
0	1	0	1
1	0	0	1
1	1	1	0

Key Definition (2)

• **Entailment**: Entailment means that one sentence follows logically from another sentence, or set of sentences (i.e. a knowledge base):

$$KB \models \alpha$$

- ullet The above expressions stands for "KB(knowledge base) entails lpha"
- Knowledge base KB entails sentence α means when KB is true then α is true
- Compute whether $S \models P$ by calculating a truth table for S and P, check if whenever all formulae in S are True, P is True
- A tautology is a special case of entailment where S is the empty set

Entailment

Example 1:

- Recall that $S \models P$ means when S is true then P is true
- In the right table, we find $\{P, P \rightarrow Q\} \models Q$ since when both P and P \rightarrow Q are True (row 1), Q is also True
- Also, we find $P \rightarrow Q \models Q$, since when $P \rightarrow Q$ is True, Q is True

Р	Q	(P → Q)
0	0	1
0	1	0
1	0	1
1	1	1

Entailment

Example 2:

- Recall that $S \models P$ means when S is true then P is true
- Let $S = \{p \rightarrow q, q \rightarrow p, p \lor q\}, P = p \land q$
- We find $S \models P$, since when S is True, P is True (Row 1)
- Each row is an interpretation of S, but only the first row is a model of S

р	q	p→q	q→p	p∨q	S	Р
1	1	1	1	1	1	1
1	0	0	1	1	0	0
0	1	1	0	1	0	0
0	0	1	1	0	0	0

Entailment

Example 3:

- Recall that $S \models P$ means when S is true then P is true
- Let $S = S = \{q \lor r, q \rightarrow \neg p, \neg (r \land p)\}, P = \neg p$
- Also, we find $S \models P$, since when S is True, P is True (Row 6-8)

р	q	r	qVr	q→¬p	¬(r∧p)	S	Р
1	1	1	1	0	0	0	0
1	1	0	1	0	1	0	0
1	0	1	1	1	0	0	0
1	0	0	0	1	1	0	0
0	1	1	1	1	1	1	1
0	1	0	1	1	1	1	1
0	0	1	1	1	1	1	1
0	0	0	0	1	1	0	1

Quiz Time!