LÓGICA

Cód:30829840

Turma: SI

Prof. Dr. João Paulo I. F. Ribas

Operações Lógicas (Conectivos)

- As proposições simples (ou atômicas) possuem um valor lógico (V ou F);
 - São representadas por letras minúsculas: p, q, r, s, t,...
- Proposições compostas (ou moleculares) são formadas por uma ou mais proposições simples;
 - São representadas por letras maiúsculas: P, Q, R, S, T, ...
 - O valor lógico depende dos valores lógicos das proposições simples componentes e dos conectivos (operações lógicas) envolvidos.

Operações Lógicas (Conectivos)

- Quando escritas em linguagem simbólica as proposições compostas são expressões proposicionais;
- Obedecem regras de cálculo, denominado cálculo proposicional.
- Principais conectivos lógicos: não, e, ou, ou...ou, se...então, se e somente se.

Operações Lógicas (Conectivos)

- Negação (~)
- Conjunção (^)
- Disjunção (v)
- Disjunção Exclusiva (v)
- ▶ Condicional (→)
- ▶ Bicondicional (←)

- **Negação** (~): Seja p uma proposição simples, a negação de p é dada por ~p (lê-se "não p").
- Outro símbolo utilizado: ¬p
- A negação de uma proposição define-se pelo seu valor lógico contrário.
- Assim, se:
 - V(p) = V, então "não p" é Falso: V(~p) = F;
 - V(p) = F, então "não p" é Verdadeiro: V(~p) = V;
- Outras considerações:
 - ∘ ~V = F
 - ∘ ~F = V;
 - $\circ V(\sim p) = \sim V(p).$

Exemplo:

p : Joana é bonita

~p : Joana não é bonita

~p: Não é verdade que Joana é bonita

~p : É falso que Joana é bonita

Tabela-Verdade:

р	~p		
V	F		
F	V		

- Exercício: Qual a negação das seguintes proposições?
 - Todos os homens são católicos.
 - Algum político é honesto.
 - Nem todos os peixes são de água doce.
 - Nenhuma mulher é policial.
 - $\circ X = Y$.
 - $\circ X > Y$.
 - $\circ Y \leq Z$.
 - $\circ Y \geq Z$
 - \circ Z < W

Palavra	Negação			
Algum(a)	Nenhum(a)			
Todos(as)	Nem todos(as)			
Alguns(mas)	Algum(a) ou nenhum(a)			

Proposição	Negação		
X = Y	X ≠ Y		
X > Y	$X \leq Y$		
X ≥ Y	X < Y		
X < Y	X ≥ Y		
X ≤ Y	X > Y		
X ≠ Y	X = Y		

Operações Lógicas (Conjunção)

Conjunção (^): Sejam p e q duas proposições simples, a conjunção de p e q é dada por p^q.

- ▶ Lê-se "p e q".
- o valor lógico da proposição composta somente será verdadeiro quando todos seus átomos forem verdadeiros.
- Assim, se:
 - V(p) = V e V(q) = V, então $V(p \land q) = V$;
 - Nos demais casos V(p^q) = F.

Operações Lógicas (Conjunção)

- Ou seja:
 - \circ V \wedge V = V
 - \circ V \wedge F = F
 - \circ F \wedge V = F
 - \circ F \wedge F = F
- Tabela-Verdade:

Conjunção (^)				
р	q	p^q		
V	V	V		
V	F	F		
F	V	F		
F	F	F		

Operações Lógicas (Conjunção)

Exemplo:

- p : A neve é branca. (V)
- q:2 < 5.(V)
- p^q: A neve é branca e 2<5.
- $V(p \land q) = V(p) \land V(q) = V \land V = V$

Outro exemplo:

- p : Está sol.
- q :O dia está agradável.
- p^q: Esta sol e o dia está agradável.
- p^q: Está sol, mas o dia está agradável.
- p^q: Está sol. O dia está agradável.

Operações Lógicas (Disjunção)

Disjunção(v): Sejam p e q duas proposições simples, a disjunção de p e q é dada por pvq.

- ▶ Lê-se "p ou q".
- o valor lógico da proposição composta somente será falso quando todos seus átomos forem falsos.
- Assim, se:
 - V(p) = F e V(q) = F, então V(pvq) = F;
 - Nos demais casos V(pvq) = V.

Operações Lógicas (Disjunção)

- Ou seja:
 - \circ V \vee V = V
 - \circ V v F = V
 - \circ F \vee V= \vee
 - \circ F v F = F
- Tabela-Verdade:

Disjunção (v)						
р	q pvq					
V	V	V				
V	F	V				
F	V	V				
F	F	F				

Operações Lógicas (Disjunção)

Exemplo:

- p : Paris é a capital da França. (V)
- \circ q:10 7 = 5. (F)
- pvq: Paris é a capital da França ou 10 7 = 5.
- \circ V(pvq) = V(p) v V(q) = V v F = V

Outro exemplo:

- p : Está chovendo.
- q : O mar é salgado.
- pvq: Esta chovendo ou o mar é salgado.

Operações Lógicas (Disjunção Exclusiva)

Disjunção Exclusiva(\underline{v}): Sejam p e q duas proposições simples, a disjunção exclusiva de p e q é dada por p \underline{v} q.

- ▶ Lê-se "ou p ou q".
- O valor lógico da proposição composta será verdadeiro quando apenas um dos átomos forem verdadeiros.
- Assim, se:
 - V(p) = V e V(q) = F, então $V(p\underline{v}q) = V$;
 - V(p) = F e V(q) = V, então $V(p\underline{v}q) = V$;
 - Nos demais casos V(pvq) = F.

Operações Lógicas (Disjunção Exclusiva)

- Ou seja:
 - \circ V v V = F
 - \circ V \underline{v} F = V
 - \circ F \underline{v} V = V
 - \circ F \underline{v} F = F
- Tabela-Verdade:

Disjunção Exclusiva (<u>v</u>)							
р	p q p <u>v</u> q						
V	V	F					
V	F	V					
F	V	V					
F	F	F					

Operações Lógicas (Disjunção Exclusiva)

Exemplo:

- p : Paris é a capital da França. (V)
- q :Cuiabá é a capital de Mato Grosso. (V)
- pvq: Ou Paris é a capital da França ou Cuiabá é a capital do Mto Grosso.
- $V(p\underline{v}q) = V(p)\underline{v}V(q) = VvV = F$

Outro exemplo:

- p : João é Gaúcho.
- q : João é Paulista.
- pvq: Ou João é gaúcho ou é paulista, mas não ambos.

Condicional(\rightarrow): Sejam p e q duas proposições simples, a condicionalde p e q é dada por p \rightarrow q.

- ▶ Lê-se "se p então q".
- o valor lógico da proposição composta somente será falso quando o átomo da esquerda for verdadeiro e o da direita for falso.
- Assim, se:
 - V(p) = V e V(q) = F, então $V(p \rightarrow q) = F$;
 - Nos demais casos $V(p \rightarrow q) = V$.

- Ou seja:
 - $\circ V \rightarrow V = V$
 - \circ V \rightarrow F = F
 - $\circ F \rightarrow V = V$
 - $\circ F \rightarrow F = V$
- Tabela-Verdade:

Condicional(→)						
р	q p→q					
V	V	V				
V	F	F				
F	V	V				
F	F	V				

- \rightarrow Em p \rightarrow q:
 - p é o antecedente
 - q é o consequente
- Ou ainda
 - p é condição suficiente para q
 - q é condição necessária para p
- Ou seja
 - Se p é verdadeiro é obrigatório q ser verdadeiro para que a condicional p → q seja verdadeira;
 - Porém, se p é falso, já é suficiente para que a condicional p \rightarrow q seja verdadeira.

Exemplo:

- p : A Terra é um planeta. (V)
- \circ q:10 7 = 5. (F)
- p \rightarrow q: Se a Terra é um planeta então 10 7 = 5.
- $V(p \rightarrow q) = V(p) \rightarrow V(q) = V \rightarrow F = F$

Outro exemplo:

- p: Há fumaça.
- ∘ p→q:Se há fumaça, então há fogo .
- ∘ p→q: Haver Fogo é uma condição necessária para haver fumaça.

q: Há fogo.

- ∘ p→q: Haver Fumaça é uma condição suficiente para haver fogo.
- Antecedente: Há fumaça
- Consequente: Há fogo.

Bicondicional(\leftrightarrow): Sejam p e q duas proposições simples, a bicondicional de p e q é dada por p \leftrightarrow q.

- ▶ Lê-se "p se somente se q".
- o valor lógico da proposição composta somente será falso quando os átomos forem diferentes.
- Assim, se:
 - V(p) = V e V(q) = F, então $V(p \leftrightarrow q) = F$;
 - V(p) = F e V(q) = V, então $V(p \leftrightarrow q) = F$;
 - Nos demais casos $V(p \leftrightarrow q) = V$.

- Ou seja:
 - $V \leftrightarrow V = V$
 - $V \leftrightarrow F = F$
 - $\circ F \leftrightarrow V = F$
 - \circ F \leftrightarrow F = V
- Tabela-Verdade:

Bicondicional(↔)						
р	q p↔q					
V	V	V				
V	F	F				
F	V	F				
F	F	V				

- \rightarrow Em p \leftrightarrow q :
 - p é condição suficiente e necessária para q
 - q é condição suficiente e necessária para p
- Ou seja
 - Se p é verdadeiro é obrigatório q ser verdadeiro para que a bicondicional p ↔ q seja verdadeira;
 - Se p é falso é obrigatório q ser falso para que a bicondicional p ↔ q seja verdadeira;

Operações Lógicas (Resumo)

	Operações Lógicas							
р	q	~p	~q	p^q	pvq	p <u>v</u> q	p→q	p↔q
V	V	F	F	V	V	F	V	V
V	F	F	V	F	V	V	F	F
F	V	V	F	F	V	V	V	F
F	F	V	V	F	F	F	V	V

Exercícios

Sejam as proposições simples **p** e **q**, traduzir para a linguagem corrente as seguintes proposições:

- 1. **p**: Está frio e **q**: Está Chovendo.

- a) $\sim p$ b) $p \land q$ c) $p \lor q$ d) $q \leftrightarrow p$

- e) $p \rightarrow \sim q$ f) $p \vee \sim q$ g) $\sim p \wedge \sim q$ h) $p \leftrightarrow \sim q$

- i) $p \land \sim q \rightarrow p$
- 2. p: Jorge é rico e q: Carlos é feliz.

- a) $q \rightarrow p$ b) $p \vee \sim q$ c) $q \leftrightarrow \sim p$ d) $\sim p \rightarrow q$
- e) $\sim p$ f) $\sim p \land q \rightarrow p$

Exercícios

- 3. p: Claudio fala inglês e q: Claudio fala alemão.

- a) $q \vee p$ b) $p \wedge q$ c) $p \wedge \sim q$ d) $\sim p \wedge \sim q$ e) $\sim \sim p$

- f) \sim (\sim p $\land \sim$ q)
- 4. p: João é gaúcho e q: Jaime é paulista.
- a) \sim (\sim p \wedge \sim q) b) \sim ~p c) \sim (\sim p v \sim q) d) p \rightarrow \sim q
- e) $\sim p \rightarrow \sim q$ f) $\sim (\sim q \rightarrow p)$

- 5. p: Marcos é alto.
 - q: Marcos é elegante.

- a) Marcos é alto e elegante
- b) Marcos é alto, mas não é elegante
- c) Não é verdade que Marcos não é alto ou elegante
- d) Marcos não é nem alto e nem elegante
- e) Marcos é alto ou não é alto, mas é elegante
 - f) É falso que Marcos não é alto ou que não é elegante

6. p: Suely é rica

q: Suely é feliz.

- a) Suely não é rica, mas é feliz
- b) Suely é rica ou não é feliz
- c) Suely não é rica e nem feliz
- d) Suely não é rica ou é rica, mas não é feliz

7. p: Carlos fala francês.

q: Carlos fala inglês.

r: Carlos fala alemão.

- a) Carlos fala francês ou inglês, mas não fala alemão
- b) Carlos fala francês e inglês, ou não fala francês e alemão
- c) É falso que Carlos fala francês mas que não fala alemão
- d) É falso que Carlos fala inglês ou alemão mas que não fala francês

8. a)
$$x = 0$$
 ou $x > 0$

b)
$$x \neq 0$$
 ou $y \neq 0$

c)
$$x > 1$$
 ou $x + y > 0$

c)
$$x > 1$$
 ou $x + y > 0$ d) $x^2 = x \cdot x$ ou $x^0 = 1$

9. a)
$$(x + y = 0 e z > 0)$$
 ou $z = 0$

b)
$$x = 0$$
 e $(y + z > x$ ou $z = 0)$

c)
$$x \neq 0$$
 ou $(x = 0 e y < 0 e z = 0)$

d)
$$(x + y = 0 e z > 0)$$
 ou $z = 0$

10. a) Se x > 0 então y = 2

b) Se
$$x + y = 2$$
 então $z > 0$

c)
$$x = 1$$
 ou $z = 2$ então $y > 1$

d) Se
$$z > 5$$
 então $x \ne 1$ e $x \ne 2$

e) Se
$$x \neq y$$
 então $x + z > 5$ e $y + z < 5$

f) Se
$$x + y > z$$
 e $z = 1$ então $x + y > 1$

g) Se
$$x < 2$$
 então $x = 1$ ou $x = 0$

h) Se
$$y = 4$$
 e se $x < y$ então $x < 5$