Data Loading, Storage, and File Formats

Accessing data is a necessary first step for using most of the tools in this book. I'm going to be focused on data input and output using pandas, though there are numerous tools in other libraries to help with reading and writing data in various formats.

Input and output typically falls into a few main categories: reading text files and other more efficient on-disk formats, loading data from databases, and interacting with network sources like web APIs.

6.1 Reading and Writing Data in Text Format

pandas features a number of functions for reading tabular data as a DataFrame object. Table 6-1 summarizes some of them, though read_csv is likely the one you'll use the most.

Table 6-1. Parsing functions in pandas

Function	Description
read_csv	Load delimited data from a file, URL, or file-like object; use comma as default delimiter
read_fwf	Read data in fixed-width column format (i.e., no delimiters)
read_clipboard	Version of read_csv that reads data from the clipboard; useful for converting tables from web pages
read_excel	Read tabular data from an Excel XLS or XLSX file
read_hdf	Read HDF5 files written by pandas
read_html	Read all tables found in the given HTML document
read_json	Read data from a JSON (JavaScript Object Notation) string representation
read_msgpack	Read pandas data encoded using the MessagePack binary format
read_pickle	Read an arbitrary object stored in Python pickle format
read_sas	Read a SAS dataset stored in one of the SAS system's custom storage formats

Function	Description
read_sql	Read the results of a SQL query (using SQLAlchemy) as a pandas DataFrame
read_stata	Read a dataset from Stata file format
read_feather	Read the Feather binary file format

I'll give an overview of the mechanics of these functions, which are meant to convert text data into a DataFrame. The optional arguments for these functions may fall into a few categories:

Indexing

Can treat one or more columns as the returned DataFrame, and whether to get column names from the file, the user, or not at all.

Type inference and data conversion

This includes the user-defined value conversions and custom list of missing value markers.

Datetime parsing

Includes combining capability, including combining date and time information spread over multiple columns into a single column in the result.

Iterating

Support for iterating over chunks of very large files.

Unclean data issues

Skipping rows or a footer, comments, or other minor things like numeric data with thousands separated by commas.

Because of how messy data in the real world can be, some of the data loading functions (especially read_csv) have grown very complex in their options over time. It's normal to feel overwhelmed by the number of different parameters (read_csv has over 50 as of this writing). The online pandas documentation has many examples about how each of them works, so if you're struggling to read a particular file, there might be a similar enough example to help you find the right parameters.

Some of these functions, like pandas.read_csv, perform *type inference*, because the column data types are not part of the data format. That means you don't necessarily have to specify which columns are numeric, integer, boolean, or string. Other data formats, like HDF5, Feather, and msgpack, have the data types stored in the format.

Handling dates and other custom types can require extra effort. Let's start with a small comma-separated (CSV) text file:

```
In [10]: !cat examples/ex1.csv
a,b,c,d,message
1,2,3,4,hello
```

```
5,6,7,8,world
9,10,11,12,foo
```


Here I used the Unix cat shell command to print the raw contents of the file to the screen. If you're on Windows, you can use type instead of cat to achieve the same effect.

Since this is comma-delimited, we can use read csv to read it into a DataFrame:

```
In [11]: df = pd.read_csv('examples/ex1.csv')
In [12]: df
Out[12]:
      Ь
          c
              d message
          3
              4
                  hello
          7
              8
                  world
      6
2 9 10 11 12
                     foo
```

A file will not always have a header row. Consider this file:

```
In [13]: !cat examples/ex2.csv
1,2,3,4,hello
5,6,7,8,world
9,10,11,12,foo
```

To read this file, you have a couple of options. You can allow pandas to assign default column names, or you can specify names yourself:

```
In [14]: pd.read_csv('examples/ex2.csv', header=None)
Out[14]:
              3
          2
  0
          3
              4 hello
         7
              8 world
2 9 10 11 12
                   foo
In [15]: pd.read_csv('examples/ex2.csv', names=['a', 'b', 'c', 'd', 'message'])
Out[15]:
      Ь
          C
              d message
  a
                  hello
          3
              4
                  world
         7
              8
2 9 10 11 12
                    foo
```

Suppose you wanted the message column to be the index of the returned DataFrame. You can either indicate you want the column at index 4 or named 'message' using the index_col argument:

```
In [16]: names = ['a', 'b', 'c', 'd', 'message']
In [17]: pd.read csv('examples/ex2.csv', names=names, index col='message')
Out[17]:
```

```
a b c d
message
hello 1 2 3 4
world 5 6 7 8
foo 9 10 11 12
```

In the event that you want to form a hierarchical index from multiple columns, pass a list of column numbers or names:

```
In [18]: !cat examples/csv mindex.csv
key1,key2,value1,value2
one,a,1,2
one,b,3,4
one,c,5,6
one,d,7,8
two,a,9,10
two, b, 11, 12
two,c,13,14
two,d,15,16
In [19]: parsed = pd.read_csv('examples/csv_mindex.csv',
                               index_col=['key1', 'key2'])
In [20]: parsed
Out[20]:
           value1 value2
key1 key2
one
                1
    a
                3
     Ь
                         4
     c
                5
     d
                9
                        10
two
     a
     Ь
               11
                       12
     c
               13
                       14
     d
               15
                        16
```

In some cases, a table might not have a fixed delimiter, using whitespace or some other pattern to separate fields. Consider a text file that looks like this:

While you could do some munging by hand, the fields here are separated by a variable amount of whitespace. In these cases, you can pass a regular expression as a delimiter for read_csv. This can be expressed by the regular expression \s+, so we have then:

```
In [22]: result = pd.read_csv('examples/ex3.txt', sep='\s+')
In [23]: result
Out[23]:
            Α
                      B
aaa -0.264438 -1.026059 -0.619500
bbb 0.927272 0.302904 -0.032399
ccc -0.264273 -0.386314 -0.217601
ddd -0.871858 -0.348382 1.100491
```

Because there was one fewer column name than the number of data rows, read_csv infers that the first column should be the DataFrame's index in this special case.

The parser functions have many additional arguments to help you handle the wide variety of exception file formats that occur (see a partial listing in Table 6-2). For example, you can skip the first, third, and fourth rows of a file with skiprows:

```
In [24]: !cat examples/ex4.csv
# hey!
a,b,c,d,message
# just wanted to make things more difficult for you
# who reads CSV files with computers, anyway?
1,2,3,4,hello
5,6,7,8,world
9,10,11,12,foo
In [25]: pd.read_csv('examples/ex4.csv', skiprows=[0, 2, 3])
Out[25]:
              d message
        C
 1 2 3 4
                 hello
         7 8
                  world
2 9 10 11 12
                   foo
```

Handling missing values is an important and frequently nuanced part of the file parsing process. Missing data is usually either not present (empty string) or marked by some sentinel value. By default, pandas uses a set of commonly occurring sentinels, such as NA and NULL:

```
In [26]: !cat examples/ex5.csv
something,a,b,c,d,message
one,1,2,3,4,NA
two,5,6,,8,world
three, 9, 10, 11, 12, foo
In [27]: result = pd.read csv('examples/ex5.csv')
In [28]: result
Out[28]:
  something a
                Ь
                        d message
                    C
       one 1 2
0
                   3.0 4
                               NaN
1
       two 5 6 NaN 8
                             world
     three 9 10 11.0 12
                               foo
In [29]: pd.isnull(result)
```

```
Out[29]:
something a b c d message

False False False False False True

False False False False False

False False False False False
```

The na_values option can take either a list or set of strings to consider missing values:

```
In [30]: result = pd.read_csv('examples/ex5.csv', na_values=['NULL'])
In [31]: result
Out[31]:
  something
                Ь
                          d message
                      c
                2
                    3.0
                         4
                               NaN
1
        two 5
               6
                   NaN
                        8
                              world
      three 9 10 11.0 12
                               foo
```

Different NA sentinels can be specified for each column in a dict:

```
In [32]: sentinels = {'message': ['foo', 'NA'], 'something': ['two']}
In [33]: pd.read_csv('examples/ex5.csv', na_values=sentinels)
Out[33]:
  something
                 Ь
                      C
                          d message
                 2
                     3.0
                          4
        one
                                 NaN
1
        NaN 5
                 6
                    NaN
                          8
                              world
      three 9 10 11.0 12
                                NaN
```

Table 6-2 lists some frequently used options in pandas.read_csv.

Table 6-2. Some read_csv function arguments

Argument	Description
path	String indicating filesystem location, URL, or file-like object
sep or delimiter	Character sequence or regular expression to use to split fields in each row
header	Row number to use as column names; defaults to 0 (first row), but should be None if there is no header row
index_col	Column numbers or names to use as the row index in the result; can be a single name/number or a list of them for a hierarchical index
names	List of column names for result, combine with header=None
skiprows	Number of rows at beginning of file to ignore or list of row numbers (starting from 0) to skip.
na_values	Sequence of values to replace with NA.
comment	Character(s) to split comments off the end of lines.
parse_dates	Attempt to parse data to datetime; False by default. If True, will attempt to parse all columns. Otherwise can specify a list of column numbers or name to parse. If element of list is tuple or list, will combine multiple columns together and parse to date (e.g., if date/time split across two columns).
keep_date_col	If joining columns to parse date, keep the joined columns; False by default.
converters	Dict containing column number of name mapping to functions (e.g., { 'foo': f} would apply the function f to all values in the 'foo' column).

174 Chapter 6: Data Loading, Storage, and File Formats

Argument	Description
dayfirst	When parsing potentially ambiguous dates, treat as international format (e.g., 7/6/2012 -> June 7,
	2012); False by default.
date_parser	Function to use to parse dates.
nrows	Number of rows to read from beginning of file.
iterator	Return a TextParser object for reading file piecemeal.
chunksize	For iteration, size of file chunks.
skip_footer	Number of lines to ignore at end of file.
verbose	Print various parser output information, like the number of missing values placed in non-numeric columns.
encoding	Text encoding for Unicode (e.g., 'utf-8' for UTF-8 encoded text).
squeeze	If the parsed data only contains one column, return a Series.
thousands	Separator for thousands (e.g., ', ' or '.').

Reading Text Files in Pieces

When processing very large files or figuring out the right set of arguments to correctly process a large file, you may only want to read in a small piece of a file or iterate through smaller chunks of the file.

Before we look at a large file, we make the pandas display settings more compact:

```
In [34]: pd.options.display.max_rows = 10
```

Now we have:

```
In [35]: result = pd.read csv('examples/ex6.csv')
In [36]: result
Out[36]:
                          three
                                    four key
                   two
          one
     0.467976 -0.038649 -0.295344 -1.824726
    -0.358893 1.404453 0.704965 -0.200638
    0.204886 1.074134 1.388361 -0.982404
     0.354628 -0.133116  0.283763 -0.837063
9995 2.311896 -0.417070 -1.409599 -0.515821
9996 -0.479893 -0.650419 0.745152 -0.646038
9997 0.523331 0.787112 0.486066 1.093156
                                           Κ
9998 -0.362559 0.598894 -1.843201 0.887292
9999 -0.096376 -1.012999 -0.657431 -0.573315
[10000 rows x 5 columns]
```

If you want to only read a small number of rows (avoiding reading the entire file), specify that with nrows:

```
0 0.467976 -0.038649 -0.295344 -1.824726 L
1 -0.358893 1.404453 0.704965 -0.200638 B
2 -0.501840 0.659254 -0.421691 -0.057688 G
3 0.204886 1.074134 1.388361 -0.982404 R
4 0.354628 -0.133116 0.283763 -0.837063 Q
```

To read a file in pieces, specify a chunksize as a number of rows:

```
In [38]: chunker = pd.read_csv('examples/ex6.csv', chunksize=1000)
In [39]: chunker
Out[39]: <pandas.io.parsers.TextFileReader at 0x7f2dfd39e3c8>
```

The TextFileReader object returned by read_csv allows you to iterate over the parts of the file according to the chunksize. For example, we can iterate over ex6.csv, aggregating the value counts in the 'key' column like so:

```
chunker = pd.read_csv('examples/ex6.csv', chunksize=1000)
    tot = pd.Series([])
   for piece in chunker:
        tot = tot.add(piece['key'].value_counts(), fill_value=0)
   tot = tot.sort values(ascending=False)
We have then:
   In [41]: tot[:10]
   Out[41]:
   Ε
         368.0
        364.0
        346.0
   L
        343.0
   0
         340.0
   Μ
        338.0
   J
        337.0
       335.0
        334.0
   K
         330.0
   dtype: float64
```

TextParser is also equipped with a get_chunk method that enables you to read pieces of an arbitrary size.

Writing Data to Text Format

Data can also be exported to a delimited format. Let's consider one of the CSV files read before:

```
In [42]: data = pd.read_csv('examples/ex5.csv')
In [43]: data
Out[43]:
```

76 Chapter 6: Data Loading, Storage, and File Formats

```
something a
             Ь
                       d message
                   C
0
              2
                  3.0
      one 1
                      4
                            NaN
       two 5 6
                      8
1
                 NaN
                          world
     three 9 10 11.0 12
                            foo
```

Using DataFrame's to csv method, we can write the data out to a comma-separated file:

```
In [44]: data.to_csv('examples/out.csv')
In [45]: !cat examples/out.csv
,something,a,b,c,d,message
0, one, 1, 2, 3.0, 4,
1, two, 5, 6, , 8, world
2, three, 9, 10, 11.0, 12, foo
```

Other delimiters can be used, of course (writing to sys.stdout so it prints the text result to the console):

```
In [46]: import sys
In [47]: data.to csv(sys.stdout, sep='|')
|something|a|b|c|d|message
0|one|1|2|3.0|4|
1|two|5|6||8|world
2|three|9|10|11.0|12|foo
```

Missing values appear as empty strings in the output. You might want to denote them by some other sentinel value:

```
In [48]: data.to_csv(sys.stdout, na_rep='NULL')
,something,a,b,c,d,message
0, one, 1, 2, 3.0, 4, NULL
1, two, 5, 6, NULL, 8, world
2, three, 9, 10, 11.0, 12, foo
```

With no other options specified, both the row and column labels are written. Both of these can be disabled:

```
In [49]: data.to_csv(sys.stdout, index=False, header=False)
one,1,2,3.0,4,
two,5,6,,8,world
three,9,10,11.0,12,foo
```

You can also write only a subset of the columns, and in an order of your choosing:

```
In [50]: data.to_csv(sys.stdout, index=False, columns=['a', 'b', 'c'])
a,b,c
1,2,3.0
5,6,
9,10,11.0
```

Series also has a to_csv method:

```
In [51]: dates = pd.date_range('1/1/2000', periods=7)
In [52]: ts = pd.Series(np.arange(7), index=dates)
In [53]: ts.to_csv('examples/tseries.csv')
In [54]: !cat examples/tseries.csv
2000-01-01,0
2000-01-02,1
2000-01-03,2
2000-01-04,3
2000-01-05,4
2000-01-06,5
2000-01-07,6
```

Working with Delimited Formats

It's possible to load most forms of tabular data from disk using functions like pan das.read_csv. In some cases, however, some manual processing may be necessary. It's not uncommon to receive a file with one or more malformed lines that trip up read_csv. To illustrate the basic tools, consider a small CSV file:

```
In [55]: !cat examples/ex7.csv
"a","b","c"
"1","2","3"
"1","2","3"
```

For any file with a single-character delimiter, you can use Python's built-in csv module. To use it, pass any open file or file-like object to csv.reader:

```
import csv
f = open('examples/ex7.csv')
reader = csv.reader(f)
```

Iterating through the reader like a file yields tuples of values with any quote characters removed:

From there, it's up to you to do the wrangling necessary to put the data in the form that you need it. Let's take this step by step. First, we read the file into a list of lines:

```
In [58]: with open('examples/ex7.csv') as f:
    ....: lines = list(csv.reader(f))
```

Then, we split the lines into the header line and the data lines:

```
In [59]: header, values = lines[0], lines[1:]
```

178 Chapter 6: Data Loading, Storage, and File Formats

Then we can create a dictionary of data columns using a dictionary comprehension and the expression zip(*values), which transposes rows to columns:

```
In [60]: data_dict = {h: v for h, v in zip(header, zip(*values))}
In [61]: data_dict
Out[61]: {'a': ('1', '1'), 'b': ('2', '2'), 'c': ('3', '3')}
```

CSV files come in many different flavors. To define a new format with a different delimiter, string quoting convention, or line terminator, we define a simple subclass of csv.Dialect:

```
class my_dialect(csv.Dialect):
    lineterminator = '\n'
    delimiter = ';'
    quotechar = '"'
    quoting = csv.QUOTE_MINIMAL
reader = csv.reader(f, dialect=my_dialect)
```

We can also give individual CSV dialect parameters as keywords to csv.reader without having to define a subclass:

```
reader = csv.reader(f, delimiter='|')
```

The possible options (attributes of csv.Dialect) and what they do can be found in Table 6-3.

Table 6-3. CSV dialect options

Argument	Description
delimiter	One-character string to separate fields; defaults to ','.
lineterminator	Line terminator for writing; defaults to '\r\n'. Reader ignores this and recognizes cross-platform line terminators.
quotechar	Quote character for fields with special characters (like a delimiter); default is '"'.
quoting	Quoting convention. Options include csv.QUOTE_ALL (quote all fields), csv.QUOTE_MINI MAL (only fields with special characters like the delimiter), csv.QUOTE_NONNUMERIC, and csv.QUOTE_NONE (no quoting). See Python's documentation for full details. Defaults to QUOTE_MINIMAL.
skipinitialspace	Ignore whitespace after each delimiter; default is False.
doublequote	How to handle quoting character inside a field; if True, it is doubled (see online documentation for full detail and behavior).
escapechar	String to escape the delimiter if quoting is set to csv.QUOTE_NONE; disabled by default.

For files with more complicated or fixed multicharacter delimiters, you will not be able to use the csv module. In those cases, you'll have to do the line splitting and other cleanup using string's split method or the regular expression method re.split.

To write delimited files manually, you can use csv.writer. It accepts an open, writable file object and the same dialect and format options as csv.reader:

```
with open('mydata.csv', 'w') as f:
    writer = csv.writer(f, dialect=my_dialect)
    writer.writerow(('one', 'two', 'three'))
    writer.writerow(('1', '2', '3'))
    writer.writerow(('4', '5', '6'))
    writer.writerow(('7', '8', '9'))
```

JSON Data

JSON (short for JavaScript Object Notation) has become one of the standard formats for sending data by HTTP request between web browsers and other applications. It is a much more free-form data format than a tabular text form like CSV. Here is an example:

JSON is very nearly valid Python code with the exception of its null value null and some other nuances (such as disallowing trailing commas at the end of lists). The basic types are objects (dicts), arrays (lists), strings, numbers, booleans, and nulls. All of the keys in an object must be strings. There are several Python libraries for reading and writing JSON data. I'll use json here, as it is built into the Python standard library. To convert a JSON string to Python form, use json.loads:

```
In [63]: import json
In [64]: result = json.loads(obj)
In [65]: result
Out[65]:
{'name': 'Wes',
   'pet': None,
   'places_lived': ['United States', 'Spain', 'Germany'],
   'siblings': [{'age': 30, 'name': 'Scott', 'pets': ['Zeus', 'Zuko']},
   {'age': 38, 'name': 'Katie', 'pets': ['Sixes', 'Stache', 'Cisco']}]}
```

json.dumps, on the other hand, converts a Python object back to JSON:

```
In [66]: asjson = json.dumps(result)
```

How you convert a JSON object or list of objects to a DataFrame or some other data structure for analysis will be up to you. Conveniently, you can pass a list of dicts (which were previously JSON objects) to the DataFrame constructor and select a subset of the data fields:

```
In [67]: siblings = pd.DataFrame(result['siblings'], columns=['name', 'age'])
In [68]: siblings
Out[68]:
   name
         age
Scott
         30
1 Katie
         38
```

The pandas.read json can automatically convert JSON datasets in specific arrangements into a Series or DataFrame. For example:

```
In [69]: !cat examples/example.json
[{"a": 1, "b": 2, "c": 3},
{"a": 4, "b": 5, "c": 6},
{"a": 7, "b": 8, "c": 9}]
```

The default options for pandas.read_json assume that each object in the JSON array is a row in the table:

```
In [70]: data = pd.read json('examples/example.json')
In [71]: data
Out[71]:
  a b c
0 1 2 3
1 4 5 6
```

For an extended example of reading and manipulating JSON data (including nested records), see the USDA Food Database example in Chapter 14.

If you need to export data from pandas to JSON, one way is to use the to_json methods on Series and DataFrame:

```
In [72]: print(data.to json())
{"a":{"0":1,"1":4,"2":7},"b":{"0":2,"1":5,"2":8},"c":{"0":3,"1":6,"2":9}}
In [73]: print(data.to_json(orient='records'))
[{"a":1,"b":2,"c":3},{"a":4,"b":5,"c":6},{"a":7,"b":8,"c":9}]
```

XML and HTML: Web Scraping

Python has many libraries for reading and writing data in the ubiquitous HTML and XML formats. Examples include lxml, Beautiful Soup, and html5lib. While lxml is comparatively much faster in general, the other libraries can better handle malformed HTML or XML files.

pandas has a built-in function, read_html, which uses libraries like lxml and Beautiful Soup to automatically parse tables out of HTML files as DataFrame objects. To show how this works, I downloaded an HTML file (used in the pandas documentation) from the United States FDIC government agency showing bank failures. First, you must install some additional libraries used by read_html:

```
conda install lxml
pip install beautifulsoup4 html5lib
```

If you are not using conda, pip install lxml will likely also work.

The pandas.read_html function has a number of options, but by default it searches for and attempts to parse all tabular data contained within tags. The result is a list of DataFrame objects:

```
In [74]: tables = pd.read html('examples/fdic failed bank list.html')
In [75]: len(tables)
Out[75]: 1
In [76]: failures = tables[0]
In [77]: failures.head()
Out[77]:
                      Bank Name
                                            City ST
                                                      CERT \
                    Allied Bank
                                                 AR
                                                        91
                                       Mulberry
   The Woodbury Banking Company
                                       Woodbury
                                                  GΑ
                                                      11297
         First CornerStone Bank King of Prussia
                                                 PA
                                                      35312
3
             Trust Company Bank
                                         Memphis TN
                                                      9956
    North Milwaukee State Bank
                                       Milwaukee WI 20364
                Acquiring Institution
                                             Closing Date
                                                                 Updated Date
0
                          Today's Bank September 23, 2016 November 17, 2016
                          United Bank
                                          August 19, 2016 November 17, 2016
  First-Citizens Bank & Trust Company
                                               May 6, 2016 September 6, 2016
           The Bank of Fayette County
                                            April 29, 2016
                                                           September 6, 2016
  First-Citizens Bank & Trust Company
                                            March 11, 2016
                                                                June 16, 2016
```

Because failures has many columns, pandas inserts a line break character \.

As you will learn in later chapters, from here we could proceed to do some data cleaning and analysis, like computing the number of bank failures by year:

```
In [78]: close_timestamps = pd.to_datetime(failures['Closing Date'])
In [79]: close_timestamps.dt.year.value_counts()
Out[79]:
2010     157
2009     140
```

¹ For the full list, see https://www.fdic.gov/bank/individual/failed/banklist.html.

```
2011 92
2012 51
2008 25
...
2004 4
2001 4
2007 3
2003 3
2000 2
Name: Closing Date, Length: 15, dtype: int64
```

Parsing XML with lxml.objectify

XML (eXtensible Markup Language) is another common structured data format supporting hierarchical, nested data with metadata. The book you are currently reading was actually created from a series of large XML documents.

Earlier, I showed the pandas.read_html function, which uses either lxml or Beautiful Soup under the hood to parse data from HTML. XML and HTML are structurally similar, but XML is more general. Here, I will show an example of how to use lxml to parse data from a more general XML format.

The New York Metropolitan Transportation Authority (MTA) publishes a number of data series about its bus and train services. Here we'll look at the performance data, which is contained in a set of XML files. Each train or bus service has a different file (like *Performance_MNR.xml* for the Metro-North Railroad) containing monthly data as a series of XML records that look like this:

```
<TNDTCATOR>
 <INDICATOR_SEQ>373889</INDICATOR SE0>
 <PARENT_SEQ></PARENT_SEQ>
 <AGENCY NAME>Metro-North Railroad/AGENCY NAME>
 <INDICATOR_NAME>Escalator Availability</INDICATOR_NAME>
 <DESCRIPTION>Percent of the time that escalators are operational
 systemwide. The availability rate is based on physical observations performed
 the morning of regular business days only. This is a new indicator the agency
 began reporting in 2009.</DESCRIPTION>
 <PERIOD_YEAR>2011</PERIOD_YEAR>
 <PERIOD_MONTH>12</PERIOD_MONTH>
 <CATEGORY>Service Indicators/CATEGORY>
 <FREQUENCY>M</FREQUENCY>
 <DESIRED CHANGE>U</DESIRED CHANGE>
 <INDICATOR_UNIT>%</INDICATOR_UNIT>
 <DECIMAL PLACES>1</DECIMAL PLACES>
 <YTD_TARGET>97.00</Pre>/YTD_TARGET>
 <YTD_ACTUAL></YTD_ACTUAL>
 <MONTHLY TARGET>97.00</MONTHLY TARGET>
  <MONTHLY_ACTUAL></MONTHLY_ACTUAL>
</INDICATOR>
```

Using lxml.objectify, we parse the file and get a reference to the root node of the XML file with getroot:

```
from lxml import objectify

path = 'datasets/mta_perf/Performance_MNR.xml'
parsed = objectify.parse(open(path))
root = parsed.getroot()
```

root.INDICATOR returns a generator yielding each <INDICATOR> XML element. For each record, we can populate a dict of tag names (like YTD_ACTUAL) to data values (excluding a few tags):

Lastly, convert this list of dicts into a DataFrame:

```
In [82]: perf = pd.DataFrame(data)
In [83]: perf.head()
Out[83]:
            AGENCY NAME
                                   CATEGORY \
Metro-North Railroad Service Indicators
1 Metro-North Railroad Service Indicators
2 Metro-North Railroad Service Indicators
3 Metro-North Railroad Service Indicators
4 Metro-North Railroad Service Indicators
                                                                       DESCRIPTIO
N
  Percent of commuter trains that arrive at their destinations within 5 minute..
   Percent of commuter trains that arrive at their destinations within 5 minute..
   Percent of commuter trains that arrive at their destinations within 5 minute..
  Percent of commuter trains that arrive at their destinations within 5 minute..
   Percent of commuter trains that arrive at their destinations within 5 minute..
  FREQUENCY
                                   INDICATOR NAME INDICATOR UNIT
0
          M On-Time Performance (West of Hudson)
                                                               %
          M On-Time Performance (West of Hudson)
                                                               %
1
```

Chapter 6: Data Loading, Storage, and File Formats

```
M On-Time Performance (West of Hudson)
3
          M On-Time Performance (West of Hudson)
                                                                %
4
          M On-Time Performance (West of Hudson)
  MONTHLY_ACTUAL MONTHLY_TARGET PERIOD_MONTH PERIOD_YEAR YTD_ACTUAL \
0
            96.9
                             95
                                             1
                                                       2008
              95
                             95
                                             2
                                                       2008
                                                                    96
1
            96.9
                                                                  96.3
2
                             95
                                             3
                                                       2008
3
            98.3
                             95
                                             4
                                                       2008
                                                                   96.8
                                             5
            95.8
                                                       2008
                                                                   96.6
  YTD_TARGET
0
          95
1
          95
2
          95
3
          95
```

XML data can get much more complicated than this example. Each tag can have metadata, too. Consider an HTML link tag, which is also valid XML:

```
from io import StringIO
tag = '<a href="http://www.google.com">Google</a>'
root = objectify.parse(StringIO(tag)).getroot()
```

You can now access any of the fields (like href) in the tag or the link text:

```
In [85]: root
Out[85]: <Element a at 0x7f2ddcd62408>
In [86]: root.get('href')
Out[86]: 'http://www.google.com'
In [87]: root.text
Out[87]: 'Google'
```

6.2 Binary Data Formats

One of the easiest ways to store data (also known as *serialization*) efficiently in binary format is using Python's built-in pickle serialization. pandas objects all have a to_pickle method that writes the data to disk in pickle format:

```
In [88]: frame = pd.read csv('examples/ex1.csv')
In [89]: frame
Out[89]:
   a
      Ь
           c
               d message
       2
           3
              4
                  hello
           7
              8
                  world
      6
2 9 10 11 12
                    foo
In [90]: frame.to_pickle('examples/frame_pickle')
```

You can read any "pickled" object stored in a file by using the built-in pickle directly, or even more conveniently using pandas.read_pickle:

```
In [91]: pd.read_pickle('examples/frame_pickle')
Out[91]:
    a    b    c    d message
0    1    2    3    4    hello
1    5    6    7    8    world
2    9    10    11    12    foo
```


pickle is only recommended as a short-term storage format. The problem is that it is hard to guarantee that the format will be stable over time; an object pickled today may not unpickle with a later version of a library. We have tried to maintain backward compatibility when possible, but at some point in the future it may be necessary to "break" the pickle format.

pandas has built-in support for two more binary data formats: HDF5 and Message-Pack. I will give some HDF5 examples in the next section, but I encourage you to explore different file formats to see how fast they are and how well they work for your analysis. Some other storage formats for pandas or NumPy data include:

bcolz

A compressable column-oriented binary format based on the Blosc compression library.

Feather

A cross-language column-oriented file format I designed with the R programming community's Hadley Wickham. Feather uses the Apache Arrow columnar memory format.

Using HDF5 Format

HDF5 is a well-regarded file format intended for storing large quantities of scientific array data. It is available as a C library, and it has interfaces available in many other languages, including Java, Julia, MATLAB, and Python. The "HDF" in HDF5 stands for *hierarchical data format*. Each HDF5 file can store multiple datasets and supporting metadata. Compared with simpler formats, HDF5 supports on-the-fly compression with a variety of compression modes, enabling data with repeated patterns to be stored more efficiently. HDF5 can be a good choice for working with very large datasets that don't fit into memory, as you can efficiently read and write small sections of much larger arrays.

While it's possible to directly access HDF5 files using either the PyTables or h5py libraries, pandas provides a high-level interface that simplifies storing Series and

DataFrame object. The HDFStore class works like a dict and handles the low-level details:

```
In [93]: frame = pd.DataFrame({'a': np.random.randn(100)})
In [94]: store = pd.HDFStore('mydata.h5')
In [95]: store['obj1'] = frame
In [96]: store['obj1 col'] = frame['a']
In [97]: store
Out[97]:
<class 'pandas.io.pytables.HDFStore'>
File path: mydata.h5
```

Objects contained in the HDF5 file can then be retrieved with the same dict-like API:

```
In [98]: store['obj1']
Out[98]:
0 -0.204708
1 0.478943
2 -0.519439
3 -0.555730
   1.965781
95 0.795253
96 0.118110
97 -0.748532
98 0.584970
99 0.152677
[100 rows x 1 columns]
```

HDFStore supports two storage schemas, 'fixed' and 'table'. The latter is generally slower, but it supports query operations using a special syntax:

```
In [99]: store.put('obj2', frame, format='table')
In [100]: store.select('obj2', where=['index >= 10 and index <= 15'])</pre>
Out[100]:
10 1.007189
11 -1.296221
12 0.274992
13 0.228913
14 1.352917
15 0.886429
In [101]: store.close()
```

The put is an explicit version of the store['obj2'] = frame method but allows us to set other options like the storage format.

6.2 Binary Data Formats | 187

The pandas.read_hdf function gives you a shortcut to these tools:

If you are processing data that is stored on remote servers, like Amazon S3 or HDFS, using a different binary format designed for distributed storage like Apache Parquet may be more suitable. Python for Parquet and other such storage formats is still developing, so I do not write about them in this book.

If you work with large quantities of data locally, I would encourage you to explore PyTables and h5py to see how they can suit your needs. Since many data analysis problems are I/O-bound (rather than CPU-bound), using a tool like HDF5 can massively accelerate your applications.

HDF5 is *not* a database. It is best suited for write-once, read-many datasets. While data can be added to a file at any time, if multiple writers do so simultaneously, the file can become corrupted.

Reading Microsoft Excel Files

pandas also supports reading tabular data stored in Excel 2003 (and higher) files using either the ExcelFile class or pandas.read_excel function. Internally these tools use the add-on packages xlrd and openpyxl to read XLS and XLSX files, respectively. These must be installed separately from pandas using pip or conda.

To use ExcelFile, create an instance by passing a path to an xls or xlsx file:

```
In [105]: xlsx = pd.ExcelFile('examples/ex1.xlsx')
```

Data stored in a sheet can then be read into DataFrame with parse:

```
In [106]: pd.read_excel(xlsx, 'Sheet1')
Out[106]:
    a    b    c    d message
0    1    2    3    4    hello
1    5    6    7    8    world
2    9    10    11    12    foo
```

88 | Chapter 6: Data Loading, Storage, and File Formats

If you are reading multiple sheets in a file, then it is faster to create the ExcelFile, but you can also simply pass the filename to pandas.read excel:

```
In [107]: frame = pd.read_excel('examples/ex1.xlsx', 'Sheet1')
In [108]: frame
Out[108]:
            d message
  a b c
 1 2 3
            4
                hello
1 5 6 7 8
                world
2 9 10 11 12
                  foo
```

To write pandas data to Excel format, you must first create an ExcelWriter, then write data to it using pandas objects' to_excel method:

```
In [109]: writer = pd.ExcelWriter('examples/ex2.xlsx')
In [110]: frame.to excel(writer, 'Sheet1')
In [111]: writer.save()
```

You can also pass a file path to to_excel and avoid the ExcelWriter:

```
In [112]: frame.to_excel('examples/ex2.xlsx')
```

6.3 Interacting with Web APIs

Many websites have public APIs providing data feeds via JSON or some other format. There are a number of ways to access these APIs from Python; one easy-to-use method that I recommend is the requests package.

To find the last 30 GitHub issues for pandas on GitHub, we can make a GET HTTP request using the add-on requests library:

```
In [114]: import requests
In [115]: url = 'https://api.github.com/repos/pandas-dev/pandas/issues'
In [116]: resp = requests.get(url)
In [117]: resp
Out[117]: <Response [200]>
```

The Response object's json method will return a dictionary containing JSON parsed into native Python objects:

```
In [118]: data = resp.json()
In [119]: data[0]['title']
Out[119]: 'BUG: SparseDataFrame coerces input to dense matrix if string-type inde
x is given'
```

6.3 Interacting with Web APIs | 189

Each element in data is a dictionary containing all of the data found on a GitHub issue page (except for the comments). We can pass data directly to DataFrame and extract fields of interest:

```
In [120]: issues = pd.DataFrame(data, columns=['number', 'title',
                                                 'labels', 'state'])
In [121]: issues
Out[121]:
    number \
     22630
1
     22629
2
     22628
     22627
     22624
       . . .
     22593
25
26
     22592
27
     22591
     22590
28
29
     22588
                                                                                 tit
le
    BUG: SparseDataFrame coerces input to dense matrix if string-type index is q.
    read excel ignores `sheet name` parameter in PyInstaller EXE but not in Pyth.
2
           BUG: Some sas7bdat files with many columns are not parseable by read_s
as
3
                     Series.reorder levels docstring includes extra 'axis' argumen
t.
                                                                 Refactor test_sql.
ру
25
                                                           Set hypothesis HealthChe
ck
26
      Invitation for comments / use: reading large fixed-width datasets efficient
ly
                                            Inconsistent behaviour in Timestamp.rou
27
nd
28
                                       DataFrame.rolling causes Kernel died, resta
гt
29
                        TST: add test to io/formats/test to html.py to close GH61
31
                                                                                labe
ls
0
[]
[]
    [{'id': 76811, 'node_id': 'MDU6TGFiZWw3NjgxMQ==', 'url': 'https://api.github.
```

```
[{'id': 134699, 'node id': 'MDU6TGFiZWwxMzQ20Tk=', 'url': 'https://api.githu.
    [{'id': 211029535, 'node_id': 'MDU6TGFiZWwyMTEwMjk1MzU=', 'url': 'https://ap.
    [{'id': 48070600, 'node_id': 'MDU6TGFiZWw00DA3MDYwMA==', 'url': 'https://api.
    [{'id': 2301354, 'node_id': 'MDU6TGFiZWwyMzAxMzU0', 'url': 'https://api.gith.
27
    [{'id': 211840, 'node id': 'MDU6TGFiZWwyMTE4NDA=', 'url': 'https://api.githu.
    [{'id': 986278782, 'node_id': 'MDU6TGFiZWw50DYyNzg30DI=', 'url': 'https://ap.
   [{'id': 57395487, 'node_id': 'MDU6TGFiZWw1NzM5NTQ4Nw==', 'url': 'https://api.
   state
0
   open
   open
   open
   open
   open
25
   open
   open
27
   open
28 open
29 open
[30 rows x 4 columns]
```

With a bit of elbow grease, you can create some higher-level interfaces to common web APIs that return DataFrame objects for easy analysis.

6.4 Interacting with Databases

In a business setting, most data may not be stored in text or Excel files. SQL-based relational databases (such as SQL Server, PostgreSQL, and MySQL) are in wide use, and many alternative databases have become quite popular. The choice of database is usually dependent on the performance, data integrity, and scalability needs of an application.

Loading data from SQL into a DataFrame is fairly straightforward, and pandas has some functions to simplify the process. As an example, I'll create a SQLite database using Python's built-in sqlite3 driver:

```
In [122]: import sqlite3
In [123]: query = """
    ....: CREATE TABLE test
```

```
....: (a VARCHAR(20), b VARCHAR(20),
                       d INTEGER
       ....: c REAL,
       ....: );"""
   In [124]: con = sqlite3.connect('mydata.sqlite')
    In [125]: con.execute(query)
   Out[125]: <sqlite3.Cursor at 0x7f2dd12c2650>
   In [126]: con.commit()
Then, insert a few rows of data:
    In [127]: data = [('Atlanta', 'Georgia', 1.25, 6),
                      ('Tallahassee', 'Florida', 2.6, 3),
                      ('Sacramento', 'California', 1.7, 5)]
       . . . . . :
   In [128]: stmt = "INSERT INTO test VALUES(?, ?, ?, ?)"
   In [129]: con.executemany(stmt, data)
   Out[129]: <sqlite3.Cursor at 0x7f2dd22535e0>
    In [130]: con.commit()
```

Most Python SQL drivers (PyODBC, psycopg2, MySQLdb, pymssql, etc.) return a list of tuples when selecting data from a table:

```
In [131]: cursor = con.execute('select * from test')
In [132]: rows = cursor.fetchall()
In [133]: rows
Out[133]:
[('Atlanta', 'Georgia', 1.25, 6),
   ('Tallahassee', 'Florida', 2.6, 3),
   ('Sacramento', 'California', 1.7, 5)]
```

You can pass the list of tuples to the DataFrame constructor, but you also need the column names, contained in the cursor's description attribute:

192 | Chapter 6: Data Loading, Storage, and File Formats

This is quite a bit of munging that you'd rather not repeat each time you query the database. The SQLAlchemy project is a popular Python SQL toolkit that abstracts away many of the common differences between SQL databases. pandas has a read_sql function that enables you to read data easily from a general SQLAlchemy connection. Here, we'll connect to the same SQLite database with SQLAlchemy and read data from the table created before:

6.5 Conclusion

Getting access to data is frequently the first step in the data analysis process. We have looked at a number of useful tools in this chapter that should help you get started. In the upcoming chapters we will dig deeper into data wrangling, data visualization, time series analysis, and other topics.