FIRST SEMESTER 2019 – 2020 COURSE HANDOUT (PART II)

01-08-2019

In addition to Part I (General Handout for all courses appended to the timetable) this handout gives further details regarding the course.

Course No : **CS F422**

Course Title : Parallel Computing
Instructor-in-charge : Prof. G Geethakumari

1. Scope and Objective of the Course:

Parallel computing architectures have emerged as alternative to high performance computing using powerful single processor machines. Sequential algorithms i.e., algorithms designed for a single processor machine, do not harness the full potential of a parallel machine and hence the need to device new parallel algorithms. Parallel algorithms are highly architecture dependent. Moreover, for a given problem, some parallel architecture is better suited than others. Therefore, it is necessary to study parallel architectures and techniques for designing efficient parallel algorithms.

The main objective of this course is to give the students exposure to

- Models of parallel computers; Interconnection networks, basic communication operations
- Introduction to parallel algorithms; Parallel programming paradigms; issues in implementing algorithms on parallel computers
- Parallel programming with message passing interface; Performance analysis
- Scalability analysis; Basic design techniques for parallel algorithms
- Parallel algorithms for selected applications like sorting, searching and merging, matrix algebra, graphs.

2. Text Book:

T1: "*Introduction to Parallel Computing*", Ananth Grama, Anshul Gupta, George Karypis and Vipin Kumar, Second Edition, Pearson Education, 2011.

3. Reference Books:

- **R1.** M.J. Quinn, "Parallel Computing: Theory & Practice", McGraw Hill Inc. 2nd Edition, Reprint 2017.
- R2. M.J.Quinn, "Parallel Programming in C with MPI & OPENMP", Jaico Books, 2004. (Reprint 2017).
- **R3.** Kai Hwang and Faye A Briggs, "Computer Architecture and Parallel Processing", Tata Mc Graw Hill Edition, 2012.
- **R4**. Peterson, "Introduction to Parallel Computing A Practical Guide with Examples in C", Oxford University Press, 2008.
- R5. Peter S Pacheco, "An Introduction to Parallel Programming", Morgan Kaufmann Publishers, 2018.

4. Course Plan:

Lecture No.	Learning Objectives	Topics to be covered	Nature of Component
1		Introduction to parallel processing and parallel processing terminology	R1 Sec. 1.1,1.2 & 1.3, T1 Chapter 1
2,3		Contrast between Data Parallelism & Control Parallelism	R1 Sec. 1.3 & 1.4
4-6	Introducing Parallel Algorithms, studying	Parallel Programming Platforms	T1 Sec. 2.1 – 2.3.
7	algorithms, minimizing	Physical Organization of parallel computer	T1 Sec. 2.4
8,9	number of processors.	PRAM algorithms, (parallel reduction, prefix sums, list ranking etc.)	R1 Sec. 2.3
10		PRAM Sorting Algorithms	Class Notes
11-13		Routing in parallel computer	T1 Sec. 2.5-2.6
14-16	Studying different organizations, mappings	Processor-Processor mapping & mapping techniques	T1 Sec. 2.7
17 - 19	between them, data	Decomposition Techniques	T1 Sec. 3.1,3.2
20	decomposition and	Task Mapping	T1 Sec. 3.3
20,21		Performance metrics for parallel system	T1 Sec. 5.1, 5.2
22,23	Performance metrics for	Iso-efficiency function & scalability issues	T1 Sec. 5.3, 5.4
24,25	parallel systems	Other scalability metrics	T1 Sec. 5.5, 5.6
26-27		Simple parallel algorithms on mesh and hypercube	R1 Chapter 6 R2, R3
28-31	Studying & Analyzing parallel versions of standard sequential	Parallel Matrix Algorithms: Matrix Multiplication, Solving System of Linear Equations	T1 Chapter 8 R4
32-36	algorithms on different processor organizations	Sorting Algorithms on mesh and hypercube	T1 Chapter 9
37 - 39		Parallel Graph Algorithms: Prim's, Dijkstra's Algorithm etc.	T1 Sec. 10.1–10.4 R5
40 - 42	Recent Advances in Parallel Computing	High performance parallel computing for cloud technologies	Recent research publications

5. Evaluation Scheme:

Component	Duration	Weightage (%)	Date & Time	Nature of Component
Mid Sem Test	1 hr 30 min	30%	4/10, 9.00 10.30 AM	Closed Book
Quizes (Two)		10%		Closed Book
Assignments/Term Projects (Take Home)		20%		Open Book
Comprehensive Exam	3 hrs	40%	11/12 FN	Closed Book

Note: For the Assignments/Term Projects (Take Home) component of 20%, exposure to basic programming would be useful.

- **6. Chamber Consultation Hour:** To be announced in the class
- **7. Notices:** Notices regarding the course will be put up on the CSIS notice board and in CMS.
- **8**. **Makeup Policy:** No makeup exam allowed without prior permission.
- **9. Academic Honesty and Integrity Policy:** Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.

INSTRUCTOR-IN-CHARGE

