

Informe Laboratorio de Máquinas: Cavitación

Laura Constanza Salinas Pizarro Escuela de Ingeniería Mecánica Pontificia Universidad Católica de Valparaíso laura.salinas.p@gmail.com

11 de diciembre de $2020\,$

${\rm \acute{I}ndice}$

L.	Objetivo	3												
2.	. Trabajo de laboratorio.													
3.	Informe	4												
	3.1. Tabla de valores medidos	4												
	3.2. Fórmulas	5												
	3.3. Tabla de valores calculados	6												
	3.4. Gráficos	7												

1. Objetivo

Determinar la curva de columna neta de succión positiva requerida, CNSPR, de una bomba centrífuga.

2. Trabajo de laboratorio.

Revisar y poner en marcha la instalación, con las válvulas de aspiración y descarga totalmente abiertas. Regular la velocidad a la indicada por el profesor.

Luego de inspeccionar los instrumentos y su operación, esperar un tiempo prudente para que se estabilice la operación de la bomba, estrangular, parcialmente, la descarga para situarse en un punto de la curva característica de la bomba ligeramente separada de su extremo derecho. A continuación, tome las siguientes medidas:

- n velocidad de ensayo, [rpm].
- nx velocidad de la bomba, en [rpm].
- pax % presión de aspiración, en [%].
- pdx % presión de descarga, en [%].
- Δ hx caudal de la bomba, presión diferencial en el venturímetro en $[mm_{Hq}]$.
- Fx fuerza medidas en la balanza, en [kp].
- \blacksquare T_a temperatura de agua en el estanque, en [°C].
- P_{atm} presión atmosférica, en $[mm_{Hg}]$.

Finalizada esta, estrangular la válvula de aspiración haciendo disminuir la presión de aspiración y el caudal en un valor indicado por el profesor. A continuación, restablecer el caudal al valor original abriendo la válvula de descarga. Y se realizan las mediciones efectuadas anteriormente.

El procedimiento se repite tantas veces como sea necesario hasta alcanzar plena cavitación.

Terminado lo anterior, se procede de igual manera para otros puntos de curva convenientemente seleccionados.

Mida los valores siguientes:

- cpax altura piezométrica del manómetro de aspiración respecto del eje de la bomba, en [mm].
- cpdx altura piezométrica del manómetro de descarga respecto del eje de la bomba, en [mm].

3. Informe

3.1. Tabla de valores medidos.

			VAL	ORES MED	IDOS 2900	(curva H	vs Q)			
	n	cpax	cpdx	nx	pax	pdx	Dhx	Fx	Т	P _{atm}
	[rpm]	[m]	[m]	[rpm]	[%]	[%]	[mm _{Hg}]	[kp]	[°C]	[mm _{Hg}]
1	2900	0,115	0,165	2899	91,8	5,6	140	1,19	18	757,1
2	2900	0,115	0,165	2899	93,8	10,2	128	1,27	18	757,1
3	2900	0,115	0,165	2898	96,3	14,6	115	1,34	18	757,1
4	2900	0,115	0,165	2899	98,6	19,4	101	1,42	18	757,1
5	2900	0,115	0,165	2898	100,8	24	87	1,48	18	757,1
6	2900	0,115	0,165	2897	103,2	28,5	74	1,53	18	757,1
7	2900	0,115	0,165	2899	104,8	32,2	63	1,53	18	757,1
8	2900	0,115	0,165	2896	107,3	37,7	50	1,57	18	757,1
9	2900	0,115	0,165	2897	109,7	42,2	36	1,53	18	757,1
10	2900	0,115	0,165	2898	112,2	46,5	22	1,45	18	757,1
11	2900	0,115	0,165	2899	115,2	50,3	9	1,21	19	757,1
12	2900	0,115	0,165	2900	121,1	54,3	0	0,82	19	757,1

	PUNTO 1													
	n	срах	cpdx	nx	pax	pdx	Dhx	Fx	T	P _{atm}				
	[rpm]	[m]	[m]	[rpm]	[%]	[%]	[mm _{Hg}]	[kp]	[°C]	[mm _{Hg}]				
1	2900	0,115	0,165	2908	97,4	17,6	105	1,4	16	757,1				
2	2900	0,115	0,165	2912	79,5	12,8	105	1,4	16	757,1				
3	2900	0,115	0,165	2912	63	8,6	105	1,4	16	757,1				
4	2900	0,115	0,165	2913	53,5	5,2	105	1,38	16	757,1				
5	2900	0,115	0,165	2916	50,4	5	98	1,35	16	757,1				
6	2900	0,115	0,165	2917	39,4	4,9	89	1,4	16,5	757,1				
7	2900	0,115	0,165	2916	36,2	4,7	79	1,4	17	757,1				

					PUNTO 2					
	n	cpax	cpdx	nx	pax	pdx	Dhx	Fx	Т	P _{atm}
	[rpm]	[m]	[m]	[rpm]	[%]	[%]	[mm _{Hg}]	[kp]	[°C]	[mm _{Hg}]
1	2900	0,115	0,165	2917	102,3	27,8	78	1,52	17	757,1
2	2900	0,115	0,165	2917	74	20,5	78	1,52	17	757,1
3	2900	0,115	0,165	2917	48,4	10,6	78	1,48	17	757,1
4	2900	0,115	0,165	2917	37,7	4,7	78	1,41	17,5	757,1
5	2900	0,115	0,165	2915	35,9	4,6	73	1,4	17,5	757,1
6	2900	0,115	0,165	2917	35,8	4,7	69	1,38	18	757,1
7	2900	0,115	0,165	2916	36,1	4,4	64	1,35	18	757,1

					PUNTO 3									
	n	срах	cpdx	nx	pax	pdx	Dhx	Fx	Т	P _{atm}				
	[rpm]	[m]	[m]	[rpm]	[%]	[%]	[mm _{Hg}]	[kp]	[°C]	[mm _{Hg}]				
1	2900	0,115	0,165	2916	109,8	43,8	35	1,49	18	757,1				
2	2900	0,115	0,165	2917	86,1	36,8	35	1,55	18	757,1				
3	2900	0,115	0,165	2918	26,8	4	35	1,28	18	757,1				
4	2900	0,115	0,165	2918	27,8	3,7	34	1,25	18,5	757,1				
5	2900	0,115	0,165	2917	29,3	3,6	31	1,2	18,5	757,1				

3.2. Fórmulas.

Velocidad:

$$V = \frac{4Q}{3600\pi D_A^2} \ [m/s] \tag{1}$$

 $D_A = 0{,}1023 \; [\mathrm{m}]$

Columna neta de succión positiva disponible, CNSPD:

$$CNSPD = pax + \frac{13,54Patm}{1000} + \frac{V^2}{2g} - Pv \ [m_{ca}]$$
 (2)

Pv = presión de vapor del líquido bombeado en [m_{ca}].

Columna neta de succión positiva requerida, CNSPR:

$$CNSPR = CNSPD_{CRITICA} (3)$$

3.3. Tabla de valores calculados.

						PUN	NTO 1						
	Qx	Q	pax	pdx	Нх	Н	Nex	Ne	Nh	ηgl	V	CNSPD	CNSPR
	[m3/h]	[m3/h]	[mca]	[mca]	[mca]	[mca]	[kW]	[kW]	[kW]	[-]	[m/s]	[mca]	[mca]
1	94,32	94,0605	-0,2601	7,0402	7,3003	7,2602	2,9944	2,9697	1,8590	62,5982	3,1913	10,5101	6,1183
2	94,32	93,9313	-2,0501	5,1202	7,1703	7,1113	2,9985	2,9616	1,8184	61,3990	3,1869	8,7187	6,1183
3	94,32	93,9313	-3,7001	3,4402	7,1403	7,0816	2,9985	2,9616	1,8108	61,1421	3,1869	7,0687	6,1183
4	94,32	93,8991	-4,6501	2,0802	6,7303	6,6703	2,9567	2,9173	1,7050	58,4465	3,1858	6,1183	6,1183
5	91,44	90,9383	-4,9601	2,0002	6,9603	6,8841	2,8954	2,8480	1,7042	59,8388	3,0853	5,7762	6,1183
6	86,04	85,5386	-6,0601	1,9602	8,0203	7,9271	3,0036	2,9514	1,8459	62,5412	2,9021	4,6203	6,1183
7	81,36	80,9136	-6,3801	1,8802	8,2603	8,1699	3,0026	2,9535	1,7995	60,9300	2,7452	4,2551	6,1183

						PUN	ITO 2						
	Qx	Q	pax	pdx	Hx	Н	Nex	Ne	Nh	ηgl	V	CNSPD	CNSPR
	[m3/h]	[m3/h]	[mca]	[mca]	[mca]	[mca]	[kW]	[kW]	[kW]	[-]	[m/s]	[mca]	[mca]
1	80,64	80,1700	0,2299	11,1202	10,8903	10,7637	3,2611	3,2044	2,3491	73,3078	2,7200	10,8581	4,3981
2	80,64	80,1700	-2,6001	8,2002	10,8003	10,6748	3,2611	3,2044	2,3297	72,7020	2,7200	8,0281	4,3981
3	80,64	80,1700	-5,1601	4,2402	9,4003	9,2910	3,1753	3,1201	2,0277	64,9881	2,7200	5,4681	4,3981
4	80,64	80,1700	-6,2301	1,8802	8,1103	8,0160	3,0251	2,9725	1,7494	58,8534	2,7200	4,3981	4,3981
5	79,56	79,1506	-6,4101	1,8402	8,2503	8,1656	3,0016	2,9555	1,7594	59,5303	2,6854	4,2086	4,3981
6	78,12	77,6647	-6,4201	1,8802	8,3003	8,2038	2,9607	2,9093	1,7345	59,6184	2,6350	4,1849	4,3981
7	81,36	80,9136	-6,3901	1,7602	8,1503	8,0611	2,8954	2,8480	1,7756	62,3452	2,7452	4,2451	4,3981

	PUNTO 3												
											V	CNSPD	CNSPR
	Qx [m3/h]	[m3/h]	[mca]	pdx [mca]	Hx [mca]	H [mca]	Nex [kW]	Ne [kW]	Nh [kW]	ηgl	[m/s]	[mca]	[mca]
	[III3/II]	[III3/II]	[IIICa]	[IIICa]	[IIICa]	[IIICa]	[KVV]	[KVV]	[KVV]	[-]	[III/5]	[IIICa]	[IIICa]
1	51,84	51,5556	0,9799	17,5202	16,5403	16,3593	3,1956	3,1433	2,2960	73,0424	1,7492	11,3870	3,3241
2	51,84	51,5379	-1,3901	14,7202	16,1103	15,9230	3,3255	3,2676	2,2340	68,3661	1,7486	9,0169	3,3241
3	51,84	51,5202	-7,3201	1,6002	8,9203	8,8106	2,7471	2,6966	1,2357	45,8236	1,7480	3,0867	3,3241
4	51,48	51,1624	-7,2201	1,4802	8,7003	8,5933	2,6827	2,6334	1,1968	45,4483	1,7358	3,1846	3,3241
5	49,68	49,3905	-7,0701	1,4402	8,5103	8,4114	2,5745	2,5298	1,1309	44,7042	1,6757	3,3241	3,3241

3.4. Gráficos.

Trace el siguiente gráfico en una hoja completa:

3.4.1 Con los valores del ensayo anterior, trace la curva característica de la bomba para la velocidad ensayada y sobreponga los nuevos valores de altura y caudal obtenidos.

3.4.1.1 ¿Qué significan las desviaciones que se producen?

Las desviaciones que se producen en las curvas significa que se produjo la cavitación, esto quiere decir que en el momento de la aspiración de la bomba se generaron burbujas de vapor que se condensaron y llegaron a las zonas de mayor presión, produciendose así una reducción en el caudal y en el rendimiento debido a la baja en la altura.

3.4.2 Trace tantos gráficos como series de mediciones se hayan realizado. En la ordenada H, Ne en [%] respecto al valor sin cavitación y η gl, y en la abscisa la CNSPD.

3.4.2.1 ¿Cómo determina la CNSPD crítica y qué representa?

La CNSPD crítica se determina a partir del valor de CNSPR, ya que corresponde al punto donde ocurre la inflexión en la altura.

La CNSPD crítica representa la mínima presión que existe a la entrada de la bomba sin la genereción de cavitación.

3.4.3 Grafique la CNSPR en función del caudal.

3.4.3.1. ¿La curva obtenida tiene la forma característica?

La curva obtenida si tiene la forma característica, ya que se puede observar que a mayor caudal, mayor es el valor de CNSPR.

3.4.3.2. ¿De acuerdo a la velocidad específica de esta bomba los valores de la CNSPR son apropiados?

Los valores de CNSPR si son apropiados de acuerdo a la velocidad específica de esta bomba, ya que aumentan de forma proporcional a medida que aumenta el caudal.