

Claims

Sub B1

1. Fully and partially reduced benzo[c]-quinolizine compounds of formula (I)

wherein:

10 R₁, R₂, R₃, R₄, R₅, same or different, are chosen in the group consisting of: H,

C₁₋₈alkyl, C₂₋₈alkenyl, C₂₋₈alkynyl, cyclopropane, cyclobutane, cyclopentane,

cyclohexane, cycloheptane, cyclooctane, norbornane, canphane, adamantane,

phenyl, biphenyl, naphtyl, saturated or aromatic heterocycle containing one or

more N atoms, halogen, CN, azide, NRR', C₁₋₈alkylamino, arylamino, C₁₋

8alkyloxy, aryloxy, COOR, CONRR', C(=O)R, wherein R and R', same or

different, are chosen in the group consisting of: H, C₁₋₈alkyl, cyclopropane,

cyclobutane, cyclopentane, cyclohexane, cycloheptane, cyclooctane,

norbornane, canphane, adamantane, phenyl, biphenyl, naphtyl, saturated or

aromatic heterocycle containing one or more N atoms, phenyl-, biphenyl-,

20 naphtyl-C₁₋₈alkyl;

R₅ is chosen in the group consisting of: H, C₁₋₈alkyl, C₁₋₈alkyl-phenyl, -biphenyl, -

naphtyl, COOR, CN, phenyl, biphenyl, naphtyl, saturated or aromatic

heterocycle containing one or more N atoms, C₁₋₈alkyl-saturated or aromatic

heterocycle containing one or more N atoms; C₁₋₈alkyl-saturated or aromatic

25 heterocycle containing one or more N atoms -ribose-phosphate

X is chosen in the group consisting of: O, C(=O)R, COOR, NO₂, CONR'R'

wherein R and R' are as above defined;

Q is chosen in the group consisting of: simple bond, C₁₋₈alkyl, C₂₋₈alkenyl, C₂₋

8alkynyl, cyclopropane, cyclobutane, cyclopentane, cyclohexane, cycloheptane,

30 cyclooctane, norbornane, canphane, adamantane, CO, CONR, NR, wherein R

is as above defined;

W is chosen in the group consisting of: H, C₁₋₈alkyl, C₂₋₈ alkenyl, C₂₋₈alkynyl,

cyclopropane, cyclobutane, cyclopentane, cyclohexane, cycloheptane,

cyclooctane,

M 06 - O - U

22a

cyclooctane, norbornane, canphane, adamantane, trifluoromethyl, C₁₋₈alkoxy,
C₁₋₈ alkoxy-C₁₋₈alkyl, phenyl-, biphenyl-, naphtyl-C₁₋₈alkyl, phenyl, biphenyl,
naphtyl, phenoxy, biphenyloxy, naphtyloxy, phenylamino, biphenylamino,
naphtylamino, C₁₋₈alkylcarbonyl, phenylcarbonyl, biphenylcarbonyl,
5 naphtylcarbonyl, phenylcarboxyl, biphenylcarboxyl, naphtylcarboxyl,
phenylcarboxamide, biphenylcarboxamide, naphtylcarboxamide, halogen,
CN, NRR', C₁₋₈alkylamino, saturated or aromatic heterocycle containing one or
more N atoms wherein the groups alkyl, alkenyl, alkynyl, cyclopropane,
cyclobutane, cyclopentane, cyclohexane, cycloheptane, cyclooctane,
10 norbornane, canphane, adamantane, phenyl, biphenyl, naphtyl, saturated or
aromatic heterocycle containing one or more N atoms, can be substituted; n is
an integer comprised between 1 and 4;

the symbol —— means that the corresponding bonds a, b, c, d e, f, g, h and i
can be a simple or a double bond; with the proviso that when b or f are a
double bond then the group R₅ is absent;

~~SuN~~
~~B1~~
~~cont.~~
their pharmaceutically acceptable salts and esters.

2. Benzo[c]-quinolizine compounds of formula (I) according to Claim 1, wherein
R₅ = H, C₁₋₈alkyl-phenyl, -biphenyl, -naphthyl, COOR, CN, phenyl, biphenyl,
naphthyl, saturated or aromatic heterocycle containing one or more N atoms, C₁₋₈alkyl-saturated or aromatic heterocycle containing one or more N atoms; or a
group C₁₋₈alkyl-saturated or aromatic heterocycle containing one or more N
atoms -ribose-phosphate

X = O, COOH

Q = simple bond, CQ, CONR, NR (wherein R is as above defined) W = H, F, Cl,
Br, Me, t-butyl, C₁₋₈alkoxy, 2,5-dimethylhexyl, trifluoromethyl, 2,5-(di-
trifluoromethyl)-phenyl, 4-methoxy-phenyl, 4-fluoro-phenyl, phenyl, phenyl-C₁₋₈alkyl, C₁₋₈alkylcarbonyl, phenylcarbonyl.

n = 1 and 2

R₁, R₂, R₃, R₄, R₆ = H, Me, CN, phenyl, COOR, CONRR' (wherein R and R' are
as above defined).

3. Benzo[c]-quinolizine compounds according to Claim 1 of formula :

2,3,4,4a,5,6,6a,7,8,9,10,10a-dodecahydro-(1H)-benzo[c]quinolizin-3-one;
8-chloro-2,3,4,4a,5,6,6a,7,8,9,10,10a-dodecahydro-(1H)-benzo[c]quinolizin-3-
one;

~~Sub C1~~
~~6~~
~~cont.~~
2,3,4,4a,5,6,6a,7,8,9,10,10a-dodecahydro-8-methyl-(1H)-benzo[c]quinolizin-3-
one;

2,3,4,4a,5,6,6a,7,8,9,10,10a-dodecahydro-4-methyl-(1H)-benzo[c]quinolizin-3-
one;

2,3,4,4a,5,6,6a,7,8,9,10,10a-dodecahydro-1-methyl-(1H)-benzo[c]quinolizin-3-
one;

2,3,5,6,6a,7,8,9,10,10a-decahydro-(1H)-benzo[c]quinolizin-3-one;
8-chloro-2,3,5,6,6a,7,8,9,10,10a-decahydro-(1H)-benzo[c]quinolizin-3-one;
2,3,5,6,6a,7,8,9,10,10a-decahydro-8-methyl-(1H)-benzo[c]quinolizin-3-one;
2,3,5,6,6a,7,8,9,10,10a-decahydro-4-methyl-(1H)-benzo[c]quinolizin-3-one;
2,3,5,6,6a,7,8,9,10,10a-decahydro-1-methyl-(1H)-benzo[c]quinolizin-3-one;
(4a α , 6a β , 10a α)-3,4,5,6,6a,7,8,9,10,10a-decahydro-(4aH)benzo[c]quinolizin-3-
one;

06 · 04 · 00

23a

Sub E
cont

(4a β , 6a β , 10a α)-3,4,5,6,6a,7,8,9,10,10a-decahydro-(4aH)benzo[c]quinoli-zin-3-one;

3,4,5,6,6a,7,8,9,10,10a-decahydro-(4aH)-benzo[c]quinolizin-3-one;

- 8-chloro-3,4,5,6,6a,7,8,9,10,10a-decahydro-(4aH)-benzo[c]quinolizin-3-one;
3,4,5,6,6a,7,8,9,10,10a-decahydro-8-methyl-(4aH)-benzo[c]quinolizin-3-one;
3,4,5,6,6a,7,8,9,10,10a-decahydro-4-methyl-(4aH)-benzo[c]quinolizin-3-one;
5 3,4,5,6,6a,7,8,9,10,10a-decahydro-1-methyl-(4aH)-benzo[c]quinolizin-3-one;
8-chloro-2,3,5,6,6a,7,8,9,10,10a-decahydro-4-methyl-(1H)-benzo[c]quinolizin-3-one;
2,3,5,6,6a,7,8,9,10,10a-decahydro-4,8-dimethyl-(1H)-benzo[c]quinolizin-3-one;
8-chloro-2,3,5,6,6a,7,8,9,10,10a-decahydro-1-methyl-(1H)-benzo[c]quinolizin-3-one;
10 2,3,5,6,6a,7,8,9,10,10a-decahydro-1,4-dimethyl-(1H)-benzo[c]quinolizin-3-one;
8-chloro-3,4,5,6,6a,7,8,9,10,10a-decahydro-4-methyl-(4aH)-benzo[c]quinolizin-3-one;
3,4,5,6,6a,7,8,9,10,10a-decahydro-4,8-dimethyl-(4aH)-benzo[c]quinolizin-3-one;
15 3,4,5,6,6a,7,8,9,10,10a-decahydro-1-methyl-(4aH)-benzo[c]quinolizin-3-one;
8-chloro-3,4,5,6,6a,7,8,9,10,10a-decahydro-1,8-dimethyl-(4aH)-benzo[c]quinolizin-3-one;
3,4,5,6,6a,7,8,9,10,10a-decahydro-5-methyl-(1H)-benzo[c]quinolizin-3-one;
20 2,3,5,6,6a,7,8,9,10,10a-decahydro-5-methyl-(1H)-benzo[c]quinolizin-3-one;
2,3,5,6,6a,7,8,9,10,10a-decahydro-5,8-dimethyl-(1H)-benzo[c]quinolizin-3-one;
2,3,5,6,6a,7,8,9,10,10a-decahydro-4,5-dimethyl-(1H)-benzo[c]quinolizin-3-one;
25 2,3,5,6,6a,7,8,9,10,10a-decahydro-1,5-dimethyl-(1H)-benzo[c]quinolizin-3-one;
3,4,5,6,6a,7,8,9,10,10a-decahydro-5-methyl-(4aH)-benzo[c]quinolizin-3-one;
8-chloro-3,4,5,6,6a,7,8,9,10,10a-decahydro-5-methyl-(4aH)-benzo[c]quinolizin-3-one;
3,4,5,6,6a,7,8,9,10,10a-decahydro-5,8-dimethyl-(4aH)-benzo[c]quinolizin-3-one;
30 3,4,5,6,6a,7,8,9,10,10a-decahydro-4,5-dimethyl-(4aH)-benzo[c]quinolizin-3-one;

25

3,4,5,6,6a,7,8,9,10,10a-decahydro-1,5-dimethyl-(4aH)-benzo[c]quinolizin-3-one;

8-chloro-2,3,5,6,6a,7,8,9,10,10a-decahydro-4,5-dimethyl-(1H)-benzo[c]quinolizin-3-one;

5 2,3,5,6,6a,7,8,9,10,10a-decahydro-4,5,8-trimethyl-(1H)-benzo[c]quinolizin-3-one;

8-chloro-2,3,5,6,6a,7,8,9,10,10a-decahydro-1,5-dimethyl-(1H)-benzo[c]quinolizin-3-one;

2,3,5,6,6a,7,8,9,10,10a-decahydro-1,4,5-trimethyl-(1H)-benzo[c]quinolizin-3-one;

10 8-chloro-3,4,5,6,6a,7,8,9,10,10a-decahydro-4,5-dimethyl-(4aH)-benzo[c]quinolizin-3-one;

3,4,5,6,6a,7,8,9,10,10a-decahydro-4,5,8-trimethyl-(4aH)-benzo[c]quinolizin-3-one;

8-chloro-3,4,5,6,6a,7,8,9,10,10a-decahydro-1,5-dimethyl-(4aH)-benzo[c]quinolizin-3-one;

3,4,5,6,6a,7,8,9,10,10a-decahydro-1,5,8-trimethyl-(4aH)-benzo[c]quinolizin-3-one;

2,3,5,6,6a,7,8,9,10,10a-decahydro-6-methyl-(1H)-benzo[c]quinolizin-3-one;

20 8-chloro-2,3,5,6,6a,7,8,9,10,10a-decahydro-6-methyl-(1H)-benzo[c]quinolizin-3-one;

2,3,5,6,6a,7,8,9,10,10a-decahydro-6,8-dimethyl-(1H)-benzo[c]quinolizin-3-one;

2,3,5,6,6a,7,8,9,10,10a-decahydro-4,6-dimethyl-(1H)-benzo[c]quinolizin-3-one;

2,3,5,6,6a,7,8,9,10,10a-decahydro-1,6-dimethyl-(1H)-benzo[c]quinolizin-3-one;

25 3,4,5,6,6a,7,8,9,10,10a-decahydro-6-methyl-(4aH)-benzo[c]quinolizin-3-one;

8-chloro-3,4,5,6,6a,7,8,9,10,10a-decahydro-6-methyl-(4aH)-benzo[c]quinolizin-3-one;

3,4,5,6,6a,7,8,9,10,10a-decahydro-6,8-dimethyl-(4aH)-benzo[c]quinolizin-3-one;

30 3,4,5,6,6a,7,8,9,10,10a-decahydro-4,6-dimethyl-(4aH)-benzo[c]quinolizin-3-one;

26

- 3,4,5,6,6a,7,8,9,10,10a-decahydro-1,6-dimethyl-(4aH)-benzo[c]quinolizin-3-one;
- 8-chloro-2,3,5,6,6a,7,8,9,10,10a-decahydro-4,6-dimethyl-(1H)-benzo[c]quinolizin-3-one;
- 5 2,3,5,6,6a,7,8,9,10,10a-decahydro-4,6,8-trimethyl-(1H)-benzo[c]quinolizin-3-one;
- 8-chloro-2,3,5,6,6a,7,8,9,10,10a-decahydro-1,6-dimethyl-(1H)-benzo[c]quinolizin-3-one;
- 2,3,5,6,6a,7,8,9,10,10a-decahydro-1,4,6-trimethyl-(1H)-benzo[c]quinolizin-3-one;
- 8-chloro-3,4,5,6,6a,7,8,9,10,10a-decahydro-4,6-dimethyl-(4aH)-benzo[c]quinolizin-3-one;
- 3,4,5,6,6a,7,8,9,10,10a-decahydro-4,6,8-trimethyl-(4aH)-benzo[c]quinolizin-3-one;
- 8-chloro-3,4,5,6,6a,7,8,9,10,10a-decahydro-1,6-dimethyl-(4aH)-benzo[c]quinolizin-3-one;
- 3,4,5,6,6a,7,8,9,10,10a-decahydro-1,6,8-trimethyl-(4aH)-benzo[c]quinolizin-3-one;
- 2,3,5,6,6a,7,8,9,10,10a-decahydro-5,6-dimethyl-(1H)-benzo[c]quinolizin-3-one;
- 8-chloro-2,3,5,6,6a,7,8,9,10,10a-decahydro-5,6-dimethyl-(1H)-benzo[c]quinolizin-3-one;
- 2,3,5,6,6a,7,8,9,10,10a-decahydro-5,6,8-trimethyl-(1H)-benzo[c]quinolizin-3-one;
- 2,3,5,6,6a,7,8,9,10,10a-decahydro-4,5,6-trimethyl-(1H)-benzo[c]quinolizin-3-one;
- 25 2,3,5,6,6a,7,8,9,10,10a-decahydro-1,5,6-trimethyl-(1H)-benzo[c]quinolizin-3-one;
- 3,4,5,6,6a,7,8,9,10,10a-decahydro-5,6-dimethyl-(4aH)-benzo[c]quinolizin-3-one;
- 30 8-chloro-3,4,5,6,6a,7,8,9,10,10a-decahydro-5,6-dimethyl-(4aH)-benzo[c]quinolizin-3-one;

27

3,4,5,6,6a,7,8,9,10,10a-decahydro-5,6,8-trimethyl-(4aH)-benzo[c]quinolizin-3-one;

3,4,5,6,6a,7,8,9,10,10a-decahydro-4,5,6-trimethyl-(4aH)-benzo[c]quinolizin-3-one;

5 3,4,5,6,6a,7,8,9,10,10a-decahydro-1,5,6-trimethyl-(4aH)-benzo[c]quinolizin-3-one;

8-chloro-2,3,5,6,6a,7,8,9,10,10a-decahydro-4,5,6-trimethyl-(1H)-benzo[c]quinolizin-3-one;

2,3,5,6,6a,7,8,9,10,10a-decahydro-4,5,6,8-tetramethyl-(1H)-benzo[c]quinolizin-3-one;

10 8-chloro-2,3,5,6,6a,7,8,9,10,10a-decahydro-1,5,6-trimethyl-(1H)-benzo[c]quinolizin-3-one;

2,3,5,6,6a,7,8,9,10,10a-decahydro-1,4,5,6-tetramethyl-(1H)-benzo[c]quinolizin-3-one;

8-chloro-3,4,5,6,6a,7,8,9,10,10a-decahydro-4,5,6-trimethyl-(4aH)-benzo[c]quinolizin-3-one;

3,4,5,6,6a,7,8,9,10,10a-decahydro-4,5,6,8-tetramethyl-(4aH)-benzo[c]quinolizin-3-one;

8-chloro-3,4,5,6,6a,7,8,9,10,10a-decahydro-1,5,6-trimethyl-(4aH)-benzo[c]quinolizin-3-one;

20

3,4,5,6,6a,7,8,9,10,10a-decahydro-1,5,6,8-tetramethyl-(4aH)-benzo[c]quinolizin-3-one;

5,6,6a,7,8,9,10,10a-octahydro-(3H)-benzo[c]quinolizin-3-one;

8-chloro-5,6,6a,7,8,9,10,10a-octahydro-(3H)-benzo[c]quinolizin-3-one;

25 5,6,6a,7,8,9,10,10a-octahydro-8-methyl-(3H)-benzo[c]quinolizin-3-one;

5,6,6a,7,8,9,10,10a-octahydro-4-methyl-(3H)-benzo[c]quinolizin-3-one;

8-chloro-5,6,6a,7,8,9,10,10a-octahydro-4-methyl-(3H)-benzo[c]quinolizin-3-one;

5,6,6a,7,8,9,10,10a-octahydro-4,8-dimethyl-(3H)-benzo[c]quinolizin-3-one;

2,3,5,6,7,8,9,10-octahydro-(1H)-benzo[c]quinolizin-3-one;

30 8-chloro-2,3,5,6,7,8,9,10-octahydro-(1H)-benzo[c]quinolizin-3-one;

2,3,5,6,7,8,9,10-octahydro-8-methyl-(1H)-benzo[c]quinolizin-3-one;

2,3,5,6,6a,7,8,9-octahydro-(1H)-benzo[c]quinolizin-3-one;

SEARCHED
SERIALIZED
INDEXED
FILED
JUN 1 1999
COST 15

06.04.00

8-chloro-2,3,5,6,6a,7,8,9-octahydro-(1*H*)-benzo[c]quinolizin-3-one;
 2,3,5,6,6a,7,8,9-octahydro-8-methyl-(1*H*)-benzo[c]quinolizin-3-one;
 4a-benzyl-3,4,5,6,6a,7,8,9,10,10a-decahydro-(4a*H*)-benzo[c]quinolizin-3-one;
 4a-benzyl-8-chloro-3,4,5,6,6a,7,8,9,10,10a-decahydro-(4a*H*)-
 5 benzo[c]quinolizin-3-one;
 4a-benzyl-3,4,5,6,6a,7,8,9,10,10a-decahydro-8-methyl-(4a*H*)-
 benzo[c]quinolizin-3-one;
 4a-benzyl-3,4,5,6,6a,7,8,9,10,10a-decahydro-4-methyl-(4a*H*)-
 benzo[c]quinolizin-3-one;
 4a-benzyl-3,4,5,6,6a,7,8,9,10,10a-decahydro-1-methyl-(4a*H*)-
 benzo[c]quinolizin-3-one;
 3,4,5,6,6a,7,8,9,10,10a-decahydro-4a-(4-pyridyl)methyl-(4a*H*)-
 benzo[c]quinolizin-3-one;
 8-chloro-3,4,5,6,6a,7,8,9,10,10a-decahydro-4a-(4-pyridyl)methyl-(4a*H*)-
 15 benzo[c]quinolizin-3-one;
 3,4,5,6,6a,7,8,9,10,10a-decahydro-8-methyl-4a-(4-pyridyl)methyl-(4a*H*)-
 benzo[c]quinolizin-3-one;
 3,4,5,6,6a,7,8,9,10,10a-decahydro-4-methyl-4a-(4-pyridyl)methyl-(4a*H*)-
 benzo[c]quinolizin-3-one;
 20 3,4,5,6,6a,7,8,9,10,10a-decahydro-1-methyl-4a-(4-pyridyl)methyl-(4a*H*)-
 benzo[c]quinolizin-3-one;

4. Process for the preparation of compounds according to any of claims 1-3
 wherein:
 the ester-group of a compound of formula (2)

25

30 (wherein R₃, R₄ and (WQ)_n ar as defined in Claim 1)
 is cyclized to enamide (3)

29

(wherein R₃, R₄ and (WQ)_n are as defined in Claim 1)

which is reduced to the amide (4)

(wherein R₃, R₄ and (WQ)_n are as defined in Claim 1)

15 which is protected with a protecting group Boc to give the compound (5)

(wherein R₃, R₄ and (WQ)_n are as defined in Claim 1)

25 which is reduced to compound (6)

30

(wherein R₃, R₄, R₅ and (WQ)_n are as defined in Claim 1)
and compound (6) is reacted with a silylether (8)

5

DRAFTS ETC ETC ETC ETC ETC

10 (wherein R₁, R₂ and R₆ are as defined in Claim 1)
prepared "in situ" by reacting a vinyl-ketone (7)

15

20 (wherein R₁, R₂, R₆ are as above defined) with a silylating agent as trimethylsilyltrifluoromethanesulphonic anhydride (TMSOTf) and are finally hydrolized, for example with sodium hydrogencarbonate, to give the final compound of formula (I) wherein X = O.

- 25 5. Process according to claim 4 wherein the possible introduction of the double bonds in position a or b is performed by reaction of dichlorodicianoquinone (DDQ) with the corresponding silylenolethers or by oxidation with quicksilver acetate of the saturated compound obtained as claimed above and the possible transformation of the group X is performed via the corresponding enoltriflates and following carbonylation in the presence of palladium diacetate, triphenylphosphine and the suitable nucleophilic reagent.
- 30 6. Process according to Claim 4 wherein the reaction between the compound (6) and the silylether (8) is performed in the presence of TiCl₄.

M 06 · 04 · 00

31

7. Process according to Claim 4 wherein the reaction between compound (6) and the silylether (8) is performed in the presence of TTMSOTf.
8. Process for the preparation of a compound of formula (I) according to any of claims 1-3, wherein:
- 5 the carbonyl group of a compound of formula (2)

(wherein R₃, R₄, QW and n are as above defined) is protected as a ketal to give a compound (9)

- 25 (wherein R₃, R₄, QW and n are as above defined) which is reduced to the corresponding aldehyde (10)

(wherein R₃, R₄, QW and n are as above defined) with DIBAL, and such aldehyde is transformed into the oxime (11)

(wherein R₃, R₄, QW and n are as above defined) which is reacted with a methylenecyclopropane derivative (12)

(wherein R₁, R₂ and R₆ are as above defined) to give the isoxazoline (13)

(wherein R₁, R₂, R₃, R₄, R₆, QW and n are as above defined) which is deprotected to the corresponding isoxazoline (14)

(wherein R₁, R₂, R₃, R₄, R₆, QW and n are as above defined) which is rearranged to the final product of formula (I) wherein X =O, i or h is a double bond and the other substituents are as above defined.

9. Compound of formula (6)

10 wherein W, Q, n, R₃, R₄, R₅ are as defined in claim 1

10. Pharmaceutical composition wherein the active principle is a compound of formula (I) according to Claim 1 or mixtures thereof in combination with the suitable pharmaceutical acceptable excipients.

11. Pharmaceutical composition according to Claim 10 for use in the inhibition
15 of the 5αR-I and/or 5αR-II iso-enzymes.

12. Pharmaceutical composition according to claims 10 and 11 in the form
suitable for topical use.

13. Method for the treatment of pathologies related to 5α-reductase enzymes
by administration to the patient of a pharmaceutically active amount of a
20 pharmaceutical composition according to Claims 10.

14. Method according to claim 13 wherein the treated pathologies are acne,
baldness, prostatic cancer and prostatic hypertrophy in men and hirsutism in
women.

25 15. Use of compounds of formula (I) according to claim 1 as inhibitors of steroid
5α-reductase enzymes in plants.

16. Agricultural compositions for regulating the plant growth containing as
active principle a compound of formula (I) according to Claim 1 or mixtures
thereof possibly in combination with the additives commonly used in agriculture
for this purposes.

30 17. Process for plant growth regulation wherein an effective quantity of a
composition according to Claim 16 is distributed on the seeds and/or on the
plants to treat.

add
B27

Adol
C 1