Воронежский государственный университет

Факультет прикладной математики, информатики и механики

Конспект лекций по уравнениям математической физики

6 семестр

Лектор

Ляхов Л. Н.

Конспект подготовили

Харитонов В.
(kharvd@gmail.com)
Нестеров И.
(nesterovilyan@gmail.com)
Клочков С.
(klochkov_s.v@mail.ru)
2015 г.

Оглавление

I yr	равнения математической физики	5
I.1	17.02.2015	7
	Понятие задачи Штурма-Лиувилля	7
	Двухточечная задача	7
	Понятие сопряженного дифференциального уравнения в $L^2(\Omega)$	8
I.2	24.02.2015	10
	Приведение уравнения Бесселя к самосопряженному виду .	10
	Собственные числа и собственные функции задачи Штурма-	
	Лиувилля	11
	Основные уравнения математической физики	13
I.3	10.03.2015	13
	Постановка граничных задач для колебания струны(стержня)	13
	Вывод уравнения теплопроводности	14
	Постановка краевых задач для уравнения теплопроводности	16
		19
II.4	17.02.2015	21
	δ -функция Дирака	21
	Пространство основных функций D	22
II.5	24.02.2015	22
	Пример основной функции	22
	Основная функция, равная 1 на области	23
II.6	3.03.2015	23
	Плотность множества основных функций $D(\Omega)$ в $L^2(\Omega)$	23
	Пространство обобщенных функций	23
	Полнота пространства обобщенных функций	24
	Носитель обобщенных функций	24
	Регулярные обобщенные функции	25
	Сингулярные обобщенные функции	25
	Обобщенные производные	26

4 ОГЛАВЛЕНИЕ

Часть I

Уравнения математической физики

17.02.2015

Понятие задачи Штурма-Лиувилля

Рассмотрим линейное однородное дифференциальное уравнение второго порядка

$$Ly(x) = P_0(x)y''(x) + P_1(x)y'(x) + P_2(x)y(x) = 0,$$
 (I.1.1)

где $P_0(x) \neq 0$ для $\forall x \in [a,b]$. Разделив уравнение на $P_0(x)$, получаем

$$y''(x) + c(x)y'(x) + d(x)y(x) = 0.$$

Будем рассматривать случай, когда c(x) = c, d(x) = d — константы. Найдем решение полученного уравнения. Для этого запишем характеристическое уравнение, затем выпишем общее решение.

$$k^{2} + ck + d = 0;$$

$$y_{c}(x) = \begin{cases} C_{1}e^{k_{1}x} + C_{2}e^{k_{2}x}, k = k_{1} \neq k_{2}; \\ C_{1}e^{kx} + C_{2}xe^{kx}, k = k_{1} = k_{2}; \\ e^{\alpha x}(C_{1}\cos\beta x + C_{2}\sin\beta x), k = \alpha \pm i\beta. \end{cases}$$

Пусть $y_1(x)$ и $y_2(x)$ образуют фундаментальную систему решений. Тогда любое решение y(x) представимо в виде

$$y(x) = C_1 y_1(x) + C_2 y_2(x).$$

Вспомним, что решением ЛНДУ 2-го порядка Ly(x) = f(x) является $y(x) = y_c(x) + y_p(x)$, где $y_c(x)$ — общее решение однородного уравнения, а $y_p(x)$ — частное решение неоднородного уравнения.

Двухточечная задача

Пример I.1.1.

$$y'' + \lambda y = 0,$$
 $y(0) = 0,$ $y(l) = 0.$

Найдем решение данной задачи.

$$k^2 + \lambda = 0;$$

$$k = \pm i\sqrt{\lambda}.$$

8 17.02.2015

Рассмотрим случай, когда $\lambda > 0$. Тогда общее решение будет иметь вид $y_c(x) = C_1 \cos \sqrt{\lambda} \, x + C_2 \sin \sqrt{\lambda} \, x$. Подставим граничные условия:

$$y_c(0) = C_1 = 0 \Longrightarrow C_1 = 0;$$

 $y_c(l) = C_2 \sin \sqrt{\lambda} l = 0.$

Пусть
$$C_2 \neq 0$$
, тогда $l\sqrt{\lambda} = \pi n$, отсюда $\lambda = \frac{\pi^2 n^2}{l^2}, n \in \mathbb{N}.$

Понятие сопряженного дифференциального уравнения в $L^2(\Omega)$

Пусть $\Omega = \{x \in \mathbb{R} : a < x < b\}$. Будем рассматривать пространство

$$L^{2}(\Omega) = \left\{ f \colon (L) \int_{\Omega} |f(x)|^{2} dx < \infty, x \in \Omega, f \colon \Omega \to \mathbb{R} \right\}.$$

Скалярное произведение и норма вводятся в этом пространстве следующим образом

$$(u, v) = \int_{\Omega} u(x)\overline{v(x)} dx, \quad \forall u, v \in L^{2}(\Omega),$$

$$||u||_{L^2} = \sqrt{(u, u)} = \left(\int_{\Omega} |u(x)|^2 dx\right)^{\frac{1}{2}}.$$

Положим $H\subseteq L^2(\Omega)$. Задан оператор $A\colon H\to H$. A^* — сопряженный к A в H, т.е. $(Au,v)=(u,A^*v)$. Возьмем $A=\frac{\mathrm{d}}{\mathrm{d}x}$ и проверим, является ли он самосопряженным. Будем предполагать, что функции u и/или v имеют конечный носитель в Ω .

$$\left(\frac{\mathrm{d}}{\mathrm{d}x}u,v\right) = \int_{\Omega} \frac{\mathrm{d}}{\mathrm{d}x}u(x)v(x)\,\mathrm{d}x = \underbrace{u(x)v(x)|_a^b}_{0} - \int_a^b u(x)v'(x)\,\mathrm{d}x =$$
$$= -\int_a^b u(x)\frac{\mathrm{d}}{\mathrm{d}x}v(x)\,\mathrm{d}x = \left(u, -\frac{\mathrm{d}}{\mathrm{d}x}v\right).$$

Таким образом получаем, что $A^* = -\frac{\mathrm{d}}{\mathrm{d}x} \neq A$.

Замечание. Оператор $\frac{d^2}{dx^2}$ — является самосопряженным оператором

в $L^2(\Omega)$ при условии, что функция и её производная имеет конечный носитель на множестве интегрирования. Другой пример самосопряженного оператора — умножение на бесконечно непрерывно-дифференцируемую функцию.

Рассмотрим следующий дифференциальный оператор:

$$L = \frac{\mathrm{d}}{\mathrm{d}x} \left[\varphi(x) \frac{\mathrm{d}}{\mathrm{d}x} \right].$$

Проверим, является ли он самосопряженным в $L^2(\Omega)$ (при условии, сказанном в замечании):

$$(Lu, v) = \int_{\Omega} \frac{\mathrm{d}}{\mathrm{d}x} \left[\varphi(x) \frac{\mathrm{d}}{\mathrm{d}x} u(x) \right] v(x) \, \mathrm{d}x =$$

$$= \underbrace{v(x)\varphi(x) \frac{\mathrm{d}}{\mathrm{d}x} u(x)}_{0} \Big|_{a}^{b} - \int_{a}^{b} \varphi(x) \frac{\mathrm{d}}{\mathrm{d}x} u(x) v'(x) \, \mathrm{d}x =$$

$$= -\underbrace{u(x)\varphi(x) \frac{\mathrm{d}}{\mathrm{d}x} v(x)}_{0} \Big|_{a}^{b} + \int_{a}^{b} u(x) \frac{\mathrm{d}}{\mathrm{d}x} \left[\varphi(x) \frac{\mathrm{d}}{\mathrm{d}x} v(x) \right] \, \mathrm{d}x = (u, Lv) \,.$$

Получаем, что L — самосопряженный оператор. В $L^2(\Omega)$ это общий вид самосопряженного оператора. Отвечающее ему уравнение записывается в виде

$$\frac{\mathrm{d}}{\mathrm{d}x} \left[\varphi(x) \frac{\mathrm{d}}{\mathrm{d}x} y \right] - q(x)y = 0.$$

Рассмотрим общий способ приведения уравнения второго порядка к самосопряженному виду. Домножим обе части уравнения (I.1.1) на функцию $\rho(x)$, которая не обращается в нуль:

$$\rho(x)P_0(x)y'' + \rho(x)P_1(x)y' + \rho(x)P_2(x)y = 0.$$

Самосопряженное уравнение имеет вид

$$\varphi(x)y'' + \varphi'(x)y' - q(x)y = 0.$$

Тогда, приравнивая множители при соответствующих производных функции y, получаем:

$$\varphi(x) = \rho(x)P_0(x)$$

10 24.02.2015

$$\varphi'(x) = \rho(x)P_1(x) = \rho'(x)P_0(x) + \rho(x)P_0'(x).$$

В результате имеем дифференциальное уравнение первого порядка относительно ρ :

 $P_0(x)\rho'(x) = \rho(x)(P_1(x) - P_0'(x)).$

Разделив переменные и проинтегрировав, получим

$$\rho(x) = \frac{C}{P_0(x)} \exp\left\{ \int \frac{P_1(x)}{P_0(x)} dx \right\}. \tag{I.1.2}$$

24.02.2015

Приведение уравнения Бесселя к самосопряженному виду

Рассмотрим уравнение Бесселя, имеющее вид

$$x^2y'' + xy' + (x^2 - p^2)y = 0.$$

Подставляя коэффициенты уравнения в выражение І.1.2, получаем

$$\rho(x) = \frac{1}{x^2} e^{\int \frac{1}{x} dx} = \frac{1}{x}.$$

Тогда поделим уравнение Бесселя на х:

$$xy'' + y' + \left(x - \frac{p^2}{x}\right)y = 0,$$

или иначе

$$(xy')' + \left(x - \frac{p^2}{x}\right)y = 0.$$

Это уравнение Бесселя в самосопряженной форме.

Расмотрим сингулярный оператор Бесселя:

$$B_{\gamma} = \frac{1}{x^{\gamma}} \frac{\mathrm{d}}{\mathrm{d}x} \left[x^{\gamma} \frac{\mathrm{d}}{\mathrm{d}x} \right], \quad \gamma > 0.$$

Такой оператор является самосопряженным в пространстве $L^2_{\gamma}(\Omega)$ —

квадратично-суммируемых с весом γ функций:

$$L_{\gamma}^{2} = \left\{ f \colon \Omega \to \mathbb{R} \colon \int_{\Omega} |f(x)|^{2} x^{\gamma} dx < \infty \right\},$$

скалярное произведение в котором определяется равенством

$$(u,v)_{\gamma} = \int_{\Omega} u(x)v(x)x^{\gamma} dx.$$

В самом деле, пусть $u,v\in C_0^2(\Omega)$ — дважды непрерывно дифференцируемые функции с конечным носителем. Тогда

$$(B_{\gamma}u, v)_{\gamma} = \int \frac{1}{x^{\gamma}} \frac{\mathrm{d}}{\mathrm{d}x} \left[x^{\gamma} \frac{\mathrm{d}u}{\mathrm{d}x} \right] v(x) x^{\gamma} \, \mathrm{d}x = -\int x^{\gamma} \frac{\mathrm{d}u}{\mathrm{d}x} \frac{\mathrm{d}v}{\mathrm{d}x} \, \mathrm{d}x$$
$$= \int \frac{1}{x^{\gamma}} \frac{\mathrm{d}}{\mathrm{d}x} \left[x^{\gamma} \frac{\mathrm{d}v}{\mathrm{d}x} \right] u(x) x^{\gamma} \, \mathrm{d}x = (u, B_{\gamma}v)_{\gamma}.$$

Собственные числа и собственные функции задачи Штурма-Лиувилля

Рассмотрим уравнение Штурма-Лиувилля

$$[\varphi(x)y']' - q(x)y + \lambda \rho(x)y = 0$$
(I.2.1)

с граничными условиями вида

$$\begin{cases} \alpha_1 y(a) + \alpha_2 y'(a) = 0, \\ \beta_1 y(b) + \beta_2 y'(b) = 0, \end{cases}$$
 (I.2.2)

где $|\alpha_1|+|\alpha_2|\neq 0$ и $|\alpha_1|+|\alpha_2|\neq 0$, а функции φ и ρ положительны на отрезке [a,b].

Значения $\lambda \in \mathbb{R}$, для которых задача Ш.-Л. имеет ненулевое решение, называются собственными числами задачи Ш.-Л. Сами же ненулевые решения — собственными функциями задачи Ш.-Л., соответствующими собственному числу λ .

Теорема І.2.1. Пусть u_1 и u_2 — собственные функции, соответствующие собственному числу λ . Тогда они линейно зависимы, т. е. $u_1 = cu_2$,

12 24.02.2015

 $c \neq 0$.

Доказательство. Предположим противное: пусть u_1 и u_2 линейно независимы. Тогда, поскольку они оба удовлетворяют ЛДУ II порядка, их определитель Вронского не обращается в нуль ни в одной точке (см. курс ОДУ):

$$W(u_1(x), u_2(x)) = \begin{vmatrix} u_1(x) & u_2(x) \\ u'_1(x) & u'_2(x) \end{vmatrix} \neq 0.$$

Но в точке x = a, в соответствии с условиями (I.2.2) получаем

$$\begin{cases} \alpha_1 u_1(a) + \alpha_2 u_1'(a) = 0, \\ \alpha_1 u_2(a) + \alpha_2 u_2'(a) = 0. \end{cases}$$

Поскольку α_1 и α_2 одновременно не обращаются в нуль, получаем, что система имеет ненулевое решение относительно переменных α_1 и α_2 , а значит её определитель равен нулю:

$$\begin{vmatrix} u_1(a) & u_2(a) \\ u'_1(a) & u'_2(a) \end{vmatrix} = 0.$$

Получили противоречие.

Определение I.2.1. Функции u и v называются *ортогональными* c eecom ρ на отрезке [a,b], если

П

$$\int_{a}^{b} u(x)v(x)\rho(x) \, \mathrm{d}x = 0.$$

Теорема І.2.2. Пусть u_1 и u_2 — собственные функции задачи Ш.-Л. (І.2.1, І.2.2), отвечающие различным собственным числам λ_1 и λ_2 соответственно. Тогда они ортогональны с весом ρ на отрезке [a,b].

Доказательство. Поскольку u_1 и u_2 решения, имеем:

$$[\varphi u_1']' - qu_1 + \lambda_1 \rho(x) u_1 = 0, [\varphi u_2']' - qu_2 + \lambda_2 \rho(x) u_2 = 0.$$

Домножим первое уравнение на u_2 , а второе на u_1 :

$$u_2[\varphi u_1']' - qu_1u_2 + \lambda_1 \rho(x)u_1u_2 = 0,$$

$$u_1[\varphi u_2']' - qu_1u_2 + \lambda_2 \rho(x)u_1u_2 = 0.$$

10.03.2015

Вычитая первое из второго, получаем:

$$u_1[\varphi u_2']' - u_2[\varphi u_1']' = (\lambda_1 - \lambda_2)u_1u_2\rho(x).$$

Левая часть этого равенства преобразуется к виду

$$u_1[\varphi u_2']' - u_2[\varphi u_1']' = [\varphi(u_1u_2' - u_2u_1')]' = [\varphi W(u_1(x), u_2(x))]',$$

(это проверяется непосредственно). Тогда

$$(\lambda_1 - \lambda_2)u_1u_2\rho(x) = [\varphi W(u_1(x), u_2(x))]'.$$

Проинтегрируем обе части равенства по отрезку [a,b] и используем формулу Ньютона-Лейбница:

$$(\lambda_1 - \lambda_2) \int_a^b u_1(x) u_2(x) \rho(x) dx = \int_a^b [\varphi(x) W(u_1(x), u_2(x))]' dx =$$

$$= \varphi(x) W(u_1(x), u_2(x))|_a^b = \varphi(b) W(u_1(b), u_2(b)) - \varphi(a) W(u_1(a), u_2(a)) = 0,$$

где $W(u_1(a), u_2(a)) = W(u_1(b), u_2(b)) = 0$ в силу граничных условий (I.2.2) (аналогично предыдущей теореме).

Основные уравнения математической физики

Волновое уравнение

TODO

10.03.2015

Постановка граничных задач для колебания струны(стержня)

Будем рассматривать неоднородное волновое уравнение колебаний струны

$$u_{tt}^{"} = a^2 u_{xx}^{"} + f(x,t)$$
 (I.3.1)

с начальными условиями

$$\begin{cases} u(x,0) = \varphi_1(x), \\ u'_t(x,0) = \varphi_2(x); \end{cases}$$
 (I.3.2)

14 10.03.2015

где f(x,t) — функция внешнего воздействия, u(x,0) — положение точек струны в начальный момент времени, $u_t'(x,0)$ — начальные скорости точек струны.

Граничные условия могут быть следующих видов:

1) І рода:

$$u(0,t) = \psi_1(t), \qquad u(l,t) = \psi_2(t);$$
 (I.3.3)

где $\psi_1(t)$ и $\psi_2(t)$ – уравнения движения концов в процессе колебаний.

2) II рода:

$$u'_x(0,t) = \nu_1(t), \qquad u'_x(l,t) = \nu_2(t),$$
 (I.3.4)

Поскольку по закону Гука натяжение пропорционально деформации, а деформация в безразмерном виде представляется в виде производной, то производная показывает с точностью до некоторой константы внешнее усилие, которое подчиняется закону $\nu_i(t)$.

3) III рода:

$$u'_x(l,t) - \alpha u(l,t) = \mu(t),$$
 (I.3.5)

П

П

где α — жесткость закрепленного конца струны. Данное уравнение определяет условие упругого закрепления концов струны. Упругое закрепление означает, что возникающее усилие вызывает обратную реакцию, которая пропорциональна смещению.

Задача. Каким будет условие свободных концов?

Решение. Comming soon.

Задача. Как записать условие жесткого крепления концов?

Решение. Comming soon.

Вывод уравнения теплопроводности

Пусть имеется произвольный объем $V \subset \mathbb{R}^3$. Обозначим через u(x,t) температуру в каждой точке объема, $x=(x_1,x_2,x_3)\in V$.

Вспомним следующие определения из курса математического анализа.

Определение І.3.1. Пусть функция u дифференцируема в точке (x_0,y_0,z_0) . Тогда в этой точке функция u имеет $npouseodhypo no nanpaene-hupo <math>l \in \mathbb{R}^3$ и эта производная находится по формуле

$$\frac{\partial u}{\partial l} = (\nabla u, \text{ ort } l), \qquad (I.3.6)$$

где $\nabla u = \left(\frac{\partial u}{\partial x_1}, \frac{\partial u}{\partial x_2}, \frac{\partial u}{\partial x_3}\right)$ – градиент функции u, ort $l = \frac{l}{|l|}$ – направляющие

10.03.2015

косинусы вектора направления.

Так как ort l — единичный вектор, то |ort l| = 1, поэтому уравнение (I.3.6) запишется в виде

 $\frac{\partial u}{\partial l} = |\nabla u| \cos \varphi,$

где φ – угол, образованный вектором l и ∇u . Если в данной точке $|\nabla u|^2 \neq 0$, то производная по направлению достигает наибольшего значения в единственном направлении, а именно том, при котором $\cos \varphi = 1$, т.е. в направлении градиента.

Определение I.3.2. Пусть задано векторное поле $a=(a_x,a_y,a_z)$ в некоторой области G, дифференцируемое в некоторой точке. Число $\frac{\partial a_x}{\partial x}+\frac{\partial a_y}{\partial y}+\frac{\partial a_z}{\partial z}$ называется $\partial u e e p r e n u e u$ поля в этой точке и обозначается через $\mathrm{div}\,a$, т.е.

 $\operatorname{div} a = \frac{\partial a_x}{\partial x} + \frac{\partial a_y}{\partial y} + \frac{\partial a_z}{\partial z} = \nabla a.$

Вернемся к исходной задаче. Известно, что градиент температур некоторого объема создает тепловой поток. Обозначим через S границу объема V, и пусть ν — внешняя нормаль к ней. Согласно закону Фурье через поверхность S в объем V за промежуток времени $(t,t+\Delta t)$ поступает количество тепла

$$\Delta Q = -\iint_{S} k \left(\nabla u, \nu \right) dS \Delta t - \iiint_{V} f(x, t) dx \Delta t, \qquad (I.3.7)$$

где k – коэффициент теплопроводности, $\mathrm{d}S$ – элемент поверхности, f(x,t) – плотность внутренних источников тепла. Воспользуемся формулой Гаусса-Остроградского и приведем (I.3.7) к виду

$$\Delta Q = -\iiint_{V} \left[\operatorname{div}(k\nabla u) + f(x,t) \right] dx \Delta t.$$
 (I.3.8)

Посмотрим с точки зрения эмпирической формулы Ньютона:

$$\Delta Q = \gamma m \left(u(x, t + \Delta t) - u(x, t) \right) = - \iiint_V \gamma \rho u_t'(x, t) \, \mathrm{d}x \Delta t. \tag{I.3.9}$$

Согласно закону сохранения количества тепла, значения (І.З.8) и (І.З.9)

16 10.03.2015

должны совпадать.

$$\iiint\limits_V \left[\gamma \rho u_t'(x,t) - \operatorname{div}\left(k\nabla u\right) - f(x,t) \right] dx = 0.$$

Будем считать, что все производные в этом выражении есть непрерывные функции, тогда ввиду произвольности области V подинтегральная функция равна 0. Получаем

$$u'_t(x,t) = \frac{1}{\gamma \rho} \operatorname{div}(k\nabla u) + \frac{1}{\gamma \rho} f(x,t).$$
 (I.3.10)

Если среда однородна, т.е k, ρ, γ — постоянные, то уравнение (I.3.10) принимает вид

$$u'_t(x,t) = a^2 \Delta u + F, \qquad a^2 = \frac{k}{\gamma \rho}, \qquad \frac{f}{\gamma \rho},$$
 (I.3.11)

где $\Delta = \nabla^2$ — оператор Лапласа. Уравнение (I.3.11) называется yравнением menлопроводности.

Постановка краевых задач для уравнения теплопроводности

Рассмотрим возможные начальные и граничные условия для уравнения теплопроводности (I.3.11).

Начальные условия:

$$u(x,0) = \varphi(x), \tag{I.3.12}$$

где $\varphi(x)$ — температура точек тела в начальный момент времени.

Граничные условия:

1) (І рода) Если на границе S поддерживается заданное распределение температуры $\psi_1(x,t),$ где $x\in S,$ то

$$u|_{S} = \psi_{1}(x,t);$$
 (I.3.13)

2) (II рода) Если на границе S поддерживается заданный поток тепла $\psi_2(x,t),$ где $x\in S,$ то

$$-k\frac{\partial u}{\partial \nu}\Big|_{S} = \psi_{2}(x,t); \tag{I.3.14}$$

3) (III рода) Если на границе S происходит теплообмен согласно закону Ньютона, то

$$\left[k\frac{\partial u}{\partial \nu} + h(u - u_0)\right]\Big|_{S} = 0, \tag{I.3.15}$$

10.03.2015

где h — коэффициент теплообмена, u_0 — температура окружающей среды Если в уравнении теплопроводности посчитать, что в процессе теплооб-

если в уравнении теплопроводности посчитать, что в процессе теплооомена функция стабилизируется и становится независимой от времени, то получим уравнение

 $a^2 \Delta u + F = 0. \tag{I.3.16}$

Уравнение (I.3.16) называется уравнением Пуассона, а при F=0 уравнением Лапласа.

Основные краевые задачи:

1) Задача Дирихле.

$$u|_S = \psi_1(x);$$

2) Задача Неймана.

$$\frac{\partial u}{\partial \nu} = \psi_2(x) \Big|_{S} = \psi_2(x);$$

3)

$$\left[k\frac{\partial u}{\partial \nu} + hu\right]\Big|_{S} = \psi_{3}(x, u, z);$$

18 10.03.2015

Часть II Обобщенные функции

17.02.2015

δ -функция Дирака

Дирак ввел эту функцию для описания плотностей (масс, зарядов и др.) в столь малом объеме, что его можно принять за точку.

Исходя из того, что если $\delta(x)$ — плотность распределения массы заряда $x=(x_1,x_2,x_3)\in\mathbb{R}^3.$

$$\int \delta(x) dx = 1, \qquad \delta(x) = 0, \qquad x \neq 0;$$

$$\int_{\mathbb{R}^3} \delta(x) dx = \lim_{\varepsilon \to 0} \int_{|x| > \varepsilon} \delta(x) dx.$$

Пусть f(x) — непрерывная в окрестности 0 функция. Рассмотрим

$$\delta_{\varepsilon}(x) = \begin{cases} \frac{1}{2\varepsilon}, & |x| > \varepsilon, \\ 0, & |x| \leqslant \varepsilon; \end{cases} \quad x \in \mathbb{R};$$

$$\int_{\mathbb{R}} \delta_{\varepsilon}(x) f(x) \, \mathrm{d}x = \lim_{\varepsilon \to 0} \int_{|x| > \varepsilon} \delta_{\varepsilon}(x) \, \mathrm{d}x = \lim_{\varepsilon \to 0} \int_{|x| > \varepsilon} \frac{1}{2\varepsilon} f(x) \, \mathrm{d}x.$$

Поскольку δ — неотрицательная функция, можно воспользоваться І-ой теоремой о среднем и вынести значение в некоторой средней точке за знак интеграла.

$$\lim_{\varepsilon \to 0} \int_{|x| > \varepsilon} \frac{1}{2\varepsilon} f(x) \, \mathrm{d}x = \lim_{\varepsilon \to 0} \frac{1}{2\varepsilon} f(\xi_{\varepsilon}) \int_{-\varepsilon}^{\varepsilon} \, \mathrm{d}x = \lim_{\varepsilon \to 0} f(\xi_{\varepsilon}) = f(0);$$

Т.о. δ -функция Дирака оказалась функционалом, который на каждой, непрерывной в окрестности 0 функции действует по правилу.

Учитывая, что действие этого функционала прослеживается через предельный переход в интегральных операциях от δ -образной последовательности, это действие записывается следующим образом

$$(\delta, \varphi) = \varphi(0);$$

$$\int_{\mathbb{R}^n} \delta(x) \varphi(x) \, \mathrm{d}x = \varphi(0).$$

Задача. Привести примеры δ -образных последовательностей в $\mathbb{R}^2, \mathbb{R}^3$.

При этом использовать не только функции с разрывом 1-го рода, но и бесконечно дифференцируемые.

П

Решение. Comming soon.

Пространство основных функций D

 $D = D(\mathbb{R}^n)$ — функции, имеющие конечный носитель в \mathbb{R}^n , бесконечно дифференцируемые. В этом множестве вводится топология следующим образом. Последовательность функций $\varphi_k \to \varphi$ входит в D, если:

- 1) $\exists R$, supp $\varphi_k \subset B_R$.
- 2) $\alpha = (\alpha_1, \dots, \alpha_n)$ мультииндекс. $D^{\alpha} \varphi_k \rightrightarrows D^{\alpha} \varphi$ в B_R . $D^{\alpha} = \frac{\partial^{|\alpha|}}{\partial x_1^{\alpha_1} \dots \partial x_n^{\alpha_n}}$, где $|\alpha| = \sum_{i=1}^n \alpha_i, \ \alpha_i \in \mathbb{Z}^+.$

Задача. Доказать, что дифференциальные операторы непрерывны в топологии D.

Решение. Comming soon.

Задача. Доказать, что линейная замена переменных y = Ax + b (A невырожденная матрица и $b \in \mathbb{R}^n$) — непрерывная операция в топологии D.

Решение. Comming soon.

Задача. Доказать, что операция умножения на бесконечно дифференцируемую функцию непрерывна в D.

Решение. Comming soon.

24.02.2015

Пример основной функции

Рассмотрим семейство функций вида

$$\omega_{\varepsilon}(x) = \begin{cases} c_{n,\varepsilon} e^{-\frac{\varepsilon^2}{\varepsilon^2 - |x|^2}}, & |x| \leq \varepsilon, \\ 0, & |x| > \varepsilon, \end{cases}$$

где $c_{n,arepsilon}$ выбираются таким образом, чтобы $\int\limits_{\mathbb{R}^n}\omega_{arepsilon}(x)\,\mathrm{d}x=1.$

Задача. Доказать, что ω_{ε} — бесконечно непрерывно дифференцируемa.

Решение. Comming soon.

Элемент объема dx можно представить в сферических координатах в виде

$$\mathrm{d}x = r^{n-1} \, \mathrm{d}r \, \mathrm{d}S,$$

3.03.2015 23

где dS — элемент n-1-мерной единичной сферы, при этом

$$\int_{|x|=1} \mathrm{d}S = \frac{2\pi^{n/2}}{\Gamma(n/2)}.$$

Тогда для любой функции f(|x|) справедливо равенство

$$\int_{|x| \le R} f(|x|) \, \mathrm{d}x = \int_{0}^{R} f(r) r^{n-1} \, \mathrm{d}r \int_{|x|=1} \, \mathrm{d}S.$$

Отсюда легко получить условия нормировки для параметров $c_{n,\varepsilon}$.

Основная функция, равная 1 на области

Лемма II.5.1. Для любой области $\Omega \subset \mathbb{R}^n$ найдётся такая бесконечно непрерывно дифференцируемая функция η , что выполняются следующие три условия:

- 1) $0 \le \eta(x) \le 1$,
- 2) $\eta(x) = 1$ для всех $x \in \Omega_{\varepsilon}$, где $\Omega_{\varepsilon} \varepsilon$ -окрестность области Ω ,
- 3) $\eta(x)=0$ для всех x не принадлежащих 3 arepsilon-окрестности области Ω .

Доказательство. См. Владимиров-Жаринов (2004), с. 69.

3.03.2015

Плотность множества основных функций $D(\Omega)$ в $L^2(\Omega)$

Лемма II.6.1. Пусть Ω – ограниченное множество, тогда для любой функции $f \in L^2(\Omega)$ и для любого $\varepsilon > 0$ найдется такая функция $\varphi \in D(\Omega)$, что выполняется неравенство:

$$\|f-\varphi\|_{L^2}<\varepsilon$$

Доказательство. Comming soon.

Пространство обобщенных функций

Обобщенной функцией называется всякий линейный непрерывный функционал на пространстве основных функций D. Если функция $\varphi \in D$, тогда множество функционалов от функции φ обозначим:

$$f(\varphi)=(f,\varphi)$$

24 3.03.2015

где f — линейный непрерывный функционал. Он обладает следующими свойствами:

1) пусть $\varphi_1, \varphi_2 \in D$ и α_1, α_2 – комплексные числа, тогда

$$(f, \alpha_1 \varphi_1 + \alpha_2 \varphi_2) = \alpha_1 (f, \varphi_1) + \alpha_2 (f, \varphi_2);$$

2) если $\varphi_k \to \varphi$ в $D, k \to \infty$, тогда $(f, \varphi_k) \to (f, \varphi)$, $k \to \infty$, в частности, если $\varphi_k \to 0$ в $D, k \to \infty$, тогда $(f, \varphi_k) \to 0, k \to \infty$. Множество функционалов f будем обозначать D'.

Часто линейный непрерывный функционал рассматривается в виде:

$$(f,\varphi) = \int_{\mathbb{R}^n} f(x)\varphi(x) dx.$$

Линейность этого множества следует из линейности интеграла, а непрерывность для всех локально интегрируемых функций f — из возможности предельного перехода под знаком интеграла. В общем случае пространство обобщенных функций D' будем считать линейным, если линейную комбинацию $\alpha_1 f + \alpha_2 g$ обобщенных функций f и g определить как функционал, действующий по формуле:

$$(\alpha_1 f + \alpha_2 g, \varphi) = \alpha_1 (f, \varphi) + \alpha_2 (g, \varphi), \qquad \varphi \in D.$$

Задача. Доказать, что функционал $\alpha_1 f + \alpha_2 g$ линейный и непрерывный.

П

Решение. Comming soon.

Полнота пространства обобщенных функций

Лемма II.6.2. Пусть есть последовательность $\{f_k\}, f_k \in D',$ такая, что для каждой функции $\varphi \in D$ числовая последовательность (f_k, φ) сходиться при $k \to \infty$, т. е. существует предел $\lim_{k \to \infty} (f_k, \varphi)$. Тогда функционал f на D определенный равенством:

$$(f,\varphi) = \lim_{k \to \infty} (f_k, \varphi), \qquad \varphi \in D,$$

также является линейным и непрерывным на $D, m. e. f \in D'.$ Доказательство. Comming soon.

Носитель обобщенных функций

Будем говорить, что обобщенная функция f равна нулю в области Ω , если для любой функции $\varphi \in D(\Omega)$ справедливо равенство: $(f, \varphi) = 0$.

3.03.2015 25

Две обобщенные функции f и g будем называть paвными в области Ω (f=g), если для любой функции $\varphi\in D(\Omega)$ справедливо равенство: $(f,\varphi)=(g,\varphi)$.

Пусть обобщенная функция f равна нулю в области Ω . Тогда она равна равна нулю в любой подобласти области Ω и, следовательно, в окрестности любой точки области Ω . Справедливо и обратное.

Лемма II.6.3. Если обобщенная функия f равняется нулю в окрестности каждой точки области Ω , то она равна нулю во всей области Ω .

Доказательство. См. Владимиров-Жаринов (2004), с. 72.

Регулярные обобщенные функции

Функция f называется локально интегрируемой в \mathbb{R}^n , если она интегрируема по любой компактной области в \mathbb{R}^n .

Пусть $f \in L_1^{loc}(\mathbb{R}^n)$, где $L_1^{loc}(\mathbb{R}^n)$ – множество локально интегрируемых функций в \mathbb{R}^n . Тогда функционал порождаемый функцией f по формуле:

$$(f,\varphi) = \int f(x)\varphi(x) dx, \qquad \varphi \in D$$
 (II.6.1)

П

является обобщенной функцией.

Обобщенные функции, определяемыми локально интегрированными в \mathbb{R}^n функциями по формуле (II.6.1), называются регулярными обобщенными функциями.

Лемма II.6.4 (дю Буа-Реймона). Пусть обобщенная функция f = 0 в области Ω , тогда f = 0 почти всюду в Ω .

Доказательство. Comming soon.

Сингулярные обобщенные функции

Все обобщенные функции принадлежащие пространству D' и не являющиеся регулярными, называются $\mathit{cunrynsphimu}$.

Основным примером сингулярной обобщенной функцией является δ -функция Дирака. Докажем что δ -функция Дирака является обобщенной функцией. Предположим противное, пусть существует локально интегрируемая в \mathbb{R}^n функция f, такая что для любой функции $\varphi \in D$

$$(f,\varphi) = \int f(x)\varphi(x) dx = \varphi(0).$$
 (II.6.2)

26 3.03.2015

Так как $x_1\varphi(x)\in D$, если $\varphi\in D$ то из (II.6.2) следует

$$\int f(x)x_1\varphi(x) \, dx = x_1\varphi(x)|_{x=0} = 0 = (x_1f, \varphi)$$

при всех $\varphi \in D$; здесь x_1 – первая координата x. Таким образом, локально интегрируемая в \mathbb{R}^n функция x_1f равна нулю в смысле обобщенных функций. По лемме дю Буа-Реймона $x_1f(x)=0$, а следовательно и f(x)=0 почти всюду. Но это противоречит равенству (II.6.2). Полученное противоречие доказывает сингулярность δ -функции.

Обобщенные производные

Пусть функция $f \in C^1$ и является локально интегрируемой в $\Omega, \varphi \in D$, тогда используя формулу интегрирования по частям

$$\int\limits_{\Omega} f_{x_i}'(x)g(x)\,\mathrm{d}x = \int\limits_{\partial\Omega} f(x)g(x)\cos(\widehat{\vec{\nu}},\widehat{\vec{0}}_{x_i})\,\mathrm{d}\Gamma - \int\limits_{\Omega} f(x)g_{x_i}'(x)\,\mathrm{d}x,$$

получаем

$$(f, \varphi'_{x_i}) = \int_{\Omega} f(x)\varphi'_{x_i}(x) \, \mathrm{d}x = \int_{\partial\Omega} f(x)g(x) \cos(\widehat{\vec{\nu}}, \widehat{\vec{0}}_{x_i}) \, \mathrm{d}\Gamma - \int_{\Omega} f'(x)\varphi(x) \, \mathrm{d}x = \int_{\Omega} f'(x)\varphi(x) \, \mathrm{d}x$$

$$= -\int_{\Omega} f'(x)\varphi(x) \, \mathrm{d}x.$$

Пусть $\alpha=(\alpha_1,\dots,\alpha_n)$ – произвольный мультииндекс. Пусть $f\in C^{|\alpha|}$, откуда следует, что f – регулярная обобщенная функция. Тогда производную порядка $|\alpha|$ для любой регулярной функции можно определить по формуле:

$$(f, \partial^{\alpha} \varphi) = (-1)^{|\alpha|} (\partial^{\alpha} f, \varphi).$$

Эта формула получается аналогично предыдущей, путем применения формулы интегрирования по частям $|\alpha|$ раз.

В качестве примера найдем производную функции одной переменной, имеющей разрыв первого рода. Обычно такие функции относятся к классу недифференцируемых.

Пример II.6.1. Пусть функция f имеет разрыв первого рода в точке x_0 , а во всех остальных точках она является непрерывно дифференцируе-

3.03.2015 27

мой, функция φ такая, что $\varphi(a) = \varphi(b) = 0$. Тогда

$$(f',\varphi) = -\int_a^b f(x)\varphi'(x) dx = -\left(\int_a^{x_0} f(x)\varphi'(x) dx + \int_{x_0}^b f(x)\varphi'(x) dx\right).$$

Применяя формулу интегрирования по частям к каждому их интегралов, получаем:

$$(f',\varphi) = -f(x)\varphi(x)|_a^{x_0-0} + \int_a^{x_0} f'(x)\varphi(x) dx - f(x)\varphi(x)|_{x_0+0}^b +$$

$$+ \int_{x_0}^b f'(x)\varphi(x) dx = -f(x_0-0)\varphi(x_0) + \int_a^b \{f'(x)\}\varphi(x) dx +$$

$$+ f(x_0+0)\varphi(x_0) = \varphi(x_0)[f]_{x_0} + \int_a^b \{f'(x)\}\varphi(x) dx,$$

где $[f]_{x_0}$ — скачок функции f в точке $x_0, \{f'(x)\}$ — производная функции f в тех точках, где она существует. Таким образом в смысле обобщенных функций получаем:

$$f' = [f]_{x_0} \delta(x - x_0) + \{f'(x)\},\$$

где $\delta(x-x_0)-\delta$ — функция Дирака, сосредоточенная в точке $x_0,\delta(x-x_0)=\varphi(x_0)$.

Задача. Найти производную от функции включения Хевисайда.

Решение. Comming soon.