

Learning Objectives

03

Reflection

Ray diagrams

Refraction

Total internal reflection

Snell's law

Law of reflection

- Construction
- Reflection with plain mirrors

Image types

04

Convex and concave lens

Principles of drawing ray diagrams with lenses

Reflection

Rectilinear propagation of light

The tendency of light to travel in a straight path/line

Laws of Reflection

- (A)

1) Normal, incident ray and reflected ray lie on the same plane

2) Whenever light incidents on a surface, the **angle of incidence** is equal to the **angle of reflection**

Note: both Li and Lr are taken from

the normal

Virtual images

- Can't be formed on a screen
- The same size as the object
- The same distance behind the mirror as the object it is in front of
- Laterally inverted

Real images

- Can be formed on a screen
- Not the same size as the object
- Not the same distance behind the mirror as the object it is in front of
- Inverted

Rules to construct ray diagrams

Refraction

Refraction:

The change in direction of light propagation as a result of the change in the speed of light in different medium

Relative Refractive index =

Speed of light in medium(1)

Speed of light in medium(2)

Refractive index =

Speed of light in medium

Speed of light in vacuum

Refractive index:

the ratio of the velocity of light in a vacuum to its velocity in a specified medium

Convex lens

 Bulges at the middle, and tapers off at the ends

 A ray passing through the optical center does not change direction

Rules for drawing ray diagrams:

- Incident rays parallel to the principal axis,refracts and passes through the principal focus.
- If a ray is incident through the principal focus, it becomes parallel to the principal axis after refraction.

Types of images formed by convex lens at different lengths

Concave lens

 Bulges at the ends, and tapers off in the middle

 A ray passing through the optical center does not change direction

Rules for drawing ray diagrams:

- Incident rays parallel to the principal axis, diverges and appears to be passing through the principal focus.
- If a ray is incident through the principal focus, it becomes parallel to the principal axis after refraction.

CONCAVE LENS

Solved examples

The diagram shows light travelling from air into glass.

Four angles v, w, x and y are shown.

Which formula is used to calculate the refractive index *n* of the glass?

A
$$n = \frac{\sin x}{\sin x}$$

B
$$n = \frac{\sin x}{\sin x}$$

$$C n = \frac{\sin x}{1}$$

$$n = \frac{\sin w}{\sin x}$$

Questions

The diagram shows light travelling from air into glass.

Four angles v, w, x and y are shown.

Which formula is used to calculate the refractive index *n* of the glass?

A
$$n = \frac{\sin x}{\sin x}$$

$$B = \frac{\sin}{\sin}$$

$$C n = \frac{\sin w}{\sin v}$$

$$n = \frac{\sin n}{\sin n}$$

