Import Libraries and Load Data

```
In [7]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings("ignore")

# Load dataset
df = pd.read_csv(r"C:\Users\Akash shah\Downloads\Wellness_centredata.csv")
df.head()
```

Out[7]:		cityName	wellness Centre Name	card_type	count
	0	AHMEDABAD	VEJALPUR	Serving	2177
	1	AHMEDABAD	NAVRANGPURA	Pensioner	3891
	2	AHMEDABAD	GANDHI NAGAR	Ex MP	19
	3	AHMEDABAD	LALDARWAJA	Pensioner	1562
	4	AHMEDABAD	RAMBAUG, MANINGAR	Serving	3596

Data Cleaning and Initial Checks

```
In [8]: print("Dataset Info:")
    print(df.info())

    print("\nMissing Values:\n", df.isnull().sum())

# Standardize string data
    df['cityName'] = df['cityName'].str.strip().str.upper()
    df['card_type'] = df['card_type'].str.strip().str.title()
    df['wellnessCentreName'] = df['wellnessCentreName'].str.strip().str.title()
```

```
Dataset Info:
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1284 entries, 0 to 1283
Data columns (total 4 columns):
    Column
                       Non-Null Count Dtype
0 cityName 1284 non-null object
    wellnessCentreName 1284 non-null object
   card_type 1284 non-null object
3 count
                     1284 non-null int64
dtypes: int64(1), object(3)
memory usage: 40.2+ KB
None
Missing Values:
                     0
cityName
wellnessCentreName
card type
count
dtype: int64
```

Descriptive Statistics

```
In [9]: print(" * Descriptive Statistics:\n", df['count'].describe())
        print("\n • Unique Values:")
        print("Cities:", df['cityName'].nunique())
        print("Centres:", df['wellnessCentreName'].nunique())
        print("Card Types:", df['card type'].nunique())
       Descriptive Statistics:
                1284.000000
       count
      mean
                3616.672118
      std
              6507.888634
      min
                   1.000000
      25%
                  8.000000
      50%
                892.000000
      75%
                5221.750000
               66423.000000
      Name: count, dtype: float64
       Unique Values:
      Cities: 24
      Centres: 363
      Card Types: 7
```

Data Visualization

1. Histogram of Count

2. Boxplot for Outlier view

```
In [12]: plt.figure(figsize=(10, 5))
    sns.boxplot(x='count', data=df, color='Yellow')
    plt.title("Boxplot of Count (Outliers Highlighted)")
    plt.tight_layout()
    plt.show()
```


3. Violin Plot - Card Type Distribution

```
In [23]: plt.figure(figsize=(10, 6))
    sns.violinplot(x='card_type', y='count', data=df, palette="husl")
    plt.title("Count Distribution by Card Type")
    plt.xticks(rotation=45)
    plt.tight_layout()
    plt.show()
```


4. Total Count Per City

```
In [19]: city_counts = df.groupby('cityName')['count'].sum().sort_values(ascending=Faint)
plt.figure(figsize=(14, 6))
sns.barplot(x=city_counts.index, y=city_counts.values, palette='viridis')
plt.title("Total Count per City")
plt.xticks(rotation=90)
plt.ylabel("Total Count")
plt.tight_layout()
plt.show()
```


5. Top 10 Wellness Centres

```
In [24]: top_centres = df.groupby('wellnessCentreName')['count'].sum().sort_values(as
    plt.figure(figsize=(10, 5))
    sns.barplot(y=top_centres.index, x=top_centres.values, palette='magma')
    plt.title("Top 10 Wellness Centres by Total Count")
    plt.xlabel("Total Count")
    plt.tight_layout()
    plt.show()
```


6. Heatmap - City Vs Card Type

```
In [25]: pivot_table = df.pivot_table(index='cityName', columns='card_type', values='
    plt.figure(figsize=(14, 8))
    sns.heatmap(pivot_table, cmap="YlGnBu", linewidths=0.5, annot=True, fmt="g")
```


7.A)Scatter Plot of Centres Vs Count

```
In [26]: # Encode centre names to numerical values for plotting
    df['centre_id'] = df['wellnessCentreName'].astype('category').cat.codes

plt.figure(figsize=(12, 6))
    plt.scatter(df['centre_id'], df['count'], alpha=0.6, c='darkcyan')
    plt.title("Scatter Plot of Wellness Centres vs Count")
    plt.xlabel("Wellness Centre (encoded ID)")
    plt.ylabel("Count")
    plt.tight_layout()
    plt.show()
```


7. B)Scatter Plot With Jitter: Count by Card Type

```
In [30]: import random

plt.figure(figsize=(10, 6))
sns.stripplot(x='card_type', y='count', data=df, jitter=True, palette='Set3'
plt.title("Scatter (Jittered) of Count by Card Type")
plt.xticks(rotation=45)
plt.tight_layout()
plt.show()
```


8. Pie Chart of Wellness Centre Distribution by City (Top 6 Cities)

```
In [33]: # Count number of wellness centres per city
    centre_distribution = df['cityName'].value_counts().nlargest(6)

plt.figure(figsize=(8, 8))
    colors = sns.color_palette("Set3")
    plt.pie(centre_distribution, labels=centre_distribution.index, autopct='%1.1
    plt.title("Top 6 Cities by Number of Wellness Centres")
    plt.axis('equal')
    plt.tight_layout()
    plt.show()
```

Top 6 Cities by Number of Wellness Centres

9. KDE with Log Scale

```
In [36]: plt.figure(figsize=(10, 6))
    sns.kdeplot(np.log1p(df['count']), shade=True, color='green')
    plt.title("KDE Plot of Log(Count + 1)")
    plt.xlabel("Log(Count + 1)")
    plt.ylabel("Density")
    plt.tight_layout()
    plt.show()
```


10. Count Plot for card_type

```
In [38]: plt.figure(figsize=(8, 6))
    sns.countplot(x='card_type', data=df, palette='husl')
    plt.title("Count of Records per Card Type")
    plt.xlabel("Card Type")
    plt.ylabel("Number of Records")
    plt.tight_layout()
    plt.show()
```


Grouped Summary by City & Card Type

5.000000

5.0

5710.0 20681

5

16

In [39]:	<pre>grouped = df.groupby(['cityName', 'card_type'])['count'].agg(['sum', 'mea grouped.head()</pre>							
Out[39]:		cityName	card_type	sum	mean	median	max	min
	0	AHMEDABAD	Ех Мр	123	17.571429	10.0	61	1
	1	AHMEDABAD	Freedom Fighter	37	7.400000	5.0	17	1
	2	AHMEDABAD	Pensioner	37233	3723.300000	3779.0	8602	1562

Serving 67390 6126.363636

Top Centre per Card Type

3 AHMEDABAD Rajya Sabha Mp

AHMEDABAD

```
In [40]: highest_by_type = df.loc[df.groupby('card_type')['count'].idxmax()][['card_t
highest_by_type
```

cityName wellnessCentreName count Out[40]: card type

1143	Ех Мр	DELHI AND NCR	North Avenue	1361
165	Freedom Fighter	HYDERABAD	Begumpet	3237
334	Jaurnalist	DELHI AND NCR	Laxmi Nagar	487
1155	Lok Sabha Mp	DELHI AND NCR	Pha (Annexe)	1605
67	Pensioner	DELHI AND NCR	Gurugram Sector 5	31321
776	Rajya Sabha Mp	DELHI AND NCR	North Avenue	402
596	Serving	DELHI AND NCR	Yamuna Vihar	66423

Summary

- The dataset contains 1,284 records with no missing values.
- Most records belong to the *Pensioner* card type.
- Ahmedabad, **Mumbai, and **Delhi have the highest usage counts.
- Some wellness centres show significantly higher usage (outliers).
- Count distribution is *right-skewed*, as seen in the KDE plot.
- Visuals like pie chart, scatter plot, and count plot helped reveal key trends.
- · Overall, the data gives clear insights into card usage and citywise distribution.