Exercise 2: Fundamental Frequency Estimation

Mohammad Vali

Aalto University, Finland

DeadLine: Monday, September 18, 2023

Instructions

- Implement and return files as Exercise_2_firstname.ipynb along with your speech file.
- Return your answers to MyCourses by 23:59 on Monday, September 18th, 2023.

Objective

- Learn and understand concepts about fundamental frequency
 (F0) estimation practically.
- Exploring two most common basic approaches to F0 estimation from speech: autocorrelation method and the cepstral method.
- We will be implementing following two functions:
 - (1) **F0_autocorr** -> Function for *F*0 estimation using the autocorrelation method.
 - (2) **F0_cepstrum** -> Function for *F*0 estimation using the cepstral method.

Fundamental Frequency (F0)

- ► F0 is the rate of vibration of the vocal folds at the glottis (quasi-periodic oscillations)
- ► F0 refers to speed of oscillations and is thus a measure of the physical phenomenon, and is roughly in the range [80 400] Hz.
- ► The pitch of a speech signal refers to the perceived frequency, that is, what a human listener hears.

F0 Estimation Using Autocorrelation Method

► Useful functions: (numpy) correlate, amax, argmax

F0 Estimation Using Cepstral Method

Useful functions: (numpy) fft, ifft, log10, absolute, real, amax, argmax

Expected plot

Experiment with the parameters

- How does tuning following parameters affect the autocorrelation method?
 - Frame length
 - Windowing function
 - F0 search range
 - Voicing threshold value
- How about above parameters for the cepstrum method?

Learnings

Experimental findings, Analysis, Reasoning and any other?

Contact

► Email: mohammad.vali@aalto.fi