Ejercicios tema 4. Grupos cociente. Teoremas de isomorfismo. Productos.

Blanca Cano Camarero 29 de abril de 2020

Índice

1.	Ejercicio 10	1
2.	Ejercicio 11	2
3.	Ejercicio 23.	3
4.	Ejercicio 26	4

1. Ejercicio 10

Sean H,K dos subgrupos finitos del grupo G, uno de ello, H normal. Demostrar que

$$|H||K| = |HK||H \cap K|$$

Por el tercer teorema de isomorfía sabemos que

$$\frac{K}{H\cap K}\cong \frac{KH}{H}$$

de lo que deducimos que el respectivo número de clases laterales el mismo, es decir que

$$[K:H\cap K] = \left|\frac{K}{H\cap K}\right| = \left|\frac{KH}{H}\right| = [KH:H].$$

Además por el teorema de Lagrange sabemos que:

$$|K| = [K : H \cap K]|H \cap K|$$
 y que $|HK| = [KH : H]|H|$

Por tanto, combinando estas igualdades, podemos desmejar la igualdad que se nos pedía demostrar.

$$\frac{|K|}{|H\cap K|} = \frac{|HK|}{|H|}$$

2. Ejercicio 11

sea $N \subseteq G$. Probar que $G/N \cong G$ si y solo si $N = \{1\}$. Probar que $G/N \cong \{1\}$ si y solo si N = G

Condiciones suficientes

Gracias al teorema de lagrage sabemos que |G| = |G/N||N| Como por hipótesis $G/N \cong G$ entonces |G/N| = |G|. De estas dos igualdades anteroriores deducimos que: |N| = 1 y como la unidad pertenece por ser subgrupo no queda más remedio que $N = \{1\}$.

Si por el contrario, nuestra hipótesis fuera $G/N \cong \{1\}$ entonces |N| = |G|, y el único subgrupo de G que tiene la misma cardinalidad es él mismo, es decir N = G.

Condiciones necesarias

3. Ejercicio 23.

Sean G, H y K grupos. Demostrar que:

$$H \times K \cong K \times H$$
.

$$G \times (H \times K) \cong (G \times H) \times K$$
.

Primer isomorfismo

Definamos $f: H \times K \to K \times H$, de la forma f(h,k) = (k,h). Veamos que esto es un isomorfismo:

- Epimorfismo: Sean $(k_1, h_1), (k_2, h_2) \in K \times H$ tales que $f^{-1}(k_1, h_1) = f^{-1}(k_2, h_2)$ entonces por cómo se ha definido la aplicación se tiene que $(k_1, h_1) = (k_2, h_2)$.
- Monomorfismo: $f^*(1,1) = \{(1,1)\}.$

Segundo isomorfismo

.

No consigo entender qué hay que probar ¿no es evidente por cómo se define el producto directo que $G \times H \times K \cong G \times (H \times K) \cong (G \times H) \times K$?

4. Ejercicio 26

No todo subgrupo de un grupo directo es producto directo de subgrupos.

Ejemplo dado el grupo (\mathbb{Z}_2, \times) , para $\mathbb{Z}_2 \times \mathbb{Z}_2$ se tiene que $<(1,1)>=\{(0,0),(1,1)\}$ no es ningún subgrupo generado por subgrupos de \mathbb{Z}_2 , ya que estos son:

$$\begin{cases}
0\} \times \{0\} &= \{(0,0)\} \\
\{0\} \times \mathbb{Z}_2 &= \{(0,0),(0,1)\} \\
\mathbb{Z}_2 \times \{0\} &= \{(0,0),(1,0)\} \\
\mathbb{Z}_2 \times \{0\} &= \{(0,0),(1,0),(0,1)(1,1)\}
\end{cases}$$

El recíproco sí es cierto.