

Unit 10

——Analysis of Clocked Sequential Circuits 张彦航

School of Computer Science Zhangyanhang@hit.edu.cn

时序逻辑电路分析

时序逻辑电路的分析方法

确定系统变量(输入变量、输出变量、状态变量)

- ① 列驱动方程(控制函数)
- ② 列输出方程(输出函数)
- ③ 列状态方程(次态方程)
- ④ 列写状态转换表
- ⑤ 画出状态图
- ⑥ 画出波形图 (如必要)

- ■同步时序电路
- 异步时序电路

时序逻辑电路分析——示例1:同步时序

③ 输出方程

 $Z = \overline{XCPQ_2^nQ_1^n} \cdot \overline{\overline{X}CPQ_2^nQ_1^n}$ $= XCPQ_2^nQ_1^n + \overline{X}CPQ_2^nQ_1^n$

次态方程:

JK: Qⁿ⁺¹=JQn+kQn

$$Q_2^{n+1} = J_2 \overline{Q}_2 + \overline{K}_2 Q_2$$

$$= (X \oplus Q_1) \overline{Q}_2 + \overline{(X \oplus Q_1)} Q_2$$

$$= X \oplus Q_1 \oplus Q_2$$

$$Q_1^{n+1} = J_1 \overline{Q}_1 + K_1 \overline{Q}_1$$
$$= \overline{Q}_1$$

① 输入方程

$$J_1 = K_1 = 1$$

$$J_2=K_2=X \oplus Q_1^n$$

② 次态方程

$$\mathbf{Q}_2^{\mathsf{n+1}} = \mathbf{X} \oplus \mathbf{Q}_1^{\mathsf{n}} \oplus \mathbf{Q}_2^{\mathsf{n}}$$

$$\mathbf{Q_1}^{n+1} = \overline{\mathbf{Q_1}}^n$$

④ 状态转换表

	输入		态	次	で	输出
I	Х	Q_2^n	Q_1^n	Q_2^{n+1}	Q_1^{n+1}	Z
Ī	0	0	0	0	1	0
	0	0	1	1	0	0
1	0	1	0	1	1	0
	0	1	1	0	0	1
	1	0	0	1	1	1
	1	0	1	0	0	0
	1	1	0	0	1	0
Į	1	1	1	1	0	0

时序逻辑电路分析——示例1:同步时序

④ 状态转换表

顼	态	Q ₂ ⁿ⁺¹ Q ₁ ⁿ⁺¹ / Z			
Q ₂ n	Q_1^n	X=0	X=1		
0	0	01/0	11/1		
0	1	10/0	00/0		
1	0	11/0	01/0		
1	1	00/1	10/0		

⑤ 状态图

结论: 模4可逆计数器

■ X=0: 加计数

■ X=1: 减计数

Z: 进位和借位输出标志

时序逻辑电路分析——示例2:同步时序

① 输入方程

② 次态方程

$$\begin{aligned} D_4 &= Y_3^n & Y_4^{n+1} &= Y_3^n \\ D_3 &= Y_2^n & Y_3^{n+1} &= Y_2^n \\ D_2 &= Y_1^n & Y_2^{n+1} &= Y_1^n \\ D_1 &= \overline{Y_3^n \overline{Y_1}^n} \, \overline{Y_4^n} & Y_1^{n+1} &= Y_1^n \overline{Y_4^n} + \overline{Y_3^n \overline{Y_4^n}} \\ &= Y_1^n \, \overline{Y_4^n} + \overline{Y_3^n} \, \overline{Y_4^n} \end{aligned}$$

③ 状态转换表

					次	态		序号
Y_4^n	Y ₃ n	Y_2^n	Y ₁ ⁿ	Y_4^{n+1}	Y ₃ n+1	Y ₂ n+1	Y ₁ n+1	
0	0	0	0	0	0	0	1	1
0	0	0	1	0	0	1	1	2
0	0	1	0	0	1	0	1	
0	0	1	1	0	1	1	1	3
0	1	0	0	1	0	0	0	
0	1	0	1	1	0	1	1	
0	1	1	0	1	1	0	0	
0	1	1	1	1	1	1	1	4
1	0	0	0	0	0	0	0	8
1	0	0	1	0	0	1	0	
1	0	1	0	0	1	0	0	
1	0	1	1	0	1	1	0	
1	1	0	0	1	0	0	0	7
1	1	0	1	1	0	1	0	
1	1	1	0	1	1	0	0	6
1	1	1	1	1	1	1	0	<u>(5)</u>

时序逻辑电路分析——示例2:同步时序

③ 状态转换表

现态					次态			序号
Y ₄ n	Y ₃ ⁿ	Y ₂ ⁿ	Y ₁ ⁿ	Y ₄ n+1	Y ₃ n+1	Y ₂ n+1	Y ₁ n+1	
0	0	0	0	0	0	0	1	1
0	0	0	1	0	0	1	1	2
0	0	1	0	0	1	0	1	
0	0	1	1	0	1	1	1	3
0	1	0	0	1	0	0	0	
0	1	0	1	1	0	1	1	
0	1	1	0	1	1	0	0	
0	1	1	1	1	1	1	1	4
1	0	0	0	0	0	0	0	8
1	0	0	1	0	0	1	0	
1	0	1	0	0	1	0	0	
1	0	1	1	0	1	1	0	
1	1	0	0	1	0	0	0	7
1	1	0	1	1	0	1	0	
1	1	1	0	1	1	0	0	6
1	1	1	1	1	1	1	0	5

④ 状态图

结论:

模8计数器(格雷码输出),能够自启动

时序逻辑电路分析——同步时序总结

同步时序逻辑电路分析方法总结

确定系统变量(输入变量、输出变量、状态变量)

- ① 列写三组方程:
 - 驱动方程(控制函数)
 - 状态方程(次态方程)
 - 输出方程(输出函数)
- ② 列写状态转换表:
 - 写出所有输入及现态的取值组合;
 - 将每一种取值组合带入次态方程和输出方程,计算后的得出次态值和输出值;
 - 从表中第一行开始,寻找状态转换规律;
- ③ 画出完整的状态图;
- ④ 得出电路功能,并说明能否自启动