ELEC 313 Lab 8 Bipolar Junction Transistor Characterization

REFERENCE: Appropriate chapters of ELEC 306 text.

OBJECTIVE: The objective of this experiment is to plot the output characteristic of a common

emitter transistor circuit, and use it to determine the current gain, and output

conductance.

EQUIPMENT: Transistor 2N2222A

Resistors 22K Ω , 33K Ω , 220 Ω (2), Capacitor 0.1 μ F

Power Supply (Vdc), Multi Meter(s),

PRIOR PREPARATION (Pre-Lab):

Go onto the Internet (e.g., http://www.st.com/stonline/) and print the data sheet for a 2N2222A transistor.

EXPERIMENT

2N2222A Transistor

Figure 1: Common emitter transistor circuit.

- 1) Construct the circuit of Figure 1. Use the HP multi-meter to measure the base current, I_B , and Fluke multi-meters to measure the collector voltage and current (V_{CE} and I_C). Use the +6 V power supply for V_{BB} and the +25 V supply for V_{CC} . Be sure to keep the connection distance between the capacitor and the transistor short. Measure the base current on the source side of the capacitor.
- 2) Adjust V_{BB} for 20 μ A of base current, I_B . (Note: The adjustment resolution will be about 1 μ A, so adjust it as close to 20 μ A as possible.)
- 3) Adjust V_{CC} from 0.5 to 1.5 V in 0.25-V steps and from 2 to 20 V in 2-V steps.
- 4) At each step measure the collector current, I_C , and the collector-to-emitter voltage, V_{CE} . If I_B has drifted from its set value, readjust V_{BB} for the I_B set in step 4 before recording the values of I_C and V_{CE} .
- 5) Adjust V_{BB} for a base current of 50 μ A, 80 μ A, and 100 μ A. At each I_B value, repeat steps 3 and 4.

DATA ANALYSIS

- 1) Plot the data with V_{CE} on the horizontal axis and I_C on the vertical axis. Make a family of curves; i.e., plot of the data for each of different values of I_B so that the graph contains 4 loci. Use MATLAB, Excel, or any other program of your choice to plot the data. The result should resemble figure 5.13 in the Neaman text.
- 2) Determine the dependence of the current gain, β , on I_C and V_{CE} .
 - a) Find the average value of β at $V_{CE}=5$, 10, and 15 volts using the recorded value of I_C , for each of the 4 different values of I_B . Make a table showing the average value of β at $V_{CE}=5$, 10, and 15 volts.
 - b) Find the average value of β for each of the 4 different values of I_B , by using the recorded value of I_C at a variety of V_{CE} values along the same I_B curve. Make a table showing the average value of β at $I_B = 20 \,\mu\text{A}$, $50 \,\mu\text{A}$, $80 \,\mu\text{A}$, and $100 \,\mu\text{A}$.
- 3) Compute the output conductance of the transistor. (This parameter is called h_{oe} and is measured in Siemens.) For each I_B curve on the I_C vs. V_{CE} plot made in step 1, find the slope of the line for $V_{CE} \ge 3$ V. Thus, a value of h_{oe} will be computed for each value of I_B . Make a table of h_{oe} versus I_B .

LAB REPORT

Your report should be completed in the format requested by the instructor. The lab report should be in standard format and include the following additional items:

- 1) Measured results of I_C and V_{CE} in tabular form, plus the graph from the data analysis section showing the data as a family of curves with I_B as a parameter.
- 2) The two tables from step 2 of the data analysis section. Discuss any conclusions drawn from this analysis.
- 3) The table from part 3 of the data analysis section. Discuss these results as well.