Simulation of Biomolecules

Classification

Dr Matteo Degiacomi

Durham University

matteo.t.degiacomi@durham.ac.uk

Dr Antonia Mey
University of Edinburgh

antonia.mey@ed.ac.uk

The Data Mining world

From scikit-learn.org 2

The Data Mining world

From scikit-learn.org

Features are possible ways to represent data

Pixels colour

Interactomic distances

Labels assign featurised data to categories

- take labelled data
- create an n-dimensional feature vector from data
- Separate «feature space» in different regions

- take labelled data
- create an n-dimensional feature vector from data
- Separate «feature space» in different regions

- take labelled data
- create an n-dimensional feature vector from data
- Separate «feature space» in different regions
- Warning: a too precise classification of examples might sacrifice generality (overfitting)

Data

Some terminology

Confusion Matrix: describes classification results can also describe n classes

		Dog	Cat
I COUIT	Dog	90	10
	Cat	12	88

real

• **precision** =
$$\frac{\text{true positives}}{\text{selected elements}} = \frac{\bullet}{\bullet}$$

• sensitivity = recall =
$$\frac{\text{true positives}}{\text{relevant elements}} = \frac{1}{1}$$

•
$$accuracy = \frac{true positives + true negatives}{total population}$$

Learning Algorithms

- Artificial Neural Network (ANN)
- Decision Tree (DT)
- Random Forests (RF)
- Support Vector Machine (SVM)
- Logistic Regression (LOGRES)
- Naïve Bayes (NB)
- K Nearest Neighbor (KNN)
- ...

Learning Algorithms

- Artificial Neural Network (ANN)
- Decision Tree (DT)
- Random Forests (RF)
- Support Vector Machine (SVM)
- Logistic Regression (LOGRES)
- Naïve Bayes (NB)
- K Nearest Neighbor (KNN)
- ...

A **neuron** fires if input signal is above a threshold

The activation function **f** can take several shapes

$$f(w_1x_1 + w_2x_2 + ... + w_nx_n + b) = y$$

A single neuron can be used to take simple decisions

$$H(w_1x_1 + w_2x_2 + b) = y$$

A single neuron can be used to take simple decisions

Complex decision making emerges when arranging neurons into **networks**

A single neuron can be used to take simple decisions

Complex decision making emerges when arranging neurons into **networks**

An ANN with one hidden layer can approximate any function

Decision Trees (DT)

- Subdivides features space in sectors
- Can overfit if space subdivision becomes too fine

Bootstrap Aggregating (Bagging)

a weighted sum of weak classifiers creates a single strong classifier

Useful when a small change to training set causes large change in the output classifier ("learner is unstable")

Create *N* bootstrap samples S drawing *m* random examples from *D* with replacement

$$S[0]=$$
 5 1 7 2 7 9 2 6 5 \rightarrow C[0]
 $S[1]=$ 9 4 7 1 2 8 9 7 6 \rightarrow C[1]

$$S[2] = 0 8 2 0 9 7 7 0 1 \rightarrow C[2]$$

 $S[N] = 1 2 3 4 5 6 7 8 9 \rightarrow C[N]$

Training: for every S, build a distinct classifier C using the same learning algorithm

[Extra] Boosting

 a weighted sum of weak classifiers creates a single strong classifier

 iteratively add classifiers to a pool, tweaked to give more importance to data misclassified by previous classifiers

Weights based on learners accuracy

Random Forests (RF)

- Data bagging: creates N decision trees trained on bagged data
- Feature bagging: Given M features, every tree learns on m<M randomly selected features
- Classification based on voting of resulting forest

Advantages:

- does not overfit easily
- Can handle thousands of features
- estimates what variables are important for classification

How do I pick the best learning algorithm?

Learning algorithms quality criteria:

- accuracy: percentage of correct classification
- robustness: handling noise and missing values
- efficiency: time to construct and use the model
- scalability: efficiency in memory requirements
- interpretability: how much the model is understandable

Conclusion

 Know what algorithms do, what their limitations are, and how their parameters may affect results

- Pick your algorithm depending on the nature of your data
- Better data often beats better algorithms
- Getting started: consider Python!