

# FAST-RIR: FAST NEURAL DIFFUSE ROOM IMPULSE RESPONSE GENERATOR

Anton Ratnarajah<sup>1</sup>, Shi-Xiong Zhang<sup>2</sup>, Meng Yu<sup>2</sup>, Zhenyu Tang<sup>1</sup>, Dinesh Manocha<sup>1</sup>, Dong Yu<sup>2</sup>

<sup>1</sup> University of Maryland, College Park, MD, USA

<sup>2</sup> Tencent Al Lab, Bellevue, WA, USA

#### Motivation

- With advancements in deep neural-network-based far-field speech processing the demand for **on-the-fly simulation** of far-field speech training datasets with **hundreds of thousands of room configurations similar to the testing environment** is increasing.
- We need a fast room impulse response (RIR) generator that can generate thousands of RIRs per second to simulate a large-scale far-field speech training dataset.

### Introduction



## **Main Contributions**

- We propose a neural-network-based fast diffuse room impulse response generator (FAST-RIR).
- Our FAST-RIR takes a constant amount of time to generate an RIR for any given acoustic environment, and yields accurate reverberation time.
- We trained our FAST-RIR to generate both specular and diffuse reflections of a given acoustic environment.
- Our FAST-RIR can generate RIRs 400 times faster than a state-of-the-art diffuse acoustic simulator (DAS) and performs similar to DAS in far-field automatic speech recognition (ASR) experiments.

## Architecture



## **Experiments and Results**

- We randomly select 30,000 different acoustic environments within the range of the training dataset and generate RIRs corresponding to the selected acoustic environments using the following RIR generators to evaluate the performance of FAST-RIR.
  - 1. Image method
  - 2. gpuRIR
  - 3. Diffuse Acoustic Simulator (DAS)
  - 4. FAST-RIR

**Table 1**. The runtime for generating 30,000 RIRs using image method, gpuRIR, DAS, and our FAST-RIR. Our FAST-RIR significantly outperforms all other methods in runtime.

| RIR Generator            | Hardware       | <b>Total Time</b>      | Avg Time                        |
|--------------------------|----------------|------------------------|---------------------------------|
| DAS [7]                  | CPU            | $9.01 \times 10^{5} s$ | 30.05s                          |
| Image Method [5]         | CPU            | $4.49 \times 10^{3} s$ | 0.15s                           |
| FAST-RIR(Batch Size 1)   | CPU            | $2.15 \times 10^{3} s$ | 0.07s                           |
| gpuRIR [13]              | GPU            | 16.63s                 | $5.5 \times 10^{-4} \text{s}$   |
| FAST-RIR(Batch Size 1)   | GPU            | 34.12s                 | $1.1 \text{x} 10^{-3} \text{s}$ |
| FAST-RIR(Batch Size 64)  | $\mathbf{GPU}$ | 1.33s                  | $4.4 \times 10^{-5} s$          |
| FAST-RIR(Batch Size 128) | GPU            | 1.77s                  | $5.9 \times 10^{-5} \text{s}$   |

**Table 2**.  $T_{60}$  error of our FAST-RIR for 30,000 testing acoustic environments. We report the  $T_{60}$  error for RIRs cropped at  $T_{60}$  and full RIRs. We only crop RIRs with  $T_{60}$  below 0.25s.

| $T_{60}$ Range | Crop RIR at $T_{60}$ | $T_{60}$ Error |
|----------------|----------------------|----------------|
| 0.2s - 0.25s   | No                   | 0.068s         |
| 0.2s - 0.25s   | Yes                  | 0.033s         |
| 0.25s - 0.7s   | -                    | 0.021s         |
| 0.2s - 0.7s    | No                   | 0.029s         |
| 0.2s - 0.7s    | Yes                  | 0.023s         |

**Table 3**. Far-field ASR results were obtained for far-field speech data recorded by single distance microphones (SDM) in the AMI corpus. The best results are shown in **bold**.

| Training Dataset       | Word Error Rate [%] |             |
|------------------------|---------------------|-------------|
| Clean Speech ® RIR     | dev                 | eval        |
| IHM       None         | 55.0                | 64.2        |
| IHM   Image Method [5] | 51.7                | 56.1        |
| IHM ⊛ gpuRIR [13]      | 52.2                | 55.5        |
| IHM * DAS [7]          | 47.9                | 52.5        |
| IHM ® DAS-cropped [7]  | 48.3                | <b>52.6</b> |
| IHM ® FAST-RIR (ours)  | 47.8                | 53.0        |

### Discussion and Future Work

- We propose a novel FAST-RIR architecture to generate a large RIR dataset on the fly.
- We can easily train our FAST-RIR with the RIRs generated using any state-of-the-art RIR generator to improve the accuracy of RIR generation.
- We would like to expand our FAST-RIR to generate RIRs for any complex 3D scenes.