ECU178 Computer Science: 210CT - Programming, Algorithms and Data Structures Portfolio

Due on Monday, December 15th, 2014

Dr James Shuttleworth

Robert Rigler: 4939377

Contents

Item 1: Week 3 - Linear Search and Duplicate Finder Pre-Homework 1: Write a Program that displays your name 10 times	3
	3
Pre-Homework 2: Write a function that draws a square of stars given as a parameter	5
Pre-Homework 3: Write a program to open a file and display it's contents in capitals	7
1. Pseudocode for linear search	8
2. Pseudocode for finding duplicates in a list	8
Item 2: Week 4 - Time complexities and Big-O notation	9
1. Describe the runtime bounds of the linear search algorithm	9
2. Describe the runtime bounds of the duplicate finder algorithm	9
Additional work: Critical values of relative runtimes	10
Item 3: Week 6 - Harmonic Series or Pivot Selection	12
Pre-Homework 1.: 3-Bit binary number	12
Pre-Homework 2.: Boolean sequence binary number	12
1. Harmonic Series (Pseudocode)	12
2. Harmonic Series (JAVA Implementation)	12
Item 4: Week 7 - Heapworksheet or RPN Calculator	14
Item 5: Week 8 - Linked List Delete function or Linked List Sortings	15

Item 1: Week 3 - Linear Search and Duplicate Finder

Pre-Homework 1: Write a Program that displays your name 10 times

Listing 1: NameReapeat class JAVA code

```
/**
1
    * Created by Rob on 23/10/2014.
2
  public class NameRepeat {
5
       public static void main(String[] args) {
           NameRepeat myObject = new NameRepeat(); /*Create Object*/
        /*Use object to call PrintName() method*/
10
           myObject.PrintName("Rob");
11
12
13
       public void PrintName(String _name) {
14
15
           for (int i = 0; i<10;i++) { /* Loop 10 times*/</pre>
16
        /*, print the number && _name parameter each time.*/
                System.out.println((i+1) + " " + _name);
19
21
22
23
24
25
26
```


Pre-Homework 2: Write a function that draws a square of stars given as a parameter

Listing 2: StarSquare class JAVA code

```
* Created by Rob on 23/10/2014.
2
  public class StarSquare {
5
        //Create variable to hold asterisk character.
       public char ast = '*';
       public static void main(String[] args) {
           StarSquare sSquare = new StarSquare(); /*Create Object*/
10
11
        /*Use object to call writeSquare() method*/
12
           sSquare.writeSquare(10);
13
14
15
       }
16
17
       public void writeSquare(int size){
18
19
            for (int i =0; i < size; i++) { /*OuterLoop 'size' times*/</pre>
20
                for (int j = 0; j < size; j++) { /*InnerLoop 'size' times*/</pre>
21
22
                    System.out.print(ast); /*Print line of asterisks*/
24
                }
25
              /* Start new line when inner loop finishes*/
27
                System.out.println();
28
           }
30
31
```


Pre-Homework 3: Write a program to open a file and display it's contents in capitals

Listing 3: RtoCaps class JAVA code

```
* Created by Rob on 23/10/2014.
2
    */
  import java.io.File;
  import java.io.FileNotFoundException;
5
  import java.util.Scanner;
  public class RtoCaps {
8
   public static void main(String[] args)throws FileNotFoundException
10
11
           File inFile = new File("input.txt");
12
                    /*Create a file object */
13
           RtoCaps obj = new RtoCaps(); /*Create class object*/
15
        /*Use Class object to call rInput() method*/
16
           obj.rInput(inFile);
17
18
19
       public void rInput(File inFile) throws FileNotFoundException{
20
21
        /*Create a new scanner to read from the file*/
22
           Scanner in = new Scanner(inFile);
24
        /*Loop WHile there is still lines left in the document*/
25
           while (in.hasNextLine())
26
           {
27
             /* Place the next line in a strin varibale*/
28
               String line = in.nextLine();
30
              /* Print the line in uppercase*/
31
               System.out.println(line.toUpperCase());
32
           }
33
34
35
36
37
38
```

```
Evidence

bash - "riglerr-univer × +

riglerr@university-work:~/workspace/210CT_Programming/Portfolio/Item_1/com.Pre-Homework/src (master) $ java RtoCaps
HELLO WORLD! FROM INPUT.TXT
riglerr@university-work:~/workspace/210CT_Programming/Portfolio/Item_1/com.Pre-Homework/src (master) $ |
```

1. Pseudocode for linear search

```
1: procedure BOOL LINEARSEARCH(item, list[])
2: for each element i in list do
3: if list[i] = item then
4: return true
5: end if
```

8: end procedure

7: **return** false

end for

Algorithm 1 LinearSearch

2. Pseudocode for finding duplicates in a list

Algorithm 2 Examining for duplicates

```
1: procedure BOOL EXFORDUPES(list[])
2: for each element i in list[] do
3: for each element j in list[] do
4: if list[i] = list[j] then
5: return true
6: end if
7: end for
8: end for
9: end procedure
```

Item 2: Week 4 - Time complexities and Big-O notation

1. Describe the runtime bounds of the linear search algorithm

```
Algorithm 3 LinearSearch
1: procedure BOOL LINEARSEARCH(item, list[])
      for each element i in list do
                                       (n)
3:
          if list[i] = list then t
                                       (n)
4:
            return true
                                       (n)
          end if
6:
      end for
8: return false
                                       (1)
9: end procedure
```

The time complexity of the algorithm is O(n)

2. Describe the runtime bounds of the duplicate finder algorithm

```
Algorithm 4 Examining for duplicates
 1: procedure BOOL EXFORDUPES(list[])
       for each element i in list[] do
 2:
                                                 (n)
          for each element j in list[] do
                                                 (n*n)
 3:
             if list[i] = list[j] then
                                                 (n*n)
 4:
            return true
                                                 (n*n)
 5:
             end if
 6:
 7:
          end for
       end for
 8:
                                                 (1)
 9: return false
10: end procedure
```

The time complexity of the algorithm is $O(n^2)$

Additional work: Critical values of relative runtimes

Robert Rigler: 4939377

Write a function that determines the critical value at which the relative runtime of two linear algorithms swap.

Page 10 of 15

Algorithm 5 Relative runtime comparison algorithm

```
1: procedure CRITVAL(m1, k1, m2, k2)
       switch \leftarrow false
 2:
       n \leftarrow 0
 3:
 4:
       // Which Expression has a greater value for n=0
 5:
       if (((m1*n) + k1) > ((m2*n) + k2)) then
 6:
 7:
          //While Expression 1 (m1, k1) is greater than Expression 2(m2, k2), do:
 8:
          while !switch do
 9:
10:
              // If Expression 1 become less than Expression 2 for that value of n
11:
12:
              if (((m1*n) + k1) < ((m2*n) + k2)) then
13:
                  //switch becomes true, which exits the loop and both if statements
14:
                  switch \leftarrow true
15:
              else
16:
                  n + +
17:
              end if
18:
          end while
19:
20:
       else
21:
22:
          //While Expression 2 (m1, k1) is greater than Expression 1(m2, k2), do:
23:
          while !switch do
24:
25:
              // If Expression 2 become less than Expression 1 for that value of n
26:
              if (((m1*n) + k1) > ((m2*n) + k2)) then
27:
28:
                  //switch becomes true, which exits the loop and both if statements
29:
                  switch \leftarrow true
30:
              else
31:
                  n + +
32:
33:
              end if
          end while
34:
35:
       end if
36:
37:
       // Return the value of n at which either while loop was fulfilled.
38: return n
39:
40: end procedure
```

Item 3: Week 6 - Harmonic Series or Pivot Selection

Pre-Homework 1.: 3-Bit binary number

Write a function that takes 3 boolean parameters, a, b and c and returns an integer value they represent if they are the three bits of a three-bit number, with a being the most significant and c being the least.

Algorithm 6 3-Bit Binary Number

Robert Rigler: 4939377

```
1: procedure PRE1(bool a, bool b, bool c)
        total \leftarrow 0
 2:
        if a then
 3:
 4:
            total \leftarrow total + 1
        end if
 5:
        if b then
 6:
            total \leftarrow total + 2
 7:
 8:
        end if
        if c then
 9:
            total \leftarrow total + 4
10:
        end if
11:
12: return total
13: end procedure
```

Pre-Homework 2.: Boolean sequence binary number

Write a function that takes a sequence of values of any given length and returns the integer value they represent.

Algorithm 7 Return integer value from list a of boolean value

```
1: \operatorname{procedure} \operatorname{PRE2}(\operatorname{bool} \operatorname{list}[])
2: \operatorname{total} \leftarrow 0
3: \operatorname{len} \leftarrow \operatorname{LengthOf.list}[]
4: \operatorname{for} i \leftarrow \operatorname{len} \operatorname{to} 0 \operatorname{do}
5: \operatorname{if} \operatorname{list}[i] = \operatorname{true} \operatorname{then}
6: \operatorname{total} \leftarrow \operatorname{total} + 2^{\mathbf{i}}
7: \operatorname{end} \operatorname{if}
8: \operatorname{end} \operatorname{for}
9: \operatorname{end} \operatorname{procedure}
```

1. Harmonic Series (Pseudocode)

Robert Rigler: 4939377

Use pseudocode to specify a recursive algorithm to compute the nth value of the harmonic series, for some integer n.

2. Harmonic Series (JAVA Implementation)

The Harmonic Series computation algorithm implemented in Java

Page 13 of 15

Page 14 of 15

Item 5: Week 8 - Linked List Delete function or Linked List Sortings

Robert Rigler: 4939377

Page 15 of 15