CS & IT

ENGINEERING

Digital Logic
LOGIC GATE

Lecture No. 2

By- CHANDAN SIR

TOPICS TO BE COVERED **91** AND GATE

O2 OR GATE

03 Discussion

34 Question Practice

Basic GATE

Universal GIATE

Exclusive GARE

Not

AND

MAND

X-OR X-NOR

(S)R

AND

 $\frac{A}{B} = \frac{A \cdot B}{A \cdot B}$

$$A = \{1, 2, 3, 4\}$$

$$B = \{3, 3, 5, 6, 7\}$$

OR =

Pw

AND

$$0 \cdot 0 = 0$$

$$O \cdot T = O$$

$$1 \cdot 1 = 1$$

$$A = 1 \cdot A$$

$$\Theta = O \cdot \Phi$$

$$A \cdot \overline{A} = 0$$

$$0 + 0 = 0$$

$$0 + 1 = 1$$

$$A+\overline{A}=1$$

$$1 + A + AB = 1$$

AND GATE

-> Intersection

Symbol

Symbol

Truth Table			
Α	В	Y=A.B	
0	70	0	
0	1	0	
1	> 0	0	
1	1	1	

A floating terminal Control in pas Strobe

AND GATE

AND GATE

3. Enable/Disable CONTROL'O' DISABLE

4. Commutative Law

$$A. B = B. A$$

CONTROL 'I' ENABLE

commutative Law.

$$(A \cdot B) \cdot C = A \cdot (B \cdot C)$$

AND GATE

Fanout

Pull up arrangement

NOISE MARGIN

"Biode"

Vp>Vn -> Forward Bios -> Short circuit

VP < VN -> Reverse Bion -> Open circuit

Circuit Diagram

Α	В	D _A	D _B	y
0	0	FB	FB	0
0	1	FB	RB	0
1	0	RB	FB	0
1	1	RB	RB	L

NOTE

- Whenever logic are designed by TTL (Transistor transistor logic) then floating terminal always works as a high.
- Whenever logic are designed by ECL (Emitter coupled logic) then floating terminal always works as a low.
- Noise margin- Maximum noise added to the input which will not affect the output are called Noise Margin
- 4. Fan out

The number of logic driven by the logic are called fan out

- Fan in
 - Number of input of a logic are called fan in.
- 6. ECL is the fastest logic among all the logic family.

Symbol

Truth Table

Truth Table		
Α	В	Y=AtB
0	0	0
0	71	1
1	0	1
1	31	1

Enable/disable

CONTROL O ENABLE

CONTROL'I AISABLE

4. Commutative Law

$$A + B = B + A$$

Associative Law

$$A + (B + C) = (A + B) + C$$

ECL Emitter coupled Logic

(c)
$$\frac{1}{3}$$
 ECL A+3+0 = A+B

Circuit Diagram

Α	В	D _A	D _B	y
0	0			
0	1			
1	0			
1	1			

If the Logics are designed by (TTL), Then o/p will be-

- (A) A
- (B) B
- (C) AB
- US AB

If the Logics are designed by (Ecy, Then o/p will be-

(A) 0 (B) AB (D) Mai Gajni hu.

AND & OR GATE

Discussion

control o Aisable Control : Enable

commutative ~

A B 4=A+3
0.0
1.1
1.0
1.1

- # Control o' Enable Control : Disable
- + Commutative Law /
 Associative Law /
- (ECL) floating terminal Low.

Q.

Output at
$$S = 0$$
 is

A A

B B

 $\overline{\mathbf{C}}$ $\overline{\mathbf{A} \cdot \mathbf{B}}$

D ĀB

f = 1 for combination of A, B, S

A
$$A = 0, B = 0, S = 0 \times$$

B
$$A = 0, B = 1, S = 0 \times$$

$$CA = 1, B = 1, S = 0 \times$$

f is an

- A Equality Detector
- B Inequality Detector
- C All zero-input detector
- D All one input detector

For the given truth table

Α	В	f
0	0	0
0	1	1
1	0	1
1	1	1

A-Morgan's Law

$$\overline{AB} = \overline{A} + \overline{B}$$
 $\overline{A+B} = \overline{A} \cdot \overline{B}$

Select the respective combination diagram

$$\begin{array}{c|c}
A & \nearrow & \hline
\hline
A & \nearrow & \hline
\hline
A & B & \hline
A & B & \hline
A & B & \hline
\hline
A & B & \hline
\hline
A & B & \hline
A & B & \hline
\hline
A & B & \hline
\hline
A & B & \hline
A & B & \hline
A & B & \hline
\hline
A & B & \hline
A & B & \hline
A & B & \hline
\hline
A & B & \hline
A & B & \hline
\hline
A & B & \hline
A & B & \hline
\hline
A & B & \hline
A & B & \hline
\hline
A & B & \hline
\hline
A & B & \hline
A & B &$$

A logical circuit is as shown below, which of the following circuit can be used to get the desired expression.

Q. HW

The logic circuit shown below, is equivalent to

B

time/cisir #GATE FICHE GATEWALLAHA

Thank you

GW Soldiers!

