MATH 23 WORKSHEET: Spiral points

Find general solution of $\vec{x}' = A\vec{x}'$ for $A = \begin{pmatrix} -1 & 2 \\ -2 & -1 \end{pmatrix}$

 $\det \begin{pmatrix} -1-\lambda & 2 \\ -2 & -1-\lambda \end{pmatrix} =$

= 0 so eigenvalues:

eigenvectors: at $\lambda = \lambda_i$.

 $\left| \begin{pmatrix} \vec{z}_{1}^{(i)} \\ \vec{z}_{2}^{(i)} \end{pmatrix} \right| = \left| \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right| \quad \text{so } \vec{\xi}^{(i)} = \left| \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right|$

Gen som: x'(t) =

How does he relate to 2,?

夏(2) to 夏(1) 7

Re[=="erit]=

Im [Eit] =

These will be our linearly indep. solutions (if three, check Wronshian?)

Sketch the trajectories of these solutions:

MATH 23 WORKSHEET: Spiral points Bandle 1/3/05
MAD SOLLITIONS
Find general solution of $\vec{X}' = A\vec{X}'$ for $A = \begin{pmatrix} -1 & 2 \\ -2 & -1 \end{pmatrix}$
$\det\begin{pmatrix} -1-\lambda & 2 \\ -2 & -1-\lambda \end{pmatrix} = \chi^2 + 2\lambda + 1 + 4 = 0$ so eigenvalues:
$A - \lambda I - \frac{\lambda}{2} = -1 + \frac{\lambda}{2} = -1 - \frac{\lambda}{2}$
$\det \begin{pmatrix} -1-\lambda & 2 \\ -2 & -1-\lambda \end{pmatrix} = \chi^2 + 2\lambda + +4 = 0$ so eigenvalues: $\lambda = \frac{1}{2}(-2 + \sqrt{4+20})$ $\lambda_1 = - +2 $ eigenvectors: $\lambda = \lambda_1 = \lambda_1$ $-2i 2 (5/2)$ $-2i (5/2)$ $\lambda_2 = -1 - 2i$ $\lambda_3 = -1 - 2i$ $\lambda_4 = \lambda_1 = \lambda_2$ $\lambda_5 = (0) (0) (0) (1) (1) (1) (2) (3/2)$
Gen soln: $\chi'(t) = \begin{pmatrix} 2i & 2 \\ -2 & 2i \end{pmatrix} \begin{pmatrix} \xi_1^{(2)} \\ \xi_2^{(2)} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ so $\overline{\xi}_1^{(2)} = \begin{pmatrix} 1 \\ -i \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} - i \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ (naive complex version)
Gen som: $\overline{X}(t) = \frac{1}{4}$
How does λ_2 relate to λ_1 ? $\overline{\xi}^{(2)}$ to $\overline{\xi}^{(1)}$? $\overline{\xi}^{(1)} = \overline{\overline{\xi}^{(1)}} = \overline{\xi}^{(1)}$ comple
Find Re[\(\varepsilon'\) = e^{\hbartarrow}[\varange \text{cospt} - \varbarrow] \simple \text{cospt} - \(\varbarrow\) \simple \(\varphi\) = e^{-t}[\(\varphi\) \simple \text{cospt} \\ \[\varphi\) = e^{\hbartarrow}[\varphi\] = e^{\hbartarrow}[\varphi\] = e^{\hbartarrow}[\varphi\] \simple \text{cospt} = e^{\hbartarrow}[\varphi\] \simple \text{cospt} \\ \[\varphi\] \
I apolytize for topos here: 1 = (et cospt)
Im [Eque ent] = et [a simple + Geospt] = et () simple + () cospt
if the Re de In of the same eigenpair you need. These will be our linearly indep. solutions (if there, check Wronshian?)
Sketch the trajectories of these solutions:
In Etherit spiral inwards.
CW or CChi? goes CW.
Control (CM)