МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ПЕНЗЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Кафедра «Информационная безопасность систем и технологий»

Отчет

по Заданию 1

на тему «Преобразование аналогового сигнала в цифровой сигнал»

Дисциплина: СиСПИ

Группа: 21ПТ1

Выполнил: Симонов А. Н.

Количество баллов:

Дата сдачи:

Принял: Иванов А. П.

1 Цель работы: изучение преобразования аналогового сигнала в цифровой сигнал.

2 Задание. Осуществить преобразование аналогового сигнала, приведенного на рисунке 1 в цифровую кодовую последовательность. Определить шумы квантования. Результаты привести на временной диаграмме и в таблице по шаблону таблицы 1. Вид аналогового сигнала, его максимальную амплитуду и частотный диапазон взять из таблицы 2 в соответствии с вариантом.

Рисунок 1 — Вариант задания (сигнал)

3 Выполнение работы.

- 3.1 В соответсвии с рисунком и 9 вариантом задания были определены:
- U_{MAX} = 1,5 В и U_{MIN} : -1,5 В;
- в соотвествии с заданием $\,U_{\text{огр}} \! = U_{\text{MAX} \,=\, } 1,5 \, B;$
- в соотвествии с вариантом 9 f_{MIN} = 0,4 к Γ ц и f_{MAX} = 4,1 к Γ ц;
- в соответсвии с заданием $\Delta_{\text{идоп}} = 0.25 \text{ B};$

Было расчитано минимальное число уровней квантования N_{MIN} по формуле (U_{MAX} - U_{MIN})/ $\Delta_{u_{JOII}}$. N_{MIN} = 3 / 0,25 = 12

Было определено число уровней N_{KB} из условия $N_{KB} > N_{MIN}$. $N_{KB} = 16$.

Было определено количество разрядов n в коде. $n = log_2 16 = 4$ бит.

Было расчитан шаг квантования по формуле $\,\delta = U_{\text{O\GammaP}}/2^{\text{n}} = 1,5/2^4 = 0,09375\,$ В.

3.2 При частоте дескритизации 8,1 кГц длина одного отсчета будет равна $1000 \text{ мс} / 8100 \text{ гц} = 0,12\text{мс} \rightarrow \text{количесвто отсчетов за 1мс будет равно 1мс} / 0,12\text{мс} \approx 8 отсчетов, для 6мс количество отсчетов равняется 48. Было определено Ubx(t), UkB(t), <math>\Delta$ KB(t) и N. Результат представлен в таблице 1. Отсчеты Ubx(t) представлены на рисунке 2.

Рисунок 2 — Отсчеты Uвх(t)

Таблица 1 — Результаты измерений

Отсчет сигнала	UBX(t), B	UKB(t),B	ΔΚΒ(t)	N	Двоичный код
1	0,09	0,09	0,00	1	0001
2	0,40	0,47	-0,07	5	0101
3	0,68	0,75	-0,07	8	1000
4	0,92	0,94	-0,01	10	1010
5	1,13	1,22	-0,09	13	1101
6	1,29	1,31	-0,02	14	1110
7	1,37	1,41	-0,03	15	1111
8	1,39	1,41	-0,02	15	1111
9	1,34	1,41	-0,07	15	1111
10	1,23	1,31	-0,08	14	1110
11	1,07	1,13	-0,05	12	1100
12	0,87	0,94	-0,07	10	1010
13	0,61	0,66	-0,05	7	0111
14	0,35	0,38	-0,03	4	0100
15	0,11	0,19	-0,08	2	0010
16	0,12	0,19	-0,07	2	0010
17	0,33	0,38	-0,04	4	0100
18	0,49	0,56	-0,07	6	0110
19	0,61	0,66	-0,04	7	0111
20	0,65	0,66	0,00	7	0111
21	0,64	0,66	-0,02	7	0111
22	0,56	0,56	0,00	6	0110
23	0,43	0,47	-0,03	5	0101
24	0,28	0,28	0,00	3	0011
25	0,10	0,19	-0,08	2	0010
26	0,09	0,09	0,00	1	0001
27	0,28	0,28	-0,01	3	0011
28	0,43	0,47	-0,04	5	0101
29	0,57	0,66	-0,09	7	0111
30	0,65	0,66	-0,01	7	0111
31	0,68	0,75	-0,07	8	1000
32	0,66	0,66	0,00	7	0111
33	0,58	0,66	-0,08	7	0111
34	0,45	0,47	-0,02	5	0101
35	0,28	0,38	-0,09	4	0100

36	0,07	0,09	-0,03	1	0001
37	0,20	0,28	-0,08	3	0011
38	0,45	0,47	-0,02	5	0101
39	0,70	0,75	-0,05	8	1000
40	0,93	0,94	-0,01	10	1010
41	1,11	1,13	-0,01	12	1100
42	1,27	1,31	-0,05	14	1110
43	1,36	1,41	-0,05	15	1111
44	1,36	1,41	-0,05	15	1111
45	1,28	1,31	-0,03	14	1110
46	1,17	1,22	-0,05	13	1101
47	0,96	1,03	-0,07	11	1011
48	0,70	0,75	-0,05	8	1000

3.3 В соответствии с вариантом задания кодовая последовательность была записана с помощью ЧПИ. Результат приведен на рисунке 2 — 7.

Рисунок 2 — Коды с 1 по 8

Рисунок 3 — Коды с 9 по 16

Рисунок 4 — Коды с 17 по 24

Рисунок 5 — Коды с 25 по 32

Рисунок 6 — Коды с 33 по 40

Рисунок 7 — Коды с 41 по 48

4 Вывод: было изучено преобразование аналогового сигнала в цифровой сигнал.