GENERAL SYSTEMS THEORY

Systems Analysis & Design

Author: Eng. Carlos Andrés Sierra, M.Sc. cavirguezs@udistrital.edu.co

Lecturer Computer Engineering Department School of Engineering Universidad Distrital Francisco José de Caldas

2025-I

Outline

- Basic Concepts
- 2 Information Theory and Entropy
- Graphs and Networks Theory
- Paradigms Supporting GST

Outline

- Basic Concepts
- 2 Information Theory and Entropy
- Graphs and Networks Theory
- Paradigms Supporting GST

What is General Systems Theory?

- General Systems Theory (GST) is an interdisciplinary framework for understanding and analyzing complex systems.
- It was introduced by **Ludwig von Bertalanffy** in the 1940s.
- GST focuses on the interconnections and interdependencies between components of a system.
- It is widely applied in fields such as biology, engineering, economics, and social sciences.

What is General Systems Theory?

- General Systems Theory (GST) is an interdisciplinary framework for understanding and analyzing complex systems.
- It was introduced by **Ludwig von Bertalanffy** in the 1940s.
- **GST** focuses on the interconnections and interdependencies between components of a *system*.
- It is widely applied in fields such as biology, engineering, economics, and social sciences.

Timeline of General Systems Theory

- 1940s: Ludwig von Bertalanffy introduces GST.
- 1948: Norbert Wiener publishes Cybernetics.
- 1956: Jay Forrester develops Systems Dynamics.
- 1972: Donella Meadows publishes The Limits to Growth.
- 1980s: GST influences complexity science and network theory.

General Systems Theory I

- In general systems theory the idea is to see a problem since different autonomous study areas, it helps to create a better full-picture of a problem or situation.
- Systems are dynamical, for that reason you need to define boundaries and constraints to control analysis. Also, some systems are highly susceptible to changes from the environment.

General Systems Theory II

- Ludwig Von Bertallanfy
 started to write a book, but he
 just had some ideas and not the
 enough background to develop
 them.
- He waited twenty years for mathematical and computational concepts
 evolution, and then he was capable to finish the book citing more applied concepts.

General Systems Theory III

- In nature, in real-world,
 everything is a system.
 However, more you go dive to understand the problem, more the complexity arises.
- In this point, systems theory is useful. Some patterns could be detected, some details could be discarded.

General Systems Theory IV

- Systems hierarchies are useful to split big problems into components, work on specific components, and then just connect as the context leads.
- A system could be represent by multiple internal systems. Big system is called super system, internal ones are called subsystems.

General Systems Theory V

- In nature ,you could think an ecosystem is a super system composed by different subsystems: water system, solar system, predator-victim, forest system,...
- The human body is a system, and inside there are many subsystems. Each subsystem it's basically connected to each other, and if one fails, it is like a domino effect.

General Systems Theory V

- In nature ,you could think an ecosystem is a super system composed by different subsystems: water system, solar system, predator-victim, forest system,...
- The human body is a system, and inside there are many subsystems. Each subsystem it's basically connected to each other, and if one fails, it is like a domino effect.

General Systems Theory VI

- Everything in the real-world, in the universe, is a system. The hardest thing is to get the right representation.
- Remember concepts as: snowball effect, butterfly effect, domino effect, The message is the same, be careful with details, failures and changes, there is not small impact.

General Systems Theory VI

- Everything in the real-world, in the universe, is a system. The hardest thing is to get the right representation.
- Remember concepts as: snowball effect, butterfly effect, domino effect, The message is the same, be careful with details, failures and changes, there is not small impact.

Systems Analysis & Design

General Systems Theory VII

- Sometimes you have an expected output. Major part of the time it's hard to achieve it, you must be prepared for everything.
- Black-box is a type of model when you want to get the desired output based on specific input, but yo don't want to expose the process to achieve

General Systems Theory VII

- Sometimes you have an expected output. Major part of the time it's hard to achieve it, you must be prepared for everything.
- Black-box is a type of model when you want to get the desired output based on specific input, but yo don't want to expose the process to achieve it.

General Systems Theory VIII

- White-box are models where the processes are open to check, validate, follow step-by-step. It is useful when you want to understand how the system works.
- Critical Systems Practice is a methodology to deal with
 Critical Systems Thinking study field. CSP has 4 main stages: Explore, Produce, Intervene, and Check EPIC.

General Systems Theory VIII

- White-box are models where the processes are open to check, validate, follow step-by-step. It is useful when you want to understand how the system works.
- Critical Systems Practice is a methodology to deal with
 Critical Systems Thinking study field. CSP has 4 main stages: Explore, Produce, Intervene, and Check — EPIC.

Outline

- Basic Concepts
- 2 Information Theory and Entropy
- Graphs and Networks Theory
- 4 Paradigms Supporting GST

What is Information Theory?

- **Information theory** studies the quantification, storage, and transmission of information.
- It was founded by **Claude Shannon** in 1948.
- Key concepts include entropy, redundancy, and channel capacity.
- Applications: data compression, cryptography, and communication systems.

What is Information Theory?

- **Information theory** studies the quantification, storage, and transmission of information.
- It was founded by **Claude Shannon** in 1948.
- Key concepts include entropy, redundancy, and channel capacity.
- Applications: data compression, cryptography, and communication systems.

What is Information Theory?

- **Information theory** studies the quantification, storage, and transmission of information.
- It was founded by **Claude Shannon** in 1948.
- Key concepts include entropy, redundancy, and channel capacity.
- Applications: data compression, cryptography, and communication systems.

Entropy in Information Theory

- **Entropy** measures the uncertainty or randomness in a system.
- High entropy: more uncertainty → less predictability.
- Low entropy: less uncertainty → more predictability.
- Formula: $H(X) = -\sum p(x) \log_2 p(x)$, where p(x) is the probability of event x.

Entropy in Information Theory

- **Entropy** measures the uncertainty or randomness in a system.
- High entropy: more uncertainty → less predictability.
- Low entropy: less uncertainty → more predictability.
- Formula: $H(X) = -\sum p(x) \log_2 p(x)$, where p(x) is the probability of event x.

Applications of Entropy

- Data Compression: Reducing file sizes by removing redundancy.
- Cryptography: Ensuring secure communication by maximizing entropy.
- Systems Analysis: Measuring the complexity and uncertainty of systems.
- Thermodynamics: Understanding energy distribution in physical systems.

Outline

- Basic Concepts
- Information Theory and Entropy
- Graphs and Networks Theory
- 4 Paradigms Supporting GST

What is Graph Theory?

- **Graph theory** studies the relationships between nodes (*vertices*) and edges (*connections*).
- Introduced by Leonhard Euler in 1736.
- Applications: social networks, transportation systems, computer networks.

Key Concepts in Graph Theory

- Node (Vertex): A point in the graph.
- **Edge**: A connection between two nodes.
- **Degree**: The number of edges connected to a node.
- Path: A sequence of edges connecting nodes.
- Cycle: A path that starts and ends at the same node.

What is Network Theory?

- Network theory extends graph theory to study real-world systems.
- Focuses on structure, dynamics, and functionality.
- Examples: Internet, power grids, biological networks.

Case of Study: Metabolic Network

Figure: Metabolic network of glycolysis pathway.

Outline

- Basic Concepts
- Information Theory and Entropy
- Graphs and Networks Theory
- Paradigms Supporting GST

Key Paradigms in General Systems Theory

- Cybernetics: Studies control and communication in systems.
- Systems Thinking: Focuses on interconnections and feedback loops.
- Complexity Science: Explores emergent behavior in complex systems.
- Systems Dynamics: Models time-dependent behavior of systems.
- Agents Theory: Studies individual agents and their interactions in systems.
- Network Theory: Analyzes relationships and connections in systems.
- **Cellular Automata**: Models discrete systems with simple rules.
- Fuzzy Logic: Deals with uncertainty and imprecision in systems.
- Chaos Theory: Studies sensitive dependence on initial conditions.
- **Game Theory**: Analyzes strategic interactions between agents.

Cybernetics and GST

- Founded by **Norbert Wiener** in 1948.
- Focuses on feedback, control, and adaptation.
- Applications: robotics, artificial intelligence, management systems.

Systems Thinking and GST

- Emphasizes holistic understanding of systems.
- Key principles: interdependence, feedback, emergence.
- Applications: organizational management, ecology, policy-making.

Complexity Science and GST

- Studies non-linear, adaptive, and emergent systems.
- Examples: ecosystems, financial markets, social systems.
- Tools: agent-based modeling, network analysis.

Systems Dynamics and GST

- Developed by Jay Forrester in the 1950s.
- Models feedback loops and time delays.
- Applications: supply chain management, urban planning, climate change.

Agents Theory and GST

- Studies individual agents and their interactions.
- Key concepts: autonomy, adaptation, learning.
- Applications: multi-agent systems, social networks, game theory.

Network Theory and GST

- Studies relationships and connections in systems.
- Key concepts: nodes, edges, centrality.
- Applications: social networks, transportation systems, biological networks.

30 / 36

Cellular Automata and GST

- Models discrete systems with simple rules.
- Key concepts: cells, states, neighborhoods.
- Applications: pattern formation, biological systems, computer graphics.

Fuzzy Logic and GST

- Deals with uncertainty and imprecision.
- Key concepts: fuzzy sets, membership functions, fuzzy rules.
- Applications: control systems, decision-making, pattern recognition.

32 / 36

Chaos Theory and GST

- Studies sensitive dependence on initial conditions.
- Key concepts: chaotic systems, bifurcations, strange attractors.
- Applications: weather prediction, financial markets, biological systems.

Game Theory and GST

- Studies strategic interactions between agents.
- Key concepts: players, strategies, payoffs.
- Applications: economics, political science, biology.

34 / 36

Outline

- Basic Concepts
- Information Theory and Entropy
- Graphs and Networks Theory
- Paradigms Supporting GST

Thanks!

Questions?

Repo: https://github.com/EngAndres/ud-public/tree/main/courses/systems-analysis

