SEMI-SUPERVISED CLASSIFICATION WITH GRAPH CONVOLUTIONAL NETWORKS

Thomas N.Kipf & Max Welling (ICLR 2017)

Noh Heewoong

2022.06.28

Contents

- 1. Background
- 2. Introduction
- 3. Method
- 4. Experiments
- 5. Conclusion

Semi-supervised Classification, GCN

Graph와 관련된 모든 Neural Network

Background Image vs Graph

Image

: Data on Grid

Graph

: Data and Relation

Karate club graph, colors denote communities obtained via modularity-based clustering

Background Convolution in CNN

Sparse Connection

Shared Weight

Convolutional neural network (CNN) layer with 3x3 filter:

Spatially-local correlation 을 고려하기 위해 sparse connection을 구성

→인접한 변수만을 이용하여 새로운 feature 생성

Invariant feature를 추출하기 위해 shared weight개념 이용 → 인접한 변수 집합에는 동일한 weight를 적용

위의 둘을 실현시킨 방법이 Convolution in CNN

Graph Convolution

하고싶은 Task: Graph에 Convolution filter를 통해 하나의 노드와 이웃한 노드들과의 관계를 계산 CNN의 방식을 그대로 적용할 수 있을까?

Graph convolution

기존 CNN의 convolution filter를 사용할 수 없음.

- 기본적으로 사각형의 grid 데이터에 적용됨.Filter의 크기가 노드들 마다 달라질 수 있음.

Background Review Graph

Node: Data (feature matrix, class matrix)

Edge: Relation b/w nodes (weight, scalar)

Adjacency Matrix

Degree Matrix (Diagonal)

노드간의 관계를 표현한 행렬 Degree는 각 노드와 연결된 edge의 수

0	1	0	0	1
1	0	1	1	1
0	1	0	1	0
0	1	1	0	1
1	1	0	1	0

$$D \in R^{n \times n}, D_{ii}$$

$$= \sum_{j} A_{ij}$$

Background Laplacian Matrix

Laplacian Matrix: $L \in \mathbb{R}^{N \times N}$, D - ADegree matrix - Adjacency matrix

_	- 1	U	U	- 1
-1	4	-1	-1	-1
0	-1	2	-1	0
0	7	-1	ത	-1
-1	-	0	-1	3

Undirected graph

L: Real symmetric matrix Positive Semi-Definite matrix 때문에, non-negative real eigenvalue 가짐.

Degree matrix로 L을 정규화 하면:

Normalized Laplacian: = $I - D^{-1/2}AD^{-1/2}$

Background Update hidden state in GCN

Fourier transform

Signal Processing에서 spectral analysis 라는 것은 이미지/ 음성/그래프 신호를 time/spatial domain에서 frequency domain으로 변환하여 분석을 진행하는 것을 의미함.

대표적인 방법: Fourier Transform

> 임의의 입력신호를 다양한 주파수를 갖는 주기함수들의 합으로 분해하여 표현하는 것을 말함.

$$\hat{f}\left(\xi
ight)=\int_{\mathbf{R}^{d}}f(x)ar{e}^{2\pi ix\xi}\,dx$$
 (1)Fourier Transform

$$f(x) = \int_{{f R}^d} \hat{f}(\xi) e^{+2\pi i x \xi} \, d\xi$$
 (2)Inverse Fourier Transform

$$e^{ix} = cost + isinx$$

(3)Euler's Formula

(1)에서 임의의 주파수 f(x)에 대하여 $\hat{f}(\xi)$ 는 f(x)와 $e^{-2\pi i x \xi}$ 의 내적 \rightarrow 두 함수의 유사도

(4)를 통해서 주파수 f(x)에 대해 cosine에서 유사한 정도와 sine과 유사한 정도의 합이 푸리에변환이 됨.

$$e^{2\pi i x \xi} = cos(2\pi x \xi) + i sin(2\pi x \xi)$$
 (4) (3)을 이용하여 (1)식의 $e^{2\pi i x \xi}$ 부분을 cos요소와 sin 요소의 합으로 표현

 $x \in \mathbb{R}^d$ 에서 d차원의 orthonormal basis를 찾을 수 있다면, $vector\ x$ 를 orthonormal basis의 linear combination으로 표현 가능함.

Eigen decomposition을 통해서 orthonormal basis 찾기 가능함.

Real-symmetric matrix의 eigenvectors는 orthogonal함.

<정리>

Signal: Node feature

Feature: Central node와 Neighbor node간의 차이(Laplacian Matrix)

어떤 특정 graph signal에 관한 행렬이 존재하고, real-symmetric matrix이며, eigenvectors를 구할 수 있다면, eigenvector의 선형결합이 graph signal의 푸리에 변환임을 의미하는 것.

Graph Fourier Transform Laplacian Matrix를 eigen-decomposition하는 것

By Minimization of Laplacian Quadratic Form, Graph의 feature가 GFT를 통해 높은 Frequency 값이나온다면, Feature간의 차이가 크다. →두 노드 간의 차이가 크다

결국 GFT를 통해서 graph signal을 spectral domain에서 표현 후 다시 spatial domain으로 복원할 때사용되는 filter를 학습함으로써 graph signal의 noise를 제거하고, 필요성분으로만 node embedding을 하기 위해서 이다.

Eigen decomposition of normalized laplacian matrix

Graph Fourier Transform

$$\mathcal{F}(x) = U^T x$$

$$\mathcal{F}^{-1}(\hat{x}) = U\hat{x}, \qquad (\hat{x} = U^T x)$$

GFT는 x를 L의 orthonormal (eigenvector) space로 projection 시킨 것.

Fourier transform

Inverse Fourier transform

Convolution Theorem

Convolution: 이전의 값까지의 영향을 고려하여 출력 계산 하기 위한 연산

Convolution in spatial/time domain is equivalent to multiplication in Fourier domain

→Fourier Transform을 통해 convolution이 가능해짐.

Graph domain에서도 graph signal(node)를 FT하여 frequency domain 으로 변환하면 계산이 편리해짐. 또한 가까운 노드와 멀리 있는 노드에서 오는 신호 모두 고려하여 graph signal 특징을 추출할 수 있음.

Spectral Graph Convolution

Convolution filter: $g \in \mathbb{R}^n$

$$\mathbf{x} *_{G} g = \mathscr{F}^{-1}(\mathscr{F}(\mathbf{x}) \odot \mathscr{F}(g))$$

$$= U(U^{T}\mathbf{x} \odot U^{T}g)$$

Convolution filter $g_{\theta} = diag(U^T g)$

$$\mathbf{x} *_{G} g_{\theta} = U g_{\theta} U^{T} \mathbf{x}$$

Spectral Graph Convolutions

Normalized Laplacian:

$$Ls = D^{-1/2}LD^{-1/2} = I - D^{-1/2}AD^{-1/2}$$

L matrix 는 이미 Positive Semi-definite normalized 이후 Ls matrix 또한 Positive Semi-definite →non-negative real eigenvalues 가짐.

$$0 = \lambda_1 \le \lambda_2 \le \dots \le \lambda_n \le 2$$

Spectral Convolution $g_{\theta} * x = Ug_{\theta}U^Tx = Lx$ graph signal $x \in \mathbb{R}^n$ and filter $g_{\theta} = diag(\theta)$

 $U \Rightarrow L_s(normalized\ graph\ Laplacian), I-S$ 의 eigenvectors로 이루어진 Fourier basis

 g_{θ} : function of the eigenvalues of L but use all eigenvalues ,not localized

$$\mathbf{x} *_{G} \mathbf{g}_{\theta} = \mathbf{U} \underline{\mathbf{g}}_{\theta} \mathbf{U}^{T} \mathbf{x} \implies matrix \ multiplication \ O(N^{2})$$

$$=\mathbf{U}egin{bmatrix} \hat{\mathbf{g}}(\lambda_1) & 0 & 0 \ 0 & \ddots & 0 \ 0 & 0 & \hat{\mathbf{g}}(\lambda_N) \end{bmatrix} \mathbf{U}^\mathsf{T}$$

 $=\mathbf{U}\begin{bmatrix}\hat{\mathbf{g}}(\lambda_1) & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \hat{\mathbf{g}}(\lambda_N)\end{bmatrix}\mathbf{U}^\mathsf{T}\mathbf{x}$ $Eigen-decomposition\ for\ L:\ O(N^3)$

Spectral Graph Convolutions

Using "Chebyshev Expansion" to approximate $g_{\theta}(\Lambda)$ Chebyshev Polynomial>

$$T_k(x) = 2xT_{k-1}(x) - T_{k-2}(x)$$

 $T_0(x) = 1$ $T_1(x) = x$

$$\mathbf{x} *_{G} \mathbf{g}_{\theta} = \mathbf{U} \mathbf{g}_{\theta} \mathbf{U}^{T} \mathbf{x}$$

$$= \mathbf{U} \begin{bmatrix} \mathbf{\hat{g}}(\lambda_1) & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \mathbf{\hat{g}}(\lambda_N) \end{bmatrix} \mathbf{U}^\mathsf{T} \mathbf{x}$$

$$g_{\theta} \approx \sum_{k=0}^{K} \theta_k T_k(\widetilde{\Lambda})$$

$$\widetilde{\Lambda} = \frac{2\Lambda}{\lambda_{max}} - I_n, (-1 \le \widetilde{\Lambda} \le 1)$$

Spectral Graph Convolutions

$$g_{\theta^*} x \approx U \left(\sum_{k=0}^K \theta_k T_k(\tilde{\Lambda}) \right) U^T x$$

$$T_k(\tilde{L}) = U T_k(\tilde{\Lambda}) U^T, \qquad \tilde{L} = \frac{2L}{\lambda_{max}} - I_n \qquad K: localized$$

$$\tilde{L} \qquad = \qquad U \qquad T_k(\tilde{\Lambda}) \qquad U^T$$

Chebyshev expansion을 사용한 Laplacian Matrix

Spectral Graph Convolutions-ChebyNet

$$g_{\theta^*} x = U \left(\sum_{k=0}^K \theta_k T_k(\widetilde{\Lambda}) \right) U^T x$$

$$T_k(\tilde{L}) = UT_k(\tilde{\Lambda})U^T$$
, $\tilde{L} = \frac{2L}{\lambda_{max}} - I_n$

$$g_{\theta^*} x = \sum_{k=0}^K \theta_k T_k(\tilde{L}) x$$

ChebNet Convolution

Introduction

Problem of classifying nodes in a graph (where labels are only available for a small subset of nodes)

Graph-based semi-supervised learning

Explicit graph-based regularization: a graph Laplacian regularization term in the loss function

$$\mathcal{L} = \mathcal{L}_0 + \lambda \mathcal{L}_{\text{reg}}$$
, with $\mathcal{L}_{\text{reg}} = \sum_{i,j} A_{ij} \|f(X_i) - f(X_j)\|^2 = f(X)^\top \Delta f(X)$.

 L_0 : Supervised loss with label data $f(\cdot)$: differentiable function λ : weighing factor, X: feature vector matrix Δ : D-A, unnormalized graph laplacian (undirected)

Assumption

- Connected nodes in the graph are likely to share the same label
- Modeling capacity가 제한됨. Edge가 similarity 이외의 추가적인 정보를 가질 수 있음.

Method – Fast approximate convolution on graphs

Multi-layer Graph Convolutional Network (GCN)

Layer-wise propagation rule: Convolution
$$\to H^{(l+1)} = \sigma(\widetilde{D}^{-\frac{1}{2}}\widetilde{A}\ \widetilde{D}^{-\frac{1}{2}}H^{(l)}W^{(l)})$$

 $\tilde{A} = A + I_N$ adjacency matrix of undirected graph with added self connections (I_N)

$$\widetilde{D}_{ii} = \sum_{i} \widetilde{A}_{iJ}$$
 and $W^{(l)}$: layer specific trainable weight matrix $/\sigma$: activation function, ReLU

 $H^{(l)} \in \mathbb{R}^{N \times D}$:matrix of activation in the l^{th} layer $H^{(0)} = X$

$$Z = f(X, A) = softmax(\widehat{A}ReLU(\widehat{A}XW^{(0)})W^{(1)})$$

→ First-order approximation of localized spectral filters on graph

Graph Convolutional Network (GCN)

First-order approximation of ChebNet K=1, λ_{max} =2로 설정하면 아래와 같이 유도됨.

$$\tilde{L} = \frac{2L}{\lambda_{max}} - I_n, \qquad Ls = I - D^{-1/2}AD^{-1/2}$$

<Chebyshev Polynomial>

$$T_k(x) = 2xT_{k-1}(x) - T_{k-2}(x)$$

 $T_0(x) = 1$ $T_1(x) = x$

$$g_{\theta^*}x = \sum_{k=0}^{K} \theta_k T_k(\tilde{L}) x$$

$$= \theta_0 x + \theta_1 T_1(\tilde{L}) x$$

$$= \theta_0 x + \theta_1 (L - I_n) x$$

$$= \theta_0 x - \theta_1 D^{-\frac{1}{2}} A D^{-\frac{1}{2}} x$$

Graph Convolutional Network (GCN)

First-order approximation of ChebNet K=1, λ_{max} =2로 설정하면 아래와 같이 유도됨.

$$\tilde{L} = \frac{2L}{\lambda_{max}} - I_n, \qquad Ls = I - D^{-1/2}AD^{-1/2}$$

<Chebyshev Polynomial>

$$T_k(x) = 2xT_{k-1}(x) - T_{k-2}(x)$$

 $T_0(x) = 1$ $T_1(x) = x$

$$g_{\theta^*}x = \sum_{k=0}^K \theta_k T_k(\tilde{L}) x$$

$$= \theta_0 x + \theta_1 T_1(\tilde{L}) x$$

$$= \theta_0 x + \theta_1 (L - I_n) x$$

$$= \theta_0 x - \theta_1 D^{-\frac{1}{2}} A D^{-\frac{1}{2}} x$$
Set parameter $\theta = \theta_0' = -\theta_1'$

$$g_{\theta^*}x = \theta(I_n + D^{-\frac{1}{2}} A D^{-\frac{1}{2}}) x$$

Graph Convolutional Network (GCN)

Renormalization Trick

$$I_n + D^{-\frac{1}{2}}AD^{-\frac{1}{2}} o \widetilde{D}^{-\frac{1}{2}}\widetilde{A}\widetilde{D}^{-\frac{1}{2}}, \ \widetilde{A} = A + I_n \ \mathrm{and} \ \widetilde{D}_{ii} = \sum_j \widetilde{A}_{ij}$$
 이러한 layer를 여러 개 쌓아 deep model을 만들면 불안정 학습

Convolved signal matrix

$$Z = \widetilde{D}^{-\frac{1}{2}} \widetilde{A} \widetilde{D}^{-\frac{1}{2}} X \Theta$$

Semi-supervised node classification

$$Z = \widetilde{D}^{-\frac{1}{2}} \widetilde{A} \widetilde{D}^{-\frac{1}{2}} X \Theta$$

Z: filtering의 결과

: 그래프의 모든 노드들에 동일하게 사용

→CNN의 filter(kernel)처럼 weight-sharing 관점에서 비슷함.

Propagation Rule

$$H^{(l+1)} = \sigma(\widetilde{D}^{-\frac{1}{2}}\widetilde{A}\ \widetilde{D}^{-\frac{1}{2}}H^{(l)}W^{(l)})$$

2-layers Model

$$Z = softmax(\hat{A}ReLU(\hat{A}XW^{(0)})W^{(1)})$$

$$L = L_0 + \lambda L_{reg} \qquad \qquad L = \sum_{l \in Y_L} \sum_{f=1}^F Y_{lf} ln Z_{lf}$$

- $\hat{A} = \tilde{D}^{-\frac{1}{2}}\tilde{A} \tilde{D}^{-\frac{1}{2}}$ 전처리 단계에서 계산
- 마지막 output layer에서 softmax를 각 행렬에 적용해줌
- Loss function의 변화: Label이 있는 node들에 대해서만 cross-entropy 계산, gradient descent 통해 $W^{(0)}$, $W^{(1)}$ update

Layer-Wise Linear Model

$Z = f(X, A) = softmax(\widehat{A}ReLU(\widehat{A}XW^{(0)})W^{(1)})$

def __init__(self, nfeat, nhid, nclass, dropout):
 super(GCN, self).__init__()

 self.gc1 = GraphConvolution(nfeat, nhid)
 self.gc2 = GraphConvolution(nhid, nclass)
 self.dropout = dropout

def forward(self, x, adj):
 x = F.relu(self.gc1(x, adj))
 x = F.dropout(x, self.dropout, training=self.training)
 x = self.gc2(x, adj)
 return F.log_softmax(x, dim=1)

(a) Graph Convolutional Network

Experiments & Results

Datasets

Table 1: Dataset statistics, as reported in Yang et al. (2016).

Dataset	Type	Nodes	Edges	Classes	Features	Label rate
Citeseer	Citation network	3,327	4,732	6	3,703	0.036
Cora	Citation network	2,708	5,429	7	1,433	0.052
Pubmed	Citation network	19,717	44,338	3	500	0.003
NELL	Knowledge graph	65,755	266,144	210	5,414	0.001

Semi-Supervised Node Classification

Table 2: Summary of results in terms of classification accuracy (in percent).

Method	Citeseer	Cora	Pubmed	NELL
ManiReg [3]	60.1	59.5	70.7	21.8
SemiEmb [28]	59.6	59.0	71.1	26.7
LP [32]	45.3	68.0	63.0	26.5
DeepWalk [22]	43.2	67.2	65.3	58.1
ICA [18]	69.1	75.1	73.9	23.1
Planetoid* [29]	64.7 (26s)	75.7 (13s)	77.2 (25s)	61.9 (185s)
GCN (this paper)	70.3 (7s)	81.5 (4s)	79.0 (38s)	66.0 (48s)
GCN (rand. splits)	67.9 ± 0.5	80.1 ± 0.5	78.9 ± 0.7	58.4 ± 1.7

Experiments & Results

Evaluation of Propagation Model

Table 3: Comparison of propagation models.

Description	Propagation model	Citeseer	Cora	Pubmed	
Chebyshev filter (Eq. 5) $K = 3$	$\nabla^K = T_{\tilde{I}}(\tilde{I}) V \Omega$	69.8	79.5	74.4	
Chebyshev filter (Eq. 5) $K = 2$	$\sum_{k=0}^{K} T_k(\tilde{L}) X \Theta_k$	69.6	81.2	73.8	
1 st -order model (Eq. 6)	$X\Theta_0 + D^{-\frac{1}{2}}AD^{-\frac{1}{2}}X\Theta_1$	68.3	68.3 80.0		
Single parameter (Eq. 7)	$(I_N + D^{-\frac{1}{2}}AD^{-\frac{1}{2}})X\Theta$	69.3	79.2	77.4	
Renormalization trick (Eq. 8)	$\tilde{D}^{-\frac{1}{2}}\tilde{A}\tilde{D}^{-\frac{1}{2}}X\Theta$	70.3	81.5	79.0	
1st-order term only	$D^{-\frac{1}{2}}AD^{-\frac{1}{2}}X\Theta$	68.7	80.5	77.8	
Multi-layer perceptron	$X\Theta$	46.5	55.1	71.4	

Implementation

Dataset: Cora Epoch: 200

	Name	Smoothed	Value	Step	Time	Relative
s	runs\GCN_layer_2_experiment_1\accuracy_acc_train	0.9714	0.9714	199	Mon Jun 27, 19:21:47	1s
	runs\GCN_layer_2_experiment_1\accuracy_acc_val	0.8131	0.8067	199	Mon Jun 27, 19:21:47	1s
	runs\GCN_layer_3_experiment_1\accuracy_acc_train	0.9685	0.9643	199	Sat Jun 25, 17:24:23	2s
	runs\GCN_layer_3_experiment_1\accuracy_acc_val	0.7788	0.7767	199	Sat Jun 25, 17:24:23	2s

Conclusion

Semi-Supervised Model

Proposed renormalized model offers both improved efficiency(fewer parameters and operations) and better predictive performance on a number of dataset compared to other models

Limitations and Future Work

Memory requirement – With full batch gradient descent, memory requirement grows linearly in the size of the dataset. →Use mini-batch

Directed edges and edge features – Model is limited to undirected graphs

Limiting assumptions – assume locality (dependence on the K^{th} order neighborhood for a K layers) and equal importance of self-connections vs. edges to neighboring edges. \rightarrow weight on importance

Conclusion

- Laplacian matrix를 적용하는 것은 Graph Convolution을 말한다.
- GCN은 Chebynet을 First-order approximation을 통해 계산 간소화 및 local feature를 반영한다
- GCN은 그래프 구조와 노드 특징을 Encoding할 수 있고, 더욱 정확하고 빠르게 Semi-supervised classification을 할 수 있다.

Appendix

Proof For $x \in \mathbb{R}^N$, L is Positive semi – definite $x^TLx = x^TDx - x^TWx = \sum_i D_{ii}x_i^2 - \sum_{i,j} x_iW_{ij}x_j$ $=rac{1}{2}igg(2\sum_{i}D_{ii}x_{i}^{2}-2\sum_{i}W_{ij}x_{i}x_{j}igg)$ $\stackrel{ ext{(a)}}{=} rac{1}{2} \left(2 \sum_i \left\{ \sum_i W_{ij}
ight\} x_i^2 - 2 \sum_{i,j} W_{ij} x_i x_j
ight)$ $\overset{ ext{(b)}}{=}rac{1}{2}\Biggl(\sum_{i,j}W_{ij}x_i^2+\sum_{i,j}W_{ij}x_j^2-2\sum_{i,j}W_{ij}x_ix_j\Biggr).$ $=rac{1}{2}\sum_{i,j}W_{ij}(x_i-x_j)^2\geq 0$

$$\mu = sup_{\|x\|=1}I_n + D^{-\frac{1}{2}}AD^{-\frac{1}{2}} \le 2$$

By Courant-Fischer theorem

$$M = I_n + D^{-\frac{1}{2}}AD^{-\frac{1}{2}}$$
: real-symmetric matrix $M = 2L-L$, L: Positive Semi-definite matrix

References

- Official Pytorch GCN Implementation by Kipf et al., https://github.com/tkipf/pygcn
- GCN readings, https://tkipf.github.io/graph-convolutional-networks/
- Wu, Zonghan, et al. "A comprehensive survey on graph neural networks." IEEE transactions on neural networks and learning systems (2020)
- Background contents, https://harryjo97.github.io/categories/
- 고려대 김성범 교수님 강의자료(CNN)
- cs224w, cs231n Slides
- 딥러닝 홀로서기 lecture9 slide, Standalone-DeepLearning/Lec9 at master · heartcored98/Standalone-DeepLearning · GitHub
- PR- Semi-supervised Classification with Graph Convolutional Networks, https://www.youtube.com/watch?v=F-JPKccMP7k&t=1710s
- 푸리에 변환: https://ralasun.github.io/deep%20learning/2021/02/15/gcn/
- Paper review_Jonghun Choi: Spectral-based Graph Convolutional Networks, http://dsba.korea.ac.kr/seminar/?mod=document&uid=1329
- Seminar_Semi-supervised classification with graph convolutional networks presenter Sukwon Yun, Sungwon Kim