Solutions

Midterm 1 Exam - ECE 503 Fall 2020

- Due Date and Time: Monday, Oct. 5, 2020, by Noon.
- Submit your answers on D2L.
- Maximum Credit: 100 points

1. [25 points]

- (a) (5 points) Mutually exclusive events are always independent. (True or False?)
- (b) (10 points) Six cards are drawn at random (with replacement) from a deck of 52 cards. What is the probability that there are at least two Aces?
- (c) (10 points) Let X be a discrete random variable with the following PMF:

$$P(X = k) = \binom{n}{k} p^k (1 - p)^{(n-k)}, \quad k = 0, 1, \dots, n$$

Compute the mean of X.

(a) Folse
(b)
$$P(A+leas+2Aees) = 1 - P(NoAee) - P(Exactly BMEAee)$$

$$= 1 - \left(\frac{48}{52}\right)^6 - \left(\frac{6}{1}\right) \times \left(\frac{4}{52}\right)^8 \times \left(\frac{48}{52}\right)^8$$

$$= 1 - \left(\frac{12}{13}\right)^6 - \left(\frac{6}{13}\right) \left(\frac{12}{13}\right)^8 = \boxed{0.072}$$
(c) $X \sim Binomial(W, P)$

$$E[X] = nP$$

$$E[X] = \sum_{k=0}^{n} k \times P(X=k) = \sum_{k=0}^{m} k \times \binom{n}{k} P(1-P)^{n-k}$$

$$= \sum_{k=0}^{n} k \times n! \times P(X=k) = \sum_{k=0}^{n} k \times (1-P)^{n-k}$$

 $= np \times \sum_{k=1}^{m} \frac{(m-1)!}{(k-1)!} \times p \times (1-p)$ $= np \times \sum_{k=1}^{m} \frac{(m-1)!}{(k-1)!} \times p \times (1-p)$ $= np \times \sum_{k=1}^{m} \frac{(m-1)!}{(k-1)!} \times p \times (1-p)$

2. [25 points] Let X be a random variable with the following CDF:

$$F_X(x) = \begin{cases} 0, & x < -3\\ \frac{x}{12} + \frac{1}{2}, & -3 \le x < 0\\ \frac{x}{12} + \frac{3}{4}, & 0 \le x < 3\\ 1, & 3 \le x. \end{cases}$$

- (a) Find P(X = -2), P(X = 0) and $P(0 < X \le 2)$
- (b) Find $P(X \le 2|X > -1)$
- (c) If $Y = X^2$, find the CDF of the random variable Y.

(a)
$$P(x=-2) = F_{x}(-2) - F_{x}(-25) = 0$$

 $P(x=0) = F_{x}(0) - F_{x}(0) = 3l_{4} - l_{2} = l_{4}$
 $P(0 < x \le 2) = F_{x}(2) - F_{x}(0) = (\frac{2}{12} + \frac{3}{4}) - (\frac{3}{4}) = \boxed{1}{6}$
(b) $P(x \le 2 \mid x > -1) = P(x > -1, x \le 2)$
 $P(x > -1) = P(x > -1)$
 $P(x > -1) = P(x$

(c) When
$$x \in [-3, 3]$$
 $y = x^2 \in [0, 9]$
 $Y = x^2 \in [0, 9]$

$$F_{\gamma}(y) = P(\Upsilon \leq y) = P(\chi^{2} \leq y) = P(\sqrt{y} \leq \chi \leq +\sqrt{y})$$

$$= F_{\chi}(\sqrt{y}) - F_{\chi}((-\sqrt{y}))$$

$$= f_{\times}(\sqrt{y}) - f_{\times}((-\sqrt{y}))$$
When $y = 0$ $F_{\times}(0) = F_{\times}(0) - F_{\times}(0) = \frac{3}{4} - \frac{1}{2} = \frac{1}{4}$

For
$$0 < y < 9$$
 $= (\sqrt{y}) = (\sqrt{\frac{y}{12}} + \frac{3}{4}) - (\sqrt{\frac{y}{12}} + \frac{1}{2}) = \sqrt{\frac{y}{4}} + \frac{1}{4}$

$$\Rightarrow F_{\Upsilon}(y) = \begin{cases} o & \text{if } y < 0 \\ \frac{\sqrt{y}}{6} + \frac{1}{4} & \text{if } 0 \leq y < 9 \\ 1 & \text{if } y \geqslant 9 \end{cases}$$

- 3. [25 points] To sign up for a new COVID-19 contact tracing app, users are asked to pick a password of length 8, with the following guidelines. The password must have
 - exactly 4 upper-case letters (can be chosen with replacement) from $\{A, B, \dots, Z\}$
 - exactly 2 lower-case letters (can be chosen with replacement) from $\{a, b, \cdots, z\}$
 - exactly 2 special characters (chosen without replacement) from the following list $\{\#, \$, \%, \&, !, @\}$
 - (a) How many distinct passwords are possible?
 - (b) Suppose there are N users that sign up for the app. Each user independently picks a valid password at random. What is the probability that none of the users share the same password?

(a) Total # of distinct Passwords = $K = \left(\begin{pmatrix} 8 \\ 4 \end{pmatrix} \times 26^4 \right) \times \left(\begin{pmatrix} 4 \\ 2 \end{pmatrix} \times (26)^2 \right) \times \left(\begin{pmatrix} 2 \\ 2 \end{pmatrix} \times 6 \times 5 \right)$

(b) N = # of users.if $N > K \Rightarrow \text{ there will be at least one pasyword common to two users } P(No users) = 0

if <math>N \leq K$ P(No users $= K \times (K-1) \times \cdots \times (K-(N-1))$ Share the same $= K \times (K-1) \times \cdots \times (K-(N-1))$

4. [25 points] Consider a source (S) and a destination (D) connected through the network shown in the figure below. A path from S to D is defined as a sequence of edges that connect S to D. For instance, the path $P_{1,3} = e_1 \rightarrow e_3$ is a valid path that can allow data transfer from S to D. Each edge in the network is functional independently with probability p (and does not work with probability 1-p). In order to send data from S to D, one needs a working path, i.e., a path with all functional edges. For instance, the path $P_{1,3}$ is a working path only if both the edges e_1 and e_3 are functional.

- (a) Enumerate all the valid paths for this network.
- (b) What is the probability that there is at least one working path from S to D?
- (c) What is the expected number of working paths?

	(c) what is	s the expected	number of v	working	patns:					
(a)	All valid	Pouth s	Pis	$e_{l} \rightarrow 0$	23	>	P23	2	e2-263	
		•	P14	$e_l \rightarrow 0$	C4	1	P2	Ч	C2→C4	
,		Prob.		6	C2	e	(Wor	king	Bths#9)	
(p)		(1-p)4	<i>←</i> 0	\mathcal{O}		0	-> (0	•	
		2	. 0	0	0	0	\rightarrow	0	• • • • • • • • • • • • • • • • • • •	
		(1-P)2P2	000	0	i	1	\rightarrow	0		
D(+7 el inimi	king Poths = 1)	, , , , , , , , , , , , , , , , , , ,	0	I,	0	ව 1	~	0	(P24)	
- 4	p2(1-P)2			1	l	0	→ :		(P23)	
= 7	rlein paths = 2)	0	1	•	1	_		(P23, P24)	
P(# % W)	3(1-8)		1	0	0	0		0	*	
= 4	p3(1-p)	~ (1)	,	0		,	-	(
P(# 2 N	porking paths	-4)	1	0	(1	$\stackrel{\longrightarrow}{\longrightarrow}$	1 2	(P13, P14)	
= P'	7		\	1 1	0	0	<u> </u>	0	. 127 112	
				1 1	O	1	→ €	2		
				\	[0	<i>→</i> •	2		
Pla	H least 1	working F	path) =	' 1 <u>'</u>	- þ	(No	o Work	eing	path).	
1 (7 ,	=	1 -	<u> </u>	イ(#	= of wa	orerv	9 (0111)	7
			_	j -	<u> </u>	_	P)2+3	2P(1	-P)3+ p2(1-P)2	-
(0) - 5				, د		_ 2		· •	1 [1, 2], 2	7-1/12
(C) E [=	# of working	Pathsy =	4×P	+ 2	$2 \times [$	4 p	[(1-P)]	+	$1 \times \left[4 p^{2} (1-p)^{2}\right]$	J = 14P