LaPIS Diagnostic Test Workbook - Mathematics

Name : Harini S

Class: 7

Section : B

School : AKV Public School

Login ID : AKV156

Harini S's Performance Report

Score: 20/40 Percentage: 50.0%

Harini S's Study Planner

Date	Topics Planned	Q. Numbers	Teacher Remark	Teacher Sign	Parent Sign
		Teacher's Fe	edback to Student		
	Class Teacher S	Signature	Princ	ipal Signature	

Basic arithmetic

Topics to be Improved		
Types of angles	Identification of types of angles	

Hi, here in this video you will learn Types of Angles

Question: 1

Find the angles.

Answer:

The angle ranges from $__$ ° to $__$ °.

The angle perpendicular to 0° is $___{\circ}$.

The straight line measures $___^\circ$.

Question: 2

The angle formed between the directions

(i) West and East is _____ angle.

(ii) North and East is angle.	
(iii) East and South is angle.	
Answer:	
The angle formed between West and East is° and it is called	angle.
The angle formed between North and East is° and it is called	_ angle.
The angle formed between East and South is $___^\circ$ and it is called $___$	$_{-}$ angle.
$Question: \ 3$	
The addition of straight angle and right angle is angle.	
Answer:	
The measurement of straight angle is°	
The measurement of right angle is°.	
$Straight angle + Right angle = \underline{\qquad} + \underline{\qquad} = \underline{\qquad}$	
It is called as angle.	

Data handling

Topics to be Improved		
Chance of probability	Sample space in probability, Basis of probability	
Arithmetic mean, mode and median	Mean, Median and Mode	

Hi, here in this video you will learn Basics of probability

Question: 4

Which of the following contains list of all possible outcomes.

Probability

Sample space

Sure events

.....

.....

Impossible events

Answer:

Probability is the measure of ______ (chance /number) of an events happenings. Sample space consists of _____ (possible/ impossible) outcomes. Sure events always _____ (occurs/don't occurs). Impossible events _____ (occurs/ don't occurs). Therefore, _____ contains list of possible outcomes.

Question: 5

Write the possible outcomes while spinning the given wheel.

Answer:
Outcomes are (possible/impossible) results of an experiment. The possible outcomes while spinning wheel are $\P0$, $\P10$,
Question: 6
A bag contains three balss of colour blue, green and red. Write the possible outcomes if two balls are taken out.
Answer:
A bag contains, and balls. If one of the ball is blue in colour, then other ball can be or If one of the ball is green in colour, then other ball can be or If one of the ball is red in colour, then other ball can be or Therefore, if two balls are taken out then possible outcomes are blue +,,
Hi, here in this video you will learn Mean, Median, Mode
Question: 7
Find the mode of the following data: 5, 15, 23, 5, 32, 44, 72, 55, 6, 3, 5, 65, 45, 67, 24, 19 and 98.
Answer:
Mode is the number that occurs (frequently / rarely) in a given list of observations. Arranging the data in ascending order: occurs most number of times. Then, mode of the given data is
Question: 8
Which shape contains median of the given data 3, 5, 6, 2, 7, 9, 6, 4 and 1
$\begin{array}{c c} & & & \\ \hline & & \\ \hline & & \\ \hline & & \\ \hline \end{array}$
Answer:
Median is the(first/central/last) value of a data when the data is arranged in ascending or descending order. Arrange the given data in ascending order: Central value of the given data is and it is the of a data.
Question: 9

Marks scored	100	90	80	70
Number of students	4	5	2	1

$Mean = \underline{\hspace{1cm}}$, $Median = \underline{\hspace{1cm}}$ and $Mode = \underline{\hspace{1cm}}$.
$\underline{Answer:}$
$Mean = \frac{\text{of all observation}}{\text{number of observation}}.$
Here s sum of all observation =, number of observation =
Therefore, mean $=$
Arrange the data in ascending order:
Here, $median = \underline{\hspace{1cm}}$, $mode = \underline{\hspace{1cm}}$.
Hi, here in this video you will learn Basics of probability
Question: 10
Identify the sure events and impossible events
(i) The sun rises in the west.
(ii) Water is colourless.
(iii) Clock rotates in clock wise direction.
(iv) Ball is square in shape.
$\underline{Answer:}$
Events that always occur are called (sure/ impossible) events.
Events that cannot occur are called (sure/ impossible) events.
Here, The sun rises in the west is event. Water is colourless is
event. Clock rotates in clock wise direction is event. Ball is square in shape is
event.
Question: 11
Probability of sure events is (greater / smaller) than probability of impossible events
Answer:
Probability of sure event = $\underline{\hspace{1cm}}$ (0/ 1/ any number).
Probability of impossible event $=$ (0/ 1/ any number). Therefore, Probability of sure event Probability of impossible event.
Question: 12
<u></u>

Raju has pencil, an eraser, a scale, sharpener, colour pencil and protractor in his box. What is the
probability of getting a pen from his box.
Answer:

Things Raju have _____ Does Raju have pen in his box,_____ (Yes/ No). Then probability of getting pen from his box is _____ (0/1)

Geometry

Topics to be Improved		
Sum of lengths of two sides of a triangle	Sum of two sides of a triangle	
Right angle triangle and pythagoras property	Basics of Pythagoras property	
Angle sum property of triangle	Angle sum property of triangle	
Transversal angle made by transversal	Basics of Transversal angle	

Hi, here in this video you will learn Sum of the length of sides of the triangle

Question: 13

Find the greatest distance to reach C from A in the given diagram.

Answer:

The sides of the given triangle are _____.

The possible way to reach point C from point A are _____ and AB then to

 $Side\ AC = \underline{\hspace{1cm}}$

Side AB + BC = _____ + ____ = ____

Therefore, the greatest distance to reach C from A in the given diagram is ______.

Question: 14

_____ (Sum of / Difference between) the length of any two sides of a triangle is smaller than the length of the third side.

.....

Answer:

There are ______ sides in a triangle.

The sum of the two sides of a triangle is ______ than the other side of the triangle.

The difference of the two sides of a triangle is ______ than the other side of the triangle. Example: In triangle XYZ,

Question: 15

The lengths of two sides of a triangle are 7 cm and 10 cm. Between which two numbers can length of the third side fall?

Answer:

- 1. The sum of the two sides of a triangle is ______ than the third side of the triangle. Therefore, the third side should be _____ (less/ greater) than sum of other two sides. Here, sum of the two sides = _____ + ___ = ____ Therefore, the length of the third side is less than _____
- 2. The difference of the two sides of a triangle is ______ than the third side of the triangle.

 Therefore, the third side should be ______ (less/ greater) than sum of other two sides.

 Here, difference of the two sides = _____ ___ = _____

 Therefore, the length of the third side is greater than ______

Therefore, length of the third side is greater than ______ but less than _____.

Hi, here in this video you will learn **Pythagoras property**

Question: 16

In a right angled triangle, square of the _____ = sum of the squares of the legs.

Answer:

Pythagoras theorem is only applicable for ______ triangle.

Longest side of the triangle is _____ (hypotenuse/ legs) and other two sides are called _____ (hypotenuse/ legs).

Pythagoras theorem states that _____ .

Question: 17

Find the hypotenuse of the triangle ABC if base is 12 m and altitude is 5 m.

Answer:

Pythagoras theorem states that square of the _____ = sum of the squares of its

 $Given: Base = \underline{\hspace{1cm}}, Altitude = \underline{\hspace{1cm}},$

Base and altitude are _____ (hypotenuse/ legs) of the triangle.

By Pythagoras theorem,
$$(____)^2 = (___)^2 + (___)^2$$

 $= __ + ___$

Therefore, hypotenuse of the triangle is _____

Question: 18

Find the length of the rectangle, if breadth is 3 cm and diagonal is 5 cm.

Answer:

Pythagoras theorem states that square on the _____ = sum of the squares on

Is Pythagoras theorem applicable in rectangle? $_$ (yes/ no).

Given: breadth = _____, length of diagonal = _____

By Pythagoras theorem, $(____)^2 = (____)^2 + (____)^2$

Therefore, diagonal of the rectangle is _____

Hi, here in this video you will learn Angle sum property

Question: 19

Sum of the angles of triangle is _____.

Answer:

$$\angle A + \angle B + \angle C = \underline{\hspace{1cm}}$$

Angle sum formula = $(n-2) \times 180^{\circ}$, n = number of sides

Triangle has _____ sides.

Sum of the angles of triangle = $(\underline{} - 2) \times 180^{\circ} = \underline{}$

Question: 20

Which of the following triangle satisfy the angle sum property.

.....

Answer:

Angle sum property of triangle: sum of the angles of a triangle is ______

In $\triangle ABC$, Sum of the angles $= \angle A + \angle B + \angle C = \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$

In $\triangle PQR$, Sum of the angles = _____ = ____ = ____

In $\triangle KLM$, Sum of the angles = _____ = ____ = ____

In $\triangle XYZ$, Sum of the angles = ____ = ___ = ____

Therefore, the triangles that satisfy the angle sum property are = $_$

Question: 21

Find the angles of triangle, if their angles are in the ratio 8:6:4.

Answer:

Ratio of angles in the triangle is _____

Let's consider the angles of triangle be 8x, ___ and ___ We know sum of the angles of a triangle is ___ Therefore, 8x+ ___ = 180° . The value of x= ____ The angles of the triangle are ____

Hi, here in this video you will learn Basics of Transversal angle

Question: 22

Answer:

A line that intersects two or more lines at distinct points is called a _____ (transversal/Intersecting line).

Angle that lies on different vertices and on the opposite sides of transversal is _____ angles.

Angle that lies on different vertices and on the same sides of transversal is _____ angles. Therefore, $\angle 1$ and $\angle 7$ are _____

.....

Question: 23

Find the transversal, alternate angles and corresponding angles in a given diagram.

Answer:

A line that intersects two or more lines at distinct points is called a _____ (transversal/Intersecting line).

In a given diagram, _____ is a transversal line. (BF/AD/CE)

Alternate angles	Corresponding angles
$\angle a$ and $\angle g$, $\angle b$ and $\angle h$,	\angle a and \angle e, \angle b and \angle f,

Question: 24

Find $\angle e$ and $\angle g$ if $\angle a = 30^{\circ}$.

Answer:

When parallel lines cut by a transversal,

- (i) Alternate angles are _____ (equal / not equal).
- (ii) Corresponding angles are _____ (equal / not equal).

Here, alternate angle of $\angle a$ is _____ and its value is ____. Corresponding angle of $\angle a$ is _____ and its value is _____.

Number system

Topics to be Improved		
Operations on rational numbers	Subtraction of rational numbers	
Properties of integers	Associative property	
Positive and negative rational numbers	Identification of positive rational numbers	
Integers	Basics of integers	
Exponents	Solving exponents	
Fractions	Division of fraction	

Hi, here in this video you will learn **Operation on rational numbers**

Question: 25

Solve: $\frac{-3}{3} + \frac{1}{3}$

Answer:

Fractions with same denominators are called ______ (like/ unlike) fractions. Fraction can be added only if they are ______ (like/ unlike) fractions.

$$\frac{-3}{3} + \frac{1}{3} = \frac{-3}{3} = \frac{-3}{3}$$

......

Question: 26

Find the addition of shaded part of box A and shaded part of box B.

Answer:

Total number of square in box $A = \underline{\hspace{1cm}}$. Number of shaded square in box $A = \underline{\hspace{1cm}}$. Shaded part of box A in fraction = _____

Total number of square in box $B = \underline{\hspace{1cm}}$.

Number of shaded square in box $B = \underline{\hspace{1cm}}$.

Shaded part of box B in fraction = _____.

Shaded part of box A + Shaded part of box B = $___$ + $___$

Question: 27

Find the missing values in the given figure.

......

Answer:

Given: $1 = \frac{7}{10} + \underline{}$ Transposing $\frac{7}{10}$ to other sides, $1 = \frac{7}{10} = \underline{}$

Therefore, result is ____

Hi, here in this video you will learn Properties of integers

Question: 28

Match the following based on the properties of integers

i	Closure
ii	Associative
iii	Commutative
iv	Identity

a	(5+7)+3=3+(7+5)
b	21 + 0 = 21
С	15 + 17 = 32
d	1 + 99 = 99 + 1

Answer:

(i) Closure property:

The sum of integers is always _____(integer / not a integer).

Therefore, $\underline{\hspace{1cm}} + \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$

From the given option ______ satisfies the closure property.

(11)	Associative property: Rearranging the parentheses (bracket Therefore, $(a + b) + c =$		(doe	es not/ do	es) chan	ge the sum.
	From the given option	$_{-}$ satisfies	the Associati	ve propert	ty.	
(iii)	Commutative property : Changing the order of the addends $_$ Therefore, a + b = $_$ + $_$ From the given option $_$	_	, ,			
(iv)	Identity property: The sum of	_ and an	y number alw	ays return	ıs same r	ıumber.
	Therefore, a + = a From the given option	_ satisfies	the Identity I	property.		
	stion: 29 the operations in which commutative					
	Addition Subtract	ion	Multiplica	tion	Divisi	on
Ans	wer:					
For a	mmutative property, changing the (does not/ does) change the any two integers, commutative property commutative property for addition is _ commutative property for multiplication	e result.	ue for		the oper	ands
Que	stion: 30					
Are a	additive identity and multiplicative iden	ntity the	same? (Yes or	· No)		
Ans	wer:					
The	ity property holds only forIdentity property for addition isIdentity property for multiplication is _		and additive			
Ther	efore, additive identity is (equ	ual / not	equal) to mult	iplicative	identity.	
	here in this video you will learr		ive and No	_	ra-	
Que	stion: 31					
Segre	egate positive and negative rational nur	mber.				

Answer:

•	If both the numerator and the denominator of a rational number are
	(positive/negative), then it is positive rational number.

•	If either the numerator and the denominator of a rational number are negative,	then i	it is
	(positive/negative) rational number.		

In the given circle,	positive rational numbers are	and negative rational numbers are
$egin{array}{cccccccccccccccccccccccccccccccccccc$		

 $\frac{-3}{-4}$ is a _____ (positive /negative / neither positive nor negative) rational number.

Answer:

-3 is a _____ number, -4 is a _____ number. Division of $\frac{-3}{-4} = \Box$ and this _____ rational number.

 $(Positive\ /\ Negative\ /\ Neither\ positive\ nor\ negative\ rational\ number)$

Question: 33

The product of a positive rational number and a negative rational number is ______rational number. (Positive/ Negative/ neither positive nor negative)

Answer:

Examples for positive rational numbers: _____

Examples for negative rational numbers:

Positive rational number \times Negative rational number = ____ \times ___ = ___ and this is ____ rational number

Hi, here in this video you will learn Basics of integers

Question: 34

Highlight the ring that contains whole numbers.

......

1	~	_		_	_
A	n	si	"	е:1	r.

Answer:
The numbers inside the inner ring $(1, 2, 3, \ldots)$ are numbers. The numbers inside the middle ring are numbers. The numbers inside the outer ring are negative numbers, positive numbers and zero and they are called as
Question: 35
Colour the frame of the box which contains the number 1, 4 and -10
Whole numbers
Answer:
Whole number consists of $0,1,2,3,4,$ Negative number consists of Natural numbers consists of Integers consists of Now, 1, 4, -10 are in
$\underline{\textit{Question: } 36}$
State whether the statement is true or false. Every positive number is an integer.
Answer:
Positive numbers are Integers consists of Therefore, positive numbers are (in/not in) integers.
Hi, here in this video you will learn Exponents and power
Question: 37
Find the exponential form of 1000.

 $\underline{Answer:}$

(Exponents/Base) tells us how many times a number should be multiplied by itself to get the desired result. Exponents is also called as _____ (Base / Power). 1000 can be written as = $10 \times$ 10 is raised to the power of $\underline{} = (10)^{\underline{}}$ Question: 38 Find the value of $(-2)^3$. Answer: (Exponents/Base) tells us how many times a number should be multiplied by itself to get the desired result. In this exponential form $(-2)^3$, base = ____, power = ____. $(-2)^3 = \underline{\hspace{1cm}} \times \underline{\hspace{1cm}} \times \underline{\hspace{1cm}} = \underline{\hspace{1cm}}.$ Question: 39 (i) Tenth power of 100 is $((10)^{100})$ or $(100)^{10}$. (ii) k is raised to the power of 5 is $((k)^5)$ or $(5)^k$. Answer: Exponential form = (Base)— (i) Tenth power of 100: Base = ____, Power/Exponents = ____, exponential form = ____. (ii) k is raised to the power of 5: Base = ____, Power/Exponent = ____, exponential form = ____. Hi, here in this video you will learn Division on fractions Question: 40 Find the shape which contains the improper fraction of $5\frac{2}{7}$.

Answer:

 $5\frac{2}{7}$ is a _____ (proper/mixed) fraction. Here, 5 is _____ , 2 is _____ and 7 is _____.

To convert mixed fraction into improper fraction, $\frac{\text{(Whole} \times \underline{\hspace{1cm}}) + \text{Numerator}}{\text{Denominator}}$

$$5\frac{2}{7} = \frac{(--- \times ---) + ----}{7} = \frac{\square}{\square}$$

Question: 41

Solve: $\frac{1}{3} \div \frac{14}{3}$

Answer:

To divide a fraction by another fraction, multiply the dividend by $___$ (same / reciprocal) of the divisor. Here, dividend = $___$ and divisor = $___$.

$$\frac{1}{3} \div \frac{14}{3} = \frac{1}{3} \times \boxed{\square} = \boxed{\square}$$

Question: 42

Find the half of the fraction $\frac{12}{40}$.

Answer:

To find half of a number, divide the number by _____

$$\frac{12}{40} \div \underline{} = \frac{12}{40} \times \underline{} = \underline{}$$

Then the answer is _____

Comparing Quantities

Topics to be Improved						
Percentage	Basic of percentage					
Simple interest	Calculation of simple interest					
Conversion of fraction into percentage	Conversion of fraction into percentage					

Hi,	here	in	this	video	you	will	learn	Basics	of	percentag	e
-----	------	----	------	-------	-----	------	-------	--------	----	-----------	---

Question:	43
q account	~

2% can be written as

Answer:

Percentages are numerators of fractions with denominator_____

$$2\% = \frac{\square}{\square}$$

.....

.....

......

Question: 44

Arun attended the LaPIS test for 100 marks and got 75% marks. What is the mark scored by Arun?

Answer:

Arun attended LaPIS test for _____ marks. He got ____ marks.

75 % can be written in fraction form

Then the mark scored by Arun = Total mark \times 75% = ____ \times ___ = ____

$\underline{\textit{Question: 45}}$

There are 25 apples in a basket in which 10 of them are rotten. Find the percentage of rotten apples.

Answer:

There are _____ apples in a basket.

Number o	of rot	ten apples are	_			
Fraction	forn	n of rotten apples in a ba	sket =		-	
Convert i	${ m t~int}$	o a percent= x		% =	=	
Hi, here	e in	this video you will le	earn Si r	np	le Interest	
Question	n: 4	6				
Match the		_				
Г		Column A			Column B	
	i				Interest calculated based or	n this
	ii	Principle(P) Amount (A)	→ ⊢	a b	Total sum you borrow	.1 UIIIS
-	iii	Rate (R)	\dashv	<u>с</u>	Number of years	
	iv	Time period (T)		$\frac{d}{d}$	Total sum with interest	
Number o <i>Question</i> Sara depo	of yea n: 4	<u>7</u>	otal sum v	with	interest is , she received Rs.1320. Find	
earned. <i>Answer:</i>						
Given: Amount = If Amoun	= t and		formula f	or c	, Time period = alculating interest is	
Question	n: 4	8				
					0. Find the rate of interest.	
$\underline{Answer:}$						
Interest =	=	, Time perio	od =		, Principal =	
Rate of ir	ntere	$st = \frac{x \cdot 100}{Principal x}$	_			
Substituti	ing v	ralues in the formula,				

Rate of interest $=$ $\frac{}{\text{Principal x }_{}}$ Rate of interest $=$ $\frac{}{}$ Therefore, the rate of interest is $\frac{}{}$	
Hi, here in this video you will learn Converting fraction into percentage	
Question: 49	
Complete the box in the given equation.	
$5\% = \frac{5}{\square}$	
$\underline{Answer:}$	
Percentage are the fraction with the denominator	
Therefore, 5% can be expressed as	
Question: 50	
Mark the correct conversion form of fraction $\frac{1}{2}$ to percentage.	
(i) $\frac{1}{2} \times \frac{50}{50} = \frac{50}{100} = 50\%$	
(ii) $\frac{1}{2} \times \frac{100}{100} = \frac{100}{200} = 200\%$	
(iii) $\frac{1}{2} \times 100 = \frac{100}{2} = 50\%$	
Answer:	
To convert fraction into percentage, the value of (denominator / numerator 100 or (multiply / divide) the fraction with 100 %. Therefore, correct conversion form is	should be
Question: 51	
Find the percentage of shaded part of square.	

Answer:		
The square shape is divided intoNumber of shaded part of square is	parts.	
Shaded part of square in fraction is		
To Convert into percentage ,		x 100

Algebra

Topics to be Improved				
Monomials, binomials, trinomials and polynomials	Types of algebraic expression			
Addition and subtraction of algebraic expressions	Like terms and Unlike terms			
subtraction of algebraic expressions	subtraction of algebraic expressions			

Hi,	here	in	this	video	you	will	learn	Types	of	expression
-----	------	----	------	-------	-----	------	-------	-------	----	------------

O_{2}	estion:	59
ωu	estion.	02

There are _____ terms in the expression 7x + 3y + m + 5.

Answer:

In algebraic expression, _____ (variables/ terms) are connected together with operations of addition.

.....

The terms in the expression are _______, ______, and ______.

Therefore, there are _____ terms in the expression.

Question: 53

Classify the following expression into monomial, binomial and polynomial.

- 1. 7m + n + 2
- 2. $8x^2 + 0$
- 3. 7xy + 4m

Answer:

- 1. The terms in expression $8x^2 + 0$ are _____. Here, expression has _____ term and it is a _____.
- 2. The terms in expression 7xy + 4m are _____. Here, expression has _____ term and it is a _____.
- 3. The terms in expression 7m + n + 2 are _____. Here, expression has ____ term and it is a _____.

Question: 54
$5m^2 + m + 0$ is a expression. (Monomial/ Binomial/ Trinomial)
Answer:
The terms in expression $5m^2 + m + 0$ are Here, the expression has terms and it is called a expression.
Hi, here in this video you will learn Addition on expression
Question: 55
Shade the like terms.
$\begin{array}{ c c c c c c }\hline & & & & & & & & & & & & & & & & & & &$
Answer:
Given terms are Two or more term have (same/ different) variables is called like terms. Here, like terms are
Question: 56
Complete the expression $7r^2 + r \square - 2 \square = \underline{r^2}$
Answer:
(Like / Unlike) terms can be added or subtracted.
$_{7r^2+ \ r} \square_{-2} \square = (7 + \ 2)_{r^2} = _$
Question: 57 Sam have 2a charalates and 0y incorpora. Para have 7a charalates and 5y incorpora.
Sam have 3a chocolates and 9y icecream. Ram have 7a chocolates and 5y icecream.
(i) Total chocolates Ram and Sam have:
(ii) How many icecreams Sam have more than Ram :

Answer:

	Chocolates	Icecream
Sam		
Ram		

(i)	Total chocolates Ram and Sam have:
	$Ram's chocolate + Sam's chocolates = \underline{\hspace{1cm}} + \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$
(ii)	How many icecreams Sam have more than Ram :
	icecream icecream = =

Hi, here in this video you will learn Subtraction on expression

Question: 58

Find the sum of two expressions a + b + c and b + c + d

Answer:

The given two expressions are and
The two terms will get added only if they are(Like/ Unlike) terms.
The sum of two expressions $=$ $\underline{\hspace{1cm}}$ $+$ $\underline{\hspace{1cm}}$.
The answer is

Question: 59

	School A	School B
Number of boys	100b	250b
Number of girls	150g	200g
Number of teachers	25t	45t

- (i) Total number of boys in school A and B is _____
- (ii) Total number of students in school B is _____
- (iii) How many more teachers are there in school B than school A?

Answer:

(i) Number of boys in school A = _____,

Number of boys in school B = _____.

Total number of boys in school A and school B is $___$ + $___$ = $___$.

(ii) Number of boys in school B = _____,

Number of girls in school $B = \underline{\hspace{1cm}}$.

Total number of students in school B is $___$ + $___$ = $___$.

(iii) Number of teachers more in school B than school A = Teachers in school B - Teachers in school A = $_$

Question: 60

Solve the following:

$$\begin{array}{ccc}
 & 3a - 5b \\
 & 5a - 7b \\
 & -2a - \underline{\hspace{1cm}}
\end{array}$$

Answer:

The two terms will get added only if they are _____ (like/unlike) terms.

$$\begin{array}{c|c}
13x + \underline{\hspace{1cm}} \\
(+) & 12x + 10y \\
\underline{\hspace{1cm}} + 25y
\end{array}$$

$$\begin{array}{r}
3a - 5b \\
(-) \quad 5a - 7b \\
\hline
-2a - \underline{\hspace{1cm}}
\end{array}$$