

SRM Institute of Science and Technology College of Engineering and Technology

DEPARTMENT OF ECE

SRM Nagar, Kattankulathur – 603203, Chengalpattu District, Tamilnadu

Academic Year: 2021-2022 (EVEN)

Test: CLAT-II

Course Code & Title: 18ECE206J Advanced Digital System Design

Year & Sem: II & IV

SET A

Answer Key

	Part - A (10 x 1 = 10 Marks) Answer all					
Q. No	Question	Mark	BL	СО	PO	PI Code
1	Component instantiation is done under model. a) Structural b) Behavioral c)Switch d)Dataflow	1	1	2	2	2.3.1
2	The result of the shift operation: 1001010 srl 2 is a)0101000 b) 0010010 c) 1001011 d)1111000	1	2	2	3	3.1.1
3	State reduction in the sequential circuit represents the reduction of a)Number of flip flops b) Number of OR gates c) Number of AND gates d)Number of Counters	1	1	2	2	2.3.1
4	Which one of the following is not the element of the ASM Chart? a)State box b)Decision box c)Data box d)Conditional box	1	1	2	3	3.1.1
5	A can't be declared inside a process. a)Signal b)Variable c)Constants d)Subprograms	1	1	2	2	2.3.1
6	The following VHDL code represents process (A, B, S) begin if (S='1') then Z <= A; else Z <= B; end if; end process; a)4x2 encoder b)2x4 decoder c)2 x1 multiplexer d)1x4 demultiplexer	1	2	3	3	3.2.1
7	If the states are named by letter symbol in transition table, then it is called table. a)Flow b)Truth	1	1	3	2	2.1.1

	c)Look up					
	d) FSM					
8	If the final stable state does not depend on the change order of					
	state variable, then it is said to be					
	a)Critical race b)Non critical race	1	1	3	2	2.1.1
	c)Steady state					
	d)Hazard					
9	In asynchronous sequential circuit, the output changes occur					
	with the change of a a)Input					
	b)Output	1	1	3	2	2.1.1
	c)Clock pulse					
	d)Time					
10	Which of the following expression remove hazard from: xy+zx'?					
	a)xy+zx' b)xy+zx'+wyz	1	2	3	3	3.2.1
	c)xy+zx'+yz					3.2.1
	d)xy+zx'+wz					
	Section B1 $(2 \times 10 = 20 \text{ Mg})$,				
11	Answer any two question i)List of sequential statements:	2				
	wait statement	-				
	assertion statement					
	report statement					
	signal assignment statement					
	variable assignment statement					
	procedure call statement					
	if statement					
	case statement					
	loop statement					
	next statement					
	exit statement		2	2	2	2.3.1
	return statement		2			2.3.1
	null statement					
	Explanation in any three statements					
	r · · · · · · · · · · · · · · · · · · ·	3				
	ii) concurrent statement:					
	The operations in real systems are executed					
	concurrently. The VHDL language models real	1				
	systems as a set of operation that operate	1				
	concurrently					
	Any one example for concurrent statements					
	·	4				
12	i) ASM chart		3	2	3	3.2.1
		5		_		
	I	<u> </u>	<u> </u>	l		

	state X=0 X=1	4				
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	"				
	$\begin{bmatrix} a & c & c & 1 \\ c & i & f & 0 \end{bmatrix}$					
	d f a 1					
	f c d 0					
	i f b 1					
	ii) State assignment and its type	1				
	State assignment :to assign unique coded binary values to the					
	states.(1)	1				
	Types: (1)	1				
	Binary Gray					
	 Gray One hot assignment					
	One not assignment					
	Section B2 (2 x 10 = 20 Ma Answer any two question			1		
14	(i)Race condition and its type:	3				
	A race condition exists in an asynchronous circuit when two or					
	more binary state variables change value in response to a					
	change in an input variable. When unequal delays are encountered, a race condition may cause the state variable to					
	change in an unpredictable manner					
	Type 1: Noncritical race					
	If the final stable state that the circuit reaches does not depend					
	on the order in which the state variables change, the race is					
	called a noncritical race					
	Type 2: Critical race					
	If the final stable state that the circuit reaches does depend on the order on which the state variables change, the race is called					
	a critical race					
	Any example:		3	3	3	3.2.1
		2				
	ii) analyze the following asynchronous sequential circuit					
	x x x					
	y_1y_2 0 1 y_1y_2 0 1 y_1y_2 0 1	1(for a)				
	00 0 0 0 0 1 0 00 01					
		1(for b)				
	01 1 0 01 1 1 01 11 01					
		3(for c)				
	11 1 1 1 0 11 10					
	10 0 1 10 0 0 10 00 10					
	(a) Map for (b) Map for (c) Transition table $Y_1 = xy_1 + x'y_2$ $Y_2 = xy'_1 + x'y_2$					
15	Primitive flow table:	5	4	3	3	3.2.1
13	Frimitive now table:	3	4	3	3	3.2.1
			•	•		

	f (), 1 a,, - e, -					
	(4)					
	Reduced table (2)					
	00 01 11 10					
	a,b,c c, 0 a, 0 b, - d, 0					
	d,e,f (f), 1 a, - (b), 1 (e), 1					
	3,2,1					
	Transition Table: (2)					
	9 00 01 11 10					
	0 0 0 1 0					
	1 1 0 1 1					
	Logic Diagram: (2)					
	x —					
	Y DO					
16	Q=XY+Q Y' Full adder design using two half adder circuit:	2	3	3	3	3.2.1
16	Q=XY+Q Y'	2 4	3	3	3	3.2.1
16	Q=XY+Q Y' Full adder design using two half adder circuit:		3	3	3	3.2.1
16	Q=XY+Q Y' Full adder design using two half adder circuit: Circuit Diagram Half adder program (any model) and or gate Full adder using half adder		3	3	3	3.2.1
16	Q=XY+Q Y' Full adder design using two half adder circuit: Circuit Diagram Half adder program (any model) and or gate Full adder using half adder library IEEE; Use IEEE. STD_LOGIC_1164.all;		3	3	3	3.2.1
16	Q=XY+Q Y' Full adder design using two half adder circuit: Circuit Diagram Half adder program (any model) and or gate Full adder using half adder library IEEE; Use IEEE. STD_LOGIC_1164.all; entity fulladder IS port (a,b,cin :in STD_LOGIC;		3	3	3	3.2.1
16	Q=XY+Q Y' Full adder design using two half adder circuit: Circuit Diagram Half adder program (any model) and or gate Full adder using half adder library IEEE; Use IEEE. STD_LOGIC_1164.all; entity fulladder IS		3	3	3	3.2.1

component half_adder is			
port (p,q :in STD_LOGIC;			
s,cy: out STD_LOGIC);			
end component;			
component or_gate is			
port (p1,q1 :in STD_LOGIC;			
r1: out STD_LOGIC);			
end component;			
signal s1,c1,c2 : STD_LOGIC;			
begin			
w1: half_adder port map (a,b,s1,c1);			
w2: half_adder port map (s1,cin,sum,c2);			
w3: or_gate port map (c1,c2,carry);			
end FA_arch;			