

DIPARTIMENTO DI
Corso di Laurea Magistrale
in

Contents

1	Sen	Semantic Web						
	1.1	Introduction to the Semantic Web	3					
		1.1.1 Linked data	4					
		1.1.2 Vocabularies	6					
		1.1.3 Query	7					
	1.2	Ontologies for smart buildings	9					
		1.2.1 Brick	9					
		1.2.2 Semantic Sensor Network ontology	1					
2	Model creation 13							
	2.1	State of the art	13					
	2.2	IBM Research approach	14					
		2.2.1 Semantic Mapping	16					
		2.2.2 Physic model inference	19					
	2.3	Example of the whole approach	22					
3	Dia	gnosis Algorithm 2	28					
4	IoT	Brain 2	29					
	4.1	IoT BRAIN and KITT	29					
		4.1.1 Graph database vs. RDF Store	30					

Introduction

Industrialised countries are facing challenges that are strictly related to energy consumption. Although great efforts in studying novel energy sources are profused by both public and private entities, these solutions need to be sustained by efforts aimed at the reduction of energy wasting. Around 32% of total energy consumption in industrialized countries is used for electricity, heating, ventilation and air-conditiong (HVAC) in commercial buildings. Studies have shown that early detection of faults in those systems and their operation could lead to energy savings between 15% to 32%, improving the overall buildings efficiency. This scenario does not only offer great opportunities related to environmental protection but gives companies a chance for sensible expense reduction. Around 14% of commercial buildings in the US (as of 2012) deployed Building Management System (BMS), supported by the increasing number of available sensors and improvement in the Internet of Things technologies. Still those data are juste barely used for simple analytics due to the lack of common schema for data coming from a variety of building, vendor and location specific sources that prevent the developers to easily integrate and process those data in a more detailed way. Energy Management Systems (EMS) are usually monolithic and poorly integrated solutions tailored for specific buildings, usually these solutions are costly in terms of both money and time. They requires efforts to encode expert knowledge that can't be resued.

Chapter 1

Semantic Web

In this chapater will follow a brief description of the concept of ontology and of Semantic Web as defined by W3C. This chapter will then furter detail the ontologies and metadata schemata used in the thesis project, namely Semantic Sensor Network (SSN) and Brick. It is to note that the work presented in this thesis is not directly using all of these technologies, but it draws from their key concepts to reach some goals. It is therefore worth to mention such concepts here.

1.1 Introduction to the Semantic Web

Semantic Web is a term that identify an evolution of the web in which every resource available through the web is associated with a semantic meaning. Semantic Web technologies enable people to create data stores on the Web, build vocabularies and write rules for handling data. Semantic web layers are defined by W3C as:

- linked data
- vocabularies
- query
- inference

1.1.1 Linked data

Linked Data lies at the heart of what Semantic Web is all about: large scale integration of, and reasoning on, data on the Web. To make the Web of Data a reality, it is important to have the huge amount of data on the Web available in a standard format, reachable and manageable by Semantic Web tools. Furthermore, not only does the Semantic Web need access to data, but relationships among data should be made available, too, to create a Web of Data (as opposed to a sheer collection of datasets). This collection of interrelated datasets on the Web can also be referred to as Linked Data.

Resource Description Framework

Resource Description Framework (RDF)[7] is a description language, which aims to capture the semantic of linked data. The RDF standard is based on several fundamental concepts. The first such concept is "resource". Resources are the basic objects, or "things", that have to be described in the domain (e.g. rooms, floors, sensors etc.). All resources are identified through a unique, global identifier called the Universal Resource Identifier (URI). In most applications, the URI is the Uniform Resource Locator (URL) of a Web page, a part of a Web page or a link to a document available on a Web server. However, the URI is a more general concept, the only condition is that it uniquely identifies a resource. Examples of resources could be "unibs:florenzi.002" as well as "unibs:thesis1234" or "https://www.w3.org/RDF/". Another essential concept is "property". Properties describe relations between resources and, following the previous example, we could say that "has_author", "has_name", "has_subject" are properties. Having defined both resources and properties, statements can Statements, also known as triples, in RDF have the basic form: subject-predicate-object, where the subject is an RDF resource, the predicate is a RDF property, and the object is another RDF resource or a literal (a name, a number, a code, etc.). Still referring to the example, the statements could be "unibs:thesis1234 has_author unibs:florenzi.002", "unibs:thesis1234 has_subject https://www.w3.org/RDF" and "unibs:florenzi.002 has_name "Fabio Lorenzi"". RDF data models end up being represented as graphs where subjects and objects

Figure 1.1: Graph representation of the example RDF model

Figure 1.2: Correct RDF model with wrong semantic

are nodes while properties are edges. The resulting graph derived from the description above is shown in Figure 1.1. It is to note that RDF is a conceptual model for representing linked data, but as far as it goes, no semantic is implied in this representation. Looking at this model it is impossible to understand the meaning of the resources or properties, nor to understand if those elements reflect and adhere to rules of a particular domain. In the example above there is no explicit information telling us that the resource "unibs:florenzi.002" is a person and that "the unibs:thesis1234" is a book. Furthermore the RDF model represented with "unibs:florenzi.002 has_author unibs:thesis1234", "unibs:florenzi.002 has_subject https://www.w3.org/RDF" and "unibs:thesis1234 has_name "Fabio Lorenzi"", yelding the graph representation in Figure 1.2, is perfectly fine, altough not semantically correct¹. Adding semantic to an RDF model, that is detailing the domain ontology, is left to other frameworks as explained in subsection 1.1.2.

¹From a common sense point of view. No semantic is actually explicitly declared.

1.1.2 Vocabularies

On the Semantic Web, vocabularies define the concepts and relationships (also referred to as "terms") used to describe and represent an area of concern. Vocabularies are used to classify the terms that can be used in a particular application, characterize possible relationships and define possible constraints on using those terms. There is no clear division between what is referred to as "vocabularies" and "ontologies". The trend is to use the word "ontology" for more complex and possibly quite formal collection of terms, whereas "vocabulary" is used when such strict formalism is not necessarily used or only in a very loose sense. Vocabularies are the basic building blocks for inference techniques on the Semantic Web.

Resource Description Framework Schema

Resource Description Framework Schema (RDFS) defines a set of RDF resources useful for the description of other RDF resources and properties. Through RDFS it is possible to define and detail the semantic of a RDF model. Among the various concepts introduced with RDFS there are:

- rdfs:Resource: everything that is described in RDF is a resource
- rdfs:Literal: it is a text string
- rdfs:Property: it represents the properties
- rdfs:Class: it is similar to the concept of type or class in an object oriented programming language
- rdfs:subClassOf: it specifies inheritance, eventually multiple, between classes
- rdfs:range: it tells which resources are permitted as object in a statement
- rdfs:domain: it tells which resources are permitted as subject in a statement.

It is to note that the RDFS is a RDF model itself and it is used for explicitly declare the domain knowledge of a given RDF model. We refer to the RDFS as an ontology and to the RDF model triples as the instances of such ontology. Using

Figure 1.3: RDFS representation of an ontology

RDFS, it is possible to model domain knowledge for the example in **section 1.1.1** as in Figure 1.3. This "layering" approach is what allows for the design of reusable ontologies and gives opportunity to automatically infer new knowledge based on the RDFS model of the data. Still looking back at the example, lets suppose that the statement "unibs:florenzi.002 rdf:type foaf:Person" is not in the ground knowledge of the RDF model. Even if this explicit information wasn't available, a reasoner would have been able to infer that statement (dotted line) given the semantic description of the property "myOnt:has_author" (bold line). The process is represented in Figure 1.4.

1.1.3 Query

Since there exist technologies that represent knowledge bases and their semantics, it is useful, if not necessary, to have access to that knowledge through some kind of query language that allows the user to extract and consume that knowledge. If the knowledge base is stored as a RDF, the de-facto standard is represented by

Figure 1.4: Inference process of new knowledge

SPARQL.

SPARQL Protocol and RDF Query Language

A mean for querying RDF models is defined by SPARQL [10] query language. SPARQL queries are based on patterns. As RDF can be seen as a set of relationships among resources, SPARQL queries provide one or more patterns against such relationships. A SPARQL engine would perform a pattern matching over the resources and it returns the matching triples. To represent a pattern (or query) to be run against the data model, SPARQL defines a series of keywords similar to those of SQL language:

- SELECT followed by the name of the variables that the user wishes to SELECT
- INSERT used to insert new triples pattern in the underlying RDF [defined in an extension called SPARQL/Update]
- WHERE followed by a set of conditions involving the variable that needs to be selected and that needs to be fulfilled in the underlying RDF.

As an example, from Figure 1.3, a standard query would be to retrieve every thesis and its author in the knwoledge base and it can be written as shown below.

SELECT ?thesis ?author
WHERE
?thesis a myOnt:Thesis
?thesis has_author ?author

1.2 Ontologies for smart buildings

After the brief (and not exhaustive) introduction to the core concept of the Semantic Web, here are introduced the two main ontologies that lie at the core of the project of this thesis. These ontologies are used to represent a smart building with all its relevant attributes (Brick) and the internal processes that take place involving the building sensors and physic variables (SSN and its extension). Both the ontologies are used since they are ortogonal one another and this help to cover every aspect of interest for a EMS application in a smart building.

1.2.1 Brick

Brick schema [1] defines domain specific concepts aimed to describe sensors in a building with its context. It is composed of three parts

- a class hierarchy of entities describing various building subsystems
- a minimal set of relationships for connecting entities
- a method for encapsulation in the form of Function Blocks.

The main concept in Brick is the concept of tag introduced with project Haystack [6], which is further enriched by an ontology that cristallizes the concepts defined by tags. A tag is a flexible framework for annotating metadata to building data points. In Brick tags are grouped together as sets, named tagsets, to represent entities; the tags room, temperature and sensor can be grouped together as room temperature sensor representing a single entity. The concept of tagset is well integrated with the class hierarchy concept of the ontologies: a room temperature sensor is a subclass of a generic temperature sensor. As the main goal of Brick is to represent points in a building's BMS, Points is one of the main classes of Brick,

Figure 1.5: Subset of Brick hierarchy

Figure 1.6: Brick schema core concepts

which subclasses define specific type of points like Sensor. The most common concepts a Point can be related to are Location, Equipement and Measurement so those classes, together with the Point class, form the core classes of Brick. Those classes are further subclassed to form a hierarchy. A subset of the hierarchy is shown, as an example, in Figure 1.5. this taxonomy is able to comprehend almost every entity that can be found in a BMS of a building[1]. Alongside classes, relationships play a crucial role in connecting entities and thus providing a context for many applications. Brick designes a set of minimal, intuitive and multipurpose relationship fundamental in capturing existing relationships in a real building. Figure 1.6 shows the Brick core concepts and the designed set of relationships.

Figure 1.7: Semantic Sensor Network (simplified) ontology

1.2.2 Semantic Sensor Network ontology

While Brick schema is used to model the building domain, the Semantic Sensor Network (SSN) ontology [2] has been chosen because it provides a different view of the various aspect of the sensing process, beyond the specific building domain. Peculiar to the SNN Ontology (SSNO) is the Stimulus-Sensor-Observation design pattern. This pattern differentiates between the concept of ssn:Sensor for physical devices that take measurements in form of ssn:Observation and ssn:Stimulus that is the actual change in the environment that caused a particular observation, so that it is possible to differentiate that stimuli occur in the reality even if no sensor is monitoring them, thus modelling unobservable states of a system, and that observation made from a sensor can be different from the real event (e.g errors, failures, noise). These concepts aside, SSN provides other useful classes that are ssn:FeatureOfInterest that represents generic entities which status is to be monitored (e.g rooms, fans or floors) and ssn:Property that embodies specific physical quantities that a sensor ought to monitor. All the classes are connected by a set of relationships that are ssn:hasProperty that connects a ssn:FeatureOfInterest with meaningful physical properties, like a temperature in a room; ssn:isProxyFor represents that a given ssn:Stimulus influences a ssn:Property; ssn:includeEvent create a dependency between an observation and an event that causes it; ssn:observedBy links an observation to the sensor that could measure it. Figure 1.7 shows the resulting SSN ontology core.

Extending SSNO

As far as it goes, Brick and SSN are good ontologies for modelling a building and its sensor network, but in a Energy Management System (EMS) context, and for

Figure 1.8: Extended SSN ontology. Extensions are highlighted with bold line and a light grey background.

FDD applications in particular, it is essential to understand the cause-effect relationships in the building. In order to do that, IBM Research extended the SSNO through the introduction of additional classes and references as in Figure 1.8. phy:PhysicalProcess represents laws of physics through a simplified model. Different subclasses of physical processes are derived from LTI system processes and will be described in chapter 2. phy:FeatureLink tells which kind of relationship exists between two ssn:FeatureOfInterest, such a link could be a wall between two rooms or a window between a room and the outside. phy:Cause and phy:Effect are subclasses of ssn:Stimulus useful to differentiate whether said stimulus is a cause or an effect of a ssn:Observation. phy:Anomaly is a subclass of ssn:Observation; it describes out-of-range observations that need to be diagnosed, like a high temperature in a room. phy:ObservedCause is still a subclass of ssn:Observation; it is used for describing a measurment that can be a cause of an anomaly.

Chapter 2

Model creation

This chapter will outline the approach suggested by IBM Reserch for tackling some of the challanges introduced in Introduction regarding fault detection and diagnosis (FDD) and for overcoming the limitations of the state of the art approaches. A step-by-step example illustrating the approach is provided at the end of the chapter.

2.1 State of the art

Nowadays, as extensively analyzed by Katipamula and Brambley [4], FDD approaches fall in either one of the following three categories: physycal model based approaches, data driven approaches and rule-based approaches. Still, each of these approaches shares common limitations that can be summarized as:

- they can only be applied to a single, specific building
- they require large manual effort and expertise
- their deployment can take several weeks
- they neglect strong interactions between systems.

Physycal model approach This approach requires a physycal model (e.g ordinary differential equations) of the building and its components. They are highly

precise in diagnosing faults given a correct model. However, deriving the models is no trivial task and requires times and expertise. On top of this, derived models are building, system and location specific and they are difficult to adapt to other buildings than the one they are thought for, even if they share similar structure and similar components, thus limiting the scalability of this approach.

Data driven approach Data driven approaches completely rely on building's sensor data. They assume that access to a large dataset of hystorical data is granted. There is little to no need for any a priori knowledge of the processes involved. Black-box data driven approaches derive the model in the form of an input-output relationship whose parameters are not correlated with the actual physical parameter (e.g artificial neural networks, regression) while grey-box data driven approaches take advantage of simplified physical relationships between measured quantities (e.g principal component analysys) and rely on statistical methods for estimating their parameters. Even though these methods do not suffer from scalability issues, they are limited to fault detection and lack in diagnosis capabilities.

Rule-based approach The rule-based approach is the most common in traditional FDD applications. It uses domain knowledge and expertise in order to derive a series of simple *if-then-else* rules or some kind of decision trees along with a series of thresholds and confidence intervals; during system operations data are evaluated against this rules and countermeasures are eventually taken. Even though this is the most common approach, it still needs a lot of manual effort and requires access to domain knowledge so these requirements still limit portability and scalability of applications based on this technique.

2.2 IBM Research approach

The approach developed by IBM Research is based on a combination of the three aformentioned concepts to overcome their disadvantages. It models high level physical processes in the systems to derive diagnosis rules, it parametrizes the rules using data analytics techniques and applies them during system's operations.

Figure 2.1: IBM Reserch approach, overview

The strength of the semantic approach lies in its capability to automatically infer knowledge given a building, its sensors and their data. This leads to a semiautomated process that limits the manual effort needed, as shown in Figure 2.1.

The proposed approach needs three inputs to produce the diagnosis of a given anomaly:

- building data: assumed available in the building's Building Management System (BMS)
- semantic model: specified through the use of concepts from domain ontologies Brick (subsection 1.2.1) and SSNO (subsection 1.2.2)
- physycal model: the model of the physical dependencies between subsystems of the building. The physical processes are modelled through concepts presented in the extended SSNO. (subsection 1.2.2).

These inputs are processed through the various stages to produce the complete model of the building and its internal processes. Details about the different phases are given in the following pages.

2.2.1 Semantic Mapping

Building a semantic model for a specific building needs knowledge on the type of sensors, meters and various equipment available in said building, their location and their semantic meaning in the chosen ontologies. These informations are usually stored in BMS through labels that, despite some kind of standardization efforts, are usually vendor specific; in some cases even the same vendor ends up changing its labelling schemes throughout the years. Even though there is no common ground to evaluate these labels, usually they are comprised of a series of abbreviations and acronyms, eventually separated by some special character (e.g. "_") that gives informations about the device's ID, function and location (or the equipment it is part of). An air temperature sensor in a room on ground floor can be labeled AIR_TEMP_R3GF while another air temperature sensor in a room on the first floor may ends up being labeled as RATSF1R9; both the sensors represent a common semantic resource in an ontology and need to be mapped to that concept. This process is called semantic mapping. Existing approaches are differentiated in three types[9]:

- semi-automatic: they offer a tool assisting the user in labelling the point to corresponding semantic types and are based on advanced text mining techniques (e.g regular expressions, classifiers)
- data driven: these approaches try to recover the meta-data given the timeseries. They are based on the concept that different data-points exhibiting similar timeseries behaviour should be similar themselves
- active feedback: in these kind of approaches a series of known events are injected into the system and datapoints semantic model is derived observing the effect of the event injection.

Building Energy Asset Discovery tool

the Building Energy Asset Discovery (BEAD) tool[5] is the tool developed by IBM Research for assisting user in the process of discovery and tagging of sensors. The tool is based on dictionaries of the type $\mathcal{D}: \mathcal{A} \to \mathcal{MS}$ where \mathcal{A} is the set of all relevant acronyms and \mathcal{MS} is the set of markerset; each markerset is a set of markers or keywords. These concepts are closely related to those of tagset and tag found in the Brick ontology and this duality allows the association of the sensor with the correct semantic type as described by Brick (see subsection 1.2.1). The dictionary contains the most common acronyms found in BMS and it is further extended by the markers (tags) from the Brick ontology, such that a tag maps to itself, e.g Temperature \rightarrow {Temperature}. The tool takes a label from the BMS, computes a similarity score against the dictionary entries and guides the user in the labelling process. For example, given the following dictionary

```
d1: RAT→{Return, Air, Temperature}
d2: RAT→{Room, Air, Temperature}
d3: SAT→{Supply, Air, Temperature}
d4: OAT→{Outdoor, Air, Temperature}
d5: Temp→{Temperature}
d6: Temperature→{Temperature}
```

the label RATSF1R9 (Room Air Temperature Sensor, Floor 1, Room 9) has a high similarity with both RAT \rightarrow {Return, Air, Temperature} and RAT \rightarrow {Room, Air, Temperature}, so it is up to the user to understand the meaning and choose the right markerset. In a similar fashion, it is possible to extract information on the location of a sensor or the asset it is related to, as shown in Table 2.1. This process clearly requires human supervision, hence the definition of semi-automatic, but through this approach the operator has to manually inspect a smaller subset of all the possible marketsets, thus taking minutes instead of several weeks to complete the semantic mapping. Practical experiments demonstrated that through this approach the decrease in number of labels to analyze is the 7.5% of the total number of BMS labels [9]. The output of this process is the semantic model of the specific building according to the chosen ontology. A flowchart illustrating this process is shown in Figure 2.2.

Table 2.1: Dictionary extended with assets' informations

Label	Asset	Marketset
U6_RAT	AHU6	{Return, Air, Temperature}
$U6_DAT$	AHU6	{Discharge, Air, Temperature}
$\mathrm{AHU7}_{-}\mathrm{RAT}$	AHU7	{Return, Air, Temperature}
AHU7_SAT	AHU7	{Supply, Air, Temperature}
AU9_RET_TEMP	AHU9	{Return, Air, Temperature}
AU9_SUP_TEMP	AHU9	{Supply, Air, Temperature}

Figure 2.2: Semantic mapping process

2.2.2 Physic model inference

The semantic model obtained from the semantic mapping phase is a model of the building architecture, assets, sensors and their loaction across the building. The model still lacks information about the physic processes taking place in the building and how the actual physic model is monitored and influenced by the points (sensors, setpoints etc.) in the building. Manually building the physical model of a building is unpractical and costly, thus the developed framework approaches this challange through the use of semantic inference techniques. This phase requires as inputs the semantic model of the building and an appropriate ontology that models the physics variables. Given those inputs, through the reasoning process is possible to automatically add the correct dependencies and physical processes to the model. This process is separated in two phases:

- physical properties inference: it recreates the physical variables that are involved in physical processes. The properties are either mandatory or optional
- physical processes inference: once the physical properties are set in place, it is possible to link them together according to the domain knowledge specified in the upper ontology.

Further informations about the concept of reasoning and reasoner and further details about implementation choices for this approach are given in chapter 4.

Physical properties inference Properties represent physical quantities in the real world and can be mandatory or optional. Mandatory properties are characteristic of a ssn:FeatureOfInterest and need to be created for each instance of that feature. This behaviour is specified in the ontology of the physic through the use of the phy:requiresProperty relationship, so that during the reasoning mandatory properties can be automatically created. For example, in Figure 2.3 it is shown that the concept of :Room phy:requiresProperty :Temperature, that means that every instance of a :Room needs to be associated with a property that is an instance of :Temperature, or in plain English that every room has a temperature. Optional properties, on the other hand, need to be created only if some requirements are met, for example a :Room have a :Cooling property only if a

Figure 2.3: Process of inference of mandatory and optional properties

:CoolingActuator is present in said room, and it is modelled in the ontology as :CoolingActuator phy:defaultObserved :Cooling. In Figure 2.3 it can be seen that only :Room709 has a :Cooling property since it is the only room that has a :CoolingActuator. The :requiresProperty and :defaultObserved properties¹ are concept level references and model general knowledge. General knowledge describes the domain without bothering about the ground truth. This means, for example, that the concept of :Room requires the existence of the concept of :Energy even if there are no rooms instances in the building's model. The existence of said properties is the key for the automatic reasoning process.

Physical processes inference Once all the actual properties have been infered for a specific configuration, it is time to append to the model informations about the physical processes involving such properties. As already stated in subsection 1.2.2, physical processes are modelled as Linear Time Invariant (LTI) systems based on the fact that Multiple Input Multiple Output (MIMO) processes can be

¹Intended as the semantic concept of relationship between entities, not to be confused with domain knwoledge properties like :Temperature.

Table 2.2: Taxonomy of the semantic representation of LTI processes

Semantic concept	Parent	Formal definition
MISO	Process	$y_i(t) = \mathbf{c_i} \cdot \mathbf{x_i} + \mathbf{d_i} \cdot \mathbf{u_i}(t) = f(\mathbf{u}(t))$
SISO	MISO	$y_i(t) = \mathbf{c_i} \cdot \mathbf{x_i} + d_i \cdot u_i(t) = f(u(t))$
Positive Correlted (PC)	SISO	$y(t) \propto u(t)$
Negative Correlated (NC)	SISO	$y(t) \propto -u(t)$
Proportional (P)	SISO	$y(t) = k_p \cdot u(t)$
Positive Proportional (PP)	PC, P	$y(t) = k_p \cdot u(t), k_p \ge 0$
Negative Proportional (NP)	NC, P	$y(t) = k_p \cdot u(t), k_p < 0$
Negation (N)	NP	$y(t) = k_p \cdot u(t), k_p = -1$
Integral (I)	P	$y(t) = k_I \int u(t)dt$
Derivative (D)	Р	$y(t) = k_D \cdot \dot{u}(t)$
Lag (PTn)	P	$\sum_{i=0}^{n} C_i \cdot T^i \cdot y^{(i)}(t) = k_{PT} \cdot u(t)$
$1^{\rm st}$ order lag (PT1)	PTn	$T \cdot \dot{y}(t) + y(t) = k_{PT} \cdot u(t)$
Delay (τ)	SISO	$y(t) = u(t - \tau), \tau > 0$
Multiplicative (M)	MISO	$y(t) = u_1(t) \cdot u_2(t)$

decomposed into multiple Multiple Input Single Output (MISO) processes

$$\dot{x} = A \cdot x + B \cdot u$$
$$y = C \cdot x + D \cdot u$$

that splitted on the output rows and in case of indipendent inputs becomes

$$y_{i} = \sum_{j \in J} \left[\sum_{l \in L_{j}} c_{i,l} \cdot x_{l} + \sum_{k \in K_{j}} d_{i,k} \cdot u_{k} \right] = \sum_{j \in J} f_{i,j}(u_{j})$$
 (2.1)

A MISO process can be further subclassed as a Single Input Single Output process. Each process follows the rules

 $\mathbf{Rule}\ \mathbf{1}$ a process has at least one input and exactly one output

Rule 2 when a process has multiple inputs, they superpose additively.

Given these rules, it is possible to define a class hierarchy of LTI processes that are used to model a physical system. A subset of said taxonomy is available at Table 2.2.

Table 2.3: Example of BMS content

ID	Label
1234	CCPC1B3
1235	CWFU709
1236	CWTU709
1237	SAFAHU709C1
1238	FMAHU709
1239	OCCR1
1240	ATSROOM1
1241	ATS_Outside

2.3 Example of the whole approach

In order to better explain the concepts presented in the previous sections, it is provided an example of the full process applied to a room, facing the outside environment, with a cooling Air Handling Unit (AHU). At the end of the section it is shown that a full model of the room and its internal and external processes are derived. This model will then be used during the explanation of the diagnosis process. Looking back at Figure 2.1, we start by defining the inputs needed for the process (sharp top boxes).

Building data and semantic model It is assumed that some kind of BMS is available in the building so that through the BMS is it possible to retrieve both labels (for semantic mapping) and data of various sensors. The room analyzed in the example will be named ROOM1. In ROOM1 an air temperature sensor and an occupancy sensor are available. Room1 is also equipped with an AHU, named AHU709, whose internal components are observed by a fan mode sensor, a supply air flow sensor a coil water temperature sensor and a coil water flow sensor. This AHU709 is fed by a chiller named C1 equipped with a power sensor. Let the BMS contain the data as in Table 2.3 and lets use Brick (1.2.1) as a domain ontology. Through the semantic mapping tool (subsection 2.2.1) it is possible to map the labels in the BMS to the Semantic type in the Brick ontology. The user can also give the system additional informations about the architecture of the building and the location of equipments and sensors. It is then possible to map: B3 as a

Figure 2.4: Complete semantic model of a room in a building equipped with an AHU according to Brick ontology

brick:Location, :ROOM1 still as brick:Location and then link one to the other as :ROOM1 brick:isPartOf :B3 and so on. The tool will also discover the semantic type of the sensor and will be able to create the correct instances. For example it will add to the model an air temperature sensor named :ATSROOM1 and will link it as a point to :ROOM1. The output semantic graph can be seen in Figure 2.4 where the instances created from the BMS and their mutual relationships are bold, while the Brick ontology concepts and relationships are light grey. This is the building semantic model, that will be used together with the physic model described in the next paragraph to infer knowledge about the physics properties and relationships in the building.

Physic model The physic model is a model of the physic phenomena occurring in an environment. It defines physical variables and processes and their interaction in the context of a specific domain. Creating a model of physic's laws is a time consuming task that involves expertise from different fields, from engineering to physics, that are very domain specific. The good side of the semantic approach is that, once the model is derived from a general point of view, it is automatically extended for every instance of a building, indipendently from its architecture. It is to note that the domain model for the physic does not necessarily model exact

physical relationships but just the principal ones, since those are the most relevant to the approach. However this choice is purely practical rather then a limitation of the approach itself, and given sufficient time and knowledge, it is possible to enrich the model in order to close the gap with the reality. Here will be presented a model for the physic of a room, equipped with a AHU fed by a chiller. The model is based on a simplification that makes the assumption of fully mixed air, that allows for the modelling of a whole space as a single node with uniform temperature. Wetter [12] provides an insight of the physics involved in the example. It starts describing a heat balance equation of a room as

$$m_r c_p \dot{\vartheta}_r = Q_{Energy} \tag{2.2}$$

$$Q_{Energy} = Q_{Occ} + Q_{Cool} + \sum_{i} A_{i} h_{i} (\vartheta_{i} - \vartheta_{r})$$
 (2.3)

(2.4)

and from Equation 2.2 and Equation 2.3 it derives

$$m_r c_p \dot{\vartheta}_r + \sum A_i h_i \vartheta_r = Q_{Occ} + Q_{Cool} + \sum A_i h_i \vartheta_i$$
 (2.5)

that says that the temperature of a room ϑ_r is a first order derivative of the room's inner energy Q_{Energy} that is the combination of the heat gain of occupants Q_{Occ} , the heat removed by the cooling system Q_{Cool} and the heat transfer between adjacent environments. Given these equations, semantic informations can be extracted. From Equation 2.2 it can be seen that

- 1. rooms have an internal energy [Property, mandatory]
- 2. rooms have a temperature [Property, mandatory]

while from Equation 2.3 it follows that

- 3. a room's temperature is influenced by the energy in a first order lag process [Process, PT1]
- 4. rooms can be cooled, if they have a cooling actuator [Property, optional]
- 5. cooling is negative proportional (NP) with the room's energy
- 6. room energy depends from the adjacents environment's temperature proportional to the shared surface A_i and the heat transfer coefficient h_i , hence the

dependency is a positive proportional process [Process, PP].

Further analyzing the physics involved bring to the conclusion that

$$Q_{Occ} = q_{lat} n_{occ} (2.6)$$

where q_{lat} is the latent heat gain and n_{occ} the number of occupants in the room. From Equation 2.3 and Equation 2.6 it follows that

- 7. rooms have a number of occupants [Property, Mandatory]
- 8. a room's internal energy is positively correlated with the number of occupants [Process, PP].

Additional knowledge can be added if the physics of the system in known; for example, it is possible to further enrich the model by specifying the internal processes that regulate a AHU. Wang et al. [11] provide a simplified model for modelling the cooling load of an AHU through Equation 2.7

$$Q_{Cool} = \frac{c_a \dot{m}_a^e c_c \dot{m}_c^e}{c_a \dot{m}_a^e + c_c \dot{m}_c^e} (\vartheta_a - \vartheta_c)$$
 (2.7)

This, given that ϑ_a is the mixed air temperature, \dot{m}_a the air flow rate, ϑ_c the chilled water temperature and \dot{m}_c the chilled water flow rate, leads to the following conclusions

9. cooling is a complex function of the air temperature, the chilled water temperature, the supply air flow and the water flow in the coil [Process, MISO].

Finally, Cui and Wang [3] provide a simple model of a chiller's physics, whose equation can be expressed as

$$\dot{m}_c c_w (\vartheta_{cret} - \vartheta_c) = \eta_{COP} W \tag{2.8}$$

from which it can be derived that

1. the chilled water tempearture decreases with the increase of the power consumption [Process, NP]

Figure 2.5: Patterns for definition of a model for a system's physics

2. the water flow rate increases as the power consumption of the pump increases [Process, PP].

This dependencies can be semantically mapped to a domain ontology that still use concept from Brick, SSN and its extended version and Figure 2.5 shows how the discovered domain knowledge can be represented using those ontologies. It is clear that this part is the most costly of the whole process, especially timewise, since it requires very specific expertise. In the example, for instance, it is not captured that a room's internal energy is influenced by the radiant heat of the sun but it would have been possible to do so. The good side of this approach is that the modelling efforts need to be done just once per domain as the ontology is reusable and will adjust itself to the bulding instance trough the automatic reasoning process.

Reasoning process The reasoning process is divided in two main phases: the discovery of the physical properties and the creation of the physical processes involving those properties. This requires access to the building semantic model created during the semantic mapping phase and the physic model derived by expert for the particular domain (e.g physic model of HVAC system). Both the phases work on the ontology (metadata) to draw conclusions about the instances. The first

phase has to be the properties discovery one, since those properties are inputs and outputs for the processes. Based on the ontology derived in the previous paragraph and the semantic model of the building (Figure 2.4), through the application of simple reasoning rules, it is possible to derive the whole semantic graph of both the building and its actual physic beahviour, as seen in ??(figure to be completed), in a simplified form². The rules to be applied are

- if there is a room, it has an internal energy, $Room(r) \Rightarrow Energy(e) \land hasProperty(r, e)$
- if there is a room, it has a temperature, $Room(r) \Rightarrow Temperature(t) \land hasProperty(r,t)$
- if there is a temperature sensor in a room, the room has a temperature and the temperature is observed by the sensor, $Room(r) \land Temperature_Sensor(ts) \land hasPoint(r,ts) \Rightarrow Temperature(t) \land hasProperty(r,t) \land observes(s,t)$
- energy influences the temperature through a PT1 process, $Room(r) \land Energy(e) \land hasProperty(r,e) \land Temperature(t) \land hasProperty(r,t) \Rightarrow PT1(p) \land hasInput(p,e) \land hasOutput(p,t)$
- if a AHU has a coil water flow sensor then it has a coil water flow property, $AHU(a) \land CoilWaterFlowSensor(s) \land hasPoint(a, s) \Rightarrow CoilWaterFlow(f) \land hasProperty(a, f) \land observes(s, f)$

²Since even the degree of complexity of the semantic graph of small example is too high, the fidelity to the real implementation is dropped for clairty's sake.

Chapter 3

Diagnosis Algorithm

Chapter 4

IoT Brain

This chapter is going to give some informations about the design choice taken while implementing the approaches in **chapter 2** and **chapter 3**. Implementation efforts were aimed at providing a further degree of scalability to the approach and leveraging cloud based technologies as well as reducing the technicality of the involved resource. It will be presented a use case that shows the

4.1 IoT BRAIN and KITT

IoT Big scale Reasoning and Analytic INsights (IoT BRAIN) allows to specify semantic models for IoT systems and run analytics across them automatically. Its core is the light-weight knowledge framework named Knowledge Inference Technology for IoT (KITT) that provides a simple API to model, manage and reason on the semantic knowledge model. It is split in multiple layers of different abstraction level that base on a common semantic modeling strategy. This architecture implements the concepts explained in the previous chapters with a strong emphasis on the scalability and availability of the approach.

IoT BRAIN, which architecture is shown in Figure 4.1, is built upon a storage layer that is comprised of a graph database, used for storing the semantic model of the building. The Watson IoT platform allows easy connection and dispatch of data securely to the cloud using the open, lightweight MQTT messaging protocol. The storage layer is completed by a dashDB, an SQL database that provides

Figure 4.1: IoT BRAIN architecture

efficient storage of time series and high query performance. On top of this layer sits the core of the project which realize the theoric process shown in Figure 2.1.

4.1.1 Graph database vs. RDF Store

why graphDB: cloud property centric need to evolve SPARQL

Bibliography

- [1] Bharathan Balaji et al. "Brick: Towards a Unified Metadata Schema For Buildings". In: (Nov. 2016), pp. 41–50.
- [2] Michael Compton et al. "The SSN ontology of the W3C semantic sensor network incubator group". In: Web Semantics: Science, Services and Agents on the World Wide Web 17 (2012), pp. 25–32. ISSN: 1570-8268.
- [3] Jingtan Cui and Shengwei Wang. "A model-based online fault detection and diagnosis strategy for centrifugal chiller systems". In: *International Journal of Thermal Sciences* 44.10 (2005), pp. 986–999. ISSN: 1290-0729.
- [4] Srinivas Katipamula and Michael R. Brambley. "Methods for fault detection, diagnostics, and prognostics for building systems a review". In: *HVAC&R Research* 11.1 (2005), pp. 3–25.
- [5] Joern Ploennigs et al. "Demo Abstract: BEAD Building Energy Asset Discovery Tool for Automating Smart Building Analytics". In: (Nov. 2014).
- [6] Project Haystack. URL: https://project-haystack.org/.
- [7] Resource Description Framework. URL: http://www.w3.org/RDF.
- [8] Ioana Robu, Valentin Robu, and Benoit Thirion. "An introduction to the Semantic Web for health sciences librarians". In: 94 (May 2006), pp. 198– 205.
- [9] Anika Schumann, Joern Ploennigs, and Bernard Gorman. "Towards Automating the Deployment of Energy Saving Approaches in Buildings". In: (Nov. 2014).
- [10] SPARQL Protocol and RDF Query Language. URL: https://www.w3.org/ TR/rdf-sparql-query.

- [11] Yao-Wen Wang et al. "A simplified modeling of cooling coils for control and optimization of HVAC systems". In: 45 (Nov. 2004), pp. 2915–2930.
- [12] Michael Wetter. "Multizone Building Model for Thermal Building Simulation in Modelica". In: 2 (Jan. 2006).