Microprocessor System Design

Omid Fatemi 8088 Microprocessor (omid@fatemi.net)

Outline

- Pin configuration
- Minimal / Maximal mode
- Address latch enable
- Bi-directional data bus

The Microprocessor

- An integrated circuit with millions of transistors interconnected with very small aluminum wires.
- Controls and directs activities of the computer.
- Execute stored programs.

Von Neumann Architecture

in some other architectures program and data are separated in 2 memories

The 8086 Family: the Late 1970's

- Could address up to 1 mb of memory at a time when other CPU's could only address 64 kb.
- The 16 bit external bus too powerful.
- The 8088 replaced the 8086 and had only an 8 bit external bus.
- The 8088 CPU was the first chip used in IBM's microcomputers.
- 8088 ي
 - ت Data is organized into byte widths
 - ت The 1MB memory is organized as 1M x 8-bits
- 8086/80186 ي
 - ت Data is organized into word widths
 - ت The 1MB memory is organized as 512k x 16-bits

The 80286 Family:1983

- Wanted to make the 286 backward compatible with the 8088's.
- So had 2 modes:
 - Real mode-less powerful.
 - Protected mode-very powerful.
 - » Could access up to 16 mb of memory.
 - » Needed a special operating system.
 - » But most users only had DOS.
- پ 80286/80386SX
 - ت Data is organized into word widths
 - ت The 16MB memory is organized as 8M x 16-bits

The 386 DX: 1985

- First true 32 bit chip, all buses 32 bits wide
- Capable of running in real mode, 286 protected mode and its own 386 protected mode
- In 386 protected mode it had 2 new functions:
 - Virtual memory- could use hard drive to pretend that computer had up to 4 GB of data!
 - Virtual 8086-8086 bubbles created for DOS

386DX/80486 **پ** پ

- ت Data is organized into double word widths
- ت The 4GB memory is organized as 1G x 32-bits

The 386 SX:1988

- How different from the 386DX?
 - External data bus reduced to 16 bits
 - Address bus reduced to 24 bits, which limited memory use to 16 mb
 - First popular laptops were based on the 386SX but was called the 386 SL and ran on 3.3 volts

The 486DX:1989

- How different from the 386 family?
 - A built in math coprocessor.
 - » Performs high math functions.
 - A built in 8K cache on same chip.
 - » This was an SRAM cache that stores code read in the past. When the CPU asks for the code again, it doesn't have to go to DRAM to get it.

486SX:1991

 Same as 486 DX except the math coprocessor is disabled.

The Pentiums:1993

- Had 64 bit external data bus that split internally as 2 dual pipelined 32 bit buses
- Supported an 8K write through cache for programs
- Most early Pentiums ran at 3.3 volts. This conserved heat. Voltage regulators on the motherboard can decrease voltage
- Includes clock doubling through the setting of jumpers

Recent Pentiums: after 1996

- MMX- helps with multimedia products
- Increased multipliers/clocks
- Improved processing- better cache branch predicting
- Improved superscalar architecture
- SSE/SSE2 instructions
- Pentium Pro/Pentium 1-4 پ پ
 - ت Data is organized into quad word widths
 - ت The 4GB memory is organized as 512MB x64-bits
- (on P2-4, actual address bus is 36 bits)

8088 Microprocessor

Minimum Mode

Pin Configuration

Power and Ground Pins

- Vcc pin 40
- Gnd pin 1 and 20

Address Pins

- AD0..AD7
- A8..A15
- A19/S6, A18/S5, A17/S4, A16/S3

Data Pins

• AD0..AD7

- MN/MX' (input)
 - Indicates what mode the processor is to operate in
- READY (input)
 - When given an input LOW, it will go into a wait state
- CLK (input)
 - Provides basic timing for the processor
- RESET (input)
 - Causes the processor to immediately terminate its present activity
 - To reset the microprocessor, this must be HIGH for at least 4 clock cycles

- TEST' (input)
 - Connect this to HIGH
- HOLD (input)
 - Connect this to LOW
- HLDA (output)

- INTR (input)
 - Interrupt request
- INTA' (output)
 - Interrupt Acknowledge
- NMI (input)
 - Non-maskable interrupt

- DEN' (output)
 - Data Enable
 - It is LOW when processor wants to receive data or processor is giving out data
- DT/R' (output)
 - Data Transmit/Receive
 - When HIGH, direction of data lines is from microprocessor to memory/devices
 - When LOW, direction of data lines is from memory/devices to microprocessor
- IO/M' (output)
 - Device/Memory
 - When HIGH, microprocessor wants to access I/O Device
 - When LOW, microprocessor wants to access memory

- RD' (output)
 - When LOW, it indicates that the microprocessor is performing a read access
- WR (output)
 - When LOW, it indicates that the microprocessor is performing a write access
- ALE (output)
 - Address Latch Enable
 - Provided by the microprocessor to latch address
 - When this is HIGH, microprocessor is using AD0..AD7, A19/S6, A18/S5, A17/S4, A16/S3 as address lines

Clock Signal

- needed by the microprocessor to synchronize signals
- ideally a square wave having a constant frequency

Providing Clock, Reset, and Ready Signal MN/MX AD0 AD1 RES **READY** AD2 CLK AD3 **X**1 **RESET RESET** AD4 AD5 **X2** TEST AD6 osc С AD7 HLDA **A8** F/C HOLD **A9 PCLK** NMI A10 **A11** A12 EF1 8284A A13 **CSYNC** A14 8088 A15 RDY1 CLK A16 / S3 AEN1 A17 / S4 A18 / S5 A19 / S6 RDY2 **READY** SSO AEN2 DEN DT / R **ASYNC** IO / M RD WR INTR INTA Ωan 25 ➤

Minimum Mode MN/MX AD0 AD1 RES **READY** AD2 CLK AD3 RESET **X1** AD4 AD5 **X2** TEST AD6 osc AD7 HLDA **A8** F/C HOLD **A9 PCLK** NMI A10 A11 A12 EF1 A13 CSYNC A14 8088 A15 RDY1 CLK A16 / S3 AEN1 A17 / S4 A18 / S5 A19 / S6 RDY2 **READY** SSO AEN2 DEN DT / R **ASYNC** IO / M RD WR INTR INTA ⊋an 26 →