UNIT II

E-MAIL SECURITY & FIREWALLS

- Provides a secure way to send and receive MIME data
- Provides the following cryptographic security services for electronic messaging applications
 - Authentication
 - Message integrity
 - Non-repudiation of origin (using digital signatures)
 - Data confidentiality (using encryption)
 - Supplementary service Message Compression

- Used by traditional mail user agents (MUAs)
 - To add cryptographic security services to mail that is sent
 - To interpret cryptographic security services in mail that is received
- Not restricted to mail
 - Can be used with any transport mechanism that transports MIME data, such as HTTP or SIP

X.509 Certificates

- Issued by a Certification Authority (CA), containing:
 - version (1, 2, or 3)
 - serial number (unique within CA) identifying certificate
 - signature algorithm identifier
 - issuer X.500 name (CA)
 - period of validity (from to dates)
 - subject X.500 name (name of owner)
 - subject public-key info (algorithm, parameters, key)
 - issuer unique identifier (v2+)
 - subject unique identifier (v2+)
 - extension fields (v3)
 - signature (of hash of all fields in certificate)
- Notation "CA<<A>>" denotes certificate for A signed by CA

- Definitions
- The following definitions are to be applied:
 - ASN.1:
 - Abstract Syntax Notation One, as defined in ITU-T X.680–689.
 - BER:
 - Basic Encoding Rules for ASN.1, as defined in ITU-T X.690.
 - DER:
 - Distinguished Encoding Rules for ASN.1, as defined in ITU-T X.690.
 - Certificate:
 - Name to a public key with a digital signature
 - Defined in the PKIX certificate and CRL profile
 - The certificate also contains the distinguished name of the certificate issuer (the signer), an issuer-specific serial number, the issuer's signature algorithm identifier, a validity period and extensions also defined in that certificate
 - **PKIX** Public Key Infrastructure (X.509)
 - CRL certificate revocation list

Definitions

- CRL:
 - The Certificate Revocation List
 - Contains information about certificates whose validity the issuer has prematurely revoked
 - The information consists of an issuer name, the time of issue, the next scheduled time of issue, a list of certificate serial numbers and their associated revocation times, and extensions
- Attribute certificate:
 - Each X.509 AC binds one or more attributes with one of the subject's PKIXs
 - Authorization information
- Sending agent:
 - Software that creates S/MIME
- Receiving agent:
 - Software that interprets and processes S/MIME CMS objects
- S/MIME agent:
 - User software that is a receiving agent, a sending agent, or both.

- Cryptographic Message Syntax (CMS) Options
 - CMS is cryptographically protected message
 - CMS allows for a wide variety of options in content and algorithm support
 - CMS provides additional details regarding the use of the cryptographic algorithms

- Cryptographic Message Syntax (CMS) Options
 - Digest Algorithm Identifier
 - Identifies a message digest algorithm
 - Maps the message to the message digest
 - Sending and receiving agents must support SHA-1
 - Receiving agents should support MD5 for the purpose of providing backward compatibility
 - Signature Algorithm Identifier
 - Sending and receiving agents must support ID-DSA defined in DSS
 - Receiving agents should support RSA Encryption
 - DSS (Digital Signature Standard)
 - DSA (digital signature algorithm)

- Cryptographic Message Syntax (CMS) Options
 - Key Encryption Algorithm Identifier
 - Identifies a key encryption algorithm under which a content encryption key can be encrypted
 - Supports encryption and decryption operations
 - Sending and receiving agents must support
 - Diffie–Hellman key exchange
 - rsa Encryption
 - Incoming encrypted messages contain symmetric keys which are to be decrypted with a user's private key

S/MIME Process

- Support six different content types:
 - Data
 - Signed data
 - Enveloped data
 - Signed-and-enveloped data
 - Digested data
 - Encrypted data
- Only the data, signed data and enveloped data types are currently used for S/MIME
- There are two classes of content types
 - Base -Data with no cryptographic enhancement
 - Enhanced cryptographic enhancements
 - Encrypted
 - Encapsulated -Outer content contains the inner enhanced content

Content-Type: application/pkcs7-mime; smime-type=signed-data; name=smime.p7m

Content-Transfer-Encoding: base64

Content-Disposition: attachment; filename=smime.p7m

567GhIGfHfYT6ghyHhHUujpfyF4f8HHGTrfvhJhjH776tbB9HG4VQbnj7 77n8HHGT9HG4VQpfyF467GhIGfHfYT6rfvbnj756tbBghyHhHUujhJhjH HUujhJh4VQpfyF467GhIGfHfYGTrfvbnjT6jH7756tbB9H7n8HHGghyHh 6YT64V@GhIGfHfQbnj75

- Data content type:
 - Arbitrary octet strings, such as ASCII text files
 - Data ::= OCTET STRING
 - Sending agents must use the id-data content-type identifier to indicate the message content

- Signed-data content type:
 - Used when a digital signature is applied to a message
 - Any type of content can be signed by any number of signers in parallel
 - Some cases this type convey certificates and CRL
 - Process to construct signed data:
 - A message digest is computed on the content with a signerspecific message digest algorithm
 - A digital signature is formed by taking the message digest of the content to be signed and then encrypting it with the private key of the signer
 - The content plus signature are then encoded using Base64 encoding
 - A recipient verifies the signed-data message by decrypting the encrypted message digest for each signer with the signer's public key, then comparing the recovered message digest to an independently computed message digest.

S/MIME - Message

- Enveloped-data content type:
 - content type: *application/prcs7-mime*
 - Privacy protection to a message
 - The type consists of
 - Encrypted content of any type
 - Encrypted-content encryption keys
 - Called a digital envelope
 - Any type of content can be enveloped for any number of recipients in parallel

- Enveloped-data content type:
 - The process by which enveloped data is constructed involves the following:
 - A content-encryption key (a pseudo-random session key) is generated at random and is encrypted with the recipient's public key for each recipient
 - The content is encrypted with the content-encryption key
 - An EnvelopedData value: The recipient-specific information values for all the recipients
 - This information is then encoded into Base64

- Enveloped-data content type:
 - Recipient
 - Remove off the Base64 encoding
 - Opens the envelope by decrypting one of the encrypted content encryption keys with the recipient's private key
 - Decrypt the encrypted content with the recovered contentencryption key (the session key)
 - This content type does not provide authentication

S/MIME - Message

- Digested-data content type:
 - Contains
 - Content of any type
 - a message digest of the content
 - Add integrity to content
 - A message digest is computed on the content with a message digest algorithm
 - The message digest algorithm and the message digest are combined with the content into a DigestedData value
 - A recipient verifies the message digest by comparing the message digest to an independently computed message digest

- Encrypted-data content type:
 - Consists
 - Encrypted content
 - Unlike the enveloped-data content type, the encrypted-data content type has neither recipients nor encrypted content-encryption keys.
 - Keys are assumed to be managed by other means
 - Used for local storage of data
 - Key is generally the password

- The security services extensions to S/MIME version 3
 - Triple wrapped message
 - A triple wrapped message is one that has been signed, then encrypted and then signed again
 - The signers of the inner and outer signatures may be different entities or the same entity
 - No limit in the number of nested encapsulations
 - There may be more than three wrappings

- Inside signature provides
 - Content integrity
 - Non-repudiation with proof of origin
 - Binding attributes to the original content
 - These attributes go from the originator to the recipient, regardless of the number of intermediate entities such as mail list agents that process the message
 - Signed attributes can be used for access control to the inner body
- The encrypted body provides
 - confidentiality
- The outside signature provides
 - Authentication
 - Integrity
 - Binding attributes to the encrypted body
 - These attributes can be used for access control and routing decisions

- Triple Wrapped Message
 - The steps to create a triple wrapped message are as follows:
 - 1. Start with the original content (a message body)
 - 2. Encapsulate the original content with the appropriate MIME content-type headers
 - 3. Sign the inner MIME headers and the original content
 - 4. Add an appropriate MIME construct to the signed message The resulting message is called the *inside signature*
 - Construct eg: content type of multipart/signed content type of application/pkcs7-signature optional MIME headers a body part

- Triple Wrapped Message
 - 5. Encrypt the step 4 result as a single block, turning it into an application/pkcs7-mime object
 - 6. Add the appropriate MIME headers: a content type of application/pkcs7-mime with parameters, and optional MIME headers such as Content-Transfer-Encoding and Content-Disposition
 - 7. Sign the step 6 result (the MIME headers and the encrypted body) as a single block
 - 8. The resulting message is called the *outside signature*, and is also the triple wrapped message

- Security Services with Triple Wrapping
 - The receipt request must be requested for inside signature, not in the outside signature
 - A secure mailing list agent may change the receipt policy in the outside signature of a triple wrapped message when the message is processed by the mailing list
 - A security label attribute may be included in either the inner signature or the outer signature, or both
 - The inner security label is used for access control decisions related to the original plaintext content
 - The outer security label is used for access control and routing decisions related to the encrypted message.

- Security Services with Triple Wrapping
 - Secure mail list message processing depends on the structure of S/MIME layers present in the message
 - The agent never changes the data that was hashed to form the inner signature, if such a signature is present
 - If an outer signature is present, then the agent will modify the data that was hashed to form that outer signature
 - Attributes should be placed in the inner or outer SignedData message
 - Some attributes must be signed
 - Signing is optional for others
 - Some attributes must not be signed
 - Some security gateways sign messages that pass through them
 - If the message is of any type other than a SignedData
 - Gateway Wrapp messgae in a SignedData block and MIME headers and then sign
 - If the message is a SignedData
 - Gateway Can sign the message by inserting SignerInfo into the SignedData block

- Returning a signed receipt provides to the originator proof of delivery of a message
- Receipt allows the originator to demonstrate to a third party that the recipient was able to verify the signature of the original message
- This receipt is **bound to the original message** through the signature
- This service may be requested only if a message is signed
- The receipt sender may optionally also encrypt a receipt to provide confidentiality between the sender and recipient of the receipt

- The originator of a message may request a signed receipt from the message's recipients
- The request is indicated by adding a receiptRequest attribute to the signedAttributes field of the SignerInfo object
- The receiving user agent software should automatically create a signed receipt when requested to do so, and return the receipt
- Return receipt must fix to mailing list expansion options, local security policies and configuration options

- Receipts involve the interaction of two parties: the sender and the receiver.
- The sender is the agent that sent the original message that includes a request for a receipt
- The receiver is the party that received that message and generated the receipt

- The interaction steps in a typical transaction are:
 - 1. Sender creates a signed message including a receipt request attribute
 - 2. Sender transmits the resulting message to the recipient(s).
 - 3. Recipient receives message and determines if there are a valid signature and receipt request in the message
 - 4. Recipient creates a signed receipt
 - 5. Recipient transmits the resulting signed receipt message to the sender
 - 6. Sender receives the message and validates that it contains a signed receipt for the original message

- Receipt Request Creation
 - Multilayer S/MIME messages may contain multiple SignedData layers
 - Receipts are requested only for the innermost
 Signed Data layer in a multilayer S/MIME message such as a triple wrapped message
 - Only one receipt request attribute can be included in the signed Attributes of SignerInfo