

การศึกษาผลของ Window function ต่อความแม่นยำในการจำแนกเสียงเครื่องดนตรีด้วย FFT และ K-NN Classifier Study of effect of window function on musical instrument classification with FFT and K-NN Classifier สาขา วิทยาการคอมพิวเตอร์

# รายงานฉบับสมบูรณ์ เสนอต่อ ศูนย์เทคโนโลยีอิเล็กทรอนิกส์และคอมพิวเตอร์แห่งชาติ สำนักงานพัฒนาวิทยาศาสตร์และเทคโนโลยีแห่งชาติ กระทรวงวิทยาศาสตร์และเทคโนโลยี

ได้รับทุนอุดหนุนโครงงานวิจัย พัฒนาและวิศวกรรม โครงการ "การประกวดโครงงานของนักวิทยาศาสตร์รุ่นเยาว์ ครั้งที่ 19" ประจำปังบประมาณ 2559

โดย
นายเขมรัฐ บุณยะผลึก
นายจิตรภาณุ อัศวพิชญโชติ
นายพุฒิพัฒน์ สิริเศรษฐภักดี
นายอภินันท์ เงินมูล
โรงเรียนสามเสนวิทยาลัย

# ข้อมูลผู้พัฒนาโครงงาน

#### หัวหน้าทีม

ชื่อ-นามสกุล นายเขมรัฐ บุณยะผลึก

<u>วัน/เดือน/ปีเกิด</u> 3 มีนาคม 2542 <u>ระดับการศึกษา</u> มัธยมศึกษาปีที่ 6

<u>สถานศึกษา</u> โรงเรียนสามเสนวิทยาลัย

<u>ที่อยู่ตามทะเบียนบ้าน</u> 89/47 หมู่ 6 ถนนกรุงนนท์-จงถนอม ตำบลศาลากลาง อำเภอบางกรวย นนทบุรี

<u>มือถือ</u> 084-433-5633 <u>E-mail</u> korla.march@gmail.com

#### 1) ผู้พัฒนาโครงงาน

ชื่อ-นามสกุล นายจิตรภาณุ อัศวพิชญโชติ

<u>วัน/เดือน/ปีเกิด</u> 4 ตุลาคม 2541 <u>ระดับการศึกษา</u> มัธยมศึกษาปีที่ 6

<u>สถานศึกษา</u> โรงเรียนสามเสนวิทยาลัย

<u>ที่อยู่ตามทะเบียนบ้าน</u> 169 ซ.ปทุมทิพย์ ถนนกรุงเทพฯ-นนท์ แขวงบางชื่อ เขตบางชื่อ กรุงเทพมหานคร

<u>มือถือ</u> 086-398-8267 <u>E-mail</u> jewgod@hotmail.com

#### 2) ผู้พัฒนาโครงงาน

ชื่อ-นามสกุล นายพุฒิพัฒน์ สิริเศรษฐภักดี

วัน/เดือน/ปีเกิด 21 มีนาคม 2542 ระดับการศึกษา มัธยมศึกษาปีที่ 6

สถานศึกษา โรงเรียนสามเสนวิทยาลัย

ที่อยู่ตามทะเบียนบ้าน 170/3 ถนนประชาราษฎร์บำเพ็ญ แขวงห้วยขวาง เขตห้วยขวาง กรุงเทพมหานคร มือถือ 099-465-4991 E-mail taitai.12486-@live.com

#### อาจารย์ที่ปรึกษา

ชื่อ-นามสกุล นายอภินันท์ เงินมูล สังกัด/สถาบัน โรงเรียนสามเสนวิทยาลัย สถานที่ติดต่อ 132/11 ถนนพระราม 6 สามเสนใน เขตพญาไท กรุงเทพฯ โทรศัพท์ 0-2278-2997 <u>มือถือ</u> 081-840-0779 <u>E-mail</u> mightymouse9669@hotmail.com

# สารบัญ

| หัวข้อ                                   | 1 |
|------------------------------------------|---|
| บทคัดย่อ1                                |   |
| วัตถุประสงค์2                            |   |
| ตัวแปรในการทดลอง2                        |   |
| สมมุติฐาน2                               |   |
| ซอฟต์แวร์/อุปกรณ์ที่ใช้ในการทดลอง        |   |
| ขั้นตอนการดำเนินงาน                      |   |
| ขั้นตอนในการทำงานของอัลกอริทึมจำแนกเสียง |   |
| ผลการทดลอง7                              |   |
| วิเคราะห์ผลการทดลอง                      |   |
| อภิปรายผลการทดลองและข้อเสนอแนะ           |   |
| สรุปผลการทดลอง                           |   |
| กิตติกรรมประกาศ                          |   |
| บรรณานุกรม                               |   |

#### บทคัดย่อ

ปัจจุบัน การจำแนกเสียงเป็นออกเป็นประเภทต่างๆ โดยการใช้คอมพิวเตอร์ได้รับความนิยมสูง มาก เนื่องจากสามารถนำไปประยุกต์ใช้หลากหลาย ยกตัวอย่างเช่น การแปลเสียงออกมาเป็นข้อความ, การยืนยันตัวตนด้วยเสียง หรือการนำเสียงของผู้ร้ายไปหาผู้ต้องสงสัยในคดีอาชญากรรม เป็นต้น ซึ่งสิ่ง เหล่านี้ ต่างต้องการอัลกอริทึมที่สามารถจำแนกเสียงออกเป็นกลุ่มต่างๆ ได้อย่างรวดเร็วและแม่นยำ ด้วยกันทั้งสิ้น ดังนั้น พวกเราจึงสนใจพัฒนาอัลกอริทึมในการจำแนกเสียงของเครื่องดนตรี 3 ชนิด ได้แก่ กีตาร์ เปียโน และ ไวโอลิน โดยที่จะนำ Window functions ชนิดต่างๆ ได้แก่ Rectangular window, Triangular window, Hanning window, Hamming window, Blackman-Harris window และ Flat top window มาใช้ร่วมกับการจำแนกเสียงด้วย Fast Fourier Transform และ k-Nearest Neighbors (k-NN) เพื่อเพิ่มความแม่นยำในการจำแนกเสียง ซึ่งสำหรับหา Nearest Neighbors เราก็ได้ทดลองแบบ ทั้งใช้ Euclidean Distance และ Manhattan Distance ในการหา นอกจากนี้ยังได้ทดลองกับค่า k (ใน k-NN) ตั้งแต่ 1-5 โดยได้พัฒนาโปรแกรมในภาษา C++ และ Node.js ขึ้น เพื่อทดลองสมมุติฐาน และ ทดสอบความถูกต้องของอัลกอริทึม ซึ่งเราได้ใช้เสียงตัวอย่างจากเครื่องดนตรี 3 ชนิด ชนิดละ 50 เสียง รวม 150 เสียง มาทดสอบ โดยการทดสอบจะถูกจัดขึ้นในสภาพแวดล้อมที่ต่างกัน 5 ชุด คือ มีเสียง รบกวน 0%, 10%, 25%, 50%, 75% การภายหลังการทดสอบ เราสามารถ สรุปผลการทดลองได้ว่า การทดลองนั้นเป็นไปตามสมมุติฐานที่ตั้งไว้ นั่นคือการใช้ Window function ช่วยเพิ่มความแม่นยำของ การจำแนกเสียงได้จริง และในกรณีที่ใช้ k=1, Euclidean Distance และ Flat top windowing จะมี อัตราการตอบถูกที่สูงที่สุดในสภาพแวดล้อมที่ไม่มีเสียงรบกวนถึงร้อยละ 96.00 และการใช้ค่า k เป็น 1,3,5 จะมีประสิทธิภาพในการแยกแยะเสียงสูงกว่ากรณีที่ค่า k เป็น 2,4

## วัตถุประสงค์

การจำแนกเสียงเป็นออกเป็นประเภทต่างๆ โดยการใช้คอมพิวเตอร์นั้น มีความนิยมสูงมาก เนื่องจากสามารถนำไปประยุกต์ใช้หลากหลาย ยกตัวอย่างเช่น การแปลเสียงออกมาเป็นข้อความ, การสร้างโปรแกรมจำแนกเสียงอัตโนมัติ สำหรับผู้พิการทางการได้ยิน, การยืนยันตัวตนด้วยเสียง หรือ การนำเสียงของผู้ร้ายไปหาผู้ต้องสงสัยในคดีอาชญากรรม เป็นต้น ซึ่งสิ่งเหล่านี้ ต่างต้องการอัลกอริทึมที่ สามารถจำแนกเสียงออกเป็นกลุ่มต่างๆ ได้อย่างรวดเร็วและแม่นยำด้วยกันทั้งสิ้น ดังนั้น พวกเราจึงสนใจ ที่จะทดลองวิธีใหม่ๆ เพื่อที่จะเพิ่มประสิทธิภาพและความแม่นยำในการจำแนกเสียง

#### ตัวแปรในการทดลอง

**ตัวแปรต้น**: ชนิดของ Window function, ชนิดของ Distance function, ค่าคงที่ k สำหรับ k-NN และ อัตราส่วนของ Noise ในชุดของเสียงทดสอบ

ตัวแปรตาม: ความแม่นยำในการจำแนกเสียง (จำนวนของเสียงตัวอย่าง ที่สามารถตอบได้ถูกต้อง)

ตัวแปรควบคุม: ชุดของเสียงตั้งต้น ที่นำมาใช้ในการทดลอง

## สมมุติฐาน

ความแม่นยำในการจำแนกเสียงเครื่องดนตรี จะมีค่าเพิ่มมากขึ้น เมื่อใช้ window function ร่วมในการประมวลผล ทั้งในสภาพที่มีเสียงรบกวนเยอะ และในสภาพปกติ

# ซอฟต์แวร์/อุปกรณ์ที่ใช้ในการทดลอง

- 1. คอมพิวเตอร์ พร้อมไมโครโฟนในการอัดเสียง
- 2. Complier ภาษา C++ (MinGW)
- 3. โปรแกรม Node.js
- 4. โปรแกรม Audacity
- 5. ไลบารี่ libsndfile
- 6. เครื่องดนตรี 3 ชนิด ได้แก่ กีตาร์ เปียโน และ ไวโอลิน

# ขั้นตอนการดำเนินงาน

สำหรับการดำเนินงาน สามารถแบ่งออกเป็น 5 ขั้นหลักๆด้วยกัน ได้แก่

- ขั้นที่ 1 ศึกษางานวิจัยและทฤษฏีที่เกี่ยวข้อง และออกแบบแนวทางในการพัฒนาโปรแกรมทดสอบ
- ขั้นที่ 2 ทำการเก็บรวบรวมข้อมูลเสียงที่จำเป็นสำหรับการประมวลผล (Dataset)
- ขั้นที่ 3 พัฒนาโปรแกรมคอมพิวเตอร์ เพื่อใช้ในการทำการทดลอง
- ขั้นที่ 4 ทดสอบโปรแกรมโดยใช้ข้อมูลเสียงตัวอย่าง
- ขั้นที่ 5 สรุปและอภิปรายผล

#### มีรายละเอียดดังนี้

#### 1) ศึกษางานวิจัยและทฤษฎีที่เกี่ยวข้องและออกแบบแนวทางในการพัฒนาโปรแกรมทดสอบ

เพื่อให้เกิดขั้นตอนวิธีที่มีประสิทธิภาพในการจำแนกชนิดของเสียง จำเป็นต้องมีการศึกษาหา งานวิจัยที่เกี่ยวข้องก่อน โดยมีหัวข้อหลักๆดังนี้

- 1.1) ศึกษาทฤษฎีในการประมวลผลสัญญาณและจำแนกข้อมูล ได้แก่ Fast Fourier Transform (FFT), k-Nearest Neighbors (k-NN) และ Windows functions ต่างๆ
- 1.2) ศึกษาการพัฒนาโปรแกรมในภาษา C++ และ Nodejs ให้สามารถประมวลผลและ วิเคราะห์เสียงได้ รวมไปถึงการใช้ library ต่างๆ เช่น libsndfile, chart.js, express เป็นต้น และในส่วนของการออกแบบโปรแกรม มีแผนผังโครงสร้างของโปรแกรมดังรูป



โดยโปรแกรม จะแบ่งออกเป็นสองส่วนหลักๆ

ได้แก่ โปรแกรมภาษา C++ (สี่เหลี่ยมสีฟ้า) และ โปรแกรมทีเขียนใน Node.js (สี่เหลี่ยมที่เหลือ) ซึ่งโปรแกรมภาษา C++ จะทำหน้าที่ที่เกี่ยวข้องกับการประมวลผลเสียงและการจำแนกเสียง (SoundProcessor.exe) รวมถึงผสมเสียงเครื่องดนตรีเข้ากับเสียงรบกวน(Noise) เพื่อใช้การทดลองอีก ด้วย (SoundMixer.exe)

ในส่วนของ Node.js ประกอบด้วย 4 ส่วนย่อยๆ ดังนี้

Script Interpreter: ทำหน้าที่ประสานการทำงานระหว่างโปรแกรม Node.js และ C++

Testcase Generator: ส่งคำสั่งไปยัง Sound Mixer (ผ่านทาง Interpreter) เพื่อผสมเสียง เครื่องดนตรี กับ Noise เข้าด้วยกัน จนเกิดเป็นชุดของเสียง (Test case) ขึ้น

Script Generator: นำชุดของเสียงที่สร้างจาก Testcase Generator มาสร้างเป็นชุดคำสั่ง เพื่อที่จะใช้ทดลองตามตัวแปรและสมมุติฐานที่ได้วางไว้

Result Analysis: รับผลลัพธ์ที่ได้จากการทดลองมาวิเคราะห์หาความถูกต้องและส่งข้อมูล กลับไปทางผู้ใช้ผ่านทาง web interface

## 2) ขั้นเก็บรวบรวมข้อมูลเสียงที่เกี่ยวข้องกับการประมวลผล

รวบรวมเสียงตัวอย่างจากเครื่องดนตรีต่างๆ เพื่อใช้ทดสอบความแม่นยำและประสิทธิภาพของ โปรแกรม โดยรวบรวมเสียงจากเครื่องดนตรี 3 ชนิด ได้แก่ กีตาร์ เปียโน และ ไวโอลิน ชนิดละ 50 เสียง โดยในแต่ละเสียง จะเก็บเป็นไฟล์ .wav ที่มีเพียงระดับเสียงเดียวและเครื่องดนตรีชนิดเดียวต่อหนึ่งไฟล์ เสียง รวมเป็นทั้งสิ้น 150 ไฟล์ ซึ่งเสียงที่รวบรวมมาจะไม่มีเสียงรบกวน และ มีความถี่(ตัวโน๊ต) แบบสุ่ม รวมถึงหาเสียงรบกวน (Noise) อีกจำนวนทั้งสิ้น 10 เสียง เพื่อนำมาผสมกับเสียง

## 3) ขั้นพัฒนาโปรแกรมคอมพิวเตอร์

พัฒนาโปรแกรมคอมพิวเตอร์ เพื่อนำไปประมวลผลและแยกเสียง โดยมีขั้นตอนย่อยๆดังนี้

- 3.1) พัฒนาโปรแกรมในส่วนของการประมวลผลสัญญาณเสียงด้วยภาษา C++ โดยใช้ libsndfile ในการอ่านและเขียนไฟล์เสียง รวมถึงเขียนส่วนการประมวลผลด้วย Fast Fourier Transform และจำแนกเสียงด้วย K-NN
- 3.2) พัฒนาโปรแกรมส่วนของหน้าเว็บและส่วนทดสอบอัลกอริที่ม โดยใช้ Node.js ตามแผนผังที่วางไว้ในขั้นตอนที่ 2
- 3.3) ทดลองโปรแกรมในแต่ละส่วน โดยใช้ test case ที่มีขนาดไม่ใหญ่มากนัก เพื่อที่จะ แก้ไขจุดบกพร่องในโปรแกรม

#### 4) ขั้นทดสอบโปรแกรม

ทดสอบความถูกต้องของโปรแกรม โดยจะมี Test Data ทั้งหมด 5 ชุด โดยใน 1 ชุด จะแบ่งเป็น กลุ่มเสียงสองกลุ่ม ขนาดกลุ่มละ 75 เสียง แบ่งเป็นเครื่องดนตรี 3 ชนิด ชนิดละ 25 เสียง ซึ่งกลุ่มแรกจะ เป็นข้อมูลที่ใส่ไปในโปรแกรม เพื่อฝึกโปรแกรมให้จำแนกเสียง (Train) และกลุ่มสองจะเป็นข้อมูลที่ใช้ ทดสอบความถูกต้องของโปรแกรม (Test)

ส่วน Test case ทั้งหมด 5 ชุด มีความแตกต่างกันคือ

- 1. เสียงใน Train และ Test เป็นเสียงต้นฉบับที่ไม่มีเสียงรบกวนใดๆ
- 2. เสียงใน Train เป็นเสียงต้นฉบับและเสียงใน Test เป็นเสียงที่มี Noise 10%
- 3. เสียงใน Train เป็นเสียงต้นฉบับและเสียงใน Test เป็นเสียงที่มี Noise 25%
- 4. เสียงใน Train เป็นเสียงต้นฉบับและเสียงใน Test เป็นเสียงที่มี Noise 50%
- 5. เสียงใน Train เป็นเสียงต้นฉบับและเสียงใน Test เป็นเสียงที่มี Noise 75%

โดยใน Test case 1 ชุด เราจะทำการทดลองทั้งหมด 4 รอบ ในแต่ละรอบจะทำการสุ่มชุดของเสียงที่เป็น test และ train ขึ้นมาใหม่ แต่จะยังคงอัตราส่วนเครื่องดนตรีและเงื่อนไขของแต่ละ Test case ไว้ และในการทดลอง 1 รอบ จะมีการทดสอบย่อยๆอีก 60 ครั้ง โดยในแต่ละครั้ง จะทดลองชุดของ ตัวแปรต้นที่แตกต่างกันไป ซึ่งมีตัวแปรต้นดังนี้

Window function: Rectangular window, Triangular window, Hanning window,

Hamming window, Blackman-Harris window, Flat top window

Distance function: Euclidean Distance, Manhattan Distance

ค่าคงที่ k: 1, 2, 3, 4, 5

ในการทดสอบย่อยๆแต่ละครั้งนั้น จะมี Train โปรแกรมด้วยชุดเสียงทั้งหมด 75 เสียงก่อน และ จากนั้น จึงตามด้วยการ Test โปรแกรมด้วยเสียงอีก 75 เสียง (ตามข้อมูลเสียงใน Testcase)

### 5) ขั้นสรุปและอภิปรายผล

ในขั้นตอนนี้จะทำการวิเคราะห์ความถูกต้องของตัวแปรต้นแต่ละชุด โดยใช้เครื่องมือในการ วิเคราะห์ได้แก่ การสร้าง Confusion Matrix, การหาร้อยละความถูกต้องและร้อยละของกรณีที่ไม่ สามารถทำนายได้ (ใช้ KNN แล้วเกิดฐานนิยมหลายตัว) ดังสมการ

ร้อยละความถูกต้อง 
$$=rac{$$
จำนวนเสียงที่ตอบถูก}{จำนวนเสียงที่ใช้ทดสอบ}  $imes 100$ 

ร้อยละกรณีที่ไม่สามารถทำนายได้ 
$$=rac{ ext{จำนวนกรณีที่ } KNN}{ ext{จำนวนเสียงที่ใช้ทดสอบ}} imes 100$$

หลังจากนั้นนำค่าเหล่านี้มาวิเคราะห์ อภิปราย และสรุปผลต่อไป

## ขั้นตอนในการทำงานของอัลกอริทึมจำแนกเสียง

- 1. รับเสียง, Window function, Distance function และ K constant เข้ามา ผ่านทาง command-line arguments
- 2. ตัดเสียงออกมาช่วงสั้นๆ จากจุดกึ่งกลางของเสียงที่รับเข้ามา
- 3. Normalize สัญญาณเสียงที่รับเข้ามาให้อยู่ในช่วง [-1,1]
- 4. ใช้ Window function เข้ามาคูณกับข้อมูลเสียง
- 5. นำเสียงที่คูณด้วย Window function แล้วมาประมวลผลด้วย Fast Fourier Transform (FFT) เพื่อ แปลงคลื่นเสียงที่รับเข้ามา จากที่มีลักษณะ Time-domain เป็นลักษณะ Frequency-domain แทน
- 6. ตัดข้อมูลที่ได้จากการประมวลผลให้เหลือเพียงช่วงความถี่ที่มนุษย์ได้ยิน คือ 20–20,000 Hz
- 7. กรณีที่เป็นการ Train ข้ามไปยังขั้นตอนที่ 10 และหากเป็นการ Test ให้ข้ามไปยังขั้นตอนที่ 8
- 8. นำข้อมูลมาจำแนกชนิดข้อมูล โดยเทียบกับข้อมูลที่เก็บไว้ในฐานข้อมูล เพื่อระบุชนิดของเครื่องดนตรี ของเสียงที่รับเข้ามา โดยนำ k ตัวแรก ที่มีความใกล้เคียงกับเสียงที่รับเข้ามามากที่สุด (ประเมินโดย การใช้ Distance function) มาหาฐานนิยม หรือพูดอีกนัยหนึ่ง คือการหา k-Nearest Neighbors นั่นเอง
- 9. ส่งชนิดของที่ทำนายได้กลับไปทาง Standard Output
- 10. นำข้อมูลความถี่ของเสียง บันทึกลงไปในฐานข้อมูล

#### ผลการทดลอง

เมื่อทำการทดลองครบตามขั้นตอนแล้ว สามารถสรุปผลได้ค่าดังนี้

# ร้อยละของความแม่นยำใน Test case ที่ 1 (ไม่มีเสียงรบกวน) เมื่อใช้ Euclidean Distance ในการจำแนกเสียง

| ค่า k<br>Window | 1     | 2     | 3     | 4     | 5     |
|-----------------|-------|-------|-------|-------|-------|
| Rectangular     | 81.33 | 50.67 | 58.67 | 42.33 | 48.00 |
| Triangular      | 80.33 | 48.33 | 63.00 | 42.00 | 51.00 |
| Hanning         | 80.67 | 43.33 | 58.00 | 36.67 | 44.00 |
| Hamming         | 79.33 | 44.33 | 59.33 | 38.00 | 45.00 |
| Blackman-Harris | 81.33 | 43.00 | 56.00 | 35.67 | 47.00 |
| Flat top        | 96.00 | 79.33 | 84.67 | 73.00 | 79.00 |

# ร้อยละของความแม่นยำใน Test case ที่ 1 (ไม่มีเสียงรบกวน) เมื่อใช้ Manhattan Distance ในการจำแนกเสียง

| ค่า k<br>Window | 1     | 2     | 3     | 4     | 5     |
|-----------------|-------|-------|-------|-------|-------|
| Rectangular     | 84.00 | 57.67 | 62.33 | 51.33 | 55.33 |
| Triangular      | 86.00 | 56.67 | 62.67 | 49.33 | 48.67 |
| Hanning         | 86.67 | 57.00 | 64.00 | 50.33 | 48.67 |
| Hamming         | 86.00 | 54.67 | 61.33 | 48.00 | 46.00 |
| Blackman-Harris | 87.33 | 58.33 | 66.33 | 52.33 | 52.33 |
| Flat top        | 83.33 | 62.33 | 69.00 | 54.67 | 56.67 |

ร้อยละของความแม่นยำใน Test case ที่ 2 (มีเสียงรบกวน 10%) เมื่อใช้ Euclidean Distance ในการจำแนกเสียง

| ค่า k<br>Window | 1     | 2     | 3     | 4     | 5     |
|-----------------|-------|-------|-------|-------|-------|
| Rectangular     | 78.67 | 46.00 | 54.33 | 36.33 | 41.67 |
| Triangular      | 81.00 | 45.00 | 59.33 | 37.67 | 46.00 |
| Hanning         | 78.00 | 41.67 | 53.00 | 33.67 | 40.67 |
| Hamming         | 78.67 | 40.67 | 52.33 | 33.33 | 41.33 |
| Blackman-Harris | 80.33 | 42.33 | 57.00 | 32.67 | 42.67 |
| Flat top        | 90.33 | 73.67 | 77.67 | 66.00 | 69.67 |

# ร้อยละของความแม่นยำใน Test case ที่ 2 (มีเสียงรบกวน 10%) เมื่อใช้ Manhattan Distance ในการจำแนกเสียง

| ค่า k<br>Window | 1     | 2     | 3     | 4     | 5     |
|-----------------|-------|-------|-------|-------|-------|
| Rectangular     | 79.00 | 51.00 | 61.67 | 53.00 | 56.00 |
| Triangular      | 80.67 | 53.33 | 64.67 | 51.00 | 55.00 |
| Hanning         | 80.00 | 53.67 | 63.00 | 50.33 | 57.00 |
| Hamming         | 80.00 | 57.33 | 64.33 | 54.67 | 59.00 |
| Blackman-Harris | 81.67 | 52.67 | 64.67 | 47.67 | 55.33 |
| Flat top        | 84.33 | 66.33 | 75.00 | 62.00 | 68.00 |

ร้อยละของความแม่นยำใน Test case ที่ 3 (มีเสียงรบกวน 25%) เมื่อใช้ Euclidean Distance ในการจำแนกเสียง

| ค่า k<br>Window | 1     | 2     | 3     | 4     | 5     |
|-----------------|-------|-------|-------|-------|-------|
| Rectangular     | 70.67 | 40.33 | 46.33 | 34.67 | 37.33 |
| Triangular      | 78.00 | 37.00 | 54.33 | 33.67 | 38.00 |
| Hanning         | 73.67 | 32.33 | 46.67 | 25.67 | 35.00 |
| Hamming         | 73.67 | 33.33 | 47.67 | 26.00 | 34.00 |
| Blackman-Harris | 77.33 | 35.00 | 51.33 | 32.00 | 39.00 |
| Flat top        | 83.33 | 61.00 | 75.33 | 60.00 | 66.00 |

# ร้อยละของความแม่นยำใน Test case ที่ 3 (มีเสียงรบกวน 25%) เมื่อใช้ Manhattan Distance ในการจำแนกเสียง

| ค่า k<br>Window | 1     | 2     | 3     | 4     | 5     |
|-----------------|-------|-------|-------|-------|-------|
| Rectangular     | 62.67 | 37.33 | 50.67 | 41.67 | 46.33 |
| Triangular      | 62.67 | 31.33 | 48.00 | 32.67 | 36.00 |
| Hanning         | 62.33 | 31.00 | 45.00 | 28.67 | 35.67 |
| Hamming         | 62.33 | 32.67 | 45.33 | 32.33 | 38.00 |
| Blackman-Harris | 63.33 | 30.67 | 45.67 | 26.33 | 34.67 |
| Flat top        | 67.33 | 54.00 | 61.33 | 56.67 | 58.33 |

ร้อยละของความแม่นยำใน Test case ที่ 4 (มีเสียงรบกวน 50%) เมื่อใช้ Euclidean Distance ในการจำแนกเสียง

| ค่า k<br>Window | 1     | 2     | 3     | 4     | 5     |
|-----------------|-------|-------|-------|-------|-------|
| Rectangular     | 57.00 | 36.00 | 36.67 | 33.67 | 34.33 |
| Triangular      | 54.67 | 24.67 | 39.00 | 26.00 | 34.00 |
| Hanning         | 53.33 | 23.33 | 38.00 | 26.00 | 33.00 |
| Hamming         | 54.00 | 23.33 | 36.67 | 26.00 | 32.33 |
| Blackman-Harris | 54.33 | 26.33 | 36.33 | 23.33 | 34.33 |
| Flat top        | 55.33 | 36.00 | 44.00 | 38.33 | 42.00 |

# ร้อยละของความแม่นยำใน Test case ที่ 4 (มีเสียงรบกวน 50%) เมื่อใช้ Manhattan Distance ในการจำแนกเสียง

| ค่า k<br>Window | 1     | 2     | 3     | 4     | 5     |
|-----------------|-------|-------|-------|-------|-------|
| Rectangular     | 56.00 | 30.33 | 39.00 | 31.67 | 34.67 |
| Triangular      | 51.00 | 23.33 | 34.33 | 19.33 | 28.33 |
| Hanning         | 50.67 | 22.00 | 32.67 | 21.33 | 27.67 |
| Hamming         | 51.67 | 25.00 | 34.67 | 22.00 | 28.33 |
| Blackman-Harris | 47.00 | 20.33 | 32.67 | 18.33 | 27.00 |
| Flat top        | 47.67 | 41.33 | 53.00 | 48.00 | 54.00 |

ร้อยละของความแม่นยำใน Test case ที่ 5 (มีเสียงรบกวน 75%) เมื่อใช้ Euclidean Distance ในการจำแนกเสียง

| ค่า k<br>Window | 1     | 2     | 3     | 4     | 5     |
|-----------------|-------|-------|-------|-------|-------|
| Rectangular     | 36.00 | 33.33 | 33.33 | 33.33 | 33.33 |
| Triangular      | 38.67 | 18.67 | 42.00 | 25.33 | 41.00 |
| Hanning         | 42.67 | 22.67 | 40.33 | 25.67 | 36.00 |
| Hamming         | 42.67 | 23.67 | 41.67 | 26.33 | 35.00 |
| Blackman-Harris | 38.33 | 19.67 | 40.67 | 21.33 | 37.67 |
| Flat top        | 41.67 | 20.33 | 32.33 | 26.33 | 31.00 |

# ร้อยละของความแม่นยำใน Test case ที่ 5 (มีเสียงรบกวน 75%) เมื่อใช้ Manhattan Distance ในการจำแนกเสียง

| ค่า k<br>Window | 1     | 2     | 3     | 4     | 5     |
|-----------------|-------|-------|-------|-------|-------|
| Rectangular     | 35.00 | 21.00 | 36.33 | 27.33 | 33.00 |
| Triangular      | 36.67 | 19.33 | 30.67 | 20.00 | 30.00 |
| Hanning         | 34.00 | 18.00 | 30.67 | 18.67 | 29.33 |
| Hamming         | 33.33 | 18.67 | 29.33 | 17.67 | 30.00 |
| Blackman-Harris | 35.00 | 15.67 | 30.33 | 23.00 | 31.00 |
| Flat top        | 36.33 | 27.00 | 39.67 | 32.33 | 41.67 |

ร้อยละของกรณีที่ไม่สามารถทำนายได้ใน Test case ที่ 1 (ไม่มีเสียงรบกวน) เมื่อใช้ Euclidean Distance ในการจำแนกเสียง

| ค่า k<br>Window | 1    | 2     | 3    | 4     | 5     |
|-----------------|------|-------|------|-------|-------|
| Rectangular     | 0.00 | 34.33 | 0.00 | 21.00 | 0.67  |
| Triangular      | 0.00 | 43.33 | 1.33 | 33.00 | 12.33 |
| Hanning         | 0.00 | 46.00 | 4.67 | 34.33 | 4.67  |
| Hamming         | 0.00 | 45.33 | 4.67 | 33.67 | 4.67  |
| Blackman-Harris | 0.00 | 49.33 | 2.67 | 38.67 | 10.00 |
| Flat top        | 0.00 | 19.33 | 2.00 | 20.00 | 4.67  |

ร้อยละของกรณีที่ไม่สามารถทำนายได้ใน Test case ที่ 1 (ไม่มีเสียงรบกวน) เมื่อใช้ Manhattan Distance ในการจำแนกเสียง

| ค่า k<br>Window | 1    | 2     | 3    | 4     | 5     |
|-----------------|------|-------|------|-------|-------|
| Rectangular     | 0.00 | 32.33 | 6.67 | 18.67 | 11.00 |
| Triangular      | 0.00 | 36.00 | 5.33 | 21.00 | 15.00 |
| Hanning         | 0.00 | 36.00 | 4.33 | 21.67 | 12.00 |
| Hamming         | 0.00 | 38.33 | 6.67 | 21.33 | 12.33 |
| Blackman-Harris | 0.00 | 35.00 | 4.67 | 23.33 | 14.00 |
| Flat top        | 0.00 | 31.67 | 2.67 | 21.67 | 6.67  |

ร้อยละของกรณีที่ไม่สามารถทำนายได้ใน Test case ที่ 2 (มีเสียงรบกวน 10%) เมื่อใช้ Euclidean Distance ในการจำแนกเสียง

| ค่า k<br>Window | 1    | 2     | 3    | 4     | 5     |
|-----------------|------|-------|------|-------|-------|
| Rectangular     | 0.00 | 36.00 | 0.00 | 22.67 | 0.00  |
| Triangular      | 0.00 | 44.00 | 4.33 | 32.67 | 12.33 |
| Hanning         | 0.00 | 43.67 | 2.00 | 32.33 | 9.00  |
| Hamming         | 0.00 | 45.00 | 2.00 | 34.33 | 7.33  |
| Blackman-Harris | 0.00 | 45.33 | 4.67 | 35.67 | 12.67 |
| Flat top        | 0.00 | 20.00 | 4.00 | 18.33 | 6.00  |

ร้อยละของกรณีที่ไม่สามารถทำนายได้ใน Test case ที่ 2 (มีเสียงรบกวน 10%) เมื่อใช้ Manhattan Distance ในการจำแนกเสียง

| ค่า k           | 1    | 2     | 3    | 4     | 5    |
|-----------------|------|-------|------|-------|------|
| Window          | 1    | 2     |      | 4     | 9    |
| Rectangular     | 0.00 | 36.00 | 3.33 | 15.67 | 4.00 |
| Triangular      | 0.00 | 32.67 | 2.33 | 22.00 | 7.00 |
| Hanning         | 0.00 | 29.67 | 2.00 | 21.33 | 5.67 |
| Hamming         | 0.00 | 27.33 | 2.33 | 18.33 | 5.67 |
| Blackman-Harris | 0.00 | 32.67 | 2.33 | 26.33 | 5.00 |
| Flat top        | 0.00 | 20.00 | 1.33 | 18.33 | 4.67 |

ร้อยละของกรณีที่ไม่สามารถทำนายได้ใน Test case ที่ 3 (มีเสียงรบกวน 25%) เมื่อใช้ Euclidean Distance ในการจำแนกเสียง

| ค่า k<br>Window | 1    | 2     | 3    | 4     | 5     |
|-----------------|------|-------|------|-------|-------|
| Rectangular     | 0.00 | 37.67 | 0.00 | 16.33 | 0.00  |
| Triangular      | 0.00 | 52.00 | 6.67 | 34.67 | 17.67 |
| Hanning         | 0.00 | 53.00 | 4.67 | 36.00 | 10.00 |
| Hamming         | 0.00 | 51.67 | 4.67 | 34.00 | 10.33 |
| Blackman-Harris | 0.00 | 54.00 | 8.33 | 34.33 | 15.67 |
| Flat top        | 0.00 | 30.00 | 1.33 | 23.00 | 6.00  |

# ร้อยละของกรณีที่ไม่สามารถทำนายได้ใน Test case ที่ 3 (มีเสียงรบกวน 25%) เมื่อใช้ Manhattan Distance ในการจำแนกเสียง

| ค่า k<br>Window | 1    | 2     | 3    | 4     | 5    |
|-----------------|------|-------|------|-------|------|
| Rectangular     | 0.00 | 40.67 | 3.00 | 15.67 | 6.67 |
| Triangular      | 0.00 | 46.00 | 4.00 | 25.00 | 7.67 |
| Hanning         | 0.00 | 44.00 | 2.67 | 24.00 | 5.67 |
| Hamming         | 0.00 | 43.33 | 2.67 | 23.67 | 6.33 |
| Blackman-Harris | 0.00 | 46.67 | 2.67 | 30.00 | 6.67 |
| Flat top        | 0.00 | 20.67 | 0.67 | 9.67  | 2.00 |

ร้อยละของกรณีที่ไม่สามารถทำนายได้ใน Test case ที่ 4 (มีเสียงรบกวน 50%) เมื่อใช้ Euclidean Distance ในการจำแนกเสียง

| ค่า k<br>Window | 1    | 2     | 3    | 4     | 5     |
|-----------------|------|-------|------|-------|-------|
| Rectangular     | 0.00 | 22.67 | 0.00 | 5.33  | 0.00  |
| Triangular      | 0.00 | 53.00 | 5.67 | 33.33 | 10.00 |
| Hanning         | 0.00 | 57.33 | 5.33 | 28.67 | 2.67  |
| Hamming         | 0.00 | 57.67 | 7.00 | 30.00 | 3.33  |
| Blackman-Harris | 0.00 | 48.67 | 2.67 | 31.00 | 4.67  |
| Flat top        | 0.00 | 32.00 | 4.00 | 17.33 | 6.33  |

# ร้อยละของกรณีที่ไม่สามารถทำนายได้ใน Test case ที่ 4 (มีเสียงรบกวน 50%) เมื่อใช้ Manhattan Distance ในการจำแนกเสียง

| ค่า k           | 1    | 2     | 3    | 4     | 5    |
|-----------------|------|-------|------|-------|------|
| Window          | 1    | 2     | J    | 4     | 5    |
| Rectangular     | 0.00 | 37.67 | 3.00 | 15.33 | 4.00 |
| Triangular      | 0.00 | 50.67 | 3.33 | 37.33 | 8.00 |
| Hanning         | 0.00 | 48.00 | 2.33 | 33.00 | 8.67 |
| Hamming         | 0.00 | 46.00 | 2.67 | 29.00 | 7.67 |
| Blackman-Harris | 0.00 | 48.00 | 1.33 | 35.00 | 6.67 |
| Flat top        | 0.00 | 17.67 | 0.33 | 10.67 | 0.67 |

ร้อยละของกรณีที่ไม่สามารถทำนายได้ใน Test case ที่ 5 (มีเสียงรบกวน 75%) เมื่อใช้ Euclidean Distance ในการจำแนกเสียง

| ค่า k<br>Window | 1    | 2     | 3     | 4     | 5    |
|-----------------|------|-------|-------|-------|------|
| Rectangular     | 0.00 | 6.67  | 0.00  | 0.00  | 0.00 |
| Triangular      | 0.00 | 56.67 | 3.33  | 45.00 | 6.00 |
| Hanning         | 0.00 | 46.67 | 0.00  | 35.00 | 0.33 |
| Hamming         | 0.00 | 48.67 | 0.33  | 35.33 | 0.33 |
| Blackman-Harris | 0.00 | 53.00 | 3.67  | 48.00 | 7.00 |
| Flat top        | 0.00 | 47.33 | 10.00 | 24.00 | 9.67 |

# ร้อยละของกรณีที่ไม่สามารถทำนายได้ใน Test case ที่ 5 (มีเสียงรบกวน 75%) เมื่อใช้ Manhattan Distance ในการจำแนกเสียง

| ค่า k<br>Window | 1    | 2     | 3    | 4     | 5    |
|-----------------|------|-------|------|-------|------|
| Rectangular     | 0.00 | 39.67 | 1.33 | 19.67 | 2.00 |
| Triangular      | 0.00 | 49.33 | 0.00 | 32.33 | 1.67 |
| Hanning         | 0.00 | 51.00 | 0.33 | 36.67 | 4.67 |
| Hamming         | 0.00 | 47.67 | 0.33 | 38.33 | 2.67 |
| Blackman-Harris | 0.00 | 49.33 | 0.00 | 26.67 | 2.33 |
| Flat top        | 0.00 | 30.33 | 0.00 | 20.33 | 0.00 |

#### วิเคราะห์ผลการทดลอง

จากผลการทดลอง จะพบว่ามีข้อสังเกตที่น่าสนใจหลายประการดังนี้

- ในกรณีของชุดทดสอบที่ 1 (ไม่มีเสียงรบกวน) เมื่อใช้ Euclidean Distance และ Flat top windowing จะมีอัตราการตอบถูกที่สูงที่สุด เมื่อเทียบกับ Windows และ Distance Function อื่น โดยให้ค่าสูงสุดเมื่อ k = 1 คือถึงร้อยละ 96.00
- 2. โดยเฉลี่ย Flat top windowing จะให้ความแม่นยำสูงกว่า Window function อื่นๆ ในทุก เงื่อนไขและสภาพแวดล้อม แต่สำหรับ window function อีก 5 ตัวที่เหลือนั้น จะมีความ แม่นยำใกล้เคียงกับกรณีที่ไม่ได้ใช้ window function มาก
- เมื่อ k=2 และ k=4 จะมีร้อยละความแม่นยำ ต่ำกว่าในกรณี k=1, k=3 และ k=5 ซึ่งหาก พิจารณาจาก ร้อยละของกรณีที่ไม่สามารถทำนายได้ (Error rate) แล้ว จะพบว่าสาเหตุหลักเกิด จากที่เมื่อ k=2 และ k=4 จะมี Error rate สูงกว่ามากนั่นเอง
- 4. ค่าเฉลี่ยของร้อยละความแม่นยำในแต่ละ Test case เป็นดังนี้

| 1: ไม่มี Noise | 2: Noise 10% | 3: Noise 25% | 4: Noise 50% | 5: Noise 75% |
|----------------|--------------|--------------|--------------|--------------|
| 60.56          | 58.90        | 47.33        | 36.13        | 30.70        |

ซึ่งจะเห็นได้ว่า ค่าของความถูกต้องจะแปรผกผันกับอัตราส่วนของ Noise

- 5. เมื่ออัตราส่วนของเสียงรบกวนมีค่าเป็น 75% ค่าเฉลี่ยของความถูกต้องของอัลกอริทึมในทุกๆคู่ ของตัวแปรต้น จะมีค่าใกล้เคียงกับ 33.33% ซึ่งเท่ากับความน่าจะเป็นเมื่อเดาสุ่ม จึงสามารถ สรุปว่าการใช้อัลกอริทึมนี้ จะไม่สามารถจำแนกเสียงได้อย่างมีประสิทธิภาพ ในสภาพแวดล้อมที่ มีเสียงรบกวนสูง
- 6. หากลองสร้าง confusion matrix โดยนำผลลัพธ์ของการทดลองทั้งหมดมารวมกัน ได้ดังนี้

| Predict<br>Expect | Piano   | Guitar  | Violin  |
|-------------------|---------|---------|---------|
| Piano             | 21.34 % | 1.34 %  | 6.13 %  |
| Guitar            | 10.25 % | 14.37 % | 4.01 %  |
| Violin            | 15.72 % | 0.62 %  | 11.02 % |

ไม่สามารถทำนายได้ : 15.20 %

ซึ่งจะพบว่ากรณีที่ตอบผิดส่วนใหญ่ เกิดขึ้นจาก 2 กรณีหลักๆด้วยกัน คือกรณีที่ไม่สามารถ ทำนายได้ (15.20 %) และ กรณีที่อัลกอริทึมทำนายได้ว่าเป็นเสียงเปียโน แต่เสียงแท้จริงเป็นคนละ ประเภท (25.97 %)

#### อภิปรายผลการทดลองและข้อเสนอแนะ

การทดลองนี้นั้น ถูกทดลองขึ้น โดยมีขอบเขตของการทดลองค่อนข้างจำกัด คือเป็นการจำแนก เสียงของเครื่องดนตรีเพียง 3 ชนิด และจำแนกเสียงที่มีลักษณะเป็นโน้ตเดียวต่อ 1 ไฟล์เท่านั้น ดังนั้นใน อนาคต จึงสามารถต่อยอดไปยังในกรณีที่เสียงที่นำมาจำแนกมีหลายชนิด และไม่จำกัดประเภทของเสียง ที่จำแนกได้ รวมถึงอาจจะเพิ่มจำนวนของ test data ขึ้นได้มากกว่านี้ ซึ่งจะเพิ่มความถูกต้องของ อัลกอริทึมได้ และนอกจากนี้ เนื่องจากเมื่อ Noise เพิ่มขึ้น จะทำให้อัตราการตอบถูกลดลงอย่างเห็นได้ชัด การเพิ่มส่วนของอัลกอริทึมที่ใช้ในการลด Noise จึงเป็นสิ่งที่ควรกระทำ และจากที่กรณีที่ไม่สามรถ ทำนายได้ เป็นหนึ่งในตัวแปรสำคัญต่อความแม่นยำในการทำนาย ดังนั้นจึงควรมีการจัดการกับกรณี เหล่านี้ด้วย

## สรุปผลการทดลอง

จากการวิเคราะห์และอภิปรายผลการทดลอง พบว่าการทดลองนั้นเป็นไปตามสมมุติฐานที่ตั้งไว้ นั่นคือการใช้ Window function ช่วยเพิ่มความแม่นยำของการจำแนกเสียงได้จริง แต่อย่างไรก็ตาม window function ที่มีประสิทธิภาพในการเพิ่มความแม่นยำอย่างเห็นได้ชัด มีเพียง Flat top window เท่านั้น ดังนั้นสำหรับการจำแนกเสียงของเครื่องดนตรี 3 ชนิด พบว่า ควรใช้ k=1, Euclidean Distance และ Flat top windowing ซึ่งจะมีอัตราการตอบถูกที่สูงที่สุดในสภาพแวดล้อมที่ไม่มีเสียงรบกวนถึงร้อย ละ 96.00

#### กิตติกรรมประกาศ

โครงงานเรื่องการศึกษาผลของ Window function ต่อความแม่นยำในการจำแนกเสียงเครื่อง ดนตรีด้วย FFT และ K-NN Classifier สามารถดำเนินการจนประสบความสำเร็จได้ ด้วยความช่วยเหลือ ของครูที่ปรึกษาคือ ครูอภินันท์ เงินมูล และครูที่ปรึกษาพิเศษอีกสองท่าน ได้แก่ ครูธัญญา ศรีหมากสุข และครูชนิดาภา กัญจนวัตตะ ที่คอยให้คำปรึกษาและคำแนะนำในการทำโครงงานนี้ ทางคณะผู้ศึกษาได้ ขอขอบคุณเป็นอย่างสูงในความช่วยเหลือครั้งนี้ขอขอบคุณครูชัยชนะ นุชฉัยยา ที่กรุณาให้ความช่วยเหลือ ในการตรวจสอบแก้ไขโครงงานนี้ให้ถูกต้องแล้วเสร็จสมบูรณ์

ขอขอบคุณทางโรงเรียนสามเสนวิทยาลัยที่เอื้อเฟื้อสถานที่ในการศึกษาโครงงานนี้ ขอขอบคุณโครงการ YSC และ NECTEC ที่ให้ทุนสนับสนุนในการทำโครงงาน คณะผู้ศึกษาขอขอบคุณทุกท่านที่มีส่วนร่วมในการศึกษาโครงงานนี้จนสำเร็จลุล่วง

> คณะผู้จัดทำ นายจิตรภาณุ อัศวพิชญโชติ นายเขมรัฐ บุณยะผลึก นายพุฒิพัฒน์ สิริเศรษฐภักดี

#### บรรณานุกรม

Adam Głowacz, Witold Głowacz, Andrzej Głowacz. (2553). <u>Sound Recognition of Musical Instruments with Application of FFT and K-NN Classifier with Cosine Distance</u>.

Automatyka.

Erik de Castro Lopo. (2545). <u>Introduction to Audio Digital Signal Processing on Linux</u>. (ออนไลน์).

แหล่งที่มา : http://www.mega-nerd.com/Res/IADSPL/

Robert A. Schilling, Sandra L. Harris. (2556). <u>Introduction to Digital Signal Processing using</u>

<u>MATLAB 2nd Edition</u>. พิมพ์ครั้งที่ 2. Cengage Learning. Boston. US.

Toni Heittola, Anssi Klapuri, Tuomas Virtanen. (2552). <u>Musical Instrument Recognition in Polyphonic Audio Using Source-Filter Model for Sound Separation</u>. Kobe International

Conference Center. Kobe. Japan.

Wikipedia. (2559). Window function. (ออนไลน์). แหล่งที่มา: https://en.wikipedia.org/wiki/Window function