Jogos de Anti-Coordenação e Colorações Estáveis em Grafos

Renato Lui Geh NUSP:8536030

Introdução

Jogos de coordenação:

Classe de jogos em que jogadores jogam cooperativamente. Jogador i fazer a mesma ação que jogador j gera um benefício para ambos jogadores.

Exemplos:

- Batalha dos sexos (visto em aula)
- Caça ao cervo

Jogos de anti-coordenação:

Variante do jogo de coordenação em que jogador i escolher mesma ação que jogador j gera custo.

Exemplos:

- Mineração
- ► Habilidades de empregados
- Rotas de avião

Dois jogadores:

- Fácil
- Matriz de utilidade/custo

Mais de dois jogadores:

- Difícil
- Grafos

Jogo: G = (V, E)

 $v \in V$: jogador

 $e \in E$: relação entre dois jogadores

 $\{1,\ldots,k\}$: ações

Utilidade: número de vizinhos que têm ações diferentes

Equilíbrio: *v* não tem incentivo para mudar ação dados vizinhos

Parece com algo?

Jogo: G = (V, E)

 $v \in V$: jogador

 $e \in E$: relação entre dois jogadores

 $\{1,\ldots,k\}$: ações

Utilidade: número de vizinhos que têm ações diferentes

Equilíbrio: *v* não tem incentivo para mudar ação dados vizinhos

Parece com algo? Coloração

Objetivos:

- 1. Para $k \ge 2$, existe algoritmo polinomial para achar k-coloração estável num grafo não-direcionado.
- 2. PoA para k-coloração em grafos não-direcionado é $\Theta\left(\frac{k}{k-1}\right)$.
- 3. Para $k \ge 2$, descobrir se existe k-coloração estritamente estável num grafo não-direcionado é NP-difícil.

Existe generalização do 3 para digrafos, mas vou mostrar apenas para grafos não-direcionados. Vejam [KPR13] se estiverem curiosos.

Definições

Seja G=(V,E) grafo não-direcionado. Chamamos $c\in C=\{f|f:V\to\{1,\ldots,k\}\}$ de uma coloração.

Todos $v \in V$ escolhem cor simultaneamente. A utilidade de v é:

$$\mu_c(v) := \sum_{\{u,v\} \in E} 1_{\{c(u) \neq c(v)\}}$$

O bem-estar social de G dada uma coloração c é:

$$W(G,c) \coloneqq \sum_{v \in V} \mu_c(v)$$

Uma coloração c é **estável** se nenhum vértice v pode aumentar $\mu_c(v)$ mudando c(v).

Uma coloração c é **estritamente estável** se para todo $v \in V$, toda $c' \in C$, $c' \neq c$ temos que $\mu_c(v) > \mu_{c'}(v)$. Senão, c é **não-estrita**.

O PoA de G é:

$$\mathsf{PoA}(G) \coloneqq \frac{\mathsf{max}_{c' \in C} \ W(G, c')}{\mathsf{min}_{c \in Q} \ W(G, c)}$$

onde Q é o conjunto de colorações estáveis.

Figura: O grafo da esquerda é estritamente estável e tem W(G,c)=40, enquanto que o da direita é não-estrito com W(G, c') = 42.

Fonte: [KPR13]

Colorações estáveis

Proposição 1.

Para todo $k \ge 2$, todo grafo finito G = (V, E) admite uma k-coloração estável. Tal k-coloração estável pode ser encontrada em tempo polinomial.

Demonstração (Proposição 1)

Primeiro chamaremos:

c: coloração

 $\phi(c)$: número de arestas coloridas apropriadamente

Note que $0 \le \phi(c) \le |E|$. Vamos primeiro mostrar que $W(G,c) = 2\phi(c)$.

Fixa $v \in V$.

 n_v : número de cores diferentes em v

$$\phi(c) = \sum_{e \in E} 1_{\{e \text{ apropriado}\}}$$

Se e é apropriado $(c(u) \neq c(v))$, então contamos e duas vezes: (u, v) e (v, u).

Somando todas as arestas apropriadas para todo v:

$$\sum_{v \in V} \sum_{e = \{u,v\} \in E} 1_{\{e \text{ apropriado}\}} = \sum_{v \in V} n_v = 2\phi(c)$$

Mas n_v é exatamente $\mu_c(v)$.

$$\sum_{v \in V} n_v = 2\phi(c) = \sum_{v \in V} \mu_c(v) = W(G, c)$$

Note que $\phi(c)$ é uma função potencial exata, então esse é um jogo de potencial.

Dada uma coloração c, um vértice v está infeliz se v tem mais vizinhos com mesma cor que v do que diferentes.

Para acharmos uma k-coloração estável em G fazemos:

Enquanto existe algum vértice v infeliz, mude c(v) para algum c'(v) tal que

$$c'(v) = \underset{m \in \{1, \dots, k\}}{\operatorname{arg \, min}} \sum_{u \in N(v)} 1_{\{c(u) = m\}},$$

onde N(v) são os vizinhos de v.

Se v é vértice infeliz, então mudar para c'(v) vai sempre aumentar ϕ . Aumentar ϕ aumenta W(G,c), pois $W(G,c)=2\phi$.

Como a cada iteração pelo menos uma aresta vai ser colorida apropriadamente aumentando ϕ , então depois de no máximo |E| iterações, nenhum $v \in V$ estará infeliz.

Se nenhum vértice está infeliz, então nenhum vértice terá incentivo para mudar. Então a coloração é estável.

Proposição 2.

O preço da anarquia de uma k-coloração de um jogo de anti-coordenação é $\Theta\left(\frac{k}{k-1}\right)$.

Demonstração (Proposição 2)

Primeiro mostramos um bound superior:

Princípio da casa dos pombos (PCP): $n = l \cdot m + 1$ objetos distribuídos em m conjuntos, então pelo menos um conjunto terá pelo menos l+1 objetos.

Pelo PCP, todo vértice v pode sempre alcançar $\frac{k-1}{k} \cdot \deg(v)$ usando o algoritmo da Proposição 1. Supondo que todos alcançam tal máximo, então:

$$\mathsf{PoA}(G) = \frac{\mathsf{max}_{c' \in C} \ W(G,c')}{\mathsf{min}_{c \in Q} \ W(G,c)} = \frac{\sum_{v \in V} \mathsf{deg}(v)}{\sum_{v \in V} \frac{k-1}{k} \cdot \mathsf{deg}(v)} = \frac{k}{k-1}$$

Para acharmos bound inferior, tome G=(V,E) a junção de dois grafos completos K_k^1 e K_k^2 tal que

$$V(K_k^1) = \{v_1, v_2, \dots, v_k\},\$$

$$V(K_k^2) = \{v_{k+1}, v_{k+2}, \dots, v_{2k}\},\$$

 $v_i \in V$, e junte K_k^1 com K_k^2 por arestas $\{v_i, v_{i+k}\}$ para todo k.

Figura: Com k=5 temos o grafo G construído pela junção dos dois grafos completos K_5^1 e K_5^2 . [KPR13]

Considere a seguinte coloração: para todo par de vértice $\{v_i, v_{i+k}\}$, $c(v_i) = c(v_{i+k}) = i$. A coloração c é **mínima** e **estável**. Então

$$\mu_c(v) = k - 1,$$

$$W(G, c) = \sum_{v \in V} \mu_c(v) = \sum_{j=1}^{|V| = 2k} k - 1 = 2k(k - 1).$$

- ▶ **Estável:** Todo vértice tem k-1 cores diferentes em seus vizinhos. Cada clique K_k precisa de pelo menos k cores, senão não é estável.
- ▶ **Mínima:** Única possível aresta não apropriadamente colorida é $\{v_i, v_{i+k}\}$.

Tome outra coloração c' tal que para cada par $\{v_i, v_{i+k}\}$, $c(v_i) = i$ e $c(v_{i+k}) = i + 1$. A coloração c' é **máxima**, e temos

$$\mu_c(v) = k,$$

$$W(G,c) = \sum_{v \in V} \mu_c(v) = \sum_{j=1}^{|V|=2k} k = 2k^2.$$

- ▶ Estável: Como é máxima, é estável.
- ▶ **Máxima:** Cada vértice tem k vizinhos de cores diferentes e $\mu_c(v) = \deg(v) = k$.

Então coloração c é máxima e c' mínima e estável. Portanto

$$PoA = \frac{\max_{c' \in C} W(G, c')}{\min_{c \in Q} W(G, c)} = \frac{2k^2}{2k(k-1)} = \frac{k}{k-1}.$$

Então PoA =
$$\Theta\left(\frac{k}{k-1}\right)$$
.

Colorações estritamente estáveis

Teorema 1.

Para todo $k \geq 2$, o problema de se determinar se o grafo não-direcionado G tem uma k-coloração estritamente estável é NP-completo.

O problema está em NP: dada um certificado de coloração c, para todo $v \in V$, verifique se para todo $c'(v) = i, i \in \{1, \dots, k\}$, temos que $\mu_{c'}(v) < \mu_c(v)$.

Vamos dividir em dois casos: $k \ge 3$ e k = 2.

Reduções:

- ▶ Caso 1: $(k \ge 3)$ k-coloração clássica
- **Caso 2:** (k = 2) 3-SAT

Caso 1: $k \ge 3$

Objetivo:

Transformar G em um grafo G' em que achar equilíbrio estrito equivale a achar k-coloração clássica.

Construção de G'

Vamos construir grafo G' a partir de G. Copie G em G'. Para toda aresta $e = \{u, v\} \in E(G')$, crie grafo H_e , onde H_e é um grafo completo K_{k-2} .

Para todo $w \in V(H_e)$, crie arestas $e_1' = \{u, w\}$ e $e_2' = \{v, w\}$ de forma a criar um clique K_k com $H_e \cup \{u, v\}$.

Se existe vértice isolado $v \in V(G)$ (i.e. $deg(v) \le 1$), crie uma cópia de K_{k-1} e adicione arestas $\{v, w\}$, $w \in K_{k-1}$, em G'.

Vamos mostrar que uma k-coloração clássica em G' equivale a uma k-coloração clássica em G, e que tal coloração equivale a um equilíbrio estrito em G.

Colorindo G'

Fixe uma k-coloração apropriada φ de G. Aplique ϕ em todo vértice $v \in G'$ que veio de G.

Para toda aresta $e = \{u, v\} \in E(G')$, colore H_e com as k-2 cores diferentes de u e v. Agora o clique K_k de u e v está em equilíbrio estrito e também é uma coloração apropriada.

Para vértices isolados, é suficiente colorir K_{k-1} com as k-1 cores restantes diferentes da cor do vértice isolado.

Objetivo:

Transformar G em um grafo G' em que achar equilíbrio estrito equivale a achar k-coloração clássica.

(\iff) Tal coloração é um equilíbrio estrito, já que para todo vértice $v \in V(G')$, v é adjacente às k-1 outras cores. Mudar a cor de v implica em c(v) = v(w), $w \in V(H_e)$, o que diminui $\mu_c(v)$.

(\Longrightarrow) Suponha que existe equilíbrio estrito c com k cores em G'. Então nenhuma aresta $e=\{u,v\}$ que veio originalmente de G pode ser monocromática (c(u)=c(v)). Por que?

Suponha $e=\{u,v\}$ monocromática. Então c(u)=c(v). Existem k-1 cores a serem distribuídas em H_e . Suponha que escolhemos vértices $w\in E(H_e)$ de forma a colorir H_e apropriadamente. Sobra uma cor j não usada no clique K_k . Mas então u tem incentivo para mudar c(u)=j a fim de aumentar $\mu_c(u)$. Portanto não é equilíbrio. Contradição.

Portanto, como e não é monocromática, então c é uma k-coloração clássica apropriada.

Disso temos que **equilíbrio estrito equivale a k-coloração clássica**, e portanto redução acaba para $k \ge 2$.

Caso 1: k = 3

Objetivo:

Mostrar que uma k-coloração estritamente estável em G equivale a achar uma valoração verdadeira de uma fórmula em 3-CNF.

Passos:

- 1. Tomar 3-CNF $\varphi = C_1 \wedge C_2 \wedge \cdots \wedge C_k$;
- 2. Criar grafos C_i que representam as conjunções \hat{C}_i ;
- 3. Mostrar que C_i está em equilíbrio estrito se e somente se \hat{C}_i é satisfatível (Lema 1);
- 4. Juntar todos C_i em G mantendo consistência entre literais;
- 5. Mostrar que G está em equilíbrio estrito se e somente se φ é satisfatível.

Referências I

Jeremy Kun, Brian Powers e Lev Reyzin. "Anti-Coordination Games and Stable Graph Colorings". Em: SAGT Symposium on Algorithmic Game Theory (2013).