

SQL OLAP Massivas com Apache Doris

Marcio Junior Vieira CEO & Data Scientist, Ambiente Livre Pesquisador da UFG.

Palestrante: Marcio Junior Vieira

Mini-CV

- 25 anos de experiência em TI, vivência em desenvolvimento e análise de sistemas, gestão empresarial e ciência de dados.
- CEO da Ambiente Livre atuando como Cientista de Dados, Engenheiro de Dados e Arquiteto de Software.
- Já lecionou nos MBAs em Big Data & Data Science, Inteligência Artificial e Business Intelligence e Analytics da Universidade Positivo e MBA Artificial Intelligence e Machine Learning da FIAP.
- Trabalhando com Free Software e Open Source desde 2000 com serviços de consultoria e treinamento.
- Graduado em Tecnologia em Informática(2004) e pós-graduado em Software Livre(2005) ambos pela UFPR.
- Pesquisador pelo UFG/CIAP (Centro de Colaboração Interinstitucional de Inteligência Artificial Aplicada às Políticas Públicas).
- Atuou com Pesquisador do Laboratório de Tecnologias para Tomada de Decisão da Universidade de Brasília (Unb/Latitude).
- Palestrante FLOSS em: FISL, TDC, Latinoware, Campus Party, Pentaho Day, Ticnova, PgDay e FTSL.
- Organizador Geral: Pentaho Day 2017, 2015, 2019 e apoio nas ed. 2013 e 2014.
- Data Scientist, instrutor e consultor de Big Data e Data Science com tecnologias abertas.
- Ajudou a capacitar equipes de Big Data na IBM, Accenture, Tivit, Serpro, Natura, MP, Netshoes, Embraer entre outras.
- Especialista em implantação e customização de Big Data com Hadoop, Spark, Pentaho, Cassandra e MongoDB.
- Contribuidor de projetos internacionais, tais como Pentaho, LimeSurvey, SuiteCRM e Camunda.
- Especialista em implantação e customização de ECM com Alfresco e BPM com Activiti, Flowable e Camunda.
- Certificado (Certified Pentaho Solutions) pela Hitachi Vantara (Pentaho).

Nosso Ecossistema de Serviços

Data Driven

Painéis de Indicadores Cubos e Relatórios Análise Preditiva Processamento Distribuído Banco de Dados Colunares

CRM, CMS e ITSM

Help Desk e Inventory Pesquisas Online Marketing e Vendas SAC e Pós-vendas Portais de Conteúdo

IT Service Management

Consultoria I Treinamento I Projeto

ECM e BPM

Gestão de Documentos Gerenciamento de Mídias Processo de Negócio BPMN e BPMS Microservicos

Consultoria | Treinamento | Projeto

Infra - IAC - DevOps

DepOps DevSecOps MLOps e DataOps Native Cloud Distributed Systems

Building Blocks

Consultoria | Treinamento | Projeto

suite (C

Sobre a Ambiente Livre

Livre. Todos direitos reservados, www.ambientelivre.com.br

Open Software for Business

- Fundada em 2004 com foco em consultoria com software livre.
- Experts em 34 soluções para geração de negócios com Software Livre/Código Aberto.
- Atualmente estamos sediados no Hub de Inovação Mindhub em Curitiba.

Apache Doris

Conceitos

- Banco de dados analítico MPP (Massively Parallel Processing)
- Otimizado para OLAP (Online Analytical Processing) em tempo real
- Open Source, originalmente criado pela Baidu (antigo Palo) e doado à Apache Software Foundation

Apache Software Foundation

Definição

- +350 Projetos Open Source.
- +209 comitês de gerenciando 366 projetos.
- +7000 Committers, e com uma média de 50 novos mensais... Seja um!
- Data Science = Apache = Open Source
- Apache é líder em Big Data e Data Science!
- ~49 projetos da linha "Big Data" incluindo "Apache Hadoop" e "Spark"
- ~25 projetos de database incluindo "Apache Cassandra"

Empresa por trás do Apache Doris

SELECTOB

VELODB

Empresa Usando Apache Doris

Características do Apache Doris

Características

- Alto desempenho em consultas analíticas complexas
- Armazenamento em colunas (columnar storage)
- Suporte nativo a SQL padrão
- Escalabilidade horizontal com balanceamento automático
- Integração com ferramentas de BI e lakes (ex: Apache Hive, Iceberg, Spark)

Casos de uso típicos

Use Cases

- Dashboards em tempo real.
- Análise de grandes volumes de dados.
- Plataformas de recomendação e monitoramento.
- Substituto leve para soluções OLAP mais pesadas (ex: Presto, Trino, ClickHouse)
- Real-time Data Analysis, Lakehouse Analytics, SQL-based Observability

Cenários Apache Doris 1 (Observability)

Cenários Apache Doris 2 (Real Time)

Cenários Apache Doris 3 (Misto/ BI Analytics)

Cenários Apache Doris 4 (Datawarehouse)

Unified Data Warehouse

Cenários Apache Doris 5 (Datawarehouse)

Cenários de Uso Apache Doris

Arquitetura Integrada de Armazenamento e Computação

Components Storage-Compute Integrated Architecture

- Frontend (BE): Recebe e executa queries SQL.
- Backend (FE): Gerencia metadados e coordena execuções.
- Todo Processamento é distribuído e paralelizado entre nós.

Frontend Apache Doris

Frontend (BE)

- Master
 - Responsável por leituras e escritas de metadados
 - Sincroniza alterações via BDB JE com Followers e Observers
 - Papel central no gerenciamento de metadados
- Follower
 - Lê metadados
 - Pode ser promovido a novo Master em caso de falha
 - Participa das eleições de liderança
- Observer
 - Lê metadados
 - Aumenta a concorrência de leitura
 - Não participa da eleição de Master

Doris Operator for Kubernetes

Operator

Um Operator Kubernetes oficial para gerenciar clusters Apache Doris de forma nativa,

declarativa e automatizada.

 Criação e gerenciamento de clusters Doris (YAML)

- Deploy de Frontend (FE) e Backend (BE)
- Auto scale-out e scale-in dos nós de backend
- Atualizações (rolling upgrade)
- Monitoramento e health-check integrados
- Suporte a customizações via CRDs (DorisCluster)

Query Engine do Apache Doris

Query Engine

- Arquitetura MPP (Massively Parallel Processing).
- Executa consultas paralela entre múltiplos nós.
- Suporte a Distributed Shuffle Join, ideal para joins entre grandes tabelas.
- Projetado para consultas analíticas complexas e em tempo real.

Execução Vetorizada no Apache Doris

Fully Vectorized

- Engine de consultas 100% vetorizada e estrutura de memória em formato colunar
- Reduz chamadas de funções virtuais e Aumenta o cache hit rate
- Aproveita instruções SIMD para maior desempenho
- Garante performance 5 a 10x superior em agregações de tabelas largas comparado a engines não vetorizados (SGBDs tradicionais).

Execução Adaptativa no Apache Doris

Adaptive Query Execution

- Ajusta dinamicamente o plano de execução com base em estatísticas de tempo de execução.
- Gera e aplica filtros em tempo de execução (runtime filters)
- Empurra os filtros até o nó de
- Scan mais baixo no lado "probe" da consulta
- Reduz drasticamente o volume de dados processados e acelera joins.

Syntax Doris SQL

"Quase" tudo compatível com MySQL

- DDL (CREATE TABLE, ALTER, DROP)
- DML (SELECT, INSERT, UPDATE *, DELETE *)
- Joins: INNER, LEFT, RIGHT, FULL (a partir de versões recentes)
- Funções padrão: SUM, AVG, COUNT, DATE_FORMAT, NOW(), etc.
- Funções de janela (window functions): ROW_NUMBER(), RANK(), etc.
- Subqueries e CTEs (WITH)
- * UPDATE e DELETE são limitados em tabelas OLAP em geral usa-se MERGE INTO ou recriação.

Criação de Tabela OLAP no Apache Doris


```
OI AP TABLE
  CREATE TABLE sales (
    sale id BIGINT,
    product id INT,
    customer id INT,
    region VARCHAR(32),
    sale date DATE,
    quantity INT,
    revenue DOUBLE
  ENGINE=OLAP # motor de armazenamento OLAP (colunar) para cargas analíticas.
  DISTRIBUTED BY HASH(sale_id) BUCKETS 10 # Distribui em nós de BE
  PROPERTIES (
    "replication_num" = "10" # réplica dos dados
```

Spark Doris Connector

Batch Write - Dataframe

```
val mockDataDF = List(
  (3, "440403001005", "21.cn"),
  (33, null, "23.cn")
).toDF("id", "mi code", "mi name")
mockDataDF.write.format("doris")
  .option("doris.table.identifier", "$DORIS DATABASE.$TABLE")
  .option("doris.fenodes", "$FE HOSTNAME:$FE RESFUL PORT")
  .option("user", "$YOUR DORIS USERNAME")
  .option("password", "$YOUR DORIS PASSWORD")
  .option("doris.write.fields", "$YOUR FIELDS TO WRITE")
  .save()
```


Spark Doris Connector

Batch Read - Dataframe

```
val dorisSparkDF = spark.read.format("doris")
    .option("doris.table.identifier", "$DATABASE.$DORIS_TABLE")
    .option("doris.fenodes", "$FE_HOSTNAME:$FE_RESFUL_PORT")
    .option("user", "$USERNAME")
    .option("password", "$PASSWORD")
    .load()
dorisSparkDF.show(5)
```


Spark Doris Connector

Spark SQL

```
CREATE TEMPORARY VIEW spark_doris
USING doris
OPTIONS(
   "table.identifier"="$DORIS_DATABASE.$DORIS_TABLE",
   "fenodes"="$FE_HOSTNAME:$FE_RESFUL_PORT",
   "user"="$DORIS_USERNAME",
   "password"="$DORIS_PASSWORD"
);
SELECT * FROM spark doris;
```


Tabelas Externas no Apache Doris

Hive Metastore (com suporte a Parquet, ORC, etc.)

- Apache Iceberg, Apache Hudi, Elasticsearch, JDBC (PostgreSQL, MySQL...)
- Leitura de arquivos Parquet, ORC, CSV, etc.
- Armazenamento em HDFS, S3, MinIO, etc.
- Usa Engine = BROKER para leitura direta de arquivos

```
CREATE CATALOG hive_catalog PROPERTIES (
   "type" = "hms",
   "hive.metastore.uris" = "thrift://hive-metastore:9083"
);

USE CATALOG hive_catalog;
SELECT * FROM analytics.sales data;
```


Clients

BI Tools

- Apache SuperSet
- PowerBI, FineBI
- Tableau
- QuickBl

BI Tools

- Dbeaver
- DataGrip

Clients – Exemplo Superset

Requisitos de Infraestrutura

Dev

Module	CPU	Memory	Disk	Network	Number of Instances
Frontend	8 core +	8GB +	SSD or SATA, 10GB +	Gigabit Network Card	1
Backend	8 core +	8GB +	SSD or SATA, 10GB +	Gigabit Network Card	1-3*

Prod

Module	CPU	Memory	Disk	Network	Number of Instances
Frontend	16 core +	64GB +	SSD or SATA, 100GB +	Gigabit Network Card	1-3*
Backend	16 core +	64GB +	SSD or SATA, 100GB +	Gigabit Network Card	3*

StarRocks

Conceito

- Fork do Doris (2020)
- Ex Integrantes do Apache Doris
- Segundo o projeto teve 90% co BE reescrito e está mais otimizado.

Referências

Trainning

- Doris Learning https://doris.apache.org/learning (Free)
- Ambiente Livre https://www.ambientelivre.com.br/treinamento/big-data/apache-doris.html (\$pago)

Web

Doris Documentation - https://doris.apache.org

Marcio Junior Vieira

CEO | Data Scientist | Palestrante | Pesquisador | Professor

Obrigado

Marcio Junior Vieira marcio@ambientelivre.com.br

@marviojvieira @ambientelivre

@ambientelivreopensoftware

https://www.linkedin.com/in/mvieira1/

Blog: http://blogs.ambientelivre.com.br/marcio/

https://github.com/ambientelivre/labs