שיעור 10 מרחב האפס, מרחב העמודות ומרחב השורות

10.1 דרגת המטריצה

הגדרה 10.1

נתונה מטריצה

: $\mathbb F$ מעל שדה $A\in \mathbb F^{m imes n}$

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

למטריצה מקושרים 3 תת מרחבים:

ומוגדר Nul(A) שמסומן אפס של A ומוגדר (1)

$$Nul(A) = \left\{ X \in \mathbb{F}^n \middle| A \cdot X = \bar{0} \right\} .$$

ומוגדר $\operatorname{Col}(A)$ שמסומן A שמסודות של (2)

$$\operatorname{Col}(A) = \operatorname{span} \left\{ \begin{pmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{pmatrix}, \cdots, \begin{pmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{pmatrix} \right\}.$$

. המטריצה המחדות ע"י עמודות מרחב המטריצה Col(A)

ומוגדר Row(A) שמסומן א ומוגדר (3)

$$Row(A) = span \{ (a_{11} \ a_{12} \ \cdots \ a_{1n}), \cdots, (a_{m1} \ a_{m2} \ \cdots \ a_{mn}) \} .$$

. המטריצה שורות ע"י שורות מרחב המטריצה. Row(A)

דוגמה 10.1

$$\mathrm{Row}(A)$$
 -ו $\mathrm{Col}(A)$ של בסיס ואת בסיס המאו את את וא .
$$A = \begin{pmatrix} 1 & -2 & 4 & 3 & 1 \\ -2 & 1 & -1 & 0 & 5 \\ 4 & -11 & 23 & 18 & 11 \end{pmatrix}$$
 נתונה המטריצה

פתרון:

$$\begin{pmatrix} 1 & -2 & 4 & 3 & 1 \\ -2 & 1 & -1 & 0 & 5 \\ 4 & -11 & 23 & 18 & 11 \end{pmatrix} \xrightarrow{R_2 \to 2R_1 + R_2} \begin{pmatrix} 1 & -2 & 4 & 3 & 1 \\ 0 & -3 & 7 & 6 & 7 \\ 0 & -3 & 7 & 6 & 7 \end{pmatrix}$$
$$\xrightarrow{R_3 \to R_3 - R_2} \begin{pmatrix} 1 & -2 & 4 & 3 & 1 \\ 0 & -3 & 7 & 6 & 7 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

 $\operatorname{col}(A)$ של המדורגת מובילות, לפיכך עמודות 1 ו- 2 של מהווים בסיס של

$$\operatorname{col}(A) = \operatorname{span}\left\{ \begin{pmatrix} 1\\-2\\4 \end{pmatrix}, \begin{pmatrix} -2\\1\\11 \end{pmatrix} \right\}$$

 $\operatorname{crow}(A)$ שורות A ו- 2 של A מהווים בסיס של פיכך שורות וו- 2 של המדורגת מובילות, לפיכך שורות שורות וו- 2

$$row(A) = span \left\{ \begin{pmatrix} 1 & -2 & 4 & 3 & 1 \end{pmatrix}, \begin{pmatrix} -2 & 1 & -1 & 0 & 5 \end{pmatrix} \right\}$$

. מספר המודות המובילות, $\dim\left(\operatorname{Col}(A)\right)=2$

. מספר אפסים, $\dim\left(\operatorname{Row}(A)\right)=2$

$\operatorname{col}(A)$ משפט 10.1 בסיס ומימד של

 $A \in \mathbb{R}^{m imes n}$ תהי

- .Col A מהווים בסיס של (1
- .Row A מהווים בסיס של (2
 - $\dim (\operatorname{Col}(A)) = \dim (\operatorname{Row}(A))$ (3

הוכחה:

- .9.3 משפט (1
- .תרגיל בית.
- A הוא מספר העמודות המובילות המובילות מספר הוא $\dim\left(\operatorname{Col}(A)\right)$

A אוא מספר המדורגת במטריצה המובילים האיברים מספר לוש $\dim\left(\operatorname{Col}(A)\right)$ א"א

A שלא מספר המדורגת שלא אפסים המדורגת שלא dim $(\mathrm{Row}(A))$

A של מספר המדורגת במטריצה המובילים האיברים מספר לוש $\dim \left(\mathrm{Row}(A)\right)$ י"א

הגדרה 10.2 דרגה

 $\mathrm{rank}(A)$: איים דרגת המטריצה. סימון $\mathrm{dim}\left(\mathrm{Col}(A)\right)=\mathrm{dim}\left(\mathrm{Row}(A)\right)$ איים $\mathrm{rank}(A)=\mathrm{dim}\left(\mathrm{Col}(A)\right)=\mathrm{dim}\left(\mathrm{Row}(A)\right)$.

$\mathrm{Nul}(A)$ משפט 10.2 מימד של

 $\operatorname{rank}(A)=r$ ונניח כי $A\in\mathbb{F}^{m imes n}$ אז

 $\dim(\operatorname{Nul}(A)) = n - r = ($ מספר עמודות הלא מובילות) .

הוכחה: (להעשרה בלבד!)

 $\mathrm{Nul}(A)$ בסיס של $\{u_1,\cdots,u_k\}$ נניח כי

 $\{u_1,\cdots,u_k,u_{k+1},\cdots u_n\}:\mathbb{R}^n$ נשלים אותו לבסיס של

פורשת $\{Au_1,\cdots,Au_k,Au_{k+1},\cdots Au_n\}$ לפיכך הקבוצה \mathbb{R}^n לפיכך פורשת את הקבוצה $\{u_1,\cdots,u_k,u_{k+1},\cdots u_n\}$ פורשת את $\operatorname{col}(A)$

 $Au_1=0,\cdots,Au_k=0 \Leftarrow \{u_1,\cdots,u_k\}\in \mathrm{Nul}(A)$ אבל

 $\operatorname{col}(A)$ את פורשת פורשת $\{Au_{k+1}, \cdots Au_n\}$ לפיכך

כעת נוכיח כי $\{Au_{k+1}, \cdots Au_n\}$ בת"ל: נרשום

 $s_{k+1}Au_{k+1} + \dots + s_nAu_n = \bar{0}$

כאער $ar{0} \in \mathbb{R}^n$ סקלרים. מכאן ווקטור האפס ו- כאשר

$$A\left(s_{k+1}u_{k+1}+\cdots+s_nu_n\right)=\bar{0}$$

 $\{u_1,\cdots,u_k\}$ לפיכך אותו כצירוף לינארי לפיכך ניתן לרשום $s_{k+1}u_{k+1}+\cdots+s_nu_n\in \mathrm{Nul}(A)$ ז"א

$$s_{k+1}u_{k+1} + \dots + s_nu_n = t_1u_1 + \dots + t_ku_k$$

:סקלרים. נעביר אגפים ונקבל t_1,\ldots,t_k

$$-t_1u_1 - \dots - t_ku_k + s_{k+1}u_{k+1} + \dots + s_nu_n = \bar{0}.$$

 $t_1=\cdots=t_k=s_{k+1}=\cdots=s_n=0$ בסיס לכן היא בת"ל לכן $\{u_1,\cdots,u_k,u_{k+1},\cdots u_n\}$ הקבוצה

.לפיכך הקבוצה $\{Au_{k+1},\cdots,Au_n\}$ בת"ל.

 $\mathrm{col}(A)$ בסיס של $\mathrm{col}(A)$ לכן ופורשת בסיס אל בח"ל בח"ל בח"ל בח"ל בח"ל לופורשת ($\dim\left(\mathrm{col}(A)\right)=r$ נניח כי

 $\Rightarrow n-k=r \Rightarrow k=n-r$.

לפיכד

 $\operatorname{Dim}\left(\operatorname{Nul}(A)\right) = n - r = ($ מספר עמודות מובילות) – (מספר עמודות מובילות) – (מספר עמודות הלא מובילות) .

$\mathrm{Nul}(A)$ משפט 10.3 בסיס

תהי AX=0 נניח שהפתרון הכללי למערכת. $A\in\mathbb{F}^{m imes n}$

$$X_0 = y_1 u_1 + \dots + y_k u_k$$

 $u_1,\cdots,u_k\in\mathbb{F}^n$ -כאשר y_1,\cdots,y_k המשתנים החופשיים של המערכת y_1,\cdots,y_k

 $\mathrm{Nul}(A)$ בסיס של $B=\{u_1,\cdots,u_k\}$ אז הקבוצת ווקטורים

הוכחה: להעשרה בלבד!

A נניח כי R=n-r ווקטורים בקבוצה n-r משתנים חופשיים, לכן יש גיא יש. rank(A)=r

. $\operatorname{Nul}(A)$ את פורשת את $B=\{u_1,\cdots,u_{n-r}\}$ והקבוצת ווקטורים $\dim\left(\operatorname{Nul}(A)\right)=n-r$

 $\operatorname{Nul}(A)$ אכן מהווה בסיס מהווה בת"ל לכן B בת"ל הקבוצה 9.4 לכן לפי

דוגמה 2.01

במרחב $\mathbb{R}^{2 imes 2}$ נתונים ווקטורים

$$u_1 = \begin{pmatrix} 1 & 3 \\ 1 & 3 \end{pmatrix}$$
, $u_2 = \begin{pmatrix} 1 & 1 \\ 3 & 3 \end{pmatrix}$, $u_3 = \begin{pmatrix} 1 & 5 \\ -1 & 3 \end{pmatrix}$, $v = \begin{pmatrix} a+2 & 1 \\ -5 & a \end{pmatrix}$

- בשתי u_1,u_2,u_3 שמצאתם כל ערך עבור כל ערך א', בטאו את בסעיף א', בטאו א שמצאתם מעבור כל ערך של דרכים שונות.
 - .span $\{u_1,u_2,u_3,\mathbf{v}\}$ לכל ערך של מצאו את המימד מצאו את לכל לכל ערך אל
 - עבורם a עבורם קיימים ערכי (au

span
$$\{u_1, u_2, u_3, \mathbf{v}\} = \mathbb{R}^{2 \times 2}$$
.

פתרון:

 u_1, u_2, u_3 נרשום v כצירוף לינארי של (גערי ע

$$k_1u_1 + k_2u_2 + k_3u_3 = v$$

נחשב את המקדמים:

$$\begin{pmatrix}
1 & 1 & 1 & a+2 \\
3 & 1 & 5 & 1 \\
3 & 1 & 5 & 1 \\
3 & 3 & 3 & a
\end{pmatrix}
\xrightarrow{R_2 \to R_2 - 3R_1 \atop R_3 \to R_3 - R_1 \atop R_4 \to R_4 - 3R_1}
\begin{pmatrix}
1 & 1 & 1 & a+2 \\
0 & -2 & 2 & -3a-5 \\
0 & 2 & -2 & -a-7 \\
0 & 0 & 0 & -2a-6
\end{pmatrix}
\xrightarrow{R_3 \to R_3 + R_2}
\begin{pmatrix}
1 & 1 & 1 & a+2 \\
0 & -2 & 2 & -3a-5 \\
0 & 0 & 0 & -4a-12 \\
0 & 0 & 0 & -2a-6
\end{pmatrix}$$

 $\mathbf{v} \in \mathrm{span}\{u_1,u_2,u_3\}$ אם a=-3 אם a=-3

 $\underline{a=-3}$ (2

$$\begin{pmatrix}
1 & 1 & 1 & | & -1 \\
0 & -2 & 2 & | & 4 \\
0 & 0 & 0 & | & 0 \\
0 & 0 & 0 & | & 0
\end{pmatrix}
\xrightarrow{R_2 \to -\frac{1}{2}R_2}
\begin{pmatrix}
1 & 1 & 1 & | & -1 \\
0 & 1 & -1 & | & -2 \\
0 & 0 & 0 & | & 0 \\
0 & 0 & 0 & | & 0
\end{pmatrix}
\xrightarrow{R_1 \to R_1 - R_2}
\begin{pmatrix}
1 & 0 & 2 & | & 1 \\
0 & 1 & -1 & | & -2 \\
0 & 0 & 0 & | & 0 \\
0 & 0 & 0 & | & 0
\end{pmatrix}$$

$$k_1 = 1 - 2k_3$$
, $k_2 = -2 + k_3$, $k_3 \in \mathbb{R}$.

$$\Leftarrow k_3 = 1$$
 נציב

$$k_1 = -1$$
, $k_2 = -1$, $k_3 = 1$

ונקבל

$$-u_1 - u_2 + u_3 = \mathbf{v}$$
.

$$\Leftarrow k_3 = 0$$
 נציב

$$k_1 = 1 , \qquad k_2 = -2 , \qquad k_3 = 0$$

ונקבל

$$u_1 - 2u_2 + 0 \cdot u_3 = \mathbf{v}$$
.

a = -3 עבור (ג

. מסעיף (ב), עמודה 1 ועמודה 2 של u_1,u_2 של מובילות, לכן הווקטורים $A=\begin{pmatrix} |&|&|&|\\u_1&u_2&u_3&\mathrm{v}\\|&|&|&|\end{pmatrix}$ מהווים בסיס. $a\neq -3$ עבור $a\neq -3$

 $u_1,u_2,$ ע מודה 1 עמודה 2 ועמודה 4 של $\begin{pmatrix} |&|&|&|\\u_1&u_2&u_3&\mathrm{v}\\|&|&|&|\end{pmatrix}$ של 4 מובילות, לכן הווקטורים 2 מסעיף (ב), עמודה 1 עמודה 2 מסעיף (ב).

.span $\{u_1,u_2,u_3,\mathbf{v}\}=\mathbb{R}^{2 imes 2}$ עבורם a ערכי אלכן לא קיימים ערכי a לכל ערכי a לכל ערכי u_1,u_2,u_3,\mathbf{v}

דוגמה 10.3

$$.\mathrm{Nul}(A)$$
 את המימד ובסיס את מצאו a ערך של הכל ארב ובסיס אל . $A=\begin{pmatrix} a & 1 & 1 \\ 1 & a & 1 \\ 1 & 1 & a \end{pmatrix}$ נתונה המטריצה

פתרון:

$$\begin{pmatrix} a & 1 & 1 \\ 1 & a & 1 \\ 1 & 1 & a \end{pmatrix} \xrightarrow{R_1 \leftrightarrow R_3} \begin{pmatrix} 1 & 1 & a \\ 1 & a & 1 \\ a & 1 & 1 \end{pmatrix} \xrightarrow{R_2 \to R_2 - R_1} \begin{pmatrix} 1 & 1 & a \\ 0 & a - 1 & 1 - a \\ 0 & 1 - a & 1 - a^2 \end{pmatrix} \xrightarrow{R_3 \to R_3 + R_2} \begin{pmatrix} 1 & 1 & a \\ 0 & a - 1 & 1 - a \\ 0 & 0 & -a^2 - a + 2 \end{pmatrix}$$

$$a = 1, -2 \Leftarrow -a^2 - a + 2 = 0$$

$$\text{VEIC } a = 1 \text{ again } a = 1$$

$$\left(\begin{array}{ccc}
1 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)$$

 $\dim(\operatorname{Nul}(A)) =$ מספר העמודות הלא מובילות = 2 .

הפתרון הכללי הינו

$$x = -y - z , y \in \mathbb{R}$$

$$\begin{pmatrix} -y - z \\ y \\ z \end{pmatrix} = y \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} + z \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$$

:Nul(A) בסיס של

$$\left\{ \begin{pmatrix} -1\\1\\0 \end{pmatrix}, \begin{pmatrix} -1\\0\\1 \end{pmatrix} \right\}$$

עבור a=-2 מקבלים

$$\begin{pmatrix} 1 & 1 & -2 \\ 0 & -3 & 3 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & -2 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix}$$

 $\dim(\operatorname{Nul}(A)) =$ מספר העמודות הלא מובילות = 1 .

הפתרון הכללי הינו

$$x = z, y = z,$$
 $y \in \mathbb{R}$

$$\begin{pmatrix} z \\ z \\ z \end{pmatrix} = z \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

:Nul(A) בסיס של

$$\left\{ \begin{pmatrix} 1\\1\\1 \end{pmatrix} \right\}$$

משפט 10.4 משפט הדרגה

m imes n מסדר $A \in \mathbb{F}^{m imes n}$ לכל

$$rank(A) + dim(Nul(A)) = n.$$

הוכחה:

- . שווה למספר העמודות המובילות rank(A)
- . שווה למספר העמודות הלא שווה dim (Nul(A))
- A שווה למספר העמודות של $\operatorname{rank}(A) + \dim (\operatorname{Nul}(A))$

דוגמה 10.4

A עבור מטריצה $A \in \mathbb{R}^{5 imes 7}$ ידוע כי $A \in \mathbb{R}^{5 imes 7}$ מצאו את את עבור

פתרון:

$$\operatorname{rank}(A) = 5$$
 לכו $\dim(\operatorname{Nul}(A)) = 2$

דוגמה 10.5

A את דרגת אווית פושל מטריצה להיות להיות להיות להיות להיות יכול להיות את את למטריצה למטריצה להיות יכול להיות

פתרון:

 $\operatorname{dim}(\operatorname{Nul}(A))=2$ שעבורה $A\in\mathbb{R}^{6 imes 9}$ נניח שקיימת מטריצה

$$\operatorname{rank}(A) = 9 - 2 = 7$$
 ম

אבל (A שווה למספר השורות שלא אפסים במטריצה המדורגת. במטריצה A יש שורות וות rank שורות.

 $\operatorname{rank}(A) \leq 6$ לכן

, קיבלנו סתירה. לכן לא קיימת מטריצה A המקיימת הת תנאי התרגיל

למה 10.1 סיכום של המימדים של מטריצה

אז $r=\mathrm{rank}(A)$ מטריצה בעלת m שורות ו- n מטריצה בעלת $A\in\mathbb{F}^{m\times n}$ אז

 $\dim\left(\operatorname{col}(A)\right)=r$ (מספר עמודות מובילות) $\dim\left(\operatorname{row}(A)\right)=r$ = (מספר שורות מובילות) $\dim\left(\operatorname{Nul}(A)\right)=n-r$ (מספר עמודות הלא מובילות)

משפט 10.5 תנאים שקולים של מטריצה הפיכה

עבור מטריצה ריבועית $A \in \mathbb{F}^{n imes n}$ התנאים הבאים שקולים זה לזה.

- $\operatorname{.rank}(A) = n$ (1
 - .הפיכה A (2
- .יש פתרון יחיד $A\cdot X=0$ למרעכת (3
 - $.|A| \neq 0$ (4
 - כל השורות של A בת"ל.
 - בת"ל. A כל העמודות של A

הוכחה:

תרגיל בית.

10.2 ווקטור קואורדינטות לפי בסיס

משפט 10.6 קואורדינטות של ווקטור לפי בסיס מסוים יחיד

נניח כי $u_1,\cdots,u_n\in V$ אז כל ווקטור $u_1,\cdots,u_n\in V$ ניתן לרשום נניח כי $u_1,\cdots,u_n\in V$ בסיס של המרחב נניח כי כצירוף ליניארי יחיד של

הוכחה:

.span
$$\{u_1,\cdots,u_n\}=V$$
 לכן $u_1,\cdots,u_n\in V$

 $a\in V$ מכאן נובע שלכל

$$a \in \operatorname{span} \{u_1, \cdots, u_n\}$$

-ט כך א k_1,\cdots,k_n כך ש

$$a = k_1 u_1 + \dots + k_n u_n .$$

נוכיח שהצירוף הלינארי הוא יחיד בדרך השלילה:

נניח שקיים צירוף לינארי אחר:

$$a = t_1 u_1 + \dots + t_n u_n .$$

 $.k_i
eq t_i$ כך ש-

לכן

$$(k_1 - t_1)u_1 + \dots + (k_i - t_i)u_i + \dots + (k_n - t_n)u_n = \bar{0}$$

. מתירת. סתירת. ליניארית. $\{u_1,\cdots,u_n\}$ הלוים ליניארית. $t_i-k_i\neq 0$ -ו

הגדרה 10.3 ווקטור הקואורדינטות

אז $a\in V$ -ו $\mathbb F$ מעל שדה ווקטורי בסיס של בסיס $B=\{u_1,\cdots,u_n\}\in V$ אם

$$a = k_1 u_1 + \dots + k_n u_n .$$

לווקטור

$$\begin{pmatrix} k_1 \\ \vdots \\ k_n \end{pmatrix}$$

 $B = \{u_1, \cdots, u_n\}$ קוראים ווקטור של ווקטור של ווקטור הקואורדינטות סימון:

$$[a]_B = \begin{pmatrix} k_1 \\ \vdots \\ k_n \end{pmatrix} .$$

דוגמה 10.6

$$.u=egin{pmatrix} 2 \ -1 \ 10 \end{pmatrix}$$
 . \mathbb{R}^3 של של $E=\{e_1,e_2,e_3\}$

$$u = 2e_1 - e_2 + 10e_3 .$$

לכן

$$[u]_E = \begin{pmatrix} 2\\-1\\10 \end{pmatrix}$$

דוגמה 10.7

$$.p(x)=1+8x-5x^2$$
 $.\mathbb{R}_2[x]$ הבסיס הסטנדרטי של $E=\{1,x,x^2\}$

$$p(x) = 1 \cdot 1 + 8 \cdot x - 5 \cdot x^2 = 1e_1 + 8e_2 - 5e_3.$$

לכן

$$[p]_E = \begin{pmatrix} 1\\8\\-5 \end{pmatrix}$$

דוגמה 10.8

הראו כי קבוצת הווקטורים

$$B = \left\{ b_1 = \begin{pmatrix} 1 \\ -2 \\ 0 \end{pmatrix}, b_2 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, b_3 = \begin{pmatrix} 3 \\ 0 \\ 1 \end{pmatrix} \right\}$$

$$u=egin{pmatrix} 2 \ -1 \ 10 \end{pmatrix}$$
 עבוטר הווקטור $[u]_B$ ומצאו את של \mathbb{R}^3

פתרון:

$$\begin{pmatrix} 1 & 1 & 3 \\ -2 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} \xrightarrow{R_2 \to R_2 + 2R_1} \begin{pmatrix} 1 & 1 & 3 \\ 0 & 3 & 6 \\ 0 & 1 & 1 \end{pmatrix} \xrightarrow{R_3 \to R_2 - 2R_3} \begin{pmatrix} 1 & 1 & 3 \\ 0 & 3 & 6 \\ 0 & 0 & 3 \end{pmatrix}$$

B כל העמודות מובילות לכן b_1,b_2,b_3 בסיס של \mathbb{R}^3 נמצא את הקואורדינטות לכן לפי בסיס ווקור לפי

$$u = xb_1 + yb_2 + zb_3$$

$$\begin{pmatrix} 1 & 1 & 3 & 2 \\ -2 & 1 & 0 & -1 \\ 0 & 1 & 1 & 10 \end{pmatrix} \xrightarrow{R_2 \to R_2 + 2R_1} \begin{pmatrix} 1 & 1 & 3 & 2 \\ 0 & 3 & 6 & 3 \\ 0 & 1 & 1 & 10 \end{pmatrix} \xrightarrow{R_3 \to R_2 - 2R_3} \begin{pmatrix} 1 & 1 & 3 & 2 \\ 0 & 3 & 6 & 3 \\ 0 & 0 & 3 & -27 \end{pmatrix}$$

$$\xrightarrow{R_2 \to \frac{1}{3}R_2} \begin{pmatrix} 1 & 1 & 3 & 2 \\ 0 & 1 & 2 & 1 \\ 0 & 0 & 1 & -9 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & 0 & 10 \\ 0 & 1 & 0 & 19 \\ 0 & 0 & 1 & -9 \end{pmatrix}$$

$$\vdots [u]_B = \begin{pmatrix} 10 \\ 19 \\ -9 \end{pmatrix}$$

דוגמה 10.9 (מרחב האפס ובסיסו)

$$A=\left(egin{array}{ccccc} -3 & 6 & -1 & 1 & -7 \ 1 & -2 & 2 & 3 & -1 \ 2 & -4 & 5 & 8 & -4 \end{array}
ight)$$
 מצאו את בסיס ומימד של מרחב האפס של המטריצה

פתרון:

כדי למצוא את המרחב האפס יש למצוא את הפתרונות של המערכת

$$AX = \bar{0}$$

$$\begin{pmatrix}
-3 & 6 & -1 & 1 & -7 & 0 \\
1 & -2 & 2 & 3 & -1 & 0 \\
2 & -4 & 5 & 8 & -4 & 0
\end{pmatrix} \xrightarrow{R_1 \leftrightarrow R_2} \begin{pmatrix}
1 & -2 & 2 & 3 & -1 & 0 \\
-3 & 6 & -1 & 1 & -7 & 0 \\
2 & -4 & 5 & 8 & -4 & 0
\end{pmatrix}$$

$$\xrightarrow{R_2 \to R_2 + 3R_1} \begin{pmatrix}
1 & -2 & 2 & 3 & -1 & 0 \\
0 & 0 & 5 & 10 & -10 & 0 \\
0 & 0 & 1 & 2 & -2 & 0
\end{pmatrix}$$

$$\xrightarrow{R_3 \to R_3 - 2R_1} \begin{pmatrix}
1 & -2 & 2 & 3 & -1 & 0 \\
0 & 0 & 1 & 2 & -2 & 0 \\
0 & 0 & 1 & 2 & -2 & 0
\end{pmatrix}$$

$$\xrightarrow{R_3 \to R_3 - R_2} \begin{pmatrix}
1 & -2 & 2 & 3 & -1 & 0 \\
0 & 0 & 1 & 2 & -2 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix}$$

המערכת המתאימה היא

$$x_1 - 2x_2 - x_4 + 3x_5 = 0$$

 $x_3 + 2x_4 - 2x_5 = 0$

ולכן הפתרון הוא

$$x_1 = 2x_2 + x_4 - 3x_5$$
, $x_3 = -2x_4 + 2x_5$, $x_2, x_4, x_5 \in \mathbb{R}$

ובצורה וקטורית

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} 2x_2 + x_4 - 3x_5 \\ x_2 \\ -2x_4 + 2x_5 \\ x_4 \\ x_5 \end{pmatrix} , \qquad x_2, x_4, x_5 \in \mathbb{R}$$

 $:\mathbb{R}^5$ ב וקטורים א"ל של בצורה ב"ל הפתרון בצורה ב"ל

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} 2x_2 + x_4 - 3x_5 \\ x_2 \\ -2x_4 + 2x_5 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} 2x_2 \\ x_2 \\ 0 \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} x_4 \\ 0 \\ -2x_4 \\ x_4 \\ 0 \end{pmatrix} + \begin{pmatrix} -3x_5 \\ 0 \\ 2x_5 \\ 0 \\ x_5 \end{pmatrix} = x_2 \begin{pmatrix} 2 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} + x_4 \begin{pmatrix} 1 \\ 0 \\ -2 \\ 1 \\ 0 \end{pmatrix} + x_5 \begin{pmatrix} -3 \\ 0 \\ 2 \\ 0 \\ 1 \end{pmatrix}$$

לכן $.x_2, x_4, x_5 \in \mathbb{R}$ כאשר

$$\operatorname{Nul}(A) = \operatorname{span} \left\{ \mathbf{v}_1 = \begin{pmatrix} 2 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \mathbf{v}_2 = \begin{pmatrix} 1 \\ 0 \\ -2 \\ 1 \\ 0 \end{pmatrix}, \mathbf{v}_3 = \begin{pmatrix} -3 \\ 0 \\ 2 \\ 0 \\ 1 \end{pmatrix} \right\} \; .$$

 $.\mathrm{Dim}\left(\mathrm{Nul}(A)\right)=3$

משפט 10.7

נניח ש- $A \in \mathbb{F}^{m imes n}$ ותהי $A \in \mathbb{F}^{m imes n}$ נניח

 $\operatorname{Row} A = \operatorname{Col} A^t , \qquad \operatorname{Col} A = \operatorname{Row} A^t .$

הוכחה: תרגיל בית.

משפט 10.8

נניח ש- $A\in\mathbb{F}^{m imes n}$. אם ניתן להגיע מ- A ל- B ע"י ביצוע מספר סופי של פעולות שורה אלמנטריות אז

row A = row B.

הוכחה: תרגיל בית.

משפט 10.9

נניח ש- $A \in R^{m imes n}$ ונניח ש- B המטריצה המדורגת המתקבלת מ- $A \in R^{m imes n}$

 $\operatorname{Row} A = \operatorname{Row} B$, $\operatorname{Nul} A = \operatorname{Nul} B$.

הוכחה: תרגיל בית.

דוגמה 10.10

עבור המטריצה

$$A = \begin{pmatrix} 1 & 2 & 0 & 2 & 5 \\ -2 & -5 & 1 & -1 & -8 \\ 0 & -3 & 3 & 4 & 1 \\ 3 & 6 & 0 & -7 & 2 \end{pmatrix}$$

מצאו בסיס ל-

- Row A (x)
- $\operatorname{Nul} A$ (2)
- .Col A (λ)

פתרון:

(X)

$$\begin{array}{c}
R_2 \to R_2 + 2R_1 \\
R_4 \to R_4 - 3R_1 \\
\hline
0 & 0 & 0 & -13 & -13
\end{array}
\qquad
\begin{array}{c}
\begin{pmatrix}
1 & 2 & 0 & 2 & 5 \\
0 & -1 & 1 & 3 & 2 \\
0 & -3 & 3 & 4 & 1 \\
0 & 0 & 0 & -13 & -13
\end{pmatrix}
\qquad
\begin{array}{c}
R_2 \to -R_2 \\
R_3 \to R_3 - 3R_2 \\
\hline
0 & 0 & 0 & -5 & -5 \\
0 & 0 & 0 & -13 & -13
\end{pmatrix}$$

ולכן הוקטורים הלא כולה אפסים

$$\mathbf{v}_1 = \begin{pmatrix} 1 & 0 & 2 & 0 & 1 \end{pmatrix}$$
, $\mathbf{v}_2 = \begin{pmatrix} 0 & 1 & -1 & 0 & 1 \end{pmatrix}$, $\mathbf{v}_2 = \begin{pmatrix} 0 & 0 & 0 & 1 & 1 \end{pmatrix}$.

Row A מהווה בסיס של

תנצאת המדורגת בסיס של אוור את המערכת החומגנית את מערכת נפתור את אוורגת המדורגת נפתור את אוורגת המערכת המערכת המתאימה לעיל מקבלים את המערכת המתאימה

כך ש-

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} -2s - t \\ s - t \\ s \\ -t \\ t \end{pmatrix} = s \begin{pmatrix} -2 \\ 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} + t \begin{pmatrix} -1 \\ -1 \\ 0 \\ -1 \\ 1 \end{pmatrix}$$

הקבוצה

$$\left\{ \begin{pmatrix} -2\\1\\1\\0\\0 \end{pmatrix}, \begin{pmatrix} -1\\-1\\0\\-1\\1 \end{pmatrix} \right\}$$

.Nul A הינה בסיס של

(ג) שיטה 1

 $\operatorname{Row} A^t$ לפי משפט 10.7 ע"ל למצוא בסיס של 10.7 לפי

$$A^{t} = \begin{pmatrix} 1 & -2 & 0 & 3 \\ 2 & -5 & -3 & 6 \\ 0 & 1 & 3 & 0 \\ 2 & -1 & 4 & -7 \\ 5 & -8 & 1 & 2 \end{pmatrix}$$

המדורגת של A^t היא

$$\tilde{U} = \begin{pmatrix} 1 & -2 & 0 & 3 \\ 0 & 1 & 3 & 0 \\ 0 & 0 & -5 & -13 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

לכן

$$B_{\text{Row }A^t} = \{ \begin{pmatrix} 1 & -2 & 0 & 3 \end{pmatrix}, \begin{pmatrix} 0 & 1 & 3 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & -5 & -13 \end{pmatrix} \}$$

ואז לפי משפט 10.7:

$$B_{\operatorname{Col} A} = \left\{ \begin{pmatrix} 1 \\ -2 \\ 0 \\ 3 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 3 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ -5 \\ -13 \end{pmatrix} \right\}$$

שיטה 2

לפי 10.1 העמודות של A המתאימות לעמודות של המדורגת U עם איבר מוביל, מהוות בסיס. מכיוון שיש איבר מוביל בעמודה ה-1 עמודה ה- 2 ועמודה ה- 4 בהמדורגת U, אז עמודה ה- 1 עמודה ה- 2 ועמודה ה- 4 של A מהווה בסיס:

$$B_{\text{Col }A} = \left\{ \begin{pmatrix} 1 \\ -2 \\ 0 \\ 3 \end{pmatrix}, \begin{pmatrix} 2 \\ -5 \\ -3 \\ 6 \end{pmatrix}, \begin{pmatrix} 2 \\ -1 \\ 4 \\ -7 \end{pmatrix}, \right\}$$