Лабораторная работа №8

Дисциплина: информационная безопасность

Студент: Подорога Виктор Александрович

Цель работы

Освоить на практике применение режима однократного гаммирования на примере кодирования различных исходных текстов одним ключом.

Выполнение лабораторной работы

1. Импортируем необходимые библиотеки и введем исходные текстовые сообщения:

```
[8] import numpy as np import operator as op import sys

[12] s1 = "С НОВЫМ ГОДОМ, ДРУЖИЩЕ!)" len(s1)

24

[13] s2 = "Спасибо за поздравление!" len(s2)

24
```

Рис. 1. Импорт библиотек и исходные данные

2. Опишем функцию шифрования:

```
[14] # ФУНКЦИЯ ШИФРОВАНИЯ
      # Получает на вход две символьные строки, которые затем переводятся в 16-ую систему.
      def encryption(text1, text2):
          # Работа с первым текстом print("Открытый текст 1: ", text1)
           new_text1 = []
          for i in text1:
              new_text1.append(i.encode("cp1251").hex())
          print("\nOткрытый текст 1 в 16-ой системе: ", new text1)
          print("\nОткрытый текст 2: ", text2)
           new_text2 = []
          new_text2.append(i.encode("cp1251").hex())
print("\nOткрытый текст 2 в 16-ой системе: ", new_text2)
          # Генерация ключа
r = np.random.randint(0, 255, len(text1))
key = [hex(i)[2:] for i in r]
           new_key = []
                    new_key.append(i.encode("cp1251").hex().upper())
           xor_text1 = []
           for i in range(len(new_text1)):
          xor_text1.append("(:02x)".format(int(key[i], 16) ^ int(new_text1[i], 16)))
print("\пшифротекст 1 в 16-ой системе: ", xor_text1)
               Переведем зашифрованное сообщение 1 в стро
          en_text1 = bytearray.fromhex("".join(xor_text1)).decode("cp1251")
          print("\пШифротекст 1: ", en_text1)
                           зашифрованного сообщения из 2 текста
           xor_text2 = []
           for i in range(len(new_text2)):
          xor_text2.append("{:02x}".format(int(key[i], 16) ^ int(new_text2[i], 16)))
print("\пшифротекст 2 в 16-ой системе: ", xor_text2)
# Переведем зашифрованное сообщение 2 в строку
           en_text2 = bytearray.fromhex("".join(xor_text2)).decode("cp1251")
           print("\пШифротекст 2: ", en_text2)
          return key, xor_text1, en_text1, xor_text2, en_text2
```

Рис. 2. Код функции шифрования

3. Выведем результат работы функции шифрования:

```
[15] k, t1, et1, t2, et2 = encryption(s1, s2)

OTERPITAIN TEXCT 1: C HORMET FORMS, ADJANUAGE!)

OTERPITAIN TEXCT 2: C HORMET FORMS, ADJANUAGE!

OTERPITAIN TEXCT 2: C HORMET FORMS: ['d1', 't2d', 't2d', 'e2', 'fb', 'ec', 't2d', 't2d',
```

Рис. 3. Результат работы функции шифрования

4. Опишем функцию дешифровки:

```
# p1 - открытый текст сообщения 
# функция расшифровки
# Затем применяя принцип однократного гаммирования, находит вид второго открытого сообщения без использова
# Возвращает функция второе расшифрованное сообщение в строковом формате и 16-ой системе.
def decryption(c1, c2, p1):
      # Работа с первым шифротексто
print("Шифротекст 1: ", c1)
       new_c1 = []
            new_c1.append(i.encode("cp1251").hex())
       print("\пШифротекст 1 в 16-ой системе: ", new_c1)
      # Работа со вторым шифротекстом print("\пШифротекст 2: ", c2)
       new_c2 = []
      for i in c2:
      new_c2.append(i.encode("cp1251").hex())
print("\nШифротекст 2 в 16-ой системе: ", п
                                                                      ", new_c2)
      # Работа с открытым текстом print("\nОткрытый текст 1: ", p1)
      new p1 = []
       for i in p1:
      new_pl.append(i.encode("cp1251").hex())
print("\nОткрытый текст 1 в 16-ой системе: ", new_pl)
       print("\nНахожу второй открытый текст...")
       xor_tmp = []
      sp2 = []
for i in range(len(p1)):
      xor_tmp.append("{:02x}".format(int(new_c1[i], 16) ^ int(new_c2[i], 16)))
sp2.append("{:02x}".format(int(xor_tmp[i], 16) ^ int(new_p1[i], 16)))
print("\noткрытый текст 2 в 16-ой системе: ", sp2)
      # Переведем расшифрованное сообщение 2 в строку
p2 = bytearray.fromhex("".join(sp2)).decode("cp1251")
      print("\nОткрытый текст 2:
return p2, sp2
```

Рис. 4. Код функции дешифровки

5. Выведем результат работы функции дешифровки:

```
й-ga/PCMEDAX]

Вифротекст 1 в 16-ой системе: ['05', 'a5', 'e7', '36', '80', '3d', 'c5', 'f5', 'b2', 'de', '4e', 'df', '0d', 'e9', 'b7', '67', '3d', 'd3', 'aa', 'c6', '18', 'fa', '58', 'bc']

Вифротекст 2: В]К)В'ЗХ-РАБОЯТ-SS-B5/N-Mar'

Вифротекст 2: В 16-ой системе: ['05', '6a', 'ca', '29', '8a', '27', 'c7', 'f5', '96', 'd0', '8a', 'de', '0f', '22', '73', '73', '2d', 'c2', 'a7', 'cb', '0c', 'f7', '9c', 'b4']

Открытый текст 1: С Новым Годом, дружище!)

Открытый текст 1 в 16-ой системе: ['d1', '20', 'cd', 'ee', 'e2', 'fb', 'ec', '28', 'c3', 'ee', 'ee', 'ec', '2c', '28', 'e4', 'f0', 'f3', 'e6', 'e8', 'f9', 'e5', '21', '29']

Нахожу второй открытый текст...

Открытый текст 2 в 16-ой системе: ['d1', 'e6', 'e6', 'f1', 'e8', 'e1', 'ee', 'e7', 'e6', 'e6', 'e7', 'e4', 'f0', 'e0', 'e2', 'eb', 'e5', 'ed', 'e5', '21']

Открытый текст 2: Спасибо за поздравление!
```

Рис. 5. Результат работы функции дешифровки

Как, зная один из текстов (Р1 или Р2), определить другой, не зная при этом ключа?

Для этого надо воспользоваться формулой:

 $C1 \oplus C2 \oplus P1 = P1 \oplus P2 \oplus P1 = P2$, где C1 и C2 – шифротексты. Как видно, ключ в данной формуле не используется.

Что будет при повторном использовании ключа при шифровании текста?

В таком случае мы получим исходное сообщение.

Как реализуется режим шифрования однократного гаммирования одним ключом двух открытых текстов?

Он реализуется по следующей формуле:

 $C1 = P1 \oplus K$, $C2 = P2 \oplus K$, где Ci – шифротексты, Pi – открытые тексты, K – единый ключ шифрования.

Перечислите недостатки шифрования одним ключом двух открытых текстов.

Во-первых, имея на руках одно из сообщений в открытом виде и оба шифротекста, злоумышленник способен расшифровать каждое сообщение, не зная ключа.

Во-вторых, зная шаблон сообщений, злоумышленник получает возможность определить те символы сообщения *P2*, которые находятся на позициях известного шаблона сообщения *P1*. В соответствии с логикой сообщения *P2*, злоумышленник имеет реальный шанс узнать ещё некоторое количество символов сообщения *P2*. Таким образом, применяя формулу из пункта 1, с подстановкой вместо *P1* полученных на предыдущем шаге новых символов сообщения *P2*, злоумышленник если не прочитает оба сообщения, то значительно уменьшит пространство их поиска.

Наконец, зная ключ, злоумышленник сможет расшифровать все сообщения, которые были закодированы при его помощи.

Перечислите преимущества шифрования одним ключом двух открытых текстов.

Такой подход помогает упростить процесс шифрования и дешифровки. Также при отправке сообщений между двумя компьютерами удобнее пользоваться одним общим ключом для передаваемых данных.

Вывод

В ходе лабораторной работы я получил практические навыки применения режима однократного гаммирования на примере кодирования различных исходных текстов одним ключом.