Logistics - Transportation

Clayton H. Sanford¹ Ronald H. Baker²

¹Department of Computer Science Brown University (Undergraduate)

²Department of Computer Science Brown University (Masters)

CS2951-O Foundations of Prescriptive Analytics, 2017

- Establish Feasible Baseline
 - Constraint problem for Initial Feasible Routes
- Simulated Annealing
- Solution Proposal Generators
 - Customer Swap Proposal
 - Customer Move Proposal
 - Route Reversal Proposal
 - Route Splitting Swapping Proposal

- Establish Feasible Baseline
 - Constraint problem for Initial Feasible Routes
- Simulated Annealing
- Solution Proposal Generators
 - Customer Swap Proposal
 - Customer Move Proposal
 - Route Reversal Proposal
 - Route Splitting Swapping Proposal

Constraint Problem for Initial Feasible Routes

Constants

V: number of vehicles

C: number of customers

d(I): demand of each customer

D: capacity per vehicle

Variables

 $\forall c \in \{1, ..., C\}, \mathtt{vehicleC}(c) \in \{1, ..., V\}$: vehicle paired to given customer

Constraints

$$\forall v \in \{1,...,V\} \sum\limits_{ exttt{vehicleC}(c)=v} d(c) \leq D$$

Initial Feasible Solution Results

Initial Feasible Solution Results

Initial Feasible Solution Results

- Establish Feasible Baseline
 - Constraint problem for Initial Feasible Routes
- 2 Simulated Annealing
- Solution Proposal Generators
 - Customer Swap Proposal
 - Customer Move Proposal
 - Route Reversal Proposal
 - Route Splitting Swapping Proposal

Simulated Annealing

 Randomly generate configuration s' from s. Probabilistically accept proposals with temperature parameter T:

$$\mathsf{Prob}(\mathsf{Accept\ proposal\ } s') = egin{cases} 1 & d(s') < d(s) \ \exprac{d(s) - d(s')}{T} & \mathsf{Otherwise} \end{cases}$$

- Only accept if satisfies capacity constraints.
- Each proposal has 2 degrees of freedom, so use O(n²) proposals before reducing the temperature.
- Reduce temperature by 0.95. If at least 97% of proposals accepted, multiply by 0.5 instead.
- Terminate after 5 temperature reductions in a row with no significant distance changes.
- Repeat entire process (with new feasible solution).

- Establish Feasible Baseline
 - Constraint problem for Initial Feasible Routes
- Simulated Annealing
- Solution Proposal Generators
 - Customer Swap Proposal
 - Customer Move Proposal
 - Route Reversal Proposal
 - Route Splitting Swapping Proposal

Customer Swap Proposal

Customer Move Proposal

Route Reversal Proposal

Route Splitting Swap Proposal

Summary

Instance	Customer Swap	Customer Move	Route Reversal	Route Splitting	Combined
51 - 5	↓ 63%	↓ 63%	↓ 39%	↓ 56%	↓ 62%
151 - 15	↓ 73%	↓ 73%	↓ 44%	↓ 73%	↓ 73%
386 - 47	↓ 41%	↓ 34%	↓ 25%	↓ 58%	↓ 51%

Summary

Summary

Establish Feasible Baseline Simulated Annealing Solution Proposal Generators Summary

Any Questions?