

SEQUENCE LISTING

<110> Kwon, Byoung

<120> NEW RECEPTOR AND RELATED PRODUCTS AND METHODS

<130> 740.013US2

<140> 08/955,572

<141> 1997-10-22

<150> 08/461,652

<151> 1995-06-05

<150> 08/122,796

<151> 1993-09-03

<160> 10

<170> FastSEQ for Windows Version 3.0

<210> 1

<211> 838

<212> DNA

<213> Homo sapiens

<400> 1

aatcagctt	gctagtatca	tacctgtgcc	agatttcate	atgggaaaca	gctgttacaa	60
catagtagcc	actctgtgc	tggtcctcaa	ctttgagagg	acaagatcat	tgaggatcc	120
ttgttagtaac	tgcccagctg	gtacattctg	tgataataac	aggaatcaga	tttcagtc	180
ctgtcctcca	aatagttct	ccagcgcagg	tggacaaaagg	acctgtgaca	tatgcaggca	240
gtgttaaaggt	gtttcagga	ccaggaagga	gtttcctcc	accagcaatg	cagagtgtga	300
ctgcactcca	gggtttcaact	gcctgggggc	aggatgcagc	atgtgtgaa	aggattgtaa	360
acaaggtcaa	gaactgacaa	aaaaagggtt	taaagactgt	tgctttggga	catttaacga	420
tcagaaaacgt	ggcatctgtc	gaccctggac	aaactgttct	ttggatggaa	agtctgtgct	480
tgtgaatggg	acgaaggaga	gggacgttgtt	ctgtggacca	tctccagctg	acctctctcc	540
gggagcatcc	tctgtgaccc	cgcctgcccc	tgcgagagag	ccaggacact	ctccgcagat	600
catctccttc	tttcttgcgc	tgacgtcgac	tgcgttgctc	ttcctgtgt	tcttcctcac	660
gctccgtttc	tctgttgtta	aacggggggag	aaagaaaactc	ctgttatatat	tcaaacaacc	720
atttatgaga	ccagtagaaaa	ctactcaaga	ggaagatggc	tgtagctgcc	gatttccaga	780
agaagaagaa	ggaggatgtg	aactgtgaaa	tggaaagtcaa	tagggctgtt	gggacttt	838

<210> 2

<211> 255

<212> PRT

<213> Homo sapiens

<400> 2

Met	Gly	Asn	Ser	Cys	Tyr	Asn	Ile	Val	Ala	Thr	Leu	Leu	Leu	Val	Leu
1				5				10					15		
Asn	Phe	Glu	Arg	Thr	Arg	Ser	Leu	Gln	Asp	Pro	Cys	Ser	Asn	Cys	Pro
				20				25				30			
Ala	Gly	Thr	Phe	Cys	Asp	Asn	Asn	Arg	Asn	Gln	Ile	Cys	Ser	Pro	Cys
				35			40				45				
Pro	Pro	Asn	Ser	Phe	Ser	Ser	Ala	Gly	Gly	Gln	Arg	Thr	Cys	Asp	Ile
				50			55			60					
Cys	Arg	Gln	Cys	Lys	Gly	Val	Phe	Arg	Thr	Arg	Lys	Glu	Cys	Ser	Ser
				65			70			75			80		
Thr	Ser	Asn	Ala	Glu	Cys	Asp	Cys	Thr	Pro	Gly	Phe	His	Cys	Leu	Gly

85	90	95	
Ala Gly Cys Ser Met Cys Glu Gln Asp Cys Lys Gln Gly Gln Glu Leu			
100	105	110	
Thr Lys Lys Gly Cys Lys Asp Cys Cys Phe Gly Thr Phe Asn Asp Gln			
115	120	125	
Lys Arg Gly Ile Cys Arg Pro Trp Thr Asn Cys Ser Leu Asp Gly Lys			
130	135	140	
Ser Val Leu Val Asn Gly Thr Lys Glu Arg Asp Val Val Cys Gly Pro			
145	150	155	160
Ser Pro Ala Asp Leu Ser Pro Gly Ala Ser Ser Val Thr Pro Pro Ala			
165	170	175	
Pro Ala Arg Glu Pro Gly His Ser Pro Gln Ile Ile Ser Phe Phe Leu			
180	185	190	
Ala Leu Thr Ser Thr Ala Leu Leu Phe Leu Leu Phe Phe Leu Thr Leu			
195	200	205	
Arg Phe Ser Val Val Lys Arg Gly Arg Lys Lys Leu Leu Tyr Ile Phe			
210	215	220	
Lys Gln Pro Phe Met Arg Pro Val Gln Thr Thr Gln Glu Glu Asp Gly			
225	230	235	240
Cys Ser Cys Arg Phe Pro Glu Glu Glu Gly Gly Cys Glu Leu			
245	250	255	

<210> 3

<211> 20

<212> DNA

<213> Homo sapiens

<400> 3

ttytgymgaa artayaaycc

20

<210> 4

<211> 20

<212> DNA

<213> Homo sapiens

<400> 4

ttytcstsca htgggtggaca

20

<210> 5

<211> 20

<212> DNA

<213> Homo sapiens

<400> 5

cccargswrc aggtttrca

20

<210> 6

<211> 20

<212> DNA

<213> Homo sapiens

<400> 6

ttytgrtcrt traatgttcc

20

<210> 7

<211> 25

<212> DNA

<213> Homo sapiens

<400> 7

aataagctt gctagtatca tacct

25

<210> 8
<211> 30
<212> DNA
<213> Homo sapiens

<400> 8
ttaagatctc tgcggagagt gtcctggctc

30

<210> 9
<211> 2350
<212> DNA
<213> Mus musculus

<400> 9

atgtccatga	actgctgagt	ggataaaacag	cacgggatat	ctctgtctaa	aggaatatta	60
ctacaccagg	aaaaggacac	attcgacaac	agggaaaggag	cctgtcacag	aaaaccacag	120
tgtcctgtgc	atgtacatt	tcgccatggg	aaacaactgt	tacaacgtgg	tggtcattgt	180
gctgctgcta	gtgggctgtg	agaagggtggg	agccgtgcag	aactcctgtg	ataactgtca	240
gcctggta	ttctgcagaa	aatacaatcc	agtctgcaag	agctgcctc	caagtacctt	300
ctccagcata	ggtggacagc	cgaactgtaa	catctgcaga	gtgtgtcag	gctatttcag	360
gttcaagaag	ttttgctcct	ctacccacaa	cgccgagtg	gagtgcattt	aaggattcca	420
ttgcttgggg	ccacagtgc	ccagatgtga	aaaggactgc	aggcctggcc	aggagctaac	480
gaagcagggt	tgcaaaaacct	gtagcttggg	aacatttaat	gaccagaacg	gtactggcgt	540
ctgtcgaccc	tggacgaact	gctctctaga	cggaaggct	gtgcttaaga	ccgggaccac	600
ggagaaggac	gtgggtgtg	gaccccctgt	ggtgagctt	tctccagta	ccaccatttc	660
tgtgactcca	gaggaggac	caggaggca	ctccttgcag	gtccttacct	tgttccctggc	720
gctgacatcg	gttttgc	tggccctgtat	cttcattact	ctccctgttct	ctgtgctcaa	780
atggatcagg	aaaaaaattcc	cccacatatt	caagcaacca	ttttaagaaga	ccactggagc	840
agctcaagag	gaagatgctt	gtagctgccc	atgtccacag	gaagaagaag	gaggaggagg	900
aggctatgag	ctgtatgt	ctatccttag	agatgtgtgg	gcccggaaaccg	agaagcacta	960
gaccccccacc	atccctgtga	acagcacaag	caacccccc	accctgttct	tacacatcat	1020
cctagatgat	gtgtggcgc	gcacctcatc	caagtcttct	ctaacgctaa	catatttgc	1080
tttacctttt	ttaaatcttt	ttttaaattt	aaatttatg	tgtgtgagtg	ttttgcctgc	1140
ctgtatgcac	acgtgtgtgt	gtgtgtgtgt	gtgacactcc	tgtatgcctga	ggaggtcaga	1200
agacaaagggt	ttgggtccat	aagaactgga	gttatggatg	gctgtgagcc	gnnnngatag	1260
gtcgggacgg	agacctgtct	tcttattttt	acgtgactgt	ataataaaaa	aaaaatgata	1320
tttcgggaaat	tgttagagatt	gtcctgacac	ccttcttagt	aatgatctaa	gaggaattgt	1380
tgatacgtag	tatactgtat	atgtgtatgt	atatgtatata	gtatataaa	gacttttta	1440
ctgtcaaagt	caacctagag	tgtctggta	ccaggtcaat	tttattggac	attttacgtc	1500
acacacacac	acacacacac	acacacacgt	ttatactacg	tactgttata	ggtattctac	1560
gtcatataat	gggataggggt	aaaaggaaac	caaagagtga	gtgatattat	tgtggaggtg	1620
acagactacc	ccttctgggt	acgttagggac	agacccctt	cgactgtct	aaaactcccc	1680
ttagaagtct	cgtcaagttc	ccggacgaag	aggacagagg	agacacagtc	cgaaaaggtt	1740
tttttccggc	aaatcccttc	cctgtttcgt	gacactccac	cccttgcgga	cacttgatgt	1800
tcatccttgc	gccggaaggt	caggtggta	ccgtctgtag	gggcggggag	acagagccgc	1860
gggggagcta	cgagaatcga	ctcacaggc	gccccggct	tcgcaatga	aacttttta	1920
atctcacaag	tttgcggccg	gctcgccgga	cctatggcg	cgatcctt	taccttaccc	1980
tggcgccaa	ataaaaacaac	caaaagcctt	gactccggta	ctaatttcc	ctgcccggcc	2040
ccgtaagcat	aacgcggcga	tctccactt	aagaacctgg	ccgcgttctg	cctggtctcg	2100
ctttcgtaaa	cggttcttac	aaaagtaatt	agttcttgct	ttcagcttcc	aagcttctgc	2160
tagtctatgg	cagcatcaag	gctggatattt	gctacggctg	accgctacgc	cgccgcataa	2220
agggtactgg	gcggcccg	gaaggccctt	tgggttcaga	aacccaaggc	ccccctcata	2280
ccaacgttcc	gacttgcatt	cttgcggta	cgtgggtgg	ggtgccttag	ctctttctcg	2340
atagttagac						2350

<210> 10
<211> 256
<212> PRT
<213> Mus musculus

<400> 10

Met Gly Asn Asn Cys Tyr Asn Val Val Val Ile Val Leu Leu Leu Val
1 5 10 15
Gly Cys Glu Lys Val Gly Ala Val Gln Asn Ser Cys Asp Asn Cys Gln
20 25 30
Pro Gly Thr Phe Cys Arg Lys Tyr Asn Pro Val Cys Lys Ser Cys Pro
35 40 45
Pro Ser Thr Phe Ser Ser Ile Gly Gly Gln Pro Asn Cys Asn Ile Cys
50 55 60
Arg Val Cys Ala Gly Tyr Phe Arg Phe Lys Lys Phe Cys Ser Ser Thr
65 70 75 80
His Asn Ala Glu Cys Glu Cys Ile Glu Gly Phe His Cys Leu Gly Pro
85 90 95
Gln Cys Thr Arg Cys Glu Lys Asp Cys Arg Pro Gly Gln Glu Leu Thr
100 105 110
Lys Gln Gly Cys Lys Thr Cys Ser Leu Gly Thr Phe Asn Asp Gln Asn
115 120 125
Gly Thr Gly Val Cys Arg Pro Trp Thr Asn Cys Ser Leu Asp Gly Arg
130 135 140
Ser Val Leu Lys Thr Gly Thr Thr Glu Lys Asp Val Val Cys Gly Pro
145 150 155 160
Pro Val Val Ser Phe Ser Pro Ser Thr Thr Ile Ser Val Thr Pro Glu
165 170 175
Gly Gly Pro Gly Gly His Ser Leu Gln Val Leu Thr Leu Phe Leu Ala
180 185 190
Leu Thr Ser Ala Leu Leu Leu Ala Leu Ile Phe Ile Thr Leu Leu Phe
195 200 205
Ser Val Leu Lys Trp Ile Arg Lys Lys Phe Pro His Ile Phe Lys Gln
210 215 220
Pro Phe Lys Lys Thr Thr Gly Ala Ala Gln Glu Glu Asp Ala Cys Ser
225 230 235 240
Cys Arg Cys Pro Gln Glu Glu Gly Gly Gly Gly Tyr Glu Leu
245 250 255