Pannon Egyetem Mérnöki Kar

SEGÉDLET

Műszaki hőtan elméleti kérdések

Műszaki hőtan Műszaki áramlástan és hőtan II. Műszaki áramlás- és hőtan

Tartalomjegyzék

Al	lapadatok	2
	A tárgy adatai	2
	A segédlet célja	2
	Ajánlott szakirodalom	2
1.	Hőtani alapfogalmak	3
2.	A tökéletes (ideális) gáz és állapotváltozásai	4
3.	Valóságos gázok és gőzök, halmazállapot-változás	5
4.	Hőkörfolyamatok	6
	Rankine-Clausius	6
5.	Nem visszafordítható folyamatok	8
6.	Hűtőgépek, hűtőkörfolyamatok	9
7 .	Hőterjedés	10
8.	A hőcserélők felépítése	11
т	title	12

Alapadatok

A tárgy adatai

Név: Műszaki hőtan Kód: VEMKGEB242H

Kreditérték: 2 (1 elmélet, 1 gyakorlat)

Követelmény típus: vizsga

Szervezeti egység: Gépészmérnöki Intézet

Előadás látogatása: kötelező Gyakorlat látogatása: kötelező

Számonkérés: a félév végén zárthelyi, írásbeli és szóbeli vizsga

A segédlet célja

A segédlet célja.

A segédlet kidolgozása még folyamatban van.

Ajánlott szakirodalom

- Dr. Pleva László, Zsíros László: Műszaki hőtan, Pannon Egyetemi Kiadó (ebből kimarad: 59-62; 66-69; 100-104; 114-209; 237-245; 280-309 oldalak)
- M. A. Mihajev: A hőátadás számításának gyakorlati alapjai, Tankönyvkiadó, Budapest, 1990.

Hőtani alapfogalmak

A tökéletes (ideális) gáz és állapotváltozásai

Valóságos gázok és gőzök, halmazállapot-változás

Hőkörfolyamatok

Rankine-Clausius

Rajzolja le a túlhevítést alkalmazó Rankine–Clausius-körfolyamat kapcsolási vázlatát, a körfolyamatot T-s diagramban, elhanyagolva a tápszivattyú hatását! Jelölje be a munkát (ω) és a kondenzátorban elvont hőt (q_K) ! Ha mindegyik nevezetes pontban ismertek az állapotjelzők, akkor hogyan számítható a bevitt hő (q_{BE}) , a munka (ω) , a kondenzátorban elvont hő (q_K) és a termikus hatásfok (η_T) ?

4.1. ábra. Víz-gőzT-s diagram

$$(q_{1-_4}=h_4-h_1; \quad -q_{5-1}=h_5-h_1; \quad \omega_t=h_4-h_5; \quad \eta_T=\frac{\omega_t}{q_{BE}}=\frac{h_4-h_5}{h_4-h_1};$$

4.2.ábra. A túlhevítést alkalmazó körfolyamat ábrája

Nem visszafordítható folyamatok

Hűtőgépek, hűtőkörfolyamatok

Hőterjedés

A hőcserélők felépítése

I. rész

title