You have a rooted tree with n vertices numbered from 1 through n where the root is vertex 1.

You are given m triplets, the j^{th} triplet is denoted by three integers u_j, v_j, c_j . The j^{th} triplet represents a simple path in the tree with endpoints in u_i and v_i such that u_i is ancestor of v_i . The cost of the path is c_i .

You have to select a subset of the paths such that the sum of path costs is maximum and the i^{th} edge of the tree belongs to at most d_i paths from the subset. Print the sum as the output.

Input Format

The first line contains a single integer, T, denoting the number of testcases. Each testcase is defined as follows:

- ullet The first line contains two space-separated integers, $oldsymbol{n}$ (the number of vertices) and $oldsymbol{m}$ (the number of paths), respectively.
- ullet Each line i of the n-1 subsequent lines contains three space-separated integers describing the respective values of a_i , b_i , and d_i where (a_i, b_i) is an edge in the tree and d_i is maximum number of paths which can include this edge.
- ullet Each line of the $oldsymbol{m}$ subsequent lines contains three space-separated integers describing the respective values of u_i , v_i , and c_i ($u_i \neq v_i$) that define the j^{th} path and its cost.

Constraints

- Let M be the sum of m over all the trees.
- Let ${m D}$ be the sum of ${m n} imes {m m}$ over all the trees.
- $1 < T < 10^3$
- $1 < M, m < 10^3$
- $1 \le D, n \le 5 \times 10^5$
- $\begin{array}{ll} \bullet & 1 \leq c_i \leq 10^9 \\ \bullet & 1 \leq d_j \leq m \end{array}$

Output Format

You must print T lines, where each line contains a single integer denoting the answer for the corresponding testcase.

Sample Input

Sample Output

One of the possible subsets contains paths 1, 2, 4, 5, 6, 7. Its total cost is 3+5+8+10+5+6=37.