Demostración probabilidad independencia de sucesos

Javier Gómez López

29 de abril de 2021

Sean A y B dos sucesos probabilisticos independientes. Demuestra que:

• $A y \bar{B}$ lo son.

Puesto que A y B son independientes, tenemos que

$$P(A \cap B) = P(A) \cdot P(B) \tag{1}$$

Nosotros queremos demostrar que $P(A \cap \bar{B}) = P(A) \cdot P(\bar{B})$.

Por otro lado, tenemos que $A \cap \bar{B} = A - A \cap B$. Así:

$$P(A \cap \bar{B}) = P(A) - P(A \cap B) = P(A) - P(A) \cdot P(B) = P(A) \cdot (1 - P(B))$$
$$P(A \cap \bar{B}) = P(A) \cdot P(\bar{B})$$

Queda demostrado que $P(A \cap \bar{B}) = P(A) \cdot P(\bar{B})$ y por tanto que A y \bar{B} son independientes.

 \blacksquare \bar{A} y B lo son.

En esta ocasión tenemos que $\bar{A} \cap B = B - A \cap B$ y queremos demostrar que $P(\bar{A} \cap B) = P(\bar{A}) \cdot P(B)$. Usando (1):

$$P(\bar{A} \cap B) = P(B) - P(A \cap B) = P(B) - P(A) \cdot P(B) = P(B) \cdot (1 - P(A))$$
$$P(\bar{A} \cap B) = P(\bar{A}) \cdot P(B)$$

Queda demostrado que $P(\bar{A} \cap B) = P(\bar{A}) \cdot P(B)$ y que \bar{A} y B son independientes.

■ \bar{A} y \bar{B} lo son.

Ahora tenemos que $\bar{A} \cap \bar{B} = \Omega - A \cup B$ y queremos demostrar que $P(\bar{A} \cap \bar{B}) = P(\bar{A}) \cdot P(\bar{B})$. Usando (1):

$$P(\bar{A} \cap \bar{B}) = P(\Omega) - P(A \cup B) = 1 - [P(A) + P(B) - P(A \cap B)]$$

$$P(\bar{A} \cap \bar{B}) = 1 - [P(A) + P(B) - P(A) \cdot P(B)]$$

$$P(\bar{A} \cap \bar{B}) = 1 - P(A) - P(B) \cdot [1 - P(A)] = [1 - P(A)] \cdot [1 - P(B)]$$

$$P(\bar{A} \cap \bar{B}) = P(\bar{A}) \cdot P(\bar{B})$$

Queda demostrado que $P(\bar{A} \cap \bar{B}) = P(\bar{A}) \cdot P(\bar{B})$ y que \bar{A} y \bar{B} son independientes.