

목차

Segment Tree

- Range Query
- What is Segment Tree?
- 예제

Lazy Propagation

- What is Lazy Propagation?
- 예제

• 마무리

- 연습문제

- Range Query
- What is Segment Tree?
- 예제

- N개의 수로 이루어진 배열
- 연속한 구간의 합
- Sum of [2, 6] = ?

arr 1 2 -3 4 -5 3 0 1

- N개의 수로 이루어진 배열
- 연속한 구간의 합
- Sum of [2, 6] = ?
- 나이브한 접근: arr[2] + arr[3] + arr[4] + arr[5] + arr[6] = 1
- O(n)

arr 1 2 -3 4 -5 3 0 1

- N개의 수로 이루어진 배열
- 연속한 구간의 합
- Sum of [2, 6] = ?
- Prefix Sum: prefix[6] prefix[1] = 1
- O(1)

arr	1	2	-3	4	-5	3	0	1
prefix	1	3	0	4	-1	2	2	3

- N개의 수로 이루어진 배열
- 배열 값을 업데이트
- arr[2] = 4
- Prefix[2] = 5, Prefix[3] = 2, ...
- O(n) for update

arr	1	4	-3	4	-5	3	0	1
prefix	1	5	2	6	1	4	4	5

- Range Query
 - 주어진 배열에서 특정 연속구간에 대한 질의를 하는 문제
 - Update를 요구할 때도 있음
- Naive한 방식
 - Query: O(n)
 - Update: O(1)
- Prefix Sum을 사용
 - Query: O(1)
 - Update: O(n)

- Range Query
 - 주어진 배열에서 특정 연속구간에 대한 질의를 하는 문제
 - Update를 요구할 때도 있음
- Segment Tree
 - Query: O(logn)
 - Update: O(logn)

- 아이디어: 분할-정복
 - 일정 단위로 원소들을 묶어두자
 - 구간을 분할해서 각각의 결과값을 합치자

- 아이디어: 분할-정복
 - 일정 단위로 원소들을 묶어두자
 - 구간을 분할해서 각각의 결과값을 합치자

- 아이디어: 분할-정복
 - 일정 단위로 원소들을 묶어두자
 - 구간을 분할해서 각각의 결과값을 합치자

- 아이디어: 분할-정복
 - 일정 단위로 원소들을 묶어두자
 - 구간을 분할해서 각각의 결과값을 합치자

- Sum[2, 6]을 구해보자
 - Naive한 방식: 5개의 값을 더한다

- Sum[2, 6]을 구해보자
 - 묶은 구간을 활용: 3개의 값을 더한다

- 노드가 커버하는 구간 👄 우리가 계산하는 구간
 - 1. 아예 겹치지 않거나 -> 해당 노드를 버린다
 - 2. 노드의 구간 < 우리가 계산하는 구간에 포함되거나 -> 해당 노드의 값을 답에 합쳐준다
 - 3. 서로 일부 겹치거나 -> 구간을 반으로 나눠서 각각 구해진 값을 합쳐준다

•

- Sum[2, 6]
- 첫번째 노드에서 시작: [1, 8]
- Case 3: 일부 겹침
 - -> 양쪽으로 분할

•

• Sum[2, 6]

• 왼쪽 자식 노드: [1, 4]

• Case 3: 일부 겹침

-> 양쪽으로 분할

•

• Sum[2, 6]

• 왼쪽 자식 노드: [1, 2]

• Case 3: 일부 겹침

-> 양쪽으로 분할

• Sum[2, 6]

• 왼쪽 자식 노드: [1, 1]

• Case 1: 아예 안 겹침

-> 버림

•

- Sum[2, 6]
- 오른쪽 자식 노드: [2, 2]
- Case 2: 노드구간 < 연산구간
 - -> return 노드값

•

- Sum[2, 6]
- 오른쪽 자식 노드: [3, 4]
- Case 2: 노드구간 < 연산구간
 - -> return 노드값

- Sum[2, 6]
- 최종 결과
 - 2 + 1 + -2 = 1

- Query 시간복잡도
 - 각 노드에서는
 - 버리거나(쓰레기값을 return)
 - 값을 return하거나
 - 분할하여 재귀 <-- 병목

3								
4 -1								
3	3 1				-2			
1	2	-3	4	-5	3	0	1	

- Query 시간복잡도
 - 최악의 경우
 - 모든 노드에서 분할 -> O(n)

- Query 시간복잡도
 - 1. 아예 겹치지 않거나
 - -> 관심없는 구간에 위치
 - 2. 노드의 구간 < 우리가 계산하는 구간에 포함되거나 -> 관심있는 구간에 위치
 - 3. 서로 일부 겹치거나
 - -> 노드가 분할할 조건: <mark>관심없는 구간</mark> 관심있는 구간 에 걸쳐있는 경우

- Query 시간복잡도
 - 관심x | 관심o 사이에 걸쳐있는 노드는 각 레벨에 <mark>최대 2개</mark> 존재
 - 나머지 노드는 뭔가를 return하고 stop
 - 2개가 분할해봐야 <mark>4개</mark>
 - 각 레벨에서 만지는 노드의 개수는 최대 4개 -> 전체 = 최대 4*logn개 -> O(logn)

• Update 시간복잡도

• arr[5] = 3

- Update 시간복잡도
 - 어떤 인덱스가 업데이트되면, 함께 업데이트해야 할 구간?
 - 해당 인덱스를 포함하는 구간
 - 루트까지의 경로!

-> O(logn)

11								
	4	1		7				
	3 1				6 1			
1	2	-3	4	3	3	0	1	

- Update 실제 구현
 - Full Binary Tree의 인덱스 특징 활용
 - 두 child node의 인덱스는 각각 2*parent, 2*parent+1
 - 리프부터 2로 나눠가며 parent로 접근

1									
		<u> </u>			3	3			
4	4 5			6 7					
8	9	10	11	12	13	14	15		

• 공간복잡도

- $n + n/2 + n/4 + ... + 1 \le 2*n$ -> O(n)
- 구현의 편리성을 위해 주어진 배열의 크기를 2의 거듭제곱꼴로 만들자
 - Ex) 배열이 5개라면 리프가 8개라고 가정. 추가한 리프노드들에는 쓰레기값 투척
 - 리프의 개수가 최대 2*n 가까이 -> seg배열의 크기는 4*n

15									
10 5									
3 7				Ę	5	(0		
1 2 3 4				5	0	0	0		

리프의 인덱스가 리프의 개수로 시작 -> 접근이 편함

1									
		2		3					
						_	7		
	4 5)	,	/		
0	0	10	11	10	12	1./	15		
8	9	10		I Z	13	14	15		

- 정리
 - 세그먼트 트리는 구간에 대한 업데이트와 쿼리를 모두 O(logn)에 처리할 수 있는 자료구조이다.
 - 쿼리: 루트 노드부터 시작, 각 노드에 대해 제외/포함/분할의 3가지 경우로 처리
 - 업데이트: 해당 인덱스 -> 루트까지의 경로상의 노드들을 수정
 - <u>구현 코드 링크</u>(합 세그트리 기준)

Segment Tree 예제

- 기본형
- 값의 개수 세기
- Plane Sweeping

기본형

- 주어진 배열에 대해 2가지 쿼리를 처리하라.
 - 주어진 구간 합, 곱, 최대, 최소값을 출력
 - 주어진 인덱스값을 Update

기본형

- 주어진 배열에 대해 2가지 쿼리를 처리하라.
 - 주어진 구간 합, 곱, 최대, 최소값을 출력
 - 주어진 인덱스값을 Update
- 앞서 설명한대로 구현
- 쓰레기값에 주의
 - 합: 0
 - 곱:1
 - 최대: -INF
 - 최소: INF

- Segment Tree의 인덱스를 값으로 활용
 - 가장 왼쪽에 있는 리프노드 = 배열 안에 1의 개수
 - 다음 리프노드 = 배열 안에 2의 개수
 - ...
 - Sum[l, r] = 값이 [l, r] 범위에 있는 원소의 개수

	l .		<u> </u>	<u> </u>					
3	1	2	3	3	5	7	8		

- Segment Tree의 인덱스를 값으로 활용
 - 가장 왼쪽에 있는 리프노드 = 배열 안에 1의 개수
 - 다음 리프노드 = 배열 안에 2의 개수
 - ...
 - Sum[l, r] = 값이 [l, r] 범위에 있는 원소의 개수

1								
			T	T	<u> </u>	T	<u> </u>	
3	1	2	3	3	5	7	8	

- Segment Tree의 인덱스를 값으로 활용
 - 가장 왼쪽에 있는 리프노드 = 배열 안에 1의 개수
 - 다음 리프노드 = 배열 안에 2의 개수
 - ...
 - Sum[l, r] = 값이 [l, r] 범위에 있는 원소의 개수

1	1						
'	<u>'</u>						
3	1	2	3	3	5	7	8

- Segment Tree의 인덱스를 값으로 활용
 - 가장 왼쪽에 있는 리프노드 = 배열 안에 1의 개수
 - 다음 리프노드 = 배열 안에 2의 개수
 - ...
 - Sum[l, r] = 값이 [l, r] 범위에 있는 원소의 개수

1	1	3						
3	1	2	3	3	5	7	8	

- Segment Tree의 인덱스를 값으로 활용
 - 가장 왼쪽에 있는 리프노드 = 배열 안에 1의 개수
 - 다음 리프노드 = 배열 안에 2의 개수
 - ...
 - Sum[I, r] = 값이 [I, r] 범위에 있는 원소의 개수

8									
5 3									
	2 3			1 2			2		
1	1	3	0	1	0	1	1		
	l								
3	1	2	3	3	5	7	8		

- Inversion을 정의
 - 어떤 배열에서 앞에 있는 값이 뒤에 있는 값보다 큰 쌍
- 주어진 배열에서 inversion인 쌍의 개수 세기

4

4	2	7	1	5	6	3	8
				1	1		

5

6

8

- 각 원소에 대해, 나보다 크면서 내 앞에 있는 수의 개수
 - 값의 개수 세는 seg tree를 활용
 - 내 앞의 원소들까지 반영되어 있다면, 값이 나보다 큰 수의 개수를 빠르게 구할 수 있다.
- Ex) 현재 원소가 1이라면, 현재 세그에서 sum[2, MAX]의 개수 = 3

4 2 7	1	5	6	3	8
-------	---	---	---	---	---

0	1	0	1	0	0	1	0
---	---	---	---	---	---	---	---

- 각 원소에 대해, 나보다 크면서 내 앞에 있는 수의 개수
 - 값의 개수 세는 seg tree를 활용
 - 내 앞의 원소들까지 반영되어 있다면, 값이 나보다 큰 수의 개수를 빠르게 구할 수 있다.
- Ex) 현재 원소인 1을 세그트리에 반영하고 넘어감

- 각 원소에 대해, 나보다 크면서 내 앞에 있는 수의 개수
 - 값의 개수 세는 seg tree를 활용
 - 내 앞의 원소들까지 반영되어 있다면, 값이 나보다 큰 수의 개수를 빠르게 구할 수 있다.
- Ex) 현재 원소가 1이라면, 현재 세그에서 sum[2, MAX]의 개수
- 배열을 앞에서부터 훑으며 아래의 동작을 반복
 - 값의 범위가 [a[i]+1, MAX] 안에 있는 원소의 개수를 답에 반영
 - a[i]값을 seg tree에 반영

K번째 작은 수 찾기

- 빈 배열로 시작해 2가지 쿼리 수행
 - 주어진 값을 배열에 추가/삭제
 - 배열의 원소들 중 K번째 작은 수 구하기

• Ex)
$$K = 3 \rightarrow ans = 3$$

• Ex)
$$K = 5 -> ans = 5$$

K번째작은수찾기

• 현재 배열의 상태

5	2	7	1	5	6	3	8

• 값의 개수 세그

K번째 작은 수 찾기

- K=3
- 왼쪽 노드값이 K 이상이므로, 오른쪽 구간은 고려할 필요가 없음

8							
				•			
	3 5						
				!			
	2	,]	3	3		2
1	1	1	0	2	1	1	1

K번째 작은 수 찾기

- K=3
- 왼쪽 구간의 개수가 K보다 작으므로, K번째 작은 수는 오른쪽 구간에 존재
- 전체구간에서 3번째 수 = 오른쪽 구간에서 1번째 수
 - K를 3-2 = 1로 조정

8								
	5							
	2		1	3	3		2	
				L		I		
1	1	1	0	2	1	1	1	

K번째작은수찾기

- K=1
- 왼쪽 구간의 개수가 K이하이므로 왼쪽으로 이동

K번째 작은 수 찾기

• K=1

• 답: 3

K번째작은수찾기

- Update
 - 추가/삭제되는 값에 대응하는 인덱스에 +-1

Plane Sweeping

- Sweeping
 - 1차원 배열의 앞에서부터 순차적으로 어떤 동작을 수행
 - Ex) Counting Inversions

- Plane Sweeping
 - 2차원 평면에서 순서대로 어떤 동작을 수행

문제 설명

- 좌표평면 위에 점들이 뿌려져 있다
- 절대우위 정의
 - 두점 P1(x1, y1), P2(x2, y2)에 대해
 - x1 ≤ x2, y1 ≤ y2 를 만족할 때
 - P2가 P1에게 절대우위를 가진다.
- 절대우위 쌍의 개수를 구하여라.

답: 7

문제 설명

- 좌표평면 위에 점들이 뿌려져 있다
- 절대우위 정의
 - 두 점 P1(x1, y1), P2(x2, y2)에 대해
 - x1 ≤ x2, y1 ≤ y2 를 만족할 때
 - P2가 P1에게 절대우위를 가진다.
- 절대우위 쌍의 개수를 구하여라.

• 나이브 솔루션: O(n^2)

답: 7

풀이

- 어떤 점에 대한 답을 구하기 전에 왼쪽 점들을 모두 세그트리에 반영
 - 먼저 반영된 점 = x좌표는 나 이하 보장
- 반영된 점들 중 y좌표가 자신 이하인 개 수만 세어주면 됨

답: 7

Plane Sweeping

풀이

- 어떤 점에 대한 답을 구하기 전에 왼쪽 점들을 모두 세그트리에 반영
 - 먼저 반영된 점 = x좌표는 나 이하 보장
- 반영된 점들 중 y좌표가 자신 이하인 개 수만 세어주면 됨
- 모든 점들을 x기준 -> y기준으로 정렬 해 두고 순서대로 진행
 - Sum[0, Point[i].y)의 값을 답에 반영
 - Update(Point[i].y)

예시

답: 7

Lazy Propagation

- What is Lazy Propagation?
- 예제

Segment Tree의 한계

• Segment Tree는 단일 원소에 대한 update를 O(logn)에 지원합니다.

• 구간 update는?

Segment Tree의 한계

• Segment Tree는 단일 원소에 대한 update를 O(logn)에 지원합니다.

- 구간 update는?
 - 구간 원소 개수만큼 반복하는 것 외엔 방법이 없습니다...
 - O(klogn): k가 구간의 길이일 때

- Segment Tree with Lazy Propagation은 구간 업데이트를 O(logn)에 제공
- Lazy Propagation: 게으른 전파
 - Update 요청에 대해 당장 수행하지 않고 뒤로 미룬다!
 - 최대한 미룰 수 있을 때까지
 - 마치-저를 보는 것 같네요;;

- Lazy 배열을 정의
 - 해당 노드에 이런 업데이트를 수행할 것이다. 언젠가는.
- 어떤 구간을 업데이트해야 할 때, 구간에 해당하는 노드까지만 업데이트
 - 뒷일은 나중에 생각한다
- Propagate 함수 정의
 - 앞에서 미뤄둔 "뒷일"을 수행
 - 내 업데이트를 수행하고, 자식 노드들에게도 전파
- Update함수는 top-down을 사용
 - 밑으로 전파해서 propagate한 값을 다시 반영해야 하므로
 - 예시 동작으로 설명

- Sum Segment Tree
- Update[1,4] 내용은 +3

- Sum Segment Tree
- Update[1,4] 내용은 +3
 - 1~4 구간에 해당하는 노드에는 3 * (구간 길이)로 업데이트

37											
16 + 3*4 = 28				21							
6		10		13		8					
4	2	7	3	8	5	1	7				

- Update[1,4] 내용은 +3
 - 두 자식 노드에게 lazy배열값 +3
 - seg 배열값은 변화 x
 - 나중에 저 노드들을 만질때 3에 해당하는 update를 해야 한다는 의미.

- Sum Segment Tree
- Update[1,4] 내용은 +3
 - 부모값 update

- Sum Segment Tree
- Sum[1,2] 호출

- Sum Segment Tree
- Sum[1,2] 호출

- Sum Segment Tree
- Sum[1,2] 호출
 - 해당 노드를 만질 때 propagate 함수를 호출
 - Lazy배열 값을 반영 -> 6 + 3 * 2 = 12

	37												
		2	<u> </u>		21								
La	zy[4] = 3	S Laz	y[5] = 3 10		13		8						
	1	2	7	2	Q	5	1	7					
	4		/	3	8	5	<u> </u>	/					

- Sum Segment Tree
- Sum[1,2] 호출
 - 해당 노드를 만질 때 propagate 함수를 호출
 - 자식노드에 Lazy값을 전파

- Propagate함수는 lazy값을 처리하고 두 자식노드에 뿌려주므로 O(1)
- Update 및 쿼리의 시간복잡도는 그대로 O(logn)
- <u>구현 코드 링크</u> (Sum Segment Tree)

- 주어진 트리구조에서 2가지 쿼리를 수행
 - 어떤 노드의 하위노드에 전부 값을 업데이트
 - 특정 노드의 값을 출력

- 주어진 트리구조에서 2가지 쿼리를 수행
 - 어떤 노드의 하위노드에 전부 값을 업데이트
 - 특정 노드의 값을 출력
- 2회차에서 배운 Euler Tour Technique 적용
 - Dfs를 이용한 넘버링

- 주어진 트리구조에서 2가지 쿼리를 수행
 - 어떤 노드의 하위노드에 전부 값을 업데이트
 - 특정 노드의 값을 출력
- 2회차에서 배운 Euler Tour Technique 적용
 - Dfs를 이용한 넘버링
- 2번 노드를 update-> [2, 5]번 인덱스노드를 update
- 8번 노드를 update
 - -> [8, 9]번 인덱스노드를 update

- 주어진 트리구조에서 2가지 쿼리를 수행
 - 어떤 노드의 하위노드에 전부 값을 업데이트
 - 특정 노드의 값을 출력
- 2회차에서 배운 Euler Tour Technique 적용
 - Dfs를 이용한 넘버링
- 2번 노드를 update
 - -> [2, 5]번 인덱스노드를 update
- 8번 노드를 update
 - -> [8, 9]번 인덱스노드를 update
 - -> 트리를 펼치면 Lazy Propagation 문제가 된다!

마무리

- Segment Tree는 특정 구간에 대한 쿼리를 효율적으로 수행하는 자료구조이다.
 - 구간 대표값 구하기: O(logn)
 - 각 원소에 대한 업데이트: O(logn)
 - 예제
 - 배열의 인덱스 사용하기
 - 원소의 값을 인덱스로 사용하기
 - Plane Sweeping
- Lazy Propagation은 구간에 대한 업데이트도 O(logn)에 수행하는 자료구조이다.
 - 추가 변수
 - 해야 할 업데이트를 저장할 Lazy 배열
 - Lazy값을 뿌려줄 Propagate 함수
 - 각 노드를 만질 때 Propagate 한번씩 해주면 끝
 - 예제
 - On Tree

연습문제

- 2042 구간 합 구하기
- 10999 구간 합 구하기 2
- 11505 구간 곱 구하기
- 10090 Counting Inversions
- 2243 사탕 상자
- 5419 북서풍
- 14267 회사문화 1
- 14268 회사문화 2
- 14287 회사문화 3
- 14288 회사문화 4
- 3133 코끼리

- 스스로 못 풀어내도 괜찮습니다.
- 어떻게든 전부 AC를 받고 이해하는 것이 목표

Q&A