Enzimas versus "outros" catalisadores

- Catalisadores proteicos
- Elevados factores de aceleração das reacções
- Grande especificidade para os substratos
- Estereo-especificidade (também absoluta)
- Reduzido número de subprodutos de reacção
- Condições de reacção suaves (temperatura, pH, salinidade,...)
- Capacidade de regulação

Aumento da velocidade de reacção

 As reacções catalisadas enzimaticamente apresentam, factores de aceleração da ordem de 10⁶-10¹⁷ relativamente às reacções não-catalisadas.

 Os incrementos observados são geralmente várias ordens de grandezas superiores aos obtidos com catalisadores não-enzimáticos!

Exemplo - descarboxilação da orotidina-5-fostato:

- tempo de meia vida em solução: 78 milhões de anos
- tempo de meia na célula: 0.017 segundos!

Aceleração da velocidade de reacção

Enzima	k _{cat} / k _{uncat}	
Ciclofilina	10 ⁵	
Anidrase carbónica	107	
Triose fosfato isomerase	10 ⁹	
Carboxipeptidase A	10 ¹¹	
Fosfoglucomutase	1012	
Succinil-CoA transferase	10 ¹³	
Urease	1014	
Ornitinina mono-P decarboxilase	10 ¹⁷	

Tempo de meia vida em meio aquoso

iP.

Catálise

Estado de transição: 10⁻¹² a 10⁻¹³ seg

Reaction coordinate

Reaction coordinate

$$\Delta G_{\mathrm{cat}}^{\neq} < \Delta G_{\mathrm{uncat}}^{\neq}$$

$$\Delta G_{\rm uncat}^{\neq} = -RT \ln k_{\rm uncat}$$

$$\Delta G_{\mathrm{cat}}^{\scriptscriptstyle \neq} = -RT \ln k_{\mathrm{cat}}$$

$$\Delta G_{\text{uncat}}^{\neq} - \Delta G_{\text{cat}}^{\neq} = \Delta \Delta G^{\neq} = RT \ln(k_{\text{cat}} - k_{\text{uncat}})$$

$$\frac{k_{\text{cat}}}{k_{\text{uncat}}} = \exp(\Delta \Delta G^{\neq} / RT)$$

$$k_{\rm cat}/k_{
m unca}$$

Factor de aceleração

Condições de reacção suaves

 As reacções catalisadas enzimaticamente dão-se em condições relativamente suaves: temperaturas geralmente muito abaixo dos 100 °C, pressão atmosférica, pH próxima da neutralidade.

 A catálise inorgânica requere geralmente temperaturas elevadas, e valores extremos de pressão e pH!

Especificidade elevada

 Os enzimas podem ser extraordinariamente específicos tanto em relação aos seus substratos, como em relação aos seus produtos – muito mais que os catalisadores químicos.

 As reacções catalisadas enzimaticamente raramente dão origem a produtos alternativos.

Interacção enzima-substrato

- A associação enzima-substrato é estabilizada por forças não-covalentes: interacções electrostáticas, forças de van der Waals, ligações de hidrogénio, efeito hidrofóbico (as mesmas forças que estabilizam a estrutura proteica).
- O estudos estruturais dos enzimas mostram que os centros activos se encontram *largamente preformados* na ausência dos seus substratos.

Estereo-especificidade relativa e absoluta

- Os enzimas são altamente específicos tanto em termos da ligação a substratos quirais como na catálise das suas reacções. Esta estereoespecificidade resulta da complementaridade estrutural entre centro activo e substratos.
- Os enzimas podem distinguir entre átomos *pro-quirais* (estereo-especificidade *absoluta*).

Ex: álcool desidrogenase distingue entre H_{pro-R} e H_{pro-S} da molécula de etanol.

• A especificidade dos enzimas para os seus substratos pode ser modulada pela variabilidade da sequência de aminoácidos no centro activo e na sua vizinhança

• A especificidade dos enzimas para os seus substratos pode ser modulada pela variabilidade da sequência de aminoácidos no centro activo e na sua vizinhança

O mecanismo catalíticos das proteases de serina está dependente do posicionamento preciso dos resíduos catalíticos do centro activo (tríade catalítica). Nesta ilustração está exibida a sobreposição do centro activo de 5 membros desta família de proteínas.

Mecanismo catalítico das proteases de serina

apoenzima + cofactor ⇒ holoenzima

• O repertório químico da catálise enzimática pode ser estendido através de **cofactores enzimáticos**, cuja estrutura não-proteica permite a existência de grupos funcionais com novas possibilidades catalíticas.

Cofactores enzimáticos

X = H Nicotinamide adenine dinucleotide (NAD⁺) $X = PO_2^{2^-}$ Nicotinamide adenine dinucleotide phosphate (NADP⁺)

Ajuste induzido

• Em 1894, Emil Fischer propõe que o enzima acomoda o seu substrato como uma chave numa fechadura (lock-and-key model)

 De acordo com o modelo de ajuste induzido, proposto por Koshland em 1954, a estrutura que o enzima acomoda é próxima do estado de transição

da reacção:

Catálise no modelo lock-and-key

A formação do complexo enzima-substrato leva a uma estabilização com o consequente aumento da energia de activação ∆G≠.
Não consegue explicar a catálise enzimática!

Catálise no modelo de ajuste induzido

A formação do complexo enzima-estado de transição leva a uma estabilização deste, com a consequente diminuição da energia de activação ∆G[≠]. Consegue explicar a catálise enzimática!

Interação enzima-substrato

Muito do potencial catalítico dos enzimas deriva da energia livre libertada na formação de múltiplas interacções fracas com o substrato

As interacções fracas são maximizadas no estado de transição da reacção - o enzima é complementar do estado de transição e não do substrato!

Estabilização do estado de transição nas protéases de serina

Complexo de Michaelis

Estabilização do estado de transição

Os seres vivos têm necessidade absoluta de regular o fluxo das suas vias metabólicas, de modo a ter controle sobre os processos internos e responder aos estímulos do ambiente. Esta regulação é conseguida operando essencialmente a três níveis:

- Quantidade de enzima disponível: A quantidade de enzima disponível num dado instante depende das suas taxas de síntese e degradação, e estas podem ser alteradas em reposta a um estímulo do meio, com seja a presença de determinado metabolito.
- Modificadores de actividade: A actividade enzimática pode ser regulada directamente através de alterações estruturais ou conformacionais. A afinidade do enzima para o substrato(s) pode ser alterada pela ligação de um efector, ou modificador da actividade. Se este efector se ligar a um outro local que não o centro activo, diz-se ser um efector alóstereo.
- Modificação covalente do enzima: A actividade enzimática pode ser alterada por modificação da estrutura covalente do enzima, por exemplo fosforilação ou activação hidrolítica de um zimogéneo.

O enzima aspartato transcarbamilase (ATCase) catalisa o primeiro passo da biossíntese das pirimidinas.

As subunidades catalíticas da ATCase apresentam actividade máxima e independente da concentração dos efectores quando dissociadas das subunidades reguladoras..

Transição do estado T para o estado S da ATCase pela ligação dos seus dois substratos. Os contactos que impedem a rotação das subunidades catalíticas desaparecem com a ligação dos substratos, permitindo a passagem ao estado R.

Transição do estado T para o estado S da ATCase pela ligação dos seus dois substratos. Os contactos que impedem a rotação das subunidades catalíticas desaparecem com a ligação dos substratos, permitindo a passagem ao estado R.

Classificação dos enzimas

Os enzimas são classificados de acordo com um sistema estabelecido pela *International Comission on Enzymes*, em 1956. Este sistema permite também nomear os enzimas de forma sistemática.

International Classification of Enzymes*

No.	Class	Type of reaction catalyzed
1	Oxidoreductases	Transfer of electrons (hydride ions or H atoms)
2	Transferases	Group-transfer reactions
3	Hydrolases	Hydrolysis reactions (transfer of functional groups to water)
4	Lyases	Addition of groups to double bonds, or formation of double bonds by removal of groups
5	Isomerases	Transfer of groups within molecules to yield isomeric forms
6	Ligases	Formation of C—C, C—S, C—O, and C—N bonds by condensation reactions coupled to ATP cleavage

EC 1.1.1.1 Alcool desidrogenase

EC 3.4.21.4 Tripsina

https://enzyme.expasy.org/enzyme-search-ec.html

Recursos "on-line"

Expasy ENZYME: http://enzyme.expasy.org

BRENDA: http://www.brenda-enzymes.org

Protein Data Bank: http://www.pdb.org

Biochemical pathways:
 https://www.genome.jp/kegg/pathway.html
 http://web.expasy.org/pathways

Expasy Enzyme

Kegg Metabolic Pathways

https://www.genome.jp/kegg/pathway.htm

Expasy Pathways

