04_Concept_Learning

4.1 A Concept Learning Task

- Given:
 - Variable vector structure $X = \{x_1, x_2, \dots, x_n\}$
 - A vector, that's a sequence of values, each having its own meaning.
 - e.g., $X = \{Sky, Temp, Humid, Wind, Water, Forecast\}$
 - Target Function $c:X o \{0,1\}$
 - e.g., $\{Sky, Temp, Humid, Wind, Water, Forecast\}$ $\rightarrow \{EnjoySpt = Yes, EnjoySpt = No\}.$
 - Hypothesis *h*:
 - An example input in the format of X.
 - Conjunction of constraints on attributes, where each could be:
 - A specific value (e.g., Water = Warm), or
 - Any value (e.g., *Water* =?), or
 - No value (e.g., $Water = \emptyset$).
 - $\begin{array}{l} \bullet \ \ \text{e.g., } h = \{Sky = Sunny, Temp = Warm, Humid = Normal, \\ Wind = Strong, Water = Warm, Forecast = Same \} \end{array}$
 - Training examples D:
 - Positive and negative examples of target function
 - $D = \{\langle X_1, c(X_1) \rangle, \langle X_2, c(X_2) \rangle, \dots, \langle X_m, c(X_m) \rangle \}$
- Do:
 - Derive a general if-then rule to best summarize the training examples.

4.2 Find-S Algorithm 寻详算法

4.2.1 General-to-specific Ordering of Hypothesis

- [DEF] More-General-than-or-Equal-to 详于或等于
 - Let h_i and h_k be bool-valued functions defined over X.
 - Then, h_j is $more_general_than_or_equal_to$ h_k $(h_j \geq_g h_k)$ iff:
 - $ullet \ orall x \in X, h_k(x) = 1
 ightarrow h_j(x) = 1$
 - Moreover, h_j is strictly $more_general$ than h_k iff:
 - $\bullet \ \ (h_j \geq_g h_k) \wedge (h_k \ngeq_g h_j)$

4.2.2 Find-S Algorithm

- From Specific to General Procedure:
- Initialize h to the most specific hypothesis in H.
- for X where c(X) = 1:
 - for x_i where $x_i \in X = \{x_1, x_2, \dots\}$:
 - if x_i in h doesn't satisfy x_i in X:
 - Replace x_i in h with a more general constraint that's accepted by X.
- Output: h.

Example:

Training Samples	S	Description
	$S_0 = \langle \emptyset, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset angle$	
$X_1 = \langle Sunny, Warm, Normal, \ Strong, Warm, Same angle, +$	$S_1 = \langle Sunny, Warm, Normal, \ Strong, Warm, Same angle$	Initialized to be the most specific.
$X_2 = \langle Sunny, Warm, High, \ Strong, Warm, Same angle, +$	$S_2 = \langle Sunny, Warm, ?, \ Strong, Warm, Same angle$	$Normal eq High, h$ is not consistent with x_2 at position $Humid.$
$X_3 = \langle Rainy, Cold, High, \ Strong, Warm, Change angle, -$	$S_3=S_2$	Ignore negative training samples.
$X_4 = \langle Sunny, Warm, High, \ Strong, Cool, Change angle, +$	$S_4 = \langle Sunny, Warm, ?, \ Strong, ?, ? angle$	$Warm \neq Cool, Same \neq Chan$. h is not consistent with x_4 at positions $Water$ and $Forcast$.

4.2.3 Disadvantages of Find-S Algorithm

1. Unable to determine uniqueness of h.

无法确定的的唯一性

- 1. It does not inform that whether the derived hypothesis is the **only** one in H that is consistent with D, or there are other hypothesis that are also consistent with D as well.
- 2. Picks a maximally specific h.

总是选择最详尽的假设h

- 1. Find-S algorithm always pick the most specific hypothesis among all the consistent ones.
- 3. Does not display the noise in Training data itself. 无法指出训练数据D内部本身的不一致性

- 1. Occasionally, training examples would contain at least one error, i.e., noise.
- 2. That is, there may be two data samples in the training data that are inconsistent with each other.
- 3. This kind of inconsistency can severely mislead Find-S algorithm, since it ignores the negative examples.
- 4. Doesn't give alternative ways to find h.

只能选择多个相同详尽的h中的其中一个.

- 1. There might be several hypothesis in *H* that's equally specific to the selected one.
- 2. Therefore, there ought to be different paths to reach those goal.

4.3 List-Then-Eliminate Algorithm 列消算法

4.3.1 Consistency and Version Space 一致性与一致空间

- [DEF] A hypothesis h is consistent with a set of training examples D of target concept c
 iff:
 - $Consistent(h,D) \equiv \forall \langle X,c(X) \rangle \in D, h(X) = c(X).$
 - That is, h produces the same corresponding output facing all input vectors in D.
- [DEF] The **version space** $VS_{H,D}$ with respect to:
 - Hypothesis space $H = \{h_1, h_2, \dots, h_n\}$
 - That is, the set of all the possible hypothesis with respect to the format of X.
 - Training examples $D = \langle X_1, c(X_1)
 angle, \langle X_2, c(X_2)
 angle, \ldots, \langle X_m, c(X_m)
 angle,$
- is defined as:
 - $VS_{H,D} \equiv \{h \in H | Consistent(h,D)\}$
 - That is, a subset
 - from the set of all hypotheses H
 - that's consistent with all training examples in D.

4.3.2 Representation of Version Spaces

- [DEF] Specific Boundary (S) of $VS_{H,D}$
 - 一致空间的详尽边界
 - The set of $VS_{H,D}$'s **maximally specific** members of H that's consistent with D.
 - $S \equiv \{s \in H| Consistent(s,D) \\ \land (\neg \exists s' \in H)[(s>_g s') \land Consistent(s',D)]\}$
 - *s* is consistent with *D*.
 - Doesn't exist s' who is consistent with D and also less general than the s.

- 一致空间中没有比集合S中的假设更加**详尽**的假设了。
- [DEF] General Boundary (G) of $VS_{H,D}$
 - 一致空间的通用边界
 - The set of $VS_{H,D}$'s **maximally general** members of H that's consistent with D.
 - $G \equiv \{g \in H | Consistent(sg, D) \\ \land (\lnot \exists g' \in H) [(g'>_g g) \land Consistent(g', D)] \}$
 - g is consistent with D.
 - Doesn't exist g' who is consistent with D and also more general than g.
 - 一致空间中没有比集合G中的假设更加**通用**的假设了。

4.3.3 List-Then-Eliminate Algorithm

Procedure:

- For each training example $\langle x, c(x) \rangle \in D$ do:
 - if c(x) = Positive do:
 - Remove from G any hypothesis inconsistent with d.
 - For each hypothesis $s \in S$ that's inconsistent with d:
 - Remove s from S.
 - Add to S a small minimal generalizations h of s s.t.,
 - h is consistent with d, and some member of G is more general than h.
 - Remove from S any hypothesis that
 - is more general than another hypothesis in S.
 - if c(x) = Negative do:
 - Remove from S any hypothesis inconsistent with d.
 - For each hypothesis $g \in G$ that's inconsistent with d:
 - Remove g from G.
 - Add to G a small minimal specializations h of g s.t.,
 - h is consistent with d, and some other member of S is more specific than h.
 - Remove from G any hypothesis that
 - is less general than another hypothesis in G.

Example

Training Samples	S - Specific Bound	G - General Bound	Descriptio
	$S_0 = \{\langle \emptyset, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset angle \}$	$G_0=\{\langle?,?,?,?,?,? angle\}$	

Training Samples	S - Specific Bound	G - General Bound	Descriptio
$X_1 = \langle Sunny, Warm, Normal, \ Strong, Warm, Same angle, +$	$S_1 = \{ \ \langle Sunny, Warm, Normal, \ Strong, Warm, Same angle \ \}$	$G_1=G_0$	
$X_2 = \langle Sunny, Warm, High, \ Strong, Warm, Same angle, +$	$S_1 = \{ \ \langle Sunny, Warm, ?, \ Strong, Warm, Same angle \ \}$	$G_2=G_1$	
$X_3 = \langle Rainy, Cold, High, \ Strong, Warm, Change angle, -$	$S_3=S_2$	$G_{3}^{before} = \{ \\ \langle Sunny, ?, ?, ?, ? \rangle, \\ \langle ?, Warm, ?, ?, ?, ? \rangle, \\ \langle ?, ?, ?, ?, ? \rangle, \\ \langle ?, ?, ?, Strong, ? \rangle, \\ \langle ?, ?, ?, Warm, ? \rangle, \\ \langle ?, ?, ?, ?, Same \rangle, \} $ \downarrow $G_{3}^{after} = \{ \\ \langle Sunny, ?, ?, ?, ?, ? \rangle, \\ \langle ?, Warm, ?, ?, ?, ? \rangle, \\ \langle ?, ?, ?, ?, Same \rangle, \}$	Remove inconsisten hypothesis Here, the classificatic "-". Therefore to be "consistent the target vershould be different frow the original
$X_4 = \langle Sunny, Warm, High, \ Strong, Cool, Change angle, +$	$S_4 = \{ \ \langle Sunny, Warm, ?, \ Strong, ?, ? angle \}$	$G_4 = \{ \ \langle Sunny, ?, ?, ?, ?, ? \rangle, \ \langle ?, Warm, ?, ?, ?, ? \rangle, \ \}$	$Same \neq Cl$, inconsiste

4.4 Summary

The relationships among "Spaces" could be defined as:

 $Hypothesis\ Space > Version\ Space > S \cup G$

- Hypothesis Space
 - ullet is the "Union" set with respect to X, the vector structure.
 - It contains all the possible hypothesis under the structure of X.
- Version Space
 - is a subset of hypothesis space.

• Contains all the special hypothesis in hypothesis space, which are consistent to the given training data.

S ∪ G:

- S and G are the most extreme hypothesis within a given version space, i.e., the boundaries.
 - *S* contains the most specific hypothesis in version space.
 - ullet G contains the most general hypothesis in version space.
- Any other hypothesis in version space can not be more general than the ones in G, and also can not be more specific than the ones in S.