ANALYSIS QUALIFYING EXAM

AUGUST 1988.

Throughout this exam m and (in integrals) dx will denote Lebesgue measure on \mathbb{R} .

- 1) Let $f \in L_1([0,1],m)$. Prove that $\int_0^1 x^n f(x) dx \to 0$ as $n \to \infty$.
- 2) Let E be a measurable subset of [0,1] and assume there exists a constant $\alpha > 0$ such that $m(E \cap [a,b]) \ge \alpha(b-a)$ for all a and $b \in [0,1]$. Prove that m(E) = 1.
- 3) Let T be a measurable function from [0,1] into [0,1] such that there exists a constant K > 0 such that for all x < y we have

$$m(T^{-1}((x,y)) \le K(y-x).$$

Prove that there exists a bounded measurable function g such that $m(T^{-1}(E)) = \int_{F} g dx$

for all Borel sets E in [0,1].

- 4) Let I: $L_{\infty}[0,1] \to \mathbb{R}$ be a linear functional such that $f \ge 0$ implies that $I(f) \ge 0$, and $f \ge 0$ are rangles $I(f) \ge 0$,
 - a) Prove that there exists $g \in L_1[0,1]$ such that $I(f) = \int fg \, dx$.
- b) If $I(x^n) = 1/(n+1)$ for n = 0,1,2,..., then prove that g = 1 a.e. on [0,1], i.e. $I(f) = \int f dx$.
- 5) Let $1 and <math>g_n \in L_q$ ([0,1],m) with $\|g_n\|_q \le 1$, where 1/p + 1/q = 1. Suppose $\int_E g_n \, dx \to 0$ as $n \to \infty$. Prove that $\int fg_n dx \to 0$ as $n \to \infty$ for all $f \in L_p([0,1],m)$.
- 6) a) Let F be absolutely continuous on $[\epsilon,1]$ for all $\epsilon > 0$, continuous at 0 and such that the total variation $T_0^1(F) < \infty$. Prove that F is absolutely continuous on [0,1].
- b) If F is as in a) except that $T_0^1(F) = \infty$, is then the conclusion of a) still valid?

- 7) Let 0≤ f be Lebesgue measurable on [0,1].
- a) Prove that there exist simple functions $\phi_n \ge 0$ such that $\phi_n \uparrow f$.
- b) Prove that there exist measurable sets E_n and $\alpha_n \ge 0$ such that
- $f(x) = \sum_{1}^{\infty} \alpha_n \chi_{E_n}(x)$ a.e. (Note the E_n 's are not necessarily disjoint.)
- c) Assume now that f is an integrable function on [0,1]. Prove that there exist measurable sets E_n and $\alpha_n \in \mathbb{R}$ such that f(x) =

$$\begin{split} &\Sigma_1^\infty \propto_n \chi_{E_n}(x) \text{ a.e. , } \int |f(x)| \; \mathrm{d}x = \Sigma_1^\infty \; |\propto_n | \; \mathrm{m}(E_n) \text{ and } \int f(x) \mathrm{d}x = \\ &\Sigma_1^\infty \propto_n \mathrm{m}(E_n). \end{split}$$

8) Let $f \in L_p([0,1],m)$ with $1 . Define <math>f_h$ by

$$f_h(t) = \frac{1}{--} \int_{t-h}^{t+h} f(x) dx$$

- a) Prove that f_h is a continuous function of t.
- b) Prove that $|f_h(t)| \le (2h)^{-1/p} \|f\|_p$.
- c) Prove that I fh Ip & I I Ip.
- 9) True or false. Prove or give a counterexample.
- a) Let E_n be measurable sets such that $E_n \downarrow E$. Then $m(E_n) \downarrow m(E)$.
- b) Let E_n be measurable sets such that $E_n \uparrow E$. Then $m(E_n) \uparrow m(E)$.
- c) If f is a nondecreasing function on [0,1], then there exist a < b in
- [0,1] such that f is continuous on (a,b).
- d) If |f| is measurable, then f is measurable.
- e) If $f_n \to f$ in $L_1[0,1]$, then $f_n \to f$ a.e.
 - f) If E is measurable with m(E) < ∞, then E is bounded.