M 476 - Homework 3

Nathan Stouffer September 20, 2019

Problem: Consider the map $f: \mathbb{R}^3 \to \mathbb{R}^2$, $(x, y, z) \to (3 * x * y^2 + 1, 2 * z^2)$. Deduce that f is continuous by writing it as a composition of the functions we have previously proved to be continuous.

Solution: We first observe that f is a projection form $\mathbb{R}^3 \to \mathbb{R}$. Let $g: \mathbb{R}^2 \to \mathbb{R}$, $(x,y) \to 3*x*y^2$ and $h: \mathbb{R}^2 \to \mathbb{R}$, $(x,z) \to 2*z^2 + x$. Then, by obs (prod), f is continuous only if the components of f are continuous. That is, f is continuous if g and h are continuous. The functions g and h are continuous since they are composed of sums of products, which are continuous by obs (add) and obs (mult). The composition is shown in the image below.

Problem: Let $X := \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1 \text{ and } y < 1\} \subset \mathbb{R}^2 \text{ and let } Z := \{(x,y) \in \mathbb{R}^2 \mid y = 0\}$. Consider the map $f: X \to Z$ whose value on (x,y) is the unique $(x',0) \in Z$ for which the triple of points in \mathbb{R}^2

$$\{(0,1),(x,y),(x',0)\}$$

are co-linear. Prove that there is indeed a unique such value f(x,y) for each $(x,y) \in X$; prove that f is continuous.

Solution: To prove that a unique f(x,y) exists for each (x,y) we must remember that the point (x,y) must lie on the unit circle $C \setminus (0,1)$. Now, imagine the line defined by (0,-1). This line intersects the x-axis at (0,0). Moving (x,y) along the unit circle when x>0 will intersect all x' on the x-axis greater than 0 and moving (x,y) along the unit circle when x<0 will intersect all x' on the x-axis less than 0.

To construct the function f, we begin with the fact that the points $\{(0,1),(x,y),(x',0)\}$ must be co-linear. Each of the three points lie on a line L with slope $m=\frac{1-y}{0-x}=\frac{y-1}{x}$. We also know that the y-intercept of L is (0,1), which gives L to be $b=\frac{y-1}{x}*a+1$ where $(a,b)\in\mathbb{R}^2$ is an ordered pair that satisfies L. Since the line L must also intersect (x',0), we can substitute (x',0) in for (a,b). Now L is $0=\frac{y-1}{x}*x'+1$. Solving for x': $x'=\frac{x}{1-y}$. Thus, f is given by $(x,y)\to(\frac{x}{1-y},0)$.

Now to prove that the function f is continuous. The function f is continuous if each of the components of f(x,y) are continuous. The first component of f is continuous since $\frac{x}{1-y}$ is first made up of an addition and then a division, which are continuous by obs (add) and obs (div). Additionally, $y \neq 1$, so we will never divide by zero. The second component of f is continuous for it is a constant mapping and constant maps are continuous by obs (const). Since the components of f are continuous, the function f must be continuous.

Problem: For $n \geq 0$, denote $\mathbb{S}^n := \{(x_0, x_1, ..., x_n) \mid x_0^2 + x_1^2 + ... + x_n^2 = 1\} \subset \mathbb{R}^{n+1}$. Prove that \mathbb{S}^n is path-connected if and only if n > 0.

Solution: We will first show that if \mathbb{S}^n is path-connected, then n > 0. This will be shown using the contrapositive of the statement: If $n \leq 0$, then \mathbb{S}^n is not path-connected. We can be more restrictive on our value for n since $n \geq 0$, this implies that n = 0. Thus we now must show that following is true:

If
$$n = 0$$
, then \mathbb{S}^n is not path-connected.

Now there is only one case: when n=0, the set $\mathbb{S}^0=\{x_0\mid x_0^2=1\}=\{-1,1\}\subset\mathbb{R}$. The individual elements $-1,1\in\mathbb{R}$ are not connected and the contrapositive is proved. Thus it is proved that if \mathbb{S}^n is path-connected, then n>0.

We will now show that if n>0, then \mathbb{S}^n is path-connected. Since n>0, the set $\mathbb{S}^n\subset\mathbb{R}^{n+1}$ where the Euclidean Space is \mathbb{R}^{n+1} is \mathbb{R}^2 or greater by definition of \mathbb{S}^n . Since we are at least in \mathbb{R}^2 or greater, it is possible to arbitrarily choose 2 distinct vectors $p,q\in\mathbb{S}^n$. If we can construct a continuous path (beginning at t=0 and ending at t=1) from p to q, we will have proven that \mathbb{S}^n is path-connected. Consider the map $\gamma:\mathbb{R}\to\mathbb{S}^n,\ t\to\cos(2\pi t)*p+\sin(2\pi t)*q$. Then, $\gamma(0)=p$ and $\gamma(1)=q$. So, now we must show that γ is continuous. The function γ must be continuous for γ is composed of the continuous functions mult, sin, and cos. Since γ is continuous, \mathbb{S}^n must be path connected. Therefore, if n>0, then \mathbb{S}^n is path-connected.

Now we have shown that if \mathbb{S}^n is path-connected, then n > 0 and that n > 0 implies that \mathbb{S}^n is path-connected. Thus, it is true that \mathbb{S}^n is path-connected if and only if n > 0.

Problem: Let $X \subset \mathbb{R}^n$ and $y \subset \mathbb{R}^k$. Prove that $X \times Y$ is path-connected if and only if both X and Y are path-connected. Deduce form this and the previous problem that the torus $\mathbb{S}^1 \times \mathbb{S}^1$ is path-connected.

Solution: To prove that $X \times Y$ is path-connected if and only if both X and Y are path-connected, we must first show that $X \times Y$ is path-connected \Longrightarrow both X and Y are path-connected and then prove that $X \times Y$ is path-connected \longleftarrow both X and Y are path-connected.

We first note the following theorem: The continuous image of a path-connected subset of Euclidean Space is path-connected. Let this theorem be Theorem 1.

We now prove that $X \times Y$ is path-connected \Longrightarrow both X and Y are path-connected. We assume that $X \times Y$ is path-connected. By Theorem 1, we also know that the continuous image of a path-connected set is path-connected. The projection map is continuous by obs (proj). Without loss of generality, we choose to prove that X is path-connected. To prove that X is path-connected, define $f: X \times Y \to X$, $(x,y) \to (x)$. The function f is continuous since it is a projection, and thus the image of f is continuous. Since the image f is continuous, f must also be path-connected by Theorem 1. Thus, f and f must both be path-connected.

We will now show that both X and Y are path-connected $\implies X \times Y$ is path-connected. Since X and Y are both path-connected, by Theorem 1, their image under a continuous function must also be path-connected. The product function is continuous by obs (prod), therefore, $X \times Y$ must be path-connected.

We now show that the torus $\mathbb{S}^1 \times \mathbb{S}^1$ is path-connected. Because of the proof in Problem 3, we know that \mathbb{S}^n where n=1 is path-connected since n>0. Additionally, the first part of Problem 4 proves that, given path-connected sets A and B, the set $A \times B$ is also path-connected. Since a torus is a Cartesian product between two path-connected sets, a torus is also path connected.