大學入學考試中心 107 學年度指定科目考試試題 數學甲

--作答注意事項---

考試時間:80分鐘

作答方式: ●選擇(填)題用 2B 鉛筆在「答案卡」上作答;更正時,應以橡皮擦擦拭, 切勿使用修正液(帶)。

- 非選擇題用筆尖較粗之黑色墨水的筆在「答案卷」上作答;更正時,可以使用修正液(帶)。
- 未依規定畫記答案卡,致機器掃描無法辨識答案;或未使用黑色墨水的筆書寫答案卷,致評閱人員無法辨認機器掃描後之答案者,其後果由考生自行承擔。
- 答案卷每人一張,不得要求增補。

選填題作答說明:選填題的題號是 A, B, C, ……, 而答案的格式每題可能不同, 考生 必須依各題的格式填答, 且每一個列號只能在一個格子畫記。請仔細 閱讀下面的例子。

例:若第 B 題的答案格式是 $\frac{18}{19}$,而依題意計算出來的答案是 $\frac{3}{8}$,則考生

必須分別在答案卡上的第18列的 △與第19列的 △畫記,如:

例: 若第 C 題的答案格式是 $\frac{(20)(21)}{50}$, 而答案是 $\frac{-7}{50}$ 時,則考生必須分別在答案 卡的第 20 列的 \Box 與第 21 列的 \Box 畫記,如:

第壹部分:選擇題(單選題、多選題及選填題共占 76 分)

一、單撰題(占18分)

說明:第1題至第3題,每題有5個選項,其中只有一個是正確或最適當的選項, 請畫記在答案卡之「選擇(填)題答案區」。各題答對者,得6分;答錯、 未作答或畫記多於一個選項者,該題以零分計算。

- 1. 設 A 為 3×3 矩 陣,且對任意實數 a,b,c, $A\begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} b \\ c \\ a \end{bmatrix}$ 均成立。試問矩 陣 $A^2\begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$ 為何? $(1) \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$ $(2) \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$ $(3) \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$

2. 坐標平面上,考慮 A(2,3) 與 B(-1,3) 兩點,並設O 為原點。令E 為滿足 $\overrightarrow{OP} = a \ \overrightarrow{OA} + b \ \overrightarrow{OB}$ 的所有點 P所形成的區域,其中 $-1 \le a \le 1$, $0 \le b \le 4$ 。考慮函數 $f(x)=x^2+5$,試問當限定 x為區域 E中的點 P(x,y)的橫坐標時, f(x)的最大值為 何?

- (1) 5
- (2)9
- (3) 30
- (4) 41
- (5) 54

- 3. 某零售商店販賣「熊大」與「皮卡丘」兩種玩偶,其進貨來源有 A,B,C三家廠商。已知此零售商店從每家廠商進貨的玩偶總數相同,且三家廠商製作的每一種玩偶外觀也一樣,而從 A,B,C這三家廠商進貨的玩偶中,「皮卡丘」所占的比例分別為 $\frac{1}{4}$ 、 $\frac{2}{5}$ 、 $\frac{1}{2}$ 。阿德從這家零售商店隨機挑選一隻「皮卡丘」送給小安作為生日禮物,試問此「皮卡丘」出自 C廠商的機率為何?
 - $(1) \frac{1}{3}$
 - $(2) \frac{2}{5}$
 - $(3) \frac{10}{23}$
 - $(4) \frac{10}{19}$
 - $(5) \frac{5}{9}$

二、多選題(占40分)

說明:第4題至第8題,每題有5個選項,其中至少有一個是正確的選項,請將正確選項畫記在答案卡之「選擇(填)題答案區」。各題之選項獨立判定,所有選項均答對者,得8分;答錯1個選項者,得4.8分;答錯2個選項者,得1.6分;答錯多於2個選項或所有選項均未作答者,該題以零分計算。

4. $ightharpoonup f(x) = -x^2 + 499$,且

$$A = \int_0^{10} f(x)dx \cdot B = \sum_{n=0}^9 f(n) \cdot C = \sum_{n=1}^{10} f(n) \cdot D = \sum_{n=0}^9 \frac{f(n) + f(n+1)}{2}$$

試選出正確的選項。

- (2) B < C
- (3) B < A
- (4) C < D
- (5) A < D

- 5. 坐標平面上,已知直線 L與函數 $y = \log_2 x$ 的圖形有兩個交點 P(a,b), Q(c,d),且 \overline{PQ} 的中點在 x軸上。試選出正確的選項。
 - (1) L的斜率大於 0
 - (2) bd = -1
 - (3) ac = 1
 - (4) L的 y 截距大於-1
 - (5) L的 x截距大於 1

- 6. 坐標空間中,有 \overrightarrow{a} 、 \overrightarrow{b} 、 \overrightarrow{c} 、 \overrightarrow{d} 四個向量,滿足外積 \overrightarrow{a} × \overrightarrow{b} = \overrightarrow{c} , \overrightarrow{a} × \overrightarrow{c} = \overrightarrow{d} ,且 \overrightarrow{a} 、 \overrightarrow{b} 、 \overrightarrow{c} 的向量長度均為 4。 設向量 \overrightarrow{a} 與 \overrightarrow{b} 的夾角為 θ (其中 $0 \le \theta \le \pi$),試選出正確的選項。
 - (1) $\cos \theta = \frac{1}{4}$
 - (2) a 、b 、c 所張出的平行六面體的體積為 16
 - (3) \overrightarrow{a} 、 \overrightarrow{c} 、 \overrightarrow{d} 兩兩互相垂直
 - (4) $\frac{1}{d}$ 的長度等於 4
 - (5) \overrightarrow{b} 與 \overrightarrow{d} 的夾角等於 θ

- 7. 設 O 為 複 數 平 面 上 的 原 點,並 令 點 A,B 分 別 代 表 複 數 z_1,z_2 ,且 滿 足 $|z_1|=2$, $|z_2|=3$, $|z_2-z_1|=\sqrt{5}$ 。 若 $\frac{z_2}{z_1}=a+bi$, 其 中 a,b 為 實 數 , $i=\sqrt{-1}$ 。 試 選 出 正 確 的 選 項 。
 - $(1) \quad \cos \angle AOB = \frac{2}{3}$
 - (2) $|z_2 + z_1| = \sqrt{23}$
 - (3) a > 0
 - (4) b > 0
 - (5) 設點 C 代表 $\frac{z_2}{z_1}$, 則 $\angle BOC$ 可能等於 $\frac{\pi}{2}$

- 8. 設 f(x) 為一定義在非零實數上的實數值函數。已知極限 $\lim_{x\to 0} f(x) \frac{|x|}{x}$ 存在,試選出正確的選項。
 - (1) $\lim_{x\to 0} \left(\frac{x}{|x|}\right)^2$ 存在
 - (2) $\lim_{x\to 0} f(x) \frac{x}{|x|}$ 存在
 - $(3) \quad \lim_{x\to 0} (f(x)+1)\frac{x}{|x|} 存在$
 - (4) $\lim_{x\to 0} f(x)$ 存在
 - (5) $\lim_{x\to 0} f(x)^2$ 存在

三、選填題(占18分)

- 說明:1.第A至C題,將答案畫記在答案卡之「選擇(填)題答案區」所標示的列號 (9-15)。
 - 2.每題完全答對給 6 分,答錯不倒扣,未完全答對不給分。
- A. 坐標平面上,已知圓 C 通過點 P(0,-5),其圓心在 x=2 上。若圓 C 截 x 軸所成之弦 長為 6,則其半徑為 $\sqrt{90}$ 。(化成最簡根式)

B. 假設某棒球隊在任一局發生失誤的機率都等於 p(其中 0),且各局之間發生失誤與否互相獨立。令隨機變數 <math>X代表一場比賽 9 局中出現失誤的局數,且令 p_k 代表 9 局中恰有 k 局出現失誤的機率 P(X=k)。已知 $p_4 + p_5 = \frac{45}{8}p_6$,

則該球隊在一場 9 局的比賽中出現失誤局數的期望值為 $\frac{1112}{13}$ 。(化成最

簡分數)

C. 設 A,B,C,D 為圓上的相異四點。已知圓的半徑為 $\frac{7}{2}$, $\overline{AB}=5$,兩線段 \overline{AC} 與 \overline{BD} 互相垂直,如圖所示(此為示意圖,非依實際比例)。則 \overline{CD} 的長度為 $\underline{(4)}$ $\sqrt{(5)}$ 。 (化成最簡根式)

————— 以下第貳部分的非選擇題,必須作答於答案卷 —————

第貳部分:非選擇題(占24分)

說明:本部分共有二大題,答案必須寫在「答案卷」上,並於題號欄標明大題號 (一、二)與子題號((1)、(2)、……),同時必須寫出演算過程或理由, 否則將予扣分甚至零分。作答務必使用筆尖較粗之黑色墨水的筆書寫,且 不得使用鉛筆。若因字跡潦草、未標示題號、標錯題號等原因,致評閱人員無法 清楚辨識,其後果由考生自行承擔。每一子題配分標於題末。

- 一. 坐標空間中有一個正立方體 *ABCDEFGH* ,如圖所示(此為示意圖),試回答下列問題。
 - (1) 試證明 A點到平面 BDE的距離是對角線 AG長度的三分之一。(4分)
 - (2) 試證明向量 \overrightarrow{AG} 與平面 \overrightarrow{BDE} 垂直。(2分)
 - (3) 如果知道平面 BDE 的方程式為 2x+2y-z=-7 ,且 A 點坐標為 (2,2,6) ,試 求出 A 點到平面 BDE 的距離。(2分)
 - (4) 承(3), 試求出G點的坐標。(4%)

- 二. 考慮三次多項式 $f(x) = -x^3 3x^2 + 3$ 。試回答下列問題。
 - (1) 在坐標平面上,試描繪 y = f(x)的函數圖形,並標示極值所在點之坐標。 (4分)

 - (3) 承(2), 試說明 $f(x)=a_1$ 、 $f(x)=a_2$ 、 $f(x)=a_3$ 各有幾個相異實根。 (4分)
 - (4) 試求 f(f(x)) = 0有幾個相異實根(註: $f(f(x)) = -(f(x))^3 3(f(x))^2 + 3$)。 (2分)