数学物理方程节12保

2.
$$\nabla \cdot \mathcal{U} = \nabla \cdot (U_X, U_Y, U_Z) = \frac{\partial U_X}{\partial X} + \frac{\partial U_Y}{\partial Y} + \frac{\partial U_Z}{\partial Z}$$
.

3.
$$\iint_{\Omega} \nabla \cdot \vec{F} dV = \iint_{\partial \Omega} \vec{F} \cdot \vec{n} ds \qquad \left[Gauss Principle \right]$$

Green the I:
$$\iint_{\Sigma} u \, dv \, dv = \iint_{\partial \Sigma} u \cdot \frac{\partial u}{\partial n} ds - \iint_{\Omega} v u \cdot v v dv.$$

Green the I:
$$\iint_{\mathcal{I}} (u\Delta v - v\Delta u) dv = \iint_{\partial \mathcal{I}} (u\frac{\partial v}{\partial n} - v\frac{\partial u}{\partial n}) ds.$$

Green the
$$\overline{\mathbf{u}}$$
:
$$-\iint_{\Sigma} \mathbf{r} \cdot \operatorname{dudv} = \iint_{\Sigma} \left(\mathbf{u} \cdot \frac{\partial \mathbf{r}}{\partial \mathbf{n}} - \mathbf{r} \cdot \frac{\partial \mathbf{u}}{\partial \mathbf{n}} \right) ds + \mathbf{u}(\bar{\mathbf{x}}, \bar{\mathbf{y}}, \bar{\mathbf{z}}) - \varepsilon \cdot \frac{\partial \mathbf{u}}{\partial \mathbf{n}} (\bar{\mathbf{x}}, \bar{\mathbf{y}}, \bar{\mathbf{z}})$$

$$\Rightarrow u(\xi,\eta,f) = \iint_{\partial \Omega} \left(T \cdot \frac{\partial u}{\partial n} - u \cdot \frac{\partial \Gamma}{\partial n}\right) ds - \iint_{\Omega} r \cdot \Delta u \cdot dV.$$

5.
$$\frac{1}{2}$$
 $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{5}$: $\frac{1}{5}$ $\frac{1}{2}$ $\frac{1}{2}$

It's T:
$$\Delta U = \frac{1}{12} \cdot \frac{\partial}{\partial r} \left(r^{\perp} \cdot \frac{\partial U}{\partial r^{\perp}} \right) + \frac{1}{12 \cdot \sin \theta} \cdot \frac{\partial}{\partial \theta} \left(\sin \theta \cdot \frac{\partial U}{\partial \theta} \right) + \frac{1}{12 \cdot \sin \theta} \cdot \frac{\partial^{2} U}{\partial \theta^{\perp}}$$

胡博道