CSCI - 6409 - The Process of Data Science - Fall 2022

</center>

Assignment 4

</center>

Meagan Sinclair

B00737317

Samarth Jariwala

B00899380

1. Data Understanding

```
In [1]:
        from google.colab import drive
        import pandas as pd
        import warnings
        import nltk
        from nltk.tokenize import word tokenize
In [2]:
       drive.mount('/content/drive')
        df = pd.read csv("/content/drive/MyDrive/wiki movie plots deduped.csv")
       Mounted at /content/drive
In [3]:
       df = df.convert dtypes()
In [4]:
       # wiki page URL not useful info, drop
        df = df.drop('Wiki Page', axis='columns')
In [5]:
       df.info()
       <class 'pandas.core.frame.DataFrame'>
       RangeIndex: 34886 entries, 0 to 34885
       Data columns (total 7 columns):
        # Column Non-Null Count Dtype
                            -----
        0 Release Year 34886 non-null Int64
1 Title 34886 non-null string
        2 Origin/Ethnicity 34886 non-null string
        3 Director 34886 non-null string
        4 Cast
                            33464 non-null string
                       34886 non-null string
        5 Genre
        6 Plot
                            34886 non-null string
       dtypes: Int64(1), string(6)
       memory usage: 1.9 MB
```

1.1 Data Quality Report

```
def mode(df):
                 return df.apply(lambda ft: ft.mode().to list())
             def mode freq(df):
                 return df.apply(lambda ft: ft.value counts()[ft.mode()].sum())
             def second mode(df):
                 return df.apply(lambda ft: ft[~ft.isin(ft.mode())].mode().to list())
             def second mode freq(df):
                 return df.apply(
                     lambda ft: ft[~ft.isin(ft.mode())]
                     .value counts()[ft[~ft.isin(ft.mode())].mode()]
                     .sum()
                 )
             stats = {
                 "Count": len,
                 "Miss %": lambda df: df.isna().sum() / len(df) * 100,
                 "Card.": lambda df: df.nunique(),
                 "Mode": mode,
                 "Mode Freq": mode freq,
                 "Mode %": lambda df: mode freq(df) / len(df) * 100,
                 "2nd Mode": second mode,
                 "2nd Mode Freq": second mode freq,
                 "2nd Mode %": lambda df: second mode freq(df) / len(df) * 100,
             }
             cat feat names = data df.select dtypes(exclude="number").columns
             continuous data df = data df[cat feat names]
             report df = pd.DataFrame(index=cat feat names, columns=stats.keys())
             for stat name, fn in stats.items():
                 # NOTE: ignore warnings for empty features
                 with warnings.catch warnings():
                     warnings.simplefilter("ignore", category=RuntimeWarning)
                     report df[stat name] = fn(continuous data df)
             return report df
In [7]:
        build categorical features report(df)
Out[7]:
                                                                                     2nd
                                                                                              2nd
                                                           Mode
                                                     Mode
                     Count
                            Miss % Card.
                                                                  Mode %
                                                                           2nd Mode Mode
                                                                                           Mode %
                                                            Freq
```

[Cinderella, The Three

Musketeers]

[Unknown]

[Tom and Jerry]

Title 34886 0.000000 32432

Director 34886 0.000000 12593

Cast 34886 4.076134 32182

24

Origin/Ethnicity 34886 0.000000

Freq

79

56

0.020065

0.226452

0.160523

3670 10.519979

[Treasure

Island1

[British]

[Michael

Curtiz]

[Three

Stooges]

0.045864

3.221923

0.229318

16

[American] 17377 49.810812

1124

80

In [6]:

code source: Tutorial

def build categorical features report(data df):

"""Build tabular report for categorical features"""

	Count	Miss %	Card.	Mode	Mode Freq	Mode %	2nd Mode	2nd Mode Freq	2nd Mode %
Genre	34886	0.000000	2265	[unknown]	6083	17.436794	[drama]	5964	17.095683
Plot	34886	0.000000	33869	[(マッスル人参争奪! 超人大戦争, Massuru Ninjin Soudatsu! Cho	6	0.017199	[The films take place three years after the ev	10	0.028665

In [8]:

df['Title_length'] = df.Title.str.split().str.len()
df['Plot_length']=df.Plot.str.split().str.len()
df

Out[8]:

	R	Release Year	Title	Origin/Ethnicity	Director	Cast	Genre	Plot	Title_length	Plot_length
	0	1901	Kansas Saloon Smashers	American	Unknown	<na></na>	unknown	A bartender is working at a saloon, serving dr	3	83
	1	1901	Love by the Light of the Moon	American	Unknown	<na></na>	unknown	The moon, painted with a smiling face hangs ov	7	86
	2	1901	The Martyred Presidents	American	Unknown	<na></na>	unknown	The film, just over a minute long, is composed	3	76
	3	1901	Terrible Teddy, the Grizzly King	American	Unknown	<na></na>	unknown	Lasting just 61 seconds and consisting of two	5	153
	4	1902	Jack and the Beanstalk	American	George S. Fleming, Edwin S. Porter	<na></na>	unknown	The earliest known adaptation of the classic f	4	140
	•••									
34	1881	2014	The Water Diviner	Turkish	Director: Russell Crowe	Director: Russell Crowe Cast: Russell Crowe,	unknown	The film begins in 1919, just after World War	3	591
34	1882	2017	Çalgı Çengi İkimiz	Turkish	Selçuk Aydemir	Ahmet Kural, Murat Cemcir	comedy	Two musicians, Salih and Gürkan, described the	3	11

	Release Year	Title	Origin/Ethnicity	Director	Cast	Genre	Plot	Title_length	Plot_length
34883	2017	Olanlar Oldu	Turkish	Hakan Algül	Ata Demirer, Tuvana Türkay, Ülkü Duru	comedy	Zafer, a sailor living with his mother Döndü i	2	67
34884	2017	Non- Transferable	Turkish	Brendan Bradley	YouTubers Shanna Malcolm, Shira Lazar, Sara Fl	romantic comedy	The film centres around a young woman named Am	1	193
34885	2017	İstanbul Kırmızısı	Turkish	Ferzan Özpetek	Halit Ergenç, Tuba Büyüküstün, Mehmet Günsür,	romantic	The writer Orhan Şahin returns to İstanbul aft	2	48

34886 rows × 9 columns

The non-alphanumerical data is mostly found in cast and plot columns Reference: https://www.w3resource.com/python-exercises/pandas/string/python-pandas-string-exercise-30.php

```
import re as re
def find_nonalpha(text):
    result = re.findall("[^A-Za-z0-9]",text)
    return result
df['nonalpha_plot']=df['Plot'].apply(lambda x: find_nonalpha(x))
df['nonalpha_title']=df['Title'].apply(lambda x: find_nonalpha(x))

df
```

[9]:		Release Year	Title	Origin/Ethnicity	Director	Cast	Genre	Plot	Title_length	Plot_length
	0	1901	Kansas Saloon Smashers	American	Unknown	<na></na>	unknown	A bartender is working at a saloon, serving dr	3	83
	1	1901	Love by the Light of the Moon	American	Unknown	<na></na>	unknown	The moon, painted with a smiling face hangs ov	7	86
	2	1901	The Martyred Presidents	American	Unknown	<na></na>	unknown	The film, just over a minute long, is composed	3	76
	3	1901	Terrible Teddy, the Grizzly King	American	Unknown	<na></na>	unknown	Lasting just 61 seconds and consisting of two	5	153

	Release Year	Title	Origin/Ethnicity	Director	Cast	Genre	Plot	Title_length	Plot_length
4	1902	Jack and the Beanstalk	American	George S. Fleming, Edwin S. Porter	<na></na>	unknown	The earliest known adaptation of the classic f	4	140
•••									
34881	2014	The Water Diviner	Turkish	Director: Russell Crowe	Director: Russell Crowe Cast: Russell Crowe,	unknown	The film begins in 1919, just after World War	3	591
34882	2017	Çalgı Çengi İkimiz	Turkish	Selçuk Aydemir	Ahmet Kural, Murat Cemcir	comedy	Two musicians, Salih and Gürkan, described the	3	11
34883	2017	Olanlar Oldu	Turkish	Hakan Algül	Ata Demirer, Tuvana Türkay, Ülkü Duru	comedy	Zafer, a sailor living with his mother Döndü i	2	67
34884	2017	Non- Transferable	Turkish	Brendan Bradley	YouTubers Shanna Malcolm, Shira Lazar, Sara Fl	romantic comedy	The film centres around a young woman named Am	1	193
34885	2017	İstanbul Kırmızısı	Turkish	Ferzan Özpetek	Halit Ergenç, Tuba Büyüküstün, Mehmet Günsür,	romantic	The writer Orhan Şahin returns to İstanbul aft	2	48

34886 rows × 11 columns

Word Counter reference: https://predictivehacks.com/?all-tips=word-counts-in-pandas-data-frames

```
In [10]: Title_Word_Count = df['Title'].str.lower().str.replace('[^\w\s]','')
    new_df = Title_Word_Count.str.split(expand=True).stack().value_counts().reset_index()
    new_df.columns = ['Word', 'Frequency']
    new_df
```

<ipython-input-10-1f93ab7d655a>:1: FutureWarning: The default value of regex will change f
rom True to False in a future version.

Title Word Count = df['Title'].str.lower().str.replace('[^\w\s]','')

Out[10]:		Word	Frequency
	0	the	8672
	1	of	2699
	2	а	1219

Word	Frequency
in	1015
and	974
merchant	1
sandakan	1
ponmudi	1
ansatsu	1
kırmızısı	1
	in and merchant sandakan ponmudi ansatsu

22936 rows × 2 columns

```
In [11]:
    from matplotlib import pyplot as plt
    plt.rcParams["figure.figsize"] = [17, 6]
    plt.rcParams["font.size"] = 13
```

```
In [12]:
         df['Title length'].hist(bins=20)
         plt.xlabel("Number of words")
         plt.ylabel("Count")
         plt.title("Length of Title Barplot")
         plt.show()
         df['Title'].str.len().hist(bins=100)
         plt.xlabel("Number of characters")
         plt.ylabel("Count")
         plt.title("Length of title")
         plt.show()
         for val in df["nonalpha title"].values:
           if val == []:
             y += 1
         plt.bar([0, 1], [y, len(df['Title'])-y], tick label=["Yes", "No"])
         plt.title("Titles contains only alpahnumeric")
         plt.ylabel("Count")
         plt.show()
```



```
In [13]:
         df['Plot length'].hist(bins=100)
         plt.xlabel("Number of words")
         plt.ylabel("Count")
         plt.title("Length of plot")
         plt.show()
         df['Plot'].str.len().hist(bins=100)
         plt.xlabel("Number of characters")
         plt.ylabel("Count")
         plt.title("Length of plot")
         plt.show()
         y = 0
         for val in df["nonalpha plot"].values:
           if val == []:
             y += 1
         plt.bar([0, 1], [y, len(df['Plot'])-y], tick label=["Yes", "No"])
         plt.title("Plots contains only alpahnumeric")
         plt.ylabel("Count")
         plt.show()
```



```
In [14]: df['Release Year'].hist()
    plt.xlabel("Release Year")
    plt.ylabel("Count")
    plt.title("Release Year Barplot")
    plt.show()
```

Νο

Yes


```
In [15]: df['Origin/Ethnicity'].value_counts().plot.bar()
    plt.xlabel("Origin/Ethnicity")
    plt.ylabel("Count")
    plt.title("Origin/Ethnicity Barplot")
    plt.show()
```



```
In [16]:
    vcounts = df['Genre'].value_counts()
    vcounts[vcounts > 20].plot.bar()
    plt.xlabel("Genre")
    plt.ylabel("Count")
    plt.title("Genre Barplot")
    plt.show()
```


1.2 Data Quality Issues and Plan

Missing values - In many of the columns, the missing values is replaced with unknown. But, it is seen the cast column has 4% of null values which is less but still we will replace it with unknown.

Irregular Cardinality - The cardinality is neither 1 nor too high for any columns therefore there is no issue for irregular cardinality.

Outliers - Outliers in the categorical data can be detected by count of features. For example the count of origin, as the Assamism and Maldivian rarely exsists in the data. There are very few movies from 1902 to 1913 in the data. There are very few title with length 9 to 11 and almost does not exsists above length 12.

In [17]:

df.head(10)

Out[17]:

	Release Year	Title	Origin/Ethnicity	Director	Cast	Genre	Plot	Title_length	Plot_length	nonal
0	1901	Kansas Saloon Smashers	American	Unknown	<na></na>	unknown	A bartender is working at a saloon, serving dr	3	83	[,, ,, ',
1	1901	Love by the Light of the Moon	American	Unknown	<na></na>	unknown	The moon, painted with a smiling face hangs ov	7	86	[,, ,, ,,
2	1901	The Martyred Presidents	American	Unknown	<na></na>	unknown	The film, just over a minute long, is composed	3	76	["", —,".

	Release Year	Title	Origin/Ethnicity	Director	Cast	Genre	Plot	Title_length	Plot_length	nonal
3	1901	Terrible Teddy, the Grizzly King	American	Unknown	<na></na>	unknown	Lasting just 61 seconds and consisting of two	5	153	[,, ., - ", ", ",
4	1902	Jack and the Beanstalk	American	George S. Fleming, Edwin S. Porter	<na></na>	unknown	The earliest known adaptation of the classic f	4	140	[,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,,
5	1903	Alice in Wonderland	American	Cecil Hepworth	May Clark	unknown	Alice follows a large white rabbit down a "Rab	3	229	[", -, ",
6	1903	The Great Train Robbery	American	Edwin S. Porter	<na></na>	western	The film opens with two bandits breaking into	4	239	[,, ', ',
7	1904	The Suburbanite	American	Wallace McCutcheon	<na></na>	comedy	The film is about a family who move to the sub	2	34	
8	1905	The Little Train Robbery	American	Edwin Stanton Porter	<na></na>	unknown	The opening scene shows the interior of the ro	4	646	[,,,,,
9	1905	The Night Before Christmas	American	Edwin Stanton Porter	<na></na>	unknown	Scenes are introduced using lines of the poem	4	83	[., [,], .

1.3 Data Preprocessing

We don't need to model the outliers with the other data. Every point in the data can be really essential at times, in which case we must identify or create a model that can also account for outliers and can handle even a very tiny subset of the data.

```
In [18]:
       print(df.isnull().sum())
       Release Year 0
       Title
                          0
       Origin/Ethnicity 0
       Director
                         0
                       1422
       Cast
       Genre
       Plot
                          0
       Title length
                           0
       Plot_length
                           0
```

```
0
        nonalpha title
        dtype: int64
In [19]:
         print(df['Cast'])
         print(df['Cast'].isnull().sum())
        0
                                                                <NA>
        1
                                                                <NA>
         2
                                                                <NA>
        3
                                                                <NA>
                                                                <NA>
        34881
                 Director: Russell Crowe
        Cast: Russell Crowe, ...
        34882
                                          Ahmet Kural, Murat Cemcir
        34883
                              Ata Demirer, Tuvana Türkay, Ülkü Duru
                 YouTubers Shanna Malcolm, Shira Lazar, Sara Fl...
        34884
                Halit Ergenç, Tuba Büyüküstün, Mehmet Günsür, ...
        Name: Cast, Length: 34886, dtype: string
        1422
        Filling missing values in cast with unknown
In [20]:
         df['Cast'].fillna('Unknown', inplace=True)
In [21]:
         print(df['Cast'])
         print(df['Cast'].isnull().sum())
        0
                                                             Unknown
        1
                                                             Unknown
        2
                                                             Unknown
        3
                                                             Unknown
         4
                                                             Unknown
                Director: Russell Crowe
        34881
        Cast: Russell Crowe, ...
                                          Ahmet Kural, Murat Cemcir
        34882
        34883
                              Ata Demirer, Tuvana Türkay, Ülkü Duru
        34884 YouTubers Shanna Malcolm, Shira Lazar, Sara Fl...
        34885
                Halit Ergenç, Tuba Büyüküstün, Mehmet Günsür, ...
        Name: Cast, Length: 34886, dtype: string
```

1.4

nonalpha plot

0

What is the distribution of the top 50 most frequent words (excluding the stop words) for each of the textual features?

```
In [22]:
    import nltk
    nltk.download('stopwords')
    from nltk.corpus import stopwords

    stop_words = stopwords.words('english')

    Title_SW = df['Title'].str.lower().apply(lambda x: ' '.join([word for word in x.split() if

    Title_words_freq = Title_SW.str.split(expand=True).stack().value_counts().reset_index()

    Title_words_freq.columns = ['Word', 'Frequency']
```

print("Top 50 most frequent words in the titles:")
Title_words_freq.head(50)

[nltk_data] Downloading package stopwords to /root/nltk_data...
[nltk_data] Unzipping corpora/stopwords.zip.
Top 50 most frequent words in the titles:

Out[22]:

-	Word	Frequency
0	man	456
1	love	425
2	night	281
3	2	227
4	girl	224
5	life	184
6	&	181
7	last	181
8	big	176
9	story	172
10	lady	169
11	woman	169
12	black	168
13	little	167
14	one	163
15	movie	161
16	mr.	152
17	time	150
18	house	147
19	men	142
20	day	135
21	city	134
22	three	130
23	dead	127
24	new	119
25	king	118
26	world	114
27	great	114
28	red	114
29	two	113
30	dark	111
31	death	109

	Word	Frequency
32	white	107
33	street	105
34	high	105
35	secret	103
36	war	100
37	thethe	100
38	young	99
39	wild	96
40	murder	95
41	blue	92
42	back	92
43	blood	92
44	ki	91
45	boy	91
46	ii	90
47	lost	90
48	star	89
49	heart	89

Top 50 most frequent words in the plots:

Out[23]:

	Word	Frequency
0	one	27307
1	tells	19607
2	back	19274
3	two	19244
4	him.	19095
5	also	16950
6	get	16740
7	new	16340
8	love	15767
9	finds	15759

	Word	Frequency
10	find	14637
11	goes	14201
12	father	13916
13	takes	13865
14	police	13607
15	however,	13014
16	gets	12813
17	take	12758
18	man	12665
19	her.	12564
20	tries	12032
21	go	11929
22	family	11366
23	time	11003
24	film	10648
25	help	10619
26	comes	10277
27	becomes	10256
28	young	10255
29	him,	10179
30	decides	10140
31	kill	10042
32	home	10026
33	life	9930
34	next	9896
35	house	9618
36	mother	9535
37	first	9474
38	asks	9435
39	make	9283
40	later	9211
41	another	9118
42	meets	8952
43	wife	8910
44	killed	8798
45	away	8449

	Word	Frequency
46	returns	8383
47	begins	8296
48	son	8284
49	meanwhile,	8272

What is the proportion of each genre in the dataset?

```
In [24]: plt.rcParams["figure.figsize"] = [10, 10]
    vcounts = df['Genre'].value_counts()
    vcounts = vcounts[vcounts > 300]
    plt.pie(vcounts, labels = vcounts.index, autopct='%1.1f%%')

    plt.title("Genre")
    plt.show()
    plt.rcParams["figure.figsize"] = [17, 6]
```

Genre

What is the most/least common origin of the movies?\ From the origin bar plot, the most common origin is America and the least common is Maldives.

What trends can you find in your data?\ Trends noticed in the data include increasing numbers of movies released each year. Additionally, the number of movies which are from America are significantly more than any

other country. Drama and Comedy are the most popular genres by a large margin as well, excluding the unknown category.

2. Genres Selection and Understanding

Films which contain only 1 of the selected genres will belong to that class regardless if they have other genre tags. Films which contain multiple of the target genres will be sorted based on which genre is listed first, as this is likely the most relevant. These genres will be the targets for the model and other data points will be dropped.

```
In [25]:
    import nltk
    nltk.download('popular')
```

```
[nltk data] Downloading collection 'popular'
               [nltk data] |
               [nltk_data] | Package stopwords to /root/hitk_data...
[nltk_data] | Package stopwords is already up-to-date!
[nltk_data] | Downloading package treebank to /root/nltk_data...
[nltk_data] | Unzipping corpora/treebank.zip.
[nltk_data] | Downloading package twitter_samples to
[nltk_data] | /root/nltk_data...
[nltk_data] | Unzipping corpora/twitter_samples.zip.
[nltk_data] | Downloading package omw to /root/nltk_data...
[nltk_data] | Downloading package omw to /root/nltk_data...
              [nltk_data] | Downloading package omw-1.4 to /root/nltk_data...
[nltk_data] | Downloading package wordnet to /root/nltk_data...
[nltk_data] | Downloading package wordnet2021 to /root/nltk_data...
[nltk_data] | Downloading package wordnet31 to /root/nltk_data...
[nltk_data] | Downloading package wordnet_ic to /root/nltk_data...
[nltk_data] | Unzipping corpora/wordnet_ic.zip.
[nltk_data] | Downloading package words to /root/nltk_data...
[nltk_data] | Downloading package words to /root/nltk_data...
               [nltk_data] | Unzipping corpora/words.zip.
              [nltk data] | /root/nltk data...
               [nltk data] | Unzipping taggers/averaged perceptron tagger.zip.
               [nltk data] |
               [nltk data] Done downloading collection popular
               True
Out[25]:
```

```
drop inds = []
          # split the genres into words
          for index, row in df.iterrows():
            gen list = nltk.tokenize.word tokenize(row['Genre'])
            found = False
            # iter through listed genres
            for gen in gen list:
              # check with each target
              if found: break
              # check for this synonym
              if gen == 'romantic':
                  df["Genre"][index] = 'romance'
                  #inds[target genres.index('romance')].append(index)
                  found = True
                  break
              for test in target_genres:
                if gen == test:
                  df["Genre"][index] = test
                  #inds[target genres.index(test)].append(index)
                  found = True
                  break
            if not found:
              # drop other genres
              drop inds.append(index)
In [27]:
          df target = df.drop(drop inds)
In [28]:
          df target['Genre'].value counts().plot.bar()
         <matplotlib.axes. subplots.AxesSubplot at 0x7fb439f61610>
Out[28]:
         8000
         7000
         6000
         5000
         4000
         3000
         2000
         1000
           0
                                       comedy
In [29]:
          df_target = df_target.reset_index()
```

target genres = ['drama', 'comedy', 'adventure', 'romance', 'western']

In [26]:

In [30]:

```
# for each of the target genres
for gen in target genres:
  # get the films in that genre
  genres df = df target.loc[df target['Genre'] == gen]
  print("Genre: ", gen)
  tokenized titles = []
  tokenized plots = []
  for index, row in genres_df.iterrows():
    word tokens = nltk.tokenize.word tokenize(row['Title'])
    tokenized titles.append(word tokens)
    word tokens = nltk.tokenize.word tokenize(row['Plot'])
    tokenized plots.append(word tokens)
  # list the titles and find most common word
  flat titles = [item for sublist in tokenized titles for item in sublist]
  f = nltk.probability.FreqDist(flat titles)
  print("most frequent words in Titles:")
  print(f.most common(10))
  # distribution of words in plot descrpition
  flat plots = [item for sublist in tokenized plots for item in sublist]
  f = nltk.probability.FreqDist(flat plots)
  print("Word distrubutions in plots:")
  print(f.most common(10))
  # vocab alignment
  temp = f.most common(1000)
  most common words = [i[0] for i in temp]
  top 1000s.append(most common words)
Genre: drama
most frequent words in Titles:
[('The', 1551), ('of', 682), ('the', 602), ("'s", 237), ('and', 226), ('in', 224), ('A', 1
92), ('(', 171), (')', 171), (',', 143)]
Word distrubutions in plots:
[(',', 173834), ('.', 144770), ('the', 140829), ('to', 108065), ('and', 97690), ('a', 7750
3), ('of', 53278), ('is', 50864), ('his', 46562), ('in', 44789)]
Genre: comedy
most frequent words in Titles:
[('The', 966), ('the', 523), ('of', 369), ("'s", 303), ('and', 245), ('in', 231), ('a', 19
5), (',', 194), ('to', 166), (':', 134)]
Word distrubutions in plots:
[(',', 137457), ('the', 114002), ('.', 105702), ('to', 85388), ('and', 77056), ('a', 6191
1), ('of', 38063), ('is', 36223), ('his', 32939), ('in', 31749)]
Genre: adventure
most frequent words in Titles:
[('The', 229), ('of', 164), ('the', 156), (':', 60), ('and', 32), ("'s", 29), ('Tarzan', 2
7), ('in', 21), ('Sea', 18), ('Jungle', 18)]
Word distrubutions in plots:
[(',', 19395), ('the', 19035), ('.', 14802), ('to', 11748), ('and', 10795), ('a', 7538),
('of', 5998), ('is', 4754), ('his', 4372), ('in', 4096)]
Genre: romance
most frequent words in Titles:
[('The', 157), ('Love', 103), ('of', 73), ('the', 67), ('(', 50), (')', 50), ('in', 49),
("'s", 45), ('You', 41), ('and', 38)]
Word distrubutions in plots:
[(',', 39421), ('.', 37833), ('to', 28754), ('the', 28692), ('and', 26091), ('a', 18398),
('her', 14516), ('is', 13362), ('in', 11342), ('of', 11266)]
```

top 1000s = []

```
Genre: western
        most frequent words in Titles:
         [('The', 257), ('the', 121), ('of', 104), ('Man', 31), ('Gun', 31), ('and', 31), ('to', 2
         6), ("'s", 25), ('Kid', 22), ('West', 21)]
        Word distrubutions in plots:
         [(',', 17957), ('the', 15871), ('.', 14411), ('to', 10614), ('and', 9795), ('a', 7179),
         ('of', 5128), ('is', 4800), ('his', 4399), ('in', 4009)]
In [31]:
         import numpy as np
         result = np.ones((5, 5))
         for i in range(5):
           test = top 1000s[i]
           for j in range (5):
             test2 = top 1000s[j]
             res = len(list(set(test).intersection(test2)))
             result[i, j] = res/10
         print("Matrix showing vocabulary alignment between genres")
         print(target genres)
         print(result)
        Matrix showing vocabulary alignment between genres
```

```
Matrix showing vocabulary alignment between genres ['drama', 'comedy', 'adventure', 'romance', 'western'] [[100. 85.6 71.4 81.5 67.2] [ 85.6 100. 69.5 79.2 65.3] [ 71.4 69.5 100. 63.5 66.5] [ 81.5 79.2 63.5 100. 60. ] [ 67.2 65.3 66.5 60. 100. ]]
```

3. Text Normalization and Feature Engineering

We are doing text normalization and feature engineering to plot column as it is the only column in dataset which has sentences and contains the most relevant information for our task. We have decided to focus on this section of the corpus only as the plot description directly relates to the target, while other features do not.

Lemmatization was chosen because speed is not a critical concern, the actual word matters in this case and the context matters.

We have already removed stopwords for plot in previous step.

```
In [32]:
        Plot SW
                bartender working saloon, serving drinks custo...
Out[32]:
                moon, painted smiling face hangs park night. y...
                film, minute long, composed two shots. first, ...
        3
                lasting 61 seconds consisting two shots, first...
                earliest known adaptation classic fairytale, f...
        34881 film begins 1919, world war ended, centres aro...
        34882 two musicians, salih gürkan, described adventu...
                zafer, sailor living mother döndü coastal vill...
        34883
        34884
                film centres around young woman named amy tyle...
        34885 writer orhan şahin returns istanbul many year...
        Name: Plot, Length: 34886, dtype: object
```

We are going to remove all the characters except alphabeticals. Therefore if we replace all the non alphabeticals with a space we are going to get our correct output instead of aposthrophe's. Because if we replace aposthrophe's with a space, we are getting highest word frequency of letter s. Therefore first we will replace apostrophe's without having any space and then rest with space.

```
In [33]:
         Update Plot = Plot SW.str.replace("'", "")
         df['New Plot'] = Update Plot.str.replace('[^a-zA-Z]', '')
         df['New Plot']
        <ipython-input-33-7f87c6bd46a1>:2: FutureWarning: The default value of regex will change f
        rom True to False in a future version.
          df['New Plot'] = Update Plot.str.replace('[^a-zA-Z]', ' ')
                 bartender working saloon serving drinks custo...
Out[33]:
                moon painted smiling face hangs park night y...
        2
                film minute long composed two shots first ...
        3
                lasting seconds consisting two shots first...
        4
                 earliest known adaptation classic fairytale f...
                film begins
                                 world war ended centres aro...
        34882 two musicians salih g rkan described adventu...
        34883 zafer sailor living mother d nd coastal vill...
        34884 film centres around young woman named amy tyle...
        34885 writer orhan ahin returns i stanbul many year...
        Name: New Plot, Length: 34886, dtype: object
In [34]:
        New Plot Freq = df['New Plot'].str.split(expand=True).stack().value counts().reset index()
         New Plot Freq.columns = ['Word', 'Frequency']
         New Plot Freq.head(50)
```

Out[34]: Word Frequency

0	him	30261
1	one	29889
2	back	22486
3	father	20707
4	her	20434
5	two	20297
6	love	19616
7	tells	19615
8	home	17608
9	also	17539
10	man	17425
11	time	17333
12	later	17235
13	house	16967
14	get	16907
15	new	16700
16	police	16626
17	life	16616
18	family	16584
19	finds	15800
20	day	14849

	Word	Frequency
21	find	14758
22	however	14463
23	goes	14339
24	mother	14022
25	takes	13922
26	S	13619
27	wife	13453
28	go	13215
29	film	13210
30	take	12947
31	son	12892
32	help	12889
33	gets	12849
34	away	12764
35	tries	12079
36	money	11973
37	night	11658
38	killed	11331
39	first	11180
40	death	11168
41	young	11134
42	daughter	11107
43	friend	10987
44	men	10430
45	comes	10415
46	next	10318
47	friends	10279
48	becomes	10276
49	kill	10259

```
import nltk
nltk.download('wordnet')
nltk.download('omw-1.4')
from nltk.stem import WordNetLemmatizer

# Create WordNetLemmatizer object
wnl = WordNetLemmatizer()

df['Lem_Plot'] = df['New_Plot'].apply(lambda x: ' '.join([wnl.lemmatize(word,'v') for word))
```

```
print(df['Lem Plot'])
         [nltk data] Downloading package wordnet to /root/nltk data...
         [nltk data] Package wordnet is already up-to-date!
         [nltk data] Downloading package omw-1.4 to /root/nltk data...
         [nltk data] Package omw-1.4 is already up-to-date!
                 bartender work saloon serve drink customers fi...
         1
                  moon paint smile face hang park night young co...
         2
                  film minute long compose two shots first girl ...
         3
                  last second consist two shots first shoot set ...
                  earliest know adaptation classic fairytale fil...
                 film begin world war end centre around joshua ...
         34881
         34882
                 two musicians salih g rkan describe adventure ...
         34883 zafer sailor live mother d nd coastal village ...
                 film centre around young woman name amy tyler ...
                writer orhan ahin return i stanbul many years ...
         34885
        Name: Lem Plot, Length: 34886, dtype: object
In [36]:
         Lem Plot Freq = df['Lem Plot'].str.split(expand=True).stack().value_counts().reset_index()
         Lem Plot Freq.columns = ['Word', 'Frequency']
         Lem Plot Freq.head(50)
Out[36]:
              Word Frequency
          0
               find
                       37697
          1
               take
                       37079
          2
                get
                       35651
          3
                       35633
                go
          4
                kill
                       33850
          5
                       30945
              leave
          6
                       30261
               him
          7
               one
                       29889
          8
                       29721
               tell
          9
               love
                       24393
                       24207
         10
              make
```

11

12

13

14

15

16

17

18

19

20

21

father

back

try

see

meet

return

come

become

her

two

time

23969

22875

21746

21625

21184

20743

20585

20434

20396

20297

19102

	Word	Frequency
22	give	18876
23	man	18474
24	home	17923
25	also	17539
26	house	17517
27	help	17314
28	later	17235
29	new	16700
30	police	16681
31	life	16616
32	family	16584
33	marry	16530
34	work	15592
35	mother	15576
36	reveal	15182
37	decide	15139
38	live	15064
39	end	14885
40	film	14865
41	day	14849
42	use	14598
43	however	14463
44	fall	14433
45	know	14376
46	call	13915
47	ask	13902
48	begin	13813
49	name	13681

References:

- 1. https://medium.com/@ashwinnaidu1991/creating-a-tf-idf-model-from-scratch-in-python-71047f16494e
- 2. https://www.analyticsvidhya.com/blog/2017/06/word-embeddings-count-word2veec/? utm_source=blog&utm_medium=predicting-movie-genres-nlp-multi-label-classification
- 3. https://www.analyticsvidhya.com/blog/2019/03/learn-to-use-elmo-to-extract-features-from-text/?utm_source=blog&utm_medium=predicting-movie-genres-nlp-multi-label-classification

•	Release Year	Title	Origin/Ethnicity	Director	Cast	Genre	Plot	Title_length	Plot_length	no
O	1901	Kansas Saloon Smashers	American	Unknown	Unknown	unknown	A bartender is working at a saloon, serving dr	3	83	[,,
1	1901	Love by the Light of the Moon	American	Unknown	Unknown	unknown	The moon, painted with a smiling face hangs ov	7	86	[,,
2	1901	The Martyred Presidents	American	Unknown	Unknown	unknown	The film, just over a minute long, is composed	3	76	<u>[,, </u>
3	1901	Terrible Teddy, the Grizzly King	American	Unknown	Unknown	unknown	Lasting just 61 seconds and consisting of two	5	153	[. ",
4	1902	Jack and the Beanstalk	American	George S. Fleming, Edwin S. Porter	Unknown	unknown	The earliest known adaptation of the classic f	4	140	[,,
5	1903	Alice in Wonderland	American	Cecil Hepworth	May Clark	unknown	Alice follows a large white rabbit down a "Rab	3	229	[",
6	1903	The Great Train Robbery	American	Edwin S. Porter	Unknown	western	The film opens with two bandits breaking into	4	239	L.
7	' 1904	The Suburbanite	American	Wallace McCutcheon	Unknown	comedy	The film is about a family who move to the sub	2	34	
8	3 1905	The Little Train Robbery	American	Edwin Stanton Porter	Unknown	unknown	The opening scene shows the interior of the ro	4	646	[',

	Release Year	Title	Origin/Ethnicity	Director	Cast	Genre	Plot	Title_length	Plot_length	no
9	1905	The Night Before Christmas	American	Edwin Stanton Porter	Unknown	unknown	Scenes are introduced using lines of the poem	4	83	[., [

4. Model Building - Genre Prediction Model

4.1 Problem Definition

Our task is to create a tool which will output a specific label of genre from the plot information so this a supervised classification problem.

Reference: https://www.analyticsvidhya.com/blog/2019/04/predicting-movie-genres-nlp-multi-label-classification/

```
In [41]:
         import seaborn as sns
         def freq words (x, terms = 30):
           all words = ' '.join([text for text in x])
           all words = all words.split()
           fdist = nltk.FreqDist(all words)
           words df = pd.DataFrame({'word':list(fdist.keys()), 'count':list(fdist.values())})
           # selecting top 20 most frequent words
           d = words df.nlargest(columns="count", n = terms)
           # visualize words and frequencies
           plt.figure(figsize=(12,15))
           ax = sns.barplot(data=d, x= "count", y = "word")
           ax.set(ylabel = 'Word')
           plt.show()
         # print 100 most frequent words
         freq words(df['Lem Plot'], 100)
```



```
Out[42]:
                 index Genre
          0
                         8239
                drama
           1
               comedy
                         6099
                         6083
          2
              unknown
          3
               romance
                         2037
                 horror
                         1167
```

```
6
              thriller
                       966
         7
              western
                       944
         8 adventure
                       738
         9
               crime
                       568
In [43]:
          list1 = list(x['index'].unique())
          list1
         ['drama',
Out[43]:
           'comedy',
           'unknown',
           'romance',
          'horror',
          'action',
          'thriller',
          'western',
          'adventure',
          'crime']
In [44]:
          new df = df[df['Genre'].isin(list1)]
          new df
```

index Genre

1098

action

5

Out[44]:	Release Title Year		Origin/Ethnicity	Director	Cast	Genre	Plot	Title_length	Plot_length	
	0	1901	Kansas Saloon Smashers	American	Unknown	Unknown	unknown	A bartender is working at a saloon, serving dr	3	83
	1	1901	Love by the Light of the Moon	American	Unknown	Unknown	unknown	The moon, painted with a smiling face hangs ov	7	86
	2	1901	The Martyred Presidents	American	Unknown	Unknown	unknown	The film, just over a minute long, is composed	3	76
	3	1901	Terrible Teddy, the Grizzly King	American	Unknown	Unknown	unknown	Lasting just 61 seconds and consisting of two	5	153

	Release Year	Title	Title Origin/Ethnicity		Cast	Genre	Plot	Title_length	Plot_length
4	1902	Jack and the Beanstalk	American	George S. Fleming, Edwin S. Porter	Unknown	unknown	The earliest known adaptation of the classic f	4	140
•••						•••			
34881	2014	The Water Diviner	Turkish	Director: Russell Crowe	Director: Russell Crowe Cast: Russell Crowe,	unknown	The film begins in 1919, just after World War	3	591
34882	2017	Çalgı Çengi İkimiz	Turkish	Selçuk Aydemir	Ahmet Kural, Murat Cemcir	comedy	Two musicians, Salih and Gürkan, described the	3	11
34883	2017	Olanlar Oldu	Turkish	Hakan Algül	Ata Demirer, Tuvana Türkay, Ülkü Duru	comedy	Zafer, a sailor living with his mother Döndü i	2	67
34884	2017	Non- Transferable	Turkish	Brendan Bradley	YouTubers Shanna Malcolm, Shira Lazar, Sara Fl	romance	The film centres around a young woman named Am	1	193
34885	2017	İstanbul Kırmızısı	Turkish	Ferzan Özpetek	Halit Ergenç, Tuba Büyüküstün, Mehmet Günsür,	romance	The writer Orhan Şahin returns to İstanbul aft	2	48

27939 rows × 13 columns

4.2 Feature Selection

k = pd.DataFrame.sparse.from spmatrix(1)

```
In [38]:
         from sklearn.feature_selection import SelectKBest, mutual_info_classif
In [39]:
         from sklearn.feature_extraction.text import TfidfVectorizer
         tfidf vectorizer = TfidfVectorizer(max df=0.8, max features=20000)
In [45]:
         1 = tfidf_vectorizer.fit_transform(new_df['Lem_Plot'])
In [46]:
```

```
In []: # source : tutorial
    # select the best features using mutual information
    K_features = 10000
    ft_scorer = SelectKBest(mutual_info_classif, k=K_features)
    X = ft_scorer.fit_transform(1, new_df["Genre"])
    #print("The input and the target matrix shapes:", X.shape, y.shape)
In [48]: selected feats = pd.Series(ft scorer.scores *1000, index=k.columns).sort values(ascending=
```

4.3 Evaluation Metric

The evaluation metric which was chosen was overall accuracy of prediction as accuracy for each genre is equally valuable for our business problem.

4.4 Hyperparameter Tuning

Not applicable for logistic regression

4.5 Training and Evaluation

•		action	adventure	comedy	crime	drama	horror	romance	thriller	unknown	western
	0	0	0	0	0	0	0	0	0	1	0
	1	0	0	0	0	0	0	0	0	1	0
	2	0	0	0	0	0	0	0	0	1	0
	3	0	0	0	0	0	0	0	0	1	0
	4	0	0	0	0	0	0	0	0	1	0
	•••										
34	1881	0	0	0	0	0	0	0	0	1	0
34	1882	0	0	1	0	0	0	0	0	0	0
34	1883	0	0	1	0	0	0	0	0	0	0
34	1884	0	0	0	0	0	0	1	0	0	0
34	1885	0	0	0	0	0	0	1	0	0	0

27939 rows × 10 columns

Out[50]:

```
from sklearn.feature extraction.text import TfidfVectorizer
In [51]:
         tfidf vectorizer = TfidfVectorizer(max df=0.8, max features=10000)
In [52]:
         from sklearn.model selection import train test split
         xtrain, xval, ytrain, yval = train test split(new df['Lem Plot'], y, test size=0.2, random
In [53]:
         xtrain tfidf = tfidf vectorizer.fit transform(xtrain)
         xval tfidf = tfidf vectorizer.transform(xval)
In [54]:
          # NOTE: we acheived better accuracy without using the selected features based on mutual in
          # left out in the final run
          #xtrain tfidf = xtrain tfidf[:, selected feats]
          #xval tfidf = xval tfidf[:, selected feats]
In [55]:
         from sklearn.linear model import LogisticRegression
         import warnings
         warnings.filterwarnings("ignore")
          # Binary Relevance
         from sklearn.multiclass import OneVsRestClassifier
          # Performance metric
         from sklearn.metrics import f1 score
         lr = LogisticRegression(max iter=10000)
         clf = OneVsRestClassifier(lr)
          # fit model on train data
         clf.fit(xtrain tfidf, ytrain)
          # make predictions for validation set
         y pred = clf.predict(xval tfidf)
         y pred
        array([[0, 0, 0, ..., 0, 0, 0],
Out[55]:
                [0, 0, 0, \ldots, 0, 0, 0],
                [0, 0, 0, \ldots, 0, 0, 0]]
In [56]:
         list1
         ['drama',
Out[56]:
          'comedy',
          'unknown',
          'romance',
          'horror',
          'action',
          'thriller',
          'western',
          'adventure',
          'crime']
In [57]:
         list2 = ['action',
                                   'adventure',
                                                   'comedy',
                                                                    'crime',
                                                                                     'drama',
         def replace(row):
```

```
y in = pd.DataFrame(y pred).idxmax(axis=1).reset index(drop = True)
         y_act = y_in.apply(replace)
         y_act
                action
Out[57]:
        1
                action
        2
                action
        3
                 drama
        4
                action
                 . . .
        5583
               action
        5584
               action
        5585
               action
        5586
              action
              action
        5587
        Length: 5588, dtype: object
In [58]:
         yval
                                    crime drama horror romance thriller unknown
Out[58]
```

]:		action	adventure	comedy	crime	drama	horror	romance	thriller	unknown	western
	9793	0	0	0	0	1	0	0	0	0	0
	21287	0	0	0	0	0	0	0	0	1	0
	8145	0	0	1	0	0	0	0	0	0	0
	20921	0	0	0	0	1	0	0	0	0	0
	8116	0	0	0	0	0	1	0	0	0	0
	•••										
	700	0	0	0	0	0	0	1	0	0	0
	6452	0	0	0	0	1	0	0	0	0	0
	32539	0	0	0	0	0	0	1	0	0	0
	16166	0	0	0	0	1	0	0	0	0	0
	32495	1	0	0	0	0	0	0	0	0	0

5588 rows × 10 columns

return list2[row]

```
In [59]:
         y true = yval.idxmax(axis=1)
         y_true
        9793 drama
Out[59]:
        21287
               unknown
        8145
                comedy
        20921
                  drama
        8116
                horror
                 . . .
        700
                romance
        6452
                  drama
        32539
               romance
        16166
                 drama
        32495
                action
        Length: 5588, dtype: object
```

In [60]: from sklearn.metrics import classification_report

print(classification_report(y_true,y_act))

	precision	recall	f1-score	support
action	0.06	0.86	0.11	236
adventure	0.70	0.04	0.08	164
comedy	0.78	0.35	0.48	1203
crime	1.00	0.01	0.02	97
drama	0.63	0.28	0.39	1637
horror	0.87	0.16	0.27	245
romance	0.62	0.05	0.10	377
thriller	0.00	0.00	0.00	211
unknown	0.75	0.36	0.48	1226
western	0.87	0.32	0.47	192
accuracy macro avq	0.63	0.24	0.29	5588 5588
weighted avg	0.67	0.29	0.37	5588

In [61]:

for i in range(10):
 print("Movie: ", new_df['Title'][i], "\nPredicted genre: ", y_act[i]), print("Actual genre: ")

Movie: Kansas Saloon Smashers

Predicted genre: action Actual genre: unknown

Movie: Love by the Light of the Moon

Predicted genre: action Actual genre: unknown

Movie: The Martyred Presidents

Predicted genre: action Actual genre: unknown

Movie: Terrible Teddy, the Grizzly King

Predicted genre: drama Actual genre: unknown

Movie: Jack and the Beanstalk

Predicted genre: action Actual genre: unknown

Movie: Alice in Wonderland Predicted genre: action Actual genre: unknown

Movie: The Great Train Robbery

Predicted genre: action Actual genre: western

Movie: The Suburbanite Predicted genre: action Actual genre: comedy

Movie: The Little Train Robbery

Predicted genre: action Actual genre: unknown

Movie: The Night Before Christmas

Predicted genre: action Actual genre: unknown

4.6 Preventing Overfitting

Overfitting can be prevented in this model by utilizing cross validation during training, as shown below in the learning curves. The utilization of different data subsets will help stop overfitting. The validation set accuracy should not begin to drop during training or overfitting likely has occured.

4.7 Plot Learning Curve

```
In [63]:
          # learning curve
         # code soure tutorial
         import numpy as np
         from sklearn.model selection import learning curve
         def plot learning curve (
             estimator,
             title,
             Χ,
             У,
             axes=None,
             ylim=None,
             cv=None,
             n jobs=None,
             train sizes=np.linspace(0.1, 1.0, 5),
         ):
              , axes = plt.subplots(1, 3, figsize=(20, 5))
             axes[0].set title(title)
             if ylim is not None:
                 axes[0].set_ylim(*ylim)
             axes[0].set xlabel("Training examples")
             axes[0].set ylabel("Score")
             train sizes, train scores, test scores, fit times, = learning curve(
                 estimator,
                 Χ,
                 У,
                 cv=cv,
                 n jobs=n jobs,
                 train sizes=train sizes,
                 return times=True,
                 scoring="accuracy",
             train scores mean = np.mean(train scores, axis=1)
             train scores std = np.std(train scores, axis=1)
             test scores mean = np.mean(test scores, axis=1)
             test scores std = np.std(test scores, axis=1)
             fit times mean = np.mean(fit times, axis=1)
             fit times std = np.std(fit times, axis=1)
```

```
# Plot learning curve
axes[0].grid()
axes[0].fill between(
   train sizes,
   train scores mean - train scores std,
   train scores mean + train scores std,
   alpha=0.1,
   color="r",
axes[0].fill between(
   train sizes,
   test scores mean - test scores std,
   test scores mean + test scores std,
   alpha=0.1,
   color="q",
axes[0].plot(
   train sizes, train scores mean, "o-", color="r", label="Training score"
axes[0].plot(
   train sizes, test scores mean, "o-", color="g", label="Cross-validation score"
axes[0].legend(loc="best")
# Plot n samples vs fit times
axes[1].grid()
axes[1].plot(train sizes, fit times mean, "o-")
axes[1].fill between(
   train sizes,
   fit times mean - fit times std,
   fit times mean + fit times std,
   alpha=0.1,
axes[1].set xlabel("Training examples")
axes[1].set ylabel("fit times")
axes[1].set title("Scalability of the model")
# Plot fit time vs score
fit time argsort = fit times mean.argsort()
fit time sorted = fit times mean[fit time argsort]
test scores mean sorted = test scores mean[fit time argsort]
test scores std sorted = test scores std[fit time argsort]
axes[2].grid()
axes[2].plot(fit time sorted, test scores mean sorted, "o-")
axes[2].fill between(
   fit time sorted,
    test scores mean sorted - test scores std sorted,
    test scores mean sorted + test scores std sorted,
    alpha=0.1,
axes[2].set xlabel("fit times")
axes[2].set ylabel("Score")
axes[2].set title("Performance of the model")
return plt
```

```
In [64]: plot_learning_curve(clf, "", xtrain_tfidf, ytrain, n_jobs=-1)
```

Out[64]: <module 'matplotlib.pyplot' from '/usr/local/lib/python3.8/dist-packages/matplotlib/pyplot.py'>

4.8 Analyze Results

t.py'>

The overall accuracy of the model is 29%. Genres such as thriller and crime have almost 0% accuracy. The model does not seem to be overfit as validation accuracy did not drop. The confusion matrix shows the most often predicted genre is Action.

5. Applying Part-of-speech Tagging

```
In [65]:
          # source: https://stackoverflow.com/questions/33587667/extracting-all-nouns-from-a-text-f.
          # function to test if something is a noun
         is noun = lambda pos: pos[:2] == 'NN'
         xtrain nouns = []
         for string in xtrain:
           tokens=nltk.word tokenize(string)
           nouns = [word for (word, pos) in nltk.pos tag(tokens) if is noun(pos)]
           xtrain nouns.append(' '.join(nouns))
In [66]:
         xval nouns = []
         for string in xval:
           tokens=nltk.word tokenize(string)
           nouns = [word for (word, pos) in nltk.pos tag(tokens) if is noun(pos)]
           xval nouns.append(' '.join(nouns))
In [67]:
         xtrain_nouns_tfidf = tfidf_vectorizer.fit_transform(xtrain_nouns)
         xval nouns tfidf = tfidf vectorizer.transform(xval nouns)
In [68]:
         lr = LogisticRegression(max iter=10000)
         clf2 = OneVsRestClassifier(lr)
          # fit model on train data
         clf2.fit(xtrain nouns tfidf, ytrain)
          # make predictions for validation set
         y pred = clf2.predict(xval nouns tfidf)
In [69]:
         plot learning curve(clf, "Nouns only", xtrain nouns tfidf, ytrain, n jobs=-1)
         <module 'matplotlib.pyplot' from '/usr/local/lib/python3.8/dist-packages/matplotlib/pyplo</pre>
Out[69]:
```


5.2

The model utilizing nouns only achieved an overall accuracy of 27%. This is 2% lower than the previous model.

6. Applying K-means Clustering

In [84]: from sklearn.cluster import KMeans

```
K-means++ init
In [85]:
        kmeans = KMeans(n clusters=k, init='k-means++', max iter=1000).fit(xtrain tfidf)
In [86]:
        ypred = kmeans.predict(xval tfidf)
        y in = pd.DataFrame(y pred).idxmax(axis=1).reset index(drop = True)
        y act = y in.apply(replace)
        y true = yval.idxmax(axis=1)
In [87]:
        print(classification report(yval,y pred))
                    precision recall f1-score support
                        1.00 0.01
                                          0.03
                                                    236
                 1
                                0.04
                        0.75
                                         0.07
                                                   164
                                0.28
                 2
                        0.74
                                         0.41
                                                   1203

    1.00
    0.01
    0.02

    0.62
    0.26
    0.37

    0.89
    0.16
    0.28

    0.58
    0.05
    0.09

                 3
                                                    97
                                                  1637
                 4
                 5
                                                   245
                                                   377
                 6
                               0.00
                                        0.00
                                                   211
                 7
                        0.00
                       0.73
                 8
                                                  1226
                 9
                       0.91
                                0.33
                                         0.48
                                                   192
                                0.23 0.35
0.15 0.22
                       0.70 0.23
                                                   5588
          micro avg
          macro avg
                       0.72
                                                   5588
       weighted avg
                       0.69
                                0.23
                                         0.33
                                                  5588
                                      0.23
        samples avg
                        0.23 0.23
                                                  5588
In [88]:
        print(confusion matrix(y true, y act))
        [[ 205
              0 2 0
                           8 0
                                       2 0 19
                                                    0]
                        0
               6 1
                            10
                                               1
        [ 145
                                  0
                                       0
                                           0
                                                    1]
        [ 776  0  339  0  62  1  1  0  21
                                                   31
              0 1
        [ 85
                        1 9 0 0 0 1
                                                   0 ]
                                                  1]
              1 59 0 432
                                0
        [1071
                                      6 0
                                               67
        [ 192
               0 3
                       0 7 40 1 0
                                              2 0]
        [ 263
              0 28 0 37 0 18 0 31 0]
        [ 178
               0 3 0 26 1 0 0
                                              3
                                                  0 ]
                                         0 397
               1 22 0 92 3 3
         707
                                                    1]
                0 0 0 4 0 0 0
        [ 125
                                                   63]]
       Random init
In [89]:
        kmeans = KMeans(n clusters=k, random state=0, init='random', max iter=1000).fit(xtrain tf
In [90]:
        ypred = kmeans.predict(xval tfidf)
        y in = pd.DataFrame(y pred).idxmax(axis=1).reset index(drop = True)
        y act = y in.apply(replace)
        y true = yval.idxmax(axis=1)
```

k = 10

```
precision recall f1-score support
                 0
                        1.00
                                0.01
                                         0.03
                                                     236
                 1
                         0.75
                                 0.04
                                         0.07
                                                    164
                         0.74
                 2
                                  0.28
                                          0.41
                                                    1203
                 3
                        1.00
                                0.01
                                         0.02
                                                    97
                 4
                        0.62
                                0.26
                                         0.37
                                                   1637
                 5
                        0.89
                                 0.16
                                         0.28
                                                    245
                                       0.09
                 6
                        0.58
                                0.05
                                                    377
                 7
                        0.00
                                0.00
                                                    211
                 8
                        0.73
                                0.33
                                                    1226
                                         0.45
                                       0.48
                              0.33
                 9
                        0.91
                                                    192
                        0.70
                                0.23
                                         0.35
                                                    5588
          micro avg
                        0.72
                                 0.15
                                          0.22
                                                    5588
          macro avg
                                  0.23
       weighted avg
                        0.69
                                          0.33
                                                    5588
                        0.23
        samples avg
                                  0.23
                                          0.23
                                                    5588
In [92]:
        print(confusion matrix(y true, y act))
        [[ 205
                0
                     2
                         0
                             8
                                   0
                                       2
                                            0
                                               19
                                                     0]
        [ 145
                   1
                             10
                                   0
                                               1
                         0
                                       0
                                           0
                                                     1]
        776
                0 339
                             62
                                       1
                                           0
                                               21
                                                     31
                         0
                                   1
                                          0
                             9
        [ 85
                0
                    1
                         1
                                   0
                                       0
                                               1
                                                     01
              1 59
                       0 432
                                 0
                                         0
                                              67
        [1071
                                      6
                                                    1]
        [ 192
               0 3
                        0
                             7
                                40
                                      1
                                          0
                                               2
                                                    01
        [ 263
                    28
                             37
                                         0
                                               31
                0
                         0
                                 0
                                      18
                                                    0]
                                          0
        [ 178
               0 3
                         0
                             26
                                  1 0
                                              3
                                                    0 ]
        707
                1
                    22
                             92
                                  3
                                      3 0 397
                                                    1]
        [ 125
                                          0
                0
                    0
                         0
                              4
                                   0
                                      0
                                              0
                                                    63]]
       random init with more initialization runs
In [93]:
        kmeans = KMeans(n clusters=k, init='random', n init=25, max iter=1000).fit(xtrain tfidf)
In [94]:
        ypred = kmeans.predict(xval tfidf)
        y in = pd.DataFrame(y pred).idxmax(axis=1).reset index(drop = True)
        y act = y in.apply(replace)
        y true = yval.idxmax(axis=1)
In [95]:
        print(classification report(yval, y pred))
                    precision recall f1-score
                                                 support
                 0
                        1.00
                                 0.01
                                          0.03
                                                     236
                 1
                         0.75
                                  0.04
                                          0.07
                                                     164
                 2
                        0.74
                                  0.28
                                         0.41
                                                    1203
                 3
                        1.00
                                  0.01
                                         0.02
                                                     97
                 4
                        0.62
                                 0.26
                                         0.37
                                                    1637
                 5
                        0.89
                                 0.16
                                         0.28
                                                    245
                 6
                        0.58
                                0.05
                                         0.09
                                                    377
                 7
                        0.00
                                0.00
                                         0.00
                                                    211
                 8
                        0.73
                                  0.33
                                          0.45
                                                    1226
                 9
                        0.91
                                  0.33
                                         0.48
                                                    192
                        0.70
                              0.23
                                       0.35
                                                    5588
          micro avg
```

In [91]:

print(classification report(yval, y pred))

```
samples avg
                            0.23
                                       0.23
                                                 0.23
                                                            5588
In [96]:
         print(confusion matrix(y true, y act))
         [[ 205
                                 8
                                        0
                                                      19
                                                             01
          [ 145
                   6
                      1
                                  10
                                        0
                                             0
                                                  0
                                                             1]
                             0
                                                      1
          776
                      339
                             0
                                  62
                                        1
                                             1
                                                      21
                                                             31
          [ 85
                                   9
                                             0
                      1
                             1
                                        0
                                                      1
                                                            01
          [1071
                  1
                      59
                             0
                                432
                                        0
                                            6
                                                      67
                                                            11
          [ 192
                       3
                   0
                             0
                                 7
                                       40
                                            1
                                                  0
                                                      2
                                                            01
          [ 263
                   0
                      28
                             0
                                  37
                                        0
                                            18
                                                  0
                                                      31
                                                            01
          [ 178
                   0
                       3
                                 26
                                       1
                                           0
                                                      3
                             0
                                                            0 ]
          707
                   1
                       22
                             0
                                  92
                                        3
                                            3
                                                  0 397
                                                            1]
          [ 125
                        0
                                   4
                                        0
                                             0
                                                  0
                                                       0
                                                            6311
        k-means++ init with more init runs
In [97]:
         kmeans = KMeans(n clusters=k, init='k-means++',n init=25, max iter=1000).fit(xtrain tfidf
In [98]:
         ypred = kmeans.predict(xval tfidf)
         y in = pd.DataFrame(y pred).idxmax(axis=1).reset index(drop = True)
         y act = y in.apply(replace)
         y true = yval.idxmax(axis=1)
In [99]:
         print(classification report(yval, y pred))
                       precision
                                     recall f1-score
                                                        support
                    0
                            1.00
                                       0.01
                                                 0.03
                                                             236
                    1
                            0.75
                                       0.04
                                                 0.07
                                                            164
                    2
                            0.74
                                       0.28
                                                 0.41
                                                            1203
                    3
                            1.00
                                       0.01
                                                 0.02
                                                              97
                    4
                            0.62
                                       0.26
                                                            1637
                                                 0.37
                    5
                            0.89
                                       0.16
                                               0.28
                                                            245
                    6
                            0.58
                                       0.05
                                                0.09
                                                            377
                    7
                            0.00
                                       0.00
                                                0.00
                                                            211
                    8
                            0.73
                                       0.33
                                                 0.45
                                                            1226
                            0.91
                                       0.33
                                                0.48
                                                            192
            micro avq
                            0.70
                                       0.23
                                                 0.35
                                                            5588
           macro avg
                            0.72
                                       0.15
                                                 0.22
                                                            5588
         weighted avg
                            0.69
                                       0.23
                                                 0.33
                                                            5588
                            0.23
                                       0.23
          samples avg
                                                 0.23
                                                            5588
In [100...
         print(confusion matrix(y true,y act))
         [[ 205
                             0
                                  8
                                        0
                                             2
                                                      19
                                                             0]
                   0
                        2
                                                  0
          [ 145
                   6
                        1
                             0
                                  10
                                        0
                                                       1
                                                             1]
          [ 776
                   0 339
                                  62
                                        1
                                             1
                                                  0
                                                      21
                             0
                                                             3]
                       1
                             1
                                   9
                                        0
          [ 85
                                                            01
                       59
                                 432
                                        0
                                                  0
                                                      67
          [1071
                   1
                             0
                                             6
                                                            1]
                   0
                       3
                                 7
                                       40
                                            1
                                                  0
                                                      2
          [ 192
                             0
                                                            01
          [ 263
                   0
                       28
                             0
                                  37
                                        0
                                            18
                                                      31
                                                             01
          [ 178
                   0
                       3
                                 26
                                        1
                                             0
                                                       3
                                                             0]
```

macro avg

weighted avg

0.72

0.69

0.15

0.23

0.22

0.33

[707	1	22	0	92	3	3	0	397	1]
[125	0	0	0	4	0	0	0	0	63]]

6.2

Clustering could reproduce the classes in the dataset with 35% overall accuracy. This accuracy was not impacted by different intialization techniques. The accuracy was improved upon from the previous models so clustering is a good option for our business problem.