Rechnen Sie folgende Angaben in mg um:

- 0,5 kg \rightarrow 5 ·10 ⁵ mg oder 500 000 mg
- 2,3 g \rightarrow 2,3 ·10 3 mg oder 2300 mg
- $15 \mu g \rightarrow 0.015 mg$
- $100 \, \mu g \rightarrow 0.1 \, mg$

Bestimmung von Phenol mit p-Nitroanillin als gelb- roter Farbkomplex

mg Phenol /100 ml	Extinktion
Kalibrierlösung	
0,3	0, 453
0,6	0,910
0.9	1,329

Die gemessene Extinktion für die Probe (100 ml) ergab im Mittelwert 0,523 bei einer Schichtdicke von 1 cm.

a) Ermitteln Sie das Ergebnis der Probe in mg Phenol /100ml zeichnerisch. Ermitteln Sie den molaren Extinktionskoeffizienten ɛ für die drei Kalibrierungen und bilden Sie den Mittelwert. Berechnen Sie die Konzentration c für die Probe nach dem Lambert Beerschen Gesetz

$$\begin{array}{ccc} & \underline{0,453} & \underline{94,113g/mol \cdot 0,1 \ L} \\ \epsilon_1 & = & 1 \ cm \cdot & 0,0003 \ g & = 14211,06 \ L/ \ mol \cdot cm \end{array}$$

$$\epsilon_2 = 1 \text{ cm} \cdot \frac{94,113g/\text{mol} \cdot 0,1 \text{ L}}{0,0006 \text{ g}} = 14273,81 \text{ L/ mol} \cdot \text{cm}$$

$$\frac{1,329}{\epsilon_3} = 1 \text{ cm} \cdot \frac{94,113g/\text{mol} \cdot 0,1 \text{ L}}{0,0009 \text{ g}} = 13897,35 \text{ L/ mol} \cdot \text{cm}$$

$$\emptyset = 14127,41 \text{ L/ mol} \cdot \text{cm}$$

$$E = \frac{0,523 \cdot \text{mol}}{1 \text{ cm} \cdot 14127,41 \text{ L}} = 0,000037 \text{ mol/L} = 0,037 \text{ mmol/L}$$

Bestimmung von Phosphor als Molybdatovanadatophosphat [PV₂Mo₁₀O₄₀]

μg Phosphor /100 ml	Extinktion
Kalibrierlösung	
200	0,216
400	0,426
600	0,639
800	0,852

Die gemessene Extinktion für die Probe (100 ml) ergab im Mittelwert 0,492 bei einer Schichtdicke von 1 cm.

b) Ermitteln Sie das Ergebnis der Probe in mg Phenol /100ml zeichnerisch. Ermitteln Sie den molaren Extinktionskoeffizienten ɛ für die drei Kalibrierungen und bilden Sie den Mittelwert. Berechnen Sie die Konzentration c für die Probe nach dem Lambert Beerschen Gesetz

$$E = c_{(P)} \cdot d \cdot \epsilon$$

$$0.216$$
 $30.97g/mol \cdot 0.1 L$ $\epsilon_1 = 1 \text{ cm} \cdot 0.0002 \text{ g} = 3344.76 \text{ L/ mol} \cdot \text{cm}$

$$\epsilon_4 = 1 \text{ cm} \cdot 0,0008 \text{ g} = 3298,31 \text{ L/ mol} \cdot \text{cm}$$

$\varnothing = 3298,31 \text{ L/mol} \cdot \text{cm}$

$$E = 0.492 \cdot mol$$

c= d · $E = 1 \text{ cm} \cdot 3298.31 \text{ L} = 0.00015 \text{ mol/L} = 0.0149 \text{ mmol/L}$