Tratamiento Inteligente de Datos

Análisis de sentimientos sobre App Google Store

Matilde Cabrera González

ÍNDICE

Introducción

Dataset

Problema a resolver

Análisis exploratorio de los datos

Preprocesamiento

Análisis

Preprocesamiento y análisis semántico.

Agrupamiento

Preprocesamiento

Agrupamiento Jerárquico

k-medias

K-medoides

Clasificación

Árboles de decisión

SVM

KNN

Naive Bayes

Asociación

Bibliográfica

Googleplaystore.csv

	13 of 13 columns 🕶 Views 🥕 🔟 🗓 📥 🗶													
٣	A Type	Ψ	A Price	Ψ	A Content Rati	ing T	A Genres	Ψ	🖺 Last Updated	T	A Current Ver	T	A Android Ver	T
s for the iped)	Paid or Free		Price of the app scraped)	(as when	Age group the a targeted at - Ch Mature 21+ / Ad	hildren /	An app can belong multiple genres (a from its main cate For eg, a musical f game will belong to	part egory). family	Date when the app last updated on Pl (as when scraped)	lay Store	Current version of the available on Play Stor when scraped)	CONTRACTOR OF THE PARTY OF THE	Min required Andro version (as when s	100 100 100 miles
15%	Free	93%	0	93%	Everyone	80%	Tools	8%			Varies with device	13%	4.1 and up	23%
12%	Paid	7%	\$0.99	1%	Teen	11%	Entertainment	6%			1.0	7%	4.0.3 and up	14%
74%	Other (2)	0%	Other (91)	6%	Other (5)	8%	Other (118)	86%	21May10	8Aug18	Other (2832)	79%	Other (33)	64%

Googleplaystore_user_review.csv

Entrenar modelos para clasificar textos según su sentimiento, analizar dependencia con otras variable y el mercado de Android.

App : Factor w/ 755 levels "10 Best Foods for You",..: 1 1 1 1 1 1 1 1 1 1 ... Translated Review: Factor w/ 4459 levels ", Bethe bethe worm will be cut, you will always h Sentiment : Factor w/ 3 levels "Negative", "Neutral",...: 3 1 3 3 2 3 3 3 3 3 ... Sentiment_Polarity : num 0.7 -0.5 0.1 0.7 0 ... Sentiment Subjectivity: num 0.6 0.5 1 0.6 0 ... Category : Factor w/ 33 levels "ART_AND_DESIGN",...: 16 16 16 16 16 16 16 16 16 16 ... Rating: num 4 4 4 4 4 4 4 4 4 4 ... Size : Factor w/ 163 levels "1.2M","1.3M",...: 45 45 45 45 45 45 45 45 45 45 ... Installs : Factor w/ 12 levels "1,000,000,000+",...: 12 12 12 12 12 12 12 12 12 12 12 ... Type : Factor w/ 2 levels "Free", "Paid": 1 1 1 1 1 1 1 1 1 1 ... Price: Factor w/ 8 levels "\$0.99", "\$11.99",..: 8 8 8 8 8 8 8 8 8 8 ... Content.Rating : Factor w/ 5 levels "Adults only 18+",..: 3 3 3 3 3 3 3 3 3 ... Genres: Factor w/ 66 levels "Action", "Action; Action & Adventure",...: 33 33 33 33 33 33 33 Last.Updated : Factor w/ 239 levels "April 1, 2016",..: 69 69 69 69 69 69 69 69 69 69 ... Current.Ver : Factor w/ 465 levels "0.5.8", "0.6.88",..: 102 102 102 102 102 102 102 102 102 Android.Ver : Factor w/ 21 levels "1.5 and up", "1.6 and up", ...: 7 7 7 7 7 7 7 7 7 7 7 ...

	-
Translated_Review ÷	Sentiment
Good	Positive
No recipe book Unable recipe book.	Negative
Wow	Positive
good food really good eat	Positive
It helpful site! It help foods get!	Neutral
Weight loss Not bad	Positive
good you.	Positive
Great Love food	Positive
Nothing special! Could find anything useful!	Positive
Absolutely Fabulous Phenomenal	Positive
HEALTH SHOULD ALWAYS BE TOP PRIORITY. !!. ON M	Positive
Luv it! Simple, easy understand, well thought I follo	Positive
Great app. Love	Positive
Doesn't work Zero	Neutral
Amazing	Positive
Best way	Positive
A big thanks ds I got bst gd health	Positive
Great wife. My wife enjoy much. She's kinda person \dots	Positive
Love This really good	Positive
Good.!!	Positive
Food list easy I predibetic, I scared. All Dr. said pota	Positive
nice super get	Positive
Faltu plz waste ur time	Negative
Very Useful in diabetes age 30. I need control sugar	Positive
Luv	Neutral
Quick Read.	Positive
Thanks helpful app.	Positive
Great Love	Positive
Best	Positive
Crap Doesn't work	Negative
Good healthy foods.	Positive
10 best foods 4u Excellent chose foods	Positive

I do not collect it for a month, but I will not refund it... Neutral

Preprocesamiento y análisis exploratorio global

```
user reviews <- na.omit(googleplaystore user reviews)
                                                                            Sentiment = as.factor(datosprosSentiment)
# Dividimos nuestro dataset en 3, filtrando por sentimientos:
                                                                            Sentiment = factor(Sentiment, levels = c("Negative", "Neutral", "Positive"))
positive <- user_reviews %>% filter(Sentiment=="Positive")
                                                                            Category = as.factor(datospro$Category)
negative <- user reviews %>% filter(Sentiment=="Negative")
                                                                            Review = as.factor(datospro$Translated Review)
neutral <- user reviews %>% filter(Sentiment=="Neutral")
                                                                            Type = as.factor(datospro$Type)
# Generamos 1500 números al azar para positive que tiene 23998 muestras.
                                                                            Type = factor(Type, levels = c("Free", "Paid"))
filas.random <- sample(1:23998, 1500, replace= F)
                                                                            Price = as.factor(datosprosPrice)
positive <- as.data.frame(positive[filas.random,])</pre>
                                                                            Genres = as.factor(datosprosGenres)
# Para negative:
                                                                            Installs = as.factor(datosprosInstalls)
filas.random <- sample(1:8271, 1500, replace= F)
                                                                            Rating = as.factor(datospro$Content.Rating)
negative <- as.data.frame(negative[filas.random,])</pre>
                                                                            App = as.factor(datospro$App)
# Para neutral:
filas.random <- sample(1:5158, 1500, replace= F)
                                                                            # visualmente
neutral <- as.data.frame(neutral[filas.random,])</pre>
# Ahora unimos los review a googleplaystore y quitamos los duplicados
                                                                            plot(Type,Sentiment, xlab="Type", ylab="Sentimientos")
user reviews = rbind(positive,negative,neutral)
                                                                            plot(Review, Sentiment, xlab="Review", ylab="Sentimentos")
user_reviews <- user_reviews[!duplicated(user_reviews), ]</pre>
                                                                            plot(Rating, Sentiment, xlab="Rating", vlab="Sentimientos")
datospro = merge(user reviews. googleplaystore)
                                                                            plot(Price, Sentiment, xlab="Price", ylab="Sentimientos")
# Quitamos las filas que tienen valores nulos
                                                                            plot(Installs,Sentiment, xlab="Installs", ylab="Sentimientos")
datospro = na.omit(datospro)
                                                                            plot(Genres, Sentiment, xlab="Genres", ylab="Sentimientos")
# Ouitamos repetidos
                                                                            plot(Category, Sentiment, xlab="Category", ylab="Sentimientos")
datospro <- datospro[!duplicated(datospro), ]</pre>
                                                                            plot(App,Sentiment, xlab="App", ylab="Sentimientos")
```


Genres

Category

Preprocesamiento y análisis exploratorio semantico

```
Trans_review = datosprocesados$Translated_Review
Trans_review = as.matrix(Trans_review)
# Elimina numeros
Trans_review <- gsub("[[:digit:]]", "", Trans_review)
# Elimina RT
Trans_review <- gsub("RT","",Trans_review)
# Elimina espacios en blanco múltiples
Trans_review <- gsub("[\\s]+", "", Trans_review)</pre>
# Elimina signos como @
Trans_review <- gsub("([^[:alpha:]]+|&amp;|&am;|\\n+)", "", Trans_review)
# Eliminacion de signos de puntuación
Trans_review <- gsub("[[:punct:]]", "", Trans_review)
# Pasar de mayuscula a minuscula
Trans_review <- tolower(Trans_review)</pre>
```

Preprocesamiento y análisis exploratorio semántico

```
corpus.tmp <- Corpus(VectorSource(Trans_review))

#eliminar los términos con longitud menos de 3 letras y mayores de 12
dtm <- DocumentTermMatrix(corpus.tmp, list(wordLengths= c(3,10)))

#Eliminar los términos que aparecen en muy pocos documentos
inspect(dtm)
Sparsity : 99% #umbral de escasez es 0,99

dtm <- removeSparseTerms(dtm, sparse= 0.99)
inspect(dtm
Sparsity : 100%
```

Preprocesamiento y análisis exploratorio semántico

Agrupamiento

Preprocesamiento

```
# vector de pesos en idf
idf <- log(nrow(tf)/(colSums(tf!=0))+1)
# Matriz tf-idf
dtidf <- t(t(tf)*idf)</pre>
```

Agrupamiento Jerárquico

Calculamos la distancia euclídea de la matriz inversa de documento-termino

hc=hclust(dist(dtidf),method="ward.D2")

hc

Dibujamos el dendrograma y cortamos por tres

Agrupamiento Jerárquico

group=cutree(hc,k=3) plotcluster(dtidf,group

idx=sample(1:dim(dtidf)[1],150)
shi= silhouette(group[idx],dist(dtidf[idx]))
plot(shi,col=1:3)

k-medias

kmeans.result=kmeans(dtidf,3) kmeans.result

idx=sample(1:dim(dtidf)[1],150)
shi= silhouette(kmeans.result[idx],dist(dtidf[idx]))
plot(shi,col=1:3)

k-medias

fviz_nbclust (dtidf, kmeans, method = "silhouette")

k-medias

kmeans.result=kmeans(dtidf,2) kmeans.result

idx=sample(1:dim(dtidf)[1],150)
shi= silhouette(kmeans.result[idx],dist(dtidf[idx]))
plot(shi,col=1:2)

k-medoides

pam.result=pam(dist(dtidf),5) idx=sample(1:dim(dtidf)[1],150) grupo=pam.result\$clustering plotcluster(dtidf,grupo)

idx=sample(1:dim(dtidf)[1],150)
shi= silhouette(grupo[idx],dist(dtidf[idx]))
plot(shi,col=1:3)

Conclusiones Agrupamiento

```
# Distancia coseno
tfidf_DT <- suppressWarnings(weightTfldf(dtm))
terms_DT <- tfidf_DT$dimnames$Terms
id1 <- 1
id2 <- 2
doc1 <- as.vector(tfidf_DT[, id1])
names(doc1) <- terms_DT
doc2 <- as.vector(tfidf_DT[, id2])
names(doc2) <- terms_DT
distancia <- function(x, y){
 resultado <- x%*%y / (sqrt(x %*% x) * sqrt(y %*%y
 return(as.numeric(resultado))
distancia(doc1,doc2)
[1] 0.01800277
```

Correlación (recta lineal y proporcionalidad entre variables)


```
library("rpart")
library("rpart.plot")
c=sample(2,nrow(Trans_review),replace=TRUE,prob
=c(0.7,0.3)
user_train <- Trans_review[c==1,]
user_test <- Trans_review[c==2.]
rpart <- rpart(Sentiment ~ Rating, data=user_train,
        method="class",
        parms=list(split="information"),
        control=rpart.control(minsplit=30,
                     minbucket=10,
                     cp = 0.01,
                     usesurrogate=0,
                     maxsurrogate=0)
fancyRpartPlot(rpart)
```



```
cp = 0.015
rpart <- rpart(Sentiment ~ Installs, data=user_train,
    method="class",
    parms=list(split="information"),
    control=rpart.control(minsplit=30,
    minbucket=10,
    cp=0.015,
    usesurrogate=0,
    maxsurrogate=0))
fancyRpartPlot(rpart)</pre>
```



```
datos_total <- bind_rows(user_train,user_test)
corpus =
Corpus(VectorSource(datos_total$Translated_Review))
tdm <- tm::DocumentTermMatrix(corpus)
tdm.tfidf <- tm::weightTfldf(tdm)
reviews = as.data.frame(cbind(datos_total$Sentiment,
as.matrix(tdm.tfidf)))
reviews <- na.omit(reviews)
preparado_train <- reviews[1:1500,]
preparado_test <- reviews[-(1:1500),]
reviews_tree = rpart(V1~., method = "class", data=
preparado_train)
prp(reviews_tree)
```


Clasificación: SVM

```
corpus = Corpus(VectorSource(user_train$Translated_Review))
tdm <- DocumentTermMatrix(corpus)
#tdm.tfidf <- suppressWarnings(weightTfldf(tdm))</pre>
```

```
container <- create_container(tdm, t(user_train$Sentiment),
trainSize = 1:2996,
virgin = FALSE)
```

```
models <- train_models(container,algorithms=c("SVM"))
```

```
results <- classify_models(container, models)
```

	Negative	Neutral	Positive
Negative	833	18	34
Neutral	91	957	78
Positive	40	15	933

La precisión (accuracy))

[1] 90.73

Clasificación: SVM

```
text = user_train$Translated_Review
cor = Corpus(VectorSource(text)) # crea otra vez el corpus
dtm <- DocumentTermMatrix(cor, list(bounds= list(global= c(5,Inf))))
dtm.test <- suppressWarnings(weightTfldf(dtm))</pre>
row.names(dtm.test) = (nrow(dtm)+1):(nrow(dtm)+nrow(dtm.test))
dtm.f = c(tdm, dtm.test)
training_codes.f = c(training_codes,
            rep(NA, length(user_train)))
container.f = create_container(dtm.f,
            t(training_codes.f), trainSize=1:nrow(tdm),
            testSize = 1:1291, virgin = T)
model.f = train_models(container.f, algorithms = c("SVM"))
predicted <- classify_models(container.f, model.f)</pre>
out = data.frame(model_sentiment = predicted$SVM_LABEL,
         model_prob = predicted$SVM_PROB,
         text = user_test$label)
(z = as.matrix(table(out[,1], out[,3])))
```

	Negative	Neutral	Positive
1	14	211	18
2	32	54	25
3	396	161	380

La precisión (accuracy))

[1] 34.7

Clasificación: KNN

```
c=sample(2,nrow(user_reviews),replace=TRUE,prob=c(0.7,0.3))
data_train <- user_reviews[c==1,]
data_test <- user_reviews[c==2,]
colnames(data_train)<-c("text", "label")
colnames(data_test)<-c("text", "label")
# si los datos no son numericos introduce NAS por defecto
data_train$text <- as.numeric(data_train$text)</pre>
data_test$text <- as.numeric(data_test$text)
trainClass<-data_train[,"label"]
trueClass<-data_test[,"label"]
knnClass <- knn (data_train, data_test, trainClass)
# Matriz de confusión:
nnTabla <- table ("1-NN" = knnClass, Reuters = trueClass); nnTabla
```

1-NN		Negative	Neutral	Positive
	Negative	190	102	102
	Neutral	131	221	102
	Positive	107	97	253

La precisión sum(diag(nnTabla))/nrow(data_test) [1] 0.5243446

Clasificación: Naive Bayes

```
c=sample(2,nrow(user_reviews),replace=TRUE,prob=c(0.7,0.3))
user_train <- user_reviews[c==1,]
user_test <- user_reviews[c==2,]
corpus_train <- Corpus(VectorSource(user_train))
corpus_test <- Corpus(VectorSource(user_test))</pre>
dtm_train <- DocumentTermMatrix(corpus_train, list(wordLengths= c(3,12)))
dtm_test <- DocumentTermMatrix(corpus_test, list(wordLengths= c(3,12)))
Obtenemos la matriz de términos en valores binarios en lugar de pesos
train_DT <- apply(dtm_train, MARGIN = 2, convert_binary)
test_DT <- apply(dtm_test, MARGIN = 2, convert_binary)
Función usada para convertir en valor binario:
convert_binary <- function(x) {
 x <- ifelse(x > 0, "Yes", "No")
```

Clasificación: Naive Bayes

Entrenamos el clasificador con el conjunto de entrenamiento: classifier <- naiveBayes(train_DT, as.factor(user_reviews\$Sentiment), laplace = 1)

Generamos las predicciones sobre el conjunto de entrenamiento y tes pred_train <- predict(classifier, newdata=train_DT)</pre> pred_test <- predict(classifier, newdata=test_DT)</pre> table(pred=pred_train,real=user_reviews\$Sentiment)

pred	Negative	Neutral	Positive
Negative	728	8	14
Neutral	309	1067	336
Positive	21	4	716

table(pred=pred_test,real=user_reviews\$Sentiment)

pred	Negative	Neutral	Positive
Negative	258	25	61
Neutral	120	382	140
Positive	64	14	233

error train

error test

Clasificación: Naive Bayes

10 palabras más usadas en los texto freq.words <- findFreqTerms(dtm_train, 10)

Generamos las predicciones sobre el conjunto de entrenamiento y tes dtm_freq_train <- DocumentTermMatrix(corpus_train, control=list(dictionary = freq.words)) dtm_freq_test <- DocumentTermMatrix(corpus_test, control=list(dictionary = freq.words))

train_DT <- apply(dtm_train, MARGIN = 2, convert_binary)
test_DT <- apply(dtm_test, MARGIN = 2, convert_binary)</pre>

table(pred=pred_train)

pred	Negative	Neutral	Positive
Negative	678	45	73
Neutral	268	981	301
Positive	79	19	672

table(pred=pred_test)

pred	Negative	Neutral	Positive
Negative	268	36	70
Neutral	135	410	136
Positive	72	9	248

error_train

25.1925545571245 %

error_test

33.092485549133

Asociación

1:12

dataset = read.csv('/home/mati/Trans_review.csv', header = FALSE)
dataset = read.transactions('/home/mati/Trans_review.csv', sep = ',', rm.duplicates = TRUE)

thank (Other)

transactions as itemMatrix in sparse format with 4501 rows (elements/itemsets/transactions) and 8655 columns (items) and a density of 0.0002309006 most frequent items:

good	TIVE	птсе	great	CHank	(Other)
22	20	16	14	8	8915
element	(itemset/	transacti/	on) leng	th dis	tribution:

sizes

7 4494

Min.	1st Qu.	Median	Mean	3rd Qu.	Max.
1.000	2.000	2.000	1.998	2.000	2.000

itemFrequencyPlot(dataset, topN = 10)

Asociación

rules = apriori(data = dataset, parameter = list(support = 0.00001, confidence = 0.2))

inspect(sort(rules, by = 'lift')[1:10]) Graph for 100 rules lhs rhs support confidence lift count actually good game but alway uddenly cloe it annoy much so sant continue game it {2958} => {i like except ad make impoible get much it low buggy intuitive requ photo i took that wih ad alway cauing probl 0.0002221729 1 4501 {i like except ad make impoible get munchanglag the least and make impoible get munchang the least and make impoible ge $=> \{2958\}$ 0.00022217291 4501 quite ueful application i taking lot drug condition tar help identify plot(rules, method="graph") ove app i wih bedtime ong it time bety con dyne garen i taken wenn

pleae introduce different type formation poible alo make updative tried multiple: worke altiwer pation tried and arm datok doc and

Bibliografía

https://rpubs.com/

https://www.rdocumentation.org/

http://eio.usc.es/

https://www.kaggle.com/

