

SEMINAR MÄLARDALENS UNIVERSITET

ADRIAN HANSSON

FIELD APPLICATION ENGINEER

WURTH ELEKTRONIK MORE THAN YOU EXPECT

<u>Agenda</u>

EMC Design Tips

Times:

13:15 - 14:00

14:15 - 15:00

Würth Elektronik eiSos: part of a strong & reliable family-owned company

WURTH # GROUP

- Over 85,600 employees*
- Sales of 19.95 billion €*
- Over 400 companies
- In more than 80 countries
- Family-owned company
- Rating by Standard & Poor's: A/stable
- * according to the preliminary annual financial statement 2022

Prof. Dr. h. c. mult. Reinhold Würth Chairman of the Supervisory Board of the Würth Group's Family Trusts

The Würth Elektronik Group

1.33 bn €

Sales

15

Quality & Design Centers

8,200

Employees

23

Production plants

50

Countries

13

Warehouses

The Würth Elektronik Group

Würth Elektronik eiSos Electronic & Electromechanical Components

Würth Elektronik CBT
Printed Circuit Boards

Würth Elektronik ICS Intelligent Power- and Control Systems

EMC DESIGN TIPS

WURTH ELEKTRONIK MORE THAN YOU EXPECT

<u>Agenda</u>

- Coupling paths
- Ground Concept
- Layer Stack
- Filter Capacitors & Via Arrangement
- Filter Placement
- Layout Considerations
 - Power Inductors
 - Overvoltage Protection
 - Crystals & Oscillators
- Shielding
 - For Casings
 - For Cables

COUPLING PATHS

Everything is an Antenna

Electric Dipole Antenna

Electric Monopole Antenna

Magnetic Loop Antenna

Reducing EMI

Sufficient EMC can be achieved by suited measures at the noise source, coupling path or sink.

Primary Measure
 Reduce emission from noise source

Secondary Measure Break coupling paths

Tertiary Measure Increase immunity of the sink

Capacitive Coupling

Origins

- Originates from high dU/dt
- Parallel conductors form a parasitic capacitance
- Coupling capacitance is directly proportional to the length of the parallel trace run

Isolating Components	typ. Coupling Capacitance
Optocoupler	1 ~ 5pF
Solid State Relay	5 ~ 10pF
Electromechanical Relay	10 ~ 100pF
Transformers in SMPS	Up to 1000 pF

Capacitive Coupling

Effects

- Dominant, if structure dimensions are smaller than 10% wavelength of the exciting electric field ($< \lambda/10$).
 - Why $\lambda/10? \rightarrow$ Harmonics
- Voltage interference at the load:

$$u_{n,l} = i_n \cdot \frac{R_i \cdot Z_1}{R_i + Z_1} = C_{12} \cdot \frac{du_n}{dt} \cdot \frac{R_i \cdot Z_1}{R_i + Z_1}$$

$$C_{12} = \varepsilon * \frac{A}{d}$$

Capacitive Coupling

Measures to decrease coupling

Primary Measure

- Decrease dI/dt by selecting a slower signal edges
- A Low pass filter to take off the edges

Secondary Measure

- Shorten/avoid parallel trace runs
- Small areas for switched polygons (e.g. DC/DC switch node)
- Increase distance between affected paths
- Electrical shielding (Cable, PCB, Housing)

Inductive Coupling

Origins

- Originates from high dI/dt
- Parallel traces form a parasitic transformer
- Mutual Inductance increases with shorter distance

Inductive Coupling

Effects

- Takes effect, if loops are larger than 25% the wavelength of the exciting magnetic field (< $\lambda/4$).
- Voltage interference at the load:

$$u_{n,l} = M_{12} \cdot \frac{di_n}{dt} \cdot \frac{Z_1}{R_i + Z_1}$$

$$M_{12} = \mu * N_1 N_2 * \frac{A}{I}$$

Inductive Coupling

Measures to decrease coupling

Primary Measure

- Decrease dI/dt by selecting a lower switching frequency and slower signal edges
- A filter Inductor/Ferrite to take off the edges

Secondary Measure

- Decrease magnetic loop area
- Increase distance between affected circuits
- Orthogonal component placement
- Magnetic shielding with ferrite materials (soft permeability, high μ_r)

Impedance Coupling

Origins

- Interference affects circuits with a mutual traces
- Circuits share an impedance and therefore the voltage across that impedance
- Main cause for high mutual impedances is self-inductance across copper traces

Impedance Coupling

A closer look

Noise Transmission Modes

Differential Mode

- Noise and useful signal use the same paths
- Earth is not affected

Common Mode

- Noise uses both lines in same direction
- Earth is used a return path

GROUND CONCEPT

Seperating functional blocks

Power Distribution

WE elSos

Splitting and Decoupling Vcc - Star Topology

Ground Concept

Distribution across multiple PCBs

Ground Concept

Distribution across multiple PCBs

Changes in the Construction can make or break EMC

Path of least Impedance

Seperating functional blocks

Splitting GND?

Plane intact @ PCB Edge

WE elsos

Slotting the GND Plane to form seperate reference points (AGND, DGNG, PGND)

Fringing at PCB Edges

GND Guard Ring

Ca. 10mm between Vias

Minimizing Crosstalk

Distance between traces

Crosstalk can be reduced to 1% by placing Strip Lines at 3 times the substrate thickness apart

Minimizing Crosstalk

GND Fence

- Inserting a copper area that is tightly bound to GND
 - Shielding the noise source
- Distance between Vias: Max. λ/10 of the highest noise frequency

WE eiSos

LAYER STACK

Layer Stack

Minimizing Crosstalk

- Sandwiching the Signal Layer between GND and Vcc leads to capacitive coupling
 - Ripple, Transient Loads on Vcc can leak into Signal Layer
- GND as a shield between Signal and VCC
 - High Frequency Noise is directly diverted to Ground
 - low impedance GND Plane as reference point
- Capacitive Coupling depends on Substrate Thickness

Layer Stack for double-sided PCBs

At least 6 Layers for ideal Spacing/ Routing

Layer Count is always a tradeoff

- Cost
- Routing Complexity
- Crosstalk between Signals
- Noise decoupling
- Signal Integrity
- Self Interference

WE eiSos

FILTER CAPACITORS & VIA ARRANGEMENT

Via Placement

Ground Connection @ IC Pins

good

bad

Via Placement

Ground Connection @ IC Pins

WE eiSos

Bad Better

Blocking Capacitors

Routing to Ground and Supply Pins

BadLarge Loop area, Parallel Traces

Bad RF Current is drawn from Via instead of Cap

Also Bad Shared Impedance on Vcc

Blocking Capacitors

Routing to Ground and Supply Pins

BadConnecting the Cap using stubs

GoodDirecting current along Capacitor pads

BetterGND Plane to account for loops inside the IC

Blocking Capacitors

Routing to Ground and Supply Pins

- RF Currents are fed from the Capacitor
 - Vcc/GND Plane only see low frequency currents
 - Keeps magentic loop for RF as small as possible
 - Distance of Cap to PIN ≤ 0,3mm
- Low impedance connection to the capacitor
 - Keep lines symmetrical (if possible)
- Parallel Vias reduce impedance to GND/Vcc planes

WE eiSos

Filter Arrangement

Layout: Influence on Insertion Loss

0805, Bad Layout

0805, Good Layout

Filter Arrangement

Size and Via Count: Influence on Insertion Loss

Filter Arrangement

Caps vs. T-Filter: Influence on Insertion Loss

0603, with Ferrite

0603, without Ferrite

Parallel Vias

Arrangement of Vias

What is the best way to arrange Vias (theoretically)?

Filter Capacitors

Selection Criteria

- For blocking capacitors, you have to consider the rise time of the signal
 - The steeper the edge, the higher the frequency that has to be blocked
- Transient loads lead to a high dl/dt
 - Not the voltage but the current is critical

Filter Capacitors

Selection Criteria

- Ceramic Class of the blocking capacitor affects performance
- NPO with high Q tends to resonate strongly
- X7R provides a smoother curve but has its downsides:
 - DC Bias
 - Temperature Stability
 - Aging

Filter Capacitors

General Considerations

- For all capacitive Filters a low impedance connection to reference potential is key
 - For DM: (A/P) Ground
 - For CM: Earth / Chassis
- Additional Impedances decrease efficiency of RF short
 - THT contact pins
 - Inductance of PCB traces
 - Placement connection of steel spacers

Differential Mode Short

Common Mode Short

FILTER PLACEMENT

Filter Bandwidth Requirements along the Power Path

Noise can bypass a misplaced Filter

Bypassing via parallel Lines

Bypassing via chassis parts

Noise Coupling in Single-Ended Filters

- Inductive coupling between filter input and GND via
- Capacitive coupling increases with frequency
- Conductor inductance traces too long
 - 1nH per 1mm
 - 0.5nH per Via

WE eiSos

Noise Coupling in Single-Ended Filters

- Constriction of the trace at the capacitor's connection reduces reflections in the GHz range (VSWR)
- Orthogonal arrangement of L and C to minimize capacitive coupling
- Vias to GND can be tied to PE using e.g. a steel spacer

WE 61202

Coupling Paths in Common Mode Filters

- CM-Filter as close to the connector as possible
 - Overvoltage is also running in CM!
- Avoid GND Plane beneath Choke
 - Possible coupling path / mode conversion
- Keep an eye on noise feedback from filter output to input

WF eiSos

Inductive Coupling from CMC Output to Input

Diverting Noise to Earth

- Grounding studs have to placed so that disturbances don't affect the electronic parts
- Reference ground for ESD (and common mode noise) is earth potential

POWER INDUCTORS

Orientation of a Power Inductor

Keeping the Hot Node as small as possible

- Power Inductors with more than one layer of windings usually have marking indicating the start of winding
- Start of winding should be facing the Hot Node, so outer winding can act as a self shielding
- Even for Inductors with only one layer, orientation can make a difference (Height of terminal)
- Not every Inductor has a distinct start of winding due to the production process (e.g. Rod Cores)

Traces below Power Inductors

Bottom side of Power Inductors is not shielded

bad good

Conductive Plane below Power Inductor

Influence on Inductance

Conductive Plane below Power Inductor

Layout Options

Continuous GND Plane

- + Shielding the electric Near Field
- Eddy Currents affect Inductance

Opening in GND Plane

- + Reduced Eddy Currents
- Radiated Noise through PCB

Tradeoff - GND Grid

- + Reduced Eddy Currents
- + Reduced radiated Noise
- Increased Layout Efforts

OVERVOLTAGE PROTECTION

Routing OVP-Components

Keep Traces short and low impedance

Bad Stub Traces

GoodRouting across SMD Pads

WE eiSos

BestUsing Constictions at SMD Pads

Routing OVP-Components

Keep Traces short and low impedance

- For TVS Diodes, multiple strips have to be coordinated across the component
- Parallel Vias to GND/ VCC plane for low impedant connection
- "Flow Through" design simplifies routing
- Impedance controlled traces and symmetrical routing for data lines

Routing for 2 Lines

WE eiSos

Routing for 4 Lines

Routing OVP-Components

Special Design for High Speed Interfaces

- Higher requirements on impedance controlled traces and symmetrical routing
- "Flow Through" design simplifies routing

Connecting SMD Varistors

Separating Overvoltage Stressed Ports

Wide traces to Varistor terminals

Regular traces for useful Signal

I/O Boards

Where to Place Overvoltage Protection

Placement on Main PCB

Placement on I/O Board

CRYSTALS & OSCILLATORS

Quartz Crystals

Crystal Oscillators

T-Filter for RF Decoupling

For Crystal Oscillators @ 50MHz

SHIELDING FOR CASINGS

Openings in PCB Housing

Apertures are Antennas, too

- No shielding is perfect, there will always be holes/ breaks
- Magnetic shielding is more affected than electric shielding
- The higher the frequency, the bigger is the impact of apertures compared to material properties
- The maximim linear dimension is crucial, not the area

Openings in PCB Housing

Apertures are Antennas, too

- An aperture of $\ell = \lambda/2$ equals a half-wave dipole antenna
- If the vector of the electric field is perpendicular to the aperture, the shielding attenuation at the respective frequency is 0 dB
- If a bigger opening is needed, e.g. for ventilation, the area should be split up into many smaller ones

EMC Gaskets

Different Options

WE-CSGSContact Spring Gasket

WE-EGSConductive Elastomer Gasket

WE-LTConductive Mesh Gasket

Grounding

Connecting PCB to Casing

- For RF Currents (> 20 KHz)
 - Skin Effect forces Current to the surface of the conductor, increasing Impedance
 - Increasing influece of parasitic Inductance
- Connections have to
 - be as short as possible
 - have a maximum surface area
 - Low impedant for RF Frequencies

Example: Heatsink

Floating Potential, Dipole Antenna

Example: Heatsink

Bound directly to Power GND, Reduced Emission

Shielding on PCB Level

Shielding Cabinet WE-SHC

- Easy to pre-arrange with SMD-Pads
 - virtually no cost
- Place on PCB in case of susceptibility problems/ Radiating noise
- Go for standard sizes to reduce costs
- Custom Solutions Possible
 - ShielDIY for simple trials
 - WE can do special parts according to you drawings

SHIELDING FOR CABLES

Cables are Antennas

Aim for small Loops and tight coupling

Cables are Antennas

Twisted pair for reduced Crosstalk

- e. g.: 1GBit S/FTP
 - 1st pair: 5,5 twists/10cm
 - 2nd pair: 6,5 twists/10cm
 - 3th pair: 7,5 twists/10cm
 - 4th pair: 8,5 twists/10cm
- The higher the count of twists the higher the quality of the cable, but with negative effects to cable bending and higher costs

Faulty Overlap can lead to Radiation

- Depending on the Foil/Mesh, an opening can act as a Slot Antenna
- Check Overlap for non-conductive contact areas

Outside Metallized
No Conductive Overlap

No Conductive Overlap

Inside Metallized

Inside Metallized, Wrapped

Fully Enclosed

Aluminum FoilFully Enclosed

Signal Distribution on Flatwires

Keep an eye on GND Reference

- For Flatwires you can alternate
 Signal and GND Lines
- Flex PCBs can have GND Layers
- Self-Adhesive Copper Foil connected to GND as retrofit solution

Shielded Flatwire

Radiating Noise

E-fields are shielded H-fields radiating

E-fields are shielded H-fields are compensated

Shielding Mesh @ Connector

- Don't break down shielding mesh
- Avoid Pigtails
- Incomplete/ faulty termination is a source of CM Noise

Example: USB 3 Cable – "High Quality"

Shielding Mesh @ PCB Edge

- Go for 360° Coverage of the Mesh
- Earthing Clips of Metal or metalized Nylon are easily mounted on the PCB
- Use a Y-Capacitor and a Steel Spacer to open an RF Short to PE
 - If necessary, use a high impedance Resistor ($\sim 1 M\Omega$) in parallel to circumvent shift of potential

