Revised: 2/6/2021

Probability II

Michael C. Hackett
Assistant Professor, Computer Science

Community College of Philadelphia

- The contingency table below is for a hypothetical test of a machine learning algorithm's ability to predict if an image is a picture of a car.
- We could use the contingency table to find probabilities.

		In			
		Car	Not a car	Total	
ML Algorithm	Car	178	17	195	_
	Not a car	132	524	656	
	Total	310	541	851	_

 Probability the ML algorithm classified a picture as being an image of a car:

$$P(\text{Prediction is Car}) = \frac{195}{851} \sim 0.23$$

		Image		
		Car	Not a car	Total
ML Algorithm Prediction	Car	178	17	195
	Not a car	132	524	656
	Total	310	541	851

• Probability of a picture being an image of a car:

$$P(\text{Image is Car}) = \frac{310}{851} \sim 0.36$$

		Image		
		Car	Not a car	Total
ML Algorithm Prediction	Car	178	17	195
	Not a car	132	524	656
	Total	310	541	851

- Both are examples of a marginal probability.
 - Marginal probabilities are based only on one variable

P(Prediction is Car)

Probability is based only on the Algorithm's choice

P(Image is Car)

Probability is based only on the content of the Image

 Probability the ML algorithm classified a picture of a car and the Image was of a car:

P(Prediction is Car and Image is Car) =
$$\frac{178}{851}$$
 ~ 0.21

		lı		
		Car	Not a car	Total
ML Algorithm Prediction	Car	178	17	195
	Not a car	132	524	656
	Total	310	541	851

- This is an example of a **joint probability**.
 - Probabilities based on two or more variables

• Probability the ML algorithm classified a picture as not of a car and the Image was not of a car:

P(Prediction is Not a car, Image is Not a car) =
$$\frac{524}{851}$$
 ~ 0.62

		lma		
		Car	Not a car	Total
ML Algorithm Prediction	Car	178	17	195
	Not a car	132	524	656
	Total	310	541	851

The contingency table converted to proportions

		Im			
		Car	Not a car	Total	
ML Algorithm Prediction	Car	0.21	0.02	0.23	
	Not a car	0.15	0.62	0.77	
	Total	0.36	0.64	1.00	

Joint probability distribution

Joint outcome	Probability
Prediction is Car, Image is Car	0.21
Prediction is Car, Image is Not a car	0.02
Prediction is Not a car, Image is Car	0.15
Prediction is Not a car, Image is Not a car	0.62
Total	1.00

Does not indicate the accuracy of the algorithm

• Of the images that were actually an image of a car, what was the probability that ML algorithm classified it as a car?:

$$P(\text{Prediction is Car given Image is Car}) = \frac{178}{310} \sim 0.57$$

		Car	Not a car	Total
ML Algorithm Prediction	Car	178	17	195
	Not a car	132	524	656
	Total	310	541	851

- This is an example of a conditional probability.
 - One probability based on another probability.
 - "Given" is often written "|"

• The conditional probability of A given B is computed using:

$$P(A|B) = \frac{P(A \text{ and } B)}{P(B)}$$

- P(Prediction is Car | Image is Car)
- P(A and B) = 0.2092 (from Slide 6)
- *P*(B) = Image is Car = 0.3643 (from Slide 4)

$$P(\text{Prediction is Car} \mid \text{Image is Car}) = \frac{0.2092}{0.3643} \sim 0.57$$

Same result from the previous slide

• Of the images the ML algorithm classified as a car, how many were actually an image of a car?:

$$P(\text{Image is Car} \mid \text{Prediction is Car}) = \frac{178}{195} \sim 0.91$$

		lı			
		Car	Not a car	Total	
ML Algorithm Prediction	Car	178	17	195	
	Not a car	132	524	656	
	Total	310	541	851	

$$P(A|B) = \frac{P(A \text{ and } B)}{P(B)}$$

- P(Image is Car | Prediction is Car)
- P(A and B) = 0.2092 (from Slide 8)
- P(B) = Prediction is Car = 0.23 (from Slide 3)

P(Image is Car | Prediction is Car) =
$$\frac{0.21}{0.23} \sim 0.91$$

• Same result from the previous slide

$$P(\text{Prediction is Car} \mid \text{Image is Car}) = \frac{0.2092}{0.3643} \sim 0.57$$

The probability the ML algorithm will predict "Car" given that the image is a car: ~57%

 In other words: If an image is of a Car, there is a ~57% probability the algorithm will correctly predict Car

$$P(\text{Image is Car} \mid \text{Prediction is Car}) = \frac{0.21}{0.23} \sim 0.91$$

The probability that an image is of a car given that the ML algorithm predicted "Car": ~91%

• In other words: If the algorithm predicted Car, there is a $^{\sim}91\%$ probability it was correct (the image is of a Car)

- Recall from the previous lecture that the multiplication rule is used for calculating probabilities for multiple independent events occurring:
 - Where A and B are two different and independent events

$$P(A \text{ and } B) = P(A) \times P(B)$$

- The General Multiplication Rule allows calculating probabilities for events that might not be independent:
 - Where A and B are two different events

$$P(A \text{ and } B) = P(A \mid B) \times P(B)$$

We previously determined that:

P(Prediction is Car and Image is Car) =
$$\frac{178}{851}$$
 ~ 0.21

	_	I		
		Car	Not a car	Total
ML Algorithm Prediction	Car	178	17	195
	Not a car	132	524	656
	Total	310	541	851

• We can calculate/verify this using only the General Multiplication Rule

$$P(A \text{ and } B) = P(A \mid B) \times P(B)$$

- P(Prediction is Car | Image is Car)
- $P(A \mid B) = 0.57$ (from Slide 11)
- *P*(B) = Image is Car = 0.3643 (from Slide 4)

 $P(Prediction is Car and Image is Car) = 0.57 \times 0.364 \sim 0.21$

Same result from the previous slide

- The formula previously shown for calculating conditional probabilities is simply a re-arrangement of the general multiplication rule.
 - General Multiplication Rule

$$P(A \text{ and } B) = P(A \mid B) \times P(B)$$

Conditional Probability Formula

$$P(A|B) = \frac{P(A \text{ and } B)}{P(B)}$$

The Gambler's Fallacy

- In the previous lecture, we saw that the events of a Roulette wheel are independent.
 - Knowing the previous number has no effect on the next number.
- Let's say 8 red numbers came up in a row.
 - The probability of 8 red numbers showing up in a row is

$$\left(\frac{18}{37}\right)^8 \sim 0.003 \sim 0.3\%$$

• The probability of 9 red numbers showing up in a row is

$$\left(\frac{18}{37}\right)^9 \sim 0.001 \sim 0.1\%$$

 With only a 0.1% probability of 9 red numbers appearing in a row, one might think there is an almost definite chance the next number will be black

The Gambler's Fallacy

$$P(A|B) = \frac{P(A \text{ and } B)}{P(B)}$$

$$P(Black | 8 Reds in a row) = \frac{P(Black \text{ and } 8 Reds in a row)}{P(8 Reds in a row)}$$

$$P(8 \text{ Reds in a row}) = (\frac{18}{37})^8 \sim 0.003137$$

 $P(Black) = \frac{18}{37} \sim 0.486486$
 $P(Black \text{ and } 8 \text{ Reds in a row}) = P(Black) \times P(8 \text{ Reds in a row}) \sim 0.001526$

$$P(Black | 8 Reds in a row) = \frac{0.001526}{0.003127} \sim .486$$

The Gambler's Fallacy

- The probability of a black number given 8 reds appearing in a row is still .486
 - The same probability we determined for a black number appearing on any spin
- Thus, whether no preceding spins, 8 red numbers preceding a spin, or 100 red numbers preceding a spin, the probability of a black number appearing on the next spin is still .486
 - Mathematically shows that each event resulting from a spin is independent.

Tree diagrams visually organize outcomes and probabilities.

P(Prediction is Car | Image is Car) = 0.57

P(Image is Car and Prediction is Car) = 0.21

P(Prediction is Car | Image is Not a car) = 0.03

P(Image is Not a car and Prediction is Car) = 0.62

• The last slides gave the conditional probability $P(Prediction is Car \mid Image is a car)$ $P(Prediction is Car \mid Image is Not a car)$

• What if we wanted to find the inverse? $P(\text{Image is a car} \mid \text{Prediction is Car})$ $P(\text{Image is Not a car} \mid \text{Prediction is Car})$

$$P(A|B) = \frac{P(A \text{ and } B)}{P(B)}$$

$$P(\text{Image is a car} \mid \text{Prediction is a car}) = \frac{0.21}{0.23} = 0.91$$

Bayes' Theorem is a generalization of inverting a conditional probability

$$P(A_1|B) = P(\text{Image is a car} | \text{Prediction is a car})$$

$$P(B \mid A_1) = P(Prediction is a car \mid Image is a car)$$

$$P(B \mid A_1) = \frac{P(B \mid A_1) \times P(A_1)}{P(B \mid A_1) \times P(A_1) + P(B \mid A_2) \times P(A_2) + \dots + P(B \mid A_n) \times P(A_n)}$$

• Where $A_1, A_2, ..., A_n$ are the different outcomes of the first variable

$$P(A_1 | B) = P(\text{Image is a car} | \text{Prediction is a car})$$

 $P(B | A_1) = P(\text{Prediction is a car} | \text{Image is a car})$

- To apply Bayes' Theorem:
 - First, identify the marginal probabilities of each possible outcome of the first variable: $P(A_1)$, $P(A_2)$, ..., $P(A_n)$

```
P(A_1) = P(\text{Image is a car}) = 0.36
```

$$P(A_2) = P(\text{Image is Not a car}) = 0.64$$

$$P(A_1 | B) = P(\text{Image is a car} | \text{Prediction is a car})$$

 $P(B | A_1) = P(\text{Prediction is a car} | \text{Image is a car})$

- To apply Bayes' Theorem:
 - Second, identify the probability of the outcome B, conditioned on each possible scenario for the first variable: $P(B \mid A_1)$, $P(B \mid A_2)$, ..., $P(B \mid A_n)$

$$P(B \mid A_1) = P(\text{Prediction is a car} \mid \text{Image is a car}) = \frac{P(\text{Prediction is a car and Image is a car})}{P(\text{Image is a car})} = 0.57$$

$$P(B \mid A_2) = P(Prediction is a car \mid Image is Not a car) = \frac{P(Prediction is a car and Image is Not a car)}{P(Image is a car)} = 0.03$$

$$P(B \mid A_1) = \frac{P(B \mid A_1) \times P(A_1)}{P(B \mid A_1) \times P(A_1) + P(B \mid A_2) \times P(A_2) + \dots + P(B \mid A_n) \times P(A_n)}$$

 $P(A_1|B) = P(\text{Image is a car} | \text{Prediction is a car})$ $P(A_2|B) = P(\text{Image is Not a car} | \text{Prediction is a car})$ $P(B|A_1) = P(\text{Prediction is a car} | \text{Image is a car})$ $P(B|A_2) = P(\text{Prediction is a car} | \text{Image is Not a car})$

$$P(B \mid A_1) = \frac{\mathbf{0.57} \times \mathbf{0.36}}{0.57 \times 0.36 + 0.03 \times 0.64} = \frac{0.21}{0.21 + 0.02} = \frac{0.21}{0.23} = 0.91$$

$$P(B \mid A_2) = \frac{\mathbf{0.03} \times \mathbf{0.64}}{0.57 \times 0.36 + 0.03 \times 0.64} = \frac{0.02}{0.21 + 0.02} = \frac{0.02}{0.23} = 0.09$$

- Notice the numerator is the only term that changes
 - This is a useful for when it is too cumbersome to create tree diagrams

- When sampling large populations, its unlikely we sample the same cases more than once.
 - For example, picking five numbers between 1 and 1 million
- With small populations, it becomes more likely that we might sample the same cases more than once.
 - For example, picking five numbers between 1 and 10

- If we sample with replacement it means a case may be sampled more than once.
- Imagine a bag of M&M's with an equal number (5) of red, brown, blue, green, orange, and yellow candies (30 candies total)
- The probability of drawing a red M&M is $\frac{5}{30}$
 - If we put the red M&M back in the bag, the chance of drawing a red M&M (or any other color) remains $\frac{5}{30} \sim .17$
 - The events of drawing M&Ms are independent.

- If we sample without replacement it means a case will only be sampled once.
- Imagine the same bag of M&M's
- The probability of drawing a red M&M is $\frac{5}{30}$
 - We remove/eat the M&M
 - The chance of drawing a red M&M is now $\frac{4}{29} \sim .14$
 - The chance of drawing any other color is now $\frac{5}{29} \sim .17$
 - The events of drawing M&Ms are no longer independent

- The probability of drawing red then blue then green then orange
 - With replacement

$$\frac{5}{30} \times \frac{5}{30} \times \frac{5}{30} \times \frac{5}{30} \sim .0007$$

Without replacement

$$\frac{5}{30} \times \frac{5}{29} \times \frac{5}{28} \times \frac{5}{27} \sim .0009$$

 Drawing without replacement has a greater probability of drawing red then blue then green then orange

- The probability of drawing five red M&M's in a row
 - With replacement

$$\frac{5}{30} \times \frac{5}{30} \times \frac{5}{30} \times \frac{5}{30} \times \frac{5}{30} \sim .0001286$$

Without replacement

$$\frac{5}{30} \times \frac{4}{29} \times \frac{3}{28} \times \frac{2}{27} \times \frac{1}{26} \sim .0000070$$

 Drawing with replacement has a greater probability of drawing five red M&M's in a row