#### As you arrive:

- 1. Make yourself a namecard with your preferred name (materials up front). (Please keep this and bring it to every subsequent lecture.)
- 2. Answer question on PollEv.com/ECON7510. Please no Googling or discussing—I want to know what you think. (It's anonymous.)
- 3. If you haven't already done so, please take a look at the course syllabus (available on Canvas).

## **Lecture 1: Introduction**

ECON 7510
Cornell University
Adam Harris

Slides draw upon lecture materials from Nikhil Agarwal (MIT).

## Today's lecture

1. Introductions and course details

2. Industrial organization: Definition and history

3. Overview of theory of the firm

## **Introduction to ECON 7510**

#### Getting to know me:

- Research: IO methods  $\rightarrow$  questions in transportation economics and the economics of AI
- Preferred name: Adam

#### Getting to know me:

- Research: IO methods  $\rightarrow$  questions in transportation economics and the economics of AI
- Preferred name: Adam

#### Getting to know you:

- 1. Your preferred name
- 2. Your program and year
- 3. Something about your research interests and why you wanted to take the course / what you hope to get out of the course

- √ Have you taken PhD-level microeconomics?
- √ Have you taken PhD-level econometrics?

- √ Have you taken PhD-level microeconomics?
- √ Have you taken PhD-level econometrics?
- Have you written code in python, julia, R, or Matlab?

- √ Have you taken PhD-level microeconomics?
- √ Have you taken PhD-level econometrics?
- Have you written code in python, julia, R, or Matlab?
- Have you solved optimization problems numerically?

- √ Have you taken PhD-level microeconomics?
- √ Have you taken PhD-level econometrics?
- Have you written code in python, julia, R, or Matlab?
- Have you solved optimization problems numerically?
- Have you solved dynamic programming problems numerically?

## **Course logistics**

- Instructor office hours
  - Uris Hall 436.
  - By appointment. See syllabus for details and Calendly link.

## **Course logistics**

- Instructor office hours
  - Uris Hall 436.
  - By appointment. See syllabus for details and Calendly link.

#### Requirements

- Assignments (30%):
  - » Five problem sets with empirical exercises and conceptual questions.
  - » Please turn in problem sets and code and output via Canvas.
  - » Coding in python, julia, or R strongly encouraged.
  - » You are encouraged to collaborate; groups can be as large as 3. Please list collaborators.
- End-of-term assignment (in-class presentation or written) (30%): Either a review of a recent IO/structural paper or a proposal for a research project.
- Class Participation (10%)
- Final exam (30%): In-class November 16 and November 18.

#### Two principles:

1. You get out of the course what you put into it.

- 1. You get out of the course what you put into it.
  - Choice of topics on final.

- 1. You get out of the course what you put into it.
  - Choice of topics on final.
  - See syllabus for generative AI rules.

- 1. You get out of the course what you put into it.
  - Choice of topics on final.
  - See syllabus for generative AI rules.
- 2. "Be curious, not judgmental."



#### Two principles:

- 1. You get out of the course what you put into it.
  - Choice of topics on final.
  - See syllabus for generative AI rules.
- 2. "Be curious, not judgmental."

Lectures—questions and discussion encouraged.



- 1. You get out of the course what you put into it.
  - Choice of topics on final.
  - See syllabus for generative AI rules.
- 2. "Be curious, not judgmental."
  - Lectures—questions and discussion encouraged.
  - We want to cultivate an environment where everyone can participate, ask questions, and learn
    - → Please don't hold yourself back from participating!



### **Overview of Topics**

#### Theme: Fundamental tools of industrial organization

- Part 1: Fundamental IO theory
  - 1. Theory of the firm; producer theory
  - 2. Monopolies: Pricing; product quality/choice
  - 3. Price discrimination
  - 4. Competition: Static; dynamic
  - 5. Market entry
- Part 2: Computational building blocks
- Part 3: Estimating demand systems
- Part 4: Estimating single-agent dynamic discrete choice models

# **Industrial organization: Definition and history**

## Industrial organization

**Question**: What is industrial organization?

## Industrial organization: Traditional definition

Industrial organization is the study of imperfectly competitive markets.

— How do firms behave, and what are the consequences for welfare?

(What determines the incentives of the firm?)

- Demand conditions
- Cost conditions Production
- Competition

## Industrial organization: Traditional definition

Industrial organization is the study of imperfectly competitive markets.

— How do firms behave, and what are the consequences for welfare?

(What determines the incentives of the firm?)

- Demand conditions
- Cost conditions Production
- Competition
- What determines demand, costs and competition conditions?
  - Investment, innovation
  - Market structure (entry, mergers, acquisitions)

## Industrial organization: Traditional definition

#### Industrial organization is the study of imperfectly competitive markets.

— How do firms behave, and what are the consequences for welfare?

(What determines the incentives of the firm?)

- Demand conditions
- Cost conditions Production
- Competition
- What determines demand, costs and competition conditions?
  - Investment, innovation
  - Market structure (entry, mergers, acquisitions)
- Which policies, market rules should we adopt?
  - Antitrust policies
  - Regulation of concentrated industries
  - Market Design
  - Intellectual property

## History of the field

- 1. Prior to 1980s: Structure-conduct-performance (SCP) empirical research
- 2. 1980s: Developments in theoretical IO
- 3. 1990s-present: New Empirical IO (NEIO)

### Historical Perspective: Pre 1980

Schmalensee (1986): critical overview in Handbook of IO

- SCP: Structure Conduct Performance (Bain 1951, 1956)
- Structure: Inherent characteristics of the industry
  - Product type (demand)
  - Production technology (supply)
  - Number of firms (competitive environment)
  - Concentration (market power)
  - Entry barriers (fixed costs)
- Conduct: Firm behavior
  - Investment, innovation, pricing, advertising ...
- Performance: Positive or normative outcomes
  - Profits, welfare, entry, exit, R&D

### **SCP Paradigm**

#### Cross-industry regression

- Study how structure  $\implies$  conduct  $\implies$  performance
- ✓ Difficult to observe conduct: focus on structure ⇒ performance
- Cross-industry regression analysis:

$$r_i = \beta_0 + \beta_1 H_i + \beta_2 B E_i + \beta_3 (H_i \times B E_i) + \epsilon_i$$
 where  $i$  is industry (4 digit SIC)  $r_i = \text{ROR on capital (closely related to profits)}$   $H_i = \sum_j s_{ij}^2$  is HHI (a measure of concentration)  $BE_i = \text{Entry barriers such as fixed costs, min efficient scale}$ 

Assume markets in long-run equilibrium

### **SCP Paradigm**

#### Cross-industry regression

- Study how structure ⇒ conduct ⇒ performance
- ✓ Difficult to observe conduct: focus on structure ⇒ performance
- Cross-industry regression analysis:

$$r_i = \beta_0 + \beta_1 H_i + \beta_2 B E_i + \beta_3 (H_i \times B E_i) + \epsilon_i$$
 where  $i$  is industry (4 digit SIC)  $r_i = \text{ROR on capital (closely related to profits)}$   $H_i = \sum_j s_{ij}^2$  is HHI (a measure of concentration)  $BE_i = \text{Entry barriers such as fixed costs, min efficient scale}$ 

- Assume markets in long-run equilibrium
- → Do you have any concerns about this regression?

### Issues with SCP

#### Issues with SCP

#### **Practical issues**

- Poor data
  - Accounting profits and costs are not economic profits/costs
  - Cross-industry analysis ⇒ use data common to all industries (worst data)
- 2. Is 4-digit SIC the correct level of aggregation?
  - SIC code 2024 is ice cream and frozen desserts
  - SIC Code 7372 is prepackaged software

#### Policy relevance?

- 3. How do we measure consumer welfare?
  - Typical objective of antitrust authorities
- 4. Little to say about mechanisms (conduct)
  - Cannot guide public policy

#### **Econometric issues**

- 5. Endogeneity and reverse causality
  - Conduct may affect structure
  - Omitted variables

### Example

#### Concentrated industries have few firms and high profits

- Two equally plausible explanations
  - 1. Market power has led to high prices
  - 2. Efficient firms may have driven away inefficient firms
- → Matters for public policy

### Example

#### Concentrated industries have few firms and high profits

- Two equally plausible explanations
  - 1. Market power has led to high prices
  - 2. Efficient firms may have driven away inefficient firms
- → Matters for public policy
- Nevertheless, SCP literature was useful in establishing empirical regularities that spurred the theoretical literature to follow.

### Theoretical IO: 1980s

(Part 1 of the course)

Approach and broad lessons (see Tirole's book)

- Game theoretic models of firm behavior
- ightarrow Rich set of results explaining a wide range of phenomenon

#### Theoretical IO: 1980s

(Part 1 of the course)

#### Approach and broad lessons (see Tirole's book)

- Game theoretic models of firm behavior
- → Rich set of results explaining a wide range of phenomenon
- → A key takeaway: Details of the specific market matter
  - ✓ Classic example: Investment could accommodate or deter entry depending on strategic effects (Fudenberg and Tirole, 1984)
  - Conundrum for public policy
- Tirole's Nobel lecture consequently calls for policies that pays attention to "specificities of particular industries"
  - ✓ Underlying theme: Heterogeneity across industries

### New Empirical IO: 1990s - Present

(Parts 3-4 of the course)

Tirole's Nobel citation: "theoretical advances fundamentally affected the empirical IO literature"

- Theoretical literature offered:
  - Several explanations for similar observations
  - A basis for building empirical models
  - An understanding of important mechanisms
- Characteristics of NEIO work:
  - Focus on narrowly defined industries (heterogeneous effects)
  - Close attention to theory
    - 1. Deriving testable hypotheses
    - 2. Interpreting the data (structural modeling)
  - Relative to earlier empirical work, emphasis on
    - Strategies (conduct)
    - 2. Quantifying welfare, economic costs, profits (performance)
    - 3. Counterfactual simulations (policy)

# New Empirical IO Approach

- Phrase a question in terms of a counterfactual
  - ✓ What will happen if Union Pacific and Norfolk Southern merge?
  - Only data available is from a world where these are separate entities
- Approach: build the primitives of the model
  - Demand and supply
  - Interaction between railroads and customers
- Estimate a model: attention to data limitations and institutional details, e.g.
  - Prices negotiated between railroads and their customers might only be selectively observed.
- Simulate a counterfactual world and analyze outcomes of interest
  - Factual world: Competitive price setting and negotiations
  - Counterfactual: Joint price setting, considerations about pricing to competitors
  - ✓ Consumer welfare, profits, bargaining with upstream firms etc.

**Example**: Use NEIO approach to study what would happen if Ford and GM merged.

 $\rightarrow$  This is a counterfactual; only data available is from a world where these are separate entities

- → This is a *counterfactual*; only data available is from a world where these are separate entities
- 1. **Demand side**: Estimate model of demand for cars:  $D(\mathbf{p})$ .

- ightarrow This is a counterfactual; only data available is from a world where these are separate entities
- 1. **Demand side**: Estimate model of demand for cars:  $D(\mathbf{p})$ .
- 2. **Supply side**: Use profit-maximization to figure out what marginal costs rationalize observed prices.

- → This is a counterfactual; only data available is from a world where these are separate entities
- 1. **Demand side**: Estimate model of demand for cars:  $D(\mathbf{p})$ .
- 2. **Supply side**: Use profit-maximization to figure out what marginal costs rationalize observed prices.
- 3. **Counterfactual**: Merger changes profit-maximization problem. What prices does profit-maximizing firm set post-merger? This enables us to determine effects of merger on key short-run outcomes:
  - Consumer surplus
  - Producer surplus

**Example**: Use NEIO approach to study what would happen if Ford and GM merged.

- → This is a counterfactual; only data available is from a world where these are separate entities
- 1. **Demand side**: Estimate model of demand for cars:  $D(\mathbf{p})$ .
- 2. **Supply side**: Use profit-maximization to figure out what marginal costs rationalize observed prices.
- 3. **Counterfactual**: Merger changes profit-maximization problem. What prices does profit-maximizing firm set post-merger? This enables us to determine effects of merger on key short-run outcomes:
  - Consumer surplus
  - Producer surplus

With further extensions to the model, we can also analyze longer-run effects:

- Investment, innovation (of both merged firm and other firms)
- Entry of new firms

# **New Empirical IO**

**Questions**: Am I an IO economist? Most of you don't plan to study imperfect competition. What are you doing in an IO course?

# New Empirical IO → Structural empirical research

**Questions**: Am I an IO economist? Most of you don't plan to study imperfect competition. What are you doing in an IO course?

**Insight**: The NEIO approach was developed to answer questions about imperfect competition, but it's actually much more widely applicable.

# New Empirical IO $\rightarrow$ Structural empirical research

**Questions**: Am I an IO economist? Most of you don't plan to study imperfect competition. What are you doing in an IO course?

**Insight**: The NEIO approach was developed to answer questions about imperfect competition, but it's actually much more widely applicable.

#### **Examples** (all recent job market papers):

- How do out-of-district campaign contributions distort the positions of Congressional candidates? (Waldfogel 2025)
- What would be the effects of reforming the structure of real estate agent commissions? (Kim 2025)
- Why do developing economies feature so many small firms? (Ramos and Sverdlin-Lisker 2022)
- How can policymakers effectively incentivize the development of combination therapies for treating cancer? (Dix and Lensman 2025)
  - How can policymakers design mechanisms to incentivize conservation in a cost-effective way?
     (Aspelund and Russo 2025)

#### A Broader Definition?

- "Industrial Organization" may be too narrow to describe the modern IO field
- Perhaps "Market Organization" is better?
  - Analysis of market rules and structure
  - Behavior, incentives and payoffs of agents
  - Effects of policies and government interventions
- But even that might be too narrow. The field has become closely linked to a set of tools that are useful
  even in non-market contexts.
- Imperfect competition, antitrust, and regulation = "core IO"

# **Overview of Topics**

#### Theme: Fundamental tools of industrial organization

- Part 1: Fundamental IO theory (Core IO)
  - (a.) Theory of the firm; producer theory
  - (b.) Monopolies: Pricing; product quality/choice
  - (c.) Price discrimination
  - (d.) Competition: Static; dynamic
- Parts 2-4: Fundamental tools of structural estimation (Broadly applicable empirical tools)
  - 2. Computational building blocks
  - 3. Estimating demand systems
  - 4. Estimating models of single-agent dynamics

# What does "structural" mean?

# Reduced-form approach

Reduced form: Model relationships among observables.

- Example: Suppose Y is (log) hourly earnings, X is years of education. Model relationship as

$$Y = \beta_0 + \beta_1 X + \beta_2 X^2 + W'\gamma + \epsilon$$

Possible identifying assumptions:

- $-\mathbb{E}\left[\varepsilon\mid X,W\right]=0$ , or
- $-\mathbb{E}\left[\varepsilon\mid Z,W\right]=0$  and  $Cov(Z,X\mid W)\neq0$

# Reduced-form approach

**Reduced form**: Model relationships among observables.

- Example: Suppose Y is (log) hourly earnings, X is years of education. Model relationship as

$$Y = \beta_0 + \beta_1 X + \beta_2 X^2 + W' \gamma + \epsilon$$

Possible identifying assumptions:

- $-\mathbb{E}\left[\varepsilon\mid X,W\right]=0$ , or
- $-\mathbb{E}\left[\varepsilon\mid Z,W\right]=0$  and  $\mathsf{Cov}(Z,X\mid W)\neq 0$
- Suppose one of these sets of assumptions is satisfied and so we can estimate  $\beta$ ,  $\gamma$ . What counterfactual questions can we answer?

# Structural approach

What we might want but can't achieve using reduced-form alone

- Counterfactual analysis
- Welfare estimates
- $-\,\,$  Estimate treatment effect when good instruments/time stagger not available

# Theory of the firm: A brief overview

# The Neoclassical view

MWG: A black box.

- − Defined by some technology  $Y \subset \mathbb{R}^L$ .
- Chooses  $y \in Y$  so as to maximize profit.

## The Neoclassical view

MWG: A black box.

- − Defined by some technology  $Y \subset \mathbb{R}^L$ .
- Chooses  $y \in Y$  so as to maximize profit.

Question: This is a useful description, but what key questions does it sidestep?

## The Neoclassical view

#### MWG: A black box.

- − Defined by some technology  $Y \subset \mathbb{R}^L$ .
- Chooses  $y \in Y$  so as to maximize profit.

Question: This is a useful description, but what key questions does it sidestep?

- Wait, but actually, what is a firm?
- Why does the firm exist?
- What determines Y?
- What determines the firm's boundaries?

Tirole's perspective

**NB**: This is question that is more often tackled by organizational economics rather than IO.

Tirole's perspective

**NB**: This is question that is more often tackled by organizational economics rather than IO.

Tirole: "a cost-minimizing device" for production.

 $\rightarrow$  i.e., the firm exists because producing within the firm is cheaper than producing without.

Tirole's perspective

NB: This is question that is more often tackled by organizational economics rather than IO.

Tirole: "a cost-minimizing device" for production.

 $\rightarrow$  i.e., the firm exists because producing within the firm is cheaper than producing without.

#### Three perspectives:

- 1. Technological view: Static synergy
- 2. Contractual view: A long-term relationship
- 3. Regulatory arbitrage view: e.g., firm is loophole for the exercise of monopoly power

#### Technological view

- If there are increasing returns to scale, having production concentrated may be more efficient.
- "Economies of scale encourage the gathering of activities."
- When output is higher:
  - Workers can be more specialized.
  - More machines  $\rightarrow$  lower proportional variance in output due to breakdowns.
  - Avoid duplication of fixed costs.

Contractual view

- Key ideas: Idiosyncratic investment and asset specificity.
- → Want ex ante assurance that future gains from trade will be exploited and shared.
- Example: Specific human capital. More efficient to work on the same task / with the same team every day.
- Example: Site specificity. Mine-mouth power plant.

Regulatory arbitrage

— What happens in the market is often publicly observable; what happens within the firm is usually not.

Regulatory arbitrage

- What happens in the market is often publicly observable; what happens within the firm is usually not.
- Example: Monopoly pricing.
  - Exercise of monopoly power can be disciplined both by regulators and by other firms.

Regulatory arbitrage

- What happens in the market is often publicly observable; what happens within the firm is usually not.
- Example: Monopoly pricing.
  - Exercise of monopoly power can be disciplined both by regulators and by other firms.
  - Collusive price-setting is illegal; being a monopolist is not.

Regulatory arbitrage

- What happens in the market is often publicly observable; what happens within the firm is usually not.
- Example: Monopoly pricing.
  - Exercise of monopoly power can be disciplined both by regulators and by other firms.
  - Collusive price-setting is illegal; being a monopolist is not.
- Example: Price of intermediate good set by government

## **Profit-maximization hypothesis**

If shareholders ran the firm directly, it would be profit-maximizing.

#### **Profit-maximization hypothesis**

- If shareholders ran the firm directly, it would be profit-maximizing.
- But, in practice, the firm is run by a manager, who may have different incentives:

#### **Profit-maximization hypothesis**

- If shareholders ran the firm directly, it would be profit-maximizing.
- But, in practice, the firm is run by a manager, who may have different incentives:
  - Monetary incentives, e.g., distorting short-term vs long-term tradeoff
  - Growth for its own sake (prestige, ego, power, etc)
  - Mislead about technology to take pressure off

#### **Profit-maximization hypothesis**

- If shareholders ran the firm directly, it would be profit-maximizing.
- But, in practice, the firm is run by a manager, who may have different incentives:
  - Monetary incentives, e.g., distorting short-term vs long-term tradeoff
  - Growth for its own sake (prestige, ego, power, etc)
  - Mislead about technology to take pressure off
- To combat this, shareholders may try to monitor manager performance or put limits on managerial discretion. But all of these approaches are imperfect.
- These are important issues. But are they ones that we as IO economists have to grapple with? Or is assuming profit maximization "good enough"?

Is the assumption of profit-maximization "good enough"?

1. Yes, if internal organization issues and product-market/input-market choices are approximately "separable".

Example: Manager chooses q, e.

$$\Pi = P(q)q - c(e, \epsilon)q$$

where e,  $\epsilon$  are not observed by shareholders.

Is the assumption of profit-maximization "good enough"?

1. Yes, if internal organization issues and product-market/input-market choices are approximately "separable".

Example: Manager chooses q, e.

$$\Pi = P(q)q - c(e, \epsilon)q$$

where  $e, \epsilon$  are not observed by shareholders. Would expect inefficiently low effort and inefficiently high cost (moral hazard)

$$e < e^* \Rightarrow \underbrace{c(e, \epsilon)}_{\tilde{c}} > \underbrace{c(e^*, \epsilon)}_{c^*}$$

Is the assumption of profit-maximization "good enough"?

 Yes, if internal organization issues and product-market/input-market choices are approximately "separable".

Example: Manager chooses q, e.

$$\Pi = P(q)q - c(e, \epsilon)q$$

where e,  $\epsilon$  are not observed by shareholders. Would expect inefficiently low effort and inefficiently high cost (moral hazard)

$$e < e^* \Rightarrow \underbrace{c(e, \epsilon)}_{\tilde{c}} > \underbrace{c(e^*, \epsilon)}_{c^*}$$

Then the quantity-choice problem is  $\max_q P(q)q - \tilde{c}q$ . The manager might as well choose the quantity that is profit-maximizing given marginal cost  $\tilde{c}$ .

Is the assumption of profit-maximization "good enough"?

1. Yes, if internal organization issues and product-market/input-market choices are approximately "separable".

Example: Manager chooses q, e.

$$\Pi = P(q)q - c(e, \epsilon)q$$

where e,  $\epsilon$  are not observed by shareholders. Would expect inefficiently low effort and inefficiently high cost (moral hazard)

$$e < e^* \Rightarrow \underbrace{c(e, \epsilon)}_{\tilde{c}} > \underbrace{c(e^*, \epsilon)}_{c^*}$$

Then the quantity-choice problem is  $\max_q P(q)q - \tilde{c}q$ . The manager might as well choose the quantity that is profit-maximizing given marginal cost  $\tilde{c}$ .

So firm's choice of quantity is observational equivalent to that of a profit-maximizing firm.

Is the assumption of profit-maximization "good enough"?

1. Yes, if internal organization issues and product-market/input-market choices are approximately "separable".

Example: Manager chooses q, e.

$$\Pi = P(q)q - c(e, \epsilon)q$$

where  $e, \epsilon$  are not observed by shareholders. Would expect inefficiently low effort and inefficiently high cost (moral hazard)

$$e < e^* \Rightarrow \underbrace{c(e, \epsilon)}_{\tilde{c}} > \underbrace{c(e^*, \epsilon)}_{c^*}$$

Then the quantity-choice problem is  $\max_q P(q)q - \tilde{c}q$ . The manager might as well choose the quantity that is profit-maximizing given marginal cost  $\tilde{c}$ .

So firm's choice of quantity is observational equivalent to that of a profit-maximizing firm. The fact that  $\tilde{c}>c^*$  is sometimes referred to as X-inefficiency.

Is the assumption of profit-maximization "good enough"?

- 2. Regardless, it is a necessary assumption.
  - As with any modeling choice, there's a realism-versus-tractability tradeoff.
  - If we want to make progress/derive theoretical predictions about important IO questions—e.g., antitrust policy, innovation, regulation, etc.—we can't also tackle the intra-firm incentives.
  - → Let's leave the internal principal-agent issues to the organizational economists.

Is the assumption of profit-maximization "good enough"?

- 2. Regardless, it is a necessary assumption.
  - As with any modeling choice, there's a realism-versus-tractability tradeoff.
  - If we want to make progress/derive theoretical predictions about important IO questions—e.g., antitrust policy, innovation, regulation, etc.—we can't also tackle the intra-firm incentives.
  - ightarrow Let's leave the internal principal-agent issues to the organizational economists.

MWG (p.127): "The firm is viewed merely as a "black box", able to transform inputs into outputs."

## Next time

- 1. Review of producer theory from ECON 6090
- 2. Monopoly pricing