Grade 12 Chemistry

Organic Chemistry
Class 3

Organic Reactions

- Organic compounds are synthesized (manmade) in large quantities industrially by adding or removing key functional groups from available molecules
- Ex: Caffeine can be extracted from coffee beans and tea leaves but to meet the large demand, a compound called theobromine is obtained from cocoa fruits and modified by adding a methyl group to make caffeine

O CH₃

CC-N

CC-N

CC-N

CC-N

CC-N

CC-H

CCH₃

theobromine

caffeine

Beverage	Serving Size	Caffeine Content (mg)
Coffee, Brewed	8 oz	120 mg
Coffee, Decaffeinated	8 oz	5 mg
Starbucks Grande (medium) Coffee	8 oz	330 mg
Black Tea	8 oz	45 mg
Green Tea	8 oz	20 mg
White Tea	8 oz	15 mg
Diet Coke	12 oz	47 mg
Coca-Cola Classic	12 oz	35 mg

Reaction Types

 Addition Reaction – atoms are added to a double or triple bond OR a C=O bond

- Substitution Reaction A hydrogen atom or functional group is replaced by a different functional group
- Commonly found in alcohols, alkyl halides and aromatic compounds

Example 1

$$CH_3$$
— CH_2 — OH + HI \rightarrow CH_3 — CH_2 — I + HOH ethanol hydroiodic acid iodoethane water

Example 2

- Elimination Reaction Atoms are removed from a molecule to form a double bond
- Commonly found in alcohols, alkyl halides

Example 1

Example 2

bromoethane ethene hydrobromic acid

- Oxidation reaction in which carbon forms more bonds to oxygen
- Commonly found to produce aldehydes and ketones in the presence of an oxidizing agent such as KMnO₄, K₂Cr₂O₇ and O₃
- Symbol is [O]
- Identify an oxidation by counting and comparing the number of C-H and C-O bonds

- Reduction reaction in which carbon forms fewer bonds to oxygen
- Commonly found in aldehydes, ketones, carboxylic acids, alkenes, and alkynes
- Requires a reducing agent such as LiAlH₄ and H₂/Pt
- Symbol is [H]
- Identify reduction by counting and comparing the number of C-H and C-O bonds

 Condensation Reactions – two molecules combine to form one molecule with the production of water

• **Hydrolysis Reactions** – water is added to a bond, splitting it into two.

Checkpoint

Identify the types of reaction:

(a)
$$HO - CH_2CH_2CH_3 \rightarrow CH_2 = CHCH_3 + H_2O$$

(b)
$$H_2C = CHCH_2CH_3 + H_2 \rightarrow CH_3CH_2CH_2CH_3$$

(c) $CH_3CH(CH_3)CH_2CH_2Br + NaOH \rightarrow CH_3CH(CH_3)CH_2CH_2OH + NaBr$

Identify the types of reaction:

(a)
$$CH_3$$
 O CH_3 O CH_3 O CH_3 O CH_3 CH_3 CH_4 CH_5 CH_5 CH_6 CH_6 CH_7 CH_8 C

Reactions of Alkanes

• Combustion Reactions

$$CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(I)$$

 Halogenation – replacement of hydrogen atoms with halogen atoms

- Uses a free radical substitution reaction

Reactions of Alkenes

- Addition:
 - Symmetrical alkene identical groups on either side of the double bond

 Asymmetrical alkene – different groups on either side of the double bond

Figure 2.5 The addition of hydrobromic acid to 1-butene

- Markovnikov's Rule the halogen atom or OH group is usually added to the more substituted carbon atom
- "The rich get richer" the H binds to the side with more H

Name the following:

Draw structural diagrams to represent the elimination reaction of 2-chloropentane to form an alkene. Name the products.

Checkpoint

Draw the reactants and products of the following incomplete reaction:

2-methylpent-2-ene + hydrochloric acid \rightarrow ?

Use Markovnikov's rule to predict which of the two isomeric products will form in a greater amount.

Reactions of Alkynes

Addition Reaction: Alkyne → Alkene → Alkane

Checkpoint

Predict the products from the following reaction:

$$H-C \equiv C-CH_2CH_3$$
 + $HBr \rightarrow$ 1-butyne hydrobromic acid (1 mol) (1 mol)

Reactions of Aromatic Compounds

- Substitution Reactions one of the hydrogen atoms are replaced by a functional group
 - Addition reactions DO NOT occur since the product would be less stable than benzene

$$\begin{array}{c} & & & & Br \\ & & & & + Br_2 & \xrightarrow{FeBr_3} & & & + HBr & \text{(substitution reaction;} \\ & & & & & & \text{addition does not occur)} \\ & & & & & & + HNO_3 & \xrightarrow{H_2SO_4} & & & + H_2O & \text{(substitution reaction)} \\ & & & & & & + H_2O & \text{(substitution reaction)} \\ & & & & & & & + HCl & \text{(substitution reaction)} \\ & & & & & & & + HCl & \text{(substitution reaction)} \\ & & & & & & & & + HCl & \text{(substitution reaction)} \\ & & & & & & & & + HCl & \text{(substitution reaction)} \\ & & & & & & & & & + HCl & \text{(substitution reaction)} \\ & & & & & & & & & & + HCl & \text{(substitution reaction)} \\ & & & & & & & & & & & & \\ \end{array}$$

Predict and name the products of reactions involving the following reactants:

- a) Cyclohexene and hydrogen bromide
- b) Benzene and chloroethane

Reactions of Alcohols

- Substitution Reactions When a halogen acid (HCl, HBr, HI) reacts with alcohol, the halogen is substituted for the OH group
- Reverse occurs with OH in a basic solution

Acid
$$CH_3$$
— CH_2 — $OH + HCl \rightarrow CH_3$ — CH_2 — $Cl + H_2O$

Base
$$CH_3$$
— CH_2 — $Cl + OH^- \rightarrow CH_3$ — CH_2 — $OH + Cl^-$

 Elimination Reaction (Dehydration Reaction) –
 when an alcohol is heated in the presence of the strong acid and a dehydrating agent H₂SO₄

• Δ means heat

 Oxidation – in the presence of an oxidizing agent, alcohols can be oxidized to form an aldehyde or a ketone

- Aldehydes and ketones can also undergo reduction (hydrogenation) at high temperatures and pressures and in the presence of a catalyst
- The product is its corresponding alcohol

Name each type of reaction. Then predict and name the products.

(a)
$$CH_{3}$$
— CH_{2} — CH — CH_{3} + [O] \rightarrow

(b) CH_{3} — CH — CH_{3} $\xrightarrow{H_{2}SO_{4}}$

OH

OH

(c) CH_{3} — CH — CH_{3} + HBr \rightarrow

Reactions of Carboxylic Acids

 Neutralization – Carboxylic acid reacts with a base to produce a salt and water

 Esterification Reaction – Carboxylic acid reacts with an alcohol to produce an ester and water

Reactions of Esters and Amides

- Hydrolysis ester or amide bond is cleaved or split in two to form two products
 - Amide → Carboxylic Acid and Amine
 - Ester → Carboxylic Acid and Alcohol

Name each type of reaction. Then predict and name the products.

Synthesis of Ethers

• Condensation Reactions (requires catalyst)

Reactions of Amines

• Alkyl Halide + Ammonia

 The 1° amine can be further reacted with alkyl halides to form 2° and 3° amines

