DATA MINING AND VISUALIZATION LABORATORY

1. Experiment to be conducted using WEKA tool:

1	outlook	temperatu	humidity	windy	play
2					
3	sunny	85	85	FALSE	no
4	sunny	80	90	TRUE	no
5	overcast	83	86	FALSE	yes
6	rainy	70	96	FALSE	yes
7	rainy	68	80	FALSE	yes
8	rainy	65	70	TRUE	no
9	overcast	64	65	TRUE	yes
10	sunny	72	95	FALSE	no
11	sunny	69	70	FALSE	yes
12	rainy	75	80	FALSE	yes
13	sunny	75	70	TRUE	yes
14	overcast	72	90	TRUE	yes
15	overcast	81	75	FALSE	yes
16	rainy	71	91	TRUE	no
47					

i). Preprocess(Data Cleaning, Data Integration, Data Transformation, Data Reduction) and Classify (Posteriori and Priori) panels. Analyze Input and Output Attributes.

Preprocess

- 1. Open Explorer → Preprocess tab
- 2. Open file (load your dataset)
- 3. Clean data
 - o Use filters: ReplaceMissingValues, RemoveDuplicates, Remove unwanted attributes
- 4. Integrate data
 - o Use Append or MergeTwoFiles filter to combine datasets
- 5. Transform data
 - o Use filters like NumericToNominal, NominalToBinary, Standardize, Normalize
- 6. Reduce data
 - o Go to Select attributes tab \rightarrow choose evaluator & search \rightarrow Start

\square Replace missing values:

Under Filter click Choose → unsupervised → attribute → ReplaceMissingValues → click Apply.

Normalize numeric attributes:

- Choose unsupervised \rightarrow attribute \rightarrow Normalize \rightarrow Apply.
- ☐ Remove an attribute (reduce):
 - Choose unsupervised \rightarrow attribute \rightarrow Remove.
 - Click the filter name in the box to edit property attributeIndices. Example: to remove outlook and windy, set attributeIndices = 1,4. Then click Apply.

Edit dataset manually:

• Click the Edit button (bottom left) → you can change individual cell values, add rows, or delete rows.

ii). Calculate the information of the whole data set on the basis of whether play is held or not.

- 1. Open WEKA \rightarrow Click on Explorer.
- 2. In the Preprocess tab, click Open file... and load your dataset (CSV or ARFF).
- 3. Once loaded, check at the top that the number of Instances is shown (e.g., 14).
- 4. In the left Attributes panel, click on the attribute play.
- 5. At the bottom-right, set Class to play.
- 6. In the Selected attribute panel (right side), note the counts of each class value (e.g., yes = 9, no = 5).
- 7. Compute the value to get the information (entropy) of the dataset.

iii). Draw the histogram to show how the values of the play class occurs for each value of the outlook attribute.

Steps to draw the histogram in WEKA

- 1. Open WEKA \rightarrow Explorer.
- 2. Go to the **Preprocess** tab.
- 3. Click **Open file...** and load your dataset (CSV or ARFF).
- 4. At the bottom-right, set Class attribute = play.
- 5. In the Attributes list (left panel), click on outlook.

- 6. Click the Visualize button (or double-click the outlook attribute).
- 7. A histogram window opens showing bars for each outlook value.
- 8. The bars will be color-split based on play values (yes/no).
- 9. Hover over the bars to see exact counts for each class.

iv). Derive minimum and maximum values, mean, and standard deviation.

- Open Weka → Explorer → Preprocess tab
- Open file (load your dataset)
- In the Attributes panel, click on the attribute name.

On the right side (Selected attribute) you will see:

- Minimum
- Maximum
- Mean
- Standard deviation

v). Perform operations such as filter, delete, invert, Pattern, Undo, Edit, search, Select, Conversions etc.

Filter:

1. Preprocess \rightarrow Filter \rightarrow Choose \rightarrow select filter \rightarrow set options \rightarrow Apply.

Delete Attribute/Instance:

- 1. Tick attribute(s) \rightarrow Remove
- 2. Preprocess \rightarrow Edit \rightarrow select row(s) \rightarrow Delete rows \rightarrow Close

Invert Selection:

1. Click Invert above attributes list

Pattern Selection:

1. Pattern box \rightarrow type regex \rightarrow Enter

Undo:

1. Click Undo (top-right)

Edit Values:

1. Preprocess \rightarrow Edit \rightarrow double-click cell \rightarrow Close \rightarrow Save

Search Values:

1. Preprocess \rightarrow Edit \rightarrow scan column or use filter \rightarrow Apply

Select Attributes/Instances:

1. Tick attributes → or Visualize → select points/rectangle

Conversions (type changes):

1. Preprocess \rightarrow Filter \rightarrow Choose \rightarrow conversion filter \rightarrow set attributes \rightarrow Apply.

vi). Examine the Output, classification error and Kappa statistics.

- 1. Open Explorer → Classify tab
- 2. Choose Classifier → e.g., J48, NaiveBayes, etc. → set options if needed
- 3. Select Test options → Use training set / Supplied test set / Cross-validation

- 4. Click Start \rightarrow wait for classifier to run
- 5. Look at Classifier output panel:
 - o % Correct / % Incorrect → classification error
 - o Kappa statistic → directly shown in output panel
- 6. Optional: Scroll down to Detailed Accuracy. By Class for per-class metrics.

vii). Visualize threshold curve.

1. Open Explorer \rightarrow Classify tab

- 2. Choose Classifier \rightarrow e.g., J48, NaiveBayes \rightarrow set options
- 3. Select Test options → Cross-validation / Use training set / Supplied test set
- 4. Click Start → wait for classifier to run
- 5. In Result list (left panel) → right-click the classifier → Visualize threshold curve
- 6. Select class index (for which class you want the curve) \rightarrow click OK
- 7. Threshold curve window opens \rightarrow analyze ROC, area under curve, etc.

viii). Apply Logistic Regression model to classify.

- Open Explorer → Classify tab
- Click Choose → functions → Logistic
- ullet Set $Test\ options o$ Use training set / Supplied test set / Cross-validation
- Click **Start** → wait for model to run
- Check Classifier output for results, classification accuracy, and statistics.

ix). Measure the log likelihood of the clusters of training data. (Consider large data set.)

- Open Explorer → Cluster tab
- Click Choose \rightarrow select a clustering algorithm (e.g., EM)

- Click the algorithm name \rightarrow set **options** (e.g., number of clusters, max iterations)
- Select Cluster mode \rightarrow Use training set.
- Click **Start** → wait for clustering to complete.
- In Result list / output panel, check Log likelihood of clusters displayed in the results.

x). Derive Information gain.

- 1. Open Explorer → Select attributes tab
- 2. Click Attribute Evaluator → Choose → InfoGainAttributeEval
- 3. Click Search Method \rightarrow Choose \rightarrow Ranker
- 4. Click Start \rightarrow wait for evaluation
- 5. Check Result list / output panel → displays Information Gain for each attribute.

xi). Build Decision Tree on Humidity attribute. Also demonstrate decision tree after analysis of

- a. Sunny and Overcast dataset
- b. Sunny, Overcast and Rainy Data set.

a) Sunny and Overcast dataset

- Preprocess → Filter → Choose → RemoveWithValues → set attribute Outlook → keep Sunny and Overcast → Apply
- 2. Classify \rightarrow Choose \rightarrow trees \rightarrow J48
- 3. Test options \rightarrow select dataset (training or cross-validation)
- 4. Start \rightarrow view **Decision Tree** in output panel

b) Sunny, Overcast, and Rainy dataset

- 1. Preprocess \rightarrow Reset dataset (all instances)
- 2. Classify \rightarrow Choose \rightarrow trees \rightarrow J48
- 3. Test options \rightarrow select dataset
- 4. Start \rightarrow view **Decision Tree.**

xii). Compute Gini Index representing with respect to Temperature, Humidity, and Windy attributes.

- Select Attributes → Attribute Evaluator → weka.attributeSelection.GiniIndex (if available, or use weka.attributeSelection.CfsSubsetEval)
- 2. Search Method \rightarrow Ranker

3. Start \rightarrow check **Gini Index** values for each attribute.

xiii), Obtain the Prediction of Play 'Yes' as well as 'No' for an unknown instance.

- 1. Classify \rightarrow Choose \rightarrow bayes \rightarrow NaiveBayes
- 2. Test options \rightarrow Use training set / Cross-validation
- Start → in output → check Conditional probabilities table → find Play=No for Outlook=Rainy.

xvi). Apply Naïve Bayes Classifier to the Weather play data set and derive the probability for play no given outlook rainy.

- 1. Classify \rightarrow Choose \rightarrow bayes \rightarrow NaiveBayes
- 2. Test options \rightarrow Use training set / Cross-validation
- Start → in output → check Conditional probabilities table → find Play=No for Outlook=Rainy.

xv) Classification \rightarrow Clustering \rightarrow Class-to-Cluster Evaluation \rightarrow Classification on unlabeled data.

- 1. Preprocess \rightarrow Remove **Play** attribute \rightarrow Save as unlabeled dataset
- 2. Cluster \rightarrow Choose \rightarrow EM or SimpleKMeans \rightarrow Start \rightarrow get cluster assignments
- 3. Class → Cluster Evaluation → Classify → load original labeled dataset → select cluster assignments → Evaluate
- 4. Classify on unlabeled dataset (without Play) → Choose classifier → Start → view predictions
- 5. Prepare **analysis report** → include classification accuracy, clusters, class-to-cluster mapping, and prediction.

