

Лекция 1

Внутренний закон композиции

Содержание лекции:

Предметом изучения в алгебре являются алгебраические структуры - множества наделенные законами композиции элементов. Начиная с понятия закона композиции и описания распространенных свойств некоторых элементов рассматриваемых множеств мы последовательно вводим основные (базовые) алгебраические структуры,

Ключевые слова:

Внутренний закон композиции, нейтральный элемент относительно закона композиции, регулярный элемент, обратимый элемент, поглощащий элемент, ассоциативность закона, коммутативность закона, теорема об ассоциативном коммутативном законе, основные структуры, магма, полугруппа, моноид, группа.

Авторы курса:

Трифанов А. И.

Москаленко М. А.

Ссылка на ресурсы:

mathdep.ifmo.ru/geolin

1.1 Внутренний закон композиции

Внутренним законом композиции на множестве M называется отображение $M \times M \to M$ декартова произведения $M \times M$ в M. Значение

$$(x,y) \mapsto z \in M$$

называется композицией элементов x и y относительно этого закона.

Пример 1.1. Пусть $\wp(M)$ - семейство всех подмножеств множества M. Тогда операции объединения и пересечения

$$(X,Y) \to X \cup Y$$
, $(X,Y) \to X \cap Y$,

являются законами композиции на $\wp(M)$.

Nota bene Для записи композиции элементов $x, y \in M$ чаще всего используют одно из следующих обозначений:

$$x + y$$
, $x \cdot y$, $x \circ y$.

Также для удобства будем иногда использовать запись $x \top y$

Левым нейтральным элементом относительно закона композиции $x \circ y$ называется элемент e_L , такой что:

$$e_L \circ x = x, \quad \forall x \in M.$$

Правым нейтральным элементом называется элемент e_R со свойством:

$$x \circ e_R = x, \quad \forall x \in M.$$

Пример 1.2. Пустое множество и множество $\wp(M)$ являются примерами двусторонних нейтральных элементов относительно, соответсвенно, операций объединения и пересечения подмножеств:

$$X \cup \emptyset = X$$
, $X \cap \wp(M) = X$.

Лемма 1.1. Если относительно данного закона композиции существуют одновременно и левый e_L и правый e_R нейтральный элементы, то они совпадают и существует единственный нейтральный элемент e:

$$e_L = e_R \equiv e$$

По определению правого нейтрального элемента имеем:

$$e_L = e_L \circ e_R = e_R$$
.

4

Элемент x называется **идемпотентом** относительно закона композиции, если

$$x \circ x = x$$

Nota bene Нейтральные элементы являются идемпотентами:

$$e_L = e_L \circ e_L$$
.

Пример 1.3. Каждое подмножество $X \subset \wp(M)$ является идемпотентом относительно операций объединения и пересечения множеств:

$$X \cup X = X$$
, $X \cap X = X$.

Элемент y_L называется **левым регулярным** относительно закона композиции, определенном на множестве M, если для всех $x_1, x_2 \in M$ выполняется условие

$$y_L \circ x_1 = y_L \circ x_2 \quad \Rightarrow \quad x_1 = x_2.$$

Элемент y_R называется **правым регулярным**, если при аналогичных условиях

$$x_1 \circ y_R = x_2 \circ y_R \quad \Rightarrow \quad x_1 = x_2.$$

Nota bene Нейтральные элементы являются регулярными элементами:

$$x = e_L \circ x = e_L \circ y = y.$$

Пример 1.4. Пусть A - некоторый алфавит и S - множество строк, составленных из букв алфавита A. Множество S, наделенное операцией конкатенации строк является множеством, все элементы которого регулярные (слева и справа).

Элемент z_L называется **левым обратным** к элементу x относительно рассматриваемого закона композиции с нейтральным элементом e, если

$$z_L \circ x = e$$

Элемент z_R называется **правым обратным** к x если при тех же условиях

$$x \circ z_R = e$$

Пример 1.5. Во множестве $\wp(M)$ всех подмножеств множества M, наделенном операцией симметрической разности, каждый элемент является обратным к самому себе:

$$(X,Y) \to X \triangle Y = (X \setminus Y) \cup (Y \setminus X),$$

 $X \triangle X = \emptyset, \quad X \triangle \emptyset = X.$

Элемент $\theta \in M$ называется **поглощающим элементом** относительно выбранного закона композиции, если

$$\forall x \in M \quad x \circ \theta = \theta \circ x = \theta.$$

1.2 Свойства законов композиции

Пусть $\{x_i\}_{i\in I}$ - конечное семейство элементов из M. **Композицией элементов** $\{x_i\}_{i\in I}$ относительно внутреннего закона \top называется элемент $x\in M$, определяемый индукцией по числу элементов следующим образом:

1. если
$$I=\{i_0\}$$
, тогда $\underset{i\in I}{\top} x_i=x_{i_0};$

2. если
$$I = \{i_1, i_2, \ldots\}$$
, тогда $\underset{i \in I}{\top} x_i = x_k \circ \left(\underset{i \in I'}{\top} x_i\right)$, $\forall i \in I' \quad i < k$.

Закон композиции элементов множества M называется **ассоциативным**, если для любых элементов $x,y,z\in M$ выполняется равенство:

$$(x \circ y) \circ z = x \circ (y \circ z)$$

Пример 1.6. Пример неассоциативного закона на $\mathbb{Z}[1/2]$:

$$x \oplus y = (x+y)/2.$$

Пример ассоциативного закона на \mathbb{Z} :

$$x \oplus y = \gcd(x, y).$$

Лемма 1.2. Если для данного элемента x существуют одновременно и левый z_L и правый z_R обратные элементы относительно ассоциативного закона композиции, то эти элементы совпадают и существует элемент $z=x^{-1}$, называемый обратным элементов к x:

$$z_L = z_R \equiv z = x^{-1}.$$

По определению нейтрального и правого обратного элементов имеем:

$$z_L = z_L \circ e = z_L \circ (x \circ z_R) = (z_L \circ x) \circ z_R = e \circ z_R = z_R.$$

Теорема 1.1. (об ассоциативном законе) Пусть $\{x_i\}_{i=1}^n$ - семейство элементов множества M c ассоциативным законом композиции \top , тогда для любого $p \in \mathbb{N}$, такого что $1 \le p \le n$ имеет место равенство

Элементы $x, y \in M$ называются **перестановочными** относительно заданного закона композиции, если имеет место равенство:

$$x \circ y = y \circ x$$
.

Если перестановочна любая пара элементов $x,y\in M$, тогда внутренний закон \circ называется коммутативным.

Теорема 1.2. (об ассоциативном коммутативном законе) Пусть $\{x_i\}_{i=1}^n$ - семейство элементов множества M с ассоциативным коммутативным законом композиции \top , тогда для любой перестановки σ имеет место равенство

1.3 Определение основных структур

Множество, наделенное внутренним законом композиции, называется магмой.

Пример 1.7. Пусть множество M содержит только три элемента $\{-1,0,1\}$. Алгебраическую структуру магмы на S задает следующий закон композиции:

$$x \circ y = x <=> y = \begin{cases} 1, & x < y, \\ 0, & x = y, \\ -1, & x > y. \end{cases}$$

Множество M, наделенное **ассоциативным** всюду определенным законом композиции называется **полугруппой**.

Пример 1.8. Множество натуральных чисел $\mathbb N$ с операцией операцией $\circ = "+"$ является полугруппой $(\mathbb N, "+").$

 $\|$ Полугруппа S, содержащая **нейтральный элемент**, называется **моноидом**.

Пример 1.9. Множество натуральных чисел \mathbb{N} с операцией операцией $\circ = "\cdot"$ является моноидом $(\mathbb{N}, 1, "\cdot")$.

Говорят, что на множестве M определена структура **группы**, если закон композиции, заданный на M удовлетворяет следующим требованиям (аксиомам):

- 1. ассоциативность закона;
- 2. существование нейтрального элемента;
- 3. для каждого элемента существует обратный.

Пример 1.10. Множество целых чисел \mathbb{Z} , снабженное операцией сложения является коммутативной группой $(\mathbb{Z},''+'')$.