Parameterized Algorithms for Matrix Completion with Radius Constraints

Tomohiro Koana¹ Vincent Froese¹ Rolf Niedermeier¹

 1 Techqnische Universität Berlin, Faculty IV, Algorithmics and Computational Complexity

May 12, 2020

For $i=1\ldots n$: $S[i] \ {\sf string} \ {\sf on} \ {\sf alphabet} \ \Sigma \ {\sf admitting} \ {\sf wildcards} \ *$

$$S = \begin{pmatrix} b & a & n & a & n & a \\ a & * & n & * & n & * \\ b & * & * & c & z & a \\ z & a & z & * & n & * \\ b & a & * & a & c & a \\ b & * & n & c & * & z \end{pmatrix} \in (\Sigma \cup \{*\})^{n \times \ell}$$

1

For i = 1 ... n:

S[i] string on alphabet Σ admitting wildcards *

$$S = \begin{pmatrix} b & a & n & a & n & a \\ a & * & n & * & n & * \\ b & * & * & c & z & a \\ z & a & z & * & n & * \\ b & a & * & a & c & a \\ b & * & n & c & * & z \end{pmatrix} \in (\Sigma \cup \{*\})^{n \times \ell}$$

Minimum Radius Matrix Completion (MinRMC)

Input: Matrix $S \in (\Sigma \cup \{*\})^{n \times \ell}$ and $d \in \mathbb{N}$.

Output: $\exists T$ completion of S and $\exists v \in \Sigma^{\ell}$ s.t. $\delta(v, T) \leq d$?

For $i = 1 \dots n$:

S[i] string on alphabet Σ admitting wildcards *

$$S = \begin{pmatrix} b & a & n & a & n & a \\ a & * & n & * & n & * \\ b & * & * & c & z & a \\ z & a & z & * & n & * \\ b & a & * & a & c & a \\ b & * & n & c & * & z \end{pmatrix} \in (\Sigma \cup \{*\})^{n \times \ell}$$

Minimum Local Radius Matrix Completion (MinLRMC)

Input: Matrix $S \in (\Sigma \cup \{*\})^{n \times \ell}$ and $d \in \mathbb{N}$.

Output: $\exists T$ completion of S and $\exists i \leq n$ s.t. $\delta(T[i], T) \leq d$?

For i = 1 ... n:

S[i] string on alphabet Σ admitting wildcards *

$$S = \begin{pmatrix} b & a & n & a & n & a \\ a & * & n & * & n & * \\ b & * & * & c & z & a \\ z & a & z & * & n & * \\ b & a & * & a & c & a \\ b & * & n & c & * & z \end{pmatrix} \in (\Sigma \cup \{*\})^{n \times \ell}$$

Constraint Radius Matrix Completion (ConRMC)

Input: Matrix $S \in (\Sigma \cup \{*\})^{n \times \ell}$ and $d_1 \dots d_n \in \mathbb{N}$.

Output: $\exists T$ completion of S and $\exists v \in \Sigma^{\ell}$ s.t. $\forall i \ \delta(v, T[i]) \leq d_i$?

Related Work

Stringology and ML meet in the middle!

Related Work

Stringology and ML meet in the middle!

ICML '18: Parameterized Algorithms for Matrix Completion

Dataset contains missing entries

Fill the gaps optimizing some metrics (e.g. rank of the matrix)

Related Work

Stringology and ML meet in the middle!

ICML '18: Parameterized Algorithms for Matrix Completion Dataset contains missing entries

Fill the gaps optimizing some metrics (e.g. rank of the matrix)

CPM '14: Parameterized Closest String with Wildcards

Closest string \equiv MinRMC for a wildcard-free S

Applications in Bioinformatics

- Motif finding
- PCR primer design
- Genetic probe design

Hardness Results

All Problems are Intractable

- Closest String is \mathcal{NP} -hard, even for $|\Sigma|=2$
- ullet Closest String \preceq MinRMC \preceq MinLRMC \preceq ConRMC

Hardness Results

All Problems are Intractable

- ullet Closest String is \mathcal{NP} -hard, even for $|\Sigma|=2$
- ullet Closest String \preceq MinRMC \preceq MinLRMC \preceq ConRMC

Fixed Parameter Tractability

$$f(n,k) = \mathcal{O}\left(g(k)n^{\mathcal{O}(1)}\right)$$

Hardness Results

All Problems are Intractable

- ullet Closest String is \mathcal{NP} -hard, even for $|\Sigma|=2$
- ullet Closest String \preceq MinRMC \preceq MinLRMC \preceq ConRMC

Fixed Parameter Tractability

$$f(n,k) = \mathcal{O}\left(g(k)n^{\mathcal{O}(1)}\right) \iff f(n,k) = \mathcal{O}^*\left(g(k)\right)$$

State of Art