WHAT IS CLAIMED IS:

In a process for reducing aerosol in applying a 1 1. crosslinkable silicone coating composition onto a substrate wherein an 2 antimisting additive is added to the coating composition, the improvement 3 4 comprising adding to said crosslinkable silicone coating composition an 5 antimisting additive comprising at least one alkenyl-functional siloxane 6 copolymer prepared by reacting, in a first step a compound (1) containing at least three aliphatic 7 8 double bonds, of the formula $R^2(CR^3=CH_2)_x$ (I) 9 where R² is a trivalent or tetravalent hydrocarbon radical optionally 10 containing one or more non-adjacent oxygen, silicon, or titanium 11 12 heteroatoms, R³ is a hydrogen atom or alkyl radical, and 13 14 x is 3 or 4 with an organosiloxane (2) having terminal Si-bonded hydrogen atoms, 15 in the presence of at least one catalyst (3) which promotes the addition of 16 Si-bonded hydrogen onto an aliphatic double bond, 17 the ratio of Si-bonded hydrogen in the organosiloxane (2) to aliphatic 18 double bond in organic compound (1) being from 1.3 to 10, and 19 reacting, in a second step, SiH-containing hydrocarbon-siloxane 20 copolymer(s) obtained in the first step with at least one α,ω -21 dialkenylsiloxane polymer (4), 22 in the presence of a catalyst (3) which promotes the addition of Si-bonded 23 24 hydrogen onto an aliphatic double bond, the ratio of aliphatic double bond in the α, ω -dialkenylsiloxane polymer 25 26 (4) to SiH groups in the hydrocarbon-siloxane copolymer(s) being from 27 1.2 to 10,

28	and optionally, in a third step,				
29	equilibrating alkenyl-functional siloxane copolymer(s) obtained from the				
30	second step with one or more organopolysiloxane(s) (5) selected from the				
31	group consisting of linear organopolysiloxanes containing terminal				
32	triorganosiloxy groups, linear organopolysiloxanes containing terminal				
33	hydroxyl groups, branched organopolysiloxanes optionally containing				
34	hydroxyl groups, cyclic organopolysiloxanes, and copolymers comprising				
35	diorganosiloxane and monoorganosiloxane units.				
1	2. The process of claim 1 wherein R^2 is a C_{1-25} alkyl radical				
2	and R ³ is a C ₁₋₆ alkyl radical.				
1	3. The process of claim 1, wherein said organosiloxane (2)				
2	has the formula				
3	$HR_2SiO(SiR_2O)_nSiR_2H$ (II)				
4	where each R independently is an optionally halogenated hydrocarbon				
5	radical having from 1 to 6 carbon atoms per radical and				
6	n is 0 or an integer greater than 0.				
1	4. The process of claim 1, wherein R^2 is a trivalent				
2	hydrocarbon radical having from 1 to 25 carbon atoms per radical and x is 3.				
1	5. The process of claim 2, wherein R^2 is a trivalent				
2	hydrocarbon radical having from 1 to 25 carbon atoms per radical and x is 3.				
1	6. The process of claim 3, wherein R^2 is a trivalent				
2	hydrocarbon radical having from 1 to 25 carbon atoms per radical and x is 3.				
1	7. The process of claim 1, organic compound (1) comprises				
2	1,2,4-trivinylcyclohexane.				
_	-,-, · · · · · · · · · · · · · · · · · ·				

1	8. The	process of	claim	1,	wherein	said	α,ω-	
2	dialkenylsiloxane polymer (4) has the form	ula					
3	$R^4_a R_{3-a} SiO(R_2)$	Si-R¹-SiR ₂ O) _m (R	R ₂ SiO) _k S	SiR⁴ _a F	R _{3-a} (III)			
4	where each R independently is an optionally halogenated hydrocarbon							
5	radical having from 1 to 6 carbon atoms per radical and							
6	n is 0 or an integer greater than 0.							
7	R^1 is a C_{2-10} alkylene radical, a divalent silane, or divalent siloxane							
8	radical,							
9	R^4 is a terminally olefinically unsaturated C_{2-10} hydrogen radical,							
10	a is identical or different and is 0 or 1, and on average from 0.7 to 1.0,							
l 1	m is 0 or an integer	m is 0 or an integer from 1 to 10, and						
12	k is 0 or an integer	rom 1 to 1000.						
1		process of					α,ω-	
2	dialkenylsiloxane polymer (4) comprises α,	,ω-divin	ıylpo	lydimethy	lsiloxar	ıe(s).	
1	10. The p	rocess of claim	1, where	ein sa	id crosslin	kable si	ilicone	
2	coating composition compr	coating composition comprises						
3	(A) organ	osilicon comp	ounds 1	havir	ıg radical	s cont	aining	
4	alipha	tic carbon-carb	on mul	ltiple	bonds ot	her tha	n said	
5	antim	isting additive,		-		•		
6	(B) organ	osilicon compo	unds coi	ntain	ing Si-bon	ded hyd	lrogen	
7	atoms	,						
8	(C) cataly	sts which pro	omote t	the a	addition o	of Si-b	onded	
9	hydro	gen onto an ali	phatic n	nultip	ole bond,			
10	and optionally,							
11	(D) inhib	tors.						
1	. 11. A cro	sslinkable silico	ne coati	ng co	mposition	with re	duced	
2	aerosol formation, compris				•			
	, 1	_						

3	(A) organosilicon compounds having radicals containing					
4	aliphatic carbon-carbon multiple bonds,					
5	(B) organosilicon compounds containing Si-bonded hydrogen					
6	atoms,					
7	(C) catalysts which promote the addition of Si-bonded					
8	hydrogen onto aliphatic multiple bond,					
9	(D) optionally, inhibitors, and					
10	(X) an antimisting additive prepared by reacting, in a first step a compound (1)					
11	containing at least three aliphatic double bonds, of the formula					
••	containing at reast times uniphatic double bonds, or the formalia					
12	$R^2(CR^3 = CH_2)_x \qquad (I)$					
13	where R ² is a trivalent or tetravalent hydrocarbon radical optionally					
14	containing one or more non-adjacent oxygen, silicon, or titanium					
15	heteroatoms,					
16	R ³ is a hydrogen atom or alkyl radical, and					
17	x is 3 or 4					
18	with an organosiloxane (2) having terminal Si-bonded hydrogen atoms,					
19	in the presence of at least one catalyst (3) which promotes the addition of					
20	Si-bonded hydrogen onto an aliphatic double bond,					
21	the ratio of Si-bonded hydrogen in the organosiloxane (2) to aliphatic					
22	double bond in organic compound (1) being from 1.3 to 10, and					
23	reacting, in a second step, SiH-containing hydrocarbon-siloxane					
24	copolymer(s) obtained in the first step with at least one α,ω -					
25	dialkenylsiloxane polymer (4),					
26	in the presence of a catalyst (3) which promotes the addition of Si-bonded					
27	hydrogen onto an aliphatic double bond,					
28	the ratio of aliphatic double bond in the α,ω -dialkenylsiloxane polymer					
29	(4) to SiH groups in the hydrocarbon-siloxane copolymer(s) being from					
30	1.2 to 10,					

31	and optionally, in a third step,					
32	equilibrating alkenyl-functional siloxane copolymer(s) obtained from the					
33	second step with one or more organopolysiloxane(s) (5) selected from the					
34	group consisting of linear organopolysiloxanes containing terminal					
35	triorganosiloxy groups, linear organopolysiloxanes containing terminal					
36	hydroxyl groups, branched organopolysiloxanes optionally containing					
37	hydroxyl groups, cyclic organopolysiloxanes, and copolymers comprising					
38	diorganosiloxane and monoorganosiloxane units.					
1	12. A shaped body produced by crosslinking the composition					
2	of claim 11.					
	·					
1	13. The shaped body of claim 12, which is a coating.					
1	14. The shaped body of claim 12, which is a coating which					
2	repels tacky substances.					
1	15. A process for producing a coating on a substrate					
2	comprising applying the crosslinkable composition of claim 11 to a surface of a					
3	substrate and crosslinking the composition.					
1	16. A process for producing a coating which repels tacky					
2	substances, comprising applying the crosslinkable composition of claim 11 to a					
3	surface of a substrate to be made repellent to tacky substances, and crosslinking					
4	the composition.					