LIMITS AND CONTINUITY

NUMBER OF QUESTIONS—45

NO CALCULATOR

- 1. If $\lim_{x\to 3} f(x) = 8$, then which option is true?
 - (A) f(3) = 8.
 - (B) As x approaches 3, f(x) approaches 8.
 - (C) f(8) = 3.
 - (D) As x approaches 8, f(x) approaches 3.
 - (E) f is continuous at x = 3.
- $2. \lim_{x \to 0} \frac{\sin 3x}{x} \text{ is}$

- (A) 0 (B) $\frac{1}{3}$ (C) 1 (D) 3 (E) nonexistent
- 3. $\lim_{x \to -7} \frac{x+7}{49-x^2}$ is
- (A) -7 (B) $-\frac{1}{14}$ (C) $-\frac{1}{49}$ (D) $\frac{1}{14}$ (E) 49

- 4. $\lim_{x\to 0} \frac{x}{\tan x}$ is
 - (A) -1 (B) 0
- (C) 1
- (D) π
- (E) nonexistent

- 5. $\lim_{x \to \infty} \frac{3x^4 8x^3 + x^2 10}{2x^2 5x^3 10x^4}$ is
 - (A) $-\frac{3}{10}$ (B) 0 (C) $\frac{3}{10}$ (D) $\frac{3}{2}$

- (E) nonexistent

- **6.** The horizontal asymptote of $f(x) = \frac{3x^3 + x^2 4}{8 5x^3}$ is
 - (A) $y = -\frac{5}{3}$ (B) $y = -\frac{3}{5}$ (C) $y = \frac{3}{8}$ (D) $y = \frac{3}{5}$

- 7. $\lim_{x \to \pi/2} \tan 2x$ is

 - (A) -1 (B) $-\frac{1}{2}$ (C) 0 (D) 1 (E) π

8. Function g is discontinuous at x = 5. Selected values of g are shown in the table below.

X	4.99	4.999	5	5.0001	5.001
f(x)	2.99	2.999	-4	3.001	3.01

A reasonable estimate for $\lim_{x\to 5} g(x)$ is

- (A) -4 (B) -3 (C) 2 (D) 3
- (E) 5

- 9. If $f(x) = \begin{cases} 3x 2\cos x & x < \pi \\ x^2 & x \geqslant \pi, \end{cases}$ then $\lim_{x \to \pi^-} f(x)$ is
- (A) $-\pi^2$ (B) 3π (C) $3\pi 2$ (D) $3\pi + 2$ (E) π^2

- **10.** $\lim_{x \to 3} \frac{\sqrt{x-2}-1}{9-3x}$ is

- (A) $-\frac{1}{2}$ (B) $-\frac{1}{6}$ (C) $\frac{1}{6}$ (D) $\frac{1}{2}$ (E) nonexistent

- 11. Given that $\lim_{x\to a} f(x)$ exists, which statements must be true?
 - I. f(x) is continuous at x = a.
 - II. $\lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x)$.
 - III. f(a) is defined.
 - (A) I only
 - (B) II only
 - (C) I and II only
 - (D) II and III only
 - (E) I, II, and III
- **12.** If $\lim_{k\to 0} \frac{e^k 1}{k} = 1$, then $\lim_{k\to 0} \frac{e^2 e^{2+k}}{k}$ is

 - (A) $-e^2$ (B) $-e^{-2}$ (C) e^{-2}
- (D) 1 (E) e^2
- 13. $g(x) = \frac{x^2 5x + 6}{x 3}$ has a removable discontinuity at

 - (A) x = -3 (B) x = -2 (C) x = 0 (D) x = 2 (E) x = 3

14.
$$\lim_{x\to\infty} \frac{\sin(2x)}{x+2}$$
 is

- (A) -1 (B) 0 (C) 1 (D) 2 (E) ∞

15. Let
$$f(x) = \begin{cases} 2 - kx & x \le 3 \\ kx^2 - 22 & x > 3. \end{cases}$$
 For what value of k is f continuous at $x = 3$?

- (A) -4 (B) 0 (C) 1 (D) 2 (E) 3

16. The oblique asymptote of
$$f(x) = \frac{x^2 + 7x + 1}{x - 2}$$
 is

- (A) y = 9 (B) y = x 9 (C) y = x (D) y = x + 5 (E) y = x + 9

17.
$$\lim_{x \to \infty} \frac{\sqrt{4x^2 - 1}}{x + 3}$$
 is

- (A) -4 (B) -2 (C) 2 (D) 4 (E) nonexistent

Questions 18–23 refer to the following graph.

- **18.** $\lim_{x \to 0} f(x)$ is
 - (A) 0
- (B) 1
- (C) 2
- (D) 4
- (E) nonexistent

- **19.** $\lim_{x \to 0^+} g(x)$ is
 - (A) 0

- (B) 1 (C) 2 (D) 4 (E) nonexistent

20.
$$\lim_{x \to -2} [f(x) - g(x)]$$
 is

- $(A) \quad -5 \qquad \qquad (B) \quad -1 \qquad \qquad (C) \quad 1 \qquad \qquad (D) \quad 5 \qquad \qquad (E) \quad nonexistent$

21.
$$\lim_{x \to -2} [g(x)]^2$$
 is

- (A) -4 (B) -2 (C) 2 (D) 4 (E) 9

22.
$$\lim_{x\to 0} [f(x)g(x)]$$
 is

- (A) 1 (B) 2 (C) 4 (D) 8 (E) nonexistent

23.
$$\lim_{x\to 0} f(-x^2)$$
 is

- (A) 0 (B) 1 (C) 2

- (D) 4 (E) nonexistent

24. On what interval of *x* is $f(x) = \frac{\ln(x-2)}{x^2-9}$ continuous?

(A)
$$(-\infty, -3) \cup (3, \infty)$$

- (B) $\left(-\infty, -2\right)$
- (C) $(2,\infty)$
- (D) $(3, \infty)$
- (E) $(2,3) \cup (3,\infty)$
- **25.** $\lim_{x \to -3} \frac{5\sin(x+3)}{6+2x}$ is

 - (A) 0 (B) $\frac{5}{6}$ (C) 1 (D) $\frac{5}{2}$
- (E) nonexistent
- **26.** Function f is continuous and satisfies f(4) = 8. If $\lim_{x \to 2} g(x) = 4$, then $\lim_{x \to 2} f(g(x))$ is
 - (A) -8 (B) -4 (C) 2
- (D) 4
- (E) 8

- 27. $\lim_{x\to 2} \frac{\frac{1}{2} \frac{1}{x}}{2 x}$ is

- (A) $-\frac{1}{2}$ (B) $-\frac{1}{4}$ (C) $\frac{1}{4}$ (D) $\frac{1}{2}$ (E) nonexistent

- **28.** $\lim_{x\to 0} x \sin\left(\frac{1}{x^2}\right)$ is

- (A) 0 (B) $\frac{1}{4}$ (C) $\frac{1}{2}$ (D) 1 (E) nonexistent
- **29.** Let $f(x) = \begin{cases} x^2 + 1 & x If <math>f(x)$ is continuous at x = p, then p is
 - (A) -1 (B) 0 (C) 1 (D) 2 (E) 4

- **30.** $\lim_{t\to\infty} \sin t$ is

- (A) -1 (B) 0 (C) 1 (D) π (E) nonexistent
- **31.** If $\lim_{x \to 2} f(x) = -3$, then $\lim_{x \to 2} ([f(x)]^2 2x)$ is

 - (A) -7 (B) -3 (C) 4 (D) 5 (E) 9

32. Function f is continuous. Selected values of f(x) are shown in the table below.

X	-1	2	3	6	11
f(x)	2	1	1	1	2

Following the Intermediate Value Theorem, which value of f(x) is guaranteed to exist for $-1 \le x \le 1$ 11?

- (A) 0
- (B) 3
- (C) 5
- (D) 6
- (E) 11

- **33.** $\lim_{x \to -\infty} \frac{\sqrt{4x^6 4x^2 + 1}}{3x^3 + 2}$ is

 - (A) $-\infty$ (B) $-\frac{2}{3}$ (C) $\frac{2}{3}$
- (E) nonexistent

- **34.** $\lim_{x \to \infty} x \sin\left(\frac{1}{x}\right)$ is
 - (A) -1 (B) 0
- (C) 1
- (D) π
- (E) nonexistent

- **35.** At x = 4, which choice about $g(x) = \frac{12 + x x^2}{x 4}$ is true?
 - (A) g(x) has a vertical asymptote at x = 4.
 - (B) g(x) has a jump discontinuity at x = 4.
 - (C) g(x) has a removeable discontinuity at x = 4.
 - (D) $\lim_{x\to 4} g(x)$ does not exist.
 - (E) g(x) is continuous at x = 4.
- **36.** $\lim_{x \to 0^+} \ln(\sin x)$ is
 - $(A) -\infty \qquad (B) \quad 0$
- (C) 1
- (D) *e*
- (E) ∞

- 37. $\lim_{x \to 0} \frac{x^2}{\sin^2 2x}$ is

 - (A) 0 (B) $\frac{1}{4}$
- (C) 1
- (D) 4
- (E) nonexistent

- **38.** $\lim_{x \to 0} \frac{x x \cos(x)}{x^2}$ is
 - (A) $-\pi$ (B) 0
- (C) 1
- (D) π
- (E) nonexistent

- **39.** $\lim_{x \to 0^+} \arctan\left(\frac{1}{x}\right)$ is

 - (A) $-\infty$ (B) $-\frac{\pi}{2}$ (C) 0 (D) $\frac{\pi}{2}$ (E) ∞

- **40.** $\lim_{x \to \infty} \frac{5e^x x}{8e^x + 9}$ is
 - (A) $-\frac{5}{8}$ (B) 0 (C) $\frac{5}{8}$ (D) 1 (E) ∞

- **41.** $\lim_{x \to \pi/4} \frac{\cos 2x}{\cos x \sin x}$ is

- (A) 0 (B) $\frac{\sqrt{2}}{2}$ (C) $\sqrt{2}$ (D) π (E) nonexistent

42. Functions g and h are continuous and satisfy g(1) = h(1) = 3. Function f satisfies $g(x) \le f(x) \le h(x)$ for $0 \le x \le 2$. Which statements must be true?

I.
$$\lim_{x \to 1} g(x) = \lim_{x \to 1} h(x) = 3$$
.

II.
$$\lim_{x \to 1} f(x) = 3$$
.

III. f(x) is continuous at x = 1.

- (A) I only
- (B) II only
- (C) I and II only
- (D) II and III only
- (E) I, II, and III
- **43.** If f(1) = 2, $\lim_{x \to 1^{-}} f(x) = 4$, and $\lim_{x \to 1^{+}} f(x) = -1$, then $\lim_{x \to 1} f(\cos(x 1))$ is
 - (A) -1
- (B) 0
- (C) 2
- (D) 4
- (E) nonexistent
- **44.** If $\lim_{x\to 3} (2x+4) = 10$, then $|(2x+4)-10| < \varepsilon$ and $|x-3| < \delta$, where $\delta =$
 - (A) $\frac{\varepsilon}{4}$ (B) $\frac{\varepsilon}{2}$ (C) ε (D) 2ε

- (E) 4ε

45. If $\lim_{x \to a} f(x) = \infty$, then which option is true?

- (A) For positive M, there exists a positive δ such that f(x) > M for |x a| > 0.
- (B) For positive M, there exists a positive δ such that f(x) < M for $|x a| > \delta$.
- (C) For positive M, there exists a positive δ such that f(x) > M for $|x a| > \delta$.
- (D) For positive M, there exists a positive δ such that f(x) < M for $0 < |x a| < \delta$.
- (E) For positive M, there exists a positive δ such that f(x) > M for $0 < |x a| < \delta$.

- . B
- . D
- . B
- . C
- . A
- . B
- . C
- . D
- . D
- -
- . B
- . B
- . A
- . E
- . B
- . D
- . E
- . C
- . E
- . C
- . D
- . E
- . C
- . D
- . E
- . D
- . E
- . B
- . A
- . A
- . E
- . D
- . A
- . A

- . C
- . C
- . A
- . B
- . B
- . D
- . C
- . C
- . E
- . D
- . B
- . E