Syllabus and Study guide for AI Final exam

Sources

- Russell & Norvig's textbook (AIMA)
- Slides available in the AIMA book website
- Slides posted via Google classroom

Study guide

- The exam is **cumulative**, i.e., everything taught in this course will be covered in the final exam. But I have trimmed some topics, as you will see in the table.
- You can expect around one third of questions from the **pre-midterm** syllabus (shaded in the table)
- The style of question will be similar to the exams and quizzes. Study those exams carefully.

Syllabus

Ch.	Subject	Topics/Skills required
2	Intelligent	Understanding PEAS description
	Agents	Understanding the characteristics of environments
		(static/dynamic, stochastic/deterministic, etc.)
		Understanding different types of models (model-based, utility
		based, etc.)
3	Search	 Understand all blind and heuristic search techniques (BFS, DFS, Greedy, A* etc.) and ability to solve mathematical problems related to these.
5	Adversarial Search	 Understand minimax and alpha-beta pruning and ability to solve simple mathematical problems related to these.
		 Understand techniques to make game tree search faster (cut-off search, move ordering, etc.)
7,8	Logic	Translate to and from propositional logic and first order logic
		Convert sentences to and from CNF and Horn form
		Apply resolution, forward and backward chaining on
		propositional logic statements
13	Quantifying	Understanding basic notions of probability, conditional
	Uncertainty	probability, independence, full joint distribution, Bayes' rule
14	Probabilistic	Understanding conditional independence
	Reasoning	Understanding the basic principle of Bayesian Networks
		Ability to make inference given the topology and conditional probability tables of a given Bayesian network

15	Temporal Reasoning	 Understanding the basic principles of a Markov process Ability to perform basic calculations given the transition table of a Markov process Understanding the basic principles of a Hidden Markov Model (HMM) Ability to make inference given the transition and emission probabilities of a Hidden Markov Model
18	Basic Machine Learning	 Understanding the basics of three major types of machine learning (supervised, unsupervised, reinforcement) Understanding concepts related to supervised learning: training, testing, learning model, overfitting, underfitting Understanding concepts related to evaluation of learning models, accuracy, precision, recall, train-test split, n-fold cross validation