Resumo Complementos de Matematica Primeira Unidade

Henrique da Silva hpsilva@proton.me

8 de julho de 2022

Sumário

9.3

9.4

9.5

1	Potencias de i		
2	Forma algebrica de um numero com plexo		
3	Operacoes na forma algebrica 3.1 Adicao & Subtracao		
4	Representacao geometrica		
5	Modulo		
6	Argumento		
7	Complexo na forma polar		
8	Operacoes na forma polar 8.1 Multiplicacao		
9	Forma de Moivre 9.1 Definicao		

Multiplicacao

Radiciacao

1 Potencias de i

As potencias de i sao periodicas em 4. Da seguinte maneira:

i^0	=	1
i^1	=	i
i^2	=	-1
i^3	=	-i
i^4	=	1
i^5	=	i
i^6	=	-1
	:	
i^n	=	$i^{n\%4}$

Com "%" sendo resto da divisao inteira

2 Forma algebrica de um numero complexo

A forma algebrica de um numero complexo eh:

$$Z = a + ib \tag{1}$$

Onde a eh a componente real de Z e pode ser chamado de Re(Z) e b eh a componente imaginaria e pode ser chamado de Im(Z)

Podemos dizer que os numeros \Re sao um subconjunto de \mathbb{C} , exceto que no caso de um numero \Re a parte imaginaria b seria 0, alguns exemplos:

Dois numeros complexos sao iguais se seus componentes reais e imaginarios forem iguais

3 brica

Nos exemplos a seguir: $Z_n = a_n + ib_n$

Adicao & Subtracao 3.1

Para subtrair e adicionar basta subtrair e adicionar as partes imaginarias dos numeros complexos

$$Z_1 + Z_2 = (a_1 + a_2) + (b_1 + b_2)i$$
 (2)

$$Z_1 - Z_2 = (a_1 - a_2) + (b_1 - b_2)i$$
 (3)

Multiplicacao 3.2

Vamos utilizar a distributividade e o fato **que** $i^2 = -1$

$$Z_1 * Z_2 = (a_1 + b_1 i)(a_2 + b_2 i)$$

 $Z_1 * Z_2 = a_1 a_2 + a_1 b_2 i + b_1 a_2 i + b_1 b_2 i^2$

Como $i^2 = -1$ podemos entao simplificar em:

$$Z_1 * Z_2 = (a_1 a_2 - b_1 b_2) + (a_1 b_2 + b_1 a_2)i$$
 (4)

3.3 Divisao

O conjugado de Z eh \overline{Z} . Se Z = a + ib entao $\overline{Z} = a - ib$

Algo interessante acontece quando fazemos $Z*\overline{Z}$:

$$Z_{1} * \overline{Z} = (a+bi)(a-bi)$$

$$Z_{1} * \overline{Z} = a^{2} - (bi)^{2}$$

$$Z_{1} * \overline{Z} = a^{2} - b^{2}i^{2}$$

$$Z_{1} * \overline{Z} = a^{2} + b^{2}$$

$$(5)$$

Ou seja, essa operação nos da um escalar. E vamos utilizar disso para poder fazer a divisao.

Para fazer a divisao de Z por \overline{Z} fazemos:

$$\frac{Z}{W} = \frac{Z}{W} * \frac{\overline{W}}{\overline{W}} \tag{6}$$

E transformamos a operação de divisão de numeros complexos em uma multiplicacao de Z por \overline{W} divido por um escalar $W*\overline{W}$

Operacoes na forma alge- 4 Representacao geometrica

Na representacao geometrica de um numero complexo podemos ver o eixo x como a parte real e o y como a parte imaginaria, como no exemplo abaixo:

Eh interessante notar que \overline{Z} eh o simetrico de Z, porem oposto no eixo imaginario

Modulo 5

(5) Como temos uma representação geometrica do numero complexo, podemos calcular o modulo do numero complexo por simplesmente a hipotenusa de a e b do mesmo jeito que fariamos com um vetor comum

O modulo sera representado pela letra ρ ou por |Z|

$$\rho = |Z| = \sqrt{a^2 + b^2} \tag{7}$$

6 Argumento

O argumento en simplesmente o angulo entre o eixo real e o vetor complexo sera representado pela letra θ ou por arg(Z)

$$Z = a + bi$$

Dai temos:

$$\cos \theta = \frac{a}{\rho}$$

$$\sin \theta = \frac{b}{\rho}$$
(8)

7 Complexo na forma polar

Entendendo o conceito de argumento, podemos entao naturalmente:

$$\cos \theta = \frac{a}{\rho} \to a = \rho \cos \theta$$

$$\sin \theta = \frac{b}{\rho} \to b = \rho \sin \theta$$
(9)

Que nos da $a \in b$ no formato de coordenadas polares, entao podemos re-escrever o nosso Z como:

$$Z = \rho * cos\theta + \rho * sin\theta * i$$

$$Z = \rho * (cos\theta + sin\theta * i)$$
(10)

8 Operacoes na forma polar

As simplificacoes abaixo vem diretamente da multiplicacao e divisao de numeros complexos na forma polar, e simplificacao por regras de trigonometria.

8.1 Multiplicacao

$$Z_1 * Z_2 = \rho_1 \rho_2 \left[\cos(\theta_1 + \theta_2) + i \sin(\theta_1 + \theta_2) \right]$$
 (11)

8.2 Divisao

$$\frac{Z_1}{Z_2} = \frac{\rho_1}{\rho_2} \left[\cos(\theta_1 - \theta_2) + i \sin(\theta_1 - \theta_2) \right]$$
 (12)

9 Forma de Moivre

Com tudo que foi visto acima vamos agora fazer a seguinte definicao:

9.1 Definicao

$$e^{it} = \cos t + i\sin t \tag{13}$$

Escrever nessa forma nos da varias propriedades uteis:

9.2 Propriedades

$$Z = \rho * e^{it}$$

$$\overline{Z} = \rho * e^{i*(-t)}$$

$$|e^{it}| = 1 \to \sqrt{\cos^2 t + \sin^2 t} = 1$$

$$\frac{1}{e^{it}} = e^{-it} = \overline{e^{it}}$$

$$e^{it} = e^{i*(t+2K\pi)}$$

$$e^{it} * e^{ig} = e^{i*(t+g)}$$

E por fim chegamos a uma forma mais simples de efetuar multiplicacoes e divisoes:

9.3 Multiplicacao

$$Z_1 * Z_2 = \rho_1 \rho_2 e^{i(t_1 + t_2)} \tag{14}$$

9.4 Divisao

$$\frac{Z_1}{Z_2} = \frac{\rho_1}{\rho_2} e^{i(t_1 - t_2)} \tag{15}$$

9.5 Radiciacao

Dado um numero complexo Z qualquer, $\sqrt[n]{Z}$ tera n raizes complexas

Podemos dizer a partir das propriedades o seguinte:

$$Z = \rho * e^{i(\theta + 2K\pi)}$$

$$\sqrt[n]{Z} = W$$

$$Z = W^n$$

$$W^n = (\rho_k * e^{i\theta_k})^n$$

$$W^n = \rho_k^n e^{i\theta_k n}$$

$$\rho_k^n e^{i\theta_k n} = \rho * e^{i(\theta + 2K\pi)}$$

Entao conseguimos algumas conclusoes interessantes, primeiro que o nosso ρ_k^n nao depende de k, ou seja. para todas raizes teremos o mesmo modulo, so o que vai se alterar eh o argumento, ou seja, o angulo

$$\rho_k^n = \rho
\rho_k = \sqrt[n]{\rho}$$
(16)

E segundo, concluimos que o nosso argumento varia de acordo com K da seguinte forma:

$$\theta_k n = \theta + 2K\pi$$

$$\theta_k = \frac{\theta + 2K\pi}{n} \tag{17}$$

Concluindo, para conseguir cada raiz, basta fazermos o K variar de 0 a n-1, e eh util notar que isso vai criar vetores de tamanho ρ equidistantes no intervalo $[0,2\pi]$