

DATA WAREHOUSE (DW)

Baseado na tese de doutorado da Professora Cristina Dutra de Aguiar

Carlos Filipe de Castro Lemos

CONTEXTO

MERCADO DE NEGÓCIOS E SUPPLY CHAIN

Leite

Nestlé Vigor Itambé Italac Danone Cremes
Doces
Queijos
logurtes
Manteiga
Whey Protein

Wallmart
Carrefour
Pão de Açúcar
Extra
Markro

OPERACIONAL DE UMA EMPRESA

Vendas: pedido de compra, nota fiscal de venda, comissões.

- Contabilidade registro das transações financeiras e contábeis (balanço patrimonial, demonstração de resultados, contas a pagar e a receber, previsões, etc).
- Financeiro: fluxo de caixa, controle de aplicações e empréstimos, relatórios de despesas e receitas.

ORGANIZAÇÃO EMPRESARIAL

ÁREA GERENCIAL

ÁREA OPERACIONAL

DATA WAREHOUSE

O QUE É UM DATA WAREHOUSE?

Um **Data Warehouse** (DW) é uma solução de dados que <u>armazena dados</u> <u>temáticos</u> <u>de forma multidimensional</u> com o objetivo de <u>auxiliar na análise e</u> <u>tomada de decisões empresariais</u>.

GRUPOS DE USUÁRIOS

CARACTERÍSTICAS: GRUPOS DE USUÁRIOS ESPECÍFICOS

Data Warehouse é direcionado a usuários e grupos específicos que precisam acessar, analisar e interpretar grandes conjuntos de dados para apoiar a tomada de decisões estratégicas.

Executivos e Alta Gestão: monitoração dos negócios para insights estratégicos para tomada de decisão a nível da organização. Exemplo: KPI.

Gerentes e Tomadores de Decisões Operacionais: obter informações detalhadas e planejar o futuro próximo da empresa. Exemplo: Gerente de Supply Chain preparando a cadeia de negócios para vendas de Natal.

CARACTERÍSTICAS: GRUPOS DE USUÁRIOS ESPECÍFICOS

Profissionais de Dados: grupos de suporte para fornecer informações precisas e dados estratégicos a área estratégica e gerencial. Exemplo: performance de vendas de um produto em uma região por determinado preço.

Profissionais de Finanças e Contabilidade: informações de fluxos de caixas, tributos e demonstrações financeiras. Exemplo: controle orçamentário.

Atendimento ao Cliente e Vendas: acesso a perfil do cliente, histórico de compras e nível de satisfação. Exemplos: Gerente de Marketing analisando a experiência do usuário

EXTRAÇÃO, TRANSFORMAÇÃO E LOADING (ETL)

COMPONENTE DE INTEGRAÇÃO E MANUTENÇÃO

<u>Conceito</u>: trata-se de um módulo de código que é responsável pela <u>extração</u>,
 <u>tradução</u>, <u>filtragem</u>, <u>integração</u> e <u>armazenamento dos dados</u> no DW.

EXTRAÇÃO DOS DADOS

Data Warehouse é projetado e otimizado para centralizar e organizar grandes volumes de dados. A extração dos dados envolvem <u>múltiplas origens</u> e <u>variados formatos de arquivos</u> e são voltados para <u>dados históricos</u> com a finalidade de auxiliar na tomadas de decisões gerenciais e estratégicas.

Soluções Empresariais

Databases

Arquivos

- Os dados coletados na etapa anterior serão transformados para que fiquem limpos, consistentes e estruturados para a formação do cubo de análise.
- Serão formadas as <u>Tabelas de Fato</u> e <u>Tabelas de Dimensão</u>.

<u>Data cleaning</u>: remover ou corrigir dados imprecisos, incompletos ou duplicados. Ex.: datas ("12/23/2023" para "23-12-2023"), preencher lacunas com valores padrão (null para "Sem dados") ou preenchimento por imputação (utilização de média ou mediana).

<u>Filtragem dos dados</u>: remover ou selecionar apenas os dados relevantes para o propósito da análise temática. Ex.: filtrar dados do último ano fiscal ou dos últimos 12 meses.

<u>Conversão de Tipos de Dados</u>: é preciso garantir consistência de tipos quando se importa dados, bem como quando os dados são lidos de arquivos (sem tipo definido). Ex: números decimais em inteiros ou inteiros em decimais ou varchar (MySQL) para text (PostgreSQL).

<u>Derivação de Dados</u>: criação de novos atributos a partir dos existentes. Ex: classificar clientes como "VIP" de acordo com o histórico de compras ou cálculo de idade a partir da data de nascimento.

Normalização e Padronização dos Valores de Dados: os dados devem seguir o padrão temático. Ex.: utilizar capitalize em nomes próprios (pessoas, cidades, etc), normalizar quantidade de casas decimais, moeda corrente (real, dólar ou outra), normalização de categorias como gênero (masculino, feminino, homem ou mulher).

<u>Cálculos e Agregações</u>: operações matemáticas e cálculos de agregações. Ex.: contagem (quantidade de usuários, vendas e serviços), soma (valores vendidos), média (preço médio, tempo médio de atendimento), máximo (lucro), mínimo (custo).

<u>Junções de Dados (JOIN)</u>: combinar diferentes tabelas de para criar uma visão unificada. Ex.: junção da tabela Venda com a tabela Cliente.

Venda	ID_Produto	ID_Clie	nte ID_Temp	o Quantidad	e Valor_Total		ID_Cliente	Nome_Cliente	Cidade
1001		3001	2023100	1 10	500	45	3001	João Silva	São Paulo
	1002	3002	2023100	2 5	250		3002	Maria Santos	Rio de Janeiro
ID_Vend	la ID_Pro	oduto	ID_Cliente	ID_Tempo	Quantidade	Valor_Total	ID_Cliente	Nome_Cliente	Cidade
ID_Vend	la ID_Pro	oduto	ID_Cliente	ID_Tempo 20231001	Quantidade	Valor_Total	ID_Cliente	Nome_Cliente João Silva	Cidade São Paulo

<u>Filtragem Outliers</u>: identificar e remover dados que não combinam com o conjunto de dados. Ex.: '-50°C' de temperatura em área equatorial ou '120%' do abastecimento de água.

<u>Mapeamento dos Dados</u>: a categorização de uma filial pode ser diferente da utilizada na âmbito estratégico. Ex.: categorias como 'sapatos', 'tênis' e 'botas' podem ser agrupados em 'calçados' ou substituir códigos 'P001' para descrições completas 'Produto A'.

Enriquecimento de Dados: adicionar dados externos para enriquecer os dados existentes. Ex: inserir a cotação do dólar de 1964 a 1990 em uma tabela que possui dados após 1990.

<u>Desagregação de Dados</u>: dados podem ser desagregagos para otimizar consulta. Ex.: data '23-12-2023' em dia ('23'), mês ('12') e ano ('2023').

<u>Pivoteamento dos Dados</u>: trata-se de técnica de reorganização ou reestruturação dos dados de modo a modificação a disposição de linhas em colunas visando

melhorar a visualização de dados.

Mês	Produto	Vendas	
Janeiro	Produto A	100	
Janeiro	Produto B	150	
Fevereiro	Produto A	200	
Fevereiro	Produto B	180	
Março	Produto A	210	
Março	Produto B	190	

Os atributos *Produto* (coluna de agrupamento) *e Vendas* (coluna de valores) deixarão de existir e seus valores serão transformados em novas colunas e valores. Isto é, os valores de Produto (*Produto A* e *Produto B*) serão novos atributos e os valores das vendas são transformados em valores dos novos atributos.

Resultado Final

Mês	Produto A	Produto B	
Janeiro	100	150	
Fevereiro	200	180	
Março	210	190	

CARACTERÍSTICAS: LOADING DOS DADOS

Depois de realizadas todas as transformações, os dados serão carregados nas <u>Tabelas de Fato</u> e <u>Tabelas de Dimensão</u>

Tabelas de Fato representam <u>dados</u>

<u>históricos do modelo temático</u> e trazem
quantidades massivas de registros (grande
altura com milhões ou bilhões tuplas) e
poucas colunas (pouca largura), bem como
<u>medidas quantitativas</u>.

Tabelas de Dimensão representam atributos descritivos e descrevem entidade de contexto. Possuem poucos registros (baixa altura) e muitas colunas (grande largura com centenas ou milhares de colunas).

Data	Produto_ID	Loja_ID	Vendas	Custo
2023-10-01	1	101	200	100
2023-10-01	2	102	150	90
2023-10-02	1	101	180	95
2023-10-02	3	103	220	120

Data	Ano	Més	Dia	Trimestre	
2023-10-01	2023	10	1	4 ^a Trimestre	
2023-10-02	2023	10	2	4º Trimestre	

CARACTERÍSTICAS: CABEÇALHO DE ARQUIVOS (METADADOS)

0	1	2	3	4	- 5	- 6	7	- 8	9	10	- 11	12	13	14	15	16	17	18	19
status		to	ро	•	L	I	S	T	A	G	E	M		D	A		F	R	O
20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39
T	A	0.000	D	O	S		V	E	I	C	U	L	O	S		N	0		В
40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59
R	A	S	I	L	C	0	D	I	G	O		I	D	E	N	T	I	F	I
60	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79
C	A	D	0	R			A	N	0		D	E		F	A	В	R	I	C
80	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99
A	C	A	0	:		Q	U	A	N	T	I	D	A	D	E		D	E	
100	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119
V	E	I	C	U	L	O	S	:		E	S	T	A	D	0	:		0	N
120	121	122	123	124	125	126	127	128	129	130	121	132	133	1.54	133	130	157	138	139
O	M	E		D	A		C	I	D	A	D	E	- :		1	M	A	R	C
140	141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159
A		D	0		V	Е	I	C	U	L	O	:		2	M	0	D	E	L
160	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179
O		D	0		V	E	I	C	U	L	O	:			prox	RRN		nroRe	egRem
180	181																		

Pode conter campos como quantidade de registros?

MODELAGEM DE DADOS DO DW

MODELO DE DADOS: STAR E SNOWFLAKES SCHEMA

EXEMPLO DE STAR SCHEMA: RESULTADO DO ETL

MODELO STAR SCHEMA

Observação

- Existem medidas numéricas nãoaditivas (não fazem sentido).
 Ex.: somar os dias do mês.
- Existem medidas numéricas semi-aditivas (somam, mas resultado é equivocado). Ex: soma clientes que compraram os produtos P1 e P2 vendidos no mesmo dia não é uma operação válida, pois podemos contar duas vezes o mesmo cliente.

Somas

Totais

soma

por produto

soma

Somas

Marginais

soma

DERIVAÇÃO EM CUBO MULTIDIMENSIONAL

MODELO SNOWFLAKES

CUBO MULTIDIMENSIONAL: HIERARQUIA DAS DIMENSÕES

 As dimensões podem possuir categorias. Depende da regra de negócio e da forma como o assunto do banco de dados foi modelado. Ex.: Sapato, Tênis, Chinelo podem ser categorias de Calçados ou Cidade e Estado podem ser espécies do gênero Localidades.

Granularidade determina a hierarquia das dimensões. Ex.: tempo (abaixo) Granularidade grossa ANO mais DF7 JAN Granularidade 28 31 (...)

CUBO MULTIDIMENSIONAL

MENOR Granularidade

MAIOR Granularidade

E se fosse por dia?

CUBO MULTIDIMENSIONAL

Dimensão Localização Hierarquia da Dimensão

ACESSO AOS DADOS

COMPONENTE DE ANÁLISE E CONSULTA

• É responsável por fazer a conexão entre o <u>Data Warehouse</u> e os <u>Usuários</u>, isto é, <u>garantir o acesso</u> às informações a <u>quem precisa</u> ter acesso às informações.

GRAFO DE DERIVAÇÃO

CUIDADO!

Não é um cubo. É um grafo de derivação de produto (p), filial (f) e tempo (t) em visões materializadas.

GRAFO DE DERIVAÇÃO EM NÚMEROS

Dimensões

- Customer (C)
- Supplier (S)
- Part (P)
- Date (D)

OTIMIZAÇÕES TÉCNICAS DO COMPONENTE

- Estender a Linguagem SQL: além das funções convencionais (sum, count, avg, max, min) é possível criar funções personalizadas. Exemplo: operador cube (usados nas análises dos cubos multidimensionais).
- **Estruturas de Indexação**: utilização de árvores ou outros mecanismos para acelerar a busca de informações nas views materializadas ou outras fontes.
- Otimização de Consultas Complexas: a criação de uma grande multiplicidade de views podem deixar calculados agregações de dados demandadas pelos usuários.
- <u>Execução Paralela</u>: a paralelização das buscas ou das execuções pode ser um fator para aumentar o speedup e a eficiência.

MUITO OBRIGADO!!

CONTAT

in

Linkedin: www.linkedin.com/in/cflemos

@

Email: filipelemos@usp.br

BIBLIOGRAFIA

- CIFERRI, Cristina Dutra de Aguiar Distribuição dos Dados em Ambiente de Data Warehousing: o sistema WebD²W e Algoritmos Voltados à Fragmentação Horizontal dos Dados. Universidade Federal de Pernambuco: Pós-Graduação em Ciência da Computação. Recife, 2002.
- https://github.com/dpavancini/eng-de-analytics-livro (StarSchema)
- https://unstop.com/blog/difference-between-olap-and-oltp-in-dbms (OLAP/OLTP)
- FONSECA, George H.G. Sistemas de Apoio à Decisão. Modelagem de Data Warehouse. Universidade Federal de Ouro Preto. Disponível em:
 - https://professor.ufop.br/sites/default/files/george/files/a06_modelagem_de_data_warehouse.pdf. Acesso em 13/10/2024