Lukkeheds- og afgørligheds egenskaber

- lukkethed under ∪, ∩, ', ·, *
- lukkethed under homomorfi og invers homomorfi
- "pumping"-lemmaet
- beslutningsproblemer: membership, emptiness, finiteness subset, equality
- beslutningsprocedurer i Java-pakken

Lukkethedsegenskaber

Givet to regulære sprog, L_1 og L_2 ,

- er $L_1 \cup L_2$ regulært?
- er $L_1 \cap L_2$ regulært?
- er L₁' regulært? betyder komplement som i bogen...
- er L₁L₂ regulært?
- er L₁* regulært?

Ja! – det beviste vi første seminar

En kontraponering

Lukkethedsegenskaber kan bl.a. bruges til at vise, at visse sprog er ikke-regulære

Eksempel:

- Klassen af regulære sprog er lukket under ∩
- Antag vi har bevist, at sproget S ikke er regulært
- Hvis S = P ∩ R og R er regulært, så kan
 P ikke være regulært

Homomorfier

- Antag $g: \Sigma_1 \to \Sigma_2^*$ hvor Σ_1 og Σ_2 er alfabeter
- Definer $h: \Sigma_1^* \to \Sigma_2^*$ ved

$$h(x) = \begin{cases} \Lambda & \text{hvis } x = \Lambda \\ h(y)g(a) & \text{hvis } x = ya, y \in \Sigma_1^*, a \in \Sigma_1 \end{cases}$$

h opfylder at h(xy)=h(x)h(y) og kaldes en homomorfi

- Definer $h(L) = \{ h(x) \mid x \in L \}$ for alle $L \subseteq \Sigma_1^*$
- og $h^{-1}(L) = \{ x \mid h(x) \in L \}$ for alle $L \subseteq \Sigma_2^*$

- $\Sigma_1 = \{0,1\}, \Sigma_2 = \{a,b\}$
- Lad $g: \Sigma_1 \to \Sigma_2^*$ være defineret ved
 - g(0)=ab
 - $g(1)=\Lambda$
- Lad $h: \Sigma_1^* \to \Sigma_2^*$ være homomorfien defineret fra g
- Der gælder f.eks.:
 - $h(0011) = abab\Lambda\Lambda = abab$
 - $h(\{1\}\{0\}^*\{1\}) = \{\Lambda\}\{ab\}^*\{\Lambda\} = \{ab\}^*$
 - $h^{-1}(\{ab\}^*) = \{0,1\}^*$

Regulære sprog og homomorfier

- Hvis $h: \Sigma_1^* \to \Sigma_2^*$ er en homomorfi og $L \subseteq \Sigma_1^*$ er et regulært sprog, så er h(L) også regulært
- Hvis $h: \Sigma_1^* \to \Sigma_2^*$ er en homomorfi og $L \subseteq \Sigma_2^*$ er et regulært sprog, så er $h^{-1}(L)$ også regulært

Dvs. klassen af regulære sprog er lukket under både homomorfi og invers homomorfi

Eksempel på anvendelse

- Er følgende sprog over alfabetet $\Sigma = \{0,1,2\}$ regulært? $L = \{x2y \mid y = reverse(x), x,y \in \{0,1\}^*\}$
- Vi ved (fra første seminar) at sproget pal = { x∈ {0,1}* | x=reverse(x) } ikke er regulært
- En (utilstrækkelig) intuition: L minder om pal, men måske symbolet 2, der markerer midten af strengen, gør, at vi kan lave en FA for L?

Eksempel, fortsat

■ Definer tre funktioner g_1,g_2,g_3 : $\{0,1,2\}\rightarrow\{0,1\}^*$ ved

$$g_1(0)=0$$
 $g_2(0)=0$ $g_3(0)=0$ $g_1(1)=1$ $g_2(1)=1$ $g_3(1)=1$ $g_1(2)=\Lambda$ $g_2(2)=0$ $g_3(2)=1$

- og lad h_1, h_2, h_3 være de tilhørende homomorfier
- $h_1(L) \cup h_2(L) \cup h_3(L) = pal$
- så L er **ikke** regulært, idet *pal* ikke er regulært og klassen af regulære sprog er lukket under forening og homomorfi

Bevis, del 1

Hvis $h: \Sigma_1^* \to \Sigma_2^*$ er en homomorfi og $L \subseteq \Sigma_1^*$ er et regulært sprog, så er h(L) også regulært

Bevis:

strukturel induktion i regulære udtryk... (erstat hver $a \in \Sigma_1$ i udtrykket med h(a))

Bevis, del 2

Hvis $h: \Sigma_1^* \to \Sigma_2^*$ er en homomorfi og $L \subseteq \Sigma_2^*$ er et regulært sprog, så er $h^{-1}(L)$ også regulært

Bevis:

Givet en FA $M=(Q, \Sigma_2, q_0, A, \delta)$ hvor L(M)=L, definer en ny FA $M'=(Q, \Sigma_1, q_0, A, \delta')$ ved $\delta'(q, a) = \delta^*(q, h(a))$

Påstand: $L(M') = h^{-1}(L)$ (bevises ved induktion)

Endnu en egenskab ved regulære sprog

- Antag $M=(Q, \Sigma, q_0, A, \delta)$ er en FA og $\exists x \in L(M)$: $|x| \ge |Q|$
- Ved en kørsel af x på M vil mindst én af tilstandene blive besøgt mere end én gang

$$\longrightarrow Q_0 \longrightarrow Q$$

Hvis vi betragter den første af disse tilstande kan vi konkludere:

$$\exists u, v, w \in \Sigma^*: x = uvw \land |uv| \le |Q| \land |v| > 0 \land \delta^*(q_0, u) = \delta^*(q_0, uv)$$

"Pumping"-lemmaet for regulære sprog

```
Hvis L er et regulært sprog, så gælder flg.:
\exists n>0:
    \forall x \in L \text{ hvor } |x| \ge n:
             \exists u, v, w \in \Sigma^*: X = uvw \land
                                 |uv| \le n \wedge
                                  |v|>0
                                 \forall m > 0: uv^m w \in L
```

Bevis: vælg *n* som antal tilstande i en FA, der genkender *L*, og "kør *m* gange rundt i løkken"...

Pumping-lemmaet og ikke-regulære sprog

```
Hvis \forall n>0: \exists x \in L \text{ hvor } |x| \geq n: \forall u,v,w \in \Sigma^* \text{ hvor } x=uvw, |uv| \leq n \text{ og } |v|>0: \exists m \geq 0: uv^m w \notin L så er L ikke regulært
```

Bevis: kontraponering af pumping-lemmaet

Pumping-lemmaet som "kvantor-spil"

- Antag vi prøver at vise, at L er ikke-regulært
- Vi skal vise noget på form $\forall n...$: $\exists x...$: $\forall u,v,w...$: $\exists m...$: ...
- "Fjenden" vil prøve at modarbejde os
- 1. Fjenden vælger n
- 2. Vi vælger x (efter reglerne, dvs. så $x \in L$ og $|x| \ge n$)
- 3. Fjenden vælger *u,v,w* (efter reglerne...)
- 4. Vi vælger m

Hvis vi *uanset fjendens valg* kan opnå at *uv*^m*w*∉ *L*, så har vi vundet, dvs. bevist at *L* er ikke-regulært

Lad $L = \{ 0^i 1^i | i \ge 0 \}$ Vi vil vise vha. pumping-lemmaet at L ikke er regulært

- Fjenden vælger et *n*>0
- Vi vælger $x=0^n1^n$ som opfylder $x \in L$ og $|x| \ge n$
- Fjenden vælger u, v, w så x=uvw, $|uv| \le n$ og |v| > 0
- Vi vælger *m*=2
- Da $x=uvw=0^n1^n$, $|uv| \le n$ og |v| > 0 så gælder at $v=0^k$ for et k>0
- dvs. $uv^m w = uv^2 w = 0^{n+k} 1^n \notin L$
- så L er ikke regulært

Lad $pal = \{ x \in \{0,1\}^* \mid x = reverse(x) \}$ (som uge 15) Vi vil vise vha. pumping-lemmaet at pal ikke er regulært

- Fjenden vælger et n>0
- Vi vælger $x=0^n10^n$ som opfylder $x \in pal$ og $|x| \ge n$
- Fjenden vælger u,v,w så x=uvw, |uv|≤n og |v|>0
- Vi vælger m=2
- Da $x=uvw=0^n10^n$, $|uv| \le n$ og |v| > 0 så gælder at $v=0^k$ for et k>0
- dvs. $uv^m w = uv^2 w = 0^{n+k} 10^n \notin pal$
- så pal er ikke regulært

Lad $L = \{ 0^i \mid i \text{ er et primtal } \}$ Vi vil vise vha. pumping-lemmaet at L ikke er regulært

- Fjenden vælger et n>0
- Vi vælger $x = 0^p$ hvor p er et primtal større end n+1
- Fjenden vælger u,v,w så x=uvw, |uv|≤n og |v|>0
- Vi vælger m=p-k hvor k=|v|
- $|uv^m w| = |uv^{p-k} w| = |uw| + (p-k) \cdot |v| = p-k + (p-k) \cdot k$ = $(k+1) \cdot (p-k)$ og begge disse led er >1, dvs. $|uv^m w|$ er ikke et primtal
- så *L* er ikke regulært

Mere om pumping-lemmaet

Pumping-lemmaet kan ikke bruges til at vise, at et givet regulært sprog er regulært

Eksempel:

$$L = \{ a^i b^j c^j \mid i \ge 1 \text{ og } j \ge 0 \} \cup \{ b^j c^k \mid j,k \ge 0 \}$$

- L er ikke regulært, men
- L har pumping-egenskaben
 (dvs. ∃n...: ∀x...: ∃u,v,w...: ∀m≥0: uv^mw∈ L)

Øvelser

[Martin] 5.23 (a+b+e)

Program

- MyHill-Nerode-sætningen (resume)
- En algoritme til minimering af FA'er
- Lukkethedsegenskaber
- Afgørlighedsegenskaber
- Kontekstfri grammatikker

Beslutningsproblemer

- Membership: Givet en FA M og en streng x, tilhører x sproget af M?
- Emptiness: Givet en FA M, er sproget for M tomt?
- Finiteness: Givet en FA M, er sproget for M endeligt?
- Subset: Givet to FA'er, M₁ og M₂, er sproget for M₁ en delmængde af sproget for M₂?
- Equality: Givet to FA'er, M₁ og M₂, er sprogene for M₁ og M₂ ens?
- alle disse problemer er afgørlige!

Membership-problemet

Givet en FA M og en streng x, tilhører x sproget af M? (Dvs. er $x \in L(M)$?)

Algoritme:

Kør x på M, startende i starttilstanden, og se om den ender i en accepttilstand

Emptiness-problemet

Givet en FA M, er sproget for M tomt? (Dvs. er $L(M)=\emptyset$?)

Algoritme 1:

Afprøv for alle $x \in \Sigma$ $\Rightarrow m \neq L(M)$ ved hjælp af algeritmen fra membership-problemet

Algoritme 1:

Afprøv for alle x hvor |x|<|Q| om x∈ L(M) ved hjælp af algoritmen fra membership-problemet ← en reduktion til membership-problemet

Algoritme 2:

Undersøg om der findes en accepttilstand

Algoritme 2:

Undersøg om der findes en accepttilstand, som er opnåelig fra starttilstanden

Finiteness-problemet

Givet en FA M, er sproget for M endeligt? (Dvs. er L(M) en endelig mængde?)

Algoritme 1:

Afprøv for alle x hvor $|Q| \le |x| < 2 \cdot |Q|$ om $x \in L(M)$ ved hjælp af algoritmen fra *membership*-problemet -L(M) er endeligt hvis og kun hvis der ikke eksisterer en sådan streng

(Bevis for korrekthed: se bogen...)

Algoritme 2:

Ide: Udnyt at L(M) er uendeligt hvis og kun hvis der i M eksisterer en cykel, der kan nås fra starttilstanden, og som kan nå til en accepttilstand

Subset-problemet

Givet to FA'er, M_1 og M_2 , er sproget for M_1 en delmængde af sproget for M_2 ? (Dvs. er $L(M_1)\subseteq L(M_2)$?)

Algoritme:

Lav med produktkonstruktionen en FA M_3 som opfylder $L(M_3) = L(M_1) - L(M_2)$ og afgør med en algoritme til emptiness-problemet om $L(M_3) = \emptyset$

(Bevis for korrekthed: $L(M_1)\subseteq L(M_2) \iff L(M_1) - L(M_2) = \emptyset$)

Equality-problemet

Givet to FA'er, M_1 og M_2 , er sprogene for M_1 og M_2 ens? (Dvs. er $L(M_1)=L(M_2)$?)

Algoritme:

Afgør med algoritmen til *subset*-problemet om $L(M_1)\subseteq L(M_2)$ og $L(M_2)\subseteq L(M_1)$

Øvelser

- [Martin] 5.26 (a+e)
- [Martin] 5.28 (a+b+d+g)

dRegAut Java-pakken

- FA.accepts(String)
- FA.isEmpty()
- FA.isFinite()
- FA.subsetOf(FA)
- FA.equals(FA)

beslutningsprocedurer for de nævnte beslutningsproblemer

- FA.getAShortestExample()
 - finder en korteste sti fra starttilstanden til en accepttilstand (hvis sproget er ikke-tomt)

getAShortestExample

```
String getAShortestExample() {
pending = [q_0]
                           // gueue of states that need to be visited
paths = [ "" ]
                           // paths[i] is a shortest path from q_0 to pending[i]
visited = { q_0 }
                           // set of states that have been visited
while pending≠Ø do
                                                     <mark>"bredde-først genne</mark>mløb"
      q = pending.removeFirst()
                                                    af automaten
      path = paths.removeFirst()
      if q∈ A then return path
      else
             for each c \in \Sigma do
                    p = \delta(q, c)
                    if p∉ visited
                           pending.addToEnd(p)
                           paths.addToEnd(path++c)
                           visited = visited \cup {p}
return null
               // return null if no accept state is found
```

Status

Regulære udtryk og endelige automater

Kontekstfri grammatikker