

University of Luxembourg

THESIS FOR THE BACHELOR OF MATHEMATICS

High Dimensional Regression Models

BY JORIS LIMONIER

Supervisor: Mark PODOLSKIJ Submitted: June 4, 2021

Abstract

Abstract goes here.

Contents

1	Introduction 1.1 Notes for chapter 1	1 1
2	Classical theory of Linear Regression	3
3	Theory for LASSO in high dimensions	5
	3.1 Section 6.2	5
	3.2 Section 6.3	10

vi *CONTENTS*

Chapter 1

Introduction

1.1 Notes for chapter 1

To be added

- how to get \hat{b} on page 101.
- where the χ^2 distribution comes from in page 101

Chapter 2

Classical theory of Linear Regression

Chapter 3

Theory for LASSO in high dimensions

3.1 Section 6.2

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon} \tag{3.1}$$

We define $\hat{\beta}$ as follows

$$\hat{\beta} := \arg\min_{\beta} \left\{ \frac{\|\mathbf{Y} - \mathbf{X}\beta\|_2^2}{n} + \lambda \|\beta\|_1 \right\}$$
 (3.2)

Lemma 3.1 (Basic Inequality).

$$\frac{\|\mathbf{X}(\hat{\beta} - \beta^0)\|_2^2}{n} + \lambda \|\hat{\beta}\|_1 \le 2\frac{\varepsilon^T \mathbf{X}(\hat{\beta} - \beta^0)}{n} + \lambda \|\beta^0\|_1$$

Proof. By definition of $\hat{\beta}$, we have that

$$\forall \beta \quad \frac{\|\mathbf{Y} - \mathbf{X}\hat{\beta}\|_2^2}{n} + \lambda \|\hat{\beta}\|_1 \leq \frac{\|\mathbf{Y} - \mathbf{X}\beta\|_2^2}{n} + \lambda \|\beta\|_1$$

In particular for $\beta = \beta^0$ we have

$$\frac{\|\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}}\|_2^2}{n} + \lambda \|\hat{\boldsymbol{\beta}}\|_1 \leq \frac{\|\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}^0\|_2^2}{n} + \lambda \|\boldsymbol{\beta}^0\|_1$$

We now replace \mathbf{Y} using equation (3.1).

$$\frac{\|\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}}\|_{2}^{2}}{n} + \lambda \|\hat{\boldsymbol{\beta}}\|_{1} \leq \frac{\|\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}^{0}\|_{2}^{2}}{n} + \lambda \|\boldsymbol{\beta}^{0}\|_{1}$$

$$\Rightarrow \frac{\|(\mathbf{X}\boldsymbol{\beta}^{0} + \boldsymbol{\varepsilon}) - \mathbf{X}\hat{\boldsymbol{\beta}}\|_{2}^{2}}{n} + \lambda \|\hat{\boldsymbol{\beta}}\|_{1} \leq \frac{\|(\mathbf{X}\boldsymbol{\beta}^{0} + \boldsymbol{\varepsilon}) - \mathbf{X}\boldsymbol{\beta}^{0}\|_{2}^{2}}{n} + \lambda \|\boldsymbol{\beta}^{0}\|_{1}$$

$$\Rightarrow \frac{\|\mathbf{X}(\boldsymbol{\beta}^{0} - \hat{\boldsymbol{\beta}}) + \boldsymbol{\varepsilon}\|_{2}^{2}}{n} + \lambda \|\hat{\boldsymbol{\beta}}\|_{1} \leq \frac{\|\mathbf{X}(\boldsymbol{\beta}^{0} - \boldsymbol{\beta}^{0}) + \boldsymbol{\varepsilon}\|_{2}^{2}}{n} + \lambda \|\boldsymbol{\beta}^{0}\|_{1}$$

$$\Rightarrow \frac{\langle \mathbf{X}(\boldsymbol{\beta}^{0} - \hat{\boldsymbol{\beta}}) + \boldsymbol{\varepsilon}, \mathbf{X}(\boldsymbol{\beta}^{0} - \hat{\boldsymbol{\beta}}) + \boldsymbol{\varepsilon}\rangle}{n} + \lambda \|\hat{\boldsymbol{\beta}}\|_{1} \leq \frac{\|\boldsymbol{\varepsilon}\|_{2}^{2}}{n} + \lambda \|\boldsymbol{\beta}^{0}\|_{1}$$

$$\Rightarrow \frac{\|\mathbf{X}(\boldsymbol{\beta}^{0} - \hat{\boldsymbol{\beta}})\|_{2}^{2} + \|\boldsymbol{\varepsilon}\|_{2}^{2} + 2\langle \mathbf{X}(\boldsymbol{\beta}^{0} - \hat{\boldsymbol{\beta}}), \boldsymbol{\varepsilon}\rangle}{n} + \lambda \|\hat{\boldsymbol{\beta}}\|_{1} \leq \frac{\|\boldsymbol{\varepsilon}\|_{2}^{2}}{n} + \lambda \|\boldsymbol{\beta}^{0}\|_{1}$$

$$\Rightarrow \frac{\|\mathbf{X}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^{0})\|_{2}^{2}}{n} + \lambda \|\hat{\boldsymbol{\beta}}\|_{1} \leq \frac{2\langle \mathbf{X}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^{0}), \boldsymbol{\varepsilon}\rangle}{n} + \lambda \|\boldsymbol{\beta}^{0}\|_{1}$$

$$\Rightarrow \frac{\|\mathbf{X}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^{0})\|_{2}^{2}}{n} + \lambda \|\hat{\boldsymbol{\beta}}\|_{1} \leq \frac{2\boldsymbol{\varepsilon}^{T}\mathbf{X}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^{0}), \boldsymbol{\varepsilon}\rangle}{n} + \lambda \|\boldsymbol{\beta}^{0}\|_{1}$$

Let

$$\mathscr{T} := \left\{ \max_{1 \le j \le p} 2 \frac{\left| \varepsilon^T \mathbf{X}^{(j)} \right|}{n} \le \lambda_0 \right\}$$

Lemma 3.2 (Lemma 6.2.). For all t > 0 and

$$\lambda_0 := 2\sigma \sqrt{\frac{t^2 + 2\log p}{n}}$$

we have

$$\mathbb{P}(\mathscr{T}) \ge 1 - 2\exp\left[-t^2/2\right]$$

Proof. We define

$$V_j := \frac{\varepsilon^T \mathbf{X}^{(j)}}{\sqrt{n\sigma^2}}$$

3.1. SECTION 6.2

Then we have

$$\mathbb{P}(\mathscr{T}) = \mathbb{P}\left(\max_{1 \leq j \leq p} 2 \frac{\left|\varepsilon^{T} \mathbf{X}^{(j)}\right|}{n} \leq 2\sigma \sqrt{\frac{t^{2} + 2\log p}{n}}\right) \\
= \mathbb{P}\left(\max_{1 \leq j \leq p} \left|\frac{\varepsilon^{T} \mathbf{X}^{(j)}}{\sqrt{n\sigma^{2}}}\right| \leq \sqrt{t^{2} + 2\log p}\right) \\
= \mathbb{P}\left(\max_{1 \leq j \leq p} |V_{j}| \leq \sqrt{t^{2} + 2\log p}\right) \\
= 1 - \mathbb{P}\left(\max_{1 \leq j \leq p} |V_{j}| > \sqrt{t^{2} + 2\log p}\right) \\
= 1 - \mathbb{P}\left(\bigcup_{j=1}^{p} |V_{j}| > \sqrt{t^{2} + 2\log p}\right) \\
\geq 1 - \sum_{j=1}^{p} \mathbb{P}\left(|V_{j}| > \sqrt{t^{2} + 2\log p}\right) \\
\geq 1 - p \,\mathbb{P}\left(|V_{j}| > \sqrt{t^{2} + 2\log p}\right) \tag{3.3}$$

Now, let us define $\zeta := \sqrt{t^2 + 2 \log p}$. Since V_i is $\mathcal{N}(0, 1)$ -distributed and $\zeta > 0$.

$$\mathbb{P}(V_j > \zeta) = \frac{1}{\sqrt{2\pi}} \int_{\zeta}^{\infty} e^{-y^2/2} dy$$

$$< \frac{1}{\sqrt{2\pi}} \int_{\zeta}^{\infty} \frac{y}{\zeta} * e^{-y^2/2} dy$$

$$= \frac{1}{\zeta\sqrt{2\pi}} \int_{\zeta}^{\infty} y * e^{-y^2/2} dy$$

$$= \frac{1}{\zeta\sqrt{2\pi}} e^{-\zeta^2/2}$$

We note that $p \geq 2 \implies \zeta \sqrt{2\pi} \geq 1$ therefore

$$\mathbb{P}(V_j > \zeta) < e^{-\zeta^2/2}$$

Moreover by symmetry of the $\mathcal{N}(0,1)$ distribution,

$$\mathbb{P}(|V_j| > \zeta) = \mathbb{P}(V_j > \zeta) + \mathbb{P}(-V_j < -\zeta)$$
$$= 2\mathbb{P}(V_j > \zeta)$$
$$< 2e^{-\zeta^2/2}$$

Thus by definition of ζ

$$\mathbb{P}(|V_j| > \zeta) < 2e^{-\zeta^2/2}$$

$$= 2 \exp\left[\frac{-\sqrt{t^2 + 2\log p}}{2}\right]$$

$$= 2 \exp\left[\frac{-t^2}{2} - \log p\right]$$

$$= 2 \exp\left[\frac{-t^2}{2}\right] \exp\left[\log \frac{1}{p}\right]$$

$$= \frac{2}{p} \exp\left[\frac{-t^2}{2}\right]$$

Inserting this result into (3.3) we obtain

$$\mathbb{P}(\mathscr{T}) \ge 1 - p \, \mathbb{P}\left(|V_j| > \sqrt{t^2 + 2\log p}\right)$$
$$\ge 1 - p \, \frac{2}{p} \exp\left[\frac{-t^2}{2}\right]$$
$$= 1 - 2 \exp\left[\frac{-t^2}{2}\right]$$

Corollary 3.3 (Consistency of the LASSO). Assume $\sigma^2 = 1$ for all j. We define the regularization parameter as

$$\lambda = 4\hat{\sigma}^2 \sqrt{\frac{t^2 + 2\log p}{n}}$$

3.1. SECTION 6.2

where $\hat{\sigma}$ is some estimator of σ .

Then with probability at least $1-\alpha$, where $\alpha := 2\exp(-t^2/2) + \mathbb{P}(\hat{\sigma} \leq \sigma)$ we have

$$2\frac{\|\mathbf{X}(\hat{\beta}-\beta^0)\|_2^2}{n} \le 3\lambda \|\beta^0\|_1$$

Lemma 3.4 (Lemma 6.3.). We have on \mathcal{T} , with $\lambda \geq 2\lambda_0$,

$$2\frac{\|\mathbf{X}(\hat{\beta}-\beta^0)\|_2^2}{n} + \lambda \|\hat{\beta}_{S_0^c}\|_1 \le 3\lambda \|\hat{\beta}_{S_0} - \beta_{S_0}^0\|_1$$

Proof. We start with the Basic Inequality

$$\frac{\|\mathbf{X}(\hat{\beta} - \beta^{0})\|_{2}^{2}}{n} + \lambda \|\hat{\beta}\|_{1} \leq 2 \frac{\varepsilon^{T} \mathbf{X}(\hat{\beta} - \beta^{0})}{n} + \lambda \|\beta^{0}\|_{1}$$

Now since we are on \mathcal{T} and since $2\lambda_0 \leq \lambda$

$$\frac{\|\mathbf{X}(\hat{\beta} - \beta^0)\|_2^2}{n} + \lambda \|\hat{\beta}\|_1 \le \lambda_0 \|\hat{\beta} - \beta^0\|_1 + \lambda \|\beta^0\|_1$$

$$2\frac{\|\mathbf{X}(\hat{\beta} - \beta^0)\|_2^2}{n} + 2\lambda \|\hat{\beta}\|_1 \le \lambda \|\hat{\beta} - \beta^0\|_1 + 2\lambda \|\beta^0\|_1$$

Let $\beta_{j,S} := \beta_j 1\{j \in S\}$. We use the triangle inequality on the left hand side

$$\begin{split} \|\hat{\beta}\|_{1} &= \|\hat{\beta}_{S_{0}}\|_{1} + \|\hat{\beta}_{S_{0}^{c}}\|_{1} \\ &= \|\beta_{S_{0}}^{0} - \beta_{S_{0}}^{0} + \hat{\beta}_{S_{0}}\|_{1} + \|\hat{\beta}_{S_{0}^{c}}\|_{1} \\ &\geq \|\beta_{S_{0}}^{0}\|_{1} - \|\hat{\beta}_{S_{0}} - \beta_{S_{0}}^{0}\|_{1} + \|\hat{\beta}_{S_{0}^{c}}\|_{1} \end{split}$$

whereas on the right hand side

$$\|\hat{\beta} - \beta^{0}\|_{1} = \|(\hat{\beta}_{S_{0}} + \hat{\beta}_{S_{0}^{c}}) - (\beta_{S_{0}}^{0} + \underbrace{\beta_{S_{0}^{c}}^{0}}_{=0})\|_{1}$$
$$= \|\hat{\beta}_{S_{0}} - \beta_{S_{0}}^{0}\|_{1} + \|\hat{\beta}_{S_{0}^{c}}\|_{1}$$

Injecting these two results, we get that

$$2\frac{\|\mathbf{X}(\hat{\beta} - \beta^{0})\|_{2}^{2}}{n} + 2\lambda \|\hat{\beta}\|_{1} \leq \lambda \|\hat{\beta} - \beta^{0}\|_{1} + 2\lambda \|\beta^{0}\|_{1}$$

$$\Rightarrow 2\frac{\|\mathbf{X}(\hat{\beta} - \beta^{0})\|_{2}^{2}}{n} + 2\lambda \left(\|\beta_{S_{0}}^{0}\|_{1} - \|\hat{\beta}_{S_{0}} - \beta_{S_{0}}^{0}\|_{1} + \|\hat{\beta}_{S_{0}^{c}}\|_{1}\right)$$

$$\leq \lambda \left(\|\hat{\beta}_{S_{0}} - \beta_{S_{0}}^{0}\|_{1} + \|\hat{\beta}_{S_{0}^{c}}\|_{1}\right) + 2\lambda \|\beta^{0}\|_{1}$$

$$\Rightarrow 2\frac{\|\mathbf{X}(\hat{\beta} - \beta^{0})\|_{2}^{2}}{n} + 2\lambda \|\underbrace{\beta_{S_{0}^{0}}^{0}}_{=\beta^{0}}\|_{1} + \lambda \|\hat{\beta}_{S_{0}^{c}}\|_{1} \leq 3\lambda \|\hat{\beta}_{S_{0}} - \beta_{S_{0}}^{0}\|_{1} + 2\lambda \|\beta^{0}\|_{1}$$

$$\Rightarrow 2\frac{\|\mathbf{X}(\hat{\beta} - \beta^{0})\|_{2}^{2}}{n} + \lambda \|\hat{\beta}_{S_{0}^{c}}\|_{1} \leq 3\lambda \|\hat{\beta}_{S_{0}} - \beta_{S_{0}^{0}}^{0}\|_{1}$$

Definition 3.5 (Compatibility condition). We say that the compatibility condition is met for the set S_0 , if for some $\phi_0 > 0$, and for all β satisfying $\|\beta_{S_0^c}\|_1 \leq 3\|\beta_{S_0}\|_1$, it holds that

$$\|\beta_{S_0}\|_1^2 \le \left(\beta^T \hat{\Sigma}\beta\right) s_0/\phi_0^2 \tag{3.4}$$

Theorem 3.6 (Theorem 6.1.). Suppose the compatibility condition holds for S_0 . Then on \mathcal{T} , we have for $\lambda \geq 2\lambda_0$,

$$\frac{\|\mathbf{X}(\hat{\beta} - \beta^0)\|_2^2}{n} + \lambda \|\hat{\beta} - \beta^0\|_1 \le 4\lambda^2 \frac{s_0}{\phi_0^2}$$

Proof. Using lemma 3.4 we have that

$$2\frac{\|\mathbf{X}(\hat{\beta} - \beta^{0})\|_{2}^{2}}{n} + \lambda \|\hat{\beta} - \beta^{0}\|_{1}$$

$$= 2\frac{\|\mathbf{X}(\hat{\beta} - \beta^{0})\|_{2}^{2}}{n} + \lambda \|\hat{\beta}_{S_{0}} + \hat{\beta}_{S_{0}^{c}} - \beta_{S_{0}}^{0} - \underbrace{\beta_{S_{0}^{c}}^{0}}_{=0}\|_{1}$$

$$= 2\frac{\|\mathbf{X}(\hat{\beta} - \beta^{0})\|_{2}^{2}}{n} + \lambda \|\hat{\beta}_{S_{0}} - \beta_{S_{0}}^{0}\|_{1} + \lambda \|\hat{\beta}_{S_{0}^{c}}\|_{1} \quad (by \ lemma \ 3.4)$$

$$\leq 4\lambda \|\hat{\beta}_{S_{0}} - \beta_{S_{0}^{0}}^{0}\|_{1}$$

$$\leq 4\lambda \sqrt{\left(\hat{\beta}_{S_{0}} - \beta_{S_{0}^{0}}^{0}\right)^{T}} \hat{\Sigma} \left(\hat{\beta}_{S_{0}} - \beta_{S_{0}^{0}}^{0}\right) s_{0}/\phi_{0}^{2}$$

$$\leq \sqrt{\left(\hat{\beta}_{S_{0}} - \beta_{S_{0}^{0}}^{0}\right)^{T}} \mathbf{X}^{T} \mathbf{X} \left(\hat{\beta}_{S_{0}} - \beta_{S_{0}^{0}}^{0}\right) \frac{4\lambda \sqrt{s_{0}}}{\phi_{0}\sqrt{n}}}$$

$$\leq \|\mathbf{X}(\hat{\beta}_{S_{0}} - \beta_{S_{0}^{0}}^{0})\|_{2}^{2} \frac{4\lambda \sqrt{s_{0}}}{\phi_{0}\sqrt{n}}$$

$$\leq \|\mathbf{X}(\hat{\beta}_{S_{0}} - \beta_{S_{0}^{0}}^{0})\|_{2}^{2} + \frac{4\lambda^{2}s_{0}}{\phi_{0}^{2}n}$$

Where the last inequality follows from $4uv \le u^2 + 4v^2$.

3.2 Section 6.3

Now
$$\mathbf{Y} := \mathbf{f}^0 + \boldsymbol{\varepsilon}$$
 so $\mathbb{E}[\mathbf{Y}] := \mathbf{f}^0$

3.2. SECTION 6.3

Lemma 3.7 (New version of the Basic Inequality). $\forall \beta^* \in \mathbb{R}^p$ we have

$$\frac{\|\mathbf{X}\hat{\beta} - \mathbf{f}^{0}\|_{2}^{2}}{n} + \lambda \|\hat{\beta}\|_{1} \leq \frac{2\boldsymbol{\varepsilon}^{T}\mathbf{X}(\hat{\beta} - \beta^{*})}{n} + \lambda \|\beta^{*}\|_{1} + \frac{\|\mathbf{X}\beta^{*} - \mathbf{f}^{0}\|_{2}^{2}}{n}$$

$$\frac{\|\mathbf{X}\hat{\beta} - \mathbf{f}^{0}\|_{2}^{2}}{n} + \lambda \|\hat{\beta}\|_{1} \leq \frac{2\boldsymbol{\varepsilon}^{T}\mathbf{X}(\hat{\beta} - \beta^{*})}{n} + \lambda \|\beta^{*}\|_{1} + \frac{\|\mathbf{X}\beta^{*} - \mathbf{f}^{0}\|_{2}^{2}}{n}$$
(3.5)

Proof. By definition of $\hat{\beta}$, we have that

$$\forall \beta \quad \frac{\|\mathbf{Y} - \mathbf{X}\hat{\beta}\|_2^2}{n} + \lambda \|\hat{\beta}\|_1 \le \frac{\|\mathbf{Y} - \mathbf{X}\beta\|_2^2}{n} + \lambda \|\beta\|_1$$

In particular for $\beta = \beta^*$ we have

$$\forall \beta^* \quad \frac{\|\mathbf{Y} - \mathbf{X}\hat{\beta}\|_2^2}{n} + \lambda \|\hat{\beta}\|_1 \le \frac{\|\mathbf{Y} - \mathbf{X}\beta^*\|_2^2}{n} + \lambda \|\beta\|_1$$

We since $\mathbf{Y} = \mathbf{f}^0 + \boldsymbol{\varepsilon}$

$$\frac{\|\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}}\|_{2}^{2}}{n} + \lambda \|\hat{\boldsymbol{\beta}}\|_{1} \leq \frac{\|\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}^{*}\|_{2}^{2}}{n} + \lambda \|\boldsymbol{\beta}^{0}\|_{1}$$

$$\Rightarrow \frac{\|(\mathbf{f}^{0} + \boldsymbol{\varepsilon}) - \mathbf{X}\hat{\boldsymbol{\beta}}\|_{2}^{2}}{n} + \lambda \|\hat{\boldsymbol{\beta}}\|_{1} \leq \frac{\|(\mathbf{f}^{0} + \boldsymbol{\varepsilon}) - \mathbf{X}\boldsymbol{\beta}^{*}\|_{2}^{2}}{n} + \lambda \|\boldsymbol{\beta}^{*}\|_{1}$$

$$\Rightarrow \frac{\|(\mathbf{f}^{0} - \mathbf{X}\hat{\boldsymbol{\beta}}) + \boldsymbol{\varepsilon}\|_{2}^{2}}{n} + \lambda \|\hat{\boldsymbol{\beta}}\|_{1} \leq \frac{\|(\mathbf{f}^{0} - \mathbf{X}\boldsymbol{\beta}^{*}) + \boldsymbol{\varepsilon}\|_{2}^{2}}{n} + \lambda \|\boldsymbol{\beta}^{*}\|_{1}$$

$$\Rightarrow \frac{\langle(\mathbf{f}^{0} - \mathbf{X}\hat{\boldsymbol{\beta}}) + \boldsymbol{\varepsilon}, (\mathbf{f}^{0} - \mathbf{X}\hat{\boldsymbol{\beta}}) + \boldsymbol{\varepsilon}\rangle}{n} + \lambda \|\hat{\boldsymbol{\beta}}\|_{1}$$

$$\leq \frac{\langle(\mathbf{f}^{0} - \mathbf{X}\boldsymbol{\beta}^{*}) + \boldsymbol{\varepsilon}, (\mathbf{f}^{0} - \mathbf{X}\boldsymbol{\beta}^{*}) + \boldsymbol{\varepsilon}\rangle}{n} + \lambda \|\hat{\boldsymbol{\beta}}\|_{1}$$

$$\Rightarrow \frac{\|\mathbf{f}^{0} - \mathbf{X}\hat{\boldsymbol{\beta}}\|_{2}^{2} + \|\boldsymbol{\varepsilon}\|_{2}^{2} + 2\langle\mathbf{f}^{0} - \mathbf{X}\hat{\boldsymbol{\beta}}, \boldsymbol{\varepsilon}\rangle}{n} + \lambda \|\hat{\boldsymbol{\beta}}\|_{1}$$

$$\leq \frac{\|\mathbf{f}^{0} - \mathbf{X}\boldsymbol{\beta}^{*}\|_{2}^{2} + \|\boldsymbol{\varepsilon}\|_{2}^{2} + 2\langle\mathbf{f}^{0} - \mathbf{X}\boldsymbol{\beta}^{*}, \boldsymbol{\varepsilon}\rangle}{n} + \lambda \|\boldsymbol{\beta}^{*}\|_{1}$$

$$\Rightarrow \frac{\|\mathbf{X}\hat{\boldsymbol{\beta}} - \mathbf{f}^{0}\|_{2}^{2}}{n} + \lambda \|\hat{\boldsymbol{\beta}}\|_{1} \leq \frac{2\langle\mathbf{X}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^{*}), \boldsymbol{\varepsilon}\rangle}{n} + \lambda \|\boldsymbol{\beta}^{*}\|_{1} + \frac{\|\mathbf{X}\boldsymbol{\beta}^{*} - \mathbf{f}^{0}\|_{2}^{2}}{n}$$

$$\Rightarrow \frac{\|\mathbf{X}\hat{\boldsymbol{\beta}} - \mathbf{f}^{0}\|_{2}^{2}}{n} + \lambda \|\hat{\boldsymbol{\beta}}\|_{1} \leq \frac{2\boldsymbol{\varepsilon}^{T}\mathbf{X}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^{*})}{n} + \lambda \|\boldsymbol{\beta}^{*}\|_{1} + \frac{\|\mathbf{X}\boldsymbol{\beta}^{*} - \mathbf{f}^{0}\|_{2}^{2}}{n}$$

Lemma 3.8 (New version of the Lemma 6.3.). We have on \mathscr{T} , with $\lambda \geq 4\lambda_0$,

$$\frac{4\|\mathbf{X}\hat{\beta} - \mathbf{f}^0\|_2^2}{n} + 3\lambda \|\hat{\beta}_{S_*^c}\|_1 \le 5\lambda \|\hat{\beta}_{S_*} - \beta_{S_*}^*\|_1 + \frac{4\|\mathbf{X}\beta^* - \mathbf{f}^0\|_2^2}{n}$$
(3.6)

Proof. We start with the Basic Inequality

$$\frac{\|\mathbf{X}\hat{\beta} - \mathbf{f}^0\|_2^2}{n} + \lambda \|\hat{\beta}\|_1 \le \frac{2\boldsymbol{\varepsilon}^T \mathbf{X}(\hat{\beta} - \beta^*)}{n} + \lambda \|\beta^*\|_1 + \frac{\|\mathbf{X}\beta^* - \mathbf{f}^0\|_2^2}{n}$$

Now since we are on \mathscr{T} and since $4\lambda_0 \leq \lambda$

$$\frac{\|\mathbf{X}\hat{\beta} - \mathbf{f}^{0}\|_{2}^{2}}{n} + \lambda \|\hat{\beta}\|_{1} \leq \frac{2\boldsymbol{\varepsilon}^{T}\mathbf{X}(\hat{\beta} - \beta^{*})}{n} + \lambda \|\beta^{*}\|_{1} + \frac{\|\mathbf{X}\beta^{*} - \mathbf{f}^{0}\|_{2}^{2}}{n}$$

$$\Rightarrow \frac{\|\mathbf{X}\hat{\beta} - \mathbf{f}^{0}\|_{2}^{2}}{n} + \lambda \|\hat{\beta}\|_{1} \leq \lambda_{0} \|\hat{\beta} - \beta^{*}\|_{1} + \lambda \|\beta^{*}\|_{1} + \frac{\|\mathbf{X}\beta^{*} - \mathbf{f}^{0}\|_{2}^{2}}{n}$$

$$\Rightarrow 4 \frac{\|\mathbf{X}\hat{\beta} - \mathbf{f}^{0}\|_{2}^{2}}{n} + 4\lambda \|\hat{\beta}\|_{1} \leq \lambda \|\hat{\beta} - \beta^{*}\|_{1} + 4\lambda \|\beta^{*}\|_{1} + 4 \frac{\|\mathbf{X}\beta^{*} - \mathbf{f}^{0}\|_{2}^{2}}{n}$$

Let $S_* = \{j : \beta_j^* \neq 0\}$. We use the triangle inequality on the left hand side

$$\begin{split} \|\hat{\beta}\|_{1} &= \|\hat{\beta}_{S_{*}}\|_{1} + \|\hat{\beta}_{S_{*}^{c}}\|_{1} \\ &= \|\beta_{S_{*}}^{*} - \beta_{S_{*}}^{*} + \hat{\beta}_{S_{*}}\|_{1} + \|\hat{\beta}_{S_{*}^{c}}\|_{1} \\ &\geq \|\beta_{S_{*}}^{*}\|_{1} - \|\hat{\beta}_{S_{*}} - \beta_{S_{*}}^{*}\|_{1} + \|\hat{\beta}_{S_{*}^{c}}\|_{1} \end{split}$$

whereas on the right hand side

$$\|\hat{\beta} - \beta^*\|_1 = \|(\hat{\beta}_{S_*} + \hat{\beta}_{S_*^c}) - (\beta_{S_*}^* + \underbrace{\beta_{S_*^c}^*}_{=0})\|_1$$
$$= \|\hat{\beta}_{S_*} - \beta_{S_*}^*\|_1 + \|\hat{\beta}_{S_*^c}\|_1$$

3.2. SECTION 6.3

Injecting these two results, we get that

$$4\frac{\|\mathbf{X}\hat{\beta} - \mathbf{f}^{0}\|_{2}^{2}}{n} + 4\lambda \|\hat{\beta}\|_{1} \leq \lambda \|\hat{\beta} - \beta^{*}\|_{1} + 4\lambda \|\beta^{*}\|_{1} + 4\frac{\|\mathbf{X}\beta^{*} - \mathbf{f}^{0}\|_{2}^{2}}{n}$$

$$\Rightarrow 4\frac{\|\mathbf{X}\hat{\beta} - \mathbf{f}^{0}\|_{2}^{2}}{n} + 4\lambda \left(\|\beta_{S_{*}}^{*}\|_{1} - \|\hat{\beta}_{S_{*}} - \beta_{S_{*}}^{*}\|_{1} + \|\hat{\beta}_{S_{*}^{c}}\|_{1}\right)$$

$$\leq \lambda \left(\|\hat{\beta}_{S_{*}} - \beta_{S_{*}}^{*}\|_{1} + \|\hat{\beta}_{S_{*}^{c}}\|_{1}\right) + 4\lambda \|\beta^{*}\|_{1} + 4\frac{\|\mathbf{X}\beta^{*} - \mathbf{f}^{0}\|_{2}^{2}}{n}$$

$$\Rightarrow 4\frac{\|\mathbf{X}\hat{\beta} - \mathbf{f}^{0}\|_{2}^{2}}{n} + 4\lambda \|\underbrace{\beta_{S_{*}^{*}}^{*}}\|_{1} + 3\lambda \|\hat{\beta}_{S_{*}^{c}}\|_{1}$$

$$\leq 5\lambda \|\hat{\beta}_{S_{*}} - \beta_{S_{*}}^{*}\|_{1} + 4\lambda \|\beta^{*}\|_{1} + 4\frac{\|\mathbf{X}\beta^{*} - \mathbf{f}^{0}\|_{2}^{2}}{n}$$

$$\Rightarrow 4\frac{\|\mathbf{X}\hat{\beta} - \mathbf{f}^{0}\|_{2}^{2}}{n} + 3\lambda \|\hat{\beta}_{S_{*}^{c}}\|_{1} \leq 5\lambda \|\hat{\beta}_{S_{*}} - \beta_{S_{*}}^{*}\|_{1} + 4\frac{\|\mathbf{X}\beta^{*} - \mathbf{f}^{0}\|_{2}^{2}}{n}$$

Definition 3.9 (Compatibility condition for general sets). We say that the compatibility condition holds for the set S, if for some constant $\phi(S) > 0$, and for all β , with $\|\beta_{S^c}\|_1 \leq 3 \|\beta_S\|_1$, one has

$$\|\beta_S\|_1^2 \le (\beta^T \hat{\Sigma}\beta) |S|/\phi^2(S)$$