SRM VALLIAMMAI ENGINEERING COLLEGE

SRM Nagar, Kattankulathur – 603 203

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

QUESTION BANK

IV SEMESTER

1908006-COMPUTER ARCHITECTURE

Regulation - 2019

Academic Year 2023-24

Prepared by

Dr. K. DEVI, Assistant Professor/CSE Dr. S. BENILA, Assistant Professor/CSE Dr. G. KUMARESAN, Assistant Professor/CSE

SRM VALLIAMMAI ENGINEERING COLLEGE

(An Autonomous Institution) SRM Nagar, Kattankulathur–603203.

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

OUESTION BANK

SUBJECT:1908006-COMPUTER ARCHITECTURE

SEM/YEAR: IV Sem/IIYear

UNIT I-BASIC STRUCTURE OF A COMPUTER SYSTEM

Functional Units-Basic Operational Concepts-Performance-Instructions: Language of the Computer Operations, Operands-Instruction representation-Logical operations-decision making-MIPS Addressing-Bus structure-Bus operation

makir	making-MIPS Addressing-Bus structure-Bus operation						
	PART-A						
Q.No	Questions		BT	Competence			
	ENGINEER		Level				
1	Define Computer Architecture.		BTL 1	Remember			
2	Interpret the instruction set Architecture.	I	BTL 2	Understand			
3	Identify general characteristics of Relative addressing mode with an	I	BTL 4	Analyze			
	example.						
4	Define Computer Architecture.	I	BTL 1	Remember			
5	Tabulate the components of computer system.	I	BTL 1	Remember			
6	Give the addressing modes in MIPS.	I	BTL 2	Understand			
7	What are the fields in an MIPS instruction?	I	BTL 1	Remember			
8	What are called Instruction?	I	BTL 1	Remember			
9	Discuss the use of bus in computer architecture.	I	BTL 2	Understand			
10	Differentiate register direct and indirect addressing.	I	BTL 4	Analyze			
11	Give the difference between auto increment and auto decrement	I	BTL 2	Understand			
	addressing mode.						
12	Discuss the functions of control unit?	I	BTL 2	Understand			
13	Differentiate DRAM and SRAM.		BTL 4	Analyze			
14	Calculate throughput and response time.	I	BTL 3	Apply			
15	Compose the CPU performance equation.	I	BTL 6	Create			
16	Measure the performance of the computers:	I	BTL 5	Evaluate			
	If computer A runs a program in 10 seconds, and computer B						
	runs the same program in 15 seconds, how much faster is A						
	over B?						
17	Formulat e the equation of CPU execution time for a program.	I	BTL 6	Create			
18	Show the formula for CPU clock cycles required for a program.		BTL 3	Apply			
19	Describe about the various logical operators.	I	BTL 1	Apply			
20	What are the various types of decision making instructions?	I	BTL 1	Remember			
21	Compare address bus and memory bus structure.	I	BTL 4	Analyze			
22	Assess the instructions based on the operations they perform and	I	BTL 5	Evaluate			
	give one example to each category.						

23	Examine control Lir	ne in Bus Structure			BTL 3	Apply
24	Consider the following program	ng performance me	easurements for a		BTL 5	Evaluate
	Measurement	Computer A	Computer B			
	Instruction Count	10 billion	8 billion			
	Clock rate	4GHz	4GHz			
	CPI	1.0	1.1			
	Which computer has t	he higher MIPS ratir	ng?			
	T		PART B			
1	computer system.	_	esent instructions in a	(13)	BTL 5	Evaluate
2	neat diagram		ystem and explain with	(8)	BTL 1	Remember
3	i). What is an address			(4)	BTL 1	Remember
		addressing modes w	rith suitable examples to			
	each category			(9)	D	
4.	i). Identify the vario		1 0	(6)	BTL 1	Remember
5	ii). Examine the ope			(7)	BTL 2	I In donaton d
3	computer.	ai operations and	control operations of	(7) (6)	BILZ	Understand
	ii). Explain the concep	t of Arithmetic opera	ation with examples	(0)		
6			, P2, and P3 executing		BTL 4	Analyze
		*	Iz clock rate and a CPI			<i>j</i> = -
	of 1.5. P2 has a 2.5	GHz clock rate and	l a CPI of 1.0. P3 has a			
	4.0 GHz clock rate a	nd has a CPI of 2.2).			
			rformance expressed in	(3)		
	instructions per seco		. 10 1	(5)		
		_	rogram in 10 seconds,	(5)		
	find the number of cy		me by 30% but this leads	(5)		
			ck rate should we have to			
	get this time reduction	?				
7	Assess the various in	struction formats a	and illustrate with an	(13)	BTL5	Evaluate
	example					
8		out Technologies f	or Building Processors	(13)	DET 6	
	and Memory		. 9 - Ca - C. 11	(10)	BTL3	Apply
9	Describe the branchi example.	ing operations in de	etaii with suitable	(13)	BTL 2	Understand
10	i). Formulate the per	formance of CPU		(9)	BTL 6	Create
10	ii).Compose the factor				DILO	Create
	in it is a second of the second	o unav arroov porrozna		(4)		
11	i). Illustrate the diff	erent types of inst	ruction set architecture	(7)	BTL 3	Apply
	in detail	71				
	ii). Examine the basic	instruction types with	h examples	(6)		
12	What is Bus? Descri	be in detail the bus	s structure.	(13)	BTL 1	Remember
13	Examine performan			(13)	BTL 3	Apply
14	i)If computer A runs	a program in 10 se	econds and computer B	(4)	BTL 4	Analyze

		_		
	runs the same program in 15 seconds, how much faster is A than B? ii)Suppose we have two implementations of the same instruction set architecture. Computer A has a clock cycle time of 250ps and a CPI of 2.0 for some program, and computer B has a clock cycle time of 500ps and CPI of 1.2 for the same program. Which computer is faster for this program and by how much?	(9)		
15	Analyze the various instruction formats and illustrate with an example.	(13)	BTL 4	Analyze
16	Consider two different implementation of the same instruction set architecture, The instruction can be divided into four classes according to their CPI (class A,B,C and D). P1 with clock rate 2.5 Ghz and CPI s of 1,2,3, and 3 respectively and P2 with clock rate 3 Ghz and CPI s of 2,2,2and 2 respectively. Given a program with a dynamic instruction count of 1.0*10 ⁶ instruction divided into classes as follows: 10% class A, 20% class B, 50% class C, and 20% class D, which implementation is faster? What is the global CPI for each implementation? Find the clock cycles required in both cases.	(13)	BTL 2	Understand
17	Explain the centralized and distributed bus system in computer organization.	(13)	BTL2	Understand
PART		ı	I .	
1	Evaluate a MIPS assembly instruction in to a machine instruction, for the add \$to, \$s1,\$s2 MIPS instruction.	(15)	BTL 5	Evaluate
2	Assume a two address format specified as source, destination. Examine the following sequence of instructions and explain the addressing modes used and the operation done in every instruction.(15) MOVE (R5)+, R0 ADD (R5)+, R0 MOVE R0, (R5) MOVE16(R5),R3 ADD#40,R5	(15)	BTL 6	Create
3	Assume that the variables f and g are assigned to register \$s0 and \$s1 respectively. Assume that base address of the array A is in register \$s2. Assume f is zero initially. F=g - A[4] A[5]=f + 100 Translate the above C statement into MIPS code .how many MIPS assembly instructions are needed to perform the C statements and how many different registers are needed to carry out the C statements?	(15)	BTL 6	Create
4	Evaluate which code sequence will execute faster according to execution time for the following conditions: The computer with three instruction classes and CPI measurements as given below and instruction counts for each instruction class for the same program from two different compilers are given. Assume that the computer's clock rate is 1GHZ. Code from CPI for the instruction class	(15)	BTL 5	Evaluate

	CPI Code from	A 1 CPI	B 2 for the	C 3 e instruction class			
	Commilant	A	В 1	$\frac{C}{2}$			
	Compiler1 Compiler2	2	1	1			
5	Summarize the functions of each			nits of a computer? Explain the	(15)	BTL5	Evaluate

UNIT II-ARITHMETIC FOR COMPUTERS

ALU-Addition and subtraction–Multiplication–Division–Floating Point Representation and operation-Sub word parallelism

Q.No	ion-Sub word parallelism Questions	BT Level	Competence
1	Calculate the following: Add 5 ₁₀ to 6 ₁₀ in binary and Subtract -6 ₁₀ from 7 ₁₀ in binary.	BTL 3	Apply
2	Analyze overflow conditions for addition and subtraction.	BTL 4	Analyze
3	Construct the Multiplication hardware diagram.	BTL 3	Apply
4	x=0000 1011 1110 1111 and y= 1111 0010 1001 1101 Examine x-y	BTL 1	Remember
5	What is fast multiplication?	BTL 1	Remember
6	Subtract (11011) ₂ –(10011) ₂ using 1's complement and 2's complement method.	BTL 2	Understand
7	Illustrate scientific notation and normalization with example.	BTL 3	Apply
8	Analyze and Multiply 100011 * 100010	BTL 4	Analyze
9	Give the representation of double precision floating point number.	BTL 2	Understand
10	For the following C statement, Develop MIPS assembly code. $f = g + (h - 5)$.	BTL 6	Create
11	Name the floating point instructions in MIPS.	BTL 1	Remember
12	Formulate the steps of floating point addition.	BTL 6	Create
13	Evaluate the sequence for floating point multiplication.	BTL 5	Evaluate
14	Define guard bit. What are the ways to truncate the guard bits?	BTL 1	Remember
15	Express the IEEE 754 floating point format. Represent (63.25) ₁₀ in single precision	BTL 2	Understand
16	State sub-word parallelism.	BTL 1	Remember
17	Interpret single precision floating point number representation with example.	BTL 2	Understand
18	Analyze the normalization notation and perform the same for the following number $10.015_{10} * 10^{-1}$	BTL 4	Analyze
19	List the steps in division algorithm.	BTL 1	Remember
20	For the following MIPS assembly instructions above, what is a corresponding C statement? add f, g, h add f, i, f	BTL 5	Evaluate
21	Subtract (11011) ₂ –(10011) ₂ using 2's complement.	BTL 3	Apply
22	Divide (1001010) ₂ by (1000) ₂	BTL 5	Evaluate
23	Interpret the representation of double precision floating point number	BTL2	Understand
24	Add the Binary numbers 1110 and 1011.	BTL 4	Analyze

	PART B			
1	i). Discuss the multiplication algorithm in detail with diagram.	(6)	BTL 2	Understand
	ii). Express the steps to Multiply $2_{10}*3_{10}$ using the sequential	(7)		
	version multiplication algorithm.			
2	Discuss about the fast multiplication algorithm with hardware	(13)	BTL 2	Understand
	block and refined version of multiplication hardware.			
3	Describe about basic concepts of ALU design.	(13)	BTL 1	Remember
4	Develop algorithm to implement A*B. calculate the product of	(13)	BTL 6	Create
	octal unsigned 6-bit integers. Assume A and B with values:			
	A=101 000 ₂ , B=010 011 ₂			
5	i) . State the integer division algorithm with diagram.	(6)	BTL 1	Remember
	ii).Divide 50 by 23 and show the content of registers Assume	(7)		
	both the inputs are unsigned 6-bit integers			
6	i). Express in detail about Carry look ahead Adder.	(6)	BTL 2	Understand
	Analyze the overflow in addition and in subtraction.	(7)		
7	State the integer division algorithm with diagram.	(7)	BTL 4	Analyze
	ii) Divide (12) ₁₀ by (3) ₁₀ .	(6)	D	
8	Explain the multiplication of signed 2's complement numbers.	(13)	BTL 5	Evaluate
0	Give algorithm with example.	(0)	D/DI 1	D 1
9	i). Examine, how floating point addition is carried out in a	(8)	BTL 1	Remember
	computer system?	(F)		
10	ii).Give an example for a binary floating point addition.	(5)	DTI 1	D 1
10	i) How floating point numbers are represented in IEEE 752.	(7)	BTL 1	Remember
	ii) Tabulate the IEEE 752 binary representation of the number	(6)		
11	5.00736125 * 10 5 in single precision and double precision.	(7)	BTL 2	Understand
11	i).Design an arithmetic element to perform the basic floating point operations.	(7) (6)	DIL 2	Understand
	ii). Discuss sub word parallelism.	(0)		
12	i). Explain floating point addition algorithm with diagram.	(6)	BTL 5	Evaluate
14	ii). Assess the result of the numbers $(0.5)_{10}$ and $(-0.4375)_{10}$	(7)	DILJ	Evaluate
	using binary Floating point Addition algorithm.	(1)		
13	Calculate using single precision IEEE 754 representation.		BTL 4	Analyze
10	i). 32.75	(6)		7 Mary Ze
	ii).18.125	(7)		
14	Arrange the given number 0.0625	(-)	BTL 4	Analyze
	i). Single precision.	(6)		
	ii). Double precision formats.	(7)		
15	Solve using Floating point multiplication algorithm A= 1.110 10	(13)	BTL 3	Apply
	$*10^{10}$ B= $9.200*10^{-5}$			
16	Multiply 0.5 ₁₀ * - 0.4375 ₁₀ using floating point Algorithm.	(13)	BTL 3	Apply
17	Calculate the division of A= 3.264×10^3 and 6.52×10^2	(13)	BTL 3	Apply
PART	C	_		
1	Multiply the following signed numbers $A=(-34)_{10}=(1011110)_2$	(15)	BTL 6	Create
	and B= $(22)_{10}$ = $(0010110)_2$ where B is multiplicand and A is			
	multiplier.			
	Evaluat e the sum of 2.6125 * 101 and 4.150390625 * 101 by	(15)	BTL 5	Evaluate
	hand, assuming A and B are stored in the 16-bit half precision.			
2.	Assume 1 guard, 1 round bit and 1 sticky bit and round to the			
	nearest even. Show all the steps.			

		_		
3	Summarize 4 bit numbers to save space, which implement the	(15)	BTL 5	Evaluate
	multiplication algorithm for 0010_2 , 0011_2 with hardware			
	design.			
4	Design 4 bit version of the algorithm to save pages, for	(15)	BTL 6	Create
	dividing 00000111 ₂ by 0010 ₂ with hardware design.			
5	Assess the floating point instructions in MIPS.	(15)	BTL5	Evaluate
	UNIT III-PROCESSOR AND CONTROL			
A Bas	sic MIPS implementation –Building a Data path–Contro	l Imp	olementat	tion Scheme -
Pipelii	ning–Pipelined data path and control–Handling Data Ha	azards	& Cor	ntrol Hazards-
Excep				
PART	– A			
Q.No	Questions		BT	Competence
			Level	
1	Express the control signals required to perform arithmetic		BTL2	Understand
	operations.			
2	Define hazard. Give an example for data hazard.		BTL 2	Understand
3	Recall pipeline bubble.		BTL 1	Remember
4	List the state elements needed to store and access an		BTL1	Remember
	instruction.			
5	Draw the diagram of portion of data path used for fetching		BTL 2	Understand
	instruction.			
6	Distinguish Sign Extend and Vector interrupts.		BTL2	Understand
7	Interpret the R-type instructions.		BTL 2	Understand
8	Evaluate branch taken and branch not taken in instruction		BTL5	Evaluate
	execution.			
9	State the two steps that are common to implement any type of		BTL 1	Remember
	instruction.			
10	Design the instruction format for the jump instruction.		BTL 6	Create
11	Classify the different types of hazards with examples.		BTL 4	Analyze
12	Illustrate data forwarding method to avoid data hazards.		BTL3	Apply
13	Assess the methods to reduce the pipelines tall.		BTL5	Evaluate
14	Articulate the use of branch prediction buffer.		BTL 3	Apply
15	Show the 5 stages pipeline.		BTL 3	Apply
16	Point out the concept of exceptions and interrupts.		BTL4	Analyze
17	What is pipelining?		BTL1	Remember
18	Illustrate the various phases in executing an instruction.		BTL 3	Apply
19	Classify the types of instruction classes and their instruction		BTL4	Analyze
47	formats.			1 11111 / 20
20	Generalize what is exception. Give one example for MIPS		BTL6	Create
∠ ∪	exception.			
21	Assess the need of I type instructions.		BTL5	Evaluate
22	What is meant by branch prediction?		BTL 1	Remember
23	Identify the Structural Hazards in pipelining.		BTL 4	Analyze
24	What is meant by Control Hazard?		BTL 1	Remember
PART			DILI	Kemember
		(12)	ртгэ	Understand
1	Discuss the basic MIPS implementation of instruction set.	(13)	BTL 2	Understand
2	State and draw a simple MIPS data path with control unit and explain the execution of ALU instruction	(13)	BTL1	Remember
	CENTRALIC DE EXECUTION DE ALTE HISTORICHON		i	i e

explain the execution of ALU instruction.

		(=)	D. T. A	T. 1
3	i)List the types of hazards	(5)	BTL1	Remember
4	ii)Describe the methods for dealing with the control hazards.	(8)	DTI 6	Cracks
4	Design and develop an instruction pipeline working under various situations of pipeline stall.	(13)	BTL6	Create
5	What is datahazard? How do you over come it?What are its	(15)	BTL1	Remember
3	side effects?	(15)	DILI	Remember
6	i)Summarize control implementation scheme.	(7)	BTL 2	Understand
U	ii)Distinguish the data and control path methods in pipelining.	(6)	DILZ	Officerstand
7	i)Differentiate sequential execution and pipelining	(7)	BTL4	Analyze
,	ii)Select the model for building a data path.	(6)	DIL	7 Mary Ze
	Recommend the techniques for	(7)		
8	i)Dynamic branch prediction.	(6)	BTL5	Evaluate
	ii)Static branch prediction.	(0)		_ / ***********************************
9	Examine the approaches would you use to handle exceptions in	(13)	BTL 3	Apply
	MIPS.	,		11 3
	i)Analyze the hazards caused by unconditional branching	(7)	BTL4	Analyze
10	statements.			
	ii)Describe operand forwarding in a pipeline processor with a	(6)		
	diagram.			
11	Express the modified data path to accommodate pipelined	(13)	BTL 2	Understand
	executions with a diagram.			
12	i)Explain single cycle and pipelined performance with	(7)	BTL4	Analyze
	examples.			
	ii)Point out the advantages of pipeline over single cycle.	(6)		
13	i)Tabulate the ALU control with suitable truthtable.	(7)	BTL1	Remember
	ii)Differentiate R-type instruction and memory instruction.	(6)		
1.4	With a suitable set of sequence of instructions show what	(13)	DTI 2	A 1
14	happens when the branch is taken, assuming the pipeline is		BTL 3	Apply
	optimized for branches that are not taken and that we moved the branch execution to the ID stage.			
15	Explain in detail about the Exceptions.	(13)	BTL 2	Understand
16	Sketch the Implementing Jumps and Finalizing Control.		BTL 3	Apply
17	Evaluate the two stage instruction pipeline with neat diagram	(13)	BTL5	Evaluate
17	illustration.	(13)	DILJ	Lvardate
PART				
17111	Assume the following sequence of instructions are executed on			
	a 5 stage pipelined data path:			
	add r5, r2, r1lw r3, 4(r5)lw r2, 0(r2)or r3, r5, r3swr3, 0(r5)			
	If there is no forwarding or hazard detection, insert NOPS to			
	ensure correct execution.			
	i)If the processor has forwarding, but we forgot to			
	implement the hazard detection unit, what if happens	(5)		
1	when this code executes?		BTL6	Create
	ii)If there is forwarding, for the first five cycles, compose			
	which signals are asserted in each cycle.	(5)		
	iii)If there is no forwarding, what if new inputs and output			
	signals do we need for the hazard detection unit.	(5)		
2	Explain in detail about the laundry process through which the	(15)	BTL5	Evaluate
	pipelining techniques can be established.			

3	Consider the following loop: Loop:lwr1,0(r1) and r1,r1,r2lw r1,0(r1)lw r1,0(r1) beqr1,r0,loop Assume that perfect branch prediction is used (no stalls) that there are no delay slots, and that the pipeline has full forwarding support. Also assume that many iterations of this loop are executed before the loop exits. i)Assess a pipeline execution diagram for the third iteration of this loop. ii)Show all instructions that are in the pipeline during these	(8)	BTL5	Evaluate
4	cycles (for all iterations). Plan the pipelining in MIPS architecture and generate the	(15)	BTL6	Create
4	exceptions handled in MIPS.	(15)	DILO	Cicaic
5	Write in detail how exceptions are handled in MIPS architecture.	(15)	BTL6	Create

UNIT IV- MEMORY & I/O SYSTEMS

Memory Hierarchy - memory technologies – cache memory – measuring and improving cache performance– virtual memory, TLB's– Accessing I/O Devices–Interrupts–Direct MemoryAccess –Bus structure–Bus operation–Arbitration.

PART	PART- A					
Q.No	Questions		BT Level	Competence		
1	Distinguish the types of locality of references.		BTL 2	Understand		
2	Draw the structure of memory hierarchy		BTL1	Remember		
3	Give the definition of memory–mapped I/O.		BTL 2	Understand		
4	Compare and contrast SRAM and DRAM.		BTL4	Analyze		
5	What is the need to implement memory as a hierarchy?		BTL1	Remember		
6	Define Rotational Latency.		BTL1	Remember		
7	Criticize direct-mapped cache.		BTL5	Evaluate		
8	Evaluate the following instance where in the cache size is 64 blocks and block size is 16 bytes. What block number does byte address 1200 map?		BTL5	Evaluate		
9	Formulate, how many total bits are required for a direct-mapped cache with 16 KB of data and 4-word blocks, assuming a 32-bitaddress?		BTL6	Create		
10	Analyze the writing strategies in cache memory.		BTL4	Analyze		
11	Integrate the functional steps required in an instruction cache miss.		BTL6	Create		
12	Articulate hitrate and missrate.		BTL 3	Apply		
13	Summarize the various block placement schemes in cache memory.		BTL 2	Understand		
14	Quote the purpose of Dirty/Modified bit in Cache memory.		BTL1	Remember		
15	Point out how DMA can improve I/O speed.		BTL4	Analyze		
16	Show the role of TLB in virtual memory.		BTL 3	Apply		
17	Illustrate the advantages of virtual memory.		BTL 3	Apply		
18	Assess the relationship between physical address and logical address.		BTL5	Evaluate		
19	Differentiate Programmed I/O and InterruptI/O.		BTL 2	Understand		
20	Demonstrate the sequence of events involved in handling an		BTL 3	Apply		

	interrupt request			
	from single device.			
21	Summarize the various memory technologies ?		BTL 2	Understand
22	Define Hit Ratio.		BTL1	Remember
23	Illustrate a busmaster?		BTL4	Analyze
24	What is an Interrupt?		BTL1	Remember
	PART B	I		
	i)List the various memory technologies and examine its	(7)		
1	relevance in architecture design.	(-)	BTL1	Remember
	ii)Identify the characteristics of memory system.	(6)		
2	Elaborate in detail the memory hierarchy with neat diagram.	(13)	BTL1	Remember
3	i)Give the advantages of cache.	(7)	BTL 2	Understand
	ii)Identify the basic operations of cache in detail with diagram.	(6)		0
	Express the following various mapping schemes used in cache			
	design.		DET 0	** 1 . 1
4	i)Direct.	(4)	BTL 2	Understand
	ii)Associative.	(4)		
	iii)Set associative.	(5)		
	Analyze the given problem:	(15)	BTL4	Analyze
	A byte addressable computer has a small data cache capable	,		,
	of holding eight 32-bit words. Each cache block contains 132-			
	bit word. When a given program is executed, the processor			
_	reads data from the following sequence of hex addresses –			
5	200, 204, 208, 20C, 2F4, 2F0, 200,204,218, 21C, 24C, 2F4.			
	The pattern is repeated four times. Assuming that the cache is			
	initially empty, show the contents of the cache at the end of			
	each pass, and compute the hit rate for a direct mapped cache.			
	What are the methods used to measure and improve the			
	performance of the cache.			
6	i)Define virtual memory and its importance.	(7)	BTL1	Remember
	ii)Examine TLB with necessary diagram.	(6)		
7	i)Demonstrate the DMAcontroller.	(7)	BTL 3	Apply
	ii)Illustrate how DMA controller issued for direct data transfer	(6)		
	between memory and peripherals?	(0)		
8	i)Evaluate the advantages of interrupts.	(7)	BTL5	Evaluate
	ii)Summarize the concept of interrupts with neat diagrams.	(6)		
9	Design standard input and output interfaces required to connect	(13)	BTL6	Create
	the I/O device to the bus.			
10	Classify the bus arbitration techniques of DMA in detail.	(13)	BTL4	Analyze
	Point out the following in detail			
11	i)Programmed I/O.	(7)	BTL4	Analyze
	ii)Instructions executed by IOP.	(6)	<u> </u>	
12	Describe in detail about the methods used to reduce cache	(13)	BTL1	Remember
	misses.		<u> </u>	
13	Discuss virtual memory address translation in detailwith	(13)	BTL 2	Understand
	necessary diagram.			
	Calculate the performance the processor:	(13)		
	Assume the miss rate of an instruction cache is 2% and the			
14	miss rate of the data cache is 4%. If a processor has a CPI of 2		BTL 3	Annly
14			טוע ט	Apply

	T	ı		1
	without any memory stalls and the miss penalty is 100 cycles			
	for all misses, estimate how much faster a processor would run			
	with a perfect cache that never missed. Assume the frequency			
	of all loads and stores is 36%			
15	Examine about Interrupts and its use.	(13)	BTL 3	Apply
16	Describe in detail about the Cache Basics (CacheMemory).	(13)	BTL1	Remember
17	Explain in detail about the Interface Circuits.	(13)	BTL 2	Understand
	PART-C	1	_	T
	Mean Time Between Failures (MTBF), Mean Time To			
	Replacement (MTTR) and Mean Time To Failure (MTTF)			
	are useful metrics for Evaluate thereliability and availability			
1	of a storage resource. Explore these concepts		BTL6	Create
	byansweringthe questions aboutdevices with the following			
	metrics:			
	MTTF:3 years MTTR: 1 day			
	i)Develop and calculate the MTBF for each of the devices.	(4)		
	ii)Develop and calculate the availability for each of the	(4)		
	devices.	(4)		
	iii)What if happens to availability as the MTTR approaches?	(3)		
	iv)What if happens to availability as the MTTR gets very			
	high?	(15)	DTL	G .
2	Design and explain parallel priority interrupt hardware for a	(15)	BTL6	Create
	system with eight interrupt sources.			
	For a direct mapped cache design with a 32 bit address, the			
	following bits of the address are used to access the cache. Tag:31-10Index:9-5Offset:4-0			
3	i)Judge what is the cache block size?	(5)	BTL5	Evaluate
	ii)Decide how many entries does the cache have ?	(5)		
	iii)Assess what is the ratio between total bits required for such	(5) (5)		
	a cache implementation over the data storage bits?	(3)		
	Summarize by considering web application. Assuming both	(15)		
	client and servers are involved in the process of web	(10)		
4	browsing application, where can caches be placed to speed		BTL5	Evaluate
4	upthe process. Design a memory hierarchy forthe system.		BILS	Evaluate
	Show the typical size and latency at various levels of the			
	hierarchy. What is the relationship between the cache size and			
	its access latency? What are the units of data transfers between			
	hierarchies? What is the relationship between data			
	location,data size and transfer latency?			
5	Formulate in detail about USB.	(15)	BTL 6	Create
	UNIT V-PARALLELISM	<u> </u>	, 	
Instru	ction-level-parallelism - Parallel processing challenges – Flynn's	s class	ification -	- SISD, MIMD.
	, SPMD, and Vector Architectures – Multi-core processors			
	processors.			·

Multiprocessors.

Q.No	Questions	BT	Competence
		Level	
1	State the main idea of ILP.	BTL 2	Understand
	Illustrate the overall speedup if a webserver is to be enhanced		
2	with a new CPU which is 10 times faster on computation than	BTL 3	Apply

	an old CPU.The original CPU			
	spent 40% of its time processing and 60% of its time waiting			
	for I/O.			
3	Illustrate the three important properties of vector instructions.		BTL4	Analyze
4	Analyze the main characteristics of SMT processor.		BTL4	Analyze
5	Quote the importance of loop unrolling technique.		BTL1	Remember
6	Define VLIW processor.		BTL1	Remember
7	Express anti-dependence. How is it removed?		BTL 2	Understand
8	State the efficiency of super scalar processor.		BTL1	Remember
9	Differentiate between strong scaling and weak scaling.		BTL 2	Understand
10	Show the performance of cluster organization.		BTL 3	Apply
11	Compare SMT and hardware multithreading.		BTL5	Evaluate
12	Define the Flynn classification.		BTL1	Remember
13	Integrate the idea so fin-order execution and out-of-order		BTL6	Create
	execution.			
14	Discriminate UMA and NUMA.		BTL5	Evaluate
15	Quote fine grained multithreading.		BTL1	Remember
16	Express the need for instruction level parallelism.		BTL 2	Understand
17	Formulate the various approaches to hardware multithreading.		BTL6	Create
18	Categorize the various multithreading options.		BTL4	Analyze
19	Differentiate fine grained multithreading and coarse-grained		BTL4	Analyze
	multithreading.			·
20	Classify shared memory multiprocessor based on the memory		BTL 3	Apply
	access latency			
21	State Amdahl's law.		BTL1	Remember
22	Criticize the styles of vector architectures ?		BTL5	Evaluate
23	Brief about Multithreading.		BTL 3	Apply
24	Interpret Warehouse-scale computer?		BTL 2	Understand
	PART-B			
1	i)Define parallelism and its types.	(7)	BTL1	Remember
	ii)List the main characteristics of Instruction level parallelism.	(6)		
2	i)Give the concept of parallel processing.	(7)	BTL 2	Understand
	ii)Summarize the challenges faced by parallel processing.	(6)		
3	Express in detail about hardware multithreading.	(13)	BTL 2	Understand
4	Solve: suppose you want to achieve a speed up to 90 times	(13)	BTL 3	Apply
	faster with 100 processors. What percentage of the original			
5	computation can be sequential? List the software and hardware techniques to achieve	(12)	BTL1	Remember
3	Instruction Level Parallelism.	(13)	DILI	Kemember
6	i)Point out how will you use shared memory concept in multi-	(7)	BTL4	Analyze
	processor?			
	ii)Compare and contrast Fine grained and Coarse grained	(6)		
	multithreading.	(0)		
7	i)Evaluate the features of Multi core processors.	(7)	BTL5	Evaluate
	ii)How message passing is implemented in Multiprocessors	(6)		
8	Classify the types of multithreading and nalyze the advantages	(13)	BTL4	Analyze
	of multithreading.	:		
9	Formulate the ideas of Flynn's classification.	(13)	BTL6	Create
10	Sketch in detail about the following		BTL3	Apply
	i)SISD	(6)		

	ii)MIMD	(7)		
11	Explain simultaneous Multithreading with example.	(13)	BTL4	Analyze
12	i)Describe about Graphics Processing unit.	(7)	BTL1	Remember
12	ii)Discuss about cluster and warehouse architecture.	(6)	DILI	Remember
13	Illustrate the following in detail	(0)		
13	i)Data Dependence	(5)		Apply
	ii)Name Dependence	(4)	BTL3	I I
	iii)Control dependence	(4)		
	Discuss the following in detail	(•)		
14	i)Vector processor.	(7)	BTL 2	Understand
	ii)Super scalar processor.	(6)		
15	Elaborate in detail about the following	(0)	BTL2	Understand
	i)SIMD	(7)	D122	Chacistana
	ii)SPMD	(6)		
	Explain in detail about	(0)		
1.0	i)Vector Registers	(3)	DOT 5	F 1 .
16	ii)Vector Functional Units	(5)	BTL5	Evaluate
	iii)Vector Load Store Units.	(5)		
17	Describe in detail about the warehouse-scale computers.	(13)	BTL1	Remember
	PART-C	(10)	D121	
1	Explain how would this loop be scheduled on a static two	(15)		
-	issue pipeline for MIPS?	(==)		
	Loop: lw \$t0,0(\$s1)		BTL6	Create
	#\$t0=array element Addu		DILO	Create
	\$t0,\$t0,\$s2 #add			
	scalar in \$s2			
	Sw \$t0, 0(\$s1)			
	#storeresult Addi; %s1,\$s1, -4 #decrementpointer			
	Bne \$\$1,\$zero,loop # branch \$\$1!=0			
	Decide and reorder the instruction to avoid as many pipeline			
	stalls as possible. Assume branches are predicted, so that			
	control hazards are handled by the hardware.			
	A pipelined processor uses delayed branch technique.	(15)		
	Recommend any one of the following possibility for the design	(10)		
	of the processor. In the first possibility, the processor has a 4-			
	satge pipeline and one delay slot. In the second possibility, it			
2	has a 6-stage pipeline and two delay slots. Compare the		BTL5	Evaluate
	performance of these two alternatives, taking only the branch			
	penalty into account. Assume that 20% of the instructions are			
	branch instructions and that optimizing compiler has an 80%			
	success rate in filling in the single delayslot. For these cond			
	alternative, the compiler is able to fill the seconds lot 25% of			
	the time.			
	Consider the following portions of two different programs			
	running at the same time on four processors in a symmetric			
	multicore processor (SMP). Assume that before this code is			
	run,both x and yare 0?			
•	Core 1: x=2;		DOT -	C
3	Core 2: y=2;		BTL6	Create
	Core 3: $w = x + y + 1$;]]	

	Core4: z= x+y; i) What if all the possible resulting values of w, x, y, z? For each possible outcome, explain how we might arrive at those values.	(8)		
	ii)Develop the execution more deterministic so that only one set of values is possible?	(7)		
4	Suppose we want to perform 2 sums: one is a sum of 10 scalar variables and one is a matrix sum of a pair of two dimensional arrays, with dimensions 10 by10. For now let's assume only the matrix sum is parallelizable. What if the speed up do you get with 10 versus 40 processors and next calculate the speed up assuming the matrices grow to 20 by 20.	(15)	BTL5	Evaluate
5	Write about the Cluster Architecture and the types of clusters.	(15)	BTL6	Create