Lab 2 Report

Board and Circuit:

Fig. 1: Raspberry Pi w/ SG90 servo connected. ORANGE wire (PWM) connected to Pin 11 (GPIO17), RED wire (VCC) connected to Pin 2 (5V Power), BROWN wire (Ground) connected to Pin 6 (GND).

Python Script:

```
import RPi.GPIO as GPIO
import time
# Set pin numbering to board style
GPIO.setmode (GPIO.BOARD)
# Pin 11 is PWM output pin @ 50 Hz
GPIO.setup(11, GPIO.OUT)
servo = GPIO.PWM(11, 50)
# Set the initial duty cycle to 1.5 ms (90 degrees)
servo.start(7.5)
try:
    while True:
        # Turn to 0 degrees (CCW stop) and sleep 3 seconds
        servo.ChangeDutyCycle(2.5)
        time.sleep(3)
        # Turn to 180 degrees (CW stop) and sleep 3 seconds
        servo.ChangeDutyCycle(12.5)
        time.sleep(3)
        \# Sweep from 180 to 0 degrees w/ 1 second in between steps
        i = 12.5;
        while (i > 2.5):
            i -= 1
            servo.ChangeDutyCycle(i)
            time.sleep(1)
        \# Sweep from 0 to 180 degrees w/ 1 second in between steps
        while (i < 12.5):
            i += 1
            servo.ChangeDutyCycle(i)
            time.sleep(1)
except KeyboardInterrupt:
   servo.stop()
   GPIO.cleanup()
```

Servo Calibration Data:

Command	Position
Duty Cycle	Angle
2.5	0
3	9
3.5	20
4	25
4.5	34
5	43
5.5	50
6	59
6.5	65
7	76
7.5	89
8	95
8.5	110
9	125
9.5	130
10	139
10.5	140
11	150
11.5	161
12	174
12.5	180

Is the calibration curve you generated linear?

> The graph is, for the most part, linear. There exist some irregularities, but that can be mainly scraped off due to the lack-of-access to more precise measurement tools. There are some points on the servo that do not exactly match up with their respective duty cycles (e.g. 0 ° should be at duty cycle 2.5, but in reality, it's more like 2.4 or 2.6), but most were on track.

As a side note: instead of going by 5 $^{\circ}$ like the lab document said, I went by 0.5 duty cycles per step, which is about 9 $^{\circ}$ per step. Going by 5 $^{\circ}$ would have required a repeating decimal for duty cycle steps, so some changes were made.