#### Introduction to Processes

Edited from the slides in http://cs162.eecs.Berkeley.edu

# Four Fundamental OS Concepts

#### Thread

- Single unique execution context: fully describes program state
- Program Counter, Registers, Execution Flags, Stack
- Address space (with translation)
  - Programs execute in an *address space* that is distinct from the memory space of the physical machine

#### Process

- An instance of an executing program is a process consisting of an address space and one or more threads of control
- Dual mode operation / Protection
  - Only the "system" has the ability to access certain resources
  - The OS and the hardware are protected from user programs and user programs are isolated from one another by controlling the translation from program virtual addresses to machine physical addresses

#### OS Bottom Line: Run Programs



### Recall (LMC): Instruction Fetch/Decode/Execute

The instruction cycle



#### Recall (LMC): What happens during program execution?



### First OS Concept: Thread of Control

- Certain registers hold the context of thread
  - Stack pointer holds the address of the top of stack
- Thread: Single unique execution context
  - Program Counter, Registers, Execution Flags, Stack
- A thread is executing on a processor when it is resident in the processor registers.
- PC register holds the address of executing instruction in the thread
- Registers hold the root state of the thread.
  - The rest is "in memory"

# Second OS Concept: Program's Address Space

- Address space ⇒ the set of accessible addresses + state associated with them:
  - For a 32-bit processor there are  $2^{32} = 4$  billion addresses
- What happens when you read or write to an address?
  - Perhaps acts like regular memory
  - Perhaps causes I/O operation» (Memory-mapped I/O)
  - Perhaps causes exception (fault)



#### Address Space: In a Picture



- What's in the code segment? Static data segment?
- What's in the Stack Segment?
  - How is it allocated? How big is it?
- What's in the Heap Segment?
  - How is it allocated? How big?

# Multiprogramming - Multiple Threads of Control





#### How can we give the illusion of multiple processors?



- Assume a single processor. How do we provide the illusion of multiple processors?
  - Multiplex in time!
- Each virtual "CPU" needs a structure to hold:
  - Program Counter (PC), Stack Pointer (SP)
  - Registers (Integer, Floating point, others...?)
- How switch from one virtual CPU to the next?
  - Save PC, SP, and registers in current state block
  - Load PC, SP, and registers from new state block
- What triggers switch?
  - Timer, voluntary yield, I/O, other things

#### The Basic Problem of Concurrency

- The basic problem of concurrency involves resources:
  - Hardware: single CPU, single DRAM, single I/O devices
  - Multiprogramming API: processes think they have exclusive access to shared resources
- OS has to coordinate all activity
  - Multiple processes, I/O interrupts, ...
  - How can it keep all these things straight?
- Basic Idea: Use Virtual Machine abstraction
  - Simple machine abstraction for processes
  - Multiplex these abstract machines
- Dijkstra did this for the "THE system"
  - Few thousand lines vs 1 million lines in OS 360 (1K bugs)

#### Properties of this simple multiprogramming technique

- All virtual CPUs share same non-CPU resources
  - I/O devices the same
  - Memory the same
- Consequence of sharing:
  - Each thread can access the data of every other thread (good for sharing, bad for protection)
  - Threads can share instructions
    (good for sharing, bad for protection)
  - Can threads overwrite OS functions?
- This (unprotected) model is common in:
  - Embedded applications
  - Windows 3.1/Early Macintosh (switch only with yield)
  - Windows 95—ME (switch with both yield and timer)

#### **Protection**

- Operating System must protect itself from user programs
  - Reliability: compromising the operating system generally causes it to crash
  - Security: limit the scope of what processes can do
  - Privacy: limit each process to the data it is permitted to access
  - Fairness: each should be limited to its appropriate share of system resources (CPU time, memory, I/O, etc)
- It must protect User programs from one another
- Primary Mechanism: limit the translation from program address space to physical memory space
  - Can only touch what is mapped into process address space
- Additional Mechanisms:
  - Privileged instructions, in/out instructions, special registers
  - syscall processing, subsystem implementation

#### Third OS Concept: Process

- Process: execution environment with Restricted Rights
  - Address Space with One or More Threads
  - Owns memory (address space)
  - Owns file descriptors, file system context, ...
  - Encapsulate one or more threads sharing process resources
- Why processes?
  - Protected from each other!
  - OS Protected from them
  - Processes provides memory protection
  - Threads more efficient than processes (later)
- Fundamental tradeoff between protection and efficiency
  - Communication easier within a process
  - Communication harder between processes
- Application instance consists of one or more processes

### Single and Multithreaded Processes



- Threads encapsulate concurrency: "Active" component
- Address spaces encapsulate protection: "Passive" part
  - Keeps buggy program from trashing the system
- Why have multiple threads per address space?

# Fourth OS Concept: Dual Mode Operation

- Hardware provides at least two modes:
  - "Kernel" mode (or "supervisor" or "protected")
  - "User" mode: Normal programs executed
- What is needed in the hardware to support "dual mode" operation?
  - A bit of state (user/system mode bit)
  - Certain operations / actions only permitted in system/kernel mode
    - » In user mode they fail or trap
  - User → Kernel transition sets system mode AND saves the user PC
    - » Operating system code carefully puts aside user state then performs the necessary operations
  - Kernel → User transition clears system mode AND restores appropriate user PC
    - » return-from-interrupt

# User/Kernel (Privileged) Mode



### Simple Protection: Base and Bound (B&B)



# Simple Protection: Base and Bound (B&B)



#### Another idea: Address Space Translation

• Program operates in an address space that is distinct from the physical memory space of the machine



### A simple address translation with Base and Bound



# Tying it together: Simple B&B: OS loads process



# Simple B&B: OS gets ready to execute process



### Simple B&B: User Code Running



# 3 types of Mode Transfer

#### Syscall

- Process requests a system service, e.g., exit
- Like a function call, but "outside" the process
- Does not have the address of the system function to call
- Like a Remote Procedure Call (RPC) for later
- Marshall the syscall id and args in registers and exec syscall

#### Interrupt

- External asynchronous event triggers context switch
- e. g., Timer, I/O device
- Independent of user process

#### Trap or Exception

- Internal synchronous event in process triggers context switch
- e.g., Protection violation (segmentation fault), Divide by zero, ...

# Conclusion: Four fundamental OS concepts

#### Thread

- Single unique execution context
- Program Counter, Registers, Execution Flags, Stack
- Address Space with Translation
  - Programs execute in an *address space* that is distinct from the memory space of the physical machine

#### Process

- An instance of an executing program is a process consisting of an address space and one or more threads of control
- Dual Mode operation/Protection
  - Only the "system" has the ability to access certain resources
  - The OS and the hardware are protected from user programs and user programs are isolated from one another by controlling the translation from program virtual addresses to machine physical addresses