Example: Let *X* denote the number of flaws in a 1 inch length of copper wire. The probability mass function of *X* is presented in the following table.

- (1) Find the mean and variance of X.
- (2) One hundred wires are sampled from this population. What is the distribution of the sample mean (\overline{X}) of the flaws per wire?
- (3) What is the probability that the average number of flaws per wire in this sample is less than 0.5?

X	P(X=x)
0	0.48
1	0.39
2	0.12
3	0.01

Solution:

(1) The population mean and the population varance can be calculated as:

$$\mu = \sum_{i=1}^{4} x_i f(x_i) = 0.66; \ \sigma^2 = \sum_{i=1}^{4} (x_i - \mu)^2 f(x_i) = 0.5244$$

(2) Let $X_1, X_2, ..., X_{100}$ denote the number of flaws in the 100 wires sampled from the population. According to the central limit theorem, we have,

$$\bar{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right) = N(0.66, 0.005244)$$

(3)
$$P[\bar{X} < 0.5] = P\left[\frac{\bar{X} - 0.66}{\sqrt{0.005244}} < \frac{0.5 - 0.66}{\sqrt{0.005244}}\right] = P[Z < -2.21] = 0.0136$$

What is
$$P[X < 0.5]$$
? $P[X < 0.5] = P[X = 0] = 0.48$

Confidence interval: A $100(1-\alpha)\%$ confidence interval for a parameter θ is a random interval $[L_1, L_2]$ such that $P[L_1 \le \theta \le L_2] = 1-\alpha$, regardless of the value of θ . (typical value of $\alpha = 0.05, 0.01$).

Meaning of a confidence interval:

Example: $\theta = \mu$, $\alpha = 0.05$, $L_1 = 1.45$, $L_2 = 1.57$, the 95% confidence interval of the population mean μ is

$$P[1.45 \le \mu \le 1.57] = 0.95$$

Based on the given samples, we are 95% sure the true value of μ is within the interval [1.45, 1.57]

Confidence interval of the mean: variance known

Let $X_1, X_2, ..., X_n$ be a random sample of size n from a distribution X with mean μ and variance σ^2 . Find the 95% confidence interval on *mean* when the *variance* of the random variable is given.

From the central limit theorem, when the sample size n is large, we have,

$$\bar{X} \sim N(\mu, \frac{\sigma^2}{n})$$
, and $Z = \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \sim N(0, 1)$

From the z-table, we have:

$$P[-1.96 \le Z \le 1.96] = 0.95$$

For the 95% interval, we have,

$$P\left[-1.96 \le \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \le 1.96\right] = 0.95 \Rightarrow P\left[-\frac{1.96\sigma}{\sqrt{n}} \le \overline{X} - \mu \le \frac{1.96\sigma}{\sqrt{n}}\right] = 0.95$$
$$\Rightarrow P\left[-\overline{X} - \frac{1.96\sigma}{\sqrt{n}} \le -\mu \le -\overline{X} + \frac{1.96\sigma}{\sqrt{n}}\right] = 0.95$$
$$\Rightarrow P\left[\overline{X} - \frac{1.96\sigma}{\sqrt{n}} \le \mu \le \overline{X} + \frac{1.96\sigma}{\sqrt{n}}\right] = 0.95$$

i.e.,
$$L_1 = \bar{X} - \frac{1.96\sigma}{\sqrt{n}}$$
, $L_2 = \bar{X} + \frac{1.96\sigma}{\sqrt{n}}$, the 95% confidence interval of μ is $[\bar{X} - \frac{1.96\sigma}{\sqrt{n}}, \bar{X} + \frac{1.96\sigma}{\sqrt{n}}]$

Confidence interval of the mean: variance known

Let $X_1, X_2, ..., X_n$ be a random sample of size n from a distribution X with mean μ and variance σ^2 . The 95% confidence interval on *mean* when the *variance* of the random variable is given is:

$$[\bar{X} - \frac{1.96\sigma}{\sqrt{n}}, \bar{X} + \frac{1.96\sigma}{\sqrt{n}}]$$

The conditions to use this formula:

- (1) The population variance is known
- (2) When the population follows a normal distribution, the sample size does not need to be large
- (3) Otherwise, the sample size n need to be large enough, i.e., n > 30

TABLE V Cumulative distribution: Standard normal

77	$F_{\mathbf{Z}}(z) = P[\mathbf{Z} \leq z]$									
z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.00	
-3.4	0.0003	0.0003	0.0003	0.0003	0.0003	0.00-		0.07	0.08	0.09
-3.3	0.0005	0.0005	0.0005	0.0004	0.0003	0.0003	0.0003	0.0003	0.0003	0.0002
-3.2	0.0007	0.0007	0.0006	0.0006	0.0004	0.0004	0.0004	0.0004	0.0004	0.0002
-3.1	0.0010	0.0009	0.0009	0.0009	0.0008	0.0006	0.0006	0.0005	0.0005	0.0003
-3.0	0.0013	0.0013	0.0013	0.0012	0.0008	8000.0	0.0008	8000.0	0.0007	0.0003
		0.0010				0.0011	0.0011	0.0011	0.0010	0.0007
-2.9	0.0019	0.0018	0.0018	0.0017	0.0016	0.0016	0.0015			
-2.8	0.0026	0.0025	0.0024	0.0023	0.0023	0.0022	0.0013	0.0015	0.0014	0.0014
-2.7	0.0035	0.0034	0.0033	0.0032	0.0031	0.0030	0.0021	0.0021	0.0020	0.0019
-2.6	0.0047	0.0045	0.0044	0.0043	0.0041	0.0040		0.0028	0.0027	0.0026
-2.5	0.0062	0.0060	0.0059	0.0057	0.0055	0.0054	0.0039	0.0038	0.0037	0.0036
-2.4	0.0082	0.0080	0.0078	0.00==			0.0052	0.0051	0.0049	0.0048
-2.4 -2.3	0.0082	0.0080		0.0075	0.0073	0.0071	0.0069	0.0068	0.0066	0.0064
-2.3 -2.2	0.0107	0.0104	0.0102	0.0099	0.0096	0.0094	0.0091	0.0089	0.0087	0.0084
			0.0132	0.0129	0.0125	0.0122	0.0119	0.0116	0.0113	0.0084
-2.1	0.0179	0.0174	0.0170	0.0166	0.0162	0.0158	0.0154	0.0150	0.0113	0.0110
-2.0	0.0228	0.0222	0.0217	0.0212	0.0207	0.0202	0.0197	0.0192	0.0148	0.0143
-1.9	0.0287	0.0281	0.0274	0.0268	0.0262	0.0256				
-1.8	0.0359	0.0351	0.0344	0.0336	0.0329	0.0256	0.0250	0.0244	0.0239	0.0233
-1.7	0.0446	0.0436	0.0427	0.0330	0.0329	0.0322	0.0314	0.0307	0.0301	0.0294
-1.6	0.0548	0.0537	0.0526	0.0516		0.0401	0.0392	0.0384	0.0375	0.0367
-1.5	0.0668	0.0655	0.0520		0.0505	0.0495	0.0485	0.0475	0.0465	0.0455
		0.0055	0.0043	0.0630	0.0618	0.0606	0.0594	0.0582	0.0571	0.0559
-1.4	0.0808	0.0793	0.0778	0.0764	0.0749	0.0735	0.0721	0.0708	0.0694	0.0681
-1.3	0.0968	0.0951	0.0934	0.0918	0.0901	0.0885	0.0869	0.0853	0.0838	0.0823
-1.2	0.1151	0.1131	0.1112	0.1093	0.1075	0.1056	0.1038	0.1020	0.1003	0.0823
-1.1	0.1357	0.1335	0.1314	0.1292	0.1271	0.1251	0.1230	0.1210	0.1190	0.0382
-1.0	0.1587	0.1562	0.1539	0.1515	0.1492	0.1469	0.1446	0.1423	0.1401	0.1176
-0.9	0.1041									
-0.8	0.1841	0.1814	0.1788	0.1762	0.1736	0.1711	0.1685	0.1660	0.1635	0.1611
-0.7	0.2119	0.2090	0.2061	0.2033	0.2005	0.1977	0.1949	0.1921	0.1894	0.186°
-0.6	0.2420	0.2389	0.2358	0.2327	0.2296	0.2266	0.2236	0.2206	0.2177	0.2148
	0.2743	0.2709	0.2676	0.2643	0.2611	0.2578	0.2546	0.2514	0.2483	0.245
-0.5	0.3085	0.3050	0.3015	0.2981	0.2946	0.2912	0.2877	0.2843	0.2810	0.277
-0.4	0.3446	0.3409					0.3228	0.3192	0.3156	0.312
-0.3	0.3821		0.3372	0.3336	0.3300	0.3264				0.312
-0.2	0.4207	0.3783	0.3745	0.3707	0.3669	0.3632	0.3594	0.3557	0.3520	
-0.1	0.4602	0.4168	0.4129	0.4090	0.4052	0.4013	0.3974	0.3936	0.3897	0.3859
-0.0	0.5000	0.4562	0.4522	0.4483	0.4443	0.4404	0.4364	0.4325	0.4286	0.424
_	0.5000	0.4960	0.4920	0.4880	0.4840	0.4801	0.4761	0.4721	0.4681	0.464

Confidence interval of the mean: variance known

95% Confidence interval:
$$P\left[\bar{X} - \frac{1.96\sigma}{\sqrt{n}} \le \mu \le \bar{X} + \frac{1.96\sigma}{\sqrt{n}}\right] = 0.95$$

Example: A new treatment is investigated to prolong the average survival time without affecting variability. Denote the survival time under the new treatment by X. We are assuming that X is normally distributed with $\sigma^2 = 9$ and μ unknown. When an experiment is conducted, the following result is observed: (months)

8.0, 13.6, 13.2, 13.6, 12.5, 14.2, 14.9, 14.5, 13.4, 8.6, 11.5, 16.0, 14.2, 19.0, 17.9, 17.0

Find the 95% confidence interval of μ .

It is easy to calculate that \bar{X} =13.88. We also know: n=16, $\sigma=3$. Then,

$$L_1 = \bar{X} - \frac{1.96\sigma}{\sqrt{n}} = 13.88 - 1.96 \times \frac{3}{4} = 12.41; L_2 = \bar{X} + \frac{1.96\sigma}{\sqrt{n}} = 15.35$$

i.e., $P[12.41 \le \mu \le 15.35] = 95\%$

This means, there is 95% chance that true μ lies within the interval [12.41, 15.35]

Q: How does the confidence interval change when the sample size n changes?

Q: If α value of 0.01 is used, based on the same samples, how will the interval change? Will it get wider or narrower?

Confidence interval of the mean: variance known

Practice example: Let $X_1, X_2, ..., X_n$ be a random sample of size n from a distribution X with mean μ and variance σ^2 . Find the 99% confidence interval on *mean* when the *variance* of the random variable is given.

From the central limit theorem, when the sample size is large, we have, $\overline{X} \sim N(\mu, \frac{\sigma^2}{n})$, and $Z = \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \sim N(0, 1)$ From the z-table, we have:

$$P[-2.58 \le Z \le 2.58] = 0.99$$

For the 99% interval, we have,

$$P\left[-2.58 \le \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \le 2.58\right] = 0.99 \Rightarrow P\left[-\frac{2.58\sigma}{\sqrt{n}} \le \bar{X} - \mu \le \frac{2.58\sigma}{\sqrt{n}}\right] = 0.99$$
$$\Rightarrow P\left[-\bar{X} - \frac{2.58\sigma}{\sqrt{n}} \le -\mu \le -\bar{X} + \frac{2.58\sigma}{\sqrt{n}}\right] = 0.99$$
$$\Rightarrow P\left[\bar{X} - \frac{2.58\sigma}{\sqrt{n}} \le \mu \le \bar{X} + \frac{2.58\sigma}{\sqrt{n}}\right] = 0.99$$

i.e.,
$$L_1 = \bar{X} - \frac{2.58\sigma}{\sqrt{n}}$$
, $L_2 = \bar{X} + \frac{2.58\sigma}{\sqrt{n}}$, the 99% confidence interval of μ is $[\bar{X} - \frac{2.58\sigma}{\sqrt{n}}, \bar{X} + \frac{2.58\sigma}{\sqrt{n}}]$

Interval Estimation of Variance

Definition of sample variance:

Let $X_1, X_2, ..., X_n$ be a random sample of size n from the distribution of X with mean μ and variance σ^2 . Then the statistic:

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$$

Is called the *sample variance*. Where $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ is the *sample mean*. s^2 is an unbiased estimator of the population variance σ^2 .

Theorem 8.1.1: Distribution of $(n-1)\frac{s^2}{\sigma^2}$

Let $X_1, X_2, ..., X_n$ be a random sample of size n from a normal distribution with mean μ and variance σ^2 . The random variable

$$\frac{(n-1)s^2}{\sigma^2} = \frac{\sum_{i=1}^{n} (X_i - \bar{X})^2}{\sigma^2} \sim X_{n-1}^2$$

i.e., it has a chi-squared distribution with n-1 degree of freedom.

Theorem 8.1.1: Distribution of $(n-1)\frac{s^2}{\sigma^2}$

Let $X_1, X_2, ..., X_n$ be a random sample of size n from a normal distribution with mean μ and variance σ^2 . The random variable

$$\frac{(n-1)s^2}{\sigma^2} = \frac{\sum_{i=1}^{n} (X_i - \bar{X})^2}{\sigma^2} \sim X_{n-1}^2$$

Proof: Let $W = \sum_{i=1}^{n} \frac{(X_i - \mu)^2}{\sigma^2}$. We already proved that $W \sim X_n^2$

$$W = \sum_{i=1}^{n} \frac{(X_i - \mu)^2}{\sigma^2} = \sum_{i=1}^{n} \frac{((X_i - \bar{X}) + (\bar{X} - \mu))^2}{\sigma^2} = \sum_{i=1}^{n} \left(\frac{(X_i - \bar{X}) + (\bar{X} - \mu)}{\sigma}\right)^2$$

$$= \sum_{i=1}^{n} \left(\frac{X_i - \bar{X}}{\sigma}\right)^2 + \sum_{i=1}^{n} \left(\frac{\bar{X} - \mu}{\sigma}\right)^2 + 2\left(\frac{\bar{X} - \mu}{\sigma}\right) \sum_{i=1}^{n} \frac{X_i - \bar{X}}{\sigma}$$

$$= \sum_{i=1}^{n} \left(\frac{X_i - \bar{X}}{\sigma}\right)^2 + \sum_{i=1}^{n} \left(\frac{\bar{X} - \mu}{\sigma}\right)^2 = \sum_{i=1}^{n} \left(\frac{X_i - \bar{X}}{\sigma}\right)^2 + \frac{n(\bar{X} - \mu)^2}{\sigma^2}$$

$$= \sum_{i=1}^{n} \left(\frac{X_i - \bar{X}}{\sigma}\right)^2 + \left(\frac{\bar{X} - \mu}{\sigma/\sqrt{n}}\right)^2 = Y + Y_1$$

Interval Estimation of Variance

Proof: (continued)

$$W = \sum_{i=1}^{n} \left(\frac{X_i - \bar{X}}{\sigma} \right)^2 + \left(\frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \right)^2 = Y + Y_1$$

From the central limit theorem, we have, $\frac{\bar{X}-\mu}{\sigma/\sqrt{n}} \sim N(0,1)$. Then, $Y_1 = \left(\frac{\bar{X}-\mu}{\sigma/\sqrt{n}}\right)^2 \sim X_1^2$

The moment generating function of W is $m_W(t) = (1-2t)^{-n/2}$

The moment generating function of Y_1 is $m_{Y_1}(t) = (1-2t)^{-1/2}$

Then, under the condition that S^2 and \bar{X} are independent (this is true for normal distribution), we have,

$$m_W(t) = m_Y(t)m_{Y_1}(t) \Rightarrow m_Y(t) = (1 - 2t)^{-(n-1)/2}$$

Hence,

$$Y = \sum_{i=1}^{n} \left(\frac{X_i - \bar{X}}{\sigma} \right)^2 \sim X_{n-1}^2$$