AIR CONTAMINANTS DATA

Emission	Source	Air Contaminant	Emission Rates *		
Point No. (1)	Name (2)	Name (3)	lb/hr	TPY**	

EMISSION SOURCES - MAXIMUM ALLOWABLE EMISSION RATES

Permit Number 18978/PSD-TX-752M3

This table lists the maximum allowable emission rates and all sources of air contaminants on the applicant's property covered by this permit. The emission rates shown are those derived from information submitted as part of the application for permit and are the maximum rates allowed for these facilities. Any proposed increase in emission rates may require an application for a modification of the facilities covered by this permit.

Emission	Source	Air Contaminant	<u>Emissio</u>	Emission Rates (4)		
Point No. (1)	Name (2)	Name (3)	lb/hr	<u>TPY</u> **		
QE1001B	Furnace 1	NO_x	30.30	132.71		
-		CO	8.17	35.78		
		SO ₂	0.30	1.31		
		VOC	0.70	3.00		
		PM_{10}	1.00	3.50		
QE1002B	Furnace 2	NO_x	30.30	132.71		
		CO	8.17	35.78		
		SO ₂	0.30	1.31		
		VOC	0.70	3.00		
		PM ₁₀	1.00	3.50		
QE1002B	Furnace 3	NO_x	30.30	132.71		
		CO	8.17	35.78		
		SO_2	0.30	1.31		
		VOC	0.70	3.00		
		PM_{10}	1.00	3.50		

Emission	Source	Air Contaminant	<u>Emissio</u>	Emission Rates *			
Point No. (1)	Name (2)	Name (3)	lb/hr	TPY**			
QE1004B	Furnace 4	NO _x CO SO ₂ VOC PM ₁₀	30.30 8.17 0.30 0.70 1.00	132.71 35.78 1.31 3.00 3.50			
QE1005B	Furnace 5	$\begin{array}{c} NO_{x} \\ CO \\ SO_{2} \\ VOC \\ PM_{10} \end{array}$	30.30 8.17 0.30 0.70 1.00	132.71 35.78 1.31 3.00 3.50			
QE1006B	Furnace 6	NO_x CO SO_2 VOC PM_{10}	30.30 8.17 0.30 0.70 1.00	132.71 35.78 1.31 3.00 3.50			
QE1007B	Furnace 7	NO_x CO SO_2 VOC PM_{10}	30.30 8.17 0.30 0.70 1.00	132.71 35.78 1.31 3.00 3.50			
QE1008B	Furnace 8	$\begin{array}{c} NO_{x} \\ CO \\ SO_{2} \\ VOC \\ PM_{10} \end{array}$	30.30 8.17 0.30 0.70 1.00	132.71 35.78 1.31 3.00 3.50			
QE1009B	Furnace 9	NO _x	31.75	139.10			

Emission	Source	Air (Contaminant	Emission Rates *			
Point No. (1)	Name (2)		Name (3)	lb/hr	TPY**		
			CO	12.75	55.80		
			SO ₂	0.36	1.56		
			VOC	0.83	3.63		
			PM ₁₀	2.10	6.57		
QE5802UA	Boiler A		NO_x	22.50	98.55		
•			CO	7.90	34.60		
			SO ₂	0.14	0.61		
			VOC	0.34	1.49		
			PM ₁₀	0.34	1.49		
QE5802UB	Boiler B		NO_x	22.50	98.55		
			CO	7.90	34.60		
			SO ₂	0.14	0.61		
			VOC	0.34	1.49		
			PM_{10}	0.34	1.49		
QECOMP1	Diesel Compressor		NO _x (PSD)	6.10	6.70		
	·		CO (PSD)	0.10	0.10		
			SO ₂	0.10	0.10		
			VOC	0.10	0.20		
			PM ₁₀ (PSD)	0.10	0.10		
QECOMP2	Diesel Compressor		NO _x (PSD)	6.10	6.70		
			CO (PSD)	0.10	0.10		
			SO_2	0.10	0.10		
			VOC	0.10	0.20		
			PM ₁₀ (PSD)	0.10	0.10		
QECOMP3	Diesel Compressor		NO_x	2.33	6.61		
-	•	CO	0.50	1.42			
		SO_2	0.15	0.44			

Emission	Source Air C		Contaminant	Emission Rates *			
Point No. (1)	Name (2)		Name (3) 0.19 0.17	lb/hr 0.54 0.47	TPY**		
QE6410F	Pyrolysis Gasoline Tar	ık	VOC	2.50	5.90		
QE6411F	Pyrolysis Fuel Oil Tank	<	VOC	0.02	0.09		
QE2410F	Wash Oil Drum		VOC	0.60	0.07		
QE3416F	Methanol Tank		VOC	19.20	0.34		
QE1416F	Decoking Drum		CO (PSD) PM ₁₀ (PSD)	519.00 4.14	101.60 0.90		
QE7801U	Cooling Tower Fugitive	es (4)	VOC	7.14	31.27		
QE3418F	MAPD Decoke Pot		CO (PSD)	17.30	1.45		
QE3050B	ARU Flare	NO _x SO ₂	CO (PSD) (PSD) 0.10 VOC	15.10 2.90 0.10 12.50	6.00 1.10 1.10		
QE8050B	Elevated Flare	VOC	CO (PSD) NO _x (PSD) SO ₂ 117.00	187.00 58.00 10.30 1.60	34.20 20.10 0.30		
QE7412F	Wash Oil Tank		VOC	0.67	0.13		
QELOAD	Organic Loading		VOC	1.40	1.24		
QESTORE	Organic Storage		VOC	0.98	1.01		
QE8001A	Wastewater System		VOC	3.64	14.66		

Emission	Source	Air (Contaminant	Emission	Rates *
Point No. (1)	Name (2)		Name (3)	lb/hr	TPY**
QELAB	Analyzers and Samplin	ng	VOC	7.03	2.23
QEFUG	Process Fugitives (4)		VOC	14.6	64.00
QEANALYZ2	Analyzer's Control Dev (Thermal Oxidizer)	vices	VOC CO (PSD) NO _x (PSD)	0.01 0.01 0.01	0.01 0.01 0.01
QEZIMPRO	Zimpro Vent		VOC (6)	4.50	3.80
QEUNIT	Dock Thermal Oxidizer	· (5)	NO _x (PSD) CO (PSD) VOC PM ₁₀ (PSD)	10.70 7.70 13.80 0.06	4.70 6.20 4.10 0.03
PW7614JA	Emergency Engine	CO VOC SO ₂ PM ₁₀	NO _x 2.68 0.34 3.94 0.34	11.69 1.17 0.15 1.73 0.15	5.12
PW7605JB	Emergency Engine	CO VOC SO ₂ PM ₁₀	5.34	15.84 1.59 0.20 2.34 0.20	6.94
PW7605JC	Emergency Engine	CO VOC SO ₂ PM ₁₀	NO _x 3.63 0.47 5.34 0.46	15.84 1.59 0.20 2.34 0.20	6.94

- (1) Emission point identification either specific equipment designation or emission point number (EPN) from a plot plan.
- (2) Specific point source names. For fugitive sources use area name or fugitive source name.
- (3) NO_x total oxides of nitrogen
 - CO carbon monoxide
 - SO₂ sulfur dioxide
 - VOC volatile organic compounds as defined in Title 30 Texas Administrative Code § 101.1
 - PM₁₀ particulate matter (PM) less than 10 microns in diameter. Where PM is not listed, it shall be assumed that no PM greater than 10 microns is emitted.
- (4) Fugitive emissions are an estimate only and should not be considered as a maximum allowable emission rate.
- (5) The dock thermal oxidizer is owned and operated by Millenium Petrochemicals, Inc., under Permit Number 4751.
- (6) This pre-control emission rate applies until July 12, 2005. After this date, ZIMPRO Vent emissions will be sent to either Boiler A (EPN QE5802UA) or Boiler B (EPN QE5802UBA) for control at a minimum of 98 percent DRE to comply with Title 40 Code of Federal Regulations § 63.1100.

*	Emission	rates	are	based	on	and	the	tacilities	are	limited	by	the	tollowing	maximum	operating
	schedule:														

Hrs/day	_ Days/weel	<weeks< th=""><th>s/year (</th><th>or Hrs/year _</th><th>8,760</th></weeks<>	s/year (or Hrs/year _	8,760
-	-		-	-	

** Compliance with annual emission limits is based on a rolling 12-month period.

Dated September 14, 2004