TD N°2- correction Traitement d'image

Exercice 1:

La matrice ci-dessous représente une image en niveaux de gris.

• Calculer les images résultantes de la convolution de cette image avec les masques (a) à (f) représentés ci-dessous.

I*(a)= I*(b)=

60	40	30	30	40	40	40	30	0
40	0	-10	-10	0	0	10	0	-30
40	-10	-30	-30	-20	-20	0	-10	-40
40	-20	-30	-10	0	0	20	0	-40
20	-30	-10	10	0	0	20	0	-40
10	-20	0	0	-10	0	10	-10	-40
30	10	20	0	-10	0	10	10	-20
30	0	20	0	-10	10	20	0	-40
-10	-40	-20	-40	-40	-10	-20	-50	-50

0	40	50	50	40	40	40	40	40
-40	0	10	10	0	0	0	20	40
-40	0	0	-10	-20	-20	-30	0	40
-40	10	10	0	0	0	-20	0	40
-50	0	10	10	10	0	-20	0	40
-40	-10	-10	0	10	0	-20	-10	30
-10	10	0	10	10	0	-10	0	40
-10	10	-10	20	20	0	0	0	20
-40	-20	-50	-30	-10	-30	-30	-20	-10

<i>I*(</i>	c)-	$I^*(d) =$
1 (C)=	$I^{-}(u)-$

100	60	70	-10	0	0	0	10	40
60	0	20	40	60	60	50	60	10
60	10	30	-40	-30	-30	-50	50	0
60	20	-40	-10	0	0	-30	60	0
80	50	-30	-10	-10	0	-30	60	0
10	-20	-20	80	-10	0	-20	70	10
20	-20	-30	-30	-20	0	-20	-30	0
100	-30	60	60	-20	-10	-20	70	110
120	0	0	90	10	20	100	10	-50

40	60	40	20	0	0	0	10	10
0	0	20	40	60	60	50	30	10
0	10	0	-10	-30	-30	-20	-10	0
0	-10	-10	-10	0	0	0	0	0
20	20	0	-10	-10	0	0	0	0
-20	-20	10	20	20	0	10	10	10
-10	-20	-30	-30	-20	0	-20	-30	-30
10	30	30	30	10	-10	10	40	50
30	30	30	30	40	50	40	10	-20

 $I^*(e)=$ $I^*(f)=$

40	0	10	-10	0	0	0	10	10
60	0	20	-20	0	0	-10	30	10
60	10	0	-10	0	0	-20	50	0
60	20	-10	-10	0	0	-30	60	0
50	20	-30	20	-10	0	-30	60	0
40	10	-20	20	-10	0	-20	40	10
50	-20	0	30	-20	0	-20	30	30
70	-30	0	30	-20	-10	10	10	20
60	-30	0	30	-20	-10	10	10	10

40	0	-10	-10	0	0	0	-10	-30
60	0	-20	-20	0	0	10	-10	-50
60	-10	-20	-10	0	0	20	-10	-60
60	-20	-30	-10	0	0	30	0	-60
50	-20	-10	0	-10	0	30	0	-60
40	-10	0	0	-10	0	20	0	-50
30	0	20	-10	-20	0	20	10	-50
30	-10	20	-10	-20	10	10	-10	-40
20	-10	20	-10	-20	10	10	-10	-30

Exercice 2:

L'image I de la figure 4 est une image en niveaux de gris de taille 8*8 pixels et dont les valeurs des niveaux de gris sont codées sur 4 bits. Cette image représente une forme rectangulaire sur un fond.

	0	1	2	3	4	5	6	7
0	13	13	12	12	12	11	11	11
1	13	12	12	12	11	11	11	10
2	12	12	8	7	6	5	10	10
3	12	12	7	6	5	4	10	10
4	12	11	6	5	4	3	10	9
5	11	11	5	4	3	2	9	9
6	11	11	10	10	10	9	9	9
7	11	10	10	10	9	9	9	8

Figure 4 : A gauche est représentée l'image I et à droite sont représentées les valeurs des niveaux de gris des pixels et leurs coordonnées

a) Représenter l'histogramme de cette image.

Niveau de gris	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Nombre de pixels	0	0	1	2	3	4	3	2	2	9	12	12	11	3	0	0

b) Donner la LUT correspondante à un étirement d'histogramme appliqué aux différentes valeurs de niveaux de gris.

On applique l'équation suivante : $lut(i) = \frac{15-0}{13-2}(i-2)$, avec $i \in [0,15]$

i	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Lut(i)	0	0	0	1	3	4	5	7	8	10	11	12	14	15	15	15

c) Soit H1 et H2 les filtres de convolution définis respectivement par les noyaux suivants :

$$H_1 = \begin{array}{|c|c|c|c|c|} \hline -1 & -1 & 0 \\ \hline -1 & 0 & 1 \\ \hline 0 & 1 & 1 \\ \hline \end{array}$$

$$H_2 = \frac{1}{10} \times \begin{array}{|c|c|c|c|c|c|} \hline 1 & 1 & 1 \\ \hline 1 & 2 & 1 \\ \hline 1 & 1 & 1 \\ \hline \end{array}$$

A quel type de filtres correspondent H1 et H2 ? H1 est un filtre passe-haut et H2 passe-bas.

Lequel de ces deux filtres faut-il utiliser pour réaliser une détection de contour sur l'image I ? le filtre H1 permet de détecter les contours.

Appliquer-le sur les pixels de coordonnées : (1,1), (2,2), (3,3), (4,4), (5,5), (6,6), (2,5), (5,2).

I*H1=

après saturation : min(valeur(pixel), 15) ou max (valeur(pixel), 0)

38	23	23	23	21	21	21	-1
23	-7	-10	-12	-14	-8	-3	-23
23	-10	-16	-15	-16	-4	3	-21
23	-12	-15	-8	-8	7	10	-21
21	-14	-16	-8	-8	8	10	-21
21	-8	-4	7	8	17	12	-19
21	-3	3	10	10	12	6	-19
-1	-23	-21	-21	-21	-19	-19	-27

15	15	15	15	15	15	15	0
15	0	0	0	0	0	0	0
15	0	0	0	0	0	3	0
15	0	0	0	0	7	10	0
15	0	0	0	0	8	10	0
15	0	0	7	8	15	12	0
15	0	3	10	10	12	6	0
0	0	0	0	0	0	0	0

Que constatez-vous ? Quel filtre faudrait-il associer à H1 pour améliorer le résultat ?

Exercice 3:

Soit l'image *I* suivante :

0	0	0	2	10	18	20	20
62	122	79	95	0	122	79	20
88	255	12	35	200	255	12	27
50	94	100	56	155	94	100	37

50	99	150	11	37	99	150	28
50	122	79	95	0	122	79	30
38	255	12	35	200	255	12	58
17	54	100	60	80	140	108	56

1. Préciser les caractéristiques d'un filtre médian. Donner un cas d'utilisation de ce filtre.

Le filtre médian est un filtre passe-bas non linéaire. Il est utilisé pour réduire le bruit, notamment le bruit ponctuel, ou ajouter du flou à l'image.

2. Déterminer l'image améliorée Im en appliquant le filtre Médian sur le voisinage suivant :

$$V = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

Im=

0	0	0	2	2	18	20	20
62	79	79	35	95	<i>7</i> 9	20	20
62	94	79	56	155	122	79	20
50	99	94	56	94	100	94	28
50	99	99	56	37	99	99	30
50	99	95	35	95	99	79	30
38	54	79	60	80	140	79	30
17	54	54	60	80	108	56	56

3. On considère le filtre L défini par le noyau de convolution suivant correspondant à l'opérateur Laplacien :

0	-1	0
-1	4	-1
0	-1	0

Année: 2020-2021

Pr. N.ABOUTABIT

i) Préciser s'il s'agit d'un filtre passe-haut ou passe-bas. Le filtre L est un filtre passe-haut.

ii) Appliquer ce filtre sur l'image améliorée Im.

-62	-79	-81	-29	-107	-29	22	40
107	81	123	-92	109	61	-118	20
42	57	-7	-101	253	75	60	-47
-11	59	43	-76	28	-9	70	-32
1	49	52	-3	-196	61	94	-37
13	98	68	-166	129	-17	9	-19
31	-54	53	-14	-55	194	11	-45
-24	91	23	46	72	156	-19	138

iii) Soit *Id*, l'opérateur de convolution identité (i.e qui transforme l'image en elle-même). Donner une expression de Id sous forme de noyau de convolution 3×3 .

$$Id =$$

0	0	0
0	1	0
0	0	0

- iv) On considère le filtre F = Id + L
 - (1) Donner l'expression du filtre F.

$$F =$$

0	-1	0
-1	5	-1
0	-1	0

(2) Décrire l'effet du filtre F.

Exercice 4:

Soient les 3 masques de convolution suivants :

$$H1 = \frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} H2 = \begin{bmatrix} 1 & 0 & -1 \\ 1 & 0 & -1 \\ 1 & 0 & -1 \end{bmatrix} H3 = \begin{bmatrix} 0 & -1 & 0 \\ -1 & 4 & -1 \\ 0 & -1 & 0 \end{bmatrix}$$

Sur papier, calculez la convolution de la matrice E avec chacun de ces filtres :

$$E = \begin{bmatrix} 0 & 2 & 3 & 4 & 1 \\ 1 & 8 & 9 & 7 & 2 \\ 2 & 10 & 7 & 8 & 0 \\ 2 & 9 & 7 & 9 & 3 \\ 1 & 2 & 0 & 2 & 3 \end{bmatrix}$$

E*H1=

1	3	4	3	2
3	5	6	5	2
4	6	8	6	3
3	4	6	4	3
2	2	3	3	2

E*H2=

-10	-11	-1	9	11
-20	-16	1	16	19
-27	-18	3	18	24
-21	-9	2	8	19
-11	-4	0	1	11

E*H3=

-3	-3	-3	5	-2
-6	10	11	5	0
-5	14	-6	9	-13
-4	15	3	16	0
0	-2	-11	-4	7

Quelles conditions aux limites peut-on utiliser?

- Mettre à zéro
- Réaliser une convolution partielle

A votre avis, quels sont les impacts de ces filtres?

H1: lisse l'image

H2 et H3 : détectent les contours

Exercice 5:

Soit l'image suivante :

0	140	51	191	140	51
0	51	191	140	140	51
51	140	20	20	140	0
51	140	20	20	20	140
0	140	191	0	20	51
0	10	51	10	140	51

Esquissez l'histogramme de cette image.

Convoluez cette image avec les filtres suivants :

$$\frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}, \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix}$$

21	60	90	110	95	45
30	79	111	125	110	54
49	84	73	68	79	51
54	95	70	36	49	54
33	85	85	45	45	49
10	38	48	40	48	38

191	242	140	38	-229	-280
331	211	20	158	-249	-420
331	129	-151	69	11	-300
420	129	-380	-51	151	-180
290	211	-260	-82	212	-180
150	242	-140	-82	92	-160

Que font ces filtres ?

Le premier filtre est de type gaussien, il est donc un filtre passe bas qui lisse l'image.

Le second filtre est de type passe haut, il sert à détecter les discontinuités dans l'image et donc les contours.

8