SEMAINE DU 05/10 AU 10/10

1 Cours

Complexes

Corps des nombres complexes Partie réelle, partie imaginaire, module, conjugué et interprétation géométrique.

Groupe \mathbb{U} des nombres complexes de module 1 Définition, notation $e^{i\theta}$, relations d'Euler et formule de Moivre, argument et interprétation géométrique, racines $n^{\text{èmes}}$ de l'unité et d'un complexe non nul.

Equations du second degré Racines carrées d'un complexe, résolution d'une équation du second degré à coefficients complexes, somme et produit des racines.

Trigonométrie Linéarisation. Développement. Sommes trigonométriques.

Géométrie Angle de vecteurs et complexes. Expression complexe des similitudes.

Exponentielle complexe Définition et propriétés. $e^z = e^{z'} \iff z - z' \in 2i\pi\mathbb{Z}$.

2 Méthodes à maîtriser

•
$$z \in \mathbb{R} \iff \overline{z} = z, z \in i\mathbb{R} \iff \overline{z} = -z, z \in \mathbb{U} \iff \overline{z} = \frac{1}{z}$$
.

•
$$z \in \mathbb{R} \iff \arg z \equiv 0[\pi], z \in i\mathbb{R} \iff \arg z \equiv \frac{\pi}{2}[\pi].$$

- Extraction de racines $n^{\text{èmes}}$ par méthode exponentielle.
- Extraction de racines carrées, résolution d'équations du second degré à coefficients dans C.
- Résoudre dans \mathbb{C} une équation du type $e^z = a$.
- Passage en complexe pour le calcul de sommes trigonométriques.
- Traduire l'alignement ou la perpendicularité via les complexes.

3 Questions de cours

Equations du second degré Résoudre une équation du second degré à coefficients dans C au choix de l'examinateur.

Exponentielle complexe Résoudre une équation du type $e^z = a$ au choix de l'examinateur.

Extraction de racines Résoudre une équation du type $z^n = a$ au choix de l'examinateur.

BCCP 84

- 1. Donner la définition d'un argument d'un nombre complexe non nul (on ne demande ni l'interprétation géométrique, ni la démonstration de l'existence d'un tel nombre).
- 2. Soit $n \in \mathbb{N}^*$. Donner, en justifiant, les solutions dans \mathbb{C} de l'équation $z^n = 1$ et préciser leur nombre.
- 3. Soit $n \in \mathbb{N}^*$. Résoudre l'équation $(z+i) = (z-i)^n$ d'inconnue $z \in \mathbb{C}$. Vérifier que ces solutions sont réelles.

BCCP 89 Soit $n \in \mathbb{N}$ tel que $n \ge 2$. On pose $z = e^{\frac{2i\pi}{n}}$.

- 1. On se donne $k \in [1, n-1]$. Déterminer le module et un argument du complexe z^k-1 .
- 2. On pose S = $\sum_{k=0}^{n-1} |z^k 1|$. Montrer que S = $\frac{2}{\tan \frac{\pi}{2n}}$.