

Combining Reinforcement Learning and Search for Cooperative Trajectory Planning Timo Klein

ANGEWANDTE TECHNISCH-KOGNITIVE SYSTEME Institut für angewandte Informatik und formale Beschreibungsverfahren, Forschungszentrum Informatik

25 13 25 7:53 PM 72°F

Cooperative Trajectory Planning

Motivation

Approach

Evaluation

Conclusion

Research Question

- Uniform sampling in 2D continuous action space is inefficient
- Goal: Increasing sample efficiency through focused sampling
- Method: Integrate learned knowledge into the search

Reinforcement Learning and Search

		Action space					
		Discrete	Continuous				
Number of	Single agent	 AlphaGo (Silver et al.) AlphaGo Zero (Silver et al.) AlphaZero (Silver et al.) MuZero (Schrittwieser et al.) SAVE (Hamrick et al.) Tactical Decision (Hoel et al.) 	 A0C (Moerland et al.) Continuous MuZero (Yang et al.) Sampled MuZero (Hubert et al.) 				
agents	Multi agent	 Multiplayer AlphaZero (Petosa et al.) 	■ This work				

Monte Carlo Tree Search (MCTS)

Selection

Expansion

Simulation

Backpropagation

Outcome Δ

Motivation

Approach

Evaluation

Conclusion

Concept: Guided MCTS

Selection

Expansion

Simulation

Backpropagation

Problem 1: Input Representation

Visual map

Agent trajectories

Trajectory of agent 1 relative to the ego agent *i*

Problem 2: Flexible Number of Agents

Problem 3: Constraints of Vehicle

- The support of a normal distribution is unbounded
- Sampled actions $u \sim \mathcal{N}(\mu, \sigma)$ can theoretically take any value
- Transformed distribution $a = c \cdot \tanh(u)$ enforces action bounds

Training

3. Train Network

10

2. Store data in replay buffer

Training procedure

4. Store updated parameters

 θ

 Generate training experiences

Motivation

Approach

Evaluation

Conclusion

Qualitative Evaluation (Scenario 06)

RL+MCTS vs Baseline

 \gg

Wall Clock Time

Scenario 06

Model	Iterations	Success	Wall clock		
RL+MCTS	100	0.99	2m43s		
Baseline	100	0.99	4s		

Scenario 08

Model	Iterations	Success	Wall clock
RL+MCTS	50	0.84	49s
Baseline	400	0.87	57s

Scenario 08 vs Scenario 06

Mixture Components (Scenario 08) No significant Multiple Mixture K > 1components Normal are needed - GMM 2 - GMM 3 0.8 GMM 4 Sucess rate 0.6 0.4 0.2-30 50 60 70 80 10 20 40 90 100 110 Episode \sum Motivation Approach **Evaluation** 15 Conclusion

Mixture Components

- Where do multiple components help?
- Sampling over whole longitudinal range helps avoid collisions!

Conclusion & Outlook

Conclusion

- Efficacy shown
- Moderate generalization
- Scenario dependent

Limitations

- Not efficient
- Hard to scale & tune
- No model learning

Future work

- Scale-up
- Variance scaling
- Integrating heuristics

Approach

Evaluation

Conclusion

Reference list

- Electrek.co (2021). Watch Tesla Full Self-Driving Beta navigate through the eye of the system in impressive video. https://electrek.co/2021/03/29/tesla-full-self-driving-beta-navigate-video/. Accessed 2021-08-17.
- Kurzer, K., Engelhorn, F., & Zöllner, J. M. (2018, November). Decentralized cooperative planning for automated vehicles with continuous monte carlo tree search. In 2018 21st International Conference on Intelligent Transportation Systems (ITSC) (pp. 452-459). IEEE.
- Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G., ... & Hassabis, D. (2016). Mastering the game of Go with deep neural networks and tree search. nature, 529(7587), 484-489.
- Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., ... & Lillicrap, T. (2017). Mastering chess and shogi by self-play with a general reinforcement learning algorithm. *arXiv preprint arXiv:1712.01815*.
- Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., ... & Hassabis, D. (2017). Mastering the game of go without human knowledge. nature, 550(7676), 354-359.
- Schrittwieser, J., Antonoglou, I., Hubert, T., Simonyan, K., Sifre, L., Schmitt, S., ... & Silver, D. (2020). Mastering atari, go, chess and shogi by planning with a learned model. Nature, 588(7839), 604-609.
- Hamrick, J. B., Bapst, V., Sanchez-Gonzalez, A., Pfaff, T., Weber, T., Buesing, L., & Battaglia, P. W. (2019). Combining q-learning and search with amortized value estimates. arXiv preprint arXiv:1912.02807.
- Moerland, T. M., Broekens, J., Plaat, A., & Jonker, C. M. (2018). A0C: Alpha zero in continuous action space. arXiv preprint arXiv:1805.09613.
- Yang, X., Duvaud, W., & Wei, P. (2020). Continuous Control for Searching and Planning with a Learned Model. arXiv preprint arXiv:2006.07430.
- Hubert, T., Schrittwieser, J., Antonoglou, I., Barekatain, M., Schmitt, S., & Silver, D. (2021). Learning and Planning in Complex Action Spaces. arXiv preprint arXiv:2104.06303.
- Petosa, N., & Balch, T. (2019). Multiplayer AlphaZero. arXiv preprint arXiv:1910.13012.

Reference list

- Browne, C. B., Powley, E., Whitehouse, D., Lucas, S. M., Cowling, P. I., Rohlfshagen, P., ... & Colton, S. (2012). A survey of monte carlo tree search methods. IEEE Transactions on Computational Intelligence and AI in games, 4(1), 1-43.
- Kurzer, K., Fechner, M., & Zöllner, J. M. (2020). Accelerating Cooperative Planning for Automated Vehicles with Learned Heuristics and Monte Carlo Tree Search. arXiv preprint arXiv:2002.00497.
- Wang, Q., Wu, B., Zhu, P., Li, P., Zuo, W., & Hu, Q. (2020, June). ECA-Net: efficient channel attention for deep convolutional neural networks, 2020 IEEE. In CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE.
- Bacchiani, G., Molinari, D., & Patander, M. (2019). Microscopic traffic simulation by cooperative multi-agent deep reinforcement learning. arXiv preprint arXiv:1903.01365.
- Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you need. In Advances in neural information processing systems (pp. 5998-6008).
- Haarnoja, T., Zhou, A., Abbeel, P., & Levine, S. (2018, July). Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor. In International conference on machine learning (pp. 1861-1870). PMLR.
- Wang, H., Emmerich, M., Preuss, M., & Plaat, A. (2019, December). Alternative loss functions in alphazero-like self-play. In 2019 IEEE Symposium Series on Computational Intelligence (SSCI) (pp. 155-162). IEEE.

Generalization Performance

Model	SC06	SC08	Reg. SC08	SC06 & SC08	SC06 & SC08 + Exp.	Random	Random + I	Exp. Baseline
Scenario								
SC01	0.44	0.98	0.93	0.98	1.00	0.01	0.99	1.00
SC02	0.27	0.72	0.83	0.78	0.95	0.01	0.90	0.97
SC03	0.48	0.99	0.98	0.96	1.00	0.00	1.00	1.00
SC04	0.10	0.82	0.87	0.60	1.00	0.00	0.99	0.99
SC05	0.70	0.21	0.17	0.61	0.96	0.34	0.95	1.00
SC06	0.99	0.39	0.32	0.90	0.98	0.31	0.98	0.99
SC07	0.00	0.00	0.02	0.05	0.01	0.00	0.00	0.07
SC08	0.39	0.84	0.81	0.84	0.54	0.00	0.04	0.20
Mean 01-05, 07	0.3317	0.6200	0.6333	0.6630	0.8200	0.0600	0.8050	0.8383
Mean unseen	0.3400	0.5871	0.5886	0.6630	0.8200	0.0838	0.7313	0.7775
Mean	0.4212	0.6187	0.6162	0.7150	0.8050	0.0838	0.7313	0.7775

Rkaintechmodellivithhheltriistiös isooveralluthleestrongest strong ce

Success Rate

$$I_{success} = \max(1 - I_{collision} - I_{invalid} - I_{unableContinue}, 0)$$

$$P_{success} = \frac{1}{N} \sum_{n=1}^{N} I_{success}^{n}$$

- I_{collision}: Indicator for occurred collision
- \blacksquare $I_{invalid}$: Indicator for invalid state, e.g. driving off road
- $lacktriangleq I_{unableContinue}$: Situation where the algorithm was unable to find actions for an agent

Numerical State in Detail

$$\mathbf{n}_{i}^{\text{dynamic}}(t) = \underbrace{\left(x_{i}(t), y_{i}(t), \dot{x}_{i}(t), \dot{y}_{i}(t), \ddot{x}_{i}(t), \ddot{y}_{i}(t), \dot{y}_{i}(t), \dot{y}_{i}(t)\right)}_{\mathbf{n}_{i}^{\text{static}}} = \underbrace{\left(\dot{x}_{i}^{\text{desire}}, l_{i}^{\text{desire}}, v_{i}^{\text{width}}, v_{i}^{\text{length}}\right)}_{\mathbf{n}_{i}(t) = \mathbf{n}_{i}^{\text{dynamic}}(t - 7) \oplus \mathbf{n}_{i}^{\text{dynamic}}(t - 6) \oplus \ldots \oplus \mathbf{n}_{i}^{\text{dynamic}}(t) \oplus \mathbf{n}_{i}^{\text{static}}}$$

Information at time step t

- \blacktriangleright $(x_i(t), y_i(t))$: Position
- \blacktriangleright $(\dot{x_i}(t), \dot{y_i}(t))$: Velocity
- \blacktriangleright $(\ddot{x}_i(t), \ddot{y}_i(t))$: Acceleration
- $\blacktriangleright \phi_i(t)$: Steering angle

Static information

- $\blacktriangleright \left(\dot{x_i}^{\text{desire}}, l_i^{\text{desire}}\right)$: Target state
- $\blacktriangleright \left(v_i^{\text{width}}, v_i^{\text{length}}\right)$: Vehicle

dimensions

Agent state

- ► History of past 8 dynamic states
- ► Scalar state

Training Wall Clock Time (Scenario 06)

Results are averaged over three models

- Modalio are averaged ever unee modele									
Iterations	50	100	200						
Wall clock time	8h53m	14h28m	32h11m						
Mean success rate	0.7686	0.7933	0.7867						
 Fast training Decent success rate over tests with multiple iterations 	 ► Trade-o training success ► Best pe model 	time and	 2.5x slower than 50 iterations Success rate moderately improved 						

Resource Consumption

Loss Function in Detail

$$\mathcal{L}(\phi) = \mathcal{L}_i^{\pi}(\phi) - \alpha_i \mathcal{L}_i^{H}(\phi) + \mathcal{L}_i^{V}(\phi)$$

Policy loss

$$\mathcal{L}^{\pi}(\phi) = D_{KL}\left(\pi_{\phi}(\boldsymbol{a}|\boldsymbol{s}) \parallel \hat{\pi}(\boldsymbol{a}|\boldsymbol{s})\right) = \mathbb{E}_{\boldsymbol{a} \sim \pi_{\phi}(\boldsymbol{a}|\boldsymbol{s})} \left[\log \pi_{\phi}(\boldsymbol{a}|\boldsymbol{s}) - \log \hat{\pi}_{\phi}(\boldsymbol{a}|\boldsymbol{s})\right]$$

Entropy loss

$$\mathcal{L}^{H}(\phi) = H\left(\pi_{\phi}(\boldsymbol{a}|\boldsymbol{s})\right) = \mathbb{E}_{\boldsymbol{a} \sim \pi_{\phi}(\boldsymbol{a}|\boldsymbol{s})}\left[-\log \pi_{\phi}(\boldsymbol{a}|\boldsymbol{s})\right]$$

Value loss

$$\mathcal{L}^{V}(\phi) = \mathbb{E}_{s \sim \mathcal{D}} \left[\left(V_{\phi}(s) - \hat{V}(s) \right)^{2} \right]$$

Entropy Correction

- Goal: Express density of transformed distribution $\pi(a|s)$ in terms of untransformed distribution $\mu(u|s)$
- From the change of variables formula and the multivariable inverse function theorem, we know that

- 1. Plugging the derivative into $\left| \det \frac{d a}{d u} \right|^{-1}$
- 2. Simplifying using the logarithm rules

$$\pi(\mathbf{a}|\mathbf{s}) = \mu(\mathbf{u}|\mathbf{s}) \left| \det \frac{d\mathbf{a}}{d\mathbf{u}} \right|^{-1}$$

$$= \log \mu(\mathbf{u}|\mathbf{s}) - \sum_{i=1}^{D} \log \left(1 - \tanh^{2}(u_{i})\right)$$

Importance of Loss Components

Reward for Scenario 08

	Iterations	5	10	25	50	100	200	400	Mean
Model	Metric								
	Success	0.3000	0.4967	0.6833	0.8267	0.8300	0.9433	0.9500	0.7186
GMM 3	Reward	0.2779	0.2954	0.3119	0.3205	0.3276	0.3341	0.3367	0.3149
	Desire	0.0067	0.0200	0.0567	0.1767	0.1333	0.2900	0.3833	0.1524
	Success	0.0200	0.0100	0.0200	0.0900	0.2000	0.7900	0.8700	0.2857
Baseline	Reward	0.6738	0.6430	0.6404	0.6096	0.6145	0.6255	0.6238	0.6330
	Desire	0.0000	0.0100	0.0000	0.0000	0.0002	0.0002	0.1000	0.0214

- ► Baseline achieves highest reward for lowest success rate
- ► Reward is hand-crafted with possibly suboptimal parameters
- ► Other student worked on this via IRL

Full Results for Scenario 06

Model	Iterations Metric	5	10	25	50	100	200	400	Mean
Model	Metric								
	Success	0.4367	0.5733	0.7133	0.8533	0.9467	0.9900	0.9933	0.7867
GMM 3	Reward	0.2168	0.2345	0.2564	0.2755	0.2901	0.2986	0.3045	0.2681
	Desire	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	Success	0.8700	0.9600	1.0000	0.9900	0.9900	1.0000	1.0000	0.9729
Baseline	Reward	0.5798	0.4976	0.4943	0.4633	0.4791	0.5126	0.5157	0.5060
	Desire	0.0000	0.0200	0.0100	0.0300	0.0000	0.0000	0.0000	0.0086

Efficient Channel Attention (ECA)

Lookout & Pitfalls

Instability of GMM policies in RL

Instability of Transformers in RL

Averaging over agents in loss

MCTS + RL

Generating enough training data

Inaccuary of entropy estimation

Discretization vs continuous control