EX.No 8. Simulation of Distance Vector/Link State Routing.

b) SIMULATION OF LINK STATE ROUTING ALGORITHM

Aim:

To simulate and study the link state routing algorithm using simulation using NS2.

Link State Routing protocol

In link state routing, each router shares its knowledge of its neighborhood with every other router in the

internet work. (i) Knowledge about Neighborhood: Instead of sending its entire routing table a router sends

info about its neighborhood only. (ii) To all Routers: each router sends this information to every other router

on the internet work not just to its neighbor .It does so by a process called flooding. (iii)Information sharing

when there is a change: Each router sends out information about the neighbors when there is change.

ALGORITHM:

- 1. Create a simulator object
- 2. Define different colors for different data flows
- 3. Open a nam trace file and define finish procedure then close the trace file, and execute nam on trace file.
- 4. Create n number of nodes using for loop
- 5. Create duplex links between the nodes
- 6. Setup UDP Connection between n(0) and n(5)
- 7. Setup another UDP connection between n(1) and n(5)
- 8. Apply CBR Traffic over both UDP connections
- 9. Choose Link state routing protocol to transmit data from sender to receiver.
- 10. Schedule events and run the program.

Program:

```
set ns [new Simulator]

set nf [open out.nam w]
$ns namtrace-all $nf

set tr [open out.tr w]
$ns trace-all $tr

proc finish {} {
    global nf ns tr
    $ns flush-trace
    close $tr
    exec nam out.nam &
    exit 0
    }

set n0 [$ns node]
set n1 [$ns node]
set n2 [$ns node]
set n3 [$ns node]
```

\$ns duplex-link \$n0 \$n1 10Mb 10ms DropTail \$ns duplex-link \$n1 \$n3 10Mb 10ms DropTail \$ns duplex-link \$n2 \$n1 10Mb 10ms DropTail

\$ns duplex-link-op \$n0 \$n1 orient right-down \$ns duplex-link-op \$n1 \$n3 orient right \$ns duplex-link-op \$n2 \$n1 orient right-up

set tcp [new Agent/TCP] \$ns attach-agent \$n0 \$tcp

set ftp [new Application/FTP] \$ftp attach-agent \$tcp

set sink [new Agent/TCPSink] \$ns attach-agent \$n3 \$sink

set udp [new Agent/UDP] \$ns attach-agent \$n2 \$udp

set cbr [new Application/Traffic/CBR] \$cbr attach-agent \$udp

set null [new Agent/Null] \$ns attach-agent \$n3 \$null

\$ns connect \$tcp \$sink \$ns connect \$udp \$null

\$ns rtmodel-at 1.0 down \$n1 \$n3 \$ns rtmodel-at 2.0 up \$n1 \$n3

\$ns rtproto LS

\$ns at 0.0 "\$ftp start" \$ns at 0.0 "\$cbr start"

\$ns at 5.0 "finish"

\$ns run

Result:

Thus the program for creating Simulation of Distance Vector/Link State Routing was implemented.