Low-coverage whole-genome resequencing ANGSD

Claire Mérot, Anna Tigano & Anne-Laure Ferchaud Physalia Courses September 2020

Sequencing costs

output= nb of individuals X genome size X depth of coverage

> Reducedrepresentation sequencing (Rad-seq, SNPchip, exome capture, etc)

Sequencing costs

output= nb of individuals X genome size X depth of coverage

Yes, I have many samples

I want to

- cover a large geographic zone
- study different ecological conditions
- keep statistical power to analyse phenotypes
- have good inference of population parameters...

I want whole-genome!

A possible solution: Pool-seq!

(+ low-cost libraries...)

Short note about Pool-seq

Minimum number in a pool: 40 Minimum coverage: 50x

⇒ Pool-seq is a cost-effective strategy for many applications but:

+ problems if contaminationby one misassigned individual+ difficulties dues to CNV

(+ low-cost libraries...)

Sequencing costs

output= nb of individuals X genome size X depth of coverage

Yes, I have many samples

I want to

- cover a large geographic zone
- study different ecological conditions
- keep statistical power to analyse phenotypes
- have good inference of population parameters...

I want whole-genome!

Another solution:

Low-coverage whole-genome resequencing

+ cheap librairies

Key reference (for simulations of coverage variation)

Alex Buerkle, C. and Gompert, Z. (2013), Population genomics based on low coverage sequencing: how low should we go?. Mol Ecol, 22: 3028-3035.

doi:10.1111/mec.12105

(+ low-cost libraries...)

Minimize sequencing costs...

But what about library preparation?

The idea of the protocole:

- Cheap library preparation (<10\$)
- Using Nextera tagmentation process with small volumes of enzyme (and small amount of DNA)
- Individual barcodes (384 combinations with Nextera)

Key references (for protocole)

Baym M, Kryazhimskiy S, Lieberman TD et al. (2015) Inexpensive multiplexed library preparation for megabase-sized genomes. *PLoS One*, 10, e0128036.

Therkildsen, N. O., & Palumbi, S. R. (2017). Practical low-coverage genomewide sequencing of hundreds of individually barcoded samples for population and evolutionary genomics in nonmodel species. *Molecular Ecology Resources*, *17*(2), 194-208.

General idea of the library protocol

• Based on Nextera libraries (2 days/96 ind?)

- 1. Prepare/quantify DNA (the longest)
- 2. Cut DNA = *Tagmentation* (30 min)
- 3. Add Barcode & amplify DNA= PCR (2h)
- 4. Size-selection & cleaning (45 min)

5. QC & Quantification for pooling (? ½ day?)

The matter of genomic complexity

Reduce costs:

USE 1ng of DNA

Same problem with degradated DNA (ancient DNA...)

Small genome -> ok

Big genome
-> Are we subetting too
much the DNA and
reducing the complexity of
what we can sequence?

Include (many) different individuals

Run test librairies to adjust protocol to the study system

Run test sequencing lanes

⇒ Evaluate coverage along the genome

Linkage map on 1920 progeny in Arabidopsis thaliana

Rowan, B. A., Heavens, D., Feuerborn, T. R., Tock, A. J., Henderson, I. R., & Weigel, D. (2019). An ultra high-density Arabidopsis thaliana crossover map that refines the influences of structural variation and epigenetic features. *Genetics*, *213*(3), 771-787.

https://doi.org/10.1534/genetics.119.302406

- ⇒ Super fine-scale resolution of crossing-over thanks to
- Many recombination events (large family)
- Very dense markers (whole-genome!)

(+ low-cost libraries...)

Experimental selection with 6 replicates of 50 individuals

Therkildsen, N. O., Wilder, A. P., Conover, D. O., Munch, S. B., Baumann, H., & Palumbi, S. R. (2019). Contrasting genomic shifts underlie parallel phenotypic evolution in response to fishing. *Science*, *365*(6452), 487-490. https://doi.org/10.1126/science.aaw7271

- ⇒ Genome-wide evolution of allelic frequencies
- ⇒ No bias due to pooling contrary to pool-seq

GWAS with > 11,000 whole genomes in humans

Genome-polygenic scores

"lcWGS provides comparable imputation accuracy while also overcoming the ascertainment bias inherent to variant selection in genotyping array design"

Homburger, J. R., Neben, C. L., Mishne, G., Zhou, A. Y., Kathiresan, S., & Khera, A. V. (2019). Low coverage whole genome sequencing enables accurate assessment of common variants and calculation of genome-wide polygenic scores. Genome medicine, 11(1), 1-12.

 \Rightarrow An efficient alternative to **SNParray**

https://doi.org/10.1186/s13073-019-0682-2

Pros and Cons

- Relatively cheap
- Keep individual information
- Cover the whole genome
- Genotype likelihood based methods are now welldevelopped

- Hard-calling of genotype is not possible
- Population-level analysis: need to be able to gather samples (at least 30-50 per pop)
- Check heterogeneity of coverage along the genome
- Need reference

ANGSD: a suite of tools

Korneliussen et al. BMC Bioinformatics 2014, 15:356 http://www.biomedcentral.com/1471-2105/15/356

SOFTWARE Open Access

ANGSD: Analysis of Next Generation Sequencing Data

Thorfinn Sand Korneliussen1*, Anders Albrechtsen2 and Rasmus Nielsen1.3

Abstract

Background: High-throughput DNA sequencing technologies are generating vast amounts of data. Fast, flexible and memory efficient implementations are needed in order to facilitate analyses of thousands of samples simultaneously.

Results: We present a multithreaded program suite called ANGSD. This program can calculate various summary statistics, and perform association mapping and population genetic analyses utilizing the full information in next generation sequencing data by working directly on the raw sequencing data or by using genotype likelihoods.

Conclusions: The open source c/c++ program ANGSD is available at http://www.popgen.dk/angsd. The program is tested and validated on GNU/Linux systems. The program facilitates multiple input formats including BAM and imputed beagle genotype probability files. The program allow the user to choose between combinations of existing methods and can perform analysis that is not implemented elsewhere.

Keywords: Next-generation sequencing, Bioinformatics, Population genetics, Association studies

Advantages:

- Appropriate for low-coverage
- All whole-genome data
- Flexible inputs
- Multiple methods, filters, etc.
- Large datasets
- Many downstream analyses
- Documentation ok reactivity Github

Inconvenients:

- Demanding for memory/time
- Sometimes update unclear and obscure parameters

http://www.popgen.dk/angsd/index.php/ANGSD

https://github.com/ANGSD/angsd

Example for population genomics... Coelopa frigida

Population structure?(Geography? Chromosomal inversion?)

αα αβ ββ

- Linkage disequilibrium?
- Sex chromosome?
- Demography?

https://github.com/clairemerot/angsd_pipeline

Mean coverage:

1.2x / ind 100x / pop

ANGSD overview

Baypass..)

ANGSD overview

ANGSD filters

BAM files

Filters!!

BAM quality

Coverage:

Minimum number of individuals
Minimum depth
Maximum depth

Minor Allele Frequency:

Minimum frequency
Probability of being a polymorphic site

Hardy-Weinberg:

sites at HW equilibrium

- \Rightarrow List of SNPs sites
- ⇒ Variants / invariants?

doGlf

genotype-likelihoods -

beagle format

ANGSD: using Genotype likelihoods

Ind0

0.799992

0.799985

NGS

Admix

marker allele1 allele2

LG1 3867

LG1 3870

LG1 3880

LG1 7206

LG1_7207

0.200015

0.111137

0.333333

Ind1 0.333333 0.333333

0.333333

0.333333

0.333333

Ind1 0.333333

Ind1 0.333333

0.333333 0.333333 0.333333 0.333333 0.333333 0.333333 0.333333 0.333333

0.000000 0.888863 0.666649

Filters: Only polymorphic sites maf >0,05 (0,10-0,20)

Explore genetic structure within the population

0.799985

0.000000

0.000018

Meisner, J., & Albrechtsen, A. (2018). Inferring population structure and admixture proportions in lowdepth NGS data. Genetics, 210(2), 719-731.

PCA

angsd

INTEGRATED

ANALYSES

Skotte, L., Korneliussen, T. S., & Albrechtsen, A. (2013). Estimating individual admixture proportions from next generation sequencing data. Genetics, 195(3), 693-702.

Individuals

ANGSD: using Genotype likelihoods

marker allel	le1 all	lele2	Ind0	Ind0	Ind0	Ind1	Ind1	Ind1
LG1_3867	3	1	0.799992	0.200008	0.000000	0.333333	0.333333	0.333333
LG1_3870	1	0	0.799985	0.200015	0.000000	0.333333	0.333333	0.333333
LG1_3880	1	2	0.000000	0.200015	0.799985	0.333333	0.333333	0.333333
LG1_7206	2	1	0.888863	0.111137	0.000000	0.333333	0.333333	0.333333
LG1_7207	3	2	0.666649	0.333333	0.000018	0.333333	0.333333	0.333333

Filters: Only polymorphic sites maf >0,05 (0,10-0,20)

Explore genotype-phenotype associations

Jørsboe, E., & Albrechtsen, A. (2019). A Genotype Likelihood Framework for GWAS with Low Depth Sequencing Data from Admixed Individuals. *bioRxiv*, 786384.

ANGSD: using Genotype likelihoods

marker allel	e1 all	lele2	Ind0	Ind0	Ind0	Ind1	Ind1	Ind1
LG1_3867	3	1	0.799992	0.200008	0.000000	0.333333	0.333333	0.333333
LG1_3870	1	0	0.799985	0.200015	0.000000	0.333333	0.333333	0.333333
LG1_3880	1	2	0.000000	0.200015	0.799985	0.333333	0.333333	0.333333
LG1_7206	2	1	0.888863	0.111137	0.000000	0.333333	0.333333	0.333333
LG1_7207	3	2	0.666649	0.333333	0.000018	0.333333	0.333333	0.333333

Filters: Only polymorphic sites maf >0,05 (0,10-0,20)

Explore Linkage disequilibrium

Fox, E. A., Wright, A. E., Fumagalli, M., & Vieira, F. G. (2019). ngsLD: evaluating linkage disequilibrium using genotype likelihoods. *Bioinformatics*.

Chr I

ANGSD: Allele frequency spectrums & statistics

Thetas Watterson Thetas diversity Tajima's D...

#(indexStart,indexStop)(firstPos_withDat	a,lastPo	os_withData)(WinSta	rt,WinStop) C	hr WinCente	er tW tP	tF tH	tL Tajima fu	ıf fud	
(176,1131)(7450,35760)(5000,30000)	LG1	17500 14.219130	7.847303	21.363536	3.136890	5.492096	-1.386729	-1.656608	-1.371548
(342,1131)(15474,35760)(10000,35000)	LG1	22500 12.209059	7.268703	17.587680	3.100106	5.184405	-1.242102	-1.442608	-1.162469
(342,1293)(15474,43874)(15000,40000)	LG1	27500 15.588463	10.059668	21.122273	4.422301	7.240984	-1.102375	-1.251050	-0.987698
(526,1313)(22758,48244)(20000,45000)	LG1	32500 11.937200	7.151281	17.655682	3.843268	5.497275	-1.229086	-1.497065	-1.257446
(869,1318)(25128,55089)(25000,50000)	LG1	37500 8.536802	6.020949	10.987299	2.797213	4.409081	-0.883283	-0.936547	-0.691591
(1131,1318)(35760,55089)(30000,55000) LG1	42500 3.961965	3.301488	4.171383	1.518896	2.410192	-0.460141	-0.296214	-0.099487
(1131,1394)(35760,63970)(35000,60000) LG1	47500 4.797212	3.978684	5.261946	1.693481	2.836082	-0.483032	-0.379722	-0.195108
(1293,1569)(43874,77361)(40000,65000) LG1	52500 4.853182	3.257536	7.174833	0.923866	2.090701	-0.932091	-1.149144	-0.967295

Korneliussen, T. S., Moltke, I., Albrechtsen, A., & Nielsen, R. (2013). Calculation of Tajima's D and other neutrality test statistics from low depth next-generation sequencing data. *BMC bioinformatics*, *14*(1), 289.

ANGSD: Allele frequency spectrums & statistics

Warmuth VM & Ellegren H. (2019) Genotype-free estimation of allele frequencies reduces bias and improves demographic inference from RADSeq data. Molecular Ecology Ressources. 19(3), 586-596.

⇒ Better estimation of models & parameters with SFS from ANGSD than from SNPs calling through GATK (except if coverage > 100x!)

ANGSD: Coverage

doCounts individual & total coverage

chr	pos	totDepth
LG1	3867	1317
LG1	3870	1373
LG1	3880	1456
LG1	7206	1313
LG1	7207	1302
LG1	7223	1308

ind() ir	nd1	ind2	ind3	ind4
2	0	0	0	0	
2	0	0	0	1	
2	0	0	0	1	
3	0	3	5	1	
1	0	3	5	1	
2	0	4	4	1	

000335F|arrow 0.54

Check homogeneity along the genome and between samples

ANGSD: Minor allele frequency

MAF for population BP

doMAF
minor allele
frequency

MAF by population

Environmental associations (LFMM, RDA, Baypass..)

chr p	os	maj	min	anc	maf	nInd
LG1	3867	Т	С	Т	0.258300	50
LG1	3870	С	Α	С	0.242971	50
LG1	3880	С	G	G	0.375692	52
LG1	7517	С	G	С	0.070817	45
LG1	7520	G	Α	G	0.088480	46

(provide specific bam list & additional filter by pop?)

By POP: need do re-do doMAF on each group

CAUTION: Ensure the same allele is called Major/Minor (no option –doMajorMinor 1)

POSSIBILITY: use SITES list of filtered SNPs + Maj/Min info

Join with R

Chr_pos	ВР	BS	ВТ	СВ
LG1_8758	0.016149	0.033839	0.015712	0.040306
LG1_22838	0.12912	0.0989	0.117701	0.123505
LG1_25197	0.069546	0.160342	0.210446	0.073502
LG1_39818	0.162017	0.149856	0.143678	0.228882
LG1_80251	0.114682	0.069471	0.10154	0.087802
LG1_91603	0.047935	0.094046	0.081615	0.026046
LG1_92586	0.126451	0.118993	0.068226	0.052894
LG1_92914	0.293357	0.082381	0.199689	0.288091
LG1_94101	0.084773	0.092265	0.026972	0.053312

Environmental associations (baypass, Ifmm, RDA)

ANGSD overview

Baypass..)

ANGSD/low-coverage: to conclude...

- -> ANGSD is quite straightforward at the beginning...
 BUT subtilities in filters, functions, datasets : be careful!
- -> ANGSD can be long to run/demanding in memory : try splitting by region try splitting the different steps (e. g. ANGSD – RealSFS)
- -> Gathers plenty of analyses + diverse input/output : All in 1!
- -> Takes into account uncertainty due to low coverage (is known to perform well on higher coverage too.)
- -> Other tools that you know to deal with low-coverage data??