MI VIF API

Version 2.04

REVISION HISTORY

Revision No.	Description	Date
2.03	Initial release	07/25/2018
2.04	Updated for accuracy	06/13/2019

TABLE OF CONTENTS

RE	VISIO	N HIST	ORY	i
TAI	BLE O	F CONT	ENTS	ji
1.	SCO	PE		1
	1.1.	Module	descriptiondescription	1
	1.2.	Flow ch	art	1
	1.3.	Keywor	d	1
2.	API	Referen	ce	2
		2.1.1	MI_VIF_SetDevAttr	3
		2.1.2	MI_VIF_GetDevAttr	5
		2.1.3	MI_VIF_EnableDev	5
		2.1.4	MI_VIF_DisableDev	6
		2.1.5	MI_VIF_SetChnPortAttr	7
		2.1.6	MI_VIF_GetChnPortAttr	8
		2.1.7	MI_VIF_EnableChnPort	8
		2.1.8	MI_VIF_DisableChnPort	9
		2.1.9	MI_VIF_Query	10
		2.1.10	MI_VIF_SetDev2SnrPadMux	11
3.	VIF	data typ	e	13
	3.1.	MI_VIF	_IntfMode_e	14
	3.2.	MI_VIF	_WorkMode_e	14
	3.3.	MI_VIF	_FrameRate_e	15
	3.4.	MI_VIF	_DataYuvSeq_e	16
	3.5.	MI_VIF	_ClkEdge_e	17
	3.6.	MI_VIF	_BitOrder_e	18
	3.7.	MI_VIF	_HDRType_e	18
	3.8.	MI_VIF	_Polar_e	19
	3.9.	MI_VIF	_SyncAttr_t	20
	3.10.	MI_VIF		21
			 _ChnPortAttr_t	
			 _ChnPortStat_t	
			SNRPad_e	
	3.14.	MI_VIF	 _Dev2SnrPadMuxCfg_t	25
4	VIE		do	26

1. SCOPE

1.1. Module description

Video input (VIF) enables video input device, video input channel, binding video input channel and other functions.

1.2. Flow chart

Vif output port1 is only used in bt656 interface, and the width / height of output 1 is half of that of output 0

The mapping between MI_Vif device and channel is as follows:

328Q/329D/326D and 336D/336Q/339G chip N max=3, 325/325DE/327D and 335/337DE chip N max=2

Note: N is Device Id.

Only the first channel in the corresponding vifdev can be used in Mipi interface, and multi channel in vifdev can be used in bt656 interface composite mode

1.3. Keyword

N/A.

2. API REFERENCE

This function module provides the following API:

API Name	Function
MI VIF SetDevAttr	Set VIF device attribute
MI VIF GetDevAttr	Get VIF device attribute
MI VIF EnableDev	Enable VIF device
MI VIF DisableDev	Disable VIF device
MI VIF SetChnPortAttr	Set VIF channel port attribute
MI VIF GetChnPortAttr	Get VIF channel port attribute
MI_VIF_EnableChnPort	Enable VIF channel port
MI VIF DisableChnPort	Disable VIF channel port
MI VIF Query	Query VIF channel port interrupt counts, average frame rate
MI VIF SetDev2SnrPadMux	Set VIF binding relation between device and sensor pad

2.1. MI_VIF_SetDevAttr

Description

Set VIF device attribute.

Syntax

MI_S32 MI_VIF_SetDevAttr(MI_VIF_DEV u32VifDev, MI_VIF_DevAttr_t_*pstDevAttr)

Parameters

Parameter Name	Description	Input/Output
u32VifDev	VIF device number.	Input
	Value range: [0, MI_VIF_MAX_DEV_NUM).	
pstDevAttr	VIF device attribute pointer. Static attribute.	Input

Return Value

MI_OK: Successful

• Non-zero: Failed, see error code for details

Dependence

header file: mi_vif_datatype.h, mi_vif.h

• lib: libmi vif.a

Note

- This API is available after VIF device is disabled using MI VIF DisableDev.
- The parameter pstdevottr is mainly used to configure the video interface mode of the specified Vif device, which is used to interface with peripheral cameras and sensors. The supported interface modes include BT.656, digital camera and Mipi sensor. Please refer to Section 3.10 data type for specific attribute meanings.

Example


```
MI VIF DevAttr t stDevAttr;
memset(&stDevAttr, 0x0, sizeof(MI_VIF_DevAttr_t));
stDevAttr.eIntfMode = stPad0Info.eIntfMode;
stDevAttr.eWorkMode = pstVifDevAttr->eWorkMode;
stDevAttr.eHDRType = (MI_VIF_HDRType_e)pstVpeChnattr->eHdrType;
if(stDevAttr.eIntfMode == E MI VIF MODE BT656)
    stDevAttr.eClkEdge = stPad0Info.unIntfAttr.stBt656Attr.eClkEdge;
else
    stDevAttr.eClkEdge = E_MI_VIF_CLK_EDGE_DOUBLE;
if(stDevAttr.eIntfMode == E_MI_VIF_MODE_MIPI)
    stDevAttr.eDataSeg =stPad0Info.unIntfAttr.stMipiAttr.eDataYUVOrder;
else
    stDevAttr.eDataSeg = E MI VIF INPUT DATA YUYV;
if(stDevAttr.eIntfMode == E MI VIF MODE BT656)
    memcpy(&stDevAttr.stSyncAttr, &stPad0Info.unIntfAttr.stBt656Attr.stSyncAttr,
sizeof(MI_VIF_SyncAttr_t));
stDevAttr.eBitOrder = E_MI_VIF_BITORDER_NORMAL;
STCHECKRESULT(MI VIF SetDevAttr(vifDev, &stDevAttr));
STCHECKRESULT(MI VIF EnableDev(vifDev));
MI VIF ChnPortAttr t stVifPortInfo;
memset(&stVifPortInfo, 0, sizeof(MI_VIF_ChnPortAttr_t));
stVifPortInfo.stCapRect.u16X = stSnrPlane0Info.stCapRect.u16X;
stVifPortInfo.stCapRect.u16Y = stSnrPlane0Info.stCapRect.u16Y;
stVifPortInfo.stCapRect.u16Width = stSnrPlane0Info.stCapRect.u16Width;
stVifPortInfo.stCapRect.u16Height = stSnrPlane0Info.stCapRect.u16Height;
stVifPortInfo.stDestSize.u16Width = u32CapWidth;
stVifPortInfo.stDestSize.u16Height = u32CapHeight;
stVifPortInfo.ePixFormat = ePixFormat;
//stVifPortInfo.u32FrameModeLineCount for lowlantancy mode
if(stDevAttr.eIntfMode == E_MI_VIF_MODE_BT656)
    stVifPortInfo.eFrameRate = E_MI_VIF_FRAMERATE_FULL;
    stVifPortInfo.eCapSel = E MI SYS FIELDTYPE BOTH;
    stVifPortInfo.eScanMode = E_MI_SYS_FRAME_SCAN_MODE_PROGRESSIVE;
STCHECKRESULT(MI VIF SetChnPortAttr(vifChn, vifPort, &stVifPortInfo));
STCHECKRESULT(MI VIF EnableChnPort(vifChn, vifPort));
/***************
call svs bind interface
/****************
exit call sys unbind interface
STCHECKRESULT(MI_VIF_DisableChnPort(vifChn, vifPort));
STCHECKRESULT(MI VIF DisableDev(vifDev));
```

Related APIs

MI_VIF_GetDevAttr

2.2. MI_VIF_GetDevAttr

Description

Get VIF device attribute.

Syntax

MI_S32 MI_VIF_GetDevAttr(MI_VIF_DEV u32VifDev, MI_VIF_DevAttr_t *pstDevAttr)

Parameters

Parameter Name	Description	Input/Output
u32VifDev	VIF device number.	Input
	Value range: [0, MI_VIF_MAX_DEV_NUM).	
	Note: devid of VIF must be set by 0 during binding	
pstDevAttr	VIF device attribute pointer.	Output

- Return Value
 - MI_OK: Successful
 - Non-zero: Failed, see error code for details
- Dependence
 - header file: mi_vif_datatype.h, mi_vif.h
 - lib: libmi_vif.a
- Note

This API will return fail if VIF device attribute is not configured

Example

none.

Related APIs

MI VIF SetDevAttr

2.3. MI_VIF_EnableDev

Description

Enable VIF device.

Syntax

MI_S32 MI_VIF_EnableDev(MI_VIF_DEV u32VifDev);

Parameters

Parameter Name	Description	Input/Output
u32VifDev	VIF device number.	Input

Return Value

- MI_OK: Successful
- Non-zero: Failed, see error code for details
- Dependence
 - header file: mi_vif_datatype.h, mi_vif.h
 - lib: libmi_vif.a
- Note
- Enable must be after device attribute have be configured, or fail will be returned
- Calling again is available, fail will not be returned.
- > Example

Please refer to MI VIF SetDevAttr.

Related APIs

MI VIF DisableDev

2.4. MI VIF DisableDev

Description

Disable VIF device.

Syntax

MI_S32 MI_VIF_DisableDev(MI_VIF_DEV u32VifDev);

Parameters

Parameter Name	Description	Input/Output
u32VifDev	VIF device number.	Input

- Return Value
 - MI_OK: Successful
 - Non-zero: Failed, see error code for details
- Dependence
 - header file: mi_vif_datatype.h, mi_vif.h
 - lib: libmi_vif.a

- Note
- Disable of VIF device is available after all binding channels of VIF have be disabled
- Calling again is available, fail will not be returned.
- > Example

Please refer to MI VIF SetDevAttr.

Related APIs

MI VIF EnableDev

2.5. MI_VIF_SetChnPortAttr

Description

Set VIF channel port attribute.

Syntax

MI_S32 MI_VIF_SetChnPortAttr(MI_VIF_CHN u32VifChn, MI_VIF_PORT u32ChnPort, MI_VIF_ChnPortAttr_t *pstAttr);

Parameters ______

Parameter Name	Description	Input/Outpu t
u32VifChn	VIF channel number.	Input
u32ChnPort	Port number	Input
pstAttr	VIF channel Port attribute pointer.	Input

Return Value

MI_OK: Successful

Non-zero: Failed, see error code for details

Dependence

header file: mi_vif_datatype.h, mi_vif.h

• lib: libmi_vif.a

Note

The purpose to use MI_VIF_SetChnPortAttr is to set port attributes like CapSize, DestSize, FrameRate.

> Example

Please refer to MI VIF SetDevAttr.

Related APIs

MI VIF GetChnPortAttr

2.6. MI_VIF_GetChnPortAttr

Description

Get VIF channel port attribute.

Syntax

MI_S32 MI_VIF_GetChnPortAttr(MI_VIF_CHN u32VifChn, MI_VIF_PORT u32ChnPort, MI_VIF_ChnPortAttr_t*pstAttr);

Parameters

Parameter Name	Description	Input/Output
u32VifChn	VIF channel number.	Input
	Value range: [0, MI_VIF_MAX_PHYCHN_NUM).	
u32ChnPort	Port number	Input
pstAttr	VIF channel port attribute pointer. Dynamic attribute.	Output

- Return Value
 - MI_OK: Successful
 - Non-zero: Failed, see error code for details
- Dependence
 - header file: mi_vif_datatype.h, mi_vif.h
 - lib: libmi_vif.a
- Note

Getting must be after setting, or MI_ERR_VIF_FAILED_NOTCONFIG will be returned

Example

Please refer to MI VIF SetChnPortAttr.

Related APIs

MI VIF SetChnPortAttr

2.7. MI_VIF_EnableChnPort

Description

Enable VIF channel port.

Syntax

MI_S32 MI_VIF_EnableChnPort (MI_VIF_CHN u32VifChn, MI_VIF_PORT u32ChnPort);

Parameters

Parameter Name	Description	Input/Output
VifChn	VIF channel number.	Input

Return Value

MI_OK: Successful

• Non-zero: Failed, see error code for details

Dependence

header file: mi_vif_datatype.h, mi_vif.h

lib: libmi_vif.a

Note

- Channel attribute must be configured first, VIF device bound with channel must be enabled
- If VIF and DISP/VENC are bound, calling of this API can get video
- Calling again to enable VIF channel is available, fail will not be returned.

Example

Please refer to MI VIF SetDevAttr.

Related APIs

MI VIF DisableChnPort

2.8. MI_VIF_DisableChnPort

Description

Disable VIF channel port.

Syntax

MI_S32 MI_VIF_DisableChnPort (MI_VIF_CHN u32VifChn, MI_VIF_PORT u32ChnPort);

> Parameters ______

Parameter Name	Description	Input/Output
u32VifChn	VIF channel number.	Input
u32ChnPort	Port number	Input

Return Value

MI_OK: Successful

• Non-zero: Failed, see error code for details

Dependence

header file: mi_vif_datatype.h, mi_vif.h

• lib: libmi_vif.a

Note

- After disabling of VIF channel port, this VIF channel port will stop get video, and VO and VENC bound will stop get video as well
- Calling again to disable VIF channel is available, fail will not be returned.

Example

Please refer to MI VIF SetDevAttr.

Related APIs

MI VIF EnableChnPort

2.9. MI_VIF_Query

Description

Query VIF channel port interrupt counts, average frame rate....

Syntax

MI_S32 MI_VIF_Query(MI_VIF_CHN u32VifChn, MI_VIF_PORT u32ChnPort, MI_VIF_ChnPortStat_t*pstStat);

Parameters

Parameter Name	Description	Input/Output
u32VifChn	VIF channel number.	Input
u32ChnPort	Channel Port	Input
pstStat	Channel information structure pointer.	Output

Return Value

MI_OK: Successful

• Non-zero: Failed, see error code for details

Dependence

header file: mi_vif_datatype.h, mi_vif.h

• lib: libmi vif.a

Note

- This API can be used to query interrupt counts, channel enable/disable status, interrupt loss counts, VB fail counts, height/width of image
- Frame rate got via this API is average frame rate over 1 second, VIF could calculate average frame rate every second, the precision of this value is not exact
- User could query interrupt loss counts via this API. If this loss counts increase at all time, it meant VIF is abnormal

Example

none.

Related APIs

none.

2.10. MI VIF SetDev2SnrPadMux

Description

Set VIF binding relation between device and sensor pad

Syntax

MI_S32 MI_VIF_SetDev2SnrPadMux(<u>MI_VIF_Dev2SnrPadMuxCfg_t_</u> stVifDevMap[], MI_U8 u8Length);

Parameters

Parameter Name	Description	Input/Output
stVifDevMap	Mapping relation between Dev and SensorPad	Input
u8Length	Dev Num	Input

- Return Value
 - MI_OK: Successful
 - Non-zero: Failed, see error code for details
- Dependence
 - header file: mi_vif_datatype.h, mi_vif.h
 - lib: libmi_vif.a
- Note

In default, mapping relation between vif Dev and SensorPad is vif Dev0 -> SensorPad0, vif Dev2 -> SensorPad1. If you want to use other Vif Dev or Sensor Pad, you need to set the corresponding connection relationship with MI_VIF_SetDev2SnrPadMux api.

> Example

Vif Dev0 binds SensorPad0, Dev1 binds SensorPad2, Dev2 binds SensorPad1, An example of binding relationship is as follows:

```
MI_VIF_Dev2SnrPadMuxCfg_t stVifDev[4];
stVifDev[0].eSensorPadID = E_MI_VIF_SNRPAD_ID_0;
stVifDev[0].u32PlaneID = 0xff;//oxff liner mode, 0: Long exposure, 1: Short exposure
stVifDev[1].eSensorPadID = E_MI_VIF_SNRPAD_ID_2;
stVifDev[1].u32PlaneID = 0xff;
stVifDev[2].eSensorPadID = E_MI_VIF_SNRPAD_ID_1;
stVifDev[2].u32PlaneID = 0xff;
stVifDev[3].eSensorPadID = E_MI_VIF_SNRPAD_ID_3;
stVifDev[3].u32PlaneID = 0xff;
MI_VIF_SetDev2SnrPadMux(stVifDev, 4);
```

Related APIs

none.

3. VIF DATA TYPE

VIF module relative data type definition:

MI VIF IntfMode e	Define interface mode of video Input device
MI VIF WorkMode e	Define working mode of video Input device
MI VIF DataYuvSeq e	Define YUV data sequence received from video Input device
MI VIF ClkEdge e	Define clock edge received from video Input device
MI VIF BitOrder e	Define data bit order of video Input device
MI VIF HDRType e	Define HDR type of video Input device
MI VIF Polar e	Define signal polarity
MI VIF SyncAttr t	Define synchronization attribute
MI_VIF_DevAttr_t	Define attribute of video Input device.
MI VIF ChnPortAttr t	Define VIF channel port attribute.
MI VIF ChnPortStat t	Define VIF channel port status
MI VIF SNRPad e	Define SensorPad Id
MI VIF Dev2SnrPadMuxCfg t	Define binding relation between VIF device and SensorPad

3.1. MI_VIF_IntfMode_e

Description

Define interface mode of video Input device

Definition

```
typedef enum
{
    E_MI_VIF_MODE_BT656 = 0,
    E_MI_VIF_MODE_DIGITAL_CAMERA,
    E_MI_VIF_MODE_BT1120_STANDARD,
    E_MI_VIF_MODE_BT1120_INTERLEAVED,
    E_MI_VIF_MODE_MIPI
    E_MI_VIF_MODE_NUM
} MI_VIF_IntfMode_e;
```

member

Member name	Description
E_MI_VIF_MODE_BT656	Input data protocol is standard BT.656, port data Input mode is compound mode of brightness and color, quantity mode is single
E_MI_VIF_MODE_DIGITAL_CAMERA	Input data protocol is Digital camera 6, port data Input mode is compound mode of brightness and color, quantity mode is single
E_MI_VIF_MODE_BT1120_STANDARD	Input data protocol is standard BT.1120(BT.656+ double quantity), port data Input mode is division mode of brightness and color, quantity mode is double
E_MI_VIF_MODE_BT1120_INTERLEAV ED	Input data protocol is BT.1120 interleave mode, port data Input mode is division mode of brightness and color, quantity mode is double
E_MI_VIF_MODE_MIPI	Input data protocol is MIPI

Note

The current interface mode can be obtained from eintfmode in MI_SNR_GetPadInfo.

Related Type

MI VIF DevAttr t

MI VIF SetDevAttr

3.2. MI_VIF_WorkMode_e

Description

Define working mode of video Input device

Definition

```
typedef enum

{

/* BT656 multiple ch mode */

E_MI_VIF_WORK_MODE_1MULTIPLEX,

E_MI_VIF_WORK_MODE_2MULTIPLEX,

E_MI_VIF_WORK_MODE_4MULTIPLEX,

/* RGB mode for MIPI/Parallel sensor */

E_MI_VIF_WORK_MODE_RGB_REALTIME,

E_MI_VIF_WORK_MODE_RGB_FRAMEMODE,

E_MI_VIF_WORK_MODE_MAX

} MI_VIF_WorkMode_e;
```

member

Member name	Description
E_MI_VIF_WORK_MODE_1MULTIPLEX	1 way compound working mode.
E_MI_VIF_WORK_MODE_2MULTIPLEX	2 way compound working mode, Input data protocol must be standard BT.656.
E_MI_VIF_WORK_MODE_4MULTIPLEX	4 way compound working mode, Input data protocol must be standard BT.656.
E_MI_VIF_WORK_MODE_RGB_REALTIME	RGB Realtime mode for MIPI/Parallel sensor
E_MI_VIF_WORK_MODE_RGB_FRAMEMODE	RGB Framemode mode for MIPI/Parallel sensor

Note

- Input data protocol must be standard BT.656 in 2 way or 4 way compound working mode
 No restriction in 1 way compound working mode
- When this item is set to RGB_realtime, the backend can only bind MI_VPE module, and MI_VPE should also be set to realtime mode. There is no DRAM buffer between the two modules, the underlying hardware is directly connected, and the two modules do not support time-sharing multiplexing.
- When this item is set to RGB frame, Vif writes buffer to the DRAM and sends it to the back-end module

Related Type

MI VIF DevAttr t
MI VIF SetDevAttr

3.3. MI_VIF_FrameRate_e

Description

Define relation between Output fps and Input fps.

Definition

```
typedef enum
{
    E_MI_VIF_FRAMERATE_FULL = 0,
    E_MI_VIF_FRAMERATE_HALF,
    E_MI_VIF_FRAMERATE_QUARTR,
    E_MI_VIF_FRAMERATE_OCTANT,
    E_MI_VIF_FRAMERATE_THREE_QUARTERS,
    E_MI_VIF_FRAMERATE_NUM,
} MI_VIF_FrameRate_e;
```

> member

Member name	Description
E_MI_VIF_FRAMERATE_FULL	Source over target is 1:1 Output.
E_MI_VIF_FRAMERATE_HALF	Source over target is 2:1 Output.
E_MI_VIF_FRAMERATE_QUARTER	Source over target is 4:1 Output.
E_MI_VIF_FRAMERATE_OCTANT	Source over target is 8:1 Output.
E_MI_VIF_FRAMERATE_THREE_QUARTERS	Source over target is 4:3 Output.

Note

It's available just in BT656multiple ch mode

Related Type

MI VIF ChnPortAttr t
MI VIF SetChnPortAttr

3.4. MI_VIF_DataYuvSeq_e

Description

Define YUV data sequence received from video Input device

Definition

```
typedef enum
{
    E_MI_VIF_INPUT_DATA_VUVU = 0,
    E_MI_VIF_INPUT_DATA_UVUV,
    E_MI_VIF_INPUT_DATA_UYVY = 0,
    E_MI_VIF_INPUT_DATA_VYUY,
    E_MI_VIF_INPUT_DATA_YUYV,
    E_MI_VIF_INPUT_DATA_YUYU,
    E_MI_VIF_DATA_YUV_NUM
} MI_VIF_DataYuvSeq_e;
```

> member

Member name	Description
E_MI_VIF_INPUT_DATA_VUVU	YUV data Input via division mode, C quantity Input sequence is VUVU.
E_MI_VIF_INPUT_DATA_UVUV	YUV data Input via division mode, C quantity Input sequence is UVUV.
E_MI_VIF_INPUT_DATA_UYVY	YUV data Input via compound mode, sequence is UYVY.
E_MI_VIF_INPUT_DATA_VYUY	YUV data Input via compound mode, sequence is VYUY.
E_MI_VIF_INPUT_DATA_YUYV	YUV data Input via compound mode, sequence is YUYV.
E_MI_VIF_INPUT_DATA_YVYU	YUV data Input via compound mode, sequence is YVYU.

Note

none.

Related Type

MI VIF DevAttr t
MI VIF SetDevAttr

3.5. MI_VIF_ClkEdge_e

Description

Define clock edge received from video Input device

Definition

member

Member name	Description
E_MI_VIF_CLK_EDGE_SINGLE_UP	Clock single edge mode, sampling in up edge
E_MI_VIF_CLK_EDGE_SINGLE_DOWN	lock single edge mode, sampling in down edge
E_MI_VIF_CLK_EDGE_DOUBLE	VIF do sampling in double edge for double edge
	data

Note

none.

Related Type

MI VIF DevAttr t
MI VIF SetDevAttr

3.6. MI_VIF_BitOrder_e

Description

Define data bit order of video Input device

Definition

```
typedef enum
{
    E_MI_VIF_BITORDER_NORMAL = 0,
    E_MI_VIF_BITORDER_REVERSED
} MI_VIF_BitOrder_e;
```

member

Member name	Description
E_MI_VIF_BITORDER_NORMAL	Normal data bit order
E_MI_VIF_BITORDER_REVERSED	Reversed data bit order

Note

none.

Related Type

MI VIF DevAttr t
MI VIF SetDevAttr

3.7. MI_VIF_HDRType_e

Description

Define HDR type of video Input device

Definition

> member

Member name	Description
E_MI_VIF_HDR_TYPE_OFF	HDR off
E_MI_VIF_HDR_TYPE_VC	virtual channel mode HDR,vc0->long, vc1->short
E_MI_VIF_HDR_TYPE_DOL	Digital Overlap High Dynamic Range
E_MI_VIF_HDR_TYPE_EMBEDDED	compressed HDR mode
E_MI_VIF_HDR_TYPE_LI	Line interlace HDR

Note

HDR type is related to the sensor. You can obtain the HDR type supported by the current sensor through ehdrmode of MI_SNR_GetPadInfo.

Related Type

MI VIF DevAttr t
MI VIF SetDevAttr

3.8. MI_VIF_Polar_e

Description

Define signal polarity

Definition

```
typedef enum
{
     E_MI_VIF_PIN_POLAR_POS,
     E_MI_VIF_PIN_POLAR_NEG
} MI_VIF_Polar_e;
```

member

Member name	Description
E_MI_VIF_PIN_POLAR_POS	High level active
E_MI_VIF_PIN_POLAR_NEG	Log level active

Note

Available only for parallel sensor interface

Related Type

MI VIF SyncAttr t

3.9. MI_VIF_SyncAttr_t

Description

Define synchronization attribute

Definition

```
typedef struct MI_VIF_SyncAttr_s
{
    MI_VIF_Polar_e eVsyncPolarity;
    MI_VIF_Polar_e eHsyncPolarity;
    MI_VIF_Polar_e ePclkPolarity;
    MI_U32 VsyncDelay;
    MI_U32 HsyncDelay;
    MI_U32 PclkDelay;
}
MI_U35 PclkDelay;
```

> member

Member name	Description
eVsyncPolarity	V sync. effective polarity
eHsyncPolarity	H sync. effective polarity
ePclkPolarity	Pixel Clock effective polarity
VsyncDelay	V sync. delay time
HsyncDelay	H sync. delay time
PclkDelay	Pixel Clock delay time

At 1920x1080 resolution, PCLK / Hsync / Vsync are all high-level effective, and the waveform corresponding relationship is as follows:

Pclk: pixel clock, Every time a pixel is received, a clock is generated.

Hsync: Line synchronization, when valid, the received signal belongs to the same line. Vsync: Field synchronization, when valid, the received signal belongs to the same frame.

Note

only for parallel sensor interface

Related Type

MI VIF DevAttr t

3.10. MI VIF DevAttr t

Description

Define attribute of video Input device.

Definition

```
typedef struct MI_VIF_DevAttr_s

{

MI_VIF_IntfMode_e eIntfMode;

MI_VIF_WorkMode_e eWorkMode;

MI_VIF_HDRType_e eHDRType;

MI_VIF_CIkEdge_e eClkEdge;

MI_VIF_DataYuvSeq_e eDataSeq;

MI_VIF_BitOrder_e eBitOrder;

/* adjust bit order layout */

MI_VIF_SyncAttr_t stSyncAttr;

} MI_VIF_DevAttr_t;
```

> member

Member name	Description
eIntfMode	Interface mode.
eWorkMode	Working mode.
eHDRType	HDR type
eClkEdge	Clock edge mode (up sampling, down sampling, double sapling).

Member name	Description
eDataSeq	Input data sequence (only support yuv), need to configure for DC mode, invalid for other modes.
eBitOrder	Vif data layout bit order
stSyncAttr	Synchronization attribute

Note

none

Related Type

MI VIF SetDevAttr

3.11. MI_VIF_ChnPortAttr_t

Description

Define VIF channel port attribute.

Definition

```
typedef struct MI_VI_ChnPortAttr_s{
    MI_SYS_WindowRect_t stCapRect;
    MI_SYS_WindowRect_t stDestSize;
    MI_SYS_FieldType_e enCapSel;
    MI_SYS_FrameScanMode_e nScanMode;
    MI_SYS_PixelFormat_e ePixFormat;
    <u>MI_VI_FrameRate_e</u> eFrameRate;
    MI_U32 u32FrameModeLineCount
} MI_VI_ChnPortAttr_t;
```

member

sub ports only support stDestSize, enDstFrameRate, other attributes will be ignored.

Member name	Description
stCapRect	coordinates and width and height of capturing region(based on original device image)
stDestSize	destination image size. Must to be configured, the size cannot over outside ADC Input image, or VIF hardware may be abnormal
eCapSel	capturing frame selection for line-over mode, suggest capture bottom field when capturing of single field. Must to set E_MI_SYS_FIELDTYPE_BOTH for each line-each mode.
eScanMode	Input scan mode (line-each, line-over)
ePixFormat	Pixel format, In bt656 format, only E_MI_SYS_PIXEL_FRAME_YUV422_YUYV is supported.
eFrameRate	Ratio of target fps over Input fps.

Member name	Description	
	Set 0 to ignore fps control.	
	Output with 1:1,2:1,4:1,8:1,4:3	
u32FrameModeLineC	Inform next stage about the processing moment , use with	
ount	E_MI_VIF_WORK_MODE_RGB_FRAMEMODE	

chip difference

Member name	Description	
stDestSize	VIF channel is able to scale, horizontal scaling down 2 multiple,	
	vertical scaling down 2 multiple.	

Related Type

MI VIF SetChnPortAttr

3.12. MI_VIF_ChnPortStat_t

Description

Define VIF channel port status

Definition

```
typedef struct MI_VIF_ChnStat_s
{
    MI_BOOL bEnable; /* Whether this channel is enabled */
    MI_U32 u32IntCnt; /* The VIFdeo frame interrupt count */
    MI_U32 u32FrmRate; /* current frame rate */
    MI_U32 u32LostInt; /* The interrupt is received but nobody care*/
    MI_U32 u32VbFail; /* Video buffer malloc failure */
    MI_U32 u32PicWidth;/* curren pic width */
    MI_U32 u32PicHeight;/* current pic height */
} MI_VIF_ChnPortStat_t;
```

> member

Member name	Description
bEnable	Channel enable.
u32IntCnt	Interrupt count.
u32FrmRate	Average fps every 10s, the precision is not perfect.
u32LostInt	Interrupt loss count.
u32VbFail	VB fail count.
u32PicWidth	Picture width.
u32PicHeight	Picture heigh.

- Note
- Interrupt count can be used to detect no interrupt
- Fps is average fps every 10s, VIF calculate average fps every 10s, the precision is not perfect.
- If interrupt loss count increased all the time, it meant VIF is abnormal
- Related Type

none.

3.13. MI_VIF_SNRPad_e

Description

Define SensorPad Id

Definition

```
typedef enum
{

E_MI_VIF_SNRPAD_NULL,

E_MI_VIF_SNRPADID0,

E_MI_VIF_SNRPADID1,

E_MI_VIF_SNRPADID2,

E_MI_VIF_SNRPADID3,

E_MI_VIF_SNRPAD_NUM
}MI_VIF_SNRPAd_e;
```

member

Member name	Description	
E_MI_VIF_SNRPAD_NULL	SensorPad without binding	
E_MI_VIF_SNRPADID0	mapping HW device Sensor0	
E_MI_VIF_SNRPADID1	mapping HW device Sensor1	
E_MI_VIF_SNRPADID2	mapping HW device Sensor2	
E_MI_VIF_SNRPADID3	mapping HW device Sensor3	
E_MI_VIF_SNRPAD_NUM	Over maximum Sensor Num	

Note

In default condition, VIF Dev0 is mapped to Sensor0, Dev1 is mapped to Sensor1. Refer to MI sensor api.doc, chapter 1.2 block diagram.

Related Type

MI_VIF_Dev2SnrPadMuxCfg_t

3.14. MI_VIF_Dev2SnrPadMuxCfg_t

Description

Define binding relation between VIF device and SensorPad

Definition

member

Member name	Description
eSensorPadID	Sensor Pad Id
u32PlaneID	PlaneId, for HDR
	1: long exposure,
	0 short exposure
	for liner is 0xff

Note

In default condition, VIF Dev0 is mapped to Sensor0, Dev2 is mapped to Sensor1.默 In default condition, no need to call this API.

Related Type

MI VIF SetDev2SnrPadMux

4. VIF ERROR CODE

VIF API error code is defined in following table

Table 1: VIF API error code

Error code	Macro definition	Description
0xA0032001	MI_ERR_VIF_INVALID_DEVID	Video Input device ID invalid
0xA0032002	MI_ERR_VIF_INVALID_CHNID	Video Input channel ID invalid
0xA0032003	MI_ERR_VIF_INVALID_PARA	Video Input parameter invalid
0xA0032006	MI_ERR_VIF_INVALID_NULL_PTR	Null pointer invalid
0xA0032007	MI_ERR_VIF_FAILED_NOTCONFIG	Video device or channel attribute is not configured
0xA0108008	MI_ERR_VIF_NOT_SUPPORT	Operation is not supported
0xA0108009	MI_ERR_VIF_NOT_PERM	Operation is not permitted
0xA010800C	MI_ERR_VIF_NOMEM	Memory allocation fail
0xA010800E	MI_ERR_VIF_BUF_EMPTY	Buffer empty
0xA010800F	MI_ERR_VIF_BUF_FULL	Buffer full
0xA0108010	MI_ERR_VIF_SYS_NOTREADY	Video Input system is not ready
0xA0108012	MI_ERR_VIF_BUSY	Video Input system is busy
0xA0032080	MI_ERR_VIF_INVALID_PORTID	Video Input port ID invalid
0xA0032081	MI_ERR_VIF_FAILED_DEVNOTENABLE	Video Input device is not enable
0xA0032082	MI_ERR_VIF_FAILED_DEVNOTDISABLE	Video Input device is not disable
0xA0032083	MI_ERR_VIF_FAILED_PORTNOTENABLE	Video Input channel is not enable
0xA0032084	MI_ERR_VIF_FAILED_PORTNOTDISABLE	Video Input channel is not disable
0xA0032085	MI_ERR_VIF_CFG_TIMEOUT	Video configure timeout
0xA0032087	MI_ERR_VIF_INVALID_WAYID	Video way ID invalid
0xA0032088	MI_ERR_VIF_INVALID_PHYCHNID	Video physical channel ID invalid
0xA0032089	MI_ERR_VIF_FAILED_NOTBIND	Video channel is not bound
0xA003208A	MI_ERR_VIF_FAILED_BINDED	Video channel is bound