

Prof. Dr. Anne Frühbis-Krüger M.Sc. Marco Melles

Präsenzaufgaben 1

Keine Abgabe vorgesehen

Präsenzaufgabe 1.4. Zeigen Sie:

- (a). Seien $a, b, c \in \mathbb{Z}$. Die lineare Diophantische Gleichung aX + bY = c ist genau dann lösbar mit $(x, y) \in \mathbb{Z} \times \mathbb{Z}$, falls $\operatorname{ggT}(a, b) \mid c$.
- (b). Folgern Sie das Korollar 1.2.11 aus dem Lemma von Euklid.
- (c). Sei p eine Primzahl und $k \in \{1, \ldots, p-1\}$. Beweisen Sie, dass $p \mid \binom{p}{k}$.

Präsenzaufgabe 1.5. Zeigen Sie:

- (a). Sei G eine Gruppe. Sei I eine beliebige Indexmenge. Sind $U_i \leq G$ für alle $i \in I$ Untergruppen von G, so ist $\bigcap_{i \in I} U_i$ eine Untergruppe von G.
- (b). Zu einem $k \in \mathbb{N}$ definieren wir $M_k = \{\zeta \in \mathbb{C} \mid \zeta^k = 1\}$. Es ist M_k eine Gruppe. Seien nun $m, n \in \mathbb{N}$ und $d = \operatorname{ggT}(m, n)$. Dann gilt $M_m \cap M_n = M_d$. Hinweis: Bézout-Identität.
- (c). $\mathbb{Z}[i] = \{a + ib \mid a, b \in \mathbb{Z} \text{ und } i^2 = -1\} \subseteq \mathbb{C}$ ist ein Integritätsring, aber kein Körper ist.

Präsenzaufgabe 1.6. Betrachten Sie zu einem Ring R und r, $s \in R$ die folgende Gleichung

$$(\star)$$
 $(r-s)^2 = r^2 - 2rs + s^2$.

Geben Sie einen Ring R an, welcher (\star) erfüllt und einen Ring S, welcher (\star) nicht erfüllt. Bestimmen Sie eine Ringeigenschaft, zu der (\star) äquivalent ist und beweisen Sie diese Äquivalenz.