Algebra Lineare e Geometria Analitica Ingegneria dell'Automazione Industriale

Ayman Marpicati

A.A. 2022/2023

Indice

Capitolo 1	Spazi affini	Pagina 4
1.1	$A_n(K)$, spazio affine di dimensione n	4
1.2	Proprietà di punti, rette e piani	7
1.3	Geometria analitica in $A_n(\mathbb{R})$	8
1.4	Rappresentazioni analitiche	11

Capitolo 1

Spazi affini

1.1 $A_n(K)$, spazio affine di dimensione n

Definizione 1.1.1: Spazio affine

Si dice spazio affine di dimensione n sul campo K, e si indica $\mathring{A}_n(K)$, la struttura costituita da

- 1. un insieme non vuoto A, detto insieme dei punti
- 2. uno spazio vettoriale $V_n(K)$
- 3. un'applicazione

$$f: A \times A \to V_n(K)$$

con le seguenti proprietà

(a)
$$\forall P \in A \ e \ \forall v \in V \quad \exists ! \ Q \in A : \quad f(P,Q) = \overrightarrow{PQ} = v$$

(b)
$$\vec{PQ} + \vec{QR} = \vec{PR} \quad \forall P, Q, R \in A$$

Proposizione 1.1.1

In $A_n(K)$, per ogni $P, Q \in R \in A$

1. il vettore
$$\vec{RR} = \underline{0}$$

2.
$$\vec{PQ} = \vec{PR} \iff Q = R$$

3.
$$\vec{PQ} = \underline{0} \iff P = Q$$

3.
$$\vec{PQ} = \underline{0} \iff P = Q$$

4. $v = \vec{PQ} \implies -v = \vec{QP}$

5.
$$\forall P_1, P_2, Q_1, Q_2 \in A$$
 risulta $\vec{P_1P_2} = \vec{Q_1Q_2} \iff \vec{P_1Q_1} = \vec{P_2Q_2}$

Dimostrazione: Dimostriamo ogni punto separatamente

1.
$$\vec{RR} + \vec{RR} = \vec{RR}$$
 perciò $2\vec{RR} = \vec{RR} \iff \vec{RR} = 0$

2. posto
$$\vec{v} = \vec{PQ}$$
 allora $\vec{v} = \vec{PR}$, ma $\exists ! \ Q : \ \vec{PQ} = \vec{v} \implies \vec{R} = \vec{Q}$

3. per la proprietà 1
$$\vec{RR} = \underline{0} \implies$$
 per l'unicità di $Q: \vec{PQ} = \underline{0} \implies Q = P$

4.
$$\vec{PQ} + \vec{QP} = \vec{PP} = 0 \implies \vec{PQ} = -\vec{QP}$$

5. ovvio, essendo
$$\vec{P_1P_2} + \vec{P_2Q_2} = \vec{P_1Q_2} = \vec{P_1Q_1} + \vec{Q_1Q_2}$$

⊜

Definizione 1.1.2: Sottospazio affine

Sia $A_n(K)$ uno spazio affine. Si dice sottospazio affine di dimensione $m \le n$ una struttura data da

- 1. $\emptyset \neq A' \subseteq A$, detto sostegno del sottospazio affine
- 2. $V_m(K)$ sottospazio di $V_n(K)$
- 3. la restrizione dell'applicazione f ad $A' \times A'$ troncata a $V_m(K)$, purché questa sia ancora un'applicazione che gode delle proprietà elencate nella definizione di spazio affine

Definizione 1.1.3: Traslazione

Fissato un vettore $v \in V_n(K)$ si dice **traslazione**, individuata da v, la corrispondenza

$$t_v: A \to A \quad e \quad P \to Q$$

che associa a un punto $P \in A$ il punto Q traslato di P mediante il vettore v.

Osservazione: $\forall v \in V_n(K)$ la mappa t_v è una biiezione di A, insieme di punti di $(A, V_n(K), f)$. E l'inversa di t_v è t_{-v} .

Definizione 1.1.4: Sottospazio lineare

Sia $A_n(K)$ uno spazio affine. Si dice **sottospazio lineare** l'insieme dei traslati di un punto P, detto **origine**, mediante i vettori $v \in V_h(K) \le V_n(K)$, con h detta dimensione del sottospazio lineare. Inoltre si denota con $S_h = [P, V_h(K)]$ il sottospazio lineare dato dal punto P e dallo spazio di traslazione V_h .

Definizione 1.1.5: Punti, rette, piani e iperpiani

Sia $A_n(K)$ uno spazio affine. Si dicono

• punti i sottospazi lineari di dimensione 0

$$S_0 = [P, \{0\}] = \{P\}$$

• rette i sottospazi lineari di dimensione 1

$$S_1 = [P, \mathcal{L}(v)] \quad \text{con } v \neq 0 \quad e \quad v \in V_n(K)$$

• piani i sottospazi lineari di dimensione 2

$$S_2 = [P, \mathcal{L}(v_1, v_2)] \quad \text{con } v_1, v_2 \neq 0 \quad e \quad v_1, v_2 \in V_n(K)$$

• iperpiani sono i sottospazi di dimensione n-1

Proposizione 1.1.2

Sia $S_h = [P, V_h(K)]$ un sottospazio lineare di dimensione h sottospazio di $A_n(K)$.

☺

☺

- 1. siano $Q, R \in S_h \implies \overrightarrow{QR} \in V_h(K)$ 2. se $Q \in S_h$ e $v \in V_h$, allora $R = t_v(Q) \in S_h$

Dimostrazione: Dimostriamo entrambi i punti separatamente

1. Per ipotesi $Q \in S_h$, quindi $Q = t_v(P)$ con $v \in V_h(K)$. $v = PQ \in V_h$ e analogamente $PR \in V_h$. Ma allora $\vec{OR} = \vec{OP} + \vec{PR} = -\vec{PQ} + \vec{PR} \in V_h$.

2. Poiché $Q \in S_h$, $\vec{PQ} \in V_h$. Allora $\vec{PR} + \vec{QR} = \vec{PQ} + \vec{v} \in V_h \implies \vec{PR} \in V_h$. Posto $\vec{w} = \vec{PR}$, $t_w(P) = R$ con $w \in V_h \implies R \in S_h$.

Proposizione 1.1.3

Sia $S_h = [P, V_h(K)]$ un sottospazio lineare di $A_n(K)$. Ogni punto di S_h può essere scelto come origine di $S_h.$ Cioè dato $Q\in S_h$ abbiamo che $[Q,V_h(K)]=S_h.$

Dimostrazione: Sia $R \in S_h$. Allora $\vec{PR} \in V_n$ e $\vec{PQ} \in V_n$. Quindi $\vec{QR} = \vec{QP} + \vec{PR} = -\vec{PQ} + \vec{PR} \in V_h \implies$ $QR \in V_h$.

Detto $w = \overrightarrow{QR}$ abbiamo che $R = t_v(Q)$. R è traslato di Q tramite il vettore $w \in V_h \implies R \in [Q, V_h]$, quindi

$$S_h\subseteq [Q,V_h]$$

con lo stesso ragionamento scambiamo P e Q si dimostra che

$$[Q, V_h] \subseteq [P, V_h] = S_h$$

e ciò vale solo se $S_h = [Q, V_h]$.

Proposizione 1.1.4

Siano S_h e S_k due sottospazi lineari di $A_n(K)$. Allora $S_h \subseteq S_k \iff S_h \cap S_k \neq \emptyset$ e $V_h \leq V_k$.

Dimostrazione: " ⇒ " Ovviamente $S_h \cap S_k \neq \emptyset$ e sia $P \in S_h \cap S_k$. Potremo scrivere $S_h = [P, V_h]$ e $S_k = [P, V_k]$. Sia $v \in V_h$ e sia $Q = t_v(P) \in S_h \subseteq S_k \implies Q \in S_k$ e sia $Q = t_v(P)$ ovvero $\overrightarrow{PQ} = v \in V_k \implies V_h \le V_k$. " \Leftarrow " Sia $P \in S_h \implies [P, V_h] \subseteq [P, V_k]$ (poiché per ipotesi $V_h \subseteq V_k$) $[P, V_h] = S_h$ e $[P, V_k] = S_k \implies S_h \subseteq S_h$ S_k .

Proposizione 1.1.5

Siano S_h e S_k sottospazi lineari di $A_n(K)$. Sia $S_h \cap S_k \neq \emptyset$ e sia $P \in S_h \cap S_k$. Allora

$$S_h \cap S_k = [P, V_h \cap V_k]$$

Dimostrazione: Sia $Q \in S_h \cap S_k$. Osserviamo che $S_h = [P, V_h]$ e $S_k = [P, V_k]$. $Q = t_v(P)$ con $v \in V_h$ (perché $Q \in S_h$). Ma $Q = t_v(P)$ con $v \in V_k$ (perché $Q \in S_k$). Quindi $Q \in [P, V_h \cap V_k]$ perché $v \in V_h \cap V_k$, cioè

$$S_h \cap S_k \subseteq [P, V_h \cap V_k]$$

Viceversa dato $Q = t_v(P)$ con $v \in V_h \cap V_k \implies Q$ appartiene sia a S_h che ad S_k , quindi $Q \in S_h \cap S_k$, ovvero

$$[P, V_h \cap V_k] \subseteq S_h \cap S_k$$

$$\implies [P, V_h \cap V_k] = S_h \cap S_k$$

(

Definizione 1.1.6: Parallelismo tra sottospazi

Due sottospazi lineari, $S_p = [P, V_p]$ ed $S_q = [Q, V_q]$, di $A_n(K)$ si dicono **paralleli**, e si scrive $S_p||S_q$, se i rispettivi spazi di traslazione sono confrontabili, ovvero quando $V_p \subseteq V_q$, oppure $V_q \subseteq V_p$.

Osservazione 1: La relazione di parallelismo non è transitiva. E' invece riflessiva e simmetrica. Non è quindi una relazione d'equivalenza.

Osservazione 2: Due sottospazi lineari della stessa dimensione sono paralleli se, e soltanto se, hanno lo stesso spazio di traslazione. Quindi la relazione di parallelismo considerata tra spazi della stessa dimensione è una relazione d'equivalenza.

Proposizione 1.1.6

Due sottospazi lineari paralleli e di uguale dimensione o coincidono oppure hanno intersezione vuota.

Definizione 1.1.7

- Sia $S = [P, V_1]$ una retta. Lo spazio V_1 si dice **direzione** della retta S. Quindi due rette sono parallele se, e soltanto se, hanno la stessa direzione
- Sia $\pi = [P, V_2] \subseteq A_n(K)$ con $n \ge 2$. Lo spazio V_2 è detto **giacitura** di π . Quindi due piani sono paralleli se, e soltanto se, hanno la stessa giacitura.
- Tre o più punti si dicono allineati se esiste una retta che li contiene tutti.
- Due o più rette si dicono **complanari** se esiste un piano che le contiene tutte.

1.2 Proprietà di punti, rette e piani

Proposizione 1.2.1

In $A_n(k)$, con $n \ge 2$

- 1. per ogni due punti distinti passa un'unica retta
- 2. per due rette distinte, parallele o incidenti, passa un unico piano
- 3. due rette complanari, aventi intersezione vuota, sono parallele
- 4. per un punto passa un'unica retta parallela a una retta data (V Postulato di Euclide)

- 5. per un punto passa un unico piano, parallelo ad un piano dato
- 6. per tre punti, non allineati, passa un unico piano
- 7. una retta, avente due punti distinti in un piano, giace nel piano
- 8. per un punto passano almeno due rette distinte

Proposizione 1.2.2

In $A_3(K)$,

- 1. una retta e un piano, aventi intersezione vuota, sono paralleli
- 2. due piani, aventi intersezione vuota, sono paralleli
- 3. due piani distinti, aventi in comune un punto, hanno in comune una retta per quel punto
- 4. per una retta passano almeno due piani distinti

Definizione 1.2.1: Rette sghembe

In $A_n(K)$, con $n \ge 3$, due rette non complanari si dicono **sghembe**.

Proposizione 1.2.3

In $A_n(K)$, con $n \ge 3$, esistono due rette r_1 e r_2 sghembe tra loro. Inoltre due rette sghembe r_1 e r_2 , sono contenute su due piani π_1 e π_2 paralleli tra loro e distinti.

Dimostrazione: Per ipotesi, $A_n(K)$ ha dimensione almeno 3, quindi esistono nello spazio vettoriale $V_n(K)$ almeno 3 vettori linearmente indipendenti. Siano essi u, v, w. Siano inoltre, P un punto di A e Q il traslato di P mediante il vettore u ($Q = t_u(P)$). Dimostriamo che le rette $r = [P, \mathcal{L}(v)]$ ed $s = [Q, \mathcal{L}(w)]$ sono sghembe. Se infatti, esistesse un piano $\pi = [P, V_2]$ che le contiene entrambe, lo spazio di traslazione di π conterrebbe 3 vettori linearmente indipendenti, cioè v, w e $u = \overrightarrow{PQ}$ e ciò è un **assurdo!** Siano ora $t = [T, \mathcal{L}(v)]$ e $t' = [T', \mathcal{L}(v')]$ due

rette sghembe. I vettori v e v' generano uno spazio vettoriale V_2 di dimensione 2. Pertanto, i piani $\pi = [T, V_2]$ e $\pi' = [T', V_2]$, che risultano paralleli, sono distinti e contengono, rispettivamente le rette t e t'.

1.3 Geometria analitica in $A_n(\mathbb{R})$

Definizione 1.3.1: Riferimento affine

Si dice **riferimento affine** di $A_n(\mathbb{R})$ una coppia RA = [O, B] costituita da un punto O fissato, detto origine, e da una base B dello spazio vettoriale $V_n(\mathbb{R})$.

Definizione 1.3.2: Coordinate

Fissato, in $A_n(\mathbb{R})$, un riferimento affine RA = [O, B], si dicono **coordinate** del punto P in RA le componenti, in B, del vettore \overrightarrow{OP} e si scrive $P = (x_i)_{i \in I_n}$.

1. In $A_1(\mathbb{R})$, un riferimento affine è una coppia RA = [O, B], ove O è un punto fissato e $B = (e_1)$ è una base di $V_1(\mathbb{R})$. Se $\vec{OP} = xe_1$, si scrive P = (x) e si dice che x è l'ascissa del punto P in RA.

2. In $A_2(\mathbb{R})$, un riferimento affine è una coppia RA = [O, B], ove O è un punto fissato e $B = (e_1, e_2)$ è una base di $V_2(\mathbb{R})$. La retta $[O, \mathcal{L}(e_1)]$ è detta asse delle ascisse e la retta $[O, \mathcal{L}(e_2)]$ è detta asse delle ordinate. Se $OP = xe_1 + ye_2$, si scrive P = (x, y) e si dice che (x, y) è la coppia delle coordinate di P in RA, dette rispettivamente ascissa e ordinata del punto P.

3. In $A_3(\mathbb{R})$, un riferimento affine è una coppia RA = [O, B], ove O è un punto fissato e $B = (e_1, e_2, e_3)$ è una base di $V_3(\mathbb{R})$. La retta $[O, \mathcal{L}(e_1)]$ è detta asse delle ascisse, la retta $[O, \mathcal{L}(e_2)]$ è detta asse delle ordinate e la retta $[O, \mathcal{L}(e_3)]$ è detta asse delle quote. Sono detti piani coordinati i piani $xy = [O, \mathcal{L}(e_1, e_2)], xz = [O, \mathcal{L}(e_1, e_3)]$ e $yz = [O, \mathcal{L}(e_2, e_3)]$. Inoltre, se $\overrightarrow{OP} = xe_1 + ye_2 + ze_3$, si scrive P = (x, y, z) e si dice che (x, y, z) è la terna delle coordinate di P in RA, dette rispettivamente ascissa, ordinata e quota del punto P.

Teorema 1.3.1

In $A_n(K)$, con RA = [O, B], siano $P = (x'_1, x'_2, \dots, x'_n)$ e $Q = (x''_1, x''_2, \dots, x''_n)$ due punti di A. Allora le componenti di \vec{PQ} rispetto a B sono

$$(x_1'' - x_1', x_2'' - x_2', \dots, x_n'' - x_n')$$

Dimostrazione: Posti due vettori

$$\vec{OP}: x_1'e_1 + x_2'e_2 + \ldots + x_n'e_n$$

$$\vec{OQ}$$
: $x_1''e_1 + x_2''e_2 + \ldots + x_n''e_n$

Per la proprietà della definizione di spazio affine possiamo dire che

$$\vec{PQ} = \vec{PO} + \vec{OQ} = \vec{OQ} - \vec{OP} = \sum_{i \in I_n} (x_i'' - x_i') e_i$$

☺

Posti

$$X'' = \begin{pmatrix} x_1'' \\ x_2'' \\ \vdots \\ x_n'' \end{pmatrix}, X' = \begin{pmatrix} x_1' \\ x_2' \\ \vdots \\ x_n' \end{pmatrix} \in T = \begin{pmatrix} t_1 \\ t_2 \\ \vdots \\ t_n \end{pmatrix}$$

si ottiene l'equivalente, ma spesso più agevole, forma matriciale:

$$X'' - X' = T$$

che può essere riscritta come

$$X'' = X' + T$$

Da quest'ultima equazione si vede che le coordinate del traslato del punto $P = (x'_1, x'_2, ..., x'_n)$, attraverso il vettore v di componenti $(t_1, t_2, ..., t_n)$, si ottengono sommando, ordinatamente, alle coordinate di P le componenti del vettore di traslazione. Per questo le relazioni che compaiono nell'equazione sono anche dette **equazioni della traslazione individuata da** v.

Definizione 1.3.3: Punto medio

Dato $P \in Q \in A$ (insieme dei punti di $A_n(\mathbb{R})$), definiamo il punto medio del segmento [PQ] come

$$M = t_{1/2\vec{PQ}}(P)$$

$$P \longrightarrow M \longrightarrow R$$

Proposizione 1.3.1

Dati $P, Q \in A$ e dato un riferimento affine RA = [O, B] abbiamo che le coordinate del punto medio di P e Q sono le semisomme delle coordinate omonime di P e di Q.

Definizione 1.3.4: Punto simmetrico

In $A_n(\mathbb{R})$ dati i punti $P \in C$ diremo che S è il **punto simmetrico** di P rispetto a C se C è il punto medio di [P, S].

1.4 Rappresentazioni analitiche

Definizione 1.4.1: Equazioni parametriche di una retta in $A_n(\mathbb{R})$

Sia RA = [O, B] un riferimento fissato in $A_n(\mathbb{R})$, ove $B = (e_1, e_2, \ldots, e_n)$. Sia $r = [P, V_1 = \mathcal{L}(v)]$ la retta di origine il punto $P = (x'_1, x'_2, \ldots, x'_n)$ e spazio di traslazione generato da $v = (l_1, l_2, \ldots, l_n)$. Il generico vettore w di $\mathcal{L}(v)$ è proporzionale al vettore v, cioè w = tv, con $t \in \mathbb{R}$, quindi, $w = (tl_1, tl_2, \ldots, tl_n)$. Dato che la retta r è il luogo dei traslati di P attraverso i vettori di $\mathcal{L}(v)$, applicando le equazioni del teorema precedente si ottengono le coordinate del generico punto di r

$$\begin{cases} x_1 = x_1' + l_1 t \\ x_2 = x_2' + l_2 t \\ \dots \\ x_n = x_n' + l_n t \end{cases} \quad \text{con} \quad t \in \mathbb{R}, \quad (l_1, l_2, \dots, l_n) \neq \underline{0}$$

tali equazioni sono dette equazioni parametriche di r in $A_n(\mathbb{R})$. Al variare di $t \in \mathbb{R}$, si ottengono le coordinate di tutti i punti di una retta e, quindi, tutti i punti di una retta sono ∞^1 .

Definizione 1.4.2: Parametri direttori

Si dicono **parametri direttori** di $r = [P, V_1]$, le componenti di un qualunque vettore nullo di V_1 .

Osservazione: I parametri direttori di una retta sono, quindi, determinati a meno di un fattore non nullo di proporzionalità. Definiamo la classe dei parametri direttori di r come $p.d.r = [(l_1, l_2, ..., l_n)]$ con $(l_1, l_2, ..., l_n)$ un qualsiasi vettore appartenente a V_1 .

Equazioni parametriche di una retta in $A_2(\mathbb{R})$

In $A_2(\mathbb{R})$, sia fissato un riferimento RA = [O, B], ove $B = (e_1, e_2)$. Una retta $r = [P, V_1]$ è il luogo dei traslati di un punto P mediante i vettori di $V_1 \subset V_2$. Se P ha coordinate (x_0, y_0) e $V_1 = \mathcal{L}(v)$, ove $v = le_1 + me_2$, le equazioni della definizione diventano

$$\begin{cases} x = x_0 + lt \\ y = y_0 + mt \end{cases} \text{ ove } t \in \mathbb{R}, \quad (l, m) \neq (0, 0)$$

e sono dette **equazioni parametriche** di r in $A_2(\mathbb{R})$.

Equazioni parametriche di una retta in $A_3(\mathbb{R})$

In $A_3(\mathbb{R})$, sia fissato un riferimento RA = [O, B], ove $B = (e_1, e_2, e_3)$. Una retta $r = [P, V_1]$ è il luogo dei traslati di un punto P mediante i vettori di $V_1 \subset V_3$. Se P ha coordinate (x_0, y_0, z_0) e $V_1 = \mathcal{L}(v)$, ove $v = le_1 + me_2 + ne_3$, le equazioni della definizione diventano

$$\begin{cases} x = x_0 + lt \\ y = y_0 + mt \\ z = z_0 + nt \end{cases} \text{ ove } t \in \mathbb{R}, \quad (l, m, n) \neq (0, 0, 0)$$

e sono dette equazioni parametriche di r in $A_3(\mathbb{R})$.

Osservazione: In modo del tutto analogo possiamo determinare le equazioni parametriche di sottospazi lineari di dimensione n, che quindi dipenderanno da n parametri.

Equazione cartesiana di una retta in $A_2(\mathbb{R})$

In $A_2(\mathbb{R})$ una retta si può rappresentare attraverso le sue equazioni parametriche in questo modo

$$\begin{cases} x = x_p + lt \\ y = y_p + mt \end{cases}$$

possiamo convertire questo sistema lineare in forma matriciale e quindi

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x_p \\ y_p \end{pmatrix} + t \begin{pmatrix} l \\ m \end{pmatrix} \iff \begin{pmatrix} x - x_p \\ y - y_p \end{pmatrix} = t \begin{pmatrix} l \\ m \end{pmatrix} \iff \begin{vmatrix} x - x_p & y - y_p \\ l & m \end{vmatrix} = 0$$

Quindi vale la relazione

$$((x - x_p)m)(l(y - y_p)) = mx - ly - mx_p + ly_p = 0$$

Possiamo raggruppare i termini noti $-mx_p + ly_p$ in un generico termine c e quindi l'equazione cartesiana della retta diventa

$$ax + by + c = 0$$
 con $(a, b) \neq (0, 0)$

Quindi i parametri direttori della generica retta r saranno p.d.r = [(l, m)] = [(-b, a)].

Mutua posizione di due rette in $A_2(\mathbb{R})$

Siano due rette

$$r: ax + by + c = 0 \quad (a,b) \neq (0,0)$$

$$s: a'x + b'y + c' = 0 \quad (a',b') \neq (0,0)$$

La loro intersezione può essere

$$r \cap s = \begin{cases} \text{un unico punto se } r \in s \text{ sono incidenti} \\ \emptyset \text{ se } r \in s \text{ sono parallele e distinte} \\ r \equiv s \text{ se sono coincidenti} \end{cases}$$

Consideriamo il sistema

$$r \cap s = \begin{cases} ax + by + c = 0\\ a'x + b'y + c' = 0 \end{cases}$$

Le coordinate dei punti di $r\cap s$ sono le soluzioni del sistema. Posti

$$A = \begin{pmatrix} a & b \\ a' & b' \end{pmatrix}$$
 la matrice incompleta del sistema, $A|B = \begin{pmatrix} a & b & -c \\ a' & b' & -c' \end{pmatrix}$ la matrice completa del sistema

possiamo dire che $\rho(A) \ge 1$ poiché abbiamo richiesto che $(a,b) \ne (0,0)$ e $\rho(A) \le 2$. Quindi abbiamo due casi possibili

- 1. se $\rho(A) = 2 \implies \rho(A) = \rho(A|B) = 2$, quindi il sistema è compatibile e ha ∞^{2-2} soluzioni $\implies \exists !$ soluzione del sistema $\implies r \cap s = \{P\} \implies r \cap s$ sono **incidenti**.
- 2. se $\rho(A) = 1$ allora r||s, ma non sappiamo se esse siano parallele e distinte o se esse coincidano. Perciò dobbiamo suddividere in due sottocasi
 - (a) se fossero parallele e distinte il sistema non sarebbe compatibile, perciò $2 = \rho(A|B) > \rho(A) = 1$
 - (b) se invece $\rho(A)=1$ e $\rho(B)=1$ il sistema ammette ∞^{2-1} soluzioni, perciò $r\equiv s \implies r||s$ se $\rho(A)=1$

Fasci di rette in $A_2(\mathbb{R})$

Definizione 1.4.3: Fascio improprio di rette

Si dice fascio improprio di rette l'insieme di tutte e sole le rette del piano $A_2(\mathbb{R})$ parallele ad una retta data.

Proposizione 1.4.1

Una retta appartiene al fascio improprio di rette parallele alla retta $r = [P, V_1] : ax + by + c = 0, (a, b) \neq$

(0,0), se, e soltanto se, ha un'equazione del tipo

$$ax + by + k = 0$$
 ove $k \in \mathbb{R}$

detta equazione del fascio improprio di rette. Da cui si deduce che le rette di un fascio improprio di rette sono ∞^1

Osservazione: Tutte e sole le rette parallele ad r hanno parametri direttori [(-b,a)] e quindi r e s sono la stessa retta $\iff (a,b,c) \sim (a',b',c')$.

Definizione 1.4.4: Fascio proprio di rette

Si dice fascio proprio di rette l'insieme di tutte le rette di $A_2(\mathbb{R})$ passanti per un punto P dato, detto centro o sostegno del fascio.

Proposizione 1.4.2

Siano r: ax + by + c = 0 e r': a'x + b'y + c' = 0, con $(a,b) \neq (0,0)$ e $(a',b') \neq (0,0)$, due distinte rette incidenti in un punto P. Una retta s appartiene al fascio di centro P se, e soltanto se, ha un'equazione di tipo

$$\lambda(ax+by+c)+\mu(a'x+b'y+c')=0\quad\text{ove}\quad\lambda,\mu\in\mathbb{R}\quad e\quad (\lambda,\mu)\neq (0,0)$$

detta equazione del fascio proprio di rette. Se nell'equazione risulta $\lambda \neq 0$, posto $k = \mu/\lambda$, si ottiene

$$ax + by + c + k(a'x + b'y + c') = 0$$
 ove $k \in \mathbb{R}$

detta equazione ridotta del fascio proprio di rette, in cui, ovviamente, la retta r': a'x + b'y + c' = 0 non è rappresentata. Quindi possiamo dire che le rette di un fascio proprio di rette sono ∞^1 .

Simmetrie in $A_2(\mathbb{R})$

Definizione 1.4.5: Simmetria rispetto ad una retta

Il punto T si dice **simmetrico** del punto H, rispetto alla retta $r = [P, V_1]$, detta **asse di simmetria**, nella direzione $W_1 \neq V_1$, se lo è nella simmetria di centro $C = r \cap s$, dove $s = [H, W_1]$. Tale simmetria si dice anche **simmetria rispetto ad una retta in una direzione assegnata**.

Equazione cartesiana di un piano in $A_3(\mathbb{R})$

In $A_3(\mathbb{R})$ dato il RA = [O, B], con $B = (e_1, e_2, e_3)$. Sia $\alpha = [P, V_2]$ un piano con $P = (x_p, y_p, z_p)$ e $V_2 = \mathcal{L}(v, v')$ (con $v \neq kv'$), tali che

$$v = le_1 + me_2 + ne_3$$
 $v' = l'e_1 + m'e_2 + n'e_3$

Il generico vettore $w \in V_2$ si scrive come w = tv + t'v'. Quindi $t_w(P)$ è il generico punto appartenente a α . Di conseguenza possiamo dire che

$$\begin{cases} x = x_p + tl + t'l' \\ y = y_p + tm + t'm' \\ z = z_p + tn + t'n' \end{cases} \implies \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x_p \\ y_p \\ z_p \end{pmatrix} + \begin{pmatrix} tl + t'l' \\ tm + t'm' \\ tn + t'm' \end{pmatrix}$$

cioè, per l'equazione della traslazione $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$ sono le coordinate del generico punto di α . Date dalla somma di $\begin{pmatrix} x_p \\ y_p \\ z_p \end{pmatrix}$ cioè le coordinate di P con $\begin{pmatrix} tl + t'l' \\ tm + t'm' \\ tn + t'n' \end{pmatrix}$ cioè le componenti di w.

Seguendo un ragionamento analogo a quello fatto per le rette in $A_2(\mathbb{R})$ possiamo descrivere un piano in $A_3(\mathbb{R})$ come

$$\begin{vmatrix} x - x_p & y - y_p & z - z_p \\ l & m & n \\ l' & m' & n' \end{vmatrix} = 0$$

e da questa ne ricaviamo la seguente equazione

$$ax + by + cz + d = 0$$
 con $(a, b, c) \neq (0, 0, 0)$

detta equazione cartesiana del piano in $A_3(\mathbb{R})$. Tale equazione è definita a meno di un fattore di proporzionalità non nullo.

Equazioni cartesiane delle rette in $A_3(\mathbb{R})$

Fissiamo un RA = [O, B] con $B = (e_1, e_2, e_3)$ e data una retta $r = [P, V_1 = \mathcal{L}(l, m, n)]$ possiamo scrivere l'equazione parametrica della retta

$$r: \begin{cases} x = x_p + tl \\ y = y_p + tm \\ z = z_p + tn \end{cases} \quad \text{con} \quad (l, m, n) \neq (0, 0, 0)$$

Da cui deriva la seguente relazione

$$\frac{x - x_p}{l} = \frac{y - y_p}{m} = \frac{z - z_p}{n}$$

in particolare, se poniamo ad esempio $l \neq 0$, otteniamo il seguente sistema

$$\begin{cases} y = \frac{m}{l}(x - x_p) + y_p \\ z = \frac{n}{l}(x - x_p) + z_p \end{cases} \implies \begin{cases} y = \frac{m}{l}x + k \\ z = \frac{n}{l}x + h \end{cases} \text{ ove } h, k \in \mathbb{R}$$

esistono, ovviamente le equazioni relative ai casi $m \neq 0$ e $n \neq 0$ e, dato che la terna (l, m, n) è non nulla, ogni retta ammette sempre, almeno, una rappresentazione simile. In ogni caso, qualunque essa sia, possiamo concludere che una retta si rappresenta con un sistema di due equazioni lineari nelle incognite $x, y \in z$, in cui il rango della matrice incompleta è uguale a 2. E infatti sussiste anche il viceversa, cioè

$$\begin{cases} ax + by + cz + d = 0 \\ a'x + b'y + c'z + d' = 0 \end{cases} \quad \text{con} \quad \rho \begin{pmatrix} a & b & c \\ a' & b' & c' \end{pmatrix} = 2$$

rappresenta una retta. Infatti per il teorema di Rouché-Capelli il sistema è compatibile e ammette ∞¹ soluzioni, cioè le sue soluzioni dipendono da un solo parametro.

Analogamente a quanto già osservato in $A_2(\mathbb{R})$, dalla precedente equazione deriva che le componenti, dei vettori dello spazio di traslazione della retta r, sono le soluzioni del sistema omogeneo associato a una rappresentazione cartesiana di r stessa. Quindi possiamo dedurre la classe dei parametri direttori della retta r attraverso la regola dei minori. L'insieme delle ∞^1 soluzioni del sistema omogeneo

$$\begin{cases} ax + by + cz + d = 0 \\ a'x + b'y + c'z + d' = 0 \end{cases} \quad \text{con} \quad \rho \begin{pmatrix} a & b & c \\ a' & b' & c' \end{pmatrix} = 2$$

è

$$\left\{ \left(t \left| \begin{array}{ccc} b & c \\ b' & c' \end{array} \right|, -t \left| \begin{array}{ccc} a & c \\ a' & c' \end{array} \right|, t \left| \begin{array}{ccc} a & b \\ a' & b' \end{array} \right| \right) : \ t \in R \right\}$$

Mutua posizione di due piani in $A_3(\mathbb{R})$

Fissato un RA e dati due piani in $A_3(\mathbb{R})$

$$\alpha : ax + by + cz + d = 0$$
 $\alpha' : a'x + b'y + c'z + d' = 0$

la loro intersezione è data dal sistema

$$\alpha \cap \alpha' : \begin{cases} ax + by + cz + d = 0 \\ a'x + b'y + c'z + d' = 0 \end{cases}$$

Quindi possiamo distinguere in 3 casi:

- 1. $\rho(A) = 2 \implies \rho(A) = \rho(A|B) = 2$ quindi il sistema è compatibile e ammette $\infty^{3-2} = \infty^1$ soluzioni $\implies \alpha \cap \alpha' = r$, quindi $\alpha \in \alpha'$ sono due piani **incidenti**.
- 2. Nel caso in cui $\rho(A) = 1$ dobbiamo distinguere in due sottocasi
 - (a) $\rho(A|B) = 2$ e $\rho(A) = 1$, il sistema non è compatibile, quindi $\alpha \cap \alpha' = \emptyset$ e α è parallelo e distinto da α' . α e α' sono detti **paralleli e distinti**.
 - (b) $\rho(A) = 1$ e $\rho(A|B) = 1$, il sistema è compatibile e ammette $\infty^{3-1} = \infty^2$ soluzioni. Quindi l'insieme delle soluzioni dipende da due parametri $\implies \alpha \equiv \alpha'$.

Proposizione 1.4.3 Condizione di parallelismo tra piani

 $\alpha | | \alpha' \iff \rho(A) = 1 \iff a = ka' \ b = kb' \ c = kc' \iff [(a,b,c)] = [(ka',kb',kc')] = [(a',b',c')].$ Questa viene denominata condizione analitica di parallelismo tra piani.

Fasci di piani in $A_3(\mathbb{R})$

Definizione 1.4.6: Fascio improprio di piani

Si dice fascio improprio di piani l'insieme di tutti e soli i piani di $A_3(\mathbb{R})$ paralleli a un piano dato.

Proposizione 1.4.4

Un piano appartiene al fascio improprio di piani paralleli ad $\alpha = [P, V_2]$: ax + by + cz + d = 0, con $(a, b, c) \neq (0, 0, 0)$, se, e soltanto se, ha un'equazione del tipo

$$ax + by + cz + k = 0$$
 ove $k \in \mathbb{R}$

detta equazione del fascio improprio di piani. I piani di un fascio improprio sono ∞^1 .

Definizione 1.4.7: Fascio proprio di piani

Si dice fascio proprio di piani, l'insieme di tutti e soli i piani di $A_3(\mathbb{R})$ passanti per una retta data r, detta asse o sostegno del fascio.

Proposizione 1.4.5

Siano r una retta, $\alpha: ax + by + cz + d = 0$ e $\alpha': a'x + b'y + c'z + d' = 0$, con $(a,b,c) \neq (0,0,0)$ e $(a',b',c') \neq (0,0,0)$, due distinti piani per r. Un piano β appartiene al fascio di sostegno r se, e soltanto

se, ha un'equazione del tipo

$$\lambda(ax + by + cz + d) + \mu(a'x + b'y + c'z + d') = 0$$
 ove $\lambda, \mu \in \mathbb{R}$ $e(\lambda, \mu) \neq (0, 0)$

detta equazione del fascio proprio di piani. Se nell'equazione risulta $\lambda \neq 0$, posto $h = \mu/\lambda$, si ottiene

$$ax + by + cz + d + h(a'x + b'y + c'z + d') = 0$$
 ove $h \in \mathbb{R}$

detta equazione ridotta del fascio proprio di piani, in cui ovviamente il piano β : a'x+b'y+c'z+d'=0 non è rappresentato. Dalla rappresentazione ridotta del fascio si deduce che i piani di un fascio proprio sono ∞^1 .

Mutua posizione di due rette in $A_3(\mathbb{R})$

Siano assegnate le rette

$$r: \begin{cases} ax + by + cz + d = 0 \\ a'x + b'y + c'z + d' = 0 \end{cases} \qquad \rho \begin{pmatrix} a & b & c \\ a' & b' & c' \end{pmatrix} = 2$$

$$s: \begin{cases} a''x + b''y + c''z + d'' = 0 \\ a'''x + b'''y + c'''z + d''' = 0 \end{cases} \qquad \rho \begin{pmatrix} a'' & b'' & c'' \\ a''' & b''' & c''' \end{pmatrix} = 2$$

Sia

$$r \cap s : \begin{cases} ax + by + cz + d = 0 \\ a'x + b'y + c'z + d' = 0 \\ a''x + b''y + c''z + d'' = 0 \\ a'''x + b'''y + c'''z + d''' = 0 \end{cases}$$

il sistema costituito dalle loro equazioni e siano A e A|B le matrici incompleta e completa associate al sistema.

$$AX = B \quad \text{con} \quad B = \begin{pmatrix} -d \\ -d' \\ -d'' \\ -d''' \end{pmatrix} \quad X = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \quad A = \begin{pmatrix} a & b & c \\ a' & b' & c' \\ a'' & b'' & c'' \\ a''' & b''' & c''' \end{pmatrix}$$

Esaminiamo i 4 casi possibili:

- 1. $\rho(A|B) = 4 \implies \rho(A) = 3$ poiché A|B è ottenuta aggiungendo una colonna ad A, quindi $\rho(A|B) \le \rho(A) + 1 \implies \rho(A) = 3$. Il sistema non è compatibile per il teorema di Rouché-Capelli $\implies r \in s$ sono o parallele e disgiunte, oppure sghembe. Ma siccome $\rho(A) = 3 \implies r = [P, V_1] \quad s = [P', V'_1] \quad V_1 \ne V'_1 \implies r$ non è parallela ad s. Quindi $r \in s$ sono sghembe.
- 2. $\rho(A|B) = 3$ e $\rho(A) = 3$. Il sistema è compatibile e per il teorema di Rouché-Capelli esiste un'unica soluzione $r \cap s = \{P\} \implies r$ e s si dicono **incidenti**.
- 3. $\rho(A|B) = 3$ e $\rho(A) = 2$. Il sistema non è compatibile per il teorema di R.C. Siccome $\rho(A) = 2 \implies V_1 = V_1' \implies r$ è parallela a s e $r \neq s$. Si dice che r e s sono **parallele e distinte**.
- 4. $\rho(A|B) = \rho(A) = 2$ il sistema è compatibile e ammette ∞^1 soluzioni. Si dice che le rette r e s sono coincidenti.