304263623

Homework 5

1.

a. (Smoke
$$\Rightarrow$$
 Fire) \Rightarrow (\neg Smoke $\Rightarrow \neg$ Fire)

Smoke	Fire	¬Smoke	¬Fire	Smoke ⇒ Fire	¬Smoke ⇒ ¬Fire	$(Smoke \Rightarrow Fire) \Rightarrow (\neg Smoke \Rightarrow \neg Fire)$
0	0	1	1	1	1	1
0	1	1	0	1	0	0
1	0	0	1	0	1	1
1	1	0	0	1	1	1

Neither

b. (Smoke
$$\Rightarrow$$
 Fire) \Rightarrow ((Smoke \lor Heat) \Rightarrow Fire)

Smoke	Fire	Heat	Smoke ⇒ Fire	$(Smoke \lor Heat) \Rightarrow Fire$	$(Smoke \Rightarrow Fire) \Rightarrow ((Smoke \lor Heat) \Rightarrow Fire)$
0	0	0	1	1	1
0	0	1	1	0	0
0	1	0	1	1	1
0	1	1	1	1	1
1	0	0	0	0	1
1	0	1	0	0	1
1	1	0	1	1	1
1	1	1	1	1	1

Neither

c. ((Smoke
$$\land$$
 Heat) \Rightarrow Fire) \Leftrightarrow ((Smoke \Rightarrow Fire) \lor (Heat \Rightarrow Fire))

Smoke	Heat	Fire	Smoke ∧ Heat	$(Smoke \land Heat) \Rightarrow Fire$	Smoke ⇒ Fire	Heat ⇒ Fire	$(Smoke \Rightarrow Fire)$	$((Smoke \land Heat) \Rightarrow$
							V (Heat ⇒ Fire)	Fire) \Leftrightarrow ((Smoke \Rightarrow
								Fire) \lor (Heat \Rightarrow Fire))
0	0	0	0	1	1	1	1	1
0	0	1	0	1	1	1	1	1
0	1	0	0	1	1	0	1	1
0	1	1	0	1	1	1	1	1
1	0	0	0	1	0	1	1	1
1	0	1	0	1	1	1	1	1
1	1	0	1	0	0	0	0	1
1	1	1	1	1	1	1	1	1

Valid

2.

a.

 $Mythical \Rightarrow \neg Mortal$

 \neg Mythical \Rightarrow (Mortal ^ Mammal)

 $(\neg Mortal \ v \ Mammal) \Rightarrow Horned$

Horned ⇒ Magical

b.

- 1. (Mythical $\Rightarrow \neg Mortal$) $\equiv (\neg Mythical \lor \neg Mortal)$
- 2. $(\neg Mythical \Rightarrow (Mortal \land Mammal)) \equiv ((Mythical \lor Mortal) \land (Mythical \lor Mammal))$
- 3. $((\neg Mortal \ v \ Mammal) \Rightarrow Horned) \equiv ((Mortal \ v \ Horned) \land (\neg Mammal \ v \ Horned))$
- 4. (Horned \Rightarrow Magical) \equiv (\neg Horned v Magical)

c. We can't prove it's Mythical because Mythical can be T or F and still satisfy the KB:

$$Mythical = T$$
, $Mortal = F$, $Horned = T$, $Magical = T$, $Mammal = T$

To prove it's Horned:

5. \neg Mythical \Rightarrow Mammal from 2

6. $(\neg Mythical \ v \ Mythical) \Rightarrow (Mammal \ v \ \neg Mortal)$ from 1 and 5

7. Horned from 3 and 6

To prove it's Magical:

8. Magical from 4 and 7

3.

a.
$$P(A, B, B), P(x, y, z)$$

 $\{x/A, y/B, z/B\}$

b.
$$Q(y, G(A, B)), Q(G(x, x), y)$$

$$Q(G(x, x), G(A, B)), Q(G(x, x), G(x, x))$$

$$Q(G(A, A), G(A, B)), Q(G(A, A), G(A, A))$$

Can't unify A and B

c. Older(Father(y), y), Older(Father(x), John)

Older(Father(John), John), Older(Father(x), John)

Older(Father(John), John), Older(Father(John), John)

```
{x/John, y/John}
```

d. Knows(Father(y), y), Knows(x,x)

Knows(Father(y), y), Knows(Father(y), Father(y))

Can't unify y and Father(y)

4.

a.

- 1. A x, $food(x) \rightarrow likes(John, x)$
- 2. food(Apples)
- 3. food(Chicken)
- 4. A x,y, (eats(x,y) $^{\land}$ kills(y,x)) -> food(y)
- 5. A x,y, kills(x,y) -> \neg live(y)
- 6. eats(Bill, Peanuts) ^ live(Bill)
- 7. A x, eats(Bill, x) \rightarrow eats(Sue,x)

b.

- 1. $\neg food(x) \ V \ likes(John, x)$
- 2. food(Apples)
- 3. food(Chicken)
- 4. $\neg eats(x,y) \ V \ \neg kills(y,x)) \ V \ food(y)$
- 5. $\neg kills(x,y) \ V \ \neg live(y)$
- 6. eats(Bill, Peanuts)

6.5. live(Bill)

7. \neg eats(Bill, x) V eats(Sue,x)

c.

8. eats(Bill, Peanuts) V ¬live(Bill)) V food(Peanuts) from 4 and 5

9. ¬eats(Bill, Peanuts) V ¬live(Bill)) V food(Peanuts) from 6, and 6.5

10. food(Peanuts) from 9

11. likes(John, Peanuts) from 1 and 10

d.

12. eats(Sue, Peanuts) from 6 and 7

e.

new sentences:

- 1. $\neg food(x) \ V \ likes(John, x)$
- 2. food(Apples)
- 3. food(Chicken)
- 4. $\neg \text{eats}(x,y) \ V \ \neg \text{kills}(y,x)) \ V \ \text{food}(y)$
- 5. $\neg kills(x,y) \ V \ \neg live(y)$
- 6. $eats(x,y) \ V \ dead(x)$
- 7. \neg dead(x) V \neg live(x)
- 8. live(Bill)
- 9. \neg eats(Bill, x) V eats(Sue,x)

10. ¬dead(Bill) from 7 and 8

11. eats(Bill, y) from 6 and 10

We can't go further than this. Can't prove what Sue eats.