MICHAEL ZUZAK

mzuzak@umd.edu https://user.eng.umd.edu/~mzuzak/

EDUCATION

Ph.D., Electrical Engineering

University of Maryland, College Park

- · Cumulative GPA: 3.8
- ARCS/MWC Named Graduate Scholar, Future Faculty Fellow
- · Advisor: Prof. Ankur Srivastava
- · Thesis: Designing Effective Logic Obfuscation: Exploring Beyond Gate-Level Boundaries

M.S., Electrical Engineering

University of Maryland, College Park

- · Cumulative GPA: 3.8
- · Advisor: Prof. Donald Yeung
- · Thesis: Exploiting Multigrain Parallelism on Heterogeneous Processors

B.S., Electrical Engineering

University of Maryland, College Park

- · Cumulative GPA: 3.9 (Cum Laude)
- · University of Maryland Honors College, University Honors Citation

RESEARCH EXPERIENCE

University of Maryland, College Park

Graduate Research Assistant with Prof. Ankur Srivastava

August 2017 - Present

- · Research Area: Hardware Security Protecting integrated circuits from hardware trojans, piracy, and reverse engineering
- · Thesis: "Designing Obfuscated Systems for Enhanced Hardware-Oriented Security"
- · Developing logic obfuscation techniques to provably deny application-level functionality in pirated integrated circuits
- Developing high-level synthesis algorithms for the design of secure obfuscated architectures

Naval Research Laboratory, Surface Electronic Warfare Systems Branch Electronics Engineer (Full-Time)

August 2015 - June 2018

August 2014 - May 2016

- · Research Area: Digital Signal Processing Wide-band, high-speed digital signal processing for digital RF memories
- · Designed algorithms and FPGA/embedded implementations for custom electronic warfare (EW) applications
- Primary contributor of digital design and digital signal processing capabilities for currently fielded urgent operational needs (UON) system for U.S. Navy

University of Maryland, College Park

Graduate Researcher with Prof. Donald Yeung

- Research Area: Computer Architecture Novel execution models for heterogeneous systems
- Thesis: "Exploiting Multigrain Parallelism on Heterogeneous Processors"

PUBLICATIONS

Journals:

- [J1] M. Zuzak, Y. Liu, I. McDaniel, and A. Srivastava, "CLAP: A Combined Logical and Physical Attack on Logic Obfuscation," 2022 (Under Review)
- [J2] M. Zuzak, Y. Liu, and A. Srivastava, "Evaluating the Security of Logic-Locked Probabilistic Circuits," in IEEE Trans. on Computer Aided Design of Integrated Circuits and Systems (TCAD), 2021
- [J3] Y. Liu, M. Zuzak, Y. Xie, A. Chakraborty, A. Srivastava, "Robust and Attack Resilient Logic Locking with a High Application-Level Impact," in ACM Journal on Emerging Technologies in Computing Systems (JETC), 2021
- [J4] **M. Zuzak**, Y. Liu, and A. Srivastava, "Trace Logic Locking: Improving the Parametric Space of Logic Locking," in IEEE Trans. on Computer Aided Design of Integrated Circuits and Systems (TCAD), 2020
- [J5] A. Chakraborty, N. Jayasankaran, Y. Liu, J. Rajendran, O. Sinanoglu, A. Srivastava, Y. Xie, M. Yasin, and M. Zuzak, "Keynote: A Disquisition on Logic Locking," in IEEE Trans. on Computer Aided Design of Integrated Circuits and Systems (TCAD), 2019
- [J6] D. Gerzhoy, X. Sun, M. Zuzak, and D. Yeung, "Exploiting Nested MIMD-SIMD Parallelism on Heterogeneous Microprocessors," in ACM Transactions on Architecture and Code Optimization (TACO), 2019

August 2017 - April 2022

August 2010 - May 2014

August 2014 - May 2016

Conferences:

- [C1] I. McDaniel, M. Zuzak, and A. Srivastava, "A Linear-Time Structural Attack on SAT-Hard Instances in Logic Obfuscation," (In Preparation)
- [C2] D. Xing, M. Zuzak, and A. Srivastava, "Low Overhead System-Level Obfuscation through Hardware Resource Sharing," (In Preparation)
- [C3] Y. Liu, M. Zuzak, D. Xing, I. McDaniel, P. Mittu, O. Ozbay, A. Akib, and A. Srivastava, "A Survey on Side-Channel-based Reverse Engineering Attacks on Deep Neural Networks," in Proceedings of the IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS), 2022 (Accepted)
- [C4] M. Zuzak, Y. Liu, and A. Srivastava, "A Resource Binding Approach to Logic Obfuscation," in Design Automation Conference (DAC), 2021 (Best Paper Candidate)
- [C5] B. Tan, S. Garg, R. Karri, Y. Liu, M. Zuzak, ..., W. Savage, "Independent Verification and Validation of Security-Aware EDA Tools and IP," in Design Automation Conference (DAC), 2021
- [C6] M. Zuzak and A. Srivastava, "ObfusGEM: Enhancing Processor Design Obfuscation Through Security-Aware On-Chip Memory and Data Path Design," in Proceedings Intl. Symposium on Memory Systems (MEMSYS), 2020
- [C7] A. Mondal, M. Zuzak, and A. Srivastava, "StatSAT: A Boolean Satisfiability Attack on Logic Locking for Probabilistic Circuits," in Proceedings of the Design Automation Conference (DAC), 2020
- [C8] Y. Liu, M. Zuzak and A. Srivastava, "Strong Anti-SAT: Secure and Effective Logic Locking," in Proceedings of International Symposium on Quality Electronic Design (ISQED), 2020
- [C9] Y. Liu, A. Mondal, A. Chakraborty, M. Zuzak, N. Jacobson, D. Xing, and A. Srivastava, "A Survey on Neural Trojans," in Proceedings of International Symposium on Quality Electronic Design (ISQED), 2020
- [C10] M. Zuzak, M. Fitelson, S. Montano, and A. Srivastava, "Provable Detection and Location of Hardware Trojans with Linear Hybrid Cellular Automata," in Proceedings of Government Microcircuit Applications and Critical Technology Conference (GOMACTECH), 2020
- [C11] M. Zuzak and A. Srivastava, "Memory Locking: An Automated Approach to Processor Design Obfuscation," in Proceedings IEEE Computer Society Annual Symposium on VLSI (ISVLSI), 2019
- [C12] Z. Yang, M. Zuzak, and A. Srivastava, "HMCTherm: A Cycle-accurate HMC Simulator Integrated with Detailed Power and Thermal Simulation," in Proceedings Intl. Symposium on Memory Systems (MEMSYS), 2018
- [C13] M. Zuzak and D. Yeung, "Exploiting Multi-Loop Parallelism on Heterogeneous Microprocessors," in Proceedings of the International Workshop on Programmability and Architectures for Heterogeneous Multicores (MULTIPROG), 2017 (Awarded Best Paper)

Book Chapters:

[B1] Y. Liu, A. Mondal, A. Chakraborty, M. Zuzak, N. Jacobson, D. Xing, and A. Srivastava, "Neural Trojans," in Encyclopedia of Cryptography, Security and Privacy, 2021

Technical Reports:

- [T1] B. Tan, R. Karri, N. Limaye, A. Sengupta, ..., M. Zuzak, A. Srivastava, et al., "Benchmarking at the Frontier of Hardware Security: Lessons from Logic Locking," in arXiv preprint arXiv:2006.06806, 2021
- [T2] M. Zuzak, "Exploiting Nested Parallelism on Heterogeneous Processors" (M.S. Thesis)

POSTER PRESENTATIONS/INVITED TALKS

- [P1] M. Zuzak, "Designing Obfuscated Systems for Enhanced Hardware-Oriented Security," at SIGDA Design Automation Conference (DAC) PhD Forum, 2021
- [P2] M. Zuzak, "Securing Hardware in a Globalized Supply-Chain," at ARCS Scholar Reception, 2020
- [P3] M. Zuzak, "Building Functional ICs with Approximate Keys," at CSAW'19 Logic Locking Conquest Finals, 2019
- [P4] M. Zuzak, "Achieving Hardware Security: Design and Fabrication of Secure Integrated Circuits," at ARCS Scholar Reception, 2019
- [P5] M. Zuzak and A. Srivastava, "Memory Locking: An Automated Approach to Processor Design Obfuscation," in Design Automation Conference (DAC), 2019

OPEN-SOURCE SOFTWARE

ObfusGEM - A Cycle-Accurate Processor Design Obfuscation Simulator

• ObfusGEM is a simulation framework for the evaluation of processor design obfuscation. It implements an error injection framework inspired by the architectural error resilience community to close-the-loop between gate-level obfuscation and its application-level impact. We provide a library of existing hardware security techniques and configurations along with ObfusGEM to enable the design and evaluation of hardware security configurations for specific architectures or devices.

StatSAT - A Statistical Boolean Satisfiablity Attack on Logic Locking

· StatSAT is an open-source SAT-based attack against probabilistic circuits that have been secured by logic locking.

HMCTherm - A Cycle-Accurate Simulator for the Hybrid Memory Cube with Built-In Thermal Analysis

• HMCTherm is a comprehensive simulation framework for a Stacked-Memory-on-CPU architecture. Given the architectural description of a multi-core CPU using hybrid memory cubes (HMC), HMCTherm can simulate the 3D thermal profile (both transient and static) of the HMCs for an arbitrary computing workload.

TEACHING EXPERIENCE

University of Maryland, College Park

Spring 2021

Co-Teacher with Prof. Ankur Srivastava

· Co-Teacher for joint Undergraduate/Graduate course titled Digital CMOS VLSI Design (ENEE640)

University of Maryland, College Park

Fall 2014, Spring 2015

Graduate Teaching Assistant

- · Teaching Assistant for Undergraduate/Graduate Advanced Verilog Design Course (ENEE359F) for 2 semesters
- · Awarded Department of Electrical and Computer Engineering Distinguished Teaching Assistant Award

PROFESSIONAL SERVICE

Reviewer For:

- · IEEE Transactions on Computer Aided Design of Integrated Circuits and Systems (TCAD)
- ACM Journal on Emerging Technologies in Computing Systems (JETC)
- 2021 IEEE/ACM International Symposium on Microarchitecture (MICRO)
- 2021 IEEE/ACM Design Automation Conference (DAC)
- 2020 IEEE International Symposium on Circuits and Systems (ISCAS)

HONORS AND AWARDS

- Best Paper Candidate at the Design Automation Conference (DAC) 2021
- · Future Faculty Fellow for the Clark School of Engineering at the University of Maryland, College Park
- · Department of Electrical and Computer Engineering Distinguished Teaching Assistant Award
- · ARCS/MWC Named Graduate Scholar (2019-2021)
- · Edison Memorial Graduate Fellowship, Naval Research Laboratory
- · Clark School of Engineering Distinguished Graduate Fellowship
- · CSAW 2019 Logic Locking Conquest Finalist
- · Best Paper at MULTIPROG-2017
- · On the Spot Award, Naval Research Laboratory
- · Northrop Grumman Master's Fellowship
- · NSF Student Travel Grant for ISVLSI 2019
- · University of Maryland Dean's Scholarship
- · Association of Old Crows' (AOC) Scholarship

OTHER WORK EXPERIENCE

Microsoft Corporation (Software Development and Test Intern)

Summer 2014, Summer 2015

- · Designed scheduling and preemptive tasking mechanism for a multicore silicon verification RTOS
- · Designed an automated UNIX-based simulation environment for a Microblaze processor

Northrop Grumman Corporation (Digital Systems Intern)

Summer 2013

• Implemented bit error ratio testing FPGAs for I/O verification on ASICs

iVeia (Digital System Design Intern)

Winter 2012

· Developed FPGA to embedded processor communication protocol to exercise custom hardware I/O

Apkudo Inc. (Software Development Intern)

Summer 2012

· Developed Android Debugging tool for automating phone hardware verification environments