Capstone Project: Walmart

Problem Statement 1:

A retail store that has multiple outlets across the country are facing issues in managing the inventory - to match the demand with respect to supply.

1. You are provided with the weekly sales data for their various outlets. Use statistical analysis, EDA, outlier analysis, and handle the missing values to come up with various insights that can give them a clear perspective on the following:

- a. If the weekly sales are affected by the unemployment rate, if yes which stores are suffering the most?
- b. If the weekly sales show a seasonal trend, when and what could be the reason?
- c. Does temperature affect the weekly sales in any manner?
- d. How is the Consumer Price index affecting the weekly sales of various stores?
- e. Top performing stores according to the historical data.
- f. The worst performing store, and how significant is the difference between the highest and lowest performing stores.
- 2.Use predictive modeling techniques to forecast the sales for each store for the next 12 weeks

1. Importing Necessary Libraries

```
In [1]: import numpy as np
  import pandas as pd
  import matplotlib.pyplot as plt
  import seaborn as sns
  %matplotlib inline
  import warnings
```

2. Loading Dataset

```
In [2]: Data = pd.read_csv("D:/Project/Walmart.csv")
    Data.head()
```

Out[2]:		Store	Date	Weekly_Sales	Holiday_Flag	Temperature	Fuel_Price	СРІ	Unemployment
Out[2]:	0	1	05- 02- 2010	1643690.90	0	42.31	2.572	211.096358	8.106
	1	1	12- 02- 2010	1641957.44	1	38.51	2.548	211.242170	8.106
	2	1	19- 02- 2010	1611968.17	0	39.93	2.514	211.289143	8.106
	3	1	26- 02- 2010	1409727.59	0	46.63	2.561	211.319643	8.106
	4	1	05- 03- 2010	1554806.68	0	46.50	2.625	211.350143	8.106

3. Exploratory Data Analysis

In [3]:	Da	ata.hea	ad()						
Out[3]:		Store	Date	Weekly_Sales	Holiday_Flag	Temperature	Fuel_Price	СРІ	Unemployment
	0	1	05- 02- 2010	1643690.90	0	42.31	2.572	211.096358	8.106
	1	1	12- 02- 2010	1641957.44	1	38.51	2.548	211.242170	8.106
	2	1	19- 02- 2010	1611968.17	0	39.93	2.514	211.289143	8.106
	3	1	26- 02- 2010	1409727.59	0	46.63	2.561	211.319643	8.106
	4	1	05- 03- 2010	1554806.68	0	46.50	2.625	211.350143	8.106

In [4]: Data.value_counts()

Out[4]:		Date oyment	Weekly_Sales	Holiday_Flag	Temperature	Fuel_Price	CPI
	•	01-04-2011	1495064.75	0	59.17	3.524	214.837166
		30-09-2011	387001.13	0	78.91	3.355	216.362033
	31 8.099		1311704.92	0	82.29	2.669	210.880373
	8.200	02-04-2010	1357600.68	0	64.12	2.719	210.479887
	7.057	02-03-2012	1427881.22	0	59.30	3.630	220.486689
		1					
	_		603460.79	1	31.44	3.566	136.643258
	7.866	30-09-2011	521297.31	0	64.87	3.858	136.419500
	7.806	30-07-2010	619224.06	0	72.04	2.932	132.598387
	8.099	30-04-2010	570791.11	0	49.09	3.042	132.064433
	_	31-12-2010	679156.20	1	29.67	3.179	182.571448
		1 : 6435, dtyp	e: int64				

In [5]: Data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 6435 entries, 0 to 6434
Data columns (total 8 columns):

#	Column	Non-Null Count	Dtype
0	Store	6435 non-null	int64
1	Date	6435 non-null	object
2	Weekly_Sales	6435 non-null	float64
3	Holiday_Flag	6435 non-null	int64
4	Temperature	6435 non-null	float64
5	Fuel_Price	6435 non-null	float64
6	CPI	6435 non-null	float64
7	Unemployment	6435 non-null	float64
dtyp	es: float64(5)	, int64(2), obje	ct(1)

memory usage: 402.3+ KB

In [6]: Data.describe(include='all')

```
Out[6]:
                         Store Date Weekly_Sales Holiday_Flag Temperature
                                                                               Fuel_Price
                                                                                                  CPI Un
            count 6435.000000
                               6435
                                     6.435000e+03
                                                    6435.000000
                                                                 6435.000000
                                                                             6435.000000 6435.000000
           unique
                          NaN
                                143
                                             NaN
                                                           NaN
                                                                        NaN
                                                                                    NaN
                                                                                                 NaN
                                05-
                                02-
                                                                                                 NaN
                         NaN
                                             NaN
                                                           NaN
                                                                        NaN
                                                                                    NaN
              top
                               2010
                          NaN
                                 45
                                             NaN
                                                           NaN
                                                                        NaN
                                                                                    NaN
                                                                                                 NaN
             freq
            mean
                     23.000000
                                NaN
                                     1.046965e+06
                                                       0.069930
                                                                   60.663782
                                                                                 3.358607
                                                                                           171.578394
                                                                   18.444933
                                                                                0.459020
              std
                     12.988182
                                NaN
                                     5.643666e+05
                                                       0.255049
                                                                                            39.356712
             min
                      1.000000
                                NaN
                                     2.099862e+05
                                                       0.000000
                                                                   -2.060000
                                                                                 2.472000
                                                                                           126.064000
             25%
                     12.000000
                                NaN
                                     5.533501e+05
                                                       0.000000
                                                                   47.460000
                                                                                 2.933000
                                                                                           131.735000
             50%
                     23.000000
                                NaN
                                     9.607460e+05
                                                       0.000000
                                                                   62.670000
                                                                                 3.445000
                                                                                           182.616521
             75%
                     34.000000
                                NaN
                                     1.420159e+06
                                                       0.000000
                                                                   74.940000
                                                                                 3.735000
                                                                                           212.743293
             max
                     45.000000
                               NaN
                                     3.818686e+06
                                                       1.000000
                                                                  100.140000
                                                                                4.468000
                                                                                           227.232807
          # Check for missing values.
In [51]:
          Data.isna().sum()
          index
                            0
Out[51]:
          Store
                            0
          Date
                            0
          Weekly_Sales
                            0
          Holiday_Flag
                            0
          Temperature
                            0
          Fuel Price
                            0
          CPI
                            0
                            0
          Unemployment
          dtype: int64
 In [8]:
          Data1 = Data.drop(columns=['Date'])
           sns.set()
          plt.figure(figsize=(8, 6))
           sns.heatmap(Data1.corr(), annot=True, cmap='magma')
```

plt.show()

Box Plot of Temperature

Box Plot of CPI

Box Plot of Unemployment

Part 1. a. If the weekly sales are affected by the unemployment rate, if yes - which stores are suffering the most?

Let just pick those who have less Weekly Sales. As it will be too lenghty to analyze 45 stores.

We will pick those stores for which weekly sales is less than 10 percentile.

```
In [16]: # the variable 'less_weekly_sales' contains an array or list of unique store numbers
         # are below the threshold 'a1'.(Here a1 contains no of stores where weekly sales are
         less_weekly_sales = Data.loc[Data['Weekly_Sales'] < a1, 'Store'].unique()</pre>
         less_weekly_sales
         array([ 3, 5, 7, 16, 30, 33, 36, 38, 44], dtype=int64)
Out[16]:
         Lets check if low value of sales are anyhow affected by unemployment rate.
In [17]: plt.figure(figsize=(20,15),facecolor='black')
         #data= is a parameter within the sns.scatterplot() function call,
         # and it specifies the DataFrame that contains the data to be plotted.
         plt.subplot(3,3,1)
         sns.scatterplot(data=Data[Data['Store'] == 3], x='Unemployment', y='Weekly_Sales',cc
         plt.subplot(3,3,2)
         sns.scatterplot(data=Data['Store'] == 5], x='Unemployment', y='Weekly Sales',cc
         plt.subplot(3,3,3)
         sns.scatterplot(data=Data['Store'] == 7], x='Unemployment', y='Weekly_Sales',cc
         plt.subplot(3,3,4)
         sns.scatterplot(data=Data['Store'] == 16], x='Unemployment',y='Weekly_Sales',cc
         plt.subplot(3,3,5)
         sns.scatterplot(data=Data['Store'] == 30], x='Unemployment',y='Weekly_Sales',cc
         plt.subplot(3,3,6)
         sns.scatterplot(data=Data['Store'] == 33], x='Unemployment',y='Weekly_Sales',cc
         plt.title='Store33'
         plt.subplot(3,3,7)
         sns.scatterplot(data=Data['Store'] == 36], x='Unemployment',y='Weekly Sales',cc
         plt.subplot(3,3,8)
         sns.scatterplot(data=Data['Store'] == 38], x='Unemployment', y='Weekly_Sales',
         plt.subplot(3,3,9)
         sns.scatterplot(data=Data['Store'] == 44], x='Unemployment',y='Weekly_Sales',cc
         <AxesSubplot:xlabel='Unemployment', ylabel='Weekly_Sales'>
Out[17]:
```

In [15]: # round() function is used to round the value returned by Data['Weekly Sales'].quant

a1 = Data['Weekly_Sales'].quantile(0.1).round(2)

Clearly we can see that in Store number 5 although average of weekly sales is not impacted by unemployement rate, but more density is higher on the higher side of unemployment rate.

There are two Stores we can identify in which weekly sales reduces as the unemployment rate increases. Those stores are Store number 38 and 44

b. If the weekly sales show a seasonal trend, when and what could be the reason?

```
Data['Date'] = pd.to_datetime(Data['Date'], format='%d-%m-%Y')
In [18]:
          Sales_date = Data[['Date', 'Weekly_Sales']]
In [19]:
          Sales_date.set_index('Date',inplace=True)
In [20]:
In [21]:
          Sales_date.head()
Out[21]:
                      Weekly_Sales
                Date
          2010-02-05
                        1643690.90
          2010-02-12
                        1641957.44
          2010-02-19
                        1611968.17
          2010-02-26
                        1409727.59
          2010-03-05
                        1554806.68
```

```
In [22]: plt.figure(figsize=(20,5))
         sns.lineplot(data=Sales_date)
         plt.xlabel('Date')
         plt.ylabel('Weekly Sales')
         plt.show()
```



```
plt.figure(figsize=(20,5))
In [23]:
          sns.lineplot(data=Data,x='Date',y='Holiday_Flag')
          plt.show()
          0.2
```

We can clearly see there is a seasonality component in weekly sales. Whole year sales is average. But at the end of the year there is an exponential hike in the sales.

2012-01

2012-05

The Major Reason is during this time of the year, the holiday season begins.

2011-01

So, the spike in the sales overlaps with the holiday season.

2010-09

As we know Walmart is very famous in USA, and there is a holiday season during christmans and new year, there might be a lot of offers being given by brands in holiday season. This explains the sudden spike in the sales at the end of the year.

c. Does temperature affect the weekly sales in any manner?

```
plt.figure(figsize=(20,5))
In [24]:
         sns.lineplot(data=Data, x='Date', y='Temperature')
         plt.figure(figsize=(20,5))
         sns.lineplot(data=Sales_date)
```

<AxesSubplot:xlabel='Date'> Out[24]:

0.0

2010-05

The only noted effect that can be seen is again of the holiday season. Holiday season are marked with winters and snow, that increases the needed clothing and stuff. Other than this there is no such clear trend of shopping related with temprature.

d. How is the Consumer Price index affecting the weekly sales of various stores?

In [25]:	Da	Data.head(3)									
Out[25]:	Store Date		Weekly_Sales	/eekly_Sales Holiday_Flag		Fuel_Price	СРІ	Unemployment			
	0	1	2010- 02-05	1643690.90	0	42.31	2.572	211.096358	8.106		
	1	1	2010- 02-12	1641957.44	1	38.51	2.548	211.242170	8.106		
	2	1	2010- 02-19	1611968.17	0	39.93	2.514	211.289143	8.106		
4									•		
In [26]:		_		gsize=(20,5)) data=Data,x='		[',color='gr	een')				
		<pre>plt.figure(figsize=(20,5)) sns.lineplot(data=Sales_date)</pre>									
Out[26]:	<a< th=""><th>xesSub</th><th>plot:x</th><th>(label='Date'</th><th>></th><th></th><th></th><th></th><th></th></a<>	xesSub	plot:x	(label='Date'	>						
	190 185 180	5									
	T75 8 170 165										

Although there is inflation over time represented by increasing CPI over the time period. There is no upward or downward trend followed by weekly sales.

e. Top performing stores according to the historical data.

Lets check the store with maximum average sales over the given period.

```
In [27]: average_store_sales = Data.groupby('Store')['Weekly_Sales'].agg('mean')
In [28]: average_store_sales
```

```
Store
Out[28]:
          1
                1.555264e+06
          2
                1.925751e+06
          3
                4.027044e+05
          4
                2.094713e+06
          5
                3.180118e+05
          6
                1.564728e+06
          7
                5.706173e+05
          8
                9.087495e+05
          9
                5.439806e+05
                1.899425e+06
          10
                1.356383e+06
          11
          12
                1.009002e+06
          13
                2.003620e+06
               2.020978e+06
          14
          15
               6.233125e+05
          16
               5.192477e+05
          17
                8.935814e+05
          18
                1.084718e+06
          19
                1.444999e+06
          20
                2.107677e+06
          21
               7.560691e+05
          22
               1.028501e+06
          23
               1.389864e+06
          24
                1.356755e+06
          25
               7.067215e+05
          26
                1.002912e+06
          27
               1.775216e+06
          28
               1.323522e+06
          29
               5.394514e+05
          30
               4.385796e+05
          31
                1.395901e+06
          32
                1.166568e+06
          33
                2.598617e+05
          34
               9.667816e+05
          35
               9.197250e+05
          36
               3.735120e+05
          37
                5.189003e+05
          38
                3.857317e+05
          39
                1.450668e+06
          40
                9.641280e+05
          41
               1.268125e+06
          42
               5.564039e+05
          43
                6.333247e+05
          44
                3.027489e+05
          45
                7.859814e+05
          Name: Weekly_Sales, dtype: float64
          avg_sales=pd.DataFrame(average_store_sales)
In [29]:
```

In [30]:

avg_sales

Out[30]: Weekly_Sales

Store

- 1.555264e+06
- 1.925751e+06
- 4.027044e+05
- 2.094713e+06
- 3.180118e+05
- 1.564728e+06
- 5.706173e+05
- 9.087495e+05
- 5.439806e+05
- 1.899425e+06
- 1.356383e+06
- 1.009002e+06
- 2.003620e+06
- 2.020978e+06
- 6.233125e+05
- 5.192477e+05
- 8.935814e+05
- 1.084718e+06
- 1.444999e+06
- 2.107677e+06
- 7.560691e+05
- 1.028501e+06
- 1.389864e+06
- 1.356755e+06
- 7.067215e+05
- 1.002912e+06
- 1.775216e+06
- 1.323522e+06
- 5.394514e+05
- 4.385796e+05
- 1.395901e+06
- 1.166568e+06
- 2.598617e+05
- 9.667816e+05
- 9.197250e+05

Weekly_Sales

Store

- 3.735120e+05
- 5.189003e+05
- 3.857317e+05
- 1.450668e+06
- 9.641280e+05
- 1.268125e+06
- 5.564039e+05
- 6.333247e+05
- 3.027489e+05
- 7.859814e+05

```
In [31]: avg_sales['Weekly_Sales']=avg_sales['Weekly_Sales']/(avg_sales['Weekly_Sales'].max()
```

In [32]: avg_sales

Out[32]: Weekly_Sales

	weekiy_sales
Store	
1	0.841677
2	1.042177
3	0.217935
4	1.133616
5	0.172102
6	0.846799
7	0.308806
8	0.491797
9	0.294391
10	1.027930
11	0.734047
12	0.546051
13	1.084319
14	1.093712
15	0.337324
16	0.281006
17	0.483588
18	0.587028
19	0.782004
20	1.140632
21	0.409169
22	0.556604
23	0.752166
24	0.734248
25	0.382463
26	0.542755
27	0.960711
28	0.716263
29	0.291940
30	0.237350
31	0.755433
32	0.631323
33	0.140632
34	0.523203
35	0.497736

Weekly_Sales

Store	
36	0.202137
37	0.280818
38	0.208750
39	0.785072
40	0.521766
41	0.686284
42	0.301114
43	0.342742
44	0.163842
45	0.425357

```
In [33]: plt.figure(figsize=(20,5))
    sns.barplot(data=avg_sales,x=avg_sales.index,y='Weekly_Sales')
```

Out[33]: <AxesSubplot:xlabel='Store', ylabel='Weekly_Sales'>

In [34]: avg_sales.sort_values('Weekly_Sales',ascending=False).head(10)

Out[34]: Weekly_Sales

Store	
20	1.140632
4	1.133616
14	1.093712
13	1.084319
2	1.042177
10	1.027930
27	0.960711
6	0.846799
1	0.841677
39	0.785072

Top performing stores are --> store number 20, 4, 14, 13, 2, 10

```
In [36]:
           Store_20 = avg_sales[avg_sales.index == 20]
           Store_20
                   Weekly_Sales
Out[36]:
           Store
              20
                       1.140632
           store20 = Data[Data['Store']==20]
In [52]:
           plt.figure(figsize=(15,5))
           plt.plot(store20['Date'],store20['Weekly_Sales'])
           plt.show()
           3.75
           3.50
           3.25
           3.00
           2.75
           2.25
           2 00
           1.75
              2010-01
                         2010-05
                                    2010-09
                                               2011-01
                                                          2011-05
                                                                     2011-09
                                                                                2012-01
                                                                                           2012-05
                                                                                                      2012-09
```

f. The worst performing store, and how significant is the difference between the highest and lowest performing stores.

```
In [35]: avg_sales.sort_values('Weekly_Sales',ascending=True).head(10)
```

L - J .		7
	Store	
	33	0.140632
	44	0.163842
	5	0.172102
	36	0.202137
	38	0.208750
	3	0.217935
	30	0.237350
	37	0.280818
	16	0.281006
	29	0.291940

Weekly_Sales

Out[35]:

Worst performing stores are 33, 44, 5, 36, 38, 3.

```
In [37]: Store_33 = avg_sales[avg_sales.index == 33]
    Store_33
```

```
Store
             33
                      0.140632
           store33=Data[Data['Store']==33]
In [38]:
           plt.figure(figsize=(15,5))
           plt.plot(store33['Date'], store33['Weekly_Sales'])
           plt.show()
           320000
           300000
           280000
           260000
           240000
           220000
              2010-01
                        2010-05
                                   2010-09
                                             2011-01
                                                       2011-05
                                                                 2011-09
                                                                           2012-01
                                                                                     2012-05
                                                                                                2012-09
In [39]:
           sales 20 = Data[(Data['Store'] == 20) & (Data['Date'].dt.year == 2012)]
           sales_33 = Data[(Data['Store'] == 33) & (Data['Date'].dt.year == 2012)]
           sales_20.set_index('Date',inplace = True)
           sales_33.set_index('Date',inplace = True)
           y1=sales_33.Weekly_Sales
           y2=sales_20.Weekly_Sales
           y1['2012'].plot(figsize=(15, 6), legend=True, color='chocolate')
In [40]:
           y2['2012'].plot(figsize=(15, 6), legend=True, color='turquoise')
           plt.ylabel("Weekly_Sales")
           plt.show()
                                                                                                  Weekly_Sales
            2.5
                                                                                                  Weekly_Sales
            2.0
        Weekly_Sales
            1.0
            0.5
                       Feb
                                                   May
                                                                                          Sep
                                                                                                   Oct
                               Mar
                                                            Jun
                                                                       Jul
                                                                               Aug
              Jan
2012
                                                           Date
           avg_sales_2=pd.DataFrame(average_store_sales)
In [41]:
           avg_sales_2
In [42]:
```

Out[37]:

Weekly_Sales

Out[42]: Weekly_Sales

Store

- 1.555264e+06
- 1.925751e+06
- 4.027044e+05
- 2.094713e+06
 - 3.180118e+05
- 1.564728e+06 5.706173e+05
- 9.087495e+05
- 5.439806e+05
- 1.899425e+06
- 1.356383e+06
- 1.009002e+06
- 2.003620e+06
- 2.020978e+06
- 6.233125e+05
- 5.192477e+05
- 8.935814e+05
- 1.084718e+06
- 1.444999e+06
- 2.107677e+06
- 7.560691e+05
- 1.028501e+06
- 1.389864e+06
- 1.356755e+06
- 7.067215e+05
- 1.002912e+06
- 1.775216e+06
- 1.323522e+06
- 5.394514e+05
- 4.385796e+05
- 1.395901e+06
- 1.166568e+06
- 2.598617e+05
- 9.667816e+05
- 9.197250e+05

Weekly_Sales

3.735120e+05

5.189003e+05

3.857317e+05

1.450668e+06

9.641280e+05

1.268125e+06

5.564039e+05

6.333247e+05

3.027489e+05

7.859814e+05

In [43]: (avg_sales_2.loc[33][0]/avg_sales_2.loc[20][0])*100

Out[43]: 12.329294669579147

Lowest performing store's sales only accounts for 12% of sales done by top performing store on average.

Part 2. Use predictive modeling techniques to forecast the sales for each store for the next 12 weeks.

In [44]: !pip install prophet

```
Requirement already satisfied: importlib-resources in c:\users\admin\anaconda3\lib
         \site-packages (from prophet) (6.1.1)
         Requirement already satisfied: stanio~=0.3.0 in c:\users\admin\anaconda3\lib\site-p
         ackages (from cmdstanpy>=1.0.4->prophet) (0.3.0)
         Requirement already satisfied: python-dateutil in c:\users\admin\anaconda3\lib\site
         -packages (from holidays>=0.25->prophet) (2.8.2)
         Requirement already satisfied: packaging>=20.0 in c:\users\admin\anaconda3\lib\site
         -packages (from matplotlib>=2.0.0->prophet) (21.3)
         Requirement already satisfied: pillow>=6.2.0 in c:\users\admin\anaconda3\lib\site-p
         ackages (from matplotlib>=2.0.0->prophet) (9.2.0)
         Requirement already satisfied: cycler>=0.10 in c:\users\admin\anaconda3\lib\site-pa
         ckages (from matplotlib>=2.0.0->prophet) (0.11.0)
         Requirement already satisfied: pyparsing>=2.2.1 in c:\users\admin\anaconda3\lib\sit
         e-packages (from matplotlib>=2.0.0->prophet) (3.0.9)
         Requirement already satisfied: kiwisolver>=1.0.1 in c:\users\admin\anaconda3\lib\si
         te-packages (from matplotlib>=2.0.0->prophet) (1.4.2)
         Requirement already satisfied: fonttools>=4.22.0 in c:\users\admin\anaconda3\lib\si
         te-packages (from matplotlib>=2.0.0->prophet) (4.25.0)
         Requirement already satisfied: pytz>=2020.1 in c:\users\admin\anaconda3\lib\site-pa
         ckages (from pandas>=1.0.4->prophet) (2022.1)
         Requirement already satisfied: colorama in c:\users\admin\anaconda3\lib\site-packag
         es (from tgdm>=4.36.1->prophet) (0.4.5)
         Requirement already satisfied: zipp>=3.1.0 in c:\users\admin\anaconda3\lib\site-pac
         kages (from importlib-resources->prophet) (3.8.0)
         Requirement already satisfied: six>=1.5 in c:\users\admin\anaconda3\lib\site-packag
         es (from python-dateutil->holidays>=0.25->prophet) (1.16.0)
In [45]: from plotly import graph_objs as go
         from prophet import Prophet
         from prophet.plot import plot plotly
         Data = Data.reset_index()
In [46]:
         Data
```

Requirement already satisfied: prophet in c:\users\admin\anaconda3\lib\site-package

Requirement already satisfied: pandas>=1.0.4 in c:\users\admin\anaconda3\lib\site-p

Requirement already satisfied: tqdm>=4.36.1 in c:\users\admin\anaconda3\lib\site-pa

Requirement already satisfied: holidays>=0.25 in c:\users\admin\anaconda3\lib\site-

Requirement already satisfied: numpy>=1.15.4 in c:\users\admin\anaconda3\lib\site-p

Requirement already satisfied: cmdstanpy>=1.0.4 in c:\users\admin\anaconda3\lib\sit

Requirement already satisfied: matplotlib>=2.0.0 in c:\users\admin\anaconda3\lib\si

s (1.1.5)

ackages (from prophet) (1.4.4)

ckages (from prophet) (4.64.1)

packages (from prophet) (0.42)

ackages (from prophet) (1.24.3)

e-packages (from prophet) (1.2.1)

te-packages (from prophet) (3.5.2)

:		index	Store	Date	Weekly_Sales	Holiday_Flag	Temperature	Fuel_Price	СРІ	Unem
	0	0	1	2010- 02-05	1643690.90	0	42.31	2.572	211.096358	
	1	1	1	2010- 02-12	1641957.44	1	38.51	2.548	211.242170	
	2	2	1	2010- 02-19	1611968.17	0	39.93	2.514	211.289143	
	3	3	1	2010- 02-26	1409727.59	0	46.63	2.561	211.319643	
	4	4	1	2010- 03-05	1554806.68	0	46.50	2.625	211.350143	
	6430	6430	45	2012- 09-28	713173.95	0	64.88	3.997	192.013558	
	6431	6431	45	2012- 10-05	733455.07	0	64.89	3.985	192.170412	
	6432	6432	45	2012- 10-12	734464.36	0	54.47	4.000	192.327265	
•	6433	6433	45	2012- 10-19	718125.53	0	56.47	3.969	192.330854	
	6434	6434	45	2012- 10-26	760281.43	0	58.85	3.882	192.308899	
	C 4 2 E									

6435 rows × 9 columns

Out[46]

```
In [47]: store_number = int(input('Enter store number:'))

df1 = Data[Data['Store']==store_number]

Data_train = df1[['Date', 'Weekly_Sales']]

Data_train = Data_train.rename(columns={'Date': 'ds', 'Weekly_Sales': 'y'})

model = Prophet()

model.fit(Data_train)

future = model.make_future_dataframe(periods=84) # 12 weeks

forecast = model.predict(future)

plot_plotly(model, forecast)

Enter store number:33

19:13:39 - cmdstanpy - INFO - Chain [1] start processing
19:13:39 - cmdstanpy - INFO - Chain [1] done processing
```


In [48]: model.plot_components(forecast)

→

