Math 321 Lecture 9

Yuchong Pan

January 21, 2019

1 Weierstrass Theorem (Take 2)

Theorem 1 (Classical Weierstrass). $\mathcal{P}_{\mathbb{R} \text{ or } \mathbb{C}}$ dense \subseteq $C([a,b];\mathbb{R} \text{ or } \mathbb{C})$ space of polynomials on [a,b] with coefficients in \mathbb{R} or \mathbb{C} class of \mathbb{R} -valued or \mathbb{C} -valued functions on [a,b]

Question: Given a compact metric space X, can we determine whether a subset $S \subseteq C(X;\mathbb{R})$ is dense in $C(X;\mathbb{R})$?

Remark. Polynomials are not always well-defined on a general metric space X.

Exercise: What is an example of a compact metric space X (not [a, b]) on which polynomials can be defined?

- 1. $X = \mathbb{Z} \pmod{p} = \{0, 1, \dots, p-1\}$ is finite, hence compact.
- 2. $X = [a, b] \cap \mathbb{Q}^c$ is not compact.
- 3. $K \subseteq \mathbb{R}^n$ that is compact (i.e., closed and bounded); e.g., $K = [0,1]^n$ or B(0;1) or a sphere \mathbb{S}^{n-1} .

Example:
$$n=2, P(x,y)=xy$$
.

A general polynomial in n variables of degree $\leq R$ is of the form

$$P(\underbrace{x_1, x_2, \dots, x_n}_{\mathbf{x}}) = \sum_{\substack{\alpha = (\alpha_1, \dots, \alpha_n) \in \mathbb{Z}_{\geq 0}^n \\ |\alpha| = \alpha_1 + \dots + \alpha_n \leq R}} \underbrace{c_{\alpha}}_{\in \mathbb{R}} x^{\alpha},$$

where

$$\mathbf{x}^{\alpha} \stackrel{\text{def}}{=} x_1^{\alpha_1} x_2^{\alpha_2} \dots x_n^{\alpha_n}.$$

Definition 1. Let A be a vector space over \mathbb{R} . Say that A is an algebra if there exists an operation $\times : A \times A \to A$, denoted by $(f,g) \mapsto fg$, obeying

1

- 1. f(gh) = (fg)h;
- 2. f(g+h) = fg + fh;
- 3. (g+h)f = gf + hf;
- 4. $\alpha(fg) = (\alpha f)g = f(\alpha g)$ for all $\alpha \in \mathbb{R}$.

Math 321 Lecture 9 Yuchong Pan

A is called **commutative** if fg = gf.

Say that a commutative algebra A has an **identity element** e if there exists $e \in A$ such that fe = ef = f for all $f \in A$.

If A is a normed vector space and an albegra, we call A a **normed algebra** if $||fg|| \le ||f|| \cdot ||g||$ (called a **Banach algebra** if A is complete).

Examples:

- 1. \mathbb{R} is a Banach algebra.
- 2. X is compact; $\mathcal{B}(X;\mathbb{R})$, the space of bounded real-valued functions on X, is also a Banach algebra.
- 3. $A = C(X; \mathbb{R})$, where X is compact, is a commutative Banach algebra with e equal to the constant function 1.
- 4. For compact $K \subseteq \mathbb{R}$, $\mathcal{P} = \{\text{polynomials on } K\}$ is a commutative algebra, but not Banach. Note that $\overline{\mathcal{P}} = C(X; \mathbb{R})$.

Question revised: Let
$$S \stackrel{\text{sub-algebra}}{\subseteq} \underbrace{C(X;\mathbb{R})}_{\text{Banach algebra}}$$
. When is S dense in $C(X;\mathbb{R})$?

Theorem 2 (Stone-Weierstrass theorem). An algebra $S \subseteq C(X; \mathbb{R})$ is dense in $C(X; \mathbb{R})$ if S separates points and vanishes at no point.

Definition 2. Say a set $A \subseteq C(X; \mathbb{R})$ separates points if for any two points $x, y \in X, x \neq y$, there exists $f \in A$ such that $f(x) \neq f(y)$.

Definition 3. Say $A \subseteq C(X; \mathbb{R})$ vanishes at no point if for all $x \in X$, there exists $f \in A$ such that $f(x) \neq 0$.