Capstone Presentation (Predicting customer churn)

Jerome Tan

Contents

- Background
- Problem Statement
- Project Goals
- Datasets
- SQL
- EDA (Numerical Variables)
- EDA (Categorical Variables)
- Preprocessing
- Modeling and Evaluation
- Feature Importance
- Conclusion
- Streamlit

Background

Customer churn, also known as customer attrition rate, is when a customer chooses to stop using a particular products or services.

Every year, companies lose **\$ 1.6 trillion** in revenue due to customer churn.

The cost of acquiring a new customer is

5 times

the cost of retaining an existing customer.

increase in customer retention produces more than 25% increase in profits.

Therefore, it would be beneficial to understand and reduce the churn rate as this will impact the revenue of a business.

Problem Statement

In this project, we will be focusing on churn for bank's credit card customers. We have been engaged by a bank to analyze data collected from existing customers to predict which customer is likely to churn so that the bank can focus their marketing efforts towards such customers and try to provide better services so as to be able to retain existing customers.

Project Goals

Classification model

Model Deployment

False Positives

Metrics

Datasets

There are 3 datasets that we are using for this project, attrition, customer and card. Attrition consists data on the attrition status of the customers, customer consists mainly of the customer data and card consists mainly of the customer's card data.

SQL

- 10127 rows of data
- Merge/Join the 3 datasets into a combined dataset

Card Category	Average Credit Limit	Average Total Transaction Amount
Blue	\$ 7363	\$ 4225
Silver	\$ 25277	\$ 6590
Gold	\$ 28416	\$ 7685
Platinum	\$ 30283	\$ 8999

EDA (Numerical Variables)

Total Transaction Amount

Total Transaction Count Change (Q4 over Q1)

EDA (Numerical Variables)

Dependent Count

Statistical tests

customer_age has non-normal distribution: running KS test. result: not statistically significant dependent_count has non-normal distribution: running KS test. result: not statistically significant months_on_book has non-normal distribution: running KS test. result: not statistically significant total_relationship_count has non-normal distribution: running KS test. result: statistically significant months_inactive_12_mon has non-normal distribution: running KS test. result: statistically significant contacts_count_12_mon has non-mormal distribution: running KS test. result: statistically significant credit_limit has non-normal distribution: running KS test. result: statistically significant total_revolving_bal has non-normal distribution: running KS test. result: statistically significant avg_open_to_buy has non-normal distribution: running KS test. result: statistically significant total_trans_mat has non-normal distribution: running KS test. result: statistically significant total_trans_mat has non-normal distribution: running KS test. result: statistically significant total_trans_ct has non-normal distribution: running KS test. result: statistically significant total_trans_ct has non-normal distribution: running KS test. result: statistically significant avg_utilization_ratio has non-normal distribution: running KS test. result: statistically significant

Correlation Heatmap

EDA (Categorical Variables)

Gender

EDA (Categorical Variables)

education_level	0.560273
card_category	0.320692
marital_status	0.253711
income_category	0.115657
gender	0.006368
dtype: float64	

In the case of classification problems where input variables are also categorical, we can use statistical tests to determine whether the output variable is dependent or independent of the input variables. If independent, then the input variable is a candidate for a feature that may be irrelevant to the problem and removed from the dataset.

The chi-squared statistical hypothesis is an example of a test for independence between categorical variables. We apply the threshold of a p-value below 0.05 to be considered significant.

Preprocessing

Original dataset

Attrition flag - 0 for existing, 1 for attrited Gender - 0 for Male and 1 for Female

For the other categorical variables, we one-hot encode and converted it to dummy variables.

Train-test split with test size of 0.2 and stratify Standardization of data

<u>Filtered dataset</u>

Attrition flag - 0 for existing, 1 for attrited Gender - 0 for Male and 1 for Female

Train-test split with test size of 0.2 and stratify Standardization of data

Modeling and Evaluation

Model	Dataset	Accuracy (training set)	Accuracy (test set)	F1 score (training set)	F1 score (test set)	ROC AUC
K-nearest neighbor	Original	0.897	0.876	0.554	0.419	0.856
K-nearest neighbor	Filtered	0.941	0.926	0.795	0.739	0.944
Bagging Classifier	Original	1.0	0.906	1.0	0.586	0.983
Bagging Classifier	Filtered	1.0	0.955	1.0	0.854	0.985
Random Forest	Original	0.999	0.956	0.997	0.847	0.985
Random Forest	Filtered	0.999	0.956	0.998	0.856	0.985
Ada Boost Classifier	Original	0.972	0.957	0.912	0.861	0.984
Ada Boost Classifier	Filtered	0.964	0.956	0.887	0.856	0.983
Support Vector Model	Original	0.981	0.915	0.938	0.709	0.940
Support Vector Model	Filtered	0.965	0.940	0.886	0.799	0.965

Feature Importance

Based on the selected model (Ada Boost Classifier with filtered dataset), we obtain the top 10 important (significant) features that are being utilized by the model in predicting the customer churn. We can observe the feature importance for our best selected model.

Feature Importance (continued)

Number of features (Threshold)	Accuracy (training set)	Accuracy (test set)	F1 score (training set)	F1 score (test set)	ROC AUC
6 (>0.05)	0.957	0.942	0.861	0.808	0.980
7 (>0.04)	0.957	0.947	0.862	0.828	0.982
10 (>0.01)	0.964	0.955	0.886	0.855	0.983
11 (no threshold)	0.964	0.956	0.887	0.856	0.983

Conclusion

A classification model has been developed to predict the churn for the bank credit card customers.

With our classification model, the bank will be able to predict which are the customers which are likely to attrite and the bank will be able to take action and reach out to those customers to discuss on what can be done so as to be able to retain those customers with the Bank.

Lastly, we have deployed our classification model onto streamlit app to allow bank staff to utilize to obtain predictions of the attrition status for a particular customer or a batch of customers.

Model deployment on streamlit app

