Gasser Ahmed

gasser18@vt.edu

ECE 5484, Homework 2

1. Construct a truth table for the following:

$$F = (x + y)(x' + z')(y' + z')$$

Х	у	Z	х+у	x' + z'	y' + z'	F(x + y)(x' + z')(y' + z')
0	0	0	0	1	1	0
0	0	1	0	1	1	0
0	1	0	1	1	1	1
0	1	1	1	1	0	0
1	0	0	1	1	1	1
1	0	1	1	0	1	0
1	1	0	1	1	1	1
1	1	1	1	0	0	0

2. Using truth tables, show that: xz = (x+y)(x+y')(x'+z)

(x+y)(x+y')(x'+z) truth table:

Х	у	Z	x'	y'	х+у	x+y'	x'+z	F(x+y)(x+y')(x'+z)	F(xz)
0	0	0	1	1	0	1	1	0	0
0	0	1	1	1	0	1	1	0	0
0	1	0	1	0	1	0	1	0	0
0	1	1	1	0	1	0	1	0	0
1	0	0	0	1	1	1	0	0	0
1	0	1	0	1	1	1	1	1	1
1	1	0	0	0	1	1	0	0	0
1	1	1	0	0	1	1	1	1	1

3. The truth table for a Boolean expression is shown. Write the Boolean expression in sum-of-products form.

F = x'y'z' + x'y'z + x'yz' + xy'z' + xy'z

4. Draw the combinational circuit that directly implements the following Boolean expression: F(x,y,z) = y' + xy + y'z.

- 5. Consider the parity generator (even parity) shown in the truth table below. The parity bit Y is a function of Boolean variables A, B, and C. Represent this parity function in the following ways:
 - 1. As a Boolean algebraic expression.

$$A'B'C + A'BC' + AB'C' + ABC$$

2. As a combinational logic diagram (logic circuit).

	Inpu	Output			
Α	В	X(K)	J	A(t+1)	B(t+1)
0	0	0	1	0	1
0	0	1	1	0	1
0	1	0	0	1	1
0	1	1	0	1	0
1	0	0	0	0	0
1	0	1	0	0	0
1	1	0	1	1	1
1	1	1	1	1	0

7.

l ₂	l ₁	Z ₁	Z ₀
0	0	0	0
0	1	0	1
1	0	1	0
1	1	1	0

2.
$$Z_1 = I_2 I_1' + I_2 I_1$$

$$\mathsf{Z}_0 = \mathsf{I^{'}_2}\mathsf{I}_1$$

3.

9. 1. Jack Kilby

2. He received the Nobel Prize in Physics in 2000 for his part in the invention of the integrated circuit.