Evaluating Policy Synergies Against Online Extremism

An Agent-Based Simulation and Cost-Benefit Analysis

Matteo Vergani, Andrea Giovannetti, Stephanie Zi Xin Ng, Chee Peng Lim, James Zhang, Robin Scott

Presented by:

Andrea Giovannetti

Peter Faber Business School, Australian Catholic University Violence Research Centre, University of Cambridge

ag2051@cam.ac.uk

Contact

Motivation

- Online platforms are a key channel for the spread of online hate and extremism, globally
- Evidence is building up on transmission chains between online hate and offline incidents.
- Online hate can be weaponized by foreign states and state-like actors to destabilize democracies and put the social fabric at risk.

Example:

Quran Burning Rallies in Sweden (July 2023)

Motivation

(Working) Definition of Extremism:

The beliefs and actions of people who support or use violence to achieve ideological, religious or political goals. (Australian Government)

Extremist content **influences** the views of those who share salient interests, demographic features, ideological leanings with extremists.

Micro-dynamics are key for the diffusion chain to work

Motivation

Repressive counter-extremism strategies (e.g. monitoring performed by human moderators and & deplatforming) of extremists is expensive, inefficient, socially costly and can backfire.

An Alternative Approach

Soft Measures align better with democratic principles by promoting engagement, empowerment, and resilience within communities.

Examples: education, training, inoculation programs

Problem: Soft Measures are hard to measure (hence, to price!)

In 2019, Allen Consulting analyzed a suite of 13 Community-based Countering Violent Extremism programs activated in NSW (Australia) between 2015-2019 for a total cost of \$47 AUD million and a reach of about 1.5 million inhabitants:

- 1. There are challenges in measuring and quantifying outcomes of CVE, which can be attributed to [...] what indicators should be tracked
- 2. About a third of programs failed to provide quantitative evidence on the capability of building societal protective factors against VE

An Alternative Approach

Inoculation:

By exposing individuals to weakened forms of an argument and refuting it, individuals develop resistance to the argument

Mode of action

- (1) Passive Inoculation: present and disprove an argument
- (2) Active Inoculation: involve the subject in the process of refutal

Problem

- We know that inoculation works at individual level
- Example: in a review of 40 studies involving 10,000 participants, Banas and Rains (2010) found a direct effect
- However, results are from small samples and in isolation from other approaches.

More in general, it is hard to evaluate both families of policies

- How do we measure/compare the <u>functioning</u> and the <u>value</u> of counterextremism measures?
- Gathering reliable data on the effectiveness of measures is challenging:
 - 1. Ethical concerns around designing randomised controlled trials.
 - 2. Limited access to proprietary data from social media platforms.
 - 3. Reluctance of users with extremist views to participate in studies.

Our Approach

- We generate data through an agent-based modelling (ABM) approach to overcome these challenges.
- An agent-based model is a simulation of the reality

 The ABM is generalizable, replicable, falsifiable and is calibrated with evidence-based parameters

- We use the ABM to assess **2 policies**:
 - Repressive policy: deplatforming of extremist users
 - Soft policy: inoculation

Scenario

 We generate a social network with topological features similar to a prototypical antiimmigration Facebook group. Individuals are heterogeneous and realistic.

 Parameters are calibrated using data from systematic reviews and empirical studies conducted in the field of terrorism research.

- In particular:
 - Inoculation effect at individual level
 - real world cost figures

• Important: This method allows us to assess policies in isolation and in combination!

(1) Extremists:

Spread radical content to users they are linked to

(2) Moderators:

Monitors and moderates **online** activities, identifying and deplatforming extremists.

The moderator is "inefficient"

- Pools a subset of the population
- Assesses a number of posts produced by the user in the previous years
- Decides whether to deplatform or not
- This operation takes time!

(3) Users:

- Members of a Facebook group, individually varying in characteristics (e.g. ideology, demography, education level, connections)
- Age, gender and connectivity is calibrated on META user profiles (Ramshaw, 2024)
- Additional attributes (e.g. education, marital status, criminal history) are obtained from ABS tables
- Attributes determine the **Susceptibility** to extremism narrative through the effect estimations of Wolfowicz et al. (2020)

Attribute	Factor Type	Effect Size	Odds Ratio	Definition
Age	Protective	-0.053	0.825	1 if age > 35 ; 0 otherwise
Education	Protective	-0.039	0.868	1 if bachelor's degree or above; 0 otherwise
Marital Status	Protective	-0.038	0.871	1 if married; 0 otherwise
Gender	Risk	0.082	1.347	1 if male; 0 if female
Employment	Risk	0.042	1.165	1 if unemployed or no study; 0 otherwise
Status Criminal His- tory	Risk	0.331	3.397	1 if committed crime; 0 otherwise

Table 5: Demographic factors used to calibrate users' susceptibility to extremist content.

Users perform two actions:

- 1) Users adjust their belief on extremist content conditional on:
 - Friends' Posts
 - Direct messages exchanged with the extremists they're linked to
 - Inoculators' activity
- 2) If radicalized: users will pass radical content to their contacts

(4) Inoculation Policy:

Deliver **offline** educational interventions, aiming to build resistance to extremist views.

Data

We **generate** data by manipulating **two** dimensions simultaneously:

(A) Radius of Moderator.

- From 1 ‰ to 1% of population monitored every 10 days [11 possible levels of moderation]
 (B) Frequency of Inoculation Events.
- From 1 training event every 10 days to 1 training event daily [11 possible levels of inoculation] Hence, policy space is made of $11 \times 11 = 121$ policy baskets
- For each mix, model is simulated for T = 365 periods and replicated across M = 100 runs.
- The procedure generates a pool of $11 \times 11 \times 100 \times 365 = 4,416,500$ artificial data points.

Result 1: Performance Matrix & Substitution

Performance measure:

End fraction of radicalized users

Policy baskets can be grouped in:

Low Performance (black area):

Above 5%

Medium Performance (grey area):

Between 3% and 5%

High Performance (white area):

Below 3%

Result 1: Performance Matrix & Substitution

To some extent, policy-makers can substitute repression with inoculation

However, to attain medium and high performance, **some** level of moderator activity is **always** required!

This means that policies are only partial substitutes

Result 2. Everything equal, inoculation <u>reduces</u> <u>volatility</u>.

Result 4. Cost-benefit analysis.

Example with real-life U.S. data (Perrigo, 2022)

Facebook moderator's productivity.

- Average Handling Time: 50s/item
- A single Facebook contractor requires 10 days to investigate 1% of the user population

Cost structure:

 E.g. a single Facebook contractor monitoring 1% of the population costs \$459.90

Take-Home Messages

- 1. We develop a **toolbox** which is **general in purpose** as it allows to test for **multiple policies** in isolation and in combination for multiple (and varying!) institutional and demographic settings
- 2. We find that **to some extent**, inoculation decreases the need (**and the cost**) of moderation.
- 3. Inoculation works by making the societal orbit more predictable and society more resilient.
- 4. The model can be used to run a first-pass cost-benefit analysis for policies that are hard to assess in real data.

Risk state	Immune	Low-risk	Susceptible	High Risk	Extreme
Radicalisation State	Reject		Uncertain	Accepts	
Radicalisation Score (B)	B < 0.05	$0.05 < B \le 0.33$	$0.33 < B \le 0.66$	$0.66 < B \le 0.95$	B > 0.95