Lecture 7: Money, Banks, and Federal Reserve System

Instructor: Fei Tan

@econdojo

@BusinessSchool101

Saint Louis University

Course: Macroeconomics 201

Date: September 27, 2025

The Road Ahead

- 1. Money Supply and Demand
- 2. How Do Banks Create Money
- 3. Federal Reserve System
- 4. Quantity Theory of Money

What Is Money?

- Any asset accepted in exchange for goods and services or payments of debts,
 e.g. commodity/fiat money
 - narrow measure includes liquid/monetary assets

$$M1 = currency + checkable deposits$$

- broader measure includes less liquid/non-monetary assets, e.g. time deposits
- \circ M1 measures money supply (M^s), controlled by Fed

Why is it important

- by easing trading, money allows specialization that makes people more productive
- Functions of money: medium of exchange, unit of account, store of value, standard of deferred payment

Measuring Money Supply

 Fed uses two measures of money supply: M1 & M2 (source: Fed Board of Governors)

What Is Cryptocurrency?

- Decentralized digital money designed to be used over internet, e.g. Bitcoin,
 Ethereum, Dogecoin
 - transfer value online without a bank/payment processor
 - managed by peer-to-peer networks of computers
 - secured by blockchain—constantly re-verified ledger of all transactions,
 distributed over network
- Why is it the future of finance
 - buy goods/services or invest
 - not manipulated by central authority
 - equal opportunity to anyone with internet access
- Easiest way to acquire cryptocurrency is to purchase via online exchange, e.g.
 Coinbase

Bitcoin Daily Volume

Bitcoin Spot Volume Will Match Major Asset Classes if Growth Continues

Bitcoin spot market U.S. dollar daily volume in billions from major exchanges, 28-day moving average

Source: Coin Metrics Market Data Feed

Demand for Money

Money demand function

$$M^d = \$Y \times L(i)$$

- ullet Money demand (M^d) depends on two main factors
 - \circ level of transactions, assumed to be proportional to nominal GDP (\$Y)
 - \circ nominal interest rate (i) on bonds, hence opportunity cost/price of holding money
- Relation b/w bond price ($\$P_B$) and bond yield (i): assume one-year bond, face value = \$100

$$i = rac{\$100 - \$P_B}{\$P_B} imes 100\% \quad \Rightarrow \quad \$P_B = rac{\$100}{1+i}$$

Financial Market Equilibrium

- Equilibrium requires money supply equal demand
- \bullet LM relation: $M^s=M^d$ Fei Tan | Made on Earth by humans.

Effects of Higher Income

• $\$Y \uparrow \Rightarrow M^d > M^s \Rightarrow i \uparrow$ to restore equilibrium

Effects of Higher Money Supply

• $M^s \uparrow \Rightarrow M^d < M^s \Rightarrow i \downarrow$ to restore equilibrium

Bank Balance Sheet

Assets = liabilities + net worth (capital/stockholder's equity)

Assets	Liabilities and Net Worth		
Reserves	\$130	Deposits	\$1000
Loans	\$900	Long-term debt	\$700
Securities	\$700	Net Worth	\$30

- Examples of assets
 - reserves: bank deposits in vault and with Fed (required reserve ratio (RR), excess reserves)
 - loans to consumers and firms
- Examples of liabilities
 - o deposits, e.g. checking/saving accounts
 - o long-term debt, e.g. bonds

Example: Money Creation

Bank of America T-account

Assets		Liabilities	
Reserves	+\$100	Deposits	+\$1000
Loans	+\$900		

- Tom deposits \$1000 in currency at BoA
- with RR = 10%, BoA loans out \$900 to Jerry

Chase T-account

Assets		Liabilities	
Reserves	+\$90	Deposits	+\$900
Loans	+\$810		

- Jerry deposits \$900 in currency at Chase
- Fei Tawith RR = 10%, Chase Joans out \$810 to Tom

Simple Deposit Multiplier

Bank	Change in deposits (D)	
Bank of America	+\$1,000	
Chase	+\$900 (=.9×\$1,000)	
Third Bank	+\$810 (=.9×\$900)	
i:	:	

- Example: RR=10%, initially Tom deposits \$1000
- Calculate deposit multiplier

$$\Delta D = \$1000 \times (1 + .9 + .9^2 + .9^3 + \cdots)$$
 $\Rightarrow \text{ multiplier} = \frac{1}{1 - .9} = \frac{1}{\text{RR}} = 10 \text{ (why?)}$

Higher RR leads to lower multiplier

Federal Reserve System

- Fractional banking system: banks keep less than 100% of deposits as reserves, hence subject to
 - bank run: depositors simultaneously withdraw money
 - bank panic: banks simultaneously experience runs
- Example: Federal reserve system
 - began operation in 1914 as lender of last resort to prevent panics
 - central bank in U.S., bankers' bank
 - make discount loans to banks, charge discount rate
- Federal Deposit Insurance Corporation (FDIC) established in 1934 to insure deposits up to \$250,000
- Fed's monetary policy tools, e.g. open market operations, discount policy, reserve requirements

Feedback Loop During Panic

Federal Reserve System (Cont'd)

Example: Open Market Purchase

Banking system T-account

Assets		Liabilities	
Reserves	+\$10 million		
Treasury bills	-\$10 million		

- Federal Open Market Committee (FOMC) directs purchase of \$10 million
 Treasury bills from banks
- reserves $\uparrow \Rightarrow M^s \uparrow$ through deposit multiplier

Federal Reserve T-account

Assets		Liabilities	
Treasury bills	+\$10 million	Reserves	+\$10 million

- Fed deposits funds in reserve accounts for banks
- To decrease M^s Fed conducts open market sale

Connecting Money and Prices

Quantity equation

$$M imes V = P imes Y \quad \Rightarrow \quad g_M + g_V = g_P + g_Y$$

Notations

- $\circ g_X$ = growth rate of variable X
- $\circ M$ = money supply, e.g. M1
- $\circ V$ = velocity of money
- \circ P = price level, e.g. GDP deflator
- $\circ Y = \text{real output, e.g. real GDP}$
- Quantity theory of money
 - $\circ \,$ assume constant V, giving $\pi = g_M g_Y$
 - $\circ\;$ inflation occurs whenever $g_M>g_Y$

Money Growth and Inflation

- (a) source: Friedman and Schwartz (1982), Fed Board, & BEA; Decades of higher money growth were often associated with higher inflation
- (b) source: IMF; Countries with higher money growth tend to have higher inflation

Readings & Exercises

- Readings
 - HO: chapter 14
 - BJ: lecture 3 (sec. 1, 2) (supplementary)
 - Bitcoin: A Peer-to-Peer Electronic Cash System
 - Ethereum Whitepaper
 - Tascha's A Crash Course on Crypto Economics in 1 Hour
- Exercises
 - HO: problem 3.10, 3.12, D14.1, D14.2