

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

Σχεδιασμός Ενσωματωμένων Συστημάτων

9ο εξάμηνο

3η Εργαστηριακή Άσκηση

Βάρδια 1 Ομάδα 14

Παύλος Καπούτσης 03110080 Παναγιώτης Μπουγουλιάς 03112025

<u>Άσκηση 1: Βελτιστοποίηση δυναμικών δομών δεδομένων του αλγορίθμου DRR</u>

Memory Aceeses DRR

CL/PK	SLL	DLL	DYN_ARR
SLL	9746375	9823808	73133646
DLL	9747754	9824544	73134382
DYN_ARR	9846966	9923756	73223829

Ο μικρότερος αριθμός προσβάσεων στη μνήμη επιτυγχάνεται στο συνδυασμό SSL_CL/SLL_PK.

Memory Footprint DRR(KB)

CL/PK	SLL	DLL	DYN_ARR
SLL	166.3	213.2	166.4
DLL	168.5	214.8	168.7
DYN_ARR	162.0	208.4	161.9

Ο μικρότερες απαιτήσεις σε μνήμη επιτυγχάνονται για το συνδυασμό DYN_ARR_CLL / DYN_ARR_PK και για DYN_ARR_CL/SLL_PK.

<u>Άσκηση 2: Βελτιστοποίηση δυναμικών δομών δεδομένων του αλγορίθμου Dijkstra</u>

Αρχικά εισάγουμε τη βιβλιοθήκη στην εφαρμογή, κάνοντας include τα κατάλληλα header files, αντικαθιστώντας τις δηλώσεις των δομών δεδομένων της εφαρμογής με αυτών της βιβλιοθήκης, αρχικοποιώντας τις δομές δεδομένων της βιβλιοθήκης και τέλος αντικαθιστώντας τις συναρτήσεις των λειτουργιών των δομών με αυτών της βιβλιοθήκης. Ο κώδικας παραδίδεται στο dijkstra.c. Ακολουθούν τα αποτελέσματα από το τρέξιμο της εφαρμογής.

Memory Accesses Dijkstra

Data Structures	#Mem_accesses
Sll	92863074
Dll	93038234
Dyn_arr	140444576

Ο μικρότερος αριθμός προσβάσεων στη μνήμη επιτυγχάνεται με την SLL.

Memory Footprint Dijkstra(KB)

Data Structures	Memory Footprint(kb)
Sil	589.8
Dll	590.4
Dyn_arr	594.6

Ο μικρότερος αριθμός απαιτήσεων σε μνήμη επιτυγχάνεται με την SLL.