

Università di Pisa

Dipartimento di Informatica Corso di Laurea Triennale in Informatica

Corso a Libera Scelta - 6 CFU

Introduzione all'Intelligenza Artificiale

Professore:
Prof. Alessio Micheli
Prof. Claudio Gallicchio

Autore: Matteo Giuntoni Filippo Ghirardini

${\bf Contents}$

L	Pun	nto materiale	2
	1.1	Vettore accelerazione	3
	1.2	Vettore quantità di moto	3
	1.3	Vettore momento angolare rispetto a un polo P	
	1.4	Coordinate polari	3
	1.5	Versori polari (2D)	4

CONTENTS 1

1 Punto materiale

Oggetto caratterizzato da una massa [kg] e da un vettore posizione [m] nello spazio 3D. Dimensioni trascurabili, forma irrilevante rispetto ai fenomeni di interesse. Vettore posizione come funzione del tempo t[s].

Esempio 1.0.1. Una molecola di ossigeno se sono interessato all'aereodinamica di una vettua. Un satellite attorno alla terra se ignoro le forze di marea.

Un vettore posizione è una funzione del tempo t[s].

$$\vec{r(t)} = (x(t), y(t), z(t)) = x(t)\hat{x} + y(t)\hat{z} + z(t)\hat{z}$$

Osservazione 1.0.1. I versori cartesiani sono costanti

Definizione 1.0.1 (Legge oraria). Si definisce come legge oraria la funzione $t \to \vec{r}(t)$.

Definizione 1.0.2 (Traiettoria). Il lungo geometrico di punti visitati dal punto materiale.

$$\{\vec{r}(t) \ per \ t \in \mathbb{R}\}$$

Esempio 1.0.2. $\vec{r}(t) = (v_0 t, y_0, 0) e v_0 = 3m/s, y_o = 5m$

Vettore velocità

Derivata rispetto al tempo del vettore posizione e si indica come $\frac{d\vec{r}(t)}{dt}$ oppure $\dot{\vec{r}}(t)[m/s]$

$$\dot{\vec{r}}(t) = (\dot{x}(t), \dot{y}(t), \dot{z}(t))$$

$$= \frac{d}{dt} [x(t)\hat{x} + y(t)\hat{y} + z(t)\hat{z}]$$

$$= \dot{x}(t)\hat{x} + \dot{y}(t)\hat{y} + \dot{z}(t)\hat{z}$$
(1)

Per ricavare la forma esplicita uso le proprietà delle derivate (linearità, Leibnitz)

Esempio 1.0.3. $\vec{r}(t) = (v_0 t, y_0, 0) = v_0 t \hat{x} + y_0 \hat{y}$ abbiamo che $\dot{\vec{r}}(t) = (v_0, 0, 0) = v_0 \hat{x}$

Velocità e spazio percorso ("integrale di linea").

$$L = ||\vec{r}(t_1) - \vec{r}(t_0)|| + ||\vec{r}(t_2) - \vec{r}(t_1)|| + ||\vec{r}(t_3) - \vec{r}(t_2)|| + \dots$$

$$= \sum_{i} ||\vec{r}(t_{i+1} - \vec{r}(t_i)|| \ per \ |t_{i+1} - t_i|" \text{piccolo"}$$

$$= \sum_{i} ||\frac{\vec{r}(t_{i+1}) - \vec{r}(t_i)}{t_{i+1} - t_i}||(t_{i+1} - t_i)| = \int_{t_{in}}^{t_{f_{in}}} ||\vec{r}(t)||$$

Esempio 1.0.4. $\vec{r}(t) = (v_0 t, y_0) \ \dot{\vec{r}}(t) = (v_0, 0) \ ||\dot{\vec{r}}(t)|| = \sqrt{v_0^2 + 0^2} = |v_0| \ L = |v_0| \cdot (t_{f_{in}} - t_{in})$ Il vettore è costante quindi facendo la derivata torna zero. Con la velocità si calcolo lo spazio percorso ("integrale di linea"). La differenza fra le posizioni e la differenza dei tempi è il rapporto incrementale in caso gli intervalli siano sufficentemente piccoli, da qui si ottiene l'integrale.

1.1 Vettore accelerazione

Derivata rispetto al tempo del vettore velocità e si indica con $\frac{d^2\vec{r}(t)}{dt}$ oppure $\ddot{\vec{r}}(t)[m/s^2]$

$$\ddot{\vec{r}}(t) = (\ddot{x}(t), \ddot{y}(t), \ddot{z}(t)) = \ddot{x}(t)\hat{x} + \ddot{y}(t)\hat{y} + \ddot{z}(t)\hat{z}$$
 (2)

Esempio 1.1.1.
$$\vec{r}(t) = (\frac{1}{2}a_0t^2, v_0t, 0)$$
 $\dot{\vec{r}}(t) = (a_0t, v_0, 0)$ $\dot{\vec{r}}(t) = (a_0, 0, 0)$

Serve perché l'equazione "del moto" di Newton che determinata la legge oraria è formulata in termini di accelerazione.

1.2 Vettore quantità di moto

Il prodotto di massa [kg] e velocità [m/s]

$$\vec{p}(t) = m \cdot \dot{\vec{r}}(t) = (m\dot{x}(t), m\dot{y}(t), m\dot{x}(t)) = m\dot{\vec{x}}(t)x + m\dot{\vec{y}}(t)y + m\dot{\vec{z}}(t)z$$

Esempio 1.2.1. Prendiamo un punto di massa 2kg e velocità 3m/s lungo \hat{x} .

$$p_x(t) = 2 \cdot 3kg \cdot m/s = 6kg \cdot m/s$$
 $p_y(t) = p_z(t) = 0.$

Serve per generalizzare l'equazione di Newton e per trattare sistemi di piu punti materiali.

1.3 Vettore momento angolare rispetto a un polo P

$$\vec{L}_p(t) = m(\vec{r}(t) - \vec{r}_p) \times \dot{\vec{r}}(t)$$

Dove $\vec{r_p}$ è il vettore posizione di p, mentre $\dot{\vec{r}}(t)$ è il prodotto vettoriale.

Esempio 1.3.1.
$$\vec{r}_p = (l_0, 0, 0)$$
 $\vec{r}(t) = (v_0 t, y_0, 0)$ $\vec{L}_p = m[(v_0 t - l_0)\hat{x} + y_0\hat{y}] \times (v_0\hat{x}) = m(v_0 t - l_0)v_0\hat{x} \times \hat{x} + my_0v_0\hat{y} \times \hat{x} = my_0v_0(-\hat{z}) = (0, 0, -my_0v_0)$ Ricorda che $\hat{x} \times \hat{x} = 0$ e $\hat{y} \times \hat{x} = -\hat{z}$

Il momento angolare dice quanta inerzia ha un oggetto in una rotazione (descrizione sommaria). Il polo P è parte della definizione. È una scelta! Il risultato dipende dal polo. Serve per formulare l'equazione del moto di sistemi di punti materiali e corpi rigidi.

1.4 Coordinate polari

Un metodo per rapprensentare delle cordinate x, y andando a misurare prima la distanza dall'origine e poi si va a vedere quanto vale l'angolo fra questo segmento dall'asse x, utilizzando seno e coseno.

$$\begin{cases} x(t) = r(t) \cdot \cos(\Theta(t)) \\ y(t) = r(t) \cdot \sin(\Theta(t)) \end{cases}$$

$$\begin{cases} r(t) = \sqrt{x(t)^2 + y(t)^2} \ge 0 \\ tg(\Theta(t)) = y(t)/x(t) \end{cases}$$

Esempio 1.4.1. Esempi di rappresentazione di coordinate in coordinate polari.

$$x = 0, y = l_0 > 0 \Rightarrow r = l_0, \Theta = \pi/2$$

$$x = 0, y = -l_0 < 0 \implies r = l_0, \Theta = -\pi/2$$

$$x = l_0, y = l_0 > 0 \implies r = \sqrt{2}l_0, \Theta = \pi/4$$

1.5 Versori polari (2D)

Definisco un versore $\hat{r}(t)$ che punta verso il punto materiale e un versore $\hat{\Theta}(t)$ ortogonale. Si esprime facilmente in coordinte polari.

$$\vec{r}(t) = (x(t), y(t)) = (r(t)\cos\Theta(t), r(t)\sin\Theta(t)) = r(t)(\cos\Theta(t)\hat{x} + \sin\Theta(t)\hat{y})$$

Ma
$$||\vec{r}(t)|| = |r(t)| = r(t)$$
 allora definisco $\hat{r}(t) = \vec{r}(t)/||\vec{r}(t)|| = \cos\Theta(t)\hat{x} + \sin\Theta(t)\hat{y}$

Trovo facilmente che un versore ortogonale è:

$$\Theta(t) = -\sin\Theta(t)\hat{x} + \cos\Theta(t)\hat{y}$$
 infatti $\hat{r} \cdot \hat{\Theta} = c \cdot (-s) + s \cdot c = 0$

Note 1.5.1. Non c'è legame fra Θ e $\hat{\Theta}$ è solo una convenzione.

Le trasformazioni inverse invece si fanno come segue (verifico per sostituzione):

$$\hat{y} = \cos \Theta(t)\hat{r} - \sin \Theta(t)\hat{\Theta}$$
 $\hat{y} = \sin \Theta(t)\hat{r} + \cos \Theta(t)\hat{\Theta}$

Possono quindi scrivere ogni vettore nella forma $\vec{a} = a_r \hat{r} + a_{\Theta} \hat{\Theta}$ con le componenti polari a_r, a_{Θ} . Per evitare ambiguità non scriviamo (a_r, a_{Θ}) e riserviamo la notazione alle componenti cartesiane.

A differenza dei versori cartesiani quelli polari dipendono dal tempo per costruzioni.

$$\dot{\hat{r}}(t) = \frac{d}{dt} [\cos \Theta(t)\hat{x} + \sin \Theta(t)\hat{y}] = -\sin \Theta(t) \cdot \dot{\Theta}(t)\hat{x} + \cos \Theta(t) \cdot \dot{\Theta}(t)\hat{y}$$

Dove $\cos \Theta(t) \cdot \dot{\Theta}(t)$ si applica la derivata della somma, Leibnitz, funzione composta.

$$=\dot{\Theta}(t)\cdot\hat{\Theta}(t)$$
 (confronto l'espressione $\mathrm{di}\hat{\Theta}(t)$)

Similmente $\dot{\hat{\Theta}}(t) = -\dot{\Theta}\hat{r}(t)$.

Vettori posizione, velocità, accelerazione

$$\vec{r}(t) = r(t)\hat{r}(t)$$

Dove abbiamo che $\vec{r}(t)$ è il vettore, r(t) è una coordinata polare, $\hat{t}(t)$ è il versore polare.

$$\dot{\vec{r}}(r) = \dot{r}(t)\hat{r}(t) + r(t)\dot{\Theta}(t)\hat{\Theta}(t)$$

Dove la parte $\dot{\vec{r}}(r)$ è la velocità radiale.

$$\ddot{\vec{r}}(t) = [\ddot{r}(t) - r(t)\dot{\Theta}(t)^2]\hat{r} + [r(t)\ddot{\Theta}(t) + 2\dot{r}(t)\dot{\Theta}(t)]\hat{\Theta}$$

Nel quale abbiamo che la parte $r(t)\dot{\Theta}(t)^2$ si chiama **velocità centripeta**, mentre $2\dot{r}(t)\dot{\Theta}(t)$ si dice accelerazione di Coriolis.