Le package tnsseq

Code source disponible sur https://github.com/typensee-latex/tnstools.git.

Version ${\tt 0.0.0\text{-}beta}$ développée et testée sur $\operatorname{Mac}\operatorname{OS}\operatorname{X}.$

Christophe BAL

2020-07-10

Table des matières

1	Introduction							
	1.1	1.1 Des notations complémentaires pour des suites spéciales						
	es et produits en mode ligne							
	1.3	Comp	araison asymptotique de suites et de fonctions					
		1.3.1	Les notations \mathcal{O} et σ					
		1.3.2	La notation Ω					
		1.3.3	La notation Θ					
2 3	Historique Toutes les fiches techniques							
_			Des suites spéciales					
		3.0.2	Sommes et produits en mode ligne					
		3.0.3	Les notations \mathcal{O} et \mathcal{O}					
		3.0.4	La notation Ω					
		3.0.5	La notation Θ					

1 Introduction

Le package tnsseq propose quelques macros utiles quand l'on parle de suites ou de séries.

1.1 Des notations complémentaires pour des suites spéciales

Exemple

$$\begin{array}{c} \ \ & F_1 \\ \ \ & F_1^2 \\ \ \ & F_2 \\ \ \ & F$$

1.2 Sommes et produits en mode ligne

Pour limiter l'espace, LATEX affiche $\sum_{k=0}^{n}$ et non $\sum_{k=0}^{n}$ sauf si l'on utilise la commande \displaystyle. Les macros \dsum et \dprod permettent de se passer de \displaystyle. Voici un exemple.

Remarque. On peut taper $\sum_{k=0}^{n} \frac{1}{n}$ où la fraction n'est pas en mode \displaystyle.

1.3 Comparaison asymptotique de suites et de fonctions

1.3.1 Les notations \mathcal{O} et ϕ

Exemple 1

Les notations suivantes sont dues à Landau.

\$\$ ou \$\$	$\mathcal O$ ou $\mathcal O$	
--------------	------------------------------	--

Exemple 2

1.3.2 La notation Ω

Exemple 1

La notation suivante est due à Hardy et Littlewood.

<pre>\$\$</pre>	Ω	
	I .	

Exemple 2

Dans l'exemple suivant, $f(n) = \Omega(g(n))$ signifie : $\exists (m, n_0)$ tel que $n \ge n_0$ implique $f(n) \ge mg(n)$.

$f(n) = \sigma(g(n))$	$f(n) = \mathbf{\Omega}(g(n))$
	I and the second

1.3.3 La notation Θ

Exemple 1

<pre>\$\$</pre>	Θ
	I and the second

Exemple 2

Dans l'exemple suivant, $f(n) = \Theta(g(n))$ signifie : $\exists (m, M, n_0)$ tel que $mg(n) \le f(n) \le Mg(n)$ dès que $n \ge n_0$.

$$f(n) = \phi(g(n))$$

2 Historique

Nous ne donnons ici qu'un très bref historique récent ¹ de tnsseq à destination de l'utilisateur principalement. Tous les changements sont disponibles uniquement en anglais dans le dossier change-log : voir le code source de tnsseq sur github.

2020-07-10 Première version 0.0.0-beta.

^{1.} On ne va pas au-delà de un an depuis la dernière version.

3 Toutes les fiches techniques

3.0.1 Des suites spéciales

```
\seqplus <macro> (2 Arguments)

— Argument 1: l'exposant à droite.

— Argument 2: l'indice à droite.

\seqhypergeo <macro> (2 Arguments)

— Argument 1: l'indice à gauche.

— Argument 2: l'indice à droite.

\seqsuprageo <macro> (4 Arguments)

— Argument 1: l'indice à gauche.

— Argument 2: l'indice à droite.
```

3.0.2 Sommes et produits en mode ligne

— Argument 3: l'exposant à droite.

— Argument 4: l'exposant à gauche.

Les macros suivantes sans argument ont un comportement spécifique vis à vis des mises en index et en exposant.

```
\dprod <macro> (Sans argument)
\dsum <macro> (Sans argument)
```

3.0.3 Les notations \mathcal{O} et ϕ

```
\bigO <macro> (1 Argument)
\smallO <macro> (1 Argument)
```

— Argument: si l'argument est vide, il est ignoré, sinon il est mis entre des parenthèses après \mathcal{O} ou \mathcal{O} .

3.0.4 La notation Ω

```
\bigomega <macro> (1 Argument)
```

— Argument: si l'argument est vide, il est ignoré, sinon il est mis entre des parenthèses après Ω .

3.0.5 La notation Θ

```
\bigtheta <macro> (1 Argument)
```

— Argument: si l'argument est vide, il est ignoré, sinon il est mis entre des parenthèses après Θ .