CS4495/6495 Introduction to Computer Vision

9A-L1 Color spaces

Light Detection: Rods and Cones

Cones:

- 6-7 million cones in the retina
- Responsible for highresolution vision
- Discriminate colors
- Three types of color sensors (64% red, 32% green, 2% blue)

Cones

Human spectral sensitivity to color

Three cone types (ρ, γ, β) correspond roughly to R, G, B.

Retina Mosaic

Tristimulus Color Theory

Spectral-response functions of each of the three types of cones

 Can we use them to match any spectral color?

Percentage of light absorbed by each cone

Color matching function based on RGB

Most spectral color can be represented as a positive linear combination of these primary colors (but...)

Color matching function based on RGB

But some spectral cannot – need to add some red

Color matching function based on RGB

Luminance vs color

T E X T

WITHOUT INTENSITY DIFFERENCES

TITE MIANUT INFOCUSIONS TO MIAD, SHOWING COM A-

CIE RGB color space

Color matching experiments [Wright & Guild 1920s]

- Mapped physical wavelengths to perceived colors
- Identified relative similarity and difference between colors
- Result: CIE RGB space defined

Colors perceivable by the human eye

CIE xy chromaticity diagram, 1931

CIE XYZ color space

A new space with desired properties

- Easy to compute linear transform of CIE RGB
- Y: Perceived luminance
- X, Z: Perceived color
- Represents a wide range of colors

Colors perceivable by the human eye

$$y = \frac{X}{X + Y + Z}$$

$$y = \frac{Y}{X + Y + Z}$$

CIE xy chromaticity diagram, 1931

CIE L*a*b* color space

Cylindrical view

Think of chroma (here a*, b*) defining a planar disc at each luminance level (L)

HSL and HSV color spaces

Quiz: Hue difference

If hue values range in [0, 360], what is the absolute difference between the following pairs of hues?

• 225 and 75

45 and 315

Quiz: Hue difference

If hue values range in [0, 360], what is the absolute difference between the following pairs of hues?

225 and 75

150

• 45 and 315

90

Hue is an angular measure, it "wraps around" at 0/360

But there are lots of color spaces

My favorite

The one we know best...

RGB color space

Like a squared double cone?

Color gamuts

Some Gamut Comparisons

Revisiting pixels

"Picture element" at location (x, y), value or color c

Color values are vectors, here (R, G, B)

Image Space

RGB Color Space

RGB color distribution

Quiz: Plotting pixels in a color space

What does this view enable us to do?

- □ Think about clusters of pixels that are similar in color
- Understand the shape and size of objects present
- Identify pixels that are different, and separate them
- Count how many pixels of each color there are

Quiz: Plotting pixels in a color space

What does this view enable us to do?

- ☑ Think about clusters of pixels that are similar in color
- Understand the shape and size of objects present
- ☑ Identify pixels that are different, and separate them
- Count how many pixels of each color there are

Example: Red filter

Filter: $R \in [0,255]$, $G \in [0,100]$, $B \in [0,100]$

Example: Red filter – more red!

Filter: $R \in [0,255]$, $G \in [0,50]$, $B \in [0,50]$

How intensity affects color values

Just different shades of green, but all 3 values change!

Solution: Separate intensity and color

Define intensity (Y) as some combination of R, G, B

$$Y = W_R \times R + W_G \times G + W_B \times B$$

= 0.299 × R + 0.587 × G + 0.114 × B

Solution: Separate intensity and color

Then compute new color values, taking out intensity

$$U = U_{max} \frac{B - Y}{1 - W_B} \approx 0.492 \times (B - Y)$$

$$V = V_{max} \frac{R - Y}{1 - W_R} \approx 0.877 \times (R - Y)$$

Assuming R, G, B and Y are in the range [0,1]

$$U \in [-U_{max}, U_{max}]$$
 and $V \in [-V_{max}, V_{max}]$

Y

Together: YUV

U

V

Quiz: UV filter

What UV limits should we use to extract red regions?

Filter:

$$Y \in [0,255],$$
 $U \in [0,255],$
 $V \in [0,255],$

Quiz: UV filter

What UV limits should we use to extract red regions?

Filter:

 $Y \in [0,255],$ $U \in [130,200],$ $V \in [100,130]$

UV filter

Filter: $Y \in [0,255]$, $U \in [130,200]$, $V \in [100,130]$

YUV filter

Filter: $Y \in [0,150]$, $U \in [130,200]$, $V \in [100,130]$

Comparing RGB and YUV filters

Filter: $R \in [0,255]$, $G \in [0,50]$, $B \in [0,50]$

Filter: $Y \in [0,150]$, $U \in [130,200]$, $V \in [100,130]$

Intuition: Why YUV?

- Easier clustering of pixels
- Efficient encoding by chroma subsampling
 - Recall, human vision is more sensitive to intensity changes
 - Y channel can now use more bits
- E.g., YUV422 to represent 2 image pixels, it uses 2 bytes for Y, and 1 byte each for U and V

Other luma-chroma color spaces

- YC_bC_r/YP_bP_r video transmission, compression
- CIE L*a*b*
 - Based on human perception
 - Intensity channel: L* = lightness
 - Color-opponent: a* = red-green, b* = blue-yellow
- CIE L*u*v* like L*a*b* but easier to compute

Back to plotting image pixels

Plotting in HSV

Focus on HS
projection
– what do you see?

Colors spread along a single dimension!

Hue

A better HS plot

Treat hue as an angle

- Reds from both ends of the spectrum now in proximity
- Better reflects the role of saturation (radius or distance from center)

Exercise: HSV filter

- Filter this image in HSV to select red apples
- Compare best results from RGB, YUV, L*a*b*

