Panorama Stitching

Srijan Mallick

May 2021

In this project, we shall perform image stitching using Python and OpenCV. Given a pair of images that share some common region, our goal is to "stitch" them and create a panoramic image scene. The steps to achieve that goal are as follows:

- Keypoint detection
- Local invariant descriptors (SIFT)
- Feature matching
- Homography estimation
- Perspective warping

1. Keypoint Detection

In our code, we have used the function $cv2.ORB_create()$ to create a descriptor object, and then we have extracted keypoints by calling the method detectAndCompute(). We have visualised the keypoints in the image by the function cv2.drawKeypoints().

2. Feature Matching

After extracting keypoints from both images, we would like to compare the 2 sets of features and stick with the pairs that show more similarity. For this, we have used a BruteForce (BF) Matcher object by calling the function cv2.BFMatcher, in which the first parameter is the distance metric and the second one is the crossCheck boolean.

3. Homography Estimation

Homography is a 3x3 matrix, essentially, a linear transformation that will relate the two images. Since we have obtained feature points from the two images, we can pass them into the cv2.findHomography() function to get a perspective transformation.

4. Perspective Warping

Once an accurate homography has been calculated, the idea is to transform one of the images so that both images merge as one. This is done using the cv2.warpPerspective() function in OpenCV.

An Example

Figure 1: The two images to be stitched

Figure 2: The stitched panorama

1 Reference

 \bullet Silva, T., "Image Panorama Stitching with OpenCV"