QUESTIONS FROM COMPETITIVE EXAMS

5.1 Introduction

(MHT-CH	T 2001)			
If magnetic length of magnet is 10 cm, th	en the geometric lengt	th is		
a) 12 cm b) 10 cm	c) 8 cm	d) 14 cm		
(MHI-CI		-,		
Angle of dip is zero at				
noles	b) equator			
c) between poles and equator	d) none of these			
A bar magnet having magnetic moment	M, is bent into a semic	ircle. The new momen		
of magnet will be	311			
a) M b) 2M	c) 2M/π	d) $M/2\pi$		
(MHT-CE				
Magnetic field B ₁ due to a bar magnet at a B ₂ due to the same magnet at point Q on of points P and Q from centre?	equatorial line. What i	s the ratio of distances		
a) 2 ^{-1/3} b) 2	c) 2 ^{1/3}	d) 1/2		
A wire of length l, carrying current I, is	s bent in the form of o	circle of radius r, ther		
magnetic moment at centre of loop is	A T	A) 1		
a) $Il^2/2\pi$ b) $Il^2/4\pi$	1088A 889	d) <i>l</i>		
(MHT-CE Potential due to magnetic dipole at distan		dipole on axis of dipole		
is V. What will be potential at distance 2	from centre on the ax	is of dipole?		
a) V/2 b) V/4	c) 2V	d) 4V		
(MHT-EC	110			
A bar magnet produces magnetic induction	on of 4×10^{-5} T at a poir	nt 10 cm from centre on		
the axis of magnet. The magnetic momen	it is			
a) 0.2 Am ² b) 0.002 Am ²	c) 2 Am ²	d) 0.02 Am ²		
(MHT-CE	T 2006)			
Direction of magnetic field at equatorial	point is			
a) parallel to \vec{M}	b) perpendicular to	\vec{M}		
c) making an angle of 45° with M	d) antiparallel to \vec{M}			
If magnetic length of magnetic dipole is	10 cm, then geometric l	ength is		
a) 12 cm b) 10 cm	c) 8 cm	d) 14 cm		
(MHT-CE	T 2007)			
Consider a point on the equatorial axis of field at that point is	a short bar magnet. The	e direction of magnetic		
" antiparallel to magnetic moment				
Parallel to magnetic moment				
PATIBACALATIC				
d) arbitrary depending on the distance of	f the point from centre	or the magnet		

Magi	netic Materials		HT-CET 2007)			
		(M	b I is M. If the rod is b	ent into a semicircle, then t		
11.	Magnetic mome	ent of a rod of lengt	U P 19 V	1. 0.14		
	magnetic mome	ent of the	c) $2M/\pi$	d) 2 M		
	a) 4 M	b) M/4	= ====			
	a) 4	(M	HT-CET 2008)	orm of a circle. The magnitue		
		at a carring a curi	ent 'i' A is bent in the R	Y Suntak		
12.	A wire of length	ment is				
	of magnetic mo		iL^2	d) $\frac{iL^2}{4}$		
	iL	b) $\frac{i^2L}{4\pi}$	c) $\frac{iL^2}{4\pi}$	4		
	a) $\frac{iL}{4\pi}$	270	- CTT 2010)			
		(M	HT-CET 2010)	oths and breadths are equi-		
	The magnet is C	ut into four equal p	earts such that their len	igths and breadths are equa		
13.	then pole stren	gth of each part is				
		m	. <u>m</u>	d) $\frac{m}{8}$		
	a) m	b) $\frac{\pi}{2}$	c) $\frac{m}{4}$	7 8		
		At a point on the right bisector of a magnetic dipole, the magnetic				
14.	At a point on the	ie right disector or	u 11120-1111			
		-i 1				
	a) potential va	ries as r ²				
	b) potential is zero at all points on the right bisector					
	c) field varies					
		endicular to the axi	s of dipole			
	u) Held is perp		HT-CET 2011)			
15.	A circular coil of radius r is formed by wire of length L. If current I is flowing through					
20.	it then the mag	netic moment is pr	oportional to			
	a) L ²	b) L	c) L ³	d) $L^{1/2}$		
16.		h L is bent in the fo	rm of square and circle	e. The ratio of their magnet		
	moments at the	ir centres is				
	a) π/4	b) π/6	c) $\pi/2$	d) π		
		H I	HT-CET 2012)	**************************************		
17.	Wire of length		,	oil If some gurrant is passe		
17.	Wire of length 'l' is converted into a square and circular coil. If same current is passed in both, then the ratio of their magnetic moments is					
	a) $(\pi/2)$	b) (π/3)		1) (-14)		
			c) (π/8) H-CET 2015)	d) $(\pi/4)$		
18.	A coil carrying			r as th		
	A coil carrying current 'I' has radius 'r' and number of turns 'n'. It is rewound so that					
	radius of new coil is $\frac{r'}{4}$ and it carries current 'I'. The ratio of magnetic moment of new					
	coil to that of original coil is					
		-0 ton 19				
		1				
	a) 1	b) $\frac{1}{2}$	1	1		

XII - PHY- II - 3 xx

		XII - PHY- II - 544	MHT-CET				
Mag	netic Materials	the 5 cm and diameter 1 cm	It has unic				
26.	A cylindrical magnetic rod	has length	rly				
	A cylindrical magnetic rod has length 5 cm. Magnetization $5.3 \times 10^3 \frac{A}{m^3}$. Its net magnetic dipole moment is nearly b) 10^{-2} J/T						
	magnetization 5.3 × 10 m ³	b) 10 ⁻² J/T					
	a) $2.5 \times 10^{-2} \text{ J/I}$	d) 2 × 10 // 1					
	c) $0.5 \times 10^{-2} \text{ I/T}$	OFT 2021)					
	1 1 1-1-000		an orbit of radius				
27.			z, the equivalent				
	magnetic moment is (e = 1.6	$\times 10^{-19} \text{ C}, \pi = 3.14$	256 × 10-23				
			.250 × 10 25 Am ²				
	E 4 Magnetis	sation and Magnetic Intensity					
	(MHT-CET 2004)						
	2.1	(MIII-CZI ZV					
28.	1 tesla is equal to a) 1 Wb/m b) 1 J/A	c) 1 N/Am d) 1	Am/N				
		(MHT-CET 2009)					
20	The magnetic moment of subs	tance of 1 gm is 6×10^{-7} Am ² . If its density	$7 \text{ is 5 gm/cm}^3 \text{ then}$				
29.	intensity of magnetisation ir	A/m Will be					
	a) 8.3×10^6 b) 3.0	c) 1.2 × 10 · · · · · · · · · · · · · · · · · ·	3 × 10 ^{-∞}				
		(MH-CET 2016)	, m				
30.	An iron rod is placed paralle	el to magnetic field of intensity 2000 A	m. The magnetic				
	flux through the rod is 6 × 10 permeability of the rod in W	0 ⁻⁴ Wb and its cross-sectional area is 3 c	iii . The magnetic				
	a) 10^{-1} b) 10^{-2}		0^{-4}				
31.		le a long solenoid having 'n' turns per					
	carrying current 'I', when iron core is kept in it is:						
		α , χ = magnetic susceptibility)	4				
	a) $\mu_0 \text{ nI } (1-\chi)$ b) $\mu_0 \text{ nI}$	$(\chi c) \mu_0 n I^2 (1 + \chi) d) \mu$	$_{0}$ nI $(1 + \chi)$				
	41 41 40	(MH-CET 2017)					
32.	A bar magnet has length 3 cm The intensity of magnetisation	n, cross-sectional area 2 cm ² and magnet	ic moment 3 Am.				
	a) 2 × 10 ⁵ A/m b) 3 × 1	0 ⁵ A/m c) 4 × 10 ⁵ A/m d) 5	105 A/m				
33.	The magnetic moment of elec	tron due to orbital motion is man artism	× 10° A/m				
	 The magnetic moment of electron due to orbital motion is proportional to (n = principal quantum number) 						
	a) $\frac{1}{n^2}$ b) $\frac{1}{n}$						
	a) $\frac{1}{n^2}$ b) $\frac{1}{n}$	c) n ² d) n	Ć				
		(MH-CET 2018)					
34.		or a paramagnetic and diamagnet	ic material ^{are}				
	a) small, positive and small, positive b) large, positive and small, negative						
	c) small, positive and small,	negative d) large possitive and sm.	all, negative.				
25	The man of the state of the sta	(MITTI-CET 2010)					
35.	The magnetization of bar magnetic moment 1 Am ² is	agnet of length 5 cm, cross sectional ar	ea 2 cm² and ^{net}				
-	a) 2×10^5 A/m b) 3×1	0^5 A/m c) $1 \times 10^5 \text{ A/m}$ d) 4	× 10 ⁵ A/m				

