Ôn tập Vật Lí

Bùi Nhật Minh

Ngày 22 tháng 9 năm 2025

Mục lục

Là	ời giới thiệu	3
	Kiến thức toán học nền tảng 0.1 Thuộc tính của hàm số	
1	Chuyển động	6

Lời giới thiệu

0.

Kiến thức toán học nền tảng

Chương này bao gồm các kiến thức toán học cần thiết để xây dựng lí thuyết của môn vật lí (hoặc ít nhất để đọc tài liệu này), giả sử rằng bạn đọc đã có một chút kiến thức đại số và hình học trung học phổ thông từ ghế nhà trường. Một điều cần lưu ý là chương này sẽ bao hàm những phần không nằm trong chương trình trung học phổ thông và có thể cả chương trình đai học. Mặc dù rằng là tác giả đã bao hàm rất nhiều toán trong chương, nhưng tác giả không có ý đinh viết để thay thế toàn bộ giáo trình toán. Các cuốn giải tích, đai số tuyến tính, hình học phẳng, hình học không gian, xác suất, và các cuốn giáo trình toán khác đều có vi trí đứng của chúng. Điều mà tác giả mong muốn tài liệu này có được chính là sự tổng hợp của kiến thức toán sao cho phù hợp với các ngành vật lí và sự bù đặp cho những lỗ hổng mà tác giả còn thấy ở tài liệu toán hiện hành ở Việt Nam. Kể như, trong tài liệu này, khi nhắc về hàm số, không có phần về đơn ánh hay toàn ánh. Những khái niệm này là vô cùng quan trọng nếu tập trung chứng minh chặt chẽ các tính chất liên quan đến hàm số, nhưng không phục vụ nhiều trong ứng dụng thực tiễn. Thay vào đó, tài liệu được đưa thêm những dang bài tập, như các dang bài liên quan đến hàm số rời rac được cho dưới dang bảng, mà ban đọc ít khả năng nhìn thấy ở trong những tài liệu khác. Không phải dạng bài tập mới là để bạn đọc trở nên hứng thú hơn, bởi dĩ tác giả khi soạn đáp án còn thấy chán, mà điều quan trọng là tìm ra nguyên nhân từ cái chán đó, và tìm cách chấm dứt triệt để cái chán bằng việc kết nối các bài toán lại với nhau, và rút ra một quy luật tổng quát giữa chúng. Suy cho cùng, sau khi ban đọc làm nhiều bài tập, tác giả kì vọng, hơn cả việc ban đọc tính toán nhanh và thành thao (đương nhiên điều này cũng rất tốt), chính là việc hiểu rõ bản chất của các mảng lí thuyết và từ đó ứng dụng vào các trường hợp khác nhau.

Thông thường, các tài liệu vật lí sẽ lược qua hay tối giản phần toán, với ba ngầm định. Thứ nhất, sẽ có tài liệu toán ứng dụng đi kèm với tài liệu vật lí. Thứ hai, vật lí không dùng nhiều đến lí thuyết toán chuyên sâu hay chứng minh chặt chẽ. Và thứ ba, vật lí không nên dùng đến các tính toán phức tạp mà nên tập trung nhiều vào phần thông hiểu lí thuyết và ứng dụng đời sống. Tuy nhiên, tác giả lại không định hướng tài liệu đi theo những quan điểm này. Các mô hình vật lí đều có toán học phụ trợ đằng sau và chứng minh toán học mới là thứ xây dựng mô hình để dự đoán tương lai. Lấy ví dụ, thuyết tương đối rộng của Anh-xtanh¹. Đây là thuyết có thể nói được kiểm chứng thực nghiệm nhiều lần nhất trong vật lí, và giống rất nhiều công trình vật lí hiện đại khác, được xây dựng từ bút, giấy, và nhiều công cụ toán và một chút góc nhìn sáng tạo của vật lí. Quay trở về hiện tại, theo tác giả, nếu như nhà vật lí hay kĩ sư mà không làm được toán cao cấp, thì có lẽ họ nên chuyển nghề. Cho nên, trong tài liệu này, tác giả không chỉ đưa nhiều toán, mà còn đưa ra toán theo con đường khác với con đường thông thường. Các lí thuyết bình thường được đặt ở cùng chỗ thì sẽ tách nhau ra, không phải là cố tình phức tạp hóa, mà là để thể hiện tính mạch lạc của toán, nhấn mạnh rằng toán có thể tư duy được chứ không chỉ là thuộc lòng một cách "tôn giáo hóa". Tác giả vẫn đưa một số lí thuyết dựa trên ngôn ngữ đời thường, nhưng nếu có thể, tác giả sẽ đưa định nghĩa hay chứng minh theo toán học thuần túy, dựa trên những lí thuyết đã có trước đó.

Có thể những kiến thức này đã cũ và bạn đọc chỉ muốn làm nóng lại kiến thức ở những phần cần thiết, thì bạn đọc có thể bỏ qua một vài phần của chương này. Nhưng nếu bạn đọc thấy những kiến thức này còn mới, còn nhiều lỗ hổng, thì bạn đọc nên đọc kĩ lưỡng. Hi vọng từ lí thuyết và bài tập, bạn đọc có thể hiểu được góc nhìn của tác giả về toán, và tự xây dựng cho mình một ma trận kiến thức riêng để phục vụ sau này.

¹Albert Einstein (1879 - 1955)

0.1 Thuộc tính của hàm số

Trước phần này, chúng ta mới chỉ xét nghiệm của hàm và hình dạng của hàm số thông qua đồ thị. Nhìn vào đồ thị, chúng ta có thể thấy được hàm số có nhiều thành phần đặc biệt. Ở trong phần này, chúng ta sẽ gọi tên và khảo sát những thành phần đặc biệt đó.

0.1.1 Hàm chẵn và hàm lẻ

Phần tính chất đầu tiên mà chúng ta quan tâm đến là tính đối xứng của hàm số trên đồ thị. Nhắc lại một chút kiến thức hình học, một hình có thể có hai kiểu đối xứng là đối xứng trục và đối xứng điểm. Tạm thời, chúng ta chỉ quan tâm đến những trường hợp đối xứng cụ thể. Với đồ thị của một hàm số, một cách khá tự nhiên, chúng ta sẽ xem xét tính đối xứng trục tung hoặc qua điểm gốc tọa đô.

Đầu tiên là đối xứng qua trục tung. Một hàm số có tính đối xứng như vậy được gọi là **hàm chẵn**. Cụ thể, cho f(x) là một hàm số xác định trên A. f(x) là hàm chẵn nếu $x \in A \implies -x \in A$ và

$$f(-x) = f(x)$$

với mọi $x \in A$.

Tương tự, f(x) được gọi là **hàm lẻ** nếu $x \in A \implies -x \in A$ và

$$f(-x) = -f(x)$$

với mọi $x \in A$. Khi này, hàm sẽ đối xứng qua gốc tọa độ.

Hình 0.1: Đồ thị của một hàm chẵn

Biểu diễn về mặt đồ thi, đối với hàm f(x) chẵn, hai điểm

Bài 1: Xác định xem những hàm sau có phải là hàm chẵn, hàm lẻ hay không. Sau đó, vẽ đồ thị của chúng.

1.
$$f(x) = x^4 - 2x^2 - 3$$
;

4.
$$f(x) = \frac{x^3 - \frac{1}{x^3}}{x + \frac{1}{x}}$$
;

2.
$$f(x) = -x^7 + x$$
;

5.
$$f(x) = |x|^2 - |x^3| + 1$$
;

3.
$$f(x) = \frac{x}{x^2+1}$$
;

6.
$$f(x) = |x| - |-x|$$
.

Lời giải bài 1:

1.

1.

Chuyển động

Bài 2: Một ô tô đi 40 km trên một đường thẳng với tốc độ không đổi 40 $\frac{\text{km}}{\text{h}}$. Sau đó, nó đi thêm theo chiều đó 60 km với tốc độ không đổi 50 $\frac{\text{km}}{\text{h}}$. Các giá trị đo được tính đến hai chữ số có nghĩa.

- 1. Tính vận tốc trung bình trên cả quãng đường.
- 2. Tính tốc độ trung bình trên cả quãng đường.
- 3. Nếu xe quay đầu trước khi đi 50 km lúc sau, giữ nguyên các số liệu khác, thì vận tốc trung bình và tốc độ trung bình có thay đổi không. Tại sao?
- 4. Vẽ đồ thị vị trí x theo thời gian t và từ đó chỉ ra cách tính vận tốc trung bình.

Lời giải bài 2:

Coi chiều chuyển động ban đầu là chiều dương.

1. Thời gian đi 40 km đầu là

$$40 \text{ km} \div 40 \frac{\text{km}}{\text{h}} = 1.0 \text{ h}.$$

Thời gian đi 50 km sau là

$$60 \text{ km} \div 50 \frac{\text{km}}{\text{h}} = 1.2 \text{ h}.$$

Do hai quãng đường là cùng chiều nên chúng ta có độ dịch chuyển của xe tổng cộng là

$$\Delta x = 40 \text{ km} + 60 \text{ km} = 100 \text{ km}$$

và tổng thời gian đi là

$$\Delta t = 1.0 \text{ h} + 1.2 \text{ h} = 2.2 \text{ h}.$$

Từ đó, chúng ta có vận tốc trung bình là

$$\bar{v} = \frac{\Delta x}{\Delta t} = \boxed{4.5 \times 10^1 \frac{\text{km}}{\text{h}}}.$$

- 2. Dễ thấy tổng quãng đường đi là d=100 km. Tốc độ trung bình là $\bar{s}=\frac{d}{\Delta t}=\boxed{4.5\times 10^1~\frac{\mathrm{km}}{\mathrm{h}}}$
- 3. Thời gian không thay đổi. Có độ dịch chuyển thay đổi còn $\Delta x = 40 \text{ km} 60 \text{ km} = -20 \text{ km}$ nhưng tổng quãng đường thì không. Do đó, tốc độ trung bình giữ nguyên nhưng vận tốc trung bình thay đổi .
- 4. Ta có đồ thị ở hình 1.1 bằng việc vẽ mối quan hệ x(t) xong nối điểm đầu và điểm cuối. Vận tốc trung bình là độ dốc của đường thẳng nối hai điểm này.

Bài 3: Một máy bay phản lực đang bay ngang ở độ cao h=42 mét. Đột nhiên nó bay vào vùng đất dốc lên góc $\theta=4,2^\circ$ (xem hình 1.2). Với tốc độ bay là $v=1300~\frac{\rm km}{\rm h}$, thời gian tính từ lúc bay vào vùng đất dốc mà người phi công có để điều chỉnh máy bay là bao nhiêu? Tất cả các số liệu được đo đến hai chữ số có nghĩa.

Lời giải bài 3:

Khoảng cách từ máy bay đến điểm va cham với mặt đất là

$$d = \frac{h}{\tan\left(\theta\right)}.$$

Hình 1.1: Đồ thị vị trí xe-thời gian chạy

Hình 1.2: Vị trí máy bay trong vùng dốc lên

Từ đó, chúng ta có được thời gian cho phép là

$$t = \frac{d}{v} = \frac{h}{v \tan(\theta)}.$$

Thay số trực tiếp, với để ý đến sự quy đổi $v=1300~\frac{\mathrm{km}}{\mathrm{h}}=1300~\frac{\mathrm{km}}{\mathrm{h}}\frac{1000~\mathrm{m}}{1~\mathrm{km}}\frac{1~\mathrm{h}}{3600~\mathrm{s}}=361~\frac{\mathrm{m}}{\mathrm{s}},$ chúng ta có

$$t = \boxed{1.6 \times 10^0 \ s} \ .$$

Bài 4: Cho biết vị trí của một vật chuyển động thẳng được xác định bằng $x(t) = a \cdot t^2 + b \cdot t + c$. Xác định vị trí, vận tốc và gia tốc của vật tại thời điểm $t = t_0$.

Lời giải bài 4:

Vị trí của vật tại $t=t_0$ là

$$x\left(t_{0}\right) = \boxed{a \cdot t_{0}^{2} + b \cdot t_{0} + c}.$$

Vận tốc của vật tại $t = t_0$ là

$$v\left(t_{0}\right) = \left.\frac{\mathrm{d}x(t)}{\mathrm{d}t}\right|_{t=t_{0}} = \boxed{2a \cdot t_{0} + b}$$

Gia tốc của vật tại $t=t_0$ là

$$a(t_0) = \frac{\mathrm{d}v(t)}{\mathrm{d}t}\bigg|_{t=t_0} = \boxed{2a}.$$

Bài 5: Phác họa đồ thị vị trí - thời gian và gia tốc thời gian của một người chạy bộ nếu đồ thị vận tốc - thời gian của người đó được biểu diễn trên đồ thị

1. hình 1.3;

2. hình 1.4.

Các số liệu được coi như chính xác tuyệt đối. Bạn có thể giả sử người đó bắt đầu chạy từ vị trí x=0.

Hình 1.3: Phần 1

Hình 1.4: Phần 2

Lời giải bài 5:

- 1. Ta chia quá trình chạy làm 4 phần.
- Phần 1 (0 s \leq t \leq 1 s): Vận tốc tăng đều từ 0 đến 4 $\frac{\text{m}}{\text{s}}$. Chuyển động là nhanh dần với gia tốc không đổi là $a(t)|_{t\in[0\text{ s};1\text{ s}]}=\frac{v(1\text{ s})-v(0\text{ s})}{1\text{ s}-0\text{ s}}=4$ $\frac{\text{m}}{\text{s}^2}$.

Sau khoảng thời gian t, độ dịch chuyển là $x(t)|_{t\in[0\ \mathrm{s;1\ s}]}-x(0\ \mathrm{s})=\frac{a(t)|_{t\in[0\ \mathrm{s;1\ s}]}\cdot t^2}{2}+v(t)|_{t\in[0\ \mathrm{s;1\ s}]}\cdot t$. Từ đó chúng ta có $x(t)=2\ \frac{\mathrm{m}}{\mathrm{s}^2}\cdot t^2$ với $0\ \mathrm{s}\leq t\leq 1\ \mathrm{s}$ và $x(1\ \mathrm{s})=2\ \mathrm{m}$.

• Phần 2 (1 s $\leq t \leq$ 2 s): Vận tốc không đổi ở $v(t)|_{t \in [1 \text{ s};2 \text{ s}]} = 4 \frac{\text{m}}{\text{s}}$ (chuyển động thẳng đều). Qua đó, chúng ta có $x(t)|_{t \in [1 \text{ s};2 \text{ s}]} = x(1 \text{ s}) + v(t)|_{t \in [1 \text{ s};2 \text{ s}]} \cdot (t-1 \text{ s}) = 4 \frac{\text{m}}{\text{s}} \cdot t - 2 \text{ m và } x(2 \text{ s}) = 6 \text{ m}.$

Phần 3 (2 s \leq t \leq 4 s) và phần 4 (4 s \leq t \leq 5 s) làm tương tự như phần 1. Ta được

$$\begin{cases} a(t)|_{t \in [2 \text{ s;4 s}]} &= -\frac{1}{2} \frac{\text{m}}{\text{s}^2} \\ a(t)|_{t \in [4 \text{ s;5 s}]} &= -3 \frac{\text{m}}{\text{s}^2} \end{cases}$$

và qua đó

$$\begin{cases} x(t)|_{t \in [2 \text{ s}; 4 \text{ s}]} &= -\frac{1}{4} \frac{\text{m}}{\text{s}^2} \cdot (t - 2 \text{ s})^2 + 4 \frac{\text{m}}{\text{s}} \cdot (t - 2 \text{ s}) + 6 \text{ m} \\ x(t)|_{t \in [4 \text{ s}; 5 \text{ s}]} &= -\frac{3}{2} \frac{\text{m}}{\text{s}^2} \cdot (t - 4 \text{ s})^2 + 3 \frac{\text{m}}{\text{s}} \cdot (t - 4 \text{ s}) + 13 \text{ m} \end{cases}$$

$$\iff \begin{cases} x(t)|_{t \in [2 \text{ s}; 4 \text{ s}]} &= -\frac{1}{4} \frac{\text{m}}{\text{s}^2} \cdot t^2 + 5 \frac{\text{m}}{\text{s}} \cdot t - 3 \text{ m} \\ x(t)|_{t \in [4 \text{ s}; 5 \text{ s}]} &= -\frac{3}{2} \frac{\text{m}}{\text{s}^2} \cdot t^2 + 15 \frac{\text{m}}{\text{s}} \cdot t - 23 \text{ m} \end{cases}.$$

Cuối cùng, chúng ta có thể biểu diễn vị trí của người chạy trên đồ thị như hình 1.5.

2. Chúng ta có thể phác họa đồ thị vị trí - thời gian bằng việc xấp xỉ đồ thị vận tốc - thời gian dưới dạng đường gấp khúc nối các điểm đã biết thể hiện ở 1.6.

Từ đây, thực hiện tương tự như phần 1 để có phương trình vị trí - thời gian

$$x(t) = \begin{cases} \frac{3}{2} \frac{\text{m}}{\text{s}^2} \cdot t^2 & \text{v\'oi } 0 \le t < 1 \text{ s} \\ -\frac{1}{2} \frac{\text{m}}{\text{s}^2} \cdot t^2 + 4 \frac{\text{m}}{\text{s}} \cdot t - 2 \text{ m} & \text{v\'oi } 1 \text{ s} \le t < 2 \text{ s} \\ 1 \frac{\text{m}}{\text{s}^2} \cdot t^2 - 2 \frac{\text{m}}{\text{s}} \cdot t + 4 \text{ m} & \text{v\'oi } 2 \text{ s} \le t < 3 \text{ s} \\ -2 \frac{\text{m}}{\text{s}^2} \cdot t^2 + 16 \frac{\text{m}}{\text{s}} \cdot t - 23 \text{ m} & \text{v\'oi } 3 \text{ s} \le t < 4 \text{ s} \\ 9 \text{ m} & \text{v\'oi } 4 \text{ s} \le t \le 5 \text{ s} \end{cases}$$

và chúng ta vẽ được đồ thị ở hình 1.7.

Hình 1.5: Đồ thị vị trí - thời gian cho phần 1

Hình 1.6: Vận tốc - thời gian xấp xỉ của phần 2

Hình 1.7: Vị trí - thời gian (xấp xỉ) cho phần 2

Hình 1.8: Đồ thị vị trí - thời gian cho phần 2

Trong thực tiễn, chúng ta hay xấp xỉ những quá trình không tuyến tính qua hữu hạn những điểm đo rồi nội suy tuyến tính (nối các điểm bằng các đoạn thẳng) như đã làm. Còn nhiều phương pháp nội suy nữa còn có thể được tìm thấy trong những tài liệu về phương pháp tính và giải tích số. Thông thường, với càng nhiều điểm thì độ chính xác càng lớn.

Trong trường hợp mà bạn nhận ra phương trình vận tốc - thời gian được cho là

$$v(t) = \begin{cases} \frac{-t\left(4\ \frac{\mathrm{m}}{\mathrm{s}^5} \cdot t^3 - 31\ \frac{\mathrm{m}}{\mathrm{s}^4} \cdot t^2 + 77\ \frac{\mathrm{m}}{\mathrm{s}^3} \cdot t - 68\ \frac{\mathrm{m}}{\mathrm{s}^2}\right)}{6} & \text{v\'oi}\ 0 \leq t < 4\\ 0 & \text{v\'oi}\ 4 \leq t \leq 5 \end{cases}$$

thì bạn có thể thực hiện nguyên hàm trên hàm này để tính được vị trí vật là

$$x(t) = \begin{cases} \frac{-t^2 \left(48 \frac{\text{m}}{\text{s}^5} \cdot t^3 - 465 \frac{\text{m}}{\text{s}^4} \cdot t^2 + 1540 \frac{\text{m}}{\text{s}^3} \cdot t - 2040 \frac{\text{m}}{\text{s}^2}\right)}{360} & \text{v\'oi } 0 \le t < 4 \\ \frac{496}{45} \text{ m} & \text{v\'oi } 4 \le t \le 5 \end{cases}$$

và chúng ta có đồ thị như hình 1.8.

Bài 6: Hai xe hơi có tốc độ lần lượt là $v_1=50,0$ $\frac{\mathrm{km}}{\mathrm{h}}$ và $v_2=60,0$ $\frac{\mathrm{km}}{\mathrm{h}}$ đi ngược chiều với nhau trên một con đường hẹp. Hai xe phát hiện lẫn nhau khi khoảng cách giữa hai xe là d=400 m. Cả hai xe đồng thời giảm tốc với cùng một gia tốc hãm đều là a. Tính giá trị tối thiểu của a nếu biết hai xe không xảy ra va chạm. Số liệu được đo tới 3 chữ số có nghĩa.

Lời giải bài 6:

Gọi quãng đường đi được trong khi hãm phanh của hai xe lần lượt là d_1 và d_2 .

Trong quá trình hãm đến vận tốc bằng 0, tổng quãng đường đi của cả hai xe phải không vượt quá khoảng cách d. Vì vậy, chúng ta có bất đẳng thức

$$d_1 + d_2 \le d$$
.

Trong khi đó, quãng đường xe thứ nhất đã di chuyển là $d_1 = \frac{0^2 - v_1^2}{2(-a)} = \frac{v_1^2}{2a}$. Tương tự, chúng ta có quãng đường mà xe thứ hai di chuyển trong khoảng thời gian này là $d_2 = \frac{v_2^2}{2a}$. Từ đó, thay vào phương trình ở trên để được

$$\frac{v_1^2}{2a} + \frac{v_2^2}{2a} \le d \iff a \ge \frac{v_1^2 + v_2^2}{2d}.$$

Thay số trực tiếp, chúng ta có gia tốc hãm tối thiểu phải là $7.63 \times 10^3 \frac{\mathrm{km}}{\mathrm{h}^2}$

Bài 7: Để dừng xe ban đầu bạn cần một thời gian phản ứng để bắt đầu phanh, rồi xe mới đi chậm dần nhờ có một gia tốc hãm không đổi. Giả sử quãng được đi được trong hai pha này là 186 ft nếu vận tốc ban đầu là $50 \, \frac{\text{dặm}}{\text{h}}$. Còn trong một trường hợp khác, quãng được đi được trong hai pha này là 80 ft nếu vận tốc ban đầu là $30 \, \frac{\text{dặm}}{\text{h}}$. Biết thời gian phản ứng là cố định và $1 \, \text{dặm} = 5280 \, \text{ft}$, tính thời gian phản ứng và độ lớn của gia tốc hãm.

Lời giải bài 7:

Gọi thời gian phản ứng là t_p , vận tốc đầu là v_0 , gia tốc hãm là a.

Trong khoảng thời gian phản ứng, xe đi được v_0t_p . Và trong khoảng thời gian hãm, xe đi được $\frac{0^2-v_0^2}{2(-a)}=\frac{v_0^2}{2a}$. Cho nên, tổng quãng được đi được trong hai pha là

$$\Delta x = v_0 t + \frac{v_0^2}{2a} \tag{1.1}$$

Trước khi thay số, thực hiện quy đổi

$$50 \frac{\text{dặm}}{\text{h}} = 50 \frac{\text{dặm}}{\text{h}} \cdot \frac{5280 \text{ ft}}{1 \text{ dặm}} \cdot \frac{1 \text{ h}}{3600 \text{ s}} \approx 73 \frac{\text{ft}}{\text{s}},$$

tương tự, $30~\frac{\rm d \ddot{a}m}{\rm h}=44~\frac{\rm ft}{\rm s}.$ Từ đó, thay số vào phương trình 1.1 để có hệ

$$\begin{cases}
186 \text{ ft} = 73 \frac{\text{ft}}{\text{s}} \cdot t_p + \frac{\left(73 \frac{\text{ft}}{\text{s}}\right)^2}{2a} \\
80 \text{ ft} = 44 \frac{\text{ft}}{\text{s}} \cdot t_p + \frac{\left(44 \frac{\text{ft}}{\text{s}}\right)^2}{2a}
\end{cases}.$$

Giải hệ phương trình, chúng ta có thời gian phản ứng là $t_p = \boxed{0.97 \text{ s}}$ và gia tốc hãm là $a = \boxed{26 \frac{\text{ft}}{\text{s}^2}}$

Bài 8: Tại Phòng Thí nghiệm Vật lí Quốc gia ở Anh, người ta thực hiện xác định gia tốc trọng trường g theo thí nghiệm sau: Ném một quả bóng thủy tinh lên theo chiều thẳng đứng trong ống chân không và cho nó rơi xuống. Gọi ΔT_t trên hình 1.9 là thời gian khoảng giữa hai lần quả bóng đi qua một điểm thấp nào đó. ΔT_c là khoảng thời gian giữa hai lần quả bóng đi qua một điểm cao hơn và H là khoảng cách giữa hai điểm. Chứng minh rằng

$$g = \frac{8H}{\Delta T_t^2 - \Delta T_c^2}.$$

Lời giải bài 8:

Gọi vận tốc khi bóng bắt đầu bay lên từ vị trị thấp là v_0 . Sau một khoảng thời gian ΔT_t , quả bóng quay lại vị trí cũ, do vậy, chúng ta có phương trình $0 = -\frac{g\Delta T_t^2}{2} + v_0\Delta T_t$. Thực hiện biến đổi tương đương để có

Hình 1.9: Đồ thị thời gian - độ cao của quả bóng thủy tinh

$$v_0 = \frac{g\Delta T_t}{2}$$
.

Nhận thấy rằng đồ thị có tính đối xứng. Sử dụng điều đó, chúng ta tính được khoảng thời gian quả bóng lên một độ cao H là $t = \frac{\Delta T_t - \Delta T_c}{2}$. Qua đó, có được phương trình thứ hai là

$$H = -\frac{gt^2}{2} + v_0 t = -\frac{g\left(\frac{\Delta T_t - \Delta T_c}{2}\right)^2}{2} + v_0 \left(\frac{\Delta T_t - \Delta T_c}{2}\right).$$

Thế giá trị của v_0 vào phương trình và tiếp tục thực hiện biến đổi, chúng ta có:

$$\begin{split} H &= -\frac{g\left(\Delta T_t - \Delta T_c\right)^2}{8} + \frac{g\Delta T_t}{2}\left(\frac{\Delta T_t - \Delta T_c}{2}\right) \\ &= -g\left(\frac{\Delta T_t^2}{8} - \frac{\Delta T_t \Delta T_c}{4} + \frac{\Delta T_c^2}{8}\right) + g\left(\frac{\Delta T_t^2}{4} - \frac{\Delta T_t \Delta T_c}{4}\right) \\ &= g \cdot \frac{\Delta T_t^2 - \Delta T_c^2}{8} \\ \iff g &= \frac{8H}{\Delta T_t^2 - \Delta T_c^2}. \end{split}$$

Ta có điều phải chứng minh.

Bài 9: Một nghệ sĩ tung hứng các quả bóng lên theo phương thẳng đứng. Quả bóng sẽ lên cao hơn bao nhiều nếu thời gian bóng trong không khí tăng gấp n lần $(n \in \mathbb{R}^+)$?

Lời giải bài 9:

Có thời gian để quả bóng bay từ tay lên trên vị trí cao nhất bằng một nửa thời gian bóng trong không khí. Nếu thời gian bóng trong không khí tăng gấp n lần so với thời gian trong không khí gốc, thì cùng chia cho 2, chúng ta cũng sẽ có thời gian bóng bay từ tay lên trên vị trí cao nhất cũng tăng gấp n lần so với thời gian gốc để bay lên vị trí cao nhất.

Gọi t_1 là thời gian gốc để bóng bay từ tay lên vị trí cao nhất, $t_2 = nt_1$ là thời gian bay khi đã tăng n lần. Gọi h_1, h_2 lần lượt là độ cao bóng đi được tương ứng với hai khoảng thời gian t_1, t_2 . Để ý rằng khi lên vị trí cao nhất thì vận tốc bóng là 0; chúng ta có hệ phương trình

$$\begin{cases} h_1 &= \frac{gt_1^2}{2} \\ h_2 &= \frac{gt_2^2}{2} = \frac{g(nt_1)^2}{2} \end{cases} \implies h_2 = n^2 h_1.$$

Từ đó, quả bóng cao lên hơn được n^2-1 lần độ cao gốc

Hình 1.10: Hình minh họa cho bài 10

Bài 10: Như trong hình 1.10, một vật nhỏ có khối lượng m chỉ di chuyển từ gốc O trong mặt phẳng Oxy được cung cấp một vận tốc ban đầu $\overrightarrow{v_1}$ trong vùng không gian có gió thổi với vận tốc $\overrightarrow{u} = -u\overrightarrow{e_x}$.

Tài liệu tham khảo

[1] Agarwal, R.P., Perera, K., Pinelas, S. (2011). *History of Complex Numbers*. In: An Introduction to Complex Analysis. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-0195-7_50