СТАТИСТИЧКИ СОФТВЕР 2, ДОМАЋИ ЗАДАТАК, мај 2017.

1. Из густине дате изразом

$$f(x) \propto \exp(-x^2/2)\{\sin(6x)^2 + 3\cos(x)^2 + \sin(4x)^2 + 1\}$$

могу бити генерисани случајни бројеви коришћењем $Acceptance\ Rejection\$ метода. (\propto значи да је густина пропорционална изразу са десне стране, нормализујућа константа није позната)

- а) Нацртати график функције f и показати да се стандардна нормална густина $g(x) = \exp(-x^2/2)/\sqrt{2\pi}$ може користити као помоћна густина у том алгоритму. Наћи оптималну константу M коришћењем функције optimize.
- б) Генерисати 2500 случајних бројева из расподеле f користећи Acceptance Rejection метод.
- в) На основу процента прихваћених, од укупног броја свих генерисаних из густине g, оценити нормализујућу константу за густину f. Упоредити хистограм генерисаних случаних бројева из f са графиком нормализоване густине f.
- 2. За дату густину расподеле обележја $f(x;\theta)$ и априорну густину расподеле параметра $\pi(\theta)$ за реализовани узорак $\mathbf{X}=(x_1,...,x_n)$ апостериорна густина је

$$\pi(\theta; \mathbf{X}) \propto \pi(\theta) \prod_{i=1}^{n} f(x_i; \theta)$$

где је $L(\theta, \mathbf{X}) = \prod_{i=1}^n f(x_i; \theta)$ функција веродостојности.

- а) Ако желимо да симулирамо Acceptance Rejection методом из густине $\pi(\theta; \mathbf{x})$, са помоћном густином $\pi(\theta)$, која је оптимална вредност за M?
- б) За оцењивање параметра θ код нормалне расподеле $\mathcal{N}(\theta,1)$ предлаже се Кошијева априорна расподела, без додатих параметара. Апостериорна густина тада је облика

$$\pi(\theta; \mathbf{X}) \propto \frac{1}{1+\theta^2} \prod_{i=1}^n \exp\left(-(x_i - \theta)^2/2\right)$$

За $\theta_0 = 10$, n = 10, $Acceptance\ Rejection\ методом\ генерисати 100\ случајних бројева из <math>\pi(\theta; \mathbf{x})$ расподеле. Наћи Бајесову оцену за θ и 95%-ни емпиријски интервал прекривања за θ .

Напомена1: За налажење максимума користити функцију optimize.

Напомена2: 95%- ни емпиријски интервал прекривања наћи одбацивањем најмањих и највећих 2.5% елемената у низу добијених тачака из апотериорне расподеле. Користити функцију quantile.

- 3. Апроксимирати вредност $\ln 2$ методом Монте Карло користећи чињеницу да је $\ln 2 = \int_0^1 \frac{1}{x+1} \, dx$. За велики број елемената у узорку наћи 95%- ни интервал поверења. Упоредити добијене вредности са стварномвредношћу $\ln 2$.
- 4. Нека је дат узорак обима n из нормалне $\mathcal{N}(m,\sigma^2)$ расподеле, где је m познато, а априорна расподела за σ^2 је инверзна гама расподела са параметрима (a,b) и густином $(\sigma^2)^{-a-1} \exp{(-b/\sigma^2)}b^a/\Gamma(a)$. Наћи апостериорну расподелу за σ^2 . Направити функцију која за дате вредности a,b,m и узорак обима 1, црта графике априорне, апостериорне и функције веродостојности. Тестирати ту функцију.

Напомена: Ако X има инверзну гама расподелу са параметрима α, β онда 1/X има $\gamma(\alpha, 1/\beta)$ расподелу. Инверзна гама расподела има коначно очекивање и дисперзију за $\alpha > 2$.