Lecture 4

Statistical background review (III)

MCB 416A/516A Statistical Bioinformatics and Genomic Analysis

Prof. Lingling An Univ of Arizona

- Last time we reviewed:
 - Hypothesis testing
 - One- two- sided tests
 - One- two- sample test
 - Pvalue and interpretation
 - Relationship between hypothesis test and confidence interval
 - Type I and II errors

Summary of hypothesis tests

	Hypothesis	Test Statistic	Fixed Significance Level Criteria for Rejection	P-Value
One	$H_0 \colon \mu = \mu_0 \ H_1 \colon \mu eq \mu_0 \ H_0 \colon \mu = \mu_0 \ H_1 \colon \mu < \mu_0 \ H_1 \colon \mu < \mu_0 \ H_1 \colon \mu > \mu_0$		$ Z_0 > Z_{lpha/2}$	$P=2[1-\Phi(Z_0)]$
sample —	$H_0 \colon \mu = \mu_0 \ H_1 \colon \mu < \mu_0 \ H_0 \colon \mu = \mu_0$	$Z_0 = \frac{\overline{y} - \mu_0}{\sigma / \sqrt{n}}$	$Z_0 < -Z_{\alpha}$	$P=\Phi(Z_0)$
			$Z_0 > Z_{\alpha}$	$P=1-\Phi(Z_0)$
two	$H_0: \mu_1 = \mu_2$ $H_1: \mu_1 \neq \mu_2$ $H_0: \mu_1 = \mu_2$		$ Z_0 > Z_{lpha/2}$	$P=2[1-\Phi(Z_0)]$
	$H_1: \mu_1 < \mu_2$	$Z_0 = rac{\overline{y}_1 - \overline{y}_2}{\sqrt{rac{\sigma_1^2}{n_1} + rac{\sigma_2^2}{n_2}}}$	$Z_0 < -Z_{\alpha}$	$P=\Phi(Z_0)$
	$H_0 \colon \mu_1 = \mu_2 \ H_1 \colon \mu_1 > \mu_2$		$Z_0 > Z_{\alpha}$	$P=1-\Phi(Z_0)$

Tests on Means	of Normal Distributions	Variance Unknown
----------------	-------------------------	------------------

	Hypothesis	Test Statistic	Fixed Significance Level Criteria for Rejection	P-Value
One	Hypothesis $H_0: \mu = \mu_0$ $H_1: \mu \neq \mu_0$ $H_0: \mu = \mu_0$ $H_1: \mu < \mu_0$ $H_0: \mu = \mu_0$ $H_0: \mu = \mu_0$	<i>u</i>	$ t_0 > t_{\alpha/2, n-1}$	sum of the probability above t_0 and below $-t_0$
sample	$H_0: \mu = \mu_0$ $H_1: \mu < \mu_0$ $H_0: \mu = \mu_0$	$t_0 = \frac{\overline{y} - \mu_0}{S/\sqrt{n}}$	$t_0 < -t_{\alpha,n-1}$	probability below t_0
	H_1 : $\mu > \mu_0$	h <u>r </u>	$t_0 > t_{\alpha,n-1}$	probability above t_0
	$H_0\colon \mu_1=\mu_2$ $H_1\colon \mu_1 eq \mu_2$	$if \sigma_1^2 = \sigma_2^2$ $t_0 = \frac{\overline{y}_1 - \overline{y}_2}{S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$ $v = n_1 + n_2 - 2$	$ t_0 > t_{\alpha/2,\nu}$	sum of the probability above t_0 and below $-t_0$
two samples	$H_0: \mu_1 = \mu_2$ $H_1: \mu_1 < \mu_2$	$if \ \sigma_1^2 \neq \sigma_2^2$ $t_0 = \frac{\bar{y}_1 - \bar{y}_2}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}}$	$t_0 < -t_{\alpha,\nu}$	probability below t_0
	$H_0\colon \mu_1=\mu_2 \ H_1\colon \mu_1>\mu_2$	$v = \frac{\left(\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}\right)^2}{\frac{(S_1^2/n_1)^2}{n_1 - 1} + \frac{(S_2^2/n_2)^2}{n_2 - 1}}$	$t_0 > t_{\alpha,\nu}$	probability above t_0

or min (n_1, n_2)

- We discussed method for comparing two conditions or treatments.
- But how about compare more than two conditions or levels of a factor?
- The t-test does not directly apply
 - Pairwise comparisons will inflate type I error

Why pairwise comparisons inflates type I error?

- Each time a hypothesis test is performed at significance level α, there is probability α of rejecting in error.
- Performing multiple tests increases the chances of rejecting in error at least once.
- For example:
 - if you did 3 independent hypothesis tests at the α = 0.05
 - If, in truth, H₀ were true for all three.
 - The probability that at least one test rejects H₀ is 14.3%
 - ightharpoonup P(at least one rejection) = 1-P(no rejections) = 1-.95³ = 0.143

ANOVA - Analysis of Variance

- Extends independent-samples t test
- Compares the means of groups of independent observations.
 - Don't be fooled by the name.
 - ANOVA does not compare variances.
 - The name "analysis of variance" stems from a partitioning of the total variability in the response variable into components
 - Can compare more than two groups
- The ANOVA was developed by Fisher in the early 1920s, and initially applied to agricultural experiments.

ANOVA - Null and Alternative Hypotheses

Say the sample contains *K* independent groups

ANOVA tests the null hypothesis

$$H_0$$
: $\mu_1 = \mu_2 = ... = \mu_K$

- That is, "the group means are all equal"
- The alternative hypothesis is

$$H_1$$
: $\mu_i \neq \mu_j$ for some i, j

— or, "the group means are not all equal"

Example: Accuracy of Implant Placement

Implants were placed in a manikin using placement guides of various widths.

15 implants were placed using each guide.

Error (discrepancies with a reference implant) was measured for each implant.

Example: Accuracy of Implant Placement -2

The overall mean of the entire sample was 0.248 mm.

This is called the "grand" mean, and is often denoted by \overline{X} or $\overline{\overline{X}}$

If H₀ were true then we'd expect the group means to be close to the grand mean.

Example: Accuracy of Implant Placement -3

The ANOVA test is based on the combined distances from $\frac{1}{X}$.

If the combined distances are large, that indicates we should reject H_0 .

The Anova Statistic

To combine the differences from the grand mean we

- Square the differences
- Multiply by the numbers of observations in the groups
- Sum over the groups

$$SSB = 15\left(\overline{X}_{4mm} - \overline{\overline{X}}\right)^2 + 15\left(\overline{X}_{6mm} - \overline{\overline{X}}\right)^2 + 15\left(\overline{X}_{8mm} - \overline{\overline{X}}\right)^2$$

where the \overline{X}_* are the group means.

"SSB" = Sum of Squares Between groups

Note: This looks a bit like a variance.

How big is big?

- For the Implant Accuracy Data, SSB = 0.0047
- Is that big enough to reject H₀?
- As with the t test, we compare the statistic to the variability of the individual observations.
- In ANOVA the variability is estimated by the Mean Square Error, or MSE

MSE: Mean Square Error

The Mean Square Error is a measure of the variability after the group effects have been taken into account.

$$MSE = \frac{1}{N - K} \sum_{i} \sum_{i} \left(x_{ij} - \overline{X}_{j} \right)^{2}$$

where x_{ij} is the i^{th} observation in the j^{th} group.

K = number of groups N = total number of obs

Implant Height Error by Guide Width

MSE: Mean Square Error -2

The Mean Square Error is a measure of the variability after the group effects have been taken into account.

$$MSE = \frac{1}{N - K} \sum_{i} \sum_{i} (x_{ij} - \overline{X}_{j})^{2}$$

where x_{ij} is the i^{th} observation in the j^{th} group.

Implant Height Error by Guide Width

MSE: Mean Square Error -3

The Mean Square Error is a measure of the variability after the group effects have been taken into account.

$$MSE = \frac{1}{N - K} \sum_{i} \sum_{i} (x_{ij} - \overline{X}_{j})^{2}$$

Note that the variation of the means seems quite small compared to the variance of observations within groups

Implant Height Error by Guide Width

Notes on MSE

- If there are only two groups, the MSE is equal to the pooled estimate of variance used in the equal-variance t test.
- ANOVA assumes that all the group variances are equal.
- Other options should be considered if group variances differ by a factor of 2 or more.

ANOVA F Test

The ANOVA F test is based on the F statistic

$$F = \frac{SSB/(K-1)}{MSE}$$

where *K* is the number of groups.

- Under H₀ the F statistic has an "F" distribution, with K-1 and N-K degrees of freedom (N is the total number of observations)
 - In this case N=45

Implant Data: F test p-value

To get a p-value we compare our *F* statistic to an F(2, 42) distribution.

Implant Data: F test p-value -2

To get a p-value we compare our *F* statistic to an F(2, 42) distribution.

In our example

$$F = \frac{.0047/2}{.0467/42} = .211$$

F(2,42) distribution

Implant Data: F test p-value -3

To get a p-value we compare our *F* statistic to an F(2, 42) distribution.

In our example

$$F = \frac{.0047/2}{.0467/42} = .211$$

The p-value is

$$P(F(2,42) > .211) = 0.81$$

ANOVA Table

Results are often displayed using an ANOVA Table

Source of Variation	Sum of Squares	df	Mean Square	F	P-value
Between Groups	.005	2	.002	.211	.811
Within Groups	.466	42	.011		
Total	.470	44			

Pop Quiz!: Where are the following quantities presented in this table?

Sum of Squares Mean Square F Statistic p value Between (SSB) Error (MSE)

ANOVA Table -2

Results are often displayed using an ANOVA Table

Source of Variation	Sum of Squares	df	Mean Square	F	P-value
Between Groups	.005	2	.002	.211	.811
Within Groups	.466	42	.011		
Total	.470	44	1		
Sum of S Between	•	Mean Sq Error (<i>MS</i>	1 \	Statistic	p value
				fail to rei	iect at .811

fail to reject at .811

Post Hoc Tests

Women between 40 and 60 years of age

Source of Variation		df	Mean Square	F	P-value
Between Groups	33383	3	11128	5.1	.002
Within Groups	4417119	2007	2201		
Total	4450502	2010			

Compare cholesterol between periodontal groups. 40-60 yrs old women.

The ANOVA shows good evidence (p = 0.002) that the means are not all the same.

Which means are different?

Can directly compare the subgroups using "post hoc" tests.

Least Significant Difference test

	N	Mean	Std. Deviation
Healthy	802	221.5	46. 2
Gingivitis	490	223.5	45.3
Periodontitis	347	227.3	48.9
Edentulous	372	232.4	48. 8

The most simple post hoc test is called the *Least*Significant Difference Test.

The computation is very similar to the equal-variance *t* test.

	Sum of Squares	df	Mean Square	F	pvalue
Between Groups	33383	3	11128	5.1	.002
Within Groups	4417119	2007	2201		
Total	4450502	2010			

Compute an equal-variance *t* test, but replace the pooled variance (*s*²) with the *MSE*.

Least Significant Difference Test: Examples

	N	Mean	Std. Deviation
Healthy	802	221.5	46. 2
Gingivitis	490	223.5	45.3
Periodontitis	347	227.3	48.9
Edentulous	372	232.4	48. 8

Compare Healthy group to Periodontitis group:

$$T = \frac{221.5 - 227.3}{\sqrt{2201(1/802 + 1/347)}} = -1.92$$

$$p = 2 \cdot P(t_{1147} > 1.92) = 0.055$$

	Sum of Squares	df	Mean Square	F	pvalue
Between Groups	33383	3	11128	5.1	.002
Within Groups	4417119	2007	2201		
Total	4450502	2010			

Compare Gingivitis group to Periodontitis group:

$$T = \frac{223.5 - 227.3}{\sqrt{2201(1/490 + 1/347)}} = -1.15$$

$$p = 2 \cdot P(t_{835} > 1.15) = 0.25$$

Post Hoc Tests: Multiple Comparisons

- Post-hoc testing usually involves multiple comparisons.
- For example, if the data contain 4 groups, then 6 different pairwise comparisons can be made

Post Hoc Tests: Multiple Comparisons -2

- Each time a hypothesis test is performed at significance level α , there is probability α of rejecting in error.
- Performing multiple tests increases the chances of rejecting in error at least once.
- For example:
 - if you did 6 independent hypothesis tests at the $\alpha = 0.05$
 - If, in truth, H_0 were true for all six.
 - The probability that at least one test rejects H₀ is 26%
 - ightharpoonup P(at least one rejection) = 1-P(no rejections) = 1-.95⁶ = .26

Bonferroni Correction for Multiple Comparisons

The Bonferroni correction is a simple way to adjust for the multiple comparisons.

very conservative only good for small numbers

Bonferroni Correction

- •Perform each test at significance level α .
- •Multiply each p-value by the number of tests performed.
- •The overall significance level (chance of any of the tests rejecting in error) will be less than α .

Example: Cholesterol Data post-hoc comparisons

Group 1	Group 2	Mean Difference (Group 1 - Group 2)	Least Significant Difference p-value	Bonferroni p-value	
Healthy	Gingivitis	-2.0	.46	1.0	max = 1
Healthy	Periodontitis	-5.8	.055	.330	
Healthy	Edentulous	-10.9	.00021	.00126	
Gingivitis	Periodontitis	-3.9	.25	1.0	
Gingivitis	Edentulous	-8.9	.0056	.0336	
Periodontitis	Edentulous	-5.1	.147	.88	

Conclusion: The Edentulous group is significantly different than the Healthy group and the Gingivitis group (p < 0.05), after adjustment for multiple comparisons