ISEE IGEP MODULE

ISEE IGEP MODULE Hardware Reference Manual

(Revision 03 - 10-Sep-2010)

ISEE (Integration Software & Electronics Engineering Crta. De Martorell 95, Local 7 – Terrassa

+34.93.789.12.71

general@iseebcn.com

www.iseebcn.com

CONTENTS

1	COP	YRIGHT NOTICE	4
2	WAR	RRANTY	4
3	ISEE	GEP LINKS	5
4	ISEE	IGEP MODULE FEATURES	6
	4.1	INTRODUCTION	6
	4.2	AVAILABLE MODELS	8
	4.3	GENERAL SPECIFICATIONS	9
	4.4	BLOCK DIAGRAM	12
	4.5	ELECTRICAL SPECIFICATIONS	12
	4.6	HOW TO POWER IGEP MODULE	14
5	CON	NECTORS DESCRIPTION	15
	5.1	J6 - micro-SD	15
	5.2	J200 – USB miniAB SOCKET	15
	5.3	J2 – WIFI and BT EXTERNAL ANTENNA	16
	5.4	J1 - LCD, PWM AND ANALOG SIGNALS	16
	5.5	J4 - Extended Memory Bus and MMC signals	19
	5.6	J5 - CAMERA	22
	5.7	J7 - VIDEO COMPOSITE, USBOTG, KEYBOARD AND OTHERS	24
6	MEC	HANICAL SPECIFICATION	26
7	BOA	RD REFERENCE	27
8	LIST	OF FIGURES	28
a	СНА	NGELOG	20

VERSION CONTROL

REVISION	DATE	ORIGIN	DESCRIPTION
00	12/03/2010	PR	Initial version
01	01/06/2010	PR	Preliminary version
02	02/06/2010	PR	Release revision
03	10/09/2010	PR	Document revision

1 COPYRIGHT NOTICE

This document is copyrighted, 2009, by ISEE 2007 SL. All rights are reserved. ISEE reserves the right to make improvements to the products described in this manual at any time without notice. No part of this manual may be reproduced, copied, translated or transmitted in any form or by any means without the prior written permission of the original manufacturer. Information provided in this manual is intended to be accurate and reliable. However, the original manufacturer assumes no responsibility for its use, nor for any infringements upon the rights of third parties which may result from its use.

2 WARRANTY

Should this board not meet the specifications indicated in the User's Guide, the board may be returned within 30 days from the date of delivery for a full refund.

THE FOREGOING WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE.

The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user indemnifies ISEE 2007 SL from all claims arising from the handling or use of the goods. Due to the open construction of the product, it is the user's responsibility to take any and all appropriate precautions with regard to electrostatic discharge.

EXCEPT TO THE EXTENT OF THE INDEMNITY SET FORTH ABOVE, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.

ISEE 2007 SL currently deals with a variety of customers for products, and therefore our arrangement with the user is not exclusive. ISEE assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein.

Please read specifically, the Warnings and Restrictions notice in this manual prior to handling the product. This notice contains important safety information about temperatures and voltages. For additional information on IGEP environmental and/or safety programs, please contact with ISEE (support@iseebcn.com).

IGEP MODULE HARDWARE USER MANUAL

No license is granted under any patent right or other intellectual property right of ISEE covering or relating to any machine, process, or combination in which such ISEE products or services might be or are used.

3 ISEE IGEP LINKS

IGEP platform web site: http://www.igep.es

ISEE IGEP wiki: http://labs.igep.es

ISEE shop: http://shop.igep.es

ISEE Software Repositories: http://git.igep.es

ISEE 2007 SL. All rights reserved, IGEP \circledR is a registered trademark from ISEE 2007 SL. The following is provided for informational purposes only.

5

4 ISEE IGEP MODULE FEATURES

4.1 INTRODUCTION

Figure 1 ISEE IGEP MODULE

	Description							
CPU	OMAP35xx (OMAP3503 / OMAP3530)							
	ARM Cortex-A8 up to 720Mhz (1440 DMIPS)							
	TMS32064x+ Fixed point DSP up to 520 Mhz (4130 MMAC)							
	POWERVR SGX [™] Graphics Accelerator							
	From 1GB up to 4GB RAM (POP)							
	From 2 GB up to 4GB OneNand Flash (POP)							
Interfaces	1 x USB OTG (LS/FS/HS Device or Host)							
	1 x USB Host (HS, UPLI Interface)							
	1 x Audio stereo Out							
	1 x Aux stereo Input							
	Slot for uSD card							
	WiFi (802.11 b/g) and Bluetooth (2.0) with common external antenna connector (Hirose connector U.FL-R.SMT-1)							
	Expansion connectors with (UART, McSPI, McBSP, I2C. For more information see Connectors chapter)							
	1 x KEYBOARD (3x3) – Optional. For more information refer to Chapter 5.7							
Electrical	Supply Voltage from 3V5 to 4V2 VDC +-10% or 5VDC through USB-OTG							
	Power consumption: 80 to 450 mA							
Connectors	2 x 70 pin AVX 5602 on bottom							

	2 x 27 pin HIROSE FH26 on top
	1 x miniAB USB socket
	1 x hirose UL connector for wifi and Bluetooth external antenna
Environmental	-40+85 C temperature range / -25 80°C / 070°C
Indicators	2 x bicolor SMD led (green/red)

NOTE: IGEP MODULE CAN BE POWERED THROUGH J1 and J4 CONNECTORS (3V5-4V2) or THROUGH miniAB USB socket CONNECTOR.

WARNING: DO NOT CONNECT BOTH POWER SUPPLIES AT THE SAME TIME OR THE BOARD WILL BE DAMAGED!
ONLY USE USB POWER or J1-J4 POWER, BUT NEVER AT THE SAME TIME.

WARNING: IGEP MODULE CAN ONLY BE POWERED WITH 3V5-4V2 THROUGH J1 and J4 CONNECTORS OR THE BOARD WILL BE DAMAGED!

Figure 2 IGEP MODULE Top view

Figure 3 IGEP MODULE Bottom view

Figure 4 ISEE IGEP MODULE Top view

The following sections provide more detail on each feature and components on the ISEE IGEP MODULE.

4.2 AVAILABLE MODELS

Four ISEE IGEP MODULE versions are available:

Product Name	RAM	FLASH				Product Highlights
IGEP_MODULE- RA-3530-WIFI	4Gbit RAM	4Gbit OneNand Flash	OpenGL.	DSP TEXAS INSTRUMENTS	Wi Fi	OMAP3530-based IGEP computer-on- module (includes OpenGL and DSP) with Bluetooth and 802.11b/g wireless communications
IGEP_MODULE- RA-3503-WIFI	1Gbit RAM	2Gbit OneNand Flash			Wi Fi [™]	OMAP3503-based IGEP computer-on- module with Bluetooth and 802.11b/g wireless communications
IGEP_MODULE- RA-3530	4Gbit RAM	4Gbit OneNand Flash	OpenGL.	TIThad Porty Molecute Accepts TEMAS INSTRUMENTS		OMAP3530-based IGEP computer-on- module (includes OpenGL and DSP)
IGEP_MODULE- RA-3503	1Gbit RAM	2Gbit OneNand Flash				OMAP3503-based IGEP computer-on- module

4.3 GENERAL SPECIFICATIONS

OMAP Processor

The IGEP BOARD uses the OMAP3530 version ES3.1 and comes in a 0.4mm pitch memory POP package on it.

POP (Package on Package) is a technique where the memory, NAND and SDRAM, are mounted on top of the OMAP3530. For this reason, when looking at the IGEP BOARD, you will not find an actual part labeled OMAP3530.

Figure 5 POP Package

Memory

The memory is mounted on top of the processor as mentioned. The key function of the POP memory is to provide:

- 4Gb NAND x 16 (512MB)
- 4Gb LP-DDR SDRAM x32 (512MB @ 200MHz)

Power Management

The TPS65950 is used on the board to provide power to the IGEP Board with the exception of the 3.3V regulator which is used to provide power to the DVI-D encoder and RS232 driver. In addition to the power it also provides:

- Stereo Audio Out
- · Stereo Audio in
- Power on reset
- USB OTG PHY
- Status LED

USB 2.0 LS/FS/HS OTG

On the board a single USB 2.0 OTG Port is provided.

Figure 6 USB OTG connector

It is possible to power the board with the USB OTG connector.

USB 2.0 HS HOST

On the board there is a single USB 2.0 HS HOST. Only one port is provided.

USB HOST Port supports only high speed devices (USB 2.0 HS devices). In order to support low speed devices (USB 1.0 LS devices) or full speed devices (USB 1.1 FS devices), external USB 2.0 HUB must be used.

WIFI

IEEE802.11b/g compliant.

Chipset based on Marvell 88W8686. The 88W8686 integrates a RF transceiver operating at 2.4 GHz, a physical layer, a media access controller, and an ARM processor into a single die.

Figure 7 WIFI/BT Combo module

BLUETOOTH

Bluetooth 2.0 compliant.

Chipset based on CSR BC4ROM/21e.

Class 2, 2.5 mW (4 dBm) ~10 meters

Version 2.0 + EDR 3 Mbit/s

MicroSD Connector

A microSD connector is provided for microSD cards form factor.

The microSD memory card is the smallest memory card available commercially, with the lowest price per capacity and the highest capacity. At 15 mm \times 11 mm \times 1 mm

Kindston Vales o Vales

(about the size of a fingernail), it is about a quarter the size of an SD card.

The microSD connector supports SD and SDHC cards. SDHC (Secure Digital High Capacity, SD 2.0) is an extension of the SD standard which increases card's storage capacity up to 32GB. SDHC cards shares the same physical and electrical form factor as older (SD 1.x) cards, allowing SDHC-devices to support both newer SDHC cards and older SD-cards.

Indicators

There are two bicolor LEDs on the Board that can be controlled by the user. In total 4 individual led and 16 color schemes.

- Three led are controlled via GPIO pins on the OMAP3530 Processor
- One is programmed via the I2C interface on the TPS65950

Figure 8 Leds Detail

4.4 BLOCK DIAGRAM

4.5 ELECTRICAL SPECIFICATIONS

Specification	Min	Тур	Max	Unit
Powe	er			
Input Voltage DC	3.5	3.8	4.2	V
Current DC	80	350	450	mA
USB 2.0	OTG			
High Speed Mode (HS)			480	Mb/s
Full Speed Mode (FS)			12.5	Mb/s
Low Speed Mode (LS)			1.5	Mb/s
USB 2.0	Host			
High Speed Mode (HS)			480	Mb/s
micros	SD			
Voltage Mode 1.8V	1.71	1.8	1.89	
Voltage Mode 3.3V	3.2	3.3		
Current			220	mA
Clock			48	MHz
Audio-	·In			
Peak-to-peak single-ended input voltage (0			1.5	Vpp
dBFs)				
Total harmonic distortion (sine wave @ 1.02		-80	-75	dB
kHz @ -1 dBFs)				
Total harmonic distortion (sine wave @ 1.02		-85	-78	dB

kHz) 20 Hz to 20 kHz, A-weighted audio, Gain				
= 0 dB				
Audio-		1.0	I	Olemen
Load Impedance @100 pF Maximum Output Power (At 0.53 Vrms	14	16 17.56		Ohms mW
differential output voltage and load impedance		17.50		11100
= 16 Ohms)				
Peak-to-Peak output voltage			1.5	Vpp
Total Harmonic Distortion @ 0 dBFs		-80	-75	dB
Idle channel noise (20Hz to 20KHz)	00.441	-90	-85	dB
Specification Wifi IEEE8	U2.11b	IEEE802.11b		
Frequency 2400 - 2500MHz	2400	ILLLOUZ.IIU	2500	MHz
Data rate	2.00	1, 2, 5.5, 11	2300	Mbps
Power Levels	15.5	17.5	19.5	dBm
Minimum Input Level Sensitivity 11Mbps (FER < 8%)	-	-87	-81	dBm
Maximum Input Level	-10	-5	-	dBm
Wifi IEEE8	02.11g			ı
Specification	2400	IEEE802.11g	2402.5	NALL-
Frequency 2400 - 2500MHz	2400		2483.5	MHz
Data rate		6, 9, 12, 18, 24, 36, 48, 54		Mbps
Power Levels	13	14.8	17.0	dBm
Minimum Input Level Sensitivity 11Mbps (FER < 8%)	-	-71	-65	dBm
Maximum Input Level	-20	-15	-	dBm
Bluetoot	h 2.0		T	I
Bluetooth specification		2.0		NALI-
Channel spacing Output Power	-4	1 0	+4	MHz dBm
Frequency range (Rx/Tx)	2400	-	2483.5	MHz
Sensitivity (BER≦0.1%)				
1) 2402MHz81 -73 dBm	-	-81	-73	dBm
2) 2441MHz	-	-81	-73	dBm
3) 2480MHz	-	-79.5	-73	dBm
C/I Performance (BER≦0.1%)				
1) co-channel ratio (-60dBm input)	-	7.6	11	dBm
2) 1MHz ratio (-60dBm input)	-	-2.5	0	dBm
3) 2MHz ratio (-60dBm input)	-	-42.6	-30	dBm

4.6 HOW TO POWER ISEE IGEP MODULE

IGEP MODULE can be used as a stand alone computer on module, so, you don't need any baseboard to start working with it. This makes IGEP MODULE an ideal solution for quick technology evaluation.

Just power IGEP MODULE by using a USB-A to miniAB socket cable and start working with it. For more information refer to IGEP MODULE SDK software Manual.

Figure 9 - miniAB USb socket Detail

IGEP MODULE can also be powered by using J1 and J4 connectors located at BOTTOM side. This will be the way you normally will power the board in your product.

Figure 10 - J1 and J4 Connector Detail

NEVER POWER your IGEP MODULE by using J1-J4 connectors and USB-OTG at the same time.

NOTE: IGEP MODULE CAN BE POWERED THROUGH J1 and J4 CONNECTORS (3V5-4V2) or THROUGH miniAB USB socket CONNECTOR.

WARNING: DO NOT CONNECT BOTH POWER SUPPLIES AT THE SAME TIME OR THE BOARD WILL BE DAMAGED!
ONLY USE USB POWER or J1-J4 POWER, BUT NEVER AT THE SAME TIME.

5 CONNECTORS DESCRIPTION

This section will guide you through the IGEP MODULE connectors:

- J6- MICRO-SD
- J200 USB MINIAB SOCKET
- J2 WIFI AND BT EXTERNAL ANTENNA CONNECTOR
- J1 LCD, PWM AND ANALOG SIGNALS
- J4 EXTENDED MEMORY BUS AND MMC SIGNALS
- J5 CAMERA
- J7 VIDEO COMP, KEYBOARD, USB-OTG

5.1 J6 - MICRO-SD

Micro SD on board connector.

Figure 11 MicroSD detail

5.2 J200 - USB MINIAB SOCKET

MiniAB USB socket for USBOTG interface on board.

Figure 12 MiniAB USB Socket Detail

ISEE 2007 SL. All rights reserved, IGEP \circledR is a registered trademark from ISEE 2007 SL. The following is provided for informational purposes only.

DOCUMENT FROM ISEE 2007 S.L.

5.3 J2 - WIFI AND BT EXTERNAL ANTENNA

HIROSE U-FL-R-SMT-1 connector for external wifi/BT antenna.

Figure 13 - J2 Connector Detail

5.4 J1 - LCD, PWM AND ANALOG SIGNALS

Connector: 70 pin Serie AVX 5602

Figure 14 - J1 Connector Detail

All logic is at 1.8V.

WARNING: Most of the signals come directly from/to OMAP processor.

Improperly use of this connector could result in damage of the processor.

The input range of the supply voltage is approximately 3V5 – 4.2V.

The signals of connectors J1 are connected directly to the processor.

USB 2.0 OTG interface supports high speed USB (480MBs).

ISEE 2007 SL. All rights reserved, IGEP \circledR is a registered trademark from ISEE 2007 SL. The following is provided for informational purposes only.

DOCUMENT FROM ISEE 2007 S.L.

Comments	Signal	IC	Pin	Pin	IC	Signal	Comments
	N_MANUAL_RESE T		1	70	POWER	GND	
LCD INTERFACE DSS	GPIO71_L_DD01	OMAP	2	69	TPS65950	HSORF	Differential single ended headset right output
LCD INTERFACE DSS	GPIO70_L_DD00	OMAP	3	68	TPS65950	HSOLF	Differential single ended headset left output
LCD INTERFACE DSS	GPIO73_L_DD03	OMAP	4	67	POWER	VSYSTEM	Board supply: 3.5V -4.2V
LCD INTERFACE DSS	GPIO75_L_DD05	OMAP	5	66	POWER	VSYSTEM	Board supply: 3.5V -4.2V
LCD INTERFACE DSS	GPIO72_L_DD02	OMAP	6	65	TPS65950	POWERON	Connected to PWRON on PMIC
LCD INTERFACE DSS	GPIO74_L_DD04	OMAP	7	64	TPS65950	ADCIN7	Analog Input
(*)	GPIO10_SYSCLK	OMAP	8	63	OMAP	GPIO164_RTS3	Optional (see schematic below)
	GPIO0_WAKEUP	OMAP	9	62	OMAP	GPIO15_MCSPI3_SOMI	Optional (see schematic below)
	GPIO185_I2C3_SD A	OMAP	10	61	OMAP	GPIO93_L_DD23	LCD INTERFACE DSS
LCD INTERFACE DSS	GPIO80_L_DD10	OMAP	11	60	OMAP	GPIO82_L_DD12	LCD INTERFACE DSS
LCD INTERFACE DSS	GPIO81_L_DD11	OMAP	12	59	TPS65950 Or TPS65950	PMIC_SYSEN Or PMIC_REGEN (default)	Connected to SYSEN on PMIC Or Connected to REGEN on PMIC
	GPIO184_L_I2C3_ SCL	OMAP	13	58	TPS65950	ADCIN2	Analog Input
(*)	GPIO186_SYSCLK	OMAP	14	57	TPS65950	MIC_MAIN_MF	Main microphone left input
LCD INTERFACE DSS	GPIO92_L_DD22	OMAP	15	56	POWER	GND	
MCBSP3_FSX	GPIO147_GPT8_ PWM	OMAP	16	55	OMAP	GPIO145_GPT10_PWM	MCBSP3_DR
LCD INTERFACE DSS	GPIO83_L_DD13	OMAP	17	54	TPS65950	USBOTG_VBUS	Power out from the PMIC
MCBSP3_DX	GPIO144_GPT9_P WM	OMAP	18	53	TPS65950	ADCIN6	Analog Input
LCD INTERFACE DSS	GPIO84_L_DD14	OMAP	19	52	TPS65950	VBACKUP	Backup battery input to PMIC
LCD INTERFACE DSS	GPIO85_L_DD15	OMAP	20	51	TPS65950	ADCIN5	Analog Input
MCBSP3_CLK	GPIO146_GPT11_ PWM	OMAP	21	50	TPS65950	AGND	Analog Ground
UART3_CTS	GPIO163_IR_CTS3	OMAP	22	49	TPS65950	PWM1	
LCD INTERFACE DSS	GPIO91_L_DD21	OMAP	23	48	TPS65950	ADCIN3	Analog Input
LCD INTERFACE DSS	GPIO87_L_DD17	OMAP	24	47	OMAP	GPIO170_HDQ_1WIRE	
LCD INTERFACE DSS	GPIO88_L_DD18	OMAP	25	46	TPS65950	USBOTG_ID	
UART3_TXD	GPIO166_IR_TXD3	OMAP	26	45	OMAP	GPIO90_L_DD20	LCD INTERFACE DSS
LCD INTERFACE DSS	GPIO89_L_DD19	OMAP	27	44	OMAP	GPIO86_L_DD16	LCD INTERFACE DSS
LCD INTERFACE DSS	GPIO79_L_DD09	OMAP	28	43	OMAP	GPIO69_L_BIAS	LCD INTERFACE DSS

LCD INTERFACE DSS	GPIO77_L_DD07	OMAP	29	42	TPS65950	PWM0	
LCD INTERFACE DSS	GPIO78_L_DD08	OMAP	30	41	TPS65950	AUXRF	Auxiliary audio input right
UART3_RXD	GPIO165_IR_RXD3	OMAP	31	40	TPS65950	ADCIN4	Analog Input
LCD INTERFACE DSS	GPIO66_L_PCLK	OMAP	32	39	TPS65950	MIC_SUB_MF	Main microphone right input
LCD INTERFACE DSS	GPIO76_L_DD06	OMAP	33	38	TPS65950	AUXLF	Auxiliary audio input left
LCD INTERFACE DSS	GPIO68_L_FCLK	OMAP	34	37	TPS65950	USBOTG_DM	
LCD INTERFACE DSS	GPIO67_L_LCLK	OMAP	35	36	TPS65950	USBOTG_DP	

Figure 15 - J1 Connector schematic

5.5 J4 - EXTENDED MEMORY BUS AND MMC SIGNALS

Connector: 70 pin Serie AVX 5602 (Part Number: 70 Kyocera 14-5602-070-001-829+)

Figure 16 - J4 Connector detail

This connector match with 70 pin Serie AVX 5602 Receptacle, part number: 24-5602-070-001-829+.

All logic is at 1.8V.

WARNING: Most of the signals come directly from/to OMAP processor.

Improperly use of this connector could result in damage of the processor.

The input range of the supply voltage is approximately 3V5 – 4V2.

The signals of connector J4 are connected directly to the processor.

USBH interface supports high speed USB (480MBs).

Comments	Signal	IC	Pin	Pin	IC	Signal	Comments
board supply: 3.5V - 4.2V	VSYSTEM	POWER	1	70	OMAP	GPMC_CLK	
board supply: 3.5V - 4.2V	VSYSTEM	POWER	2	69	OMAP	GPMC_NBE1	
	GND	POWER	3	68	OMAP	GPMC_WAIT0	
	GPMC_NCS5_ETH0	OMAP	4	67	OMAP	GPMC_NCS6	
	GPMC_NCS4	OMAP	5	66	OMAP	GPMC_NCS0	

							1
	GPMC_nWE	OMAP	6	65	OMAP	GPMC_NBE0	
	GPMC_NADV_ALE	OMAP	7	64	OMAP	GPMC_NCS1	
	GPMC_NOE	OMAP	8	63	OMAP	GPMC_NWP	
	GPIO65_ETH1_IRQ1	OMAP	9	62	OMAP	GPMC_A9	
	GPIO64_ETH0_NRESET	OMAP	10	61	OMAP	GPMC_A4	
	GPMC_A2	OMAP	11	60	OMAP	GPMC_A10	
	GPMC_A8	OMAP	12	59	OMAP	GPMC_A3	
	GPMC_A5	OMAP	13	58	OMAP	GPMC_A1	
	GPMC_A7	OMAP	14	57	OMAP	GPMC_A6	
	GPMC_D2	OMAP	15	56	OMAP	GPMC_D0	
	GPMC_D10	OMAP	16	55	OMAP	GPMC_D9	
	GPMC_D3	OMAP	17	54	OMAP	GPMC_D8	
	GPMC_D11	OMAP	18	53	OMAP	GPMC_D1	
	GPMC_D4	OMAP	19	52	OMAP	GPMC_D13	
	GPMC_D12	OMAP	20	51	OMAP	GPMC_D6	
	GPMC_D5	OMAP	21	50	OMAP	GPMC_D14	
	GPMC_D15	OMAP	22	49	OMAP	GPMC_D7	
MMC3 INTERFACE	GPIO13_MMC3_CMD	OMAP	23	48	OMAP	GPIO151_RXD1	UART
UART	GPIO148_TXD1	OMAP	24	47	OMAP	GPIO150_MMC3_WP	MMC3 INTERFACE
	GPIO176_ETH0_IRQ	OMAP	25	46	TPS65950	PMIC_GPIO1_MMC3_CD	MMC3 INTERFACE
					Or OMAP	Or GPIO149_MMC3_CD (default)	See Schematic below.
MMC3 INTERFACE	GPIO18_MMC3_D0	OMAP	26	45	OMAP	GPIO173_SPI1_MISO	SPI INTERFACE
SPI INTERFACE	GPIO174_SPI1_CS0	OMAP	27	44	OMAP	GPIO172_SPI1_MOSI	SPI INTERFACE
See schematic below.	GPIO168_USBH_CPEN	OMAP	28	43	OMAP		SPI INTERFACE
	Or PMIC_LEDA (default)	Or TPS65950				GPIO171_SPI1_CLK	
MMC3 INTERFACE	GPIO14_MMC3_D4	OMAP	29	42	OMAP	GPIO175_SPI1_CS1	SPI INTERFACE
MMC3 INTERFACE	GPIO21_MMC3_D7	OMAP	30	41	OMAP	GPIO114_SPI1_NIRQ	SPI INTERFACE
MMC3 INTERFACE	GPIO17_MMC3_D3	OMAP	31	40	OMAP	GPIO12_MMC3_CLK	MMC3 INTERFACE
	USBH_VBUS	USB-PHY	32	39	OMAP	GPIO20_MMC3_D2	MMC3 INTERFACE
	GND	POWER	33	38	OMAP	GPIO23_MMC3_D5	MMC3 INTERFACE
	USBH_DP	USB-PHY	34	37	OMAP	GPIO22_MMC3_D6	MMC3 INTERFACE
	USBH_DM	USB-PHY	35	36	OMAP	GPIO19_MMC3_D1	MMC3 INTERFACE
		<u>I</u>	l				

6 PMIC LEDA

4 GPIO168_I2C2_SCL >> DNLO R807

Figure 17 - J4 Connector Schematic Detail

MCSPI1_CS1

ISEE 2007 SL. All rights reserved, IGEP \circledR is a registered trademark from ISEE 2007 SL. The following is provided for informational purposes only.

5.6 J5 - CAMERA

27 pin HIROSE Serie FH26 (0.3mm pitch flex circuit).

Figure 18 - J5 connector detail

All logic is at 1.8V. 1.8V power is supplied by the IGEP motherboard for use on the camera module. This power should not be used as a general supply but only to power a level-shifting transceiver, if needed.

The input range of the supply voltage is approximately 3V5 – 4V2.

VSYSTEM is power from the baseboard routed through IGEP board for use on camera module.

The signals of connector J5 are connected directly to the processor.

Signal	Pin	IC	Comment
GPIO94_CAM_HS	1	OMAP	
GPIO95_CAM_VS	2	OMAP	
GPIO96_CAM_XCLKA	3	OMAP	
GPIO97_CAM_PCLK	4	OMAP	
GPIO98_CAM_FLD	5	OMAP	
GPIO99_CAM_D0	6	OMAP	
GPIO100_CAM_D1	7	OMAP	
GPIO101_CAM_02	8	OMAP	
GPIO102_CM_D3	9	OMAP	
GPIO103_CIF_DD04	10	OMAP	
GPIO104_CIF_DD05	11	OMAP	
GPIO105_CAM_D6	12	OMAP	
GPIO106_CIF_DD07	13	OMAP	
GPIO107_CIF_DD08	14	OMAP	

CPIO108_CIF_DD09	15	OMAP	
GPIO109_CAM_D10	16	OMAP	
GPIO110_CAM_D11	17	OMAP	
GPIO111_CAM_XCLKB	18	OMAP	
GPIO167_CAM_WEN	19	OMAP	
GPIO126_CAM_STROBE	20	OMAP	
VDDS_1.8	21	PMIC	1.8V power is supplied by the IGEP motherboard for use on the camera module. This power should not be used as a general supply but only to power a level-shifting transceiver, if needed.
SYSEN	22	PMIC	
GND	23		
VSYSTEM	24		board supply: 3V5 - 4.2V
GPIO63_CAM_IRQ	25	OMAP	
GPIO184_I2C3_SCL	26	OMAP	
GPIO185_I2C3_SDA	27	OMAP	

Figure 19 - J5 Connector Schematic Detail

5.7 J7 - VIDEO COMPOSITE, USBOTG, KEYBOARD AND OTHERS

27 pin HIROSE Serie FH26 (0.3mm pitch flex circuit)

Figure 20 - J7 Connector Detail

All logic is at 1.8V.

WARNING: Most of the signals come directly from/to OMAP processor.

Improperly use of this connector could result in damage of the processor.

VMMC1 is provided by module (PMIC).

The signals of connector J7 are connected directly to the processor.

Signal	Alternative signal (optional)	Pin	IC1	IC2	Comment
GPIO156_McBSP1_CLKR		1	OMAP		
GPIO157_McBSP1_FSR		2	OMAP		
GPIO158_McBSP1_DX		3	OMAP		
GPIO159_McBSP1_DR		4	OMAP		
GPIO161_McBSP1_FSX		5	OMAP		
GPIO162_McBSP1_CLKX		6	OMAP		
GPIO.0/CD1		7	PMIC		
VMMC1		8	PMIC		
GPIO121_MMC1_CMD		9	OMAP		
GPIO120_MMC1_CLK0		10	OMAP		
GPIO122_MMC1_DAT0		11	OMAP		
GPIO123_MMC1_DAT1		12	OMAP		
GPIO124_MMC1_DAT2		13	OMAP		
GPIO125_MMC1_DAT3		14	OMAP		
GPIO168_I2C2_SCL	KPD_C2	15	OMAP	PMIC	By using 0R resistor, it is possible to select between OMAP peripherals or

ISEE 2007 SL. All rights reserved, IGEP \circledR is a registered trademark from ISEE 2007 SL. The following is provided for informational purposes only.

DOCUMENT FROM ISEE 2007 S.L.

			1		
					PMIC keyboard interface.
GPIO183_I2C2_SDA	KPD_C1	16	OMAP	PMIC	
GPIO140_McBSP3_DX	KPD_C0	17	OMAP	PMIC	
GPIO142_	KPD_R0	18	OMAP	PMIC	
McBSP3_CLKX					
GPIO141_ McBSP3_DR	KPD_R1	19	OMAP	PMIC	
GPIO143_ McBSP3_FSX	KPD_R2	20	OMAP	PMIC	
USBOTG_ID		21	PMIC		
USBOTG_DN		22	PMIC		
USBOTG_DP		23	PMIC		
USBOTG_VBUS		24	PMIC		
GND		25			
TV_OUT2R		26	OMAP		Video composite output (directly from the
11,00121					processor)
		27	OMAP		Video composite output (directly from the
TV_OUT1R					processor)

Figure 21 - J7 Connector Schematic Detail

6 MECHANICAL SPECIFICATION

Board size 18x68.5mm.

Connectors:

- o 2x 70-pin AVX 5602-14 with 0.4mm pitch connectors
- 2 x 27-pin Hirose FH26 Serie connector (0.3mm pitch flex circuit) for Camera IF, VideoOut and USB connections.
- $4 \times \#0$ mounting holes: one in each corner. Diameter 1.65mm ± 0.05

Figure 22 Mechanical drawing

7 BOARD REFERENCE

Product Name: IGEP_MODULE-Rz-35xx-yy

IGEP_MODULE	R <i>z</i>	35 <i>xx</i>	yy
Product Name	Where z is A,B,C, and details revision family	Where xx is 35 or 03 35: OMAP3530 processor 03: OMAP3503 processor	Where yy is WIFI or empty. WIFI: Modules comes with WIFI/BT combo module

Example:

IGEP_MODULE-RA-3530-WIFI: OMAP3530 processor + WIFI/BT interface

8 LIST OF FIGURES

Figure 1 ISEE IGEP MODULE	6
Figure 2 IGEP MODULE Top view	7
Figure 3 IGEP MODULE Bottom view	7
Figure 4 ISEE IGEP MODULE Top view	8
Figure 5 POP Package	9
Figure 6 USB OTG connector	10
Figure 7 WIFI/BT Internal Antenna	10
Figure 8 Leds Detail	11
Figure 9 – miniAB USb socket Detail	14
Figure 10 - J1 and J4 Connector Detail	14
Figure 11 MicroSD detail	15
Figure 12 MiniAB USB Socket Detail	15
Figure 13 - J2 Connector Detail	16
Figure 14 - J1 Connector Detail	16
Figure 15 - J1 Connector schematic	18
Figure 16 - J4 Connector detail	19
Figure 17 - J4 Connector Schematic Detail	21
Figure 18 - J5 connector detail	22
Figure 19 - J5 Connector Schematic Detail	23
Figure 20 - J7 Connector Detail	24
Figure 21 - J7 Connector Schematic Detail	25
Figure 22 Mechanical drawing	26

IGEP MODULE HARDWARE USER MANUAL

29

9 CHANGELOG

Revision 00

Initial draft

Revision 01

Preliminary version

Revision 02

• Release version

Revision 03

- Wifi only operates at 2.4GHz.
- No common embedded antenna available for WIFI and Bluetooth