

http://r-bayesian-networks.org/ gilles.kratzer@math.uzh.ch arianna.comin@sva.se

GILLES KRATZER, APPLIED STATISTICS GROUP, UZH

ARIANNA COMIN, DEP. OF DISEASE CONTROL AND EPIDEMIOLOGY, SVA

SVEPM WORKSHOP, UTRECHT 27.03.2019

ADVANCED BAYESIAN NETWORK MODELLING

ADVANCED METHODS WITH BN MODELING

Outline of the talk

- Mixed models correction for grouped data
- Heuristic search
- MCMC over structures

- Other advanced methods/features:
 - Scoring system
 - Tunable parameter prior
 - Structural prior
 - Data separation
 - Covariate adjustment
 - Likelihood contribution

CORRECTION FOR CLUSTERING

Correction for grouped data

- The way the data were collected has a clear grouping aspect
- ▶ Then potential for **non-independence** between data points
- Lead to analyses which are over-optimistic
- As the true level of variation in the data is under-estimated
- Could impact study result ... or not!
- Good practice to check!

In practice:

- Random effect
- ▶ GLM -> GLMM for each node
- Fit the DAG and check the posterior distribution (widening)
- If needed one can incorporate random effect in the scoring scheme

Pitfalls:

Hugh computational complexity!

ADVANCED METHODS WITH BN MODELING

Find maximum a posteriori score

- √ Exact search
- Heuristic search
- ► MCMC over structures

HEURISTIC SEARCH

Heuristic search: Greedy Hill-Climbing

- Simplest heuristic local search
 - Start with a given network
 - empty network
 - best tree
 - a random network
 - At each iteration
 - Evaluate all possible changes
 - Apply change that leads to best improvement in score
 - Reiterate
 - Stop when no modification improves score
- Pitfalls:
 - Local Maxima
 - Plateaus
- ▶ Solution:
 - Tabu
 - Random restart
 - Simulated annealing

HEURISTIC SEARCH

Index of heuristic search

Number of Steps

Best Unique Bayesian Network

Counting prevalence of each ARC

MCMC OVER STRUCTURES

MCMC over structures

- Selecting the most probable structure
- Controlling for overfitting
- Sampling the landscape of high scoring structures
 - In applied perspective avoid reducing the richness of BN modelling to only **one** structure
 - Quantify the marginal impact of relationships by marginalising out over structures

HA

HANDS-ON EXERCICES

