姓名 共 4 页 第 1 页

2018~2019 学年第二学期期末考试试卷

《高等数学 2B》(A卷)

(共4页, 另附2页草纸)

(考试时间: 2019 年 6 月 19 日, 14:00-16:00)

题号	_	 =	四	五	六	成绩	核分人签字
得分							

一、填空题(共15分,每小题3分)

- 1. 曲线 $\begin{cases} x-y+z=2, \\ z=x^2+y^2 \end{cases}$ 在点 (1,1,2) 处的一个切线方向向量为_
- 2. 由方程 $xy + xz yz = e^z$ 所确定的隐函数 z = z(x, y) 在点 (1,1) 处的全微分为
- 3. 若幂级数 $\sum_{n=1}^{\infty} \frac{a_n}{n+1} (x-1)^n$ 在 x=3 处条件收敛,则幂级数 $\sum_{n=1}^{\infty} a_n x^n$ 的收敛半径

4. 将函数 $f(x) = \begin{cases} 1 + x^2, -3 \le x < 0, \\ 4 & 0 \le x \le 3 \end{cases}$ 展开成周期为 6 的傅里叶级数,其和函数记为

s(x), y = s(12) = 1.

5. 设曲线 L 由 $L_1: y = \sin x$ 从点 $A(\pi,0)$ 到点 O(0,0) 的一段曲线和直线段 \overline{OA} 组成,

且 L 取逆时针方向,则 $\oint_L \sin 2x \, dx + (2x^2 - 1) \, dy$ 的值为______.

二、选择题(共15分,每小题3分)

- 1. 下列级数收敛的是(
- (A) $\sum_{n=1}^{\infty} \sin \frac{n\pi}{4}$ (B) $\sum_{n=2}^{\infty} \frac{1}{n \ln n}$ (C) $\sum_{n=1}^{\infty} \ln(1 + \frac{1}{n^2})$ (D) $\sum_{n=1}^{\infty} (-1)^n \cos \frac{1}{n}$
- 2. 二次积分 $\int_{0}^{\frac{\pi}{6}} dy \int_{y}^{\frac{\pi}{6}} \frac{\cos x}{x} dx = ($
 - (A) $\frac{1}{2}$ (B) 1 (C) $\frac{1}{4}$ (D) $\frac{\pi}{2}$

- 3. 函数 f(x, y) 在 (0,0) 处连续,则下列命题正确的是 (
 - (A) 若极限 $\lim_{(x,y)\to(0,0)} \frac{f(x,y)}{|x|+|y|}$ 存在,则 f(x,y) 在(0,0) 处可微
 - (B) 若极限 $\lim_{(x,y)\to(0,0)} \frac{f(x,y)}{r^2+v^2}$ 存在,则 f(x,y) 在(0,0) 处可微
 - (C) 若f(x,y)在(0,0)处可微,则极限 $\lim_{(x,y)\to(0,0)} \frac{f(x,y)}{|x|+|y|}$ 存在
 - (D) 若 f(x,y) 在 (0,0) 处可微,则极限 $\lim_{(x,y)\to(0,0)} \frac{f(x,y)}{r^2+v^2}$ 存在
- 4. 全微分方程 $\left(2x + \frac{y}{1+x^2y^2}\right) dx + \left(\frac{x}{1+x^2y^2} + 2y\right) dy = 0$ 的通解是 (

 - (A) $2xy + \frac{1}{2}\ln(1+x^2y^2) = C$ (B) $x^2 + \frac{1}{2}\ln(1+x^2y^2) + y^2 = C$

 - (C) $2xy + \arctan(xy) = C$ (D) $x^2 + \arctan(xy) + y^2 = C$
- 5. 设曲线 L 是由点 O(0.0) 出发、经过点 A(1.0) 到 B(0.1) 的折线. 则曲线积分

$$\int_{L} (x+y) \mathbf{d}s = ($$
).

- (A) $\sqrt{2} + 1$ (B) $\sqrt{2}$ (C) $\sqrt{2} + \frac{1}{2}$ (D) $\frac{3}{2}$

2018~2019 学年第二学期期末考试参考答案

《高等数学 2B》(考试时间: 2019 年 6 月 19 日 14:00—16:00)

一、 填空题(共15分,每小题3分)

- A卷: 1. (-1,3,4) 2. dx+dy 3. 2 4. $\frac{5}{2}$ 5. 4π
- **B 卷:** 1. **2** 2. (-1,3,4) 3. $\frac{5}{2}$ 4. dx + dy 5. 4π
- 二、选择题(共15分,每小题3分)
 - **A**卷: 1.C 2.A 3.B

- 1. A 2. C 3. C
- 5. B
- 三、计算题(共28分,每小题7分)
- 1. 设函数 z = f(2x-3y) + g(x,xy), 其中 f(t) 二阶可导, g(u,v) 具有连续二阶偏导数,

$$\vec{x}\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y} = \frac{\partial^2 z}{\partial x \partial y}.$$

$$\mathbb{H}: \frac{\partial z}{\partial x} = 2f' + g_1' + yg_2', \quad \frac{\partial z}{\partial y} = -3f' + xg_2',$$

$$\frac{\partial^2 z}{\partial x \partial y} = -6f'' + xg_{12}'' + g_2' + xyg_{22}''.$$

- 2. 计算曲面积分 $\iint_{\Sigma} z^3 dS$, 其中 Σ 为上半球面 $z = \sqrt{1 x^2 y^2}$.
- 解: $\Sigma \propto xO_V$ 面上的投影 D 为: $x^2 + y^2 \leq 1$.

$$dS = \frac{1}{\sqrt{1 - x^2 - y^2}} dxdy,$$

$$I = \iint_D (1 - x^2 - y^2) \, dx dy = \int_0^{2\pi} d\theta \int_0^1 (1 - \rho^2) \rho d\rho = \frac{\pi}{2}.$$

3. 求二元函数 $f(x, y) = x^2(2 + y^2) + y \ln y$ 的极值.

解:
$$\begin{cases} f'_x(x,y) = 2x(2+y^2) = 0, \\ f'_y(x,y) = 2x^2y + 1 + \ln y = 0 \end{cases}$$
 解得驻点 $M(0,\frac{1}{e})$,

又因为
$$A = f_{xx}''|_{M} = 4 + 2y^{2}|_{M} = 4 + \frac{2}{e^{2}}, B = f_{xy}''|_{M} = 4xy|_{M} = 0,$$

$$C = f_{yy}''|_{M} = 2x^2 + \frac{1}{y} = e, \quad B^2 - AC = -(4e + \frac{2}{e}) < 0.$$

所以 $M(0,\frac{1}{a})$ 是函数的极小值点,函数的极小值是 $-\frac{1}{a}$.

4. 计算三重积分 $\iiint (x^2 + y^2 + z^2) dV$, 其中 Ω 是球面 $x^2 + y^2 + z^2 = 1$ 之外、

且位于球面 $x^2 + y^2 + z^2 = 2z$ 内部的空间区域.

解:
$$\begin{cases} r^2 = 1, \\ r^2 = 2r\cos\varphi, \\ \therefore \cos\varphi = \frac{1}{2}, \varphi = \frac{\pi}{3}. \end{cases}$$

$$I = \int_0^{2\pi} d\theta \int_0^{\frac{\pi}{3}} d\varphi \int_1^{2\cos\varphi} r^4 \sin\varphi dr = \frac{2\pi}{5} \int_0^{\frac{\pi}{3}} \sin\varphi (32\cos^5\varphi - 1) d\varphi$$

$$= \frac{2\pi}{5} \left[\left(-\frac{16}{3} \right) \cos^6 \varphi + \cos \varphi \right] \Big|_0^{\frac{\pi}{3}} = \frac{19}{10} \pi.$$

四、计算题(共21分,每小题7分)

1. 计算曲面积分 $\iint_{\Sigma} 2x^3 \, dy dz + 2y^3 \, dz dx + 3(xz^2 - 1) \, dx dy$, 其中 Σ 是曲面 $z = 1 - x^2 - y^2$ $(z \ge 0)$ 部分,方向取上侧.

解: 取 Σ_1 为xOy面上圆 $x^2 + y^2 \le 1$ 的下侧,记 Ω 为由 $\Sigma 与 \Sigma_1$ 围成的空间区域,

$$I = \oiint_{\Sigma + \Sigma_{1}} 2x^{3} dy dz + 2y^{3} dz dx + 3(xz^{2} - 1) dx dy$$

$$- \iint_{\Sigma_{1}} 2x^{3} dy dz + 2y^{3} dz dx + 3(xz^{2} - 1) dx dy$$

$$= \iiint_{\Omega} 6(x^{2} + y^{2} + xz) dx dy dz + \iint_{x^{2} + y^{2} \le 1} (-3) dx dy$$

$$= 6 \int_{0}^{2\pi} d\theta \int_{0}^{1} d\rho \int_{0}^{1 - \rho^{2}} \rho^{2} \cdot \rho dz - 3\pi$$

$$= 12\pi \int_{0}^{1} [\rho^{3} (1 - \rho^{2})] d\rho - 3\pi = \pi - 3\pi = -2\pi.$$

2. 将函数 $f(x) = \arctan \frac{1+x}{1-x}$ 展成麦克劳林级数.

解:
$$f'(x) = \frac{1}{1+x^2} = \sum_{n=0}^{\infty} (-1)^n x^{2n}, x \in (-1,1),$$

$$f(x) - f(0) = \int_0^x f'(t) dt = \int_0^x \sum_{n=0}^\infty (-1)^n t^{2n} dt = \sum_{n=0}^\infty \frac{(-1)^n}{2n+1} x^{2n+1}, x \in [-1,1)$$

曲于
$$f(0) = \frac{\pi}{4}$$
,

故
$$f(x) = \frac{\pi}{4} + \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} x^{2n+1}, x \in [-1,1).$$

3. 计算曲线积分 $\oint_L zy \, dx + 3xz \, dy - xy \, dz$, 其中 L: $\begin{cases} x^2 + y^2 = 4y, \\ 3y - z = 1 \end{cases}$, 且从 z 轴正向 看去 L 为逆时针方向.

解法一: 设平面3y-z=1被柱面所截得的部分为 Σ , 其方向为上侧, 边界曲线为L, Σ 在xOy 面的投影记为D, 在 Σ 上, z=3y-1, $z_x'=0,z_y'=3$

$$I = \iint_{\Sigma} (-4x) dy dz + (2y) dz dx + (2z) dx dy$$
$$= \iint_{\Sigma} \left[(-4x) \cdot (-z_x') + 2y \cdot (-z_y') + 2z \right] dx dy$$
$$= \iint_{\Sigma} (-6y + 2z) dx dy = \iint_{D} -2 dx dy = -8\pi.$$

解法二: 在 Σ 上法向量的方向余弦为 $\cos \alpha = 0, \cos \beta = -\frac{3}{\sqrt{10}}, \cos \gamma = \frac{1}{\sqrt{10}}$

$$I = \iint_{\Sigma} (-4x) dy dz + (2y) dz dx + (2z) dx dy = \frac{1}{\sqrt{10}} \iint_{\Sigma} (-3 \cdot 2y + 2z) dS$$
$$= \frac{-2}{\sqrt{10}} \iint_{\Sigma} dS = \frac{-2}{\sqrt{10}} \iint_{\Sigma} \sqrt{1+9} dx dy = -8\pi.$$

解法三: L的参数方程: $\begin{cases} x = 2\cos\theta, \\ y = 2 + 2\sin\theta, \quad \theta: 0 \to 2\pi \\ z = 5 + 6\sin\theta, \end{cases}$

$$\oint_L zy \, dx + 3xz \, dy - xy \, dz$$

$$= \int_0^{2\pi} (2 + 2\sin\theta)(5 + 6\sin\theta)(-2\sin\theta) \,d\theta + \int_0^{2\pi} 3(2\cos\theta)(5 + 6\sin\theta)(2\cos\theta) \,d\theta + \int_0^{2\pi} -(2\cos\theta)(2 + 2\sin\theta)(6\cos\theta) \,d\theta$$

 $=-8\pi$.

五、解答题(共16分,每小题8分)

1. 求级数 $\sum_{n=1}^{\infty} \left(n + \frac{1}{n}\right) x^n$ 的收敛域及和函数.

解:
$$s(x) = \sum_{n=1}^{\infty} \left(n + \frac{1}{n} \right) x^n = \sum_{n=1}^{\infty} n x^n + \sum_{n=1}^{\infty} \frac{1}{n} x^n$$
, 显然收敛域为 (-1,1).

$$\Rightarrow s_1(x) = \sum_{n=1}^{\infty} n x^n, s_2(x) = \sum_{n=1}^{\infty} \frac{1}{n} x^n$$

$$s_1(x) = \sum_{n=1}^{\infty} n x^n = x \sum_{n=1}^{\infty} n x^{n-1} = x (\sum_{n=1}^{\infty} x^n)' = x (\frac{x}{1-x})' = \frac{x}{(1-x)^2},$$

曲
$$s_2'(x) = (\sum_{n=1}^{\infty} \frac{1}{n} x^n)' = \sum_{n=1}^{\infty} x^{n-1} = \frac{1}{1-x}$$
, 得

$$s_2(x) = s_2(0) + \int_0^x \frac{1}{1-t} dt = -\ln(1-x),$$

于是和函数 $s(x) = \frac{x}{(1-x)^2} - \ln(1-x), x \in (-1,1).$

2. 设函数 $f(x) = \frac{\pi - x}{2}$, $0 < x \le \pi$. (1) 将 f(x) 延拓成以 2π 为最小正周期的奇函数,

记成F(x),给出F(x)在 $[-\pi,\pi]$ 上的表达式; (2)将f(x)展开成正弦级数.

解: (1) 将函数 f(x) 在 $[-\pi,\pi]$ 上作奇延拓后再做周期延拓得 F(x), 且

$$F(x) = \begin{cases} \frac{\pi - x}{2}, & 0 < x \le \pi, \\ 0, & x = 0, \\ \frac{\pi + x}{-2}, & -\pi < x < 0 \end{cases}$$

(2)
$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} F(x) \cos nx dx = 0, n = 0, 1, 2, \dots$$

$$b_n = \frac{2}{\pi} \int_0^{\pi} \frac{\pi - x}{2} \sin nx \, dx = \frac{1}{\pi} \left[-\frac{\pi - x}{n} \cos nx + \frac{1}{n^2} \sin nx \right]_0^{\pi} = \frac{1}{n}, n = 1, 2, \dots$$

因为f(x)在 $(0,\pi)$ 内连续,并且

$$s(\pi) = \frac{1}{2} [F(-\pi + 0) + F(\pi - 0)] = 0 = f(\pi),$$

所以 f(x) 展开成正弦级数为:

$$f(x) = \sum_{n=1}^{\infty} \frac{1}{n} \sin nx, x \in (0, \pi].$$

六、证明题(本题 5 分)

设级数 $\sum_{n=1}^{\infty} (a_n - a_{n-1})$ 收敛, $\sum_{n=1}^{\infty} b_n$ 绝对收敛. 证明级数 $\sum_{n=1}^{\infty} a_n b_n$ 绝对收敛.

证明: 设 $\sum_{n=1}^{\infty} (a_n - a_{n-1})$ 收敛于s, 其部分和数列

$$s_n = (a_1 - a_0) + (a_2 - a_1) + \dots + (a_n - a_{n-1}) = a_n - a_0 \to s \ (n \to \infty),$$

所以 $\lim_{n\to\infty} a_n = s + a_0$, 从而 $\{a_n\}$ 有界, 即存在M > 0, 使得 $|a_n| \le M$.

再由 $|a_n b_n| \le M |b_n|$ 及 $\sum_{n=1}^{\infty} b_n$ 绝对收敛,得 $\sum_{n=1}^{\infty} a_n b_n$ 绝对收敛.