```
import sqlite3
import pandas as pd
import sqlalchemy
import numpy as np
import scipy
from scipy import stats
from scipy.stats import norm
import matplotlib.pyplot as plt
```

S8. Normailización y estandarización.

Coge un conjunto de datos de tema deportivo que te guste y **normaliza** los atributos categóricos en dummy. **Estandariza**

los atributos numéricos con StandardScaler.

In []:

```
In [147... con= sqlite3.connect("database.sqlite") # importamos la base de datos.

df = pd.read_sql_query( "SELECT * from Player_Attributes", con)
#Coge un conjunto de datos de tema deportivo que te guste y normaliza los atributos catego
df.head()
```

Out[147		id	player_fifa_api_id	player_api_id	date	overall_rating	potential	preferred_foot	attacking_work_rate	defen
-	0	1	218353	505942	2016- 02-18 00:00:00	67.0	71.0	right	medium	
	1	2	218353	505942	2015- 11-19 00:00:00	67.0	71.0	right	medium	
	2	3	218353	505942	2015- 09-21 00:00:00	62.0	66.0	right	medium	
	3	4	218353	505942	2015- 03-20 00:00:00	61.0	65.0	right	medium	
	4	5	218353	505942	2007- 02-22 00:00:00	61.0	65.0	right	medium	

5 rows × 42 columns

```
'strength', 'long shots', 'aggression', 'interceptions', 'positioning',
                'vision', 'penalties', 'marking', 'standing tackle', 'sliding tackle',
                'gk diving', 'gk handling', 'gk kicking', 'gk positioning',
                'gk reflexes'],
               dtype='object')
In [155...
          # Buscaremos la capacidad de hacer gol en funcion de la pierna preferente, la curva,
         #finalización, precisión de tiro libre, potencia de disparo, penalti,
         dff= df [[ 'finishing', 'curve', 'free kick accuracy',
                  'shot_power', 'long_shots',
                  'penalties', "preferred foot"]]
         # Eliminamos los valores NaN o NUll
         dff2 = dff.dropna()
         dfnum=dff2[['finishing', 'curve', 'free_kick accuracy',
                  'shot power', 'long shots',
                  'penalties']]
         dff.shape
         (183978, 7)
Out[155...
In [157...
         dff2.shape# miramos la reducción dimensional
         (181265, 7)
Out[157...
In [158...
         dfnum.plot(kind= "box", figsize= (10,10), sym="r+") # Miramos los valores atípicos de las
         <AxesSubplot:>
Out[158...
```


In [159... # eliminamos los valores atípicos.
 #miramos en shot_power, long_shot i Penalties, los quartiles.
 dfnum.describe()

Out[159	finishing		curve	free_kick_accuracy	shot_power	long_shots	penalties	
	count 181265.000000		181265.000000	181265.000000	181265.000000	181265.000000	181265.000000	
	mean	49.939095	52.965675	49.380327	61.842799	53.367048	54.935950	
	std	19.047599	18.255788	17.824868	16.133940	18.374873	15.558855	
	min	1.000000	2.000000	1.000000	2.000000	1.000000	2.000000	
	25%	34.000000	41.000000	36.000000	54.000000	41.000000	45.000000	
	50%	53.000000	56.000000	50.000000	65.000000	58.000000	57.000000	
	75%	65.000000	67.000000	63.000000	73.000000	67.000000	67.000000	
	max	97.000000	94.000000	97.000000	97.000000	96.000000	96.000000	

```
In [161...
    mean_power=dfnum.describe()["shot_power"][1]
    std_power= dfnum.describe()["shot_power"][2]
    mean_long=dfnum.describe()["long_shots"][1]
    std_long= dfnum.describe()["long_shots"][2]
    mean_pen=dfnum.describe()["penalties"][1]
```

```
# Sacamos los valores atípicos.
                      dff3= dff2[((dff2["shot power"]>= (-3*std power+ mean power)) & (dff2["shot power"]<= (3*)
                                                          (dff2["long shots"] >= (-3*std long+ mean long)) & (dff2["long shots"] <= (3*std long+ mean long+ m
                                                          (dff2["penalties"]>= (-3*std pen+ mean pen) ) & (dff2["penalties"]<= (3*std
                      dff3.shape
                      # y miramos de nuevo la reducción dimensional
                     (180442, 7)
Out[161...
In [166...
                      # redefinimos la variable numérica.
                      dfnum2=dff3[['finishing', 'curve', 'free kick accuracy',
                                         'shot power', 'long shots',
                                         'penalties']]
                      # importamos Standar Scaler
                      from sklearn.preprocessing import StandardScaler
                      ss = StandardScaler()
                      arrayss = ss.fit transform(dfnum2)
                      colnombres= [ 'finishing', 'curve', 'free kick accuracy',
                                         'shot power', 'long shots',
                                         'penalties']
                      dfss= pd.DataFrame(arrayss, columns= colnombres)
                      dfss.head()
                      # dejamos estandarizada la variable numérica
Out[166...
                          finishing
                                                    curve free_kick_accuracy shot_power long_shots penalties
                    0 -0.323157 -0.448425
                                                                                -0.593873
                                                                                                         -0.446690
                                                                                                                             -1.018635 -0.460474
                    1 -0.323157 -0.448425
                                                                                                        -0.446690
                                                                                                                             -1.018635 -0.460474
                                                                                -0.593873
                    2 -0.323157 -0.448425
                                                                                -0.593873
                                                                                                        -0.446690
                                                                                                                             -1.018635 -0.460474
                    3 -0.376028 -0.503600
                                                                                -0.650318
                                                                                                        -0.509902 -1.073549 -0.525427
                    4 -0.376028 -0.503600
                                                                                                      -0.509902 -1.073549 -0.525427
                                                                                -0.650318
In [171...
                      dfcat2=dff3[["preferred foot"]]
                      # normalizamos las variables categóricas con variables ficticias, pero antes eliminamos
In [172...
                      # miramos los valores de cada variable.
                      dfcat2[["preferred_foot"]].value_counts()
                    preferred foot
Out[172...
                    riaht
                                                              136211
                    left
                                                              44231
                    dtype: int64
In [173...
                    var cat= pd.get dummies(dfcat2)
                     var cat
                      # dejamos normalizada la variable categórica.
Out[173...
                                    preferred_foot_left preferred_foot_right
                               0
                                                                                                         1
```

std pen= dfnum.describe()["penalties"][2]

0

1

	preferred_foot_left	preferred_foot_right
2	0	1
3	0	1
4	0	1
•••		
183973	0	1
183974	0	1
183975	0	1
183976	0	1
183977	0	1

180442 rows × 2 columns

```
In [ ]:  # concatenamos var_cat y dfss y damos por cerrado el ejercicio 1.
```

Out[174		finishing	curve	free_kick_accuracy	shot_power	long_shots	penalties	preferred_foot_left	preferred_foot_rig
	0	-0.323157	-0.448425	-0.593873	-0.446690	-1.018635	-0.460474	0.0	1
	1	-0.323157	-0.448425	-0.593873	-0.446690	-1.018635	-0.460474	0.0	1
	2	-0.323157	-0.448425	-0.593873	-0.446690	-1.018635	-0.460474	0.0	1
	3	-0.376028	-0.503600	-0.650318	-0.509902	-1.073549	-0.525427	0.0	1
	4	-0.376028	-0.503600	-0.650318	-0.509902	-1.073549	-0.525427	0.0	1

In []:

In []: