CENTRO UNIVERSITÁRIO RUY BARBOSA CAMPUS IMBUÍ/PARALELA

ESTAÇÃO METEOROLÓGICA DE BAIXO CUSTO

Ícaro Lima, Eduardo Miguel, Ruan Müller, Alan Goes, Breno Chaves e Rafael Canella VITOR EMMANUEL ANDRADE

2025 Salvador/Bahia

Sumário

1.	DIA	GNÓSTICO E TEORIZAÇÃO	3
	1.1.	Identificação das partes interessadas e parceiros	3
	1.2.	Problemática e/ou problemas identificados	3
	1.3.	Justificativa	3
	1.4. sob a	Objetivos/resultados/efeitos a serem alcançados (em relação ao problema identificado perspectiva dos públicos envolvidos)	
	1.5.	Referencial teórico (subsídio teórico para propositura de ações da extensão)	4
2.	PLA	NEJAMENTO E DESENVOLVIMENTO DO PROJETO	4
	2.1.	Plano de trabalho (usando ferramenta acordada com o docente)	4
	2.2. seu de	Descrição da forma de envolvimento do público participante na formulação do projeto, esenvolvimento e avaliação, bem como as estratégias pelo grupo para mobilizá-los	
	2.3.	Grupo de trabalho (descrição da responsabilidade de cada membro)	6
	2.4.	Metas, critérios ou indicadores de avaliação do projeto	7
	2.5.	Recursos previstos	7
	2.6.	Detalhamento técnico do projeto	7
3.	ENC	CERRAMENTO DO PROJETO	8
	3.1.	Relatório Coletivo (podendo ser oral e escrita ou apenas escrita)	8
	3.2.	Avaliação de reação da parte interessada	8
	3.3.	Relato de Experiência Individual	9
	3.1.	CONTEXTUALIZAÇÃO	10
	3.2.	METODOLOGIA	10
	3.3.	RESULTADOS E DISCUSSÃO:	10
	3.4.	REFLEXÃO APROFUNDADA	11
	3 5	CONSIDERAÇÕES FINAIS	11

1. DIAGNÓSTICO E TEORIZAÇÃO

1.1. Identificação das partes interessadas e parceiros

- Estudantes responsáveis pelo desenvolvimento: Ícaro Lima, Eduardo Miguel, Ruan
 Muller, Alan Goes, Breno Chaves e Rafael Canella.
- Orientador: Prof. Vitor Emmanuel Andrade.
- Público-alvo: Comunidade acadêmica, pequenos produtores agrícolas, escolas e moradores interessados em monitoramento ambiental.

1.2. Problemática e/ou problemas identificados

- Dificuldade de acesso a sistemas confiáveis de monitoramento climático devido ao alto custo de estações meteorológicas profissionais.
- Falta de dados ambientais em pequena escala para apoio a decisões locais em ambientes residenciais, escolares ou agrícolas.

1.3. Justificativa

O projeto da disciplina **Aplicação de Cloud, IOT e Indústria 4.0 em Python**, ministrada pelo Prof. Vitor Emmanuel de Andrade, justifica-se pela necessidade de democratizar o acesso ao monitoramento climático de forma simples, eficiente e de baixo custo. Utilizar um NodeMCU ESP8266 e o sensor BMP280 torna possível a coleta de dados ambientais em tempo real, promovendo a autonomia de indivíduos e instituições no acompanhamento das condições de temperatura e pressão.

1.4. Objetivos/resultados/efeitos a serem alcançados (em relação ao problema identificado e sob a perspectiva dos públicos envolvidos)

Objetivo geral:

Desenvolver uma estação meteorológica portátil e acessível, que colete e transmita dados de temperatura e pressão para um computador via Python.

Objetivos específicos:

- Prototipar o sistema com componentes de baixo custo.
- Implementar uma comunicação funcional entre o NodeMCU e o computador.
- Apresentar e interpretar dados coletados para públicos interessados.

Resultados/efeitos esperados:

- Acesso simplificado a dados ambientais locais.
- Fomento ao uso de tecnologias de baixo custo para monitoramento climático.
- Conscientização sobre a importância de acompanhar as condições climáticas.

1.5. Referencial teórico (subsídio teórico para propositura de ações da extensão)

- Internet das Coisas (IoT): Conceito de conexão de dispositivos físicos à internet, para coleta e troca de dados (Gubbi et al., 2013).
- **Sensores ambientais:** Utilização de sensores como o BMP280 para medir variáveis atmosféricas com precisão e confiabilidade (Bosch Sensortec, 2016).
- Tecnologias de baixo custo: Importância de soluções acessíveis para democratização do conhecimento e da tecnologia (Kurkovsky, 2011).

2. PLANEJAMENTO E DESENVOLVIMENTO DO PROJETO

2.1. Plano de trabalho (usando ferramenta acordada com o docente)

O plano de trabalho do projeto "Estação Meteorológica de Baixo Custo" foi construído de forma digital, com organização assíncrona em grupo via reuniões online e uso de ferramentas de comunicação como WhatsApp e Google Drive. Algumas partes do planejamento também foram feitas presencialmente em sala de aula, utilizando o quadro branco para alinhamento de ideias.

As ações foram divididas em etapas, detalhando responsáveis, recursos necessários e formas de acompanhamento dos resultados:

Etapas, Ações, Responsáveis, Recursos e Acompanhamento:

ЕТАРА	AÇÃO	RESPONSÁ VEIS	RECURSOS	ACOMPAN HAMENTO	PRAZO DE ENTREGA
Pesquisa Teórica	Levantar informações sobre sensores de clima e IoT	Eduardo Miguel e Ícaro Lima	Internet, artigos acadêmicos, livros	Revisão pelo grupo e docente	1ª semana de execução
Prototipage m	Montagem do circuito físico com NodeMCU e sensor BME280	Ruan Muller e Alan Goes	Protoboard, jumpers, NodeMCU ESP8266, BME280	Teste inicial e registro em foto/vídeo	2ª semana de execução
Transmissão	Desenvolvimento do código de comunicação e envio de dados	Alan Goes e Ruan Muller	VSCode, bibliotecas BME280, cabo USB	Testes de envio em bancada	3ª semana de execução
Teste e Envio	Testes de funcionamento e visualização dos dados via Python	Breno Chaves e Rafael Canella	Computador , Python, Micropytho n, wire.h, adafruit_sen sor.h, adafruit_bm p280.h	Relatório de testes e ajustes	3ª semana de execução

Formas de acompanhamento dos resultados:

- Apresentações parciais para o grupo e para o docente.
- Registro de cada etapa concluída por meio de fotos, vídeos e documentação técnica.
- Relatórios de progresso compartilhados entre os membros via Google Docs , Word,
 GitHub ou qualquer outra ferramenta similar.

Cronograma geral do projeto:

- **Semana 1:** Pesquisa teórica e levantamento de conceitos.
- **Semana 2:** Montagem da prototipagem do hardware.
- **Semana 3:** Desenvolvimento da programação e transmissão de dados.

• **Semana 4**: Testes finais, ajustes de código, coleta dos dados e preparação para entrega.

OBSERVAÇÃO: Importante resaltar que os prazos para cada etapa do projeto estão sujeitos a mudanças e aumentos, e inclusive as atribuições e responsabilidades de cada um dos integrantes da equipe, seja por fatores externos, urgência em uma determinada etapa, dificuldade de avanço e entre outros motivos.

2.2. Descrição da forma de envolvimento do público participante na formulação do projeto, seu desenvolvimento e avaliação, bem como as estratégias pelo grupo para mobilizá-los.

O grupo de estudantes atuou em todas as etapas do projeto, desde a pesquisa teórica, montagem do protótipo, desenvolvimento da programação até a realização de testes e ajustes.

Estratégias utilizadas:

- Reuniões semanais para divisão de tarefas.
- Discussão e validação coletiva de decisões técnicas.
- Simulações e testes para validação funcional.
- Avaliação final em conjunto, com feedbacks dos membros e do professor orientador.

2.3. Grupo de trabalho (descrição da responsabilidade de cada membro)

- Ícaro Lima: Coordenação geral do projeto e montagem do circuito eletrônico.
- Eduardo Miguel: Pesquisa teórica sobre IoT e sensores ambientais.
- Ruan Muller: Programação do NodeMCU e integração com sensor BMP280.
- Alan Goes: Desenvolvimento do script Python para leitura dos dados.
- Breno Chaves: Documentação do projeto e elaboração dos relatórios.

• Rafael Canella: Realização dos testes de transmissão de dados e coleta de resultados.

As observações do item **2.1** se aplicam a este item também

2.4. Metas, critérios ou indicadores de avaliação do projeto

Metas:

- Montar corretamente o circuito eletrônico.
- Implementar com sucesso a leitura e transmissão dos dados de temperatura e umidade.
- Realizar testes e demonstrar o funcionamento para a turma e o professor.

Indicadores de avaliação:

- Funcionamento correto do sistema em tempo real.
- Precisão dos dados coletados.
- Clareza na documentação e na apresentação do projeto.

2.5. Recursos previstos

- NodeMCU ESP8266 com o firmware do Micropython compatível
- Sensor BME280
- Protoboard e jumpers
- Computador com VSCode e Python
- Acesso à internet para pesquisas e reuniões online

2.6. Detalhamento técnico do projeto

O projeto utiliza o microcontrolador **NodeMCU ESP8266** programado em Arduino IDE para realizar a leitura dos dados de **temperatura** e **umidade** do sensor **BME280**.

Esses dados são enviados via comunicação serial para um computador, onde um programa

em Python realiza a leitura e exibição dos valores em tempo real.

Bibliotecas utilizadas:

• No NodeMCU: Wire.h, Adafruit Sensor.h, BMP280.h.

No computador: VSCode e Python.

O sistema foi testado em ambientes internos para garantir a precisão dos dados e a estabilidade da comunicação entre o hardware e o software.

3. ENCERRAMENTO DO PROJETO

3.1. Relato Coletivo:

O grupo se organizou de maneira colaborativa para o desenvolvimento da estação meteorológica de baixo custo, alinhando os objetivos do projeto às necessidades da comunidade acadêmica e ao desenvolvimento das competências dos alunos. A partir da divisão de tarefas, cada integrante assumiu responsabilidades coerentes com seu perfil, promovendo aprendizado técnico e vivências práticas em equipe. A comunicação constante entre os membros, por meio de ferramentas como WhatsApp e Google Drive, permitiu um acompanhamento eficiente das etapas. O grupo atingiu os objetivos propostos com sucesso, entregando um protótipo funcional com integração em nuvem, reforçando o papel social e educacional da extensão universitária.

3.1.1. Avaliação de reação da parte interessada

A avaliação foi realizada por meio de um breve questionário respondido pelos alunos de outros cursos que acompanharam a apresentação final do projeto. As perguntas buscaram verificar se os objetivos comunitários e tecnológicos foram compreendidos. As respostas indicaram que o público entendeu a proposta, reconheceu o valor educacional e social do projeto e demonstrou interesse em aplicações futuras em escolas e hortas comunitárias. Isso

reforça o impacto do projeto como ferramenta de conscientização ambiental e difusão de tecnologias acessíveis.

3.2. Relato de Experiência Individual (Pontuação específica para o relato individual)

Relato de Ícaro Lima: Minha participação no projeto "Estação Meteorológica de Baixo Custo" foi focada na liderança geral e na montagem do circuito eletrônico. Vivenciei desde a concepção da ideia até a integração com a nuvem, utilizando o ESP32 com MicroPython e o sensor BMP280. Foi uma experiência enriquecedora pois me permitiu aplicar conhecimento teórico em um contexto real de IoT e extensão universitária.

Relato de Eduardo Miguel: Atuei com foco na pesquisa teórica sobre sensores ambientais e loT. Busquei referências acadêmicas e documentações para embasar nossas escolhas tecnológicas. Isso foi essencial para garantir que nosso projeto estivesse alinhado com soluções modernas e acessíveis, especialmente para aplicações comunitárias.

Relato de Ruan Müller: Fui responsável pela programação do microcontrolador ESP32 e pela comunicação com o sensor BMP280. A experiência me proporcionou uma compreensão prática das dificuldades de integrar hardware e software, além de desenvolver habilidades em solução de bugs em tempo real.

Relato de Alan Goes: Contribuí principalmente com o desenvolvimento do script Python e MicroPython para leitura e envio dos dados. Foi desafiador trabalhar com comunicação HTTP no ESP32, adaptar o formato dos dados para o Adafruit IO e configurar os feeds e dashboards. Aprendi bastante sobre API REST e tratamento de erros em dispositivos embarcados.

Relato de Breno Chaves: Participei na documentação técnica e nos relatórios do projeto. Tive a oportunidade de acompanhar todas as etapas para registrar com precisão os avanços e dificuldades, o que ampliou minha capacidade de organização e compreensão do ciclo de desenvolvimento.

Relato de Rafael Canella: Fiquei encarregado dos testes finais e validação dos dados. Pude acompanhar o comportamento da estação em tempo real, avaliando a precisão dos dados

coletados e a estabilidade do sistema. Essa experiência me mostrou a importância da etapa de testes e da confiabilidade em projetos de IoT.

3.2.1. CONTEXTUALIZAÇÃO

O projeto "Estação Meteorológica de Baixo Custo" foi proposto como parte da disciplina de Internet das Coisas (IoT) e extensão. O desafio consistia em construir uma solução funcional capaz de captar dados ambientais e enviá-los para a nuvem, de forma acessível e replicável. Inserido nesse contexto, cada integrante teve a oportunidade de contribuir em uma frente específica do projeto, aplicando conhecimentos prévios, desenvolvendo novas competências e interagindo com tecnologias reais de mercado, como microcontroladores, sensores e APIs de IoT. A extensão nos permitiu vivenciar uma experiência com aplicação prática direta, aproximando a teoria da realidade.

3.2.2. METODOLOGIA

O projeto foi desenvolvido ao longo de quatro semanas. As atividades aconteceram na instituição e em ambiente remoto, com uso de ferramentas como Google Drive, VSCode, WhatsApp e GitHub. As etapas foram divididas entre pesquisa, montagem de circuito, programação, integração com a nuvem e testes. Os dados captados foram enviados para a plataforma Adafruit IO e visualizados via dashboard.

3.2.3. RESULTADOS E DISCUSSÃO:

Inicialmente esperávamos apenas ler os dados em local, mas conseguimos integrálos com a internet e criar visualização remota em tempo real. Enfrentamos desafios na conversão dos dados, formatação JSON e autenticação HTTP. Superamos isso com pesquisa em documentações e testes iterativos. Aprendemos a lidar com APIs REST, dashboards interativos e uso de bibliotecas para sensores. Foi gratificante ver os dados sendo atualizados automaticamente na nuvem.

3.2.4. REFLEXÃO APROFUNDADA

A experiência prática consolidou conceitos teóricos vistos na disciplina de IoT, como comunicação cliente-servidor, sensores, protocolos HTTP e uso de plataformas cloud. O projeto revelou a importância da extensão como ferramenta de aplicação real do conhecimento, permitindo impactar diretamente a comunidade com soluções de baixo custo e alto potencial educativo.

3.2.5. CONSIDERAÇÕES FINAIS

Projetos como este poderiam ser aplicados em escolas, hortas comunitárias ou bairros que desejem acompanhar condições ambientais. Como melhoria futura, poderíamos integrar sensores de umidade, luminosidade e qualidade do ar. Também seria interessante acionar atuadores com base nos dados, criando um sistema de automação climática. Essa experiência abriu portas para futuras iniciativas de pesquisa em IoT e tecnologia social.