KU LEUVEN

Design of Analog and Mixed-Signal Integrated Circuits B-KUL-H05E3A

Feedback Theory and Exercises

Ir. Alberto Gatti, Jun Feng, Shuangmu Li, Prayag Wakale Prof. Filip Tavernier and prof. Tim Piessens Departement Elektrotechniek (ESAT)

Feedback Theory

Feedback

Positive

$$\frac{OUT}{IN} = A_{CL} = \frac{A}{1 - A\beta}$$

A - Feedforward Gain

 β – Feedback factor

 $A\beta$ – Loop gain

Negative

$$\frac{OUT}{IN} = A_{CL} = \frac{A}{1 + A\beta}$$

Loop gain cases

Considering negative feedback topology,

$$\frac{OUT}{IN} = A_{CL} = \frac{A}{1 + A\beta}$$

 \bullet $A\beta >> 1$

$$A_{CL} \approx \frac{1}{\beta} \cdot \frac{1}{1 + 1/A_{OL}\beta} \approx \frac{1}{\beta}$$

Good!

$$\triangle$$
 $A\beta = -1$

$$A_{CL} = \infty$$

Bad!

$$\bullet$$
 $A\beta < -1$

$$A_{CL} = ?$$

Positive feedback stable?

$$\frac{OUT}{IN} = A_{CL} = \frac{A}{1 + A\beta}$$

Take A = 1000 and β = -0.1,

$$A_{CL} = \frac{1000}{-99} \approx -10.1$$
 Finite!

- The simulator with ideal elements also shows finite output.
- How can the gain be finite for positive feedback?

Positive feedback stable?

$$\frac{OUT}{IN} = A_{CL} = \frac{A}{1 + A\beta}$$

Take A = 1000 and β = -0.1,

$$A_{CL} = \frac{1000}{-99} \approx -10.1$$
 Finite!

- The simulator with ideal elements also shows finite output.
- How can the gain be finite for positive feedback?

No practical system has infinite bandwidth. There's always a delay or phase lag within the loop.

Phase is important!

Ideal amplifier

 $A = A_0$ (constant)

$$A_{CL}(s) = \frac{1}{\beta} \cdot \frac{A_0 \beta}{1 + A_0 \beta}$$

Step response:

$$V_o(s) \approx \frac{1}{\beta} \cdot \frac{V_{step}}{s}$$

Real amplifier

$$A = \frac{A_0}{1 + s/\omega_p}$$

$$A_{CL}(s) = \frac{1}{\beta} \cdot \frac{A_0 \beta}{1 + A_0 \beta} \cdot \frac{1}{1 + s/\omega_p (1 + A_0 \beta)}$$

Step response:

$$V_o(s) \approx \frac{1}{\beta} \cdot \frac{1}{1 + s/\omega_p(1 + A_O\beta)} \cdot \frac{V_{step}}{s}$$

Problem with single stage

Relative error
$$\approx \frac{1}{(G_m R_O)\beta}$$

We need higher gain!

Problem with single stage

Relative error $\approx \frac{1}{(G_m R_O)\beta}$

We need higher gain!

Let's cascade two amplifiers

Relative error
$$\approx \frac{1}{(G_{m1}R_{O1}G_{m1}R_{O1})\beta}$$

This brings an additional pole!

Two pole system

$$A = \frac{A_0}{\left(1 + \frac{s}{\omega_{p1}}\right)\left(1 + \frac{s}{\omega_{p2}}\right)}$$

Considering worst case ($\beta = 1$),

$$A_{CL}(s) = \frac{A_O}{\left(\frac{s^2}{\omega_{p_1}\omega_{p_2}} + s.\left(\frac{1}{\omega_{p_1}} + \frac{1}{\omega_{p_2}}\right) + (1 + A_O)\right)}$$

Equation is of the form:

$$A_{CL}(s) = \frac{{\omega_n}^2}{({\omega_n}^2 + 2\zeta\omega_n s + s^2)}$$

Designing for certain PM

 $\zeta = \frac{1}{2} \sqrt{\frac{\omega_{p2}}{A_0 \omega_{p1}}} \omega_u$

For critically damped system, $\zeta = 1$

Based on required PM, we can decide $\binom{\omega_{p2}}{\omega_u}$

Source: https://youtu.be/PT31xAEd_v4?feature=shared

Need for compensation

$$\omega_u \approx \omega_{p1}.A_{OL}$$

$$\omega_{p1} = 1/R_{O1}C_{O1}$$

$$\omega_{p2} = 1/R_{O2}C_L$$

Let's take an example,

$$A_{OL} = 1000, C_L = 10 pF, PM = 72^{\circ}$$

From last slide for PM = 72°, $\frac{\omega_{p2}}{\omega_u}$ = 3

$$\frac{R_{O1}C_{O1}}{A_{OL}R_{O2}C_{L}} = 3$$

Assuming, $R_{O1} = R_{O2}$

 $C_{O1} = 30 \, nF$ Very high!

We need a smart way to separate the poles i.e. do compensation.

Miller compensation

$$\omega_{p1}' = \frac{1}{R_{O1}[C_C(1 + G_{m2}R_{O2}) + C_1] + R_{O2}(C_C + C_L)} \approx \frac{1}{R_{O1}[G_{m2}R_{O2})C_C}$$

$$\omega_{p2}' = \frac{G_{m2}}{(C_{O1} + C_L) + {^{C_{O1}C_L}}/{_{C_C}}} \approx \frac{G_{m2}}{(C_{O1} + C_L)}$$

$$\omega_{Z}' = \frac{G_{m2}}{C_C}$$

Right Half plane Zero!

A small cap appears as big due to miller effect.

We don't need a very high C_{O1} to get required PM!

2 Stage Miller OTA

The 2 parallel paths introduce an RHP zero and reduces PM!

We need a way to block the forward path though C_c .

$$A_O = G_{m1}R_{O1}G_{m2}R_{O2}$$

$$\omega_u \approx \frac{G_{m1}}{C_C}$$
 $SR \approx \frac{I_{BIAS,1}}{C_L}$

$$\omega_{p1} \approx \frac{1}{R_{O1}(G_{m2}R_{O2})C_C}$$

$$\omega_{p2} \approx \frac{G_{m2}}{(C_{O1} + C_L)}$$

$$\omega_Z = \frac{G_{m2}}{C_C}$$

2 Stage Indirect Compensated Miller OTA

The RHP zero goes but this adds an extra pole!

 $R_{\mathcal{C}}$ needs to be small to ensure ω_{p2} and ω_{p3} are separated.

$$A_O = G_{m1} R_{O1} G_{m2} R_{O2}$$

$$\omega_u \approx \frac{G_{m1}}{C_C} \qquad SR \approx \frac{I_{BIAS,1}}{C_L}$$

$$\omega_{p1} \approx \frac{1}{R_{O1}(G_{m2}R_{O2})C_C}$$

$$\omega_{p2} \approx \frac{G_{m2}C_C}{C_LC_{O1}}$$
 $\omega_{p3} \approx \left(\frac{1}{R_{O1}C_{O1}} + \frac{1}{R_{O1}C_{O1}}\right)$

$$\omega_Z = \frac{1}{R_C C_C}$$

 R_C is looking in impedance of current buffer

Exercise (see syllabus for details)

- Try the positive feedback simulation with and without 'tdelay'.
- Design and simulate ideal 2-stage OTA for PM of 45°, 60°, 72°

•
$$A_0 = 50 \ dB$$
, $C_L = 10 \ pF$, $\omega_u = 3 \ \frac{Mrad}{sec}$, $SR = 1 \frac{V}{usec}$

Add a current buffer in series with feedback capacitor and check the results.

References

- https://cmosedu.com/jbaker/students/theses/Indirect%20Feedback%20Compensation%20Techniques%20for%20Multi-Stage%20Operational%20Amplifiers.pdf
- https://in.ncu.edu.tw/ncume_ee/harvard-es154/lect_18_feedback.pdf
- https://youtu.be/PT31xAEd_v4?feature=shared

Appendix

2 Stage Miller OTA design steps

- Derive the OTA parameters from given specifications.

 (Ensure that your calculated parameters meets all required specifications)
- Start the design with 5T OTA at first. (only DC op. simulation at first!)
 - For current sources take L more than at least 10*Lmin
 - Decide $V_{ov} = \left(V_{gs} V_{th}\right)$ based on $\frac{G_m}{I_d}$ ratio for all transistors
 - Small $\frac{G_m}{I_d}$ ratio \rightarrow small width \rightarrow high power consumption \rightarrow less $C_{parasitic}$
 - High $\frac{G_m}{I_d}$ ratio \rightarrow large width \rightarrow low power consumption \rightarrow high $C_{parasitic}$
 - Always observe i_d , v_{dsat} , v_{ds} , g_m , $g_{moverid}$ and region of transistors. (You will require to choose a few of them from annotation setup at a time)

2 Stage Miller OTA design steps

- Once you meet desired G_m , start to increase L for diff. pair and load MOSFETs to meet the gain requirement, ensuring that you are not changing W/L i.e. G_m .
- Once done with 1st stage, use the same dimension of PMOS load for 2nd stage CS amplifier and of NMOS IBIAS transistor for 2nd stage NMOS load but with (multiplier factor based on your hand calculated parameters).
- Connect the feedback capacitor and simulate for STB analysis.
- Check which parameters are affecting the PM you want to reach and how to optimize OTA parameters to reach there.
- Be mindful while doing that ;)

