E.N.S.P.Niveau II / Année 2012-13, Semestre 1ND/NG

*** U.E. MAT 217 «Séries et Intégrales généralisées » ***

Examen Final (3H00mn)

- 1. TOUT DOCUMENT INTERDIT.
- 2. Le correcteur appréciera le SOIN apporté à la REDACTION et à la PRESENTATION du devoir.
- 3. Toute réponse doit être justifiée, mais éviter des explications INUTILEMENT KILOMETRIQUES.
- 4. L'objectif ici ne doit pas être de chercher à traiter à tout prix toute l'épreuve, en sprintant inconsidérément et en bâclant. Mais, plutôt, d'en couvrir une part significative de manière convaincante.

**** EXERCICE 1 (3 POINTS) ****

On pose:
$$A = \sum_{n=2}^{+\infty} \frac{\sin(n)}{\sinh(n) + \cosh(n)}.$$

 $\mathbf{1}^{\circ}$) Sans calculer A, montrer que $A \in \mathbb{R}$.

 2°) Calculer A.

**** EXERCICE 2 (6 POINTS) ****

Etudier la nature des séries : (1)
$$\sum_{n \ge 2} \frac{\ln n}{n + \sqrt{\cosh n}}$$
;

(2)
$$\sum_{n \ge 1} \left(\sqrt[3]{n} \sin \frac{1}{\sqrt[3]{n}} - 1 \right)$$
;

(2)
$$\sum_{n \geq 1} \left(\sqrt[3]{n} \sin \frac{1}{\sqrt[3]{n}} - 1 \right);$$
 (3) $\sum_{n \geq 0} e^{-(1+i)n} \cos \left(e^{n^2} \right);$ (4) $\sum_{n \geq 2} (-1)^n \frac{\cos (n\pi)}{\ln n}.$

$$(4) \sum_{n \geqslant 2} (-1)^n \frac{\cos(n\pi)}{\ln n}$$

**** *EXERCICE 3* (3,5 POINTS) ****

Soit ω , un réel arbitraire fixé.

- **1°) a)** Trouver le domaine de définition \mathcal{D}_f dans \mathbb{C} de la fonction : $f(z) = \sum_{n=0}^{+\infty} \frac{\operatorname{sh}(\omega n) \operatorname{ch}(\omega n)}{\operatorname{sh}(\omega n) + \operatorname{ch}(\omega n)} z^n$.
 - b) Représenter ce domaine dans le plan complexe.
- $\mathbf{2}^{\circ}$) Calculer $f(z), \forall z \in \mathcal{D}_f$.

**** EXERCICE 4 (2,5 POINTS) ****

Trouver le domaine de définition dans IN de la fonction : $T(k) = \sum_{n=1}^{+\infty} \sin\left(k\pi\sqrt{1+n^2}\right)$. Et dans **Z**?

**** EXERCICE 5 (8 POINTS) ****

- 1°) Trouver le domaine de définition \mathcal{D}_F dans $\mathsf{IR} \times \mathsf{IR}$ de la fonction : $F(a,b) = \sum_{n=0}^{+\infty} e^{-(an+b)^2}$.
- **2°)** Trouver le domaine de définition \mathcal{D}_G dans $\mathsf{IR} \times \mathsf{IR}$ de la fonction : $G(h,\beta) = \sum_{n=0}^{+\infty} e^{h(n+\beta)^2}$.
- **3°)** Trouver le domaine de définition \mathcal{D}_L dans $\mathsf{IR} \times \mathsf{IR} \times \mathsf{IR}$ de la fonction : $L(a,b,c) = \sum_{n=0}^{+\infty} e^{an^2 + bn + c}$.
- $\mathbf{4}^{\circ}$) a) Calculer une valeur approchée de L(-1/5,-1,0) à 10^{-8} près.
 - b) Donner une approximation de l'erreur absolue associée à cette valeur approchée de L(-1/5, -1, 0).
- 5°) a) Du calcul précédent, on peut déduire une valeur approchée de L(-1/5, -1, 7). Laquelle et que peut-on dire de l'erreur absolue associée?
 - b) Que peut-on dire de l'erreur relative associée comparativement à celle associée à la valeur approchée de L(-1/5, -1, 0) calculée ci-dessus?