Cycles de vie classiques (suite)

Jusqu'à présent, théoriquement

• On insiste sur la découpe en activités qui se suivent séquentiellement :

t0	t1	t2	t3	t4	t5	
			Codage et	Tests de	Tests de	
Spécifications	Analyse formelle	Conception	tests unitaires	vérification	validation	

Points de synchronisation : attente qu'une étape soit terminée.

2 points de contact avec le client

Gestion des retards

Prépa manuels Temps :

- (exemple) Que se passe-t-il si la conception prend du retard?
- Imaginons un retard de livraison d'une unité de temps (exemple semaine), de t6 à t7.

Toutes les étapes suivantes reculent d'une semaine ;

Ou, si possible, un concepteur vient renforcer l'équipe pour récupérer le retard de l'étape précédente dans celle-ci.

Que font les programmeurs pendant le temps t6 ?

Pratiquement

Toujours 2 points de contact avec le client

Mais à l'intérieur de ces points, « élasticité » et peu de réels points d'attente

ORGA entreprises 5 14-03-23

Pratiquement

Temps:

4						
Spécifications						
Analyse						
Conception					Ā	
Développemen ts & Tests U.	arges	,		t vérifi	être liv	
Ecriture Tests	5			nen	e Š	
Exécution tests	ě			ner	효	
Prépa démo	je.			iror	icie	dient
Prépa démo Prépa manuels	ত্ত			Env	90	

Temps:

Un pas plus loin...

	t0	t1	t1'	t2	t2'	t3	t4	t4'	t5	;	
	Spécifications										
		Analyse formelle		Analyse formelle							
			Conception	Conception	Conception	Conception				Validation	
				Codage	Codage	Codage	Codage			>	
000000000000000000000000000000000000000		***************************************			Vérification	Vérification	Vérification	Vérification			-

Parties de produit vérifiées plus tôt + feedback (testeurs -utilisateurs)

ORGA entreprises

Travail en parallèle possible

vers ...

les modèles à incréments

Processus Unifié (Unified Process)

Unifié: pourquoi?

- Années 90, une 50aine de méthodes orientées Objet
- Pas de consensus → recherches d'un langage commun :
 - UML
- UML = ensemble d'outils normalisés ; MAIS besoin d'une méthode
- Processus Unifié (PU Unified Process UP) :
 - Méthode
 - Couverture complète du SDLC pour les développements orientés Objet
 - Lien avec UML.

PU méthode

- •PU est piloté par les cas d'utilisation.
- •PU est centré sur l'architecture logicielle.
- •PU est à base de composants.
- •PU est une méthode de développement de logiciels itérative et incrémentale.

PU utilise UML

PU piloté par les cas d'utilisation

PU centré sur l'architecture

• Architecte dessine une image complète d'un bâtiment avant le début de la construction.

→ Image complète du système avant son implémentation.

PU itératif et incrémental

• L'idée de base :

- Développer un système au travers de cycles répétés (itération) et en petites avancées (incrément).
- Chaque itération peut reprendre plusieurs activités (activités qui vont de l'analyse formelle jusqu'à la vérification).
- Chaque incrément va ajouter de nouvelles fonctionnalités; c'est une construction morceau par morceau.
- Avantage majeur :
 - On peut tirer avantage de ce que l'on a appris durant l'itération précédente.
 - On réduit les risques.

PU réduit les risques

- Prendre en charge les risques importants très tôt dans le processus de développement.
- Définir une architecture qui guidera le développement logiciel.
- Fournir une **infrastructure** préfabriquée (framework) pour prendre en compte non seulement les exigences de base mais aussi les changements futurs.
- Développer **progressivement** le système, de façon incrémentale.

http://lgl.isnetne.ch/methodologie-2005/chap_06/chapitre6.pdf 03.2014

PU: 4 phases

- La création (inception) : la vision du projet est encore approximative. On y élaborera surtout les cas d'utilisation.
- L'élaboration : la vision y est plus élaborée. Le noyau du projet sera implémenté, les risques élevés résolus. La plupart des besoins seront identifiés.
- La construction : implémentation des éléments de risque et complexité plus faibles. Préparation du déploiement.
- La transition : B-tests et déploiement.

Phase 1: création

- Développer la vision du projet
- Définir la portée du projet
- Réduire les risques majeurs
- S'assurer de la viabilité commerciale
- 1 seule phase pas d'itération

- Comprendre les besoins du client
- Spécifier
- Analyser
- Concevoir
- Développer

Phase 2: élaboration

- Développer l'architecture de référence
- Avoir compris l'essentiel des besoins
- Réduire les risques élevés (risques de moindre gravité qu'en phase de création)
- Peut avoir plusieurs <u>itérations</u>

- Comprendre les besoins du client
- Spécifier
- Analyser
- Concevoir
- Développer
- Tests

Phase 3: construction

- Développer le système
- Réduire les risques
- Vérifier l'utilisabilité du produit
- Peut avoir plusieurs itérations

- Comprendre les besoins du client
- Spécifier
- Analyser
- Concevoir
- Développer
- Tests

Phase 4: transition

 S'assurer que le produit est livrable

- Déployer
- Former les utilisateurs
- Mettre en production
- Peut avoir plusieurs <u>itérations</u>

- Comprendre les besoins du client
- Spécifier
- Analyser
- Concevoir
- Développer
- Tests
- Déployer, livrer...

PU: cycle de vie

Temps

cascade Spécifications - analyse - conception - implémentation - test

Processus?

Conclusion

- Le PU met en évidence :
 - Le cycle de vie, avec des phases et des itérations.
 - Les disciplines qui ne sont pas limitées au temps d'une seule phase.
 - Le fait que les logiciels ne sont pas développés de la façon strictement séquentielle exprimée dans la Cascade ou le V...