In [638]: import pandas as pd import numpy as np import seaborn as sns

import matplotlib.pyplot as plt

In [639]:

data=pd.read_csv("D:\TITANIC.csv") data

Out[639]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Emk
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	
886	887	0	2	Montvila, Rev. Juozas	male	27.0	0	0	211536	13.0000	NaN	
887	888	1	1	Graham, Miss. Margaret Edith	female	19.0	0	0	112053	30.0000	B42	
888	889	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	NaN	1	2	W./C. 6607	23.4500	NaN	
889	890	1	1	Behr, Mr. Karl Howell	male	26.0	0	0	111369	30.0000	C148	
890	891	0	3	Dooley, Mr. Patrick	male	32.0	0	0	370376	7.7500	NaN	

891 rows × 12 columns

```
In [640]:
            data.info()
            data.shape
            <class 'pandas.core.frame.DataFrame'>
            RangeIndex: 891 entries, 0 to 890
            Data columns (total 12 columns):
             #
                 Column
                                 Non-Null Count
                                                   Dtype
            - - -
                  ----
                                 -----
                                                   ----
             0
                 PassengerId
                                 891 non-null
                                                   int64
             1
                 Survived
                                 891 non-null
                                                   int64
             2
                 Pclass
                                 891 non-null
                                                   int64
             3
                 Name
                                 891 non-null
                                                   object
             4
                 Sex
                                 891 non-null
                                                   object
                                                   float64
             5
                 Age
                                 714 non-null
                 SibSp
             6
                                 891 non-null
                                                   int64
             7
                 Parch
                                 891 non-null
                                                   int64
             8
                 Ticket
                                 891 non-null
                                                   object
             9
                 Fare
                                 891 non-null
                                                   float64
             10
                 Cabin
                                 204 non-null
                                                   object
             11 Embarked
                                 889 non-null
                                                   object
            dtypes: float64(2), int64(5), object(5)
            memory usage: 83.7+ KB
Out[640]: (891, 12)
In [641]:
            data.describe()
Out[641]:
                                Survived
                                            Pclass
                                                                  SibSp
                   Passengerld
                                                         Age
                                                                             Parch
                                                                                         Fare
             count
                    891.000000
                              891.000000
                                         891.000000
                                                    714.000000
                                                              891.000000
                                                                        891.000000
                                                                                   891.000000
                                           2.308642
             mean
                    446.000000
                                0.383838
                                                     29.699118
                                                                0.523008
                                                                          0.381594
                                                                                    32.204208
              std
                    257.353842
                                0.486592
                                           0.836071
                                                    14.526497
                                                                1.102743
                                                                          0.806057
                                                                                    49.693429
              min
                      1.000000
                                0.000000
                                           1.000000
                                                     0.420000
                                                                0.000000
                                                                          0.000000
                                                                                     0.000000
              25%
                    223.500000
                                0.000000
                                           2.000000
                                                     20.125000
                                                                0.000000
                                                                          0.000000
                                                                                     7.910400
              50%
                    446.000000
                                0.000000
                                           3.000000
                                                    28.000000
                                                                0.000000
                                                                          0.000000
                                                                                    14.454200
                                           3.000000
                                                     38.000000
                                                                1.000000
                                                                          0.000000
                                                                                    31.000000
              75%
                    668.500000
                                1.000000
                    891.000000
                                1.000000
                                           3.000000
                                                     80.000000
                                                                8.000000
                                                                          6.000000 512.329200
              max
In [642]:
            data.isnull().sum()
Out[642]: PassengerId
                               0
            Survived
                                0
            Pclass
                                0
            Name
                                0
            Sex
                                0
            Age
                             177
            SibSp
                               0
            Parch
                                0
```

Ticket

Fare

Cabin

Embarked dtype: int64

0

0

In [643]: data['Age']=data['Age'].fillna(value=data['Age'].median())
 data['Embarked'].fillna('S')
 data

Out[643]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Emb
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	
886	887	0	2	Montvila, Rev. Juozas	male	27.0	0	0	211536	13.0000	NaN	
887	888	1	1	Graham, Miss. Margaret Edith	female	19.0	0	0	112053	30.0000	B42	
888	889	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	28.0	1	2	W./C. 6607	23.4500	NaN	
889	890	1	1	Behr, Mr. Karl Howell	male	26.0	0	0	111369	30.0000	C148	
890	891	0	3	Dooley, Mr. Patrick	male	32.0	0	0	370376	7.7500	NaN	

891 rows × 12 columns

```
In [644]: data['Age'].describe()
```

Out[644]: count

891.000000 29.361582 mean std 13.019697 min 0.420000 25% 22.000000 50% 28.000000 75% 35.000000 80.000000 max Name: Age, dtype: float64

```
In [645]: | q3=data["Age"].quantile(0.75)
           q3
          q1=data["Age"].quantile(0.25)
           IQR=data["Age"].quantile(0.75)-data['Age'].quantile(0.25)
           print(IQR)
          13.0
In [646]: | upper_outlierlimit=data['Age'].quantile(0.75)+1.5*IQR
           lower_outlierlimit=data['Age'].quantile(0.25)-1.5*IQR
           print(upper_outlierlimit)
           print(lower_outlierlimit)
          54.5
          2.5
In [647]:
          outliervalues=data[(data['Age']>=upper_outlierlimit)|(data['Age']<=lower_outlie
           rlimit)]
           outliervalues
           data['Age']=np.where(data['Age']>=54.5,54.5,data['Age'])
           data['Age']=np.where(data['Age']<=2.5, 2.5, data['Age'])</pre>
           print(data['Age'], data['Age'])
          0
                  22.0
          1
                  38.0
          2
                  26.0
          3
                  35.0
          4
                  35.0
                  . . .
          886
                  27.0
          887
                  19.0
          888
                  28.0
          889
                  26.0
          890
                  32.0
          Name: Age, Length: 891, dtype: float64 0
                                                           22.0
          1
                  38.0
          2
                  26.0
          3
                  35.0
                  35.0
                  . . .
          886
                  27.0
          887
                  19.0
          888
                  28.0
          889
                  26.0
          890
                  32.0
          Name: Age, Length: 891, dtype: float64
```

```
In [648]: data.boxplot(column=['Age']) # NEW BOXPLOT FOR 'AGE' AFTER REMOVING
OUTLIERS
plt.show()
```



```
In [649]: data['Fare'].describe()
Out[649]: count
                   891.000000
          mean
                     32.204208
          std
                    49.693429
          min
                     0.00000
          25%
                     7.910400
          50%
                    14.454200
          75%
                    31.000000
          max
                   512.329200
          Name: Fare, dtype: float64
In [650]:
          q3=data["Fare"].quantile(0.75)
          q1=data["Fare"].quantile(0.25)
          IQR=data["Fare"].quantile(0.75)-data['Fare'].quantile(0.25)
          print(IQR)
          23.0896
```

```
In [651]: upper_outlierlimit=data['Fare'].quantile(0.75)+1.5*IQR
    lower_outlierlimit=data['Fare'].quantile(0.25)-1.5*IQR
    print(upper_outlierlimit)
    print(lower_outlierlimit)
```

65.6344 -26.724

```
In [652]: | data['Fare']=np.where(data['Fare']>=65.6344,65.6344,data['Fare'])
          print(data['Fare'])
          0
                   7.2500
          1
                  65.6344
          2
                   7.9250
          3
                  53.1000
          4
                   8.0500
                   . . .
          886
                  13.0000
                  30.0000
          887
          888
                  23.4500
          889
                  30.0000
          890
                   7.7500
          Name: Fare, Length: 891, dtype: float64
```



```
In [655]: data['SibSp'].describe()
Out[655]: count
                   891.000000
          mean
                     0.523008
          std
                     1.102743
          min
                     0.000000
          25%
                     0.000000
          50%
                     0.000000
          75%
                     1.000000
          max
                     8.000000
          Name: SibSp, dtype: float64
In [656]: | q3=data["SibSp"].quantile(0.75)
          q1=data["SibSp"].quantile(0.25)
          IQR=data["SibSp"].quantile(0.75)-data['SibSp'].quantile(0.25)
          print(IQR)
          1.0
In [657]:
          upper_outlierlimit=data['SibSp'].quantile(0.75)+1.5*IQR
          lower_outlierlimit=data['SibSp'].quantile(0.25)-1.5*IQR
          print(upper_outlierlimit)
          print(lower_outlierlimit)
          2.5
          -1.5
```

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Emba
7	8	0	3	Palsson, Master. Gosta Leonard	male	2.5	3	1	349909	21.0750	NaN	
16	17	0	3	Rice, Master. Eugene	male	2.5	4	1	382652	29.1250	NaN	
24	25	0	3	Palsson, Miss. Torborg Danira	female	8.0	3	1	349909	21.0750	NaN	
27	28	0	1	Fortune, Mr. Charles Alexander	male	19.0	3	2	19950	65.6344	C23 C25 C27	
50	51	0	3	Panula, Master. Juha Niilo	male	7.0	4	1	3101295	39.6875	NaN	
59	60	0	3	Goodwin, Master. William Frederick	male	11.0	5	2	CA 2144	46.9000	NaN	
63	64	0	3	Skoog, Master. Harald	male	4.0	3	2	347088	27.9000	NaN	
68	69	1	3	Andersson, Miss. Erna Alexandra	female	17.0	4	2	3101281	7.9250	NaN	
71	72	0	3	Goodwin, Miss. Lillian Amy	female	16.0	5	2	CA 2144	46.9000	NaN	
85	86	1	3	Backstrom, Mrs. Karl Alfred (Maria Mathilda Gu	female	33.0	3	0	3101278	15.8500	NaN	
88	89	1	1	Fortune, Miss. Mabel Helen	female	23.0	3	2	19950	65.6344	C23 C25 C27	
119	120	0	3	Andersson, Miss. Ellis Anna Maria	female	2.5	4	2	347082	31.2750	NaN	
159	160	0	3	Sage, Master. Thomas Henry	male	28.0	8	2	CA. 2343	65.6344	NaN	
164	165	0	3	Panula, Master. Eino Viljami	male	2.5	4	1	3101295	39.6875	NaN	
171	172	0	3	Rice, Master. Arthur	male	4.0	4	1	382652	29.1250	NaN	

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Emba
176	177	0	3	Lefebre, Master. Henry Forbes	male	28.0	3	1	4133	25.4667	NaN	
180	181	0	3	Sage, Miss. Constance Gladys	female	28.0	8	2	CA. 2343	65.6344	NaN	
182	183	0	3	Asplund, Master. Clarence Gustaf Hugo	male	9.0	4	2	347077	31.3875	NaN	
201	202	0	3	Sage, Mr. Frederick	male	28.0	8	2	CA. 2343	65.6344	NaN	
229	230	0	3	Lefebre, Miss. Mathilde	female	28.0	3	1	4133	25.4667	NaN	
233	234	1	3	Asplund, Miss. Lillian Gertrud	female	5.0	4	2	347077	31.3875	NaN	
261	262	1	3	Asplund, Master. Edvin Rojj Felix	male	3.0	4	2	347077	31.3875	NaN	
266	267	0	3	Panula, Mr. Ernesti Arvid	male	16.0	4	1	3101295	39.6875	NaN	
278	279	0	3	Rice, Master. Eric	male	7.0	4	1	382652	29.1250	NaN	
324	325	0	3	Sage, Mr. George John Jr	male	28.0	8	2	CA. 2343	65.6344	NaN	
341	342	1	1	Fortune, Miss. Alice Elizabeth	female	24.0	3	2	19950	65.6344	C23 C25 C27	
374	375	0	3	Palsson, Miss. Stina Viola	female	3.0	3	1	349909	21.0750	NaN	
386	387	0	3	Goodwin, Master. Sidney Leonard	male	2.5	5	2	CA 2144	46.9000	NaN	
409	410	0	3	Lefebre, Miss. Ida	female	28.0	3	1	4133	25.4667	NaN	
480	481	0	3	Goodwin, Master. Harold Victor	male	9.0	5	2	CA 2144	46.9000	NaN	
485	486	0	3	Lefebre, Miss. Jeannie	female	28.0	3	1	4133	25.4667	NaN	
541	542	0	3	Andersson, Miss. Ingeborg Constanzia	female	9.0	4	2	347082	31.2750	NaN	

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Emba
542	543	0	3	Andersson, Miss. Sigrid Elisabeth	female	11.0	4	2	347082	31.2750	NaN	
634	635	0	3	Skoog, Miss. Mabel	female	9.0	3	2	347088	27.9000	NaN	
642	643	0	3	Skoog, Miss. Margit Elizabeth	female	2.5	3	2	347088	27.9000	NaN	
683	684	0	3	Goodwin, Mr. Charles Edward	male	14.0	5	2	CA 2144	46.9000	NaN	
686	687	0	3	Panula, Mr. Jaako Arnold	male	14.0	4	1	3101295	39.6875	NaN	
726	727	1	2	Renouf, Mrs. Peter Henry (Lillian Jefferys)	female	30.0	3	0	31027	21.0000	NaN	
787	788	0	3	Rice, Master. George Hugh	male	8.0	4	1	382652	29.1250	NaN	
792	793	0	3	Sage, Miss. Stella Anna	female	28.0	8	2	CA. 2343	65.6344	NaN	
813	814	0	3	Andersson, Miss. Ebba Iris Alfrida	female	6.0	4	2	347082	31.2750	NaN	
819	820	0	3	Skoog, Master. Karl Thorsten	male	10.0	3	2	347088	27.9000	NaN	
824	825	0	3	Panula, Master. Urho Abraham	male	2.5	4	1	3101295	39.6875	NaN	
846	847	0	3	Sage, Mr. Douglas Bullen	male	28.0	8	2	CA. 2343	65.6344	NaN	
850	851	0	3	Andersson, Master. Sigvard Harald Elias	male	4.0	4	2	347082	31.2750	NaN	
863	864	0	3	Sage, Miss. Dorothy Edith "Dolly"	female	28.0	8	2	CA. 2343	65.6344	NaN	

```
In [659]: data['SibSp']=np.where(data['SibSp']>=2.5,2.5,data['SibSp'])
          print(data['SibSp'])
           0
                  1.0
           1
                  1.0
           2
                  0.0
           3
                  1.0
           4
                  0.0
                 . . .
           886
                  0.0
           887
                  0.0
           888
                  1.0
           889
                  0.0
           890
                  0.0
           Name: SibSp, Length: 891, dtype: float64
```

```
In [660]: data.boxplot(column=['SibSp']) # NEW BOXPLOT FOR 'Sibsp' A
FTER REMOVING OUTLIERS
plt.show()
```


In [661]: data

$\overline{}$			т.	$\overline{}$	_	4	-	
n	ш	IT.		h	h	. 1		
v	u	ı		v	v	_	_	

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Emb
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1.0	0	A/5 21171	7.2500	NaN	
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1.0	0	PC 17599	65.6344	C85	
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0.0	0	STON/O2. 3101282	7.9250	NaN	
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1.0	0	113803	53.1000	C123	
4	5	0	3	Allen, Mr. William Henry	male	35.0	0.0	0	373450	8.0500	NaN	
886	887	0	2	Montvila, Rev. Juozas	male	27.0	0.0	0	211536	13.0000	NaN	
887	888	1	1	Graham, Miss. Margaret Edith	female	19.0	0.0	0	112053	30.0000	B42	
888	889	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	28.0	1.0	2	W./C. 6607	23.4500	NaN	
889	890	1	1	Behr, Mr. Karl Howell	male	26.0	0.0	0	111369	30.0000	C148	
890	891	0	3	Dooley, Mr. Patrick	male	32.0	0.0	0	370376	7.7500	NaN	

891 rows \times 12 columns

In [662]: data.drop('Cabin',axis=1,inplace=True)

Out[663]:

In [663]: data

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1.0	0	A/5 21171	7.2500	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1.0	0	PC 17599	65.6344	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0.0	0	STON/O2. 3101282	7.9250	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1.0	0	113803	53.1000	S
4	5	0	3	Allen, Mr. William Henry	male	35.0	0.0	0	373450	8.0500	S
886	887	0	2	Montvila, Rev. Juozas	male	27.0	0.0	0	211536	13.0000	S
887	888	1	1	Graham, Miss. Margaret Edith	female	19.0	0.0	0	112053	30.0000	S
888	889	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	28.0	1.0	2	W./C. 6607	23.4500	S
889	890	1	1	Behr, Mr. Karl Howell	male	26.0	0.0	0	111369	30.0000	С
890	891	0	3	Dooley, Mr. Patrick	male	32.0	0.0	0	370376	7.7500	Q

891 rows × 11 columns

In [664]: sex=pd.get_dummies(data['Sex'],drop_first=True) embark=pd.get_dummies(data['Embarked'],drop_first=True)

In [665]: data.drop(['Sex','Name','Ticket','Embarked'],axis=1,inplace=True)

In [666]: data.head()

Out[666]:

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare
0	1	0	3	22.0	1.0	0	7.2500
1	2	1	1	38.0	1.0	0	65.6344
2	3	1	3	26.0	0.0	0	7.9250
3	4	1	1	35.0	1.0	0	53.1000
4	5	0	3	35.0	0.0	0	8.0500

Out[667]:

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare	male	Q	S
0	1	0	3	22.0	1.0	0	7.2500	1	0	1
1	2	1	1	38.0	1.0	0	65.6344	0	0	0
2	3	1	3	26.0	0.0	0	7.9250	0	0	1
3	4	1	1	35.0	1.0	0	53.1000	0	0	1
4	5	0	3	35.0	0.0	0	8.0500	1	0	1

In [668]: cols=data.columns
 cols=['PassengerId','Pclass','Age','SibSp','Parch','Fare','male','Q','S','Survi
 ved']

In [669]: data=data[cols] data

Out[669]:

	Passengerld	Pclass	Age	SibSp	Parch	Fare	male	Q	s	Survived
0	1	3	22.0	1.0	0	7.2500	1	0	1	0
1	2	1	38.0	1.0	0	65.6344	0	0	0	1
2	3	3	26.0	0.0	0	7.9250	0	0	1	1
3	4	1	35.0	1.0	0	53.1000	0	0	1	1
4	5	3	35.0	0.0	0	8.0500	1	0	1	0
•••										
886	887	2	27.0	0.0	0	13.0000	1	0	1	0
887	888	1	19.0	0.0	0	30.0000	0	0	1	1
888	889	3	28.0	1.0	2	23.4500	0	0	1	0
889	890	1	26.0	0.0	0	30.0000	1	0	0	1
890	891	3	32.0	0.0	0	7.7500	1	1	0	0

891 rows × 10 columns

```
In [670]: | X=data.iloc[:,:-1].values
          Χ
Out[670]: array([[ 1.,
                               22., ...,
                          3.,
                                            1.,
                                                  0.,
                                                        1.],
                    2.,
                          1.,
                               38., ...,
                                            0.,
                                                  0.,
                                                        0.],
                 L
                 26., ...,
                                                        1.],
                    3.,
                          3.,
                                                  0.,
                 [889.,
                          3.,
                               28., ...,
                                                        1.],
                                            0.,
                                                  0.,
                          1.,
                 [890.,
                               26., ...,
                                            1.,
                                                  0.,
                                                        0.],
                 [891.,
                          3.,
                               32., ...,
                                            1.,
                                                  1.,
                                                        0.]])
In [671]: X.shape
Out[671]: (891, 9)
In [672]: y=data.iloc[:,-1].values
Out[672]: array([0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1,
                 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1,
                 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0,
                 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0,
                 1, 0,
                       0, 0, 0, 0, 0, 0, 0, 1,
                                               1, 0, 0, 0, 0, 0, 0, 0, 1, 1,
                                                                                 1,
                    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
                                                           0, 1, 0, 1, 1, 0,
                 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0,
                                                        0, 0, 0, 0, 0, 1,
                 0, 0, 1,
                          0, 0, 0,
                                   Θ,
                                      1, 0, 0, 0, 1, 1,
                                                                          Θ,
                 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1,
                                      0, 0, 1,
                                               1, 1, 0, 1,
                                                            0, 0, 0, 1,
                       0, 0, 0, 0, 1,
                                                                        1,
                                                                           Θ,
                                                                              1,
                 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0,
                 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0,
                         1,
                             1, 1, 0,
                                      1,
                                         1, 0,
                                               1, 1, 0, 0, 0, 1, 0, 0, 0,
                                                                          1,
                 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1,
                    1, 1,
                          1,
                             0, 0, 0,
                                      1, 1, 0,
                                               1, 1, 0, 0, 1,
                                                              1, 0, 1,
                                                                        0, 1,
                                                                              1,
                                                                                 1,
                    0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0,
                                                                           Θ,
                 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1,
                                                               1, 1, 1,
                                                                        1,
                 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1,
                                                                             1,
                 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0,
                                      0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1,
                       0, 0, 0, 0, 0,
                 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1,
                       Θ,
                         0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1,
                                                                        Θ,
                                                                           0, 0,
                                                                                 1,
                 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1,
                 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1,
                    0, 1, 0,
                             0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0,
                                                                    0, 1,
                                                                          1,
                 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1,
                         0, 1, 1, 0,
                                      1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0,
                 1, 1,
                       Θ,
                 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0,
                       1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1,
                                                                     0, 0, 1,
                    0, 0, 1,
                             0, 1, 1, 1, 0, 1, 0, 1, 0, 1,
                                                           0, 1, 0,
                                                                    0, 0, 0,
                 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1,
                                      1, 1, 1,
                                               1, 0, 0, 0, 0,
                                                                 0, 0,
                         0, 0, 0, 0,
                                                               1,
                                                                        1,
                                                                           1,
                 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1,
                       0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1,
                                                                           Θ,
                 1, 1,
                                                                     Θ,
                                                                        1,
                                                                                 1,
                 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0,
                 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0,
                          0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0,
                 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1,
                       1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1,
                                                                                 1,
                 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1,
                 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0], dtype=int64)
```

```
In [673]: | y.shape
Out[673]: (891,)
In [674]: from sklearn.model_selection import train_test_split
          X_train, X_test, y_train, y_test=train_test_split(X, y, test_size=0.20, random_state=
          0)
In [675]: X_test
Out[675]: array([[496.,
                          3., 28., ...,
                                           1.,
                                                 0.,
                                                       0.],
                          3., 28., ...,
                 [649.,
                                           1.,
                                                 0.,
                                                       1.],
                                                 1.,
                 [279.,
                          3., 7., ...,
                                           1.,
                                                       0.],
                 . . . ,
                 [216.,
                          1., 31., ...,
                                           0.,
                                                 0.,
                                                       0.],
                        3., 23., ...,
                 [834.,
                                           1.,
                                                 0.,
                                                       1.],
                                           1.,
                 [373.,
                          3., 19., ...,
                                                 0.,
                                                       1.]])
In [676]: y_test
Out[676]: array([0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1,
                 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0,
                 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0,
                 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1,
                 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1,
                 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,
                 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0,
                 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0,
                 1, 0, 0], dtype=int64)
In [677]: from sklearn.preprocessing import StandardScaler
          sc_x=StandardScaler()
          X_train=sc_x.fit_transform(X_train)
          X_test=sc_x.transform(X_test)
In [678]: | np.set_printoptions(suppress=True)
          X_train
Out[678]: array([[-1.16343003, 0.81925059, -0.08737676, ..., -1.37207547,
                  -0.31426968, -1.62827579],
                 [-0.01263834, -0.38096838,
                                             0.16081042, ..., 0.72882288,
                  -0.31426968, 0.61414657],
                 [ 1.44220868, -0.38096838, 0.16081042, ..., 0.72882288,
                  -0.31426968, -1.62827579],
                 [ 0.71863397, 0.81925059, -0.08737676, ..., 0.72882288,
                   3.18198052, -1.62827579],
                 [ 0.44921786, 0.81925059, 0.57445571, ..., -1.37207547,
                  -0.31426968, 0.61414657],
                 [ 0.93031806, -0.38096838, 2.1049433 , ..., 0.72882288,
                  -0.31426968, 0.61414657]])
```

LogisticRegression

```
In [679]: from sklearn.linear_model import LogisticRegression
          model=LogisticRegression(random_state=0)
          model.fit(X_train,y_train)
Out[679]: LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
                             intercept_scaling=1, l1_ratio=None, max_iter=100,
                             multi_class='auto', n_jobs=None, penalty='12',
                             random_state=0, solver='lbfgs', tol=0.0001, verbose=0,
                             warm_start=False)
In [680]: |y_pred=model.predict(X_test)
          y_pred
Out[680]: array([0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1,
                 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
                 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0,
                 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1,
                 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1,
                 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,
                 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0,
                 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0,
                 1, 0, 0], dtype=int64)
In [681]: from sklearn.metrics import confusion_matrix
          confusion=confusion_matrix(y_test,y_pred)
          print(confusion)
          [[93 17]
           [16 53]]
In [682]: | TN=confusion[0,0]
          FP=confusion[0,1]
          FN=confusion[1,0]
          TP=confusion[1,1]
In [683]: print(confusion)
          print('TN:',TN)
          print('FP:',FP)
          print('FN:',FN)
          print("TP:",TP)
          [[93 17]
           [16 53]]
          TN: 93
          FP: 17
          FN: 16
          TP: 53
In [684]: | from sklearn import metrics
          accuracy=metrics.accuracy_score(y_test,y_pred)
In [685]:
          accuracy1=(TN+TP)/(TN+TP+FP+FN)
          print("Accuracy from metrics:",accuracy)
          print("Accuracy calculated:",accuracy1)
          Accuracy from metrics: 0.8156424581005587
```

Accuracy calculated: 0.8156424581005587

```
In [686]: print("Recall:", metrics.recall_score(y_test, y_pred), 2)
    print("Calculated Recall:", TP/(TP+FN))
    print("Specificity:", TN/(TN+FP))
    print('Precision:', round(metrics.precision_score(y_test, y_pred), 2))
    print("Precision calculated:", round(TP/float(TP+FP), 2))
```

Recall: 0.7681159420289855 2

Calculated Recall: 0.7681159420289855

Specificity: 0.845454545454545

Precision: 0.76

Precision calculated: 0.76

```
In [687]: from sklearn.metrics import accuracy_score,f1_score,precision_score,roc_auc_sco
    re,recall_score
    accuuracy=accuracy_score(y_test,y_pred)
    precision=precision_score(y_test,y_pred)
    f1=f1_score(y_test,y_pred)
    roc_auc=roc_auc_score(y_test,y_pred)
    recall=recall_score(y_test,y_pred)
```

```
In [688]: print("Accuracy is:",round(accuracy,4)*100)
    print("F1 score is:",round(f1,2)*100)
    print("Precision is:",round(precision,2)*100)
    print("Recall is:",round(recall,2)*100)
    print("Roc Auc is:",round(roc_auc,2)*100)
```

Accuracy is: 81.56 F1 score is: 76.0 Precision is: 76.0 Recall is: 77.0 Roc Auc is: 81.0

```
In [689]: from sklearn.metrics import classification_report
print(classification_report(y_test,y_pred))
```

support	f1-score	recall	precision	
110	0.85	0.85	0.85	Θ
69	0.76	0.77	0.76	1
179	0.82			accuracy
179	0.81	0.81	0.81	macro avg
179	0.82	0.82	0.82	weighted avg

```
In [690]:
            summary_lr=pd.DataFrame([accuracy,f1,precision,recall,roc_auc],index=["Accurac
            y", "F1", "Precision", "Recall", "Roc_Auc"], columns=['Values'])
            summary_lr
 Out[690]:
                       Values
             Accuracy 0.815642
                  F1 0.762590
             Precision 0.757143
               Recall 0.768116
             Roc_Auc 0.806785
DecisionTree
 In [691]: from sklearn.tree import DecisionTreeClassifier
            dtc=DecisionTreeClassifier(random_state=0)
            dtc.fit(X_train,y_train)
 Out[691]: DecisionTreeClassifier(ccp_alpha=0.0, class_weight=None, criterion='gini',
                                    max_depth=None, max_features=None, max_leaf_nodes=None,
                                    min_impurity_decrease=0.0, min_impurity_split=None,
                                    min_samples_leaf=1, min_samples_split=2,
                                    min_weight_fraction_leaf=0.0, presort='deprecated',
                                    random_state=0, splitter='best')
 In [692]: | y_pred_dt=dtc.predict(X_test)
            y_pred_dt
 Out[692]: array([0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1,
                   0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
                   1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0,
                   0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0,
                   1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0,
                   0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,
                   0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0,
                   1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0,
                   1, 0, 0], dtype=int64)
 In [693]: from sklearn.metrics import confusion_matrix
```

confusion=confusion_matrix(y_test,y_pred_dt)

print(confusion)

[[97 13] [22 47]]

```
In [694]: | TN=confusion[0,0]
          FP=confusion[0,1]
          FN=confusion[1,0]
          TP=confusion[1,1]
          print(confusion)
           print('TN:',TN)
           print('FP:',FP)
          print('FN:',FN)
          print("TP:",TP)
          [[97 13]
           [22 47]]
          TN: 97
          FP: 13
          FN: 22
          TP: 47
In [695]:
          accuracy=metrics.accuracy_score(y_test,y_pred_dt)
           accuracy1=(TN+TP)/(TN+TP+FP+FN)
           print("Accuracy from metrics:",accuracy)
          print("Accuracy calculated:", accuracy1)
          Accuracy from metrics: 0.8044692737430168
          Accuracy calculated: 0.8044692737430168
In [696]:
          from sklearn import metrics
           from sklearn.metrics import accuracy_score,f1_score,precision_score,roc_auc_sco
           re, recall_score
           accuuracy=accuracy_score(y_test,y_pred_dt)
           precision=precision_score(y_test,y_pred_dt)
           f1=f1_score(y_test,y_pred_dt)
           roc_auc=roc_auc_score(y_test,y_pred_dt)
           recall=recall_score(y_test,y_pred_dt)
In [697]:
          print("Accuracy is:", round(accuracy, 2)*100)
          print("F1 score is:", round(f1,2)*100)
           print("Precision is:", round(precision, 2)*100)
           print("Recall is:", round(recall, 2)*100)
           print("Roc Auc is:", round(roc_auc, 2)*100)
          Accuracy is: 80.0
          F1 score is: 73.0
          Precision is: 78.0
          Recall is: 68.0
          Roc Auc is: 78.0
In [698]: from sklearn.metrics import classification_report
           print(classification_report(y_test,y_pred_dt))
                         precision
                                      recall f1-score
                                                          support
                      0
                              0.82
                                        0.88
                                                   0.85
                                                              110
                              0.78
                                                   0.73
                                                               69
                      1
                                        0.68
                                                   0.80
                                                              179
              accuracy
```

0.80

0.80

macro avg

weighted avg

0.78

0.80

0.79

0.80

179

```
y", "F1", "Precision", "Recall", "Roc_Auc"], columns=['Values'])
            summary_dtc
 Out[699]:
                       Values
             Accuracy 0.804469
                  F1 0.728682
             Precision 0.783333
               Recall 0.681159
             Roc_Auc 0.781489
RandomForest
 In [700]: from sklearn.ensemble import RandomForestClassifier
            rfc=RandomForestClassifier()
            rfc.fit(X_train,y_train)
 Out[700]: RandomForestClassifier(bootstrap=True, ccp_alpha=0.0, class_weight=None,
                                    criterion='gini', max_depth=None, max_features='auto',
                                    max_leaf_nodes=None, max_samples=None,
                                    min_impurity_decrease=0.0, min_impurity_split=None,
                                    min_samples_leaf=1, min_samples_split=2,
                                    min_weight_fraction_leaf=0.0, n_estimators=100,
                                    n_jobs=None, oob_score=False, random_state=None,
                                    verbose=0, warm_start=False)
 In [701]: y_pred_rt=rfc.predict(X_test)
            y_pred_rt
 Out[701]: array([0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1,
                   0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
                   1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0,
                   1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1,
                   1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1,
                   0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,
                   0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0,
                   1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0,
                   1, 0, 1], dtype=int64)
  In [702]: from sklearn.metrics import confusion_matrix
            confusion=confusion_matrix(y_test,y_pred_rt)
            print(confusion)
            [[101
                    9]
```

summary_dtc=pd.DataFrame([accuracy,f1,precision,recall,roc_auc],index=["Accurac

In [699]:

[18 51]]

```
In [703]: | TN=confusion[0,0]
          FP=confusion[0,1]
          FN=confusion[1,0]
          TP=confusion[1,1]
          print(confusion)
          print('TN:',TN)
          print('FP:',FP)
          print('FN:',FN)
          print("TP:",TP)
          [[101
                   9]
           [ 18 51]]
          TN: 101
          FP: 9
          FN: 18
          TP: 51
In [704]:
          accuracy=metrics.accuracy_score(y_test,y_pred_rt)
          accuracy1=(TN+TP)/(TN+TP+FP+FN)
          print("Accuracy from metrics:", accuracy)
          print("Accuracy calculated:",accuracy1)
          Accuracy from metrics: 0.8491620111731844
          Accuracy calculated: 0.8491620111731844
In [705]:
         from sklearn import metrics
          from sklearn.metrics import accuracy_score,f1_score,precision_score,roc_auc_sco
          re, recall_score
          accuuracy=accuracy_score(y_test,y_pred_rt)
          precision=precision_score(y_test,y_pred_rt)
          f1=f1_score(y_test,y_pred_rt)
          roc_auc=roc_auc_score(y_test,y_pred_rt)
          recall=recall_score(y_test,y_pred_rt)
In [706]:
          print("Accuracy is:", round(accuracy, 2)*100)
          print("F1 score is:", round(f1,2)*100)
          print("Precision is:", round(precision, 2)*100)
          print("Recall is:", round(recall, 2)*100)
          print("Roc Auc is:", round(roc_auc, 2)*100)
          Accuracy is: 85.0
          F1 score is: 79.0
          Precision is: 85.0
          Recall is: 74.0
          Roc Auc is: 83.0
In [707]: from sklearn.metrics import classification_report
          print(classification_report(y_test,y_pred_rt))
                         precision
                                      recall f1-score
                                                          support
                      0
                              0.85
                                        0.92
                                                   0.88
                                                              110
                      1
                              0.85
                                        0.74
                                                   0.79
                                                               69
                                                   0.85
                                                              179
              accuracy
```

0.85

0.85

macro avg weighted avg 0.83

0.85

0.84

0.85

179

```
In [708]:
            summary_rf=pd.DataFrame([accuracy,f1,precision,recall,roc_auc],index=["Accurac
            y", "F1", "Precision", "Recall", "Roc_Auc"], columns=['Values'])
            summary_rf
  Out[708]:
                       Values
             Accuracy 0.849162
                  F1 0.790698
             Precision 0.850000
               Recall 0.739130
             Roc_Auc 0.828656
KNN(KNeighborsClassifier)
  In [709]: from sklearn.neighbors import KNeighborsClassifier
            knn=KNeighborsClassifier()
            knn.fit(X_train,y_train)
  Out[709]: KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
                                 metric_params=None, n_jobs=None, n_neighbors=5, p=2,
                                 weights='uniform')
  In [710]: y_pred_k=knn.predict(X_test)
            y_pred_k
  Out[710]: array([0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1,
                   0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,
                   1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1,
                   1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1,
                   1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1,
                   0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
                   0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0,
                   0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0,
                   1, 0, 0], dtype=int64)
```

In [711]: | from sklearn.metrics import confusion_matrix

print(confusion)

[[99 11] [22 47]]

confusion=confusion_matrix(y_test,y_pred_k)

```
In [712]: | TN=confusion[0,0]
          FP=confusion[0,1]
          FN=confusion[1,0]
          TP=confusion[1,1]
          print(confusion)
          print('TN:',TN)
          print('FP:',FP)
          print('FN:',FN)
          print("TP:",TP)
          [[99 11]
           [22 47]]
          TN: 99
          FP: 11
          FN: 22
          TP: 47
In [713]:
          accuracy=metrics.accuracy_score(y_test,y_pred_k)
          accuracy1=(TN+TP)/(TN+TP+FP+FN)
          print("Accuracy from metrics:",accuracy)
          print("Accuracy calculated:", accuracy1)
          Accuracy from metrics: 0.8156424581005587
          Accuracy calculated: 0.8156424581005587
In [714]:
          from sklearn import metrics
          from sklearn.metrics import accuracy_score,f1_score,precision_score,roc_auc_sco
          re, recall_score
          accuuracy=accuracy_score(y_test,y_pred_k)
          precision=precision_score(y_test,y_pred_k)
          f1=f1_score(y_test,y_pred_k)
          roc_auc=roc_auc_score(y_test,y_pred_k)
          recall=recall_score(y_test,y_pred_k)
In [715]:
          print("Accuracy is:", round(accuracy, 4)*100)
          print("F1 score is:", round(f1,2)*100)
          print("Precision is:", round(precision, 2)*100)
          print("Recall is:", round(recall, 2)*100)
          print("Roc Auc is:", round(roc_auc, 2)*100)
          Accuracy is: 81.56
          F1 score is: 74.0
          Precision is: 81.0
          Recall is: 68.0
          Roc Auc is: 79.0
In [716]: from sklearn.metrics import classification_report
          print(classification_report(y_test,y_pred_k))
                         precision
                                      recall f1-score
                                                          support
                                        0.90
                      0
                              0.82
                                                   0.86
                                                              110
                              0.81
                                                   0.74
                                                               69
                      1
                                        0.68
                                                   0.82
                                                              179
              accuracy
```

0.81

0.82

macro avg

weighted avg

0.79

0.82

0.80

0.81

179

```
In [717]:
           summary_k=pd.DataFrame([accuracy,f1,precision,recall,roc_auc],index=["Accuracy"
           , "F1", "Precision", "Recall", "Roc_Auc"], columns=['Values'])
           summary_k
Out[717]:
                       Values
            Accuracy 0.815642
                 F1 0.740157
            Precision 0.810345
              Recall 0.681159
            Roc_Auc 0.790580
In [729]: Final_result={'LogesticRegression':[0.81],'DecisionTree':[0.80],'RandomForest':
           [0.85], 'knn KNeighborsClassifier ':[0.81]}
           res=pd.DataFrame(Final_result)
           res
Out[729]:
              LogesticRegression DecisionTree RandomForest knn KNeighborsClassifier
            0
                           0.81
                                       8.0
                                                   0.85
                                                                        0.81
```

MODEL SELECTION USING CROSS VALIDATION

```
In [719]: from sklearn.model selection import cross_val_score
In [720]:
          # FOR LOGESTIC REGRESSION
In [721]: | scores_model=cross_val_score(model, X_train, y_train, cv=10, scoring='accuracy')
          print('Score:',scores_model)
          print("Mean Score:", scores_model.mean())
          Score: [0.80555556 0.69444444 0.84507042 0.77464789 0.74647887 0.74647887
           0.78873239 0.78873239 0.84507042 0.81690141]
          Mean Score: 0.7852112676056338
In [722]:
          # FOR DECISIONTREE
In [723]: | scores_dtc=cross_val_score(dtc, X_train, y_train, cv=10, scoring='accuracy')
          print('Score:', scores_dtc)
          print("Mean Score:", scores_dtc.mean())
          Score: [0.69444444 0.70833333 0.8028169 0.69014085 0.73239437 0.73239437
           0.73239437 0.66197183 0.78873239 0.8028169 ]
          Mean Score: 0.7346439749608764
In [724]:
          # FOR RANDOMFOREST
```

```
print('Score:',scores_rfc)
print("Mean Score:",scores_rfc.mean())

Score: [0.73611111 0.81944444 0.81690141 0.85915493 0.8028169 0.83098592 0.74647887 0.84507042 0.85915493]
Mean Score: 0.8118935837245695

In [726]: # FOR KNN

In [727]: scores_knn=cross_val_score(knn,X_train,y_train,cv=10,scoring='accuracy')
print('Score:',scores_knn)
print("Mean Score:",scores_knn.mean())

Score: [0.7777778 0.79166667 0.83098592 0.83098592 0.73239437 0.76056338
```

In [725]: | scores_rfc=cross_val_score(rfc, X_train, y_train, cv=10, scoring='accuracy')

0.70422535 0.76056338 0.88732394 0.83098592]

Mean Score: 0.7907472613458528

CONCLUSION

```
In [730]: FROM ABOVE CROSS VALIDATION "RANDOMFOREST" HAS A AVERAGE ACCURACY OF 81.18% .
SO "RANDOMFORESTCLASSIFIER" SUITS BEST MODEL FOR "TITANIC DATA SET".

In []:
```