National University of Singapore Electrical and Computer Engineering

CG2027 (Transistor-Level Digital Circuits) Assignment #1 Solution

AY21/22 Semester 1 Issued: Aug. 10, 2021

Due: Aug. 15, 2021 (18:00)

Problem 1: Delay Calculation

The objective of this problem is to figure out correct delay / risetime / falltime of a CMOS inverter, based on the information given from the waveform.

- a) What is the rise time (t_r) , fall time (t_f) of the output waveform V_{out} ?
 - → t_r =383.86-359.95 = 23.92 (ps), t_f =132.36 -113.35 = 19.01 (ps)
- b) What is the high-to-low propagation delay (t_{pHL}) of the logic? $\rightarrow t_{pHL} = 120.88 108.62 = 12.26$ (ps)
- c) What is the low-to-high propagation delay (t_{pLH}) of the logic? $\rightarrow t_{pLH} = 368.35 355.05 = 13.30$ (ps)
- d) If the given waveform is the half of the clock cycle with 50% duty, what is the clock frequency?
 - → You can choose any half-clock cycle points. E.g., 350.43-101.80 = 248.63ps (half cycle), 2×248.63 ps ≈ 0.5 ns (1 cycle). Therefore, the clock freq is approx. **2GHz** (note: $\pm 5\%$ difference is allowed)

Problem 2: Noise Margin

a) For the inverter chain given above, calculate the noise margin high (NM_{H}) and noise margin low (NM_{L}) .

→
$$NM_H = |V_{OH1} - V_{IH2}| = |0.85 - 0.75| = 0.10 (V)$$

→
$$NM_L = |V_{OL1} - V_{IL2}| = |0.10 - 0.25| = 0.15 (V)$$

- b) What happens if input high and input low of the Buf2 become the same? Explain.
 - → Noise margin high and noise margin low will be maximized.