Python – Übung 11

1 Scatter Plot

In der Natur gibt es viele Beispiele, wo der Goldene Schnitt

$$\Phi = \frac{1+\sqrt{5}}{2} \approx 1.618\tag{1}$$

vorkommt. Zudem gibt es den Goldenen Winkel, g. Man erhält den Goldenen Winkel indem der Vollwinkel durch den Goldenen Schnitt geteilt wird und zum Vollwinkel ergänzt wird:

$$g = 2\pi - \frac{2\pi}{\Phi} \approx 2.39996 \approx 137.51^{\circ}$$
 (2)

Der Goldene Winkel kommt ebenso häufig in der Natur vor, wie z.B. im Blütenstand einer Sonnenblume, wie dies in Abb. 1 dargestellt wird. In der Abbildung gibt es total N Punkte, wobei die xy-Koordinaten des n-ten Punktes wie folgt definiert sind:

$$\boldsymbol{p}_n = \begin{bmatrix} x \\ y \end{bmatrix} = \sqrt{N-n} \begin{bmatrix} \cos(ng) \\ \sin(ng) \end{bmatrix}, \ \forall n = 0, 1, \dots, N-1.$$
 (3)

Abbildung 1: Scatterplot eines Sonnenblumen-Blütenstands.

Schreiben Sie ein Python-Programm, welches den Scatterplot mit N=800 Punkte erzeugt, ähnlich wie in Abb. 1 dargestellt. Färben Sie zudem alle Punkte ein, deren Nummer n ein Vielfaches von k ist, d.h. $n=ki\mid_{n< N}, \ \forall i\in\mathbb{N}_0, \ \forall k=5,21,34.$

Hinweis: Benutzen Sie die plt.scatter()-Funktion¹ mit dem c-Argument, um die Farbe (c=color) der Punkte zu spezifizieren und mit dem alpha-Argument, um die Transparenz der Punkte zu steuern.

https://matplotlib.org/api/_as_gen/matplotlib.pyplot.scatter.html

2 Elektrisches Feld

Das elektrische Feld, \vec{E} , einer Punktladung Q an einem bestimmten Ort (gegeben durch den Richtungsvektor \vec{R}) ist wie folgt definiert:

$$\vec{E}\left(Q,\varepsilon_r,\vec{R}\right) = \frac{Q\vec{R}}{4\pi\varepsilon_0\varepsilon_r R^3} \,,\tag{4}$$

wobei Q die Ladung in Amperesekunden (As) ist, $\varepsilon_0 = 8.854 \times 10^{-12} \,\text{As/Vm}$ die elektrische Feldkonstante ist und $\varepsilon_r = 1$ (im Vakuum) die relative Permittivität ist.

Zwei Punktladungen

$$Q_1 = 10^{-9} \,\text{As} \quad \text{und}$$
 (5)

$$Q_2 = -10^{-9} \,\text{As} \tag{6}$$

werden an den Positionen

$$\vec{P}_1 = \begin{bmatrix} P_{1,x} \\ P_{1,y} \\ P_{1,z} \end{bmatrix} = \begin{bmatrix} 1 \text{ m} \\ 0 \text{ m} \\ -0.5 \text{ m} \end{bmatrix} \quad \text{und}$$

$$(7)$$

$$\vec{P}_{2} = \begin{bmatrix} P_{2,x} \\ P_{2,y} \\ P_{2,z} \end{bmatrix} = \begin{bmatrix} -1 \text{ m} \\ 0 \text{ m} \\ -0.5 \text{ m} \end{bmatrix}$$
(8)

platziert. Nun soll das elektrische Feld \vec{E}_{total} , als Summe der beiden Feldern (wegen Q_1 und Q_2), in der xy-Ebene bei z=0 m berechnet werden:

$$\vec{E}_{\text{total}} = \vec{E}_1 + \vec{E}_2 \ . \tag{9}$$

Die einzelnen Felder werden wie folgt berechnet:

$$\vec{E}_{1} = \begin{bmatrix} E_{1,x} \\ E_{1,y} \\ E_{1,z} \end{bmatrix} = \frac{Q_{1}}{4\pi\varepsilon_{0}\varepsilon_{r}} \frac{\vec{R}_{1}}{\left\|\vec{R}_{1}\right\|^{3}} = \frac{Q_{1}}{4\pi\varepsilon_{0}\varepsilon_{r}} \frac{\left\|\vec{R}_{1}\right\|^{3}}{\left\|\vec{R}_{1}\right\|^{3}} \begin{bmatrix} R_{1,x} \\ R_{1,y} \\ R_{1,z} \end{bmatrix} \quad \text{und}$$

$$(10)$$

$$\vec{E}_{2} = \begin{bmatrix} E_{2,x} \\ E_{2,y} \\ E_{2,z} \end{bmatrix} = \frac{Q_{2}}{4\pi\varepsilon_{0}\varepsilon_{r}} \frac{\vec{R}_{2}}{\|\vec{R}_{2}\|^{3}} = \frac{Q_{2}}{4\pi\varepsilon_{0}\varepsilon_{r}} \frac{\vec{R}_{2,x}}{\|\vec{R}_{2}\|^{3}} \begin{bmatrix} R_{2,x} \\ R_{2,y} \\ R_{2,z} \end{bmatrix} , \qquad (11)$$

wobei $\|.\|$ die Norm bezeichnet (welche mit der np.linalg.norm()-Funktion berechnet wird) und die Richtungsvektoren \vec{R}_1 und \vec{R}_2 wie folgt definiert sind:

$$\vec{R}_{1} = \begin{bmatrix} R_{1,x} \\ R_{1,y} \\ R_{1,z} \end{bmatrix} = \vec{P}_{E} - \vec{P}_{1} = \begin{bmatrix} P_{E,x} - P_{1,x} \\ P_{E,y} - P_{1,y} \\ P_{E,z} - P_{1,z} \end{bmatrix} \quad \text{und}$$
(12)

$$\vec{R}_{2} = \begin{bmatrix} R_{2,x} \\ R_{2,y} \\ R_{2,z} \end{bmatrix} = \vec{P}_{E} - \vec{P}_{2} = \begin{bmatrix} P_{E,x} - P_{2,x} \\ P_{E,y} - P_{2,y} \\ P_{E,z} - P_{2,z} \end{bmatrix} . \tag{13}$$

Die Ortsvektoren \vec{P}_E stellen die Punkte in der xy-Ebene dar.

Schreiben Sie ein Programm, welches das elektrische Feld \vec{E}_{total} für die Punkte in der xy-Ebene berechnet und ähnlich wie in Abb. 2 darstellt.

Hinweise: Erstellen Sie ein dreidimensionales NumPy-Array, d.h. shape=(m, n, 3), für den \vec{P}_E -Vektor, indem Sie die np.meshgrid()-Funktion² und die np.stack()³-Funktion benutzen. Das NumPy-Array soll ein $m \times n$ Stack von 3D-Ortsvektoren (x, y, z) sein. Somit besitzen dann automatisch auch alle anderen Arrays (\vec{R}_i, \vec{E}_i) die gleiche Form, d.h. shape=(m, n, 3).

Benutzen Sie für die Norm der Richtungsvektoren, $\|\vec{R}_i\|$, die np.linalg.norm()-Funktion mit dem Argument keepdims=True, damit das resultierende Array direkt mit dem Array der Richtungsvektoren verrechnet werden kann (siehe Broadcasting).

Erstellen Sie den Konturplot mittels der plt.contourf ()-Funktion⁴ und benutzen Sie die Norm des elektrischen Feldes $\|\vec{E}_{\text{total}}\|$ als Intensitätswert für das Z-Argument.

Zeichnen Sie die Feldlinien mittels der plt.streamplot()-Funktion⁵ und benutzen Sie die xund y-Komponenten des elektrischen Feldes \vec{E}_{total} für die Argumente u und v.

Abbildung 2: Elektrisches Feld in der xy-Ebene.

3 Image Processing

In der Bildverarbeitung werden Bilder für die weitere Verarbeitung in dreidimensionalen Arrays gespeichert. Mit Matplotlib kann ein solches Bild wie folgt geladen und dargestellt werden:

```
import matplotlib.pyplot as plt

B = plt.imread("rapperswil.jpg")
fig, ax = plt.subplots()
ax.imshow(B)
plt.show()
```

²https://numpy.org/doc/stable/reference/generated/numpy.meshgrid.html

³https://numpy.org/doc/stable/reference/generated/numpy.stack.html

⁴https://matplotlib.org/api/_as_gen/matplotlib.pyplot.contourf.html

 $^{^5}$ https://matplotlib.org/api/_as_gen/matplotlib.pyplot.streamplot.html

Wie in Abb. 3 ersichtlich ist, hat das Array \boldsymbol{B} die Form (m, n, 3), wobei m und n die Anzahl Zeilen und Spalten im Bild sind und in der letzten Dimension jeweils die Intensitäten der drei Farbkanäle (Rot, Grün und Blau) enthalten sind.

Abbildung 3: Ein farbiges Bild als dreidimensionales NumPy-Array.

Ist ein Bild als NumPy-Array gegeben, lassen sich auch entsprechende Transformationen auf eben jene anwenden. Einige dieser Transformationen werden im folgenden vorgestellt.

Graustufen Ein farbiges Bild kann mit Hilfe der nachfolgend gezeigten Matrix

$$T_{\text{gray}} = \begin{bmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{bmatrix}$$
(14)

in ein graustufiges Bild transformiert werden, indem jeder Pixelvektor

$$\boldsymbol{p} = \begin{bmatrix} r \\ g \\ b \end{bmatrix} \tag{15}$$

mit ihr multipliziert wird:

$$\tilde{\boldsymbol{p}} = \boldsymbol{T}_{\text{gray}} \, \boldsymbol{p} \tag{16}$$

$$\begin{bmatrix} \tilde{r} \\ \tilde{g} \\ \tilde{b} \end{bmatrix} = \begin{bmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{bmatrix} \begin{bmatrix} r \\ g \\ b \end{bmatrix} . \tag{17}$$

Durch die Matrixmultiplikation wird die Summe der Produkte (Skalarprodukt) über der letzten Dimension von T_{gray} und dem Pixelvektor p gebildet. In diesem Fall wird dreimal der Mittelwert der drei Farbkomponenten gebildet.

Sepia-Effekt Ein farbiges Bild kann auch sehr einfach in ein Bild mit Sepia-Effekt transformiert werden. Die lineare Transformationsmatrix

$$T_{\text{sepia}} = \begin{bmatrix} 0.393 & 0.769 & 0.189 \\ 0.349 & 0.686 & 0.168 \\ 0.272 & 0.534 & 0.131 \end{bmatrix}$$

$$(18)$$

verleiht dem Bild eine rötlich-braune Farbe, die an die monochromen Fotografien des 20. Jahrhunderts erinnert.

3.1 Bild transformieren

- Lesen Sie das Bild rapperswil.jpg mittels der plt.imread()-Funktion ein. Die Funktion liefert ein NumPy-Array mit dem uint8-Datentyp, der die Werte 0 bis 255 abbilden kann. Für die weitere Verarbeitung wird empfohlen den Wertebereich auf 0 bis 1 zu komprimieren, indem die Array-Werte durch 255 geteilt werden. Der Datentyp des resultierenden Arrays wird dadurch automatisch auf float eingestellt.
- Berechnen Sie mit Hilfe der oben gezeigten Transformationsmatrizen sowohl die Graustufen- als auch die Sepia-Version des Bildes. Verwenden Sie den @-Operator für die Matrixmultiplikationen. Sie benötigen dazu keine for-Schleifen.

Hinweis: In diesem Fall möchte man am liebsten alle Pixelvektoren im \boldsymbol{B} -Array auf einen Schlag mit der Matrix \boldsymbol{T} transformieren. Der @-Operator kann automatisch über einen Stack von Vektoren (\boldsymbol{B}) iterieren und jeden Vektor mit einer 2D Matrix (\boldsymbol{T}) multiplizieren. Aber dies stimmt nur dann, wenn der Stack von Vektoren links und die Matrix rechts steht. Wenn die Matrix \boldsymbol{T} von links nach rechts verschoben wird, muss die Matrix transponiert werden, denn beim @-Operator werden die Summen der Produkte über der letzten Dimension des linken Arrays (\boldsymbol{B}) und der zweitletzten Dimension des rechten Arrays (\boldsymbol{T}^T) berechnet.

Stellen Sie die neuen Bilder in einem Plot dar, ähnlich wie in Abb. 4 gezeigt.

Hinweis: Vor dem Darstellen des Bildes mittels der plt.imshow()-Funktion muss sichergestellt werden, dass alle Array-Werte innerhalb des Bereichs von 0 bis 1 sind. Die Werte können z.B. mit der np.clip()-Funktion⁶ limitiert werden.

Abbildung 4: Originales Bild (links) und die zwei transformierten Bilder.

⁶https://docs.scipy.org/doc/numpy/reference/generated/numpy.clip.html

4 3D-Landschaft darstellen

Wie in Abb. 5 dargestellt, besteht die Kartendatei landschaft.csv aus mehreren kommagetrennten Zahlenwerten, die in drei Bereiche (rot, blau, grün) eingeteilt werden. Die Zahlen im grünen Bereich stellen die z-Werte (Höhe über Meer) für alle Punkte im Raster dar. In der ersten Zeile (roter Bereich) liegen die entsprechenden x-Werte der Punkte (z.B. $-15 \,\mathrm{km}, \ldots, 10 \,\mathrm{km}$) und in der ersten Spalte (blauer Bereich) liegen die y-Werte der Punkte (z.B. $-15 \,\mathrm{km}, \ldots, 15 \,\mathrm{km}$).

	X						
	ignore	x[0]	x[1]	x[2]		x[n]	
у {	y[0]	z[0,0]	z[0,1]	z[0,2]		z[0,n]	
	y[1]	z[1,0]	z[1,1]	z[1,2]		z[1,n]	
	÷	÷	i	÷	٠	:	
	y[m]	z[m,0]	z[m,1]	z[m,2]		z[m,n]	

Abbildung 5: Datenstruktur der Kartendatei landschaft.csv.

- Lesen Sie die Kartendatei landschaft.csv ein und extrahieren Sie aus den Daten die drei NumPy-Arrays x, y und z, wie in Abb. 5 spezifiziert.
- Plotten Sie die eingelesenen Kartendaten als 3D-Oberfläche, ähnlich wie Abb. 6 dargestellt.

Hinweise: Benutzen Sie die plot_surface()-Funktion⁷ mit dem Colormap⁸ cmap="terrain". Die plot_surface()-Funktion erwartet drei 2D-Arrays (für x, y, z) als Argumente. Benutzen Sie die np.meshgrid()-Funktion, um aus den beiden 1D-Arrays x und y je ein 2D-Array zu erstellen.

Abbildung 6: 3D-Plot der Landschaft.

⁷https://matplotlib.org/api/_as_gen/mpl_toolkits.mplot3d.axes3d.Axes3D.html#mpl_toolkits.mplot3d.axes3d.Axes3D.plot_surface

⁸https://matplotlib.org/tutorials/colors/colormaps.html