SMART CHAIR Group 7

Rudy Ramjas - EE

Mackenson Jean - EE

Annavay Kean - CpE

Thien Nguyen - CpE

Goals & Objectives

- Help user to become more mindful of posture habits.
- Provide feedback based on measured data.
- Target audience: middle-class office workers.
- Methodology: Center of Gravity

Specifications

- The device should update the sensor input readings every 30 seconds.
- The device should pair with a phone app.
- ► The application will display posture data.
- The application will provide feedback on data.
- The software will store user data.
- ▶ 5-day standby battery life, minimum.
- PCB not to exceed 230 cm squared.
- Sensor array should be able to load a minimum of 100lbs (45.4kg).
- ▶ Vibrate module should operate between 200-400 Hz or rpm equivalent.

Overview Diagram

Standards

- Power Standards
 - ► IEC-60601-1
 - ► Electrical Shock & Fire Safety
 - ▶ UL 1310
 - ▶ Devices using multiple power supplies
- Wireless Standards
 - ▶ IEEE 802.11
- Application
 - ► Flutter Development Standards
 - Distribution Standards
 - User Privacy Standards

Microcontroller Selection

Communication Protocols

MCU	F280049PM SR	ATMEGA 2560-16AU	PIC24FJ10 24GA606- I/PT	MSP430FR2 311IPW16R	ATSAMA5D 21C-CUR
Manufactur er	Texas Instruments	Atmel	Microchip Technology	Texas Instruments	Microchip Technology
Program Memory (kB)	256	256	1024	3.75	160
Data Memory (kB)	100	8	32	8	128
Clock Frequency (MHz)	100	16	32	16	500
GPIO	26	86	53	11	128
Supply Voltage Range	1.2 - 1.3V	1.8V - 5.5V	2 - 3.6V	1.8V -3.6V	1.2V
Size L x W (cm)	.072 x .072	1.6 x 1.6	.07 x .07	.05 x .04	1.4 x 1.4
Price (ÚSD)	\$10.81	\$12.20**	\$4.41	\$1.62	\$6.71

Power Supply

The system will be powered by an AC to DC adapter.

It will be operated by a voltage range from 12V to 3.3V.

The PCB will be using power 24 hours and keep it running under all conditions.

Back up power will provide to the chair by a 9V battery to allows the circuit running after it is disconnected to the wall.

The battery will take over when the main power source is unplugged.

Battery Supply

- 9V Rating
- Lithium ion composition
- Rechargeable
- Less Expensive
- Easily substitutable

Schematic Overview

PCB Power Supply

Overall PCB

- ► 76 x 87mm (LW)
- Designed in Eagle
- 3 screw-holes

PCB Enclosure

- Wood
- Laser cut in TI lab
- 6" x 4" x 4" (LWH)

FSR Selection

	Tekscan A502	Tekscan A301	SEN-09376	FSR-406
Price per unit	\$23.24	\$12.18	\$11.25	\$12.99
Surface Area(in ²)	4	0.375(diam)	3.0625	2.25
Response time(μs)	≤ 3	≤ 3	≤ 5	≤ 5
Load range(N)	44kN max	444N max	*	100N max
Drive voltage(V)	Variable	Variable	*	*
Amplifier circuit	Multiple	Multiple	Volt. Div.	Multiple

FSR Selection

- Tighter tolerance: < 3%
- Multiple integration methods
 - Voltage Divider
- Engineering support (Manufacturer)
- Utilize MCU ADC channels to process signal

		04 04 05 03	, 23 V 3		
	202 °C 201 °C 201 °C 201 °C 201 °C	02 4 05 3	, PAE , PA2		
	1PF0 °C 1PF2 °C 1PF4 5C	02 4 05 3	PF1 PF3 PF5 PF7		
+5	;0 ;0 ;0 ;0	02 04 05 03		#///	+≥3V3

Proximity Sensor

- Operates within 3cm range
- Located on mid-back of chair

Vibrate Module

- Low cost: <\$1.00 per unit</p>
- Simple integration
- DAC to supply pulse signal
- ► 2.8v 5v

Software Design

- Wireless Communication
- NoSQL Database
- Application Framework

Flowchart Diagram

Wireless Modules

Bluetooth	Wi-Fi
Shorter Range	Longer Range
Close proximity	Remote Location
Direct Connections	Online Connection
Lower Power	Higher Power

Bluetooth Specification

Hardware Features	Software Features	
-80 dBm sensitivity	PIO: low-disconnect & high-connect	
+4 dBm RF transmit power	Rising Pulse will disconnect	
Low Power 1.8 V Operation	Auto-connect on last device	
PIO Control	Pair Last Device as Default	
UART Interface	PINCODE: 0000 / 1234	

Wi-Fi Specification

Hardware Features	Software Features	
CPU: Tensilla L 106 32-bit	Security: WPA / WPA2	
Integrated Memory (SRAM)	Encryption: WEP/TKIP/AES	
SPI External Flash	Firmware: OTA Network	
RF 2.4 GHz Receive/Transmit	SDK: Supports Cloud Server	
Adjustable Power Mode	Network Protocol: TCP/UDP/HTTP	

Wireless Module

Wi-Fi vs Bluetooth

- Wi-fi can store value into database
- Bluetooth has no storage
- Bluetooth lack of Full Duplex support

ESP8266

- Breadboard testing
- Surface mount
- Antenna RF optimization

ESP8266 Schematic

Main Aspects

- Power Supply
- Power-on sequence and reset
- Flash
- Crystal oscillator
- ► RF
- External resistor
- UART

ESP8266 Pros and Cons

Pros

- Compatibility with IDE
- Multiple GPIO pins
- Powerful capabilities

Cons

- Difficult to start working
- Requires multiple libraries

Wireless Communication

- Sensor data
- Wi-Fi Transmission
- Send data through cloud
- Database Receive data
- Firebase

Purpose of Application

- To allow the user to view posture data.
- To provide feedback on posture data to the user.
- To allow the user to alter settings.

Application Design

- Technologies Used:
 - Firebase serves as the back-end.
 - User Accounts
 - ► NoSQL Database
 - ▶ Flutter serves as the front-end framework.
 - Developed by Google
 - Dart Language
 - ► Hot reload

NoSQL Database Design

- Provides support for offline data persistence.
- Each data entry contains the center of gravity on the left-to-right axis and the front-to-back axis and the timestamp.
- This is subject to change during the process of integrating the legitimate sensor data into the software.

User Interface Design

User Interface Design

Application Completion Status

- Complete:
 - Firebase authentication
 - Firebase database (including read/write)
 - Basic Layout
 - Basic navigation

- Pending:
 - Settings / User Preferences
 - Posture data represented in graphical format
 - Recommend Stretches/Yoga poses
 - Swipe navigation
 - Color Theming

PROGRESS GRAPH

Roles

Task	Primary	Secondary	Status	
Wireless Communication	Thien	Annavay	proto	
Database Development	Annavay Thien		proto	
Mobile Application	Annavay	Thien	Proto	
Microcontroller	Rudy	Mackenson	Ordered	
Power Supply	Mackenson	Rudy	proto	
Rechargeable Battery	Mackenson	Rudy	Received	
Force Sensor Integration	Rudy	Thien	proto	
Vibration Module	Rudy	Thien	Received	
User Interface	Annavay	Thien	In development	
PCB Design	Mackenson	Rudy	2 nd iteration	

BUDGET SHEET

Item	Description	Quantity	Cost	Total	Estimated Cost
Tekscan A301	round force sensors - 4 pk	1	\$53.60	\$53.60	\$150.00
Tekscan A502	Larg square force sensors - 4 pk	1	\$108.25	\$108.25	\$150.00
556-ATMEGA2560- 16AU	Microcontroller	3	\$12.20	\$36.60	\$40.00
Chair	Office chair, cloth, rolling	2	0	0	\$75.00
Eleego Mega 2560 R3	ATmega Dev board	1	\$13.99	\$13.99	\$16.00
HC-SR04	ultrasonic proximity sensor	1	0	0	\$10.00
Mircrochip ATMega2560	microcontroller samples from OEM	5	0	0	-
Final Paper	printing and binding	1	\$27.98	\$27.98	\$30.00
System Enclosure	Housing for PCB				
PCB surface components	PCB resistors, caps, etc.	Multiple		34.17	\$50.00
Firebase	Backend manager	1	-	-	-
ESP8266	Wi-Fi Module	4	\$19.99	\$19.99	\$40.00
Total				\$291.33	\$840.00

Implementation Challenges

- Software-Hardware Integration
 - ▶ Proper data transmission
 - Formatting data
- Foam of chair (Sensors)
 - ► Reduce thickness of foam
 - Partition foam
 - Add barrier between sensors and foam

