Аппаратное обеспечение IoT/CPS Лекция 6

A. A. Подшивалов apodshivalov@miem.hse.ru

Основы цифровой радиосвязи и фундаментальные

ограничения

Модуляция радиосигнала

- Изменение параметров несущего сигнала в зависимости от модулирующего сигнала
 - ► Амплитудная (AM)
 - ► Частотная (FM)
 - ▶ Фазовая (РМ)
- ▶ Цифровая манипуляция
 - ► ASK Amplitude shifted keying
 - ► FSK Frequency shifted keying
 - ► PSK Phase shifted keying
 - ▶ ..

Цифровая манипуляция

- ▶ Передаем одним символом несколько бит
 - ► n-PSK
 - ► QAM
- ▶ OFDM одновременно передается несколько поднесущих
- ► DSSS
 - ► Одному биту («символу») соответствует целая последовательность 0 и 1 («chips») в передаваемых данных (PSK или FSK)
 - ► CDMA
- ► CSS Chirp Spread Spectrum

Предел Шеннона

▶ Теорема Шеннона-Хартли

$$C = B \log_2 \left(1 + \frac{S}{N} \right),\,$$

где:

- ightharpoonup C (capacity) максимальная пропускная способность канала, бит/с
- ► B (bandwidth) полоса пропускания канала, Гц
- ► S (signal) полная мощность сигнала, Вт
- ► N (noise) мощность шума, Вт
 - ightharpoonup $ightharpoonup rac{S}{N}$ отношение сигнал/шум, SNR

► При $\frac{S}{N} \gg 1$:

$$C = B \log_2 \left(1 + \frac{S}{N} \right) \approx B \log_2 \frac{S}{N} = \frac{\ln 10}{\ln 2} B \log_{10} \frac{S}{N} \approx 3,32 \times B \times \log_{10} \frac{S}{N} = 0,332 \times B \times SNR^{[dB]}$$

► При $\frac{S}{N} \ll 1$:

$$C = B \log_2 \left(1 + \frac{S}{N} \right) \approx B \frac{1}{\ln 2} \frac{S}{N} \approx 1,44 \frac{S}{N_0}$$

где N_0 — спектральная плотность шума, $N = BN_0$

► Тепловой шум: $N = k_B T B$, где $k_B = 1,380649 \times 10^{-23}$ Дж × К — постоянная Больцмана, T — температура (в градусах Кельвина)

Формула Фрииса

► Выражает мощность сигнала на приемнике в зависимости от расстояния (free-space pathloss)

$$\frac{P_r}{P_t} = G_r G_t \left(\frac{\lambda}{4\pi R}\right)^2,$$

где:

- ▶ P_r, P_t (power) мощность сигнала на приемнике (receiver) и передатчике (transmitter)
- $ightharpoonup G_r, G_t \; (gain) коэффициент усиления антенн приемника и передатчика$
- ▶ R расстояние между приемником и передатчиком
- ▶ λ длина волны
- ▶ Она же в лБ:

$$P_r^{[dBm]} = P_t^{[dBm]} + G_t^{[dBi]} + G_r^{[dBi]} + 20 \log_{10} \frac{\lambda}{4\pi R}$$

Фундаментальные ограничения и реальные технологии

Два класса технологий ІоТ

- ► LPWAN, Low-power Wide Area Network
 - ► Скорость передачи не важна (сотни, редко тысячи бит/с), требуется большая зона покрытия
 - ▶ UNB-сети (Sigfox, NB-Fi и подобные), LoRa/LoRaWAN, в некоторой степени NB-IoT
 - ► Частотный диапазон Sub 1-GHz (433 или 868/915 МГц)
- ▶ LR-WPAN, Low-rate Wireless Personal Area Network
 - ► Скорость передачи относительно мала (до 250 кбит/с), зона покрытия до десятков метров, интересно энергосбережение
 - ► IEEE 802.15.4, BLE, IEEE 802.11ah
 - ► Частотный диапазон ISM (2,4 ГГц) или Sub 1-GHz
- ▶ «Вне зачета» традиционные беспроводные технологии: WiFi (IEEE 802.11), Bluetooth, Bluetooth Low Energy, сотовая связь

Moкнет одинокая свинья @Mos_art1 · Apr 7

В истребителе главное — мотор. Обычно авиаписарчуки тут заводят свою заклепидорскую волынку про воздушное и водяное охлаждение, какие плюсы и минусы: это всё хайня.

Двигатели делятся на:

- серийные.
- перспективные.
- экспериментальные.

- O 6 1 2 0 43

Модели сетевого взаимодействия

Модель OSI

Приложений

Представления

Сеансовый

Транспортный

Сетевой

Канальный

Физический

Модели сетевого взаимодействия

MODORE TCP/IP

MODORI OSI

модель ОS1	модель ТСР/ТР
Приложений	
Представления	Приложений
Сеансовый	
Транспортный	TCP, UDP
Сетевой	IP (v4, v6)
Канальный	Канальный
Физический	канальныи

Модели сетевого взаимодействия

0.01

Модель OSI	Модель TCP/IP	IETF для IoT
Приложений		
Представления	Приложений	CoAP
Сеансовый		
Транспортный	TCP, UDP	UDP
Сетевой	IP (v4, v6)	IPv6
Канальный	T7 "	6LoWPAN
Физический	Канальный	IEEE 802.15.4

Канальный уровень

- ► Формирование кадров (MPDU)
- ► MAC Medium Access Control, управление доступом к среде передачи
 - ▶ Очередность доступа, особенно в случае ТDMA
 - Разрешение коллизий
 - Адресация
- ► LLC Logical Link Control, управление связью
 - ▶ Установление и разрыв соединения
 - ▶ Подтверждение передачи, повторная отправка кадров
- ▶ Защита информации

Стандарт IEEE 802.15.4

- ► Описывает физический (PHY) и MAC-уровни беспроводных персональных сетей (WPAN, wireless personal-area network) и интерфейсы между ними
- ► Несколько разных вариантов РНҮ, скорость передачи данных от 10 до 1000 кбит/с, размер пакета 127 байт
 - ► GFSK, 50 кбит/с, 868/915 МГЦ; типичная чувствительность приемника (CC1310) — -110 дБм
 - ► Q-PSK DSSS, 250 кбит/с, 2,4 ГГц; типичная чувствительность приемника (CC2630) — -100 дБм

МАС-уровень 802.15.4

- ► Структура кадров, различные их типы (beacon, data frame, acknowledgement, MAC command)
- ▶ Алгоритмы доступа к каналу
- ► Адресация с помощью 6- и 2-байтовых адресов (6-байтовый адрес это EUI-48)
- ► Топология сети «звезда» или mesh
- Ассоциация и деассоциация
- ▶ Подтверждение приема данных
- ▶ Защита информации

6LoWPAN

- ► Стандарт передачи пакетов IPv6 в сетях IEEE 802.15.4, IPv6 over Low-Power Wireless Personal Area Networks (RFC 4944)
- ► Сжатие заголовков (обновлено в RFC 6282)
- Фрагментация пакетов
- ▶ Маршрутизация, два основных подхода:
 - ► mesh-under (LOAD, LOADng принят как стандарт ITU-T G.9903)
 - ► route-over, каждый узел может выступать IP-маршрутизатором (RPL, RFC 6550 стандарт IETF)
- ► Автоматическое конфигурирование адресов (с помощью ICMPv6)

Bluetooth Low Energy

- Стандарт для небольших персональных сетей
- ► 40 каналов в диапазоне 2,4 ГГц, расстояние между соседними каналами 2 МГц, модуляция GFSK, 1 Мбит/с
- ► Ведущее и ведомое устройство обмениваются данными с некоторой периодичностью
- ► L2CAP Logical Link Control and Adaptation Protocol, одна из функций фрагментация пакетов

6LoWPAN поверх BLE

Защита информации в радиосети

Угрозы в радиосети

- Кто угодно может слушать эфир на любой частоте
- В лицензируемом диапазоне любой желающий может передавать в эфир что угодно, пока не придет Роскомнадзор
- В безлицензионном диапазоне любой желающий может передавать в эфир что хочет
- ► Большинство IoT-систем работает в безлицензионных диапазонах (433 МГц, 868 МГц, 2,4 ГГц)
- ▶ Угрозы (далеко не исчерпывающий список)
 - ▶ Перехват данных
 - ▶ Передача фальсифицированных данных
 - ▶ Косвенное определение состояния устройства

Наивный протокол

Адрес	Адрес	Служебные	Данные	CRC
отправителя	получателя	поля		

- ► Целостность пакета проверяется контрольной суммой (CRC)
- ▶ Данные не зашифрованы
- ▶ Кто угодно может прочитать данные
- ▶ Кто угодно может сфальсифицировать данные

Наивный протокол+шифрование

Адрес	Адрес	Служебные	Данные	CRC
отправителя	получателя	поля	(AES-128)	

- ► Целостность пакета проверяется контрольной суммой (CRC)
- ► Данные зашифрованы, например, AES-128
- ▶ Посторонний не может прочитать данные
- ▶ Посторонний не может сфальсифицировать данные

Подмена данных МАС-уровня

Подмена	Подмена	Подмена	Данные	CRC'
отправителя	получателя	MAC	(AES-128)	

- ▶ Получаем из эфира чужой пакет
- ▶ Меняем что угодно, кроме зашифрованных данных
- ▶ Пересчитываем контрольную сумму
- ▶ Те же данные, но от другого отправителя, или к другому получателю, или...

Добавляем имитовставку (MIC)

Адрес	Адрес	Служебные	Данные	MIC
отправителя	получателя	поля	(AES-128)	

- ▶ Шифрование всего пакета слишком ресурсоемко
- ► Вместо (или вместе с) контрольной суммы используем MIC (Message Integrity Code, имитовставка) зависящую от ключа однонаправленную хеш-функцию
- ► AES-CMAC и другие подобные алгоритмы

Определение состояния устройства

Адрес	Адрес	Служебные	Данные	MIC
отправителя	получателя	поля	(AES-128)	

- ► Шифрование AES-ECB: каждый раз один и тот же ключ
- ▶ Зашифрованный блок меняется, только если меняются исходные данные
- ▶ Даже не расшифровывая блок данных, можно понять, изменились ли они
- ▶ Если показания водосчетчика не менялись уже неделю в квартире никого нет

Добавляем «соль»

Адрес	Адрес	Служебные	Данные+«соль»	MIC
отправителя	получателя	поля	(AES-128)	

- ▶ 2 или 4 случайных байта
- ► При приеме и расшифровке «соль» отбрасывается
- ▶ Одни и те же данные, но разная «соль» разные зашифрованные блоки

Атака повтором

Адрес	Адрес	Служебные	Данные+«соль»	MIC
отправителя	получателя	поля	(AES-128)	

- ▶ Прослушиваем эфир, записываем нужный пакет
- ▶ В нужный нам момент времени воспроизводим его
- ▶ Пример: охранная сигнализация, датчик вскрытия окна

Защита от атаки повтором

Адрес	Адрес	Служебные	CTR	Данные	MIC
отправителя	получателя	поля		(AES-CTR)	

- ► Добавляем счетчик или nonce (number used once)
- ▶ Счетчик может только возрастать, nonce не должен повторяться
- ▶ Сброс счетчика в 0 отдельная и редкая процедура

Активная атака повтором

Адрес	Адрес	Служебные	CTR	Данные	MIC
отправителя	получателя	поля		(AES-CTR)	

- ightharpoonup Записываем пакет с номером n и одновременно «глушим» его на приемнике
- ightharpoonup Записываем пакет с номером n+1 и одновременно «глушим» его на приемнике
- ▶ Воспроизводим пакет с номером n (пользователь считает, что это пакет с номером n+1)
- ightharpoonup Затем воспроизводим пакет с номером n+1

Немного о криптографии и генераторах

случайных чисел

Три главных правила криптографии

- 1. Не изобретайте свой алгоритм
- 2. Если вам кажется, что авторы известных алгоритмов что-то сделали неправильно, но про это не написано у Брюса Шнайера вам кажется
- 3. Ни при каких обстоятельствах не изобретайте свой алгоритм

Foot-Shooting Prevention Agreement

I, _____ , promise that once

I see how simple AES really is, I will not implement it in production code even though it would be really fun.

This agreement shall be in effect until the undersigned creates a meaningful interpretive dance that compares and contrasts cache—based, timing, and other side channel attacks and their countermeasures.

Средства операционной системы

- ► sys/crypto алгоритмы шифрования
- ▶ sys/hashes хеши, в том числе криптографические
- ▶ sys/random генератор псевдослучайных чисел

True random number generator

Настоящий генератор случайных чисел может быть только аппаратным:

- ▶ Подбрасывание монеты
- ▶ Вращение рулетки
- ▶ Физические процессы, корнями уходящие в квантовую механику
 - ▶ Дробовой шум
 - ▶ Туннелирование электронов

Pseudo random number generator

- ▶ Сложная числовая функция, выдающая почти непредсказуемую последовательность чисел с очень большим периодом
- ▶ Если не сказано иного всегда предполагайте псевдослучайность
- ightharpoonup Последовательность определяется одним числом seed
- ► При одном и том же seed одна и та же последовательность
- ► seed должен быть *настоящим* случайным числом

Инициализация PRNG

- ► Источники «настоящих» случайных чисел обычно медленные
- ► Удобно получить одно случайное число и использовать его, как *seed* для PRNG
- ▶ Источники случайности приемлемого качества:
 - ▶ Действия пользователя в интерактивной системе
 - ► Микрошум на «висящем в воздухе» входе АЦП
 - ▶ Шум в радиоэфире
 - ▶ Отклонения двух тактовых генераторов
- ▶ Источники случайности неприемлемого качества:
 - ▶ Время, прошедшее с момента старта системы
- ▶ Можно собрать много приемлемых случайных чисел и посчитать для них криптографический хеш

Сетевой стек ОС Riot

Основные варианты

- ► lwIP популярная реализация TCP/IP для встраиваемых систем (Ethernet, IPv4, TCP, UDP)
- ► GNRC собственный сетевой стек Riot (IPv6, UDP, статус реализации TCP «экспериментальный», альтернативная реализация LoraWAN)
- ► NimBLE реализация стека BLE (портирована из ОС Mynewt)
- ► Semtech LoRaMAC «эталонная» реализация LoRaWAN и ее адаптация для Riot

Интерфейс netdev


```
const netdev_driver_t sx127x_driver = {
    .send = _send,
    .recv = _recv,
    .init = _init,
    .isr = _isr,
    .get = _get,
    .set = _set,
};
```

Сетевой стек GNRC

- Каждый сетевой протокол обслуживается отдельным потоком
- В ходе обработки пакета он передается между уровнями с помощью средств IPC
- ► Пакет состоит из нескольких фрагментов (snips), это могут быть заголовки, фрагменты заголовков, данные...
- ▶ Для хранения данных используется «буфер пакетов» с собственным управлением памятью

