Nanyang Technological University School of Electrical & Electronic Engineering EE2002 Analog Electronics – Tutorial 12

1. In the common-base circuit shown in Figure 1, the transistor has $\beta = 100$, $V_A = \infty$, $C_{\mu} = 1$ pF and $f_T = 285$ MHz. Assume $V_T = 25$ mV. Using open-circuit time constant method, determine the upper 3-dB frequency of the amplifier.

(Ans: 813 Mrad/s)

2. Using the open-circuit short-circuit time constant method, determine the lower -3dB frequency (ω_L) for the amplifier circuit shown in Figure 2. Assume that a signal source v_s with a series resistance $R_S = 1$ M Ω is connected to the input at G through a coupling capacitor $C_I = 1\mu F$, while a load resistor $R_L = 10$ k Ω is connected to the output at D through a coupling capacitor $C_2 = 1\mu F$. The resistance $R_I = 5$ M Ω . For the transistors Q_I and Q_2 , $\mu_n C_{oxI}(W_1/L_1) = \mu_p C_{ox2}(W_2/L_2) = 50$ μ A/V², $|V_{TP}| = V_{TN} = 2V$, and $\lambda = 0.005$ V⁻¹.

Ans: 34.9 rad/s

Figure 2