CONVEXITY « À LA CARTE »

Léon Bottou

Geometrical Insights for Implicit Generative Modeling

Leon Bottou a,b, Martin Arjovsky b,a, David Lopez-Paz a, Maxime Oquab a,c

Learning algorithms for implicit generative models can optimize a variety of criteria that measure how the data distribution differs from the implicit model distribution, including the Wasserstein distance, the Energy distance, and the Maximum Mean Discrepancy criterion. A careful look at the geometries induced by these distances on the space of probability measures reveals interesting differences. In particular, we can establish surprising approximate global convergence guarantees for the 1-Wasserstein distance, even when the parametric generator has a nonconvex parametrization.

> arXiv:1712.07822 sections 6.1 and 6.3

Summary

- Convex optimization « à la carte »
- 2. Approximation properties, global minimization, parametrization bias.
- The case of implicit generative models.

1- Convexity « à la carte »

Background

Curves

Let \mathfrak{X} be a Polish metric space.

A continuous mapping $\gamma: t \in [0,1] \subset \mathbb{R} \mapsto \gamma_t \in \mathfrak{X}$ defines a curve in \mathfrak{X} that connects γ_0 to γ_1 .

Background

Bounded speed curve

Such a curve has bounded speed if there is K > 0 such that

$$\forall 0 \le t \le t' \le 1$$
 $d(\gamma_t, \gamma_{t'}) \le K(t' - t)$

Let $\mathcal C$ denote a family of curves in $\mathfrak X$

• A subset $\mathcal{F} \subset \mathfrak{X}$ is convex with respect to \mathcal{C} when, for every pair $x,y \in \mathcal{F}$, there is a curve $\gamma \in \mathcal{C}$ that is entirely contained in \mathcal{F} , that is,

$$\forall t \in [0,1] \quad \gamma_t \in \mathcal{F}$$

• A real function $f: \mathfrak{X} \to \mathbb{R}$ is convex with respect to \mathcal{C} when for every curve $\gamma \in \mathcal{C}$, the restriction of f to the curve is convex, that is,

$$\forall t, a, b \in [0,1] \ f((1-t)\gamma_a + t \gamma_b) \le (1-t) f(\gamma_a) + t f(\gamma_b)$$

Let $\mathcal C$ denote a family of curves in $\mathfrak X$

We recover normal convexity when X is a Euclidean space and C contains all line segments.

• A subset $\mathcal{F} \subset \mathfrak{X}$ is convex with respect to \mathcal{C} when, for every pair $x,y\in\mathcal{F}$, there is a curve $\gamma\in\mathcal{C}$ that is entirely contained in \mathcal{F} , that is,

$$\forall t \in [0,1] \quad \gamma_t \in \mathcal{F}$$

• A real function $f: \mathfrak{X} \to \mathbb{R}$ is convex with respect to \mathcal{C} when for every curve $\gamma \in \mathcal{C}$, the restriction of f to the curve is convex, that is,

$$\forall t, a, b \in [0,1] \ f((1-t)\gamma_a + t \gamma_b) \le (1-t) f(\gamma_a) + t f(\gamma_b)$$

Let $\mathcal C$ denote a family of curves in $\mathfrak X$

• A subset $\mathcal{F} \subset \mathfrak{X}$ is convex with respect to \mathcal{C} when, for every pair $x, y \in \mathcal{F}$, there is a curve $\gamma \in \mathcal{C}$ that is entirely contained in \mathcal{F} , that is,

$$\forall t \in [0,1] \quad \gamma_t \in \mathcal{F}$$

• A real function $f: \mathfrak{X} \to \mathbb{R}$ is convex with respect to \mathcal{C} when for every curve $\gamma \in \mathcal{C}$, the restriction of f to the curve is convex, that is,

$$\forall t, a, b \in [0,1] \ f\left(\gamma_{(1-t)a+tb}\right) \le (1-t) f(\gamma_a) + t f(\gamma_b)$$

 $f(\gamma_b)$

Let $\mathcal C$ denote a family of curves in $\mathfrak X$

• A subset $\mathcal{F} \subset \mathfrak{X}$ is convex with respect to \mathcal{C} when, for every pair $x,y \in \mathcal{F}$, there is a curve $\gamma \in \mathcal{C}$ that is entirely contained in \mathcal{F} , that is,

$$\forall t \in [0,1] \quad \gamma_t \in \mathcal{F}$$

• A real function $f:\mathfrak{X}\to\mathbb{R}$ is endpoints-convex with respect to \mathcal{C} when, for every curve $\gamma\in\mathcal{C}$

$$\forall t \in [0,1] \quad f(\gamma_t) \le (1-t) f(\gamma_0) + t f(\gamma_1)$$

Convex optimization « à la carte »

Theorem

Let $\mathcal{F} \subset \mathfrak{X}$ be convex with respect to \mathcal{C} .

Let the cost function $f: \mathfrak{X} \to \mathbb{R}$ be endpoints-convex with respect to \mathcal{C} .

Then:

- $\forall M \ge \min_{\mathcal{F}} f$, the level sets $L(f, \mathcal{F}, M) = \{x \in \mathcal{F} \ s.t. \ f(x) \le M \}$ are connected.
- If $\mathcal C$ only contains bounded speed curves, all local minima of f in $\mathcal F$ are global.

Proof (1)

Let $x, y \in L(f, \mathcal{F}, M)$.

- Since \mathcal{F} is convex w.r.t. \mathcal{C} , there is a curve $\gamma \in \mathcal{C}$ connecting x to y such that $\forall t \in [0,1] \ \gamma_t \in \mathcal{F}$
- Since f is endpoints-convex w.r.t. \mathcal{C} , for all $t \in [0,1]$, $f(\gamma_t) \leq (1-t)f(x) + t f(y) \leq M \quad \Rightarrow \quad \gamma_t \in L(f,\mathcal{F}, M)$

Therefore $L(f, \mathcal{F}, M)$ is path-connected.

Proof (2)

- A point $x \in \mathcal{F}$ is a local minimum of f in \mathcal{F} iff there is $\epsilon > 0$ such that, for all $x' \in \mathcal{F}$, $d(x,x') < \epsilon \implies f(x') \ge f(x)$.
- Reasoning by contradiction, assume there is $y \in \mathcal{F}$ such that f(y) < f(x).
- Let $\gamma \in \mathcal{C}$ be a bounded speed curve contained \mathcal{F} and connecting x to y:

$$\forall 0 \le t \le t' \le 1$$
 $d(\gamma_t, \gamma_{t'}) \le K(t' - t)$

- Therefore $f(\gamma_{\epsilon/2K}) \ge f(\gamma_0) = f(x)$
- But endpoints convexity means $f(\gamma_{\epsilon/2K}) \le \left(1 \frac{\epsilon}{2K}\right) f(x) + \frac{\epsilon}{2K} f(y) < f(x)$!!!

Simple machine learning example (1)

- Let \mathfrak{X} be the continuous functions from $\Omega \subset \mathbb{R}^{d_{in}}$ to $\mathbb{R}^{d_{out}}$
- Let $\mathcal{F} \subset \mathfrak{X}$ be a family of functions $F_{\theta} : \mathbb{R}^{d_{in}} \to \mathbb{R}^{d_{out}}$ parametrized by θ .
- Let ℓ : $\mathbb{R}^{d_{out}} \times \mathbb{R}^{d_{out}}$ be a loss function, convex in its first argument.
- Let the training examples $(x_1, y_1) \dots (x_n, y_n) \in \mathbb{R}^{d_{in}} \times \mathbb{R}^{d_{out}}$
- Define the empirical cost function

$$f: F \in \mathfrak{X} \mapsto f(F) = \frac{1}{n} \sum_{i} \ell(F(x_i), y_i)$$

I did not write "parametric"

Simple machine learning example (2)

Let the curves in C represent mixtures of any two functions of $\mathfrak X$

$$\forall F, G \in \mathfrak{X}, \ \forall t \in [0,1], \ \gamma_t^{FG} = (1-t)F + tG$$

Cost function f is trivially convex w.r.t. C

• If \mathcal{F} is convex w.r.t. \mathcal{C} , the theorem applies

Line segments in X!

- Linear models: YES
- Kernel models: YES
- Neural networks : ALMOST?

Neural networks (1)

Why ALMOST?

If an overparametrized neural network can approximate anything (e.g. Cybenko89, Hornik89) then there should be weights θ_t that make F_{θ_t} arbitrarily close to $\gamma_t^{FG} = (1-t)F + t G$.

This is not sufficient!

- A⇒B does not generally mean that AlmostA ⇒AlmostB.
- This is where curves can help.

Neural networks (2)

For the sake of the argument, assume that we can find θ_t such that

$$d(\gamma_t^{FG}, F_{\theta_t}) \le R t (1 - t)$$

Proving this is cumbersome

—I won't even try—

but the point is that R

gets smaller when the net gets

bigger and approximates better

- Let C contain all curves contained in such cigar shaped regions
- By construction \mathcal{F} is convex w.r.t. \mathcal{C} .
- But is the cost function f endpoints-convex w.r.t. C?

Neural network (3)

• With a Lipschitz assumption on the loss ℓ we can have something like

$$f(F_{\theta_t}) \le f(\gamma_t^{FG}) + \lambda t (1 - t)$$

$$\le (1 - t)f(F) + t f(G) + \lambda t (1 - t)$$

This holds because f is convex w.r.t. the mixture curves γ_t^{FG} .

- In fact, if the loss ℓ were μ -strongly convex we could even write $f(F_{\theta_t}) \leq (1-t)f(F) + t f(G) + (\lambda \mu)t (1-t)$ and apply the convexity a-la-carte theorem when $\mu \geq \lambda$!
- What about the general case?

Almost-convex optimization «à la carte»

Let $\mathcal{F} \subset \mathfrak{X}$ be convex with respect to \mathcal{C} .

For each $\gamma \in \mathcal{C}$, let the cost function $f : \mathfrak{X} \to \mathbb{R}$ satisfy $f(\gamma_t) \le (1-t) f(\gamma_0) + t f(\gamma_1) + \lambda t (1-t)$

Then:

■ $\forall M \ge \left(\min_{\mathcal{F}} f\right) + \lambda$, the level sets $L(f, \mathcal{F}, M)$ are connected.

Basically, any local minimum is at most γ above the global minimum.

Neural network (3)

• With a Lipschitz assumption on the loss ℓ we can have something like

$$f(F_{\theta_t}) \le f(\gamma_t^{FG}) + \lambda t (1 - t)$$

$$\le (1 - t)f(F) + t f(G) + \lambda t (1 - t)$$

This holds because f is convex w.r.t. the mixture curves γ_t^{FG} .

- In fact, if the loss ℓ were μ -strongly convex we could even write $f(F_{\theta_t}) \leq (1-t)f(F) + t f(G) + (\lambda \mu)t (1-t)$ and apply the convexity a-la-carte theorem when $\mu \geq \lambda$!
- What about the general case?

Almost-convex optimization «à la carte»

Let $\mathcal{F} \subset \mathfrak{X}$ be convex with respect to \mathcal{C} .

For each $\gamma \in \mathcal{C}$, let the cost function $f : \mathfrak{X} \to \mathbb{R}$ satisfy $f(\gamma_t) \le (1-t) f(\gamma_0) + t f(\gamma_1) + \lambda t (1-t)$

Then:

■ $\forall M \ge \left(\min_{\mathcal{F}} f\right) + \lambda$, the level sets $L(f, \mathcal{F}, M)$ are connected.

Basically, any local minimum is at most γ above the global minimum.

Proof

- Let $x, y \in L(f, \mathcal{F}, M)$ with $M \ge \left(\min_{\mathcal{F}} f\right) + \gamma$. We have $f(x) \le M$ and $f(y) \le M$.
- Pick $z \in L(f, \mathcal{F}, M)$ such that $f(z) \leq M \gamma$.
- Find a curve $\gamma \in \mathcal{C}$ connecting x to z such that $\forall t \in [0,1], \ \gamma_t \in \mathcal{F}$.
- Observe that $\gamma_t \in L(f, \mathcal{F}, M)$
- Similarly curve $\gamma' \in C$ connecting z to y
- Concatenate curves γ and γ' to form a path that connects x to y without leaving $L(f, \mathcal{F}, M)$.

Almost-convex optimization «à la carte»

Let $\mathcal{F} \subset \mathfrak{X}$ be convex with respect to \mathcal{C} .

For each $\gamma \in \mathcal{C}$, let the cost function $f : \mathfrak{X} \to \mathbb{R}$ satisfy $f(\gamma_t) \le (1-t) f(\gamma_0) + t f(\gamma_1) + \lambda t (1-t)$

Then:

■ $\forall M \ge \left(\min_{\mathcal{F}} f\right) + \lambda$, the level sets $L(f, \mathcal{F}, M)$ are connected.

Basically, any local minimum is at most γ above the global minimum.

Proof

- Let $x, y \in L(f, \mathcal{F}, M)$ with $M \ge \left(\min_{\mathcal{F}} f\right) + \gamma$. We have $f(x) \le M$ and $f(y) \le M$.
- Pick $z \in L(f, \mathcal{F}, M)$ such that $f(z) \leq M \gamma$.
- Find a curve $\gamma \in \mathcal{C}$ connecting x to z such that $\forall t \in [0,1], \ \gamma_t \in \mathcal{F}$.
- Observe that $\gamma_t \in L(f, \mathcal{F}, M)$
- Similarly curve $\gamma' \in C$ connecting z to y
- Concatenate curves γ and γ' to form a path that connects x to y without leaving $L(f, \mathcal{F}, M)$.

2-Approximation properties, global minimization, and parametrization bias

Proof

- Let $x, y \in L(f, \mathcal{F}, M)$ with $M \ge \left(\min_{\mathcal{F}} f\right) + \gamma$. We have $f(x) \le M$ and $f(y) \le M$.
- Pick $z \in L(f, \mathcal{F}, M)$ such that $f(z) \leq M \gamma$.
- Find a curve $\gamma \in \mathcal{C}$ connecting x to z such that $\forall t \in [0,1], \ \gamma_t \in \mathcal{F}$.
- Observe that $\gamma_t \in L(f, \mathcal{F}, M)$
- Similarly curve $\gamma' \in C$ connecting z to y
- Concatenate curves γ and γ' to form a path that connects x to y without leaving $L(f, \mathcal{F}, M)$.

Discussion (general)

- These results are independent from the parametrization of \(\mathcal{F} \).
 They depend on whether any two points in \(\mathcal{F} \) can be connected by a suitable curve that (a) either remains in \(\mathcal{F} \), or (b) can be well approximated by elements of \(\mathcal{F} \).
- In θ space, the level sets can be very nonconvex, and yet connected.
- However, because learning algorithms operate in θ space, the parametrization changes the implicit biases that affect
 - which global minimum is returned in overparametrized models, or,
 - which solution is returned after early stopping.

Discussion (mixture curves)

- When the family of functions \mathcal{F} has strong enough approximations properties to closely represent linear mixtures of any two of its functions, any reasonable learning algorithm will eventually find a near-global minimum. (must cite many recent work here)
- We can say this because the learning algorithm has the possibility to overcome the parametrization bias and essentially function as it would for a kernel model.
- But the learning algorithm might find a good enough solution without exercising this
 possibility. This can improve generalization performance when the parametrization bias is
 sensible for the problem at hand...
- This is doomed to be problem-specific

Discussion (mixture curves)

- When the family of functions F has strong enough approximations properties to closely represent linear mixtures of any two of its functions, any reasonable learning algorithm will eventually fi
- We can say what about using other kinds of curves? vercome the parametriza
 what about using other kinds of curves?
 nodel.
- But the learn exercising this possibility. This can improve generalization performance when the parametrization bias is sensible for the problem at hand...
- This is doomed to be problem-specific

3- The case of implicit generative models.

Two learning approaches

Models engineered to resemble the true data distribution. Any distance

Simple models that reveal important properties but with unrealistic data distributions

Griefs about Maximum Likelihood

What is a simple model?

- A model that only involves a couple observed or latent variables.
- A degenerate distribution supported by a low-dimensional manifold.
- It does not have a density --> no density estimation...

Ugly workaround

• Augment the simple model with a noise model, ... and ... tweak the noise model to coerce MLE into producing the desired outcome.

Implicit modeling

Let z be a random variable with known distribution μ_z defined on a suitable probability space \mathcal{Z} and let G_{θ} be a measurable function, called the *generator*, parametrized by $\theta \in \mathbb{R}^d$,

$$G_{\theta}: z \in \mathcal{Z} \mapsto G_{\theta}(z) \in \mathcal{X}$$
.

The random variable $G_{\theta}(Z) \in \mathcal{X}$ follows the push-forward distribution⁷

$$G_{\theta}(z) \# \mu_Z(z) : A \in \mathfrak{U} \mapsto \mu_z(G_{\theta}^{-1}(A))$$
.

By varying the parameter θ of the generator G_{θ} , we can change this push-forward distribution and hopefully make it close to the data distribution Q according to the criterion of interest.

Implicit modeling

ned on a suitable Let z be a random variable with known distribution probability space \mathcal{Z} and let G_{θ} be a mean d the generator, Good for degenerate distributions parametrized by $\theta \in \mathbb{R}^d$,

The randor

push-forward distribution⁷

$$\mu_{Z}(z): A \in \mathfrak{U} \mapsto \mu_{z}(G_{\theta}^{-1}(A)).$$

By varying the parameter θ of the generator G_{θ} , we can change this push-forward distribution and hopefully make it close to the data distribution Q according to the criterion of interest.

Comparing distributions

• The Total Variation (TV) distance

$$\delta(Q, P) = \sup_{A \in \mathfrak{U}} |Q(A) - P(A)|$$

• The Kullback-Leibler (KL) divergence

$$KL(Q\|P) = \int \log\left(\frac{q(x)}{p(x)}\right) \, q(x) d\mu(x)$$
 requires densities, asymmetric, possibly infinite

VAE

• The Jensen-Shannon (JS) divergence

$$JS(Q, P) = \frac{1}{2}KL(Q||M) + \frac{1}{2}KL(P||M)$$
 with $M = \frac{1}{2}(P + Q)$

GAN_o

symmetric, does not require densities, $0 \le JS \le \log(2)$

Comparing distributions

• The Earth-Mover (EM) distance or Wasserstein-1

$$\begin{aligned} W_1(Q,P) &= \inf_{\pi \in \Gamma(Q,P)} \mathbb{E}_{(x,y) \sim \pi}[d(x,y)] \\ &= \sup_{f \in \mathsf{Lip1}} \mathbb{E}_{x \sim Q}[f(x)] - \mathbb{E}_{y \sim P}[f(y)] \end{aligned}$$

Always defined, Involves metric on underlying space Kantorovich duality.

Comparing distributions

• The Energy (ED) distance $\equiv Maximum\ Mean\ Discrepancy$ (MMD)

$$\mathcal{E}(Q,P) = 2\mathbb{E}_{x \sim Q} \sup_{y \sim P} [d(x,y)] - \mathbb{E}_{x,x' \sim Q} [d(x,x')] - \mathbb{E}_{y,y' \sim P} [d(y,y')]$$
$$= \sup_{\|f\|_{\mathcal{H}} \le 1} \mathbb{E}_{x \sim Q} [f(x)] - \mathbb{E}_{y \sim P} [f(y)]$$

Always defined when P and Q have first moments, Needs a suitable metric/kernel on underlying space.

DiscoGANs

$$\forall t \in [0,1] \quad P_t = (1-t) P_0 + t P_1$$

Let the set of distributions $\mathcal{F} = \{ G_{\theta} # \mu_z : \theta \in \mathbb{R}^d \}$ be mixture-convex.

o For all $P_0, P_1 \in \mathcal{F}$ there is $t \mapsto \theta_t \in \mathbb{R}^d$ such that $P_t = G_{\theta_t} \# \mu_z$

Problem

If P_0 and P_1 have disjoint supports with nonzero margin, then either $t \mapsto \theta_t$ is discontinuous or $\theta \mapsto G_\theta$ is discontinuous.

Comparing distributions

• The Energy (ED) distance $\equiv Maximum\ Mean\ Discrepancy$ (MMD)

$$\mathcal{E}(Q,P) = 2\mathbb{E}_{x \sim Q} \sup_{y \sim P} [d(x,y)] - \mathbb{E}_{x,x' \sim Q} [d(x,x')] - \mathbb{E}_{y,y' \sim P} [d(y,y')]$$
$$= \sup_{\|f\|_{\mathcal{H}} \le 1} \mathbb{E}_{x \sim Q} [f(x)] - \mathbb{E}_{y \sim P} [f(y)]$$

Always defined when P and Q have first moments, Needs a suitable metric/kernel on underlying space.

DiscoGANs

$$\forall t \in [0,1] \quad P_t = (1-t) P_0 + t P_1$$

Let the set of distributions $\mathcal{F} = \{ G_{\theta} # \mu_z : \theta \in \mathbb{R}^d \}$ be mixture-convex.

 \Rightarrow For all $P_0, P_1 \in \mathcal{F}$ there is $t \mapsto \theta_t \in \mathbb{R}^d$ such that $P_t = G_{\theta_t} \# \mu_Z$

Problem

If P_0 and P_1 have disjoint supports with nonzero margin, then either $t \mapsto \theta_t$ is discontinuous or $\theta \mapsto G_\theta$ is discontinuous.

Proof:

Let P_0 and P_1 be two distributions whose supports are separated separated by a nonzero margin ν .

For all $\epsilon > 0$,

- $G_{\theta_0}(z) \in \operatorname{Supp}(P_0)$ with μ -probability one,
- For all $\epsilon > 0$, $G_{\theta_{\epsilon}}(z) \in \operatorname{Supp}(P_1)$ with μ -probability ϵ ,

Therefore there is z such that $d\left(G_{\theta_0}(z), G_{\theta_\epsilon}(z)\right) \geq \nu > 0$

Proof:

Let P_0 and P_1 be two distributions whose superare separated separated by a nonzero

For all $\epsilon > 0$,

 $G_{\theta_0}(z) \in \operatorname{Supp}(z)$

• For all $\epsilon > 0$, G_{θ}

Therefore there is z

Mixture curves do not match the geometry of implicit models.

We need other kinds of curves!

 $Supp(P_1)$

Displacement curves

Transportation plan from P_0 to P_1

• A joint distribution $\pi(x,y)$ whose marginals are P_0 and P_1

Displacement curves (Euclidean)

Transportation plan from P_0 to P_1

- A joint distribution $\pi(x,y)$ whose marginals are P_0 and P_1
- Optimal when $\mathbb{E}_{(x,y)\sim\pi}[d(x,y)^p]$ is minimal

Displacement curve

$$P_t = ((1-t) x + t y) \# \pi^*(x,y)$$

Displacement curves and implicit models

Let $P_0 = G_{\theta_0} \# \mu$ and $P_1 = G_{\theta_1} \# \mu$ be two elements of \mathcal{F} .

Transportation plan

$$(G_{\theta_0}, G_{\theta_1}) # \mu$$

has displacement curves

$$P_t = ((1-t)G_{\theta_0} + tG_{\theta_1}) \# \mu$$

If the family of G_{θ} functions has strong approximation properties,

this can be close to an optimal plan,

and this near optimal displacement curve is close to a $G_{\theta_t} \# \mu$.

Displacement convexity and implicit models

Displacement convexity

is a natural notion of convexity for a family of distributions defined by an implicit model.

Such families are typically not mixture-convex.

- Contrast with families defined by parametric density functions.
- Which cost functions are displacement convex, then?

How different are WD and MMD?

Leaving aside the comparison criteria inducing a strong topology.

(because they lead to discontinuous criteria when modeling distribution with disjoint supports).

Two known criteria inducing a weak topology are

$$W_1(Q,P) = \sup_{f \in \operatorname{Lip}1} \mathbb{E}_Q[f(x)] - \mathbb{E}_P[f(x)]$$
, Wasserstein(1) distance $\mathcal{E}_d(Q,P) = \sup_{\|f\|_{\mathcal{U}} \le 1} \mathbb{E}_P[f(x)] - \mathbb{E}_Q[f(x)]$. Energy distance, MMD

Fact #1 – Minimal geodesics.

- When the space of distributions is equipped with the Energy distance \mathcal{E}_d or the MMD distance \mathcal{E}_{d_k} , the shortest path between two distributions P_0 and P_1 is the mixture curve.
- When the space of distributions is equipped with the Wasserstein(p) distance W_p with p>1, the shortest paths between two distributions P_0 and P_1 are the displacement curves.
- When the space of distributions is equipped with the Wasserstein(1) distance W_1 , the shortest paths between two distributions P_0 and P_1 include the mixture curves, the displacement curves, and all kinds of hybrid curves.

Fact #2 — Statistical properties

Expected distance between a distribution Q and its empirical approximation $Q_n = \frac{1}{n} \sum_{i=1}^n \delta_{x_i}$:

$$Q \in \mathcal{P}^1_{\mathcal{X}}$$
 $\mathbb{E}_{x_1...x_n \sim Q} \big[\mathcal{E}_d(Q_n, Q)^2 \big] = \frac{1}{n} \, \mathbb{E}_{x, x' \sim Q} [d(x, x')] = \mathcal{O}(n^{-1})$.

$$Q \in \mathcal{P}^2_{R^d}$$
 $\mathbb{E}_{x_1...x_n \sim Q}[W_1(Q_n, Q)] = \mathcal{O}(n^{-1/d})$.

This is reached (Sanjeev's sphere)

Wasserstein seem hopeless

Fact #3 — In practice

Things look different in practice

- ED/MMD training of low dim implicit models works nicely.
- ED/MMD training of high dim implicit models often gets stuck.
- whereas "WD" training of the same high dim implicit models can give results.

Just the opposite of what one would expect!

Example

A sample of 64 training examples

Example

Generated by the ED trained model

Example

Generated by the WD trained model

How things can go wrong

Example 6.5 Let μ_z be the uniform distribution on $\{-1, +1\}$. Let the parameter θ be constrained to the square $[-1, 1]^2 \subset \mathbb{R}^2$ and let the generator function be

$$G_{\theta}: z \in \{-1,1\} \mapsto G_{\theta}(z) = z\theta$$
.

The corresponding model family is

$$\mathcal{F} = \left\{ P_{\theta} = \frac{1}{2} (\delta_{\theta} + \delta_{-\theta}) : \theta \in [-1, 1] \times [-1, 1] \right\}$$
.

Two Dirac distributions with mean zero in a square.

It is easy to see that this model family is displacement convex but not mixture convex. Figure 5 shows the level sets for both criteria $\mathcal{E}(Q, P_{\theta})$ and $W_1(Q, P_{\theta})$ for the target distribution $Q = P_{(2,2)} \notin \mathcal{F}$. Both criteria have the same global minima in (1,1) and (-1,-1). However the energy distance has spurious local minima in (-1,1) and (1,-1) with a relatively high value of the cost function.

How things can go wrong

The convexity of distance functions

Learn by minimizing $\min_{P_{\theta} \in \mathcal{F}} D(Q, P_{\theta})$

When is the cost function $P \mapsto D(Q, P)$ mixture-convex? displacement-convex?

Mixture-convexity

Proposition 6.6. Let \mathcal{P}_{χ} be equipped with a distance D that belongs to the IPM family (5). Then D is mixture convex.

- Cost function $P \mapsto \mathcal{E}_d(Q, P)$ is mixture convex. • Cost function $P \mapsto W_1(Q, P)$ is mixture convex

The Wasserstein distance is not displacement convex

The Wasserstein distance is not displacement convex

Cost function $P \mapsto W_1(Q, P)$ is almost displacement-convex

Proposition 6.8. Let \mathcal{X} be a strictly intrinsic Polish space equipped with a geodesically convex distance d and let $\mathcal{P}^1_{\mathcal{X}}$ be equipped with the 1-Wasserstein distance W_1 . For all $Q \in \mathcal{P}_{\mathcal{X}}$ and all displacement geodesics $t \in [0,1] \mapsto P_t$,

$$\forall t \in [0,1]$$
 $W_1(Q, P_t) \le (1-t) W_1(Q, P_0) + t W_1(Q, P_1) + 2t(1-t)K(Q, P_0, P_1)$

with
$$K(Q, P_0, P_1) \leq 2 \min_{u_0 \in \mathcal{X}} \mathbb{E}_{u \sim Q}[d(u, u_0)]$$
.

Cost function $P \mapsto W_1(Q, P)$ is almost displacement-convex

Fig. 8. The construction of $\pi \in \mathcal{P}_{\chi^6}$ in the proof of Proposition 7.8.

Cost function $P \mapsto W_1(Q, P)$ is almost displacement-convex

We can therefore apply the almost-convex-optimization-a-la-carte-theorem and conclude guarantee that optimizing an implicit model with WD has only local minima whose value is "near" that of the global minimum.

Although I am not very happy with this bound (too gross).

Conclusion

- Convexity with respect to mixture curves makes clear that optimizing a regression model with strong approximation properties with a descent algorithm yields a near global minimum.
- This property is independent of the exact parametrization.
 - > It says nothing about the implicit biases induced by the parametrization
- In implicit generative models, convexity with respect to displacement curves seems more interesting than convexity with respect to mixture curves.
 - → Is there potential here? Displacement in images versus mixtures of images.

Discussion (general)

- These results are independent from the parametrization of \mathcal{F} . They depend on whether any two points in \mathcal{F} can be connected by a suitable curve that (a) either remains in \mathcal{F} , or (b) can be well approximated by elements of \mathcal{F} .
- In θ space, the level sets can be very nonconvex, and yet connected.
- However, because learning algorithms operate in θ space, the parametrization changes the implicit biases that affect
 - which global minimum is returned in overparametrized models, or,
 - which solution is returned after early stopping.

Convex optimization « à la carte »

Theorem

Let $\mathcal{F} \subset \mathfrak{X}$ be convex with respect to \mathcal{C} .

Let the cost function $f: \mathfrak{X} \to \mathbb{R}$ be endpoints-convex with respect to \mathcal{C} .

Then:

- $\forall M \ge \min_{\mathcal{F}} f$, the level sets $L(f, \mathcal{F}, M) = \{x \in \mathcal{F} \ s.t. \ f(x) \le M \}$ are connected.
- If $\mathcal C$ only contains bounded speed curves, all local minima of f in $\mathcal F$ are global.

Proof (2)

- A point $x \in \mathcal{F}$ is a local minimum of f in \mathcal{F} iff there is $\epsilon > 0$ such that, for all $x' \in \mathcal{F}$, $d(x,x') < \epsilon \implies f(x') \ge f(x)$.
- Reasoning by contradiction, assume there is $y \in \mathcal{F}$ such that f(y) < f(x).
- Let $\gamma \in \mathcal{C}$ be a bounded speed curve contained \mathcal{F} and connecting x to y:

$$\forall 0 \le t \le t' \le 1$$
 $d(\gamma_t, \gamma_{t'}) \le K(t' - t)$

- Therefore $f(\gamma_{\epsilon/2K}) \ge f(\gamma_0) = f(x)$
- But endpoints convexity means $f(\gamma_{\epsilon/2K}) \le \left(1 \frac{\epsilon}{2K}\right) f(x) + \frac{\epsilon}{2K} f(y) < f(x)$!!!