Дисперсионный анализ и А/В тесты

Максим Сахаров

О спикере:

- старший консультант по Data Science, BasisSoft
- к.т.н., доцент МГТУ им. Н.Э. Баумана
- Автор более 40 научных работ
- Области интересов:
 - Анализ данных и машинное обучение
 - Математическая оптимизация
 - Статистическое управление процессами

План занятия

- (1) Немного повторения и новые тесты
- (2) Дисперсионный анализ
- 3 Проблема множественного сравнения
- 4 А/В тестирование
- 5 Практика на Python

Статистическая проверка гипотез

P-value

Вероятность получить для данной вероятностной модели такое же или более экстремальное значение статистики (среднего, медианы и др.), по сравнению с ранее наблюдаемым, при условии, что нулевая гипотеза верна

Статистическая проверка гипотез

- p-value <= α: отклонить Н0
- p-value > α: не отклонять Н0

Статистическая проверка гипотез

- p-value <= α: отклонить Н0
- p-value > α: не отклонять Н0

Карта тестов гипотез

t-критерий Стьюдента

 $t = rac{\overline{X}_1 - \overline{X}_2}{\sqrt{rac{s_1^2}{n_1} + rac{s_2^2}{n_2}}}$

Рассмотренный ранее <u>t-критерий Стьюдента</u> предназначен для сравнения **двух** совокупностей

> Требует нормального распределения данных

Невозможно отклонить H0: μ1 = μ2 Отклонить H0: распределения выборок не равны

t-критерий Стьюдента

Легко интерпретируемый критерий. Мы просто смотрим на различие **средних**

Невозможно отклонить H0: μ1 = μ2 Отклонить H0: распределения выборок не равны

Критерий Вилкоксона и Манна-Уитни

- Используемый для проверки различий между двумя выборками зависимых или независимых по количественному признаку (непрерывного или в порядкового шкале)
- Невозможно отклонить Н0: распределения выборок равны Отклонить Н0: распределения выборок не равны
- Тест Вилкоксона для независимых выборок называется критерием Манна-Уитни

Где R_r — ранговые значения сдвигов с более редким знаком

No	Уровень тревожности (до тренинга)	Уровень тревожности (после тренинга)	Шаг 2: Разность (после-до)	Шаг 3: Значение разности по модулю	Шаг 4: Ранг разности
1	15	14	-1	1	3
2	14	11	-3	3	8
3	16	17	1	1	3

Критерий Вилкоксона и Манна-Уитни

- Используемый для проверки различий между двумя выборками зависимых или независимых по количественному признаку (непрерывного или в порядкового шкале)
- Невозможно отклонить Н0: распределения выборок равны Отклонить Н0: распределения выборок не равны
- Тест Вилкоксона для независимых выборок называется критерием Манна-Уитни

Почему не использовать всегда Манна-Уитни?

В отличии от t-Критерия Стьюдента не требует нормального распределения, **HO** трудно интерпретируемый

- В случае, когда нужно сравнить две или больше выборок, целесообразно применение дисперсионного анализа.
- Название метода указывает на то, что выводы делают на основе исследования составляющих дисперсии.

Суть анализа состоит в том, что общее изменение показателя разбивают на составляющие части, которые соответствуют действию каждого отдельно взятого фактора.

Что можно сказать про эффективность удобрений?

Нам нужен четкий и понятный критерий чтобы различить эти случаи!

Как будем оценивать? t-Tecт?

Нам хорошо знаком <u>t-критерий</u> <u>Стьюдента</u>, который мы часто с легкостью рассчитывают для каждой пары сравниваемых групп.

Получив достаточно высокое значение t в каком-либо из этих сравнений, исследователь сообщает, что р < 0.05.

Это утверждение означает, что вероятность ошибочного заключения о существовании различий между групповыми средними не превышает 5%.

Но тут проблема множественного сравнения!

К чему приводит тестирование множества гипотез?

Очевидно, что дальнейшее увеличение числа проверяемых гипотез будет неизбежно сопровождаться возрастанием ошибки первого рода.

t-критерий Стьюдента не подходит для попарного сравнения большего количества групп что вызывает т. н. эффект множественных сравнений.

$$P' = 1 - (1 - \alpha)^m = 1 - (1 - 0.05)^3 = 0.143$$

		H ₀	
Результат	H ₀	Н ₀ верно принята	
критерия	H ₁	H ₀ неверно отвергнута (Ошибка первого рода)	

Что мы знаем пока.

Есть нулевая и альтернативная гипотезы

Мы задаем уровень значимости, чтобы зафиксировать ошибку - неверно отвергнуть нулевую гипотезу

		Верная гипотеза		
		H ₀	H ₁	
Результат	H ₀	Н ₀ верно принята	H ₀ неверно принята (Ошибка второго рода)	
применения критерия	H ₁	H ₀ неверно отвергнута (Ошибка первого рода)	Н ₀ верно отвергнута	

Как дела обстоят на самом деле!

Мы также можем ошибиться и неверное "принять" нулевую гипотезу.

За одно исследование мы можем сделать только одну из двух ошибок!

Примеры ошибок первого (ложноположительная) и второго (ложноотрицательная) рода

Type I error (false positive)

Type II error (false negative) You're not pregnant

Ошибки первого и второго рода связаны между собой!

Вернемся к нашей задаче

А теперь что можно сказать про эффективность тестов?

Сравните разброс значений **внутри** групп с разбросом **между** трёх групповых средних:

Это ключевая идея дисперсионного анализа!

Идея дисперсионного анализа

Идея дисперсионного анализа

Чем больше F, тем проще различить выборки

Как будем оценивать?

Принципы однофакторного дисперсионного анализа как раз предназначены для одновременного сравнения средних значений двух и более групп.

Как еще будем оценивать?

Виды и критерии дисперсионного анализа

Этот метод используется для исследования связи между качественными (номинальными) признаками и количественной (непрерывной) переменной.

В случае двух выборок результаты дисперсионного анализа будут идентичны результатам t-критерия Стьюдента. Однако в отличие от других критериев, это исследование позволяет изучить проблему более детально.

Мотивирующие примеры применения дисперсионного анализа

В троллейбусном депо работают троллейбусы различных типов. Всего на троллейбусных маршрутах оплату собирают 125 контролёров.

Как сравнить экономические показатели работы каждого контролёра (выручку) учитывая различные маршруты и типы троллейбусов?

Немного математики

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Squares (MS)	F
Within	$SS_{within} = \sum_{j=1}^{p} \sum_{i=1}^{n_j} (x_{ij} - \bar{x}_j)^2$	$df_W = N - k$	$MSW = \frac{SSW}{df_w}$	$F = \frac{MSB}{MSW}$
Between	$SS_{between} = \sum_{j=1}^{p} n_j (\bar{x}_j - \bar{x})^2$	$df_B = k - 1$	$MSB = \frac{SSB}{df_b}$	
Total	$SS_{total} = \sum_{j=1}^{p} \sum_{i=1}^{n_j} (x_{ij} - \bar{x})^2$	$df_t = n - 1$		

 $MS_W = SS_W/(N-k)$

Внутригрупповая дисперсия

 $MS_B = SS_B/(k-1)$

Межгрупповая дисперсия $F = MS_B/MS_W$

Критерий Фишера

Ну и где тут p-value 5%?

Ну и где тут p-value 5%?

Дисперсионный анализ = ANOVA

Замечание: в специальной литературе его часто называют ANOVA (от англоязычного названия Analysis of Variance).

Впервые этот метод был разработан Р. Фишером в 1925 г.

А как же Python? Время практики!

Допустим у нас есть предположение, что, если поменять цвет сайта, конверсия увеличится. Как проверить?

Другие примеры

А/В тестирование

Процесс проведения теста

Требования к тестам

- Понимание метрики/цели
- Одновременность
- Случайность
- Достаточный объём выборки
- Независимость

Требования к тестам

- Понимание метрики/цели
- Одновременность
- Случайность
- Достаточный объём выборки
- Независимость

А/В тесты при зависимых группах

Multi A/B тесты и как их проводить

С А/В тестами ты один в поле воин!

 В 2012 году сотрудник Microsoft, работавший над поисковой системой Bing, провёл эксперимент по тестированию различных способов отображения рекламных заголовков.

В течение нескольких часов альтернативный формат привёл к увеличению доходов на 12% без влияния на показатели взаимодействия с пользователем.

 По итогам 2012 года выручка Microsoft составила \$74 млрд, чистая прибыль — около \$17 млрд.

А как же Python? Время практики!

Спасибо за внимание!

