	Студент, группа	Чечеткин И. А.
Лабораторная работа № 3	Дата выполнения	10.04.2014
иаоораторная расота ие о	Подпись	
	Дата отчёта	
Сечение упругого рассеяния в борновском приближении	Оценка	
	Подпись	

1 Введение

Множество проблем, связанных со структурой атома может быть количественно решено с использованием функции экранирования атома $\varphi(r)$. Эта функция определена как отношение между электростатическим потенциалом атома U(r) и электростатическим потенциалом ядра. В атомной системе единиц $\hbar=m=e=1$

$$U(r) = -\frac{Z}{r} + \int_{0}^{r} \frac{\rho(r')}{r'} d^3r' \equiv -\frac{Z}{r} \varphi(r), \tag{1}$$

где Z – заряд ядра, $\rho(r)$ – плотность электронов. Из уравнения Пуассона следует, что функция экранирования связана с объемной плотностью электронов соотношением

$$\rho(r) = \frac{Z}{4\pi r} \frac{\partial^2}{\partial r^2} \varphi(r). \tag{2}$$

Большинство из предложенных приблизительных аналитических функций экранирования основаны на статистической модели атома Томаса-Ферми (ТФ); есть только несколько исключений, основанных на самосогласованных вычислениях Хартри-Фока (ХФ) или Хартри-Фока-Слейтера (ХФС).

Функции экранирования применяются в модели независимых частиц (МНЧ) при вычислении атомной структуры. Одноэлектронные орбитали в МНЧ и энергии связи получены решением уравнения Шредингера для потенциала в центральном поле V(r), дающем среднюю энергию взаимодействия атомного электрона, находящимся на расстоянии r от ядра, с зарядом ядра и с другими Z-1 электронами. Потенциал

$$V(r) = U(r) - V_{ex}(r)$$

отличается от (1) членом $V_{ex}(r)$, который учитывает обменные эффекты и исключает из U(r) электростатическое взаимодействие каждого электрона с любыми другими электронами – обменным потенциалом. Обменная поправка обычно представляется с использованием аппроксимации Слейтера, то есть из теории свободного электронного газа, которая позволяет выразить $V_{ex}(r)$ через плотность электронов $\rho(r)$:

$$V_{ex}(r) = \frac{3}{2} a_X \left(\frac{3}{\pi} \rho(r)\right)^{1/3}.$$
 (3)

Значение параметра a_X зависит от процедуры, используемой для получения $V_{ex}(r)$ в теории ХФ. Потенциал Слейтера (3) не адекватен на больших расстояниях от ядра. Чтобы гарантировать правильное асимптотическое поведение V(r),

$$rV(r) \to -1$$
 при $r \to \infty$,

принимают следующее предложение:

$$V(r) = \begin{cases} -\frac{Z}{r}\varphi(r) - V_{ex}(r), & V(r) < -\frac{1}{r}; \\ -\frac{1}{r}, & V(r) \geqslant -\frac{1}{r} \end{cases}$$

$$(4)$$

для вычисления одноэлектронных энергий связи в модели МНЧ для нейтральных атомов.

Вычисления Дирака-Хартри-Фока-Слейтера (ДХФС), в которых одноэлектронные орбитали являются решением уравнения Дирака вместо уравнения Шредингера, включают естественным способом главные релятивистские эффекты на одноэлектронных орбиталях и энергиях связи.

В разделе 2 описана простая аналитическая аппроксимация функции экранирования $\varphi_a(r)$ с пятью параметрами, которые определяются по результатам вычислений электростатического потенциала атома методом ДХФС. Протабулированы параметры для Z=1 – 92, полученные из самосогласованных результатов ДХФС способом, описанным в разделе 5. В разделе 3 атомные форм-факторы и амплитуды рассеяния Борна для структурных заряженных частиц, полученных с использованием $\varphi_a(r)$, сравниваются с численными результатами, полученными из плотности ДХФС и из других аналитических аппроксимаций. Раздел 4 посвящен анализу достоверности результатов МНЧ, основанных на этих функциях экранирования, включая сравнения с другими аналитическими потенциалами МНЧ.

2 Аналитические функции экранирования

Экранирующие функции, применяемые в литературе, обычно основываются на модели ТФ и ее улучшениях. Самая элементарная модель ТФ дает универсальную функцию экранирования, удовлетворяющую следующему дифференциальному уравнению:

$$\frac{d^2\varphi_{\mathsf{T}\Phi}(x)}{dx^2} = \frac{\left[\varphi_{\mathsf{T}\Phi}(x)\right]^{3/2}}{x^{1/2}},\tag{5}$$

где x = r/b с $b = 0.88534Z^{-1/3}$. Это уравнение не имеет аналитического решения, но хорошо аппроксимируется формулой Мольер

$$\varphi_{\mathsf{T}\Phi}(r) = \sum_{i=1}^{3} B_i \exp(-\beta_i r/b),\tag{6}$$

где

$$B_1 = 0.1$$
, $B_2 = 0.55$, $B_3 = 0.35$, $\beta_1 = 6.0$, $\beta_2 = 1.2$, $\beta_3 = 0.3$.

Функция (6) отличается от точного решения уравнения (5) меньше чем на $0{,}002$ в диапазоне 0 < x < 6.

Потенциал МНЧ может быть представлен также и в следующей аналитической форме:

$$V(r) = -\frac{1}{r} [(Z - 1)\Omega(r) + 1], \tag{7}$$

где $\Omega(r)$ – функция экранирования с двумя параметрами

$$\Omega(r) = \left[H(e^{r/d} - 1) + 1 \right]^{-1},$$
(8)

где параметры H и d вычисляются методом наименьших квадратов для потенциала ($\ref{eq:condition}$) применительно к потенциалу $X\Phi C$.

Самосогласованные вычисления ДХФС обеспечивают наиболее достоверные функции экранирования, учитывающие релятивистские эффекты, которые сложно ввести в статистические или самосогласованные нерелятивистские модели. Аппроксимируем функцию экранирования ДХФС выражением

$$\varphi_a(r) = \sum_{i=1}^3 A_i \exp(-a_i r). \tag{9}$$

Тогда атомная плотность электронов (2) принимает вид

$$\rho(r) = \frac{Z}{4\pi r} \sum_{i=1}^{3} A_i a_i^2 \exp(-a_i r). \tag{10}$$

Параметры A_i , a_i были найдены следующим образом. Исходя из плотности ДХФС, были вычислены моменты

$$R_n \equiv \frac{1}{(n+1)!Z} \int r^n \rho(r) \, d^3r = \frac{1}{(n+1)!} \int_0^\infty r^{n+1} \frac{d^2 \varphi(r)}{dr^2} \, dr \tag{11}$$

для -1 < n < 6. Заметим, что с точностью до множителя 1/(n+1)!, который введен для удобства, величины R_n совпадают с ожидаемыми радиальными значениями $\langle r^n \rangle$. Легко видеть, что

$$R_{-1} = \frac{d\varphi(0)}{dr},$$

$$R_0 = \varphi(0),$$

$$R_n = \frac{1}{(n-1)!} \int_0^\infty r^{n-1} \varphi(r) dr (n \ge 1).$$

Параметры функции экранирования (9), находились из требования, чтобы значения R_n , полученных из нее, совпали с теми, которые получены из результатов ДХФС для n=-1,0,1,2,3,4. Это приводит к следующим соотношениям:

$$A_{1}a_{1} + A_{2}a_{2} + A_{3}a_{3} = R_{-1},$$

$$A_{1} + A_{2} + A_{3} = 1,$$

$$\frac{A_{1}}{a_{1}^{n}} + \frac{A_{2}}{a_{2}^{n}} + \frac{A_{3}}{a_{3}^{n}} = R_{n} \quad (n = 1, 2, 3, 4).$$
(12)

При этих условиях гарантируется что:

- $\frac{d\varphi_a(0)}{dr}$ имеет корректное значение (совпадающее с ДХФС),
- $\varphi_a(0) = 1$ (только два из трех параметров A_i должны быть даны),
- ullet четыре первых момента $\varphi_a(r)$ совпадают с таковыми для экранирующей функции ДХФС.

Последняя особенность делает сечения рассеяния Борна, полученные из (9), практически совпадающими с вычисленными из экранирующей функции ДХФС (см. раздел 3).

Для нейтральных атомов уравнение (12) может быть решено аналитически, как показано в разделе 5. Однако отметим, что значения a_i должны быть положительными, при отрицательных a_i ожидаемые радиальные значения ДХФС не соответствуют условиям (12), которые, в таком случае, должны быть отброшены. Для таких элементов параметры находились из четырех первых условий (12), при этом $A_3=0$ (см. раздел 5). Параметры, найденные по этой процедуре для Z=1-92, даны в таблице 1. Элементы, обозначенные звездочкой, дают ожидаемые радиальные значения ДХФС, противоречащие с условиями (12).

Рисунок 1 — Экранирующие функции для Ne, Zn, и Th (Z=10,50, и 90). Сплошные кривые – результаты ДХФС. Штрихпунктирные и штрихованные кривые соответствуют аналитическим функциям экранирования (6) и (8) соответственно

Определенные таким образом аналитические функции экранирования хорошо согласуются с результатами ДХФС (рис. 1). Естественно, аналитическая плотность (10) может только частично воспроизводить колебания плотности ДХФС, связанной с различными конфигурациями оболочек (рис. 2).

Рисунок 2 — Радиальная плотность для Ar (Z=18). Сплошная кривая – плотность ДХФС. Штрихпунктирная кривая – плотность ТФ, полученная из функции экранирования Мольер (6). Пунктирная кривая соответствует плотности, полученной из аналитической функции экранирования (8). Штриховая кривая – аналитическая плотность (10)

3 Упругие сечения Борна

Сечение рассеяния Борна для быстрой частицы (которая имеет единичный заряд и единичную массу для упрощения) в атомном поле (1) может быть записано как

$$\frac{d\sigma}{d\Omega} = \frac{4Z^2}{q^4} \left[1 - \frac{F(q)}{Z} \right]^2,\tag{13}$$

где q - переданный импульс в столкновении и

$$F(q) = \int_{0}^{\infty} \frac{\sin(qr)}{qr} \rho(r) 4\pi r^2 dr$$
 (14)

- атомный форм-фактор. Для плотности, связанной с аналитическими экранирующими функциями, форм-фактор принимает простое выражение

$$\frac{F(q)}{Z} = \sum_{i=1}^{3} \frac{A_i a_i^2}{a_i^2 + q^2}.$$
 (15)

Раскладывая правую часть уравнения (14) в ряд по степеням q, находим

$$\frac{F(q)}{Z} = \sum_{n=0}^{\infty} (-1)^n R_{2n} q^{2n},$$

с коэффициентами R_n , данными в (11). Очевидно, с параметрами аналитической экранирующей функции, удовлетворяющей (12), мы гарантируем, что атомный форм-фактор (15) и его первые производные совпадают при q=0 с теми, которые вычислены из плотности ДХФС.

Рисунок 3 — Атомные форм-факторы для Sn (Z=50). Сплошная кривая – форм-фактор ДХФС. Штрихпунктирная кривая – форм-фактор, полученный из функции экранирования Мольер (6). Пунктирная кривая соответствует форм-фактору, полученному из аналитической функции экранирования (8). Штриховая кривая – форм-фактор, полученный из функции экранирования (9)

Форм-факторы (15) сравниваются с полученными из плотности ДХФС, и из других аналитических функций экранирования на рис. З для Z=50. Аналитические результаты отличаются от численных вычислений ДХФС только для относительно больших переданных импульсов. Хотя эти различия могли бы показаться важными, они незначительно влияют на результирующее дифференциальное сечение рассеяния Борна (см. рис. 4 и 5), которое определятся только квадратом разности $\left[1-F(q)/Z\right]^2$ с весом q^{-4} .

Рисунок 4 — Дифференциальное сечение рассеяния Борна для Sn (Z=50). Штрихпунктирные кривые и штриховые кривые были получены из аналитических функций экранирования (6) и (8), соответственно. Сплошная кривая – сечение ДХФС. Сечение рассеяния, полученное из аналитической плотности (10) совпадает с ДХФС на рисунке

Рисунок 5 — Дифференциальные сечения рассеяния Борна для Zn (Z=30). Сплошная кривая – сечение ДХФС. Соответствие между кривыми и теоретическими моделями, из которых они были получены, такое же, как и на рис. 4; здесь сечение рассеяния, полученное из аналитической плотности (8) показывается кривой с короткими штрихами

Полное сечение рассеяния Борна для энергии E падающей частицы получают интегрированием дифференциального сечения (13)

$$\int d\Omega \frac{d\sigma}{d\Omega} = \int_{0}^{2\pi} d\varphi \int_{0}^{\pi} \sin\vartheta \, d\vartheta \frac{4Z^{2}}{q^{4}} \left[1 - \frac{F(q)}{Z} \right]^{2}.$$

Рисунок 6 — Схема упругого столкновения

Как можно видеть из приведенной на рис. 7 схемы столкновения, переданный импульс q связан с импульсом рассеивающегося на атоме электрона $k=\left(2E\right)^{1/2}$ и углом рассеяния ϑ соотношением

$$\frac{q}{2} = k \sin \frac{\vartheta}{2},$$

которое может быть переписано как

$$\left(\frac{1}{2k}\right)^2 = \sin^2\frac{\vartheta}{2} = \frac{1}{2}(1 - \cos\vartheta).$$

Переходя в интеграле от переменной ϑ к переменной q, получим

$$\sigma(E) = \frac{4\pi}{E} Z^2 \int_{0}^{(8E)^{1/2}} \frac{1}{q^3} \left(1 - \frac{F(q)}{Z} \right)^2 dq.$$

Различия между полными сечениями рассеяния, полученными из различных экранирующих функций, показаны на рис. 7, где σE показана как функция импульса частицы $k=\left(2E\right)^{1/2}$. Очевидно, что форм-факторы, чьи производные при q=0 отличаются незначительно, но очень похожи, могут давать весьма различные сечения рассеяния. В частности, экранирующая функция $T\Phi$ очень неудовлетворительно описывает упругие столкновения; это последствие нереалистично большого хвоста электронной плотности $T\Phi$.

Рисунок 7 — Полные сечения рассеяния Борна как функции импульса k падающей частицы (умноженного на $E=k^2/2$) для Sn (Z=50). Соответствие между кривыми и различными экранирующими функциями, из которых они были получены, такое же, как на рис. 4

4 Вычисления МНЧ

В контексте нерелятивистской МНЧ свойства атома получены решением уравнение Шредингера для занятых одноэлектронных орбиталей. Релятивистская МНЧ основывается на тех же принципах, за исключением того факта, что одноэлектронные орбитали и энергии связи найдены из решения уравнения Дирака. Вследствие сферической симметрии потенциала, могут быть приняты орбитали в центральном поле и их радиальные части, полученные из решения соответствующих радиальных уравнений. Они могут быть численно решены с использованием стандартных численных методов.

Достоверность аналитических экранирующих функций, принятых за основу для вычислений МНЧ, демонстрируется в таблице 2, где экспериментальные и энергии связи ДХФС сравниваются с полученными из релятивистской МНЧ с экранирующими функциями (используя (4) как потенциал МНЧ). Подобное согласие найдено между орбиталями МНЧ и ДХФС. Нерелятивистские энергии связи, полученные из вычислений ХФС и из МНЧ, используя потенциал (7), с параметрами, полученными подгонкой экспериментальных энергий ионизации (исправленными для релятивистских эффектов), также показаны в таблице 2.

Таблица 2 включает ожидаемые радиальные значения $\langle r^{-1} \rangle$, $\langle r^{-2} \rangle$ и $\langle r^{-4} \rangle$, вычисленные из самосогласованных плотностей ДХФС и ХФС. Существуют явные различия между ожидаемыми значениями ДХФС и ХФС, являющиеся результатом релятивистских поправок, ведущих к концентрации электронного заряда около ядра. Как следствие, экранирующая функция ДХФС с увеличением радиальных расстояний уменьшается быстрее, чем экранирующая функция ХФС. Эти релятивистские эффекты на экранирующих функциях не могут быть посчитаны, если релятивистские поправки представлены возмущенными нерелятивистскими одноэлектронными орбиталями.

5 Приложение

Уравнения (12) могут быть аналитически решены для параметров экранирующей функции. После алгебраических манипуляций можно избавиться от констант A_i ; результирующие уравнения для a_i могут быть записаны в форме

$$R_{-1} - (a_1 + a_2 + a_3) + R_1(a_1a_2 + a_1a_3 + a_2a_3) - R_2a_1a_2a_3 = 0,$$

$$1 - R_1(a_1 + a_2 + a_3) + R_2(a_1a_2 + a_1a_3 + a_2a_3) - R_3a_1a_2a_3 = 0,$$

$$R_1 - R_2(a_1 + a_2 + a_3) + R_3(a_1a_2 + a_1a_3 + a_2a_3) - R_4a_1a_2a_3 = 0.$$
(16)

Эти уравнения теперь могут быть решены для величин

$$\alpha_2 = a_1 + a_2 + a_3,$$

$$\alpha_1 = a_1 a_2 + a_1 a_3 + a_2 a_3,$$

$$\alpha_0 = a_1 a_2 a_3.$$

Таким образом, параметры экранирующей функции a_i (i=1,2,3) – три решения кубического уравнения

$$a^3 + \alpha_2 a^2 + \alpha_1 a + \alpha_0 = 0. (17)$$

Если три корня (17) действительны и положительны, параметры A_i могут тогда быть вычислены из первых трех уравнений (12). В некоторых случаях, главным образом для малых атомных чисел, условия (12) несовместны с ожидаемыми радиальными значениями ДХФС R_n , то есть, или определитель матрицы (16) равен нулю, или некоторые из корней (17) комплексные. В этих случаях продолжать вычисления следует так, как показано в разделе 2, то есть полагать $A_3=0$ и налагать только первые четыре условия (12). Выполняя те же самые действия, как и в вышеупомянутом вычислении, легко показать, что a_1 и a_2 могут быть получены как решения квадратного уравнения

$$(R_2 - R_1^2)a^2 + (R_1 - R_{-1}R_2)a + (R_{-1}R_2 - 1) = 0$$

$$A_1 = \frac{R_{-1} - a_2}{a_1 - a_2}, \qquad A_2 = 1 - A_1.$$

Отметим что даже когда уравнения (12) несовместимы, форм-фактор (15), и, по крайней мере, три его первые производные совпадают при q=0 с вычисленными из самосогласованной плотности ДХФС.

6 Численное решение

И

Таблица 1 — Параметры аналитической функции экранирования $arphi_a(r)$

-					
Z	A_1	A ₂	a ₁	4.0070	a_3
1	-184,39	185,39	2,0027	1,9973	0
2	-0,2259	1,2259	5,5272	2,3992	0
3	0,6045	0,3955	2,8174	0,6625	0
4	0,3278	0,6722	4,5430	0,9852	0
5	0,2327	0,7673	5,9900	1,2135	0
6	0,1537	0,8463	8,0404	1,4913	0
7	0,0996	0,9004	10,812	1,7687	0
8	0,0625	0,9375	14,823	2,0403	0
9	0,0368	0,9632	21,400	2,3060	0
10	0,0188	0,9812	34,999	2,5662	0
11	0,7444	0,2556	4,1205	0,8718	0
12	0,6423	0,3577	4,7266	1,0025	0
13	0,6002	0,3998	5,1405	1,0153	0
14	0,5160	0,4840	5,8492	1,1732	0
15	0,4387	0,5613	6,6707	1,3410	0
16	0,5459	-0,5333	6,3703	2,5517	1,6753
17	0,7249	-0,7548	6,2118	3,3883	1,8596
18	2,1912	-2,2852	5,5470	4,5687	2,0446
19	0,0486	0,7759	30,260	3,1243	0,7326
20	0,5800	0,4200	6,3218	1,0094	0
21	0,5543	0,4457	6,6328	1,1023	0
22	0,0112	0,6832	99,757	4,1286	1,0090
23	0,0112	0,6753	42,533	3,9404	1,0533
24	0,0318	0,7162		3,0638	1,0014
25	·		18,959		
	0,0498	0,6866	31,864	3,7811	1,1279
26	0,0512	0,6995	31,825	3,7716	1,1606
27	0,0500	0,7142	32,915	3,7908	1,1915
28	0,0474	0,7294	34,758	3,8299	1,2209
29	0,0771	0,7951	25,326	3,3928	1,1426
30	0,0400	0,7590	40,343	3,9465	1,2759
31	0,1083	0,7489	20,192	3,4733	1,0064
32	0,0610	0,7157	29,200	4,1252	1,1845
33	0,0212	0,6709	62,487	4,9502	1,3582
34	0,4836	0,5164	8,7824	1,6967	0
35	0,4504	0,5496	9,3348	1,7900	0
36	0,4190	0,5810	9,9142	1,8835	0
37	0,1734	0,7253	17,166	3,1103	0,7177
38	0,0336	0,7816	55,208	4,2842	0,8578
39	0,0689	0,7202	31,366	4,2412	0,9472
40	0,1176	0,6581	22,054	4,0325	1,0181
41	0,2257	0,5821	14,240	2,9702	1,0170
42	0,2693	0,5763	14,044	2,8611	1,0591
43	0,2201	0,5618	15,918	3,3672	1,1548
44	0,2751	0,5943	14,314	2,7370	1,1092
45	0,2711	0,6119	14,654	2,7183	1,1234
46	0,2784	0,6067	14,645	2,6155	1,4318
ــــــــــــــــــــــــــــــــــــــ	, -	,	, -	,	, -

Z	4	1			-
47	A_1	A ₂	15 500	a_2	1 1400
	0,2562	0,6505	15,588	2,7412	1,1408
48	0,2271	0,6155	16,914	3,0841	1,2619
50	0,2492	0,6440	16,155	2,8819	0,9942
	0,2153	0,6115	17,793	3,2937	1,1478
51	0,1806	0,5767	19,875	3,8092	1,2829
52	0,1308	0,5504	24,154	4,6119	1,4195
53	0,0588	0,5482	39,996	5,9132	1,5471
54	0,4451	0,5549	11,805	1,7967	0 6014
55	0,2708	0,6524	16,591	2,6964	0,6814
56 57	0,1728	0,6845	22,397	3,4595	0,8073
58	0,1947	0,6384	20,764	3,4657	0,8911
59	0,1913	,	21,235	3,4819	0,9011
60	0,1868	0,6558	21,803	3,5098	0,9106
61	0,1665	0,7057	23,949	3,5199	0,8486
62	0,1624	0,7133 $0,7210$	24,598	3,5560	0,8569
63	0,1580	,	25,297	3,5963	0,8650
	0,1538	0,7284	26,017	3,6383	0,8731
64	0,1587	0,7024	25,497	3,7364	0,9550
66	0,1453	0,7426	27,547	3,7288	0,8890
67	0,1413 $0,1374$	0,7494	28,346 29,160	3,7763 3,8244	0,8969 0,9048
68	0,1374				
69	0,1330	0,7619	29,990 30,835	3,8734 3,9233	0,9128
70	0,1267	0,7030	31,681	3,9727	0,9203
71	0,1288	0,7528	31,353	4,0904	1,0072
72	0,1303	0,7324	31,217	4,2049	1,0072
73	0,1384	0,7096	30,077	4,2492	1,1697
74	0,1500	0,6871	28,630	4,2426	1,2340
75	0,1608	0,6659	27,568	4,2341	1,2970
76	0,1722	0,6468	26,586	4,1999	1,3535
77	0,1834	0,6306	25,734	4,1462	1,4037
78	0,2230	0,6176	22,994	3,7346	1,4428
79	0,2289	0,6114	22,864	3,6914	1,4886
80	0,2098	0,6004	24,408	3,9643	1,5343
81	0,2708	0,6428	20,941	3,2456	1,1121
82	0,2380	0,6308	22,987	3,6217	1,2373
83	0,2288	0,6220	23,792	3,7796	1,2534
84	0,1941	0,6105	26,695	4,2582	1,3577
85	0,1500	0,6031	31,840	4,9285	1,4683
86	0,0955	0,6060	43,489	5,8520	1,5736
87	0,3192	0,6233	20,015	2,9091	0,7207
88	0,2404	0,6567	24,501	3,5524	0,8376
89	0,2266	0,6422	25,684	3,7922	0,9335
90	0,2176	0,6240	26,554	4,0044	1,0238
91	0,2413	0,6304	25,193	3,6780	0,9699
92	0,2448	0,6298	25,252	3,6397	0,9825
86 87 88 89 90	0,0955 0,3192 0,2404 0,2266 0,2176 0,2413	0,6060 0,6233 0,6567 0,6422 0,6240 0,6304	43,489 20,015 24,501 25,684 26,554 25,193	5,8520 2,9091 3,5524 3,7922 4,0044 3,6780	1,5736 0,7207 0,8376 0,9335 1,0238 0,9699

Таблица 2 — Собственные значения энергии и ожидаемые радиальные значения для олова (Z=50) (в атомных единицах). Expt.: экспериментальные данные. ДХФС: релятивистские самосогласованные результаты. МНЧ: релятивистские собственные значения из аналитической экранирующей функции. ХФС: нерелятивистские вычисления ХФС. GSZ: получены из аналитического потенциала (7). Сравнение ожидаемых радиальных значений плотностей ДХФС и ХФС ясно показывает, что релятивистские эффекты имеют тенденцию концентрировать электронное облако около ядра

	Expt.	ДХФС	МНЧ	ХФС	GSZ
$1s_{1/2}$	1073.08	1072.51	1067.64	1034.54	1042.54
$2s_{1/2}$	164.07	163.18	161.27	153.92	156.44
$2p_{1/2}$	152.73	152.91	149.97	144.42	147.70
$2p_{3/2}$	144.38	144.29	141.57		
$3s_{1/2}$	34.68	31.93	32.25	30.04	30.74
$3p_{1/2}$	29.84	27.68	27.95	26.05	26.87
$3p_{3/2}$	26.25	26.09	26.34		
$3d_{3/2}$	18.13	18.49	18.95	18.58	19.36
$3d_{5/2}$	17.82	18.16	17.24		
$4s_{1/2}$	5.02	5.24	5.16	4.88	5.16
$4p_{1/2}$	3.26	3.80	3.71	3.53	3.82
$4p_{3/2}$	3.51	3.43			
$4d_{3/2}$	0.88	1.22	1.18	1.26	1.51
$4d_{5/2}$	1.17	1.14			
$5s_{1/2}$	0.48	0.49	0.46	0.53	
$5p_{1/2}$	0.23	0.22	0.22	0.57	
$\langle r^{-1} \rangle$		302.20		288.59	
$\langle r^{-2} \rangle$		56.55		58.87	
$\langle r^{-4} \rangle$		629.87		701.33	