Contents

1	Gei	neral Probability Theory	1
	1.1	Infinite Probability Spaces	1
	1.2	Random Variables and Distributions	7
	1.3	Expectations	13
	1.4	Convergence of Integrals	23
	1.5	Computation of Expectations	28
	1.6	Change of Measure	32
	1.7	Summary	39
	1.8	Notes	41
	1.9	Exercises	41
2	т с.		40
2		8	49
	2.1	8	
	2.2	Independence	
	2.3	General Conditional Expectations	65
	2.4	Summary	75
	2.5	Notes	77
	2.6	Exercises	77
3	\mathbf{Brc}	ownian Motion	83
	3.1	Introduction	83
	3.2	Scaled Random Walks	83
		3.2.1 Symmetric Random Walk	83
		3.2.2 Increments of Symmetric Random Walk	84
		3.2.3 Martingale Property for Symmetric Random Walk	85
		3.2.4 Quadratic Variation of Symmetric Random Walk	85
		3.2.5 Scaled Symmetric Random Walk	86
		3.2.6 Limiting Distribution of Scaled Random Walk	88
		3.2.7 Log-Normal Distribution as Limit of Binomial Model	91
	3.3	Brownian Motion	93

		3.3.2 Distribution of Brownian Motion	
		3.3.3 Filtration for Brownian Motion	
	0.4	3.3.4 Martingale Property for Brownian Motion	
	3.4	Quadratic Variation	
		3.4.1 First-Order Variation	
		3.4.2 Quadratic Variation	
	0.5	3.4.3 Volatility of Geometric Brownian Motion	
	3.5	Markov Property	
	3.6	First Passage Time Distribution	
	3.7	Reflection Principle	
		3.7.1 Reflection Equality	
		3.7.2 First Passage Time Distribution	
	0.0	3.7.3 Distribution of Brownian Motion and Its Maximum.	
	3.8	Summary	
	3.9	Notes	
	3.10	Exercises	117
4	Sto	chastic Calculus	125
-	4.1	Introduction	
	4.2	Itô's Integral for Simple Integrands	
		4.2.1 Construction of the Integral	
		4.2.2 Properties of the Integral	
	4.3	Itô's Integral for General Integrands	
	4.4	Itô-Doeblin Formula	
		4.4.1 Formula for Brownian Motion	
		4.4.2 Formula for Itô Processes	
		4.4.3 Examples	148
	4.5	Black-Scholes-Merton Equation	
		4.5.1 Evolution of Portfolio Value	
		4.5.2 Evolution of Option Value	155
		4.5.3 Equating the Evolutions	156
		4.5.4 Solution to the Black-Scholes-Merton Equation	158
		4.5.5 The Greeks	159
		4.5.6 Put-Call Parity	162
	4.6	Multivariable Stochastic Calculus	164
		4.6.1 Multiple Brownian Motions	164
		4.6.2 Itô-Doeblin Formula for Multiple Processes	
		4.6.3 Recognizing a Brownian Motion	
	4.7	Brownian Bridge	
		4.7.1 Gaussian Processes	
		4.7.2 Brownian Bridge as a Gaussian Process	
		4.7.3 Brownian Bridge as a Scaled Stochastic Integral	
		4.7.4 Multidimensional Distribution of Brownian Bridge	
		4.7.5 Brownian Bridge as Conditioned Brownian Motion	
	4.8	Summary	183

	Contents XIII
4.9	Notes
4.10	Exercises
5 Ris	k-Neutral Pricing209
5.1	Introduction
5.2	Risk-Neutral Measure
	5.2.1 Girsanov's Theorem for a Single Brownian Motion 210
	5.2.2 Stock Under the Risk-Neutral Measure
	5.2.3 Value of Portfolio Process Under the Risk-Neutral Measure
	5.2.4 Pricing Under the Risk-Neutral Measure
	5.2.5 Deriving the Black-Scholes-Merton Formula
5.3	Martingale Representation Theorem
0.0	5.3.1 Martingale Representation with One Brownian Motion . 221
	5.3.2 Hedging with One Stock
5.4	Fundamental Theorems of Asset Pricing
0.4	5.4.1 Girsanov and Martingale Representation Theorems 224
	5.4.2 Multidimensional Market Model
	5.4.3 Existence of Risk-Neutral Measure
	5.4.4 Uniqueness of the Risk-Neutral Measure
5.5	Dividend-Paying Stocks
0.0	5.5.1 Continuously Paying Dividend
	5.5.2 Continuously Paying Dividend with Constant
	Coefficients
	5.5.3 Lump Payments of Dividends
	5.5.4 Lump Payments of Dividends with Constant Coefficients 239
5.6	Forwards and Futures
0.0	5.6.1 Forward Contracts
	5.6.2 Futures Contracts
	5.6.3 Forward-Futures Spread
5.7	Summary
5.8	Notes
5.9	Exercises
6 Cor	nnections with Partial Differential Equations261
6.1	Introduction
6.2	Stochastic Differential Equations
6.3	The Markov Property
6.4	Partial Differential Equations
6.5	Interest Rate Models
6.6	Multidimensional Feynman-Kac Theorems
6.7	Summary
6.8	Notes
6.9	Exercises

7	Exc	otic Options	293		
	7.1	Introduction	293		
	7.2	Maximum of Brownian Motion with Drift	293		
	7.3	Knock-Out Barrier Options	297		
		7.3.1 Up-and-Out Call	298		
		7.3.2 Black-Scholes-Merton Equation	298		
		7.3.3 Computation of the Price of the Up-and-Out Call			
	7.4	Lookback Options			
		7.4.1 Floating Strike Lookback Option			
		7.4.2 Black-Scholes-Merton Equation			
		7.4.3 Reduction of Dimension			
		7.4.4 Computation of the Price of the Lookback Option	312		
	7.5	Asian Options			
		7.5.1 Fixed-Strike Asian Call			
		7.5.2 Augmentation of the State	319		
		7.5.3 Change of Numéraire			
	7.6	Summary			
	7.7	Notes	328		
	7.8	Exercises	329		
8	\mathbf{Am}	American Derivative Securities			
	8.1	Introduction			
	8.2	Stopping Times			
	8.3	Perpetual American Put			
		8.3.1 Price under Arbitrary Exercise			
		8.3.2 Price under Optimal Exercise			
		8.3.3 Analytical Characterization of the Put Price			
		8.3.4 Probabilistic Characterization of the Put Price	349		
	8.4	Finite-Expiration American Put			
		8.4.1 Analytical Characterization of the Put Price			
		8.4.2 Probabilistic Characterization of the Put Price			
	8.5	American Call			
		8.5.1 Underlying Asset Pays No Dividends			
		8.5.2 Underlying Asset Pays Dividends			
	8.6	Summary	364		
	8.7	Notes	364		
	8.8	Exercises	365		
9	Cha	ange of Numéraire	369		
	9.1	Introduction			
	9.2	Numéraire	370		
	9.3	Foreign and Domestic Risk-Neutral Measures	375		
		9.3.1 The Basic Processes			
		9.3.2 Domestic Risk-Neutral Measure			
		9.3.3 Foreign Risk-Neutral Measure	379		

	Contents	XV
	9.3.4 Siegel's Exchange Rate Paradox	381
	9.3.5 Forward Exchange Rates	
	9.3.6 Garman-Kohlhagen Formula	
	9.3.7 Exchange Rate Put-Call Duality	
	9.4 Forward Measures	
	9.4.1 Forward Price	386
	9.4.2 Zero-Coupon Bond as Numéraire	386
	9.4.3 Option Pricing with Random Interest Rate	388
	9.5 Summary	
	9.6 Notes	392
	9.7 Exercises	392
10	Term Structure Models	397
	10.1 Introduction	397
	10.2 Affine-Yield Models	399
	10.2.1 Two-Factor Vasicek Model	400
	10.2.2 Two-Factor CIR Model	414
	10.2.3 Mixed Model	416
	10.3 Heath-Jarrow-Morton Model	$\dots 417$
	10.3.1 Forward Rates	417
	10.3.2 Dynamics of Forward Rates and Bond Prices	419
	10.3.3 No-Arbitrage Condition	420
	10.3.4 HJM Under Risk-Neutral Measure	
	10.3.5 Relation to Affine-Yield Models	424
	10.3.6 Implementation of HJM	426
	10.4 Forward LIBOR Model	429
	10.4.1 The Problem with Forward Rates	429
	10.4.2 LIBOR and Forward LIBOR	430
	10.4.3 Pricing a Backset LIBOR Contract	431
	10.4.4 Black Caplet Formula	432
	10.4.5 Forward LIBOR and Zero-Coupon Bond Volatilities .	434
	10.4.6 A Forward LIBOR Term Structure Model	436
	10.5 Summary	441
	10.6 Notes	444
	10.7 Exercises	445
11	Introduction to Jump Processes	455
	11.1 Introduction	
	11.2 Poisson Process	
	11.2.1 Exponential Random Variables	
	11.2.2 Construction of a Poisson Process	
	11.2.3 Distribution of Poisson Process Increments	458
	11.2.4 Mean and Variance of Poisson Increments	460
	11.2.5 Martingale Property	461
	11.3 Compound Poisson Process	

	11.3.1 Construction of a Compound Poisson Process
	11.4 Jump Processes and Their Integrals
	11.4.1 Jump Processes
	11.4.1 Jump 1 rocesses
	11.5 Stochastic Calculus for Jump Processes
	11.5.1 Itô-Doeblin Formula for One Jump Process
	11.5.2 Itô-Doeblin Formula for Multiple Jump Processes 482
	11.6 Change of Measure
	11.6.1 Change of Measure for a Poisson Process
	11.6.2 Change of Measure for a Compound Poisson Process489
	11.6.3 Change of Measure for a Compound Poisson Process
	and a Brownian Motion
	11.7 Pricing a European Call in a Jump Model
	11.7.1 Asset Driven by a Poisson Process
	11.7.2 Asset Driven by a Brownian Motion and a Compound
	Poisson Process
	11.8 Summary
	11.9 Notes
	11.10Exercises
\mathbf{A}	Advanced Topics in Probability Theory
	A.1 Countable Additivity
	A.2 Generating σ -algebras
	A.3 A Random Variable with Neither a Density nor a Probability
	Mass Function
В	Existence of Conditional Expectations
\mathbf{C}	Completion of Proof of Second Fundamental Theorem of
	Asset Pricing
B۵	ferences
100	101 011 000

http://www.springer.com/978-0-387-40101-0

Stochastic Calculus for Finance II Continuous-Time Models Shreve, S.

2004, XIX, 550 p., Hardcover

ISBN: 978-0-387-40101-0