Chapter 2 Notes Chemistry of Life

FI	lement	S

•	An	_ is a substance that cannot be broken down to other substances by chemical reactions
	Example:	
•	Α	is a substance consisting of two or more different elements combined
	Example:	
•	Α	is made up of two or more of the same element
	Example:	
•	Four elements make up	the majority of living organisms
•	These make up approx	of body weight
•	All living organisms are _	(carbon-based)
•	These are	– along with Ca, P, K, and S
•		are required by an organism in minute quantities and may not be
	required by all organisms	5
	 Example: Iron (Fe 	e) is needed by all organisms, iodine (I) is required by vertebrates
Atoms		
•		are the smallest units of matter
•	Subatomic particles inclu	de
	o	
	О	
•	If an element has a neut	ral charge, number of protons = number of electrons
•	An	is an element with a + or – charge
•	The number of neutrons	can vary – called an

•	Some isotopes are, meaning the nucleus decays
	spontaneously transforming the atom into a different element
	 Example – carbon-14 decays into nitrogen
Radioa	ctive Isotopes
•	Uses in Biology:
	 Measurement of radioactivity in fossils to determine age
	 Tracers to follow atoms through metabolism
	Diagnostic tools in medicine
•	Radiation from decaying isotopes can also be harmful
	 Example – radioactive fallout from nuclear accidents
Energy	and Chemical Bonding
•	is defined as the capacity to cause change
•	is the energy that matter possesses because of its location/structure
•	When atoms are bound together, their bonds hold
•	As these bonds break, energy is
•	Stronger bonds
	: negative e- is attracted to its own nucleus and the nucleus of the other atom
	•: electrons are equally shared, ex
	: electrons are unequally shared, ex
	: electron is not shared, but transferred
	 – atom that assumes a + charge
	• – atom that assumes a – charge
	• Example, Na ⁺ + Cl ⁻ → NaCl
•	Weaker bonds
	 : H is bound to a highly electronegative atom (such as N, O, or F);
	not actually a "bond", more of an "attraction"
Chemi	cal Reactions
•	make and break chemical bonds

When	the reactions offset one another, has been reache
	refers to the idea that reactions still take place
but the	e total amount of reactants/products do not change
	– reactions that consume energy (thermal energy
	– reactions that release energy (thermal energy)
ies of \	Water
Water	· has bonds
	occurs between a "positive" hydrogen of one H₂O and a
"negat	tive" oxygen of another H ₂ O
This at	ttraction makes water "sticky" or
Water	is also – clings to other substances, like cell walls
Water	has high – the measurement of how difficult it is t
	the surface of a liquid
	refers to the process plants use to transport water
Moder	ration of temperature
•	High – the amount of heat that must be absorbed or lost for 1g of
	substance to change temperature by 1°C
•	Large bodies of water can store a lot of heat – leading to mild temperatures along most coasts
High _	
•	Quantity of heat a liquid must absorb for 1g to be converted to gas
•	As liquid evaporates, the liquid left behind is cooler because the warmer liquid is turning into a gas –
	because it is less dense than water
•	Allows for cycling of nutrients in aquatic areas
	 liquid that is completely homogenous mixture of 2 or more substances
•	– dissolving agent (universal solvent is
•	– substance that is dissolved
•	
	– "water-loving", will dissolve in water
	– "water-fearing", will not dissolve in water

Acids a	nd Bases			
•	– when dissolved in water, it donates a H+ to the solution increasing the hydrogen ion concentration			
•	– when dissolved in water, it accepts a H+ or dissociates to form OH-, both reducing the hydrogen			
	ion concentration			
•	– a solution in which H+ and OH- concentrations are equal			
The pH	Scale			
•	The pH scale ranges from			
	Lower number = more acidic (high H+)			
	Higher number = more basic/alkaline (low H+)			
	□ 7 = neutral			
•	To solve for pH, use the equation			
	pH =			
•	Practice Problems:			
	If the H+ concentration is 0.0001 M/I, what is the pH?			
	If the H+ concentration is 1.0×10^{-8} , what is the pH?			
	If a solution has a pH of 12, what is its H+ concentration?			
Buffers	and Blood pH			
•	– substance that minimizes changes in the concentrations of H+ and OH- in a solution			
•	The internal pH of most living cells is close to 7			
•	Our blood has a pH of (slightly alkaline)a pH of 7 or 7.8 could be deadly			
•	One buffer that contributes to pH stability is (H ₂ CO ₃)			
•	Carbonic acid is formed when CO₂ reacts with water in blood plasma			
•	When pH rises, carbonic acid dissociates into (HCO ₃ -) and a H+ ion			