Notas de Aula Álgebra Linear

Fernando Contreras

Nucleo de Tecnologia Universidade Federal de Pernambuco (UFPE)

August 14, 2017

1 Revisão de Matrizes

Definição 1. *Uma matriz* $m \times n$ *é uma tabela de mn números dispostos em m linhas e n colunas denotado por:*

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ & \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & a_{m3} & \dots & a_{mn} \end{bmatrix}$$

Usaremos sempre letras maiúsculas (por exemplo: A) para denotar matrizes, e quando quisermos especificar a ordem de uma matriz A, escreveremos $A_{m \times n}$.

Exemplo 1. Seja a matriz

$$A = \begin{bmatrix} 1 & 0 & -4 & 5 \\ 4 & -3 & 2 & 6 \end{bmatrix}$$

cuja ordem é 2×4 . O elemento da primeira linha é $a_{13} = -4$.

Definição 2. Duas matrizes $\mathbf{A} = [a_{ij}]_{m \times n}$ e $\mathbf{B} = [b_{ij}]_{r \times s}$ são iguais $(\mathbf{A} = \mathbf{B})$, se elas tem o mesmo número de filas m = r e o mesmo número de colunas n = s e todos os elementos correspondentes são iguais $a_{ij} = b_{ij}$.

Exemplo 2. Seja a matriz

$$\begin{bmatrix} 3^2 & 1 & \log(1) \\ 2 & 2^2 & 5 \end{bmatrix} = \begin{bmatrix} 9 & \sin(90^\circ) & 0 \\ 2 & 4 & 5 \end{bmatrix}$$

cuja ordem é 2×4 . O elemento da primeira linha é $a_{13} = -4$.

1.1 Tipos especiais de matrizes

Definição 3. Uma matriz quadrada é aquela cujo número de linhas é igual ao número de colunas, ou seja:

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ & & \dots & \dots & & \\ a_{n1} & a_{n2} & a_{n3} & \dots & a_{nn} \end{bmatrix}$$

Exemplo 3. Sejam as matrizes quadradas:

$$\begin{bmatrix} 1 & -2 & 0 \\ 3 & 0 & 1 \\ 4 & 5 & 6 \end{bmatrix} \quad e \quad [1]$$

No caso de matrizes quadradas $A_{n\times n}$, acostumamos dizer que A é uma matriz quadrada de ordem n.

Definição 4. A matriz nula é aquela que $a_{ij} = 0$ para todo i e j.

Exemplo 4. Sejam as matrizes nulas:

$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \quad e \quad [0]$$

Definição 5. A matriz coluna é aquela que possui uma única coluna (n = 1).

Exemplo 5. Sejam as matrizes coluna:

$$\begin{bmatrix} 1 \\ 4 \\ -3 \end{bmatrix} \quad e \quad \begin{bmatrix} x \\ y \end{bmatrix}$$

Definição 6. A matriz fila é aquela que possui uma única fila (m = 1).

Exemplo 6. Sejam as matrizes fila:

$$\begin{bmatrix} 1 & 0 & -1 \end{bmatrix} \quad e \quad \begin{bmatrix} x & y \end{bmatrix}$$

Definição 7. Matriz diagonal é uma matriz quadrada m = n onde $a_{ij} = 0$, para todo $i \neq j$, isto é, os elementos que não estão na "diagonal" são nulos.

Exemplo 7. Sejam as matrizes diagonais:

$$\begin{bmatrix} 7 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \quad e \quad \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

Definição 8. A matriz identidade quadrada é aquela matriz em que $a_{ii} = 1$ e $a_{ij} = 0$ para $i \neq j$.

Exemplo 8. Sejam as matrizes:

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad e \quad \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Definição 9. A matriz triangular superior é uma matriz quadrada onde todos os elementos abaixo da diagonal são nulos, isto é, m = n e $a_{ij} = 0$ para i > j.

Exemplo 9. Sejam as matrizes triangular superior:

$$\begin{bmatrix} 2 & -1 & 0 \\ 0 & -1 & 4 \\ 0 & 0 & 3 \end{bmatrix} \quad e \quad \begin{bmatrix} a & b \\ 0 & c \end{bmatrix}$$

De maneira análoga podemos definir a matriz triangular inferior.

Definição 10. A matriz triangular inferior é uma matriz quadrada onde todos os elementos acima da diagonal são nulos, isto é, m = n e $a_{ij} = 0$ para i < j.

Exemplo 10. Sejam as matrizes simétricas:

$$\begin{bmatrix} 2 & 0 & 0 \\ 1 & -1 & 0 \\ 1 & 2 & 2 \end{bmatrix} \quad e \quad \begin{bmatrix} 5 & 0 & 0 \\ 7 & 0 & 0 \\ 2 & 1 & 3 \end{bmatrix}$$

Definição 11. *Matriz simétrica é aquela onde m* = n *e a_{ij} = a_{ji} para todo i e j.*

Exemplo 11. Sejam as matrizes triangular superior:

$$\begin{bmatrix} 4 & 3 & -1 \\ 3 & 2 & 0 \\ -1 & 0 & 5 \end{bmatrix} \quad e \quad \begin{bmatrix} a & b & c \\ b & d & e \\ c & e & f \end{bmatrix}$$

Observe que no caso da matriz simétrica a parte superior é uma reflexão da parte inferior em relação a diagonal.

1.2 Operações com matrizes

Definição 12. A soma de duas matrizes $\mathbf{A} = [a_{ij}]_{m \times n}$ e $\mathbf{B} = [b_{ij}]_{m \times n}$ resulta outra matriz de ordem $m \times n$ que denotamos por $\mathbf{A} + \mathbf{B}$, cujos elementos são somas dos elementos correspondentes de \mathbf{A} e \mathbf{B} . Isto é, $\mathbf{A} + \mathbf{B} = [a_{ij} + b_{ij}]_{m \times n}$.

Exemplo 12. Sejam as matrizes:

$$\mathbf{A} = \begin{bmatrix} 1 & -1 \\ 4 & 0 \\ 2 & 5 \end{bmatrix} \quad e \quad \mathbf{B} = \begin{bmatrix} 0 & 4 \\ -2 & 5 \\ 3 & 0 \end{bmatrix}$$

Se chamamos de C a soma das duas matrizes A e B, então

$$C = \begin{bmatrix} 1 & -1 \\ 4 & 0 \\ 2 & 5 \end{bmatrix} + \begin{bmatrix} 0 & 4 \\ -2 & 5 \\ 3 & 0 \end{bmatrix} = \begin{bmatrix} 1+0 & -1+4 \\ 4-2 & 0+5 \\ 2+1 & 5+0 \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 2 & 5 \\ 3 & 5 \end{bmatrix}$$

Propriedades

Dadas as matrizes **A**, **B** e **C** da mesma ordem $m \times n$ temos:

- (a). A + B = B + A (comutatividade) (Prove...!)
- (b). $\mathbf{A} + (\mathbf{B} + \mathbf{C}) = (\mathbf{A} + \mathbf{B}) + \mathbf{C}$ (Associatividade)
- (c). $\mathbf{0} + \mathbf{A} = \mathbf{A} + \mathbf{0} = \mathbf{A}$, onde $\mathbf{0}$ denota a matriz nula de ordem $m \times n$.

Definição 13. A multiplicação de uma matriz $\mathbf{A} = [a_{ij}]_{m \times n}$ por um escalar (qualquer numero real) $\alpha \in \mathbb{R}$ resulta em outra matriz $\mathbf{C} = [c_{ij}]_{m \times n}$, denotado por $\mathbf{C} = \alpha \mathbf{A} = \alpha [a_{ij}]_{m \times n} = [\alpha a_{ij}]_{m \times n}$, onde $c_{ij} = \alpha a_{ij}$.

Neste caso podemos dizer que C é um múltiplo escalar da matriz A.

Exemplo 13. Seja a matrize:

$$\mathbf{A} = \begin{bmatrix} 1 & -1 \\ 4 & 0 \end{bmatrix}$$

Se chamamos de C é a multiplicação escalar de $\alpha = 2$ por A, então

$$C = 2 \begin{bmatrix} 1 & -1 \\ 4 & 0 \end{bmatrix} = \begin{bmatrix} 2 \times 1 & 2 \times (-1) \\ 2 \times 4 & 2 \times 0 \end{bmatrix} = \begin{bmatrix} 2 & -2 \\ 8 & 0 \end{bmatrix}$$

Propriedades

Dadas duas matrizes **A** e **B** da mesma ordem $m \times n$ e números α_1 , α_2 e α_3 temos:

- (a). $\alpha_1(\mathbf{A} + \mathbf{B}) = \alpha_1 \mathbf{A} + \alpha_1 \mathbf{B}$
- (b). $(\alpha_1 + \alpha_2)\mathbf{A} = \alpha_1\mathbf{A} + \alpha_2\mathbf{A}$
- (c). 0A = 0, onde 0 é o número zero.
- (d). $\alpha_1(\alpha_2 \mathbf{A}) = (\alpha_1 \alpha_2) \mathbf{A}$

Definição 14. O produto de duas matrizes, tais que o número de colunas da primeira matriz é igual ao número de linhas da segunda, $\mathbf{A} = [a_{ij}]_{m \times r}$ e $\mathbf{B} = [b_{ij}]_{r \times n}$ é definido pela matriz de ordem $m \times n$:

$$C = AB$$

obtida da seguinte forma:

$$c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \dots + a_{ir}b_{rj}$$

para todo i = 1,...,m e j = 1,...,n.

Exemplo 14. Sejam as matrizes:

$$\mathbf{A} = \begin{bmatrix} 2 & 1 \\ 4 & 2 \\ 5 & 3 \end{bmatrix} \quad e \quad B = \begin{bmatrix} 1 & -1 \\ 0 & 4 \end{bmatrix}$$

Se chamamos de C a soma das duas matrizes A e B, então

$$C = \begin{bmatrix} 2 & 1 \\ 4 & 2 \\ 5 & 3 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 0 & 4 \end{bmatrix} = \begin{bmatrix} 2 \times 1 + 1 \times 0 & 2 \times (-1) + 1 \times 4 \\ 4 \times 1 + 2 \times 0 & 4 \times (-1) + 2 \times 4 \\ 5 \times 1 + 3 \times 0 & 5 \times (-1) + 3 \times 4 \end{bmatrix} = \begin{bmatrix} 2 & 2 \\ 2 & 4 \\ 5 & 7 \end{bmatrix}$$

Propriedades

- (a). Em geral $AB \neq BA$.
- (b). IA = AI = A (I matriz identidade de ordem $n \times n$).
- (c). A(B+C) = AB + AC, onde a matriz A é de ordem $m \times r$ e as matrizes B e C são de ordem $r \times n$.
- (d). $(\mathbf{A} + \mathbf{B})\mathbf{C} = \mathbf{A}\mathbf{C} + \mathbf{B}\mathbf{C}$, onde a matriz \mathbf{C} é de ordem $r \times n$ e as matrizes \mathbf{A} e \mathbf{B} são de ordem $m \times r$.
- (e). (AB)C = A(BC), em geral as matrizes **A** pode-se considerar de ordem $m \times r$, **B** de ordem $r \times s$ e **C** de ordem $s \times n$.
- (d). 0A = A0 = 0.

Definição 15. A transposta de uma matriz $A = [a_{ij}]_{m \times n}$ é definida por:

$$\boldsymbol{B} = \boldsymbol{A}^t$$

obtida trocando-se as linhas com as colunas, ou seja,

$$b_{ij} = a_{ji}$$

para todo i = 1,...,m e j = 1,...,n.

Exemplo 15. Sejam as matrizes:

$$\mathbf{A} = \begin{bmatrix} 2 & 1 \\ 0 & 3 \\ -1 & 4 \end{bmatrix}$$

A matriz transposta de A é dada por:

$$\mathbf{A}^t = \begin{bmatrix} 2 & 0 & -1 \\ 1 & 3 & 4 \end{bmatrix}$$

Propriedades

Consideremos duas matrizes **A** e **B** de ordem $m \times n$:

- (a). Dizemos que uma matriz é simétrica se, e somente se, ela é igual à sua transposta ($A = A^t$).
- (b). $(\mathbf{A}^t)^t = \mathbf{A}$, isto é, a transposta da transposta de uma matriz é ela mesma.
- (c). $(\mathbf{A} + \mathbf{B})^t = \mathbf{A}^t + \mathbf{B}^t$ sempre que $\mathbf{A} \in \mathbf{B}$.
- (d). $(\alpha \mathbf{A})^t = \alpha \mathbf{A}^t$, onde α é qualquer escalar.
- (e). $(\mathbf{A}\mathbf{B})^t = \mathbf{B}^t \mathbf{A}^t$, para $\mathbf{A} = [a_{ij}]_{m \times r}$ e $\mathbf{B} = [b_{ij}]_{r \times n}$.

1.3 Exercícios

1. Dada as matrizes:

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \quad \mathbf{e} \quad \mathbf{B} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$$

Calcule
$$(\mathbf{B}^t \mathbf{A})^t$$

Rpta: $(\mathbf{B}^t \mathbf{A})^t = \begin{bmatrix} -a \\ c \\ b \end{bmatrix}$

2. Sejam as matrizes:

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix} \quad \mathbf{e} \quad \mathbf{B} = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & -3 \\ 0 & 0 & 1 \end{bmatrix}$$

Calcule AB - I.

- 2. Mostre que:
 - 2.1. $\mathbf{A}\mathbf{A}^t$ é simétrica.
 - 2.2. $\mathbf{A} + \mathbf{A}^t$ é simétrica.
 - 2.3. $\mathbf{A} \mathbf{A}^t$ é anti-simétrica.
- 3. Mostre que toda matriz quadrada é a soma de uma matriz simétrica e uma matriz anti-simétrica.

Sugestão. $\frac{1}{2}(\mathbf{A} + \mathbf{A}^t)$ é simétrica e $\frac{1}{2}(\mathbf{A} - \mathbf{A}^t)$ é anti-simétrica a soma dos dois é uma matriz quadrada A.

2 Sistemas lineares

Definição 16. Dados os números reais $\alpha_1, \alpha_2, ..., \alpha_n, \beta$ $(n \ge 1)$, à equação:

$$\alpha_1 x_1 + \alpha_2 x_2 + \ldots + \alpha_n x_n = \beta$$

onde os x_i são variáveis em \mathbb{R} , damos o nome de **equação linear** sobre \mathbb{R} nas incógnitas $x_1, x_2, ... x_n$.

Uma *solução* dessa equação é uma sequência de n números reais (não necessariamente distintos entre si), indicada por $(b_1,...,b_n)$, tal que:

$$\alpha_1b_1 + \alpha_2b_2 + \ldots + \alpha_nb_n = \beta$$

é uma frase verdadeira.

Exemplo 16. Dada a equação: $2x_1 - x_2 + x_3 = 1$, a terna ordenada (1,1,0) é uma solução dessa equação pois $2 \cdot 1 - 1 + 0 = 1$ é verdadeira.

Definição 17. Um sistema de m equações lineares com n incógnitas $(m, n \ge 1)$ é um conjunto de m equações lineares, cada uma delas com n incógnitas, consideradas simultaneamente. Um sistema linear se apresenta do seguinte modo:

$$\begin{cases} a_{11}x_1 + \dots + a_{1n}x_n = \beta_1 \\ a_{21}x_1 + \dots + a_{2n}x_n = \beta_2 \\ \dots \\ a_{m1}x_1 + \dots + a_{mn}x_n = \beta_m \end{cases}$$

Uma solução do sistema acima é uma n-upla $(b_1,...,b_n)$ de números reais que é solução de cada uma das equações do sistema.

Exemplo 17. Dado o sistema:

$$\begin{cases} 2x - y + z = 1\\ x + 2y = 6 \end{cases}$$

Uma solução do sistema é (0,3,4). Notemos que essa solução não é única: a terna $(\frac{8}{5},\frac{11}{5},0)$ também é solução do sistema. Se, num sistema, tivermos $\beta_1,\beta_2,...,\beta_m$, o sistema será homogêneo. A n-upla (0,0,...,0) é solução do sistema neste caso e por isso todo sistema homogêneo é compatível, de acordo com a definição anterior. A solução (0,0,...,0) chama-se solução trivial do sistema homogêneo.

Definição 18. Dizemos que um sistema S linear é **incompatível** se S não admite nenhuma solução. Um sistema linear que admite uma única solução é chamado **compatível determinado**. Se o sistema linear S admitir mais do que uma solução então ele recebe o nome de **compatível indeterminado**.

Exemplo 18. Um sistema do tipo:

$$\begin{cases} a_{11}x_1 + \dots + a_{1n}x_n = \beta_1 \\ a_{21}x_1 + \dots + a_{2n}x_n = \beta_2 \\ \dots \\ 0x_1 + \dots + 0x_n = \beta_i(\beta_i \neq 0) \\ \dots \\ a_{m1}x_1 + \dots + a_{mn}x_n = \beta_m \end{cases}$$

é necessariamente incompatível: como nehuma n-upla é solução da equação i-ésima, então nenhuma n-upla é solução do sistema.

Exemplo 19. Um sistema do tipo:

$$\begin{cases} x_1 = \beta_1 \\ x_2 = \beta_2 \\ \dots \\ x_n = \beta_n \end{cases}$$

é compatível determinado e $\beta_1, \beta_2, ..., \beta_n$ é a sua solução única.

Exemplo 20. O sistema:

$$\begin{cases} 2x - y + z = 1\\ x + 2y = 6 \end{cases}$$

é indeterminado pois, conforme vimos atrás, as ternas (0,3,4) e $(\frac{8}{5},\frac{11}{5},0)$ são soluções deste sistema. Conforme veremos, existem infinitas soluções deste sistema.