Chi Squared Tests: Goodness of fit, Independence

9.1, 9.2

Today's topics

Chi Squared Tests

- Goodness of fit (9.1)
- Independence (9.2)

numeri co

Exact p-value

Response / Dependent

Categorical deta

Categorical
Categorical
Cat dog reshit zipe 2

χ² Goodness of Fit Test - Background

Developed by Pearson in 1900

Tests the appropriateness of different models

Approximate test for use with large samples (large n).

5. (Otherwise, should consider calculating exact p-value

$20c^{2}30D^{2}$ χ^{2} Goodness of Fit Test 10 04...

- Let $Y_1, Y_2, ..., Y_k$ denote the respective cell frequencies; $\sum_{i=1}^{k} Y_i @ \# i$
- lacksquare Denote cell probabilities p_1 , p_2 , ... , p_k .

$$\rightarrow$$
 $P_0: p_1 = p_{10}$ $P_2 = p_{20}$ $P_k = p_{k0}$

- H_A : H_0 not true $\frac{1}{2}$

np,, np,, np3,...

χ^2 Goodness of Fit Test

	Group 1	Group 2	•••	Group k	Total
Observed Freq (O _i)	Y ₁	Y ₂	•••	Y_k	n
Probability H _o (p _{io})	p_{10}	p ₂₀	•••	p_{k0}	1
Expected Freq (E _i)	np_{10}	np_{20}	•••	np_{k0}	n

$$\chi^2$$
 Goodness of Fit Test

→ Test statistic:

$$X^{2} = \sum_{i=1}^{k} \frac{(Y_{i} - np_{i0})^{2}}{np_{i0}} = \sum_{i=1}^{k} \frac{(Obs_{i} - Exp_{i})^{2}}{Exp_{i}} \sim \chi_{(k-1)}^{2}$$

Data

Reject H_0 if $X^2 \ge \chi^2_{(k-1),\alpha}$

$$\frac{\left(O-\overline{E}\right)}{\overline{E}}$$

Random Digit Example (Goodness of Fit)

When making random numbers, people are usually reluctant to record the same or consecutive numbers in adjacent positions. Even though these true probabilities should be $p_{10} = 1/10$ and $p_{20} = 2/10$, respectively. gt8suv tests a friend's concept of a random sequence by asking them to generate a sequence of 51 random digits.

May0 generates the following sequence:

(Ex 9.1-1)

5	8	3	1	9	4	6	7	9	2	6	3	0
8	7	5	1	3	6	2	1	9	5	4	8	0
3	7	1	4	6	0	4	3	8	2	7	3	9
8	5	6	1	8	7	0	3	5	2	5	2	

Use a goodness of fit test to make a statistical decision about whether this sequence seems to be truly random or not (at α = 0.05)

Random Digit Example (Goodness of Fit)

$$H_0: p_1 = p_{10} = 1/10, p_2 = p_{20} = 2/10, p_3 = p_{30} = 7/10$$

 $H_A: ?$

You open a bag of 100 MEMs and get 25 Y, 40 B, 35 R

Definition

Contingency table

Summarizes relationship between <u>categorical variables</u> by displaying frequency distribution.

e.g.

Table 9.2-	Table 9.2-1 Undergraduates at the University of Iowa										
			College								
Gender	Business	Engineering	Liberal Arts	Nursing	Pharmacy	Totals					
Male	21	16	145	2	6	190					
Female	14	4	175	13	4	210					
Totals	35	20	320	15	10	400					

χ^2 Test for Homogeneity & Independence (9.2)

Tests relationship between two categorical variables.

The difference in the two names depends on how the data is collected.

χ^2 Test for Homogeneity & Independence (9.2)

 χ^2 Test for **Homogeneity**: (one margin fixed)

Tests whether two or more sub-groups of a population share the same distribution of a single categorical variable. E.g., do different age groups have the same proportion of people who prefer Twitch, YouTube Live, or Zoom?

Independent random samples from r populations.

Each sample is classified into c response categories.

 H_0 In each category, the probabilities are equal for all r-populations.

χ² Test for Homogeneity & Independence (9.2)

 χ^2 Test for **Independence**: (no margins fixed)

Tests whether two categorical variables are associated with one another in the population, e.g. age group vs video streaming platform preference.

A random sample of size n is simultaneously classified with respect to two characteristics, one has r categories and the other c categories.

H₀: The two classifications are independent; i.e., each cell probability is the product of the row and column marginal probabilities

(9.2) notes

Grade, Instructor

Homogeneity (Independence)

In each group (BooleanHypercube, Obese future), I collect a separate sample. I look at whether Instructor and grade are related

Independence

I collect a large sample of students who took 420 and ask them who they had as an instructor, as well as their grade.

notes

Why would we do a test for homogeneity?

Say you have a rare disease that you are trying to determine something about

If you do test for independence and collect a sample of size n

χ^2 Test of homogeneity example:

Saumdog is wondering which instructor to select for Stat 420. Albert doesn't know much so he states H₀: their grade distributions are the same.

We collect 2 separate random samples from each instructor and obtain the

following data.

Instructor

			Grade			
Instructor	A	В	C	D	F	Totals
ObeseFutur	e 8	13	16	10	3	50
Boolean HyperCub	e 4	9	14	16	7	50

Perform a χ^2 test of homogeneity at significance level 0.05 to determine if these grade distributions are similar.

$$\frac{1}{100} = \frac{1}{100} = \frac{1$$

ı						$P(X \le x)$			
		0.010	0.025	0.050	0.100	0.900	0.950	0.975	0.990
	r	$\chi^2_{0.99}(r)$	$\chi^2_{0.975}(r)$	$\chi^2_{0.95}(r)$	$\chi^2_{0.90}(r)$	$\chi^2_{0.10}(r)$	$\chi^2_{0.05}(r)$	$\chi^2_{0.025}(r)$	$\chi^2_{0.01}(r)$
	1	0.000	0.001	0.004	0.016	2.706	3.841	5.024	6.635
	2	0.020 0.115	0.051 0.216	0.103 0.352	0.211 0.584	4.605 6.251	5.991 7.815	7.378 9.348	9.210 11.34
_	4	0.297	0.484	0.711	1.064	7.779	9.488	11.14	13.28

Example

A random sample of 400 undergraduate students at the University of Iowa was selected, then classified by college and gender. Are these variables independent at α = 0.01?

Table 9.2-1 Undergraduates at the University of Iowa									
College									
Gender	Business	Engineering	Liberal Arts	Nursing	Pharmacy	Totals			
Male	21	16	145	2	6	190			
Female	14	4	175	13	4	210			

Table 9.2-1 Undergraduates at the University of Iowa										
	College									
Gender	Business	Engineering	Liberal Arts	Nursing	Pharmacy	Totals				
Male	21	16	145	2	6	190				
	(16.625)	(9.5)	(152)	(7.125)	(4.75)					
Female	14	4	175	13	4	210				
	(18.375)	(10.5)	(168)	(7.875)	(5.25)					
Totals	35	20	320	15	10	400				

$$\frac{(21 - 16.625)^2}{16.625} + \frac{(14 - 18.375)^2}{18.375} + \dots + \frac{(4 - 5.25)^2}{5.25}$$

$$1.15 + 1.04 + 4.45 + 4.02 + 0.32 + 0.29 + 3.69$$

$$+ 3.34 + 0.33 + 0.30 = 18.93.$$

critical 13.28

Exact p-value

(not really a new definition)

Review: What is the definition of a p-value?

Calculate this probability directly, instead of using a Normal or Chi Squared approximation.

$$H_0: p = 0.5$$
 $H_A: p > 0.5$

Type II Error

Exact p-value - Example

(Could find Z value and do a test that we already know) OR $(9.1) \rightarrow \frac{58}{42}$

To find exact p-value, just use the definition of the p-value

Let X = # of heads in 100 tosses Under H_0 : $X \sim Binomial(100, 0.5)$

P-value =
$$P[X \ge 58|p = 0.5]$$
. = $1 - P \int X \le 57/P = 0.5$

```
notes
            if n = 10000
                approx easier
   if smell somple sizes,
   can't use CLT, can't use X
        use exact p-value
```

notes

if & wes homer v.ol

whet would hoppen to Type II error?

T

S

D