Fiche de Révision : Arithmétique Modulaire

Division Euclidienne dans \mathbb{Z}

• **Définition :** Pour tout entier a et entier positif b, il existe deux entiers q (quotient) et r (reste) tels que

```
a = bq + r avec 0 \le r < b.
```

• Exemple : $23 \div 5 = 4$ (quotient), reste 3 car $23 = 5 \times 4 + 3$.

Congruences

• **Définition**: Deux entiers a et b sont congruents modulo n si n divise a-b.

On écrit:

```
a \equiv b[n] si et seulement si n|(a-b).
```

- Intuition : a et b laissent le même reste lorsqu'on les divise par n.
- Exemple : $23 \equiv 3[5]$ car 23 3 = 20 est divisible par 5.

Classes d'Équivalence et Z/nZ

- Une classe d'équivalence modulo n regroupe tous les entiers ayant le même reste après division par n.
- On note [a] la classe d'équivalence de a modulo n.
- **Z/nZ**: L'ensemble des classes d'équivalence modulo n est noté $\mathbb{Z}/n\mathbb{Z}$ et contient n éléments : $\mathbb{Z}/n\mathbb{Z}=[0],[1],[2],...,[n-1].$

Opérations sur les Congruences

- Si $a\equiv b[n]$ et $c\equiv d[n]$, alors :
 - \circ Addition : $a+c \equiv b+d[n]$
 - \circ Soustraction : $a-c \equiv b-d[n]$
 - Multiplication : $a*c \equiv b*d[n]$
- Puissance : Si $a\equiv b[n]$, alors $a^k\equiv b^k[n]$ pour tout entier positif k.

• Division : On ne divise que par un entier invertible modulo n. Un entier a admet un inverse modulo n si $\gcd(a,n)=1$.

Algorithme d'Euclide & Étendu

• Algorithme d'Euclide :

Permet de calculer PGCD(a, b).

• Algorithme d'Euclide Étendu :

Donne, en plus du PGCD(a,b), des entiers u et v tels que PGCD(a,b)=au+bv, et aussi au+nv=1.

- Cet algorithme est utilisé pour trouver l'inverse d'un entier modulo n (quand PGCD(a,n)=1).
 - $u_i = u_{i-2} q_i * u_{i-1}$
 - $v_i = v_{i-2} q_i * v_{i-1}$
 - Les étapes 1 et 2 sont toujours les mêmes.

Exemple

On cherche l'inverse de 15 modulo 26, donc:

$$15k \equiv 1[26]$$

Etape n°k	Dividende	Diviseur	Reste r_k	Quotient q_k	u_k	v_k
1					1	0
2					0	1
3	15	26	15	0	1	0
4	26	15	11	1	-1	1
5	15	11	4	1	2	-1
6	11	4	3	2	-5	3
7	4	3	1	1	7	-4

On s'arrête à l'étape juste avant que le reste soit nul.

On a donc:

$$au + nv = 1$$

$$15u_5 + 26v_5 = 1$$
 $15 imes 7 + 26 imes (-4) = 1$

Ainsi, [26] on obtient $15 imes 7 \equiv 1[26]$. L'inverse modulaire de 15 modulo 26 est 7.

Résolution de $ax \equiv b[n]$

- On cherche à résoudre ax + ny = b avec x, y comme inconnues.
- Il faut que PGCD(a, n) = 1, sinon il faut diviser a et b par ce leur PGCD.
 - $\circ~$ Ex: $9x\equiv 12[33]$, on a PGCD(9,33)=3 donc on divise tout par 3 et on obtient: $3x\equiv 4[11]$
- On utilise l'algorithme d'Euclide étendu pour obtenir quelque chose de la forme $au\equiv 1[n]$. Les solutions sont ensuites: $S=\{(u\times b)+nk/k\in {\bf Z}\}$

Exemple:

On a $2x\equiv 10[21]$, étant donné que PGCD(2,21)=1, 2 est réversible modulo 21. On peut effectuer le tableau:

Etape n°k	Dividende	Diviseur	Reste r_k	Quotient q_k	u_k	v_k
1					1	0
2					0	1
3	2	21	2	0	1	0
4	21	2	1	10	-10	1

On obtient donc

$$au + nv$$

$$2\times -10 + 21\times 1 = 1$$

On ajoute 21 à -10 pour "le faire passer dans ls positifs".

$$2\times 11 + 21\times 1 = 1$$

Et donc, modulo 21, on a $2 imes 11 \equiv 1[21]$

On peut donc déduire les solutions S:

$$S = \{(u imes b) + nk/k \in {f Z}\}$$
 $S = \{(11 imes 10) + 21k/k \in {f Z}\}$ $S = \{110 + 21k/k \in {f Z}\}$