

Cambridge

International

A Level

Cambridge International Examinations

Cambridge International Advanced Level

CANDIDATE NAME							
CENTRE NUMBER					CANDIDATE NUMBER		
FURTHER MAT	HEMAT	ics					9231/02
Paper 2					For I	Examinatio	on from 2017
SPECIMEN PAP	PER						3 hours
Candidates ansv	ver on th	ne Questio	n Paper.				
Additional Mater	ials:	List of Fo	rmulae (N	MF10)			

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all the questions.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

Where a numerical value is necessary, take the acceleration due to gravity to be $10 \,\mathrm{m}\,\mathrm{s}^{-2}$.

The use of a calculator is expected, where appropriate.

Results obtained solely from a graphic calculator, without supporting working or reasoning, will not receive credit.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

A uniform ladder AB, of length 3a and weight W, rests with the end A in contact with smooth horizontal ground and the end B against a smooth vertical wall. One end of a light inextensible rope is attached to the ladder at the point C, where AC = a. The other end of the rope is fixed to the point D at the base of the wall and the rope DC is in the same vertical plane as the ladder AB. The ladder rests in equilibrium in a vertical plane perpendicular to the wall, with the ladder making an angle θ with the horizontal and the rope making an angle α with the horizontal (see diagram). It is given that $\tan \theta = 2 \tan \alpha$. Find, in terms of W and α , the tension in the rope and the magnitudes of the forces acting on the ladder at A and at B.

1)	Find expressions for the speeds of A and P immediately after the collision
	Find expressions for the speeds of A and B immediately after the collision.
e	sequently B collides with a vertical wall which is perpendicular to the direction of motion of a coefficient of restitution between B and the wall is 0.4. After B has collided with the wall, the ds of A and B are equal.
ie eed	coefficient of restitution between B and the wall is 0.4. After B has collided with the wall, the
e ee	coefficient of restitution between B and the wall is 0.4. After B has collided with the wall, the ds of A and B are equal.
e ee	coefficient of restitution between B and the wall is 0.4. After B has collided with the wall, the ds of A and B are equal.
e ee	coefficient of restitution between B and the wall is 0.4. After B has collided with the wall, the ds of A and B are equal.
e	coefficient of restitution between B and the wall is 0.4. After B has collided with the wall, the ds of A and B are equal.
e ee	coefficient of restitution between B and the wall is 0.4. After B has collided with the wall, the ds of A and B are equal.
ee	coefficient of restitution between B and the wall is 0.4. After B has collided with the wall, the ds of A and B are equal.

collides with A .						[4
•••••					•••••	
•••••						
						•••••
						•••••
						•••••
•••••		••••••	••••••	•••••••	••••••	
•••••	••••••	••••••	•••••••	••••••••••	••••••	
•••••		•••••	•••••		••••••	•••••
						•••••

othe: strin	ic string, of natural length a m and modulus of elasticity mg N, is attached e end of this string is attached to a particle e of mass e mkg. One end of e g, of natural length e m and modulus of elasticity e mg N, is attached to e length e m and modulus of elasticity e mg N, is attached to e length e le	a second light elast. The other end of the
(i)	Find the value of k .	
(ii)	The particle P is released from rest at a point between A and B where both s that P performs simple harmonic motion and state the period of the motion	trings are taut. Sh
		•••••
		•••••
		••••••
		•••••
		•••••

(iii)	In the case where P is released from rest at a distance $0.2a$ m from M , the speed of P is 0.7 m s ⁻¹ when P is $0.05a$ m from M . Find the value of a . [3]

A particle P of mass m is attached to one end of a light inextensible string of length a. The other

(i) S	show that the least possible value of u is $\sqrt{(ag)}$.	
		· • •
		· • •
		· • •
		· • •
	ow given that $u = \sqrt{(ag)}$. When P passes through the lowest point of its path, it collides palesces with, a stationary particle of mass $\frac{1}{4}m$.	s
(ii) F	find the speed of the combined particle immediately after the collision.	
		· • •
		· • •
••		
		•••
		· • •
		•••
		•••

In the subsequent motion, when OP makes an angle θ with the upward vertical the tension in the string is T.

(iii)	Find an expression for T in terms of m , g and θ .	[5]
		•••••
		•••••
(iv)	Find the value of $\cos \theta$ when the string becomes slack.	[2]

5

A random sample of 10 observations of a normal variable X gave the following summarised data,

where \bar{x} is the sample mean.		C	C	
$\Sigma x = 222$	$\Sigma(x-\bar{x})$	$a^2 = 4.12$		
Find a 95% confidence interval for the p	opulation mean			[5]
				••••••
		•••••		•••••
				••••••
				•••••
	•••••			••••••
	•••••	•••••		••••••
				•••••
				•••••
	•••••			

6

A biased coin is tossed repeatedly until a head is obtained. The random variable X denotes the number

of tosses required for a head to be obtained. The mean of X is equal to twice the variance	of X.
(i) Show that the probability that a head is obtained when the coin is tossed once is $\frac{2}{3}$.	[2]
(ii) Find $P(X = 4)$.	[1]
	•••••
iii) Find $P(X > 4)$.	[2]
iv) Find the least integer N such that $P(X \le N) > 0.999$.	[3]
	•••••

7	The continuous	random	variable X	has probability	v densit	y function	given	by

$$f(x) = \begin{cases} \frac{1}{21}x^2 & 1 \le x \le 4, \\ 0 & \text{otherwise.} \end{cases}$$

The random variable *Y* is defined by $Y = X^2$.

(i) Show that Y has probability density function given
--

g(v) =	$\begin{cases} \frac{1}{42}y^{\frac{1}{2}} \\ 0 \end{cases}$	$1 \leqslant y \leqslant 16,$			
$\mathcal{S}(\mathcal{Y})$	l_0	otherwise.			[5]
 •	•••••		•••••	••••••	, • • • • • • • • •
 •	• • • • • • • • • • • • • • • • • • • •	•••••	•••••		••••••
			•		
 •••••					• • • • • • • • • • • • • • • • • • • •
 •••••	•••••		•••••		
 •	••••••	•••••	••••••		•••••
 •••••					
 •••••					
 					,

	Find the median value of Y.	[2]
(iii)		
(111)	Find the expected value of Y .	[2
(111)	Find the expected value of <i>Y</i> .	[2
(111)	Find the expected value of Y .	[2
(111)	Find the expected value of Y.	[2
, 111)	Find the expected value of Y.	
(111)		
m,		
 ,		
,		
(111)		
(111)		
()		

8 The number of goals scored by a certain football team was recorded for each of 100 matches, and the results are summarised in the following table.

Number of goals	0	1	2	3	4	5	6 or more
Frequency	12	16	31	25	13	3	0

Fit a Poisson distribution to the data, and test its goodness of fit at the 5% significance level. [10]

	$\Sigma x = 472$	$\Sigma x^2 = 29950$	$\Sigma y = 400$	$\Sigma y^2 = 21226$	$\Sigma xy = 24879$	
	ner student sco ination.	red 72 marks in t	he Mathematic	es examination but	was unable to sit the	: F
(i) I	Estimate the ma	ark that this stude	nt would have o	obtained in the Fre	nch examination.	
						•••
						•••
•						
•						
•						
•						
•						
•						
•		••••••				
•						•••
•						•••
•		••••••	••••••	•••••		•••
•			••••••	•••••		•••
•						
•						
•						
•						

viamemanes a	and marks in Fro	JICII.				[6
			 •••••	•••••		
			 ••••••	•••••		
•••••			 	•••••		
			 			•••••
			 	•••••		
			 ••••••	•••••		•••••
			 •••••	•••••		
			 			•••••
			 •••••			
			 	,	,	

10 Answer only one of the following two alternatives.

EITHER

An object is formed by attaching a thin uniform rod PQ to a uniform rectangular lamina ABCD. The lamina has mass m, and AB = DC = 6a, BC = AD = 3a. The rod has mass M and length 3a. The end P of the rod is attached to the mid-point of AB. The rod is perpendicular to AB and in the plane of the lamina (see diagram).

(i)	Show that the moment of inertia of the object about a smooth horizontal axis l_1 , through Q and perpendicular to the plane of the lamina, is $3(8m+M)a^2$. [4]

i) Find expressions for the periods of small oscillations of the object about the axes l_1 and l_2 verify that these periods are equal when $m = M$.	ent of inertia of the object about a smooth horizontal axis l_2 , throu perpendicular to the plane of the lamina, is $\frac{3}{4}(17m + M)a^2$.	811
Find expressions for the periods of small oscillations of the object about the axes l_1 and l_2 verify that these periods are equal when $m=M$.	7	
Find expressions for the periods of small oscillations of the object about the axes l_1 and l_2 verify that these periods are equal when $m=M$.		
Find expressions for the periods of small oscillations of the object about the axes l_1 and l_2 verify that these periods are equal when $m=M$.		
Find expressions for the periods of small oscillations of the object about the axes l_1 and l_2 verify that these periods are equal when $m=M$.		••••
Find expressions for the periods of small oscillations of the object about the axes l_1 and l_2 verify that these periods are equal when $m=M$.		
Find expressions for the periods of small oscillations of the object about the axes l_1 and l_2 verify that these periods are equal when $m=M$.		
Find expressions for the periods of small oscillations of the object about the axes l_1 and l_2 verify that these periods are equal when $m=M$.		
Find expressions for the periods of small oscillations of the object about the axes l_1 and l_2 verify that these periods are equal when $m=M$.		
verify that these periods are equal when $m = M$.		••••
verify that these periods are equal when $m = M$.		
verify that these periods are equal when $m = M$.		••••
verify that these periods are equal when $m = M$.		
	the periods of small oscillations of the object about the axes l_1 and	l_2
	ods are equal when $m = M$.	
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••

OR

A farmer A grows two types of potato plants, Royal and Majestic. A random sample of 10 Royal plants is taken and the potatoes from each plant are weighed. The total mass of potatoes on a plant is $x \lg$. The data are summarised as follows.

$$\Sigma x = 42.0$$
 $\Sigma x^2 = 180.0$

A random sample of 12 Majestic plants is taken. The total mass of potatoes on a plant is y kg. The data are summarised as follows.

$$\Sigma y = 57.6$$
 $\Sigma y^2 = 281.5$

(i)	Test, at the 5% significance level, whether the population mean mass of potatoes from Royal plants is the same as the population mean mass of potatoes from Majestic plants. You may assume that both distributions are normal and you should state any additional assumption that you make. [9]

A neighbouring farmer B grows Crown potato plants. His plants produce 3.8 kg of potatoes per plant, on average. Farmer A claims that her Royal plants produce a higher mean mass of potatoes than Farmer B's Crown plants.

Test, at the 5% significance level, whether Farmer A 's claim is justified.	[5]

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.