DC Motor Velocity Control Using Pulse Width Modulation (PWM)

e-Yantra Team

Embedded Real-Time Systems Lab Indian Institute of Technology-Bombay

IIT Bombay October 10, 2014

Agenda for Discussion

- Introduction
 - Pulse Width Modulation
 - Duty Cycle
- 2 PWM Generation in AVR
 - Timer in AVR
 - Timer for PWM generation in Firebird
- PWM Generation in Firebird V
 - Registers
 - TCCR5A
 - TCCR5B
 - TCNT5
 - OCR5
 - Block Diagram
 - Program

• Pulse Width Modulation (PWM), is a method of transmitting information on a series of pulses

- Pulse Width Modulation (PWM), is a method of transmitting information on a series of pulses
- The data that is being transmitted is encoded on the width of these pulses to control the amount of power being sent to a load

- Pulse Width Modulation (PWM), is a method of transmitting information on a series of pulses
- 2 The data that is being transmitted is encoded on the width of these pulses to control the amount of power being sent to a load
- Servos Examples: Electric stoves, Lamp dimmers, and Robotic Servos

- Pulse Width Modulation (PWM), is a method of transmitting information on a series of pulses
- 2 The data that is being transmitted is encoded on the width of these pulses to control the amount of power being sent to a load
- Servos Examples: Electric stoves, Lamp dimmers, and Robotic Servos

- Pulse Width Modulation (PWM), is a method of transmitting information on a series of pulses
- ② The data that is being transmitted is encoded on the width of these pulses to control the amount of power being sent to a load
- Servos Examples: Electric stoves, Lamp dimmers, and Robotic Servos

 $\checkmark\,$ The signal remains "ON" for some time and "OFF" for some time.

- ✓ The signal remains "ON" for some time and "OFF" for some time.
- \checkmark Ton = Time the output remains high.

- ✓ The signal remains "ON" for some time and "OFF" for some time.
- \checkmark Ton = Time the output remains high.
- $\checkmark \ \ \mathsf{Toff} = \mathsf{Time} \ \mathsf{the} \ \mathsf{output} \ \mathsf{remains} \ \mathsf{Low}.$

- ✓ The signal remains "ON" for some time and "OFF" for some time.
- ✓ Ton = Time the output remains high.
- \checkmark Toff = Time the output remains Low.
- ✓ When output is high the voltage is 5v

- ✓ The signal remains "ON" for some time and "OFF" for some time.
- \checkmark Ton = Time the output remains high.
- ✓ Toff = Time the output remains Low.
- $\checkmark\,$ When output is high the voltage is 5v
- √ When output is low the voltage is 0v

- ✓ The signal remains "ON" for some time and "OFF" for some time.
- ✓ Ton = Time the output remains high.
- ✓ Toff = Time the output remains Low.
- ✓ When output is high the voltage is 5v
- √ When output is low the voltage is 0v
- \checkmark Time Period(T) = Ton + Toff

- ✓ The signal remains "ON" for some time and "OFF" for some time.
- \checkmark Ton = Time the output remains high.
- √ Toff = Time the output remains Low.
- √ When output is high the voltage is 5v
- √ When output is low the voltage is 0v
- \checkmark Time Period(T) = Ton + Toff
- ✓ Duty Cycle = Ton*100/(Ton + Toff)

- ✓ The signal remains "ON" for some time and "OFF" for some time.
- ✓ Ton = Time the output remains high.
- \checkmark Toff = Time the output remains Low.
- √ When output is high the voltage is 5v
- √ When output is low the voltage is 0v
- \checkmark Time Period(T) = Ton + Toff
- ✓ Duty Cycle = Ton*100/(Ton + Toff)
- ✓ Duty Cycle = 50%

 \checkmark Ton = Time the output remains high = 1

- \checkmark Ton = Time the output remains high = 1
- \checkmark Toff = Time the output remains Low = 7

- \checkmark Ton = Time the output remains high = 1
- \checkmark Toff = Time the output remains Low = 7
- ✓ Duty Cycle = 12.5%

 $\checkmark \ \, \mathsf{Ton} = \mathsf{Time} \; \mathsf{the} \; \mathsf{output} \; \mathsf{remains} \; \mathsf{high} = \mathsf{6}$

- ✓ Ton = Time the output remains high = 6
- \checkmark Toff = Time the output remains Low = 2

- \checkmark Ton = Time the output remains high = 6
- \checkmark Toff = Time the output remains Low = 2
- ✓ Duty Cycle = 75%

• The AVR microcontroller ATmega2560 has

- 1 The AVR microcontroller ATmega2560 has
 - two 8-bit timers (Timer0 and Timer2) and

- 1 The AVR microcontroller ATmega2560 has
 - two 8-bit timers (Timer0 and Timer2) and
 - four 16-bit timers (Timer 1, 3, 4 and 5)

- 1 The AVR microcontroller ATmega2560 has
 - two 8-bit timers (Timer0 and Timer2) and
 - four 16-bit timers (Timer 1, 3, 4 and 5)
- When the counter reaches its maximum count, it rolls over and executes from the start

- 1 The AVR microcontroller ATmega2560 has
 - two 8-bit timers (Timer0 and Timer2) and
 - four 16-bit timers (Timer 1, 3, 4 and 5)
- When the counter reaches its maximum count, it rolls over and executes from the start
 - For 8-bit counter, roll over occurs at 255 count and

- The AVR microcontroller ATmega2560 has
 - two 8-bit timers (Timer0 and Timer2) and
 - four 16-bit timers (Timer 1, 3, 4 and 5)
- When the counter reaches its maximum count, it rolls over and executes from the start
 - For 8-bit counter, roll over occurs at 255 count and
 - For 16-bit counter it occurs at 65535 count

Timer for PWM generation in Firebird

● Timer 5 can be used for PWM generation for controlling speed of motors

- Timer 5 can be used for PWM generation for controlling speed of motors
- ② The duty cycle of square wave generated by the Timer5 can be varied to produce different average DC values for motors

- Timer 5 can be used for PWM generation for controlling speed of motors
- The duty cycle of square wave generated by the Timer5 can be varied to produce different average DC values for motors
- Using FAST PWM mode to vary speed of motors

outline Introduction PWM Generation in AVR PWM Generation in Firebird V Registers TCCR5A TCCR5B TCNT5 OCR5 Block Diagram Program

1 To Program PWM, we have to initialize some register before use it

- 1 To Program PWM, we have to initialize some register before use it
- Pour registers are:

- 1 To Program PWM, we have to initialize some register before use it
- Pour registers are:
 - TCCR5A

- 1 To Program PWM, we have to initialize some register before use it
- Pour registers are:
 - TCCR5A
 - TCCR5B

- 1 To Program PWM, we have to initialize some register before use it
- Pour registers are:
 - TCCR5A
 - TCCR5B
 - TCNT5

- 1 To Program PWM, we have to initialize some register before use it
- Pour registers are:
 - TCCR5A
 - TCCR5B
 - TCNT5
 - OCR5n

outline Introduction PWM Generation in AVR PWM Generation in Firebird V Registers TCCR5A TCCR5B TCNT5 OCR5 Block Diagram Program

TCCR5A- Timer Counter Control Register A

This register is Used to Configure Timer for PWM generation

TCCR5A- Timer Counter Control Register A

This register is Used to Configure Timer for PWM generation

Bit	Symbol	Description	Bit Value
7	COM5A1	Compare Output Mode for Channel A bit 1	1
6	COM5A0	Compare Output Mode for Channel A bit 0	0
5	COM5B1	Compare Output Mode for Channel B bit 1	1
4	COM5B0	Compare Output Mode for Channel B bit 0	0
3	COM5C1	Compare Output Mode for Channel C bit 1	1
2	COM5C0	Compare Output Mode for Channel C bit 0	0
1	WGM11	Waveform Generation Mode bit 1	0
0	WGM10	Waveform Generation Mode bit 0	1

TCCR5A- Timer Counter Control Register A

This register is Used to Configure Timer for PWM generation

Bit	Symbol	Description	Bit Value
7	COM5A1	Compare Output Mode for Channel A bit 1	1
6	COM5A0	Compare Output Mode for Channel A bit 0	0
5	COM5B1	Compare Output Mode for Channel B bit 1	1
4	COM5B0	Compare Output Mode for Channel B bit 0	0
3	COM5C1	Compare Output Mode for Channel C bit 1	1
2	COM5C0	Compare Output Mode for Channel C bit 0	0
1	WGM11	Waveform Generation Mode bit 1	0
0	WGM10	Waveform Generation Mode bit 0	1

 $TCCR5A = 0 \times A9$

Compare Output Mode Fast PWM

Compare Output Mode Fast PWM

Table 17-4. Compare Output Mode, Fast PWM

		•
COMnA1 COMnB1 COMnC1	COMnA0 COMnB0 COMnC0	Description
0	0	Normal port operation, OCnA/OCnB/OCnC disconnected.
0	1	WGM13:0 = 14 or 15: Toggle OC1A on Compare Match, OC1B and OC1C disconnected (normal port operation). For all other WGM1 settings, normal port operation, OC1A/OC1B/OC1C disconnected.
1	0	Clear OCnA/OCnB/OCnC on compare match, set OCnA/OCnB/OCnC at BOTTOM (non-inverting mode).
1	1	Set OCnA/OCnB/OCnC on compare match, clear OCnA/OCnB/OCnC at BOTTOM (inverting mode).

Waveform Generation Bit

Waveform Generation Bit

Table 17-2. Waveform Generation Mode Bit Description⁽¹⁾

Mode	WGMn3	WGMn2 (CTCn)	WGMn1 (PWMn1)	WGMn0 (PWMn0)	Timer/Counter Mode of Operation	ТОР	Update of OCRnX at	TOVn Flag Set on
0	0	0	0	0	Normal	0xFFFF	Immediate	MAX
1	0	0	0	1	PWM, Phase Correct, 8-bit	0x00FF	TOP	воттом
2	0	0	1	0	PWM, Phase Correct, 9-bit	0x01FF	TOP	воттом
3	0	0	1	1	PWM, Phase Correct, 10-bit	0x03FF	TOP	воттом
4	0	1	0	0	стс	OCRnA	Immediate	MAX
5	0	- 1	0	1	Fast PWM, 8-bit	0x00FF	BOTTOM	TOP
6	0	1	1	0	Fast PWM, 9-bit	0x01FF	BOTTOM	TOP
7	0	1	1	1	Fast PWM, 10-bit	0x03FF	воттом	TOP
8	1	0	0	0	PWM, Phase and Frequency Correct	ICRn	воттом	воттом
9	1	0	0	1	PWM,Phase and Frequency Correct	OCRnA	воттом	воттом
10	1	0	1	0	PWM, Phase Correct	ICRn	TOP	воттом
11	1	0	1	1	PWM, Phase Correct	OCRnA	TOP	воттом
12	1	1	0	0	CTC	ICRn	Immediate	MAX
13	1	1	0	1	(Reserved)	-	-	-
14	1	1	1	0	Fast PWM	ICRn	BOTTOM	TOP
15	1	1	1	1	Fast PWM	OCRnA	воттом	TOP

outline Introduction PWM Generation in AVR PWM Generation in Firebird V Registers TCCR5A TCCR5B TCNT5 OCR5 Block Diagram Program

TCCR5B- Timer Counter Control Register B

This register is Used to Configure Timer for PWM generation

TCCR5B- Timer Counter Control Register B

This register is Used to Configure Timer for PWM generation

Bit	Symbol	Description	Bit Value
7	ICNC5	Input Capture Noise Canceller	0
6	ICES5	Input Capture Edge Select	0
5	-	Reserved Bit	0
4	WGM53	Waveform Generation Mode bit 3	0
3	WGM52	Waveform Generation Mode bit 2	1
2	CS52	Clock Select	0
1	CS51	Clock Select	1
0	CS50	Clock Select	1

TCCR5B

TCCR5B- Timer Counter Control Register B

This register is Used to Configure Timer for PWM generation

Bit	Symbol	Description	Bit Value
7	ICNC5	Input Capture Noise Canceller	0
6	ICES5	Input Capture Edge Select	0
5	_	Reserved Bit	0
4	WGM53	Waveform Generation Mode bit 3	0
3	WGM52	Waveform Generation Mode bit 2	1
2	CS52	Clock Select	0
1	CS51	Clock Select	1
0	CS50	Clock Select	1

TCCR5B = 0x0B

www.e-yantra.org

Clock Select Bit

Clock Select Bit

Table 17-6. Clock Select Bit Description

CSn2	CSn1	CSn0	Description	
0	0	0	No clock source. (Timer/Counter stopped)	
0	0	1	clk _{l/O} /1 (No prescaling	
0	1	0	clk _{I/O} /8 (From prescaler)	
0	1	1	clk _{I/O} /64 (From prescaler)	
1	0	0	clk _{I/O} /256 (From prescaler)	
1	0	1	clk _{VO} /1024 (From prescaler)	
1	1	0	External clock source on Tn pin. Clock on falling edge	
1	1	1	External clock source on Tn pin. Clock on rising edge	

TCNT5 : Timer/Counter5

TCNT5: Timer/Counter5

• Purpose: Counts Up/down according to clock frequency

TCNT5: Timer/Counter5

- Purpose: Counts Up/down according to clock frequency
- TCNT5 is a 16-bit Register

TCNT5 : Timer/Counter5

- Purpose: Counts Up/down according to clock frequency
- TCNT5 is a 16-bit Register
- Counts from 0 to 255 if used in 8-Bit Mode

TCNT5 : Timer/Counter5

- Purpose: Counts Up/down according to clock frequency
- TCNT5 is a 16-bit Register
- Counts from 0 to 255 if used in 8-Bit Mode
- Counts from 0 to 65535 if used in 16-Bit Mode

Output Compare Register 5

 Purpose: Compares itself from TCNT counter and set flags when match occurs

- Purpose: Compares itself from TCNT counter and set flags when match occurs
- OCR5n: where n=A/B/C are three different 16-bit Register

- Purpose: Compares itself from TCNT counter and set flags when match occurs
- OCR5n: where n=A/B/C are three different 16-bit Register
- Each can be used individually as separate PWM channel

- Purpose: Compares itself from TCNT counter and set flags when match occurs
- OCR5n: where n=A/B/C are three different 16-bit Register
- Each can be used individually as separate PWM channel
- OCR5n is represented as two 8-bit register as OCR5nL and OCR5nH

- Purpose: Compares itself from TCNT counter and set flags when match occurs
- OCR5n: where n=A/B/C are three different 16-bit Register
- Each can be used individually as separate PWM channel
- OCR5n is represented as two 8-bit register as OCR5nL and OCR5nH
- PWM generated is 8-bit, so only lower register is used

- Purpose: Compares itself from TCNT counter and set flags when match occurs
- OCR5n: where n=A/B/C are three different 16-bit Register
- Each can be used individually as separate PWM channel
- OCR5n is represented as two 8-bit register as OCR5nL and OCR5nH
- PWM generated is 8-bit, so only lower register is used
- OCR5AL (PortL3) is connected to Left Motor

- Purpose: Compares itself from TCNT counter and set flags when match occurs
- OCR5n: where n=A/B/C are three different 16-bit Register
- Each can be used individually as separate PWM channel
- OCR5n is represented as two 8-bit register as OCR5nL and OCR5nH
- PWM generated is 8-bit, so only lower register is used
- OCR5AL (PortL3) is connected to Left Motor
- OCR5BL (PortL4) is connected to Right Motor

Output Compare Register 5 (Contd..)

Registers TCCR5A TCCR5B TCNT5 OCR5 Block Diagram Program

Output Compare Register 5 (Contd..)

The Output Compare Registers contain a 16-bit value that is continuously compared with the counter value (TCNTn). A match can be used to generate an Output Compare interrupt, or to generate a waveform output on the OCnx pin.

Output Compare Register 5 (Contd..)

The Output Compare Registers contain a 16-bit value that is continuously compared with the counter value (TCNTn). A match can be used to generate an Output Compare interrupt, or to generate a waveform output on the OCnx pin.

Output Compare Register 5 A

OCR5AH and OCR5AL

Bit	7	6	5	4	3	2	1	0	
	OCR5A[15:8]								OCR5AH
	OCR5A[7:0]								OCR5AL
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Initial Value	0	0	0	0	0	0	0	0	

Registers TCCR5A TCCR5B TCNT5 OCR5 Block Diagram

Block Diagram - Output Compare Unit

Block Diagram - Output Compare Unit

Timing Diagram Fast PWM

Timing Diagram Fast PWM

outline Introduction PWM Generation in AVR PWM Generation in Firebird V Registers TCCR5A TCCR5B TCNT5 OCR5 Block Diagran Program

Syntax for C-Program PWM Initialization

Program

Syntax for C-Program PWM Initialization

```
Port Pin Config
```


Registers TCCR5A TCCR5B TCNT5 OCR5 Block Diagram Program

Syntax for C-Program PWM Initialization

```
Port Pin Config

void motion_pin_config (void) //Configure Pins as Output
{

Port A for motion control and Port L for Velocity Control must be defined Output
}
```


Program

Syntax for C-Program PWM Initialization

```
Port Pin Config
void motion_pin_config (void) //Configure Pins as Output
Port A for motion control and Port L for Velocity Control must be defined Output
```

PWM Initialization

Syntax for C-Program PWM Initialization

```
Port Pin Config
void motion_pin_config (void) //Configure Pins as Output
Port A for motion control and Port L for Velocity Control must be defined Output
```

```
PWM Initialization
```

```
void timer5_init() //Set Register Values for starting Fast 8-bit PWM
   TCCR5A =
   TCCR5B =
   TCNT5H = OxFF:
   TCNT5L = 0x00;
   OCR5AH = 0x00;
   OCR5AL = OxFF:
   OCR5BH = 0x00:
   OCR5BL = OxFF;
```


outline Introduction PWM Generation in AVR PWM Generation in Firebird V Registers TCCR5A TCCR5B TCNT5 OCR5 Block Diagran Program

Syntax for C-Program

Program

Syntax for C-Program Program

```
Main Program
```


Syntax for C-Program Program

Registers TCCR5A TCCR5B TCNT5 OCR5 Block Diagram Program

Syntax for C-Program Program

```
Main Program

int main(void) {
    init_devices();
    forward();
    while(1) {
        velocity(100,100);
        _delay_ms(500);
        velocity(0,255);
        _delay_ms(500);
    }
}
```

Velocity Function

Syntax for C-Program Program

```
Main Program
int main(void)
 init devices():
 forward():
 while(1)
    velocity(100,100);
    _delay_ms(500);
    velocity(0,255);
    _delay_ms(500);
```

Velocity Function

```
void velocity (unsigned char left_motor, unsigned char right_motor)
  OCR5AL = (unsigned char)left_motor;
   OCR5BL = (unsigned char)right_motor;
```


outline Introduction PWM Generation in AVR PWM Generation in Firebird V Registers TCCR5A TCCR5B TCNT5 OCR5 Block Diagram Program

Thank You!

Post your queries on: http://qa.e-yantra.org/

