CLASSIFICADORES MULTICLASSE

Allan Dieguez Al Researcher | Data Scientist

Director, Data Science

BAIN & COMPANY

LinkedIn: @allandieguez

E-Mail: allandieguez@gmail.com

AGENDA

- Problemas Multiclasse
 Complexidade com mais classes
- Combinação de Classificadores
 Soluções com modelos binários
- Arquiteturas Multiclasse
 Suporte nativo a multiclasse
- Métricas de Avaliação
 O que muda com mais classes

PROBLEMAS MULTICLASSE

Complexidade com mais classes

A CLASSIFICAÇÃO BINÁRIA

HIPERPLANO DE DECISÃO

COMO SOLUCIONAR?

MAIS COMPLEXIDADE COM MULTICLASSE

MODELOS COMBINADOS

COMBINAÇÃO DE CLASSIFICADORES

Soluções com modelos binários

	Classe 1	Classe 2	Classe 3	 Classe N
Modelo 1	+	-	-	 -
Modelo 2	_	+	-	 -
Modelo N	_	-	-	 +

TÉCNICA ONE VS ALL

São treinados **N** modelos, **um para cada classe**, particionando em cada um o domínio em **classe** e não **classe**.

A decisão final é computada como **scores de pertinência** a cada classe.

	Classe 1	Classe 2	Classe 3	 Classe N
Modelo 1	+	-	X	 X
Modelo 2	x	+	-	 X
Modelo K	x	X	-	 +

TÉCNICA ONE VS ONE

São treinados **K** modelos, um para cada **duas classes**, onde o valor de K é igual à **combinatória C(N, 2)**.

A decisão final pode ser computada a partir de **votação simples** ou usando uma heurística sobre os *scores* de cada saída.

PERTINÊNCIA VS PROBABILIDADE

ARQUITETURAS MULTICLASSE

Suporte nativo a multiclasse

ÁRVORE DE DECISÃO BINÁRIA

Fonte: Artigo "Binary Classification using Decision-Tree Model" do Medium

ÁRVORE DE DECISÃO MULTICLASSE

Fonte: tutorial do Scikit-Learn sobre classificação sobre o dataset Iris

MULTI LAYER PERCEPTRON

Estrutura **hiperconectada** de neurônios artificiais (modelos matemáticos baseados na biologia).

Cada neurônio equivale a uma **regressão logística**.

ESTRUTURA COMPARTILHADA

A decisão em **cada neurônio de saída** é alimentada pela **mesma estrutura** que passa informações aos outros.

Fonte: Página da Wikipedia sobre o uso de Softmax em Redes Neurais Artificiais

FUNÇÃO SOFTMAX

A função Softmax força que **todas as saídas** do modelo em conjunto emulem uma função de **densidade de probabilidade** discretizada.

MÉTRICAS DE AVALIAÇÃO

O que muda com mais classes

Matriz de Confusão Binária

MÉTRICA ÚNICA DE PERFORMANCE

$$F_{\beta} = (1+\beta^2) \times \frac{Precision \times Recall}{\beta^2 \times Precision + Recall}$$

Média harmônica ponderada entre as medidas de **precisão** e **sensibilidade**.

$$F_1 = 2 \times \frac{Precision \times Recall}{Precision + Recall}$$

Mais utilizada por equilibrar ambas as medidas ao mesmo tempo.

$$F_2 = 5 \times \frac{Precision \times Recall}{4 \times Precision + Recall}$$

Utilizada quando a maior ênfase da métrica deve ser dada à **precisão** (ou *precision*)

$$F_{0.5}$$
 = 1.25 x $\frac{Precision \times Recall}{0.25 \times Precision + Recall}$

Utilizada quando a maior ênfase da métrica deve ser dada à **sensibilidade** (ou **recall**)

MATRIZ DE CONFUSÃO MULTICLASSE

Como calcular

Falso Positivo, Falso Negativo, Verdadeiro Positivo e Verdadeiro Negativo

na Matriz de Confusão Multiclasse?

MÉTRICAS DE CONFUSÃO MULTICLASSE

	Accuracy	Precision	Recall	F1-Score
Classe 0	0.98	0.84	0.98	0.91
Classe 1	0.92	0.89	0.31	0.46
Classe 2	0.95	0.61	1.00	0.76
Classe 3	0.91	0.50	0.98	0.66
Classe 4	0.96	0.76	0.96	0.85
Classe 5	0.95	1.00	0.53	0.69
Classe 6	0.98	0.81	0.97	0.88
Classe 7	0.96	0.70	1.00	0.82
Classe 8	0.94	1.00	0.43	0.60
Classe 9	0.91	0.43	0.15	0.23

CALCULAR UMA ÚNICA MÉTRICA

Método	Racional	Efeito
'micro'	Calcula globalmente os valores de FP , FN , VP e VN para calcular as métricas	Racional mais próximo do original binário
'macro'	Calcula as métricas por classe , individualmente, e faz a média simples	Ignora o desbalanceamento ; <i>F1Score</i> pode sair da faixa [<i>precision</i> , <i>recall</i>]
'weighted'	Calcula a média ponderada por suporte das métricas por classe	Racional simples que considera o desbalanceamento das classes

Fonte do método: sklearn.metrics.precision_recall_fscore_support

MÉTRICA ÚNICA POR MODELO

PER CLASS	Precision	Recall	F1Score	Suporte
Classe 0	0.84	0.98	0.91	44
Classe 1	0.89	0.31	0.46	52
Classe 2	0.61	1.00	0.76	36
Classe 3	0.50	0.98	0.66	41
Classe 4	0.76	0.96	0.85	53
Classe 5	1.00	0.53	0.69	51
Classe 6	0.81	0.97	0.88	39
Classe 7	0.70	1.00	0.82	46
Classe 8	1.00	0.43	0.60	49
Classe 9	0.43	0.15	0.23	39

AVERAGE	Precision	Recall	F1Score
'micro'	0.77	0.77	0.77
'macro'	0.80	0.78	0.75
\weighted'	0.81	0.77	0.75

Fonte do método: tutorial do Scikit-Learn, aplicação de ROC Multiclasse

ROC EM PROBLEMAS MULTICLASSE

No cálculo do ROC Multiclasse, o **mesmo racional** descrito para métricas de confusão se aplica **sem restrições**.

Formas de avaliar ROC Multiclasse:

- ROC por classe;
- Agregando por Médias
 - o 'micro-average'
 - ´macro-average`
 - ´weighted-average'

RESUMO DA AULA

TAKEAWAY #1

Problemas multiclasse trazem mais complexidade quando comparados a problemas de classificação binária

T

TAKEAWAY #2

Podemos combinar classificadores binários para resolver problemas multiclasse, combinando as saídas dos classificadores.

TAKEAWAY #3

Temos arquiteturas que já nascem multiclasse, tendo suporte nativo para este tipo de problema.

T

TAKEAWAY #4

Temos métricas para fazer a avaliação dos classificadores. Além disso, métricas voltadas para problemas binários podem ser utilizadas para problemas multiclasse.

