Final Exam (Version A) -May 14, 2014 Math 220

1. (7 points each) Find the following:

A.
$$\lim_{x \to -\infty} \frac{\sqrt{4x^2 + 6}}{3x + 5} = \lim_{x \to -\infty} \frac{\sqrt{4x^2 + 6}}$$

B.
$$\int_{0}^{2} x^{2} e^{x^{3}} dx = \int_{0}^{8} e^{y} \frac{dy}{3} = \frac{e^{y}}{3} \Big|_{0}^{8} = \frac{e^{8}}{3} - \frac{e^{0}}{3} = \frac{e^{8}}{3} - \frac{1}{3}$$

$$u = x^{3} \qquad u(2) = 8$$

$$du = 3x^{2} dx \qquad u(0) = 0$$

$$\frac{dy}{3} = x^{2} dx$$

C.
$$\frac{dy}{dx}$$
 if $x^2 + 4y^2 = 3$

$$\frac{d}{dx} \left(x^2 + 4y^2 \right) = \frac{d}{dx} 3$$

$$2x + 8y \frac{dy}{dx} = 0$$

$$8y \frac{dy}{dx} = 2x$$

$$\frac{dy}{dx} = -\frac{2x}{8y} = -\frac{x}{4y}$$

2. (7 points) Let $f(x) = \frac{1}{x}$. Using the limit definition of the derivative, find f'(2).

$$f'(2) = \lim_{h \to 0} \frac{f(2+h) - f(2)}{h} = \lim_{h \to 0} \frac{2+h}{2h} = \lim_{h \to 0} \frac{2}{2(2+h)} = \lim_{h \to 0} \frac{-h}{2(2+h)} = \lim_{h \to$$

3. (5 points each) Find the following:

A.
$$\frac{d}{dx}\cos(x^2+3x) = -\sin(\chi^2+3\chi)\left[\frac{d}{dx}(\chi^2+3\chi)\right]$$

= $-\sin(\chi^2+3\chi)\cdot(2\chi+3)$

$$\mathbf{B} \cdot \frac{d}{dx} \left(\frac{2^x}{x^4 + x^2} \right) = \frac{2^x \cdot |_{\mathfrak{N}}(2) \left(\chi^4 + \chi^2 \right) - 2^x \cdot \left(4 \chi^3 + 2 \chi \right)}{\left(\chi^4 + \chi^2 \right)^2}$$

C.
$$\int_0^3 t^2 dt = \frac{1}{3}t^3 \Big|_0^3 = \frac{1}{3} \cdot 3^3 - \frac{1}{3} \cdot 0^3 = 9$$

4. (3 points each) y = g(x) is plotted above. Evaluate the following definite integrals. (No work needs to be shown.)

A.
$$\int_{-1}^{2} g(x) dx = \frac{1}{2} \cdot | \cdot | 2 - \frac{1}{2} \cdot | 2 \cdot | = -| 3 |$$

B.
$$\int_{2}^{6} g(x) dx = -\frac{1}{2} \cdot 4 \cdot 4 = -8$$

5. (9 points) Find the area bounded between $y = x^4$ and y = x.

Area =
$$\int_{c}^{1} (x-x^{4}) dx$$

= $\left(\frac{1}{2}x^{2} - \frac{1}{5}x^{5}\right)\Big|_{0}^{1}$
= $\left(\frac{1}{2}(1)^{2} - \frac{1}{5}(1)^{5}\right) - \left(\frac{1}{2}(0)^{2} - \frac{1}{5}(0)^{5}\right)$
= $\frac{1}{2} - \frac{1}{5} = \frac{5}{10} - \frac{2}{10} = \frac{3}{10}$

6. (6 points) Find the linearization of $k(x) = e^x$ at x = 0.

$$k'(x) = e^x$$
. The linearization of $k(x)$ at $x=0$ is $L(x) = k(0) + k'(0)(x-0) = e^0 + e^0(x-0) = 1+x$.

7. (10 points) A rectangular open-topped box is to have a square base and volume 8 ft³. If material for the base costs \$2 per ft² and material for the sides costs \$1 per ft², what dimensions minimize the cost of the box? (Justify why your answer is an absolute minimum.)

Minimize Cost:
$$C = 2x^2 + 4 \cdot 1 \cdot xy = 2x^2 + 4xy$$

Volume: $x^2y = 8$ so $y = \frac{8}{x^2}$

Minimize $C(x) = 2x^2 + 4xy = 2x^2 + 4x(\frac{8}{x^2}) = 2x^2 + \frac{32}{x}$

on $(0,\infty)$.

 $C'(x) = 4x - \frac{32}{x^2}$. $C'(x) = 0 \iff 4x - \frac{32}{x^2} = 0 \iff 4x - \frac{32}{x^2}$
 $C'(x) = 4x - \frac{32}{x^2}$. $C'(x) = 0 \iff 4x - \frac{32}{x^2} = 0 \iff 4x - \frac{32}{x^2}$

$$x=2$$
 is the only critical point on $(0,\infty)$, and $C'(x)=4+\frac{64}{x^3}>0$ on $(0,\infty)$. Hence, the cost is minimized by choosing $x=2$ ft and $y=\frac{8}{2^2}=2$ ft. Cimensions: 2 ft by 2 ft by 2 ft

8. (6 points) Find
$$\frac{d}{dx} \int_0^{x^2} \cos(t^3 + 1) dt$$
.
Let $f(x) = \int_0^x \cos(t^3 + 1) dt$. $f'(x) = \cos(x^3 + 1)$,
$$\frac{d}{dx} \int_0^{x^2} \cos(t^3 + 1) dt = \frac{d}{dx} f(x^2) = f'(x^2) \cdot \left[\frac{d}{dx} x^2\right]$$

$$= \cos((x^2)^3 + 1) \cdot 2x = \cos(x^6 + 1) \cdot 2x$$

9. (9 points) Find the volume of the solid obtained by rotating the region bounded by y = 0, x = 4, and $y = x^2$ around the x-axis.

Volume =
$$S_0^4 \pi (x^2)^2 dx = S_0^4 \pi x^4 dx = \frac{\pi}{5} x^5 \Big|_0^4$$

= $\frac{\pi}{5} \cdot 4^5 - \frac{\pi}{5} \cdot 0^5 = \frac{\pi \cdot 4^5}{5}$

- 10. (1 point each) y = h'(x) is plotted above. Find the following:
 - **A.** Interval(s) where h(x) is increasing: (-2, 4)
 - B. Interval(s) where h(x) is decreasing: $(-\infty, -2)$ and $(4, \infty)$
 - C. x-coordinate(s) where h(x) has a local max: $X = \frac{1}{4}$
 - **D.** x-coordinate(s) where h(x) has a local min: X^{-}
 - **E.** Interval(s) where h(x) is concave up: $(-\infty)$
 - **F.** Interval(s) where h(x) is concave down: $(1, \infty)$
 - G. x-coordinate(s) where h(x) has an inflection point: X = X
- 11. (4 points) Let w(t) be the rate that oil flows out of a storage tank in gallons per minute at time t minutes after the tank ruptures. What does $\int_0^{100} w(t) dt$ represent?

This integral represents the number of gallons that have leaked from the tank during the first 100 minutes after the repture.