Zomato Dataset Exploratory Data Analysis

In [1]: #Importing The necessary Python Libraray
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline

In [2]: df=pd.read_csv("C:/Users/HP/Downloads/zomato.csv", encoding="latin-1")

In [3]: #To show the top 5 records
 df.head()

Out[3]:

:		Restaurant ID	Restaurant Name	Country Code	City	Address	Locality	Locality Verbose	Longitude	Latituc
	0	6317637	Le Petit Souffle	162	Makati City	Third Floor, Century City Mall, Kalayaan Avenu	Century City Mall, Poblacion, Makati City	Century City Mall, Poblacion, Makati City, Mak	121.027535	14.56544
	1	6304287	Izakaya Kikufuji	162	Makati City	Little Tokyo, 2277 Chino Roces Avenue, Legaspi	Little Tokyo, Legaspi Village, Makati City	Little Tokyo, Legaspi Village, Makati City, Ma	121.014101	14.5537(
	2	6300002	Heat - Edsa Shangri-La	162	Mandaluyong City	Edsa Shangri- La, 1 Garden Way, Ortigas, Mandal	Edsa Shangri-La, Ortigas, Mandaluyong City	Edsa Shangri-La, Ortigas, Mandaluyong City, Ma	121.056831	14.5814(
	3	6318506	Ooma	162	Mandaluyong City	Third Floor, Mega Fashion Hall, SM Megamall, O	SM Megamall, Ortigas, Mandaluyong City	SM Megamall, Ortigas, Mandaluyong City, Mandal	121.056475	14.58531
	4	6314302	Sambo Kojin	162	Mandaluyong City	Third Floor, Mega Atrium, SM Megamall, Ortigas	SM Megamall, Ortigas, Mandaluyong City	SM Megamall, Ortigas, Mandaluyong City, Mandal	121.057508	14.5844

5 rows × 21 columns

In [4]: #to see the shape (number of rows and number of columns df.shape

Out[4]: (9551, 21)

In [5]: #To see all the columns of the data set df.columns

```
'Locality', 'Locality Verbose', 'Longitude', 'Latitude', 'Cuisines',
       'Average Cost for two', 'Currency', 'Has Table booking', 'Has Online delivery', 'Is delivering now', 'Switch to order menu',
       'Price range', 'Aggregate rating', 'Rating color', 'Rating text',
       'Votes'],
      dtype='object')
#To know the information of the data set
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 9551 entries, 0 to 9550
Data columns (total 21 columns):
                           Non-Null Count Dtype
- - -
     -----
                                           ----
0
     Restaurant ID
                           9551 non-null
                                           int64
 1
    Restaurant Name
                           9551 non-null object
 2 Country Code
                           9551 non-null int64
 3 City
                           9551 non-null object
   Address
                           9551 non-null object
 4
                           9551 non-null object
 5
   Locality
                           9551 non-null object
 6
    Locality Verbose
 7
                           9551 non-null float64
    Longitude
 8
    Latitude
                           9551 non-null float64
 9
    Cuisines
                           9542 non-null object
 10 Average Cost for two 9551 non-null int64
                           9551 non-null object
9551 non-null object
 11 Currency
 12 Has Table booking
 13 Has Online delivery
                           9551 non-null object
 14 Is delivering now
                           9551 non-null object
 15 Switch to order menu 9551 non-null
                                           object
 16 Price range
                         9551 non-null
                                           int64
 17 Aggregate rating
                           9551 non-null
                                           float64
 18 Rating color
                           9551 non-null
                                           object
                           9551 non-null
 19 Rating text
                                           object
                           9551 non-null
 20 Votes
                                           int64
```

Index(['Restaurant ID', 'Restaurant Name', 'Country Code', 'City', 'Address',

Df.describe command will provide the statistical summary of all the columns of integer data types as staitistics measurements can not be calculated for the text data types.

```
In [7]: df.describe()
```

dtypes: float64(3), int64(5), object(13)

memory usage: 1.5+ MB

Out[7]:

	Restaurant ID	Country Code	Longitude	Latitude	Average Cost for two	Price range	Aggregate rating	
count	9.551000e+03	9551.000000	9551.000000	9551.000000	9551.000000	9551.000000	9551.000000	955
mean	9.051128e+06	18.365616	64.126574	25.854381	1199.210763	1.804837	2.666370	15
std	8.791521e+06	56.750546	41.467058	11.007935	16121.183073	0.905609	1.516378	43
min	5.300000e+01	1.000000	-157.948486	-41.330428	0.000000	1.000000	0.000000	
25%	3.019625e+05	1.000000	77.081343	28.478713	250.000000	1.000000	2.500000	
50%	6.004089e+06	1.000000	77.191964	28.570469	400.000000	2.000000	3.200000	3
75%	1.835229e+07	1.000000	77.282006	28.642758	700.000000	2.000000	3.700000	13
max	1.850065e+07	216.000000	174.832089	55.976980	800000.000000	4.000000	4.900000	1093

EDA steps

1) Finding out the Missing values 2) Exploring the Numerical Variables 3) Exploring the Categorical Variables 4) Finding the relationship Between the features

```
In [8]: #To find out the missing values over here
          df.isnull().sum()
         Restaurant ID
                                  0
Out[8]:
         Restaurant Name
                                  0
         Country Code
                                  0
         City
                                  0
         Address
                                  0
         Locality
         Locality Verbose
                                  0
         Longitude
                                  0
         Latitude
                                  0
         Cuisines
                                  9
         Average Cost for two
                                  0
         Currency
                                  0
         Has Table booking
                                  0
         Has Online delivery
                                  0
         Is delivering now
                                  0
         Switch to order menu
                                  0
         Price range
                                  0
         Aggregate rating
                                  0
         Rating color
                                  0
         Rating text
                                  0
                                  0
         Votes
         dtype: int64
         #Another way of finding out the columns having null values or missing values
In [9]:
          [features for features in df.columns if df[features].isnull().sum() >0]
         ['Cuisines']
Out[9]:
         #Importing another file
In [10]:
          df_country = pd.read_excel("C:/Users/HP/Downloads/Country-Code.xlsx")
          df_country.head()
            Country Code
                         Country
Out[10]:
         0
                            India
                     1
                     14
                         Australia
         2
                           Brazil
                     30
         3
                     37
                         Canada
         4
                     94 Indonesia
         df_country.shape
In [11]:
         (15, 2)
Out[11]:
In [12]:
         a=df.columns
          b=df_country.columns
          print(a)
          print(b)
         Index(['Restaurant ID', 'Restaurant Name', 'Country Code', 'City', 'Address',
                 'Locality', 'Locality Verbose', 'Longitude', 'Latitude', 'Cuisines',
                 'Average Cost for two', 'Currency', 'Has Table booking',
                 'Has Online delivery', 'Is delivering now', 'Switch to order menu',
                 'Price range', 'Aggregate rating', 'Rating color', 'Rating text',
                 'Votes'],
                dtype='object')
         Index(['Country Code', 'Country'], dtype='object')
         #We have country code column common in the both data set so we can merge both data set
In [13]:
          final_df = pd.merge(df,df_country,on='Country Code',how='left')
```

In [14]: final_df.head(5)

Out[14]:

	Restaurant ID	Restaurant Name	Country Code	City	Address	Locality	Locality Verbose	Longitude	Latituc
0	6317637	Le Petit Souffle	162	Makati City	Third Floor, Century City Mall, Kalayaan Avenu	Century City Mall, Poblacion, Makati City	Century City Mall, Poblacion, Makati City, Mak	121.027535	14.56544
1	6304287	Izakaya Kikufuji	162	Makati City	Little Tokyo, 2277 Chino Roces Avenue, Legaspi	Little Tokyo, Legaspi Village, Makati City	Little Tokyo, Legaspi Village, Makati City, Ma	121.014101	14.5537(
2	6300002	Heat - Edsa Shangri-La	162	Mandaluyong City	Edsa Shangri- La, 1 Garden Way, Ortigas, Mandal	Edsa Shangri-La, Ortigas, Mandaluyong City	Edsa Shangri-La, Ortigas, Mandaluyong City, Ma	121.056831	14.5814(
3	6318506	Ooma	162	Mandaluyong City	Third Floor, Mega Fashion Hall, SM Megamall, O	SM Megamall, Ortigas, Mandaluyong City	SM Megamall, Ortigas, Mandaluyong City, Mandal	121.056475	14.58531
4	6314302	Sambo Kojin	162	Mandaluyong City	Third Floor, Mega Atrium, SM Megamall, Ortigas	SM Megamall, Ortigas, Mandaluyong City	SM Megamall, Ortigas, Mandaluyong City, Mandal	121.057508	14.5844!

5 rows × 22 columns

In [15]: #another way of finding data types final_df.dtypes

int64 Restaurant ID Out[15]: Restaurant Name object Country Code int64 City object Address object Locality object Locality Verbose object float64 Longitude float64 Latitude Cuisines object Average Cost for two int64 Currency object Has Table booking object Has Online delivery object Is delivering now object Switch to order menu object Price range int64 Aggregate rating float64 Rating color object Rating text object Votes int64

```
dtype: object
         final_df.columns
In [16]:
         Index(['Restaurant ID', 'Restaurant Name', 'Country Code', 'City', 'Address',
Out[16]:
                 'Locality', 'Locality Verbose', 'Longitude', 'Latitude', 'Cuisines',
                 'Average Cost for two', 'Currency', 'Has Table booking', 'Has Online delivery', 'Is delivering now', 'Switch to order menu',
                 'Price range', 'Aggregate rating', 'Rating color', 'Rating text',
                 'Votes', 'Country'],
                dtype='object')
         final_df.Country.value_counts()
In [17]:
         India
                             8652
Out[17]:
         United States
                              434
                               80
         United Kingdom
         Brazil
                               60
         UAE
                               60
         South Africa
                               60
         New Zealand
                               40
                               34
         Turkey
         Australia
                               24
         Phillipines
                               22
         Indonesia
                               21
         Singapore
                               20
                               20
         Qatar
         Sri Lanka
                               20
         Canada
         Name: Country, dtype: int64
         country_names=final_df.Country.value_counts().index
In [18]:
          country_names
         Index(['India', 'United States', 'United Kingdom', 'Brazil', 'UAE',
Out[18]:
                 'South Africa', 'New Zealand', 'Turkey', 'Australia', 'Phillipines',
                 'Indonesia', 'Singapore', 'Qatar', 'Sri Lanka', 'Canada'],
                dtype='object')
          country_val=final_df.Country.value_counts().values
In [19]:
          print(country_val)
          [8652 434
                       80
                                  60
                                       60
                                                  34
                                                       24
                                                            22
                                                                  21
                                                                       20
                                                                            20
                                                                                  20
              4]
         #Pie charts - Top 3 countries using Zomato based on the transactions
In [20]:
          plt.pie(country_val[:3], labels=country_names[:3], autopct="%1.2f%%")
         ([<matplotlib.patches.Wedge at 0x1e0157a6d30>,
Out[20]:
            <matplotlib.patches.Wedge at 0x1e0157bc4c0>,
            <matplotlib.patches.Wedge at 0x1e0157bcbe0>],
           [Text(-1.0829742700952103, 0.19278674827836725, 'India'),
            Text(1.077281715838356, -0.22240527134123297, 'United States'),
            Text(1.0995865153823035, -0.03015783794312073, 'United Kingdom')],
           [Text(-0.590713238233751, 0.10515640815183668, '94.39%'),
           Text(0.5876082086391032, -0.12131196618612707, '4.73%'),
           Text(0.5997744629358018, -0.01644972978715676, '0.87%')])
```

object

Country

Maximum Transactions are from India (94.39%) and then from Unites states and then United Kingdom

```
final_df.columns
In [36]:
           Index(['Restaurant ID', 'Restaurant Name', 'Country Code', 'City', 'Address',
Out[36]:
                    'Locality', 'Locality Verbose', 'Longitude', 'Latitude', 'Cuisines',
                    'Average Cost for two', 'Currency', 'Has Table booking', 'Has Online delivery', 'Is delivering now', 'Switch to order menu',
                    'Price range', 'Aggregate rating', 'Rating color', 'Rating text',
                    'Votes', 'Country'],
                  dtype='object')
           final_df.groupby(['Aggregate rating', 'Rating color', 'Rating text']).size().reset_ing
In [37]:
               Aggregate rating Rating color Rating text
                                                           0
Out[37]:
            0
                           0.0
                                      White
                                               Not rated 2148
            1
                           1.8
                                       Red
                                                   Poor
                                                           1
            2
                           1.9
                                                   Poor
                                                           2
                                       Red
                                                           7
                           2.0
                                                   Poor
            3
                                       Red
                           2.1
            4
                                       Red
                                                   Poor
                                                          15
            5
                           2.2
                                       Red
                                                   Poor
                                                          27
                           2.3
                                       Red
                                                   Poor
                                                          47
            6
            7
                                                   Poor
                           2.4
                                       Red
                                                          87
            8
                           2.5
                                    Orange
                                               Average
                                                         110
            9
                           2.6
                                    Orange
                                               Average
                                                         191
                           2.7
           10
                                    Orange
                                               Average
                                                         250
           11
                           2.8
                                    Orange
                                               Average
                                                         315
           12
                           2.9
                                                         381
                                    Orange
                                               Average
           13
                           3.0
                                    Orange
                                                         468
                                               Average
```

Average

Average

Average

519

522

483

14

15

16

3.1

3.2

3.3

Orange

Orange

Orange

17	3.4	Orange	Average	498			
18	3.5	Yellow	Good	480			
19	3.6	Yellow	Good	458			
20	3.7	Yellow	Good	427			
21	3.8	Yellow	Good	400			
22	3.9	Yellow	Good	335			
23	4.0	Green	Very Good	266			
24	4.1	Green	Very Good	274			
25	4.2	Green	Very Good	221			
26	4.3	Green	Very Good	174			
27	4.4	Green	Very Good	144			
28	4.5	Dark Green	Excellent	95			
29	4.6	Dark Green	Excellent	78			
30	4.7 Dark		Excellent	lent 42			
31	4.8	Dark Green	Excellent	25			
32	4.9	Dark Green	Excellent	61			
ratings=final	L_df.	groupby(['	Aggregate	ratir	ng',	'Rating	color
print(ratings	s)						
Aggregate 0 1 2	:	ing Rating 9.0 1.8 1.9		lot ra P		Rating	Count 2148 1 2

```
', 'Rating text']).size().ı
In [23]:
In [38]:
```

	Aggregate	rating	-		Rating text	Rating	Count
0		0.0	Whi	te	Not rated		2148
1		1.8	R	ed	Poor		1
2		1.9	R	ed	Poor		2
3		2.0	R	ed	Poor		7
4		2.1	R	ed	Poor		15
5		2.2	R	ed	Poor		27
6		2.3	R	ed	Poor		47
7		2.4	R	ed	Poor		87
8		2.5	0ran	ge	Average		110
9		2.6	0ran	ge	Average		191
10		2.7	0ran	_	Average		250
11		2.8	0ran	ge	Average		315
12		2.9	0ran	ge	Average		381
13		3.0	0ran	ge	Average		468
14		3.1	0ran	ge	Average		519
15		3.2	0ran	ge	Average		522
16		3.3	0ran	ge	Average		483
17		3.4	0ran	ge	Average		498
18		3.5	Yell	OW	Good		480
19		3.6	Yell	OW	Good		458
20		3.7	Yell		Good		427
21		3.8	Yell		Good		400
22		3.9	Yell	OW	Good		335
23		4.0	Gre	en	Very Good		266
24		4.1	Gre	en	Very Good		274
25		4.2	Gre	en	Very Good		221
26		4.3	Gre	en	Very Good		174
27		4.4	Gre	en	Very Good		144
28		4.5	Dark Gre	en	Excellent		95
29		4.6	Dark Gre		Excellent		78
30		4.7	Dark Gre	en	Excellent		42
31		4.8	Dark Gre	en	Excellent		25
32		4.9	Dark Gre	en	Excellent		61

Observations

when rating is between 4.5 to 4.9 it is excellent when rating is between 4.0 to 4.4 it is very good when rating is between 3.5 to 3.9 it is Good when rating is between 2.5 to 3.4 it is average when rating is between 1.8 to 2.4 it is Poor

```
In [39]:
         import matplotlib
         matplotlib.rcParams['figure.figsize'] = (12,6)
         sns.barplot(x='Aggregate\ rating', y='Rating\ Count', hue='Rating\ color', data=ratings)
         <AxesSubplot:xlabel='Aggregate rating', ylabel='Rating Count'>
```

Out[39]:

observations

1)Not rated Count is very High 2)Maximum Number of ratings between 2.5 to 3.9

```
## Count Plot
In [40]:
         sns.countplot(x='Rating color', data=ratings)
```

<AxesSubplot:xlabel='Rating color', ylabel='count'> Out[40]:

Observation

max number of zero ratings are from Indian Customers

```
# Which Currency are used by which country
In [42]:
            final_df[['Country','Currency']].groupby(['Country','Currency']).size().reset_index()
                                                           0
Out[42]:
                      Country
                                             Currency
             0
                      Australia
                                              Dollar($)
                                                          24
             1
                         Brazil
                                      Brazilian Real(R$)
                                                          60
             2
                       Canada
                                              Dollar($)
                                                           4
             3
                          India
                                     Indian Rupees(Rs.) 8652
             4
                     Indonesia Indonesian Rupiah(IDR)
                                                          21
             5
                   New Zealand
                                        NewZealand($)
                                                          40
             6
                     Phillipines
                                      Botswana Pula(P)
                                                          22
             7
                         Qatar
                                        Qatari Rial(QR)
                                                          20
             8
                     Singapore
                                              Dollar($)
                                                          20
                    South Africa
                                              Rand(R)
                                                          60
            10
                                Sri Lankan Rupee(LKR)
                      Sri Lanka
                                                          20
            11
                        Turkey
                                        Turkish Lira(TL)
                                                          34
            12
                          UAE
                                    Emirati Diram(AED)
                                                          60
            13
                United Kingdom
                                            Pounds(IE)
                                                          80
            14
                  United States
                                              Dollar($)
                                                         434
```

Observations

Online delievery are available in India and UAE

```
'Votes', 'Country'],
               dtype='object')
         final_df.columns
In [45]:
         Index(['Restaurant ID', 'Restaurant Name', 'Country Code', 'City', 'Address',
Out[45]:
                 'Locality', 'Locality Verbose', 'Longitude', 'Latitude', 'Cuisines',
                 'Average Cost for two', 'Currency', 'Has Table booking',
                 'Has Online delivery', 'Is delivering now', 'Switch to order menu',
                 'Price range', 'Aggregate rating', 'Rating color', 'Rating text',
                 'Votes', 'Country'],
               dtype='object')
         final_df.City.value_counts().index
In [32]:
         Index(['New Delhi', 'Gurgaon', 'Noida', 'Faridabad', 'Ghaziabad',
Out[32]:
                 'Bhubaneshwar', 'Amritsar', 'Ahmedabad', 'Lucknow', 'Guwahati',
                'Ojo Caliente', 'Montville', 'Monroe', 'Miller', 'Middleton Beach',
                 'Panchkula', 'Mc Millan', 'Mayfield', 'Macedon', 'Vineland Station'],
               dtype='object', length=141)
In [33]: # Top 5 citites doing highest transactions from India
         city_values = final_df.City.value_counts().values
         city_labels = final_df.City.value_counts().index
         plt.pie(city_values[:5],labels=city_labels[:5],autopct='%1.2f%%')
Out[33]: ([<matplotlib.patches.Wedge at 0x1e0178fceb0>,
           <matplotlib.patches.Wedge at 0x1e0178f5e50>,
           <matplotlib.patches.Wedge at 0x1e017908c70>,
           <matplotlib.patches.Wedge at 0x1e017914400>,
           <matplotlib.patches.Wedge at 0x1e017914b20>],
           [Text(-0.6145352824185932, 0.9123301960708633, 'New Delhi'),
           Text(0.0623675251198054, -1.0982305276263407, 'Gurgaon'),
           Text(0.8789045225625368, -0.6614581167535246, 'Noida'),
           Text(1.0922218418223437, -0.13058119407559224, 'Faridabad'),
           Text(1.099946280005612, -0.010871113182029924, 'Ghaziabad')],
           [Text(-0.3352010631374145, 0.497634652402289, '68.87%'),
           Text(0.0340186500653484, -0.5990348332507311, '14.07%'),
           Text(0.47940246685229276, -0.36079533641101336, '13.59%'),
           Text(0.5957573682667329, -0.07122610585941394, '3.16%'),
           Text(0.5999706981848791, -0.005929698099289049, '0.31%')])
```

'Price range', 'Aggregate rating', 'Rating color', 'Rating text',

"""#Obsercations

Top 5 Cities from India Doing Highest Number of the Transactions

1)New Delhi 2)Gurgaon 3)Noida 4)Faridabad 5)Gaziabad

```
In []: # Find the Top 10 Cuisines
final_df
In []: final_df[['Cuisines']].groupby(['Cuisines']).value_counts().reset_index()
In []: # Afgani cuisines is the most sold cuisine
```