

Year 11 Mathematics Specialist

Test 2 - 5.5%

Student Name :		_
----------------	--	---

Part One - Resource Free

Part One contains 6 questions worth 38 marks

Time Allowed: 40 minutes

INSTRUCTIONS TO STUDENTS:

You are required to attempt ALL questions,
Write answers in the spaces provided beneath each question.
Marks are shown with the questions.

Show all working clearly, in sufficient detail to allow your answers to be checked readily and for marks to be awarded for reasoning. Incorrect answers given without supporting reasoning cannot be allocated any marks. For any question or part question worth more than two marks, valid working or justification is required to receive full marks.

Using $\, \underline{c} \,$ and $\, \underline{d} \,$ as given on the diagram below, show the correct vector representing.

- a) c + d
- b) c d

c) Given p = -i + 20j, express p in the form $\lambda c + \mu d$.

Question 2 4 marks

Points A, B and C have position vectors $\underline{a} = x\underline{i} - \underline{j}$, $\underline{b} = \underline{i} + 3\underline{j}$ and $\underline{c} = 4\underline{i} + y\underline{j}$ respectively. Given that AB:BC = 2:1, determine the value(s) of x and y.

Question 3 1, 1, 1, 1, 1, 2 – 7 marks

AX and CX are tangents to the circle ABCDE. O is the centre of the circle and the angle OCA = 30° . Calculate each of the following angles giving reasoning for each.

- a) OAC
- b) AOC
- c) ADC
- d) ACX
- e) ABC
- f) AXC

The diagram shows the cyclic quadrilateral ABCD.

The extended lines of BA and CD meet at E, such that AE = AC.

 \angle ABC, \angle ADC and \angle DAC are multiples of a constant h as shown.

a) Show that $h = 15^{\circ}$.

b) Determine the size of ∠EAD , clearly showing your method.

<u>Question 5</u> 2, 6 – 8 marks

a) Identify the relationship between the shaded angles and theorem involved in the given diagram.

b) Prove this relationship is always true.

Question 6 7 marks

The diagram shows a body P, of weight 8 N, supported in equilibrium by two wires.

Find the exact magnitudes of $F_{\scriptscriptstyle 1}$ and $F_{\scriptscriptstyle 2}$.

Year 11 Mathematics Specialist

Test 2 – 5.5%

Part Two – Resource Allowed

Part Two contains 3 questions worth 17 marks

Time Allowed: 20 minutes

TO BE PROVIDED BY THE STUDENT

A maximum of one A4 page of notes, one sided. Standard Items: Pens, pencils, eraser, sharpener, correction tape/fluid, highlighters, ruler.

Special Items: Drawing instruments, templates.

A maximum of three CAS calculators satisfying the conditions set by the SCSA.

INSTRUCTIONS TO STUDENTS:

You are required to attempt ALL questions,
Write answers in the spaces provided beneath each question.
Marks are shown with the questions.

Show all working clearly, in sufficient detail to allow your answers to be checked readily and for marks to be awarded for reasoning. Incorrect answers given without supporting reasoning cannot be allocated any marks. For any question or part question worth more than two marks, valid working or justification is required to receive full marks.

Question 1 4 marks

The forces, one of 7 N and one of 5 N, act on an object. The forces are separated by an angle of 70°, as shown on the diagram.

Calculate the magnitude (correct to 1 dp) and direction of the resultant force acting on the object. (Give the direction in terms of the angle it makes with larger force)

Question 2 5 marks

An aircraft capable of 100 km/h needs to travel to a destination located $(-350\underline{i} - 220\underline{j})$ km from his starting location. The current wind velocity is reported as $20\underline{i} - 15\underline{j}$ km/h. Determine the velocity the pilot should set and his calculated travel time, to the nearest minute.

Consider the vectors $\underline{a} = <3,2>, \underline{b} = <4,-3>$ and $\underline{c} = < n,-0.5>$.

a) Determine $|2\underline{b} - \underline{a}|$ exactly.

b) Find a vector parallel to \underline{a} and half the magnitude of \underline{b} .

c) Determine the value of n if c is a unit vector.