Linguagens Formais e Autômatos

Aula 17 - Autômatos com pilha

Referências bibliográficas

- Introdução à teoria dos autômatos, linguagens e computação / John E.
 Hopcroft, Rajeev Motwani, Jeffrey D. Ullman ; tradução da 2.ed. original de Vandenberg D. de Souza. Rio de Janeiro : Elsevier, 2002 (Tradução de: Introduction to automata theory, languages, and computation ISBN 85-352-1072-5)
 - Capítulo 6 Seções 6.1 e 6.2
- Introdução à teoria da computação / Michael Sipser; tradução técnica
 Ruy José Guerra Barretto de Queiroz; revisão técnica Newton José Vieira. -São Paulo: Thomson Learning, 2007 (Título original: Introduction to the
 theory of computation. "Tradução da segunda edição norte-americana" ISBN 978-85-221-0499-4)
 - Capítulo 2 Seção 2.2

- Antes: o que é pilha?
- Estrutura de dados
 - Primeiro-que-entra-é-o-último-que-sai
 - FILO (First In Last Out)
- Como uma pilha de pratos
 - Você sempre pega o prato que está em cima
 - Novos pratos vão para o topo
 - Quando acabarem os pratos (pilha vazia) é hora de lavar a louça

- Essencialmente, é um ε-NFA com a inclusão de uma pilha
- Pilha = memória adicional
 - Além dos estados finitos
 - Quantidade infinita de informações
- A pilha pode ser lida, aumentada e diminuída apenas no topo
- Autômatos com pilha reconhecem todas as linguagens livres de contexto
 - E apenas elas

- O controle de estados finitos lê as entradas, um símbolo de cada vez
- O controle tem permissão para observar o símbolo no topo da pilha
 - Pode basear a transição:
 - em seu estado atual
 - no símbolo de entrada
 - no símbolo presente no topo da pilha
 - Opcionalmente, a entrada pode ser ε
 - Ou seja, podem haver transições "espontâneas"

- Em uma transição, o autômato com pilha:
 - Consome da entrada o símbolo que utiliza na transição
 - Se for uma transição espontânea, nenhum símbolo de entrada é consumido
 - Vai para um novo estado, que pode ou não ser o mesmo estado anterior
 - Substitui o símbolo no topo da pilha por qualquer cadeia

- Substituição de símbolo no topo da pilha
 - Se for ε, equivale a uma extração (pop) da pilha

- Substituição de símbolo no topo da pilha
 - Se for o mesmo que já estava, equivale a não mudar a pilha, apenas fazer a transição

- Substituição de símbolo no topo da pilha
 - Se for outro símbolo, altera o topo, mas não insere nem extrai nada (mantém o número de símbolos na pilha)

Substituição de símbolo no topo da pilha

Se for uma cadeia com dois ou mais símbolos, insere

- Ex: L = {ww^R | w está em {0,1}*}
 - Três estados: q0, q1 e q2
 - q0 = ainda não chegou no meio da entrada
 - q1 = passou do meio da entrada
 - q2 = chegou no fim da entrada

Funcionamento:

- Começa em q0
- Estando em q0, vai lendo a entrada e colocando uma cópia do símbolo lido no topo da pilha
- No meio da pilha (usando o poder de oráculo do não-determinismo), muda para q1
- Estando em q1, vai lendo a entrada. Compara-se o símbolo lido com o símbolo no topo da pilha. Se for igual, substitui o topo da pilha por ε
- \circ No final da entrada, se a pilha estiver vazia (topo = ε), aceita a cadeia

Definição formal de um PDA (Push-Down Automaton)

$$P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$$

- Onde:
 - Q = Um conjunto finito de estados
 - \circ Σ = Um conjunto finito de símbolos de entrada
 - \circ Γ = Um alfabeto de pilha finito conjunto de símbolos que temos permissão para inserir na pilha (pode incluir elementos de Σ)
 - δ = Função de transição governa o comportamento do autômato
 - \circ q₀ = Estado inicial
 - Z₀ = Símbolo de início Inicialmente, a pilha do PDA consiste em uma instância desse símbolo e em nada mais
 - F = Conjunto de estados de aceitação

- Função de transição
 - $\circ \quad \delta : Q \times \Sigma \cup \{\epsilon\} \times \Gamma \cup \{\epsilon\} \rightarrow P(Q \times \Gamma \cup \{\epsilon\})$
 - O argumento é uma tripla (q, a, X), onde:
 - q é um estado em Q
 - a é um símbolo de entrada em Σ ou a=ε (cadeia vazia)
 - X é um símbolo da pilha, isto é, um elemento de Γ
 - \circ A saída de δ é um conjunto finito de pares (p,γ), onde:
 - p é o novo estado
 - γ é a cadeia de símbolos da pilha que substitui X no topo da pilha
 - Se γ = ε, a pilha é extraída
 - Se γ = X, a pilha fica inalterada
 - Se γ = YZ, X é substituído por Z e Y é inserido na pilha

- Exemplo: Vamos projetar um PDA P para aceitar a linguagem L = {ww^R | w está em {0,1}*}:
- $P = (\{q_0, q_1, q_2\}, \{0, 1\}, \{0, 1, \$\}, \delta, q_0, \$, \{q_2\})$
- Obs: \$ é um símbolo que fica no fundo da pilha, inicialmente, e será usado para marcar quando a pilha está vazia
- Onde δ é definido pelas seguintes regras:
- Empilhando
 - \circ $\delta(q0,0,\$)=\{(q0,0\$)\}\ e\ \delta(q0,1,\$)=\{(q0,1\$)\}$
- Adivinhando o meio da cadeia
 - \circ $\delta(q0,\epsilon,\$)=\{(q1,\$)\},\ \delta(q0,\epsilon,0)=\{(q1,0)\}\ e\ \delta(q0,\epsilon,1)=\{(q1,1)\}$
- Desempilhando
 - \circ $\delta(q1,0,0)=\{(q1,\epsilon)\}\ e\ \delta(q1,1,1)=\{(q1,\epsilon)\}$
- Checando a pilha vazia
 - $\circ \quad \delta(q1,\epsilon,\$)=\{(q2,\$)\}$

- A lista de transições para um PDA nem sempre é fácil de acompanhar
- Uma forma melhor é um diagrama de transição para PDAs:
 - Os nós correspondem aos estados do PDA
 - Uma seta identificada por Início indica o estado inicial, e estados com círculos duplos são estados de aceitação
 - Os arcos correspondem a transições do PDA
 - Mas com algumas extensões, conforme a seguir

- Um arco é identificado por a, X/α
 - a = símbolo de entrada
 - X = símbolo no topo da pilha
 - α = cadeia a substituir o topo da pilha

Outra forma é criar uma tabela tridimensional

Entrada:	0			1			3		
Pilha:	0	1	\$	0	1	\$	0	1	\$
q0	{(q0,00)}	{(q0,01)}	{(q0,0\$)}	{(q0,10)}	{(q0,11)}	{(q0,1\$)}	{(q1,0)}	{(q1,1)}	{(q1,\$)}
q1	{(q1,ε)}	Ø	Ø	Ø	{(q1,ε)}	Ø	Ø	Ø	{(q2,\$)}
q2	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø

- Para facilitar o acompanhamento da execução de um autômato, existe também o conceito de configuração (ou descrição) instantânea
 - Um texto que resume o estado da execução em um determinado momento, com as informações essenciais
 - Estado atual do PDA
 - Entrada a ser lida
 - Conteúdo da pilha

- A configuração instantânea (CI) de um PDA é representada por uma tripla (q, w, γ), onde:
 - o q é o estado
 - w é a parte restante da entrada
 - γ é o conteúdo da pilha
- Convencionalmente, mostramos o topo da pilha na extremidade esquerda e a parte inferior na extremidade direita

o Ex: b
$$\gamma = bba$$

$$b$$

$$a$$
Pilha

- Formalmente: um movimento genérico em um PDA é descrito pelas seguintes configurações instantâneas
 - \circ (q,aw,X β) \vdash (p,w, $\alpha\beta$)
- Supondo que δ(q,a,X) contém (p,α)
 - A notação ⊦* indica uma sequência de movimentos.

 Exercício: mostre as sequências de configurações instantâneas para a cadeia 1111

- As linguagens de um PDA
- Existem duas abordagens para decidir se um PDA aceita ou não uma entrada
 - Aceitação pelo estado final
 - Aceitação por pilha vazia
- Ambas são equivalentes
 - Uma linguagem L tem um PDA que a aceita pelo estado final se e somente se L tem um PDA que a aceita por pilha vazia
 - Ou seja, é possível converter um PDA que aceita L por estado final em outro PDA que aceita L por pilha vazia
 - E vice-versa

- Aceitação por estado final
 - Seja P = (Q,Σ,Γ,δ,q₀,Z₀,F) um PDA
 - Então L(P), a linguagem aceita por P pelo estado final, é:
 - $L(P) = \{w \mid (q_0, w, Z_0) \mid^* (q, \varepsilon, \alpha)\}$
 - Para algum estado q em F e qualquer cadeia de pilha α
- Ou seja, é o conjunto de todas as cadeias que o PDA pode processar, a partir da configuração instantânea inicial, consumindo todos os símbolos da cadeia, que chegam a um estado de aceitação
 - Não interessa o que "sobrar" na pilha

- Aceitação por pilha vazia
 - Seja P = $(Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$ um PDA
 - Então N(P), a linguagem aceita por P por pilha vazia, é:
 - $N(P) = \{ w \mid (q_0, w, Z_0) \mid^* (q, \varepsilon, \varepsilon) \}$
 - Para qualquer estado q (não necessariamente em F)
- Ou seja, é o conjunto de cadeias que o PDA pode processar, a partir da configuração instantânea inicial, consumindo todos os símbolos da cadeia e deixando a pilha vazia no final
 - Não interessa em qual estado o autômato parou
 - Portanto, quando a aceitação é por pilha vazia, a descrição pode omitir o último elemento da tupla:
 - $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0)$

- Aceitação por pilha vazia = Aceitação por estado final
- Prova: por construção
 - Conversão de pilha vazia → estado final
 - Conversão de estado final → pilha vazia

De pilha vazia ao estado final

- Dado um PDA $P_N = (Q, \Sigma, \Gamma, \delta_N, q0, Z_0, F)$ que aceita por pilha vazia:
- Criaremos um PDA P_F que aceita por estado final:
 - $P_F = (Q \cup \{p0, pf\}, \Sigma, \Gamma \cup \{X_0\}, \delta_F, p0, X_0, \{pf\})$
 - Novo símbolo X₀
 - Novo estado inicial p0
 - Novo estado final pf
 - Novas transições (δ_F) conforme a seguir

De pilha vazia ao estado final

De estado final para pilha vazia

- Dado um PDA $P_F = (Q, \Sigma, \Gamma, \delta_F, q0, Z_0, F)$ que aceita por estado final:
- Criaremos um PDA P_N que aceita por pilha vazia:
 - $P_F = (Q \cup \{p0, p\}, \Sigma, \Gamma \cup \{X_0\}, \delta_N, p0, X_0)$
 - Novo símbolo X₀
 - Novo estado inicial p0
 - Novo estado p (que representa a pilha vazia)
 - Novas transições (δ_N) conforme a seguir

De estado final para pilha vazia

 P_N começa com X_0 . Inicialmente, empilha Z_0 e simula P_F até chegar a um estado de aceitação. Então, ele muda para um estado p que nada faz, a não ser esvaziar a pilha.

- Se uma linguagem é L(P) ou N(P) para algum PDA, então L é livre de contexto
 - Prova: por construção
 - Conversão de CFG → PDA
 - (Essencialmente, é o conteúdo da disciplina de compiladores, não vamos cobrir aqui)
 - Conversão de PDA → CFG
 - (Não tem muita utilidade prática)

Fim

Aula 17 - Autômatos com pilha