AMENDMENTS TO THE SPECIFICATION:

Replace the paragraph beginning on page 11, line 23, with the following amended paragraph:

The physical storage devices for storing the data of a web site can also be located in the compartment, and be dedicated to that site. In some cases, however, for purposes of efficiency and scalability, it may be preferable to share the data storage requirements of multiple compartments among one another. For this purpose, a high capacity storage device 24 can be provided external to the individual compartments. When such a configuration is employed, the storage device 24 must be capable of reliably segregating the data associated with one compartment from the data associated with another compartment, so that the different hosts of the web sites cannot obtain access to each others' data. Examples of storage devices which meet these requirements are those provided by EMC Corporation of Hopkinton, Massachusetts. For additional discussion of the manner in which devices of this type can be incorporated into an infrastructure such as that depicted in Figure 3, reference is made to co-pending, commonly assigned Application No. 09/699,351 [Attorney Docket No. 033048-008], filed on an even date herewith, the disclosure of which is incorporated herein by reference.

Replace the paragraph beginning on page 12, line 18, with the following amended paragraph:

To provide the services associated with a web site, each of the servers and other devices in a compartment must be configured with the appropriate software, and then regularly maintained to provide updates consistent with changes in the web site. A typical life cycle for a server is depicted in Figure 5. Referring thereto, after a server has been constructed it is typically delivered to a data center, or other site where the web site's infrastructure is housed, with only the computer BIOS (Basic Input/Output System) installed on it. When it is to be put into operation, it is assigned to a designated web site compartment, and then customized for the tasks that are to be performed for that site. At

the outset, an appropriate operating system and other general software are loaded onto the server at Step 1. If desired, the operating system and general software can be pre-loaded onto the server, before it is assigned to a specific compartment. One technique for preparing servers ahead of time with an operating system and other general software, so that they are ready for assignment to a compartment and immediate loading of site-specific software, is described in co-pending Application No. <u>09/699,330</u> [Attorney Docket No. <u>033048-007</u>], filed on an even date herewith, the disclosure of which is incorporated herein by reference.

Replace the paragraph beginning on page 15, line 19, with the following amended paragraph:

The agent communicates with the provisioning network 31 to obtain commands regarding tasks that need to be performed on its device, as well as obtain the software components that are to be installed as part of the provisioning process. One example of a provisioning network 31 that communicates with the agents on individual devices, to perform automated provisioning, is illustrated in Figure 7. Two fundamental functions are implemented by the provisioning network. One of these functions is to maintain information about, and manage, all of the devices that are associated with the provisioning system. The second function is to store and provide the software that is loaded on these devices. The first function is implemented by means of a central database 32, that is accessed via a database server 33. This database comprises a repository of all pertinent information about each of the devices that are connected to the provisioning network. Hence, depending upon the extent of the provisioning system, the central database might contain information about devices in only a few web site compartments, or an entire data center, or multiple data centers. The information stored in this database comprises all data that is necessary to provision a device. For instance, it can include the hardware configuration of the device, e.g., type of processor, amount of memory, interface cards, and the like, the software components that are installed on the device along with the necessary configuration of each of those components, and logical information regarding the device, such as its IP address, the web site with which it is associated, services that it performs, etc. For a detailed discussion of an exemplary model of such a database for storing all of the relevant information, reference is made to co-pending Application No. 09/699,353 [Attorney Docket No. 033048 012], filed on an even date herewith, the disclosure of which is incorporated herein by reference. In essence, the information stored in the database constitutes a model for each device that is managed by the provisioning system, as well as the interconnection of those devices.

Replace the paragraph beginning on page 20, line 3, with the following amended paragraph:

Another component of the provisioning system is a user interface 40 by which the devices are managed. The user interface communicates with the gateway 38, which converts messages into the appropriate format. For instance, the gateway can convert SQL data messages from the database 32 into an HTML format for presentation at the user interface. Conversely, the gateway converts procedure calls from the user interface into the appropriate SQL statements to retrieve and or modify data in the database 32. For a detailed description of one technique for performing such a conversion, reference is made to copending Application No. <u>09/699,349</u> (Attorney Docket 033048-023), filed on an even date herewith, the disclosure of which is incorporated herein by reference.