GRUPPI (V PARTE)

(G,·) gruppo. ge G fissato.

Consideriamo la functione $E: (\mathbb{Z},+) \longrightarrow \langle g \rangle$ è un epimorfismo $k \longmapsto g^k$

Infatti: $E(r+5) = g^{r+5} = g^r \cdot g^5 = E(r) \cdot E(S) \implies E e un omomorfismo$ $\forall x \in \langle g \rangle \quad x = g^K \text{ per qualche } K \in \mathbb{Z} \text{ , ma allora } x = E(K) \implies E \text{ surjettiva .}$ Indica isomorfismo

Possono presentarsi due casi:

- 1) ε à anche iniettiva $\Rightarrow \varepsilon$ à un isomorfismo, cioè $(\mathbb{Z},+)\cong (\langle g \rangle,\cdot)$ e le potenze di g sono tutte distinte tra loro $\Rightarrow \langle g \rangle$ à infinito.
- 2) Se ϵ non ϵ inielliva \Rightarrow $\exists s,t \in \mathbb{Z} +.c. \ \epsilon(s) = \epsilon(t)$, $cioè g^s = g^t$.

Possiamo supporre S>t. Alloron moltiplicando a destra per g^{-t} : $g^{S} \cdot g^{-t} = g^{t} \cdot g^{-t} \implies g^{S-t} = g^{t-t} \implies g^{S-t} = e_{G} \qquad \text{cioè } \exists \ \text{ke } [N \cdot to] \ \text{t.c.} \ g^{K} = e_{G}$

Sia n=min{KEIN-{0}} gk=eg}.

Ora HKEZ, possiamo svolgere la divisione euclidea per n e offeniamo K=q·n+r
con O≤r<n. Albra:

OSS: gr=eg se e solo se r=0 (perdú r<n ed n è il minimo con quella proprietà)

In conclusione: ci sono solo n potenze distinte di g: $\langle g \rangle = \{e_{g}, g, g^{2}, \dots, g^{n-1}\}$

A partire da gn (= eg) le potenze si ripetono.

Def: Si dice periodo di g în G l'ordine (g>) = n.

- 055: 1) g ha periodo 1 (=> g=eg
 - 2) g ha periodo infinito => & iniettiva => <g>= Z
 - 3) Possono esistere elementi oli periodo finito dentro gruppi infiniti: es. (Q×,·) -1 ha periodo 2
 - 4) Se <g> è infinito => gk ha periodo infinito \\ + 0
 - 5) Se |G|=n finito, $\langle g \rangle \leqslant G \Rightarrow |\langle g \rangle|=d$ deve dividere n, cioè il periedo di g sottogruppo lagrange deve essere un divisore di n

Prop: Se G=<g>, allora qualunque omomorfismo f:(G,·) -> (H,*) è completamente determinato da f(g).

Din: L'immagine di qualunque elements di G è determinata dall'immagine del generatore (9) Infatti, se xEG => x = gk per qualche KGZ/, ma allora $f(x) = f(g^{K}) = f(g)^{K}.$

Ciò non significa che f(g) possa essere sculta a piacere.

Es.
$$f:(G,\cdot) \longrightarrow (Z,+)$$
 con $|G|=n$, $G=\langle g^{\rangle}$
Allora $n\cdot f(g)=f(g^n)=f(e_G)=0 \implies f(g)=0$
Di consequenta $f(g^k)=K\cdot f(g)=0 \quad \forall k\in\mathbb{Z}$

Cioè l'unico omomorfismo (G,·) -> (Z,+) è quello bande, che manda tulto în O.

Es.
$$f: (\mathbb{Z}_{6},+) \longrightarrow (\mathbb{Z}_{4},+)$$
 $\mathbb{Z}_{6} = \langle \overline{1} \rangle$
allora $6 \cdot f(\overline{1}) = f(6 \cdot \overline{1}) = f(\overline{0}) = \overline{0}$, ma in \mathbb{Z}_{4} $6 \cdot f(\overline{1}) = \underbrace{4 \cdot f(\overline{1})}_{=\overline{0}} + 2 \cdot f(\overline{1})$
 $\Rightarrow 2 \cdot f(\overline{1}) = \overline{0}$ in $\mathbb{Z}_{4} \Rightarrow f(\overline{1})$ può essere $= \overline{0}$
oppure $= \overline{2}$

Prof: Sia (G, \cdot) un gruppo con |G|=n finito \Rightarrow $\forall g \in G$ $g^n=e_G$ Dim: Non è detto che g sia un generatore, però $\langle g \rangle \leq G \Rightarrow |\langle g \rangle| = 0$ l è un divisore di n.

Cioè $\exists k \in \mathbb{Z} + c$. n = dk, quindi Lagrange $g^n = g^{dk} = (g^d)^k = (e_G)^k = e_G$

g = g = (gu) = (EG) = EG EG perché d è il periodo di g

Conseguenza:

Teorema di Eulero: Dati $a \in \mathbb{Z}$, $N \in \mathbb{N}$, $N \ge 2$, $M \in \mathbb{N}$ (a, N) = 1.

Allora $a^{\varphi(N)} = 1$ mod N.

 $\underline{\underline{Dim}}$: Consideriamo il gruppo (Z_N^{\times}, \cdot) degli elementi invertibili in Z_N (rispetto alla moltiplicazione). Sappiamo che $\varphi(N) = |Z_N^{\times}|$. Se MCD(a,N) = 1, allora \bar{a} è invertibile in Z_N , cioè $\bar{a} \in Z_N^{\times}$

Se MCD(a,N)=1, allora \overline{a} è invertibile in \mathbb{Z}_N , cioè $\overline{a} \in \mathbb{Z}_N^{\times}$ Dra, la proposizione precedente ci dice che $\forall \overline{x} \in \mathbb{Z}_N^{\times}$ $\overline{x}^{|\mathbb{Z}_N^{\times}|}=\overline{1}$ cioè $\overline{x}^{(N)}=\overline{1}$ In particolare $\overline{a}^{(N)}=\overline{1}$ in \mathbb{Z}_N , ovvero $a^{(N)}=1$ mod N.