

Instituto Tecnológico de Buenos Aires

Trabajo Práctico N° 4

Teoría de Circuitos I 25.10

Grupo N° 2

Juan Bautista Correa Uranga Juan Ignacio Caorsi Rita Moschini

Legajo: 65532 Legajo: 67026

Legajo: 65016

30 de octubre de 2025

Resumen

Índice

		3
1.1.	Instrumental	3
1.2.	Marco teórico	3
2 Des	arrollo	7
	arrollo Procedimiento	
	Datos recolectados	
2.3.	Cálculos	10
2.4.	Análisis	13
	a). Cuadripolo 9603	13
	b). Cuadripolo 9609	
3 Con	nclusiones	15

1. Introducción

Este trabajo práctico aborda la descripción de redes de dos puertos o cuadripolos mediante sus distintos parámetros. Se buscó adquirir experiencia en la obtención de los mismos, verificar las ecuaciones de conversión, y predecir los parámetros de las redes de dos puertos resultantes de conectar de distintas maneras dos cuadripolos con parámetros obtenidos previamente.

1.1 Instrumental

En esta experiencia se utilizaron los siguientes instrumentos:

- Osciloscopio Keysight (Agilent) DSO6014A
- \blacksquare Generador de ondas con resistencia interna de 50Ω
- Cuadripolo 9603
- Cuadripolo 9609
- Resistencia de $4,7\Omega$ nominal.
- \blacksquare Resistencia de 1 $K\Omega$

Para ambos cuadripolos, la tensión máxima de entrada es de 15 V, y la corriente máxima de entrada vale 50 mA.

1.2 Marco teórico

Muchos circuitos prácticos tienen solamente dos puertos de acceso, es decir, dos lugares donde las señales pueden entrar o salir. En particular, una red de cuatro terminales se denomina red de dos puertos cuando, para ambos pares de terminales, la corriente entrante a una terminal del par sale por la otra terminal del par.

Figura 1: Red de dos puertos común.

Con el fin de describir este tipo de redes sin conocer o profundizar sobre su composición interna, es útil conocer las relaciones entre los voltajes y las corrientes de los puertos. Para eso, se definen los parámetros impedancia (Z), admitancia (Y) y transmisión (T) de la siguiente manera:

$$Z = \begin{pmatrix} Z_{11} & Z_{12} \\ Z_{21} & Z_{22} \end{pmatrix} \qquad Y = \begin{pmatrix} Y_{11} & Y_{12} \\ Y_{21} & Y_{22} \end{pmatrix} \qquad T = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$$

tal que

$$\begin{cases} V_1 = I_1 \cdot Z_{11} + I_2 \cdot Z_{12} \\ V_2 = I_1 \cdot Z_{21} + I_2 \cdot Z_{22} \end{cases} \qquad \begin{cases} I_1 = V_1 \cdot Y_{11} + V_2 \cdot Y_{12} \\ I_2 = V_1 \cdot Y_{21} + V_2 \cdot Y_{22} \end{cases} \qquad \begin{cases} V_1 = V_2 \cdot A + (-I_2) \cdot B \\ I_1 = V_2 \cdot C + (-I_2) \cdot D \end{cases}$$

Si por ejemplo se quisiera obtener el parámetro Z_{11} , anulando I_2 y despejando en la ecuación $V_1=I_1\cdot Z_{11}+I_2\cdot Z_{12}$ se tiene

$$Z_{11} = \frac{V_1}{I_1} \bigg|_{I_2 = 0}$$

Otro aspecto que se buscó estudiar es si un cuadripolo era simétrico o recíproco. Se dice que un cuadripolo es **simétrico** si al alimentarlo por el puerto 1 se obtiene, en el puerto 2, la misma respuesta que se obtendría en el puerto 1 si se alimentara por el puerto 2. Esto es si se cumplen las siguientes ecuaciones en simultáneo:

$$Z_{11} = Z_{22} \quad \land \quad Y_{11} = Y_{22} \quad \land \quad A = D$$

Luego, un cuadripolo es **recíproco** si es simétrico y solo tiene elementos pasivos (resistencias, inductores o capacitores). En estos casos, se puede afirmar

$$Z_{12} = Z_{21} \quad \land \quad Y_{12} = Y_{21} \quad \land \quad AD - BC = 1$$

Por otro lado, la cátedra provee una tabla con ecuaciones que permiten obtener todos los parámetros a partir de cualquier otro. Los que serán utilizados en esta práctica son los siguientes:

$$Y = \begin{pmatrix} \frac{Z_{22}}{\Delta z} & \frac{-Z_{12}}{\Delta z} \\ \frac{-Z_{21}}{\Delta z} & \frac{-Z_{11}}{\Delta z} \end{pmatrix} \qquad T = \begin{pmatrix} \frac{Z_{11}}{Z_{21}} & \frac{\Delta z}{Z_{21}} \\ \frac{1}{Z_{21}} & \frac{Z_{22}}{Z_{21}} \end{pmatrix}$$

Por último, se estudió la relación entre parámetros para los distintos conexionados entre cuadripolos que se presentan a continuación

Conexión Serie

Figura 2: Dos cuadripolos conectados en serie.

En este conexionado, se cumple que la matriz impedancia Z resultante es

$$Z = Z_A + Z_B$$

siendo Z_A y Z_B las matrices impedancia de los respectivos cuadripolos.

Sin embargo, esto no sucede siempre, puesto que en algunos casos, el conexionado de los cuadripolos entre sí modifica los parámetros originales. Para saber si esto sucede o no, se realiza el **Test de Brune**.

Figura 3: Test de Brune para el conexionado en Serie.

Si se cumple que la tensión del voltímetro es cero o cercana a cero en ambos casos, entonces se cumple la condición de puertos y se puede obtener la matriz Z de la manera explicada.

Conexión en Paralelo

Figura 4: Dos cuadripolos conectados en paralelo.

En este conexionado, se cumple que la matriz admitancia Y resultante es

$$Y = Y_A + Y_B$$

siendo Y_A e Y_B las matrices admitancia de los respectivos cuadripolos.

De forma análoga al conexionado serie, no siempre se cumple esta relación. El esquema de conexionado del **Test de Brune** en este caso es

Figura 5: Test de Brune para el conexionado en Paralelo. Se mide la tensión entre los puertos cortocircuitados de la figura y se verifica si es cero. También se realiza el mismo procedimiento invirtiendo la conexión del generador y el cortocircuito.

Si se cumple que la tensión del voltímetro es cero o cercana a cero en ambos casos, entonces se cumple la condición de puertos y se puede obtener la matriz Y de la manera explicada.

Conexión en Cascada

Figura 6: Dos cuadripolos conectados en cascada. A la izquierda está el cuadripolo A y a la derecha el cuadripolo B.

En este conexionado, se cumple que la matriz transmisión T resultante es

$$T = T_A \cdot T_B$$

siendo T_A e T_B las matrices de transmisión de los respectivos cuadripolos. Esta relación se cumple siempre para esta forma de conexionado.

2. Desarrollo

2.1 Procedimiento

Primero que nada, se configuró el generador de señales de manera que produjera una señal senoidal con offset nulo, 20 V de tensión pico a pico (es decir 10 V de máxima) y con 1 kHz de frecuencia. Los 20 V pico a pico fue elegido considerando los 15 V de máxima que soportan los cuadripolos, de manera que el valor de la señal fuera lo suficientemente grande como para obtener una buena resolución en el osciloscopio pero a la vez lo suficientemente por debajo de la tensión máxima como para no arriesgar quemar los componentes.

Además, ambos cuadripolos poseían una corriente máxima de 50mA. Dada la configuración del generador de ondas, se obtiene que $R_{min}=\frac{10V}{50mA}=200\Omega$. Para evitar trabajar en valores de corriente muy cercanos al límite, se optó por usar una resistencia de 1 $k\Omega$, de manera que $I=\frac{10V}{1k\Omega}=10mA$ (muy por debajo de los 50 mA), asegurándonos así de no dañar los equipos. Al mismo tiempo, no se usó una resistencia más grande para evitar trabajar con corrientes muy pequeñas, las cuales podrían resultar en mayor ruido en las mediciones.

Dado que resultaba menos trabajoso conectar y desconectar los cuadripolos a la protoboard y entre sí que anular tensiones y corrientes, se realizaron las mediciones de manera tal que para cada valor anulado, se medían todos los demás valores con ambos cuadripolos y luego con las conexiones para las cuales dichas mediciones fueran útiles, antes de pasar a anular el siguiente valor. Por ejemplo, primero se anuló I_2 y se midieron I_1 , V_1 y V_2 para el cuadripolo 9603, luego para el 9609 y luego con ambos conectados en serie y en cascada (nótese que para obtener las ecuaciones de la matriz admitancia, que

es la estudiada en el conexionado en paralelo, solo anulan las tensiones V_1 y V_2 , por lo que realizar las mediciones con I_2 anulada no habría sido útil).

Por otra parte, la forma que elegimos de medir corriente usando el osciloscopio fue midiendo la caída de tensión en una resistencia (esto es, la tensión tanto antes como después), y dividiéndola por la impedancia de la misma. Para I_1 se usó la resistencia de $1k\Omega$, y para poder medir la corriente al realizar un cortocircuito en la salida, es decir al anular V_2 , se usó una resistencia pequeña de 4,7 Ω (valor medido con el multímetro). Esta misma introdujo incertezas a las mediciones ya que en este caso uno no tendría tensión de salida igual a cero, sino que aproximadamente cero. Aun así se decidió usar este método, ya que de otra forma no era posible usar el osciloscopio para medir la corriente y su fase.

Figura 7: Conexionado de los canales del osciloscopio para medir $V_1, I_1 e I_2$ en simultáneo con $V_2 = 0$.

Figura 8: Foto de las conexiones para medir V_1 , I_1 e I_2 en simultáneo con $V_2 = 0$.

2.2 Datos recolectados

En el laboratorio se recolectaron los siguientes datos para cada cuadripolo:

9603	$V_1 = 0$	$V_2 = 0$	$I_1 = 0$	$I_2 = 0$
V_1	0	0,85 V ∠ 0°	$0.95 \text{ V} \angle -41^{\circ}$	$1,39 \text{ V} \angle -22^{\circ}$
V_2	$0.65 \text{ V} \angle -24^{\circ}$	0	$1,14 \text{ V} \angle -43^{\circ}$	$0.865 \text{ V} \angle -46^{\circ}$
I_1	$5,147 \text{ mA } \angle -20^{\circ}$	8,5 mA ∠ 0°	0	8,5 mA ∠ 4°
I_2	9,1 mA ∠ 0°	7,941 mA ∠ 0°	8,6 mA ∠ 6°	0

Tabla 1: Mediciones de tensiones y corrientes cuadripolo 9603.

9609	$V_1 = 0$	$V_2 = 0$	$I_1 = 0$	$I_2 = 0$
V_1	0	$1.8\mathrm{V}\angle-16^\circ$	$1{,}18\mathrm{V}\angle-58^\circ$	$1,875\mathrm{V}\angle-30^\circ$
V_2	$2.5\mathrm{V}\angle-4^\circ$	0	$2,625\mathrm{V}\angle-17^\circ$	$1,25 \text{ V} \angle -58^{\circ}$
I_1	$6,617 \mathrm{mA} \angle -11^{\circ}$	8 mA ∠ 4°	0	8 mA ∠ 7°
I_2	7,3 mA ∠ 0°	$3,676\mathrm{mA}\angle-33^{\circ}$	7,3 mA ∠ 6°	0

Tabla 2: Mediciones de tensiones y corrientes cuadripolo 9609.

Cascada	$I_2 = 0$	$V_2 = 0$
V_1	$1.2{ m V}\angle-16^{\circ}$	$1,22 \text{ V} \angle -12^{\circ}$
V_2	$0.435\mathrm{V}\angle-70^\circ$	0
I_1	8,6 mA ∠ 2°	8,3 mA ∠ 0°
I_2	0	$1,985 \mathrm{mA} \angle -12^{\circ}$

Tabla 3: Mediciones de tensiones y corrientes en conexión en cascada de los cuadripolos 9603 y 9609 en ese orden.

Serie	$I_1 = 0$	$I_2 = 0$
V_1	$2,34 \text{ V} \angle -32^{\circ}$	$2,64\mathrm{V}\angle-25^\circ$
V_2	$2,53 \text{ V } \angle -30^{\circ}$	$2,265\mathrm{V}\angle-36^\circ$
I_1	0	7,5 mA ∠ 9°
I_2	7,8 mA ∠ 11°	0

Tabla 4: Mediciones de tensiones y corrientes en conexión en serie

Paralelo	$V_1 = 0$	$V_2 = 0$
V_1	0	0,64 V ∠ 0°
V_2	$0.58\mathrm{V}\angle-20^{\circ}$	0
I_1	$5\mathrm{mA}\angle-20^\circ$	9 mA ∠ 0°
I_2	8,5 mA ∠ 0°	$5,441 \text{mA} \angle -4^{\circ}$

Tabla 5: Mediciones de tensiones y corrientes en conexión en paralelo

2.3 Cálculos

Para el calculo de los parámetros Y, Z y T se usaron las ecuaciones detalladas en el marco teórico. Los resultados obtenidos fueron:

Cuadripolo 9603

Matriz de parámetros Y [mS]		
10	7,9+0,55j	
9,34	12,79 + 5,69j	

Tabla 6: Matriz de parámetros Y correspondiente al cuadripolo 9603. Matriz calculada a partir de valores medidos.

Matriz de para	ámetros T
1,47+0,65j	$-107,04\Omega$
6.31 + 7.53j mS	-1,07

Tabla 7: Matriz de parámetros T correspondiente al cuadripolo 9603. Matriz calculada a partir de valores medidos.

Matriz de parámetros Z $[\Omega]$	
146,98 - 71,69j	75,33 - 80,79j
91,47 - 98,08j	86,97 - 100,04j

Tabla 8: Matriz de parámetros Z correspondiente al cuadripolo 9603. Matriz calculada a partir de valores medidos

Luego, en base a la tabla 8 se calcularon los parametros Y y T de forma indirecta.

Matriz de parámetros Y (método indirecto)[mS]		
14,55-1,57j	-12,16+0,89j	
-14,76+1,07j	17,277 + 5,23j	

Tabla 9: Matriz de parámetros Y obtenida por conversión de parámetros para el cuadripolo 9603

Matriz de parámetros T (método indirecto)		
1,14+0,44j	$(67,37+4,91j) \Omega$	
$(5,09+5,45j) \mathrm{mS}$	0.99 - 0.03j	

Tabla 10: Matriz de parámetros T obtenida por conversión de parámetros para el cuadripolo 9603

Cuadripolo 9609

Matriz de parámetros Y [mS]		
4,18+1,52j	2,63-0,32j	
1,95 - 0,60j	2,91+0,20j	

Tabla 11: Matriz de parámetros Y correspondiente al cuadripolo 9609. Matriz calculada a partir de valores medidos.

Matriz de parámetros T	
1,324 + 0,704j	$(-468,21-143,15j)\Omega$
$(2,7+5,8j) \mathrm{mS}$	-1,74-1,31j

Tabla 12: Matriz de parámetros T correspondiente al cuadripolo 9609. Matriz calculada a partir de valores medidos.

Matriz de parámetros Z $[\Omega]$	
187,18 - 141,05j	70,86 - 145,28j
299,76 - 133,46j	331,00 - 140,50j

Tabla 13: Matriz de parámetros Z correspondiente al cuadripolo 9609. Matriz calculada a partir de valores medidos.

Luego, en base a la tabla 13 se calcularon los parametros Y y T de forma indirecta.

Matriz de parámetros Y (método indirecto) [mS]	
7,98 + 0,47j	-2,85+2,19j
-7,29 - 0,30j	$5{,}12 - 0{,}96j$

Tabla 14: Matriz de parámetros Y obtenida por conversión de parámetros para el cuadripolo 9606

Matriz de parámetros T (método indirecto)	
0.69 - 0.16j	$136,93 - 5,69j \Omega$
$(2.78 + 1.24j) \mathrm{mS}$	1,10+0,02j

Tabla 15: Matriz de parámetros T obtenida por conversión de parámetros para el cuadripolo 9609

Parametros combinados

	Matriz de parár	netros Z cuadripolos en serie $[\Omega]$
	334,16 - 212,74j	146,20 - 226,07j
ĺ	391,23 - 231,55j	417,97 - 240,55j

Tabla 16: Matriz de parámetros Z equivalente correspondiente a la conexión en serie de los cuadripolos 9603 y 9609, calculada a partir de $Z_{9603}+Z_{9609}$.

Matriz de parámetros Z serie $[\Omega]$		
291,82 - 196,84j	219,41 - 204,60j	
213,55 - 213,55j	244,80 - 212,80j	

Tabla 17: Matriz de parámetros Z correspondiente a la conexión en serie directa de los cuadripolos 9603 y 9609, calculada a partir de los valores medidos en el laboratorio.

Matriz de parámetros T equivalente (conexión en cascada)	
1,94+1,28j	$(-407,76 - 375,99j) \Omega$
$(0.17 + 8.21j) \mathrm{mS}$	-0.02 - 3.03j

Tabla 18: Matriz de parámetros T equivalente correspondiente a la conexión en cascada de los cuadripolos 9603 y 9609, calculada mediante la multiplicación $T_{9603} \cdot T_{9609}$ conseguidas mediante los valores medidos.

Matriz de parámetros T	
1,62+2,23j	$(-614,61) \Omega$
$(6,11+18,8j) \mathrm{mS}$	-3,94 - 0,84j

Tabla 19: Matriz de parámetros T correspondiente a la conexión en cascada de los cuadripolos 9603 y 9609, obtenida directamente a partir de los valores medidos en el laboratorio.

Matriz de parámetros Y equivalente $(Y_{9603} + Y_{9609})$ [mS]	
(14,18+1,52j)	(10,53+0,23j)
(11,30-0,60j)	(15,70+5,9j)

Tabla 20: Matriz de parámetros Y equivalente correspondiente a la conexión en paralelo de los cuadripolos 9603 y 9609, calculada a partir de $Y_{9603} + Y_{9609}$.

Matriz de parámetros Y [mS]	
14,06	8,62
8,48 - 0,59j	13,77 + 5,01j

Tabla 21: Matriz de parámetros Y correspondiente a la conexión en paralelo de los cuadripolos 9603 y 9609, obtenida directamente a partir de los valores medidos en el laboratorio.

Matriz de parámetros Y equivalente (Y a partir de Z) [mS]	
(22,53-1,10j)	(-15,01+3,08j)
(-22,05+0,77j)	(22,40+4,27j)

Tabla 22: Matriz de parámetros Y equivalente correspondiente a la conexión en paralelo de los cuadripolos 9603 y 9609, calculada a partir de Z_{9603} y Z_{9609} .

Matriz de parámetros T equivalente $(T_{9603} \cdot T_{9609})$ a partir de Z)	
1,04+0,22j	$(232,09+60,03j)\Omega$
$(7,12+4,3j) \mathrm{mS}$	1,81 + 0,77j)

Tabla 23: Matriz de parámetros T equivalente correspondiente a la conexión en cascada de los cuadripolos 9603 y 9609, calculada a partir de los parámetros T derivados de Z.

2.4 Análisis

Al comparar los datos calculados, se observaron grandes diferencias en los valores.

a) Cuadripolo 9603

Una de las primeras observaciones que se pueden hacer de la tabla 8, es que todos los valores imaginarios de los parametros, son negativos. De aquí se puede inducir que el mismo cuenta con componentes predominantemente capacitivos y no inductivos. Otra conclusión que se puede obtener de esta tabla, es que este cuadripolo no cumple con las condiciones de simetría ni reciprocidad.

Se comparan los valores medidos y los obtenidos por conversión para los parámetros Y y T.

Parámetros Y

La matriz medida fue:

$$Y_{medido} = \begin{bmatrix} 10 & 7.9 + 0.55j \\ 9.34 & 12.79 + 5.69j \end{bmatrix} \text{ mS}$$

La matriz obtenida por conversión desde Z fue:

$$Y_{\text{teorico}} = \begin{bmatrix} 14,55 - 1,57j & -12,16 + 0,89j \\ -14,76 + 1,07j & 17,277 + 5,23j \end{bmatrix} \text{ mS}$$

Se observa una discrepancia significativa en los valores fuera de la diagonal, lo que sugiere que el modelo de conversión no refleja adecuadamente el acoplamiento observado en la medición. El error relativo en la componente Y_{21} es:

$$\varepsilon_{rel} = \frac{|\text{te\'orico} - \text{medido}|}{|\text{medido}|} = \frac{|(-14,76+1,07j)-9,34|}{|9,34|} \approx 1,68$$

Este error relativo del 168 % indica una diferencia importante.

Parámetros T

Medido:

$$T_{medido} = \begin{bmatrix} 1{,}47 + 0{,}65j & -107{,}04\,\Omega \\ 6{,}31 + 7{,}53j\,\mathrm{mS} & -1{,}07 \end{bmatrix}$$

Convertido desde Z:

$$T_{teorico} = \begin{bmatrix} 1{,}14 + 0{,}44j & 67{,}37 + 4{,}91j\,\Omega \\ 5{,}09 + 5{,}45j\,\text{mS} & 0{,}99 - 0{,}03j \end{bmatrix}$$

El error relativo en la componente T_{12} es especialmente significativo:

$$\varepsilon_{rel} = \frac{|(67,37+4,91j)-(-107,04)|}{|107,04|} \approx 1,63$$

Esto sugiere una discrepancia de más del 160 % en la impedancia de transferencia.

b) Cuadripolo 9609

Al repetir el procedimiento que se hizo en el cuadripolo anterior, al observar la matriz Z (tabla 13), también se puede deducir que el cuadripolo tiene componentes capacitivos, puesto a que la parte imaginaria de cada parametro es negativa. También se puede observar que este cuadripolo no es ni simétrico ni reciproco.

Parámetros Y

Medido:

$$Y_{medido} = \begin{bmatrix} 4.18 + 1.52j & 2.63 - 0.32j \\ 1.95 - 0.60j & 2.91 + 0.20j \end{bmatrix} \text{ mS}$$

Convertido desde Z:

$$Y_{teorico} = \begin{bmatrix} 7,98 + 0,47j & -2,85 + 2,19j \\ -7,29 - 0,30j & 5,12 - 0,96j \end{bmatrix} \text{ mS}$$

El error relativo en Y_{21} es:

$$\varepsilon_{rel} = \frac{|(-7.29 - 0.30j) - 1.95 + 0.60j|}{|1.95 - 0.60j|} \approx 4.3$$

Lo que representa un error del 430 %, indicando una inversión de signo y magnitud.

Parámetros T

Medido:

$$T_{medido} = \begin{bmatrix} 1,324 + 0,704j & -468,21 - 143,15j \Omega \\ 2,7 + 5,8j \text{ mS} & -1,74 - 1,31j \end{bmatrix}$$

Convertido desde Z:

$$T_{teorico} = \begin{bmatrix} 0.69 - 0.16j & 136.93 - 5.69j \Omega \\ 2.78 + 1.24j \,\text{mS} & 1.10 + 0.02j \end{bmatrix}$$

El error relativo en T_{12} es:

$$\varepsilon_{rel} = \frac{|(136,93-5,69j) - (-468,21-143,15j)|}{|468,21+143,15j|} \approx 1,1$$

Un error del 110 % que indica una discrepancia importante en la impedancia de transferencia.

Conclusión

Los errores relativos observados en los parámetros indirectos obtenidos por conversión desde Z son significativos en varios casos, especialmente en las componentes de transferencia (Y_{21}, T_{12}) . Esto sugiere que las mediciones directas ofrecen una representación más precisa del comportamiento de los cuadripolos en condiciones reales, y que los modelos de conversión deben ser revisados o ajustados para mejorar su fidelidad.

3. Conclusiones