Painel / Meus cursos / SC26EL / 5-Projeto de Controlador Pl pelo Método do Lugar das Raízes

/ Questionário sobre Projeto de Controlador PI pelo Método do Lugar das Raízes

Iniciado em sexta, 19 mar 2021, 17:04

Estado Finalizada

Concluída em sexta, 19 mar 2021, 17:06

Tempo 2 minutos

empregado

Notas 3,0/3,0

Avaliar 10,0 de um máximo de 10,0(100%)

Questão **1**Correto
Atingiu 1,0 de 1,0

Marque a(s) alternativa(s) corretas.

- a. O controlador PI pode ser utilizado quando desejamos zerar o erro em regime permanente para uma certa referência sem alterar significativamente a resposta transitória do sistema original em malha fechada com realimentação unitária. O controlador atinge esse objetivo inserindo um polo na origem do sistema em malha aberta e com isso, se o sistema não tiver um polo na origem, este passará a ter erro nulo para entrada do tipo degrau. Caso o sistema tenha um polo na origem, a inserção de um polo adicional na origem irá zerar o erro para uma entrada do tipo rampa.
- b. No projeto para compensação do erro via controlador PI, o polo e o zero deste controlador estão próximos. Todavia, é possível se fazer a compensação do erro em regime permanente ao mesmo tempo que se modifica a resposta transitória de um sistema, para alguns cenários, afastando o zero do controlador da origem. Com isso, adiciona-se um polo na origem do sistema em malha aberta ao mesmo tempo em que se leva os polos dominantes do sistema em malha fechada para onde se deseja para impor o comportamento transitório almejado.
- c. O controlador PI somente pode ser utilizado para a compensação do erro em regime permanente de sistemas.
- d. O controlador PI e o controlador de atraso são equivalentes. Como o controlador PI é mais simples, este é preferido para aplicações práticas em detrimento do controlador de atraso.

Questão 2

Correto

Atingiu 1,0 de 1,0

Considere o sistema descrito na figura abaixo onde $G(s)=\frac{K}{s^2+2s+1}$ e K é um ganho ajustável pelo usuário. Deseja-se projetar um controlador PI $C(s)=K_p\left(1+\frac{1}{T_is}\right)$ para que o sistema, em malha fechada, tenha tenha polos dominantes próximos de $s_{1,2}=-1\pm\sqrt{3}$ e erro em regime permanente nulo para uma referência do tipo degrau. Preencha as lacunas com as respostas adequadas considerando 3 algarismos significativos.

O ganho K do sistema deve ser: K = 3,00

Se o zero do compensador está em s=-0, 05, tem-se que $T_i=20$,0

Para manter o mesmo coeficiente de amortecimento dos polos de malha fechada originais do sistema sem o compensador, os polos de malha fechada, após a inserção do compensador devem estar em: $s_{1,2} = \begin{bmatrix} -0.981 \\ \hline & & \pm j \end{bmatrix}$ 1,70 \checkmark .

Para os novos polos de malha fechada do sistema compensado, o ganho proporcional do compensador projetado é $\mathcal{K}_p =$

0,975

Questão **3**

Correto

Atingiu 1,0 de 1,0

Considere o sistema descrito na figura abaixo onde $G(s)=\frac{10}{s(s+4)}$. Deseja-se que os polos dominantes de malha fechada forneçam sobressinal de 16,3% e tempo de acomodação de 4 segundos. Adicionalmente, o erro em regime permanente para uma referência do tipo rampa deve ser nulo. Projete um controlador PI $C(s)=K_p\frac{\left(s+\frac{1}{T_i}\right)}{s}$ que atenda esses requisitos. Preencha as lacunas com as respostas adequadas considerando 3 algarismos significativos.

Para atender os requisitos de projeto o coeficiente de amortecimento dos polos dominantes de malha fechada deve ser $\zeta=$

0,500
$$\checkmark$$
 . A frequência natural destes polos deve ser $\omega_n=$ 2,00 \checkmark rad/s.

A partir destes valores, os polos dominantes de malha fechada devem estar em : $s_{1,2} = \begin{bmatrix} -1,00 \\ \checkmark & \pm j \end{bmatrix}$ 1,73

A contribuição angular que o compensador de avanço deve inserir no lugar das raízes é $\phi = -30.0$

O zero do compensador deve estar em $s = \begin{bmatrix} -1,00 \end{bmatrix}$. Com isso, $T_i = \begin{bmatrix} 1,00 \end{bmatrix}$

O ganho do compensador projetado é $K_p = 0,800$

O sistema compensado em malha fechada tem polos em $s_{1,2} = \begin{bmatrix} -1,00 \\ \end{bmatrix} \checkmark \pm j \begin{bmatrix} 1,73 \\ \end{bmatrix} \checkmark e s_3 = \begin{bmatrix} -2,00 \\ \end{bmatrix} \checkmark e$ um zero em $s = \begin{bmatrix} -1,00 \\ \end{bmatrix} \checkmark$.

Supondo que a tolerância para o sobressinal e tempo de acomodação seja de 20%, esse controlador necessita de reprojeto.

→ Script Python

Seguir para...

Aula 6 - Projeto de Compensador PID pelo Método do Lugar das Raízes -