Lecture 1 - Linear systems and echelon forms 13/02 Ded. System:

- consistent - has at least one solution oinconsistent - has us solutions at all [00...012] c+0 x3=4 x2=8 x3=5 x4=2 1 0 -3 8 x₁ = 5 2 0 -1 11 x₁ = 3 0 4 5 -1 x₂ = 1 as a) T b) f of a) T rows = columns

Echleron form

a) All monzero rows are above any row of all zeros.

b) Each leading entry (pivot) is in a column to the ryster of the leading

ending in the previous row.

Reduced echelon forms

a) in echelon form

b) the givet of each nonzero row is 1.

c) each leading I is the only nonzero entry in its column

 $\begin{bmatrix} 0 & 1 & * & 0 & 0 & * & * & * & 0 & 0 & * \\ 0 & 0 & 0 & 1 & 0 & * & * & * & 0 & 0 & * \\ 0 & 0 & 0 & 0 & 1 & * & * & * & 0 & 0 & * \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & | & * \end{bmatrix} \begin{bmatrix} \blacksquare & * & * & * & * & * & * \\ 0 & \blacksquare & * & * & * & * & * \\ 0 & 0 & \blacksquare & * & * & * & * \\ 0 & 0 & 0 & 0 & \blacksquare & 0 & 0 \end{bmatrix}$

Solving Linear Systems

Def. Variable:

obasic - column contains pivot position (Fi, KLIFS, Fr) · Free - column doesn't contain pivod position (xn) consistent, = solutions

1.1. $\begin{bmatrix} 1 & 2 & 3 & 4 \\ 4 & 5 & 6 & 4 \\ 6 & 7 & 8 & 9 \end{bmatrix}$ $\begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 7 & -6 & -6 & -6 & -6 & -6 \\ 0 & 7 & -6 & -6 & -6 & -6 & -6 \\ 0 & 7 & -6 & -6 & -6 & -6 & -6 \\ 0 & 7 & -6 & -6 & -6 & -6 & -6 \\ 0 & 7 & -6 & -6 & -6 & -6 & -6 \\ 0 & 7 & -6 & -6 & -6 & -6 & -6 \\ 0 & 7 & -6 & -6 & -6 & -6 & -6 \\ 0 & 7 & -6 & -6 & -6 & -6 & -6 \\ 0 & 7 & -6 & -6 & -6 & -6 & -6 \\ 0 & 7 & -6 & -6 & -6 & -6 & -6 \\ 0 & 7 & -6 & -6 & -6 & -6 & -6 \\ 0 & 7 & -6 & -6 & -6 & -6 \\ 0 & 7 & -6 & -6 & -6 & -6 \\ 0 & 7 & -6 & -6 \\ 0 & 7 & -6 & -$

45.
$$\begin{bmatrix} 0 & * & * & * \\ 0 & 0 & * & * \\ 0 & 0 & * & * \\ 0 & 0 & * & * \\ 0 & 0 & * & * \\ 0 & 0 & * & * \\ 0 & 0 & 0 & * \end{bmatrix}$$

Lecture L — Spans, vector equations and matrix equations

$$\begin{bmatrix} 1 & 2 & * & * \\ 0 & 0 & * & * \\ 0 & 0 & 0 & * \end{bmatrix}$$

Lecture L — Spans, vector equations and matrix equations

$$\begin{bmatrix} 1 & 2 & * \\ -2 & 5 & 4 \\ -5 & 6 & - \end{bmatrix} \rightarrow x, \begin{bmatrix} 1 \\ -2 \\ -5 \end{bmatrix} + x_2 \begin{bmatrix} 2 \\ 5 \\ 6 \end{bmatrix} = \begin{bmatrix} 7 \\ 4 \\ -2 \end{bmatrix}$$

$$\begin{bmatrix} 3 \\ -2 \\ -3 \end{bmatrix} = \begin{bmatrix} 4 \\ 0 \\ -2 \end{bmatrix} = \begin{bmatrix} 4 \\ 0 \\ -2 \end{bmatrix}$$

$$\begin{bmatrix} 3 \\ -2 \\ -3 \end{bmatrix} = \begin{bmatrix} 4 \\ 0 \\ -2 \end{bmatrix} = \begin{bmatrix} 4 \\ 0 \\ -2 \end{bmatrix}$$

$$\begin{bmatrix} 3 \\ -2 \\ -3 \end{bmatrix} = \begin{bmatrix} 4 \\ 0 \\ -2 \end{bmatrix}$$

$$\begin{bmatrix} 3 \\ -2 \\ -3 \end{bmatrix} = \begin{bmatrix} 4 \\ 0 \\ -3 \end{bmatrix} = \begin{bmatrix} 3 \\ 4 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 3 \\ -2 \\ -3 \end{bmatrix} = \begin{bmatrix} 4 \\ 0 \\ -3 \end{bmatrix}$$

$$\begin{bmatrix} 3 \\ -2 \\ -3 \end{bmatrix} = \begin{bmatrix} 4 \\ 0 \\ -3 \end{bmatrix}$$

$$\begin{bmatrix} 3 \\ -2 \\ -3 \end{bmatrix} = \begin{bmatrix} 4 \\ 0 \\ -3 \end{bmatrix}$$

$$\begin{bmatrix} 3 \\ -2 \\ -3 \end{bmatrix} = \begin{bmatrix} 4 \\ 0 \\ -3 \end{bmatrix}$$

$$\begin{bmatrix} 4 \\ 0 \\ -2 \end{bmatrix}$$

$$\begin{bmatrix} 3 \\ -2 \\ -3 \end{bmatrix}$$

$$\begin{bmatrix} 4 \\ 0 \\ -2 \end{bmatrix}$$

$$\begin{bmatrix} 3 \\ -2 \\ -3 \end{bmatrix}$$

$$\begin{bmatrix} 4 \\ 0 \\ -3 \end{bmatrix}$$

$$\begin{bmatrix} 3 \\ -2 \\ -4 \end{bmatrix}$$

$$\begin{bmatrix} 4 \\ 0 \\ -2 \end{bmatrix}$$

$$\begin{bmatrix} 5 \\ 3 \\ -2 \end{bmatrix}$$

$$\begin{bmatrix} 4 \\ 0 \\ -3 \end{bmatrix}$$

$$\begin{bmatrix} 5 \\ 3 \\ -2 \end{bmatrix}$$

$$\begin{bmatrix} 4 \\ 0 \\ -3 \end{bmatrix}$$

$$\begin{bmatrix} 5 \\ 3 \\ -2 \end{bmatrix}$$

$$\begin{bmatrix} 4 \\ 0 \\ -3 \end{bmatrix}$$

$$\begin{bmatrix} 5 \\ 3 \\ -2 \end{bmatrix}$$

$$\begin{bmatrix} 4 \\ 0 \\ -3 \end{bmatrix}$$

$$\begin{bmatrix} 5 \\ 3 \\ -2 \end{bmatrix}$$

$$\begin{bmatrix} 4 \\ 0 \\ -3 \end{bmatrix}$$

$$\begin{bmatrix} 5 \\ 3 \\ -4 \end{bmatrix}$$

$$\begin{bmatrix} 4 \\ 0 \\ -4 \end{bmatrix}$$

$$\begin{bmatrix} 5 \\ 3 \\ -4 \end{bmatrix}$$

$$\begin{bmatrix} 5 \\ 4 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 5 \\ 3 \\ 3 \end{bmatrix}$$

$$\begin{bmatrix} 4 \\ 0 \\ 3 \end{bmatrix}$$

$$\begin{bmatrix} 5 \\ 4 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 5 \\ 4 \end{bmatrix}$$

14/02

Del. vectors
$$v_{1}v_{2},...,v_{p} \in \mathbb{R}^{n}$$
 scalars $c_{1}c_{2},...,c_{p}$
 $y = c_{1}v_{1} + ... + c_{p}v_{p}$ — linear combination of $v_{1}...v_{p}$ with weights $c_{1}...c_{n}$
 $b = \begin{bmatrix} 4 \\ 0 \\ 34 \end{bmatrix}$
 $a_{1} = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$
 $a_{2} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$
 $b = -2a_{1} + 4a_{2}$

The
$$x_1a_1+x_2a_2+...+x_pa_p=b \leftrightarrow [a_1 \ a_2 \ ... \ a_p]b$$

Def. vectors $v_{i_1}v_{i_2}...,v_p \in \mathbb{R}^n$

Span $\int v_{i_1}v_{i_2}...,v_p \uparrow \rightarrow \text{set of all linear combinations ad } v_{i_1}v_{i_2}...,v_p$

1.3./ 11
$$a_1 \cdot \begin{bmatrix} \frac{1}{2} \\ 0 \end{bmatrix}$$
 $a_2 \cdot \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}$ $a_3 \cdot \begin{bmatrix} 5 \\ -6 \\ 8 \end{bmatrix}$ $b : \begin{bmatrix} 2 \\ -1 \\ 6 \end{bmatrix}$ $b : a_3 - 3a_1 - a_2$

13
$$\begin{bmatrix} 4 & -4 & 1 \\ 0 & 3 & 5 \\ -1 & 8 & -4 \end{bmatrix}$$
 $\begin{bmatrix} 3 \\ -1 \\ -2 \\ -2 \\ -3 \end{bmatrix}$ $\begin{bmatrix} A_1 - 4A_2 + 2A_3 = 3 \\ 3A_2 + 5A_3 = -7 \\ -2A_1 + 6A_1 - 4A_3 = -3 \end{bmatrix}$ wo solution

12
$$\begin{bmatrix} 4 \\ 4 \\ -2 \end{bmatrix}$$
 $\begin{bmatrix} -2 \\ 4 \end{bmatrix}$ $\begin{bmatrix} 4 \\ 4 \\ -3 \end{bmatrix}$ $\begin{bmatrix} 4 \\ 4 \\ -4 \end{bmatrix}$ $\begin{bmatrix} 4 \\ 4 \\ -4 \end{bmatrix}$ $\begin{bmatrix} 4 \\ 4 \\ -4 \end{bmatrix}$ $\begin{bmatrix} 4 \\ 4 \\ 4 \end{bmatrix}$ $\begin{bmatrix} 4 \\ 4$

Matrix-vector product

Matrix equations

The A-man madrix with columns a, ... an be Re

vector equation: X1 a1 + x2 a2 + ... + x1 a1 = b

matrix equation: Ax=b

linear system: [a, a, ... an | b]

The A-man madrix th A-min matrix

th, bet? Ax=b has a solution.

b-linear combination of the columns of A lequivalent

?

A - pivot position in every row.

1.h. $\int_{0}^{7} \begin{bmatrix} 7 & -3 \\ 2 & 1 \\ 9 & -6 \\ -3 & 2 \end{bmatrix} \begin{bmatrix} -2 \\ -5 \end{bmatrix} = \begin{bmatrix} 1 \\ -9 \\ 12 \\ -4 \end{bmatrix}$ **-> -2** $\begin{bmatrix} 4 \\ 2 \\ 9 \\ -3 \end{bmatrix}$ **-S** $\begin{bmatrix} -3 \\ 4 \\ 5 \end{bmatrix}$ **-9 -1**

b1 +-3 -> no solution

Lecture 3 - Solution sets and linear independence 17/02 x1 = - x3 x2 = 2 x3 x3 - free Homojeneous systems Ded. System Axabi homogeneous if b=0 → always consistent
 nonhomogeneous if b≠0 free variable → ∞ solutions Solutions of (non) homogeneous systems The wonhows, eneous Ax=b, x=xp+xu xp-particular solution xi-general solution of homogeneous Ax=0 $A = \begin{bmatrix} 3 & 5 & 2 & 6 \\ 2 & 4 & 2 & 2 \\ 1 & 1 & 0 & 4 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -1 & 7 \\ 0 & 1 & 1 & -3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ Ax = 0

=> solution set: span of two vector in R' 1 3 1 0 [13 1 0 5] -4 -9 2 0 ~ 0 1 2 0 x = x 3 -2 0 -3 -6 0 0 0 0 0 4.5. / S. X1+3x2+x3=0 -4x1-9x2+2x3=0 -3x1 - 6x3=0

 $\begin{cases} \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \begin{bmatrix} -3 \\ 4 \end{bmatrix}, \begin{bmatrix} 6 \\ 5 \end{bmatrix} \end{bmatrix} \rightarrow \text{linearly dependent} \\ \begin{cases} \begin{bmatrix} 1 \\ 3 \end{bmatrix}, \begin{bmatrix} -3 \\ 6 \end{bmatrix}, \begin{bmatrix} -9 \\ 2 \end{bmatrix} \end{bmatrix} \rightarrow \text{linearly independent} \\ \begin{bmatrix} -3 \\ 3 \end{bmatrix}, \begin{bmatrix} 6 \\ 6 \end{bmatrix}, \begin{bmatrix} 2 \\ 2 \end{bmatrix} \end{bmatrix} \begin{pmatrix} -3 \\ 2 \end{bmatrix} \begin{pmatrix} -3 \\ 2 \end{pmatrix} \begin{pmatrix} -3 \\ 2 \end{pmatrix}$

The Set full veil..., up ?.

olinearly dependent is 21 vector is linear combination of other olinearly independent otherwise

The fu, v2, ..., up? in R" is p> w, linearly dependent
fu, v2, ..., up? in R" is containing o rector linearly dependent

Vx, V2, V5, V4 ER"