Parallel Triangle Counting in MPI

Jason Li and David Wise

Background

- A triangle in a undirected graph is a collection of 3 vertices such that all 3 pairs of vertices are connected by an edge.
- "Triangle counting has emerged as an important building block in the study of social networks, identifying thematic structures of networks, spam and fraud detection, link classification and recommendation, and more" [1]

Background

- A triangle in a undirected graph is a collection of 3 vertices such that all 3 pairs of vertices are connected by an edge.
- "Triangle counting has emerged as an important building block in the study of social networks, identifying thematic structures of networks, spam and fraud detection, link classification and recommendation, and more" [1]

This graph has 2 triangles:

The Underlying Algorithm

- Initialize the counter to 0.
- Sort the vertices in order of increasing degree, breaking ties arbitrarily.
 Similarly, sort the adjacency lists according to the same ordering.
- For each edge (v, w) with v < w:
 - Let u_v and u_w be the first vertices in the adjacency lists of v and w respectively.
 - While u_v exists and $u_v < v$ and u_w exists and $u_w < v$:
 - If $u_v < u_w$ then set u_v to the next neighbor of v.
 - Else if $u_w < u_v$ then set u_w to the next neighbor of w.
 - Else increment the counter and set u_{ν} and u_{ν} to their next neighbors.

Complexity of the Algorithm

- The space complexity is just O(m) since we store the graph
- Because the vertices are sorted by degree and each edge is assigned to its smaller neighbor, it can be shown that the sequential time complexity is $O(m^{3/2})$.

Parallelizing the Algorithm

- The focus of our project was efficiently parallelizing this algorithm
- Naive idea: each edge is a task and can be arbitrarily assigned to a processor
 - The catch is that to process an edge, the processor needs to know the neighbors of each vertex on the edge
 - If the edges are arbitrarily assigned, each processor needs a copy of the whole graph

Reducing Communication

- We want the edges assigned to each processor to hit as few vertices as possible
- We can approach the problem by grouping the vertices
 - We partition the vertices into $r = \sqrt{P}$ groups v_1, \ldots, v_r and assign each processor a pair (v_i, v_j)
 - The processor assigned pair (v_i, v_j) is responsible for all edges going from a vertex in v_i to v_j .

Cost Analysis

- In the average case, each processor gets 1/P edges: we expect near perfect speedup
- Each processor gets the adjacency lists of $2n/\sqrt{P}$ vertices, which on average has total size $2m/\sqrt{P}$

4 processors
2 groups of vertices

The thick arrows represent groups of edges.

Actual Speedups Matched Expectations

More Results

	gplus	k5000	live	skitter
Speedup	17.23	12.72	1.95	3.98

Thank you! Questions?

References

- "Counting and Sampling Triangles from a Graph Stream" A. Pavan, Kanat Tangwongsan, Srikanta Tirthapura, Kun-Lung Wu, Proceedings of the VLDB Endowment VLDB Endowment Hompage archive, Volume 6 Issue 14, September 201, Pages 1870-1881.
- 2. "15-418 Final Report", Shu-Hao Yu, YiCheng Qin. http://www.cs.cmu.edu/afs/cs/user/shuhaoy/www/Final_Project.pdf.