

Complexity Analysis of Normalizing Constant Estimation: from Jarzynski Equality to Annealed Importance Sampling and beyond

Wei Guo Molei Tao Yongxin Chen

Estimating Normalizing Constant (Partition Function, Free Energy)

Task: given an unnormalized probability density $\pi \propto e^{-V}$, estimate its normalizing constant (a.k.a. partition function) $Z = \int_{\mathbb{R}^d} e^{-V(x)} dx$ or free energy $F = -\log Z$.

As a crucial problem in Bayesian statistics, statistical mechanics, and machine learning, it is challenging in high dimensions or when π is multimodal.

Importance sampling: with a prior $\mu = \frac{1}{Z_{\mu}} e^{-U}$, we have the equality $\frac{Z_{\pi}}{Z_{\mu}} = \frac{1}{Z_{\mu}} \int e^{-V} dx =$ $\mathbb{E}_{\mu} \frac{\mathrm{e}^{-V}}{\mathrm{e}^{-V}}$. Hence the ratio can be estimated by sampling from μ . However, this estimator suffers from high variance due to the mismatch between μ and π .

Annealing for Addressing Multimodality

Annealing: construct a sequence of intermediate distributions that bridge the target and the prior distributions. This idea motivates several popular methods:

- In statistics: path sampling, annealed importance sampling, sequential Monte Carlo, etc.
- In thermodynamics: thermodynamic integration, Jarzynski equality, etc.

Contributions: we aim to establish a rigorous non-asymptotic analysis of estimators based on JE and AIS, while introducing minimal assumptions on the target distribution. We also propose a new algorithm based on reverse diffusion samplers (RDS) to tackle a potential shortcoming of AIS.

Wasserstein Distance, Metric Derivative, and Action

For probability measures μ, ν on \mathbb{R}^d , the **Wasserstein-2 distance** is defined as $W_2(\mu, \nu) =$ $\inf_{\gamma \in \Pi(\mu,\nu)} \left(\int \|x-y\|^2 \gamma(\mathrm{d}x,\mathrm{d}y) \right)^{\frac{1}{2}}$, where $\Pi(\mu,\nu)$ is the set of all couplings of (μ,ν) .

A vector field $v=(v_t:\mathbb{R}^d\to\mathbb{R}^d)_{t\in[a,b]}$ on \mathbb{R}^d generates a curve of probability measures $\rho = (\rho_t)_{t \in [a,b]}$ if the continuity equation $\partial_t \rho_t + \nabla \cdot (\rho_t v_t) = 0$, $t \in [a,b]$ holds.

The **metric derivative** of ρ at $t \in [a,b]$ is defined as $|\dot{\rho}|_t := \lim_{\delta \to 0} \frac{W_2(\rho_{t+\delta},\rho_t)}{|\delta|}$, which can be interpreted as the "speed" of this curve. If $|\dot{\rho}|_t$ exists and is finite for a.e. $t \in [a,b]$, we say that ρ is **absolutely continuous (AC)**. Its **action** is defined as $\int_a^b |\dot{\rho}|_t^2 dt$, which is a key property characterizing the effectiveness of a curve in annealed sampling.

■ Lemma (Relationship between Metric Derivative and Continuity Equation [1])

For an AC curve of probability measures $(\rho_t)_{t\in[a,b]}$, any vector field $(v_t)_{t\in[a,b]}$ that generates $(\rho_t)_{t\in[a,b]}$ satisfies $|\dot{\rho}|_t \leq ||v_t||_{L^2(\rho_t)}$ for a.e. $t\in[a,b]$. Moreover, there exists a unique vector field $(v_t^*)_{t\in[a,b]}$ generating $(\rho_t)_{t\in[a,b]}$ that satisfies $|\dot{\rho}|_t = ||v_t^*||_{L^2(\rho_t)}$ for a.e. $t\in[a,b]$.

Problem Setting

Criterion: given an accuracy threshold ε , study the oracle complexity required to obtain an estimator \widehat{Z} of Z such that $\Pr\left(\left|\frac{\widehat{Z}}{Z}-1\right|\leq\varepsilon\right)\geq\frac{3}{4}$. Note that the probability can be boosted to any $1 - \zeta$ using the <u>median trick</u>.

Annealing curve: we define a curve of probability measures $\left(\pi_{\theta} = \frac{1}{Z_{\theta}} e^{-V_{\theta}}\right)_{\theta \in [0,1]}$ from a prior distribution to the target distribution. $Z_1 = Z$ is what we need to estimate.

- Assump. 1: the potential $[0,1] \times \mathbb{R}^d \ni (\theta,x) \mapsto V_{\theta}(x) \in \mathbb{R}$ is jointly C^1 , and the curve $(\pi_{\theta})_{\theta \in [0,1]}$ is AC with finite action $\mathcal{A} := \int_0^1 |\dot{\pi}|_{\theta}^2 d\theta$.
- Assump. 2: V is β -smooth, and there exists x_* , with $||x_*|| =: R \lesssim \frac{1}{\sqrt{\beta}}$ s.t. $\nabla V(x_*) = 0$. Let $m := \sqrt{\mathbb{E}_{\pi} \| \cdot \|^2} < +\infty$.

Analysis of the Jarzynski Equality (JE)

We introduce a reparameterized curve $(\widetilde{\pi}_t = \pi_{\frac{t}{\pi}})_{t \in [0,T]}$ for some large T to be determined later. Annealed Langevin diffusion (ALD):

$$dX_t = \nabla \log \widetilde{\pi}_t(X_t) dt + \sqrt{2} dB_t, \ t \in [0, T]; \ X_0 \sim \widetilde{\pi}_0.$$

▶ Jarzynski Equality (JE) [5]

Let \mathbb{P}^{\rightarrow} be the path measure of ALD. Then the following relation between the work functional *W* and free energy difference ΔF holds:

$$\mathbb{E}_{\mathbb{P}^{\to}} e^{-W} = e^{-\Delta F}, \quad \text{where } W(X) := \frac{1}{T} \int_0^T \partial_{\theta} V_{\theta}|_{\theta = \frac{t}{T}}(X_t) \mathrm{d}t, \text{ and } \Delta F := -\log \frac{Z_1}{Z_0}.$$

■ Theorem (Convergence Guarantee of JE)

 $\widehat{Z}:=Z_0\mathrm{e}^{-W(X)}$ with $X\sim\mathbb{P}^{\to}$ is an unbiased estimator of $Z=Z_0\mathrm{e}^{-\Delta F}$. Under Assump. 1, it suffices to choose $T = \frac{32A}{\varepsilon^2}$ to obtain $\Pr\left(\left|\frac{\widehat{Z}}{Z} - 1\right| \le \varepsilon\right) \ge \frac{3}{4}$.

Analysis of the Annealed Importance Sampling (AIS)

► Annealed Importance Sampling (AIS) Equality [6]

Suppose we have probability distributions $\pi_{\ell} = \frac{1}{Z_{\ell}} f_{\ell}$, $\ell \in [0, M]$ and transition kernels $F_{\ell}(x, \cdot)$, $\ell \in [1, M]$, and assume that each π_{ℓ} is an invariant distribution of F_{ℓ} , $\ell \in [1, M]$. Define the path measure $\mathbb{P}^{\to}(x_{0:M}) = \pi_0(x_0) \prod_{\ell=1}^M F_{\ell}(x_{\ell-1}, x_{\ell})$. Then we have

$$\mathbb{E}_{\mathbb{P}^{\to}} \operatorname{e}^{-W} = \operatorname{e}^{-\Delta F}, \quad \text{where} \ \ W(x_{0:M}) := \log \prod_{\ell=0}^{M-1} \frac{f_{\ell}(x_{\ell})}{f_{\ell+1}(x_{\ell})} \ \ \text{and} \ \ \Delta F := -\log \frac{Z_M}{Z_0}.$$

For non-asymptotic analysis, we focus on the **geometric interpolation**:

$$\pi_{\theta} = \frac{1}{Z_{\theta}} f_{\theta} = \frac{1}{Z_{\theta}} \exp\left(-V - \frac{\lambda(\theta)}{2} \|\cdot\|^2\right), \ \theta \in [0, 1]: \ \lambda(0) = 2\beta \searrow \lambda(1) = 0.$$

Introduce discrete time points $0 = \theta_0 < \theta_1 < ... < \theta_M = 1$, and define F_ℓ as running LD targeting $\pi_{\theta_{\ell}}$ for time T_{ℓ} . In practice, we approximate this by running one step of annealed Langevin Monte Carlo (ALMC) using the exponential integrator discretization scheme with step size T_{ℓ} .

■ Theorem (Convergence Guarantee of AIS)

Under Assumps. 1 and 2, consider the annealing schedule $\lambda(\theta) = 2\beta(1-\theta)^r$ for some $1 \leq r \lesssim 1$. We use \mathcal{A}_r to denote the action of $(\pi_{\theta})_{\theta \in [0,1]}$. Then the oracle complexity for obtaining an estimate \widehat{Z} that satisfies the criterion $\Pr\left(\left|\frac{\widehat{Z}}{Z}-1\right|\leq arepsilon
ight)\geq rac{3}{4}$ is $\widetilde{O}\left(\frac{d^{\frac{3}{2}}}{\varepsilon^2} \vee \frac{m\beta \mathcal{A}_r^{\frac{1}{2}}}{\varepsilon^2} \vee \frac{d\beta^2 \mathcal{A}_r^2}{\varepsilon^4}\right)$

Reverse Diffusion Sampler (RDS)

The choice of the curve $(\pi_{\theta})_{\theta \in [0,1]}$ is crucial for the complexity of JE & AIS. The geometric interpolation is widely used due to the availability of the scores of π_{θ} . However, for general target distributions, the action of the curve can be large:

■ Lemma (Exponential Lower Bound on the Action of Geometric Annealing)

Consider $\pi = \frac{1}{2} \mathcal{N}(0,1) + \frac{1}{2} \mathcal{N}(m,1)$ on \mathbb{R} for some large $m \gtrsim 1$, whose potential is $\frac{m^2}{2}$ smooth. Under the setting in AIS, define $\pi_{\theta}(x) \propto \pi(x) e^{-\frac{\lambda(\theta)}{2}x^2}$, $\theta \in [0,1]$, where $\lambda(\theta) = \frac{1}{2}$ $m^2(1-\theta)^r$ for some $1 \leq r \lesssim 1$. Then, the action of the curve $(\pi_\theta)_{\theta \in [0,1]}$ is $\mathcal{A}_r \gtrsim m^4 \mathrm{e}^{\frac{m^2}{40}}$.

Reverse diffusion samplers (RDS): a series of multimodal samplers inspired by diffusion models. The OU process $dY_t = -Y_t dt + \sqrt{2} dB_t$, $t \in [0, T]$; $Y_0 \sim \pi$ transforms any target distribution π into $\phi:=\mathcal{N}\left(0,I\right)$ as $T\to\infty$. Let $Y_t\sim\overline{\pi}_t$. The time-reversal $(Y_t^{\leftarrow}:=$ $Y_{T-t} \sim \overline{\pi}_{T-t})_{t \in [0,T]}$ satisfies the SDE $dY_t^{\leftarrow} = (Y_t^{\leftarrow} + 2\nabla \log \overline{\pi}_{T-t}(Y_t^{\leftarrow}))dt + \sqrt{2}dW_t, \ t \in \mathbb{R}$ $[0,T]; Y_0^{\leftarrow} \sim \overline{\pi}_T (\approx \phi)$. We propose leveraging the curve along the OU process for normalizing constant estimation. The following proposition supports this idea:

■ Proposition (Polynomial Upper Bound of the Action of the OU curve)

Let $\overline{\pi}_t$ be the law of Y_t in the OU process initialized from $Y_0 \sim \pi \propto e^{-V}$, where V is β -smooth and let $m^2 := \mathbb{E}_{\pi} \| \cdot \|^2 < \infty$. Then, $\int_0^\infty |\dot{\overline{\pi}}|_t^2 dt \leq d\beta + m^2$.

■ Theorem (a Framework for Normalizing Constant Estimation via RDS)

Assume a total time duration T, an early stopping time $\delta > 0$, and discrete time points 0 = $t_0 < t_1 < \dots < t_N = T - \delta \leq T$. For $t \in [0, T - \delta)$, let t_- denote t_k if $t \in [t_k, t_{k+1})$. Let $s. \approx \nabla \log \overline{\pi}$ be a score estimator, and $\phi = \mathcal{N}(0, I)$. Consider the following two SDEs on $[0, T-\delta]$ representing the sampling trajectory and the time-reversed OU process, respectively:

$$\mathbb{Q}^{\dagger}: dX_{t} = (X_{t} + 2s_{T-t_{-}}(X_{t_{-}}))dt + \sqrt{2}dB_{t}, \qquad X_{0} \sim \phi;$$

$$\mathbb{Q}: dX_{t} = (X_{t} + 2\nabla \log \overline{\pi}_{T-t}(X_{t}))dt + \sqrt{2}dB_{t}, \qquad X_{0} \sim \overline{\pi}_{T}.$$

Let $\widehat{Z} := e^{-W(X)}$, $X \sim \mathbb{Q}^{\dagger}$ be the estimator of Z, where $X \mapsto W(X)$ is defined as

$$\log \phi(X_0) + V(X_{T-\delta}) + (T-\delta)d + \int_0^{T-\delta} \left(\|s_{T-t_-}(X_{t_-})\|^2 dt + \sqrt{2} \left\langle s_{T-t_-}(X_{t_-}), dB_t \right\rangle \right).$$

Then, to ensure \widehat{Z} satisfies $\Pr\left(\left|\frac{\widehat{Z}}{Z}-1\right| \leq \varepsilon\right) \geq \frac{3}{4}$, it suffices that $\mathrm{KL}(\mathbb{Q}\|\mathbb{Q}^{\dagger}) \lesssim \varepsilon^2$, $\mathrm{TV}(\pi,\overline{\pi}_{\delta}) \lesssim \varepsilon$. We can use results in [3, 4, 2, 7] to derive the total complexity.

References

[1] L. Ambrosio, N. Gigli, and G. Savaré.

Reverse diffusion Monte Carlo.

[2] Y. He, K. Rojas, and M. Tao.

- Gradient Flows: In Metric Spaces and in the Space of Probability Measures.
- Zeroth-order sampling methods for non-log-concave distributions: Alleviating metastability by denoising diffusion.
- [3] X. Huang, H. Dong, Y. Hao, Y. Ma, and T. Zhang.
- [4] X. Huang, D. Zou, H. Dong, Y.-A. Ma, and T. Zhang.
- Faster sampling without isoperimetry via diffusion-based Monte Carlo.
- Nonequilibrium equality for free energy differences.
- [6] R. M. Neal.
- Annealed importance sampling.
- [7] A. Vacher, O. Chehab, and A. Korba. Polynomial time sampling from log-smooth distributions in fixed dimension under semi-log-concavity of the forward diffusion with application to strongly dissipative distributions.