Recherche Opérationnelle 1A Théorie des graphes Applications des arbres couvrant de coût minimum

Zoltán Szigeti

Ensimag, G-SCOP

EXO 3.13: Télécom

Énoncé (GI)

- Un opérateur téléphonique veut installer un nouveau réseau de communication haut débit connectant les principales villes de France : Brignoud, Gières, Lans en Vercors, Meylan, Tullins et Uriage.
- Les coûts de connexion entre 2 villes dépendent de la distance et des lignes déjà existantes. Ils se trouvent dans le tableau ci-dessous.
- Quelles connexions permettent de relier les villes à moindre coût ?

	G	В	L	U	Т	М
G	-	5	8	2	2	11
В		-	7	4	8	12
L			-	6	7	13
U				-	3	12
Т					-	10
М						-

EXO 3.13: Télécom

Solution

- Soit G = (V, E) où

 - $E = \{XY : X, Y \in V\}.$
 - $G = K_6$.
- Soit c la fonction de coût définie par le tableau.
- Il s'agit de trouver un arbre couvrant de c-coût minimum.

	G	В	L	U	Т	М
G	-	5	8	2	2	11
В		-	7	4	8	12
L			-	6	7	13
U				-	3	12
Т					-	10
М						-

EXO 3.14: Traduction

Énoncé (Matej Stehlik)

- Un document important, rédigé en anglais, doit être traduit en huit autres langues: allemand, hongrois, espagnol, français, grec, italien, néerlandais et portugais.
- Parce qu'il est plus difficile de trouver des traducteurs pour certaines langues que pour d'autres, certaines traductions sont plus chères que d'autres.
- Les coûts (en euros) sont indiqués dans la table ci-dessous.
- On veut obtenir une version du document dans chaque langue à un coût total minimum.
- Modéliser le problème comme un problème d'un arbre couvrant de coût minimum.

de/à	hong.	néd.	ang.	fr.	all.	grec	it.	port.	esp.
hong.	*	90	100	120	60	160	120	140	120
néd.	90	*	70	80	50	130	90	120	80
ang.	100	70	*	50	60	150	110	150	90
fr.	120	80	50	*	70	120	70	100	60
all.	60	50	60	70	*	120	80	130	80
grec	160	130	150	120	120	*	100	170	150
it.	120	90	110	70	80	100	*	110	70
port.	140	120	150	100	130	170	110	*	50
esp.	120	80	90	60	80	150	70	50	*

EXO 3.14: Traduction

Solution : Modélisation

- Soit G = (V, E) où
 - $V = \{ les 9 langues \} et$
 - $E = \{XY : X, Y \in V\}.$
 - $G = K_9$.
- Soit c la fonction de coût définie par le tableau.
- Il s'agit de trouver un arbre couvrant de c-coût minimum.

de/à	hong.	néd.	ang.	fr.	all.	grec	it.	port.	esp.
hong.	*	90	100	120	60	160	120	140	120
néd.	90	*	70	80	50	130	90	120	80
ang.	100	70	*	50	60	150	110	150	90
fr.	120	80	50	*	70	120	70	100	60
all.	60	50	60	70	*	120	80	130	80
grec	160	130	150	120	120	*	100	170	150
it.	120	90	110	70	80	100	*	110	70
port.	140	120	150	100	130	170	110	*	50
esp.	120	80	90	60	80	150	70	50	*

EXO 3.15 : Découpe

Énoncé (Wojciech Bienia)

A l'aide d'une scie à découper les courbes, on doit découper les 10 profils placés sur un morceau rectangulaire 35×25 de contre-plaqué comme l'indique le schéma de la Figure.

EXO 3.15 : Découpe

Énoncé (Wojciech Bienia)

- Le problème consiste à trouver le tracé qui minimise la longueur totale de découpe réellement effectuée.
- Pour découper un morceau placé à l'intérieur de la planche il faut obligatoirement commencer le déplacement de la scie à partir du bord de la planche, pour des raisons techniques.
- Modéliser le problème comme un problème d'un arbre couvrant de coût minimum.

EXO 3.15 : Découpe

Solution : Modélisation

- Soit G = (V, E) où
 - $V = \{ \text{les profils et } Z = \text{bord} \} \text{ et }$
 - $E = \{uv : u, v \in V\}.$
 - $G = K_{11}$.
- Soit c la fonction de coût définie par les distances entre profils.
- Il s'agit de trouver un arbre couvrant de c-coût minimum.
- Il suffit de garder $E' = \{e \in E : c(e) \le 2\}$ car G' = (V, E') est connexe.

