

Step 1: Grid creation with elements, nodes and properties

4	Α	В	С	D	Е	F	G	Н
1	P	10000	N					
2								
3	element	1st node	2nd node	L	Α	E	beta	k
4	1	2	3	2000	100	206000	1.570796	10300
5	2	1	3	2500	100	206000	2.214297	8240
6	3	1	2	1500	100	206000	3.141593	13733.33

Step 2: Individual stiffness matrices

Step 2.1: Orientation contributions

		cos β sin β			
$[K] = \frac{AE}{r}$		$\sin^2 \beta$			
L L	- cos β	$-\cos\beta\sin\beta$			
	_cosβsinβ	$-\sin^2\beta$	$\cos \beta \sin \beta$	sin ² β	
	0.00	0.00	0.00	0.00	u2
[K1]'=k1*	0.00	1.00	0.00	-1.00	v2
[K1]*=K1*	0.00	0.00	0.00	0.00	u3
	0.00	-1.00	0.00	1.00	v3
	0.36	-0.48	-0.36	0.48	u1
[K2]'=k2*	-0.48	0.64	0.48	-0.64	v1
	-0.36	0.48	0.36	-0.48	u3
	0.48	-0.64	-0.48	0.64	v3
	1.00	0.00	-1.00	0.00	u1
[K3]'=k3*	0.00	0.00	0.00	0.00	v1
	-1.00	0.00	1.00	0.00	u2
	0.00	0.00	0.00	0.00	v2

Step 2.2: Matrix expansion

30		0.00	0.00	0.00	0.00	0.00	0.00	u1
31		0.00	0.00	0.00	0.00	0.00	0.00	v1
32	[K1]=k1*	0.00	0.00	0.00	0.00	0.00	0.00	u2
33	[KI]-KI	0.00	0.00	0.00	1.00	0.00	-1.00	v2
34		0.00	0.00	0.00	0.00	0.00	0.00	u3
35		0.00	0.00	0.00	-1.00	0.00	1.00	v3
36								
37		0.36	-0.48	0.00	0.00	-0.36	0.48	u1
38	[K2]=k2*	-0.48	0.64	0.00	0.00	0.48	-0.64	v1
39		0.00	0.00	0.00	0.00	0.00	0.00	u2
40	[KZ]-KZ	0.00	0.00	0.00	0.00	0.00	0.00	v2
41		-0.36	0.48	0.00	0.00	0.36	-0.48	u3
42		0.48	-0.64	0.00	0.00	-0.48	0.64	v3
43								
44		1.00	0.00	-1.00	0.00	0.00	0.00	u1
45		0.00	0.00	0.00	0.00	0.00	0.00	v1
46	[K3]=k3*	-1.00	0.00	1.00	0.00	0.00	0.00	u2
47	[IVO]-NO	0.00	0.00	0.00	0.00	0.00	0.00	v2
48		0.00	0.00	0.00	0.00	0.00	0.00	u3
49		0.00	0.00	0.00	0.00	0.00	0.00	v3

Step 2.3: Multiplying by $k_i = \frac{A_i E_i}{L_i}$

	0	0	0	0	0	0
	0	0	0	0	0	0
[K1] =	0	0	0	0	0	0
[[X1] =	0	0	0	10300	0	-10300
	0	0	0	0	0	0
	0	0	0	-10300	0	10300
	2966.4	-3955.2	0	0	-2966.4	3955.2
	-3955.2	5273.6	0	0	3955.2	-5273.6
[K2] =	0	0	0	0	0	0
[142] =	0	0	0	0	0	0
	-2966.4	3955.2	0	0	2966.4	-3955.2
	3955.2	-5273.6	0	0	-3955.2	5273.6
	13733.333	-1.68254E-12	-13733.33	1.683E-12	0	0
	-1.68E-12	2.06136E-28	1.683E-12	-2.06E-28	0	0
[K3] =	-13733.33	1.68254E-12	13733.333	-1.68E-12	0	0
[10] -	1.683E-12	-2.06136E-28	-1.68E-12	2.061E-28	0	0
	0	0	0	0	0	0
	0	0	0	0	0	0

Step 3: Sum individual matrices to obtain the global stiffness matrix and complete the governing equation

Step 4: Swap rows and columns to isolate the two problems (unknown displacement/known forces vs unknown forces/known displacements)

l 6th co	ap 3rd ai	th column					
0	3955	0.00	-2966.40	-13733.33			
0	-5273	0.00	3955.20	0.00			
0	0	0.00	0.00	13733.33			
0 103	-10300	10300.00	0.00	0.00			
0	-3955	0.00	2966.40	0.00			
0 -103	15573	-10300.00	-3955.20	0.00			
nd 6th i	wap 3rd	6th row					
0	3955	0.00	-2966.40	-13733.33	u1		0
0	-5273	0.00	3955.20	0.00	v1	-P	
<mark>0</mark> -103	15573	-10300.00	-3955.20	0.00	v3		0
0 103	-10300	10300.00	0.00	0.00	v2=0	rv2	2
0	-3955	0.00	2966.40	0.00	u3=0	rh3	3
0	0.	0.00	0.00	13733.33	u2=0	rh2	2

Step 5: Solve first problem to obtain unknown displacements

	u1		3955.2	-3955.2	16699.733
= -1	v1	*	-5273.6	5273.6	-3955.2
	v3		15573.6	-5273.6	3955.2
				inverse matrix	i
			1.994E-20	5.46117E-05	7.282E-05
			9.709E-05	0.00032767	5.461E-05
			9.709E-05	9.70874E-05	1.617E-20
		mm	-0.546117	=	u1
		mm	-3.276699	=	v1
		mm	-0.970874	=	v3

Step 6: Solve second problem to obtain unknown forces

coefficients multiplying the previously unknown displacements							
1.683E-12 -2.06136E-28 -1030							
-2966.4	3955.2	-3955.2					
-13733.33	1.68254E-12	0					
rv2	=	10000					
rh3	=	-7500					
rh2	7500						

Step 7: Compute nodal forces

52	Nodal force	es								
53						<u></u>				
	F2x	0.00	0.00	0.00	0.00	u ₂	0.00		0	
	F2y	0.00	1.00	0.00	-1.00	V ₂	0.00		10000	
56	F3x	0.00	0.00	0.00	0.00	u_3	0.00		0	
57	F3y	0.00	-1.00	0.00	1.00	V_3	-0.97		-10000	
58										
59	F1x	0.36	-0.48	-0.36	0.48	u_1	-0.55		7500	
60	F1y	-0.48	0.64	0.48	-0.64	v_1	-3.28		-10000	
61	F3x	-0.36	0.48	0.36	-0.48	u_3	0.00		-7500	
62	F3y	0.48	-0.64	-0.48	0.64	V_3	-0.97		10000	
63										Rotate if nodal forces are
64		-0.60	0.80	0	0	F'1		-12500		
65	T	0	0	-0.60	0.80	F'3		12500		needed in the local
66										
67										coordinate system
64 65 66 67 68										
	F1x	1.00	0.00	-1.00	0.00	u_1	-0.55		-7500	
	F1y	0.00	0.00	0.00	0.00	v_{1}	-3.28		0	
71	F2x	-1.00	0.00	1.00	0.00	u_2	0.00		7500	
	F2y	0.00	0.00	0.00	0.00	V_2	0.00		0	