Generalized functions Exercise sheet 1

Exercise 1. Fix $1 \le p < \infty$.

- (a) Show that $L^1(\mathbb{R}) * L^p(\mathbb{R}) \subseteq L^p(\mathbb{R})$.
- (b) Show that compactly supported bounded functions form a dense subset of $L^p(\mathbb{R})$, with respect to $\|\cdot\|_p$. Hint: Given $f \in L^p(\mathbb{R})$, consider the functions $f_n = f \cdot I_{\{x:|x| < n \ f(x) < n\}}$, where I_{\bullet} denotes the indicator function.
- (c) Prove that $C_c^{\infty}(\mathbb{R})$ is dense in $L^p(\mathbb{R})$, with respect to $\|\cdot\|_p$.
- (d) (*) Is the inclusion $C_c(\mathbb{R}) \hookrightarrow L^p(\mathbb{R})$ continuous with respect to the uniform convergence topology on the domain?

SOLUTION.

(1) Given $f \in L^1(\mathbb{R})$ and $g \in L^p(\mathbb{R})$ we have that

$$\begin{split} \int_{\mathbb{R}} \left| f * g(x) \right|^p dx &= \int_{\mathbb{R}} \left| \int_{\mathbb{R}} f(t) g(x-t) dt \right|^p dx \\ &\leq \int_{\mathbb{R}} \int_{\mathbb{R}} \left| f(t) \right|^p \left| g(x-t) \right|^p dx dt \int_{\mathbb{R}} \left\| g \right\|_p^p \left| f(t) \right| dt = \left\| g \right\|_p^p \left\| f \right\|_1 \end{split}$$

where the inequality is justified by Minkowski integral inequality.

(2) Given $f \in L^p(\mathbb{R})$ the function $f_n = f \cdot I_{\{x:|x| < n, |f(x)| < n\}}$ is clearly bounded and supported on a subset of [-n,n], hence compactly supported. We only need to prove $f_n \to f$ in the L^p -norm. Note that, for any $n \in \mathbb{N}$ we have that $|f - f_n|^p \le (|f| + |f_n|)^p \le 2^p |f|^p$, and hence, by Dominated Convergence,

$$\lim_{n \to \infty} \int_{\mathbb{R}} |f - f_n|^p dx = \int_{\mathbb{R}} \lim_{n \to \infty} |f - f_n| dx = 0.$$

(3) By the previous item, it suffices to show that $C_c^{\infty}(\mathbb{R})$ is dense in the space of compactly supported bounded functions with the L^p -norm. Let f be compactly supported and bounded, and let, for any $n \in \mathbb{N}, \chi_n \in C_c^{\infty}(\mathbb{R})$ be non-negative with $\operatorname{Supp}(\chi_n) \subseteq [-1/n, 1/n]$ and $\int_{\mathbb{R}} |\chi_n(x)| dx = 1$. Consider $f_n = f * \chi$. Note that, for any $n \in \mathbb{N}$,

$$|f(x) - f_n(x)|^p =$$

$$\left| \int_{-1/n}^{1/n} (f(x) - f(x - t)) \chi_n(t) dt \right|^p \le \int_{-1/n}^{1/n} |f(x) - f(x - t)|^p |\chi_n(t)|^p dt \\ \le 2^p \sup |f|^p ||\chi_n||_p < \infty.$$

Therefore, by dominated convergence, $\lim_{n\to\infty} \|f - f_n\|_p^p = \int_{\mathbb{R}} \lim_{n\to\infty} |f - f_n|^p (x) dx = 0$.

(4) The sequence $(2^{-n/p}I_{[-2^n,2^n]})_{n=1}^{\infty}$ converges uniformly to the zero function, but not in the L^p -norm. Thus, the inclusion is not continuous.

Exercise 2. Compute the generalised function $x^n \delta_0^{(m)}$, for any $n, m \in \mathbb{N}$.

SOLUTION. Given $f \in C_c^{\infty}(\mathbb{R})$, we have that

$$\langle x^n \delta_0^{(m)}, f \rangle = \langle \delta_0^{(m)}, x^n f \rangle = (-1)^m \langle \delta_0, (x^n f)^{(m)} \rangle.$$

Using the formula (proved, e.g., by induction on m)

$$(x^n f)^{(m)} = \sum_{j=0}^{\min\{m,n\}} {m \choose j} \frac{n!}{(n-j)!} x^{n-j} f^{(m-j)}(x)$$

we deduce that

$$\langle x^n \delta_0^{(m)}, f \rangle = \begin{cases} 0 & m < n \\ \frac{m!}{(m-n)!} f^{(m-n)}(0) & \text{if } m \ge n. \end{cases}$$

Exercise 3. (*) We showed in class that given $f, g \in C_c^{\infty}(\mathbb{R})$, we have an inclusion $\operatorname{Supp}(f * g) \subseteq \operatorname{Supp}(f) + \operatorname{Supp}(g)$. Find an example of $f, g \in C_c^{\infty}(\mathbb{R})$ for which this inclusion is strict.

SOLUTION. Let $\varphi \in C_c^{\infty}(\mathbb{R})$ to be an *even* function such that $\varphi(x) = 1$ if |x| < 1, $\varphi(x) > 0$ for $1 \le |x| \le 2$ and $\varphi(x) = 0$ otherwise (using the smooth version of Urysohn's lemma to find φ), and put $f(x) = x \cdot \varphi(x)$ and $g(x) = \varphi(\frac{x}{3})$ then

$$Supp(f) = [-2, 2], Supp(g) = [-6, 6], and Supp(f) + Supp(g) = [-8, 8],$$

but, for any $t \in (-1, 1)$

$$(f * g)(t) = \int_{-6}^{6} f(t - x)g(x)dx$$

$$=\underbrace{\int_{-6}^{-3} f(t-x)g(x)dx}_{t-x>2} + \underbrace{\int_{-3}^{3} f(t-x)g(x)dx}_{g(x)=1} + \underbrace{\int_{3}^{6} f(t-x)g(x)dx}_{t-x<-2}.$$

Noting that the first and third integral vanish, since $t - x \notin \operatorname{Supp}(f)$, and that the second integral vanishes since $\{t - x : x \in (-3,3)\} \supseteq [-2,2]$ for any $t \in (-1,1)$, and f is an odd function.

Exercise 4. Let $\xi \in C^{-\infty}(\mathbb{R})$. Given $U \subseteq \mathbb{R}$, the notation $\xi \mid_U \equiv 0$ means $\langle \xi, f \rangle = 0$ for all $f \in C_c^{\infty}(U)$.

- (1) Let $U_1, U_2 \subseteq \mathbb{R}$ be open. Show that if $\xi \mid_{U_1} \equiv \xi \mid_{U_2} \equiv 0$ the $\xi \mid_{U_1 \cup U_2} \equiv 0$.
- (2) Show that if $\{U_{\alpha}\}_{\alpha_I}$ is a collection of arbitrary cardinality of open subsets of \mathbb{R} with compact closures and $\xi \mid_{U_{\alpha}} \equiv 0$ for all $\alpha \in I$, then $\xi \mid_{\bigcup_{\alpha} U_{\alpha}} \equiv 0$.
- SOLUTION. (1) We'll prove the claim for $U = U_1 \cup \cdots \cup U_n$ a finite union of open sets. We saw in class that, in this situation, there exist non-negative functions $\rho_1, \ldots, \rho_n \in C_c^{\infty}(\mathbb{R})$ with $\operatorname{Supp}(\rho_i) \subseteq U_i$, for all i, such that $(\sum_{i=1}^n \rho_i) \mid_U \equiv 1$. Let $f \in C_c^{\infty}(U)$, and put $f_i = f \cdot \rho_i$ for $i = 1, \ldots, n$. Then $f = f_1 + \cdots + f_n$ and $\operatorname{Supp}(f_i) \subseteq U_i$. Additionally

$$\langle \xi, f \rangle = \sum_{i=1}^{n} \langle \xi, f_i \rangle = \sum_{i=1}^{n} \langle \xi \mid_{U_i}, f_i \rangle = 0.$$

That is, ξ vanishes on all elements of $C_c^{\infty}(U)$, and hence $\xi\mid_U\equiv 0$.

(2) Let $f \in C_c^{\infty}(U)$. As Supp(f) is compact, there exist $\alpha_1, \ldots, \alpha_n$ such that Supp $(f) \subseteq U_{\alpha_1} \cup \cdots \cup U_{\alpha_n}$ and hence, for $U' = \bigcup_{i=1}^n U_{\alpha_i} \subseteq U$, we have that $f \in C_c^{\infty}(U')$ and $\xi \mid_{U'} \equiv 0$. By the previous item, it follows that $\langle \xi, f \rangle = 0$.

Exercise 5.

(1) Given $D \subseteq \mathbb{R}$ compact and $k \geq 0$, the C^k -norm on $C^k(D)$ is defined by $||f||_{C^k} := \sup_{x \in D} \sum_{i=0}^k ||f^{(i)}(x)||$. Show that a functional $\xi : C_c^{\infty}(\mathbb{R}) \to \mathbb{R}$ is continuous if and only if there exists $k \geq 0$ and c > 0 such that

$$|\langle \xi, f \rangle| \le c \|f\|_{C^k}$$
 for all $f \in C^{\infty}(D)$.

Deduce that for any $\xi \in C^{-\infty}(\mathbb{R})$ and $D \subseteq \mathbb{R}$ compact, there exists $k_D \geq 0$ and $c_D > 0$ such that $|\langle \xi, f \rangle| \leq c_D \|f\|_{C^{k_D}}$, whenever $\operatorname{Supp}(f) \subseteq D$.

- (2) Let ξ be a distribution supported on $\{0\}$.
 - (a) Let $\psi \in C_c^{\infty}(\mathbb{R})$ with $\operatorname{Supp}(\psi) \subseteq [-1,1]$ and such that $\psi \mid_U \equiv 1$ for some open $U \ni 0$. Show that $\langle \xi, g \rangle \leq c \sup_{x \in [-1,1]} \sum_{i=1}^k \left| (g\psi)^{(i)}(x) \right|$, for all $g \in C_c^{\infty}(\mathbb{R})$, for suitable $k \geq 0$ and c > 0.
 - (b) Prove that there exist $k \geq 0$ such that $x^k \xi \equiv 0$. Hint: Use the previous item to bound the value $\langle x^k \xi, f \rangle = \langle \xi, x^k f \rangle$ using test functions of the form $\psi_{\epsilon}(x) = \psi(\epsilon^{-1}x)$, with ψ as above.

SOLUTION. (1) \Leftarrow Assume the assumption holds for any compact set $D \subseteq \mathbb{R}$, and let $(f_n)_n$ be a sequence in $C_c^{\infty}(\mathbb{R})$ converging to $f \in C_c^{\infty}(\mathbb{R})$. By definition, there exits a compact $D \subseteq \mathbb{R}$ such that $\operatorname{Supp}(f_n), \operatorname{Supp}(f) \subseteq D$ and $\left\|f_n^{(k)} - f^{(k)}\right\|_{C^0} \xrightarrow{n \to \infty} 0$ (i.e. uniform convergence) for all $k \in \mathbb{Z}_{>0}$. Let $c_D > 0$ and $k_D \geq 0$ be as in the assumptions. Then

$$|\langle \xi, f_n - f \rangle| \le c_D \cdot ||f - f_n||_{C^{k_D}} \le \sum_{i=0}^{k_D} ||f_n^{(i)} - f^{(i)}||_{C^0} \xrightarrow{n \to \infty} 0,$$

where the last equality is justified since k_D is a fixed finite number, and the penultimate equality holds since

$$\|\varphi\|_{C^k} = \sup_{x \in D} \sum_{i=0}^k \left| \varphi^{(i)}(x) \right| \le \sum_{i=0}^k \sup_{x \in D} \left| \varphi^{(i)}(x) \right| = \sum_{i=0}^k \left\| \varphi^{(i)} \right\|_{C^0},$$

for any $\varphi \in C^{\infty}(D)$ and $k \geq 0$.

- \Rightarrow Assume ξ is continuous but does not satisfy the assumption, and let $D \subseteq \mathbb{R}$ be a compact set for which there exist no c_D and k_D such that $|\langle \xi, f \rangle| \leq c_D \|f\|_{C^{k_D}}$ for all $f \in C^{\infty}(D)$. In particular, for any $n \in \mathbb{N}$, there exist $\varphi_n \in C^{\infty}(D)$ such that $|\langle \xi, \varphi_n \rangle| > n \|\varphi_n\|_{C^n}$. Note that multiplying φ_n by a constant results in multiplying both hands of the inequality by the absolute value of the same constant. Thus, we lose no generality by replacing φ_n with $\frac{1}{\|\varphi_n\|_{C^n}} \cdot \varphi_n$, thereby assuming $\|\varphi_n\|_{C^n} = \frac{1}{n}$. Thus, we have that $|\langle \xi, \varphi_n \rangle| > 1$ for all $n \in \mathbb{N}$. On the other hand, all φ_n 's are supported on D, and one easily verifies that $\lim_{n \to \infty} \varphi_n = 0$ in $C_c^{\infty}(\mathbb{R})$. This contradicts the continuity of ξ .
- (2) (a) Follows immediately from the previous item, applied to D = [-1,1] (note that $\operatorname{Supp}(g\psi) \subseteq [-1,1]$ for all $g \in C_c^{\infty}(\mathbb{R})$).
 - (b) In the notation of the hint, let ψ be as in the previous item and put $\psi_{\epsilon}(\epsilon^{-1}x)$, for any $\epsilon > 0$. Note that $\operatorname{Supp}(\psi) \subseteq [-\epsilon, \epsilon]$ and $\psi_{\epsilon}|_{\epsilon U} \equiv 1$ for a given open set $0 \in U$. (Note that, given $f \in C_c^{\infty}(\mathbb{R})$, we have that, for any $\epsilon > 0$, $f - f \cdot \psi_{\epsilon}$ vanishes in a neighborhood of 0, and hence, since $\operatorname{Supp}(\xi) = 0$, we have that $\langle \xi, f - f \cdot \psi_{\epsilon} \rangle = 0$, i.e. $\langle \xi, f \rangle = \langle \xi, f \psi_{\epsilon} \rangle$.

Let c > 0 and $k \ge 0$ be as in item (a), and let us compute $\langle x^d \xi, f \rangle$ for $d \ge 0$ and an arbitrary function $f \in C_c^{\infty}(\mathbb{R})$. For $\epsilon > 0$ arbitrary, we have that

$$\begin{aligned} \left| \langle x^{d}\xi, f \rangle \right| &= \left| \langle \xi, x^{d}f \rangle \right| = \left| \langle \xi, x^{d}\psi_{\epsilon}f \rangle \right| \\ &\leq c \sup_{x \in [-1,1]} \sum_{i=0}^{k} \left| (x^{d}\psi_{\epsilon}f)^{(i)} \right| \\ &= c \sup_{x \in [-1,1]} \sum_{i=0}^{k} \left| \sum_{\substack{j_{1}, j_{2}, j_{3} \geq 0 \\ j_{1} + j_{2} + j_{3} = i}} \binom{i}{j_{1}, j_{2}, j_{3}} (x^{d})^{(j_{1})} \psi_{\epsilon}^{(j_{2})} f^{(j_{3})} \right| \\ &= c \sup_{x \in [-1,1]} \sum_{i=0}^{k} \left| \sum_{\substack{j_{1}, j_{2}, j_{3} \geq 0, j_{1} \leq k \\ j_{1} + j_{2} + j_{3} = i}} \binom{i}{j_{1}, j_{2}, j_{3}} \frac{k!}{j_{1}!} x^{d-j_{1}} \epsilon^{-j_{2}} \psi^{(j_{2})} (\epsilon^{-1}x) f^{(j_{3})} \right| \end{aligned}$$

noting that the entire expression vanishes if $|x| > \epsilon$, we have the additional upper bound

$$\leq c \sum_{i=0}^{k} \sum_{\substack{j_1, j_2, j_3 \geq 0, \ j_1 \leq k \\ j_1 + j_2 + j_3 = i}} {i \choose j_1, j_2, j_3} \frac{k!}{j_1!} \epsilon^{d-j_1} \epsilon^{-j_2} \sup_{x \in [-\epsilon, \epsilon]} \left| \psi^{(j_2)}(\epsilon^{-1}x) f^{(j_3)} \right|.$$

Since the tem in absolute value is bounded above, say, by M > 0, we deduce that

$$\left| x^{k} \xi, f \right| \leq c \sum_{i=0}^{k} \sum_{\substack{j_{1}, j_{2}, j_{3} \geq 0, \ j_{1} \leq k \\ j_{1} + j_{2} + j_{3} = i}} {i \choose j_{1}, j_{2}, j_{3}} \frac{k!}{j_{1}!} \epsilon^{d - j_{1} - j_{2}} M.$$

Taking d > k, and recalling that $\epsilon > 0$ may be taken to be arbitrarily small, we deduce that $\langle x^d \xi, f \rangle = 0$.

Exercise 6. Let $\xi \in C^{-\infty}(\mathbb{R})$ and $f \in C^{\infty}(\mathbb{R})$. Prove the following assertions.

- (1) If f has compact support then $\xi * f$ smooth.
- (2) If ξ has compact support then $\xi * f$ is smooth.

SOLUTION. Recall the notation:

$$L_t f(x) = f(x+t)$$
 and $\overline{f}(x) = f(-x)$

for $f \in C(\mathbb{R})$ and $t \in \mathbb{R}$. By definition, we have that

$$(\xi * f)(x) = \langle \xi, \overline{L_{-x}\overline{f}} \rangle$$
 for any $x \in \mathbb{R}$.

(1) Given a function $f \in C_c^{\infty}(\mathbb{R})$, say with $K = \operatorname{Supp}(f)$, we have that $f^{(k)} \in C_K^{\infty}(\mathbb{R})$ for all $k \geq 0$. Furthermore, by the definition of the derivative, for any $k \geq 0$, the net $\left\{f_{\epsilon}^{(k)} = \frac{L_{\epsilon}f^{(k)} - f^{(k)}}{\epsilon}\right\}_{\epsilon \in (0,1)}$ lies in $C_c^{\infty}(\mathbb{R})$ (with support contained in K + [0,1]) converges in the supremum norm to $f^{(k+1)}$ as ϵ tends to 0. In particular, the convergence $f_{\epsilon} \xrightarrow{\epsilon \to 0} f^{(1)}$ is in the topology of $C_c^{\infty}(\mathbb{R})$ and hence, by definition of convolution of a distribution and a function

$$(\xi * f)'(x) = \lim_{\epsilon \to 0} \frac{\xi * f(x + \epsilon) - \xi * f(x)}{\epsilon} = \lim_{\epsilon \to 0} \frac{\langle \xi, \overline{L_{-x - \epsilon}} \overline{f} \rangle - \langle \xi, \overline{L_{-x}} \overline{f} \rangle}{\epsilon}$$
$$= \lim_{\epsilon \to 0} \langle \xi, \frac{L_{\epsilon}(\overline{L_{-x}} \overline{f}) - \overline{L_{-x}} \overline{f}}{\epsilon} \rangle = \langle \xi, (\overline{L_{-x}} \overline{f})' \rangle = \langle \xi, (\overline{L_{-x}} \overline{f})' \rangle = \langle \xi, \overline{L_{-x}} \overline{f}' \rangle = (\xi * f')(x).$$

Since we can apply the same argument for each of the derivatives of f, we deduce that $\xi * f$ has continuous derivatives of all orders, and hence is smooth.

- (2) Let $D = \operatorname{Supp}(\xi)$ and let $\psi \in C_c^{\infty}(\mathbb{R})$ be a smooth non-negative function with $\psi \mid_K \equiv 1$ for K = D + [-1, 1]. We show that the equality $(\xi * f)' = \xi * (f')$ holds in this situation as well. Note the following two facts:
 - (a) For any $g \in C^{\infty}(\mathbb{R})$ we have that $\langle \psi \xi, g \rangle = \langle \xi, \psi g \rangle = \langle \xi, g \rangle$. This holds since $g \psi g$ is supported on the complement of Supp (ξ) . [In fact, this is the definition of $\langle \xi, g \rangle$.]
 - (b) Writing $f_{\epsilon} = \frac{L_{\epsilon}f f}{\epsilon}$ as above, for any $\psi \in C_c^{\infty}(\mathbb{R})$, the net $\psi \cdot f_{\epsilon}$ is contained in $C_c^{\infty}(\mathbb{R})$ and converges to $\psi \cdot f'$ as ϵ tends to 0.

Using these two facts, we have that

$$(\xi * f)'(x) = \lim_{\epsilon \to 0} \frac{\langle \xi, \overline{L_{-x-\epsilon}\overline{f}} \rangle - \langle \xi, \overline{L_{-x}\overline{f}} \rangle}{\epsilon} = \lim_{\epsilon \to 0} \langle \xi, \psi \cdot \frac{\overline{L_{-x-\epsilon}\overline{f}} - \overline{L_{-x}\overline{f}}}{\epsilon} \rangle$$
$$= \langle \xi, \psi \cdot (\overline{L_{-x}\overline{f'}}) \rangle = \langle \xi, \overline{L_{-x}\overline{f'}} \rangle = (\xi * f')(x).$$

Exercise 7. Let A be a differential operator with constant coefficients.

- (1) Describe the Green function $(G_A \text{ such that } A(G_A) = \delta_0)$ without using generalized functions.
- (2) Set

$$A_{G_A}(g)(y) = \int_{-\infty}^{\infty} G_A(x - y)g(x)dx.$$

Show that $A(A_{G_A}(g)) = g$ for every $g \in C_c^{\infty}(\mathbb{R})$.

SOLUTION. (1) Write $A = \sum_{j=0}^{n} c_j \frac{d^j}{dx^j}$ for $c_0, \ldots, c_n \in \mathbb{R}$. By definition the Green function $G = G_A$ is the solution of the initial value problem

$$AG = \sum_{j=0}^{n} c_j G^{(j)}(x) = 0 \quad \text{for all } x \neq 0$$

5

and with all derivatives of order up to n-2 being continuous at zero with value 0, and $\lim_{\epsilon \to 0^+} (G^{(n-1)}(\epsilon) - G^{(n-1)}(-\epsilon)) = \frac{1}{c_n}$. Indeed,

$$1 = \int_{\mathbb{R}} \delta_0(x) dx = \int_{\mathbb{R}} \sum_{j=0}^n c_j \frac{d^j}{dx^j} c_j G^{(j)}(x) dx$$
$$= \lim_{\epsilon \to 0^+} \left(\int_{-\infty}^{-\epsilon} \cdots dx + \int_{-\epsilon}^{\epsilon} \cdots dx \int_{\epsilon}^{\infty} \cdots dx \right)$$
$$= \sum_{j=0}^n c_j \lim_{\epsilon \to 0^+} \int_{-\epsilon}^{\epsilon} G^{(j)}(x) dx$$
$$= \lim_{\epsilon \to 0^+} c_n (G^{(n-1)}(\epsilon) - G^{(n-1)}(-\epsilon)).$$

Remark 1. Explicit description of the Green function may be obtained using standard methods for solving the homogeneous equation AG = 0 in the domain $\mathbb{R} \setminus \{0\}$. This was not expected as part of the solution, but is a welcome addition.

(2)

$$A(A_{G_A}(g))(y) = A\left(\int_{\mathbb{R}} G_A(y - x)g(x)\right) = \sum_{j=0}^n \int_{\mathbb{R}} c_j \frac{d^j}{dy^j} (G_A(y - x)g(x)) dx$$
$$= \sum_{j=0}^n c_j \lim_{\epsilon \to 0^+} \int_{y - \epsilon}^{y + \epsilon} G_A^{(j)}(y - x)g(x) dx = g(y),$$

where the final equality may be proved, e.g., using the intermediate value theorem on the interval $[y - \epsilon, y + \epsilon]$, as $\epsilon \to 0$.