Assignment 1

- 1. Let G be a group Such that Aut(G)=\(\frac{1}{3}\).

 Prove that G must be abelian. If G is
 finite with Aut(G) =\{1\}, then show o(G)=\(\frac{1}{3}\).

 2.
- 2. True or false? G_1 , G_2 and groups, G_1 is isomorphic to a subgroup of G_2 and G_2 is isomorphic to a subgroup of G_1 , then G_1 is isomorphic to G_2 . (Justify answer).
- 3. Let R be a commutative sing with identity 1. Let $U = \begin{cases} \begin{pmatrix} 1 & \chi \\ 0 & 1 \end{pmatrix} \mid \chi \in R \end{cases}$. Prove that U, with matrix multiplication as its troduct, is a group isomosphic to (R, +): (1)
- 4. G be a group such that $x^3 = e + x \in G$.

 Is G abelian? Justify.

(1)

Write solutions neatly on A4 Size papers. Submit on Moodle latest by 28th August.