10

20

25

30

40

-continued

$$CF_3$$
 CF_3
 CF_3

In formula (1B), R^{fb1} and R^{fb2} are each independently fluorine or a straight, branched or cyclic C_1 - C_{40} monovalent hydrocarbon group which may contain a heteroatom. Illustrative examples of the monovalent hydrocarbon group are as exemplified for R^{105} . Preferably R^{fb1} and R^{fb2} are fluorine or C_1 - C_4 straight fluorinated alkyl groups. Also, R^{fb1} and R^{fb2} may bond together to form a ring with the linkage: $-CF_2$ - SO_2 - N^- - SO_2 - CF_2 - to which they are attached. It is preferred to form a ring structure via a fluorinated ethylene or fluorinated propylene group.

fluorinated ethylene or fluorinated propylene group.

In formula (1C), R/⁶¹, R/⁶² and R/⁶³ are each independently fluorine or a straight, branched or cyclic C₁-C₄₀ monovalent hydrocarbon group which may contain a heteroatom. Illustrative examples of the monovalent hydrocarbon group are as exemplified for R¹⁰⁵. Preferably R/⁶¹, R/⁶² and R/⁶³ are fluorine or C₁-C₄ straight fluorinated alkyl groups. Also, R/⁶¹ and R/⁶² may bond together to form a ring with the linkage: —CF₂—SO₂—C⁻—SO₂—CF₂— to which they are attached. It is preferred to form a ring structure via a fluorinated ethylene or fluorinated propylene group.

In formula (1D), R^{fd} is a straight, branched or cyclic C_1 - C_{40} monovalent hydrocarbon group which may contain a heteroatom. Illustrative examples of the monovalent hydrocarbon group are as exemplified for R^{105} .

With respect to the synthesis of the sulfonium salt having an anion of formula (1D), reference may be made to JP-A 2010-215608 and JP-A 2014-133723.