(10 1 2 3 4 4 5 4 4 5 4 4 5 4 4 5 4 4 5 4 4 5 4 4 5 4 4 5

Standardized Test Prep

MULTIPLE CHOICE

Use the passage below to answer questions 1–2.

Two blocks of masses m_1 and m_2 are placed in contact with each other on a smooth, horizontal surface. Block m_1 is on the left of block m_2 . A constant horizontal force F to the right is applied to m_1 .

1. What is the acceleration of the two blocks?

A.
$$a = \frac{F}{m_1}$$

B.
$$a = \frac{F}{m_2}$$

C.
$$a = \frac{F}{m_1 + m_2}$$

D.
$$a = \frac{F}{(m_1)(m_2)}$$

- **2.** What is the horizontal force acting on m_2 ?
 - **F.** m_1a
 - **G.** m_2a
 - **H.** $(m_1 + m_2)a$
 - **J.** m_1m_2a
- **3.** A crate is pulled to the right (positive *x*-axis) with a force of 82.0 N, to the left with a force of 115 N, upward with a force of 565 N, and downward with a force of 236 N. Find the magnitude and direction of the net force on the crate.
 - **A.** 3.30 N at 96° counterclockwise from the positive *x*-axis
 - **B.** 3.30 N at 6° counterclockwise from the positive *x*-axis
 - **C.** 3.30×10^2 N at 96° counterclockwise from the positive *x*-axis
 - **D.** 3.30×10^2 N at 6° counterclockwise from the positive *x*-axis

4. A ball with a mass of *m* is thrown into the air, as shown in the figure below. What is the force exerted on Earth by the ball?

- **F.** $m_{ball}g$, directed down
- **G.** $m_{ball}g$, directed up
- **H.** $m_{Earth}g$, directed down
- **J.** $m_{Earth}g$, directed up
- **5.** A freight train has a mass of 1.5×10^7 kg. If the locomotive can exert a constant pull of 7.5×10^5 N, how long would it take to increase the speed of the train from rest to 85 km/h? (Disregard friction.)
 - **A.** 4.7×10^2 s
 - **B.** 4.7 s
 - **C.** 5.0×10^{-2} s
 - **D.** $5.0 \times 10^4 \text{ s}$

Use the passage below to answer questions 6-7.

A truck driver slams on the brakes and skids to a stop through a displacement Δx .

- **6.** If the truck's mass doubles, find the truck's skidding distance in terms of Δx . (Hint: Increasing the mass increases the normal force.)
 - **F.** $\Delta x/4$
 - **G.** Δx
 - **H.** $2\Delta x$
 - **J.** $4\Delta x$