

Clasificadores Probabilísticos en Aprendizaje Automático

Modelos Probabilísticos Profundos

Daniel Ramos Castro

Contribuciones de Juan Maroñas Molano (Doctorando Univ. Politécnica Valencia) daniel.ramos@uam.es

Audias – Audio, Data Intelligence and Speech Universidad Autónoma de Madrid

Sumario del Día

- Modelos probabilísticos profundos
 - Autoencoder Variacional
 - Redes Neuronales Profundas
- Teoría de la Decisión

Autoencoder Variacional (Variational Autoencoder, VAE)

Autoencoder Variacional: Interpretación Neuronal

- Modelo probabilístico generativo
- Interpretación neuronal: 2 pasos:
 - Transformar datos a un espacio latente
 - Encoder (NN con pesos φ)
 - Devuelve parámetros
 - Transformar del espacio latente de nuevo al espacio observado de forma probabilística
 - $Decoder(NN con pesos \theta)$
 - Devuelve parámetros
- Objetivo

D. Kingma. "Variational Inference and Deep Learning". PhD Thesis, Univ. Van Amsterdam, 2017.

- Reducir al mínimo el error de reconstrucción
 - Para que la salida del VAE se parezca al máximo a su entrada

Modelo probabilístico generativo

Interpretación neuronal: 2 pasos:

Transformar datos a un espacio latente

Encoder (NN con pesos φ)

Devuelve parámetros

Modelo probabilístico generativo

Interpretación neuronal: 2 pasos:

Transformar datos a un espacio latente

• Encoder (NN con pesos φ)

Devuelve parámetros

 Transformar del espacio latente de nuevo al espacio observado de forma probabilística

• $Decoder(NN con pesos \theta)$

Devuelve parámetros

D. Kingma. "Variational Inference and Deep Learning".
PhD Thesis, Univ. Van Amsterdam, 2017.

- Modelo probabilístico generativo
- Interpretación neuronal: 2 pasos:
 - Transformar datos a un espacio latente
 - Encoder (NN con pesos φ)
 - Devuelve parámetros
 - Transformar del espacio latente de nuevo al espacio observado de forma probabilística
 - $Decoder(NN con pesos \theta)$
 - Devuelve parámetros
- Objetivo

D. Kingma. "Variational Inference and Deep Learning". PhD Thesis, Univ. Van Amsterdam, 2017.

- Reducir al mínimo el error de reconstrucción
 - Para que la salida del VAE se parezca al máximo a su entrada

¿Para qué?

Representación probabilística simplificada de los datos

A partir de dicha representación, generar nuevos datos nunca

vistos antes

D. Kingma, M. Welling. "Auto-Encoding Variational Bayes". Arxiv, 2014.

- Variables observadas: x
 - Por ejemplo, vector de píxeles de dígitos MNIST

- Variables observadas: x
 - Por ejemplo, vector de píxeles de dígitos MNIST
- Variables latentes: z
 - Un espacio de dimensión mucho menor

- Variables observadas: x
 - Por ejemplo, vector de píxeles de dígitos MNIST
- Variables latentes: z
 - Un espacio de dimensión mucho menor
- Objetivo: modelo generativo (θ : pesos de una NN)
 - $p_{\boldsymbol{\theta}}(\boldsymbol{x}, \boldsymbol{z}) = p_{\boldsymbol{\theta}}(\boldsymbol{x}|\boldsymbol{z})p_{\boldsymbol{\theta}}(\boldsymbol{z})$

- Variables observadas: x
 - Por ejemplo, vector de píxeles de dígitos MNIST
- Variables latentes: z
 - Un espacio de dimensión mucho menor
- Objetivo: modelo generativo (θ: pesos de una NN)
 - $p_{\boldsymbol{\theta}}(\boldsymbol{x}, \boldsymbol{z}) = p_{\boldsymbol{\theta}}(\boldsymbol{x}|\boldsymbol{z})p_{\boldsymbol{\theta}}(\boldsymbol{z})$
- Generación de datos
 - Primero muestreo un dato latente
 - $\mathbf{z}^{(i)} \sim p_{\boldsymbol{\theta}}(\mathbf{z})$
 - Luego obtengo el dato observado
 - $x^{(i)} \sim p_{\theta} \left(x | z^{(i)} \right)$

D. Kingma, M. Welling. "Auto-Encoding Variational Bayes". Arxiv, 2014.

Figure 1: The type of directed graphical model under consideration. Solid lines denote the generative model $p_{\theta}(\mathbf{z})p_{\theta}(\mathbf{x}|\mathbf{z})$, dashed lines denote the variational approximation $q_{\phi}(\mathbf{z}|\mathbf{x})$ to the intractable posterior $p_{\theta}(\mathbf{z}|\mathbf{x})$. The variational parameters ϕ are learned jointly with the generative model parameters θ .

- Probabilidad a priori $p_{\theta}(\mathbf{z})$
 - \Box Suele ser una gaussiana estándar multivariada (no depende de θ)
 - Representación simplificada de los datos, probabilística
 - Ejemplo: Distintos dígitos MNIST deberían ubicarse en distintas zonas del espacio latente

- Probabilidad a priori $p_{\theta}(\mathbf{z})$
 - \Box Suele ser una gaussiana estándar multivariada (no depende de θ)
 - Representación simplificada de los datos, probabilística
 - Ejemplo: Distintos dígitos MNIST deberían ubicarse en distintas zonas del espacio latente
- Likelihood $p_{\theta}(x|z)$
 - Ejemplo dígitos NIST: Bernoulli multivariada
 - $p_{\theta}(x|z^{(i)})$ devuelve la probabilidad de que cada píxel sea 0 ó 1 (valor del parámetro Bernoulli)
 - $lue{z}$ Dependiendo del valor de la variable latente $oldsymbol{z}^{(i)}$
 - NN cuya entrada es $z^{(i)}$ y devuelve parámetros de Bernoulli
 - \square Sus pesos son θ

Necesitamos conocer el encoder

$$p_{\theta}(\mathbf{z}|\mathbf{x}) = \frac{p_{\theta}(\mathbf{x}|\mathbf{z})p(\mathbf{z})}{p_{\theta}(\mathbf{x})} = \frac{p_{\theta}(\mathbf{x}|\mathbf{z})p(\mathbf{z})}{\int p_{\theta}(\mathbf{x}|\mathbf{z})p(\mathbf{z})dZ} \text{ intratable!}$$

Necesitamos conocer el encoder

$$p_{\theta}(\mathbf{z}|\mathbf{x}) = \frac{p_{\theta}(\mathbf{x}|\mathbf{z})p(\mathbf{z})}{p_{\theta}(\mathbf{x})} = \frac{p_{\theta}(\mathbf{x}|\mathbf{z})p(\mathbf{z})}{\int p_{\theta}(\mathbf{x}|\mathbf{z})p(\mathbf{z})dZ} \text{ intratable!}$$

- Solución: inferencia variacional
 - Tomo una distribución $q_{\varphi}(z|x)$ para aproximar $p_{\theta}(z|x)$
 - Gaussiana, componentes independientes:

•
$$q_{\varphi}(\mathbf{z}|\mathbf{x}^{(i)}) = \mathcal{N}(\mathbf{z}|\boldsymbol{\mu}^{(i)}, \boldsymbol{\sigma}^{2(i)})$$

- ${m \mu}^{(i)}$, ${m \sigma}^{2(i)}$ se obtienen de una NN con entrada ${m x}^{(i)}$
 - \Box Con pesos φ

- Minimizar una distancia entre $p_{m{ heta}}ig(m{z}|m{x}^{(i)}ig)$ y $q_{m{arphi}}ig(m{z}|m{x}^{(i)}ig)$
 - Optimizo φ y θ , y obtengo el mínimo de esta distancia
 - □ Típicamente, distancia Kullback-Leibler (KL)

$$D_{KL}\left(q_{\boldsymbol{\varphi}}\left(\mathbf{z}|\mathbf{x}^{(i)}\right)||p_{\boldsymbol{\theta}}\left(\mathbf{z}|\mathbf{x}^{(i)}\right)\right)$$
; Intratable!

- Minimizar una distancia entre $p_{m{ heta}}ig(m{z}|m{x}^{(i)}ig)$ y $q_{m{\phi}}ig(m{z}|m{x}^{(i)}ig)$
 - Optimizo $\boldsymbol{\varphi}$ y $\boldsymbol{\theta}$, y obtengo el mínimo de esta distancia
 - □ Típicamente, distancia Kullback-Leibler (KL)

$$D_{KL}\left(q_{\boldsymbol{\varphi}}\left(\boldsymbol{z}|\boldsymbol{x}^{(i)}\right)||p_{\boldsymbol{\theta}}\left(\boldsymbol{z}|\boldsymbol{x}^{(i)}\right)\right)$$
; Intratable!

Operando...

¡Intratable!

¡Tratable!

$$\log p_{\boldsymbol{\theta}}(\mathbf{x}^{(i)}) = D_{KL}(q_{\boldsymbol{\phi}}(\mathbf{z}|\mathbf{x}^{(i)})||p_{\boldsymbol{\theta}}(\mathbf{z}|\mathbf{x}^{(i)})) + \mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\phi}; \mathbf{x}^{(i)})$$

Evidence Lower Bound (ELBO)

- Minimizar una distancia entre $p_{m{ heta}}ig(m{z}|m{x}^{(i)}ig)$ y $q_{m{\phi}}ig(m{z}|m{x}^{(i)}ig)$
 - Optimizo φ y θ , y obtengo el mínimo de esta distancia
 - Típicamente, distancia Kullback-Leibler (KL)

$$D_{KL}\left(q_{\boldsymbol{\varphi}}\left(\boldsymbol{z}|\boldsymbol{x}^{(i)}\right)||p_{\boldsymbol{\theta}}\left(\boldsymbol{z}|\boldsymbol{x}^{(i)}\right)\right)$$
; Intratable!

Operando...

¡Intratable!

¡Tratable!

$$\log p_{\boldsymbol{\theta}}(\mathbf{x}^{(i)}) = D_{KL}(q_{\boldsymbol{\phi}}(\mathbf{z}|\mathbf{x}^{(i)})||p_{\boldsymbol{\theta}}(\mathbf{z}|\mathbf{x}^{(i)})) + \mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\phi}; \mathbf{x}^{(i)})$$

Evidence Lower Bound (ELBO)

- Problema alternativo: maximizar ELBO
 - Aumenta verosimilitud marginal, minimiza la distancia KL ¡simultáneamente!
 - Algoritmo Auto Encoding Variational Bayes
 - Reparameterization trick

Autoencoder Variacional: Ejemplo

Figure 5: Random samples from learned generative models of MNIST for different dimensionalities of latent space.

D. Kingma, M. Welling. "Auto-Encoding Variational Bayes". Arxiv, 2014.

Autoencoder Variacional: Ejemplo

https://datasciencevision.com/autoencoders/

Redes Neuronales Bayesianas (BNN)

Redes Neuronales

Datos:

$$\mathcal{D} = \{ (\mathbf{x}^{(n)}, y^{(n)}) \}_{n=1}^{N} = (X, \mathbf{y})$$

- Pesos: θ
- Likelihood:

$$p(\mathbf{y}^{(n)}|\mathbf{x}^{(n)},\boldsymbol{\theta})$$

Modelada como perceptrón multicapa

Z. Ghahramani. "A history of Bayesian Neural Networks". NIPS 2016 Keynote Speech Slides.

Redes Neuronales: Optimización

- Backpropagation, Stochastic Gradient Descent (SGD)
 - Se entrena la red con las salidas conocidas que debería obtener (ground-truth)
 - Se utiliza una función objetivo entre lo que la red saca y lo que debería sacar (cross-entropy, entropía cruzada)
 - Se calcula el gradiente para optimizar la función de coste
 - Se propagan dichos gradientes hacia atrás capa a capa
 - Finalmente, el óptimo es el mínimo de dicha función de coste
- Problema de ajuste puntual
 - Point-estimate
 - ML o MAP, típicamente

- Las BNNs pretenden generalizar las redes neuronales
 - Los pesos en realidad no se optimizan hasta obtener el máximo
 - En realidad, los pesos se consideran no conocidos
 - Se intenta obtener un modelo probabilístico de los pesos, las entradas y las salidas

prior
$$p(\boldsymbol{\theta}|\boldsymbol{\alpha})$$

posterior $p(\boldsymbol{\theta}|\boldsymbol{\alpha},\mathcal{D}) \propto p(\mathbf{y}|X,\boldsymbol{\theta})p(\boldsymbol{\theta}|\boldsymbol{\alpha})$
prediction $p(y'|\mathcal{D},\mathbf{x}',\boldsymbol{\alpha}) = \int p(y'|\mathbf{x}',\boldsymbol{\theta})p(\boldsymbol{\theta}|\mathcal{D},\boldsymbol{\alpha})\,d\boldsymbol{\theta}$

Z. Ghahramani. "A history of Bayesian Neural Networks". NIPS 2016 Keynote Speech Slides.

- El posterior es muy difícil de obtener
 - Problema claramente no tratable
- Inferencia variacional: aproximación muy simplista

- El posterior es muy difícil de obtener
 - Problema claramente no tratable
- Inferencia variacional: aproximación muy simplista
- Solución: métodos Montecarlo
 - Muestreamos el posterior

$$\boldsymbol{\theta^{(i)}} \sim p(\boldsymbol{\theta} | \boldsymbol{\alpha}, \mathcal{D})$$

Aproximamos la integral

$$\int p(y'|x',\boldsymbol{\theta}) p(\boldsymbol{\theta}|\boldsymbol{\alpha},\mathcal{D}) d\boldsymbol{\theta} \approx \frac{1}{M} \sum_{i=1}^{M} p(y'|x',\boldsymbol{\theta}^{(i)})$$

- Métodos Markov Chain Monte Carlo
 - Paseo aleatorio para recorrer el posterior
 - Deben hacerlo rápido
 - Deben asegurar que se recorre bien
 - Las muestras se distribuyen como el posterior

- Métodos Markov Chain Monte Carlo
 - Paseo aleatorio para recorrer el posterior
 - Deben hacerlo rápido
 - Deben asegurar que se recorre bien
 - Las muestras se distribuyen como el posterior
 - Algoritmos más populares
 - Metropolis-Hastings
 - Muy util con distribuciones simples
 - No es el caso de las BNN
 - Hamiltonian Monte Carlo (HMC)
 - Mucho más adecuado para BNNs

Probabilistic Inference Using Markov Chain Monte Carlo Methods

Radford M. Neal

Technical Report CRG-TR-93-1 Department of Computer Science University of Toronto

E-mail: radford@cs.toronto.edu

25 September 1993

- Métodos Markov Chain Monte Carlo
 - Paseo aleatorio para recorrer el posterior
 - Deben hacerlo rápido
 - Deben asegurar que se recorre bien
 - Las muestras se distribuyen como el posterior
 - Algoritmos más populares
 - Metropolis-Hastings
 - Muy util con distribuciones simples
 - No es el caso de las BNN
 - Hamiltonian Monte Carlo (HMC)
 - Mucho más adecuado para BNNs
 - Ejemplo (David Duvenaud):
 - https://www.youtube.com/watch?v=Vv3f0QNWvWQ

Probabilistic Inference Using Markov Chain Monte Carlo Methods

Radford M. Neal

Technical Report CRG-TR-93-1 Department of Computer Science University of Toronto

E-mail: radford@cs.toronto.edu

25 September 1993

Redes Neuronales Bayesianas

En tareas simples, BNNs con HMC pueden superar a las NNs MAP

- Problema: las tareas actuales son muy complejas
 - Cuesta muchísimo que las BNN superen a las DNN

Redes Neuronales Bayesianas

En tareas simples, BNNs con HMC pueden superar a las NNs MAP

- Problema: las tareas actuales son muy complejas
 - Cuesta muchísimo que las BNN superen a las DNN

Clasificadores Probabilísticos en Aprendizaje Automático

Modelos Probabilísticos Profundos

Daniel Ramos Castro

Contribuciones de Juan Maroñas Molano (Doctorando Univ. Politécnica Valencia) daniel.ramos@uam.es

Audias – Audio, Data Intelligence and Speech Universidad Autónoma de Madrid

