ЛАБОРАТОРНАЯ РАБОТА №2 НЕРАЗВЕТВЛЁННЫЕ ЦЕПИ СИНУСОИДАЛЬНОГО ТОКА

Цель работы

Практическое ознакомление с установившимися режимами в последовательных RL-, RC- и RLC-цепях синусоидального тока.

Теоретические сведения и расчетные формулы

1. Реактивные сопротивления X_L , X_C и угол сдвига фаз

Уравнения электрического равновесия напряжений и токов цепи синусоидального тока можно записать в аналитической форме и представить графически в виде векторных диаграмм.

При анализе цепей синусоидального тока необходимо иметь в виду следующее:

• реактивное индуктивное сопротивление X_L индуктивной катушки и реактивное ёмкостное X_C сопротивление конденсатора зависят от частоты f источника синусоидального напряжения $u = U_m \sin{(2\pi f + \Psi_u)}$, т. е.

$$X_L = \omega L = 2\pi f L$$
 и $X_C = 1/(\omega C) = 1/(2\pi f C)$,

где $\omega=2\pi f$ угловая частота напряжения, рад/с; f=1/T - циклическая частота, Γ ц; T - период синусоидального напряжения, с; Ψ_u его начальная фаза, рад или град;

• в ветвях с реактивными элементами L и C между напряжением и током возникает фазовый сдвиг $\varphi = \Psi_u$ - Ψ_i , где Ψ_i , где Ψ_i начальная фаза тока (рисунок 9). Угол φ (в рад или град) - алгебраическая величина, изменяющаяся в диапазоне от -90° (- π /2 рад) до +90° (- π /2 рад). Знак и величина угла зависят от типа и величины параметров последовательно соединённых элементов R, L и C и частоты f напряжения.

2. Векторные диаграммы напряжений и тока в RL-, RC- и RLC-ветвях

В таблице 2 представлены типовые ветви схемы цепи синусоидального тока, векторные диаграммы напряжений и токов ветвей и углы сдвига фаз между их векторами. Анализ векторных диаграмм показывает, что резистивный элемент R является частотно-независимым элементом: ток и напряжение на его зажимах совпадают по фазе (форма тока i_R повторяет форму напряжения u_R), поэтому при определении (по осциллограммам) угла сдвига фаз между напряжением и током в ветвях цепи в качестве датчика тока можно использовать резистор с сопротивлением R_0 , напряжение $u_{R0} = R_{0i}$ с зажимов которого подаётся на один из входов осциллографа.

В индуктивном элементе ток отстаёт по фазе от напряжения на 90°, а в ёмкостном - его опережает на 90°. В RL-, RC- и RLC-ветвях углы сдвига фаз

зависят от значений параметров элементов ветвей и определяются, в общем случае, по формуле $\phi = arctg[(X_L - X_C)/R]$.

Таблица 2

Номер ветви (рис.11)	Элементы ветви	Векторная диаграмма	Угол $\varphi = \Psi_u - \Psi_i$
1		$0 \xrightarrow{I_R} U_R$ $\varphi = 90^{\circ}$	$\varphi = 0$
2	jX_L	$0 \longrightarrow V_{I}$ $\varphi = 90^{\circ}$	$\varphi = 90^{\circ} (\pi/2)$
3	jX_C	$0 \qquad \qquad \downarrow^{I_C} \\ \varphi = 90^{\circ} \\ U_C$	$\varphi = -90^{\circ} (-\pi/2)$
4	$R jX_L$	$0 \longrightarrow U$ I	$\varphi = \operatorname{arctg}(X_L/R)$
5	$R jX_C$	$0 \qquad \varphi < 0 \qquad U$	$\varphi = \operatorname{arctg}(-X_C/R)$
6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$a) X_L > X_C$; см. ветвь 4; $6) X_L < X_C$; см. ветвь 5; $6) X_L = X_C$; см. ветвь 1	$\varphi = \operatorname{arctg}[(X_L - X_C)/R]$

3. Измерение угла ϕ

Значение угла сдвига фаз φ в ветвях схемы цепи определяют косвенным методом, измеряя временные интервалы на осциллограммах, т. е.

$$|\varphi| = 360^{\circ} \Delta t/T$$
,

Рисунок 10

где Δt временной интервал (рисунок 10) между нулевыми значениями синусоид напряжения (синего цвета) и тока (красного цвета); угол ϕ берется со знаком "плюс", если ток отстаёт по фазе от напряжения (см. рисунок 10), и со знаком "минус", если ток опережает по фазе напряжение.

При измерении интервала времени Δt необходимо использовать визирные линии (визиры), расположенные слева и справа экрана осциллографа, на вход канала A которого будем подавать напряжение u (цвет провода 2 - синий), а на вход канала B - напряжение u_{r0} пропорциональное току ветви (цвет провода 1 — красный).

В библиотеке инструментов имеется виртуальный ваттметр XWM (см. рисунок **11**), который измеряет как активную мощность $P = UIcos \varphi$, потребляемую приёмником, так и коэффициент мощности (Power Factor) $cos \varphi = P/UI$, где U и I - напряжение и ток потребителя энергии. Тогда модуль угла сдвига фаз между напряжением и током: $\varphi = arccos(P/UI)$.

Знак угла φ определяют косвенным методом, подключая параллельно нагрузке конденсатор: если при этом коэффициент мощности $cos\varphi$ увеличился (угол φ уменьшился), то угол φ имеет знак "+", и наоборот.

Учебные задания и методические указания к их выполнению

Задание 1 Расчет индуктивного сопротивления \mathbf{X}_L и \mathbf{X}_C

Рассчитать индуктивное сопротивление X_L катушки и ёмкостное сопротивление X_C конденсатора при частотах, указанных в таблице 3, и занести полученные значения сопротивлений в таблицу.

Значения индуктивности катушки и ёмкости конденсатора определить по формулам: L = 100 - 2,5N, м Γ н, C = 100 + 10N, мкф, где N - номер по списку.

Таблица З

Сопротивление X		при частоте <i>f</i> , Гц						
		30	40	50	60	80	100	120
Рассчитано	X_L , Ом							
Измерено	U, B							
	I, A							
	X_L , Ом							
Рассчитано	X_C , Ом							
Измерено	<i>U</i> , B							
	I, A							
	X_C , Ом							

Построить на одном графике $X_L(f)$ и $X_C(f)$. Отметить координаты точки пересечения графиков - возможного режима резонанса напряжений при последовательном соединении катушки и конденсатора между собой и с источником синусоидального напряжения.

Задание 2 Настройка схемы

Собрать схему (рисунок 11) цепи на рабочем поле и установить:

- синий цвет провода, подходящего к каналу A осциллографа, и красный для провода, подходящего к каналу B осциллографа;
- параметры пассивных элементов:

$$R_0=1$$
 мОм; $R_1=R_4=R_5=R_6=int(120/N)$, Ом; $L_2=L_4=L_6=100$ - 2,5 N , мГн; $C_3=C_5=C_6=100+10N$, мк Φ ;

- параметры идеального источника синусоидального напряжения V_1 : ЭДС $E=10~\mathrm{B}$ (действующее значение), $f=50~\mathrm{\Gamma u};~\Psi_u=0;$
- режим работы AC амперметра U_1 и вольтметра U_2 ;
- чувствительность 5 В/дел (5 V/div) канала А осциллографа, в котором регистрируется напряжение ветви (входное), чувствительность 2 мВ/дел (mV/div) канала В, в котором регистрируется напряжение снимаемое с резистора R_0 ; длительность развертки (TIME BASE) 2 мс/дел (2 ms/div);
- ключи Q, W, E, R, T и Y управляются соответствующими клавишами.

Рисунок 11

Задание З Измерения в цепях с одним элементом

Провести измерение токов, напряжений и углов сдвига фаз между ними в ветвях, содержащих соответственно резистивный R_1 , индуктивный L_2 и емкостный C_3 элементы.

Для этого:

- подключить резистор R_1 к источнику синусоидального напряжения V_1 , запустить моделирование и убедиться (анализируя осциллограммы на экране осциллографа), что угол сдвига фаз между напряжением и током равен нулю. Ток $I_1 = U/R_1$;
- отключить резистор R_1 и подключить катушку L_2 к источнику V_1 . Показания вольтметра U_2 и амперметра U_1 при f=50 Γ Ц занести в таблицу 3. Изменяя ступенчато частоту напряжения (30, 40, 50, 60, 80, 100, 120 Γ Ц), заносить показания вольтметра и амперметра в таблицу 3. Рассчитать сопротивление $X_{L2}(f) = U_L/I_L$ и сравнить полученные значения со значениями, полученными при выполнении задания 1. Убедиться (анализируя осциллограммы), что ток i_L отстает по фазе от напряжения u_L на угол $\varphi=90^\circ$. Перенести в отчёт осциллограммы $u_L(t)$ и $i_L(t)$ при f=50 Γ Ц;
- повторить предыдущее задание относительно конденсатора C_3 , предварительно отключив от источника ветвь с элементом L_2 и подключив к источнику V_1 ветвь с конденсатором C_3 . Показания приборов заносить в таблицу 3. Рассчитать сопротивление конденсатора $X_{C3}(f) = U_C/I_C$ (см. табл. 3) и сравнить полученные значения со значениями, найденными при выполнении задания 1. Убедиться (анализируя осциллограммы), что ток i_C опережает по фазе напряжение u_C на угол $\varphi = 90^\circ$.
- Перенести в отчёт осциллограммы $u_C(t)$ и $i_C(t)$ при f=50 Гц.

Задание 4 Измерения в RL, RC и RLC ветвях

Провести измерения токов, напряжений и углов сдвига фаз между ними в ветвях, содержащих соответственно RL-, RC- и RLC-элементы.

- установить частоту f = 50 Гц источника напряжения V_1 и подключить к нему ветвь R_4L_4 , предварительно отключив ветвь с конденсатором C_3 . Показания приборов занести в таблицу 4. Угол φ определить косвенным методом, воспользовавшись осциллограммами напряжения и тока ветви, или из показания ваттметра XWM1. Для удобства измерений изменяйте чувствительность каналов и длительность развёртки осциллографа. Угол φ определить по Φ ЧХ с помощью Плоттера Боде XBP1, воспользовавшись вкладкой Phase.
- Рассчитать полное Z_4 , активное R_4 и реактивное X_{L4} сопротивления ветви R_4L_4 и занести их значения в таблицу 4. Убедиться, что ток i в RL-ветви отстаёт по фазе от напряжения u на угол $\varphi_4 = arctg(X_{L4}/R_4)$; Перенести в отчёт осциллограммы напряжения и тока RL-ветви;

Таблица 4

	Измерено		Рассчитано			
Ветвь	II D	ΤΛ	o EDDI	Z = U/I,	$R = Z\cos\varphi$,	$X = Z\sin\varphi$,
	О, Б	$U, B \mid I, A$	φ , град	Ом	Ом	Ом
R_4L_4						
R_5C_5						
$R_6L_6C_6$						

- повторить предыдущее задание для ветви R_5C_5 , предварительно отключив от источника V_1 четвёртую ветвь. Убедиться, что ток i в RC-ветви опережает по фазе напряжения и на угол $\varphi_5 = arctg(X_{C5}/R_5)$;
- зарисовать осциллограммы напряжения и тока RC-ветви;
- повторить предыдущее задание для ветви с элементами R_6 , L_6 и C_6 , предварительно отключив от источника V_1 пятую ветвь. Убедится, что в

RLC-ветви угол сдвига фаз φ_6 между напряжением и током зависит от величины реактивного сопротивления $X_6 = X_{L6}$ - X_{C6} .

• Если при частоте f = 50 Гц, угол $\varphi_6 = arctg(X_{L6} - X_{C6})/R_6 > 0$, то, уменьшив частоту до 20-30 Гц, угол φ_6 изменит свой знак, и наоборот, если при f = 50 Гц, угол $\varphi_6 < 0$, то, увеличив частоту f до 100...120 Гц, ток будет отставать по фазе от напряжения, при этом угол $\varphi_6 > 0$.

Рисунок 12

В качестве примера на рисунке 12 представлены осциллограммы напряжения и тока $R_6L_6C_6$ -ветви, показание ваттметра XWM1 и Плоттера Боде XBP1 при указанных на рисунке 11 параметрах элементов схемы. Анализ осциллограмм показывает, что ток i_6 опережает по фазе напряжение u_6 на угол: $\varphi_6 = -360^{\circ}\Delta t/T \approx -360^{\circ} \cdot 2,847/4 \cdot 5 \approx -51,3^{\circ}$

Воспользовавшись показанием ваттметра XWM1, находим модуль угла:

$$|\varphi_6| = \arccos(0,624) = 51,4^{\circ}.$$

Содержание отчёта

1. Наименование и цель работы.

- 2. Электрические расчётные схемы и копия схемы цепи, собранной в Multisim.
- 3. Расчётные формулы, векторные и временные диаграммы напряжений и токов ветвей цепи.
- 4. Таблицы с расчётными и экспериментальными данными.
- 5. Графики $X_L(f)$ и $X_C(f)$.
- 6. Выводы по работе.