

Performance Evaluation of Quantum ESPRESSO on SX-ACE

REV-A Workshop held on conjunction with the IEEE Cluster 2017 Hawaii, USA September 5th, 2017

Osamu Watanabe

Akihiro Musa

Hiroaki Hokari

Shivanshu Singh

Raghunandan Mathur

Hiroaki Kobayashi

(NEC Corp. | Tohoku Univ.)

(NEC Corp. | Tohoku Univ.)

(NEC Corp.)

(NEC Technologies India)

(NEC Technologies India)

(Tohoku Univ.)

Outline

Introduction

Quantum ESPRESSO Overview

SX-ACE Overview

Performance Evaluation

Conclusions

Introduction

- Background
- Motivation

Background

- Recent trends of computer simulation codes in HPC
 - Various computer simulation codes have been developed as open-source software (OSS).
 - Major processors adopt a concept of a vector processing to further improve the computational performance.
 - Computer simulation codes need to follow the vector processing manner to have a benefit of such high performance potential.

Motivation

- Evaluation and analysis of OSS codes on vector systems (NEC SX-ACE)
 - OSS code: Quantum ESPRESSO
 - Quantum ESPRESSO (QE) is one of the major applications in materials science.
 - •QE is widely used as a first-principle calculation application.

Quantum ESPRESSO Overview

- Quantum ESPRESSO
- Packages and Plug-ins
- Programming language and parallelization
- Parallelization levels in QE

Quantum ESPRESSO

(opEn-Source Package for Research in Electronic Structure, Simulation, and Optimization)

- An integrated suite of Open-Source computer codes for electronicstructure calculations and materials modeling at the nanoscale
- Based on density-functional theory, plane waves, and pseudopotentials

http://www.quantum-espresso.org/

Packages and Plug-ins

- QE consists of various packages and plug-ins
 - PWscf and CP are key packages

Programing language and parallelization

- Language
 - Fortran90 + some Fortran2003 features & C
- Parallelization
 - MPI, OpenMP
 - •In this evaluation, we use pure MPI for the parallelization
- Numerical Library
 - BLAS, LAPACK (ScaLAPACK), FFT
 - •QE supports several vendor's numerical libraries

Parallelization levels in QE

- Several MPI parallelization levels are implemented in Quantum ESPRESSO.
- Both calculations and data structures are distributed across processors in the MPI parallelization levels.

SX-ACE Overview

- SX-ACE
- SX-ACE processor

CV	ctam	
ر ک	Stelli	

# of nodes	1,024
Theoretical perf.	262 Tflop/s
Memory capacity	64 TB
Interconnect	4 GB/s x 2 (bidirectional)/node

SX-ACE processor

Core					
Theoretical perf.	64 Gflop/s				
ADB capacity	1 MB				
ADB bandwidth	256 GB/s				
CPU					
# of cores	4				
Theoretical perf.	256 Gflop/s				
Memory bandwidth	256 GB/s				
Node					
# of CPU	1				
Memory capacity	64 GB				

Performance Evaluation

- Dataset
- Performance of original PWscf(per CPU)
- Distribution of main numerical computations
- Performance improvement
- Parallelization levels
- Scalability
- Comparison with Intel Xeon server

Dataset

Using open benchmark dataset and research dataset

Benchmark datasets obtained from QE official site

(http://www.quantum-espresso.org/benchmarks)

 Research dataset provided from The Institute for Solid State Physics (ISSP), the University of Tokyo

Data set	Test case	Detail	# atoms	G-vecs	k-points	FFT dimensions	# electrons	# bands	kinetic- energy cutoff	charge density cutoff
Benckmark	AUSURF112	a 112-atom gold surface	112	dense: 2,158,381 smooth: 763,307	2	dense: (180,90,288) smooth: (125,64,200)	1232	800	25 Ry	200 Ry
	GRIR443	a carbon-iridium complex (C200Ir243)	443	2,233,063	4	(180,180,192)	2987	1793	30 Ry	120 Ry
	PSIWAT	Thiol-covered gold surface and waetr	586	dense: 2,195,369 smooth: 776,119	4	dense: (90,180,288) smooth: (64,125,200)	2552	1531	25 Ry	200 Ry
	GRIR686	a carbon-iridium complex (C200Ir486)	686	2,469,147	4	(180,180,216)	5174	3104	30 Ry	120 Ry
	CNT10POR8	one hydrogen-saturated carbon nanotube with four porphirn rings chemically linked to the CNT surface (C116416N32H320)	1532	dense: 55,274,481 smooth: 19,543,423	1 (Γ point)	dense: (540,540,540) smooth: (375,375,375)	5232	2616	25 Ry	200 Ry
Research	Pb164	Slabmodel consisting of Pb(111) surface and probe (Pb)	164	dense: 5,844,523 smooth: 2,066,193	4	dense: (450,180,180) smooth: (320,125,125)	2296	1378	50 Ry	400 Ry

: Factors affecting computation amount

© NEC Corporation 2017

Performance of original PWscf on SX-ACE (per CPU)

- Performance on SX-ACE is very high in all datasets
 - Vector operation ratios are over 98.9%
 - Average vector lengths are over 180
 - Efficiencies are over 50%

PWscf is suitable for SX-ACE

Distribution of main numerical computations

- Matrix multiplication execution time is dominant
 - This extracts very high efficiency (close to 90%)
- Need to improvement in eigenvalue calculation and FFT for further speed-up

Improvement in eigenvalue calculation

No room for applying any optimization to ScaLAPACK routine PZHEEVD from a user side directly.

Any other appropriate numerical libraries?

Utilize a highly parallel computing library in place of ScaLAPACK

ELPA (Eigenvalue Solver for Petaflop-Applications)

- A high-performance computational library for the massively parallel solution of symmetric or Hermitian, standard or generalized eigenvalue problems
- The aim to develop and implement an efficient eigenvalue solver for petaflop applications
- OSS (http://elpa.mpcdf.mpg.de/)

Improvement in FFT computations

One-dimensional (1-d) complex-to-complex FFT

ZZFFT (isign, n, scale, x, y, table, work, isys)

n: Number of data points (Vectorized)

One-dimensional (1-d) multiple complex-to-complex FFT

ZZFFTM (isign, n, lot, scale, x, ldx, y, ldy, table, work, isys)

n: Number of data points in a given data set

lot: Number of data sets to transform (Vectorized)

(*) SX MathKeisan FFT I/F is based on HP VECLIB and CRAY LIBSCI 3.1.

Performance improvement

Performance improvement due to speed-up of eigenvalue calculation and FFT

Comparison with Intel Xeon server (LX 406Re-2)

- Performance comparison on almost same theoretical peak performance $(7.4\sim7.7 \text{ Tflop/s})$
 - The efficiencies on both SX-ACE and LX are over 50% of the peak performance
 - The execution time on SX-ACE is 1.15 times faster than that on LX 406Re-2.

PWscf is suitable for a vector architecture!

Parallelization levels: all levels = 1

Scalability in the case of all parallelization levels:1

(# of MPI processes: variable, pools=1, linear-algebra group=1, tasks=1)

- Matrix multiplication executes in parallel.
- Eigenvalue calculation executes in serial.
- •FFT communication (alltoall) time increases with increase in number of MPI processes.

Parallelization levels: k-point parallelization

Scalability in the case of distributed k-points

(# of MPI processes: 192mpi, $pools=1\sim4$, linear-algebra group=1, tasks=1)

- Matrix multiplication is not affected.
- Eigenvalue calculation executes in parallel.
- FFT communication (alltoall) time decreases with increase of pools.

Parallelization levels: Linear-Algebra parallelization

Scalability in the case of distributed subspace hamiltonians and constrains matrices

(# of MPI processes: 192mpi, pools=1, $linear algebra group=<math>1 \sim 169$, tasks=1)

- Matrix multiplication and FFT are not affected.
- Eigenvalue execution time decreases with increase of linear algebra group.
 - The effect is good for lesser number of linear algebra group (\sim 16).

Parallelization levels: Task-group parallelization

Scalability in the case of distributed FFT on electron states (# of MPI processes: 192mpi, pools=1, linear-algebra group=1, tasks=1~32)

- Matrix multiplication and eigenvalue calculation are not affected.
- Effect on FFT calculation time is not much.
- •FFT communication (alltoall) time decreases with increase of tasks up to 4.

Parallelization levels: Task-group parallelization

Scalability in the case of distributed FFT on electron states (# of MPI processes: 192mpi, pools=4, linear-algebra group=36, tasks=1~32)

- When used with other parallelization levels, increase of tasks has an effect slightly on reduction of FFT execution time.
 - Especially, FFT communication (alltoall) time is reduced.

Scalability

- After the optimization (library replacement), the parallelization ratio improves from 99.54% to 99.66% on avarage
 - Both optimizations (eigenvalue calculation and FFT) shows good effect.

Conclusions

- Conclusion
- Future work

Conclusion

- PWscf can be executed very efficient on a vector architecture.
 - PWscf can achieve high performance on SX-ACE.
 - The vector function on Intel Xeon also works with the vectorization of PWscf.
- The performance of PWscf depends on numerical libraries and parallelization levels.
 - •1.3 times faster by applying more high-performance numerical libraries' routines.
 - The scalability improvements by using the optimum setting of parallelization levels.

Future work

- Performance evaluation of more packages in QE using latest version.
- Expansion of target OSS applications and computational science areas.
 - •For example, meteorology and climatology, plasma/fusion science, thermal fluid, and so on.

Thank you for your kind attention!

Many thanks to

- Prof. Shinji Tsuneyuki (ISSP, The University of Tokyo)
- Dr. Mitsuaki Kawamura (ISSP, The University of Tokyo)
- Cyberscience Center, Tohoku University