Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

Группа Р3115	Работа выполнена <u>12.06.2021</u>
Студент <u>Девяткин Арсений</u>	Отчет сдан
Преподаватель Боярский К.К.	Отчет принят
Рабочий проток лабораторной р «Опыт Мил	работе № 3.12

Цель работы

- 1. Исследование движения заряженных капель в электрическом и гравитационном полях.
- 2. Определение величины элементарного заряда.

Задачи, решаемые при выполнении работы

- 1. Измерение скоростей движения капель масла при различных напряжениях и направлениях электрического поля.
- 2. Определение радиуса и заряда капель.

Объект исследования

Капли масла.

Метод экспериментального исследования

Имеется микроскоп, распылитель масла и воздушный конденсатор. В пространство между горизонтально расположенными пластинами воздушного конденсатора впрыскивают из пульверизатора капли масла. При впрыскивании за счет трения о воздух на каплях возникает электрический заряд. Через микроскоп наблюдается поведение(передвижения) капель в конденсаторе, замеряется время и записывается в таблицу. Используя результаты вычислений, вычисляем скорость движения капель, радиус и величину заряда у каждой капли, затем строим график, наглядно демонстрирующий значения радиусов и зарядов капель в виде набора точек. На основании графика, оценим величину элементарно заряда для каждой строки таблицы $e_i = \frac{q_i}{n}$. Далее найдём среднее значение оценки элементарного заряда и его среднеквадратичное отклонение.

Исходные данные:

- 1. Ускорение свободного падения g = 9.81 м/с2
- 2. Плотность масла $\rho o = 875,3 \text{ кг/м3}$
- 3. Плотность воздуха $\rho = 1,29$ кг/м3
- 4. Вязкость воздуха $\eta = 1.81 \cdot 10-5 \; \text{H} \cdot \text{c/m}2$

- 5. Расстояние между обкладками конденсатора d = 6 мм
- 6. Расстояние между крайними рисками Δy =1,066*10-3 м

Рабочие формулы:

 $1)C_r=rac{3}{2}\sqrt{rac{\eta}{(
ho_0ho)g}}$ — константа, определяемая параметрами экспериментальной установки, где η (η =1,81*10⁻⁵ H*c/м²) — вязкость воздуха, ρ (ρ =1,29 кг/м³), ρ 0 (ρ 0=875,3 кг/м³) — плотность масла, g (g=9,81 м/с²) — ускорение свободного падения;

- 2) $C_q = \frac{9}{2}\pi d\sqrt{\frac{\eta^3}{(\rho_0 \rho)g}}$ константа, определяемая параметрами экспериментальной установки, где d (d= 6 мм) расстояние между обкладками конденсатора;
- 3) $r = C_r \sqrt{\vartheta_1 \vartheta_2}$ радиус капли(м), где ϑ_1 скорость(м/с), с которой капля опускается, ϑ_2 скорость, с которой капля поднимается;
- 4) q = $C_q \frac{(\vartheta_1 + \vartheta_2)\sqrt{\vartheta_1 \vartheta_2}}{U}$ величина заряда(Кл), где U напряжение(В);
- 5) $\langle e \rangle = \frac{1}{N} \sum_{i=1}^{N} e_i$ значение оценки элементарного заряда(Кл), где N = 23, e_i величина элементарного заряда капли;

6)
$$\sigma_e = \sqrt{\frac{1}{N(N-1)}*\sum_{i=1}^N (e_i - \langle e \rangle)^2}$$
 — среднеквадратичное отклонение.

Измерительные приборы

Nº n/n	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора	
1	Секундомер	Цифровой	0 – 100 c	0,005 c	
2	Измеритель напряжения	Прибор непосредственной оценки	0 – 500(B)		

Схема установки

Результаты прямых измерений и их обработки

Таблица 1.

Nº	U,B	t_1, c	t_2, c	$u_1, 10^{-5}$	u_2 , 10^{-5}	$r, 10^{-7} (M)$	q, 10 ⁻¹⁹ Кл	n	e, 10 ⁻¹⁹ Кл
			(1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(M/c)	(M/c)				
1	104	13,6	29,43	7,84	3,62	4,48	5,05	3	1,68
2	111	9,73	54,1	10,96	1,97	6,53	7,79	5	1,56
3	124	8,98	24,5	11,87	4,35	5,97	8	5	1,6
4	127	8,63	18,47	12,35	5,77	5,59	8,16	5	1,63
5	132	13,6	17,87	7,84	5,97	2,98	3,19	2	1,6
6	140	19,37	24,07	5,5	4,43	2,25	1,64	1	1,64
7	150	7,82	20,6	13,63	5,17	6,34	8,13	5	1,63
8	155	12,62	13,48	8,45	7,91	1,6	1,73	1	1,73
9	163	7,35	23,48	14,5	4,54	6,88	8,22	5	1,64
10	170	10,34	41,91	10,31	2,54	6,07	4,7	3	1,57
11	178	18,97	52,17	5,62	2,04	4,12	1,82	1	1,82
12	188	6,63	34,77	16,08	3,07	7,86	8,19	5	1,64
13	193	7,44	12,95	14,33	8,23	5,38	6,44	4	1,61
14	209	5,98	9,98	17,83	10,68	5,83	8,13	5	1,63
15	220	8	13,58	13,33	7,85	5,1	5,02	3	1,67
16	229	6,43	10,39	16,58	10,26	5,48	6,57	4	1,64
17	238	7,98	44,18	13,36	2,41	7,21	4,89	3	1,63
18	245	5,63	11,1	18,93	9,6	6,66	7,93	5	1,59
19	258	9,84	36,07	10,83	2,96	6,11	3,34	2	1,67
20	270	9,97	32,11	10,69	3,32	5,91	3,14	2	1,57
21	280	5,93	13,15	17,98	8,11	6,85	6,53	4	1,63
22	284	6,92	80,72	15,4	1,32	8,18	4,93	3	1,64
23	294	8,99	16,23	11,86	6,57	5,01	3,21	2	1,61

Расчет результатов косвенных измерений, примеры расчетов

Скорости были вычислены по данной формуле:

$$u_i = \frac{S}{t_i}$$

Где
$$S = 5.33 \times 10^{-5} \times 20 = 106.6 \times 10^{-5} (M)$$

Пример вычисления первой скорости (1 строка):

$$u_1 = \frac{106,6 \times 10^{-5}}{13,6} = 7,84 \times 10^{-5} (\text{m/c})$$

Вычисление C_r и C_q :

$$C_r = \frac{3}{2} \sqrt{\frac{\eta}{(\rho_0 - \rho)g}} = \frac{3}{2} \sqrt{\frac{1,81 \times 10^{-5}}{(875,3 - 1,29) \times 9,81}} = 6,89 \times 10^{-5} (\sqrt{\text{M} \times \text{C}})$$

$$\begin{split} C_q &= \frac{9}{2}\pi d \sqrt{\frac{\eta^3}{(\rho_0 - \rho)g}} = \frac{9}{2} \times 3,14 \times 0,006 \sqrt{\frac{(1,81 \times 10^{-5})^3}{(875,3 - 1,29) \times 9,81}} \\ &= 7,05 \times 10^{-11} (\text{KT} \times \sqrt{\frac{\text{M}}{c}}) \\ &r = C_r \sqrt{u_1 - u_2} \end{split}$$

Пример вычисления радиусов:

$$r_1 = C_r \sqrt{u_{11} - u_{12}} = 6,89 \times 10^{-5} \times \sqrt{(7,84 - 3,62) \times 10^{-5}} = 4,48 \times 10^{-7} (\text{M})$$

$$q_i = C_q \frac{(u_{i1} + u_{i2}) \sqrt{u_{i1} - u_{i2}}}{U}$$

Пример вычисления зарядов

$$q_1 = C_q \frac{(u_{11} + u_{12})\sqrt{u_{11} - u_{12}}}{U}$$

$$= 7,05 \times 10^{-11} \times \frac{(7,84 + 3,62) \times 10^{-5} \sqrt{(7,84 - 3,62) \times 10^{-5}}}{104}$$

$$= 5,05 \times 10^{-19} (\text{Кл})$$

$$e_i = \frac{q_i}{n}$$

Пример вычисления значения электронного заряда:

$$e_1 = \frac{q_1}{n} = \frac{5,05}{3} = 1,68(10^{-19} \text{K}\pi)$$

Расчет погрешностей

Среднее значение элементарного заряда:

$$\langle e \rangle = \frac{1}{N} \sum_{i=1}^{N} e_i$$

$$\langle e \rangle = \frac{1}{N} \sum_{i=1}^{N} e_i = \frac{1}{23} (1,68 + 1,56 + \dots + 1,61) = 1,64 (10^{-19} \text{Кл})$$

Среднеквадратичное отклонение элементарного заряда:

$$\begin{split} \sigma_e &= \sqrt{\frac{1}{N(N-1)}} \sum_{i=1}^{N} (e_i - \langle e \rangle)^2 \\ &= \sqrt{\frac{1}{23 \times 22}} ((1,68-1,64)^2 + \dots + (1,61-1,64)^2) \\ &= 0,011 (10^{-19} \text{K}\pi) \\ \varepsilon &= \frac{\Delta_e}{e_{\text{Ta}6\pi}} \times 100\% = \frac{1,64-1,602}{1,602} \times 100\% = 2,37\% \end{split}$$

Графики

График радиусов и капель

Исходя из данного графика, был получен столбец п (Таблица 1).

Окончательные результаты

Интервал полученных значений радиусов капель:

$$r \in [1,6;8,18] \times 10^{-7} (M)$$

Интервал значений зарядов капель:

$$q \in [1,64;8,22] \times 10^{-19} (Кл)$$

Оценим полученное значение элементарного заряда с табличным значением, найдя относительную погрешность (приведено в пункте погрешности):

$$\varepsilon = 2.37\%$$

Погрешность определенного значения элементарного заряда достаточно мала, следовательно, результат получился достаточно точным.

Вывод

Оценочное значение элементарного заряда, полученное в ходе выполнения данной работы, превышает табличное значение на 2,37%. Это обусловлено погрешностями при снятии показаний, округлением, а также приблизительный метод вычисления скорости капли (скорость рассчитывалась как средняя на промежутке, в то время как она не была равномерной).