189的八位二进制补码为()
A.B9H B. 89H C.A7H 00100111B
2.8086为16位的CPU,说明()
A.8086CPU内有16条数据线 B.8086CPU内有16个寄存器
C.8086CPU外有16条地址线 D.8086CPU外有16条控制线
3.8255A的控制线为CS=0,TD=0,A0=0,A1=0时,完成的工作是()
A.将A通道数据读入 B.将B通道数据读入
C.将C通道数据读入 D.将控制字寄存器数据读入
4.若8259A的初始化命令字ICW2的值为2AH,说明8259A8个中断源IRO~
IR7所对应的中断类型号为()
A.2AH-32H B.28H-2FH C.22H-2AH D.A8H-AFH
5.8086/8088CPU中,由逻辑地址形成存储器物理地址方法是()
A.段基址+偏移地址 B.段基址*16+偏移地址 C. 段基址*16H. P. 经基址*16+偏移地址
C.段基址*16H+偏移地址 D.段基址*10+偏移地址
6.若可屏蔽中断类型号为32H,则他的中断向量应存放在以()开始的4字节单元中 A.00032H B.00128H C.000C8H D.00320H
7.执行以下指令后,SP寄存器的值应是()
MOV SP, 100H
PUSH AX
A.00FFH B.00FEH C.0101H D.0102H
8.8086/8088CPU对I/O端口是用()编制方法
A.独立 B.统一 C.直接 D.间接
9.二进制数1000000B转换为压缩BCD码为()
A.00000001 00101000B B.00000010 01010010B
C.00000010 00111000B D.00000010 00110010B
10.用数据定义伪指令定义数据: DA1 DW 4 DUP (0, 2 DUP (1, 0))占字节单元数是()
A.4 B.12 C.20 D.40
填空题
1、高速缓存Cache芯片一般是用存储器构成,主存储器是用
存储器构成。
2、8086/8088CPU使用根地址线对I/O端口寻址,可寻址范围为
字节。
3、8255A中工作方式具有中断申请功能 4、8253的地址是80H~83H,计数器1的CLK1=
·
2KHZ, OUT1每隔250ms输出一个CLK周期的负脉冲, GATE=1, 则该计数器的方式字中是,写入的地址是,计数值是,写入的地址是
, コハゖン心址た, り 双 但た, コハゖン心址だ

判断题

- 1. 若管理24的中断源需要3片8259
- 2. 8086/8088CPU可屏蔽中断INTR的中断请求信号为高电平有效
- 3. 8086/8088CPU对堆栈存取操作是以字节为单位的。当堆栈存入数据时、SP减1、当从堆栈取 出数据时、SP加1.
- 4. 若X正=X反=X补,则该数为正数。
- 5. 在8086/8088CPU中,两个符号数的运算结果产生溢出时,状态标识符OF=1
- 6. 一个接口中必须要有锁存器
- 7. 8086/8088CPU响应不可屏蔽中断NMI 请求的条件是标志位IF置0
- 8. 8086CPU将1MB的存储空间分为奇地址区和偶地址区
- 9. 8086/8088CPU的中可利用地址有效控制线ALE,对地址/数据复用线进行锁存,获取地址信
- 10.8086CPU 中包含了寄存器和存储器。

简答题

- 1、什么是统一编址?什么是独立编址?各有何特点?
- 2、8259A中ICW1, OCW2, OCW3中共享同一个地址, 如何区分他们?
- 3、阅读下列程序段,试问内存数据是如何存放的 DATA SEGMENT DA1 DB -5, 2DUP (45), 'AB' DATA ENDS
- 4、简述半导体存储器接口的设计步骤

编程题
1、执行下列指令后 OF,CF,SF,ZF,AF的状态
MOV AL, 27H
ADD AL, 89H; CF= AF= SF= ZF= OF= PF=
2、写出下面每条指令执行以后,有关寄存器的内容
XORAX, AX $AX=$
MOVAX, 0ABCDH AX=
INC AX $AX = $
MOVCL, 4 CL=
SHRAL, CL AL=
XORAL, 0FFFH AX=
ORAX.6000H $AX=$

MOV SP, 0100H	SP=	
PUSH AX	AX =	
POPBX	BX=	

3、编制完整的汇编语言源程序,实现从键盘输入1个字符,统计其相应的二进制数编码中"1"的个数,在屏幕中显示出来。

应用题

- 1、某8088系统中,工作于最小工作方式,用2764EPROM构成起始地址为F0000H的8K*8bit存储区,试画出存储器接口电源原理图,并指明存储器所占用的地址范围,图5-6给出了2764的引脚示意图,A0~A12为地址线,D0~D7为数据线.....
- 2、在一系统中,用8251实现穿行数据传输,其数据通信格式为:异步通信。1位数据位,15

2014年北京工业大学微型计算机原理控制工程复试试题

ŧ	<u> </u>			_ 姓名_				
			_		_		A 3.1	
题号 	_		=	四	五	六	合计	
分数								
1、80 2、在 3、DM 4、808 5、构 6、80 7、存 8、内 9、多	86CPU的最 8086CPU MA方式不解 36 的不好 或一个最小 86CPU的F 86 复位时, FFFF0H单 新类型码或	小方式是为构成的微机 实现的存与 被中断不不是 8086 CF Ready信号 一元开始行 以一4,就可 通过一条中	nyxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	理器系统而 据可以直接 放据的影需 使件产生)。 (IP) =0 导系统 程序 可 CPU	设计的。 女在几个不完 交换。(但需要从 8086、828 (000H,所以 动时目地址。 以发中断请	(连续的段中) 人数据线上记 32、8286) 人 8086 在 住入系统程序 (忧。(。(東取中断类型 就够了。(复位后重新启 字。()	码。 ()) i动时,便从)
1 A C A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C	A0~A11 和A0~A11 和A0~A11 和A0~A11 和B6 CPU.CS.IP.PSW.CS.IF.B6 上定计地个CP 蔽 PSW.CS.IF.B0 和B6 CP 下点 B6 CP 下点 B6 CP 下点 B6 CP 下点 B6 CP E8 B7 B8 B7 B	0010110.1 150. 片口 响 V ? 可M程 间 N请(保 采3 :100、 有 D0~ 中 存 时 最 可 引)、(中(、分×0,0,0,0,0,0,0,0,0,0,0 2 (),10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0	0B C 顺 间 25数 离45输、刻3 服 吸 20 B C 的 序 的6器 为字入非样升 程断 C 的 容 将 B D 小 芯 B D (节的屏 沿 序结 C 分十、量, (是 , 是 ,	96.5 D B C C D S P E A D C S F E A D C S	地、容、、(、、、大下。C)、、、从、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、	5 和DO~ 110和DO~ 2S.CS) 计数 相入 、 D. 是CS) 。 器器 D 应待 2 当 面	· D15 256 字节 、总线请求]。	

3、若某中断向量为 08H, 则该中断的中断服务子程序的入口地址在中断向量表中的物理

地址范围为()~()。
4、根据以下要求用 一条 指令写出相应的操作:
(1)、把 BX和 DX的内容相加,结果送入 DX中。())
(2)、用寄存器 BX和位移量 0B2H的寄存器相对寻址方式把存贮器中的一个字和(CX)
的内容相加,结果送入该存贮器中。()
(3)、用寄存器 BX和 SI 的基址变址寻址方式把存贮器中的一个字节与 AL 寄存器的内
容相加,结果送入 AL寄存器中。()
(4)、用位移量为 0524H的直接寻址方式把存贮器中的一个字与数 2A59H相加, 并把结
果送入该存贮单元中。()
5、CPU与外设传送的三种信息是()和()及()。
6、CPU与外设交换信息时,有三种常见的输入输出方法,它们分别是:(
和()及()。
7、8255 有两个控制字,它们分别是()和()。
四. 简答如下基本概念题: (5分×5=25分)
1. I/O 接口电路采用统一编址或独立编址时对微处理器有无特殊要求?
2. 8086 系统中 INTR中断与 INT n 中断有什么区别?
3. 什么是动态存储器的刷新? 为什么需要刷新?
4. 如以下 ASCII 码串(包括空格符)依次存贮在起始地址为 CSTRING的字节单元内:
CSTRING DB 'GOOD MORNING'
请编写指令将字符串中的第 3 个和第 5 个字符写入 DX寄存器中。(第 3 个字符在高 8
位,第 5 个字符在低 8 位)
5. 如果 TABLE为数据段中 0020H 单元的符号名,在该单元中存放着 3412H,请指出以下
两条指令有什么区别?每条指令执行后 AX寄存器中的内容是多少?
MOV AX,TABLE
LEA AX,TABLE

五. 硬件电路设计: (10 分 X2=20分)

- 1. 某以 8088 为 CPU的微型计算机内存 RAM区为 00000H~3FFFFH,若采用 6264 (8KX8)、62256(32KX8)、2164(8KX4)、21256(32KX4) 各需要多少芯片? 其各自的片内和片间地址线分别是多少(全地址译码方式)?
- 2. 利用全地址译码将 6264 芯片接在 8088 系统总线上,地址范围为 BE000H~ BFFFFH,试画出连接电路图。

六、(本题 15分,任选其中的一题来做)

- 1.设计并画出一个 8×8 小键盘及接口电路,用文字叙述方式说明键盘及接口的工作原理及行扫描法识别键按下的工作过程。 (规定用一片 8255A 作接口电路,其它元器件自选。)(15分)
- 2. (1) 已知在 ARRAY数组中有 80 个无符号字节数据,编写汇编语言程序段,将 ARRAY数组中的最大值放入 MAX单元中。(5 分)
- (2) 已知有一个 4K 字节的数据块,存放在以 3DA0H 1000H 开始的存储区域内,要求编写一个完整的 8086 汇编语言源程序,将该数据块搬至 3DA0H 1008H 开始的存储区内。 (10 分)

2014 年北京工业大学控制工程复试试题答案

- 一、 判断并陈述理由题(不陈述理由不计分)(1分×10=10分):
- 1、(x) 8086CPU的最大模式 是为实现多处理器系统而设计的。
- 2、(√)在 8086CPU构成的微机系统中的数据可以存放在几个不连续的段中。
- 3、(x) DMA方式可以实现内存与接口之间数据的直接交换。
- 4、(x) 8086 的可屏蔽中断 受到 IF 标志位的影响, 并且需要从数据线上读取中断类型码。
- 5、(x) 构成一个最小 8086 CPU 的微机系统 除了 8086、8282、8286 至少还需要 8284 时钟发生器。
- 6、 (√) 8086CPU的 Ready 信号是由外部硬件产生的。
- 7、($\sqrt{\ }$) 8086 复位时,(CS) = FFFFH,(IP) =0000H,所以 8086 在复位后重新启动时,便从内存的 FFFF0H单元开始执行指令,使得系统在启动时自动进入系统程序。
- 8、(x)中断类型码乘以 4,就可以得到 中断向量的存放地址 。
- 9、(√) 多个外设可以通过 8259A 中断控制器用一条中断请求线向 CPU发中断请求。

10、(×) 8251 是可编程 串行通信接口芯片而 8255 是可编程 并行通信接口芯片。 选择题(1 分×10=10 分) 1 2 3 4 5 6 7 8 9 10 BBCBA ABADD 三、填空(每空 1分×20=20分): 1. 操作码 操作数 2. CS DS ES SS 3. 00020H 00023H 4. (1) ADD DX, BX (2) ADD [BX]0B2H, CX (3) ADD AL, [BX][SI] (4) ADD **WORD PTR** [0524H], 2A59H 5. 数据信息 控制信息 状态信息 6. 程序控制的输入输出方式 中断传送方式 DMA 工作方式 7. 工作方式控制字 置位 /复位控制字 四. 简答如下基本概念题: $(5 分 \times 5 = 25 分)$ 1. I/O 接口电路采用统一编址时对微处理器无特殊要求 , 只需将 I/O 接口电路当作存储对 于一样对待即可; 而独立编址时则对微处理器有特殊要求, 需要 CPU的指令系统中包含有访 内指令和访外指令以及专门的访内操作和访外操作的控制逻辑。 2. INTR是由可屏蔽中断请求引脚 INTR引入的外部硬件中断; 而 INT n 是由软中断指令产 生软件中断? 3. 因为动态存储器所存的信息是放在芯片内部的电容上的. 由于电容的缓慢放电,时间久 了会造成数据的丢失。 为了保证数据不丢失, 必须及时将数据信息读出并照原样写入原单元 的过程称为动态存储器的刷新。 4. LEA BX, CSTRING MOV DH [BX]2 MOV DL [BX]4 5. MOVAX, TABLE ;表示将 TABLE单元的内容送到 AX中。 执行后 AX=3412H或 1234H LEA AX,TABLE ;表示将 TABLE单元的偏移量送到 AX中。 执行后 AX=0020H 五. 硬件电路设计: (10 分 X2=20分) 1. 00000H~ 3FFFFH所占的存储空间为: 40000H=**2**¹⁸=256kX8bit ...若采用 6264 (8KX8) 则需要 (256kX8) /(8kX8)=32 (片) 6264 的片内地址线是 13 根, 片间地址线是 7 根 (全地址译码) ; 62256(32KX8) 则需要(256kX8)/(32kX8)=8 (片) 62256 的片内地址线是 15 根,片间地址线是 5 根(全地址译码); 2164(8KX4) 则需要(256kX8)/(8kX4)=64 (片) 2164 的片内地址线是 13 根,片间地址线是 7 根(全地址译码); 21256(32KX4) 则需要 (256kX8) /(32kX4)=16 (片) 21256 的片内地址线是 15 根, 片间地址线是 5 根(全地址译码);

2. 电路连接图如下:

(本题 15分) 六、

1.

(1) . 电路图如下(6分)

- (2). 电路工作原理: (4分,每个知识点 1分)
 - 1) 8255A的口 A设置为输出状态, PA0~PA7接行线 ROW&ROW
 - 2) 8255A的口 B设置为输入状态, PB0~PB7接列线 C0~C7。
 - 3) 电阻 R为列线上拉电阻,保证列线静态电位为高电平。
 - 4) 行列线交点接一开关,开关按下时将交点上行线逻辑状态送到该交点的列线上。
- (3. 行扫描法识别键按下(5分,每个知识点 1分)
 - 1) 扫描程序首先让 8255A的口 A输出扫描码(初值为 11111110B);
 - 2) 扫描程序读入 8255A的 B口连接的列线状态,判断是否有为逻辑 0 的列线;
 - 3) 若 B口读入有为 0 的位,说明本行有键按下,经移位检测出为 0 的列线序号,与扫描码为 0 位对应的行线序号共同形成键号,转相应键处理程序;
 - 4) 若 B口读入没有为 0 的位,说明本行无键按下,修改扫描码(第二次为 11111101B)
 - 5)转向 1),进行下一次扫描,如此循环直至发现有键按下为止。

2.

(1) . 参考程序:

DATA SEGMENT

ARRAY DB D1,D2,D3,...D80;D1,D2...80 个数据值

MAX DB?

DATA ENDS

CODE SEGMENT

ASSUME CS:CODE,DS:DATA

START: MOV AX, DATA

MOV DS,AX

LEA SI, ARRAY

MOV AH,0

MOV CX,80

AGAIN: MOV AL,[SI]

INC SI

CMP AL, AH

JC NEXT

MOV AH,AL

NEXT: LOOP AGAIN

MOV MAX,AH

MVO AH,4CH

INT 21H

CODE ENDS

END START

说明:没有数据定义不扣分;没有返回 DOS不扣分。如能实现要求功能,用其他语句也可。

(2) . 参考程序:

CODE SEGMENT

ASUME CS:CODE

START:

MOV AX,3DA0H

MOV DS,AX

MOV ES,AX

MOV SI,1FFFH

MOV DI,1FFFH+8

MOV CX,1000H

STD

REP MOVSB

MOV AH,4CH

INT 21H

CODE ENDS END START

说明: 如能实现要求功能, 用其他语句也可。数据传送必须从后向前进行。