

## 2021 ~ 2022 学年第一学期

## 《微积分(一)》(上)期中考试试卷(闭卷,启明学院用)

院(系) \_\_\_\_\_\_\_\_ 专业班级\_\_\_\_\_\_\_\_ 学号\_\_\_\_\_\_\_\_ 姓名\_\_\_\_\_\_\_

考试日期: 2021-11-21

考试时间: 8:30-10:30AM

| 题号 | <br>= | 三 | 四 | 五. | 总分 |
|----|-------|---|---|----|----|
| 得分 |       |   |   |    |    |

| 得 分 |  |
|-----|--|
| 评卷人 |  |

一. 填空题 (每小题 4 分, 共 20 分)

1.  $\exists \exists \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = a \; \exists \; a_n > 0 (n = 1, 2, \cdots), \; \exists \exists \lim_{n \to \infty} a_n^{\frac{1}{n}} = \underline{\qquad}.$ 

2. 
$$\sup\{r \in Q : r^2 < 2\} = \underline{\hspace{1cm}}$$

3. 
$$\lim_{n\to\infty} \left(1 + \frac{1}{n} + \frac{1}{n^2}\right)^n = \underline{\hspace{1cm}}$$

4. 设 
$$y = \arcsin(\ln u(x) - v^2(x))$$
,  $u(x), v(x)$  可微,

## 得 分 评卷人

二. 选择题(每小题 4 分, 共 12 分)

1. 当n→∞,如下收敛的是\_\_\_\_\_.

A. 
$$\frac{1}{1} + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{n}}$$

$$B. \left(1 + \frac{1}{n^2}\right)^{n^3}$$

C. 
$$\sqrt{n+3} - \sqrt{n-1}$$

D. 
$$\sin n(\pi+1)$$

- 2. 下列叙述错误的是 \_\_\_\_\_.
- A. 单调函数的间断点都是第一类间断点

- B.  $o(x^2) = O(\sin x)(x \rightarrow 0)$
- C. 有界数列必有收敛子列,且都收敛到同一个极限
- D.  $\sin \frac{1}{x}$ 在(1,+∞)上一致连续
- 3. 设函数 $f(x) = \sqrt{1+x} \tan x \pm x = 0$  处的 3 次泰勒多项式为 $ax + bx^2 + cx^3$ ,则\_\_\_\_\_\_.
- A.  $a = 1, b = 2, c = \frac{5}{24}$
- B.  $a = 1, b = 2, c = -\frac{5}{24}$
- C.  $a = 1, b = \frac{1}{2}, c = -\frac{5}{24}$
- D.  $a = 1, b = \frac{1}{2}, c = \frac{5}{24}$

得 分

评卷人

三. 计算题 (每小题 7分, 共 28 分)

1. 设 $\lim_{n\to\infty} a_n = a$ ,计算 $\lim_{n\to\infty} \frac{a_1 + 2a_2 + \dots + na_n}{n(n+1)}$ .

2. 计算 
$$\lim_{x\to 0} \left(\frac{\sin x}{x}\right)^{\frac{1}{x^2}}$$
.

四. 解答题 (每小题 8 分, 共 16 分)

| 得分  |  |
|-----|--|
| 评卷人 |  |

1. 在什么条件下,函数  $f(x) = \begin{cases} x^n \sin \frac{1}{x}, & x \neq 0, \\ 0, & x = 0, \end{cases}$   $(n = 0,1,2,\cdots)$ 

- (1)在 x = 0 处连续;
- (2)在x = 0处可导;
- (3)在x=0处导函数连续.

2. 已知函数 f(x) 在开区间 (a,b) 上有连续的导函数,且导函数在端点的单侧极限 f'(a+) 与 f'(b-) 都存在且有限,请论证函数 f(x) 在 (a,b) 上的一致连续性.

## 五.证明题(第1题6分,第2、3题各9分,共24分)

| 得 分 |  |
|-----|--|
| 评卷人 |  |

1. 设 f(x) 在 (a,b) 上连续且在端点的单侧极限发散至  $+\infty$ ,即  $f(a+)=+\infty$  与  $f(b-)=+\infty$ ,证明: f(x) 在 (a,b) 上有最小值.

2. 已知数列满足  $x_1 = a$  ,  $0 < a < \frac{\pi}{2}$  且  $x_{n+1} = \sin x_n \ (n = 1, 2, 3, \cdots)$  , 证明:  $(1)\lim_{n\to\infty}x_n=0$ ;

$$(2)\lim_{n\to\infty}\sqrt{\frac{n}{3}}x_n=1\,.$$

| 3. | 设函数 <i>f</i> ( | (x) 在[0,1]上達 | 连续, <i>f</i> (0) = | = 0. 在(0,1) | 中 $f(x)$ 可导 | <sup>1</sup> ·且   f'(x) ≤ | f(x). 证明: | $f(x) \equiv 0.$ |
|----|----------------|--------------|--------------------|-------------|-------------|---------------------------|-----------|------------------|
|    |                |              |                    |             |             |                           |           |                  |