诚实守信

线

重庆大学《操作系统》课程试卷

● B券

2016-2017 学年第一学期

开课学院: 计算机学院课程号: 18012035 考试日期:

考试方式: ●开卷 ●闭卷 ●其他

考试时间: 120 分钟

题号	_	 111	四	五	六	七	八	九	十	总分
得分										

考试提示

1.严禁随身携带通讯工具等电子设备参加考试;

2.考试作弊,留校察看,毕业当年不授学位;请人代考、 替他人考试、两次及以上作弊等,属严重作弊,开除学籍。

Part I:True / False Questions (12 points)

- 1. () The OS is a kind of application program, it manages all hardware resources to work together.
- 2. () A relocation register is used to check for invalid memory addresses generated by a CPU.
- 3. () Monitors are a theoretical concept and are not practiced in modern programming languages.
- 4. () When a user-level thread is created, it cannot be scheduled directly by kernel because the kernel can't realize it.
- 5. () Most SMP systems try to avoid migration of processes from one processor to another and attempt to keep a process running on the same processor. This is known as processor affinity.
- 6. () Record semaphore may cause the problem of busy waiting.
- 7. () A deadlocked state is an unsafe state, all unsafe states are deadlocks.

- 8. () In segmentation memory management, to access an operand needs access memory twice.
- 9. () The system thrashing occurs lots of page-faults. It can result in severe performance problems.
- 10. () All files in a single-level directory must have unique names.
- 11. () When continuously reading data on the same cylinder and different disk surface, It is not necessary to move the heads.
- 12. () Users can use the computer hardware features without going through the operating system.

Part II: Single Choice (22 points)

- 1、Which one of the following descriptions about command-interpreter (命令解释程序) is correct? ()
 - A. the interface between the user and the OS
 - B. allows users to directly enter commands
 - C. In the kernel or as a special program
 - D. the program to interpret commands
- 2. Which of the following does not correct for memory sharing and message passing? ()
- A. Shared-memory is faster than message passing scheme because data sharing does not need to switch between kernel and user space
- B. Shared-memory scheme does not need kernel support. User can do it by themselves.
 - C. message passing highly replies on the support of kernel.
- D. message passing scheme is easy to use for users since most of its function is provided by kernel.
- In five states of a process, () state can convert from the other three states.
 - A. NEW
- B. RUN
- C. READY
- D. WAIT
- $4\$, A thread is a basic unit of CPU utilization, It shares with other threads belonging to the same process the $\$ ($\$)
 - A. code section B. program counter
- C. register set
- D. stack

		•		critical section, S		ual exclusion	<u>Par</u>	t 1	I and II	Answe	<u>er</u>								
sem	_			ximum value are C3, 1 D.					1 2	3	4	5	6	7	8	9	10	11	12
	A5, 5	Б	5, 0	C3, 1 D.	2, 1		I												
6、		_		dresses is used by	y CPU ().		+											
	A. physica C. logical			 linear address relative address 	1		II												
	e. logical		D	. Totalive address	,				•	1	1	•	•				1		
7. In paging system, the size of a page is 1K bytes, if Page ID Frame ID								Part III : Fill in the blanks (10 points)											
-	a process has a page table as right, the logical address of an instruction is 463, its corresponding physical address is ()								1. For an operating systems can be designed in different structure, including simple structure, layered, and										
add	ress is ()															ماييام		:£	4:
	A. 2660.	B.7583	C.7168	D.4559	2	7		2 is the important structure for a process. It includes much information about a specific process.									nauon		
	3 9 3. There are three types of operational including, and									tions can be used for semaphore,									
8、In order to better use memory space, which of the following methods can be used? () A. caching B. swapping C. SPOOLing D. absolute loading 9、The Belady's anomal (异常现象) probably occurs in () page-replacement algorithm. A.OPT B.FIFO C.LRU D.none 10、which of the following CPU scheduling is non-preemptive? () A.FCFS B. SJF C. Priority D. round robin						4. 5. 6. Par 1. Pl	We fra of The meeting	e can cla	ssify pallows frames. move detroller ypes of	age-rej a proce requ isk arn can c	placemess to suires the to de ontrol	nent all select a hat each sired constant the	gorith a repla th proc sylinde device	r is cal to d	t frame lect fro led irectly	e from only	the set the set the set the set the set	of all wn set main	
	<u> </u>	be accessed		arly secondary-st															
	A. direct a	ccess. B. se	equential acc	ess C. indexed	D. none of	f the above													

2.	Why	are	two	modes	(user	and	kernel)	needed?
----	-----	-----	-----	-------	-------	-----	---------	---------

6. Please explain the role of file directory and the organization structures of file directory.

3. Please list as many as possible deadlock recovery schemes (at least 2) and explains their advantages and disadvantages.

7. Briefly describe the steps taken to read a block of data from the disk to the memory using DMA controlled I/O.

4. Please explain the difference between internal and external fragmentation.

CPU向PMA发扬的,所递加器的 2.DMA 向设备控制器发达 流成3.地读到的数据通过整 效应入的 4. 控制器向MAX强查等 5. 包CPU发出中断

5. Please explain why we need to use TLB for memory accesses. What is the principle of TLB.

8. Please explain what are cache and buffer. What are their difference?

Part V: Integrated Exercises (24 points)

1. The OS allocated 4 page frames to each active process. Initially, no page in the main memory. If a process demand pages as follows:

3,4,5,6,1,0,2,3,6,3,2,1

Please use **OPT**, **LRU**, **and CLOCK** policies separately to replace the page in memory, and calculate the total page fault.

2. Consider the following snapshot of a system with five processes (p1, ... p5) and four resources (r1, ... r4). There are no current outstanding queued unsatisfied requests.

Processes	Alloc	ation			Max				Available				
	R1	R2	R3	R4	R1	R2	R3	R4	R1	R2	R3	R4	
P1	0	0	1	2	0	0	1	2	2	1	0	0	
P2	2	0	0	0	2	7	5	0					
P3	0	0	3	4	6	6	5	6					
P4	2	3	5	4	4	3	5	6					
P5	0	3	3	2	0	6	5	2					

- a) what is the content of the matrix Need?
- **b)** Is this system currently deadlocked, or will any process become deadlocked? Why or why not? If not, give an execution order.
- c) If a request from p3 arrives for (0, 1, 0, 0), can that request be safely granted immediately? And why?

3. Assuming there are 5000 cylinders (No.0-4999) in a disk. Read-write head is at cylinder No. 143 right now, and the previous position is No.125. The coming request queue is

86, 1470, 913, 1774, 948, 1509, 1022, 1750, 130.

Starting from the current head position, *please list the access sequences* for the following disk-scheduling algorithms?

- a) FCFS, SSTF and SCAN
- b) Considering the state-of-the-art storage media, there are some storage media has no arm without seeking latency. In this case, which one of the above scheduler would be the best? Describe your reason