# 1-5 Data Structures

# 魏恒峰

hfwei@nju.edu.cn

2019年11月21日



# Pseudocode

# Pseudocode



# Pseudocode



"Executable" at an abstract level.

# Stackable Permutations

3/31

# Definition (Stackable Permutations)



### Definition (Stackable Permutations)

$$\mathtt{out} = (a_1, \cdots, a_n) \stackrel{S = \emptyset}{\underset{X = \bot}{\longleftarrow}} \mathtt{in} = (1, \cdots, n)$$





We can assume that X is always blank.

5/31



We can assume that X is always blank.



6/31







6/31

### Definition (Stackable Permutations)

$$\boxed{\mathsf{out} = (a_1, \cdots, a_n) \overset{S = \emptyset}{\longleftarrow} \mathsf{in} = (1, \cdots, n)}$$



- (a) Show that the following permutations *are* stackable:
  - (i) (3,2,1)
  - (ii) (3,4,2,1)
  - (iii) (3, 5, 7, 6, 8, 4, 9, 2, 10, 1)

- (a) Show that the following permutations *are* stackable:
  - (i) (3,2,1)
  - (ii) (3,4,2,1)
  - (iii) (3, 5, 7, 6, 8, 4, 9, 2, 10, 1)





# DH 2.13: Stackable Permutations Checking Algorithm

To check whether a given permutation can be obtained by a stack.



- 1: **procedure** STACKABLE(out)
- 2: **for all**  $a_j \in out \mathbf{do}$
- 3: while  $top(S) \neq a_j do$
- 4: Push(in, S)
- 5:  $\mathsf{Pop}(out, S)$

# DH 2.13: Stackable Permutations Checking Algorithm

To check whether a given permutation can be obtained by a stack.



- 1: **procedure** STACKABLE(out)
- 2: **for all**  $a_j \in out \mathbf{do}$
- 3: while  $top(S) \neq a_j do$
- 4: Push(in, S)
- 5:  $\mathsf{Pop}(out, S)$

Q: What is wrong with Stackable?

# DH 2.13: Stackable Permutations Checking Algorithm

To check whether a given permutation can be obtained by a stack.



```
1: procedure Stackable(out)
       for all a_i \in out do
            while top(S) \neq a_i \land in \neq \emptyset do
3:
                Push(in, S)
4:
            if top(S) = a_i then
5:
                Pop(out, S)
6:
7:
            else \triangleright \mathsf{top}(S) \neq a_i \land in = \emptyset
                return F
8:
       return T
9:
```

- (b) **Prove** that the following permutations are not stackable:
  - (i) (3,1,2)
  - (ii) (4,5,3,7,2,1,6)

- (b) **Prove** that the following permutations are *not* stackable:
  - (i) (3,1,2)
  - (ii) (4,5,3,7,2,1,6)

(3, 1, 2)

(4, 5, 3, 7, 2, 1, 6)

- (b) **Prove** that the following permutations are *not* stackable:
  - (i) (3,1,2)
  - (ii) (4,5,3,7,2,1,6)

$$\mathtt{out} = \cdots a_i \cdots a_j \cdots a_k : i < j < k \land a_j < a_k < a_i$$

- (b) **Prove** that the following permutations are *not* stackable:
  - (i) (3,1,2)
  - (ii) (4,5,3,7,2,1,6)

$$\mathtt{out} = \cdots a_i \cdots a_j \cdots a_k : i < j < k \land a_j < a_k < a_i$$

#### 312-Pattern



A permutation  $(a_1, \dots, a_n)$  is stackable  $\iff$  it is not the case that

312-Pattern: 
$$out = \cdots a_i \cdots a_j \cdots a_k : i < j < k \land a_j < a_k < a_i$$

A permutation  $(a_1, \dots, a_n)$  is stackable  $\iff$  it is not the case that

312-Pattern: 
$$out = \cdots a_i \cdots a_j \cdots a_k : i < j < k \land a_j < a_k < a_i$$

Proof.

$$stackable \Longrightarrow$$
  $\sharp$  312-Pattern

$$\nexists 312$$
-Pattern  $\Longrightarrow$  stackable

A permutation  $(a_1, \dots, a_n)$  is stackable  $\iff$  it is not the case that

312-Pattern: 
$$out = \cdots a_i \cdots a_j \cdots a_k : i < j < k \land a_j < a_k < a_i$$

Proof.

$$stackable \Longrightarrow$$
  $\sharp$  312-Pattern

$$\nexists 312$$
-Pattern  $\Longrightarrow$  stackable

$$312$$
-Pattern  $\Longrightarrow$  non-stackable

A permutation  $(a_1, \dots, a_n)$  is stackable  $\iff$  it is not the case that

312-Pattern: 
$$out = \cdots a_i \cdots a_j \cdots a_k : i < j < k \land a_j < a_k < a_i$$

### Proof.

$$\nexists 312$$
-Pattern  $\Longrightarrow$  stackable

$$312$$
-Pattern  $\Longrightarrow$  non-stackable

A permutation  $(a_1, \dots, a_n)$  is stackable  $\iff$  it is not the case that

312-Pattern: 
$$out = \cdots a_i \cdots a_j \cdots a_k : i < j < k \land a_j < a_k < a_i$$

312-Pattern  $\Longrightarrow$  non-stackable.

A permutation  $(a_1, \dots, a_n)$  is stackable  $\iff$  it is not the case that

312-Pattern: 
$$out = \cdots a_i \cdots a_j \cdots a_k : i < j < k \land a_j < a_k < a_i$$

312-Pattern  $\Longrightarrow$  non-stackable.

$$i < j \wedge a_j < a_i$$
: Push $_j$  Push $_i$  Pop $_i$  Pop $_j$   $j < k \wedge a_j < a_k$ : Push $_j$  Pop $_j$  Push $_k$  Pop $_k$   $i < k \wedge a_k < a_i$ : Push $_k$  Push $_i$  Pop $_k$  Pop $_k$ 



A permutation  $(a_1, \dots, a_n)$  is stackable  $\iff$  it is not the case that

312-Pattern: 
$$out = \cdots a_i \cdots a_j \cdots a_k : i < j < k \land a_j < a_k < a_i$$

 $\nexists$  312-Pattern  $\Longrightarrow$  Obtainable by STACKABLE.

```
2: for all a_j \in out do

3: while top(S) \neq a_j \land in \neq \emptyset do

4: Push(in, S)

5: if top(S) = a_j then

6: Pop(out, S)

7: else \triangleright top(S) \neq a_j \land in = \emptyset

8: return F

9: return T
```

1: **procedure** STACKABLE(out)

A permutation  $(a_1, \dots, a_n)$  is stackable  $\iff$  it is not the case that

312-Pattern: 
$$out = \cdots a_i \cdots a_j \cdots a_k : i < j < k \land a_j < a_k < a_i$$

 $\sharp$  312-Pattern  $\Longrightarrow$  Obtainable by STACKABLE.

Stackable fails  $\implies \exists 312$ -Pattern.

```
1: procedure STACKABLE(out)
        for all a_i \in out do
2:
            while top(S) \neq a_i \land in \neq \emptyset do
3:
                 Push(in, S)
4:
            if top(S) = a_i then
5:
                 Pop(out, S)
6:
            else \triangleright \mathsf{top}(S) \neq a_i \land in = \emptyset
7:
                return F
8:
        return T
```

A permutation  $(a_1, \dots, a_n)$  is stackable  $\iff$  it is not the case that

312-Pattern: 
$$out = \cdots a_i \cdots a_j \cdots a_k : i < j < k \land a_j < a_k < a_i$$

 $\nexists$  312-Pattern  $\Longrightarrow$  Obtainable by STACKABLE.

Stackable fails  $\implies \exists 312$ -Pattern.

```
1: procedure STACKABLE(out)
        for all a_i \in out do
2:
            while top(S) \neq a_i \land in \neq \emptyset do
3:
                 Push(in, S)
4:
            if top(S) = a_i then
5:
                 Pop(out, S)
6:
            else \triangleright \mathsf{top}(S) \neq a_i \land in = \emptyset
7:
                return F
8:
        return T
```

 $a_i \neq \mathsf{top}(S) \land in = \emptyset$ 

A permutation  $(a_1, \dots, a_n)$  is stackable  $\iff$  it is not the case that

312-Pattern: 
$$out = \cdots a_i \cdots a_j \cdots a_k : i < j < k \land a_j < a_k < a_i$$

$$\nexists$$
 312-Pattern  $\Longrightarrow$  Obtainable by STACKABLE.

STACKABLE fails  $\implies \exists 312$ -Pattern.

```
1: procedure STACKABLE(out)
```

2: **for all** 
$$a_j \in out \mathbf{do}$$

3: **while** 
$$top(S) \neq a_j \land in \neq \emptyset$$
 **do**

4: 
$$Push(in, S)$$

5: **if** 
$$top(S) = a_j$$
 **then**

6: 
$$\mathsf{Pop}(out, S)$$

7: **else** 
$$\triangleright \mathsf{top}(S) \neq a_j \land in = \emptyset$$

8: 
$$\mathbf{return}\ F$$

$$oldsymbol{ ext{return}} T$$

 $a_i \neq \mathsf{top}(S) \land in = \emptyset$ 

 $a_i$  is covered by some  $a_k$  in k

A permutation  $(a_1, \dots, a_n)$  is stackable  $\iff$  it is not the case that

312-Pattern: 
$$\boxed{out = \cdots a_i \cdots a_j \cdots a_k : i < j < k \land a_j < a_k < a_i}$$

$$\sharp$$
 312-Pattern  $\Longrightarrow$  Obtainable by STACKABLE.

STACKABLE fails  $\implies \exists 312$ -Pattern.

```
1: procedure Stackable(out)
```

- for all  $a_j \in out \ \mathbf{do}$
- 3: while  $top(S) \neq a_j \land in \neq \emptyset$  do
- 4: Push(in, S)
- 5: **if**  $top(S) = a_j$  **then**
- 6:  $\mathsf{Pop}(out, S)$
- 7:  $\mathbf{else} \qquad \triangleright \mathsf{top}(S) \neq a_j \wedge in = \emptyset$
- 8:  $\mathbf{return}\ F$
- 9:  $\mathbf{return}\ T$

2:

 $a_i \neq \mathsf{top}(S) \land in = \emptyset$ 

 $a_i$  is covered by some  $a_k$  in

 $\exists k : j < k \land a_i < a_k$ 

A permutation  $(a_1, \dots, a_n)$  is stackable  $\iff$  it is not the case that

312-Pattern: 
$$out = \cdots a_i \cdots a_j \cdots a_k : i < j < k \land a_j < a_k < a_i$$

$$\nexists$$
 312-Pattern  $\Longrightarrow$  Obtainable by STACKABLE.

STACKABLE fails  $\implies \exists 312$ -Pattern.

```
1: procedure STACKABLE(out)
2: for all a_j \in out do
3: while top(S) \neq a_j \land in \neq \emptyset do
4: Push(in, S)
5: if top(S) = a_j then
6: Pop(out, S)
```

7: else  $\triangleright \mathsf{top}(S) \neq a_j \land in = \emptyset$ 8: return F

9: return T

Hengfeng Wei (hfwei@nju.edu.cn)

 $a_i \neq \mathsf{top}(S) \land in = \emptyset$ 

 $a_i$  is covered by some  $a_k$  in

 $\exists k : j < k \land a_i < a_k$ 

Why is  $a_k$  in S?

A permutation  $(a_1, \dots, a_n)$  is stackable  $\iff$  it is not the case that

312-Pattern: 
$$out = \cdots a_i \cdots a_j \cdots a_k : i < j < k \land a_j < a_k < a_i$$

$$\nexists$$
 312-Pattern  $\Longrightarrow$  Obtainable by STACKABLE.

STACKABLE fails  $\implies \exists 312$ -Pattern.

```
1: procedure STACKABLE(out)
        for all a_i \in out do
2:
3:
            while top(S) \neq a_i \land in \neq \emptyset do
                 Push(in, S)
4:
            if top(S) = a_i then
5:
                 Pop(out, S)
6:
            else \triangleright \mathsf{top}(S) \neq a_i \land in = \emptyset
7:
```

return F

$$a_j \neq \mathsf{top}(S) \land in = \emptyset$$

 $a_i$  is covered by some  $a_k$  in k

$$\exists k : j < k \land a_j < a_k$$

Why is  $a_k$  in S?

$$\exists i : i < j \land a_k < a_i$$

return T

14/31

8:

9:

(c) How many permutations of  $A_4$  cannot be obtained by a stack?

$$(1,4,2,3), (2,4,1,3), (3,1,2,4), (3,1,4,2), (3,4,1,2)$$
  
 $(4,1,2,3), (4,1,3,2), (4,2,1,3), (4,2,3,1), (4,3,1,2)$ 

(c) How many permutations of  $A_4$  cannot be obtained by a stack?

$$(1, 4, 2, 3), (2, 4, 1, 3), (3, 1, 2, 4), (3, 1, 4, 2), (3, 4, 1, 2)$$
  
 $(4, 1, 2, 3), (4, 1, 3, 2), (4, 2, 1, 3), (4, 2, 3, 1), (4, 3, 1, 2)$ 

(c) How many permutations of  $A_4$  cannot be obtained by a stack?

$$(1, 4, 2, 3), (2, 4, 1, 3), (3, 1, 2, 4), (3, 1, 4, 2), (3, 4, 1, 2)$$
  
 $(4, 1, 2, 3), (4, 1, 3, 2), (4, 2, 1, 3), (4, 2, 3, 1), (4, 3, 1, 2)$ 

 $Q: What about A_n?$ 

How many permutations of  $\{1 \cdots n\}$  are stackable?



How many permutations of  $\{1 \cdots n\}$  are stackable?



Q: How many admissible operation sequences of "Push" and "Pop"?

An operation sequence of "Push" and "Pop" is admissible if and only if

An operation sequence of "Push" and "Pop" is admissible if and only if

(i) # of "Push" = 
$$n$$
 # of "Pop" =  $n$ 

An operation sequence of "Push" and "Pop" is admissible if and only if

(i) # of "Push" = 
$$n$$
 # of "Pop" =  $n$ 

(ii) 
$$\forall$$
 prefix: (# of "Pop")  $\leq$  (# of "Push")

An operation sequence of "Push" and "Pop" is admissible if and only if

- (i) # of "Push" = n # of "Pop" = n
- (ii)  $\forall$  prefix: (# of "Pop")  $\leq$  (# of "Push")

# of admissible operation sequences = # of stackable perms

An operation sequence of "Push" and "Pop" is admissible if and only if

- $\text{(i) }\#\text{ of "Push"}=n\qquad \#\text{ of "Pop"}=n$
- (ii)  $\forall$  prefix: (# of "Pop")  $\leq$  (# of "Push")

# of admissible operation sequences = # of stackable perms

{admissible operation sequences}  $\xrightarrow{\exists f:1-1}$  {stackable perms}

An operation sequence of "Push" and "Pop" is admissible if and only if

- $\text{(i) }\#\text{ of "Push"}=n\qquad \#\text{ of "Pop"}=n$
- (ii)  $\forall$  prefix: (# of "Pop")  $\leq$  (# of "Push")

# of admissible operation sequences = # of stackable perms

 $\{\text{admissible operation sequences}\} \xrightarrow{\exists f: 1-1} \{\text{stackable perms}\}$ 

 $f(s) \triangleq Execute$  this admissible operation sequence s

An operation sequence of "Push" and "Pop" is admissible if and only if

- (i) # of "Push" = n # of "Pop" = n
- (ii)  $\forall$  prefix: (# of "Pop")  $\leq$  (# of "Push")

# of admissible operation sequences = # of stackable perms

 $\{\text{admissible operation sequences}\} \xrightarrow{\exists f: 1-1} \{\text{stackable perms}\}$ 

 $f(s) \triangleq Execute$  this admissible operation sequence s

Why is f bijective (1-1)?

The number of admissible operation sequences of "Push" and "Pop" is  $\binom{2n}{n} - \binom{2n}{n-1}$ .

The number of admissible operation sequences of "Push" and "Pop" is  $\binom{2n}{n} - \binom{2n}{n-1}$ .

Proof: The Reflection Method.

 $\mathtt{Push}: \rightarrow \qquad \mathtt{Pop}: \uparrow$ 

The number of admissible operation sequences of "Push" and "Pop" is  $\binom{2n}{n} - \binom{2n}{n-1}$ .

### Proof: The Reflection Method.

 $\mathtt{Push}: \rightarrow \qquad \mathtt{Pop}: \uparrow$ 





The number of admissible operation sequences of "Push" and "Pop" is  $\binom{2n}{n} - \binom{2n}{n-1}$ .

Proof: The Reflection Method.

 $\mathtt{Push}: \rightarrow \qquad \mathtt{Pop}: \uparrow$ 





The number of admissible operation sequences of "Push" and "Pop" is  $\binom{2n}{n} - \binom{2n}{n-1}$ .

# Proof: The Reflection Method.

 $\mathtt{Push}: \to \qquad \mathtt{Pop}: \uparrow$ 



The number of admissible operation sequences of "Push" and "Pop" is  $\binom{2n}{n} - \binom{2n}{n-1}$ .

### Proof: The Reflection Method.

$$\mathtt{Push}: \to \qquad \mathtt{Pop}: \uparrow$$



$$\underbrace{\binom{2n}{n}}_{\text{all}} - \underbrace{\binom{2n}{n-1}}_{\text{inadmissible}}$$













$$\binom{2n}{n} - \binom{2n}{n-1}$$

# Catalan Number

$$(3,2,1):((()))$$
  $(1,2,3):()()()$ 

# Queueable Permutations





$$\mathsf{out} = (a_1, \cdots, a_n) \overset{Q = \emptyset}{\underset{X = \bot}{\longleftarrow}} \mathtt{in} = (1, \cdots, n)$$



(b) Prove that every permutation are queueable.



# (b) Prove that every permutation are queueable.



```
1: procedure QUEUEABLE(out)
       for all a \in in do
2:
          read(X)
3:
          add(X,Q)
4:
       for all a \in out do
5:
          while Head(Q) \neq a do
6:
             remove(X,Q)
7:
             add(X,Q)
8:
          remove(X,Q)
9:
          print(X)
10:
```

(c) Prove that every permutation can be obtained by two stacks.



(c) Prove that every permutation can be obtained by two stacks.







All are queueable.





 $All \ are \ queueable.$ 



Only one is queueable.





 $All \ are \ queueable.$ 



Only one is queueable.













# $3\ 2\ 1$ is not queueable







 $3\ 2\ 1$  is not queueable

# Theorem (Queueable Permutations)

A permutation  $(a_1, \dots, a_n)$  is queueable  $\iff$  it is not the case that

321-Pattern: 
$$out = \cdots a_i \cdots a_j \cdots a_k : i < j < k \land a_i > a_j > a_k$$

# Theorem (Queueable Permutations)

A permutation  $(a_1, \dots, a_n)$  is queueable  $\iff$  it is not the case that

321-Pattern: 
$$out = \cdots a_i \cdots a_j \cdots a_k : i < j < k \land a_i > a_j > a_k$$

Proof.

Now, it's your turn.



Theorem (# of Queueable Permutations)

The number of queueable permutations of  $[1 \cdots n]$  is  $\binom{2n}{n} - \binom{2n}{n-1}$ .

Theorem (# of Queueable Permutations)

The number of queueable permutations of  $[1 \cdots n]$  is  $\binom{2n}{n} - \binom{2n}{n-1}$ .

Proof.

Now, it's your turn.



# For more about "Stackable/Queueable Permutations" (Section 2.2.1)

THE CLASSIC WORK NEWLY UPDATED AND REVISED

The Art of Computer Programming

VOLUME 1 Fundamental Algorithms Third Edition

DONALD E. KNUTH



| Chapter 2—Information Structures              | 232 |
|-----------------------------------------------|-----|
| 2.1. Introduction                             | 232 |
| 2.2. Linear Lists                             | 238 |
| 2.2.1. Stacks, Queues, and Deques             | 238 |
| 2.2.2. Sequential Allocation                  | 244 |
| 2.2.3. Linked Allocation                      | 254 |
| 2.2.4. Circular Lists                         | 273 |
| 2.2.5. Doubly Linked Lists                    | 280 |
| 2.2.6. Arrays and Orthogonal Lists            | 298 |
| 2.3. Trees                                    | 308 |
| 2.3.1. Traversing Binary Trees                | 318 |
| 2.3.2. Binary Tree Representation of Trees    | 334 |
| 2.3.3. Other Representations of Trees         | 348 |
|                                               | 362 |
| 2.3.4. Basic Mathematical Properties of Trees |     |
| 2.3.4.1. Free trees                           | 363 |
| 2.3.4.2. Oriented trees                       | 372 |
| *2.3.4.3. The "infinity lemma"                | 382 |
| *2.3.4.4. Enumeration of trees                | 386 |
| 2.3.4.5. Path length                          | 399 |
| *2.3.4.6. History and bibliography            | 406 |
| 2.3.5. Lists and Garbage Collection           | 408 |
| 2.4. Multilinked Structures                   | 424 |
| 2.5. Dynamic Storage Allocation               | 435 |
| 2.6 History and Ribliography                  | 457 |

THE CLASSIC WORK NEWLY UPDATED AND REVISED

# The Art of Computer Programming

VOLUME 1

Fundamental Algorithms Third Edition

DONALD E. KNUTH



THE CLASSIC WORK NEWLY UPDATED AND REVISED

# The Art of Computer Programming

VOLUME 1

Fundamental Algorithms Third Edition

DONALD E. KNUTH







# Thank You!