Comparators, Multiplexers

Multiplexers

- * Directs one of multiple inputs to a single output
- * Select lines determine what input is switched to the output. Passes an input to output
- * Max # of inputs = , where n is # of select lines

S	Y
0 1	I_0 I_1

Multiplexer

* 4 inputs need 2 select lines. is the MSB

 S_1	S_0	Y
0 0 1 1	0 1 0 1	$I_0 \\ I_1 \\ I_2 \\ I_3$

What's Inside a Multiplexer

- * Law of AND -> A AND 1 is A
- * Law of OR -> A OR 0 is A
- * Select lines are used to activate only one AND gate

4 Input

S_1	S_0	Y
0 0 1	0 1 0 1	$I_0 \\ I_1 \\ I_2 \\ I_3$

Multiple Bit Selection

- * Multiple bits can be passed to output
- * Group A is one input of multiple bits
- * Group B is another input of multiple bits
- * 1 bit select line with active low enable

Using Parallel Multiplexers

- * Placing multiplexers in parallel will allow for bus inputs
- * The # of multiplexers in parallel is the number of bits on each bus input
- * Each multiplexer will switch one digit of the multiple bit number

Parallel Multiplexer

* Allows a two 3-bit inputs to be switched to 3 – bit output

Cascading Multiplexers

- * Use enable on multiplexer to create additional select line
- * Connect remaining select lines together
- * OR outputs from each multiplexer

S_1	S_0	Y
0 0 1 1	0 1 0 1	$I_0 \\ I_1 \\ I_2 \\ I_3$

Cascade Multiplexer

* How would a 4 input multiplexer be cascaded to create a 8 input multiplexer?

S2	S1	S0	Υ
0	0	0	10
0	0	1	I1
0	1	0	12
0	1	1	13
1	0	0	14
1	0	1	15
1	1	0	16
1	1	1	17

Cascade Multiplexer

Implement Combinational Logic Circuits

- * Multiplexers can implement outputs of truth table
- * One multiplexer for each output
- * The number of select lines on a multiplexer is number of inputs 1
- LSB will be input to multiplexer
- Remaining bits will be inputs to the select lines
- ° 3 input truth table uses 2 select lines which is a 4 input multiplexer
- * Divide truth table in groups of 2, and compare how LSB changes to output. That becomes input to multiplexer

Example

Implement truth table with multiplexer

Α	В	С	F
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

Example

Demultiplexer

- * Directs one input to one of multiple output lines
- * Number of max outputs is 2ⁿ, where n is # of select lines

	Α	В	D ₀	D1	D ₂	D ₃
	0	0	1	0	0	0
	0	1	0	1	0	0
L	1	0	0	0	1	0
L	1	1	0	0	0	1

What's Inside a Demultiplexer

* AND gates to pass input to an output. NOT gates for select lines

Multiplexer & Demultiplexer Uses

- * Communication systems
- * Microcontroller peripherals and functions
- * Signal routing between destinations
- * Switching functions in electronics

Comparator

- * Logic device that compares two numbers (A and B) and determines the following:
- \circ A = B
- ° A < B
- ° A > B
- * N bit comparator
- ° N is number of bits in each number to compare

Making a 1-Bit Comparator

Truth table of 1-bit comparator

Α	В	A = B	A < B	A > B
0	0	1	0	0
0	1	0	1	0
1	0	0	0	1
1	1	1	0	0

1-bit comparator circuit

Cascading 1-Bit Comparator

- * Cascading two 1-bit comparators will make a 2-bit comparator
- * One comparator will compare the MSB bits and the other the LSB bits

Possible Scenarios

A1	B1	A0	BO	
0	0	0	0	A=B
0	1	1	1	A <b A<b< td=""></b<></b
1	1	0	1	A <b< td=""></b<>
1	0	0	0	A > B A > B
0	0	1	0	A > B

MSB LSB

2-Bit Comparator

3 - Bit Comparator

Design a 3-bit comparator using 1-bit comparators

Ε

LT

GT

3 - Bit Comparator

Making a 2-bit Comparator

A1	A0	B1	BO	A = B	A < B	A > B
0	0	0	0	1	0	0
0	0	0	1	0	1	0
0	0	1	0	0	1	0
0	0	1	1	0	1	0
0	1	0	0	0	0	1
0	1	0	1	1	0	0
0	1	1	0	0	1	0
0	1	1	1	0	1	0
1	0	0	0	0	0	1
1	0	0	1	0	0	1
1	0	1	0	1	0	0
1	0	1	1	0	1	0
1	1	0	0	0	0	1
1	1	0	1	0	0	1
1	1	1	0	0	0	1
1	1	1	1	1	0	0

$$A = B$$

2 – bit Comparator

2 – bit Comparator

Cascading to make 4-bit

The condition for A<B can be possible in the following four cases:

If A3 = 0 and B3 = 1

If A3 = B3 and A2 = 0 and B2 = 1

If A3 = B3, A2 = B2 and A1 = 0 and B1 = 1

If A3 = B3, A2 = B2, A1 = B1 and A0 = 0 and B0 = 1

The condition of A>B can be possible in the following four cases:

If A3 = 1 and B3 = 0

If A3 = B3 and A2 = 1 and B2 = 0

If A3 = B3, A2 = B2 and A1 = 1 and B1 = 0

If A3 = B3, A2 = B2, A1 = B1 and A0 = 1 and B0 = 0

Comparator Schematics

* 4 – bit comparator

Cascading Comparators

Comparator Schematics

* 4 - bit comparator

Expansion Inputs

* Result of LSB comparator are carried into the MSB comparator

Unused Inputs

- * Need two 4-bit comparators to compare 6-bit numbers
- * Not all inputs will be used, unused inputs are inactive

