

# CI 2: ALGORITHMIQUE & PROGRAMMATION

# ALGORITHMES D'INFORMATIQUE

## 1 Recherches dans une liste

#### 1.1 Recherche d'un nombre dans une liste

```
Algorithme: Recherche naïve d'un nombre dans une liste triée ou non

Données:

- n, int: un entier

- tab, liste: une liste d'entiers triés ou non triés

Résultat:

- un booléen: Vrai si le nombre est dans la liste, Faux sinon.

is_number_in_list(n,tab):

| ← longueur(tab)

Pour i allant de 1 à | faire:

Si tab[i] = n alors:

Retourne Vrai

Fin Si

Fin Faire

Retourne Faux

Fin fonction
```

```
def is _number _in _list(nb,tab):
    """Renvoie True si le nombre nb est dans la liste
    de nombres tab
    Keyword arguments:
    * nb, int — nombre entier
    * tab, list — liste de nombres entiers
    """
    for i in range(len(tab)):
        if tab[i]==nb:
            return True
    return False
```

```
def is _ number _ in _ list(nb,tab):
    """Renvoie True si le nombre nb est dans la liste
    de nombres tab
    Keyword arguments:
    * nb, int — nombre entier
    * tab, list — liste de nombres entiers
    """
    i=0
    while i < len(tab) and tab[i]!=nb:
        i+=1
    return i < len(tab)</pre>
```

🛟 pyth

Remarque

Ces algorithmes sont modifiables aisément dans le cas où on souhaiterait connaître l'index du nombre recherché.



#### 1.2 Recherche du maximum dans une liste de nombre

```
Algorithme: Recherche du maximum dans
une liste de nombres
Données:
- tab, liste : une liste de nombres
Résultat:
- maxi, réel : maximum de la liste
what_is_max(tab):
  n \leftarrow longueur(tab)
  i ← 2
  maxi \leftarrow tab[1]
  Tant que i < n faire :
     Si tab[i]>maxi alors:
        maxi ← tab[i]
     Fin si
     i \leftarrow i+1
  Fin tant que
  Retourner maxi
Fin fonction
```

```
def what _is _max(tab):
    """

    Renvoie le plus grand nombre d'une liste
    Keyword arguments:
    tab — liste de nombres
    """
    i=1
    maxi=tab[0]
    while i <len(tab):
        if tab[i]>maxi:
            maxi=tab[i]
        i+=1
    return maxi
```

1.3 Recherche par dichotomie dans un tableau trié

```
Algorithme: Recherche par dichotomie d'un
nombre dans une liste triée ou non
Données:
- nb, int: un entier
- tab, liste : une liste d'entiers triés
Résultat:
- m, int : l'index du nombre recherché
- None: cas où nb n'est pas dans tab
is_number_in_list_dicho(nb,tab):
   g \leftarrow 0
   d \leftarrow longueur(tab)
   Tant que g < d alors:
       m \leftarrow (g+d) \operatorname{div} 2 \operatorname{alors}:
         Si tab[m]=nb alors:
            Retourne m
         Sinon si tab[m] < nb alors :
            g \leftarrow m+1
         Sinon, alors:
            \mathsf{d} \leftarrow \mathsf{m}\text{-}1
      Fin Si
   Fin Tant que
   Retourne None
Fin fonction
```

```
def is_number_in_list_dicho(nb,tab):
    Recherche d'un nombre par dichotomie dans un
    tableau trié.
    Renvoie l'index si le nombre nb est dans la liste
    de nombres tab.
    Renvoie None sinon.
    Keyword arguments:
    nb, int -- nombre entier
    tab, list — liste de nombres entiers tri és
    g, d = 0, len(tab)-1
    while g \le d:
        m = (g + d) // 2
        if tab[m] == nb:
            return m
        if tab[m] < nb:
            g = m+1
        else
            d = m-1
    return None
```



## 2 Gestion d'une liste de nombres

## 2.1 Calcul de la moyenne

```
Algorithme: Calcul de la moyenne arithmétique des nombres d'une liste

Données:

- tab, liste: une liste de nombres

Résultat:

- res, réel: moyenne des nombres

calcul_moyenne(tab):

n ← longueur(tab)

res ← 0

Pour i allant de1 à n faire:

res ← res+tab[i]

Fin faire

Retourner res/n

Fin fonction
```

```
def calcul_moyenne(tab):
    """

    Renvoie la moyenne des valeurs d'une liste de
    nombres.
    Keyword arguments:
    tab — liste de nombres
    """

    res = 0
    for i in range(len(tab)):
        res = res+tab[i]
    return res/(len(tab))
```

#### 2.2 Calcul de la variance

Soit une série statistique prenant les n valeurs  $x_1, x_2, ..., x_n$ . Soit m la moyenne de ces valeurs. La variance est définie par :

$$v = \frac{1}{n} \sum_{i=1}^{n} (x_i - m)^2$$

```
Algorithme: Calcul de la variance des nombres d'une liste

Données:

- tab, liste: une liste de nombres

- m, réel: moyenne de la liste

Résultat:

- res, réel: variance

calcul_variance(tab):

n ← longueur(tab)

res ← 0

Pour i allant de 1 à n faire:

res ← res+(tab[i]-m)**2

Fin faire

Retourner res/n

Fin fonction
```

```
def ca|cu|_variance(tab,m):
    """

    Renvoie la variance des valeurs d'un tableau.
    Keyword arguments:
    tab — liste de nombres
    m — moyenne des valeurs
    """

    res = 0
    for i in range(|en(tab)):
        res = res+(tab[i]-m)**2
    return res/(|en(tab))
```



## 2.3 Calcul de la médiane

```
Algorithme: Recherche de la valeur médiane d'une liste de nombres triés

Données:

- tab, liste: liste de nombres triés

Résultat:

- flt: valeur de la médiane

mediane(tab):

n ← Longueur(tab)

Si n modulo 2 = 0 Alors:

i ← n/2

Retourner (tab[i] +tab[i+1])/2

Sinon:

i ← ndiv 2+1

Retourner (tab[i])

Fin fonction
```

```
def ca|cu|_mediane(tab):
    """

    Calcule la variance des éléments d'un tableau trié.
    Keyword arguments:
    tab — liste de nombres
    """

    if len(tab)%2 == 0:
        i = len(tab)//2
        return (tab[i-1]+tab[i])/2
    else :
        i = len(tab)//2
    return tab[i]
```

## 3 Chaînes de caractères

#### 3.1 Recherche d'un mot dans une chaîne de caractères

```
def index_of_word_in_text(mot, texte):
    """ Recherche si le mot est dans le texte.
    Renvoie l'index si le mot est présent, None sinon.

Keyword arguments:
    mot — mot recherché
    texte — texte

"""

for i in range(1 + len(texte) - len(mot)):
    j = 0
    while j < len(mot) and mot[j] == texte[i + j]:
        j += 1
    if j == len(mot):
        return i
    return None</pre>
```



## 4 Calcul numérique

4.1 Recherche du zéro d'une fonction continue monotone par la méthode de dichotomie

```
Algorithme : Recherche de la solution de
f(x) = 0 par dichotomie
Données:
- f, fonction : fonction continue et monotone
– a, b, réels : nombre réels tels que a < b
-\varepsilon, réel : tolérance du calcul
Résultat:
- flt : solution de l'équation
solveDichotomie(f,a,b,\varepsilon):
   d \leftarrow b
   Tant que d-g>\varepsilon Alors :
      m \leftarrow (g+d)/2
      Si f(g)*f(m) \leq 0 Alors:
         d \leftarrow m
      Sinon:
         \mathsf{g} \leftarrow \mathsf{m}
      Fin Si
   Fin Tant que
Fin fonction
```

```
def solveDichotomie(f,a,b,eps):
   Recherche par dichotomie de la solution de l'équation f(x)
   Keywords arguments:
   Entrées :
       a,b, flt : Nombre réels tels que a < b
       f, function: fonction continue et monotone sur [a,b]
       eps, flt : tolérance de la résolution
    Sortie :
       flt : solution de la fonction
   0.00
   g = a
   d = b
   while (d-g) > eps:
       m = (g+d)/2
        if f(g) * f(m) <= 0:
           d = m
       else
           g = m
   return (g+d)/2
```

4.2 Recherche du zéro d'une fonction continue monotone par la méthode de Newton

```
Algorithme : Recherche de la solution de
f(x) = 0 par dichotomie
Données:
- f, fonction : fonction continue et monotone
– a, b, réels : nombre réels tels que a < b
-\varepsilon, réel : tolérance du calcul
Résultat:
- flt : solution de l'équation
solveDichotomie(f a b \varepsilon):
   g \leftarrow a
   \mathsf{d} \leftarrow \mathsf{b}
   Tant que d-g > \varepsilon Alors :
      m \leftarrow (g+d)/2
      Si f(g)*f(m) \leq 0 Alors:
         d \leftarrow m
      Sinon:
         g ← m
      Fin Si
   Fin Tant que
Fin fonction
```

```
def solveNewton(f, df, a, eps):
    Recherche par la méthode de Newton de la solution
    de l'équation f(x)=0.
    Keywords arguments:
    Entrées :
        f, function : fonction à
valeur de IR dans IR
        df, function : dérivée de f à
valeur de IR dans IR
        a, flt : solution initiale
        eps, flt : tolérance de la résolution
    Sortie :
       flt : solution de la fonction
    c = a-f(a)/df(a)
    while abs(c-a)>eps:
        a = c
        c = c-f(c)/df(c)
    return c
```



La dérivée de f notée f' pourra être une fonction qui a été définie. On peut aussi calculer la dérivée de façon numérique. Ainsi, en tenant compte des précautions mathématiques d'usage, il est possible de procéder ainsi :

🞝 python

Remarque

```
def derive_fonctions(f,x,eps):
    return (f(x+eps)-f(x))/(eps)
```

- 4.3 Méthode des rectangles pour le calcul approché d'une intégrale sur un segment
- 4.3.1 Méthode des rectangles à gauche

```
Algorithme: Calcul d'intégrale par la méthode des rectangles à gauche
Données:
- f, fonction : fonction définie sur [a, b]
- a, réel : borne inférieure de l'intervalle de définition
- b, réel : borne supérieure de l'intervalle de définition, b≥a
- nb, entiers : nombre d'échantillons pour calculer l'intégrale
Résultat:
- res, réel : valeur approchée de \int f(t) dt
integrale_rectangles_gauche(f,a,b,nb) :
  res \leftarrow 0
  pas ← (b-a)/nb
  x ← a
  Tant que x < b-pas : Faire
     res\leftarrow res + pas * \mathbf{f}(x)
     x \leftarrow x + pas
  Fin Tant que
   Retourner res
Fin Fonction
```

```
jthon"
```

```
def integrale_rectangles_gauche(f,a,b,nb):
    """

Calcul de la valeur approchée de l'intégrale de f(x) entre a et b par la
    méthode des rectangles à gauche.
Keywords arguments :
    f — fonction à valeur dans IR
    a — flt, borne inférieure de l'intervalle d'intégration
    b — flt, borne supérieure de l'intervalle d'intégration
    nb — int, nombre d'échantillons pour le calcul
    """

res = 0
    pas = (b-a)/nb
    x = a
```



```
🞝 python
```

```
while x < b - pas:
    res = res + pas *f(x)
    x = x + pas
return res</pre>
```

## 4.3.2 Méthode des rectangles à droite

```
Algorithme: Calcul d'intégrale par la méthode des rectangles à droite
Données:
- f, fonction : fonction définie sur [a, b]
- a, réel : borne inférieure de l'intervalle de définition
- b, réel : borne supérieure de l'intervalle de définition, b≥a
- nb, entiers : nombre d'échantillons pour calculer l'intégrale
Résultat:
-res, réel : valeur approchée de \int f(t) \mathrm{d}t
\textbf{integrale\_rectangles\_droite}(f, a, b, nb):
   res \leftarrow 0
   pas \leftarrow (b-a)/nb
   x \leftarrow a + pas
   Tant que x < b-pas : Faire
      res\leftarrow res + pas * \mathbf{f}(x)
      x \leftarrow x + pas
   Fin Tant que
   Retourner res
Fin Fonction
```

```
Pseudo Co
```

```
def integrale_rectangles_droite (f,a,b,nb):
    """

    Calcul de la valeur approchée de l'intégrale de f(x) entre a et b par la
    méthode des rectangles à droite.
    Keywords arguments:
    f — fonction à valeur dans IR
    a — flt, borne inférieure de l' intervalle d'intégration
    b — flt, borne supérieure de l' intervalle d'intégration
    nb — int, nombre d'échantillons pour le calcul
    """

res = 0
    pas = (b-a)/nb
    x = a+pas
    while x < b-pas:
        res = res + pas *f(x)
        x = x + pas
    return res</pre>
```





## 4.3.3 Méthode des rectangles - Point milieu

```
Algorithme: Calcul d'intégrale par la méthode des rectangles – point milieu
Données:
- f, fonction : fonction définie sur [a, b]
- a, réel : borne inférieure de l'intervalle de définition
- b, réel : borne supérieure de l'intervalle de définition, b≥a
- nb, entiers : nombre d'échantillons pour calculer l'intégrale
Résultat:
- res, réel : valeur approchée de \int f(t) dt
integrale\_rectangles\_droite(f,a,b,nb):
   res \leftarrow 0
   pas \leftarrow (b-a)/nb
   x ← a
   Tant que x < b-pas : Faire
      res\leftarrow res + pas *(\mathbf{f}(x)+\mathbf{f}(x+pas))/2
      x \leftarrow x + pas
   Fin Tant que
   Retourner res
```

```
def integrale_rectangles_milieu (f,a,b,nb):

"""

Calcul de la valeur approchée de l'intégrale de f(x) entre a et b par la méthode du point milieu.

Keywords arguments:

f — fonction à valeur dans IR

a — flt , borne inférieure de l' intervalle d'intégration

b — flt , borne supérieure de l' intervalle d'intégration

nb — int , nombre d'échantillons pour le calcul

"""

res = 0

pas = (b-a)/nb

x = a+pas

while x < b-pas:

res = res + pas *(f(x)+f(x+pas))/2

x = x + pas

return res
```

🛟 pythc

#### 4.4 Méthode des trapèzes pour le calcul approché d'une intégrale sur un segment

cf. méthodes des rectangles par la méthode du point milieu.

## 4.5 Méthode d'Euler pour la résolution d'une équation différentielle

## 4.5.1 Méthode d'Euler explicite

Résolution de l'équation différentielle :

$$y(t) + \tau \frac{dy(t)}{dt} = y_f$$

```
Algorithme: Méthode d'Euler explicite
Données:
- tau, réel : constante de temps
- y 0, réel : valeur initiale de y
y_f, réel : valeur finale y
- t_f, réel : temps de la simulation numérique
- nb, entier : nombre d'échantillons pour calculer les valeurs de y
Résultat:
- res, liste: liste des couples (t,y(t)).
euler_explicite(tau,y_0,y_f,t_f,nb):
   Initialiser res
   t \leftarrow 0
   y ← y_0
   pas ← t_f/nb
   Tant que t<t_f Faire :
     Ajouter (t,y) à res
      y \leftarrow y + pas *(y_f-y)/tau
      t \leftarrow t + pas
   Fin Tant que
   Retourner res
```

```
def euler explicite (tau,y0,yf,tf,nb):
    Résolution d'une équation diff é rentielle d'ordre 1 en utilisant la méthode
    d'Euler explicite.
    Keywords arguments:
    tau — flt , constante de temps de l'équation diff é rentielle
    y0 — flt, valeur initiale de y(t)
    yf — flt valeur finale de y(t)
    tf — flt temps de fin de la simulation
    nb — int, nombre d'échantillons pour la simulation
    t = 0
    y = y0
    pas = tf / nb
    res = []
    while t < tf:
        res append((t,y))
       y = y + pas*(yf-y)/tau
        t = t + pas
    return res
```

## 4.6 Algorithme de Gauss - Jordan [?]



python.

```
def recherche_pivot(A,i):
    n = len(A) # le nombre de lignes
    j = i # la ligne du maximum provisoire
```



```
for k in range(i+1, n):
           if \ abs(A[k][i]) \ > abs(A[j][i]) : \\
              j = k # un nouveau maximum provisoire
     return i
def echange lignes(A,i,j):
     # Li <--->Lj
     A[i \ ][i], \ A[j \ ][i] = A[j \ ][i], \ A[i \ ][i]
def transvection_ligne (A, i, j, mu):
     \# L_i \leftarrow L_i + mu.L_j
     nc = len(A[0]) # le nombre de colonnes
     for k in range(nc):
         A[i][k] = A[i][k] + mu * A[j][k]
def resolution (AA, BB):
     """Résolution de AA.X=BB; AA doit etre inversible"""
    A, B = AA.copy(), BB.copy()
    n = len(A)
     assert len(A[0]) == n
     # Mise sous forme triangulaire
    for i in range(n):
         j = recherche pivot(A, i)
          if j > i:
              echange lignes(A, i, j)
              echange_lignes(B, i, j)
          for k in range(i+1, n):
              x = A[k][i] / float(A[i][i])
              transvection\_ligne\left(A,\ k,\ i\ ,\ -x\right)
              transvection\_ligne\left(B,\ k,\ i\ ,\ -x\right)
     # Phase de remontée
    X = [0.] * n
    for i in range(n-1, -1, -1):
         X[i] \, = \, (B[i][\, 0] - sum(A[i][\, j] * X[j] \  \, \mbox{for} \  \, j \  \, \mbox{in} \  \, range(\, i + 1, n))) \, \, / \, \, A[i\, ][\, i\, ]
     return X
```

## 5 Algorithmes de tris

## 5.1 Tri par sélection

```
#Tri par sélection
def tri_selection (tab):
    for i in range(0,len(tab)):
        indice = i
        for j in range(i+1,len(tab)):
            if tab[j]<tab[indice]:
                indice = j
                tab[i],tab[indice]=tab[indice],tab[i]
        return tab</pre>
```



## 5.2 Tri par insertion

#### 5.2.1 Méthode 1

```
Algorithme: Tri par insertion – Méthode 1
Données:
- tab, liste : une liste de nombres
Résultat:
- tab, liste : la liste de nombres triés
tri insertion(tab):
   n \leftarrow longueur(tab)
   Pour i de 2 à n:
      x \leftarrow tab[i]
      j ← 1
      Tant que j \le i-1 et tab[j] < x:
         j \leftarrow j+1
      Fin Tant que
      Pour k de i-1 à j-1 par pas de -1 faire :
          tab[k+1] \leftarrow tab[k]
      Fin Pour
      tab[i] \leftarrow x
   Fin Pour
```

```
def tri_insertion_01(tab):
    """

    Trie une liste de nombre en utilisant la méthode
    du tri par insertion .
    En Python, le passage se faisant par référence, il
    n'est pas indispensable de retourner le tableau .
    Keyword arguments:
    tab — liste de nombres
    """

    for i in range (1,len(tab)):
        x=tab[i]
        j=0
        while j<=i-1 and tab[j]<x:
        j = j+1
        for k in range(i-1,j-1,-1):
            tab[k+1]=tab[k]
        tab[j]=x</pre>
```

## Estimation de la complexité

- Meilleur des cas, le tableau est trié à l'envers, la complexité est linéaire :  $\mathcal{O}(n)$ .
- Pire des cas, le tableau est trié, la complexité est quadratique :  $\mathcal{O}(n^2)$ .

#### 5.2.2 Méthode 2

```
Algorithme: Tri par insertion – Méthode 2
Données:
- tab, liste: une liste de nombres
Résultat:
- tab, liste : la liste de nombres triés
tri_insertion(tab):
   n ← longueur(tab)
  Pour i de 2 à n:
      x \leftarrow tab[i]
      j ← i
     Tant que j > 1 et tab[j-1] > x:
         tab[j] \leftarrow tab[j-1]
         j ← j-1
      Fin Tant que
      tab[j] \leftarrow x
  Fin Pour
```

python"

```
def tri_insertion_02(tab):
    """

Trie une liste de nombre en utilisant la méthode
    du tri par insertion .
    En Python, le passage se faisant par référence,
    il n'est pas indispensable de retourner le tableau .
    Keyword arguments:
    tab — liste de nombres
    """

for i in range (1,len(tab)):
    x=tab[i]
    j=i
    while j>0 and tab[j-1]>x:
        tab[j]=tab[j-1]
        j = j-1
        tab[j]=x
```



## Estimation de la complexité

- Meilleur des cas, le tableau est trié, la complexité est linéaire :  $\mathcal{O}(n)$ .
- Pire des cas, le tableau est trié à l'envers, la complexité est quadratique :  $\mathcal{O}(n^2)$ .

#### 5.3 Tri shell

```
def shellSort (array):
     "Shell sort using Shell's (original) gap sequence: n/2, n/4, ..., 1."
     "http://en.wikibooks.org/wiki/Algorithm_Implementation/Sorting/Shell_sort#Python"
     gap = len(array) // 2
     # loop over the gaps
     while gap > 0:
         # do the insertion sort
         for i in range(gap, len(array)):
             val = array[i]
             j = i
             while j >= gap and array[j - gap] > val:
                 array[j] = array[j - gap]
                 j —= gap
             array[j] = val
         gap //= 2
```

## 5.4 Tri rapide «Quicksort»

## 5.4.1 Tri rapide

```
Algorithme: Tri Quicksort - Segmentation
Données:
- tab, liste: une liste de nombres
- i,j, entiers : indices de début et de fin de la segmentation à effectuer
Résultats:
- tab, liste : la liste de nombre segmenté avec le pivot à sa place définitive
  k entier : l'indice de la place du pivot
segmente(tab,i,j):
    g \leftarrow i+1
    d ← j
    p ← tab[i]
    Tant que g \le d Faire
       Tant que d \ge 0 et tab[d] > p Faire
          \mathsf{d} \leftarrow \mathsf{d}\text{-}1
       Fin Tant que
       Tant que g \le j et tab[g] \le p Faire
          g \leftarrow g+1
       Fin Tant que
       Si g<d alors
          Échange(tab,g,d)
          \mathsf{d} \leftarrow \mathsf{d}\text{-}1
          g \leftarrow g+1
       Fin Si
    Fin Tant que
    k← d
```

```
Algorithme: Tri Quicksort – Tri rapide

Données:

- tab, liste: une liste de nombres

- i,j, entiers: indices de début et de fin de la portion à trier

Résultats:

- tab, liste: liste triée entre les indices i et j

tri_quicksort(tab,i,j):

Si g < d alors

k ← segmente(tab,i,j)

tri_quicksort(tab,i,k-1)

tri_quicksort(tab,i,k-1)

Fin Si
```

```
def segmente(tab,i,j):
    Segmentation d'un tableau par rapport à un pivot.
    Keyword arguments:
    tab ( list ) — liste de nombres
    i,j (int) — indices de fin et de début de la segmantation
    Retour:
    tab ( list ) — liste de nombres avec le pivot à sa place dé finitive
    k (int) — indice de la place du pivot
    g = i+1
    d=j
    p=tab[i]
    while g<=d:
        while d>=0 and tab[d]>p:
            d=d-1
        while g<=j and tab[g]<=p:
            g=g+1
        if g<d:
            tab[g], tab[d]=tab[d], tab[g]
            d=d-1
            g=g+1
    k=d
    tab[i],tab[d]=tab[d],tab[i]
    return k
def tri_quicksort(tab,i,j):
    Tri d'une liste par l' utilisation du tri rapide (Quick sort).
    Keyword arguments:
    tab (list) — liste de nombres
    i, j (int) — indices de fin et de début de la zone de tri
    Retour:
    tab ( list ) — liste de nombres avec le pivot à sa place dé finitive
    11 11 11
    if i<j:
        k = segmente(tab,i,j)
        tri quicksort (tab, i, k-1)
        tri quicksort (tab, k+1,j)
```



## 5.4.2 Tri rapide optimisé

```
Algorithme: Tri Quicksort – Tri rapide optimisé
Données:
- tab, liste: une liste de nombres
- i,j, entiers : indices de début et de fin de la portion de liste à trier
Résultats:

    tab, liste : liste triée entre les indices i et j

tri_quicksort_optimized(tab,i,j):
   Si i < j alors
      k← segmente(tab,i,j)
      Si k-i>15 alors
         tri_quicksort(tab,i,k-1)
      Sinon
         tri_insertion(tab,i,k-1)
      Fin Si
      Si j-k>15 alors
         tri_quicksort(tab,k+1,j)
         tri_insertion(tab,k+1,j)
      Fin Si
   Fin Si
```

### 5.5 Tri fusion

```
Algorithme: Tri Fusion – Fusion de deux listes
Données:
- tab, liste : une liste de nombres tab[g :d] avec g indice de la valeur de gauche, d indice de la valeur de
- m, entier : indice tel que g \le m < d et tel que les sous-tableaux tab[g :m] et tab[m+1 :d] soient ordonnés
Résultats:
- tab, liste : liste triée entre les indices g et d
fusion_listes(tab,g,d,m):
   n1← m-g+1
   n2← d-m
   Initialiser tableau G
   Initialiser tableau D
   Pour i allant de 1 à n1 faire
       G[i] \leftarrow tab[g+i-1]
   Fin Pour
   Pour j allant de 1 à n2 faire
       D[i] \leftarrow tab[m+i]
   Fin Pour
   i ← 1
   i ← 1
   G[n1+1] \leftarrow +\infty
   D[n2+1] \leftarrow +\infty
   Pour k allant de g à d faire
      Si i \le n1 et G[i] \le D[j] alors
         tab[k]← G[i]
         i← i+1
```

Si  $j \le n2$  et G[i] > D[j] alors  $tab[k] \leftarrow D[j]$ i← i+1

```
Algorithme: Tri Fusion

Algorithme récursif du table de tri.

Données:

- tab, liste: une liste de nombres non triés tab[g:d]

- g,d, entiers: indices de début et de fin de la liste

Résultats:

- tab, liste: liste triée entre les indices g et d

tri_fusion(tab,g,d):

Si g < d alors

m ← (g+d) div 2

tri_fusion(tab,g,m)

tri_fusion(tab,g,m)

tri_fusion(tab,m+1,d)

fusion_listes(tab,g,d,m)

Fin Si
```

```
def fusion_listes (tab,g,d,m):
    Fusionne deux listes tri ées.
    Keyword arguments:
    tab ( list ) — liste : une liste de nombres tab[g:d] avec g indice de la
    valeur de gauche, d indice de la valeur de droite
    g,d,m (int) — entiers : indices tels que g \le m < d et tel que les
    sous—tableaux tab[g:m] et tab[m+1:d] soient ordonnés
    tab (list): liste triée entre les indices g et d
    n1 = m-g+1
    n2 = d-m
    G,D = [],[]
    for i in range (n1):
        G.append(tab[g+i])
    for j in range (n2):
        D.append(tab[m+j+1])
    i, j = 0, 0
    G.append(9999999999)
    Dappend(9999999999)
    for k in range (g,d+1):
        if i \le n1 and G[i] \le D[j]:
            tab[k]=G[i]
            i = i + 1
        elif j \le n2 and G[i] > D[j]:
            tab[k]=D[j]
            j=j+1
```



```
def tri_fusion (tab,g,d):

"""

Tri d'une liste par la métode du tri fusion

Keyword arguments:

tab ( list ) — liste : une liste de nombres non triés tab[g:d]

g,d (int) — entiers : indices de début et de fin de liste si on veut trier

tout le tableau g=0, d=len(tab)-1

Résultat :

tab ( list ) : liste triée entre les indices g et d

"""

if g<d:

m=(g+d)//2

tri_fusion (tab,g,m)

tri_fusion (tab,m+1,d)

fusion_listes (tab,g,d,m)
```

## 6 Algorithmes classiques

## 6.1 Division euclidienne

```
Data: a, b \in \mathbb{N}^*

reste \leftarrow a
quotient \leftarrow 0

tant que reste \geq b faire

reste \leftarrow reste - b
quotient \leftarrow quotient \leftarrow quotient + 1

fin

Retourner quotient, reste
```

## 6.2 Algorithme d'Euclide

Cet algorithme permet de calculer le PGCD de deux nombres entiers. Il se base sur le fait que si a et b sont deux entiers naturels non nuls,  $pgcd(a,b) = pgcd(b,a \mod b)$ .



```
Fonction PGCD: algorithme d'Euclide

Données: a et b: deux entiers naturels non nuls tels que a > b

Résultat: le PGCD de a et b

Euclide_PGCD(a,b)

Répéter

r ← a mod b

a ← b

b ← r

Jusqu'à r == 0

Retourner a
```

```
Codage en Pythonde l'algorithme d'Euclide:
def Euclide PGCD(a,b): # on définit le nom de la
                       # fonction et ses variables
                       # d'entrées/d'appel
                       # on calcule le reste dans
   r=a\%b
                       # la division de a par b
                       # tant que r est non nul :
   while r!=0:
       a=b
                       # b devient le nouveau a
                       # r devient le nouveau b
       r=a%b
                       # on recalcule le reste
                       # une fois la boucle terminée,
   return(b)
                       # on retourne le dernier b
print(Euclide_PGCDpgcd(1525,755))
                       # on affiche le résultat
                       # retourné par la fonction
```



python

## 6.3 Calcul de puissance

## 6.3.1 Algorithme naïf

```
def exponentiation_naive(x,n):
    """

    Renvoie x* *n par la methode naive.
    Keyword arguments:
    Entrées :
        x, flt : un nombre réel
        n, int : un nombre entier

    Sortie :
        res, flt : resultat
    """

    res = 1
    while n>=1:
```



```
a python
```

```
res = res * x
n=n-1
return res
```

## 6.3.2 Exponentiation rapide itérative

```
\boldsymbol{\mathsf{def}} \;\; \mathsf{exponentiation} \_\mathsf{rapide} \_\mathsf{iteratif} \; (\mathsf{x},\mathsf{n}) :
     Renvoie x**n par la methode d'exponentiation rapide.
     Keyword arguments:
     Entrées :
          x, flt : un nombre réel
          n, int : un nombre entier
     Sortie :
          res, flt: resultat
     if n==0:
          return 1
          res = 1
          a = x
          while n>0:
               if n\%2 == 1:
                    res = res*a
               a=a*a
               n=int(n/2)
          return res
```

## 7 Calcul d'un polynôme

## 7.1 Algorithme naïf

## 7.2 Méthode de Horner

## Références

- [1] Patrick Beynet, Cours d'informatique de CPGE, Lycée Rouvière de Toulon, UPSTI.
- [2] Adrien Petri et Laurent Deschamps, Cours d'informatique de CPGE, Lycée Rouvière de Toulon.
- [3] Damien Iceta, Cours d'informatique de CPGE, Lycée Gustave Eiffel de Cachan, UPSTI.
- [4] Benjamin WACK, Sylvain CONCHON, Judicaël COURANT, Marc DE FALCO, Gilles DOWEK, Jean-Christophe FILLIÂTRE, Stéphane GONNORD, Informatique pour tous en classes préparatoires aux grandes écoles, Éditions Eyrolles.