Quentin Fortier

March 9, 2023

Système déductif : Définition

La **logique propositionnelle** définit la valeur de vérité d'une formule en considérant toutes les valeurs possibles des variables booléennes.

La déduction naturelle formalise la notion de preuve mathématique.

Système déductif : Définition

Définition

Un **séquent**, noté $\Gamma \vdash A$, est constitué d'un ensemble Γ de formules logiques et une formule logique A.

 $\underline{\text{Intuitivement}}: \Gamma \vdash A \text{ signifie que sous les hypothèses } \Gamma \text{, on peut déduire } A.$

Règles d'inférence

Définition

Une règle d'inférence est constituée :

- d'un ensemble de séquents appelés prémisses
- d'un séquent appelé conclusion.

Une règle sans prémisse est appelée axiome.

Notation pour une règle d'inférence :

$$\frac{\Gamma_1 \vdash P_1 \qquad \Gamma_2 \vdash P_2 \qquad \cdots \qquad \Gamma_n \vdash P_n}{\Gamma \vdash A}.$$

Règles d'inférence

Définition

Une **preuve** d'un séquent $\Gamma \vdash A$ est un arbre dont les nœuds sont des séquents, les arcs des règles d'inférence et la racine est $\Gamma \vdash A$.

Notation d'une preuve de $\Gamma \vdash A$:

$$\frac{\vdots}{\Gamma_1 \vdash A_1} \quad \dots \quad \frac{\vdots}{\Gamma_n \vdash A_n}$$
$$\Gamma \vdash A$$

La **déduction naturelle** est un ensemble de règles, que nous allons énumérer.

La **déduction naturelle** est un ensemble de règles, que nous allons énumérer.

$$\bullet$$
 Axiome :
$$\overline{\Gamma,A \vdash A} \;\; {\rm ax}$$

La **déduction naturelle** est un ensemble de règles, que nous allons énumérer.

$$\overline{\Gamma,A \vdash A} \ \text{ax}$$

$$\frac{\Gamma \vdash A}{\Gamma, B \vdash A} \text{ aff }$$

Pour chaque connecteur logique $(\rightarrow, \land, \lor, \neg)$, on a deux règles d'inférences :

• Règle d'introduction, de la forme : $\cfrac{\dots \vdash \dots}{\dots \vdash \dots \vdash \dots}$

Pour chaque connecteur logique $(\rightarrow, \land, \lor, \neg)$, on a deux règles d'inférences :

- Règle d'introduction, de la forme : $\cfrac{\dots \vdash \dots}{\dots \vdash \dots \vdash \dots}$
- Règle d'élimination, de la forme : $\frac{... \vdash ... \rightarrow ...}{... \vdash ...}$

• Introduction de \rightarrow :

• Introduction de \rightarrow :

$$\frac{\Gamma, A \vdash B}{\Gamma \vdash A \to B} \to_i$$

Élimination de → (modus ponens) :

• Introduction de \rightarrow :

$$\frac{\Gamma,A \vdash B}{\Gamma \vdash A \to B} \to_i$$

Élimination de → (modus ponens) :

$$\frac{\Gamma \vdash A \to B \quad \Gamma \vdash A}{\Gamma \vdash B} \to_e$$

 $\bullet \ \, \text{Introduction de} \to :$

$$\frac{\Gamma, A \vdash B}{\Gamma \vdash A \to B} \to_i$$

Élimination de → (modus ponens) :

$$\frac{\Gamma \vdash A \to B \quad \Gamma \vdash A}{\Gamma \vdash B} \to_e$$

Question

Prouver le séquent $\vdash A \to A$.

• Introduction de \rightarrow :

$$\frac{\Gamma,A \vdash B}{\Gamma \vdash A \to B} \to_i$$

Élimination de → (modus ponens) :

$$\frac{\Gamma \vdash A \to B \quad \Gamma \vdash A}{\Gamma \vdash B} \to_e$$

Question

Prouver le séquent $\vdash A \rightarrow A$.

$$\frac{\overline{A \vdash A}}{\vdash A \to A} \xrightarrow{\text{ax}}$$

• Introduction de \rightarrow :

$$\frac{\Gamma, A \vdash B}{\Gamma \vdash A \to B} \to_i$$

Élimination de → (modus ponens) :

$$\frac{\Gamma \vdash A \to B \quad \Gamma \vdash A}{\Gamma \vdash B} \to_e$$

Question

Prouver le séquent $A \to (B \to C) \vdash (B \to A) \to (B \to C)$

Où $\Gamma = \{A \to (B \to C), B \to A, B\}.$

Question

Prouver le séquent $A \to (B \to C) \vdash (B \to A) \to (B \to C)$

$$\frac{\frac{\Gamma \vdash A \to (B \to C)}{\Gamma \vdash A} \text{ ax } \frac{\overline{\Gamma \vdash B} \to A}{\Gamma \vdash A} \xrightarrow{A} \xrightarrow{\Gamma \vdash B} \xrightarrow{A_e} \frac{\Gamma \vdash B}{\Gamma \vdash B} \xrightarrow{A_e} \frac{\Gamma \vdash B}{\Gamma \vdash C} \xrightarrow{A \to (B \to C), B \to A \vdash B \to C} \xrightarrow{A \to (B \to C) \vdash (B \to A) \to (B \to C)} \xrightarrow{A_e}$$

• Introduction du ∧ :

• Introduction du ∧ :

$$\frac{\Gamma \vdash A \quad \Gamma \vdash B}{\Gamma \vdash A \land B} \land_i$$

• Élimination du ∧ :

• Introduction du ∧ :

$$\frac{\Gamma \vdash A \quad \Gamma \vdash B}{\Gamma \vdash A \land B} \land_i$$

Élimination du ∧ :

$$\frac{\Gamma \vdash A \land B}{\Gamma \vdash A} \land_e^g \qquad \qquad \frac{\Gamma \vdash A \land B}{\Gamma \vdash B} \land_e^d$$

Il y a deux règles d'élimination pour le \wedge : on peut utiliser l'une ou l'autre.

Remarque : on peut aussi généraliser les règles avec différents contextes $\overline{\Gamma,\Gamma'}$ (ce qui revient à avoir le même contexte puis appliquer aff), pour simplifier les preuves.

Ainsi, on peut aussi utiliser :

$$\frac{\Gamma \vdash A \to B \quad \Gamma' \vdash A}{\Gamma, \Gamma' \vdash B} \to_{e}$$

$$\frac{\Gamma \vdash A \quad \Gamma' \vdash B}{\Gamma, \Gamma' \vdash A \land B} \land_{i}$$

Question

 $\mathsf{Montrer}\ (A \land B) \to C \vdash A \to (B \to C).$

Question

Montrer $(A \land B) \rightarrow C \vdash A \rightarrow (B \rightarrow C)$.

$$\frac{A \wedge B \rightarrow C \vdash A \wedge B \rightarrow C}{A \wedge B \rightarrow C} \text{ ax } \frac{\overline{A \vdash A} \text{ ax } \overline{B \vdash B}}{A, B \vdash A \wedge B} \overset{\text{Ax}}{\wedge_i} \\ \frac{(A \wedge B) \rightarrow C, A, B \vdash C}{(A \wedge B) \rightarrow C, A \vdash B \rightarrow C} \xrightarrow{\rightarrow_i} \\ \frac{(A \wedge B) \rightarrow C \vdash A \rightarrow (B \rightarrow C)}{(A \wedge B) \rightarrow C \vdash A \rightarrow (B \rightarrow C)} \xrightarrow{\rightarrow_i}$$

Question

Montrer $A \to (B \to C) \vdash (A \land B) \to C$.

• Introduction de \lor :

• Introduction de ∨ :

$$\frac{\Gamma \vdash A}{\Gamma \vdash A \lor B} \lor_i^g \qquad \qquad \frac{\Gamma \vdash B}{\Gamma \vdash A \lor B} \lor_i^d$$

• Élimination de ∨ :

• Introduction de ∨ :

$$\frac{\Gamma \vdash A}{\Gamma \vdash A \vee B} \vee_i^g \qquad \qquad \frac{\Gamma \vdash B}{\Gamma \vdash A \vee B} \vee_i^d$$

• Élimination de ∨ :

$$\frac{\Gamma,A \vdash C \qquad \Gamma,B \vdash C \qquad \Gamma \vdash A \lor B}{\Gamma \vdash C} \ \lor_e$$

• Introduction de ∨ :

$$\frac{\Gamma \vdash A}{\Gamma \vdash A \lor B} \lor_i^g \qquad \qquad \frac{\Gamma \vdash B}{\Gamma \vdash A \lor B} \lor_i^d$$

Élimination de ∨ :

$$\frac{\Gamma,A \vdash C \qquad \Gamma,B \vdash C \qquad \Gamma \vdash A \lor B}{\Gamma \vdash C} \ \lor_e$$

Exercice

- ② On admet aussi $A \lor (B \land C) \vdash A \lor C$. En déduire $\vdash A \lor (B \land C) \longrightarrow (A \lor B) \land (A \lor C)$.

Déduction naturelle : Négation \neg

• Introduction de \wedge :

Déduction naturelle : Négation \neg

• Introduction de \wedge :

$$\frac{\Gamma, A \vdash \bot}{\Gamma \vdash \neg A} \ \neg_i$$

• Élimination de ∧ :

Déduction naturelle : Négation ¬

• Introduction de \wedge :

$$\frac{\Gamma,A \vdash \bot}{\Gamma \vdash \neg A} \ \neg_i$$

Élimination de ∧ :

$$\frac{\Gamma \vdash A \quad \Gamma \vdash \neg A}{\Gamma \vdash \bot} \ \neg_e$$

Déduction naturelle : Négation \neg

• Introduction de \wedge :

$$\frac{\Gamma, A \vdash \bot}{\Gamma \vdash \neg A} \ \neg_i$$

Élimination de ∧ :

$$\frac{\Gamma \vdash A \quad \Gamma \vdash \neg A}{\Gamma \vdash \bot} \ \neg_e$$

Question

Montrer $A \vdash \neg \neg A$.

Déduction naturelle : Négation \neg

• Introduction de \wedge :

$$\frac{\Gamma,A \vdash \bot}{\Gamma \vdash \neg A} \ \neg_i$$

• Élimination de ∧ :

$$\frac{\Gamma \vdash A \quad \Gamma \vdash \neg A}{\Gamma \vdash \bot} \ \neg_e$$

Question

Montrer $A \vdash \neg \neg A$.

Remarque : il n'est pas possible de démontrer $\neg \neg A \vdash A$ sans règle supplémentaire (tiers-exclu ou raisonnement par l'absurde).

Déduction naturelle : Vrai \top et faux \bot

• Introduction de \top (vrai) :

Déduction naturelle : Vrai ⊤ et faux ⊥

• Introduction de \top (vrai) :

$$\frac{}{\Gamma \vdash \top} \; \top_i$$

• Élimination de \bot (faux) :

Déduction naturelle : Vrai \top et faux \bot

• Introduction de \top (vrai) :

$$\frac{}{\Gamma \vdash \top} \; \top_i$$

• Élimination de \bot (faux) :

$$\frac{\Gamma \vdash \bot}{\Gamma \vdash A} \top_e$$

Déduction naturelle : Raisonnement par l'absurde

Les règles précédentes forment la logique intuitioniste. On peut ajouter l'une des règles équivalentes suivantes pour obtenir la logique classique :

Raisonnement par l'absurde :

Déduction naturelle : Raisonnement par l'absurde

Les règles précédentes forment la logique intuitioniste. On peut ajouter l'une des règles équivalentes suivantes pour obtenir la logique classique :

Raisonnement par l'absurde :

$$\frac{\Gamma, \neg A \vdash \bot}{\Gamma \vdash A}$$
 raa

• Tiers-exclu:

Déduction naturelle : Raisonnement par l'absurde

Les règles précédentes forment la logique intuitioniste. On peut ajouter l'une des règles équivalentes suivantes pour obtenir la logique classique :

• Raisonnement par l'absurde :

$$\frac{\Gamma, \neg A \vdash \bot}{\Gamma \vdash A}$$
 raa

• Tiers-exclu:

$$\overline{\vdash A \lor \lnot A}$$
 te

Déduction naturelle : Raisonnement par l'absurde

Les règles précédentes forment la logique intuitioniste.

On peut ajouter l'une des règles équivalentes suivantes pour obtenir la logique classique :

• Raisonnement par l'absurde :

$$\frac{\Gamma, \neg A \vdash \bot}{\Gamma \vdash A}$$
 raa

• Tiers-exclu:

$$\overline{\ \vdash A \lor \lnot A}$$
 te

Question

Montrer qu'en ajoutant l'une de ces règles à la logique intuition, on peut obtenir l'autre.

Définition (rappel)

On note $\Gamma \models A$, et on dit que Γ est un **modèle** pour A, si toute valuation satisfaisant les formules de Γ satisfait aussi A, c'est-à-dire :

$$(\forall \varphi \in \Gamma \cup \{A\}, \ \llbracket \varphi \rrbracket_v = 1) \implies \ \llbracket A \rrbracket_v = 1$$

Définition (rappel)

On note $\Gamma \models A$, et on dit que Γ est un **modèle** pour A, si toute valuation satisfaisant les formules de Γ satisfait aussi A, c'est-à-dire :

$$(\forall \varphi \in \Gamma \cup \{A\}, \ \llbracket \varphi \rrbracket_v = 1) \implies \ \llbracket A \rrbracket_v = 1$$

Question

Quel est le lien entre la notion de séquent prouvable (avec un arbre de dérivation) et celle de formule vraie (qui s'évalue à vrai pour tout valuation) ?

Définition (rappel)

On note $\Gamma \models A$, et on dit que Γ est un **modèle** pour A, si toute valuation satisfaisant les formules de Γ satisfait aussi A, c'est-à-dire :

$$(\forall \varphi \in \Gamma \cup \{A\}, \, \llbracket \varphi \rrbracket_v = 1) \implies \llbracket A \rrbracket_v = 1$$

Question

Quel est le lien entre la notion de séquent prouvable (avec un arbre de dérivation) et celle de formule vraie (qui s'évalue à vrai pour tout valuation) ?

On peut montrer:

- Correction : Si $\Gamma \vdash A$ est prouvable alors $\Gamma \models A$.
- Complétude (HP) : Si $\Gamma \models A$ alors $\Gamma \vdash A$ est prouvable.

Théorème de correction

Si $\Gamma \vdash A$ est prouvable alors $\Gamma \models A$.

Théorème de correction

Si $\Gamma \vdash A$ est prouvable alors $\Gamma \models A$.

 $\frac{\mathsf{Preuve}}{\mathsf{pour}} : \mathsf{Soit}\ P(h) : \text{ \mathfrak{a} is T est un arbre de dérivation de hauteur h}$ pour $\Gamma \vdash A$ alors $\Gamma \models A$ ».

Théorème de correction

Si $\Gamma \vdash A$ est prouvable alors $\Gamma \models A$.

 $\frac{ \text{Preuve}}{\text{pour } \Gamma \vdash A \text{ alors } \Gamma \models A \text{ »}.} \text{ r est un arbre de dérivation de hauteur h}$

P(0) est vraie : Si T est un arbre de hauteur 0 pour $\Gamma \models A$ alors il est constitué uniquement d'une application de ax, ce qui signifie que $A \in \Gamma$ et implique $\Gamma \models A$.

Théorème de correction

Si $\Gamma \vdash A$ est prouvable alors $\Gamma \models A$.

<u>Preuve</u> (suite) : Soit T un arbre de dérivation pour pour $\Gamma \vdash A$ de hauteur h+1. Considérons la règle appliquée à la racine de T.

Théorème de correction

Si $\Gamma \vdash A$ est prouvable alors $\Gamma \models A$.

<u>Preuve</u> (suite) : Soit T un arbre de dérivation pour pour $\Gamma \vdash A$ de hauteur h+1. Considérons la règle appliquée à la racine de T.

Par récurrence sur T_1 et T_2 , on obtient $\Gamma \models A$ et $\Gamma \models B$. Une valuation v satisfaisant toutes les formules de Γ satisfait donc à la fois A et B, et donc $A \wedge B$. On a bien $\Gamma \models A \wedge B$.

Théorème de correction

Si $\Gamma \vdash A$ est prouvable alors $\Gamma \models A$.

<u>Preuve</u> (suite) : Soit T un arbre de dérivation pour pour $\Gamma \vdash A$ de hauteur h+1. Considérons la règle appliquée à la racine de T.

Par récurrence sur T_1 et T_2 , on obtient $\Gamma \models A$ et $\Gamma \models B$. Une valuation v satisfaisant toutes les formules de Γ satisfait donc à la fois A et B, et donc $A \wedge B$. On a bien $\Gamma \models A \wedge B$.

$$\land_e$$
 Supposons T de la forme : $\frac{\Gamma_1}{\Gamma \vdash A \land B} (\land_e^g)$

Par récurrence sur T_1 , $\Gamma \models A \wedge B$ et donc $\Gamma \models A \wedge B$.

Les autres cas sont similaires.