

STAT 451 PROJECT

Prediction of Failure in Steel Frames

Group 6

Hyeyoung Koh, Civil and Environmental Engineering Erika Yeonseo Park, Statistics Jina Yang, Statistics

1. INTRODUCTION Steel Structures and Components

Olivier-Charbonneau Bridge in Quebec

https://www.canambridges.com/projects/highway-25-bridge/

Gable-frame metal building

https://renegadesteelbuildings.com/

Steel frame

Building connections

(b) Shear end plate

Photos are adopted from "Unified Design of Steel Structures" by Geschwindner et al., 2017

1. INTRODUCTION Failure of Steel Structures

Prevention of failure is the goal of structural design.

Structural failures usually occur by

- loading (gravity, earthquake, wind, fire, etc)
- **Uncertainties** in construction and fabrication
- E.g., material/geometric properties

Types of structural failure

Photosare adopted from "Unified Design of Steel Structures" by Geschwindner et al., 2017

Beam

Column

Connection

https://s3da-design.com/possible-types-of-failures-in-a-steel-structure/

1. INTRODUCTION Motivation and Objective

Prevention of failure is the goal of structural design.

MOTIVATION

- AISC 360 does not consider the uncertainty.
- Uncertainty affects system performance.
- The level of safety

OBJECTIVE

- Develop algorithms that predict whether the steel frames
 experience the failure or not
- Consideration of the uncertainties

EXAMPLE FRAMES

Frame 1	buckling of a column
Frame 2	progressive yielding

2. EXPERIMENT **Dataset**

Distributions of random features (uncertainties)

Variable	Mean	COV	Distribution	References
Dead load (D)	1.05 <i>D</i> _n	0.1	Normal	Ellingwood et al. 1982
Live load (L)	L_n	0.25	ExtremeValue	Ellingwood et al. 1982
Y ield strength (F_y)	$1.1F_{yn}$	0.06	Lognormal	Bartlett et al. 2003
Elastic modulus (E)	E_n	0.04	Lognormal	Bartlett et al. 2003
Sway imperfection (ψ)	1/700	0.875	Lognormal	Lindner and Gietzelt 1984
Residual stress (X)	1.064	0.27	Normal	Shayan et al. 2014

Nominal values: F $_{\rm yn}=248$ MPa, E $_{\rm n}=200$ GPa, D $_{\rm n1}=31.1$ kN/m, D $_{\rm n2}=30.4$ kN/m, L $_{\rm n1}=46.6$ kN/m, L $_{\rm n2}=45.6$ kN/m

- Monte Carlo sampling method was utilized.
- 50,000 samples are generated.

2. EXPERIMENT Dataset

How to obtain the dataset

- 50,000 finite element analyses were conducted in OpenSees with CHT C
- Obtained load-displacement curves
- Examples that caused convergence errors were removed
- Normalized by dividing nominal values
- 6 random features with 2 class labels

Number of examples

Failure	Class	Frame 1	Frame 2
Failure	Class 0	2424	7351
Nofailure	Class 1	47019	41978
Tota	l	49,443	49,329

2. EXPERIMENT General Procedure

- 1. Use data 1
- 2. Feature selection for kNN
- 3. Model & algorithm selection (5 x 2 Nested CV)
- 4. Check 2 models (2 highest Acc) (10 CV)
- 5. Evaluation on the chosen model
- 6. Use the three models on data_2

2. EXPERIMENT Feature Selection (PCA + SFS)

Principal Component Analysis (PCA)

• Explained Variance

Sequential Feature Selector (SFS)

```
{1: {'feature_idx': (1,),
    'cv_scores': array([0.92237369]),
    'avg_score': 0.9223736903846932,
    'feature_names': ('1',)},
2: {'feature_idx': (1, 5),
    'cv_scores': array([0.94090045]),
    'avg_score': 0.9409004490109624,
    'feature_names': ('1', '5')},
3: {'feature_idx': (0, 1, 5),
    'cv_scores': array([0.95251001]),
    'avg_score': 0.952510011730917,
    'feature_names': ('0', '1', '5')}}
```

Selected features:

['Dead load', 'Live load', 'Residual stress']

2. EXPERIMENT

Model & Algorithm Selection (5×2 Nested Cross-Validation)

Inner Loop

- Hyperparameter tuning
- Evaluate hyper parameters
- Find best parameter setting & Accuracy

Outer loop

- Best setting from inner loop
- Evaluate it on the test fold
- Total 5 models & 5 Accuracy
- 1 Average Accuracy
- Choose the best model.

Repeat 3 times (kNN, DT, RF)

2. EXPERIMENT Model & Algorithm Selection (5 x 2 Nested Cross-Validation)

Algorithm	Classifiers	Hyperparameter Grid
knn	KNeighborsClassifier()	<pre>[{'n_neighbors': list(range(3,15)), 'p': [1, 2], #1: Manhattan, 2: euclidean 'algorithm':['auto', 'kd_tree', 'ball_tree']}]</pre>
Decision Tree DecisionTreeClassifier(random_ster) e=123		<pre>[{'max_depth': list(range(1, 20)) + [None], 'criterion': ['gini', 'entropy'], 'min_samples_split': [2, 3, 4]}]</pre>
Random Forest	RandomForestClassifier(random_st ate=123, n_estimators = 1000)	[{'max_depth': [1, 3, 11, 13, None], 'min_samples_split': [2, 3]}]

2. EXPERIMENT Model & Algorithm Selection (5 x 2 Nested Cross-Validation)

Algorithm	Chosen Hyperparameter	Aveгаде Ассигасу	Best Algorithm: Random Forest (DT: 95.19% < RF: 97.43%)
<i>k</i> nn	algorithm:auto n_neighbors:15 p: 2	92.80% +/- 0.28	However, the difference is not significant
Decision Tree	criterion:entropy max_depth:15 min_samples_split:3	95.19% +/- 0.28	▶ Need to Check
Random Forests	max_depth': None min_samples_split: 3	97.43% +/- 0.11	▶ k- Cross-Validation (k=10)

2. EXPERIMENT Model & Algorithm Selection (10 fold Cross-Validation)

Purpose

- Check if random forest is the best algorithm
- Model selection for random forest

Algorithm	Best Parameters	Best CV Accuracy	_
Decision Tree	{'criterion': 'entropy', 'max_depth': 15, 'min_samples_split': 4}	95.43%	
Random Forest	{'max_depth': None, 'min_samples_split': 2}	97.54%	Still higher than decision tree Best algorithm: Random Forest

Chosen Model for prediction of failure in steel frames:

Random Forest with hyperparameters {'max_depth':None, 'min_samples_split':2}

2. EXPERIMENT **Evaluation**

The best model: Random Forest {'max_depth': None, 'min_samples_split': 2, n_estimators: 1000}

1) 0.632 Bootstrap

- n_split:200
- Run Bootstrapping on the training set
- Result
 - o Mean Bootstrap score: 98.46 %
 - o 95% Confidence interval: [98.32, 98.60]

2) Fit on the training set & evaluate on the test set

- Result
 - Training Accuracy: 100.00%
 - o Test Accuracy: 97.77%

2. EXPERIMENT Results: **kNN**

1) Best model from nested CV of data_1:

{'algorithm':'auto', 'n_neighbors':15, 'p':2}

2) Test set accuracy for the whole training data set with PCA: 93.26%

3) Plot

neighbors_settings = range(3,16)

n_neighbors':15; accuracy= 93.26%

n_neighbors':14; accuracy= 93.30%

2. EXPERIMENT Results: Decision Tree

1) Best model from nested CV of data_1:

Best model

=> {'criterion': 'entropy', 'max_depth':

15, 'min_samples_split': 3}

• Accuracy: 95.19%

2) By using 10-CV again and fit to the training data set,

• The Best 10-CV accuracy: 95.43%

3) Plot

{Plot_entropy vs gini; Depth}

Optimize max_depth =15

2. EXPERIMENT Results: Random Forests

Best model from Nested CV of data_1:

- best model => {'max_depth':None,'min_samples_split':3}
- Accuracy: 97.43%
- 2) By using 10-CV again and fit to the training data set,
 - The best 10-CV accuracy 97.54% with the same hyperparameter setting

2. EXPERIMENT

Application of Different Dataset (data_2)

Feature Selection (PCA + SFS) only for kNN

Principal Component Analysis (PCA)

• Explained Variance

Sequential Feature Selector (SFS)

```
{1: {'feature_idx': (1,),
    'cv_scores': array([0.96951022]),
    'avg_score': 0.9695102173207915,
    'feature_names': ('1',)},
2: {'feature_idx': (1, 2),
    'cv_scores': array([0.97948427]),
    'avg_score': 0.979484268569575,
    'feature_names': ('1', '2')},
3: {'feature_idx': (0, 1, 2),
    'cv_scores': array([0.98617418]),
    'avg_score': 0.9861741809925397,
    'feature_names': ('0', '1', '2')}}
```

Selected features:

['Dead load', 'Live load', 'Yield strength']

2. EXPERIMENT Application of Different Dataset (data_2)

kNN

From data_1:

algorithm: auto

n_neighbors: 15

p: 2 (Euclidean

10-fold Accuracy: 97.98%

Test Accuracy: 97.95%

Decision Tree

From data_1:

criterion: entropy

max_depth: 15

min_samples_split: 3

10-fold Accuracy: 98.13%

Test Accuracy: 98.09%

Random Forest

From data_1:

'max_depth': None,

'min_samples_split': 3

10-fold Accuracy: 97.99%

Test Accuracy: 98.84%

3. Discussion & Conclusion

- Result: data_1
 - Best Algorithm: Random Forest (whole dataset: 97.54%)
 - All three models exceed the target accuracy (93%)
- **Experiment with the three models**: weaknesses/shortcomings
 - o **kNN**: Difficult to Visualize (3 features: 3 Dimensions)
 - O Decision Tree & Random forest:
 - Plot: Trees are too deep & complex
 - o Difficult to interpret

3. Discussion & Conclusion

Algorithm	data_1 Accuracy	data_2 Accuracy
kNN : algorithm: auto n_neighbors: 15 p: 2	93.26%	97.95%
Decision Tree: criterion: entropy max_depth: 15 min_samples_split: 3	95.36%	98.09%
Random Forests max_depth: None min_samples_split: 3	97.77%	98.84%

3. Applying the three models to data_1 & data_2

- i. data_1 ACC < data_2 ACC
- ii. All test ACC above target(93%)
- **iii. Random Forests** is the best algorithm for both data_1 & data_2
- iv. The best model can be used to the steel frames with different failure modes.

Thanks!

Any questions?

hyeyoung.koh@w isc.edu ypark258@w isc.edu jyang633@w isc.edu