Chap Seven

Shang Xiaojin

2022年12月14日

目录

Ĺ	Iterative Techniques for Solving Linear Systems		
	1.1	Ex	3
	1.2	Code	3
		1.2.1 main code	3
		1.2.2 function	4
	1.3	Ans	7
		1.3.1 Ex1	7
		1.3.2 Ex2	7

1 Iterative Techniques for Solving Linear Systems

1.1 Ex

•

$$4x_1 + x_2x_3 + x_5 = 6$$

$$-x_1 - 3x_2 + x_3 + x_4 = 6$$

$$2x_1 + 1x_2 + 5x_3 - x_4 - x_5 = 6$$

$$-x_1 - x_2 - x_3 + 4x_4 = 6$$

$$2x_2 - x_3 + x_4 + 4x_5 = 6$$

•

$$4x_1 - x_3 - x_4 = 0$$

$$-x_1 + 4x_2 - x_3 - x_5 = 5$$

$$-x_2 + 4x_3 - x_6 = 0$$

$$-x_1 - 4x_4 - x_5 = 6$$

$$-x_2 - x_4 + 4x_5 - x_6 = -2$$

$$-x_3 - x_5 + 4x_6 = 6$$

using Jocabi Gauss Seidel SOR method with $\mathbf{w}=1$ and 1.3 to solve this linear systems above it.

1.2 Code

1.2.1 main code

$$A1 = \begin{bmatrix} 4 & 1 & 1 & 0 & 1 \\ -1 & -3 & 1 & 1 & 0 \\ 2 & 1 & 5 & -1 & -1 \end{bmatrix}$$

```
-1 -1 -1 4 0
     0 \ 2 \ -1 \ 1 \ 4];
b1 = [6 \ 6 \ 6 \ 6 \ 6];
A2 = \begin{bmatrix} 4 & -1 & 0 & -1 & 0 & 0 \end{bmatrix}
     -1\ 4\ -1\ 0\ -1\ 0
     0 \ -1 \ 4 \ 0 \ 0 \ -1
     -1 \ 0 \ 0 \ -4 \ -1 \ 0
     0 \ -1 \ 0 \ -1 \ 4 \ -1
     0 \ 0 \ -1 \ 0 \ -1 \ 4 ];
b2 = [0 \ 5 \ 0 \ 6 \ -2 \ 6];
Jacobi (A1, b1, [0 0 0 0 0]', 100, 0.001)
GaussSeidel(A1,b1,[0 0 0 0 0]',100 ,0.001)
SOR(A1, b1, [0 \ 0 \ 0 \ 0]', 100 \ ,0.001, 1)
SOR(A1,b1,[0 0 0 0 0]',100 ,0.001,1.3)
Jacobi (A2, b2, [0 0 0 0 0 0]', 100, 0.001)
GaussSeidel(A2, b2, [0 0 0 0 0 0]', 100, 0.001)
SOR(A2, b2, [0\ 0\ 0\ 0\ 0]^{\prime}, 100, 0.001, 1)
SOR(A2, b2, [0\ 0\ 0\ 0\ 0\ 0]', 100, 0.001, 1.3)
```

1.2.2 function

• Jacobi

```
\begin{array}{lll} & \textbf{function} & y = Jacobi\,(A,b,XO,N,TOL) \\ k = 1; \\ n = & \textbf{size}\,(b,1); \\ x = & \textbf{zeros}\,(n,1); \\ & \textbf{while} & k \!\! < \!\! = \!\! N \\ & \textbf{for} & i = 1 \!\! : \!\! n \\ & x(i,1) = b(i,1); \\ & \textbf{for} & j = 1 \!\! : \!\! i \!\! - \!\! 1 \\ & x(i) = x(i) - A(i,j) \!\! * \!\! X\!\! O(j,1); \\ & \textbf{end} \\ & \textbf{for} & j = i \!\! + \!\! 1 \!\! : \!\! n \\ & x(i) = x(i) - A(i,j) \!\! * \!\! X\!\! O(j,1); \end{array}
```

 \mathbf{end}

```
x(i) = x(i)/A(i,i);
      \mathbf{end}
       if \max(abs(x - XO)) < TOL
           y = x;
           break
       else
           k = k+1;
           for i = 1:n
                XO(i,1) = x(i,1);
           \mathbf{end}
      end
 \mathbf{end}
  \mathbf{end}
• GaussSeidel
  function y = GaussSeidel(A,b,XO,N,TOL)
 k = 1;
 n = size(b,1);
 x = zeros(n,1);
  while k \le N
       for i = 1:n
           x(i,1) = b(i,1);
           for j = 1:i-1
                x(i,1) = x(i,1) - A(i,j)*x(j,1);
           \mathbf{end}
           for j = i+1:n
                x(i,1) = x(i,1) - A(i,j) * XO(j,1);
           \mathbf{end}
           x(i,1) = x(i,1)/A(i,i);
      end
       if \max(abs(x-XO)) < TOL
```

```
y = x;
            break
       else
            k = k+1;
            for i = 1:n
                XO(i,1) = x(i,1);
            \mathbf{end}
 \mathbf{end}
  end
  end
• SOR
  function y = SOR(A, b, XO, N, TOL, w)
 k = 1;
  n = size(b,1);
 x = zeros(n,1);
  temp = zeros(n,1);
  \mathbf{while} \;\; k <= N
       for i = 1:n
            temp(i,1) = b(i,1);
            for j = 1: i-1
                 temp(i) = temp(i) - A(i,j) *x(j,1);
            \quad \text{end} \quad
            \mathbf{for} \quad j = i + 1 : n
                 temp(i) = temp(i) - A(i,j) *x(j,1);
            \mathbf{end}
            temp(i,1) = temp(i,1)/A(i,i);
            x(i,1) = (1-w)*XO(i,1) + temp(i,1);
       end
       if \max(abs(x-XO)) < TOL
            y = x;
            break
       else
```

$$k = k+1;$$
for $i = 1:n$
 $XO(i,1) = x(i,1);$
end

 \mathbf{end}

 \mathbf{end}

 $\quad \mathbf{end} \quad$

1.3 Ans

1.3.1 Ex1

	Jacobi	GaussSeidel	SOR with w=1	SOR with w=1.3
	(0.7871)	(0.7867)	(0.7867)	(0.8142)
	-1.0030	-1.0027	-1.0027	-1.0713
X	1.8660	1.8663	1.8663	1.2842
	1.9124	1.9126	1.9126	1.3514
	1.9896	1.9898	1.9898	1.5528

1.3.2 Ex2

	Jacobi	GaussSeidel	SOR with w=1	SOR with w=1.3
	(-0.0144)	(-0.0144)	(-0.0144)	(-0.0212)
	1.4147	1.4146	1.4146	1.0056
x	0.7703	0.7707	0.7707	0.4245
А	-1.4720	-1.4720	-1.4720	-1.1163
	-0.0976	-0.0973	-0.0973	-0.1748
	$\left(\begin{array}{c} 1.6683 \end{array}\right)$	$\left\langle 1.6684 \right\rangle$	1.6684	$\left(\begin{array}{c} 1.2019 \end{array}\right)$