Unidad 6: Inducción

Iker M. Canut

14 de julio de $2020\,$

Objetivo general: Demostrar enunciados del estilo: $\forall n, P(n)$, donde P(n) es una proposición que depende del numero natural n.

Axiomas: $\forall a, b, c \in \mathbb{R}$:

$$S_1$$
) $(a+b)+c=a+(b+c)$

$$P_1$$
) $(a \cdot b) \cdot c = a \cdot (b \cdot c)$

$$S_2$$
) $(a+b) = (b+a)$

$$P_2$$
) $(a \cdot b) = (b \cdot a)$

$$S_3$$
) $\exists 0 \in \mathbb{R} : a + 0 = a$

$$P_3$$
) $\exists 1 \in \mathbb{R} : 1 \neq 0 \land a \cdot 1 = a$

$$S_4$$
) $\exists -a \in \mathbb{R} : a + (-a) = 0$

$$P_4$$
) $(a \neq 0) \Rightarrow \exists a^{-1} \in \mathbb{R} : a \cdot a^{-1} = 1$

$$D) \ a \cdot (b+c) = a \cdot b + a \cdot c$$

$$O_1$$
) $(a = b) \vee (a < b) \vee (a > b)$

$$O_2$$
) $[(a < b) \land (b < c)] \Rightarrow (a < c)$

$$CS (a < b) \Rightarrow (a + c < b + c)$$

$$CP \ [(a < b) \land (0 < c)] \Rightarrow (a \cdot c) < (b \cdot c)$$

AS Axioma del Supremo

.....

Un subconjunto $H \subset \mathbb{R}$ se llama **inductivo** si:

- 1 ∈ *H*
- $x \in H \Rightarrow x + 1 \in H$

......

Lema 1: La intersección de una familia arbitraria de subconjuntos inductivos de \mathbb{R} es un subconjunto inductivo. Se demuestra considerando una familia $\{X_i : i \in I\}$ en donde $X_i \subset \mathbb{R}$ es inductivo $\forall i \in I$. Entonces tenemos que:

•
$$1 \in X_i \ \forall i \in I$$
, luego $1 \in \bigcap_{i \in I} X_i$

$$\blacksquare$$
 Si $x\in X_i\Rightarrow x+1\in X_i\ \forall i\in I,$ luego $x\in \bigcap_{i\in I}X_i\Rightarrow x+1\in \bigcap_{i\in I}X_i$

Entonces tenemos que $\bigcap X_i$ es un subconjunto inductivo.

 $i \in I$ Se define a $\mathbb N$ como la intersección de todos los subconjuntos inductivos de $\mathbb R$. Como el único valor

Se define a \mathbb{N} como la intersección de todos los subconjuntos inductivos de \mathbb{R} . Como el único valor que **debe** estar por definición es el 1 (y sus sucesores), entonces $\mathbb{N} = \{1, 2, 3, 4, 5...\}$

Teorema: Principio de Inducción: Sea P(n) una proposición que depende de $n \in \mathbb{N}$. Si:

- 1. P(1) es verdadera
- 2. $P(k) \Rightarrow P(k+1) \ \forall k \in \mathbb{N}$

Entonces P(n) es verdadera $\forall n \in \mathbb{N}$.

Se demuestra considerando $H=\{k\in\mathbb{N}:P(k)\text{ es verdadera}\}$. Sabemos que $1\in H$ y que si $k\in H\Rightarrow k+1\in H$. Luego, H es un subconjunto inductivo de \mathbb{R} , contenido en \mathbb{N} . Y como \mathbb{N} es el menor de subconjunto inductivo de \mathbb{R} , resulta $H=\mathbb{N}$ y $\therefore P(n)$ es verdadera $\forall n\in\mathbb{N}$.

......

Teorema: Sea P(n) una proposición que depende de $n \in \mathbb{N}$. Si:

- 1. $P(n_0)$ es verdadera
- 2. $P(k) \Rightarrow P(k+1) \ \forall k \ge n_0$

Entonces P(n) es verdadera $\forall k \geq n_0$

Se demuestra considerando $Q(n) = P(n_0 + n - 1)$. Luego sabemos que $Q(1) = P(n_0)$ es verdadera. Y sea $k \ge 1$, vemos que si $Q(k) = P(n_0 + k - 1)$ es verdadera, entonces $Q(k+1) = P(n_0 + k)$ también lo es. Y por el principio de inducción, Q(n) es verdadera $\forall n \in \mathbb{N}$. Le P(n) es verdadera $\forall n \ge n_0$.