

Název a adresa školy:	Střední škola průmyslová a umělecká, Opava, příspěvková
	organizace, Praskova 399/8, Opava, 746 01
Název operačního programu:	OP Vzdělávání pro konkurenceschopnost, oblast podpory 1.5
Registrační číslo projektu:	CZ.1.07/1.5.00/34.0129
Název projektu	SŠPU Opava – učebna IT
Typ šablony klíčové aktivity:	III/2 Inovace a zkvalitnění výuky směřující k rozvoji odborných
	kompetencí žáků středních škol (20 vzdělávacích materiálů)
Název sady vzdělávacích materiálů:	MEC I
Popis sady vzdělávacích materiálů:	Mechanika I, 1. ročník
Sada číslo:	G-19
Pořadové číslo vzdělávacího materiálu:	19
Označení vzdělávacího materiálu:	VY_32_INOVACE_G-19-04
(pro záznam v třídní knize)	
Název vzdělávacího materiálu:	Rozklad síly do dvou směrů
Zhotoveno ve školním roce:	2011/2012
Jméno zhotovitele:	Ing. Iva Procházková

Rozklad síly do dvou směrů

K rozložení síly použijeme silový trojúhelník nebo rovnoběžník. Rozkládaná síla je vlastně výslednice. Říkáme, že síla je rozložená do složek. Často rozkládáme sílu do dvou navzájem kolmých směrů.

Př.: Rozložte sílu F do dvou směrů – do směru a, b.

Síla F je vlastně výslednice složek F_a a F_b.

F_a – složka síly F do směru a, F_b – složka síly F do směru b.

Šipky (smysly) sil musí být takové, aby síla F byla výslednice složek!

Př.: Rozložte sílu F[0, 0, 30°, 50 N] do směrů x a y.

Pravidlo:

Co bude proti, bude záporné.

F_x[0, 0, 0°, 43,5 N]

 $F_y[0, 0, 90^\circ, 25, 5 N]$

Př.: Tíha břemene je G = 10.000 N. Jak velká bude síla v řetězech jeřábu?

- a) $\alpha = 30^{\circ}$
- a) $F_R = 5.200 \text{ N}$
- b) $\alpha = 90^{\circ}$
- b) $F_R = 7.050 \text{ N}$
- c) α = 120°
- c) $F_R = 10.000 \text{ N}$
- d) α = 140°
- d) $F_R = 17.500 \text{ N}$
- e) α = 150°
- e) $F_R = 19.000 \text{ N}$

Složky reakce mohou být větší než síla, která je vyvolá!

Př.: Rozložte sílu $F_V[0, 0, 60^\circ, 100 \text{ N}]$ do souřadných os x, y.

10 mm = 20 N

50 mm = 100 N

F₁[0, 0, 0°, 52 N]

F₂[0, 0, 90°, 86 N]

Početní řešení

Výslednice dvou kolmých sil

Pythagorova věta:

$$F_V^2 = F_1^2 + F_2^2$$

$$F_V = \sqrt{F_1^2 + F_2^2}$$

$$tg\,\phi = \frac{F_2}{F_1}$$

$$\rightarrow \varphi$$

Př.: Početně určete výslednici sil $F_1[0, 0, 0^{\circ}, 200 \text{ N}]$ a $F_2[0, 0, 90^{\circ}, 400 \text{ N}]$.

$$F_V = \sqrt{F_1^2 + F_2^2} = \sqrt{200^2 + 400^2} = 447,2 \text{ N}$$

$$tg \, \phi = \frac{F_2}{F_1} = \frac{400}{200} = 2$$

$$\phi = 63,43^\circ = 63^\circ 26'$$

Početní rozklad síly do dvou kolmých směrů

Síly rozkládáme do směrů x, y

$$F_{1x}$$
, F_{1y} – složky síly

Známe: F_1 , α

Řešíme pravoúhlý trojúhelník:

$$\sin \alpha = \frac{F_{1y}}{F_1} => F_{1y} = F_1 \cdot \sin \alpha$$

$$\cos \alpha = \frac{F_{1x}}{F_1} => F_{1x} = F_1 \cdot \cos \alpha$$

Př.: Rozložte sílu F[0, 0, 20°, 50 N] do složek x, y.

$$F_y = F \cdot \sin \alpha = 150 \cdot \sin 20 = 51.3 \text{ N}$$

$$F_y = F \cdot \sin \alpha = 150 \cdot \sin 20 = 51,3 \text{ N}$$
$$F_x = F \cdot \cos \alpha = 150 \cdot \cos 20 = 141 \text{ N}$$

Výslednice sil

Úlohu řešíme postupně:

Všechny síly rozložíme do složek x, y.

$$F_{1x} = F_1 \cdot \cos \alpha_1$$

$$F_{1y} = F_1 \cdot \sin \alpha_1$$

$$F_{1y} = F_1 \cdot \sin \alpha_1$$

 $F_{2x} = F_2 \cdot \sin \alpha_2$ (vyjde záporně)

$$F_{2v} = F_2 \cdot \cos \alpha$$

Příslušné složky sečteme, případně odečteme (sily na společné nositelce). Domluva: kladná síla působí ve směru osy. Záporná proti.

$$F_{Vx} = \sum_{i=1}^{n} F_{ix} = F_{1x} + F_{2x}$$

$$F_{Vy} = \sum_{i=1}^{n} F_{iy} = F_{1y} + F_{2y}$$

Z výsledných složek (jsou kolmé) určíme výslednici.

$$F_{V} = \sqrt{F_{Vx}^2 + F_{Vy}^2}$$

$$tg \, \phi = \frac{F_{Vy}}{F_{Vx}}$$

Př.: Určete početně výslednici sil $F_1[0, 0, 45^\circ, 100 \text{ N}]$, $F_2[0, 0, 0^\circ, 200 \text{ N}]$, $F_3[0, 0, 120^\circ, 150 \text{ N}]$.

$$F_{1x} = F_1 \cdot \cos 45^\circ = 100 \cdot \cos 45^\circ = 71 \text{ N}$$

$$F_{1y} = F_1 \cdot \sin 45^\circ = 100 \cdot \sin 45^\circ = 71 \text{ N}$$

$$F_{2x} = F_2 = 200 \text{ N}$$

$$F_{2y} = 0 \text{ N}$$

$$F_{3x} = F_3 \cdot \cos 120^\circ = 150 \cdot \cos 120^\circ = -75 \text{ N}$$

$$F_{3y} = F_3 \cdot \sin 120^\circ = 150 \cdot \sin 120^\circ = 130 \text{ N}$$

$$F_{vx} = \sum F_{ix} = F_{1x} + F_{2x} + F_{3x} = 71 + 200 + (-75) = 196 \text{ N}$$

$$F_{vy} = \sum F_{iy} = F_{1y} + F_{2y} + F_{3y} = 71 + 0 + 130 = 201 \text{ N}$$

$$F_{v} = \sqrt{F_{vx}^2 + F_{vy}^2} = \sqrt{196^2 + 201^2} = 281 \text{ N}$$

$$tg\phi = \frac{F_{vy}}{F_{vx}} = \frac{201}{196} = 1,026$$

Seznam použité literatury

• SALABA S. – MATĚNA A.: MECHANIKA I – STATIKA pro SPŠ strojnické. Praha: SNTL, 1977.

 $\omega = 45.72^{\circ} = 45^{\circ}43'$

- MRŇÁK L. DRDLA A.: MECHANIKA Pružnost a pevnost pro střední průmyslové školy strojnické.
 Praha: SNTL, 1977.
- TUREK, I., SKALA, O., HALUŠKA J.: MECHANIKA Sbírka úloh. Praha: SNTL, 1982.
- LEINVEBER, J. VÁVRA, P.: Strojnické tabulky. 5. doplněné vydání. Praha: Albra, 2011. ISBN 80-7361-033-7.