# Basics of deep learning and neural networks

#### Autumn 2020

| ### | ##### | +######## | ###  | +####### | ### |
|-----|-------|-----------|------|----------|-----|
| ##  |       |           |      |          | ##  |
| ##  | Deep  | Learning  | in   | Python   | ##  |
| ##  |       |           |      |          | ##  |
| ### | ##### |           | +##1 | +####### | ##1 |

- §1 Introduction to Deep Learning in Python
- §1.1 Basics of deep learning and neural networks

## 1 Introduction to deep learning

#### 1. What is the value of interactions for neural networks?

Deep learning uses especially powerful neural networks with almost anything such as *text*, *images*, *videos*, *audio*, or *source code* because neural networks really well account for interactions.

#### 2. How do interactions work in neural networks?



- 3. Practice question for comparing neural network models to classical regression models:
  - Which of the models in the diagrams has greater ability to account for interactions?



- $\square$  Model 1.
- $\boxtimes$  Model 2.
- $\Box$  They are both the same.

## 2 Forward propagation

## 1. How does the forward propagation function?

- Multiply add process.
- Dot product.
- Forward propagation is for one data point at a time.
- The output is the prediction for that data point.



## 2. Code of the forward propagation:

```
[1]: import numpy as np
  input_data = np.array([2, 3])
  weights = {
```

```
'node_0': np.array([1, 1]),
   'node_1': np.array([-1, 1]),
   'output': np.array([2, -1])
}
node_0_value = (input_data * weights['node_0']).sum()
node_1_value = (input_data * weights['node_1']).sum()
hidden_layer_values = np.array([node_0_value, node_1_value])
print(hidden_layer_values)
```

[5 1]

```
[2]: output = (hidden_layer_values * weights['output']).sum()
print(output)
```

9

- 3. Practice exercises for the forward propagation:
- ▶ Diagram of the forward propagation:



#### ▶ Data pre-loading:

```
[3]: import numpy as np

input_data = np.array([3, 5])
weights = {
    'node_0': np.array([2, 4]),
    'node_1': np.array([4, -5]),
    'output': np.array([2, 7])
}
```

#### ▶ The forward propagation algorithm practice:

```
[4]: # Calculate node 0 value: node_0_value
node_0_value = (input_data * weights['node_0']).sum()

# Calculate node 1 value: node_1_value
node_1_value = (input_data * weights['node_1']).sum()

# Put node values into array: hidden_layer_outputs
hidden_layer_outputs = np.array([node_0_value, node_1_value])
```

```
# Calculate output: output
output = (hidden_layer_outputs * weights['output']).sum()
# Print output
print(output)
```

-39

## 3 Activation functions

### 1. How do activation functions work?

It is applied to node inputs to produce node output.



## 2. What is the rectified linear activation (ReLU)?



$$RELU(x) = \begin{cases} 0 & if & x < 0 \\ x & if & x \ge 0 \end{cases}$$

## 3. Code of activation functions:

```
import numpy as np
input_data = np.array([-1, 2])
weights = {
        'node_0': np.array([3, 3]),
        'node_1': np.array([1, 5]),
        'output': np.array([2, -1])
}
node_0_input = (input_data * weights['node_0']).sum()
node_0_output = np.tanh(node_0_input)
node_1_input = (input_data * weights['node_1']).sum()
node_1_output = np.tanh(node_1_input)
hidden_layer_outputs = np.array([node_0_output, node_1_output])
output = (hidden_layer_outputs * weights['output']).sum()
print(output)
```

#### 0.9901095378334199

4. Practice exercises for activation functions:

### ▶ Data pre-loading:

```
[6]: import numpy as np
input_data = np.array([3, 5])

weights = {
    'node_0': np.array([2, 4]),
    'node_1': np.array([4, -5]),
    'output': np.array([2, 7])
}
```

▶ The rectified linear activation function practice:

```
[7]: def relu(input):
    '''Define your relu activation function here'''
    # Calculate the value for the output of the relu function: output
    output = max(0, input)

# Return the value just calculated
    return (output)

# Calculate node 0 value: node_0_output
node_0_input = (input_data * weights['node_0']).sum()
node_0_output = relu(node_0_input)

# Calculate node 1 value: node_1_output
```

```
node_1_input = (input_data * weights['node_1']).sum()
node_1_output = relu(node_1_input)

# Put node values into array: hidden_layer_outputs
hidden_layer_outputs = np.array([node_0_output, node_1_output])

# Calculate model output (do not apply relu)
model_output = (hidden_layer_outputs * weights['output']).sum()

# Print model output
print(model_output)
```

52

#### ▶ Data re-pre-loading:

▶ Network to many observations/rows of data applying practice:

```
[9]: # Define predict_with_network()
     def predict_with_network(input_data_row, weights):
         # Calculate node O value
         node_0_input = (input_data_row * weights['node_0']).sum()
         node_0_output = relu(node_0_input)
         # Calculate node 1 value
         node_1_input = (input_data_row * weights['node_1']).sum()
         node_1_output = relu(node_1_input)
         # Put node values into array: hidden_layer_outputs
         hidden_layer_outputs = np.array([node_0_output, node_1_output])
         # Calculate model output
         input_to_final_layer = (hidden_layer_outputs * weights['output']).sum()
         model_output = relu(input_to_final_layer)
         # Return model output
         return (model_output)
     # Create empty list to store prediction results
```

```
results = []
for input_data_row in input_data:
    # Append prediction to results
    results.append(predict_with_network(input_data_row, weights))
# Print results
print(results)
```

[52, 63, 0, 148]

## 4 Deeper networks

#### 1. How do multiple hidden layers function?



Calculate with ReLU Activation Function

## 2. Why is deep learning also sometimes called representation learning?

- Deep networks internally build representations of patterns in the data; in this way, partially replace the need for feature engineering.
- Subsequent layers build increasingly sophisticated representations of raw data.



### 3. How does the deep learning process?

• The modeler doesn't need to specify the interactions.

• When training the model, the neural network gets weights that find the relevant patterns to make better predictions.

#### 4. Practice question for the forward propagation in a deeper network:

• Ther is a model with two hidden layers. The values for an input data point are shown inside the input nodes. The weights are shown on the edges/lines. What prediction would this model make on this data point?

Assume the activation function at each node is the *identity function*. That is, each node's output will be the same as its input. So the value of the bottom node in the first hidden layer is -1, and not 0, as it would be if the ReLU activation function was used.



- $\boxtimes 0$ .
- $\square$  7.
- $\square$  9.
- 5. Practice exercises for deeper networks:
- ▶ Diagram of the forward propagation:



#### ▶ Data pre-loading:

```
import numpy as np
input_data = np.array([3, 5])

weights = {
    'node_0_0': np.array([2, 4]),
        'node_0_1': np.array([4, -5]),
        'node_1_0': np.array([-1, 2]),
        'node_1_1': np.array([1, 2]),
        'output': np.array([2, 7])
}
```

```
def relu(input):
   output = max(0, input)
   return (output)
```

#### ▶ Multi-layer neural networks practice:

```
[11]: def predict with network(input data):
          # Calculate node 0 in the first hidden layer
          node_0_0_input = (input_data * weights['node_0_0']).sum()
          node_0_0_output = relu(node_0_0_input)
          # Calculate node 1 in the first hidden layer
          node_0_1_input = (input_data * weights['node_0_1']).sum()
          node_0_1_output = relu(node_0_1_input)
          # Put node values into array: hidden_O_outputs
          hidden_0_outputs = np.array([node_0_0_output, node_0_1_output])
          # Calculate node O in the second hidden layer
          node_1_0_input = (hidden_0_outputs * weights['node_1_0']).sum()
          node_1_0_output = relu(node_1_0_input)
          # Calculate node 1 in the second hidden layer
          node_1_1_input = (hidden_0_outputs * weights['node_1_1']).sum()
          node_1_1_output = relu(node_1_1_input)
          # Put node values into array: hidden_1_outputs
          hidden_1_outputs = np.array([node_1_0_output, node_1_1_output])
          # Calculate model output: model_output
          model_output = (hidden_1_outputs * weights['output']).sum()
          # Return model output
          return (model_output)
      output = predict_with_network(input_data)
      print(output)
```

182

#### 6. Practice question for learned representations:

- How are the weights that determine the features/interactions in Neural Networks created?
  - $\square$  A user chooses them when creating the model.
  - $\square$  The model training process sets them to optimize predictive accuracy.

| 7. Practice question for levels of representation: |                                                                                |  |  |  |
|----------------------------------------------------|--------------------------------------------------------------------------------|--|--|--|
| •                                                  | • Which layers of a model capture more complex or "higher level" interactions? |  |  |  |
|                                                    | $\Box$<br>The first layers capture the most complex interactions.              |  |  |  |
|                                                    | $\boxtimes$ The last layers capture the most complex interactions.             |  |  |  |
|                                                    | $\square$ All layers capture interactions of similar complexity.               |  |  |  |

 $\Box$  The weights are random numbers.