Proposta de teste de avaliação [janeiro - 2023]

Nome: _____

Ano / Turma: _____ N.º: ____

Data: ____ - ___ -

1. Seja Ω , conjunto finito, o espaço amostral associado a uma dada experiência aleatória.

Sejam A e B dois acontecimentos possíveis $(A \subset \Omega \ e \ B \subset \Omega)$.

Sabe-se que:

- P(A) = 0.8
- P(B) = 0.36
- $P(A \cap \overline{B}) = 0.64$

O valor da probabilidade condicionada P(A|B)é:

- (A) $\frac{4}{9}$ (B) $\frac{3}{5}$ (C) $\frac{1}{3}$

2. Seja f uma função de domínio $\mathbb{R} \setminus \{2\}$.

Sabe-se que as únicas assíntotas ao gráfico de f são as retas definidas por x = 2 e y = -1.

As equações das assíntotas ao gráfico da função g, sendo g(x) = 5 - f(x-3) são:

(A) x = 5 e y = 6

(B) x = 5 e y = -6

(C) x = -1 e y = 4

- **(D)** x = -1 e y = 4
- Seja f uma função de domínio $\mathbb R$.

Sabe-se que:

- o ponto P, de coordenadas (1,2), pertence ao gráfico de f;
- a reta tangente ao gráfico de f no ponto P é definida pela equação y = 3x 1.

O número que representa $\lim_{x\to 1} \frac{f(x)-f(1)}{x^2-1}$ é:

- (A) $-\frac{1}{2}$ (B) 3 (C) $\frac{3}{2}$
- **(D)** 0

4. Considera a função f, de domíno \mathbb{R} , definida por:

$$f(x) = \begin{cases} \frac{x}{2-x} & \text{se } x \le 1\\ \frac{2x-2}{x^2+x-2} & \text{se } x > 1 \end{cases}$$

- **4.1** Averigua se a função f é contínua x = 1.
- **4.2** Determina, caso existam, as equações das assíntotas ao gráfico de *f* paralelas aos eixos coordenados.
- **4.3** Mostra que a reta tangente ao gráfico de f no ponto de abcissa -1 é paralela à reta s definida pela equção $(x,y) = (-2,5) + k(9,2), k \in \mathbb{R}$.
- 5. Na figura estão representados o gráfico de uma função f, de domínio R₀⁺, e uma reta r que é tangente ao gráfico da função no ponto P, de abcissa 4.
 A reta r é definida pela equação:

$$(x,y) = (8,6) + k(-4,-2)$$
, $k \in \mathbb{R}$

- **5.1** Indica o valor de $\lim_{h\to 0} \frac{f(4+h)-f(4)}{h}$.
- **5.2** Mostra que f(4) = 8f'(4).
- **6.** Na figura está representada uma função conínua, f, de domínio \mathbb{R}^+ , tal que f', função derivada de f, é definida por:

$$f'(x) = 2x - \frac{1}{x}$$

Sabe-se que a ordenada do ponto A é mínimo absoluto da função f

- **6.1** Determina a abcissa do ponto A.
- **6.2** Mostra que o gráfico de f não tem pontos de inflexão.

- 7. Na figura estão representadas:
 - uma circunferência de diâmetro [AB];
 - uma circunferência de diâmetro [AC];
 - uma circunferência de diâmetro [BC].

Sabe-se que:

- o ponto C pertence ao segmento de reta [AB];
- $\overline{AB} = 8$;
- $\overline{AC} = x$, com $x \in]0, 8[$.

Seja S(x)a área da região colorida, dada em função de x.

Mostra que $S(x) = \frac{\pi}{2}(8x - x^2)$ e determina para que valor de x a área colorida é máxima.

FIIV

Cotações												Total
Questões	1.	2.	3.	4.1	4.2	4.3	5.1	5.2	6.1	6.2	7	Total
Cotações	15	15	15	20	20	20	15	18	20	20	22	200