Contents

1	Gro	Groups														1						
	1.1	Group Actions																				1
		Applications																				

ii CONTENTS

Chapter 1

Groups

1.1 Group Actions

Definition 1. A right action of a group G on a nonempty set X is a function

$$X \times G \to X, \quad (x,g) \mapsto xg,$$

such that:

i. x(gh) = (xg)h for all $g, h \in G$ and $x \in X$;

ii. x1 = x for all $x \in X$.

The set X is called a G-set. A left action is defined in a similar fashion.

Example 1. Let S_n be the symmetric group of degree n. Then, S_n acts on the set $\{1, \ldots, n\}$ from the right in a rather natural way:

$$\{1,\ldots,n\}\times S_n\to\{1,\ldots,n\}\,,\quad (x,\alpha)\mapsto x^\alpha.$$

Example 2. Let G be a group. Then, G acts on itself from the right by conjugation:

$$G \times G \to G$$
, $(x,g) \mapsto x^g = g^{-1}xg$.

Definition 2. Let X be a G-set. Then, for any $x \in X$, following common terminology, we define:

i. The G-orbit of x in X to be the set:

$$orb(x,G) = \{y \in G : y = gx \text{ for some } g \in G\};$$

ii. The G-stabilizer of x in G to be the set

$$stab(x,G) = \{g \in G : xg = x\}.$$

Proposition 1. Let X be a G-set. Then, the binary relation given by

$$(1.1) \forall x, y \in X: x \equiv y \mod G \iff \exists g \in G: xg = y,$$

is an equivalence relation on X. Moreover, the equivalence class

$$\{y \in X : x \equiv y \mod G\},\$$

equals orb(x, G), the G-orbit of x, for any point $x \in X$.

Proof. For any given x, y and z in X, we have that:

- 1. $x \equiv x \mod G$ for every $x \in X$, since x1 = x;
- 2. If $x \equiv y \mod G$, then xg = y for some $g \in G$. But, then $yg^{-1} = x$ and so $y \equiv x \mod G$;
- 3. If $x \equiv y \mod G$ and $y \equiv z \mod G$, then we have that xg = y and yh = z for certain $g, h \in G$. Therefore, x(gh) = (xg)h = yh = z and so $x \equiv z \mod G$.

Now, notice that if $y \in \{y \in X : x \equiv y \mod G\}$, then y = gx for some $g \in G$. Conversely, for any $g \in G$, $gx \equiv x \mod G$ because $g^{-1} \in G$ and $g^{-1}(gx) = (g^{-1}g)x = 1x = x$. Therefore, we conclude that

$$\{y \in X : x \equiv y \mod G\} = \{qx : q \in G\} = \operatorname{orb}(x, G).$$

This completes the proof.

Suppose that X is a finite G-set. Let $T \subset X$ be a set with the following properties:

- 1. $X = \bigcup \{ \operatorname{orb}(x, G) : x \in T \}.$
- 2. $\forall x, x' \in T : x \neq x' \implies \operatorname{orb}(x, G) \cap \operatorname{orb}(x', G) = \emptyset;$

Then, it's clear that

(1.2)
$$|X| = \sum_{x \in T} |\operatorname{orb}(x, G)| = \sum_{x \in T} (G : \operatorname{stab}(x, G)).$$

Proposition 2. Let X be a G-set. Then, for any $x \in X$, stab(x,G) is a subgroup of G and the cardinality of orb(x,G), the G-orbit of x, equals the index(G:stab(x,G)) of stab(x,G) in G.

Proof. Let $x \in X$ be given. The identity element of G obviously belongs to $\operatorname{stab}(x,G)$ and, for any pair of elements $g,h \in \operatorname{stab}(x,G)$, we have that

$$x(gh^{-1}) = (xg)h^{-1} = xh^{-1} = (xh)h^{-1} = x(hh^{-1}) = x1 = x,$$

and as such $gh^{-1} \in \operatorname{stab}(x, G)$. Therefore, $\operatorname{stab}(x, G)$ is a subgroup of G. Now, regarding the function

$$G/\operatorname{stab}(x,G) \to \operatorname{orb}(x,G), \quad \operatorname{stab}(x,G)g \mapsto xg.$$

it's true that

$$xg = xh \iff x(gh^{-1}) = x \iff gh^{-1} \in \operatorname{stab}(x, G)$$

 $\iff \operatorname{stab}(x, G)g = \operatorname{stab}(x, G)h,$

for every pair of elements $g, h \in G$, from what it follows that $\operatorname{stab}(x, G)g \mapsto xg$ is an injective function, as well as

$$y \in \operatorname{orb}(x,G) \iff \exists g \in G: \ y = xg \implies \operatorname{stab}(x,G)g \mapsto y = xg,$$

which shows that $\operatorname{stab}(x,G)g \mapsto xg$ is also onto. Henceforth, $|\operatorname{orb}(x,G)| = (G:\operatorname{stab}(x,G))$ as claimed. This completes the proof.

1.2 Applications

Proposition 3. Let G be a finite p-group. Then, the center of G is not trivial.

Proof. Let G act on itself from the right by conjugation. Then, we have that

$$orb(x,G) = \{x^g : g \in G\} = \{x\} \iff x \in Z(G),$$

for any $x \in G$. By Lagrange's Theorem, the number

$$(G: stab(x, G)) = |orb(x, G)|,$$

is a divisor of |G| that is greater than 1 for every $x \in G \setminus Z(G)$ (thus, divisible by p). Since

$$|G| = \sum_{x \in T} |\operatorname{orb}(x, G)|$$

$$= \sum_{x \in T \cap Z(G)} |\operatorname{orb}(x, G)| + \sum_{x \in T \setminus Z(G)} |\operatorname{orb}(x, G)|$$

$$= |Z(G)| + \sum_{x \in T \setminus Z(G)} (G : \operatorname{stab}(x, G))$$

we get that |Z(G)| is also divisble by p.

Theorem 1 (Cauchy). Let G be a finite group and p be a prime divisor of |G|. Then, there is some $g \in G$ such that |g| = p.

Proof. The graph of the function

$$f: G^{p-1} \to G, \quad (x_1, \dots, x_{p-1}) \mapsto \left(\prod_{i=1}^{p-1} x_i\right)^{-1},$$

is the set

$$\Omega = \left\{ (x_1, \dots, x_p) \in G^p : \prod_{i=1}^p x_i = 1 \right\},$$

which has $|G|^{p-1}$ elements in total, a number divisible by p. Consider the action of the additive group \mathbb{Z}_p on the set Ω from the right given by

$$(x_1, x_2 \dots, x_{p-1}, x_p) \cdot \bar{1} = (x_p, x_1 \dots, x_{p-2}, x_{p-1}).$$

The \mathbb{Z}_p -orbit of a point $x=(x_1,\ldots,x_p)\in\Omega$ consists of the element x alone if, and only if, the coordinates $x_1,x_2,\ldots,x_{p-1},x_p$ of x are all equal to one another, that is, $x_1=x_2=\cdots=x_{p-1}=x_p$. This is certainly the case for the element $(1,\ldots,1)\in\Omega$ whose coordinates are all equal to the identity element of G. Let $T\subset\Omega$ be a transveral for the action of \mathbb{Z}_p on Ω , meaning that:

1.
$$\Omega = \bigcup \{ \operatorname{orb}(x, \mathbb{Z}_p) : x \in T \};$$

2.
$$\forall x, x' \in T : x \neq x' \implies \operatorname{orb}(x, \mathbb{Z}_p) \cap \operatorname{orb}(x', \mathbb{Z}_p) = \emptyset$$
.

Then, we have that

$$|\Omega| = \sum_{x \in T} |\operatorname{orb}(x, \mathbb{Z}_p)| = \sum_{|\operatorname{orb}(x, \mathbb{Z}_p)| = 1} 1 + \sum_{|\operatorname{orb}(x, \mathbb{Z}_p)| > 1} (\mathbb{Z}_p : \operatorname{stab}(x, \mathbb{Z}_p)).$$

Since

$$|\Omega|$$
 and $\sum_{|\operatorname{orb}(x,\mathbb{Z}_p)|=1} (\mathbb{Z}_p : \operatorname{stab}(x,\mathbb{Z}_p)),$

are both divisible by p, so is

$$\sum_{|\operatorname{orb}(x,\mathbb{Z}_p)|>1} 1.$$

This last sum would be equal to zero if there were no \mathbb{Z}_p -orbits of size 1 at all in Ω , but as we've already seen there's that of the element $x = (1, \ldots, 1)$. Therefore, there must exist some $g \in G$, $g \neq 1$, with

$$\operatorname{orb}((x,\ldots,x),\mathbb{Z}_p) = \{(x,\ldots,x)\},\,$$

from what we get that $x^p = 1$. This completes the proof.