

Cvičící:

9. TEPLOTNÍ SENZORY

Přednášející: prof. Ing. Miroslav Husák, CSc.

husak@fel.cvut.cz

http://micro.feld.cvut.cz

tel.: 2 2435 2267

Ing. Alexandr Laposa, Ph.D.

Ing. Tomáš Teplý

Teplotní senzory – Jednotky

Jednotky: k měření teploty se používají různé jednotky

°C – stupeň Celsia v Evropě zaveden mezinárodní smlouvou v r. 1948

K – Kelvin

°F – stupeň Fahrenheita – USA, GB

°R – stupeň Réaumurova, používal se před zavedením °C

Rank – stupeň Rankina, USA, GB

Převodní tabulka

	Fahrenheit	Celsius	Kelvin	Reaumur	Rankine
Celsius	$F = 32 + \frac{9}{5}C$	-	K = 273,15 + C	$Re = \frac{4}{5}C$	$Ra = 32 + \frac{9}{5}C + 459,67$
Fahrenheit	-	$C = \frac{5}{9}(F - 32)$	$K = \frac{5}{9}(F - 32) + 273{,}15$	Re = $\frac{4}{9}(F-32)$	Ra = F + 459,67

Teplotní senzory – Převody

Teplotní senzory – Rozdělení

Podle fyzikálního principu odporové kovové, polovodičové polovodičové s p-n přechodem dioda (Si, Ge, GaAs, varikap, ZD) tranzistor (bipolarní, unipolarní) kovové, polovodičové termoelektrické optické dilatační krystalové, radiační, chemické, šumové, akustické, magnetické, kapacitní, aerodynamické, SAW

- aktivní
- pasivní

Teplotní senzory – Rozdělení

Podle styku s měřeným prostředím

- dotykové
- bezdotykové

Dotykové – dilatační

- kapalinové
- plynové
- bimetalové

Dotykové – speciální

- akustické (ultrazvukové)
- magnetické
- s tekutými krystaly
- teploměrné barvy
- šumové

Bezdotykové

- tepelné (bolometry, pyrometry)
- kvantové

Teplotní senzory – Statické vlastnosti

Statická charakteristika

- v ideálním případě přímka, reálná charakteristika popsaná polynomem

Citlivost

Práh citlivosti

Dynamický rozsah

- Interval přípustných hodnot snímané veličiny

Reprodukovatelnost

Rozlišitelnost

Tepl. senzory – Ekvivalence tepelných a elektrických veličin

Množství tepla v tělese

Q = mcT

m – hmotnost,c – měrná tepelná kapacita,

T - teplota

Rychlost průtoku tepla tělesem

Teplotní gradient (tepelná vodivost)

Tepelný odpor:

$$R_{T} = \frac{1}{k} \cdot \frac{1}{S}$$

? Napište definice pro: Množství tepla v tělese, Rychlost průtoku tepla tělesem, Teplotní gradient (tepelná vodivost)

Tepl. senzory – Ekvivalence tepelných a elektrických veličin

Systém	Proměnná	Prvky	Dynamické	Statické
Elektrický	I, U	R,L,C	q=C/U	U=IR
Tepelný	Q,T	R _T , c	Q=c/T	T=QR _T

Teplotní senzory odporové kovové (RTD)

RTD (Resistance Temperature Device or detector)

- materiál: především čisté kovy (Pt, Ni, Cu ...)
 Wolfram (vysoce linární)
 Měď (menší teplotní rozsahy)
- Odporové kovové teplotní senzory (RTD): Uveďte alespoň 2 typické materiály pro teplotní senzory, uveďte typický teplotní rozsah, napište základní rovnici pro aproximaci průběhu odporu v malém rozmezí teplot (0 - 100°C).

Nikl (nižší teploty, nízká cena, nelineární), -60°C ÷ 120°C

Platina (vysoká cena, lineární, nejběžnější, -260°C ÷ 630°C

slitiny Ni (nižší teploty, nízká cena)

slitiny Ag, Au do 120°C

• **závislost** $R=f(\vartheta)$ není lineární, ale v praxi většinou se odporové senzory považují za lineární

$$R = R_0 \left(1 + \alpha \mathcal{G} + \beta \mathcal{G}^2 + \gamma (\mathcal{G} - 100) \mathcal{G}^3 \right)$$

Pro malé rozsahy teplot se rovnice zjednodušuje

Poznámka: RTD patří k nejčastějším typům pro měření teploty

INTERNATIONAL STANDARDS

Standard	Comment				
IEC 751	Defines Class A and B performance for 100Ω 0.00385 alpha Pt RTDs.				
DIN 43760	Matches IEC 751.				
BS-1904	Matches IEC 751.				
JIS C1604	Matches IEC 751. Adds 0.003916 alpha.				
ITS-90	Defines temperature scale and transfer standard.				
Parameter	IEC 751 Class A	IEC 751 Class B			
R _o	$100\Omega \pm 0.06\%$	$100\Omega \pm 0.12\%$			
Alpha, α	.00385 ± .000063	.00385 ± .000063			
Range	−200°C to 650°C	−200°C to 850°C			
Res., R _τ *	±(.06+.0008 T -2E-7T2)	±(.12+.0019 T -6E-7T²)			
Temp, T**	±(0.3+0.002 T)°C	±(0.3+0.005 T)°C			

^{*}Units are $\Omega s.$ Values apply to 100 Ω Pt RTDs only. Scale by ratio of the R s to apply to other ice point resistances.

^{*}Applies to all 0.00385 alpha Pt RTDs independent of ice point, R_o.

spirálové vinutí

tenká odporová vrstva

vinutí v keramickém pouzdře

Tepl. senzory – Vyhodnocování signálu z (RTD)

Zkou ška

Princip: Změnou teploty se mění odpor senzoru \Rightarrow převedení změny na jinou elektricky měřitelnou veličinu (R \rightarrow U, I, f, střída, atd...)

Nejčastěji se používají můstková zapojení

Kompenzace odporu vedení - dvou-,

tří-, čtyř- vodičového zapojení

Wheatstoneův můstek – typický vyhodnocovací obvod

? Vyhodnocování signálu z odporových kovových teplotních senzorů (RTD): Nakreslete zjednodušeně obvodové zapojení pro vyhodnocování teploty.

Příklad třívodičového kompenzačního zapojení

Tepl. senzory – Vyhodnocování signálu z (RTD) s OZ

Tepl. senzory RTD - shrnutí

- malý odpor 100 Ω (nejběžnější) až 1000 Ω
- široký rozsah pracovních teplot (-200 °C to 850 °C)
- dobrá citlivost (v porovnání s termočlánky)
- velká přesnost (±0,0006 °C až 0,1°C)
- opakovatelnost a stabilita
- malý drift (0,0025 °C/rok), průmyslové modely drift < 0,1 °C/rok</p>

Typy termistorů

PTC (pozistory)

NTC (negistory)

Teplotní závislost odporu

$$R = Ae^{-\frac{B}{T}} \qquad \frac{R_1}{R_2} = \exp B\left(\frac{1}{T_1} + \frac{1}{T_2}\right)$$

B – materiálová teplotní konstanta

A – zahrnuje geometrický tvar materiálu (udává výrobce ze dvou hodnot R_1 pro v_1 , R_2 pro v_2)

Teplotní koeficient odporu

$$\Delta R = R_0 \alpha \Delta \quad \Rightarrow \quad \alpha = -\frac{B}{T^2}$$

Vyhodnocování informace o změně teploty

Wheatstoneův můstek

? Odporové polovodičové teplotní senzory s termistory: Napište rozdíl mezi termistory NTC, PTC, nakreslete typické převodní charakteristiky, Nakreslete zjednodušené obvodové zapojení pro vyhodnocování teploty.

Nakreslete zjednodušené obvodové zapojení pro vyhodnocování teploty.

TEMPERATURE (°C)

- Velký odpor 1 k Ω to 100 k Ω
 - Eliminuje vliv odporu přívodních vodičů
- Nelineární závislost na teplotě.
 - zejména NTC → nutnost linearizace
- Malé rozměry
 - Rychlé časové odezvy
- Levnější než RTD
- Vysoká citlivost a rozlišení
 - Více než 1000 citlivější než RTD
- Necitlivé na vibrace a rázy

Odporové polovodičové teplotní senzory -monokrystalické

Polovodičový monokrystalický Si senzor (senzor s odporem šíření)

Princip – odpor šíření se uplatňuje v místě styku kovového hrotu s polovodičem. Odpor závisí a rezistivitě ρ a poloměru kontaktu r. Využívá se kladný teplotní součinitel (pro Si od -50 ÷ 150°C). S rostoucí teplotou klesá pohyblivost volných nosičů náboje.

? Odporové polovodičové teplotní senzory monokrystalické : Nakreslete a vysvětlete základní principy činnosti.

Zkou

ška

Symetrické uspořádání senzoru umožňuje využiti tzv. odporu šíření v prostoru kruhoveho kontaktu. V danem prostoru dochazi k výrazné nehomogenitě intenzity elektrického pole a tedy i ke vzniku velke hustoty proudu.

10³
10¹⁸
5.10¹⁸

 $N_{c4} = 10^{13} cm^{-3}$

Uspořádání monokrystalického Si senzoru teploty

Převodní charakteristika Si senzoru teploty

Odporové polovodičové teplotní senzory -monokrystalické

Odpor je dán vztahem:

$$R = \frac{\rho}{\beta D}$$

kde

 $\rho \left[\Omega \mathbf{m}\right]$ je rezistivita,

D[m] průměr kontaktu,

 β faktor daný geometrií struktury ($\beta < 4$).

$$R = R_{\rm r} + k(\vartheta - \vartheta)^2$$

Typické hodnoty monokrystalického senzoru:

$$\theta_r = -241,52 \, ^{\circ}\text{C}$$

$$R_{\rm r}=16~\Omega$$

$$k=2,7931.10^{-2} \Omega \text{K}^{-2}$$
.

Běžné hodnoty odporu při teplotě 25 °C jsou 1 k Ω a 2 k Ω .

Odporové polovodičové teplotní senzory -monokrystalické

Monokrystalické senzory

Polovodičové monokrystalické senzory teploty lze vyrobit z křemíku, germania nebo india, v praxi se však setkáváme pouze se senzory křemíkovými.

Monokrystalické Si senzory

Pro výrobu křemíkových senzorů se používá nevlastního polovodiče typu N, tedy s dominantní elektronovou vodivostí. Pohyblivost volných nosičů náboje v krystalové mřížce křemíku závisí na teplotě a na počtu příměsí v jednotce objemu. S rostoucí teplotou dochází vlivem rozptylu nosičů náboje na mřížce polovodiče ke zmenšování pohyblivosti těchto nosičů, v důsledku čehož narůstá rezistivita, podobně jako je tomu u kovů. Monokrystalické Si senzory teploty tedy mají kladný teplotní součinitel odporu podobně jako PTC termistory, princip jejich vodivosti je však odlišný. Křemíkové senzory se obvykle používají pro rozsah teplot –50 až 150 °C.

Základní vlastnosti monokrystalických Si senzorů:

Teplotní součinitel odporu je téměř konstantní v celém rozsahu teplot a jeho střední hodnota se pohybuje kolem 0,01 K⁻¹ (platinové senzory: 0,004 K⁻¹, NTC: cca -0,03 až -0,06 K⁻¹).

Dlouhodobá stabilita. Teplotní drift kolem 0,2 K po 10000 hodinách nepřetržitého provozu při maximální provozní teplotě. Linearita je lepší než u NTC termistorů, ale horší než u platinových senzorů, nelinearitu lze však vhodnými metodami úspěšně korigovat.

Teplotní rozsah je obvykle -55 až 150 °C, k dostání jsou však běžně i senzory s horní teplotní hranicí 300 °C.

Referenční hodnota odporu při teplotě 25 °C je obvykle 1000 nebo 2000 Ω.

Monokrystalické křemíkové senzory jsou běžně k dostání, a to za přijatelnou cenu, která se pohybuje kolem dvaceti až třiceti korun. V řadě aplikací mohou díky svým vlastnostem nahradit platinová čidla, je však nutno počítat s linearizačními obvody. Typickými představiteli křemíkových monokrystalických senzorů jsou čidla řad KT a KTY. Na následujícím obrázku je vyobrazena závislost odporu na teplotě senzorů

KTY81-1 a KTY83 (KTY85).

Závislost odporu senzorů KTY83/85 na teplotě lze aproximovat vztahem

$$R_T = R_{ref} \left[1 + A \cdot (T - T_{ref}) + B \cdot (T - T_{ref})^2 \right],$$

kde $A=7,635\cdot10^{-3}$ K⁻¹, $B=1,731\cdot10^{-5}$ K⁻², $T_{ref}=25$ ° C. Senzor KTY85 se od senzoru KTY83 liší teplotním rozsahem a typem pouzdra.

Pro senzory KTY81/82/84 platí následující aproximační vztah:

$$R_T = R_{ref} \left[1 + A \cdot (T - T_{ref}) + B \cdot (T - T_{ref})^2 - C \cdot (T - T_I)^D \right],$$

přičemž pro senzor KTY81-1 nabývají uvedené konstanty následujících hodnot:

 $A = 7.874 \cdot 10^{-3} \text{ K}^{-1}$, $B = 1.874 \cdot 10^{-5} \text{ K}^{-2}$, $C = 3.42 \cdot 10^{-8} \text{ K}^{-D}$ (pro $T < T_T$ je C = 0), D = 3.7,

R [Ohm]

25 Monokrystalické Si senzory jsou díky dlouho stabilitě a nepříliš velké nelinearitě vhodné k

100 °C a. 7, =25 °C. Je referenchi hodnota odporu při teplotě 7, FEL ČVUT tří zmířených senzorů

Tenkovrstvové odporové polovodičové teplotní senzory

- Tenkovrstvový Pt senzor
 - Lineární charakteristika
 - Citlivost 0,44 Ω K⁻¹
 - Výroba naprašováním na skleněnou podložku
- Tenkovrstvový SiC senzor
 - Stabilní, přesné, nelineární, nenavlhá
 - -100 ÷ 450°C
 - α kladný 5x10⁻³ K⁻¹
 - R=10k Ω až 1M Ω
- Tenkovrstvové polykrystalické senzory
 - Levné, malé rozměry, vysoká reprodukovatelnost
 - -170 ÷ 450°C
 - Časová odezva $\Delta \theta$ =75°C $\rightarrow \Delta t$ =60 ÷ 100ms

Teplotní senzory s pn přechodem

Teplotní senzory s přechodem pn

Pro měření lze využít všech diod (Si, Ge, GaAs) charakteristika je mírně nelineární.

Varikapy – nejlepší, stálé parametry

Proud diodou

$$I = I_{S} \left(e^{\left(\frac{n \frac{U}{kT}}{q}\right)} - 1 \right) \Rightarrow U \doteq \frac{\frac{kT}{q}}{n} \ln \frac{I}{I_{S}}$$

n – parametr, rekombinační koeficient

I_s – saturační proud

U, I – napětí a proud na pn v propustném směru

Preplotní senzory s p-n přechodem: Napište základní rovnici popisující proud přechodem (Shockley rovnice), Napište nebo odvoďte rovnici pro teplotní závislost napětí na přechodu p-n na teplotě, Nakreslete teplotní závislost saturačního proudu I_s = f (teplota).

 \Rightarrow U=konst*T pokud I_S=konst., v reálu ale I_S=f(T) \Rightarrow U \neq konst*T -

charakteristika je obecně nelineární

Teplotní senzory s přechodem pn - citlivost

Citlivost – lze odvodit, že platí

$$\beta = \frac{dU}{dT} = \frac{k}{nq} \ln \frac{I}{I_S}$$

Příklad

pro běžné Si je $I_S=10^{-10}$ A a $I=10^{-4}$ A je $\beta=-2,1$ mV.K-1

? Citlivost teplotních senzorů s p-n přechodem: Napište princip odvození citlivosti p-n přechodu, Napište typickou číselnou hodnotu citlivosti.

Proud I je vhodné volit jako kompromisní hodnotu s ohledem na

- Vznik nelinearit vlastním ohřevem
- Na velikost napětí na diodě

Dioda nebo tranzistor jako teplotní senzor

V praxi se využívá přechod U_{BE} (oproti diodě), protože má menší teplotní závislost saturačního proudu

2 tranzistory nejsou zaměnitelné – každý diskrétní senzor teploty se musí navrhovat individuálně

Teplotní senzory s přechodem pn – Zenerova dioda

- Zenerova dioda jako teplotní senzor
 - Velká citlivost v závěrné části charakteristiky
 - Zenerovo napětí je funkcí teploty

Volbou Zenerova napětí je možné měnit velikost teplotního koeficientu v širokém rozsahu (podle konstrukce a technologie 0 až 110mV/K)

Podle velikosti U₇ je teplotní koeficient

kladný $(U_7 > 5V)$

záporný $(U_z < 5V)$

Tepl. senzory s přechodem pn – vyhodnocování signálu

Základní zapojení jednoduchého převodníku T/U

Integrované teplotní senzory

Integrované teplotní senzory

Význam

- Linearizace převodních charakteristik
- Snižování nákladů
- Realizace na jednom čipu
- Integrace dalších komponent (zesilovače, převodníky, filtry...)
- Možnost realizace inteligentních struktur v jednom pouzdře (regulace apod.)
- Možnost využití různých technologií

Integrované teplotní senzory - Bipolární

Jednoduchá integrovaná bipolární struktura

- Převodník $T \rightarrow I$
- Proudy tranzistorem T₂, T₁ jsou v poměru 1:1

 $I_1 = I_2 = N \cdot I_{T21}$

T₂ je složen z N paralelních tranzistorů které mají dohromady plochu jako T₁

$$T_1: U_{BE1} = \frac{kT}{nq} \ln \left(\frac{I_1}{I_0}\right) \qquad T_2: I_2 = N \cdot I_{T21}$$

$$U_{BE2} = \frac{kT}{\ln\left(\frac{I_{T21}}{I_{T21}}\right)} \Rightarrow \Delta U_{BE} = \frac{kT}{\ln N}$$

$$T_2: U_{BE2} = \frac{kT}{nq} \ln \left(\frac{I_{T21}}{I_0} \right) \Rightarrow \Delta U_{BE} = \frac{kT}{nq} \ln N$$

- Pokud I₁=I₂ rozdíl emitorových napětí je dán předcházející rovnicí $\Rightarrow \Delta U_{BF} = f(T)$
- Potom I₂ protékající odporem R je určen velikostí $U_{BF}=f(T) \Rightarrow I=f(T)$

Integrované tepl. senzory - Bipolární

Převodník T/I s B511, A590

Integrované tepl. senzory – CMOS (slabá inverze)

- mají podobné chování jako bipoláry → podobné vyhodnocování
- mají velmi dobrou linearitu
 I_D při slabé inverzi

$$I_{D} = \frac{W}{L} I_{D0} e^{\left(\frac{qU_{GS}}{nkt}\right)} \left[e^{-\frac{qU_{S}}{KT}} - e^{-\frac{qU_{D}}{KT}} \right]$$

W, L – šířka, délka kanálu

I_{DO} – charakteristický proud

$$U_{vyst} = \left(U_{GS2} - U_{GS4}\right) = \frac{kT}{q} \ln \left[\frac{\left(W/L\right)_{1} \cdot \left(W/L\right)_{4}}{\left(W/L\right)_{2} \cdot \left(W/L\right)_{3}}\right] \Rightarrow konst * T$$

Linearita – lepší než 0,1%

Teplotní koeficient – 0,162mV/K

 $\check{C}ip - 0.1mm^2$

Integrované tepl. senzory – CMOS (silná inverze)

Silná závislost proudu I_D (teplotní závislost prahového napětí a pohyblivých nosičů je nepřímo úměrná teplotě \Rightarrow při zvyšování T se zmenšuje I_D a strmost při konstantním U_{GS}

8 Nevýhoda: příliš se nevyužívá, je obtížné získat dobrou linearitu převodní charakteristiky

Polovodičové teplotní senzory – Aplikace

Tepelná ochrana audiotechniky Tepelné ochrany procesoru trademark of Intel Corporation. I trademark of IBM Corporation. Hole drilled in heatsink Pentium or Similar Processor Socket PCB Ground Plane Feedthroughs Pentium or Similar Processor **PCB** Temperature Sensor

Polovodičové teplotní senzory – Aplikace

Termoelektrické teplotní senzory

- kovové termočlánky
- integrované termočlánky
- termoelektrické senzory záření

Termoelektrické teplotní senzory – Princip

Princip:

Dva různé kovy spojené svařením, pájením nebo výjimečně mechanicky. Kovy lze nahradit polovodiči.

Seebeckův jev

jsou-li spojeny dva vodiče z různých kovů do uzavřeného obvodu a mají-li spoje různou teplotu T1 a T2, protéká obvodem elektrický proud. Pokud obvod rozpojíme, na svorkách naměříme elektromotorické napětí.

? Termoelektrické teplotní senzory: nakreslete a vysvětlete základní princip činnosti termočlánku.

Termoelektrické teplotní senzory – Kovové

Výběr materiálu záleží na:

- Teplotním rozsahu
- požadované přesnosti
- Požadované chemické odolnosti
- Odolnosti vůči mechanickému opotřebení a vibracím
- Požadavky na instalaci (velikost drátu)

? Termoelektrické kovové teplotní senzory: Uveďte 3 základní typy kovových termočlánků. Uveďte typické materiály, Nakreslete 3 typické charakteristiky.

Chromel-Constantan (E křivka)

- Pro použití pro teploty vyšší než 870°C ve vakuu nebo inertním prostředí. Při záporných teplotách nekoroduje. Tyto termočlánky mají nejvyšší výstupní napětí ze všech standardních kovových termočlánků.
- Platinum-Rhodium (S a R křivka)
 - Mají velkou odolnost proti oxidaci a korozi
 - Doporučený rozsah pracovních teplot je 1540 °C.
- Wolfram-Rhodium (C křivka)
 - Používají se pro měření teplot vyšších než 2760 °C.

Termoelektrické tepl. senzory – Kovové, materiály

Označení termočlánku	Původní označení	Měřicí rozsah [°C]
Т	Cu-CuNi, Cu-ko	- 200 až 350
J	Fe-CuNi	- 200 až 750
E	NiCr-CuNi, ch-ko	- 100 až 900
K	Ni-Cr-Ni, ch-a	- 200 až 1200
N	NiCrSi-NiSi	- 200 až 1200
S	PtRh10-Pt	0 až 1600
R	PtRh13-Pt	0 až 1600
В	PtRh30-PtRh6	300 až 1700

Termoelektrické kovové teplotní senzory: Uveďte 3 základní typy kovových termočlánků. Uveďte typické materiály, Nakreslete 3 typické charakteristiky.

Termoelektrické tepl. senzory – vyhodnocování signálu

Princip:

- Měření výstupního napětí termočlánku
- Měření voltmetrem

? Termoelektrické teplotní senzory: Nakreslete zjednodušený princip elektronického zapojení pro vyhodnocování signálu z termočlánků.

Teploměr s termoelektrickým článkem do 1000 °C

Zkou

Termoelektrické tepl. senzory – Integrované

Využití:

Termoelektrické články lze využít k měření teplotních rozdílů přímo na křemíkovém čipu ⇒ lze měřit teplotu na různých místech uvnitř čipu najednou

Termoelektrická baterie

? Integrovaný termoelektrický článek: Nakreslete strukturu jednoho článku. Nakreslete princip termoelektrická baterie. Jak je zabráněno šíření teploty na čipu.

Tepl. senzory – Porovnání RTD, diod, IC, termočlánek

Tepl. senzory – Porovnání RTD, diod, IC, termočlánek

Bezkontaktní teplotní senzory

- Termoelektrické
- Bolometrické
- Pyroelektrické

Princip: Termoelektrický článek se zahřívá absorpcí infračerveného záření

Výroba: tenkovrstvou technologií, termoelektrické radiační bloky (spojením termočlánků), tzn. zvýšení citlivosti, ale zhoršení tepelné časové odezvy.

Výhody:

- činnost při pokojových teplotách
- široký spektrální rozsah
- nepotřebují vnější napájení, jednoduchá indikace výstupu- voltmetr nedochází k vzájemnému ovlivňování přes napájecí zdoj
- Seebeckův efekt je v Si 0,5 1 mV/K na jeden proužek
- technologie výroby je kompatibilní s bipolární nebo CMOS

Nevýhody: velký vnitřní odpor, limitovaný tepelný odpor senzoru (je dán tím že existuje křemíkové spojení mezi teplou a referenční částí

Využití: IR senzory, teplotní převodníky, chemické analýzy plynu, průtokoměry, senzory vakua

Parametry integrovaných termobloků

počet spoj. termočlánků	účinná plocha [mm²]	materiály	citlivost [V/V]	časová konst. [ms]
60	0,36	Bi-Sb	6	15
12	0.78	Bi-Sb	9,5	40
54	1	Te-InSb	95	30
44	7.3	pSi-Al	10.6	128
72	0,2	Bi/Sb	180	. 19

Náhled na membránu s temočlánky

Pezkontaktní senzory infračerveného záření s termoelektrickým článkem: Nakreslete zjednodušeně strukturu jednoho termočlánku na čipu. Jak je zabráněno šíření teploty po ploše čipu.

The ML8540 is a medium-resolution (approximately 2,000 pixels) infrared image sensor that allows noncontact temperature measurement of an object and easy obtaining of thermal images.

The ML8540 receives infrared rays from an object at 48×47 (2,256) pixels resolution, converts them into voltage through a thermopile, and selects pixels in accordance with external CPU

clocks to output signals.

simple-to-use infrared image sensor for taking thermal images at 2000 pixels. Uncooled, small and low power consumption.

Odporové senzory tepelného záření - Bolometry

Co jsou BOLOMETRY a MIKROBOLOMETRY?

- Použití bolometru pro bezkontaktní měření teploty, kdy nelze použít pyroelektrické detektory.
- Mikrobolometry se využívají hlavně pro účely infračerveného snímání obrazu.

Poznámka: Bolometry (z řeckého bole: paprsek) jsou senzory pro bezdotykové měření teploty (thermometers) pracující na principu pyrometrie, tzn. měření celkového vyzářeného tepelného výkonu prostřednictvím infračerveného záření. Tvoří tak alternativu k ostatním senzorům pro bezdotykové měření teploty, infratermočlánky, pyroelektrické senzory a fotonové snímače.

 Bolometry v podobě integrovaných obvodů. Maticové uspořádání (několik desítek, stovek nebo i tisíců bolometrů v matici) - obecně označované jako mikrobolometry.

Aplikace: nejčastěji pro potřeby termovize, tzn. infračerveného snímání obrazu předmětů s následnou možností měření nebo detekce jejich teploty.

Odporové senzory tepelného záření - Bolometry

Princip:

Odporový materiál s velkým teplotním koeficientem a malou časovou konstantou ⇒ rychlé

Dopadající záření ohřívá materiál → změna R

Materiály:

- Pt odporové články dříve, polovodičové materiály v současnosti
- Termistorové bolometry kysličníky MgO, MnO, NiO, TiO₂ (kosmická zařízení)
- Vrstvové bolometry chalkogenidové sklo Tl₂SeAs₂Te₃
- Germaniové, křemíkové bolometry chladí se na teplotu kapalného hélia, používají se pří kosmických měřeních
- Supravodičové bolometry
- Pyroelektrické bolometry

Odporové senzory tepelného záření - Bolometry

Struktura integrovaného můstku z bolometrů

Princip použití bolometru jako proměnného prvku odporového děliče

Provedení jednoduchého bolometru MEMS

dopadající záření

? MEMS bolometr: Nakreslete zjednodušeně strukturu jednoho MEMS bolometru na čipu. Jak je zabráněno šíření teploty po ploše čipu.

Bolometrická matice pro termokamery

Uspořádání plošného detektoru používaného v termovizních kamerách

? MEMS bolometr: Nakreslete zjednodušeně strukturu bolometrické matice na čipu.

Širokopásmové bolometry

Princip: využívá se kombinace různých fyzikálních jevů (termistorového, pyroelektrického)

Materiály: pyroelektrický materiál u kterého je vodivost funkcí teploty

NaNO₂, Sn₂P₂S₆, LiNH₄SO₄

Kompenzace teploty okolí: můstkové zapojení dvou stejných senzorů

Konstrukce

Základní parametry některých typů polovodíčových bolometrů

typ	pracovní teplota [K]	citlivost [V/V]	odezva [ms]	spektrální rozsah	typická plocha [mm²]
termistor tenká oxidová	290	1000	1 až 10	viditelná obl. do 40 µm viditelná mž střední obl.	0,4 mž 4
vrstva Ge	290 4,2	130 2,5.10 ⁴	1 30	infračer. zář. vzdálená obl. infračer. zář.	0.5
Si	1.8	2.8.105	10	vzdálená obl. infračer. zář.	10

Princip vyhodnocování informace

Bolometry - Parametry

- Jsou rychlé krátká časová konstanta (až 1 ms)
 Velká citlivost
 Spektrální citlivost 1,6 až 5000 μm
 - ☐ Velký pracovní teplotní rozsah senzorů (-40°C až 100°C)
 - 🔲 Lze bez problémů měřit vysoký rozsah teplot měřeného objektu (i nad 1500 °C).
- Malé rozměry (u mikrobolometrů jen desítky μm)
- Není zde žádné ovlivnění měřeného objektu
- U mikrobolometrů velký počet snímačů (i přes 80 tisíc) na malé ploše => infračervené snímaní obrazu s rozlišením až 320x240 pixelů
- Vysoká cena
- U některých typů je nutné chlazení

Bolometry – Aplikace pro termokamery

Silicon Infrared Detector - UL 03 04 1 (francouzská firma ULIS)

- Formát pole (rozlišení): přepínatelný mezi 384 x 288 a 320x240 pixelů, 35 μm vzdálenost pixelů (mikrobolometrů na chipu)
- Materiál: Struktura mikrobolometrů je založená na rezistivním amorfním křemíku, který je plně slučitelný s technologií CMOS a není jej nutné chladit.
- Dynamický teplotní rozsah měřeného objektu: až 1500°C
- Pracovní teplotní rozsah senzoru: 40°C až + 80°C
- Časová konstanta: 7 ms
- Spektrální rozsah: 8 až 14µm
- NETD: 85 mK (f/1, 300 K, 60 Hz)
- Převodní konstanta: 7 mV/K
- Chyba opakovatelnosti měření: < 1.5%
- Rozměry: 32 x 23,5 x 7,4 mm bez vývodů
- Spotřeba: < 200 mW

- Detekce ohně a plamenů
- Monitorování tepelného zatížení součástek, objektů termovize s rozlišením až 320 x 240 pixelů
- Detekce výbuchu
- Bezdotykové měření teploty
- Spektrometrie
- Monitorování teploty procesů
- Měření teploty pohyblivých předmětů
- Astronomie
- Infračervené kamery a dalekohledy
- Zabezpečovací technika

Příklady obrázků získané infračervenými kamerami používající mikrobolometry

Příklady obrázků získané infračervenými kamerami používající mikrobolometry

Kumulace tepla

Kumulace tepla

vyzařování tepla

- zjišťování účinku fyzikální léčby pomocí termovize.
- pomocí změření rychlé změny povrchové teploty se prokázaly změny v prokrvení ve tkáních hluboko pod povrchem.
- v plastické chirurgii při kontrole hojení transplantátů
- při diagnostice různých zánětů a poruch prokrvení
- kamerou s vyšší citlivostí lze diagnostikovat také zhoubná nádorová onemocnění – například prsu, štítné žlázy, kloubů atd.

tepelné stopy člověka na podlaze vydrží i několik desítek minut

Příklady obrázků získané infračervenými kamerami používající mikrobolometry

Bolometry – Aplikace pro teploměry

Bolometry – Aplikace pro lékařské teploměry

Speciální dotykové teplotní senzory

- Akustické
- Krystalové
- Šumové
- Magnetické
- SAW
- Optické
- Teploměrné barvy

Krystalový teplotní senzor

Princip: využívá se teplotní závislosti kmitočtu krystalu (vhodného řezu)

Vyhodnocování: - oscilátorový obvod, dělič...

- oscilátor je obvykle umístěn blízko krystalu
- signál lze přenášet na větší vzdálenosti
- signál lze snadno upravit (dělit, převádět na časový interval)

Vlastnosti:

- malá cena
- dobrá linearita
- digitální signál + přenos
- dvouvodičové vedení
- malé napětí + proud
- možnost heterodynního zpracování signálu

Krystalový teplotní senzor

Převodní charakteristika

Heterodynní zpracování signálu z krystalového senzoru

Magnetický teplotní senzor

Princip: $B=f(\vartheta)$

při H=konst.

Curieova teplota: při vzrůstu teploty nad tuto teplotu se feromagnetické materiály stávají paramagnetickými

Materiály: pokud možno s co největší změnou Δ B/ Δ ϑ

kovy: thermalloy, calmalloy, thermoperm

ferity: ve tvaru toroidu

② Výhody: robustní, velký výstupní signál

Nevýhody: malá časová stálost, velké rozměry, malá přesnost

Ultrazvukový teplotní senzor

Princip: rychlost šíření zvuku v látce závisí na teplotě, měří se čas šíření ultrazvukových impulsů

$$v=f(\vartheta)$$

$$\mathbf{v} = \sqrt{\frac{E}{\rho}}$$

Teplotní závislost rychlosti a stabilita

Normalizovaná teplotní závislost rychlosti šíření zvuku

Teplotní stabilita senzoru

Ultrazvukový teplotní senzor

Konstrukce:

Ultrazvukový teplotní senzorový systém

SAW teplotní senzor

Princip: Využívá se teplotní závislosti rychlosti šíření povrchové akustické vlny v určitém materiálu (LiNbO₃)

Teplotní senzor SAW a) princip činnosti oscilátoru se zpožďovacím vedením SAW, b) struktura SAW-uspořádání elektrod

Typická závislost: citlivost 4kHz/°C, rozdíl frekvencí pro ϑ =-50°C÷150°C je Δ f=800kHz

Teplotní závislost frekvence oscilátoru se senzorem SAW

Propostní senzor SAW:
Nakreslete a vysvětlete
princip činnosti, Nakreslete a
vysvětlete elektronický
vyhodnocovací obvod.

Teplotní senzor s optickým vláknem

- Využití nežádoucích vlivů okolního prostředí na parametry optických kabelů
- Teplota moduluje optický signál

Teplotní senzor s barevnou indikací

 Akrylové laky nebo stmelené prášky obsahující teplotné citlivé anorganické pigmenty

Senzory pro měření kryogenních teplot

Senzory pro měření kryogenních teplot - přehled

- Teploty od 50K níže
- využití teplotně závislých fyzikálních vlastností látek (rychlost šíření zvuku, elektrické vlastnosti, apod.)
- využití teplotně závislých fyzikálních jevů (šum, magnetická rezonance)

? Teplotní senzory pro měření kryogenních teplot: Napište alespoň 4 základní typy teplotních senzorů, Jaké nevýhody mají termočlánkové, Do jakých nejmenších teplot je možné senzory použít.

Sensor Type	Temperature Range		
Silicon diodes	1.4 - 500 K		
GaAlAs diodes	1,4 - 500 K		
Positive Temperature	Coefficient		
Platinum RTDs	14 -850 K		
Rhodium-iron RTDs	0.65 - 400 K		
Negative Temperatur	e Coefficient		
Cernox™ RTDs	0.10 - 325 K		
Cernox™ High Temp, RTDs	0.30 - 420 K		
Germanium RTDs	0.05 - 100 K		
Carbon-Glass™ RTDs	1.4 - 325 K		
Ruthenium oxide RTDs	0.05 - 300 K 0.05 - 40 K*		
Thermocouples	1,4 -1530 K		
Capacitance	1.4 - 290 K		

Senzory pro měř. kryogenních teplot – temoelektr. odpor

A) Termoelektrické články

Zkou ška

výhody: jednoduché, laciné

nevýhoda: termoelektrické napětí není stabilní a je malé

B) Odporové senzory

Kovové – pro 10K÷90K se používá funkce

$$Z = \frac{R_{T1} - R_{T2}}{R_{T0} - R_{T2}}$$

 R_{T1} - je odpor Pt pro T_1 ; R_{T0} , R_{T2} – jsou odpory Pt pro známé teploty

Pro 2K ÷ 20K lze R=f(T) vyjádřit jako

$$R(T) = R_{T1} + AT^2 + BT^{\gamma}$$

 R_{T1} , A, B, γ – jsou konstanty určené měřením

Uhlíkové: speciální provedení hmotových odporů s negativní teplotní charakteristikou, Rozsah 1÷20 K, popřípadě 0,01 ÷1 K Termistory: až od 20 K

? Teplotní senzory pro měření kryogenních teplot: Napište alespoň 4 základní typy teplotních senzorů, Jaké nevýhody mají termočlánkové, Do jakých nejmenších teplot je možné senzory použít.

Senzory pro měř. kryogenních teplot – C, L, šum, P-N

C) Kapacitní teplotní senzory

Konstrukce vhodná pro měření teplot v silném magnetickém poli.

Dielektrikem je krystalické sklo

Citlivost – v lineárním úseku (do 5K) 250pF/K

D) Indukční princip

Měření extrémně nízkých teplot mK ÷5 K, využívá se teplotní závislosti magnetické susceptibility paramagnetických solí

E) Šumový teplotní senzor

Princip vychází z definice šumového napětí U2=4kRfT

F) P-N přechod

Do 50 K je citlivost přibližně -2 mV/K

Pro T < 50 K – platí jiné teplotní koeficienty udávané výrobcem

 $(Si - 55 \text{ mV/K}, \text{ pro T}=1\div30 \text{ K})$

Nevýhoda: značná citlivost na magnetické pole

Preplotní senzory pro měření kryogenních teplot: Napište alespoň 4 základní typy teplotních senzorů, Jaké nevýhody mají termočlánkové, Do jakých nejmenších teplot je možné senzory použít.

Závislost napětí na P-N přechodu na teplotě

Závislost napětí na P-N přechodu na teplotě

Výrobci teplotních senzorů

Zkouškové otázky

- 1. Napište definice pro: Množství tepla v tělese, Rychlost průtoku tepla tělesem, Teplotní gradient (tepelná vodivost)
- 2. Odporové kovové teplotní senzory (RTD): Uveďte alespoň 2 typické materiály pro teplotní senzory, uveďte typický teplotní rozsah, napište základní rovnici pro aproximaci průběhu odporu v malém rozmezí teplot (0 100°C)
- 3. Vyhodnocování signálu z odporových kovových teplotních senzorů (RTD): Nakreslete zjednodušeně obvodové zapojení pro vyhodnocování teploty
- 4. Odporové polovodičové teplotní senzory s termistory: Napište rozdíl mezi termistory NTC, PTC, nakreslete typické převodní charakteristiky, Nakreslete zjednodušené obvodové zapojení pro vyhodnocování teploty
- 5. Odporové polovodičové teplotní senzory monokrystalické : Nakreslete a vysvětlete základní principy činnosti.
- 6. Teplotní senzory s p-n přechodem: Napište základní rovnici popisující proud přechodem (Shockley rovnice), Napište nebo odvoďte rovnici pro teplotní závislost napětí na přechodu p-n na teplotě, Nakreslete teplotní závislost saturačního proudu I_s = f (teplota)
- 7. Citlivost teplotních senzorů s p-n přechodem: Napište princip odvození citlivosti p-n přechodu, Napište typickou číselnou hodnotu citlivosti
- 8. Teplotní senzory s p-n přechodem: Nakreslete typický průběh teplotní závislosti napětí na přechodu p-n U = f(teplota) pro dva různé proudy I přechodem
- 9. Vyhodnocování informace z teplotního senzoru s p-n přechodem: Nakreslete zjednodušené základní zapojení teploměru s přechodem p-n, vysvětlete proč je nutné používat proudový zdroj pro napájení přechodu p-n, jak je tvořen proudový zdroj na Vašem obrázku
- 10. Termoelektrické kovové teplotní senzory: nakreslete a vysvětlete základní princip činnosti termočlánku
- 11. Termoelektrické teplotní senzory: Uveďte 3 základní typy kovových termočlánků. Uveďte typické materiály, Nakreslete 3 typické charakteristiky.
- 12. Termoelektrické teplotní senzory: Nakreslete zjednodušený princip elektronického zapojení pro vyhodnocování signálu z termočlánků
- 13. Bezkontaktní senzory infračerveného záření s termoelektrickým článkem: Nakreslete zjednodušeně strukturu jednoho termočlánku na čipu. Jak je zabráněno šíření teploty po ploše čipu
- 14. MEMS bolometr: Nakreslete zjednodušeně strukturu jednoho MEMS bolometru na čipu. Jak je zabráněno šíření teploty po ploše čipu.
- 15. MEMS bolometr: Nakreslete zjednodušeně strukturu bolometrické matice na čipu
- 16. Teplotní senzor SAW: Nakreslete a vysvětlete princip činnosti, Nakreslete a vysvětlete elektronický vyhodnocovací obvod
- 17. Teplotní senzory pro měření kryogenních teplot: Napište alespoň 4 základní typy teplotních senzorů, Jaké nevýhody mají termočlánkové, Do jakých nejmenších teplot je možné senzory použít.

