2장 변수와 계산

변수의 소개

- 변수(variable)는 값을 저장하는 공간
- 변수는 값을 저장하는 상자로 생각할 수 있다.

변수와 메모리

■ 변수는 메모리(memory)에 만들어진다.

변수 생성

■ 변수를 만들려면?


```
>>> score = 20
>>> score
20
>>> print(score)
20
```

변수의 사용

■ 생성된 변수에는 얼마든지 다른 값을 저장할 수 있다.

```
>>> score = 20
>>> score = 30
>>> score
30
```


변수의 사용

■ 변수에는 다른 변수의 값도 저장할 수 있다.

```
>>> width = 10
>>> height = 20
>>> area = width * height
>>> print(area)
200
```


변수의 사용

■ 파이썬의 변수에는 정수뿐만 아니라 문자열도 저장할 수 있다.

```
>>> s = '안녕하세요?'
>>> print(s)
안녕하세요?

>>> pi = 3.141592
>>> print(pi)
3.141592
```

Lab: 파티 준비

■ 참석자에 맞추어서 치킨(1인당 1마리), 맥주(1인당 2캔), 케익(1인당 4개)를 출력하는 프로그램을 작성해보자.

참석자의 수를 입력하시오:25

치킨의 수: 25

맥주의 수: 50

케익의 수: 100

Solution

```
number = int( input("참석자의 수를 입력하시오:"))
chickens = number
beers = number*2
cakes = number*4
print("치킨의 수: ", chickens)
print("맥주의 수: ", beers)
print("케익의 수: ", cakes)
```

Lab: 변수 값 교환

■ 변수 x 와 변수 y의 값을 서로 바꾸는 프로그램을 작성해 보자. 다음과 같은 프로그램으로는 변수의 값을 교환할 수 없다. 왜 그럴까? 그리고 해결 방법은 무엇일까?

Solution

```
temp= x
x = y
y= temp
```


변수가 저장하는 것

■ 파이썬에서 변수는 어떤 데이터든지 저장할 수 있다.

```
value = 3
value = 3.14
value = "hello"
```

변수의 이름

- 의미 있는 이름을 사용
- 소문자와 대문자는 서로 다르게 취급된다.
- 변수의 이름은 영문자와 숫자, 밑줄(_)로 이루어진다.
- 변수의 이름 중간에 공백이 들어가면 안 된다. 단어를 구 분하려면 밑줄(_)을 사용 한다.

식별자

낙타체

■ 낙타체는 변수의 첫 글자는 소문자로, 나머지 단어 의 첫 글자는 대문자로 적는 방법이다. 예를 들면, myNewCar처럼 첫 'm'은 소문자로, 나머지 단어들의 첫 글 자는 대문자로 표기한다

상수

■ 상수(constant)는 한번 값이 결정되면 절대로 변경되지 않는 변수.

```
TAX_RATE = 0.35

PI = 3.141592

MAX_SIZE = 100
```

주석

■ 주석(comment)은 소스 코드에 붙이는 설명글

```
# 사각형의 가로 길이
width = 10
# 사각형의 세로 길이
height = 20
# 사각형의 면적 계산
area = width * height
```

주석의 또 다른 용도

```
##
# 이 프로그램은 사용자로부터 2개의 정수를 받아서
#합을 계산한다.
x = int(input("첫 번째 정수: "))
y = int(input("두 번째 정수: "))
sum = x + y
\#diff = x - y
print("함은 ", sum)
```

첫 번째 정수: 10 두 번째 정수: 20 합은 30

수식과 연산자

연산자와 피연산자

- 수식(expression)=피연산자들과 연산자의 조합
- 연산자(operator)는 연산을 나타내는 기호
- 피연산자(operand)는 연산의 대상이 되는 것

산술 연산자

■ 덧셈, 뺄셈, 곱셈, 나눗셈, 나머지 연산

연산자	기호	사용예	결과값
덧셈	+	7 + 4	11
뺄셈	-	7 – 4	3
곱셈	*	7 * 4	28
나눗셈	//	7 // 4	1
나눗셈	/	7 / 4	1.75
나머지	%	7 % 4	3

나눗셈

```
>>> 7/4
1.75
>>> 7//4
1
```


지수 계산

■ 지수(power)를 계산하려면 ** 연산자를 사용한다.

■ 원리금계산

나머지 계산

```
>>> 7 % 4
3
```

 예제로 초 단위의 시간을 받아서 몇 분 몇 초인지를 계산 하여 보자.

```
>>> sec = 1000
>>> min = 1000 // 60
>>> remainder = 1000 % 60
>>> print(min, remainder)
16 40
```

예제

하나의 예로 현재 5000원이 있고 사탕의 가격이 120원이라고 하자. 최대한 살 수 있는 사탕의 개수와 나머지 돈은얼마인가?

```
myMoney = 5000;
candyPrice = 120;
# 최대한 살 수 있는 사탕 수
numCandies = myMoney//candyPrice
print(numCandies)
# 최대한 사탕을 구입하고 남은 돈
change = myMoney % candyPrice;
print(change)
```

41 80

Lab: 변수 값 교환

■ 예를 들어서 파이썬을 사용하여서 2차 함수에서 x=2일 때, 함수의 값을 계산하여 보자.

$$y = 3x^2 + 7x + 9$$

y = 3.0 * x**2 + 7.0 * x + 9.0

Solution

```
>>> x = 2.0
>>> y = 3.0 * x**2 + 7.0 * x + 9.0
>>> print(y)
35.0
```

연산자의 우선 순위

괄호의 사용

Lab: 감자 재배

우주인이 화성이 가서 자급자족하기 위하여 감지를 제비한다고 가정하자. 처음에 20개의 감자가 있었고 배우 감자 10개를 심어서 40개를 수확한다고 하자. 또 하루에 감자를 3개씩 먹는다고 가정하자. 1년(52주)이 흐르면 감자는 몇 개가 될까?

Solution

```
>>> 20+52*30
1580
>>> 3*365
1095
>>> 1580-1095
485
```

Lab: 복리계산

- 1626년에 아메리카 인디언들이 뉴욕의 맨하탄섬을 단돈 60길더(약 24달러)에 탐험가 Peter Minuit에게 팔았다고 한다. 382년 정도 경과한 현재 맨하탄 땅값은 약 600억달 러라고 한다.
- 하지만 만약 인디언이 24달러를 은행의 정기예금에 입금 해두었다면 어떻게 되었을까? 예금 금리는 복리로 6%라고 가정하자. 그리고 382년이 지난 후에는 원리금을 계산하여 보자.

Solution

```
>>> init_money=24
>>> interest=0.06
>>> years=382
>>> init_money*(1+interest)**years
111442737812.28842
```

함수 호출

- 함수(function)란 특별한 작업을 담당하는 명령어들의 모 임이다.
- 파이썬이 기본으로 제공하는 내장 함수는 상당히 많다.

내장 함수

```
>>> value=abs(-3)
>>> value
3
>>> round(1.2345)
>>> round(1.9876)
2
>>> max(10, 20)
20
>>> min(10, 20, 30, 40, 50)
10
```

내장 함수

```
>>> from math import * # 한번만 하면된다.

>>> sqrt(4.0)

2.0

>>> x=2.0

>>> y=3.0

>>> sqrt(x**2+y**2)

3.605551275463989
```

Lab: 등산 시간 계산

■ 어떤 사람이 산악 자전거로 등산을 계획하고 있다. 평지에서는 시속 20km/h가 가능 하고 오르막에서는 10km/h, 내리막에서는 30km/h가 가능하다고 하자. 위와 같은 경로를 자전거로 주행한다면 시간이 얼마나 걸릴까?

Solution

```
from math import *
time1 = 10/20
height = sqrt(3**2+4**2)
time2 = height/10
time3 = height/30
time4 = 8/20
total = time1+time2+time3+time4
print(total)
```

input() 함수

■ 사용자와의 상호작용

input() 함수

문자열 입력

```
name = input("이름이 무엇인가요?")
print("만나서 반갑습니다." + name + "씨!")
age = input("나이는요?")
print("네, 그러면 당신은 이미" + age + " 살이시군요," + name + "씨!")
```

```
이름이 무엇인가요? 홍길동
만나서 반갑습니다. 홍길동씨!
나이는요? 21
네, 그러면 당신은 이미 21 살이시군요, 홍길동씨!
```

숫자 입력

```
x = input("첫 번째 정수: ")
y = input("두 번째 정수: ")
sum = x + y
print("합은 ", sum)
```

```
첫 번째 정수: 10
두 번째 정수: 20
합은 1020←
```

문자열로 간주하여 서로 합침!

숫자 입력

```
x = int(input("첫 번째 정수: "))
y = int(input("두 번째 정수: "))
sum = x + y
print("합은 ", sum)
```

첫 번째 정수: 10 두 번째 정수: 20 합은 30

자료형

■ 정수(integer), 실수(floating-point), 문자열(string)

자료형	예		
정수	, -2, -1, 0, 1, 2,		
실수	3.2, 3.14, 0.12		
문자열	'Hello World!', "123"		

자료형을 알고 싶으면?

```
>>> type("Hello World!")
<class 'str'>
>>> type(3.2)
<class 'float'>
>>> type(17)
<class 'int'>
```

Lab: 구의 부피 계산하기

■ 반지름이 r인 구의 부피는 다음과 같은 식으로 계산할 수 있다.

■ 반지름이 5인 구의 부피를 계산하는 파이썬 프로그램을 작성해보자.

Solution

Lab: 구의 부피 계산하기

■ 지구에서 가장 가까운 별은 프록시마 켄타우리(Proxima Centauri) 별이라고 한다. 프록시마 켄타우리는 지구로부터 나 떨어져 있다고 한다. 빛의 속도로 프록시마 켄타우리까지 간다면 시간이 얼마나 걸리는지 직접 계산해보기로 하자.

Solution

```
>>> speed = 300000

>>> distance = 4000000000000

>>> secs = distance/speed

>>> light_year = secs/(60.0*60.0*24.0*365.0)

>>> print(light_year)

4.227972264501945
```

Lab: 대화하는 프로그램 만들기

사용자에게 이름을 물어보고 화면에 "철수님 반갑습니다"와 같이 출력한다. 이어서 사용 자의 나이를 물어보고 "10년 후면 30살이 되시는군요!"와 같이 출력하도록 파이썬 프로그램을 작성하라. 모든 작업은 파이썬 쉘에서 진행한다.

Solution

```
>>> name = input('이름을 입력해주세요: ')
이름을 입력해주세요: 김철수
>>> print(name, "님 만나서 반갑습니다.")
김철수 님 만나서 반갑습니다.
>>> age = input('나이를 입력해주세요: ')
나이를 입력해주세요: 20
>>> print('10년 후면', int(age)+10, '살이 되시는군요!')
10년 후면 30 살이 되시는군요!
```

Lab: 대화하는 프로그램 만들기

■ 자동 판매기를 시뮬레이션하는 프로그램을 작성하여 보자. 사용자는 1000원짜리 지폐와 500원짜리 동전, 100원짜리 동전을 사용할 수 있다. 물건값을 입력하고 1000원권, 500원짜리 동전, 100원짜리 동전의 개수를 입력하면 거스름돈을 계산하여서 동전으로 반환한다.

물건값을 입력하시오: 750 1000원 지폐개수: 1 500원 동전개수: 0 100원 동전개수: 0 500원= 0 100원= 2 10원= 5 1원= 0

Solution

```
itemPrice = int(input("물건값을 입력하시오: "))
note = int(input("1000원 지폐개수: "))
coin500 = int(input("500원 동전개수: "))
coin100 = int(input("100원 동전개수: "))
change = note*1000 + coin500*500 + coin100*100 - itemPrice
# 거스름돈(500원 동전 개수)을 계산한다.
nCoin500 = change//500
change = change%500
# 거스름돈(100원 동전 개수)을 계산한다.
nCoin100 = change//100
change = change%100
# 거스름돈(10원 동전 개수)을 계산한다.
nCoin10 = change//10
change = change%10
# 거스름돈(1원 동전 개수)을 계산한다.
nCoin1 = change
print("500원=", nCoin500, "100원=", nCoin100, "10원=", nCoin10, "1원=", nCoin1)
```

문자열

■ 컴퓨터에게는 숫자가 중요하지만 인간은 주로 문자열 (string)를 사용하여 정보를 표현하고 저장하므로 문 자열 의 처리도 무척 중요하다.

문자열이란?

■ 문자열(string)은 문자들의 순서있는 집합(sequence of characters)

큰따옴표 사용

```
>>> greeting="Merry Christmas!"
```

>>> greeting 'Merry Christmas!'

>>> print(greeting)
Merry Christmas!

작은 따옴표 사용

```
>>> greeting='Happy Holiday!'
>>> print(greeting)
Happy Holiday!
>>> greeting="Happy Holiday"
SyntaxError: EOL while scanning string literal
>>>
>>> greeting="Happy Holiday
SyntaxError: EOL while scanning string literal
>>>
```

문법 오류

■ 문법: 프로그램의 문장을 바르게 구성하기 위한 규칙

큰 따옴표 안의 작은 따옴표 사용

```
>>> message="철수가 "안녕"이라고 말했습니다."
SyntaxError: invalid syntax
>>>
>>> message="철수가 '안녕'이라고 말했습니다."
>>> print(message)
철수가 '안녕'이라고 말했습니다.
>>>
```

여러 줄의 문자열

>>> greeting="'지난 한해 저에게 보여주신 보살핌과 사랑에 깊은 감사를 드립니다. 새해에도 하시고자 하는 일 모두 성취하시기를 바랍니다."

>>> print(greeting)

지난 한해 저에게 보여주신 보살핌과 사랑에 깊은 감사를 드립니다. 새해에도 하시고자 하는 일 모두 성취하시기를 바랍니다.

특수 문자열

■ 문자 앞에 \가 붙으면 문자의 특수한 의미를 잃어버린다.

```
>>> message= 'doesn\'t' #\를 사용하여 작은따옴표를 출력한다.
>>> print(message)
doesn't
>>>
>>> message="\"Yes,\" he said."
>>> print(message)
"Yes," he said.
>>>
```

문자열의 연결

```
>>> 'Py' 'thon'
'Python'
>>> 'Harry ' + 'Porter'
'Harry Porter'
>>> first_name="길동"
>>> last_name="홍"
>>> name = last_name+first_name
>>> print(name)
홍길동
```

문자열과 정수 간의 변환

```
>>> "Student"+26
...

TypeError: Can't convert 'int' object to str implicitly

>>> "Student"+str(26)
'Student26'

>>> price = int("259000")
>>> height = float("290.54");
```

문자열의 반복

문자열의 출력

```
>>> price = 10000
>>> print("상품의 가격은 %s원입니다." % price)
상품의 가격은 10000원입니다.

>>> message = "현재 시간은 %s입니다."
>>> time = "12:00pm"
>>> print(message % time)
현재 시간은 12:00pm입니다.
```

인덱싱

■ 인덱싱(Indexing)이란 문자열에 [과]을 붙여서 문자를 추 출하는 것이다.

Р	у	t	h	o	n
0	1	2	3	4	5

인덱스는 문자에 매겨진 번호입니다. 0부터 시작해요!


```
>>> word = 'Python'
>>> word[0]
'P'
>>> word[5]
'n'
```

Lab: 숫자 추측 게임

■ 사용자에게 단어 3개를 입력받아서 약자(acronym: 몇 개단어의 머리글자로 된 말)를 만들어 보자. 예를 들어서 'OST'도 Original Sound Track의 약자이다. 이 예제는 소 스파일로 작성하여 실행해보자.

첫 번째 단어를 입력해주세요: Original 두 번째 단어를 입력해주세요: Sound 세 번째 단어를 입력해주세요: Track OST

Solution

```
word1 = input('첫 번째 단어를 입력해주세요: ')
word2 = input('두 번째 단어를 입력해주세요: ')
word3 = input('세 번째 단어를 입력해주세요: ')
acronym = word1[0] + word2[0] + word3[0]
print(acronym)
```

리스트

- 파이썬은 여러 개의 값을 모아서 하나의 변수에 저장할 수 있다.
- 리스트는 [] 안에 값을 나열하고 값과 값 사이에 콤마를 찍으면 된다.


```
>>> shopping_list = ['milk', 'eggs', 'cheese', 'butter', 'cream']
>>> print(shopping_list)
['milk', 'eggs', 'cheese', 'butter', 'cream']
>>>
```

인덱싱


```
>>> print(shopping_list[2])
cheese

>>> shopping_list[2]='apple'
>>> print(shopping_list)
['milk', 'eggs', 'apple', 'butter', 'cream']
>>>
```

핵심 정리

- 변수의 개념을 소개하였다. 변수는 값을 저장하는 상자와 같은 것으로 변수에 저장된 값을 나중에 유용하게 사용될 수 있다.
- 다양한 산술 계산 연산자에 대하여 학습하였다. 연산자들은 우선 순위를 가지고 있지만 우리는 괄호를 사용하여서 연산자의 우선 순위를 변경할 수 있었다. 지수를 계산하는 연산자는 **이다.
- 문자열은 큰따옴표나 작은따옴표를 이용하여 표현한다. input() 함수를 이용하여 사용자로부터 문자열을 받을 수 있다. 인덱싱 연산자 []을 이용하여 각각의 문자를 추출할수 있다.

Q & A

