Academia Sabatina de Jóvenes Talento

Colinealidad y Concurrencia Clase #2

Encuentro: 16 Nivel: 5

Curso: Colinealidad y Concurrencia Semestre: II

Fecha: 15 de junio de 2023

Instructor: Kenny Jordan Tinoco

D. auxiliar: José Adán Duarte

Unidad I: Concurrencias

Contenido: Concurrencias de Cevianas II

En esta segunda clase del curso, seguiremos viendo los teoremas, definiciones y resultados clásicos sobre la concurrencia de cevianas. Veremos la demostraciones de teoremas, ejemplos, ejercicios y problemas propuestos.

1. Desarrollo

Teorema 1.1 (Teorema de Ceva sobre la circunferencia).

Sean ABC y DEF dos triángulos sobre la misma circunferencia. Entonces las rectas $AD,\,BE$ y CF son concurrentes si y sólo si

$$\frac{BD}{DC} \cdot \frac{CE}{EA} \cdot \frac{AF}{FB} = 1.$$

Definición 1.1 (Triángulo circunceviano).

A todo punto que no esté sobre alguno de los lados de un triángulo dado es posible asignarle un nuevo triángulo, que surge a partir de la intersección de las cevianas con el circuncírculo del triángulo.

Teorema 1.2 (Teorema de Steinbart).

Sea ABC un triángulo, D, E y F los puntos de tanagencia del incírculo con los lados BC, CA y AB, respectivamente. Sean P, Q y R puntos sobre el incírculo de ABC. Llamemos A', B' y C' las intersecciones de EF con PD, DF con QE y DE con FR. Entonces AP, BQ y CR son concurrentes si y sólo si DP, EQ y FR son concurrentes.

Teorema 1.3 (Teorema de Jacobi).

Sea ABC un triángulo, y sean X, Y, Z tres puntos en el plano tales que $\angle YAC = \angle BAZ, \angle ZBA = \angle CBX, \angle XCB = \angle ACY$. Entonces las rectas AX, BY y CZ son concurrentes.

Definición 1.2 (Puntos isotómicos).

Dos puntos son isotómicos si estos coinciden al ser reflejados por el punto medio del segmento al que pertenecen.

Definición 1.3 (Conjugados isotómicos).

Dado un triángulo ABC se tienen tres cevianas AD, BE y CF las cuales son concurrentes en un punto P. Sean D', E' y F' las reflexiones de D, E y F sobre los puntos medios de BC, CA y AB respectivamente. Entonces las rectas AD', BE' y CF' son concurrentes.

Definición 1.4 (Cevianas isogonales).

Dos cevianas son isogonales del $\triangle ABC$ si ambas parte del mismo vértice del triángulo y una es la reflexión de la otra con respecto a la bisectriz interna de $\triangle ABC$.

Definición 1.5 (Conjugados isogonales).

Dado un triángulo ABC se tienen tres cevianas AD, BE y CF las cuales son concurrentes en un punto P. Sean AD', BE' y CF' las reflexiones de AD, BE y CF sobre las bisectrices de $\angle A$, $\angle B$ y $\angle C$ respectivamente. Entonces las rectas AD', BE', CF' son concurrentes.

2. Ejercicios y Problemas

Sección de ejercicios y problemas para el autoestudio.

Ejercicio 2.1. En un triángulo ABC en el cual se traza la altura BH, la mediana AM y la ceviana CN las cuales concurren en el punto P. Si BP = 3PH y NB = 16. Hallar AN.

Ejercicio 2.2. Si $P ext{ y } Q$ son puntos en $AB ext{ y } AC$ del triángulo ABC de tal forma que PQ es paralelo a BC, y si $BQ ext{ y } CP$ se cortan en O, demuestra que AO es una mediana.

Ejercicio 2.3. Sean L, M y N puntos en los lados BC, CA y AB de un triángulo, respectivamente. Si AL, BM y CN concurren en O, demostrar que

$$\frac{OL}{AL} + \frac{OM}{BM} + \frac{ON}{CN} = 1.$$

Ejercicio 2.4. Sean L, M y N puntos en los lados BC, CA y AB de un triángulo, respectivamente. Si AL, BM y CN concurren en O, demostrar que

$$\frac{AO}{OL} = \frac{AN}{NB} + \frac{AM}{MC}.$$

Problema 2.1. Sea ABC un triángulo. Se toman los puntos D, E y F en las mediatrices de BC, CA y AB respectivamente. Probar que las rectas que pasan por A, B y C que son perpendiculares a EF, FD y DE, respectivamente, son concurrentes.

3. Problemas propuestos

Recordar que los problemas de esta sección son los asignados como **tarea**. Es el deber del estudiante resolverlos y entregarlos de manera clara y ordenada el próximo encuentro (de ser necesario, también se pueden entregar borradores).

Problema 3.1. Sean ABC un triángulo, y sean ΔBXC , ΔCYA y ΔAZB 3 triángulos isósceles semejantes en los que los lados no congruentes pertenecen al triángulo ABC. Demuestre que las rectas AX, BY y CZ son concurrentes.

Problema 3.2. Sea ABC un triángulo, y sean A', B' y C' tres puntos en el plano tales que $\angle B'AC = \angle BAC'$, $\angle C'BA = \angle CBA'$ y $\angle A'BC = \angle ABC'$. Sean X, Y y Z los pies de las perpendiculares desde A', B' y C' hacia BC, CA y AB, respectivamente. Pruebe que las rectas AX, BY y CZ son concurrentes.

4. Extra

Problema 4.1. En un triángulo acutángulo ABC con $AB \neq AC$, sea V la intersección de la bisectriz del ángulo A con BC, y sea D el pie de la perpendicular desde A hasta BC. Si E y F son la intersecciones del circuncírculo de AVD con CA y AB, respectivamente, probar que las rectas AD, BE y CF son concurrentes.

En caso de consultas

Instructor: Kenny J. Tinoco Teléfono: +505 7836 3102 (*Tigo*) Correo: kenny.tinoco10@gmail.com

Docente: José A. Duarte Teléfono: +505 8420 4002 (Claro) Correo: joseandanduarte@gmail.com