Reg. No.:	
Name	· :

Second year Higher Secondary Examination PART III

MATHEMATICS (SCIENCE)

Maximum: 80 (Scores)

TIME: $2\frac{1}{2}$ Hours

Cool-off time: 15 minutes

GENERAL INSTRUCTIONS TO CANDIDATES:

- There is a 'Cool-off time' of 15 minutes in addition to the writing time of $2\frac{1}{2}$ hours.
- You are not allowed to write your answers or to discuss anything with others during the 'Cool-off time'.
- Use 'Cool-off time' to get familiar with questions and to plan your answers.
- Read questions carefully before answering.
- All questions are compulsory and only internal choice is allowed.
- When you select a question, all the sub-questions must be answered from the same question itself.
- Calculations, figures and graphs should be shown in the answer sheet itself.
- Give equations wherever necessary.
- Electronic devices except non-programmable calculators are not allowed in the Examination Hall.

Questions 1 to 7 carry 3 score each. Answer any six.

1. a) Let * be a binary operation, defined by
$$a*b=3a+4b-2$$
, find $4*5$

b) Let $A = N \times N$ and * be a binary operation on A defined by (a,b) * (c,d)=(a+c,b+d). Show that * is commutative and associative. Also, find the identity element for * on A, if any. (2)

2. Solve
$$\tan^{-1} \left(\frac{x-1}{x-2} \right) + \tan^{-1} \left(\frac{x+1}{x+2} \right) = \frac{\pi}{4}$$
 (3)

3. a) If the matrix A is both symmetric and skew-symmetric, then A is a ----- matrix. (1)

b) Find the inverse of
$$A = \begin{bmatrix} 2 & -3 \\ -1 & 2 \end{bmatrix}$$
 by elementary row operation. (2)

4. Using properties of determinants, prove that

$$\begin{vmatrix} x & y & z \\ x^2 & y^2 & z^2 \\ y+z & z+x & x+y \end{vmatrix} = (x-y)(y-z)(z-x)(x+y+z).$$
 (3)

5. At what points will the tangent to the curve $y = 2x^3 - 15x^2 + 36x - 21$ be parallel to the x-axis? Also find the equations of the tangents to the curve at these points. (2)

- 6. Find a unit vector perpendicular to both the vectors 2î + 4ĵ 5k and î + 2ĵ + 3k.
 7. Consider a vector r = 2î + 3ĵ 6k.
 - a) Find magnitude of \vec{r}
 - b) Find the direction cosines of \vec{r} (1)
 - c) Show that $\sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma = 2$ (1)

Questions 8 to 17 carry 4 score each. Answer any eight.

- 8. Consider the following system of equations:
 - x + y + z = 6

$$x - y + z = 2$$

2x + y + z = 1

- i) Express this system of equations in the standard form AX = B. (1)
- ii) Prove that A is non-singular. (1)
- iii) Find the values of x,y and z satisfying the above system of equations. (2)
- 9. a) If f(x) = x + 7 and $g(x) = x 7, x \in R$, find $(f \circ g)(7)$.
 - b) Let $f: N \to N$ defined by $f(n) = \begin{cases} \frac{n+1}{2}, & \text{if } n \text{ is } odd \\ \frac{n}{2}, & \text{if } n \text{ is } odd \end{cases}$ for all $n \in N$. Find whether

the function f is bijective. (2)

- c) Find the inverse of the function f(x) = 4x + 3 (1)
- 10. Find the value of a and b such that the function $f(x) = \begin{cases} 5, & \text{if } x \le 2\\ ax + b, & \text{if } 2 < x < 10\\ 21, & \text{if } x \ge 10 \end{cases}$

is a continuous function. (4)

- 11. a) At the point x = 0, the function f(x) = |x| is
 - (a) continuous, but not differentiable (b) differentiable, but not continuous
 - (c) continuous and differentiable (d) neither continuous not differentiable (1)
 - b) If $x \sin(a + y) = \sin y$, then prove that $\frac{dy}{dx} = \frac{\sin^2(a + y)}{\sin a}$. (3)
- 12. a) A spherical bubble is decreasing in volume at the of 2c.c/s. Find the rate at which the surface area is diminishing when the radius is 3 cm. (2)
 - b) Find the equation of the tangent to the curve $y = x^2 4x + 1$ at (2,3)
- 13. Prove that $y = \frac{4\sin\theta}{(2+\cos\theta)} \theta$ is an increasing function of θ in $\left[0, \frac{\pi}{2}\right]$. (4)
- 14. a) If $|\vec{a} + \vec{b}| = |\vec{a} \vec{b}|$ prove that \vec{a} and \vec{b} are orthogonal. (2)
 - b) Using vectors, Find x such that the points A(3,2,1), B (4, x,5), C(4,2,-2) and D (6,5,-1) are coplanar. (2)

(1)

- 15. a) Find the equation of the plane passing through (2,-3,1) and is perpendicular to the line through the points (3,4,-1) and (2,-1,5).
 - b) Find the distance from origin to the plane 3x 2y + 6z + 14 = 0 (2)
- 16. Consider the lines $\frac{x-2}{2} = \frac{y-1}{5} = \frac{z+3}{-3}$ and $\frac{x+2}{-1} = \frac{y-4}{8} = \frac{z-5}{4}$.
 - a) Find the vector equations of the above lines. (2)
 - b) Find the angle between the lines. (2)
- 17. a) Find the sum of order and degree of differential equation $\left[1 + \left(\frac{dy}{dx}\right)^2\right]^{\frac{3}{2}} = 5\frac{d^2y}{dx^2}$ (1)
 - b) Form the differential equation of the family of circles touching the y axis at origin. (3)

Questions 18 to 24 carry 6 score each. Answer any Five questions.

18. Show that the semi-vertical angle of a right circular cone of given surface area and maximum

volume is
$$\sin^{-1}\left(\frac{1}{3}\right)$$
. (6)

- 19. a) If $\vec{\alpha} = 3\hat{i} + 4\hat{j} + 5\hat{k}$ and $\vec{\beta} = 2\hat{i} + \hat{j} 4\hat{k}$ then express $\vec{\beta}$ in the form $\vec{\beta} = \vec{\beta}_1 + \vec{\beta}_2$, where $\vec{\beta}_1$ is parallel to $\vec{\alpha}$ and $\vec{\beta}_2$ is perpendicular to $\vec{\alpha}$.
 - b) For any three vectors \vec{a} , \vec{b} and \vec{c} prove that $\begin{bmatrix} \vec{a} + \vec{b} & \vec{b} + \vec{c} & \vec{c} + \vec{a} \end{bmatrix} = 2 \begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix}$. (3)
- 20. Consider an L.P.P to minimize z = 3x + 5y subject to the constraints:

 $x + 3y \ge 3$, $x + y \ge 2$, $x, y \ge 0$.

- a) Draw the feasible region. (3)
- b) Write the corner points of the feasible region. (1)
- c) Find the minimum profit. (2)
- 21. Find the following integrals:

a)
$$\int \frac{\sqrt{\tan x}}{\sin x \cos x} dx \tag{2}$$

b)
$$\int \frac{1}{x(x^4-1)} dx$$
 (2)

c)
$$\int x \tan^{-1} x \, dx \tag{2}$$

22. a) Evaluate
$$\int_{0}^{1} \frac{dx}{\sqrt{1-x^{2}}}$$
 (1)

b) Evaluate:
$$\int_{-5}^{5} |x+2| dx$$
 (2)

c) Evaluate
$$\int_{0}^{a} \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} dx$$
 (3)

- 23. a) Consider the differential equation $\left(1+e^{\frac{x}{y}}\right)dx+e^{\frac{x}{y}}\left(1-\frac{x}{y}\right)dy=0$
 - i) Show that it is a homogeneous differential equation. (1)
 - ii) Solve the above differential equation. (3)
 - b) Find the integrating factor of the differential equation: $x \frac{dy}{dx} + 2y = x^2 \log x$. (2)
- 24. Using integration find the area of the region bounded by the triangle whose vertices are (-1,0),

$$(1,3)$$
 and $(3,2)$.
