Dive into Deep Learning for NLP

4. Word Embeddings and Applications of Basic Models

Leonard Lausen gluon-nlp.mxnet.io

13:15-14:15	Natural Language Processing and Deep Learning Basics
14:15-14:25	Break
14:25-15:15	Word Embeddings and Applications of Basic Models
15:15-15:55	Machine Translation and Sequence Generation
15:55-16:35	Contextual Representations with BERT
16:35-16:45	Break
16:45-17:15	Model Deployment with TVM

Word Embeddings

Motivation

- One-hot vectors map objects/ words into fixed-length vectors
- These vectors only contain the identity information, not semantic meaning, e.g.

$$\langle \mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{z}, \mathbf{y} \rangle = 0$$

Word Embeddings

- Learn an embedding vector for each word
- Use $\langle x, y \rangle$ to measure the similarity

$$\langle \mathbf{x}, \mathbf{y} \rangle > \langle \mathbf{z}, \mathbf{y} \rangle$$

Word Embeddings

- Learn an embedding vector for each word
- Use $\langle x, y \rangle$ to measure the similarity

$$\langle \mathbf{x}, \mathbf{y} \rangle > \langle \mathbf{z}, \mathbf{y} \rangle$$

- Requirements on training objective
 - Induces vectors that capture the similarity
 - Cheap to compute
 - Works on unlabeled data

- A word can be used to generate the words surround it
- Given the center word, the context words are generated independently

- A word can be used to generate the words surround it
- Given the center word, the context words are generated independently

- A word can be used to generate the words surround it
- Given the center word, the context words are generated independently

ℙ("the", "man", "his", "son" | "loves")

- A word can be used to generate the words surround it
- Given the center word, the context words are generated independently


```
ℙ("the", "man", "his", "son" | "loves")
```

```
= \mathbb{P}("the" \mid "loves") \cdot \mathbb{P}("man" \mid "loves")
```

$$\cdot \, \mathbb{P}(\text{"his"} \mid \text{"loves"}) \cdot \mathbb{P}(\text{"son"} \mid \text{"loves"})$$

Word2Vec: Continuous Bag Of Words (CBOW)

The center word is generated based on the context words

Word2Vec: Continuous Bag Of Words (CBOW)

The center word is generated based on the context words

Word2Vec: Continuous Bag Of Words (CBOW)

The center word is generated based on the context words

P("loves" | "the", "man", "his", "son")

Implementation

	vvord	Embedding
Center	W_{c}	$\mathbf{v}_c \in \mathbb{R}^d$
Context	W_{o}	$\mathbf{u}_o \in \mathbb{R}^d$

Implementation

Word Embedding Center
$$w_c$$
 $\mathbf{v}_c \in \mathbb{R}^d$ Context w_o $\mathbf{u}_o \in \mathbb{R}^d$

$$\mathbb{P}(w_o \mid w_c) = \frac{\exp(\mathbf{u}_o^{\mathsf{T}} \mathbf{v}_c)}{\sum_{i \in \mathcal{V}} \exp(\mathbf{u}_i^{\mathsf{T}} \mathbf{v}_c)}$$

 ${\mathscr V}$: all context words

Implementation

Summing over all words is too expensive

	Word	Embedding
Center	W_c	$\mathbf{v}_c \in \mathbb{R}^d$
Context	W_{o}	$\mathbf{u}_o \in \mathbb{R}^d$

$$\mathbb{P}(w_o \mid w_c) = \frac{\exp(\mathbf{u}_o^{\mathsf{T}} \mathbf{v}_c)}{\sum_{i \in \mathcal{V}} \exp(\mathbf{u}_i^{\mathsf{T}} \mathbf{v}_c)}$$

 ${\mathscr V}$: all context words

Implementation: Negative Sampling

Implementation: Negative Sampling

- Slide window over corpus
- Treat a center word and a context word appear in the same context window as an event
- Sample noise word W_n that doesn't appear in the window

Objective: Binary classification task between noise and true cooccurrences

Alternative implementation

- Alternative implementation
 - Collect counts in cooccurrence matrix

- Alternative implementation
 - Collect counts in cooccurrence matrix
 - Sample pairs with non-zero counts and noise pairs

- Alternative implementation
 - Collect counts in cooccurrence matrix
 - Sample pairs with non-zero counts and noise pairs
 - Compute gradient of binary classification task weighted by cooccurrence count

- English words usually have internal structures and formation methods
 - dog, dogs, dogcatcher

- English words usually have internal structures and formation methods
 - dog, dogs, dogcatcher

- Each center word is represented as a set of subwords
 - "where" -> "<where>" -> n-gram
 - n=3: "<wh", "whe", "her", "ere", "re>"

- English words usually have internal structures and formation methods
 - dog, dogs, dogcatcher

- Each center word is represented as a set of subwords
 - "where" -> "<where>" -> n-gram
 - n=3: "<wh", "whe", "her", "ere", "re>"
- Useful for long but infrequent words
 - e.g. pneumonoultramicroscopicsilicovolcanoconiosis

- For word w, \mathcal{G}_w is the union of subwords with length from 3 to 6
- The center vector is then

$$\mathbf{u}_{w} = \frac{1}{|\mathcal{G}_{w}|} \sum_{g \in \mathcal{G}_{w}} \mathbf{u}_{g}$$

The rest of the model is the same as skip-gram

