Formalization project: proof assistants and some algebra

George McNinch

2025-06-04 22:33:47 EDT (george@valhalla)

Outline

Formalization via Lean

"Finite Algebra"

Proof assistants

- ▶ What is a proof assistant?

 A proof assistant is a piece of software that provides a language for defining objects, specifying properties of these objects, and proving that these specifications hold. The system checks that these proofs are correct down to their logical foundation.
- goal: produce verified proofs This is in contrast to automated theorem proving, which is a different focus.
- What are some examples of proof assistants?
 - Lean, Agda, Coq, Mizar, HOL Light, HOL4, ...
 - differences? choice of logical foundations

why choose Lean?

- the foundations of Lean involve dependent type theory More precisely, Lean uses: a version of dependent type theory that is powerful enough to prove almost any conventional mathematical theorem, and expressive enough to do it in a natural way. More specifically, Lean is based on a version of a system known as the Calculus of Constructions with inductive types.
- main reason for the choice of Lean there has been a lot of "pure-math" activity in mathlib, a community maintained library (github repository) of pure mathematics results.

Topics of study in this area

- there is interest in studying type theoretic foundations, for example Homotopy Type Theory
- but the goal of this project is aligned with the philosophy of the mathlib community, namely to use Lean to do mathematics familiar to the community of pure mathematicians.

What does Lean look like?

> example: some statements about sequences of real numbers

```
definition of "u tends to 1"
def seq_limit (u : \mathbb{N} \to \mathbb{R}) (l : \mathbb{R}) :=
  \forall \epsilon > 0, \exists N, \forall n \geq N, |u n - 1| < \epsilon
-- squeeze theorem
theorem (hu : seq_limit u l)
           (hw : seq limit w 1)
           (h : \forall n, u n < v n)
           (h' : \forall n, vn < wn) :
          seq limit v l := by
   sorry
```

more examples of Lean

example: the first isomorphism theorem for rings

```
variable {R} [CommRing R]
variable {S} [CommRing S]

def firstIsomorphismTheorem (f : R →+* S)
    (hf : Function.Surjective f) :
    R / ker f ≃+* S := by
    sorry
```

Proving statements about constructions

- Lean is really just a programming language
- List in lean is a type constructor

where we define notation [] for nil and x :: xs for cons x : xs.

thus e.g.

```
1 :: 2 :: 3 :: []
```

is the list [1, 2, 3]

appending lists

▶ Here is some Lean code that appends two lists.

```
def append {a:Type} (xs ys : List a)
  : List a :=
  match xs with
  | [] => ys
  | z :: zs => z :: append zs ys
```

e.g.

```
append ["a", "b", "c"] ["d", "e"]
```

evaluates to ["a", "b", "c", "d", "e"]

Now, we can use Lean to prove a property about this append function: namely, that the length of the appended lists is the sum of their lengths.

the proof

here is the proof in Lean

```
theorem append_length {a:Type}
    (xs ys : List a)
    : (append xs ys).length =
        xs.length + ys.length := by
induction xs with
    | nil => simp [append]
    | cons z zs ih =>
        simp [append, ih]
        linarith
```

you can view this theorem append_length as a function of xs and ys, whose value is the indicated equality Proposition.

Finite vector spaces

- ► For the project, I have in mind producing formal proofs of statements about "finite algebraic objects".
- Let k be a finite field. Recall (or accept my assertion for now!) that |k| is a power p^n of a prime number p for some $n: \mathbb{N}$, and that up to isomorphism there is exactly one field of order p^n .
- ▶ thus $k \simeq \mathbf{F}_q$ where $q = p^n$, and $\mathbf{F}_p \simeq \mathbf{Z}/p\mathbf{Z}$.
- ▶ e.g. if $p \equiv 3 \pmod 4$ then $\mathbf{F}_{p^2} \simeq \mathbf{F}_p(i)$ where $i^2 = -1$.
- now let V be a finite dimensional vector space over k. If $\dim_k V = m$ then $|V| = q^m$.

Forms on finite vector spaces

- Let $\beta: V \times V \to k$ be a bilinear form
- \blacktriangleright and suppose that β is nondegenerate and symmetric
- lacktriangle (also suppose for convenience that p > 2)

Examples of forms

when $\dim V$ is even, we can choose a basis $e_1,\cdots,e_n,f_1,\cdots,f_n$ of V. and we can define a form β_h by the rules

$$\beta_h(e_i,f_j) = \delta_{i,j}, \quad \beta_h(e_i,e_j) = \beta_h(f_i,f_j) = 0 -$$

 \blacktriangleright view $V=\mathbf{F}_{q^2}$ as a two-dimensional \mathbf{F}_q -vector space and consider the form

$$\beta: V \times V \to \mathbf{F}_q$$

given by
$$\beta(x,y)=\frac{(x+y)^{q+1}-x^{q+1}-y^{q+1}}{2}$$
 note that
$$\beta(x,x)=x^{q+1}=0 \implies x=0.$$

Classification of forms

- ightharpoonup suppose dim V is even
- \blacktriangleright up to isomorphism, there are only two possibilities for β
 - either β is the hyperbolic form for some choice of basis $\{e_i,f_i\}$
 - lack or eta is the orthogonal sum of a hyperbolic form and the two dimensional