Measure Theory

Mark Ibrahim

 $\ensuremath{^*}\textsc{based}$ on Principles of Real Analysis by Aliprantis and Burkinshaw

Contents

1	Prel	liminar	ies	2		
2	Alge	Algebras and Measures				
	2.1	Semiri	ngs and Sigma-algebras of Sets (section 12)	2		
		2.1.1	semirings	2		
		2.1.2	algebras	2		
	2.2	Measu	res on Semirings (section 13)	2		
		2.2.1	Examples of Measures on S	3		
	2.3	Outer Measures (section 14)				
	2.4					
		2.4.1	Cantor Set	4		
	2.5	Lebesg	gue Measure (section 18)	4		
		2.5.1	What are the Borel sets in the reals?	4		
		2.5.2	Regular Borel Measure	4		
3	Inte	gration	a: functions	4		
	3.1	Measu	rable Functions (section 16)	4		
		3.1.1	Sequences of Functions and Measurability	5		
		3.1.2	Ergov's Theorem (16.7)	5		
	3.2	Simple	e and step functions (section 17)	5		
		3.2.1	sigma-finite	6		
4	Leb	esgue I	ntegral	6		
	4.1	Upper	Functions (section 21)	6		
	4.2	Integra	able Functions (section 22)	6		
		4.2.1	How does integrable relate to other properties?	6		
		4.2.2	When is f integrable?	7		
		4.2.3	Big: Levi, Fatou, and Lebesgue Dominated Convergence	7		
	4.3	Riema	nn Integrals (section 23)	7		
	4.4	Produc	ct Measures and Iterated Integrals (section 26—only a sketch)	8		
5	Fun	ction S	paces (Chapter 5)	8		
	5.1	norms on vector spaces (section 27)				
	5.2	Linear Operators (section 28)				
	5.3	Lp Spa	nces (section 31)	9		
			Essentially Bounded Functions	9		
		5.3.2	Dense Functions in Lp	9		

6	Hilbert Spaces (Chapter 6)			
	6.1 Inner Product Spaces	10		
7	Questions	10		

1 Preliminaries

a function $f:A\to B$ is **continuous** $\iff f^{-1}$ (open set) is an open set.

a bounded sequence a_n has a $\limsup_{N \to \infty} \sup\{a_N, a_{N+1}, \dots\}$ "largest tail"

 a_n converges if $\limsup = \liminf$.

A **Hausdorff** topological space (T2 space) is a topological space where any two points can be seperated by open sets.

$$\max\{a,b\} = \frac{a+b}{2} + \frac{|a-b|}{2}.$$
 union of countably sets is countable.

2 Algebras and Measures

2.1 Semirings and Sigmaalgebras of Sets (section 12)

2.1.1 semirings

a collection S of subsets of a set X is called a **semiring** if

- 1. $\emptyset \in S$,
- 2. $A \cap B \in S$, and
- 3. $A-B=C_1\cup\ldots C_n$ for $C_1,\ldots C_n\in S$.

Any countable union in S can be written as a countable **disjoint** union.

e.g., $S = \{[a,b) | a \leq b \in \mathbb{R}\}$ is a semiring, not an algebra.

* note $[a, a) = \emptyset$.

2.1.2 algebras

a nonempty collection S of subsets of a set X is an **algebra** if

- 1. $A \cap B \in S$
- 2. and $A^c \in S$.

Nice properties of algebras are:

- $\emptyset, X \in S$
- S is closed under finite unions and finite intersections as well as subtraction

a σ -algebra is an algebra that is closed under countable unions.

Borel sets of a topological space (X, T) is a σ -algebra generated by the open sets.

2.2 Measures on Semirings (section 13)

A function μ from a semiring S to $[0, \infty]$ is a **measure on** S if

- 1. $\mu(\emptyset) = 0$
- 2. countably additive: $\mu(\bigcup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} \mu(A_n)$.
- * $\bigcup_{n=1}^{\infty} A_n$ must be in S and each is disjoint. * don't need to check if S is a σ -algebra!
- If $A \subseteq B$, $(A, B \in S)$, then $\mu(A) \le \mu(B)$.

Alternatively, can show μ is a measure if and only if "squeeze"

1.
$$\mu(\emptyset) = 0$$

 $^{^{1}(}X, T)$ is a topological space with a set X and subsets T if $\emptyset, X \in T$, and T is closed under unions (even uncountable), finite intersections.

- 2. $\sum_{i=1}^{n} \mu(A_i) \leq \mu(A) \text{ if } \bigcup_{i=1}^{n} A_i \subseteq A$ and A_i are disjoint.
- 3. $\mu(B) \leq \sum_{n=1}^{\infty} \mu(B_n)$, "subadditive" if $B \subseteq \bigcup_{n=1}^{\infty} B_n$.

2.2.1 Examples of Measures on S

- Counting Measure $\mu(A) = |A|$
- Dirac Measure Fix $a \in X$, $\mu_a(A) = 0$ if $a \notin A$, else 1.
- Lebesgue Stieltjes For $f: \mathbb{R} \to \mathbb{R}$, increasing, left continuous and $S = \{[a,b)|a \leq b \in \mathbb{R}\}, \, \mu([a,b)) = f(b) f(a).$
 - **Lebesgue Measure on** S, denoted λ is defined by $\lambda([a,b)) = b a$.

2.3 Outer Measures (section 14)

an **outer measure** is a function $\bar{\mu}$: $P(X) \rightarrow [0, \infty \text{ such that}]$

- 1. $\bar{\mu}(\emptyset) = 0$
- 2. if $A \subseteq B$, $\bar{\mu}(A) \le \mu(B)$
- 3. countably subadditive: $\bar{\mu}(\bigcup_{n=1}^{\infty} A_n)$ $\leq \sum_{n=1}^{\infty} \mu(A_n)$

*an outer measure is not always a measure!

A subset E of X is **measurable** if for all $A \subseteq X$,

$$\bar{\mu}(A) = \bar{\mu}(A \cap E) + \bar{\mu}(A \cap E^c)$$

A nicer equivalent way to show E is measurable is by considering all A in S with $\mu^*(A) < \infty$ and showing

$$\mu(A) \geq \mu^*(A \cap E) + \mu^*(A \cap E^c)$$

Nice Properites

- every A in S is μ^* -measurable
- if $\bar{\mu}(E) = 0$, E is measurable
- for E_i measurable and any $A \subseteq X$,

$$\bar{\mu}(\bigcup_{i=1}^n A \cap E_i) = \sum_{i=1}^n \bar{\mu}(A \cap E_i)$$

the collection of measurable subsets is denoted by Λ . This collection is a σ -algebra!

Remarkably, the outer measure $\bar{\mu}$ restricted to Λ is a measure!

2.4 Outer Measures generated by a measure (section 15)

The outer measure μ^* generated by a measure μ is defined for any subset A of X, $\mu^*(A) =$

$$\inf\{\sum_{n=1}^{\infty}\mu(A_n): A\subseteq \cup_{n=1}^{\infty}A_n \text{ for } A_n\in S\}$$

 μ^* is called the Cathéodory extension of μ . By convention $\mu^*(A) = \infty$ if no cover exits in S.

On semiring S, $\mu * = \mu$.

For E_n measurable, if $E_n \uparrow E$, then $\mu^*(E_n) \uparrow \mu^*(E)$. * $E_n \uparrow E$ means:

1)
$$E_1 \subseteq E_2 \subseteq \dots$$

$$2) \cup_{n=1}^{\infty} E_n = E$$

 * note E must be measurable since it's the union of measurable sets

For B_n measurable with $\mu^*(B_n) < \infty$, if $B_n \downarrow B$, then $\mu^*(B_i) \downarrow \mu^*(B)$.

a measure space if **finite** if $\mu^*(X) < \infty$.

For X a **finite measure** space E is measurable, if and only if

$$\mu^*(E) + \mu^*(E^c) = \mu^*(X)$$

For all $A \subseteq X$, there is a measurable set E such that $A \subseteq E$ and $\mu^*(A) = \mu^*(E)$.

2.4.1 Cantor Set

Cantor set
$$C = \bigcap_{n=1}^{\infty} c_n$$
, where $c_1 = [0, 1] - (1/3, 2/3)$
 $c_2 = c_1 - ((1/9, 2/9) \cup (7/9, 8/9))$

each c_n is closed, because it's a closed set minus open sets.

- C has measure 0
- $|C| = |\mathbb{R}|$
- every point of C is an accumulation point of C

Vitali set is an example of a **non-measurable** subset of \mathbb{R} .

2.5 Lebesgue Measure (section 18)

Outer Lebesgue measure λ^* is defined

as
$$\lambda^*(A) = \inf\{\sum_{i=n}^{\infty} \lambda(a_n, b_n) : A \subset \bigcup_{n=1}^{\infty} (a_n, b_n)\}$$
* note $\lambda(a, b) = b - a$.

* often, we say Lebesgue measure instead of outer Lebesgue measure.

By result about $E_n \uparrow E$ from section 15, we can show (a,b), [a,b], and (a,b] are all measurable with same measure.

 $E \subseteq \mathbb{R}$ is **Lebesgue measurable** \iff there is open $O \subseteq \mathbb{R}$ for each ϵ such that $E \subseteq O$ and $\lambda(O - E) < \epsilon$.

Every Borel set in \mathbb{R} is λ -measurable

2.5.1 What are the Borel sets in the reals?

By definition, it's the σ -algebra generated by open sets in \mathbb{R} . (Borel σ -algebra is generated by intervals of the form $(-\infty, a]$, for $a \in \mathbb{O}$).

Borel sets contain:

all closed sets

- union of all open sets or closed sets
- intersection of all open/closed sets
- * we can write any open set in \mathbb{R} as disjoint countable union of open intervals!

2.5.2 Regular Borel Measure

For X, a Hausdorff topological space and B the borel sets in X, a measure μ on B is called a **regular borel measure** if

- 1. $\mu(K) < \infty$ if K is compact
- 2. for B a borel set, $\mu(B) = \inf\{\mu(O)|O \text{ is open } B \subseteq O\}$
- 3. for O open, $\mu(O)=\sup\{\mu(K)|K \text{ is compact and } K\subseteq O\}$
- 1. λ is a regular borel measure
- 2. Dirac measure is a regular borel measures
- 3. Counting measure is not for example [0, 1] is compact, but has infinite measure
- 4. any **translation invariant** regular borel measure on \mathbb{R} is $c\lambda$ for some $c \in \mathbb{R}^+$

3 Integration: functions

3.1 Measurable Functions (section 16)

a relation holds **almost everywhere** if set where it fails has measure 0.

 $f:X\to\mathbb{R}$ is a measurable function if

- $f^{-1}(O)$ is measurable, for all open sets O
- $f^{-1}(a,\infty)$ is measurable, for all a in $\mathbb R$

If $f, g: X \to \mathbb{R}$, f = g almost everywhere and f is measurable, then g is measurable too!

"= a.e. means measurability carries over"

If $f, g: X \to \mathbb{R}$ are **measurable** then $\{x \in X | f(x) > g(x)\}$ is measurable.

Sum, product, constant multiple, ||, \max , and f^{+} of measurable functions is also measurable!

3.1.1 Sequences of Functions and Measurability

recall (from analysis): $f_n \to f$ uniformly means $|f_n(x) - f(x)| < \epsilon$ for all x if you go out far enough in the sequence.

Key Theorem: If $f_n \to f$ uniformly and f_n are continuous, then f is continuous.

We can define \limsup (\liminf) for any **bounded** sequence.

For a sequence of measurable functions $\{f_n\}_{n=1}^{\infty}$

- If $f_n \to f$ a.e., then f is measurable func
- If $\{f_n\}_{n=1}^{\infty}$ is bounded, then \limsup is a measurable function (so is \liminf)

A sequence of functions, $\{f_n\}_{n=1}^{\infty}$ $(f_n: X \to \mathbb{R})$ converges **almost uniformly** on X if for any ϵ , there exists a measurable set F where $\mu(F) < \epsilon$ and $\{f_n\} \to f$ **uniformly** on X - F.

If $f_n \to f$ almost uniformly on X and $\mu(X) < \infty$ then, $|f_n(x) - f(x)| < \epsilon$ for all $n > \text{some } N \in \mathbb{N}$, and all x in a set J where $\mu(J^c) < \delta$.

3.1.2 Ergov's Theorem (16.7)

If $f_n \to f$ almost uniformly on X, then $f_n \to f$ pointwise almost everywhere on X.

Also, if $\mu(X) < \infty$ and $f_n \to f$ pointwise on X, then $f_n \to f$ uniformly on X.

counter example: if $\mu(X)$ is not finite, consider $X=\mathbb{R}, \, \mu=\lambda$ and $f_n=\chi_{[n,n+1)}.$ Then, $f_n\to 0$, but not almost uniformly

3.2 Simple and step functions (section 17)

nice properties of χ_A

- $A \subseteq B \iff \chi_A \le \chi_B$
- $\chi_{A \cap B} = \chi_A \chi_B$ (equivalently $\min{\{\chi_A, \chi_B\}}$)
- $\chi_{A \cap B} = \chi_A + \chi_B \chi_{A \cap B} (= \max\{\chi_A, \chi_B\})$

a measurable function $f: X \to \mathbb{R}$ is a **simple function** if it takes on finitely many values.

the standard representation of a simple function is

$$\sum_{i}^{n} a_{i} \chi_{Ai}$$

where a is are distinct nonzero outputs and A inputs

If each A_i has finite measure, then f is called a **step function**.

The **integral** of a step function ϕ is

$$\int \phi du = \sum_{i}^{n} a_{i} \mu^{*}(A_{i})$$

*it turns out any representation, even when A_i are not disjoint (or a_i distinct) yield the same integral value

addition and scalar multiplication can be split over integrals as expected.

If
$$\phi \ge \psi$$
 a.e., then $\int \phi \ge \int \psi$ *holds if $\psi = 0$ or \ge is $=$

If ϕ_n is a **sequence of step functions** with $\phi_n \downarrow 0$ a.e., then $\int \phi_n \downarrow 0$. (similarly if $\phi_n \uparrow \psi$ a.e.)

*careful, $\uparrow \psi$, but $\downarrow 0$

* also $\phi_n \to \phi$ isn't good enough!

 $[\]overline{f}^{2}f^{+}=f(x)$ if $f(x)\geq 0$ or 0 otherwise.

If $\phi_n \uparrow f$ a.e. and $\psi_n \uparrow f$ a.e., then

$$\int \phi_n = \int \psi_n \text{ as } n \to \infty$$

We can show A is **measurable** if we can find step functions $\phi_n \uparrow \chi_A$. In this case, $\mu^*(A) = \lim \int \phi_n$

For any measurable $f \ge 0$, there exists **simple** ψ_n such that

$$0 \ge \psi_n \uparrow f$$

3.2.1 sigma-finite

X is a σ -finite measure space if there exists E_i such that $\bigcup_{i=1}^{\infty} E_i = X$, $\mu(E_i) < \infty$, and $E_1 \subseteq E_2 \subseteq \ldots$

Who cares? Well if, X is σ -finite then for a **measurable** $f \geq 0$ a.e., then there exists **step** $\phi_n \uparrow f$ a.e.

4 Lebesgue Integral

4.1 Upper Functions (section 21)

 $f:X \to \mathbb{R}$ is an **upper function** if there exist step ϕ_n such that

• $\phi_n \uparrow f$ a.e.

•
$$\lim \int \phi_n du < \infty$$

 ϕ_n is called a **generating sequence** for f.

* all step functions are upper functions * f upper does **not** imply -f is upper

The integral of f an **upper function** is defined as

$$\int f du = \lim \int \phi_n du$$

* the value is independent of our choice of ϕ_n because if any other $\psi_n \uparrow f$ too, then $\int \phi_n = \int \psi_n$ as $n \to \infty$

sums, scalar multiples, maxes of upper functions are upper functions.

If $f \geq g$ a.e. (both upper) then $\int f \geq g$ (same for g = 0)

If a **sequence of upper** functions $f_n \uparrow f$ a.e. and $\lim \int f_n < \infty$ then f is upper and $\int f = \lim \int f_n$ (similarly if $f_n \downarrow 0$)

4.2 Integrable Functions (section 22)

a function f is **integrable** if f = u - v, both upper functions.

We define $\int f$ as $\int u - \int v$ * well-defined no matter the representation of f

4.2.1 How does integrable relate to other properties?

- upper functions are integrable
- step functions are integrable (b/c step are upper)
- integrable implies measurable
 - measurable does **not** imply integrable

e.g., constant functions are measurable, but only integrable when $\mu(X) < \infty$.

Canoncial way to write integrable

$$f = f^+ - f^-$$

b/c: both f^+ and f^- are upper if f is integrable

4.2.2 When is f integrable?

If integrable f = g a.e., then g is integrable (and integrals are equal).

sums, scalar multiples, max, $\mid\mid$ of integrable are integrable.

* |f| integrable does **not** imply f is integrable.

If f is measurable and $h \leq f \leq g$ a.e. for h,g integrable, then f is **integrable**.

"measurable sandwiched between integrable is integrable"

nice properties of f integrable:

- if $f \ge 0$ a.e. then f is **upper**
- $A=\{x||f(x)|\geq\epsilon\}$ has finite measure (A is also measurable) b/c: |f| is measurable so $|f|^{-1}(\epsilon,\infty)$

For f, g integrable,

1.
$$\int |f| = 0 \iff f = 0 \text{ a.e.}$$

2. If
$$f \geq g$$
 a.e., then $\int f \geq \int g$

$$3. \int |f| \ge \left| \int f \right|$$

If E is **measurable**, f is **integrable**, then

$$\int_X f = \int_E f + \int_{X-E} f$$

4.2.3 Big: Levi, Fatou, and Lebesgue Dominated Convergence

Levi's Theorem

For f_n a sequence of **integrable** functions such that $f_n \leq f_{n+1}$ a.e. for all n and $\lim \int f_n < \infty$, then there exists f integrable such that $f_n \uparrow f$ a.e.

(and
$$\lim \int f_n = \int f$$
)

"an integrable function waits at the top of an increasing sequence" * f is defined a.e. on X

nice consequence: If integrable $f_n>0$ a.e., with $\sum_{n=1}^\infty \int f_n < \infty$, then $\sum f_n$ defined an integrable function and

$$\int \sum_{n=1}^{\infty} f_n = \sum_{n=1}^{\infty} \int f_n$$

*not true in Riemann land!

* trick: when $f_1 \leq f_2 \leq \ldots$ can make a positive sequence by considering $f_1 - f_1, f_2 - f_1, \ldots$

Fatou's Lemma

For integrable $f_n \geq 0$ a.e. for all n and $\liminf \int f_n < \infty$, then

$$\int \liminf f_n \le \liminf \int f_n$$

where $\lim \inf f_n$ defines an integrable function a.e. on X.

"lim inf of integrable is integrable and less than integral of parts"

Lebesgue Dominated Convergence

- 1. **measurable** $f_n \to f$ a.e.
- 2. $|f_n| \leq g$ a.e. for g integrable

then

$$\int f = \lim_{n \to \infty} \int f_n$$

where f_n and f are integrable (for all n)

"interchange \lim and \int for measurable functions bounded by an integrable function"

4.3 Riemann Integrals (section 23)

a partitions P is just a collection of points inside an interval.

A second partition Q **refines** P if $P \subseteq Q$.

The **Upper** Riemann sum is

$$U(f, P) = \sum_{i=1}^{n} M_i(x_i - x_{i-1})$$

where M_i is the sup of f on $[x_{i-1}, x_i]$. (similarly lower sum is defined with m_i , the inf on the interval)

If Q refines P, then $U(f,Q) \leq U(f,P)$. $(L(f,Q) \geq L(f,P))$.

f is **Riemann integrable** if

$$\lim_{\|P_i\| \to 0} U(f, P_i) = \lim_{\|P_i\| \to 0} L(f, P_i)$$
$$= \int f(x) dx$$

where $||P_i||$ the length of the largest subinterval.

- * The Riemann integral of f can also be defined when $\sup L = \inf S$; this value is said to be the integral of f.
- * Riemann's Critereon f is integrable if if L and U can be made arbitrarily close by selecting a sufficiently fine partition.

Every **Riemann** integrable function is **Lebesgue** integrable.

A bounded function $f:[a,b]\to\mathbb{R}$ is Riemann integrable

 \iff

f is **continuous** a.e.

4.4 Product Measures and Iterated Integrals (section 26—only a sketch)

If S and T are semirings, then their cross-product: $S \times T$ is also a semiring. (similarly, for measures μ and v)

a function $f: X \times Y$ is $\mu \times v$ integrable by computing cross-sections:

$$\int_{X\times Y} f d(\mu \times v) = \int_X \int_Y f d\mu dv$$

"Fubini" says the order of $\int_X \int_Y$ doesn't matter!

Tonelli's Theorem f is $\mu \times v$ -measurable and $\int_X \int_Y |f| dv d\mu$ exists (or other order) then $\int \int f$ exists.

5 Function Spaces (Chapter 5)

5.1 norms on vector spaces (section 27)

A real valued function || || on a vector space V is a **norm** if for all v in V,

- 1. ||v|| > 0 and $||v|| = 0 \iff v = 0$
- 2. $||\alpha v|| = |\alpha|||v||$, for all $\alpha \in \mathbb{R}$
- 3. $||v + w|| \le ||v|| + ||w||$ (triangle)
- * a norm space \implies a metric space (but not the converse)

Can show $|||v|| - ||w|| \le ||v - w|||$. by triangle

Examples of norms in different spaces:

- "Euclidean norm": $\sqrt{v_1^2 + v_2^2 + \dots}$
- "sup norm": $||f||_{sup} = sup|f(x)|$ over all x. (only valid in space of bounded, real-valued functions)
- "L" norm: $||f||_p = \left(\int |f|^p\right)^{1/p}$ only valid in $L^P(X)$ space = $\{f|f \text{ is measurable and } |f|^p \text{ is integrable}\}$ * note on \mathbb{R}^n , the L^p norm is: $||(a_1,\ldots,a_n)||_p = (|a_1|^p + \cdots + |a_n|^p)^{1/p}$

A **bounded normed** space is one where $||v|| \leq M$ for some constant M.

A normed space (a vector space with a norm) is a **Banach** space if every Cauchy sequence converges (aka **complete**).

Two norms are equivalent if there are K, M > 0: $K||x||_1 \le ||x||_2 \le M||x||_1$ for all x.

*In a finite dimensional vector space, all norms are equivalent

5.2 Linear Operators (section 28)

A **Linear Operator** (or transformation) is a map T between two vector spaces V and W such that:

$$T(aV + bW) = aT(V) + bT(W)$$

The **Operator norm** of T, ||T|| is

$$\sup\{||T(v)|| : ||v|| = 1\}$$

we say T is bounded if ||T|| is finite. What's is equivalent to T being **bounded**?

- 1. $||T(v)|| \le M||v||$ for all $v \ (M \ge 0)$
- 2. T is continuous at zero
- 3. T is continous

5.3 Lp Spaces (section 31)

 L^p is the collection functions f such that

- 1) f is measurable
- 2) $|f|^p$ is integrable

This collection, L^p forms a space. We can define a norm on $L^p ||||_P$ by

$$||f||_p = (\int |f|^p)^{1/p}$$

Proof of triangle inequality is called **Minkowski's Inequality** only holds for finite p > 1,

$$||f + g||_p \le ||f||_p + ||g||_p$$

for $f, g \in L^p$.

Holder's Inequality says if 1/p + 1/q = 1 (called "conjugate exponents") and $f \in L^p, g \in L^q$ then

$$\int |fg| \le ||f||_p ||g||_q$$

Risz-Fischer L^p is complete (every Cauchy seq converges) for all $p \ge 1$ (with respect to L^p —norm)

5.3.1 Essentially Bounded Functions

If $|fg| \le h$, some integrable function, then $fq \in L^1$.

a function f is **essentially bounded** if

$$|f(x)| \le M$$

for almost all x.

The **essential supremum**, denoed by $||f||_{\infty}$ is

$$||f||_{\infty} = \inf M||f(x)| \le M$$
 for almost all x

A function $f: \mathbb{R} \to \mathbb{R}$ has **compact** support if the closure of $f(\{x|f(x) \neq 0\})$ is compact.

Any **continuous** function with **compact support** is in $L^p(\mathbb{R})$ $(p \ge 1)$

$$1/x^a \in L^p \iff ap < 1$$

In a finite measure space, $L^q \subseteq L^p$ if $1 \le p \le q$.

5.3.2 Dense Functions in Lp

* The collection of step functions is **dense** in L^p (for 1).

For μ a **regular Borel measure** on a Hausdorff locally compact topological space X, the collection of continuous functions with compact support is **dense** in L^p (for $1 \le p < \infty$).

* Hausdorff space is one where two points can be separated by open sets.

* remember a regular borel measure requires additional requirements on compact and borel sets see: 2.5.2.

notation: $C_c(X)$ is the set of continuous real-valued functions on X with compact support

6 Hilbert Spaces (Chapter 6)

6.1 Inner Product Spaces

7 Questions

1. $f: X \to \mathbb{R}$ is Lebesgue integrable $\iff |f|$ is integrable. Is this true? (can't pin in the book, no proof in my notes)

* we know |f| doesn't imply f is integrable, right?