Análise Comparativa de Métodos de Integração Numérica para o Cálculo do Trabalho em um Pêndulo Simples

Vinicius de Oliveira Bezerra Universidade Federal do ABC

31 de agosto de 2025

Resumo

Este artigo apresenta uma análise comparativa abrangente de métodos de integração numérica aplicados ao cálculo do trabalho realizado pela força tangencial em um pêndulo simples. Investiga-se sistematicamente seis algoritmos distintos, desde métodos básicos de Riemann até técnicas avançadas de quadratura, avaliando seu desempenho em termos de precisão, eficiência computacional e estabilidade numérica. A metodologia incluiu a implementação controlada de cada algoritmo sob condições idênticas, com avaliação de parâmetros-chave incluindo erro absoluto, tempo de execução e eficiência algorítmica.

1 Introdução

O pêndulo simples constitui um sistema fundamental na física clássica, cujo estudo envolve frequentemente o cálculo de quantidades energéticas através de integração numérica. O trabalho realizado pela força tangencial, dado por $W = \int_0^{\theta} (-mgL\sin\theta)d\theta$, representa um problema paradigmático onde a escolha do método de integração impacta significativamente tanto a precisão quanto a eficiência computacional.

Métodos de integração numérica variam consideravelmente em sua complexidade algorítmica e desempenho. Enquanto métodos baseados em somas de Riemann oferecem simplicidade conceitual, técnicas mais sofisticadas como a quadratura de Gauss-Legendre proporcionam precisão superior para funções suaves. Neste trabalho, foi realizada uma análise sistemática comparando seis métodos amplamente utilizados, quantificando suas vantagens e limitações no contexto específico do cálculo do trabalho pendular.

Este estudo contribui para a literatura ao fornecer: (1) uma comparação abrangente de métodos sob condições controladas, (2) análise quantitativa da

compensação entre precisão e tempo computacional, e (3) recomendações baseadas em evidências para seleção de algoritmos em problemas físicos similares.

2 Metodologia

2.1 Sistema Físico e Parâmetros

Consideramos um pêndulo simples com massa m=1,0 kg, comprimento L=1,0 m, sujeito a aceleração gravitacional g=9,8 m/s². O trabalho realizado pela força tangencial para deslocar o pêndulo de $\theta_0=0,0$ rad a $\theta_1=0,5$ rad é dado por:

$$W = \int_0^{0.5} (-mgL\sin\theta)d\theta = mgL(\cos\theta_1 - \cos\theta_0)$$

O valor analítico de referência calculado com precisão de dupla precisão (float
64) é $W_{\rm ref}=-1,1997$ J.

2.2 Métodos de Integração Implementados

Implementamos e avaliamos seis métodos de integração numérica:

- Riemann Esquerda: Avalia a função no extremo esquerdo de cada subintervalo
- 2. **Riemann Direita**: Avalia a função no extremo direito de cada subintervalo
- Riemann Ponto Médio: Avalia a função no ponto médio de cada subintervalo
- 4. Trapézio: Aproxima a integral pela soma trapezoidal
- Simpson: Utiliza parábolas para aproximar a função em cada subintervalo
- 6. **Gauss-Legendre**: Emprega pontos de amostragem ótimos e pesos correspondentes

2.3 Protocolo Computacional

Todos os cálculos foram realizados em Python 3.9 utilizando precisão de float64. Para cada método, avaliamos o desempenho com número de pontos n = [10, 50, 100, 500, 1000, 5000]. O tempo de execução foi medido usando time.perf_counter() para garantir alta precisão temporal. Cada configuração foi executada em processamento serial para eliminar efeitos de concorrência.

O código completo, scripts de análise e dados brutos estão disponíveis publicamente no repositório: https://github.com/vinanit/Artigo-Fisica-Computacional

3 Resultados

3.1 Análise de Precisão

A Figura 1 apresenta a evolução do erro absoluto em função do número de pontos para todos os métodos testados. Observa-se claramente a estratificação dos métodos conforme sua ordem de convergência:

Figura 1: Evolução do erro absoluto em função do número de pontos para os diferentes métodos de integração.

O método de Gauss-Legendre atingiu precisão de máquina (erro $\sim 10^{-15}$ J) mesmo para n relativamente pequeno (n=10), demonstrando sua excelência para funções suaves como a função sinusoidal do problema do pêndulo.

3.2 Análise de Desempenho Computacional

A Figura 2 compara o desempenho do método de Gauss-Legendre com a média dos demais métodos, mostrando claramente a relação entre precisão e tempo computacional. Enquanto o Gauss-Legendre atinge precisão superior, seu tempo de execução é ordens de magnitude maior.

Figura 2: Comparação entre o método de Gauss-Legendre e a média dos outros métodos em termos de (a) precisão e (b) tempo de execução.

A Figura 3 detalha os tempos de execução dos métodos convencionais (excluindo Gauss-Legendre), revelando que todos estes métodos apresentam tempos na mesma ordem de grandeza (10^{-5} s), com variações menores que uma ordem de magnitude.

Figura 3: Tempos de execução absolutos dos métodos de integração (excluindo Gauss-Legendre).

3.3 Análise de Eficiência

Definimos eficiência computacional como a razão entre erro absoluto e tempo de execução. Valores menores indicam maior eficiência:

O método de Simpson apresenta a melhor eficiência global, combinando alta precisão (erro $\sim 10^{-16}$ J) com tempo computacional razoável (9,0 × 10⁻⁵ s).

4 Discussão

Os resultados revelam informações importantes sobre a seleção de métodos de integração numérica para problemas de física computacional:

4.1 Precisão e Ordem de Convergência

A hierarquia de precisão observada reflete diretamente a ordem teórica de convergência de cada método. Métodos de Riemann de primeira ordem (esquerda/direita) mostraram menor precisão, enquanto o método de Simpson (ordem 4) e Gauss-Legendre demonstraram precisão excepcional. Particularmente notável é o desempenho do Gauss-Legendre, que atingiu precisão de máquina mesmo com apenas 10 pontos, aproveitando a suavidade da função sinusoidal.

4.2 Relação entre Precisão-Tempo Computacional

O método de Gauss-Legendre, embora extremamente preciso, mostrou tempo computacional aproximadamente 10^4 vezes maior que os outros métodos para n=5000. Esta diferença acentuada deve-se à complexidade algorítmica do método, que envolve cálculo de polinômios de Legendre e avaliação da função em pontos não uniformemente espaçados.

Para a maioria das aplicações práticas em física computacional, onde erros na ordem de 10^{-9} a 10^{-12} J são frequentemente aceitáveis, métodos como Trapézio ou Simpson oferecem melhor compromisso entre precisão e eficiência computacional.

4.3 Eficiência Computacional

A análise de eficiência revela que o método de Simpson é particularmente eficiente para o problema estudado, combinando alta precisão com tempo computacional moderado. Surpreendentemente, métodos de Riemann de baixa ordem mostraram eficiência relativamente pobre devido a seus erros substanciais, mesmo sendo computacionalmente rápidos.

4.4 Implicações para Prática Computacional

Nossos resultados sugerem que a seleção do método de integração deve considerar:

- 1. **Precisão requerida**: Para precisão extrema ($\sim 10^{-15}$ J), Gauss-Legendre é insuperável
- Restrições computacionais: Para simulações em grande escala, Simpson oferece melhor balanceamento

3. Suavidade da função: Funções suaves beneficiam-se mais de métodos de alta ordem

Para o problema específico do pêndulo simples, onde a função integranda é sinusoidal e suave, recomendamos o método de Simpson para a maioria das aplicações práticas, reservando Gauss-Legendre para casos onde é necessária precisão máxima.

5 Conclusões

Este estudo realizou uma análise comparativa abrangente de seis métodos de integração numérica aplicados ao cálculo do trabalho em um pêndulo simples. Nossos resultados demonstram:

- 1. O método de Gauss-Legendre atinge precisão de máquina (erro $\sim 10^{-15}$ J) mas requer tempo computacional significativamente maior (0,69 s para n=5000)
- 2. Métodos de Riemann convencionais (esquerda/direita) mostram precisão limitada (erro $\sim 10^{-4}$ - 10^{-6} J) apesar de sua velocidade computacional
- 3. O método de Simpson oferece excelente compromisso, atingindo erro $\sim 10^{-16}$ J com tempo computacional de apenas $9,0\times 10^{-5}$ s
- 4. A eficiência computacional (erro/tempo) é maximizada pelo método de Simpson para este problema específico

Estes achados têm implicações práticas significativas para físicos computacionais, sugerindo que a escolha do método de integração deve ser contextualizada aos requisitos específicos de cada aplicação. Para a maioria dos cenários práticos envolvendo sistemas oscilatórios, métodos de ordem intermediária como Simpson oferecem o melhor compromisso global entre precisão e eficiência computacional.

Estudos futuros poderiam expandir esta análise para funções menos regulares, sistemas de maior dimensionalidade e implementações paralelas, investigando ainda o impacto de diferentes arquiteturas computacionais no desempenho relativo dos métodos.

Referências

 Mark, N. Computational Physics. Plataforma de Publicação Independente, 2012