What is claimed:

1. A compound of the formula:

$$\begin{array}{c|c}
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\$$

wherein:

R is hydrogen, methyl, hydroxymethyl or α -hydroxyethyl;

R¹ and R² are independently selected from hydrogen, C₁-C₆ alkyl, C₁-C₆ hydroxyalkyl, C₃-C₈ cycloalkyl, C₁-C₆ alkenyl, C₁-C₆ alkynyl, amino, monoalkylamino, dialkylaminoalkyl, and pyrrolidin-1-ylalkyl; and

Y is selected from the group consisting of C₁-C₆ alkyl, substituted and unsubstituted aryl;

with the provisos that:

- (a) if Y is aryl, then at least one of R¹ and R² is other than hydrogen, and
- (b) if R² is hydrogen R¹ is other than methyl; or a pharmaceutically acceptable salt thereof.

- 2. The compound of claim 1, wherein R¹ and R² are independently selected from C₁-C₆ alkyl, C₁-C₆ hydroxyalkyl, C₃-C₈ cycloalkyl, C₁-C₆ alkenyl, C₁-C₆ alkynyl, amino, monoalkylamino, dialkylaminoalkyl, and pyrrolidin-1-ylalkyl.
- 3. The compound of claim 2, wherein R is hydrogen, hydroxymethyl or α -hydroxyethyl.
- 4. The compound of claim 1, wherein at least one of R^1 and R^2 is C_1 - C_6 alkyl.
- 5. The compound of claim 4, wherein at least one of R^1 and R^2 is methyl.
- 6. The compound of claim 4, wherein Y is selected from the group consisting of substituted and unsubstituted phenyl.
- 7. The compound of claim 6, wherein Y is unsubstituted phenyl.

- 8. The compound of claim 7; 2-hydroxy-5,6-dimethyl-2-phenyl-2,3-dihydro-(1,4)-thiazine-4-carbaldehyde.
- 9. The compound of claim 7, wherein R is α -hydroxyethyl and R¹ and R² are both methyl.
- 10. The compound of claim 1, wherein at least one of R^1 and R^2 is C_1 - C_6 hydroxyalkyl.
- 11. The compound of claim 10, wherein at least one of R^1 and R^2 is 2-hydroxyethyl.
- 12. The compound of claim 1, wherein Y is selected from the group consisting of substituted and unsubstituted heteroaryl.
- 13. The compound of claim 12, wherein Y is selected from the group consisting of substituted and unsubstituted pyrrolyl, furyl, thienyl, 1-methylimidazoly-2-yl and 4,6-(bis-pyrrolidin-1-yl)-pyrimidin-2-yl.
- 14. The compound of claim 1, wherein Y is substituted aryl.
- 15. The compound of claim 14, wherein the substitutions of aryl are one to three substituents selected from amino; C₁-C₆ alkylamino; C₁-C₆ dialkylamino; C₁-C₆ alkoxy; C₁-C₆ alkyl; cyano; nitro; C₁-C₆ mono-, di-, or trifluoroalkyl; nitro; fluoro; chloro and bromo.
- 16. A pharmaceutical composition comprising a pharmaceutically effective amount of a compound of the formula:

$$R^1$$
 R^2
 S
 OH
 OH

wherein:

R is hydrogen, methyl, hydroxymethyl or α -hydroxyethyl;

 R^1 and R^2 are independently selected from hydrogen, C_1 - C_6 alkyl, C_1 - C_6 hydroxyalkyl, C_3 - C_8 cycloalkyl, C_1 - C_6 alkenyl, C_1 - C_6 alkynyl, amino, monoalkylamino, dialkylaminoalkyl, and pyrrolidin-1-ylalkyl; and

Y is selected from the group consisting of C_1 - C_6 alkyl, substituted and unsubstituted aryl;

or a pharmaceutically acceptable salt thereof; and a pharmaceutically acceptable carrier.

- 17. The pharmaceutical composition of claim 16, wherein at least one of R^1 and R^2 is other than hydrogen, and if R^2 is hydrogen R^1 is other than methyl.
- 18. The pharmaceutical composition of claim 17, wherein R is hydrogen, R¹ and R² are both methyl and Y is unsubstituted phenyl.
- 19. The pharmaceutical composition of claim 17, wherein R is α -hydroxyethyl, R^1 and R^2 are both methyl and Y is unsubstituted phenyl.
- 20. A method for preparing a compound of the formula:

comprising:

treating a thiazolium compound of the formula:

$$R^1$$
 $N+$
 O
 R^2
 S
 $X-(III)$

wherein:

R is hydrogen, methyl, hydroxymethyl or α -hydroxyethyl;

 R^1 and R^2 are independently selected from hydrogen, C_1 - C_6 alkyl, C_1 - C_6 hydroxyalkyl, C_3 - C_8 cycloalkyl, C_1 - C_6 alkenyl, C_1 - C_6 alkynyl, amino, monoalkylamino, dialkylaminoalkyl, and pyrrolidin-1-ylalkyl; and

Y is selected from the group consisting of a substituted and unsubstituted aryl; and

X- is an anion;

with the provisos that:

- (a) if Y is aryl, then at least one of R¹ and R² is other than hydrogen, and
- (b) if R² is hydrogen R¹ is other than methyl;

with an aqueous alkaline solution to afford the compound of the formula I.

- 21. The method of claim 20, wherein the pH of the aqueous alkaline solution is at least 8.
- 22. The method of claim 21, wherein the pH of the aqueous alkaline solution is between 9 and 11.
- 23. The method of claim 20, wherein R is hydrogen, R¹ and R² are both methyl and Y is unsubstituted phenyl.
- 24. A method for preparing a thiazolium compound of the formula:

wherein

R is hydrogen, methyl, hydroxymethyl or α -hydroxyethyl;

R¹ and R² are independently selected from hydrogen, C₁-C₆ alkyl, C₁-C₆ hydroxyalkyl, C₃-C₈ cycloalkyl, C₁-C₆ alkenyl, C₁-C₆ alkynyl, amino, monoalkylamino, dialkylaminoalkyl, and pyrrolidin-1-ylalkyl; and

Y is selected from the group consisting of C_1 - C_6 alkyl, substituted and unsubstituted aryl; and

X- is an anion;

with the provisos that:

- (a) if Y is aryl, then at least one of R¹ and R² is other than hydrogen, and
- (b) if R² is hydrogen R¹ is other than methyl;

comprising: treating a compound of the formula:

with an acidic solution to afford the thiazolium compound of the formula II.

- 25. The method of claim 24, wherein the acidic solution comprises an aqueous 0.1 N to 10 N HCl solution.
- 26. The method of claim 24, wherein the acidic solution comprises gastric juice.
- 27. The method of claim 26, wherein R is hydrogen, R¹ and R² are both methyl and Y is unsubstituted phenyl.
- 28. The method of claim 24, wherein R is hydrogen, R¹ and R² are methyl, Y is unsubstituted phenyl, and the acidic solution comprises 1 N to 5 N hydrochloric acid.
- 29. The method of claim 24, wherein R is -CH(OH)CH₃, R¹ and R² are methyl and Y is unsubstituted phenyl.
- 30. A method of treating a mammal having an indication of the invention, comprising: administering an effective amount of the compound of claim 1 to the mammal.
- 31. The method of claim 30, wherein the indication is selected from hypertension, reduced vascular compliance, diastolic dysfunction and heart failure.
- 32. The method of claim 30, wherein the indication is hypertension.
- 33. The method of claim 32, wherein the hypertension is isolated systolic hypertension.
- 34. The method of claim 32, wherein the hypertension is systolic hypertension.
- 35. The method of claim 30, wherein the indication is reduced vascular compliance.

- 36. The method of claim 30, wherein the indication is diastolic dysfunction.
- 37. The method of claim 30, wherein the indication is heart failure.
- 38. The method of claim 30, wherein the indication is diastolic heart failure.
- 39. A method of treating a mammal having an indication of the invention, comprising: administering an amount of the compound of the formula:

$$R^1$$
 R^2
 S
 OH
 OH

wherein:

R is hydrogen, methyl, hydroxymethyl or α -hydroxyethyl;

 R^1 and R^2 are independently selected from hydrogen, C_1 - C_6 alkyl, C_1 - C_6 hydroxyalkyl, C_3 - C_8 cycloalkyl, C_1 - C_6 alkenyl, C_1 - C_6 alkynyl, amino, monoalkylamino, dialkylaminoalkyl, and pyrrolidin-1-ylalkyl; and

Y is selected from the group consisting of C_1 - C_6 alkyl, substituted and unsubstituted aryl;

or a pharmaceutically acceptable salt thereof;

effective to obtain a therapeutically effective amount of the compound of the formula:

wherein:

R, $R^1 R^2$ and Y are as described above; and X- is an anion.

- 40. The method of claim 39, wherein at least one of R^1 and R^2 is C_1 - C_6 alkyl.
- 41. The method of claim 39, wherein Y is unsubstituted phenyl.

- 42. The method of claim 41, wherein R is hydrogen, and R^1 and R^2 are methyl.
- 43. The method of claim 41, wherein R is α -hydroxyethyl, and R^1 and R^2 are methyl.
- 44. The method of claim 39, wherein the indication is selected from hypertension, reduced vascular compliance, diastolic dysfunction and heart failure.
- 45. The method of claim 44, wherein the indication is hypertension.
- 46. The method of claim 45, wherein the hypertension is isolated systolic hypertension.
- 47. The method of claim 45, wherein the hypertension is systolic hypertension.
- 48. The method of claim 44, wherein the indication is reduced vascular compliance.
- 49. The method of claim 44, wherein the indication is diastolic dysfunction.
- 50. The method of claim 44, wherein the indication is heart failure.
- 51. The method of claim 44, wherein the indication is diastolic heart failure.