

AVL Trees

SAMUEL GINN
COLLEGE OF ENGINEERING

AVL trees

An AVL tree is a **binary search tree**

in which the heights of the left and right subtree of *every* node differ by at most 1.

$$|h_R - h_L| \leq 1$$

Structural possibilities

Equal heights

Right is 1 level taller

Left is 1 level taller

Balance factors

Every node in an AVL tree has a **balance factor**.

$$bf_N = h_R - h_L$$

Remember to subtract heights, not balance factors.

Some texts counts path lengths differently from me.

Balance factors are sometimes computed as $h_L - h_R$.

Balance factors

NOT an AVL Tree

Balance factors NOT an AVL Tree But it could have been one ... 0 -1

A bf of ±2 means that the subtree rooted at that node is out of balance.

Balance will be restored by subtree rotations.

All rotations will occur in the context of a 3-node neighborhood.

Coding rotations

t = rotateLeft(t);

Left rotation around t


```
public BTN rotateLeft(BTN n)
{
   BTN m = n.right;
   n.right = m.left;
   m.left = n;
   return m;
}
```



```
BTN m = n.right;
```


n.right = m.left;

m.left = n;

Adding values

Adding values

Use the standard BST insertion algorithm to insert the new node. (Ex: 15)

Beginning with the node just inserted, walk the reverse path back toward the root, recalculating balance factors.

Stop at the first (lowest) node that has a balance factor of ±2. This node roots the 3-node neighborhood that will be rotated.

At most one rebalancing operation will be required per insertion.

Adding values

Insert: 10, 85, 15, 70, 20, 60, 30, 50, 65, 80, 90, 40, 5, 55

Removing values

Removing values

Use the standard BST deletion algorithm to delete the element. Ex: 40

Beginning at the *point of deletion*, walk the reverse path back toward the root, recalculating balance factors.

Stop at the first (lowest) node that has a balance factor of ±2. This node roots the 3-node neighborhood that will be rotated.

Multiple rebalancing operations may be required per deletion, so the reverse walk must go to the root each time.

Removing values

Summary

Summary

Balanced binary search trees are like a structural implementation of the binary search algorithm.

So, now we can use binary search on a structure built with linked nodes.

AVL trees offer guaranteed O(log N) performance on all three major collection operations: add, remove, and search.

	Self-Ordered Lists		
	Array	Linked List	AVL Tree
add(element)	O(N)	O(N)	O(log N)
remove(element)	O(N)	O(N)	O(log N)
search(element)	O(log N)	O(N)	O(log N)