Section 2.4 The Precise Definition of a Limit

1. Recall: The Intuitive Definition of a Limit

When we see the function " $\lim_{x\to 3} f(x) = 5$ ", we read it "as when x approaches 3, the limit of f(x) equals to 5". By reading this function, we get to know the intuitive definition of this function is when x is close to 3, the value of f(x) will be closer and closer to 5 but note that the final value of f(x) will only be sufficiently close to 5 but not exactly 5.

2. The Precise Definition of a Limit (Graphically)

Now, in order to introduce the precise definition of a limit, let's look at the following graph.

In the graph, it's clear to see that when x is in the range of $3 \pm \delta$ and approaching 3, f(x) must then be in the range of $5 \pm \varepsilon$ and approaching 5. Therefore, we now introduce two new notations, δ and ε , to explain how close exactly x is regarding to 3 and f(x) is regarding to 5. In the next topic, we'll be using these two notations to further prove the precise definition of a limit numerically, this proving method is called "the Epsilon-Delta proof".

3. Epsilon-Delta Definition of Limit (The Epsilon-Delta proof)

After understanding the graph, we now extend the Epsilon-Delta definition to any limit function, let's say $\lim_{x\to c} f(x) = L$. In this case, we must discuss two "approaches" on x-axis and y-axis, respectively.

For the approach on y-axis, we can set y_1 as the value of y, and we can define the distance of y_1 and L is ε . $(|y_1 - L| < \varepsilon)$

And the approach on x-axis, we let x_1 as the value of x, and the distance of x_1 and c is defined as δ . $(0 < |x_1 - c| < \delta)$

We can notice the relationship between ε and δ , " ε approaching is accomplished by δ approaching". To express the relationship with math language:

$$Def. " \lim_{x \to \infty} f(x) = L" \Leftrightarrow \forall \varepsilon > 0, \exists \delta > 0,$$

$$s.t. \forall x (x \in X), if 0 < |x - c| < \delta, then |f(x) - L| < \varepsilon$$

4. Examples

1. Prove
$$\lim_{x \to 1} 3x + 2 = 5$$

Given $\varepsilon > 0$, choose $\delta = \underline{\hspace{1cm}} > 0$
If $0 < |x - 1| < \delta$
 $\Rightarrow |(3x + 2) - 5| = |\underline{\hspace{1cm}}| = 3 |\underline{\hspace{1cm}}| < \underline{\hspace{1cm}}$
Since ε is arbitrary, $\lim_{x \to 1} 3x + 2 = 5$ (Q.E.D.)

2. Prove
$$\lim_{x \to 2} x^2 + 5 = 9$$

Given $\varepsilon > 0$, choose $\delta = \min(1, \underline{\hspace{1cm}}) > 0$.
If $0 < |x - 2| < \delta$
 $|x - 2| < \delta \le 1 \Rightarrow \underline{\hspace{1cm}} < x < \underline{\hspace{1cm}} \Rightarrow \underline{\hspace{1cm}} < x + 2| < 5$
 $\Rightarrow |(x^2 + 5) - 9| = |x^2 - 4| = |\underline{\hspace{1cm}} | \cdot |\underline{\hspace{1cm}} | < |\underline{\hspace{1cm}} | \cdot \delta < \underline{\hspace{1cm}}$
Since ε is arbitrary, $\lim_{x \to 2} x^2 + 5 = 9$ (Q.E.D.)

3. Prove
$$\lim_{x \to 3} \frac{1}{x-1} = \frac{1}{2}$$

Given $\varepsilon > 0$, $choose \ \delta = min \ (1, _) > 0$
If $0 < |x-3| < \delta$
 $|x-3| < \delta \le 1 \Rightarrow _ < x < _ \Rightarrow _ < x-1 < _ \Rightarrow _ < \frac{1}{x-1} < _$
 $\Rightarrow \left|\frac{1}{x-1} - \frac{1}{2}\right| = \frac{1}{|x-1|} = \frac{1}{|x-1|} < \frac{1}{|x-1|} = \frac{1}{2} \ (Q.E.D)$

5. Exercises

1. Prove
$$\lim_{x \to -2} (-2x + 1) = 5$$

2. Prove
$$\lim_{x \to -2} (x^2 - 1) = 3$$

3. Prove
$$\lim_{x \to 2} \frac{1}{x} = \frac{1}{2}$$