

(logi)

$$(A << i) = A \times 2^{i}$$

$$Put A = 1$$

$$(1 << i) = 2^{i}$$

$$N = 101101$$

Given a no.
$$N \Rightarrow Set$$
 ith bit of N .

 $i = 4$
 $N = 101101$
 $N = 00000$
 $N = 00000$
 $N = 00000$
 $N = 00000$
 $N = 000000$
 $N = 000000$
 $N = 000000$
 $N = 000000$
 $N = 000000$

$$\frac{1}{0} - \frac{0}{0} = \frac{1}{0}$$
 (OR) α (XOR)

$$\frac{1}{0} - \frac{1}{1} = \frac{1}{1}$$

$$N = N (1 << i) \Rightarrow Set ith Sit M$$
int $a = 4$;
$$a + 4$$
;
$$print (a); \Rightarrow 4$$

$$a = a + 4$$
;
$$print (a) \Rightarrow 8$$

$$\frac{1}{0} - \frac{0}{0} = \frac{1}{0}$$
 (OR) $\frac{1}{0}$ (XOR)

$$\frac{1}{0} - \frac{1}{1} = 0 \longrightarrow XOR$$

Given a no. N > Unset the ith
bit of the no. N.

cosut = 0; (i=0'; i<32; i++) d y (checkBit (N, i)) d coont ++'s return count; 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 int count Bit (N) & count = 0's while (N>0) & 1 (N81 = = 1) d 000t ++') N= (N>>1); return count; Sam her a cat Every day the cat Gehaves good, sam

feeds the cet. Given the total vnits of food sam has
given to the cet. Can you find out the
no. I days the cet believed good. Total = 79 vnits 010000010 2 2 2 2 2 $1 \times 2^{\circ} + 0 \times 2^{!} + 1 \times 2^{2} + 0 \times 2^{3} + 1 \times 2^{4}$ Binary Representation 1 Negative No.

MSB > Sign Bit 31 30 29 Represent value int x = 5unsigned int x = 5 10000 Sinery repres. 2 Compline -10 in Sines

Range of Data Types

	V	U /
7	Signed	Vnsigned
2		
	-21 2	2 ¹ 2°
	$Max \Rightarrow 01 = 1$	$Max \Rightarrow 11 = 3$
	$Min \Rightarrow 10 = -2$	Min > 00 > 0
	Range = [-2, 1]	Range = [0,3]
4		
	-23 22 21 20	2³ 2° 2°
	Max > 0111=23-1=7	Max > 1111 = 2+-1=15
	Min => 1000 > -8	23+22+21+20
	Range = [-8, 7]	Min > 0000 = 0
	- [3 93]	
	$= \left[-2^3, 2^5 - 1\right]$	Range $\Rightarrow [0,15]$ = $[0,2^4-1]$
		[σ, α]
32		
	-231 230 23 21 20	23 230 22 21 20
	Max > 011111 > 231-1	$Max = 11111 = 2^{32} - 1$
	Min = 100000 > - 234	Min = 000000 = 0
	Min = $100000 \Rightarrow -2^{34}$ Range = $[-2^{31}, 2^{31} - 1]$	$M_{in} = 000000 = 0$ $Range = [0, 2^{32} - 1]$
7		
	-2 ^{N-1} 2 ^{N-2} 2 ² 2 ¹ 2 ²	2 ^{N-1} 2 ^{N-2} 2 ² 2 ¹ 2 ²
	Max = 0111111 > 2 N-1-1	$2^{N-1} 2^{N-2}$ $2^{2} 2^{1} 2^{2}$ $Max = (11111) = 2^{N-1}$

Min = 1000...00
$$\Rightarrow$$
 -2^{N-1} | Min = 0000...0 = 0

Range = $\begin{bmatrix} -9^{N-1}, 9^{N-1} - 1 \end{bmatrix}$ | Min = 0000...0 = 0

Range = $\begin{bmatrix} -9^{N-1}, 9^{N-1} - 1 \end{bmatrix}$ | Range = $\begin{bmatrix} 0, 2^{N-1} \end{bmatrix}$ |

Int a = $\begin{bmatrix} 10^5 \\ 10^5 \end{bmatrix}$ | int c = $\begin{bmatrix} 2 \\ 10^5 \end{bmatrix}$ | ALU (Arithmete Logic)

Int c = $\begin{bmatrix} 2 \\ 10^5 \end{bmatrix}$ | Verifous.

I how to avoid over flow.

I hong c = $\begin{bmatrix} 10 \\ 10 \end{bmatrix}$ | $\begin{bmatrix} 2 \\ 10 \end{bmatrix}$ | $\begin{bmatrix} 10^{11} \\ 10 \end{bmatrix}$ | $\begin{bmatrix} 2 \\ 10 \end{bmatrix}$ | $\begin{bmatrix} 10 \\ 10 \end{bmatrix}$ | $\begin{bmatrix} 2 \\ 10 \end{bmatrix}$ | $\begin{bmatrix} 10 \\ 10 \end{bmatrix}$ | $\begin{bmatrix} 2 \\ 10 \end{bmatrix}$ | $\begin{bmatrix}$

Same odr -> Blue diff -> Red.

$$\frac{2B}{\sqrt{2R}} / \frac{2R}{\sqrt{1 + 1}} \Rightarrow 1Blue$$

| R + 1B ⇒ | Red Bell) ⇒ -1 Blue