Quiz 3

Started: Feb 1 at 5:03pm

Quiz Instructions

Question 1	1 pts
Suppose we implement quick-select in a deterministic way by always picking the pivot, instead of choosing a uniformly random element as the pivot. What this algorithm?	
Θ(1)	
\bigcirc $\Theta(\lg n)$	
\bigcirc $\Theta(n)$	
$\bigcirc \Theta(n \lg n)$	
$\bigcirc \ \Theta \left(n \ \lg \lg n ight)$	
$ullet$ $\Theta\left(n^2 ight)$	
The following five questions are about the tree based union-find data structurunion-by-rank), where we perform n Makeset operations, followed by an arbi	
union-by-rank), where we perform $oldsymbol{n}$ Makeset operations, followed by an arbi	
union-by-rank), where we perform $m{n}$ Makeset operations, followed by an arbi	trary number of Find and Union
union-by-rank), where we perform $m{n}$ Makeset operations, followed by an arbitrary arbitrary and the second se	trary number of Find and Union
union-by-rank), where we perform $m{n}$ Makeset operations, followed by an arbitrary arbitrary and the second se	trary number of Find and Union
union-by-rank), where we perform $m{n}$ Makeset operations, followed by an arbitrary arbitrary and the perform $m{n}$ Makeset operations. Question 2 The rank of a root node is always equal to the height of the tree rooted at it.	

The rank of a root node is at least as large as the height of the tree rooted at it.
True
○ False

Question 4	0.2 pts
Choose the tightest correct upper bound on the rank of any node from the options below.	
○ <i>O</i> (1)	
${\color{red} \circ} \ O(\log^* n)$	
$\bigcirc \ O(\log n)$	
$\bigcirc \ O(\log \log n)$	
$\bigcirc \ O(n)$	
O None of the above	

Question 5	0.2 pts
Select the tightest upper bound on the worst case cost of a find operation from among the following	options:
O(1)	
$leftondown O\left(\log^*n ight)$	
$\bigcirc O(\log \log n)$	
$\bigcirc O(\log n)$	
$\bigcirc O(n)$	

Question 6 0.2 pts

Select the tightest upper bound on the amortized cost of a find operation from among the following options:

2/1/2018

	Quiz: Quiz 3
• O(1)	
$\bigcirc O(\log^* n)$	
$\bigcirc O(\log \log n)$	
$\bigcirc O(\log n)$	
○ O(n)	
Question 7	0.5 pts
Both Kruskal's and Prim's algorithms find a minimur weights.	n spanning tree in graphs even with negative edge
• True	
○ False	
Question 8	0.5 pts
Given a graph where all the edge weights are distin always return the same answer.	oct, both Kruskal's algorithm and Prim's algorithm must
• True	
○ False	
Question 9	1 pts
Given a graph $m{G}$ with distinct edge weights, let $m{T}$ be the weight of a single edge in $m{G}$.	e its minimum spanning tree. Now suppose we change
Let $m{T'}$ be the new minimum spanning tree. What is not belong to $m{T}$.	the maximum number of edges that belong to $m{T'}$ but did

https://canvas.cmu.edu/courses/4544/quizzes/9484/take

O 2

$\bigcirc O(\log^* n)$	
$\bigcirc \ O(\log n)$	
$\bigcirc O(n)$	

Question 10	1 pts
Given a graph G where the edge weights are positive real numbers, and let T be its minimum spar tree. Now suppose we replace each edge weight by its square (i.e. replace 4 by 16, 3 by 9, etc). The still an MST even with the new edge weights.	-
• True	
○ False	

Question 11	1 pts
Suppose we hash a set of size n into a table of size m using a hash function chosen from a universa family. The expected total number of collisions is:	l hash
○ Θ(1)	
$\bigcirc~\Theta(\log n)$	
$\Theta(\frac{n^2}{m})$	
$\Theta(\frac{n}{m})$	
$\bigcirc \ \Theta((\frac{n}{m})^2)$	
\bigcirc $\Theta(n)$	

Question 12 1 pts

In the hashing lecture notes, we constructed a universal hash family using the matrix method.

Say we are mapping from a universe of u-bit strings, and the table is of size $M = 2^m$, so that the output is m-bit strings. Which of the following statements are **false** for this particular construction?

$$\bigcirc \ Pr[h(x) = h(y)] \leq rac{1}{M}$$
 for all $x
eq y$

$$ullet$$
 $Pr[h(x)=h(y)]=rac{1}{M}$ for all $x
eq y$

$$\bigcirc \ Pr[h(x)=h(y)]=1$$
 for all $x=y$

- \bigcirc For each x, h(x) is uniformly distributed over all M possible outcomes.
- \bigcirc There are $2^{m \times u}$ hash functions in this family.

In each of the following examples, we are given a hash family of hash functions $\{h_1, h_2, \ldots, \}$ mapping either some set of elements (named $\{p, q, r, \ldots\}$ to $\{0, 1\}$. As usual, you pick one of the hash functions from the family and map the elements using it.

Recall that a hash family H of functions mapping into $U=\{0,1\}$ is universal if

$$Pr_{h\leftarrow H}[h(x)=h(y)] \leq rac{1}{|U|} = 1/2$$

Question 13 1 pts

Which of the following three hash families are universal? Mark all that apply. (You must get all of them correct to get any points, so be careful.)

Hash Family (a)	p	q
h_1	0	1
h_2	1	0

Hash Family (b)	p	q	r	s
h_1	0	1	0	1
h_2	1	0	1	0

Hash Family (c)	p	q	r
h_1	0	0	1
h_2	0	1	1

□ None

(a)

(b)

(c)

Question 14	1 pts

Which is the strongest property that is true for the following hash family?

$$\begin{array}{c|cccc} & a & b \\ \hline h_1 & 0 & 1 \\ h_2 & 1 & 0 \\ h_3 & 0 & 0 \\ h_4 & 1 & 1 \\ \hline \end{array}$$

The notions of universal and k-universal are explained in lecture.

- It has no good properties
- It is universal
- It is 1-universal
- O It is 1-universal and universal, but not 2-universal
- O It is 2-universal
- O It is 3-universal

Question 15 1 pts

Which is the strongest property that is true for the following hash family?

Hash Family (a)	p	q
h_1	0	1
h_2	1	0

- It has no good properties
- It is universal
- It is 1-universal
- It is 1-universal and universal, but not 2-universal
- It is 2-universal
- It is 3-universal

Quiz saved at 9:49pm Submit Quiz