EKSAMENDATABLAD VIR DIE FISIESE WETENSKAPPE (CHEMIE)

TABEL 1 FISIESE KONSTANTES

NAAM	SIMBOOL	WAARDE
Grootte van lading op 'n elektron	е	$1.6 \times 10^{-19} \mathrm{C}$
Massa van 'n elektron	m_{e}	$9.1 \times 10^{-31} \text{ kg}$
Standaarddruk	$p^{\scriptscriptstyle{\theta}}$	1,01 × 10 ⁵ Pa
Molêre gasvolume by STD	V_{m}	22,4 dm ³ ⋅mol ⁻¹
Standaardtemperatuur	$T^{\scriptscriptstyle{\theta}}$	273 K
Avogadro se konstante	N _A	$6.02 \times 10^{23} \text{ mol}^{-1}$
Faraday se konstante	F	96 500 C⋅mol ⁻¹

TABEL 2 CHEMIEFORMULES

$n = \frac{m}{M}$		$n = \frac{N}{N_A}$	$n = \frac{V}{V_m}$				
$c = \frac{n}{V}$ OF $c = \frac{m}{MV}$	7	$K_w = [H_3O^+] \cdot [OH^-] = 1 \times 10^{-14}$ by 25 °C (298 K)					
q = It		$E_{\text{sel}}^{\theta} = E_{katode}^{\theta} - E_{anode}^{\theta}$					
q = nF	l l	$E_{sel}^{ heta} = E_{oksideermida}^{ heta}$	$_{ m lel}$ – ${\sf E}^{ heta}_{ m reduseermiddel}$				

TABEL 3 PERIODIEKE TABEL

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	1 2,1 H		1			ngetal Z)		2,1 -	Elek negati									He
2	3 1,0 Li 7	Be 9			;		1 tiewe massa	a					5 2,0 B 10,8	C	N	O 16	F 19	10 Ne 20
3	11 0,9 Na 23	Mg 24,3		I									13 1,5 A£ 27	Si 28	15 2,1 P 31	S	Cℓ 35,5	Ar 40
4	19 0,8 K	Ca	Sc	Ti	23 1,6 V	Cr	Mn	Fe	Co	Ni	Cu	Zn	31 1,6 Ga	Ge	33 2,0 As	Se	Br	Kr
	39 37 0,8	40 38 1,0	45 39 1,2	48 40 1,4	51 41 1,6	52 42 1,8	55 43 1,9	56 44 2,2	59 45 2,2	59 46 2,2	63,5 47 1,9	65,4 48 1,7	70 49 1,7	72,6 50 1,8	75 51 1,9	79 52 2,1	80 53 2,5	84 54
5	Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pď	Ag	Cď	ln [°]	Sn	Sb	Te		Xe
	85,5	88	89	91	93	96	99	101	103	106	108	112	115	119	121	128	127	131
	55	56		72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
6	Cs	Ba		Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Тe	Pb	Bi	Ро	At	Rn
	133	137,3		178,5	181	184	186	190	192	195	197	200,6	204,4	207	209	_	_	_
7	87 F	88 D o																
1	Fr	Ra																

ſ	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
										- ,					
Ī	89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lw
	7.10		١. ٣				/	J		O .					

TABEL 4 STANDAARD ELEKTRODEPOTENSIALE

Half	-reaks	ie	E°/volt
Li ⁺ + e ⁻	=	Li	-3,05
K ⁺ + e ⁻	\rightleftharpoons	K	-2,93
Cs ⁺ + e ⁻	=	Cs	-2,92
Ba ²⁺ + 2e ⁻	=	Ва	-2,90
Sr ²⁺ + 2e ⁻	=	Sr	-2,89
Ca ²⁺ + 2e ⁻	=	Ca	-2,87
Na ⁺ + e ⁻	=	Na	-2,71
$Mg^{2+} + 2e^{-}$	\rightleftharpoons	Mg	-2,37
$A\ell^{3+} + 3e^{-}$	=	Αl	-1,66
Mn ²⁺ + 2e ⁻	=	Mn	-1,18
2H ₂ O + 2e ⁻	\rightleftharpoons	$H_2(g) + 2OH^-$	-0,83
Zn ²⁺ + 2e ⁻	\rightleftharpoons	Zn	-0,76
Cr ³⁺ + 3e ⁻	\rightleftharpoons	Cr	-0,74
Fe ²⁺ + 2e ⁻	\rightleftharpoons	Fe	-0,44
Cd ²⁺ + 2e ⁻	\rightleftharpoons	Cd	-0,40
Co ²⁺ + 2e ⁻	\rightleftharpoons	Co	-0,28
Ni ²⁺ + 2e ⁻	\rightleftharpoons	Ni	-0,25
Sn ²⁺ + 2e ⁻	\rightleftharpoons	Sn	-0,14
Pb ²⁺ + 2e ⁻	\rightleftharpoons	Pb	-0,13
Fe ³⁺ + 3e ⁻	\rightleftharpoons	Fe	-0,04
2H ⁺ + 2e ⁻	\rightleftharpoons	$H_2(g)$	0,00
S + 2H ⁺ + 2e ⁻	\rightleftharpoons	$H_2S(g)$	+0,14
Sn ⁴⁺ + 2e ⁻	\rightleftharpoons	Sn ²⁺	+0,15
$SO_4^{2-} + 4H^+ + 2e^-$	\rightleftharpoons	$SO_2(g) + 2H_2O$	+0,17
Cu ²⁺ + 2e ⁻	\rightleftharpoons	Cu	+0,34
$2H_2O + O_2 + 4e^-$	\rightleftharpoons	40H ⁻	+0,40
$SO_2 + 4H^+ + 4e^-$	\rightleftharpoons	S + 2H2O	+0,45
	\rightleftharpoons	2l ⁻	+0,54
$O_2(g) + 2H^+ + 2e^-$	\rightleftharpoons	H_2O_2	+0,68
Fe ³⁺ + e ⁻	\rightleftharpoons	Fe ²⁺	+0,77
Hg ²⁺ + 2e ⁻	\rightleftharpoons	Hg	+0,79
$NO_3^- + 2H^+ + e^-$		$NO_2(g) + H_2O$	+0,80
$Ag^+ + e^-$		Ag	+0,80
$NO_3^- + 4H^+ + 3e^-$		$NO(g) + 2H_2O$	+0,96
Br ₂ + 2e ⁻	\rightleftharpoons	2Br ⁻	+1,09
Pt ²⁺ + 2e ⁻	\rightleftharpoons	Pt	+1,20
$MnO_2 + 4H^+ + 2e^-$	\rightleftharpoons	$Mn^{2+} + 2H_2O$	+1,21
$O_2 + 4H^+ + 4e^-$	\rightleftharpoons	2H ₂ O	+1,23
$Cr_2O_7^{2-} + 14H^+ + 6e^-$	\rightleftharpoons	2Cr ³⁺ + 7H ₂ O	+1,33
$C\ell_2(g) + 2e^-$	\rightleftharpoons	2Cℓ¯	+1,36
Au ³⁺ + 3e ⁻	\rightleftharpoons	Au	+1,42
$MnO_4^- + 8H^+ + 5e^-$		$Mn^{2+} + 4H_2O$	+1,51
	\rightleftharpoons	2H ₂ O	+1,77
$F_2(g) + 2e^-$	=	2F ⁻	+2,87

Toenemende reduseervermoë

Toenemende oksideervermoë