MATH 60604 Modélisation statistique § 4b - Régression logistique

HEC Montréal Département de sciences de la décision

Modèles linéaires généralisés pour données binaires

• Si notre variable réponse est binaire, on peut supposer que Y_i suit une loi Bernoulli de paramètre π_i , $Y_i \sim \text{Bin}(\pi_i)$, où

$$\pi_i = P(Y_i = 1 \mid \mathbf{X}_i) = E(Y_i \mid \mathbf{X}_i).$$

 La fonction de liaison la plus courante pour les réponses binaires est la fonction logit

$$g(z) := \operatorname{logit}(z) = \operatorname{ln}\left(\frac{z}{1-z}\right).$$

soit la fonction quantile de la loi logistique qui ici relie E $(Y_i \mid \mathbf{X}_i) = \pi_i(\mathbf{X}_i)$ et η_i .

Fonction de liaison logit

• Le modèle logistique spécifie

$$\eta_i = \ln\left(\frac{\pi_i}{1-\pi_i}\right) = \beta_0 + \beta_1 X_{i1} + \dots + \beta_p X_{ip}.$$

 Ce modèle peut être exprimé sur l'échelle de la moyenne à l'aide de la fonction inverse de logit (expit),

$$E(Y_i \mid \mathbf{X}_i) = \pi_i = \frac{\exp(\beta_0 + \beta_1 X_{i1} + \dots + \beta_p X_{ip})}{1 + \exp(\beta_0 + \beta_1 X_{i1} + \dots + \beta_p X_{ip})}.$$

- Cela donne une expression pour la moyenne $\pi_i = E(Y_i \mid \mathbf{X}_i)$ en fonction des variables explicatives \mathbf{X}_i , mais...
 - à quoi ressemble cette fonction?
 - que nous apprend-elle sur la relation entre π_i et η_i (et donc \mathbf{X}_i)?

Fonction de répartition logistique

- On voit que π est une **fonction croissante** de $\eta = \beta_0 + \sum_{j=1}^p \beta_j X_j$.
 - Si β_j est positif et X_j augmente, P(Y = 1) augmente aussi.
 - Si β_j est négatif et X_j augmente, P(Y = 1) diminue.
- La relation entre P (Y = 1) et η (et donc aussi X_i) est nonlinéaire.

Interprétation des paramètres de la régression logistique

- Quantifier les effets des paramètres eta de la régression logistique est compliqué à cause de la nonlinéarité.
- L'effet des coefficients est en terme de cote et de rapports de cote.
- Soit $\pi = P(Y = 1 \mid X_1, ..., X_p)$ et le modèle de régression logistique

$$\ln\left(\frac{\pi}{1-\pi}\right) = \beta_0 + \beta_1 X_1 + \dots + \beta_\rho X_\rho.$$

 Si on prend l'exponentielle de chaque côté de l'équation précédente, on obtient

$$cote(Y \mid \mathbf{X}) = \frac{\pi(\mathbf{X})}{1 - \pi(\mathbf{X})} = \exp(\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p),$$

où $\pi(\mathbf{X})/\{1-\pi(\mathbf{X})\}$ est la cote de P $(Y=1\mid\mathbf{X})$ par rapport à P $(Y=0\mid\mathbf{X})$.

Cote

- L'utilisation de la fonction de liaison logit donne un modèle pour le log de la cote.
- La cote pour une variable binaire Y est le rapport

$$\cot(\pi) = \frac{\pi}{1-\pi} = \frac{P(Y=1)}{P(Y=0)}.$$

- Par exemple, une cote de 4 signifie que la probabilité de Y=1 est quatre fois plus élevée que la probabilité de Y=0.
- Une cote de 0,25 à l'inverse veut dire que la probabilité de Y=1 est seulement le quart de celle pour Y=0, ou encore que la probabilité de Y=0 est quatre fois plus élevée que celle pour Y=1.

P(Y=1)	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9
cote	0,11	0,25	0,43	0,67	1	1,5	2,33	4	9
cote (frac.)	1 9	$\frac{1}{4}$	$\frac{3}{7}$	$\frac{2}{3}$	1	$\frac{3}{2}$	$\frac{7}{3}$	4	9

Interprétation de l'ordonnée à l'origine en termes de cote

• Si $X_1 = \cdots = X_p = 0$, il est clair que

$$cote(Y \mid \mathbf{X} = \mathbf{0}_p) = \exp(\beta_0)$$

et

$$P(Y = 1 | \mathbf{X} = \mathbf{0}_p) = \frac{\exp(\beta_0)}{1 + \exp(\beta_0)}$$

représente la probabilité que Y=1 quand $\mathbf{X}=\mathbf{0}_p$.

• Comme pour la régression linéaire, $X_1 = \cdots = X_p = 0$ peut être impossible; dans ce cas, β_0 ne s'interprète pas.

Interprétation des paramètres en termes de rapports de cotes

On considère pour faire simple un modèle logistique de la forme

$$\operatorname{logit}(\pi) = \beta_0 + \beta_1 x.$$

Le facteur $\exp(\beta_1)$ est le changement dans la cote quand X augmente d'une unité,

$$cote(Y \mid X = x + 1) = exp(\beta_1) \times cote(Y \mid X = x).$$

- Si $\beta_1 = 0$, le rapport des cotes vaut un: X n'impacte pas la cote de Y
- Si β_1 est positif, le rapport des cotes $\exp(\beta_1)$ excède un: si X croît, la cote de Y augmente.
- Si β_1 est négatif, le rapport des cotes $\exp(\beta_1)$ est inférieur à un: si X croît, la cote de Y décroît.

Quand il y a plusieurs variables explicatives, l'interprétation de β_1 est identique, mais elle n'est valide que quand toutes les autres variables explicatives sont égales par ailleurs.

Interprétation de β_k en terme de rapport de cote

Dans le modèle logistique, le rapport de cotes quand $X_k = x_k + 1$ versus $X_k = x_k$ quand $X_j = x_j$ $(j = 1, ..., p, j \neq k)$ est

$$\frac{\cot(Y \mid X_k = x_k + 1, X_j = x_j, j \neq k)}{\cot(Y \mid X_k = x_k, X_j = x_j, j \neq k)} = \frac{\exp\left(\beta_0 + \sum_{j=1}^p \beta_j x_j + \beta_k\right)}{\exp\left(\beta_0 + \sum_{j=1}^p \beta_j x_j\right)}$$
$$= \exp(\beta_k).$$

Quand X_k augmente d'une unité et que la valeur de toutes les autres covariables est constante, la cote de Y est multipliée par un $\exp(\beta_k)$.

- La cote augmente si $\exp(\beta_k) > 1$, c'est-à-dire si $\beta_k > 0$.
- La cote diminue si $\exp(\beta_k)$ < 1, c'est-à-dire si β_k < 0.