Besag model for spatial effects

Parametrization

The besag model for random vector $\mathbf{x} = (x_1, \dots, x_n)$ is defined as

$$x_i|x_j, i \neq j, \tau \sim \mathcal{N}(\frac{1}{n_i} \sum_{i \sim j} x_j, \frac{1}{n_i \tau})$$
 (1)

where n_i is the number of neighbours of node $i, i \sim j$ indicates that the two nodes i and j are neighbours.

Hyperparameters

The precision parameter τ is represented as

$$\theta_1 = \log \tau$$

and the prior is defined on θ_1 .

Specification

The besag model is specified inside the f() function as

The neighbourhood structure of x is passed to the program through the graph.file argument. The structure of this file is described below.

Structure of the graph file

We describe the required format for the graph file using a small example. Let the file gra.dat, relative to a small graph of only 5 elements, be

Line 1 declares the total number of nodes in the graph (5), then, in lines 2-6 each node is described. For example, line 4 states that node 3 has 4 neighbours and these are nodes 2, 4 and 5.

The graph file can either have nodes indexed from 1 to n, or from 0 to n-1. Note that in the latter case, node i seen from R corresponds to node i-1 in the 0-indexed graph.

Example

For examples of application of this model see the Bym, Munich, Zambia or Scotland examples in Volume I.

Notes

The besag model is a intrinsic random field.

The model is modified accordingly is the graph has more than one connected components.