

Universidade Federal de Pernambuco Centro de Informática

Graduação em Ciência da Computação

Síntese de Áudio Realístico com Modelagem Física: Acelerando a computação da Radiação Acústica em GPU

Rafael Farias Marinheiro

Trabalho de Graduação

Recife 19 de Julho de 2016

Universidade Federal de Pernambuco Centro de Informática

Rafael Farias Marinheiro

Síntese de Áudio Realístico com Modelagem Física: Acelerando a computação da Radiação Acústica em GPU

Trabalho apresentado ao Programa de Graduação em Ciência da Computação do Centro de Informática da Universidade Federal de Pernambuco como requisito parcial para obtenção do grau de Bacharel em Ciência da Computação.

Orientador: Geber Lisboa Ramalho

Recife 19 de Julho de 2016

Agradecimentos

Agradeço primeiramente a minha família: meu pai Wellington, minha mãe Socorro e a minha irmã Camila. Vosso amor, carinho e dedicação sempre me motivaram a seguir em frente com confiança. Obrigado também pela paciência extra necessária para aguentar os meus horários inconvenientes e inconstantes. Um agradecimento especial para o meu pai que me tornou um apaixonado por Computação logo cedo na minha vida.

Agradeço a minha minha namorada Karla por todo o apoio e companheirismo ao longo desses anos. Obrigado por me acompanhar e me apoiar em todas as minhas decisões e por sempre estar ao meu lado.

Agradeço também os meus amigos e colegas do Centro de Informática. Fizemos boas amizades nessa longa jornada e compartilhamos bons momentos. Aprendemos que o infinito é trivial e que piadas ruins são eternas. Agradeço em especial a Lucas e Tomás (em ordem alfabética!) com os quais já compartilho uma amizade que dura mais da metade da minha vida.

Agradeço o Centro de Informática da UFPE e os seus professores. Obrigado por todo o conhcimento e pelos momentos constantes de satisfação intelectual. Um agradecimento especial para o professor Sílvio Melo, pelo seu entusiasmo, para o professor Ruy Queiroz por me apresentar a beleza e a profundidade da Teoria de Computação.

Agradeço a Universidade de Cornell por me receber bem durante o meu intercâmbio. Agradeço também os amigos que fiz por lá, em especial Hélcio e Yuri. Agradecimentos também para os membros do Laboratório de Computação Gráfica de lá, em especial para o professor Doug James, Tim Langlois, Jui-Hsien e Brandon Benton. Aprendi e cresci muito quando trabalhando com vocês.

Agradecimentos também para Geber Ramalho, professor que me orientou nesse Trabalho de Conclusão de Curso. Admiro muito o seu entuasiasmo e a sua paixão pelo seu trabalho. Obrigado por compartilhar um pouco disso comigo nesse projeto.

Cada um de vocês teve um papel extremamente importante nessa minha jornada. Não chegaria aqui hoje se não fosse por vocês. Muito obrigado.

Science doesn't purvey absolute truth. Science is a mechanism. It's a way of trying to improve your knowledge of nature. It's a system for testing your thoughts against the universe and seeing whether they match. And this works, not just for the ordinary aspects of science, but for all of life. I should think people would want to know that what they know is truly what the universe is like, or at least as close as they can get to it.

—ISAAC ASIMOV (1988)

Resumo

Neste trabalho nós estudamos e descrevemos o estado-da-arte das técnicas de síntese de som realístico. Implementamos um método de Síntese baseado em Modelagem Física no qual desenvolvemos um método eficiente para acelerar a computação da Radiação Acústica em GPU. Criamos cenários de teste para comparar a performance e a qualidade do nosso sistema com as abordagens anteriores através de benchmarks, testes numéricos e testes A/B com voluntários. A nossa abordagem obteve um speedup superior a $30\times$, mantendo uma taxa de erro inferior a 5%. A maioria dos voluntários também mostraram preferência pelos áudios sintetizados pela nossa abordagem.

Abstract

In this work we study and describe the state-of-the-art techniques in realistic audio synthesis. We implemented a Physically-Based Synthesis method which used a novel efficient method to speedup the Acoustic Radiation computation. We created test scenarios in order to compare the performance and the quality of our system against the previous techniques through benchmarks, numerical tests and A/B tests with volunteers. Our method obtained an over $30\times$ speedup while maintaining the error rate smaller than 5%. The majority of the volunteers also showed their preference for the audio synthetized with our method.

Sumário

1	Introdução			
	1.1	Motivação e Objetivos	1	
	1.2	1.2 Estrutura do Trabalho		
2	Con	4		
	2.1	Vibração de Corpos Rígidos	4	
		2.1.1 Modelo Elastodinâmico	4	
		2.1.2 Análise Modal	7	
	2.2	Som e Acústica	9	
		2.2.1 Equação da Onda Acústica	10	
		2.2.1.1 Fontes Sonoras e Ambientes Acústicos	10	
		2.2.2 Radiação acústica e a Equação de Helmholtz	11	
		2.2.2.1 Aproximação em Far-Field	12	
3	Sínt	15		
	3.1	15		
	3.2	Métodos por Modelagem Física	16	
		3.2.1 Pipeline de Síntese	17	
		3.2.2 Trabalhos Relacionados	18	
4	Algoritmo e Implementação			
	4.1	Discretização e Solução da Equação da Onda	20	
	4.2	Aproximação da Equação de Helmholtz	22	
		4.2.1 Expansão Multipolar	22	
5	Exp	26		
	5.1	Teste de Percepção	27	
6	Con	ıclusão	29	
	6.1	29		
A	A Comparação Numérica com FastBEM			

Lista de Figuras

1.1	Artista de Foley em um estudio de produção	2
2.1	Vibração de um prato de bateria.	4
2.2	Sistema elastodinâmico unidimensional	5
2.3	Sistema elastodinâmico bidimensional	6
2.4	Modos de Vibração de objetos	8
2.5	Gráfico da solução da equação $\ddot{q}(t) + (\alpha + \beta \omega_i^2) \dot{q}(t) + \omega^2 q(t) = f(t)$	9
2.6	Composição de modos de vibração	10
2.7	Pressão acústica gerada uma fonte pontual	11
2.8	Radiação acústica gerada uma fonte pontual	13
2.9	Radiação de Near-Field e Far-Field	13
3.1	Pipeline de Síntese de Aúdio Realístico	17
4.1	Discretização Marker-And-Cell	21
4.2	Harmônicos Esféricos	23
4.3	Comparação entre o Ground Truth da Radiação Acústica e a aproximação Ex-	
	pansão Multipolar	25
5.1	Comparação numérica para o Prato de Cerâmica	27
A .1	Comparação numérica para o Prato de Cerâmica	30
A.2	Comparação numérica para a Caneca de Cerâmica	31
A.3	Comparação numérica para a Chave de Aço	32

Lista de Tabelas

5.1	Parâmetros de Materiais	26
5.2	Especificações de Hardware	26
5.3	Comparação de Performance entre a nossa solução e abordagens anteriores	27
5.4	Resultado dos Testes de Percepção	28

Capítulo 1

Introdução

1.1 Motivação e Objetivos

A nossa audição é um dos nossos sentidos mais importantes. É ela que nos permite identificar sinais e padrões no nosso mundo. Desde os tempo antigos, utilizamos a nossa audição para identificar situações de ameaças iminentes, como o rugido um predador prestes a atacar ou a buzina de um carro em alta velocidade. É também através dela que desenvolvemos o nossos métodos de comunicação.

Diversas indústrias utilizam o som para criar um ambiente imersivo para o usuário. Esse som pode utilizado para criar ditar o tom das experiências dos usuários. As indústrias de entrenimento (filmes, músicas, games e etc), por exemplo, utilizam o som para criar experiências mais realistas e divertidas [6]. O uso de som em aplicações audiovisuais tornou-se comum na década de 1920 com a sua utilização no cinema [10].

Com isso, surge o seguinte problema: como criar o som para ser utilizado nessas aplicações? Para criar boas experiências para os usuários, o som tem que ser coerente com a cena apresentada [27]: O timbre e intensidade têm que ser compatível com o objeto (e.g.: sons metálicos vindo de metais e não de objetos de madeira), o áudio deve estar sincronizado com a cena e etc .

Uma das primeiras técnicas, e também uma das mais utilizadas, pelas indústrias é chamada de Foley. Nessa técnica, o artista de Foley utiliza elementos e objetos do mundo real para tentar sintezar as amostras de áudio de uma cena. O artista pode, por exemplo, utilizar pedaços de côcos para simular o som do trote de um cavalo [5] ou folhas metálicas para simular o som de trovões (Ver Figura 1.1).

Essa técnica, porém, tem várias limitações. Para garantir a qualidade da experiência sonora, os artista de Foley deve calibrar cuidadosamente para garantir a coerência do timbre e também para garantir a sincroniza entre o áudio e o vídeo. Isso requer mão-de-obra especializada. Embora a qualidade final do áudio gerado pela técnica seja boa, o custo e o tempo de produção podem inviabilizar o uso dessa técnica. Em muitos casos também há limitações físicas envolvidas: Seria inviável, por exemplo, usar esse tipo de técnica para sintetizar amostras de áudio geradas por uma estrutura metálica de grandes dimensões ou por uma grande esfera de diamante.

Em ambientes dinâmicos, no entanto, as limitações são ainda mais aparentes. No caso de uma aplicação virtual com interação de um usuário (um jogo, por exemplo), as interações que criariam o som seriam provenientes de comandos dados pelo usuário em tempo de execução.

¹Fonte: http://www.t.sonypicturesstudiostours.com/uploads/img/std_content/soundeffects_05.jpg. Acessado em 3 de Julho de 2016.

Figura 1.1: Artista de Foley em um estúdio de produção l

Nesse tipo de aplicação não é possível criar amostras sonoras durante a sua execução e também não é possível prever todas as possíveis interações do usuário.

Esse tipo de técnica não permite que o som dos objetos seja alterado de acordo com o estado da simulação em tempo de execução. O som gerado por um prato ao cair no chão, por exemplo, varia drasticamente de acordo com a posição de contato. O uso de amostras sonoras nesse tipo de aplicação cria um ambiente acústico repetitivo que não se adapta à realidade do mundo virtual, o que desconstrói a imersão do usuário [3].

Recentemente, um novo tipo de técnica tem surgido: A Síntese de Som por Modelagem Física. Essa nova abordagem tenta sintetizar o som de uma cena através de simulações físicas. Esse tipo de abordagem em tese cumpre automaticamente os requisitos para criar uma boa experiência, pois o timbre, a intensidade seriam calculados de acordo com as propriedades físicas dos objetos e a sincronização surgiria naturalmente por conta da simulação. Esse tipo de técnica também poderia ser utilizado em aplicações dinâmicas, pois o som seria gerado em tempo de execução.

As técnicas de síntese por modelagem física costumam ser computacionalmente caras. Elas normalmente exigem que a solução de equações diferenciais complexas sejam calculadas em um domínio extenso. Acreditamos que este tipo de processamento possa ser eficientemente mapeado em arquiteturas de GPUs (Graphic Processing Units)². Isso nos permitiria diminuir o tempo necessário para sintetizar o som de uma cena.

Por tais razões, o objetivo desse trabalho é desenvolver uma técnica de Síntese de Som por Modelagem Física e acelerá-la utilizando GPU.

1.2 Estrutura do Trabalho

Esse trabalho está estruturado da seguinte maneira: No Capítulo 2 descrevemos os conceitos matemáticos utilizados no estado-da-arte, o que inclui conceitos de Acústica e de Vibrações. No

²GPUs são unidades de processamento especializadas, desenvolvidas para realizar cálculos em paralelo.

Capítulo 3 descrevemos os trabalhos relacionados, apresentando a evolução da área e discutindo as diferençãs entre Métodos por Modelagem Física e Métodos por Amostragem. No Capítulo 4 nós apresentamos o nosso método e também os detalhes de implementação. No Capítulo 5 nós descrevemos os experimentos utilizados para avaliar o desempenho do nosso método e também discutimos os resultados obtidos. Finalmente, concluímos esse trabalho no Capítulo 6 apresentando também planos para trabalhos futuros.

CAPÍTULO 2

Conceitos Básicos

2.1 Vibração de Corpos Rígidos

O som proveniente de objetos é geralmente principalmente por conta de sua vibração. Ao vibrar, o objeto movimenta o meio ao seu redor, criando ondas sonoras que serão propagadas. Podemos observar essa propriedade em instrumentos musicais: O prato de bateria, por exemplo, começa a vibrar ao ser atingido por uma baqueta, produzindo seu som característico. O corpo de um violão vibra quando suas cordas são tocadas, criando o som na frequência das cordas. Embora não consigamos observar a vibração a olho nu, é possível fazê-lo com câmeras especializadas (Ver Figura 2.1).

Figura 2.1: Vibração de um prato de bateria. O som produzido é gerado por conta dessa vibração $^{\rm l}$

Para entendermos melhor o comportamento da vibração de objetos, estudaremos o Modelo Elastodinâmico.

2.1.1 Modelo Elastodinâmico

O modelo elastodinâmico [28] é um dos modelos mais utilizados no estudo de vibrações. Esse modelo é amplamente utilizado em áreas como Engenharia Civil, Engenharia Mecânica, entre

¹Fonte: https://i.ytimg.com/vi/kpoanOlb3-w/maxresdefault.jpg. Acessado em 18 de Julho de 2016.

outras.

O objeto de estudo do Modelo Elastodinâmico são os sistemas elastodinâmicos. Um sistema elastodinâmico é um sistema composto por corpos i, cada um com massa m_i , e molas (i, j), cada uma com constante elástica $k_{i,j}$. Um exemplo de sistema elastodinâmico é apresentado na Figura 2.2.

$$m_0$$
 $k_{0,1}$ m_0 $k_{1,2}$ m_0

Figura 2.2: Sistema elastodinâmico unidimensional. Cada nó tem massa m_i e cada mola tem uma constante $k_{i,j}$

De acordo com a Segunda Lei de Newton, sabemos que para cada corpo i,

$$f_{tot,i} = f_{int,i} + f_{ext,i} = m_i \cdot \ddot{p}_i \tag{2.1}$$

onde $f_{ext,i}$ é a força externa, $f_{int,i}$ a força interna, m_i a massa do corpo e \ddot{p}_i é a segunda derivada da posição (aceleração) do corpo i.

Considere um sistema unidimensional com três corpos, como na Figura 2.2, podemos escrever a Equação (2.1) na forma matricial:

$$\begin{bmatrix} f_{tot,0} \\ f_{tot_1} \\ f_{tot_2} \end{bmatrix} = \begin{bmatrix} f_{int,0} \\ f_{int,1} \\ f_{int,2} \end{bmatrix} + \begin{bmatrix} f_{ext,0} \\ f_{ext,1} \\ f_{ext,2} \end{bmatrix} = \begin{bmatrix} m_0 \cdot \ddot{p_0} \\ m_1 \cdot \ddot{p_1} \\ m_2 \cdot \ddot{p_2} \end{bmatrix} = \begin{pmatrix} m_0 & 0 & 0 \\ 0 & m_1 & 0 \\ 0 & 0 & m_2 \end{pmatrix} \begin{bmatrix} \ddot{p_0} \\ \ddot{p_1} \\ \ddot{p_2} \end{bmatrix} = M\ddot{p} \tag{2.2}$$

A matriz diagonal *M* é chamada de *Matriz de Massas* do sistema.

Seja $\overrightarrow{p_{eq}} = \begin{bmatrix} p_{eq,0} & p_{eq,1} & p_{eq,2} \end{bmatrix}^\mathsf{T}$ o vetor coluna que representa a posição de equilíbrio dos corpos na Figura 2.2. Considere uma outra configuração \overrightarrow{p} . Se denotarmos por $\overrightarrow{u} = \overrightarrow{p} - \overrightarrow{p_{eq}}$ o vetor de deslocamento, podemos utilizar a Lei de Hooke para escrever:

$$\overrightarrow{f_{int}} = \begin{bmatrix} f_{int,0} \\ f_{int,1} \\ f_{int,2} \end{bmatrix} = \begin{bmatrix} k_{0,1}(u_1 - u_0) + 0 \\ k_{0,1}(u_0 - u_1) + k_{1,2}(u_2 - u_1) \\ 0 + k_{1,2}(u_1 - u_2) \end{bmatrix}$$

$$= \begin{pmatrix} -k_{0,1} & k_{0,1} & 0 \\ k_{0,1} & -(k_{0,1} + k_{1,2}) & k_{1,2} \\ 0 & k_{1,2} & -k_{1,2} \end{pmatrix} \begin{bmatrix} u_0 \\ u_1 \\ u_2 \end{bmatrix}$$
(2.3)

$$= \begin{pmatrix} -k_{0,1} & k_{0,1} & 0\\ k_{0,1} & -(k_{0,1} + k_{1,2}) & k_{1,2}\\ 0 & k_{1,2} & -k_{1,2} \end{pmatrix} \begin{bmatrix} u_0\\ u_1\\ u_2 \end{bmatrix}$$
(2.4)

$$= Ku \tag{2.5}$$

A matriz simétrica K é chamada de Matriz de Rigidez do sistema. Como $\overrightarrow{u} = \overrightarrow{p} - \overrightarrow{p_{eq}}$, temos que $\ddot{p} = \ddot{u}$. Desse modo, podemos substituir (2.5) em (2.2):

$$\overrightarrow{f_{ext}} + Ku = M\ddot{u} \tag{2.6}$$

De modo semelhante, podemos utilizar essa equação para descrever sistemas com maior dimensionalidade. Um exemplo de tal sistema é apresentado na Figura 2.3.

Figura 2.3: Sistema elastodinâmico bidimensional. Cada nó tem massa m_i e cada mola tem uma constante $k_{i,j}$

Para tal sistema, podemos descrever sua Matriz de Massas e sua Matriz de Rigidez. A Matriz de Massas M é a matriz diagonal em blocos:

$$M = \begin{pmatrix} M_0 & 0 & 0 & 0 \\ 0 & M_1 & 0 & 0 \\ 0 & 0 & M_2 & 0 \\ 0 & 0 & 0 & M_3 \end{pmatrix} \text{ onde } M_i = \begin{pmatrix} m_i & 0 \\ 0 & m_i \end{pmatrix}$$
 (2.7)

A sua Matriz de Rigidez K pode ser escrita como uma soma de matrizes $K_{i,j}$ para cada mola. Cada matriz $K_{i,j}$ tem uma simples estrutura em blocos²:

$$K_{i,j}[l,c] = \begin{cases} (l,c) = (i,i) \text{ ou } (l,c) = (j,j) \Rightarrow k_{i,j}R_{i,j} \\ (l,c) = (i,j) \text{ ou } (l,c) = (j,i) \Rightarrow -k_{i,j}R_{i,j} \\ \text{Caso contrário } \Rightarrow 0 \end{cases}$$
(2.8)

 $R_{i,j}$ é a matriz de rotação que alinha o vetor $\overrightarrow{p_j - p_i}$ com o eixo cartesiano x. A matriz $K_{1,3}$, por exemplo, teria a seguinte estrutura:

$$K_{1,3} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & k_{1,3}R_{1,3} & 0 & -k_{1,3}R_{1,3} \\ 0 & 0 & 0 & 0 \\ 0 & -k_{1,3}R_{1,3} & 0 & k_{1,3}R_{1,3} \end{pmatrix}$$
(2.9)

A generalização dessa equação é chamada de Equação da Elastodinâmica Linear:

 $^{^2}M[l,c]$ representa o elemento da matriz M presente na linha l e coluna c

$$M\ddot{u} + C\dot{u} + Ku = f_{ext} \in \mathbb{R}^n$$
 onde

 $u \in \mathbb{R}^n \Rightarrow \text{Vetor de deslocamento}$
 $f_{ext} \in \mathbb{R}^n \Rightarrow \text{Vetor de forças externas}$
 $M \in \mathbb{R}^{n \times n} \Rightarrow \text{Matriz de Massas}$
 $K \in \mathbb{R}^{n \times n} \Rightarrow \text{Matriz de Rigidez}$
 $C \in \mathbb{R}^{n \times n} \Rightarrow \text{Matriz de Amortecimento}$

Para objetos complexos, as matrizes são calculadas utilizando o Método dos Elementos Finitos [11]. O método consiste em subdividir o objeto em pequenas partes, chamados de Elemento. As molas do sistema são utilizadas para unir os elementos que estão em contato. A massa dos Elementos e as constantes da mola são normalmente calculadas a partir das propriedades do material do objeto, como densidade (kg/m^3), Módulo de Young (Pa) e Razão de Poisson [28]. A Matriz de Amortecimento, no entanto, geralmente é calculada utilizando a aproximação de Rayleigh:

$$C = \alpha M + \beta K \tag{2.11}$$

onde α e β são constantes de dependem do material.

2.1.2 Análise Modal

Considere um sistema elastodinâmico. A sua Matriz de Massas M é uma matriz diagonal positiva definida³. A sua matriz K é a soma de matriz simétricas semi-positivas definidas, portanto ela também é uma matriz simétrica semi-positiva definida⁴. Por tal razão, o problema dos autovalores generalizados está bem definido para estas matrizes [22]. Isso significa é que possível encontrar uma base formada por vetores v_i , tais que:

$$Kv_i = \lambda_i M v_i \tag{2.12}$$

Para cada par (λ_i, v_i) , o autovalor $\lambda_i = \omega_i^2$ está relacionado à frequência. De fato, dizemos que $\omega_i = 2\pi f_i$ é a *Frequência Natural de Vibração*. Já o autovetor correspondente é o *Modo Natural de Vibração*. É possível visualizar alguns modos de vibração na Figura 2.4.

Podemos escrever a equação (2.12) também em sua forma matricial:

$$KV = \Lambda MV$$
 (2.13)

 Λ é a matriz diagonal formada pelos autovalores $\lambda_i = \omega^2$ a V é a matriz formada pelos vetores-coluna v_i . Em particular, pode-se escolher V tal que ela seja ortogonal em relação à

³Uma matriz $M \in \mathbb{R}^{n \times n}$ é dita positiva definida se, e somente se, $\forall v \in \mathbb{R}^n \Rightarrow v^{\mathsf{T}} M v > 0$. Uma definição equivalente é a de que todos os autovalores de M são positivos.

⁴Uma matriz $M \in \mathbb{R}^{n \times n}$ é dita semi-positiva definida se, e somente se, $\forall v \in \mathbb{R}^n \Rightarrow v^T M v \geq 0$. Uma definição equivalente é a de que todos os autovalores de M são não-negativos.

Figura 2.4: Modos de Vibração de objetos. Ao topo: Modos de vibração de um prato de cerâmica. Abaixo: Modos de vibração de uma taça de vidro. Fonte: [15]

Matriz de Massas, isto é $V^{T}MV = I$, onde I é a matriz identidade. Nessa forma, dizemos que a matriz Λ é a *Matriz Espectral* do sistema e que V é a *Matriz Modal* do sistema.

Como V representa uma base do espaço, então podemos encontrar um vetor q tal que u =Vq. Se fizermos essa substituição na equação da elastodinâmica (2.10) utilizando também a aproximação de Rayleigh (2.11) obteremos:

$$MV\ddot{q} + (\alpha M + \beta K)V\dot{q} + KVq = f_{ext}$$
 (2.14)

Podemos manipular a equação anterior:

$$f_{ext} = MV\ddot{q} + (\alpha M + \beta K)V\dot{q} + KVq$$

$$= MV\ddot{q} + (\alpha MV + \beta KV)\dot{q} + KVq$$
(2.15)
$$(2.16)$$

$$= MV\ddot{q} + (\alpha MV + \beta KV)\dot{q} + KVq \qquad (2.16)$$

$$= MV\ddot{q} + (\alpha MV + \beta \Lambda MV)\dot{q} + \Lambda MV \qquad (2.17)$$

$$V^{\mathsf{T}} f_{ext} = V^{\mathsf{T}} M V \ddot{q} + (\alpha V^{\mathsf{T}} M V + \beta V^{\mathsf{T}} \Lambda M V) \dot{q} + V^{\mathsf{T}} \Lambda M V$$
 (2.18)

$$= \ddot{q} + (\alpha I + \beta \Lambda)\dot{q} + \Lambda q \tag{2.19}$$

Em (2.16) expandimos o termo de \dot{q} . Em (2.17), aplicamos a igualdade (2.13). Em (2.18), multiplicamos ambos os lados da equação por V^{T} pela esquerda. Em (2.19), utilizamos o fato que V é ortogonal em relação à M e que a multiplicação por Λ é comutativa (pois Λ é diagonal). Note que na equação final, todas as matrizes associadas aos termos q, \dot{q} e \ddot{q} são matrizes diagonais. Por tal razão, a equação diferencial multidimensional pode ser decomposta em várias equações diferenciais unidimensionais independentes:

$$v_i^{\mathsf{T}} f_{ext} = \ddot{q}_i + (\alpha + \beta \omega_i^2) \dot{q}_i + \omega_i^2 q_i \tag{2.20}$$

Se considerarmos o caso no qual uma força instantânea é aplicada no momento t=0, isto é $v_i^{\mathsf{T}} f_e x t(t) = \delta(t,0)$ onde $\delta(x,y)$ é a função Delta de Dirac⁵ e que q(0)=0, a solução da equação é da forma

$$q(t) = k_1 e^{-k_2 t} \sin(k_3 t) (2.21)$$

onde k_1 , k_2 e k_3 são constantes (ver Figura 2.5). Vale a pena salientar que a constante de frequência k_3 tem um valor próximo à frequência natural ω_i . O seu valor é alterado de acordo com as constantes α e β .

Figura 2.5: Gráfico da solução geral da equação $\ddot{q}(t) + (\alpha + \beta \omega_i^2) \dot{q}(t) + \omega^2 q(t) = f(t)$ considerando $f(t) = \delta(t, 0)$. A frequência de q(t) é próxima à frequência natural ω_i .

A possibilidade de decomposição em sistemas lineares independentes mostra que a vibração de um objeto pode ser expressa como a combinação linear de seus modos de vibração (ver Figura 2.6). Veremos adiante como essa propriedade pode ser explorada para acelerar a simulação.

2.2 Som e Acústica

O estudo das vibrações nos permite descrever como o som de objetos é gerado. No entanto, ainda é necessário entender como esse som será propagado até o ouvinte. Para isso, precisamos entender um pouco mais de Acústica.

Acústica é a ciência que estuda a som. É ciência que estuda a sua origem e propagação, seja ela em espaços abertos ou espaços fechados [14].

⁵A função Delta de Dirac é tal que $\delta(x,y) = 1$ se x = y e $\delta(x,y) = 0$ caso contrário.

⁶Em especial, se $\alpha = \beta = 0$, temos que $k_3 = \omega_i$.

Figura 2.6: Composição de modos de vibração. A vibração de um objeto rígido pode ser expressa como combinação linear de diferentes modos de vibração regidos pela equação (2.20)

2.2.1 Equação da Onda Acústica

No estudo de acústica, a principal equação é a *Equação da Onda*. Considerando um meio dispersante, a pressão do meio é governada pela seguinte equação diferencial:

$$\frac{\partial^{2} \rho(u,t)}{\partial t^{2}} = dc^{2} \nabla^{2} \rho(u,t)$$
onde
$$t \in \mathbb{R} \Rightarrow \text{Tempo em segundos } (s)$$

$$u \in \mathbb{R}^{3} \Rightarrow \text{Posição em metros } (m)$$

$$c \in \mathbb{R} \Rightarrow \text{Velocidade de Propagação } (m/s)$$

$$c \in \mathbb{R} \Rightarrow \text{Densidade } {}^{kg/m^{3}}$$

$$\rho(u,t) \in \mathbb{R} \Rightarrow \text{Pressão acústica } (Pa)$$

Na equação (2.22), o operador ∇^2 corresponde ao operador Laplaciano Espacial. Isto é:

$$\nabla^{2} \rho(u,t) = \Delta \rho(u,t) = \frac{\partial^{2} \rho(u,t)}{\partial x^{2}} + \frac{\partial^{2} \rho(u,t)}{\partial y^{2}} + \frac{\partial^{2} \rho(u,t)}{\partial z^{2}}$$
(2.23)

A equação (2.22) é uma equação diferencial parcial linear hiperbólica de segunda ordem. Ela é chamada de equação governante pois, determinadas as condições inicias e as condições de contorno, os demais resultados são obtidos como consequência dela.

2.2.1.1 Fontes Sonoras e Ambientes Acústicos

Em acústica, existem duas entidades essenciais: a *fonte sonora*, responsável por gerar o som, e o *ambiente*, responsável por transmití-lo. Matemáticamente essas entidades definem exatamente as condições iniciais e as condições de contorno da Equação da Onda.

Uma equação diferencial é definida dentro um domínio, usualmente denotado por Ω . O domínio pode ser um ambiente fechado (sala de estar ou um auditório) ou um espaço aberto (campo ou um deserto). As condições de contorno são equações que delimitam o comportamento da pressão acústica dentro do domínio Ω . Os dois tipos mais comuns de condições de contorno são as condições de contorno de Dirichlet e as condições de contorno de Neumann.

Figura 2.7: Pressão acústica gerada por uma fonte pontual no centro do meio. A fonte e o ambiente determinam as condições de contorno e a pressão acústica nos demais pontos é governada pela Equação da Onda (2.22)

As condições de contorno de Dirichlet são condições de contorno da forma:

$$\rho(u,t) = f(u,t) \tag{2.24}$$

Essas condições de contorno forçam que o valor de determinados pontos obedeça alguma função já conhecida. Em acústica, as condições de contorno de Dirichlet normalmente são utilizadas para definir fontes sonoras. Se uma determinada fonte sonora localizada no ponto u_f reproduz um som $s_f(t)$, podemos adicionar a condição de contorno $\rho(u_f,t)=s_f(t)$.

As condições de contorno de Neumann são condições de contorno da forma:

$$\frac{\partial \rho(u,t)}{\partial n} = f(u,t)$$
onde
$$n \in \mathbb{R}^3 \implies \text{Vetor normal}$$
(2.25)

Essas condições de contorno forçam que o valor da derivada da pressão em determinados pontos obedeça alguma função já conhecida. As condições de contorno de Dirichlet são utilizadas, por exemplo, para determinar o comportamento na interface entre diferentes meios. Se um ponto u_b encontra-se na borda de uma superfície rígida fixa de normal n_b , podemos adicionar a condição de contorno $\partial \rho(u_b,t)/\partial n_b=0$.

2.2.2 Radiação acústica e a Equação de Helmholtz

Dadas as condições iniciais e as condições de contorno, a equação da onda nos dá o valor exato da pressão acústica em função da posição e do tempo. A dependência com o tempo, no entanto,

nos força a resolver a equação da onda durante a simulação. Esse processo tem um alto custo computacional, portanto é preferível encontrar uma outra solução para esse problema.

O caso mais comum de síntese acústica consiste no problema das fontes sonoras: dada uma fonte sonora na posição u_f emitindo um som f(t), qual a pressão acústica $\rho(u,t)$ num determinado ponto u no tempo t?

Podemos tentar assumir que a pressão acústica $\rho(u,t)$ depende de duas funções independentes. Isto, é, podemos tentar assumir que:

$$\rho(u,t) = T(u)F(t) \tag{2.26}$$

onde T(u) seria a amplitude no ponto u e F(t) seria uma função que depende apenas som emitido pelas fontes sonoras. Com essa separação, se a fonte passasse a emitir o som $f^*(t)$, precisaríamos apenas computar a função $F^*(t)$ para obter a solução $\rho^*(u,t) = T(u)F^*(t)$.

A função T(u) também é chamada de *Radiação Acústica* ou *Transferência Acústica*, pois ela mede quanta energia acústica foi transferida a partir das fontes sonoras. A equação governante para a Radiação Acústica é a *Equação de Helmholtz*:

$$\nabla^{2}T(u) + k^{2}T(u) = 0$$
onde
$$k \in \mathbb{R} \Rightarrow \frac{\omega}{c} \rightarrow \text{Número de Onda (1/m)}$$

$$u \in \mathbb{R}^{3} \Rightarrow \text{Posição em metros(m)}$$

$$T(u) \in \mathbb{C} \Rightarrow \text{Amplitude em metros(m)}$$

Dois fatos são notáveis na Equação de Helmholtz: A constante $k = \frac{\omega}{c}$ depende da frequência ω da fonte sonora. Por tal razão, a Equação de Helmholtz é comumente chamada de Equação da Onda no domínio da frequencia.

Note também que a função T(u) tem como contra-domínio o conjunto dos números complexos $\mathbb C$. O uso de números complexos nesse caso é útil para representarmos a fase da onda sonora. Se escrevermos $T(u)=A(u)e^{i\phi(u)}$ e $F(t)=A_0e^{i\omega t}$, obteremos:

$$\rho(u,t) = Re(T(u)F(t))$$

$$= Re(A_0A(u)e^{i(\omega t + \phi(u))})$$

$$= Re(A_0A(u)(\cos(\omega t + \phi(u)) + i\sin(\omega t + \phi(u)))$$

$$= A_0A(u)\cos\theta(\omega t + \phi(u)) \qquad (2.28)$$

Nesse caso, dizemos que a função $\phi(u)$ é a fase da onda sonora.

2.2.2.1 Aproximação em Far-Field

Considere um sistema com algumas fontes sonoras. Seja B(r) a esfera de raio r cujo centro está na origem. Seja r_{near} tal que $B(r_{near})$ contenha todas as fontes sonoras do sistema. Dizemos

Figura 2.8: Radiação acústica gerada por uma fonte pontual no centro do meio. A fonte e o ambiente determinam as condições do contorno e a radiação acústica nos demais pontos é governada pela Equação de Helmholtz

Figura 2.9: Radiação de Near-Field e Far-Field.

que a região $B(r_{near})$ é o Near-Field (Campo Próximo) do sistema e que a região externa é o Far-Field (Campo Longíquo) do sistema (Ver Figura 2.9).

Essa separação entre o Near-Field e o Far-Field é importante para efeitos práticos. Toda a radiação acústica é gerada dentro do Near-Field e depois é dissipada para o Far-Field que, por sua vez, não deve gerar radiação acústica. Isso é matematicamente representado pela Condição de Contorno de Sommerfeld, também conhecida por *Condição de Radiação de Sommerfeld*:

$$\lim_{|u| \to \infty} |u| \left(\frac{\partial}{\partial |u|} - ik \right) T(u) = 0 \tag{2.29}$$

Além disso, também observa-se uma diferença entre a complexidade do Near-Field quando comparado ao Far-Field. Dentro do Near-Field a interação entre as fontes sonoras e os demais objetos faz com que a radiação acústica seja extremamente complexo. Entretanto, a radiação acústica no Far-Field tem uma estrutura muito mais simples.

Seja Γ a superfície do Near-Field e seja u um ponto no Far-Field. A radiação T(u) pode ser calculada pela $Integral\ de\ Kirchhoff$:

$$T(u) = \int_{\Gamma} \left[G(u, v) \frac{\partial T}{\partial n}(v) - \frac{\partial G}{\partial n}(u, v) T(v) \right] d\Gamma_{v}$$
 (2.30)

onde G(u,v) é a Função de Green da Equação Helmholtz:

$$G(u,v) = \frac{e^{ik\|u-v\|}}{4\pi\|u-v\|}$$
 (2.31)

Utilizando a fórmula (2.30), vemos que é necessário apenas calcular a Radiação Acústica no Near-Field para definirmos a solução para o Far-Field.

CAPÍTULO 3

Síntese de Áudio Realístico

O problema de Síntese de Aúdio Realístico pode ser definido da seguinte maneira: Dada a descrição de uma cena, como podemos sintetizar o áudio correspondente? Para entedermos melhor esse definição, precisamos entender o que seria a descrição de uma cena e também o que se entende por aúdio correspondente.

A descrição da cena é o conjunto de informações necessárias para descrever a composição e o estado dos objetos presentes. A descrição da cena pode ser dada de modo explícito ou implícito. Uma descrição explícita possui todos os parâmetros dos objetos. Um exemplo seria: "No tempo t, a cena contém um prato de cerâmica está na posição p_a com velocidade v_a e uma chate de aço na posição p_b com velocidade v_b ". Uma descrição implícita é aquela que não apresenta os parâmetros explicitamente. Um exemplo de descrição implícita seria um vídeo com os objetos. Nesse caso, o vídeo deveria ser processado para que a descrição explícita fosse extraída.

Dizemos que um áudio satisfaz a descrição da cena (ou que ele corresponde à descrição da cena) se ele é suficientemente parecido com o áudio que seria produzido se a cena fosse simulada no mundo real. O grau de fidelidade varia de acordo com a aplicação. Em aplicações de Engenharia, por exemplo, pode-se exigir um alto grau de fidelidade. Em aplicações lúdicas, o grau de fidelidade pode ser menor. No nosso caso, consideramos que o áudio é fiel o suficiente se um humano o julga plausível. Estudos mostram que humanos são particulamente sensíveis à mudanças drásticas no timbre (e.g.: som metálico gerado por um objeto de madeira e viceversa) e intensidade (e.g.: som muito alto para uma ação fraca e vice-versa) e à falhas de sincronização[5].

Uma boa solução para problema deve ser capaz de gerar áudio que satisfaça a descrição da cena. A solução também deve ser de baixo custo e também deve exigir pouco tempo.

O trabalhos da área podem ser divididos em Métodos por Modelagem Física e Métodos por Amostragem.

3.1 Métodos por Amostragem

Métodos Data-Driven ou Métodos por Amostragem são métodos que utilizam amostras sonoras como entrada para o algoritmo de síntese. As amostras sonoras normalmente são obtidas por artistas de Foley. Essas amostras comumente passar por uma etapa de pós-processamento antes de serem utilizadas. Essa etapa de pós-processamento normalmente consiste de métodos de extração e extrapolação de características para tentar adaptar o som da amostra para a cena.

O trabalho de [18], por exemplo, faz uma análise nas amostras sonoras para identificar as

frequências dominantes. As frequências dominantes assemelham-se às frequências naturais do objeto. Durante o tempo de execução, as frequências dominantes são somadas poderando cada uma com pesos gerados aleatoriamente. Os sons gerados não são fisicamente plausíveis e também não podem ser estendidos de maneira adequada para objetos distintos. Porém ela é uma abordagem computacionalmente barata que oferece um certo grau de dinamismo na acústica do ambiente virtual. Por tais razões, ela é ideal para ser incorporada à jogos em tempo real.

Os trabalhos de [26] e de [29] utilizam uma abordagem mista. Os dois utilizam as amostras sonoras para encontrar os parâmetros do material. Esses parâmetros são então utilizados como entrada em métodos baseados em física. Para aprender esses parâmetros, o som e o modelo virtual de um objeto real são utilizados como entrada do algoritmo. Os resultados gerados são plausíveis embora fisicamente incorretos.

Redes neurais também são comuns na área de síntese de aúdio. Embora o seu uso seja mais comum na área de síntese de fala [25, 16], trabalhos recentes tem explorado técnicas para gerar sons de objetos. O trabalho de [21] utiliza Deep Learning para extrair características do áudio de amostras de vídeos. Com essas características, os autores conseguem sintetizar áudio plausível para outras cenas sem áudio.

Os métodos por amostragem tem diversas vantagens. Como amostras reais de aúdio são utilizadas, o som gerado normalmente tem boa qualidade. Esse tipo de método costuma ser computacionalmente barato, o que torna fácil a sua integração em diversas aplicações. As suas desvantagens também são aparentes: embora o áudio seja de boa qualidade, ele pode ser incompatível com a cena apresentada. Em aplicações dinâmicas, esse tipo de método tem problema para adaptar o som, o que pode criar experiências acústicas repetitivas.

3.2 Métodos por Modelagem Física

Os Métodos Physically-Based, ou Métodos por Modelagem Física, são aqueles que tentam, através das propriedades físicas dos materiais, sintetizer o som adequado. Em outras áreas, como Engenharia Mecânica ou Engenharia Aeronáutica, o estudo da radiação acústica gerada por materiais já é uma prática comum [23]. No entanto, os métodos utilizados nessas áreas costumam considerar apenas cenas estáticas, o que inviabiliza a interação com o usuário.

Essa classe de métodos normalmente opera apenas com descrições explicitas das cenas. Os dados apresentados na descrição das cenas normalmente são os seguintes:

Geometria A Geometria de um objeto é a descrição de sua forma. Essa descrição normalmente é dada como um conjunto de triângulos que formam o objeto.

Materiais O Material de um objeto é o conjunto de parâmetros físicos dos materiais que o compõe. Isso inclui parâmetros como densidade, Módulo de Young, Razão de Poisson e etc. Normalmente esses valores são retirados de tabelas padrão que descrevem materiais como cerâmica, vidro e etc.

Condições iniciais As condições iniciais definem parâmetros como posição e velocidades iniciais dos objetos.

Entrada do Usuário A entrada do usuário que normalmente é mapeada como uma força externa no ambiente virtual.

Os métodos baseados em modelagem física apresentam diversas vantagens quando comparados aos métodos baseados em amostragens. Se o modelo utilizado for bom o suficiente, o aúdio gerado sempre será satisfatório. Além disso, os método pode ser facilmente automatizados e executados sem a necessidade de mão de obra especializada, o que reduz o custo e o tempo dessa classe de técnicas. Na prática, os modelos desenvolvidos ainda apresentam limitações. Muitos deles ainda são computacionalmente caros e exigem hardware especializado. Por tal razão, os sons sintetizados por esses métodos ainda não apresentam a mesma qualidade quando comparados aos métodos de amostragem.

3.2.1 Pipeline de Síntese

Figura 3.1: Pipeline de Síntese de Aúdio Realístico.

O pipeline mais comum nessa área é apresentado na Figura 3.1. Ele foi introduzido no trabalho de [12] e foi utilizado em diversos trabalhos. Esse pipeline é dividido em duas fases: a Fase de Pré-Processamento e a Fase de Tempo de Execução. A primeira acontece antes da interação com o usuário. Nesta fase, alguns dados são pré-computados para acelerar a segunda

fase. A Fase de Tempo de Execução acontece durante a interação com usuário. Essa divisão é importante pois a segunda fase é crítica e, em aplicações interativas, deve rodar em tempo real.

Na fase de pré-processamento a geometria e os materiais do objetos presentes na cena são utilizados para calcular os modos de vibração seus modos de vibração v_i e as frequências naturais do objeto ω_i . Para fazer isso, o método de Análise Modal é utilizado.

Para cada modo de vibração de um objeto, utiliza-se então de um Solucionador da Equação de Helmholtz (Helmholtz Solver) para calcular a Radiação Acústica correnspodente $T_i(u)$ gerada.

Durante a fase de tempo de execução, as condições iniciais da cena, o material e a geometria dos objetos e a entrada do usuário são utilizadas para simular o comportamento e as colisões dos objetos. Em cada frame, a força f_{ext} aplicada em cada objeto é calculada.

A Matriz Espectral dos objetos V são então utilizadas para mapear as forças no modos de vibração $V^{\mathsf{T}} f_{ext}$. A vibração $q_i(t)$ em cada frequência então é então calculada com a equação (2.20) usando um Filtro IIR:

$$v_i^{\mathsf{T}} f_{ext} = \ddot{q}_i + (\alpha + \beta \omega_i^2) \dot{q}_i + \omega_i^2 q_i \tag{3.1}$$

O som final s(t) é então computado utilizando os modos de vibração ponderados pela radiação acústica:

$$s(t) = \sum_{i} |T_i(u_{ouvinte} - u_{objeto})| q_i(t)$$
(3.2)

3.2.2 Trabalhos Relacionados

O trabalho de [30] foi o primeiro a considerar o uso de métodos por modelagem física em aplicações interativas. Os autores desenvolveram um processo simples para aplicações interativas: Em tempo de pré-processamento, os modos de vibração do objetos eram calculados e armazenados. Durante a execução, os objetos eram simulados e o estado $q_i(t)$ de cada modo de vibração era considerado utilizando a equação (2.20). O som final gerado pelo objeto era simplesmente a soma dos modos de vibração:

$$s(t) = \sum_{i} q_i(t) \tag{3.3}$$

Essa abordagem conseguia gerar som plausível em tempo real, mas muitas nuances do som eram ignoradas. A distância e o ângulo do objeto em relação ao ouvinte, por exemplo, têm uma grande influência no som final. O trabalho de [12] então introduziu o uso de Radiação Acústica no processo de síntese (Ver Figura 3.1) Nesse trabalho, a função de Radiação Acústica $T_i(u)$ era calculada para cada modo de vibração do objeto. Em tempo de execução, a posição do objeto em relação ao ouvinte era considerada. Com essa abordagem, o som final consideraria os modos de vibração ponderados pela radiação acústica:

$$s(t) = \sum_{i} |T_i(u_{ouvinte} - u_{objeto})| q_i(t)$$
(3.4)

O pipeline desenvolvido em [12] é utilizado como base para os trabalhos mais recentes na área. [33], por exemplo, estendeu o modelo para também sintetizar o som de fraturas.

[34] melhorou o modelo de contato utilizado na simulação do objeto. A qualidade do som final depende muito das forças de contato f_{ext} . Para capturar melhor as nuances do contato, eles passaram a utilizar um simulador numericamente estável [13] e também aumentaram a resolução da simulação para a resolução acústica (44KHz). Como resultado, a qualidade do áudio foi drasticamente melhorada mas o tempo necessário para realizar a síntese também aumentou.

Para realizar a síntese, os modos de vibração tem que ser utilizados em tempo de execução. Para objetos maiores, a quantidade de memória necessária para armazená-los pode inviabilizar a simulação. Em [15] um método foi desenvolvido para comprimir os modos de vibração. Isso possibilitou utilizar objetos maiores e mais detalhados sem impacto no tempo de síntese.

Capítulo 4

Algoritmo e Implementação

Entre todos os passos do pipeline apresentado no capítulo anterior, o mais lento é o passo no qual a Radiação Acústica é calculada. Por tais razões, decidimos explorar técnicas de paralelização para implementá-lo em GPU.

4.1 Discretização e Solução da Equação da Onda

A equação da onda (2.22) é a equação governante da pressão acústica $\rho(u,t)$. Na nossa solução, no entanto, gostaríamos de especificar as condições de contorno em termo da velocidade das partículas. Para fazer isso, podemos separar a equação em um sistema de equações diferenciais:

$$\frac{\partial^{2} \rho(u,t)}{\partial t^{2}} = dc^{2} \nabla^{2} \rho(u,t) \quad \Leftrightarrow \quad \begin{cases} \frac{\partial v(u,t)}{\partial t} = -\frac{\nabla \rho(u,t)}{d} \\ \frac{\partial \rho(u,t)}{\partial t} = c^{2} \nabla \cdot v(u,t) \end{cases}$$
onde
$$t \in \mathbb{R} \quad \Rightarrow \quad \text{Tempo em segundos } (s)$$

$$u \in \mathbb{R}^{3} \quad \Rightarrow \quad \text{Posição em metros } (m)$$

$$c \in \mathbb{R} \quad \Rightarrow \quad \text{Velocidade de Propagação } (m/s)$$

$$c \in \mathbb{R} \quad \Rightarrow \quad \text{Densidade } kg/m^{3}$$

$$\rho(u,t) \in \mathbb{R} \quad \Rightarrow \quad \text{Pressão acústica } (Pa)$$

$$v(u,t) \in \mathbb{R}^{3} \quad \Rightarrow \quad \text{Velocidade das Partículas } (m/s)$$

Nesse sistema de equações, v(u,t) é a velocidade das partículas do meio na posição u e no tempo t. O primeiro passo para resolver esse sistema de equações, é discretizar o seu domínio. Na nossa implementação, nós utilizamos o esquema de discretização Marker-And-Cell (MAC) [31]. Nesse esquema, o espaço é discretizado em elementos cada elemento contém a pressão acústica $\rho(u,t)$ no centro e contém as componentes da velocidade v(u,t) nas bordas (Ver Figura 4.1).

Podemos facilmente mapear as derivadas de (4.1) para esse domínio:

Figura 4.1: Discretização Marker-And-Cell

$$\begin{array}{ll} \frac{\partial v_d(u,t)}{\partial t} & \Rightarrow & \frac{1}{\Delta t} \left(v_d[x,y,z,t+\Delta t] - v_d[x,y,z,t] \right) \\ \frac{\partial \rho(u,t)}{\partial t} & \Rightarrow & \frac{1}{\Delta t} \left(\rho[x,y,z,t+\Delta t] - \rho[x,y,z,t] \right) \\ \frac{\partial \rho(u,t)}{\partial x} & \Rightarrow & \frac{1}{\Delta x} \left(u_d[x+\Delta x/2,y,z,t+\Delta t] - v_d[x-\Delta x/2,y,z,t] \right) \\ \frac{\partial v(u,t)}{\partial x} & \Rightarrow & \frac{1}{\Delta x} \left(v_d[x+\Delta x/2,y,z,t] - v_d[x-\Delta x/2,y,z,t] \right) \end{array}$$

Com isso, podemos substituir essas fórmulas na equação (4.1) para obter uma regra de atualização dos campos de velocidade e pressão acústica:

$$\begin{cases}
\forall n \in (x, y, z) \Rightarrow v_n[x, y, z, t + \Delta t] = v_n[x, y, z, t] - \frac{\Delta t}{d} \frac{\partial \rho(u, t)}{\partial n} \\
\rho[x, y, z, t + \Delta t] = \rho[x, y, z, t] + c^2 \left(\sum_{n \in (x, y, z)} \frac{\partial v(u, t)}{\partial n}\right)
\end{cases} (4.2)$$

Nós utilizamos as fórmulas em (4.2) alternadamente para avançar a nossa solução. Primeiro atualizamos o campo da velocidade e utilizamos esses valores para atualizar o campo da pressão acústica. Esse tipo de solução para sistemas de equações diferenciais também é conhecido como *Leapfrog*.

As condições de contorno são calculadas para cada modo de vibração. Considere objeto vibrando no modo de vibração v_i na sua frequência natural ω_i . Dado um ponto p na superfície do objeto, digamos que o vetor de vibração correspondente seja $\vec{n_p} \in \mathbb{R}^3$. Nesse caso, forçamos que a velocidade das partículas nesse ponto seja igual à velocidade da superfície do objeto adicionando a condição de contorno:

$$v(p,t) = \vec{n_p} \omega_i \sin(\omega_i t) \tag{4.3}$$

Para lidar com as bordas do domínio, utilizamos as condições de contorno conhecidas como Perfectly Matched Layers [17]. Desse modo, as ondas são absorvidas ao invés de serem refletidas para o domínio.

Na nossa implementação, a atualização dos campos de pressão acústica e de velocidade é executada em GPU. Nós utilizamos a abordagem descrita em [20] para explorar o paralelismo.

4.2 Aproximação da Equação de Helmholtz

O método descrito na seção anterior mostra como podemos calcular a pressão acústica $\rho(u,t)$. Porém, desejamos na verdade calcular a Radiação Acústica gerada pela vibração do objeto. Nessa seção mostraremos como aproximamos a Radiação Acústica na nossa implementação. Para cada ponto u do domínio, desejamos calcular a Radiação Acústica $T(u) = A(u)e^{i\phi(u)}$. Consideremos, então, o sinal de um ponto fixo. Ao entrar em equilíbrio, o sinal s(t) desse ponto poderá ser representado por $s(t) = A\cos(\omega t + \phi)$. Se calcularmos o valor médio s0 valor absoluto sinal ao longo de um certo período, obteremos s0. Logo, se soubermos s0 valor absoluto sinal ao longo de um certo período, obteremos s1 valor absoluto sinal ao longo de um certo período, obteremos s2 valor absoluto sinal ao longo de um certo período, obteremos s3 valor absoluto sinal ao longo de um certo período, obteremos s4 valor absoluto sinal ao longo de um certo período, obteremos s4 valor absoluto sinal ao longo de um certo período, obteremos s4 valor absoluto sinal ao longo de um certo período, obteremos s4 valor absoluto sinal ao longo de um certo período, obteremos s4 valor absoluto sinal ao longo de um certo período, obteremos s5 valor absoluto sinal ao longo de um certo período, obteremos s6 valor absoluto sinal ao longo de um certo período, obteremos s6 valor absoluto sinal ao longo de um certo período, obteremos s6 valor absoluto sinal ao longo de um certo período, obteremos s6 valor absoluto sinal ao longo de um certo período, obteremos s7 valor absoluto sinal ao longo de um certo período, obteremos s8 valor absoluto sinal ao longo de um certo período absoluto sinal a

$$\begin{cases} A = \frac{\pi |\overline{s}|}{2} \\ \phi = \arccos\left(\frac{s(t)}{A}\right) - \omega t \end{cases}$$
(4.4)

Na nossa implementação, o valor médio do sinal de cada elemento do domínio é calculado utilizando uma *Weighted Moving Average* (WMA), isto é:

$$\bar{s}_t = \alpha \bar{s}_{t-1} + (1 - \alpha)s(t) \tag{4.5}$$

A amplitude A e a fase ϕ são calculados a cada timestep utizando a fórmula (4.4). O valor médio de A e ϕ também são calculados utilizando uma WMA. Em todos os casos, utilizamos $\alpha=0.95$.

4.2.1 Expansão Multipolar

A nossa solução da equação da onda é calculada dentro de um domínio limitado. Não seria adequado limitar a síntese acústica para esse domínio. Já vimos, no entanto, que é possível calcular a transferência acústica para Far-Field utilizando a Integral de Kirchoff (2.30).

Calcular a Integral de Kirchoff (uma integral de superfície) em tempo de execução é um procedimento custoso em termos de tempo e memória. Para evitar isso, exploramos a estrutura da Equação de Helmholtz.

$$\overline{f} = \frac{\int_a^b f(t)}{b-a}$$

 $^{{}^{1}}$ O valor médio \overline{f} de uma função f(t) é definido por

A função de Green G(u,v) da equação de Helmholtz pode ser decomposta numa base de funções [8]:

$$G(u,v) = ik \sum_{n=0}^{\infty} \sum_{m=-n}^{n} S_n^m(u - u_0) R_n^{-m}(v - u_0)$$
(4.6)

O ponto u_0 é o ponto no centro do Near-Field. A função S_n^m é a Função Esférica Singular da Equação de Helmholtz e R_n^m é a Função Esférica Singular da Equação de Helmholtz. Elas são definidas de acordo com as coordenadas polares $u = (r, \theta, \phi)$:

$$\begin{cases} S_n^m(u) \Rightarrow S_n^m(r,\theta,\phi) = h_n^{(2)}(kr)Y_n^m(\theta,\phi) \\ R_n^m(u) \Rightarrow R_n^m(r,\theta,\phi) = j_n(kr)Y_n^m(\theta,\phi) \end{cases}$$
(4.7)

As funções $j_n: \mathbb{R} \to \mathbb{R}$ são as Funções Esféricas de Bessel. As funções $h_n^{(2)}: \mathbb{R} \to \mathbb{C}$ são a Funções Esféricas de Hankell de segunda espécie. As funções $Y_n^m: \mathbb{R} \times \mathbb{R} \to \mathbb{C}$ são os Harmônicos Esféricos (Ver Figura 4.2). Essas funções aparecem constantemente em diversos ramos da ciência² por elas formam uma base para o espaço de funções em $\mathbb{R}^3 \to \mathbb{R}$. A sua estrutura permite explorar a simetria radial e também permite aproximar funções com apenas alguns termos.

Figura 4.2: Harmônicos Esféricos

Se aplicarmos a expansão da Função de Green (4.6) na Integral de Kirchoff (2.30), obteremos:

²O uso de Funções Esféricas é comum em ramos como Eletromagnetismo, Mecânica Quântica, Acústica e Computação Gráfica.

$$T(u) = \int_{\Gamma} \left[G(u, v) \frac{\partial T}{\partial n}(v) - \frac{\partial G}{\partial n}(u, v) T(v) \right] d\Gamma_{v}$$

$$= \int_{\Gamma} \left[ik \sum_{n=0}^{\infty} \sum_{m=-n}^{n} S_{n}^{m}(u - u_{0}) R_{n}^{-m}(v - u_{0}) \frac{\partial T}{\partial n}(v) \right]$$

$$-ik \sum_{n=0}^{\infty} \sum_{m=-n}^{n} S_{n}^{m}(u - u_{0}) \frac{\partial R_{n}^{-m}}{\partial n}(v - u_{0}) T(v) \right] d\Gamma_{v}$$

$$= \sum_{n=0}^{\infty} \sum_{m=-n}^{n} S_{n}^{m}(u - u_{0}) ik \int_{\Gamma} \left[R_{n}^{-m}(v - u_{0}) \frac{\partial T}{\partial n}(v) - \frac{\partial R_{n}^{-m}}{\partial n}(v - u_{0}) T(v) \right] d\Gamma_{v}$$

$$= \sum_{n=0}^{\infty} \sum_{m=-n}^{n} S_{n}^{m}(u - u_{0}) M_{n}^{m}$$

$$(4.8)$$

Os termos M_n^m são chamados de *Coeficientes Multipolares*. Eles podem ser precomputados utilizando a fórmula:

$$M_n^m = ik \int_{\Gamma} \left[R_n^{-m} (v - u_0) \frac{\partial T}{\partial n} (v) - \frac{\partial R_n^{-m}}{\partial n} (v - u_0) T(v) \right] d\Gamma_v$$
 (4.9)

Esses termos podem ser utilizados para calcular a Radiação Acústica T(u) em tempo de execução utilizando a fórmula (4.8). Na nossa implementação, os coeficientes são calculados em paralelo na GPU. Nós utilizamos as recursões apresentada em [24] para calcular a Funções Esféricas. A Figura 4.3 apresenta uma comparação entre o valor calculado da Radiação Acústica e o valor aproximado com a Expansão Multipolar.

Figura 4.3: Comparação entre o Ground Truth da Radiação Acústica e a aproximação Expansão Multipolar. O objeto é um Prato de Cerâmica oscilando no Modo 23 a 10215.97Hz

CAPÍTULO 5

Experimentos e Resultados

Para comparar a qualidade e a performance da nossa solução com as abordagens anteriores, criamos três cenários de teste: (1) Prato de Cerâmica, (2) Caneca de Cerâmica, (3) Chave de Aço. Os parâmetros de materiais utilizados estão descritos na Tabela 5.1.

Material	Densidade (kg/m^3)	Módulo de Young (GPa)	Razão de Poisson	α	$oldsymbol{eta}$
Cerâmica	2700	7.4×10^{10}	0.19	6	1×10^{-7}
Aço	1050	3.5×10^{9}	0.34	30	8×10^{-7}

Tabela 5.1: Parâmetros de Materiais

Para cada cenário de teste, computamos os Coeficientes Multipolares usando a nossa abordagem e também computamos os Coeficientes Multipolares utilizando a abordagem descrita em [33]. Essa última que é a mesma utilizada em [33, 34, 15], utiliza o software comercial FastBEM [2]. Vale salientar que, para realizarmos a comparação, utilizamos a implementação original cedida pelos autores.

Os testes foram todos executados na mesma máquina. A Tabela 5.2 apresenta a especificação do Hardware utilizado.

Componente	Especificação	
Placa-Mãe	SuperMicro X8DAH	
CPU	Intel Xeon X5570 - 8-Core @2.93GHz	
Memória RAM	12x4GB DDR3 @1333MHz	
GPU	GeForce TITAN BLACK 6GB DDR5	

Tabela 5.2: Especificações de Hardware

A Tabela 5.3 apresenta a comparação de performance entre a nossa abordagem e as abordagens anteriores. A nossa abordagem obtem um speedup de mais de 30x em todos os cenários de teste.

Também comparamos os valores numérico da nossa solução com os valores calculados pela abordagem anterior (Ver Figura 5.1). A diferença numérica entre os métodos ficou abaixo de 5%. Os demais gráficos e resultados numéricos estão disponíveis no Anexo A.

Cenário	# de modos	Nosso Método		FastBEM	Speedup	
Cenario		Tempo (min)	Memória de GPU (MB)	Tempo (min)	Speedup	
1	29	8.3 min	578.1MB	327.2 min	39.42x	
2	39	18.6 min	998.7MB	686.5 min	36.90x	
3	4	3.54 min	1586.3MB	102.9 min	29.06x	

Tabela 5.3: Comparação de Performance entre a nossa solução e abordagens anteriores

Figura 5.1: Comparação numérica para o Prato de Cerâmica. O gráfico apresenta a diferença numérica média por frequência.

5.1 Teste de Percepção

Para testar a qualidade do áudio final, um teste A/B foi feito ¹. Uma pesquisa foi feita utilizando a plataforma online Google Forms[1]. Nesse teste, o voluntário assistia uma série de pares de vídeos distintos. Enquanto a imagem dos vídeos de cada param era idêntica, o áudio de um deles foi gerado utilizando a abordagem anterior e o do outro foi gerado utilizando a nossa abordagem. Os vídeos de cada par eram identificados apenas por A ou B. O voluntário deveria responder à pergunta: "Qual dos dois pareceu mais realista: A ou B?". O voluntário tinha como opções: "A", "B" ou "Não sei".

A pesquisa foi divulgada em listas de e-mail de alunos e docentes de diferentes universidades e também em redes sociais. A Tabela 5.4 contém o resultado da pesquisa.

Em todos os testes, a maioria dos usuário considerou que o som gerado pelo nosso método era mais realista que ou tão realista quanto o som gerado pelos métodos anteriores. Conside-

¹A pesquisa está disponível em https://docs.google.com/forms/d/1qfXssmKug0lh5uQXkot_XjWpjuSap4zJybzXG688XDY/viewform

rando que o nosso objetivo era apenas acelerar o método, esses resultados excedem as nossas expectativas.

Cena	Nosso Método	FastBEM	Não sei	Total
Prato de Cerâmica	70.5%	24%	5.5%	100%
Caneca de Cerâmica	64.6%	24%	11.4%	100%
Prato de Cerâmica	46.9%	20.5%	32.7%	100%
Total				254 respostas

Tabela 5.4: Resultado dos Testes de Percepção

CAPÍTULO 6

Conclusão

Nesse trabalho nós estudamos o problema de Síntese de Áudio Realístico para aplicações virtuais. Exploramos o estado-da-arte das técnicas de síntese, considerando a diferença entre os Métodos por Amostragem e os Métodos por Simulação Física.

Nós deselvovemos um método eficiente para aproximar a solução da Equação de Helmholtz em GPU. Utilizamos esse método para acelerar uma parte do pipeline de síntese. Comparamos a nossa implementação com implementação anteriores obtendo resultados bastante satisfatórios: O nosso método foi mais de $30\times$ mais rápido que os métodos anteriores. Além disso, fizemos um teste A/B com voluntários que mostrou que a qualidade do áudio gerado foi melhor.

Acreditamos que essa contribuição representa um passo importante para a área. Os métodos de síntese por modelagem física ainda são limitados pelo seu custo computacional. O uso de algoritmos mais eficientes que explorem a paralelização em GPU pode ser a chave para popularizar aplicações que utilizem esses métodos. Acreditamos que isso contribuirá para a criação de aplicações audiovisuais que propriciem experiências mais imersivas e satisfatórias para os usuários.

Mais importante do que os resultados apresentados é a própria fundamentação dos conceitos envolvidos. O conhecimento de equações diferenciais, de métodos eficientes de solução e de paralelização em GPU pode ser utilizado nas mais diversas áreas.

6.1 Trabalhos futuros

Ainda existem muitas limitações com os métodos do estado-da-arte. O custo computacional da fase de pré-processamento e também da fase de tempo de execução são consideravelmente altos. Isso inviabiliza a simulação de objetos maiores e também dificulta a simulação em tempo real em computadores com configurações modestas. Trabalhos futuros podem tentar explorar técnicas de discretização adaptativas para lidar com domínios maiores e também pode tentar explorar técnicas de GPU para paralelizar as demais etapas do pipeline.

APÊNDICE A

Comparação Numérica com FastBEM

Os gráficos a seguir mostram os resultados numéricos calculados utilizando a nossa abordagem (GPU) e a abordagem anterior (FastBEM). Cada gráfico mostra a módulo dos coeficientes multipolares calculados por ambos os métodos e também a diferença numérica entre os resultados.

Figura A.1: Comparação numérica para o Prato de Cerâmica. As figuras apresentam a comparação do módulo dos coeficientes para modos de vibração específicos.

Figura A.2: Comparação numérica para a Caneca de Cerâmica. A figura ao topo apresenta a diferença numérica média por frequência. As demais figuras apresentam a comparação do módulo dos coeficientes para modos de vibração específicos.

Figura A.3: Comparação numérica para a Chave de Aço. A figura ao topo apresenta a diferença numérica média por frequência. As demais figuras apresentam a comparação do módulo dos coeficientes para modos de vibração específicos.

Referências Bibliográficas

- [1] Google Forms. https://www.google.com/forms/about/.
- [2] FastBEM. http://www.fastbem.com, 2007-2016.
- [3] D. B. Anderson and M. A. Casey. The sound dimension. *IEEE spectrum*, 34(3):46–50, 1997.
- [4] T. M. Apostol. Calculus, vol. II. Ed Reverté, 1969.
- [5] T. Bonebright. Were those coconuts or horse hoofs? Visual context effects on identification and perceived veracity of everyday sounds. In *The 18th International Conference on Auditory Display (ICAD2012) Atlanta, (GA)*, volume 2, 2012.
- [6] R. Bridgett. Why ambient sounds matter to your game. Game Developer Magazine, 2007.
- [7] J. N. Chadwick, S. S. An, and D. L. James. Harmonic shells: a practical nonlinear sound model for near-rigid thin shells. In *ACM Transactions on Graphics (TOG)*, volume 28, page 119. ACM, 2009.
- [8] N. A. Gumerov and R. Duraiswami. Fast multipole methods for the Helmholtz equation in three dimensions. Elsevier, 2005.
- [9] B. Hamilton and C. J. Webb. Room acoustics modelling using GPU-accelerated finite difference and finite volume methods on a face-centered cubic grid. In *Digital Audio Effects (DAFx), Maynooth, Ireland*, 2013.
- [10] L. Haussen. Som, câmera, ação: a relevância do som na história do cinema.
- [11] T. J. Hughes. *The finite element method: linear static and dynamic finite element analysis*. Courier Corporation, 2012.
- [12] D. L. James, J. Barbič, and D. K. Pai. Precomputed acoustic transfer: output-sensitive, accurate sound generation for geometrically complex vibration sources. In *ACM Transactions on Graphics (TOG)*, volume 25, pages 987–995. ACM, 2006.
- [13] D. M. Kaufman, S. Sueda, D. L. James, and D. K. Pai. Staggered projections for frictional contact in multibody systems. In *ACM Transactions on Graphics (TOG)*, volume 27, page 164. ACM, 2008.
- [14] H. Kuttruff. Acoustics: an introduction. CRC Press, 2007.

- [15] T. R. Langlois, S. S. An, K. K. Jin, and D. L. James. Eigenmode Compression for Modal Sound Models. *ACM Transactions on Graphics (TOG)*, 33(4):40, 2014.
- [16] Z.-H. Ling, S.-Y. Kang, H. Zen, A. Senior, M. Schuster, X.-J. Qian, H. M. Meng, and L. Deng. Deep learning for acoustic modeling in parametric speech generation: A systematic review of existing techniques and future trends. *IEEE Signal Processing Magazine*, 32(3):35–52, 2015.
- [17] Q.-H. Liu and J. Tao. The perfectly matched layer for acoustic waves in absorptive media. *The Journal of the Acoustical Society of America*, 102(4):2072–2082, 1997.
- [18] D. B. Lloyd, N. Raghuvanshi, and N. K. Govindaraju. Sound synthesis for impact sounds in video games. In *Symposium on Interactive 3D Graphics and Games*, pages PAGE–7. ACM, 2011.
- [19] R. Mehra, N. Raghuvanshi, L. Savioja, M. Lin, and D. Manocha. An efficient time-domain solver for the acoustic wave equation on graphics processors. *Applied Acoustics*, 73(2), 2012.
- [20] P. Micikevicius. 3D finite difference computation on GPUs using CUDA. In *Proceedings* of 2nd workshop on general purpose processing on graphics processing units, pages 79–84. ACM, 2009.
- [21] A. Owens, P. Isola, J. McDermott, A. Torralba, E. H. Adelson, and W. T. Freeman. Visually indicated sounds. https://arxiv.org/abs/1512.08512v2, 2015.
- [22] B. N. Parlett. The symmetric eigenvalue problem, volume 7. SIAM, 1980.
- [23] A. D. Pierce et al. *Acoustics: an introduction to its physical principles and applications*, volume 20. McGraw-Hill New York, 1981.
- [24] W. H. Press. *Numerical recipes 3rd edition: The art of scientific computing*. Cambridge university press, 2007.
- [25] M. G. Rahim, C. C. Goodyear, W. B. Kleijn, J. Schroeter, and M. M. Sondhi. On the use of neural networks in articulatory speech synthesis. *The Journal of the Acoustical Society of America*, 93(2):1109–1121, 1993.
- [26] Z. Ren, H. Yeh, and M. C. Lin. Example-guided physically based modal sound synthesis. *ACM Transactions on Graphics (TOG)*, 32(1):1, 2013.
- [27] D. Rocchesso, R. Bresin, and M. Fernstrom. Sounding objects. *IEEE MultiMedia*, 10(2):42–52, 2003.
- [28] A. A. Shabana. *Theory of vibration: Volume II: discrete and continuous systems*. Springer Science & Business Media, 2012.

- [29] A. Sterling and M. C. Lin. Interactive modal sound synthesis using generalized proportional damping. In *Proceedings of the 20th ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games*, pages 79–86. ACM, 2016.
- [30] K. Van Den Doel, P. G. Kry, and D. K. Pai. FoleyAutomatic: physically-based sound effects for interactive simulation and animation. In *Proceedings of the 28th annual conference on Computer graphics and interactive techniques*, pages 537–544. ACM, 2001.
- [31] J. E. Welch, F. H. Harlow, J. P. Shannon, and B. J. Daly. *The MAC method*. Los Alamos Scientific Laboratory of the University of California, 1966.
- [32] C. Zheng and D. L. James. Harmonic fluids. *ACM Transactions on Graphics (TOG)*, 28(3):37, 2009.
- [33] C. Zheng and D. L. James. Rigid-body fracture sound with precomputed soundbanks. In *ACM Transactions on Graphics (TOG)*, volume 29, page 69. ACM, 2010.
- [34] C. Zheng and D. L. James. Toward high-quality modal contact sound. *ACM Transactions on Graphics (TOG)*, 30(4):38, 2011.