Chapter 10: Rate distortion theory

Chapter 10 outline

- Quantization
- Definitions
- Calculation of the rate-distortion function
- Converse of rate distortion theorem
- Strongly typical sequences
- Achievability of rate distortion theorem
- Characterization of the rate-distortion function
- Computation and channel capacity and rate-distortion function

Rate-distortion

Source —— minimum E[# bits] for error free representation

There will be errors and *distortion* in reconstructing the source!

Rate-distortion theory describes the *trade-off* between lossy compression rate and the resulting distortion.

Quantization

- Consider representing a continuous valued random source need infinite precision to represent it exactly!
- Q: what is the **best** possible representation of X for a given data rate?
- \bullet X: random variable to be represented
- $\hat{X}(X)$: representation of X
- R bits for the representation \rightarrow $|\hat{X}| = 2^{nR}$
- Want to find the optimum set of values for \hat{X} (reproduction points / code points) and associated regions

Quantization example: 1 bit Gaussian

Let $X \sim \mathcal{N}(0, \sigma^2)$ and assume a squared-error distortion measure. We wish to find the function $\hat{X}(X)$ such that \hat{X} takes on 2^{nR} values and minimizes $E(X - \hat{X}(X))^2$.

Optimal 1 bit strategy?

Optimal 2 bit strategy?

FIGURE 10.1. One-bit quantization of Gaussian random variable.

General observations:

- Given a set $\{\hat{X}(w)\}$ of reconstruction points, the distortion is minimized by mapping a source random variable X to the point closest to it, forming a set of regions called a *Voronoi* or Dirichlet partition.
- The reconstruction points should minimize the conditional expected distortion over their respective assignment regions.

Quantization example: 1 bit Gaussian

- Lloyd algorithm iterative way of finding a "good" quantizer
 - Find set of reconstruction points (centroids if MSE)
 - Find optimal reconstruction regions

- Benefits to quantizing many RVs at once?
 - Yes! n iid RVs represented using nR bits
 - Surprisingly, better to represent whole sequence than each RV independently, even though chosen iid!!!

- X_1, X_2, \dots, X_n i.i.d. $\sim p(x), x \in \mathcal{X}$
- A distortion function or distortion measure is a mapping

$$d: \mathcal{X} \times \hat{\mathcal{X}} \to \mathbb{R}^+$$

from the set of source alphabet-reproduction alphabet pairs into the set of non-negative real numbers. Measures the "cost" of representing symbol x by \hat{x} .

• A distortion measure is said to be **bounded** if the maximum value of the distortion is finite,

$$d_{max} := \max_{x \in \mathcal{X}, \hat{x} \in \hat{\mathcal{X}}} d(x, \hat{x}) < \infty$$

- Two most common distortion functions:
 - Hamming distortion:

$$d(x, \hat{x}) = \begin{cases} 0 \text{ if } x = \hat{x} \\ 1 \text{ if } x \neq \hat{x} \end{cases}$$

- Squared-error distortion:

$$d(x,\hat{x}) = (x - \hat{x})^2$$

• We define the distortion between sequences x^n and \hat{x}^n as

$$d(x^{n}, \hat{x}^{n}) = \frac{1}{n} \sum_{i=1}^{n} d(x_{i}, \hat{x}_{i}).$$

• A $(2^{nR}, n)$ -rate distortion code consists of an encoding function

$$f_n: \mathcal{X}^n \to \{1, 2, \cdots, 2^{nR}\},$$

and a decoding (reproduction) function,

$$g_n: \{1, 2, \cdots, 2^{nR}\} \to \hat{\mathcal{X}}^n.$$

• The distortion associated with the $(2^{nR}, n)$ code is defined as

$$D = E[d(X^n, g_n(f_n(X^n))),$$

where the expectation is with respect to the probability distribution on \mathcal{X} ,

$$D = \sum p(x^n)d(x^n, g_n(f_n(x^n))).$$

• The set of *n*-tuples $g_n(1), g_n(2), \dots, g_n(2^{nR})$, denoted by $\hat{X}^n(1), \hat{X}^n(2), \dots, \hat{X}^n(2^{nR})$ constitutes the *codebook* and $f_n^{-1}(1), \dots, f_n^{-1}(2^{nR})$ are the associated assignment regions.

- A rate-distortion pair (R, D) is said to be *achievable* if there exists a sequence of $(2^{nR}, n)$ -rate distortion codes (f_n, g_n) with $\lim_{n\to\infty} E[d(X^n, g_n(f_n(X^n)))] \leq D$.
- The rate-distortion region for a source is the closure of the set of achievable rate distortion pairs (R, D).
- The rate-distortion function R(D) is the **infimum** of rates R such that (R, D) is in the rate distortion region of the source for a given distortion D.
- The distortion-rate function D(R) is the **infimum** of all distortions D such that (R, D) is in the rate distortion region of the source for a given rate R.

- The rate-distortion function R(D) is the **infimum** of rates R such that (R, D) is in the rate distortion region of the source for a given distortion D.
- The information rate distortion function $R^{(I)}(D)$ for a source X with distortion measure $d(x, \hat{x})$ is defined as

$$R^{(I)}(D) = \min_{p(\hat{x}|x): \sum_{x,\hat{x}} p(x)p(\hat{x}|x)d(x,\hat{x}) \le D} I(X;\hat{X}),$$

where the minimization is over all conditional distributions $p(\hat{x}|x)$ for which the joint distribution $p(x,\hat{x}) = p(x)p(\hat{x}|x)$ satisfies the expected distortion constraint.

Main Theorem

Theorem: The rate distortion function for an i.i.d. source X with distributed p(x) and bounded distortion function $d(x, \hat{x})$ is equal to the associated information rate distortion function. Thus,

$$R(D) = R^{(I)}(D) = \min_{p(\hat{x}|x): \sum_{x,\hat{x}} p(x)p(\hat{x}|x)d(x,\hat{x}) \le D} I(X;\hat{X})$$

is the minimum achievable rate at distortion D.

A few examples

Theorem: The rate distortion function for a Bernoulli(p) source with Hamming distortion is given by

$$R(D) = \begin{cases} H(p) - H(D), & 0 \le D \le \min\{p, 1 - p\} \\ 0, & D \min\{p, 1 - p\} \end{cases}$$

Key proof ideas:

- Hamming distance, modulo 2 sum, $X \oplus \hat{X} = 1 \text{ whenever } X \neq \hat{X}$.
- Find a lower bound on $I(X; \hat{X})$
- Show that this lower bound is achievable by finding a lower-bound achieving distribution for \hat{X} .

Calculating R(D) - binary source

Theorem: The rate distortion function for a Bernoulli(p) source with Hamming distortion is given by

$$R(D) = \begin{cases} H(p) - H(D), & 0 \le D \le \min\{p, 1 - p\} \\ 0, & D > \min\{p, 1 - p\} \end{cases}$$

FIGURE 10.4. Rate distortion function for a Bernoulli $(\frac{1}{2})$ source.

Theorem: The rate distortion function for a $\mathcal{N}(0, \sigma^2)$ source with squared-error distortion is given by

$$R(D) = \begin{cases} \frac{1}{2} \log \frac{\sigma^2}{D}, & 0 \le D \le \sigma^2 \\ 0, & D > \sigma^2 \end{cases}$$

Key proof ideas:

- Find a lower bound on $I(X; \hat{X})$
- Show that this lower bound is achievable by finding a lower-bound achieving distribution for \hat{X} .
- Exploit entropy maximizing (subject to 2nd moment constraint) property of Gaussian distribution

Theorem: The rate distortion function for a $\mathcal{N}(0, \sigma^2)$ source with squared-error distortion is given by

$$R(D) = \begin{cases} \frac{1}{2} \log \frac{\sigma^2}{D}, & 0 \le D \le \sigma^2 \\ 0, & D > \sigma^2 \end{cases}$$

FIGURE 10.6. Rate distortion function for a Gaussian source.

Theorem: Let $X_i \sim \mathcal{N}(0, \sigma_i^2)$, $i = 1, 2, \dots, m$ be independent Gaussian random variables, and let the distortion measure be $d(x^m, \hat{x}^m) = \sum_{i=1}^m (x_i - \hat{x}_i)^2$. Then rate distortion function is given by

$$R(D) = \sum_{i=1}^{m} \frac{1}{2} \log \frac{\sigma_i^2}{D_i},$$

where

$$D_i = \begin{cases} \lambda, & \text{if } \lambda < \sigma_i^2 \\ \sigma^2, & \text{if } \lambda \ge \sigma_i^2, \end{cases}$$

where λ is chosen so that $\sum_{i=1}^{m} D_i = D$.

Calculating R(D) - Gaussian source σ_4^2 σ_i^2 σ_1^2 σ_6^2 $\hat{\sigma}_4^2$ $\hat{\sigma}_1^2$ $\hat{\sigma}_{6}^{2}$ λ σ_2^2 σ_3^2 σ_5^2 D_1 D_6 D_4 D_2 D_3 D_5

FIGURE 10.7. Reverse water-filling for independent Gaussian random variables.

 X_3

 X_4

*X*₅

*X*₆

*X*₁

 X_2

- Reverse water-filling on independent Gaussian RVs
- Reverse water-filling on general multi-variate Gaussian RVs
- Reverse water-filling on Gaussian stochastic process

Main Theorem

Theorem: The rate distortion function for an i.i.d. source X with distribution p(x) and bounded distortion function $d(x, \hat{x})$ is equal to the associated information rate distortion function. Thus,

$$R(D) = R^{(I)}(D) = \min_{p(\hat{x}|x): \sum_{x,\hat{x}} p(x)p(\hat{x}|x)d(x,\hat{x}) \le D} I(X;\hat{X})$$

is the minimum achievable rate at distortion D.

CONVERSE

Rate-distortion theorem: CONVERSE

We show that we cannot achieve a distortion of less than D if we describe X at a rate less than R(D) given as $\min_{p(\hat{x}|x):\sum_{x,\hat{x}}p(x)p(\hat{x}|x)d(x,\hat{x})\leq D}I(X;\hat{X})$. We first need a lemma.

Lemma: The rate-distortion function $R(D) = \min_{p(\hat{x}|x):\sum_{x,\hat{x}} p(x)p(\hat{x}|x)d(x,\hat{x}) \leq D} I(X;\hat{X})$ is a nonincreasing convex function of D.

Converse: Consider an $(2^{nR}, n)$ rate distortion code defined by functions f_n and g_n . Let $\hat{X}^n = \hat{X}^n(X^n) = g_n(f_n(X^n))$ be the reproduced sequence corresponding to X^n . Assume that $E[d(X^n, \hat{X}^n)] \leq D$. We thus need to show that $R \geq R(D)$. This follows as:

Achievability of R(D)

- We will skip 10.5 and go directly for an achievability proof based on strong typicality
- Strong typicality holds only for discrete alphabets and sequences.
- · Why do we need it?
- To find an upper bound on the probability that a given source sequence is NOT well represented by a randomly chosen codeword. Analogous to probability of error calculations in channel coding / capacity theorems.

Two types of typicality

- Strong typicality:
- Definition: A sequence $x^n \in \mathcal{X}^n$ is said to be ϵ -strongly typical with respect to a distribution p(x) on \mathcal{X} if:
- 1. For all $a \in \mathcal{X}$ with p(a) > 0 we have

$$\left| \frac{1}{n} N(a|x^n) - p(a) \right| < \frac{\epsilon}{|\mathcal{X}|}.$$

2. For all $a \in \mathcal{X}$ with p(a) = 0, $N(a|x^n) = 0$.

Here $N(a|x^n)$ is the number of occurrences of the symbol a in the sequence x^n . The set of sequences $x^n \in \mathcal{X}^n$ such that x^n is strongly typical is called the *strongly* typical set and is denoted as $A_{\epsilon}^{*(n)}$.

- Weak typicality:
- Definition: The typical set $A_{\epsilon}^{(n)}$ with respect to p(x) is the set of sequences $(x_1, x_2, \dots, x_n) \in \mathcal{X}^n$ with the property

$$2^{-n(H(X)+\epsilon)} < p(x_1, x_2, \dots, x_n) < 2^{-n(H(X)-\epsilon)}$$
.

Examples of typicality

Let
$$\mathcal{X} = \{A, B, C\}, p_{\mathbf{x}} = (\frac{1}{2}, \frac{1}{4}, \frac{1}{4}), n = 4, \epsilon = 0.8.$$

- Is $x^n = BAAC \in A_{\epsilon}^{(n)}$?
- Is $x^n = BAAC \in A_{\epsilon}^{*(n)}$?
- Is $x^n = BBBB \in A_{\epsilon}^{(n)}$?
- Is $x^n = BBBB \in A_{\epsilon}^{*(n)}$?

Which do you think is true (intuitively for now)?

$$A_{\epsilon}^{(n)} \subset A_{\epsilon}^{*(n)} \text{ OR } A_{\epsilon}^{*(n)} \subset A_{\epsilon}^{(n)}$$
?

Prove that $x^n \in A_{\epsilon}^{*(n)} \Rightarrow x^n \in A_{\epsilon}^{(n)}$.

Strong joint typicality

- Definition: A pair of sequences $(x^n, y^n) \in \mathcal{X}^n \times \mathcal{Y}^n$ is said to be ϵ -strongly jointly typical with respect to a distribution p(x, y) on $\mathcal{X} \times \mathcal{Y}$ if:
- 1. For all $(a, b) \in \mathcal{X} \times \mathcal{Y}$ with p(a, b) > 0 we have

$$\left| \frac{1}{n} N(a, b | x^n, y^n) - p(a, b) \right| < \frac{\epsilon}{|\mathcal{X}||\mathcal{Y}|}.$$

2. For all $(a,b) \in \mathcal{X} \times \mathcal{Y}$ with p(a,b) = 0, $N(a,b|x^n,y^n) = 0$.

Here $N(a,b|x^n,y^n)$ is the number of occurrences of the symbol (a,b) in the sequence (x^n,y^n) . The set of sequences $(x^n,y^n) \in \mathcal{X}^n \times \mathcal{Y}^n$ such that (x^n,y^n) is strongly jointly typical is called the *strongly jointly typical set* and is denoted as $A_{\epsilon}^{*(n)}(X,Y)$.

Examples of joint typicality

Let $\mathcal{X} = \{A, B, C\}$ and $\mathcal{Y} = \{D, E\}$, with joint distribution p(x, y) given as in the table

$$\begin{array}{c|cccc} & D & E \\ \hline A & \frac{1}{3} & \frac{1}{12} \\ B & \frac{1}{3} & \frac{1}{12} \\ C & \frac{2}{12} & \frac{1}{12} \end{array}$$

- What do elements of $A_{\epsilon}^{*(n)}$ look like?
- Is $(A, D)(B, D), (B, E) \equiv (ABB, DDE) \in A_{\epsilon}^{(n)}$?
- Is $(A, D)(B, D), (B, E) \equiv (ABB, DDE) \in A_{\epsilon}^{*(n)}$?

Some useful Lemmas

 Strong typicality is a very powerful technique more thoroughly explored in Chapters 11 and 12. Related to the Method of Types, and useful in proving stronger results than can be obtained using weak typicality - universal source coding, rate distortion theory, large deviation theory.

Lemma: Let (X_i, Y_i) be drawn i.i.d. $\sim p(x, y)$. Then $\Pr(A_{\epsilon}^{*(n)}) \to 1$ as $n \to \infty$.

Lemma: Let Y_1, Y_2, \dots, Y_n be drawn i.i.d.~ p(y). For $x^n \in A_{\epsilon}^{*(n)}$, the probability that $(x^n, Y^n) \in A_{\epsilon}^{*(n)}$ is bounded by

$$2^{-n(I(X;Y)+\epsilon_1)} \le \Pr((x^n, Y^n) \in A_{\epsilon}^{*(n)}) \le 2^{-n(I(X;Y)-\epsilon_1)},$$

where $\epsilon_1 \to 0$ as $\epsilon \to 0$ and $n \to \infty$.

Proof of achievability

Let X_1, X_2, \dots, X_n be i.i.d. $\sim p(x)$ and let $d(x, \hat{x})$ be a bounded distortion measure for this source with rate distortion function R(D). Then for any rate distortion pair (R, D) we will prove the existence of a sequence of rate distortion codes with rate R and asymptotic distortion D.

Key steps:

- Fix $p(\hat{x}|x)$ and find $p(\hat{x})$. Fix $\epsilon > 0$.
- Describe codebook generation: 2^{nR} sequences (indexed by w) $\hat{\mathcal{X}}^n$ drawn i.i.d. $\sim p(\hat{x})$.
- Describe encoding of a given sequence X^n : index X^n by w if there exists a w: $(X^n, \hat{X}^n(w)) \in A_{\epsilon}^{*(n)}$. If > 1, send first, else send w = 1.
- Decoding: reproduce $\hat{X}^n(w)$
- Calculate the distortion (see figure)
- Calculate the probability of error

Some interesting parallels

Channel coding

- Random codebook generation
- Encoding is simply lookup
- Joint typicality decoders
- Probability of error decoder side

Rate distortion

- Random codebook generation
- Encoding is jointly typical
- Decoding is a lookup
- Probability of error encoder side

Some more interesting parallels

Channel coding for Gaussian channel

Intuition about why it works - sphere packing

- Each transmitted x_i is received as a probabilistic cloud y_i
- Cloud 'radius' = $\sqrt{\text{Var}(Y|X)} = \sqrt{nN}$

 Energy of y_i constrained to n(P + N) so clouds must fit into a hypersphere of radius \(\sqrt{n(P + N)}\)

• Max rate is $\frac{1}{2}\log(1+\frac{P}{N})$

- Volume of hypersphere $\propto r^n$
- Max number of non-overlapping clouds:

$$\frac{(nP+nN)^{\frac{n}{2}}}{(nN)^{\frac{n}{2}}} = 2^{n\frac{1}{2}\log(1+\frac{P}{N})}$$

riversity of Illinois at Chicago ECE 534, Fell 2009, Natasha Devroye

Sphere packing

Intuition about why it works - sphere covering

Each source sequence xⁿ is Gaussian of cloud 'radius' σ²

- A (2^{nR}, n) rate-distortion code of distortion D picks 2^{nR} codewords such that
 most sequences of length n are within distance √nD of some codeword,
- Volume of hypersphere ∝ rⁿ
- · Min number of points need to "cover" the space is

• Min rate is $\frac{1}{2} \log(\frac{\sigma^2}{D})$

$$2^{nR(D)} = \left(\frac{\sigma^2}{D}\right)^{\frac{\gamma}{2}}$$
.

University of Illinois at Chicago ECE 534, Fall 2009, Natasha Devroy

Rate-distortion for Gaussian channel

Sphere covering