Econometrics September 25, 2023

Topic 20: Random Forest

by Sai Zhang

Key points: .

Disclaimer: The note is built on Prof. Jinchi Lv's lectures of the course at USC, DSO 607, High-Dimensional Statistics and Big Data Problems.

20.1 Motivation

Denote by $m(\mathbf{X})$ the measurable nonparametric regression function with p-dimensional random vector \mathbf{X} taking values in $[0,1]^p$. The Random Forest algorithm aims to learn the regression function in a nonparametric way based on the observations $\mathbf{x}_i \in [0,1]^p$, $y_i \in \mathbb{R}$, $i=1,\cdots,n$, from the model

$$y_i = m(\mathbf{x}_i) + \epsilon_i$$

where \mathbf{X} , \mathbf{x}_i , ϵ_i , $i = 1, \dots, n$ are independent, and $\{\mathbf{x}_i\}$ and $\{\epsilon_i\}$ are two sequences of identically distributed random variables. \mathbf{x}_i is distributed identically as \mathbf{X} .

Why Random Forest (RF)? RF has gained significant popularity due to its

• High accuracy: RF consistently rank among the top performers

Chi et al. (2022)

20-2 Week 20: Random Forest

References

Chien-Ming Chi, Patrick Vossler, Yingying Fan, and Jinchi Lv. Asymptotic properties of high-dimensional random forests. *The Annals of Statistics*, 50(6):3415–3438, 2022.