武汉大学 2018-2019 学年第一学期期末考试 概率统计 B (A 卷答题卡)

姓名	学院													
姓石		[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]
///				[1]	[1]	[]]		[1]					[1]	[]]
注意事项	1.答题前,考生先将自己的姓名、学号填写清楚,并填涂相应的	[2]	[2]	[2]	[2]	[2]	[2]	[2]	[2]	[2]	[2]	[2]	[2]	[2]
	考号信息点。	[3]	[3]	[3]	[3]	[3]	[3]	[3]	[3]	[3]	[3]	[3]	[3]	[3]
	2.解答题必须使用黑色墨水的签字笔书写,不得用铅笔或圆珠笔	[4]	[4]	[4]	[4]	[4]	[4]	[4]	[4]	[4]	[4]	[4]	[4]	[4]
	作解答题:字体工整、笔迹清楚。	[5]	[5]	[5]	[5]	[5]	[5]	[5]	[5]	[5]	[5]	[5]	[5]	[5]
	3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书	[6]	[6]	[6]	[6]	[6]	[6]	[6]	[6]	[6]	[6]	[6]	[6]	[6]
	写的答题无效;在草稿纸、试题卷上答题无效。	[7]	[7]	[7]	[7]	[7]	[7]	[7]	[7]	[7]	[7]	[7]	[7]	[7]
	4.保持卷面清洁,不要折叠、不要弄破。	[8]	[8]	[8]	[8]	[8]	[8]	[8]	[8]	[8]	[8]	[8]	[8]	[8]
	VXY	[9]	[9]	[9]	[9]	[9]	[9]	[9]	[9]	[9]	[9]	[9]	[9]	[9]

一、((12 分) 已知 P(A) = 0.5, P(B) = 0.4, P(A|B) = 0.5,求 $P(\overline{A} \cup \overline{B})$ 和 P((A-B)|(A+B))。

二、(12分)一批元件,来自甲乙丙三厂,各占比例为4:4:2,已知他们各自的优等品率分别为15%,10%,25%;从这批元件中任取一件;求(1)它是优等品的概率?(2)若它是优等品,它来自甲乙丙三厂的概率各是多少?

- 三、 $(12 \, \text{分})$ 在一次随机实验中,随机变量 X 在区间 (0, 4) 服从均匀分布;
 - (1) 求方程 $y^2 Xy + 1 = 0$ 有实根的概率。
 - (2) 如果 $Y = -\ln \frac{X}{4}$, 写出Y的概率密度并求其方差。

四、(16分)若随机变量(
$$X,Y$$
)的联合概率密度为 $f(x) = \begin{cases} xe^{-\frac{1}{2}y} & 0 \le x \le 1, y > 0 \\ 0 &$ 其它

- (1)求随机变量 X 和 Y 的边沿缘概率密度 $f_x(x)$; $f_y(y)$; 并判别他们是否独立?
- (2) 求Z = X + Y的概率密度。

五、 $(12\,
ho)$ 某生产线加工产品的合格率为 0.8,已知:合格每件可获利 8 元,不合格每件亏损 2 元。 (1) 为保证每天的平均利润达到 30000 元,问他们要加工多少件产品?此时用切比雪夫不等式估计利润大于 29000 小于 31000 的概率有多大? (2) 为保证每天的利润不低于 30000 元的概率大于 0.977 ,问他们至少要加工多少件产品? (20) (

七、 $(12 \, eta)$ 若 X_1, X_2, \cdots, X_n 是总体 X 的样本,已知 X 在区间 $(-1, \theta)$ 服从均匀分布。

试求(1) θ 的矩估计和最大似然估计,并判别是否无偏。(2)计算两个估计量的方差。

六、(12 分) 若 X_1, X_2, \cdots, X_8 是正态总体 N(0,1) 的样本,(1) 求常数 a,b,c,d (这里 $abc \neq 0$),使

 $Y = aX_1^2 + b(2X_2 - X_3)^2 + c(3X_4 - 2X_5 - X_6)^2 + X_7^2 + X_8^2 \sim \chi^2(d)$; (2) 求Y的期望与方差。

八、 $(12\ \beta)$ 某地发现一个金矿,取 25 个样本测试,发现每吨平均含金量为 5.5 克,样本标准差为 1.5 克,问:此矿的每吨含金量是不是显著大于 5 克? $\alpha=0.05$ (假设矿石含量近似服从正态分布) 已知:

 $\left| t_{0.05}(25) = 1.708, t_{0.05}(24) = 1.712, t_{0.025}(25) = 2.060, t_{0.025}(24) = 2.064 \right|, \quad u_{0.05} = 1.65, u_{0.025} = 1.96$