R Team Project

HEATMAP

Presented by

Polatat Suwanit 6736156 Sorawan Tiratrakoonwichaya 6737929 Chakrit Jiarasatit 6737934

Heatmap: code

• Go to

You can scan this QR code to run code with us!!

https://github.com/Polatat/Heatmap_project

Workflow

RNA sequencing

mapped to the human hg38 genome and SARS-CoV-2 reference genome

identify differentially expressed genes

(DEGs) between infected and mock-infected samples

default cutoff of P-adj < 0.05

log2 fold change (log2FC) values and adjusted p-values (FDR)

RNA sequencing

Total RNA-Seq

Whole transcriptome analysis omits selection in order to sequence coding and non-coding RNA

mRNA-Seq

mRNA can be enriched via poly-A selection or ribosomal RNA depletion

Small RNA-Seq

Size selection methods can be used to enrich for noncoding RNA such as miRNA

Targeted RNA-Seq

Specific RNA sequences can be selected using hybridization probes

Stimulated cells vs. Control cells

• HEK293T-hACE2 are HEK293T cells that have been genetically modified to overexpress hACE2 (human angiotensin-converting enzyme 2) to facilitate better infection by the SARS-CoV-2 virus.

log2FC (log base 2 of the fold change)

log base 2 of the fold change

 log2FC is a measure used in the differential gene expression analysis performed by the DEseq2 package between the two conditions.

$$Fold \ Change = \frac{Expression \ in \ Condition \ A}{Expression \ in \ Condition \ B}$$

$$\log_2 ext{Fold Change} = \log_2 \left(rac{ ext{Expression in Condition A}}{ ext{Expression in Condition B}}
ight)$$

Fold Change (FC)

 Represents how much the expression of a gene has changed between the two conditions.

For example, the expression level of this gene is:

- In Condition A: 100 reads
- In Condition B: 25 reads

Fold Change
$$(A/B) = 100 / 25 = 4$$

Log base 2 (log2)

- It makes up-regulation and down-regulation symmetrical around zero.
- This symmetry allows for easier comparison of the magnitude of changes in both directions.
- log2FC > 0 → Gene is upregulated
- log2FC < 0 → Gene is downregulated
- log2FC = 1 → Gene expression is increased 2-fold
- log2FC = -1 → Gene expression is decreased by half
- log2FC = 2 → Gene expression is increased 4-fold

Figure 4B

- Figure 4b shows the differential gene expression analysis of SARS-CoV-2 infected cell lines.
- The criteria for selecting genes in Figure 4b were based on
 - $log2 fold change (log2FC) of \ge 2 or \le -1.5$
 - adjusted p-value of < 0.05

Up-regulated genes (log2FC > 2) are highlighted in red

down-regulated genes (log2FC < -1.5) are highlighted in blue.

Input data

log2FC

P-value adjustment

Genes

Code: Expected input

log2FC for each cell line

^	HEK293T_A	A549 [‡]	A549_A [‡]	Caco2	Calu3_B	Calu3_C [‡]
ADM2	-1.776962	4.815869548	0.615639026	-0.031314354	0.803572999	1.9581481976
AKNA	-2.494399	1.201366551	-0.040966684	-0.023166505	0.411033283	0.9853411070
ALLC	5.264347	0.026761648	0.342792056	0.027446288	0.158372724	NA
ANKRD26P1	2.016181	0.193376857	0.031806242	0.004932063	1.867017774	0.0013403656
ANPEP	3.087821	0.559556521	-0.202357202	-0.019719257	0.122658391	-0.4705838978
ANXA1	-1.707163	-0.493931438	-1.145436981	0.281756679	-0.715508752	-0.5181789419
ASNS	-1.647729	3.125765397	-0.077341772	0.009665014	0.517034782	2.8756199032
ATF3	-1.640445	2.839344169	2.498324613	2.287292218	5.460378990	4.9677852136
ATP6V0D2	-2.984938	0.124259675	NA	-0.000082900	0.048100960	0.0007394331

Genes

Filtering gene base on criteria

Change first column name to "Gene"
colnames(HEK293T_hACE2_filtered_with_padj)[1] <- "Gene"</pre>

log2FC Genes adjustment baseMean log2FoldChange I lfcSE pvalue 1 TNFRSF9 44.88135 -2.416980 | 0.51756937 1.961096e-07 2.435489e-06 2 PTAFR 2.355074 0.69179690 3.106075e-05 22.39896 2.339727e-04 3 IL23R 11.17434 3.138083 1.12574478 2.988505e-04 1.728286e-03 4 CTH 1332.65734 -1.619297 0.09777830 8.726598e-63 6.113378e-60

P-value

Select only "Gene" and "log2FoldChange" column

Change second column name to "HEK293T_A"

HEK293T_hACE2_log2FC_filtered_with_padj <- HEK293T_hACE2_filtered_with_padj[,c("Gene","log2FoldChange")]</pre>

colnames(HEK293T_hACE2_log2FC_filtered_with_padj)[2] <- "HEK293T_A"</pre>

•	Gene [‡]	HEK293T_A
1	TNFRSF9	-2.416980
2	PTAFR	2.355074
3	IL23R	3.138083

```
# Unique gene name
gene names <- HEK293T hACE2 filtered with pad; Gene
filtered gene_name <- unique(gene_names)</pre>
filtered gene name
filtered gene <- c(
  "TNFRSF9", "PTAFR", "IL23R", "CTH", "PTGER3", "L0C100131564",
  "TBX15", "TXNIP", "MIR5087", "HSPA6", "HSPA7", "SLC9C2",
  "GOS2", "ATF3", "MRC1", "DDIT4", "P4HA1", "LGI1",
  "CYP2C18", "CYP2C19", "SNHG1", "RAPGEF3", "INHBE", "DDIT3",
  "SLC17A8", "PCK2", "DICER1-AS1", "CHAC1", "ANPEP", "NUPR1",
  "MVP", "ANKRD26P1", "TVP23C", "RDM1", "PECAM1", "SOX9-AS1",
  "CATSPERD", "KIAA1683", "LINC00663", "FUT1", "ALLC", "ERICH2",
  "TRIB3", "CEBPB-AS1", "PCK1", "C1QTNF6", "ADM2", "LAMB2P1",
  "SLC7A11-AS1", "SLC7A11", "NRN1", "HSPA1A", "HSPA1B", "C6orf48",
  "GCM1", "FLJ46906", "FRMD1", "INHBA", "ASNS", "TFR2",
  "MUC17", "DNAJB9", "MGAM", "MGAM2", "STC1", "SCARA5",
  "PPAPDC1B", "LINC01301", "C8orf46", "ATP6V0D2", "TG", "VLDLR-AS1",
  "LURAP1L", "TMEM215", "LINC00950", "ANXA1", "AKNA", "SAT1"
```

TNFRSF9

2 PTAFR

3 IL23R

0.075673751

0.028753926

0.009636228

```
# Import excel
Caco2_sheet <- read_excel("data/41598_2021_96462_MOESM1_ESM.xls",
                                sheet = "Caco2",
                                col_types = c("text", "numeric", "numeric",
                                               "numeric", "numeric", "numeric"))
# Filtering gene
colnames(Caco2_sheet)[1] <- "Gene"</pre>
Caco2_sheet_filtered <- Caco2_sheet%>%
                          filter(Gene %in% filtered_gene)
# Select only "Gene" and "log2FoldChange" column
# Change second column name to "HEK293T A"
Caco2_log2FC_sheet <- Caco2_sheet_filtered[,c("Gene","log2FoldChange")]</pre>
colnames(Caco2_log2FC_sheet)[2] <- "Caco2"</pre>
                                                                Caco2
                                                 Gene
```

!! Do this for all the remaining cell lines

Create a list of data frames

Merges multiple data frames in log2FC_data by the "Gene" column

•	Gene [‡]	HEK293T_A		•	Gene [‡]	Caco2	•	Gene	HEK293T_A [‡]	Caco2
1	TNFRSF9	-2.416980		1	TNFRSF9	0.075673751	1	TNFRSF9	-2.416980	0.075673751
2	PTAFR	2.355074	7	2	PTAFR	0.028753926	2	PTAFR	2.355074	0.028753926
3	IL23R	3.138083	_	3	IL23R	0.009636228	3	IL23R	3.138083	0.009636228

```
# Converts the "Gene" column into row names
```

Converts the data frame merge_heatmap_table into a matrix

```
merge_heatmap_table <- column_to_rownames(merge_heatmap_table, var ="Gene")</pre>
```

matrix_heatmap_table <- as.matrix(merge_heatmap_table)</pre>

column

•	Gene [‡]	HEK293T_A [‡]	A549 [‡]	A549_A [‡]	Caco2 [‡]
1	ADM2	-1.776962	4.815869548	0.615639026	-0.031314354
2	AKNA	-2.494399	1.201366551	-0.040966684	-0.023166505
3	ALLC	5.264347	0.026761648	0.342792056	0.027446288

row name

^	HEK293T_A [‡]	A549 [‡]	A549_A [‡]	Caco2
ADM2	-1.776962	4.815869548	0.615639026	-0.031314354
AKNA	-2.494399	1.201366551	-0.040966684	-0.023166505
ALLC	5.264347	0.026761648	0.342792056	0.027446288

Data frame Matrix

Heatmap: Result with adjusted p-value

Heatmap: Result with adjusted p-value

Example Heatmap from teacher

Heatmap: Result without adjusted p-value

Figure 4B from paper

Our Heatmap

Heatmap: Result without adjusted p-value

Example Heatmap from teacher

Heatmap: With VS Without Padj

More Tutorial

https://jokergoo.github.io/ComplexHeatmap-reference/book/index.html

On this page

View source

Edit this page

https://www.rdocumentation.org/packages/gplots/versions/3.2.0/topics/heatmap.2

THANK YOU