Third-year ISAE-SUPAERO engineering students Research Area: Neuro & AI December, 2020

Experimentation, measurements and brain-computer interface

# Introduction to statistics for experimentation

# Nicolas Drougard<sup>1</sup>

<sup>1</sup>ISAE-SUPAERO DCAS, Toulouse, FRANCE



nicolas.drougard@isae-supaero.fr

## Outline

- 1 Introduction
- 2 Risk computation with probabilities
- 3 General Linear Model
- 4 ANalysis Of VAriance (ANOVA)
- 5 Other useful tests

## References

- ► [GS20] X. Gendre and F. Simatos, *Probabilités et statistique*, Tronc Commun Scientifique 1A, Formation Ingénieur ISAE-SUPAERO, 2020.
- ► [HMS20] G. Haine, D. Matignon, and M. Salaün, *Mathématiques déterministes*, Tronc Commun Scientifique 1A, Formation Ingénieur ISAE-SUPAERO, 2020.
- ▶ [Wik] Wikistat, Statistique et machine learning de statisticien à data scientist, web page here.

## Outline

- 1 Introduction
- 2 Risk computation with probabilities
- 3 General Linear Mode
- 4 ANalysis Of VAriance (ANOVA)
- 5 Other useful tests

## What are statistics?

#### Statistics or statistical data

Set of data observed on a specific phenomenon.

#### Statistical methods

A set of scientific methods for:

- **Planning** the collection of observations Which data? How much data? Questions?
- Analyze & interpret a large volume of data to extract relevant information.

Useful material [Wik]

# **Applications**

- **economy:** economic forecasts, market studies, etc.
- imaging: shape detection, image classification, denoising, image reconstruction, etc.
- **agriculture:** crop yields, experiments with new strains, etc.
- **biology:** concentration of given molecules in the human body, evolution of species, etc.
- engineering: quality control, robotics, security, logistics, etc.
- medicine, pharmacology: epidemiology, experimentation of new treatments, medical imaging, etc.
- **psycho-physiological studies:** behavioural studies, neuroimaging cognitive, mental state detection, brain-computer interfaces *etc*.

# Methodology

### Population & Sample

- Population: set of all possible observations that can be made about a phenomenon.
- **Sample:** subset of the population.

### Steps in a statistical analysis

- 1 Planning an experiment and collecting data
  - representative sample, sample size,
  - relevance of the variables selected.
- descriptive statistics
  - data formatting and description.
- Inferential statistics
  - probable results on the phenomenes described by the data.

# Main stages

An essential first step in any statistical analysis:

### Descriptive (or exploratory) statistics

- describes the observations made on a sample,
- methods for synthesizing data:
  - relevant numerical summaries
  - graphic representations.

Conclusions valid only for the sample: no generalization to the population!

## Inferential statistics (or mathematical statistics)

- extrapolate the observed results to the general population
- inductive approach to generalize the results
- is based on the theory of probability.

# **Probabilistic modeling**

### **Probability Theory**

- provides a mathematical model of random phenomena
- allows you to quantify chance and predict the frequency of occurrence of events by calculating probabilities.

This is the **underlying model** of the realization of the experiment.

## A deductive approach

- from model to experience,
- allows the properties of samples from a population to be studied using a probabilistic model.

# Probabilistic modeling

### Random Variables

- quantitative variable: real-valued variable ex: age, height, salary, heart rate
- **qualitative** (categorical) variable: indicates which category the individual belongs to ex: gender, opinion, task type

## **Variables**

#### Quantitative variables

- **continuous** variable: any value that cannot be counted in a given interval ex: height, weight, income, duration of a flight, etc.
- **discrete** variable: discrete values that can be counted (often integers), *ex: number of failures per month of a machine, number of aircraft accidents during the year, etc.*

## **Variables**

### Qualitative variables

- **ordinal** variable: distinct categories in order, without being able to quantify the distance between them
  - ex: physical condition (poor, average, good), task type (easy, normal, hard)
  - nominal variable: separate non-ordered categories to which a name can be assigned

ex: gender, color

## Outline

- Introduction
- 2 Risk computation with probabilities
- 3 General Linear Mode
- 4 ANalysis Of VAriance (ANOVA)
- 5 Other useful tests

# **Probability distribution**



# Continuous probability distributions

## Density of famous distributions

- **Uniform**  $\mathcal{U}(a,b)$  (with a < b):  $\frac{1}{b-a} \mathbb{1}_{[a,b]}(x)$  ex: the quantity of a liquid in a tank, current position of an elevator, etc.
- Normal, gaussian  $\mathcal{N}(\mu, \sigma^2)$ :  $\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$  ex: sum of many independent processes (such as measurement errors). Note that  $\mathcal{N}(0,1)$  is called the **standard normal distribution**.
- **Exponential**  $\mathcal{E}(\lambda)$ :  $\lambda e^{-\lambda x}$  ex: memoryless durations whose mean is  $\lambda$ .

# **Probability distribution**

#### Other variables

For the other types of variables (discrete, ordinal, nominal) it is sufficient to define a probability for each event





- AOI (Area Of Interest):
- 1 Primary Flight Display (PFD)
- 2 Navigation Display (ND)
- 3 Electronic Centralized
- Aircraft Monitoring (ECAM)
- 4 Out of Window (OW)
- **5** Flight Control Unit (FCU) Example from *Lounis & all, 2018.*

# Discrete probability distributions

- Bernoulli Ber(p):  $0 \le p \le 1$ ,  $\mathbb{P}(X = 1) = p$ ,  $\mathbb{P}(X = 0) = 1 p$  ex: flip a regular coin (p = 0.5).
- **Binomial** Bin(n,p):  $\forall k \in \{0,\ldots,n\}$ ,  $\mathbb{P}(X=k) = \binom{n}{k} p^k (1-p)^{n-k}$  ex: sum of the results of n flips of coin.
- **Poisson**  $\mathcal{P}(\lambda)$ :  $\forall k \in \{0, ..., n\}$   $\mathbb{P}(X = k) = \frac{\lambda^k}{k!}e^{-\lambda}$  ex: number of events occurring in a fixed interval of time (durations between events have an exponential distribution).

# Notations

- Random variable  $X \sim P_X$  with values in  $\mathcal{X}$ .
- Random dataset  $D_n = \{X_i\}_{i=1}^n$ .
- Independant  $X_i \Rightarrow D_n \sim P_X^n$ .
- Consider a real random variable  $\mathcal{X} = \mathbb{R}$ .
- Cumulative Distribution Function (CDF):  $F_X(t) = \mathbb{P}(X \leq t)$ .
- Empirical CDF:  $F_{X,n}(t) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_{\{X_i \leq t\}}$ .
- $\forall t \in \mathbb{R}$ ,  $F_{X,n}(t) \xrightarrow[n \to +\infty]{a.s.} F_X(t)$  (Strong Law of Large Numbers SLLN, see Theorem 3.1 [GS20]).
- Quantile function:  $F_X^{-1}(s) = \inf\{t \in \mathbb{R} \mid F(t) \geqslant s\}.$

### Introduction

### A preferred distribution

A measurement is often based on a sum of i.i.d. samples. The Central Limit Theorem (*cf.* Theorem 3.14 [GS20]) provides us with a distribution that should be a good candidate: the normal distribution

#### Assume that

- the data we manipulate are real numbers  $(X \in \mathbb{R})$
- they come from a normal distribution
- whose variance is known to be  $\sigma^2$

the random dataset: independent and identically distributed (i.i.d) random variables  $X_1, X_2, \dots, X_n \sim \mathcal{N}(\mu, \sigma^2)$ 

Goal: we would like to have more information on the population mean. Is it greater/lower/equal to some  $\mu_0 \in \mathbb{R}$ ?

### Distribution of the empirical average

The distribution of the empirical mean,  $\overline{X_n} = \frac{1}{n} \sum_{i=1}^n X_i$  is also a normal distribution with mean  $\mu$  and variance  $\frac{\sigma^2}{n}$ .

- $\mathbb{E}\left[\overline{X_n}\right] = \frac{1}{n} \sum_{i=1}^n \mathbb{E}\left[X_i\right] = \frac{1}{n} \sum_{i=1}^n \mu = \mu$  [linear expectation]
- $Var\left[\overline{X_n}\right] = \frac{1}{n^2} \sum_{i=1}^n Var\left[X_i\right] = \frac{1}{n^2} \sum_{i=1}^n \sigma^2 = \frac{\sigma^2}{n}$  [variance property for i.i.d. variables]

#### Transformation to a standard normal distribution

- If  $\mathbb{E}[X] = \mu$ , then  $\mathbb{E}[X \mu] = 0$ .
- If  $Var[X] = \sigma^2$ , then  $Var\left[\frac{X}{\sigma}\right] = \frac{1}{\sigma^2} Var[X] = 1$ .

Using these results, we know that

$$rac{\sqrt{n}(\overline{X_n}-\mu)}{\sigma}\sim \mathcal{N}(0,1)$$

We want to be able to say that "the mean (of the population of interest)  $\mu$  is **lower** than  $\mu_0$ " only when the risk of being wrong is low.

A good idea is to look if  $\overline{X_n}$  is low enough to limit the risk of being wrong:

#### decision

- "Not sure if  $\mu$  is **lower** than  $\mu_0$  or not" ( $H_0$  accepted) when  $\overline{X_n} > t$ ,
- "Almost certain that  $\mu$  is **lower** than  $\mu_0$ " ( $H_0$  rejected) when  $\overline{X_n} \leqslant t$ .

But... what is the value of  $t \in \mathbb{R}$ ?

Suppose that  $\mu > \mu_0$ : the risk of being wrong is the probability that  $\overline{X_n} \leqslant t$ , denoted by  $\alpha$  (and usually equal to 0.1, 0.05 or 0.01).

### Risk, or probability to be wrong

$$\alpha(\mu) = \mathbb{P}\left(\overline{X_n} \leqslant t\right) = \mathbb{P}\left(\frac{\sqrt{n}(\overline{X_n} - \mu)}{\sigma} \leqslant \frac{\sqrt{n}(t - \mu)}{\sigma}\right) = F_{\mathcal{N}(0,1)}(\frac{\sqrt{n}(t - \mu)}{\sigma}) \text{ where } F_{\mathcal{N}(0,1)} \text{ is the cumulative density function of } \mathcal{N}(0,1): F_{\mathcal{N}(0,1)}(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^t e^{-\frac{x^2}{2}} dx.$$



## Risk, or probability to be wrong

$$\alpha = \sup_{\mu > \mu_0} \alpha(\mu) = \sup_{\mu > \mu_0} F_{\mathcal{N}(0,1)}(\frac{\sqrt{n}(t-\mu)}{\sigma}) = F_{\mathcal{N}(0,1)}(\frac{\sqrt{n}(t-\mu_0)}{\sigma})$$
 since  $F_{\mathcal{N}(0,1)}$  is an increasing function.



ND (ISAE-SUPAERO DCAS)

# Some vocabulary

#### **Definitions**

- **Statistical hypothesis:** a statement about the parameters describing a population (not a sample).
- **Null hypothesis**  $H_0$ : a hypothesis associated with a contradiction to a theory one would like to prove.
- Alternative hypothesis  $H_1$ : a hypothesis associated with a theory one would like to prove.

In the previous example, " $H_0: \mu > \mu_0$ " is the null hypothesis and " $H_1: \mu \leqslant \mu_0$ " is the alternative hypothesis.

# Some vocabulary

#### **Definitions**

- Statistical test: a procedure whose inputs are samples and whose result is a hypothesis.
- **Test statistic:** a function of the variables in the dataset, denoted by *S*.
- **Region of acceptance:** the set of values of the test statistic for which we fail to reject the null hypothesis.
- **Region of rejection / Critical region:** the set of values of the test statistic for which the null hypothesis is rejected. This region, depending on the threshold t, is denoted by  $\mathcal{R}(t)$ .
- **Critical value:** the threshold value delimiting the regions of acceptance and rejection for the test statistic.

In the previous example, the test was to calculate the statistic  $S = \overline{X_n}$  and see if it was lower or greater than t. The region of acceptance was  $]t, +\infty[$ , the region of rejection  $]-\infty, t]$ , and the critical value was t.

# Some vocabulary

#### **Definitions**

**p-value:** the probability, assuming the null hypothesis is true, of observing a result at least as extreme as the test statistic.

Recall that  $\alpha = \mathbb{P}_{H_0}$  ( $S \in \mathcal{R}(t)$ ). Given the realized/observed statistics s, it is the smallest risk for which the null hypothesis is rejected:

$$p = \mathbb{P}_{H_0} (S \in \mathcal{R}(s)).$$

In the previous example,  $p=\mathbb{P}_{\mu>\mu_0}\left(\overline{X_n}<\overline{x_n}\right)$ . If  $p>\alpha$ , the test does not reject  $H_0$ , usually  $\alpha=0.05$ .



## Exercice

#### create the stat. test with

- " $H_0: \mu < \mu_0$ " " $H_1: \mu \geqslant \mu_0$ "?
- " $H_0: \mu = \mu_0$ " " $H_1: \mu \neq \mu_0$ "?
- unknown variance?
  - ► scipy.stats: ttest\_1samp

## **Introduction to statistical Tests and Errors**

Two samples  $(X_1, \ldots, X_{n_1})$  &  $(Y_1, \ldots, Y_{n_2})$ . We don't know the variance  $\sigma^2$ . Is mean difference statistically significant ?

Suppose that means of the populations are equal  $(H_0)$ .

Then, 
$$S = \frac{(\overline{X_n} - \overline{Y_n})}{\widehat{\sigma_M} \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim Student(n_1 + n_2 - 2).$$

That is, with

$$lacksquare \overline{X_n} = rac{1}{n_1} \sum_{i=1}^n X_i, \ \overline{Y_n} = rac{1}{n_2} \sum_{i=1}^n Y_i,$$

$$\widehat{\sigma_M} = \sqrt{\frac{(n_1-1)v_1 + (n_2-1)v_2}{n_1 + n_2 - 2}}, \text{ with } v_1 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X_n})^2 \text{ and } v_2 = \frac{1}{n-1} \sum_{i=1}^n (Y_i - \overline{Y_n})^2.$$

S is distributed according to a Student law with parameter (degree of freedom)  $n_1 + n_2 - 2$ .

If the realisation of U is to far from 0, we can conclude that theoretical means (means of the population) are not equals.  $\triangleright$  scipy.stats: ttest\_ind

## Outline

- Introduction
- 2 Risk computation with probabilities
- 3 General Linear Model
- 4 ANalysis Of VAriance (ANOVA)
- 5 Other useful tests

Let  $d_n = \{y_1, \dots, y_n\}$  be a dataset, realization/observation of the random vector Y:

#### Definition of the terms of this model

- the random vector  $\varepsilon \sim \mathcal{N}(0, \sigma^2 I_n)$ , gaussian random noise with variance  $\sigma^2 \in \mathbb{R}_+^*$ , and independent and identically distributed (i.i.d) components  $\varepsilon_i \sim \mathcal{N}(0, \sigma^2)$ ,
- the constant parameter vector  $\theta \in \mathbb{R}^d$ , with d < n,
- the constant injective linear function  $X \in \mathbb{R}^{n \times d}$ ,
- lacktriangle the constant **mean vector**  $\mu = \mathbb{X}\theta \in V$ ,
- the *d*-dimensional vector subspace  $V = \operatorname{Im}(\mathbb{X}) \subset \mathbb{R}^n$  (possible mean vectors).

ND (ISAE-SUPAERO DCAS)

#### Some explanations:

- $\mathbb{X} \in \mathbb{R}^{n \times d}$  defines  $V = \text{Im}(\mathbb{X})$ , *i.e.* expert **hypotheses on the possible mean vectors**  $\mu$ .
- $\theta \in \mathbb{R}^d$  parameterizes the possible mean vectors  $\mu$ , these parameters are identifiable since  $\mathbb{X}$  is injective.
- As we'll see, many classical statistical studies are based on this model.

# Maximum Likelihood Estimator of $(\mu, \sigma^2)$

The Maximum Likelihood Estimator (MLE) of  $(\mu, \sigma^2) \in \mathbb{R}^n \times \mathbb{R}_+^*$  is  $(\widehat{\mu_n} = \Pi_V Y, \widehat{\sigma_n^2})$  where

- $\Pi_V$  is the **orthogonal projection matrix** on the *d*-dimensional vector subspace  $V \subset \mathbb{R}^n$  containing the possible mean vectors,
- the variance estimator  $\widehat{\sigma_n^2} = \frac{1}{n} \|Y \Pi_V Y\|^2 = \frac{1}{n} \sum_{i=1}^n [Y_i (\Pi_V Y)_i]^2$ , is the squared euclidean distance between Y and the projection  $\Pi_V Y$  divided by n.

### Proof – 1

Since  $Y_i \sim \mathcal{N}(\mu_i, \sigma^2) \ \forall i \in \{1, \dots, n\}$  and  $\{Y_i\}_{i=1}^n$  i.i.d, the density of  $Y_i \in \mathbb{R}$  is  $f_{Y_i}(y_i) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(y_i - \mu_i)^2\right)$  and the likelihood  $\mathcal{L}$ , that depends on the parameters  $(\mu, \sigma^2) \in \mathbb{R}^n \times \mathbb{R}_+^*$  and the random vector Y, is then  $\mathcal{L}(\mu, \sigma^2, Y)$ 

$$= \prod_{i=1}^{n} f_{Y_i}(Y_i) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(Y_i - \mu_i)^2\right) = \left(\frac{1}{2\pi\sigma^2}\right)^{\frac{n}{2}} \exp\left(-\frac{1}{2\sigma^2}\sum_{i=1}^{n}(Y_i - \mu_i)^2\right).$$

#### Proof – 2

The likelihood is  $\mathcal{L}(\mu, \sigma^2, Y) = \left(\frac{1}{2\pi\sigma^2}\right)^{\frac{n}{2}} \exp\left(-\frac{1}{2\sigma^2} \|Y - \mu\|^2\right)$ .

- Let's fix  $\sigma^2 \in \mathbb{R}_+^*$ : maximum reached for  $\mu \in V$  that minimizes  $\|Y \mu\|$ , i.e.  $\widehat{\mu_n} = \Pi_V Y$  (cf. minimal distance to a vector subspace, Corollaries 7.6. & 7.7. in [HMS20]).
- Now, the maximum is reached for  $\sigma^2$  that maximizes  $\log \left( \mathcal{L} \left( \Pi_V Y, \sigma^2, Y \right) \right) = -\frac{n}{2} \log \left( 2\pi \sigma^2 \right) \frac{1}{2\sigma^2} \|Y \Pi_V Y\|^2$ .

$$\begin{split} &\frac{\partial}{\partial \sigma^2} \log \left( \mathcal{L} \left( \Pi_V Y, \sigma^2, Y \right) \right) &= &-\frac{n}{2\sigma^2} + \frac{1}{2\sigma^4} \left\| Y - \Pi_V Y \right\|^2 \\ \Rightarrow &\frac{\partial}{\partial \sigma^2} \log \left( \mathcal{L} \left( \Pi_V Y, \sigma^2, Y \right) \right) \geqslant 0 &\Leftrightarrow &\sigma^2 \leqslant \frac{1}{n} \left\| Y - \Pi_V Y \right\|^2 \\ \Rightarrow &\frac{\partial}{\partial \sigma^2} \log \left( \mathcal{L} \left( \Pi_V Y, \sigma^2, Y \right) \right) = 0 &\Leftrightarrow &\sigma^2 = \frac{1}{n} \left\| Y - \Pi_V Y \right\|^2. \end{split}$$

Finally, 
$$\widehat{\sigma_n^2} = \frac{1}{n} \|Y - \Pi_V Y\|^2 = \frac{1}{n} \|Y - \widehat{\mu_n}\|^2$$
.

Remark:  $\mathbb{E}_{\mu,\sigma^2}[\Pi_V Y] = \Pi_V \mathbb{E}_{\mu,\sigma^2}[Y] = \Pi_V \mu = \mu$  since  $\mu \in V$ :  $\Pi_V Y$  is unbiased.

## Result: orthogonal projection matrix $\Pi_V$ expressed with $\mathbb X$

If  $X \in \mathbb{R}^{n \times d}$  is injective, then

- $\blacksquare \mathbb{X}^T \mathbb{X}$  is invertible,

#### Proof

$$\bullet \ \mathbb{X}^T \mathbb{X} \theta = 0 \Longrightarrow \theta^T \mathbb{X}^T \mathbb{X} \theta = 0 \Longrightarrow (\mathbb{X} \theta)^T \mathbb{X} \theta = 0 \Longrightarrow \|\mathbb{X} \theta\|^2 = 0 \Longrightarrow \mathbb{X} \theta = 0$$

$$\mathbb{X}^T \mathbb{X} \theta = 0 \Longrightarrow (\mathbb{X} \theta)^T \mathbb{X} \theta = 0$$

$$\xrightarrow{\mathbb{X} \text{ injective}} \theta = 0 \Longrightarrow \ker(\underline{\mathbb{X}}^T \mathbb{X}) = \{0\} \Longrightarrow \mathbb{X}^T \mathbb{X} \in \mathbb{R}^{d \times d} \text{ is injective} \Longrightarrow \mathbb{X}^T \mathbb{X} \text{ is invertible}.$$

• Now, 
$$\left(\mathbb{X}(\mathbb{X}^T\mathbb{X})^{-1}\mathbb{X}^T\right)^T = \mathbb{X}(\mathbb{X}^T\mathbb{X})^{-1}\mathbb{X}^T \Longrightarrow \mathbb{X}(\mathbb{X}^T\mathbb{X})^{-1}\mathbb{X}^T$$
 is symetric.

$$\left(\mathbb{X}(\mathbb{X}^T\mathbb{X})^{-1}\mathbb{X}^T\right)\left(\mathbb{X}(\mathbb{X}^T\mathbb{X})^{-1}\mathbb{X}^T\right) = \mathbb{X}(\mathbb{X}^T\mathbb{X})^{-1}\mathbb{X}^T \Longrightarrow \mathbb{X}(\mathbb{X}^T\mathbb{X})^{-1}\mathbb{X}^T \text{ is idempotent.}$$

Symetric + Idempotent  $\Rightarrow \mathbb{X}(\mathbb{X}^T\mathbb{X})^{-1}\mathbb{X}^T$  orthogonal projection matrix.

• 
$$\mathbb{X}$$
 on the left  $\Rightarrow \operatorname{Im}\left(\mathbb{X}(\mathbb{X}^T\mathbb{X})^{-1}\mathbb{X}^T\right) \subseteq V \stackrel{\text{def}}{=} \operatorname{Im}(\mathbb{X})$ . •  $\forall y \in V$ ,  $\exists ! \theta \in \mathbb{R}^d$  such that

$$\mathbb{X}\theta = y \colon \mathbb{X}(\mathbb{X}^T\mathbb{X})^{-1}\mathbb{X}^T y = \mathbb{X}(\mathbb{X}^T\mathbb{X})^{-1}\mathbb{X}^T\mathbb{X}\theta = \mathbb{X}\theta = y \Rightarrow V \subseteq \operatorname{Im}\left(\mathbb{X}(\mathbb{X}^T\mathbb{X})^{-1}\mathbb{X}^T\right).$$

# Maximum Likelihood Estimator of $(\theta, \sigma^2)$

If  $\mathbb{X} \in \mathbb{R}^{n \times d}$  is injective, the Maximum Likelihood Estimator (MLE) of  $(\theta, \sigma^2) \in \mathbb{R}^d \times \mathbb{R}_+^*$  is  $(\widehat{\theta_n} = (\mathbb{X}^T \mathbb{X})^{-1} X^T Y, \widehat{\sigma_n^2})$  where the variance estimator is still

$$\widehat{\sigma_n^2} = \frac{1}{n} \| Y - \Pi_V Y \|^2 = \frac{1}{n} \| Y - \mathbb{X} (\mathbb{X}^T \mathbb{X})^{-1} \mathbb{X}^T Y \|^2.$$

#### Proof

The likelihood is  $\mathcal{L}(\theta, \sigma^2, Y) = \left(\frac{1}{2\pi\sigma^2}\right)^{\frac{\mu}{2}} \exp\left(-\frac{1}{2\sigma^2} \|Y - \mathbb{X}\theta\|^2\right)$ .

- Let's fix  $\sigma^2 \in \mathbb{R}_+^*$ : maximum reached for  $\theta \in \mathbb{R}^d$  that minimizes  $\|Y \mathbb{X}\theta\|$ , i.e. when  $\mathbb{X}\theta = \Pi_V Y$  i.e. when  $\mathbb{X}\theta = \mathbb{X}(\mathbb{X}^T\mathbb{X})^{-1}\mathbb{X}^T Y \xrightarrow{\mathbb{X}^{injective}} \widehat{\theta_n} = (\mathbb{X}^T\mathbb{X})^{-1}\mathbb{X}^T Y$ .
- Now, the maximum is reached for  $\sigma^2$  that maximizes  $\log \left( \mathcal{L}\left(\widehat{\theta_n}, \sigma^2, Y\right) \right)$   $= -\frac{n}{2} \log \left( 2\pi \sigma^2 \right) \frac{1}{2\sigma^2} \left\| Y \mathbb{X}\widehat{\theta_n} \right\|^2 = -\frac{n}{2} \log \left( 2\pi \sigma^2 \right) \frac{1}{2\sigma^2} \left\| Y \Pi_V Y \right\|^2.$ So  $\widehat{\sigma_n^2} = \frac{1}{n} \left\| Y \Pi_V Y \right\|^2 = \frac{1}{n} \left\| Y \mathbb{X} (\mathbb{X}^T \mathbb{X})^{-1} \mathbb{X}^T Y \right\|^2$  (cf. proof slide 31 &  $\Pi_V$  expr.).

# Summary: MLEs of the GLM

## General Linear Model (GLM)

Random variables  $Y_i \in \mathbb{R}$  with means  $\mu_i$  and noise vector  $\varepsilon \sim \mathcal{N}\left(0, \sigma^2 I_n\right)$ .

Injective matrix  $\mathbb{X} \in \mathbb{R}^{n \times d}$  with image  $V \stackrel{def}{=} Im(\mathbb{X})$ , and parameters  $\theta \in \mathbb{R}^d$ .

$$\begin{pmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{pmatrix} = \begin{pmatrix} \mu_1 \\ \mu_2 \\ \vdots \\ \mu_n \end{pmatrix} + \begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{pmatrix} = \begin{pmatrix} x_{1,1} & \dots & x_{1,d} \\ x_{2,1} & \dots & x_{2,d} \\ \vdots & & \vdots \\ x_{n,1} & \dots & x_{n,d} \end{pmatrix} \begin{pmatrix} \theta_1 \\ \vdots \\ \theta_d \end{pmatrix} + \begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{pmatrix}.$$

$$oldsymbol{Y} \hspace{0.1cm} = \hspace{0.1cm} oldsymbol{\mu} \hspace{0.1cm} + \hspace{0.1cm} oldsymbol{arepsilon} \hspace{0.1cm} = \hspace{0.1cm} \mathbb{X} \hspace{0.1cm} oldsymbol{ heta} \hspace{0.1cm} + \hspace{0.1cm} oldsymbol{arepsilon} \hspace{0.1cm} \in \mathbb{R}$$

#### Maximum Likelihood Estimators (MLEs)

- MLE of the mean  $\widehat{\mu_n} = \prod_V Y = \mathbb{X}(\mathbb{X}^T \mathbb{X})^{-1} \mathbb{X}^T Y = \mathbb{X}\widehat{\theta_n}$ .
- MLE of the parameters  $\widehat{\theta_n} = (\mathbb{X}^T \mathbb{X})^{-1} \mathbb{X}^T Y$ .
- MLE of the variance  $\widehat{\sigma_n^2} = \frac{1}{n} \|Y \Pi_V Y\|^2 = \frac{1}{n} \sum_{i=1}^n (Y_i (\Pi_V Y)_i)^2$ .

Under the GLM hypotheses, we know from now the expressions of

- the MLE of the mean vector  $\widehat{\mu_n} \in \mathbb{R}^n$ ,
- the MLE of the parameter vector  $\widehat{\theta_n} \in \mathbb{R}^d$ ,
- lacksquare and the MLE of the variance  $\widehat{\sigma_n^2} \in \mathbb{R}_+^*$ ,

as functions of  $\mathbb{X} \& Y$ .

## Next question

What are the distributions of these random quantities?

## Some famous probability distributions

- A **chi-squared** distribution with k degrees of freedom, denoted by  $\mathcal{X}^2(k)$ , is the distribution of  $\|X\|^2$  with  $X \sim \mathcal{N}(0, I_k)$ , i.e.  $\sum_{i=1}^k X_i^2 \sim \mathcal{X}^2(k)$ , if  $X_i \in \mathcal{N}(0,1)$  i.i.d. (cf. Def. 4.3 of [GS20]).
- A **Student** distribution with k degrees of freedom, denoted by t(k), is the distribution of  $\frac{X}{\sqrt{Y/k}}$  with  $X \sim \mathcal{N}(0,1)$ ,  $Y \sim \mathcal{X}^2(k)$  and  $X \perp \!\!\! \perp Y$ .
- A **Fisher** distribution with  $k_1$  and  $k_2$  degrees of freedom, denoted by  $\mathcal{F}(k_1, k_2)$ , is the distribution of  $\frac{X/k_1}{Y/k_2}$  with  $X \sim \mathcal{X}^2(k_1)$ ,  $Y \sim \mathcal{X}^2(k_2)$  and  $X \perp \!\!\! \perp Y$ .

These distributions have known continuous densities, hence their cumulative density functions and their quantile functions can be computed.

#### Cochran Theorem

#### Let us consider

- **a** a centered random vector  $X \sim \mathcal{N}(0, \sigma^2 I_n)$ , with variance  $\sigma^2 > 0$ ,
- $\{E_i\}_{i=1}^p$  orthogonal vector subspaces such that  $\bigoplus_{i=1}^p E_i = \mathbb{R}^n$  and  $E_i \perp E_j \ \forall i \neq j$ ,
- $\Pi_{E_i} \in \mathbb{R}^{n \times n}$  the orthogonal projection on  $E_i$ .

## Then,

- **distribution of projections**:  $\Pi_{E_i}X \sim \mathcal{N}\left(0, \sigma^2\Pi_{E_i}\right) \ \forall i \in \{1, \dots, p\}$ . **independance**:  $\forall 1 \leq i, j \leq p, \ \Pi_{E_i}X \perp\!\!\!\perp \Pi_{E_j}X, \ i.e. \ \forall 1 \leq k, l \leq n, \ (\Pi_{E_i}X)_k \perp\!\!\!\perp (\Pi_{E_j}X)_l$ .
- **2** distribution of sum of squares:  $\frac{1}{\sigma^2} \|\Pi_{E_i} X\|^2 \sim \mathcal{X}^2 \Big( dim(E_i) \Big), \ \forall i \in \{1, \dots, p\}.$  independance:  $\forall 1 \leqslant i, j \leqslant p, \ \left\|\Pi_{E_i} X\right\|^2 \perp \!\!\! \perp \left\|\Pi_{E_j} X\right\|^2.$

#### Cochran Theorem

Random vector  $X \sim \mathcal{N}(0, \sigma^2 I_n)$ ,  $\{E_i\}_{i=1}^p$  orthogonal vector subspaces with  $\bigoplus_{i=1}^p E_i = \mathbb{R}^n$ ,  $\Pi_{E_i} \in \mathbb{R}^{n \times n}$  orthogonal projection on  $E_i$ .

- $\blacksquare \ \Pi_{E_i} X \sim \mathcal{N}\left(0, \sigma^2 \Pi_{E_i}\right) \text{ and } \Pi_{E_i} X \perp \!\!\!\perp \Pi_{E_j} X \quad \forall (i, j) \in \{1, \dots, p\}^2.$
- $\boxed{ 2 \ \frac{1}{\sigma^2} \left\| \Pi_{E_i} X \right\|^2 \sim \mathcal{X}^2 \Big( dim(E_i) \Big) \ \text{and} \ \left\| \Pi_{E_i} X \right\|^2 \perp \!\!\! \perp \left\| \Pi_{E_j} X \right\|^2, \quad \forall (i,j) \in \{1,\ldots,p\}^2.$

#### Proof -1

Orthonormal basis of  $\mathbb{R}^n$ :  $\{\underbrace{e_1,e_2,\ldots,e_{n_1}}_{\text{basis of } E_n},\underbrace{e_{n_1+1},\ldots,e_{n_1+n_2}}_{\text{basis of } E_2},\ldots,\underbrace{e_{n-1},e_n}_{\text{basis of } E_n}\}$ .

$$\Rightarrow \langle e_i, e_j \rangle = \mathbb{1}_{\{i=j\}} \ \forall 1 \leqslant i, j \leqslant n. \ \text{Let's define } M = \begin{pmatrix} e_1^T \\ \vdots \\ e_n^T \end{pmatrix} = \begin{pmatrix} (e_1)_1 & \dots & (e_1)_n \\ \vdots & & \vdots \\ (e_n)_1 & \dots & (e_n)_n \end{pmatrix}.$$

• MX is a gaussian vector as a linear transformation of the gaussian vector X (*cf.* Def. 4.2 of [GS20]). •  $\mathbb{E}[MX] = M\mathbb{E}[X] = 0$ . •  $Var(MX) = MVar(X)M^T = \sigma^2 MM^T = \sigma^2 I_n$ .

#### Cochran Theorem

Random vector  $X \sim \mathcal{N}\left(0, \sigma^2 I_n\right)$ ,  $\{E_i\}_{i=1}^p$  orthogonal vector subspaces with  $\bigoplus_{i=1}^p E_i = \mathbb{R}^n$ ,  $\Pi_{E_i} \in \mathbb{R}^{n \times n}$  orthogonal projection on  $E_i$ .

- $\blacksquare \ \Pi_{E_i} X \sim \mathcal{N}\left(0, \sigma^2 \Pi_{E_i}\right) \text{ and } \Pi_{E_i} X \perp \!\!\!\perp \Pi_{E_j} X \quad \forall (i, j) \in \{1, \dots, p\}^2.$

- MX gaussian,  $\mathbb{E}[MX] = 0$ ,  $Var(MX) = \sigma^2 I_n \xrightarrow{Def} MX = \begin{pmatrix} \langle e_1, X \rangle \\ \vdots \\ \langle e_n, X \rangle \end{pmatrix} \sim \mathcal{N}(0, \sigma^2 I_n)$ .
- MX gaussian, Var(MX) diagonal  $\xrightarrow{Prop.4.2}$  [GS20]  $(MX)_i = \langle e_i, X \rangle \perp \!\!\! \perp (MX)_j, \forall i \neq j.$
- $\bullet \ \Pi_{E_i}X = \sum_{k|e_k \in E_i} \langle e_k, X \rangle \ e_k, \ \bullet \ \{ \ k \ | \ e_k \in E_i \, \} \cap \{ \ k \ | \ e_k \in E_j \, \} = \emptyset \Longrightarrow$

#### Cochran Theorem

Random vector  $X \sim \mathcal{N}\left(0, \sigma^2 I_n\right)$ ,  $\{E_i\}_{i=1}^p$  orthogonal vector subspaces with  $\bigoplus_{i=1}^p E_i = \mathbb{R}^n$ ,  $\Pi_{E_i} \in \mathbb{R}^{n \times n}$  orthogonal projection on  $E_i$ .

- $\blacksquare \ \Pi_{E_i} X \sim \mathcal{N}\left(0, \sigma^2 \Pi_{E_i}\right) \text{ and } \Pi_{E_i} X \perp \!\!\!\perp \Pi_{E_i} X \quad \forall (i, j) \in \{1, \dots, p\}^2.$

#### Proof -3

Independence results are shown. Now,

- $\Pi_{E_i}X$  is also a **gaussian vector**, with **mean**  $\mathbb{E}\left[\Pi_{E_i}X\right] = \Pi_{E_i}\mathbb{E}\left[X\right] = 0$ , and **variance**  $Var(\Pi_{E_i}X) = \Pi_{E_i}Var(X)\Pi_{E_i}^T = \sigma^2I_n\Pi_{E_i}\Pi_{E_i}^T = \sigma^2\Pi_{E_i}$  (indeed  $\Pi_{E_i}$  is symetric & idempotent)  $\Longrightarrow \Pi_{E_i}X \sim \mathcal{N}\left(0, \sigma^2\Pi_{E_i}\right)$ .

Back to the estimation problem:  $Y = \mu + \varepsilon$ , with mean  $\mu \in V$ , vector subspace  $V \subset \mathbb{R}^n$ , dim(V) = d, noise  $\varepsilon \sim \mathcal{N}\left(0, \sigma^2 I_n\right)$  and  $\sigma^2 > 0$ .

# Distribution of the MLE of $(\mu, \sigma^2)$

Let  $(\widehat{\mu_n}, \widehat{\sigma_n^2})$  be the MLE of  $(\mu, \sigma^2)$ , i.e.  $\widehat{\mu_n} = \Pi_V Y$  and  $\sigma_n^2 = \frac{1}{n} \|Y - \Pi_V Y\|^2$ .

- $\blacksquare \widehat{\mu_n} \perp \widehat{\sigma_n^2},$
- $\blacksquare \widehat{\mu_n} \sim \mathcal{N}(\mu, \sigma^2 \Pi_V),$
- $\overline{ \frac{n\widehat{\sigma_n^2}}{\sigma^2}} \sim \mathcal{X}^2(n-d).$

#### Proof – 1

Consider  $V^{\perp}$  the orthogonal complement of  $V: V \perp V^{\perp}$  and  $V \bigoplus V^{\perp} = \mathbb{R}^n$ .

- $lackbox{}\widehat{\mu_n}=\Pi_V Y=\Pi_V (Y-\mu)+\Pi_V \mu=\Pi_V (Y-\mu)+\mu \ ( ext{because} \ \mu\in V),$
- $\widehat{\sigma_n^2} = \frac{1}{n} \| Y \Pi_V Y \|^2 = \frac{1}{n} \| \Pi_{V^{\perp}} Y \|^2 = \frac{1}{n} \| \Pi_{V^{\perp}} (Y \mu) + \Pi_{V^{\perp}} \mu \|^2 = \frac{1}{n} \| \Pi_{V^{\perp}} (Y \mu) \|^2.$

We now apply the Cochran Theorem on  $Y - \mu = \varepsilon \sim \mathcal{N}\left(0, \sigma^2 I_n\right)$  with  $V = E_1 \& V^{\perp} = E_2$ .

Back to the estimation problem:  $Y = \mu + \varepsilon$ , with mean  $\mu \in V$ , vector subspace  $V \subset \mathbb{R}^n$ , dim(V) = d, noise  $\varepsilon \sim \mathcal{N}\left(0, \sigma^2 I_n\right)$  and  $\sigma^2 > 0$ .

# Distribution of the MLE of $(\mu, \sigma^2)$

Let  $(\widehat{\mu_n}, \widehat{\sigma_n^2})$  be the MLE of  $(\mu, \sigma^2)$ , i.e.  $\widehat{\mu_n} = \Pi_V Y$  and  $\widehat{\sigma_n^2} = \frac{1}{n} \|Y - \Pi_V Y\|^2$ .

$$\blacksquare \widehat{\mu_n} \perp \!\!\! \perp \widehat{\sigma_n^2}, \quad \blacksquare \widehat{\mu_n} \sim \mathcal{N}(\mu, \sigma^2 \Pi_V), \quad \blacksquare \frac{n\widehat{\sigma_n^2}}{\sigma^2} \sim \mathcal{X}^2(n-d).$$

#### Proof – 2

Results of the Cochran theorem:

- $\blacksquare \ \Pi_V(Y-\mu) \perp \!\!\! \perp \Pi_{V^{\perp}}(Y-\mu). \ \text{Since} \ \left\{ \begin{array}{l} \widehat{\mu_n} = \Pi_V(Y-\mu) + \mu \\ \widehat{\sigma_n^2} = \frac{1}{n} \left\| \Pi_{V^{\perp}}(Y-\mu) \right\|^2 \end{array} \right. , \ \text{we get} \ \widehat{\mu_n} \perp \!\!\! \perp \widehat{\sigma_n^2}.$
- $\blacksquare \ \Pi_{V}(Y-\mu) \sim \mathcal{N}\left(0, \sigma^{2}\Pi_{V}\right) \Longrightarrow \widehat{\mu_{n}} = \Pi_{V}(Y-\mu) + \mu \sim \mathcal{N}\left(\mu, \sigma^{2}\Pi_{V}\right).$
- $\blacksquare \ \tfrac{1}{\sigma^2} \, \|\Pi_{V^\perp} \, Y\|^2 \sim \mathcal{X}^2 \Big( \text{dim}(V^\perp) \Big) \Longrightarrow \tfrac{n \widehat{\sigma_n^2}}{\sigma^2} \sim \mathcal{X}^2 (n-d).$

Now, consider the estimation problem:  $Y = \mathbb{X}\theta + \varepsilon$ , with injective matrix  $\mathbb{X} \in \mathbb{R}^{n \times d}$ ,  $\theta \in \mathbb{R}^d$ ,  $V = \text{Im}(\mathbb{X})$ , noise  $\varepsilon \sim \mathcal{N}\left(0, \sigma^2 I_n\right)$  and  $\sigma^2 > 0$ .

# Distribution of the MLE of $(\theta, \sigma^2)$

Let  $(\widehat{\theta_n}, \widehat{\sigma_n^2})$  be the MLE of  $(\theta, \sigma^2)$ , i.e.  $\widehat{\theta_n} = (\mathbb{X}^T \mathbb{X})^{-1} \mathbb{X}^T Y$  and  $\widehat{\sigma_n^2} = \frac{1}{n} \|Y - \Pi_V Y\|^2$ .

- $\blacksquare \widehat{\theta_n} \perp \perp \widehat{\sigma_n^2},$
- $\bullet \ \widehat{\theta_n} \sim \mathcal{N}\left(\theta, \sigma^2(\mathbb{X}^T\mathbb{X})^{-1}\right), \qquad \text{and still } \bullet \frac{n\widehat{\sigma_n^2}}{\sigma^2} \sim \mathcal{X}^2(n-d).$

#### Proof

- $\bullet \ \widehat{\theta_n} = (\mathbb{X}^T \mathbb{X})^{-1} (\mathbb{X}^T \mathbb{X}) \widehat{\theta_n} = (\mathbb{X}^T \mathbb{X})^{-1} \mathbb{X}^T \widehat{\mu_n}. \text{ As a measurable function of } \widehat{\mu_n}, \ \widehat{\theta_n} \perp \!\!\! \perp \widehat{\sigma_n^2}.$
- $\widehat{\theta_n} \stackrel{def}{=} (\mathbb{X}^T \mathbb{X})^{-1} \mathbb{X}^T Y, \text{ gaussian vector, as a linear transformation of the gauss. vector } Y. \\ \mathbb{E} \left[ \widehat{\theta_n} \right] = \mathbb{E} \left[ (\mathbb{X}^T \mathbb{X})^{-1} \mathbb{X}^T Y \right] = (\mathbb{X}^T \mathbb{X})^{-1} \mathbb{X}^T \mathbb{E} \left[ Y \right] = (\mathbb{X}^T \mathbb{X})^{-1} \mathbb{X}^T \mathbb{X} \theta = \theta.$

$$Var(\widehat{\theta_n}) = Var((\mathbb{X}^T \mathbb{X})^{-1} \mathbb{X}^T Y) = (\mathbb{X}^T \mathbb{X})^{-1} \mathbb{X}^T Var(Y) \left[ (\mathbb{X}^T \mathbb{X})^{-1} \mathbb{X}^T \right]^T$$
$$= (\mathbb{X}^T \mathbb{X})^{-1} \mathbb{X}^T \sigma^2 I_n \mathbb{X} (\mathbb{X}^T \mathbb{X})^{-1} = \sigma^2 (\mathbb{X}^T \mathbb{X})^{-1} \mathbb{X}^T \mathbb{X} (\mathbb{X}^T \mathbb{X})^{-1} = \sigma^2 (\mathbb{X}^T \mathbb{X})^{-1}.$$

# **Summary: MLE distributions**

## General Linear Model (GLM)

Random variables  $Y_i \in \mathbb{R}$  with means  $\mu_i$  and noise vector  $\varepsilon \sim \mathcal{N}\left(0, \sigma^2 I_n\right)$ . Injective matrix  $\mathbb{X} \in \mathbb{R}^{n \times d}$  with image  $V \stackrel{def}{=} \operatorname{Im}(\mathbb{X})$ , and parameters  $\theta \in \mathbb{R}^d$ .

$$\mathbf{Y} = \boldsymbol{\mu} + \boldsymbol{\varepsilon} = \mathbb{X} \boldsymbol{\theta} + \boldsymbol{\varepsilon} \in \mathbb{R}^n$$

#### MLEs and distributions

- MLE of the mean  $\widehat{\mu_n} = \Pi_V Y = \mathbb{X}\widehat{\theta_n}$ , with distribution  $\widehat{\mu_n} \sim \mathcal{N}\left(\mu, \sigma^2 \Pi_V\right)$ .
- MLE of the parameters  $\widehat{\theta_n} = (\mathbb{X}^T \mathbb{X})^{-1} \mathbb{X}^T Y$ , with distr.  $\widehat{\theta_n} \sim \mathcal{N}\left(\theta, \sigma^2(\mathbb{X}^T \mathbb{X})^{-1}\right)$ .
- MLE of the **variance**  $\widehat{\sigma_n^2} = \frac{1}{n} \|Y \Pi_V Y\|^2 = \frac{1}{n} \sum_{i=1}^n (Y_i (\Pi_V Y)_i)^2$ , with distribution  $\frac{n\widehat{\sigma_n^2}}{\sigma^2} \sim \mathcal{X}^2(n-d)$ .
- independences  $\widehat{\mu_n} \perp \!\!\! \perp \widehat{\sigma_n^2}$  and  $\widehat{\theta_n} \perp \!\!\! \perp \widehat{\sigma_n^2}$ .

Under the GLM hypotheses, we know from now the distributions of the maximum likelihood estimators  $\widehat{\mu_n} \in \mathbb{R}^n$ ,  $\widehat{\theta_n} \in \mathbb{R}^d$ , and  $\widehat{\sigma_n^2} \in \mathbb{R}_+^*$ .

#### Next question

Could these distributions help us to test hypotheses on the model's parameters/means?

# Linear Hypothesis Tests: F-test

#### Likelihood Ratio Test

Matrix  $\mathbb{X}^{n\times d}$  is injective, so  $V=\mathrm{Im}(\mathbb{X})\stackrel{def}{=}\mathbb{X}(\mathbb{R}^d)$  is d-dimensional.

Let  $\Theta_0 \subset \mathbb{R}^d$  be a p-dimensional vector subpace of the parameter space  $\mathbb{R}^d$ . Let us define the p-dimensional vector subspace  $W = \mathbb{X}(\Theta_0) \subset V$ , image of  $\Theta$  using the linear transf.  $\mathbb{X}$ . The likelihood-ratio test of

$$H_0: \mu \in W$$
 against  $H_1: \mu \notin W$  
$$\updownarrow$$
 
$$H_0: \theta \in \Theta_0 \quad \text{against} \quad H_1: \theta \notin \Theta_0$$

with significance level (or risk)  $\alpha \in ]0,1[$ , rejects  $H_0$  when

$$\frac{(n-d)\|\Pi_{V}Y - \Pi_{W}Y\|^{2}}{(d-p)\|Y - \Pi_{V}Y\|^{2}} > F_{\mathcal{F}(d-p,n-d)}^{-1}(1-\alpha),$$

where  $F_{\mathcal{F}(k_1,k_2)}^{-1}(1-\alpha)$  is the quantile of order  $1-\alpha$  of the Fisher distribution  $\mathcal{F}(k_1,k_2)$ .

#### Likelihood Ratio Test: F-test

Vector subpaces 
$$V = \mathbb{X}(\mathbb{R}^d)$$
,  $\dim(V) = d$ ,  $\Theta_0 \subset \mathbb{R}^d$ ,  $\dim(\Theta_0) = p$ , and  $W = \mathbb{X}(\Theta_0) \subset V$ ,  $\dim(W) = p$ .

The likelihood-ratio test of  $H_0: \mu \in W$   $(\theta \in \Theta_0)$  against  $H_1: \mu \notin W$   $(\theta \notin \Theta_0)$  with significance level  $\alpha > 0$ , rejects  $H_0$  when  $\frac{(n-d)\|\Pi_V Y - \Pi_W Y\|^2}{(d-p)\|Y - \Pi_V Y\|^2} > F_{\mathcal{F}(d-p,n-d)}^{-1}(1-\alpha)$ .

#### Proof – 1

The Likelihood-ratio test rejects  $H_0$  when the likelihood ratio  $\rho = \frac{\sup_{H_1} \mathcal{L}(\mu, \sigma^2, Y)}{\sup_{H_0} \mathcal{L}(\mu, \sigma^2, Y)}$  is too high.

$$\sup_{H_0} \mathcal{L}(\mu, \sigma^2, Y) = \sup_{(\mu, \sigma^2) \in \mathcal{W} \times \mathbb{R}_+^*} \mathcal{L}(\mu, \sigma^2, Y) = \mathcal{L}\left(\Pi_{\mathcal{W}}Y, \frac{1}{n} \|Y - \Pi_{\mathcal{W}}Y\|^2, Y\right) \text{ using MLEs in }$$

slide 30 with W. So, since the likelihood is  $\mathcal{L}(\mu, \sigma^2, Y) = \left(\frac{1}{2\pi\sigma^2}\right)^{\frac{n}{2}} \exp\left(-\frac{1}{2\sigma^2} \|Y - \mu\|^2\right)$ ,

$$\sup_{\mathcal{H}_0} \mathcal{L}(\mu, \sigma^2, Y) = \left(\frac{1}{\frac{2\pi}{n} \|Y - \Pi_W Y\|^2}\right)^{\frac{n}{2}} \exp\left(-\frac{\|Y - \Pi_W Y\|^2}{\frac{2}{n} \|Y - \Pi_W Y\|^2}\right) = \frac{\left(\frac{n}{2\pi}\right)^{\frac{n}{2}}}{\|Y - \Pi_W Y\|^n} e^{-\frac{n}{2}}.$$

#### Likelihood Ratio Test: F-test

Vector subpaces 
$$V = \mathbb{X}(\mathbb{R}^d)$$
,  $dim(V) = d$ ,  $\Theta_0 \subset \mathbb{R}^d$ ,  $dim(\Theta_0) = p$ , and  $W = \mathbb{X}(\Theta_0) \subset V$ ,  $dim(W) = p$ .

The likelihood-ratio test of  $H_0: \mu \in W$   $(\theta \in \Theta_0)$  against  $H_1: \mu \notin W$   $(\theta \notin \Theta_0)$  with significance level  $\alpha > 0$ , rejects  $H_0$  when  $\frac{(n-d)\|\Pi_V Y - \Pi_W Y\|^2}{(d-p)\|Y - \Pi_V Y\|^2} > F_{\mathcal{F}(d-p,n-d)}^{-1}(1-\alpha)$ .

#### Proof – 2

- Likelihood ratio  $\rho = \frac{\sup_{H_1} \mathcal{L}(\mu, \sigma^2, Y)}{\sup_{H_0} \mathcal{L}(\mu, \sigma^2, Y)}$  with  $\sup_{H_0} \mathcal{L}(\mu, \sigma^2, Y) = \frac{\left(\frac{n}{2\pi}\right)^{\frac{n}{2}}}{\|Y \Pi_W Y\|^n} e^{-\frac{n}{2}}$ .
- Now consider the numerator  $\sup_{H_1} \mathcal{L}(\mu, \sigma^2, Y) = \sup_{(\mu, \sigma^2) \in (V \setminus W) \times \mathbb{R}_+^*} \mathcal{L}(\mu, \sigma^2, Y).$

Let  $\{\overbrace{e_1,e_2,\ldots,e_p},e_{p+1},\ldots,e_d\}$  be an orthonormal basis of V. As  $\Pi_V$  is an orthogonal projection and as  $\langle Y,e_d\rangle=\langle Y-\mu,e_d\rangle+\langle \mu,e_d\rangle\sim\mathcal{N}\left(\langle \mu,e_d\rangle,\sigma^2\right)$  (see slide 39),  $\mathbb{P}\left(\Pi_VY\in W\right)=\mathbb{P}\left(\forall i>p,\langle\Pi_VY,e_i\rangle=0\right)=\mathbb{P}\left(\forall i>p,\langle Y,\Pi_Ve_i\rangle=0\right)=\mathbb{P}\left(\forall i>p,\langle Y,e_i\rangle=0\right)=\mathbb{P}\left(\forall i>p,\langle Y$ 

#### Likelihood Ratio Test: F-test

Vector subpaces 
$$V = \mathbb{X}(\mathbb{R}^d)$$
,  $dim(V) = d$ ,  $\Theta_0 \subset \mathbb{R}^d$ ,  $dim(\Theta_0) = p$ , and  $W = \mathbb{X}(\Theta_0) \subset V$ ,  $dim(W) = p$ .

The likelihood-ratio test of  $H_0: \mu \in W$   $(\theta \in \Theta_0)$  against  $H_1: \mu \notin W$   $(\theta \notin \Theta_0)$  with significance level  $\alpha > 0$ , rejects  $H_0$  when  $\frac{(n-d)\|\Pi_V Y - \Pi_W Y\|^2}{(d-p)\|Y - \Pi_V Y\|^2} > F_{\mathcal{F}(d-p,n-d)}^{-1}(1-\alpha)$ .

- Likelihood ratio  $\rho = \frac{\sup_{H_1} \mathcal{L}(\mu, \sigma^2, Y)}{\sup_{H_0} \mathcal{L}(\mu, \sigma^2, Y)}$  with  $\sup_{H_0} \mathcal{L}(\mu, \sigma^2, Y) = \frac{\left(\frac{n}{2\pi}\right)^{\frac{n}{2}}}{\|Y \Pi_W Y\|^n} e^{-\frac{n}{2}}$ .
- Since  $\Pi_V Y \notin W$  a.s., and since  $\Pi_V Y$  maximizes  $\mathcal{L}(\mu, \sigma^2, Y)$  for  $\mu \in V$  (see slide 31), we have  $\sup_{H_1} \mathcal{L}(\mu, \sigma^2, Y) = \sup_{(\mu, \sigma^2) \in (V \setminus W) \times \mathbb{R}_+^*} \mathcal{L}(\mu, \sigma^2, Y) = \mathcal{L}\left(\Pi_V Y, \frac{1}{n} \|Y \Pi_V Y\|^2, Y\right)$  $= \frac{\left(\frac{n}{2\pi}\right)^{\frac{n}{2}}}{\|Y \Pi_V Y\|^n} e^{-\frac{n}{2}} \Longrightarrow \quad \rho = \frac{\|Y \Pi_W Y\|^n}{\|Y \Pi_V Y\|^n} = \left(\frac{\|Y \Pi_W Y\|^2}{\|Y \Pi_V Y\|^2}\right)^{\frac{n}{2}} = \left(\frac{\|Y \Pi_V Y + \Pi_V Y \Pi_W Y\|^2}{\|Y \Pi_V Y\|^2}\right)^{\frac{n}{2}}.$

#### Likelihood Ratio Test: F-test

Vector subpaces 
$$V = \mathbb{X}(\mathbb{R}^d)$$
,  $\dim(V) = d$ ,  $\Theta_0 \subset \mathbb{R}^d$ ,  $\dim(\Theta_0) = p$ , and  $W = \mathbb{X}(\Theta_0) \subset V$ ,  $\dim(W) = p$ .

The likelihood-ratio test of  $H_0: \mu \in W \ (\theta \in \Theta_0)$  against  $H_1: \mu \notin W \ (\theta \notin \Theta_0)$ with significance level  $\alpha > 0$ , rejects  $H_0$  when  $\frac{(n-d)\|\Pi_VY - \Pi_WY\|^2}{(d-p)\|Y - \Pi_VY\|^2} > F_{\mathcal{F}(d-p,n-d)}^{-1}(1-\alpha)$ .

Likelihood ratio 
$$\rho = \left(\frac{\|Y - \Pi_V Y + \Pi_V Y - \Pi_W Y\|^2}{\|Y - \Pi_V Y\|^2}\right)^{\frac{n}{2}}$$
 with  $Y - \Pi_V Y \in V^{\perp}$  &  $\Pi_V Y - \Pi_W Y \in V$ .

Using Pythagore theorem, 
$$\rho = \left(\frac{\|Y - \Pi_V Y\|^2 + \|\Pi_V Y - \Pi_W Y\|^2}{\|Y - \Pi_V Y\|^2}\right)^{\frac{n}{2}} = \left(1 + \frac{\|\Pi_V Y - \Pi_W Y\|^2}{\|Y - \Pi_V Y\|^2}\right)^{\frac{n}{2}}$$
.

Now, under 
$$H_0: \mu \in W$$
,  $\|\Pi_V Y - \Pi_W Y\|^2 = \|\Pi_V (Y - \mu) - \Pi_W (Y - \mu) + \Pi_V \mu - \Pi_W \mu\|^2$   
=  $\|\Pi_V (Y - \mu) - \Pi_W (Y - \mu) + \mu - \mu\|^2 = \|\Pi_{V \cap W^{\perp}} (Y - \mu)\|^2$ .

Note that 
$$(V \cap W^{\perp}) \perp V^{\perp}$$
. Cochran theorem  $\Rightarrow \bullet \frac{\|\Pi_{V \cap W^{\perp}}(Y - \mu)\|^2}{\sigma^2} \sim \mathcal{X}^2(d - p)$ .  
 $\bullet \frac{\|Y - \Pi_V Y\|^2}{\sigma^2} = \frac{\|\Pi_{V^{\perp}} Y\|^2}{\sigma^2} = \frac{\|\Pi_{V^{\perp}}(Y - \mu)\|^2}{\sigma^2} \perp \frac{\|\Pi_{V \cap W^{\perp}}(Y - \mu)\|^2}{\sigma^2} \bullet \frac{\|Y - \Pi_V Y\|^2}{\sigma^2} \sim \mathcal{X}^2(n - d)$ .

$$\frac{\|Y - \Pi_V Y\|^2}{\sigma^2} = \frac{\|\Pi_{V^{\perp}} Y\|^2}{\sigma^2} = \frac{\|\Pi_{V^{\perp}} (Y - \mu)\|^2}{\sigma^2} \perp \perp \frac{\|\Pi_{V \cap W^{\perp}} (Y - \mu)\|^2}{\sigma^2} \qquad \bullet \frac{\|Y - \Pi_V Y\|^2}{\sigma^2} \sim \mathcal{X}^2 (n - d)^2$$

#### Likelihood Ratio Test: F-test

Vector subpaces 
$$V = \mathbb{X}(\mathbb{R}^d)$$
,  $dim(V) = d$ ,  $\Theta_0 \subset \mathbb{R}^d$ ,  $dim(\Theta_0) = p$ , and  $W = \mathbb{X}(\Theta_0) \subset V$ ,  $dim(W) = p$ .

The likelihood-ratio test of  $H_0: \mu \in W$   $(\theta \in \Theta_0)$  against  $H_1: \mu \notin W$   $(\theta \notin \Theta_0)$  with significance level  $\alpha > 0$ , rejects  $H_0$  when  $\frac{(n-d)\|\Pi_V Y - \Pi_W Y\|^2}{(d-p)\|Y - \Pi_V Y\|^2} > F_{\mathcal{F}(d-p,n-d)}^{-1}(1-\alpha)$ .

$$\mathsf{LR} \; \rho = \left(1 + \frac{\|\Pi_V Y - \Pi_W Y\|^2}{\|Y - \Pi_V Y\|^2}\right)^{\frac{n}{2}} = g\left(\frac{(n-d)\|\Pi_V Y - \Pi_W Y\|^2}{(d-p)\|Y - \Pi_V Y\|^2}\right) \; \mathsf{with} \; g \; \mathsf{increasing} \; \mathsf{fct.} \; \; \mathsf{Under} \; H_0,$$

$$\frac{\|\Pi_{V}Y - \Pi_{W}Y\|^{2}}{\sigma^{2}} \sim \mathcal{X}^{2}(d-p), \ \frac{\|Y - \Pi_{V}Y\|^{2}}{\sigma^{2}} \sim \mathcal{X}^{2}(n-d) \ \text{and} \ \|Y - \Pi_{V}Y\|^{2} \ \bot\!\!\!\bot \ \|\Pi_{V}Y - \Pi_{W}Y\|^{2}.$$

Definition of Fisher distribution (slide 36) 
$$\Longrightarrow S \stackrel{def}{=} \frac{(n-d)\|\Pi_V Y - \Pi_W Y\|^2}{(d-p)\|Y - \Pi_V Y\|^2} \sim \mathcal{F}(d-p,n-d).$$

For a test with significance 
$$\alpha$$
, we want  $t$  (or rather  $g^{-1}(t)$ ) such that  $\alpha = \mathbb{P}_{H_0}$  (reject  $H_0$ )  $= \mathbb{P}_{H_0} \left( \rho > t \right) = \mathbb{P}_{H_0} \left( S > g^{-1}(t) \right) = 1 - \mathbb{P}_{H_0} \left( S < g^{-1}(t) \right) = 1 - F_{\mathcal{F}(d-p,n-d)} \left( g^{-1}(t) \right).$ 

We can conclude 
$$g^{-1}(t) = F_{\mathcal{F}(d-p,n-d)}^{-1}(1-\alpha)$$
.

# **Summary: Linear Hypotheses Testing**

## General Linear Model (GLM)

Random variables  $Y_i \in \mathbb{R}$  with means  $\mu_i$  and noise vector  $\varepsilon \sim \mathcal{N}\left(0, \sigma^2 I_n\right)$ .

Injective matrix  $\mathbb{X} \in \mathbb{R}^{n \times d}$  with image  $V \stackrel{def}{=} Im(\mathbb{X})$ , and parameters  $\theta \in \mathbb{R}^d$ .

$$oldsymbol{Y} = oldsymbol{\mu} + oldsymbol{arepsilon} = \mathbb{X} \, oldsymbol{ heta} + oldsymbol{arepsilon} \in \mathbb{R}^n$$

#### Likelihood-ratio test or F-test

 $\Theta_0 \subset \mathbb{R}^d$  *p*-dimensional vector subpace of  $\mathbb{R}^d$ , and  $W = \mathbb{X}(\Theta_0) \subset V$ .

The Likelihood-ratio test of  $H_0: \mu \in W$  against  $H_1: \mu \notin W$ ,  $\Leftrightarrow H_0: \theta \in \Theta_0$  vs  $H_1: \theta \notin \Theta_0$ , with significance level  $\alpha \in ]0,1[$ , rejects  $H_0$  when

$$S = \frac{(n-d) \|\Pi_V Y - \Pi_W Y\|^2}{(d-p) \|Y - \Pi_V Y\|^2} = \frac{(n-d) \|\Pi_V Y - \Pi_W Y\|^2}{(d-p) n \widehat{\sigma}_p^2} > F_{\mathcal{F}(d-p,n-d)}^{-1}(1-\alpha),$$

where  $F_{\mathcal{F}(k_1,k_2)}^{-1}(1-\alpha)$  is the quantile of order  $1-\alpha$  of the Fisher distribution  $\mathcal{F}(k_1,k_2)$ .

## Particular cases

- Y function of quantitative variables: Linear regression
- Y function of categorical variables: ANalysis Of VAriance (ANOVA)

# **Linear Regression**

Suppose that,  $\forall i \in \{1, \dots, n\}$ , the  $i^{th}$  row of  $\mathbb{X}$  contains d values,  $\left\{x_i^{(1)}, \dots, x_i^{(d)}\right\}$ , that could explain linearly  $Y_i$ :

$$Y = \mathbb{X}\theta = \begin{pmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{pmatrix} = \begin{pmatrix} x_1^{(1)} & \dots & x_1^{(d)} \\ x_2^{(1)} & \dots & x_2^{(d)} \\ \vdots & & & \vdots \\ x_n^{(1)} & \dots & x_n^{(d)} \end{pmatrix} \begin{pmatrix} \theta_1 \\ \vdots \\ \theta_d \end{pmatrix} + \begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{pmatrix}$$

- the MLE is the linear least square parameters  $\widehat{\theta_n} = (\mathbb{X}^T \mathbb{X})^{-1} \mathbb{X}^T Y$ .
- confidence interval:  $\left\{\theta_0 \in \mathbb{R}^d \mid H_0: \theta = \theta_0 \text{ accepted} \right\}$   $= \left\{\theta_0 \in \mathbb{R}^d \mid \frac{(n-d)\|\Pi_V Y \mathbb{X}\theta_0\|^2}{(d-p)\|Y \Pi_V Y\|^2} \leqslant F_{\mathcal{F}(d-p,n-d)}^{-1}(1-\alpha) \right\}$
- Test if values whose indices are in I are necessary for the regression:  $H_0: \theta \in \Theta_0$  with  $\Theta_0 = \{\theta \mid \theta_i = 0 \ \forall i \in I\}$ , i.e. the linear span of vectors  $(0, \ldots, 1, \ldots, 0, (i))^T \ \forall i \notin I$ .

## Outline

- 1 Introduction
- 2 Risk computation with probabilities
- 3 General Linear Mode
- 4 ANalysis Of VAriance (ANOVA)
- 5 Other useful tests

#### Model

$$Y_{ij} = m_i + \varepsilon_{ij}, \qquad \forall i \leqslant d, \ \forall j \leqslant n_i \ \text{with} \ \varepsilon_{ij} \sim \mathcal{N}(0, \sigma^2) \ \text{i.i.d.}, \ m_i \in \mathbb{R} \ \text{and} \ \sum_{i=1}^N n_i = n.$$

e.g. d conditions/treatments, for each condition i,  $n_i$  living beings under condition i (only!),  $Y_{ij}$  = measurement on the  $j^{th}$  living beings of the  $i^{th}$  condition group.

## In the framework of GLM

$$Y = \begin{pmatrix} Y_{1,1} \\ \vdots \\ Y_{1,n_1} \\ Y_{2,1} \\ \vdots \\ Y_{2,n_2} \\ \vdots \\ Y_{d,n_d} \end{pmatrix} = \begin{pmatrix} m_1 \\ \vdots \\ m_1 \\ m_2 \\ \vdots \\ m_2 \\ \vdots \\ m_d \end{pmatrix} + \begin{pmatrix} \varepsilon_{1,1} \\ \vdots \\ \varepsilon_{1,n_1} \\ \varepsilon_{2,1} \\ \vdots \\ \varepsilon_{2,n_2} \\ \vdots \\ \varepsilon_{d,n_d} \end{pmatrix} = m_1 \begin{pmatrix} 1 \\ \vdots \\ 1 \\ 0 \\ \vdots \\ \vdots \\ 0 \end{pmatrix} + m_2 \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ \vdots \\ 1 \\ 0 \end{pmatrix} + \dots + m_d \begin{pmatrix} 0 \\ \vdots \\ \vdots \\ \varepsilon_{1,n_1} \\ \varepsilon_{2,1} \\ \vdots \\ \varepsilon_{2,n_2} \\ \vdots \\ \varepsilon_{2,n_2} \\ \vdots \\ \varepsilon_{d,n_d} \end{pmatrix}$$

#### In the framework of GLM

$$Y = \mu + \varepsilon = \mathbb{X}\theta = m_1e_1 + m_2e_2 + \ldots + m_de_d + \varepsilon$$

with  $\forall i \in \{1,\ldots,d\}$ ,  $e_i \in \mathbb{R}^n$  such that  $\forall j \in \{1,\ldots,n_i\}$ ,  $(e_i)_j = \mathbb{1}_{\{\mu_i = m_i\}}$ .

$$lacksquare \mathbb{X} = egin{pmatrix} e_1 & e_2 & \dots & e_d \end{pmatrix} ext{ and } heta = egin{pmatrix} m_1 \ m_2 \ dots \ m_d \end{pmatrix}$$

- ullet  $\mu \in V = span(e_1, e_2, \dots, e_d) \subset \mathbb{R}^n$
- $\varepsilon \sim \mathcal{N}\left(0, \sigma^2 I_n\right)$

#### In the framework of GLM

$$Y = \mu + \varepsilon = \mathbb{X}\theta + \varepsilon = \begin{pmatrix} e_1 & e_2 & \dots & e_d \end{pmatrix} \begin{pmatrix} m_1 \\ m_2 \\ \vdots \\ m_d \end{pmatrix} + \varepsilon$$

$$V= extstyle extstyle span ig( extstyle e_1, e_2, \dots, e_d ig) = extstyle span$$

$$\begin{pmatrix} 1 \\ \vdots \\ 1 \\ 0 \\ 0 \\ 0 \\ \vdots \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 0 \\ \vdots \\ \vdots \\ 0 \\ 0 \\ 0 \end{pmatrix}, \dots, \begin{pmatrix} 0 \\ 0 \\ \vdots \\ \vdots \\ 0 \\ 0 \\ 0 \\ 1 \\ \vdots \\ 1 \end{pmatrix}$$

Note that vectors  $\{e_i\}_{i=1}^d$  are orthogonal.

 $V = span(e_1, e_2, \dots, e_d)$ . We compute the MLEs using that vectors  $\{e_i\}_{i=1}^d$  are orthogonal:

$$\widehat{\mu_n} = \Pi_V Y = \sum_{i=1}^d \frac{\langle Y, e_i \rangle}{\|e_i\|^2} = \sum_{i=1}^d \left( \frac{1}{n_i} \sum_{j=1}^{n_i} Y_{ij} \right) e_i = \sum_{i=1}^d Y_i \cdot e_i \text{ with } Y_i \cdot = \frac{1}{n_i} \sum_{j=1}^{n_i} Y_{ij}$$

$$\widehat{\theta_n}: \text{ we have } \widehat{\mathbb{X}\widehat{\theta_n}} = \widehat{\mu_n} \text{ i.e. } \sum_{i=1}^d \left(\widehat{\theta_n}\right)_i e_i = \sum_{i=1}^d Y_{i.} e_i \Rightarrow \widehat{\theta_n} = \begin{pmatrix} Y_1. \\ Y_2. \\ \vdots \\ Y_d. \end{pmatrix}$$

$$\widehat{\sigma_n^2} = \frac{1}{n} \|Y - \Pi_V Y\|^2 = \frac{1}{n} \sum_{i=1}^d \sum_{j=1}^{n_i} (Y_{ij} - (\Pi_V Y)_i)^2 = \frac{1}{n} \sum_{i=1}^d \sum_{j=1}^{n_i} (Y_{ij} - Y_{i.})^2$$

#### Model

$$Y_{ij}=m_i+arepsilon_{ij}, \qquad orall i\leqslant d$$
 ,  $orall j\leqslant n_i$  with  $arepsilon_{ij}\sim \mathcal{N}(0,\sigma^2)$  i.i.d,  $m_i\in\mathbb{R}$  and  $\sum_{i=1}^d n_i=n$ .

e.g. N conditions/treatments, for each condition i,  $n_i$  living beings under condition i (only!),  $Y_{ii}$  = measurement on the  $j^{th}$  living beings of the  $i^{th}$  condition group.

Could we test if conditions have effets?

#### ANOVA:

Linear Hypothesis test:

$$H_0: m_1 = m_2 = \ldots = m_d$$

against

$$H_1: \exists i \neq j \text{ s.t. } m_i \neq m_j$$

#### Likelihood-ratio test

We have simply 
$$H_0: \mu \in W = span\left(\begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}\right) = span(\mathbb{1}_n)$$
 where  $\mathbb{1}_n = \sum_{i=1}^d e_i = \mathbb{1}_n$ .

#### Model

$$Y_{ij} = m_i + \varepsilon_{ij}, \quad \forall i \leqslant d, \ \forall j \leqslant n_i \ \text{with} \ \varepsilon_{ij} \sim \mathcal{N}(0, \sigma^2) \ \text{i.i.d.}, \ m_i \in \mathbb{R} \ \text{and} \ \sum_{i=1}^d n_i = n.$$

## ANOVA: test condition effect

Linear Hypothesis test:  $H_0: m_1 = m_2 = \ldots = m_d$  against  $H_1: \exists i \neq j \text{ s.t. } m_i \neq m_i$ 

#### Likelihood-ratio test

- $W = span(\mathbb{1}_n)$  where  $\mathbb{1}_n = \sum_{i=1}^d e_i$ , dim(W) = 1,
- $V = span(e_1, \ldots, e_d), dim(V) = d.$
- $\blacksquare \ \Pi_V Y = \sum_{i=1}^d Y_i.e_i,$

$$\blacksquare \Pi_W Y = \frac{\langle \mathbb{1}_n, Y \rangle}{\|\mathbb{1}_n\|^2} \mathbb{1}_n = \frac{1}{n} \sum_{i=1}^a \sum_{j=1}^{n_i} Y_{ij} \mathbb{1}_n = Y..\mathbb{1}_n.$$

 $\Rightarrow$  The test with significance level  $\alpha$  rejects  $H_0$  when

$$S = \frac{(n-N) \|\Pi_W Y - \Pi_V Y\|^2}{(N-1) \|Y - \Pi_V Y\|^2} = \frac{(n-N) \sum_{i=1}^{N} n_i (Y_{i.} - Y_{..})^2}{(N-1) \sum_{i=1}^{N} \sum_{i=1}^{n_i} (Y_{ij} - Y_{i.})^2} > F_{\mathcal{F}(N-1,n-N)}^{-1}(1-\alpha).$$

## ANOVA with scipy:

scipy.stats: f\_oneway

### Back to the Student test

Result: If  $X \sim t(d)$  then  $X^2 \sim \mathcal{F}(1, d)$ .

 $\Rightarrow$  When d=2, an ANOVA is a Student t-test.

scipy.stats: ttest\_ind

## Extensions for repeated measures

If variables are not independent, because of repeated measures, with different conditions, on the same living being,

- d=2: paired t-test.
  - scipy.stats: ttest\_rel
- d > 2: repeated-measure ANOVA.

#### Other extensions

- two-ways ANOVA, when two kind of conditions are considered.
- MANOVA when  $Y_i \in \mathbb{R}^m$ ,  $\forall i \in \{1, ..., n\}$ .

#### Note on the issue of multiple comparison

- In the ANOVA framework, to discriminate which conditions is statistically different from the others, we would need multiple Student t-tests.
- However, when performing multiple tests on the same dataset, the chance of observing a rare event increases, just like erroneouslty rejecting.
- To compensate for that increase, Bonferroni method consist in dividing the risk  $(\alpha)$  by the number of tests.
- Other methods exist: Dunnett, Scheffé, Tukey, ...

## Outline

- Introduction
- 2 Risk computation with probabilities
- 3 General Linear Mode
- 4 ANalysis Of VAriance (ANOVA)
- 5 Other useful tests

## Other useful tests

## Non-parametric tests

A test is said non-parametric when no assumption is made on the distribution of the variables.

- Kruskal-Wallis test, non-parametric version of ANOVA
  - ▶ scipy.stats: kruskal
- Friedman test, non-parametric version of repeated-measure ANOVA
  - ► scipy.stats: friedmanchisquare
- Wilcoxon-Mann-Whitney, non-parametric version of t-test
  - ► scipy.stats: mannwhitneyu
- Wilcoxon test, non-parametric version of the paired t-test
  - ► scipy.stats: wilcoxon

## Other useful tests

#### Permutation tests

 $H_0$ : exchangeability of the conditions.

- compute the statistic s of the dataset from experimentation  $y \in \mathbb{R}^n$ .
- generate  $m \in \mathbb{N}$  datasets  $\{y_k^0\}_{k=1}^m$  under  $H_0$ .
- compute the m statistics  $\{s_k^0\}_{k=1}^m$ .
- the empirical *p*-value is  $\frac{\#\{k \mid s_k^0 \in \mathcal{R}(s)\}}{m}$ .

# Other useful tests

#### Correlation tests

- Pearson test: the null hypothesis is a null correlation.
  - scipy.stats: pearsonr
- Spearman test: non-parametric version of the Pearson test.
  - ► scipy.stats: spearmanr



# Institut Supérieur de l'Aéronautique et de l'Espace 10 avenue Édouard Belin - BP 54032 31055 Toulouse Cedex 4 - France Phone: +33 5 61 33 80 80 www.isae-supaero.fr

