Типовой расчет по математике

Интегрирование функции одной переменной 3 модуль

Учебно-методическое пособие

Санкт-Петербург

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ

Брылевская Л.И., Бодрова Н.А., Сейферт И.В., Сытенко Н.В.

Типовой расчет по математике Интегрирование функции одной переменной 3 модуль

Учебно-методическое пособие

Санкт-Петербург

2013

Брылевская Л.И., Бодрова Н.А., Сейферт И.В., Сытенко Н.В. Типовой расчет "Интегрирование функции одной переменной". 3 модуль. Учебнометодическое пособие. — СПб: НИУ ИТМО, 2013. — 65 с.

Предлагаемое пособие предназначено для студентов технических специальностей первого курса.

Рекомендовано к печати Ученым советом естественнонаучного факультета, 22.05.2012, протокол №5.

В 2009 году Университет стал победителем многоэтапного конкурса, в результате которого определены 12 ведущих университетов России, которым присвоена категория «Национальный исследовательский университет». Министерством образования и науки Российской Федерации была утверждена государственного образовательного учреждения Программа развития высшего профессионального образования «Санкт-Петербургский государственный университет информационных технологий, механики и оптики» на 2009-2018 годы.

©Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики, 2013

© Брылевская Л.И., Бодрова Н.А., Сейферт И.В., Сытенко Н.В. 2013

ОГЛАВЛЕНИЕ

Часть I. Методические указания

Раздел 1. Неопределённый интеграл

Задание 1. Интегрирование методом внесения под знак дифференциала

Задание 2. Нахождение интегралов вида

 $\int \sin \alpha x \cdot \cos \beta x dx, \int \cos \alpha x \cdot \cos \beta x dx, \int \sin \alpha x \cdot \sin \beta x dx, \int \sin^n x \cdot \cos^m x dx$

Задание 3. Нахождение интегралов вида $\int \frac{Mx+N}{ax^2+bx+c}dx$

$$\int \frac{Mx + N}{\sqrt{ax^2 + bx + c}} dx$$

Задание 4. Интегрирование дробно-рациональных функций

Задание 5. Интегрирование иррациональных функций вида

$$R\left(x, \sqrt[k_1]{\left(\frac{ax+b}{cx+d}\right)^{m_1}}, \dots, \sqrt[k_s]{\left(\frac{ax+b}{cx+d}\right)^{m_s}}\right)$$

Задание 6. Интегрирование иррациональных функций вида

$$R(x, \sqrt{a^2 - x^2}), R(x, \sqrt{x^2 - a^2}), R(x, \sqrt{a^2 + x^2})$$

Задание 7. Интегрирование тригонометрических функций $R(\sin x, \cos x)$ методом подстановки

Раздел 2. Определённый интеграл

1. Методы интегрирования

Задание 8. Метод интегрирования по частям в определённом интеграле

Задание 9. Метод интегрирования по частям в определённом интеграле

2. Приложения определённого интеграла

Задание 10. Нахождение площади области, ограниченной кривыми, заданными в декартовых координатах

Задание 11. Нахождение длины кривой, заданной в декартовых координатах

Задание 12. Параметрически заданные кривые и полярная система координат в приложениях определённого интеграла

Раздел 3. Несобственные интегралы

Задание 13. Нахождение несобственных интегралов:

- а) по бесконечному промежутку интегрирования,
- б) от неограниченной на отрезке функции.

Часть II. Типовые задания

- Задание 1.
- Задание 2.
- Задание 3.
- Задание 4.
- Задание 5.
- Задание 6.
- Задание 7.
- Задание 8.
- Задание 9.
- Задание 10.
- Залание 11.
- Задание 12.
- Задание 13.

Часть І. МЕТОДИЧЕСКИЕ УКАЗАНИЯ

Типовой расчёт содержит 30 вариантов заданий по трём разделам интегрального исчисления: неопределённые интегралы, определённые интегралы и несобственные интегралы. В каждом варианте 15 задач.

Разберём решения типовых заданий по каждому из указанных разделов.

Раздел 1

НЕОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ

Для выполнения первых трёх заданий помимо знания таблицы интегралов нам понадобится:

1) свойство линейности неопределённого интеграла

$$\int (a \cdot f(x) + b \cdot g(x)) dx = a \int f(x) dx + b \int g(x) dx, \text{ где } a, b \in \mathbf{R};$$

- 2) знание тригонометрических формул и основных свойств элементарных функций;
- 3) метод интегрирования внесением под знак дифференциала.

По определению дифференциала функции $\varphi'(x)dx = d(\varphi(x))$.

Переход в этом равенстве слева направо называют «подведением множителя $\varphi'(x)$ под знак дифференциала».

Пусть требуется найти интеграл вида $\int f(\varphi(x)) \cdot \varphi'(x) dx$. В этом интеграле подведём функцию $\varphi'(x)$ под знак дифференциала, а затем выполним подстановку $\varphi(x) = u$ (замену переменной интегрирования), тогда мы получим формулу подстановки в неопределённом интеграле

$$\int f(\varphi(x)) \cdot \varphi'(x) dx = \int f(\varphi(x)) d(\varphi(x)) = \int f(u) du \tag{1}$$

С появлением некоторого навыка интегрирования подстановка $\varphi(x) = u$ обычно производится в уме.

Простой частный случай формулы (1) можно получить для линейной функции $\varphi(x) = ax + b$, тогда d(ax + b) = a dx. Следовательно,

$$\int f(ax+b)dx = \frac{1}{a} \int f(ax+b)d(ax+b) = \frac{1}{a} F(ax+b) + c$$
(2)

Задание 1. Интегрирование методом внесения под знак дифференциала

Пример 1. Найдите
$$\int \frac{dx}{\sqrt{4x-1}}$$

<u>Решение</u>: Воспользуемся формулой (2), поскольку внутренняя функция композиции $\varphi(x) = 4x - 1$ линейна:

$$\int \frac{dx}{\sqrt{4x-1}} = \frac{1}{4} \int (4x-1)^{-0.5} d(4x-1) = \frac{1}{4} \cdot 2(4x-1)^{0.5} + C = \frac{\sqrt{4x-1}}{2} + C.$$

Пример 2. Найдите
$$\int \frac{(3arctg^4x+1)dx}{1+x^2}$$

Решение:

Воспользуемся свойством линейности, разобьём исходный интеграл на сумму двух интегралов и вынесём константу за знак первого интеграла

$$\int \frac{3arctg^{4}x}{1+x^{2}} = 3\int arctg^{4}x \cdot \frac{1}{1+x^{2}}dx + \int \frac{dx}{1+x^{2}} =$$

Второй интеграл табличный, а в первом внесём производную под знак дифференциала $\frac{1}{1+x^2}dx=d(arctgx)$, выполним подстановку arctgx=t и воспользуемся табличной формулой для интеграла от степенной функции

$$=3\int t^4 dt + arctgx = 3\frac{t^5}{5} + arctgx + C = 3\frac{arctg^5x}{5} + arctgx + C.$$

Задание 2. Нахождение интегралов вида $\int \sin \alpha x \cdot \cos \beta x dx$,

$$\int \cos \alpha x \cdot \cos \beta x \, dx \,, \int \sin \alpha x \cdot \sin \beta x \, dx \,, \int \sin^n x \cdot \cos^m x \, dx$$

Для нахождения интегралов вида $\int \sin \alpha x \cdot \cos \beta x dx$, $\int \cos \alpha x \cdot \cos \beta x dx$, $\int \sin \alpha x \cdot \sin \beta x dx$, следует преобразовать подынтегральную функцию, воспользовавшись формулами тригонометрии

$$\sin \alpha x \cdot \cos \beta x = \frac{1}{2} (\sin(\alpha + \beta)x + \sin(\alpha - \beta)x)$$

$$\cos \alpha x \cdot \cos \beta x = \frac{1}{2} (\cos(\alpha - \beta)x + \cos(\alpha + \beta)x)$$

$$\sin \alpha x \cdot \sin \beta x = \frac{1}{2} (\cos(\alpha - \beta)x - \cos(\alpha + \beta)x)$$

$$(4)$$

<u>Пример 1</u>. Найдите $\int sin2xcos10xdx$.

<u>Решение</u>. Так как по формуле (4) $sin2xcos10x = \frac{1}{2}(sin12x - sin8x)$, то $\int sin2xcos10xdx = -\frac{1}{2}(\frac{cos12x}{12} - \frac{cos8x}{8}) + C = \frac{cos8x}{16} - \frac{cos12x}{24} + C.$

Для нахождения интегралов вида $\int sin^n x cos^m x dx$ используют метод замены переменной (или метод внесения под знак дифференциала) и формулы понижения степени:

$$\sin^2 x = \frac{1 - \cos 2x}{2}, \qquad \cos^2 x = \frac{1 + \cos 2x}{2}.$$
 (5)

Рассмотрим случай, когда хотя бы один показатель степени является нечётным числом. Пусть n=2k+1. Тогда

$$\int \sin^n x \cos^m x dx = \int \sin^{2k+1} x \cos^m x dx = \int (\sin^2 x)^k \cos^m x \cdot \sin x \ dx.$$

Так как $\sin x \ dx = -d\cos x$, а $\sin^2 x = 1 - \cos^2 x$, то, обозначив $\cos x = t$, получим интеграл от рациональной функции:

$$\int \sin^n x \cos^m x dx = -\int (1-t^2)^k t^m dt.$$

Отметим, что этот метод интегрирования применим и в случае, когда один из показателей степеней m или n нечётное число, а второй — рациональное число.

Если <u>оба показателя степени чётные</u>, то степени необходимо понизить, используя формулы понижения степени (5), известные из курса тригонометрии. Пусть n = 2k, m = 2l. Тогда

$$\int sin^n x cos^m x dx = \int (sin^2 x)^k (cos^2 x)^l dx = \frac{1}{4^{k+l}} \int (1 - cos2x)^k (1 + cos2x)^l dx.$$

В полученном интеграле следует раскрыть скобки, воспользоваться свойством линейности (т. е. представить как сумму интегралов) и применять описанные методы до тех пор, пока интеграл не сведётся к сумме табличных первообразных.

Рассмотрим оба случая на примерах.

Пример 2. Найдите $\int sin^4x dx$.

<u>Решение.</u> Так как показатель степени — чётное число (n = 4), используем формулу (5) и раскроем скобки:

$$\int \sin^4 x dx = \int \frac{(1 - \cos 2x)^2}{4} dx = \frac{1}{4} \int (1 - 2\cos 2x + \cos^2 2x) dx.$$

Полученный интеграл равен сумме трёх интегралов:

$$\int sin^4x dx = \frac{1}{4} \int dx - \frac{1}{2} \int cos2x dx + \frac{1}{4} \int cos^22x dx.$$

Первые два интеграла будут равны $\frac{1}{4}x$ и $-\frac{1}{4}\sin 2x$ соответственно. В

последнем интеграле опять применим формулу понижения степени:

$$\int \cos^2 2x dx = \frac{1}{2} \int (1 + \cos 4x) dx = \frac{1}{2} x + \frac{1}{8} \sin 4x + C.$$

В результате имеем

$$\int \sin^4 x dx = \frac{3}{8}x - \frac{1}{4}\sin 2x + \frac{1}{32}\sin 4x + C.$$

Пример 3. Найдите $\int cosx\sqrt{sin^3x}dx$.

<u>Решение.</u> Заметим, что степень функции $\sin x$, $n = \frac{3}{2}$, является рациональным числом, а показатель степени $\cos x$ — нечётное число (m = 1). Значит, можно ввести замену: $\sin x = t$, $\cos x \ dx = d \sin x = dt$.

Тогда

$$\int \cos x \sqrt{\sin^3 x} dx = \int t^{3/2} dt = \frac{2}{5} t^{5/2} + C = \frac{2}{5} (\sin x)^{5/2} + C = \frac{2}{5} \sqrt{\sin^5 x} + C.$$

$$\underline{3}$$
адание $\underline{3}$. Нахождение интегралов вида $\int \frac{Mx+N}{ax^2+bx+c}dx$,
$$\int \frac{Mx+N}{\sqrt{ax^2+bx+c}}dx$$

(первый интеграл рассмотрим при условии, что квадратный трёхчлен не имеет корней, то есть его дискриминант D < 0).

Метод интегрирования подобных функций заключается в следующем. Пользуясь свойством линейности, представим исходный интеграл в виде суммы двух интегралов от дробей с теми же знаменателями, в числителе первой дроби будет производная $(ax^2 + bx + c)' = 2ax + b$, а в числителе второй — единица. Такое преобразование позволяет свести исходные интегралы к табличным.

Так как $Mx + N = \frac{M}{2a}(2ax + b) + N - \frac{Mb}{2a}$, для первого и второго

интегралов получим следующие разложения

$$\int \frac{Mx + N}{ax^2 + bx + c} = \frac{M}{2a} \int \frac{2ax + b}{ax^2 + bx + c} dx + \left(N - \frac{Mb}{2a}\right) \int \frac{dx}{ax^2 + bx + c}$$
 (6)

$$\int \frac{Mx+N}{\sqrt{ax^2+bx+c}} = \frac{M}{2a} \int \frac{2ax+b}{\sqrt{ax^2+bx+c}} dx + \left(N - \frac{Mb}{2a}\right) \int \frac{dx}{\sqrt{ax^2+bx+c}}$$
(7)

В первых интегралах полученных сумм достаточно воспользоваться методом внесения под знак дифференциала или методом подстановки. Поскольку $(2ax+b)dx = d(ax^2+bx+c)$, обозначим $s = ax^2+bx+c$, тогда легко получим табличные интегралы

$$\int \frac{2ax+b}{ax^2+bx+c} \, dx = \int \frac{ds}{s} = \ln|s| + C = \ln|ax^2+bx+c| + C.$$

$$\int \frac{2ax+b}{\sqrt{ax^2+bx+c}} \, dx = \int \frac{ds}{\sqrt{s}} = 2\sqrt{c} + C = 2\sqrt{ax^2+bx+c} + C$$

Выделение полного квадрата в квадратном трёхчлене $ax^2 + bx + c$ в интегралах $\int \frac{dx}{ax^2 + bx + c}$ и $\int \frac{dx}{\sqrt{ax^2 + bx + c}}$, также позволяет их свести к табличным интегралам, посредством замены

$$x + \frac{b}{2a} = t$$
, $dx = dt$.

Рассмотрим несколько примеров.

Пример 1. Найдите
$$\int \frac{(x+8) dx}{x^2 + 4x + 20}$$

<u>Решение</u>. Представим интеграл в виде суммы двух интегралов (6), в числителе у первого из них производная знаменателя, а у второго – константа.

$$\int \frac{(x+8) dx}{x^2 + 4x + 20} = \frac{1}{2} \int \frac{(2x+4) + 12}{x^2 + 4x + 20} dx = \frac{1}{2} \int \frac{(2x+4) dx}{x^2 + 4x + 20} + 6 \int \frac{dx}{x^2 + 4x + 20} =$$

Выделим полный квадрат в знаменателе дроби под знаком второго интеграла: $x^2 + 4x + 20 = (x+2)^2 + 4^2$. В результате:

$$= \frac{1}{2} \int \frac{d(x^2 + 4x + 20)}{x^2 + 4x + 20} + 6 \int \frac{dx}{(x+2)^2 + 4^2} = \frac{1}{2} \ln(x^2 + 4x + 20) + \frac{3}{2} \arctan \left(\frac{x+2}{4} + c\right)$$

<u>Пример 2</u>. Найдите $\int \frac{3x-1}{\sqrt{2x^2-x+1}} dx$.

Решение. Найдём дифференциал подкоренного выражения:

$$d(2x^2 - x + 1) = (4x - 1)dx$$
.

Получим 4x - 1 в числителе:

$$3x - 1 = \frac{3}{4}(4x - 1) - \frac{1}{4}.$$

$$\int \frac{3x - 1}{\sqrt{2x^2 - x + 1}} dx = \frac{3}{4} \int \frac{4x - 1}{\sqrt{2x^2 - x + 1}} dx - \frac{1}{4} \int \frac{dx}{\sqrt{2x^2 - x + 1}} =$$

$$= \frac{3}{2} \sqrt{2x^2 - x + 1} - \frac{1}{4} \int \frac{dx}{\sqrt{2} \sqrt{x^2 - \frac{x}{2} + \frac{1}{2}}} = \frac{3}{2} \sqrt{2x^2 - x + 1} - \frac{1}{4\sqrt{2}} \int \frac{dx}{\sqrt{\left(x - \frac{1}{4}\right)^2 + \frac{7}{16}}}$$

Заменим в последнем интеграле $x - \frac{1}{4} = t$, $k^2 = \frac{7}{16}$, dx = dt:

$$\int \frac{dx}{\sqrt{\left(x - \frac{1}{4}\right)^2 + \left(\frac{\sqrt{7}}{4}\right)^2}} = \int \frac{dt}{\sqrt{t^2 + k^2}} = \ln\left|t + \sqrt{t^2 + k^2}\right| + c = \ln\left|x - \frac{1}{4} + \sqrt{x^2 - \frac{x}{2} + \frac{1}{2}}\right| + c$$

Таким образом,

$$\int \frac{3x-1}{\sqrt{2x^2-x+1}} dx = \frac{3}{2}\sqrt{2x^2-x+1} - \frac{1}{4\sqrt{2}} \ln \left| x - \frac{1}{4} + \sqrt{x^2 - \frac{x}{2} + \frac{1}{2}} \right| + C.$$

<u>Пример 3</u>. Найдите $\int \frac{x+1}{\sqrt{-x^2-4x+7}} dx$.

Решение. Так как

 $d(-x^2-4x+7) = (-2x-4)dx$, а x+1 можно представить в следующем виде

$$x+1=-\frac{1}{2}(-2x-4)-1$$
,

TO

$$\int \frac{x+1}{\sqrt{-x^2-4x+7}} dx = -\frac{1}{2} \int \frac{(-2(x+2))}{\sqrt{-x^2-4x+7}} dx - \int \frac{dx}{\sqrt{-x^2-4x+7}} =$$

$$= -\sqrt{-x^2-4x+7} - \int \frac{dx}{\sqrt{11-(x+2)^2}} = -\sqrt{-x^2-4x+7} - \int \frac{dt}{\sqrt{k^2-t^2}},$$

где $t = x + 2, k = \sqrt{11}$.

Последний интеграл является табличным:

$$\int \frac{dt}{\sqrt{k^2 - t^2}} = \arcsin \frac{t}{k} + C = \arcsin \frac{x + 2}{\sqrt{11}} + C.$$

Тогда

$$\int \frac{(x+1)dx}{\sqrt{-x^2-4x+7}} = -\sqrt{-x^2-4x+7} - \arcsin\frac{x+2}{\sqrt{11}} + C.$$

Задание 4. Интегрирование дробно-рациональных функций

Как известно, дробно-рациональной функцией (рациональной дробью) называют функцию вида $\frac{P_{\scriptscriptstyle n}(x)}{Q_{\scriptscriptstyle m}(x)} = \frac{a_{\scriptscriptstyle 0} x^{\scriptscriptstyle n} + a_{\scriptscriptstyle 1} x^{\scriptscriptstyle n-1} + \ldots + a_{\scriptscriptstyle n-1} x + a_{\scriptscriptstyle n}}{b_{\scriptscriptstyle 0} x^{\scriptscriptstyle m} + b_{\scriptscriptstyle 1} x^{\scriptscriptstyle m-1} + \ldots + b_{\scriptscriptstyle m}}$

 $(m, n, i, j \in \mathbb{N} \cup \{0\}, a_i, b_j \in \mathbb{R}, a_0 \neq 0, b_0 \neq 0).$

При интегрировании рациональной дроби прежде всего нужно выяснить, является ли она правильной или нет. Если рациональная дробь неправильная, т.е. n > m, то необходимо выделить её целую часть, разделив числитель на знаменатель:

$$\frac{P_{n}(x)}{Q_{m}(x)} = G_{n-m}(x) + \frac{F_{k}(x)}{Q_{m}(x)}.$$

В результате мы получим многочлен $G_{n-m}(x)$ степени n-m, называемый неполным частным, и остаток от деления — правильную дробь $\frac{F_k(x)}{Q_m(x)}$, в которой степень числителя $0 \le k < m$.

Найти интеграл от многочлена $G_{n-m}(x)$ труда не составляет. Если остаток от деления $\frac{F_k(x)}{Q_m(x)}$ не удаётся проинтегрировать непосредственно с помощью элементарных методов интегрирования, то эту рациональную дробь следует разложить на простейшие дроби, то есть дроби четырёх типов: $\frac{A}{x-a}$, $\frac{A}{(x-a)^s}$,

$$\frac{Mx+N}{x^2+px+q}$$
, $\frac{Mx+N}{\left(x^2+px+q\right)^r}$, где $A,M,N,a,p,q\in\mathbb{R}$, $s,r\in\mathbb{N}$, $s,r\geq 2$, a

квадратный трёхчлен $x^2 + px + q$ не имеет действительных корней.

Воспользуемся теоремой о разложении правильной рациональной дроби на сумму простейших дробей. Пусть знаменатель исходной дроби представим в виде произведения

$$Q_m(x) = (x - a_1)^{s_1} \cdot (x - a_2)^{s_2} \cdot ... \cdot (x - a_k)^{s_k} \cdot (x^2 + p_1 x + q_1)^{\eta} \cdot ... \cdot (x^2 + p_1 x + q_1)^{\eta}$$
, (8) где $a_1, a_2, ..., a_k$ – действительные корни этого многочлена кратности $s_1, s_2, ..., s_k$ соответственно, а каждый квадратный трёхчлен $x^2 + p_i x + q_i$ имеет пару сопряжённых комплексных корней кратности r_i . Тогда рациональная дробь представима в виде суммы простейших дробей, причём их количество и вид этих дробей зависит от разложения $Q_m(x)$, а именно:

1) каждый множитель вида $(x - a_j)^{s_j}$, определяющий действительный корень a_j кратности s_j , порождает сумму s_j простейших дробей вида

$$\frac{A_{j1}}{x-a_{j}} + \frac{A_{j2}}{(x-a_{j})^{2}} + \dots + \frac{A_{js_{j}}}{(x-a_{j})^{s_{j}}},$$

2) каждый множитель вида $(x^2 + p_i x + q_i)^{r_i}$, определяющий пару сопряжённых комплексных корней кратности r_i , порождает сумму r_i простейших дробей вида

$$\frac{M_{i1}x + N_{i1}}{x^2 + p_i x + q_i} + \frac{M_{i2}x + N_{i2}}{(x^2 + p_i x + q_i)^2} + \dots + \frac{M_{ir_i}x + N_{ir_i}}{(x^2 + p_i x + q_i)^2}.$$

Складываем все промежуточные суммы и получаем следующее разложение:

$$\frac{P_n(x)}{Q_m(x)} = \frac{A_{11}}{x - a_1} + \frac{A_{12}}{(x - a_1)^2} + \dots + \frac{A_{1s_1}}{(x - a_1)^{s_1}} + \dots + \frac{A_{k1}}{x - a_k} + \dots + \frac{A_{ks_k}}{(x - a_k)^{s_k}} + \dots$$

$$+\frac{M_{11}x+N_{11}}{x^{2}+p_{1}x+q_{1}}+\frac{M_{12}x+N_{12}}{\left(x^{2}+p_{1}x+q_{1}\right)^{2}}+\ldots+\frac{M_{1r_{l}}x+N_{1r_{l}}}{\left(x^{2}+p_{1}x+q_{1}\right)^{r_{l}}}+\ldots+\\ +\frac{M_{l1}x+N_{l1}}{x^{2}+p_{l}x+q_{l}}+\frac{M_{l2}x+N_{l2}}{\left(x^{2}+p_{l}x+q_{l}\right)^{2}}+\ldots+\frac{M_{lr_{l}}x+N_{lr_{l}}}{\left(x^{2}+p_{l}x+q_{l}\right)^{r_{l}}}.$$

Простейшие дроби легко интегрируются. Для разложения рациональной дроби на простейшие остаётся отыскать значения постоянных A_i , M_i , N_i , стоящих в числителях простейших дробей. Для простоты напомним методы их нахождения на конкретных примерах.

Пример 1. Найдите
$$\int \frac{x^2 - x + 2}{(x-1)(x-2)(x-3)} dx$$

Решение.

Подынтегральная функция представляет собой правильную рациональную дробь (степень числителя 2 меньше степени знаменателя 3). Знаменатель имеет три действительных корня x=1, x=2, x=3 первой кратности, значит, каждый из них порождает одну простейшую дробь первого типа, и в итоге мы имеем следующее разложение:

$$\frac{x^2 - x + 2}{(x - 1)(x - 2)(x - 3)} = \frac{A}{x - 1} + \frac{B}{x - 2} + \frac{C}{x - 3}.$$
 (9)

Домножим обе части равенства (8) на знаменатель исходной дроби

$$x^{2} - x + 2 = A(x-2)(x-3) + B(x-1)(x-3) + C(x-1)(x-2).$$
 (10)

Для нахождения неизвестных постоянных A, B, C используют два метода.

Первый их них основывается на том, что равенства (9) и (10) являются тождествами, то есть должны обращаться в верное равенство при любых значениях x. Для того чтобы найти значения трёх неизвестных постоянных A, B, C, достаточно подставить в равенство (10) три различные значения x, получить систему из трёх линейных уравнений с тремя неизвестными и решить её относительно A, B и C. Чтобы существенно упростить задачу, выберем в качестве значений x корни знаменателя x=1, x=2, x=3. Это позволяет обнулить несколько слагаемых правой части равенства (10). Тогда

$$x = 1 \Rightarrow 1^{2} - 1 + 2 = A(1 - 2)(1 - 3) + B(1 - 1)(1 - 3) + C(1 - 1)(1 - 2) \Rightarrow 2A = 2 \Rightarrow A = 1$$

 $x = 2 \Rightarrow 4 = -B \Rightarrow B = -4$
 $x = 3 \Rightarrow 8 = 2C \Rightarrow C = 4$

Все константы найдены.

Второй метод основан на том, что в левой и правой частях равенства (10) находятся равные многочлены. В нашем случае, раскрыв скобки и приведя подобные, получим

$$x^{2}-x+2=(A+B+C)x^{2}-(5A+4B+3C)x+(6A+3B+2C)$$
.

Как известно, два многочлена равны, если они одной степени и имеют равные коэффициенты при x в одинаковых степенях. Значит, в нашем случае

$$\begin{cases} A+B+C &= 1\\ 5A+4B+3C &= 1\\ 6A+3B+2C &= 2 \end{cases}.$$

Решая эту систему, мы получим те же значения постоянных.

Теперь можно перейти к нахождению интеграла

$$\int \frac{x^2 - x + 2}{(x - 1)(x - 2)(x - 3)} dx = \int \frac{dx}{x - 1} - 4 \int \frac{dx}{x - 2} + 4 \int \frac{dx}{x - 3} =$$

$$= \int \frac{d(x - 1)}{x - 1} - 4 \int \frac{d(x - 2)}{x - 2} + 4 \int \frac{d(x - 3)}{x - 3} =$$

$$= \ln|x - 1| - 4 \ln|x - 2| + 4 \ln|x - 3| + C = \ln \frac{|x - 1|(x - 3)^4}{(x - 2)^4} + C.$$

Очевидно, что в данном примере решение с использованием первого метода оказывается более простым. Этот метод быстро приводит к результату, когда знаменатель дроби имеет только действительные корни первой кратности. Если же знаменатель имеет корни более высокой кратности или комплексные корни, то, как правило, в решении удобно комбинировать использование первого и второго методов. Рассмотрим такой пример.

Пример 2. Найдите
$$\int \frac{x^4 + x^3 + 17x^2 - 9}{x^2(x^3 - x^2 + 9x - 9)} dx$$

Решение.

Подынтегральная функция – правильная рациональная дробь. Мы видим, что многочлен в скобках в знаменателе допускает дальнейшее разложение на множители. Приведём знаменатель к виду (8):

$$x^{2}(x^{3}-x^{2}+9x-9) = x^{2}(x-1)(x^{2}+9)$$

Приступим к разложению дроби $\frac{x^4 + x^3 + 17x^2 - 9}{x^2(x-1)(x^2+9)}$ на простейшие.

Знаменатель дроби имеет следующие корни:

- 1) x = 0 действительный корень 2-й кратности, значит, в разложении имеем сумму двух простейших дробей вида $\frac{A}{r} + \frac{B}{r^2}$,
- 2) x = 1 действительный корень первой кратности, значит, в разложении добавится дробь $\frac{C}{r-1}$,
- 3) многочлен $x^2 + 9$ имеет пару комплексных корней первой кратности, он порождает одну дробь вида $\frac{Dx + E}{x^2 + Q}$.

В итоге имеем разложение:
$$\frac{x^4 + x^3 + 17x^2 - 9}{x^2(x - 1)(x^2 + 9)} = \frac{A}{x} + \frac{B}{x^2} + \frac{C}{x - 1} + \frac{Dx + E}{x^2 + 9}.$$

Умножив левую и правую части данного равенства на знаменатель исходной дроби, получим:

$$x^{4} + x^{3} + 17x^{2} - 9 =$$

$$= Ax(x-1)(x^{2} + 9) + B(x-1)(x^{2} + 9) + Cx^{2}(x^{2} + 9) + (Dx + E)x^{2}(x-1)$$
(11)

Воспользуемся первым методом отыскания постоянных. Зададим следующие значения переменной

$$x=0 \Rightarrow -9=-9B \Rightarrow B=1$$

 $x=1 \Rightarrow 10=10C \Rightarrow C=1$

Остальные константы найдём с помощью второго метода.

$$x^{4} + x^{3} + 17x^{2} - 9 = (A + C + D)x^{4} + (-A + B - D + E)x^{3} + (9A - B + 9C - E)x^{2} + (-9A + 9B)x - 9B.$$

$$\begin{cases} A+C+D &= 1\\ -A+B-D+E &= 1\\ 9A-B+9C-E &= 17, \quad \text{тогда c учётом уже найденных}\\ -9A+9B &= 0\\ -9B &= 9 \end{cases}$$

коэффициентов получим из первого уравнения:

$$A + D = 0, \tag{12}$$

из второго: E = 0; из четвёртого: A = 1; из уравнения (12): D = -1.

В итоге получаем

$$\int \frac{x^4 + x^3 + 17x^2 - 9}{x^2(x - 1)(x^2 + 9)} dx = \int \frac{dx}{x} + \int \frac{dx}{x^2} + \int \frac{dx}{x - 1} - \int \frac{xdx}{x^2 + 9} =$$

$$= \ln|x| - \frac{1}{x} + \ln|x - 1| - \frac{1}{2}\ln|x^2 + 9| + C.$$

Задание 5. Интегрирование иррациональных функций вида

$$R(x, \sqrt[k_1]{\left(\frac{ax+b}{cx+d}\right)^{m_1}}, \dots, \sqrt[k_s]{\left(\frac{ax+b}{cx+d}\right)^{m_s}}$$

Интеграл вида $\int R(x, \sqrt[k_1]{\left(\frac{ax+b}{cx+d}\right)^{m_1}}, ..., \sqrt[k_s]{\left(\frac{ax+b}{cx+d}\right)^{m_s}} dx$, (13) где $m_1, m_2, ..., m_s$ целые, а $k_1, k_2, ..., k_s$ — натуральные, преобразуется в интеграл от рациональной функции с помощью подстановки $\frac{ax+b}{cx+d} = t^p$, где p — наименьшее общее кратное чисел $k_1, k_2, ..., k_s$. Тогда $x = \frac{d \cdot t^p - b}{a - c \cdot t^p}$ и $dx = \frac{(ad-bc)p \cdot t^{p-1}}{(a-c \cdot t^p)^2}$.

Интегралы вида $\int R\left(x, \sqrt[k_1]{(ax+b)^{m_1}}, \sqrt[k_2]{(ax+b)^{m_2}}, ..., \sqrt[k_s]{(ax+b)^{m_s}}\right) dx$ и $\int R\left(x, \sqrt[k_1]{x^{m_1}}, \sqrt[k_2]{x^{m_2}}, ..., \sqrt[m_s]{x^{m_s}}\right) dx$ являются частными случаями интеграла (13) и приводятся к интегралам от рациональной функции с помощью аналогичных подстановок: $ax+b=t^p$ и $x=t^p$ соответственно.

Пример 1. Найдите интеграл
$$I = \int \frac{dx}{\sqrt[3]{(2x+1)^2} - \sqrt{2x+1}}$$
.

Решение.

Здесь $k_1=3,\ k_2=2,\$ поэтому p=6. Применим подстановку $2x+1=t^6.$ Тогда $x=\frac{t^6-1}{2},\ dx=3t^5dt$ и, следовательно,

$$I = \int \frac{3t^5 dt}{t^4 - t^3} = 3 \int \frac{t^2 dt}{t - 1} = 3 \int \frac{t^2 - 1 + 1}{t - 1} dt = 3 \int \left(t + 1 + \frac{1}{t - 1}\right) dt =$$
$$= \frac{3}{2}t^2 + 3t + 3\ln|t - 1| + C.$$

Вернемся к старой переменной. Так как $t = (2x + 1)^{\frac{1}{6}}$, то

$$I = \frac{3}{2}\sqrt[3]{2x+1} + 3\sqrt[6]{2x+1} + 3\ln|\sqrt[6]{2x+1} - 1| + C.$$

<u>Пример 2.</u> Найдите интеграл $I = \int \sqrt{\frac{1-x}{1+x}} \ dx$.

<u>Решение</u>.

Сделаем замену $\frac{1-x}{1+x} = t^2$. Выражая отсюда x, получим

$$x = \frac{1-t^2}{1+t^2}$$
, $dx = \left(-\frac{4t}{(1+t^2)^2}\right)dt$.

Тогда
$$\int \sqrt{\frac{1-x}{1+x}} \ dx = -4 \int \frac{t^2}{(1+t^2)^2} dt$$
.

Полученный интеграл вычислим с помощью метода интегрирования по частям

$$\int \frac{t^2}{(1+t^2)^2} dt$$

$$= \begin{bmatrix} u = t & du = dt \\ dv = \frac{tdt}{(t^2+1)^2} & v = \int \frac{tdt}{(t^2+1)^2} = \frac{1}{2} \int \frac{d(t^2+1)}{(t^2+1)^2} = -\frac{1}{2(t^2+1)} \end{bmatrix} =$$

$$= -\frac{t}{2(t^2+1)} + \frac{1}{2} \int \frac{dt}{t^2+1} = -\frac{t}{2(t^2+1)} + \frac{1}{2} \operatorname{arct} g(t) + C.$$

Применив обратную подстановку, получим, что

$$I = -\frac{\sqrt{1 - x^2}}{4} + \frac{1}{2} \arctan \sqrt{\frac{1 - x}{1 + x}} + C.$$

<u>Задание 6</u>. Интегрирование иррациональных функций вида $R(x, \sqrt{a^2 - x^2}), R(x, \sqrt{x^2 - a^2}), R(x, \sqrt{a^2 + x^2})$

Если интегралы от таких функций не удаётся найти более простыми методами, то во всех трёх случаях с помощью тригонометрических подстановок можно легко перейти от интеграла, который зависит от квадратичной иррациональности, к интегралу, рационально зависящему от тригонометрических функций. Рассмотрим эти подстановки.

- 1. Если подынтегральная функция имеет вид $R(x, \sqrt{a^2 x^2})$, то следует воспользоваться подстановкой $x = a \sin t$ (или $x = a \cos t$).
- 2. Если подынтегральная функция имеет вид $R(x, \sqrt{a^2 + x^2})$, то применим подстановку x = atg(t) (или x = actg(t)).

3. Если подынтегральная функция имеет вид $R\left(x,\sqrt{x^2-a^2}\right)$, то используем подстановку $x=\frac{a}{\cos x}$ (или $x=\frac{a}{\sin x}$). Рассмотрим примеры.

Пример 1. Найдите интеграл
$$\int_{0}^{1} \frac{x dx}{(x^2 + 2)\sqrt{x^2 + 1}}$$

<u>Решение</u>. В данном случае применима подстановка x = tg(t), $dx = \frac{1}{\cos^2 t} dt$. Найдём новые пределы интегрирования. Так как t = arctg(x); $x = 0 \Rightarrow t = 0$, $x = 1 \Rightarrow t = \frac{\pi}{4}$.

$$\int_{0}^{1} \frac{xdx}{(x^{2}+2)\sqrt{x^{2}+1}} = \int_{0}^{\frac{\pi}{4}} \frac{tg(t) dt}{\cos(t)(tg^{2}(t)+2)} = \int_{0}^{\frac{\pi}{4}} \frac{\sin(t) dt}{\cos^{2}(t)(tg^{2}(t)+2)} = -\int_{0}^{\frac{\pi}{4}} \frac{d\cos(t)}{1+\cos^{2}(t)} = -\arctan(tg(\cos(t)))\Big|_{0}^{\frac{\pi}{4}} = -\arctan($$

Пример 2. Найдите интеграл $\int_{3}^{6} \frac{\sqrt{x^2 - 9}}{x^3} dx$

<u>Решение</u>. Поскольку подынтегральная функция имеет вид $R(x, \sqrt{x^2 - a^2})$, воспользуемся подстановкой $x = \frac{3}{\cos x}$, тогда $dx = \frac{3\sin t \, dt}{\cos^2 x}$.

Найдём новые пределы интегрирования. Поскольку $t = \arccos \frac{3}{x}$, имеем:

$$x = 3 \Rightarrow t = 0, \quad x = 6 \Rightarrow t = \frac{\pi}{3}.$$

$$\int_{3}^{6} \frac{\sqrt{x^{2} - 9}}{x^{3}} dx = \frac{1}{3} \int_{0}^{\frac{\pi}{3}} tg(t) \sin(t) \cos(t) dt = \frac{1}{3} \int_{0}^{\frac{\pi}{3}} \sin^{2}(t) dt = \frac{1}{6} \int_{0}^{\frac{\pi}{3}} (1 - \cos 2t) dt = \frac{1}{6} \left(t - \frac{1}{2} \sin 2t \right) \Big|_{0}^{\frac{\pi}{3}} = \frac{1}{6} \left(\frac{\pi}{3} - \frac{\sqrt{3}}{4} \right).$$

<u>Задание 7.</u> Интегрирование тригонометрических функций $R(\sin x, \cos x)$ методом подстановки

Рассмотрим подстановки, с помощью которых интеграл вида $\int R(\sin x,\cos x)\,dx$ приводится к интегралу от рациональной функции.

1. Универсальная подстановка $tg\left(\frac{x}{2}\right) = t$.

В результате этой подстановки имеем $x = 2 \arctan g(t)$, $dx = \frac{2dt}{1+t^2}$.

$$\sin x = 2 \frac{tg\left(\frac{x}{2}\right)}{1 + tg^2\left(\frac{x}{2}\right)} = \frac{2t}{1 + t^2}; \cos x = \frac{1 - tg^2\left(\frac{x}{2}\right)}{1 + tg^2\left(\frac{x}{2}\right)} = \frac{1 - t^2}{1 + t^2}.$$

<u>Пример 1</u>. Найдите интеграл $\int \frac{dx}{4\sin x + 3\cos x + 5}$.

<u>Решение</u>. Подынтегральная функция рационально зависит от *sinx* и *cosx*, применим универсальную подстановку.

$$\int \frac{dx}{4\sin x + 3\cos x + 5} = \int \frac{\frac{2dt}{1+t^2}}{4\frac{2t}{1+t^2} + 3\frac{1-t^2}{1+t^2} + 5} = 2\int \frac{dt}{2t^2 + 8t + 8} =$$
$$= \int \frac{dt}{(t+2)^2} = -\frac{1}{t+2} + C.$$

Возвращаясь к старой переменной, получим

$$\int \frac{dx}{4\sin x + 3\cos x + 5} = -\frac{1}{tg\left(\frac{x}{2}\right) + 2} + C.$$

Универсальная подстановка $tg\left(\frac{x}{2}\right) = t$ во многих случаях приводит к сложным вычислениям, так как при её применении $\sin x$ и $\cos x$ выражаются через t в виде рациональных дробей, содержащих t^2 .

В некоторых частных случаях нахождение интегралов вида $\int R(\sin x,\cos x)\,dx$ может быть упрощено.

- 2. Если $R(\sin x, \cos x)$ нечётная функция относительно $\sin(x)$, т.е. $R(-\sin x, \cos x) = -R(\sin x, \cos x)$, то подынтегральная функция становится рациональной при осуществлении подстановки $\cos x = t$.
- 3. Если $R(\sin x, \cos x)$ нечётная функция относительно $\cos(x)$, т.е. $R(\sin x, -\cos x) = -R(\sin x, \cos x)$, то, применяя подстановку $\sin x = t$, перейдём к интегралу от рациональной функции.

4. Если $R(\sin x, \cos x)$ — чётная функция относительно $\sin(x)$ и $\cos(x)$, т.е. $R(-\sin x, -\cos x) = R(\sin x, \cos x)$, то к цели приводит подстановка tg(x) = t.

Пример 2. Найти интеграл
$$\int \frac{\sin^3 x \, dx}{\cos x - 3}.$$

Решение.

Подынтегральная функция является нечётной по синусу, поэтому здесь можно сделать замену $t = \cos(x)$. Тогда $\sin x = \sqrt{1-\cos^2 x} = \sqrt{1-t^2}$; $x = \arccos(t)$

$$\int \frac{\sin^3 x \, dx}{\cos x - 3} = -\int \frac{1 - t^2}{t - 3} \, dt = \int \frac{t^2 - 9 + 8}{t - 3} \, dt = \int (t + 3) \, dt + 8 \int \frac{dt}{t - 3}$$
$$= \frac{t^2}{2} + 3t + \ln|t - 3| + C = \frac{\cos^2 x}{2} + 3\cos x + \ln|\cos x - 3| + C.$$

<u>Пример 3.</u> Найдите интеграл $\int \frac{dx}{\sin^2 x + 2\sin x \cos x - \cos^2 x}$.

<u>Решение</u>.

Подынтегральная функция чётна относительно синуса и косинуса. Полагаем tg(x) = t, тогда

$$\sin x = \frac{tg \ x}{\sqrt{1 + tg^2 x}} = \frac{t}{\sqrt{1 + t^2}}; \cos x = \frac{1}{\sqrt{1 + tg^2 x}} = \frac{1}{\sqrt{1 + t^2}};$$
$$x = arctg(t); dx = \frac{dt}{1 + t^2}.$$

Отсюда

$$\int \frac{dx}{\sin^2 x + 2\sin x \cos x - \cos^2 x} =$$

$$= \int \frac{\frac{dt}{1 + t^2}}{\frac{t^2}{1 + t^2} + 2\frac{t}{\sqrt{1 + t^2}} \frac{1}{\sqrt{1 + t^2}} - \frac{1}{1 + t^2}} = \int \frac{dt}{t^2 + 2t - 1}.$$

Далее,

$$\int \frac{dt}{t^2 + 2t - 1} = \int \frac{d(t+1)}{(t+1)^2 - (\sqrt{2})^2} = \frac{1}{2\sqrt{2}} \ln \left| \frac{t+1-\sqrt{2}}{t+1+\sqrt{2}} \right| + C.$$

и, следовательно,

$$\int \frac{dx}{\sin^2 x + 2\sin x \cos x - \cos^2 x} = \frac{1}{2\sqrt{2}} \ln \left| \frac{tg \ x + 1 - \sqrt{2}}{tg \ x + 1 + \sqrt{2}} \right| + C.$$

Заметим, что вычисление интеграла можно упростить, если в исходном интеграле разделить числитель и знаменатель на $\cos^2 x$.

$$\int \frac{dx}{\sin^2 x + 2\sin x \cos x - \cos^2 x} = \int \frac{\frac{dx}{\cos^2 x}}{tg^2 x + 2tg x - 1} = \int \frac{d(tg x)}{tg^2 x + 2tg x - 1}.$$

Раздел 2.

ОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ

1. Методы интегрирования

Задание 8. Метод интегрирования по частям в определённом интеграле

Напомним формулу интегрирования по частям для определённого интеграла:

$$\int_{a}^{b} u(x)dv(x) = u(x)v(x)|_{a}^{b} - \int_{a}^{b} v(x)du(x).$$

где $u(x)v(x)|_a^b = u(b)v(b) - u(a)v(a)$.

<u>Пример 1</u>. Найдите значение интеграла $\int_0^2 x \cos x dx$.

<u>Решение.</u> Здесь в качестве u(x) выберем ту функцию, которая упростится при дифференцировании, то есть u(x) = x, а du = dx. Тогда $\cos x dx = v'(x) dx$.

Найдём v(x): $\int \cos x \, dx = \sin x + C$. Достаточно взять одну из первообразных $v(x) = \sin x$.

Применив формулу интегрирования по частям, получим

$$\int_0^2 x \cos(x) \ dx = \int_0^2 x \ d(\sin x) = x \sin(x)|_0^2 - \int_0^2 \sin(x) \ dx = 2 \sin 2 + \cos x|_0^2$$
$$= 2 \sin 2 + \cos 2 - 1$$

.

<u>Пример 2</u>. Найдите значение интеграла $\int_1^e \sin(\ln x) dx$.

<u>Решение.</u> Под интегралом стоит одна функция $\sin(\ln x)$, которая не является производной какой-либо элементарной функции. Выберем её в качестве u(x). Тогда v(x) = x, dv = dx.

$$\int_{1}^{e} \sin(\ln x) \, dx = x \sin(\ln x)|_{1}^{e} - \int_{1}^{e} x d \sin(\ln x) \, .$$

Так как $du(x) = d\sin(\ln x) = \frac{1}{x}\cos(\ln x)dx$, то $\int_1^e xd\sin(\ln x) = \int_1^e \cos(\ln x)dx$.

Чтобы найти последний интеграл, воспользуемся формулой ещё раз.

Пусть
$$u(x) = \cos(\ln x)$$
, $du = -\frac{1}{x}\sin(\ln x) dx$, $dv = dx$, $v = x$.

$$\int_{1}^{e} \cos(\ln x) \, dx = x \cos(\ln x)|_{1}^{e} + \int_{1}^{e} \sin(\ln x) \, dx.$$

Тогда исходный интеграл будет равен

$$\int_{1}^{e} \sin(\ln x) dx = e(\sin 1 - \cos 1) - \int_{1}^{e} \sin(\ln x) dx.$$

Заметим, что интеграл в правой части равен интегралу в левой части равенства. Перенеся его в левую часть и разделив на 2 обе части равенства, получим:

$$\int_{1}^{e} \sin(\ln x) dx = \frac{e}{2} (\sin 1 - \cos 1).$$

Задание 9. Метод замены переменной в определённом интеграле

Напомним правило замены переменной в определённом интеграле. Если функция y=f(x) непрерывна на отрезке [a,b], а функция $x=\varphi(t)$ непрерывно дифференцируема на отрезке $[t_1,t_2]$, причём $a=\varphi(t_1)$, $b=\varphi(t_2)$, то

$$\int_{a}^{a} f(x)dx = \int_{t_{1}}^{t_{2}} f(\varphi(t))\varphi'(t)dt.$$

Пример 1. Найдите значение интеграла $\int_0^3 x^2 \sqrt{9-x^2} dx$.

 $\underline{\textit{Решение.}}$ Применим подстановку $x=3\sin t$. Тогда

$$dx = 3\cos t \, dt$$
, $t = \arcsin\frac{x}{3}$, $t_1 = \arcsin 0 = 0$, $t_2 = \arcsin 1 = \frac{\pi}{2}$.

Следовательно,

$$\int_{0}^{3} x^{2} \sqrt{9 - x^{2}} dx = \int_{0}^{\frac{\pi}{2}} 9 \sin^{2} t \cdot \sqrt{9 - 9 \sin^{2} t} \cdot 3 \cos t \, dt =$$

$$= 81 \int_{0}^{\frac{\pi}{2}} \sin^{2} t \cos^{2} t \, dt = \frac{81}{4} \int_{0}^{\frac{\pi}{2}} \sin^{2} 2t \, dt = \frac{81}{8} \int_{0}^{\frac{\pi}{2}} (1 - \cos 4t) dt =$$

$$= \frac{81}{8} \left(t - \frac{1}{4} \sin 4t \right) \Big|_{0}^{\frac{\pi}{2}} = \frac{81\pi}{16}$$

<u>Пример 2</u>. Найдите значение интеграла $\int_{\ln 3}^{\ln 8} \frac{dx}{\sqrt{e^x+1}}$

<u>Решение.</u> Выполним замену $\sqrt{e^x + 1} = t$.

Тогда

$$e^{x} + 1 = t^{2}$$
, $x = \ln(t^{2} - 1)$, $dx = \frac{2tdt}{t^{2} - 1}$, $t_{1} = e^{\ln 3} + 1 = 4$, $t_{2} = e^{\ln 8} + 1 = 9$.

Замена переменной приведёт к подынтегральной функции, рационально зависящей от t.

$$\int_{\ln 3}^{\ln 8} \frac{dx}{\sqrt{e^x + 1}} = \int_4^9 \frac{2tdt}{t(t^2 - 1)} = 2 \int_4^9 \frac{dt}{t^2 - 1} = \ln \left| \frac{t - 1}{t + 1} \right| \Big|_4^9 = \ln 0.8 - \ln 0.6 = \ln \frac{4}{3}.$$

Пример 3. Найдите значение интеграла $\int_{\frac{1}{4}}^{1} \frac{dx}{x\sqrt{1+4x^2}}$.

<u>Решение.</u> Применим подстановку $x = \frac{1}{t}$. Тогда $dx = -\frac{1}{t^2}dt$, $t_1 = 4$, $t_2 = 1$.

Следовательно,

$$\int_{\frac{1}{4}}^{1} \frac{dx}{x\sqrt{1+4x^2}} = -\int_{4}^{1} \frac{dt}{t^2 \frac{1}{t} \sqrt{1+\frac{4}{t^2}}} = \int_{1}^{4} \frac{dt}{\sqrt{t^2+4}} = \ln\left|t+\sqrt{t^2+4}\right| \Big|_{1}^{4}$$
$$= \ln\left(4+2\sqrt{5}\right) - \ln\left(1+\sqrt{5}\right) = \ln\frac{4+2\sqrt{5}}{1+\sqrt{5}}.$$

2. Приложения определённого интеграла

Задания 10, 11, 12. Нахождение площади области, ограниченной кривыми, и отыскание длины кривой

Напомним основные формулы, используемые при нахождении площади области, ограниченной кривыми, и отыскании длины кривой, необходимые для решения типовых заданий этого раздела.

Площадь в прямоугольных координатах

Площадь плоской фигуры, ограниченной непрерывной кривой, уравнений которой в прямоугольных координатах имеет вид y = f(x), осью Ox и двумя прямыми x = a и x = b, (a < b) находится по формуле

$$S = \int_{a}^{b} f(x)dx.$$

Отрезок [a, b] следует разделить на части, в каждой из которых функция f(x) сохраняет один и тот же знак. При этом необходимо соблюдать такое правило знаков: площади, находящиеся над осью Ox, берутся со знаком плюс, а площади, расположенные под осью Ox, со знаком минус.

Если площадь ограничена двумя непрерывными кривыми, уравнения которых в прямоугольных координатах $y = f_1(x)$ и $y = f_2(x)$, причем всюду на отрезке [a,b] $f_2(x) \ge f_1(x)$, и двумя прямыми x = a и x = b, (a < b), то площадь определяется по формуле

$$S = \int_{a}^{b} [f_2(x) - f_1(x)] dx.$$

И в этом случае требуется соблюдать указанное выше правило знаков.

Вычисление площади, ограниченной кривой, заданной полярным уравнением и двумя радиусами-векторами

Если кривая, ограничивающая площадь, определяется уравнением

$$r = f(\varphi)$$
,

то площадь, ограниченная ею, вычисляется по формуле

$$S = \frac{1}{2} \int_{\varphi_1}^{\varphi_2} r^2 d\varphi,$$

где φ_1 и φ_2 ($\varphi_1 < \varphi_2$) — пределы изменения полярного угла.

Вычисление длины дуги плоской кривой

1. Длина дуги плоской кривой, заданной в прямоугольных координатах уравнением y = f(x), находится по формуле

$$L = \int_{a}^{b} \sqrt{1 + y'^2} \, dx,$$

где a и b – соответственно абсциссы начала и конца дуги.

2. Если кривая задана параметрическими уравнениями

$$\begin{aligned}
x &= \varphi(t) \\
y &= \psi(t) \end{aligned}$$

Причем $t_1 \le t \le t_2$, а функции $\varphi(t)$ и $\psi(t)$ имеют непрерывные производные, то длина дуги

$$L = \int_{t_1}^{t_2} \sqrt{x'^2 + y'^2} dt.$$

3. Если кривая задана уравнением в полярных координатах

$$r = f(\varphi)$$
,

а полярный угол φ на дуге изменяется от φ_1 и φ_2 , то длина дуги вычисляется по формуле

$$L = \int_{\varphi_1}^{\varphi_2} \sqrt{r^2 + r'^2} \, d\varphi.$$

Рассмотрим примеры различных типовых заданий на нахождение площади области и длины кривой.

Задача 1. Найдите площадь, ограниченную осью Ох и кривой

$$y = x^3 - 6x^2 + 11x - 6.$$

<u>Решение.</u> Найдём точки пересечения кривой с осью Ox. Для этого решим уравнение $x^3 - 6x^2 + 11x - 6 = 0$. Полученные корни: $x_1 = 1$, $x_2 = 2$, $x_3 = 3$. Построив эскиз графика (рис.1), мы видим, что на отрезке [2,3] функция отрицательна. Поэтому на этом отрезке для вычисления площади берём значение интеграла с противоположным знаком.

$$S = S_1 - S_2 = \int_{1}^{2} (x^3 - 6x^2 + 11x - 6)dx - \int_{2}^{3} (x^3 - 6x^2 + 11x - 6)dx = \frac{1}{2}.$$

Рисунок 1

Задача 2. Найдите площадь фигуры, ограниченную линиями

$$y = \frac{1}{x^2}$$
, $x = a \ (a > 0)$ и осью абсцисс.

<u>Решение.</u> Построим эскизы графиков данных функций (рис.2). Подграфик функции не ограничен. В этом случае, если несобственный интеграл с бесконечным верхним пределом сходится, то его значение считают площадью фигуры. Таким образом, получаем

$$S = \int_{a}^{+\infty} \frac{1}{x^{2}} dx = -\frac{1}{x} \Big|_{a}^{+\infty} = \lim_{x \to +\infty} \left(-\frac{1}{x} \right) + \frac{1}{a} = \frac{1}{a}.$$

Рисунок 2

 $\underline{3ada4a\ 3.}$ Найдите площадь фигуры, лежащей в первой четверти внутри круга $x^2+y^2=3a^2$ и ограниченной параболами $x^2=2ay$ и $y^2=2ax\ (a>0)$ (рис.3).

Рисунок 3

 Решение.
 Построим
 графики
 и найдём координаты точек пересечения

 окружности с параболами.
 Для этого решим системы уравнений

 $\{x^2 + y^2 = 3a^2, y^2 = 2ax\}$ $\{x^2 + y^2 = 3a^2, x^2 = 2ay\}$

 первой системы $\{a, \sqrt{2}a\}$ и второй системы $\{\sqrt{2}a, a\}$.
 Тогда интересующая нас площадь равна

$$S = \int_{0}^{a} \left(\sqrt{2ax} - \frac{x^{2}}{2a} \right) dx + \int_{a}^{\sqrt{2}a} \left(\sqrt{3a^{2} - x^{2}} - \frac{x^{2}}{2a} \right) dx$$

$$= \left[\sqrt{2a} \cdot \frac{2}{3} x^{\frac{3}{2}} - \frac{x^{3}}{6a} \right]_{0}^{a} + \left[\frac{x}{2} \sqrt{3a^{2} - x^{2}} + \frac{3a^{2}}{2} \arcsin \frac{x}{a\sqrt{3}} - \frac{x^{3}}{6a} \right]_{a}^{a\sqrt{2}}$$

$$= \frac{2\sqrt{2}}{3} a^{2} - \frac{a^{2}}{6} + \frac{3a^{2}}{2} \left(\arcsin \frac{\sqrt{2}}{\sqrt{3}} - \arcsin \frac{1}{\sqrt{3}} \right) - \frac{\sqrt{2}}{3} a^{2} + \frac{1}{6} a^{2}$$

$$= \left(\frac{\sqrt{2}}{3} + \frac{3}{2} \arcsin \frac{1}{3} \right) a^{2}.$$

Для преобразования разности арксинусов мы использовали формулу

$$\arcsin \alpha - \arcsin \beta = \arcsin \left(\alpha \sqrt{1 - \beta^2} - \beta \sqrt{1 - \alpha^2} \right) \quad (\alpha \beta > 0).$$

Задача 4. Вычислите площадь фигуры, ограниченной параболами $x = -2y^2$, $x = 1 - 3y^2$ (рис.4).

Рисунок 4

<u>Решение.</u> Найдём точки пересечения парабол. Для этого найдём решения системы

$$\begin{cases} x = -2y^2, \\ x = 1 - 3y^2. \end{cases}$$

Решениями системы являются точки (-2,-1) и (-2,1). В данном случае удобнее интегрировать вдоль оси Оу. На отрезке $-1 \le y \le 1$ выполняется неравенство $1-3y^2 \ge -2y^2$, поэтому

$$S = \int_{-1}^{1} [(1 - 3y^2) - (-2y^2)] dy = 2\left(y - \frac{y^3}{3}\right)_0^1 = \frac{4}{3}.$$

Задача 5. Найдите площадь петли кривой
$$\begin{cases} x = 2t - \frac{t^2}{3}; \\ y = \frac{t^2}{8}(6-t). \end{cases}$$

Рисунок 5

<u>Решение.</u> Определим для начала общий вид кривой и точки её самопересечения. Обе функции x(t) и y(t) определены на всей числовой оси $-\infty < t < +\infty$.

Точка самопересечения характерна тем, что в ней совпадают значения абсциссы (и ординаты) при разных значениях параметра. Так как $x=3-\frac{1}{3}(t-3)^2$, то значения x(t) совпадают при значениях параметра $t=3\pm\alpha$. Чтобы функция y(t) принимала при тех же значениях параметра t одно и то же значение, должно выполняться равенство

$$\frac{(3+\alpha)^2}{8}(3-\alpha) = \frac{(3-\alpha)^2}{8}(3+\alpha), \quad \alpha \neq 0.$$

Откуда $\alpha = \pm 3$.

Таким образом, при $t_1=0$ и при $t_2=6$ имеем $x(t_1)=x(t_2)=0$, $y(t_1)=y(t_2)=0$, т.е. точка (0,0) является единственной точкой самопересечения. Когда t меняется от 0 до 6, точки кривой лежат в первой четверти. При изменении t от 0 до 3 обе функции x(t) и y(t) возрастают, и точки (x,y) образуют нижнюю часть петли. Далее x(t) при $3 \le t \le 6$ убывает, а y(t) сначала продолжает возрастать, а затем убывает. Так и получается петля, при

этом фигура находится слева. Такой обход соответствует возрастанию параметра.

Площадь искомой петли находим по формуле

$$S = \frac{1}{2} \int_{t_1}^{t_2} (xy' - x'y) dt = \frac{1}{2} \int_{0}^{6} \frac{t^2 (6 - t)^2}{24} dt = \frac{27}{5}.$$

<u>Задача 6.</u> Найдите площадь, заключённую между осью Ох и верзиерой, определяемой уравнениями

$$\begin{cases} x = t, \\ y = \frac{a^3}{a^2 + t^2}. \end{cases}$$

Рисунок 6

<u>Решение.</u> Значение аргумента х изменяется от -∞ до +∞. Кривая симметрична относительно оси Оу. Так как параметр t также меняется от -∞ до +∞, то для вычисления площади используем несобственный интеграл с бесконечными пределами:

$$S = \int_{-\infty}^{+\infty} \frac{a^3}{a^2 + t^2} dt = a^3 \int_{-\infty}^{+\infty} \frac{dt}{a^2 + t^2} = a^3 \cdot \frac{1}{a} \operatorname{arctg} \frac{t}{a} \Big|_{-\infty}^{+\infty}$$
$$= a^2 [\operatorname{arctg} (+\infty) - \operatorname{arctg} (-\infty)] = a^2 \left[\frac{\pi}{2} - \left(-\frac{\pi}{2} \right) \right] = \pi \ a^2.$$

Задача 7. Вычислите площадь фигуры, ограниченной кривой

$$\begin{cases} x = a \sin t, \\ y = b \sin 2t. \end{cases}$$

Рисунок 7

<u>Решение.</u> Для построения кривой учтем, что она симметрична относительно осей координат. Действительно, если заменить t на $(\pi - t)$, то переменная x не меняется, а y изменяет только свой знак; следовательно, кривая симметрична относительно оси Ox. При замене же t на $(\pi + t)$ переменная y не меняется, а x меняет только свой знак. Это значит, что кривая симметрична относительно оси Oy.

Обе функции x(t) и y(t) имеют общий период 2π . Поэтому достаточно рассмотреть отрезок изменения параметра $t \in [0, 2\pi]$. Общий вид кривой изображён на рисунке 7. При изменении параметра от 0 до $\frac{\pi}{2}$ обе функции сохраняют принимают неотрицательные значения. При этом x(t) возрастает на всем промежутке, а y(t) возрастает при $0 \le t < \frac{\pi}{4}$ и убывает при $\frac{\pi}{4} < t \le \frac{\pi}{2}$.

Далее на отрезке изменения параметра $t \in \left[\frac{\pi}{2}; \frac{3\pi}{4}\right]$ обе функции убывают, имея при этом различные знаки. И, наконец, при $t \in \left[\frac{3\pi}{4}; \pi\right]$ функция x(t) продолжает убывать, в то время как функция y(t) уже возрастает. В силу симметричности фигуры относительно осей координат нам достаточно найти площадь четверти фигуры. Тогда искомая площадь будет равна полученному результату, умноженному на 4:

$$S = 4 \int_{0}^{\pi/2} x'ydt = 4 \int_{0}^{\pi/2} a \cdot \sin 2t \cdot b \cdot \cos t \, dt = 8ab \int_{0}^{\pi/2} \sin t \cos^{2} t \, dt$$
$$= -8ab \int_{0}^{\pi/2} \cos^{2} t \, d(\cos t) = -8ab \frac{\cos^{3} t}{3} \Big|_{0}^{\pi/2} = \frac{8}{3}ab.$$

 $3a\partial a ua$ 8. Вычислите площадь фигуры, ограниченной окружностями $r=3\sqrt{2}a\cos\varphi$ и $r=3a\sin\varphi$.

Рисунок 8

<u>Решение.</u> Окружность $r = 3\sqrt{2}a\cos\varphi$ лежит в правой полуплоскости, проходит через полюс r = 0, касаясь вертикальной прямой. Вторая окружность $r = 3a\sin\varphi$ лежит в верхней полуплоскости, также проходит через полюс r = 0,

касаясь гоизонтальной прямой. Очевидно, что полюс является точкой пересечения окружностей. Вторую точку пересечения B находим из уравнения

$$3\sqrt{2}a\cos\varphi = 3a\sin\varphi.$$

Откуда $B(arctg\sqrt{2},\sqrt{6})$. Из рисунка 8 видно, что искомая площадь представляет собой сумму двух сегментов OABO и OBCO. Отрезок [OB] лежит на луче $\varphi = arctg\sqrt{2}$. Таким образом, сегмент OABO ограничен дугой первой окружности при $arctg\sqrt{2} \le \varphi \le \frac{\pi}{2}$ и отрезком [OB], а сегмент OBCO — отрезком [OB] и дугой второй окружности при $0 \le \varphi \le arctg\sqrt{2}$. Поэтому имеем

$$S_{OABO} = 9a^{2} \int_{arctg\sqrt{2}}^{\frac{\pi}{2}} \cos^{2}\varphi \,d\varphi = 9a^{2} \left(\frac{\pi}{2} - arctg\sqrt{2} - \frac{\sqrt{2}}{3}\right),$$

$$S_{OBCO} = \frac{9}{2}a^{2} \int_{0}^{arctg\sqrt{2}} \sin^{2}\varphi \,d\varphi = \frac{9}{4}a^{2} \left(arctg\sqrt{2} - \frac{\sqrt{2}}{3}\right),$$

$$S = S_{OABC} + S_{OBCO} = \frac{9}{4}a^{2} \left(\pi - arctg\sqrt{2} - \sqrt{2}\right).$$

Задача 9. Вычислите длину дуги у кривой $x = \frac{1}{4}y^2 - \frac{1}{2}\ln y$, заключённой между точками с ординатами y = 1 и y = 2.

Рисунок 9

<u>Решение.</u> Здесь удобнее рассматривать в качестве независимой переменную y. Тогда найдём производную функции x(y) по переменной y:

$$x' = \frac{1}{2}y - \frac{1}{2y},$$

$$\sqrt{1+x'^2} = \sqrt{\left(\frac{1}{2}y + \frac{1}{2y}\right)^2} = \frac{1}{2}y + \frac{1}{2y}.$$

Длину дуги вычислим по формуле:

$$l = \int_{1}^{2} \sqrt{1 + x'^{2}} \, dy = \int_{1}^{2} \left(\frac{1}{2}y + \frac{1}{2y}\right) dy = \frac{3}{4} + \frac{1}{2}\ln 2.$$

 $\underline{3ada4a}\ 10.$ Вычислите длину дуги кривой $y=\ln\cos x$, заключённой между точками с абсцисами x=0 и $x=\frac{\pi}{4}.$

Рисунок 10

<u>Решение.</u> Поскольку $y' = -tg\ x$, то $\sqrt{1+y'^2} = \sqrt{1+tg^2x} = \frac{1}{\cos x}$. Тогда длина дуги равна

$$l = \int_{0}^{\frac{\pi}{4}} \frac{dx}{\cos x} = \ln tg \left(\frac{\pi}{4} + \frac{x}{2} \right) \Big|_{0}^{\pi/4} = \ln tg \frac{3\pi}{8}.$$

<u>Задача 11.</u> Найдите длину замкнутой кривой $r = a \sin^3 \frac{\varphi}{3}$.

Рисунок 11

<u>Решение.</u> Кривая задана в полярных координатах. Найдём границы изменения угла φ . Так как r – расстояние, то должно выполняться неравенство $r \ge 0$. И значит $\sin \frac{\varphi}{3} \ge 0$. Отсюда $0 \le \varphi \le 3\pi$.

При изменении φ от 0 до $\frac{3\pi}{2}$ длина радиус-вектора r возрастает от 0 до a, а конец радиус-вектора описывает дугу OAMB (рис.11). Когда φ меняется от $\frac{3\pi}{2}$ до 3π величина r убывает от a до 0 (дуга BCAO). Таким образом получаем замкнутую кривую, симметричную относительно прямой $\varphi = \pm \frac{\pi}{2}$. Значит для вычисления длины кривой мы можем найти половину ее длины $\left(0 < \varphi < \frac{3\pi}{2}\right)$ и результат умножить на 2.

Длину находим по формуле

$$l = \int_{\varphi_1}^{\varphi_2} \sqrt{r^2 + r'^2} d\varphi.$$

$$r' = a \sin^2 \frac{\varphi}{3} \cos \frac{\varphi}{3},$$

$$\sqrt{r^2 + r'^2} = \sqrt{a^2 \sin^6 \frac{\varphi}{3} + a^2 \sin^4 \frac{\varphi}{3} \cos^2 \frac{\varphi}{3}} = a \sin^2 \frac{\varphi}{3},$$

$$l = a \int_0^{3\pi/2} \sin^2 \frac{\varphi}{3} d\varphi = a \int_0^{3\pi/2} \left(1 - \cos \frac{2\varphi}{3}\right) d\varphi = a \left(\varphi - \frac{3}{2} \sin \frac{2\varphi}{3}\right) \Big|_0^{3\pi/2} = \frac{3a\pi}{2}.$$

<u>Задача 12.</u> Вычислите длину логарифмической спирали $r = a e^{m\varphi}$ от некоторой её точки (r_0, φ_0) до переменной точки (r, φ) .

Рисунок 12

<u>Решение.</u> В этом случае, поскольку мы не знаем, какая из величин φ_0 или φ больше, то находим длину дуги как модуль интеграла

$$\begin{split} l &= \left| \int\limits_{\varphi_0}^{\varphi} \sqrt{r^2 + r'^2} d\varphi \right| = \left| \int\limits_{\varphi_0}^{\varphi} \sqrt{a^2 e^{2m\varphi} + a^2 m^2 e^{2m\varphi}} d\varphi \right| = a\sqrt{1 + m^2} \left| \int\limits_{\varphi_0}^{\varphi} e^{m\varphi} d\varphi \right| \\ &= a\frac{\sqrt{1 + m^2}}{m} |e^{m\varphi} - e^{m\varphi_0}| = \frac{\sqrt{1 + m^2}}{m} |r - r_0|. \end{split}$$

Таким образом, длина дуги логарифмической спирали пропорциональна приращению полярного радиуса дуги.

<u>Задача 13.</u> Вычислите длину петли кривой $\begin{cases} x = \sqrt{3} \ t^2, \\ y = t - t^3. \end{cases}$

Рисунок 13

<u>Решение.</u> Найдём пределы интегрирования. Обе функции x(t) и y(t) определены при всех значениях параметра t. Кроме того, x(t) — чётная и неотрицательная, а y(t) меняет знак и нечётная. Поэтому кривая расположена в правой полуплоскости, симметрично относительно оси абсцисс. Определим точки самопересечения кривой:

$$\begin{cases} x(t_1) = x(t_2), \\ y(t_1) = y(t_2). \end{cases}$$
$$\begin{cases} \sqrt{3}t_1^2 = \sqrt{3}t_2^2, \\ t_1 - t_1^3 = t_2 - t_2^3. \end{cases}$$

Решение системы даёт единственную точку самопересечения кривой, а именно $(\sqrt{3},0)$ при значениях параметра $t=\pm 1$. Таким образом, границами интегрирования являются значения параметра $t_1=-1, t_2=1$. Длину дуги вычисляем по формуле:

$$l = \int_{t_1}^{t_2} \sqrt{x'^2 + y'^2} dt = \int_{-1}^{1} \sqrt{(2\sqrt{3}t)^2 + (1 - 3t^2)^2} dt = \int_{-1}^{1} (1 + 3t^2) dt = 4.$$

Раздел 3.

НЕСОБСТВЕННЫЕ ИНТЕГРАЛЫ

Задание 13. Нахождение несобственных интегралов:

- а) по бесконечному промежутку интегрирования,
- б) от неограниченной на отрезке функции.

А. Напомним, что несобственные интегралы по бесконечному промежутку определяются посредством предельного перехода.

Если функция f(x) непрерывна на промежутке $[a, +\infty)$, то

$$\int_{a}^{+\infty} f(x)dx = \lim_{b \to +\infty} \int_{a}^{b} f(x)dx$$

Если функция f(x) непрерывна на промежутке $(-\infty, b]$, то

$$\int_{-\infty}^{b} f(x)dx = \lim_{a \to -\infty} \int_{a}^{b} f(x)dx$$

Если функция непрерывна на всей числовой оси, то

$$\int_{-\infty}^{+\infty} f(x)dx = \int_{-\infty}^{c} f(x)dx + \int_{c}^{+\infty} f(x)dx, c \in \mathbb{R}.$$

Если предел существует и конечен, то несобственный интеграл называют сходящимся, если же предел не существует или бесконечен, то интеграл называют расходящимся.

<u>Пример 1</u>. Найдите значение несобственного интеграла или установите его расходимость: $\int_0^{+\infty} \cos x \, dx$.

Решение. По определению несобственного интеграла имеем

$$\int_0^{+\infty} \cos x \, dx = \lim_{b \to +\infty} \int_0^b \cos x \, dx = \lim_{b \to +\infty} \sin x \Big|_0^b = \lim_{b \to +\infty} (\sin b - \sin 0)$$
$$= \lim_{b \to +\infty} \sin b$$

Так как этот предел не существует, несобственный интеграл расходится.

<u>Пример 2.</u> Найдите значение несобственного интеграла $\int_1^{+\infty} \frac{\ln x}{x^3} dx$.

Решение: По определению несобственного интеграла имеем

$$\int_{1}^{+\infty} \frac{\ln x}{x^{3}} dx = \lim_{b \to +\infty} \int_{1}^{b} \frac{\ln x}{x^{3}} dx = \begin{bmatrix} u = \ln x & dv = x^{-3} dx \\ du = \frac{dx}{x} & v = -\frac{1}{2x^{2}} \end{bmatrix} =$$

$$= \lim_{b \to +\infty} \left(-\frac{\ln x}{2x^2} \Big|_1^b + \frac{1}{2} \int_1^b \frac{dx}{x^2} \right) = \lim_{b \to +\infty} \left(-\frac{\ln b}{2b^2} \right) + \lim_{b \to +\infty} \left(-\frac{1}{4x} \right) \Big|_1^b$$
$$= \lim_{b \to +\infty} \left(-\frac{1}{b \cdot 4b} \right) + \lim_{b \to +\infty} \left(\left(-\frac{1}{4b} \right) + \frac{1}{4} \right) = \frac{1}{4}$$

Для нахождения значения исходного интеграла мы применили формулу интегрирования по частям $\int_a^b u dv = uv|_a^b - \int_a^b v du$, а также воспользовались правилом Лопиталя для отыскания предела $\lim_{b\to +\infty} \left(-\frac{\ln b}{2b^2}\right)$.

Пример 3. Найдите значение несобственного интеграла

$$\int_{-\infty}^{+\infty} \frac{dx}{(x^2+1)(x^2+4)}$$

<u>Решение:</u> Подынтегральная функция чётная, поэтому можно воспользоваться свойством несобственных интегралов по симметричному промежутку от чётных функций

$$\int_{-\infty}^{+\infty} \frac{dx}{(x^2+1)(x^2+4)} = 2 \int_{0}^{+\infty} \frac{dx}{(x^2+1)(x^2+4)}$$
$$= \frac{2}{3} \left(\int_{0}^{+\infty} \frac{dx}{x^2+1} - \int_{0}^{+\infty} \frac{dx}{x^2+4} \right) =$$

$$= \frac{2}{3} \lim_{b \to +\infty} \left(\int_0^b \frac{dx}{x^2 + 1} - \int_0^b \frac{dx}{x^2 + 4} \right)$$

$$= \frac{2}{3} \lim_{b \to +\infty} \left(\arctan x \Big|_0^b \right) - \frac{2}{3} \lim_{b \to +\infty} \left(\frac{1}{2} \arctan \frac{x}{2} \Big|_0^b \right) = \frac{2}{3} \left(\frac{\pi}{2} - \frac{1}{2} \cdot \frac{\pi}{2} \right)$$

$$= \frac{2}{3} \cdot \frac{\pi}{4} = \frac{\pi}{6}.$$

Б. Значения несобственных интегралов от неограниченных в окрестности некоторой точки функций также определяются посредством предельного перехода.

Если функция f(x) непрерывна на (a,b] и $\lim_{x\to a+0} f(x) = \pm \infty$, то

$$\int_{a}^{b} f(x)dx = \lim_{\varepsilon \to 0} \int_{a+\varepsilon}^{b} f(x)dx, (\varepsilon > 0).$$

Если функция
$$f(x)$$
 непрерывна на $[a,b)$ и $\lim_{x\to b-0}f(x)=\pm\infty$, то
$$\int_a^b f(x)dx=\lim_{\delta\to 0}\int_a^{b-\delta}f(x)dx$$
, $(\delta>0)$.

Если функция f(x) непрерывна на отрезке [a,b] всюду, за исключением точки $c \in (a, b)$, и хотя бы один из односторонних пределов функции f(x) в этой точке бесконечен, то

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx.$$

Несобственный интеграл называют сходящимся, если его значение существует и конечно, и расходящимся в противном случае.

<u>Пример 1</u>. Найдите значение несобственного интеграла или установите его расходимость.

$$\int_{-1}^{2} \frac{dx}{x}$$

<u>Решение:</u> Функция $f(x) = \frac{1}{x}$ непрерывна при $-1 \le x < 0$ и $0 < x \le 2$ и имеет бесконечные односторонние пределы в точке x = 0. Тогда

$$\int_{-1}^{2} \frac{dx}{x} = \int_{-1}^{0} \frac{dx}{x} + \int_{0}^{2} \frac{dx}{x} = \lim_{\varepsilon \to 0} \int_{-1}^{0-\varepsilon} \frac{dx}{x} + \lim_{\delta \to 0} \int_{0+\delta}^{2} \frac{dx}{x} = \lim_{\varepsilon \to 0} \left(\ln|x| \Big|_{-1}^{-\varepsilon} \right) + \lim_{\delta \to 0} \left(\ln|x| \Big|_{+\delta}^{2} \right) =$$

$$= \lim_{\varepsilon \to 0} \ln \varepsilon + \lim_{\delta \to 0} (\ln 2 - \ln \delta)$$

 $= \lim_{\varepsilon \to 0} \ln \varepsilon + \lim_{\delta \to 0} (\ln 2 - \ln \delta)$ Несобственные интегралы $\int_{1}^{0} \frac{dx}{x} \quad \text{и} \quad \int_{0}^{2} \frac{dx}{x} \quad \text{расходятся, значит, расходится и}$ исходный интеграл.

Пример 2. Найдите значение несобственного интеграла.

$$\int_{0}^{1} \frac{dx}{\sqrt{x(1-x)}}$$

<u>Решение:</u> Функция $f(x) = \frac{1}{\sqrt{x(1-x)}}$ непрерывна при 0 < x < 1 и имеет бесконечные односторонние пределы $f(0+0) = f(1-0) = +\infty$. Тогда, чтобы упростить запись решения, заменим сумму двух пределов одним пределом с двумя условиями $\delta \to 0$ и $\varepsilon \to 0$ ($\delta > 0$, $\varepsilon > 0$).

$$\int_{0}^{1} \frac{dx}{\sqrt{x(1-x)}} = \lim_{\substack{\delta \to 0 \\ \varepsilon \to 0}} \int_{\varepsilon}^{1-\delta} \frac{dx}{\sqrt{x(1-x)}} = \lim_{\substack{\delta \to 0 \\ \varepsilon \to 0}} \int_{\varepsilon}^{1-\delta} \frac{dx}{\sqrt{\frac{1}{4} - \left(x - \frac{1}{2}\right)^{2}}} =$$

$$= \lim_{\substack{\delta \to 0 \\ \delta \to 0}} \left(\arcsin(2x - 1)|_{\varepsilon}^{1-\delta}\right)$$

$$= \lim_{\substack{\delta \to 0 \\ \delta \to 0}} \arcsin(2 - 2\delta - 1) - \lim_{\substack{\varepsilon \to 0 \\ \varepsilon \to 0}} \arcsin(2\varepsilon - 1) = \pi.$$

Часть 2. ТИПОВЫЕ ЗАДАНИЯ

Задание 1. Проинтегрируйте методом внесения под знак дифференциала.

1. $\int \frac{\sin x \, dx}{2 - \cos x}$

 $16. \quad \int \frac{(1+ctg^3x) \ dx}{\sin^2 x}$

 $2. \qquad \int x^2 \sqrt{3 + x^3} \, dx$

17. $\int \frac{(3^x - 3^{-x})dx}{3^x + 3^{-x}}$

 $\int \frac{\arcsin^3 x}{\sqrt{1-x^2}} \, dx$

18. $\int \frac{(\arccos x - 1)dx}{\sqrt{1 - x^2}}$

 $4. \qquad \int \frac{(\ln \ln x)^3 dx}{x \ln x}$

 $19. \quad \int \frac{\left(5 \cdot 3^{2x} + 3\right) dx}{5^x}$

 $5. \qquad \int \frac{xdx}{\cos^2(2x^2+1)}$

20. $\int \frac{2 - arcctg^2 x}{1 + x^2} dx$

 $6. \qquad \int \frac{x}{2+x^4} \, dx$

21. $\int \frac{dx}{\sqrt{1-x^2} \cdot \arccos^2 x}$

 $7. \qquad \int \frac{e^{3x} dx}{1 + e^{6x}}$

 $22. \quad \int \frac{e^{tgx} + 2}{\cos^2 x} \, dx$

8. $\int \frac{(4x-1)\,dx}{\sqrt{x^2+2}}$

 $23. \quad \int e^{2\sin x} \cos x dx$

9. $\int e^{3\cos x} \sin x dx$

 $24. \quad \int \frac{e^{\sqrt{2x-1}}dx}{\sqrt{2x-1}}$

10. $\int \frac{\left(e^{-3\sqrt{x}}+1\right)dx}{\sqrt{x}}$

25. $\int (x^2 - 2x + 1) \cdot e^{-x^3 + 3x^2 - 3x + 4} dx$

 $11. \quad \int \frac{10 + \ln^2 x}{x} \, dx$

 $26. \quad \int \frac{1}{x^4} \cdot \sin\left(\frac{1}{x^3} + \frac{\pi}{8}\right) dx$

$$12. \quad \int \frac{dx}{x\sqrt{1-\ln x}}$$

27.
$$\int \frac{(\ln(2x+5)-1)}{x+2,5} \, dx$$

13.
$$\int \frac{arctg\sqrt{x}}{\sqrt{x}} dx$$

$$28. \quad \int \frac{\sin x}{\sqrt{2 + 3\cos x}} \, dx$$

14.
$$\int \frac{\cos x}{\sqrt{1+2\sin x}} \, dx$$

29.
$$\int \frac{(3x+1) \, dx}{\sqrt{3-x^2}}$$

$$15. \quad \int \frac{e^{ctgx} - 1}{\sin^2 x} \, dx$$

30.
$$\int \frac{x^3 \ln(x^4 + 1) dx}{x^4 + 1}$$

Задание 2. Найдите интеграл от тригонометрической функции:

$$1. \qquad \int \sin^4 \frac{3x}{2} \, dx$$

16.
$$\int \sin^2\left(\frac{x}{4} + 3\right) dx$$

2.
$$\int \sin 3x \cdot \cos x \, dx$$

17.
$$\int \cos 4x \cdot \cos 5x dx$$

3.
$$\int \sin^5 2x \cdot \cos 2x \, dx$$

$$18. \quad \int \frac{\sin^3(x-1)}{\cos^2(x-1)} dx$$

4.
$$\int \sqrt[3]{\cos 2x} \cdot \sin 2x \, dx$$

$$19. \quad \int \sin^2 3x \cdot \cos^2 3x \, dx$$

$$5. \int \sin\frac{x}{3} \cdot \sin\frac{2x}{3} dx$$

20.
$$\int \sin x \cdot \sin 6x \, dx$$

$$6. \qquad \int \sin^4 \frac{x}{2} \cdot \cos \frac{x}{2} dx$$

21.
$$\int \sqrt[3]{\sin x} \cdot \cos x dx$$

$$7. \qquad \int \sin^3 \frac{4x}{5} \, dx$$

22. $\int \sin^2(2x+1) \cdot \cos^2(2x+1) \, dx$

8.
$$\int \cos x \cdot \cos 3x \, dx$$

23. $\int \sin \frac{x}{2} \cdot \cos \frac{5x}{2} dx$

$$9. \qquad \int \frac{\cos 5x}{\sqrt[4]{\sin 5x}} dx$$

 $24. \quad \int \cos^3 \frac{x}{6} \cdot \sin^2 \frac{x}{6} dx$

10.
$$\int \cos^2\left(\frac{x}{2} + 1\right) dx$$

25. $\int \sqrt{\cos^5 x} \cdot \sin x \, dx$

11.
$$\int \sin 3x \cdot \cos 2x \, dx$$

 $26. \quad \int \cos \frac{x}{4} \cdot \cos \frac{x}{8} dx$

$$12. \quad \int \frac{\cos^3 2x}{\sin^2 2x} dx$$

 $27. \quad \int \sin\frac{x}{5} \cdot \cos\frac{3x}{5} dx$

13.
$$\int \cos^3 \frac{x}{2} dx$$

 $28. \quad \int \sin^3 5x \cdot \cos^3 5x \, dx$

14.
$$\int \sin 7x \cdot \sin 5x \, dx$$

 $29. \quad \int \cos^4 2x \, dx$

15.
$$\int \sin^5 x \cdot \cos^3 x \, dx$$

 $30. \quad \int \cos^4 x \cdot \sin^2 x \, dx$

Задание 3. Найдите интеграл:

1.
$$\int \frac{(3x+2)dx}{2x^2+4x+16}$$

16.
$$\int \frac{(4x-1)dx}{\sqrt{9x^2-3x+2}}$$

2.
$$\int \frac{(x-2)dx}{\sqrt{3x^2 - 6x + 4}}$$

17.
$$\int \frac{(2x-5)dx}{\sqrt{4-2x-2x^2}}$$

3.
$$\int \frac{(7x-5)dx}{\sqrt{3+2x-x^2}}$$

4.
$$\int \frac{(2x+3)dx}{\sqrt{x^2+5x+2}}$$

$$5. \qquad \int \frac{(2-3x)dx}{\sqrt{3+2x-5x^2}}$$

6.
$$\int \frac{(5x-1)\,dx}{4x^2-x+3}$$

7.
$$\int \frac{(7-3x)dx}{\sqrt{x^2 - 4x - 2}}$$

8.
$$\int \frac{(2+x)dx}{\sqrt{4+6x-4x^2}}$$

9.
$$\int \frac{(1-6x)\,dx}{\sqrt{5x^2+x-6}}$$

10.
$$\int \frac{(2-3x)dx}{6x^2 - 2x + 1}$$

11.
$$\int \frac{(6x+1)dx}{\sqrt{3x^2-4x+2}}$$

12.
$$\int \frac{(4x-1)dx}{\sqrt{4-x-3x^2}}$$

13.
$$\int \frac{(4x+3)dx}{\sqrt{2x^2-x-6}}$$

14.
$$\int \frac{(4-x)dx}{\sqrt{1-4x-5x^2}}$$

18.
$$\int \frac{(3x-2)\,dx}{\sqrt{4x^2+2x-3}}$$

19.
$$\int \frac{(3-x)dx}{\sqrt{1+6x-7x^2}}$$

20.
$$\int \frac{(5-x)dx}{2x^2 + 2x + 1}$$

21.
$$\int \frac{(1-3x)dx}{\sqrt{1+x-2x^2}}$$

22.
$$\int \frac{(2-x)dx}{\sqrt{3x^2 + 2x - 5}}$$

23.
$$\int \frac{(2x+1)dx}{\sqrt{7x-3-2x^2}}$$

24.
$$\int \frac{(7x+6)dx}{\sqrt{x^2+4x+2}}$$

25.
$$\int \frac{(3x-1)dx}{x^2+x+2}$$

26.
$$\int \frac{(x-1)dx}{\sqrt{2+5x-3x^2}}$$

27.
$$\int \frac{(2x+5)dx}{\sqrt{3-x-2x^2}}$$

28.
$$\int \frac{(5-x)dx}{3x^2 + 2x + 1}$$

29.
$$\int \frac{(x+4)dx}{\sqrt{1+3x-4x^2}}$$

15.
$$\int \frac{(3-x)dx}{3x^2 - 6x + 4}$$

30.
$$\int \frac{(6x-1)dx}{\sqrt{2-3x-2x^2}}$$

Задание 4. Найдите интеграл от дробно-рациональной функции:

1.
$$\int \frac{(2x^3 + 3x^2 + 3)dx}{(x-1)^2(x^2 + 2x + 5)}$$

16.
$$\int \frac{x(x+1)dx}{(x-2)^2(x^2-3x+5)}$$

2.
$$\int \frac{(x^4 - x + 1) dx}{(x+1)^3 (x^2 + 2)}$$

17.
$$\int \frac{(x^3 + 7x^2 + 5x + 10) dx}{x^3 (x^2 + 5)}$$

3.
$$\int \frac{(x^4 - 3x^3 + x^2 - 5x - 2) dx}{(x - 1)(x^4 - 1)}$$

18.
$$\int \frac{(4x^4 + 5x^2 - 21x + 10) dx}{x^2(x-2)(x^2 + 2x + 5)}$$

4.
$$\int \frac{(x^2 - 8x + 22) dx}{(x - 2)^2 (x^2 - x + 3)}$$

19.
$$\int \frac{(x^2 + 10x + 1) dx}{(x+1)^2 (x^2 + 2x + 5)}$$

5.
$$\int \frac{2(x^2 - 2x + 4) dx}{x^3 (x^2 + 4)}$$

20.
$$\int \frac{(x^3 + 4x^2 + 6x + 2) dx}{x^2(x+1)(x^2 + 2x + 2)}$$

6.
$$\int \frac{x^4 + 4x^2 + 2x + 1}{(x+1)(x^4 - 1)}$$

21.
$$\int \frac{(x^4 - 23x^2 + 32x + 18) dx}{x(x+3)^2 (x^2 - 2x + 2)}$$

7.
$$\int \frac{(x^2 - 2x^3 + 11) dx}{(x-1)^2 (x^2 + 4x + 5)}$$

22.
$$\int \frac{x(x+4)dx}{(x-2)^2(x^2-3x+8)}$$

8.
$$\int \frac{(x^3 + 4x^2 + x + 2) dx}{x^3 (x^2 + 1)}$$

23.
$$\int \frac{(3x^3 + 9x^2 + 8x + 1) dx}{(x+2)^2 (x^2 + 2x + 3)}$$

9.
$$\int \frac{(5x^3 + 10x^2 + 8x - 15)dx}{x^2(x - 3)(x^2 + 4x + 5)}$$

24.
$$\int \frac{(2x^3 - 6x^2 + 10x - 9) dx}{(x - 1)^2 (x^2 - 3x + 5)}$$

10.
$$\int \frac{(x^3 - 7x + 2) dx}{(x - 1)^2 (x^2 - 2x + 5)}$$

25.
$$\int \frac{(x^2 + 6x + 1) dx}{(x+1)^2 (x^2 + 2x + 3)}$$

11.
$$\int \frac{(x^3 + 6x^2 + 2x + 4) dx}{x^3 (x^2 + 2)}$$

26.
$$\int \frac{(3x^3 + 7x^2 + 9x + 3)dx}{(x+1)^2(x^2 + 2x + 3)}$$

12.
$$\int \frac{(x^4 - 5x^2 + 9x - 4) dx}{x(x - 1)^2 (x^2 - 2x + 2)}$$

27.
$$\int \frac{(x^4 + 8x^2 + 8x + 4) dx}{x(x+1)^2 (x^2 + 4)}$$

13.
$$\int \frac{(2x^3 + x + 7) dx}{(x-1)^2 (x^2 - x + 5)}$$

28.
$$\int \frac{(x^2 + 18x + 20) dx}{(x+2)^2 (x^2 + 3x + 8)}$$

14.
$$\int \frac{(x^3 + 5x^2 + 3x + 6) dx}{x^3 (x^2 + 3)}$$

29.
$$\int \frac{(2x^3 + 3x^2 + 3)dx}{(x-1)^2(x^2 + 2x + 5)}$$

15.
$$\int \frac{(8x^2 - 6x^3 + 3x - 40)dx}{x(x+2)^2(x^2 - 4x + 5)}$$

30.
$$\int \frac{2x(x^3+6x-12)dx}{(x-2)(x^4-16)}$$

Задание 5. Найдите интеграл от иррациональной функции:

1.
$$\int \frac{\sqrt[6]{x+3}-1}{\sqrt{x+3}\left(1+\sqrt[3]{x+3}\right)} dx$$

$$16. \quad \int \frac{x}{2 + \sqrt{2x + 1}} dx$$

2.
$$\int \frac{\sqrt{x-1}}{x\sqrt{x+1}} dx$$

17.
$$\int \frac{x + \sqrt{3x - 2} - 10}{\sqrt{3x - 2} + 7} dx$$

$$3. \qquad \int \frac{5\sqrt{x+1}}{(x+1)^2 \sqrt{x}} dx$$

18.
$$\int \frac{6\sqrt{x+2}}{(x+2)^2 \sqrt{x+1}} dx$$

$$4. \qquad \int \sqrt{\frac{2-x}{x-6}} dx$$

19.
$$\int x \sqrt{\frac{x-1}{x+1}} dx$$

5.
$$\int \frac{6 - \sqrt{x} + \sqrt[4]{x}}{\sqrt{x^3} - 7x - 6\sqrt[4]{x^3}} dx$$

20.
$$\int \sqrt[5]{\frac{x}{x+1}} \frac{dx}{x^3}$$

$$6. \qquad \int \frac{4\sqrt{x}}{x^2 \sqrt{x-1}} dx$$

21.
$$\int \frac{x\sqrt[3]{x+2}}{x+\sqrt[3]{x+2}} dx$$

$$7. \qquad \int \frac{x + \sqrt{2 + x}}{\sqrt[3]{2 + x} + 1} dx$$

22.
$$\int \frac{dx}{2\sqrt{x+5} - \sqrt[3]{x+5} - \sqrt[4]{x+5}}$$

8.
$$\int \frac{\sqrt{x}dx}{\sqrt{5x+6}}$$

$$23. \quad \int \frac{15\sqrt{x+3}}{\left(x+3\right)^2 \sqrt{x}} dx$$

$$9. \qquad \int \frac{1 - \sqrt{x+1}}{1 + \sqrt[3]{x+1}} dx$$

24.
$$\int \frac{dx}{\left(\sqrt[4]{x+3}-1\right)\sqrt{x+3}}$$

$$10. \quad \int \frac{\sqrt{x}}{(1+\sqrt[3]{x})^2} dx$$

25.
$$\int \frac{\sqrt[4]{x-3}+1}{2-\sqrt[4]{x-3}} dx$$

11.
$$\int \frac{2+\sqrt[3]{x}}{(\sqrt[6]{x}+2\sqrt[3]{x}+\sqrt{x})\sqrt{x}}dx$$

26.
$$\int \frac{\sqrt{x}(1+\sqrt[3]{x})^{15}}{\sqrt[6]{x^5}} dx$$

12.
$$\int \frac{\sqrt{x+25}}{(x+25)^2 \sqrt{x+1}} dx$$

27.
$$\int \frac{3x}{\sqrt{1-2x} - \sqrt[4]{1-2x}} \, dx$$

$$13. \quad \int \sqrt{\frac{6-x}{x-18}} dx$$

28.
$$\int \frac{dx}{4\sqrt{x-1} - 3\sqrt[3]{x-1} - \sqrt[4]{x-1}}$$

14.
$$\int \frac{1 - \sqrt[6]{x} + 2\sqrt[3]{x}}{x + 2\sqrt{x^3} + \sqrt[3]{x^4}} dx$$

$$29. \quad \int \sqrt[3]{\frac{x+1}{x-1}} \frac{dx}{\left(x-1\right)^3}$$

15.
$$\int \frac{\sqrt[3]{x+5}+2}{1+\sqrt[3]{x+5}} dx$$

30.
$$\int \frac{4\sqrt{x+7}}{(x+7)^2 \sqrt{x-3}} dx$$

<u>Задание 6</u>. Найдите интеграл от иррациональной функции, используя тригонометрические подстановки:

$$1. \qquad \int x^4 \sqrt{4 - x^2} \, dx$$

$$16. \quad \int x^3 \sqrt{9-x^2} \, dx$$

$$2. \qquad \int x^3 \left(1 + x^2\right)^{\frac{3}{2}} dx$$

17.
$$\int \frac{(x+2)^2}{\sqrt{(1+x^2)^3}} dx$$

$$\int \frac{\sqrt{\left(x^2 - 25\right)^3}}{x^6} dx$$

18.
$$\int \frac{x^2}{(2-x^2)^{\frac{3}{2}}} dx$$

$$4. \qquad \int \frac{x^3}{\left(\sqrt{9-x^2}\right)^5} dx$$

19.
$$\int \frac{x^2}{\sqrt{(4+x^2)^3}} \, dx$$

$$\int \frac{\sqrt{x^2 - 2}}{x^3} dx$$

$$20. \quad \int \frac{\sqrt{x^2 - 2}}{x^3} dx$$

6.
$$\int \frac{x^2}{(16+x^2)^{\frac{3}{2}}} dx$$

$$21. \quad \int x^2 \sqrt{9 - x^2} \, dx$$

$$7. \qquad \int x^3 \sqrt{4 - x^2} \, dx$$

$$22. \quad \int \frac{\sqrt{\left(1-x^2\right)^3}}{x^2} dx$$

$$8. \qquad \int \frac{dx}{\sqrt{(x^2 - 6)^3}}$$

$$23. \quad \int \frac{dx}{\sqrt{(x^2-6)^3}}$$

9.
$$\int \frac{x+1}{(9+x^2)^{5/2}} dx$$

$$24. \int \frac{x^3}{\sqrt{(25-x^2)^3}} dx$$

$$10. \quad \int \frac{dx}{x \sqrt{(x^2 - 3)^5}}$$

25.
$$\int \frac{dx}{x^3 \sqrt{(x^2 - 1)^3}}$$

$$11. \quad \int \frac{x^4}{\sqrt{(1-x^2)^3}} dx$$

$$26. \quad \int x^5 \sqrt{x^2 + 1} \, dx$$

$$12. \qquad \int \frac{\sqrt{x^2 - 4}}{x^5} dx$$

$$27. \quad \int \frac{dx}{x^3 \sqrt{x^2 + 16}}$$

$$13. \quad \int \frac{dx}{x\sqrt{(5+x^2)^3}}$$

28.
$$\int (1+x)^2 \sqrt{4-x^2} \, dx$$

$$14. \quad \int x^2 \sqrt{4-x^2} \, dx$$

$$29. \quad \int \frac{\sqrt{9-x^2}}{x^2} dx$$

$$15. \quad \int \frac{x^3}{\sqrt{(9+x^2)^3}} dx$$

$$30. \quad \int x^3 \sqrt{x^2 + 2} \, dx$$

<u>Задание 7</u>. Проинтегрируйте тригонометрические функции методом подстановки:

$$1. \qquad \int \frac{\cos x - \sin x}{\left(1 + \sin x\right)^2} dx$$

$$16. \quad \int \frac{\cos^3 x}{\sin x + 5} dx$$

$$2. \qquad \int \frac{\cos x dx}{\left(1 + \cos x + \sin x\right)^2}$$

17.
$$\int \frac{dx}{\sin^2 x (1-\cos x)}$$

$$3. \qquad \int \frac{dx}{\left(1+\sin x - \cos x\right)^2}$$

18.
$$\int \frac{(1+\sin x)dx}{(1-\sin x)^2}$$

4.
$$\int \frac{(1-\sin x)dx}{\cos x(1+\cos x)}$$

$$19. \quad \int \frac{\cos^2 x dx}{(1-\sin x + \cos x)^2}$$

$$5. \qquad \int \frac{\sin x dx}{\left(1 + \sin x\right)^2}$$

$$20. \quad \int \frac{(4-7tgx)dx}{2+3tgx}$$

6.
$$\int \frac{\cos x dx}{(1+\cos x)(1-\sin x)}$$

$$21. \quad \int \frac{6\sin^2 x dx}{3\cos 2x - 4}$$

7.
$$\int \frac{dx}{4-3\cos^2 x + 5\sin^2 x}$$

$$22. \quad \int \frac{\cos x dx}{\left(1 - \cos x\right)^3}$$

8.
$$\int \frac{dx}{1+\sin^2 x}$$

23.
$$\int \frac{\sin x dx}{5 + 3\sin x}$$

9.
$$\int \frac{3\sin x + 2\cos x + 1}{\sin x + 3\sin^2 x} dx$$

$$24. \quad \int \frac{1+\sin x}{1+\cos x + \sin x} dx$$

10.
$$\int \frac{3\sin x + 2\cos x + 1}{\sin x + \sin 2x} dx$$

$$25. \quad \int \frac{5tgx + 2}{2\sin 2x + 5} dx$$

$$11. \quad \int \frac{(1+\cos x)^2 dx}{1+\sin x}$$

$$26. \quad \int \frac{2 - tgx}{\left(\sin x + 3\cos x\right)^2} dx$$

$$12. \quad \int \frac{1+\sin x}{\sin 2x + 2\sin x} dx$$

$$27. \quad \int \frac{\cos^2 x dx}{\sin^2 x + 4\sin x \cos x}$$

$$13. \quad \int \frac{dx}{\sin 2x + 4\sin x - 4\sin^2 x}$$

$$28. \quad \int \frac{7 + 3tgx}{\left(\sin x + 2\cos x\right)^2} dx$$

$$14. \quad \int \frac{dx}{\left(\sin x + \cos x\right)^2}$$

$$29. \quad \int \frac{dx}{\cos x (1 + \cos x)}$$

$$15. \quad \int \frac{dx}{\sin^2 x + 3\sin x - 4}$$

30.
$$\int \frac{5tgx+2}{2\sin 2x+5} dx$$

Задание 8. Найдите значение интеграла методом интегрирования по частям:

$$1. \qquad \int_{1}^{4} \sqrt{x} \ln x \, dx$$

16.
$$\int_{0}^{\frac{1}{2}} \ln \frac{1-x}{1+x} dx$$

$$\begin{array}{ccc}
2. & \sqrt[\pi]{2} \\
& \int_{0}^{\pi/2} x \sin^2 x \, dx
\end{array}$$

17.
$$\int_{1}^{\sqrt{3}} x \operatorname{arctg} x dx$$

3.
$$\int_{-1}^{0} (x^2 + x)e^x dx$$

18.
$$\int_{0}^{\frac{1}{2}} \arccos 2x \, dx$$

$$4. \qquad \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} x ctg^2 x dx$$

$$\int_{0}^{\pi/4} \frac{x \, dx}{\cos^2 x}$$

6.
$$\int_{0}^{2} (5-x^{2})e^{-x} dx$$

7.
$$\int_{0}^{1} x^{2} (\sin 3x + 2) dx$$

$$\begin{cases}
\frac{\pi}{3} \\
\int_{\frac{\pi}{6}} (2 - x^2) \sin x \, dx
\end{cases}$$

9.
$$\int_{0}^{1/5} \arcsin 5x \, dx$$

10.
$$\int_{\frac{3}{4}}^{1} \sqrt{1-x} \arcsin \sqrt{x} \, dx$$

$$11. \quad \int\limits_{0}^{4} \ln(2x+1) \, dx$$

12.
$$\int_{1}^{e} \ln^{2} x \, dx$$

13.
$$\int_{0}^{e} \frac{\ln x \, dx}{x^2}$$

14.
$$\int_{1}^{e} \cos(\ln x) dx$$

19.
$$\int_{0}^{2} (x^2 + 1)e^{2x} dx$$

$$20. \quad \int_{\frac{\pi}{2}}^{\pi} x^2 \cos \frac{x}{3} \, dx$$

21.
$$\int_{-1}^{1} \frac{\arccos x \, dx}{\sqrt{1-x}}$$

22.
$$\int_{\frac{1}{3}}^{2/3} (x^2 - x + 1)e^{3x} dx$$

23.
$$\int_{-1}^{0} (x^2 + 2x)e^{-x} dx$$

$$\begin{array}{ccc}
24. & \sqrt[\pi]{2} \\
& \int_{0}^{\pi/2} x \cos^2 x \, dx
\end{array}$$

$$\begin{array}{ccc}
25. & \sqrt[\pi]{4} \\
\int_{0}^{\pi} xtg^{2}xdx
\end{array}$$

26.
$$\int_{0}^{1/4} arctg \, 4x \, dx$$

$$\int_{-4}^{2} x \cos(x+4) dx$$

28.
$$\int_{-1}^{1/2} \ln(2x+3) \, dx$$

29.
$$\int_{0}^{2} (x+2)\sin 3x \, dx$$

15.
$$\int_{0}^{1} x \ln(x+1) dx$$

30.
$$\int_{\frac{1}{3}}^{1} xe^{3x+2} dx$$

Задание 9. Найдите значение интеграла методом замены переменной в определённом интеграле:

$$1. \qquad \int\limits_{2/\sqrt{3}}^{2} \frac{dx}{x\sqrt{x^2 - 1}}$$

$$2. \qquad \int_{0}^{3} \arcsin \sqrt{\frac{x}{1+x}} dx$$

$$3. \qquad \int_{1}^{5} \frac{dx}{x + \sqrt{3x + 1}}$$

4.
$$\int_{0}^{\sqrt{3}} x^3 \sqrt{4 - x^2} \ dx$$

5.
$$\int_{0}^{\ln 5} \frac{e^{x} \sqrt{e^{x} - 1}}{e^{x} + 3} dx$$

6.
$$\int_{1}^{4} \frac{1}{2\sqrt{x}} + 1 (\sqrt{x} + x)^{2} dx$$

7.
$$\int_{0}^{\sqrt{2}} \frac{x^{4} dx}{\left(4 - x^{2}\right)^{3/2}}$$

$$8. \qquad \int\limits_{0}^{-\ln 2} \sqrt{1 - e^{2x}} dx$$

$$9. \qquad \int_{1}^{3} \frac{dx}{x\sqrt{x^2 + 5x + 1}}$$

10.
$$\int_{\sqrt{2}/2}^{1} \frac{\sqrt{1-x^2}}{x^6} dx$$

11.
$$\int_{0}^{0.75} \frac{dx}{(x+1)\sqrt{x^2+1}}$$

16.
$$\int_{\sqrt{8}/3}^{2\sqrt{2}} \frac{1}{x\sqrt{(x^2-5)^5}} dx$$

17.
$$\int_{1}^{16} arctg \sqrt{\sqrt{x} - 1} dx$$

18.
$$\int_{1}^{\sqrt{3}} \frac{(x^3+1)dx}{x^2\sqrt{4-x^2}}$$

19.
$$\int_{0}^{\sqrt{2}} \frac{dx}{(x^2 + 16)\sqrt{4 - x^2}}$$

20.
$$\int_{0}^{\sqrt{3}} \frac{(x^2 - x + 1)dx}{(x^2 + 1)\sqrt{x^2 + 1}}$$

$$21. \quad \int_{0}^{3} \sqrt{\frac{x}{6-x}} dx$$

22.
$$\int_{0}^{\pi/2} \sin^{3}\varphi \sqrt{\cos\varphi} \ d\varphi$$

$$23. \quad \int_{1}^{\sqrt{3}} \frac{\sqrt{x^2 + 1}}{x^2} dx$$

24.
$$\int_{1}^{\sqrt{3}} \frac{x^3 dx}{2 + \sqrt{4 - x^2}}$$

$$\int_{0}^{\pi/2} \frac{dx}{1 + \sin x + \cos x}$$

$$\int_{0}^{\pi/2} \frac{\sin x + \sin^3 x}{\cos 2x} dx$$

$$12. \quad \int_{1}^{3} \frac{1-\sqrt{x}}{\sqrt{x}(x+1)} dx$$

13.
$$\int_{1}^{2} \frac{\sqrt{x^2 - 1}}{x^4} dx$$

14.
$$\int_{0}^{\pi/4} tgx ln \cos x dx$$

$$\int_{\sqrt{3}}^{\sqrt{8}} \frac{x - \frac{1}{x}}{\sqrt{x^2 + 1}} dx$$

27.
$$\int_{0}^{1} \frac{dx}{\sqrt{x}(\sqrt[4]{x}+1)^{10}}$$

28.
$$\int_{\ln 2}^{\ln 3} \frac{3e^{2x} + 2e^x}{e^{2x} + e^x - 2} dx$$

$$\begin{array}{ccc}
29. & \sqrt[\pi]{4} & dx \\
& \int_{0}^{4} \frac{dx}{1 + 2\sin^2 x}
\end{array}$$

30.
$$\int_{0}^{1} \frac{x \, dx}{\sqrt{3 + 2x - x^2}}$$

Задание 10. Найдите площадь области, ограниченной кривыми, заданными в декартовых координатах

1.
$$y = x^2 e^{-x}$$
, $y = 0$, $x = 2$.

2.
$$y = 5 \sin x$$
, $y = 5 \cos x$.

3.
$$y = x \ln^2 x$$
, $y = x \ln x$.

4.
$$y = \frac{4}{3}\cos x$$
, $y = 2 tg x$, $x = 0$.

5.
$$y = x^4 - 4x^3 + 4x^2$$
, $y = 0$.

6.
$$y = x$$
, $y = -x$, $x^2 - y^2 = 1$.

7.
$$y^2 = 3(3-x), x^2 + y^2 = 9$$
.

8.
$$y = 0, y = (x - 4)^2, y = 16 - x^2$$
.

9.
$$xy = 3$$
, $x + y = 4$.

$$10.y = \frac{3}{2} \left(e^{\frac{x}{3}} + e^{-\frac{x}{3}} \right), \ x = 3.$$

11.
$$y = \frac{1}{x^2}$$
, $y = 0$, $x = 9$, $x > 9$.

$$12.y = \frac{8}{4+x^2}, \ y = \frac{x^2}{4}.$$

13.
$$y = 0$$
, $y = \frac{1}{1+x^2}$.

14.
$$y = 0$$
, $x = 0$, $x^{\frac{1}{2}} + y^{\frac{1}{2}} = 4$.

$$15.y^2 = 2x, \ y^2 = 4x - x^2.$$

16.
$$y = (x + 1)^2$$
, $y = (x - 1)^2$, $y = 0$.

17.
$$y = 0$$
, $x = 0$, $x = 2$, $y = (x - 1)^3$.

$$18.\frac{x^2}{16} - \frac{y^2}{9} = 1$$
, $x = 5$.

$$19.\frac{x^2}{9} - \frac{y^2}{4} = 1$$
, $y = 0$, $y = 4$.

$$20.y^2 = 8x$$
, $x^2 = 8y$.

$$21.x^2 = 2y$$
, $y = \frac{1}{x^2 + 1}$, $a > 0$.

$$22.x^2 + y^2 = 16x, \ y^2 = 8x.$$

$$23.y = x^2 - x, \ y^2 = 2x.$$

$$24.y = \frac{1}{x\sqrt{x}}$$
, $y = 0$, $x = 1$.

25.
$$x = -1$$
, $x = 1$, $y = \frac{1}{\sqrt[3]{x^2}}$.

$$26.y = x^2 \ln x$$
, $y = 0$.

$$27.y = x^3 - 6x^2 + 11x - 6, \ y = 0.$$

$$28.y = \frac{1}{x\sqrt{1+\ln x}}, y = 0, x = 1, x = e^3.$$

29.
$$y = \frac{1}{1 + \cos x}$$
, $y = 0$, $x = \frac{\pi}{2}$, $x = -\frac{\pi}{2}$

$$30.y = x^2 \cos x, \ y = 0, \ 0 \le x \le \frac{\pi}{2}.$$

Задание 11. Найдите длину кривой, заданной в декартовых координатах

1.
$$x = \frac{1}{4}y^2 - \frac{1}{2}\ln y$$
, $1 \le y \le e$.

2.
$$y = \ln x$$
, $\frac{3}{4} \le x \le \frac{12}{5}$.

3.
$$y = 1 - \ln \cos x$$
, $0 \le x \le \frac{\pi}{3}$.

4.
$$y = 1 + \ln \cos x$$
, $0 \le x \le \frac{\pi}{3}$.

5.
$$y = \ln(1 - x^2)$$
, $0 \le x \le \frac{1}{2}$.

6.
$$y = \arccos e^{-x}$$
, $0 \le x \le 1$.

7.
$$y = \sqrt{1 - x^2} + \arcsin x$$
, $0 \le x \le \frac{7}{9}$.

8.
$$y = \sqrt{1 - x^2} + \arccos x$$
, $0 \le x \le \frac{8}{9}$.

9.
$$y = e^x$$
, $0 \le x \le 1$.

$$10.x^{\frac{2}{3}} + y^{\frac{2}{3}} = 4.$$

$$11.\frac{y^2}{5} = x^3, \ \ 0 \le x \le 1.$$

$$12.y = \frac{(2x-1)^2}{4}, \quad 0 \le x \le 2.$$

13.
$$y = 6\cos^2 x$$
, $\frac{\pi}{2} \le x \le \frac{3\pi}{2}$.

$$14.y = \arccos e^x, -1 \le x \le 0.$$

$$15.y = 2 - e^x, \ \ln \sqrt{3} \le x \le \ln \sqrt{8}.$$

$$16.y^2 = \frac{x^3}{8}, \ 0 \le x \le 2.$$

$$17.y = \ln x$$
, $\sqrt{3} \le x \le \sqrt{8}$.

$$18.y = 1 - \ln \cos x \,, \ 0 \le x \le \frac{\pi}{4}.$$

$$19.y = \ln \frac{e^{x} + 1}{e^{x} - 1}, \ 1 \le x \le 6.$$

$$20.y = 1 + \ln \cos x$$
, $0 \le x \le \frac{\pi}{4}$.

$$21.y = e^x + 6, \ \ln \sqrt{8} \le x \le \ln \sqrt{15}.$$

$$22.y^2 - 2y = 4x, -1 \le x \le 0.$$

$$23.x = \frac{1}{4}y^2 + \frac{1}{2}\ln y, \ 1 \le y \le e.$$

$$24.y = 4\sin^2 x, -\pi \le x \le \pi.$$

$$25.y = x \cos x, \ -\frac{\pi}{2} \le x \le 0.$$

$$26.y = x \sin x, \ 0 \le x \le \frac{\pi}{4}.$$

$$27.y = x \ arctg \ x, \ -1 \le x \le 1.$$

$$28.y = x - arctg x, -1 \le x \le 1.$$

$$29.y = 1 - \ln \sin x, \frac{\pi}{6} \le x \le \frac{\pi}{4}.$$

$$30.y = 1 + \ln \sin x, \frac{\pi}{4} \le x \le \frac{\pi}{3}.$$

Задание 12. Вычислите

1. а) Площадь внутри астроиды

$$\begin{cases} x = 2\cos^3 t, \\ y = 2\sin^3 t. \end{cases}$$

- б) Длину дуги первого витка спирали Архимеда $r=6\varphi$.
- 2. а) Площадь фигуры, ограниченной кривыми

$$r = 6\sin 3\varphi, \quad r = 3 \quad (r \ge 3).$$

$$\begin{cases} x = \frac{1}{2}\cos t - \frac{1}{4}\cos 2t, \\ y = \frac{1}{2}\sin t - \frac{1}{4}\sin 2t, \\ \pi/2 \le t \le 2\pi/3. \end{cases}$$

3. а) Площадь, ограниченную осью
$$Ox$$
 и одной аркой

циклоиды
$$\begin{cases} x = 2(t - \sin t), \\ y = 2(1 - \cos t). \end{cases}$$

- б) Длину кардиоиды $r = 6(1 cos \varphi)$.
- 4. а) Площадь, ограниченную кардиоидой $r = 8(1 cos \varphi)$.

б) Длину дуги кривой
$$\begin{cases} x = t^2, \\ y = t - \frac{t^3}{2}, \end{cases} 0 \le t \le \sqrt{3}.$$

5. а) Площадь, ограниченную кардиоидой

$$\begin{cases} x = 2(\cos t - \cos 2t), \\ y = 2(\sin t - \sin 2t). \end{cases}$$

- б) Длину замкнутой кривой $r = 4(\sin 2\varphi + \cos 2\varphi)$.
- 6. а) Площадь, ограниченную кривыми $r = \sin \varphi$, $r = 2\sin \varphi$.
 - б) Длину эволюты эллипса $\begin{cases} x = \frac{16}{5} \cos^3 t, \\ y = \frac{16}{3} \sin^3 t. \end{cases}$
- 7. a) Площадь эллипса $\begin{cases} x = 3 \cos t, \\ y = 2 \sin t. \end{cases}$
 - б) Длину кардиоиды

$$\rho = 8(1 - \cos \varphi), \quad -2\pi/3 \le \varphi \le 0.$$

8. а) Длину дуги кривой

$$\begin{cases} x = (t^2 - 2)\sin t + 2t\cos t, \\ y = (2 - t^2)\cos t + 2t\sin t, \end{cases} 0 \le t \le \pi.$$

- б) Площадь, ограниченную кривой $r = \cos \varphi \sin \varphi$.
- 9. а) Площадь, ограниченную кривой $\begin{cases} x = 3 t^2, \\ y = 3t t^3. \end{cases}$

б) Длину дуги кривой
$$r = \frac{10}{(1 + \cos 2\varphi)}, \ 0 \le \varphi \le \frac{\pi}{2}.$$

10. а) Площадь, ограниченную кривыми

$$r = 6\sin 3\varphi$$
, $r = 3$ $(r \ge 3)$.

б) Длину астроиды
$$\begin{cases} x = 3\cos^3 t, \\ y = 3\sin^3 t. \end{cases}$$

11. а) Площадь, ограниченную кривой

$$\begin{cases} x = \frac{t}{3}(3-t), \\ y = \frac{t^2}{8}(3-t). \end{cases}$$

- б) Длину замкнутой кривой $r = 9(\sin \varphi + \cos \varphi)$.
- 12. а) Площадь, ограниченную кривыми $r = \cos \varphi$, $r = 2\cos \varphi$.

б) Длину кривой
$$\begin{cases} x = e^t(\cos t + \sin t), \\ y = e^t(\cos t - \sin t), \end{cases} 0 \le t \le 1.$$

13. а) Площадь, ограниченную осью абсцисс и верзиерой

$$\begin{cases} x = t, \\ y = \frac{8}{4+t^2}. \end{cases}$$

б) Длину отрезка прямой линии

$$r = 4\sec\left(\varphi - \frac{\pi}{3}\right), \ 0 \le \varphi \le \frac{\pi}{4}.$$

14. а) Площадь, ограниченную $\begin{cases} x = 3\cos t, \\ y = 8\sin t, \end{cases}$

$$y = 4 \ (y \ge 4).$$

б) Длину дуги кривой $r = \frac{10}{(1 + \cos \varphi)}, \ -\frac{\pi}{2} \le \varphi \le \frac{\pi}{2}$.

15. а) Площадь, ограниченную кривой Лиссажу $\begin{cases} x = 2 \sin t, \\ y = 2 \sin 2t. \end{cases}$

б) Длину дуги кривой $\rho = 3e^{3\varphi/4}, \quad 0 \le \varphi \le \pi/3.$

16. а) Площадь, ограниченную $r = 7 \sin 4\varphi$.

б) Длину эпициклоиды
$$\begin{cases} x = 4(2\cos t - \cos 2t), \\ y = 4(2\sin t - \sin 2t). \end{cases}$$

17. а) Площадь, ограниченную кривой Лиссажу

$$\begin{cases} x = 2\sin 4t, \\ y = 2\sin 2t. \end{cases}$$

- б) Длину замкнутой кривой $r=8\sin^4\frac{\varphi}{4}$
- 18. а) Площадь, ограниченную спиралью Архимеда $r=7\varphi$, $\varphi_1=\frac{\pi}{2}$, $\varphi_2=\frac{3\pi}{4}$.
 - б) Длину эвольвенты окружности

$$\begin{cases} x = 3(\cos t + t\sin t), \\ y = 3(\sin t - t\cos t), \end{cases} \quad 0 \le t \le 2\pi.$$

- 19. а) Площадь внутри астроиды $\begin{cases} x = 2\cos^3\frac{t}{4}, \\ y = 2\sin^3\frac{t}{4}. \end{cases}$
 - б) Длину кардиоиды $r = 12(1 \cos \varphi)$.
- 20. а) Длину дуги циссоиды $\begin{cases} x = 6 \sin^2 t, \\ y = 6 \sin^2 tg, \end{cases}$ $0 \le t \le \frac{\pi}{4}$.
 - б) Площадь, ограниченную кривыми

$$r = 2\cos\varphi, \quad r = 2\sqrt{3}\sin\varphi,$$

 $(0 \le \varphi \le \pi/2).$

21. а) Площадь , ограниченную осью Ox и одной аркой циклоиды

$$\begin{cases} x = \frac{1}{2}(t - \sin\frac{t}{2}), \\ y = \frac{1}{2}\left(1 - \cos\frac{t}{2}\right). \end{cases}$$

б) Длину отрезка прямой линии

$$r = 3\sec\left(\varphi - \frac{\pi}{3}\right), \ 0 \le \varphi \le \frac{\pi}{2}.$$

22. а) Площадь, ограниченную осью абсцисс и верзиерой

$$\begin{cases} x = 2t, \\ y = \frac{8}{1+t^2}. \end{cases}$$

- б) Длину дуги кривой $r = 6 \sin^3 \frac{\varphi}{3}$.
- 23. а) Площадь, ограниченную кривой

$$\begin{cases} x = t(5-t), \\ y = \frac{t^2}{4}(5-t). \end{cases}$$

- б) Длину кардиоиды $r = 5(1 + \cos \varphi)$.
- 25. а) Площадь, ограниченную кривой

$$\begin{cases} x = t^2 - 3, \\ y = 3t - t^3. \end{cases}$$

- б) Длину гиперболической спирали $r\varphi = 1$ от точки $\left(2; \frac{1}{2}\right)$ до точки $\left(\frac{1}{2}; 2\right)$.
- 26. а) Площадь одного лепестка розы $r=8\sin3\varphi$.
 - б) Длину эвольвенты окружности

$$\begin{cases} x = 4(\cos t + t \sin t), \\ y = 4(\sin t - t \cos t), \end{cases} \quad 0 \le t \le 2\pi.$$

27. а) Площадь внутри астроиды

$$\begin{cases} x = \frac{\cos^3(4t)}{2}, \\ y = \frac{\sin^3(4t)}{2}. \end{cases}$$

- б) Длину прямой линии $\frac{4}{r} = \cos\left(\varphi \frac{\pi}{3}\right)$, $0 \le \varphi \le \frac{\pi}{2}$.
- 28. а) Площадь, ограниченную лемнискатой Бернулли $r^2 = 8\cos 2\varphi.$

б) Длину эпициклоиды
$$\begin{cases} x = 3(\cos 2t - \cos 4t), \\ y = 3(\sin 2t - \sin 4t). \end{cases}$$

29. а) Площадь, ограниченную осью абсцисс и верзиерой

$$\begin{cases} x = t/2, \\ y = \frac{16}{4+t^2}. \end{cases}$$

- б) Длину дуги кривой $r=3\cos^4\frac{\varphi}{4}$
- 30. а) Площадь, ограниченную спиралью Архимеда $r = 6\varphi$,

$$\varphi_1 = \frac{\pi}{6}, \varphi_2 = \frac{3\pi}{4}.$$

б) Длину дуги кривой $\begin{cases} x = \frac{t^6}{6}, \\ y = 2 - \frac{t^4}{4} \end{cases}$ между точками

пересечения с осями координат.

Раздел 3.

НЕСОБСТВЕННЫЕ ИНТЕГРАЛЫ

Задание 13. Найдите значение несобственного интеграла или установите его расходимость.

1. a)
$$\int_{1}^{+\infty} \frac{\ln x}{\sqrt[3]{x^4}} dx,$$

$$6) \quad \int_0^2 \frac{x dx}{\sqrt{4 - x^2}}.$$

2. a)
$$\int_{2}^{+\infty} \frac{3^{x} dx}{3^{2x} - 4 \cdot 3^{x} + 3},$$

$$\int_{0}^{2} \sqrt{\frac{\arcsin(x/2)}{4-x^2}} dx.$$

3. a)
$$\int_{0}^{+\infty} e^{-2x} (4x-3) dx,$$

6)
$$\int_{0}^{2} \frac{x^2 dx}{\sqrt{8-x^3}}$$
.

4. a)
$$\int_{-\infty}^{0} x^2 e^{3x} dx$$
;

$$\mathsf{G)} \quad \int_{0}^{\pi/4} ct gx dx \,.$$

5. a)
$$\int_{0}^{+\infty} \frac{e^{x} \operatorname{arctg} e^{x}}{1 + e^{2x}} dx;$$

$$6) \int_{3}^{6} \frac{dx}{x^2 - 7x + 10}.$$

6. a)
$$\int_{1}^{+\infty} \frac{\ln x dx}{x \sqrt{x}};$$

$$6) \quad \int_0^3 \frac{dx}{(x-1)^2}.$$

7. a)
$$\int_{-\infty}^{0} (5x-2)e^{3x} dx$$
;

$$6) \int_{0}^{1} \frac{x^{3} dx}{\sqrt[4]{1-x^{4}}}.$$

8. a)
$$\int_{1}^{+\infty} \frac{\sqrt{x} \, dx}{1 + \sqrt{x}};$$

$$\mathsf{G)} \quad \int\limits_0^1 \frac{e^{2x} \, dx}{\sqrt{e^{4x} - 1}}.$$

9. a)
$$\int_{1}^{+\infty} \frac{1+2x}{x^2(1+x)} dx$$
;

$$\int_{0}^{3} \frac{\sqrt{\arcsin \frac{x}{3}}}{\sqrt[4]{9-x^2}} dx.$$

10. a)
$$\int_{-\infty}^{+\infty} \frac{dx}{(x^2+4)(x^2+9)};$$

$$\text{6)} \quad \int_{0}^{2} \frac{x \, dx}{\sqrt{16 - x^4}} \, .$$

11. a)
$$\int_{1}^{+\infty} \frac{dx}{(1-9x)\sqrt{x}};$$

$$\int_{0}^{1} \frac{e^{2x} dx}{\sqrt{e^{2x} - 1}}.$$

12. a)
$$\int_{-\infty}^{0} (3x+4) e^{4x} dx$$
;

$$6) \int_{0}^{1} \frac{x \, dx}{\sqrt{1-x^4}}.$$

13. a)
$$\int_{2}^{+\infty} \frac{dx}{\sqrt[4]{x}(\sqrt{x}-1)};$$

6)
$$\int_{0}^{\frac{2}{3}} \frac{x \, dx}{\sqrt{4 - 9x^2}}.$$

14. a)
$$\int_{1}^{+\infty} \frac{\ln(x^2+4)}{x^2} dx$$
;

$$\mathsf{G}) \quad \int_{0}^{1} \frac{e^{x} \, dx}{\sqrt{e^{x} - 1}}.$$

15. a)
$$\int_{0}^{+\infty} \sqrt{x+1} \ln(x+1) dx$$
; 6) $\int_{0}^{1} \frac{x^2 dx}{\sqrt{1-x^6}}$.

$$6) \int_{0}^{1} \frac{x^{2} dx}{\sqrt{1 - x^{6}}}.$$

16. a)
$$\int_{0}^{+\infty} \frac{e^{2x}}{(e^{x}+1)^{3}} dx;$$

$$6) \int_{0}^{1} \frac{x^{2} dx}{\sqrt[3]{1-x^{3}}}.$$

17. a)
$$\int_{1}^{+\infty} \frac{dx}{(1+\sqrt[3]{x})\sqrt{x}};$$

$$6) \quad \int_0^1 \frac{e^x dx}{\sqrt{e^{2x} - 1}}.$$

18. a)
$$\int_{-\infty}^{0} (1-6x) e^{2x} dx;$$

$$6) \int_{1}^{4} \frac{dx}{\left(x-3\right)^3}.$$

19. a)
$$\int_{1}^{+\infty} \frac{\ln x}{x^{\frac{5}{3}}} dx$$
;

$$6) \int_{2.5}^{4} \frac{dx}{x^2 - 5x + 6}.$$

$$20. \quad a) \quad \int_{3}^{+\infty} \frac{dx}{(5+x)\sqrt{1+x}};$$

$$6) \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} tgx dx.$$

21. a)
$$\int_{0}^{+\infty} \frac{\ln(x+1)}{(x+1)^{2}} dx;$$

$$\int_0^1 \frac{e^{2x} dx}{e^x - 1}.$$

22. a)
$$\int_{0}^{+\infty} (4-3x)e^{-3x} dx;$$

$$6) \int_{0}^{\frac{1}{2}} \frac{x^3 dx}{\sqrt{1 - 16x^4}}.$$

23. a)
$$\int_{2}^{+\infty} \frac{dx}{\sqrt{x+2}(7-x)};$$

$$6) \int_{-1/2}^{0} \frac{x^2 dx}{\sqrt[3]{1+8x^3}}.$$

24. a)
$$\int_{0}^{+\infty} \frac{e^{2x}}{(e^{x}+4)^{2}} dx$$
;

6)
$$\int_{2}^{3} \frac{x dx}{\sqrt[4]{x^2 - 4}}$$
.

25. a)
$$\int_{1}^{+\infty} \frac{dx}{(\sqrt[3]{x}+4) x}$$
;

$$6) \int_{0}^{\frac{1}{2}} \frac{x \, dx}{\sqrt{1 - 4x^2}}.$$

26. a)
$$\int_{0}^{+\infty} e^{-4x} (2-9x) dx$$
;

$$\mathsf{G}) \quad \int_{0}^{1} \frac{x dx}{\sqrt{1-x^2}}.$$

$$27. \quad \text{a)} \quad \int_{2}^{+\infty} \frac{dx}{x\sqrt{2x-3}};$$

$$6) \int_{0}^{1} \frac{x^{2} dx}{\sqrt[3]{8 - 8x^{3}}}.$$

28. a)
$$\int_{0}^{+\infty} \frac{e^{x} dx}{e^{2x} + 4e^{x} - 12};$$

6)
$$\int_{0}^{2} \frac{x^3 dx}{\sqrt{4-x^2}}$$
.

29. a)
$$\int_{0}^{+\infty} x^{2} e^{-x/2} dx$$
;

$$6) \quad \int_{2}^{6} \frac{dx}{\sqrt[3]{\left(4-x\right)^{2}}}.$$

30. a)
$$\int_{1}^{+\infty} \frac{arctg x}{x^3} dx;$$

6)
$$\int_{-2}^{2} \frac{x dx}{x^2 - 1}$$
.

Типовые расчеты по высшей математике. 1 курс (модуль 3). Интегрирование функции одной переменной

Методические указания и задачи для студентов.

Составители: Брылевская Л.И., Бодрова Н.А., Сейферт И.В.,

Сытенко Н.В.

Отпечатано на ризографе

В авторской редакции Редакционно-издательский отдел НИУ ИТМО Зав. РИО Н.Ф. Гусарова Лицензия ИД № 00408 от 05.11.99 Подписано к печати Заказ № Тираж

Редакционно-издательский отдел

Санкт-Петербургского национального исследовательского университета информационных технологий, механики и оптики

197101, Санкт-Петербург, Кронверкский пр., 49