Exam Preparation

ZAK I. Ali

University of South Africa

Department of Mathematics

MAT1503: LINEAR ALGEBRA I

Exercise 1

Question 1.

Assume we are given the system

$$\begin{cases} x + y - z + 2t = 2 \\ 2x + z - t = 3 \\ -y + 2t = 2. \end{cases}$$

Which of the following elements are solutions of the above system?

- (1) (1,-1,0,1)
- (2) (1,-1,0,1,0)
- (3) (0,1,3,1)
- (4) (2,-3,3,1)

Question 2

Consider the system

$$\begin{cases} x +2y = 1\\ 3x +ky = 3\\ x +ky +z = 2 \end{cases}$$

- (1) For which value(s) of k is (1,0,1) a solution to the above system?
- (2) For which value(s) of k is (1,0,-1) a solution to the above system?
- (3) For which value(s) of k is (3, -1, 5) a solution to the above system?

Additional Exercises

Same instructions as Question 2.

$$\begin{bmatrix} 3 & 2 & 1 \\ 0 & k+1 & 3 \\ 0 & 0 & k-3 \end{bmatrix}$$

(2)
$$\begin{bmatrix} \lambda & 2 & 1 \\ 0 & 3 & 2 \\ 0 & 0 & \lambda + 3 \end{bmatrix}$$

(3)
$$\begin{bmatrix} 2 & 3 & 4 \\ 0 & k-1 & 3 \\ 0 & 0 & (k-1)(k+2) \end{bmatrix}$$

Suppose A, B and C are 2×2 matrices such that $\det(A) = 3$, $\det(B^{-1}) = -2$ and $\det(C^T) = 4$.

Evaluate

- (a) $\det(ABC)$
- (b) $\det\left(\left[C^2\right]^T\right)$
- (c) $\det(-4A)$
- (d) $\det(-4A^{-1})$
- (e) $\det([-4A]^{-1})$.

Exercise 3

For which values of k is the coefficient matrix of the system given in Question 2, Exercise 1 invertible?

Exercise 4
Let $A = \begin{bmatrix} -1 & 5 \\ 2 & 3 \end{bmatrix}$ and $B = \begin{bmatrix} -1 & 3 \\ -2 & 1 \end{bmatrix}$,

- (i) Compute
 - (a) A^{-1} , B^{-1} and AB
 - (b) AA^{-1} , BB^{-1} and $A^{-1}B^{-1}$
 - (c) A^2 , B^2 and $A^2 B^2$.
- (ii) Using (a), determine a matrix Z such that ZA = B
- (iii) Using (a) determine a matrix Y such that AY = B.

Exercise 5

(1) Solve the following system with Cramer's Rule

$$\begin{cases} 2x_1 + x_2 + x_3 = 3 \\ x_1 - x_2 - x_3 = 0 \\ x_1 + 2x_2 - x_3 = 0 \end{cases}$$

(2) Use cofactors to find the determinant of the coefficient matrix of the system.

3

Exercise 6

Let \vec{a} and \vec{b} be the vectors given by $\vec{a} = \langle 2, 0, -1 \rangle$ and $\vec{b} = \langle 1, -1, 3 \rangle$.

- (1) Compute
 - (i) $||\vec{a}||$ and $||\vec{b}||$
 - (ii) $\vec{a} \cdot \vec{a}$, $\vec{a} \cdot \vec{b}$ in two different ways.
 - (iii) $\vec{a} \times \vec{b}$ and $\vec{b} \times \vec{b}$
- (2) Assume that θ is the angle between the two vectors \vec{a} and \vec{b} . Write down $\cos \theta$ in terms of $\vec{a} \cdot \vec{b}$ and $||\vec{a}||$ and $||\vec{b}||$. Deduce $\cos \theta$ and find the angle θ between the two vectors.
- (3) Find an equation of the plane P containing \vec{a} and \vec{b}
- (4) Calculate the area of the parallelogram determined by \vec{a} and \vec{b}
- (5) Determine the parametric equations of the plane containing \vec{a} and \vec{b}
- (6) Determine the equation of the plane Q parallel to the plane P in (3) and passing through point
 - (i) (0,0,1)
 - (ii) (0, 1, 0)
 - (iii) (1,0,1)
 - (iv) (1, 1, 0)
 - (v) (0,1,1)
 - (iv) (-1, 1, -1)
- (7) Find an equation of the line L perpendicular to P in (3) and passing through the tip (terminal point) of the vector \vec{u} where \vec{u} is
 - (i) the unit vector in the direction of \vec{a} with initial point $P_0=(2,0,-1)$
 - (ii) the unit vector in the direction of \vec{b} with initial point $P_1 = (1, -1, 3)$.
- (8) Find a point-normal form of the equation of the plane passing through the point P(1,-2,-1) and having normal $\vec{n}=\langle 1,-1,4\rangle$
- (9) Determine whether the planes x + 2y 7z = 3 and -2x + y 9 = 0 are perpendicular or parallel.

- (1) Find all the roots (denote them by z_1 and z_2) of $(\sqrt{2} i\sqrt{2})^{1/2}$ and sketch them as vectors in the complex plane. Write z_1 and z_2 in
 - (a) standard form
 - (b) polar form
- (2) Use your result from 1(a) to find z_1/z_2 and $\overline{z_1/z_2}$

- (3) Use de Moivre's Theorem to express $\sin(2\theta)$, $\sin(3\theta)$, $\cos(2\theta)$, $\cos(3\theta)$ and $\cos(4\theta)$ in terms of powers of
 - (a) $\sin \theta$ and $\cos \theta$.
 - (b) $\sin \theta$ only
 - (c) $\cos \theta$ only
- (4) Determine the 4^{th} roots of 16 in
 - (i) standard form
 - (ii) polar form
- (5) Let $z_1 = 2 3i$, $z_2 = -1 + 4i$. Find
 - (i) $\overline{z_1}$, $\overline{z_2}$, $\overline{z_1} z_1$, $\overline{z_1} + z_1$, $\operatorname{Re}(z_1)$, $\operatorname{Re}(z_2)$ and $\operatorname{Re}(z_1 z_2)$
 - (ii) $\frac{z_1}{z_2}$ and $\frac{\overline{z_1}}{z_2}$.
 - (iii) Deduce the principal arguments of $\frac{z_1}{z_2}$ and $\frac{\overline{z_1}}{z_2}$.
- (6) Use de Moivre's Theorem to determine i^3 , $(1+i)^{100}$ in standard and polar form.

Consider the points $P_0(-1,2)$, $P_1(1,3)$, $P_2(3,-2)$ and $P_3(1,1)$.

Asume that the points P_i , i = 0, 1, 2, 3 have position vectors r_i , i = 0, 1, 2, 3.

- (i) Find the points $-P_0 P_1 + P_2$
- (ii) Solve the system

$$xr_0 + yr_1 + zr_2 = r_3.$$

(iii) Find z whenever x = y.

Exercise 9

(a) Let

$$A = \left[\begin{array}{ccc} 7 & 2 & 1 \\ 3 & 4 & -1 \end{array} \right], \, X = \left[\begin{array}{c} x \\ y \end{array} \right] \text{ and } b = \left[\begin{array}{c} z-2 \\ 3x-z+1 \end{array} \right] \, . \, \, \text{Verify that } A = -A+2A.$$

Find x, y and z such that AX = b.

Linear systems of equations	

Write your own Summary or Mind Map for each of the following tables

Matrices	

Elementary Matrices		

4			
Determin	nant		

Invertibility of Matrices
Invertibility of Matrices