

Reversal: L_1^R

Intersection: $L_1 \cap L_2$

Complement: L₁

Languages

For regular languages L_1 and L_2

we will prove that:

Example

Complement

<u>Intersection</u>

Proof? regular regular regular $L_2 = \{ab, ba\}$ regular regular DeMorgan's Law: $L_1 \cap L_2 = L_1 \cup L_2$ $\longrightarrow L_1 \cap L_2$ regular

 $L_1 = \{a^n b\}$ regular

Example

regular

Another Proof for Intersection Closure

Machine
$$M_1$$
 Machine M_2 FA for L_1

Construct a new FA M that accepts $L_1 \cap L_2$

States in M

M simulates in parallel M_1 and M_2

a,b

a,b

Automaton for intersection

$$L = \{a^n b\} \cap \{ab^n\} = \{ab\}$$

$$a, b$$

$$q_0, p_0 \qquad a \qquad q_0, p_1 \qquad b \qquad q_1, p_1 \qquad a$$

$$q_1, p_2 \qquad b \qquad q_0, p_2 \qquad q_2, p_2$$

$$q_2, p_1 \qquad a$$

a,b

M simulates in parallel M_1 and M_2 M accepts string w if and only if M_1 accepts string w and

 M_2 accepts string w

$$L(M) = L(M_1) \cap L(M_2)$$