Logistic regression

EKT 720 uction to Statistical learning

Introduction to Statistical learning September 2019

1 Logistic regression

The logistic regression model with binary response,

$$\Pr(y_i = 1 | x_i, \boldsymbol{\beta}) = \frac{e^{\boldsymbol{x}_i^T \boldsymbol{\beta}}}{1 + e^{\boldsymbol{x}_i^T \boldsymbol{\beta}}}$$

$$= \frac{1}{1 + e^{-\boldsymbol{x}_i^T \boldsymbol{\beta}}}$$

$$= p(\boldsymbol{x}_i; \boldsymbol{\beta})$$
(1)

with $\boldsymbol{X} = \begin{pmatrix} \boldsymbol{x}_1^T \\ \vdots \\ \boldsymbol{x}_n^T \end{pmatrix}$ a $n \times p$ matrix, \boldsymbol{x}_i^T , a $1 \times p$ vector and $\boldsymbol{\beta}$ a $p \times 1$ vector of parameters, for $i = 1, 2, \dots, n$.

Equation 1 can be linearised as follows,

$$Pr(y_{i} = 1 | \boldsymbol{x}_{i}, \boldsymbol{\beta}) = \frac{1}{1 + e^{-\boldsymbol{x}_{i}^{T}\boldsymbol{\beta}}}$$

$$odds_{i} = \frac{p(\boldsymbol{x}_{i}; \boldsymbol{\beta})}{1 - p(\boldsymbol{x}_{i}; \boldsymbol{\beta})}$$

$$= \frac{\frac{1}{1 + e^{-\boldsymbol{x}_{i}^{T}\boldsymbol{\beta}}}}{1 - \frac{1}{1 + e^{-\boldsymbol{x}_{i}^{T}\boldsymbol{\beta}}}}$$

$$= e^{\boldsymbol{x}_{i}^{T}\boldsymbol{\beta}}$$

$$= \log(odds_{i}) = \boldsymbol{x}_{i}^{T}\boldsymbol{\beta}$$
(2)

2 Log-likelihood function

Consider a random sample of size n, (\mathbf{x}_i^T, y_i) , for $i = 1, 2, \dots n$, then the likelihood function of $\boldsymbol{\beta}$ under the assumption of independence is,

$$L(\boldsymbol{\beta}|\boldsymbol{X}) = \prod_{i=1}^{n} p(\boldsymbol{x}_i; \boldsymbol{\beta})$$

with the log likelihood function

$$l(\boldsymbol{\beta}|\boldsymbol{X}) = \sum_{i=1}^{n} \log p(\boldsymbol{x}_{i};\boldsymbol{\beta})$$

$$= \sum_{i=1}^{n} \left\{ y_{i} \log (p(\boldsymbol{x}_{i};\boldsymbol{\beta})) + (1 - y_{i}) \log (1 - p(\boldsymbol{x}_{i};\boldsymbol{\beta})) \right\}$$

$$= \sum_{i=1}^{n} \left\{ y_{i} \log (p(\boldsymbol{x}_{i};\boldsymbol{\beta})) + \log (1 - p(\boldsymbol{x}_{i};\boldsymbol{\beta})) - y_{i} \log (1 - p(\boldsymbol{x}_{i};\boldsymbol{\beta})) \right\}$$

$$= \sum_{i=1}^{n} \left\{ y_{i} \log \left(\frac{p(\boldsymbol{x}_{i};\boldsymbol{\beta})}{(1 - p(\boldsymbol{x}_{i};\boldsymbol{\beta}))} \right) + \log (1 - p(\boldsymbol{x}_{i};\boldsymbol{\beta})) \right\}$$

$$= \sum_{i=1}^{n} \left\{ y_{i} \boldsymbol{x}_{i}^{T} \boldsymbol{\beta} + \log (1 - p(\boldsymbol{x}_{i};\boldsymbol{\beta})) \right\}$$

$$= \sum_{i=1}^{n} \left\{ y_{i} \boldsymbol{x}_{i}^{T} \boldsymbol{\beta} + \log \left(1 - \frac{e^{\boldsymbol{x}_{i}^{T} \boldsymbol{\beta}}}{1 + e^{\boldsymbol{x}_{i}^{T} \boldsymbol{\beta}}} \right) \right\}$$

$$= \sum_{i=1}^{n} \left\{ y_{i} \boldsymbol{x}_{i}^{T} \boldsymbol{\beta} + \log \left(\frac{1}{1 + e^{\boldsymbol{x}_{i}^{T} \boldsymbol{\beta}}} \right) \right\}$$

$$= \sum_{i=1}^{n} \left\{ y_{i} \boldsymbol{x}_{i}^{T} \boldsymbol{\beta} - \log \left(1 + e^{\boldsymbol{x}_{i}^{T} \boldsymbol{\beta}} \right) \right\}$$

$$(4)$$

3 Maximum likelihood estimation

We maximise Equation 4 using the Newton Raphson algorithm. This requires the first derivatives, the score or gradient function

$$\frac{\partial l(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}} = \sum_{i=1}^{n} \left\{ y_{i} \boldsymbol{x}_{i} - \frac{e^{\boldsymbol{x}_{i}^{T} \boldsymbol{\beta}}}{\left(1 + e^{\boldsymbol{x}_{i}^{T} \boldsymbol{\beta}}\right)} \boldsymbol{x}_{i} \right\}$$

$$= \sum_{i=1}^{n} \left\{ y_{i} \boldsymbol{x}_{i} - p(\boldsymbol{x}_{i}; \boldsymbol{\beta}) \boldsymbol{x}_{i} \right\}$$

$$= \sum_{i=1}^{n} \left\{ (y_{i} - p(\boldsymbol{x}_{i}; \boldsymbol{\beta})) \boldsymbol{x}_{i} \right\}$$

or in matrix notation $\frac{\partial l(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}} = \boldsymbol{X}^T (\boldsymbol{y} - \boldsymbol{p})$, and the second derivatives or Hessian matrix

$$\frac{\partial l^{2}\left(\boldsymbol{\beta}\right)}{\partial \boldsymbol{\beta} \partial \boldsymbol{\beta}^{T}} = -\sum_{i=1}^{n} \boldsymbol{x}_{i} \boldsymbol{x}_{i}^{T} p\left(\boldsymbol{x}_{i}; \boldsymbol{\beta}\right) \left(1 - p\left(\boldsymbol{x}_{i}; \boldsymbol{\beta}\right)\right)$$

or in matrix notation $\frac{\partial l^2(\boldsymbol{\beta})}{\partial \boldsymbol{\beta} \partial \boldsymbol{\beta}^T} = -\boldsymbol{X}^T \boldsymbol{W} \boldsymbol{X}$, with \boldsymbol{W} a diagonal matrix with elements $p(\boldsymbol{x}_i; \boldsymbol{\beta}) (1 - p(\boldsymbol{x}_i; \boldsymbol{\beta}))$ as i^{th} diagonal element.

Estimating the parameters using Newton Raphson yields:

$$eta^{new} = eta^{old} + \left(oldsymbol{X}^T oldsymbol{W} oldsymbol{X}^T \left(oldsymbol{y} - oldsymbol{p}
ight) \ = \left(oldsymbol{X}^T oldsymbol{W} oldsymbol{X}
ight)^{-1} oldsymbol{X}^T oldsymbol{W} oldsymbol{X}
ight)^{-1} oldsymbol{X}^T oldsymbol{W} oldsymbol{X} oldsymbol{gold} + oldsymbol{V}^{-1} oldsymbol{X}^T oldsymbol{W} oldsymbol{X}
ight)^{-1} oldsymbol{X}^T oldsymbol{W} oldsymbol{z} \ = \left(oldsymbol{X}^T oldsymbol{W} oldsymbol{X}
ight)^{-1} oldsymbol{X}^T oldsymbol{W} oldsymbol{z} \ = \left(oldsymbol{X}^T oldsymbol{W} oldsymbol{X}
ight)^{-1} oldsymbol{X}^T oldsymbol{W} oldsymbol{z} \ = \left(oldsymbol{X}^T oldsymbol{W} oldsymbol{X}
ight)^{-1} oldsymbol{X}^T oldsymbol{W} oldsymbol{z} \ = \left(oldsymbol{X}^T oldsymbol{W} oldsymbol{X}
ight)^{-1} oldsymbol{X}^T oldsymbol{W} oldsymbol{z} \ = \left(oldsymbol{X}^T oldsymbol{W} oldsymbol{X}
ight)^{-1} oldsymbol{X}^T oldsymbol{W} oldsymbol{z} \ = \left(oldsymbol{X}^T oldsymbol{W} oldsymbol{X}
ight)^{-1} oldsymbol{X}^T oldsymbol{W} oldsymbol{z} \ = \left(oldsymbol{X}^T oldsymbol{W} oldsymbol{X}
ight)^{-1} oldsymbol{X}^T oldsymbol{W} oldsymbol{z} \ = \left(oldsymbol{X}^T oldsymbol{W} oldsymbol{X} oldsymbol{Z} \ = \left(oldsymbol{X}^T oldsymbol{W} oldsymbol{Z} \ = \left(oldsymbol{X}^T oldsymbol{W} oldsymbol{Z} \ = \left(oldsymbol{Z} oldsymbol{Z} \ = \left(oldsymbol{Z} oldsymbol{Z} \ = \left(oldsymbol{X} oldsymbol{Z} \ = \left(oldsymbol{Z$$

which is an iteratively reweighted least squares (IRLS) solution to $\boldsymbol{\beta}$ with adjusted response $\boldsymbol{z} = \left(\boldsymbol{X}\boldsymbol{\beta}^{old} + \boldsymbol{W}^{-1}\left(\boldsymbol{y}-\boldsymbol{p}\right)\right)$.

4 IRLS Algorithm

The IRLS algorithm used to estimate the parameters $\boldsymbol{\beta}$ is given below

Algorithm 1 IRLS - binary logistic regression.

- 1. Select initial values for the regression parameters $\boldsymbol{\beta}^{old}$
- 2. Calculate the $p(\boldsymbol{x}_i, \boldsymbol{\beta}^{old}) = \frac{1}{1 + e^{-\boldsymbol{x}_i^T \boldsymbol{\beta}^{old}}}, i = 1, \dots, n$
- 3. Calculate the diagonal weight matrix W with elements $p(x_i, \boldsymbol{\beta}^{old})(1 p(x_i, \boldsymbol{\beta}^{old}))$.
- 4. Calculate the Gradient vector and Hessian matrix

(a)
$$\frac{\partial l(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}} = \boldsymbol{X}^T (\boldsymbol{y} - \boldsymbol{p})$$

(b)
$$\frac{\partial l^2(\boldsymbol{\beta})}{\partial \boldsymbol{\beta} \partial \boldsymbol{\beta}^T} = -\boldsymbol{X}^T \boldsymbol{W} \boldsymbol{X}$$

- 5. Calculate $\boldsymbol{\beta}^{new} = \boldsymbol{\beta}^{old} + (\boldsymbol{X}^T \boldsymbol{W} \boldsymbol{X})^{-1} \boldsymbol{X}^T (\boldsymbol{y} \boldsymbol{p})$ or $\boldsymbol{\beta}^{new} = (\boldsymbol{X}^T \boldsymbol{W} \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{W} \boldsymbol{z}$, with adjusted response $\boldsymbol{z} = (\boldsymbol{X} \boldsymbol{\beta}^{old} + \boldsymbol{W}^{-1} (\boldsymbol{y} \boldsymbol{p}))$
- 6. Set $\boldsymbol{\beta}^{old} = \boldsymbol{\beta}^{new}$
- 7. Repeat steps (2) to (6) untill convergence.