MATEMATIKAI ANALÍZIS II.

SZÓBELI VIZSGA

2014. június 5.

PÁZMÁNY PÉTER KATOLIKUS EGYETEM INFORMÁCIÓS TECHNOLÓGIAI ÉS BIONIKAI KAR

Fontos tudnivalók

Tisztelt Vizsgázó!

Jelen füzet a 2013/14/2. tanulmányi időszak, vizsgaidőszakának Matematikai analízis II. szóbeli vizsgájához lett kiadva. A füzet tartalmazza az intézmény által nyilvánosságra hozott tételjegyzéket, valamint azok kidolgozott formáját is.

Az analízis vizsga részét képezi egy egyszerű komplex függvénytani feladat megoldása is. Mintafeladatok a füzet végében találhatók.

A kiadványban bárhol, de különösen a kidolgozott tételek körében előfordulhatnak hiányosságok, bővebb magyarázatra szoruló részek. Az ezek kiegészítése illetve jegyzetelés, feladatmegoldás céljából a kidolgozott tételeket a füzetben jegyzetoldalak követik.

Eredményes felkészülést kívánunk!

A kiadványt összeállította: Naszlady Márton Bese – 2016

Ez a kiadvány a *Creative Commons Nevezd meg! – Ne add el! 4.0 Nemzetközi licenc* alá tartozik. A licenc megtekintéséhez látogasson el a http://creativecommons.org/licenses/by-nc/4.0/ oldalra.

A kiadványban szereplő tartalmi elemek harmadik személytől származó véleményt, értesülést tükröznek. Az esetlegesen előforduló tárgyi tévedésekből fakadó visszás helyzetek kialakulásáért, illetve azok következményeiért a kiadó nem vállal felelősséget!

Tartalomjegyzék

Szóbeli vizsga tételjegyzék	4
Kidolgozott tételek, tételvázlatok	6
1. tétel	
2. tétel	10
3. tétel	13
4. tétel	15
5. tétel	18
6. tétel	21
7. tétel	24
8. tétel	26
9. tétel	28
10. tétel	
11. tétel	33
12. tétel	36
13. tétel	38
14. tétel	40
15. tétel	42
16. tétel	45
17. tétel	47
18. tétel	50
19. tétel	52
20. tétel	55
21. tétel	57
22. tétel	59
23. tétel	61
24. tétel	64
Feladatok a komplex függvénytan témaköréből	66
Jegyzetek	
リレニ 「 Ł\ U\L\ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	······································

Szóbeli vizsga tételjegyzék

- 1. tétel: Hatványsorok. Konvergencia tartomány (B). Konvergencia sugár meghatározása (B). Taylor sor. Elemi függvények Taylor sora: e^x , $\sin(x)$, $\cos(x)$.
- **2. tétel:** Függvénysorozatok, függvénysorok. Konvergencia típusok: **pontonkénti és egyenletes.** Összegfüggvény folytonossága (B), deriváltja és integrálja.
- **3. tétel:** Fourier sor. **Fourier együtthatók, valós alak.** Derivált függvény Fourier sora (B). **Fourier sor konvergenciája.** Fourier együtthatók nagyságrendje (B), Parseval egyenlőség.
- **4. tétel:** Kétváltozós függvények értelmezése, ábrázolása. **Folytonosság, sorozatfolytonosság.** Bolzano tétel magasabb dimenzióban (B). Egyenletes- és Lipschitz-folytonosság.
- **5. tétel:** Függvény határértéke. Parciális deriváltak. Geometriai jelentés. Parciális deriváltak és folytonosság (B). Parciális deriválások sorrendje, felcserélhetősége.
- **6. tétel: Teljes differenciálhatóság.** Kapcsolat a parciális deriváltakkal. Folytonosság és differenciálhatóság (B) Érintősík. Normálvektor. Iránymenti derivált (B).
- **7. tétel: Második derivált,** Hesse mátrix. **Láncszabály,** speciális esetek. Másodrendű Taylor formula kétváltozós függvényre (B).
- **8. tétel:** Lagrange féle középérték tétel (B). Implicit függvény tétel. Implicit függvény deriválása. Lokális és globális szélsőérték. Szükséges feltétel lokális szélsőértékre (B).
- 9. tétel: Stacionárius pont. Nyeregpont. Elégséges feltétel lokális szélsőértékre. Feltételes szélsőérték, feladat megfogalmazása. Szemléletes jelentés.
- **10. tétel:** Lagrange-féle multiplikátor szabály. Függvény rendszerek, Koordináta-transzformáció. Jacobi mátrix. Jacobi determináns. Invertálhatóság. Inverz rendszer deriváltja (B).
- 11. tétel: Riemann integrál két dimenzióban. Kettős integrál kiszámítása. Integrálás téglalap alakú tartományon (B). Integrálás normáltartományon, a síkon.
- **12. tétel:** Polárkoordináták. Áttérés polárkoordinátákra kettős integrálban. Hármas integrál: intervallumon és normál tartományon. Általános helyettesítés kettős és hármas integrálban.

- 13. tétel: Hengerkoordináták. Gömbi polárkoordináták. Áttérés Jacobi determinánsa (B). Tömegközéppont meghatározása. Kétváltozós függvény felszínének kiszámítása.
- **14. tétel:** Improprius integrál, nem korlátos függvény. **Hatványfüggvény integrálja az egységkörben** (B). Integrálhatóság feltétele nem korlátos függvényre.
- 15. tétel: Improprius integrál nem korlátos tartományon. Példa: harang-görbe integrálja. (B). Vonal(görbe) definíciója \mathbb{R}^2 -ben és \mathbb{R}^3 -ban. Kétváltozós valós függvény integrálja vonal mentén.
- **16. tétel: Vektormező integrálja görbe mentén.** Szemléletes jelentés. **Potenciálkeresés.** Potenciál létezésének szükséges (B) és elégséges feltétele (vonalintegrállal).
- **17. tétel:** Fourier sor komplex alakja. Fourier transzformáció. Alaptulajdonságok (B). Inverz Fourier transzformáció. Parseval egyenlet (B). Konvolúció. Konvolúció FT-ja.
- **18. tétel:** Magasabb rendű lineáris differenciálegyenlet. Függvények függetlensége. Wronski determináns (B). Homogén LDE. Megoldások struktúrája (B). Kezdeti érték- és peremérték feladat.
- **19. tétel:** Állandó együtthatós: homogén LDE megoldásai. Kapcsolat a karakterisztikus polinommal (B). Inhomogén LDE. Megoldások struktúrája. Inhomogén LDE megoldása. Állandók variálása.
- **20. tétel:** Inhomogén LDE megoldása: Próbafüggvények. Differenciálegyenlet rendszerek. **Állandó együtthatós lineáris DER megoldása** (B). *e*^A **értelmezése,** speciális esetek.
- **21. tétel:** Komplex függvény, ábrázolás. **Kanonikus alak.** Komplex függvény differenciálhatósága. **Cauchy-Riemann egyenletek** (B).
- **22. tétel:** Elemi függvények: e^z , alaptulajdonságok. (B). Elemi függvények: Ln(z) alaptulajdonságok. (B), sin(z), cos(z), hatványfüggvény.
- **23. tétel:** Harmonikus függvények (B). Harmonikus társ. Komplex vonalintegrál, alaptulajdonságok. Integrál kiszámítása. Cauchy-féle alaptétel. Általánosítás.
- **24. tétel:** Cauchy-féle integrálformula. **Taylor sorfejtés analitikus függvényre** (B). Laurent sorfejtés. **Zérus és pólus.**

Kidolgozott tételek, tételvázlatok

1. tétel: **Hatványsorok. Konvergencia tartomány** (B). Konvergencia sugár meghatározása (B). **Taylor sor.** Elemi függvények Taylor sora: e^x , $\sin(x)$, $\cos(x)$.

Hatványsorok

Definíció A hatványsor:

$$\sum_{n=0}^{\infty} c_n (x - x_0)^n \,, \qquad c_n \in \mathbb{R}$$

Ahol $x_0 \in \mathbb{R}$ rögzített.

Konvergencia tartomány (B)

Definíció Adott egy hatványsor:

$$\sum_{n=0}^{\infty} c_n x^n$$

Ennek konvergencia halmaza (konvergencia tartománya, "ahol konvergens"):

$$\mathcal{H} = \left\{ x \in \mathbb{R} : \sum_{n=0}^{\infty} c_n x^n < \infty \right\}$$

Állítás A konvergencia halmaz tulajdonságai:

- 1.) $0 \in \mathcal{H}$
- 2.) Ha $\xi \in \mathcal{H}$, akkor minden x-re, melyre $|x| < |\xi|$, igaz, hogy $x \in \mathcal{H}$.
- 3.) Ha $\eta \notin \mathcal{H}$, akkor minden x-re, melyre $|x| > |\eta|$, igaz, hogy $x \notin \mathcal{H}$.

Bizonvítás 1.) Triviális.

2.) Az $|x| < |\xi|$ feltétel miatt teljesül az is, hogy $|x| < q|\xi|$, ahol 0 < q < 1. Mivelhogy ξ eleme a konvergencia halmaznak, ezért a ξ -vel felírt hatványsor

$$\sum_{n=0}^{\infty} c_n \xi^n < \infty$$

sora korlátos, azaz $\exists M$, hogy $|c_n \xi^n| < M$ minden n-re. Ekkor fölhasználva a bizonyítás elején megállapított összefüggést:

$$|c_n x^n| = |c_n \xi^n| \cdot \frac{|x^n|}{|\xi^n|} < Mq^n$$

3.) Ha x-ben konvergens volna, akkor az előző megállapítás miatt az $|\eta| < |x|$ miatt η -ban is konvergens volna, ami viszont ellentmondás.

Konvergencia sugár meghatározása (B)

Definíció Tegyük fel, hogy létezik $\xi \neq 0$, melyre $\xi \in \mathcal{H}$ és $\exists \eta \notin \mathcal{H}$. A hatványsor *konvergencia sugara* $\rho \coloneqq \sup\{|x| : x \in \mathcal{H}\}$

Ha
$$\mathcal{H} = \{0\}$$
, akkor $\rho \coloneqq 0$.
Ha $\mathcal{H} = \mathbb{R}$, akkor $\rho \coloneqq \infty$

Az $x_0 = 0$ esetben a konvergencia sugár meghatározása a gyökkritériummal lehetséges, a "szereposztás" $a_n = c_n x^n$.

Állítás Tegyük fel, hogy a $\lim_{n\to\infty} \sqrt[n]{|c_n|} = \gamma$ határérték létezik (esetleg $+\infty$). Ekkor:

1.) $\gamma = 0$ esetén $\rho = \infty$. A hatványsor mindenütt konvergens.

2.)
$$\gamma = \infty$$
 esetén $\rho = 0$.

3.)
$$0 < \gamma < \infty$$
 esetén $\rho = \frac{1}{\gamma}$.

Bizonyítás 1.) $\lim_{n\to\infty} \sqrt[n]{|c_n| \cdot |x|^n} = 0 \cdot |x|$, $\forall x$

2.)
$$\lim_{n\to\infty} \sqrt[n]{|c_n| \cdot |x|^n} = \infty$$
, $\forall x \neq 0$

3.) $\lim_{n\to\infty} \sqrt[n]{|c_n| \cdot |x|^n} = \gamma |x|$, $\forall x$. Ezért $|x| < \frac{1}{\gamma}$ esetén $\gamma |x| < 1$. A sor konvergens. \blacksquare

A konvergencia sugár meghatározható még a hányados kritérium módszerével is, hasonló szereposztással.

Állítás Tegyük fel, hogy a $\lim_{n\to\infty}\frac{|c_{n+1}|}{|c_n|}=\gamma$ határérték létezik (esetleg $+\infty$). Ekkor:

1.) $\gamma = 0$ esetén $\rho = \infty$. A hatványsor mindenütt konvergens.

2.)
$$\gamma = \infty$$
 esetén $\rho = 0$.

3.)
$$0 < \gamma < \infty$$
 esetén $\rho = \frac{1}{\gamma}$.

Bizonyítás

$$A = \lim_{n \to \infty} \left| \frac{c_{n+1} x^{n+1}}{c_n x^n} \right| = |x| \cdot \lim_{n \to \infty} \frac{|c_{n+1}|}{|c_n|} = \gamma |x| \Rightarrow \begin{cases} A < 1 \iff |x| < \frac{1}{\gamma}, \text{ konvergens} \\ A > 1 \iff |x| > \frac{1}{\gamma}, \text{ divergens} \end{cases}$$

Általános eset

Általában a hatványsort egy x_0 pont körüli tekintjük, alakja:

$$\sum_{n=0}^{\infty} c_n (x - x_0)^n$$

A konvergencia halmaznak itt is három típusa lehet:

- $\bullet \quad \mathcal{H} = \{x_0\}$
- $\mathcal{H} = \mathbb{R}$
- $\bullet \quad \mathcal{H} = [(x_0 \rho, x_0 + \rho)]$

A konvergencia sugarat ugyan úgy határozzuk meg, mint a speciális ($x_0 = 0$) esetben.

Taylor sor

A hatványsorok a konvergencia halmaz belsejében:

- folytonosak
- differenciálhatók
- összeadhatók, skalárszorozhatók
- összeszorzás NEM lehetséges

Legyen $f(x) = \sum_{n=0}^{\infty} c_n (x - x_0)^n$ és $x \in \mathcal{H} x_0$ körüli hatványsor.

$$\gamma = \lim_{n \to \infty} \sqrt[n]{|c_n|} = \lim_{n \to \infty} \left| \frac{c_{n+1}}{c_n} \right| \Rightarrow \sqrt[n]{\rho} = \frac{1}{\gamma}$$

Ekkor f akárhányszor differenciálható, éspedig

$$f^{(k)}(x) = \sum_{n=k}^{\infty} n \cdot (n-1) \cdot \dots \cdot (n-k+1) \cdot c_n \cdot (x-x_0)^{n-k}$$

 $|x - x_0| < \rho$ esetén.

Fordítva:

Adott f függvény előállítható-e hatványsor alakban? Ha x_0 körül előáll, akkor

$$f: (x_0 - \rho; x_0 + \rho) \to \mathbb{R} \equiv (c_n) \subset \mathbb{R}$$

Definíció Az f függvény *analitikus* x_0 -*ban*, ha $\exists (c_n)$ számsorozat, hogy

$$f(x) = \sum_{n=0}^{\infty} c_n (x - x_0)^n$$
, $|x - x_0| < \rho$

Állítás Ha létezik hatványsor-előállítás, akkor az egyértelmű.

Bizonyítás Legyen $x = x_0$. Ekkor $f(x_0)$ hatványsora:

$$f(x_0) = \sum_{n=0}^{\infty} c_n (x - x_0)^n = c_0 + c_1 \cdot 0 + \dots = c_0$$

Ennek deriváltja:

$$f^{(k)}(x_0) = \sum_{n=k}^{\infty} n \cdot (n-1) \cdot \dots \cdot (n-k+1) \cdot c_n \cdot (x-x_0)^{n-k} = k! \cdot c_k$$
$$c_k = \frac{f^{(k)}(x_0)}{k!}$$

Így tehát a hatványsor-előállítás egyértelmű.

Következmény

Az analitikus függvények egyértelműen előállíthatók hatványsorral ≡ Taylor sor. A

$$T(x) \coloneqq \sum_{k=0}^{\infty} \frac{f^{(k)}(x_0)}{k!} \cdot (x - x_0)^k$$

alakú sor az f függvény x_0 középpontú Taylor sora. A nem analitikus függvények hatványsora csak közelítés.

Elemi függvények Taylor sora: e^x , $\sin(x)$, $\cos(x)$

Állítás $Az f(x) = e^x függvény Taylor sora$

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}, \qquad x \in \mathbb{R}$$

Állítás $Az f(x) = \sin(x) függvény x_0 = 0 körüli Taylor sora$

$$\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} \cdot x^{2n+1}, \qquad x \in \mathbb{R}$$

Páratlan függvény, így Taylor sorában csak páratlan számok szerepelnek.

Állítás $Az f(x) = \cos(x) f \ddot{u} g y \acute{e} n y x_0 = 0 k \ddot{o} r \ddot{u} li Taylor sora$

$$\cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} \cdot x^{2n}, \qquad x \in \mathbb{R}$$

Páros függvény, így Taylor sorában csak páros számok szerepelnek.

2. tétel: Függvénysorozatok, függvénysorok. Konvergencia típusok: **pontonkénti és egyenletes.** Összegfüggvény folytonossága (B), deriváltja és integrálja.

Függvénysorozatok, függvénysorok

Definíció Adottak az $f_1, f_2, ..., f_n, ...: D \to \mathbb{R}$ függvények, melyek értelmezési tartománya közös. Ezek sorozatát *függvénysorozatnak* nevezzük. Jele: (f_n)

Definíció Az (f_n) függvénysorozat határértéke az $f: D \to \mathbb{R}$ függvény, ha

$$\lim_{n\to\infty} f_n(x) = f(x), \qquad \forall x\in D$$

Definíció Adottak az $f_n: D \to \mathbb{R}$ függvények, melyek értelmezési tartománya közös. A $(\sum f_n)$ függvénysor összege $f: D \to \mathbb{R}$, ha $\forall x \in D$ -re

$$\sum_{n=1}^{\infty} f_n(x) = f(x)$$

Konvergencia típusok: pontonkénti és egyenletes

Függvénysorozatra

Tétel (Cauchy-kritérium) Az (f_n) függvénysorozat pontosan akkor konvergens, ha $\forall \varepsilon > 0$ -hoz és $\forall x \in D$ -hez $\exists N = N(\varepsilon, x)$ küszöbindex, amelyre $\forall m, n > N$ esetén $|f_n(x) - f_m(x)| < \varepsilon$.

Definíció Az (f_n) függvénysorozat *pontonként konvergens* f-hez, ha $\forall x \in D$ és $\forall \varepsilon > 0$ -hoz $\exists N = N(\varepsilon, x)$, melyre $\forall n > N$ esetén $|f_n(x) - f(x)| < \varepsilon$.

Definíció Az (f_n) függvénysorozat *egyenletesen konvergens* f-hez, ha $\forall \varepsilon > 0$ -hoz $\exists N = N(\varepsilon)$, melyre $\forall n > N$ esetén $|f_n(x) - f(x)| < \varepsilon, \forall x \in D$ -re.

Következmény

Ha a konvergencia egyenletes, akkor pontonkénti is.

Tétel (Elégséges feltétel egyenletes konvergenciára) Adottak f_n , $f: D \to \mathbb{R}$ függvények. Tegyük fel, hogy $\lim_{n\to\infty} f_n(x) = f(x)$ pontonkénti határérték. Tegyük fel továbbá, hogy a függvények korlátosak, és $|f_n(x) - f(x)| < a_n$, $\forall x \in D$. Ekkor $\lim_{n\to\infty} a_n = 0$ esetén a fenti konvergencia egyenletes.

Függvénysorra

Tétel (Cauchy-kritérium függvénysorokra) $A\left(\sum f_n\right)$ függvénysor pontosan akkor konvergens, ha $\forall x \in D$ esetén $\forall \varepsilon > 0$ -hoz $\exists N = N(\varepsilon, x)$, melyre

$$\left| \sum_{k=m}^{n} f_k(x) \right| < \varepsilon, \quad \forall n > m > N$$

Definíció A függvénysor konvergenciája *egyenletes*, ha a részletösszegek sorozata egyenletesen konvergens, azaz

$$F_n(x) \coloneqq \sum_{k=1}^n f_k(x)$$

jelöléssel F_n egyenletesen konvergál f-hez.

Tétel

(Weierstrass-féle elégséges feltétel) Adottak az $f_n: D \to \mathbb{R}$ függvények, melyek értelmezési tartománya közös. Tegyük fel, hogy a $(\sum f_n)$ függvénysor tagjai korlátosak, éspedig f_n korlátja $|f_n(x)| < a_n$, $\forall x \in D$. Tegyük fel továbbá, hogy $\sum_{n=1}^{\infty} a_n < \infty$. Ekkor a konvergencia egyenletes.

Összegfüggvény folytonossága (B), deriváltja és integrálja

Tétel

(Összegfüggvény tulajdonságainak megállapítására) Tegyük fel, hogy az $f_n: D \to \mathbb{R}$ függvények folytonosak. Tegyük fel, hogy $(\sum f_n)$ egyenletesen konvergens D-ben. Ekkor $f = \sum f_n$ is folytonos.

Bizonyítás

Legyen $x_0 \in D$ tetszőleges. Ahhoz, hogy megállapítsuk, hogy f folytonos-e x_0 -ban, be kell látni, hogy $\forall \varepsilon > 0$ esetén $|f(x) - f(x_0)| < \varepsilon$, ha x és x_0 elég közeli.

Bontsuk föl a végtelen összeget két részre:

$$f(x) = \sum_{k=1}^{n} f_k(x) + R_n(x) = F_n(x) + R_n(x)$$

ahol $F_n(x)$ az n-edik részletösszeg, $R_n(x)$ pedig a maradék.

Legyen $\varepsilon > 0$ tetszőleges. A Cauchy-kritérium miatt $\exists N = N(\varepsilon)$, melyre $\forall n > N$ esetén

$$\left| f(x) - \sum_{k=1}^{n} f_k(x) \right| = |R_n(x)| < \frac{\varepsilon}{4}, \quad \forall x \in D$$

Ezért

$$|R_n(x) - R_n(x_0)| < \frac{\varepsilon}{2}, \quad \forall x \in D$$

Az F_n véges sok folytonos függvény összege, ezért folytonos. Tehát a fenti $\varepsilon > 0$ -hoz $\exists \delta > 0$, ha $|x - x_0| < \delta$, akkor

$$|F_n(x) - F_n(x_0)| < \frac{\varepsilon}{2}$$

Így amennyiben $|x - x_0| < \delta$, akkor

$$|f(x) - f(x_0)| = |F_n(x) + R_n(x) - (F_n(x_0) + R_n(x_0))| \le$$

$$\le |F_n(x) - F_n(x_0)| + |R_n(x) - R_n(x_0)| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

tehát f folytonos x_0 -ban. ■

Tétel

(Integrálhatóság) Adottak az $f_n: D \to \mathbb{R}$ integrálható függvények és $f: D \to \mathbb{R}$ függvény. Tegyük fel, hogy

$$\sum_{n=1}^{\infty} f_n(x) = f(x)$$

és a konvergencia egyenletes. Legyen $[\alpha, \beta] \subset D$. Ekkor az összegfüggvény is integrálható:

$$\int_{\alpha}^{\beta} f(x) \ dx = \sum_{n=1}^{\infty} \int_{\alpha}^{\beta} f_n(x) \ dx$$

Tétel (Deriválhatóság) Adottak az $f_n: D \to \mathbb{R}$ differenciálható függvények, és $f: D \to \mathbb{R}$ függvény. Tegyük fel, hogy a

$$\sum_{n=1}^{\infty} f_n(x) = f(x)$$

pontonként konvergens D-ben. Tegyük fel, hogy a deriváltakból álló függvénysor is egyenletesen konvergens:

$$\sum_{n=1}^{\infty} f_n'(x) = g(x)$$

és g(x) folytonos. Ekkor f függvény differenciálható, és f'(x) = g(x)

3. tétel: Fourier sor. Fourier együtthatók, valós alak. Derivált függvény Fourier sora (B). Fourier sor konvergenciája. Fourier együtthatók nagyságrendje (B), Parseval egyenlőség.

Fourier együtthatók, valós alak

Definíció Az $f: [-\pi; \pi] \to \mathbb{R}$ függvény *Fourier együtthatóit* így definiáljuk:

$$a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(kx) dx$$
, $k = 0,1,2,...$
 $b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(kx) dx$, $k = 1,2,...$

feltéve, hogy a fenti integrálok léteznek.

Fourier sor

Definíció Adott $f: \mathbb{R} \to \mathbb{R}$ 2π szerint periodikus függvény. Tegyük fel, hogy f integrálható a $[-\pi; \pi]$ intervallumon. Az f(x) függvény *Fourier sora* (formálisan):

$$f \sim \frac{a_0}{2} \sum_{k=1}^{\infty} (a_k \cos(kx) + b_k \sin(kx))$$

ahol a_k és b_k a most definiált Fourier együtthatók.

Derivált függvény Fourier sora (B)

Tétel Legyen $f: \mathbb{R} \to \mathbb{R}$ valós függvény 2π szerint periodikus és tegyük fel, hogy a $[-\pi;\pi]$ intervallumon a függvény véges sok pont kivételével folytonos. Ezenkívül tegyük fel, hogy a szakadási pontok elsőfajú szakadások, és hogy véges sok pont kivételével f differenciálható. Ekkor az f' függvény Fourier sora tagonkénti deriválással kiszámítható:

$$f' \sim \sum_{k=1}^{\infty} (-a_k \cdot k \cdot \sin(kx) + b_k \cdot k \cdot \cos(kx))$$

Bizonyítás Az f' függvény Fourier együtthatóit jelölje α_k és β_k . Ekkor f' Fourier sora:

$$f' \sim \frac{a_0}{2} + \sum_{k=1}^{\infty} (\alpha_k \cos(kx) + \beta_k \sin(kx))$$

ahol a definíciót felhasználva:

$$\alpha_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f'(x) \cos(kx) \ dx = \frac{1}{\pi} \left(\left[f(x) \cos(kx) \right]_{-\pi}^{\pi} - \int_{-\pi}^{\pi} f(x) \cdot (-k \sin(kx)) \ dx \right) =$$

$$= k \cdot \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(kx) \ dx = k \cdot b_k$$

A fenti egyenletben az első tag azért tűnik el, mert f 2π szerint periodikus.

Fourier sor konvergenciája

Tétel

(Fourier sorok alaptétele) Legyen $f: \mathbb{R} \to \mathbb{R}$ 2π szerint periodikus függvény. Feltesszük, hogy f szakaszosan folytonosan differenciálható a $[-\pi;\pi]$ intervallumon, legfeljebb véges sok szakadási hellyel, amelyek első fajú szakadások. Ha x_0 szakadási pont, akkor itt a függvényérték legyen

$$f(x_0) = \frac{f(x_0 + 0) + f(x_0 - 0)}{2}$$

Ekkor

$$f(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k \cos(kx) + b_k \sin(kx))$$

Fourier együtthatók nagyságrendje (B)

Tegyük fel, hogy $f: [-\pi; \pi] \to \mathbb{R}$ folytonosan differenciálható véges sok pont kivételével. Ekkor előállítható Fourier sora segítségével:

$$f(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k \cos(kx) + b_k \sin(kx))$$

Megvizsgáljuk, hogy mit mondhatunk a fenti végtelen sor konvergenciájának sebességéről. Legyen $n \in \mathbb{N}$ tetszőleges. Induljunk ki az alábbi egyenlőtlenségből:

$$0 \le \frac{1}{\pi} \int_{-\pi}^{\pi} \left(f(x) - \left(\frac{a_0}{2} + \sum_{k=1}^{n} (a_k \cos(kx) + b_k \sin(kx)) \right) \right)^2 dx$$

Végezzük el a jobboldalon a négyzetre emelést és így folytassuk a fenti egyenlőséget:

$$0 \le \frac{1}{\pi} \int_{-\pi}^{\pi} f^{2}(x) dx - 2 \frac{a_{0}}{2} \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx - 2 \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) dx - 2 \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) \sin(kx) dx + 2 \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) \sin(kx) dx + 2 \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) \sin(kx) dx + 2 \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) dx + 2 \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) dx + 2 \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) dx - 2 \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)$$

Ezzel beláttuk az ún. Bessel egyenlőtlenséget:

$$\frac{a_0^2}{2} + \sum_{k=1}^{n} (a_k^2 + b_k^2) \le \frac{1}{\pi} \int_{-\pi}^{\pi} f^2(x) \, dx$$

teljesül minden $n \in \mathbb{N}$ esetén.

Parseval egyenlőség

Tétel (Parseval egyenlőség) A Fourier együtthatókra teljesül az alábbi egyenlőség:

$$\frac{a_0^2}{2} + \sum_{k=1}^{\infty} (a_k^2 + b_k^2) = \frac{1}{\pi} \int_{-\pi}^{\pi} f^2(x) \, dx$$

4. tétel: Kétváltozós függvények értelmezése, ábrázolása. **Folytonosság, sorozatfolytonosság.** Bolzano tétel magasabb dimenzióban (B). Egyenletes- és Lipschitz-folytonosság.

Kétváltozós függvények értelmezése, ábrázolása

Adott $S \subset \mathbb{R}^2$ tartomány. $f: S \to \mathbb{R}$ kétváltozós függvény, amely S elemeihez egy valós számot rendel. Értelmezési tartományát D_f -fel jelöljük, értékkészletét R_f -fel.

Függvény megadása azt jelenti, hogy megadjuk az értelmezési tartományt és a hozzárendelés módját. Ez mindig egyértelmű.

Elnevezések: (x, y): független változó, u: függő változó

Legegyszerűbb példák:

1. Lineáris függvény

$$f(x,y) = ax + by + c$$

ahol $a, b, c \in \mathbb{R}$ rögzítettek. Értelmezési tartománya \mathbb{R}^2 .

2. Másodfokú polinom

$$f(x,y) = ax^2 + bxy + cy^2 + dx + ey + f$$
 ahol $a,b,c,d,e,f \in \mathbb{R}$ rögzítettek. Értelmezési tartománya \mathbb{R}^2 .

3. Polinomok

Polinomokat két dimenzióban úgy definiálunk, mint monomiálok összege. Egy monomiál általános alakja:

$$a_{mn}x^my^n$$

Együtthatója $a_{mn} \in \mathbb{R}$, foka a benne lévő fokok összege: m + n. Egy polinom fokát úgy definiáljuk, mint a legmagasabb fokú monomiáljának foka.

4. További kétváltozós függvények konstrukciója az ismert egyváltozós függvényekkel.

Ábrázolás

Miként az egyváltozós függvényeket görbe segítségével tudjuk reprezentálni, úgy a kétváltozós függvényt felületként fogjuk megadni. Ehhez tekintjük a háromdimenziós koordinátarendszert, melyben a koordinátatengelyek x, y és u. A függvény értelmezési tartományának tetszőleges (x, y) pontja fölött kijelöljük azt a P pontot, melynek harmadik koordinátája u = f(x, y). Ha (x, y) pontok bejárják D_f -et, akkor P pontok egy felületet fognak megadni.

Tehát az $f: S \to \mathbb{R}$ függvényt a térben az (x, y, u) számhármasok írják le, ahol u = f(x, y). Az $\{(x, y, u) : u = f(x, y), (x, y) \in S\}$ pontok felületet alkotnak a térben.

A háromdimenziós ábrázolás nem mindig megfelelő. A szintvonalakkal történő ábrázolással egy síkban lehet ábrázolni azokat az (x,y) pontokat, melyekre f(x,y) = k valamely rögíztett $k \in \mathbb{R}$ mellett.

Az $f(x,y) = x^2 + y^2$ függvény felülete és szintvonalai

Az $f(x,y) = x \cdot e^{-x^2 - y^2}$ függvény felülete és szintvonalai

Folytonosság, sorozatfolytonosság

Definíció

Legyen $P_0=(x_0,y_0)$ az f függvény értelmezési tartományának egy pontja. Az f függvény folytonos az (x_0,y_0) pontban, ha tetszőleges $\varepsilon>0$ -hoz létezik egy $\delta>0$ szám, melyre

$$\forall (x,y) \in D_f, \qquad \sqrt{(x-x_0)^2+(y-y_0)^2} < \delta$$

esetén teljesül, hogy

$$|f(x,y) - f(x_0,y_0)| < \varepsilon$$

Definíció

Azt mondjuk, hogy az f függvény sorozatfolytonos az értelmezési tartomány P_0 pontjában, ha minden $(P_n) \subset D_f$ sorozatra, melyre

$$\lim_{n\to\infty} P_n = P_0$$

teljesül, hogy

$$\lim_{n\to\infty} f(P_n) = f(P_0)$$

Tétel

Az f függvény akkor és csak akkor folytonos P_0 -ban, ha ott sorozatfolytonos.

Definíció

Ha egy függvény értelmezési tartományának egy pontjában nem folytonos, akkor ott *szakadása* van.

Bolzano tétel magasabb dimenzióban (B)

Tétel

(Bolzano tétel) Legyen $f: S \to \mathbb{R}$ folytonos függvény, melynek értelmezési tartománya $S \subset \mathbb{R}^2$ összefüggő. Legyen a tartomány két tetszőleges pontja P = (x, y) és P' = (x', y'), melyekre

$$a = f(x, y) < f(x', y') = b$$

Ekkor tetszőleges $c \in (a,b)$ számhoz létezik egy olyan $Q = (x_0,y_0) \in S$ pont, melyre $f(x_0,y_0) = c$.

Bizonyítás Az *S* tartomány összefüggő, ezért létezik *P*-t és *P'*-t összekötő *S*-beli folytonos görbe. Ez azt jelenti, hogy létezik olyan

$$\gamma: [\alpha, \beta] \to \mathbb{R}^2$$

$$t \mapsto (x(t), y(t))$$

függvény, melyre

$$\gamma(\alpha) = (x, y), \qquad \gamma(\beta) = (x', y')$$

és az (x(t), y(t)) koordináta-függvények folytonosak. Vezessük be az F(t) := f(x(t), y(t)) valós függvényt. $F: [\alpha, \beta] \to \mathbb{R}$ folytonos, melyre $F(\alpha) = a$ és $F(\beta) = b$. Így az egydimenziós folytonos függvényekre ismert Bolzano tétel miatt létezik olyan $\xi \in (\alpha, \beta)$, melyre $F(\xi) = c$. Ezért $Q := \gamma(\xi) \in S$ pontra f(Q) = c.

Egyenletes- és Lipschitz-folytonosság

Definíció

Legyen $f: S \to \mathbb{R}$ adott függvény, $S \subset \mathbb{R}^2$ tartomány. Azt mondjuk, hogy f egyenletesen folytonos S-ben, ha tetszőleges $\varepsilon > 0$ –hoz $\exists \delta > 0$, hogy ha $P, P' \in S$ pontokra $||P - P'|| < \delta$, akkor $|f(P) - f(P')| < \varepsilon$.

A $\delta = \delta(\varepsilon)$ számot az ε -hoz tartozó folytonossági modulusnak hívjuk.

Definíció

Az $f: S \to \mathbb{R}$ kétváltozós függvény *Lipschitz-folytonos*, ha létezik egy olyan L > 0 szám, melyre $|f(P) - f(P')| \le L \cdot ||P - P'||$ teljesül minden $P, P' \in S$ pontra.

Az L számot Lipschitz-konstansnak hívjuk.

Állítás

Ha f egyenletesen folytonos S-en, akkor S minden pontjában folytonos. Ha f Lipschitz-folytonos egy tartományban, akkor ott egyenletesen is folytonos.

5. tétel: Függvény határértéke. Parciális deriváltak. Geometriai jelentés. Parciális deriváltak és folytonosság (B). Parciális deriválások sorrendje, felcserélhetősége.

Függvény határértéke

Definíció

Legyen $f: S \to \mathbb{R}$ kétváltozós valós függvény, $P_0 = (x_0, y_0) \in \mathbb{R}^2$ az értelmezési tartomány egy torlódási pontja. Azt mondjuk, hogy az f függvény határértéke a $P_0 = (x_0, y_0)$ pontban L, azaz

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = L$$

ha minden $\varepsilon > 0$ -hoz lézetik $\delta > 0$ szám, hogy ha

$$(x,y) \in S$$
, $0 < \sqrt{(x-x_0)^2 + (y-y_0)^2} < \delta$

akkor $|f(x,y) - L| < \varepsilon$.

Állítás

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = L$$

pontosan akkor teljesül, ha $\forall P_n = (x_n, y_n) \in S, P_n \neq P_0$ sorozatra, melyre

$$\lim_{n\to\infty} P_n = P_0$$

teljesül, hogy

$$\lim_{n\to\infty} f(P_n) = L$$

Parciális deriváltak

Definíció

Legyen $f: S \to \mathbb{R}$ kétváltozós valós függvény. Legyen (x_0, y_0) az S halmaz belső pontja. Ha létezik a

$$\lim_{x \to x_0} \frac{f(x, y_0) - f(x_0, y_0)}{x - x_0}$$

véges határérték, akkor ezt a mennyiséget a függvény x szerinti parciális deriváltjának nevezzük az (x_0, y_0) pontban. Ezt így jelöljük:

$$f_x'(x_0, y_0), \qquad \frac{\partial}{\partial x} f(x_0, y_0)$$

Ha létezik a

$$\lim_{y \to y_0} \frac{f(x_0, y) - f(x_0, y_0)}{y - y_0}$$

véges határérték, akkor ezt a mennyiséget a függvény y szerinti parciális deriváltjának nevezzük az (x_0, y_0) ponban. Ezt így jelöljük:

$$f_y'(x_0, y_0), \qquad \frac{\partial}{\partial y} f(x_0, y_0)$$

Ha a parciális deriváltfüggvényeknek létezik parciális deriváltja, akkor másodrendű parciális deriváltat kapunk:

$$\frac{\partial}{\partial y} \left(\frac{\partial}{\partial x} f(x, y) \right) = \frac{\partial^2}{\partial y \partial x} f(x, y) = f''_{xy}(x, y) = \lim_{h \to 0} \frac{f'_x(x, y + h) - f'_x(x, y)}{h}$$

Geometriai jelentés

A parciális deriválás értelmezhető a következőképpen is. Rögzített y_0 mellett definiáljuk az $f_1(x) = f(x, y_0)$ egyváltozós függvényt. Ha $(x_0, y_0) \in \text{int}(D)$, akkor x_0 belső pontja f_1 értelmezési tartományának. Ekkor $f_x'(x_0, y_0) = f_1'(x_0)$. Ez hasonlóan igaz rögzített x_0 -ra is.

Az ilyen, rögzített y_0 konstans menti parciális derivált geometriai jelentése a függvény felületéből az y_0 -ban átmenő, az xy-síkra merőleges síkkal vett metszetének, – mely egy egyváltozós függvény – a deriváltja. A parciális deriváltak tehát a felületekhez x és y irányból húzott érintősíkok meredekségét adja meg.

Parciális deriváltak és folytonosság (B)

Tétel (Lagrange-féle középértéktétel) Legyen $f: [a, b] \to \mathbb{R}$ folytonos illetve belső pontjaiban differenciálható függvény. Ekkor van olyan $\xi \in [a, b]$, melyre

$$\frac{f(b) - f(a)}{b - a} = f'(\xi)$$

Tétel Legyen $f: S \to \mathbb{R}$ kétváltozós valós függvény, $(x_0, y_0) \in \operatorname{int}(S)$. Tegyük fel, hogy az f'_x és f'_y parciális deriváltak léteznek (x_0, y_0) valamely $U \in \mathbb{R}^2$ környezetében. Tegyük fel továbbá, hogy a parciális deriváltak itt korlátosak, azaz $|f'_x(x,y)| \le M$ és $|f'_y(x,y)| \le M$ tetszőleges $(x,y) \in U$ -ra. Ekkor az f függvény folytonos az (x_0, y_0) -ban.

Bizonyítás Legyen $(x, y) = (x_0 + h, y_0 + l)$. Nézzük meg a függvény megváltozását. A háromszög-egyenlőtlenséget alkalmazva azt kapjuk, hogy

$$|f(x_0 + h, y_0 + l) - f(x_0, y_0)| \le$$

$$\le |f(x_0 + h, y_0 + l) - f(x_0 + h, y_0)| + |f(x_0 + h, y_0) - f(x_0, y_0)|$$

A Lagrange-féle középértéktételből következik, hogy

$$f(x_0 + h, y_0 + l) - f(x_0 + h, y_0) = f_2(y_0 + l) - f_2(y_0) =$$

= $f_2'(\xi_y)l = f_y'(x_0 + h, \xi_y)l$

ahol f_2 a második metszetfüggvénye f-nek. A második tag hasonlóan írható:

$$f(x_0 + h, y_0) - f(x_0, y_0) = f_1(x_0 + h) - f_1(x_0) =$$

$$f_1'(\xi_x)h = f_x'(\xi_x, y_0)h$$

Így a kezdeti egyenlőtlenséget folytatva:

$$\leq \left|f_x'(\xi_x,y_0)\right|\cdot \left|h\right| + \left|f_y'\left(x_0,\xi_y\right)\right|\cdot \left|l\right| \leq M(\left|h\right| + \left|l\right|)$$

Tehát $|f(x_0+h,y_0+l)-f(x_0,y_0)| \le M(|h|+|l|) \le 2M\sqrt{h^2+l^2}$, ez pedig maga a Lipschitz-féle feltétel, tehát a függvény folytonos (x_0,y_0) -ban. ■

Parciális deriválások sorrendje, felcserélhetősége

Tétel Legyen $f: S \to \mathbb{R}$ kétváltozós valós függvény, $(x, y) \in \text{int}(S)$. Ha a pont egy környezetében léteznek az f''_{xy} és f''_{yx} másodrendű parciális deriváltak, és az adott pontban folytonosak is, akkor itt a deriválások sorrendje felcserélhető, $azaz f''_{xy}(x,y) = f''_{yx}(x,y)$.

6. tétel: **Teljes differenciálhatóság.** Kapcsolat a parciális deriváltakkal. Folytonosság és differenciálhatóság (B) Érintősík. Normálvektor. Iránymenti derivált (B).

Teljes differenciálhatóság

Definíció Egy h(x) függvény kisordó 0-ban, ha

$$\lim_{x \to 0} \frac{h(x)}{x} = 0$$

Ezt úgy jelöljük, hogy h(x) = o(x).

Definíció Legyen $f: S \to \mathbb{R}$ kétváltozós függvény, és $(x, y) \in int(S)$. Azt mondjuk, hogy az f függvény differenciálható (x, y)-ban, ha léteznek olyan A, B, C számok, melyekre

$$f(x + \Delta x, y + \Delta y) = A\Delta x + B\Delta y + C + o\left(\sqrt{\Delta x^2 + \Delta y^2}\right)$$

teljesül elegendően kicsi Δx és Δy mellett, ahol A,B,C függetlenek Δx -től és Δy -tól.

Kapcsolat a parciális deriváltakkal, folytonosság és differenciálhatóság (B)

Definíció Ha az f függvény differenciálható az (x, y) pontban, akkor ebben a pontban a derivált egy kétdimenziós vektor lesz, melyet *gradiensnek* nevezünk:

$$\operatorname{grad} f(x,y) = \left(f_x'(x,y), f_y'(x,y)\right)$$

Ha az f függvény egy S_0 halmaz minden pontjában differenciálható, akkor a deriváltfüggvény grad $f\colon s_0\to\mathbb{R}^2$ típusú lesz.

Tétel Ha f differenciálható az (x,y) pontban, akkor ott folytonos is és léteznek az adott pontban vett parciális deriváltak. Továbbá a fenti definícióban szereplő konstansokra C = f(x,y), $A = f'_x(x,y)$, $B = f'_y(x,y)$.

Bizonyítás Válasszunk $\Delta x = \Delta y = 0$ -t. Ekkor a definícióban szereplő egyenlet szerint:

$$f(x,y) = A \cdot 0 + B \cdot 0 + C + 0 = C$$

Tehát *C* megegyezik a helyettesítési értékkel. Ez alapján könnyen beláthatjuk a folytonosságot:

$$\lim_{\begin{subarray}{l} \Delta x \to 0 \\ \Delta y \to 0 \end{subarray}} f(x + \Delta x, y + \Delta y) = \\ = \lim_{\begin{subarray}{l} \Delta x \to 0 \\ \Delta y \to 0 \end{subarray}} A \Delta x + \lim_{\begin{subarray}{l} \Delta y \to 0 \\ \Delta y \to 0 \end{subarray}} B \Delta y + C + \lim_{\begin{subarray}{l} \Delta x \to 0 \\ \Delta y \to 0 \end{subarray}} o\left(\sqrt{\Delta x^2 + \Delta y^2}\right) = C$$

Most igazoljuk, hogy az A-ra vonatkozó állítást. Legyen $\Delta y = 0$. Ekkor az egyenlet így alakul:

$$f(x + \Delta x, y) = A\Delta x + f(x, y) + o(|\Delta x|)$$

Ez alapján számoljuk ki a parciális deriváltat:

$$\lim_{\Delta x \to 0} \frac{f(x + \Delta x, y) - f(x, y)}{\Delta x} = \lim_{\Delta x \to 0} \left(A + \frac{o(|\Delta x|)}{\Delta x} \right) = A$$

szóbeli vizsga 1405 21 / 72 2014. június 5.

Tétel Legyen $f: S \to \mathbb{R}$ kétváltozós valós függvény, $(x, y) \in \text{int}(S)$. Tegyük fel, hogy az $f'_x(x, y)$ és $f'_y(x, y)$ parciális deriváltak léteznek egy környezetben és folytonosak ebben a pontban. Ekkor f differenciálható (x, y)-ban.

Bizonyítás A Lagrange-féle középértéktételt alkalmazva azt kapjuk, hogy

$$f(x + \Delta x, y + \Delta y) - f(x, y) =$$

$$= f(x + \Delta x, y + \Delta y) - f(x + \Delta x, y) + f(x + \Delta x, y) - f(x, y) =$$

$$f'_{y}(x + \Delta x, y + \theta \Delta y) \Delta y + f'_{x}(x + \theta' \Delta x, y) \Delta x$$

valamely $0 < \theta, \theta' < 1$ konstansokkal.

A parciális deriválás folytonossága miatt:

$$f_y'(x + \Delta x, y + \theta \Delta y) = f_y'(x, y) + \varepsilon_1(\Delta x, \Delta y)$$

$$f_x' = (x + \theta' \Delta x, y) = f_x'(x, y) + \varepsilon_2(\Delta x)$$

ahol

$$\lim_{\Delta x, \Delta y \to 0} \varepsilon_1(\Delta x, \Delta y) = 0, \lim_{\Delta x \to 0} \varepsilon_2(\Delta x) = 0$$

Így az előző egyenlőségbe visszahelyettesítve azt kapjuk, hogy

$$f(x + \Delta x, y + \Delta y) - f(x, y) = f'_x(x, y)\Delta x + f'_y(x, y)\Delta y + \Delta x \varepsilon_2 + \Delta y \varepsilon_1$$
 azaz differenciálható.

Érintősík, normálvektor

A derivált geometriai jelentése is hasonló az egydimenziós esethez. Ha a függvény differenciálható egy pontban, akkor a pont közelében a függvény értékét az érintősík segítségével közelíthetjük. A sík megadásához megadjuk egy pontját – ez $(x_0, y_0, f(x_0, y_0))$ – és megadjuk a sík meredekségét, ami a két parciális derivált. Az érintősík egyenlete:

$$z = f(x_0, y_0) + f'_x(x_0, y_0)(x - x_0) + f'_y(x_0, y_0)(y - y_0)$$

Ezt átírva a megszokott alakba:

$$f_x'(x_0,y_0)(x-x_0)+f_y'(x_0,y_0)(y-y_0)+(-1)(z-z_0)=0$$

ahol $z_0=f(x_0,y_0)$. Ebből az egyenletből leolvasható, hogy a sík egyik normálvektora

$$\mathbf{n} = (f_x'(x_0, y_0), f_y'(x_0, y_0), -1)$$

Iránymenti derivált (B)

Definíció Legyen $\alpha \in [0; 2\pi)$. Az α *irányú iránymenti deriváltat* így értelmezzük:

$$D_{\alpha}f(x,y) = \frac{\partial}{\partial \alpha}f(x,y) = \lim_{\rho \to 0} \frac{f(x + \rho\cos(\alpha), y + \rho\sin(\alpha)) - f(x,y)}{\rho}$$

ha ez a határérték létezik.

Definíció Adott egy $v \in \mathbb{R}^2$ irány, melyre $||v|| = \sqrt{v_1^2 + v_2^2} = 1$. A v iránymenti deriváltat egy (x, y) pontban így értelmezzük:

$$D_{v}f(x,y) = \lim_{\rho \to 0} \frac{f(x + \rho v_{1}, y + \rho v_{2}) - f(x,y)}{\rho}$$

ha ez a határérték létezik.

Állítás Tegyük fel, hogy az f függvény differenciálható (x,y)-ban. Ekkor itt létezik az iránymenti derivált tetszőleges $\alpha \in [0; 2\pi)$ esetén, és

$$D_{\alpha}f(x,y) = f_x'(x,y)\cos(\alpha) + f_y'(x,y)\sin(\alpha)$$

Bizonyítás A differenciálhatóság miatt

$$f(x + \rho \cos(\alpha), y + \rho \sin(\alpha)) =$$

$$= f(x, y) + f'_x(x, y)\rho \cos(\alpha) + f'_y(x, y)\rho \sin(\alpha) + o(|\rho|)$$

ha $|\rho|$ elegendően kicsi. Ebből következik, hogy

$$\frac{f(x+\rho\cos(\alpha),y+\rho\sin(\alpha))-f(x,y)}{\rho} =$$

$$= f'_x(x,y)\cos(\alpha) + f'_y(x,y)\sin(\alpha) + \frac{o(|\rho|)}{\rho}$$

melynek határértékeként az állítást kapjuk.

7. tétel: **Második derivált,** Hesse mátrix. **Láncszabály,** speciális esetek. Másodrendű Taylor formula kétváltozós függvényre (B).

Második derivált, Hesse mátrix

Definíció Tekintsük az $f: S \to \mathbb{R}$ kétváltozós függvényt, és legyen (x_0, y_0) belső pontja Snek. Azt mondjuk, hogy f kétszer differenciálható ebben a pontban, ha a függvény differenciálható a pont egy környezetében, és az $f_x'(x,y)$ és az $f_y'(x,y)$ parciális derivált függvények is differenciálhatóak az (x_0, y_0) pontban.

Definíció Ha a függvény kétszer differenciálható, akkor értelmezhetőek az $f''_{xx}(x_0, y_0)$, $f''_{xy}(x_0, y_0)$, $f''_{yx}(x_0, y_0)$ és az $f''_{yy}(x_0, y_0)$ másodrendű parciális deriváltak. Ezekből áll a

$$H(x_0, y_0) = \begin{bmatrix} f_{xx}^{"}(x_0, y_0) & f_{yx}^{"}(x_0, y_0) \\ f_{xy}^{"}(x_0, y_0) & f_{yy}^{"}(x_0, y_0) \end{bmatrix}$$

mátrix, mely a függvény második deriváltja. A fenti mátrixot az adott ponthoz tartozó *Hesse mátrixnak* hívjuk.

Láncszabály, speciális esetek

1. speciális eset

A külső függvény egyváltozós $f: D \to \mathbb{R}, D \subset \mathbb{R}$ Az egy darab belső függvény kétváltozós $\phi: S \to \mathbb{R}, S \subset \mathbb{R}^2$

Tétel

(1. speciális eset) Tegyük fel, hogy ϕ differenciálható az $(x,y) \in \text{int}(S)$ pontban, és f differenciálható az $u = \phi(x,y)$ pontban. Ekkor az összetett függvény is differenciálható és a parciális deriváltak:

$$F'_{x}(x,y) = f'(\phi(x,y))\phi'_{x}(x,y)$$

$$F'_{y}(x,y) = f'(\phi(x,y))\phi'_{y}(x,y)$$

2. speciális eset

A külső függvény kétváltozós $f\colon S \to \mathbb{R}, S \subset \mathbb{R}^2$

A két darab belső függvény egyváltozós $\phi, \psi: D \to \mathbb{R}, D \subset \mathbb{R}$

Tétel

(2. speciális eset) Tegyük fel, hogy ϕ és ψ differenciálhatóak a $t \in \text{int}(D)$ pontban, és f differenciálható az $(x, y) = (\phi(t), \psi(t))$ pontban. Ekkor az összetett függvény is differenciálható, és deriváltja:

$$F'(t) = f_x'(\phi(t), \psi(t))\phi'(t) + f_y'(\phi(t), \psi(t))\psi'(t)$$

3. speciális eset

A külső függvény kétváltozós $f: S \to \mathbb{R}, S \subset \mathbb{R}^2$

A két darab belső függvény kétváltozós $\phi, \psi: D \to \mathbb{R}, D \subset \mathbb{R}$

Tétel

(Láncszabály) Tegyük fel, hogy ϕ , ψ differenciálhatók (x,y)-ban, és f is differenciálható az $(u,v) = (\phi(x,y),\psi(x,y))$ pontban. Ekkor F is differenciálható (x,y)-ban, és parciális deriváltjai:

$$F'_{x}(x,y) = f'_{u}(\phi(x,y),\psi(x,y))\phi'_{x}(x,y) + f'_{v}(\phi(x,y),\psi(x,y))\psi'_{x}(x,y)$$

$$F'_{y}(x,y) = f'_{u}(\phi(x,y),\psi(x,y))\phi'_{y}(x,y) + f'_{v}(\phi(x,y),\psi(x,y))\psi'_{y}(x,y)$$

Másodrendű Taylor formula kétváltozós függvényre (B)

Legyen $f: S \to \mathbb{R}$ kétváltozós függvény, amely elegendően sokszor differenciálható valamely (x_0, y_0) pontban. Adjunk becslést az $f(x, y) - f(x_0, y_0)$ különbségre az (x_0, y_0) pontbéli deriváltak felhasználásával.

A fenti feladatra egy megoldást az érintő sík alapján tudunk adni, eszerint

$$f(x,y) \approx f(x_0,y_0) + f'_{x}(x_0,y_0)(x-x_0) + f'_{y}(x_0,y_0)(y-y_0)$$

Ez megfelel az elsőfokú Taylor polinomnak.

Magasabb fokú Taylor polinomot úgy adjuk meg, hogy visszavezetjük feladatot az egyváltozós esetre.

Legyen

$$F(t) = f(x_0 + t\Delta x, y_0 + t\Delta y)$$

ahol

$$\Delta x = x - x_0, \qquad \Delta y = y - y_0$$

Ekkor $F: [0,1] \to \mathbb{R}$ elegendően sokszor differenciálható valós függvény, $F(0) = f(x_0, y_0)$, F(1) = f(x,y). Az F függvény t = 0 pont körüli Taylor formuláját fogjuk használni. Ehhez szükségünk lesz a deriváltakra:

$$F(0) = f(x_0, y_0)$$

$$F'(t) = f_x'(x_0 + t\Delta x, y_0 + t\Delta y)\Delta x + f_y'(x_0 + t\Delta x, y_0 + t\Delta y)\Delta y$$

$$F''(t) = f_{xx}''(x_0 + t\Delta x, y_0 + t\Delta y)(\Delta x)^2 + 2f_{xy}''(x_0 + t\Delta x, y_0 + t\Delta y)\Delta x\Delta y + f_{yy}''(x_0 + t\Delta x, y_0 + t\Delta y)(\Delta y)^2$$

Ekkor a másodrendű Taylor formula így írható:

$$f(x,y) = f(x_0, y_0) + \operatorname{grad} f(x_0, y_0) \cdot {\Delta x \choose \Delta y} + \frac{1}{2} (\Delta x, \Delta y) \cdot H(x_0, y_0) \cdot {\Delta x \choose \Delta y} + L_2$$
ahol H a Hesse-mátrix.

8. tétel: Lagrange féle középérték tétel (B). Implicit függvény tétel. Implicit függvény deriválása. Lokális és globális szélsőérték. Szükséges feltétel lokális szélsőértékre (B).

Lagrange féle középérték tétel (B)

Tétel

(Lagrange féle középérték tétel) Adott $f: S \to \mathbb{R}$, $S \subset \mathbb{R}^2$ függvény, és az $(x_0, y_0) \in \operatorname{int}(D)$ pont. Tegyük fel, hogy létezik konvex U környezete (x_0, y_0) -nak melyben f differenciálható. Legyen továbbá egy $(x_1, y_1) \in U$ pont, és $\Delta x = x_1 - x_0$, $\Delta y = y_1 - y_0$. Ekkor $\exists \theta \in (0,1)$, amelyre

$$f(x_1, y_1) - f(x_0, y_0) = \operatorname{grad} f(x_\theta, y_\theta) \cdot \begin{pmatrix} \Delta x \\ \Delta y \end{pmatrix}$$

ahol $x_{\theta} = \theta \Delta x + x_0$, és $y_{\theta} = \theta \Delta y + y_0$

Bizonyítás Vezessük be az alábbi egyváltozós függvényt:

$$F(t) = f(x_0 + t\Delta x, y_0 + t\Delta y)$$

Ekkor $F: [0,1] \to \mathbb{R}$ folytonos és differenciálható, továbbá $F(0) = f(x_0, y_0)$ és F(1) = f(x, y). Erre a függvényre alkalmazva az egyváltozós Lagrange-féle középértéktételt; létezik $\theta \in [0,1]$, melyre

$$F(1) - F(0) = F'(\theta) \cdot 1$$

Mivel a láncszabály alkalmazásával rögzített t-re

$$F'(t) = f_x'(x_0 + t\Delta x, y_0 + t\Delta y)\Delta x + f_y'(x_0 + t\Delta x, y_0 + t\Delta y)\Delta y$$

ezért

$$F'(\theta) = f_x' \underbrace{(x_0 + \theta \Delta x, y_0 + \theta \Delta y)}_{(x_\theta, y_\theta)} \Delta x + f_y'(x_0 + \theta \Delta x, y_0 + \theta \Delta y) \Delta y$$

amiből a tétel állítása következik. ■

Implicit függvény tétel, implicit függvény deriválása

Tétel

(Implicit függvény tétel) Tegyük fel, hogy az F kétváltozós függvény differenciálható az (x_0, y_0) pont egy környezetében, és ebben a pontban $F(x_0, y_0) = 0$. Ezen felül feltesszük, hogy $F_y'(x_0, y_0) \neq 0$ (azaz az érintősík nem párhuzamos az xy síkkal). Ekkor létezik egy kétdimenziós intervallum

$$I = I_1 \times I_2 = (x_0 - \alpha, x_0 + \alpha) \times (y_0 - \beta, y_0 + \beta)$$

hogy minden $x \in I_1$ esetén az F(x,y) = 0 egyenletnek pontosan egy y = f(x) megoldása van, és $y \in I_2$. Tehát létezik egy $f: I_1 \to I_2$ valós függvény, mely a következő tulajdonságokkal rendelkezik:

$$- f(x_0) = y_0$$

$$- f(x) \in I_2, \ \forall x \in I_1$$

$$- F(x, f(x)) = 0, \ \forall x \in I_1$$

$$- F_y'(x, f(x)) \neq 0, \ \forall x \in I_1$$

Továbbá f differenciálható I_1 -ben, és deriváltja:

$$f'(x) = -\frac{F_x'(x, f(x))}{F_y'(x, f(x))}$$

Lokális és globális szélsőérték

Definíció Legyen $f: S \to \mathbb{R}$ kétváltozós függvény, $S \subset \mathbb{R}^2$. Az $(x_0, y_0) \in S$ lokális maximum, ha létezik a pontnak olyan U környezete, hogy $\forall (x, y) \in U \cap D_f$ -re

$$f(x,y) \le f(x_0, y_0)$$

Az $(x_0, y_0) \in S$ lokális minimum, ha létezik a pontnak olyan U környezete, hogy $\forall (x,y) \in U \cap D_f$ -re

$$f(x,y) \ge f(x_0, y_0)$$

Definíció Legyen $f: S \to \mathbb{R}$ kétváltozós függvény, $S \subset \mathbb{R}^2$. Az $(x_0, y_0) \in S$ globális maximum, ha $\forall (x, y) \in D_f$ esetén

$$f(x,y) \le f(x_0,y_0)$$

Az $(x_0, y_0) \in S$ globális minimum, ha $\forall (x, y) \in D_f$ esetén

$$f(x,y) \ge f(x_0,y_0)$$

Szükséges feltétel lokális szélsőértékre (B)

Tétel (Szükséges feltétel lokális szélsőérték létezésére) Tegyük fel, hogy az f függvénynek (x_0, y_0) -ban lokális szélsőértéke van, és tegyük fel, hogy a függvény itt differenciálható. Ekkor grad $f(x_0, y_0) = (0,0)$, azaz

$$f'_x(x_0, y_0) = 0, \qquad f'_y(x_0, y_0) = 0$$

Bizonyítás Jelölje $f_1(x) = f(x, y_0)$ a kétváltozós függvény egyik metszetfüggvényét. Ekkor x_0 lokális szélsőértéke f_1 -nek, ezért $f_1'(x_0) = 0$, másrészt $f_1'(x) = f_2'(x, y_0)$.

9. tétel: Stacionárius pont. Nyeregpont. Elégséges feltétel lokális szélsőértékre. Feltételes szélsőérték, feladat megfogalmazása. Szemléletes jelentés.

Stacionárius pont, nyeregpont

Definíció Ha grad $f(x_0, y_0) = (0,0)$, akkor (x_0, y_0) *stacionárius pont*.

Definíció Azt a stacionárius pontot, melyben szélsőérték nincs, *nyeregpontnak* nevezzük.

Elégséges feltétel lokális szélsőértékre

Tétel (Elégséges feltétel lokális szélsőérték létezésére) Tegyük fel, hogy az (x_0, y_0) pont stacionárius pontja f-nek, és itt f kétszer differenciálható. Ha ebben a pontban

 $f_{xx}^{\prime\prime}(x_0,y_0)f_{yy}^{\prime\prime}(x_0,y_0)-\left(f_{xy}^{\prime\prime}\right)^2(x_0,y_0)>0$

akkor a pontban lokális szélsőérték van. Ha emellett $f_{xx}''(x_0, y_0) > 0$, akkor lokális minimum, ha $f_{xx}''(x_0, y_0) < 0$, akkor lokális maximum van. Ha

$$f_{xx}^{"}(x_0, y_0) f_{yy}^{"}(x_0, y_0) - (f_{xy}^{"})^2(x_0, y_0) < 0$$

akkor nincs szélsőérték. Ha pedig

$$f_{xx}^{"}(x_0, y_0) f_{yy}^{"}(x_0, y_0) - (f_{xy}^{"})^2(x_0, y_0) = 0$$

akkor a szélsőérték létezésének eldöntéséhez további vizsgálat szükséges.

Feltételes szélsőérték, feladat megfogalmazása

Minta feladat: Legyen adott \mathbb{R}^2 -ben egy $\phi(x, y) = 0$ görbe. Határozzuk meg, hogy a görbe mely pontja van az origóhoz legközelebb. Ez azt jelenti, hogy meg kell határozni a

$$\min(x^2 + y^2)$$

értéket, ahol x és y változók nem függetlenek, hanem fennáll a $\phi(x,y)=0$ összefüggés.

Definíció A *feltételes optimalizálás feladatát* a következőképpen értelmezzük. Legyen adott az $f: S \to \mathbb{R}$ kétváltozós differenciálható függvény. Ennek tekintjük megszorítását egy olyan halmazon, melyet egy implicit függvény ad meg, ahol $\phi(x,y)=0$ összefüggés teljesül. Tömören a feladat tehát

$$\min_{\{(x,y):\phi(x,y)=0\}} f(x,y)$$

Tétel (Szükséges feltétel) Tegyük fel, hogy az f(x,y) függvény differenciálható, és feltételes szélsőértéke van az (x_0,y_0) pontban a $\phi(x,y)=0$ feltétel mellett. Tegyük fel, hogy grad $\phi(x,y)\neq(0,0)$. Ekkor létezik olyan $\lambda_0\in\mathbb{R}$ konstans, melyre

$$f'_x(x_0, y_0) - \lambda_0 \phi'_x(x_0, y_0) = 0$$

$$f_y'(x_0, y_0) - \lambda_0 \phi_y'(x_0, y_0) = 0$$

Szemléletes jelentés

Képzeljünk el egy olyan ábrát, ahol egyszerre látható a $\phi(x,y) = 0$ feltétel, és az f(x,y) = c szintvonalak, különböző c értékek mellett. Amely c-re van közös pont, ott van megoldása a

$$\begin{cases} \phi(x,y) = 0 \\ f(x,y) = c \end{cases}$$

egyenletrendszernek. Mivel f folytonos (hisz differenciálható is), ezért a szintvonalak is monoton módon változnak. Így azt a szintvonalat keressük, ami "utoljára" metszi a $\phi(x,y) = 0$ görbét. Ebben az (x,y) pontban a görbék érintik egymást, az érintők megegyeznek, azaz

$$\frac{f_x'(x,y)}{f_y'(x,y)} = \frac{\phi_x'(x,y)}{\phi_y'(x,y)}$$

Ez a képlet ismerős az implicit függvény deriválásából. Átrendezve a képletet azt kapjuk, hogy létezik olyan λ valós szám, melyre

$$\frac{f_x'(x,y)}{\phi_x'(x,y)} = \frac{f_y'(x,y)}{\phi_y'(x,y)} = \lambda$$

Tehát szemléletesen azt várjuk, hogy ha (x, y) feltételes szélsőérték, akkor létezik olyan λ , melyre

$$f_x'(x,y) - \lambda \phi_x'(x,y) = 0$$

$$f_y'(x,y) - \lambda \phi_y'(x,y) = 0$$

teljesül.

10. tétel: Lagrange-féle multiplikátor szabály. Függvény rendszerek, Koordináta-transzformáció. Jacobi mátrix. Jacobi determináns. Invertálhatóság. Inverz rendszer deriváltja (B).

Lagrange-féle multiplikátor szabály

Definiáljuk az $F(x, y, \lambda) = f(x, y) - \lambda \phi(x, y)$, $F: D_f \times \mathbb{R} \to \mathbb{R}$ háromváltozós függvényt. Ha (x_0, y_0) megoldása a feltételes szélsőérték feladatnak, akkor van olyan λ_0 , melyre (x_0, y_0, λ_0) stacionárius pontja $F(x, y, \lambda)$ -nak.

Tekintsük az alábbi feltételes optimalizálási feladatot

$$\min_{\{\phi(x,y)=0\}} f(x,y) \qquad \text{vagy} \qquad \max_{\{\phi(x,y)=0\}} f(x,y)$$

Ehelyett tekinthetjük az

$$F(x, y, \lambda) = f(x, y) - \lambda \phi(x, y), \quad (x, y) \in D_f, \lambda \in \mathbb{R}$$

függvény feltétel nélküli szélsőérték feladatát.

Függvény rendszerek

Ha egyszerre több függvényt tekintünk, akkor függvényrendszerekről beszélünk. Tekintsük most azt a speciális esetet, hogy a függvények száma megegyezik a változók számával. Legyen $R \subset \mathbb{R}^2$ egy tartomány, ahol adott két függvény, $\phi, \psi: R \to \mathbb{R}$. A függvényrendszer, amit tekintünk:

$$\xi = \phi(x, y)$$

$$\eta = \psi(x, y)$$

Ezt úgy értelmezhetjük, mint \mathbb{R}^2 térbeli leképezés, mely az (x,y) ponthoz a $(\xi,\eta) = F(x,y)$ pontot rendeli hozzá. Ezt a $F: R \to \mathbb{R}^2$ leképezést szokás vektormezőnek is hívni.

Koordináta-transzformáció

A fenti függvényrendszerek koordináta-transzformációk. Az F függvény változói x és y, az F függvény koordinátafüggvényei pedig ϕ és ψ . Ekkor az F függvény az alábbi hozzárendelést valósítja meg:

$$(x,y)\mapsto (\xi,\eta)$$

Példa

A polárkoordinátákat Descartes koordinátákká képező függvényt függvényrendszerként így definiálhatjuk:

$$(r,\varphi)\mapsto (\chi,\gamma)$$

ahol

$$x = r\cos(\varphi) = \phi(r, \varphi)$$

$$y = r\sin(\varphi) = \psi(r, \varphi)$$

Jacobi mátrix, Jacobi determináns

Definíció A fenti rendszerhez tartozó *Jacobi mátrixot* így definiáljuk:

$$\mathcal{J}(x,y) = \begin{bmatrix} \phi_x'(x,y) & \phi_y'(x,y) \\ \psi_x'(x,y) & \psi_y'(x,y) \end{bmatrix} = \begin{bmatrix} \operatorname{grad} \phi(x,y) \\ \operatorname{grad} \psi(x,y) \end{bmatrix}$$

A fenti mátrix determinánsát *Jacobi determinánsnak* hívjuk:

$$D(x,y) := \phi_x'(x,y)\psi_y'(x,y) - \psi_x'(x,y)\phi_y'(x,y)$$

Invertálhatóság

Az \mathbb{R}^2 -beli leképezés invertálható, ha a leképezés injektív, azaz különböző R-beli pontokhoz a képtérben különböző (ξ, η) pontok tartoznak. Ekkor a fenti rendszer invertálható:

$$x = g(\xi, \eta)$$

$$y = h(\xi, \eta)$$

Inverz rendszer deriváltja (B)

Tétel

Tegyük fel, hogy a Jacobi determináns nem nulla, azaz a $\xi = \phi(x,y)$ és $\eta = \psi(x,y)$ által alkotott függvényrendszer Jacobi mátrixa nem szinguláris az értelmezési tartomány egy (x_0,y_0) belső pontjában. Ekkor az (x_0,y_0) egy környezetében a vektormező invertálható. Továbbá, ebben a környezetben az inverz rendszer deriváltja így írható:

$$\mathcal{K}(\xi,\eta) = \big(\mathcal{J}(x,y)\big)^{-1}$$

ahol (x,y) és (ξ,η) egymás képei. Speciálisan, az inverz függvényrendszer Jacobi determinánsa reciproka az eredeti függvényrendszer Jacobi determinánsának.

Bizonyítás Helyettesítsük be az inverz függvényrendszer koordinátafüggvényeit leíró egyenleteket a függvényrendszert definiáló egyenletekbe:

$$\xi = \phi(g(\xi, \eta), h(\xi, \eta))$$
$$\eta = \psi(g(\xi, \eta), h(\xi, \eta))$$

Mivel feltettük, hogy g és h is differenciálhatóak, ezért deriválhatjuk a fenti azonosságokat ξ és η szerint.

Deriváljuk mindkét egyenletet ξ szerint, majd pedig η szerint. A áttekinthetőbb jelölés kedvéért az argumentumokat nem írjuk ki. Ezt kapjuk:

$$1 = \phi_x' g_\xi' + \phi_y' h_\xi'$$

$$0 = \psi_x' g_\xi' + \psi_y' h_\xi'$$

$$0 = \phi_x' g_\eta' + \phi_y' h_\eta'$$

$$1 = \psi_x' g_\eta' + \psi_y' h_\eta'$$

Az első egyenletet szorozzuk meg ψ'_{x} -szel, a másodikat pedig ϕ'_{x} -szel, majd pedig vonjuk ki egymásból az egyleteket.

$$\psi_x' = \phi_x' g_\xi' \psi_x' + \phi_y' h_\xi' \psi_x'$$
$$0 = \phi_x' g_\xi' \psi_x' + \phi_x' h_\xi' \psi_y'$$

Ebből

$$h'_{\xi} = \frac{\psi'_{\chi}}{\phi'_{y}\psi'_{\chi} - \phi'_{\chi}\psi'_{y}}$$

Teljesen hasonlóan a többi deriváltat is megkapjuk

$$g'_{\xi} = \frac{\psi'_{y}}{\phi'_{x}\psi'_{y} - \phi'_{y}\psi'_{x}} \qquad h'_{\eta} = \frac{\phi'_{x}}{\phi'_{x}\psi'_{y} - \phi'_{y}\psi'_{x}} \qquad g'_{\eta} = \frac{\phi'_{y}}{\phi'_{y}\psi'_{x} - \phi'_{x}\psi'_{y}}$$

Bevezetve a $D = \phi_x' \psi_y' - \phi_y' \psi_x'$ jelölést, a fenti képletek így írhatók:

$$g'_{\xi} = \frac{\psi'_{y}}{D}$$
, $g'_{\eta} = -\frac{\phi'_{y}}{D}$, $h'_{\xi} = -\frac{\psi'_{x}}{D}$, $h'_{\eta} = \frac{\phi'_{x}}{D}$

Ez összhangban van azzal, hogy 2×2 -es mátrix inverze a következőképp számolható:

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad - bc} \cdot \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

Ekkor a most kiszámolt parciális deriváltakat a Jacobi mátrixba beírva:

$$\mathcal{K} = \begin{bmatrix} g_{\xi}' & g_{\eta}' \\ h_{\xi}' & h_{\eta}' \end{bmatrix} = \frac{1}{D} \cdot \begin{bmatrix} \psi_{y}' & -\phi_{y}' \\ -\psi_{x}' & \phi_{x}' \end{bmatrix}$$

Ez a $\mathcal K$ mátrix pedig éppen inverze $\mathcal I$ -nek.

11. tétel: Riemann integrál két dimenzióban. Kettős integrál kiszámítása. Integrálás téglalap alakú tartományon (B). Integrálás normáltartományon, a síkon.

Riemann integrál két dimenzióban

Definíció Ha az *R* kétdimenziós terület mértékét közelítő alsó és felső mértékek határértéke megegyezik, azaz

$$\lim_{n\to\infty} A_n^-(R) = \lim_{n\to\infty} A_n^+(R) = A(R)$$

akkor R Jordan-mérhető.

Állítás $Ha \ R \ egy \ f:[a,b] \to \mathbb{R}^+ \ függvény \ alatti terület, akkor$

$$A(R) = \int_{a}^{b} f(x) \, dx$$

Legyen $f: R \to \mathbb{R}^+$ folytonos függvény, ahol $R \subset \mathbb{R}^2$ korlátos, zárt és mérhető tartomány. Legyen egy mérhető és nem átfedő felosztása R-nek:

$$R = \bigcup_{i=1}^{n} R_i$$

Ekkor

$$m_i = \inf f\{f(x, y) : (x, y) \in R_i\}$$

 $M_i = \sup f\{f(x, y) : (x, y) \in R_i\}$

Definíció Az alsó közelítő összeg

$$s_n = \sum_{i=1}^n m_i \cdot A(R_i)$$

A felső közelítő összeg

$$S_n = \sum_{i=1}^n M_i \cdot A(R_i)$$

Definíció Ha $f: R \to \mathbb{R}^+$ folytonos, $R \subset \mathbb{R}^2$ korlátos és zárt, akkor a Riemann integrál

$$\lim_{n\to\infty} s_n = \lim_{n\to\infty} S_n = \iint_R f(x,y) dR = \iint_R f(x,y) d(x,y)$$

Kettős integrál kiszámítása

Tétel $Minden y \in [c, d]$ esetén értelmezzük a

$$\phi(y) = \int_a^b f(x, y) \ dx$$

függvényt, $\phi:[c,d] \to \mathbb{R}$. Ekkor

$$\int_{C}^{d} \phi(y) \ dy = \iint_{R} f(x, y) \ dR$$

A tétel állítása fordítva is igaz, ha definiáljuk a

$$\psi(x) = \int_{c}^{d} f(x, y) \, dy$$

függvényt, ψ : [a, b] $\rightarrow \mathbb{R}$, akkor ψ is integrálható, és

$$\int_{a}^{b} \psi(x) dx = \iint_{R} f(x, y) dR$$

Integrálás téglalap alakú tartományon (B)

A fenti tétel következménye, hogy téglalap alakú tartományon (intervallumon) az integrálás a következőképpen néz ki.

Tétel Tegyük fel, hogy $R = [a, b] \times [c, d]$, $f: R \to \mathbb{R}$ integrálható függvény. Ekkor

$$\iint_{R} f(x,y) dR = \int_{a}^{b} \left(\int_{c}^{d} f(x,y) dy \right) dx = \int_{c}^{d} \left(\int_{a}^{b} f(x,y) dx \right) dy$$

Bizonyítás Mivel f integrálható, ezért az egyenletes felosztásokat tekintve bármely $\varepsilon > 0$ -hoz létezik N küszöbindex, hogy ha n, m > N, akkor

$$\left| \sum_{i=1}^{n} \left(\sum_{j=1}^{m} f(x_j, y_i) \cdot \frac{b-a}{m} \right) \cdot \frac{d-c}{n} - \iint_{R} f(x, y) \ dR \right| < \varepsilon$$

Ha a fenti egyenletben $m \to \infty$, akkor az első tagban

$$\sum_{i=1}^{m} f(x_i, y_i) \cdot \frac{b-a}{m} \to \phi(y_i) = \int_{a}^{b} f(x, y_i) dx$$

Ha $n \to \infty$, akkor pedig az egész összeg határértékére

$$\sum_{i=1}^{n} \phi(y_1) \cdot \frac{d-c}{n} = \int_{c}^{d} \phi(y) \ dy$$

Integrálás normáltartományon, a síkon

Definíció Egy $R \subset \mathbb{R}^2$ részhalmaz *x szerinti normáltartomány* a síkon, ha *R* a következő tulajdonságokkal rendelkezik:

- létezik egy [a, b] intervallum,
- léteznek ϕ_1, ϕ_2 : $[a, b] \to \mathbb{R}$ szakaszonként folytonos függvények, melyekre
- $-\phi_1(x) \le \phi_2(x)$ minden x-re és

$$R = \{(x, y) : a \le x \le b, \quad \phi_1(x) \le y \le \phi_2(x)\}$$

Hasonlóan, $R \subset \mathbb{R}^2$ részhalmaz y szerinti normáltartomány a síkon, ha létezik egy [c,d] intervallum és léteznek $\psi_1,\psi_2:[c,d] \to \mathbb{R}$ szakaszonként folytonos függvények, melyekre $\psi_1(y) \le \psi_2(y)$ minden y-ra és

$$R = \{(x, y) : a \le y \le b, \qquad \psi_1(y) \le x \le \psi_2(y)\}$$

TételLegyen R x-szerinti (illetve y szerinti) normáltartomány a síkon. Tegyük fel, hogy az f függvény integrálható R-en. Ekkor

$$\iint_{R} f(x, y) \ dR = \int_{a}^{b} \int_{\phi_{1}(x)}^{\phi_{2}(x)} f(x, y) \ dy \ dx$$

illetve

$$\iint_{R} f(x, y) \ dR = \int_{c}^{d} \int_{\psi_{1}(y)}^{\psi_{2}(y)} f(x, y) \ dx \ dy$$

12. tétel: **Polárkoordináták. Áttérés polárkoordinátákra kettős integrálban.** Hármas integrál: intervallumon és normál tartományon. Általános helyettesítés kettős és hármas integrálban.

Polárkoordináták

Definíció Egy adott $(x, y) \in \mathbb{R}^2$ pont *polárkoordinátái* (r, θ) , melyeket így definiálunk:

r: a pont origótól vett távolsága

 θ : az origóból az adott pontba mutató vektornak az x tengely pozitív részével bezárt szöge.

Így tehát a polárkoordinátákra $r \in \mathbb{R}^+ \cup \{0\}$ és $\theta \in [0,2\pi)$.

Áttérés polárkoordinátákra kettős integrálban

Kettős integrálban a polárkoordinátákra való áttérés az általános helyettesítés egy speciális esete. Az áttéréshez szükség van a koordináta-transzformációra, mely polárkoordinátákra való áttérés esetén

$$x = r\cos(\theta)$$
$$y = r\sin(\theta)$$

A Jacobi determináns:

$$D(r,\theta) = \begin{vmatrix} \cos(\theta) & -r\sin(\theta) \\ \sin(\theta) & r\cos(\theta) \end{vmatrix} = r\cos^2(\theta) + r\sin^2(\theta) = r$$

Így a megfelelő integrál-transzformáció

$$\iint_{\mathbb{R}} f(x,y) \ d(x,y) = \iint_{\mathbb{R}^{d}} f(r\cos(\theta), r\sin(\theta)) \cdot r \ d(r,\theta)$$

Hármas integrál: intervallumon és normál tartományon

Tekintsünk egy háromdimenziós $S \subset \mathbb{R}^3$ tartományt és egy ezen értelmezett $f: S \to \mathbb{R}$, f(x, y, z) függvényt. A kettős integrálhoz hasonlóan definiálható

$$\iiint_{S} f(x, y, z) \, dS$$

hármas integrál.

Tétel Tegyük fel, hogy $R = [a,b] \times [c,d] \times [e,g]$ háromdimenziós téglalap, azaz $R = \{(x,y,z) : x \in [a,b], y \in [c,d], z \in [e,g]\}$, ahol a,b,c,d,e,g végesek és valósak. A tartomány zárt és korlátos. Legyen $f:R \to \mathbb{R}$ korlátos függvény. Ekkor

$$\iiint_R f(x, y, z) dR = \int_a^b \int_c^d \int_e^g f(x, y, z) dz dy dx$$

Definíció Az R tartomány (x, y) sík szerinti normáltartomány, ha a következő alakú:

$$R = \{(x,y,z): (x,y) \in S, F_1(x,y) \leq z \leq F_2(x,y)\}$$

ahol $F_1, F_2: S \to \mathbb{R}$ adott folytonos függvények, melyekre $F_1(x, y) \leq F_2(x, y)$ minden $(x, y) \in S$ esetén.

Állítás Legyen R a feni definícióban szereplő normáltartomány, és $f: R \to \mathbb{R}$ ezen értelmezett integrálható függvény. Ekkor

$$\iiint_{R} f(x, y, z) dR = \iint_{S} \int_{F_{1}(x, y)}^{F_{2}(x, y)} f(x, y, z) dz dS$$

 $Ha S = [a, b] \times [c, d]$, akkor

$$\iiint_{R} f(x, y, z) dR = \int_{a}^{b} \int_{c}^{d} \int_{F_{1}(x, y)}^{F_{2}(x, y)} f(x, y, z) dz dy dx$$

Általános helyettesítés kettős és hármas integrálban

Kettős integrálra

Tétel Adott egy $f: R \to \mathbb{R}$ integrálható függvény, ahol R korlátos, zárt, mérhető tartomány. Tekintsünk egy

$$x = \phi(u, v)$$

$$y = \psi(u, v)$$

transzformációt, melyről feltesszük, hogy Jacobi mátrixa sehol sem szinguláris, azaz

$$\mathcal{J}(u,v) = \begin{bmatrix} \phi'_u(u,v) & \phi'_v(u,v) \\ \psi'_u(u,v) & \psi'_v(u,v) \end{bmatrix}$$

jelöléssel det $\mathcal{J}(u,v) \neq 0$ R-ben. Legyen továbbá

$$R' = \{(u, v) : (\phi(u, v), \psi(u, v)) \in R\}$$

Ekkor

$$\iint_{R} f(x,y) \ d(x,y) = \iint_{R'} f(\phi(u,v),\psi(u,v)) \cdot D(u,v) \ d(u,v)$$

Hármas integrálra

Tétel Legyen R korlátos és zárt taromány \mathbb{R}^3 -ban, és $f: R \to \mathbb{R}$ integrálható függvény. Tekintsünk egy

$$x = \phi(u, v, w)$$

$$y = \psi(u, v, w)$$

$$z = \chi(u, v, w)$$

transzformációt, melyről feltesszük, hogy Jacobi mátrixa sehol sem szinguláris, azaz

$$\mathcal{J}(u, v, w) = \begin{bmatrix} \phi'_u & \phi'_v & \phi'_w \\ \psi'_u & \psi'_v & \psi'_w \\ \chi'_u & \chi'_v & \chi'_w \end{bmatrix}$$

 $jel\ddot{o}l\acute{e}ssel \det \mathcal{J}(u,v,w) \neq 0.$ Ekkor

$$\iint_{R} f(x, y, z) d(x, y, z) =$$

$$= \iiint_{R'} f(\phi(u, v, w), \psi(u, v, w), \chi(u, v, w)) \cdot |D(u, v, w)| d(u, v, w)$$

13. tétel: Hengerkoordináták. Gömbi polárkoordináták. Áttérés Jacobi determinánsa (B). Tömegközéppont meghatározása. Kétváltozós függvény felszínének kiszámítása.

Hengerkoordináták

Definíció

Egy adott $(x, y, z) \in \mathbb{R}^3$ pont *hengerkoordinátái* (r, θ, z) , melyeket így definiálunk: (r, θ) a pont xy síkra vett vetületének polárkoordinátái, z pedig a harmadik Descartes koordináta:

$$x = r\cos(\theta)$$
$$y = r\sin(\theta)$$
$$z = z$$

Gömbi polárkoordináták

Definíció

Egy adott $(x, y, z) \in \mathbb{R}^3$ pont *gömbi koordinátái* (r, φ, θ) , melyeket a következőképp definiálunk:

r: a pont origótól vett távolsága; $r = \sqrt{x^2 + y^2 + z^2}$

 φ : a pontba mutató helyvektor és a z tengely pozitív része által bezárt szög $\varphi \in [0,\pi]$

 θ : a pontba mutató helyvektor xy síkra vett vetületének az x tengely pozitív részével bezárt szöge. $\theta \in [0,2\pi)$

A gömbi koordinátákkal tehát az (x, y, z) pont így írható le:

$$x = r \sin(\varphi) \cos(\theta)$$
$$y = r \sin(\varphi) \sin(\theta)$$
$$z = r \cos(\varphi)$$

Áttérés Jacobi determinánsa (B)

Hengerkoordinátákra való áttéréskor

A hengerkoordináta-leképezés Jacobi determinánsa

$$D(r,\theta,z) = \begin{vmatrix} \cos(\theta) & -r\sin(\theta) & 0 \\ \sin(\theta) & r\cos(\theta) & 0 \\ 0 & 0 & 1 \end{vmatrix} =$$

$$= 0 \cdot \begin{vmatrix} -r\sin(\theta) & 0 \\ r\cos(\theta) & 0 \end{vmatrix} - 0 \cdot \begin{vmatrix} \cos(\theta) & 0 \\ \sin(\theta) & 0 \end{vmatrix} + 1 \cdot \begin{vmatrix} \cos(\theta) & -r\sin(\theta) \\ \sin(\theta) & r\cos(\theta) \end{vmatrix} =$$

$$= r\cos^{2}(\theta) + r\sin^{2}(\theta) = r$$

Gömbi koordinátákra való áttéréskor

A gömbi koordináta-leképezés Jacobi determinánsa

$$D(r, \varphi, \theta) = \begin{vmatrix} \sin(\varphi)\cos(\theta) & r\cos(\varphi)\cos(\theta) & -r\sin(\varphi)\sin(\theta) \\ \sin(\varphi)\sin(\theta) & r\cos(\varphi)\sin(\theta) & r\sin(\varphi)\cos(\theta) \\ \cos(\varphi) & -r\sin(\varphi) & 0 \end{vmatrix} =$$

$$= \cos(\varphi) \cdot \begin{vmatrix} r\cos(\varphi)\cos(\theta) & -r\sin(\varphi)\sin(\theta) \\ r\cos(\varphi)\sin(\theta) & r\sin(\varphi)\cos(\theta) \end{vmatrix} +$$

$$+ r\sin(\varphi) \cdot \begin{vmatrix} \sin(\varphi)\cos(\theta) & -r\sin(\varphi)\sin(\theta) \\ \sin(\varphi)\sin(\theta) & r\sin(\varphi)\cos(\theta) \end{vmatrix} +$$

$$+ 0 \cdot \begin{vmatrix} \sin(\varphi)\cos(\theta) & r\cos(\varphi)\cos(\theta) \\ \sin(\varphi)\sin(\theta) & r\cos(\varphi)\sin(\theta) \end{vmatrix} =$$

$$= \cos(\varphi) \cdot (r^2\cos(\varphi)\sin(\varphi)\cos^2(\theta) + r^2\sin(\varphi)\cos(\varphi)\sin^2(\theta)) +$$

$$+ r\sin(\varphi) \cdot (r\sin^2(\varphi)\cos^2(\theta) + r\sin^2(\varphi)\sin^2(\theta)) =$$

$$= \cos(\varphi) \cdot r^2\cos(\varphi)\sin(\varphi) \underbrace{\cos^2(\theta) + \sin^2(\varphi)}_{1} + \sin^2(\varphi) + \sin^2(\varphi) + \sin^2(\varphi)_{1} + \cos^2(\varphi)_{1} + \sin^2(\varphi)_{1} + \cos^2(\varphi)_{1} + \cos$$

Tömegközéppont meghatározása

Egy kétdimenziós inhomogén tömegeloszlású lemez, melynek alakja $R \subset \mathbb{R}^2$, tömegközéppontjának helye a $\rho: R \to \mathbb{R}^+$, $\rho(x, y)$ sűrűségfüggvény ismeretében kiszámolható a következőképp:

A lemez tömegét egy kettős integrál adja meg,

$$m = \iint_{R} \rho(x, y) \ dR$$

A tömegközéppont x és y koordinátáinak meghatározásához szükség van még a nyomatékok meghatározására. Az x szerinti nyomaték m_x , az y szerinti nyomaték m_y így számolható:

$$m_x = \iint_R x \cdot \rho(x, y) dR$$
$$m_y = \iint_R y \cdot \rho(x, y) dR$$

Ezután a tömegközéppont koordinátái

$$M_x = \frac{m_x}{m}, \qquad M_y = \frac{m_y}{m}$$

Kétváltozós függvény felszínének kiszámítása

Legyen adott egy $F: R \to \mathbb{R}^2$ függvény, $R \subset \mathbb{R}^2$. Ennek felülete egy 3 dimenziós felület:

$$S = \left\{ \left(x, y, f(x, y) \right) : (x, y) \in R \right\} \subset \mathbb{R}^3$$

Ennek nagysága a következőképp számolható:

$$A(S) = \iint_{R} \sqrt{1 + f_{x}^{\prime 2}(x, y) + f_{y}^{\prime 2}(x, y)} \ d(x, y)$$

14. tétel: Improprius integrál, nem korlátos függvény. **Hatvány- függvény integrálja az egységkörben** (B). Integrálhatóság feltétele nem korlátos függvényre.

Improprius integrál, nem korlátos függvény

Tegyük fel, hogy f nem korlátos függvény, azaz pontosabban, hogy $f: R \to \mathbb{R}$ folytonos, kivéve néhány pontot, ahol nincs véges határértéke. Tekintsük a következő tartománysorozatot:

$$R_1 \subset R_2 \subset \cdots \subset R_n \subset \cdots \subset R$$

ahol az f függvény folytonos az R_n tartományon, és

$$\lim_{n\to\infty} A(R_n) = A(R)$$

Definíció A függvény *improprius értelemben integrálható*, ha létezik az alábbi határérték

$$I = \lim_{n \to \infty} \iint_{R_n} f(x, y) \ d(x, y)$$

és független az (R_n) halmaz-sorozat megválasztásától.

Tétel Tegyük fel, hogy létezik olyan – a definícióban szereplő – (R_n) sorozat, amelyre

$$\iint_{R_n} |f(x,y)| \ d(x,y) < M$$

valamely n-től független M valós számra. Ekkor f improprius értelemben integrálható.

Hatványfüggvény integrálja az egységkörben (B)

Legyen

$$f(x,y) = \frac{1}{\left(\sqrt{x^2 + y^2}\right)^{\alpha}}$$

valamely $\alpha > 0$ mellett, és az integrál tartomány

$$R = \{(x, y) : 0 < x^2 + y^2 \le 1\}$$

A függvény a (0,0) pontban nincs értelmezve, környezetében nem korlátos.

A hatványfüggvény felülete az origó középpontú egységkörlapon.

Az R tartományt közelítsük az alábbi módon:

$$R_n = \left\{ (x, y) : \frac{1}{n} \le \sqrt{x^2 + y^2} \le 1 \right\}$$

Ekkor

$$\iint_{R_n} f(x,y) \ d(x,y) = \int_{\frac{1}{n}}^1 \int_0^{2\pi} r^{-\alpha} \cdot r \ d\theta \ dr = 2\pi \int_{\frac{1}{n}}^1 \frac{1}{r^{\alpha-1}} \ dr < 2\pi \int_0^1 \frac{1}{r^{\alpha-1}} \ dr$$

Ez az utóbbi integrál pontosan akkor konvergens, ha $\alpha-1<1$, azaz $\alpha<2$. Ebből az következik, hogy a hatványfüggvény $\alpha<2$ esetén improprius értelemben integrálható a lyukas egységkörön. Ez alapján megfogalmazhatjuk az elégséges feltételt improprius integrál létezésére.

Integrálhatóság feltétele nem korlátos függvényre

Tétel Tegyük fel, hogy $f: R \to \mathbb{R}$ folytonos függvény nem korlátos az R mérhető tartomány valamely pontjának környezetében, legyen ez például az origó. Tegyük fel, hogy

$$|f(x,y)| \le \frac{M}{\left(\sqrt{x^2 + y^2}\right)^{\alpha}}$$

teljesül valamely $0 < \alpha < 2$ és M > 0 számra, minden $(x, y) \in R$ esetén. Ekkor f improprius értelemben integrálható.

15. tétel: Improprius integrál nem korlátos tartományon. Példa: harang-görbe integrálja. (B). Vonal(görbe) definíciója \mathbb{R}^2 -ben és \mathbb{R}^3 -ban. Kétváltozós valós függvény integrálja vonal mentén.

Improprius integrál nem korlátos tartományon

Definíció Tegyük fel, hogy létezik R-nek olyan közelítése, melyre $R_1 \subset R_2 \subset \cdots \subset R$, R_n mérhető tartomány, és

$$\bigcup_{n=1}^{\infty} R_n = R$$

Ekkor tudjuk, hogy minden n-re létezik az

$$\iint_{R_n} f(x,y) \ d(x,y)$$

integrál. Ha

Tétel

$$\lim_{n\to\infty}\iint_{R_n} f(x,y)\ d(x,y)$$

létezik és független az (R_n) halmaz-sorozat megválasztásától, akkor azt mondjuk, hogy f improprius értelemben integrálható, és

$$\iint_{R} f(x, y) dR = \lim_{n \to \infty} \iint_{R_{n}} f(x, y) dR_{n}$$

Tegyük fel, hogy létezik egy olyan – a definícióban szereplő – (R_n) sorozat, melyre

$$\iint_{R_n} |f(x,y)| \ d(x,y) \le M$$

azaz az integrálok egyenletesen korlátosak minden n-re. Ekkor f improprius értelemben integrálható, és tetszőleges másik (S_n) tartomány-sorozat esetén, mely kielégíti a fenti feltételeket

$$\lim_{n\to\infty}\iint_{S_n} f(x,y)\ dS_n = \iint_R f(x,y)\ dR$$

Példa: harang-görbe integrálja (B)

Legyen $f(x, y) = e^{-x^2-y^2}$, az integrálási tartomány az egész tér, $R = \mathbb{R}^2$. Ez a függvény közismert néven a harag görbe. Felületét a következő ábra szemlélteti:

Válasszuk az alábbi tartomány-sorozatot:

$$R_n = \{(x, y) : x^2 + y^2 \le n^2\}$$

Nyilván R_n korlátos és zárt tartomány. A megfelelő tartomány polárkoordinátákkal:

$$R'_n = \{(r, \theta) : 0 \le \theta < 2\pi, 0 \le r \le n\}$$

Ekkor

$$\iint_{R_n} e^{-x^2 - y^2} = \iint_{R'_n} re^{-r^2} d(r, \theta) = 2\pi \int_0^n re^{-r^2} dr < 2\pi \int_0^\infty re^{-r^2} dr$$

Így az improprius integrál értéke:

$$\iint_{\mathbb{R}^2} e^{-x^2 - y^2} d(x, y) = 2\pi \int_0^\infty r e^{-r^2} dr = 2\pi \left[\frac{-e^{-r^2}}{2} \right]_0^\infty = \pi$$

Vonal(görbe) definíciója \mathbb{R}^2 -ben és \mathbb{R}^3 -ban

Definíció (Sikbeli Jordan görbe) Adott $[a,b] \subset \mathbb{R}$ egy véges intervallum, és adott két valós függvény ezen az intervallumon: $x,y:[a,b] \to \mathbb{R}$, melyekről feltesszük, hogy folytonosan differenciálhatóak az (a,b) intervallumban.

Legyen $\gamma:[a,b]\to\mathbb{R}^2$ az a vektorértékű függvény, melynek ezek a koordináta függvényei:

$$\gamma(t) = \begin{bmatrix} x(t) \\ y(t) \end{bmatrix}, \quad a \le t \le b$$

A γ függvény értékkészlete a $\Gamma \subset \mathbb{R}^2$ (kétdimenziós) Jordan görbe:

$$\Gamma = \{ \gamma(t) : t \in [a, b] \}$$

Definíció (*Térbeli Jordan görbe*) Adott $[a,b] \subset \mathbb{R}$ egy véges intervallum, és adott három valós függvény ezen az intervallumon: $x,y,z:[a,b] \to \mathbb{R}$, melyekről feltesszük, hogy foltonosan differenciálhatóak az (a,b) intervallumban.

Legyen $\gamma:[a,b]\to\mathbb{R}^3$ az a vektorértékű függvény, melynek ezek a koordináta függvényei:

$$\gamma(t) = \begin{bmatrix} x(t) \\ y(t) \\ z(t) \end{bmatrix}, \quad a \le t \le b$$

A γ függvény értékkészlete a $\Gamma \subset \mathbb{R}^3$ (háromdimenziós) Jordan görbe:

$$\Gamma = \{ \gamma(t) : t \in [a, b] \}$$

Kétváltozós valós függvény integrálja vonal mentén

Legyen adott a síkban egy Γ Jordan görbe, melyet γ függvénnyel paraméterezünk:

$$\Gamma = \{ \gamma(t) : t \in [a, b] \}$$

ahol $\gamma(t) = (x(t), y(t))$, $t \in [a, b]$. Feltesszük, hogy Γ sima görbe. Legyen $R \subset \mathbb{R}^2$ egy olyan tartomány, mely tartalmazza a Γ görbét.

Adott egy $f: R \to \mathbb{R}^+$ függvény. A feladat az, hogy meghatározzuk az alábbi felület nagyságát:

$$S = \left\{ \left(x(t), y(t) \right) : 0 \le z \le f\left(x(t), y(t) \right) \text{ \'es } t \in [a, b] \right\}$$

Ehhez tekintsük a görbe egy felosztását:

$$a = t_0 < t_1 < \dots < t_n = b$$

a görbén a megfelelő osztópontok $P_i=(x_i,y_i), i=0,1,2,\ldots,n,$ ahol $x_i=x(t_i)$ és $y_i=y(t_i).$ Ekkor a felület felszíne közelítve:

$$I \approx \sum_{i=1}^{n} f(x_i, y_i) \cdot ||(x_i, y_i) - (x_{i-1}, y_{i-1})||$$

Ez alapján a vonalintegrál határátmenettel megkapható:

$$I = \int_{\Gamma} f(x, y) ds := \int_{a}^{b} f(x(t), y(t)) \cdot \sqrt{x'^{2}(t) + y'^{2}(t)} dt$$

Definíció Az f függvény vonalintegrálját a Γ görbe mentén így értelmezzük:

$$\int_{\Gamma} f(x,y) ds = \int_{a}^{b} f(x(t),y(t)) \cdot \sqrt{x'^{2}(t) + y'^{2}(t)} dt$$

16. tétel: **Vektormező integrálja görbe mentén.** Szemléletes jelentés. **Potenciálkeresés.** Potenciál létezésének szükséges (B) és elégséges feltétele (vonalintegrállal).

Vektormező integrálja görbe mentén

Legyen $\Gamma = \{\gamma(t): t \in [a, b]\}$ háromdimenziós Jordan görbe. Legyen továbbá F egy háromdimenziós vektormező $F: D \to \mathbb{R}^3$, ahol $D \subset \mathbb{R}^3$. F koordinátafüggvényeit jelölje $f_1, f_2, f_3: D \to \mathbb{R}$.

$$F(x, y, z) = \begin{bmatrix} f_1(x, y, z) \\ f_2(x, y, z) \\ f_3(x, y, z) \end{bmatrix}$$

Feltesszük, hogy F differenciálható D-ben. Feltesszük azt is, hogy $\Gamma \subset D$. Az egyszerűség kedvéért jelöljük \mathbb{R}^3 pontjait röviden: $\mathbf{r} = (x, y, z)$

A görbe mentén vett vonalintegrál jelölése

$$\int_{\Gamma} F(\mathbf{r}) d\mathbf{r}$$

Tétel (Vonalintegrál kiszámítása) A fenti jelölésekkel és feltételekkel

$$\int_{\Gamma} F(r) dr = \int_{a}^{b} \langle F(\gamma(t)), \dot{\gamma}(t) \rangle dt =$$

$$= \int_{a}^{b} f_{1}(x(t), y(t), z(t)) \cdot \dot{x}(t) dt + \int_{a}^{b} f_{2}(x(t), y(t), z(t)) \cdot \dot{y}(t) dt +$$

$$+ \int_{a}^{b} f_{3}(x(t), y(t), z(t)) \cdot \dot{z}(t) dt$$

ahol γ jelöli a γ függvény koordináták szerinti deriváltját.

Szemléletes jelentés

A vonalintegrál matematikai modelljének fizikai háttere a következőképpen képzelhető el:

Adott egy vektortér, ami a tér pontjaiban megadja az ott ható erő nagyságát és irányát. Feltesszük, hogy egy egységnyi tömegű részecske a Γ görbe mentén mozog. A görbe menti integrál ebben a vektormezőben a részecske mozgatásának munkáját adja meg.

Potenciálkeresés

Adott egy háromváltozós, valós értékű függvény $f: R \to \mathbb{R}$, $R \subset \mathbb{R}^3$. Ha a függvény differenciálható a tartományban, akkor gradiense vektormező: grad $f: R \to \mathbb{R}^3$. Ennek "fordítottja", hogy ha adott egy $F: R \to \mathbb{R}^3$ vektormező, akkor vajon létezik-e olyan $f: R \to \mathbb{R}$ differenciálható függvény, melyre $F = \operatorname{grad} f$.

Definíció Az F vektormező *potenciálos* (konzervatív), ha létezik f differenciálható skalárfüggvény, melyre F = grad f.

Potenciál létezésének szükséges (B) és elégséges feltétele (vonalintegrállal)

Tétel Adott az F vektormező egy $R \subset \mathbb{R}^3$ egyszeresen összefüggő tartományon. F-nek pontosan akkor létezik potenciálja, ha minden R-beli zárt görbe mentén az F vektormező vonalintegrálja 0.

Bizonyítás A bizonyítás során csak azt igazoljuk, hogy ha van potenciál, akkor tetszőleges zárt görbe mentén integrálva az integrál értéke nulla.

$$\int_{\Gamma} F(r) dr = \int_{a}^{b} \langle F(\gamma(t)), \dot{\gamma}(t) \rangle dt = \int_{a}^{b} \langle grad f(\gamma(t)), \dot{\gamma}(t) \rangle dt =$$

$$= \int_{a}^{b} \frac{d}{dt} f(\gamma(t)) dt = f(\gamma(b)) - f(\gamma(a))$$

Ha a görbe zárt, akkor ez azt jelenti, hogy a = b és így $\gamma(a) = \gamma(b)$, vagyis az integrál valóban nulla.

17. tétel: **Fourier sor komplex alakja. Fourier transzformáció.** Alaptulajdonságok (B). **Inverz Fourier transzformáció.** Parseval egyenlet (B). Konvolúció. Konvolúció FT-ja.

Fourier sor komplex alakja

Az Euler-formula szerint

$$e^{ix} = \cos(x) + i\sin(x)$$

Ebből következik, hogy

$$e^{-ix} = e^{i(-x)} = \cos(-x) + i\sin(-x) = \cos(x) - i\sin(x)$$

ezért a trigonometrikus függvények kifejezhetők komplex alakban:

$$\cos(x) = \frac{e^{ix} + e^{-ix}}{2}$$

$$\sin(x) = \frac{e^{ix} - e^{-ix}}{2i}$$

Az *n*-edik Fourier polinom:

$$s_n(x) = \frac{a_0}{2} + \sum_{k=1}^{n} (a_k \cos(kx) + b_k \cos(kx))$$

Helyettesítsük be a trigonometrikus függvények komplex alakjait:

$$s_n(x) = \frac{a_0}{2} + \sum_{k=1}^n a_k \frac{e^{ikx} + e^{-ikx}}{2} + b_k \frac{e^{ikx} - e^{-ikx}}{2i} = \sum_{k=-n}^n \alpha_k e^{ikx}$$

ahol az α_k együttható:

$$\alpha_k = \frac{a_k - ib_k}{2}, \qquad k > 0$$

$$\alpha_k = \frac{a_k + ib_k}{2}, \qquad k < 0$$

Tétel

Tegyük fel, hogy f előáll

$$f(x) = \sum_{k=-n}^{n} \alpha_k e^{ikx}$$

alakban. Ekkor:

$$\alpha_k = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-ikx} \ dx$$

Fourier transzformáció

Tegyük fel, hogy az $f: \mathbb{R} \to \mathbb{R}$ valós értékű függvény kielégíti az alábbi feltételeket:

- 1. Tetszőleges $I \subset \mathbb{R}$ véges intervallum esetén f leszűkítése az I intervallumra véges sok pontot kivéve folytonosan differenciálható.
- 2. Ha x_0 szakadási pont, akkor ez a szakadás elsőfajú, és itt a függvényérték

$$f(x_0) = \frac{f(x_0 + 0) + f(x_0 - 0)}{2}$$

3. A függvény abszolút integrálható, azaz

$$\int_{-\infty}^{\infty} |f(x)| \ dx < \infty$$

Definíció Ha f teljesíti a fenti feltételeket, akkor az f *Fourier transzformáltja* az az $\hat{f}: \mathbb{R} \to \mathbb{C}$ komplex értékű függvény, melyet így definiálunk:

$$\hat{f}(s) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)e^{-isx} dx$$

A Fourier transzformált jelölése $\mathcal{F}(f,s) = \hat{f}(s)$

Alaptulajdonságok (B)

Tétel A Fourier transzformált alaptulajdonságai:

1. A hozzárendelés lineáris, azaz

$$\mathcal{F}(cf,s) = c\mathcal{F}(f,s), \qquad \mathcal{F}(f+g,s) = \mathcal{F}(f,s) + \mathcal{F}(g,s)$$

- 2. $\mathcal{F}(f)$ folytonos függvény
- 3. (Átskálázás)

$$\mathcal{F}(f(ax),s) = \frac{1}{a}\mathcal{F}\left(f(x),\frac{s}{a}\right), \quad ha \ a > 0$$

4. (Idő megfordítása)

$$\mathcal{F}(f(-x),s) = \mathcal{F}(f(x),-s)$$

5. (Idő eltolás)

$$\mathcal{F}(f(x-x_0),s)=e^{-ix_0s}\mathcal{F}(f(x),s)$$

6. (Frekvencia eltolás)

$$\mathcal{F}\big(e^{ikx}f(x),s\big)=\mathcal{F}(f(x),s-k)$$

Bizonyítás

- 1. Ez könnyen látható, mivel az integrál lineáris operátor
- 2. Ez abból következik, hogy a Fourier transzformáltat folytonos függvények egyenletes határértékeként tudtuk meghatározni

3.

$$\mathcal{F}(f(ax),s) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(ax)e^{-isx} dx = 1/\sqrt{2\pi} \int_{-\infty}^{\infty} f(t)e^{-i\frac{s}{a}t} \frac{1}{a} dt$$

Az integrálásban a t = ax helyettesítést hajtottuk végre.

4.

$$\mathcal{F}(f(-x),s) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(-x)e^{-isx} dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(y)e^{isy}(-dy) =$$
$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(y)e^{-i(-s)y} dy$$

Az integrálban az y = -x helyettesítést hajtottuk végre.

5.

$$\mathcal{F}(f(x - x_0), s) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x - x_0) e^{-isx} dx =$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(y) e^{-is(y + x_0)} dy$$

Az integrálásban az $y = x - x_0$ helyettesítést hajtottuk végre

6.

$$\mathcal{F}\left(e^{ikx}f(x),s\right) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{ikx}f(x)e^{-isx} \ dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)e^{-i(s-k)x} \ dx$$

Inverz Fourier transzformáció

Tétel Tegyük fel, hogy f teljesíti az 1., 2., 3. feltételeket. Ekkor f előállítható Fourier transzformáltja segítségével:

$$f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \hat{f}(s) e^{isx} ds$$

Ez az inverz Fourier transzformáció.

Parseval egyenlet (B)

Tétel (Parseval egyenlet) Ha az 1., 2., 3. feltételek teljesülnek és a Fourier sor egyenletesen konvergens, akkor

$$\int_{-\infty}^{\infty} |f(x)|^2 dx = \int_{-\infty}^{\infty} |\hat{f}(s)|^2 ds$$

Bizonyítás A bizonyításban fel fogjuk használni mind a Fourier transzformáció, mind pedig az inverz Fourier transzformációt. Kiindulunk a fenti egyenlőség baloldalából, és az szorzat két f(x) tényezőjének egyikébe az inverz Fourier transzformáltat írjuk.

$$\int_{-\infty}^{\infty} f^2(x) \, dx = \int_{-\infty}^{\infty} f(x) \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \hat{f}(s) e^{isx} \, ds \, dx$$

Az egyenletes konvergencia miatt az integrálás sorrendje fölcserélhető:

$$\int_{-\infty}^{\infty} f^{2}(x) dx = \int_{-\infty}^{\infty} f(x) \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \hat{f}(s) e^{isx} ds dx = \int_{-\infty}^{\infty} \hat{f}(s) \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) e^{isx} dx ds =$$

$$= \int_{-\infty}^{\infty} \hat{f}(s) \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) e^{-isx} dx ds = \int_{-\infty}^{\infty} \hat{f}(s) \overline{\hat{f}(s)} ds = \int_{-\infty}^{\infty} |\hat{f}(s)|^{2} ds$$

$$\text{mivel } \overline{\hat{f}(s)} = \hat{f}(-s). \blacksquare$$

Konvolúció, konvolúció FT-ja

Definíció Adott két valós függvény, $f,g:\mathbb{R}\to\mathbb{R}$. Feltesszük, hogy mindkettő abszolút integrálható. A két függvény *konvolúciója* az $f*g:\mathbb{R}\to\mathbb{R}$ függvény, melyet így értelmezünk:

$$(f * g)(x) = \int_{-\infty}^{\infty} f(y)g(x - y) dy$$

Állítás Konvolúció az időtartományban és a frekvenciatartományban:

$$\mathcal{F}(f * g, s) = \sqrt{2\pi} \, \mathcal{F}(f, s) \cdot \mathcal{F}(g, s)$$

$$\mathcal{F}(f,s) * \mathcal{F}(g,s) = \frac{1}{\sqrt{2\pi}} \mathcal{F}(f \cdot g,s)$$

18. tétel: **Magasabb rendű lineáris differenciálegyenlet.** Függvények függetlensége. Wronski determináns (B). Homogén LDE. **Megoldások struktúrája** (B). Kezdeti érték- és peremérték feladat.

Magasabb rendű lineáris differenciálegyenlet

Jelölje $C^n(D)$ azon D-n értelmezett folytonos függvények halmazát, melyek n-szer folytonosan differenciálhatók. Legyen L egy olyan operátor, amely egy n-szer differenciálható függvényhez egy folytonos függvényt rendel a következőképpen:

$$L[y](x) := y^{(n)}(x) + a_1(x)y^{(n-1)}(x) + \dots + a_n(x)y(x)$$

ahol a_1, \dots, a_n adott folytonos függvények. Az L operátor lineáris, azaz

$$L[\alpha y_1 + \beta y_2] = \alpha L[y_1] + \beta L[y_2]$$

tetszőleges $y_1, y_2 \in C^n(D)$ és $\alpha, \beta \in \mathbb{R}$ esetén.

Homogén differenciálegyenlet esetén az L[y] = 0-nak keressük megoldását, inhomogén esetben az L[y] = f(x) egyenlet megoldását keressük, ahol $f(x) \neq 0$.

Függvények függetlensége

Definíció Adott n darab függvény, $y_1, y_2, ..., y_n$, közös $D \subset \mathbb{R}$ értelmezési tartománnyal. Ezek *lineárisan függetlenek*, ha a függvények valamely lineáris kombinációja

$$y(x) = c_1 y_1(x) + c_2 y_2(x) + \dots + c_n y_n(x)$$

csak úgy lehet azonosan 0 a D halmazon, ha

$$c_1 = c_2 = \dots = c_n = 0$$

Wronski determináns (B)

Definíció Legyenek az $y_1, ..., y_n$ valós függvények (n-1)-szer differenciálhatóak. A *Wronski determinánst* a következőképpen definiáljuk:

$$W[y_1, \dots, y_n] = \det \begin{bmatrix} y_1(x) & y_2(x) & \cdots & y_n(x) \\ y_1'(x) & y_2'(x) & \cdots & y_n'(x) \\ \vdots & \vdots & \ddots & \vdots \\ y_1^{(n-1)}(x) & y_2^{(n-1)}(x) & \cdots & y_n^{(n-1)}(x) \end{bmatrix}$$

Állítás Tegyük fel, hogy $y_1, ..., y_n$ függvények lineárisan összefüggőek, és legalább (n-1)-szer differenciálhatóak. Ekkor $W[y_1, ..., y_n] = 0$.

Bizonyítás Mivel a függvények lineárisan összefüggők, ezért $c_1y_1 + \cdots + c_ny_n = 0$ úgy, hogy valamelyik $c_k \neq 0$. Legyen ez c_1 . Ekkor y_1 kifejezhető a többi függvény segítségével:

$$y_1 = -\frac{c_2}{c_1}y_2 - \dots - \frac{c_n}{c_1}y_n$$

Ugyanígy deriváltjai is kifejezhetők, ugyanilyen együtthatókkal:

$$y_1' = -\frac{c_2}{c_1}y_2' - \dots - \frac{c_n}{c_1}y_n'$$

A többi derivált hasonlóan kifejezhető. Ekkor a mátrix első oszlopa előáll a többi lineáris kombinációjaként, így a mátrix szinguláris, vagyis determinánsa 0. ■

Állítás

 $Ha\ y_1, \dots, y_n\ n$ -szer differenciálhatók az egész D-n, akkor $W[y_1, \dots, y_n]$ pontosan akkor nulla, ha y_1, \dots, y_n függvények lineárisan összefüggők.

Homogén LDE

A homogén lineáris differenciálegyenletek esetében a már definiált L[y] = 0 egyenlet megoldását keressük.

Megoldások struktúrája (B)

Tétel

Az L[y] = 0 egyenletnek létezik n darab lineárisan független megoldása: $y_1, ..., y_n$. Továbbá tetszőleges y megoldás felírható ezek lineáris kombinációja-

$$y = c_1 y_1 + \dots + c_n y_n$$

Bizonyítás Az első részt speciálisan fogjuk belátni (lásd a 19. tételben, $P(\lambda)$ polinomra)

A második rész bizonyításához írjuk fel az $y, y_1, ..., y_n$ függvények Wronski determinánsát:

$$W[y, y_1, \dots, y_n] = \det \begin{bmatrix} y & y_1 & \cdots & y_n \\ y' & y_1' & \cdots & y_n' \\ \vdots & \vdots & \ddots & \vdots \\ y^{(n)} & y_1^{(n)} & \cdots & y_n^{(n)} \end{bmatrix}$$

Mivel $L[y_1] = L[y_2] = \cdots = L[y] = 0$, ezért a mátrix utolsó sora előáll a többi lineáris kombinációjakét, sorai lineárisan összefüggőek, tehát a determináns 0. Az utolsó n oszlop azonban lineárisan független, így az első oszlop felírható a többi lineáris kombinációjaként.

Kezdeti érték- és peremérték feladat

Tekintsünk egy n-ed rendű lineáris differenciálegyenletet, L[y] = 0. Legyen $x_0 \in D$ tetszőleges belső pont.

Kezdeti érték feladat

Olyan megoldást keresünk, melyre

$$y(x_0) = \xi_1$$

 $y'(x_0) = \xi_2$
 \vdots
 $y^{n-1}(x_0) = \xi_n$

Peremfeltétel feladat

Olyan megoldást keresünk, melyre

$$y(x_1) = \xi_1$$

$$y(x_2) = \xi_2$$

$$\vdots$$

$$y(x_n) = \xi_n$$

19. tétel: Állandó együtthatós: homogén LDE megoldásai. Kapcsolat a karakterisztikus polinommal (B). Inhomogén LDE. Megoldások struktúrája. Inhomogén LDE megoldása. Állandók variálása.

Állandó együtthatós: homogén LDE megoldásai, kapcsolat a karakterisztikus polinommal (B)

Tekintsük az $L[y] = y^{(n)} + a_1 y^{(n-1)} + \dots + a_n y = 0$ egyenletet, ahol $a_1, \dots, a_n \in \mathbb{R}$ adott valós számok. Speciális megoldásokat keresünk, melyek

$$y(x) = e^{\lambda x}$$

alakúak. Ekkor $y'(x) = \lambda \cdot e^{\lambda x} \dots y^{(n)}(x) = \lambda^n \cdot e^{\lambda n}$.

Ezeket visszahelyettesítve azt kapjuk, hogy

$$L[y] = e^{\lambda x} (\lambda^n + a_1 \lambda^{n-1} + \dots + a_{n-1} \lambda + a_n) = 0$$

A jobboldalon álló függvény csak úgy lehet 0, hogyha a zárójelben szereplő polinom nulla.

Definiáljuk a differenciálegyenlethez tartozó karakterisztikus polinomot a következőképpen:

$$P(\lambda) = \lambda^n + a_1 \lambda^{n-1} + \dots + a_n$$

Ez egy valós együtthatós polinom, melynek a komplex számsíkon n darab gyöke van, multiplicitásokkal együtt.

Első eset

Tegyük fel, hogy $P(\lambda)$ gyökei valósak, és mind egyszeresek. Legyenek ezek $\lambda_1, ..., \lambda_n$. Ekkor fel tudjuk írni a homogén egyenlet n megoldását

$$y_1(x) = e^{\lambda_1 x}$$

$$y_2(x) = e^{\lambda_2 x}$$

$$\vdots$$

$$y_n(x) = e^{\lambda_n x}$$

és ezek lineárisan független rendszert alkotnak. Ekkor az általános megoldás:

$$y(x) = \sum_{k=1}^{n} c_k \cdot e^{\lambda_k x}, \qquad c_k \in \mathbb{R}$$

Második eset

Tegyük fel, hogy $P(\lambda)$ gyökei valósak, viszont az m darab k_m -szeres ($k_m=1,2\ldots$) gyök. Legyen minden λ_m k_m -szeres gyöke a karakterisztikus polinomnak. Ekkor így tudjuk felírni a homogén egyenlet megoldásait:

$$y_{11}(x) = e^{\lambda_1 x}, \qquad y_{12}(x) = x \cdot e^{\lambda_1 x}, \qquad \dots , y_{1k_1} = x^{k_1 - 1} \cdot e^{\lambda_1 x}$$

$$\vdots$$

$$y_{m1}(x) = e^{\lambda_m x}, \qquad y_{m2}(x) = x \cdot e^{\lambda_m x}, \qquad \dots , y_{mk_m} = x^{k_m - 1} \cdot e^{\lambda_m x}$$

és ezek lineárisan független rendszert alkotnak. Ekkor az általános megoldás:

$$y(x) = \sum_{n=1}^{m} \sum_{l=1}^{k_n} c_{nl} \cdot x^{k_l-1} \cdot e^{\lambda_n x}, \qquad c_k \in \mathbb{R}$$

Harmadik eset

Tekintsük azt az esetet, amikor a polinomnak komplex gyökei vannak. Ekkor ha $\lambda = \alpha + i\beta$ egy gyöke a karakterisztikus polinomnak, akkor konjugáltja, $\overline{\lambda} = \alpha - i\beta$ is gyök. Két alapmegoldást kapunk tehát:

$$u_1(x) = e^{\lambda x}, \qquad u_2(x) = e^{\overline{\lambda}x}$$

Mivel λ komplex szám, ezért ezek komplex függvények lesznek. Tudjuk, hogy ezek tetszőleges lineáris kombinációja ismét megoldás lesz. Keresünk olya lineáris kombinációt, amely valós értékű. Definiáljuk a következő alapmegoldásokat:

$$y_1(x) = \frac{u_1(x) + u_2(x)}{2} = e^{\alpha x} \cos(\beta x)$$

$$y_2(x) = \frac{u_1(x) - u_2(x)}{2i} = e^{\alpha x} \sin(\beta x)$$

Ezek a megoldások is – nyilvánvalóan – lineárisan függetlenek. Az általános megoldás ezek összege.

Negyedik eset

A negyedik eshetőség az, hogy többszörös komplex gyökök állnak elő. Ekkor a komplex gyököknél megismert módszert és a többszörös gyököknél megismert felírást ötvözve kell alkalmazni.

Inhomogén LDE. Megoldások struktúrája

Az inhomogén lineáris differenciálegyenletek esetében a már definiált L[y] = f(x) egyenlet megoldását keressük, $f(x) \neq 0$.

Tétel $Ha y_1 \text{ \'es } y_2 \text{ megold\'asai az}$

$$y^{(n)}(x) + a_1(x)y^{(n-1)}(x) + \dots + a_n(x)y(x) = f(x)$$

inhomogén egyenletnek, akkor $y=y_1-y_2$ a homogén egyenlet megoldása. Ha y_1 a homogén, az y_2 pedig az inhomogén egyenlet megoldásai, akkor $y=y_1+y_2$ szintén megoldása az inhomogén egyenletnek.

Inhomogén LDE megoldása: Állandók variálása

Legyen az L[y] = 0 homogén egyenlet n darab lineárisan független megoldása $y_1, ..., y_n$. Az inhomogén egyenlet egyetlen megoldását keressük a következő alakban:

$$y(x) = \gamma_1(x)y_1(x) + \dots + \gamma_n(x)y_n(x)$$

A fenti megoldásban szereplő függvényekre az alábbi feltételeket tesszük:

$$\gamma'_{1}y_{1} + \dots + \gamma'_{n}y_{n} = 0$$

$$\gamma'_{1}y'_{1} + \dots + \gamma'_{n}y'_{n} = 0$$

$$\vdots$$

$$\gamma'_{1}y_{1}^{(n-2)} + \dots + \gamma'_{n}y_{n}^{(n-2)} = 0$$

$$\gamma'_{1}y_{1}^{(n-1)} + \dots + \gamma'_{n}y_{n}^{(n-1)} = f(x)$$

Így az együtthatók deriváltjaira adott n darab egyenlet. A fenti egyenletrendszert kompakt formában úgy írhatjuk fel, hogy a baloldalon az alapmegoldások Wronski mátrixa szerepel

megszorozva a γ deriváltak oszlopvektorával, a jobboldalon pedig a $[0,0,0,...,f(x)]^T$ oszlopvektor áll:

$$\begin{bmatrix} y_1 & y_2 & \cdots & y_n \\ y'_1 & y'_2 & \cdots & y'_n \\ \vdots & \vdots & \ddots & \vdots \\ y_1^{(n-1)} & y_2^{(n-1)} & \cdots & y_n^{(n-1)} \end{bmatrix} \begin{bmatrix} \gamma'_1 \\ \gamma'_2 \\ \vdots \\ \gamma'_n \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ f(x) \end{bmatrix}$$

Mivel ezek az alapmegoldások lineárisan függetlenek, ezért ez a mátrix nem szinguláris, tehát a fenti egyenletrendszer mindig megoldható.

Állítás Ha a fenti feltételek teljesülnek, akkor L[y] = f(x).

Megjegyzendő, hogy az állandók variálásának módszere akkor is használható, ha a lineáris differenciálegyenlet együtthatói nem konstansok, hanem adott, folytonos függvények.

20. tétel: Inhomogén LDE megoldása: Próbafüggvények. Differenciálegyenlet rendszerek. **Állandó együtthatós lineáris DER** megoldása (B). e^A értelmezése, speciális esetek.

Inhomogén LDE megoldása: Próbafüggvények

Az állandók variálása módszer ugyan minden esetben alkalmazható, de speciális jobboldal esetén, ha állandó együtthatós lineáris differenciálegyenletet tekintünk, érdemes az inhomogén egyenlet megoldását speciális alakban keresni. A megoldandó egyenlet:

$$L[y] = y^{(n)}(x) + a_1(x)y^{(n-1)}(x) + \dots + a_n(x)y(x) = f(x)$$

- Ha $f(x) = Ke^{\alpha x}$, ahol $\alpha \in \mathbb{R}$, akkor a megoldást $y(x) = Ae^{\alpha x}$ alakban keressük. A ismeretlen.
- Ha $f(x) = a_m x^m + \dots + a_1 x + a_0$, akkor a megoldást $y(x) = A_m x^m + \dots + A_0$ alakban keressük, ahol A_k -k az ismeretlen paraméterek.
- Ha $f(x) = K \sin(\alpha x)$ vagy $f(x) = K \cos(\alpha x)$, akkor a megoldást mindkét esetben $y(x) = A \sin(\alpha x) + B \cos(\beta x)$ alakban keressük, ahol A és B az ismeretlen paraméterek.

Ha f(x) ezen speciális függvények összege, akkor a próbafüggvényt is összegként keressük.

Definíció Ha a homogén differenciálegyenlet alapmegoldásai között létezik olyan függvény, mint ami a differenciálegyenlet jobboldalán szerepel, akkor *rezonanciáról* beszélünk.

Differenciálegyenlet rendszerek

Elsőként csak kétdimenziós rendszerekkel foglakozunk. Keresünk olyan y(x) és z(x) függvényeket, melyek kielégítenek egy ilyen típusú differenciálegyenlet-rendszert:

$$y'(x) = f(x, y(x), z(x))$$

$$z'(x) = g(x, y(x), z(x))$$

ahol f és g adott háromváltozós függvények.

Állandó együtthatós lineáris DER megoldása (B)

A könnyebb áttekinthetőség kedvéért három dimenzióban dolgozunk, de minden ugyanígy elmondható n dimenziós lineáris rendszerekre is. Tekintsük az alábbi háromdimenziós rendszert:

$$y_1' = a_{11}y_1 + a_{12}y_2 + a_{13}y_3$$

$$y_2' = a_{21}y_1 + a_{22}y_2 + a_{23}y_3$$

$$y_3' = a_{31}y_1 + a_{32}y_2 + a_{33}y_3$$

a hozzá tartozó kezdeti feltételekkel

$$y_1(0) = y_{01}, \quad y_2(0) = y_{02}, \quad y_3(0) = y_{03}$$

A keresett függvényt rendezzük el egy vektorba. Ezt deriváljuk, az együtthatókat pedig mátrixba gyűjtjük:

$$Y(x) = \begin{bmatrix} y_1(x) \\ y_2(x) \\ y_3(x) \end{bmatrix}, \qquad Y'(x) = \begin{bmatrix} y'_1(x) \\ y'_2(x) \\ y'_3(x) \end{bmatrix}, \qquad A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

A differenciálegyenlet-rendszer tehát kompakt alakban így írható:

$$Y'(x) = AY(x), \qquad Y(0) = Y_0$$

Tétel A fenti (kompakt alakban írt) lineáris egyenletrendszer megoldása

$$Y(x) = e^{Ax} \cdot Y_0$$

Tétel Tegyük fel, hogy A sajátértékei mind különbözőek, legyenek ezek $\lambda_1, \lambda_2, \lambda_3$. Ekkor a különböző sajátértékekhez tartozó sajátvektorok egymásra merőlegesek, ezeket jelölje $\mathbf{s_1}, \mathbf{s_2}, \mathbf{s_3}$.

Ekkor a lineáris differenciálegyenlet rendszer lineárisan független megoldásrendszere

$$Y_k = e^{\lambda_k x} s_k$$

Ezen felül tetszőleges $Y(0) = Y_0$ kezdeti értékhez létezik egyértelműen Y megoldás és ez felírható

$$Y = c_1 Y_1 + c_2 Y_2 + c_3 Y_3$$

alakban megfelelő c_1, c_2, c_3 konstans együtthatókkal.

Bizonyítás A megoldások lineárisan függetlenek, hiszen $e^{\lambda_k x}$ -k is lineárisan függetlenek, és s_k -k is. A fenti függvény deriváltja

$$Y_k'(x) = \lambda_k e^{\lambda_k x} s_k, \qquad k = 1,2,3$$

A differenciálegyenlet jobboldala

$$AY_k(x) = Ae^{\lambda_k x} s_k = e^{\lambda_k x} A s_k = e^{\lambda_k x} \lambda_k s_k$$

Tehát valóban megoldás. ■

e^A értelmezése, speciális esetek.

A fenti tételben szereplő e^A mátrix értelmezése a sorfejtés alapján történik:

$$e^A \coloneqq \sum_{k=0}^{\infty} \frac{1}{k!} A^k$$

Ez általában nehezen számolható. Ha A szimmetrikus mátrix, akkor felírható $A = UDU^T$ alakban, ahol U ortogonális, D pedig diagonális mátrix. Ez azt jelenti, hogy $U^TU = UU^T = E$, ahol E az egységmátrix, és a diagonális mátrixban a sajátértékek állnak.

Ha például *A*-nak 3 darab különböző valós sajátértéke van, λ_1 , λ_2 , λ_3 , akkor a megfelelő sajátvektorok ortogonális rendszert alkotnak. Ebben az esetben

$$\mathbf{D} = \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{bmatrix}, \qquad \mathbf{U} = (\mathbf{s}_1, \mathbf{s}_2, \mathbf{s}_3)$$

ahol s_k a normalizált sajátvektorokat jelenti. Folytassuk e^A kiszámítását ebben az esetben.

$$A^k = UDU^T \cdot UDU^T \cdot ... \cdot UDU^T = UD^kU^T$$

ezért

$$e^A = Ue^DU^T$$

Ahol $e^{\mathbf{D}}$ diagonális mátrix, főátlójának elemei e^{λ_1} , e^{λ_2} , e^{λ_3}

21. tétel: Komplex függvény, ábrázolás. **Kanonikus alak.** Komplex függvény differenciálhatósága. **Cauchy-Riemann egyenletek** (B).

Komplex függvény, ábrázolás

Legyen $D \subset \mathbb{C}$ egy tartomány a komplex számsíkon. $f: D \to \mathbb{C}$ függvényt tekintjük. A független változót z = x + iy, a függő változót w = u + iv jelöli. Tehát a hozzárendelés w = f(z).

A komplex függvények pontos ábrázolására négy dimenzióra lenne szükség – ez nem kivitelezhető. Így megelégszünk azzal, hogy két komplex számsíkot rajzolunk, az egyiken az értelmezési tartományt, a másikon az értékkészletet ábrázoljuk. Ennek segítségével azt tudjuk megadni, hogy egy-egy konkrét komplex számhoz mit rendel hozzá a leképezés, illetve bizonyos speciális alakzatokat – például kört vagy egyenest – hogyan transzformál.

 $Az f(z) = e^z$ függvény értelmezési tartománynak egy függőleges egyenesét körré képezi le.

Kanonikus alak

Legyen $D \subset \mathbb{C}$ tartomány és adott ezen egy hozzárendelés $f: D \to \mathbb{C}$, ami a z komplex számhoz a következőt rendeli hozzá:

$$z \mapsto f(z) = \text{Re}(f(z)) + i \text{Im}(f(z))$$

A függvény kanonikus alakja két valós értékű kétváltozós függvény megadását jelenti, f(z) = u(x, y) + i v(x, y), ahol

$$u(x,y) = \text{Re}(f(x+iy)), \quad v(x,y) = \text{Im}(f(x+iy))$$

Komplex függvény differenciálhatósága

Adott egy $T \subset \mathbb{C}$ tartomány és ezen egy $f: T \to \mathbb{C}$ komplex függvény. Legyen f kanonikus alakja f(z) = u(x,y) + i v(x,y). Tegyük fel, hogy u és v folytonosan differenciálható függvények, azaz léteznek u'_x, u'_y, v'_x, v'_y parciális deriváltak és folytonosak.

Definíció Legyen z_0 az f értelmezési tartományának egy belső pontja. f differenciálható z_0 -ban, ha létezik és véges a következő határérték:

$$\lim_{h \to 0} \frac{f(z_0 + h) - f(z_0)}{h}$$

Cauchy-Riemann egyenletek (B)

Tétel

(Alaptétel a komplex függvény differenciálhatóságáról) Legyen $T \subset \mathbb{C}$ tartomány, $f: T \to \mathbb{C}$, $z_0 \in \operatorname{int} T$. Tegyük fel, hogy u és v folytonosan differenciálható függvények. Ekkor f differenciálhatósága a $z_0 = x_0 + iy_0$ pontban azzal ekvivalens, hogy az u és v kétváltozós függvények kielégítik az alábbi összefüggéseket:

$$u'_x(x_0, y_0) = v'_y(x_0, y_0)$$

$$u'_y(x_0, y_0) = -v'_x(x_0, y_0)$$

Az utolsó két egyenletet Cauchy-Riemann egyenleteknek nevezzük.

Bizonyítás

1. rész. Tegyük fel, hogy f differenciálható z_0 -ban. Ekkor a derivált definíciójában szereplő határérték létezik speciális irányokból is. Legyen h = r + is és legyen elsőként s = 0 és $r \to 0$. Ekkor

$$f'(z_0) = \lim_{r \to 0} \frac{u(x_0 + r, y_0) + iv(x_0 + r, y_0) - u(x_0, y_0) - iv(x_0, y_0)}{r} =$$

$$= \lim_{r \to 0} \frac{u(x_0 + r, y_0) - u(x_0, y_0)}{r} + i\lim_{r \to 0} \frac{v(x_0 + r, y_0) - v(x_0, y_0)}{r} =$$

$$= u'_r(x_0, y_0) + iv'(x_0, y_0)$$

Most tegyük fel, hogy r = 0 és $s \to 0$. Ekkor az előzőhöz hasonlóan:

$$f'(z_0) = \lim_{s \to 0} \frac{u(x_0, y_0 + s) - u(x_0, y_0)}{is} + i \lim_{s \to 0} \frac{v(x_0, y_0 + s) - v(x_0, y_0)}{is} =$$
$$= -iu_v'(x_0, y_0) + v_v'(x_0, y_0)$$

Mivel a kétoldali határértékeknek egyenlőknek kell lenniük, ezért

$$u_x'(x_0, y_0) + iv_x'(x_0, y_0) = -iu_y'(x_0, y_0) + v_y'(x_0, y_0)$$

Két komplex szám egyenlősége ekvivalens azzal, hogy valós és képzetes részeik egyenlők, ebből pedig következnek a Cauchy-Riemann egyenletek. ■

Bizonyítás 2. rész. Tegyük fel, hogy a Cauchy-Riemann egyenletek teljesülnek. Számoljuk ki a differenciahányadost:

$$\frac{f(z_0+h)-f(z_0)}{h} = \frac{u(x_0+r,y_0+s)+iv(x_0+r,y_0+s)-u(x_0,y_0)-v(x_0,y_0)}{r+is}$$

Felhasználva u és v deriválhatóságát, ez így folytatható (a deriváltak argumentumát az átláthatóság kedvéért elhagyva):

$$\frac{f(z_0 + h) - f(z_0)}{h} = \frac{u'_x r + u'_y s + i v'_x r + i v'_y s}{r + i s} + \frac{\varepsilon_1(|h|)}{r + i s} + \frac{\varepsilon_2(|h|)}{r + i s} =$$

$$= u'_x + i v'_x + \frac{\varepsilon_1(|h|)}{r + i s} + \frac{\varepsilon_2(|h|)}{r + i s}$$

Ezért

$$\lim_{h \to 0} \frac{f(z_0 + h) - f(z_0)}{h} = u_x'(x_0, y_0) + iv_x'(x_0, y_0)$$

tehát a határérték létezik.

22. tétel: Elemi függvények: e^z , alaptulajdonságok. (B). Elemi függvények: Ln(z) alaptulajdonságok. (B), sin(z), cos(z), hatványfüggvény.

Elemi függvények: e^z , alaptulajdonságok (B)

Az $f(z) = e^z$ függvényt a komplex számok esetén így értelmezhetjük:

$$e^z = e^{x+iy} = e^x(\cos(y) + i\sin(y))$$

Állítás $Az f(z) = e^z f g g v en nehány alaptulajdonsága$

- 1. Analitikus és $(e^z)' = e^z$
- 2. Tetszőleges két z_1 és z_2 komplex számra $e^{z_1+z_2}=e^{z_1}e^{z_2}$
- 3. Az e^z függvény $2\pi i$ szerint periodikus.

Bizonyítás 1. Fölhasználva a Cauchy-Riemann egyenleteket:

$$f(z) = e^z = e^{x+iy} = e^x(\cos(y) + i\sin(y))$$

ezért

$$u(x, y) = e^x \cos(y)$$
, $v(x, y) = e^x \sin(y)$

A megfelelő parciális deriváltak

$$u'_x(x,y) = e^x \cos(y)$$
, $u'_y(x,y) = -e^x \sin(y)$

$$v'_x(x,y) = e^x \sin(y)$$
, $v'_y(x,y) = e^x \cos(y)$

Tehát a függvény differenciálható és

$$f'(z) = u'_x(x, y) + iv'_x(x, y) = e^x(\cos(y) + i\sin(y)) = f(z)$$

- 2. Behelyettesítéssel közvetlenül látszik.
- 3. e^z periodicitása a trigonometrikus függvények periodicitásából következik: $e^z = e^x(\cos(y) + i\sin(y)) = e^x(\cos(y + 2\pi) + i\sin(y + 2\pi)) = e^{x+iy+2\pi i}$

Elemi függvények: Ln(z) alaptulajdonságok (B)

Az exponenciális függvény inverzét keressük. Mivel $f(z) = e^z$ értékkészletében a 0 nincsen benne, így ez nem lesz benne a logaritmusfüggvény értelmezési tartományában. Legyen $0 \neq w \in \mathbb{C}$, és keressük azt a z-t, melyre $w = e^z$. Ha w trigonometrikus alakja $w = \rho \cdot e^{i\theta}$, akkor

$$x = \ln(\rho)$$
, $y = \theta + 2k\pi$, $k \in \mathbb{Z}$

Mivel az exponenciális függvény 2π szerint periodikus, ezért a keresett w szám nem egyértelmű. Tehát:

$$ln(w) = ln(|w|) + i(arg(w) + 2k\pi), \quad k \in \mathbb{Z}$$

sokértékű függvény. A k = 0-hoz tartozó értéket főértéknek nevezzük, és jelölése

$$\operatorname{Ln}(w) = \operatorname{ln}(|w|) + i \operatorname{arg}(w)$$

Állítás

Az f(z) = ln(z) alaptulajdonságai

- 1. $e^{Ln(z)} = z$
- 2. Tetszőleges $z_1, z_2 \in \mathbb{C}$ esetén $\operatorname{Ln}(z_1 \cdot z_2) = \operatorname{Ln}(z_1) + \operatorname{Ln}(z_2)$
- 3. A logaritmus főértéke a 0-t kivéve mindenütt analitikus és

$$\frac{d}{dz}\operatorname{Ln}(z) = \frac{1}{z}$$

sin(z), cos(z), hatványfüggvény

A trigonometrikus függvények kiterjesztését komplex argumentumra a következőképp definiáljuk:

$$\sin(z) \coloneqq \frac{e^{iz} - e^{-iz}}{2i}$$
$$\cos(z) \coloneqq \frac{e^{iz} + e^{-iz}}{2}$$

Értelmezzük az $f(z) = z^{\lambda}$, $\lambda \in \mathbb{C}$ hatványfüggvényt az exponenciális és logaritmus függvény segítségével az alábbi módon:

$$z^{\lambda} := e^{\lambda \cdot \ln(z)}$$

23. tétel: **Harmonikus függvények** (B). Harmonikus társ. Komplex vonalintegrál, alaptulajdonságok. Integrál kiszámítása. **Cauchy-féle alaptétel.** Általánosítás.

Harmonikus függvények (B)

Definíció Legyen u(x,y) kétváltozós függvény, amely valamely $R \subset \mathbb{R}^2$ tartományon van értelmezve. Tegyük fel, hogy itt folytonos és kétszer differenciálható. Azt mondjuk, hogy u(x,y) *harmonikus*, ha

$$u_{xx}^{"}(x,y) + u_{yy}^{"}(x,y) = 0$$

teljesül az egész tartományon.

Definíció A *Laplace-operátor* egy $u: R \to \mathbb{R}$ kétszer differenciálható függvényhez rendel hozzá egy másik kétváltozós függvényt:

$$\Delta u \coloneqq u_{xx}^{"} + u_{yy}^{"}$$

Állítás Tegyük fel, hogy $f: T \to \mathbb{C}$ komplex függvény differenciálható. Ekkor kanonikus alakjában szereplő u(x, y) és v(x, y) függvények harmonikusak.

Bizonyítás A bizonyításban feltesszük, hogy u és v kétszer folytonosan differenciálhatóak. A differenciálhatóság miatt $u'_x = v'_y$ és $u'_y = -v'_x$. Az első azonosságot x szerint, a másodikat pedig y szerint deriválva a következőt kapjuk:

$$\begin{cases} u''_{xx} = v''_{yx} \\ u''_{yy} = -v''_{xy} \end{cases}$$
$$\Delta u = u''_{xx} + u''_{yy} = v''_{yx} - v''_{xy} = 0$$

Harmonikus társ

Állítás Ha u harmonikus függvény a T egyszeresen összefüggő tartományon, akkor létezik olyan $v: T \to \mathbb{R}$ harmonikus függvény, hogy az f(z) = u(x,y) + iv(x,y) komplex függvény differenciálható. Azt mondjuk, hogy ez a v az u függvény harmonikus társa.

Komplex vonalintegrál, alaptulajdonságok

Állítás (Ívhossz kiszámítása) Legyen L egy komplex Jordan görbe, melyről feltesszük, hogy sima. Ennek ívhossza:

$$s(L) = \int_{\alpha}^{\beta} \sqrt{{x'}^2(t) + {y'}^2(t)} dt$$

Tekintsünk egy $L \subset \mathbb{C}$ Jordan görbét, és egy ezen értelmezett f komplex függvényt. Értelmezni szeretnénk az

$$\int_L f(z) dz$$

vonalintegrált. Ehhez tekintsük a görbe egy felosztását. Az alappontokat jelölje

$$\alpha = t_0 < t_1 < \dots < t_n = \beta$$

A görbe megfelelő pontjait így jelöljük: $z_k=x_k+iy_k=\gamma(t_k),\ k=0,\ldots,n$

Legyen a k-adik ívdarab egy tetszőleges pontja ξ_k . A felosztáshoz tartozó közelítő összeg:

$$\sum_{k=1}^{n} (z_k - z_{k-1}) \cdot f(\xi_k)$$

Definíció A vonalintegrált az alábbi határérték definiálja, amennyiben létezik és véges:

$$\lim_{\substack{n\to\infty\\\delta_n\to 0}} \sum_{k=1}^n (z_k - z_{k-1}) \cdot f(\xi_k) = \int_L f(z) \ dz$$

ahol $\delta_n=\max(s(z_{k-1},z_k),k=1,...,n)$. Ha L zárt görbe, akkor a vonalintegrálra az alábbi jelölést használjuk:

$$\oint_L f(z) dz$$

Állítás A vonalintegrál alaptulajdonságai:

1. Lineáris művelet, azaz

$$\int_{L} (\alpha f(z) + \beta g(z)) dz = \alpha \int_{L} f(z) dz + \beta \int_{L} g(z) dz$$

2. Ha megfordítjuk a görbe irányítását, akkor a vonalintegrál (-1)-szeresére változik:

$$\int_{L} f(z) dz = -\int_{-L} f(z) dz$$

3. Ha az L görbe két részből áll, $L = L_1 + L_2$, akkor

$$\int_{L} f(z) \, dz = \int_{L_{1}} f(z) \, dz + \int_{L_{2}} f(z) \, dz$$

4. Ha ffolytonos függvény, akkor létezik az alábbi vonalintegrál:

$$\int_I f(z) dz$$

5. Ha f korlátos függvény, vagyis $|f(z)| \le M$, $\forall z \in L$, akkor

$$\left| \int_{L} f(z) \, dz \right| \le M \cdot s(L)$$

ahol s(L) a görbe ivhossza.

Integrál kiszámítása

Tétel Legyen az L görbe paraméteres megadása:

$$z(t) = x(t) + iy(t) = r(t) \cdot e^{i\theta(t)}, \quad t \in [\alpha, \beta]$$

Tegyük fel, hogy x, y illetve r, θ folytonosan differenciálhatók. Ekkor

$$\int_{L} f(z) dz = \int_{\alpha}^{\beta} f(z(t))z'(t) dt$$

$$= \int_{\alpha}^{\beta} f(x(t) + iy(t))(x'(t) + iy'(t)) dt$$

$$= \int_{\alpha}^{\beta} f(r(t) \cdot e^{i\theta(t)}) (r'(t) \cdot e^{i\theta(t)} + ir(t) \cdot e^{i\theta(t)}\theta'(t)) dt$$

Tétel

(Newton-Leibniz formula komplex vonalintegrálra) Legyen adott az $f:T\to\mathbb{C}$ függvény. Tegyük fel, hogy létezik olyan $F:T\to\mathbb{C}$ függvény, melyre minden z esetén F'(z)=f(z). Legyen A és B a tartomány két pontja. Ekkor

$$\int_{L} f(z) dz = F(B) - F(A)$$

minden olyan $L \subset T$ Jordan görbe mentén, melynek végpontjai A és B.

Cauchy-féle alaptétel

Tétel

(Cauchy-féle alaptétel vonalintegrálra) Legyen $T \subset \mathbb{C}$ egyszeresen összefüggő tartomány és ebben $G \subset T$ egy sima, zárt görbe. Tegyük fel hogy az $f: T \to \mathbb{C}$ függvény analitikus. Ekkor

$$\oint_G f(z) \ dz = 0$$

Általánosítás

Tétel

(Cauchy-féle alaptétel általánosítása) Legyen adott egy $T \subset C$ összefüggő tartomány, melynek határa a $G \subset T$ görbe. Feltesszük, hogy T nem egyszeresen összefüggő, jelölje G_1, \ldots, G_n a lyukakat körbevevő görbéket, melyekről felteszszük, hogy ugyanolyan irányításúak, mint G. Legyen $f: T \to \mathbb{C}$ analitikus függvény. Ekkor

$$\oint_G f(z) dz = \sum_{k=1}^n \oint_{G_k} f(z) dz$$

24. tétel: Cauchy-féle integrálformula. **Taylor sorfejtés analitikus függvényre** (B). Laurent sorfejtés. **Zérus és pólus.**

Cauchy-féle integrálformula

Tétel

(Cauchy-féle integrálformula) Legyen $T \subset \mathbb{C}$ egszeresen összefüggő tartomány, és $f:T \to \mathbb{C}$ analitikus függvény. ξ legyen tetszőleges belső pont T-ben. Legyen $G \subset T$ olyan zárt görbe, amelynek belseje is T-ben van, és a görbe körbeveszi ξ -t. Ekkor

$$f(\xi) = \frac{1}{2\pi i} \oint_G \frac{f(z)}{z - \xi} dz$$

Taylor sorfejtés analitikus függvényre (B)

Tétel

Legyen $f:T\to\mathbb{C}$ differenciálható z_0 egy környezetében. Ekkor ott Taylor sorba fejthető, és

$$f(z) = f(z_0) + \sum_{n=1}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n = \sum_{n=0}^{\infty} c_n (z - z_0)^n$$

ahol

$$c_n = \frac{1}{2\pi i} \oint_G \frac{f(z)}{(z - z_0)^{n+1}} dz$$

Tegyük fel, hogy f analitikus és $f(z_0) = 0$. Ekkor egy $(z - z_0)$ tényező kiemelhető, és

$$f(z) = (z - z_0)\widetilde{f}(z)$$

alakban írható, ahol \tilde{f} analitikus.

Laurent sorfejtés

Tétel

Tegyük fel, hogy f analitikus egy körgyűrűben, azaz egy

$$T = \{z : r < |z - z_0| < R\}$$

halmazon. Ekkor f ebben a körgyűrűben felírható a következő hatványsorként:

$$f(z) = \sum_{k=-\infty}^{\infty} c_k (z - z_0)^k$$

ahol

$$c_k = \frac{1}{2\pi i} \oint_G \frac{f(z)}{(z - z_0)^{k+1}} dz$$

és G egy olyan z_0 -t körbevevő zárt görbe, amely a fenti T tartomány része. Ez az ún. Laurent-sor.

Zérus és pólus

Definíció Ha $f(z) = (z - z_0)^n \tilde{f}(z)$, $\tilde{f}(z_0) \neq 0$ valamely $n \geq 1$ egész számra, akkor azt mondjuk, hogy z_0 n-szeres (vagy n-ed rendű) zérusa f-nek.

Tétel $Ha z_0 az f$ analitikus függvény zérusa, akkor két eset lehetséges.

1. Van z_0 -nak olyan környezete, ahol f(z) = 0 minden z-re.

2. Van z_0 -nak olyan környezete, ahol $f(z) \neq 0$ minden $z \neq z_0$ -ra.

Definíció Tegyük fel, hogy

$$f(z) = \frac{1}{(z - z_0)^n} h(z)$$

alakban írható, ahol h(z) a z_0 egy környezetében olyan analitikus függvény, melyre $h(z_0) \neq 0$. Azt mondjuk, hogy z_0 n-szeres p'olusa f-nek.

Feladatok a komplex függvénytan témaköréből

Az alábbi feladatok minták. A vizsga során egy hasonló típusú feladatot kell megoldani.

Komplex számok, ismétlés

Végezze el az alábbi számításokat:

5.1.
$$i^{3/4}$$

5.2.
$$e^{1-i\pi/4}$$

5.3.
$$(1+i)^3$$

5.4.
$$(1-i)^{1/3}$$

5.5.
$$\sum_{n=1}^{3} (1+i)^n$$

5.6.
$$\sum_{n=1}^{6} i^n$$

5.7.
$$\frac{1+2i}{1-i}$$

5.8.
$$\sum_{n=0}^{6} \left(\frac{i}{2}\right)^n$$

Komplex függvények értelmezése

Határozzuk meg, hogy az alábbi f függvények a megadott D tartománynak mit feleltetnek meg. Rajzoljuk le az eredeti D tartományt és ennek f(D) képét is. (Használjuk fel, hogy analitikus függvény esetén tartomány határának képe a képtartomány határa lesz.)

5.9.
$$f(z) = 2z, D = \{z : |z| = 1\}$$

5.10.
$$f(z) = \frac{1}{z}, D = \{z = x + iy : y > 0\}$$

5.11.
$$f(z) = (1+i)z, D = \{z : \text{Im}(z) > 0\}$$

5.12.
$$f(z) = 1 + iz$$
, $D = \{z : \text{Re}(z) > 0 \text{ és } 0 < \text{Im}(z) < 2\}$

5.13.
$$f(z) = -iz - 1, D = \{z : |z| < 1\}$$

5.14.
$$f(z) = (-1+i)z, D = \{z : |z| > 1\}$$

Határozzuk meg, hogy az $f(z) = \frac{1}{z}$ leképezés a komplex sík bizonyos tartományainak mit feleltet meg:

5.15.
$$D_1 = \{z : 0 < \text{Re}(z)\}$$

5.16.*
$$D_2 = \{z : \text{Re}(z) > 1, \text{Im}(z) > 0\}$$

5.17.*
$$D_3 = \{z : \operatorname{Im}(z) > 0 \}, c > 0$$

Komplex függvények differenciálhatósága

Vizsgáljuk meg, vajon differenciálhatók-e az alábbi komplex változós függvények. Ahol csak a kanonikus alak van megadva, próbáljuk meg f(z)-t közvetlenül z függvényében megadni.

5.18.
$$f(z) = y^3 - 3x^{2y} + i(x^3 - 3xy^2)$$

5.19.
$$f(z) = \frac{1}{z}$$

5.21.
$$f(z) = \text{Re}(z)$$

5.23.
$$f(z) = \overline{z}^2$$

5.25.
$$f(z) = e^{x}(\cos(y) - i\sin(y))$$

5.27.
$$f(z) = x^3 - (y-1)^3i$$

5.29.
$$f(z) = |z|$$

5.20.
$$f(z) = \frac{1}{z^2}$$

5.22.
$$f(z) = z^2$$

5.24.
$$f(z) = 2x + xy^2i$$

5.26.
$$f(z) = z^3$$

5.28.
$$f(z) = 1 - iz$$

Harmonikus függvények

Vizsgáljuk meg, harmonikusak-e a következő függvények. Ha igen, keressük meg harmonikus társukat.

5.30.
$$u(x,y) = 2x(1-y)$$

5.31.
$$u(x,y) = 2x - x^3 + 3xy^2$$

5.32.
$$u(x,y) = sh(x) sin(x)$$

5.33.
$$v(x, y) = e^x \sin(y)$$

5.34.
$$v(x, y) = -\sin(x) \cosh(y)$$

5.35. Milyen C paraméter esetén lesz v(x, y) egy analitikus függvény képzetes része?

$$v(x,y) = Cx^2 - y^2 + 2y$$

A kapott C paraméter mellett határozza meg harmonikus társát.

5.36. Milyen C paraméter esetén lesz az alábbi függvény egy analitikus függvény valós része:

$$u(x,y) = Cx^2y - y^3$$

Számítsa ki a megfelelő analitikus függvény deriváltját a $z_0 = 1 + i$ pontban, u(x, y) harmonikus társának meghatározása nélkül.

5.37. Igazolja, hogy alábbi függvény egy analitikus függvény *képzetes része*:

$$v(x, y) = \operatorname{ch}(x) \cos(y)$$

Számítsa ki a megfelelő analitikus függvény deriváltját a $z_0 = i$ pontban, v(x, y) harmonikus társának meghatározása nélkül.

5.38. Igazoljuk, hogy az alábbi függvény egy analitikus függvény *valós része*:

$$u(x,y) = (x-2)(y+1)$$

Számítsa ki a megfelelő analitikus függvény deriváltját a $z_0 = 1 - i$ pontban, u(x, y) harmonikus társának meghatározása nélkül.

5.39. Milyen *C* paraméter esetén lesz az alábbi függvény egy analitikus függvény *valós része*:

$$u(x,y) = \ln(x^2 + Cy^2)$$

Számítsa ki a megfelelő analitikus függvény deriváltját a $z_0 = i$ pontban, u(x, y) harmonikus társának meghatározása nélkül.

Komplex vonalintegrál

5.40.

$$\int_{\Gamma} (z^2 + 1) dz = ?$$

ha Γ a $z_1=0$ és $z_2=1+i$ pontokat összekötő szakasz, $z_1=0$ -ból indítva.

5.41. Integráljuk az $f(z) = \frac{z+2}{z}$ függvényt a

1. $\Gamma_1 = \{z = 2e^{i\varphi} : 0 \le \varphi \le \pi\}$ mentén, növekvő φ irányban.

2. $\Gamma_2 = \{z = 2e^{i\varphi} : 0 \ge \varphi \ge -\pi\}$ mentén, csökkenő φ irányban befutva.

3. $\Gamma_3 = \{z = 2e^{i\varphi} : -\pi \le \varphi \le \pi\}$ mentén, növekvő φ irányban.

5.42. Legyen Γ a $z_0=1$ középpontú egységkörnek az a fele, ahol a képzetes rész nemnegatív.

$$\int_{\Gamma} (z-1)dz = ?$$

5.43. Integráljuk az f(z) = z - 1 függvényt, Γ legyen a valós tengely $0 \le x \le 2$ szakasza növekvő x irányban!

5.44. A $\Gamma = \{z : |z - 1| = 2\}$ zárt görbe mentén számoljuk ki az alábbi integrálokat:

(a)
$$\oint_{\Gamma} \frac{e^z}{z-1} dz = ?$$

(b)
$$\oint_{\Gamma} \frac{e^z}{(z-1)^3} dz = ?$$

(Ötlet: Alkalmazzuk a Cauchy-féle integrálformulát.)

5.45. Integráljuk az $f(z) = e^z$ függvényt a $z_1 = i\pi$, $z_2 = 1$ pontokat összekötő szakasz mentén, z_1 -ből indulva.

Elemi függvények kiterjesztése

5.46.
$$\ln(1+i) = ?$$

5.47.
$$ln(1-i) = ?$$

5.48.
$$\ln(-i) = ?$$

5.49.
$$(i+1)^i = ?$$

5.50.
$$2^{1+i} = ?$$

5.51.
$$2^{1-i} = ?$$

5.52.
$$ln(-1) = ?$$

5.53.
$$i^{1-i} = ?$$

5.54.
$$e^{1+i} = ?$$

5.55.
$$e^{1-i} = ?$$

5.56.
$$\sin(i) = ? \sin(1+i) = ?$$

5.57.
$$\cos(i) = ? \cos(1-i) = ?$$

Jegyzetek

Évközi eredmény

	Evkozi eredineny						
		maximális pontszám	elért pontszám				
	1. házi feladat zárthelyi dolgozat	ázi feladat zárthelyi dolgozat 10					
	2. házi feladat zárthelyi dolgozat	10					
Házi feladat	3. házi feladat zárthelyi dolgozat	10					
zárthelyi	4. házi feladat zárthelyi dolgozat	10					
dolgozatok	5. házi feladat zárthelyi dolgozat	10					
	Összesen	50					
	I. Elért						
	1. nagy zárthelyi dolgozat	50					
Nagy zárthelyi	2. nagy zárthelyi dolgozat	50					
dolgozatok	Összesen	100					
	II. Elért	pontszám					
	I. + II. Az évközi dolgozatok pontszáma	150					

Kis zárthelyi eredmények

dátum	febr. 11.	febr. 18.	febr. 25.	márc. 4.	márc. 18.	márc. 25.	ápr. 1.	ápr. 8.	ápr. 29.	máj. 13.	máj. 20./1	máj. 20./2	Σ
pont													

Gyakorlati jegy

Érdemjegy	ponthatárok
1 (elégtelen)	0 - 60
2 (elégséges)	61 – 83
3 (közepes)	84 – 106
4 (jó)	107 – 128
5 (jeles)	129 – 150

Elért érdemjegy

Jegytáblázat

		1	2	3	4	5	másik jegy
e g	1	1	1	1	1	1	
y	2	1	2	2	3	3	
k	3	1	2	3	3	4	
j e	4	1	3	3	4	4	
g y	5	1	3	4	4	5	

Ha a két jegy alapján kapott jegy szürke hátterű mezőbe esik, akkor amennyiben a kis zárthelyik összpontszáma eléri a húszat, az eggyel jobb osztályzat is lehetséges.