NOI2024 模拟赛

NOI2024 Simulation

时间: 2024年2月21日

决斗	炸飞机	肿胃数
传统题	传统题	传统题
duel	aircraft	nediam
duel	aircraft	nediam
duel.in	aircraft.in	nediam.in
duel.out	aircraft.out	nediam.out
1 秒	2 秒	3 秒
512 MB	1024 MB	512 MB
10	7	10
是	否	是
	传统题 duel duel duel.in duel.out 1 秒 512 MB	传统题 传统题 duel aircraft duel aircraft duel.in aircraft.in duel.out aircraft.out 1 秒 2 秒 512 MB 1024 MB 10 7

提交源程序文件名

对于 C++ 语言	duel.cpp	aircraft.cpp	nediam.cpp
-----------	----------	--------------	------------

编译选项

对于 C++ 语言	-02 -std=c++14
-----------	----------------

注意事项(请仔细阅读)

- 1. 文件名(程序名和输入输出文件名)必须使用英文小写。
- 2. C/C++ 中函数 main() 的返回值类型必须是 int,程序正常结束时的返回值必须 是 0。
- 3. 提交的程序代码文件的放置位置请参考各省的具体要求。
- 4. 因违反以上三点而出现的错误或问题,申诉时一律不予受理。
- 5. 若无特殊说明,结果的比较方式为全文比较(过滤行末空格及文末回车)。
- 6. 选手提交的程序源文件必须不大于 100KB。
- 7. 程序可使用的栈空间内存限制与题目的内存限制一致。
- 8. 只提供 Linux 格式附加样例文件。
- 9. 评测在当前最新公布的 NOI Linux 下进行,各语言的编译器版本以此为准。

NOI2024 模拟赛 1 决斗 (duel)

决斗 (duel)

【题目描述】

n 个人进行一场 CF Duel 比赛, 比赛流程如下:

- 1. n 个人排成一列,第 i 个人的初始能力值为 a_i 。
- 2. 裁判每次选出相邻的两个人进行决斗,设两个人的能力值为x和y,那么:
 - 如果 $x \neq y$, 那么能力值大的人获胜。
 - 如果 x = y, 那么裁判指定一个人获胜。
 - 败者从队列中移除,胜者的能力值增加1。
- 3. 进行 n-1 次决斗后,仅剩下的一个人为最终胜者。

对于一个长度为 n 序列 a,我们定义 f(a) 是一个长度为 n 的序列,满足:

$$\forall 1 \leq i \leq n : f(a)_i = \begin{cases} 1 &, i \text{ 可能为最终胜者} \\ 0 &, i \text{ 不可能为最终胜者} \end{cases}$$

其中,"i 可能为最终胜者"表示: 存在一种安排选手决斗顺序以及谁获胜(对于 x = y 的情形)的方式,使得i 为最终胜者。

给定 n 以及一个长度为 n 的序列 c,以及 n 个集合 S_1, \ldots, S_n ,计数有多少个满足如下条件的长度为 n 的序列 a:

$$\forall 1 \le i \le n : a_i \in S_i \land (c_i = 2 \lor f(a)_i = c_i)$$

答案对 998244353 取模。

【输入格式】

从文件 duel.in 中读入数据。

第一行两个整数 n, m。

第二行 n 个整数表示 c_1, c_2, \ldots, c_n 。

接下来 n 行,第 i 行一个长度为 m 的 01 串 s_i ,满足 $\forall 1 \leq j \leq m: s_{i,j} = [j \in S_i]$ 。

【输出格式】

输出到文件 duel.out 中。

输出一行一个整数表示答案。

NOI2024 模拟赛 1 决斗 (duel)

【样例 1 输入】

```
1 5 5
2 0 1 2 2 2
3 10100
4 01000
5 01000
6 00010
7 00001
```

【样例 1 输出】

1 1

【样例1解释】

可能的序列 a 有两种: [1,2,2,4,5] 或 [3,2,2,4,5]。 可以计算得到: f([1,2,2,4,5]) = [0,1,1,1,1], f([3,2,2,4,5]) = [1,1,1,1,1]。

【样例 2】

见选手目录下的 duel/duel2.in 与 duel/duel2.ans。 该样例满足测试点 1 的限制。

【样例 3】

见选手目录下的 duel/duel3.in 与 duel/duel3.ans。 该样例满足测试点 5,6 的限制。

【样例 4】

见选手目录下的 duel/duel4.in 与 duel/duel4.ans。 该样例满足测试点 8,9,10 的限制。

【数据范围】

对于所有数据, $1 \le n \le 30$, $1 \le m \le 40$, $0 \le c_i \le 2$ 。

NOI2024 模拟赛 1 决斗 (duel)

测试点编号	$n \leq$	$m \leq$	特殊限制		
1, 2	5	5	无		
3,4			$\prod_{i=1}^{n} S_i \le 10^7$		
5,6	30	40	$c_1 = 1, \forall 2 \le i \le n : c_i = 2$		
7	30		$\exists 1 \le i \le n : c_i = 1 \land \forall j \ne i : c_j = 2$		
8, 9, 10			无		

NOI2024 模拟赛 2 炸飞机 (aircraft)

炸飞机 (aircraft)

【题目背景】

《炸飞机》是一种推理游戏,主要通过炸取区格得到的信息"空,伤,沉"来判断对方飞机的摆放位置,最先将对方飞机击沉的人获胜。

——百度百科

【题目描述】

比起如何炸飞机,小 ♠ 更加关心如何把飞机铺满整个棋盘。

总共有 n 个棋盘,第 i 个棋盘是一个长为 a_i ,宽为 k 的矩形,被均匀分成了 $a_i \times k$ 个格子。有四种飞机,分别为 A,B,C,D 型,如图:

图 1: 四种类型的飞机

组成飞机的每一个格子与棋盘上一个格子大小相同。飞机可以进行旋转或翻转。将 飞机放进棋盘时,要求飞机的每一个格子都与棋盘上的某个格子完全重合,并且不同的 飞机不能相交。

图 2: 一种 6×3 的棋盘的放置方案

然而,实际游戏时,小 ♠ 只能使用四种飞机的一个子集。

NOI2024 模拟赛 2 炸飞机 (aircraft)

现在小 ♠ 关心每一个棋盘有多少种放飞机的方式,满足棋盘的每一个格子都被一个 飞机覆盖。两种放飞机方式不同当且仅当存在两个相邻格子,在一种方式中两个格子属 于同一个飞机,而在另一种方式中不属于(棋盘不能旋转,即旋转后相同不算相同)。

游戏是多变的,所以你需要顺次处理 q 个事件,每个事件形如:

- 1. 给定 l, r, x,对于 $\forall l \leq i \leq r$,令 $a_i \leftarrow a_i + x$ 。
- 2. 给定 l, r, 记 f(i) 表示第 i 个棋盘有多少种放飞机的方式,求 $\sum_{i=l}^{r} f(i) \mod (10^9 + 7)$ 。

【输入格式】

从文件 aircraft.in 中读入数据。

第一行一个正整数 k。

第二行一个字符串 s,保证其为 <u>ABCD</u> 的子序列,字母 α 在 s 内就代表 α 型飞机可以使用。

第三行两个正整数,n,q。

第四行 n 个正整数表示初始的 a_1, a_2, \ldots, a_n 。

接下来 q 行, 首先一个整数 o。

- $\Xi o = 1$, 接下来三个正整数 l,r,x, 代表一个第一类事件。

【输出格式】

输出到文件 aircraft.out 中。

对于每个第二类事件,输出一行一个整数表示答案。

【样例 1 输入】

```
1 2 ABD 3 3 3 4 1 1 2 5 2 1 3 6 1 2 3 2 7 2 1 2
```

NOI2024 模拟赛 2 炸飞机 (aircraft)

【样例 2 输出】

12

1

2 28

【样例 2 解释】

对于第一个事件, 三个棋盘长度分别为 1,1,2, 答案为 f(1)+f(1)+f(2)=2+2+8=12。

对于第三个事件,两个棋盘长度分别为 1,3,答案为 f(1) + f(3) = 2 + 26 = 28。

【样例 2】

见选手目录下的 aircraft/aircraft2.in 与 aircraft/aircraft2.ans。

【样例 3】

见选手目录下的 aircraft/aircraft3.in 与 aircraft/aircraft3.ans。

【数据范围】

对于所有数据,s 为 <u>ABCD</u> 的非空子序列, $1 \le k \le 6$, $1 \le n \le 2 \times 10^4$, $1 \le q \le 10^4$, $1 \le a_i, x \le 10^{18}$, $1 \le l \le r \le n$, $o \in \{1, 2\}$ 。

子任务编号	子任务分值	$n \leq$	$q \leq$	$k \leq$	特殊限制	
1	6	2×10^4	10^4		$s = \underline{\mathbf{A}}$	
2	10	2 × 10) 10	6	$a_i \leq 10$,没有第一类事件	
3	18	100	100			
4	13			1		
5	11	2×10^4	2×10^4	10^4	4	无
6	19			10	5	
7	23			6		

NOI2024 模拟赛 3 肿胃数 (nediam)

肿胃数 (nediam)

【题目背景】

多年以后,面对残缺的序列 a,小 \clubsuit 将会回想起他写下 Nediam 函数的那个遥远的下午。

【题目描述】

14 end

对于长度为 k 的序列 A,定义 A 的中位数为 A 的第 $\left\lfloor \frac{k+1}{2} \right\rfloor$ 小值。 小 \clubsuit 曾写了一份求中位数的程序(序列下标从 0 开始):

Algorithm 1: A fake algorithm to get the median of a sequence.

```
Input: An sequence A
   Output: The fake median of sequence A
1 function Sort(A):
       return The sequence of A sorted in non-decreasing order.
3 end
 4 function Nediam(A):
       n \leftarrow |A|;
       if n \leq 2 then
 6
           return \min\{x \mid x \in A\};
 7
       end
 8
      tl \leftarrow |(n-1)/3| + 1;
      tr \leftarrow |(2n-1)/3| + 1;
       c \leftarrow [\mathsf{Nediam}(A[0:tl-1]), \mathsf{Nediam}(A[tl:tr-1]), \mathsf{Nediam}(A[tr:n-1])];
11
       c' \leftarrow \mathsf{Sort}(c);
12
       return c'[1];
13
```

显然这份程序求的不是中位数,我们把 Nediam(A) 称为序列 A 的"肿胃数"。

某天,小 \clubsuit 拿到了一个序列 a,他惊讶地发现序列 a 的肿胃数和中位数是相等的!然而,时过境迁,小 \clubsuit 早已将序列某些位置的值忘却,但是他还记得序列 a 的每个元素都是 [0,m) 中的整数。

现在给定 n, m,求有多少个可能的序列 a,使得 a 的肿胃数与中位数相等。答案对 $10^9 + 7$ 取模。

NOI2024 模拟赛 3 肿胃数 (nediam)

【输入格式】

从文件 nediam.in 中读入数据。

本题有多组测试数据。

第一行一个整数 T 表示测试数据组数。

对于每一组数据:

第一行两个整数 n, m。

第二行 n 个整数 $a_0, a_1, \ldots, a_{n-1}$ 。 若 $a_i = -1$ 则表示小 \clubsuit 忘了 i 位置的值。

【输出格式】

输出到文件 nediam.out 中。

对于每组测试数据,输出一行一个整数表示答案。

【样例 1 输入】

```
1 3
2 6 5
3 -1 1 4 5 1 4
4 7 9
5 1 9 -1 9 8 -1 0
6 12 100000
7 1 99834 56275 43172 -1 -1 756 -1 2345 1078 99 -1
```

【样例 1 输出】

```
1 2 2 46 851501245
```

【样例 2】

见选手目录下的 nediam/nediam2.in 与 nediam/nediam2.ans。

【样例 3】

见选手目录下的 nediam/nediam3.in 与 nediam/nediam3.ans。

NOI2024 模拟赛 3 肿胃数 (nediam)

【样例 4】

见选手目录下的 nediam/nediam4.in 与 nediam/nediam4.ans。

【样例 5】

见选手目录下的 nediam/nediam5.in 与 nediam/nediam5.ans。

【样例 6】

见选手目录下的 nediam/nediam6.in 与 nediam/nediam6.ans。

【样例7】

见选手目录下的 nediam/nediam7.in 与 nediam/nediam7.ans。

【数据范围】

对于所有数据, $1 \le T \le 100$, $1 \le n \le 3^8 = 6561$, $1 \le m \le 10^9$, $a_i \in \{-1\} \cup [0, m)$ 。 记 $k = \sum_{i=0}^{n-1} [a_i = -1]$ 。

测试点编号	$T \leq$	$n \leq$	$k \leq$	$m \leq$
1	100		5	20
2	100	81	8	100
3			12	100
4, 5	10	$3^5 = 243$	20	5×10^4
6, 7		$3^6 = 729$	20	10^{9}
8, 9, 10	5	$3^8 = 6561$	30	10