Ángel Altan 1031222

Juan Diego Gutierrez 1155222

Batería de Pruebas 2

E = épsilon

Prueba 1: Autómata Finito no determinista que acepta palabras que contienen un numero par de 0s o contiene exactamente dos 1s.

Correctas:

0111011

 $1\rightarrow \epsilon \rightarrow 2\rightarrow 0\rightarrow 3\rightarrow 1\rightarrow 3\rightarrow 1\rightarrow 3\rightarrow 1\rightarrow 3\rightarrow 0\rightarrow 2\rightarrow 1\rightarrow 2\rightarrow 1\rightarrow 2$

0001010

1>e>4>0>4>0>4>0>4>1>5>0>5>1>6>0>6

Completez:

11100011

1>**\epsilon** +2 +1 +2 +1 +2 +1 +2 +1 +2 +0 +3 +0 +3 +0 +3 +1 +3 +1 +3

En este caso no llega a un estado final.

 $1\rightarrow \epsilon \rightarrow 4\rightarrow 1\rightarrow 5\rightarrow 1\rightarrow 6$

En este caso no se terminan de consumir los caracteres de la palabra.

10001100

1>e>2>1>2>0>3>0>2>0>3>1>3>1>3>1>3>0>2>0>3

En este caso no llega a un estado final.

1→**ε**→4→**1**→5→**0**→5→**0**→5→**0**→5→**1**→6

En este caso no se terminan de consumir los caracteres de la palabra.

Prueba 2: Autómata Finito no determinista que acepta palabras que contienen un numero par de Ws o y concatenado contiene Ys que son divisibles dentro de 3 o viceversa.

Correctas:

wwwyyy

 $1\rightarrow \epsilon\rightarrow 2\rightarrow w\rightarrow 3\rightarrow w\rightarrow 2\rightarrow w\rightarrow 3\rightarrow w\rightarrow 2\rightarrow \epsilon\rightarrow 4\rightarrow \epsilon\rightarrow 1\rightarrow \epsilon\rightarrow 5\rightarrow y\rightarrow 7\rightarrow y\rightarrow 6\rightarrow y\rightarrow 5\rightarrow \epsilon\rightarrow 4$

yyywwyyy

Completez:

yyywwyy

 $1\rightarrow \epsilon \rightarrow 5 \rightarrow y \rightarrow 7 \rightarrow y \rightarrow 6 \rightarrow y \rightarrow 5 \rightarrow \epsilon \rightarrow 4 \rightarrow \epsilon \rightarrow 1 \rightarrow \epsilon \rightarrow 2 \rightarrow w \rightarrow 3 \rightarrow w \rightarrow 2 \rightarrow \epsilon \rightarrow 4 \rightarrow \epsilon \rightarrow 1 \rightarrow \epsilon \rightarrow 5 \rightarrow y \rightarrow 7 \rightarrow y \rightarrow 6$

En este caso no llega a un estado final.

wwwyyyw

 $1\rightarrow \epsilon\rightarrow 2\rightarrow w\rightarrow 3\rightarrow w\rightarrow 2\rightarrow w\rightarrow 2\rightarrow e\rightarrow 4\rightarrow e\rightarrow 1\rightarrow e\rightarrow 5\rightarrow y\rightarrow 7\rightarrow y\rightarrow 6\rightarrow y\rightarrow 5\rightarrow e\rightarrow 4\rightarrow e\rightarrow 1\rightarrow e\rightarrow 2\rightarrow w\rightarrow 3$

En este caso no llega a un estado final.

Prueba 3: Numero par de cs y o seguido de la cadena ab o viceversa.

Correctas:

ccababcc

ababcccc

Completez:

ababccccc

 $1+\varepsilon+5+a+7+b+5+a+7+b+5+\varepsilon+4+\varepsilon+1+\varepsilon+2+c+3+c+2+c+3$

En este caso no llega a un estado final.

ccababbcc

 $1\rightarrow \epsilon \rightarrow 2\rightarrow c\rightarrow 3\rightarrow c\rightarrow 2\rightarrow \epsilon\rightarrow 4\rightarrow \epsilon\rightarrow 1\rightarrow \epsilon\rightarrow 5\rightarrow a\rightarrow 7\rightarrow b\rightarrow 5\rightarrow a\rightarrow 7\rightarrow b\rightarrow 5$

El autómata no reconoce la caden bb.

Prueba 4: Cadenas que inicien con b luego contengan cualquier combinación entre a o b y terminen en b. De igual forma al iniciar con a y terminar con a.

Correctas:

aaabba

 $0\rightarrow \epsilon \rightarrow 1\rightarrow a\rightarrow 2\rightarrow a\rightarrow 2\rightarrow a\rightarrow 2\rightarrow b\rightarrow 2\rightarrow b\rightarrow 2\rightarrow a\rightarrow 3\rightarrow \epsilon\rightarrow 7$ Si es aceptada ya que termina en final

baaaaab

 $0\rightarrow \epsilon\rightarrow 4\rightarrow b\rightarrow 5\rightarrow a\rightarrow 5\rightarrow a\rightarrow 5\rightarrow a\rightarrow 5\rightarrow a\rightarrow 5\rightarrow a\rightarrow 5\rightarrow b\rightarrow 6\rightarrow \epsilon\rightarrow 7$ Si es aceptada ya que es final

Completez:

aababababb

 $0\rightarrow \epsilon\rightarrow 1\rightarrow a\rightarrow 2\rightarrow a\rightarrow 2\rightarrow b\rightarrow 2\rightarrow a\rightarrow 2\rightarrow b\rightarrow 2\rightarrow a\rightarrow b\rightarrow 2\rightarrow b\rightarrow 2\rightarrow b\rightarrow 2\Rightarrow i$ comienza con a debe terminar con a, no llega a un estado final.

bbbbbba

 $0\rightarrow \varepsilon\rightarrow 4\rightarrow b\rightarrow 5\rightarrow b\rightarrow 5\rightarrow b\rightarrow 5\rightarrow b\rightarrow 5\rightarrow a\rightarrow 5$

no puede terminar en b ya que comenzó con a, no llega a estado final

Prueba 5: Cadenas con cualquier combinación de a o b, que posteriormente termina en ac.

Correctas:

ababac

aaabbbac

Si es aceptada ya que es final

Completez:

abababbaa

baaaab				
	3→b→4→ ε →0→ε→ ; →2→a→4→ ε →0→			