Assignment 2 MAT 315

Q1a: Since a|b, we have for some $k \in \mathbb{Z}$, ak = z, and since b|c for some $l \in \mathbb{Z}$, lb = c. Therefore, c = lb = lka and so a|c.

Q1b: Since a|b, we have for some $k \in \mathbb{Z}$, ak = z, and since c|d we have for some $l \in \mathbb{Z}$, lc = d. Therefore, we have bd = (ka)(lc) = (kl)(ac) and so we conclude that ac|bd

Q1c: Let $m \neq 0$. We note that $a|c \iff ak = b$ for some $k \in Z \iff mak = bm \iff ma|mb$

Q1d: Since d|a, for some k, dk = a. Since $a \neq 0$, we have that $k \neq 0$. So thus

$$|dk| = |a| \implies |k||d| = |a| \implies |d| \le |a|$$

With equality holding when |k| = 1