Package 'MultiwayRegression'

October 12, 2022

Type Package

Version 1.2

Title Perform Tensor-on-Tensor Regression

Date 2019-05-28
Author Eric F. Lock
Maintainer Eric F. Lock <elock@umn.edu></elock@umn.edu>
Description Functions to predict one multi-way array (i.e., a tensor) from another multi-way array, using a low-rank CANDECOMP/PARAFAC (CP) factorization and a ridge (L_2) penalty [Lock, EF (2018) <doi:10.1080 10618600.2017.1401544="">]. Also includes functions to sample from the Bayesian posterior of a tensor-on-tensor model.</doi:10.1080>
License GPL-3
Imports MASS
Depends $R(>= 2.10.0)$
NeedsCompilation no
Repository CRAN
Date/Publication 2019-05-31 16:10:03 UTC
R topics documented:
MultiwayRegression-package
ctprod
rrr
rrrBayes
SimData
X 5
Y 6
Index 7

2 ctprod

MultiwayRegression-package

Perform tensor-on-tensor regression

Description

Functions to predict one multi-way array (i.e., a tensor) from another multi-way array, using a low-rank CANDECOMP/PARAFAC (CP) factorization and a ridge (L_2) penalty. Also includes functions to sample from the Bayesian posterior of a tensor-on-tensor model.

Details

Package: MultiwayRegression-package

Type: Package Version: 1.2

Date: 2019-05-28 License: GPL-3

Author(s)

Eric F. Lock

Maintainer: Eric F. Lock <elock@umn.edu>

References

Lock, E. F. (2018). Tensor-on-tensor regression. Journal of Computational and Graphical Statistics, 27 (3): 638-647, 2018.

Examples

```
data(SimData) ##loads simulated X: 100 x 15 x 20 and Y: 100 x 5 x 10 Results <- rrr(X,Y,R=2) ##Fit rank 2 model with no regularization Y_pred <- ctprod(X,Results\$B,2) ##Array of fitted values
```

ctprod

Compute the contracted tensor product between two multiway arrays.

Description

Computes the contracted tensor product between two multiway arrays.

rrr 3

Usage

```
ctprod(A,B,K)
```

Arguments

A	An array of dimension P_1 x x P_L x R_1 x x R_K.
В	An array of dimension R_1 x x R_K x Q_1 x x Q_M.
K	A positive integer, giving the number of modes to collapse.

Value

An array C of dimension P_1 x ... x P_L x Q_1 x ... x Q_M, given by the contracted tensor product of A and B.

Author(s)

Eric F. Lock

rrr

Penalized reduced rank regression for tensors

Description

Fits a linear model to estimate one multi-way array from another, under the restriction that the coefficient array has given PARAFAC rank. By default, estimates are chosen to minimize a least-squares objective; an optional penalty term allows for \$L_2\$ regularization of the coefficient array.

Usage

```
rrr(X,Y,R=1,lambda=0,annealIter=0,convThresh=10^(-5), seed=0)
```

Arguments

Χ	A predictor array of dimension N x P_1 x x P_L.		
Υ	An outcome array of dimension N x Q_1 x X Q_M.		
R	Assumed rank of the P_1 x x P_L x Q_1 x x Q_M coefficient array.		
lambda	Ridge (\$L_2\$) penalty parameter for the coefficient array.		
annealIter	Number of tempering iterations to improve initialization		
convThresh	Converge threshold for the absolute difference in the objective function between two iterations		
seed	Random seed for generation of initial values.		

rrrBayes

V	al	u	e

U	List of length L. U[[1]]: P_1 x R gives the coefficient basis for the l'th mode of X.
V	List of length M. V[[m]]: Q_m x R gives the coefficient basis for the m'th mode of Y.
В	Coefficient array of dimension $P_1 \times \times P_L \times Q_1 \times \times Q_M$. Given by the CP factorization defined by U and V.
sse	Vector giving the sum of squared residuals at each iteration.
sseR	Vector giving the value of the objective (sse+penalty) at each iteration.

Author(s)

Eric F. Lock

References

Lock, E. F. (2018). Tensor-on-tensor regression. Journal of Computational and Graphical Statistics, 27 (3): 638-647, 2018.

Examples

```
data(SimData) ##loads simulated X: 100 \times 15 \times 20 and Y: 100 \times 5 \times 10 Results <- rrr(X,Y,R=2) ##Fit rank 2 model with no regularization Y_pred <- ctprod(X,Results$B,2) ##Array of fitted values
```

rrrBayes	Bayesian inference for reduced rank regression	

Description

Performs Bayesian inference for a linear model to estimate one multi-way array from another, under the restriction that the coefficient array has given PARAFAC rank.

Usage

```
rrrBayes(X,Y,Inits,X.new,R=1,lambda=0,Samples=1000, thin=1,seed=0)
```

Arguments

Χ	A predictor array of dimension N x P_1 x x P_L for the training data.		
Υ	An outcome array of dimension N x Q_1 x x Q_M for the training data.		
Inits	Initial values. Inits\$U gives a list of length L where Inits\$U[[1]]: P_l x R gives the coefficient basis for the l'th mode of X. Inits\$V gives a list of length M where Inits\$V[[m]]: Q_m x R gives the coefficient basis for the m'th mode of Y. Can be the output of rrr().		

SimData 5

X.new	Predictor array of dimension M x P_1 x x P_L. Each row gives the entries for a new P_1 x x P_L predictor observation in vectorized form.
R	Assumed rank of the P_1 x x P_L x Q_1 x x Q_M coefficient array.
lambda	Ridge (\$L_2\$) penalty parameter for the coefficient array, inversely proportional to the variance of the coefficients under a Gaussian prior.
Samples	Length of the MCMC sampling chain.
thin	Thinning value, for thin=j, only every j'th observation in the MCMC chain is saved.
seed	Random seed for generation of initial values.

Value

An array of dimension (Samples/thin) $x M x Q_1 x ... x Q_M$, giving (Samples/thin) samples from the posterior predictive of the outcome array predicted by Xmat.new.

Author(s)

Eric F. Lock

References

Lock, E. F. (2018). Tensor-on-tensor regression. Journal of Computational and Graphical Statistics, 27 (3): 638-647, 2018.

Simulated multi-way data for prediction

Description

SimData

Simulated multi-way data for prediction.

Format

- X: predictor array of dimension 100 x 15 x 20
- Y: outcome array of dimension 100 x 5 x 10

X Simulated multi-way data for prediction

Description

Simulated multi-way data for prediction.

Format

- X: predictor array of dimension 100 x 15 x 20
- Y: outcome array of dimension 100 x 5 x 10

6 Y

Υ

Simulated multi-way data for prediction

Description

Simulated multi-way data for prediction.

Format

- X: predictor array of dimension 100 x 15 x 20
- Y: outcome array of dimension 100 x 5 x 10

Index