OTS: 60-11,942

19990210 055

JPRS: 5040

18 July 1960

ON THE EFFECT OF ULTRASONIC VIBRATIONS ON THE BLOOD

- USSR -

by M. I. Gurevich and M. G. Sirotina

DTIC QUALITY INSPECTED 2

Distributed by:

OFFICE OF TECHNICAL SERVICES U. S. DEPARTMENT OF COMMERCE WASHINGTON 25, D. C.

Price - \$0 50

Reproduced From Best Available Copy

U. S. JOINT PUBLICATIONS RESEARCH SERVICE 205 EAST 42nd STREET, SUITE 300 NEW YORK 17, N. Y.

DISTRIBUTION STATEMENT A

Approved for public release; Distribution Unlimited

JPRS: 5040

CSO: 3918-N

ON THE EFFECT OF ULTRASONIC VIBRATIONS ON THE BLOOD

Following is a translation of an article by M. I. Gurevich and M. G. Sirotina in Fiziologichnyy Zhurnal (Physiology Journal), Vol. VI, No. 1, 1960, pages 73 to 77.

The Institute of Physiology imeni 0. 0. Bogomolets of the Academy of Sciences UkrainianSSR, Laboratory of Circulation and Respiration

Investigations devoted to a study of the influence of ultrasonic vibrations on the blood have been carried out in two directions: some authors have studied directly the influence of ultrasonic vibrations on the blood elements in vitro, while others have studied the changes in the peripheral blood after exposure of the organism to ultrasonic vibrations ("sounding" the organism).

The hemolytic effects of ultrasonic waves in vitro were first studied by Dognon and Biancani (1927). Subse-

quently, numerous investigators confirmed this fact.

In 1936, Getzel showed that the hemolytic effect caused by ultrasonic waves depends on the concentration of the erythrocytes: the higher the red cell count, the less destructive the effects of ultrasonic.

Shener (1948) also indicated that the destruction by ultrasonic vibrations of a suspension of erythrocytes depends on the concentration of the cells and the power of the ultrasonic vibrations.

The hemolytic influence of ultrasound is apparent within several seconds after the onset of "sounding" (Leman,

1949).

Bejdl (1950), on the basis of his studies, pointed out that laking of the blood may be produced with a 25-minute "sounding". Stuhlfauth and Wuttge (1950) used "sounding" of leukocytes to produce a heavy granularity in the cytoplasm of the eosinophils.

Lehmann, Becker, and Otto (1952) also observed changes in the structure of the eosinophils upon "sounding" blood.
Onanov (1957) reports that the "sounding" of whole stabilized blood of human beings with ultrasonic vibrations with a frequency of 500 c/s at an intensity of six wt/sq cm causes, within 1.5 min, a lysis of leukocytes, and later,

hemolysis of the formed elements of the blood. According to their findings, the most resistant with respect to ultrasound are the erythrocytes, and the most sensitive are the

granulocytes.

Changes in the peripheral blood after exposure to ultrasonic vibrations have been studied very little in the Dognon and Biancani (1932) did not note living organism. changes in the peripheral blood upon exposure of the organism to ultrasound. Gaden (1952), after "sounding" 15 patients with therapeutic doses of ultrasound, did not discover any regular changes in the peripheral blood: in some cases the number of leukocytes increased, in others it decreased. Sometives there were no digressions whatsoever in the elements of the hemogram. In the bone marrow, there was a certain increase in the number of cells of the eosinophilic series.

Eritavi, Onanov, Georgadze, and Akhmeteli (1955), on the basis of their investigations of two dogs and five rabbits, concluded that the effects of ultrasound on different parts of the brain and spinal cord of the dog and rabbit result in changes not only at the site of "sounding", but also cause marked reactions on the part of the peripheral

blood.

Our own studies were devoted to the influence of ultrasonic vibrations on the blood in vitro, and also to studies of the changes in the morphologic composition of the peripheral blood after "sounding" parts of the abdomen in animals.

In the first series of studies, the blood taken from

different animals was stabilized with a five-percent solution of sodium citrate. Erythrocyte and leukocyte counts were made on the diluted blood. After this, the blood was poured into specially prepared glass cylinders, the bottoms of which were drawn out into a fine cone, and subjected to the action of ultrasonic vibrations with a frequency of 800 c/s and an intensity of 0.2 wt/sq cm (in five cases) and 3.5 wt/sq cm (in three cases). After five, ten, 15, and 30 minutes, portions of blood were removed for determination of erythrocyte and leukocyte counts.

Our studies showed (Table 1) that, even within five minutes, at an intensity of "sounding" of 0.2 wt/sq cm, the erythrocyte counts were reduced (no changes were noted in the leukocyte counts). After ten, 15, and 30 minutes, reduction in the erythrocyte counts continued; the number of leukocytes noticeably declined, however, only in one study after a 30-minute "sounding."

Table 1

	The influence of ultrasonic vitrations on the blood Minutes after "sounding"												
	managementary and property and the	Annual Mark Speed Speeds			M:	inute	sef	ter "	sound	ling"	Manager for the second second second		
study	ons. 1 cm studied	Befo "soun	и 5 хв. 10 хв.				15	XB.	30	XB.			
of.	Conditions of wt/sq cm in wt/sq cm Animal stud	Erytro-	eukocytes	ytro-	eukocytes	rytro- ytes	eukocytes	rytro ytes	eukocytes	Erytro- cytes	eukocytes		
NO	A POP	Cy E	leu 	C H	leu -	PI O		田.0			1		
1 2 3	0.2 rab	4,54 5,36	7800 8200 3600	4.44 4,30 4,70	7700 7740 3600	3,80 3,90 4,34	7800 7100 3200 200	3,2 3.6 4,3 310 x.1	7400 6440 3200	2,80 3,40 4,20	7400 6200 2700 disolated		
5 6 7	3,5 3,5 dog		3200 5200 5100 14000	1,20 2,40 3,18 5,80	1600 2700 4100 14000	4000 1,08 0,90 5.61	750 500 14000	500 KA	230 13800	4,80	13800		
8	0,2 ra	5,60	12400	5,10	12400	4,99	12200	4.9	1200	4,58	11700		

With an intensity of "sounding" of 3.5 wt/sq cm, changes were more obvious. In these studies, within five minutes there was already a significant reduction in the erythrocyte and leukocyte counts, and after 30 minutes there was almost complete hemolysis of erythrocytes and destruction of leukocytes; only isolated, individual formed elements could be seen in a given microscopic field.

In another group of studies, we "sounded" regions of the abdomen in rats and rabbits and studied the changes in the morphologic composition of the blood. These experiments were run on 20 rats and four rabbits.

In one series, ten rats were "sounded" with a frequency of 800 c/s at an intensity of 0.5 wt/sq cm for three minutes. The blood for erythrocyte and leukocyte counts was taken prior to exposure, and one hour, two days, six days and 12 days after "sounding".

As can be seen from Table 2, one hour after "sounding" there were no essential changes in the erythrocyte counts; the leukocyte counts in some instances (nos. 1, 3, and 5) did not change, but in others (nos. 2, 4, 6, and 7) showed a slight reduction. After two days, the blood showed more significant changes. The leukocyte count showed a definite tendency toward reduction. After six days, the leukocyte counts, on the contrary, in many of our individual studies, increased beyond the original level.

Changes in the erythrocyte counts, as previously, were not striking.

Table 2

Changes in the composition of the blood upon "sounding" parts of the abdomen of rats with ultrasonic vibrations with a frequency of 800 c/s and an intensity of 0.5 wt/sq cm

	Before	107.01	Time	after	"sou	nding"		- 511111
No. of study	Erythro- cytes in millions millions eukocytes eukocytes	Erythro- cytes in control of the control of the control of the cytes o	Erythro-	eukocyteska s	Erythro ovices in millions in	leukocytes s	Erythron oylds in millions 1	leukocytes p
1 2 3 4 5 6 7 9	8,80 11800 8,60 16800 8,60 17400 8,55 20400 7,90 23600 7,66 25300 8,20 22200 8,84 8900 6,91 12700	8,82 8,70 8,63 8,63 8,60 16900 18700 2300 7,51 8,0 20100	6.95 8.0 8.38 8,60 8,50	10000 14800 11400 16400 21200	8,20 9,40 8,40 8,70 8,0 7,70 8,10 8,23	13290 29600 17100 21300 22300 27800 22000 9300	8.6 8.9 8.5 8.6 7.8 8.1 8.3	12000 16300 17800 20000 24800 21700 8000

On the 12th day the erythrocyte and leukocyte counts

were approaching the original levels.

In the next series of studies, seven rats were exposed to ultrasonic vibrations for four minutes at an intensity of two wt/sq cm. All rats studied died within one hour and 30 minutes to one hour and 50 minutes after "sounding".

Studies of the blood were made prior to exposure and one hour after terminating the "sounding". Along with the erythrocyte and leukocyte counts, we likewise studied

the hemogram (Table 3).

Table 3

Changes in the morphologic composition of the blood of rats upon "sounding" for four minutes at an intensity of two wt/sq cm

	Pri	or to	"sol	ındin	One hour after "sounding"							
No. of study	Erythro- militions	eukocytes	neutro-	eosino- phils	monocytes	lympho- cytes	Erythron millions	leukocytes	neutro-	eosino- phils	monocytes	1ympho-
1 2 3 4 5 6 7	6,40 6,70 5 10 5,80 6,80 8,70 5,64	17200 16200 12400 13200 16100 8810 15300	3268 2916 2852 1848 3059 528 1224	516 162 124 264 0 0 153	1204 486 124 396 1127 352 612	12212 12636 9100 10692 11914 7920 13311	6,39 6,72 5,02 5,80 6,73 8,73 5,70	14600 15700 12100 12000 16100 8600 15100	4088 3925 3630 2160 4347 774 906	584 314 121 120 161 172 0	730 628 242 360 1288 430 1208	9198 10833 8107 9460 10304 7064 12986

As can be seen from this table, we were unable to demonstrate regular changes in the composition of the peripheral blood. The erythrocyte counts exhibited no changes, and the total white cell counts changed in two animals but did not change in five. Upon analysis of the white cell differential, we discovered after "sounding" an increase in the absolute number of neutrophilic leukocytes and a reduction in the number of lymphocytes. No shift to the left in the differential count of the neutrophilic leukocytes was observed at any time. The absolute number of monocytes ordinarily increased. The number of eosino-phils changed variously.

Upon "sounding" rats for five minutes at an intensity of 4.5 wt/sq cm, the animals died within two to three minutes after "sounding". Blood for analysis in these animals was drawn from the heart. As can be seen from Table 4, a marked reduction in the leukocyte counts was seen in all

of these animals.

Table 4

Changes in the morphologic composition of the blood of rats upon "sounding" for five minutes at an intensity of 4.5 wt/sq cm

and the second s	l p	rior	to "	sound	ing"		One	hour	after	"so	undir	ag"
of	lung Dung	0 00	ó	6	tes	0	OH S	0 0	10 m	000	vtes	-ou
No. stud	1601	enko	utr 118	sin ils	OC Y	yres	thres	leuko cytes	eut.	60 ed	ocal	ymph
JE 1 01	E STATE	-0	o do	oo	monoc	P. P.	DE TOTAL	H 0	d d	e Ch	non	46
accessory no				104		12200	6.0	4400	440	O	224	3656
2	7.65 7.50	19400	5072 1800	194	392 1020	13386 15480 14868	6,0 5.0 6.1	1400 5200	168	0 208	98 416	1201 3952
3	7.0	13800	552	276	1104	11000	0.1	3200	1124	2.43	4117	33.02

Table 5

Changes in the morphologic composition of the blood of rabbits upon "sounding" for 30 minutes at an intensity of 3.5 wt/sq cm

No. of study	ome	rythro- vies in euko- vtes	eutro-	n ou	cytes	yter	emo	Cortes in W	leuko- cytes	eutro- hils	0	leosino-	cytes	lympho- cytes
1 2 3 4	84 78	5,3 5300 5,1 10600 5,72 12000 6 02 13200	2756 0 3498 42 4800 12 2640 13	0 120	212 1680	2026 6254 8280 10164	84 78	5.20 5.75	4700 10800 12800 11800	4320 5760	432	286 108 — 336	148 1404 1664 354	940 4536 5248 8024

Four rabbits were exposed to ultrasonic vibrations for 30 minutes at an intensity of 3.5 wt/sq cm. The blood was studied prior to exposure and one hour after "sounding" (Table 5).

As in the studies on the rats, no changes were evident in the erythrocyte levels one hour after "sounding".

Conclusions

Upon "sounding" blood, stabilized with sodium citrate, with ultrasonic vibrations at an intensity of 0.2 to 3.5 wt/sq cm, there is observed a varying degree of destructive effect of ultrasound on the formed elements of the The destructive effect of the ultrasonic vibrations is intensified upon increasing the intensity of "sounding".

(2) Upon "sounding" parts of the abdomen in rats for three minutes at an intensity of 0.5 wt/sq cm, the peripheral blood one hour afterward shows no detectable changes. the second day, in a number of instances there are reductions in leukocyte counts, and on the sixth day the leukocyte counts in many cases show an increase. On the 12th day, the leukocyte counts revert to the original levels. The erythrocyte counts show no essential changes.

(3) After "sounding" rats with ultrasonic vibrations at an intensity of two wt/sq cm for four minutes, the animals die within 1.5 to two hours. No marked changes can be seen in the erythrocyte counts or the total leukocyte counts one hour after termination of "sounding".

(4) One hour after "sounding" rabbits for 30 minutes

at an intensity of two wt/sq cm, there are no noticeable changes in the red blood or the total leukocyte counts. There is a slight reduction only in the absolute numbers of

lymphocytes. The influence of ultrasonic vibrations at an intensity of 4.5 wt/sq cm directed at a portion of the abdomens of rats for five minutes leads to death of the animals within several minutes. Studies of the blood in these animals show marked reductions in the leukocyte counts. Reductions in the erythrocyte counts are also observed, but these are less pronounced.

Bibliography

Bejdl W., Die Wirkung von Ultraschall auf Blut im Hinblick suf seine the rap. Anwendung, Wien. Klin. Wchschr., 62,

46, 1950, 859.

Dognon, Biancani, C. R. Soc. Biol., III, 1932, 754. Gaden E., Beobachtung über die Wirkung des Ultraschalls auf das Knochenmark, Strahlentherapie, 87, 4, 1952, 585.

Getzel D., Biologische Wirkung der Ultraschallwellen, Ref.

Ber. ges. Physiol, 1937, 100. Lehmann J., Beitrag zur Ultraschallhamolyse, Strahlentherapie, 79, 533, 1949.

Lehmann J. Becker G., Otto J., Thermische und mechanische Wirkungen des Ultraschalles auf einzelne Zellen, Strahlentherapie, 87, 4, 1952, 550. Stuhlfauth K., Wuttge K., Beitrag zur Klarung des Wirkungs-

mechanismus des Ultraschalles am menschlichen Gewebe, Klin. Wochenschrift, 27, 66, 1949.

Schoehaers F., Contribution a l'action des ultrasons sur les

trypanosomes, C. R. Soc. Biol., 142, 15/16, 1948.
Eritavi, K., Onanov, A., Georgadze, G., Akhmeteli, A.,
"Reactions of the peripheral blood upon sounding the head, spine, and neck of animals with ultrasonic vibrations", in "Collections of the Scientific Research Institute of Blood Transfusion imeni Mukhadze". Vol. IV, 1955, p. 229.

Onanov, A. I., "Materials on the influence of ultrasonic waves on the tissues of animals", 1957.