Constants and conversions

$1\mathrm{atm}$	$= 101.325 \mathrm{kPa} = 1.01325 \mathrm{bar} = 14.696 \mathrm{p}$
N_A	$6.022 \times 10^{23} \mathrm{mol}^{-1}$
e	$1.602 \times 10^{-19} \mathrm{C}$
1 eV	$1.602 \times 10^{-19} \mathrm{J}$
ϵ_0	$8.854 \times 10^{-12} \mathrm{F}\mathrm{m}^{-1}$
\mathbf{R}	$8.314\mathrm{Jmol^{-1}K^{-1}}$
	$0.082067\mathrm{Latmmol^{-1}K^{-1}}$
$0^{\circ}\mathrm{C}$	$273.15\mathrm{K}$
k	$8.62 \times 10^{-5} \mathrm{eV} \mathrm{atom}^{-1} \mathrm{K}^{-1}$
	$1.38 \times 10^{-23} \mathrm{Jatom^{-1}K^{-1}}$
\mathbf{F}	$96486\mathrm{C}\mathrm{mol}^{-1}$
h	$6.626 \times 10^{-34} \mathrm{Js}$
	$4.136 \times 10^{-15} \mathrm{eV}\mathrm{s}$
\mathbf{c}	$2.99 \times 10^8 \mathrm{ms^{-1}}$
g	$9.81{\rm ms^{-2}}$

Microstructure

Which ostif acture	
$LD = \frac{\#}{\text{Length}}$	$LPF = \frac{\text{length of atoms}}{\text{length of vector}}$
$PD = \frac{\#^{\circ}}{\text{Area}}$	$PPF = \frac{\text{area of atoms}}{\text{area of plane}}$
$V = \frac{4}{3}\pi r^3$	$A = \pi r^2$
$A_{\text{triangle}} = \frac{1}{2}bh$	$ \rho = \frac{nA}{V_C N_A} APF = \frac{V_s}{V_C} $
$\rho = \frac{n_A A_A + n_C A_C}{V_C N_A}$	$APF = \frac{V_s}{V_C}$
$N = \frac{N_A \rho}{A}$	$N_V = N \exp(-\frac{Q_V}{kT})$
$a = 2\sqrt{2}R$	$a = \frac{4}{\sqrt{3}}R$
$d_{\mathrm{hkl}} = \frac{a}{\sqrt{h^2 + k^2 + l^2}}$	$n\lambda = 2d_{\rm hkl}\sin\theta$
$n_n = \frac{\overline{M_n}}{\overline{m}}$	$n_w = \frac{\overline{M_w}}{\overline{m}}$

Mechanical Behaviour

$\sigma = \frac{F}{A_0}$	$\epsilon = \frac{\Delta l}{l_0}$
$\sigma = E\epsilon$	$\sigma_{3\text{-point}} = \frac{3FL}{2wh^2}$
$\sigma_T = \sigma(1 + \epsilon)$	$\epsilon_T = \ln(1 + \epsilon)$
$\sigma_T = \frac{F}{A_i}$	$\sigma_T = K \epsilon_T^n$
$E = 2\mathring{G}(1+\nu)$	$\nu = -\frac{\epsilon_x}{\epsilon} = -\frac{\epsilon_y}{\epsilon}$

Magnetic Behaviour

$$H = \frac{NI}{L}$$

$$M = \chi_m H$$

$$B = (1 + \chi_m)\mu_0 H$$

$$\beta = 9.27 \times 10^{-24} Am^2$$

$$B_0 = \mu_0 H$$

$$B = \mu_0 H + \mu_0 M$$

$$\mu_B = \frac{e\hbar}{2m_e} = \beta$$

Electrical Behaviour

$$\sigma = n|e|\mu_e + p|e|\mu_h$$
 $\sigma = n|e|\mu_e$
 $\sigma = p|e|\mu_h$

Electrochemistry

$$E = E^{\circ} - \frac{RT}{nF} \ln Q \qquad I = \frac{nC}{t}$$

$$E_{\text{at } 25 \, \circ \text{C}} = E^{\circ} - \frac{0.0592}{n} \ln Q$$

$$w = nFE^{\circ}$$

Thermodynamics

$$PV = nRT \qquad \Delta U = q + w \\ \Delta U = q - P_{\rm ext} \Delta V \qquad H \equiv U + PV \\ G \equiv H - TS \qquad \Delta S = \frac{q_{\rm rev}}{T} \\ {\rm constant \ T: \ } \Delta G = \Delta H - T\Delta S \\ q = mc\Delta T \qquad q = nC_P\Delta T \\ {\rm For \ } aA + bB \to cC + dD, \ Q = \frac{a_C^c a_D^d}{a_A^a a_B^b} \\ \Delta_r G = \Delta G^\circ + RT \ln Q \\ \Delta_r H^\circ = (\Sigma v_i \Delta_{f,i} H^\circ)_{\rm prod.} - (\Sigma v_i \Delta_{f,i} H^\circ)_{\rm react.} \\ \Delta_r S^\circ = (\Sigma v_i \Delta_{f,i} S^\circ)_{\rm prod.} - (\Sigma v_i \Delta_{f,i} S^\circ)_{\rm react.} \\ W_{\rm phase} = \frac{{\rm length \ of \ opp. \ side \ of \ lever}}{{\rm total \ length \ of \ lever}} \\ E = h\nu = \frac{hc}{\lambda} \\ {\rm Specific \ heats \ and \ heat \ capacities} \\ \hline \frac{{\rm Substance} \quad c \ (\frac{J}{g \cdot K}) \quad C_P \ (\frac{J}{mol \cdot K})}{Air(g) \qquad 1.0 \qquad -} \\ CO_2(g) \qquad 0.843 \qquad 37.1 \\ H_2(g) \qquad 14.304 \qquad 28.836 \\ H_2O(g) \qquad 2.03 \qquad 36.4 \\ H_2O(l) \qquad 4.184 \qquad 75.3 \\ H_2O(s) \qquad 2.09 \qquad 37.7 \\ NaCl \qquad 0.853 \qquad 50.5 \\ \hline$$

Temperatures and enthalpies of phase changes

0.918

 $O_2(g)$

Substance	M.P. $({}^{\circ}C)$	$\Delta_{\substack{fus \ \frac{kJ}{mol}}} H$	B.P. (° <i>C</i>)	$\Delta_{\substack{vap \ \frac{kJ}{mol}}} H$
Al	658	10.6	2467	284
Ca	851	9.33	1487	162
CH_4	-182	0.92	-164	8.18
H_2O	0	6.01	100	40.7
Fe	1530	14.9	2735	354

29.378

Standard formation enthalpy, standard entropy and standard formation Gibbs energy at $298.15\,\mathrm{K}$

standard formatic	ii Gibbs eii	ergy at 200.	1017
Species	$\Delta_f H^\circ$	S°	$\Delta_f G^\circ$
	$(\frac{kJ}{mol})$	$\left(\frac{J}{mol \cdot K}\right)$	$(\frac{kJ}{mol})$
C	0	5.74	0
$CH_4(g)$	-74.81	186.2	-50.75
$C_2H_2(g)$	-83.9	200.93	-
$C_3H_8(g)$	-103.8	269.9	-23.49
$CaC_2(s)$	-59.8	70.3	-
CaO(s)	-635	38.1	-
$CaF_2(s)$	-1225	68.87	-1162
$CaF_2(l)$	-1186	92.6	-
$Ca(OH)_2(s)$	-987.0	83.0	-
$CO_2(g)$	-393.5	213.6	-394.4
$Cu_2O(s)$	-168.6	93.1	-
$Cu_2O(l)$	-154.79	-	-
Cu(s)	-	33.2	-
Fe(s)	0	27.3	0
$Fe_2O_3(s)$	-824.2	87.4	-
$H_2(g)$	-	130.68	-
$H_2O(g)$	-241.8	188.7	-228.6
$H_2O(l)$	-285.8	69	-
$O_2(g)$	0	205.0	0

Miscellaneous enthalpies

	· · · I · · ·	
Substance	Reaction	$\Delta H(\frac{kJ}{mol})$
$\overline{F_2}$	$F_2 \to F(g)$	157
\mathbf{F}	$F(g) \to F^-(g)$	-328
Ca	$Ca(g) \to Ca^{2+}(g)$	1734
NaCl	$NaCl(s) \rightarrow$	
	$Na^{+}(aq) + Cl^{-}(aq)$	3.9

Scott Ramsay, December 2024

IUPAC Periodic Table of the Elements

1 H hydrogen 1.0080 ± 0.0002	2		Кеу:									13	14	15	16	17	2 He helium 4.0026 ± 0.0001
3 Li lithium 6.94 ± 0.06	4 Be beryllium 9.0122 ± 0.0001		atomic num Symbo name abridged standa atomic weigh	ol ard								5 B boron 10.81 ± 0.02	6 C carbon 12.011 ± 0.002	7 N nitrogen 14.007 ± 0.001	8 Oxygen 15.999 ± 0.001	9 F fluorine 18.998 ± 0.001	10 Ne neon 20.180 ± 0.001
11 Na sodium 22.990 ± 0.001	12 Mg magnesium 24.305 ± 0.002	3	4	5	6	7	8	9	10	11	12	13 A I aluminium 26.982 ± 0.001	14 Si silicon 28.085 ± 0.001	15 P phosphorus 30.974 ± 0.001	16 S sulfur 32.06 ± 0.02	17 CI chlorine 35.45 ± 0.01	18 Ar argon 39.95 ± 0.16
19 K potassium 39.098 ± 0.001	20 Ca calcium 40.078 ± 0.004	21 Sc scandium 44.956 ± 0.001	22 Ti titanium 47.867 ± 0.001	23 V vanadium 50.942 ± 0.001	24 Cr chromium 51.996 ± 0.001	25 Mn manganese 54.938 ± 0.001	26 Fe iron 55.845 ± 0.002	27 Co cobalt 58.933 ± 0.001	28 Ni nickel 58.693 ± 0.001	29 Cu copper 63.546 ± 0.003	30 Zn zinc 65.38 ± 0.02	31 Ga gallium 69.723 ± 0.001	32 Ge germanium 72.630 ± 0.008	33 As arsenic 74.922 ± 0.001	34 Se selenium 78.971 ± 0.008	35 Br bromine 79.904 ± 0.003	36 Kr krypton 83.798 ± 0.002
37 Rb rubidium 85.468 ± 0.001	38 Sr strontium 87.62 ± 0.01	39 Y yttrium 88.906 ± 0.001	40 Zr zirconium 91.224 ± 0.002	41 Nb niobium 92.906 ± 0.001	42 Mo molybdenum 95.95 ± 0.01	43 TC technetium	44 Ru ruthenium 101.07 ± 0.02	45 Rh rhodium 102.91 ± 0.01	46 Pd palladium 106.42 ± 0.01	47 Ag silver 107.87 ± 0.01	48 Cd cadmium 112.41 ± 0.01	49 In indium 114.82 ± 0.01	50 Sn tin 118.71 ± 0.01	51 Sb antimony 121.76 ± 0.01	52 Te tellurium 127.60 ± 0.03	53 liodine 126.90 ± 0.01	54 Xe xenon 131.29 ± 0.01
55 Cs caesium 132.91 ± 0.01	56 Ba barium 137.33 ± 0.01	57-71 lanthanoids	72 Hf hafnium 178.49 ± 0.01	73 Ta tantalum 180.95 ± 0.01	74 W tungsten 183.84 ± 0.01	75 Re rhenium 186.21 ± 0.01	76 Os osmium 190.23 ± 0.03	77 Ir iridium 192.22 ± 0.01	78 Pt platinum 195.08 ± 0.02	79 Au gold 196.97 ± 0.01	80 Hg mercury 200.59 ± 0.01	81 TI thallium 204.38 ± 0.01	82 Pb lead 207.2 ±1.1	83 Bi bismuth 208.98 ± 0.01	84 Po polonium	85 At astatine	86 Rn radon
87 Fr francium	88 Ra radium	89-103 actinoids	104 Rf rutherfordium	105 Db dubnium	106 Sg seaborgium	107 Bh bohrium	108 HS hassium	109 Mt meitnerium	110 Ds darmstadtium	111 Rg roentgenium	112 Cn copernicium	113 Nh nihonium	114 FI flerovium	115 Mc moscovium	116 Lv livermorium	117 Ts tennessine	118 Og oganesson
[223]	[226]		[267]	[268]	[269]	[270]	[269]	[277]	[281]	[282]	[285]	[286]	[290]	[290]	[293]	[294]	[294]

INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY

57	58	59	60	61 Pm promethium	62	63	64	65	66	67	68	69	70	71
La	Ce	Pr	Nd		Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
lanthanum	cerium	praseodymium	neodymium		samarium	europium	gadolinium	terbium	dysprosium	holmium	erbium	thulium	ytterbium	lutetium
138.91	140.12	140.91	144.24		150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.05	174.97
± 0.01	± 0.01	± 0.01	± 0.01		± 0.02	± 0.01	± 0.03	± 0.01	± 0.01	± 0.01	± 0.01	± 0.01	± 0.02	± 0.01
89 Ac actinium	90 Th thorium 232.04 ± 0.01	91 Pa protactinium 231.04 ± 0.01	92 U uranium 238.03 ± 0.01	93 Np neptunium	94 Pu plutonium	95 Am americium	96 Cm curium	97 Bk berkelium	98 Cf californium	99 ES einsteinium	100 Fm fermium	101 Md mendelevium	102 No nobelium	103 Lr lawrencium