

PROGRAMMABLE CONTROLLER

FP0 User's Manual

[Applicable PLC]

- FP0-C10
- FP0-C14
- FP0-C16
- FP0-C32
- FP0-T32
- FP0-SL1
- FP0-E8
- FP0-E16
- FP0-E32

FP0 User's Manual ARCT1F389E '04.3

FP0 Table of Figures

Introduction

This manual explains hardware configurations, installation, wiring procedures, I/O allocations and maintenance.

İ

Before You Start FP0

Before You Start

Installation environment

Do not use the unit where it will be exposed to the following:

- Direct sunlight and ambient temperatures outside the range of 0_C to 55_C/32_F to 131_F.
- Ambient humidity outside the range of 30% to 85% RH and sudden temperature changes causing condensation.
- Inflammable or corresive gas.
- Excessive vibration or shock.
- Excessive airborne dust or metal particles
- Water in any from including spray or mist.
- Benzine, paint thinner, alcohol or other organic solvents or strong alkaline solutions such as ammonia or caustic soda.
- Influence from power transmission lines, high voltage equipment, power cables, power equipment, radio transmitters, or any other equipment that would generate high switching surges.

Static electricity

 In dry locations, excessive static electricity can cause problems. Before touching the unit, always touch a grounded piece of metal in order to discharge static electricity.

Cleaning

 Do not use thinner based cleaners because they deform the unit case and fade the colors.

Power supplies

 An insulated power supply with an internal protective circuit should be used. The power supply for the FP0 control unit operation is a non-insulated circuit, so if an incorrect voltage is directly applied, the internal circuit may be damaged or destroyed. If using a power supply without a protective circuit, power should be supplied through a protective element such as a fuse.

Power supply sequence

 Have the power supply sequence such that the power supply of the FP0 control unit turns OFF before the power supply for I/O.

 If the power supply for I/O is turned OFF before the power supply of FP0 control unit, the FP0 control unit will detect the input fluctuations and may begin an unscheduled operation.

Before turning ON the power

When turning ON the power for the first time, be sure to take the precautions given below.

- When carrying out construction, check to make sure that there are no scraps of wiring, particularly conductive fragments, adhering to the unit.
- Verify that the power supply wiring, I/O wiring, and power supply voltage are all correct.
- Sufficiently tighten the installation screws and terminal screws.
- Set the mode switch to PROG, mode.

Table of Contents FP0

Table of Contents

Chapter 1 Overview

1.1	Compor	nents		. 1	- 3
	1.1.1		ol Units		
	1.1.2		nsion Units		
	1.1.3		Jnits		
	1.1.4	-			
	1.1.5		pply Unit		
	1.1.6		d Additional Parts		
1.2		•	ties		
1.3	-		oilities		
1.5	1.3.1		out Type Units		
	1.3.2		Output Type Units		
1.4					
1.4	Program	iiiiiig ioois		1 -	10
		_			
Cha	pter 2	Contr	ol Units		
2.1	Dorte on	nd Torminal	ogy	2	2
Z. I	2.1.1		it Types		
	2.1.1	2.1.1.1	Status Indicator LEDs		
		2.1.1.1	Mode Switch		
		2.1.1.2	Tool Port		
2.2	C!6!-				
2.2	•		and the state of		
	2.2.1		pecifications		
		2.2.1.1	Weight		
	2.2.2	2.2.1.2	Current Consumed by the Control Unit		
	2.2.2		ce Specifications		
	2.2.3		ifications	2 -	14
		2.2.3.1	Limitations on Number of Simultaneous Input ON Points	2 -	15
	2.2.4	Output Spe	ecifications		
		2.2.4.1	Relay Output Type		
		2.2.4.2	Transistor Output Type		
2.3	Internal	Circuit Diac	jram		
	2.3.1	Relay Outp	, out Type (C10RS/C10CRS/C10RM/C10CRM/C14RS/ :14RM/C14CRM)		
	2.3.2		Output Type		
		2.3.2.1	NPN Open Collector Type (C16T/C16CT/C32T/C32CT/T32CT)		
		2.3.2.2	PNP Open Collector Type (C16P/C16CP/C32P/C32CP/T32CP)		

2.4	Pin Lay	/outs 2	2 - 22
	2.4.1	C10RS/C10CRS/C10RM/C10CRM 2	2 - 22
	2.4.2	C14RS/C14CRS/C14RM/C14CRM 2	
	2.4.3	C16T/C16CT 2	2 - 23
	2.4.4	C16P/C16CP 2	2 - 24
	2.4.5	C32T/C32CT/T32CT	2 - 25
	2.4.6	C32P/C32CP/T32CP 2	2 - 26
2.5	Backino	g Up the 10 K Step Type 2	<u>?</u> - 27
Cha	apter 3	Expansion I/O Units	
3.1		nd_Terminology	
	3.1.1	Expansion I/O Unit Types	
3.2	Specific	cations	
	3.2.1	General Specifications	
	3.2.2	Input Specifications	3 - 6
		3.2.2.1 Limitations on Number of Simultaneous Input ON Points	3 - 7
	3.2.3	Output Specifications	3 - 8
		3.2.3.1 Relay Output Type	3 - 8
		3.2.3.2 Transistor Output Type	3 - 9
3.3	Internal	I Circuit Diagram 3	
	3.3.1	Relay Output Type (E8RS/E8RM/E16RS/E16RM) 3	
	3.3.2	Transistor Output Type	
		3.3.2.1 NPN Open Collector Type (E16T/E32T)	
		3.3.2.2 PNP Open Collector Type (E16P/E32P)	
	3.3.3	Expansion Input Units (E8X/E16X)	
	3.3.4	Expansion Output Units 3	
		3.3.4.1 NPN Open Collector Type (E8YT/E16YT) 3	
		3.3.4.2 PNP Open Collector Type (E8YP/E16YP) 3	
3.4	Pin I av	outs 3	3 - 18
	3.4.1	E8RS/E8RM	
	3.4.2	E16RS/E16RM	
	3.4.3	E16T 3	
	3.4.4	E16P 3	
	3.4.5	E32T 3	
	3.4.6	E32P 3	3 - 23
	3.4.7	E8X 3	3 - 24
	3.4.8	E16X 3	3 - 25
	3.4.9	E8YT 3	3 - 26
	3.4.10	E8YP 3	3 - 26
	3.4.11	E16YT 3	3 - 27
	3.4.12	E16YP 3	3 - 28

Chapter 4 S-LINK Control Unit

4.1	Names and Functions 4 -	3
4.2	Specifications	5
	4.2.1 General Specifications	
	4.2.2 S-LINK Controller Specifications 4 -	
4.3	Wiring the Power Supply 4 -	
	4.3.1 Wiring to Power Supply Connector	
	4.3.2 Wiring to S-LINK Terminal Block	
4.4	Sequence of Turning on Power Supplies 4 -	
4.5	Operation When Power Supply is Turned On 4 - 1	C
4.6	S-LINK System Address Recognition 4 - 1	1
	4.6.1 Recognizing the Address 4 - 1	
	4.6.2 Address Setting of S-LINK I/O Device 4 - 1	
4.7	Judging Errors from the Error Indicators 4 - 1	
4.8	Judging Errors Address Displays 4 - 1	4
Cha	apter 5 I/O Allocation	
5.1	I/O Number	2
5.2	Control Unit	
5.2	Expansion I/O Unit 5 -	
5.5	Expansion I/O Offic 5 -	C
Cha	apter 6 Installation	
6.1	Adding Expansion Units	3
6.2	Important Notes	
6.3	Attachment to DIN Rails	
6.4	Installation Using FP0 Slim Type Mounting Plate	
0.5	Installation Using FP0 Flat Type Mounting Plate 6 - 10	L
Cha	apter 7 Wiring	
7.1	Safety Instructions	3
	7.1.1 Interlock Circuit	
	7.1.2 Emergency Stop Circuit	

	7.1.3	Start Up Sequence / - 3
	7.1.4	Momentary Power Failures 7 - 4
	7.1.5	Protecting Power Supply and Output Sections
7.2	Wiring	the Power Supply to the Control Unit
7.3	Ground	ling
7.4	Input W	/iring 7 - 9
	7.4.1	Sensors 7 - 9
	7.4.2	LED-Equipped Reed Switch 7 - 10
	7.4.3	Two-Wire Type Sensor
- -	7.4.4	LED-Equipped Limit Switch
7.5	-	Wiring
	7.5.1 7.5.2	Protective Circuit for Inductive Loads
7.6		the Terminal Type 7 - 14
7.7	•	3.
	_	the MOLEX Connector Type
7.8	vviring 1 7.8.1	the MIL Connector Type 7 - 18 Contact Puller Pin for Rewiring 7 - 19
7.0	_	_
7.9	vviring	the RS232C Port 7 - 20
Cha	apter 8	Precautions During Programming
8.1		Duplicated Output
	8.1.1	Duplicated Output 8 - 3
	8.1.2	When Output is Repeated with an OT, KP, SET, or RST Instruction
8.2	Handlin	ng BCD Data 8 - 5
0.2	8.2.1	BCD Data 8 - 5
	8.2.2	Handling BCD Data in the PLC 8 - 5
8.3		ng Index Registers
0.0	8.3.1	Index Registers 8 - 7
	8.3.2	Memory Areas Which can be Modified with Index Registers 8 - 7
	8.3.3	Example of Using an Index Register 8 - 8
8.4	Operati	on Errors 8 - 10
	8.4.1	Outline of Operation Errors 8 - 10
	8.4.2	Operation Mode When an Operation Error Occurs 8 - 10
	8.4.3	Dealing with Operation Errors
	8.4.4	Points to Check in Program
8.5		ion of Leading Edge Detection Method
	0 - 1	
	8.5.1	Instructions of Leading Edge Detection Method 8 - 13
	8.5.1 8.5.2 8.5.3	Operations of Leading Edge Detection Method

8.6	Precaut	ions for Programming	8 - 18
8.7	Rewrite	Function During RUN	8 - 19
	8.7.1	Operation of Rewrite During RUN	
	8.7.2	Cases Where Rewriting During Run is not Possible	8 - 20
	8.7.3	Procedures and Operation of Rewrite During RUN	
	8.7.4	Changing Modes in FP Programmer II	
8.8	Changir	ng the Set Value of Timer/Counter During RUN	
	8.8.1	Method of Rewriting Constant in FP Programmer II	
	8.8.2	Method of Rewriting a Value in the Set Value Area	
8.9	Process	sing During Forced Input and Output	
8.10		the Clock/Calendar Timer (T32CT type only)	
Cha	pter 9	High-speed Counter/Pulse Output/ PWM O	utput
9.1	Outline	of Functions	9 - 3
	9.1.1	Three Functions that Use Built-in High-speed Counter	9 - 3
	9.1.2	Performance of Built-in High-speed Counter	9 - 4
9.2	Specific	ations and Restricted Items	9 - 5
	9.2.1	Specifications	
	9.2.2	Functions and Restrictions	
9.3	High-sp	peed Counter Function	9 - 9
	9.3.1	Outline of High-speed Counter Function	
	9.3.2	Types of Input Modes	
	9.3.3	I/O Allocation	
	9.3.4	Instructions Used with High-speed Counter Function	9 - 12
	9.3.5	Sample Program	9 - 14
9.4	Pulse C	Output Function	9 - 18
	9.4.1	Outline of Pulse Output Function	
	9.4.2	Control Mode	
	9.4.3	I/O Allocation and Wiring	9 - 20
	9.4.4	Instructions Used with Pulse Output Function	
	9.4.5	Sample Program for Positioning Control	9 - 25
9.5	PWM C	output Function	9 - 33
	9.5.1	Outline of PWM Output Function	
	9.5.2	Instruction Used with PWM Output Function	
Cha	pter 1	0 General-use Serial Communications	
10 1	Consu	Luca Carial Cammunicationa Frantisa	10 0
10.1		I-use Serial Communications Function	10 - 3

	10.1.2 10.1.3	
10.2		Register Settings
	•	ons When Using General-use Serial Communication
10.5	10.3.1	If "None" is Set for Start and Terminal Codes
	10.3.2	If "Yes" has been Set for the Start and Terminal Codes
		(Start Code: STX, Terminal Code: ETX) 10 - 9
Cha	pter 1	1 Self-Diagnostic and Troubleshooting
11.1	Self-Dia	gnostic Function
	11.1.1	Allowing Duplicated Output
	11.1.2	Continuing After an Operation Error
11.2	Trouble	shooting
	11.2.1	ERROR/ALARM LED is Blinking
	11.2.2	ERROR/ALARM LED is ON
	11.2.3 11.2.4	All LEDs are OFF
	11.2.4	PROTECT ERROR is Displayed
	11.2.6	Program Mode does not Change to RUN
01		
Cha	ipter 1	2 Specifications
12.1	Perform	ance Specifications
12.2	I/O Allo	cation Table
12.3	Relays,	Memory Areas and Constants 12 - 10
12.4	Table of	System Registers 12 - 12
		System Registers 12 - 12
		Content of System Register Settings 12 - 14
		Table of System Registers
		Special Internal Relays 12 - 26
		Special Data Registers
		odes 12 - 39
12.8		Instructions
	12.8.1	Table of Basic Instructions
12.0		Table of High-level Instructions
		.1 S-LINK Address
		Hexadecimal/BCD Expressions
12.1	I ASCII	Codes 12 - 142

Appendix A Dimensions

A.1	Control	Unit and Expansion I/O Unit	A - 3
	A.1.1	FP0-C10RS/C10CRS/C14RS/C14CRS/E8RS/E16RS	A - 3
	A.1.2	FP0-C10RM/C10CRM/C14RM/C14CRM/E8RM/E16RM	A - 3
	A.1.3	FP0-C16T/C16CT/C16P/C16CP/E16T/E16P/E8X/E8YT/E8YP/ E32T/E32P/E16X/E16YT/E16YP	A - 4
	A.1.4	FP0-C32T/C32CT/C32P/C32CP/T32CT/T32CP	
	A.1.5	FP0 S-LINK Control Unit	A - 5
A.2	FP0 Po	wer Supply Unit	A - 5
A.3	Mountir	ng on DIN Rail	A - 6
A.4	FP0 Sli	m Type Mounting Plate	A - 7
A .5	FP0 Fla	at Type Mounting Plate	A - 8
A.6	Detaile	d Specifications of Cables	A - 9
A.7	Connec	ction (between RS232C port and PC)	A - 10
Ind	e x		. I - 1
Red	ord of	f changes	R - 1

Chapter 1

Overview

1.1	Components					
	1.1.1	FP0 Control Units	1 - 3			
	1.1.2	FP0 Expansion Units	1 - 4			
	1.1.3	Intelligent Units	1 - 5			
	1.1.4	Link Units	1 - 5			
	1.1.5	Power Supply Unit	1 - 5			
	1.1.6	Options and Additional Parts	1 - 6			
1.2	Expans	ion Possibilities	1 - 7			
1.3	Combin	nation Possibilities	1 - 8			
	1.3.1	Relay Output Type Units	1 - 8			
	1.3.2	Transistor Output Type Units	1 - 9			
1.4	Prograi	mmina Tools	1 - 10			

Overview FP0

FP0 Overview

1.1 Components

1.1 Components

1.1.1 FP0 Control Units

	Built-in	Spec	ifications						
Product name	memory (Program capacuty)	Numl I/O po	ber of oints	Power supply voltage	Input	Output	Connection type	Part No.	Product No.
FP0 C10	EEPROM (2.7k steps)	10	Input: 6 Output: 4	24 V DC	24 V DC Sink/Sourse	Relay out- put: 2 A	Terminal block	FP0-C10RS	AFP02123
Control Unit	(2171K 3K0p3)		ошри		(±common)	put 271	Molex connector	FP0-C10RM	AFP02113
FP0 C10 Control Unit with	EEPROM (2.7k steps)	10	Input: 6 Output: 4	24 V DC	24 V DC Sink/Sourse (±common)	Relay out- put: 2 A	Terminal block Molex connector	FP0-C10CRS	AFP02123C AFP02113C
RS232C port							Wolex connector	FPU-CIUCRIVI	AFP02113C
FP0 C14	EEPROM (2.7k steps)	14	Input: 8 Output: 6	24 V DC	24 V DC Sink/Sourse	Relay out- put: 2 A	Terminal block	FP0-C14RS	AFP02223
Control Unit	(2.7k Steps)		Output. 6		(±common)	put. 2 A	Molex connector	FP0-C14RM	AFP02213
FP0 C14 Control Unit with	EEPROM (2.7k steps)	14	Input: 8 Output: 6	24 V DC	24 V DC Sink/Sourse (±common)	Relay out- put: 2 A	Terminal block	FP0-C14CRS	AFP02223C
RS232C port							Molex connector	FP0-C14CRM	AFP02213C
FP0 C16	EEPROM (2.7k steps)	16	Input: 8 Output: 8	24 V DC	24 V DC Sink/Sourse (±common)	Transister otuput: NPN 0.1 A	MIL connector	FP0-C16T	AFP02343
Control Unit						Transister otuput: PNP 0.1 A		FP0-C16P	AFP02353
FP0 C16 Control Unit	EEPROM (2.7k steps)	16	Input: 8 Output: 8	24 V DC	24 V DC Sink/Sourse (±common)	Transister otuput: NPN 0.1 A	MIL connector	FP0-C16CT	AFP02343C
with RS232C port						Transister otuput: PNP 0.1 A		FP0-C16CP	AFP02353C
FP0 C32	EEPROM (5k steps)	32	Input: 16 Output: 16	24 V DC	24 V DC Sink/Sourse (±common)	Transister otuput: NPN 0.1 A	MIL connector	FP0-C32T	AFP02543
Control Unit						Transister otuput: PNP 0.1 A		FP0-C32P	AFP02553
FP0 C32 Control Unit	EEPROM (5k steps)	32	Input: 16 Output: 16	24 V DC	24 V DC Sink/Sourse (±common)	Transister otuput: NPN 0.1 A	MIL connector	FP0-C32CT	AFP02543C
with RS232C port						Transister otuput: PNP 0.1 A		FP0-C32CP	AFP02553C
FP0 T32 Control Unit with RS232C	EEPROM (10k steps)	32	Input: 16 Output: 16	24 V DC	24 V DC Sink/Sourse (±common)	Transister otuput: NPN 0.1 A	MIL connector	FP0-T32CT	AFP02643C
port and Clock/Cal- endar func- tion						Transister otuput: PNP 0.1 A		FP0-T32CP	AFP02653C
FP0 S-LINK Control Unit with RS232C port	EEPROM (5k steps)	128 (S- LINK sec- tion)	Input: 64 Output: 64 (S-LINK section)	24 V DC	_	-	Terminal block	FP0-SL1	AFP02700

Overview FP0

1.1 Components

1.1.2 FP0 Expansion Units

	Spec	ifications							
Product name	Number of I/O points		Power supply Input voltage		Output	Connection type	Part No.	Product No.	
	8	Input: 8	_	24 V DC Sink/Sourse (±common)	_	MIL connector	FP0-E8X	AFP03003	
	8	Input: 4 Output: 4	24 V DC	24 V DC Sink/Sourse	Relay output: 2 A	Terminal block	FP0-E8RS	AFP03023	
FP0 E8 Expansion		Output. 4		(±common)		Molex connector	FP0-E8RM	AFP03013	
Unit	8	Input: 8	24 V DC	_	Relay output: 2 A	Terminal block	FP0-E8YRS	AFP03020	
	8	Output: 8	_	_	Transister otuput: NPN 0.1 A	MIL connector	FP0-E8YT	AFP03040	
					Transister otuput: PNP 0.1 A		FP0-E8TP	AFP03050	
	16	Input: 16	_	24 V DC Sink/Sourse (±common)	_	MIL connector	FP0-E16X	AFP03003	
	16	Input: 8	24 V DC	24 V DC Sink/Sourse (±common)	Relay output: 2 A	Terminal block	FP0-E16RS	AFP03323	
		Output: 8				Molex connector	FP0-E16RM	AFP03313	
FP0 E16 Expansion	16	Input: 8 Output: 8	_	24 V DC Sink/Sourse (±common)	Transister otuput: NPN 0.1 A	MIL connector	FP0-E16T	AFP03343	
Unit					Transister otuput: PNP 0.1 A		FP0-E16P	AFP03353	
	16 C	Output: 16	_	_	Transister otuput: NPN 0.1 A	MIL connector	FP0-E16YT	AFP03340	
					Transister otuput: PNP 0.1 A		FP0-E16YP	AFP03350	
FP0 E32	32	Input: 16 Output: 16	_	24 V DC Sink/Sourse	Transister otuput: NPN 0.1 A	MIL connector	FP0-E32T	AFP03543	
Expansion Unit				(±common)	Transister otuput: PNP 0.1 A		FP0-E32P	AFP03553	

Notes

- The control units and relay output type expansion units come with a power cable (part number AFP0581). (The transistor output type expansion units need no power cable.)
- 2) The terminal block type relay output units have 2 terminal blocks (9 pins) made by Phoenix. Use a 2.5 mm .098 inch wide screwdriver. Preferably use the specific terminal block screwdriver (part number AFP0806, Phoenix type code SZSO, 4 2.5 mm .098 inch) or equivalent.
- 3) The connector-type relay output units have 2 connectors made by Nihon Molex (Molex type code 51067-0900, 9 pins). Use the specific Molex connector press-fit tool (part number AFP0805, Nihon Molex type code 57189-5000) or equivalent.
- 4) The transistor output units have a press-fit socket for wire-pressed terminal cable and contacts. Use the press-fit tool (part number AXY52000) for wire-pressed terminal cable.

FP0 Overview

1.1 Components

1.1.3 Intelligent Units

Product name	Specifications		Part No.	Product No.	
FP0 Ther-	K, J, T, R thermocouple	e, Resolution: 0.1 C		FP0-TC4	AFP0420
mocouple Unit	K, J, T, R thermocouple	e, Resolution: 0.1 C		FP0-TC8	AFP0421
FP Web- Server unit	Unit for connecting FP Web-Server function a	FP-WEB	AFP0610		
FP0 Analog I/O unit			2 channels : 0 to 5 V, -10 to +10 V (Resolution: 1/4000) 0 to 20 mA (Resolution: 1/4000)	FP0-A21	AFP0480
	Output specifications	Number or channels Output range	1 channels : -10 to +10 V (Resolution: 1/4000) 0 to 20 mA (Resolution: 1/4000)		
FP0 A/D Converter Unit	Input specifications	Number or channels Input range	8 channels : 0 to 5 V, -10 to +10 V (Resolution: 1/4000) 0 to 20 mA (Resolution: 1/4000)	FP0-A80	AFP0401
FP0 D/A	Output specifications	Number or channels	4 channels	FP0-A04V	AFP04121
Converter Unit		Output range	: -10 to +10 V (Resolution: 1/4000) 4 to 20 mA (Resolution: 1/4000)	FP0-A04I	AFP04123

1.1.4 Link Units

Product name	Specifications	Power supply voltage	Part No.	Product No.
FP0 CC- Link Slave Unit	This unit is for making the FP0 function as a slave station of the CC-Link. Only one unit can be connected to the furthest right edge of the FP0 expansion bus. Note: Accuracy will change if an FP0 thermocouple unit is used at the same time. For details, please refer to the catalog or to the CC-Link Unit manual.	24 V DC	FP0-CCLS	AFP07943
FP0 I/O Link Unit	This is a link unit designed to make the FP0 function as a station to MEWNET-F (remote $\mbox{I/O}$ system).	24 V DC	FP0-IOL	AFP0732
C-NET adapter S2 type (for FP0 side)	This is an RS485 adapter designed to allow use of the Computer link function for connecting to a host computer via C-NET. It comes with a 30 cm FP0 tool port cable. A power supply is not required.			AFP15402
C-NET adapter	This is an RS485 adapter designed to allow use of the Computer link function for connecting to a network-connected PLC via C-NET from a host computer.	100 to 240 V DC		AFP8536
(RS485) (for com- puter side)		24 V DC		AFP8532

1.1.5 Power Supply Unit

Product name	Specifications	Part No.	Product No.
FP0 Power supply unit	Input voltage: 100 to 240 V AC Output: 0.6 A, 24 V DC	FP0-PSA1	AFP0631

Overview

FP0

1.1 Components

1.1.6 Options and Additional Parts

Product name	Specifications		Product No.
FP Memory loader	Data clear type		AFP8670
FP Wemory loader	Data hold type		AFP8671
Terminal screwdriver	Relay output type Necessary when wiring terminals block (Phoenix).		AFP0806
Molex connector pressure contact tool	Necessary when wiring relay output type and Molex connectors. (MOLEX:	57189 - 5000)	AFP0805
Multi-wire connector pressure contact tool	Necessary when wiring transistor output type connectors.		AXY52000
FP0 Slim 30 type mounting plate	Screw-stop attachment plate for 30 mm/1.181 inch width the unit.		AFP0811 (set for 10)
Slim type FP0 mounting plate	Screw-stop attachment plate for FP0 expansion unit. Slim model.		AFP0803 (set for 10)
Flat type FP0 mounting plate	Screw-stop attachment plate for FP0 control unit. Flat model.		AFP0804 (set for 10)
Relay output Molex type	Loose-wiring cable (9 leads) AWG20, with Molex socket attached at one end, 0.5 mm ² , 1 set: 2 cables (blue & white).	Length: 1 m/3.281 ft.	AFP0551 (2 cable set)
I/O cable		Length: 3 m/9.843 ft.	AFP0553 (2 cable set)
Transistor output type	Wire-pressed terminal cable (10 leads) AWG22, 0.3 mm ² with con-	Length: 1 m/3.281 ft.	AFP0521 (2 cable set)
I/O cable	nectors attached at one end, 1 set: 2 cables (blue & white).	Length: 3 m/9.843 ft.	AFP0523 (2 cable set)
Flat cable connector for FPS/FP0 transistor type unit	PS/FP0 transistor type asymmetrical design to prevent mistaken polarity. (10-pin)		AXM110915
Terminal socket	Terminal socket Attaches to relay output and terminal block type. Additional part		AFP0802 (2 sockets per pack)
Molex socket	Attaches to relay output and Molex connector types. Additional part		AFP0801 (2 sockets per pack)
Wire-press socket	s socket Attaches to transistor output type. Additional part		AFP0807 (2 sockets per pack)
FP0 Power cable	Attaches to FP0 various units. Additional part Length: 1 m/3.281 ft.		AFP0581 (1 socket per pack)

1.2 Expansion Possibilities

Be sure to check that the units are added according to the following restrictions:

- A maximum of three expansion I/O units or analog I/O units can be connected to one control unit.
- There are no restrictions on the combinations of the kind control units and expansion units.
- A combination of relay output types and transistor output types is also possible.
- The expansion unit can be attached directly to the control unit easily. Special expansion cables, backplanes, and so forth, are unnecessary as the expansion unit employs a stacking system that uses expansion connector and expansion hooks on the surface of the unit itself.

Maximum possible expansion is with a total of 3 units

Contollable I/O Points

Type of control unit	Control unit only	When the expansion unit is the same output type as the control unit	When the expansion unit is a transistor output type
C10R	10 points	max. 58 points	max. 106 points
C14R	14 points	max. 62 points	max. 110 points
C16T/C16P	16 points	max. 112 points	max. 112 points
C32/T32	32 points	max. 128 points	max. 128 points

Overview FP0

1.3 Combination Possibilities

1.3 Combination Possibilities

1.3.1 Relay Output Type Units

1.3 Combination Possibilities

1.3.2 Transistor Output Type Units

Overview FP0

1.4 Programming Tools

1.4 Programming Tools

Standard ladder diagram tool software "FPWIN GR Ver.2"

Type of software		OS (Operating system)	Hard disc capacity	Product No.
FPWIN GR Ver.2	J	WINDOWS 95 (OSR2 or higher) /	40 MB or more	AFPS10520
English-language menu	Upgraded version	98/Me/NT (Ver.4.0 or		AFPS10520R
	Small type	higher) / 2000/XP		AFPS11520

Notes

- 1) Customers who use the "FPWIN GR Ver.1" can use the "FPWIN GR Ver.2" after purchasing the upgraded version software. (The upgrade version software can be installed only when the "Ver.1.1" has been previously installed)
- 2) Small type version can be used for the "FP-e," "FP Σ ," "FP0," "FP1," and "FP-M" series.

IEC61131-3-compliant programming tool software FPWIN Pro Ver.4

Type of software		OS (Operating system)	Hard disc capacity	Product No.
FPWIN GR Ver.4 English-language	J	WINDOWS 95 (OSR2 or higher) /	100 MB or more	AFPS50540
menu	Small type	98/Me/NT (Ver.4.0 or higher) / 2000/XP		AFPS51540

Small type version can be used for the "FP-e," "FP Σ ," "FP0," "FP1," and "FP-M" series.

Type of computer and suitable cables

Connector	Connector on PLC side	Product No.
D-Sub 9-pin	Mini DIN round 5-pin	AFC8503
	Mini DIN round 5-pin straight type	AFC8503S

Chapter 2

Control Units

next page

2.1	Parts a	nd Termino	logy 2 - 3
	2.1.1	Control U	nit Types 2 - 4
		2.1.1.1	Status Indicator LEDs 2 - 6
		2.1.1.2	Mode Switch 2 - 6
		2.1.1.3	Tool Port
2.2	Specific	cations	2 - 7
	2.2.1	General S	Specifications 2 - 7
		2.2.1.1	Weight
		2.2.1.2	Current Consumed by the Control Unit 2 - 8
	2.2.2	Performal	nce Specifications 2 - 10
	2.2.3	Input Spe	cifications 2 - 14
		2.2.3.1	Limitations on Number of Simultaneous Input ON Points 2 - 15
	2.2.4	Output Sp	pecifications 2 - 16
		2.2.4.1	Relay Output Type 2 - 16
		2.2.4.2	Transistor Output Type 2 - 17
2.3	Interna	l Circuit Dia	gram 2 - 18
	2.3.1		tput Type C10CRS/C10RM/C10CRM/C14RS/ C14RM/C14CRM) 2 - 18
	2.3.2	Transistor	Output Type 2 - 19
		2.3.2.1	NPN Open Collector Type (C16T/ C16CT/C32T/C32CT/T32CT) . 2 - 19
		2.3.2.2	PNP Open Collector Type (C16P/ C16CP/C32P/C32CP/T32CP) . 2 - 21

2.4	Pin Lay	outs	2 - 22
	2.4.1	C10RS/C10CRS/C10RM/C10CRM	2 - 22
	2.4.2	C14RS/C14CRS/C14RM/C14CRM	2 - 22
	2.4.3	C16T/C16CT	2 - 23
	2.4.4	C16P/C16CP	2 - 24
	2.4.5	C32T/C32CT/T32CT	2 - 25
	2.4.6	C32P/C32CP/T32CP	2 - 26
2.5	Backing	Up the 10 K Step Type	2 - 27

FP0

FP0 Control Units

2.1 Parts and Terminology

2.1 Parts and Terminology

There are sixteen different control unit types available:

- 1. C10RS terminal type
- 2. C14RS terminal type
- 3. C10CRS (with RS232C port) terminal type
- 4. C14CRS (with RS232C port) terminal type
- 5. C10RM connector type
- 6. C14RM connector type
- 7. C10CRM (with RS232C port) connector type
- 8. C14CRM (with RS232C port) connector type
- 9. C16T
- 10. C16P
- 11. C16CT (with RS232C port)
- 12. C16CP (with RS232C port)
- 13. C32T
- 14. C32P
- 15. C32CT (with RS232C port)
- 16. C32CP (with RS232C port)
- 17. T32CT (with RS232C port)
- 18. T32CP (with RS232C port)

In the next sections you will find a detailed description of each control unit.

Control Units FP0

2.1 Parts and Terminology

2.1.1 Control Unit Types

Control unit with RS232C port

FP0 Control Units

2.1 Parts and Terminology

(1) (7) (17) (23) Status indicator LEDs

display the operation mode and error statuses (*section 2.1.1.1).

(2) (8) (18) (24) Mode switch

changes the operation mode (*section 2.1.1.2).

(3) (9) (9) 25 Tool port (RS232C)

is used to connect a programming tool (*section 2.1.1.3).

(4) (10) (20) (26) Power supply connector

Supply 24 V DC. It is connected using the power supply cable (AFP0581) that comes with the unit.

(5) Input terminal (9-pin)

(6) Output terminal (9-pin)

The input and output terminals (⑤ and ⑥) use a terminal block socket made by Phoenix Contact Co. (product number: 1840434) (*section 7.6).

11 Input connector (9-pin)

12 Output connector (9-pin)

The input and output connectors (1) and (2) use a connector made by Molex Japan Co. (product number: 51067-0900) (*section 7.7).

(13) (16) Expansion hook

is used to secure expansion units. The hook is also used for installation on FP0 flat type mounting plate (AFP0804).

14 Expansion connector

connects an expansion unit to the internal circuit of the control unit (*section 6.1).

(15) DIN rail attachment lever

allows simple attachment to a DIN rail.

The lever is also used for installation on FP0 slim type mounting plate (AFP0803).

(21) Input connector (10-pin)

22 Output connector (10-pin)

Use a MIL type connector for the input and output connectors (2) and 2) (*section 7.8).

② Input connectors (10-pin \times 2)

28 Output connectors (10-pin \times 2)

Use a MIL type connector for the input and output connectors (27) and (28) (*section 7.8).

29 RS232C port

Use this port to connect to devices with an RS232C port, such as an I.O.P., a bar code reader, or an image checker, enabling data input and output. (*section 7.9).

Control Units FP0

2.1 Parts and Terminology

2.1.1.1 Status Indicator LEDs

These LEDs display the current mode of operation or the occurrence of an error.

LED	Description
RUN (green)	Illuminates when in the RUN mode and indicates the execution of a program. It flashes during forced input/output.
PROG. (green)	Illuminates when in the PROG. mode and indicates that operation has stopped.
ERROR/ALARM (red)	Flashes when an error is detected during the self-diagnostic function. Illuminates if a hardware error occurs, or if operation slows because of the program, and the watchdog timer is activated.

2.1.1.2 Mode Switch

This switch turns ON and OFF (RUN/PROG.) the operation of the FP0. The FP0 can also be turned ON and OFF by the programming tool.

Switch position	Operation mode
RUN (upward)	This sets the RUN mode. The program is executed and operation begins.
PROG. (downward)	This sets the PROG. mode.

When performing remote switching from the programming tool, the position of the mode switch and the actual mode of operation may differ. Verify the mode with the status indicator LED. Otherwise, restart the FPO and change the mode of operation with the mode switch.

2.1.1.3 Tool Port

The tool port is used to connect a programming tool.

Pin assignment

Pin no.	Abbreviation
1	_
2	SD (TXD)
3	SG
4	RD (RXD)
5	+ 5 V

2.2

2.2 Specifications

2.2.1 General Specifications

Item		Description				
Rated operating voltage		24 V DC				
Operating voltage ra	ange	21.6 V to 26.4 V DC				
Rated current consu	umption	300 mA or less (*section 2.2.1.2)				
Allowed momen-	C10/C14	5 ms at 21.6 V, 10 ms at 24 V				
tary power off time	C16/C32 T32/SL1	10 ms at 21.6 V, 10 ms at 24 V				
Ambient temperatur	e	0 °C to +55 °C/32 °F to +131 °F				
Storage temperature		-20 °C to +70 °C/-4 °F to +158 °F				
Ambient humidity		30 % to 85 % RH (non-condensing)				
Storage humidity		30 % to 85 % RH (non-condensing)				
Breakdown voltage		500 V AC for 1 minute between I/O terminal and power supply/ground terminal 1500 V AC for 1 minute between I/O terminal and power supply/ground terminal (relay output type only)				
Insulation resistanc	e	min. 100 M Ω (measured with a 500 V DC megger)				
		between I/O terminal and ground terminal				
Vibration resistance		10 Hz to 55 Hz, 1 cycle/min: double amplitude of 0.75 mm/ 0.030 in., 10 min or 3 axes				
Shock resistance		Shock of 98 m/s ² or more, 4 times on 3 axes				
Noise immunity		1,000 Vp-p with pulse widths 50 ns and 1 μs (based on in-house measurements)				
Operating condition		Free from corrosive gases and excessive dust				

2.2.1.1 Weight

Туре	Weight	Туре	Weight
C10	approx. 100 g/3.53 oz	SL1	approx. 120 g/4.24 oz
C14	approx. 105 g/3.70 oz	A21	approx. 80 g/2.82 oz
C16	approx. 85 g/3.00 oz	A80	approx. 90 g/3.18 oz
C32	approx. 115 g/4.06 oz	IOL, TC4	approx. 85 g/3.00 oz
T32	approx. 125 g/4.41 oz	TC8	approx. 95 g/3.35 oz
E8R/E8YR	approx. 90 g/3.17 oz	CCLS	approx. 80 g/2.82 oz
E8X/E8YT/E8YP	approx. 65 g/2.29 oz	A04V/A04I	approx. 75 g/2.65 oz
E16RS/E16RM	approx. 105 g/3.70 oz		
E16T/E16P/E16X/E16YT/E16YP	approx. 70 g/2.47 oz		
E32T/E32P	approx. 85 g/3.00 oz		

2.2

Specifications

Current Consumed by the Control Unit 2.2.1.2

Unit type		Control unit (The current consumed by the control unit power supply connector. If expansion units or intelligent units are added, the current is increased by the value indicated below.)	Expansion unit (The current consumed by the expansion unit power supply connector. If a unit is not listed below, it means that it has no power supply connector.)	Input circuit (The current consumed by the input circuits of the various units. The value indicates the current that flows into the input circuit. "n" indicates the number of points that are on.)	Output circuit (The current consumed by the output circuits of the various units. The value indicates the current used to drive the output circuit. "n" indicates the number of points that are on. The value does not include the load current value.)
FP0 Control unit	FP0-C10	100mA or less	_	25.8mA or less	_
	FP0-C14	100mA or less	_	34.4mA or less	_
	FP0-C16	40mA or less	_	34.4mA or less	28mA or less
	FP0-C32 FP0-T32	60mA or less	_	68.8mA or less	52mA or less
S-LINK Control unit	FP0-SL1	150mA or less	_	_	_
FP0 Expansion	FP0-E8X	10mA or less	_	34.4mA or less	_
unit	FP0-E8R	15mA or less	50mA or less	17.2mA or less	_
	FP0-E8YR	10mA or less	100mA or less	_	_
	FP0-E8YT/P	15mA or less	_	_	24mA or less
	FP0-E16X	20mA or less	_	68.8mA or less	_
	FP0-E16R	20mA or less	100mA or less	34.4mA or less	_
	FP0-E16T/P	25mA or less	_	34.4mA or less	24mA or less
	FP0-E16YT/P	25mA or less	_	_	48mA or less
	FP0-E32T/P	40mA or less	_	68.8mA or less	48mA or less
FP0 Intelligent	FP0-A21	20mA or less	100mA or less	_	_
unit	FP0-A80	20mA or less	60mA or less		
	FP0-A04V	20mA or less	100mA or less	_	_
	FP0-A04I	20mA or less	130mA or less	_	_
	FP0-TC4, FP0-TC8	25mA or less	_	_	_
	FP0-IOL	30mA or less	40mA or less	_	_
	FP0-CCLS	40mA or less	40mA or less	_	_
Programmable display unit	AIGT0030B1, AIGT0030H1	80mA or less	_	_	_

FP0 Control Units

2.2 Specifications

Current consumption example

Control Units

FP0

2.2 Specifications

2.2.2 Performance Specifications

Item		Relay output type		Transisto	r output ty	pe	S-LINK type			
			C10RS/ C10RM/ C10CRS/ C10CRM		C16T/ C16P/ C16CT/ C16CP	C32T/ C32P/ C32CT/ C32CP	T32C	SL1		
Programmi	ng metho	d/Control method	Relay symb	Relay symbol/Cyclic operation						
Controllab	le I/O	Basic unit	Total: 10	Total: 14	Total: 16	Total: 32	Total: 32	Max. 128		
points			Input: 6 Output: 4	Input: 8 Output: 6	Input: 8 Output: 8	Input: 16 Output: 16	Input: 16 Output: 16	Input: 64 Output: 64 at S-LINK block		
		With expansion unit 1 When config- ured with same output type as control unit	Max. 58	Max. 62	Max. 112	Max. 128	Max. 128	Max. 96 at expansion block		
		With expansion unit 2 When relays and transistors are mixed	Max. 106	Max. 110	Max. 112	Max. 128	Max. 128			
Program m		Built-in memory		PROM (witho	ut battery)	1	i	i		
Program ca	Program capacity		2,720 steps	2,720 steps						
	Numbers of Basic		83							
instruction High-level		145								
	Operation speed			(by basic ins						
I/O refresh	and base	time	With no expansion board: 0.3ms With expansion board(s): 0.3ms and (1 x number of expansion boards) ms							
Operation memory points	Relay	Internal relay (R)	1,008 points	s (R0 to R62	F)		1,008 points (R0 to R62F) (* Note 1)	1,008 points (R0 to R62F)		
		Special internal relay (R)	64 points (F	R9000 to R90)3F)					
	Timer/Counter (T/C)		144 points (initial setting is 100 timer points, T0 to T99 / 44 counter poin C100 to C143 (* Note 2)) Timer range: 1ms, 10ms, 100ms, 1s; selected by instruction					unter points,		
	Memory area	Data register (DT)		s (DT0 to DT	·	6,144 words (DT0 to DT6143)	16,384 words (DT0 to DT16383) (* Note 1)	6,144 words (DT0 to DT6143)		
		Special data register (DT)	112 words (DT9000 to D)T9111)		112 words (DT90000 to DT90111)	112 words (DT9000 to DT9111)		
		Index register (IX, IY)	2 words							
Differential points (DF, DF/)		Unlimited of points								
Master control relay points (MCR)		32 points								
Number of	Number of labels (JP and LOOP)		64 labels				255 labels	64 labels		

FP0 Control Units

2.2 Specifications

Item		Relay out	Relay output type Transistor output		or output ty	ype	S-LINK type
			C14RS/ C14RM/ C14CRS/ C14CRM		C32T/ C32P/ C32CT/ C32CP	T32C	SL1
Number of	step ladders	128 stages				704 stages (* Note 1)	128 stages
Number of	subroutines	16 subrouti	nes			100 sub- routines	16 sub- routines
Number of	interrupt programs	7 programs	(external 6	points, inter	nal 1 point)		1 program (internal 1 point)
Self-diagno	osis function	Such as wa	atchdog time	r, program s	yntax check		
Clock/cale	nder function	Not availab	le			Available (* Note 3)	Not available
Special	Pulse catch input	Total 6 poir	nts			•	Not
functions	Interrupt input	X0 to X1: X2 to X5:	. ,				available
	RS232C port (* Note 4)	Transmissi	on distance:	3m/9.84ft.		/9600/19200	bit/s
	(Only units with an RS232C port)	(products n	ock: 3-pin, r umber: MKD ation method)S1/3 - 3.5)		t Co.	
	Periodical interrupt	0.5ms to 30	Os interval				
	Constant scan	Available					
	Password	Available					
	High- speed counter function	Counter m					Not available
	(* Note 5)	Addition/su	btraction (or	ne phase) (*	Note 7)		avaliable
			int number:				
		Four chann	iels maximur	m			
		- Maximur	n counting	speed:			
		10kHz max	imum for all	4 channels			
		- Input co	ntacts used	:			
		X1: cour — X2: rese	nt input (ch 0 nt input (ch 1 t input (*Not n input puls) X4 e 8)	: count inpu : count inpu : reset input	ι (- I- οί	
		_					
			(1	•			
		Counter n	(4	100μS, <	5KHZ>		Not
			e/individual/d	direction dec	sicion (two r	haco)	Not available
		· '			121011 (IMO-F	niase)	
			o int number nels maximu				
			m counting	•			
			mum for all				
		⊤X0: cour	ontacts used nt input (ch C nt input (ch C))	(3: count inp	ut (ch 2)	
			n input puls		(5: reset inpu	JL	
		l —			lə.		
				•			
		∟ x3, x4		100μS, <5KF	1/>		

Control Units FP0

2.2 Specifications

Item		Relay output type Transis		Transisto	tor output type		S-LINK type	
			C10RS/ C10RM/ C10CRS/ C10CRM	C14RS/ C14RM/ C14CRS/ C14CRM	C16T/ C16P/ C16CT/ C16CP	C32T/ C32P/ C32CT/ C32CP	T32C	SL1
Special functions	Pulse output	Output point number	Not available Not available			Two independent points (Y0 and Y1)(no interpolation function)		
	func- tion (* Note 6,10)	Output frequency			40Hz to 10kHz (Y0/Y1: one-point output) 40Hz to 5kHz (Y0/Y1: two-point output)			Not available
	PWM output	Output point number	Not availab	le	Two points	(Y0 and Y1)		Not available
	func- tion (* Note 6)	Output frequency	Not availab	le	38Hz, (* Note 9)	(* Note 9)		Not available
						Duty: 0.1% to 99.9%		
Memory backup	backup register		EEPROM					
(* Noté 6, 12)	Operatio	n memory	supply fails retained by - Number of fixed hold a memories Counters: 4 Internal rela	ays: 32 point ers: 8 words	nd are M. ds of the various	Areas which are held if the power supply fails are fixed, and are retained by the EEPROM Number of points/ words of the fixed hold areas in the various memories Counters: 16 points Internal re- lays: 128 points Date registers: 32 words (* Note 14)	The operation memory is backed up using built-in charge-able (secondary) battery, so the hold type memory areas can be specified using the programming tools. (* Note 11) - Memory areas which can be specified: Timers, Counters, Internal relays, Data registers	power supply fails are fixed, and are retained

- 1) Hold or non-hold type can be set using the system registers.
- 2) The proportion of timer points to counter points can be changed using a system register 5.

Specifications

2.2

Notes

- 3) Precision of calender timer: At 0_C/32_F, less than 139 second error per month. At 25_C/77_F, less than 72 seconds error per month. At 55_C/131_F, less than 169 seconds error per month. This accuracy is considered to be the worst fluctuation coefficient value based on fluctuations in the normal voltage of 5V and the battery backup voltage of 3V. Also, F157 and F158 (time/date addition and subtraction instructions) cannot be used.
- 4) When using the RS232C port for communication, we recommend using resend processing. The driver IC for the RS232C is in full conformance with EIA/TIA-232E and CCITT V.28 standards.
- 5) The combinations 1 phase \times 2 channels and 2 phases \times 1 channel are also possible for the high-speed counter.
- 6) The internal relay, data register, and timer/counter hold areas of the T32CT control unit (10 k step type) can be changed by the system registers. The number of points in the table is the value when the system registers are initial values.
- 7) The max. counting speed (10kHz) is the counting speed with a rated input voltage of 24V DC and an ambient temperature of 25°C. The counting speed (frequency) will decrease depending on the voltage and temperature.
- 8) If both reset inputs X0 and X1 are reset, X2 will be the reset input of X1. In the same way, for X3 and X4, X5 acts as the reset input of X4.
- 9) With a CPU of Ver. 1.2 or a subsequent version, the frequency will be 0.15Hz to 1kHz.
- 10) The maximum is 9.5kHz when the positioning control instruction (F168) is executed.
- 11) Precautions when using the battery backup function Secondary (chargeable) battery is used as backup battery in the FP0 T32C control unit. The battery is not charged before the unit is shipped, so please make sure that the built-in backup battery have been charged before using the unit.
- 12) The program, system resisters and the hold type areas (internal relay, data register and counter) are backed up by the built in EEPROM.
- 13) The possible number of write times by the EEP-ROM write instruction is 100,000 or less.
- 14) The possible number of write times by the EEP-ROM write instruction is 10,000 or less.

Control Units FP0

2.2 Specifications

2.2.3 Input Specifications

Item		Description			
Insulation method		optical coupler			
Rated input voltage		24 V DC			
Rated input current		approx. 4.3 mA (at 24 V DC)			
Input impedance		approx. 5.6 kΩ			
Operating voltage ra	inge	21.6 to 26.4 V DC			
Input points per common (*Note 1) C10RM, C10CRM, C10RS, C10CRS		6 points/common			
	C14RM, C14CRM, C14RS, C14CRS	8 points/common			
C16T, C16CT, C16P, C16CP		8 points/common			
	C32T, C32CT, C32P, C32CP T32CT, T32CP	16 points/common			
ON voltage/ON curre	ent	19.2 V or less/3 mA or less			
OFF voltage/OFF cur	rrent	2.4 V or more/1 mA or more			
Response time	OFF ↔ ON	50 μs or less (at X0, X1) (* Note 2)			
(at 24 V DC and 25 °C/66 °F)		100 μs or less (at X2 to X5) (* Note 2)			
		2 ms or less (at X6 to XF)			
	ON ↔ OFF	the same as above			
Operating mode indi	icator	LED			

Notes

- 1) Either positive or negative polarity is possible for the input voltage supply.
- 2) X0 through X5 are inputs for the high-speed counter and have a fast response time. If used as normal inputs, we recommend inserting a timer in the ladder program as chattering and noise may be interpreted as an input signal.

FP0 Control Units

2.2 Specifications

2.2.3.1 Limitations on Number of Simultaneous Input ON Points

Keep the number of input points per common which are simultaneously ON within the following range as determined by the temperature.

FP0-C14RM/C14CRM/C14RS/C14CRS

FP0-C16T/C16CT/C16P/C16CP

Ambient temperature (°C/°F)

FP0-C32T/C32CT/C32P/C32CP/T32CT/T32CP

Ambient temperature (°C/°F)

2.2 Specifications

2.2.4 Output Specifications

2.2.4.1 Relay Output Type

FP0 relay output types: C10RM, C10CRM, C10RS, C10CRS, C14RM, C14CRM,

C14RS, C14CRS

Item		Description
		·
Output type		Normally open (1 Form A) relay output
Rated control capacity		2 A 250 V AC, 2 A 30 V DC (4.5 A maximum per common) (at Resistance load)
Output points per common	C10RM, C10CRM, C10RS, C10CRS	2 points/common +1 point/common +1 point/common
	C14RM, C14CRM, C14RS, C14CRS	4 points/common + 1 point/common + 1 point/common
Response time	OFF → ON	approx. 10 ms
	$ON \rightarrow OFF$	approx. 8 ms
Mechanical life time		20,000,000 operations or more
Electrical life time		100,000 operations or more
Surge absorber		None
Operating mode indicator		LED

2.2

2.2.4.2 Transistor Output Type

FP0 transistor output types: C16T, C16CT, C16P, C16CP, C32T, C32CT, C32P, C32CP, T32CT, T32CP

Item		Description
Insulation method		optical coupler
Output type		open collector
Rated load voltage		NPN open collector type: 5 to 24 V DC (* Note) PNP open collector type: 24 V DC
Operating load voltage range		NPN open collector type: 4.75 to 26.4 V DC PNP open collector type: 21.6 to 26.4 V DC
Max. load current		0.1 A
Max. surge current		0.3 A
Output points per common	C16T, C16CT, C16P, C16CP	8 points/common
	C32T, C32CT, C32P, C32CP T32CT, T32CP	16 points/common
OFF state leakage cu	ırrent	100 μA or less
ON state voltage drop		1.5 V or less
External power supply for driving	Voltage	21.6 to 26.4 V DC
internal circuit	Current	Y0 and Y1: 5 mA/1 point, except Y0 and Y1: 3 mA/1 point
Response time	OFF → ON	1 ms or less (Y0 and Y1 only: 50 μs or less)
	ON → OFF	1 ms or less (Y0 and Y1 only: 50 μs or less)
Surge absorber		Zener diode
Operating mode indicator		LED

Note

For NPN open collector type, able to be used with different voltages for the load voltage and the external power supply for driving the internal circuit.

2.3 Internal Circuit Diagram

2.3 Internal Circuit Diagram

2.3.1 Relay Output Type (C10RS/C10CRS/C10RM/C10CRM/C14RS/C14CRS/C14RM/C14CRM)

FP0-C10RS/C10CRS/C10RM/C10CRM/C14RS/C14CRS/C14RM/C14CRM

- 1) The resistor in the control unit is 2 k Ω for X0 through X5, and 1 k Ω for X6 and X7.
- 2) Either positive or negative polarity is possible for the input voltage supply.

2.3

2.3.2 Transistor Output Type

2.3.2.1 NPN Open Collector Type (C16T/C16CT/C32T/C32CT/T32CT)

When the load voltage and external power supply are the same

This example is when the values of the rated load voltage and external power supply for driving internal circuit are the same. In this situation, there is only one power supply.

FP0-C16T/C16CT/C32T/C32CT

- 1) The resistor in the control unit is 2 k Ω for X0 through X5, and 1 k Ω for X6 through XF.
- 2) Either positive or negative polarity is possible for the input voltage supply.

2.3 Internal Circuit Diagram

When the load voltage differs from the 24 V DC external power supply for the driving the internal circuit

Other than 24 V DC load voltage, 5 V DC and 12 V DC and other load voltages can be connected.

FP0-C16T/C16CT/C32T/C32CT/T32CT

- 1) The resistor in the control unit is 2 k Ω for X0 through X5, and 1 k Ω for X6 through XF.
- 2) Either positive or negative polarity is possible for the input voltage supply.

2.3

2.3.2.2 PNP Open Collector Type (C16P/C16CP/C32P/C32CP/T32CP)

FP0-C16P/C16CP/C32P/C32CP/T32CP

- 1) The resistor in the control unit is 2 k Ω for X0 through X5, and 1 k Ω for X6 through XF.
- 2) Either positive or negative polarity is possible for the input voltage supply.

2.4 Pin Layouts

2.4 Pin Layouts

2.4.1 C10RS/C10CRS/C10RM/C10CRM

2.4.2 C14RS/C14CRS/C14RM/C14CRM

Note

Either positive or negative polarity is possible for the input voltage supply.

FP0 Control Units

2.4 Pin Layouts

2.4.3 C16T/C16CT

- The two COM terminals of input terminal (X0-7) are connected internally, however they should be externally connected as well.
- 1) Either positive or negative polarity is possible for the input voltage supply.

2.4 Pin Layouts

2.4.4 C16P/C16CP

- The two COM terminals of input terminal (X0-7) are connected internally, however they should be externally connected as well.
- 1) Either positive or negative polarity is possible for the input voltage supply.

FP0 Control Units

2.4 Pin Layouts

2.4.5 C32T/C32CT/T32CT

- The four COM terminals of input terminals (X0-7 and X8-F) are connected internally, however they should be externally connected as well.
- The (+) terminals of output terminals (Y0-7) and output terminals (Y8-F) are connected internally, however they should be externally connected as well.
- The (-) terminals of output terminals (Y0-7) and output terminals (Y8-F) are connected internally, however they should be externally connected as well.
- 1) Either positive or negative polarity is possible for the input voltage supply.

2.4 Pin Layouts

2.4.6 C32P/C32CP/T32CP

- The four COM terminals of input terminals (X0-7 and X8-F) are connected internally, however they should be externally connected as well.
- The (+) terminals of output terminals (Y0-7) and output terminals (Y8-F) are connected internally, however they should be externally connected as well.
- The (-) terminals of output terminals (Y0-7) and output terminals (Y8-F) are connected internally, however they should be externally connected as well.
- 1) Either positive or negative polarity is possible for the input voltage supply.

FP0 Control Units

2.5

Backing Up the 10 K Step Type

2.5 Backing Up the 10 K Step Type

Recharging the internal backup battery

A secondary battery (rechargeable type) is used as the backup battery in the control unit (10 K step type). When shipped, this battery is not charged; therefore, please make sure it is sufficiently charged before using. Recharging is automatic when DC power is supplied.

When backup is possible of operation memory

Relationship between recharging time and backup time

The number of days for the backup time changes with the proportion of recharging time. Please use the graph below to verify the number of days for the backup time.

Number of days for backup depending on ambient temperature

The number of days for the backup differs, as shown in the table below, when recharging is done for 72 hours at a certain ambient temperature.

Ambient temperature	Number of days for backup time
70	Approx. 14 days
25	Approx. 50 days
- 20	Approx. 25 days

2.5 Backing Up the 10 K Step Type

Predicted life of internal backup battery

When the control unit is on (when power is supplied) the internal backup battery life will differ depending on the ambient temperature. Refer to the table below to predict the life of the internal backup battery.

Note: When the control unit is off (when power is not supplied), temperature has almost no effect on the battery life.

Ambient temperature	Internal backup battery life
55	Approx. 430 days (approx. 1 year)
45	Approx. 1,200 days (approx. 3 years)
40	Approx. 2,100 days (approx. 6 years)
35	Approx. 3,300 days (approx. 9 years)
34 and less	Approx. 10 years

Range of backup possible with the internal backup battery

- The range that the user specifies with the programming tool from among the computation memories

given below, will become the holding backup area.

- 1) Timer/counter (T/C)
- 2) Internal relay (R)
- 3) Data register (DT)
- 4) Step ladder
- If the user does not make a designation, the default setting range will become the backup holding area.
- The clock/calendar timer value is also backed up.
- The program and system registers are held in EEP ROM with no relation to the internal backup battery.

Handling of the internal backup battery

It is not possible to replace the internal backup battery when it has been exhausted or has exceeded its life span.

Cautions regarding the backup of data

- -The clock/calendar timer value is backed up by the secondary battery.
- Begin use only after the secondary battery has been sufficiently charged.

For reference

To read and use the initial settings data when starting operation, you can also write the data to EEPROM by using the F12 EEPROM read instruction and the F13 EEPROM write instruction.

Chapter 3

Expansion I/O Units

3.1	Parts ai	nd Terminolo	ogy	3 - 3
	3.1.1	Expansion	I/O Unit Types	3 - 4
3.2	Specifications			3 - 6
	3.2.1	General S _l	pecifications	3 - 6
	3.2.2	Input Spec	ifications	3 - 6
		3.2.2.1	Limitations on Number of Simultaneous Input ON Points .	3 - 7
	3.2.3	Output Spe	ecifications	3 - 8
		3.2.3.1	Relay Output Type	3 - 8
		3.2.3.2	Transistor Output Type	3 - 9
3.3	Internal Circuit Diagram 3 - 10			
	3.3.1	Relay Outp 3 - 10	out Type (E8RS/E8RM/E16RS/E16	RM)
	3.3.2	Transistor	Output Type3	3 - 11
		3.3.2.1	NPN Open Collector Type (E16T/E32T)3	R - 11
		3.3.2.2	PNP Open Collector Type (E16P/E32P) 3	· - 13
	3.3.3	Expansion	Input Units (E8X/E16X) 3	- 14
	3.3.4	Expansion	Output Units 3	- 15
		3.3.4.1	NPN Open Collector Type (E8YT/E16YT) 3	- 15
		3.3.4.2	PNP Open Collector Type (E8YP/E16YP)	- 17
			► next	page

3.4	Pin Lay	outs 3 - 18
	3.4.1	E8RS/E8RM
	3.4.2	E16RS/E16RM
	3.4.3	E16T 3 - 20
	3.4.4	E16P 3 - 21
	3.4.5	E32T 3 - 22
	3.4.6	E32P 3 - 23
	3.4.7	E8X 3 - 24
	3.4.8	E16X 3 - 25
	3.4.9	E8YT 3 - 26
	3.4.10	E8YP 3 - 26
	3.4.11	E16YT 3 - 27
	3 / 12	F16VD 3 _ 29

FP0 Expansion I/O Units

3.1 Parts and Terminology

3.1 Parts and Terminology

There are fourteen different expansion I/O unit types available:

- 1. E8RS terminal type
- 2. E16RS terminal type
- 3. E8RM connector type
- 4. E16RM connector type
- 5. E16T
- 6. E16P
- 7. E32T
- 8. E32P
- 9. E8X input type
- 10. E16X input type
- 11. E8YT output type
- 12. E8YP output type
- 13. E16YT output type
- 14. E16YP output type

In the next sections you will find a detailed description of each expansion I/O unit.

3.1 Parts and Terminology

3.1.1 Expansion I/O Unit Types

All expansion I/O unit types

FP0 Expansion I/O Units

3.1 Parts and Terminology

1 4 Power supply connector

Supply 24 V DC. It is connected using the power supply cable (AFP0581) that comes with the unit.

- 2 Input terminal (9-pin)
- (3) Output terminal (9-pin)

The input and output terminals (2 and 3) use a terminal block socket made by Phoenix Contact Co. (product number: 1840434) (*section 7.6).

- (5) Input connector (9-pin)
- 6 Output connector (9-pin)

The input and output connectors (§ and (§) use a connector made by Molex Japan Co. (product number: 51067-0900) (*section 7.7).

- 1 1 Input connector (10-pin)
- (8) (13) Output connector (10-pin)
- 9 12 Input connector (10-pin \times 2)
- 10 14 Output connector (10-pin \times 2)

Use a MIL type connector for the input and output connectors ((7) to (14)) (*section 7.8).

(15) (18) Expansion hook

is used to secure expansion units.

16 Expansion connector

connects an expansion unit to the internal circuit of the expansion I/O unit (*section 6.1).

(17) DIN rail attachment lever

allows simple attachment to a DIN rail.

The lever is also used for installation on FP0 slim type mounting plate (AFP0803).

3.2 Specifications

3.2 Specifications

3.2.1 General Specifications

For more details on the general specifications, refer to section 2.2.1.

3.2.2 Input Specifications

Item		Description
Insulation method		optical coupler
Rated input voltage		24 V DC
Rated input current		approx. 4.3 mA (at 24 V DC)
Input impedance		approx. 5.6 kΩ
Operating voltag	e range	21.6 to 26.4 V DC
Input points per common (* Note)	E8RS, E8RM	4 points/common
	E16RS, E16RM, E16T, E16P, E8X	8 points/common
	E32T, E32P, E16X	16 points/common
ON voltage/ON current		19.2 V or less/3 mA or less
OFF voltage/OFF current		2.4 V or more/1 mA or more
Response time (at 24 V DC and 25 °C/66 °F)	OFF ↔ ON	2 ms or less
	ON ↔ OFF	the same as above
Operating mode indicator		LED

Either positive or negative polarity is possible for the input voltage supply.

Specifications

3.2.2.1 Limitations on Number of Simultaneous Input ON Points

Keep the number of input points per common which are simultaneously ON within the following range as determined by the temperature.

FP0-E32T/E32P/E16X

3.2 Specifications

3.2.3 Output Specifications

3.2.3.1 Relay Output Type

FP0 relay output types: E8RS, E8RM, E16RS, and E16RM

Item		Description
Output type		Normally open (1 Form A) relay output
Rated control capacity		2 A 250 V AC, 2 A 30 V DC (4.5 A maximum per common) (at Resistance load)
Output points per common	E8RS, E8RM	4 points/common
	E16RS, E16RM	8 points/common
Response time	OFF ↔ ON	approx. 10 ms
	ON ↔ OFF	approx. 8 ms
Mechanical life time		20,000,000 operations or more
Electrical life time		100,000 operations or more
Surge absorber		None
Operating mode indicator		LED

3.2.3.2 Transistor Output Type

FP0 transistor output types: E16T, E16P, E32T, E32P, E8YT, E8YP, E16YT, E16YP

Item		Description
Insulation method		optical coupler
Output type		open collector
Rated load voltage		NPN open collector type: 5 to 24 V DC (* Note) PNP open collector type: 24 V DC
Operating load voltage range		NPN open collector type: 4.75 to 26.4 V DC PNP open collector type: 21.6 to 26.4 V DC
Max. load curren	t	0.1 A
Max. surge curre	ent	0.3 A
Output points per common	E16T, E16P, E8YT, E8YP	8 points/common
	E32T, E32P, E16YT, E16YP	16 points/common
OFF state leakage current		100 μA or less
ON state voltage drop		1.5 V or less
External power supply for	Voltage	21.6 to 26.4 V DC
driving internal circuit	Current	Y0 and Y1: 5 mA/1 point, except Y0 and Y1: 3 mA/1 point
Response time	OFF → ON	1 ms or less (Y0 and Y1 only: 50 μs or less)
	$ON \rightarrow OFF$	1 ms or less (Y0 and Y1 only: 50 μs or less)
Surge absorber		Zener diode
Operating mode indicator		LED

Note

For NPN open collector type, able to be used with different voltages for the load voltage and the external power supply for driving the internal circuit.

3.3 Internal Circuit Diagram

3.3 Internal Circuit Diagram

3.3.1 Relay Output Type (E8RS/E8RM/E16RS/E16RM)

FP0-E8RS/E8RM/E16RS/E16RM

- Either positive or negative polarity is possible for the input voltage supply.
- The I/O number given above is the I/O number when the expansion I/O unit is installed as the first expansion unit (*section 5.3).

3.3.2 Transistor Output Type

3.3.2.1 NPN Open Collector Type (E16T/E32T)

When the load voltage and external power supply are the same

This example is when the values of the rated load voltage and external power supply for driving internal circuit are the same. In this situation, there is only one power supply.

FP0-E16T/E32T

- Either positive or negative polarity is possible for the input voltage supply.
- The I/O number given above is the I/O number when the expansion I/O unit is installed as the first expansion unit (*section 5.3).

3.3 Internal Circuit Diagram

When the load voltage differs from the 24 V DC external power supply for the driving the internal circuit

Other than 24 V DC load voltage, 5 V DC and 12 V DC and other load voltages can be connected.

FP0-E16T/E32T

- Either positive or negative polarity is possible for the input voltage supply.
- The I/O number given above is the I/O number when the expansion I/O unit is installed as the first expansion unit (*section 5.3).

3.3.2.2 PNP Open Collector Type (E16P/E32P)

FP0-E16P/E32P

- Either positive or negative polarity is possible for the input voltage supply.
- The I/O number given above is the I/O number when the expansion I/O unit is installed as the first expansion unit (*section 5.3).

3.3 Internal Circuit Diagram

3.3.3 Expansion Input Units (E8X/E16X)

FP0-E8X/E16X

- Either positive or negative polarity is possible for the input voltage supply.
- The input number given above is the input number when the expansion input unit is installed as the first expansion unit (*section 5.3).

3.3.4 Expansion Output Units

3.3.4.1 NPN Open Collector Type (E8YT/E16YT)

When the load voltage and external power supply are the same

This example is when the values of the rated load voltage and external power supply for driving the internal circuit are the same. In this situation, there is only one power supply.

FP0-E8YT/E16YT

Note

The output number given above is the output number when the expansion output unit is installed as the first expansion unit (*section 5.3).

3.3 Internal Circuit Diagram

When the load voltage differs from the 24 V DC external power supply for the driving the internal circuit

Other than 24 V DC load voltage, 5 V DC and 12 V DC and other load voltages can be connected.

FP0-E8YT/E16YT

Note

The output number given above is the output number when the expansion output unit is installed as the first expansion unit (*section 5.3).

3.3.4.2 PNP Open Collector Type (E8YP/E16YP)

FP0-E8YP/E16YP

Note

The output number given above is the output number when the expansion output unit is installed as the first expansion unit (*section 5.3).

3.4 Pin Layouts

3.4 Pin Layouts

3.4.1 E8RS/E8RM

- Either positive or negative polarity is possible for the input voltage supply.
- The I/O number given above is the I/O number when the expansion I/O unit is installed as the first expansion unit. The I/O numbers for the expansion I/O units will differ depending on the location where they are installed (*section 5.3).

3.4 Pin Layouts

3.4.2 E16RS/E16RM

- Either positive or negative polarity is possible for the input voltage supply.
- The I/O number given above is the I/O number when the expansion I/O unit is installed as the first expansion unit. The I/O numbers for the expansion I/O units will differ depending on the location where they are installed (*section 5.3).

3.4 Pin Layouts

3.4.3 E16T

- The two COM terminals of input terminals are connected internally, however they should be externally connected as well.
- 1) Either positive or negative polarity is possible for the input voltage supply.
- The I/O number given above is the I/O number when the expansion I/O unit is installed as the first expansion unit. The I/O numbers for the expansion I/O units will differ depending on the location where they are installed (*section 5.3).

3.4 Pin Layouts

3.4.4 E16P

- The two COM terminals of input terminals are connected internally, however they should be externally connected as well.
- 1) Either positive or negative polarity is possible for the input voltage supply.
- The I/O number given above is the I/O number when the expansion I/O unit is installed as the first expansion unit. The I/O numbers for the expansion I/O units will differ depending on the location where they are installed (*section 5.3).

3.4 Pin Layouts

3.4.5 E32T

- The four COM terminals of input terminals are connected internally, however they should be externally connected as well.
- The two (+) terminals of output terminals are connected internally, however they should be externally connected as well.
- The two (-) terminals of the output terminals are connected internally, however they should be externally connected as well.
- 1) Either positive or negative polarity is possible for the input voltage supply.
- The I/O number given above is the I/O number when the expansion I/O unit is installed as the first expansion unit. The I/O numbers for the expansion I/O units will differ depending on the location where they are installed (*section 5.3).

3.4 Pin Layouts

3.4.6 E32P

- The four COM terminals of input terminals are connected internally, however they should be externally connected as well.
- The two (+) terminals of output terminals are connected internally, however they should be externally connected as well.
- The two (-) terminals of the output terminals are internally connected, however they should be externally connected as well.
- 1) Either positive or negative polarity is possible for the input voltage supply.
- The I/O number given above is the I/O number when the expansion I/O unit is installed as the first expansion unit. The I/O numbers for the expansion I/O units will differ depending on the location where they are installed (*section 5.3).

Expansion I/O Units FP0

3.4 Pin Layouts

3.4.7 E8X

- The two COM terminals of input terminals are connected internally, however they should be externally connected as well.
- 1) Either positive or negative polarity is possible for the input voltage supply.
- The input number given above is the input number when the expansion input unit is installed as the first expansion unit. The input numbers for the expansion input units will differ depending on the location where they are installed (*section 5.3).

3.4 Pin Layouts

3.4.8 E16X

- The four COM terminals of input terminals are connected internally, however they should be externally connected as well.
- 1) Either positive or negative polarity is possible for the input voltage supply.
- The input number given above is the input number when the expansion input unit is installed as the first expansion unit. The input numbers for the expansion input units will differ depending on the location where they are installed (*section 5.3).

Expansion I/O Units FP0

3.4 Pin Layouts

3.4.9 E8YT

3.4.10 E8YP

The output number given above is the output number when the expansion output unit is installed as the first expansion unit. The output numbers for the expansion output units will differ depending on the location where they are installed (*section 5.3).

3.4 Pin Layouts

3.4.11 E16YT

- The two (+) terminals of the output terminals are connected internally, however they should be externally connected as well.
- The two (-) terminals of the output terminals are connected internally, however they should be externally connected as well.
- The output number given above is the output number when the expansion output unit is installed as the first expansion unit. The output numbers for the expansion output units will differ depending on the location where they are installed (*section 5.3).

Expansion I/O Units FP0

3.4 Pin Layouts

3.4.12 E16YP

- The two (+) terminals of the output terminals are connected internally, however they should be externally connected as well.
- The two (-) terminals of the output terminals are connected internally, however they should be externally connected as well.
- The output number given above is the output number when the expansion output unit is installed as the first expansion unit. The output numbers for the expansion output units will differ depending on the location where they are installed (*section 5.3).

Chapter 4

S-LINK Control Unit

4.1	Names	and Functions 4 - 3
4.2	Specific	cations
	4.2.1	General Specifications 4 - 5
	4.2.2	S-LINK Controller Specifications 4 - 6
4.3	Wiring t	the Power Supply 4 - 7
	4.3.1	Wiring to Power Supply Connector 4 - 7
	4.3.2	Wiring to S-LINK Terminal Block 4 - 7
4.4	Sequer	nce of Turning on Power Supplies 4 - 9
4.5	Operati	ion When Power Supply is Turned On 4 - 10
4.6	S-LINK	System Address Recognition 4 - 11
	4.6.1	Recognizing the Address 4 - 11
	4.6.2	Address Setting of S-LINK I/O Device 4 - 12
4.7	Judging	g Errors from the Error Indicators 4 - 13
4.8	Judaina	g Errors Address Displays 4 - 14

S-LINK Control Unit FP0

FPO S-LINK Control Unit

4.1 Names and Functions

4.1 Names and Functions

1) Status indicator LED

The LED display the operation mode and error statuses.

2 ERROR ADDRESS display (2-digit hexadecimal display)

The address at which the S-LINK system error occurred is displayed.

Mode switch

The mode switch changes the operation mode.

(4) Transmission indicator (SEND)

This flashes when input or output data is transmitted between the various units of the S-LINK system.

(5) ERROR indicators

These light if an error occurs in the S-LINK system.

ERR1 (Error 1): Short circuit between D - G line.

ERR2: Unused

ERR3 (Error 3): Abnormal voltage level between D - G line.

ERR4 (Error 4): Broken wire or S-LINK I/O device error

6 System SET button

Pressing the system SET button reads the connection status for the S-LINK system and stores it in the memory. In subsequent operation, the S-LINK unit checks for errors using the connection status registered at this time. The output unit data effective at the time that the system SET button was pressed

is retained.

next page

S-LINK Control Unit FP0

4.1 Names and Functions

7 S-LINK terminal block (6-pin)

The power supply and signal wires of the S-LINK system are connected to the S-LINK terminal block.

The S-LINK terminal block can be detached from the FP0 S-LINK control unit for wiring operations.

For detailed information, refer to section "4.3.2 Wiring to S-LINK Terminal Block."

(8) Tool port (RS232C)

The tool port (RS232C) is used to connect a programming tool.

9 Power supply connector

Supply 24V DC to the power supply connector. It is connected using the power supply cable (AFP0581) that comes with the unit.

10 RS232C port

Use this port to connect to devices with an RS232C port, such as an I.O.P., a bar code reader, or an image checker, enabling data input and output.

Tool port (RS232C) specifications

Pin assignment

Pin no.	Abbreviation	
1	_	
2	SD (TXD)	
3	SG	
4	RD (RXD)	
5	+ 5 V	

Settings when shipped from the factory

Default value	Baud rate: 9600bps
	Character bit: 8bits
	Parity check: Odd
	Stop bit: 1bit

4.2 Specifications

4.2 Specifications

4.2.1 General Specifications

Item	Description
Rated operating voltage	24V DC
Operating voltage range	21.6V to 26.4V DC
Rated current consumption	150mA or less
Allowed momentary power off time	10ms at 21.6V, 10ms at 24V
Ambient temperature	0°C to +55°C/32°F to +131°F
Storage temperature	-20°C to +70°C/-4°F to +158°F
Ambient humidity	30% to 85% RH (non-condensing)
Storage humidity	30% to 85% RH (non-condensing)
Breakdown voltage	500V AC for 1 minute between S-LINK terminal block and power supply/ ground terminals
Insulation resistance	min. $100M\Omega$ (measured with a 500V DC megger) between S-LINK terminal block and power supply/ground terminals
Vibration resistance	10Hz to 55Hz, 1 cycle/min: double amplitude of 0.75mm/ 0.030in., 10 min on 3 axes
Shock resistance	Shock of 98m/s ² or more, 4 times on 3 axes
Noise immunity	1,000 Vp-p with pulse widths 50ns and $1\mu s$ (based on in-house measurements)
Operating condition	Free from corrosive gases and excessive dust

S-LINK Control Unit FP0

4.2 Specifications

4.2.2 S-LINK Controller Specifications

Item		Description		
Rated power supply voltage		24V DC +/-10% / Allowable ripple p - p +/-10% max. (Supplied from IN - 24V, IN - 0V of the S-LINK terminal block)		
Current cor (* note 1)	sumption	[S-LINK controller current consumption (including D - G line current consumption)] 24V DC 1.6A max.		
		[Maximum current which can be supplied (supplied to S-LINK unit and I/O devices from 24V - 0V line)] + 24V DC 5A (fuse: 5A)		
Transmission	on method	Bi-directional time-divided multiple signal transmission		
Synchroniz	ation method	Bit synchronization, frame synchronization		
Transmission	on protocol	S-LINK protocol		
Transmission	on speed	28.5kbps		
Transmission	on delay time	Max. 10.7ms		
Transmission	on distance	Main signal wire: up to a distance to 200m max. (400m when a booster is used)		
FAN-out (*	note 2)	320		
Connection method (* note 3)		'T'-branch multi-drop wiring		
No. of input	/output points	64 points input/64 points output Fixed		
Display indicators Transmission display (SEND)		Green LED blinks in response to synchronization signals		
	Error indicator	Red LED light up depending on the error		
Error address display		If the system error occurs, the error address is displayed using the red 7-segment LED.		

- 1) For detailed information on current consumption, refer to "Determining the Power Supply" in the "S-LINK Design Manual."
- 2) The output capacitance for the D-G line of the S-LINK controller and booster is indicated by FAN-out, and the input capacitance from the D-G line of the S-LINK configuration unit is indicated by FAN-in. When configuring the S-LINK system, the configuration should be set up so that the FAN-out total > or = the FAN-in total. (For detailed information on calculating the FAN-in value and other values, see the "S-LINK Design Manual."
- The FP0 S-LINK control unit does not have a loop wiring function.

FP0 S-LINK Control Unit

4.3 Wiring the Power Supply

4.3 Wiring the Power Supply

With the FP0 S-LINK control unit, power must be supplied at two locations (power supply connector and S-LINK terminal block).

4.3.1 Wiring to Power Supply Connector

This is the power supply for the programmable controller section and the S-LINK controller in the S-LINK control unit (24V DC, 150mA).

4.3.2 Wiring to S-LINK Terminal Block

This is the power supply for the S-LINK controller in the S-LINK control unit and other S-LINK input/output devices to which power is supplied through the 24V - 0V line of the S-LINK main cable.

The current consumption for the overall S-LINK system is calculated by referring to the section entitled "Determining the Power Supply" in the "S-LINK Design Manual." (For standard purposes, a power supply exceeding 24V DC, 1.6 A should be selected.)

Supply of power to S-LINK terminal block

next page

S-LINK Control Unit FP0

4.3 Wiring the Power Supply

S-LINK terminal block: MC1.5/6-ST-3.5 (Made by Phoenix Contact Co.)

Terminal name	Color of connecting cable	Description
24V	Brown	Main wire (for S-LINK I/O devices)
0V	Blue	
D	White	
G	Black	
IN - 24V	_	External power supply input for S-LINK
IN-0V	_	

Suitable wires (twisted wire)

	AWG#20 to 16
Normal cross-section surface area	0.5 to 1.25mm ²

- The S-LINK section is protected by a fuse, but if too many input/output devices are connected, or if the current consumption is heavy enough to cause the fuse to blow, we recommend providing a local power supply.
- A short-circuit between D-G, or between D-24V, triggers the
 protective circuit, but there is no protection against
 short-circuiting between G-24V or 0V-24V. Be aware that a
 short-circuit can cause a breakdown or malfunction.

4.4 Sequence of Turning on Power Supplies

4.4 Sequence of Turning on Power Supplies

When turning on the power supplies to the S-LINK control unit, follow the sequence outlined below.

Procedure:

FP0

- Turn on the power supply to the S-LINK I/O devices connected to the S-LINK system.
- 2. Turn on the external power supply to the S-LINK.
- 3. Last, turn on the power supply to the S-LINK control unit itself.

If using the power supply of booster, start up the booster before the external power supply for S-LINK.

When turning off the power supplies, reverse the order of the sequence noted above.

S-LINK Control Unit FP0

4.5 Operation When Power Supply is Turned On

4.5 Operation When Power Supply is Turned On

Refreshing S-LINK I/O data

With the S-LINK control unit, I/O data is refreshed by the CPUs of both the FP0 section and the S-LINK section, through the memory shared between them.

S-LINK control unit

The illustration below shows the time required until the first refreshing is completed by the S-LINK control unit after the power supply has been turned on. (The external power supply for the S-LINK is already on.)

When the power supply to the S-LINK control unit is turned on, it takes approximately 2.6 seconds for the S-LINK I/O data to be verified by the FP0 section. Be particularly careful with regard to the FP0 sequence program, if using the S-LINK input at the b contact relay when the power supply is turned on.

4.6 S-LINK System Address Recognition

4.6 S-LINK System Address Recognition

4.6.1 Recognizing the Address

Before the S-LINK system is being operated for the first time, turn on the power supply and then press the system SET button.

When the system SET button is pressed, the number of connected devices recognized by S-LINK control unit blinks on the error address display in hexadecimal.

If the actual number of connected devices differs from the number displayed, since an unrecognized S-LINK device exists, check for address overlapping, improper connection, etc..

Subsequently, an error check is carried out based on this status. When an address is recognized, that status is stored in the EEPROM, so it is not necessary to press the system SET button after that point (each time the power supply is turned on).

When the power supply is switched on for the first time after completing the S-LINK system wiring, an arbitrary error display may appear. This does not indicate any abnormal operation. If the system SET button is pressed, this display is erased.

If an error address is displayed during operation, confirm the address, and then turn off the power supply, correct the address at the location where the error occurred, and turn the power supply on again. Check to make sure the error address display has disappeared. (Do not press the system SET button in this case.)

If the system SET button is pressed after an error has occurred and before it is canceled, the error will be canceled. If the cause of the error has not been corrected at that point, however, be aware that the I/O device for that address will be skipped during any subsequent checks.

If the system SET button is pressed without recovery having been made, that status will be recognized for that address, and any locations where recovery has not been made will not be recognized. S-LINK Control Unit FP0

4.6 S-LINK System Address Recognition

4.6.2 Address Setting of S-LINK I/O Device

Addresses can be set freely, regardless of the position of the I/O device connected to the system, but problems in the wiring of the main cable, such as broken or disconnected wires, can be detected more easily if I/O devices closer to the S-LINK control unit are given smaller addresses, and addresses increase in sequential order for I/O devices which are farther away from the S-LINK control unit.

Up to two I/O devices can be assigned the same address within the system for any individual S-LINK control unit. Do not set the same address for three or more I/O devices.

Up to seven boosters can be connected to one system for any individual S-LINK control unit, but the actual number which can be connected varies depending on the units configuring the system and the wiring length.

The FP0 S-LINK control unit does not have a loop wiring function.

4.7 Judging Errors from the Error Indicators

If an error occurs in the S-LINK system, the ERROR indicator indicated in the table below lights, depending on the content of the error.

4.7

ERROR indicators		Description	Steps to take		
ERR1	ERR2	ERR3	ERR4		
on	off	on	off	Short-circuit between D-G → note 1	If the ERR1 or ERR3 indicator lights, output of the signal being transmitted stops, and none of the S-LINK devices connected to the system will operate. Also, if a short-circuit occurs at a location far away, there may be times when ERR1 does not light. Check the S-LINK signal/power line.
off	off	on	off	Error in level of signal being transmitted	There is a possibility that the wiring length, the configuration, or the number of configuration devices connected to the system exceeds the rated limit. Check the system configuration once again.
off	off	off	on	Address has been changed/ D or G line is broken or dis- connected/ Error in S-LINK unit for dis- played address ► note 2	Check to see if the S-LINK signal/power line is broken or disconnected, or if the address is incorrect. In this case, transmission signals are being output, so the S-LINK input/output devices operate normally.

- 1) This ERROR indicator lights even if the external power supply to the S-LINK has not been turned on, but this does not indicate a breakdown in the S-LINK control unit itself. Check the external power supply to the S-LINK.
- 2) ERR4 is held, so to cancel it, one of the following is required: turn the power supply to the FP0 off and then on again, press the system SET button and enter the settings again, or turn the power supply on the S-LINK side off and then on again.

S-LINK Control Unit FP0

4.8 Judging Errors Address Displays

4.8 Judging Errors Address Displays

The transmission line is monitored at all times, and if an error occurs, the address at which the error occurred is displayed as a hexadecimal value.

During normal transmission:

The "J J" shaped charactor rotates in the clockwise direction.

If an error occurs:

The address is displayed. In case faults occur at several locations, the smallest error address is displayed and the decimal points light up simultaneously.

Chapter 5

I/O Allocation

5.1	I/O Number	5 - 3
5.2	Control Unit	5 - 4
5.3	Expansion I/O Unit	5 - 5

I/O Allocation FP0

FP0 I/O Allocation

5.1 I/O Number

5.1 I/O Number

Expression of numbers for input/output relays

Since input relay (X) and output relay (Y) are handled in units of 16 points, they are expressed as a combination of decimal and hexadecimal numbers as shown below.

<Example> External input relay (X)

Specifying X and Y numbers

On the FP0, the same numbers are used for input and output.

Example: The same number "X20 and Y20" can be used for input and output

I/O Allocation FP0

5.2 Control Unit

5.2 Control Unit

The I/O allocation of the FP0 control unit is fixed.

Туре	I/O number	
C10RS, C10CRS, C10RM, C10CRM	Input: 6 points	X0 to X5
	Output: 4 points	Y0 to Y3
C14RS, C14CRS, C14RM, C14CRM	Input: 8 points	X0 to X7
	Output: 6 points	Y0 to Y5
C16T, C16CT, C16P, C16CP	Input: 8 points	X0 to X7
	Output: 8 points	Y0 to Y7
C32T, C32CT, C32P, C32CP , T32CT, T32CP	Input: 16 points	X0 to XF
	Output: 16 points	Y0 to YF

S-LINK Control Unit

The I/O allocation of the S-LINK control unit is fixed.

Unit	FP0 I/O	S-LINK address
Input: 64 points	X80 to X8F	0 to 15
	X90 to X9F	16 to 31
	X100 to X10F	32 to 47
	X110 to X11F	48 to 63
Output: 64 points	Y80 to Y8F	64 to 79
	Y90 to Y9F	80 to 95
	Y100 to Y10F	96 to 111
	Y110 to Y11F	112 to 127

5.3 Expansion I/O Unit

Up to three expansion I/O units can be added.

I/O numbers do not need to be set as I/O allocation is performed automatically by the FPO control unit when an expansion I/O unit is added.

The I/O allocation of expansion I/O unit is determined by the installation location.

5.3

		I/O number			
Туре		First expansion	Second expansion	Third expansion	
E8RS/E8RM	Input: 4 points	X20 to X23	X40 to X43	X60 to X63	
	Output: 4 points	Y20 to Y23	Y40 to Y43	Y60 to Y63	
E8X	Input: 8 points	X20 to X27	X40 to X47	X60 to X67	
E8YT/E8YP	Output: 8 points	Y20 to Y27	Y40 to Y47	Y60 to Y67	
E16RS/E16RM/	Input: 8 points	X20 to X27	X40 to X47	X60 to X67	
E16T/E16P	Output: 8 points	Y20 to Y27	Y40 to Y47	Y60 to Y67	
E16X	Input: 16 points	X20 to X2F	X40 to X4F	X60 to X6F	
E16YT/E16YP	Output: 16 points	Y20 to Y2F	Y40 to Y4F	Y60 to Y6F	
E32T/E32P	Input: 16 points	X20 to X2F	X40 to X4F	X60 to X6F	
	Output: 16 points	Y20 to Y2F	Y40 to Y4F	Y60 to Y6F	
A21	Input channel 0: 16 points	WX2 (X20 to X2F)	WX4 (X40 to X4F)	WX6 (X60 to X6F)	
	Input channel 1: 16 points	WX3 (X30 to X3F)	WX5 (X50 to X5F)	WX7 (X70 to X7F)	
	Output: 16 points	WY2 (Y20 to Y2F)	WY4 (Y40 to Y4F)	WY6 (Y60 to Y6F)	
A80, TC4,	Input CH0, 2, 4, 6: 16 points	WX2 (X20 to X2F)	WX4 (X40 to X4F)	WX6 (X60 to X6F)	
TC8	Input CH1, 3, 5, 7: 16 points	WX3 (X30 to X3F)	WX5 (X50 to X5F)	WX7 (X70 to X7F)	
A04V, A04I	Input: 16 points	WX2 (X20 to X2F)	WX4 (X40 to X4F)	WX6 (X60 to X6F)	
	Output CH0, 2, 4, 6: 16 points	WY2 (Y20 to Y2F)	WY4 (Y40 to Y4F)	WY6 (Y60 to Y6F)	
	Output CH1, 3, 5, 7: 16 points	WY3 (Y30 to Y3F)	WY5 (Y50 to Y5F)	WY7 (Y70 to Y7F)	
IOL	Input: 32 points	X20 to X3F	X40 to X5F	X60 to X7F	
	Output: 32 points	Y20 to Y3F	Y40 to Y5F	Y60 to Y7F	

- The channel data of FP0-A80, TC4, TC8, A04V and A04I will switch and be read or written by a user program that contains the conversion data switch flag.
- Please verify with the manual for the FP0 CC-Link Slave unit.

I/O Allocation FP0

5.3 Expansion I/O Unit

Chapter 6

Installation

6.1	Adding Expansion Units	6 - 3
6.2	Important Notes	6 - 5
6.3	Attachment to DIN Rails	6 - 8
6.4	Installation Using FP0 Slim Type Mounting Plate	6 - 9
6.5	Installation Using FP0 Flat Type Mounting Plate d	6 - 10

Installation FP0

6.1 Adding Expansion Units

6.1 Adding Expansion Units

Expansion method

1. Peel the seal on the side of the unit so that the internal connector is exposed.

 When peeling the seal on the side of the initial lot products, the shaded part is exposed. Cut off the shaded part with a pair of nippers or similar tool so that the internal connector is exposed.

 When removing the shaded part, use a sharp cutting object, making sure that the shaded part is removed leaving a smooth surface. Note that failure to remove the shaded part completely can result in damage to the connector.

next page

Installation FP0

6.1 Adding Expansion Units

2. Raise the expansion hooks on the top and bottom sides of the unit with a screwdriver.

3. Align the pins and holes in the four corners of the control unit and expansion unit, and insert the pins into the holes so that there is no gap between the units.

4. Press down the expansion hooks raised in step 2 to secure the unit.

FP0 Installation

6.2 Important Notes

6.2 Important Notes

Please, read the following notes carefully before the installation of your FPO.

Notes

- Avoid installing the unit in the following locations:
 - Ambient temperatures outside the range of 0°C to 55°C/32°F to 131°F
 - Ambient humidity outside the range of 30% to 85% RH
 - Sudden temperature changes causing condensation
 - Inflammable or corrosive gases
 - Excessive airborne dust or metal particles
 - Benzine, paint thinner, alcohol or other organic solvents or strong alkaline solutions such as ammonia or caustic soda
 - Excessive vibration or shock
 - Direct sunlight
 - Water in any form including spray or mist
- Avoid noise interference from the following items:
 - Influence from power transmission lines, high voltage equipment, power cables, power equipment, radio transmitters, or any other equipment that would generate high switching surges
 - If noise occurs in the power supply line even after the above countermeasures are taken, it is recommended to supply power through an insolated transformer, noise filter, or like.

next page

Installation FP0

6.2 Important Notes

- Measures regarding heat discharge
 - Always install the unit orientated with the tool port facing outward on the bottom in order to prevent the generation of heat.

- Do not install the FP0 control unit as shown below.

Upside-down

I/O connectors or I/O terminals on top

Installation which blocks the air duct

Installations such that the I/O connectors or I/O terminals face down

Horizontal installation of the unit

 Do not install the unit above devices which generate heat such as heaters, transformers or large scale resistors.

next page

6.2 Important Notes

FP0 Installation

Installation space

 Leave at least 50 mm/1.97 in. of space between the wiring ducts of the unit and other devices to allow heat radiation and unit replacement.

 Maintain a minimum of 100 mm/3.937 in. between devices to avoid adverse affects from noise and heat when installing a device or panel door to the front of the FP0 unit.

 Keep the first 100 mm/3.937 in. from the front surface of the FP0 control unit open in order to allow room for programming tool connections and wiring. Installation FP0

6.3 Attachment to DIN Rails

6.3 Attachment to DIN Rails

The FP0 unit enables one-touch attachment to DIN rails.

Procedure:

- 1. Fit the upper hook of the FP0 unit onto the DIN rail.
- 2. Without moving the upper hook, press on the lower hook to fit the FP0 unit into position.

You can easily remove the FP0 unit as described below.

Procedure:

- Insert a slotted screwdriver into the DIN rail attachment lever.
- 2. Pull the attachment lever downwards.
- 3. Lift up the FP0 unit and remove it from the rail.

6.4 Installation Using FP0 Slim Type Mounting Plate

Use M4 size pan-head screws for attachment of FP0 slim type mounting plate (AFP0803) to mounting panel. For a diagram showing detailed dimensions of the FP0 slim type mounting plate, see *section A.4.

Procedure:

- 1. Fit the upper hook of the FP0 unit onto the FP0 slim type mounting plate.
- 2. Without moving the upper hook, press on the lower hook to fit the FP0 unit into position.

When using an expansion unit, tighten the screws after joining all of the FP0 slim type mounting plate to be connected. Tighten the screws at each of the four corners.

Installation

6.5 Installation Using FP0 Flat Type Mounting Plate

6.5 Installation Using FP0 Flat Type Mounting Plate

Use M4 size pan-head screws for attachment of FP0 flat type mounting plate (AFP0804) and install according to the dimensions shown below.

For a diagram showing detailed dimensions of the FP0 flat type mounting plate, see *section A.5.

Procedure:

- 1. Raise the expansion hooks on the top and bottom of the unit.
- 2. Install the FP0 unit on the FP0 flat type mounting plate.
- 3. Align the expansion hooks with the plate and press the hooks back down.

Notes

 The FP0 flat type mounting plate (AFP0804) cannot be used for an expansion unit.

next page

FP0

FP0 Installation

6.5 Installation Using FP0 Flat Type Mounting Plate

• An FP0 unit with an attached FP0 flat type mounting plate can also be installed sideways on a DIN rail.

Installation FP0

6.5 Installation Using FP0 Flat Type Mounting Plate

Chapter 7

Wiring

7.1	Safety	<i>Instructions</i>
	7.1.1	Interlock Circuit 7 - 3
	7.1.2	Emergency Stop Circuit 7 - 3
	7.1.3	Start Up Sequence 7 - 3
	7.1.4	Momentary Power Failures 7 - 4
	7.1.5	Protecting Power Supply and Output Sections
7.2	Wiring	the Power Supply to the Control Unit 7 - 5
7.3	Ground	ding
7.4	Input V	Viring 7 - 9
	7.4.1	Sensors
	7.4.2	LED-Equipped Reed Switch 7 - 10
	7.4.3	Two-Wire Type Sensor 7 - 10
	7.4.4	LED-Equipped Limit Switch 7 - 11
7.5	Output	Wiring
	7.5.1	Protective Circuit for Inductive Loads 7 - 12
	7.5.2	Precautions for Using Capacitive Loads 7 - 13
7.6	Wiring	the Terminal Type 7 - 14
7.7	Wiring	the MOLEX Connector Type 7 - 16
7.8	Wiring	the MIL Connector Type 7 - 18
	7.8.1	Contact Puller Pin for Rewiring 7 - 19
7.9	Wiring	the RS232C Port 7 - 20

FP0 Wiring

7.1 Safety Instructions

7.1 Safety Instructions

In certain applications, malfunction may occur for the following reasons:

- Power ON timing differences between the FP0 control unit and I/O or motorized devices
- An operation time lag when a momentary power drop occurs
- Abnormality in the FP0 unit, power supply circuit, or other devices

In order to prevent a malfunction resulting in system shutdown choose the adequate safety circuits or other safety measures listed in the following:

7.1.1 Interlock Circuit

When a motor clockwise/counter-clockwise operation is controlled, provide an interlock circuit that prevents clockwise and counter-clockwise signals from inputting into the motor at the same time.

7.1.2 Emergency Stop Circuit

Add an emergency stop circuit to controlled devices in order to prevent a system shutdown or an irreparable accident when malfunction occurs.

7.1.3 Start Up Sequence

The FP0 should be operated after all of the outside devices are energized. To keep this sequence, the following measures are recommended:

- Set the mode switch from PROG. mode to RUN mode after power is supplied to all of the outside devices
- Program the FP0 so as to disregard the inputs and outputs until the outside devices are energized

Note

When stopping the operation of FP0 also, have the I/O devices turned OFF after the FP0 has stopped operating.

next page

7.1 Safety Instructions

7.1.4 Momentary Power Failures

If the duration of the power failure is less than 5 ms, the FP0 continues to operate. If the power is OFF for 5 ms or longer, operation changes depending on the combination of units, the power supply voltage, and other factors. (In some cases, operation may be the same as that for a power supply reset.)

If operation is to be continued following recovery from the momentary power failure, use an automatic retaining sequence program that uses a hold type internal relay.

7.1.5 Protecting Power Supply and Output Sections

An insulated power supply with an internal protective circuit should be used. The power supply for the control unit operation is a non-insulated circuit, so if an incorrect voltage is directly applied, the internal circuit may be damaged or destroyed. If using a power supply without a protective circuit, power should be supplied through a protective element such as a fuse.

If current exceeding the rated control capacity is being supplied in the form of a motor lock current or a coil shorting in an electromagnetic device, a protective element such as a fuse should be attached externally.

Wiring

7.2 Wiring the Power Supply to the Control Unit

Use the power supply cable (AFP0581) that comes with the unit to connect the power supply.

Item	Descriptions
Rated voltage	24 V DC
Operating voltage range	21.6 to 26.4 V DC

Notes

- To minimize adverse effects from noise, twist the brown and blue wires of the power supply cable.
- To protect the system against erroneous voltage from the power supply line, use an insulated power supply with an internal protective circuit.
- The regulator on the FP0 unit is a non-insulated type.
- If using a power supply device without an internal protective circuit, always make sure power is supplied to the unit through a protective element such as a fuse.

next page

7.2 Wiring the Power Supply to the Control Unit

 Isolate the wiring systems to the FP0, input/output devices, and motor devices.

- The power supply sequence should be set up so that power to the control unit is turned OFF before the input/output power supplies.
- If the input/output power supplies are turned OFF before the power to the control unit, the FP0 control unit may detect a drop in the input level, and malfunction.
- Be sure to supply power to a control unit and an expansion unit from the same power supply, and turn the power ON and OFF simultaneously for both.

FP0

7.3 Grounding

Wiring

7.3 Grounding

Under normal conditions, the inherent noise resistance is sufficient. However, in situations of excess noise, ground the instrument to increase noise suppression.

For grounding purposes, use wiring with a **minimum of 2 mm²**. The grounding connection should have a resistance of **less than 100** Ω .

- The point of grounding should be as close to the FP0 control unit as possible. The ground wire should be as short as possible.
- If two devices share a single ground point, it may produce an adverse effect. Always use an exclusive ground for each device.
- Depending on the surroundings in which the equipment is used, grounding may cause problems.
 Example>

Since the power supply line (24 VDC and GND terminal) of the FP0 power supply connector is connected to the frame ground (F.G.) through a varistor, if there is an irregular potential between the power supply line (24 VDC and GND) and earth, the varistor may be shorted.

7.3 Grounding

When the plus side is grounded, do not ground the functional earth terminal.

Do not ground the FP0 functional earth terminal if the plus terminal of the power supply is grounded.

Depending on the PC, some types have the SG terminal of the RS232C port connected to the outside structure of the connector. Also, the outside structure of the FP0 tool port is connected to the functional earth terminal. For this reason, connecting a PC will connect the FP0 GND terminal to the functional earth terminal. In particular, because a voltage of -24 V will be applied to the GND terminal when the plus terminal is grounded, a potentially damaging short circuit will occur when, in this state, the GND terminal and functional earth are connected.

FP0 Wiring

7.4 Input Wiring

7.4 Input Wiring

Notes

- Be sure to select the thickness (dia.) of the input wires while taking into consideration the required current capacity.
- Arrange the wiring so that the input and output wiring are separated, and so that the input wiring is separated from the power wiring, as much as possible. Do not route them through the same duct or wrap them up together.
- Separate the input wires from the power and high voltage wires by at least 100 mm/3.937 in.

In this section you find some examples for wiring sensors, an LED-equipped reed switch, a two-wire type sensor and a LED-equipped limit switch.

7.4.1 Sensors

Relay output type

NPN open collector output type

Universal output type

Two-wire type (* next page)

PNP open collector output type

7.4 Input Wiring

7.4.2 LED-Equipped Reed Switch

When a LED is connected to an input contact such as LED-equipped reed switch, make sure that the ON voltage applied to the FP0 input circuit is greater than 19.2 V DC. In particular, take care when connecting a number of switches in series.

7.4.3 Two-Wire Type Sensor

If the input of the FP0 does not turn OFF because of leakage current from the two-wire type sensor, the use of a bleeder resistor is recommended, as shown below.

I: Sensor's leakage current (mA)

R: Bleeder resistor (k Ω)

The OFF voltage of the FP0 input is 2.4 V, therefore, select an R value so that the voltage between the COM terminal and the input terminal will be less than 2.4 V. (The impedance of the FP0 input terminal is $5.6 \ k\Omega$.)

The resistance R of the bleeder resistor is: R < or =
$$\frac{13.44}{5.6 \times I - 2.4}$$
 (k Ω)

The wattage W of the resistor is:

$$W = \frac{\text{(Power supply voltage)}^2}{R}$$

In the actual selection, use a value that is 3 to 5 times the value of W.

FP0

7.4 Input Wiring

Wiring

7.4.4 LED-Equipped Limit Switch

If the input of the FP0 does not turn OFF because of the leakage current from the LED-equipped limit switch, the use of a bleeder resistor is recommended, as shown below.

r: Internal resistor of limit switch (k Ω)

R: Bleeder resistor ($k\Omega$)

The OFF voltage of the FP0 input is 2.4 V, therefore when the power supply voltage is 24 V, select R so that

the current will be greater than I = $\frac{24 - 2.4}{r}$

The resistance R of the bleeder resistor is: R < or = $\frac{13.44}{5.6 \times I - 2.4}$ (k Ω)

The wattage W of the resistor is: $W = \frac{(Power supply voltage)^2}{R}$

In the actual selection, use a value that is 3 to 5 times the value of W.

7.5 Output Wiring

7.5 Output Wiring

Notes

- There is no fuse protection built into the output circuit.
 Therefore, in order to protect against overheating of the output circuitry caused by possible short circuits, install an external fuse at each point. However, in cases such as short circuits, the control unit itself may not be protected.
- Be sure to select the thickness (dia.) of the output wires while taking into consideration the required current capacity.
- Arrange the wiring so that the input and output wiring are separated, and so that the output wiring is separated from the power wiring, as much as possible. Do not route them through the same duct or wrap them up together.
- Separate the output wires from the power and high voltage wires by at least 100 mm/3.937 in.

Protect the outputs as described below:

7.5.1 Protective Circuit for Inductive Loads

With an inductive load, a protective circuit should be installed in parallel with the load. When switching DC inductive loads with FP0 relay output type, be sure to connect a diode across the ends of the load.

When using an AC inductive load

next page

FP0 Wiring

7.5 Output Wiring

When using a DC inductive load

(*) Diode:

Reverse voltage (V_R): 3 times the load voltage
Average rectified forward current (I₀): Load current or more_

7.5.2 Precautions for Using Capacitive Loads

When connecting loads with large in-rush currents, to minimize their effect, connect a protection circuit as shown below.

7.6 Wiring the Terminal Type

7.6 Wiring the Terminal Type

A screw-down connection type terminal block socket for terminal of FP0 control unit and analog I/O unit is used. The terminal block socket and suitable wires are given below.

Terminal block socket

Item	Description
Manufacturer	Phoenix Contact Co.
Model	MC1,5/9-ST-3,5
Product number	1840434

Suitable wires (twisted wire)

Item	Description	
Control unit	Size: AWG #24 to 16	
	Conductor cross-sectional area: 0.3 to 1.25 mm ²	
Analog I/O unit	Analog I/O unit Size: AWG #28 to 16	
	Conductor cross-sectional area: 0.08 to 1.25 mm ²	

Pole terminal with a compatible insulation sleeve

If a pole terminal is being used, the following models are marketed by Phoenix Contact Co.

Manufacturer	Cross-sectional area (mm²)	Size	Product number
Phoenix Contact Co.	0.25	AWG #24	AI 0,25-6YE
	0.50	AWG #20	AI 0,5-6WH
	0.75	AWG #18	AI 0,75-6GY
	1.00	AWG #18	AI 1-6RD

Pressure welding tool for pole terminals

	=
Manufacturer	Phoenix Contact Co.
Type	CRIMPFOX UD6
Product number	12 04 43 6

When tightening the terminals of the terminal block socket, use a screwdriver (Phoenix Contact Co., Product no. 1205037) with a blade size of 0.4 \times 2.5. The tightening torque should be 0.22 to 0.25 N·m (2.3 to 2.5 kgf·cm) or less.

FP0 Wiring

7.6 Wiring the Terminal Type

Procedure:

1. Remove a portion of the wire's insulation.

2. Insert the wire into the terminal block socket until it contacts the back of the block socket, and then tighten the screw clockwise to fix the wire in place.

Notes

- When removing the wire's insulation, be careful not to scratch the core wire.
- Do not twist the wires to connect them.
- Do not solder the wires to connect them. The solder may break due to vibration.
- After wiring, make sure stress is not applied to the wire.
- In the terminal block socket construction, if the wire closes upon counter-clockwise rotation, the connection is faulty.
 Disconnect the wire, check the terminal hole, and then re-connect the wire.

7.7 Wiring the MOLEX Connector Type

7.7 Wiring the MOLEX Connector Type

The housings and contacts listed below come supplied with the FP0. Use the wires given below. Also, use the required special tool for connecting the wires.

Supplied connector

Manufacturer	Item	Product number
Molex Japan Co., Ltd.	Housing	51067-0900 (2 pieces)
	Contact	50217-8100 (20 pieces)

Suitable wires (twisted wire)

- Size: AWG #24 to 18

- Conductor cross-sectional area: 0.2 to 0.75 mm²

- Insulation outside diameter: dia. 1.4 to dia. 3.0

Special crimping tool

- Manufacturer: Molex Japan Co., Ltd

- Product number: 57189-5000

Procedure:

1. Remove a portion of the wire's insulation.

next page

2. Place the contact in the crimping tool, place the wire in the contact and lightly squeeze the tool.

3. Insert the crimped wire into the housing until it contacts the back side.

Note

When removing a wire, use a flat-head screwdriver, or other similar tool, to pull up the hold-down pin of the housing and then pull out the wire.

Wiring

7.8 Wiring the MIL Connector Type

7.8 Wiring the MIL Connector Type

The housings, semi-cover and pressure welders listed below come supplied with the FP0. Use the wires given below. Also, use the required pressure connection tools for connecting the wires.

Supplied connector

Unit	Type/Order number		C16/E16	C32/E32
C16/C32	Housing	10-pin type only	2 pieces	4 pieces
E16/E32	Semi-cover	AXW61001	2 pieces	4 pieces
	Welder (contact)	AXW7221	5-pin × 4	5-pin × 8

Suitable wires (twisted wire)

Size	Conductor cross-sectional area	Insulation thickness	Rated current
AWG#22	0.3 mm ²	dia 1 F ta dia 1 1	2.4
AWG#24	0.2 mm ²	dia. 1.5 to dia. 1.1	3A

Pressure connection tool

- Order number: AXY52000

Procedure:

The wire end can be directly crimped without removing the wire's insulation, saving labor.

1. Bend the welder (contact) back from the carrier, and set it in the pressure connection tool.

2. Insert the wire without removing its insulation until it stops, and lightly grip the tool.

next page

FP0

FP0 Wiring

7.8 Wiring the MIL Connector Type

3. After press-fitting the wire, insert it into the housing.

4. When all wires has been inserted, fit the semi-cover into place.

If using a MIL connector for flat cables, please specify the order number AXM110915.

7.8.1 Contact Puller Pin for Rewiring

If there is a wiring mistake or the cable is incorrectly pressure-connected, the contact puller pin provided with the fitting can be used to remove the contact.

7.9 Wiring the RS232C Port

7.9 Wiring the RS232C Port

When using the RS232C port, use the screw-down connection type terminal and the wire according to the following procedures.

FP0 Control unit with RS232C port (FP0 C10CRM/C10CRS/C14CRM/C14CRS/C16CT/C16CP/C32CT/C32CP)

Item	Specification
Baud rate	300/600/1200/2400/4800/ 9600/19200 bps
Transmission distance	3m/9.84 ft.
Terminal block	Made by Phoenix Contact Co. (3-pin) Product number: MKDS 1/3-3.5
Communication method	half-duplex

Settings when shipped from the factory

These are changed using system registers 412 to 414. The settings in effect when the unit is shipped from the factory are noted below.

412	RS232C port is not used.
413	Character bit: 8 bits Parity check: odd Stop bit: 1 bit Header: without STX code Terminator: CR
414	Baud rate: 9600 bps

Suitable wires (twisted wire)

- Size: AWG #28 to 16

- Conductor cross-sectional area: 0.08 to 1.25 mm²

Use a shielded wire of the above wiring. We recommend grounding the shield section. Also, if using a pole terminal, see * section 7.6.

7.9 Wiring the RS232C Port

Wiring

When tightening the RS232C port, use a screwdriver (Phoenix Contact Co., Product no. 1205037) with a blade size of 0.4 \times 2.5. The tightening torque should be 0.22 to 0.25 N·m (2.3 to 2.5 kgf·cm) or less.

Procedure:

1. Remove a portion of the wire's insulation.

2. Insert wire into the RS232C port until it contacts the back of the RS232C port.

3. Tighten the screw clockwise to fix the wire in place.

7.9 Wiring the RS232C Port

Notes

• When removing the wire's insulation, be careful not to scratch the core wire.

- Do not twist the wires to connect them.
- Do not solder the wires to connect them. The solder may break due to vibration.
- After wiring, make sure stress is not applied to the wire.
- In the RS232C port terminal construction, if the wire closes upon counter-clockwise rotation, the connection is faulty. Disconnect the wire, check the terminal hole, and then re-connect the wire.

Chapter 8

Precautions During Programming

8.1	Use of	Duplicated Output 8 - 3
	8.1.1	Duplicated Output 8 - 3
	8.1.2	When Output is Repeated with an OT, KP, SET, or RST Instruction 8 - 4
8.2	Handlin	ng BCD Data
	8.2.1	BCD Data 8 - 5
	8.2.2	Handling BCD Data in the PLC 8 - 5
8.3	Handlin	ng Index Registers
	8.3.1	Index Registers 8 - 7
	8.3.2	Memory Areas Which can be Modified with Index Registers 8 - 7
	8.3.3	Example of Using an Index Register 8 - 8
8.4	Operati	on Errors 8 - 10
	8.4.1	Outline of Operation Errors 8 - 10
	8.4.2	Operation Mode When an Operation Error Occurs 8 - 10
	8.4.3	Dealing with Operation Errors8 - 11
	8.4.4	Points to Check in Program 8 - 12
8.5	Instruct	ion of Leading Edge Detection Method 8 - 13
	8.5.1	Instructions of Leading Edge Detection Method
	8.5.2	Operation and Precautions at Run Start Time 8 - 14

	8.5.3	Precautions When Using a Control Instruction	8 - 16
8.6	Precaut	ions for Programming	8 - 18
8.7	Rewrite	Function During RUN	8 - 19
	8.7.1	Operation of Rewrite During RUN	8 - 19
	8.7.2	Cases Where Rewriting During Run is not Possible	8 - 20
	8.7.3	Procedures and Operation of Rewrite During RUN	8 - 21
	8.7.4	Changing Modes in FP Programmer II	8 - 22
8.8	Changing the Set Value of Timer/Counter During RUN		8 - 23
	8.8.1	Method of Rewriting Constant in FP Programmer II	8 - 23
	8.8.2	Method of Rewriting a Value in the Set Value Area	8 - 24
8.9	Process	sing During Forced Input and Output	8 - 27
	Setting the Clock/Calendar Timer (T32CT type only)8		

3.1 Use of Duplicated Output

8.1 Use of Duplicated Output

8.1.1 Duplicated Output

Duplicated output refers to repeatedly specifying the same output in a program.

If the same output is specified for the "OT" and "KP" instructions, it is considered to be duplicated output.

Even if the same output is used for multiple instructions, such as the **SET** or **RST** instruction, or high-level instruction for data transfer, it is not regarded as duplicated output.

If you enter RUN mode while the duplicated output condition exists, under normal conditions, it will be flagged as an error, the ERROR/ALARM LED will light and the self-diagnostic error flag R9000 will go on.

How to Check for Duplicated Use

You can check for duplicated outputs in the program using the programming tool, by the following method:

Using FP Programmer II:

Operate the TOTAL CHECK function.

Key operation: (-) 9 ENT REAL

If there are any duplicated outputs, an error message (DUP USE) and the address will be displayed.

Using FPWIN GR software:

Execute the "Debug" on "Totally Check Program."

If there are any duplicated outputs, an error message (DUPLICATED OUTPUT ERROR) and the address will be displayed. If you execute "SEARCH AN ERROR," the error message will be displayed, and the first address number will be displayed.

Enabling Duplicated Output

If you need to use output repeatedly due to the content of the program, duplicated output can be enabled.

In this case, change the setting of system register 20 to "enable" (when using FP Programmer II, set K1).

When this is done, an error will not occur when the program is executed.

8.1 Use of Duplicated Output

8.1.2 When Output is Repeated with an OT, KP, SET, or RST Instruction

Condition of Internal and Output Relays During Operation

When instructions are repeatedly used which output to internal and output relays such as transfer instructions and **OT**, **KP**, **SET** and **RST** instructions, the contents are rewritten at each step during operation.

Example: Processing when SET, RST and OT instructions are used (X0 to X2 are all on).

The output is determined by the final operation results

If the same output is used by several instructions such as the **OT**, **KP**, **SET**, **RST**, or data transfer instructions, the output obtained at the I/O update is determined by the results of the operation at the greatest program address.

Example: Output to the same output relay Y0 with OT, SET and RST instructions.

When X0 to X2 are all on, Y0 is output as off at I/O update.

If you need to output a result while processing is still in progress, use a partial I/O update instruction "F143 (IORF)".

8.2 Handling BCD Data

8.2.1 BCD Data

BCD is an acronym for binary-coded decimal, and means that each digit of a decimal number is expressed as a binary number.

Expressing a decimal number in BCD:

8.2.2 Handling BCD Data in the PLC

When inputting data from a digital switch to the PLC or outputting data to a 7-segment display (with a decoder), the data must be in BCD form. In this case, use a data conversion instruction as shown in the examples at below.

BCD arithmetic instructions "F40 (B+) to F58 (DB-1)" also exist which allow direct operation on BCD data, however, it is normally most convenient to use BIN operation instructions "F20 (+) to F38(D-1)" as operation in the PLC takes place in binary.

Input From a Digital Switch

Use the BCD-to-BIN conversion instruction "F81 (BIN)".

8.2 Handling BCD Data

Output to a 7-segment Display (with Decoder)

Use the BIN-to-BCD conversion instruction "F80 (BCD)".

8.3 Handling Index Registers

8.3.1 Index Registers

Like other registers, index registers have two points, IX and IY, for reading and writing 16-bit data.

Use an index register to indirectly specify a memory area number. (This is also called index modification.)

Example:

Transferring the contents of data register DT100 to the number specified by the contents of an index register.

In this example, the number of the destination data register varies depending on the contents of IX with DT0 acting as a base. For example, when IX contains K10 the destination will be DT10, and when IX is K20, the destination will be DT20.

In this way, index registers allow the specification of multiple memory areas with a single instruction, and thus index registers are very convenient when handling large amounts of data.

8.3.2 Memory Areas Which can be Modified with Index Registers

Index registers can be used to modify other types of memory areas in addition to data registers DT.

IXWX0, IXWY1, IXWR0, IXSV0, IXEV2, IXDT100

Constants can also be modified.

IXK10, IXH1001

An index register cannot modify another index register.

IXIX, IXIY

When using index modification with an instruction which handles 32-bit data, specify with IX. In this case, IX and IY are handled together as 32-bit data.

8.3 Handling Index Registers

8.3.3 Example of Using an Index Register

Repeatedly Reading in External Data

Example:

Writing the contents of word external input relay WX3 to a sequence of data registers beginning from DT0.

- ① When R0 turns on, K0 is written to index register IX.
- ② When the R1 turns on, the contents of WX3 is transferred to the data register specified by IXDT0.
- ③ Add 1 to IX. In this case, the contents of IX will change successively, and the destination data register will be as follows.

Input times of R1	Contents of IX	Destination data register
1st	0	DT0
2nd	1	DT1
3rd	2	DT2
:	:	:

Inputting and Outputting Data Based on a Number Specified by an Input

Example 1: Setting a timer number specified by a digital switch

8.3 Handling Index Registers

- ① Convert the BCD timer number data in WX1 to binary and set it in index register IX.
- ② Convert the BCD timer set value in WX0 to binary and stored in the timer set value area SV specified by contents of IX.

A

Example 2: External output of the elapsed value in a timer number specified by a digital switch

- ① Convert the BCD timer number data in WX1 to binary, and set it in index register IX.
- ② Convert the elapsed value data EV in the timer specified by IX to BCD, and output it to word external output relay WY0.

8.4 Operation Errors

8.4 Operation Errors

8.4.1 Outline of Operation Errors

An operation error is a condition in which operation is impossible when a high-level instruction is executed.

When an operation error occurs, the ERROR/ALARM LED on the FP0 control unit will blink and the operation error flags (R9007 and R9008) will turn on.

The operation error code "E45" is set at special data register DT9000.

The error address is stored in special data registers DT9017 and DT9018.

Types of Operation Error

Address error

The memory address (number) specified by index modification is outside the area which can be used

BCD data error

Operation is attempted on non-BCD data when an instruction handling BCD is executed, or BCD conversion is attempted on data which is not within the possible conversion range.

Parameter error

In an instruction requiring the specification of control data, the specified data is outside the possible range.

Over area error

The data manipulated by a block instruction exceeds the memory range.

8.4.2 Operation Mode When an Operation Error Occurs

Normally, the operation stops when an operation error occurs.

However, when you set system register 26 to "continuation" (KI), the FP0 control unit operates even if an operation error occurs.

For detailed information **section** 12.4

8.4 Operation Errors

8.4.3 Dealing with Operation Errors

Procedure:

Check the location of the error.

Check the address where the error occurred, which is stored in DT9017 and DT9018, and make sure the high-level instruction for that address is correct and appropriate.

2. Clear the error.

Use a programming tool to clear the error. (If the mode selector is set to RUN, RUN will resume as soon as the error is cleared.)

In FP Programmer II, press the following keys.

An error can be cleared by turning the power off and on in PROG. mode, however, the contents of the operation memory except the hold type data will be cleared.

An error can also be cleared by executing a **F148** (self-diagnostic error set) instruction.

8 - 11

8.4 **Operation Errors**

8.4.4 Points to Check in Program

Check if an extraordinarily large value or negative value was stored in the index register.

Example: When a data register is modified using an index register

In this case, index register (IX) modifies the address of data register DT0. If data in IX is larger than the last address of the data register, an operation error will occur. If the PLC you are using is of the FP0 16-point type, the last address of the data register is DT1659. If the data in IX exceeds the range of K0 to K255, an operation error will occur. The same is true when the contents of IX are negative.

Is there any data which cannot be converted using BCD ↔ BIN data conversion?

Example: When BCD-to-BIN conversion is attempted

In this case, if DT0 contains a hexadecimal number with one of the digits A through F such as 12A4, conversion will be impossible and an operation error will result.

Example: When BIN-to-BCD conversion is attempted

```
R0
— [F80 BCD, <u>DT1</u>, DT101 ]
```

In this case, if DT1 contains a negative value or a value greater than K9999, an operation error will occur.

Check if the divisor of a division instruction is K0.

Example:

In this case, if the content of DT100 is K0, an operation error will occur.

8.5 Instruction of Leading Edge Detection Method

8.5.1 Instructions of Leading Edge Detection Method

Instructions Using the Leading Edge Detection Operation

DF (leading edge differential) instructions Count input for **CT** instructions Count input for **F118** (**UDC**) instructions Shift input for **SR** instructions Shift input for **F119** (**LRSR**) instructions **NSTP** instructions

Leading Edge Detection Method

An instruction with a leading edge detection method operates only in the scan where its trigger (execution condition) is detected switching from off to on.

Standard operation Leading edge differential operation Trigger on off off Operation of instruction Operation of instruction Executed every scan Leading edge differential operation Operation of off off Operation of off instruction Executed only one time

The condition of the previous execution and the condition of the current execution are compared, and the instruction is executed only if the previous condition was off and the current condition is on. In any other case, the instruction is not executed.

Precautions When Using an Instruction Which Performs Leading Edge Detection

When RUN begins, for example when the system is powered on, the off \rightarrow on change of the execution condition (trigger) is not detected. The instruction is not executed. Execution of the instruction will take place as explained on section 8.5.2.

When used with one of the instructions indicated in instructions below which change the order of execution of instructions, the operation of the instruction may change depending on input timing. Take care regarding this point.

Be careful when using leading edge detection type instructions with control instructions, such as:

MC and MCE instructions
JP and LBL instructions
LOOP and LBL instructions
CNDE instruction
Step ladder instructions
Subroutine instructions

8.5.2 Operation and Precautions at Run Start Time

Operation of first scan after RUN begins

The leading edge detection instruction is not executed when the mode has been switched to the RUN mode, or when the power supply is booted in the RUN mode, if the trigger (execution condition) is already on.

If you need to execute an instruction when the trigger (execution condition) is on prior to switching to RUN mode, use R9014 (initial pulse off relay) in your program on the following page. (R9014 is a special internal relay which is off during the first scan and turns on at the second scan.)

8.5 Instruction of Leading Edge Detection Method

Example 1: DF (leading edge differential) instruction

Example 2: CT (counter) instruction

8.5.3 Precautions When Using a Control Instruction

Instructions which leading edge detection compare the condition of the previous execution and the condition of the current execution, and execute the instruction only if the previous condition was off and the current condition is on. In any other case, the instruction is not executed.

When a leading edge detection instruction is used with an instruction which changes the order of instruction execution such as MC, MCE, JP or LBL, the operation of the instruction may change as follows depending on input timing. Take care regarding this point.

Example 1:

Using the DF instruction between MC and MCE instructions

8.5 Instruction of Leading Edge Detection Method

Example 2:

Using the CT instruction between JP and LBL instructions

which the previous JP timing at which the previous JP instruction was not executed The count is not incremented, because the final timing at which the previous JP instruction was not executed has not been changed, and the execution condition X0 for the counter input has not changed.

8.6 Precautions for Programming

8.6 Precautions for Programming

Programs which do not execute correctly

Do not write the following programs as they will not execute correctly.

Program example 1:

Program example 2:

Program example 3:

When a combination of contacts are set as the trigger (execution condition) of a differential instruction (**DF**) or timer instruction, do not use an AND stack (**ANS**) instruction, read stack (**RDS**) instruction, or pop stack (**POPS**) instruction.

8.7 Rewrite Function During RUN

8.7.1 Operation of Rewrite During RUN

How Operation of Rewrite During RUN

The FPO allows program rewriting even in RUN mode. When a rewrite is attempted during RUN, the tool service time is temporarily extended, program rewriting is performed, and operation is resumed without the need to change the mode. For this reason, the time of the scan during the RUN rewrite extends from several msec to several hundreds of msec.

Operation During Rewrite

External output (Y) is held.

External output (X) is ignored.

The timer (T) stops the clock.

Rise and fall changes in the inputs of differential instructions (**DF**), counter instructions (**CT**), and left/right shift registers [**F119** (**LRSR**)] are ignored.

Interrupt functions are stopped.

Internal clock relays (special internal relays) are also stopped.

Pulse output is stopped during the rewrite.

Set Values for Timer/Counter Instructions

All set values specified with decimal constants (K) in timer and counter instructions are preset in the corresponding set value areas (SV). Values in the elapsed value area (EV) do not change.

Operation of Rewrite During RUN Completed Flag

The rewrite during RUN completed flag (R9034) is a special internal relay that goes on for only the first scan following the completion of rewriting in the RUN mode. It can be used instead of the initial pulse relay following a change in the program. (Supported in CPU Ver. 2.0 and subsequent versions)

8.7 Rewrite Function During RUN

8.7.2 Cases Where Rewriting During Run is not Possible

Instructions which do not allow rewriting during RUN

Step ladder instructions (SSTP/STPE)

Subroutine instructions (SUB/RET)

Interrupt instructions (INT/IRET)

Control instructions (ED/LBL)

(LBL instructions allow insertion and writing, but not deletion and clearing.)

Instructions which do not allow rewriting to subprograms

The following instructions do not allow rewriting during subroutines or interrupt programs.

Jump/label instructions (JP/LBL)

Loop/label instructions (LOOP/LBL)

Master control relay/master control relay end instructions (MC/MCE)

Cases where rewriting is not possible during RUN

When a syntax error has occurred.

During forced input/output operation

Interrupt Restrictions

When using interrupt, high-speed counter, pulse output or PWM output functions, do not perform a rewrite during RUN.

If a rewrite during RUN is executed, the following problems may occur. Exercise caution.

Interrupt programs will be disabled. Enable by executing an ICTL instruction once again.

Example: Using R9034 (rewrite during RUN completed flag)

```
R9013 [ICTL, S1, S2 ]
```

The high-speed counter will continue to count.

At 2.5 kHz or higher during one-phase, one channel counting or 1.25 Hz or higher during one-phase, two channel counting, miscounts may occur.

Target value match on/off instructions (F166/F167) will continue.

Coincidence programs will be disabled.

Pulse output and PWM output will be stopped. The **F168** instruction (positioning control) will continue to operate.

However, when the maximum output frequency is higher than 2.5 kHz during one-phase, one channel counting or 1.25 Hz during one-phase, two channel counting, the output pulse number may differ from the set number.

8.7.3 Procedures and Operation of Rewrite During RUN

Item		FPWIN GR Ladder symbol mode	FPWIN GR Boolean mode	FP Programmer II	
Rewrite procedure		Maximum of 128 steps. Changes are performed by block. When PG conversion is executed online, the program will be rewritten. Block a Block b	Rewriting performed by step. Caution is required as rewriting takes place simultaneously with the change. In the case of FP Programmer II, the mode must be changed. (See section 8.7.4.)		
Operation of each instruction	ОТ/КР	If an instruction written in block a is deleted in block b, the condition before the rewrite will be held.	If an instruction written in block a is deleted in block b, the condition before the rewrite will be held. Y contact relays which are on will be held in the on status. To turn them off in the RUN mode, use forced output.		
	TM/CT	If an instruction written in block a is deleted in block b, the condition before the rewrite will be held. Set values specified by K constants in TM/CT instructions are preset in all of the corresponding SV's in the program. (Elapsed values EV do not change.)	b, the condition before the Set values specified by K structions are preset in all in the program. (Elapsed v In the case of FP Program	constants in TM/CT in- of the corresponding SV's /alues EV do not change.) nmer II, set values can be without affecting the timer.	
	High-level instructions	If an instruction written in block a is deleted in block b, the condition before the rewrite will be held.	If deleted, the output men	nory area will be held.	
	MC/MCE	When writing MC/MCE instructions, be sure to write the instructions as a pair.	Writing or deleting a single not possible. Write or dele FPWIN GR ladder symbo		
	CALL/SUB/ RET A subroutine is a program appearing between SUBn and RET instructions. Be sure to write it to an address which follows the ED instruction.		Write in the order: RET, S Delete in the order: CALL	·	
	INT/IRET	An interrupt program is a program appearing between INTn and IRET instructions. Be sure to write it to an address which follows the ED instruction.	Write in the order: IRET, I Delete in the order:INT, IF		

next page

8.7 Rewrite Function During RUN

Item		FPWIN GR Ladder symbol mode	FPWIN GR Boolean mode	FP Programmer II	
Operation of each instruction	SSTP/STPE	A distance with the same number cannot be defined twice. An SSTP instruction cannot be written in a subprogram.	Writing and deletion of a single instruction is not possible for a program with no step ladder area. Write or delete both instructions simultaneously in FPWIN GR ladder symbol mode. In the case of an SSTP instruction only, writing and deletion of a single instruction is possible for a program with a step ladder area.		
	JP/LOOP/LBL	Be sure to write the instruc- tion for setting the loop number before LBL-LOOP instructions.	Write in the order: JP-LBL Delete in the order: LBL-JI		

8.7.4 Changing Modes in FP Programmer II

Changing program modes

FP Programmer II is normally in PROG-EDIT mode which does not allow unintentional rewriting of programs. To perform a rewrite during RUN, the mode must be changed to RUN-EDIT mode.

Change the mode as shown below. After the rewrite, change back to PROG-EDIT mode to prevent accidental rewriting.

Procedure for changing to RUN-EDIT mode

Procedure for changing to PROG-EDIT mode

8.8 Changing the Set Value of Timer/Counter During RUN

8.8.1 Method of Rewriting Constant in FP Programmer II

Rewrite Method Using FP Programmer II

Example of changing the set value of timer 5 from K30 to K50

Procedure:

1. Read the address containing the timer instruction.

2. Clear the constant (K30).

3. Enter the new constant (K50).

Operation and Cautions After the Change

After the change, the timer or counter in operation will continue to run. Operation based on the changed set value will be started the next time the execution condition changes from off to on.

When this method is used, the program itself will change. Thus, when the mode is changed and then set back to RUN or when the power is turned on, the changed set value will be preset.

8.8.2 Method of Rewriting a Value in the Set Value Area

Transfers to SV area when mode changes to RUN mode.

Timer set value

X0
TMX5, K30
T5
Y0
This method rewrites the value in the set value area. The program itself is not rewritten.

Changing values in the set value area SV

Values in the set value area SV can be changed with the following procedures.

- Method using the programming tool software (FPWIN GR)
- Method using the FP Programmer II
- Method using the program (high-level instruction)

Operation and cautions after the change

After the change, the timer or counter in operation will continue to run. Operation based on the changed set value will be started the next time the execution condition changes from off to on.

With these methods, the value in the set value area SV will change, however, the program itself will not change. Therefore, when the mode is changed and then set back to RUN or when the power is turned on, operation will take place as follows:

When a set value in the program is specified by a constant K

The constant K is preset in the set value area SV. After the change, it will no longer be effective.

When a set value in the program is specified by a set value area number In the case of a non-hold type timer or counter, 0 is preset in the set value area SV. In the case of a hold type timer or counter, the value changed by the method on the following page is preset in the set value area SV.

Method 1: Method using the programming tool software

Procedure:

Select "Monitoring Registers" from the Online menu.

Explanation of each column

- (1) Displays the line number.
- (2) Displays the device code and device number.
- (3) Displays the monitored data.

During online monitoring, you can make changes to the data by either pressing [Enter] in this column or by double clicking.

- (4) Displays the base (decimal, hexadecimal, binary or ASCII) and the number of words.
- (5) Displays the I/O comment for each register.

You can input I/O comments for each register by either pressing [Enter] in this column or by double clicking.

Click in each column and change the settings.

For details, please refer to the FPWIN GR help menu.

The "FPWIN GR" tool software has a similar menu.

For information on operating the menus, please check the Help menu.

8.8 Changing the Set Value of Timer/Counter During RUN

Method 2: Method using the FP Programmer II

Use the word data monitor function to read the set value area SV of the timer or counter to be changed, and rewrite the value.

Example of changing the value of SV0 from K30 to K50.

Procedure:

1. Execute word data monitor (OP8).

2. Read SV0.

3. Clear SVO.

4. Write the new changing value.

Method 3: Method using the program (high-level instruction)

To change a set value of timer/counter based on an input condition, use a high-level instruction as shown below to rewrite the value in the set value area SV of the desired timer or counter.

Example: Changing the set value to K20 when input R0 turns on

When R0 turns on, the timer set value changes from 5 seconds to 2 seconds.

8.9 Processing During Forced Input and Output

Processing when forced input/output is initiated during RUN

Processing of external input (X)

Regardless of the state of the input from the input device, forced on/off operation will take precedence at a contact specified for forced input/output. At this time, the input LED will not blink, however, the area of input X in the operation memory will be rewritten. Contacts not specified will read in the on/off state according to the condition of the input from the input device.

Processing of external output (Y)

Regardless of the result of operation, forced on/off will take precedence at a contact specified for forced input/output. At this time, the area of output Y in the operation memory will be forcedly rewritten. External output will take place according to the input/output update timing in the above diagram.

The on/off state of contacts not specified will be determined by the operation result.

Timer (T) and Counter (C)

Regardless of the timer/counter input condition, forced on/off operation will take precedence at a contact specified for forced input/output. At this time, the contact of the timer (T) or counter (C) in the operation memory will be rewritten. Timing and counting will not take place during control.

The on/off state of contacts not specified will be determined by the operation result.

8.10 Setting the Clock/Calendar Timer (T32CT type only)

8.10 Setting the Clock/Calendar Timer (T32CT type only)

Ckock/Calendar timer setting area

The write area and read area for clock/calendar timer is allocated to special data registers DT90053 to DT90057.

Special data register number	Upper byte	Lower byte	Read	Write
DT90053	Hour data H00 to H23	Minute data H00 to H59	Available	Not Available
DT90054	Minute data H00 to H59	Second data H00 to H59	Available	Available
DT90055	Day data H01 to H31	Hour data H00 to H23	Available	Available
DT90056	Year data H00 to H99	Month data H01 to H12	Available	Available
DT90057		Day of week data H00 to H06	Available	Available

Clock/Calendar timer setting

There are three ways to set the clock/calendar timer, as follows.

- When using the Windows version of FPWIN

- 1. While online, open the setting menu by selecting [Tool] and then [Set PLC Date and Time].
- 2. Enter the "Date" and "Time" and press [OK].

- When using DOS version software

- 1. While online, select [Monitor] and then [Data monitor].
- 2. Select [Save data] (f6) and then save data registers DT90054 to DT90057.
- 3. Select [Write ON] (f4) and [Data write] (f7) in that order and then write a value.

8.10 Setting the Clock/Calendar Timer (T32CT type only)

- Setting and changing using a program

- 1. Transfer the value to be written into special data registers DT90054 to DT90057 that are allocated in clock/calendar timer setting area.
- 2. Write H8000 to DT90058.

Note: Execute the transfer using "P" type (derivative execution) instruction or transfer in the order of H8000 to H0000.

Example: With X0 on, adjust to the 5th day, 12:00:00.

Caution regarding backup of clock/calendar timer data

- Clock/Calendar timer values are backed up in the secondary battery.
- Do not use until the secondary battery has been sufficiently charged.
- When first used no value has been determined; therefore, please write values using a programming tool or similar.

8.10 Setting the Clock/Calendar Timer (T32CT type only)

High-speed Counter/Pulse Output/ PWM Output

9.1	Outline	of Functions
	9.1.1	Three Functions that Use Built-in High-speed Counter 9 - 3
	9.1.2	Performance of Built-in High-speed Counter
9.2	Specific	cations and Restricted Items 9 - 5
	9.2.1	Specifications
	9.2.2	Functions and Restrictions 9 - 7
9.3	High-s	peed Counter Function 9 - 9
	9.3.1	Outline of High-speed Counter Function 9 - 9
	9.3.2	Types of Input Modes 9 - 9
	9.3.3	I/O Allocation 9 - 11
	9.3.4	Instructions Used with High-speed Counter Function
	9.3.5	Sample Program 9 - 14
9.4	Pulse (Output Function 9 - 18
	9.4.1	Outline of Pulse Output Function 9 - 18
	9.4.2	Control Mode
	9.4.3	I/O Allocation and Wiring 9 - 20
	9.4.4	Instructions Used with Pulse Output Function
	9.4.5	Sample Program for Positioning Control 9 - 25
		► next page

9.5	PWM C	Output Function	9 - 33
	9.5.1	Outline of PWM Output Function	9 - 33
	9.5.2	Instruction Used with PWM Output Function	9 - 33

9.1 Outline of Functions

9.1.1 Three Functions that Use Built-in High-speed Counter

Functions that use the built-in high-speed counter

There are three functions available when using the high-speed counter built into the FPO.

High-speed counter function

The high-speed counter function counts external inputs such as those from sensors or encoders. When the count reaches the target value, this function turns on/off the desired output.

Pulse output function

Combined with a commercially available motor driver, the pulse output function enables positioning control. With the appropriate instruction, you can perform trapezoidal control, home return, and JOG operation.

9.1 Outline of Functions

PWM output function

By using the appropriate instruction, the PWM output function enables a pulse output of the desired duty ratio.

When you increase the pulse width...

9.1.2 Performance of Built-in High-speed Counter

Channel number

There are four channels for the built-in high-speed counter.

The channel number allocated for the high-speed counter will change depending on the function being used.

Counting range

K-8388608 to K8388607 (HFF8000 to H7FFFFF) (Coded 24-bit binary)

9.2 Specifications and Restricted Items

9.2.1 Specifications

Table of high-speed counter function specifications

	Input/output contact number being used			Memory area used			Performance specifications			Related instructions
On/off output	Count mode		speed counter channel	Control flag	Elapsed value area	Target value area	Minimum input pulse	Maximum counting speed		lions
		(value in paren-thesis is reset input)	no.		area	aiea	width	Using only 1 chan- nel	Using mul- tiple chan- nels	
Spec- ify the mental input, de- Decre-	X0 (X2)	CH0	R903A	DT9044, DT9045/ DT90044, DT90045	DT9046, DT9047/ DT90046, DT90047	50 μs	Max. 10 kHz	4 CH with max.	F0 (MV), F1 (DMV), F166 (HC1S),	
sired output from Y0 to Y7	mental input	X1 (X2)	CH1	R903B	DT9048, DT9049/ DT90048, DT90049	DT9050, DT9051/ DT90050, DT90051		Max. 10 kHz	- 10 kHz	F167 (HC1R)
		X3 (X5)	CH2	R903C	DT9104, DT9105/ DT90104, DT90105	DT9106, DT9107/ DT90106, DT90107	100 μs	Max. 5 kHz		
		X4 (X5)	CH3	R903D	DT9108, DT9109/ DT90108, DT90109	DT9110, DT9111/ DT90110, DT90111		Max. 5 kHz		
Spec- ify the de- sired output	2-phas e input, Incre- mental/ decre- mental	X0 X1 (X2)	CH0	R903A	DT9044, DT9045/ DT90044, DT90045	DT9046, DT9047/ DT90046, DT90047	250 μs	Max. 2 kHz	Total of 2 CH with max. 2 kHz	
from Y0 to Y7	input, Direc- tional distinc- tion	X3 X4 (X5)	CH2	R903C	DT9104, DT9105/ DT90104, DT90105	DT9106, DT9107/ DT90106, DT90107	500 μs	Max. 1 kHz		

Reset input X2 can be set to either CH0 or CH1. Reset input X5 can be set to either CH2 or CH3.

9.2 Specifications and Restricted Items

Table of pulse output function specifications

Input/output contact number being used				Built-in high-	Memory	area used		Performance specifications	Related instruc-
Pulse output	Direc- tional out- put	Home input	Near home input	speed counter channel no.	Con- trol flag	Elapsed value area	Target value area	for maximum output fre- quency	tions
Y0	Y2	XO	DT9052/ DT90052 <bit2></bit2>	CH0	R903A	DT9044, DT9045/ DT90044, DT90045	DT9046, DT9047/ DT90046, DT90047	Max. 10 kHz for 1-point output Max.	F0 (MV), F1 (DMV), F168 (SPD1),
Y1	Y3	X1	DT9052/ DT90052 <bit6></bit6>	CH1	R903B	DT9048, DT9049/ DT90048, DT90049	DT9050, DT9051/ DT90050, DT90051	5 kHz for 2-point output	F169 (PLS)

The maximum 1-point output for instruction F168 (SPD1) is 9.5 kHz.

Table of PWM output specifications

Output number being used	Built-in high-speed counter channel no.	Memory area used Control flag	Performance specifications for output frequency	Related instructions
YO	CH0	R903A	Frequency: 0.15 Hz to 38 Hz (CPU ver. 2.0 or	F0 (MV), F1 (DMV), F170 (PWM)
Y1	CH1	R903B	later: 100 to 1 kHz) Duty: 0.1 % to 99.9 %	

9.2.2 Functions and Restrictions

Channel

The same channel cannot be used by more than one function.

Example of prohibited application:

You cannot share CH0 with the high-speed counter and pulse output functions.

I/O number (input/output contact point)

The number allocated to each function cannot be used for normal input or outputs.

Example of prohibited application

When using CH0 for 2-phase inputting with the high-speed counter function, you cannot allot X0 and X1 to normal inputs.

When using Y0 for the pulse output function, you cannot allot origin input X0 to a normal input.

When using Y0 for the pulse output (with directional output operating) function, you cannot allot Y2 (directional output) to a normal input or output.

When using the high-speed counter with a mode that does not use the reset input, you can allot the inputs listed in parenthesis in the specifications table to a normal input.

Example of allowable application

When using the high-speed counter with no reset input and 2-phase input, you can allot X2 to a normal input.

Restrictions on the execution of related instructions (F166 to F170)

When any of the instructions related to the high-speed counter (F166 to F170) are executed, the control flag (special internal relay: R903A to R903D) corresponding to the used channel turns on.

When the flag for a channel turns on, another instruction cannot be executed using that same channel.

Example of prohibited application

While executing **F166** (target value match on instruction) and flag R903A is in the on state, **F167** (target value match off instruction) cannot be executed with CH0.

9.2 Specifications and Restricted Items

Restrictions for maximum counting speed/pulse output frequency

The counting speed when using the high-speed counter function will differ depending on the counting mode as shown in the table.

Example 1:

While in the incremental input mode and using the two channels CH0 and CH1, if CH0 is being used at 8 kHz, then CH1 can be used up to 2 kHz.

Example 2:

While in the 2-phase input mode and using the two channels CH0 and CH2, if CH0 is being used at 1 kHz, then CH2 can be used up to 1 kHz.

The maximum output frequency when using the pulse output function will differ depending on the output contact number as shown in the table.

Example 1:

When using either only Y0 or only Y1, the maximum output frequency is 10 kHz.

Example 2:

When using the two contacts Y0 and Y1, the maximum output frequency is 5 kHz.

When using the high-speed counter function and pulse output function, specifications will differ depending on the conditions of use.

Example:

When using one pulse output contact with a maximum output frequency of 5 kHz, the maximum counting speed of the high-speed counter being used simultaneously is 5 kHz with the incremental mode and 1 kHz with the 2-phase mode.

9.3.1 Outline of High-speed Counter Function

High-speed counter function

The high-speed counter function counts the input signals, and when the count reaches the target value, turns on and off the desired output.

The high-speed counter function is able to count high-speed pulses of frequencies up to 10 kHz.

To turn on an output when the target value is matched, use the target value match on instruction (F166). To turn off an output, use the target value match off instruction (F167).

Preset the output to be turned on and off with the SET/RET instruction.

Setting the system register

In order to use the high-speed counter function, it is necessary to set system registers 400 and 401. For detailed information **section** 12.4

9.3.2 Types of Input Modes

Incremental input mode

Decremental input mode

2-phase input mode

Incremental/decremental input mode (separate input mode)

Directional distinction mode

9.3.3 I/O Allocation

The inputting, as shown in the table on section 9.2.1, will differ depending on the channel number being used.

The output turned on and off can be specified from Y0 to Y7 as desired with instructions **F166** and **F167**.

When using CH0 with incremental input and reset input

* The output turned on and off when values match can be specified from Y0 to Y7 as desired.

When using CH0 with 2-phase input and reset input

* The output turned on and off when values match can be specified from Y0 to Y7 as desired.

9.3.4 Instructions Used with High-speed Counter Function

High-speed counter control instruction (F0)

This instruction is used for counter operations such as software reset and count disable.

Specify this instruction together with the **F0 (MV)** instruction and the special data register DT9052/DT90052.

Once this instruction is executed, the settings will remain until this instruction is executed again.

Operations that can be performed with this instruction

Counter software reset.

Count enable/disable.

Hardware reset enable/disable.

Clear controls from high-speed counter instructions F166 to F170.

Clear target value match interrupt.

Example:

Performing a software reset

In the above program, the reset is performed in step ① and 0 is entered just after that in step ②. The count is now ready for operation. If it is only reset, counting will not be performed.

Elapsed value change and read instruction (F1)

This instruction changes or reads the elapsed value of the high-speed counter.

Specify this instruction together with the **F1 (DMV)** instruction and the special data register DT9044/DT90044.

The elapsed value is stored as 32-bit data in the combined area of special data registers DT9044 and DT9045/DT90044 and DT90045.

Use this **F1 (DMV)** instruction to set the elapsed value.

Example 1:

Set the initial value of K3000 in the high-speed counter (example of changing the elapsed value).

Reads the elapsed value of the high-speed counter and copies it to DT100.

Each time the **ED** instruction is executed, the elapsed value is automatically transferred from the elapsed value area to the special data registers DT9044 and DT9045/DT90044 and DT90045.

Target value match on instruction (F166)

```
XA

— (DF )—[F166 HC1S, K0, K10000, Y7]
```

If the elapsed value (DT9044 and DT9045/DT90044 and DT90045) for channel 0 matches K10000, output Y7 turns on.

If the elapsed value (DT9104 and DT9105/DT90104 and DT90105) for channel 2 matches K20000, output Y6 turns on.

Target value match off instruction (F167)

```
XC

— (DF )—[F167 HC1R, K1, K30000, Y4]
```

If the elapsed value (DT9048 and DT9049/DT90048 and DT90049) for channel 1 matches K30000, output Y4 turns off.

```
XD

— — (DF )—[F167 HC1R, K3, K40000, Y5]
```

If the elapsed value (DT9108 and DT9109/DT90108 and DT90109) for channel 3 matches K40000, output Y5 turns off.

9.3.5 Sample Program

Wiring examples

Positioning operations with a single speed inverter

When X5 is turned on, Y0 turns on and the conveyor begins moving. When the elapsed value (DT9044 and DT9045) reaches K5000, Y0 turns off and the conveyor stops.

```
R903A
                             R102
                                                            Positioning operations running
R100
                                                  R101
R100
                                                            Positioning operations start
R101
      F1 DMV, K 0, DT 9044
      F167 HC1R, K0, K5000, Y0
R101
                                                   S
                                                            Start signal to inverter
R903A
                 R100
                                                  R102
                             T0
                                                            Completion pulse
                                                            (0.5 seconds)
                                        TMX 0, K 5
```

Wiring example

Positioning operations with a double speed inverter

When X5 is turned on, Y0 and Y1 turn on and the conveyor begins moving. When the elapsed value (DT9044 and DT9045) reaches K4500, Y1 turns off and the conveyor begins decelerating. When the elapsed value reaches K5000, Y0 turns off and the conveyor stops.

```
R903A
                             R103
                                                           Positioning operations running
R100
                                                  R101
                                                           Positioning operations start
      F1 DMV, K0, DT 9044
      F167 HC1R, K0, K5000, Y0
R101
                                                  S
                                                           Start signal to inverter
                                                           High-speed signal to inverter
                                                  S
     F61 DCMP, K 4500, DT 9044
R100 R900C
                                                  R102
                                                           Reaches deceleration point
R102
                                                           Deceleration
                 R100
                             T0
                                                  R103
                                                           Completion pulse (0.5 seconds)
     DF/
                                        TMX 0, K 5
R103
```

9.4 Pulse Output Function

9.4 Pulse Output Function

9.4.1 Outline of Pulse Output Function

Instructions used and control settings

The pulse function enables positioning control by use in combination with a commercially available pulse-string input type motor driver.

Provides trapezoidal control with the instruction **F168** for automatically obtaining pulse outputs by specifying the initial speed, maximum speed, acceleration/deceleration time, and target value.

Instruction F168 also enables automatic home return.

JOG operation with the instruction **F169** for pulse output while the execution condition (trigger) is in the on state.

Setting the system register

When using the pulse output function, set the channels corresponding to system registers 400 to "Do not use high-speed counter."

For detailed information **section** 12.4

9.4.2 Control Mode

Incremental <relative value control>

Outputs the pulse of the pulse number set by the target value.

By setting H02 (incremental; forward: off; reverse: on) in the control code with instruction **F168**, when the target value is positive, the directional output is turned off and the elapsed value of the high-speed counter increases. When the target value is negative, the directional output turns on and the elapsed value of the high-speed counter decreases. By setting H03 in the control code, the directional output is the reverse of that above.

For detailed information **F168 (SPD1)** and section 9.4.5

Absolute <absolute value control>

Outputs the pulse set by the difference between the current value and the target value. (The difference between the current value and the target value is the output pulse number.)

By setting H12 (absolute; forward: off; reverse: on) in the control code with instruction **F168**, when the current value is less than the target value, the directional output is turned off and the elapsed value of the high-speed counter increases. When the current value is greater than the target value, the directional output turns on and the elapsed value of the high-speed counter decreases. By setting H13 in the control code, the directional output is the reverse of that above.

For detailed information **F168 (SPD1)** and section 9.4.5

Home return

Until the home input (X0 or X1) is entered by executing instruction **F168**, the pulse is continuously output.

To decelerate the movement when near the home, set the bit corresponding to DT9052/DT90052 to off \rightarrow on \rightarrow off \rightarrow with the near home input.

For detailed information **FO (MV)**, **F168 (SPD1)** and section 9.4.5

JOG operation

Pulses are output from the specified channel while the trigger for instruction **F169** is in the on state.

The directional output and output frequency are specified by instruction **F169**.

For detailed information **F169 (PLS)** and section 9.4.5

9.4.3 I/O Allocation and Wiring

Single pulse input driver (pulse input and directional switching input)

One output point is used as a pulse output and the other output is used as a directional output.

The pulse output terminal, directional output terminal, and home input I/O allocation is determined by the channel used. For detailed information section 9.2.1

Near home input is substituted by allocating the desired contact point and turning on and off the specified bit of DT9052/DT90052.

For detailed information **FO (MV)**

Up to two driver systems can be connected.

When using CH0

* The near home input specifies the desired input, such as X2.

When using CH1

* The near home input specifies the desired input, such as X3.

Double pulse input driver (CW pulse input and CCW pulse input)

Since a double pulse input is used, switching must be performed by an external relay. One output contact is used as a pulse output for relay switching.

The pulse output terminal and home input I/O allocation is determined by the channel used. For detailed information section 9.2.1

Set the control code for instruction F168 to "No directional output."

For detailed information **F168 (SPFD1)**

When using CH0

- * X2 or other desired input can be specified for the near home input.
- ** Y4 or other desired output can be specified for the relay switching. At this time, the relay must be switched earlier by the amount of its operation time.

Caution when using a double pulse input driver

When using the FP0 pulse outputs Y0 and Y1 for direct connection to the CW input and CCW input of a driver, the counter elapsed values for the separate channels (ch0 and ch1) increase and decrease in response to the individual outputs. The elapsed values can thus be sent to the program as necessary.

9.4.4 Instructions Used with Pulse Output Function

Positioning control instruction (F168)

Automatically performs trapezoidal control according to the specified data table.

```
X3
— (DF )— F0 MV, H102, DT100 ]

[ F0 MV, K500, DT101 ]

[ F0 MV, K5000, DT102 ]

[ F0 MV, K200, DT103 ]

[ F1 DMV, K10000, DT104 ]

[ F0 MV, K0, DT106 ]

[ F168 SPD1, DT100, H0 ]
```

Generates a pulse from output Y0 at an initial speed of 500 Hz, a maximum speed of 5000 Hz, an acceleration/deceleration time of 200 ms, and a movement amount of 10000 pulses.

At this time the high-speed counter elapsed value (DT9044 and DT9045/DT90044 and DT90045) will be increasing.

Notes

- For trapezoidal control, set the initial speed to no more than 5000 Hz.
- For details on troubleshooting procedures when no pulse is output when instruction F168 (SPD1) is executed, refer to page 9 - 32.

Pulse output instruction (F169)

This instruction is for JOG operation by obtaining a pulse from the desired output when the execution condition (trigger) turns on.

While X2 is in the on state, a pulse of 300 Hz with a duty ratio of 10% is output from Y0. At this time, directional output (Y2) is off and the count of the elapsed value for the high-speed counter CH0 (DT9044 and DT9045/DT90044 and DT90045) increases.

While X6 is in the on state, a pulse of 700 Hz with a duty ratio of 10% is output from Y1. At this time, directional output (Y3) is off and the count of the elapsed value for the high-speed counter CH1 (DT9048 and DT9049/DT90048 and DT90049) decreases.

High-speed counter control instruction (F0)

This instruction is used for resetting the built-in high-speed counter, stopping the pulse outputs, and setting and resetting the near home input.

Specify this instruction together with the **F0 (MV)** instruction and the special data register DT9052/DT90052.

Once this instruction is executed, the settings will remain until this instruction is executed again.

Operations that can be performed with this instruction

Clear controls (stopping the pulse outputs) from high-speed counter instructions **F166** to **F170**.

Near home processing for home return operations.

Example 1: Enable the near home input during home return operations and begin deceleration.

In the above program, the near home input is enabled in step 1 and 0 is entered just after that in step 2 to perform the preset operations.

Example 2: Performing a forced stop of the pulse output.

Elapsed value write and read instruction (F1)

This instruction is used to read the pulse number counted by the built-in high-speed counter.

Specify this instruction together with the **F1 (DMV)** instruction and the special data register DT9044/DT90044.

The elapsed value is stored as 32-bit data in the combined area of special data registers DT9044 and DT9045/DT90044 and DT90045.

Use this **F1 (DMV)** instruction to set the elapsed value.

Example 1: Set the initial value of K3000 in the high-speed counter (example of writing the elapsed value).

Example 2: Reads the elapsed value of the high-speed counter to DT100.

Each time the **ED** instruction is executed, the elapsed value is automatically transferred from the elapsed value area to the special data registers DT9044 and DT9045/DT90044 and DT90045.

9.4.5 Sample Program for Positioning Control

Wiring example

FP0

Note

When the stepping motor input is a 5 V photo-coupler type, connect a 2 K $\!\Omega$ 1/4 W resistor.

Relative value positioning operation (plus direction)

When X1 turns on, a pulse is output from Y0. At this time, directional output Y2 does not turn on.

Positioning operations running

Positioning operations start

DT100	Control code: H102 [refer to "instruction F168 (SPD1)"]		
DT101	Initial speed: 500 Hz		
DT102	Maximum speed: 5000 Hz		
DT103	Acceleration/deceleration time: 200 ms		
DT104 DT105	Movement amount: 10000 pls		
DT106	Pulse stop		

Positioning completion pulse (1 s)

Relative value positioning operation (minus direction)

When X2 turns on, a pulse is output from Y0. At this time, directional output Y2 turns on.

Positioning operations running

Positioning operations start

DT100	Control code: H102 [refer to "instruction F168 (SPD1)"]			
DT101	Initial speed: 1000 Hz			
DT102	Maximum speed: 6000 Hz			
DT103	Acceleration/deceleration time: 300 ms			
DT104 DT105	Movement amount: -8000 pls			
DT106	6 Pulse stop			

Positioning completion pulse (1 s)

Absolute value positioning operation

When X1 is turned on, pulses are output from Y0. If the current value at that point is larger than "22,000", the direction output Y2 goes on, and if the value is smaller than "22,000", the direction output Y2 does not go on.

Positioning operations running

Positioning operations start

DT100	Control code: H112 [refer to "instruction F168 (SPD1)"]		
DT101	Initial speed: 200 Hz		
DT102	Maximum speed: 4000 Hz Acceleration/decelera- tion time: 250 ms		
DT103			
DT104 DT105	Target value: 22000		
DT106	Pulse stop		

Positioning completion pulse (1 s)

Regardless of the current value, its movement is towards position "22,000."

Home return operation (minus direction)

When X3 turns on, a pulse is output from Y0 and the return to home begins. At this time, directional output Y2 turns on. Then, when X4 turns on, deceleration begins, and when X0 turns on, home return is completed. After the return to home is completed, the elapsed value (DT9044 and DT9045/DT90044 and DT90045) are cleared to 0.

Home return operation (plus direction)

When X3 turns on, a pulse is output from Y0 and the return to home begins. At this time, directional output Y2 does not turn on. Then, when X4 turns on, deceleration begins, and when X0 turns on, home return is completed. After the return to home is completed, the elapsed value (DT9044 and DT9045/DT90044 and DT90045) are cleared to 0.

JOG operation (plus direction)

While X5 is in the on state, a pulse is output from Y0. At this time, directional output Y2 does not turn on.

DT300	Control code: H112 [refer to "instruction F169 (PLS)"]	
DT301	Speed: 300 Hz	

JOG operation (minus direction)

While X6 is in the on state, a pulse is output from Y0. At this time, directional output Y2 turns on.

DT310	Control code: H122 [refer to "instruction F169 (PLS)"]	
DT311	Speed: 300 Hz	

Emergency stop (over limit)

If X7 turns off while a pulse is being output from Y0, the output of the pulse is stopped.

Troubleshooting flowchart if a pulse is not output when instruction F168 (SPD1) executed

9.5 PWM Output Function

9.5 PWM Output Function

9.5.1 Outline of PWM Output Function

PWM output function

With the instruction **F170 (PWM)**, the specified duty ratio and pulse width modulation is obtained.

Applicable to analog controls such as temperature control and light modulation.

Setting the system register

When using the PWM output function, set the channels corresponding to system registers 400 to "Do not use high-speed counter." For detailed information ★ section 12.4

9.5.2 Instruction Used with PWM Output Function

PWM output instruction (F170)

While X6 is in the on state, a pulse with a period of 840 ms and duty ratio of 50% is output from Y0.

While X7 is in the on state, a pulse with a period of 1.6 s and duty ratio of 30% is output from Y1.

9.5 PWM Output Function

Chapter 10

General-use Serial Communications

10.1	General-use Serial Communications Function		
	10.1.1	General-use Serial Communications	10 - 3
	10.1.2	Data Transmission	10 - 3
	10.1.3	Data Reception	10 - 4
10.2	System	Register Settings	10 - 5
10.3		ons When Using General-use Serial nication	10 - 8
	10.3.1	If "None" is Set for Start and Terminal Codes	10 - 8
	10.3.2	If "Yes" has been Set for the Start and Terminal Codes (Start Code: STX, Terminal Code: ETX)	10 - 9

10.1 General-use Serial Communications Function

10.1 General-use Serial Communications Function

10.1.1 General-use Serial Communications

Using the RS232C port, data and commands can be sent to and received from an external device such as a bar code reader. This is done by executing the **F144 (TRNS)** instruction.

Transmission and reception are not enabled in the default settings, so system register 412 must be changed to a general-use port (K2).

The transmission speed (baud rate) and transmission format are set using system register 413 and 414.

10.1.2 Data Transmission

Any desired data register can be prepared as the transmission table, and the data stored in that table transmitted.

Start and terminal codes are automatically added to the data being transmitted, and the data is sent. (For details, see "F144 (TRNS)" instruction.)

The data register to be used as the transmission table is specified using the **F144** (TRNS) instruction.

Data transmission is executed using the **F144 (TRNS)** instruction.

There is no restriction on the number of bytes that can be transmitted. Any number of bytes may be sent, as long as it does not exceed the range that can be used by the data register.

10.1 General-use Serial Communications Function

10.1.3 Data Reception

Data sent from an external device is received at the RS232C port.

The received data is automatically stored in the data register specified as the reception buffer. (For details see "F144 (TRNS)" instruction.)

Data registers used as reception buffers are specified by system register 417 and 418.

Data reception is enabled by the **F144 (TRNS)** instruction.

10.2 System Register Settings

Preparation for Sending and Receiving Data (System Register Settings)

Communication is not enabled in the default settings for the RS232C port. To enable communication, the items outlined below must be specified, using the system registers.

- Usage purpose of the RS232C port
- RS232C transmission format
- Baud rate
- Reception buffer

Setting the Usage Purpose of the RS232C Port (System Register 412)

Specify "General-use port" (this is K2 for the FP Programmer II). This is the setting which enables serial communication.

Setting the RS232C Transmission Format (System Register 413)

The transmission format is as follows in the default settings. (With the FP Programmer II, this is H3.)

Data length: 8 bits
Parity check: Yes/odd
Stop bit: 1 bit
Terminal code: CR

Start code: STX None

Set these items to match the external device connected to the RS232C port, and if changing the transmission format, enter settings for the pertinent individual items.

With the FP Programmer II, the various items should be selected in bit units, as shown below, and settings entered using H constants.

next page

10.2 System Register Settings

Start codes (STX) and terminal codes (EXT)

When data is transmitted, the specified code is added automatically to the data being sent. When receiving data, if "Yes" has been specified for the start code parameter, data following the start code is stored in the reception buffer. Also, at the point at which the terminal code is received, the reception completed flag (R9038) goes on. The start and terminal codes themselves are not stored in the reception buffer, however. For details, see section 10.3.2.

If no terminal codes are specified for either transmission or reception, the reception completed flag will not go on. In this case, watch the number of bytes received to determine whether the reception has been completed.

Example: Changing the terminal code to [CR and LF]

10.2 System Register Settings

Setting the Baud Rate (System Register 414)

The baud rate (transmission speed) for general-use serial communication is set to "9600 bps" (H1) in the default settings.

To change this setting to match the external device connected to the RS232C port, select one of the values listed below.

Example: Setting 19,200 bps for both the tool port and RS232C port 'Write H100.

Setting the Reception Buffer (System Registers 417 and 418)

In the default settings, all areas of the data registers are set to be used as reception buffers. To change the area of the data register used as the reception buffer, specify the initial number in system register 417, and the volume (number of words) in system register 418.

The reception buffer is configured as shown below.

10.3 Operations When Using General-use Serial Communication

10.3 Operations When Using General-use Serial Communication

10.3.1 If "None" is Set for Start and Terminal Codes

Relationship between the flags (reception completed flag and transmission completed flag) and the F144 (TRNS) instruction

Half-duplex transmission should be used for general-use serial communication.

Reception is disabled when the reception completed flag (R9038) is on.

Be aware that the reception completed flag (R9038) changes even while a scan is in progress. (Example: If the reception completed flag is used multiple times as an input condition, there is a possibility of different statuses existing within the same scan.)

When the **F144 (TRNS)** instruction is executed, the error flag (R9037), reception completed flag (R9038) and transmission completed flag (R9039) go off.

Duplex transmission is disabled while the **F144 (TRNS)** instruction is being executed. Check the transmission completed flag (R9039) to determine whether duplex transmission is possible.

10.3Operations When Using General-use Serial Communication

When the **F144 (TRNS)** instruction is executed, the number of bytes received is cleared, and the address (write pointer) returns to the initial address in the reception buffer.

Reception stops if the error flag (R9037) goes on. To resume reception, execute the **F144 (TRNS)** instruction. This turns off the error flag, and transmits both actual and empty data.

10.3.2 If "Yes" has been Set for the Start and Terminal Codes (Start Code: STX, Terminal Code: ETX)

When receiving data External received С D Ε data The reception Cannot be stored when code is deleted by the F144 reception on (TRNS) instruccompleted R9038 tion. flag is on Reception completed flag The reception completed flag is F144 (TRNS) turned off by exinstruction off ecuting the F144 execution (TRNS) instruction. Stored Α Α Α Α D D D D G G Н Н Reception buffer В В В В F Ε Ε Ε Ε Ε Ε С С С С С С С С С С Number of reception bytes Number of bytes Number of Number of Write pointer bytes received received is cleared bytes received is cleared when when F144 (TRNS) is cleared when

The data is stored in the reception buffer in sequential order, but at the point at which the start code is received, the number of bytes received is cleared, and the address (write pointer) is returned to the initial address in the reception buffer.

instruction is ex-

ecuted.

When the **F144 (TRNS)** instruction is executed, the number of bytes received is cleared, and the address (write pointer) is returned to the initial address in the reception buffer.

If there are two start codes, data following the later start code is overwritten and stored in the reception buffer.

Reception is disabled while the reception completed flag (R9038) is on.

start code is

received.

The reception completed flag (R9038) is turned off by the **F144 (TRNS)** instruction. Because of this, if the **F144 (TRNS)** instruction is executed at the same time that the terminal code is received, the reception completed flag will not be detected.

start code is

received.

10.3 Operations When Using General-use Serial Communication

Start codes (STX) and terminal codes (ETX) are automatically added to the data being transmitted, and the data is transmitted to an external device. (For information on start and terminal code settings, see section 10.2.)

Executing the **F144 (TRNS)** instruction turns off the transmission completed flag (R9039).

Duplex transmission is disabled while the **F144 (TRNS)** instruction is being executed. Check the transmission completed flag (R9039) to determine whether duplex transmission is possible.

Chapter 11

Self-Diagnostic and Troubleshooting

11.1	Self-Dia	agnostic Function11 - 3
	11.1.1	Allowing Duplicated Output 11 - 4
	11.1.2	Continuing After an Operation Error 11 - 4
11.2	Trouble	shooting
	11.2.1	ERROR/ALARM LED is Blinking 11 - 5
	11.2.2	ERROR/ALARM LED is ON
	11.2.3	All LEDs are OFF
	11.2.4	Diagnosing Output Malfunction
	11.2.5	PROTECT ERROR is Displayed 11 - 10
	11.2.6	Program Mode does not Change to RUN 11 - 10

11.1 Self-Diagnostic Function

11.1 Self-Diagnostic Function

The FP0 control unit has a self-diagnostic function which identifies errors and stops operation if necessary. When an error occurs, the status of the status indicator LEDs on the FP0 control unit vary, as shown in the table.

Condition	LED status			Description	Program execution
Condition	RUN	PROG.	ERROR/ALARM	Description	status
Normal condition	ON	OFF	OFF	Normal operation in RUN mode	Operation
	OFF	ON	OFF	Normal operation in PROG. mode	Stop
	Blink	OFF	OFF	Forcing ON/OFF in RUN mode	Operation
	ON	OFF	Blink	When a self-diagnostic error occurs	Operation
Abnormal condition	OFF	ON	Blink		Stop
	Varies	Varies	ON	When a system watchdog timer error occurs	Stop

Normally, if an error occurs, operation of FP0 stops.

The user may select whether operation is to be continued or stopped if a duplicate output error or operation error occurs, by setting the system registers. You can set the system registers with TOOL software.

11.1 Self-Diagnostic Function

11.1.1 Allowing Duplicated Output

When you change system register 20 settings ("ENAB") using the programming software, duplicated output is not regarded as an error and the FP0 continues to operate.

11.1.2 Continuing After an Operation Error

When you change system register 26 settings ("CONT") using the programming software, the FP0 continues to operate. In this case, even if the FP0 continues to operate, this is regarded as an error.

11.2 Troubleshooting

11.2.1 ERROR/ALARM LED is Blinking

Using FPWIN GR

In the ONLINE mode, select "Monitor" from the menu bar of FPWIN GR. And then select "Status Display". At the "PLC Error Flag" field, self-diagnostic error code is displayed.

Using FP programmer II

Press the keys on the FP programmer II as shown on the right.

When self-diagnostic error occurs, the screen shown on the right is displayed.

OP- 110 FUNCTION ERR E45

Error code is 1 to 9

Refer to your software manual, for details about the total-check method.

next page

Error code is 20 or higher

< Condition

A self-diagnostic error other than a syntax error has occurred.

Use the programming tool in PROG. mode to clear the error.

Using FPWIN GR

Click the "Clear Error" buttoninthe status displaymenu described on the previous page.

Using FP programmer II

Press the keys as shown on the right.

Error code 43 and higher can be cleared.

- In the PROG. mode, the power supply can be turned OFF and then ON again to clear the error, but all of the contents of the operation memory except hold type data are cleared.
- An error can also be cleared by executing a self-diagnostic error set instruction F148 (ERR).

V< Procedure

Follow the procedures described in the table of error codes (* section 12.7).

Note

When an operation error (error code 45) occurs, the address at which the error occurred is stored in special data registers DT9017 and DT9018. If this happens, monitor the address at which the error occurred before cancelling the error.

11.2.2 ERROR/ALARM LED is ON

< Condition

The system watchdog timer has been activated and the operation of FPO has been stopped.

< Procedure >

Set the mode switch from RUN to PROG. and turn the power OFF and then ON.

If the ERROR/ALARM LEDisturned ON again, there is probably an abnormalty in the FPO. Please contact your dealer.

If the ERROR/ALARM LED is blinked, go to section 11.2.1.

< Procedures

Set the mode switch from PROG. to RUN.

If the ERROR/ALARM LEDisturned ON, the program execution time is too long. Check:

- if instructions such as **JP** or **LOOP** are programmed in such a way that a scan can never finish.
- that interruptinstructions are executed in succession.

11.2.3 All LEDs are OFF

Check the power supply wiring.

<Procedure 2> -

Check if the power supplied to the FP0 control unit is in the range of the rating.

Be sure to check the fluctuation in the power supply.

<Procedure 3>

Disconnect the power supply wiring to the other devices if the power supplied to the FPO control unit is shared with them.

If the LEDs on the FP0 control unit turn ON at this moment, the capacity of the power supply is not enough to control other devices as well.

Prepare another power supply for other devices or increase the capacity of the power supply.

11.2.4 Diagnosing Output Malfunction

Check of output condition (output indicator LEDs are ON)

- <Procedure 1 > -

Check the wiring of the loads.

<Procedure 2>

Check if the power is properly supplied to the loads.

If the power is properly supplied to the load, there is probably an abnormality in the load. Check the load again.

If the power is not supplied to the load, there is probably an abnormality in the FPO's output circuit. Please contact your dealer.

Check of output condition (output indicator LEDs are OFF)

- <Procedure 1 >

Monitor the output condition using a programming tool.

If the output monitored is turned ON, there is probably a duplicated output error.

<Procedure 2>

Forcing ON the output using a programming tool.

If the output indicator LED is turned ON, go to input condition check.

If the output indicator LED remains OFF, there is probably an abnormality in the FPO's output circuit. Please contact your dealer.

Check of input condition (input indicator LEDs are OFF)

- <Procedure 1 > -

Check the wiring of the input devices.

Check that the power is properly supplied to the input terminals.

If the power is properly supplied to the input terminal, there is probably an abnormality in the FP0's input circuit. Please contact your dealer.

If the power is not properly supplied to the input terminal, there is probably an abnormality in the input device or input power supply. Check the input device and input power supply.

Check of input condition (input indicator LEDs are ON)

- <Procedure > -

Monitor the input condition using a programming tool.

If the input monitored is OFF, there is probably an abnormality in the FP0's input circuit. Please contact your dealer.

If the input monitored is ON, check the program again.

Also, check the leakage current at the input devices (e.g., two-wire type sensor) and check for the duplicated use of output or the program flow when a control instruction such as **MC** or **JP** is used.

Check the settings of the I/O allocation.

11.2.5 PROTECT ERROR is Displayed

When a password is set for the programmable controller

- <Procedure > -

Enter a password in the password setting menu in the FPWIN GR software and select enable.

- 1. In the menu select [Tool (T)] and then [Set PLC Password (P)].
- 2. The PLC password setting dialog box appears, shown below. Select the [Access] radio button, enter the password, and then click the [Settings] button.

11.2.6 Program Mode does not Change to RUN

Refer to your software manual, for details about the total-check method.

Chapter 12

Specifications

12.1	Perform	ance Specifications
12.2	I/O Alloc	cation Table
12.3	Relays,	Memory Areas and Constants 12 - 10
12.4	Table of	System Registers
	12.4.1	System Registers
	12.4.2	Content of System Register Settings 12 - 14
	12.4.3	Table of System Registers 12 - 16
12.5	Table of	Special Internal Relays 12 - 26
12.6	Table of	Special Data Registers 12 - 29
12.7	Error Co	odes 12 - 39
12.8	Table of	Instructions 12 - 52
	12.8.1	Table of Basic Instructions
	12.8.2	Table of High-level Instructions
12.9	FP0-SL	1 S-LINK Address 12 - 140
12.10) Binary/l	Hexadecimal/BCD Expressions 12 - 141
12.11	ASCII	Codes

12.1 Performance Specifications

Item			Relay out	put type	Transisto	r output ty	pe	S-LINK type					
			C10RS/ C10RM/ C10CRS/ C10CRM	C10RM/ C14RM/ C16P/ C32P/ C10CRS/ C14CRS/ C16CT/ C32CT/ C10CRM C14CRM C16CP C32CP				SL1					
Programmi	ng metho	d/Control method	Relay symb	ol/Cyclic ope	eration			•					
Controllable I/O Basic unit points			Total: 10 Input: 6 Output: 4	Total: 14 Input: 8 Output: 6	Total: 32 Input: 16 Output: 16	Max. 128 Input: 64 Output: 64 at S-LINK block							
	With expansion unit 1 When configured with same output type as control unit		Max. 58	Max. 62	Max. 112	Max. 128	Max. 128	Max. 96 at expansion block					
		With expansion unit 2 When relays and transistors are mixed	Max. 106	Max. 110	Max. 112	Max. 128	Max. 128						
Program m	emory	Built-in memory	Built in EEF	PROM (witho	ut battery)								
Program capacity			2,720 steps 5,000 10,000 5,000 steps steps										
Numbers of Basic			83										
instruction High-level			145										
Operation	-		0.9µs/step (by basic instruction)										
I/O refresh			With no expansion board: 0.3ms With expansion board(s): 0.3ms and (1 x number of expansion boards) ms										
Operation memory points	Relay	Internal relay (R)	1,008 points	s (R0 to R62	F)		1,008 points (R0 to R62F) (* Note 1)	1,008 points (R0 to R62F)					
		Special internal relay (R)	,	R9000 to R90									
		Timer/Counter (T/C)	points, C10 Timer range	0 to C143 (* e: 1ms, 10ms	Note 2)) s, 100ms, 1s	; selected by	o T99 / 44 co	ounter					
	Memory area	Data register (DT)	1,660 word:	s (DT0 to DT	1659)	6,144 words (DT0 to DT6143)	16,384 words (DT0 to DT16383) (* Note 1)	6,144 words (DT0 to DT6143)					
		Special data register (DT)	112 words (DT9000 to D)T9111)		112 words (DT90000 to DT90111)	112 words (DT9000 to DT9111)					
		Index register (IX, IY)	2 words										
Differential	• •	•	Unlimited o	f points									
	-	points (MCR)	32 points										
Number of	labels (JF	P and LOOP)	64 labels				255 labels	64 labels					

FP0

12.1 Performance Specifications

Item		Relay out	put type	Transisto	r output ty	/pe	S-LINK type			
		C10RS/ C10RM/ C10CRS/ C10CRM	C14RS/ C14RM/ C14CRS/ C14CRM		C32T/ C32P/ C32CT/ C32CP	T32C	SL1			
Number of	step ladders	128 stages	128 stages							
Number of	subroutines	16 subrouti	nes			100 sub- routines	16 sub- routines			
Number of	interrupt programs	7 programs	(external 6	points, interi	nal 1 point)		1 program (internal 1 point)			
	osis function	Such as wa	atchdog time	r, program s	yntax check					
Clock/caler	nder function	Not availab	le			Available (* Note 3)	Not available			
Special functions	Pulse catch input	Total 6 poir / X0 to X1					Not available			
	Interrupt input	√ X2 to X5	: 100 μs <i>)</i>							
	RS232C port (* Note 4)		on speeds: 3 on distance:		0/2400/4800	/9600/19200	bit/s			
	(Only units with an	Terminal bl	ock: 3-pin, n	nade by pho	enix Contac	t Co.				
	RS232C port)	(products number: MKDS1/3 - 3.5) Communication method: Half-duplex								
	Periodical interrupt	0.5ms to 30	Os interval	· ·						
	Constant scan	Available								
	Password	Available								
	High- speed counter function	Counter m	Not available							
	(* Note 5)	Addition/su	avanabio							
			int number:							
		Four chann - Maximur								
		10kHz max								
		- Input coi								
		X0: cour	nt input (ch 0 nt input (ch 1 t input (*Not) X3) X4	: count input : count input : reset input	t (ch 3)				
		- Minimum	n input puls		,					
		X0, X	(1	50 μs, <1	0kHz>					
		_ X3, ≯	(4	100 μs, <	5kHz>					
		Counter n	node:				Not			
		Two-phas	e/individual/d	direction dec	ision (two-p	hase)	available			
			int number							
			nels maximui							
			m counting	•						
			mum for all							
		X0: cour X1: cour X2: rese))	3: count inp 4: count inp 5: reset inpu	ut (ch 2)				
		- Minimum input pulse width:								
		X0, X1								
		∟ X3, X4		100 μs, <5k	Hz>					

FP0 Specifications

12.1 Performance Specifications

Item			Relay out	put type	Transisto	r output typ	ре	S-LINK type						
			C10RS/ C10RM/ C10CRS/ C10CRM	C14RS/ C14RM/ C14CRS/ C14CRM	C16T/ C16P/ C16CT/ C16CP	C32T/ C32P/ C32CT/ C32CP	T32C	SL1						
Special functions	Pulse output function	Output point number	Not availabl	е		Two independent points (Y0 and Y1)(no interpolation function)								
	(* Note 6,10)	Output frequency	Not availabl	e	output)	kHz (Y0/Y1: d Hz (Y0/Y1: tw	·	Not available						
	PWM out- put func- tion	Output point number	Not availabl	e	Two points	(Y0 and Y1)		Not available						
	(* Note 6)	Output frequency	Not availabl	е	Frequency: 38Hz, (* Note 9)		Fre- quency: 0.15Hz to 1KHz	Not available						
					Duty: 0.1%	10 99.9%	Duty: 0.1% to 99.9%							
backup (* Note 6)	Program a register	nd system	EEPROM											
	Operation	memory	supply fails retained by - Number of fixed hold a memories Counters: 4	ys: 32 points	nd are M. ds of the arious	Areas which are held if the power supply fails are fixed, and are retained by the EEPROM Number of points/ words of the fixed hold areas in the various memories Counters: 16 points Internal relays: 128 points Date registers: 32 words (* Note 14)	The operation memory is backed up using built-in chargeable (secondary) battery, so the hold type memory areas can be specified using the programming tools. (* Note 11) - Memory areas which can be specified: Timers, Counters, Internal relays, Data registers	Areas which are held if the power supply fails are fixed, and are retained by the EEROM. - Number of points/ words of the fixed hold areas in the various memories Counters: 16 points Internal relays: 128 points Date registers: 32 words (* Note 14)						

next page

Notes

- 1) Hold or non-hold type can be set using the system registers.
- 2) The proportion of timer points to counter points can be changed using a system register 5.

12.1 Performance Specifications

Notes

3) Precision of calender timer:

At 0_C/32_F, less than 139 second error per month.

At 25_C/77_F, less than 72 seconds error per month.

At 55_C/131_F, less than 169 seconds error per month.

This accuracy is considered to be the worst fluctuation coefficient value based on fluctuations in the normal voltage of 5V and the battery backup voltage of 3V. Also, F157 and F158 (time/date addition and subtraction instructions) cannot be used.

- 4) When using the RS232C port for communication, we recommend using resend processing. The driver IC for the RS232C is in full conformance with EIA/TIA-232E and CCITT V.28 standards.
- 5) The combinations 1 phase \times 2 channels and 2 phases \times 1 channel are also possible for the high-speed counter.
- 6) The internal relay, data register, and timer/counter hold areas of the T32CT control unit (10 k step type) can be changed by the system registers. The number of points in the table is the value when the system registers are initial values.
- 7) The max. counting speed (10kHz) is the counting speed with a rated input voltage of 24V DC and an ambient temperature of 25°C. The counting speed (frequency) will decrease depending on the voltage and temperature.
- 8) If both reset inputs X0 and X1 are reset, X2 will be the reset input of X1. In the same way, for X3 and X4, X5 acts as the reset input of X4.
- 9) With a CPU of Ver. 1.2 or a subsequent version, the frequency will be 0.15Hz to 1kHz.
- 10) The maximum is 9.5kHz when the positioning control instruction (F168) is executed.
- 11) Precautions when using the battery backup function Secondary (chargeable) battery is used as backup battery in the FP0 T32C control unit. The battery is not charged before the unit is shipped, so please make sure that the built-in backup battery have been charged before using the unit.
- 12) The program, system registers and the hold type areas (internal relay, data register and counter) are backed up by the built in EEPROM.
- 13) The possible number of write times by the EEP-ROM write instruction is 100,000 or less.
- 14) The possible number of write times by the EEP-ROM write instruction is 10,000 or less.

12.2 I/O Allocation Table

12.2 I/O Allocation Table

FP0 Control Units

The I/O allocation of the FP0 control unit is fixed.

Type of Control Unit		I/O number				
C10 series	Input: 6 points	X0 to X5				
	Output: 4 points	Y0 to Y3				
C14 series	Input: 8 points	X0 to X7				
	Output: 6 points	Y0 to Y5				
C16 series	Input: 8 points	X0 to X7				
	Output: 8 points	Y0 to Y7				
C32/T32 series	Input: 16 points	X0 to XF				
	Output: 16 points	Y0 to YF				

S-LINK Control Units

The I/O allocation of the S-LINK control unit is fixed.

Unit	FP0 I/O	S-LINK address						
Input: 64 points	X80 to X8F	0 to 15						
	X90 to X9F	16 to 31						
	X100 to X10F	32 to 47						
	X110 to X11F	48 to 63						
Output: 64 points	Y80 to Y8F	64 to 79						
	Y90 to Y9F	80 to 95						
	Y100 to Y10F	96 to 111						
	Y110 to Y11F	112 to 127						

FP0 Expansion Units

The I/O allocation of the FP0 expansion unit is determined by order of connection.

Type of Expansion L	Jnit	I/O number											
		First expansion	Second expansion	Third expansion									
E8X	Input: 8 points	X20 to X27	X40 to X47	X60 to X67									
E8R	Input: 4 points	X20 to X23	X40 to X43	X60 to X63									
	Output: 4 points	Y20 to Y23	Y40 to Y43	Y60 to Y63									
E8YR/E8YT/E8YP	Output: 8 points	Y20 to Y27	Y40 to Y47	Y60 to Y67									
E16X	Input: 16 points	X20 to X2F	X40 to X4F	X60 to X6F									
E16R/E16T/E16P	Input: 8 points	X20 to X27	X40 to X47	X60 to X67									
	Output: 8 points	Y20 to Y27	Y40 to Y47	Y60 to Y67									
E16YT/E16YP	Output: 16 points	Y20 to Y2F	Y40 to Y4F	Y60 to Y6F									
E32T/E32P	Input: 16 points	X20 to X2F	X40 to X4F	X60 to X6F									
	Output: 16 points	Y20 to Y2F	Y40 to Y4F	Y60 to Y6F									

12.2 I/O Allocation Table

Analog I/O Unit

The I/O allocations of the analog I/O unit are determined by the position at which the unit is installed.

Туре		First expansion	Second expansion	Third expansion
A21	Input: CH0 16 points	WX2 (X20 to X2F)	WX4 (X40 to X4F)	WX6 (X60 to X6F)
	Input: CH1 16 points	WX3 (X30 to X3F)	WX5 (X50 to X5F)	WX7 (X70 to X7F)
	Output: 16 points	WY2 (Y20 to Y2F)	WY4 (Y40 to Y4F)	WY6 (Y60 to Y6F)

A/D Converter Unit and Thermocouple Unit

The data of each channel switches and then reads or writes by the user program which contains the conversion data switch flag.

Туре		First expansion	Second expansion	Third expansion			
A80,	Input: CH0, 2, 4, 6	WX2	WX4	WX6			
TC4,	16 points	(X20 to X2F)	(X40 to X4F)	(X60 to X6F)			
TC8	Input: CH1, 3, 5, 7	WX3	WX5	WX7			
	16 points	(X30 to X3F)	(X50 to X5F)	(X70 to X7F)			

D/A Converter Unit

The data of each channel switches and then reads or writes by the user program which contains the conversion data switch flag.

Туре		First expansion	Second expansion	Third expansion			
A04V	Input: 16 points	WX2	WX4	WX6			
A04I		(X20 to X2F)	(X40 to X4F)	(X60 to X6F)			
	Output: CH0, 2, 4, 6	WY2	WY4	WY6			
	16 points	(Y20 to Y2F)	(Y40 to Y4F)	(Y60 to Y6F)			
	Output: CH1, 3, 5, 7	WY3	WY5	WY7			
	16 points	(Y30 to Y3F)	(Y50 to Y5F)	(Y70 to Y7F)			

I/O Link Unit

The I/O allocation of the I/O link unit is determined by order of connection.

Туре		First expansion	Second expansion	Third expansion		
IOL	Input: 32 points	X20 to X3F	X40 to X5F	X60 to X7F		
	output: 32 points	Y20 to Y3F	Y40 to Y5F	Y60 to Y7F		

Please verify with the manual for the FP0 CC-Link slave unit.

FP0 Specifications

12.2 I/O Allocation Table

Expression of numbers for input/output relays

Since input/output relays X and Y are handled in units of 16 points, they are expressed as a combination of decimal and hexadecimal numbers as shown below.

Example: External input relay "X"

Χ	0, X	1											Χ	F
Χ	10, X	11											Χ	1F
Χ	20, X	21											Χ	2F
t	o to	С												to
Χ	70, X	71											Χ	7F

12.3 Relays, Memory Areas and Constants

Item		Numbering]	Function			
			C10/C14/ C16	C32/SL1	T32		
Relays	External input relay	Х	208 points (>	(0 to X12F)		Turns on or off based on external input.	
	External out- put relay	Υ	208 points (Y	'0 to Y12F)	Externally outputs on or off state.		
	Internal relay (* Note 1)	R	1,008 points (R0 to R62F)			Relay which turns on or off only within program.	
	Timer (* Note 1)	Т	144 points (T0 to T99/C (* Note 2)	100 to C143)		If a TM instruction has timed out, the contact with the same number turns on.	
	Counter (* Note 1)	С				If a CT instruction has counted up, the contact with the same number turns on.	
	Special internal relay	R	64 points (R9000 to R9	903F)		Relay which turns on or off based on specific conditions and is used as a flag.	
Memory Areas	External input relay	WX	13 words (WX0 to WX	12)	Code for specifying 16 external input points as one word (16 bits of data.		
	External output relay	WY	13 words (WY0 to WY	12)	Code for specifying 16 external output points as one word (16 bits) of data.		
	Internal relay (* Note 1)	WR	63 words (WR0 to WR	62)		Code for specifying 16 internal relay points as one word (16 bits) of data.	
	Data register (* Note 1)	DT	1,660 words (DT0 to DT1659)	6,144 words (DT0 to DT6143) 16,384 words (DT0 to DT16383)		Data memory used in program. Data is handled in 16-bit units (one word).	
	Timer/Counter set value area (* Note 1)	SV	144 words (SV0 to SV1	43)	Data memory for storing a target value of a timer and an initial value of a counter. Stores by timer/counter number.		
	Timer/Counter elapsed value are (* Note 1)	EV ea	144 words (EV0 to EV1	43)	Data memory for storing the elapsed value during operation of a timer/counter. Stores by timer/counter number.		
	Special data register	DT	112 words (DT9000 to DT9111) 112 words (DT90000 to DT90111)			Data memory for storing specific data. Various settings and error codes are stored.	
	Index register	IX IY	2 words (IX, IY)			Register can be used as an address of memory area and constants modifier.	
Constant	Decimal con-	K	K-32768 to I	<32767 (for 16	6-bit operation)		
	stants		K-21474836	48 to K214748	83647 (for 32-b	it operation)	
	Hexadecimal constants	Н		(for 16-bit op			
	CONSIGNES		H0 to HFFFF	FFFF (for 32-	bit operation)		

next page

FP0

Notes

1) There are two unit types, the hold type that saves the conditions that exist just before turning the power off or changing from the RUN mode to PROG. mode, and the non-hold type that resets them. These areas can be specified as hold type or non-hold type by setting system register. For the FP0 T32, the selection of hold type and non-hold type can be changed by the setting of system register. For details about the setting of system registers, refer to section 12.4. For the FP0 C10/C14/C16/C32/SL1, that area is fixed and allotted the numbers as shown below.

Hold type and non-hold type areas

Item		C10/C14/C16	C32/SL1		
Timer		Non-hold type: All points			
Counter	Non-hold type	From the set value to C139	From the set value to C127		
	Hold type	4 points (elapsed values) (C140 to C143)	16 points (elapsed values) C128 to C143		
Internal Non-hold type relay		976 points (R0 to R60F)	880 points (R0 to R54F)		
		61 words (WR0 to WR60)	55 words (WR0 to WR54)		
	Hold type	32 points (R610 to R62F) 2 words (WR61 to WR62)	128 points (R550 to R62F) 8 words (WR55 to WR62)		
Data Non-hold type register		1652 words (DT0 to DT1651)	6112 words (DT0 to DT6111)		
	Hold type	8 words (DT1652 to DT1659)	32 words (DT6112 to DT6143)		

2) The points for the timer and counter can be changed by the setting of system register 5. The number given in the table are the numbers when system register 5 is at its default setting. For detailed about the system registers resection 12.4

12.4 Table of System Registers

12.4 Table of System Registers

12.4.1 System Registers

System register area

System registers are used to set values (parameters) which determine operation ranges and functions used. Set values based on the use and specifications of your program. There is no need to set system registers for functions which will not be used.

Types of system register

Allocation of timers and counters (System register 5)

The number of timers and counters is set by specifying the leading counter number.

Hold types and non-hold type settings (System register 6 to 8 and 14)

With the FP0, the areas held in the event of a power supply interruption are fixed, and the settings for system register 6 to 8, and 14, will be invalid.

Operation mode settings for errors (System register 20, 23, 26 and 27)

Set the operation mode effective when errors such as doplicated use of output, operation, and I/O verification errors occur.

Time settings (System register 31 and 34)

Set the time-out error detection time and the constant scan time.

Input settings (System register 400 to 403)

When using the high-speed counter function, pulse catch function or interrupt function, set the operation mode and the input number to be used as a special input.

Tool port settings (System register 410, 411 and 414)

Set the tool port parameters when computer link will be used.

RS232C port settings (System register 412 to 418)

Only applicable for unit with RS232C port.

Modem connection setting (System register 411)

Set to "Modem connection" when the tool port will be used for modem communication.

12.4 Table of System Registers

Checking and changing system register settings

System register values (parameters) can be set with K or H constants.

If you are going to use a value which is already set (the value which appears when read), there is no need to write it again.

Using programming tool software

Procedure:

- Set the mode of the FP0 control unit to PROG.
- Select the "SYSTEM REGISTER" in "PLC CONFIGURATION" option from the menu.
- Select the function to be set in the "SYSTEM REGISTER" in "PLC CONFIGURATION" screen. The value set in the selected system register will appear.
- 4. To change a set value, write the new value as indicated in the system register table.
- 5. It does "OK", and resistration is done.

Using FP programmer II

Procedure:

- 1. Set the mode of the FP0 control unit to PROG.
- 2. Press the keys on the FP programmer II, as shown below.

3. Specify the register number (e.g. No.20) for the parameter to be set and read the parameter.

The value set in the selected register will be displayed.

4. To change the set value, press the <CLR (clear)> key and write the new value as indicated in the system register table.

12.4 Table of System Registers

Precautions when setting system registers

System register settings are effective from the time they are set.

However, input, tool port, RS232C port, and modem connection settings become effective when the mode is changed from PROG. to RUN. With regard to the modem connection setting, when the power is turned off and on or when the mode is changed from PROG. to RUN, the controller sends a command to the modem which enables it for reception.

When the initialized operation is performed, all set system resister values (parameters) will be initialized.

12.4.2 Content of System Register Settings

Setting the timers and counters (System register 5)

By indicating the counter start number, the timer and counter are split into two areas. The timer and counter together total 144 points, and the default value for the split is 100. Thus the point allotment is as shown in the table below.

Timer	100 points (No. 0 to No. 99)
Counter	44 points (No. 100 to No. 143)

Setting example

To increase the number of timers to 120, change the value of system register 5 to K120.

For FP0 T32, set the system registers 5 and 6 to the same value. This sets the timer to a non-hold type and counter to a hold type.

By setting system register 5 to "0", the whole area becomes the counter. Also, by setting it to the value "144", the whole area becomes the timer.

12.4 Table of System Registers

Hold types and non-hold type settings (System registers 6 to 8 and 14)

With the FP0 C10/C14/C16/C32/SL1, the areas held in the event of a power supply interruption are fixed at the areas shown in the table below, and the settings for system registers 6 to 8 and 14, will be invalid.

C10/C14/C16

Timer	Non-hold type: All points					
Counter	Non-hold type:	Non-hold type: From the set value to C139				
	Hold type: 4 po	ints (elapsed values) C140 to C143				
Internal relay	Non-hold type:	976 points (R0 to R60F) 61 words (WR0 to WR60)				
	Hold type: 32 points (R610 to R62F) 2 words (WR61 to WR62)					
Data register	Non-hold type: 1652 words (DT0 to DT1651)					
	Hold type: 8 wo	ords (DT1652 to DT1659)				

C32/SL1

Timer	Non-hold type: All points					
Counter	Non-hold type:	Non-hold type: From the set value to C127				
	Hold type: 16 p	oints (elapsed values) C128 to C143				
Internal relay	Non-hold type: 880 points (R0 to R54F) 55 words (WR0 to WR54)					
	Hold type: 128 points (R550 to R62F) 8 words (WR55 to WR62)					
Data register	Non-hold type: 6112 words (DT0 to DT6111)					
	Hold type: 32 w	ords (DT6112 to DT6143)				

With the FP0 T32, set each relay and register to a hold type or non-hold type.

For normal situations, set the system registers 5 and 6 to the same value. This sets the timer to a non-hold type and counter to a hold type.

By setting this value to "0", the whole area becomes hold type. Also, by setting it to the value 1 higher than the last number, the whole area becomes non-hold type.

Default value

Area	Туре	FP0 T32			
Timer		All non-hold type			
Counter		All hold type			
Internal relay	Non-hold type	Non-hold type: 10 words (WR0 to WR9)			
	Hold type	Hold type: 53 words (WR10 to WR62)			
Data regi	ister	All hold type			

FP0

12.4 Table of System Registers

12.4.3 Table of System Registers

C10, C14, C16, C32, T32 and SL1 in the table respectively indicate 10-point, 14-point, 16-point, 32-point type and S-LINK type FP0 control units.

Item	Address	Name	Default value	Description			
Allocation of user memory	0	Sequence program area capacity		The set values are fixed and cannot be changed. The stored values vary depending on the type. K3: 3K words (FP0 C10, C14, C16) K5: 5K words (FP0 C32, SL1) K10: 10K words (FP0 T32)			
	1 to 3	Not used					
Hold/ Non- hold	5	Timer and counter division (setting of starting counter number)	K100	K0 to K144			
	6 to 8	Not used (Available type: C10, C14, C16, C32, SL1)		With the FP0 C10/C14 set with the programm	/C16/C32/SL1, values ing tool become invalid.		
	6	Hold type area starting number setting for timer and counter (Available type: T32)	K100	K0 to K144 Set the system ters 5 and 6 to same value.			
	7	Hold type area starting number setting for internal relays (in word units) (Available type: T32)	K10	K0 to K63			
	8	Hold type area starting number setting for data registers (Available type: T32)	K0	K0 to K16384			
	9 to 13	Not used					
	14	Not used (Available type: C10, C14, C16, C32, SL1)	_	With the FP0 C10/C14/C16/C32/SL1, values set with the programming tool become invalid			
		Hold or non-hold setting for step ladder process (Available type: T32)	K1	K0: Hold K1: Non-hold			
	15	Not used					
Action on error	20	Disable or enable setting for duplicated output	K0	K0: Disable (will be syntax error) K1: Enable (will not be syntax error)			
	21, 22	Not used					
	23	Operation setting when an I/O verification error occurs	K0	K0: Stop K1: Continuation			
	24, 25	Not used					
	26	Operation setting when an operation error occurs	K0	K0: Stop K1: Continuation			
	27	Operation settings when communication error occurs in the remote I/O (S-LINK) system	K1	K0: Stop K1: Continuation			

FP0 Specifications

12.4 Table of System Registers

Item	Address	Name	Default value	Description		
Action on	28, 29	Not used				
error	4	Not used		With the FP0, values set with the programming tool become invalid.		
Time	30	Unused				
setting	31	Wait time setting for	K2600	K4 to K32760: 10 ms to 81900 ms		
		multi-frame communication	(6500 ms)	Used of default setting (K2600/ 6500 ms) is recommended.		
				set value × 2.5 ms = Wait time setting for multi-frame communication (ms) In programming tool software, enter the time (a number divisible by 2.5).		
				In FP Programmer II, enter the set value (equal to the time divided by 2.5).		
	32, 33	Unused		With the FP0, values set with the programming tool become invalid.		
	34	Constant value settings for scan time		K1 to K64 (2.5 ms to 160 ms): Scans once each specified time interval.		
				K0: Normal scan		
				In programming tool software, enter the time (a number divisible by 2.5). In FP Programmer II, enter the set value (equal to the time divided by 2.5).		

12.4 Table of System Registers

Item	Ad- dress	Name		Default value	Description			
Input setting		High-speed counter mode	Setting by programming	H0	CH0	Do not set input X0 as high-speed counter.		
		settings (X0 to x2)	tool software			1: 2-phase input (X0, X1)		
		<i>^_</i>				2: 2-phase input (X0, X1), Reset input (X2)		
						3: Incremental input (X0)		
						4: Incremental input (X0), Reset input (X2)		
						5: Decremental input (X0)		
						6: Decremental input (X0), Reset input (X2)		
						7: Individual input (X0, X1)		
						8: Individual input (X0, X1), Reset input (X2)		
						9: Direction decision (X0, X1)		
						10:Direction decision (X0, X1), Reset input (X2)		
					CH1	0: Do not set input X1 as high-speed counter.		
						3: Incremental input (X1)		
						4: Incremental input (X1), Reset input (X2)		
						5: Decremental input (X1)		
						6: Decremental input (X1), Reset input (X2)		

- If the operation mode is set to 2-phase, individual, or direction differentiation, the setting for CH1 is invalid.
- If reset input settings overlap, the setting of CH1 takes precedence.
- If system register 400 to 403 have been set simultaneously for the same input relay, the following precedence order is effective: [High-speed counter] ' [Pulse catch] ' [Interrupt input].

12.4 Table of System Registers

Item	Ad- dress	Name		Default value	Description
Input setting	400	High-speed counter mode settings (X0 to x2)	Setting by FP programmer II	HO	CHO/CH1 H 0 0 CH1 CH1 CH1 CH1 CH1 CH1 CH1 CH

Notes

- If the operation mode is set to 2-phase, individual, or direction differentiation, the setting for CH1 is invalid.
- If reset input settings overlap, the setting of CH1 takes precedence.
- If system register 400 to 403 have been set simultaneously for the same input relay, the following precedence order is effective: [High-speed counter] ' [Pulse catch] ' [Interrupt input].

12.4 Table of System Registers

Item	Ad- dress	Name		Default value	Descr	iption
Input setting	401	High-speed counter mode settings (X3 to X5)	Setting by programming tool software	НО	CH2	 Do not set input X3 as high-speed counter. 2-phase input (X3, X4) 2-phase input (X3, X4), Reset input (X5) Incremental input (X3) Incremental input (X3), Reset input (X5) Decremental input (X3) Decremental input (X3), Reset input (X5) Individual input (X3, X4) Individual input (X3, X4), Reset input (X5) Direction decision (X3, X4) Direction decision (X3, X4), Reset input (X5)
				CH3	0: Do not set input X4 as high-speed counter. 3: Incremental input (X4) 4: Incremental input (X4), Reset input (X5) 5: Decremental input (X4) 6: Decremental input (X4), Reset input (X5)	

- If the operation mode is set to 2-phase, individual, or direction differentiation, the setting for CH3 is invalid.
- If reset input settings overlap, the setting of CH3 takes precedence.
- If system register 400 to 403 have been set simultaneously for the same input relay, the following precedence order is effective: [High-speed counter] ' [Pulse catch] ' [Interrupt input].

Item	Ad- dress	Name		Default value	Descr	iption			
Input setting	401	High-speed counter mode settings (X3 to X5)	Setting by FP programmer II	HO	CH2/ CH3	HO	0	1: 2: 3: 4: 5: 6: 7: 8: 4: 5: 5: 5:	Do not use high-speed counter. 2-phase input (X3, X4), Reset input (X5) Incremental input (X3) Incremental input (X3), Reset input (X5) Incremental input (X3), Reset input (X5) Decremental input (X3), Reset input (X5) Decremental input (X3), Reset input (X5) Individual input (X3, X4) Individual input (X3, X4) Individual input (X3, X4), Reset input (X5) Direction dicision (X3, X4), Reset input (X5) Do not use high-speed counter. Incremental input (X4) Incremental input (X4) Incremental input (X4), Reset input (X5) Decremental input (X4) Decremental input (X4), Reset input (X5)

Notes

- If the operation mode is set to 2-phase, individual, or direction differentiation, the setting for CH3 is invalid.
- If reset input settings overlap, the setting of CH3 takes precedence.
- If system register 400 to 403 have been set simultaneously for the same input relay, the following precedence order is effective: [High-speed counter] ' [Pulse catch] ' [Interrupt input].

12.4 Table of System Registers

Item	Address	Name	Default value	Description
Input setting	402	Pulse catch input function settings	НО	X5 X4 X3 X2 X1 X0
				In FP Programmer II, enter the above settings in hexadecimal.
				When X3 and X4 are set to pulse catch input
				15 0 402: 000011000 x5x4 x3 x2 x1 x0 H1 _H8
				Input H18
				With the FP0, settings X6 and X7 are invalid.
	403	Interrupt input settings	Н0	Using programming tool software
				X5 X4 X3 X2 X1 X0 Specify the input contacts used as interrupt inputs in the upper byte.
				(0: Standard input/1: Interrupt input)
				X5 X4 X3 X2 X1 X0 Specify the effective interrupt edge in the lower byte. (When 0: on/When 1: off)
				Using FP programmer II
				When setting inputs X0, X1, X2, and X3 as interrupts, and X0 and X1 are set as interrupt inputs when going from on to off.
				Specify Specify edge interrupt
				403: 000011 001111
				Input H30F
	404 to 407	Unused		With the FP0, values set with the programming tool become invalid.

12.4 Table of System Registers

Notes

• With the TOOL software, "0" or "1" is set for each bit on the screen in the setting for system register 403.

 If system register 400 to 403 are set simultaneously for the same input relay, the following precedence order is effective: [High-speed counter] ' [Pulse catch] ' [Interrupt input].
 When the high-speed counter is being used in the incremental input mode, even if input X0 is specified as an interrupt input and as pulse catch input, those settings are invalid, and input X0 functions as counter input for the high-speed counter.

No. 400: H1 a This setting will be valid.

No. 402: H1 No. 403: H1

12.4 Table of System Registers

Item	Address	Name		Default value	Description
Tool port setting	410	Unit number setting for tool port (when connecting C-NET)		K1	K1 to K32 (Unit No. 1 to 32)
	411	Communication setting for tool processes the setting for tool processes the setting se	port g value unication:	H0	Using programming tool software Select items from the menu. Using FP programmer II Specify the setting contents using H constants. 15 6 0 Modem communication 0: Disabled 1: Enabled Data length (character bits) 0: 8 bits 1: 7 bits When connecting a modem, set the unit number to 1 with system resister 410.
	414	Baud rate setting for tool port	Setting by programming tool software	H0	0: 9600 bit/s 1: 19200 bit/s
Tool port/ RS232C port set- ting	414	Baud rate setting for tool port and RS232C port	Setting by FP pro- grammer II	H1	H 0 0 0 Tool port H0: 9600 bit/s H1: 19200 bit/s H1: 19200 bit/s H1: 9600 bit/s H2: 4800 bit/s H3: 2400 bit/s H3: 2400 bit/s H4: 1200 bit/s H4: 1200 bit/s H6: 300 bit/s H6: 300 bit/s H7: 9600 bit/s H8: 2400 bit/s H9: 4800 bit/s H9: 4800 bit/s H6: 300 bit/s H1: 9600 bit/s H1: 9600 bit/s H2: 4800 bit/s H3: 2400 bit/s H6: 300 bit/s H6: 300 bit/s

12.4 Table of System Registers

Item	Address	Name		Default value	Description
RS232C port setting	412	12 Communication method setting for RS232C port		КО	Using programming tool software Select items from the menu. Using FP programmer II
					K0: RS232C port is not used.
					K1: Computer link mode (when connecting C-NET)
					K2: Serial data communication mode (general port)
	413	Communication		H3	Using programming tool software
		setting for RS23	•		Select items from the menu.
		Setting item/Def	rauit setting		Using FP programmer II
		- Start code: No			Specify the setting contents using H constants.
		- Terminal code - Stop bit: 1 bit	e: CR		15 6 0
		- Parity check: ' - Data length: 8			Start code 0: No STX 1: STX
	- Data length: 8 bits				Terminal code 00: CR 01: CR+LF 10: None 11: ETX
		Baud rate setting for RS232C port Setting by programming tool software			Stop bit 0: 1 bit 1: 2 bits
					Parity check 00: None 01: With odd 11: With even
					Data length 0: 7 bits 1: 8 bits
	414			H1	0: 19200 bit/s 1: 9600 bit/s 2: 4800 bit/s 3: 2400 bit/s 4: 1200 bit/s 5: 600 bit/s 6: 300 bit/s
	415	Unit number set RS232C port (w connecting C-N	hen	K1	K1 to K32 (unit No. 1 to 32)
	416	Modem compatibility setting for RS232C port		H0	Using programming tool software Select items from the menu. Using FP programmer II H0: Modem disabled
					H8000: Modem enabled
	417	Starting address		K0	C10C/C14C/C16C: K0 to K1659
	reception buffer				C32C/SL1: K0 to K6143
					T32C: K0 to K16383
	418	Capacity setting for	ng for C16C		K0 to K1660
		reception buffer	C32C/SL1	K6144	K0 to K6144
			T32C	K16384	K0 to K16384

12.5 Table of Special Internal Relays

12.5 Table of Special Internal Relays

The special internal relays turn on and off under special conditions. The on and off states are not output externally. Writing is not possible with a programming tool or an instruction.

FP0

Address	Name	Description	
R9000	Self-diagnostic error flag	Turns on when a self-diagnostic error occurs. The self-diagnostic error code is stored in DT9000.	
R9001 to R9003		Not used	
R9004	I/O verification error	Turns on when an I/O verification error occurs.	
	flag	The position number of the I/O where the verification error was occured is stored in DT9010.	
R9005, R9006		Not used	
R9007	Operation error flag (hold)	Turns on and keeps the on state when an operation error occurs. The address where the error occurred is stored in DT9017 (indicates the first operation error which occurred).	
R9008	Operation error flag	Turns on for an instant when an operation error occurs.	
	(non-hold)	The address where the operation error occurred is stored in DT9018. The contents change each time a new error occurs.	
R9009	Carry flag	Turns on for an instant,	
		- when an overflow or underflow occurs.	
		- when "1" is set by one of the shift instructions.	
R900A	> flag Turns on for an instant when the compared results become larger in the (CMP) to F63 (DWIN) comparison instructions."		
R900B	= flag	Turns on for an instant,	
		- when the compared results are equal in the comparison instructions (F60 to F63).	
		- when the calculated results become 0 in the arithmetic instructions.	
R900C	< flag	Turns on for an instant when the compared results become smaller in the "F60 (CMP) to F63 (DWIN) comparison instructions."	
R900D	Auxiliary timer contact	Turns on when the set time elapses (set value reaches 0) in the timing operation of the F137 (STMR)/F183 (DSTM) auxiliary timer instruction.	
		It turns off when the trigger for auxiliary timer instruction turns off.	
R900E	Tool port error flag	This turns on when an error occurs during communication with a programming tool.	
R900F	Constant scan error flag Turns on when scan time exceeds the time specified in system register during constant scan execution.		
R9010	Always on relay	Always on.	
R9011	Always off relay	Always off.	
R9012	Scan pulse relay	Turns on and off alternately at each scan.	

12.5 Table of Special Internal Relays

Address	Name	Description	
R9013	Initial on pulse relay	Turns on only at the first scan in the operation.	
		Turns off from the second scan and maintains the off state	э.
R9014	Initial off pulse	Turns off only at the first scan in the operation.	
	relay	Turns on from the second scan and maintains the on state	э.
R9015	Step ladder initial	Turns on for an instant only in the first scan of the	
	on pulse relay	process the moment step ladder process is opened.	
R9016, R9017		Not used	
R9018	0.01 s clock pulse relay	Repeats on/off operations in 0.01 s cycles.	0.01 s
R9019	0.02 s clock pulse relay	Repeats on/off operations in 0.02 s cycles.	0.02 s
R901A	0.1 s clock pulse relay	Repeats on/off operations in 0.1 s cycles.	0.1s
R901B	0.2 s clock pulse relay	Repeats on/off operations in 0.2 s. cycles	0.2 s
R901C	1 s clock pulse relay	Repeats on/off operations in 1 s cycles.	1 s
R901D	2 s clock pulse relay	Repeats on/off operations in 2 s cycles.	2 s
R901E	1 min clock pulse relay	Repeats on/off operations in 1 min cycles.	1 min.
R901F		Not used	
R9020	RUN mode flag	Turns off while the mode selector is set to PROG.	
		Turns on while the mode selector is set to RUN.	
R9021 to R9025		Not used	
R9026 (* Note)	Message flag	Turns on while the F149 (MSG) instruction is executed.	
R9027 (* Note)	Remote mode flag	Turns on while the mode selector is set to REMOTE.	
R9028		Not used	

Used by the system.

12.5 Table of Special Internal Relays

Address	Name	Description	
R9029 (* Note)	Forcing flag	Turns on during forced on/off operation for I/O relay and timer/counter contacts.	
R902A (* Note)	External interrupt enable flag	Turns on while the external interrupt trigger is enabled by the ICTL instruction.	
R902B (* Note)	Interrupt error flag	Turns on when an interrupt error occurs.	
R902C to R902F		Not used	
R9030, R9031		Not used	
R9032	RS232C port mode flag	When "General-use port" is selected, "K2" goes on.	
R9033	Printout instruction	Turns on while a F147 (PR) instruction is executed.	
	flag	Turns off when a F147 (PR) instruction is not executed.	
R9034	Rewrite during RUN flag	This is a special internal relay that goes on for only the first scan following the completion of rewriting in the RUN mode. (CPU Ver. 2.1 or later available)	
R9035	S-LINK I/O communication error flag Turns on when the S-LINK error (ERR 1, 3 or 4) occurs using S-LINK stem.		
R9036	S-LINK communication is taking place with an S-LIN unit.		
R9037	RS232C communication error flag	Turns on when the serial data communication error occurs.	
R9038	RS232C reception completed flag	Turns on when a terminator is received during the serial data communicating.	
R9039	RS232C trans-	Turns on while data is not send during the serial data communicating.	
	mission completed flag	Turns off while data is being sent during the serial data communicating.	
R903A	High-speed counter control flag for ch0 Turns on while the high-speed counter instruction "F166 (HC1S) to F (PWM)" is executed.		
R903B	High-speed counter control flag for ch1		
R903C	High-speed counter control flag for ch2 Turns on while the high-speed counter instruction "F166 (HC1S) to F170 (PWM)" is executed.		
R903D	High-speed counter control flag for ch3	Turns on while the high-speed counter instruction "F166 (HC1S) to F170 (PWM)" is executed.	
R903E, R903F		Not used	

Used by the system.

12.6 Table of Special Data Registers

12.6 Table of Special Data Registers

The special data registers are one word (16-bit) memory areas which store specific information. With the exception of registers for which "Writing is possible" is indicated in the "Description" column, these registers cannot be written to.

Address		Name	Description
FP0 T32	FP0 C10, C14, C16, C32, SL1		
DT90000	DT9000	Self-diagnostic error code	The self-diagnostic error code is stored here when a self-diagnostic error occurs. Monitor the error code using decimal display.
DT90010	DT9010	I/O verify error unit	The position of the I/O for which an error occurred is stored in bits 0 to 3.
DT90014	DT9014	Auxiliary register for operation	One shift-out hexadecimal digit is stored in bit positions 0 to 3 when F105 (BSR) or F106 (BSL) instruction is executed.
DT90015	DT9015	Auxiliary register for operation	The divided remainder (16-bit) is stored in DT9015/DT90015 when F32 (%) or F52 (B%) instruction is executed.
DT90016	DT9016		The divided remainder (32-bit) is stored DT9015 and DT9016/DT90015 and DT90016 when F33 (D%) or F53 (DB%) instruction is executed.
DT90017	DT9017	Operation error address (hold)	After commencing operation, the address where the first operation error occurred is stored. Monitor the address using decimal display.
DT90018	DT9018	Operation error address (non-hold)	The address where a operation error occurred is stored. Each time an error occurs, the new address overwrites the previous address. At the beginning of scan, the address is 0. Monitor the address using decimal display.
DT90019	DT9019	2.5ms ring counter	The data stored here is increased by one every 2.5ms. (H0 to HFFFF)
			Difference between the values of the two points (absolute value) × 2.5ms = Elapsed time between the two points.

Address		Name	Description
FP0 T32	FP0 C10, C14, C16, C32, SL1		
	DT9020 (Available type: SL1)	S-LINK status flag / error flag	S-LINK communication status (1: Communication in progress) ERR4 (1: Disconnected wire, or S-LINK input/output unit error) ERR3 (1: Problem with voltage level between D and G) Not used ERR1 (1: Short-circuit between D and G) Notes S ERR1 and ERR3 occur even if the power supply on the S-LINK side is interrupted, but are canceled when the power supply is turned on again. S ERR4 is held. To cancel it, repair the disconnected wire in the S-LINK system, or whatever is causing the problem, and then either turn the power to the FP0 on again, press the SET switch to reset it, or turn the power supply on again on the S-LINK unit side.

FP0 Specifications

12.6 Table of Special Data Registers

Address		Name	Description
FP0 T32	FP0 C10, C14, C16, C32, SL1		
	DT9021 (Available type: SL1)	No. of units connected to S-LINK / error address	(When normal) 15
DT90022	DT9022	Scan time (current value) (* Note)	The current scan time is stored here. Scan time is calculated using the formula: Scan time (ms) = stored data (decimal) × 0.1 K50 indicates 5ms.

Note

Scan time display is only possible in RUN mode, and shows the operation cycle time. The maximum and minimum values are cleared when each the mode is switched between RUN mode and PROG. mode.

Address		Name	Description
FP0 T32	FP0 C10, C14, C16, C32, SL1		
DT90023	DT9023	Scan time (minimum value) (* Note 1)	The minimum scan time is stored here. Scan time is calculated using the formula: Scan time (ms) = stored data (decimal) × 0.1 K50 indicates 5ms.
DT90024	DT9024	Scan time (maximum value) (* Note 1)	The maximum scan time is stored here. Scan time is calculated using the formula: Scan time (ms) = stored data (decimal) × 0.1 K125 indicates 12.5ms.
DT90025 (* Note 2)	DT9025 (* Note 2)	Mask condition monitoring register for interrupts (INT 0 to 5)	The mask conditions of interrupts using ICTL instruction can be monitored here. Monitor using binary display. 15 11 7 3 0 (Bit No.) 23 19 16 (INT No.) 0: interrupt disabled (masked) 1: interrupt enabled (unmasked)
DT90026	DT9026		Not used
DT90027 (* Note 2)	DT9027 (* Note 2)	Periodical interrupt interval (INT 24)	The value set by ICTL instruction is stored. - K0: periodical interrupt is not used - K1 to K3000: 10ms to 30s
DT90028	DT9028		Not used
DT90029	DT9029		Not used
DT90030 (* Note 2)	DT9030 (* Note 2)	Message 0	The contents of the specified message are stored in these special data registers when F149 (MSG)
DT90031 (* Note 2)	DT9031 (* Note 2)	Message 1	instruction is executed.
DT90032 (* Note 2)	DT9032 (* Note 2)	Message 2	
DT90033 (* Note 2)	DT9033 (* Note 2)	Message 3	
DT90034 (* Note 2)	DT9034 (* Note 2)	Message 4	
DT90035 (* Note 2)	DT9035 (* Note 2)	Message 5	
DT90036	DT9036		Not used
DT90037	DT9037	Work 1 for F96 (SRC) instruction	The number of data that match the searched data is stored here when F96 (SRC) instruction is executed.

- 1) Scan time display is only possible in RUN mode, and shows the operation cycle time. The maximum and minimum values are cleared when each the mode is switched between RUN mode and PROG. mode.
- 2) Used by the system.

Address		Name	Description
FP0 T32	FP0 C10, C14, C16, C32, SL1		
DT90038	DT9038	Work 2 for F96 (SRC) instruction	The position of the first matching data, counting from the starting 16-bit area, is stored here when an F96 (SRC) instruction is executed.
DT90039 to DT90043	DT9039 to DT9043		Not used
DT90044	DT9044	High-speed counter elapsed value for ch0	The elapsed value (24-bit data) for the high-speed counter is stored here. Each time the ED instruction is executed, the elapsed value for the high-speed counter is automatically transferred to the special registers DT9044 and DT9045/DT90044
DT90045	DT9045		and DT90045.
			The value can be written by executing F1 (DMV) instruction.
DT90046	DT9046	High-speed counter target value for ch0	The target value (24-bit data) of the high-speed counter specified by the high-speed counter instruction is stored here.
DT90047	DT9047		Target values have been preset for the various instructions, to be used when the high-speed counter related instruction F166 to F170 is executed. These preset values can only be read, and cannot be written.
DT90048	DT9048	High-speed counter elapsed value area for ch1	The elapsed value (24-bit data) for the high-speed counter is stored here. Each time the ED instruction is executed, the elapsed value for the high-speed counter is automatically transferred to the special registers DT9048 and DT9049/DT90048
DT90049	DT9049		and DT90049.
			The value can be written by executing F1 (DMV) instruction.
DT90050	DT9050	High-speed counter target value area for ch1	The target value (24-bit data) of the high-speed counter specified by the high-speed counter instruction is stored here.
DT90051	DT9051		Target values have been preset for the various instructions, to be used when the high-speed counter related instruction F166 to F170 is executed. These preset values can only be read, and cannot be written.

Address		Name	Description
FP0 T32	FP0 C10, C14, C16, C32, SL1		
DT90052	DT9052	High-speed counter control flag	A value can be written with F0 (MV) instruction to reset the high-speed counter, disable counting, stop high-speed counter instruction (F168), and clear the high-speed counter. Control code setting Control code = j j j j (Binary) Software reset 0: Yes / 1: No Count 0: Enable / 1: Disable Hardware reset 0: Continue / 1: Clear Software is not reset: H0 (0000) Perform software reset: H1 (0001) Disable count: H2 (0010) Disable hardware reset: H4 (0100) Stop pulse output (clear instruction): H8 (1000) Perform software reset and stop pulse output: H9 (1001) The 16 bits of DT9052/DT90052 are allocated in groups of four to high-speed channels 0 to 3 as shown below. bit 15 1211 8 7 4 3 0 DT9052/ DT90052 DT90052 To ch3 for ch2 for ch1 for ch0 A hardware reset disable is only effective when using the reset inputs (X2 and X5). In all other cases it is ignored. When using pulse output, a hardware reset input is equivalent to an home point proximate input.
DT90053		Clock/calendar monitor (hour/minute)	Hour and minute data of the clock/calendar are stored here. This data is read-only data; it cannot be overwritten. Higher 8 bits Lower 8 bits Hour data Minute data
			Hour data Minute data H00 to H23 (BCD) H00 to H59 (BCD)

FP0 Specifications

Address		Name	Description			
FP0 T32	FP0 C10, C14, C16, C32, SL1					
DT90054		Clock/calendar monitor and setting (minute/second)	The year, month, day, hour, minute, second, and day-of-the-week data for the calendar timer is stored. The built-in calendar timer will operate correctly through the year 2099 and supports leap years. The calendar timer can be set (the time set) by writing a value using a programming tool software or a program that uses the FO (MV) instruction			
DT90055		Clock/calendar monitor and setting (day/hour)	a program that uses the F0 (MV) instruction. Higher 8 bits Lower 8 bits DT90054 Minute data Second data			
DT90056 DT90057		Clock/calendar monitor and setting (year/month) Clock/calendar monitor and setting (day-of-the-week)		D170034	H00 to H59 (BCD)	H00 to H59 (BCD)
				DT90055	Day data H01 to H31 (BCD)	Hour data H00 to H23 (BCD)
				DT90056	Year data H00 to H99 (BCD)	Month data H01 to H12 (BCD)
				DT90057		Day-of-the-week data H00 to H06 (BCD)

12.6 Table of Special Data Registers

Address		Name	Description		
FP0 T32	FP0 C10, C14, C16, C32, SL1				
DT90058		Clock/calendar time setting and 30 seconds correction	The clock/calendar is adjusted as follows.		
			When setting the clock/calendar by program		
			By setting the the highest bit of DT90058 to 1, the time becomes that written to DT90054 to DT90057 by F0 (MV) instruction. After the time is set, DT90058 is cleared to 0. (Cannot be performed with any instruction other than F0 (MV) instruction.)		
			Example:		
			Set the time to 12:00:00 on the 5th day when the X0 turns on.		
			1>-[F0 MV, H 0, DT90054] Inputs 0 minutes and 0 seconds		
			[F0 MV, H 512, DT90055] Inputs 12th hour 5th day [F0 MV, H8000, DT90058] Sets the time		
			If you changed the values of DT90054 to DT90057 with the data monitor functions of programming tool software, the time will be set when the new values are written. Therefore, it is unnecessary to write to DT90058.		
			When the correcting times less than 30 seconds		
			By setting the lowest bit of DT90058 to 1, the value will be moved up or down and become exactly 0 seconds. After the correction is completed, DT90058 is cleared to 0.		
			Example:		
			Correct to 0 seconds with X0 turns on		
			X0 ———————————————————————————————————		

Note

After discharging the battery (including when the power is turned on for the first time), the values of DT90053 to DT90058 change at random. Once the time and date have been set, these values will function normally.

12.6 Table of Special Data Registers

Address		Name		Description
FP0 T32	FP0 C10, C14, C16, C32, SL1			
DT90059	DT9059	Serial commu error code	nication	bit 15 12 11 8 7 4 3 0 DT9059/ DT90059 Error flag of RS232C port S Tool port bit 0 = 1: Over run error bit 1 = 1: Framing error bit 2 = 1: Parity error S RS232C port bit 8 = 1: Over run error bit 9 = 1: Framing error bit 10 = 1: Parity error
DT90060	DT9060	Step ladder process	Process number: 0 to 15	Indicates the startup condition of the step ladder process. When the process starts up, the bit corresponding to the process number turns on "1".
DT90061	DT9061		Process number: 16 to 31	Monitor using binary display. 15 11 7 3 0 (Bit No.)
DT90062	DT9062		Process number: 32 to 47	DT9060/ DT90060 15 11 7 3 0 (Process No.)
DT90063	DT9063		Process number: 48 to 63	not-executing 1: executing
DT90064	DT9064		Process number: 64 to 79	A programming tool software can be used to write data.
DT90065	DT9065		Process number: 80 to 95	
DT90066	DT9066		Process number: 96 to 111	
DT90067	DT9067		Process number: 112 to 127	
DT90104	DT9104	High-speed co elapsed value ch2		The elapsed value (24-bit data) for the high-speed counter is stored here. Each time the ED instruction is executed, the elapsed value for the high-speed counter is automatically transferred to the special registers
DT90105	DT9105			DT9104 and DT9105/DT90104 and DT90105. The value can be written by executing a DMV (F1) instruction.
DT90106	DT9106	High-speed co target value a ch2		The target value (24-bit data) of the high-speed counter specified by the high-speed counter instruction is stored here.
DT90107	DT9107			Target values have been preset for the various instructions, to be used when the high-speed counter related instruction F166 to F170 is executed. These preset values can only be read, and cannot be written.

12.6 Table of Special Data Registers

Address		Name	Description
FP0 T32	FP0 C10, C14, C16, C32, SL1		
DT90108	DT9108	High-speed counter elapsed value area for ch3	The elapsed value (24-bit data) for the high-speed counter is stored here. Each time the ED instruction is executed, the elapsed value for the high-speed counter is automatically transferred to the special registers
DT90109	DT9109		DT9108 and DT9109/DT90108 and DT90109.
			The value can be written by executing a DMV (F1) instruction.
DT90110	DT9110	High-speed counter target value area for ch3	The target value (24-bit data) of the high-speed counter specified by the high-speed counter instruction is stored here.
DT90111	DT9111		Target values have been preset for the various instructions, to be used when the high-speed counter related instruction F166 to F170 is executed. These preset values can only be read, and cannot be written.

12.7 Error Codes

12.7 Error Codes

Error Confirmation When ERROR LED Turns ON

When the "ERROR LED (ERROR/ALARM LED)" on the control unit (CPU unit) turns on, a self-diagnostic error or syntax check error has occurred. Confirm the contents of the error and take the appropriate steps.

Error Confirmation Method

Procedure:

- Use the programming tool software to call up the error code.
 By executing the "STATUS DISPLAY", the error code and content of error are displayed.
- 2. Check the error contents in the table of error codes using the error code ascertained above.

Syntax check error

This is an error detected by the total check function when there is a syntax error or incorrect setting written in the program. When the mode selector is switched to the RUN mode, the total check function automatically activates and eliminates the possibility of incorrect operation from syntax errors in the program.

When a syntax check error is detected

- ERROR LED (ERROR/ALARM LED) turns on.
- Operation will not begin even after switching to the RUN mode.
- Remote operation cannot be used to change to RUN mode.

Clearing a syntax check error

By changing to the PROG. mode, the error will clear and the ERROR LED (ERROR/ALARM LED) will turn off.

Steps to take for syntax error

Change to the PROG. mode, and then execute the total check function while online mode with the programming tool connected. This will call up the content of error and the address where the error occurred.

Correct the program while referring to the content of error.

Self-diagnostic Error

This error occurs when the control unit (CPU unit) self-diagnostic function detects the occurrence of an abnormality in the system. The self-diagnostic function monitors the memory abnormal detection, I/O abnormal detection, and other devices.

When a self-diagnostic error occurs

The ERROR LED (ERROR/ALARM LED) turns on.

12.7 Error Codes

The operation of the control unit (CPU unit) might stop depending on the content of error and the system register setting.

The error codes will be stored in the special data register DT9000 (DT90000).

In the case of operation error, the error address will be stored in the DT9017 (DT90017) and DT9018 (DT90018).

Clearing the self-diagnostic error

At the "STATUS DISPLAY", execute the "error clear". Error codes 43 and higher can be cleared.

- You can use the initialize/test switch to clear an error. However, this will also clear the contents of operation memory.
- Errors can also be cleared by turning off and on the power while in the PROG. mode. However, the contents of operation memory, not stored with the hold type data, will also be cleared.
- The error can also be cleared depending on the self-diagnostic error set instruction **F148 (ERR)**.

Steps to take for self-diagnostic error

The steps to be taken will differ depending on the error contents. For more details, use the error code obtained above and consult the table of self-diagnostic error codes.

MEWTOCOL-COM Transmission Errors

These are error codes from a PC or other computer device that occur during an abnormal response when communicating with a PLC using MEWTOCOL-COM.

12.7 Error Codes

J Table of Syntax Check Error

Error code	Name	Operation status	Description and steps to take	FP0	FP.e	FPΣ	FP1/FP-M	FP2	FP2SH	FP10SH	FP3
E1	Syntax error	Stops	A program with a syntax error has been written. Change to PROG. mode and correct the error.	Α	Α	Α	Α	Α	Α	Α	Α
E2 (* Note)	Duplicated output error	Stops	Two or more OT(Out) instructions and KP(Keep) instructions are programmed using the same relay. Also occurs when using the same timer/counter number. Change to PROG. mode and correct the program so that one relay is not used for two or more OT instructions and KP instructions. Or, set the duplicated output to "enable" in system register 20. A timer/counter instruction double definition error will be detected even if double output permission has been selected.	Α	Α	Α	Α	Α	Α	Α	Α
E3	Not paired error	Stops	For instructions which must be used in a pair such as jump (JP and LBL), one instruction is either missing or in an incorrect position. Change to PROG. mode and enter the two instructions which must be used in a pair in the correct positions.	А	А	А	А	А	А	А	А
E4	Parameter mismatch error	Stops	An instruction has been written which does not agree with system register settings. For example, the number setting in a program does not agree with the timer/counter range setting. Change to PROG. mode, check the system register settings, and change so that the settings and the instruction agree.	Α	А	А	А	А	Α	А	Α
E5 (* Note)	Program area error	Stops	An instruction which must be written to a specific area (main program area or subprogram area) has been written to a different area (for example, a subroutine SUB to RET is placed before an ED instruction). Change to PROG. mode and enter the instruction into the correct area.	А	А	А	А	А	А	А	Α
E6	Compile memory full error	Stops	The program is too large to compile in the program memory. Change to PROG. mode and reduce the total number of steps for the program. FP2SH and FP10SH If memory expansion is possible, compilation will become possible when the memory is expanded.	Α	Α	Α	Α		Α	Α	

A: Available

This error is also detected if you attempt to execute a rewrite containing a syntax error during RUN. In this case, nothing will be written to the CPU and operation will continue.

12.7 Error Codes

Error code	Name	Operation status	Description and steps to take	FP0	FP.e	FPΣ	FP1/FP-M	FP2	FP2SH	FP10SH	FP3
High-level instruc- tion type error	Stops	In the program, high-level instructions, which execute in every scan and at the leading edge of the trigger, are programmed to be triggered by one contact [e.g., F0 (MV) and P0 (PMV) are programmed using the same trigger continuously].			А		Α	Α	Α	Α	
			Correct the program so that the high- level instructions executed in every scan and only at the leading edge are triggered separately.								
E8	High-level instruc- tion oper-	Stops	There is an incorrect operand in an instruction which requires a specific combination operands (for example, the operands must all be of a certain type).	А	А	А	Α	А	Α	А	А
	and error		Enter the correct combination of operands.								
	No		Program may be damaged.								
E9	progra error	Stops	Try to send the program again.						Α	Α	
E10	Rewrite during RUN syntax error	Continues	When inputting with the programming tool software, a deletion, addition or change of order of an instruction (ED, LBL, SUB, RET, INT, IRET, SSTP, and STPE) that cannot perform a rewrite during RUN is being attempted. Nothing is written to the CPU.					Α	Α	А	Α

J Table of Self-Diagnostic Error

Error code	Name	Operation status	Description and steps to take	FP0	FP. e	FPΣ	FP1/FP- M	FP2	FP2SH	FP10SH	FP3
E20	CPU error	Stops	Probably a hardware abnormality. Please contact your dealer.					Α	Α	Α	А
E21	RAM error 1										
E22	RAM error 2		Probably an abnormality in the internal								
E23	RAM error 3	Stops	RAM.					Α	Α	Α	Α
E24	RAM error 4		Please contact your dealer.								
E25	RAM error 5										
			FP-e, FP0, FPΣ, and FP1 C14, C16: Probably a hardware abnormality.								
			Please contact your dealer.								
			FP1 C24, C40, C56, C72, and FP-M: Probably an abnormality in the memory unit								
E26	User's ROM error	Stops	Program the memory unit again and try to operate. If the same error is detected, try to operate with another memory unit.	А	Α	Α	А	Α	А	Α	А
			FP2, FP2SH, FP10SH, and FP3: There may be a problem with the installed ROM ROM is not installed ROM contents are damaged - Program size stored on the ROM is larger than the capacity of the ROM Check the contents of the ROM								
F07	Unit instal-	Chama	Units installed exceed the limitations (i.e., 4 or more link units)			_		_	_	٨	_
E27	lation error	Stops	Turn off the power and re-configure units referring to the hardware manual.			А		А	А	А	А
E28	System register	Stops	Probably an abnormality in the system register.					А			А
	error	·	Check the system register setting or initialize the system registers.								
E29	Configur- ation para- meter error	Stops	A parameter error was detected in the MEWNET-W2 configuration area. Set a correct parameter.					Α	Α		
E30	Interrupt error 0	Stops	Probably a hardware abnormality. Please contact your dealer.								Α
E31	Interrupt error 1	Stops	An interrupt occurred without an interrupt request. A hardware problem or error due to noise is possible. Turn off the power and check the noise	А	Α	А	А	А	А	Α	А
			conditions.								

12.7 Error Codes

Error code	Name	Operation status	Description and steps to take	FP0	FP.e	FPΣ	FP1/FP-M	FP2	FP2SH	FP10SH	FP3
E32	Interrupt error 2	Stops	There is no interrupt program for an interrupt which occurred. Check the number of the interrupt program and change it to agree with the interrupt request.	Α	А	А	А	Α	Α	Α	Α
E33	Multi-CPU data un- match er- ror	CPU2 Stops	This error occurs when a FP3/FP10SH is used as CPU2 for a multi-CPU system. Refer to "Multi-CPU system Manual".							Α	Α
E34	I/O status error	Stops	An abnormal unit is installed. FP∑, FP2, FP2SH and FP10SH: Check the contents of special data register DT90036 and locate the abnormal unit. Then turn off the power and replace the unit with a new one. FP3: Check the contents of special data register DT9036 and locate the abnormal unit. Then turn off the power and replace the unit with a new one.			Α	Α		Α	Α	Α
E35	MEWNET-F slave ille- gal unit error	Stops	A unit, which cannot be installed on the slave station of the MEWNET-F link system, is installed on the slave station. Remove the illegal unit from the slave station.					Α	Α	Α	Α
E36	MEWNET-F (remote I/O) limita- tion error	Stops	The number of slots or I/O points used for MEWNET-F (remote I/O) system exceeds the limitation. Re-configure the system so that the number of slots and I/O points is within the specified range.					А	Α	Α	Α
E37	MEWNET-F I/O map- ping error	Stops	I/O overlap or I/O setting that is over the range is detected in the allocated I/O and MEWNET-F I/O map. Re-configure the I/O map correctly.					Α	Α	Α	Α
E38	MEWNET-F slave I/O terminal mapping error	Stops	I/O mapping for remote I/O terminal boards, remote I/O terminal units and I/O link unit is not correct. Re-configure the I/O map for slave stations according to the I/O points of the slave stations.					Α	Α	Α	Α

12.7 Error Codes

Error code	Name	Operation status	Description and steps to take	FP0	FP.e	FPΣ	FP1/FP-M	FP2	FP2SH	FP10SH	FP3
			When reading in the program from the IC memory card (due to automatic reading because of the dip switch setting or program switching due to F14 (PGRD) instruction):								
			- IC memory card is not installed.								
F20	IC card	Ctono	There is no program file or it is dam- aged.						,		
E39	read error	Stops	- Writing is disabled.						Α	Α	
		III pp	- There is an abnormality in the AUTO- EXEC.SPG file.								
			Program size stored on the card is larger than the capacity of the CPU.								
			Install an IC memory card that has the program properly recorded and execute the read once again.								
			Abnormal I/O unit								
			FP Σ:								
			Check the contents of special data register DT90002 and abnormal FPΣ expansion unit. Then check the unit.								
			FP2 and FP2SH:								
			Check the contents of special data registers DT90002, DT90003 and abnormal I/O unit. Then check the unit.								
			Selection of operation status using system register 21:								
			- to continue operation, set 1 - to stop operation, set 0								
E40	I/O error	Selectable	Verification is possible in FPWIN GR/ Pro at "I/O error" in the status display function.			А		А	Α	Α	А
			MEWNET-TR communication error								
			FP3 and FP10SH:								
		Check the contents of special data registers (FP3: DT9002, DT9003, FP10SH: DT90002, DT90003) and the erroneous master unit and abnormal I/O unit. Then check the unit.									
		Selection of operation status using system register 21:									
			- to continue operation, set 1 - to stop operation, set 0								
		Verification is possible in FPWIN GR/ Pro at "I/O error" in the status display function.									

12.7 Error Codes

Error code	Name	Operation status	Description and steps to take	FP0	FP.e	FPΣ	FP1/FP- M	FP2	FP2SH	FP10SH	FP3
E41	Intelligent unit error	Selectable	An abnormality in an intelligent unit. FP Σ : Check the contents of special data registers DT90006 and locate the abnormal FP Σ intelligent unit. FP2, FP2H, and FP10SH: Check the contents of special data registers DT90006, DT90007 and locate the abnormal intelligent unit. Then check the unit referring to its manual. Selection of operation status using system register 22: - to continue operation, set 1 - to stop operation, set 0 FP3: Check the contents of special data registers DT9006, DT9007 and locate the abnormal intelligent unit. Then check the unit referring to its manual. Selection of operation status using system register 22: - to continue operation, set 1 - to stop operation, set 1 - to stop operation, set 0 Verification is possible in FPWIN GR/Pro at "Intelligent unit error" in the status display function.			Α		Α	Α	Α	Α
E42	I/O unit verify error	Selectable	I/O unit wiring condition has changed compared to that at time of power-up. Check the contents of special data register (FP0: DT90010, FPΣ: DT90011) and locate the erroneous expansion unit. Check the contents of special data registers (FP2, FP2SH, and FP10SH: DT90010, DT90011, FP3: DT9010, DT9011). Selection of operation status using system register 23: to continue operation, set 1 to stop operation, set 0 Verification is possible in FPWIN GR/Pro at "Verify error" in the status display function.			А		А	Α	Α	А
E43	System watching dog timer error	Selectable	Scan time required for program execution exceeds the setting of the system watching dog timer. Check the program and modify it so that the program can execute a scan within the specified time. Selection of operation status using system register 24: to continue operation, set 1 to stop operation, set 0						Α	Α	

12.7 Error Codes

Error code	Name	Operation status	Description and steps to take	FP0	FP.e	FPΣ	FP1/FP. M	FP2	FP2SH	FP10SH	FP3
E44	Slave sta- tion con- necting time error for MEW- NET-F system	Selectable	The time required for slave station connection exceeds the setting of the system register 35. Selection of operation status using system register 25: to continue operation, set 1 to stop operation, set 0					Α	Α	А	Α
E45	Operation error	Selectable	Operation became impossible when a high-level instruction was executed. Selection of operation status using system register 26: - to continue operation, set K1 - to stop operation, set K0 In the FP2, FP2H, and FP10SH, Check the contents of special data registers DT90017, DT90018 to find the instruction address where the operation error occurred. Then correct the program. In the FP3, Check the contents of special data registers DT9017, and DT9018 to find the instruction address where the operation error occurred. Then correct the program. Verification is possible in FPWIN GR/Pro at "Operation error" in the status display function.	А	Α	А	А	Α	Α	А	Α
		Selectable	S-LINK error Occurs only in FP0-SL1 When one of the S-LINK errors (ERR 1, 3 or 4) has been detected, error code E46 (remote I/O (S-LINK) communication error) is stored. Selection of operation status using system register 27: - to continue operation, set K1 - to stop operation, set K0	Α							
E46	Remote I/O commu- nication error	Selectable	MEWNET-F communication error A communication abnormally was caused by a transmission cable or during the power-down of a slave station. FP2, FP2H, and FP10SH: Check the contents of special data registers DT90131 to DT90137 and locate the abnormal slave station and recover the communication condition. FP3: Check the contents of special data registers DT9131 to DT9137 and locate the abnormal slave station and recover the communication condition. Selection of operation status using system register 27: - to continue operation, set K1 - to stop operation, set K0				А	А	А	А	Α

12.7 Error Codes

Error code	Name	Operation status	Description and steps to take	FP0	FP. e	FPΣ	FP1/FP- M	FP2	FP2SH	FP10SH	FP3
E47	MEWNET-F attribute error	Selectable	In the unit on the slave station, an abnormality such as: - missing unit - abnormal intelligent unit was detected. FP2, FP2H, and FP10SH: Check the contents of special data registers DT90131 to DT90137 and locate the abnormal slave station and recover the slave condition. FP3: Check the contents of special data registers DT9131 to DT9137 and locate the abnormal slave station and recover the slave condition. Selection of operation and recover the slave condition. Selection of operation status using system register 28: - to continue operation, set 1 - to stop operation, set 0					Α	Α	Α	А
E50	Backup battery error	Continues	The voltage of the backup battery lowered or the backup battery of control unit is not installed. Check the installation of the backup battery and then replace battery if necessary. By setting the system register 4, you can disregard this self-diagnostic error.		А	А	A Note	Α	А	Α	Α
E51	MEWNET-F terminal station error	Continues	Terminal station settings were not properly performed. Check stations at both ends of the communication path, and set them in the terminal station using the dip switches.					Α	Α	Α	Α
E52	MEWNET-F I/O update synchro- nous error	Continues	Set the INITIALIZE/TEST selector to the INITIALIZE position while keeping the mode selector in the RUN position. If the same error occurs after this, please contact your dealer.					Α	Α	А	Α
E53	Multi-CPU I/O registra- tion error (CPU2 only)	Continues	Abnormality was detected when the multi- CPU system was used. Please contact your dealer.							А	А
E54	IC memory card back- up battery error	Continues	The voltage of the backup battery for the IC memory card lowered. The BATT. LED does not turn on. Charge or replace the backup battery of IC memory card. (The contents of the IC memory card cannot be guaranteed.)						А	А	

A: Available

Available PLC: FP1 C24, C40, C56, C72, and FP-M

12.7 Error Codes

Error code	Name	Operation status	Description and steps to take	FP0	FP.e	FPΣ	FP1/FP-M	FP2	FP2SH	FP10SH	FP3
E55	IC memory card back- up battery error	Continues	The voltage of the backup battery for IC memory card lowers. The BATT. LED does not turn on Charge or replace the backup battery of IC memory card. (The contents of the IC memory card cannot be guaranteed.)						А	Α	
E56	Incompatible IC memory card error	Continues	The IC memory card installed is not compatible. Replace the IC memory card compatible with FP2SH/FP10SH.						Α	Α	
E57	No unit for the con- figuration	Continues	MEWNET-W2 The MEWNET-W2 link unit is not installed in the slot specified using the configuration data. Either install a unit in the specified slot or change the parameter.					Α	Α		
E100 to E199	Self- diag- nostic error set by F148	Stops	The error specified by the F148 (ERR)/P148 (PERR) instruction is occurred.	Α	Α	Α	Α	Α			
E200 to E299	(ERR)/P148 (PERR) instruction	Continues	Take steps to clear the error condition according to the specification you chose.	Α	Α	Α	Α	Α			

FP0

12.7 Error Codes

J Table of MEWTOCOL-COM Communication Error

Error code	Name	Description
!21	NACK error	Link system error
!22	WACK error	Link system error
!23	Unit No. overlap	Link system error
!24	Transmission format error	Link system error
!25	Link unit hardware error	Link system error
!26	Unit No. setting error	Link system error
!27	No support error	Link system error
!28	No response error	Link system error
!29	Buffer closed error	Link system error
!30	Time-out error	Link system error
!32	Transmission impossible error	Link system error
!33	Communication stop	Link system error
!36	No destination error	Link system error
!38	Other communication error	Link system error
!40	BCC error	A transfer error occurred in the received data.
!41	Format error	A command was received that does not fit the format.
!42	No support error	A command was received that is not supported.
!43	Multiple frames procedure error	A different command was received when processing multiple frames.
!50	Link setting error	A route number that does not exist was specified. Verify the route number by designating the transmission station.
!51	Transmission time-out error	Transmission to another device not possible because transmission buffer is congested.
!52	Transmit disable error	Transmission processing to another device is not possible. (Link unit runaway, etc.)
!53	Busy error	Command process cannot be received because of multiple frame processing. Or, cannot be received because command being processed is congested.
!60	Parameter error	Content of specified parameter does not exist or cannot be used.
!61	Data error	There was a mistake in the contact, data area, data number designation, size designation, range, or format designation.
!62	Registration over error	Operation was done when number of registrations was exceeded or when there was no registration.
!63	PC mode error	A command that cannot be processed was executed during RUN mode.

12.7 Error Codes

Error code	Name	Description
!64	External memory error	An abnormality occurred when loading RAM to ROM/IC memory card. There may be a problem with the ROM or IC memory card.
		- When loading, the specified contents exceeded the capacity.
		- Write error occurs.
		- ROM or IC memory card is not installed.
		- ROM or IC memory card does not conform to specifications
		- ROM or IC memory card board is not installed.
!65	Protect error	A program or system register write operation was executed when the protect mode (password setting or DIP switch, etc.) or ROM operation mode was being used.
!66	Address error	There was an error in the code format of the address data. Also, when exceeded or insufficient of address data, there was a mistake in the range designation.
!67	No program error and No data error	Cannot be read because there is no program in the program area or the memory contains an error. Or, reading was attempted of data that was not registered.
!68	Rewrite during RUN error	When inputting with the programming tool software, editing of an instruction (ED, SUB, RET, INT, IRET, SSTP, and STPE) that cannot perform a rewrite during RUN is being attempted. Nothing is written to the CPU.
!70	SIM over error	Program area was exceeded during a program write process.
!71	Exclusive access control error	A command that cannot be processed was executed at the same time as a command being processed.

12.8 Table of Instructions

12.8 Table of Instructions

12.8.1 Table of Basic Instructions

Name	Boolean	Symbol	Description	Steps (* 1)
Sequence ba	asic instru	uctions		
Start	ST	X,Y,R,T,C,L,P,E	Begins a logic operation with a Form A (normally open) contact.	1 (2)
Start Not	ST/	X,Y,R,T,C,L,P,E	Begins a logic operation with a Form B (normally closed) contact.	1 (2)
Out	ОТ	Y,R,L,E	Outputs the operated result to the specified output.	1 (2)
Not	1	—/—	Inverts the operated result up to this instruction.	1
AND	AN	X,Y,R,T,C,L,P,E	Connects a Form A (normally open) contact serially.	1 (2)
AND Not	AN/	X,Y,R,T,C,L,P,E	Connects a Form B (normally closed) contact serially.	1 (2)
OR	OR	X,Y,R,T,C,L,P,E	Connects a Form A (normally open) contact in parallel.	1 (2)
OR Not	OR/	X,Y,R,T,C,L,P,E	Connects a Form B (normally closed) contact in parallel.	1 (2)
Leading edge start	ST↑	X,Y,R,T,C,L,P,E	Begins a logic operation only for one scan when the leading edge of the trigger is detected.	2
Trailing edge start	ST↓	X,Y,R,T,C,L,P,E	Begins a logic operation only for one scan when the trailing edge of the trigger is detected.	2

12.8 Table of Instructions

Name	Avai	labilit	у										
				FP1			FP-I	VI			_	ЗH	
	FP0	FΡΣ	FP. e	C14 C16	C24 C40	C56 C72	C16	C20 C32	FP3	FP2	FP2SH	FP10SH	
Sequence basic instructions													
Start	Α	Α	Α	Α	Α	Α	А	Α	Α	Α	А	Α	
Start Not	Α	А	Α	Α	Α	Α	Α	А	Α	Α	А	Α	
Out	А	Α	Α	Α	Α	Α	А	А	Α	Α	А	Α	
Not	А	Α	А	А	А	А	А	А	Α	Α	А	Α	
AND	Α	Α	А	А	А	А	А	Α	Α	Α	А	А	
AND Not	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	А	
OR	Α	Α	Α	Α	А	Α	А	Α	Α	Α	А	А	
OR Not	А	Α	А	А	А	А	Α	А	А	Α	Α	Α	
Leading edge start	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	A	A	Α	
Trailing edge start	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Α	А	А	

Notes

- A: Available, N/A: Not available
- 1) In the FP2/FP2SH/FP10SH, when using X1280, Y1280, R1120 (special internal relay included), L1280, T256, C256 or anything beyond for the ST, ST/, OT, AN, AN/, OR and OR/ instructions, the number of steps is shown in parentheses. Also, in the FP2/FP2SH/FP10SH, when a relay number has an index modifier, the number of steps is shown in parentheses.

Name	Boolean	Symbol	Description	Steps
Leading edge AND	AN↑	X,Y,R,T,C,L,P,E —— ↑	Connects a Form A (normally open) contact serially only for one scan when the leading edge of the trigger is detected.	2
Trailing edge AND	AN↓	X,Y,R,T,C,L,P,E	Connects a Form A (normally open) contact serially only for one scan when the trailing edge of the trigger is detected.	2
Leading edge OR	OR↑	X,Y,R,T,C,L,P,E	Connects a Form A (normally open) contact in parallel only for one scan when the leading edge of the trigger is detected.	2
Trailing edge OR	OR↓	X,Y,R,T,C,L,P,E	Connects a Form A (normally open) contact in parallel only for one scan when the trailing edge of the trigger is detected.	2
Leading edge out	ОТ↑	—[°]—	Outputs the operated result to the specified output only for one scan when leading edge of the trigger is detected. (for pulse relay)	2
Trailing edge out	ОТ↓	—[↓]—	Outputs the operated result to the specified output only for one scan when trailing edge of the trigger is detected. (for pulse relay)	2
Alternative out	ALT	(A)	Inverts the output condition (on/off) each time the leading edge of the trigger is detected.	3
AND stack	ANS		Connects the multiple instruction blocks serially.	1
OR stack	ORS		Connects the multiple instruction blocks in parallel.	1
Push stack	PSHS	<u> </u>	Stores the operated result up to this instruction.	1
Read stack	RDS	T	Reads the operated result stored by the PSHS instruction.	1
Pop stack	POPS		Reads and clears the operated result stored by the PSHS instruction.	1
Leading edge differ- ential	DF	——(DF)——	Turns on the contact for only one scan when the leading edge of the trigger is detected.	1
Trailing edge differ- ential	DF/	——(DF/)——	Turns on the contact for only one scan when the trailing edge of the trigger is detected.	1

12.8 Table of Instructions

Name	Avai	labilit	y									
				FP1			FP-I	VI			_	Ξ
	FP0	FΡΣ	FP. e	C14 C16	C24 C40	C56 C72	C16	C20 C32	FP3	FP2	FP2SH	FP10SH
Leading edge AND	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	А	А	А
Trailing edge AND	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Α	A	А
Leading edge OR	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Α	A	А
Trailing edge OR	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	A	A	А
Leading edge out	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	A	A	А
Trailing edge out	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	А	А	А
Alternative out	N/A	Α	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Α	А	А
AND stack	А	А	A	А	А	А	A	А	Α	A	A	А
OR stack	А	А	А	А	А	А	А	А	Α	A	А	А
Push stack	А	A	A	А	А	А	A	A	Α	A	A	A
Read stack	А	A	А	А	А	А	А	A	Α	А	A	A
Pop stack	А	A	А	А	А	А	А	A	A	A	А	А
Leading edge differ- ential	А	А	А	А	А	А	А	А	Α	A	A	A
Trailing edge differ- ential	А	А	А	А	А	А	А	А	А	А	А	А

A: Available, N/A: Not available

Name	Boolean	Symbol	Description	Steps (* 1)
Leading edge differ- ential (initial execution type)	DFI	——(DFI)——	Turns on the contact for only one scan when the leading edge of the trigger is detected. The leading edge detection is possible on the first scan.	1
Set	SET	Y,R,L,E ≺ S > ──────────────────────────────────	Output is set to and held at on.	3
Reset	RST	Y,R,L,E	Output is set to and held at off.	3
Keep	KP	Set KP Reset	Outputs at set trigger and holds until reset trigger turns on.	1 (2)
No opera- tion	NOP	-• -	No operation.	1

Name	Avai	Availability										
				FP1			FP-M				т	ж
	FP0	FPΣ	FP. e	C14 C16		C56 C72	C16	C20 C32	FP3	FP2	FP2SH	FP10SH
Leading edge differ- ential (initial execution type)	N/A	Α	А	N/A	N/A	N/A	N/A	N/A	N/A	Α	A	А
Set	Α	А	А	А	А	А	А	А	Α	А	Α	Α
Reset	Α	А	А	А	А	А	А	А	Α	А	А	Α
Keep	Α	Α	Α	А	А	Α	А	Α	Α	Α	Α	Α
No opera- tion	Α	A	Α	Α	А	Α	А	A	Α	A	Α	A

- A: Available, N/A: Not available
- In the FP2/FP2SH/FP10SH, when using Y1280, R1120 (special internal relay included), L1280 or anything beyond for the KP instruction, the number of steps is shown in parentheses. Also, in the FP2/FP2SH/FP10SH, when a relay number has an index modifier, the number of steps is shown in parentheses.

12.8 Table of Instructions

Name	Boolean	Symbol	Description	Steps (* 1)
Basic functi	on instruc	ctions		
On-delay timer	TML		After set value "n" \times 0.001 seconds, timer contact "a" is set to on.	3 (4)
	TMR	┌™a n ┐	After set value "n" \times 0.01 seconds, timer contact "a" is set to on.	3 (4)
	TMX		After set value "n" \times 0.1 seconds, timer contact "a" is set to on.	3 (4)
	TMY		After set value "n" \times 1 second, timer contact "a" is set to on.	4 (5)
Auxiliary timer (16-bit)	F137 (STMR)	Y,R,L,E	After set value "S" \times 0.01 seconds, the specified output and R900D are set to on.	5
Auxiliary timer (32-bit)	F183 (DSTM)	Y,R,L,E ⊢	After set value "S" \times 0.01 seconds, the specified output and R900D are set to on.	7
Counter	СТ	Count CT Reset n	Decrements from the preset value "n"	3 (4)
UP/DOWN counter	F118 (UDC)	UP/DOWN F118 UDC Count Reset D	Increments or decrements from the preset value "S" based on up/down input.	5

1) In the FP2/FP2SH/FP10SH, when timer 256 or higher, or counter 255 or lower, is used, the number of steps is the number in parentheses. Also, in the FP2/FP2SH/FP10SH, when a timer number or counter number has an index modifier, the number of steps is the number in parentheses.

12.8 Table of Instructions

Name	Avai	labilit	у									
				FP1			FP-I	VI			_	H
	0,	Ω	FP. e	C14	C24	C56	C16	C20	3	2	FP2SH	FP10SH
	FP0	FΡΣ	臣	C16	C40	C72		C32	FP3	FP2	ᄔ	F
Basic function	Basic function instructions											
On-delay timer TML	A (* 1)	Α	А	N/A	N/A	N/A	N/A	N/A	N/A	А	А	Α
On-delay timer TMR	А	Α	Α	А	А	А	Α	А	Α	А	Α	А
On-delay timer TMX	А	А	А	А	А	А	А	А	А	А	А	А
On-delay timer TMY	А	А	Α	А	Α	А	А	А	Α	А	Α	А
Auxiliary timer (16-bit)	Α	Α	Α	N/A	N/A	А	N/A	Α	Α	Α	Α	Α
Auxiliary timer (32-bit)	A	A	A	N/A	N/A	N/A	N/A	N/A	N/A	А	A	Α
Counter	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
UP/DOWN counter	A	A	A	A	А	Α	А	A	A	A	A	A

Notes

- A: Available, N/A: Not available
- 1) This instruction is available for FP0 C10, C14, C16, C32 CPU Ver. 2.0 or later/FP0 T32C.

Name	Boolean	Symbol	Description	Steps
Shift register	SR	Data SR WR n Shift Reset	Shifts one bit of 16-bit [word internal relay (WR)] data to the left.	1 (2) (* 1)
Left/right shift register	F119 (LRSR)	L/R F119 LRSR Data D1 Shift D2 Reset	Shifts one bit of 16-bit data range specified by "D1" and "D2" to the left or to the right.	5
Control insti	ructions			
Master con- trol relay	MC	Master control area	Starts the master control program.	2
Master con- trol relay end	MCE	(MCE n)	Ends the master control program.	2
Jump	JP	(JP n)	The program jumps to the label instruction and continues from there.	2 (3) (* 2)
Label	LBL	(LBL n)—		1
Auxiliary jump	F19 (SJP)	├	The program jumps to the label instruction specified by "S" and continues from there.	3
Label	LBL	(LBL n)		1

Name	Avai	Availability											
				FP1			FP-I	VI			I	SH	
	FP0	FΡΣ	FP. e	C14 C16	C24 C40	C56 C72	C16	C20 C32	FP3	FP2	FP2SH	FP10SH	
Shift register	A	A	A	A	A	A	A	A	А	A	A	A	
Left/right shift register	A	A	A	A	A	A	A	A	A	A	A	A	
Control instr	uctio	ns											
Master con- trol relay	A	А	А	A	A	A	A	A	A	А	A	Α	
Master con- trol relay end	А	А	А	Α	А	Α	А	Α	A	Α	А	Α	
Jump Label	A	A	Α	Α	A	Α	A	Α	A	A	Α	A	
Auxiliary jump Label	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Α	Α	Α	Α	

Notes

- A: Available, N/A: Not availble
- In the FP2/FP2SH/FP10SH, when internal relay WR240 or higher is used, the number of steps is the number in parentheses. Also, in the FP2/FP2SH/FP10SH, when the specified internal relay number (word address) has an index modifier, the number of steps is the number in parentheses.
- 2) In the FP2/FP2SH/FP10SH, when the number "n" in a jump instruction has an index modifier, the number of steps is the number in parentheses.

Name	Boolean	Symbol	Description	Steps
Loop	LOOP	(LBL n)—	The program jumps to the label instruction and continues from there (the number of jumps is set in "S").	4 (5) (* 1)
Labei	LDL			
Break	BRK	(BRK)	Stops program execution when the predetermined trigger turns on in the TEST/RUN mode only.	1
End	ED	(ED)	The operation of program is ended. Indicates the end of a main program.	1
Conditional end	CNDE	(CNDE)—	The operation of program is ended when the trigger turns on.	1
Eject	EJECT	(EJECT)	Adds page break for use when printing.	1
Step ladder	instructio	ns		
Start step	SSTP	(SSTP n)—	The start of program "n" for process control	3
Next step	NSTL	(NSTL n)-	Start the specified process "n" and clear the process currently started. (Scan execution type)	3
	NSTP	(NSTP n)-	Start the specified process "n" and clear the process currently started. (Pulse execution type)	3
Clear step	CSTP	(CSTP n)	Resets the specified process "n".	3
Clear multi- ple steps	SCLR	├ ├ [SCLR n1, n2]	Resets multiple processes specified by "n1" and "n2."	5
Step end	STPE	(STPE)	End of step ladder area	1

12.8 Table of Instructions

Name	Avai	labilit	y									
			4)	FP1	I		FP-I				Ж	SH
	FP0	FPΣ	FP. e	C14 C16	C24 C40	C56 C72	C16	C20 C32	FP3	FP2	FP2SH	FP10SH
Loop	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
Label												
Break	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Α	Α	Α	Α
End	А	А	А	А	А	А	А	Α	Α	Α	Α	Α
Conditional end	Α	Α	Α	Α	А	Α	Α	Α	Α	Α	Α	Α
EJECT	N/A	Α	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Α	Α	Α
Step ladder	instru	iction	s									
Start step	А	Α	А	Α	Α	А	А	A	Α	А	Α	Α
Next step NSTL	Α	А	А	А	А	А	Α	А	Α	А	Α	А
Next step NSTP	А	А	А	А	А	А	А	А	А	А	А	А
Clear step	A	Α	А	Α	А	A	A	Α	Α	A	Α	Α
Clear multi- ple steps	N/A	А	А	N/A	N/A	N/A	N/A	N/A	N/A	Α	Α	А
Step end	А	A	А	A	A	A	A	A	A	A	А	A

Notes

- A: Available, N/A: Not available
- 1) In the FP2/FP2SH/FP10SH, when the number "n" in a loop instruction has an index modifier, the number of steps is the number in parentheses.

Name	Boolean	Symbol	Description	Steps
Subroutine i	nstructio	ns		•
Subroutine call	CALL	-(CALL n)-	Executes the specified subroutine. When returning to the main program, outputs in the subroutine program are maintained.	2 (3) (* 1)
Output off type subrou- tine call	FCAL	FCAL n)—	Executes the specified subroutine. When returning to the main program, all outputs in the subroutine program are set to off.	4 (5) (* 1)
Subroutine entry	SUB	(SUB n)	Indicates the start of the subroutine program "n".	1
Subroutine return	RET	(RET)	Ends the subroutine program.	1
Interrupt ins	tructions	_		
Interrupt	INT	(INT n)	Indicates the start of the interrupt program "n".	1
Interrupt return	IRET	(IRET)	Ends the interrupt program.	1
Interrupt control	ICTL	├ (DF) - [CTL S1, S2]	Select interrupt enable/disable or clear in "S1" and "S2" and execute.	5

Name	Avai	labilit	y									
				FP1			FP-I	V			1	зн
	FP0	FPΣ	FP.e	C14 C16	C24 C40	C56 C72	C16	C20 C32	FP3	FP2	FP2SH	FP10SH
Subroutine instructions												
Subroutine call	Α	А	А	А	А	Α	А	Α	Α	Α	Α	Α
Output off type subrou- tine call	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Α	Α
Subroutine entry	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
Subroutine return	A	A	A	A	A	A	A	A	А	A	А	A
Interrupt ins	tructi	ons										
Interrupt	Α	Α	Α	N/A	Α	A	Α	A	Α	A	Α	Α
Interrupt return	A	A	A	N/A	A	A	A	A	Α	A	Α	Α
Interrupt control	А	Α	А	N/A	А	Α	N/A (* 2)	А	Α	А	Α	Α

Notes

- A: Available, N/A: Not available
- 1) In the FP2/FP2SH/FP10SH, when the number "n" of a subroutine program has an index modifier, the number of steps is the number in parentheses.
- 2) The ICTL instruction cannot be used with the FP-M C16T. (Interrupt masking and clearing are not possible.) The interrupt operation is possible using the interrupt setting of the system register 403.

Name	Boolean	Symbol	Description	Steps							
Special setting instructions											
Communica- tion condi- tions setting	SYS1		Change the communication conditions for the COM port or tool port based on the contents specified by the character constant.	13							
Password setting			Change the password specified by the PLC based on the contents specified by the character constant.								
Interrupt setting		H ⊢ (0F)-[5YS1, M]	Set the interrupt input based on the contents specified by the character constant.								
PLC link time setting			Set the system setting time when a PLC link is used, based on the contents specified by the character constant.								
MEWTOCOL - COM response control			Change the communication conditions of the COM. port or tool port for MEWTOCOL-COM based on the contents specified by the character constant.								
System registers "No. 40 to No. 47" changing	SYS2	Hsys2, s, d1, d2	Change the setting value of the system register for the PLC link function.	7							

Name	Avai	labilit	y									
				FP1			FP-I	M			_	H.
	FP0	ΣЫ	FP. e	C14 C16		C56 C72	C16	C20 C32	FP3	FP2	FP2SH	FP10SH
	-		-								-	-
Communica- tion condi- tions setting	N/A	Α	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Password setting	N/A	A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Interrupt setting	N/A	Α	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
PLC link time setting	N/A	А	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
MEWTOCOL -COM response control	N/A	Α	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
System registers "No. 40 to No. 47" changing	N/A	A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

Name	Boolean	Symbol	Description	Steps					
Data compa	are instru	uctions							
16-bit data compare (Start)	ST=	= S1, S2	Begins a logic operation by comparing two 16-bit data in the comparative condition "S1=S2."	5					
	ST<>	< > S1, S2	Begins a logic operation by comparing two 16-bit data in the comparative condition "S1 <s2" "s1="" or="">S2."</s2">						
	ST>	> S1, S2	Begins a logic operation by comparing two 16-bit data in the comparative condition "S1>S2."						
	ST>=	_ > = S1, S2	Begins a logic operation by comparing two 16-bit data in the comparative condition "S1>S2" or "S1 = S2."						
	ST<		Begins a logic operation by comparing two 16-bit data in the comparative condition "S1 <s2."< th=""><th>5</th></s2."<>	5					
	ST<=	< = S1, S2	Begins a logic operation by comparing two 16-bit data in the comparative condition "S1 <s2" "s1='S2."</th' or=""></s2">						

12.8 Table of Instructions

Name	Avai	labilit	y									
				FP1			FP-I	VI			_	H.
	FP0	FPΣ	FP. e	C14		C56	C16		FP3	FP2	FP2SH	FP10SH
	F	Ī	F	C16	C40	C72		C32	F	F	F	됴
Data compare instructions												
16-bit data compare (Start) ST=	A	Α	Α	N/A	Α	Α	N/A	Α	Α	Α	Α	А
16-bit data compare (Start) ST<>	А	A	A	N/A	A	A	N/A	Α	Α	Α	А	А
16-bit data compare (Start) ST>	А	А	A	N/A	А	А	N/A	A	Α	A	A	А
16-bit data compare (Start) ST>=	Α	A	A	N/A	A	A	N/A	Α	Α	A	A	А
16-bit data compare (Start) ST<	Α	Α	A	N/A	Α	Α	N/A	Α	Α	Α	A	А
16-bit data compare (Start) ST<=	A	A	Α	N/A	Α	A	N/A	Α	Α	A	A	A

• A: Available, N/A: Not available

Name	Boolean	Symbol	Description	Steps				
16-bit data compare (AND)	AN=	= S1, S2	Connects a Form A (normally open) contact serially by comparing two 16-bit data in the comparative condition "S1=S2."	5				
	AN<>	< > S1, S2	Connects a Form A (normally open) contact serially by comparing two 16-bit data in the comparative condition "S1 <s2" "s1="" or="">S2."</s2">	5				
	AN>	> S1, S2	Connects a Form A (normally open) contact serially by comparing two 16-bit data in the comparative condition "S1>S2."					
	AN>=	> = \$1,\$2	Connects a Form A (normally open) contact serially by comparing two 16-bit data in the comparative condition "S1>S2" or "S1=S2."	5				
	AN<	< S1, S2	Connects a Form A (normally open) contact serially by comparing two 16-bit data in the comparative condition "S1 <s2."< th=""><th>5</th></s2."<>	5				
	AN<=	< = \$1,\$2	Connects a Form A (normally open) contact serially by comparing two 16-bit data in the comparative condition "S1 < S2" or "S1 =S2."	5				

12.8 Table of Instructions

Name	Avai	labilit	y									
				FP1			FP-I	VI			т	ЗH
	FP0	FΡΣ	FP.e	C14 C16	C24 C40	C56 C72	C16	C20 C32	FP3	FP2	FP2SH	FP10SH
16-bit data compare (AND) AN=	А	Α	Α	N/A	А	А	N/A	Α	Α	A	Α	Α
16-bit data compare (AND) AN<>	А	A	A	N/A	А	А	N/A	Α	A	А	А	Α
16-bit data compare (AND) AN>	A	Α	Α	N/A	Α	Α	N/A	Α	Α	A	A	Α
16-bit data compare (AND) AN>=	A	A	A	N/A	A	А	N/A	Α	Α	A	Α	A
16-bit data compare (AND) AN<	A	А	А	N/A	А	А	N/A	Α	Α	A	A	А
16-bit data compare (AND) AN<=	A	A	A	N/A	Α	Α	N/A	A	A	A	A	A

Note

• A: Available, N/A: Not available

Name	Boolean	Symbol	Description	Steps					
16-bit data compare (OR)	OR=	= S1, S2	Connects a Form A (normally open) contact in parallel by comparing two 16-bit data in the comparative condition "S1=S2."	5					
	OR<>	_ < > S1, S2	Connects a Form A (normally open) contact in parallel by comparing two 16-bit data in the comparative condition "S1 <s2" "s1="" or="">S2."</s2">	5					
	OR>	> S1, S2	Connects a Form A (normally open) contact in parallel by comparing two 16-bit data in the comparative condition "S1>S2."						
	OR>=	_ > = S1, S2	Connects a Form A (normally open) contact in parallel by comparing two 16-bit data in the comparative condition "S1>S2" or "S1=S2."						
	OR<	< \$1, \$2	Connects a Form A (normally open) contact in parallel by comparing two 16-bit data in the comparative condition "S1 <s2."< th=""><th>5</th></s2."<>	5					
	OR<=	< = S1, S2]	Connects a Form A (normally open) contact in parallel by comparing two 16-bit data in the comparative condition "S1 <s2" "s1='S2."</th' or=""></s2">						

FP0 Specifications

12.8 Table of Instructions

Name	Avai	labilit	y									
				FP1			FP-I	VI			I	зн
	FP0	FPΣ	FP. e	C14 C16		C56 C72	C16	C20 C32	FP3	FP2	FP2SH	FP10SH
16-bit data compare (OR) OR=	А	А	А	N/A	Α	Α	N/A	Α	Α	А	А	А
16-bit data compare (OR) OR<>	A	A	Α	N/A	A	Α	N/A	Α	Α	A	A	A
16-bit data compare (OR) OR>	А	А	А	N/A	Α	Α	N/A	Α	Α	Α	Α	Α
16-bit data compare (OR) OR>=	A	A	Α	N/A	Α	Α	N/A	Α	Α	A	Α	A
16-bit data compare (OR) OR<	Α	A	Α	N/A	Α	A	N/A	A	Α	A	A	A
16-bit data compare (OR) OR<=	А	Α	Α	N/A	А	A	N/A	A	Α	A	A	A

• A: Available, N/A: Not available

Name	Boolean	Symbol	Description	Steps
32-bit data compare (Start)	STD=	D= S1, S2	Begins a logic operation by comparing two 32-bit data in the comparative condition "(S1+1, S1)=(S2+1, S2)."	9
	STD<>	D< > \$1, \$2	Begins a logic operation by comparing two 32-bit data in the comparative condition "(S1+1, S1)<(S2+1, S2)" or "(S1+1, S1)>(S2+1, S2)."	9
	STD>	D> S1, S2	Begins a logic operation by comparing two 32-bit data in the comparative condition "(S1+1, S1)>(S2+1, S2)."	9
	STD>=	D> = S1, S2	Begins a logic operation by comparing two 32-bit data in the comparative condition "(S1+1, S1)>(S2+1, S2)" or "(S1+1, S1)=(S2+1, S2)."	9
	STD<	D< \$1,52	Begins a logic operation by comparing two 32-bit data in the comparative condition "(S1+1, S1)<(S2+1, S2)."	9
	STD<=	D< = \$1, \$2	Begins a logic operation by comparing two 32-bit data in the comparative condition "(S1+1, S1)<(S2+1, S2)" or "(S1+1, S1)=(S2+1, S2)."	9

FP0 Specifications

12.8 Table of Instructions

Name	Avai	labilit	y									
				FP1			FP-I	M			I	зн
	FP0	FPΣ	FP. e	C14 C16		C56 C72	C16	C20 C32	FP3	FP2	FP2SH	FP10SH
32-bit data compare (Start) STD=	А	А	А	N/A	Α	Α	N/A	Α	А	А	А	А
32-bit data compare (Start) STD<>	A	A	Α	N/A	A	Α	N/A	Α	Α	A	A	A
32-bit data compare (Start) STD>	Α	Α	A	N/A	Α	Α	N/A	Α	Α	Α	Α	A
32-bit data compare (Start) STD>=	A	A	A	N/A	Α	Α	N/A	Α	Α	A	Α	A
32-bit data compare (Start) STD<	Α	A	Α	N/A	Α	A	N/A	А	Α	A	A	A
32-bit data compare (Start) STD<=	Α	A	Α	N/A	А	A	N/A	А	Α	A	A	A

• A: Available, N/A: Not available

Name	Boolean	Symbol	Description	Steps
32-bit data compare (AND)	AND=	D= S1, S2	Connects a Form A (normally open) contact serially by comparing two 32-bit data in the comparative condition "(S1+1, S1)=(S2+1, S2)."	9
	AND<>	D< > S1, S2	Connects a Form A (normally open) contact serially by comparing two 32-bit data in the comparative condition "(S1+1, S1)<(S2+1, S2)" or "(S1+1, S1)>(S2+1, S2)."	9
	AND>	D> S1, S2	Connects a Form A (normally open) contact serially by comparing two 32-bit data in the comparative condition "(S1+1, S1)>(S2+1, S2)."	9
	AND>=	D> = \$1,\$2	Connects a Form A (normally open) contact serially by comparing two 32-bit data in the comparative condition "(S1+1, S1)>(S2+1, S2)" or "(S1+1, S1)=(S2+1, S2)."	9
	AND<	D< S1, S2	Connects a Form A (normally open) contact serially by comparing two 32-bit data in the comparative condition "(S1+1, S1)<(S2+1, S2)."	9
	AND<=	D< = \$1,\$2	Connects a Form A (normally open) contact serially by comparing two 32-bit data in the comparative condition "(S1+1, S1)<(S2+1, S2)" or "(S1+1, S1)=(S2+1, S2)."	9

FP0 Specifications

12.8 Table of Instructions

Name	Avai	labilit	y									
				FP1			FP-I	M			т	зн
	FP0	FPΣ	FP. e	C14 C16		C56 C72	C16	C20 C32	FP3	FP2	FP2SH	FP10SH
32-bit data compare (AND) AND=	А	А	А	N/A	Α	Α	N/A	Α	А	А	А	А
32-bit data compare (AND) AND<>	A	A	Α	N/A	A	A	N/A	Α	Α	A	A	A
32-bit data compare (AND) AND>	Α	Α	Α	N/A	Α	Α	N/A	Α	Α	Α	A	A
32-bit data compare (AND) AND>=	Α	Α	Α	N/A	Α	Α	N/A	Α	Α	Α	Α	Α
32-bit data compare (AND) AND<	A	A	A	N/A	Α	Α	N/A	Α	Α	A	A	A
32-bit data compare (AND) AND<=	A	Α	A	N/A	Α	Α	N/A	Α	Α	Α	Α	Α

• A: Available, N/A: Not available

Name	Boolean	Symbol	Description	Steps
32-bit data compare (OR)	ORD=	D= S1, S2	Connects a Form A (normally open) contact in parallel by comparing two 32-bit data in the comparative condition "(S1+1, S1)=(S2+1, S2)."	9
	ORD<>	D< > \$1, \$2	Connects a Form A (normally open) contact in parallel by comparing two 32-bit data in the comparative condition "(S1+1, S1)<(S2+1, S2)" or "(S1+1, S1)>(S2+1, S2)."	9
	ORD>	D> S1, S2	Connects a Form A (normally open) contact in parallel by comparing two 32-bit data in the comparative condition "(S1+1, S1)>(S2+1, S2)."	9
	ORD>=	D> = S1, S2	Connects a Form A (normally open) contact in parallel by comparing two 32-bit data in the comparative condition "(S1+1, S1)>(S2+1, S2)" or "(S1+1, S1)=(S2+1, S2)."	9
	ORD<	D< S1, S2	Connects a Form A (normally open) contact in parallel by comparing two 32-bit data in the comparative condition "(S1+1, S1)<(S2+1, S2)."	9
	ORD<=	D< = S1, S2	Connects a Form A (normally open) contact in parallel by comparing two 32-bit data in the comparative condition "(S1+1, S1)<(S2+1, S2)" or "(S1+1, S1)=(S2+1, S2)."	9

FP0 Specifications

12.8 Table of Instructions

Name	Avai	labilit	y									
				FP1			FP-I	N			т	ЗН
	FP0	FPΣ	FP.e	C14 C16		C56 C72	C16	C20 C32	FP3	FP2	FP2SH	FP10SH
32-bit data compare (OR) ORD=	А	А	А	N/A	Α	Α	N/A	Α	Α	А	А	А
32-bit data compare (OR) ORD<>	A	A	Α	N/A	A	A	N/A	Α	Α	A	A	A
32-bit data compare (OR) ORD>	Α	A	Α	N/A	Α	Α	N/A	Α	Α	A	A	A
32-bit data compare (OR) ORD>=	A	A	A	N/A	Α	A	N/A	Α	Α	A	A	A
32-bit data compare (OR) ORD<	Α	A	Α	N/A	Α	A	N/A	А	Α	A	A	A
32-bit data compare (OR) ORD<=	Α	A	A	N/A	A	A	N/A	А	Α	A	A	A

Note

• A: Available, N/A: Not available

12.8 Table of Instructions

12.8.2 Table of High-level Instructions

The high-level instructions are expressed by the prefixes "F" or "P" with numbers. For most of the high-level instructions, "F" and "P" types are available. The differences between the two types are explained as follows:

- Instructions with the prefix "F" are executed in every scan while its trigger is in the on.
- Instructions with the prefix "P" are executed only when the leading edge of its trigger is detected.

Num- ber	Name	Boolean	Operand	Description							
Data ti	ransfer instru	ctions									
F0 P0	move	PMV	S, D	$(S) \rightarrow (D)$	5						
F1 P1	32-bit data move	DMV PDMV	S, D	$(S+1, S) \rightarrow (D+1, D)$	7						
F2 P2	16-bit data invert and move	MV/ PMV/	S, D	$(\overline{S}) \rightarrow (D)$	5						
F3 P3	32-bit data invert and move	DMV/ PDMV/	S, D	$(S+1, S) \rightarrow (D+1, D)$	7						
F5 P5	Bit data move	BTM PBTM	S, n, D	The specified one bit in "S" is transferred to the specified one bit in "D." The bit is specified by "n."	7						
F6 P6	Hexadecimal digit (4-bit) data move	DGT PDGT	S, n, D	The specified one digit in "S" is transferred to the specified one digit in "D." The digit is specified by "n."	7						
F7 P7	Two 16-bit data move	MV2 PMV2	S1, S2, D	$ (S1) \rightarrow (D), (S2) \rightarrow (D+1) $	7						
F8 P8	Two 32-bit data move	DMV2 PDMV2	S1, S2, D	$(S1+1, S1) \rightarrow (D+1, D),$ $(S2+1, S2) \rightarrow (D+3, D+2)$	11						
F10 P10	Block move	BKMV PBKMV	S1, S2, D	The data between "S1" and "S2" is transferred to the area starting at "D."	7						
F11 P11	Block copy	COPY PCOPY	S, D1, D2	The data of "S" is transferred to the all area between "D1" and "D2."	7						

Number	Availa	bility										
	(1)	1)	.* 1)	FP1 (* 1)		FP-M	(*1)			I	SH
	FP0 (* 1)	FPΣ (*	FP-e (* 1)	C14 C16	C24 C40	C56 C72	C16	C20 C32	FP3	FP2	FP2SH	FP10SH
Data tran	sfer in	structio	ons									
F0 P0	А	А	Α	Α	А	А	А	А	Α	Α	Α	А
F1 P1	А	А	Α	Α	А	А	Α	А	Α	Α	Α	А
F2 P2	А	А	А	А	А	А	А	А	А	А	А	А
F3 P3	A	А	А	А	А	А	А	А	А	А	A	А
F5 P5	Α	Α	А	А	А	А	Α	А	А	Α	А	А
F6 P6	A	А	А	А	А	А	А	А	А	А	A	А
F7 P7	N/A	А	N/A	N/A	N/A	N/A	N/A	N/A	N/A	А	А	А
F8 P8	N/A	А	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Α	Α	А
F10 P10	Α	А	А	Α	А	А	А	А	Α	Α	Α	А
F11 P11	А	А	А	А	А	Α	А	А	А	А	Α	А

- A: Available, N/A: Not available
- 1) For the FP0/FP2/FP-e/FP1/FP-M, the P type high-level instructions are not available.

Num- ber	Name	Boolean	Operand	Description	Steps	
F12 P12 F12	Data read from IC card/ ROM	ICRD PICRD ICRD	S1, S2, D	The data stored in the expansion memory of the IC card or ROM specified by "S1" and "S2" are transferred to the area starting at "D."	11	
F13 P13 P13	Data write to IC card/ROM PICWT PICWT S1, S2, D The data specified by "S1" and "S2" are transferred to the IC card expansion memory area or ROM starting at "D."					
F14 P14	Program read from IC memory card	PGRD PPGRD	S	The program specified using "S" is transferred into the CPU from IC memory card and executes it.	3	
F15 P15	16-bit data exchange	XCH PXCH	D1, D2	$(D1) \rightarrow (D2), (D2) \rightarrow (D1)$	5	
F16 P16	32-bit data exchange	DXCH PDXCH	D1, D2	$(D1+1, D1) \rightarrow (D2+1, D2)$ $(D2+1, D2) \rightarrow (D1+1, D1)$	5	
F17 P17	Higher/ lower byte in 16-bit data exchange	SWAP PSWAP	D	The higher byte and lower byte of "D" are exchanged.	3	
F18 P18	16-bit data block exchange	BXCH PBXCH	D1, D2, D3	Exchange the data between "D1" and "D2" with the data specified by "D3."	7	
Contro	l instruction					
F19	Auxiliary jump	SJP	S	The program jumps to the label instruction specified by "S" and continues from there.	3	
Binary	arithmetic in	structions	;			
F20 P20	16-bit data addition	+ P+	S, D	$(D) + (S) \rightarrow (D)$	5	
F21 P21	32-bit data addition	D+ PD+	(2 : 1, 2) : (2 : 1, 2)		7	
F22 P22	16-bit data addition	+ P+	S1, S2, D	$D (S1) + (S2) \rightarrow (D)$		
F23 P23	32-bit data addition	D+ PD+	S1, S2, D	$(S1+1, S1) + (S2+1, S2) \rightarrow (D+1, D)$	11	

Number	Availa	bility										
	1	1	, 1)	FP1 (* 1)		FP-M	(*1)			_	H
	FP0 (* 1)	FPΣ (*	FP. e (*	C14 C16	C24 C40	C56 C72	C16	C20 C32	FP3	FP2	FP2SH	FP10SH
F12 P12				N/A	N/A	N/A	N/A	N/A	N/A	N/A	Α	А
F12	A(* 2)	Α	Α									
F13 P13				N/A	N/A	N/A	N/A	N/A	N/A	N/A	Α	А
P13	A (* 2)	Α	Α									
F14 P14	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Α	A
F15 P15	Α	А	A	А	А	А	A	А	Α	А	Α	А
F16 P16	Α	А	Α	А	А	А	Α	А	А	Α	Α	А
F17 P17	А	А	A	А	А	А	A	А	A	A	A	А
F18 P18	N/A	А	N/A	N/A	N/A	N/A	N/A	N/A	N/A	А	А	А
Control in	nstruct	ion										
F19	N/A	N/A	N/A	M/A	N/A	N/A	N/A	N/A	А	А	А	А
Binary ar	ithmet	ic instr	uction	S								
F20 P20	Α	Α	А	Α	А	Α	А	А	Α	А	А	А
F21 P21	Α	Α	Α	Α	А	Α	Α	А	Α	Α	Α	Α
F22 P22	Α	А	А	А	А	А	А	А	Α	А	Α	Α
F23 P23	А	Α	А	А	А	Α	А	А	A	А	Α	Α

- A: Available, N/A: Not available
- 1) For the FP0/FPΣ/FP-e/FP1/FP-M, the P type high-level instructions except for P13 (PICWT) instruction are not available.
- 2) This instruction is available for FP0 T32C and FP0 C10/C14/C16/C32 CPU Ver. 2.0 or later.

Num- ber	Name	Boolean	Operand	Description	Steps
F25 P25	16-bit data subtraction	- P-	S, D	$(D) - (S) \rightarrow (D)$	5
F26 P26	32-bit data subtraction	D- PD-	S, D	$(D+1, D) - (S+1, S) \rightarrow (D+1, D)$	7
F27 P27	16-bit data subtraction	- P-	S1, S2, D	(S1) - (S2) → (D)	7
F28 P28	32-bit data subtraction	D- PD-	S1, S2, D	$(S1+1, S1) - (S2+1, S2) \rightarrow (D+1, D)$	11
F30 P30	16-bit data multiplication	* P*	S1, S2, D	$(S1) \times (S2) \rightarrow (D+1, D)$	7
F31 P31	32-bit data multiplication	D* PD*	S1, S2, D	$(S1+1, S1) \times (S2+1, S2) \rightarrow (D+3, D+2, D+1, D)$	11
F32 P32	16-bit data division	% P%	S1, S2, D	(S1) \div (S2) \rightarrow quotient (D) remainder (DT9015 for FP0/FP-e/FP1/FP-M/FP3 or DT90015 for FP0 T32/FP2/FP2/FP2SH/FP10SH)	7
F33 P33	32-bit data division	D% PD%	S1, S2, D	(S1+1, S1) \div (S2+1, S2) → quotient (D+1, D) remainder (DT9016, DT9015 for FP0/FP-e/FP1/FP-M/ FP3 or DT90016, DT90015 for FP0 T32/FP2/FP2/FP2SH/ FP10SH)	11
F34 P34	16-bit data multiplication (result in 16 bits)	*W P*W	S1, S2, D	$(S1) \times (S2) \rightarrow (D)$	7
F35 P35	16-bit data increment	+1 P+1	D	$(D) + 1 \rightarrow (D)$	3
F36 P36	32-bit data increment	D+1 PD+1	D	$(D+1, D) + 1 \rightarrow (D+1, D)$	3

Number	Availa	bility										
	FP0 (* 1)	(* 1)	- e(* 1)	FP1 (*	* 1) C24	C56	FP-M C16	(*1)			SH	FP10SH
	FP0	FPΣ	FP.	C16	C40	C72	010	C32	FP3	FP2	FP2SH	FP1
F25 P25	А	Α	А	А	А	А	Α	А	А	А	А	А
F26 P26	А	А	Α	А	А	А	А	А	А	А	А	Α
F27 P27	Α	Α	Α	А	А	А	А	А	Α	А	А	А
F28 P28	Α	Α	Α	А	А	А	А	А	Α	А	Α	А
F30 P30	А	А	А	А	А	А	А	А	A	А	А	А
F31 P31	Α	Α	Α	N/A	А	А	N/A	А	Α	А	А	А
F32 P32	А	А	А	А	А	А	А	А	А	А	А	А
F33 P33	A	A	А	N/A	А	А	N/A	А	А	А	A	А
F34 P34	N/A	A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	A	A	А
F35 P35	Α	Α	Α	А	А	А	А	А	Α	А	Α	А
F36 P36	А	А	А	А	А	А	А	А	А	А	А	Α

- A: Available, N/A: Not available
- 1) For the FP0/FP Σ /FP-e/FP1/FP-M, the P type high-level instructions are not available.

Num- ber	Name	Boolean	Operand	Description	Steps
F37 P37	16-bit data decrement	-1 P-1	D	(D) - 1 → (D)	3
F38 P38	32-bit data decrement	D-1 PD-1	D	$(D+1, D) - 1 \rightarrow (D+1, D)$	3
F39 P39	32-bit data multiplication (result in 32 bits)	D*D PD*D	S1, S2, D	$(S1+1, S1) \times (S2+1, S2) \rightarrow (D+1, D)$	11
BCD a	rithmetic inst	ructions			
F40 P40	4-digit BCD data addition	B+ PB+	S, D	$(D) + (S) \rightarrow (D)$	5
F41 P41	8-digit BCD data addition	DB+ PDB+	S, D	$(D+1, D) + (S+1, S) \rightarrow (D+1, D)$	7
F42 P42	4-digit BCD data addition	B+ PB+	S1, S2, D	$(S1) + (S2) \rightarrow (D)$	7
F43 P43	8-digit BCD data addition	DB+ PDB+	S1, S2, D	$(S1+1, S1) + (S2+1, S2) \rightarrow (D+1, D)$	11
F45 P45	4-digit BCD data subtraction	B- PB-	S, D	$(D) - (S) \rightarrow (D)$	5
F46 P46	8-digit BCD data subtraction	DB- PDB-	S, D	$(D+1, D) - (S+1, S) \rightarrow (D+1, D)$	7
F47 P47	4-digit BCD data subtraction	B- PB-	S1, S2, D	$(S1) - (S2) \rightarrow (D)$	7

Number	Availa	bility										
	1)	(* 1)	(* 1)	FP1 (* 1)		FP-M	(*1)			т	Ж
	FP0 (* 1)	FPΣ (*	FP. e (C14 C16	C24 C40	C56 C72	C16	C20 C32	FP3	FP2	FP2SH	FP10SH
F37 P37	A	A	А	А	А	А	А	А	А	А	А	А
F38 P38	Α	Α	А	Α	Α	Α	Α	А	Α	А	А	А
F39 P39	N/A	А	N/A	N/A	N/A	N/A	N/A	N/A	N/A	А	Α	А
BCD arith	nmetic	instruc	ctions									
F40 P40	А	А	А	А	А	А	N/A	А	А	А	А	А
F41 P41	A	А	A	A	А	А	N/A	А	A	A	A	А
F42 P42	A	A	A	А	А	А	N/A	A	A	A	А	A
F43 P43	А	А	А	А	А	А	N/A	А	А	А	А	А
F45 P45	А	А	А	А	А	А	N/A	А	А	А	А	А
F46 P46	А	А	А	А	А	А	N/A	А	А	А	А	А
F47 P47	А	А	А	А	А	А	N/A	А	А	А	А	А

- A: Available, N/A: Not available
- 1) For the FP0/FP2/FP-e/FP1/FP-M, the P type high-level instructions are not available.

Num- ber	Name	Boolean	Operand	Description	Steps
F48 P48	8-digit BCD data subtraction	DB- PDB-	S1, S2, D	$(S1+1, S1) - (S2+1, S2) \rightarrow (D+1, D)$	11
F50 P50	4-digit BCD data multiplication	B* PB*	S1, S2, D	$(S1) \times (S2) \rightarrow (D+1, D)$	7
F51 P51	8-digit BCD data multiplication	DB* PDB*	S1, S2, D	$(S1+1, S1) \times (S2+1, S2) \rightarrow (D+3, D+2, D+1, D)$	11
F52 P52	4-digit BCD data division	B% PB%	S1, S2, D	(S1) \div (S2) \rightarrow quotient (D) remainder (DT9015 for FP0/FP-e/FP1/FP-M/FP3 or DT90015 for FP0 T32/FP Σ /FP2/FP2SH/FP10SH)	7
F53 P53	8-digit BCD data division	DB% PDB%	S1, S2, D	(S1+1, S1) \div (S2+1, S2) \rightarrow quotient (D+1, D) remainder (DT9016, DT9015 for FP0/FP-e/FP1/FP-M/ FP3 or DT90016, DT90015 for FP0 T32/FP2/FP2/FP2SH/ FP10SH)	11
F55 P55	4-digit BCD data increment	B+1 PB+1	D	$(D) + 1 \rightarrow (D)$	3
F56 P56	8-digit BCD data increment	DB+1 PDB+1	D	$(D+1, D) + 1 \rightarrow (D+1, D)$	3
F57 P57	4-digit BCD data decrement	B-1 PB-1	D	$(D) - 1 \rightarrow (D)$	3
F58 P58	8-digit BCD data decrement	DB-1 PDB-1	D	$(D+1, D) - 1 \rightarrow (D+1, D)$	3

Number	Availa	bility										
	1)	1	1)	FP1 (* 1)		FP-M	(*1)			т	Ή
	FP0 (* 1)	FPΣ (* 1)	FP. e(* 1)	C14 C16	C24 C40	C56 C72	C16	C20 C32	FP3	FP2	FP2SH	FP10SH
F48 P48	А	А	А	А	А	А	N/A	А	А	А	А	А
F50 P50	А	А	А	А	А	А	N/A	А	А	А	А	А
F51 P51	A	А	A	N/A	А	А	N/A	А	А	А	А	А
F52 P52	А	А	А	А	А	А	N/A	А	А	А	А	А
F53 P53	A	A	А	N/A	A	A	N/A	А	A	A	A	А
F55 P55	А	А	А	А	А	А	N/A	А	А	А	А	А
F56 P56	А	А	А	А	А	А	N/A	А	А	А	А	А
F57 P57	А	А	А	А	А	А	N/A	А	А	А	A	А
F58 P58	А	А	А	А	А	А	N/A	А	A	А	А	А

- A: Available, N/A: Not available
- 1) For the FP0/FPΣ/FP-e/FP1/FP-M, the P type high-level instructions are not available.

Num- ber	Name	Boolean	Operand	Description	Steps
Data c	ompare instru	uctions			
F60 P60	16-bit data compare	CMP PCMP	S1, S2	$(S1) > (S2) \rightarrow R900A$: on $(S1) = (S2) \rightarrow R900B$: on $(S1) < (S2) \rightarrow R900C$: on	5
F61 P61	32-bit data compare	DCMP PDCMP	S1, S2	$(S1+1, S1) > (S2+1, S2) \rightarrow R900A$: on $(S1+1, S1) = (S2+1, S2) \rightarrow R900B$: on $(S1+1, S1) < (S2+1, S2) \rightarrow R900C$: on	9
F62 P62	16-bit data band compare	WIN PWIN	S1, S2, S3	$(S1) > (S3) \rightarrow R900A$: on $(S2) < or = (S1) < or = (S3) \rightarrow R900B$: on $(S1) < (S2) \rightarrow R900C$: on	7
F63 P63	32-bit data band compare	DWIN PDWIN	S1, S2, S3	$(S1+1, S1) > (S3+1, S3) \rightarrow R900A$: on $(S2+1, S2) < or = (S1+1, S1) < or = (S3+1, S3) \rightarrow R900B$: on $(S1+1, S1) < (S2+1, S2) \rightarrow R900C$: on	13
F64 P64	Block data compare	BCMP PBCMP	S1, S2, S3	Compares the two blocks beginning with "S2" and "S3" to see if they are equal.	7
Logic	operation ins	tructions			
F65 P65	16-bit data AND	WAN PWAN	S1, S2, D	(S1) AND (S2) → (D)	7
F66 P66	16-bit data OR	WOR PWOR	S1, S2, D	(S1) OR (S2) → (D)	7
F67 P67	16-bit data exclusive OR	XOR PXOR	S1, S2, D	$\{(S1) \text{ AND } (\overline{S2})\} \text{ OR } \{(\overline{S1}) \text{ AND } (S2)\} \rightarrow (D)$	7
F68 P68	16-bit data exclusive NOR	XNR PXNR	S1, S2, D	$\{(S1) \text{ AND } (S2)\} \text{ OR } \{(\overline{S1}) \text{ AND } (\overline{S2})\} \rightarrow (D)$	7
F69 P69	16-bit data wuni s1, S2, PWUNI S3, D			([S1] AND [S3]) OR ([S2] AND [$\overline{S3}$]) \rightarrow (D) When (S3) is H0, (S2) \rightarrow (D) When (S3) is HFFFF, (S1) \rightarrow (D)	9

Number	Availa	bility										
	1)	1	, 1)	FP1 (* 1)		FP-M	(*1)			_	Η
	FP0 (* 1)	FPΣ (*	. *) ə -d4	C14 C16	C24 C40	C56 C72	C16	C20 C32	FP3	FP2	FP2SH	FP10SH
Data com	npare ir	nstruct	ions									
F60 P60	Α	А	А	А	А	А	А	А	А	А	Α	А
F61 P61	А	А	А	А	А	А	А	А	А	А	Α	Α
F62 P62	Α	А	А	А	А	А	А	А	А	А	Α	Α
F63 P63	А	A	А	А	A	А	А	А	А	А	А	А
F64 P64	A	A	A	N/A	А	А	N/A	А	А	A	A	А
Logic op	eration	instru	ctions									
F65 P65	Α	А	А	А	Α	А	Α	А	Α	А	А	Α
F66 P66	Α	Α	Α	А	А	А	Α	А	Α	Α	А	А
F67 P67	A	А	А	А	А	А	А	А	А	А	А	А
F68 P68	A	A	A	А	А	А	А	А	A	А	А	А
F69 P69	N/A	А	N/A	N/A	N/A	N/A	N/A	N/A	N/A	A	A	А

- A: Available, N/A: Not available
- 1) For the FP0/FP2/FP-e/FP1/FP-M, the P type high-level instructions are not available.

Num- ber	Name	Boolean	Operand	Description	Steps
Data c	onversion ins	structions			
F70 P70	Block check code calculation	BCC PBCC	S1, S2, S3, D	Creates the code for checking the data specified by "S2" and "S3" and stores it in "D." The calculation method is specified by "S1."	9
F71 P71	Hexadecimal data → ASCII code	HEXA PHEXA	S1, S2, D	Converts the hexadecimal data specified by "S1" and "S2" to ASCII code and stores it in "D." Example: HABCD \rightarrow H $\underbrace{42}_{B}\underbrace{41}_{A}\underbrace{44}_{D}\underbrace{43}_{C}$	7
F72 P72	ASCII code → Hexadecimal data	AHEX PAHEX	S1, S2, D	Converts the ASCII code specified by "S1" and "S2" to hexadecimal data and stores it in "D." Example: H 44 43 42 41 → HCDAB D C B A	7
F73 P73	4-digit BCD data → ASCII code	BCDA PBCDA	S1, S2, D	Converts the four digits of BCD data specified by "S1" and "S2" to ASCII code and stores it in "D." Example: H1234 \rightarrow H $\frac{32}{2}\frac{31}{1}\frac{34}{4}\frac{33}{3}$	7
F74 P74	ASCII code → 4-digit BCD data	ABCD PABCD	S1, S2, D	Converts the ASCII code specified by "S1" and "S2" to four digits of BCD data and stores it in "D." Example: $H \frac{34}{4} \frac{33}{3} \frac{32}{2} \frac{31}{1} \rightarrow H3412$	9
F75 P75	16-bit binary data → ASCII code	BINA PBINA	S1, S2, D	Converts the 16 bits of binary data specified by "S1" to ASCII code and stores it in "D" (area of "S2" bytes). Example: $K - 100 \rightarrow H \frac{30}{0} \frac{30}{1} \frac{31}{1} \frac{2D}{1} \frac{20}{1} 2$	7
F76 P76	ASCII code → 16-bit binary data	ABIN PABIN	S1, S2, D	Converts the ASCII code specified by "S1" and "S2" to 16 bits of binary data and stores it in "D." Example: H $\frac{30}{0}$ $\frac{30}{0}$ $\frac{31}{1}$ $\frac{2D}{1}$ $\frac{20}{1}$ $\frac{20}{1}$ $\frac{20}{1}$ $\frac{20}{1}$ K - 100	7
F77 P77	32-bit binary data → ASCII code	DBIA PDBIA	S1, S2, D	Converts the 32 bits of binary data (S1+1, S1) to ASCII code and stores it in (D+1, D).	11

Number	Availa	bility										
	1)	5	.* 1	FP1 (* 1)		FP-M	(*1)			I	ЗН
	FP0 (* 1)	FPΣ (* 1)	FP. e (*	C14 C16	C24 C40	C56 C72	C16	C20 C32	FP3	FP2	FP2SH	FP10SH
Data con	version	n instru	ıctions			•						
F70 P70	А	А	А	N/A	А	А	N/A	А	А	А	А	А
F71 P71	А	А	Α	N/A	А	А	N/A	А	А	А	A	А
F72 P72	А	Α	Α	N/A	А	А	N/A	А	А	А	А	А
F73 P73	А	А	А	N/A	А	А	N/A	А	Α	А	A	А
F74 P74	A	Α	Α	N/A	А	А	N/A	А	A	А	А	А
F75 P75	A	Α	A	N/A	А	А	N/A	A	A	A	A	А
F76 P76	А	А	А	N/A	А	А	N/A	А	А	А	A	А
F77 P77	A	A	A	N/A	А	А	N/A	А	А	А	А	А

- A: Available, N/A: Not available
- 1) For the FP0/FP2/FP-e/FP1/FP-M, the P type high-level instructions are not available.

Num- ber	Name	Boolean	Operand	Description	Steps
F78 P78	ASCII code → 32-bit binary data	DABI PDABI	S1, S2, D	Converts the ASCII code specified by "S1" and "S2" to 32 bits of binary data and stores it in (D+1, D).	11
F80 P80	16-bit binary data → 4-digit BCD data	BCD PBCD	S, D	Converts the 16 bits of binary data specified by "S" to four digits of BCD data and stores it in "D." Example: K100 → H100	5
F81 P81	4-digit BCD data → 16-bit binary data	BIN PBIN	S, D	Converts the four digits of BCD data specified by "S" to 16 bits of binary data and stores it in "D." Example: H100 → K100	5
F82 P82	32-bit binary data → 8-digit BCD data	DBCD PDBCD	S, D	Converts the 32 bits of binary data specified by (S+1, S) to eight digits of BCD data and stores it in (D+1, D).	7
F83 P83	8-digit BCD data → 32-bit binary data	DBIN PDBIN	S, D	Converts the eight digits of BCD data specified by (S+1, S) to 32 bits of binary data and stores it in (D+1, D).	7
F84 P84	16-bit data invert (com- plement of 1)	INV PINV	D	Inverts each bit of data of "D."	3
F85 P85	16-bit data complement of 2	NEG PNEG	D	Inverts each bit of data of "D" and adds 1 (inverts the sign).	3
F86 P86	32-bit data complement of 2	DNEG PDNEG	D	Inverts each bit of data of (D+1, D) and adds 1 (inverts the sign).	3
F87 P87	16-bit data absolute	ABS PABS	D	Gives the absolute value of the data of "D."	3

Number													
	1	5	(* 1)	FP1 (* 1)		FP-M	(*1)			I	SH	
	FP0 (* 1)	FPΣ (*	FP. e (C14 C16	C24 C40	C56 C72	C16	C20 C32	FP3	FP2	FP2SH	FP10SH	
F78 P78	А	А	А	N/A	А	А	N/A	А	А	А	А	А	
F80 P80	A	A	А	A	А	А	А	А	A	A	А	Α	
F81 P81	A	A	A	A	А	А	А	А	A	A	А	Α	
F82 P82	А	А	A	А	A	А	А	А	A	А	А	А	
F83 P83	А	А	А	А	А	А	А	А	А	А	А	А	
F84 P84	А	А	А	А	А	А	А	А	А	А	А	А	
F85 P85	А	А	А	А	А	А	А	А	А	А	А	А	
F86 P86	А	А	А	А	А	А	А	А	А	А	А	А	
F87 P87	А	А	А	А	Α	Α	Α	А	Α	А	А	Α	

- A: Available, N/A: Not available
- 1) For the FP0/FP Σ /FP-e/FP1/FP-M, the P type high-level instructions are not available.

Num- ber	Name	Boolean	Operand	Description	Steps
F88 P88	32-bit data absolute	DABS PDABS	D	Gives the absolute value of the data of (D+1, D).	3
F89 P89	16-bit data sign extension	EXT PEXT	D	Extends the 16 bits of data in "D" to 32 bits in (D+1, D).	3
F90 P90	Decode	DECO PDECO	S, n, D	Decodes part of the data of "S" and stores it in "D." The part is specified by "n."	7
F91 P91	7-segment decode	SEGT PSEGT	S, D	Converts the data of "S" for use in a 7-segment display and stores it in (D+1, D).	5
F92 P92	Encode	ENCO PENCO	S, n, D	Encodes part of the data of "S" and stores it in "D." The part is specified by "n."	7
F93 P93	16-bit data combine	UNIT PUNIT	S, n, D	The least significant digit of each of the "n" words of data beginning at "S" are stored (united) in order in "D."	7
F94 P94	16-bit data distribute	DIST PDIST	S, n, D	Each of the digits of the data of "S" are stored in (distributed to) the least significant digits of the areas beginning at "D."	7
F95 P95	Character → ASCII code	ASC PASC	S, D	Twelve characters of the character constants of "S" are converted to ASCII code and stored in "D" to "D+5."	15
F96 P96	16-bit table data search	SRC PSRC	S1, S2, S3	The data of "S1" is searched for in the areas in the range "S2" to "S3" and the result is stored in DT9037 and DT9038 for FP0/FP-e/FP1/FP-M/FP3 and DT90037 and DT90038 for FP0 T32/FPΣ/FP2/FP2SH/FP10SH.	7
F97 P97	32-bit table data search	DSRC PDSRC	S1, S2, S3	The data of (S1+1, S1) is searched for in the 32-bit data designated by "S3", beginning from "S2", and the result is stored in DT90037 and DT90038.	11
Data s	hift instructio	ns			
F98 P98	Data table shift-out and compress	CMPR PCMPR	D1, D2, D3	Transfer "D2" to "D3." Any parts of the data between "D1" and "D2" that are 0 are compressed, and shifted in order toward "D2."	7

Number	Availa	bility										
	1	(* 1)	* 1)	FP1 (* 1)		FP-M	(*1)			I	ЗH
	FP0 (* 1)	FPΣ (*	FP. e (* 1)	C14 C16	C24 C40	C56 C72	C16	C20 C32	FP3	FP2	FP2SH	FP10SH
F88 P88	A	А	А	Α	А	Α	А	А	А	А	А	А
F89 P89	А	А	А	А	А	А	А	А	А	А	Α	Α
F90 P90	A	А	А	А	А	А	А	А	А	А	А	А
F91 P91	А	А	А	А	А	А	А	А	А	А	А	А
F92 P92	А	А	A	А	А	А	А	А	А	А	Α	А
F93 P93	А	А	А	Α	Α	Α	А	А	А	А	А	А
F94 P94	А	А	А	А	А	А	А	A	А	А	Α	Α
F95 P95	A	А	А	N/A	А	А	N/A	А	А	А	A	А
F96 P96	A	Α	А	А	А	А	А	А	А	Α	Α	А
F97 P97	N/A	А	N/A	N/A	N/A	N/A	N/A	N/A	N/A	А	А	А
Data shift	t instru	ıctions										
F98 P98	N/A	А	N/A	N/A	N/A	N/A	N/A	N/A	А	А	А	А

- A: Available, N/A: Not available
- 1) For the FP0/FP2/FP-e/FP1/FP-M, the P type high-level instructions are not available.

Num- ber	Name	Boolean	Operand	Description	Steps
F99 P99	Data table shift-in and compress	CMPW PCMPW	S, D1, D2	Transfer "S" to "D1". Any parts of the data between "D1" and "D2" that are 0 are compressed, and shifted in order toward "D2."	7
F100 P100	Right shift of multiple bits (n bits) in a 16-bit data	SHR PSHR	D, n	Shifts the "n" bits of "D" to the right.	5
F101 P101	Left shift of multiple bits (n bits) in a 16-bit data	SHL PSHL	D, n	Shifts the "n" bits of "D" to the left.	5
F102 P102	Right shift of n bits in a 32-bit data	DSHR PDSHR	D, n	Shifts the "n" bits of the 32-bit data area specified by (D+1, D) to the right.	5
F103 P103	Left shift of n bits in a 32-bit data	DSHL PDSHL	D, n	Shifts the "n" bits of the 32-bit data area specified by (D+1, D) to the left.	5
F105 P105	Right shift of one hexa- decimal digit (4-bit)	BSR PBSR	D	Shifts the one digit of data of "D" to the right.	3
F106 P106	Left shift of one hexade- cimal digit (4-bit)	BSL PBSL	D	Shifts the one digit of data of "D" to the left.	3
F108 P108	Right shift of multiple bits (n bits)	BITR PBITR	D1, D2, n	Shifts the "n" bits of data range by "D1" and "D2" to the right.	7
F109 P109	Left shift of multiple bits (n bits)	BITL PBITL	D1, D2, n	Shifts the "n" bits of data range by "D1" and "D2" to the left.	7
F110 P110	Right shift of one word (16-bit)	WSHR PWSHR	D1, D2	Shifts the one word of the areas by "D1" and "D2" to the right.	5
F111 P111	Left shift of one word (16-bit)	WSHL PWSHL	D1, D2	Shifts the one word of the areas by "D1" and "D2" to the left.	5
F112 P112	Right shift of one hexa- decimal digit (4-bit)	WBSR PWBSR	D1, D2	Shifts the one digit of the areas by "D1" and "D2" to the right.	5

Number	Availa	bility										
	1	1	5	FP1 (* 1)		FP-M	(*1)			_	Ξ
	FP0 (* 1)	(1 *) ∑d∃	FP. e (* 1)	C14 C16	C24 C40	C56 C72	C16	C20 C32	FP3	FP2	FP2SH	FP10SH
F99 P99	N/A	A	N/A	N/A	N/A	N/A	N/A	N/A	А	А	А	А
F100 P100	A	Α	A	A	A	A	A	A	A	А	Α	А
F101 P101	А	A	A	А	А	А	А	А	А	A	A	А
F102 P102	N/A	A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	A	A	A
F103 P103	N/A	А	N/A	N/A	N/A	N/A	N/A	N/A	N/A	А	А	А
F105 P105	A	A	A	A	A	А	А	А	A	A	A	A
F106 P106	А	A	А	А	А	А	А	А	А	А	A	A
F108 P108	N/A	A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	А	А	А
F109 P109	N/A	A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	A	А	А
F110 P110	А	А	А	А	А	А	А	А	A	A	A	A
F111 P111	А	А	А	А	А	А	А	А	А	А	А	А
F112 P112	А	А	А	А	А	А	А	А	А	А	А	A

- A: Available, N/A: Not available
- 1) For the FP0/FP2/FP-e/FP1/FP-M, the P type high-level instructions are not available.

Num- ber	Name	Boolean	Operand	Description	Steps
F113 P113	Left shift of one hexade- cimal digit (4-bit)	WBSL PWBSL	D1, D2	Shifts the one digit of the areas by "D1" and "D2" to the left.	5
FIFO i	nstructions				
F115 P115	FIFO buffer define	FIFT PFIFT	n, D	The "n" words beginning from "D" are defined in the buffer.	5
F116 P116	Data read from FIFO buffer	FIFR PFIFR	S, D	The oldest data beginning from "S" that was written to the buffer is read and stored in "D."	5
F117 P117	Data write into FIFO buffer	FIFW PFIFW	S, D	The data of "S" is written to the buffer starting from "D."	5
Basic	function instr	uctions			ı
F118	UP/DOWN counter	UDC	S, D	Counts up or down from the value preset in "S" and stores the elapsed value in "D."	5
F119	Left/right shift register	LRSR	D1, D2	Shifts one bit to the left or right with the area between "D1" and "D2" as the register.	5
Data r	otate instruct	ions			
F120 P120	16-bit data right rotate	ROR PROR	D, n	Rotate the "n" bits in data of "D" to the right.	5
F121 P121	16-bit data left rotate	ROL PROL	D, n	Rotate the "n" bits in data of "D" to the left.	5
F122 P122	16-bit data right rotate with carry flag (R9009) data	RCR PRCR	D, n	Rotate the "n" bits in 17-bit area consisting of "D" plus the carry flag (R9009) data to the right.	5
F123 P123	16-bit data left rotate with carry flag (R9009) data	RCL PRCL	D, n	Rotate the "n" bits in 17-bit area consisting of "D" plus the carry flag (R9009) data to the left.	5

Number	Availa	bility										
	1)	(* 1)	.* 1)	FP1 (* 1)		FP-M	(*1)			I	SH
	FP0 (* 1)	FPΣ (*	FP. e (* 1)	C14 C16	C24 C40	C56 C72	C16	C20 C32	FP3	FP2	FP2SH	FP10SH
F113 P113	А	А	А	А	А	А	А	А	А	А	A	Α
FIFO instructions												
F115 P115	N/A	А	N/A	N/A	N/A	N/A	N/A	N/A	А	А	А	А
F116 P116	N/A	А	N/A	N/A	N/A	N/A	N/A	N/A	А	А	А	А
F117 P117	N/A	А	N/A	N/A	N/A	N/A	N/A	N/A	A	A	А	А
Basic fur	nction i	nstruc	tions									
F118	А	Α	А	Α	Α	А	А	А	Α	Α	А	А
F119	Α	Α	Α	Α	А	А	А	А	Α	Α	А	А
Data rota	te insti	ruction	ıs									
F120 P120	А	А	Α	А	А	А	А	А	А	А	Α	А
F121 P121	Α	Α	Α	Α	А	А	А	А	Α	Α	Α	А
F122 P122	A	A	A	A	А	А	А	А	A	A	A	А
F123 P123	A	А	А	А	А	А	А	А	A	A	А	A

- A: Available, N/A: Not available
- 1) For the FP0/FPΣ/FP-e/FP1/FP-M, the P type high-level instructions are not available.

Num- ber	Name	Boolean	Operand	Description	Steps
F125 P125	32-bit data right rotate	DROR PDROR	D, n	Rotate the number of bits specified by "n" of the double words data (32 bits) specified by (D+1, D) to the right.	5
F126 P126	32-bit data left rotate	DROL PDROL	D, n	Rotate the number of bits specified by "n" of the double words data (32 bits) specified by (D+1, D) to the left.	5
F127 P127	32-bit data right rotate with carry flag (R9009) data	DRCR PDRCR	D, n	Rotate the number of bits specified by "n" of the double words data (32 bits) specified by (D+1, D) to the right together with carry flag (R9009) data.	5
F128 P128	32-bit data left rotate with carry flag (R9009) data	DRCL PDRCL	D, n	Rotate the number of bits specified by "n" of the double words data (32 bits) specified by (D+1, D) to the left together with carry flag (R9009) data.	5
Bit ma	nipulation ins	structions			•
F130 P130	16-bit data bit set	BTS PBTS	D, n	Set the value of bit position "n" of the data of "D" to 1.	5
F131 P131	16-bit data bit reset	BTR PBTR	D, n	Set the value of bit position "n" of the data of "D" to 0.	5
F132 P132	16-bit data bit invert	BTI PBTI	D, n	Invert the value of bit position "n" of the data of "D."	5
F133 P133	16-bit data bit test	BTT PBTT	D, n	Test the value of bit position "n" of the data of "D" and output the result to R900B.	5
F135 P135	Number of on (1) bits in 16-bit data	BCU PBCU	S, D	Store the number of on bits in the data of "S" in "D."	5
F136 P136	Number of on (1) bits in 32-bit data	DBCU PDBCU	S, D	Store the number of on bits in the data of (S+1, S) in "D."	7

Number	Availa	bility										
	1	(* 1)	(* 1)	FP1 (* 1)		FP-M	(*1)			I	SH
	FP0 (* 1)	FPΣ (*	FP. e (C14 C16	C24 C40	C56 C72	C16	C20 C32	FP3	FP2	FP2SH	FP10SH
F125 P125	N/A	A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	A	A	A
F126 P126	N/A	Α	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Α	А	Α
F127 P127	N/A	A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	A	A	А
F128 P128	N/A	Α	N/A	N/A	N/A	N/A	N/A	N/A	N/A	A	A	А
Bit manip	oulation	n instru	uctions	5								
F130 P130	Α	Α	Α	А	А	А	А	А	Α	Α	Α	А
F131 P131	Α	А	А	А	А	А	А	А	А	А	А	Α
F132 P132	Α	А	А	А	А	А	А	А	А	А	А	Α
F133 P133	Α	А	А	А	А	Α	А	А	А	А	А	Α
F135 P135	A	А	А	А	А	А	А	А	А	А	A	А
F136 P136	А	А	А	А	А	А	А	А	А	А	A	А

- A: Available, N/A: Not available
- 1) For the FP0/FP Σ /FP-e/FP1/FP-M, the P type high-level instructions are not available.

Num- ber	Name	Boolean	Operand	Description	Steps
Basic	function instr	uction			
F137	Auxiliary timer (16-bit)	STMR	S, D	Turn on the specified output and R900D after 0.01 s \times set value.	5
Specia	al instructions	3			
F138 P138	Hours, min- utes and seconds data to sec- onds data	HMSS PHMSS	S, D	Converts the hour, minute and second data of (S+1, S) to seconds data, and the converted data is stored in (D+1, D).	5
F139 P139	Seconds data to hours, min- utes and seconds data	SHMS PSHMS	S, D	Converts the seconds data of (S+1, S) to hour, minute and second data, and the converted data is stored in (D+1, D).	5
F140 P140	Carry flag (R9009) set	STC PSTC		Turns on the carry flag (R9009).	1
F141 P141	Carry flag (R9009) reset	CLC PCLC		Turns off the carry flag (R9009).	1

Number	Availa	bility										
	1	1	.* 1	FP1 (* 1)		FP-M	(*1)			I	ЗН
	FP0 (* 1)	FP∑ (* 1)	FP- e (* 1)	C14 C16	C24 C40	C56 C72	C16	C20 C32	FP3	FP2	FP2SH	FP10SH
Basic fur		nstruc										
F137	А	А	A	N/A	N/A	А	N/A	А	А	А	А	А
Special in	Special instructions											
F138 P138	A (* 2)	А	А	N/A	А	А	N/A	А	А	А	А	А
F139 P139	A (* 2)	А	А	N/A	А	А	N/A	А	А	А	А	А
F140 P140	А	А	А	N/A	А	А	N/A	А	А	А	А	A
F141 P141	А	А	А	N/A	А	А	N/A	А	А	А	А	А

- A: Available, N/A: Not available
- 1) For the FP0/FP2/FP-e/FP1/FP-M, the P type high-level instructions are not available.
- 2) On the FP0 it is only possible to use F138 and F139 with the T32 type.

Num- ber	Name	Boolean	Operand	Description	Steps
F142 P142	Watching dog timer update	WDT PWDT	S	The time (allowable scan time for the system) of watching dog timer is changed to "S" \times 0.1 (ms) for that scan.	3
F143 P143	Partial I/O update	IORF PIORF	D1, D2	Updates the I/O from the number specified by "D1" to the number specified by "D2."	5
F144	Serial data communica- tion control	TRNS	S, n	The COM port receive flag (R9038) is set to off to enable reception. Beginning at "S", "n" bytes of the data registers are sent from the COM port.	5
F145 P145	Data send	SEND PSEND	S1, S2, D, N	Sends the data to another station in the network (MEWNET).	9
F146 P146	Data receive	RECV PRECV	S1, S2, N, D	Receives the data to another station in the network (MEWNET).	9
F147	Printout	PR	S, D	Converts the ASCII code data in the area starting with "S" for printing, and outputs it to the word external output relay WY specified by "D."	5
F148 P148	Self- diagnostic error set	ERR PERR	n (n: K100 to K299)	Stores the self-diagnostic error number "n" in (DT9000 for FP0/FP-e/FP1/FP-M/FP3 or DT90000 for FP0 T32/FP Σ /FP2/FP2SH/FP10SH), turns R9000 on, and turns on the ERROR LED.	3

Number	Availa	bility										
	1	5	* 1)	FP1 (* 1)		FP-M	(*1)			т	ЭН
	FP0 (* 1)	FP∑ (* 1)	FP. e (*	C14 C16	C24 C40	C56 C72	C16	C20 C32	FP3	FP2	FP2SH	FP10SH
F142 P142	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	А	А
F143 P143	А	Α	А	N/A	А	А	А	А	А	А	Α	А
F144	А	N/A	A	N/A	A (* 2)	A (* 2)	N/A	A (* 2)	N/A	А	А	Α
F145 P145	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Α	А	Α	А
F146 P146	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Α	А	Α	А
F147	A	А	А	N/A	А	А	N/A	А	A	А	A	А
F148 P148	A	А	Α	N/A	А	А	N/A	А	A	А	A	A

- A: Available, N/A: Not available
- 1) For the FP0/FP2/FP-e/FP1/FP-M, the P type high-level instructions are not available.
- 2) Available for: FP1 C24C, C40C, C56C, and C72C FP-M C20RC, C20TC, C32TC

Num- ber	Name	Boolean		Description	Steps
F149 P149	Message display	MSG PMSG	S	Displays the character constant of "S" in the connected programming tool.	13
F150 P150	Data read from intelli- gent unit	READ PREAD	S1, S2, n, D	Reads the data from the intelligent unit.	9
F151 P151	Data write into intelligent unit	WRT PWRT	S1, S2, n, D	Writes the data into the intelligent unit.	9
F152 P152	Data read from MEWNET-F slave station	RMRD PRMRD	S1, S2, n, D	Reads the data from the intelligent unit at the MEWNET-F (remote I/O) slave station.	9
F153 P153	Data write into MEWNET-F slave station	RMWT PRMWT	S1, S2, n, D	Writes the data into the intelligent unit at the MEWNET-F (remote I/O) slave station.	9
F154 P154	Machine language program call	MCAL PMCAL	n	The machine language program is called.	3
F155 P155	Sampling	SMPL PSMPL		Starts sampling data.	1
F156 P156	Sampling trigger	STRG PSTRG		When the trigger of this instruction turns on, the sampling trace stops.	1
F157 P157	Time addition	CADD PCADD	S1, S2, D	The time after (S2+1, S2) elapses from the time of (S1+2, S1+1, S1) is stored in (D+2, D+1, D).	9
F158 P158	Time substruction	CSUB PCSUB	S1, S2, D	The time that results from subtracting (S2+1, S2) from the time (S1+2, S1+1, S1) is stored in (D+2, D+1, D).	9
F159	Serial data communication	MTRN	S, n, D	This is used to send data to or receive data from an external device through the specified COM., RS232C or RS485 port.	7
BIN ar	ithmetic instr	uction			
F160 P160	Double word (32-bit) data square root	DSQR PDSQR	S, D	$\sqrt{\overline{(S)}} \to (D)$	7

Number	Availa	bility										
	1)	1	(* 1)	FP1 (* 1)		FP-M	(*1)			т	Η
	FP0 (* 1)	FPΣ (* 1)	FP. e (C14	C24	C56	C16	C20	FP3	FP2	FP2SH	FP10SH
	4		H H	C16	C40	C72		C32	正	됴	正	ᅜ
F149 P149	Α	A (* 2)	А	N/A	Α	Α	N/A	А	А	А	А	А
F150 P150	N/A	A (* 2)	N/A	N/A	N/A	N/A	N/A	N/A	А	А	A	А
F151 P151	N/A	А	N/A	N/A	N/A	N/A	N/A	N/A	А	А	А	А
F152 P152	N/A	N/A	N/A	N/A	N/A	N/A	NA	N/A	A	А	A	А
F153 P153	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	А	А	А	А
F154 P154	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	А	А	N/A	N/A
F155 P155	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	А	А	А	А
F156 P156	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	А	А	Α	А
F157 P157	A (* 3)	А	А	N/A	А	А	А	А	А	А	Α	А
F158 P158	A (* 3)	А	А	N/A	А	А	А	А	А	А	А	А
F159	N/A	А	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
BIN arith	metic i	nstruc	tion									
F160 P160	N/A	А	N/A	N/A	N/A	N/A	N/A	N/A	А	А	А	А

- A: Available, N/A: Not available
- 1) For the FP0/FP2/FP-e/FP1/FP-M, the P type high-level instructions are not available.
- 2) The instruction is available for FP Σ CPU Ver. 2.0 or later.
- 3) On the FP0 it is only possible to use F157 and F158 with the T32 type.

12.8 Table of Instructions

Num- ber	Name	Boolean	Operand	Description	Steps		
Specia	l instructions	High-sp	eed count	er instructions)			
F0	High-speed counter and Pulse output controls	MV	S, DT9052	Performs high-speed counter and Pulse output controls according to the control code specified by "S". The control code is stored in DT9052.	5		
F1	Change and read of the elapsed value of high-	DMV	S, DT9044	Transfers (S+1, S) to high-speed counter and Pulse output elapsed value area (DT9045, DT9044).	7		
	speed count- er and Pulse output		DT9044, D	Transfers value in high-speed counter and Pulse output elapsed value area (DT9045, DT9044) to (D+1, D).			
F162	High-speed counter out-put set	HC0S	S, Yn	The specified external output relay (Yn) turns on when the elapsed value of the high-speed counter agrees with the specified target value (S+1, S).	7		
F163	High-speed counter out- put reset	HC0R	S, Yn	The specified external output relay (Yn) turns off when the elapsed value of the high-speed counter agrees with the specified target value (S+1, S).	7		
F164	Speed control (Pulse output and pattern output con- trols) (See below.)	SPD0	S	Controls conditions of outputs according to the elapsed value of the high-speed counter. Two types of output control available: - Pulse output control - Pattern output control	3		
F165	Cam control	CAM0	S	Controls cam operation (on/off patterns of each cam output) according to the elapsed value of the high-speed counter.	3		

Pulse output specifications for FP-M/FP1

Item	FP1 C14/C16, FP-M C16T	FP1 C24/C40	FP1 C56/C72 FP-M C20T/C20R/C32T						
Pulse output terminal	Y7	Y7	Y6 and Y7 (selectable)						
Pulse frequency		1440Hz to 5kHz/720Hz to 5kHz/360Hz to 5kHz/180Hz to 5kHz/90Hz to 5kHz/45Hz to 5kHz (Switches between 6 ranges)							
Internal connection between pulse output and counter input	Not possible	Not possible	Possible						

Switching of the pulse frequency range is supported by CPU Ver. 2.7 or later.

In versions prior to CPU Ver. 2.7, the range is fixed at 360Hz to 5kHz.

In Ver. 2.7 or later but prior to CPU Ver. 2.9, switching is possible among 4 ranges (360Hz to 5kHz/180Hz to 5kHz/90Hz to 5kHz/45Hz to 5kHz).

In CPU Ver. 2.9 and later versions, switching is possible among 6 ranges.

12.8 Table of Instructions

Number	Availa	bility										
				FP1			FP-M				т	ЭН
	FP0	FPΣ	FP.e	C14	C24	C56	C16	C20	FP3	FP2	FP2SH	FP10SH
	14	FF	13	C16	C40	C72		C32	J	4	4	4
High-spe	ed cou	ınter ir	struct	ions fo	r FP1,	FP-M						
F0	А	N/A	А	А	А	А	А	А	N/A	N/A	N/A	N/A
F1	A (* 1)	N/A	A	А	А	А	А	A	N/A	N/A	N/A	N/A
F162	N/A	N/A	N/A	А	А	А	А	А	N/A	N/A	N/A	N/A
F163	N/A	N/A	N/A	А	А	А	А	А	N/A	N/A	N/A	N/A
F164	N/A	N/A	N/A	A	A	A	A	A	N/A	N/A	N/A	N/A
F165	N/A	N/A	N/A	A	A	A	N/A	A	N/A	N/A	N/A	N/A

- A: Available, N/A: Not available
- 1) The elapsed value area varies depending on the channel being used.

Num- ber	Name	Boolean	Operand	Description	Steps
High s	peed counter	/ Pulse ou	ıtput instr	uction for FP0	
F166	High-speed counter output set (with channel specification)	HC1S	n, S, Yn	Turns output Yn on when the elapsed value of the built-in high-speed counter reaches the target value of (S+1,S).	11
F167	High-speed counter output reset (with channel specification)	HC1R	n, S, Yn	Turns output Yn off when the elapsed value of the built-in high-speed counter reaches the target value of (S+1,S).	11
F168	Positioning control (with channel specification)	SPD1	S, n	Outputs a positioning pulse from the specified output (Y0 or Y1) according to the contents of the data table beginning at "S".	5
F169	Pulse output (with chan- nel specifi- cation)	PLS	S, n	Outputs a pulse from the specified output (Y0 or Y1) according to the contents of the data table beginning at "S".	5
F170	PWM output (with chan- nel specifi- cation)	PWM	S, n	Performs PWM output from the specified output (Y0 or Y1) according to the contents of the data table beginning at "S".	5

12.8 Table of Instructions

Number	Availa	bility										
				FP1			FP-M				т	Η
	0	M	FP. e	C14	C24	C56	C16	C20	FP3	FP2	FP2SH	FP10SH
	FP0	FΡΣ	윤	C16	C40	C72		C32	芷	芷	芷	Ė
High spe	ed cou	nter / F	Pulse o	utput i	nstruc	tion for	FP0					
F166	А	А	А	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
F167	A	A	A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
F168	А	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
F169	А	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
F170	A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

Note

A: Available, N/A: Not available

The elapsed value area varies depending on the channel being used.

Num- ber	Name	Boolean	Operand	Description	Steps
High s	peed counter	/ Pulse o	utput instr	uction for FPΣ	
F0	High-speed counter and Pulse output controls	MV	S, DT90052	Performs high-speed counter and Pulse output controls according to the control code specified by "S". The control code is stored in DT90052.	5
F1	Change and read of the elapsed value	DMV	S, DT90044	Transfers (S+1, S) to high-speed counter and Pulse output elapsed value area (DT90045, DT90044).	7
	of high-speed counter and Pulse output		DT90044, D	Transfers value in high-speed counter and Pulse output elapsed value area (DT90045, DT90044) to (D+1, D).	7
F166	Target value much on (with chan- nel specifi- cation)	HC1S	n, S, D	Turns output Yn on when the elapsed value of the built-in high-speed counter reaches the target value of (S+1,S).	11
F167	Target value much off (with chan- nel specifi- cation)	HC1R	n, S, D	Turns output Yn off when the elapsed value of the built-in high-speed counter reaches the target value of (S+1,S).	11
F171	Pulse output (with chan- nel specifi- cation) (Trapezoidal control and home re-	SPDH	S, n	Positioning pulses are output from the specified channel, in accordance with the contents of the data table that starts with S.	5
F172	turn) Pulse output (with chan- nel specifi- cation) (JOG opera- tion)	PLSH	S, n	Pulse strings are output from the specified output, in accordance with the contents of the data table that starts with S.	5
F173	PWM output (with chan- nel specifi- cation)	PWMH	S, n	PWM output is output from the specified output, in accordance with the contents of the data table that starts with S.	5
F174	Pulse output (with chan- nel specifi- cation) (Selectable data table control op- eration)	SP0H	S, n	Outputs the pulses from the specified channel according to the data table specified by S.	5
F175	Pulse output (Linear inter- polation)	SPSH	S, n	Pulses are output from channel, in accordance with the designated data table, so that the path to the target position forms a straight line.	5
F176	Pulse output (Circular in- terpolation)	SPCH	S, n	Pulses are output from channel, in accordance with the designated data table, so that the path to the target position forms an arc.	5

Number	Availa	bility										
				FP1			FP-M				_	Ж
	FP0	FPΣ	FP. e	C14 C16	C24 C40	C56 C72	C16	C20 C32	FP3	FP2	FP2SH	FP10SH
High spe	ed cou	nter / F	Pulse o	utput i	nstruc	tion fo	r FPΣ					
F0	N/A	А	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
F1	N/A	A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
F166	A	A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
F167	A	A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
F171	N/A	A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
F172	N/A	A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
F173	N/A	A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
F174	N/A	A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
F175	N/A	Α	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
F176	N/A	А	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

Num- ber	Name	Boolean	Operand	Description	Steps
Screer	n display insti	ructions			1
F180	FP-e screen display registration	SCR	S1, S2, S3, S4	Register the screen displayed on the FP-e.	9
F181	FP-e screen display switching	DSP	S	Specify the screen to be displayed on the FP-e.	3
Basic	function instr	uction	_		
F183	Auxiliary timer (32-bit)	DSTM	S, D	Turn on the specified output and R900D after 0.01 s. \times set value.	7
Data tr	ansfer instru	ctions			
F190 P190	Three 16-bit data move	MV3 PMV3	S1, S2, S3, D	$(S1) \to (D), (S2) \to (D+1), (S3) \to (D+2)$	10
F191 P191	Three 32-bit data move	DMV3 PDMV3	S1, S2, S3, D	$(S1+1, S1) \rightarrow (D+1, D), (S2+1, S2) \rightarrow (D+3, D+2), (S3+1, S3) \rightarrow (D+5, D+4)$	16
Logic	operation ins	tructions			
F215 P215	32-bit data AND	DAND PDAND	S1, S2, D	(S1+1, S1) AND (S2+1, S2) → (D+1, D)	12
F216 P216	32-bit data OR	DOR PDOR	S1, S2, D	$(S1+1, S1) OR (S2+1, S2) \rightarrow (D+1, D)$	12
F217 P217	32-bit data XOR	DXOR PDXOR	S1, S2, D	$\{(S1+1, S1) \text{ AND } \overline{(S2+1, S2)} \} \text{ OR } \overline{(S1+1, S1)} \text{ AND } (S2+1, S2)\} \rightarrow (D+1, D)$	12
F218 P218	32-bit data XNR	DXNR PDXNR	S1, S2, D	$\{(S1+1, S1) \text{ AND } (S2+1, S2)\} \text{ OR } \{(S1+1, S1) \text{ AND } (S2+1, S2)\} \rightarrow (D+1, D)$	12
F219 P219	Double word (32-bit) data unites	DUNI PDUNI	S1, S2, S3, D	$\{(S1+1, S1) \text{ AND } (S3+1, S3)\} \text{ OR } \{(S2+1, S2) \text{ AND } (S3+1, S3)\} \rightarrow (D+1, D)$	16
Data c	onversion ins	structions			
F235 P235	16-bit binary data → Gray code conversion	GRY PGRY	S, D	Converts the 16-bit binary data of "S" to gray codes, and the converted result is stored in the "D."	6
F236 P236	32-bit binary data → Gray code conversion	DGRY PDGRY	S, D	Converts the 32-bit binary data of (S+1, S) to gray code, and the converted result is stored in the (D+1, D).	8

12.8 Table of Instructions

Number	Availa	bility										
	1)	1	1)	FP1			FP-M				_	I
	FP0 (* 1)	FPΣ (*	FP. e (*	C14 C16	C24 C40	C56 C72	C16	C20 C32	FP3	FP2	FP2SH	FP10SH
Screen display instructions												
F180	N/A	N/A	А	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
F181	N/A	N/A	A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Basic fun	ction i	nstruc	tion									
F183	А	А	Α	N/A	N/A	N/A	N/A	N/A	N/A	А	А	Α
Data tran	sfer in	struction	ons									
F190 P190	N/A	А	N/A	N/A	N/A	N/A	N/A	N/A	N/A	А	Α	А
F191 P191	N/A	А	N/A	N/A	N/A	N/A	N/A	N/A	N/A	А	А	Α
Logic ope	eration	instru	ctions		•	•		•				
F215 P215	N/A	А	N/A	N/A	N/A	N/A	N/A	N/A	N/A	А	А	Α
F216 P216	N/A	Α	N/A	N/A	N/A	N/A	N/A	N/A	N/A	А	Α	Α
F217 P217	N/A	Α	N/A	N/A	N/A	N/A	N/A	N/A	N/A	А	Α	Α
F218 P218	N/A	А	N/A	N/A	N/A	N/A	N/A	N/A	N/A	А	Α	А
F219 P219	N/A	А	N/A	N/A	N/A	N/A	N/A	N/A	N/A	А	А	А
Data con	version	n instru	uctions		•	•		•				
F235 P235	N/A	А	N/A	N/A	N/A	N/A	N/A	N/A	N/A	А	А	А
F236 P236	N/A	А	N/A	N/A	N/A	N/A	N/A	N/A	N/A	А	А	А

- A: Available, N/A: Not available
- 1) For the FP0, FP Σ and FP-e, the P type high-level instructions are not available.

Num- ber	Name	Boolean	Operand	Description				
F237 P237	16-bit gray code → binary data conversion	GBIN PGBIN	S, D	Converts the gray codes of "S" to binary data, and the converted result is stored in the "D."	6			
F238 P238	32-bit gray code → binary data conversion	DGBIN PDGBIN	S, D	Converts the gray code of (S+1, S) to binary data, and the converted result is stored in the (D+1, D).	8			
F240 P240	Bit line to bit column conversion	COLM PCOLM	S, n, D	The values of bits 0 to 15 of "S" are stored in bit "n" of (D to D+15).	8			
F241 P241	Bit column to bit line conversion	LINE PLINE	S, n, D	The values of bit "n" of (S to S+15) are stored in bits 0 to 15 of "D."	8			
Charac	cter strings in	structions	5					
F257 P257	Comparing character strings	SCMP	S1, S2	These instructions compare two specified character strings and output the judgment results to a special internal relay.	10			
F258 P258	Character string cou- pling	SADD	S1, S2, D	These instructions couple one character string with another.	12			
F259 P259	Number of characters in a character string	LEN	S, D	These instructions determine the number of characters in a character string.	6			
F260 P260	Search for character string	SSRC	S1, S2, D	The specified character is searched in a character string.	10			
F261 P261	Retrieving data from character strings (right side)	RIGHT	S1, S2, D	These instructions retrieve a specified number of characters from the right side of the character string.	8			
F262 P262	Retrieving data from character strings (left side)	LEFT	S1, S2, D	These instructions retrieve a specified number of characters from the left side of the character string.	8			
F263 P263	Retrieving a character string from a character string	MIDR	S1, S2, S3, D	These instructions retrieve a character string consisting of a specified number of characters from the specified position in the character string.	10			

Number	Availa	bility										
		1		FP1			FP-M				_	Ŧ
	FP0	FP∑ (* 1)	FP. e	C14 C16	C24 C40	C56 C72	C16	C20 C32	FP3	FP2	FP2SH	FP10SH
F237 P237	N/A	Α	N/A	N/A	N/A	N/A	N/A	N/A	N/A	A	А	Α
F238 P238	N/A	А	N/A	N/A	N/A	N/A	N/A	N/A	N/A	А	А	А
F240 P240	N/A	A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	А	А	А
F241 P241	N/A	Α	N/A	N/A	N/A	N/A	N/A	N/A	N/A	А	А	А
Characte	r string	js insti	ruction	S								
F257 P257	N/A	А	N/A	N/A	N/A	N/A	N/A	N/A	N/A	А	А	А
F258 P258	N/A	Α	N/A	N/A	N/A	N/A	N/A	N/A	N/A	А	А	А
F259 P259	N/A	Α	N/A	N/A	N/A	N/A	N/A	N/A	N/A	А	А	А
F260 P260	N/A	А	N/A	N/A	N/A	N/A	N/A	N/A	N/A	А	А	А
F261 P261	N/A	A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	А	A	A
F262 P262	N/A	А	N/A	N/A	N/A	N/A	N/A	N/A	N/A	А	А	А
F263 P263	N/A	Α	N/A	N/A	N/A	N/A	N/A	N/A	N/A	A	A	A

- A: Available, N/A: Not available
- 1) For the FP Σ , the P type high-level instructions are not available.

Num- ber	Name	Boolean	Operand	Description	Steps
F264 P264	Writing a character string to a character string	MIDW	S1, S2, D, n	These instructions write a specified number of characters from a character string to a specified position in the character string.	12
F265 P265	Replacing character strings	SREP	S, D, p, n	A specified number of characters in a character string are rewritten, starting from a specified position in the character string.	12
Intege	r type data pr	ocessing	instruction	าร	
F270 P270	Maximum value (word data (16-bit))	MAX PMAX	S1, S2, D	Searches the maximum value in the word data table between the "S1" and "S2", and stores it in the "D." The address relative to "S1" is stored in "D+1."	8
F271 P271	Maximum value (double word data (32-bit))	DMAX PDMAX	S1, S2, D	Searches for the maximum value in the double word data table between the area selected with "S1" and "S2", and stores it in the "D." The address relative to "S1" is stored in "D+2."	8
F272 P272	Minimum value (word data (16-bit))	MIN PMIN	S1, S2, D	Searches for the minimum value in the word data table between the area selected with "S1" and "S2", and stores it in the "D." The address relative to "S1" is stored in "D+1."	8
F273 P273	Minimum value (double word data (32-bit))	DMIN PDMIN	S1, S2, D	Searches for the minimum value in the double word data table between the area selected with "S1" and "S2", and stores it in the "D". The address relative to "S1" is stored in "D+2."	8
F275 P275	Total and mean values (word data (16-bit))	MEAN PMEAN	S1, S2, D	The total value and the mean value of the word data with sign from the area selected with "S1" to the "S2" are obtained and stored in the "D."	8
F276 P276	Total and mean values (double word data (32-bit))	DMEAN PDMEAN	S1, S2, D	The total value and the mean value of the double word data with sign from the area selected with "S1" to "S2" are obtained and stored in the "D."	8
F277 P277	Sort (word data (16-bit))	SORT PSORT	S1, S2, S3	The word data with sign from the area specified by "S1" to "S2" are sorted in ascending order (the smallest word is first) or descending order (the largest word is first).	8
F278 P278	Sort (double word data (32-bit))	DSORT PDSORT	S1, S2, S3	The double word data with sign from the area specified by "S1" to "S2" are sorted in ascending order (the smallest word is first) or descending order (the largest word is first).	8

12.8 Table of Instructions

Number	Availa	bility										
		1		FP1			FP-M				_	Ŧ
	6Р0	*)	FP. e	C14 C16	C24 C40	C56 C72	C16	C20 C32	FP3	FP2	FP2SH	FP10SH
F264 P264	N/A	A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	A	А	А
F265 P265	N/A	A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	А	А	А
Integer ty	/pe dat	a proc	essing	instru	ctions							
F270 P270	N/A	Α	А	N/A	N/A	N/A	N/A	N/A	N/A	А	А	А
F271 P271	N/A	А	А	N/A	N/A	N/A	N/A	N/A	N/A	А	А	A
F272 P272	N/A	А	А	N/A	N/A	N/A	N/A	N/A	N/A	А	А	A
F273 P273	N/A	А	А	N/A	N/A	N/A	N/A	N/A	N/A	А	А	А
F275 P275	N/A	А	А	N/A	N/A	N/A	N/A	N/A	N/A	А	А	А
F276 P276	N/A	A	A	N/A	N/A	N/A	N/A	N/A	N/A	A	А	A
F277 P277	N/A	А	А	N/A	N/A	N/A	N/A	N/A	N/A	А	А	A
F278 P278	N/A	A	A	N/A	N/A	N/A	N/A	N/A	N/A	A	А	A

- A: Available, N/A: Not available
- 1) For the FP Σ , the P type high-level instructions are not available.

Num- ber	Name	Boolean	Operand	Description	Steps					
F282 P282	Scaling of 16-bit data	SCAL PSCAL	S1, S2, D	The output value Y is found for the input value X by performing scaling for the given data table.	8					
F283 P283	Scaling of 32-bit data	DSCAL PDSCAL	S1, S2, D	The output value Y is found for the input value X by performing scaling for the given data table.	10					
Intege	r type non-lin	ear function	on instruc	ctions						
F285 P285	Upper and lower limit control (16-bit data)	LIMT PLIMT	S1, S2, S3, D	When S1 > S3, S1 \rightarrow D When S2 < S3, S2 \rightarrow D When S1 < or = S3 < or = S2, S3 \rightarrow D	10					
F286 P286	Upper and lower limit control (32-bit data)	DLIMT PDLIMT	S1, S2, S3, D	When $(S1+1, S1) > (S3+1, S3)$, $(S1+1, S1) \rightarrow (D+1, D)$ When $(S2+1, S2) < (S3+1, S3)$, $(S2+1, S2) \rightarrow (D+1, D)$ When $(S1+1, S1) < or = (S3+1, S3) < or = (S2+1, S2)$, $(S3+1, S3) \rightarrow (D+1, D)$						
F287 P287	Deadband control (16-bit data)	BAND PBAND	S1, S2, S3, D	When S1 > S3, S3 - S1 \rightarrow D When S2 < S3, S3 - S2 \rightarrow D When S1 < or = S3 < or = S2, 0 \rightarrow D	10					
F288 P288	Deadband control (32-bit data)	DBAND PDBAND	S1, S2, S3, D	When $(S1+1, S1) > (S3+1, S3)$, $(S3+1, S3) - (S1+1, S1) \rightarrow (D+1, D)$ When $(S2+1, S2) < (S3+1, S3)$, $(S3+1, S3) - (S2+1, S2) \rightarrow (D+1, D)$ When $(S1+1, S1) < or = (S3+1, S3) < or = (S2+1, S2)$, $0 \rightarrow (D+1, D)$	16					
F289 P289	Zone control (16-bit data)	ZONE PZONE	S1, S2, S3, D	When S3 < 0, S3 + S1 \rightarrow D When S3 = 0, 0 \rightarrow D When S3 > 0, S3 + S2 \rightarrow D	10					
F290 P290	Zone control (32-bit data)	DZONE PDZONE	S1, S2, S3, D	When $(S3+1, S3) < 0$, $(S3+1, S3) + (S1+1, S1) \rightarrow (D+1, D)$ When $(S3+1, S3) = 0$, $0 \rightarrow (D+1, D)$ When $(S3+1, S3) > 0$, $(S3+1, S3) + (S2+1, S2) \rightarrow (D+1, D)$	16					

Number	Availa	bility										
		1)		FP1			FP-M					H
	0	FPΣ (* 1)	- e	C14	C24	C56	C16	C20	33	20	FP2SH	FP10SH
	FP0	FP	FP.	C16	C40	C72		C32	FP3	FP2	世	臣
F282	N/A	Α	Α	N/A	N/A	N/A	N/A	N/A	N/A	Α	Α	Α
P282												
F283	N/A	Α	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Α	Α	Α
P283												
Integer ty							T	1	1		T	
F285 P285	N/A	А	А	N/A	N/A	N/A	N/A	N/A	N/A	Α	A	Α
F286	N/A	А	Α	N/A	N/A	N/A	N/A	N/A	N/A	Α	Α	Α
P286												
F287 P287	N/A	Α	А	N/A	N/A	N/A	N/A	N/A	N/A	А	А	Α
F288 P288	N/A	A	A	N/A	N/A	N/A	N/A	N/A	N/A	A	А	A
F289 P289	N/A	А	А	N/A	N/A	N/A	N/A	N/A	N/A	A	A	А
F290 P290	N/A	А	А	N/A	N/A	N/A	N/A	N/A	N/A	A	А	А

- A: Available, N/A: Not available
- 1) For the $\mathsf{FP}\Sigma$, the P type high-level instructions are not available.

Num- ber	Name	Boolean	Operand	Description	Steps
BCD ty	pe real numb	er operati	ion instruc	ctions	
F300 P300	BCD type sine operation	BSIN PBSIN	S, D	$SIN (S+1, S) \rightarrow (D+1, D)$	6
F301 P301	BCD type cosine operation	BCOS PBCOS	S, D	$COS (S+1, S) \rightarrow (D+1, D)$	6
F302 P302	BCD type tangent operation	BTAN PBTAN	S, D	$TAN\;(S+1,S)\to(D+1,D)$	6
F303 P303	BCD type arcsine operation	BASIN PBASIN	S, D	$SIN^{-1}(S+1, S) \to (D+1, D)$	6
F304 P304	BCD type arccosine operation	BACOS PBACOS	S, D	$COS^{-1}(S+1, S) \rightarrow (D+1, D)$	6
F305 P305	BCD type arctangent operation	BATAN PBATAN	S, D	$TAN^{-1}(S+1, S) \to (D+1, D)$	6

12.8 Table of Instructions

Number	Availa	bility										
				FP1			FP-M				Т	УH
	0	M	FP.e	C14	C24	C56	C16	C20	FP3	FP2	FP2SH	FP10SH
	FP0	FΡΣ	dЫ	C16	C40	C72		C32	Н	Н	Н	Ы
BCD type	real n	umber	operat	tion ins	structio	ns	-		-	-		
F300	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Α	Α	Α
P300												
F301	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Α	Α	Α
P301												
F302	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Α	Α	Α
P302												
F303	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Α	А	Α
P303												
F304	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Α	Α	Α
P304												
F305	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Α	Α	Α
P305												

A: Available, N/A: Not available

Num- ber	Name	Boolean	Operand	Description	Steps
Floatir	ng-point type	real numb	er operati	on instructions	
F309 P309	Floating- point type data move	FMV PFMV	S, D	$(S+1, S) \rightarrow (D+1, D)$	8
F310 P310	Floating- point type data addition	F+ PF+	S1, S2, D	$(S1+1, S1) + (S2+1, S2) \rightarrow (D+1, D)$	14
F311 P311	Floating- point type data subtraction	F- PF-	S1, S2, D	(S1+1, S1) - (S2+1, S2) → (D+1, D)	14
F312 P312	Floating- point type data multiplication	F* PF*	S1, S2, D	(S1+1, S1) × (S2+1, S2) → (D+1, D)	14
F313 P313	Floating- point type data division	F% PF%	S1, S2, D	$(S1+1, S1) \div (S2+1, S2) \rightarrow (D+1, D)$	14
F314 P314	Floating- point type data sine operation	SIN PSIN	S, D	SIN $(S+1, S) \rightarrow (D+1, D)$	10
F315 P315	Floating- point type data cosine operation	COS PCOS	S, D	$COS (S+1, S) \rightarrow (D+1, D)$	10
F316 P316	Floating- point type data tangent operation	TAN PTAN	S, D	TAN $(S+1, S) \rightarrow (D+1, D)$	10
F317 P317	Floating- point type data arcsine operation	ASIN PASIN	S, D	$SIN^{-1}(S+1, S) \to (D+1, D)$	10
F318 P318	Floating- point type data arccosine operation	ACOS PACOS	S, D	$COS^{-1}(S+1, S) \rightarrow (D+1, D)$	10

Number	Availa	bility										
	1)	1	* 1)	FP1			FP-M				т	ЭН
	FP0 (*	FPΣ (*	FP. e (*	C14 C16	C24 C40	C56 C72	C16	C20 C32	FP3	FP2	FP2SH	FP10SH
Floating-	point t	ype rea	al numl	ber ope	eration	instru	ctions					
F309 P309	A (* 2)	А	А	N/A	N/A	N/A	N/A	N/A	N/A	А	А	Α
F310 P310	A (* 2)	А	А	N/A	N/A	N/A	N/A	N/A	N/A	A	A	Α
F311 P311	A (* 2)	А	А	N/A	N/A	N/A	N/A	N/A	N/A	А	А	А
F312 P312	A (* 2)	А	А	N/A	N/A	N/A	N/A	N/A	N/A	А	А	А
F313 P313	A (* 2)	A	А	N/A	N/A	N/A	N/A	N/A	N/A	A	A	Α
F314 P314	A (* 2)	А	А	N/A	N/A	N/A	N/A	N/A	N/A	А	А	А
F315 P315	A (* 2)	А	А	N/A	N/A	N/A	N/A	N/A	N/A	А	А	А
F316 P316	A (* 2)	А	А	N/A	N/A	N/A	N/A	N/A	N/A	А	А	А
F317 P317	A (* 2)	А	А	N/A	N/A	N/A	N/A	N/A	N/A	А	А	А
F318 P318	A (* 2)	A	A	N/A	N/A	N/A	N/A	N/A	N/A	A	A	A

- A: Available, N/A: Not available
- 1) For the FP0, FP Σ and FP-e, the P type high-level instructions are not available.
- 2) The instruction is available for FP0 T32C and FP0 C10/C14/C16/C32 CPU Ver. 2.0 or later.

Num- ber	Name	Boolean	Operand	Description	Steps
F319 P319	Floating- point type data arctangent operation	ATAN PATAN	S, D	$TAN^{-1}\left(S+1,S\right)\to\left(D+1,D\right)$	10
F320 P320	Floating- point type data natural logarithm	LN PLN	S, D	$LN (S+1, S) \rightarrow (D+1, D)$	10
F321 P321	Floating- point type data exponent	EXP PEXP	S, D	$EXP\;(S+1,S)\to(D+1,D)$	10
F322 P322	Floating- point type data logarithm	LOG PLOG	S, D	$LOG (S+1, S) \rightarrow (D+1, D)$	10
F323 P323	Floating- point type data power	PWR PPWR	S1, S2, D	$(S1+1, S1) ^ (S2+1, S2) \rightarrow (D+1, D)$	14
F324 P324	Floating- point type data square root	FSQR PFSQR	S, D	$\sqrt{(S+1, S)} \rightarrow (D+1, D)$	10
F325 P325	16-bit integer data to floating-point type data conversion	FLT PFLT	S, D	Converts the 16-bit integer data with sign specified by "S" to real number data, and the converted data is stored in "D."	6
F326 P326	32-bit integer data to floating-point type data conversion	DFLT PDFLT	S, D	Converts the 32-bit integer data with sign specified by (S+1, S) to real number data, and the converted data is stored in (D+1, D).	8

Number	Availa	bility										
	1)	1	(* 1)	FP1			FP-M				I	SH
	FP0 (* 1)	FP∑ (* 1)	FP. e (*)	C14 C16	C24 C40	C56 C72	C16	C20 C32	FP3	FP2	FP2SH	FP10SH
F319 P319	A (* 2)	А	А	N/A	N/A	N/A	N/A	N/A	N/A	А	А	A
F320 P320	A (* 2)	А	А	N/A	N/A	N/A	N/A	N/A	N/A	A	A	A
F321 P321	A (* 2)	A	A	N/A	N/A	N/A	N/A	N/A	N/A	A	A	A
F322 P322	A (* 2)	А	А	N/A	N/A	N/A	N/A	N/A	N/A	А	Α	A
F323 P323	A (* 2)	А	А	N/A	N/A	N/A	N/A	N/A	N/A	А	А	А
F324 P324	A (* 2)	A	А	N/A	N/A	N/A	N/A	N/A	N/A	А	A	A
F325 P325	A (* 2)	A	A	N/A	N/A	N/A	N/A	N/A	N/A	A	A	А
F326 P326	A (* 2)	A	A	N/A	N/A	N/A	N/A	N/A	N/A	A	A	A

- A: Available, N/A: Not available
- 1) For the FP0, FP Σ and FP-e, the P type high-level instructions are not available.
- 2) The instruction is available for FP0 T32C and FP0 C10/C14/C16/C32 CPU Ver. 2.0 or later.

Num- ber	Name	Boolean	Operand	Description	Steps
F327 P327	Floating- point type data to 16-bit inte- ger conver- sion (the largest inte- ger not ex- ceeding the floating- point type data)	INT PINT	S, D	Converts real number data specified by (S+1, S) to the 16-bit integer data with sign (the largest integer not exceeding the floating-point data), and the converted data is stored in "D."	8
F328 P328	Floating- point type data to 32-bit inte- ger conver- sion (the largest inte- ger not ex- ceeding the floating- point type data)	DINT	S, D	Converts real number data specified by (S+1, S) to the 32-bit integer data with sign (the largest integer not exceeding the floating-point data), and the converted data is stored in (D+1, D).	8
F329 P329	Floating- point type data to 16-bit inte- ger conver- sion (round- ing the first decimal point down to integer)	FIX PFIX	S, D	Converts real number data specified by (S+1, S) to the 16-bit integer data with sign (rounding the first decimal point down), and the converted data is stored in "D."	8
F330 P330	Floating- point type data to 32-bit inte- ger conver- sion (round- ing the first decimal point down to integer)	DFIX PDFIX	S, D	Converts real number data specified by (S+1, S) to the 32-bit integer data with sign (rounding the first decimal point down), and the converted data is stored in (D+1, D).	8

Number	Availa	bility										
	1)	1)	* 1)	FP1			FP-M				т	H
	FP0 (* 1)	FPΣ (* 1)	FP. e (* 1)	C14 C16	C24 C40	C56 C72	C16	C20 C32	FP3	FP2	FP2SH	FP10SH
F327 P327	A (* 2)	А	А	N/A	N/A	N/A	N/A	N/A	N/A	A	А	А
F328 P328	A (* 2)	A	A	N/A	N/A	N/A	N/A	N/A	N/A	A	A	A
F329 P329	A (* 2)	А	А	N/A	N/A	N/A	N/A	N/A	N/A	A	A	A
F330 P330	A (* 2)	A	A	N/A	N/A	N/A	N/A	N/A	N/A	A	A	A

- A: Available, N/A: Not available
- 1) For the FP0, FP Σ and FP-e, the P type high-level instructions are not available.
- 2) The instruction is available for FP0 T32C and FP0 C10/C14/C16/C32 CPU Ver. 2.0 or later.

Num- ber	Name	Boolean	Operand	Description	Steps
F331 P331	Floating- point type data to 16-bit inte- ger conver- sion (round- ing the first decimal point off to integer)	ROFF PROFF	S, D	Converts real number data specified by (S+1, S) to the 16-bit integer data with sign (rounding the first decimal point off), and the converted data is stored in "D."	8
F332 P332	Floating- point type data to 32-bit inte- ger conver- sion (round- ing the first decimal point off to integer)	DROFF PDROFF	S, D	Converts real number data specified by (S+1, S) to the 32-bit integer data with sign(rounding the first decimal point off), and the converted data is stored in (D+1, D).	8
F333 P333	Floating- point type data round- ing the first decimal point down	FINT PFINT	S, D	The decimal part of the real number data specified in (S+1, S) is rounded down, and the result is stored in (D+1, D).	8
F334 P334	Floating- point type data round- ing the first decimal point off	FRINT PFRINT	S, D	The decimal part of the real number data stored in (S+1, S) is rounded off, and the result is stored in (D+1, D).	8
F335 P335	Floating- point type data sign changes	F+/- PF+/-	S, D	The real number data stored in (S+1, S) is changed the sign, and the result is stored in (D+1, D).	8
F336 P336	Floating- point type data abso- lute	FABS PFABS	S, D	Takes the absolute value of real number data specified by (S+1, S), and the result (absolute value) is stored in (D+1, D).	8
F337 P337	Floating- point type data degree → radian	RAD PRAD	S, D	The data in degrees of an angle specified in (S+1, S) is converted to radians (real number data), and the result is stored in (D+1, D).	8

12.8 Table of Instructions

Number	Availa	bility										
	1)	1	* 1)	FP1			FP-M				_	H
	FP0 (* 1)	FPΣ (*	FP-e (*	C14 C16	C24 C40	C56 C72	C16	C20 C32	FP3	FP2	FP2SH	FP10SH
F331 P331	A (* 2)	A	A	N/A	N/A	N/A	N/A	N/A	N/A	A	A	А
F332 P332	A (* 2)	А	A	N/A	N/A	N/A	N/A	N/A	N/A	A	A	А
F333 P333	A (* 2)	Α	А	N/A	N/A	N/A	N/A	N/A	N/A	A	А	А
F334 P334	A (* 2)	A	A	N/A	N/A	N/A	N/A	N/A	N/A	A	A	А
F335 P335	A (* 2)	А	А	N/A	N/A	N/A	N/A	N/A	N/A	А	А	Α
F336 P336	A (* 2)	A	A	N/A	N/A	N/A	N/A	N/A	N/A	A	A	А
F337 P337	A (* 2)	А	A	N/A	N/A	N/A	N/A	N/A	N/A	A	A	А

- A: Available, N/A: Not available
- 1) For the FP0, FP Σ and FP-e, the P type high-level instructions are not available.
- 2) The instruction is available for FP0 T32C and FP0 C10/C14/C16/C32 CPU Ver. 2.0 or later.

Num- ber	Name	Boolean	Operand	Description	Steps
F338 P338	Floating- point type data radian → degree	DEG PDEG	S, D	The angle data in radians (real number data) specified in (S+1, S) is converted to angle data in degrees, and the result is stored in (D+1, D).	8
Floatir	ng-point type	real numb	er data pr	ocessing instructions	
F345 P345	Floating- point type data compare	FCMP PFCMP	S1, S2	$(S1+1, S1) > (S2+1, S2) \rightarrow R900A$: on $(S1+1, S1) = (S2+1, S2) \rightarrow R900B$: on $(S1+1, S1) < (S2+1, S2) \rightarrow R900C$: on	10
F346 P346	Floating- point type data band compare	FWIN PFWIN	S1, S2, S3	$(S1+1, S1) > (S3+1, S3) \rightarrow R900A$: on $(S2+1, S2) < or = (S1+1, S1) < or = (S3+1,S3) \rightarrow R900B$: on $(S1+1, S1) < (S2+1, S2) \rightarrow R900C$: on	14
F347 P347	Floating- point type data upper and lower limit control	FLIMT PFLIMT	S1, S2, S3, D	When $(S1+1, S1) > (S3+1, S3)$, $(S1+1, S1) \rightarrow (D+1, D)$ When $(S2+1, S2) < (S3+1, S3)$, $(S2+1, S2) \rightarrow (D+1, D)$ When $(S1+1, S1) < or = (S3+1, S3) < or = (S2+1, S2)$, $(S3+1, S3) \rightarrow (D+1, D)$	17
F348 P348	Floating- point type data dead- band control	FBAND PFBAND	S1, S2, S3, D	When $(S1+1, S1) > (S3+1, S3)$, $(S3+1, S3) - (S1+1, S1) \rightarrow (D+1, D)$ When $(S2+1, S2) < (S3+1, S3)$, $(S3+1, S3) - (S2+1, S2) \rightarrow (D+1, D)$ When $(S1+1, S1) < or = (S3+1, S3) < or = (S2+1, S2)$, $0.0 \rightarrow (D+1, D)$	17
F349 P349	Floating- point type data zone control	FZONE PFZONE	S1, S2, S3, D	When $(S3+1, S3) < 0.0$, $(S3+1, S3) + (S1+1, S1) \rightarrow (D+1, D)$ When $(S3+1, S3) = 0.0$, $0.0 \rightarrow (D+1, D)$ When $(S3+1, S3) > 0.0$, $(S3+1, S3) + (S2+1, S2) \rightarrow (D+1, D)$	17
F350 P350	Floating- point type data maxi- mum value	FMAX PFMAX	S1, S2, D	Searches the maximum value in the real number data table between the area selected with "S1" and "S2", and stores it in the (D+1, D). The address relative to "S1" is stored in (D+2).	8

Number	Availa	bility										
	1)	1	(* 1)	FP1			FP-M				т	HS
	FP0 (* 1)	* W	FP. e (C14	C24	C56	C16	C20	FP3	2	FP2SH	FP10SH
	FP	FPΣ	FP	C16	C40	C72		C32	냰	FP2	FP	H
F338	Α	А	А	N/A	N/A	N/A	N/A	N/A	N/A	Α	Α	Α
P338	(* 2)											
Floating-									1	1	1	
F345	N/A	Α	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Α	Α	Α
P345												
F346	N/A	Α	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Α	Α	Α
P346	14// (, ,	14,71	14/71	14/71	14/71	1 4// (14/7	14//		, ,	, ,
F347	N/A	Α	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Α	Α	Α
P347												
F348	N/A	Α	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Α	Α	Α
P348												
F349	N/A	А	N/A	N/A	N/A	N/A	N/A	N/A	N/A	А	Α	Α
P349												
F350	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Α	А	Α
P350												

- A: Available, N/A: Not available
- 1) For the FP0, FP Σ and FP-e, the P type high-level instructions are not available.
- 2) The instruction is available for FP0 T32C and FP0 C10/C14/C16/C32 CPU Ver. 2.0 or later.

Num- ber	Name	Boolean	Operand	Description	Steps
F351 P351	Floating- point type data mini- mum value	FMIN PFMIN	S1, S2, D	Searches the minimum value in the real number data table between the area selected with "S1" and "S2", and stores it in the (D+1, D). The address relative to "S1" is stored in (D+2).	8
F352 P352	Floating- point type data total and mean values	FMEAN PFMEAN	S1, S2, D	The total value and the mean value of the real number data from the area selected with "S1" to "S2" are obtained. The total value is stored in the (D+1, D) and the mean value is stored in the (D+3, D+2).	8
F353 P353	Floating- point type data sort	FSORT PFSORT	S1, S2, S3	The real number data from the area specified by "S1" to "S2" are sorted in ascending order (the smallest word is first) or descending order (the largest word is first).	8
Time s	series process	sing instru	ction		
F355	PID processing	PID	S	PID processing is performed depending on the control value (mode and parameter) specified by (S to S+2) and (S+4 to S+10), and the result is stored in the (S+3).	4
Compa	are instruction	ns			
F373 P373	16-bit data revision detection	DTR PDTR	S, D	If the data in the 16-bit area specified by "S" has changed since the previous execution, internal relay R9009 (carry flag) will turn on. "D" is used to store the data of the previous execution.	6
F374 P374	32-bit data revision detection	DDTR PDDTR	S, D	If the data in the 32-bit area specified by (S+1, S) has changed since the previous execution, internal relay R9009 (carry flag) will turn on. (D+1, D) is used to store the data of the previous execution.	6

Number	Availa	bility										
				FP1			FP-M				т	H
	FP0	FΡΣ	- e	C14	C24	C56	C16	C20	FP3	FP2	FP2SH	FP10SH
	냰	냽	FP	C16	C40	C72		C32	正	ᇤ	됴	됴
F351	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Α	Α	Α
P351												
F352	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Α	Α	Α
P352												
F353	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Α	Α	Α
P353												
Time seri	es pro	cessin	g instr	uction				u.	I.	I.	I.	
F355	Α	Α	Α	N/A	N/A	N/A	N/A	N/A	N/A	Α	Α	Α
	(* 1)											
Compare	instru	ctions										
F373	N/A	Α	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Α	Α	Α
P373												
F374	N/A	Α	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Α	Α	Α
P374												

- A: Available, N/A: Not available
- 1) For the FP0, FP Σ and FP-e, the P type high-level instructions are not available.
- 2) For the FP0, the instruction is available for the T32C and C10, C14, C16, C32 CPU Ver. 2.0 or later.

Num- ber	Name	Boolean	Operand	Description	Steps
Index	register bank	processin	g instruct	ions	
F410 P410	Setting the index register bank number	SETB PSETB	n	Index register (I0 to ID) bank number change over	4
F411 P411	Changing the index register bank num- ber	CHGB PCHGB	n	Index register (I0 to ID) bank number change over with remembering preceding bank number.	4
F412 P412	Restoring the index register bank num- ber	POPB PPOPB		Changes index register (I0 to ID) bank number back to the bank before F411 (CHGB)/P411 (PCHGB) instruction.	2
File re	gister bank p	rocessing	instructio	ns	
F414 P414	Setting the file register bank number	SBFL PSBFL	n	File register bank number change over.	4
F415 P415	Changing the file reg- ister bank number	CBFL PCBFL	n	File register bank number change over with remembering preceding bank number.	4
F416 P416	Restoring the file reg- ister bank number	PBFL PPBFL		Changes file register bank number back to the bank before F415(CBFL)/P415(PCBFL) instruction.	2

12.8 Table of Instructions

Number	Availa	bility										
				FP1			FP-M				Ŧ	Ή
	FP0	FPΣ	FP. e	C14 C16	C24 C40	C56 C72	C16	C20 C32	FP3	FP2	FP2SH	FP10SH
Index reg	ister b	ank pr	ocessi	ng inst	ruction	าร						
F410 P410	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	А	А
F411 P411	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	A	А
F412 P412	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	A	А
File regis	ter bar	nk proc	essing	instru	ctions							
F414 P414	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	A	N/A
F415 P415	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	А	N/A
F416 P416	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	A	N/A

A: Available, N/A: Not available

12.9 FP0-SL1 S-LINK Address

I/O ad- dress	S-LINK	address	I/O ad- dress			address	I/O ad- dress	S-LINK address			
input (X)	Deci- mal	Hexade- cimal	input (X)	Deci- mal	Hexade- cimal	input (X)	Deci- mal	Hexade- cimal	input (X)	Deci- mal	Hexade cimal
X80	0	0	X90	16	10	X100	32	20	X110	48	30
X81	1	1	X91	17	11	X101	33	21	X111	49	31
X82	2	2	X92	18	12	X102	34	22	X112	50	32
X83	3	3	X93	19	13	X103	35	23	X113	51	33
X84	4	4	X94	20	14	X104	36	24	X114	52	34
X85	5	5	X95	21	15	X105	37	25	X115	53	35
X86	6	6	X96	22	16	X106	38	26	X116	54	36
X87	7	7	X97	23	17	X107	39	27	X117	55	37
X88	8	8	X98	24	18	X108	40	28	X118	56	38
X89	9	9	X99	25	19	X109	41	29	X119	57	39
X8A	10	Α	X9A	26	1A	X10A	42	2A	X11A	58	3A
X8B	11	В	X9B	27	1B	X10B	43	2B	X11B	59	3B
X8C	12	С	X9C	28	1C	X10C	44	2C	X11C	60	3C
X8D	13	D	X9D	29	1D	X10D	45	2D	X11D	61	3D
X8E	14	Е	X9E	30	1E	X10E	46	2E	X11E	62	3E
X8F	15	F	X9F	31	1F	X10F	47	2F	X11F	63	3F

I/O ad-	S-LINK	address
dress input (Y)	Deci- mal	Hexade- cimal
Y80	64	40
Y81	65	41
Y82	66	42
Y83	67	43
Y84	68	44
Y85	69	45
Y86	70	46
Y87	71	47
Y88	72	48
Y89	73	49
Y8A	74	4A
Y8B	75	4B
Y8C	76	4C
Y8D	77	4D
Y8E	78	4E
Y8F	79	4F

I/O ad-	S-LINK	address
dress input (Y)	Deci- mal	Hexade- cimal
Y90	80	50
Y91	81	51
Y92	82	52
Y93	83	53
Y94	84	54
Y95	85	55
Y96	86	56
Y97	87	57
Y98	88	58
Y99	89	59
Y9A	90	5A
Y9B	91	5B
Y9C	92	5C
Y9D	93	5D
Y9E	94	5E
Y9F	95	5F

dress Deci- Hexad	Δ.		
input Deci- Hexad (Y) mal cimal	Hexade- cimal		
Y100 96 60			
Y101 97 61			
Y102 98 62			
Y103 99 63			
Y104 100 64			
Y105 101 65			
Y106 102 66			
Y107 103 67			
Y108 104 68			
Y109 105 69			
Y10A 106 6A			
Y10B 107 6B			
Y10C 108 6C			
Y10D 109 6D			
Y10E 110 6E			
Y10F 111 6F			

I/O ad- dress	S-LINK address			
input (Y)	Deci- mal	Hexade- cimal		
Y110	112	70		
Y111	113	71		
Y112	114	72		
Y113	115	73		
Y114	116	74		
Y115	117	75		
Y116	118	76		
Y117	119	77		
Y118	120	78		
Y119	121	79		
Y11A	122	7A		
Y11B	123	7B		
Y11C	124	7C		
Y11D	125	7D		
Y11E	126	7E		
Y11F	127	7F		

FP0

12.10 Binary/Hexadecimal/BCD Expressions

12.10 Binary/Hexadecimal/BCD Expressions

Decimal	Hexadecimal	Binary BCD code					
0	0000	00000000	00000000	0000	0000	0000	0000
1	0001	00000000	00000001	0000	0000	0000	0001
2	0002	00000000	00000010	0000	0000	0000	0010
3	0003	00000000	00000011	0000	0000	0000	0011
4	0004	00000000	00000100	0000	0000	0000	0100
5	0005	00000000	00000101	0000	0000	0000	0101
6	0006	00000000	00000110	0000	0000	0000	0110
7	0007	00000000	00000111	0000	0000	0000	0111
8	0008	00000000	00001000	0000	0000	0000	1000
9	0009	00000000	00001001	0000	0000	0000	1001
10	000A	00000000	00001010	0000	0000	0001	0000
11	000B	00000000	00001011	0000	0000	0001	0001
12	000C	00000000	00001100	0000	0000	0001	0010
13	000D	00000000	00001101	0000	0000	0001	0011
14	000E	00000000	00001110	0000	0000	0001	0100
15	000F	00000000	00001111	0000	0000	0001	0101
16	0010	00000000	00010000	0000	0000	0001	0110
17	0011	00000000	00010001	0000	0000	0001	0111
18	0012	00000000	00010010	0000	0000	0001	1000
19	0013	00000000	00010011	0000	0000	0001	1001
20	0014	00000000	00010100	0000	0000	0010	0000
21	0015	00000000	00010101	0000	0000	0010	0001
22	0016	00000000	00010110	0000	0000	0010	0010
23	0017	00000000	00010111	0000	0000	0010	0011
24	0018	00000000	00011000	0000	0000	0010	0100
25	0019	00000000	00011001	0000	0000	0010	0101
26	001A	00000000	00011010	0000	0000	0010	0110
27	001B	00000000	00011011	0000	0000	0010	0111
28	001C	00000000	00011100	0000	0000	0010	1000
29	001D	00000000	00011101	0000	0000	0010	1001
30	001E	00000000	00011110	0000	0000	0011	0000
31	001F	00000000	00011111	0000	0000	0011	0001
: 63	: 003F	00000000	: 00111111	0000	0000	: 0110	0011
:	:		:			:	
255 :	00FF :	00000000	11111111 :	0000	0010	0101	0101
9999	270F	00100111	00001111	1001	1001	1001	1001

12.11 ASCII Codes

12.11 ASCII Codes

Appendix A

Dimensions

A. 1	Control Unit and Expansion I/O Unit A - 3				
	A.1.1	FP0-C10RS/C10CRS/C14RS/C14CRS/E8RS/ E16RS A - 3			
	A.1.2	FP0-C10RM/C10CRM/C14RM/C14CRM/ E8RM/E16RM A - 3			
	A.1.3	FP0-C16T/C16CT/ C16P/C16CP/E16T/E16P/E8X/E8YT/E8YP/ E32T/E32P/E16X/E16YT/E16YP A - 4			
	A.1.4	FP0-C32T/C32CT/C32P/C32CP/T32CT/ T32CP A - 4			
	A.1.5	FP0 S-LINK Control Unit A - 5			
A.2	FP0 Power Supply Unit A - 8				
A.3	Mounting on DIN Rail				
A.4	FP0 Slim Type Mounting Plate				
A.5	FP0 Flat Type Mounting Plate				
A.6	Detailed Specifications of Cables				
A. 7	Connection (between RS232C port and PC) A - 10				

A.1 Control Unit and Expansion I/O Unit

A.1 Control Unit and Expansion I/O Unit

A.1.1 FP0-C10RS/C10CRS/C14RS/C14CRS/E8RS/E16RS

Illustration: FP0-C14RS

Reference measurements for wiring

(unit: mm/in.)

A.1.2 FP0-C10RM/C10CRM/C14RM/C14CRM/E8RM/E16RM

Illustration: FP0-C14RM

Reference measurements for wiring

Dimensions

A.1 Control Unit and Expansion I/O Unit

A.1.3 FP0-C16T/C16CT/C16P/C16CP/E16T/E16P/E8X/E8YT/E8YP/E32T/ E32P/E16X/E16YT/E16YP

Illustration: FP0-C16T

3.5/0.138

Reference measurements for wiring

(unit: mm/in.)

FP0

A.1.4 FP0-C32T/C32CT/C32P/C32CP/T32CT/T32CP

Illustration: FP0-C32T

Reference measurements for wiring

A.2 FP0 Power Supply Unit

A.1.5 FP0 S-LINK Control Unit

(unit: mm/in.)

A.2 FP0 Power Supply Unit

Dimensions FP0

A.3 Mounting on DIN Rail

A.3 Mounting on DIN Rail

(unit: mm/in.)

Note

A + B + C + D dimensions (Unit: mm/in.)

Control unit type	A (Control unit only)	A+B (1 expansion unit connected)	A+B+C (2 expansion units connected)	A+B+C+D (3 expansion units connected)	
C10RS, C10CRS, C10RM, C10CRM, C14RS, C14CRS, C14RM, C14CRM, C16T, C16CT, C16P, C16CP	25/0.984	50/1.969	75/2.953	100/3.937	
C32T, C32CT, C32P, C32CP	30/1.181	55/2.165	80/3.150	105/4.134	

A.4 FP0 Slim Type Mounting Plate

A.4 FP0 Slim Type Mounting Plate

One plate 25.0/0.984 4/0.157 10.0/0.394 6.0/0.236 **≜**UP 0 0 90.0/3.543 60.0/2.362 \mathbb{C} 0 0 dir. 10.0/0.394 dir. 5.0/0.197 2.5/0.098 AFP0803 (unit: mm/in.) (unit: mm/in.) 3.5/0.138

Four plates in series

Mounting hole dimensions

(unit: mm/in.)

Dimensions when using FP0 slim type mounting plate

Dimensions FP0

A.5 FP0 Flat Type Mounting Plate

A.5 FP0 Flat Type Mounting Plate

Mounting hole dimensions

Dimensions when mounted on DIN rail

Unit type	A (mm/in.)	B (mm/in.)	
C10RS C10CRS C10RM C10CRM C14RS C14CRS C14CRM C14CRM C16T C16CT C16P C16CP	31.2/1.23	25/0.98	
C32T C32CT C32P C32CP	36.2/1.43	30/1.18	

Note

Cannot be used if system is expanded

A.6 Detailed Specifications of Cables

■ AFC8503 and AFC8503S (For connection between FP0/FP2/FP-M and personal computer)

3000±1500 (16.0) (.630) 2 118.110±5.9060 CN1 CN2 24.99±0.15 .984+.006 Mini DIN 5-pin male D-sub 9-pin male PLC side Personal computer sixe Signal Signal name SG SD SG RD RD Đ SD RS Socket (1)Inch screw #4-40 AFC8503 AFC8503S CN1

■ AFC8513 (For connection between FP0/FP2/FP-M and personal computer)

(mm/inch)

■ AFC8521/AFC8523 (For connection between FP0/FP2/FP-M and FP programmer)

(mm/inch)

Mini DIN 5-pin male			D-sub 15-pin female		
PLC side	1		2	FP programmer side	
Signal name	P ~ Vo.		Pn No.	Signal name	
FG	Ð		Ð	FG	
SG	1	•	2	SG	
SD	2	-	3	RD	
RD	3	-	11	SD	
Ð	4		1	15 V	
45 V	5		10	SG	

Dimensions FP0

A.7 Connection (between RS232C port and PC)

Layout of Programming Port Pins Common for the FP0/FP2/FP-M

Signal name	Pin No.	
SG	1	
SD	2	
RD	3	
-	4	
+5 V	5	

The controller's tool port is provided with the MD-S5100-10 connector for FP0 made by JST Mfg. Co., Ltd. with the TCS7658-01-201 connector for FP-M made by Hoshiden Corporation.

A.7 Connection (between RS232C port and PC)

Connection example

Record of changes

ACG No.	Date	Description of Changes		
ACG-M0084-1	JAN. 1997	First edition		
ACG-M0084-2	JUL. 1997	2nd editionSize change (from A5 to B5)Newly addition of FP0 transistor output type information		
ACG-M0084-3	JUN. 1998	 3rd edition Descriptions for FP0 control units with RS232C port are added. Descriptions for FP0 input only and output only type expansion units are added. Descriptions for FP0 analog I/O unit is added. 		
ARCT1F389E	FEB. 2004	4th edition - Programming Manual Chapter 4 (ACG-M0084-3) Chapter 5 Chapter 6 Chapter 8 - S-LINK Control Unit ARCT1F263E - Chapter 8 Connecting the I.O.P. Display Panel - Chapter 9 Trial Operation Addition Delete		

These materials are printed on ECF pulp.

These materials are printed with earth-friendly vegetable-based (soybean oil) ink.

Please contact

Matsushita Electric Works, Ltd.

Automation Controls Company

K Head Office: 1048, Kadoma, Kadoma-shi, Osaka 571-8686, Japan

K Telephone: +81-6-6908-1050 K Facsimile: +81-6-6908-5781 http://www.nais-e.com/

All Rights Reserved © 2004 COPYRIGHT Matsushita Electric Works, Ltd.