- (19) Weltorganisation für geistiges Eigentum Internationales Büro
- AIPO OMPIO

(43) Internationales Veröffentlichungsdatum 24. Januar 2002 (24.01.2002)

PCT

(10) Internationale Veröffentlichungsnummer WO 02/06233 A1

WALTER, Helmut [DE/DE]; Grünstadter Strasse 82,

(51) Internationale Patentklassifikation⁷: C07D 213/64, 213/69, 413/04, 417/04, A01N 43/76, 43/78, 43/40

67283 Obrigheim (DE).

- (21) Internationales Aktenzeichen: PCT/EP01/08251
- (74) Anwälte: KINZEBACH, Werner usw.; Ludwigsplatz 4, 67059 Ludwisghafen (DE).

(22) Internationales Anmeldedatum:

17. Juli 2001 (17.07.2001)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität:

100 34 838.6

18. Juli 2000 (18.07.2000) DE

- (71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): BASF AKTIENGESELLSCHAFT [DE/DE]; 67056 Ludwigshafen (DE).
- (72) Erfinder; und
- (75) Erfinder/Anmelder (nur für US): SAGASSER, Ingo [DE/DE]; Schlesienstrasse 13, 67125 Dannstadt-Schauernheim (DE). MENKE, Olaf [DE/DE]; Lerchenweg 3, 67317 Altleiningen (DE). HAMPRECHT, Gerhard [DE/DE]; Rote-Turm-Strasse 28, 69469 Weinheim (DE). PUHL, Michael [DE/DE]; Bürstädter Strasse 95, 68623 Lampertheim (DE). REINHARD, Robert [DE/DE]; Pranckhstrasse 41, 67061 Ludwigshafen (DE). WITSCHEL, Matthias [DE/DE]; Höhenweg 12b, 67098 Bad Dürkheim (DE). ZAGAR, Cyrill [DE/DE]; Georg-Herwegh-Strasse 31, 67061 Ludwigshafen (DE).

- (81) Bestimmungsstaaten (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Bestimmungsstaaten (regional): ARIPO-Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

- mit internationalem Recherchenbericht
- vor Ablauf der für Änderungen der Ansprüche geltenden Frist; Veröffentlichung wird wiederholt, falls Änderungen eintreffen

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

- (54) Title: 1-ARYL-4-ALKYL HALIDE-2(1H)-PYRIDONES AND THEIR USE AS HERBICIDES
- (54) Bezeichnung: 1-ARYL-4-HALOGENALKYL-2(1H)-PYRIDONE UND IHRE VERWENDUNG ALS HERBIZIDE

- (57) **Abstract:** The invention relates to the use of 1-aryl-4-alkyl halide-2-1H-pyridones of the general formula (I), wherein the variables are defined as per claim 1, and to their use as herbicides.
- (57) **Zusammenfassung:** Verwendung von 1-Aryl-4-halogenalkyl-2-[1H]-py-

ridonen der allgemeinen Formel (I), worin die Variablen die in Anspruch 1 angegebene Bedeutung haben und ihre Verwendung als Herbizide.

1-Aryl-4-halogenalkyl-2-[1H]-pyridone

Die vorliegende Erfindung betrifft die Verwendung von 5 1-Aryl-4-halogenalkyl-2-[1H]-pyridonen und von deren landwirtschaftlich brauchbaren Salze sowie als Herbizide, Desikkantien oder Defoliantien.

1-Aryl-2-[1H]-pyridone wurden verschiedentlich als Wirksubstanzen
10 in Mitteln zur Bekämpfung tierischer Schädlinge (Pestizide) beschrieben. Die EP-A 272 824 betrifft beispielsweise Pestizide,
die 1-(2-Pyridyl)-2-[1H]-pyridone als Wirkstoff enthalten. Es
werden unter anderem 1-(2-Pyridyl)-2-[1H]-pyridone der allgemeinen Formel

15

$$R^{c}$$
 N
 R^{d}
 R^{d}
 R^{d}

20

25

beschrieben, worin

Ra für Wasserstoff, Chlor, Brom, Nitro, Amino oder Trifluormethyl;

Rb für Wasserstoff, Chlor, Brom oder Trifluormethyl;

Rc C1-C4-Halogenalkyl; und

Rd vorzugsweise Wasserstoff bedeuten.

30 Die EP-A 259 048 beschreibt Pestizide auf Basis von 1-Phenyl-2-[1H]-pyridonen, die vorzugsweise in der 2- und der 6-Position des Phenylrings ein Halogenatom tragen.

Die WO 99/55668 beschreibt insektizid und mitizid wirkende Ver-35 bindungen der allgemeinen Formel,

40

worin

45 R für Alkyl, Alkenyl, Alkinyl und vergleichbare Reste steht, B⁰ bis B³ unabhängig voneinander für Wasserstoff, Halogen, Cyano Halogenalkyl oder vergleichbare Reste stehen; n 0, 1 oder 2 bedeutet; und

Ar einen aromatischen Rest, unter anderem einen 1H-2-Pyridon-1-yl-rest, bedeutet.

5 Die EP-A 488220 beschreibt herbizid wirkende Verbindungen der allgemeinen Formel,

15 worin

R unter anderem für Alkyl, Alkenyl, Alkinyl, Alkoxyalkyl, Halogenalkyl und vergleichbare Reste steht,

X Wasserstoff, Halogen, Methyl oder Ethyl, das mit Halogen substituiert sein kann; und

20 Y Wasserstoff oder Methyl bedeutet.

Prinzipiell besteht ein ständiges Bedürfnis an der Bereitstellung neuer herbizid wirksamer Substanzen, um eine mögliche Resistenzbildung gegen bekannte Herbizide zu umgehen.

25

Der vorliegenden Erfindung liegt somit die Aufgabe zugrunde, neue Herbizide bereitzustellen, mit denen sich Schadpflanzen besser als bisher bekämpfen lassen. Die neuen Herbizide sollen vorteilhafterweise eine hohe Aktivität gegenüber Schadpflanzen aufweisen. Außerdem ist eine Kulturpflanzenverträglichkeit gewünscht.

Diese Aufgabe wird durch 1-Aryl-4-halogenalkyl-2-[1H]-pyridone der nachfolgend definierten Formel I gelöst.

35 Die vorliegende Erfindung betrifft daher die Verwendung von 1-Aryl-4-halogenalkyl-2-[1H]-pyridonen der allgemeinen Formel I

45 worin die Variablen A, X, Q, R¹, R², R^{2'}, R³, R⁴, R⁵ und R⁶ folgende Bedeutung haben:

3

- R1 Wasserstoff oder Halogen;
- R^2 und R^2 ' unabhängig voneinander Wasserstoff, Amino oder $C_1-C_4-Alkyl$;

5

- R^3 C_1-C_4 -Halogenalkyl;
- R4 Wasserstoff oder Halogen;
- 10 R⁵ Wasserstoff, Cyano, Halogen, C_1-C_4 -Alkyl, C_1-C_4 -Halogenalkyl, C_1-C_4 -Alkoxy oder C_1-C_4 -Halogenalkoxy;
 - A Sauerstoff oder Schwefel;
- 15 X eine chemische Bindung, Methylen, 1,2-Ethylen, Propan-1,3-diyl, Ethen-1,2-diyl, Ethin-1,2-diyl oder über das
 Heteroatom an den Phenylring gebundenes Oxymethylen oder
 Thiamethylen, wobei alle Gruppen unsubstituiert sein oder einen oder zwei Substituenten tragen können, jeweils ausgewählt
 aus der Gruppe bestehend aus Cyano, Carboxy, Halogen,
- aus der Gruppe bestehend aus Cyano, Carboxy, Halogen, $C_1-C_4-Alkyl$, $C_1-C_4-Halogenalkyl$, $C_1-C_4-Alkoxy$, $(C_1-C_4-Alkyl)$ amino und Phenyl;
- R6 Wasserstoff, Nitro, Cyano, Halogen, Halogensulfonyl, $-O-Y-R^8$, $-O-CO-Y-R^8$, $-N(Y-R^8)(Z-R^9)$, $-N(Y-R^8)-SO_2-Z-R^9$, $-N(SO_2-Y-R^8)(SO_2-Z-R^9)$, $-N(Y-R^8)-CO-Z-R^9$, $-N(Y-R^8)(O-Z-R^9)$, $-S(O)_n-Y-R^8$ mit n=0, 1 oder 2, $-SO_2-O-Y-R^8$, $-SO_2-N(Y-R^8)(Z-R^9)$, $-CO-Y-R^8$, $-C(=NOR^{10})-Y-R^8$, $-C(=NOR^{10})-O-Y-R^8$, $-CO-O-Y-R^8$, $-CO-S-Y-R^8$, $-CO-N(Y-R^8)(Z-R^9)$, $-CO-N(Y-R^8)(O-Z-R^9)$ oder $-PO(O-Y-R^8)_2$;
 - Q Stickstoff oder eine Gruppe $C-R^7$, worin R^7 für Wasserstoff, OH, SH oder NH_2 steht; oder
- 35 X-R⁶ und R⁷ eine 3- oder 4-gliedrige Kette, deren Kettenglieder neben Kohlenstoff 1, 2 oder 3 Heteroatome, ausgewählt unter Stickstoff-, Sauerstoff- und Schwefelatomen, aufweisen können, die unsubstituiert sein oder ihrerseits einen, zwei oder drei Substituenten tragen kann, und deren Glieder auch ein oder zwei nicht benachbarte Carbonyl-, Thiocarbonyl- oder Sulfonyl-Gruppen umfassen können,

worin die Variablen Y, Z, R⁸, R⁹ und R¹⁰ die nachfolgend angegebenen Bedeutungen haben:

Y, Z unabhängig voneinander:

eine chemische Bindung, Methylen oder 1,2-Ethylen, die unsubstituiert sein oder einen oder zwei Substituenten tragen können, jeweils ausgewählt aus der Gruppe bestehend aus Carboxy, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl,

 $Di-(C_1-C_4-Alkyl)$ amino;

5

(C₁-C₄-Alkoxy)carbonyl und Phenyl;

R8, R9 unabhängig voneinander: Wasserstoff, C_1-C_6 -Halogenalkyl, C_1-C_4 -Alkoxy- C_1-C_4 -alkyl, C2-C6-Alkenyl, C2-C6-Halogenalkenyl, C2-C6-Alkinyl, C2-C6-Halogenalkinyl, $-CH(R^{11})(R^{12})$, $-C(R^{11})(R^{12})-NO_2$, $-C(R^{11})(R^{12})-CN$, 10 $-C(R^{11})(R^{12})-Halogen, -C(R^{11})(R^{12})-OR^{13}, -C(R^{11})(R^{12})-N(R^{13})R^{14},$ $-C(R^{11})(R^{12})-N(R^{13})-OR^{14}$, $-C(R^{11})(R^{12})-SR^{13}$, $-C(R^{11})(R^{12})-SO-R^{13}$, $-C(R^{11})(R^{12})-SO_2-R^{13}$, $-C(R^{11})(R^{12})-SO_2-OR^{13}$, $-C(R^{11})(R^{12})-SO_2-N(R^{13})R^{14}$, $-C(R^{11})(R^{12})-CO-R^{13}$, $-C(R^{11})(R^{12})-C(=NOR^{15})-R^{13}$, $-C(R^{11})(R^{12})-CO-OR^{13}$, 15 $-C(R^{11})(R^{12})-CO-SR^{13}$, $-C(R^{11})(R^{12})-CO-N(R^{13})R^{14}$, $-C(R^{11})(R^{12})-CO-N(R^{13})-OR^{14}$, $-C(R^{11})(R^{12})-PO(OR^{13})_2$, $C_3-C_8-Cycloalkyl-C_1-C_4-alkyl$, C3-C8-Cycloalkyl, das ein Carbonyl- oder Thiocarbonyl-Ringglied enthalten kann, 20 Phenyl oder 3-, 4-, 5-, 6- oder 7-gliedriges Heterocyclyl, das ein Carbonyl- oder Thiocarbonyl-Ringglied enthalten kann, wobei jeder Cycloalkyl-, der Phenyl- und jeder Heterocyclyl-Ring unsubstituiert sein oder ein, zwei, drei oder vier Substituenten tragen kann, jeweils ausgewählt aus 25 der Gruppe bestehend aus Cyano, Nitro, Amino, Hydroxy, Carboxy, Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, C₁-C₄-Alkylthio, C₁-C₄-Halogenalkylthio, C₁-C₄-Alkylsulfonyl, C_1-C_4 -Halogenalkylsulfonyl, (C_1-C_4 -Alkyl)carbonyl, 30 $(C_1-C_4-Halogenalkyl)$ carbonyl, $(C_1-C_4-Alkyl)$ carbonyloxy,

35 R¹⁰ Wasserstoff, C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl, C₁-C₄-Alkoxy $carbonyl-C_1-C_4-alkyl$, $C_2-C_6-Alkenyl$, $C_2-C_6-Halogenalkenyl$, $C_2-C_6-Alkinyl$, $C_2-C_6-Halogenalkinyl$, $C_3-C_8-Cycloalkyl$, Phenyl oder Phenyl-C₁-C₄-alkyl;

 $(C_1-C_4-Halogenalkyl)$ carbonyloxy, $(C_1-C_4-Alkoxy)$ carbonyl und

- 40 wobei die Variablen R11 bis R15 die folgenden Bedeutungen aufweisen:
- R¹¹, R¹² unabhängig voneinander Wasserstoff, $C_1-C_4-Alkyl$, $C_1-C_4-Alkoxy-C_1-C_4-alkyl$, C_1-C_4 -Alkylthio- C_1-C_4 -alkyl, $(C_1-C_4$ -Alkoxy)carbonyl- C_1-C_4 -alkyl 45 oder Phenyl-C1-C4-alkyl, wobei der Phenylring unsubstituiert sein oder ein bis drei Substituenten tragen, jeweils

ausgewählt aus der Gruppe bestehend aus Cyano, Nitro, Carboxy, Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl und $(C_1$ - C_4 -Alkoxy) carbonyl;

- 5 R13, R14 unabhängig voneinander Wasserstoff, C_1 - C_6 -Alkyl, C_1 - C_6 -Halogenalkyl, C_1 - C_4 -Alkoxy- C_1 - C_4 -alkyl, C_2 - C_6 -Alkenyl, C_2 - C_6 -Halogenalkenyl, C2-C6-Alkinyl, C2-C6-Halogenalkinyl, C3-C8-Cycloalkyl, $C_3-C_8-Cycloalkyl-C_1-C_4-alkyl$, Phenyl, Phenyl- $C_1-C_4-alkyl$, 3bis 7-qliedriges Heterocyclyl oder Heterocyclyl-C1-C4-alkyl, 10 wobei jeder Cycloalkyl- und jeder Heterocyclyl-Ring ein Carbonyl- oder Thiocarbonyl-Ringglied enthalten kann, und wobei jeder Cycloalkyl-, der Phenyl- und jeder Heterocyclyl-Ring unsubstituiert sein oder ein bis vier Substituenten tragen kann, jeweils ausgewählt aus der Gruppe 15 bestehend aus Cyano, Nitro, Amino, Hydroxy, Carboxy, Halogen, $C_1-C_4-Alkyl$, $C_1-C_4-Halogenalkyl$, $C_1-C_4-Alkoxy$, C_1-C_4 -Halogenalkoxy, C_1-C_4 -Alkylthio, C_1-C_4 -Halogenalkylthio, C₁-C₄-Alkylsulfonyl, C₁-C₄-Halogenalkylsulfonyl, (C₁-C₄-Alkyl)carbonyl, (C₁-C₄-Halogenalkyl)carbonyl, 20 $(C_1-C_4-Alkyl)$ carbonyloxy, $(C_1-C_4-Halogenalkyl)$ carbonyloxy, (C₁-C₄-Alkoxy)carbonyl und Di-(C₁-C₄-Alkyl)amino;
- R¹⁵ Wasserstoff, C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl, C₂-C₆-Alkenyl, C₂-C₆-Halogenalkenyl, C₂-C₆-Alkinyl, C₂-C₆-Halogenalkinyl, C₃-C₈-Cycloalkyl, Phenyl oder Phenyl-C₁-C₄-alkyl;

und von deren landwirtschaftlich brauchbaren Salzen als Herbizide und/oder zur Desikkation und/oder Defoliation von Pflanzen.

Weiterhin betrifft die vorliegende Erfindung die Verbindungen der zuvor definierten allgemeinen Formel I und ihre landwirtschaftlich brauchbaren Salze, wobei von den beanspruchten Verbindungen solche Verbindungen der Formel I ausgenommen sind, worin A für

35 Sauerstoff, Q für CH, R³ und R⁵ für Trifluormethyl stehen, und R¹, R², R²', R⁴ und X-R⁶ Wasserstoff bedeuten; oder worin A für sauerstoff und Q für N stehen, R³ und R⁴ die zuvor genannten Bedeutungen aufweisen, R¹, R² und R²' Wasserstoff bedeuten und X-R⁶ für Wasserstoff oder Halogen steht, wenn R⁶ Trifluormethyl

40 bedeutet. Weiterhin ausgenommen sind Verbindungen der Formel I, worin A für Sauerstoff, O für CH und R³ für Trifluormethyl stehen,

bedeutet. Weiterhin ausgenommen sind Verbindungen der Formel I, worin A für Sauerstoff, Q für CH und R^3 für Trifluormethyl stehen, R^1 , R^2 , R^2 , R^4 Wasserstoff bedeuten und X- R^6 für eine Gruppe $S(O)_n-Y-R^8$ mit n=0, 1 oder 2 steht, worin Y eine Einfachbindung bedeutet und R^8 ausgewählt ist unter n-Propyl, Isopropyl,

45 Cyclopropylmethyl und 2,2,2-Trifluorethyl.

Außerdem betrifft die Erfindung:

6

- herbizide Mittel und Mittel zur Desikkation und/oder Defoliation von Pflanzen, welche die Verbindungen I als wirksame Substanzen enthalten,

 Verfahren zur Herstellung der Verbindungen I und von herbiziden Mitteln und Mitteln zur Desikkation und/oder Defoliation von Pflanzen unter Verwendung der Verbindungen I,

- Verfahren zur Bekämpfung von unerwünschtem Pflanzenwuchs (Schadpflanzen) und zur Desikkation und/oder Defoliation von Pflanzen mit den Verbindungen I,

- Verbindungen der allgemeinen Formel II,

20

10

worin R^3 , X und Q die oben genannten Bedeutungen haben und R^{2a} , $R^{2a'}$, R^{4a} , R^{5a} , R^{6a} für R^2 , R^2 , R^4 , R^5 und R^6 mit den oben genannten Bedeutungen stehen,

ausgenommen Verbindungen der allgemeinen Formel II,

worin Q für CH steht, R³ und R^{5a} Trifluormethyl bedeuten und R^{2a}, R^{2a'}, R^{4a} und X-R^{6a} Wasserstoff bedeuten; weiterhin ausgenommen Verbindungen der allgemeinen Formel II, worin Q für N steht, R³ und R^{4a} die oben für R³ bzw. R⁴ angegebene Bedeutung haben, R^{2a} und R^{2a'} Wasserstoff bedeuten,

30 $X-R^{6a}$ für Wasserstoff oder Halogen stehen, wenn R^{5a} Trifluormethyl bedeutet,

weiterhin ausgenommen Verbindungen der allgemeinen Formel II mit Q = CH und \mathbb{R}^3 = Trifluormethyl, wenn \mathbb{R}^{2a} , $\mathbb{R}^{2a'}$ und \mathbb{R}^{4a} Wasserstoff bedeuten, \mathbb{R}^{5a} die oben für \mathbb{R}^5 angegebene Bedeutung

hat, X eine Einfachbindung bedeutet und R^6 für eine Gruppe $S(O)_n-YR^8$ steht mit n=0, 1 oder 2, worin Y eine Einfachbindung bedeutet und R^8 ausgewählt ist unter n-Propyl, Isopropyl, Cyclopropylmethyl und 2,2,2-Trifluorethyl, sowie die Tautomeren der Verbindungen II.

40

Die Verbindungen der Formel I können in den Substituenten ein oder mehrere Chiralitätszentren aufweisen und liegen dann als Enantiomeren- oder Diastereomerengemische vor. Gegenstand der Erfindung sind sowohl die reinen Enantiomeren oder Diastereomeren 45 als auch deren Gemische.

7

Unter landwirtschaftlich brauchbaren Salzen kommen vor allem die Salze derjenigen Kationen oder die Säureadditionssalze derjenigen Säuren in Betracht, deren Kationen beziehungsweise Anionen die herbizide Wirkung der Verbindungen I nicht negativ beeinträch5 tigen. So kommen als Kationen insbesondere die Ionen der Alkalimetalle, vorzugsweise Natrium und Kalium, der Erdalkalimetalle, vorzugsweise Calcium, Magnesium und Barium, und der Übergangsmetalle, vorzugsweise Mangan, Kupfer, Zink und Eisen, sowie das Ammoniumion, das gewünschtenfalls ein bis vier C1-C4-Alkyl10 substituenten und/oder einen Phenyl- oder Benzylsubstituenten tragen kann, vorzugsweise Diisopropylammonium, Tetramethyl-ammonium, Tetrabutylammonium, Trimethylbenzylammonium, des weiteren Phosphoniumionen, Sulfoniumionen, vorzugsweise
Tri(C1-C4-alkyl)sulfonium und Sulfoxoniumionen, vorzugsweise
15 Tri(C1-C4-alkyl)sulfoxonium, in Betracht.

Anionen von brauchbaren Säureadditionssalzen sind in erster Linie Chlorid, Bromid, Fluorid, Hydrogensulfat, Sulfat, Dihydrogenphosphat, Hydrogenphosphat, Phosphat, Nitrat, Hydrogencarbonat, Carbonat, Hexafluorosilikat, Hexafluorophosphat, Benzoat, sowie die Anionen von C₁-C₄-Alkansäuren, vorzugsweise Formiat, Acetat, Propionat und Butyrat. Sie können durch Reaktion von I mit einer Säure des entsprechenden Anions, vorzugsweise der Chlorwasserstoffsäure, Bromwasserstoffsäure, Schwefelsäure, Phosphorsäure oder Salpetersäure, gebildet werden.

Die bei der Definition der Substituenten R2, R2', R4, R5, R6, R7 bis R19 oder als Reste an Cycloalkyl-, Phenyl- oder heterocyclischen Ringen genannten organischen Molekülteile stellen - wie die 30 Bedeutung Halogen - Sammelbegriffe für individuelle Aufzählungen der einzelnen Gruppenmitglieder dar. Sämtliche Kohlenstoffketten, also alle Alkyl-, Halogenalkyl-, Alkoxy-, Halogenalkoxy-, Alkylthio-, Halogenalkylthio-, Alkylsulfinyl-, Halogenalkylsulfinyl-, Alkylsulfonyl-, Halogenalkylsulfonyl-, Alkenyl-, Halogen-35 alkenyl-, Alkinyl- und Halogenalkinyl-Gruppen sowie entsprechende Gruppenteile in größeren Gruppen wie Alkoxycarbonyl, Phenylalkyl-, Cycloalkylalkyl, Alkoxycarbonylalkyl etc. können geradkettig oder verzweigt sein, wobei das Präfix $C_n - C_m$ jeweils die mögliche Anzahl von Kohlenstoffatomen in der Gruppe angibt. 40 Halogenierte Substituenten tragen vorzugsweise ein, zwei, drei, vier oder fünf gleiche oder verschiedene Halogenatome. Die Bedeutung Halogen steht jeweils für Fluor, Chlor, Brom oder Iod.

Ferner stehen beispielsweise:

WO 02/06233

PCT/EP01/08251

8

- C_1-C_4 -Alkyl für: CH_3 , C_2H_5 , n-Propyl, $CH(CH_3)_2$, n-Butyl, $CH(CH_3)-C_2H_5$, $CH_2-CH(CH_3)_2$ und $C(CH_3)_3$;

 C_1-C_4 -Halogenalkyl für: einen C_1-C_4 -Alkylrest wie vorstehend genannt, der partiell oder vollständig durch Fluor, Chlor, 5 Brom und/oder Iod substituiert ist, also z.B. CH2F, CHF2, CF3, CH2Cl, Dichlormethyl, Trichlormethyl, Chlorfluormethyl, Dichlorfluormethyl, Chlordifluormethyl, 2-Fluorethyl, 2-Chlorethyl, 2-Bromethyl, 2-Iodethyl, 2,2-Difluorethyl, 2,2,2-Trifluorethyl, 2-Chlor-2-fluorethyl, 10 2-Chlor-2,2-difluorethyl, 2,2-Dichlor-2-fluorethyl, 2,2,2-Trichlorethyl, C₂F₅, 2-Fluorpropyl, 3-Fluorpropyl, 2,2-Difluorpropyl, 2,3-Difluorpropyl, 2-Chlorpropyl, 3-Chlorpropyl, 2,3-Dichlorpropyl, 2-Brompropyl, 3-Brompropyl, 3,3,3-Trifluorpropyl, 3,3,3-Trichlorpropyl, 15 2,2,3,3,3-Pentafluorpropyl, Heptafluorpropyl, 1-(Fluormethyl)-2-fluorethyl, 1-(Chlormethyl)-2-chlorethyl, 1-(Brommethyl)-2-bromethyl, 4-Fluorbutyl, 4-Chlorbutyl,

20

n-Hexyl;

- C₁-C₆-Alkyl für: C₁-C₄-Alkyl wie vorstehend genannt, sowie z.B. n-Pentyl, 1-Methylbutyl, 2-Methylbutyl, 3-Methylbutyl, 2,2-Dimethylpropyl, 1-Ethylpropyl, n-Hexyl, 1,1-Dimethylpropyl, 1,2-Dimethylpropyl, 1-Methylpentyl, 2-Methylpentyl, 3-Methylpentyl, 4-Methylpentyl, 1,1-Dimethylbutyl, 1,2-Dimethylbutyl, 1,3-Dimethylbutyl, 2,2-Dimethylbutyl, 2,3-Dimethylbutyl, 3,3-Dimethylbutyl, 1-Ethylbutyl, 2-Ethylbutyl, 1,1,2-Trimethylpropyl, 1,2,2-Trimethylpropyl, 1-Ethyl-1-methylpropyl oder 1-Ethyl-2-methylpropyl, vorzugsweise Methyl, Ethyl, n-Propyl, 1-Methylethyl, n-Butyl, 1,1-Dimethylethyl, n-Pentyl oder

4-Brombutyl oder Nonafluorbutyl;

- C₁-C₆-Halogenalkyl für: einen C₁-C₆-Alkylrest wie vorstehend genannt, der partiell oder vollständig durch Fluor, Chlor, Brom und/oder Iod substituiert ist, also z.B. einen der unter C₁-C₄-Halogenalkyl genannten Reste sowie für 5-Fluor-1-pentyl, 5-Chlor-1-pentyl, 5-Brom-1-pentyl, 5-Iod-1-pentyl, 5,5,5-Trichlor-1-penyl, Undecafluorpentyl, 6-Fluor-1-hexyl, 6-Chlor-1-hexyl, 6-Brom-1-hexyl, 6-Iod-1-hexyl, 6,6,6-Trichlor-1-hexyl oder Dodecafluorhexyl;
- Phenyl-C₁-C₄-alkyl für: Benzyl, 1-Phenylethyl, 2-Phenylethyl,
 1-Phenylprop-1-yl, 2-Phenylprop-1-yl, 3-Phenylprop-1-yl,
 1-Phenylbut-1-yl, 2-Phenylbut-1-yl, 3-Phenylbut-1-yl,
 4-Phenylbut-1-yl, 1-Phenylbut-2-yl, 2-Phenylbut-2-yl,
 3-Phenylbut-2-yl, 3-Phenylbut-2-yl, 4-Phenylbut-2-yl,

9

```
1-(Phenylmethyl)-eth-1-yl,
        1-(Phenylmethyl)-1-(methyl)-eth-1-yl oder
        1-(Phenylmethyl)-prop-1-yl, vorzugsweise Benzyl oder
        2-Phenylethyl;
 5
        Heterocyclyl-C<sub>1</sub>-C<sub>4</sub>-alkyl für: Heterocyclylmethyl,
        1-Heterocyclyl-ethyl, 2-Heterocyclyl-ethyl,
        1-Heterocyclyl-prop-1-yl, 2-Heterocyclyl-prop-1-yl,
        3-Heterocyclyl-prop-1-yl, 1-Heterocyclyl-but-1-yl,
        2-Heterocyclyl-but-1-yl, 3-Heterocyclyl-but-1-yl,
10
        4-Heterocyclyl-but-1-yl, 1-Heterocyclyl-but-2-yl,
        2-Heterocyclyl-but-2-yl, 3-Heterocyclyl-but-2-yl,
        3-Heterocyclyl-but-2-yl, 4-Heterocyclyl-but-2-yl,
        1-(Heterocyclyl-methyl)-eth-1-yl,
        1-(Heterocyclylmethyl)-1-(methyl)-eth-1-yl oder
15
        1-(Heterocyclylmethyl)-prop-1-yl, vorzugsweise
        Heterocyclylmethyl oder 2-Heterocyclyl-ethyl;
        C_1-C_4-Alkoxy für: OCH<sub>3</sub>, OC<sub>2</sub>H<sub>5</sub>, n-Propoxy, OCH(CH<sub>3</sub>)<sub>2</sub>, n-Butoxy,
```

- C₁-C₄-Alkoxy für: OCH₃, OC₂H₅, n-Propoxy, OCH(CH₃)₂, n-Butoxy,
 OCH(CH₃)-C₂H₅, OCH₂-CH(CH₃)₂ oder OC(CH₃)₃, vorzugsweise für
 OCH₃, OC₂H₅ oder OCH(CH₃)₂;
- C₁-C₄-Halogenalkoxy für: einen C₁-C₄-Alkoxyrest wie vorstehend genannt, der partiell oder vollständig durch Fluor, Chlor, Brom und/oder Iod substituiert ist, also z.B. OCH2F, OCHF2, 25 OCF3, OCH2Cl, OCH(Cl)2, OC(Cl)3, Chlorfluormethoxy, Dichlorfluormethoxy, Chlordifluormethoxy, 2-Fluorethoxy, 2-Chlorethoxy, 2-Bromethoxy, 2-Iodethoxy, 2,2-Difluorethoxy, 2,2,2-Trifluorethoxy, 2-Chlor-2-fluorethoxy, 2-Chlor-2,2-difluorethoxy, 2,2-Dichlor-2-fluorethoxy, 30 2,2,2-Trichlorethoxy, OC₂F₅, 2-Fluorpropoxy, 3-Fluorpropoxy, 2,2-Difluorpropoxy, 2,3-Difluorpropoxy, 2-Chlorpropoxy, 3-Chlorpropoxy, 2,3-Dichlorpropoxy, 2-Brompropoxy, 3-Brompropoxy, 3,3,3-Trifluorpropoxy, 3,3,3-Trichlorpropoxy, 35 2,2,3,3,3-Pentafluorpropoxy, OCF₂-C₂F₅, $1-(CH_2F)-2-fluorethoxy$, $1-(CH_2Cl)-2-chlorethoxy$, 1-(CH₂Br)-2-bromethoxy, 4-Fluorbutoxy, 4-Chlorbutoxy, 4-Brombutoxy oder Nonafluorbutoxy, vorzugsweise für OCHF2,
- 40 2,2,2-Trifluorethoxy;
 - C₁-C₆-Alkylthio für: SCH₃, SC₂H₅, n-Propylthio, SCH(CH₃)₂, n-Butylthio, SCH(CH₃)-C₂H₅, SCH₂-CH(CH₃)₂ oder SC(CH₃)₃, vorzugsweise für SCH₃ oder SC₂H₅;

OCF3, Dichlorfluormethoxy, Chlordifluormethoxy oder

10

- C₁-C₄-Halogenalkylthio für: einen C₁-C₄-Alkylthiorest wie vorstehend genannt, der partiell oder vollständig durch Fluor, Chlor, Brom und/oder Iod substituiert ist, also z.B. SCH₂F, SCHF₂, SCH₂Cl, SCH(Cl)₂, SC(Cl)₃, SCF₃,

Chlorfluormethylthio, Dichlorfluormethylthio,
Chlordifluormethylthio, 2-Fluorethylthio, 2-Chlorethylthio,
2-Bromethylthio, 2-Iodethylthio, 2,2-Difluorethylthio,
2,2,2-Trifluorethylthio, 2-Chlor-2-fluorethylthio,
2-Chlor-2,2-difluorethylthio, 2,2-Dichlor-2-fluorethylthio,

2,2,2-Trichlorethylthio, SC₂F₅, 2-Fluorpropylthio,
3-Fluorpropylthio, 2,2-Difluorpropylthio,
2,3-Difluorpropylthio, 2-Chlorpropylthio, 3-Chlorpropylthio,
2,3-Dichlorpropylthio, 2-Brompropylthio, 3-Brompropylthio,
3,3,3-Trifluorpropylthio, 3,3,3-Trichlorpropylthio, SCH₂-C₂F₅,

SCF₂-C₂F₅, 1-(CH₂F)-2-fluorethylthio, 1-(CH₂Cl)-2-chlorethylthio, 1-(CH₂Br)-2-bromethylthio, 4-Fluorbutylthio, 4-Chlorbutylthio, 4-Brombutylthio oder SCF₂-CF₂-C₂F₅, vorzugsweise für SCHF₂, SCF₃, Dichlorfluormethylthio, Chlordifluormethylthio oder

20 2,2,2-Trifluorethylthio;

- $C_1-C_4-Alkoxy-C_1-C_4-alkyl$ für: durch $C_1-C_4-Alkoxy$ - wie vorstehend genannt - substituiertes $C_1-C_4-Alkyl$, also z.B. für CH_2-OCH_3 , $CH_2-OC_2H_5$, n-Propoxymethyl, $CH_2-OCH(CH_3)_2$,

n-Butoxymethyl, (1-Methylpropoxy)methyl,
(2-Methylpropoxy)methyl, CH₂-OC(CH₃)₃, 2-(Methoxy)ethyl,
2-(Ethoxy)ethyl, 2-(n-Propoxy)ethyl, 2-(1-Methylethoxy)ethyl,
2-(n-Butoxy)ethyl, 2-(1-Methylpropoxy)ethyl,
2-(2-Methylpropoxy)ethyl, 2-(1,1-Dimethylethoxy)ethyl,

2-(Methoxy)propyl, 2-(Ethoxy)propyl, 2-(n-Propoxy)propyl, 2-(1-Methylethoxy)propyl, 2-(n-Butoxy)propyl, 2-(1-Methylpropoxy)propyl, 2-(2-Methylpropoxy)propyl, 2-(1-1-Dimethylethoxy)propyl, 3-(Methoxy)propyl.

2-(1,1-Dimethylethoxy)propyl, 3-(Methoxy)propyl,

3-(Ethoxy)propyl, 3-(n-Propoxy)propyl,

35 3-(1-Methylethoxy)propyl, 3-(n-Butoxy)propyl,

3-(1-Methylpropoxy)propyl, 3-(2-Methylpropoxy)propyl,

3-(1,1-Dimethylethoxy)propyl, 2-(Methoxy)butyl,

2-(Ethoxy)butyl, 2-(n-Propoxy)butyl, 2-(1-Methylethoxy)butyl,

2-(n-Butoxy)butyl, 2-(1-Methylpropoxy)butyl,

2-(2-Methylpropoxy)butyl, 2-(1,1-Dimethylethoxy)butyl,

3-(Methoxy)butyl, 3-(Ethoxy)butyl, 3-(n-Propoxy)butyl,

3-(1-Methylethoxy)butyl, 3-(n-Butoxy)butyl,

3-(1-Methylpropoxy)butyl, 3-(2-Methylpropoxy)butyl,

3-(1,1-Dimethylethoxy)butyl, 4-(Methoxy)butyl,

45 4-(Ethoxy)butyl, 4-(n-Propoxy)butyl, 4-(1-Methylethoxy)butyl,

4-(n-Butoxy)butyl, 4-(1-Methylpropoxy)butyl,

4-(2-Methylpropoxy)butyl oder 4-(1,1-Dimethylethoxy)butyl,

11

vorzugsweise für CH_2-OCH_3 , $CH_2-OC_2H_5$, 2-Methoxyethyl oder 2-Ethoxyethyl;

- C₁-C₄-Alkylthio-C₁-C₄-alkyl für: durch C₁-C₄-Alkylthio wie vorstehend genannt substituiertes C₁-C₄-Alkyl, also z.B. für CH₂-SCH₃, CH₂-SC₂H₅, n-Propylthiomethyl, CH₂-SCH(CH₃)₂, n-Butylthiomethyl, (1-Methylpropylthio)methyl, (2-Methylpropylthio)methyl, CH₂-SC(CH₃)₂, 2-(Methylthio)ethyl, 2-(Ethylthio)ethyl, 2-(n-Propylthio)ethyl,
- 2-(1-Methylethylthio)ethyl, 2-(n-Butylthio)ethyl,
 2-(1-Methylpropylthio)ethyl, 2-(2-Methylpropylthio)ethyl,
 2-(1,1-Dimethylethylthio)ethyl, 2-(Methylthio)propyl,
 2-(Ethylthio)propyl, 2-(n-Propylthio)propyl,
 2-(1-Methylethylthio)propyl, 2-(n-Butylthio)propyl,
- 2-(1-Methylpropylthio)propyl, 2-(2-Methylpropylthio)propyl, 2-(1,1-Dimethylethylthio)propyl, 3-(Methylthio)propyl,

3-(Ethylthio)propyl, 3-(n-Propylthio)propyl,

- 3-(1-Methylethylthio)propyl, 3-(n-Butylthio)propyl,
- 3-(1-Methylpropylthio)propyl, 3-(2-Methylpropylthio)propyl,
- 3-(1,1-Dimethylethylthio)propyl, 2-(Methylthio)butyl, 2-(Ethylthio)butyl, 2-(n-Propylthio)butyl,

2-(1-Methylethylthio)butyl, 2-(n-Butylthio)butyl,

- 2-(1-Methylpropylthio)butyl, 2-(2-Methylpropylthio)butyl,
- 2-(1,1-Dimethylethylthio)butyl, 3-(Methylthio)butyl,
- 25 3-(Ethylthio)butyl, 3-(n-Propylthio)butyl,
 - 3-(1-Methylethylthio)butyl, 3-(n-Butylthio)butyl,
 - 3-(1-Methylpropylthio)butyl, 3-(2-Methylpropylthio)butyl,
 - 3-(1,1-Dimethylethylthio)butyl, 4-(Methylthio)butyl,
 - 4-(Ethylthio)butyl, 4-(n-Propylthio)butyl,
- 4-(1-Methylethylthio)butyl, 4-(n-Butylthio)butyl, 4-(1-Methylpropylthio)butyl, 4-(2-Methylpropylthio)butyl oder 4-(1,1-Dimethylethylthio)butyl, vorzugsweise CH₂-SCH₃, CH₂-SC₂H₅, 2-Methylthioethyl oder 2-Ethylthioethyl;
- 35 $(C_1-C_4-Alkyl)$ carbonyl für: $CO-CH_3$, $CO-C_2H_5$, $CO-CH_2-C_2H_5$, $CO-CH(CH_3)_2$, n-Butylcarbonyl, $CO-CH(CH_3)-C_2H_5$, $CO-CH_2-CH(CH_3)_2$ oder $CO-C(CH_3)_3$, vorzugsweise für $CO-CH_3$ oder $CO-C_2H_5$;
- (C₁-C₄-Halogenalkyl)carbonyl für: einen (C₁-C₄-Alkyl)carbonylrest - wie vorstehend genannt - der partiell oder vollständig durch Fluor, Chlor, Brom und/oder Iod substituiert ist, also z.B. CO-CH₂F, CO-CHF₂, CO-CF₃, CO-CH₂Cl, CO-CH(Cl)₂, CO-C(Cl)₃, Chlorfluormethylcarbonyl,
- Dichlorfluormethylcarbonyl, Chlordifluormethylcarbonyl, 2-Fluorethylcarbonyl, 2-Chlorethylcarbonyl,
 - 2-Bromethylcarbonyl, 2-Iodethylcarbonyl, 2,2-Difluorethylcarbonyl, 2,2,2-Trifluorethylcarbonyl,

12

2-Chlor-2-fluorethylcarbonyl, 2-Chlor-2,2-difluorethylcarbonyl, 2,2-Dichlor-2-fluorethylcarbonyl, 2,2,2-Trichlorethylcarbonyl, CO-C₂F₅, 2-Fluorpropylcarbonyl, 3-Fluorpropylcarbonyl, 2,2-Difluorpropylcarbonyl, 5 2,3-Difluorpropylcarbonyl, 2-Chlorpropylcarbonyl, 3-Chlorpropylcarbonyl, 2,3-Dichlorpropylcarbonyl, 2-Brompropylcarbonyl, 3-Brompropylcarbonyl, 3,3,3-Trifluorpropylcarbonyl, 3,3,3-Trichlorpropylcarbonyl, 2,2,3,3,3-Pentafluorpropylcarbonyl, CO-CF₂-C₂F₅, $1-(CH_2F)-2-$ 10 fluorethylcarbonyl, 1-(CH2Cl)-2-chlorethylcarbonyl, 1-(CH₂Br)-2-bromethylcarbonyl, 4-Fluorbutylcarbonyl, 4-Chlorbutylcarbonyl, 4-Brombutylcarbonyl oder Nonafluorbutylcarbonyl, vorzugsweise für CO-CF3, CO-CH2Cl, oder 2,2,2-Trifluorethylcarbonyl; 15 $(C_1-C_4-Alkyl)$ carbonyloxy für: $O-CO-CH_3$, $O-CO-C_2H_5$, $O-CO-CH_2-C_2H_5$, $O-CO-CH(CH_3)_2$, $O-CO-CH_2-CH_2-C_2H_5$, $O-CO-CH(CH_3)-C_2H_5$, $O-CO-CH_2-CH(CH_3)_2$ oder $O-CO-C(CH_3)_3$, vorzugsweise für O-CO-CH3 oder O-CO-C2H5; 20 $(C_1-C_4-Halogenalkyl)$ carbonyloxy für: einen $(C_1-C_4-Alkyl)$ carbonylrest - wie vorstehend genannt - der partiell oder vollständig durch Fluor, Chlor, Brom und/oder Iod substituiert ist, also z.B. O-CO-CH₂F, O-CO-CHF₂, 25 $O-CO-CF_3$, $O-CO-CH_2Cl$, $O-CO-CH(Cl)_2$, $O-CO-C(Cl)_3$, Chlorfluormethylcarbonyloxy, Dichlorfluormethylcarbonyloxy, Chlordifluormethylcarbonyloxy, 2-Fluorethylcarbonyloxy, 2-Chlorethylcarbonyloxy, 2-Bromethylcarbonyloxy, 2-Iodethylcarbonyloxy, 2,2-Difluorethylcarbonyloxy, 30 2,2,2-Trifluorethylcarbonyloxy, 2-Chlor-2-fluorethylcarbonyloxy, 2-Chlor-2,2-difluorethylcarbonyloxy, 2,2-Dichlor-2-fluorethylcarbonyloxy, 2,2,2-Trichlorethylcarbonyloxy, O-CO-C₂F₅, 35 2-Fluorpropylcarbonyloxy, 3-Fluorpropylcarbonyloxy, 2,2-Difluorpropylcarbonyloxy, 2,3-Difluorpropylcarbonyloxy, 2-Chlorpropylcarbonyloxy, 3-Chlorpropylcarbonyloxy, 2,3-Dichlorpropylcarbonyloxy, 2-Brompropylcarbonyloxy, 3-Brompropylcarbonyloxy, 3,3,3-Trifluorpropylcarbonyloxy, 40 3,3,3-Trichlorpropylcarbonyloxy, 2,2,3,3,3-Pentafluorpropylcarbonyloxy, Heptafluorpropylcarbonyloxy, 1-(CH₂F)-2-fluorethylcarbonyloxy,1-(CH₂Cl)-2-chlorethylcarbonyloxy, 45 1-(CH₂Br)-2-bromethylcarbonyloxy, 4-Fluorbutylcarbonyloxy,

4-Chlorbutylcarbonyloxy, 4-Brombutylcarbonyloxy oder

45

WO 02/06233 PCT/EP01/08251

13

Nonafluorbutylcarbonyloxy, vorzugsweise für O-CO-CF3, O-CO-CH₂Cl oder 2,2,2-Trifluorethylcarbonyloxy;

(C₁-C₄-Alkoxy)carbonyl für: CO-OCH₃, CO-OC₂H₅, n-Propoxycarbonyl, CO-OCH(CH₃)₂, n-Butoxycarbonyl, CO-OCH(CH₃)-C₂H₅, 5 CO-OCH₂-CH(CH₃)₂ oder CO-OC(CH₃)₃, vorzugsweise für CO-OCH₃ oder CO-OC2H5; $(C_1-C_4-Alkoxy)$ carbonyl $-C_1-C_4-alkyl$ für: durch $(C_1-C_4-Alkoxy)$ carbonyl - wie vorstehend genannt -10 substituiertes C_1 - C_4 -Alkyl, also z.B. für Methoxycarbonyl-methyl, Ethoxycarbonyl-methyl, n-Propoxycarbonyl-methyl, (1-Methylethoxycarbonyl)methyl, n-Butoxycarbonylmethyl, (1-Methylpropoxycarbonyl)methyl, (2-Methylpropoxycarbonyl) methyl, 15 (1,1-Dimethylethoxycarbonyl)methyl, 1-(Methoxycarbonyl)ethyl, 1-(Ethoxycarbonyl)ethyl, 1-(n-Propoxycarbonyl)ethyl, 1-(1-Methylethoxycarbonyl)ethyl, 1-(n-Butoxycarbonyl)ethyl, 2-(Methoxycarbonyl)ethyl, 2-(Ethoxycarbonyl)ethyl, 2-(n-Propoxycarbonyl)ethyl, 2-(1-Methylethoxycarbonyl)ethyl, 20 2-(n-Butoxycarbonyl)ethyl, 2-(1-Methylpropoxycarbonyl)ethyl, 2-(2-Methylpropoxycarbonyl)ethyl, 2-(1,1-Dimethylethoxycarbonyl)ethyl, 2-(Methoxycarbonyl)propyl, 2-(Ethoxycarbonyl)propyl, 2-(n-Propoxycarbonyl)propyl, 25 2-(1-Methylethoxycarbonyl)propyl, 2-(n-Butoxycarbonyl)propyl, 2-(1-Methylpropoxycarbonyl)propyl, . 2-(2-Methylpropoxycarbonyl)propyl, 2-(1,1-Dimethylethoxycarbonyl)propyl, 3-(Methoxycarbonyl)propyl, 3-(Ethoxycarbonyl)propyl, 30 3-(n-Propoxycarbonyl)propyl, 3-(1-Methylethoxycarbonyl)-propyl, 3-(n-Butoxycarbonyl)propyl, 3-(1-Methylpropoxycarbonyl)propyl, 3-(2-Methylpropoxycarbonyl)propyl, 35 3-(1,1-Dimethylethoxycarbonyl)propyl, 2-(Methoxycarbonyl)-butyl, 2-(Ethoxycarbonyl)butyl, 2-(n-Propoxycarbonyl)butyl, 2-(1-Methylethoxycarbonyl)butyl, 2-(n-Butoxycarbonyl)butyl, 2-(1-Methylpropoxycarbonyl)butyl, 2-(2-Methylpropoxycarbonyl)butyl, 40 2-(1,1-Dimethylethoxycarbonyl)butyl, 3-(Methoxycarbonyl)butyl, 3-(Ethoxycarbonyl)butyl, 3-(n-Propoxycarbonyl)butyl, 3-(1-Methylethoxycarbonyl)butyl, 3-(n-Butoxycarbonyl)butyl, 3-(1-Methylpropoxycarbonyl)butyl, 3-(2-Methylpropoxycarbonyl)butyl,

3-(1,1-Dimethylethoxycarbonyl)butyl,

4-(Methoxycarbonyl)butyl, 4-(Ethoxycarbonyl)butyl,

```
4-(n-Propoxycarbonyl)butyl, 4-(1-Methylethoxycarbonyl)butyl,
       4-(n-Butoxycarbonyl)butyl, 4-(1-Methylpropoxycarbonyl)butyl,
       4-(2-Methylpropoxycarbonyl)butyl oder
       4-(1,1-Dimethylethoxycarbonyl)butyl, vorzugsweise für
       Methoxycarbonylmethyl, Ethoxycarbonylmethyl,
5
       1-(Methoxycarbonyl)ethyl oder 1-(Ethoxycarbonyl)ethyl;
       (C_1-C_4-Alkoxy) carbonyl-C_1-C_4-alkoxy für: durch
       (C_1-C_4-Alkoxy) carbonyl - wie vorstehend genannt -
       substituiertes C_1-C_4-alkoxy, also z.B. für
10
       Methoxycarbonylmethoxy, Ethoxycarbonylmethoxy,
       n-Propoxycarbonylmethoxy, (1-Methylethoxycarbonyl)methoxy,
       n-Butoxycarbonylmethoxy, (1-Methylpropoxycarbonyl)methoxy,
       (2-Methylpropoxycarbonyl) methoxy,
       (1,1-Dimethylethoxycarbonyl)methoxy,
15
       1-(Methoxycarbonyl)ethoxy, 1-(Ethoxycarbonyl)ethoxy,
       1-(n-Propoxycarbonyl)ethoxy,
       1-(1-Methylethoxycarbonyl)ethoxy, 1-(n-Butoxycarbonyl)ethoxy,
       2-(Methoxycarbonyl)ethoxy, 2-(Ethoxycarbonyl)ethoxy,
       2-(n-Propoxycarbonyl)ethoxy,
20
       2-(1-Methylethoxycarbonyl)ethoxy, 2-(n-Butoxycarbonyl)ethoxy,
       2-(1-Methylpropoxycarbonyl)ethoxy,
       2-(2-Methylpropoxycarbonyl)ethoxy,
       2-(1,1-Dimethylethoxycarbonyl)ethoxy,
       2-(Methoxycarbonyl)propoxy, 2-(Ethoxycarbonyl)propoxy,
25
       2-(n-Propoxycarbonyl)propoxy,
       2-(1-Methylethoxycarbonyl)propoxy,
        2-(n-Butoxycarbonyl)propoxy,
        2-(1-Methylpropoxycarbonyl)propoxy,
        2-(2-Methylpropoxycarbonyl)propoxy,
30
        2-(1,1-Dimethylethoxycarbonyl)propoxy,
        3-(Methoxycarbonyl)propoxy, 3-(Ethoxycarbonyl)propoxy,
        3-(n-Propoxycarbonyl)propoxy,
        3-(1-Methylethoxycarbonyl)propoxy,
        3-(n-Butoxycarbonyl)propoxy,
35
        3-(1-Methylpropoxycarbonyl)propoxy,
        3-(2-Methylpropoxycarbonyl)propoxy,
        3-(1,1-Dimethylethoxycarbonyl)propoxy,
        2-(Methoxycarbonyl)-butoxy, 2-(Ethoxycarbonyl)butoxy,
        2-(n-Propoxycarbonyl)butoxy,
40
        2-(1-Methylethoxycarbonyl)butoxy, 2-(n-Butoxycarbonyl)butoxy,
        2-(1-Methylpropoxycarbonyl)butoxy,
        2-(2-Methylpropoxycarbonyl)butoxy,
        2-(1,1-Dimethylethoxycarbonyl)butoxy,
        3-(Methoxycarbonyl)butoxy, 3-(Ethoxycarbonyl)butoxy,
45
        3-(n-Propoxycarbonyl)butoxy,
        3-(1-Methylethoxycarbonyl)butoxy, 3-(n-Butoxycarbonyl)butoxy,
```

```
3-(1-Methylpropoxycarbonyl)butoxy,
       3-(2-Methylpropoxycarbonyl)butoxy,
       3-(1,1-Dimethylethoxycarbonyl)butoxy,
       4-(Methoxycarbonyl)butoxy, 4-(Ethoxycarbonyl)butoxy,
       4-(n-Propoxycarbonyl)butoxy,
 5
       4-(1-Methylethoxycarbonyl)butoxy, 4-(n-Butoxycarbonyl)butoxy,
       4-(1-Methylpropoxycarbonyl)butoxy,
       4-(2-Methylpropoxycarbonyl)butyl oder
       4-(1,1-Dimethylethoxycarbonyl)butoxy, vorzugsweise für
       Methoxycarbonylmethoxy, Ethoxycarbonylmethoxy,
10
       1-(Methoxycarbonyl)ethoxy oder 1-(Ethoxycarbonyl)ethoxy;
       (C_1-C_4-Alkoxy) carbonyl-C_1-C_4-alkylthio für: durch
       (C1-C4-Alkoxy)carbonyl - wie vorstehend genannt -
       substituiertes C1-C4-alkylthio, also z.B. für
15
       Methoxycarbonylmethylthio, Ethoxycarbonylmethylthio,
       n-Propoxycarbonylmethylthio,
       (1-Methylethoxycarbonyl) methylthio,
       n-Butoxycarbonylmethylthio,
       (1-Methylpropoxycarbonyl) methylthio,
20
       (2-Methylpropoxycarbonyl) methylthio,
       (1,1-Dimethylethoxycarbonyl)methylthio,
       1-(Methoxycarbonyl)ethylthio, 1-(Ethoxycarbonyl)ethylthio,
       1-(n-Propoxycarbonyl)ethylthio,
       1-(1-Methylethoxycarbonyl)ethylthio,
25
       1-(n-Butoxycarbonyl)ethylthio, 2-(Methoxycarbonyl)ethylthio,
       2-(Ethoxycarbonyl)ethylthio, 2-(n-Propoxycarbonyl)ethylthio,
       2-(1-Methylethoxycarbonyl)ethylthio,
       2-(n-Butoxycarbonyl)ethylthio,
       2-(1-Methylpropoxycarbonyl)ethylthio,
30
       2-(2-Methylpropoxycarbonyl)ethylthio,
       2-(1,1-Dimethylethoxycarbonyl)ethylthio,
       2-(Methoxycarbonyl)propylthio, 2-(Ethoxycarbonyl)propylthio,
       2-(n-Propoxycarbonyl) propylthio,
       2-(1-Methylethoxycarbonyl)propylthio,
35
       2-(n-Butoxycarbonyl)propylthio,
       2-(1-Methylpropoxycarbonyl)propylthio,
       2-(2-Methylpropoxycarbonyl)propylthio,
       2-(1,1-Dimethylethoxycarbonyl)propylthio,
       3-(Methoxycarbonyl)propylthio, 3-(Ethoxycarbonyl)propylthio,
40
       3-(n-Propoxycarbonyl) propylthio,
       3-(1-Methylethoxycarbonyl)propylthio,
       3-(n-Butoxycarbonyl)propylthio,
        3-(1-Methylpropoxycarbonyl)propylthio,
       3-(2-Methylpropoxycarbonyl)propylthio,
45
       3-(1,1-Dimethylethoxycarbonyl)propylthio,
       2-(Methoxycarbonyl)-butylthio, 2-(Ethoxycarbonyl)butylthio,
```

```
2-(n-Propoxycarbonyl)butylthio,
        2-(1-Methylethoxycarbonyl)butylthio,
         2-(n-Butoxycarbonyl)butylthio,
        2-(1-Methylpropoxycarbonyl)butylthio,
        2-(2-Methylpropoxycarbonyl)butylthio,
 5
        2-(1,1-Dimethylethoxycarbonyl)butylthio,
        3-(Methoxycarbonyl)butylthio, 3-(Ethoxycarbonyl)butylthio,
         3-(n-Propoxycarbonyl)butylthio,
         3-(1-Methylethoxycarbonyl)butylthio,
         3-(n-Butoxycarbonyl)butylthio,
10
         3-(1-Methylpropoxycarbonyl)butylthio,
         3-(2-Methylpropoxycarbonyl)butylthio,
         3-(1,1-Dimethylethoxycarbonyl)butylthio,
         4-(Methoxycarbonyl)butylthio, 4-(Ethoxycarbonyl)butylthio,
         4-(n-Propoxycarbonyl)butylthio,
15
         4-(1-Methylethoxycarbonyl)butylthio,
         4-(n-Butoxycarbonyl)butylthio,
         4-(1-Methylpropoxycarbonyl)butylthio,
         4-(2-Methylpropoxycarbonyl)butyl oder
         4-(1,1-Dimethylethoxycarbonyl)butylthio, vorzugsweise für
20
         Methoxycarbonylmethylthio, Ethoxycarbonylmethylthio,
         1-(Methoxycarbonyl)ethylthio oder
         1-(Ethoxycarbonyl)ethylthio;
         C<sub>1</sub>-C<sub>4</sub>-Alkylsulfinyl für: SO-CH<sub>3</sub>, SO-C<sub>2</sub>H<sub>5</sub>, SO-CH<sub>2</sub>-C<sub>2</sub>H<sub>5</sub>,
25 ~
         SO-CH(CH<sub>3</sub>)<sub>2</sub>, n-Butylsulfinyl, SO-CH(CH<sub>3</sub>)-C<sub>2</sub>H<sub>5</sub>, SO-CH<sub>2</sub>-CH(CH<sub>3</sub>)<sub>2</sub>
         oder SO-C(CH<sub>3</sub>)<sub>3</sub>, vorzugsweise für SO-CH<sub>3</sub> oder SO-C<sub>2</sub>H<sub>5</sub>;
         C<sub>1</sub>-C<sub>4</sub>-Halogenalkylsulfinyl für: einen C<sub>1</sub>-C<sub>4</sub>-Alkylsulfinylrest
         - wie vorstehend genannt - der partiell oder vollständig
30
         durch Fluor, Chlor, Brom und/oder Iod substituiert ist, also
         z.B. SO-CH<sub>2</sub>F, SO-CHF<sub>2</sub>, SO-CF<sub>3</sub>, SO-CH<sub>2</sub>Cl, SO-CH(Cl)<sub>2</sub>,
         SO-C(Cl)<sub>3</sub>, Chlorfluormethylsulfinyl,
         Dichlorfluormethylsulfinyl, Chlordifluormethylsulfinyl,
         2-Fluorethylsulfinyl, 2-Chlorethylsulfinyl,
35
         2-Bromethylsulfinyl, 2-Iodethylsulfinyl,
         2,2-Difluorethylsulfinyl, 2,2,2-Trifluorethylsulfinyl,
         2-Chlor-2-fluorethylsulfinyl,
         2-Chlor-2,2-difluorethylsulfinyl,
         2,2-Dichlor-2-fluorethylsulfinyl,
40
         2,2,2-Trichlorethylsulfinyl, SO-C<sub>2</sub>F<sub>5</sub>, 2-Fluorpropylsulfinyl,
         3-Fluorpropylsulfinyl, 2,2-Difluorpropylsulfinyl,
         2,3-Difluorpropylsulfinyl, 2-Chlorpropylsulfinyl,
         3-Chlorpropylsulfinyl, 2,3-Dichlorpropylsulfinyl,
         2-Brompropylsulfinyl, 3-Brompropylsulfinyl,
45
         3,3,3-Trifluorpropylsulfinyl, 3,3,3-Trichlorpropylsulfinyl,
         SO-CH_2-C_2F_5, SO-CF_2-C_2F_5,
```

17

1-(Fluormethyl)-2-fluorethylsulfinyl,
1-(Chlormethyl)-2-chlorethylsulfinyl,
1-(Brommethyl)-2-bromethylsulfinyl, 4-Fluorbutylsulfinyl,
4-Chlorbutylsulfinyl, 4-Brombutylsulfinyl oder
Nonafluorbutylsulfinyl, vorzugsweise für SO-CF3, SO-CH2Cl oder
2,2,2-Trifluorethylsulfinyl;

- C₁-C₄-Alkylsulfonyl für: SO₂-CH₃, SO₂-C₂H₅, SO₂-CH₂-C₂H₅, SO₂-CH(CH₃)₂, n-Butylsulfonyl, SO₂-CH(CH₃)-C₂H₅,
 SO₂-CH₂-CH(CH₃)₂ oder SO₂-C(CH₃)₃, vorzugsweise für SO₂-CH₃ oder SO₂-C₂H₅;
- C₁-C₄-Halogenalkylsulfonyl für: einen C₁-C₄-Alkylsulfonylrest
 wie vorstehend genannt der partiell oder vollständig
 durch Fluor, Chlor, Brom und/oder Iod substituiert ist, also
 z.B. SO₂-CH₂F, SO₂-CHF₂, SO₂-CF₃, SO₂-CH₂Cl, SO₂-CH(Cl)₂,
 SO₂-C(Cl)₃, Chlorfluormethylsulfonyl,
 Dichlorfluormethylsulfonyl, Chlordifluormethylsulfonyl,
 2-Fluorethylsulfonyl, 2-Chlorethylsulfonyl,
- 2-Bromethylsulfonyl, 2-Iodethylsulfonyl, 2,2-Difluorethylsulfonyl, 2,2,2-Trifluorethylsulfonyl, 2-Chlor-2-fluorethylsulfonyl, 2-Chlor-2,2-difluorethylsulfonyl, 2,2-Dichlor-2-fluorethylsulfonyl,
- 2,2,2-Trichlorethylsulfonyl, SO₂-C₂F₅, 2-Fluorpropylsulfonyl, 3-Fluorpropylsulfonyl, 2,2-Difluorpropylsulfonyl, 2,3-Difluorpropylsulfonyl, 2-Chlorpropylsulfonyl, 3-Chlorpropylsulfonyl, 2,3-Dichlorpropylsulfonyl, 2-Brompropylsulfonyl, 3-Brompropylsulfonyl,
- 3,3,3-Trifluorpropylsulfonyl, 3,3,3-Trichlorpropylsulfonyl, $SO_2-CH_2-C_2F_5$, $SO_2-CF_2-C_2F_5$, 1-(Fluormethyl)-2-fluorethylsulfonyl, <math>1-(Chlormethyl)-2-chlorethylsulfonyl, 1-(Brommethyl)-2-bromethylsulfonyl, 4-Fluorbutylsulfonyl,
- 4-Chlorbutylsulfonyl, 4-Brombutylsulfonyl oder Nonafluorbutylsulfonyl, vorzugsweise für SO₂-CF₃, SO₂-CH₂Cl oder 2,2,2-Trifluorethylsulfonyl;
- Di-(C₁-C₄-Alkyl)amino für: N(CH₃)₂, N(C₂H₅)₂,

 N,N-Dipropylamino, N[CH(CH₃)₂]₂, N,N-Dibutylamino,
 N,N-Di-(1-methylpropyl)amino, N,N-Di-(2-methylpropyl)amino,
 N[C(CH₃)₃]₂, N-Ethyl-N-methylamino, N-Methyl-N-propylamino,
 N-Methyl-N-(1-methylethyl)amino, N-Butyl-N-methylamino,
 N-Methyl-N-(1-methylpropyl)amino,
- N-Methyl-N-(2-methylpropyl)amino, N-(1,1-Dimethylethyl)-N-methylamino, N-Ethyl-N-propylamino, N-Ethyl-N-(1-methylethyl)amino, N-Butyl-N-ethylamino,

WO 02/06233

PCT/EP01/08251

```
N-Ethyl-N-(1-methylpropyl)amino,
       N-Ethyl-N-(2-methylpropyl)amino,
       N-Ethyl-N-(1,1-dimethylethyl)amino,
       N-(1-Methylethyl)-N-propylamino, N-Butyl-N-propylamino,
 5
       N-(1-Methylpropyl)-N-propylamino,
       N-(2-Methylpropyl)-N-propylamino,
       N-(1,1-Dimethylethyl)-N-propylamino,
       N-Butyl-N-(1-methylethyl)amino,
       N-(1-Methylethyl)-N-(1-methylpropyl)amino,
       N-(1-Methylethyl)-N-(2-methylpropyl)amino,
10
       N-(1,1-Dimethylethyl)-
       N-(1-methylethyl)amino, N-Butyl-N-(1-methylpropyl)amino,
       N-Butyl-N-(2-methylpropyl)amino,
       N-Butyl-N-(1,1-dimethylethyl)amino,
       N-(1-Methylpropyl)-N-(2-methylpropyl)amino,
15
       N-(1,1-Dimethylethyl)-N-(1-methylpropyl)amino oder
       N-(1,1-Dimethylethyl)-N-(2-methylpropyl)amino, vorzugsweise
       für N(CH_3)_2 oder N(C_2H_5);
20 -
       Di-(C_1-C_4-alkyl)-aminocarbonyl: z.B.
       N, N-Dimethylaminocarbonyl, N, N-Diethylaminocarbonyl,
       N, N-Di-(1-methylethyl) aminocarbonyl,
       N, N-Dipropylaminocarbonyl, N, N-Dibutylaminocarbonyl,
       N, N-Di-(1-methylpropyl)-aminocarbonyl,
25
       N, N-Di-(2-methylpropyl)-aminocarbonyl,
       N, N-Di-(1,1-dimethylethyl)-aminocarbonyl,
       N-Ethyl-N-methylaminocarbonyl,
       N-Methyl-N-propylaminocarbonyl,
       N-Methyl-N-(1-methylethyl)-aminocarbonyl,
       N-Butyl-N-methylaminocarbonyl,
30
       N-Methyl-N-(1-methylpropyl)-aminocarbonyl,
       N-Methyl-N-(2-methylpropyl)-aminocarbonyl,
       N-(1,1-Dimethylethyl)-N-methylaminocarbonyl,
       N-Ethyl-N-propylaminocarbonyl,
       N-Ethyl-N-(1-methylethyl)-aminocarbonyl,
35
       N-Butyl-N-ethylaminocarbonyl,
       N-Ethyl-N-(1-methylpropyl)-aminocarbonyl,
       N-Ethyl-N-(2-methylpropyl)-aminocarbonyl,
       N-Ethyl-N-(1,1-dimethylethyl)-aminocarbonyl,
       N-(1-Methylethyl)-N-propylaminocarbonyl,
40
       N-Butyl-N-propylaminocarbonyl,
       N-(1-Methylpropyl)-N-propylaminocarbonyl,
       N-(2-Methylpropyl)-N-propylaminocarbonyl,
       N-(1,1-Dimethylethyl)-N-propylaminocarbonyl,
       N-Butyl-N-(1-methylethyl)-aminocarbonyl,
45
       N-(1-Methylethyl)-N-(1-methylpropyl)-aminocarbonyl,
       N-(1-Methylethyl)-N-(2-methylpropyl)-aminocarbonyl,
```

```
N-(1,1-Dimethylethyl)-N-(1-methylethyl)-aminocarbonyl,
         N-Butyl-N-(1-methylpropyl)-aminocarbonyl,
         N-Butyl-N-(2-methylpropyl)-aminocarbonyl,
         N-Butyl-N-(1,1-dimethylethyl)-aminocarbonyl,
         N-(1-Methylpropyl)-N-(2-methylpropyl)-aminocarbonyl,
  5
         N-(1,1-Dimethylethyl)-N-(1-methylpropyl)-aminocarbonyl oder
         N-(1,1-Dimethylethyl)-N-(2-methylpropyl)-aminocarbonyl;
         Di-(C_1-C_4-alkyl)—aminocarbonyl-C_1-C_4-alkyl: Durch
         Di-(C_1-C_4-alkyl)-aminocarbonyl einfach substituiertes
 10
         C_1-C_4-Alkyl, z.B. Di-(C_1-C_4-alkyl)—aminocarbonylmethyl, 1-
         oder 2-Di-(C_1-C_4-alkyl)-aminocarbonylethyl, 1-, 2- oder
         3-Di-(C<sub>1</sub>-C<sub>4</sub>-alkyl)-aminocarbonylpropyl;
         Di-(C_1-C_4-alkyl)—aminocarbonyl-C_1-C_4-alkoxy: Durch
 15 -
         Di-(C_1-C_4-alkyl)—aminocarbonyl einfach substituiertes
         C_1-C_4-Alkoxy, z.B. Di-(C_1-C_4-alkyl)-aminocarbonylmethoxy, 1-
         oder 2-Di-(C_1-C_4-alkyl)-aminocarbonylethoxy, 1-, 2- oder
         3-Di-(C<sub>1</sub>-C<sub>4</sub>-alkyl)-aminocarbonylpropoxy;
 20
        Di-(C_1-C_4-alkyl)—aminocarbonyl-C_1-C_4-alkylthio: Durch
        Di-(C_1-C_4-alkyl)—aminocarbonyl einfach substituiertes
        C_1-C_4-Alkylthio, z.B.
        Di-(C_1-C_4-alkyl)—aminocarbonylmethylthio, 1- oder
        2-Di-(C_1-C_4-alkyl)—aminocarbonylethylthio, 1-, 2- oder
25
        3-Di-(C<sub>1</sub>-C<sub>4</sub>-alkyl)-aminocarbonylpropylthio;
        C2-C6-Alkenyl für: Vinyl, Prop-1-en-1-yl, Allyl,
        1-Methylethenyl, 1-Buten-1-yl, 1-Buten-2-yl, 1-Buten-3-yl,
        2-Buten-1-yl, 1-Methyl-prop-1-en-1-yl,
30
        2-Methyl-prop-1-en-1-yl, 1-Methyl-prop-2-en-1-yl,
        2-Methyl-prop-2-en-1-yl, n-Penten-1-yl, n-Penten-2-yl,
        n-Penten-3-yl, n-Penten-4-yl, 1-Methyl-but-1-en-1-yl,
        2-Methyl-but-1-en-1-yl, 3-Methyl-but-1-en-1-yl,
35
        1-Methyl-but-2-en-1-yl, 2-Methyl-but-2-en-1-yl,
        3-Methyl-but-2-en-1-yl, 1-Methyl-but-3-en-1-yl,
        2-Methyl-but-3-en-1-yl, 3-Methyl-but-3-en-1-yl,
        1,1-Dimethyl-prop-2-en-1-yl, 1,2-Dimethyl-prop-1-en-1-yl,
        1,2-Dimethyl-prop-2-en-1-yl, 1-Ethyl-prop-1-en-2-yl,
       1-Ethyl-prop-2-en-1-yl, n-Hex-1-en-1-yl, n-Hex-2-en-1-yl,
40
       n-Hex-3-en-1-y1, n-Hex-4-en-1-y1, n-Hex-5-en-1-y1,
       1-Methyl-pent-1-en-1-yl, 2-Methyl-pent-1-en-1-yl,
       3-Methyl-pent-1-en-1-yl, 4-Methyl-pent-1-en-1-yl,
       1-Methyl-pent-2-en-1-yl, 2-Methyl-pent-2-en-1-yl,
       3-Methyl-pent-2-en-1-yl, 4-Methyl-pent-2-en-1-yl,
45
       1-Methyl-pent-3-en-1-yl, 2-Methyl-pent-3-en-1-yl,
       3-Methyl-pent-3-en-1-yl, 4-Methyl-pent-3-en-1-yl,
```

```
20
```

```
1-Methyl-pent-4-en-1-yl, 2-Methyl-pent-4-en-1-yl,
       3-Methyl-pent-4-en-1-yl, 4-Methyl-pent-4-en-1-yl,
       1,1-Dimethyl-but-2-en-1-yl, 1,1-Dimethyl-but-3-en-1-yl,
       1,2-Dimethyl-but-1-en-1-yl, 1,2-Dimethyl-but-2-en-1-yl,
       1,2-Dimethyl-but-3-en-1-yl, 1,3-Dimethyl-but-1-en-1-yl,
5
       1,3-Dimethyl-but-2-en-1-yl, 1,3-Dimethyl-but-3-en-1-yl,
       2,2-Dimethyl-but-3-en-1-yl, 2,3-Dimethyl-but-1-en-1-yl,
       2,3-Dimethyl-but-2-en-1-yl, 2,3-Dimethyl-but-3-en-1-yl,
       3,3-Dimethyl-but-1-en-1-yl, 3,3-Dimethyl-but-2-en-1-yl,
       1-Ethvl-but-1-en-1-yl, 1-Ethyl-but-2-en-1-yl,
10
       1-Ethvl-but-3-en-1-yl, 2-Ethyl-but-1-en-1-yl,
       2-Ethyl-but-2-en-1-yl, 2-Ethyl-but-3-en-1-yl,
       1,1,2-Trimethyl-prop-2-en-1-yl,
       1-Ethyl-1-methyl-prop-2-en-1-yl,
       1-Ethyl-2-methyl-prop-1-en-1-yl oder
15
       1-Ethyl-2-methyl-prop-2-en-1-yl;
       C2-C6-Halogenalkenyl für: C2-C6-Alkenyl wie vorstehend
       genannt, das partiell oder vollständig durch Fluor, Chlor
       und/oder Brom substituiert ist, also z.B. 2-Chlorvinyl,
20
       2-Chlorallyl, 3-Chlorallyl, 2,3-Dichlorallyl,
       3,3-Dichlorally1, 2,3,3-Trichlorally1, 2,3-Dichlorbut-2-enyl,
       2-Bromallyl, 3-Bromallyl, 2,3-Dibromallyl, 3,3-Dibromallyl,
       2,3,3-Tribromallyl und 2,3-Dibrombut-2-enyl, vorzugsweise
25
       für C<sub>3</sub>- oder C<sub>4</sub>-Halogenalkenyl;
       C2-C6-Alkinyl für: Ethinyl und C3-C6-Alkinyl wie
       Prop-1-in-1-yl, Prop-2-in-1-yl, n-But-1-in-1-yl,
       n-But-1-in-3-yl, n-But-1-in-4-yl, n-But-2-in-1-yl,
       n-Pent-1-in-1-yl, n-Pent-1-in-3-yl, n-Pent-1-in-4-yl,
30
       n-Pent-1-in-5-yl, n-Pent-2-in-1-yl, n-Pent-2-in-4-yl,
       n-Pent-2-in-5-yl, 3-Methyl-but-1-in-3-yl, 3-Methyl-
       but-1-in-4-yl, n-Hex-1-in-1-yl, n-Hex-1-in-3-yl,
       n-Hex-1-in-4-yl, n-Hex-1-in-5-yl, n-Hex-1-in-6-yl,
       n-Hex-2-in-1-yl, n-Hex-2-in-4-yl, n-Hex-2-in-5-yl,
35
       n-Hex-2-in-6-yl, n-Hex-3-in-1-yl, n-Hex-3-in-2-yl,
       3-Methyl-pent-1-in-1-yl, 3-Methyl-pent-1-in-3-yl,
       3-Methyl-pent-1-in-4-yl, 3-Methyl-pent-1-in-5-yl,
       4-Methyl-pent-1-in-1-yl, 4-Methyl-pent-2-in-4-yl oder
       4-Methyl-pent-2-in-5-yl, vorzugsweise für Prop-2-in-1-yl;
40
       C2-C6-Halogenalkinyl für: C2-C6-Alkinyl wie vorstehend
       genannt, das partiell oder vollständig durch Fluor, Chlor
       und/oder Brom substituiert ist, also z.B.
       1,1-Difluorprop-2-in-1-yl, 1,1-Difluorbut-2-in-1-yl,
45
       4-Fluorbut-2-in-1-yl, 4-Chlorbut-2-in-1-yl,
```

21

5-Fluorpent-3-in-1-yl oder 6-Fluorhex-4-in-1-yl, vorzugsweise C₃- oder C₄-Halogenalkinyl;

- C₃-C₈-Cycloalkyl für: Cyclopropyl, Cyclobutyl, Cyclopentyl,
 Cyclohexyl, Cycloheptyl oder Cyclooctyl;
 - C₃-C₈-Cycloalkyl, das ein Carbonyl- oder Thiocarbonyl-Ringglied enthält, z.B. für Cyclobutanon-2-yl, Cyclobutanon-3-yl, Cyclopentanon-2-yl, Cyclopentanon-3-yl,
- Cyclohexanon-2-yl, Cyclohexanon-4-yl, Cycloheptanon-2-yl,
 Cyclooctanon-2-yl, Cyclobutanthion-2-yl,
 Cyclobutanthion-3-yl, Cyclopentanthion-2-yl,
 Cyclopentanthion-3-yl, Cyclohexanthion-2-yl,
 Cyclohexanthion-4-yl, Cycloheptanthion-2-yl oder
- Cyclooctanthion-2-yl, vorzugsweise für Cyclopentanon-2-yl oder Cyclohexanon-2-yl;
 - C₃-C₈-Cycloalkyl-C₁-C₄-alkyl für: Cyclopropylmethyl,
- 1-Cyclopropyl-ethyl, 2-Cyclopropyl-ethyl,
- 1-Cyclopropyl-prop-1-yl, 2-Cyclopropyl-prop-1-yl, 3-Cyclopropyl-prop-1-yl, 1-Cyclopropyl-but-1-yl,
 - 2-Cyclopropyl-but-1-yl, 3-Cyclopropyl-but-1-yl,
 - z=cyclopropyr=buc=r-yr, s=cyclopropyr=buc=r-yr,
 - 4-Cyclopropyl-but-1-yl, 1-Cyclopropyl-but-2-yl,
 - 2-Cyclopropyl-but-2-yl,
- 3-Cyclopropyl-but-2-yl, 4-Cyclopropyl-but-2-yl,
 - 1-(Cyclopropylmethyl)-eth-1-yl,
 - 1-(Cyclopropylmethyl)-1-(methyl)-eth-1-yl,
 - 1-(Cyclopropylmethyl)-prop-1-yl, Cyclobutylmethyl,
 - 1-Cyclobutyl-ethyl, 2-Cyclobutyl-ethyl,
- 30 1-Cyclobutyl-prop-1-yl, 2-Cyclobutyl-prop-1-yl,
 - 3-Cyclobutyl-prop-1-yl, 1-Cyclobutyl-but-1-yl,
 - 2-Cyclobutyl-but-1-yl, 3-Cyclobutyl-but-1-yl,

 - 4-Cyclobutyl-but-1-yl, 1-Cyclobutyl-but-2-yl,
 - 2-Cyclobutyl-but-2-yl,
- 35 3-Cyclobutyl-but-2-yl, 4-Cyclobutyl-but-2-yl,
 - 1-(Cyclobutylmethyl)-eth-1-yl,
 - 1-(Cyclobutylmethyl)-1-(methyl)-eth-1-yl,
 - 1-(Cyclobutylmethyl)-prop-1-yl, Cyclopentylmethyl,
 - 1-Cyclopentyl-ethyl, 2-Cyclopentyl-ethyl,
- 40 1-Cyclopentyl-prop-1-yl, 2-Cyclopentyl-prop-1-yl,
 - 3-Cyclopentyl-prop-1-yl, 1-Cyclopentyl-but-1-yl,
 - 2-Cyclopentyl-but-1-yl, 3-Cyclopentyl-but-1-yl,
 - 4-Cyclopentyl-but-1-yl, 1-Cyclopentyl-but-2-yl,
 - 4-cyclopency1-bat 1 11/ 1 ofotopency1 bat 1 11/
 - 2-Cyclopentyl-but-2-yl, 3-Cyclopentyl-but-2-yl,
- 4-Cyclopentyl-but-2-yl, 1-(Cyclopentylmethyl)-eth-1-yl,
- 1-(Cyclopentylmethyl)-1-(methyl)-eth-1-yl,
 - 1-(Cyclopentylmethyl)-prop-1-yl, Cyclohexylmethyl,

```
1-Cyclohexyl-ethyl, 2-Cyclohexyl-ethyl,
       1-Cyclohexyl-prop-1-yl, 2-Cyclohexyl-prop-1-yl,
       3-Cyclohexyl-prop-1-yl, 1-Cyclohexyl-but-1-yl,
       2-Cyclohexyl-but-1-yl, 3-Cyclohexyl-but-1-yl,
       4-Cyclohexyl-but-1-yl, 1-Cyclohexyl-but-2-yl,
 5
       2-Cyclohexyl-but-2-yl,
       3-Cyclohexyl-but-2-yl, 4-Cyclohexyl-but-2-yl,
       1-(Cyclohexylmethyl)-eth-1-yl,
       1-(Cyclohexylmethyl)-1-(methyl)-eth-1-yl,
       1-(Cyclohexylmethyl)-prop-1-yl, Cycloheptylmethyl,
10
       1-Cycloheptyl-ethyl, 2-Cycloheptyl-ethyl,
       1-Cycloheptyl-prop-1-yl, 2-Cycloheptyl-prop-1-yl,
       3-Cycloheptyl-prop-1-yl, 1-Cycloheptyl-but-1-yl,
       2-Cycloheptyl-but-1-yl, 3-Cycloheptyl-but-1-yl,
       4-Cycloheptyl-but-1-yl, 1-Cycloheptyl-but-2-yl,
15
       2-Cycloheptyl-but-2-yl,
       3-Cycloheptyl-but-2-yl, 4-Cycloheptyl-but-2-yl,
       1-(Cycloheptylmethyl)-eth-1-yl,
       1-(Cycloheptylmethyl)-1-(methyl)-eth-1-yl,
       1-(Cycloheptylmethyl)-prop-1-yl, Cyclooctylmethyl,
20
       1-Cyclooctyl-ethyl, 2-Cyclooctyl-ethyl,
       1-Cyclooctyl-prop-1-yl, 2-Cyclooctyl-prop-1-yl,
       3-Cyclooctyl-prop-1-yl, 1-Cyclooctyl-but-1-yl,
       2-Cyclooctyl-but-1-yl, 3-Cyclooctyl-but-1-yl,
       4-Cyclooctyl-but-1-yl, 1-Cyclooctyl-but-2-yl,
25
       2-Cyclooctyl-but-2-yl,
       3-Cyclooctyl-but-2-yl, 4-Cyclooctyl-but-2-yl,
       1-(Cyclooctylmethyl)-eth-1-yl,
       1-(Cyclooctylmethyl)-1-(methyl)-eth-1-yl oder
       1-(Cyclooctylmethyl)-prop-1-yl, vorzugsweise für
30
       Cyclopropylmethyl, Cyclobutylmethyl, Cyclopentylmethyl oder
       Cyclohexylmethyl;
       C3-C8-Cycloalkyl-C1-C4-alkyl, das ein Carbonyl- oder
       Thiocarbonyl-Ringglied enthält, z.B. für
35
       Cyclobutanon-2-ylmethyl, Cyclobutanon-3-ylmethyl,
       Cyclopentanon-2-ylmethyl, Cyclopentanon-3-ylmethyl,
       Cyclohexanon-2-ylmethyl, Cyclohexanon-4-ylmethyl,
       Cycloheptanon-2-ylmethyl, Cyclooctanon-2-ylmethyl,
       Cyclobutanthion-2-ylmethyl, Cyclobutanthion-3-ylmethyl,
40
       Cyclopentanthion-2-ylmethyl, Cyclopentanthion-3-ylmethyl,
       Cyclohexanthion-2-ylmethyl, Cyclohexanthion-4-ylmethyl,
       Cycloheptanthion-2-ylmethyl, Cyclooctanthion-2-ylmethyl,
       1-(Cyclobutanon-2-yl)ethyl, 1-(Cyclobutanon-3-yl)-ethyl,
       1-(Cyclopentanon-2-yl)ethyl, 1-(Cyclopentanon-3-yl)-ethyl,
45
       1-(Cyclohexanon-2-yl)ethyl, 1-(Cyclohexanon-4-yl)-ethyl,
        1-(Cycloheptanon-2-yl)ethyl, 1-(Cyclooctanon-2-yl)-ethyl,
```

```
1-(Cyclobutanthion-2-yl)ethyl, 1-(Cyclobutanthion-3-yl)ethyl,
       1-(Cyclopentanthion-2-yl)ethyl,
       1-(Cyclopentanthion-3-yl)ethyl,
       1-(Cyclohexanthion-2-yl)ethyl, 1-(Cyclohexanthion-4-yl)ethyl,
       1-(Cycloheptanthion-2-yl)ethyl,
 5
       1-(Cyclooctanthion-2-yl)ethyl, 2-(Cyclobutanon-2-yl)ethyl,
       2-(Cyclobutanon-3-yl)ethyl, 2-(Cyclopentanon-2-yl)ethyl,
       2-(Cyclopentanon-3-yl)ethyl, 2-(Cyclohexanon-2-yl)ethyl,
       2-(Cyclohexanon-4-yl)ethyl, 2-(Cycloheptanon-2-yl)ethyl,
       2-(Cyclooctanon-2-yl)ethyl, 2-(Cyclobutanthion-2-yl)ethyl,
10
       2-(Cyclobutanthion-3-yl)ethyl,
       2-(Cyclopentanthion-2-yl)-ethyl,
       2-(Cyclopentanthion-3-yl)ethyl,
       2-(Cyclohexanthion-2-yl)ethyl, 2-(Cyclohexanthion-4-yl)ethyl,
15
       2-(Cycloheptanthion-2-yl)ethyl,
       2-(Cyclooctanthion-2-yl)ethyl, 3-(Cyclobutanon-2-yl)propyl,
       3-(Cyclobutanon-3-yl)propyl, 3-(Cyclopentanon-2-yl)propyl,
       3-(Cyclopentanon-3-yl)propyl, 3-(Cyclohexanon-2-yl)propyl,
       3-(Cyclohexanon-4-yl)propyl, 3-(Cycloheptanon-2-yl)propyl,
       3-(Cyclooctanon-2-yl)propyl, 3-(Cyclobutanthion-2-yl)propyl,
20
       3-(Cyclobutanthion-3-yl)propyl,
       3-(Cyclopentanthion-2-yl)propyl,
       3-(Cyclopentanthion-3-yl)-propyl,
       3-(Cyclohexanthion-2-yl)propyl,
       3-(Cyclohexanthion-4-yl)propyl,
25
       3-(Cycloheptanthion-2-yl)propyl,
       3-(Cyclooctanthion-2-yl)propyl, 4-(Cyclobutanon-2-yl)butyl,
       4-(Cyclobutanon-3-yl)butyl, 4-(Cyclopentanon-2-yl)butyl,
       4-(Cyclopentanon-3-yl)butyl, 4-(Cyclohexanon-2-yl)butyl,
       4-(Cyclohexanon-4-yl)butyl, 4-(Cycloheptanon-2-yl)butyl,
30
       4-(Cyclooctanon-2-yl)butyl, 4-(Cyclobutanthion-2-yl)butyl,
       4-(Cyclobutanthion-3-yl)butyl,
       4-(Cyclopentanthion-2-yl)butyl,
       4-(Cyclopentanthion-3-yl)butyl,
       4-(Cyclohexanthion-2-yl)-butyl,
35
       4-(Cyclohexanthion-4-yl)butyl, 4-(Cycloheptanthion-2-yl)butyl
       oder 4-(Cyclooctanthion-2-yl)butyl, vorzugsweise für
       Cyclopentanon-2-ylmethyl, Cyclohexanon-2-ylmethyl,
       2-(Cyclopentanon-2-yl)ethyl oder 2-(Cyclohexanon-2-yl)ethyl.
40
   Unter 3- bis 7-gliedrigem Heterocyclyl sind sowohl gesättigte,
   partiell oder vollständig ungesättigte als auch aromatische
   Heterocyclen mit einem, zwei oder drei Heteroatomen zu verstehen,
   wobei die Heteroatome ausgewählt sind unter Stickstoffatomen,
45 Sauerstoff- und Schwefelatomen. Gesättigtes 3- bis 7-gliedriges
```

24

Heterocyclyl kann auch ein Carbonyl- oder Thiocarbonyl-Ringglied enthalten.

Beispiele für gesättigte Heterocyclen, die ein Carbonyl- oder 5 Thiocarbonyl-Ringglied enthalten können, sind: Oxiranyl, Thiiranyl, Aziridin-1-yl, Aziridin-2-yl, Diaziridin-1-yl, Diaziridin-3-yl, Oxetan-2-yl, Oxetan-3-yl, Thietan-2-yl, Thietan-3-yl, Azetidin-1-yl, Azetidin-2-yl, Azetidin-3-yl, Tetrahydrofuran-2-yl, Tetrahydrofuran-3-yl, 10 Tetrahydrothiophen-2-yl, Tetrahydrothiophen-3-yl, Pyrrolidin-1-yl, Pyrrolidin-2-yl, Pyrrolidin-3-yl, 1,3-Dioxolan-2-yl, 1,3-Dioxolan-4-yl, 1,3-Oxathiolan-2-yl, 1,3-Oxathiolan-4-yl, 1,3-Oxathiolan-5-yl, 1,3-Oxazolidin-2-yl, 1,3-Oxazolidin-3-yl, 1,3-Oxazolidin-4-yl, 1,3-Oxazolidin-5-yl, 15 1,2-0xazolidin-2-yl, 1,2-0xazolidin-3-yl, 1,2-0xazolidin-4-yl, 1,2-Oxazolidin-5-yl, 1,3-Dithiolan-2-yl, 1,3-Dithiolan-4-yl, Pyrrolidin-1-yl, Pyrrolidin-2-yl, Pyrrolidin-5-yl, Tetrahydropyrazol-1-yl, Tetrahydropyrazol-3-yl, Tetrahydropyrazol-4-yl, Tetrahydropyran-2-yl, 20 Tetrahydropyran-3-yl, Tetrahydropyran-4-yl, Tetrahydrothiopyran-2-yl, Tetrahydrothiopyran-3-yl, Tetrahydropyran-4-yl, Piperidin-1-yl, Piperidin-2-yl, Piperidin-3-yl, Piperidin-4-yl, 1,3-Dioxan-2-yl, 1,3-Dioxan-4-yl, 1,3-Dioxan-5-yl, 1,4-Dioxan-2-yl, 1,3-Oxathian-2-yl, 25 1.3-Oxathian-4-yl, 1.3-Oxathian-5-yl, 1.3-Oxathian-6-yl, 1,4-Oxathian-2-yl, 1,4-Oxathian-3-yl, Morpholin-2-yl, Morpholin-3-yl, Morpholin-4-yl, Hexahydropyridazin-1-yl, Hexahydropyridazin-3-yl, Hexahydropyridazin-4-yl, Hexahydropyrimidin-1-yl, Hexahydropyrimidin-2-yl, 30 Hexahydropyrimidin-4-yl, Hexahydropyrimidin-5-yl, Piperazin-1-yl, Piperazin-2-yl, Piperazin-3-yl, Hexahydro-1,3,5-triazin-1-yl, Hexahydro-1,3,5-triazin-2-yl, Oxepan-2-yl, Oxepan-3-yl, Oxepan-4-yl, Thiepan-2-yl, Thiepan-3-yl, Thiepan-4-yl, 1,3-Dioxepan-2-yl, 1,3-Dioxepan-4-yl, 1,3-Dioxepan-5-yl, 35 1,3-Dioxepan-6-yl, 1,3-Dithiepan-2-yl, 1,3-Dithiepan-4-yl, 1,3-Dithiepan-5-yl, 1,3-Dithiepan-6-yl, 1,4-Dioxepan-2-yl, 1,4-Dioxepan-7-yl, Hexahydroazepin-1-yl, Hexahydroazepin-2-yl, Hexahydroazepin-3-yl, Hexahydroazepin-4-yl, Hexahydro-1,3-diazepin-1-yl, Hexahydro-1,3-diazepin-2-yl, 40 Hexahydro-1,3-diazepin-4-yl, Hexahydro-1,4-diazepin-1-yl und Hexahydro-1, 4-diazepin-2-yl.

Beispiele für ungesättigte Heterocyclen, die ein Carbonyloder Thiocarbonyl-Ringglied enthalten können, sind: 45 Dihydrofuran-2-yl, 1,2-Oxazolin-3-yl, 1,2-Oxazolin-5-yl, 1,3-Oxazolin-2-yl.

25

Beispiele für aromatisches Heterocyclyl sind die 5- und 6-gliedrigen aromatischen, heterocyclischen Reste, z.B. Furyl wie 2-Furyl und 3-Furyl, Thienyl wie 2-Thienyl und 3-Thienyl, Pyrrolyl wie 2-Pyrrolyl und 3-Pyrrolyl, Isoxazolyl

- 5 wie 3-Isoxazolyl, 4-Isoxazolyl und 5-Isoxazolyl, Isothiazolyl wie 3-Isothiazolyl, 4-Isothiazolyl und 5-Isothiazolyl, Pyrazolyl wie 3-Pyrazolyl, 4-Pyrazolyl und 5-Pyrazolyl, Oxazolyl wie 2-Oxazolyl, 4-Oxazolyl und 5-Oxazolyl, Thiazolyl wie 2-Thiazolyl, 4-Thiazolyl und 5-Thiazolyl, Imidazolyl wie 2-Imidazolyl
- 10 und 4-Imidazolyl, Oxadiazolyl wie 1,2,4-Oxadiazol-3-yl,
 1,2,4-Oxadiazol-5-yl und 1,3,4-Oxadiazol-2-yl, Thiadiazolyl
 wie 1,2,4-Thiadiazol-3-yl, 1,2,4-Thiadiazol-5-yl und
 1,3,4-Thiadiazol-2-yl, Triazolyl wie 1,2,4-Triazol-1-yl,
 1,2,4-Triazol-3-yl und 1,2,4-Triazol-4-yl, Pyridinyl wie
- 15 2-Pyridinyl, 3-Pyridinyl und 4-Pyridinyl, Pyridazinyl wie 3-Pyridazinyl und 4-Pyridazinyl, Pyrimidinyl wie 2-Pyrimidinyl, 4-Pyrimidinyl und 5-Pyrimidinyl, des weiteren 2-Pyrazinyl, 1,3,5-Triazin-2-yl und 1,2,4-Triazin-3-yl, insbesondere Pyridyl, Pyrimidyl, Furanyl und Thienyl.

20

- Beispiele für anellierte Ringe sind neben Phenyl die vorgenannten heteroaromatischen Gruppen, insbesondere Pyridin, Pyrazin, Pyridazin, Pyrimidin, Furan, Dihydrofuran, Thiophen, Dihydrothiophen, Pyrrol, Dihydropyrrol, 1,3-Dioxolan,
- 25 1,3-Dioxolan-2-on, Isoxazol, Oxazol, Oxazolinon, Isothiazol, Thiazol, Pyrazol, Pyrazolin, Imidazol, Imidazolinon, Dihydroimidazol, 1,2,3-Triazol, 1,1-Dioxodihydroisothiazol, Dihydro-1,4-dioxin, Pyridon, Dihydro-1,4-oxazin, Dihydro-1,4-oxazin-2-on, Dihydro-1,4-oxazin-3-on,
- 30 Dihydro-1,3-oxazin, Dihydro-1,3-thiazin-2-on, Dihydro-1,4-thiazin, Dihydro-1,4-thiazin-2-on, Dihydro-1,4-thiazin-3-on, Dihydro-1,3-thiazin und Dihydro-1,3-thiazin-2-on, die ihrerseits einen, zwei oder drei Substituenten aufweisen können. Beispiele für geeignete
- 35 Substituenten am anellierten Ring sind die im Folgenden für \mathbb{R}^{16} , \mathbb{R}^{17} , \mathbb{R}^{18} und \mathbb{R}^{19} angegebenen Bedeutungen.

Im Hinblick auf die Verwendung der 1-Aryl-4-halogenalkyl-2-[1H]pyridone I als Herbizide oder Desikkantien/Defoliantien sind die40 jenigen Verbindungen I bevorzugt, in denen die Variablen folgende
Bedeutung haben, und zwar jeweils für sich alleine oder in Kombination:

R1 Wasserstoff oder Halogen, insbesondere Chlor;

- R2, R2' unabhängig voneinander Wasserstoff oder C1-C4-Alkyl, z.B. Methvl:
- \mathbb{R}^3 C1-C4-Halogenalkyl, insbesondere C1-C2-Alkyl, das als Halogenatome Chlor und/oder Fluor trägt, besonders bevorzugt Triflu-5 ormethyl;
 - Halogen, insbesondere Fluor oder Chlor, oder Wasserstoff; \mathbb{R}^4
- Halogen, insbesondere Chlor, oder Cyano; 10 R⁵

barten Kohlenstoffatom;

- Sauerstoff; Α
- X eine chemische Bindung, Methylen, Ethan-1,2-diyl, Ethen-1,2-diyl, das unsubstituiert oder einen Substituenten, 15 ausgewählt unter C1-C4-Alkyl, speziell Methyl, oder Halogen, speziell Chlor, aufweisen kann, z.B. 1- oder 2-Chlorethan-1,2-diyl, 1- oder 2-Chlorethen-1,2-diyl, 1- oder 2-Bromethan-1,2-diyl, 1- oder 2-Bromethen-1,2-diyl, 1- oder 2-Methylethan-1,2-diyl, 1- oder 2-Methylethen-1,2-diyl, ins-20 besondere eine chemische Bindung, 1- oder 2-Chlorethan-1,2-diyl, 1- oder 2-Chlorethen-1,2-diyl, 1- oder 2-Bromethen-1,2-diyl, 1- oder 2-Methylethen-1,2-diyl. Wenn X für substituiertes Ethan-1,2-diyl, Ethen-1,2-diyl steht, sitzt der Substituent bevorzugt an dem der Gruppe R6 benach-25
- Wasserstoff, Nitro, Halogen, Chlorsulfonyl, -O-Y-R8, Rб $-O-CO-Y-R^8$, $-N(Y-R^8)(Z-R^9)$, $-N(Y-R^8)-SO_2-Z-R^9$, $-N(SO_2-Y-R^8)(SO_2-Z-R^9)$, $-S(O)_n-Y-R^8$ mit n = 0, 1 oder 2, 30 $-SO_2-O-Y-R^8$, $-SO_2-N(Y-R^8)(Z-R^9)$, $-C(=NOR^{10})-Y-R^8$, $-C(=NOR^{10})-O-Y-R^8$, $-CO-Y-R^8$, $-CO-O-Y-R^8$, $-CO-S-Y-R^8$, $-PO(O-Y-R^8)$, $-CO-N(Y-R^8)(Z-R^9)$ oder $-CO-N(Y-R^8)(O-Z-R^9)$, insbesondere $-O-Y-R^8$, $-N(Y-R^8)-SO_2-Z-R^9$, $-SO_2-N(Y-R^8)(Z-R^9)$, $-C(=NOR^{10})-Y-R^8$, $-CO-O-Y-R^8$ oder $-CO-N(Y-R^8)(Z-R^9)$. 35

Die bei der Definition der Variablen R6 genannten Variablen R8, R9, R10, Y, Z haben vorzugsweise die folgenden Bedeutungen:

- 40 Y, Z unabhängig voneinander eine chemische Bindung oder Methylen;
- R8, R9 unabhängig voneinander Wasserstoff, C_1 - C_6 -Halogenalkyl, C_1 - C_4 -Alkoxy- C_1 - C_4 -alkyl, C2-C6-Alkenyl, C2-C6-Halogenalkenyl, C2-C6-Alkinyl, C2-C6-Halogenalkinyl, $-CH(R^{11})(R^{12})$, $-C(R^{11})(R^{12})$ -CN, $-C(R^{11})(R^{12})$ -Halo-45 gen, $-C(R^{11})(R^{12})-OR^{13}$, $-C(R^{11})(R^{12})-N(R^{13})R^{14}$, $-C(R^{11})(R^{12})-N(R^{13})-OR^{14}$, $-C(R^{11})(R^{12})-SR^{13}$, $-C(R^{11})(R^{12})-SO-R^{13}$,

27

 $-C(R^{11})(R^{12})-SO_2-R^{13}, -C(R^{11})(R^{12})-SO_2-OR^{13}, \\ -C(R^{11})(R^{12})-SO_2-N(R^{13})R^{14}, -C(R^{11})(R^{12})-CO-R^{13}, \\ -C(R^{11})(R^{12})-C(=NOR^{15})-R^{13}, -C(R^{11})(R^{12})-CO-OR^{13}, \\ -C(R^{11})(R^{12})-CO-SR^{13}, -C(R^{11})(R^{12})-CO-N(R^{13})R^{14}, \\ -C(R^{11})(R^{12})-CO-N(R^{13})-OR^{14}, -C(R^{11})(R^{12})-PO(OR^{13})_2, \\ C_3-C_8-Cycloalkyl, C_3-C_8-Cycloalkyl-C_1-C_4-alkyl oder Phenyl, \\ das unsubstituiert sein oder ein, zwei, drei oder vier \\ Substituenten tragen kann, jeweils ausgewählt aus der Gruppe \\ bestehend aus Cyano, Nitro, Amino, Hydroxy, Halogen, \\ C_1-C_4-Alkyl, C_1-C_4-Alkoxy, C_1-C_4-Alkylsulfonyl, \\ (C_1-C_4-Alkyl) carbonyl und (C_1-C_4-Alkoxy) carbonyl;$

insbesondere Wasserstoff, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Alko-xy- C_1 - C_4 -alkyl, C_2 - C_6 -Alkenyl, C_2 - C_6 -Halogenalkenyl, C_2 - C_6 -Alkinyl, $-CH(R^{11})(R^{12})$, $-C(R^{11})(R^{12})$ -CO- OR^{13} , $-C(R^{11})(R^{12})$ -CO- $N(R^{13})R^{14}$, C_3 - C_8 -Cycloalkyl- C_1 - C_4 -alkyl oder C_3 - C_8 -Cycloalkyl, besonders bevorzugt Wasserstoff, C_1 - C_6 -Alkyl, C_1 - C_4 -Alkoxy- C_1 - C_4 -alkyl, C_2 - C_6 -Alkenyl, C_2 - C_6 -Alkinyl, $-C(R^{11})(R^{12})$ --CO- $-OR^{13}$ oder C_3 - $-C_8$ --Cycloalkyl;

20

15

worin die Variablen R¹¹, R¹², R¹³, R¹⁴ und R¹⁵ unabhängig voneinander bevorzugt die nachstehend angegebenen Bedeutungen aufweisen:

- R¹¹, R¹² unabhängig voneinander Wasserstoff, C₁-C₄-Alkyl,

 C₁-C₄-Alkoxy-C₁-C₄-alkyl, C₁-C₄-Alkylthio-C₁-C₄-alkyl,

 (C₁-C₄-Alkoxy)carbonyl-C₁-C₄-alkyl oder

 Phenyl-C₁-C₄-alkyl, insbesondere Wasserstoff oder

 C₁-C₄-Alkyl, speziell Methyl;
- R¹³, R¹⁴ unabhängig voneinander Wasserstoff, C₁-C₆-Alkyl,

 C₁-C₆-Halogenalkyl, C₁-C₄-Alkoxy-C₁-C₄-alkyl,

 C₂-C₆-Alkenyl, C₂-C₆-Halogenalkenyl, C₂-C₆-Alkinyl,

 C₃-C₈-Cycloalkyl, C₃-C₈-Cycloalkyl-C₁-C₄-alkyl, Phenyl,

 Phenyl-C₁-C₄-alkyl, insbesondere Wasserstoff oder

 C₁-C₄-Alkyl;
- 35 R^{15} C_1 - C_6 -Alkyl; und
 - R^{10} Wasserstoff, C_1 - C_6 -Alkyl, C_1 - C_4 -Alkoxycarbonyl- C_1 - C_4 -alkyl, C_2 - C_6 -Alkenyl, insbesondere C_1 - C_4 -Alkyl.
- 40 Verbindungen I, worin Q = C-H ist und die Variablen X, R⁴, R⁵ und R⁶ die zuvor genannten Bedeutungen aufweisen, werden im Folgenden als Verbindungen IA bezeichnet. Verbindungen der Formel IA sind erfindungsgemäß besonders bevorzugt. Verbindungen mit Q = N werden im Folgenden als Verbindungen IB bezeichnet und sind eine 45 weitere erfindungsgemäße, bevorzugte Ausführungsform.

WO 02/06233

Wenn Q in Formel I für eine Gruppe C-R7 steht, dann können XR6 und R7 auch eine 3- oder 4-gliedrige Kette bilden, die neben Kohlenstoff 1, 2 oder 3 Heteroatome, ausgewählt unter Stickstoff-, Sauerstoff- und Schwefelatomen, aufweisen kann. Diese Kette bil-5 det mit dem Phenylring in Formel I einen annellierten Ring, der unsubstituiert sein oder seinerseits einen, zwei oder drei Substituenten tragen kann, und dessen Glieder auch ein oder zwei nicht benachbarte Carbonyl-, Thiocarbonyl- oder Sulfonyl-Gruppen umfassen können. Derartige Verbindungen werden im Folgenden als 10 Verbindungen IC bezeichnet.

28

PCT/EP01/08251

Unter den Verbindungen IC sind solche Verbindungen I bevorzugt, worin R7 zusammen mit X-R6 in Formel I für eine Kette der Formeln: $-O-C(R^{16},R^{17})-CO-N(R^{18})-$, $-S-C(R^{16},R^{17})-CO-N(R^{18})-$ und besonders be-15 vorzugt für $-N=C(R^{19})-O-$ oder $-N=C(R^{19})-S-$ stehen, in denen die Variablen R16 bis R19 die folgenden Bedeutungen haben:

R¹⁶, R¹⁷ unabhängig voneinander Wasserstoff, $C_1-C_6-Alkyl$, $C_1-C_6-Halogenalkyl$, $C_2-C_6-Alkenyl$, 20 C2-C6-Halogenalkenyl, C2-C6-Alkinyl, C2-C6-Halogenalkinyl, C3-C8-Cycloalkyl, Phenyl oder Phenyl-C1-C4-alkyl, insbesondere Wasserstoff oder $C_1-C_6-Alkyl$;

 R^{18} Wasserstoff, Hydroxy, $C_1-C_6-Alkyl$, $C_1-C_6-Halogenalkyl$, C2-C6-Alkenyl, C2-C6-Halogenalkenyl, C2-C6-Alkinyl, 25 $C_1-C_4-Alkoxy$, $C_1-C_4-Halogenalkoxy$, $C_3-C_6-Alkenyloxy$, $C_3-C_6-Alkinyloxy$, $C_1-C_4-Alkylsulfonyl$, $C_1-C_4-Halogenalkylsulfonyl, C_1-C_4-Alkylcarbonyl,$ C₁-C₄-Halogenalkylcarbonyl, C₁-C₄-Alkoxycarbonyl, 30 $C_1-C_4-Alkoxy-C_1-C_4-alkyl$, $C_1-C_4-Alkoxycarbonyl-C_1-C_4-alkyl$, $C_1-C_4-Alkoxycarbonyl-C_1-C_4-alkoxy$, $Di-(C_1-C_4-alkyl)$ aminocarbonyl, $Di-(C_1-C_4-alkyl)$ aminocarbonyl- C_1-C_4 -alkyl, Di- $(C_1-C_4$ -alkyl)aminocarbonyl- C_1-C_4 -alkoxy, Phenyl, Phenyl-C₁-C₄-alkyl, C₃-C₈-Cycloalkyl,

 $C_3-C_8-Cycloalkyl-C_1-C_4-alkyl, 3-, 4-, 5-, 6- oder 7-gliedri-$ 35 ges, vorzugsweise 5- oder 6-gliedriges, vorzugsweise gesättigtes Heterocyclyl, das ein oder zwei, vorzugsweise ein Ring-Heteroatom, ausgewählt unter Sauerstoff, Stickstoff oder Schwefel, aufweist;

40

45

R¹⁹ Wasserstoff, Halogen, Cyano, Amino, C₁-C₆-Alkyl, C_1-C_6 -Halogenalkyl, C_2-C_6 -Alkenyl, C_2-C_6 -Halogenalkenyl, C_2-C_6 -Alkinyl, C_1-C_4 -Alkoxy, C_1-C_4 -Halogenalkoxy, C₃-C₆-Alkenyloxy, C₃-C₆-Alkinyloxy, C₁-C₄-Alkylamino, $Di-(C_1-C_4-alkyl)$ amino, $C_1-C_4-Halogenalkoxy$, $C_1-C_4-Alkylthio$, C₁-C₄-Halogenalkylthio, C₁-C₄-Alkylsulfinyl, C_1-C_4 -Halogenalkylsulfinyl, C_1-C_4 -Alkylsulfonyl,

29

C1-C4-Halogenalkylsulfonyl, C1-C4-Alkylcarbonyl, C_1-C_4 -Halogenalkylcarbonyl, C_1-C_4 -Alkoxy- C_1-C_4 -alkyl, $C_1-C_4-Alkoxycarbonyl$, $C_1-C_4-Alkoxycarbonyl-C_1-C_4-alkyl$, C_1-C_4 -Alkoxycarbonyl- C_1-C_4 -alkoxy, C_1-C_4 -Alkoxycarbonyl- C_1-C_4 -alkylthio, 5 $Di-(C_1-C_4-alkyl)$ aminocarbonyl, $Di-(C_1-C_4-alkyl)$ aminocarbonyl- $C_1-C_4-alkyl$, $Di-(C_1-C_4-alkyl)$ aminocarbonyl- $C_1-C_4-alkoxy$, $Di-(C_1-C_4-alkyl)$ aminocarbonyl- $C_1-C_4-alkylthio$, C3-C8-Cycloalkyl, Phenyl, Phenyl-C1-C4-alkyl, 10 $C_3-C_8-Cycloalkyl-C_1-C_4-alkyl, 3-, 4-, 5-, 6- oder 7-gliedri$ qes, vorzugsweise 5- oder 6-gliedriges, vorzugsweise gesättigtes Heterocyclyl, das ein oder zwei, vorzugsweise ein Ring-Heteroatom, ausgewählt unter Sauerstoff, Stickstoff oder Schwefel, aufweist. 15

Vorzugsweise haben die Variablen R¹⁸ und R¹⁹ die folgenden Bedeutungen:

30

R19 Wasserstoff, Halogen, Amino, C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl, C₂-C₆-Alkenyl, C₂-C₆-Halogenalkenyl, C₂-C₆-Alkinyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, C₃-C₆-Alkenyloxy, C₃-C₆-Alkinyloxy, C₁-C₄-Alkylamino, Di-(C₁-C₄-alkyl)amino, C₁-C₄-Alkylthio, C₁-C₄-Alkoxy-C₁-C₄-alkyl, C₁-C₄-Alkoxycarbonyl-C₁-C₄-alkyl, C₁-C₄-Alkoxycarbonyl-C₁-C₄-alkyl, C₁-C₄-Alkoxycarbonyl-C₁-C₄-alkylthio, C₃-C₈-Cycloalkyl, Phenyl, Phenyl-C₁-C₄-alkyl, C₃-C₈-Cycloalkyl-C₁-C₄-alkyl, 3-, 4-, 5- oder 6-gliedriges, vorzugsweise 5- oder 6-gliedriges, vorzugsweise gesättigtes Heterocyclyl, das ein Ring-Heteroatom, ausgewählt unter Sauerstoff, Stickstoff oder Schwefel, aufweist.

 ${\bf R}^4$ und ${\bf R}^5$ haben in diesen Verbindungen IC unabhängig voneinander und insbesondere in Kombination die als bevorzugt angegebenen Bedeutungen.

5 Besonders bevorzugt sind die Verbindungen der Formel IA mit $R^3 = CF_3$ und $R^1 = Cl$, worin R^2 und R^2 unabhängig ausgewählt sind unter Wasserstoff und Methyl und in denen die Variablen X, R^4 , R^5 und R^6 die zuvor genannten Bedeutungen aufweisen und insbesondere gemeinsam die in jeweils einer Zeile der Tabelle 1 angegebenen Be-10 deutungen aufweisen.

Beispiele für derartige Verbindungen sind die Verbindungen der nachfolgend angegebenen Formel IAa, worin R⁴, R⁵ und X-R⁶ gemeinsam die in jeweils einer Zeile der Tabelle 1 angegebenen Bedeu-15 tungen aufweisen (Verbindungen IAa.1-IAa.798).

$$CF_3$$
 N
 R^5
(IAa)

Beispiele für derartige Verbindungen sind auch die Verbindungen der nachfolgend angegebenen Formel IAb, worin R⁴, R⁵ und X-R⁶ ge25 meinsam die in jeweils einer Zeile der Tabelle 1 angegebenen Bedeutungen aufweisen (Verbindungen IAb.1-IAb.798)

Beispiele für derartige Verbindungen sind auch die Verbindungen 35 der nachfolgend angegebenen Formel IAc, worin R⁴, R⁵ und X-R⁶ gemeinsam die in jeweils einer Zeile der Tabelle 1 angegebenen Bedeutungen aufweisen (Verbindungen IAc.1-IAc.798).

40
$$CF_3$$
 $C1$ R^4 R^5 (IAc)

31

Beispiele für derartige Verbindungen sind auch die Verbindungen der nachfolgend angegebenen Formel IAd, worin R4, R5 und X-R6 gemeinsam die in jeweils einer Zeile der Tabelle 1 angegebenen Bedeutungen aufweisen (Verbindungen IAd.1-IAd.798).

5

$$CH_3$$
 $C1$
 R^4
 R^5
 CH_3
 CH_3
 CH_3
 R^6
 R^6

10

Beispiele für derartige Verbindungen sind auch die Verbindungen der nachfolgend angegebenen Formeln IAe, IAf, IAg und IAh, worin 15 R4, R5 und X-R6 gemeinsam die in jeweils einer Zeile der Tabelle 1 angegebenen Bedeutungen aufweisen (Verbindungen IAe.1-IAe.798, IAf.1-IAf.798, IAg.1-IAg.798 und IAh.1-IAh.798).

20

25

30

$$F_3C \longrightarrow N \longrightarrow R^5$$

$$X - R^6$$

(IAe)

$$R^4$$
 R^5
 R_3C
 R_3C
 R_4
 R_5
 R_6
(IAg)

$$F_3C$$
 N
 R^4
 R^5
 $X-R^6$

(IAf)

$$F_3C$$
 R^4
 R^5
 R_3C
 R_4
 R_5
 R_7
 R_7

35

Tabelle 1

	Nr.	R ⁴	R ⁵	X-R ⁶
5	1	F	Cl	H
	2	F	Cl	F
	3	F	Cl	CH ₃
	4	F	Cl	NO ₂
10	5	F	Cl	NH ₂
	6	F	Cl	ОН
	7	F	Cl	OCH ₃
	8	F	Cl	OCH(CH ₃) ₂
	9	F	Cl	O-CH ₂ CH=CH ₂
	10	F	Cl	O-CH ₂ C≡CH
	11	F	Cl	O-CH(CH ₃)C≡CH
15	12	F	Cl	O-Cyclopentyl
13	13	F	Cl	OCH ₂ COOH
	14	F	Cl	OCH ₂ COO-CH ₃
	15	F	Cl	OCH ₂ COO-CH ₂ CH ₃
	16	F	Cl	OCH ₂ COO-CH ₂ CH=CH ₂
	17	F	Cl	OCH ₂ COO−CH ₂ C≡CH
20	18	F	Cl	OCH ₂ COO-CH ₂ CH ₂ OCH ₃
	19	F	Cl	OCH ₂ CONH-CH ₃
	20	F	Cl	OCH ₂ CON(CH ₃) ₂
	21	F	Cl	OCH(CH ₃)COOH
	22	F	Cl	OCH(CH ₃)COO-CH ₃
25	23	F	Cl	OCH(CH ₃)COO-CH ₂ CH ₃
	24	F	Cl	OCH(CH ₃)COO-CH ₂ CH=CH ₂
	25	F	Cl	OCH (CH ₃)COO-CH ₂ C≡CH
	26	F	Cl	OCH (CH ₃) COO-CH ₂ CH ₂ OCH ₃
	27	F	Cl	OCH(CH ₃)CONH-CH ₃
	28	F'	Cl	OCH(CH ₃)CON(CH ₃) ₂
30	29	F	Cl	OC(CH ₃) ₂ COO-CH ₃
	30	F	C1	OC (CH ₃) ₂ COO-CH ₂ CH=CH ₂
	31	F	C1	SH
	32	F	Cl	SCH ₃
	33	F	Cl	SCH(CH ₃) ₂
35	34	F	Cl	S-CH ₂ CH=CH ₂
	35	F	Cl	S-CH ₂ C≡CH
	36	F	Cl	S-CH(CH ₃)C≡CH
	37	F	Cl	S-Cyclopentyl
	38	F	Cl	SCH ₂ COOH
40	39	F	Cl	SCH ₂ COO-CH ₃
	40	F	Cl	SCH ₂ COO-CH ₂ CH ₃
	41	F	Cl	SCH ₂ COO-CH ₂ CH=CH ₂
	42	F	Cl	SCH ₂ COO−CH ₂ C≡CH
	43	F	Cl	SCH ₂ COO-CH ₂ CH ₂ OCH ₃
	44	F	Cl	SCH ₂ CONH-CH ₃
	45	F	Cl Cl	SCH ₂ CON(CH ₃) ₂
	46	F		SCH(CH ₃)COOH
	47	F	Cl	SCH(CH ₃)COO-CH ₃
	48	F	Cl	SCH(CH ₃)COO-CH ₂ CH ₃

	Nr.	\mathbb{R}^4	R ⁵	X-R ⁶
	49	F	C1	SCH(CH ₃)COO-CH ₂ CH=CH ₂
	50	F	Cl	SCH(CH ₃)COO-CH ₂ C≡CH
5	51	F	Cl	SCH(CH ₃)COO-CH ₂ CH ₂ OCH ₃
	52	F	Cl	SCH(CH ₃)CONH-CH ₃
	53	F	Cl	SCH(CH ₃)CON(CH ₃) ₂
	54	F	Cl	SC(CH ₃) ₂ COO-CH ₃
	55	F	Cl	SC(CH ₃) ₂ COO-CH ₂ CH=CH ₂
	56	F	Cl	СООН
	57	F	Cl	COOCH ₃
10	58	F	Cl	COOCH ₂ CH ₃
	59	F	Cl	COOCH(CH ₃) ₂
	60	F	Cl	COO-CH ₂ CH=CH ₂
	61	F	Cl	COO-CH ₂ C≡CH
	62	F	Cl	COO-Cyclopentyl
	63	F	Cl	COO-CH ₂ COO-CH ₃
15	64	F	Cl	COO-CH ₂ COO-CH ₂ CH ₃
	65	F	Cl	COO-CH ₂ COO-CH ₂ CH=CH ₂
	66	F	Cl	COO-CH ₂ COO-CH ₂ C≡CH
	67	F	Cl	COO-CH ₂ COO-CH ₂ CH ₂ OCH ₃
	68	F	Cl	COO-CH(CH ₃)COO-CH ₃
20	69	F	Cl	COO-CH(CH ₃)COO-CH ₂ CH ₃
	70	F	Cl	COO-CH(CH ₃)COO-CH ₂ CH=CH ₂
	71	F	Cl	COO-CH(CH ₃)COO-CH ₂ C≡CH
	72	F	Cl	COO-CH(CH ₃)COO-CH ₂ CH ₂ OCH ₃
	73	F	Cl	COO-C(CH ₃) ₂ COO-CH ₃
25	74	F	Cl	COO-C (CH ₃) ₂ COO-CH ₂ CH ₃
25	75	F	Cl	COO-C (CH ₃) ₂ COO-CH ₂ CH=CH ₂
	76	F	Cl	COO-C (CH ₃) ₂ COO-CH ₂ C≡CH
	77	F	Cl	COO-C(CH ₃) ₂ COO-CH ₂ CH ₂ OCH ₃
	78	F	Cl	CONH ₂
	79	F	Cl	CONHCH ₃
30	80	F	Cl	CON(CH ₃) ₂
	81	F	Cl	CONH-CH ₂ COO-CH ₃
	82	F	Cl	CONH-CH ₂ COO-CH ₂ CH=CH ₂
	83	F'	C1	CONH-CH ₂ COO-CH ₂ CH ₂ OCH ₃
	84	F	Cl	CONH-CH(CH ₃)COO-CH ₃
35	85	F	Cl	CONH-CH(CH ₃)COO-CH ₂ CH=CH ₂
33	86	F	Cl	CONH-CH(CH ₃)COO-CH ₂ CH ₂ OCH ₃
	87	F	Cl	CON(CH ₃)-CH ₂ COO-CH ₃
	88	F'	Cl	CON(CH ₃)-CH ₂ COO-CH ₂ CH=CH ₂
	89	F	Cl	CON(CH ₃)-CH ₂ COO-CH ₂ CH ₂ OCH ₃
40	90	F	C1	$C(=N-OCH_3)O-CH_3$
	91	F	Cl	$C (=N-OCH_3)O-CH_2-COOCH_3$
	92	F	Cl	C(=N-OCH ₃)O-CH ₂ -COO-Phenyl
	93	F	Cl	$C(=N-OCH_3)O-CH(CH_3)-COOCH_3$
45	94	F	Cl	CH=C(C1)COO-CH ₃
	95	F	Cl	CH=C(C1)COO-CH ₂ CH ₃
	96	F	C1	CH=C(C1)COO-CH ₂ CH=CH ₂
	97	F	Cl	CH=C(C1)COO-CH ₂ COOCH ₃
	98	F	Cl	CH=C(C1)COO-CH(CH ₃)COOCH ₃
	99	F	Cl	CH=C(C1)CON(CH ₃) ₂

	Nr.	\mathbb{R}^4	R ⁵	X-R ⁶
	100	F	Cl	$CH=C(C1)CON(CH_3)-CH_2COOCH_3$
5	101	F	Cl	CH=C(Cl)CONH-CH(CH ₃)COOCH ₃
	102	F	Cl.	CH=C(Br)COO-CH ₃
	103	F	Cl	CH=C(Br)COO-CH ₂ CH ₃
	104	F	Cl.	CH=C(CH ₃)COO-CH ₃
	105	F	Cl	CH=C(CH ₃)COO-CH ₂ CH ₃
	106	F	C1	CH ₂ -CH(Cl)-COO-CH ₃
	107	F	Cl	CH ₂ -CH(Cl)-COO-CH ₂ CH ₃
	108	F	Cl	СНО
10	109	F	Cl	CH=N-OCH ₃
	110	F	Cl	CH=N-OCH ₂ CH ₃
	111	F	Cl	CH=N-OCH(CH ₃)COOCH ₃
	112	F	Cl	SO ₂ Cl
	113	F	Cl	SO ₂ NH ₂
	114	F	Cl	SO ₂ NHCH ₃
15	115	F	Cl	SO ₂ N(CH ₃) ₂
	116	F	Cl	NH-CH ₂ C≡CH
	117	F	Cl	NHCH (CH ₃) COOCH ₃
	118	F	Cl	N(CH ₃)-CH ₂ C≡CH
	119	F	Cl	NH(SO ₂ CH ₃)
20	120	F	Cl	N(CH ₃)(SO ₂ CH ₃)
	121	F'	Cl	N(SO ₂ CH ₃) ₂
	122	F	CN	H
	123	F	CN	F
	123	F	CN	CH ₃
	125	F	CN	NO ₂
25	126	F	CN	NH ₂
	127	F	CN	OH
	128	F	CN	OCH ₃
	129	F'	CN	OCH(CH ₃) ₂
	130	F F	CN	O-CH ₂ CH=CH ₂
30	131	F	CN	O-CH ₂ C≡CH
30	132	F	CN	O-CH(CH ₃)C≡CH
	133	F	CN	O-Cyclopentyl
		F	CN	OCH ₂ COOH
	134	F	CN	OCH ₂ COO-CH ₃
	135		<u> </u>	OCH ₂ COO-CH ₂ CH ₃
35	136	F	CN	OCH ₂ COO-CH ₂ CH=CH ₂
	137		CN	OCH ₂ COO-CH ₂ C=CH
	138	F	CN	OCH ₂ COO-CH ₂ CH ₂ OCH ₃
	139			OCH ₂ CONH-CH ₃
	140	F	CN	OCH ₂ CON(CH ₃) ₂
40	141	F	CN	L
40	142	F	CN	OCH (CH ₃) COOH
	143	F	CN	OCH(CH ₃)COO-CH ₃
	144	F	CN	OCH (CH ₃) COO CH ₂ CH ₃
45	145	F	CN	OCH (CH ₃) COO-CH ₂ CH=CH ₂
	146	F	CN	OCH (CH ₃) COO-CH ₂ C≡CH
	147	F'	CN	OCH (CH ₃) COO-CH ₂ CH ₂ OCH ₃
	148	F	CN	OCH (CH ₃) CONH-CH ₃
	149	F	CN	OCH(CH ₃)CON(CH ₃) ₂
	150	F	CN	OC(CH ₃) ₂ COO-CH ₃

	Nr.	R ⁴	R ⁵	X-R ⁶
	151	F	CN	OC (CH ₃) ₂ COO-CH ₂ CH=CH ₂
5	152	F	CN	SH
	153	F	CN	SCH ₃
	154	F	CN	SCH(CH ₃) ₂
	155	F	CN	S-CH ₂ CH=CH ₂
	156	F	CN	S-CH ₂ C≡CH
	157	F	CN	S-CH(CH ₃)C≡CH
	158	F	CN ·	S-Cyclopentyl
	159	F	CN	SCH ₂ COOH
10	160	F	CN	SCH ₂ COO-CH ₃
	161	F	CN	SCH ₂ COO-CH ₂ CH ₃
	162	F	CN	SCH ₂ COO-CH ₂ CH=CH ₂
	163	F	CN	SCH ₂ COO-CH ₂ C≡CH
	164	F	CN	SCH ₂ COO-CH ₂ CH ₂ OCH ₃
15	165	F	CN	SCH ₂ CONH-CH ₃
13	166	F	CN	SCH ₂ CON(CH ₃) ₂
	167	F	CN	SCH (CH ₃)COOH
	168	F	CN	SCH(CH ₃)COO-CH ₃
	169	F	CN	SCH(CH ₃)COO-CH ₂ CH ₃
	170	F	CN	SCH(CH ₃)COO-CH ₂ CH=CH ₂
20	171	F	CN	SCH(CH ₃)COO-CH ₂ C≡CH
	172	F	CN	SCH(CH ₃)COO-CH ₂ CH ₂ OCH ₃
	173	F	CN	SCH(CH ₃)CONH-CH ₃
	174	F	CN	SCH(CH ₃)CON(CH ₃) ₂
	175	F	CN	SC(CH ₃) ₂ COO-CH ₃
25	176	F	CN	SC(CH ₃) ₂ COO-CH ₂ CH=CH ₂
25	177	F	CN	СООН
	178	F	CN	COOCH ₃
	179	F	CN	COOCH ₂ CH ₃
	180	F	CN	COOCH(CH ₃) ₂
	181	F	CN	COO-CH ₂ CH=CH ₂
30	182	F	CN	COO-CH ₂ C≡CH
	183	F	CN	COO-Cyclopentyl
	184	F	CN	COO-CH ₂ COO-CH ₃
	185	F	CN	COO-CH ₂ COO-CH ₂ CH ₃
	186	F	CN	COO-CH ₂ COO-CH ₂ CH=CH ₂
35	187	F	CN	COO-CH ₂ COO-CH ₂ C≡CH
	188	F	CN	COO-CH ₂ COO-CH ₂ CH ₂ OCH ₃
	189	F	CN	COO-CH(CH ₃)COO-CH ₃
	190	F	CN	COO-CH(CH ₃)COO-CH ₂ CH ₃
	191	F	CN	COO-CH(CH ₃)COO-CH ₂ CH=CH ₂
4.0	192	F	CN .	COO-CH(CH ₃)COO-CH ₂ C≡CH
40	193	F	CN	COO-CH(CH ₃)COO-CH ₂ CH ₂ OCH ₃
	194	F	CN	COO-C (CH ₃) ₂ COO-CH ₃
	195	F	CN	COO-C (CH ₃) ₂ COO-CH ₂ CH ₃
	196	F	CN	COO-C (CH ₂) 2COO-CH ₂ CH=CH ₂
	197	F	CN	COO-C (CH ₃) 2COO-CH ₂ C≡CH
45	198	F	CN	CONH
	199	F	CN	CONHCH-
	200	F	CN	CON(CH-)
	201	F	CN	CON(CH ₃) ₂

		- T-	75	y 76
	Nr.	R ⁴	R ⁵	X-R ⁶
	202	F	CN	CONH-CH ₂ COO-CH ₃
	203	F	CN	CONH-CH ₂ COO-CH ₂ CH=CH ₂
	204	F	CN	CONH-CH ₂ COO-CH ₂ CH ₂ OCH ₃
5	205	F	CN	CONH-CH(CH ₃)COO-CH ₃
	206	F	CN	CONH-CH(CH ₃)COO-CH ₂ CH=CH ₂
	207	F	CN	CONH-CH(CH ₃)COO-CH ₂ CH ₂ OCH ₃
	208	F	CN	CON(CH ₃)-CH ₂ COO-CH ₃
	209	F	CN	CON(CH ₃)-CH ₂ COO-CH ₂ CH=CH ₂
	210	F	CN	CON(CH ₃)-CH ₂ COO-CH ₂ CH ₂ OCH ₃
10	211	F	CN	$C(=N-OCH_3)O-CH_3$
	212	F	CN	$C(=N-OCH_3)O-CH_2-COOCH_3$
	213	F	CN	$C(=N-OCH_3)O-CH_2-COO-Phenyl$
	214	F	CN	$C(=N-OCH_3)O-CH(CH_3)-COOCH_3$
	215	F	CN	CH=C(C1)COO-CH ₃
15	216	F	CN	CH=C(Cl)COO-CH ₂ CH ₃
	217	F	CN	CH=C(C1)COO-CH ₂ CH=CH ₂
	218	F	CN	CH=C(C1)COO-CH ₂ COOCH ₃
	219	F	CN	CH=C(Cl)COO-CH(CH ₃)COOCH ₃
	220	F	CN	CH=C(Cl)CON(CH ₃) ₂
	221	F	CN	CH=C(Cl)CON(CH ₃)-CH ₂ COOCH ₃
20	222	F	CN	CH=C(Cl)CONH-CH(CH ₃)COOCH ₃
	223	F	CN	CH=C(Br)COO-CH ₃
	224	F	CN	CH=C(Br)COO-CH ₂ CH ₃
	225	F'	CN	CH=C(CH ₃)COO-CH ₃
	226	F	CN	CH=C(CH ₃)COO-CH ₂ CH ₃
25	227	F	CN	CH ₂ -CH(Cl)-COO-CH ₃
	228	F	CN	CH ₂ -CH(Cl)-COO-CH ₂ CH ₃
	229	F	CN	СНО
	230	F	CN	CH=N-OCH ₃
	231	F	CN	CH=N-OCH ₂ CH ₃
	232	F	CN	CH=N-OCH(CH ₃)COOCH ₃
30	233	F	CN	SO ₂ Cl
	234	F	CN	SO ₂ NH ₂
	235	F	CN	SO ₂ NHCH ₃
	236	F	CN	SO ₂ N(CH ₃) ₂
	237	F	CN	NH-CH ₂ C≡CH
35	238	F	CN	NHCH (CH ₃)COOCH ₃
	239	F	CN	N(CH ₃)-CH ₂ C≡CH
	240	F	CN	NH(SO ₂ CH ₃)
	241	F	CN	$N(CH_3)(SO_2CH_3)$
	242	F	CN	N(SO ₂ CH ₃) ₂
	243	Cl	C1	H
40	244	Cl	Cl	F
	245	Cl	Cl	CH ₃
	246	Cl	C1	NO ₂
	247	Cl	Cl	NH ₂
	248	Cl	Cl	OH
45	249	Cl	Cl	OCH ₃
	250	Cl	Cl	OCH(CH ₃) ₂
	251	Cl	Cl	O-CH ₂ CH=CH ₂
	252	Cl	Cl	O-CH ₂ C≡CH

	Nr.	R ⁴	R ⁵	X-R ⁶			
	253	Cl	Cl	O-CH(CH ₃)C≡CH			
	254	Cl	Cl	O-Cyclopentyl			
	255	Cl	Cl	OCH ₂ COOH			
_	256	Cl	Cl	OCH ₂ COO-CH ₃			
5	257	Cl	Cl	OCH ₂ COO-CH ₂ CH ₃			
	258	Cl	Cl	OCH ₂ COO-CH ₂ CH=CH ₂			
	259	Cl	Cl	OCH ₂ COO−CH ₂ C≡CH			
	260	Cl	Cl	OCH ₂ COO-CH ₂ CH ₂ OCH ₃			
	261	Cl	Cl	OCH ₂ CONH-CH ₃			
10	262	Cl	Cl	OCH ₂ CON(CH ₃) ₂			
	263	Cl	Cl	OCH (CH ₃) COOH			
	264	Cl	Cl	OCH (CH ₃)COO-CH ₃			
		i					
	265	C1	Cl	OCH (CH ₃) COO-CH ₂ CH ₃			
	266	Cl	Cl	OCH (CH ₃)COO-CH ₂ CH=CH ₂			
15	267	Cl	Cl	OCH (CH ₃) COO−CH ₂ C≡CH			
	268	Cl	Cl	OCH (CH ₃)COO-CH ₂ CH ₂ OCH ₃			
	269	Cl	Cl	OCH (CH ₃) CONH-CH ₃			
	270	Cl	Cl	OCH(CH ₃)CON(CH ₃) ₂			
	271	Cl	Cl	OC (CH ₃) ₂ COO-CH ₃			
	272	Cl	Cl	OC(CH ₃) ₂ COO-CH ₂ CH=CH ₂			
20	273	Cl	Cl	SH			
	274	Cl	Cl	SCH ₃			
	275	Cl	Cl	SCH(CH ₃) ₂			
	276	Cl	Cl	S-CH ₂ CH=CH ₂			
	277	Cl	Cl	S-CH ₂ C≡CH			
25	278	Cl	Cl	S-CH(CH ₃)C≡CH			
25	279	Cl	Cl	S-Cyclopentyl			
	280	Cl	Cl	SCH ₂ COOH			
	281	Cl	Cl	SCH ₂ COO-CH ₃			
	282	Cl	C1	SCH ₂ COO-CH ₂ CH ₃			
	283	Cl	Cl	SCH ₂ COO-CH ₂ CH=CH ₂			
30	284	Cl	Cl	SCH ₂ COO−CH ₂ C≡CH			
	285	Cl	Cl	SCH ₂ COO-CH ₂ CH ₂ OCH ₃			
	286	Cl	Cl	SCH ₂ CONH-CH ₃			
	287	Cl	Cl	SCH ₂ CON(CH ₃) ₂			
	288	Cl	Cl	SCH(CH ₃)COOH			
	289	Cl	Cl	SCH(CH ₃)COO-CH ₃			
35	290	Cl	Cl	SCH(CH ₃)COO-CH ₂ CH ₃			
	290	Cl	Cl	SCH(CH ₃)COO-CH ₂ CH=CH ₂			
	291	Cl	Cl	SCH(CH ₃)COO-CH ₂ CH-CH ₂			
	292	Cl	Cl	SCH(CH ₃)COO-CH ₂ C=CH			
			J				
40	294	Cl	Cl	SCH(CH ₃)CONH-CH ₃			
40	295	Cl	Cl	SCH(CH ₃)CON(CH ₃) ₂			
	296	Cl	Cl	SC(CH ₃) ₂ COO-CH ₃			
	297	Cl	Cl	SC(CH ₃) ₂ COO-CH ₂ CH=CH ₂			
	298	Cl	Cl	СООН			
	299	Cl	Cl	COOCH ₃			
45	300	Cl	Cl	COOCH ₂ CH ₃			
	301	Cl	Cl	COOCH(CH ₃) ₂			
	302	Cl	Cl	COO-CH ₂ CH=CH ₂			
	303	Cl	Cl	COO-CH ₂ C≡CH			

	Nr.	R ⁴	R ⁵	X-R ⁶
	304	Cl	Cl	COO-Cyclopentyl
	305	Cl	Cl	COO-CH ₂ COO-CH ₃
	306	Cl	Cl	COO-CH ₂ COO-CH ₂ CH ₃
_	307	Cl	Cl	COO-CH ₂ COO-CH ₂ CH=CH ₂
5	308	Cl	Cl	COO-CH ₂ COO-CH ₂ C=CH
	309	Cl	Cl	COO-CH ₂ COO-CH ₂ CH ₂ OCH ₃
	310	Cl	Cl	COO-CH(CH ₃)COO-CH ₃
	311	Cl	Cl	COO-CH(CH ₃)COO-CH ₂ CH ₃
	312	Cl	Cl	COO-CH(CH ₃)COO-CH ₂ CH=CH ₂
10	313	Cl	Cl	COO-CH(CH ₃)COO-CH ₂ C=CH
10	314	Cl	Cl	COO-CH(CH ₃)COO-CH ₂ CH ₂ OCH ₃
	315	Cl	Cl	COO-C(CH ₃) ₂ COO-CH ₃
	316	Cl	Cl	COO-C(CH ₃) ₂ COO-CH ₂ CH ₃
	317	Cl	Cl	COO-C (CH ₃) ₂ COO-CH ₂ CH=CH ₂
	318	Cl	Cl	COO-C(CH ₃) ₂ COO-CH ₂ C≡CH
15	319	Cl	Cl	COO-C(CH ₃) ₂ COO-CH ₂ CH ₂ OCH ₃
	320	Cl	Cl	CONH ₂
	321	Cl	Cl	CONHCH ₃
	322	Cl	Cl	CON(CH ₃) ₂
	323	Cl	Cl	CONH-CH ₂ COO-CH ₃
20	324	Cl	Cl	CONH-CH ₂ COO-CH ₂ CH=CH ₂
	325	Cl	Cl	CONH-CH ₂ COO-CH ₂ CH ₂ CH ₂ CH ₃
	326	Cl	Cl	CONH-CH(CH ₃)COO-CH ₃
	327	Cl	Cl	CONH-CH(CH ₃)COO-CH ₂ CH=CH ₂
	328	Cl	Cl	CONH-CH(CH ₃)COO-CH ₂ CH ₂ CCH ₃
	329	Cl	Cl	CON (CH ₃) -CH ₂ COO-CH ₃
25	330	Cl	Cl	CON (CH ₃) -CH ₂ COO-CH ₂ CH=CH ₂
	331	Cl	Cl	CON(CH ₃)-CH ₂ COO-CH ₂ CH ₂ OCH ₃
	332	Cl	Cl	$C(=N-OCH_3)O-CH_3$
	333	Cl	Cl	$C(=N-OCH_3)O-CH_2-COOCH_3$
	334	Cl	Cl	C(=N-OCH ₃)O-CH ₂ -COO-Phenyl
30	335	Cl	Cl	$C(=N-OCH_3)O-CH(CH_3)-COOCH_3$
	336	Cl	Cl	CH=C(C1)COO-CH ₃
	337	Cl	Cl	CH=C(C1)COO-CH ₂ CH ₃
	338	Cl	Cl	CH=C(C1)COO-CH ₂ CH=CH ₂
	339	Cl	Cl	CH=C(Cl)COO-CH ₂ COOCH ₃
	340	Cl	Cl	CH=C(C1)COO-CH(CH ₃)COOCH ₃
35	341	Cl	Cl	CH=C(Cl)CON(CH ₃) ₂
	342	Cl	Cl	CH=C(C1)CON(CH3)-CH2COOCH3
	343	Cl	Cl	CH=C(Cl)CONH-CH(CH ₃)COOCH ₃
	344	cl	Cl	CH=C(Br)COO-CH ₃
	345	Cl	Cl	CH=C(Br)COO-CH ₂ CH ₃
40	346	Cl	Cl	CH=C(CH ₃)COO-CH ₃
	347	Cl	Cl	CH=C(CH ₃)COO-CH ₂ CH ₃
	348	Cl	Cl	CH ₂ -CH(Cl)-COO-CH ₃
	349	Cl	Cl	CH ₂ -CH(Cl)-COO-CH ₂ CH ₃
	350	Cl	Cl	CHO
	351	Cl	Cl	CH=N-OCH ₃
45	352	Cl	Cl	CH=N-OCH ₂ CH ₃
	353	Cl	Cl	CH=N-OCH(CH ₃)COOCH ₃
	354	Cl	Cl	SO ₂ C1
	334			

WO 02/06233

	Nr.	\mathbb{R}^4	R ⁵	X-R ⁶
	355	Cl	Cl	SO ₂ NH ₂
5	356	Cl	Cl	SO ₂ NHCH ₃
	357	Cl	Cl	SO ₂ N(CH ₃) ₂
	358	Cl	Cl	NH-CH ₂ C≡CH
	359	Cl	Cl	NHCH (CH ₃)COOCH ₃
	360	Cl	Cl	N(CH ₃)-CH ₂ C≅CH
	361	Cl	Cl	NH(SO ₂ CH ₃)
	362	Cl	Cl	N(CH ₃) (SO ₂ CH ₃)
	363	Cl	Cl	N(SO ₂ CH ₃) ₂
10		Cl	CN	H
	365	Cl	CN	F
	366	Cl	CN	CH ₃
	367	Cl	CN	NO ₂
	368	Cl	CN	NH ₂
	369	Cl	CN	OH
15	370	Cl	CN	···
	371	Cl	CN	OCH ₃
	372	Cl	CN	OCH(CH ₃) ₂
	373	Cl	CN	O-CH ₂ CH=CH ₂
	374	Cl	CN	O-CH ₂ C≡CH
20	375	Cl	CN	O-CH(CH ₃)C≡CH
	376	Cl		O-Cyclopentyl
	377	Cl	CN	OCH ₂ COOH
	378	Cl	CN	OCH ₂ COO-CH ₃
	378		CN	OCH ₂ COO-CH ₂ CH ₃
		C1	CN	OCH ₂ COO-CH ₂ CH=CH ₂
25	380	Cl	CN	OCH ₂ COO−CH ₂ C≡CH
	381	Cl	CN	OCH ₂ COO-CH ₂ CH ₂ OCH ₃
	383	Cl	CN	OCH ₂ CONH-CH ₃
		Cl	CN	OCH ₂ CON(CH ₃) ₂
	384	Cl	CN	OCH (CH ₃) COOH
30	385	Cl	CN	OCH(CH ₃)COO-CH ₃
30	386	Cl	CN	OCH(CH ₃)COO-CH ₂ CH ₃
	387	C1	CN	OCH(CH ₃)COO-CH ₂ CH=CH ₂
	388 389	Cl	CN	OCH(CH ₃)COO-CH ₂ C≡CH
		C1	CN	OCH(CH ₃)COO-CH ₂ CH ₂ OCH ₃
	390	Cl	CN	OCH(CH ₃)CONH-CH ₃
35	391	C1	CN	OCH(CH ₃)CON(CH ₃) ₂
	392	Cl	CN	OC (CH ₃) ₂ COO-CH ₃
	393	Cl	CN	OC (CH ₃) ₂ COO-CH ₂ CH=CH ₂
	394	Cl	CN	SH
	395	Cl	CN	SCH ₃
40	396	Cl	CN	SCH(CH ₃) ₂
40	397	Cl	CN	S-CH ₂ CH=CH ₂
ļ	398	Cl	CN	S-CH ₂ C≡CH
1	399	Cl	CN	S-CH(CH ₃)C≡CH
	400	Cl	CN	S-Cyclopentyl
	401	Cl	CN	SCH ₂ COOH
45	402	Cl	CN	SCH ₂ COO-CH ₃
	403	Cl	CN	SCH ₂ COO-CH ₂ CH ₃
<u> </u>	404	Cl	CN	SCH ₂ COO-CH ₂ CH=CH ₂
L	405	Cl	CN	SCH ₂ COO-CH ₂ C≡CH

	Nr.	R ⁴	R ⁵	X-R ⁶
	406	Cl	CN	SCH ₂ COO-CH ₂ CH ₂ OCH ₃
	407	Cl	CN	SCH ₂ CONH-CH ₃
	408	Cl	CN	SCH ₂ CON(CH ₃) ₂
5	409	Cl	CN	SCH(CH ₃)COOH
2	410	Cl	CN	SCH(CH ₃)COO-CH ₃
	411	Cl	CN	SCH(CH ₃)COO-CH ₂ CH ₃
	412	Cl	CN	SCH(CH ₃)COO-CH ₂ CH=CH ₂
	413	Cl	CN	SCH(CH ₃)COO-CH ₂ C≡CH
	414	Cl	CN	SCH(CH ₃)COO-CH ₂ CH ₂ OCH ₃
10	415	Cl	CN	SCH(CH ₃)CONH-CH ₃
	416	Cl	CN	SCH(CH ₃)CON(CH ₃) ₂
	417	Cl	CN	SC(CH ₃) ₂ COO-CH ₃
	418	Cl	CN	SC(CH ₃) ₂ COO-CH ₂ CH=CH ₂
	419	Cl	CN	СООН
15	420	Cl	CN	COOCH ₃
13	421	Cl	CN	COOCH ₂ CH ₃
	422	Cl	CN	COOCH(CH ₃) ₂
	423	Cl	CN	COO-CH ₂ CH=CH ₂
	424	Cl	CN	COO-CH ₂ C=CH
	425	Cl	CN	COO-Cyclopentyl
20	426	Cl	CN	COO-CH ₂ COO-CH ₃
	427	Cl	CN	COO-CH ₂ COO-CH ₂ CH ₃
	428	Cl	CN	COO-CH ₂ COO-CH ₂ CH=CH ₂
	429	Cl	CN	COO-CH ₂ COO-CH ₂ C≡CH
	430	Cl	CN	COO-CH ₂ COO-CH ₂ CH ₂ OCH ₃
25	431	Cl	CN	COO-CH(CH ₃)COO-CH ₃
25	432	Cl	CN	COO-CH(CH ₃)COO-CH ₂ CH ₃
	433	Cl	CN	COO-CH(CH ₃)COO-CH ₂ CH=CH ₂
	434	Cl	CN	COO-CH(CH ₃)COO-CH ₂ C≡CH
	435	Cl	CN	COO-CH(CH ₃)COO-CH ₂ CH ₂ OCH ₃
	436	Cl	CN	COO-C(CH ₃) ₂ COO-CH ₃
30	437	Cl	CN	COO-C(CH ₃) ₂ COO-CH ₂ CH ₃
	438	Cl	CN	COO-C(CH ₃) ₂ COO-CH ₂ CH=CH ₂
	439	Cl	CN	COO-C(CH ₃) ₂ COO-CH ₂ C≡CH
	440	Cl	CN	COO-C (CH ₃) ₂ COO-CH ₂ CH ₂ OCH ₃
	441	Cl	CN	CONH ₂
35	442	Cl	CN	CONHCH ₃
	443	Cl	CN	CON(CH ₃) ₂
	444	Cl	CN	CONH-CH ₂ COO-CH ₃
	445	Cl	CN	CONH-CH ₂ COO-CH ₂ CH=CH ₂
	446	Cl	CN	CONH-CH ₂ COO-CH ₂ CH ₂ OCH ₃
	447	Cl	CN	CONH-CH(CH ₃)COO-CH ₃
40	448	Cl	CN	CONH-CH(CH ₃)COO-CH ₂ CH=CH ₂
	449	Cl	CN	CONH-CH(CH ₃)COO-CH ₂ CH ₂ OCH ₃
	450	Cl	CN	CON(CH ₃)-CH ₂ COO-CH ₃
	451	Cl	CN	CON(CH ₃)-CH ₂ COO-CH ₂ CH=CH ₂
	452	Cl	CN	CON(CH ₃)-CH ₂ COO-CH ₂ CH ₂ OCH ₃
45	453	Cl	CN	C(=N-OCH ₃)O-CH ₃
	454	Cl	CN	C(=N-OCH ₃)O-CH ₂ -COOCH ₃
	455	Cl	CN	C(=N-OCH ₃)O-CH ₂ -COO-Phenyl
	456	Cl	CN	$C(=N-OCH_3)O-CH(CH_3)-COOCH_3$

	Nr.	\mathbb{R}^4	R ⁵	X-R ⁶
	457	Cl	CN	CH=C(C1)COO-CH ₃
	458	Cl	CN	CH=C(C1)COO-CH ₂ CH ₃
	459	Cl	CN	CH=C(C1)COO-CH ₂ CH=CH ₂
5	460	Cl	CN	CH=C(C1)COO-CH ₂ COOCH ₃
	461	Cl	CN	CH=C(Cl)COO-CH(CH ₃)COOCH ₃
	462	Cl	CN	CH=C(C1)CON(CH ₃) ₂
	463	Cl	CN	CH=C(Cl)CON(CH ₃)-CH ₂ COOCH ₃
	464	Cl	CN	CH=C(C1)CONH-CH(CH ₃)COOCH ₃
	465	Cl	CN	CH=C(Br)COO-CH ₃
10	466	Cl	CN	CH=C(Br)COO-CH ₂ CH ₃
	467	Cl	CN	CH=C(CH ₃)COO-CH ₃
	468	Cl	CN	CH=C(CH ₃)COO-CH ₂ CH ₃
	469	Cl	CN	CH ₂ -CH(Cl)-COO-CH ₃
	470	Cl	CN	CH ₂ -CH(Cl)-COO-CH ₂ CH ₃
	471	C1 ·	CN	СНО
15	472	Cl	CN	CH=N-OCH ₃
	473	Cl	CN	CH=N-OCH ₂ CH ₃
	474	Cl	CN	CH=N-OCH(CH ₃)COOCH ₃
	475	Cl	CN	SO ₂ Cl
	476	Cl	CN	SO ₂ NH ₂
20	477	Cl	CN	SO ₂ NHCH ₃
20	478	Cl	CN	SO ₂ N(CH ₃) ₂
	479	Cl	CN	NH-CH ₂ C≡CH
	480	Cl	CN	NHCH (CH ₃) COOCH ₃
	481	Cl	CN	N(CH ₃)-CH ₂ C=CH
	482	Cl	CN	NH(SO ₂ CH ₃)
25	483	Cl	CN	N(CH ₃) (SO ₂ CH ₃)
	484	Cl	CN	N(SO ₂ CH ₃) ₂
	485	н	Cl	H
	486	H	Cl	F
	487	H	Cl	CH ₃
30	488	H	Cl	NO ₂
50	489	H	Cl	NH ₂
	490	H	Cl	OH
	491	H	Cl	OCH ₃
	491	H	Cl	OCH(CH ₃) ₂
	493	H	Cl	O-CH ₂ CH=CH ₂
35	494	H	Cl	O-CH ₂ CH-CH ₂
	494	H	Cl	O-CH ₂ C=CH
	496	H	Cl	O-Cyclopentyl
	497		Cl	OCH ₂ COOH
	497	H	Cl	OCH ₂ COO-CH ₃
40	498	H	Cl	OCH ₂ COO-CH ₂ CH ₃
40	500	H	Cl	OCH ₂ COO-CH ₂ CH=CH ₂
		H		OCH ₂ COO-CH ₂ C=CH
	501	H	Cl	
	502	H	Cl	OCH ₂ COO-CH ₂ CH ₂ OCH ₃
	503	H	Cl	OCH ₂ CONH-CH ₃
45	504	H	Cl	OCH ₂ CON(CH ₃) ₂
	505	H	C1	OCH (CH ₃)COOH
	506	H	Cl	OCH (CH ₃)COO-CH ₃
	507	H	Cl	OCH(CH ₃)COO-CH ₂ CH ₃

	Nr.	R ⁴	R ⁵	X-R ⁶
	508	H	Cl	OCH(CH ₃)COO-CH ₂ CH=CH ₂
	509	H	Cl	OCH (CH ₃) COO-CH ₂ C=CH
	510	Н	Cl	OCH (CH ₃)COO-CH ₂ CH ₂ OCH ₃
	511	H	Cl	OCH (CH ₃) CONH-CH ₃
5	512		Cl	OCH(CH ₃)CON(CH ₃) ₂
		H	Cl	OC (CH ₃) 2COO-CH ₃
	513		Cl	OC(CH ₃) ₂ COO-CH ₂ CH=CH ₂
	514	H		
	515	H	Cl	SH
10	516	H	Cl	SCH ₃
10	517	H	Cl	SCH(CH ₃) ₂
	518	H	Cl	S-CH ₂ CH=CH ₂
	519	H	Cl	S-CH ₂ C≡CH
	520	H	Cl	S-CH(CH ₃)C≡CH
	521	H	Cl	S-Cyclopentyl
15	522	H	Cl	SCH ₂ COOH
	523	H	Cl	SCH ₂ COO-CH ₃
	524	H	Cl	SCH ₂ COO-CH ₂ CH ₃
	525	H	Cl	SCH ₂ COO-CH ₂ CH=CH ₂
	526	H	Cl	SCH ₂ COO-CH ₂ C≡CH
	527	H	Cl	SCH ₂ COO-CH ₂ CH ₂ OCH ₃
20	528	H	Cl	SCH ₂ CONH-CH ₃
	529	H	Cl	SCH ₂ CON(CH ₃) ₂
	530	H	Cl	SCH(CH ₃)COOH
	531	H	Cl	SCH(CH ₃)COO-CH ₃
	532	H	Cl	SCH(CH ₃)COO-CH ₂ CH ₃
25	533	H	Cl	SCH(CH ₃)COO-CH ₂ CH=CH ₂
	534	H	Cl	SCH(CH ₃)COO-CH ₂ C≡CH
	535	H	Cl	SCH(CH ₃)COO-CH ₂ CH ₂ OCH ₃
	536	H	Cl	SCH(CH ₃)CONH-CH ₃
	537	H	Cl	SCH(CH ₃)CON(CH ₃) ₂
	538	H	Cl	SC(CH ₃) ₂ COO-CH ₃
30	539	H	Cl	SC(CH ₃) ₂ COO-CH ₂ CH=CH ₂
	540	H	Cl	СООН
	541	H	Cl	COOCH ₃
	542	H	Cl	COOCH ₂ CH ₃
	543	H	Cl	COOCH(CH ₃) ₂
35	544	H	Cl	COO-CH ₂ CH=CH ₂
33	545	H	Cl	COO-CH ₂ C≡CH
	546	H	Cl	COO-Cyclopentyl
	547	H	Cl	COO-CH ₂ COO-CH ₃
	548	H	Cl	COO-CH ₂ COO-CH ₂ CH ₃
	549	H	Cl	COO-CH ₂ COO-CH ₂ CH=CH ₂
40	550	H	Cl	COO-CH ₂ COO-CH ₂ C≡CH
	551	H	Cl	COO-CH ₂ COO-CH ₂ CH ₂ OCH ₃
	552	H	Cl	COO-CH(CH ₃)COO-CH ₃
	553	H	Cl	COO-CH(CH ₃)COO-CH ₂ CH ₃
	554	H	C1	COO-CH(CH ₃)COO-CH ₂ CH=CH ₂
4 -	555	H	Cl	COO-CH(CH ₃)COO-CH ₂ C≡CH
45	556	H	Cl	COO-CH(CH ₃)COO-CH ₂ CH ₂ OCH ₃
	557	H	Cl	COO-C(CH ₃) ₂ COO-CH ₃
	558	H	Cl	COO-C(CH ₃) ₂ COO-CH ₂ CH ₃
	1 <u></u>			

	Nr.	R ⁴	R ⁵	X-R ⁶
	559	H	Cl	$COO-C(CH_3)_2COO-CH_2CH=CH_2$
	560	H	Cl	COO-C(CH ₃) ₂ COO-CH ₂ C≡CH
	561	H	Cl	COO-C(CH ₃) ₂ COO-CH ₂ CH ₂ OCH ₃
5	562	H	Cl	CONH ₂
5	563	H	Cl	CONHCH ₃
	564	H	Cl	CON(CH ₃) ₂
	565	H	Cl	CONH-CH ₂ COO-CH ₃
	566	H	Cl	CONH-CH ₂ COO-CH ₂ CH=CH ₂
	567	H	Cl	CONH-CH ₂ COO-CH ₂ CH ₂ OCH ₃
10	568	H	Cl	CONH-CH(CH ₃)COO-CH ₃
	569	Н	Cl	CONH-CH(CH ₃)COO-CH ₂ CH=CH ₂
	570	H	Cl	CONH-CH(CH ₃)COO-CH ₂ CH ₂ OCH ₃
	571	H	Cl	CON(CH ₃)-CH ₂ COO-CH ₃
	572	H	Cl	CON(CH ₃)-CH ₂ COO-CH ₂ CH=CH ₂
1 -	573	H	Cl	CON (CH ₃) -CH ₂ COO-CH ₂ CH ₂ OCH ₃
15	574	H	Cl	$C(=N-OCH_3)O-CH_3$
	575	H	Cl	$C(=N-OCH_3)O-CH_2-COOCH_3$
	576	Н	Cl	$C(=N-OCH_3)O-CH_2-COO-Phenyl$
	577	Н	Cl	$C(=N-OCH_3)O-CH(CH_3)-COOCH_3$
	578	H	Cl	CH=C(Cl)COO-CH ₃
20	579	H	Cl	CH=C(C1)COO-CH ₂ CH ₃
	580	H	Cl	CH=C(C1)COO-CH ₂ CH=CH ₂
	581	H	Cl	CH=C(C1)COO-CH ₂ COOCH ₃
	582	H	Cl	CH=C(Cl)COO-CH(CH ₃)COOCH ₃
!	583	H	Cl	CH=C(Cl)CON(CH ₃) ₂
	584	H	Cl	CH=C(C1)CON(CH ₃)-CH ₂ COOCH ₃
25	585	H	Cl	CH=C(C1)CONH-CH(CH ₃)COOCH ₃
	586	H	Cl	CH=C(Br)COO-CH ₃
,	587	H	Cl	CH=C(Br)COO-CH ₂ CH ₃
	588	H	Cl	CH=C(CH ₃)COO-CH ₃
	589	H	Cl	CH=C(CH ₃)COO-CH ₂ CH ₃
30	590	H	Cl	CH ₂ -CH(Cl)-COO-CH ₃
	591	H	Cl	CH ₂ -CH(Cl)-COO-CH ₂ CH ₃
	592	H	Cl	CHO
	593	H	Cl	CH=N-OCH ₃
	594	Н	Cl	CH=N-OCH ₂ CH ₃
	595	H	Cl	CH=N-OCH(CH ₃)COOCH ₃
35	596	H	Cl	SO ₂ Cl
	597	Н	Cl	SO ₂ NH ₂
	598	H	Cl	SO ₂ NHCH ₃
	599	H	Cl	SO ₂ N(CH ₃) ₂
	600	H	Cl	NH-CH ₂ C=CH
40	601	H	Cl	NHCH(CH ₃)COOCH ₃
	602	H	Cl	N(CH ₃)-CH ₂ C≡CH
	603	H	Cl	NH(SO ₂ CH ₃)
	604	H	Cl	N(CH ₃) (SO ₂ CH ₃)
	605	H	Cl	N(SO ₂ CH ₃) ₂
	606	H	CN	H
45	607	H	CN	F
	608	H	CN	CH ₃
	609	H	CN	NO ₂
	009	117	<u> </u>	1.102

	Nr.	\mathbb{R}^4	R ⁵	X-R ⁶
	610	H	CN	NH ₂
Ī	611	H	CN	OH
	612	H	CN	OCH ₃
5	613	H	CN	OCH(CH ₃) ₂
3	614	H	CN	O-CH ₂ CH=CH ₂
Ì	615	H	CN	O-CH ₂ C≡CH
	616	H	CN	O-CH(CH ₃)C≡CH
}	617	H	CN	O-Cyclopentyl
ŀ	618	H	CN	OCH ₂ COOH
10	619	H	CN	OCH ₂ COO-CH ₃
. }	620	H	CN	OCH ₂ COO-CH ₂ CH ₃
}	621	H	CN	OCH ₂ COO-CH ₂ CH=CH ₂
}	622	H	CN	OCH ₂ COO−CH ₂ C≡CH
	623	H	CN	OCH ₂ COO-CH ₂ CH ₂ OCH ₃
}	624	H	CN	OCH ₂ CONH-CH ₃
15	625		CN	OCH ₂ CON(CH ₃) ₂
	626	H		OCH(CH ₃)COOH
}		H	CN	OCH(CH ₃)COO-CH ₃
	627	H	CN	OCH (CH ₃) COO-CH ₂ CH ₃
	628	H	CN	
20	629	H	CN	OCH (CH ₃) COO-CH ₂ CH=CH ₂
20	630	H	CN	OCH (CH ₃) COO−CH ₂ C≡CH
	631	H	CN	OCH (CH ₃) COO-CH ₂ CH ₂ OCH ₃
	632	H	CN	OCH (CH ₃) CONH-CH ₃
	633	H	CN	OCH (CH ₃) CON (CH ₃) ₂
	634	H	CN	OC (CH ₃) ₂ COO-CH ₃
25	635	H	CN	OC(CH ₃) ₂ COO-CH ₂ CH=CH ₂
	636	H	CN	SH
}	637	H	CN	SCH ₃
	638	H	CN	SCH(CH ₃) ₂
	639	H	CN	S-CH ₂ CH=CH ₂
	640	H	CN	S-CH ₂ C≡CH
30	641	H	CN	S-CH(CH ₃)C≡CH
	642	H	CN	S-Cyclopentyl
	643	H	CN	SCH ₂ COOH
	644	H	CN	SCH ₂ COO-CH ₃
	645	H	CN	SCH ₂ COO-CH ₂ CH ₃
35	646	H	CN	SCH ₂ COO-CH ₂ CH=CH ₂
	647	H	CN	SCH ₂ COO−CH ₂ C≡CH
	648	H	CN	SCH ₂ COO-CH ₂ CH ₂ OCH ₃
	649	H	CN	SCH ₂ CONH-CH ₃
	650	H	CN	SCH ₂ CON(CH ₃) ₂
	651	H	CN	SCH(CH ₃)COOH
40	652	H	CN	SCH(CH ₃)COO-CH ₃
	653	H	CN	SCH(CH ₃)COO-CH ₂ CH ₃
	654	H	CN	SCH(CH ₃)COO-CH ₂ CH=CH ₂
	655	H	CN	SCH(CH ₃)COO-CH ₂ C≡CH
	656	H	CN	SCH(CH ₃)COO-CH ₂ CH ₂ OCH ₃
45	657	H	CN	SCH(CH ₃)CONH-CH ₃
T.J	658	H	CN	SCH(CH ₃)CON(CH ₃) ₂
	659	H	CN	SC(CH ₃) ₂ COO-CH ₃
	660	H	CN	SC(CH ₃) ₂ COO-CH ₂ CH=CH ₂

661		Nr.	R ⁴	R5	X-R ⁶
662				<u> </u>	
663					
664					
665				ļ	
666	5				
667				<u> </u>	
668					
10 669					
10					
671 H CN COO-CH ₂ CCO-CH ₂ CE-CH 672 H CN COO-CH ₂ CCOO-CH ₂ CH ₂ OCH ₃ 673 H CN COO-CH ₂ COO-CH ₂ CH ₂ OCH ₃ 674 H CN COO-CH(CH ₃) COO-CH ₂ CH ₂ CH ₂ 675 H CN COO-CH(CH ₃) COO-CH ₂ CH ₂ CH ₂ 676 H CN COO-CH(CH ₃) COO-CH ₂ CH ₂ CH ₂ 677 H CN COO-CH(CH ₃) COO-CH ₂ CH ₂ CH ₂ 678 H CN COO-CH(CH ₃) COO-CH ₂ CH ₂ CH ₃ 679 H CN COO-C(CH ₃) 2COO-CH ₂ CH ₂ CH ₃ 680 H CN COO-C(CH ₃) 2COO-CH ₂ CH ₂ CH ₃ 681 H CN COO-C(CH ₃) 2COO-CH ₂ CH ₂ CH ₂ 682 H CN COO-C(CH ₃) 2COO-CH ₂ CH ₂ CH ₂ 683 H CN COO-C(CH ₃) 2COO-CH ₂ CH ₂ CH ₃ 684 H CN CONH ₂ 685 H CN CONHCH ₃ 686 H CN CONHCH ₃ 687 H CN CONHCH ₃ 688 H CN CONH-CH ₂ COO-CH ₂ CH ₂ CH ₂ 689 H CN CONH-CH ₂ COO-CH ₂ CH ₂ CH ₃ 689 H CN CONH-CH ₂ COO-CH ₂ CH ₂ CH ₃ 689 H CN CONH-CH ₂ COO-CH ₂ CH ₂ CH ₃ 690 H CN CONH-CH(CH ₃) COO-CH ₂ CH ₂ CH ₃ 691 H CN CONH-CH(CH ₃) COO-CH ₂ CH ₂ CH ₃ 692 H CN CONH-CH(CH ₃) COO-CH ₂ CH ₂ CH ₃ 693 H CN CONH-CH(CH ₃) COO-CH ₂ CH ₂ CH ₃ 694 H CN CONH-CH(CH ₃) COO-CH ₂ CH ₂ CH ₃ 695 H CN CONH-CH(CH ₃) COO-CH ₂ CH ₂ CH ₃ 697 H CN CON(CH ₃) -CH ₂ COO-CH ₃ 699 H CN CON(CH ₃) -CH ₂ COO-CH ₂ CH ₂ CH ₃ 699 H CN CON(CH ₃) -CH ₂ COO-CH ₂ CH ₃ CH ₃ 699 H CN CON(CH ₃) -CH ₂ COO-CH ₂ CH ₃ CH ₃ 699 H CN CON(CH ₃) -CH ₂ COO-CH ₂ CH ₃ CH ₃ 699 H CN C(=N-OCH ₃) O-CH ₂ -COOCH ₃ 699 H CN C(=N-OCH ₃) O-CH ₂ -COOCH ₃ 699 H CN C(=N-OCH ₃) O-CH ₂ -COOCH ₃ 699 H CN C(=N-OCH ₃) O-CH ₂ -COOCH ₃ 699 H CN C(=N-OCH ₃) O-CH ₂ -COOCH ₃ 699 H CN C(=N-OCH ₃) O-CH ₂ -COOCH ₃ 699 H CN C(=N-OCH ₃) O-CH ₂ -COOCH ₃ 699 H CN CH=C(C1) COO-CH ₂ CH=CH ₂ 700 H CN CH=C(C1) COO-CH ₂ CH=CH ₂ 701 H CN CH=C(C1) COO-CH ₂ CH ₃ 702 H CN CH=C(C1) COO-CH ₂ CH ₃ 703 H CN CH=C(C1) COO-CH ₂ CH ₃ 704 H CN CH=C(C1) COO(CH ₃) COOCH ₃ 705 H CN CH=C(C1) CON(CH ₃) -CH ₂ COOCH ₃ 706 H CN CH=C(C1) CON(CH ₃) COOCH ₃	10				
672	10				
673					
15					
15 675					
676					
677	15				
678					
20 679 H CN COO-C(CH ₃) ₂ COO-CH ₂ CH ₃ 680 H CN COO-C(CH ₃) ₂ COO-CH ₂ CH=CH ₂ 681 H CN COO-C(CH ₃) ₂ COO-CH ₂ CH=CH ₂ 682 H CN COO-C(CH ₃) ₂ COO-CH ₂ CH ₂ CH 683 H CN CONH ₂ 684 H CN CONHCH ₃ 685 H CN CONHCH ₃ 685 H CN CONHCH ₃ 686 H CN CONH-CH ₂ COO-CH ₂ CH=CH ₂ 688 H CN CONH-CH ₂ COO-CH ₂ CH=CH ₂ 688 H CN CONH-CH ₂ COO-CH ₂ CH=CH ₂ 689 H CN CONH-CH ₂ COO-CH ₂ CH=CH ₂ 690 H CN CONH-CH(CH ₃)COO-CH ₂ CH=CH ₂ 691 H CN CONH-CH(CH ₃)COO-CH ₂ CH=CH ₂ 692 H CN CONH-CH(CH ₃)COO-CH ₂ CH=CH ₂ 694 H CN CON(CH ₃)-CH ₂ COO-CH ₃ 695 H CN CON(CH ₃)-CH ₂ COO-CH ₂ CH=CH ₂ 696 H CN CON(CH ₃)-CH ₂ COO-CH ₂ CH=CH ₂ 697 H CN CON(CH ₃)-CH ₂ COO-CH ₂ CH=CH ₂ 698 H CN C(=N-OCH ₃)O-CH ₂ CH ₂ OCH ₃ 699 H CN C(=N-OCH ₃)O-CH ₂ COO-CH ₃ 690 H CN C(=N-OCH ₃)O-CH ₂ COO-CH ₃ 691 H CN C(=N-OCH ₃)O-CH ₂ COO-CH ₃ 692 H CN C(=N-OCH ₃)O-CH ₂ COO-CH ₃ 694 H CN C(=N-OCH ₃)O-CH ₂ COO-CH ₃ 695 H CN C(=N-OCH ₃)O-CH ₂ COO-CH ₃ 696 H CN C(=N-OCH ₃)O-CH ₂ COO-CH ₃ 697 H CN C(=N-OCH ₃)O-CH ₂ COO-CH ₃ 698 H CN C(=N-OCH ₃)O-CH ₂ COO-CH ₃ 699 H CN CH=C(Cl)COO-CH ₂ CH ₃ 700 H CN CH=C(Cl)COO-CH ₂ CH ₃ 701 H CN CH=C(Cl)COO-CH ₂ CH ₃ 702 H CN CH=C(Cl)COO-CH ₂ CH ₃ 704 H CN CH=C(Cl)COO-CH ₂ CH ₃ 705 H CN CH=C(Cl)CON(CH ₃)-CH ₂ COOCH ₃ 706 H CN CH=C(Cl)CON(CH ₃)-CH ₂ COOCH ₃ 707 H CN CH=C(Cl)CON(CH ₃)-CH ₂ COOCH ₃			<u></u>		
CN					
20 681 H CN COO-C(CH ₃) ₂ COO-CH ₂ C=CH 682 H CN COO-C(CH ₃) ₂ COO-CH ₂ CH ₂ OCH ₃ 683 H CN CONH ₂ 684 H CN CONHCH ₃ 685 H CN CONHCH ₃ 686 H CN CONHCH ₃ 687 H CN CONH-CH ₂ COO-CH ₂ CH=CH ₂ 688 H CN CONH-CH ₂ COO-CH ₂ CH=CH ₂ 689 H CN CONH-CH ₂ COO-CH ₂ CH=CH ₂ 690 H CN CONH-CH(CH ₃) COO-CH ₂ CH=CH ₂ 691 H CN CONH-CH(CH ₃) COO-CH ₂ CH=CH ₂ 692 H CN CONH-CH(CH ₃) COO-CH ₂ CH=CH ₂ 693 H CN CON(CH ₃)-CH ₂ COO-CH ₂ CH=CH ₂ 694 H CN CON(CH ₃)-CH ₂ COO-CH ₂ CH=CH ₂ 695 H CN CON(CH ₃)-CH ₂ COO-CH ₂ CH ₂ COCH ₃ 696 H CN C(=N-OCH ₃)O-CH ₂ COO-CH ₃ 697 H CN C(=N-OCH ₃)O-CH ₂ COO-CH ₂ CH=CH ₂ 699 H CN C(=N-OCH ₃)O-CH ₂ COO-CH ₃ 699 H CN C(=N-OCH ₃)O-CH ₂ COO-CH ₃ 700 H CN CH=C(Cl)COO-CH ₂ 701 H CN CH=C(Cl)COO-CH ₂ CH=CH ₂ 702 H CN CH=C(Cl)COO-CH ₂ CH=CH ₂ 704 H CN CH=C(Cl)COO-CH ₂ CH=CH ₂ 705 H CN CH=C(Cl)COO-CH ₂ CHCOOCH ₃ 706 H CN CH=C(Cl)CON-CH ₃ (CH ₃)COOCH ₃ 707 H CN CH=C(Cl)CON-CH ₃ (CH ₃)COOCH ₃ 706 H CN CH=C(Cl)CON-CH ₃ (CH ₃)COOCH ₃ 707 H CN CH=C(Cl)CON-CH ₃ (CH ₃)COOCH ₃ 706 H CN CH=C(Cl)CON-CH ₃ (CH ₃)COOCH ₃ 707 H CN CH=C(Cl)CON-CH ₃ (CH ₃)COOCH ₃ 707 H CN CH=C(Cl)CON-CH ₃ (CH ₃)COOCH ₃ 708 H CN CH=C(Cl)CON-CH ₃ (CH ₃)COOCH ₃ 709 H CN CH=C(Cl)CON-CH ₃ (CH ₃)COOCH ₃ 700 H CN CH=C(Cl)CON-CH ₃ (CH ₃)COOCH ₃			H	CN	
682					
683	20		H	CN	
25 684			H	CN	
25			H		
25 686 H CN CONH-CH ₂ COO-CH ₃ 687 H CN CONH-CH ₂ COO-CH ₂ CH=CH ₂ 688 H CN CONH-CH ₂ COO-CH ₂ CH=CH ₂ 689 H CN CONH-CH(CH ₃)COO-CH ₃ 690 H CN CONH-CH(CH ₃)COO-CH ₂ CH=CH ₂ 691 H CN CONH-CH(CH ₃)COO-CH ₂ CH=CH ₂ 692 H CN CON(CH ₃)-CH ₂ COO-CH ₃ 693 H CN CON(CH ₃)-CH ₂ COO-CH ₂ CH=CH ₂ 694 H CN CON(CH ₃)-CH ₂ COO-CH ₂ CH=CH ₂ 695 H CN C(=N-OCH ₃)O-CH ₃ 696 H CN C(=N-OCH ₃)O-CH ₃ 697 H CN C(=N-OCH ₃)O-CH ₂ -COO-CH ₃ 699 H CN C(=N-OCH ₃)O-CH ₂ -COO-CH ₃ 699 H CN C(=N-OCH ₃)O-CH(CH ₃)-COOCH ₃ 700 H CN CH=C(C1)COO-CH ₂ CH=CH ₂ 701 H CN CH=C(C1)COO-CH ₂ CH=CH ₂ 702 H CN CH=C(C1)COO-CH ₂ CH=CH ₂ 704 H CN CH=C(C1)COO-CH ₂ CH=CH ₂ 705 H CN CH=C(C1)COO-CH(CH ₃)COOCH ₃ 706 H CN CH=C(C1)CON(CH ₃)-CH ₂ COOCH ₃ 707 H CN CH=C(C1)CON(CH ₃)-CH ₂ COOCH ₃			H	ĊИ	
687			H	CN	
687	25	686	H		
689			H	CN	
30			H		
30 691 H CN CONH-CH(CH ₃)COO-CH ₂ CH ₂ COCH ₃ 692 H CN CON(CH ₃)-CH ₂ COO-CH ₂ CH=CH ₂ 693 H CN CON(CH ₃)-CH ₂ COO-CH ₂ CH=CH ₂ 694 H CN CON(CH ₃)-CH ₂ COO-CH ₂ CH ₂ OCH ₃ 695 H CN C(=N-OCH ₃)O-CH ₂ -COOCH ₃ 696 H CN C(=N-OCH ₃)O-CH ₂ -COO-Phenyl 698 H CN C(=N-OCH ₃)O-CH(CH ₃)-COOCH ₃ 699 H CN CH=C(Cl)COO-CH ₂ CH ₃ 700 H CN CH=C(Cl)COO-CH ₂ CH=CH ₂ 701 H CN CH=C(Cl)COO-CH ₂ COOCH ₃ 702 H CN CH=C(Cl)COO-CH(CH ₃)COOCH ₃ 704 H CN CH=C(Cl)COO-CH(CH ₃)2 705 H CN CH=C(Cl)CON(CH ₃)-CH ₂ COOCH ₃ 706 H CN CH=C(Cl)CON+CH(CH ₃)COOCH ₃ 707 H CN CH=C(Br)COO-CH ₃			H	CN	
692			H	СИ_	
693 H CN CON(CH ₃)-CH ₂ COO-CH ₂ CH=CH ₂ 694 H CN CON(CH ₃)-CH ₂ COO-CH ₂ CH ₂ OCH ₃ 695 H CN C(=N-OCH ₃)O-CH ₃ 696 H CN C(=N-OCH ₃)O-CH ₂ -COOCH ₃ 697 H CN C(=N-OCH ₃)O-CH ₂ -COO-Phenyl 698 H CN C(=N-OCH ₃)O-CH(CH ₃)-COOCH ₃ 699 H CN CH=C(Cl)COO-CH ₃ 700 H CN CH=C(Cl)COO-CH ₂ CH ₃ 701 H CN CH=C(Cl)COO-CH ₂ CH ₃ 702 H CN CH=C(Cl)COO-CH ₂ CH=CH ₂ 703 H CN CH=C(Cl)COO-CH ₂ COOCH ₃ 704 H CN CH=C(Cl)COO-CH(CH ₃)COOCH ₃ 705 H CN CH=C(Cl)CON(CH ₃) ₂ 706 H CN CH=C(Cl)CON(CH ₃)-CH ₂ COOCH ₃ 707 H CN CH=C(Cl)CONH-CH(CH ₃)COOCH ₃			H		
694 H CN CON(CH ₃)-CH ₂ COO-CH ₂ CH ₂ OCH ₃ 695 H CN C(=N-OCH ₃)O-CH ₃ 696 H CN C(=N-OCH ₃)O-CH ₂ -COOCH ₃ 697 H CN C(=N-OCH ₃)O-CH ₂ -COO-Phenyl 698 H CN C(=N-OCH ₃)O-CH(CH ₃)-COOCH ₃ 699 H CN CH=C(Cl)COO-CH ₃ 700 H CN CH=C(Cl)COO-CH ₂ CH ₃ 701 H CN CH=C(Cl)COO-CH ₂ CH=CH ₂ 702 H CN CH=C(Cl)COO-CH ₂ CH=CH ₂ 703 H CN CH=C(Cl)COO-CH(CH ₃)COOCH ₃ 704 H CN CH=C(Cl)COO-CH(CH ₃)COOCH ₃ 705 H CN CH=C(Cl)CON(CH ₃) ₂ 706 H CN CH=C(Cl)CON(CH ₃)-CH ₂ COOCH ₃ 707 H CN CH=C(Cl)CONH-CH(CH ₃)COOCH ₃	30		H	CN	
CN C(=N-OCH ₃)O-CH ₃		693	H	CN	
35		694	H	CN	CON(CH ₃)-CH ₂ COO-CH ₂ CH ₂ OCH ₃
35 697 H CN C(=N-OCH ₃)O-CH ₂ -COO-Phenyl 698 H CN C(=N-OCH ₃)O-CH(CH ₃)-COOCH ₃ 699 H CN CH=C(Cl)COO-CH ₂ CH ₃ 700 H CN CH=C(Cl)COO-CH ₂ CH=CH ₂ 701 H CN CH=C(Cl)COO-CH ₂ COOCH ₃ 702 H CN CH=C(Cl)COO-CH(CH ₃)COOCH ₃ 703 H CN CH=C(Cl)COO(CH ₃)2 704 H CN CH=C(Cl)CON(CH ₃)2 705 H CN CH=C(Cl)CON(CH ₃)-CH ₂ COOCH ₃ 706 H CN CH=C(Cl)CONH-CH(CH ₃)COOCH ₃ 707 H CN CH=C(Br)COO-CH ₃		695	H	CN	
698 H CN C(=N-OCH ₃)O-CH(CH ₃)-COOCH ₃ 699 H CN CH=C(Cl)COO-CH ₃ 700 H CN CH=C(Cl)COO-CH ₂ CH ₃ 701 H CN CH=C(Cl)COO-CH ₂ CH=CH ₂ 702 H CN CH=C(Cl)COO-CH ₂ COOCH ₃ 40 703 H CN CH=C(Cl)COO-CH(CH ₃)COOCH ₃ 704 H CN CH=C(Cl)CON(CH ₃) ₂ 705 H CN CH=C(Cl)CON(CH ₃) ₂ 706 H CN CH=C(Cl)CONH-CH(CH ₃)COOCH ₃ 707 H CN CH=C(Cl)CONH-CH(CH ₃)COOCH ₃			H	CN	
698 H CN C(=N-OCH ₃)O-CH(CH ₃)-COOCH ₃ 699 H CN CH=C(C1)COO-CH ₃ 700 H CN CH=C(C1)COO-CH ₂ CH ₃ 701 H CN CH=C(C1)COO-CH ₂ CH=CH ₂ 702 H CN CH=C(C1)COO-CH ₂ COOCH ₃ 40 703 H CN CH=C(C1)COO-CH(CH ₃)COOCH ₃ 704 H CN CH=C(C1)CON(CH ₃) ₂ 705 H CN CH=C(C1)CON(CH ₃)-CH ₂ COOCH ₃ 706 H CN CH=C(C1)CONH-CH(CH ₃)COOCH ₃ 707 H CN CH=C(C1)CON-CH(CH ₃)COOCH ₃	35	697	H	CN	<u> </u>
700 H CN CH=C(C1)COO-CH ₂ CH ₃ 701 H CN CH=C(C1)COO-CH ₂ CH=CH ₂ 702 H CN CH=C(C1)COO-CH ₂ COOCH ₃ 703 H CN CH=C(C1)COO-CH(CH ₃)COOCH ₃ 704 H CN CH=C(C1)CON(CH ₃) ₂ 705 H CN CH=C(C1)CON(CH ₃)-CH ₂ COOCH ₃ 706 H CN CH=C(C1)CONH-CH(CH ₃)COOCH ₃ 707 H CN CH=C(C1)CONH-CH(CH ₃)COOCH ₃		698	H	CN	
701 H CN CH=C(Cl)COO-CH ₂ CH=CH ₂ 702 H CN CH=C(Cl)COO-CH ₂ COOCH ₃ 703 H CN CH=C(Cl)COO-CH(CH ₃)COOCH ₃ 704 H CN CH=C(Cl)CON(CH ₃) ₂ 705 H CN CH=C(Cl)CON(CH ₃)-CH ₂ COOCH ₃ 706 H CN CH=C(Cl)CONH-CH(CH ₃)COOCH ₃ 707 H CN CH=C(Cl)COO-CH ₃		699	H	CN	CH=C(Cl)COO-CH ₃
702 H CN CH=C(C1)COO-CH ₂ COOCH ₃ 703 H CN CH=C(C1)COO-CH(CH ₃)COOCH ₃ 704 H CN CH=C(C1)CON(CH ₃) ₂ 705 H CN CH=C(C1)CON(CH ₃)-CH ₂ COOCH ₃ 706 H CN CH=C(C1)CONH-CH(CH ₃)COOCH ₃ 707 H CN CH=C(Br)COO-CH ₃		700	H	CN	CH=C(Cl)COO-CH ₂ CH ₃
40 703 H CN CH=C(C1)COO-CH(CH ₃)COOCH ₃ 704 H CN CH=C(C1)CON(CH ₃) ₂ 705 H CN CH=C(C1)CON(CH ₃)-CH ₂ COOCH ₃ 706 H CN CH=C(C1)CONH-CH(CH ₃)COOCH ₃ 707 H CN CH=C(Br)COO-CH ₃		701	H	CN	CH=C(Cl)COO-CH ₂ CH=CH ₂
704 H CN CH=C(Cl)CON(CH ₃) ₂ 705 H CN CH=C(Cl)CON(CH ₃)-CH ₂ COOCH ₃ 706 H CN CH=C(Cl)CONH-CH(CH ₃)COOCH ₃ 707 H CN CH=C(Br)COO-CH ₃		702	H	CN	CH=C(Cl)COO-CH ₂ COOCH ₃
705 H CN CH=C(C1)CON(CH ₃)-CH ₂ COOCH ₃ 706 H CN CH=C(C1)CONH-CH(CH ₃)COOCH ₃ 707 H CN CH=C(Br)COO-CH ₃	40	703	H	CN	CH=C(Cl)COO-CH(CH ₃)COOCH ₃
706 H CN CH=C(C1)CONH-CH(CH ₃)COOCH ₃ 707 H CN CH=C(Br)COO-CH ₃		704	H	CN	CH=C(Cl)CON(CH ₃) ₂
707 H CN CH=C(Br)COO-CH ₃		705	H	CN	CH=C(C1)CON(CH ₃)-CH ₂ COOCH ₃
		706	H	CN	
		707	H	CN	CH=C(Br)COO-CH ₃
45 708 H CN CH=C(Br)COO-CH ₂ CH ₃	15	708	H	CN	CH=C(Br)COO-CH ₂ CH ₃
709 H CN CH=C(CH ₃)COO-CH ₃	43	1	H	CN	
710 H CN CH=C(CH ₃)COO-CH ₂ CH ₃			H		
711 H CN CH ₂ -CH(C1)-COO-CH ₃		·	Н	CN	

i	Nr.	\mathbb{R}^4	R ⁵	X-R ⁶	
	712	H	CN	CH2-CH(Cl)-COO-CH2CH3	
	713	H	CN	СНО	
	714	H	CN	CH=N-OCH ₃	
_	715	H	CN	CH=N-OCH ₂ CH ₃	
5	716	H	CN	CH=N-OCH(CH ₃)COOCH ₃	
	717	H	CN	SO ₂ Cl	
	718	H	CN	SO ₂ NH ₂	
	719	H	CN	SO ₂ NHCH ₃	
	720	Н	CN	SO ₂ N(CH ₃) ₂	
10	721	H	CN	NH-CH ₂ C≡CH	
	722	H	CN	NHCH (CH ₃) COOCH ₃	
	723	H	CN	N(CH ₃)-CH ₂ C≡CH	
	724	H	CN	NH(SO ₂ CH ₃)	
	725	H	CN	N(CH ₃)(SO ₂ CH ₃)	
1 ~	726	Н	CN	N(SO ₂ CH ₃) ₂	
15	727	F	Cl	OCH (CH ₃) COO-CH ₃	(R-Enantiomer)
	728	F	Cl	OCH (CH ₃) COO-CH ₂ CH ₃	(R-Enantiomer)
	729	F	Cl	OCH (CH ₃) COO-CH ₂ CH=CH ₂	(R-Enantiomer)
	730	F	Cl	OCH(CH ₃)COO-CH ₂ C≡CH	(R-Enantiomer)
	731	F	Cl	OCH (CH ₃) COO-CH ₂ CH ₂ OCH ₃	(R-Enantiomer)
20	732	F	Cl	OCH (CH ₃) CONH-CH ₃	(R-Enantiomer)
	733	F	Cl	OCH (CH ₃) CON (CH ₃) ₂	(R-Enantiomer)
	734	F	CN	OCH (CH ₃)COO-CH ₃	(R-Enantiomer)
	735	F	CN	OCH (CH ₃) COO-CH ₂ CH ₃	(R-Enantiomer)
	736	F	CN	OCH (CH ₃) COO-CH ₂ CH=CH ₂	(R-Enantiomer)
25	737	F	CN	OCH (CH ₃)COO-CH ₂ C≡CH	(R-Enantiomer)
	738	F	CN	OCH(CH ₃)COO-CH ₂ CH ₂ OCH ₃	(R-Enantiomer)
	739	F	CN	OCH (CH ₃) CONH-CH ₃	(R-Enantiomer)
	740	F	CN	OCH(CH ₃)CON(CH ₃) ₂	(R-Enantiomer)
	741	H	Cl	OCH (CH ₃) COO-CH ₃	(R-Enantiomer)
	742	H	Cl	OCH(CH ₃)COO-CH ₂ CH ₃	(R-Enantiomer)
30	743	H	Cl	OCH (CH ₃) COO-CH ₂ CH=CH ₂	(R-Enantiomer)
	744	H	Cl	OCH(CH ₃)COO-CH ₂ C≡CH	(R-Enantiomer)
	745	H	Cl	OCH (CH ₃) COO-CH ₂ CH ₂ OCH ₃	(R-Enantiomer)
	746	H	Cl	OCH (CH ₃) CONH-CH ₃	(R-Enantiomer)
	747	H	Cl	OCH (CH ₃) CON (CH ₃) ₂	(R-Enantiomer)
35	748	H	CN	OCH (CH ₃) COO-CH ₃	(R-Enantiomer) (R-Enantiomer)
	749	H	CN	OCH (CH ₃) COO CH-CH-CH-	(R-Enantiomer)
	750	H	CN	OCH (CH ₃) COO-CH ₂ CH=CH ₂	(R-Enantiomer)
	751	H	CN	OCH(CH ₃)COO-CH ₂ C≡CH OCH(CH ₃)COO-CH ₂ CH ₂ OCH ₃	(R-Enantiomer)
	752	H	CN		(R-Enantiomer)
40	753	H	CN	OCH (CH ₃) CONH-CH ₃ OCH (CH ₃) CON (CH ₃) ₂	(R-Enantiomer)
40	754 755	Cl	Cl	OCH (CH ₃) COO-CH ₃	(R-Enantiomer)
		Cl	Cl	OCH (CH ₃)COO-CH ₂ CH ₃	(R-Enantiomer)
	756 757	Cl	Cl	OCH (CH ₃) COO-CH ₂ CH=CH ₂	(R-Enantiomer)
	758	Cl	Cl	OCH (CH ₃)COO-CH ₂ C≡CH	(R-Enantiomer)
	759	Cl	Cl	OCH (CH ₃) COO-CH ₂ C=CH	(R-Enantiomer)
45	760	Cl	Cl	OCH (CH ₃) CONH-CH ₃	(R-Enantiomer)
	761	Cl	Cl	OCH (CH ₃) CON (CH ₃) ₂	(R-Enantiomer)
	762	Cl	CN	OCH (CH ₃) COO-CH ₃	(R-Enantiomer)
	102		CIN	10011 (CH3) COO-CH3	(11 211011011011)

ĺ	Nr.	\mathbb{R}^4	R ⁵	X-R ⁶	
	763	Cl	CN	OCH (CH ₃) COO-CH ₂ CH ₃	(R-Enantiomer)
	764	Cl	CN	OCH (CH ₃) COO-CH ₂ CH=CH ₂	(R-Enantiomer)
	765	Cl	CN	OCH (CH ₃) COO-CH ₂ C≡CH	(R-Enantiomer)
5	766	Cl	CN	OCH (CH ₃) COO-CH ₂ CH ₂ OCH ₃	(R-Enantiomer)
3	767	Cl	CN	OCH (CH ₃) CONH-CH ₃	(R-Enantiomer)
	768	Cl	CN	OCH (CH ₃) CON (CH ₃) ₂	(R-Enantiomer)
	769	F	Cl	COO-CH(CH ₃)COO-CH ₃	(S-Enantiomer)
	770	F	Cl	COO-CH(CH ₃)COO-CH ₂ CH ₃	(S-Enantiomer)
	771	F	Cl	COO-CH(CH ₃)COO-CH ₂ CH=CH ₂	(S-Enantiomer)
10	772	F	Cl	COO-CH(CH ₃)COO-CH ₂ C≡CH	(S-Enantiomer)
	773	F	Cl	COO-CH(CH ₃)COO-CH ₂ CH ₂ OCH ₃	(S-Enantiomer)
	774	F	CN	COO-CH(CH ₃)COO-CH ₃	(S-Enantiomer)
	775	F	CN	COO-CH(CH ₃)COO-CH ₂ CH ₃	(S-Enantiomer)
	776	F	CN	COO-CH(CH ₃)COO-CH ₂ CH=CH ₂	(S-Enantiomer)
15	777	F	CN	COO-CH(CH ₃)COO-CH ₂ C≡CH	(S-Enantiomer)
	778	F	CN	COO-CH(CH ₃)COO-CH ₂ CH ₂ OCH ₃	(S-Enantiomer)
	779	Cl	Cl	COO-CH(CH ₃)COO-CH ₃	(S-Enantiomer)
	780	Cl	Cl	COO-CH(CH ₃)COO-CH ₂ CH ₃	(S-Enantiomer)
	781	Cl	Cl	COO-CH(CH ₃)COO-CH ₂ CH=CH ₂	(S-Enantiomer)
	782	Cl	Cl	COO-CH(CH ₃)COO-CH ₂ C≡CH	(S-Enantiomer)
20	783	Cl	Cl	COO-CH(CH ₃)COO-CH ₂ CH ₂ OCH ₃	(S-Enantiomer)
	784	Cl	CN	COO-CH(CH ₃)COO-CH ₃	(S-Enantiomer)
	785	Cl	CN	COO-CH(CH ₃)COO-CH ₂ CH ₃	(S-Enantiomer)
	786	Cl	CN	COO-CH(CH ₃)COO-CH ₂ CH=CH ₂	(S-Enantiomer)
	787	Cl	CN	COO-CH(CH ₃)COO-CH ₂ C≡CH	(S-Enantiomer)
25	788	Cl	CN	COO-CH(CH ₃)COO-CH ₂ CH ₂ OCH ₃	(S-Enantiomer)
	789	H	Cl	COO-CH(CH ₃)COO-CH ₃	(S-Enantiomer)
	790	H	Cl	COO-CH(CH ₃)COO-CH ₂ CH ₃	(S-Enantiomer)
	791	H	Cl	COO-CH(CH ₃)COO-CH ₂ CH=CH ₂	(S-Enantiomer)
	792	H	Cl	COO-CH(CH ₃)COO-CH ₂ C≡CH	(S-Enantiomer)
	793	H	Cl	COO-CH(CH ₃)COO-CH ₂ CH ₂ OCH ₃	(S-Enantiomer)
30	794	H	CN	COO-CH(CH ₃)COO-CH ₃	(S-Enantiomer)
	795	H	CN	COO-CH(CH ₃)COO-CH ₂ CH ₃	(S-Enantiomer)
	796	H	CN	COO-CH(CH ₃)COO-CH ₂ CH=CH ₂	(S-Enantiomer)
	797	H	CN	COO-CH(CH ₃)COO-CH ₂ C≡CH	(S-Enantiomer)
	798	H	CN	COO-CH(CH ₃)COO-CH ₂ CH ₂ OCH ₃	(S-Enantiomer)

³⁵ Unter den Verbindungen IB (Q = N) sind die Verbindungen mit R³ = CF₃ und R¹ = Cl bevorzugt, worin R² und R²' unabhängig ausgewählt sind unter Wasserstoff und Methyl. Beispiele hierfür sind die Verbindungen der nachstehend angegebenen Formeln IBa, IBb, IBc und IBd, worin R⁴, R⁵ und X-R⁶ gemeinsam die in jeweils einer
40 Zeile der Tabelle 1 angegebenen Bedeutungen aufweisen (Verbindungen IBa.1-IBa.798 bis IBd.1-IBd.798).

Unter den Verbindungen IC sind solche Verbindungen besonders bevorzugt, in denen R⁷ zusammen mit X-R⁶ für eine Kette der Formel -N=C(R¹⁹)-O- oder -N=C(R¹⁹)-S- steht, worin die Variable R¹⁹ die zuvor angegebenen Bedeutungen, insbesondere die als bevorzugt angegebenen Bedeutungen aufweist. Diese Verbindungen werden im Folgenden auch als Benzoxazolylpyridone bzw. als Benzothiazolylpyridone bezeichnet. Hierbei werden solche Verbindungen bevorzugt, in denen das Chalkogenatom an Kohlenstoffatom gebunden ist, welches der Verknüpfungsstelle zum Pyridonring benachbart ist.

Unter diesen Verbindungen sind wiederum solche Verbindungen mit R^3 = CF_3 und R^1 = Cl bevorzugt, worin R^2 und R^2 ' unabhängig ausgewählt sind unter Wasserstoff und Methyl.

Beispiele hierfür sind die 1-Benzoxazol-7-yl-1H-2-pyridone der nachstehend angegebenen Formeln ICa, ICb, ICc und ICd, worin R⁴, R⁵ und R¹⁹ gemeinsam die in jeweils einer Zeile der Tabelle 2 angegebenen Bedeutungen aufweisen (Verbindungen ICa.1-ICa.312 bis ICd.1-ICd.312).

Tabelle 2

	Nr.	R ⁴	R ⁵	R ¹⁹
30	1	F	Cl	Н
	2	F	CI	CH ₃
	3	F	Cl	C ₂ H ₅
	4	F	Cl	n-C ₃ H ₇
	5	F	Cl	CH(CH ₃) ₂
35	6	F	Cl	n-C ₄ H ₉
"	7	F	Cl	$CH(CH_3)-C_2H_5$
	8	F	Cl	CH ₂ -CH(CH ₃) ₂
	9	F	Cl	C(CH ₃) ₃
	10	F	Cl	CH ₂ -CH=CH ₂
	11	F	Cl	CH ₂ -C≡CH
40	12	F	Cl	CH ₂ Cl
	13	F	Cl	CF ₃
	14	F	Cl	CH ₂ -Cyclopropyl
	15	F'	Cl	Cyclopropyl
45	16	F	Cl	Cyclopentyl
	17	F	Cl	Cyclohexyl
	18	F	Cl	Tetrahydropyran-3-yl
	19	F	C1	Tetrahydropyran-4-yl
	20	F	C1	Tetrahydrothiopyran-3-yl

ľ	Nr.	R ⁴	R ⁵	R ¹⁹
	21	F	Cl	Tetrahydrothiopyran-4-yl
Ì	22	F	Cl	Phenyl
	23	F	Cl	CH ₂ -COOCH ₃
5	24	F	Cl	CH ₂ -COOC ₂ H ₅
اد	25	F	Cl	CH ₂ -CH ₂ -COOCH ₃
1	26	F	Cl	CH ₂ -CH ₂ -COOC ₂ H ₅
	27	F	Cl	F
	28	F	Cl	Cl
	29	F	Cl	Br
10	30	F	C1	OCH ₃
	31	F	Cl	OCH ₂ CH ₃
Ì	32	F	Cl	O-n-C ₃ H ₇
	33	F	Cl	OCH(CH ₃) ₂
	34	F	Cl	OCH ₂ -CH=CH ₂
15	35	F	Cl	OCH ₂ -C≡CH
15	36	F	Cl	OCH ₂ -COOCH ₃
ì	37	F	Cl	OCH ₂ -COOC ₂ H ₅
	38	F	Cl	OCH(CH ₃)-COOCH ₃
	39	F	Cl	OCH(CH ₃)-COOC ₂ H ₅
	40	F	Cl	NH ₂
20	41	F	Cl	N(CH ₃) ₂
	42	F	Cl	SCH ₃
	43	F	Cl	SCH ₂ CH ₃
	44	F	Cl	S-n-C ₃ H ₇
	45	F	Cl	SCH(CH ₃) ₂
25	46	F	C1	SCH ₂ -CH=CH ₂
~~	47	F	Cl	SCH ₂ -C≡CH
	48	F	Cl	SCH ₂ -COOCH ₃
	49	F	Cl	SCH ₂ -COOC ₂ H ₅
	50	F	Cl	SCH(CH ₃)-COOCH ₃
	51	F	Cl	COOCH ₃
30	52	F	Cl	COOC ₂ H ₅
	53	Cl	Cl	H
	54	Cl	Cl	CH ₃
	55	Cl	Cl	C ₂ H ₅
	56	Cl	Cl	n-C ₃ H ₇
35	57	Cl	Cl	CH(CH ₃) ₂
	58	Cl	Cl	n-C ₄ H ₉
	59	Cl	Cl	CH(CH ₃)-C ₂ H ₅
	60	Cl	Cl	CH ₂ -CH(CH ₃) ₂
	61	Cl	Cl	C(CH ₃) ₃
	62	Cl	Cl	CH ₂ -CH=CH ₂
40	63	Cl	Cl	CH ₂ -C≡CH
	64	Cl	Cl	CH ₂ Cl
	65	Cl	Cl	CF ₃
	66	Cl	Cl	CH ₂ -Cyclopropyl
	67	Cl	Cl	Cyclopropyl
45	68	Cl	Cl	Cyclopentyl
	69	Cl	Cl	Cyclohexyl
	70	Cl	Cl	Tetrahydropyran-3-yl
	71	Cl	Cl	Tetrahydropyran-4-yl

	51				
	Nr.	\mathbb{R}^4	\mathbb{R}^5	R ¹⁹	
	72	Cl	Cl	Tetrahydrothiopyran-3-yl	
	73	Cl	Cl	Tetrahydrothiopyran-4-yl	
	74	Cl	Cl	Phenyl	
5	75	Cl	Cl	CH2-COOCH3	
9	76	Cl	Cl	CH ₂ -COOC ₂ H ₅	
	77	Cl	Cl	CH ₂ -CH ₂ -COOCH ₃	
	78	Cl	Cl	CH ₂ -CH ₂ -COOC ₂ H ₅	
	79	Cl	Cl	F	
	80	Cl	Cl	Cl	
10	81	Cl	Cl	Br	
	82	Cl	Cl	OCH ₃	
	83	Cl	Cl	OCH ₂ CH ₃	
	84	Cl	Cl	O-n-C ₃ H ₇	
	85	Cl	Cl	OCH(CH ₃) ₂	
	86	Cl	Cl	OCH ₂ -CH=CH ₂	
15	87	Cl	Cl	OCH ₂ -C≡CH	
	88	Cl	Cl	OCH ₂ -COOCH ₃	
	89	Cl	Cl	OCH ₂ -COOC ₂ H ₅	
	90	Cl	Cl	OCH(CH ₃)-COOCH ₃	
	91	Cl	Cl	OCH(CH ₃)-COOC ₂ H ₅	
20	92	Cl	Cl	NH ₂	
20	93	Cl	Cl	N(CH ₃) ₂	
	94	Cl	Cl	SCH ₃	
	95	Cl	Cl	SCH ₂ CH ₃	
	96	Cl	Cl	S-n-C ₃ H ₇	
	97	Cl	Cl	SCH(CH ₃) ₂	
25	98	Cl	Cl	SCH ₂ -CH=CH ₂	
	99	Cl	Cl	SCH ₂ -C≡CH	
	100	Cl	Cl	SCH ₂ -COOCH ₃	
	101	Cl	Cl	SCH ₂ -COOC ₂ H ₅	
	102	Cl	Cl	SCH(CH ₃)-COOCH ₃	
30	103	Cl	Cl	COOCH ₃	
•	104	cl	Cl	COOC ₂ H ₅	
	105	H	Cl	H	
	106	H	Cl	CH ₃	
	107	H	Cl	C_2H_5	
	108	H	Cl	n-C ₃ H ₇	
35	109	H	CI	CH(CH ₃) ₂	
	110	H	Cl	$n-C_4H_9$	
	111	H	Cl	CH(CH ₃)-C ₂ H ₅	
	112	H	Cl	CH ₂ -CH(CH ₃) ₂	
	113	H	Cl	C(CH ₃) ₃	
40	114	H	Cl	CH ₂ -CH=CH ₂	
	115	H	Cl	CH ₂ -C≡CH	
	116	H	Cl	CH ₂ Cl	
	117	H	Cl	CF ₃	
	118	H	Cl	CH ₂ -Cyclopropyl	
	119	H	Cl	Cyclopropyl	
45	120	H	Cl	Cyclopentyl	
	121	H	Cl	Cyclohexyl	
	122	H	Cl	Tetrahydropyran-3-yl	
				1 =	

ſ	Nr.	R ⁴	R ⁵	R ¹⁹
}	123	H	Cl	Tetrahydropyran-4-yl
ŀ	124	H	Cl	Tetrahydrothiopyran-3-yl
	125	H	Cl	Tetrahydrothiopyran-4-yl
_	126	H	Cl	Phenyl
5	127	H	Cl	CH ₂ -COOCH ₃
ŀ	128	H	Cl	CH ₂ -COOC ₂ H ₅
ŀ	129	H	Cl	CH ₂ -CH ₂ -COOCH ₃
ŀ	130	H	Cl	CH ₂ -CH ₂ -COOC ₂ H ₅
ŀ	131	H	Cl	F
10	132	H	Cl	Cl
ł	133	H	Cl	Br
}	134	H	Cl	OCH ₃
	135	H	Cl	OCH ₂ CH ₃
}	136	H	Cl	O-n-C ₃ H ₇
}	137	H	Cl	OCH(CH ₃) ₂
15	138	H	Cl	OCH ₂ -CH=CH ₂
1	139	H	Cl	OCH ₂ C≡CH
	140	H	Cl	OCH ₂ -COOCH ₃
	141	H	Cl	OCH ₂ -COOC ₂ H ₅
	142	H	Cl	OCH (CH ₃) -COOCH ₃
20	143	H	Cl	OCH (CH ₃)-COOC ₂ H ₅
	144	H	Cl	NH ₂
	145	Н	Cl	N(CH ₃) ₂
	146	H	Cl	SCH ₃
	147	Н	Cl	SCH ₂ CH ₃
25	148	Н	Cl	S-n-C ₃ H ₇
25	149	H	Cl	SCH(CH ₃) ₂
	150	H	Cl	SCH ₂ -CH=CH ₂
	151	Н	Cl	SCH ₂ -C≡CH
	152	H	Cl	SCH ₂ -COOCH ₃
	153	H	Cl	SCH ₂ -COOC ₂ H ₅
30	154	H	Cl	SCH(CH ₃)-COOCH ₃
	155	H	Cl	COOCH ₃
	156	H	Cl	COOC ₂ H ₅
	157	F	CN	Н
i	158	F	CN	CH ₃
35	159	F	CN	C ₂ H ₅
33	160	F	CN	n-C ₃ H ₇
	161	F	CN	CH(CH ₃) ₂
	162	F	CN	n-C ₄ H ₉
	163	F	CN	$CH(CH_3)-C_2H_5$
	164	F	CN	CH ₂ -CH(CH ₃) ₂
40	165	F	CN	C(CH ₃) ₃
	166	F	CN	CH ₂ -CH=CH ₂
	167	F	CN	CH ₂ -C≡CH
	168	F	CN	CH ₂ Cl
	169	F	CN	CF ₃
45	170	F	СИ	CH ₂ -Cyclopropyl
45	171	F	CN	Cyclopropyl
	172	F	СИ	Cyclopentyl
	173	F	СИ	Cyclohexyl

1	Nr.	\mathbb{R}^4	R ⁵	R ¹⁹
	174	F	CN	Tetrahydropyran-3-yl
	175	F	CN	Tetrahydropyran-4-yl
	176	F	CN	Tetrahydrothiopyran-3-yl
_	177	F	CN	Tetrahydrothiopyran-4-yl
5	178	F	CN	Phenyl
	179	F	CN	CH ₂ -COOCH ₃
	180	F	CN	CH ₂ -COOC ₂ H ₅
	181	F	CN	CH ₂ -CH ₂ -COOCH ₃
	182	F	CN	CH ₂ -CH ₂ -COOC ₂ H ₅
10	183	F	CN	F
	184	F	CN	Cl
	185	F	CN	Br
	186	F	CN	OCH ₃
	187	F	CN	OCH ₂ CH ₃
	188	F	CN	O-n-C ₃ H ₇
15	189	F	CN	OCH(CH ₃) ₂
	190	F	CN	OCH ₂ -CH=CH ₂
	191	F	CN	OCH ₂ -C≡CH
	192	F	CN	OCH2-COOCH3
	193	F	CN	OCH ₂ -COOC ₂ H ₅
20	194	F	CN	OCH(CH ₃)-COOCH ₃
	195	F	CN	OCH (CH ₃)-COOC ₂ H ₅
	196	F	CN	NH ₂
	197	F	CN	N(CH ₃) ₂
	198	F	CN	SCH ₃
2-	199	F	CN	SCH ₂ CH ₃
25	200	F	CN	S-n-C ₃ H ₇
	201	F	CN	SCH(CH ₃) ₂
	202	F	CN	SCH ₂ -CH=CH ₂
	203	F	CN	SCH ₂ -C≡CH
	204	F	CN	SCH ₂ -COOCH ₃
30	205	F	CN	SCH ₂ -COOC ₂ H ₅
	206	F	CN	SCH(CH ₃)-COOCH ₃
	207	F	CN	COOCH ₃
	208	F	CN	COOC ₂ H ₅
	209	Cl	CN	Н
35	210	Cl	CN	CH ₃
33	211	Cl	CN	C ₂ H ₅
	212	Cl	CN	n-C ₃ H ₇
	213	Cl	CN	CH(CH ₃) ₂
	214	Cl	CN	n-C ₄ H ₉
	215	Cl	CN	CH(CH ₃)-C ₂ H ₅
40	216	Cl	CN	CH ₂ -CH(CH ₃) ₂
	217	Cl	CN	C(CH ₃) ₃
	218	Cl	CN	CH ₂ -CH=CH ₂
	219	Cl	CN	CH ₂ -C≡CH
	220	Cl	CN	CH ₂ Cl
45	221	Cl	CN	CF ₃
	222	Cl	CN	CH ₂ -Cyclopropyl
	223	Cl	CN	Cyclopropyl
	224	Cl	CN	Cyclopentyl

	J#				
	Nr.	\mathbb{R}^4	R ⁵	R ¹⁹	
	225	Cl	CN	Cyclohexyl	
	226	Cl	CN	Tetrahydropyran-3-yl	
	227	Cl	CN	Tetrahydropyran-4-yl	
5	228	Cl	CN	Tetrahydrothiopyran-3-yl	
5	229	Cl	CN	Tetrahydrothiopyran-4-yl	
	230	Cl	CN	Phenyl	
	231	Cl	CN	CH ₂ -COOCH ₃	
	232	Cl	CN	CH ₂ -COOC ₂ H ₅	
	233	Cl	CN	CH ₂ -CH ₂ -COOCH ₃	
10	234	Cl	CN	CH ₂ -CH ₂ -COOC ₂ H ₅	
	235	Cl	CN	F	
	236	Cl	CN	Cl	
	237	Cl	CN	Br	
	238	Cl	CN	OCH ₃	
	239	Cl	CN	OCH ₂ CH ₃	
15		Cl	CN	O-n-C ₃ H ₇	
	240	Cl	CN	OCH(CH ₃) ₂	
	241			1 1	
	242	Cl	CN	OCH ₂ -CH=CH ₂	
	243	Cl	CN	OCH ₂ -C≡CH	
20	244	Cl	CN	OCH ₂ -COOCH ₃	
20	245	Cl	CN	OCH ₂ -COOC ₂ H ₅	
	246	Cl	CN	OCH(CH ₃)-COOCH ₃	
	247	Cl	CN	OCH(CH ₃)-COOC ₂ H ₅	
	248	Cl	CN	NH ₂	
	249	Cl	CN	N(CH ₃) ₂	
25	250	Cl	CN	SCH ₃	
	251	Cl	CN	SCH ₂ CH ₃	
	252	Cl	CN	$S-n-C_3H_7$	
	253	Cl	CN	SCH(CH ₃) ₂	
	254	Cl	CN	SCH ₂ -CH=CH ₂	
	255	Cl	CN	SCH ₂ -C≡CH	
30	256	Cl	CN	SCH ₂ -COOCH ₃	
	257	Cl	CN	SCH ₂ -COOC ₂ H ₅	
	258	Cl	CN	SCH(CH ₃)-COOCH ₃	
	259	Cl	CN	COOCH ₃	
	260	Cl	CN	COOC ₂ H ₅	
35	261	H	CN	H	
	262	H	CN	CH ₃	
	263	H	CN	C ₂ H ₅	
	264	H	CN	n-C ₃ H ₇	
	265	H	CN	CH(CH ₃) ₂	
	266	H	CN	$n-C_4H_9$	
40	267	H	CN	CH(CH ₃)-C ₂ H ₅	
	268	H	CN	CH ₂ -CH(CH ₃) ₂	
	269	H	CN	C(CH ₃) ₃	
	270	H	CN	CH ₂ -CH=CH ₂	
	271	H	CN	CH2-C≡CH	
a	272	H	CN	CH ₂ Cl	
45	273	H	CN	CF ₃	
	274	H	CN	CH ₂ -Cyclopropyl	
	275	H	CN	Cyclopropyl	
					

55

	Nr.	R ⁴	R ⁵	R ¹⁹
	276	H	CN	Cyclopentyl
5	277	H	CN	Cyclohexyl
	278	H	CN	Tetrahydropyran-3-yl
	279	H	CN	Tetrahydropyran-4-yl
3	280	H	CN	Tetrahydrothiopyran-3-yl
	281	H	CN	Tetrahydrothiopyran-4-yl
	282	H	CN	Phenyl
	283	H	CN	CH ₂ -COOCH ₃
	284	H	CN	CH ₂ -COOC ₂ H ₅
10	285	H	CN	CH ₂ -CH ₂ -COOCH ₃
	286	H	CN	CH ₂ -CH ₂ -COOC ₂ H ₅
	287	H	CN	F
	288	H	CN	C1
	289	H	CN	Br
15	290	H	CN	OCH ₃
	291	H	CN	OCH ₂ CH ₃
	292	H	CN	O-n-C ₃ H ₇
	293	H	CN	OCH(CH ₃) ₂
	294	H	CN	OCH ₂ -CH=CH ₂
	295	H	CN	OCH ₂ -C≡CH
20	296	H	CN	OCH ₂ -COOCH ₃
	297	H	CN	OCH ₂ -COOC ₂ H ₅
	298	H	CN	OCH(CH ₃)-COOCH ₃
	299	H	CN	OCH(CH ₃)-COOC ₂ H ₅
	300	H	CN	NH ₂
25	301	H	CN	N(CH ₃) ₂
	302	H	CN	SCH ₃
	303	H	CN	SCH ₂ CH ₃
	304	H	CN	S-n-C ₃ H ₇
	305	H	CN	SCH (CH ₃) ₂
30	306	H	CN	SCH ₂ -CH=CH ₂ SCH ₂ -C≡CH
30	307	H	CN	SCH ₂ -COOCH ₃
	308	H	CN	SCH ₂ -COOC ₂ H ₅
	310	H	CN	SCH(CH ₃)-COOCH ₃
	311	H	CN	COOCH ₃
	312	H	CN	COOC ₂ H ₅
35	314	111	CIN	COOC2115

Beispiele für besonders bevorzugte Verbindungen IC sind auch die 1-Benzthiazol-7-yl-2-[1H]-pyridone der nachstehend angegebenen Formeln ICe, ICf, ICg und ICh, worin R⁴, R⁵ und R¹⁹ gemeinsam die in jeweils einer Zeile der Tabelle 2 angegebenen Bedeutungen aufweisen (Verbindungen ICe.1-ICe.312 bis ICh.1-ICh.312).

PCT/EP01/08251

Die erfindungsgemäßen 1-Arylpyridone der Formel I können in Anlehnung an bekannte Verfahren zur Herstellung von 1-Arylpyridonen und insbesondere auf den nachstehend beschriebenen Synthesewegen 5 hergestellt werden. Im Folgenden bedeutet "Aryl" einen Rest der Formel:

57

10
$$\mathbb{R}^4$$

$$\mathbb{R}^5 \qquad (Aryl)$$

$$X-\mathbb{R}^6$$

und "Pyridonyl" einen Rest der Formel:

15

$$R^2$$
 R^3
 R^2
 R^1
(Pyridonyl)

20

A) Verknüpfung der Pyridoneinheit mit einer von dem Rest "Aryl" abgeleiteten aromatischen Verbindung.

25 A.1 Kondensation von 1,5-Dicarbonsäuren mit Arylaminen:

Die Herstellung von 1-Aryl-2[1H]-pyridonen der Formel I gelingt beispielsweise nach der in Schema 1 dargestellten Syntheseroute. Hierbei führt man in einem ersten Schritt eine Kondensation einer 3-Halogenalkyl-1,5-dicarbonsäure oder ihrem Anhydrid mit einem Arylamin der allgemeinen Formel III durch,

35

30

$$R^{4a}$$

$$Q = R^{5a} \qquad (III)$$

$$X - R^{6a}$$

40

45

worin Q und X die zuvor angegebenen Bedeutungen aufweisen und R^{4a} , R^{5a} sowie R^{6a} für die zuvor definierten Reste R^4 , R^5 und R^6 stehen oder Substituenten bedeuten, die nach bekannten Verfahren (siehe z.B. die Ausführungen unter B und C) in die Reste R^4 , R^5 und R^6 umgewandelt werden können.

5

Die dabei erhaltenen cyclischen Imide der Formel II können anschließend nach bekannten Verfahren in die 1-Aryl-2[1H]-pyridone der Formel I umgewandelt werden. Diese Reaktionssequenz ist beispielhaft für die Umsetzung von III mit der 1,5-Dicarbonsäure IV (bzw. ihrem inneren Anhydrid) in Schema 1 dargestellt:

Schema 1:

10

R^{2a}

COOH

Oder R³

O

R^{4a}

R^{5a}

COOH

Oder R³

(IV)

(IVa)

(III)

(a)

R^{2a}

$$R^{2a}$$
 R^{2a}

(IV)

R^{2a}
 R^{2a}

(IV)

(IVa)

(III)

(a)

R^{2a}
 R^{2a}

(II)

R^{2a}
 R^{2a}
 R^{2a}

(IV)

R^{2a}
 R^{2a}
 R^{2a}

(III)

R^{2a}
 R^{2a}

(II)

R^{2a}
 R^{2a}

(II)

In Schema 1 haben die Variablen Q, A, X, R¹, R², R³, R⁴, R⁵, R⁶, R^{4a}, R^{5a} sowie R^{6a} die zuvor genannten Bedeutungen. R^{2a} und R^{2a} haben die für R² bzw. R² genannten, von Amino verschiedenen Bedeutungen oder stehen für Substituenten, die nach bekannten Verfahren (siehe z.B. die Ausführungen unter B) in die Reste R² bzw. R² umgewandelt werden können. In Formel II bedeutet ____ jeweils eine Doppel- und eine Einfachbindung. Schema 1 ist hinsichtlich des Vorliegens und der Lage der Doppelbindungen in IV bzw. IVb nicht einschränkend zu verstehen.

45

A.1a Schritt a

59

5

10

25

30

35

40

45

Die Kondensation von Arylaminen der allgemeinen Formel III mit 1,5-Dicarbonsäuren, vorzugsweise mit Dicarbonsäuren der in Schema 1 dargestellten allgemeinen Formel IV bzw. mit ihren Anhydriden IVa zu den entsprechenden N-Arylpiperidindionen bzw. zu den N-Aryl-1H,3H-dihydropyridin-2,6-dionen der allgemeinen Formel II erfolgt in Anlehnung an bekannte Verfahren zur Herstellung derartiger Verbindungen, beispielsweise nach J.A. Seijas, J. Chem. Res. Synop. 1999, 7, 420-421; V.R. Ranade, J. Indian Chem. Soc. 1979, 56, 393-395; G.W. Joshi, Indian J. Chem. 1981, 20 B, 1050-1052; A.K. Ghosal, Indian J. Chem. 1978, 16B, 200-204. Auf die Offenbarung dieser Schriften wird hiermit in vollem Umfang Bezug genommen.

15 Bevorzugt ist die Umsetzung von einer Dicarbonsäure IV bzw. ihrem Doppelbindungsisomer mit dem Anilinderivat der allgemeinen Formel III. Die Umsetzung erfolgt in der Regel durch Erwärmen der Komponenten in einem inerten Lösungsmittel oder in der Schmelze, vorzugsweise auf Temperaturen oberhalb

20 100 °C und insbesondere auf Temperaturen im Bereich von 120 bis 300 °C (siehe auch V.R. Ranade, loc. cit.).

Geeignete Lösungsmittel sind aromatische und aliphatische Kohlenwasserstoffe wie Toluol, Xylol, Isopropylbenzol, p-Cu-mol, Decalin und vergleichbare sowie hochsiedende Ether, z. B. Dimethyldiethylenglykol und Dimethyltriethylenglykol, und Mischungen der vorgenannten Lösungsmittel.

Anstelle durch Einwirkung erhöhter Temperatur kann man Schritt a auch durch Einwirkung von Zentimeterwellen (Mikrowellen) bewirken (siehe hierzu J.A. Seijas, loc. cit.). Auch hier kann die Umsetzung in einem der vorgenannten Lösungsmittel oder einem Verdünnungsmittel oder in einer innigen Mischung der Komponenten erfolgen.

Vorzugsweise setzt man die Komponenten des Kondensationsschritts a, d. h. die 1,5-Dicarbonsäure IV bzw. ihr Anhydrid IVa und das Arylamin III, in etwa äquimolaren Mengen ein. Selbstverständlich ist es jedoch auch möglich, eine dieser Komponenten im Überschuss einzusetzen.

Die Aufarbeitung der Reaktionsmischung des Kondensationsschritts a zur Herstellung der Verbindungen der allgemeinen Formel II erfolgt nach bekannten Verfahren, beispielsweise durch Kristallisation, wässrig-extraktive Aufarbeitung oder durch chromatographische Methoden oder Kombinationen dieser Methoden. Selbstverständlich kann die Verbindung II auch ohne WO 02/06233

5

10

15

20

25

30

Zwischenisolierung oder Reinigung direkt im Folgeschritt eingesetzt werden.

Der in Schema 1 gezeigte Kondensationsschritt a kann sowohl einstufig als auch über Zwischenstufen, z. B. über acyclische Amide erfolgen, insbesondere, wenn zur Kondensation das Anhydrid IVa eingesetzt wird (vergleiche G.W. Joshi, loc. cit. sowie A.K. Gosal, loc. cit.). Die Cyclisierung gegebenenfalls auftretender acyclische Amide kann sowohl thermisch, d. h. durch Umsetzung des Amids in einem hochsiedenden Lösungsmittel oder in der Schmelze oder in Gegenwart Wasser entziehender Mittel wie Essigsäureanhydrid, Oxalylchlorid oder vergleichbare Reagenzien und/oder in Gegenwart einer Base wie Piperidin, Pyridin, Dimethylaminopyridin oder Triethylamin erfolgen.

Die im Kondensationsschritt eingesetzten Arylamine der allgemeinen Formel III sind beispielsweise aus P. Böger und K. Wakabayashi, Peroxidizing Herbicides, Springer Verlag 1999, S. 21 ff und dort zitierte Literatur bekannt oder können analog der in der WO 01/12625 oder WO 97/08170 beschriebenen Verfahren hergestellt werden.

Die 1,5-Dicarbonsäuren der allgemeinen Formel IV können nach bekannten Methoden zur Herstellung von 1,5-Dicarbonsäuren hergestellt werden. Insbesondere bietet sich die in Schema 2 dargestellte Synthesesequenz zur Herstellung der Dicarbonsäuren IV an. Die in Schema 2 gezeigte Synthesesequenz lehnt sich an das von M. Guillaume, Synthesis 1995, 920-922 beschriebene Verfahren an.

Schema 2:

61

In Schema 2 haben R^{2a} , $R^{2a'}$ und R^3 die zuvor genannten Bedeutungen. R und R' stehen für verseifbare Reste, vorzugsweise für C_1 - C_4 -Alkylreste wie Methyl oder Ethyl. Schema 2 ist hinsichtlich der Lage der Doppelbindung in den Verbindungen IV und IVa nicht einschränkend gemeint.

Der erste Schritt in Schema 2 ist die Umsetzung eines 2-Halogenacylalkancarbonsäureesters (z.B. eines 2-Halogenacylessigesters, wenn R^{2a'} = H oder eines 2-Halogenacylpropionsäureesters, wenn R^{2a'} = CH₃) der allgemeinen Formel V mit einem Wittig-Reagenz, beispielsweise einem Phosphorylen der allgemeinen Formel VI. Hierbei werden die 3-Halogenalkyl-1,5-dicarbonsäureester der allgemeinen Formel IVb erhalten. Dieser Schritt erfolgt unter den für eine Wittig-Reaktion üblichen Reaktionsbedingungen, wie sie beispielsweise in "Organikum", 16. Auflage, VEB Deutscher Verlag der Wissenschaften, Berlin 1986, S. 486, in M. Guillaume, Synthesis 1995, 920-922, sowie in den bei J. March, Advanced Organic Chemistry 2nd Edition, Wiley Interscience 1985, S. 845-854 zur Wittig-Reaktion zitierten Literaturstellen beschrieben werden.

Die anschließende Verseifung der Dicarbonsäureester IVb zu den Dicarbonsäuren IV erfolgt nach Standardverfahren, beispielsweise durch Umsetzung von IVb mit Alkalien wie Natriumhydroxid oder Kaliumhydroxid in geeigneten Lösungsmitteln, beispielsweise in Wasser, Alkoholen oder in Wasser/Alkohol-Mischungen bei Temperaturen im Bereich von 0 bis 200 °C, vorzugsweise oberhalb 0 °C, z. B. in der Siedehitze oder bei Raumtemperatur.

30

5

10

15

20

25

Die Umwandlung der Dicarbonsäuren IV in ihre Anhydride IVa erfolgt ebenfalls nach Standardmethoden, beispielsweise durch Erhitzen und/oder in Gegenwart Wasser entziehender Mittel wie Essigsäureanhydrid (G.W. Joshi, Loc. cit.; A. Nangia, Synth. Commun. 1992, 22, 593-602) oder in Gegenwart von Carbodiimiden wie Dicyclohexylcarbodiimid (vergleiche N.M. Gray, J. Med. Chem. 1991, 34, 1283-1292). Auf die zu Schema 2 genannten Druckschriften wird hiermit in vollem Umfang Bezug genommen.

40

35

A.1b Schritt b

Zur Umwandlung des nach Schema 1 erhaltenen primären Kondensationsprodukts der allgemeinen Formel II in Verbindungen
der Formel I, worin R¹ für ein Halogenatom steht, wird man
die Verbindung II mit einem Halogenierungsmittel, vorzugsweise einem sauren Halogenierungsmittel wie Phosphortrihalo-

genid, z. B. Phosphortrichlorid, Phosphor(V)halogenid, z. B. Phosphorpentachlorid, oder Phosphoroxytrihalogenid, z. B. POCl₃, umsetzen, wobei die zuletzt genannten Halogenierungsmittel bevorzugt sind (siehe hierzu auch M.S. Mayadeo, Indian J. Chem. 1987, 1099-1101 sowie Houben-Weyl, Methoden der Organischen Chemie, Bd 5/3, 1962, 4. Auflage, S. 899ff und 905ff, auf die hiermit in vollem Umfang Bezug genommen wird). Hierbei entstehen Verbindungen der allgemeinen Formel I, worin R¹ für Halogen und insbesondere für Chlor steht.

10

15

5

WO 02/06233

Die Umsetzung mit dem Halogenierungsmittel kann in einem inerten organischen Lösungsmittel, beispielsweise einem der vorgenannten aromatischen oder aliphatischen Kohlenwasserstoffe und/oder einem halogenierten Kohlenwasserstoff wie Dichlormethan, Dichlorethan, Dichlorethen oder Trichlorethan oder in dem Halogenierungsmittel als Lösungsmittel erfolgen. In der Regel erfolgt die Umsetzung unter Erwärmen oder unter Einwirkung von Zentimeterwellen.

20

25

40

45

A.2 Nucleophile Substitution

Verbindungen der allgemeinen Formel I mit R¹ = Wasserstoff können durch Umsetzung von geeignet substituierten 2-[1H]-Pyridonen der allgemeinen Formel VII mit nucleophil substituierbaren aromatischen Verbindungen der allgemeinen Formel VIII nach der in Schema 3 gezeigten Synthesesequenz hergestellt werden.

30 Schema 3:

$$R^{2b'} O \qquad R^{4b} \qquad R^{2b} \qquad R^{2b} \qquad R^{4b} \qquad R^{5b} \qquad R^{2b} \qquad R^{2b'} O \qquad R^{4b} \qquad R^{5b} \qquad R^{5$$

In Schema 3 haben die Variablen Q, X und R³ die zuvor genannten Bedeutungen. R^{1b}, R^{2b} und R^{2b}' stehen für Wasserstoff oder C₁-C₄-Alkyl. R^{4b}, R^{5b} und R^{6b} haben die zuvor für R⁴, R⁵ und R⁶ genannten Bedeutungen oder stehen für Substituenten, die nach bekannten Verfahren in Substituenten R⁴, R⁵ und R⁶ umgewandelt werden können. Nu steht für eine nucleophil verdrängbare Abgangsgruppe, vorzugsweise für ein Halogenatom und insbesondere für Chlor und speziell für Fluor. Vorzugsweise steht in Schema 3 R^{5b} für einen Elektronen ziehenden Rest, insbesondere

für eine Cyano-Gruppe oder Halogen. Bei der Umsetzung von VII mit VIII gemäß Schema 3 werden Verbindungen der allgemeinen Formel I' erhalten, aus denen weitere Verbindungen der allgemeinen Formel I durch Umwandlung der Gruppen R^{2b} bis R^{6b} nach bekannten Methoden, beispielsweise nach den unter B) und C) beschriebenen Verfahren, hergestellt werden können.

Die Umsetzung von VII mit VIII zu den Verbindungen I' kann beispielsweise in Anlehnung an die in der EP 259 048 bzw. GB 8621217 beschriebenen Methoden erfolgen. Vorzugsweise führt man diese Umsetzung in Gegenwart einer Base, vorzugsweise einem Alkalimetallhydrid wie Natriumhydrid oder einem Alkalimetallcarbonat wie Natriumcarbonat oder Kaliumcarbonat durch. Gegebenenfalls kann man zur Katalyse Kupfer oder Kupfersalze zusetzen. Gegebenenfalls kann man als Hilfskatalysator noch einen Kronenether zusetzen.

Vorzugsweise erfolgt die Umsetzung in einem Lösungsmittel, insbesondere einem polaren, aprotischen Lösungsmittel wie Dimethylformamid, Dimethylsulfoxid, N-Methylpyrrolidon, Dimethylacetamid, einem Ether wie Diethylether, Tetrahydrofuran oder Dioxan sowie Mischungen dieser Lösungsmittel.

In der Regel wird man die Umsetzung bei Temperaturen oberhalb Raumtemperatur, vorzugsweise im Bereich von 50 bis 200 °C durchführen. Hierzu setzt man die Verbindungen der allgemeinen Formel VII und VIII vorzugsweise in annähernd äquimolaren Mengen ein. Selbstverständlich kann man auch eine Komponente im Überschuss einsetzen, wobei der Überschuss vorzugsweise nicht mehr als 50 Mol-%, insbesondere nicht mehr als 20 Mol-%, bezogen auf die im Unterschuss vorliegende Komponente betragen wird.

Pyridone der allgemeinen Formel VII sind bekannt und teilweise kommerziell erhältlich oder können in Analogie zu bekannten Verfahren zur Herstellung von Pyridonen synthetisiert
werden. Beispielsweise gelingt die Herstellung von Pyridonen
der allgemeinen Formel VII aus geeignet substituierten
2-Chlorpyridinen. Hierzu wird das 2-Chlorpyridin sukzessive
in seinen Benzylether überführt (vergleiche A.J.S. Duggan et
al., Synthesis 1980, 7, 573 sowie A. Loupy et al., Heterocycles 1991, 32, 1947-1953; auf diese Schriften wird hiermit
Bezug genommen) und anschließende Hydrogenolyse nach der von
T.W. Greene, Protective Groups in Organic Synthesis, 3. Auflage 1999, S. 266ff beschriebenen Methode.

WO 02/06233

5

10

64 Verbindungen der allgemeinen Formel VIII sind kommerziell er-

hältlich oder können nach bekannten Methoden, z.B. durch Sandmeyer-Reaktion aus den entsprechenden Anilinen II (vgl.

PCT/EP01/08251

Böger et al. in Peroxidising Herbicides) hergestellt werden.

Selbstverständlich können im Anschluss an die Herstellung von I' die darin enthaltenen Substituenten R^{1b} bis R^{6b} in andere Substituenten R^1 bis R^6 umgewandelt werden. Verfahren hierzu sind bekannt und beispielsweise in den nachfolgenden Abschnitten B) und C) beschrieben.

B) Funktionalisierung der Substituenten am Pyridonteil von I

Verbindungen der allgemeinen Formel I, worin A für ein Sauerstoffatom steht, können nach bekannten Methoden durch Behand-15 lung mit Schwefelungsmitteln in Verbindungen der allgemeinen Formel I umgewandelt werden, worin A für ein Schwefelatom steht. Beispiele für geeignete Schwefelungsmittel sind Phosphor(V)sulfide, Organozinnsulfide sowie Organophosphorsulfide (siehe auch J. March, Advanced Organic Synthesis, 2nd Edi-20 tion, Wiley Interscience 1985, S. 794 und dort zitierte Literatur). Die Umsetzung kann in einem Lösungsmittel oder in Substanz durchgeführt werden. Geeignete Lösungsmittel sind die oben genannten, inerten Lösungsmittel sowie basische Lösungsmittel, z. B. Pyridin und vergleichbare. Die zur Umset-25 zung erforderliche Temperatur liegt in der Regel oberhalb Raumtemperatur und liegt insbesondere im Bereich von 50 bis 200 °C.

- Verbindungen der allgemeinen Formel I, in denen R² bzw. R²' für Wasserstoff stehen, können auch nach bekannten Verfahren zur Funktionalisierung von Pyridonen in Verbindungen umgewandelt werden, in denen R² bzw. R²' für eine Aminogruppe stehen.
- Die Herstellungen von Verbindungen I, in denen einer oder beide der Reste R² bzw. R²' für Amino steht, erfolgt durch sukzessive Nitrierung und Hydrierung in Anlehnung an die Vorgehensweise der DE-A 20 55 513.
- 40 C) Verbindungen I mit Q = CH steht (Verbindungen IA), können durch Funktionalisierung des Phenylrings in andere Verbindungen IA umgewandelt werden. Beispiele hierfür sind:
- C.1 Nitrierung von 1-Arylpyridonen IA, in denen XR⁶ für Wasserstoff steht, und Umsetzung der Verfahrensprodukte zu weiteren Verbindungen der Formel IA:

15

20

25

30

35

Pyridonyl

$$R^4$$

Pyridonyl

 R^5
 NO_2
 $R^6 = H$

IA $\{XR^6 = NO_2\}$

Als Nitrierungsreagenzien kommen beispielsweise Salpetersäure in unterschiedlicher Konzentration, auch konzentrierte und rauchende Salpetersäure, Mischungen von Schwefelsäure und Salpetersäure, außerdem Acetylnitrate und Alkylnitrate in Betracht.

Die Reaktion kann entweder lösungsmittelfrei in einem Überschuss des Nitrier-Reagenzes oder in einem inerten Lösungsoder Verdünnungsmittel durchgeführt werden, wobei z.B. Wasser, Mineralsäuren, organische Säuren, Halogenkohlenwasserstoffe wie Methylenchlorid, Anhydride wie Essigsäureanhydrid und Mischungen dieser Solventien geeignet sind.

Ausgangsverbindung IA {XR6 = H} und Nitrier-Reagenz werden zweckmäßigerweise in etwa äquimolaren Mengen eingesetzt; zur Optimierung des Umsatzes an Ausgangsverbindung kann es jedoch vorteilhaft sein, das Nitrier-Reagenz im Überschuss zu verwenden, bis etwa zur 10fachen molaren Menge, bezogen auf IA. Bei der Reaktionsführung ohne Lösungsmittel im Nitrier-Reagenz liegt dieses in einem noch größeren Überschuss vor.

Die Reaktionstemperatur liegt normalerweise bei -100°C bis 200°C, bevorzugt bei -30 bis 50°C.

Die Verbindungen IA mit $XR^6 = NO_2$ können dann zu Verbindungen IA mit $X-R^6 = NH_2$ oder -NHOH reduziert werden:

IA
$$\{XR^6 = NO_2\}$$
 Reduktion IA $\{XR^6 = NH_2, NHOH\}$

Die Reduktion wird in der Regel durch Umsetzung der Nitroverbindung mit einem Metall wie Eisen, Zink oder Zinn unter
sauren Reaktionsbedingungen oder mit einem komplexen Hydrid
wie Lithiumaluminiumhydrid oder Natriumborhydrid erfolgen,
wobei die Reduktion in Substanz oder in einem Lösungs- oder
Verdünnungsmittel durchgeführt werden kann. Als Lösungsmittel
kommen - in Abhängigkeit vom gewählten Reduktionsmittel z.B. Wasser, Alkohole wie Methanol, Ethanol und Isopropanol

66

oder Ether wie Diethylether, Methyl-tert.-butylether, Dioxan, Tetrahydrofuran und Ethylenglykoldimethylether, in Betracht.

Bei der Reduktion mit einem Metall arbeitet man vorzugsweise lösungsmittelfrei in einer anorganischen Säure, insbesondere in konzentrierter oder verdünnter Salzsäure, oder in einer flüssigen organischen Säure wie Essigsäure oder Propionsäure. Man kann die Säure jedoch auch mit einem inerten Lösungsmittel, z.B. einem der vorstehend genannten, verdünnen. Die Reduktion mit komplexen Hydriden erfolgt vorzugsweise in einem Lösungsmittel, beispielsweise einem Ether oder einem Alkohol.

Die Nitroverbindung IA $\{X-R^6=NO_2\}$ und das Reduktionsmittel werden häufig in etwa äquimolaren Mengen eingesetzt; zur Optimierung des Reaktionsverlaufes kann es vorteilhaft sein, eine der beiden Komponenten im Überschuss zu verwenden, bis etwa zur 10fachen molaren Menge.

Die Menge an Säure ist nicht kritisch. Um die Ausgangsverbindung möglichst vollständig zu reduzieren, verwendet man zweckmäßigerweise mindestens eine äquivalente Menge an Säure. Häufig wird die Säure im Überschuss bezogen auf IA $\{X-R^6 = NO_2\}$ eingesetzt.

Die Reaktionstemperatur liegt im Allgemeinen im Bereich von -30°C bis 200°C, bevorzugt im Bereich von 0°C bis 80°C.

Zur Aufarbeitung wird die Reaktionsmischung in der Regel mit Wasser verdünnt und das Produkt durch Filtration, Kristallisation oder Extraktion mit einem Lösungsmittel, das mit Wasser weitgehend unmischbar ist, z.B. mit Essigsäureethylester, Diethylether oder Methylenchlorid, isoliert. Gewünschtenfalls kann das Produkt anschließend wie üblich gereinigt werden.

Die Nitrogruppe der Verbindungen IA $\{X-R^6 = NO_2\}$ kann auch katalytisch mittels Wasserstoff hydriert werden. Hierfür geeignete Katalysatoren sind beispielsweise Raney-Nickel, Palladium auf Kohle, Palladiumoxid, Platin und Platinoxid, wobei im allgemeinen eine Katalysatormenge von 0,05 bis 10,0 Mol-%, bezogen auf die zu reduzierende Verbindung, ausreichend ist.

40

5

10

15

25

30

67

Man arbeitet entweder lösungsmittelfrei oder in einem inerten Lösungs- oder Verdünnungsmittel, z.B. in Essigsäure, einem Gemisch aus Essigsäure und Wasser, Essigsäureethylester, Ethanol oder in Toluol.

5

Nach Abtrennen des Katalysators kann die Reaktionslösung wie üblich auf das Produkt hin aufgearbeitet werden.

Die Hydrierung kann bei Normalwasserstoffdruck oder unter erhöhtem Wasserstoffdruck durchgeführt werden.

Die Aminogruppe in IA $\{X-R^6=NH_2\}$ kann anschließend in üblicher Weise diazotiert werden. Aus den Diazoniumsalzen sind dann Verbindungen I zugänglich mit:

15

25

40

10

- X-R⁶ = Cyano oder Halogen {z.B durch Sandmeyer-Reaktion: vgl. beispielsweise Houben-Weyl, Methoden der Organischen Chemie, Georg Thieme Verlag Stuttgart, Bd. 5/4, 4. Auflage 1960, S. 438ff.},
- 20 X-R⁶ = Hydroxy {z.B. durch Phenolverkochung: vgl. beispielsweise Org. Synth. Coll. Vol. 3 (1955), S. 130},
 - $X-R^6$ = Mercapto oder C_1-C_6 -Alkylthio {vgl. hierzu bei-spielsweise Houben-Weyl, Methoden der Organischen Chemie, Georg Thieme Verlag Stuttgart, Bd. Ell 1984, S. 43 und 176},
 - X-R⁶ = Halogensulfonyl {vgl. hierzu beispielsweise Houben-Weyl, Methoden der Organischen Chemie, Georg Thieme Verlag Stuttgart, Bd. Ell 1984, S. 1069f.},
- Lambda = z.B. -CH2-CH(Halogen)-CO-O-Y-R8,
 -CH=C(Halogen)-CO-O-Y-R8, -CH2-CH(Halogen)-PO-(O-Y-R8)2,
 -CH=C(Halogen)-PO-(O-Y-R8)2 {allgemein handelt es sich hierbei um Produkte einer Meerwein-Arylierung; vgl. hierzu beispielsweise C.S. Rondestredt, Org. React. 11, 189 (1960) und H.P. Doyle et al., J. Org. Chem. 42, 2431 (1977)}.

Das jeweilige Diazoniumsalz von IA $\{X-R^6=N_2^+\}$ stellt man in der Regel auf an sich bekannte Weise durch Umsetzung von IA $\{X-R^6=NH_2\}$ mit einem Nitrosierungsmittel, z.B. einem Nitrit wie Natriumnitrit und Kaliumnitrit in einer wässrigen Säurelösung, z.B. in Salzsäure, Bromwasserstoffsäure oder Schwefelsäure, her.

Die Aminoverbindung IA $\{X-R^6=NH_2\}$ kann man zur Herstellung des Diazoniumsalzes IA $\{X-R^6=N_2^+\}$ mit einem Salpetrigsäureester wie tert.-Butylnitrit und Isopentylnitrit unter wasserfreien Reaktionsbedingungen umsetzen, z.B. in Chlorwasser-

68

5

25

30

35

45

stoff haltigem Eisessig, in absolutem Alkohol, in Dioxan oder Tetrahydrofuran, in Acetonitril oder in Aceton.

Die Überführung des so erhaltenen Diazoniumsalzes in die entsprechende Verbindung IA mit X-R⁶ = Cyano, Chlor, Brom oder Iod erfolgt besonders bevorzugt durch Behandeln mit einer Lösung oder Suspension eines Kupfer(I)salzes wie Kupfer(I)cyanid, -chlorid, -bromid und iodid, oder mit einer Alkalimetallsalz-Lösung (vgl. A1).

Die Überführung des so erhaltenen Diazoniumsalzes in die entsprechende Hydroxy-Verbindung IA {X-R⁶ = Hydroxyl} erfolgt
zweckmäßigerweise durch Behandeln des Diazoniumsalzes IA mit
einer wässrigen Säure, bevorzugt Schwefelsäure. Hierbei kann
sich der Zusatz eines Kupfer(II)salzes wie Kupfer(II)sulfat
vorteilhaft auf den Reaktionsverlauf auswirken. Im Allgemeinen führt man diese Umsetzung bei 0 bis 100°C, vorzugsweise
bei der Siedetemperatur des Reaktionsgemisches durch.

Verbindungen IA mit X-R⁶ = Mercapto, C₁-C₆-Alkylthio oder Halogensulfonyl erhält man z.B. durch Umsetzung des entsprechenden Diazoniumsalzes von IA mit Schwefelwasserstoff, einem Alkalimetallsulfid, einem Dialkyldisulfid wie Dimethyldisulfid, oder mit Schwefeldioxid.

Bei der Meerwein-Arylierung handelt es sich üblicherweise um die Umsetzung der Diazoniumsalze mit Alkenen oder Alkinen. Das Alken oder Alkin wird dabei vorzugsweise im Überschuss, bis etwa 3000 Mol-%, bezogen auf die Menge des Diazoniumsalzes, eingesetzt.

Die vorstehend beschriebenen Umsetzungen des Diazoniumsalzes IA $\{X-R^6=N_2^+\}$ können z.B. in Wasser, in wässriger Salzsäure oder Bromwasserstoffsäure, in einem Keton wie Aceton, Diethylketon und Methylethylketon, in einem Nitril wie Acetonitril, in einem Ether wie Dioxan und Tetrahydrofuran oder in einem Alkohol wie Methanol und Ethanol erfolgen.

Sofern nicht bei den einzelnen Umsetzungen anders angegeben liegen die Reaktionstemperaturen normalerweise bei -30°C bis 50°C.

Bevorzugt werden alle Reaktionspartner in etwa stöchiometrischen Mengen eingesetzt, jedoch kann auch ein Überschuss der einen oder anderen Komponente, bis etwa 3000 Mol-%, von Vorteil sein.

69

Die Mercapto-Verbindungen IA $\{X-R^6 = SH\}$ sind auch durch Reduktion der nachstehend beschriebenen Verbindungen IA mit $X-R^6 = Halogensulfonyl$ erhältlich. Brauchbare Reduktionsmittel sind z.B. Übergangsmetalle wie Eisen, Zink und Zinn (vgl. hierzu beispielsweise "The Chemistry of the Thiol Group", John Wiley, 1974, S. 216).

C.2 Halosulfonierung von 1-Arylpyridonen IA, bei denen XR⁶ für Wasserstoff steht:

IA $\{XR^6 = H\}$ IA $\{XR^6 = -SO_2 - Halogen\}$

Die Halosulfonierung kann ohne Lösungsmittel in einem Überschuss an Sulfonierungsreagenz oder in einem inerten Lösungs-/Verdünnungsmittel, z.B. in einem halogenierten Kohlenwasserstoff, einem Ether, einem Alkylnitril oder einer Mineralsäure durchgeführt werden.

Chlorsulfonsäure stellt sowohl das bevorzugte Reagenz als auch Lösungsmittel dar.

Das Sulfonierungsreagenz wird normalerweise in einem leichten Unterschuss (bis etwa 95 mol-%) oder in einem Überschuss von der 1- bis 5fachen molaren Menge, bezogen auf die Ausgangsverbindung IA (mit X-R⁶ = H) eingesetzt. Arbeitet man ohne inertes Lösungsmittel, so kann auch ein noch größerer Überschuss zweckmäßig sein.

Die Reaktionstemperatur liegt normalerweise zwischen $0\,^{\circ}\text{C}$ und dem Siedepunkt des Reaktionsgemisches.

Zur Aufarbeitung wird die Reaktionsmischung z.B. mit Wasser versetzt, wonach sich das Produkt wie üblich isolieren lässt.

C.3 Seitenkettenhalogenierung von 1-Arylpyridonen IA, bei denen X-R⁶ für Methyl steht, und Umsetzung der Verfahrensprodukte zu weiteren Verbindungen der Formel IA:

5

15

20

25

70

 $IA \{XR^6 = CH_3\}$

 \mathbb{R}^4

Pyridonyl

IA $\{XR^6 = CH(Halogen)_2\}$

Halogen

20

15

10

Beispiele für geeignete Lösungsmittel sind organische Säuren, anorganische Säuren, aliphatische oder aromatische Kohlenwasserstoffe, die halogeniert sein können, sowie Ether, Sulfide, Sulfoxide und Sulfone.

Halogen

25

30

Als Halogenierungsmittel kommen beispielsweise Chlor, Brom, N-Bromsuccinimide, N-Chlorsuccinimide oder Sulfurylchlorid in Betracht. Je nach Ausgangsverbindung und Halogenierungsmittel kann der Zusatz eines Radikalstarters, beispielsweise eines organischen Peroxides wie Dibenzoylperoxid oder einer Azoverbindung wie Azobisisobutyronitril, oder Bestrahlung mit Licht vorteilhaft auf den Reaktionsverlauf wirken.

35

Die Menge an Halogenierungsmittel ist nicht kritisch. Sowohl unterstöchiometrische Mengen als auch große Überschüsse an Halogenierungsmittel, bezogen auf die zu halogenierende Verbindung IA (mit $X-R^6=Methyl$), sind möglich.

40 k

Bei Verwendung eines Radikalstarters ist üblicherweise eine katalytische Menge davon ausreichend.

Die Reaktionstemperatur liegt normalerweise bei -100°C bis 200°C, vornehmlich bei 10 bis 100°C oder dem Siedepunkt des Reaktionsgemisches.

71

Diejenigen Halogenierungsprodukte IA mit $X-R^6=CH_2$ -Halogen lassen sich in einer nucleophilen Substitutionsreaktion gemäß dem folgenden Schema in ihre entsprechenden Ether, Thioether, Ester, Amine oder Hydroxylamine überführen:

5

IA $\{XR^6 = CH_2 - Halogen\}$

IA $\{X = CH_2; R^6 = -O-Y-R^8, -O-CO-Y-R^8, -N(Y-R^8)(Z-R^9), -N(Y-R^8)(-O-Z-R^9), -S-Y-R^8\}$

15

20

30

35

10

Als Nucleophil verwendet man entweder die entsprechenden Alkohole, Thiole, Carbonsäuren oder Amine, wobei dann vorzugsweise in Gegenwart einer Base (z.B. eines Alkali- oder Erdalkalimetallhydroxids oder eines Alkali- oder Erdalkalimetallcarbonats) gearbeitet wird, oder man verwendet die durch Reaktion der Alkohole, Thiole, Carbonsäuren oder Amine mit
einer Base (z.B. einem Alkalimetallhydrid) erhaltenen Alkalimetallsalze dieser Verbindungen.

Als Lösungsmittel kommen vor allem aprotische organische Solventien, z.B. Tetrahydrofuran, Dimethylformamid, Dimethylsulfoxid, oder Kohlenwasserstoffe wie Toluol und n-Hexan, in Betracht.

Die Reaktionsführung erfolgt bei einer Temperatur zwischen dem Schmelz- und dem Siedepunkt des Reaktionsgemisches, vorzugsweise bei 0 bis 100°C.

Diejenigen Halogenierungsprodukte IA mit $X-R^6 = CH(Halogen)_2$ können zu den entsprechenden Aldehyden (IA mit $X-R^6 = CHO$) hydrolysiert werden. Letztere wiederum können in Analogie zu bekannten Verfahren zu den Carbonsäuren IA $\{X-R^6 = COOH\}$ oxidiert werden:

15

20

25

30

40

Die Hydrolyse der Verbindungen IA mit X-R⁶ = Dihalogenmethyl erfolgt vorzugsweise unter sauren Bedingungen, insbesondere lösungsmittelfrei in Salzsäure, Essigsäure, Ameisensäure oder Schwefelsäure, oder auch in einer wässrigen Lösung einer der genannten Säuren, z.B. in einer Mischung aus Essigsäure und Wasser (beispielsweise 3:1).

Die Reaktionstemperatur liegt normalerweise bei 0 bis 120°C.

Die Oxidation der Hydrolyseprodukte IA mit XR⁶ = Formyl zu den entsprechenden Carbonsäuren kann auf an sich bekannte Weise erfolgen, z.B. nach Kornblum (siehe hierzu insbesondere die Seiten 179 bis 181 des Bandes "Methods for the Oxidation of Organic Compounds" von A.H. Haines, Academic Press 1988, in der Serie "Best Synthetic Methods"). Als Lösungsmittel ist beispielsweise Dimethylsulfoxid geeignet.

Die Aldehyde IA $\{X-R^6 = CHO\}$ lassen sich auch auf an sich bekannte Weise zu Verbindungen IA mit X = unsubstituiertes oder substituiertes Ethen-1,2-diyl olefinieren:

35 IA {XR⁶ = CHO} Olefinierung IA {X = (un)substituiertes Ethen-1,2-diyl}

Die Olefinierung erfolgt vorzugsweise nach der Methode von Wittig oder einer ihrer Modifikationen, wobei als Reaktionspartner Phosphorylide, Phosphoniumsalze und Phosphonate in Betracht kommen, oder durch Aldolkondensation.

Bei Verwendung eines Phosphoniumsalzes oder eines Phosphonats empfiehlt es sich, in Gegenwart einer Base zu arbeiten, wobei Alkalimetallalkyle wie n-Butyllithium, Alkalimetallhydride und -alkoholate wie Natriumhydrid, Natriumethanolat und Kalium-tert.-butanolat, sowie Alkalimetall- und Erdalkali-

73

metallhydroxide wie Calciumhydroxid, besonders gut geeignet sind.

Für eine vollständige Umsetzung werden alle Reaktionspartner in etwa stöchiometrischem Verhältnis eingesetzt; bevorzugt verwendet man jedoch einen Überschuss an Phosphorverbindung und/oder Base bis etwa 10 mol-%, bezogen auf die Ausgangsverbindung (IA mit X-R⁶ = CHO).

10 Im Allgemeinen liegt die Reaktionstemperatur bei -40 bis 150°C.

5

15

20

25

30

35

40

45

Die 1-Arylpyridone IA mit X-R⁶ = Formyl können auf an sich bekannte Weise in Verbindungen IA mit X-R⁶ = -CO-Y-R⁸ überführt werden, beispielsweise durch Umsetzung mit einer geeigneten Organometallverbindung Me-Y-R⁸ - wobei Me für ein unedles Metall, vorzugsweise für Lithium oder Magnesium steht - und anschließender Oxidation der hierbei erhaltenen Alkohole (vgl. z.B. J. March, Advanced Organic Chemistry, 3rd ed., John Wiley, New York 1985, S. 816ff. und 1057ff.).

Die Verbindungen IA mit X-R⁶ = -CO-Y-R⁸ können ihrerseits in einer Reaktion nach Wittig weiter umgesetzt werden. Die hierfür als Reaktionspartner benötigten Phosphoniumsalze, Phosphonate oder Phosphorylide sind bekannt oder lassen sich auf an sich bekannte Weise darstellen {vgl. hierzu z.B. Houben-Weyl, Methoden der Organischen Chemie, Bd. E1, S. 636ff. und Bd. E2, S. 345ff., Georg Thieme Verlag Stuttgart 1982; Chem. Ber. 95, 3993 (1962)}.

Weitere Möglichkeiten zur Herstellung anderer 1-Arylpyridone IA aus Verbindungen IA mit X-R⁶ = Formyl schließen die an sich bekannte Aldolkondensation ein, sowie Kondensations-Reaktionen nach Knoevenagel oder Perkin. Geeignete Bedingungen für diese Verfahren sind beispielsweise in Nielson, Org. React. 16, 1ff (1968) {Aldolkondensation} Org. React. 15, 204ff. (1967) {Kondensation nach Knoevenagel} und Johnson, Org. React. 1, 210ff. (1942) {Kondensation nach Perkin} zu entnehmen.

Die Verbindungen IA mit $X-R^6 = -CO-Y-R^8$ können auch auf an sich bekannte Weise in ihre entsprechenden Oxime übergeführt werden {vgl. hierzu beispielsweise Houben-Weyl, Methoden der Organischen Chemie, Georg Thieme Verlag Stuttgart, Bd. 10/4, 4. Auflage 1968, S. 55ff. und S. 73ff.}:

WO 02/06233

35

40

45

74

5

$$R^{4}$$

Pyridonyl

 R^{5}
 R^{8-Y}

Pyridonyl

 R^{8-Y}
 R^{8-Y}

C.4 Synthese von Ethern, Thioethern, Aminen, Estern, Amiden, Sulfonamiden, Thioestern, Hydroximsäureestern, Hydroxylaminen, Sulfonsäurederivaten, Oximen oder Carbonsäurederivaten:

1-Arylpyridone IA, bei denen R⁶ Hydroxy, Amino, -NH-Y-R⁸, Hydroxylamino, -N(Y-R⁸)-OH, -NH-O-Y-R⁸, Mercapto, Halogensulfonyl, -C(=NOH)-Y-R⁸, Carboxy oder -CO-NH-O-Z-R⁹ bedeutet, können auf an sich bekannte Weise

-CO-NH-O-Z-R⁹ bedeutet, können auf an sich bekannte Weise mittels Alkylierung, Acylierung, Sulfonierung, Veresterung oder Amidierung in die entsprechenden Ether {IA mit $R^6 = -O-Y-R^8$ }, Ester {I mit $R^6 = -O-CO-Y-R^8$ }, Amine {I mit $R^6 = -N(Y-R^8)(Z-R^9)$ }, Amide {IA mit $R^6 = -N(Y-R^8)-CO-Z-R^9$ }, Sulfonamide {IA mit $R^6 = -N(Y-R^8)-SO_2-Z-R^9$ oder

25 $-N(SO_2-Y-R^8)(SO_2-Z-R^9)$, Hydroxylamine {IA mit $R^6 = -N(Y-R^8)(O-Z-R^9)$ }, Thioether {IA mit $R^6 = -S-Y-R^8$ }, Sulfon-säurederivate {IA mit $R^6 = -SO_2-Y-R^8$, $-SO_2-O-Y-R^8$ oder $-SO_2-N(Y-R^8)(Z-R^9)$ }, Oxime (IA mit $R^6 = -C(=NOR^{10})-Y-R^8$ }, Carbonsäurederivate {IA mit $R^6 = -CO-O-Y-R^8$, $-CO-S-Y-R^8$, $-CO-N(Y-R^8)(Z-R^9)$, $-CO-N(Y-R^8)(O-Z-R^9)$ } oder Hydroximsäureester {I mit $R^6 = -C(=NOR^{10})-O-Y-R^8$ } überführt werden.

Derartige Umsetzungen werden beispielsweise in Houben-Weyl, Methoden der Organischen Chemie, Georg Thieme Verlag Stuttgart (Bd. E16d, S. 1241ff.; Bd. 6/1a, 4. Auflage 1980, S. 262ff.; Bd. 8, 4. Auflage 1952, S. 471ff., 516ff., 655ff. und S. 686ff.; Bd. 6/3, 4. Auflage 1965, S. 10ff.; Bd. 9, 4. Auflage 1955, S. 103ff., 227ff., 343ff., 530ff., 659ff., 745ff. und S. 753ff.; Bd. E5, S. 934ff., 941ff. und S. 1148ff.) beschrieben.

Beispielsweise können Ether (Verbindungen I mit $X-R^6=O-Y-R^8$) in guten Ausbeuten durch Umsetzung der entsprechenden Hydroxyverbindung (Verbindung I mit $X-R^6=OH$) mit einem aliphatischen Halogenid Hal-Y-R⁸ (Hal = Chlor, Brom oder Iod) hergestellt werden. Die Umsetzung erfolgt auf die für die Alkylierung von Phenolen beschriebene Art und Weise (siehe z.B.

5

WO 02/06233 PCT/EP01/08251

zur Ethersynthese J. March "Advanced Organic Chemistry" 3rd ed. S. 342 f. und dort zitierte Literatur), vorzugsweise in Gegenwart einer Base wie NaOH oder einem Alkalimetallcarbonat oder Natriumhydrid. Als Reaktionsmedien werden aprotisch polare Lösungsmittel wie Dimethylformamid, N-Methylpyrrolidon oder Dimethylacetonitril bevorzugt.

C.5 Nucleophile Substitution von Verbindung I, in denen X-R⁶ für Halogen steht. Das folgende Schema gibt Beispiele für die auf diesem Wege erhältlichen Verbindungsklassen.

- Als Nucleophile kommen Alkohole, Thiole, Amine, Carbonsäuren oder CH-acide Verbindungen, z.B. Nitroalkane wie Nitromethan, Malonsäurederivate wie Diethylmalonat oder Cyanessigsäurederivate wie Cyanessigsäuremethylester in Betracht.
- Diese Umsetzung gelingt besonders gut bei den Verbindungen IA, worin R⁵ für einen elektronenziehenden Rest, z.B. eine Trifluormethylgruppe oder eine Cyanogruppe, steht.
- Vorzugsweise erfolgt die Umsetzung in Anwesenheit einer starken Base, z.B. eine der für A.2 genannten Basen. Selbstverständlich kann man die vorgenannten Nucleophile vor der Umsetzung mittels einer starken Base quantitativ deprotonieren.
 Hinsichtlich der Reaktionsbedingungen sei auf das unter A.2
 Gesagte verwiesen. Außerdem wird hiermit auf J. March, Advanced Organic Synthesis, 3. Auflage 1985, S. 576 und die dort
 zitierte Literatur Bezug genommen.
 - D) Herstellung von Verbindungen der Formel I, worin Q ein Stickstoffatom bedeutet (Verbindungen IB).
- Außer den bereits in den vorausgehenden Abschnitten A, B und C genannten Verfahren kommen hierzu insbesondere die folgenden Verfahren D.1 und D.2 in Betracht:
- 45 D.1 Halogenierung des Pyridinrings von Verbindungen IB mit $X-R^6 = H$: Vorzugsweise wird hierzu ein 3-Pyridylpyridon der Formel IB ($X-R^6 = H$) zunächst in das entsprechende Pyridin-N-oxid

der Formel IX überführt. In Formel IX haben \mathbb{R}^1 , \mathbb{R}^2 , \mathbb{R}^4 und \mathbb{R}^5 die zuvor genannten Bedeutungen.

15

20

25

30

35

40

Als Oxidationsmittel für diese Umsetzung kommen beispielsweise Wasserstoffperoxid oder organische Persäuren, z.B. Perameisensäure, Peressigsäure, Trifluorperessigsäure oder m-Chlorperbenzoesäure in Betracht.

Geeignete Lösungsmittel sind gegen Oxidation inerte organische Solventien, wie beispielsweise Kohlenwasserstoffe wie Toluol oder Hexan, Ether wie Diethylether, Dimethoxyethan, Methyl-t-butylether, Dioxan oder Tetrahydrofuran, Alkohole wie Methanol oder Ethanol, oder auch Mischungen solcher Solventien untereinander oder mit Wasser. Wird mit einer organischen Persäure oxidiert, so kommt als Lösungsmittel vorzugsweise die zu Grunde liegende organische Säure, also beispielsweise Ameisen-, Essig- oder Trifluoressigsäure, in Betracht, gegebenenfalls in Mischung mit einem oder mehreren der vorgenannten Lösungsmittel.

Die Reaktionstemperatur liegt normalerweise zwischen Schmelzund Siedepunkt des Reaktionsgemisches, vorzugsweise bei 0-150°C.

Zur Erzielung einer hohen Ausbeute ist es häufig von Vorteil, das Oxidationsmittel im bis zu etwa fünffachen molaren Überschuss, bezogen auf eingesetztes IB (mit $X-R^6=H$), einzusetzen.

Nachfolgend wird das Pyridin-N-oxid IX durch Umsetzung mit einem Halogenierungsmittel in IB $(X-R^6=Halogen)$ überführt.

IB
$$\{-X-R^6 = H\}$$
 — IB $\{-X-R^6 = Halogen\}$

Als Halogenierungsmittel kommen Phosphorylhalogenide wie POCl₃ oder POBr₃, Phosphorhalogenide wie PCl₅, PBr₅, PCl₃ oder PBr₃, Phosgen oder organische oder anorganische Säurehaloge-

5

20

25

WO 02/06233 PCT/EP01/08251

nide wie z.B. Trifluormethansulfonsäurechlorid, Acetylchlorid, Bromacetylbromid, Acetylbromid, Benzoylchlorid, Benzoylbromid, Phthaloyldichlorid, Toluolsulfonsäurechlorid, Thionylchlorid oder Sulfurylchlorid in Betracht. Gegebenenfalls
kann es von Vorteil sein, die Reaktion in Gegenwart einer
Base, wie z.B. Trimethyl- oder Triethylamin oder Hexamethyldisilazan eingesetzt wird, durchzuführen.

Geeignete Lösungsmittel sind inerte organische Solventien,
wie beispielsweise Kohlenwasserstoffe wie Toluol oder Hexan,
Ether wie Diethylether, Dimethoxyethan, Methyl-t-butylether,
Dioxan oder Tetrahydrofuran, Amide wie DMF, DMA oder NMP,
oder deren Mischungen. Wird mit einem flüssigen Halogenierungsmittel umgesetzt, kann dies vorzugsweise auch als Lösungsmittel, eventuell in Mischung mit einem der vorgenannten, zur Anwendung kommen.

Die Reaktionstemperatur liegt normalerweise zwischen Schmelzund Siedepunkt des Reaktionsgemisches, vorzugsweise bei 50-150°C.

Zur Erzielung einer hohen Ausbeute kann es vorteilhaft sein, Halogenierungsmittel oder Base im bis zu etwa fünffachen molaren Überschuss, bezogen auf eingesetztes IX, einzusetzen.

D.2 Nucleophile Substitution an Halogenpyridinen der Formel IB $(X-R^6 = \text{Halogen})$. Das folgende Schema gibt Beispiele für die auf diesem Wege erhältlichen Verbindungsklassen.

30

IB
$$\{X-R^6 = Halogen\}$$

IB $\{X-R^6 = -O-Y-R^8\}$

IB $\{X-R^6 = -O-CO-Y-R^8\}$

IB $\{X-R^6 = -N(Y-R^8)(Z-R^9)\}$

IB $\{X-R^6 = -N(Y-R^8)(O-Z-R^9)\}$

IB $\{X-R^6 = -S-Y-R^8\}$

Als Nucleophile kommen Alkohole, Thiole, Amine, Carbonsäuren oder CH-acide Verbindungen, z.B. Nitroalkane wie Nitromethan,
Malonsäurederivate wie Diethylmalonat oder Cyanessigsäurederivate wie Cyanessigsäuremethylester in Betracht. Für die Durchführung dieser Reaktion gilt das unter C.5 Gesagte.

E) Herstellung von Verbindungen der Formel I worin R⁷ mit X-R⁶

45 für eine der Ketten -N=C(R¹⁹)-S- (Verbindungen IC-1) oder
-N=C(R¹⁹)-O- steht (Verbindungen IC-2).

Zur Herstellung der Verbindungen IC sind auch die in den Abschnitten A und B genannten Verfahren anwendbar oder können zur Herstellung geeigneter Ausgangsverbindungen herangezogen werden.

5

10

15

Des Weiteren können die Verbindungen IC-1 und IC-2 in Analogie zu bekannten Verfahren durch Ringschlussreaktion aus den entsprechenden ortho-Aminophenolen oder ortho-Mercaptoanilinen der Formeln IA-1 und IA-2 aufgebaut werden; hierzu sind zahlreiche Methoden aus der Literatur bekannt (s. z.B. Houben-Weyl, Methoden der Organischen Chemie, Bd. E8a, S.1028ff., Georg-Thieme-Verlag, Stuttgart 1993 und Bd. E8b, S. 881ff., Georg-Thieme-Verlag, Stuttgart 1994). In den Formeln IA-1 und IA-2 haben die Variablen "Pyridonyl", R4 und R5 die vorgenannten Bedeutungen oder Stehen für Substituenten, die nach bekannten Methoden in diese Gruppen umgewandelt werden können. Die Variablen X $^{
m 1}$ und X $^{
m 2}$ stehen unabhängig voneinander für OH oder SH.

20

25

E.1 Verbindungen IC-1, worin R7 mit X-R6 eine der Ketten -N=C(R19)-S- bilden, können insbesondere auch durch das nach-30 folgend dargestellte Verfahren hergestellt werden:

> Dieses Verfahren umfasst die Umsetzung eines Aminophenylpyridons der Formel IA-3 oder IA-4 mit Halogen und Ammoniumthiocyanat oder mit einem Alkali- oder Erdalkalimetallthiocyanat. Hierbei werden Verbindungen der allgemeinen Formeln IC-1a bzw. IC-1b mit $R^{19} = NH_2$ erhalten.

35

40
$$\mathbb{R}^4$$

Pyridonyl

N
S

(IA-3)

R
Pyridonyl

NH₂

(IC-la; $\mathbb{R}^{19} = \mathbb{N}H_2$)

79

15

20

25

35

40

45

Diese Verbindungen können durch nachfolgende Reaktionen an der Aminogruppe in andere Verbindungen IC-la bzw. IC-lb umgewandelt werden.

Bevorzugtes Halogen ist Chlor oder Brom; unter den Alkali-/Erdalkalimetallthiocyanaten ist Natriumthiocyanat bevorzugt.

In der Regel führt man die Umsetzung in einem inerten Lösungs-/Verdünnungsmittel, z.B. in einem Kohlenwasserstoff wie Toluol und Hexan, in einem halogenierten Kohlenwasserstoff wie Dichlormethan, in einem Ether wie Tetrahydrofuran, in einem Alkohol wie Ethanol, in einer Carbonsäure wie Essigsäure, oder in einem polar aprotischen Lösungs-/Verdünnungsmittel wie Dimethylformamid, Acetonitril und Dimethylsulfoxid durch.

Die Reaktionstemperatur liegt normalerweise zwischen Schmelzund Siedepunkt des Reaktionsgemisches, vorzugsweise bei 0 bis 150°C.

Zur Erzielung einer hohen Ausbeute an Wertprodukt setzt man vorzugsweise Halogen und Ammoniumthiocyanat bzw. Alkali-/Erdalkalimetallthiocyanat in etwa äquimolarer Menge oder im Überschuss, bis etwa zur 5-fachen molaren Menge, bezogen auf die Menge an IA-3 bzw. IA-4.

Eine Variante des Verfahrens besteht darin, die NH_2 -Gruppe der Aminophenylpyridone IA-3 bzw. IA-4 zunächst mit Ammoniumthiocyanat oder einem Alkali- oder Erdalkalithiocyanat in eine Thioharnstoffgruppe (NH-C(S)-NH₂-Gruppe) umzuwandeln und diese anschließend durch Behandlung mit einem Halogen in die Benzothiazole (Verbindungen IC-1a bzw. ID-1 mit $R^{19} = NH_2$) zu überführen.

Schließlich können an der Aminogruppe der Kette $-N=C(NH_2)-S-Reaktionen$ analog zu diejenigen, die bereits unter Abschnitt C.1) beschrieben wurden, durchgeführt werden um auf diese Weise andere Reste R^{19} in die Verbindungen I einzuführen.

5

10

WO 02/06233

E.2 Verbindungen der Formel IC, worin R⁷ mit X-R⁶ eine der Ketten -N=C(R¹⁹)-O- bilden, lassen sich durch sukzessive Umwandlung der NH₂-Gruppe in den Aminophenylpyridonen der Formel IA-3 bzw. IA-4 in eine Azid-Gruppe (N₃-Gruppe) und nachfolgende Cyclisierung der dabei erhaltenen Azidophenylpyridone mit einer Carbonsäure zu Verbindungen der Formel IC-2a oder IC-2b herstellen.

35

Die Umwandlung der Aminogruppe in den Aminophenylpyridonen der Formel IA-3 bzw. IA-4 in eine Azid-Gruppe erfolgt in der Regel zweistufig, d.h. durch Diazotierung der Aminogruppe und nachfolgende Behandlung des dabei erhaltenen Diazoniumsalzes mit einem Azid. Für die Durchführung der Diazotierung gelten die bei Verfahren C.1) gemachten Angaben. Die Überführung in die Arylazide erfolgt vorzugsweise durch Umsetzung von Diazoniumsalze mit einem Alkali- oder Erdalkalimetallazid wie Natriumazid oder durch Umsetzung mit Trimethylsilylazid.

40

45

Bei der Umsetzung der Azid-Verbindungen IA ($X-R^6=N_3$) mit der Carbonsäure R^{19} -COOH arbeitet man entweder in einem inerten organischen Solvens, beispielsweise in Kohlenwasserstoffen wie Toluol oder Hexan, in halogenierten Kohlenwasserstoffen wie Dichlormethan oder Chloroform, in Ethern wie Diethyle-

81

5

25

30

40

45

ther, Dimethoxyethan, Methyl-t-butylether, Dioxan oder Tetrahydrofuran, in Amiden wie Dimethylformamid (DMF), Dimethylacetamid (DMA) oder N-Methylpyrrolidon (NMP), in Acetonitril oder vorzugsweise lösungsmittelfrei in einem Überschuss der Carbonsäure R¹⁹COOH. Im letzteren Fall kann der Zusatz einer Mineralsäure wie Phosphorsäure oder eines silylierenden Reagenzes wie ein Gemisch aus Phosphorpentoxid und Hexamethyldisiloxan hilfreich sein.

Die Umsetzung wird vorzugsweise bei erhöhter Temperatur, beispielsweise bei der Siedetemperatur des Gemisches, vorgenommen.

F) Die Herstellung von Verbindungen der Formel I, worin X-R⁶ mit R⁷ eine der Ketten -O-C(R¹⁶,R¹⁷)-CO-N(R¹⁸)- oder -S-C(R¹⁶,R¹⁷)-CO-N(R¹⁸)- bildet, kann durch die in den Abschnitten A und B genannten Verfahren erfolgen. Außerdem kann man sie grundsätzlich aus den entsprechenden Aminophenolen oder Mercaptoanilinen IA-1 oder IA-2 nach bekannten Verfahren, beispielsweise nach dem in der US 4,798,620 beschriebenen Verfahren, herstellen. Hinsichtlich dieser Reaktion wird auf die Offenbarung dieser Schrift Bezug genommen.

Insbesondere können solche Verbindungen der Formel I, in denen X-R⁶ mit R⁷ eine Kette -O-C(R¹⁶,R¹⁷)-CO-N(R¹⁸)- bilden, auch aus den Nitrophenoxyessigsäurederivaten der Formeln IA-5 und IA-6 hergestellt werden. Die Umwandlung gelingt durch Reduktion der Nitrogruppen in IA-5 oder IA-6, wobei in der Regel gleichzeitig mit der Reduktion eine Ringschlussreaktion zu den Verbindungen der Formel IC-3a bzw. IC-3b eintritt.

Pyridonyl

R⁴

Pyridonyl

$$R^{18}$$
 R^{18}
 R^{16}
 R^{16}
 R^{16}
 R^{17} (IA-5)

Pyridonyl

(IC-3a)

82

5 Pyridonyl

O NO2

RaoC P17

$$R^4$$

Pyridonyl

R16

R17

O N R18'

(IC-3b)

10

In den Formeln IA-5, IA-6, IC-3a und IC-3b haben "Pyridonyl", R^4 , R^5 , R^{16} und R^{17} die zuvor genannten Bedeutungen. R^{18} ' steht für H oder OH. R^a bedeutet eine nucleophil verdrängbare Abgangsgruppe, z.B einen C_1 - C_4 -Alkoxyrest wie Methoxy oder Ethoxy.

Die Durchführung dieser Reduktionen kann entsprechend den in Abschnitt C.1) für die Reduktion aromatische Nitrogruppen genannten Bedingungen erfolgen.

20

15

Die Reaktionsprodukte können gewünschtenfalls durch Alkylierung in weitere Verbindungen der Formel IC-3 überführt werden. Für die Durchführung dieser Reaktionen gilt das unter Abschnitt C.4 Gesagte sinngemäß.

25

Sofern nicht anders angegeben, werden alle vorstehend beschriebenen Verfahren zweckmäßigerweise bei Atmosphärendruck oder unter dem Eigendampfdruck des jeweiligen Reaktionsgemisches vorgenommen.

30

Die Aufarbeitung der Reaktionsgemische erfolgt in der Regel auf an sich bekannte Weise. Sofern nicht bei den vorstehend beschriebenen Verfahren etwas anderes angegeben ist erhält man die Wertprodukte z.B. nach Verdünnen der Reaktionslösung mit Wasser durch Filtration, Kristallisation oder Lösungsmittelextraktion, oder durch Entfernen des Lösungsmittels, Verteilen des Rückstandes in einem Gemisch aus Wasser und einem geeigneten organischen Lösungsmittel und Aufarbeiten der organischen Phase auf das Produkt hin.

40

Die 1-Arylpyridone der Formel I können bei der Herstellung als Isomerengemische anfallen, die jedoch gewünschtenfalls nach den hierfür üblichen Methoden wie Kristallisation oder Chromatographie, auch an einem optisch aktiven Adsorbat, in die weitgehend 45 reinen Isomeren getrennt werden können. Reine optisch aktive IsoWO 02/06233

83

mere lassen sich vorteilhaft aus entsprechenden optisch aktiven Ausgangsprodukten herstellen.

PCT/EP01/08251

Landwirtschaftlich brauchbare Salze der Verbindungen I können 5 durch Reaktion mit einer Base des entsprechenden Kations, vorzugsweise einem Alkalimetallhydroxid oder -hydrid, oder durch Reaktion mit einer Säure des entsprechenden Anions, vorzugsweise der Chlorwasserstoffsäure, Bromwasserstoffsäure, Schwefelsäure, Phosphorsäure oder Salpetersäure, gebildet werden.

10

Kulturen:

Salze von I, deren Metallion kein Alkalimetallion ist, können auch durch Umsalzen des entsprechenden Alkalimetallsalzes in üblicher Weise hergestellt werden, ebenso Ammonium-, Phosphonium-, Sulfonium- und Sulfoxoniumsalze mittels Ammoniak, Phosphonium-, Sulfonium- oder Sulfoxoniumhydroxiden.

Die Verbindungen I und deren landwirtschaftlich brauchbaren Salze eignen sich - sowohl als Isomerengemische als auch in Form der reinen Isomeren - als Herbizide. Die Verbindungen I oder ihre 20 Salze enthaltenden herbiziden Mittel bekämpfen Pflanzenwuchs auf Nichtkulturflächen sehr gut, besonders bei hohen Aufwandmengen. In Kulturen wie Weizen, Reis, Mais, Soja und Baumwolle wirken sie gegen Unkräuter und Schadgräser, ohne die Kulturpflanzen nennenswert zu schädigen. Dieser Effekt tritt vor allem bei niedrigen 25 Aufwandmengen auf.

In Abhängigkeit von der jeweiligen Applikationsmethode können die Verbindungen I bzw. sie enthaltende Mittel noch in einer weiteren Zahl von Kulturpflanzen zur Beseitigung unerwünschter Pflanzen 30 eingesetzt werden. In Betracht kommen beispielsweise folgende

Allium cepa, Ananas comosus, Arachis hypogaea, Asparagus officinalis, Beta vulgaris spec. altissima, Beta vulgaris spec. rapa, Brassica napus var. napus, Brassica napus var. napobrassica,

- 35 Brassica rapa var. silvestris, Camellia sinensis, Carthamus tinctorius, Carya illinoinensis, Citrus limon, Citrus sinensis, Coffea arabica (Coffea canephora, Coffea liberica), Cucumis sativus, Cynodon dactylon, Daucus carota, Elaeis guineensis, Fragaria vesca, Glycine max, Gossypium hirsutum, (Gossypium arboreum, Gossy-
- 40 pium herbaceum, Gossypium vitifolium), Helianthus annuus, Hevea brasiliensis, Hordeum vulgare, Humulus lupulus, Ipomoea batatas, Juglans regia, Lens culinaris, Linum usitatissimum, Lycopersicon lycopersicum, Malus spec., Manihot esculenta, Medicago sativa, Musa spec., Nicotiana tabacum (N.rustica), Olea europaea, Oryza
- 45 sativa, Phaseolus lunatus, Phaseolus vulgaris, Picea abies, Pinus spec., Pisum sativum, Prunus avium, Prunus persica, Pyrus communis, Ribes sylvestre, Ricinus communis, Saccharum officinarum,

84

Secale cereale, Solanum tuberosum, Sorghum bicolor (s. vulgare), Theobroma cacao, Trifolium pratense, Triticum aestivum, Triticum durum, Vicia faba, Vitis vinifera, Zea mays.

5 Darüber hinaus können die Verbindungen I auch in Kulturen, die durch Züchtung einschließlich gentechnischer Methoden gegen die Wirkung von Herbiziden tolerant sind, verwandt werden.

Des weiteren eignen sich die 1-Aryl-4-haloalkyl-2-[1H]-pyridone I 10 und deren landwirtschaftlich brauchbaren Salze auch zur Desikkation und/oder Defoliation von Pflanzen.

Als Desikkantien eignen sie sich insbesondere zur Austrocknung der oberirdischen Teile von Kulturpflanzen wie Kartoffel, Raps, 15 Sonnenblume und Sojabohnen. Auf diese Weise wird ein vollständig mechanisches Beernten dieser wichtigen Kulturpflanzen ermöglicht.

Von wirtschaftlichem Interesse ist auch das zeitlich kontrollierte Abfallen von Früchten oder das Vermindern ihrer Haftfe-20 stigkeit an der Pflanze, beispielsweise bei Zitrusfrüchten, Oliven und anderen Sorten von Kern-, Stein- und Schalenobst, da hierdurch die Ernte dieser Früchte erleichtert wird. Das Abfallen beruht auf der Ausbildung von Trenngewebe zwischen Frucht-, Blatt und Sprossenteil der Pflanzen und wird durch die erfindungsgemä-25 Ben Verbindungen der allgemeinen Formel I und ihre Salze gefördert. Die Anwendung der erfindungsgemäßen Verbindungen der allgemeinen Formel I und ihrer landwirtschaftlich brauchbaren Salze erlaubt somit ein kontrolliertes Abfallen von Früchten sowie ein kontrolliertes Entblättern von Nutzpflanzen wie Baumwolle (Defo-30 liation) und ermöglicht somit bei derartigen Kulturpflanzen eine Ernteerleichterung. Ein kontrolliertes Entblättern ist insbesondere auch bei Nutzpflanzen wie Baumwolle von Interesse. Durch die Verkürzung des Zeitintervalls, in dem die einzelnen Baumwollpflanzen reif werden, wird eine erhöhte Qualität des geernteten 35 Fasermaterials erzielt.

Die Verbindungen I bzw. die sie enthaltenden Mittel können beispielsweise in Form von direkt versprühbaren wässrigen Lösungen,
Pulvern, Suspensionen, auch hochprozentigen wässrigen, öligen

40 oder sonstigen Suspensionen oder Dispersionen, Emulsionen, Öldispersionen, Pasten, Stäubemitteln, Streumitteln oder Granulaten
durch Versprühen, Vernebeln, Verstäuben, Verstreuen, Gießen oder
Behandlung des Saatgutes bzw. Mischen mit dem Saatgut angewendet
werden. Die Anwendungsformen richten sich nach den Verwendungs45 zwecken; sie sollten in jedem Fall möglichst die feinste Verteilung der erfindungsgemäßen Wirkstoffe gewährleisten. Die herbiziden Mittel enthalten eine herbizid wirksame Menge mindestens ei-

85

ner Verbindung der Formel I oder eines landwirtschaftlich brauchbaren Salzes von I und für die Formulierung von Pflanzenschutz-mitteln übliche Hilfsstoffe.

- 5 Als inerte Zusatzstoffe kommen im Wesentlichen in Betracht:
 Mineralölfraktionen von mittlerem bis hohem Siedepunkt, wie Kerosin oder Dieselöl, ferner Kohlenteeröle sowie Öle pflanzlichen
 oder tierischen Ursprungs, aliphatische, cyclische und aromatische Kohlenwasserstoffe, z.B. Paraffin, Tetrahydronaphthalin, al10 kylierte Naphthaline oder deren Derivate, alkylierte Benzole oder
 deren Derivate, Alkohole wie Methanol, Ethanol, Propanol, Butanol, Cyclohexanol, Ketone wie Cyclohexanon oder stark polare Lösungsmittel, z. B. Amine wie N-Methylpyrrolidon oder Wasser.
- Wäßrige Anwendungsformen können aus Emulsionskonzentraten, Suspensionen, Pasten, netzbaren Pulvern oder wasserdispergierbaren Granulaten durch Zusatz von Wasser bereitet werden. Zur Herstellung von Emulsionen, Pasten oder Öldispersionen können die 1-Aryl-4-haloalkyl-2-[1H]-pyridone als solche oder in einem Öl oder Lösungsmittel gelöst, mittels Netz-, Haft-, Dispergier- oder Emulgiermittel in Wasser homogenisiert werden. Es können aber auch aus wirksamer Substanz, Netz-, Haft-, Dispergier- oder Emulgiermittel und eventuell Lösungsmittel oder Öl bestehende Konzentrate hergestellt werden, die zur Verdünnung mit Wasser geeignet sind.

Als oberflächenaktive Stoffe kommen die Alkali-, Erdalkali-, Ammoniumsalze von aromatischen Sulfonsäuren, z.B. Lignin-, Phenol-, Naphthalin- und Dibutylnaphthalinsulfonsäure, sowie von Fettsäuren, Alkyl- und Alkylarylsulfonaten, Alkyl-, Laurylether- und Fettalkoholsulfaten, sowie Salze sulfatierter Hexa-, Hepta- und Octadecanolen sowie von Fettalkoholglykolether, Kondensationsprodukte von sulfoniertem Naphthalin und seiner Derivate mit Formaldehyd, Kondensationsprodukte des Naphthalins bzw. der Naphthalinsulfonsäuren mit Phenol und Formaldehyd, Polyoxyethylenoctylphenolether, ethoxyliertes Isooctyl-, Octyl- oder Nonylphenol, Alkylphenyl-, Tributylphenylpolyglykolether, Alkylarylpolyetheralkohole, Isotridecylalkohol, Fettalkoholethylenoxid-Kondensate, ethoxyliertes Rizinusöl, Polyoxyethylenalkylether oder Polyoxy-propylenalkylether, Laurylalkoholpolyglykoletheracetat, Sorbitester, Lignin-Sulfitablaugen oder Methylcellulose in Betracht.

Pulver-, Streu- und Stäubemittel können durch Mischen oder gemeinsames Vermahlen der wirksamen Substanzen mit einem festen 45 Trägerstoff hergestellt werden. WO 02/06233

86

Granulate, z.B. Umhüllungs-, Imprägnierungs- und Homogengranulate können durch Bindung der Wirkstoffe an feste Trägerstoffe hergestellt werden. Feste Trägerstoffe sind Mineralerden wie Kieselsüren, Kieselgele, Silikate, Talkum, Kaolin, Kalkstein, Kalk, Kreide, Bolus, Löß, Ton, Dolomit, Diatomeenerde, Calcium- und Magnesiumsulfat, Magnesiumoxid, gemahlene Kunststoffe, Düngemittel, wie Ammoniumsulfat, Ammoniumphosphat, Ammoniumnitrat, Harnstoffe und pflanzliche Produkte wie Getreidemehl, Baumrinden-, Holz- und Nussschalenmehl, Cellulosepulver oder andere feste Trägerstoffe.

PCT/EP01/08251

10

Die Konzentrationen der Wirkstoffe I in den anwendungsfertigen Zubereitungen können in weiten Bereichen variiert werden. Die Formulierungen enthalten im allgemeinen 0,001 bis 98 Gew.-%, vorzugsweise 0,01 bis 95 Gew.-%, mindestens eines Wirkstoffs. Die 15 Wirkstoffe werden dabei in einer Reinheit von 90% bis 100%, vorzugsweise 95% bis 100% (nach NMR-Spektrum) eingesetzt.

Die erfindungsgemäßen Verbindungen I können beispielsweise wie folgt formuliert werden:

20

- I 20 Gewichtsteile der Verbindung Nr. IAe.131 werden in einer Mischung gelöst, die aus 80 Gewichtsteilen alkyliertem Benzol, 10 Gewichtsteilen des Anlagerungsproduktes von 8 bis 10 Mol Ethylenoxid an 1 Mol Ölsäure-N-monoethanolamid, 5 Gewichtsteilen Calciumsalz der Dodecylbenzolsulfonsäure und 5 Gewichtsteilen des Anlagerungsproduktes von 40 Mol Ethylenoxid an 1 Mol Ricinusöl besteht. Durch Ausgießen und feines Verteilen der Lösung in 100 000 Gewichtsteilen Wasser erhält man eine wäßrige Dispersion, die 0,02 Gew.-% des Wirkstoffs enthält.
- 1I 20 Gewichtsteile der Verbindung Nr. IAa.128 werden in einer Mischung gelöst, die aus 40 Gewichtsteilen Cyclohexanon, 30 Gewichtsteilen Isobutanol, 20 Gewichtsteilen des Anlagerungsproduktes von 7 Mol Ethylenoxid an 1 Mol Isooctylphenol und 10 Gewichtsteilen des Anlagerungsproduktes von 40 Mol Ethylenoxid an 1 Mol Ricinusöl besteht. Durch Eingießen und feines Verteilen der Lösung in 100 000 Gewichtsteilen Wasser erhält man eine wäßrige Dispersion, die 0,02 Gew.-% des Wirkstoffs enthält.
- III 20 Gewichtsteile des Wirkstoffs Nr. IAa.10 werden in einer Mischung gelöst, die aus 25 Gewichtsteilen Cyclohexanon, 65 Gewichtsteilen einer Mineralölfraktion vom Siedepunkt 210 bis 280°C und 10 Gewichtsteilen des Anlagerungsproduktes von 40 Mol Ethylenoxid an 1 Mol Ricinusöl besteht. Durch Eingießen und feines Verteilen der Lösung in 100 000 Gewichtsteilen

87

Wasser erhält man eine wäßrige Dispersion, die 0,02 Gew.-% des Wirkstoffs enthält.

IV 20 Gewichtsteile des Wirkstoffs Nr. IAa.95 werden mit 3 Gewichtsteilen des Natriumsalzes der Diisobutylnaphthalinsulfonsäure, 17 Gewichtsteilen des Natriumsalzes einer Ligninsulfonsäure aus einer Sulfit-Ablauge und 60 Gewichtsteilen pulverförmigem Kieselsäuregel gut vermischt und in einer Hammermühle vermahlen. Durch feines Verteilen der Mischung in 20 000 Gewichtsteilen Wasser erhält man eine Spritzbrühe, die 0,1 Gew.-% des Wirkstoffs enthält.

V 3 Gewichtsteile des Wirkstoffs Nr. IAa.59 werden mit 97 Gewichtsteilen feinteiligem Kaolin vermischt. Man erhält auf diese Weise ein Stäubemittel, das 3 Gew.-% des Wirkstoffs enthält.

VI 20 Gewichtsteile des Wirkstoffs Nr. IAa.22 (Racemat) werden mit 2 Gewichtsteilen Calciumsalz der Dodecylbenzolsulfon20 säure, 8 Gewichtsteilen Fettalkohol-polyglykolether, 2 Gewichtsteilen Natriumsalz eines Phenol-Harnstoff-FormaldehydKondensates und 68 Gewichtsteilen eines paraffinischen Mineralöls innig vermischt. Man erhält eine stabile ölige Dispersion.

25

15

VII 1 Gewichtsteil der Verbindung Nr. IAa.110 wird in einer Mischung gelöst, die aus 70 Gewichtsteilen Cyclohexanon, 20 Gewichtsteilen ethoxyliertem Isooctylphenol und 10 Gewichtsteilen ethoxyliertem Rizinusöl besteht. Man erhält ein stabiles
Emulsionskonzentrat.

VIII 1 Gewichtsteil der Verbindung Nr. IAa.131 wird in einer Mischung gelöst, die aus 80 Gewichtsteilen Cyclohexanon und 20 Gewichtsteilen Wettol ® EM 31 (nicht ionischer Emulgator auf der Basis von ethoxyliertem Ricinusöl). Man erhält ein stabiles Emulsionskonzentrat.

Die Applikation der herbiziden Mittel bzw. der Wirkstoffe kann im Vorauflauf-, im Nachauflaufverfahren oder zusammen mit dem Saat40 gut einer Kulturpflanze erfolgen. Es besteht auch die Möglichkeit, die herbiziden Mittel bzw. Wirkstoffe dadurch zu applizieren, daß mit den herbiziden Mitteln bzw. Wirkstoffen vorbehandeltes Saatgut einer Kulturpflanze ausgebracht wird. Sind die Wirkstoffe für gewisse Kulturpflanzen weniger verträglich, so können
45 Ausbringungstechniken angewandt werden, bei welchen die herbiziden Mittel mit Hilfe der Spritzgeräte so gespritzt werden, daß
die Blätter der empfindlichen Kulturpflanzen nach Möglichkeit

WO 02/06233

88

nicht getroffen werden, während die Wirkstoffe auf die Blätter darunter wachsender unerwünschter Pflanzen oder die unbedeckte Bodenfläche gelangen (post-directed, lay-by).

PCT/EP01/08251

5 Die Aufwandmengen an Wirkstoff betragen je nach Bekämpfungsziel, Jahreszeit, Zielpflanzen und Wachstumsstadium 0.001 bis 3.0, vorzugsweise 0.01 bis 1.0 kg/ha aktive Substanz (a. S.).

Zur Verbreiterung des Wirkungsspektrums und zur Erzielung syner-10 gistischer Effekte können die 1-Aryl-4-haloalkyl-2-[1H]-pyridone mit zahlreichen Vertretern anderer herbizider oder wachstumsregulierender Wirkstoffgruppen gemischt und gemeinsam ausgebracht werden. Beispielsweise kommen als Mischungspartner 1,2,4-Thiadiazole, 1,3,4-Thiadiazole, Amide, Aminophosphorsäure und deren 15 Derivate, Aminotriazole, Anilide, (Het)-Aryloxyalkansäure und deren Derivate, Benzoesäure und deren Derivate, Benzothiadiazinone, 2-Aroyl-1,3-cyclohexandione, 2-Hetaroyl-1,3-cyclohexandione, Hetaryl-Aryl-Ketone, Benzylisoxazolidinone, Meta-CF3-phenylderivate, Carbamate, Chinolincarbonsäure und deren Derivate, Chloracetani-20 lide, Cyclohexenonoximether -Derivate, Diazine, Dichlorpropionsäure und deren Derivate, Dihydrobenzofurane, Dihydrofuran-3-one, Dinitroaniline, Dinitrophenole, Diphenylether, Dipyridyle, Halogencarbonsäuren und deren Derivate, Harnstoffe, 3-Phenyluracile, Imidazole, Imidazolinone, N-Phenyl-3,4,5,6-tetrahydrophthalimide, 25 Oxadiazole, Oxirane, Phenole, Aryloxy- oder Heteroaryloxyphenoxypropionsäureester, Phenylessigsäure und deren Derivate, Phenylpropionsäure und deren Derivate, Pyrazole, Phenylpyrazole, Pyridazine, Pyridincarbonsäure und deren Derivate, Pyrimidylether,

Außerdem kann es von Nutzen sein, die Verbindungen I allein oder in Kombination mit anderen Herbiziden auch noch mit weiteren Pflanzenschutzmitteln gemischt, gemeinsam auszubringen, bei35 spielsweise mit Mitteln zur Bekämpfung von Schädlingen oder phytopathogenen Pilzen bzw. Bakterien. Von Interesse ist ferner die Mischbarkeit mit Mineralsalzlösungen, welche zur Behebung von Ernährungs- und Spurenelementmängeln eingesetzt werden. Es können auch nichtphytotoxische Öle und Ölkonzentrate zugesetzt werden.

Sulfonamide, Sulfonylharnstoffe, Triazine, Triazinone, Triazoli-

Die folgenden Beispiele sollen die Erfindung erläutern:

30 none, Triazolcarboxamide, Uracile in Betracht.

I Herstellbeispiele:

40

45 I.1 1-Aryl-2,6(1H,3H)-dihydropyridindione der allgemeinen Formel IIa

89

1. Herstellung von (2E)-3-Trifluormethyl-2-pentendicarbonsäure-diethylester (Vorstufe a)

Zur einer Lösung von 150 g (431 mmol) Triphenylphosphoranylidenessigsäureethylester in 500 ml Diethylether gab man innerhalb einer Stunde 79,3 g (431 mmol) Trifluoracetessigsäureethylester und beließ die Mischung über Nacht bei Raumtemperatur. Man filtrierte den entstandenen Niederschlag ab und engte das Filtrat im Vakuum ein. Auf diese Weise erhielt man 119 g der Vorstufe a, die laut ¹H-NMR noch mit Triphenylphosphinoxid verunreinigt war. Das Rohprodukt wurde ohne weitere Reinigung in den folgenden Stufen eingesetzt.

¹H-NMR (CDCl₃, 270 MHz) δ[ppm]: 1,3 (2t, 6H), 3,75 (s, 2H), 4,2 (2q, 4H), 6,55 (s, 1H), 7,4-7,7 (Triphenylphosphinoxid).

15

2. Herstellung von (2E)-3-Trifluormethyl-2-pentendicarbonsäure

Zu einer Lösung von 119 g (etwa 431 mmol) der Vorstufe a in 1 l Ethanol gab man innerhalb 20 Minuten bei Raumtemperatur eine Lösung von 37,9 g (948 mmol) Natriumhydroxid in 200 ml Wasser und rührte über Nacht bei Raumtemperatur nach. Nach Einengen der Reaktionsmischung im Vakuum verteilte man zwischen 300 ml Wasser und 300 ml Ethylacetat, trennte die Phasen und säuerte die wässrige Phase mit konzentrierter Salzsäure auf pH 1 an. Man extrahierte dreimal mit Ethylacetat, trocknete die vereinigten organischen Phasen über Magnesiumsulfat und engte die organische Phase im Vakuum ein. Man erhielt auf diese Weise 78,9 g der Dicarbonsäure (Vorstufe b) als farblosen Feststoff.

- 30 $^{1}\text{H-NMR}$ (d₆-DMSO, 400 MHz) δ [ppm]: 3,6 (s, 2H), 6,55 (s, 1H).
 - 3. Herstellung von (2E)-3-Methyl- und (2E)-4-Methyl-3-trifluor-methyl-2-pentendicarbonsäure
- Ausgehend von Triphenylphosphoranylidenessigsäureethylester und 2-(Trifluoracetyl)propionsäureethylester erhielt man nach Umsetzung gemäß der für die Vorstufen a und b angegebenen Methoden (2E)-2-Methyl-3-trifluormethylpentendicarbonsäure und (2E)-4-Methyl-3-trifluormethyl-2-pentendicarbonsäure als Isomerengemisch im Mol-Verhältnis 1:2. Das Isomerengemisch wurde zur Herstellung der Verbindungen der allgemeinen Formel II ohne weitere Reinigung eingesetzt (Vorstufe c).
- 4. Herstellung der Verbindungen der allgemeinen Formel II
 45

90

2-Chlor-5-(2,6-dioxo-4-(trifluormethyl)-3,6-dihydro-1(2H)-py-ridinyl)-4-fluorbenzoesäureisopropylester (Vorprodukt 1)

Methode A

5

10

2,0 g (10 mmol) Vorstufe b und 2,3 g (10 mmol) 5-Amino-2-chlor-4-fluorbenzoesäureisopropylester wurden 1,5 h auf 160 °C erhitzt. Nach dem Abkühlen erhielt man 3,7 g des Vorprodukts 1 (siehe Tabelle 3), was einer Ausbeute von 94 % der Theorie entspricht.

Methode B

2,0 g (10 mmol) Vorstufe b und 2,3 g (10 mmol)
5-Amino-2-chlor-4-fluorbenzoesäureisopropylester wurden in
40 ml Dichlormethan gelöst. Man entfernte das Lösungsmittel
im Vakuum. Das so erhaltene Substanzgemisch wurde dann 1 h
bei 700 W und 2 h bei 1000 W in einer handelsüblichen Mikrowelle erhitzt. Man erhielt die Titelverbindung in quantitativer Ausbeute.

In analoger Weise wurden die in Tabelle 3 angegebenen Vorprodukte 2 bis 20 hergestellt, wobei zur Herstellung der Verbindungen 14 25 bis 20 die Vorstufe c anstelle der Vorstufe b eingesetzt wurde. Es wurde jeweils nur 1 Isomer erhalten.

Die Herstellung von Vorprodukt 4 erfolgte nach einer modifizierten Methode B, bei der man die Vorstufe b und das O-Ethyloxim des 30 5-Amino-2-chlor-4-fluorbenzaldehyds in Xylol 90 Minuten bei 1000 W umgesetzt hat.

Tabelle 3: Verbindungen der allgemeinen Formel II mit $R^3 = CF_3$ und $R^4 = F$; Vorprodukte 1 bis 20.

35

40

45

	Vor- pro- dukt	R ⁵	R ^{2a}	R ^{2a} '	X-R ⁶	¹ H-NMR δ [ppm], CDCl ₃ , 270 MHz bzw. 400 MHz
5	1	Cl	H	H	COO-CH(CH ₃) ₂	8 1,4(6H), 3,8 (2H), 5,25 (1H), 6,8 (1H), 7,4 (1H), 7,8 (1H)
	2	Cl	H	H	CH=C(C1)-CO ₂ C ₂ H ₅	8 1,4 (3H), 3,8 (2H), 4,4 (2H), 6,8 (SH), 7,4 (1H), 7,9 (1H), 8,1 (1H)
10	3	Cl	H	H	O-CH ₂ -C≡CH	8 2,6 (1H), 3,75 (2H), 4,7 (2H), 6,8 (1H), 6,9 (1H), 7,3 (1H)
15	4	Cl	H	H	CH=N-OC ₂ H ₅	8 1,3 (3H), 3,75 (2H), 4,2 (2H), 6,8 (SH), 7,3 (1H), 7,8 (1H), 8,4 (1H)
	5	CN	H	H	O-CH ₂ -C≡CH	δ 2,6 (1H), 3,75 (2H), 4,8 (2H), 6,8 (1H), 7,0 (1H), 7,5 (1H)
20	6	Cl	H	H	COO-cyclo-C5H9	
	7	Cl	H	Н	COO-CH(CH ₃)-CO ₂ CH ₃ S-Enantiomer	
	8	Cl	Н	H	COO-CH ₂ -C≅CH	
	9	Cl	H	H	COO-CH ₂ -CH=CH ₂	
25	10	Cl	H	H	O-cyclo-C ₅ H ₉	
	11	Cl	H	H	O-CH ₃	
	12	CN	H	H	O-CH ₃	
20	13	Cl	H	H	O-CH(CH ₃)-CO ₂ CH ₃ Racemat	
30	14	Cl	CH ₃	H	COO-CH(CH ₃) ₂	
	15	Cl	CH ₃	H	O-CH ₂ -C≡CH	
	16	Cl	CH ₃	H	CH=N-OC ₂ H ₅	
35	17	Cl	CH ₃	H	O-CH(CH ₃)-CO ₂ CH ₃ Racemat	
	18	Cl	CH ₃	H	CH=C(C1)-CO ₂ C ₂ H ₅	
	19	Cl	CH ₃	H	COO-CH ₂ -CH=CH ₂	
	20	Cl	CH ₃	Н	COO-CH(CH ₃)-CO ₂ CH ₃ S-Enantiomer	
40			······································			

T 2 1 7 2 (17) A trifly compthed 6 ablorate

1.2 1-Aryl-2-(1H)-4-trifluormethyl-6-chlorpyridone (Beispiele 1
 bis 21)

2-Chlor-5-[2-chlor-6-oxo-4-(trifluormethyl)-1-(6H)-pyridinyl]-4-fluorbenzoesäureisopropylester (Beispiel 1)

2,3 g (5,8 mmol) 2-Chlor-5-[2,6-dioxo-4-trifluorme-thyl-3,6-dihydro-1-(2H)-pyrindinyl]-4-fluorbenzoesäureisopro-pylester (Vorprodukt 1) wurden in 10 ml Phosphoroxitrichlorid (POCl₃) 6 h zum Rückfluss erhitzt. Man ließ über Nacht abkühlen, entfernte überschüssiges Phosphoroxitrichlorid im Vakuum und reinigte das Rohprodukt durch Chromatographie an Kieselgel (Cyclohexan/Ethylacetat). Man erhielt auf diese Weise 1,1 g der Titelverbindung in einer Ausbeute von 46 %.

- 10 In analoger Weise stellte man aus den Vorprodukten 2 20 die Verbindungen der Beispiele 2 21 (siehe Tabelle 4) her.
 - I.3 1-Aryl-2-(1H)-4-trifluormethylpyridone (Beispiele 22 bis 26)
- 15 Beispiel 22

5

2,5-Difluor-4-[2-oxo-4-(trifluormethyl)-1-(2H)-pyridinyl]-benzonitril

- Zu einer Lösung von 8,1 g (50 mmol) 4-(Trifluormethyl)-2-py-20 ridon in 100 ml Dimethylformamid gab man 7,6 g (55,5 mmol) Kaliumcarbonat. Hierzu gab man anschließend bei Raumtemperatur eine Lösung von 8,6 g (55 mmol) 2,4,5-Trifluorbenzonitril in 10 ml Dimethylformamid. Man erwärmte insgesamt 13 h auf 80 °C. Nach dem Abkühlen engte man die Reaktionsmischung in 25 Vakuum ein, löste den Rückstand in 400 ml Methyl-tert.-butylether, wusch die organische Phase zweimal mit Wasser, trocknete die organische Phase über Magnesiumsulfat und engte sie im Vakuum ein. Das hierbei erhaltene Rohprodukt reinigte man durch Chromatographie an Kieselgel mit einem Cyclohexan/Essi-30 gestergradienten (4:1 bis 1:2). Man erhielt auf diese Weise 9,6 q der Titelverbindung mit einem Schmelzpunkt von 150 °C. Die ¹H-NMR-Daten der Verbindung sind in Tabelle 4 angegeben.
- 35 Beispiel 23

5-Fluor-2-methoxy-4-[2-oxo-4-(trifluormethyl)-1-(2H)-pyridi-nyl]-benzonitril

0,6 g (2 mmol) der Verbindung aus Beispiel 22 löste man in 60 ml Methanol und gab hierzu 0,36 g (2,0 mmol) einer 30 gew.-%igen Natriummethylat-Lösung. Man rührte die Mischung über Nacht bei Raumtemperatur und engte dann die Reaktionsmischung im Vakuum zur Trockne ein. Der Rückstand wurde durch Chromatographie an Kieselgel (MPLC) mit Cyclohexan/Ethylacetat (4:1) als Eluent gereinigt. Man erhielt 0,4 g (64 % der Theorie) der Titelverbindung mit einem Schmelzpunkt von

93

194 - 196 °C. Das ¹H-NMR-Spektrum der Verbindung ist in Tabelle 4 angegeben.

Beispiel 24

5

5-Fluor-4-[2-oxo-4-(trifluormethyl)-1-(2H)-pyrindi-nyl)-2-(2-propinyloxy)]-benzonitril

Zu einer Lösung von 0,2 g (3,5 mmol) Propargylalkohol in 50 ml Tetrahydrofuran gab man 0,16 g (4,0 mmol) Natriumhydrid 10 (60 % in Weißöl). Man rührte 10 Minuten bei Raumtemperatur und gab dann hierzu eine Lösung von 1,0 g (3,3 mmol) der Verbindung aus Beispiel 22 in 20 ml Tetrahydrofuran innerhalb von 10 Minuten. Man behielt die Mischung über Nacht bei Raumtemperatur und erhitzte sie dann 30 Minuten zum Rückfluss. 15 Nach dem Abkühlen engte man die Reaktionsmischung in Vakuum ein und reinigte den Rückstand durch Chromatographie an Kieselgel mit Cylcohexan/Essigester als Gradienten. Man erhielt auf diese Weise 0,9 q der leicht verunreinigten Titelverbindung. Die Abtrennung der Verunreinigungen erfolgte mittels 20 MPLC.

In analoger Weise wurden die Verbindungen der Beispiele 25 und 26 hergestellt.

25

Beispiel 27

4-Chlor-6-fluor-7-[2-chlor-6-oxo-4-trifluormethyl-1-(6H)-py-ridinyl]-2-cyclopropyl-1,3-benzoxazol (Verbindung ICa.15)

30

$$CF_3 \xrightarrow{O \quad F} C1$$

40

35

27.1 4-Chlor-6-fluor-7-[2,6-dioxo-4-trifluormethyl-3,6-dihy-dro-1-(2H)-pyridinyl]-2-cyclopropyl-1,3-benzoxazol

Ausgehend von 7-Amino-4-chlor-6-fluor-2-cyclopropyl-1,3-benz-oxazol und (2E)-3-Trifluormethyl-2-pentendicarbonsäure erhielt man nach Methode A die Vorstufe
4-Chlor-6-fluor-7-[2,6-dioxo-4-trifluormethyl-3,6-dihydro-1-(2H)-pyridinyl]-2-cyclopropyl-1,3-benzoxazol, die ohne

weitere Reinigung in der anschließenden Umsetzung eingesetzt wurde.

27.2 4-Chlor-6-fluor-7-[2-chlor-6-oxo-4-trifluorme-thyl-1-(6H)-pyridinyl]-2-cyclopropyl-1,3-benzoxazol

Auf die im Beispiel 1 beschriebene Weise wurde die Titelverbindung ausgehend von der Verbindung aus Beispiel 27.1 und Phosphoroxitrichlorid erhalten.

¹H-NMR (CDCl₃) δ : 1,2-1,4 (m, 4H, cPr), 2,2 (m, 1H, cPr), 6,6 (s, 1H, Pyridon-H), 6,95 (s, 1H, Pyridon-H), 7,3 (d, 1H, Ar-H).

Tabelle 4: Verbindungen der allgemeinen Formel IAa mit $R^3 = CF_3$ und $R^4 = F$; Beispiele 1 bis 26.

$$CF_3 \xrightarrow{R^2} N \xrightarrow{R} F$$

$$X - R^6 \qquad (I)$$

	95			
¹ H-NMR (CDCl ₃ ; 270 bzw. 400 MHz)	 5 1.45 (d, 6H, CH(CH₃)₂), 5.3 [septett, 1H, CH(CH₃)₂], 6.6 (s, 1H, Pyridon-H), 6.9 (s, 1H, Pyridon-H), 7.45 (d, 1H, Ar-H), 7.85 (d, 1H, Ar-H) 	 5 1.4 (t, 3H, CH₂CH₃), 4.4 (q, 2H, CH₂CH₃), 6.6 (s, 1H, Pyridon-H), 6.9 (s, 1H, Pyridon-H), 7.45 (d, 1H, Ar-H), 7.95 (d, 1H, Ar-H), 8.1 [s, 1H, CH=C(CI)COOEt 	 5 2.6 (t, 1H, C=CH), 4.8 (d, 2H, OC-H₂C=C), 6.55 (s, 1H, Pyridon-H), 6.9 (s, 1H, Pyridon-H), 7.0 (d, 1H, Ar-H), 7.4 (d, 1H, Ar-H) 	 5 1.3 (t, 3H, CH₂CH₃), 4.2 (q, 2H, CH₂CH₃), 6.55 (s, 1H, Pyridon-H), 6.9 (s, 1H, Pyridon-H), 7.35 (d, 1H, Ar-H), 7.85 (d, 1H, Ar-H), 8.4 (s, 1H, CH=NOEt)
X-R ⁶	COO-CH(CH ₃) ₂	СН=С(С1)-С0 ₂ С ₂ Н ₅	0-CH ₂ -C≡CH	CH=N-OC ₂ H ₅
R5	CI	C1	C1	CI
R2'	н	ш	ш	н
R2	ш	ш	ш	ш
R1	CJ	CI	ت ت	CJ
Nr. 1)	IAa.59	IAa.95	IAa.10	IAa.110
Bsp.		2 2)	m	4

				96		
¹ H-NMR (CDCl ₃ ; 270 bzw. 400 MHz)	 δ 2.6 (t, 1H, C≡CH), 4.8, 4.9 (2dd, zus. 2H, OCH₂C≡C), 6.6 (s, 1H, Pyridon-H), 6.9 (s, 1H, Pyridon-H), 7.1 (d, 1H, Ar-H), 7.55 (d, 1H, Ar-H) 	 1.6 – 2.0 (m, 8H, Cyclopentyl), 5.4 (m, 1H, OCH), 6.6 (s, 1H, Pyridon-H), 6.9 (s, 1H, Pyridon-H), 7.4 (d, 1H, Ar-H), 7.8 (d, 1H, Ar-H) 	 5 1.6 (d, 3H, CHCH₃), 3.8 (s, 3H, OMe), 5.35 (q, 1H, OCHCH₃), 6.6 (s, 1H, Pyridon-H), 6.9 (s, 1H, Pyridon-H), 7.45 (d, 1H, Ar-H), 8.0 (d, 1H, Ar-H) 	 δ 2.55 (t, 1H, C=CH), 4.95 (d, 2H, COOCH₂), 6.6 (s, 1H, Pyridon-H), 6.9 (s, 1H, Pyridon-H), 7.45 (d, 1H, Ar-H), 7.95 (d, 1H, Ar-H) 	8 4.8 (d, 2H, COOCH ₂), 5.35, 5.45 (2d, zus. 2H, Allyl-H), 6.0 (m, 1H, Allyl-H), 6.6 (s, 1H, Pyridon-H), 6.9 (s, 1H, Pyridon-H), 7.95 (d, 1H, Ar-H), 7.95 (d, 1H, Ar-H)	8 1.6 – 2.0 (m, 8H, Cyclopentyl), 4.75 (m, 1H, OCH), 6.55 (s, 1H, Pyridon–H), 6.75 (d, 1H, Ar–H), 6.9 (s, 1H, Pyridon–H), 7.35 (d, 1H, Ar–H)
X-R6	0-СН2-С≡СН	COO-Cyclopentyl	COO-CH(CH ₃)-CO ₂ CH ₃ S-Enantiomer, Rota- tionsisomerengemisch	СОО-СН ₂ -С≘СН	СОО-СН2-СН=СН2	0-Cyclopentyl
R5	CN	C1	C1	C1	c1	c1
R2'	ш	н	п	н	н	н
R ²	ш	ш	ш	ш	ш	ш
\mathbb{R}^1	CJ	CI	C1	CI	CI	C1
Nr. 1)	IAa.131	IAa.62	IAa.769	IAa.61	IAa.60	IAa.12
Bsp.	ഗ	9	7 4)	ω	o	10

			9			
¹ H-NMR (CDCl ₃ ; 270 bzw. 400 MHz)	 3.9 (s, 3H, OMe), 6.55 (s, 1H, Pyridon–H), 6.8 (d, 1H, Ar–H), 6.9 (s, 1H, Pyridon–H), 7.35 (d, 1H, Ar–H), Schmp. 162–163 °C 	8 3.95 (s, 3H, OMe), 6.55 (s, 1H, Pyridon-H), 6.9 (d, 1H, Ar-H), 6.9 (s, 1H, Pyridon-H), 7.55 (d, 1H, Ar-H) Schmp. 191–196 °C	8 1.7 (d, 3H, CHCH ₃), 3.75 (s, 3H, COOMe), 4.7 (q, 1H, C <u>H</u> CH ₃), 6.55 (s, 1H, Pyridon-H), 6.75 (Isomer A) bzw. 6.8 (Isomer B) (d, 1H, Ar-H), 6.9 (s, 1H, Pyridon-H), 7.4 (d, 1H, Ar-H)	8 1.4 (d, 6H, CH(C <u>H₃)2</u>], 2.3 (s, 3H, CH ₃ , Pyridon), 5.25 [septett, 1H, C <u>H</u> (CH ₃)2], 6.6 (s, 1H, Pyridon–H), 7.4 (d, 1H, Ar–H), 7.8 (d, 1H, Ar–H)	 5 2.3 (s, 3H, CH₃, Pyridon), 2.6 (t, 1H, C=C<u>H</u>), 4.8 (d, 2H, OC<u>H₂</u>C=C), 6.6 (s, 1H, Pyridon-H), 7.0 (d, 1H, Ar-H), 7.4 (d, 1H, Ar-H); Schmelzpunkt 91-92°C 	8 1.3 (t, 3H, CH ₂ C <u>H</u> 3), 2.3 (s, 3H, CH ₃ , Pyridon), 4.2 (q, 2H, CH ₂ CH ₃), 6.6 (s, 1H, Pyridon–H), 7.35 (d, 1H, Ar–H), 7.85 (d, 1H, Ar–H), 8.4 (s, 1H, C <u>H</u> =NOEt)
X-R ⁶	0-Сн ₃	0-сн ₃	O-CH(CH3)-CO ₂ CH3 Racemat, Rotations- isomerengemisch	соо-сн(снз)2	0-CH2-C≡CH	CH=N-0C ₂ H ₅
R5	CI	CN	C1	CI	C1	CI
R2'	н	щ	ш	СНЗ	CH ₃	СН3
R ²	н	ш	н	ш	щ	ш
R1	CJ	CI	CI	C]	CI	CI
Nr. 1)	IAa.7	IAa.128	IAa.22	IAb.59	IAb.10	TAb.110
Bsp.	11	12	13 4)	14	15	16

				98		, , , , , ,	
¹ H-NMR (CDCl ₃ ; 270 bzw. 400 MHz)	8 1.7 (d, 3H, CHC <u>H</u> ₃), 2.3 (s, 3H, CH ₃ , Pyridon), 3.75 (s, 3H, COOMe), 4.7 (q, 1H, C <u>H</u> CH ₃), 6.6 (s, 1H, Pyridon–H), 6.75 (lso- mer A) bzw. 6.85 (Isomer B) (d, 1H, Ar–H), 7.35 (d, 1H, Ar–H)	8 1.4 (t, 3H, CH ₂ C <u>H</u> 3), 2.3 (s, 3H, CH ₃ , Pyridon), 4.4 (q, 2H, C <u>H</u> 2CH ₃), 6.6 (s, 1H, Pyridon–H), 7.4 (d, 1H, Ar–H), 7.95 (d, 1H, Ar–H), 8.1 [s, 1H, C <u>H</u> =C(Cl)COOEt]	8 1.4 (t, 3H, CH ₂ CH ₃), 2.3 (s, 3H, CH ₃ , Pyridon), 4.4 (q, 2H, CH ₂ CH ₃), 7.0 (s, 1H, Pyridon-H), 7.4 (d, 1H, Ar-H), 7.9 (d, 1H, Ar-H), 8.1 [s, 1H, CH=C(CI)COOEt]	δ 2.3 (s, 3H, CH ₃ , Pyridon), 4.8 (d, 2H, COOCH ₂), 5.35, 5.45 (2d, zus. 2H, Alliyl-H), 6.0 (m, 1H, Allyl-H), 6.6 (s, 1H, Pyridon-H), 7.4 (d, 1H, Ar-H), 7.9 (d, 1H, Ar-H)	8 1.6 (d, 3H, CHCH ₃), 2.3 (s, 3H, CH ₃ , Pyridon), 3.8 (s, 3H, OMe), 5.35 (q, 1H, OCHCH ₃), 6.6 (s, 1H, Pyridon–H), 7.45 (d, 1H, Ar–H), 8.0 (d, 1H, Ar–H)	8 6.45 (d, 1H), 7.0 (s, 1H), 7.3-7.4 (m, 2H), 7.6 (dd, 1H); Schmelzpunkt 150°C	8 3.95 (s, 3H, OMe), 6.45 (d, 1H), 7.0 (s, 1H), 7.05 (d, 1H), 7.4 (d, 1H), 7.5 (d, 1H); Schmelzpunkt 194–196°C
X-R ⁶	O-CH(CH ₃)-CO ₂ CH ₃ Racemat, Rotations- isomerengemisch	CH=C(C1)-C0 ₂ C ₂ H ₅	СН=С(С1)-С0 ₂ С ₂ Н ₅	соо-сн2-сн=сн2	COO-CH(CH ₃)-CO ₂ CH ₃ S-Enantiomer, Rota- tionsisomerengemisch	Ĺij	оснз
R5	C1	CI	CI	CJ	C]	CN	CIN
R ² ′	СН3	СН3	н	СН3	CH ₃	н	ш
\mathbb{R}^2	н	H	CH ₃	H	ш	ш	Н
R1	CI	C1	C1	C1	C1	田	四
Nr. 1)	IAb.22	IAb.95	IAc.95	IAb.60	IAb.769	IAe.123	IAe.128
Bsp.	17 4)	18 2)	19 2) 3)	20	21 4)	22	23

¹ H-NMR (CDCl ₃ ; 270 bzw. 400 MHz)	8 2.6 (t, 1H, C=CH), 4.85 (d, 2H, OCH ₂ C=C), 6.45 (dd, 1H), 7.0 (s, 1H), 7.2 (d, 1H), 7.55 (d, 1H)	 5 1.8 (d, 3H, OCH(CH₃)-C≡CH), 2.6 (d, 1H, C≡CH), 4.9 (dq, 1H, OCH(Me)C≡CH, 6.45 (dd, 1H), 7.0 (s, 1H), 7.2 (d, 1H), 7.35 (d, 1H), 7.5 (d, 1H); Schmelzpunkt 176-181°C 	8 1.75 (d, 3H, OCH(CH ₃)COOMe), 3.8 (s, 3H, COOCH ₃), 4.8 (q, 1H, OCH(CH ₃)COOMe), 6.45 (dd, 1H), 6.9 (d, 1H), 6.95 (s, 1H), 7.3 (d, 1H), 7.55 (d, 1H); Schmelzpunkt 131–133°C
X-R6	0-сн2-с≡сн	0-Сн(СН ₃)-С≒СН	O-CH(CH3)-CO ₂ CH3 Racemat
\mathbb{R}^5	CN	CN	CN
R ² ′	н		н
R ²	ш	ш	ш
\mathbb{R}^1	н	ш	ш
Nr. 1)	IAe.131	IAe.132	IAe.143
Bsp.	24	25	26

¹⁾ Nummerierung gemäß Tabelle 1
2) Z-Enantiomer (Phenylring bezogen auf Halogenatom)
3) Nebenprodukt bei der Herstellung von Ib.95 (Beispiel 18)
4) Diastereomerengemisch (Beispiele 7, 13, 17, 21) Diastereomerengemisch (Beispiele 7, 13, 17, 21)

100

II Anwendungsbeispiele

Die herbizide Wirkung der 1-Aryl-4-haloalkyl-2-[1H]-pyridone der 5 Formel I ließ sich durch Gewächshausversuche zeigen:

Als Kulturgefäße dienten Plastiktöpfe mit lehmigem Sand mit etwa 3,0 % Humus als Substrat. Die Samen der Testpflanzen wurden nach Arten getrennt eingesät.

10

Bei Vorauflaufbehandlung wurden die in Wasser suspendierten oder emulgierten Wirkstoffe direkt nach Einsaat mittels fein verteilender Düsen aufgebracht. Die Gefäße wurden leicht beregnet, um
Keimung und Wachstum zu fördern, und anschließend mit durchsich15 tigen Plastikhauben abgedeckt, bis die Pflanzen angewachsen waren. Diese Abdeckung bewirkt ein gleichmäßiges Keimen der Testpflanzen, sofern dies nicht durch die Wirkstoffe beeinträchtigt
wurde.

20 Zum Zweck der Nachauflaufbehandlung wurden die Testpflanzen je nach Wuchsform erst bis zu einer Wuchshöhe von 3 bis 15 cm angezogen und dann mit den in Wasser suspendierten oder emulgierten Wirkstoffen behandelt. Die Testpflanzen wurden dafür entweder direkt gesät und in den gleichen Gefäßen aufgezogen oder sie wurden erst als Keimpflanzen getrennt angezogen und einige Tage vor der Behandlung in die Versuchsgefäße verpflanzt. Die Aufwandmenge für die Nachauflaufbehandlung betrug 0.0313 und 0.0156 kg a. S./ha.

Die Pflanzen wurden artenspezifisch bei Temperaturen von 10 - 25°C 30 bzw. 20 - 35°C gehalten. Die Versuchsperiode erstreckte sich über 2 bis 4 Wochen. Während dieser Zeit wurden die Pflanzen gepflegt, und ihre Reaktion auf die einzelnen Behandlungen wurde ausgewertet.

- 35 Bewertet wurde nach einer Skala von 0 bis 100. Dabei bedeutet 100 kein Aufgang der Pflanzen bzw. völlige Zerstörung zumindest der oberirdischen Teile und 0 keine Schädigung oder normaler Wachstumsverlauf.
- 40 Die in den Gewächshausversuchen verwendeten Pflanzen setzten sich aus folgenden Arten zusammen:

101

	Bayercode	Deutscher Name	Englischer Name	
5	ABUTH	Chinesischer Hanf	velvet leaf	
	AMARE Zurückgekrümmter Fuchs- schwanz		redroot pigweed	
	COMBE	Bengalische Commeline	dayflower	
	GALAP	Klettenlabkraut	catchweed bed- straw	
	SETFA	Borstenhirse	giant foxtail	

Die Verbindung aus Beispiel 1 (Nr. IAa.59) zeigte dabei sehr gute Wirkung gegen die genannten Schadpflanzen.

Anwendungsbeispiele (desikkant/defoliante Wirksamkeit)

Als Testpflanzen dienten junge, 4-blättrige (ohne Keimblätter) Baumwollpflanzen, die unter Gewächshausbedingungen angezogen wurden (rel. Luftfeuchtigkeit 50 bis 70 %; Tag-/Nachttemperatur 27/20°C).

Die jungen Baumwollpflanzen wurden tropfnass mit wässrigen Aufbereitungen der Wirkstoffe (unter Zusatz von 0,15 Gew.-% des Fettalkoholalkoxylats Plurafac ® LF 700, bezogen auf die Spritzbrühe) blattbehandelt. Die ausgebrachte Wassermenge betrug umgerechnet 1000 l/ha. Nach 13 Tagen wurde die Anzahl der abgeworfenen Blätter und der Grad der Entblätterung in % bestimmt.

Bei den unbehandelten Kontrollpflanzen trat kein Blattbefall auf.

30

35

40

10

Patentansprüche

Verwendung von 1-Aryl-4-halogenalkyl-2-[1H]-pyridonen der
 allgemeinen Formel I

worin die Variablen A, X, Q, R¹, R², R², R³, R⁴, R⁵ und R⁶ folgende Bedeutung haben:

- R1 Wasserstoff oder Halogen;
- R^2 und R^2 ' unabhängig voneinander Wasserstoff, Amino oder $C_1-C_4-Alkyl;$
 - R3 C₁-C₄-Halogenalkyl;
 - R4 Wasserstoff oder Halogen;
- 25 $R^5 \quad \text{Wasserstoff, Cyano, Halogen, $C_1-C_4-Alkyl$, $C_1-C_4-Halogen-alkyl$, $C_1-C_4-Alkoxy$ oder $C_1-C_4-Halogenalkoxy$;}$
 - A Sauerstoff oder Schwefel;
- X eine chemische Bindung, Methylen, 1,2-Ethylen, Propan-1,3-diyl, Ethen-1,2-diyl, Ethin-1,2-diyl oder über das Heteroatom an den Phenylring gebundenes Oxymethylen oder Thiamethylen, wobei alle Gruppen unsubstituiert sein oder einen oder zwei Substituenten tragen können, jeweils ausgewählt aus der Gruppe bestehend aus Cyano, Carboxy, Halogen, C1-C4-Alkyl, C1-C4-Halogenalkyl, C1-C4-Alkoxy, (C1-C4-Alkoxy)carbonyl, Di-(C1-C4-Alkyl)amino und Phenyl;
- 40 R6 Wasserstoff, Nitro, Cyano, Halogen, Halogensulfonyl, $-O-Y-R^8, -O-CO-Y-R^8, -N(Y-R^8)(Z-R^9), -N(Y-R^8)-SO_2-Z-R^9, \\ -N(SO_2-Y-R^8)(SO_2-Z-R^9), -N(Y-R^8)-CO-Z-R^9, \\ -N(Y-R^8)(O-Z-R^9), -S(O)_n-Y-R^8, \text{ mit } n=0, 1 \text{ oder } 2, \\ -SO_2-O-Y-R^8, -SO_2-N(Y-R^8)(Z-R^9), -CO-Y-R^8, -C(=NOR^{10})-Y-R^8, \\ -C(=NOR^{10})-O-Y-R^8, -CO-O-Y-R^8, -CO-S-Y-R^8, \\ -CO-N(Y-R^8)(Z-R^9), -CO-N(Y-R^8)(O-Z-R^9) \text{ oder } -PO(O-Y-R^8)_2;$

103

Q Stickstoff oder eine Gruppe $C-R^7$, worin R^7 für Wasserstoff, OH, SH oder NH_2 steht; oder

X-R⁶ und R⁷ eine 3- oder 4-gliedrige Kette, deren Kettenglieder neben Kohlenstoff 1, 2 oder 3 Heteroatome, ausgewählt unter Stickstoff-, Sauerstoff- und Schwefelatomen, aufweisen können, die unsubstituiert sein oder ihrerseits einen, zwei oder drei Substituenten tragen kann, und deren Glieder auch ein oder zwei nicht benachbarte Carbonyl-, Thiocarbonyl- oder Sulfonyl-Gruppen umfassen können,

worin die Variablen Y, Z, R^8 , R^9 und R^{10} die nachfolgend angegebenen Bedeutungen haben:

15

20

5

10

y, z unabhängig voneinander:
eine chemische Bindung, Methylen oder 1,2-Ethylen, die
unsubstituiert sein oder einen oder zwei Substituenten
tragen können, jeweils ausgewählt aus der Gruppe
bestehend aus Carboxy, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl,
(C₁-C₄-Alkoxy)carbonyl und Phenyl;

R8, R9 unabhängig voneinander:

Wasserstoff, C_1-C_6 -Halogenalkyl, C_1-C_4 -Alkoxy- C_1-C_4 -alkyl, C2-C6-Alkenyl, C2-C6-Halogenalkenyl, C2-C6-Alkinyl, 25 $C_2-C_6-Halogenalkinyl, -CH(R^{11})(R^{12}), -C(R^{11})(R^{12})-NO_2,$ $-C(R^{11})(R^{12})-CN$, $-C(R^{11})(R^{12})-Halogen$, $-C(R^{11})(R^{12})-OR^{13}$, $-C(R^{11})(R^{12})-N(R^{13})R^{14}$, $-C(R^{11})(R^{12})-N(R^{13})-OR^{14}$, $-C(R^{11})(R^{12})-SR^{13}$, $-C(R^{11})(R^{12})-SO-R^{13}$, $-C(R^{11})(R^{12})-SO_2-R^{13}$, $-C(R^{11})(R^{12})-SO_2-OR^{13}$, $-C(R^{11})(R^{12})-SO_2-N(R^{13})R^{14}$, 30 $-C(R^{11})(R^{12})-CO-R^{13}$, $-C(R^{11})(R^{12})-C(=NOR^{15})-R^{13}$, $-C(R^{11})(R^{12})-CO-OR^{13}$, $-C(R^{11})(R^{12})-CO-SR^{13}$, $-C(R^{11})(R^{12})-CO-N(R^{13})R^{14}$, $-C(R^{11})(R^{12})-CO-N(R^{13})-OR^{14}$, $-C(R^{11})(R^{12})-PO(OR^{13})_2$, $C_3-C_8-Cycloalkyl-C_1-C_4-alkyl$, C3-C8-Cycloalkyl, das ein Carbonyl- oder Thiocarbonyl-35 Ringglied enthalten kann, Phenyl oder 3-, 4-, 5-, 6- oder 7-gliedriges Heterocyclyl, das ein Carbonyl- oder Thiocarbonyl-Ringglied enthalten kann, wobei jeder Cycloalkyl-, der Phenyl- und jeder 40 Heterocyclyl-Ring unsubstituiert sein oder ein, zwei, drei oder vier Substituenten tragen kann, jeweils ausgewählt aus der Gruppe bestehend aus Cyano, Nitro, Amino, Hydroxy, Carboxy, Halogen, C₁-C₄-Alkyl, C_1-C_4 -Halogenalkyl, C_1-C_4 -Alkoxy, C_1-C_4 -Halogenalkoxy, 45 C_1-C_4 -Alkylthio, C_1-C_4 -Halogenalkylthio,

C₁-C₄-Alkylsulfonyl, C₁-C₄-Halogenalkylsulfonyl,

104

 $(C_1-C_4-Alkyl)$ carbonyl, $(C_1-C_4-Halogenalkyl)$ carbonyl, $(C_1-C_4-Alkyl)$ carbonyloxy, $(C_1-C_4-Alkyl)$ carbonyloxy, $(C_1-C_4-Alkoxy)$ carbonyl und Di- $(C_1-C_4-Alkyl)$ amino;

- $\begin{array}{lll} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$
- wobei die Variablen R¹¹ bis R¹⁵ die folgenden Bedeutungen aufweisen:
- R11, R12 unabhängig voneinander
 Wasserstoff, C1-C4-Alkyl, C1-C4-Alkoxy-C1-C4-alkyl,

 C1-C4-Alkylthio-C1-C4-alkyl,

 (C1-C4-Alkoxy)carbonyl-C1-C4-alkyl oder
 Phenyl-C1-C4-alkyl, wobei der Phenylring unsubstituiert
 sein oder ein bis drei Substituenten tragen, jeweils
 ausgewählt aus der Gruppe bestehend aus Cyano, Nitro,

 Carboxy, Halogen, C1-C4-Alkyl, C1-C4-Halogenalkyl und
 (C1-C4-Alkoxy)carbonyl;
- R¹³, R¹⁴ unabhängig voneinander Wasserstoff, C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl, C₁-C₄-Alk $oxy-C_1-C_4-alkyl$, $C_2-C_6-Alkenyl$, $C_2-C_6-Halogenalkenyl$, 25 C2-C6-Alkinyl, C2-C6-Halogenalkinyl, C3-C8-Cycloalkyl, $C_3-C_8-Cycloalkyl-C_1-C_4-alkyl$, Phenyl, Phenyl- $C_1-C_4-alkyl$, 3- bis 7-gliedriges Heterocyclyl oder Heterocyclyl-C₁-C₄-alkyl, wobei jeder Cycloalkyl- und jeder Heterocyclyl-Ring ein Carbonyl- oder 30 Thiocarbonyl-Ringglied enthalten kann, und wobei jeder Cycloalkyl-, der Phenyl- und jeder Heterocyclyl-Ring unsubstituiert sein oder ein bis vier Substituenten tragen kann, jeweils ausgewählt aus der Gruppe bestehend aus Cyano, Nitro, Amino, Hydroxy, 35 Carboxy, Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, $C_1-C_4-Alkoxy$, $C_1-C_4-Halogenalkoxy$, $C_1-C_4-Alkylthio$, C_1-C_4 -Halogenalkylthio, C_1-C_4 -Alkylsulfonyl, $C_1-C_4-Halogenalkylsulfonyl, (C_1-C_4-Alkyl)carbonyl,$ $(C_1-C_4-Halogenalkyl)$ carbonyl, $(C_1-C_4-Alkyl)$ carbonyloxy, 40 $(C_1-C_4-Halogenalkyl)$ carbonyloxy, $(C_1-C_4-Alkoxy)$ carbonyl und $Di-(C_1-C_4-Alkyl)$ amino;

105

Wasserstoff, C_1 - C_6 -Alkyl, C_1 - C_6 -Halogenalkyl, C_2 - C_6 -Alkenyl, C_2 - C_6 -Halogenalkenyl, C_2 - C_6 -Halogenalkinyl, C_3 - C_8 -Cycloalkyl, Phenyl oder Phenyl- C_1 - C_4 -alkyl;

5

25

und deren landwirtschaftlich brauchbaren Salzen als Herbizide oder zur Desikkation/Defoliation von Pflanzen.

- 1-Aryl-4-halogenalkyl-2-[1H]-pyridone der in Anspruch 1 definierten Formel I, worin die Variablen A, X, Q, R¹, R², R², R³, R⁴, R⁵ und R⁶ die in Anspruch 1 angegebene Bedeutung haben;
- ausgenommen solche Verbindungen der Formel I, worin A für Sauerstoff, Q für CH, R³ und R⁵ für Trifluormethyl stehen, und R¹, R², R²', R⁴ und X-R⁶ Wasserstoff bedeuten; oder worin A für Sauerstoff und Q für N stehen, R³ und R⁴ die in Anspruch 1 genannten Bedeutungen aufweisen, R¹, R² und R²' Wasserstoff bedeuten und X-R⁶ für Wasserstoff oder Halogen steht, wenn R⁵ Trifluormethyl bedeutet;
 - weiterhin ausgenommen Verbindungen der Formel I, worin A für Sauerstoff, Q für CH und R^3 für Trifluormethyl stehen, R^5 die in Anspruch 1 genannte Bedeutung hat, R^1 , R^2 , R^2 , R^4 Wasserstoff bedeuten und X-R⁶ für eine Gruppe $S(O)_n$ -Y-R⁸ mit n=0, 1 oder 2 steht, worin Y eine Einfachbindung bedeutet und R^8 ausgewählt ist unter n-Propyl, Isopropyl, Cyclopropylmethyl und 2,2,2-Trifluorethyl;
- 30 und deren landwirtschaftlich brauchbare Salze.
 - 3. 1-Aryl-4-halogenalkyl-2-[1H]-pyridone nach Anspruch 2 der allgemeinen Formel I, worin Q für Stickstoff oder CH steht.
- 35 4. 1-Aryl-4-halogenalkyl-2-[1H]-pyridone nach Anspruch 2 der allgemeinen Formel I, worin Q für C-R⁷ steht und R⁷ zusammen mit -X-R⁶ für eine Kette der Formeln: -O-C(R¹⁶,R¹⁷)-CO-N(R¹⁸)-, -N=C(R¹⁹)-O- und -N=C(R¹⁹)-S- stehen, in der die Variablen R¹⁶ bis R¹⁹ die folgenden Bedeutungen haben:
- R¹⁶, R¹⁷ unabhängig voneinander

 Wasserstoff, C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl,

 C₂-C₆-Alkenyl, C₂-C₆-Halogenalkenyl, C₂-C₆-Alkinyl,

 C₂-C₆-Halogenalkinyl, C₃-C₈-Cycloalkyl, Phenyl oder

 Phenyl-C₁-C₄-alkyl;

106

Wasserstoff, Hydroxy, C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl, C2-C6-Alkenyl, C2-C6-Halogenalkenyl, C2-C6-Alkinyl, C_1-C_4 -Alkoxy, C_1-C_4 -Halogenalkoxy, C_3-C_6 -Alkenyloxy, $C_3-C_6-Alkinyloxy$, $C_1-C_4-Alkylsulfonyl$, C_1-C_4 -Halogenalkylsulfonyl, C_1-C_4 -Alkylcarbonyl, 5 C_1-C_4 -Halogenalkylcarbonyl, C_1-C_4 -Alkoxycarbonyl, $C_1-C_4-Alkoxy-C_1-C_4-alkyl$, $C_1-C_4-Alkoxycarbonyl-C_1-C_4-alkyl$, $C_1-C_4-Alkoxycarbonyl-C_1-C_4-alkoxy$, $Di-(C_1-C_4-alkyl)$ aminocarbonyl, 10 $Di-(C_1-C_4-alkyl)$ aminocarbonyl- $C_1-C_4-alkyl$, Di-(C1-C4-alkyl)aminocarbonyl-C1-C4-alkoxy, Phenyl, Phe $nyl-C_1-C_4-alkyl$, $C_3-C_8-Cycloalkyl$, $C_3-C_8-Cycloalkyl-C_1-C_4-alkyl, 3-, 4-, 5-, 6- oder 7-glie$ driges Heterocyclyl, das ein oder zwei Ring-Heteroatome, 15 ausgewählt unter Sauerstoff, Stickstoff oder Schwefel, aufweist, R19 Wasserstoff, Halogen, Cyano, Amino, C1-C6-Alkyl, C₁-C₆-Halogenalkyl, C₂-C₆-Alkenyl, C₂-C₆-Halogenalkenyl, 20 $C_2-C_6-Alkinyl$, $C_1-C_4-Alkoxy$, $C_1-C_4-Halogenalkoxy$, $C_3-C_6-Alkenyloxy$, $C_3-C_6-Alkinyloxy$, $C_1-C_4-Alkylamino$, $Di-(C_1-C_4-alkyl)$ amino, $C_1-C_4-Halogenalkoxy$, C_1-C_4 -Alkylthio, C_1-C_4 -Halogenalkylthio, C₁-C₄-Alkylsulfinyl, C₁-C₄-Halogenalkylsulfinyl, 25 C_1-C_4 -Alkylsulfonyl, C_1-C_4 -Halogenalkylsulfonyl, $C_1-C_4-Alkylcarbonyl$, $C_1-C_4-Halogenalkylcarbonyl$, C_1-C_4 -Alkoxy- C_1-C_4 -alkyl, C_1-C_4 -Alkoxycarbonyl, $C_1-C_4-Alkoxycarbonyl-C_1-C_4-alkyl$, $C_1-C_4-Alkoxycarbonyl-C_1-C_4-alkoxy$, 30

Di-(C₁-C₄-alkyl)aminocarbonyl-C₁-C₄-alkyl,
Di-(C₁-C₄-alkyl)aminocarbonyl-C₁-C₄-alkoxy,

Di-(C₁-C₄-alkyl)aminocarbonyl-C₁-C₄-alkylthio,
C₃-C₈-Cycloalkyl, Phenyl, Phenyl-C₁-C₄-alkyl,
C₃-C₈-Cycloalkyl-C₁-C₄-alkyl, 3-, 4-, 5-, 6- oder 7-gliedriges Heterocyclyl, das ein oder zwei Ring-Heteroatome,
ausgewählt unter Sauerstoff, Stickstoff oder Schwefel,

 $C_1-C_4-Alkoxycarbonyl-C_1-C_4-alkylthio$,

 $Di-(C_1-C_4-alkyl)$ aminocarbonyl,

aufweist.

40

- 5. 1-Aryl-4-halogenalkyl-2-[1H]-pyridone nach einem der Ansprüche 2 bis 4, worin R¹ für Chlor steht.
- 45 6. 1-Aryl-4-halogenalkyl-2-[1H]-pyridone nach einem der Ansprüche 2 bis 5, worin R³ für Trifluormethyl steht.

107

7. $1-Aryl-4-halogenalkyl-2-[1H]-pyridone nach einem der Ansprüche 2 bis 6, worin <math>R^2$ und R^2 unabhängig voneinander Wasserstoff oder Methyl bedeuten.

- 5 8. $1-Aryl-4-halogenalkyl-2-[1H]-pyridone nach einem der Ansprüche 2 bis 7, worin <math>\mathbb{R}^5$ ausgewählt ist unter Halogen oder Cyano.
- 9. Mittel, enthaltend eine herbizid wirksame Menge mindestens
 eines 1-Aryl-4-halogenalkyl-2-[1H]-pyridons der in Anspruch 1
 definierten Formel I oder eines landwirtschaftlich brauchbaren Salzes von I und mindestens einen inerten flüssigen
 und/oder festen Trägerstoff sowie gewünschtenfalls mindestens
 einen oberflächenaktiven Stoff.

15

20

- 10. Mittel zur Desikkation und/oder Defoliation von Pflanzen, enthaltend eine desikkant und/oder defoliant wirksame Menge mindestens eines 1-Aryl-4-halogenalkyl-2-[1H]-pyridons der in Anspruch 1 definierten Formel I oder eines landwirtschaftlich brauchbaren Salzes von I, gemäß Anspruch 1, und mindestens einen inerten flüssigen und/oder festen Trägerstoff sowie gewünschtenfalls mindestens einen oberflächenaktiven Stoff.
- 11. Verfahren zur Bekämpfung von unerwünschtem Pflanzenwuchs,
 dadurch gekennzeichnet, dass man eine herbizid wirksame Menge
 mindestens eines 1-Aryl-4-halogenalkyl-2-[1H]-pyridons der in
 Anspruch 1 definierten Formel I oder eines landwirtschaftlich
 brauchbaren Salzes von I auf Pflanzen, deren Lebensraum oder
 auf Saatgut einwirken lässt.

30

- 12. Verfahren zur Desikkation und/oder Defoliation von Pflanzen, dadurch gekennzeichnet, dass man eine desikkant und/oder defoliant wirksame Menge mindestens eines 1-Aryl-4-halogenal-kyl-2-[1H]-pyridons der in Anspruch 1 definierten Formel I oder eines landwirtschaftlich brauchbaren Salzes von I auf Pflanzen einwirken lässt.
 - 13. Verfahren nach Anspruch 12, dadurch gekennzeichnet, dass man Baumwolle behandelt.

40

14. Verbindungen der allgemeinen Formel II zur Herstellung der 1-Aryl-4-halogenalkyl-2-[1H]-pyridone,

108

worin R³, X und Q die in Anspruch 1 genannten Bedeutungen haben und R^{2a}, R^{2a'}, R^{4a}, R^{5a}, R^{6a} für R², R^{2'}, R⁴, R⁵ und R⁶ mit den in Anspruch 1 genannten Bedeutungen stehen, ausgenommen Verbindungen der allgemeinen Formel II, worin Q für CH steht, R³ und R^{5a} Trifluormethyl bedeuten und R^{2a}, R^{2a'}, R^{4a} und X-R^{6a} Wasserstoff bedeuten;

weiterhin ausgenommen Verbindungen der allgemeinen Formel II, worin Q für N steht, R³ und R^{4a} die für R³ bzw. R⁴ in Anspruch 1 angegebene Bedeutung haben, R^{2a} und R^{2a} Wasserstoff bedeuten, X-R^{6a} für Wasserstoff oder Halogen stehen, wenn R^{5a} Trifluormethyl bedeutet,

weiterhin ausgenommen Verbindungen der allgemeinen Formel II mit Q = CH und R³ = Trifluormethyl, wenn R²a, R²a' und R⁴a Wasserstoff bedeuten, R⁵a die für R⁵ in Anspruch 1 angegebene Bedeutung hat, X eine Einfachbindung bedeutet und R⁶ für eine Gruppe S(O)n-YR³ steht mit n = 0,1 oder 2, worin Y eine Einfachbindung bedeutet und R³ ausgewählt ist unter n-Propyl, Isopropyl, Cyclopropylmethyl und 2,2,2-Trifluorethyl, sowie die Tautomeren der Verbindungen II.

30

5

35

40

ional Application No

PCT/EP 01/08251 A. CLASSIFICATION OF SUBJECT MATTER IPC 7 C07D213/64 C07D213/69 CO7D417/04 A01N43/76 C07D413/04 A01N43/78 A01N43/40 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) IPC 7 CO7D A01N Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) EPO-Internal, WPI Data, CHEM ABS Data C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No. Category ° Citation of document, with indication, where appropriate, of the relevant passages X EP 0 259 048 A (ICI PLC) 1 9 March 1988 (1988-03-09) cited in the application table I EP 0 216 541 A (ICI PLC) χ 1 1 April 1987 (1987-04-01) table I χ WO 99 55668 A (ASAHIDA MITSUHARU ; FUJISAWA 1 TOYOKAZU (JP): IHARA CHEMICAL IND CO () 4 November 1999 (1999-11-04) cited in the application -& EP 1 076 053 A (IHARA CHEMICAL IND CO) 14 February 2001 (2001-02-14) tables 24,25 Further documents are listed in the continuation of box C. Patent family members are listed in annex. Special categories of cited documents: "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance invention "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled document referring to an oral disclosure, use, exhibition or other means document published prior to the international filing date but later than the priority date claimed

Date of the actual completion of the international search

Date of mailing of the international search report

"&" document member of the same patent family

16 November 2001

27/11/2001

Authorized officer

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31–70) 340–2040, Tx. 31 651 epo nl, Fax: (+31–70) 340–3016

Seitner, I

Form PCT/ISA/210 (second sheet) (July 1992)

PCT/EP 01/08251

C.(Continu	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Х	EP 0 272 824 A (ICI PLC) 29 June 1988 (1988-06-29) examples 1-3,5-7; table I	1
X	WO 98 28980 A (ANTHONY NEVILLE J ; GOMEZ ROBERT P (US); MERCK & CO INC (US); TRAN) 9 July 1998 (1998-07-09) page 85, line 1	1
Υ	EP 0 488 220 A (SUMITOMO CHEMICAL CO) 3 June 1992 (1992-06-03) cited in the application claim 13; table I	1,9
Υ	EP 0 003 805 A (BASF AG) 5 September 1979 (1979-09-05) page 3 -page 5; claim 7	1,9
Υ	DE 28 30 700 A (ROHM & HAAS) 1 February 1979 (1979-02-01) page 4; table 1	1,9
Y	EP 0 885 885 A (IHARA CHEMICAL IND CO ;KUMIAI CHEMICAL INDUSTRY CO (JP)) 23 December 1998 (1998–12–23) claim 9; table 1	1,9
Y	EP 0 415 642 A (ROHM & HAAS) 6 March 1991 (1991-03-06) example 1; table II example 14; table II claims 7-10	1,9

Information on patent family members

I lonal Application No
PCT/EP 01/08251

						T
	tent document in search report		Publication date		Patent family member(s)	Publication date
ЕР		A	09-03-1988	AU AU BR CN EP HU JP KR NZ PT US ZA	6138490 A 602912 B2 7719287 A 8704518 A 87106573 A 0259048 A2 44900 A2 83612 A 63068566 A 9005389 B1 221475 A 85648 A 4866078 A 5039807 A 8706159 A	13-12-1990 01-11-1990 10-03-1988 19-04-1988 27-07-1988 09-03-1988 30-05-1988 15-07-1992 28-03-1988 28-07-1990 26-10-1990 14-10-1988 12-09-1989 13-08-1991 03-03-1988
EP	0216541	A	01-04-1987	AUU AUU AUU AUU AUU AUU BRA CCA CCO EEP SEB GHUU JP KNZ PUSA	614670 B2 4249889 A 591704 B2 6259486 A 8604499 A 1273937 A1 1278576 A2 1276182 A2 86106734 A 17943 A 0216541 A1 2001694 A6 2183634 A 862336 A1 199372 B 41957 A2 79982 A 62070362 A 9005369 B1 217511 A 83397 A ,B 4725607 A 8606777 A	05-09-1991 05-04-1990 14-12-1989 26-03-1987 19-05-1987 11-09-1990 02-01-1991 13-11-1990 01-04-1987 30-11-1991 01-04-1987 01-06-1988 10-06-1987 23-12-1986 28-02-1990 29-06-1987 31-08-1990 31-03-1987 28-07-1990 29-05-1989 01-10-1986 16-02-1988 27-05-1987
WO	9955668	A	04-11-1999	AU EP WO JP	3536699 A 1076053 A1 9955668 A1 2000198768 A	16-11-1999 14-02-2001 04-11-1999 18-07-2000
EP	0272824	A	29-06-1988	AU AU EP JP ZA	606368 B2 8264187 A 0272824 A2 63170362 A 8709235 A	07-02-1991 14-07-1988 29-06-1988 14-07-1988 24-06-1988
WO	9828980	A	09-07-1998	AU EP WO US	6013998 A 1003374 A1 9828980 A1 6093737 A	31-07-1998 31-05-2000 09-07-1998 25-07-2000
EP	0488220	Α	03-06-1992	EP JP	0488220 A2 5170739 A	03-06-1992 09-07-1993

Information on patent family members

lı lonal Application No
PCT/EP 01/08251

Patent document cited in search report	Publication date		Patent family member(s)	Publication date
EP 0488220 A		US	5238906 A	24-08-1993
EP 0003805 A	05-09-1979	DE AR AT AU BR CS DD DE DE ES GR HIL IN PT TR US ZA	2808193 A1 222989 A1 363276 B 141579 A 520536 B2 4454879 A 7900964 A 1111426 A1 207776 B2 141606 A5 2963211 D1 76279 A 0003805 A1 478016 A1 66793 A1 180676 B 56493 A 150199 A1 54130590 A 189755 A 213648 A1 69185 A ,B 19943 A 4411691 A 7807240 A	06-09-1979 15-07-1981 27-07-1981 15-12-1980 04-02-1982 20-09-1979 25-09-1979 27-10-1981 31-08-1981 14-05-1980 19-08-1982 26-08-1979 05-09-1979 01-12-1979 29-04-1981 29-04-1983 15-06-1983 14-08-1982 09-10-1979 23-01-1981 19-11-1979 01-03-1979 02-05-1980 25-10-1983 30-01-1980
DE 2830700 A	01-02-1979	AR AU BE CA CH DE DK ES FR GB HU IT JP NL SE SE US	218070 A1 521772 B2 3802578 A 868999 A1 1085857 A1 635324 A5 2830700 A1 318578 A ,B, 471780 A1 2397405 A1 1596887 A 181943 B 55133 A 1108115 B 54052084 A 7807464 A ,B, 187735 A 436568 B 7807006 A 4238220 A	15-05-1980 29-04-1982 17-01-1980 15-01-1979 16-09-1980 31-03-1983 01-02-1979 16-01-1979 09-02-1979 03-09-1981 28-11-1983 30-11-1982 02-12-1985 24-04-1979 17-01-1979 16-03-1981 07-01-1985 16-01-1979 09-12-1980
EP 0885885 A	23-12-1998	AU EP US WO US	1555897 A 0885885 A1 6048823 A 9728127 A1 6265349 B1	22-08-1997 23-12-1998 11-04-2000 07-08-1997 24-07-2001
EP 0415642 A	06-03-1991	AT AU AU	131156 T 638482 B2 6202090 A	15-12-1995 01-07-1993 07-03-1991

Information on patent family members

ional Application No
PCT/EP 01/08251

Patent document cited in search report	Publication date		Patent family member(s)	Publication date
EP 0415642	A	BR	9004333 A	03-09-1991
		CA	2023492 A1	01-03-1991
		CN	1049846 A ,B	13-03-1991
		DE	69023987 D1	18-01-1996
		DE	69023987 T2	10-10-1996
		DK	415642 T3	02-01-1996
		EP	0415642 A1	06-03-1991
		ES	2081939 T3	16-03-1996
		GR	3018421 T3	31-03-1996
		HU	54461 A2	28-03-1991
		ΙE	903148 A1	13-03-1991
		JP	3163060 A	15-07-1991
		KR	196790 B1	15-06-1999
		NO	903758 A	01-03-1991
		NZ	235090 A	25-06-1996
		PT	95173 A ,B	22-05-1991
		US	5502027 A	26-03-1996
		US	5631209 A	20-05-1997
		ZA	9006838 A	26-06-1991
		US	5393735 A	28-02-1995

onales Aktenzeichen PCT/EP 01/08251

A. KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDES 1PK 7 C07D213/64 C07D213/69

A01N43/78

A01N43/40

C07D413/04

C07D417/04

A01N43/76

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole) 1PK - 7 - CO7D - A01N

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal, WPI Data, CHEM ABS Data

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN				
Kategorie°	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.		
Х	EP 0 259 048 A (ICI PLC) 9. März 1988 (1988-03-09) in der Anmeldung erwähnt Tabelle I	1		
X	EP 0 216 541 A (ICI PLC) 1. April 1987 (1987-04-01) Tabelle I	1		
X	WO 99 55668 A (ASAHIDA MITSUHARU ;FUJISAWA TOYOKAZU (JP); IHARA CHEMICAL IND CO () 4. November 1999 (1999-11-04) in der Anmeldung erwähnt -& EP 1 076 053 A (IHARA CHEMICAL IND CO) 14. Februar 2001 (2001-02-14) Tabellen 24,25	1		

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen	X Siehe Anhang Patentfamilie
 Besondere Kategorien von angegebenen Veröffentlichungen : "A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist "E" älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist "L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt) "O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht "P" Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist 	 *T* Spätere Veröffentlichung, die nach dem Internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist / Yeröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden *Y* Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist *&* Veröffentlichung, die Mitglied derselben Patentfamilie ist
Datum des Abschlusses der internationalen Recherche	Absendedatum des internationalen Recherchenberichts
16. November 2001	27/11/2001
Name und Postanschrift der Internationalen Becherchenbehörde Europälsches Patentamt, P.B. 5818 Patentlaan 2	Bevollmächtigter Bediensteter
NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Seitner, I

onales Aktenzelchen
PCT/EP 01/08251

C.(Fortsetz	ung) ALS WESENTLICH ANGESEHENE UNTERLAGEN	
Kategorie®	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
Х	EP 0 272 824 A (ICI PLC) 29. Juni 1988 (1988-06-29) Beispiele 1-3,5-7; Tabelle I	1
X	WO 98 28980 A (ANTHONY NEVILLE J ;GOMEZ ROBERT P (US); MERCK & CO INC (US); TRAN) 9. Juli 1998 (1998-07-09) Seite 85, Zeile 1	1
Υ	EP 0 488 220 A (SUMITOMO CHEMICAL CO) 3. Juni 1992 (1992-06-03) in der Anmeldung erwähnt Anspruch 13; Tabelle I	1,9
Υ	EP 0 003 805 A (BASF AG) 5. September 1979 (1979-09-05) Seite 3 -Seite 5; Anspruch 7	1,9
Υ	DE 28 30 700 A (ROHM & HAAS) 1. Februar 1979 (1979-02-01) Seite 4; Tabelle 1	1,9
Υ	EP 0 885 885 A (IHARA CHEMICAL IND CO;KUMIAI CHEMICAL INDUSTRY CO (JP)) 23. Dezember 1998 (1998–12–23) Anspruch 9; Tabelle 1	1,9
Y	EP 0 415 642 A (ROHM & HAAS) 6. März 1991 (1991-03-06) Beispiel 1; Tabelle II Beispiel 7-10	1,9

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

PCT/EP 01/08251

Im Recherchenbericht ngeführtes Patentdokument	Datum der Veröffentlichung		Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
EP 0259048 A	09-03-1988	AU AU BR CN EP HU JP KRZ PT US ZA	6138490 A 602912 B2 7719287 A 8704518 A 87106573 A 0259048 A2 44900 A2 83612 A 63068566 A 9005389 B1 221475 A 85648 A 4866078 A 5039807 A 8706159 A	13-12-1990 01-11-1990 10-03-1988 19-04-1988 27-07-1988 09-03-1988 30-05-1988 15-07-1992 28-03-1988 28-07-1990 26-10-1990 14-10-1988 12-09-1989 13-08-1991 03-03-1988
EP 0216541 A	01-04-1987	AUUU AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	614670 B2 4249889 A 591704 B2 6259486 A 8604499 A 1273937 A1 1278576 A2 1276182 A2 86106734 A 17943 A 0216541 A1 2001694 A6 2183634 A 862336 A1 199372 B 41957 A2 79982 A 62070362 A 9005369 B1 217511 A 83397 A ,B 4725607 A	05-09-1991 05-04-1990 14-12-1989 26-03-1987 19-05-1987 11-09-1990 02-01-1991 13-11-1990 01-04-1987 30-11-1991 01-04-1987 01-06-1988 10-06-1987 23-12-1986 28-02-1990 29-06-1987 31-08-1990 31-03-1987 28-07-1990 29-05-1989 01-10-1986 16-02-1988 27-05-1987
WO 9955668 A	04-11-1999	AU EP WO JP	3536699 A 1076053 A1 9955668 A1 2000198768 A	16-11-1999 14-02-2001 04-11-1999 18-07-2000
EP 0272824 A	29-06-1988	AU AU EP JP ZA	606368 B2 8264187 A 0272824 A2 63170362 A 8709235 A	07-02-1991 14-07-1988 29-06-1988 14-07-1988 24-06-1988
WO 9828980 A	09-07-1998	AU EP WO US	6013998 A 1003374 A1 9828980 A1 6093737 A	31-07-1998 31-05-2000 09-07-1998 25-07-2000
EP 0488220 A	03-06-1992	EP JP	0488220 A2 5170739 A	03-06-1992 09-07-1993

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

PCT/EP 01/08251

	echerchenbericht rtes Patentdokume	ent	Datum der Veröffentlichung		Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
EP	0488220	А		US	5238906 A	24-08-1993
EP	0003805	Α	05-09-1979	DE	2808193 A1 222989 A1	06-09-1979 15-07-1981
				AR		27-07-1981
				AT	363276 B	
				AT	141579 A	15-12-1980
				AU	520536 B2	04-02-1982
				AU	4454879 A	20-09-1979
				BR	7900964 A	25-09-1979 27-10-1981
				CA	1111426 A1	31-08-1981
				CS DD	207776 B2 141606 A5	14-05-1980
				DE	2963211 D1	19-08-1980
				DK	76279 A	26-08-1979
				EP	0003805 A1	05-09-1979
				ES	478016 A1	01-12-1979
				GR	66793 A1	29-04-1981
				ΗÚ	180676 B	29-04-1983
				ΪĹ	56493 A	15-06-1983
				ĪN	150199 A1	14-08-1982
				ĴΡ	54130590 A	09-10-1979
				NZ	189755 A	23-01-1981
				PL	213648 A1	19-11-1979
				PT	69185 A ,B	01-03-1979
				TR	19943 A	02-05-1980
				US	4411691 A	25-10-1983
				ZA	7807240 A	30-01-1980
DE	DE 2830700 A	A	01-02-1979	AR	218070 A1	15-05-1980
				ΑU	521772 B2	29-04-1982
				ΑU	3802578 A	17-01-1980
				BE	868999 Al	15~01-1979
				CA	1085857 Al	16-09-1980
				CH	635324 A5	31-03-1983
				DE	2830700 A1	01-02-1979
				DK	318578 A ,B,	
				ES	471780 A1	16-01-1979
				FR	2397405 A1	09-02-1979
				GB	1596887 A	03-09-1981
				HU	181943 B	28-11-1983
				IL	55133 A	30-11-1982
				IT	1108115 B 54052084 A	02-12-1985 24-04-1979
				JP NI	7807464 A ,B,	
				NL NZ	7807464 A ,B, 187735 A	16-03-1981
				NZ Se	436568 B	07-01-1985
				SE	7807006 A	16-01-1979
				US	4238220 A	09-12-1980
EP	0885885	Α	23-12-1998	ΑU	1555897 A	22-08-1997
				EP	0885885 A1	23-12-1998
				US	6048823 A	11-04-2000
				WO US	9728127 A1 6265349 B1	07-08-1997 24-07-2001
						24-07-2001
ΕP	0415642	Α	06-03-1991	ΑT	131156 T	15-12-1995
				ΑU	638482 B2	01-07-1993
				AU	6202090 A	07-03-1991

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehoren

onales Aktenzeichen
PCT/EP 01/08251

Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung		Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
EP 0415642 A		BR	9004333 A	03-09-1991
		CA	2023492 A1	01-03-1991
		CN	1049846 A ,B	13-03-1991
		DE	69023987 D1	18-01 - 1996
		DE	69023987 T2	10-10-1996
		DK	415642 T3	02-01-1996
		EP	0415642 A1	06-03-1991
		ES	2081939 T3	16-03-1996
		GR	3018421 T3	31-03-1996
		HU	54461 A2	28-03-1991
		ΙE	903148 A1	13-03-1991
		JP	3163060 A	15-07-1991
		KR	196790 B1	15-06-1999
		NO	903758 A	01-03-1991
		NZ	235090 Å	25-06-1996
		PT	95173 A ,B	22-05-1991
		US	5502027 A	26-03-1996
25		US	5631209 A	20-05-1997
		ZΑ	9006838 A	26-06-1991
		US	5393735 A	28-02-1995