In [2]: import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.linear_model import LogisticRegression from sklearn.preprocessing import StandardScaler import re from sklearn.datasets import load_digits from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import GridSearchCV from sklearn.tree import plot_tree

In [3]: df=pd.read_csv("C5_health care diabetes - C5_health care diabetes.csv")
 df

Out[3]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunctio
0	6	148	72	35	0	33.6	0.62
1	1	85	66	29	0	26.6	0.35
2	8	183	64	0	0	23.3	0.67
3	1	89	66	23	94	28.1	0.16
4	0	137	40	35	168	43.1	2.28
763	10	101	76	48	180	32.9	0.17
764	2	122	70	27	0	36.8	0.34
765	5	121	72	23	112	26.2	0.24
766	1	126	60	0	0	30.1	0.34
767	1	93	70	31	0	30.4	0.31

768 rows × 9 columns

```
In [4]: df1=df.fillna(value=0)
    df1
```

Out[4]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunctio
0	6	148	72	35	0	33.6	0.62
1	1	85	66	29	0	26.6	0.35
2	8	183	64	0	0	23.3	0.67
3	1	89	66	23	94	28.1	0.16
4	0	137	40	35	168	43.1	2.28
						•••	
763	10	101	76	48	180	32.9	0.17
764	2	122	70	27	0	36.8	0.34
765	5	121	72	23	112	26.2	0.24
766	1	126	60	0	0	30.1	0.34
767	1	93	70	31	0	30.4	0.31

768 rows × 9 columns

In [5]: df1.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 768 entries, 0 to 767
Data columns (total 9 columns):

200	corumns (cocar s corumns)	•	
#	Column	Non-Null Count	Dtype
0	Pregnancies	768 non-null	int64
1	Glucose	768 non-null	int64
2	BloodPressure	768 non-null	int64
3	SkinThickness	768 non-null	int64
4	Insulin	768 non-null	int64
5	BMI	768 non-null	float64
6	DiabetesPedigreeFunction	768 non-null	float64
7	Age	768 non-null	int64
8	Outcome	768 non-null	int64

dtypes: float64(2), int64(7)

memory usage: 54.1 KB

```
In [6]: df1.columns
```

```
In [7]: df2=df1[['Pregnancies', 'Glucose', 'BloodPressure', 'SkinThickness', 'Insulin']
                  'BMI', 'DiabetesPedigreeFunction', 'Age', 'Outcome']]
          df2
 Out[7]:
               Pregnancies Glucose BloodPressure SkinThickness Insulin BMI DiabetesPedigreeFunctio
             0
                         6
                               148
                                                                    0 33.6
                                              72
                                                            35
                                                                                             0.62
                         1
                                                                    0 26.6
             1
                                85
                                              66
                                                            29
                                                                                             0.35
             2
                         8
                               183
                                              64
                                                             0
                                                                    0 23.3
                                                                                             0.67
             3
                         1
                                89
                                              66
                                                            23
                                                                   94 28.1
                                                                                             0.16
             4
                         0
                               137
                                              40
                                                            35
                                                                  168 43.1
                                                                                             2.28
                                                                  180 32.9
           763
                        10
                               101
                                              76
                                                            48
                                                                                             0.17
           764
                         2
                               122
                                              70
                                                            27
                                                                    0 36.8
                                                                                             0.34
           765
                         5
                               121
                                              72
                                                            23
                                                                  112 26.2
                                                                                             0.24
           766
                         1
                                                                    0 30.1
                                                                                             0.34
                               126
                                              60
                                                             0
           767
                                              70
                                                                    0 30.4
                         1
                                93
                                                            31
                                                                                             0.31
          768 rows × 9 columns
 In [9]: df2['Outcome'].value counts()
 Out[9]: 0
                500
          1
                268
          Name: Outcome, dtype: int64
In [10]: x=df2.drop('Outcome',axis=1)
          y=df2['Outcome']
In [11]:
          x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.70)
In [12]: rfc=RandomForestClassifier()
          rfc.fit(x_train,y_train)
Out[12]: RandomForestClassifier()
          parameters = {'max_depth':[1,2,3,4,5],
In [13]:
```

'min_samples_leaf':[5,10,15,20,25],
 'n_estimators':[10,20,30,40,50]}

```
In [14]: | grid_search = GridSearchCV(estimator=rfc,param_grid=parameters,cv=2,scoring='ac
                                                       grid_search.fit(x_train,y_train)
Out[14]: GridSearchCV(cv=2, estimator=RandomForestClassifier(),
                                                                                                                                    param_grid={'max_depth': [1, 2, 3, 4, 5],
                                                                                                                                                                                                             'min_samples_leaf': [5, 10, 15, 20, 25],
                                                                                                                                                                                                             'n estimators': [10, 20, 30, 40, 50]},
                                                                                                                                    scoring='accuracy')
In [15]: |grid_search.best_score_
Out[15]: 0.7608695652173914
In [16]: | rfc_best = grid_search.best_estimator_
In [17]:
                                                      plt.figure(figsize=(80,50))
                                                       plot_tree(rfc_best.estimators_[5],feature_names=x.columns,class_names=['Yes'
                                                        s'),
                                                            Text(1488.0, 226.5, 'gini = 0.459\nsamples = 23\nvalue = [27, 15]\nclass =
                                                       Yes'),
                                                            Text(2604.0, 679.5, 'Pregnancies <= 6.5\ngini = 0.499\nsamples = 44\nvalue
                                                        = [29, 31]\nclass = No'),
                                                             Text(2232.0, 226.5, 'gini = 0.494\nsamples = 34\nvalue = [25, 20]\nclass =
                                                       Yes'),
                                                            Text(2976.0, 226.5, 'gini = 0.391 \setminus samples = 10 \setminus value = [4, 11] \setminus class = 10 \setminus value = [4, 11] \setminus class = 10 \setminus value = [4, 11] \setminus class = 10 \setminus value = [4, 11] \setminus class = 10 \setminus value = [4, 11] \setminus class = 10 \setminus value = [4, 11] \setminus class = 10 \setminus value = [4, 11] \setminus class = 10 \setminus value = [4, 11] \setminus class = 10 \setminus value = [4, 11] \setminus class = 10 \setminus value = [4, 11] \setminus class = 10 \setminus value = [4, 11] \setminus class = 10 \setminus value = [4, 11] \setminus class = 10 \setminus value = [4, 11] \setminus class = 10 \setminus value = [4, 11] \setminus class = 10 \setminus value = [4, 11] \setminus class = 10 \setminus value = [4, 11] \setminus class = 10 \setminus value = [4, 11] \setminus class = 10 \setminus value = [4, 11] \setminus class = 10 \setminus value = [4, 11] \setminus class = 10 \setminus value = [4, 11] \setminus class = 10 \setminus value = [4, 11] \setminus class = 10 \setminus value = [4, 11] \setminus class = 10 \setminus value = [4, 11] \setminus class = 10 \setminus value = [4, 11] \setminus class = 10 \setminus value = [4, 11] \setminus class = 10 \setminus value = [4, 11] \setminus class = 10 \setminus value = [4, 11] \setminus class = 10 \setminus value = [4, 11] \setminus class = 10 \setminus value = [4, 11] \setminus class = 10 \setminus value = [4, 11] \setminus class = 10 \setminus value = [4, 11] \setminus class = 10 \setminus value = [4, 11] \setminus class = 10 \setminus value = [4, 11] \setminus class = 10 \setminus value = [4, 11] \setminus class = 10 \setminus value = [4, 11] \setminus class = 10 \setminus value = [4, 11] \setminus class = 10 \setminus value = [4, 11] \setminus class = 10 \setminus value = [4, 11] \setminus class = 10 \setminus value = [4, 11] \setminus class = 10 \setminus value = [4, 11] \setminus class = 10 \setminus value = [4, 11] \setminus class = 10 \setminus value = [4, 11] \setminus class = 10 \setminus value = [4, 11] \setminus class = 10 \setminus value = [4, 11] \setminus class = 10 \setminus value = [4, 11] \setminus class = 10 \setminus value = [4, 11] \setminus class = 10 \setminus value = [4, 11] \setminus class = 10 \setminus value = [4, 11] \setminus class = 10 \setminus value = [4, 11] \setminus class = 10 \setminus value = [4, 11] \setminus class = 10 \setminus value = [4, 11] \setminus class = 10 \setminus value = [4, 11] \setminus class = 10 \setminus value = [4, 11] \setminus class = 10 \setminus value = [4, 11] \setminus class = 10 \setminus value = [4, 11] \setminus class = 10 \setminus value = [4, 11] \setminus class = 10 \setminus value = [4, 11] \setminus class = 10 \setminus value = [4, 11] \setminus class = 10 \setminus value = [4, 11] \setminus class = 10 \setminus value = [4, 11] \setminus class = 10 \setminus value = [4, 11] \setminus class =
                                                       No'),
                                                            Text(3720.0, 1132.5, 'SkinThickness <= 14.5\ngini = 0.401\nsamples = 13\nv
                                                       alue = [5, 13]\nclass = No'),
                                                            Text(3348.0, 679.5, 'gini = 0.18 \setminus samples = 8 \setminus value = [1, 9] \setminus samples = N
                                                       ο'),
                                                            Text(4092.0, 679.5, 'gini = 0.5\nsamples = 5\nvalue = [4, 4]\nclass = Ye
                                                       s'),
                                                            Text(2511.0, 2038.5, 'gini = 0.117 \setminus samples = 9 \setminus value = [1, 15] \setminus class = 0.117 \setminus samples = 9 \setminus value = [1, 15] \setminus class = 0.117 \setminus samples = 9 \setminus value = [1, 15] \setminus class = 0.117 \setminus samples = 9 \setminus value = [1, 15] \setminus class = 0.117 \setminus samples = 9 \setminus value = [1, 15] \setminus class = 0.117 \setminus samples = 9 \setminus value = [1, 15] \setminus class = 0.117 \setminus samples = 9 \setminus value = [1, 15] \setminus class = 0.117 \setminus samples = 9 \setminus value = [1, 15] \setminus class = 0.117 \setminus samples = 9 \setminus value = [1, 15] \setminus class = 0.117 \setminus samples = 9 \setminus value = [1, 15] \setminus class = 0.117 \setminus samples = 9 \setminus value = [1, 15] \setminus class = 0.117 \setminus samples = 9 \setminus value = [1, 15] \setminus class = 0.117 \setminus samples = 9 \setminus value = [1, 15] \setminus class = 0.117 \setminus samples = 9 \setminus value = [1, 15] \setminus class = 0.117 \setminus class =
                                                       No')]
                                                                                                                                                                                                                                                          gini = 0.448
                                                                                                                                                                                                                                                       samples = 148
```