

Translation

- Already dealt with translational symmetries
 - This comes from Bravais Lattices
 - Shape of Lattice
 - Cubis, tetragonal, hexagonal, etc.....
 - Type of Lattice
 - Primitive, face centered, body centered, base centered

Point Group Symmetries

- Keep at least one point fixed (not translations)
- Seven of them:
 - Identity
 - Rotation
 - Reflection
 - Inversion
 - Improper rotation
 - Glide plane
 - Screw axis
- First five keep at least one point fixed
 - Called point operations

Rotation

- N-fold rotation equates to a 360/N° about an axis
- Only some N's possible for crystals (1, 2, 3, 4, 6)

N	Hermann-Mauguin	Schoenflies
1	1	C_1
2	2	C ₂
3	3	C ₃
4	4	C_4
6	6	C ₆

Rotations in Cubes

- Four 3-fold rotation axes
- Three 4-fold rotation axes
- Six 2-fold rotation axes

 Note, they all intersect at centre of cell (in general true)

Inversion – Centre of Symmetry

- Reflection through a point
- Hermann-Mauguin symbol T
- Schoenflies symbol C₁

Improper Rotation - RotoInversion

- Composite operation of two symmetries in succession
 - N-fold rotation followed by inversion through a point
 N Hermann-Mauguin Schoenflies

N	Hermann-Mauguin	Schoenflies
1	I	C _i
2	2 (m)	C_s
3	3	S ₆
4	4	S ₄
6	6	S ₃

- A bit different in Schoenflies
 - Rotation followed by reflection in plane ⊥ to rotation axis

Glide Reflection

A two-step operation: reflection followed by translation (g)

Glide Reflection (Glide Plane)

- Reflection followed by translation
- Translation is parallel to mirror plane
- Unlike the footsteps example, in 3D several choices of translation vector parallel to mirror plane
- Unique symbol for each glide plane

Glide Reflection (Glide Plane)

Hermann- Mauguin	Axis⊥to Glide Plane	Displacement vector
а	b or c	a/2
b	a or c	b/2
С	a or b	c/2
n	a b c	b/2+c/2 a/2+c/2 a/2+b/2
d	a b C	b/4+c/4 a/4+c/4 a/4+b/4

Screw Rotation

- Rotation followed by translation parallel to rotation axis
- Example: rotate by 120° and translate by ⅓ of axis length. Denoted by 3₁
- Total possibilities are:
 - -2_1 , 3_1 , 4_1 , 4_2 , 6_1 , 6_2 , 6_3 , 3_2 , 4_3 , 6_4 , and 6_5

Symmetries Go Together

- Some symmetries will imply others
- For example, look at shape below
 - Square top face with rectangular sides (orthorhombic)
 - Square top face implies 4-fold axis of rotation (shown)

Symmetries Go Together

 Rectangular face on right must have a 2-fold axis.
 Goes right through the cell

The 4-fold axis on the top face necessitates that the 2-fold axis is repeated on the front-to-back faces

The Minimum Symmetries to describe each Crystal System

These can be used, rather than the lattice parameters and angles (i.e. instead of the unit cells) to define the 7 systems.

Crystal System	Point Groups that define them
Triclinic	Only inversion
Monoclinic	One 2-fold axis of rotation or one mirror plane
Orthorhombic	Three 2-fold axes of rot, or one 2-fold axis plus 2 mirror planes
Tetragonal	One 4-fold axis of rotation
Rhombohedral	One 3-fold axis of rotation
Hexagonal	One 6-fold axis of rotation
Cubic	Four 3-fold axes of rotation (4 triads)

*These are
the
symmetries
that each
system
MUST have,
by
definition;
there can be
others.

The Minimum Symmetries to describe each Crystal System

- <u>Cubic</u> The secondary symmetry symbol will always be either 3 or –3 (i.e. la3, Pm3m, Fd3m)
- Tetragonal The primary symmetry symbol will always be either 4, (-4), 4_1 , 4_2 or 4_3 (i.e. $P4_12_12$, I4/m, P4/mcc)
- Hexagonal The primary symmetry symbol will always be a 6, (-6), 6_1 , 6_2 , 6_3 , 6_4 or 6_5 (i.e. P6mm, P6₃/mcm)
- Rhombohedral The primary symmetry symbol will always be a 3, (-3) 3₁ or 3₂ (i.e P31m, R3, R3c, P312)
- Orthorhombic All three symbols following the lattice descriptor will be either mirror planes, glide planes, 2-fold rotation or screw axes (i.e. Pnma, Cmc2₁, Pnc2)
- Monoclinic The lattice descriptor will be followed by either a single mirror plane, glide plane, 2-fold rotation or screw axis or an axis/plane symbol (i.e. Cc, P2, P2₁/n)
- <u>Triclinic</u> The lattice descriptor will be followed by either a 1 or a (-1).

Space Groups

- 230 of these
- Start from low symmetry
 - First two are triclinic
 - No 1 = P1 has no symmetry beyond the triclinic shape
 - No 2 = Pī has a centre of inversion
 - Nos 3-15 are monoclinic with various combinations of a 2fold axis, a mirror plane, and base centred
 - Nos 16-74 are orthorhombic
 - Nos 75-142 are tetragonal
 - Nos 143-167 are rhombohedral
 - Nos 168-194 are hexagonal
 - Rest are cubic

No 1 - P1

- This space group can contain molecules of one chirality only
 - Enantiomorphous
- It doesn't have a centre of symmetry
 - Non-centrosymmetric
- It contains one molecule per unit cell
 - -Z=1

No $2 - P_{1}$

- The red circles represent the centres of symmetry
- The commas in the circles represent molecules of opposite chirality
- The centres of symmetry correspond to points of reduced multiplicity

No $2 - P_{1}$

- Pī is centrosymmetric
- It is non-enantiomorphous
- Z=2
- It contains positions of reduced multiplicity
 - These always correspond to position on point symmetries

No 3 - P2

- P2 is non-centrosymmetric
- It is enantiomorphous
- Z=2
- Note the stand for 2-fold rotation axes

Enantiomorphism and Centrosymmetric

- If a group is centrosymmetric is must be nonenantiomorphous
- If it is non-centrosymmetric it can be either enantiomorphous or non-enantiomorphous

No 6 – Pm

This notation means there is a molecule of opposite chirality underneath the first

- One of the most useful bits of info in the Crystallographic Tables
- Tells us about the multiplicity of different sites in a crystal

Wyckoff Sites

- Take the Pm monoclinic space group above
 - Pm has only two symmetry elements
 - Mirror plane at y=0
 - Mirror plane at $y = \frac{1}{2}$
 - A general position in the unit cell will create two molecules
 - (x, y, z)
 - (x, -y, z)
 - But a position on either mirror plane won't generate a second molecule

Wyckoff Sites

- International table of space groups include Wyckoff sites
- Gives three for Pm

Multiplicity	Wyckoff Letter	Symmetry	Coordinates
2	С	1	(1)x,y,z (2)x, -y, z
1	b	m	x, ½ , z
1	а	m	x, 0, z

Wyckoff Sites - SrTiO₃

- From x-ray diffraction get space group Pm3m
- Lattice parameter 0.590nm
- Density 5100kg/m³
- Means Z=1
- For Pm3m there are lots of Wyckoff sites, but most have high multiplicity (up to 48). Can ignore these
- Possibilities for multiplicity ≤ 3 are given below

Multiplicity	Wyckoff Letter	Symmetry	Coordinates
3	d	4/mm	(1)½, 0, 0 (2) 0, ½, 0 (3) 0, 0, ½
3	С	4/mm	(1) 0, ½, ½ (2) ½, 0, ½ (3) ½, ½, 0
1	b	m3̄m	1/2, 1/2, 1/2
1	a	m3̄m	0, 0, 0

Wyckoff Sites - SrTiO₃

- Put Ti in site a (at the corners)
- Put Sr in site b (very centre)
- From bond lengths, obvious that O must be in site d

Example – CaF₂

- Space group Im3m
- a=0.546nm

