Multiple Alignment

Outline

- Dynamic Programming in 3-D
- Progressive Alignment
- Profile Progressive Alignment (ClustalW)
- Scoring Multiple Alignments
- Entropy
- Sum of Pairs Alignment
- Partial Order Alignment (POA)
- A-Bruijin (ABA) Approach to Multiple Alignment

Multiple Alignment versus Pairwise Alignment

• Up until now we have only tried to align two sequences.

Multiple Alignment versus Pairwise Alignment

- Up until now we have only tried to align two sequences.
- What about more than two?And what for?

Multiple Alignment versus Pairwise Alignment

- Up until now we have only tried to align two sequences.
- What about more than two?And what for?
- A faint similarity between two sequences becomes significant if present in many
- Multiple alignments can reveal subtle similarities that pairwise alignments do not reveal

Generalizing the Notion of Pairwise Alignment

- Alignment of 2 sequences is represented as a 2-row matrix
- In a similar way, we represent alignment of 3 sequences as a 3-row matrix

Score: more conserved columns, better alignment

Alignments = Paths in...

Align 3 sequences: ATGC, AATC, ATGC

Alignment Paths

x coordinate

Alignment Paths

Align the following 3 sequences:

ATGC, AATC, ATGC

0	1	1	2	3	4
	А		Т	G	С
0	1	2	3	3	4
	Α	Α	Т		С

x coordinate

y coordinate

-- A T G C

Alignment Paths

0	1	1	2	3	4
	А		Т	G	С
0	1	2	3	3	4
	Α	Α	Т		С
0	0	1	2	3	4
		А	Т	G	С

x coordinate

y coordinate

z coordinate

• Resulting path in (x,y,z) space:

$$(0,0,0) \rightarrow (1,1,0) \rightarrow (1,2,1) \rightarrow (2,3,2) \rightarrow (3,3,3) \rightarrow (4,4,4)$$

Aligning Three Sequences

- Same strategy as aligning two sequences
- Use a 3-D "Manhattan Cube", with each axis representing a sequence to align
- For global alignments, go from source to sink

2-D vs 3-D Alignment Grid

2-D edit graph

3-D edit graph

2-D cell versus 2-D Alignment Cell

In **2-D**, 3 edges in each unit square

In 3-D, 7 edges in each unit cube

Architecture of 3-D Alignment Cell

Multiple Alignment: Dynamic Programming

•
$$s_{i,j,k} = \max \left\{ egin{array}{ll} s_{i-1,j-1,k-1} + \delta(v_i, w_j, u_k) \\ s_{i-1,j-1,k} + \delta(v_i, w_j, _) \\ s_{i-1,j,k-1} + \delta(v_i, _, u_k) \\ s_{i,j-1,k-1} + \delta(_, w_j, u_k) \\ s_{i-1,j,k} + \delta(v_i, _, _) \\ s_{i,j-1,k} + \delta(_, w_j, _) \\ s_{i,j-1,k} + \delta(_, w_j, _) \\ s_{i,j,k-1} + \delta(_, _, u_k) \end{array} \right. \ \, \text{cube diagonal: no indels}$$

• $\delta(x, y, z)$ is an entry in the 3-D scoring matrix

Multiple Alignment: Running Time

- For 3 sequences of length \mathbf{n} , the run time is $7\mathbf{n}^3$; $O(\mathbf{n}^3)$
- For k sequences, build a k-dimensional
 Manhattan, with run time (2k-1)(nk); O(2knk)
- Conclusion: dynamic programming approach for alignment between two sequences is easily extended to k sequences but it is impractical due to exponential running time

Multiple Alignment Induces Pairwise Alignments

Every multiple alignment induces pairwise alignments

```
x: AC-GCGG-Cy: AC-GC-GAGz: GCCGC-GAG
```

Induces:

```
x: ACGCGG-C; x: AC-GCGG-C; y: AC-GCGAG y: ACGC-GAC; z: GCCGC-GAG; z: GCCGCGAG
```

Reverse Problem: Constructing Multiple Alignment from Pairwise Alignments

Given 3 arbitrary pairwise alignments:

```
x: ACGCTGG-C; x: AC-GCTGG-C; y: AC-GC-GAG y: ACGC-GAC; z: GCCGCA-GAG; z: GCCGCAGAG
```

can we construct a multiple alignment that induces them?

Reverse Problem: Constructing Multiple Alignment from Pairwise Alignments

Given 3 arbitrary pairwise alignments:

```
x: ACGCTGG-C; x: AC-GCTGG-C; y: AC-GC-GAG y: ACGC-GAC; z: GCCGCA-GAG; z: GCCGCAGAG
```

can we construct a multiple alignment that induces them?

NOT ALWAYS

Pairwise alignments may be inconsistent

Inferring Multiple Alignment from Pairwise Alignments

- From an optimal multiple alignment, we can infer pairwise alignments between all pairs of sequences, but they are not necessarily optimal
- It is difficult to infer a ``good" multiple alignment from optimal pairwise alignments between all sequences

Combining Optimal Pairwise Alignments into Multiple Alignment

Can combine pairwise alignments into multiple alignment

AAAATTTT

---TTTTGGGG
AAAATTTT--AAAA---GGGG
AAAA---GGGG
AAAA---GGGG
AAAA---GGGG
AAAA---GGGG
AAAA---GGGG
AAAA---GGGG

(a) Compatible pairwise alignments

Can *not* combine pairwise alignments into multiple alignment

(b) Incompatible pairwise alignments

Profile Representation of Multiple Alignment

Profile Representation of Multiple Alignment

In the past we were aligning a sequence against a sequence

Can we align a sequence against a profile?

Can we align a profile against a profile?

Aligning alignments

Given two alignments, can we align them?

```
x GGGCACTGCAT
y GGTTACGTC-- Alignment 1
z GGGAACTGCAG
w GGACGTACC-- Alignment 2
v GGACCT----
```

Aligning alignments

- Given two alignments, can we align them?
- Hint: use alignment of corresponding profiles

```
x GGGCACTGCAT
```

y GGTTACGTC-- Co

Combined Alignment

z GGGAACTGCAG

w GGACGTACC--

v GGACCT----

Multiple Alignment: Greedy Approach

- Choose most similar pair of strings and combine into a profile, thereby reducing alignment of k sequences to an alignment of of k-1 sequences/profiles. Repeat
- This is a heuristic greedy method

```
k \quad \begin{cases} u_1 = ACGTACGTACGT... \\ u_2 = TTAATTAATTAA... \\ u_3 = ACTACTACTACT... \end{cases} \quad u_1 = ACg/tTACg/tTACg/cT... \\ u_2 = TTAATTAATTAA... \\ ... \\ u_k = CCGGCCGGCCGG... \end{cases} \quad k-1
```

Greedy Approach: Example

Consider these 4 sequences

```
s1 GATTCA
```

s2 GTCTGA

s3 GATATT

s4 GTCAGC

Greedy Approach: Example (cont'd)

• There are $\binom{4}{2}$ = 6 possible alignments

```
s2 GTCTGA
s4 GTCAGC (score = 2)
s1 GAT-TCA
s2 G-TCTGA
s2 G-TCTGA
(score = 1)
s3 GAT-TC (score = -1)
s1 GAT-TCA
s3 GAT-TCA
s3 GAT-ATT
s4 G-TCAGC (score = -1)
```

Greedy Approach: Example (cont'd)

 s_2 and s_4 are closest; combine:

$$\begin{bmatrix} S2 & GTCTGA \\ S4 & GTCAGC \end{bmatrix} = \begin{bmatrix} S_{2,4} & GTCt/aGa/cA \\ (profile) \end{bmatrix}$$

new set of 3 sequences:

```
S_1 GATTCA

S_3 GATATT

S_{2,4} GTCt/aGa/c
```

Progressive Alignment

- Progressive alignment is a variation of greedy algorithm with a somewhat more intelligent strategy for choosing the order of alignments.
- Progressive alignment works well for close sequences, but deteriorates for distant sequences
 - Gaps in consensus string are permanent
 - Use profiles to compare sequences

ClustalW

- Popular multiple alignment tool today
- 'W' stands for 'weighted' (different parts of alignment are weighted differently).
- Three-step process
 - 1.) Construct pairwise alignments
 - 2.) Build Guide Tree
 - 3.) Progressive Alignment guided by the tree

Step 1: Pairwise Alignment

- Aligns each sequence against each other giving a similarity matrix
- Similarity = exact matches / sequence length (percent identity)

Step 2: Guide Tree

Create Guide Tree using the similarity matrix

ClustalW uses the neighbor-joining method

Guide tree roughly reflects evolutionary relations

Step 2: Guide Tree (cont'd)

Cal cul ate:

```
V_{1,3} = alignment (V_1, V_3)

V_{1,3,4} = alignment ((V_{1,3}), V_4)

V_{1,2,3,4} = alignment ((V_{1,3,4}), V_2)
```

Step 3: Progressive Alignment

- Start by aligning the two most similar sequences
- Following the guide tree, add in the next sequences, aligning to the existing alignment
- Insert gaps as necessary

Dots and stars show how well-conserved a column is.

Multiple Alignments: Scoring

 Number of matches (multiple longest common subsequence score)

Entropy score

Sum of pairs (SP-Score)

Multiple LCS Score

 A column is a "match" if all the letters in the column are the same

> AAA AAA AAT ATC

Only good for very similar sequences

Entropy

- Define frequencies for the occurrence of each letter in each column of multiple alignment
 - $p_A = 1$, $p_T = p_G = p_C = 0$ (1st column)
 - $p_A = 0.75$, $p_T = 0.25$, $p_G = p_C = 0$ (2nd column)
 - $p_A = 0.50$, $p_T = 0.25$, $p_C = 0.25$ $p_G = 0$ (3rd column)
- Compute entropy of each column

$$-\sum_{X=A,T,G,C} p_X \log p_X$$
AAA
AAT
ATC

AAA

Entropy: Example

$$entropy \begin{pmatrix} A \\ A \\ A \\ A \end{pmatrix} = 0$$
 Best case

Worst case
$$entropy \begin{pmatrix} A \\ T \\ G \\ C \end{pmatrix} = -\sum \frac{1}{4} \log \frac{1}{4} = -4(\frac{1}{4}*-2) = 2$$

Multiple Alignment: Entropy Score

Entropy for a multiple alignment is the sum of entropies of its columns:

$$\Sigma_{\text{over all columns}} \Sigma_{X=A,T,G,C} p_X \log p_X$$

Entropy of an Alignment: Example

column entropy:

$$-(p_A \log p_A + p_C \log p_C + p_G \log p_G + p_T \log p_T)$$

Α	Α	Α
Α	С	С
Α	С	G
Α	С	Τ

•Column 2 =
$$-[(1/4)*log(1/4) + (3/4)*log(3/4) + 0*log0 + 0*log0]$$

= $-[(1/4)*(-2) + (3/4)*(-.415)] = +0.811$

•Column 3 =
$$-[(1/4)*log(1/4)+(1/4)*log(1/4)+(1/4)*log(1/4)+(1/4)*log(1/4)+(1/4)*log(1/4)]$$

= $4*-[(1/4)*(-2)] = +2.0$

•Alignment Entropy = 0 + 0.811 + 2.0 = +2.811

Multiple Alignment Induces Pairwise Alignments

Every multiple alignment induces pairwise alignments

```
x: AC-GCGG-Cy: AC-GC-GAGz: GCCGC-GAG
```

Induces:

```
x: ACGCGG-C; x: AC-GCGG-C; y: AC-GCGAG y: ACGC-GAC; z: GCCGC-GAG; z: GCCGCGAG
```

Inferring Pairwise Alignments from Multiple Alignments

 From a multiple alignment, we can infer pairwise alignments between all sequences, but they are not necessarily optimal

 This is like projecting a 3-D multiple alignment path on to a 2-D face of the cube

Multiple Alignment Projections

A 3-D alignment can be projected onto the 2-D plane to represent an alignment between a pair of sequences.

All 3 Pairwise Projections of the Multiple Alignment

Sum of Pairs Score(SP-Score)

- Consider pairwise alignment of sequences

 a_i and a_j
 imposed by a multiple alignment of k sequences
- Denote the score of this suboptimal (not necessarily optimal) pairwise alignment as
 s*(a_i, a_i)
- Sum up the pairwise scores for a multiple alignment:

$$s(a_1,\ldots,a_k) = \sum_{i,j} s^*(a_i, a_j)$$

Computing SP-Score

Aligning 4 sequences: 6 pairwise alignments

Given a_1, a_2, a_3, a_4 :

$$s(a_1...a_4) = \Sigma s^*(a_1,a_j) = s^*(a_1,a_2) + s^*(a_1,a_3) + s^*(a_1,a_4) + s^*(a_2,a_3) + s^*(a_2,a_4) + s^*(a_3,a_4)$$

SP-Score: Example

To calculate each column:

$$s'(a_1...a_k) = \sum_{i,j} s^*(a_i, a_j) \leftarrow \binom{n}{2}$$
 Pairs of Sequences

$$\begin{array}{c|cccc}
G \\
-\mu & 1 & Score = 1 - 2\mu \\
\hline
C & & & \\
Column 3 & & & \\
\end{array}$$