University of Illinois at Urbana-Champaign Dept. of Electrical and Computer Engineering

ECE 120: Introduction to Computing

Optimizing Logic Expressions

ECE 120: Introduction to Computing

 $\ensuremath{\mathbb{C}}$ 2016-2017 Steven S. Lumetta. All rights reserved.

Let the truth table to the	Α	В	C	F
right define the function F .	0	0	0	0
Recall that we can use the	0	0	1	0
logical completeness	0	1	0	0
construction to write F as a Boolean expression:	0	1	1	0
• This row is AB'C	1	0	0	0
• And this is ABC'	1	0	1	1
· And this is ABC	1	1	0	1
	1	1	1	1

		_	~	n
So $F = AB'C + ABC' + ABC$	A	В	<u>C</u>	F
	0	0	0	0
But we can also write	0	0	1	0
$\mathbf{F} = \mathbf{AB} + \mathbf{AC}.$	0	1	0	0
	0	1	1	0
What about $\mathbf{F} = \mathbf{A} (\mathbf{B} + \mathbf{C})$?	1	0	0	0
	1	0	1	1
Which one is best?	1	1	0	1
which one is best!	1	1	1	1

We Use Heuristics for These Metrics

In practice, **measuring exactly is expensive** (~\$50-100M for a full design, and ~\$2-5M just for trying something.)

Instead, we use **heuristics**, which are ways of **estimating a metric**.

A good heuristic is

- · reasonably accurate, and
- monotonic relative to a real measurement
- (so that bigger estimates mean bigger measurements).

ECE 120: Introduction to Computing

© 2016 Steven S. Lumetta. All rights reserved

. . .

An Area Heuristic for ECE120

Here's a heuristic for area:

- · Count literals (A. A', B. B', C. C'), then
- Add the number of operations

(not including complements for literals).

- Why does it work? Remember gate structures? ∘ each input (literal) → two transistors
- operators into operators → two transistors

So it gives an approximate **transistor count**.

(But wires also take space!)

ECE 120: Introduction to Computing

© 2016-2017 Steven S. Lumetta. All rights reserved.

A Delay (Speed) Heuristic for ECE120

Here's a heuristic for delay / speed:

- Find the maximum number of gates between any input and any output.
- ${}^{\circ}\operatorname{Do}$ not include complements for literals.

Why does it work?

- Each gate takes time switch its output on/off.
- We call this time a **gate delay**.

So it gives an approximate **delay** between inputs changing and outputs changing.

ECE 120: Introduction to Computing

© 2016-2017 Steven S. Lumetta. All rights reserved.

slide 7

We Have a Winner: F = A (B + C)

F = A (B + C) is best by both metrics.

But the answers are not always so simple.

Sometimes no solution is best by both metrics.

- See Section 2.1.1 for a simple example.
- Later in our class, we will explore more space/time tradeoffs in design.
- In practice, tradeoffs are commonplace.
- Take a look at Section 2.1.6* for more.

ECE 120: Introduction to Computing

© 2016 Steven S. Lumetta. All rights reserved.

slide 13

These two metrics are beyond our class' scope. You'll see power in ECE385.

One heuristic for power

- uses the fact that current flows when a transistor switches on/off
- and uses simulation to **estimate the number of times** that happens.

Complexity is hard to measure, and is usually based on experience.

ECE 120: Introduction to Computing

 $\ensuremath{\mathbb{C}}$ 2016 Steven S. Lumetta. All rights reserved.

slide 14