Cast Week: Space Complexity LCNLCPCNPSPACE We know LG PSPACE Cinfactallo
NLG PSPACE) but suspect most (all?) inclusions (i.e L G NL G P G NP G PSPACE) Antagonist in toclays lecture: NL NL = ELSSO, 13\* I I decided by an Space 0 (10g n) }

Recall: Reductions is NI are defined via implicitly compu -table Coj-space functions le f: {0,1}\* -> {0,1}\* such that (1) LPGO) ( poly ( lai) (2) {(xi) | P(x) = 1) EL 3 {(x,i) | i 4 1 f co) } EL A GB: At reduces to B via an (inplicitly computable) Coyspace reduction plogspace Probuties: 1) ACEB LBGL=)AGL (2) ALQBEBLLC=) ALQC

Thin 1: Path = E(G, S, t) | Japoth Jeon stot Jeon stot in 93 is NL-complete. Cira log-space reduction) Need to show 2 things 1) Path ENL 2) Any Conjugge AGNL veduces to Path. For (2), fix A ENL & let M & den NTM woing space SGn= OGogns) decidens A. Define the reduction as follows:



The Cength of & (a) is easily confaitable in space O (bogs) Leaucisi Finally, to show of is implicitly Loy space computable, we need to able to compute any but I) G, sont in space Ollogs). -) 8 let all easy (they are only O agn) hits long) -> For G, we need to recall that for 2 vutices upe & G, we can check if (4,14) (FECG) on not in Space O(logn). Finishes Bert

| In to | Oin Thus.                       |
|-------|---------------------------------|
| -     |                                 |
|       | any to do via NTMs.             |
| -> le | l's see another way, via        |
|       | Certificates                    |
| Rec   | all: A ENP if & only if         |
|       | there is a DTM M Overifice?     |
|       | running in polynomial time such |
| 71 6  | A (=>) Jy 1yl & polylixi) &     |
|       | M(24y) =1.                      |
| Hou   | can we modify this to give      |
|       | similar characterization of     |
|       | Nr;                             |
|       |                                 |

Two changes: (i) Make Ma DTM running is logspace. (i.e Space (M, 2) = O (logn)
ushue n=1x1) (1) Make the certificate read-once 1-e the TM M receives the certifical on a new take (" Certificate take") where the heard can only move signit. Without the "voed-once" condition on the certificate take. This definition actually captures all of NP. J

Claim: AENL if Lonly if there is a DTM M with a read-once certificate running is logspace such that n(x)) gr (y) L pay(x)) M(G1,y)=1 input ( Lo on certificate take The proof is quite large sketched below: (=>) IF A ENL, then it has an NTM N in Cosspace. Use it to awate a DIM M that simulates of using The certificate topa to simulate the non-deterministic choices



Showing Path ENL via certificates To show (q,s,t) in Path, the Certificate is just a path (or none Specifically a walk ) from s to t is Grusts at most or vertices where n= N(cs). The machine M just needs to check (a) the first verten is & & the last is t (b) If the path is 23=8, 21, ---, 72 = t then (Di, Vin) (= E(G)) for all i E {0,-, K-1}-



| Like | NP vs co-NP, we can also                       |
|------|------------------------------------------------|
| aver | "It NL=co-NL. Here, we                         |
|      | ea surprisny (?) annu.                         |
| Then | 2 (Immerman - Szelepcsényi heoreas)            |
|      | NL = CO - NL                                   |
| To 8 | now this, we only need to                      |
| 8/10 | on that co.NL ENL Conercial                    |
| 200  | Path is (o-Nh complete) is enough to show that |
| -1   | is enough to show that                         |
|      | s: (also the Is theorem)                       |
|      | Path ENL.                                      |

Proof: Need to give a certificate for (4,818) & Path (j. e. the certificale Shows that there is no path from & so ti) Moceove, the certificate is chechable by a DTM M that was by space & reads the certificate on a readonce take. Two steps: D Arnens we know C= # of vertices reachable from & & give a certificate for (9,8,t) = Path 3 Give a certificate for a



Verifying this certificate: The vuification process needs to check 3 things: (i) bit...tbn= C (ii) If t=22; , bé= 0 (iii) Each p: gives a valid path from s to ve. Each can be checked in parallel beg a by-space machino is read-Once forshion! To all the thee checks in parallel. Takes space O (logn) x3 = O (logn).

| Stell   |                                                            |
|---------|------------------------------------------------------------|
| et Cj   | = {v;   v; reachable from -s by<br>a path of length 4 is 3 |
|         | a path () length 40 5                                      |
| Obs:    | Co = { s} C, C, C, C, C, C,                                |
| 81      | $C_{n} = c$                                                |
| Carry 1 | rutes reachable from a is                                  |
| rea     | chable by path of (eight &n)                               |
| So 10   | Col-1 is known & we want to                                |
| Certi   | Jy 1 Cn1 = c.                                              |
| For ea  | achjes, we will certify                                    |
|         | lGtil given [Gl.                                           |
|         |                                                            |





Verification of overall certificate for 1 Gnl given 161.

For each i & 21,-, n) -> If bi=1, check yr; is a paths from 3 to 20; of Cenyth & 7) If bi=0, chech Ti as on the previous page. -> Compute | Cj+1 = b,+.. +bn+1. Note: Space re-used between iterations. The only additional space we need is to store i, c; the current sum O (logn) buts.

| tira  | l certificate for Path     |
|-------|----------------------------|
|       |                            |
| ( ) 1 |                            |
| ( 4,  | 1921 19n, y)               |
| -     |                            |
| 4.    | - Certifies l'Gil given    |
| 7)    |                            |
|       | (G-1)                      |
| ~ ·   |                            |
| 4     | Contifies (9, s, t) & Path |
|       | gwin   Cn  = c.            |
|       | 0                          |
| 178.  | 1-0(31-)                   |
| 150   | $1 = O(n^3 \log n)$        |
|       | 7. N. 1. W. J. (~ 5/1)     |
|       | Durvall length= O(n bogn)  |
|       | = bops (2).                |
| -     |                            |