Restriction/ Classification Cancelled ABLE

Сору

RM SE58G01

Source of Acquisition CASI Acquired

RESEARCH MEMORANDUM

for the

Air Research and Development Command, U.S. Air Force

ALTITUDE PERFORMANCE OF THE AFTERBURNER ON THE

IROQUOIS TURBOJET ENGINE

COORD. NO. AF-P-6

By Donald E. Groesbeck and Daniel J. Peters

Lewis Flight Propulsion Laboratory Cleveland, Ohio

CLASSIFICATION CHANGE

Tollmclassified

By authority of MASA Menu 52 03/4 by H. Maines

Changed by M. Ruda Date 66-03

Restriction/
Classification
the espicacy Cancelled

DOCUMENT

ational Defense of the United States within the meaning and 794, the transmission or revelation of which in any

NATIONAL ADVISORY COMMITTEE
FOR AERONAUTIES

WASHINGTON

JUL 28 1958

CONFIDENTIAL

NACA RM SE58GOL

RESEARCH MEMORANDUM

for the

Air Research and Development Command, U.S. Air Force ALTITUDE PERFORMANCE OF THE AFTERBURNER ON THE IROQUOIS TURBOJET ENGINE*

COORD. NO. AF-P-6

By Donald E. Groesbeck and Daniel J. Peters

The performance and operational characteristics of two afterburner configurations for the Iroquois turbojet engine were evaluated in an altitude test chamber over a range of afterburner equivalence ratios at afterburner-inlet pressures from 733 to 3186 pounds per square foot absolute. These conditions correspond to an altitude range from 38,700 to 66,800 feet at a flight Mach number of 1.5. The only difference between the two afterburner configurations was in the pattern of afterburner fuel injection.

At an afterburner-inlet pressure of approximately 3100 pounds per square foot absolute, corresponding to an altitude of 38,700 feet and a flight Mach number of 1.5, the combustion efficiency of both configurations reached peak values of 0.80 to 0.85 at equivalence ratios of 0.35 to 0.40. However, further reduction in the afterburner-inlet pressure severely affected combustion efficiency. For example, at an afterburnerinlet pressure level of 700 to 1000 pounds per square foot absolute, the efficiency for both configurations was 0.20 to 0.40.

INTRODUCTION

An investigation evaluating the performance and operational characteristics of prototype Iroquois turbojet engines was conducted in an altitude test chamber at the NACA Lewis laboratory at the request of the Air Research and Development Command, U. S. Air Force. As a part of this program, the performance and operating limits of afterburner configurations were evaluated briefly and are reported herein. Other phases of the over-all program are reported in references 1 and 1. burner configurations were evaluated. Because the performance of the first configuration (configuration A) did not beet the manufacturer's expectations, in an attempt to improve per similar mange without making major modifications, the manufacturer provided a second configuration (configuration B) with the fuel-inject of system modified to provide a somewhat

Data were obtained over a range of afterburner equivalence ratios at afterburner-inlet total pressures from 733 to 3186 pounds per square foot absolute. These conditions correspond to altitudes from 38,700 to 66,800 feet at a flight Mach number of 1.5. The indicated afterburner-inlet total temperature was 1735° R. The performances of the two afterburner configurations are presented graphically in terms of afterburner total temperature, combustion efficiency, and pressure loss, and the two configurations are directly compared in terms of combustion efficiency, augmentation ratio, over-all specific fuel consumption, and operational limits. Tabulated afterburner performance data are presented in tables I and II.

APPARATUS

Installation

The Iroquois turbojet engine - afterburner combination installed in the altitude test chamber is shown in figure 1. A forward bulkhead (not visible in the photograph), which incorporates a labyrinth seal around the engine-inlet air duct, was used to separate the engine-inlet air from the exhaust and to provide a means of maintaining a pressure differential across the engine. A bulkhead butterfly valve was used to control the engine-inlet pressure and the amount of air used to ventilate the test chamber. Visual observation of a portion of the afterburner combustion zone was provided by a periscope located downstream of the test section and directed toward the exhaust nozzle.

Engine

The prototype twin-spool Iroquois engine used in this investigation had a nominal unaugmented sea-level static-thrust rating of 18,000 pounds with an airflow of approximately 280 pounds per second. The engine maximum low- and high-pressure rotor speeds are 5740 and 7800 rpm, respectively. The rated turbine-discharge gas temperature is 1275° F (1735° R), as indicated by an average of 25 thermocouples located at the turbine discharge.

The engine has a ten-stage two-spool axial-flow compressor; the first three stages are transonic and comprise the low-pressure compressor, an annular-type combustor, and a three-stage turbine; the last stage driving the low-pressure compressor, a diffuser assembly, an afterburner, a variable primary exhaust nozzle, and an electronic amplifier (sensing compressor-discharge and afterburner-inlet pressures) with a hydraulic control. The engine normally includes an ejector assembly; however, this assembly was inoperative for this investigation.

Two engines were used in this investigation. Engine AX 103/3A was used with afterburner configuration A and engine AX 102/3C was used with afterburner configuration B. Engine AX 103/3A is the same configuration as the "modified A" engine configuration (engine AX 103/2) of reference 1 without the friable plastic coating on the first- and second-stage compressor stator tip seals. Engine AX 102/3C is the same configuration as the "modified B" engine configuration of reference 1 except the first-stage compressor rotor blades were twisted 5° more to reduce the work at the tip of the blade. The engines are described in greater detail in reference 1.

Afterburner Configurations

The Iroquois afterburner has a nominal length of $77\frac{1}{2}$ inches and a diameter of $43\frac{1}{4}$ inches. A schematic diagram of the basic afterburner showing the location of the various components is presented in figure 2.

The afterburner discussed herein was designed for relatively low thrust augmentation, and, therefore, required operation at low over-all afterburner fuel-air ratios (equivalence ratio of approximately 0.3). It was necessary, when considering stability and efficiency, to confine the afterburner fuel flow to only a portion of the afterburner-inlet air, thus raising the local fuel-air ratio in the combustion zone. The fuelinjection system was designed in an attempt to accomplish this, and consisted of three circular rings located as shown in figure 3. Two of the injector rings were very closely coupled to the two flameholder gutters, and a third injector ring was located about 14 inches upstream of the flameholder and sized to supply fuel to the area between the two flameholder gutters. The only difference between afterburner configurations A and B was in the location and size of the fuel orifices in the fuel injector rings (fig. 3). The percentages of fuel flow from each ring remained approximately the same (as noted in fig. 3) although configuration B injected fuel in many more directions than did configuration A.

The flameholders consisted of two circular channel-like rings, each located 1/2 inch downstream of the two downstream fuel-injector rings (fig. 3). Based on the afterburner area with a diameter of $43\frac{1}{4}$ inches, the flameholders (minus supporting rods) blocked approximately 13.7 percent of the total area.

"Hot-streak" ignition was provided for the afterburner by two fuel injectors located 120° clockwise from the top of the engine looking upstream, one immediately upstream of the turbines and the other immediately downstream. Fuel was supplied to the injectors every 4 seconds by a pulsing valve until afterburner ignition occurred.

Although no cooling liner was used in the afterburner, an antiscreech liner, 18 inches long, was installed in the plane of the downstream fuel injector rings and flameholder (fig. 2). The afterburner exhaust nozzle had a continuously variable area that ranged from approximately 649 to 1020 square inches. The afterburner control system continually adjusted the exhaust-nozzle area to maintain a maximum indicated turbine-discharge gas temperature of 1275° F (1735° R).

Looking upstream, figure 4 shows the afterburner with the flame-holders, fuel rings, antiscreech liner, an afterburner ignitor, and the water-cooled total-pressure rake at the primary exhaust-nozzle inlet.

Fuel conforming to MIL-F-562a (grade JP-4) specification was used in both the engine and the afterburner. The lower heating value of the fuel was 18,700 Btu per pound and the hydrogen-carbon ratio was 0.170.

Instrumentation

The afterburner-inlet conditions were surveyed at station 6 (fig. 2) by 25 total-pressure and 25 total-temperature probes. An indicated average gas temperature of 1275° F (1735° R) was lowered to 1251° F (1711° R) by applying the thermocouple radiation and recovery corrections of references 3 and 4. The exhaust-nozzle inlet conditions (station 9) were surveyed approximately $17\frac{1}{2}$ inches upstream of the exhaust-nozzle exit with a water-cooled total-pressure rake consisting of 23 probes placed on centers of equal areas.

Standard instrumentation was provided to measure airflow, thrust, and fuel flows. Both the engine and the afterburner fuel flows were measured on remote-indicating flowmeters. A detailed description of the engine instrumentation is contained in reference 1. The symbols and method of calculation used in this report are presented in appendixes A and B, respectively. A sample calculation is presented in appendix C.

PROCEDURE

The performance characteristics of afterburner configurations A and B were obtained over a range of afterburner equivalence ratios (percent

of stoichiometric fuel-air ratio) at the following simulated flight conditions and afterburner-inlet (station 6) total pressures:

Config-	Engine-	Alti-	Flight	Engine-	Average
uration	. –	tude,	Mach	inlet	afterburner-
	Reynolds	ft	number,	total	inlet total
	number		MO	temper-	pressure,
1	index		U	ature,	P ₆ ,
				T_1 ,	1h
				$\circ_{ m R}^{}$	sq ft abs
<u> </u>					D4 10 '
A and B	0.64	38,700	1.5	566	3125
В	.51	43,200		1	2410
A and B	. 37	50,400		. (1800
. B	.29	54,800		4	1340
A and B	.24	59,200			1100
A and B	.17	66,800	₩		750

In order to obtain steady-state performance data, the engine was first started and accelerated to rated speed (7800 rpm) and the engine-inlet pressure and temperature and the rated turbine-discharge gas temperature were set at the desired test conditions. The afterburner ignitors were then turned on and, upon ignition of the afterburner, the exhaust nozzle was opened by the control system. The afterburner fuel flow was set at the desired value and the exhaust-nozzle area was adjusted by the control system in order to maintain the turbine-discharge gas temperature at the rated value of 1275° F. As soon as burning was stable, the ignitors were turned off and steady-state data were taken over the operable range of afterburner equivalence ratios.

PRESENTATION OF DATA

As an aid in defining the afterburner-inlet conditions of this investigation, the calculated average afterburner-inlet velocities for the range of pressures investigated and the typical afterburner-inlet total-pressure profiles are presented in figures 5 and 6, respectively. A complete tabulation of the data, afterburning and nonafterburning, for both afterburner configurations is presented in tables I and II.

The performances of afterburner configurations A and B are presented in figure 7 for a range of afterburner-inlet pressure levels. Afterburner total temperature and combustion efficiency are presented as functions of afterburner equivalence ratio and the afterburner total-pressure-loss ratio as a function of the afterburner temperature ratio τ in figure 7.

The performances of the two afterburner configurations are compared directly in figure 8 on the basis of the variation of combustion efficiency with equivalence ratio at four afterburner-inlet pressure levels, and in figure 9 on the basis of the variation of calculated afterburner augmentation ratio and over-all specific fuel consumption with afterburner equivalence ratio for the design flight condition. The altitude operational limits of the two afterburner configurations are presented in figure 10.

RESULTS AND DISCUSSION

Average afterburner-inlet velocities of approximately 590 to 645 feet per second were encountered for both configurations over the range of afterburner-inlet pressures investigated. Peak velocities reached as high as 680 feet per second; however, these velocities are based on total-pressure measurements and could be in error to the extent of several percentage points because a flat static-pressure profile was assumed. These velocities are relatively high for good performance at altitude and are undoubtedly a contributing factor in the low efficiency levels encountered.

At the maximum afterburner-inlet pressure investigated (3100 lb/sq ft abs corresponding to an altitude of 38,700 ft at a flight Mach number of 1.5) the combustion efficiency of both configurations reached values of 0.80 to 0.85 at equivalence ratios of 0.35 to 0.40. Lowering the afterburner-inlet pressure from 3100 to 700 to 1000 pounds per square foot absolute affected the combustion efficiency very adversely. For example, at these low pressures (700 to 1000 lb/sq ft abs) the combustion efficiency for both configurations was 20 to 40 percent.

The relatively low combustion efficiencies at high altitudes are attributed to the combined effects of high afterburner-inlet velocity and short mixing length for approximately one-half the fuel that was injected through the downstream fuel rings. Injecting more of the fuel in an upstream direction in configuration B was slightly beneficial, inasmuch as the efficiency was less sensitive to inlet pressure down to approximately 1300 pounds per square foot absolute.

One problem encountered with both configurations was the inability to hold a flame stably on both gutters down to low pressures. This instability, of course, resulted in low efficiency at low pressures. Configuration B showed an improvement over configuration A in this respect.

A comparison of afterburner configurations A and B on the basis of over-all specific fuel consumption and augmentation ratio is presented in figure 9 for an altitude of 50,400 feet at a flight Mach number of 1.5. This flight condition corresponds to an engine-inlet Reynolds number

index of 0.37 and is a design point of the afterburners. Performance data shown in figure 9 were obtained by using the combustion-efficiency and pressure-loss curves of figure 7 for an afterburner-inlet total pressure of approximately 1800 pounds per square foot absolute and the computation method outlined in appendix C. This method is applicable to any altitude and Mach number combination for any of the afterburner-inlet pressures presented herein. The maximum augmentation ratio that was obtained is relatively low since the afterburners were designed for low fuel-air operation.

7

The lean blowout characteristics were a little better for afterburner configuration B than for configuration A. The trends of maximum equivalence ratio limits (maximum temperature as limited by maximum exhaust-nozzle area) reflect the relative combustion efficiency for the two configurations.

No troubles were encountered in igniting the afterburner down to afterburner-inlet pressures of approximately 1100 pounds per square foot absolute at fuel flows of approximately 3000 pounds per hour.

Lewis Flight Propulsion Laboratory
National Advisory Committee for Aeronautics
Cleveland, Ohio, July 7, 1958

APPENDIX A

SYMBOLS

The following symbols are used in this report:

A area, sq ft

a sonic velocity

B thrust cell force, lb

Cve velocity coefficient, ratio of actual jet velocity to effective

jet velocity

F thrust, lb

F, unaugmented engine jet thrust, 1b

Fin unaugmented engine net thrust, 1b

FAB augmented engine jet thrust, lb

FAB.n augmented engine net thrust, 1b

f fuel-air ratio

g acceleration due to gravity, 32.17 ft/sec²

M Mach number

m mass flow, slugs/sec

N engine speed, rpm

P total pressure, lb/sq ft abs

p static pressure, lb/sq ft abs

R universal gas constant, 1546 ft-lb/(lb-mole)(OR)

ReI Reynolds number index, $P_1(T_1 + 216)/5.7738 T_1^2$

sfc specific fuel consumption, (lb/hr)/lb

T total temperature, OR

t static temperature, OR

V velocity, ft/sec

w_a airflow, lb/sec

w_f fuel flow, lb/sec

w_g gas flow, lb/sec

 γ ratio of specific heats

 δ_1 ratio of engine-inlet pressure to NACA standard pressure, P/2116

η efficiency

 θ_1 ratio of engine-inlet temperature to NACA standard temperature, T/518.7

• equivalence ratio

 τ afterburner temperature ratio, $T_{9,AB}/T_{6}$

Subscripts:

AB afterburner

ac actual

av average

c calculated

corr corrected

e engine

eff effective

fc front compartment

fh flameholder

HP high pressure (compressor and turbine)

he heat exchanger (bearing cooling air)

id ideal

9

exhaust-nozzle inlet

in d	individual
LP	low pressure (compressor and turbine)
N	nozzle
n	net /
g	seal
st	stoichiometric
t	total
0.	free-stream conditions
1	engine inlet
2	low-pressure compressor outlet
3	high-pressure compressor outlet
4	engine combustor outlet (high-pressure turbine inlet)
6	low-pressure turbine outlet (afterburner inlet)

APPENDIX B

METHODS OF CALCULATION

Airflow. - Airflow was determined from pressure and temperature measurements, which were used in the following equation:

$$\frac{P_{A}}{w_{a}\sqrt{(R/g)T}} = \frac{(P/p)^{1/\gamma}}{\sqrt{\frac{2\gamma}{\gamma-1}\left[1-\left(\frac{p}{P}\right)^{\gamma}\right]}}$$

The right side of this equation is listed as a function of p/P in reference 5. Simple rearrangement of the equation will yield airflow.

Airflow at station 4 (engine-combustor outlet) was determined from

$$w_{a,4} = w_{a,1} - 0.68 w_{a,he} - 0.0276 w_{a,1}$$

The factors, 0.68 and 0.0276, were determined from the results of preliminary engine tests.

Airflow at station 6 (afterburner-inlet) was determined from

$$w_{a,6} = w_{a,4} + 0.0138 w_{a,1} + 0.68 w_{a,he}$$

 $w_{a,9} = w_{a,6}$

Gas flow. - Gas flow was obtained by adding fuel flow to the airflow at the station; that is,

Equivalence ratio. - Equivalence ratios were determined as follows:

$$\varphi = f/f_{st}$$

For the fuel used in this investigation

Therefore,

$$\varphi_{e} = \frac{\text{W}_{f,e}/\text{W}_{a,4}}{0.0676}$$

$$\Phi_{AB} = \frac{w_{f,AB}/w_{a,6}}{0.0676}$$

and

$$\phi_{t,ac} = \phi_{e} + \phi_{AB}$$

where \$\Phi_{t,ac}\$ is the actual equivalence ratio based on total fuel flow.

The equivalence ratio based on unburned air was determined from the equation

$$\phi_{AB,ac} = \frac{\phi_{t,ac} - \phi_{e,id}}{1 - \phi_{e,id}}$$

where $\phi_{e,id}$ is the ideal equivalence ratio for the temperature rise from engine-inlet to afterburner-inlet stations (shown in table I in ref. 6).

The ideal equivalence ratio $\Phi_{t,id}$ is determined from the temperature rise from the engine-inlet to the exhaust-nozzle exit (shown in table I in ref. 6). The ideal equivalence ratio for the afterburner based on unburned air was determined from the equation

$$\phi_{AB,id} = \frac{\phi_{t,id} - \phi_{e,id}}{1 - \phi_{e,id}}$$

Combustion efficiency. - Combustion efficiency was then determined from

$$\eta_{AB} = \frac{\varphi_{AB,id}}{\varphi_{AB,ac}}$$

Jet thrust. - Scale jet thrust was determined from the facility thrust cell and the pressure force across the seal area, $\rm A_{\rm s}$

$$F = B + A_s(P_{fc} - p_{tank})$$

<u>Velocity coefficient</u>. - Velocity coefficient was determined from non-afterburning data as follows:

$$C_{\text{ve}} = \frac{F_{j}}{F_{j,c}} = \frac{B + A_{s} (P_{fc} - P_{\text{tank}})}{W_{g,9} \frac{V_{\text{eff}}}{gRT_{9}} \sqrt{\frac{R}{g}} \sqrt{T_{9}}} \text{ (nonafterburning)}$$

where $C_{\rm ve}$ = 0.975 for the range of data obtained, and $V_{\rm eff}/\sqrt{\rm gRT}$ is an effective velocity parameter and is a function of $(p_{\rm tank}/P_9)$ and γ_9 (ref. 5).

Gas temperature. - Afterburner total temperature was calculated as follows:

$$T_{9,AB} = \left[\frac{F_{AB}/C_{ve}}{W_{g,9}\sqrt{\frac{R}{g}} \left(\frac{V_{eff}}{\sqrt{gRT}} \right)} \right]^{2}$$

Afterburner-inlet velocity. - Afterburner-inlet velocity (nonafter-burning) was determined from the measured quantities $w_{g,6}$, T_6 , P_6 , and A_{fh} and the following equation, assuming an area coefficient of 0.9 for the flow passage:

$$\frac{w_{g,9}\sqrt{T_{6}}}{A_{fh}P_{6}}\sqrt{\frac{R}{\gamma_{g}}} = \frac{M_{6}}{\left(1 + \frac{\gamma - 1}{2}M_{6}^{2}\right)^{\frac{\gamma+1}{2}(\gamma-1)}}$$

where

$$A_{fh} = 0.9 (9.85 \text{ sq ft}) = 8.865 \text{ sq ft}$$

The right side of this equation is listed in reference 7, and $\gamma = 1.33$ should be used to determine the Mach number at the afterburner-inlet. Static-to-total temperature ratio t/T is a function of the Mach number M; therefore,

$$t_6 = (t/T) T_6$$

Sonic velocity, a_6 , equals $\sqrt{r_{6}gRt_6}$ ($r_6 = 1.33$) and

$$V_6$$
 (in ft/sec) = M_6a_6

Net thrust. - Net thrust was calculated from the following equation:

$$F_{AB,n} = F_{AB} - (w_{a,l}/g) V_l$$

where $\rm V_l$ is determined from (V/ $\sqrt{\rm gRT})$ in reference 5 and is a function of $\rm p_{tank}/P_l$ and $\rm \gamma_l$

APPENDIX C

SAMPLE CALCULATION

A Reynolds number index of 0.37 could correspond to the following altitudes and Mach numbers:

Altitude,	Mach
ft	number
40,200	0.9
50,400	1.5
60,400	2.0

Selecting the flight condition of a 50,400-foot altitude and a Mach number of 1.5 for a sample calculation yields

$$p_0 = 238 \text{ lb/sq ft abs}$$

$$P_1 = 874 \text{ lb/sq ft abs}$$

$$T_7 = 566^{\circ} R$$

At rated engine conditions (for the AX 102/3C engine),

$$N_{HP} = 7800 \text{ rpm} \text{ or } N_{HP} / \sqrt{\theta_1} = 7464 \text{ rpm}$$

$$T_{6,corr} = 1711^{\circ} R \text{ or } T_{6}/T_{1} = 3.03$$

From an over-all engine performance map, the intersection of N_{HP} = 7464 rpm and T_6/T_1 = 3.03 gives $w_{a,1}\sqrt{\theta_1}/\delta_1$ = 258.8 pounds per second and P_6/P_1 = 2.06 (ref. 1), where

$$P_6 = (P_6/P_1)P_1 = 1803 \text{ lb/sq ft abs}$$

$$w_{a,1} = (w_{a,1}\sqrt{\theta_1}/\delta_1)(\delta_1/\sqrt{\theta_1}) = 102.3 \text{ lb/sec}$$

A mechanical engine speed limit for $N_{\rm LP}$ of 5740 rpm should not be exceeded for the particular flight condition under consideration (altitude, 50,400 ft; Mach number, 1.5); in this instance, $N_{\rm LP}$ = 5739 rpm.

Nonafterburning conditions. - At an afterburner temperature ratio of 1.0 and a Reynolds number index of 0.37 (from fig. 7(b))

$$(P_6 - P_9)/P_6 = 0.07$$
 or $P_9 = 1677$ lb/sq ft abs

From reference 6, the ideal engine equivalence ratio $\phi_{e,id}$ is 0.240. Defining $\eta_e = \phi_{e,id}/\phi_{e,ac}$ and assuming $\eta_e = 0.98$ yields

$$\phi_{e,ac} = 0.245$$

Since $\varphi_{e,ac} = (w_{f,e}/w_{a,1})/f_{st}$ then,

$$w_{f,e} = 1.70 \text{ lb/sec}$$

If the air lost overboard through acceleration bleeds, air turbine pumps, and so forth is assumed to equal $w_{f,e}$, then $w_{g,9} = w_{a,1} = 102.3$ pounds per second.

With the appropriate γ_9 , reference 5 gives $V_{eff}/\sqrt{gRT} = 1.660$ and $F_{.j} = C_{ve} m_9 V_{eff} = 8820$ pounds when $C_{ve} = 0.975$.

At a 50,400-foot altitude, the speed of sound is 968.5 feet per second, or at a Mach number of 1.5, the velocity $\rm V_{O}$ is 1.5(968.5) or 1453 feet per second.

The inlet momentum term mV_O is

$$mV_0 = (102.3/32.17)1453 = 4621 1b$$

or

$$F_{j,n} = F_{j} - mV_{0} = 4199 lb$$

Afterburning conditions. - From figure 7(b), at $\Phi_{AB,ac} = 0.4$ and a Reynolds number index of 0.37,

$$\eta_{AB} = 0.68$$

and

$$T_{9.AB} = 2525^{O} R$$

From figure 7(b) at $\tau = T_{9,AB}/T_6 = 2525/1711 = 1.48$,

$$(P_6 - P_9)/P_6 = 0.091$$
 or $P_9 = 1639 \text{ lb/sq ft abs}$

From
$$\phi_{AB,ac} = \frac{\phi_{t,ac} - \phi_{e,id}}{1 - \phi_{e,id}}$$

$$\varphi_{t,ac} = 0.544 = \varphi_{AB} + \varphi_{e,ac}$$

or

$$\Phi_{AB} = 0.299 = (W_{f,AB}/W_{a,6})/f_{st}$$

If the air lost overboard is assumed equal to $w_{f,e}$,

$$w_{a,6} = w_{a,1} - w_{f,e}$$

Therefore,

$$w_{a,6} = 100.6 \text{ lb/sec}$$
 and $w_{f,AB} = 2.03 \text{ lb/sec}$

$$w_{g,6} = w_{a,6} + w_{f,e}$$

$$w_{g,9} = w_{g,6} + w_{f,AB} = 104.3 \text{ lb/sec}$$

Since

$$\phi_{AB,id} = \eta_{AB}(\phi_{AB,ac}) = 0.272 = \frac{\phi_{t,id} - \phi_{e,id}}{1 - \phi_{e,id}}$$

$$\varphi_{t,id} = 0.447$$

and from reference 6,

$$T_{9,AB} - T_{1} = 1975^{\circ} R$$
 or $T_{9,AB} = 2541^{\circ} R$

At $\gamma_{0} = 1.288$

$$(V_{eff}/\sqrt{gRT})_9 = 1.665 \text{ (ref. 5)}$$

For $C_{ve} = 0.975$

$$F_{AB} = C_{ve} m_9 V_{eff} = 10,993 lb$$

Since $mV_0 = 4621$ pounds,

$$F_{AB,n} = 10,993 - 4621 = 6372 lb$$

The net augmented thrust ratio is then 1.518, the afterburner temperature rise τ is 1.485, and the over-all specific fuel consumption sfc is $\frac{\text{Wf}, AB + \text{Wf}, e}{\text{FAB}, n}$ or 2.11. Using the previous method, other values of $\phi_{AB,ac}$, altitudes, and Mach numbers can be used to give complete curves as shown in figure 9.

REFERENCES

- 1. McAulay, John E., and Groesbeck, Donald E.: Investigation of a Prototype Iroquois Turbojet Engine in an Altitude Test Chamber. NACA RM SE58E26, 1958.
- 2. Peters, Daniel J., and McAulay, John E.: Some Altitude Operational Characteristics of a Prototype Iroquois Turbojet Engine. NACA RM SE58F17, 1958.
- 3. Glawe, George W., Simmons, Frederick S., and Stickney, Truman M.:
 Radiation and Recovery Corrections and Time Constants of Several
 Chromel-Alumel Thermocouple Probes in High-Temperature, HighVelocity Gas Streams. NACA TN 3766, 1956.
- 4. Scadron, Marvin D., and Warshawsky, Isidore: Experimental Determination of Time Constants and Nusselt Numbers for Bare-Wire Thermocouples in High-Velocity Air Streams and Analytic Approximation of Conduction and Radiation Errors. NACA IN 2599, 1952.
- 5. Turner, L. Richard, Addie, Albert N., and Zimmerman, Richard H.: Charts for the Analysis of One-Dimensional Steady Compressible Flow. NACA TN 1419, 1948.
- 6. Huntley, S. C.: Ideal Temperature Rise Due to a Constant-Pressure Combustion of a JP-4 Fuel. NACA RM E55G27a, 1955.
- 7. Lewis Laboratory Computing Staff: Tables of Various Mach Number Functions for Specific-Heat Ratios from 1.28 to 1.38. NACA TN 3981, 1957.

TABLE I. - PERFORMANCE OF AFTERBURNER CONFIGURATION A

(a) Afterburning data

Run	Engine- inlet Reynolds number index, ReI	High- pressure compres- sor rotor speed, NHP, rpm	Low- pressure compres- sor rotor speed, NLP, rpm	Engine- inlet total temper- ature, T1, oR	Engine- inlet total pres- sure, P1, lb/sq ft abs	High- pressure compres- sor- inlet total temper- ature, T2, OR	High- pressure compres- sor- inlet total pres- sure, P2, lb/sq ft abs	High- pressure compres- sor- outlet total temper- ature, T3, OR	High- pressure compres- sor- outlet total pres- sure, P3, lb/sq ft abs	pressure	Low- pressure turbine- outlet total temper- ature, T6, OR	Low- pressure turbine- outlet total pres- sure, P6, lb/sq ft abs	Exhaust nozzle- inlet total pres- sure, Pg, lb/sq ft abs	Tank static pres- sure, Ptank, lb/sq ft abs
1	0.653	7755	5103	569	1556	673	2678	1059	9,947	9120	1659	3156	2895	371
2	.635	7810	5150	564	1494	676	2625	1065	9,814	9016	1667	3085	2811	359
3	.640	7778	5126	564	1508	670	2583	1059	9,856	9035	1674	3112	2893	364
4	.633	7790	5171	564	1490	672	2595	1059	9,848	9032	1675	3107	2895	360
5	.650	7785	5122	569	1548	667	2667	1066	9,954	9134	1674	3145	2932	397
6 7 8 9 10	.648 .646 .648 .368	7806 7750 7799 7809 7797	5116 4912 5143 5276 5377	571 571 571 565 560	1549 1545 1549 868 875	678 673 680 682 679	2682 2639 2676 1592 1580	1067 1058 1069 1075 1069	10,049 9,824 10,019 5,903 5,915	9221 9019 9233 5434 5422	1687 1690 1681 1678 1665	3186 3179 3134 1809 1775	2973 2971 2942 1613 1584	367 403 400 221 234
11	.374	7783	5279	560	873	676	1553	1068	5,873	5402	1672	1789	1624	264
12	.373	7778	5265	562	874	675	1564	1065	5,875	5399	1677	1811	1649	249
13	.377	7810	5269	561	882	676	1571	1071	6,027	5563	1712	1873	1746	234
14	.371	7787	5338	562	869	680	1557	1071	5,788	5302	1659	1756	1624	244
15	.372	7780	5170	562	872	673	1528	1065	5,827	5359	1710	1826	1699	237
16 17 18 19 20	.369 .245 .241 .244	7747 7676 7756 7712 7735	5170 5109 5320 5196 5220	564 564 565 564 565	869 576 569 574 571	673 670 682 675 678	1519 1000 1010 1015 1006	1064 1057 1072 1067 1066	5,753 3,710 3,710 3,723 3,724	5280 3406 3406 3416 3420	1690 1675 1673 1665 1678	1790 1129 1121 1123 1133	1666 1023 1017 1023 1040	241 157 198 160 203
21	.243	7736	5146	564	572	673	1005	1068	3,721	3412	1673	1116	1026	163
22	.244	7740	5330	565	575	682	1018	1073	3,736	3428	1666	1128	1037	162
23	.240	7750	5300	564	566	680	1006	1069	3,713	3405	1673	1120	1033	213
24	.244	7724	5219	563	573	675	1003	1062	3,724	3419	1678	1139	1055	215
25	a.166	7786	5457	571	398	695	707	1089	2,528	2315	1675	747	676	210
26	a.167	7776	5450	571	399	695	707	1089	2,523	2312	1660	749	678	201
27	a.167	7780	5404	572	401	695	702	1089	2,471	2260	1699	733	665	182
28	a.165	7 7 73	5451	574	398	698	705	1089	2,478	2269	1668	735	667	184

^aQuestionable combustion stability.

TABLE I. - Continued. PERFORMANCE OF AFTERBURNER CONFIGURATION A

(a) Concluded. Afterburning data

Engine- inlet air- flow, wa,1, lb/sec	High- pressure turbine- inlet airflow, wa,4' lb/sec	Exhaust- nozzle inlet airflow, wa,9, lb/sec	Engine fuel flow, wf,e, lb/hr	After- burner fuel flow, wf,AB, lb/hr	Exhaust- nozzle inlet gas flow, Wg,9' lb/sec	equiv-	Aug- mented jet thrust, FAB, 1b	Aug- mented net thrust, FAB,n' 1b	Calcu- lated after- burner total temper- ature, T9,AB, oR	Exhaust- nozzle area, ^A N, sq in.	After- burner effi- ciency, ⁿ AB	Tailpipe total-pressure loss, P6 - P9 P6	After-burner total-temper-ature ratio, τ , $T_{9,AB}$	Run
177.92 175.34 174.99 173.70 177.12	172.01 167.14 166.66 165.29 170.12	175.47 172.92 172.57 171.30 174.67	9691 9594 9634 9677 9691	11,768 10,652 9,122 6,862 5,648	181.43 178.54 177.78 175.89 178.93	0.360 .336 .239 .225	19,671 19,125 18,597 17,836 17,537	11,458 11,082 10,577 9,877 9,502	2607 2544 2421 2274 2171	954 931 890 847 820	0.853 .842 .830 .840	0.083 .089 .070 .068	1.571 1.526 1.446 1.358 1.283	1 2 3 4 5
178.10 175.10 176.84 105.38 104.30	171.92 168.23 169.83 100.99 100.10	175.65 172.68 174.40 103.93 102.86	9857 9778 9752 5886 5728	5,213 4,381 3,532 12,319 11,171	179.84 176.61 178.09 108.99 107.55	.162 .141 .112 .642 .585	17,494 16,784 16,581 11,939 11,337	9,246 8,860 8,557 7,168 6,694	2096 2043 1966 2696 2547	811 768 773 1006 996	.790 .773 .774 .523	.067 .066 .061 .108	1.242 1.209 1.170 1.607	6 7 8 9 10
103.67 104.04 105.79 102.58 101.91	99.52 99.97 101.39 98.43 97.83	102.24 102.60 104.33 101.16 100.50	5767 5782 6116 5638 5832	9,792 8,291 7,812 6,955 5,447	106.56 106.51 108.20 104.66 103.63	.519 .438 .401 .373 .298	10,984 10,660 10,701 9,967 9,719	6,531 6,099 5,977 5,453 5,197	2505 2316 2197 2101 2003	958 907 841 855 790	.516 .463 .384 .365	.092 .090 .073 .075	1.498 1.381 1.283 1.266 1.171	11 12 13 14 15
101.15 64.87 65.52 65.57 65.13	97.11 62.18 62.82 62.86 62.85	99.75 63.97 64.62 64.67 64.23	5699 3643 3640 3614 3668	3,884 8,060 7,297 6,901 5,846	102.41 67.23 67.66 67.59 66.88	.215 .686 .611 .576 .496	9,130 7,175 6,670 6,795 6,429	4,654 4,292 3,977 3,898 3,775	1832 2633 2433 2357 2318	755 975 968 929 909	.198 .458 .399 .382	.069 .094 .093 .089	1.084 1.572 1.454 1.416 1.381	16 17 18 19 20
65.14 65.85 65.00 65.45 43.98	62.44 63.13 62.30 62.75 41.37	64.24 64.94 64.10 64.55 43.37	3632 3650 3654 3668 2470	5,432 4,050 3,434 2,538 6,012	66.76 67.08 66.07 66.28 45.73	.460 .342 .297 .219 .753	6,440 6,122 5,731 5,530 3,880	3,579 3,222 3,145 2,924 2,415	2184 1955 1936 1791 2271	870 829 802 761 899	.348 .255 .268 .155 .250	.080 .081 .077 .074 .096	1.305 1.173 1.157 1.067 1.356	21 22 23 24 25
43.93 43.13 43.17	41.32 42.08 42.15	43.32 42.54 42.57	2455 2376 2416	5,962 5,162 4,021	45.66 44.63 44.36	.747 .652 .517	3,920 3,879 3,787	2,411 2,297 2,218	2256 2207 2144	917 955 955	.249 .247 .284	.095 .093 .094	1.359 1.299 1.285	26 27 28

CONFIDENTIAL

TABLE I. - Continued. PERFORMANCE OF AFTERBURNER CONFIGURATION A

(b) Nonafterburning data

		,	,	,										
Run	Engine- inlet Reynolds number index, ReI	High- pressure compres- sor rotor speed, NHP, rpm	Low- pressure compres- sor rotor speed, NLP, rpm	total temper-	Engine- inlet total pres- sure, F1, lb/sq ft abs		High- pressure compres- sor- inlet total pres- sure, P2, lb/sq ft abs	High- pressure compres- sor- outlet total temper- ature, T ₃ , o _R	High- pressure compres- sor- outlet total pres- sure, P3, lb/sq ft abs		Low- pressure turbine- outlet total pres- sure, P6, lb/sq ft abs	Exhaust nozzle- inlet total temper- ature, Tg, OR	Exhaust nozzle- inlet total pres- sure, Pg, lb/sq ft abs	Tank static pres- sure, Ptank, lb/sq ft abs
1	0.652	7762	5085	566	1543	645	2658	1057	10,064	9246	3230	1689	3049	371
2	.635	7780	5245	563	1492	665	2628	1061	9,948	9136	3137	1672	2945	367
3	.540	6920	5255	441	923	560	1787	855	5,881	5354	1533	1167	1103	372
4	.533	7098	5434	434	891	562	1813	876	6,283	5712	1643	1242	1184	497
5	.532	7010	5322	440	907	561	1777	867	6,040	5494	1618	1220	1352	362
6	.532	7035	5327	440	906	562	1795	870	6,035	5492	1587	1217	1287	229
7	.531	7026	5317	440	905	561	1788	869	6,082	5530	1593	1222	1312	314
8	.530	7103	5444	436	892	561	1811	878	6,237	5688	1639	1247	1183	452
9	.527	7045	5395	440	899	563	1791	874	6,061	5526	1590	1225	1141	394
10	.527	7047	5337	441	901	563	1789	870	6,061	5521	1592	1223	1313	395
11	.516	7040	5371	441	881	564	1764	874	6,004	5466	1560	1217	1126	221
12	.503	7676	5221	440	858	543	1601	936	7,182	6668	2362	1717	2229	496
13	.492	7614	5218	447	856	550	1607	934	7,042	6533	2244	1648	2115	406
14	.491	7619	5206	447	855	549	1601	933	7,031	6506	2238	1645	2110	220
15	.487	7646	5235	448	850	553	1603	938	7,021	6491	2237	1650	2116	311
16	.462	7293	5166	411	718	519	1384	858	5,878	5434	1807	1463	1683	425
17	.458	6734	4520	423	741	503	1316	790	4,905	4492	1472	1219	1382	419
18	.443	7010	4950	419	708	519	1336	816	5,286	4858	1595	1313	1489	413
19	.432	6472	4358	432	719	509	1197	779	3,983	3618	1186	1129	1104	418
20	.431	7585	5090	510	892	614	1592	991	6,357	5869	2006	1620	1883	241
21 22 23 24 25	.430 .428 .426 .423	7604 7590 7605 7584 7612	5057 5049 5055 5040 5065	510 513 515 521 518	889 893 893 898 888	613 616 619 624 621	1590 1598 1596 1583 1583	992 994 997 1001 1001	6,416 6,360 6,371 6,289 6,338	5889 5862 5833 5795 5856	2027 2010 2007 1991 2007	1635 1617 1622 1622 1640	1911 1879 1886 1871 1881	222 293 362 455 409
26	.419	7602	5020	523	896	626	1585	1002	6,270	5774	1996	1647	1877	506
27	.412	7420	4810	504	840	595	1425	947	5,432	4995	1768	1559	1688	467
28	.404	7700	5133	503	821	614	1519	999	6,085	5630	1904	1615	1799	503
29	.393	7822	5565	498	788	623	1527	1017	6,272	5774	1889	1680	1758	459
30	.392	7183	4521	504	799	587	1306	927	4,842	4462	1617	1516	1535	484
31	.391	6944	4345	504	797	580	1259	897	4,367	4010	1448	1415	1375	486
32	.390	6670	4148	502	791	574	1208	863	3,883	3539	1278	1294	1214	473
33	.389	5467	3066	510	804	549	1017	730	2,219	1959	771	902	2739	487
34	.388	6373	3907	506	795	568	1156	831	3,410	3064	1108	1177	1053	476
35	.383	6039	3620	509	790	562	1091	790	2,870	2555	934	1041	887	468
36 37 38 39 40	.381 .377 .376 .376	7740 7784 7603 7580 7615	5130 5263 5510 5530 5538	564 564 565 564 564	897 889 886 885 882	669 679 695 693 695	1558 1597 1600 1596 1590	1053 1071 1055 1052 1056	5,956 5,984 5,319 5,279 5,307	5492 5518 4848 4806 4833	1891 1849 1471 1464 1467	1696 1685 1487 1477 1490	1774 1727 1330 1320 1330	243 237 514 412 451
41	.373	7786	5296	560	871	673	1566	1066	6,054	5579	1877	1707	1753	240
42	.370	7780	5211	565	873	675	1541	1064	5,911	5451	1858	1705	1740	242
43	.370	7600	5543	563	870	694	1568	1055	5,222	4749	1442	1482	1299	351
44	.369	7760	5188	569	878	680	1535	1070	5,753	5268	1788	1685	1667	236
45	.368	7580	5519	562	862	693	1554	1051	5,147	4685	1420	1476	1282	241
46	.367	7776	5206	569	874	680	1533	1070	5,778	5294	1786	1681	1675	230
47	.367	7820	5336	561	858	678	1559	1072	5,993	5525	1835	1688	1714	243
48	.358	7643	5554	563	842	694	1519	1057	5,116	4667	1422	1492	1287	298
49	.245	7717	5153	562	574	672	998	1062	3,708	3412	1154	1693	1080	216
50	.243	7750	5324	565	573	683	1005	1070	3,735	3428	1139	1678	1062	189
51 52 53 54 555	.176 .175 .173 .167	6610 6295 6960 7750 7733	4764 3913 4429 5478 5518	499 500 497 566 562	354 353 346 394 349	569 563 577 691 691	538 508 551 701 627	855 818 901 1082 1077	1,685 1,457 1,899 2,488 2,207	1533 1308 1737 2280 2020	550 469 627 737 642	1300 1170 1468 1658 1639	519 441 592 679 587	198 206 221 192 168

aUnchoked exhaust nozzle.

bCooling air on; measured thrust questionable.

TABLE I. - Concluded. PERFORMANCE OF AFTERBURNER CONFIGURATION A

(b) Concluded. Nonafterburning data

Engine- inlet air- flow, wa,1, lb/sec	High- pressure turbine- inlet airflow, wa,4' lb/sec	Exhaust- nozzle inlet airflow, wa,9, lb/sec	fuel flow,	Exhaust- nozzle inlet gas flow, wg,9, lb/sec	mented jet	Unaug- mented net thrust, FJ,N, 1b	Calcu- lated engine jet thrust, F _J , lb	nozzle velocity coeffi-	Exhaust- nozzle area, A _N , sq in.	Tailpipe total-pressure loss, P6 - P9	Run
178.34 175.72 120.62 125.72 122.38	170.43 166.94 116.08 121.70 117.69	175.88 173.29 118.95 123.99 120.69	9954 9756 4266 4910 4594	178.65 176.00 120.14 125.35 121.97	15,590 15,373 6,974 6,840 7,796	9464 8947 2856 3342 3605	15,980 15,626 7,208 7,075 8,048	0.976 .984 .968 .967 .969	701 717 1009 1009 896	0.056 .061 .280 .279 .164	1 2 3 4 5
122.37 122.46 125.27 122.70 122.30	117.69 117.77 120.87 118.01 117.62	120.68 120.77 123.55 121.01 120.61	4565 4594 4892 4622 4615	121.95 122.05 124.91 122.29 121.89	8,549 8,061 7,108 7,191 7,604	3652 3616 3364 3177 3598	8,760 8,289 7,384 7,458 7,788	.976 .972 .963 .964 .976	899 888 1009 1009 892	.189 .176 .278 .282 .175	6 7 8 9 10
120.48 129.36 127.57 127.96 127.16	116.13 124.64 122.56 122.95 122.17	118.82 127.58 125.81 126.19 125.41	4579 7967 7531 7538 7542	120.09 129.79 127.90 128.28 127.51	8,112 10,294 10,350 11,172 10,698	3278 6775 6329 6033 6135	8,478 10,672 10,599 11,494 11,018	.957 .965 .977 .972	1009 701 701 700 703	.278 .056 .057 .057	11 12 13 14 15
113.09 100.86 104.57 84.95 114.29	109.35 97.70 100.81 81.71 109.67	111.52 99.47 103.12 83.78 112.72	5713 3942 4612 2801 6343	113.11 100.56 104.40 84.55 114.48	7,963 6,165 6,875 4,605 9,822	5048 3427 4123 2325 4982	8,319 6,397 7,085 4,768 9,817	.957 .964 .970 .966	721 721 721 716 701	.066 .061 .066 .069	16 17 18 19 20
115.05 114.47 114.45 112.23 113.02	110.40 109.84 109.83 107.69 108.42	113.46 112.89 112.87 110.68 111.46	6448 6350 6365 6214 6350	115.25 114.65 114.64 112.41 113.22	9,973 9,571 9,246 8,584 8,981	5001 4989 5037 4916 5079	10,041 9,586 9,287 8,672 8,998	.979 .984 .981 .975 .983	968 700 699 700 699	.057 .065 .060 .060	21 22 23 24 25
111.95 99.55 109.26 110.18 90.15	107.59 95.70 105.86 106.29 86.37	110.41 98.17 107.75 108.66 88.91	6235 5195 6214 6415 4536	112.14 99.62 109.48 110.44 90.17	8,339 7,192 8,053 8,285 6,153	4952 4201 5035 5354 3635	8,491 7,389 8,243 8,646 6,331	.968 .973 .977 .958 .972	698 663 709 731 655	.060 .045 .055 .069 .052	26 27 28 29 30
83.84 78.02 52.42 69.98 61.90	80.41 74.93 50.21 67.09 59.39	82.69 76.94 51.69 69.02 61.05	3776 3020 972 2293 1627	83.73 77.78 51.96 69.65 61.50	5,333 4,485 1,749 3,588 2,700	3002 2384 275 1606 925	5,450 4,639 1,815 3,678 2,768	.979 .967 .963 .975	655 655 655 655 655	.051 .050 .041 .050	31 32 33 34 35
104.42 106.83 97.33 97.03 96.55	100.15 102.45 93.40 93.11 92.64	102.98 105.36 95.99 95.69 95.22	5432 5944 4475 4428 4482	104.65 107.01 97.23 96.92 96.46	9,079 9,041 6,085 6,536 6,416	4431 4266 3093 3058 3153	9,253 9,426 6,252 6,740 6,545	.981 .959 .973 .970 .980	694 723 790 790 790	.062 .066 .096 .098 .093	36 37 38 39 40
105.79 102.78 95.14 100.74 94.52	101.47 98.65 91.26 96.93 90.69	104.33 101.36 93.82 99.35 93.22	6156 5989 4410 9263 4316	106.04 103.03 95.05 100.92 94.41	9,198 8,941 6,825 8,594 7,263	4527 4392 3155 4080 3100	9,413 9,117 6,914 8,858 7,421	.977 .981 .987 .970	710 703 790 717 790	.066 .064 .099 .068	41 42 43 44 45
101.17 104.75 92.66 65.19 65.46	97.23 100.37 88.84 62.48 62.79	99.78 103.30 91.39 64.29 64.55	5692 6048 4416 3701 3690	101.36 104.98 92.61 65.32 65.56	8,717 9,052 6,952 5,328 5,376	4157 4457 3172 2736 2633	8,920 9,223 7,021 5,448 5,554	.977 .982 .990 .978 .968	713 738 790 712 734	.062 .066 .095 .064 .068	46 47 48 49 50
33.25 30.02 36.16 43.71 38.61	31.87 28.55 34.71 41.88 36.99	32.79 29.61 35.66 43.10 38.08	1328 1004 1728 2412 2009	33.16 29.88 36.14 43.77 38.77	1,925 1,496 2,254 3,238 2,796	937 632 1302 1710 1444	2,000 1,547 2,343 3,332 2,911	.962 .967 .962 .972 .961	655 655 655 759 763	.057 .059 .055 .079	51 52 53 54 a55

aCooling air on; measured thrust questionable.

TABLE II. - PERFORMANCE OF AFTERBURNER CONFIGURATION B

(a) Afterburning data

	Engine- inlet Reynolds number index, ReI	High- pressure compres- sor rotor speed, NHP, rpm	Low- pressure compres- sor rotor speed, NLP, rpm	Engine- inlet total temper- ature, T ₁ , o _R	Engine- inlet total pres- sure, P1, lb/sq ft abs	High- pressure compres- sor- inlet total temper- ature, T2, OR	High- pressure compres- sor- inlet total pres- sure, P2, lb/sq ft abs	High- pressure compres- sor- outlet total temper- ature, T3, OR	High- pressure compres- sor- outlet total pres- sure, P3, lb/sq ft abs	High- pressure turbine- inlet total pres- sure, P4, lb/sq ft abs	Low- pressure turbine- outlet total temper- ature, T ₆ , O _R	Low- pressure turbine- outlet total pres- sure, P6, lb/sq ft abs	Exhaust nozzle- inlet total pres- sure, Pg, lb/sq ft abs	Tank static pres- sure, ptank' lb/sq ft abs
1	0.639	7810	5460	571	1527	694	2860	1082	10,399	9448	1672	3079	2740	408
2	.641	7786	5348	570	1530	688	2824	1077	10,329	9372	1690	3120	2805	393
3	.640	7812	5486	570	1528	695	2847	1085	10,314	9364	1668	3064	2773	400
4	.635	7808	5412	574	1529	694	2820	1083	10,217	9291	1684	3076	2811	395
5	.648	7790	5422	569	1542	691	2867	1079	10,419	9453	1671	3112	2854	407
6	.509	7800	5450	576	1231	701	2271	1090	8,200	7468	1663	2451	2190	417
7	.504	7782	5406	583	1237	705	2251	1093	7,952	7233	1705	2363	2111	429
8	.503	7788	5456	583	1236	708	2272	1095	7,992	7258	1661	2339	2088	452
9	.514	7818	5449	571	1229	694	2288	1086	8,331	7584	1688	2481	2258	421
10	.508	7803	5463	578	1234	702	2280	1092	8,182	7450	1673	2403	2204	456
11	.515	7788	5391	571	1233	692	2273	1082	8,268	7538	1687	2485	2301	436
12	.517	7787	5405	571	1236	693	2277	1084	8,251	7515	1683	2473	2291	444
13	.516	7794	5393	573	1241	694	2284	1085	8,242	7499	1685	2474	2297	446
14	.364	7788	5434	573	874	695	1613	1086	5,821	5312	1689	1738	1559	220
15	.361	7793	5416	574	870	696	1602	1086	5,808	5307	1700	1744	1588	253
16	.364	7777	5358	573	875	693	1597	1082	5,815	5307	1700	1751	1607	246
17	.359	7817	5445	574	865	698	1603	1089	5,792	5289	1695	1724	1585	242
18	.364	7783	5435	574	876	692	1597	1083	5,813	5305	1703	1753	1627	242
19	.294	7814	5631	573	706	704	1317	1099	4,660	4234	1665	1348	1211	374
20	.293	7823	5600	571	702	702	1315	1100	4,680	4263	1670	1352	1230	380
21	.294	7796	5615	571	704	703	1325	1093	4,643	4215	1652	1326	1206	378
22	.297	7798	5585	569	707	699	1328	1091	4,696	4275	1663	1348	1228	379
23	.297	7794	5583	569	707	699	1323	1088	4,691	4258	1661	1352	1239	380
a ₂₄	.240	7784	5546	570	572	699	1061	1086	3,742	3398	1670	1084	967	177
a ₂₅	.241	7780	5525	570	574	696	1066	1085	3,766	3434	1683	1098	978	154
a26	.239	7789	5541	571	571	698	1062	1089	3,750	3412	1684	1088	980	182
b27	.239	7807	5497	570	570	694	1056	1088	3,793	3459	1726	1116	1008	157
a28	.240	7787	5525	569	572	696	1064	1087	3,776	3446	1681	1099	998	180
a29	.241	7794	5705	569	573	706	1081	1093	3,748	3400	1655	1058	954	184
a30	.239	7796	5537	571	572	698	1063	1089	3,773	3434	1684	1099	1001	186
a31 b32 a33 c34 c35	.241 .239 .240 .239 .238	7787 7790 7787 7803 7810	5683 5509 5517 5539 5572	570 571 570 571 571	575 571 572 572 572 570	705 698 698 699 700	1082 1056 1058 1062 1060	1092 1089 1088 1091 1092	3,750 3,759 3,756 3,757 3,763	3408 3426 3431 3423 3432	1658 1681 1683 1681 1691	1062 1093 1092 1098 1090	960 995 999 1002 995	184 183 189 186 185
d36 d37 d38 d39 d40 d41 d42	.169 .169 .169 .169 .169 .169	7810 7776 7787 7777 7783 7786 7784	5679 5657 5682 5680 5687 5675 5612	564 564 563 563 563 564	398 399 398 397 398 398 398	698 698 699 698 698 697 695	756 749 750 748 754 750 746	1094 1089 1092 1091 1091 1092 1090	2,646 2,607 2,627 2,617 2,632 2,621 2,631	2415 2370 2396 2384 2397 2388 2402	1697 1673 1683 1678 1681 1687 1697	761 745 750 744 749 749 756	680 666 671 668 674 677 686	224 222 224 222 226 227 226

aInner ring only lighted.
bOuter ring mostly unlighted.
cBoth rings lighted.

dQuestionable combustion stability.

TABLE II. - Continued. PERFORMANCE OF AFTERBURNER CONFIGURATION B

(a) Concluded. Afterburning data

Engine- inlet air- flow, wa,1, lb/sec	High pressure turbine- inlet airflow, wa,4' lb/sec		Engine fuel flow, Wf,e' lb/hr	After- burner fuel flow, Wf,AB, lb/hr	Exhaust- nozzle inlet gas flow, wg,9, lb/sec	equiv-	mented jet thrust,	FAB,n,	Calcu- lated after- burner total temper- ature, T9,AB' OR	Exhaust- nozzle area, A _N , sq in.	After- burner effi- ciency, η_{AB}	Tailpipe total-pressure loss, P6 - P9 P6	After-burner total-temper-ature, ratio, T, AB T6	Run
181.95 180.80 181.23 179.59 182.76	174.47 173.57 174.18 172.88 174.82	179.44 178.30 178.73 177.11 180.24	9918 9943 9770 9770 9911	14,418 12,899 10,865 9,961 8,950	186.20 184.65 184.46 182.59 185.48	0.434 .388 .325 .300 .268	20,070 19,981 19,195 18,725 18,494	11,887 11,777 11,010 10,560 10,266	2674 2652 2474 2391 2271	980 945 943 914 885	0.758 .820 .794 .753 .709	0.110 .101 .095 .086 .083	1.559 1.569 1.483 1.420 1.350	1 2 3 4 5
142.91 138.56 139.59 145.20 142.44	137.12 132.91 133.48 139.62 135.52	140.94 136.65 137.66 143.20 140.48	7888 7488 7463 8006 7697	11,297 10,649 10,264 8,690 7,103	146.27 141.69 142.58 147.84 144.59	.437 .412 .401 .328 .275	15,362 14,636 14,358 14,916 13,690	9,371 8,841 8,641 8,877 7,905	2735 2712 2645 2512 2306	1006 977 981 932 907	.808 .816 .798 .820 .735	.107 .107 .107 .090 .083	1.645 1.591 1.592 1.488 1.378	6 7 8 9 10
143.98 144.43 144.34 101.60 100.76	138.73 139.49 139.61 97.94 96.81	142.00 142.44 142.35 100.20 99.37	7862 7877 7891 5670 5699	5,486 4,637 3,636 8,698 7,484	145.71 145.92 145.55 104.19 103.03	.206 .173 .136 .471 .412	13,315 12,937 12,520 11,259 10,756	7,400 7,038 6,618 6,613 6,323	2084 1979 1867 2645 2557	823 805 773 981 941	.602 .538 .412 .669 .682	.074 .074 .071 .103	1.235 1.176 1.108 1.566 1.504	11 12 13 14 15
100.93 100.74 100.66 80.70 80.58	97.52 97.62 97.65 78.24 78.25	99.53 99.35 99.27 79.59 79.47	5706 5663 5699 4345 4406	6,073 4,601 2,934 5,872 4,403	102.80 102.20 101.67 82.43 81.92	.330 .252 .163 .392 .297	10,431 9,927 9,382 7,421 6,957	5,951 5,441 4,883 4,741 4,326	2392 2195 1976 2553 2278	893 856 771 1005 929	.679 .631 .521 .737 .653	.082 .081 .072 .102	1.407 1.295 1.160 1.533 1.364	16 17 18 19 20
80.68 81.73 81.46 64.98 65.49	78.20 78.91 78.78 62.51 63.59	79.57 80.60 80.33 64.08 64.59	4313 4464 4388 3586 3614	3,208 2,160 2,038 7,992 7,373	81.66 82.44 82.14 67.30 67.64	.216 .147 .136 .673 .613	6,554 6,407 6,273 6,739 6,944	3,902 3,723 3,606 3.940 4,005	2058 1913 1845 2449 2460	876 825 801 971 977	.569 .524 .412 .373 .413	.091 .090 .083 .108	1.246 1.150 1.111 1.466 1.462	21 22 23 824 ⁸ 25
64.87 65.20 65.29 64.94 65.13	62.53 63.26 62.58 62.98 62.87	63.98 64.30 64.39 64.04 64.23	3550 3722 3665 3532 3661	6,570 5,929 5,670 4,612 4,453	66.79 66.98 66.98 66.30 66.48	.549 .499 .482 .387 .379	6,569 6,906 6,411 5,987 6,175	3,801 4,000 3,623 3,228 3,415	2381 2476 2239 2045 2131	935 927 921 885 874	.408 .493 .367 .310	.099 .096 .092 .098 .089	1.414 1.435 1.332 1.236 1.265	a ₂₆ b ₂₇ a ₂₈ a ₂₉ a ₃₀
64.91 64.83 64.69 65.03 65.07	63.03 62.85 62.57 62.99 62.83	64.02 63.94 63.80 64.13 64.17	3427 3618 3647 3658 3643	3,366 3,265 3,031 2,448 2,002	65.91 65.85 65.66 65.83 65.74	.274 .279 .262 .214 .171	5,718 6,123 5,848 6,049 5,916	2,954 3,364 3,123 3,296 3,158	1889 2133 1977 2091 2008	843 876 837 857 844	.259 .509 .348 .603	.096 .090 .086 .088	1.139 1.269 1.175 1.237 1.187	a ₃₁ b ₃₂ a ₃₃ c ₃₄ c ₃₅
45.50 44.83 45.23 44.79 45.21 45.21 45.19	44.10 43.55 43.91 43.47 43.88 43.87 45.88	44.87 44.21 44.61 44.17 44.58 44.58	2599 2509 2527 2466 2549 2520 2538	8,010 7,092 5,908 4,907 4,140 3,348 2,329	47.82 46.88 46.95 46.22 46.44 46.21 45.91	.967 .865 .713 .594 .422 .403 .282	3,892 3,839 3,817 3,681 3,654 3,639 3,623	2,459 2,412 2,395 2,266 2,244 2,230 2,210	2174 2218 2195 2106 2096 2071 2059	948 952 940 936 904 892 860	.151 .199 .229 .224 .310 .303 .401	.106 .105 .105 .102 .100 .097	1.281 1.326 1.304 1.255 1.247 1.228 1.213	d36 d37 d38 d39 d40 d41 d42

aInner ring only lighted.
bOuter ring mostly unlighted.
cBoth rings lighted.

dQuestionable combustion stability.

TABLE II. - Continued. PERFORMANCE OF AFTERBURNER CONFIGURATION B

(b) Nonafterburning data

Run	Engine- inlet Reynolds number index, ReI	High- pressure compres- sor rotor speed, NHP, rpm	Low- pressure compres- sor rotor speed, NLP, rpm	Engine- inlet total temper- ature, Tl' OR	Engine- inlet total pres- sure, P1, lb/sq ft abs		High- pressure compres- sor- inlet total pres- sure, P2, lb/sq ft abs	High- pressure compres- sor- outlet total temper- ature, T3, OR	High- pressure compres- sor- outlet total pres- sure, P3, lb/sq ft abs	High- pressure turbine- inlet total pres- sure, P4, lb/sq ft abs	Low- pressure turbine- turbine- total pres- sure, P6, lb/sq ft abs		inlet total	Tank static pres- sure, ptank, lb/sq ft abs
1 2 3 4	0.641 .515 .425 .365	7793 7790 6950 7768	5365 5403 4880 5401	570 573 436 572	1529 1238 716 875	688 694 532 692	2829 2282 1360 1615	1078 1084 851 1080	8254 5080 5832	7526 4646 5316	3124 2470 1494 1743	1684 1672 1333 1678	2916 2296 1389 1622	424 450 415 246 380
5 6 7 8 9	.293 .239 .238 .168 .381 .379	7806 7784 7810 7816 7784 7604	5570 5539 5510 5711 5242 5148	573 574 570 566 699 696	705 575 569 396 1174 1162	701 701 703 702 816 807	1307 1066 1070 753 1899 1843	1096 1091 1088 1097 1192 1167	4662 3757 3777 2652 5791 5330	4255 3412 3441 2418 5204 4777	1356 1092 1084 758 1728 1575	1668 1678 1681 1695 1678 1592	1252 1008 997 695 1614 1464	184 165 209 379 411
11 12 13 14 15 16	.383 .379 .375 .382 .403 .386	7420 7210 7000 6977 7580 7600 7625	4997 4823 4685 4630 5035 5054 5051	696 696 696 696 758 784 806	1174 1163 1150 1171 1371 1370 1375	802 794 791 787 867 893 907	1810 1747 1672 1698 2060 2029 2030	1140 1114 1090 1079 1217 1249	4982 4538 4093 4139 5478 5299 5243	4443 4026 3606 3641 4880 4714 4663	1454 1312 1175 1190 1625 1584 1561	1500 1405 1302 1282 1564 1591 1582	1354 1218 1093 1108 1517 1482 1460	396 391 358 366 389 392 381

COMPTDENTIAL

TABLE II. - Concluded. PERFORMANCE OF AFTERBURNER CONFIGURATION B

(b) Concluded. Nonafterburning data

Engine- inlet air- flow, Wa,1' lb/sec	High- pressure turbine- inlet airflow, wa,4' lb/sec	Exhaust- nozzle inlet airflow, wa,9, lb/sec	Engine fuel flow, Wf,e' lb/hr	Exhaust- nozzle inlet gas flow, wg,9' lb/sec	Unaug- mented jet thrust, F _J , lb	Unaug- mented net thrust, FJ,N,	Calcu- lated engine jet thrust, F _J , lb	Exhaust- nozzle velocity coeffi- cient, Cve	Exhaust- nozzle area, ^A N, sq in.	Tailpipe total-pressure loss, P ₆ - P ₉	
181.04 143.74 99.99 101.32 80.61	176.04 136.15 96.57 96.82 77.67	178.54 141.76 98.61 99.92 79.50	9961 7837 4298 5652 4428	181.31 143.94 99.80 101.49 80.73	15,552 11,702 6,446 8,463 5,879	10,708 5,850 3,748 3,969 3,236	15,852 11,977 6,673 8,810 6,032	0.975 .977 .966 .961 .975	723 736 738 725 758	0.067 .071 .070 .070	1 2 3 4 5
64.65 65.33 45.10 98.91 93.51	61.67 63.13 43.71 94.53 90.03	63.76 64.43 44.47 97.55 92.22	3590 3640 2569 4892 4162	64.76 65.44 45.18 98.91 93.38	5,304 5,431 3,298 7,828 6,770	2,542 2,564 1,804 3,180 2,527	5,468 5,612 3,412 7,939 6,965	.970 .968 .967 .986	749 739 766 720 727	.076 .081 .084 .066	6 7 8 9 10
89.49 83.94 77.57 78.93 96.36 92.05 90.64	86.20 80.96 74.80 75.95 92.38 88.75 87.53	88.26 82.78 76.50 77.84 95.03 90.78 89.39	3571 2912 2354 2311 3942 3766 3686	89.25 83.59 77.15 78.48 96.13 91.83 90.41	6,209 5,435 4,863 4,876 7,101 6,790 6,737	2,078 1,555 1,182 1,134 2,187 2,029 1,939	6,380 5,610 4,944 4,976 7,286 6,962 6,861	.973 .969 .984 .980 .975 .975	719 723 742 724 722 722 721	.069 .071 .069 .070 .066 .065	11 12 13 14 15 16 17

CONFIDENTIAL

Figure 1. - Iroquois turbojet engine and afterburner installed in altitude test chamber.

Figure 2. - Schematic diagram of basic afterburner showing location of various components. (All dimensions in inches.)

	Tube	Wall	Number	Orifice	Fuel
Ring	diameter,	thickness,	of	diameter,	flow,
	in.	in.	orifices	in.	percent
Upstream	1	0.095	138(69 pr)	0.024-0.025	45.3
Outer	7/8	.095	70	.032034	41.0
Inner	5/8	.072	60	.020021	13.7

	Tube	Wall		Number	Orifice	Fuel
Ring	diameter,	thickness,	Orifice	of	diameter,	flow
	in.	in.		orifices	in.	percent
Upstream	1	0.095	1	70	0.027-0.028	26.6
Outer	7/8	.095	2	3 5	.031032	17.6
			1	35	.023024	9.7
			2	3 5	.023024	9.7
Inner	5/8	.072	3	70	.024025	21.8
			1	40	.018019	6.5
			2	40	.020021	8.1

Figure 3. - Schematic diagram showing differences in fuel injector rings for configurations A and B.

Figure 4. - Iroquois afterburner looking upstream.

CONFIDENTIAL

Afterburner-inlet velocity, ft/sec

(b) Configuration B.

Figure 5. - Afterburner-inlet velocity over pressure range investigated. Engines at rated conditions; nonafterburning data.

(a) Configuration B. Average afterburner-inlet total pressure, $P_{6,av}$, 3124 pounds per square foot absolute; high-pressure engine speed, $N_{\rm HD}$, 7793 rpm; afterburner-inlet total temperature, T_6 , 1684 R; Reynolds number index, 0.64.

(b) Configuration A. Average afterburner-inlet total pressure, $P_{6,av}$, 3137 pounds per square foot absolute; high-pressure engine speed, N_{HP} , 7780 rpm; afterburner-inlet total temperature, T_{6} , 1672° R; Reynolds number index, 0.64.

(c) Configuration B. Average afterburner-inlet total pressure, $P_{6,av}$, 758 pounds per square foot absolute; high-pressure engine speed, N_{HP} , 7816 rpm; afterburner-inlet total temperature, T_6 , 1695 R; Reynolds number index, 0.17.

(d) Configuration A. Average afterburner-inlet total pressure, P_{6,av}, 737 pounds per square foot absolute; high-pressure engine speed, N_{HP}, 7750 rpm; afterburner-inlet total temperature, T₆, 1658 R; Reynolds number index, 0.17.

Figure 6. - Afterburner-inlet total-pressure profiles (station 6). Nonafterburning data.

Figure 7. - Combustion performance of afterburner over a range of afterburner-inlet total pressures.

CONFIDENTIAL

Figure 7. - Concluded. Combustion performance of afterburner over a range of afterburner-inlet total pressures.

CONFIDENTIAL.

Figure 8. - Comparison of combustion efficiencies for afterburner configurations ${\bf A}$ and ${\bf B}$.

Figure 9. - Calculated performance for configurations A and B. Altitude, 50,400 feet; flight Mach number, 1.5.

'AL

Figure 10. - Afterburner operational limits. Configurations A and B; flight Mach number, 1.5.

Restriction/ CONClassification Cancelled

ALTITUDE PERFORMANCE OF THE AFTERBURNER ON THE

IROQUOIS TURBOJET ENGINE

COORD. NO. AF-P-6

By Donald E. Groesbeck and Daniel J. Peters

ABSTRACT

The performance and operational characteristics of two afterburner configurations for the Iroquois turbojet engine were evaluated over a range of afterburner equivalence ratios at afterburner-inlet pressures from 733 to 3186 pounds per square foot absolute. At a flight Mach number of 1.5, these pressures correspond to an altitude range of 38,700 to 66,800 feet. Peak efficiencies of 0.80 to 0.85 for both configurations were reached at an afterburner-inlet pressure of approximately 3100 pounds per square foot absolute and at equivalence ratios of 0.35 to 0.40. Reduction in afterburner-inlet pressure severely affected combustion efficiency.

INDEX HEADING

Turbines, Gas - Afterburning

3.3.2.2

Restriction/Classification Cancelled

CONTINUTAVE

Restriction/Classification Cancelled

NACA RM E58GO1

ALTITUDE PERFORMANCE OF THE AFTERBURNER ON THE IROQUOIS TURBOJET ENGINE

Donald E. Groesbeck

Daniel J. Peters

Approved:

Bruce T. Lundin

Par 1 Luden

Chief

Propulsion Systems Division

sks-7/7/58