

Noise Reduction (NR1/NR2/HFG/SWNR/SWCCR)

Index

- Support Chip
- What is Noise Reduction
- How to Do Noise Reduction
- Block Diagram
- Function
 - LPF
 - Adaptive LPF
 - Corner Noise Reduction
 - Blender
 - BPC
 - HFG
 - SWNR (Low frequency chroma noise)
- Parameter Table

Support Chip

MT6771

What is Noise Reduction

A function to remove noise and preserve edge while removing noise.

Before Noise Reduction

After Noise Reduction

How to do Noise Reduction(NR)

Use Low-pass Filter(LPF) to reduce noise.

Adjust LPF strength according to content of image to keep edge.

We use the information listed below to keep edge.

1. Brightness Difference Information

Apply weak NR strength if the brightness difference is too high.

Strong NR strength Middle NR strength Weak NR strength

STD = 73

2. Standard Deviation(STD) Information STD ↑ ⇒ Noise Level ↑ ⇒ NR strength 1

ACT = 26

3. Activity(ACT) Information

Activity

 □ Edge confidence

NR strength

4. Position Information

Distance from center

Noise Level ↑ → NR strength

What issue might meet

Impulse Noise

BPC

Corner Noise

corner center

Luma Noise

Adaptive LPF

Detail Lost

Blender

Color Noise

Adaptive LPF(PTC)

Adaptive LPF(C DIFF)

Low Frequency Color Noise

Fast SWNR

Dirty Edge

LPF

Block Diagram

LPF

-Remove noise without considering edge-Make edge more smooth

BPC

-Remove dot and impulse noise

Adaptive LPF

-Remove noise and preserve edge

Blender

-Add detail back to adaptive LPF output

Post NR

-Reduce low frequency chroma noise

NR1 UI Introduction

NR2 UI Introduction

NBC2 ABF			
Global		SL2 Link	
ANR2 ENY	J	SL2 X1	64
ANR2 ENC	✓	SL2 X2	128
SCALE MODE	0	SL2 X3	192
PTC Strength [U+V]	3	SL2 GAINO	16
PTC1	2	SL2 GAIN1	20
PTC2) 3	SL2 GAIN2	24
PTC3	4	SL2 GAIN3	32
PTC4	6	SL2 SP3	16
Median Filter CANR Mods			
LCL TH	32	C L DIFF TH	24
LCL LV	16	C SM EDGE	1
NCL TH	48	Activity Map	
NCL LV	16	ACT BLD BASE C	48

HFG UI Introduction

CONFIDENTIAL B

NR1 LPF(Low Pass Filter)

- Target
 - Remove noise without considering edge
 - Make edge more smooth

NR1 LPF(Low Pass Filter)

YANR Mods
CEN GAIN HI TH 0
CEN GAIN LO TH 0
CEN GAIN HI TH LF 0
CEN GAIN LO TH LF 0

Range is from 0~16

16 → Edge would be more smooth

0 Edge would be less smooth

Suggestion: Four registers are usually the same. At least HI TH should be larger than LO TH.

Adaptive LPF

Remove noise and preserve edge

Adaptive LPF – Edge Preserve NR

YNR Strength	
L0 std	16
L1 std	16
L2 std	16
L3 std	8
Y SLOPE H TH	4
Y SLOPE V TH	5
CNR Strength	
PTC1	2
PTC2	4
PTC3	6
PTC4	8

```
L0 std ↑ → Less high-f detail
```

L1 std ↑ → Less middle high-f detail

L2 std ↑ → Less middle-f detail

L3 std ↑ → Less low-f detail

Y SLOPE H TH ↑ → More smooth edge Y SLOPE V TH = Y SLOPE H TH * 1.25

```
PTC↑ → Less chroma noise
PTC1 = PTC2/2 = PTC3/3 = PTC4/4
```

Adaptive LPF – Luma Preserve NR

Luma LUT	
Y CPX1	64
Y CPX2	128
Y CPX3	192
Y CPX4	255
Y CPX5	255
Y CPX6	255
Y CPX7	255
Y CPX8	255
Y SCALE CPY0	15
Y SCALE CPY1	16
Y SCALE CPY2	16
Y SCALE CPY3	12
Y SCALE CPY4	8
Y SCALE CPY5	8
Y SCALE CPY6	8
Y SCALE CPY7	8
Y SCALE CPY8	8
Y SCALE SP8	3

Y CPX1~8: X axis of luma dependent NR

0: Pure dark value

255: Pure white value

Y SCALE CPY0~8: Y axis of luma dependent NR

16: Strongest NR

0: Weakest NR

Y SCALE CPYO is the NR strength corresponding to X = 0

Y SCALE CPY1 is the NR strength corresponding to X = Y CPX1

...

Y SCALE CPY8 is the NR strength corresponding to X = Y CPX8

Adaptive LPF – LCE NR LINK

Goal: Increase the NR strength of the region with large LCE gain

Enable bit

Enable: Enable FW simulation (should read NVRAM)

The larger value is, the stronger the NR strength is

Corner Noise Reduction

SL2 Link SL2 LINK	
SL2 X1	64
SL2 X2	128
SL2 X3	192
SL2 GAIN0	16
SL2 GAIN1	20
SL2 GAIN2	24
SL2 GAIN3	28
SL2 SP3	8

SL2 GAIN0~3: NR strength from center to boundary

1x NR strength = 16

2x NR strength = 32

Color bleeding

C L DIFF TH = 0: No bleeding, almost no chroma NR

C L DIFF TH = 255: More bleeding, stronger NR

Suggestion: its range from 24 (low ISO) to 100 (highest ISO)

C SM EDGE = 0, less bleeding

C SM EDGE = 1, more bleeding

Suggestion: its range from 0 or 1 (low ISO) to 1 (middle/high ISO)

Blender

Y HF ACT X1~4: X axis of activity dependent blender

0: Smooth region

255: Strong edge

Y HF ACT Y1~4: Y axis of activity dependent blender (Blending ratio between adaptive LPF output and

original NR1 input)

0 to 64: Clean to dirty

Y LO HF W 👚 : Increase high-f detail

Y L1 HF W 1: Increase middle high-f detail

YL2 HF W 1: Increase middle-f detail

Y L3 HF W 🛖: Increase low-f detail

ACT BLD BASE : Reduce chroma noise

0 to 64: Dirty to clean

BPC (Bad Pixel Correction)

- Target
 - Remove dot and impulse noise

BPC (Bad Pixel Correction)

- 1 Set "LCL LV/NCL LV" to maximum 16.
- 2 Increase "LCL TH", until all impulse noise are disappear. (Set NCL TH = LCL TH + 16)
- Decrease "LCL LV/NCL LV" to make impulse noise and detail balance.

HFG – Add High-Freq Detail

SWNR/SWCCR

SWNR: Remove low-f noise

Strength

: Less chroma noise

SW CCR

- Step 1: Enable CCR/UVGAIN_MODE
- Step 2: Set the chroma reduction bar to appropriate value
 - Weak → strong

MEDIATEK

everyday genius

Copyright © MediaTek Inc. All rights reserved.