

Working Title

Max Paulus

Introduction I

Given a set input $X = \{X_i\}_{i=1}^n$ and an associated target $Y \in \mathbb{R}^d$, jointly learn a determinantal point process $\mathbb{P}_L(\mathcal{A})$, where \mathcal{A} indexes subsets of X and a function $g: 2^X \to \mathbb{R}^d$, such that $\hat{Y} = g(\mathcal{A})$ and $\operatorname{cost} = \operatorname{cost}(Y, \hat{Y})$ is minimized.

Architecture

- Kernel Network: $L = VV^{\top}$, where $V_{i,\cdot} = f_{\theta}(X_i, \overline{X})$
- Prediction Network: $\hat{Y} = g(\overline{X}_{\mathcal{A}})$, where $\mathcal{A} \subseteq X$
- Sampling: Use SVD of V to compute eigenvalues and -vectors of L.

Gradient Derivation

Let θ parameterise the kernel network, such that $K = f_{\theta}(X)$ and let $L = KK^{\top}$ parameterise the DPP. The policy gradient is given by:

$$\nabla_{\theta} \mathbb{E}_{L}[\text{cost}] = \mathbb{E}_{L}[\nabla_{\theta} \log(\mathbb{P}(A)) \times \text{cost}]$$
 (1)

We need $\nabla_V \log(\mathbb{P}(A))$ [1]:

$$\nabla_V \log(\mathbb{P}(\mathcal{A})) = \nabla_V \log \det(L_{\mathcal{A}}) - \nabla_V \log \det(L + I)$$
$$= 2 \times L_{\mathcal{A}}^{-1} K - 2 \times (I_n - K(I_d - + K^\top K)^{-1} K^\top)$$

Why good?

 The dimension of L_A and (I_d − +K^TK)⁻¹) do not depend on ground set size, can be computed even for large sets.

Controlling the Variance

VIMCO [3] is a **state-of-the-art leave-one-out control variate** for multi-sample MC objectives. Can also be (ab)used for additive decomposable loss function and provide high-quality baseline:

$$cost(\mathcal{A}_i) \to cost(\mathcal{A}_i) - \frac{1}{n-1} \sum_{i} cost(\mathcal{A}_i)$$
 (2)

Why good?

- Unbiased
- No extra parameters
- Credit assignment (preserved)
- Loss scaling

Controlling Sparsity

Given $L = KK^{\top}$ and $K = USV^{\top}$, $\mathbb{E}[|A|]$ of a sampled subset A is [2]:

$$\mathbb{E}[|\mathcal{A}|] = \operatorname{Tr}(L(L+I)^{-1})$$
$$= \sum_{i=1}^{n} \frac{S_i^2}{S_i^2 + 1}$$

Why bother?

- Naive: Regularise subset size of samples directly through REINFORCE
- Using above: Expectation is tractable; backpropagation through singular values, reduces variance and increases quality of learning signal for policy gradient.

Learning a k-DPP - Set-Up

- Task: Given sets of size 40 with each member drawn from one of 10 clusters, learn a 10-DPP that always selects one and only one member from each cluster. Cluster means $\in \mathcal{Z}_{1-50.501}^{50}$
- Loss: Use direct supervision on returned subset and a high-quality learning signal: (#missed + #oversampled)²
- **Network:** Uses only a 2-hidden layer kernel network with dimensions [100, 500, 500, 100]
- **Training:** Iterations: 10k, Batchsize: 10, Learning rate: 1⁻⁵, Samples: 4, Optimizer: ADAM

Learning a k-DPP - Results I

Learning a k-DPP - Results II

	learnt DPP	random benchmark
Loss	0.03	52.46
Clusters missed	0.08%	34.42%
Clusters oversampled	0.21%	26.60%
Mean(Subset Size)	10.01	10.06
Var(Subset Size)	0.03	7.52
Perfect Cluster returned	97.2%	0.0%

Outlook

Architecture

- Separate quality and diversity models in kernel network
- Explore successful application of Deep Set architecture

Training

- Alternative sampling distribution to increase exploration (marginals?)
- Could explore loss-scale invariant signal through suitable transformation
- Demonstrate superiority of control variate and regularization

Applications

- Multi-Sentiment Prediction?
- Similar Question Retrieval?
- Recommender Systems?

M. Gartrell, U. Paquet, and N. Koenigstein.

Low-Rank Factorization of Determinantal Point Processes for Recommendation.

ArXiv e-prints, February 2016.

Alex Kulesza.

Learning with Determinantal Point Processes.

PhD thesis, University of Pennsylvania, 2012.

Andriy Mnih and Danilo Jimenez Rezende.

Variational inference for monte carlo objectives.

CoRR, abs/1602.06725, 2016.