MTAT.07.003 Cryptology II Spring 2012 / Exercise session ?? / Example Solution

Exercise (Analysis of combiner constructions). Let \mathbb{G} be a finite q-element group such that all elements $y \in \mathbb{G}$ can be expressed as powers of $g \in \mathbb{G}$. Let \mathbb{B} be a discrete logarithm finder that uses algorithm \mathbb{A} five times to get inputs for aggregating algorithm \mathbb{C}

$$\mathcal{B}(y)$$

$$\begin{bmatrix} x_1 \leftarrow \mathcal{A}(y), \dots, x_5 \leftarrow \mathcal{A}(y) \\ return \ \mathcal{C}(x_1, \dots, x_5) \end{bmatrix}$$

The construction guarantees that \mathbb{C} succeeds in finding the discrete logarithm of y if all x_i are correct. Find the $\mathsf{Adv}^{\mathsf{dl}}_{\mathbb{G}}(\mathbb{B})$ if $\Pr[y \leftarrow \mathbb{G} : \text{the output of } \mathcal{A}(y) \text{ is correct}] = \varepsilon$.

Solution. Denote by X the random variable, which is equal to 1 is A(y) returns the correct answer, otherwise is 0. $E_y[X] = \Pr[y \leftarrow \mathbb{G} : \text{ the output of } \mathcal{A}(y) \text{ is correct}] = \varepsilon$. In order for \mathcal{B} to succeed, all five instances must return correct answers, therefore

$$\mathsf{Adv}^{\mathsf{dI}}_{\mathbb{G}}(\mathfrak{B}) = E_y[X^5] \le E_y[X]^5 = \varepsilon^5$$

by Jensen's inequeality, because x^5 is convex-cup function.