

UNIVERSITATEA POLITEHNICA DIN BUCUREȘTI

Facultatea de Electronică, Telecomunicații și Tehnologia Informației

Prelucrarea Digitală a Semnalelor Proiect- Tema 2

Student: Stănescu Vlad-Constantin

Grupa: 434C

An universitar: 2022-2023

Profesor coordonator: Prof. Dr. Ing. Radu Mihnea Udrea

TEMA 2

I. PROIECTAREA FILTRELOR CU RĂSPUNS FINIT LA IMPULS

Proiectați în Matlab un filtru digital RFI cu parametrii specificați în tabelul TABEL-RFI de mai jos. Determinați (dacă nu este dat) ordinul filtrului folosind funcția firpmord.

Nume	Grupa	Tip filtru	Lungi me	Frecvența de tăiere (Hz)	Frecvența de eșantionare (Hz)	Limitele benzii de trecere	Limitele benzii de oprire	Atenuare în banda de trecere [dB]	în banda	Metoda de proiectare folosind ferestre	Metoda de proiectare prin minimizarea erorii
•	,						•				
STĂNESCU C.D. Vlad-Constantin	434C	FOB	45	2600, 3600	12000				30	fir2	Least squares

Declararea paramentrilor:

```
clear;
clc;
close all;
%Declarare parametrii
N=45; %lungime
Ft1=2600; %Frecventa de taiere
Ft2=3600; %Frecventa de taiere
Fs=12000;%Frecventa de taiere
as=30;%atenuarea in banda de oprire
```

- a) Proiectați filtrul folosind pentru proiectare funcțiile fir1 sau fir2 și alegeți fereastra optimă care permite realizarea atenuării minime cerute pentru banda de oprire.
 - Reprezentați grafic coeficienții filtrului h(n).

```
wn1=2*Ft1/Fs;
wn2=2*Ft2/Fs;
wn=[wn1,wn2];%intervalul de frecventa de taiere normata
n1=N-1;%ordinul filtrului
f=[0, wn1, wn1, wn2, wn2, 1];%vector cu valori de pe axa frecventelor normate
m=[1, 1, 0, 0, 1, 1];%vector ce contine valorile modulului raspunsului in frecventa
% Afisarea grafică a coeficienților filtrului h(n)
h = fir2(n1, f, m, boxcar(N));
n=0:n1;
figure(1);
stem(n,h), grid;
xlabel('n'), ylabel('h(n)'), title ('Reprezentarea coeficientilor filtrului h(n)');
hold on;
```


• Reprezentați grafic zerourile filtrului.

figure(2), zplane(h), grid, xlabel('Re(z)'), ylabel('Im(z)'), title ('Diagrama zerourilor');

hold on;

 Reprezentați grafic caracteristica amplitudine-pulsație normată și caracteristica fazăpulsație normată.

```
%caracteristica amplitudine-pulsatie normata; caracteristica faza-pulsatie normata
Nfft=512;
w=-pi:2*pi/Nfft:pi-2*pi/Nfft;
H=fft(h,Nfft);
figure(3),
subplot(2,1,1) , plot(w, fftshift(abs(H))), title("Caracteristica amplitudine -
pulsatie normata"),
xlabel('w'), ylabel('|H(w)|'), grid;
subplot(2,1,2) , plot(w, fftshift(angle(H))), title('Caracteristica faza - pulsatie
normata'),
xlabel('w'), ylabel(' Φ(w)'), grid;
```


Reprezentați grafic caracteristica amplitudine [dB] - frecvență [Hz] a filtrului digital
proiectat și verificați cu ajutorul zoom-ului și a cursorilor condițiile de proiectare
impuse (limitele benzilor de trecere și oprire, atenuări).

```
%caracteristica amplitudine [dB] - frecvență [Hz] a filtrului digital proiectat
f2 = -Fs/2 : Fs/Nfft: Fs/2 - Fs/Nfft;
figure(4), plot(f2,20*log10(fftshift(abs(H)))), title('Caracteristica amplitudine
[dB]- frecventa [Hz]'),
xlabel('Frecventa [Hz]'), ylabel('Amplitudine [dB]'), grid;
```


- b) Proiectați filtrul folosind metoda de proiectare prin minimizarea erorii indicată în tabel (functiile firls sau firpm).
 - Reprezentați grafic coeficienții filtrului h(n).

```
wn1=2*Ft1/Fs;
wn2=2*Ft2/Fs;
wn=[wn1,wn2];%intervalul de frecventa de taiere normata
n1=N-1;%ordinul filtrului
f=[0, wn1, wn2, wn2, 1];%vector cu valori de pe axa frecventelor normate
m=[1, 1, 0, 0, 1, 1];%vector ce contine valorile modulului raspunsului in frecventa
%reprez grafica coeficienti filtru h(n)
h=firls(n1,f,m);
n=0:n1;
figure (1), stem(n,h), title('Reprezentarea coeficientilor filtrului h(n)'), grid;
```


• Reprezentați grafic zerourile filtrului.

• Reprezentați grafic caracteristica amplitudine-pulsație normată și caracteristica fazăpulsatie normată.

```
%caracteristica amplitudine-pulsatie normata; caracteristica faza-pulsatie normata
Nfft=512;
w=-pi:2*pi/Nfft:pi-2*pi/Nfft;
H=fft(h,Nfft);
figure(3),
subplot(2,1,1) , plot(w, fftshift(abs(H))), title("Caracteristica amplitudine -
pulsatie normata"),
xlabel('Pulsatie normata'), ylabel('Amplitudine'), grid;
subplot(2,1,2) , plot(w, fftshift(angle(H))), title('Caracteristica faza - pulsatie
normata'),
xlabel('Pulsatie normata'), ylabel('Faza'), grid;
```


• Reprezentați grafic caracteristica amplitudine [dB] - frecvență [Hz] a filtrului digital proiectat și verificați cu ajutorul zoom-ului și a cursorilor condițiile de proiectare impuse (limitele benzilor de trecere și oprire, atenuări).

```
%caracteristica amplitudine [dB] - frecvență [Hz] a filtrului digital proiectat
f2 = -Fs/2 : Fs/Nfft: Fs/2 - Fs/Nfft;
figure(4), plot(f2,20*log10(fftshift(abs(H)))), title('Caracteristica amplitudine
[dB]- frecventa [Hz]'),
xlabel('Frecventa [Hz]'), ylabel('Amplitudine [dB]'), grid;
```


II. PROIECTAREA FILTRELOR CU RĂSPUNS INFINIT LA IMPULS

a) Proiectați în Matlab un filtru digital RII cu parametrii specificați în tabelul TABEL-RII de mai jos, folosind metoda indirectă de proiectare indicată în tabel.

					Frecvența de	Frecvența limită (Hz)		Ripluri maxime (dB)		
				Frecvența de	eșantionare	În banda de	În banda de	În banda	În banda	Metoda indirectă
Nume	Grupa	Filtru	Ordin	tăiere (Hz)	(Hz)	trecere	oprire	de trecere	de oprire	de proiectare
STĂNESCU C.D. Vlad-Constantin	434C	FOB Cebâșev2	4	2600, 3600	12000				30	Transf. biliniară

• Determinati coeficientii functiei filtrului analogic H (s) a si ai filtrului digital H (z).

```
clear;
clc;
close all;
%Declarare parametrii:
n=4;%ordin filtru
Ft1=2600;%frecventa de taiere 1
Ft2=3600;%frecventa de taiere 2
Fs=12000;%frecventa de esantionare
Rs=30;%riplul maxim in banda de oprire
%det coef functiilor filtrului analogic H(s) si ai filtrului digital H(z)
wt1=2*pi*Ft1/Fs;
wt2=2*pi*Ft2/Fs;
Wt1=2*Fs*tan(wt1/2);
Wt2=2*Fs*tan(wt2/2);
Wt=[Wt1 Wt2];
[b,a]= cheby2(n,Rs,Wt,'s'); %coef H(s)
[bd,ad]=bilinear(b,a,Fs); %coef H(z)
```

 Reprezentați grafic răspunsul în frecvență și poziția polilor și a zerourilor pentru filtrul analogic.

```
%raspunsul in frecv si pozitia polilor si a zerourilor pt H(s)
figure(1), freqs(b,a), title('Raspunsul in frecventa al filtrului analogic');
figure(2), zplane(b,a), title('Pozitia polilor si a zerourilor pentru filtrul
analogic')
```


• Reprezentați grafic răspunsul în frecvență și poziția polilor și a zerourilor pentru filtrul digital proiectat.

%raspunsul in frecv si pozitia polilor si a zerourilor pt H(z)
figure(3), freqs(bd,ad), title('Raspunsul in frecventa al filtrului digital');
figure(4), zplane(bd,ad), title('Pozitia polilor si a zerourilor pentru filtrul
digital');

Reprezentați grafic caracteristica amplitudine [dB] - frecvență [Hz] a filtrului digital proiectat și determinați cu ajutorul zoom-ului și a cursorilor câștigul filtrului la frecventele de tăiere din tabel verificând condițiile de gabarit impuse.

%caracteristica amplitudine [dB] - frecvență [Hz] a filtrului digital proiectat [Hd,Wd]=freqz(bd,ad);

figure(5), plot(Wd*Fs/(2*pi), 20*log10(abs(Hd))), title('Caracteristica amplitudine-

frecventa');

- b) Reluați proiectarea filtrului digital de la punctul a) folosind metoda directă de proiectare a filtrelor RII din Matlab.
 - Reprezentați grafic răspunsul în frecvență și poziția polilor și a zerourilor pentru filtrul digital proiectat.

```
clear;
clc;
close all;
%Declarare parametrii:
n=4;%ordin filtru
Ft1=2600;%frecventa de taiere 1
Ft2=3600;%frecventa de taiere 2
Fs=12000;%frecventa de esantionare
Rs=30;%riplul maxim in banda de oprire
%det coef functiilor filtrului analogic H(s) si ai filtrului digital H(z)
W1=2*Ft1/Fs;
W2=2*Ft2/Fs;
Wn=[W1 W2];
[bd,ad]= cheby2(n,Rs,Wn);
%raspunsul in frecv si pozitia polilor si a zerourilor pt H(z)
figure(1), freqz(bd,ad), title('Raspunsul in frecventa al filtrului digital-met
directa');
figure(2), zplane(bd,ad), title('Pozitia polilor si a zerourilor pentru filtrul
digital-met directa');
```


• Reprezentați grafic caracteristica amplitudine [dB] - frecvență [Hz] a filtrului digital proiectat și determinați cu ajutorul zoom-ului și a cursorilor câștigul filtrului la frecvențele de tăiere din tabel verificând condițiile de gabarit impuse. de tăiere din tabel

- c) Aplicați la intrarea filtrului proiectat la punctul b) (cu metoda directă) un semnal sinusoidal de frecvență variabilă între 0 Hz si FS/2 generat cu ajutorul funcției Matlab chirp. Durata semnalului generat este de 1 secundă.
 - Reprezentați semnalele de la intrarea și ieșirea filtrului.
 - Reprezentați spectrograma semnalelor de la intrarea și ieșirea filtrului

```
%Forma si spectograma semnalului de intrare si de iesire
t = 0:1/Fs:1;
x = chirp(t,0,1,Fs/2);
y=filter(bd,ad,x);

figure(4),plot(t,x),grid,title('Semnal intrare'),xlabel('Timp')
figure(5),plot(t,y),grid,title('Semnal iesire'),xlabel('Timp')
figure(6),spectrogram(x,512,256,512,Fs,'yaxis'),colormap(jet),
title('Spectrograma semnal intrare')
figure(7),spectrogram(y,512,256,512,Fs,'yaxis'),colormap(jet),
title('Spectrograma semnal iesire')
```


