

Università degli Studi di Milano Bicocca

Scuola di Scienze

Dipartimento di Informatica, Sistemistica e Comunicazione

Corso di laurea in Informatica

Business Intelligence per i Servizi Finanziari

Alessandro Zanotti - 885892

Sommario

Sc	mmario dei dati utilizzati:	4
Fu	nzioni utilizzate per caricare i dati finanziari	4
Pr	esentazione dei dati con un grafico e le prime righe del DataFrame	5
St	atistiche descrittive	6
	Rendimenti cumulati	6
	Rendimenti composti	6
	Rendimenti semplici	7
	Rendimenti logaritmici	10
	Informazioni sui rendimenti	13
	Presentazione dei rendimenti con istogrammi e grafici a dispersione	14
	Dispersione settore tecnologico	14
	Dispersione settore sanitario	15
	Dispersione settore finanziario	15
	Grafici diagnostici a 3 sezioni (istogramma, boxplot e qq-plot)	16
	Broadcom Inc	16
	Advanced Micro Devices Inc	17
	Eli Lilly	18
	Pfizer	19
	Berkshire Hathaway Class B	20
	Blackrock	21
	Statistiche descrittive univariate	22
	Matrici di covarianza e di correlazione dei rendimenti	23
	Matrice di covarianza	23
	Matrice di correlazione	23
	Andamento nel tempo delle correlazioni tra gli asset e le correlazioni medie	24
	Correlazione media dei titoli del settore tecnologico	27
	Correlazione media dei titoli del settore sanitario	28
	Correlazione media dei titoli del settore finanziario	29
٩r	nalisi di previsione	30
	Analisi AVGO	30
	Analisi AMD	31
	Analisi LLY	32
	Analisi PFE	33
	Analisi BRK.B	34
	Analici RI K	35

Strategie di trading e backtesting	. 36
Confronto con la strategia Buy and Hold	. 39
Capital Asset Pricing Model	42
Costruzione di un portafoglio	46
Conclusioni	48

Sommario dei dati utilizzati:

Breve descrizione di ciascun titolo e motivazione della scelta:

- Settore tecnologico:
 - Broadcom, Inc (AVGO): leader tecnologico nel settore microchip e nel settore software.
 Recentemente ha acquisito VMware Inc (VMW) per 69 miliardi.
 - Advanced Micro Devices, Inc (AMD): AMD sviluppa processori per PC e tecnologie collegate per consumatori e imprese. Scelto perché nel 2024 ha un YTD return alto grazie all'aumento della richiesta per soluzioni computazionali ad alte performance.
- Settore sanitario:
 - Eli Lilly and Company (LLY): azienda farmaceutica globale che sviluppa, produce e commercia nei settori endocrinologi, oncologici, immunologici. Scelta per la serie di farmaci disponibili, specialmente per diabete e pazienti oncologici, e recenti trial clinici di successo.
 - Pfizer Inc. (PFE): azienda biofarmaceutica globale che sviluppa farmaci innovativi e vaccini per diverse aree terapeutiche come immunologia, cardiologia, endocrinologia e neurologia.
 Scelta per il suo contributo durante la pandemia di Covid-19 del 2020 grazie al vaccino Pfizer-BioNTech.
- Settore finanziario:
 - Berkshire Hathaway Inc. Class B (BRK.B): conglomerato multinazionale amministrato da Warren Buffet. L'azienda possiede un business molto diversificato che include assicurazioni, servizi, ferrovie, manifatturiero e possiede posizioni di equity importanti in Apple, Bank of America e Coca-Cola. Scelto per lo storico record di crescita e il portafoglio altamente diversificato le cui componenti sono scelte oculatamente.
 - BlackRock, Inc. (BLK): è l'asset manager più grande al mondo e fornisce servizi di management degli investimenti, dei rischi e servizi di advisory. Scelta per la posizione dominante nel mercato e per il suo approccio innovativo alle soluzioni di investimento.

Funzioni utilizzate per caricare i dati finanziari

Per scaricare i dati ho utilizzato la funzione download della libreria yfinance (Yahoo! Finance).

L'interfaccia della funzione è yf.download(tickers, ...) -> pd.DataFrame e possiede diversi parametri:

Tickers	Interval	Period	Start
End	Prepost	Actions	Auto_adjust
Back_adjust	Repair	Keepna	Rounding
Group_by	Threads	Proxy	Session
Timeout	Progress		

I dati Fama-Franch vengono scaricati tramite la funzione **request.urlretrieve** di **urllib** dalla Data Library di Ken French (Dartmouth University).

Presentazione dei dati con un grafico e le prime righe del DataFrame

Date/Ticker	AVGO	AMD	LLY	PFE	BRK.B	BLK
2014-06-02	54.481537	3.97	48.572338	19.234703	127.879997	235.882080
2014-06-03	54.337040	3.94	48.458035	19.157011	126.930000	237.870667
2014-06-04	54.458714	4.04	48.351894	19.189377	127.230003	239.520279
2014-06-05	54.656456	4.08	48.645824	19.267071	128.199997	240.381226
2014-06-06	54.473938	4.06	48.686646	19.046946	128.649994	243.506790

Statistiche descrittive

Rendimenti cumulati

Ticker	AMD	AVGO	BLK	BRK-B	LLY	PFE
2014-06-03	0.992443	0.997348	1.008430	0.992571	0.997647	0.995961
2014-06-04	1.017632	0.999581	1.015424	0.994917	0.995462	0.997644
2014-06-05	1.027708	1.003211	1.019074	1.002502	1.001513	1.001683
2014-06-06	1.022670	0.999861	1.032324	1.006021	1.002353	0.990239
2014-06-09	1.025189	1.002094	1.034330	1.000860	1.004203	0.987883
2024-05-23	40.410577	25.573618	3.304238	3.173913	16.644247	1.491575
2024-05-24	41.904282	25.840680	3.293077	3.185877	16.623247	1.501453
2024-05-28	43.226700	25.925296	3.248897	3.158430	16.632100	1.471299
2024-05-29	41.596977	25.525529	3.186439	3.159916	16.707658	1.446344
2024-05-30	42.002519	25.037472	3.208676	3.195261	16.780333	1.466100

Rendimenti composti

Ticker	AMD	AVGO	BLK	BRK-B	LLY	PFE
2015-12-31	-0.407161	0.436897	0.071098	0.021573	0.219661	0.147835
2016-12-31	0.812548	0.237190	0.034775	0.027320	-0.005471	0.008661
2017-12-31	0.859473	0.425109	0.215937	0.195258	0.099625	0.075622
2018-12-31	0.327115	0.044281	0.172233	0.150505	0.157014	0.176448
2019-12-31	0.553479	0.225337	-0.065386	0.022084	0.240586	0.053604
2020-12-31	0.784645	0.158157	0.249153	-0.014826	0.265549	-0.041021
2021-12-31	0.432687	0.462506	0.437091	0.285351	0.430090	0.228561
2022-12-31	-0.106940	0.119425	-0.184594	0.110225	0.328184	0.199031
2023-12-31	0.125390	0.400170	0.035327	0.096150	0.424518	-0.264781
2024-12-31	0.494684	0.502737	0.155358	0.175223	0.463164	-0.253682

Rendimenti semplici

Rendimenti logaritmici

Analizzando i grafici possiamo notare alcuni andamenti e correlazioni tra i titoli scelti. Ovviamente la prima informazione che si nota è che l'andamento del mercato finanziario influenza allo stesso modo tutti i titoli, ad esempio nel 2020 a causa del Covid Crash.

Year

-0.0075

-0.0100

Inoltre si nota anche una correlazione positiva tra le aziende che operano nello stesso settore:

- AVGO e AMD producono entrambe chip
- LLY e PFE producono farmaci per settori sanitari che spesso sono trasversali
- BRK.B e BLK spesso investono nelle stesse aziende

Informazioni sui rendimenti

Ticker	AVGO	AMD	LLY	PFE	BRK-B	BLK
count	2516.000000	2516.000000	2516.000000	2516.000000	2516.000000	2516.000000
mean	0.001280	0.001486	0.001121	0.000152	0.000462	0.000463
std	0.022179	0.036220	0.016901	0.014355	0.012110	0.017147
min	-0.222055	-0.277456	-0.111094	-0.080501	-0.100838	-0.146815
25%	-0.009964	-0.016697	-0.006760	-0.006726	-0.005321	-0.007751
50%	0.001316	0.000586	0.000961	0.000000	0.000481	0.000779
75%	0.012688	0.019693	0.008839	0.007011	0.006540	0.008739
max	0.146985	0.420617	0.145656	0.103055	0.109840	0.126843

Dalla deviazione standard dei rendimenti logaritmici possiamo notare che la volatilità per i titoli dei settori Sanitari (LLY, PFE) e Finanziari (BRK-B, BLK) è relativamente bassa, mentre per i titoli del settore tecnologico (AVGO, AMD) è più alta. In particolare, la volatilità di AMD è significativamente maggiore rispetto agli altri titoli, quasi il doppio rispetto alla maggior parte dei titoli sanitari e finanziari.

Presentazione dei rendimenti con istogrammi e grafici a dispersione

Istogrammi sulla distribuzione dei rendimenti logaritmici:

Dispersione settore tecnologico

Dispersione settore sanitario

Dispersione settore finanziario

Osservando i grafici sopra riportati possiamo verificare che i dati sono altamente correlati e che esiste una forte relazione tra i titoli azionari che appartengono allo stesso settore.

Grafici diagnostici a 3 sezioni (istogramma, boxplot e qq-plot) Broadcom Inc.

Dall'istogramma e dal grafico qq-plot notiamo che i rendimenti sono distribuiti normalmente mentre dal box-plot notiamo che sono presenti degli outliers.

Advanced Micro Devices Inc.

Dall'istogramma e dal grafico qq-plot notiamo che i rendimenti sono distribuiti normalmente mentre dal box-plot notiamo che è presente un outlier.

Eli Lilly

Dall'istogramma e dal grafico qq-plot notiamo che i rendimenti sono distribuiti normalmente mentre dal box-plot notiamo che sono presenti due outliers.

Pfizer

Dall'istogramma e dal grafico qq-plot notiamo che i rendimenti sono distribuiti normalmente mentre dal box-plot notiamo che sono presenti diversi outliers.

Berkshire Hathaway Class B

Dall'istogramma e dal grafico qq-plot notiamo che i rendimenti sono distribuiti normalmente mentre dal box-plot notiamo che è presente un outlier.

Blackrock

Dall'istogramma e dal grafico qq-plot notiamo che i rendimenti sono distribuiti normalmente mentre dal box-plot notiamo che è presente un outlier.

Statistiche descrittive univariate

Usando le statistiche descrittive univariate possiamo ottenere informazioni su diversi aspetti chiave degli asset finanziari scelti. Le statistiche che ci interessano maggiormente sono:

- Media: rappresenta la media dei rendimenti dell'asset nel periodo di tempo considerato; ci permette di scoprire la tendenza degli investimenti nel tempo.
- Varianza e Deviazione Standard: indicano la dispersione dei rendimenti dell'asset attorno alla media; un valore maggiore indica una maggiore volatilità e un maggiore rischio dell'investimento.
- Asimmetria: indica l'asimmetria della distribuzione dei rendimenti dell'asset, un valore positivo indica un'asimmetria verso destro quindi una maggioranza di valori positivi rispetto alla media mentre un valore negativo indica un'asimmetria verso sinistra e quindi una maggioranza di valori negativi.
- Curtosi: indica la variazione della distribuzione dei rendimenti dell'asset rispetto ad una distribuzione normale, un valore elevato indica che eventi che allontanano i valori dalla media sono più probabili.

Ticker:	AVGO	AMD	LLY	PFE	BRK.B	BLK
Media:	0.0013	0.0015	0.0011	0.0002	0.0005	0.0005
Varianza:	0.0005	0.0013	0.0003	0.0002	0.0001	0.0003
Deviazione	0.0222	0.0362	0.0169	0.0144	0.0121	0.0171
Standard:						
Asimmetria:	-0.4277	0.4757	0.7396	0.1503	-0.2482	-0.1606
Curtosi:	9.3448	10.6656	10.7269	5.1215	11.2449	8.7427

L'asset con il rendimento maggiore è AMD ma possiede anche la volatilità maggiore. Invece PFE ha rendimento minore ma volatilità molto contenuta.

Comunque dalla deviazione standard e dalla varianza notiamo che la volatilità dei prezzi rispetto alla media è bassa quindi gli asset scelti potrebbero essere considerati investimenti sicuri.

LLY ha l'asimmetria positiva maggiore quindi ha spesso ritorni positivi mentre AVGO ha asimmetria negativa che indica ritorni negativi frequenti.

BRK.B ha la curtosi maggiore quindi ha valori più estremi nella distribuzione dei guadagni.

Infine l'asset che più si avvicina alla normale è PFE che ha deviazione minore dell'asimmetria 0 (0.1503) e una curtosi meno alta (5.1215) rispetto alle altre. La curtosi della normale è 3.

Matrici di covarianza e di correlazione dei rendimenti

La matrice di covarianza fornisce informazioni sulla relazione lineare tra i rendimenti di due asset mentre la matrice di correlazione ci fornisce informazioni riguardo alla correlazione tra i vari asset.

Matrice di covarianza

Ticker	AMD	AVGO	BLK	BRK-B	LLY	PFE
AMD	0.001312	0.000359	0.000233	0.000137	0.000104	0.000093
AVGO	0.000359	0.000492	0.000207	0.000130	0.000094	0.000081
BLK	0.000233	0.000207	0.000294	0.000147	0.000094	0.000099
BRK-B	0.000137	0.000130	0.000147	0.000147	0.000076	0.000081
LLY	0.000104	0.000094	0.000094	0.000076	0.000286	0.000105
PFE	0.000093	0.000081	0.000099	0.000081	0.000105	0.000206

Matrice di correlazione

Ticker	AMD	AVGO	BLK	BRK-B	LLY	PFE
AMD	1.000000	0.446960	0.374661	0.312397	0.169330	0.178132
AVGO	0.446960	1.000000	0.543172	0.485652	0.251777	0.255830
BLK	0.374661	0.543172	1.000000	0.706424	0.325222	0.403830
BRK-B	0.312397	0.485652	0.706424	1.000000	0.368904	0.463404
LLY	0.169330	0.251777	0.325222	0.368904	1.000000	0.434079
PFE	0.178132	0.255830	0.403830	0.463404	0.434079	1.000000

I titoli maggiormente correlati sono BLK e BRK.B (0.706424) che appartengono entrambi al settore finance.

Invece i titoli a correlazione minore sono AMD e LLY (0.169330) e AMD con PFE (0.178133) che appartengono rispettivamente al settore IT e al settore Healthcare.

Bisogna tenere in considerazione che diversi fattori possono influenzare la correlazione tra i titoli:

- Settore di appartenenza
- Mercato globale
- Azioni intraprese dall'azienda
- Variazioni nel tempo
- Interazioni tra asset

Andamento nel tempo delle correlazioni tra gli asset e le correlazioni medie

Si nota una correlazione con incremento graduale con alti e bassi della correlazione. Si nota un picco nel 2020 dovuto al Covid probabilmente dovuto all'aumento della domanda in quel periodo.

Year

Per il settore sanitario la correlazione è in discesa nel periodo di tempo considerato e potrebbe essere attribuito a strategie aziendali diverse come differenze nei portafogli di prodotti o reazioni diverse agli eventi di mercato post-pandemia. Si nota un picco nel 2020 sempre dovuto al Covid.

Si notano delle oscillazioni che indicano che i rendimenti di BRK.B e BLK non sono stabili e possono cambiare rapidamente in base alle condizioni di mercato. La discesa della correlazione dal 2022 può essere causata da strategie di investimento diverse.

Correlazione media dei titoli del settore tecnologico

La correlazione è positiva quindi i titoli tendono a muoversi nella stessa direzione ma non in modo perfettamente allineato. Si nota una linea di regressione positiva che indica una relazione lineare tra i rendimenti dei due titoli ma la dispersione attorno ad essa indica che ci sono altri fattori che influenzano i rendimenti di ogni titolo.

Correlazione media dei titoli del settore sanitario

La correlazione positiva è moderata quindi i rendimenti dei titoli tendono a muoversi nella stessa direzione ma non in modo perfettamente allineato. Si nota una linea di regressione positiva che indica una relazione lineare tra i rendimenti dei due titoli ma la dispersione attorno ad essa indica che ci sono altri fattori che influenzano i rendimenti.

Correlazione media dei titoli del settore finanziario

La correlazione è positiva quindi i rendimenti dei titoli tendono a muoversi nella stessa direzione ma non in modo perfettamente allineato. Si nota una linea di regressione positiva che indica una relazione lineare tra i rendimenti dei due titoli ma la dispersione attorno ad essa indica che ci sono altri fattori che influenzano i rendimenti.

Analisi di previsione

Per l'analisi di previsione, ho scelto di usare il modello Support Vector Machine (SVM), che è un algoritmo di apprendimento supervisionato.

Analisi AVGO

SVM Model Confidence Score	0.9309366005551769
Mean Absolute Error	17.098292125173185
Mean Squared Error	468.494891395531
R2 Score	0.9020067051732457

Price of AVGO - Predicted vs. Actual with SVM_rbf

Analisi AMD

SVM Model Confidence Score	0.9295317141583804
Mean Absolute Error	5.252784451862971
Mean Squared Error	47.571228788361566
R2 Score	0.9002271303214141

Analisi LLY

SVM Model Confidence Score	0.9203234621237718
Mean Absolute Error	8.294645592050909
Mean Squared Error	115.48395841149065
R2 Score	0.9720371370083519

Analisi PFE

SVM Model Confidence Score	0.9453473987964524
Mean Absolute Error	1.2343825628406921
Mean Squared Error	2.751770582275699
R2 Score	0.9334186263249507

Analisi BRK.B

SVM Model Confidence Score	0.9418194634492808
Mean Absolute Error	6.057625538634839
Mean Squared Error	63.76416645169634
R2 Score	0.9372949005767744

Analisi BLK

SVM Model Confidence Score	0.8633031072679698
Mean Absolute Error	24.34875118923561
Mean Squared Error	923.5689823410825
R2 Score	0.8993190340354217

PFE mostra le performance migliori complessive con confidenza elevata, MAE e MSE molto bassi e un ottimo R².

AMD e BRK.B hanno ottime performance con elevata confidenza e buoni valori di MAE e MSE. LLY e AVGO hanno buone performance ma con errori significativi come indicato dai valori di MAE e MSE.

Infine BLK ha la performance più debole tra i titoli analizzati con la confidenza minore e alti valori di MAE e MSE suggerendo che il modello ha difficolta a prevedere accuratamente i rendimenti di questo titolo.

Strategie di trading e backtesting

Ho utilizzato Moving Average Convergence Divergence (MACD) come indicatore per identificare i segnali di acquisto/vendita di titoli sui mercati finanziari per confrontarlo con la strategia base Buy and Hold.

La strategia è stata implementata su due periodi:

- SMA20: calcolata sulla base degli ultimi 20 periodi prezzo
- SMA120: calcolata sulla base degli ultimi 120 periodi di prezzo

Confronto con la strategia Buy and Hold

2015-01

2016-01

2017-01

2018-01

2019-01

Date (Year - month)

2021-01

2022-01

2024-01

2014-01

2021-01

2022-01

2023-01

2024-01

2014-01

2015-01

2016-01

2017-01

2018-01

2019-01

Date (Year - month)

2020-01

È evidente che la strategia Buy and Hold è una strategia migliore e più sicura rispetto alla strategia basata su media mobile.

Capital Asset Pricing Model

Procederemo con l'utilizzo del modello Capital Asset Pricing Model (CAPM) per analizzare l'utile atteso dei nostri asset.

AVGO OL	S Reare	ession	Results
---------	---------	--------	---------

==========						
Dep. Variable:	•	excess r	tn R-so	guared:		0.344
Model:			LS Adj.	R-squared:		0.327
Method:		Least Squar	es F-st	atistic:		19.92
Date:		Sat, 15 Jun 20		(F-statistic):	1.88e-10
Time:		17:44:		Likelihood:		149.73
No. Observation	ons:	1	.18 AIC:			-291.5
Df Residuals:		1	.14 BIC:			-280.4
Df Model:			3			
Covariance Typ	pe:	nonrobu	ıst			
	coef	std err	t	P> t	[0.025	0.975]
Intercept	0.0197	0.007	2.999	0.003	0.007	0.033
mkt	1.0351	0.146	7.097	0.000	0.746	1.324
smb	0.1124	0.243	0.463	0.644	-0.369	0.593
hml	-0.2747	0.171	-1.610	0.110	-0.613	0.063
Omnibus:		18.3	======= 349 Durb	========= in-Watson:		2.284
Prob(Omnibus):	:	0.0	000 Jarq	ue-Bera (JB):		25.397
Skew:		0.7	97 Prob	(JB):		3.06e-06
Kurtosis:		4.6	20 Cond	l. No.		39.1
=========				:========	=======	

AMD OLS Regression Results

Dep. Variable Model: Method: Date: Time: No. Observate Df Residuals Df Model: Covariance T	ions:	excess Least Squ Sat, 15 Jun 17:4	OLS ares 2024 4:08 118 114	Adj. F-sta Prob	uared: R-squared: atistic: (F-statistic): Likelihood:		0.363 0.346 21.62 3.72e-11 71.960 -135.9 -124.8
covariance i	.ype.	1101110	Dust 				
	coei	std err		t	P> t	[0.025	0.975]
mkt	2.0822	0.282	7 -0	.385	0.076 0.000 0.957 0.016	1.524 -0.955	2.641 0.905
Omnibus: Prob(Omnibus Skew: Kurtosis:	;):	0	.232 .328 .279 .625	Jarq Prob	in-Watson: ue-Bera (JB): (JB): . No.		1.970 2.218 0.330 39.1

LLY OLS Regression Results

==========			======	=========		
Dep. Variable:	:	excess rtn	R-sq	uared:		0.104
Model:		OLS	Adj.	R-squared:		0.080
Method:		Least Squares	F-st	atistic:		4.412
Date:		Sat, 15 Jun 2024	Prob	(F-statistic):		0.00565
Time:		17:44:08	Log-	Likelihood:		154.41
No. Observation	ons:	118	AIC:			-300.8
Df Residuals:		114	BIC:			-289.7
Df Model:		3				
Covariance Typ	pe:	nonrobust				
=========	coef	std err	t	P> t	[0.025	0.975]
Intercept	0.0210	0.006	3.328	0.001	0.008	0.033
mkt	0.3181		2.269	0.025	0.040	0.596
smb	0.0590		0.253		-0.403	0.521
hml	-0.4501	0.164	-2.744	0.007	-0.775	-0.125
Omnibus:		7.412		======================================	======	1.765
Prob (Omnibus):	•			ue-Bera (JB):		7.084
Skew:	•	0.511	_			0.0290
Kurtosis:		3.628		. No.		39.1
				- 7.		
==========		PFE OLS Re	gress10 ======	n Kesults ========	======	========
Dep. Variable:	•	excess_rtn	R-sq	uared:		0.220
Model:		OLS	Adj.	R-squared:		0.199
Method:		Least Squares	F-st	atistic:		10.70
Date:		Sat, 15 Jun 2024		(F-statistic):		2.98e-06
Time:		17:44:08	Log-	Likelihood:		170.02
No. Observation	ons:	118				-332.0
Df Residuals:		114	BIC:			-321.0
Df Model:		3				
Covariance Typ		nonrobust				
==	coef		t	P> t	[0.025	0.975]
Intercept	-0.0039	0.006	-0.709	0.480	-0.015	0.007
mkt	0.6917		5.632	0.000	0.448	0.935
smb	-0.4709	0.204	-2.303	0.023	-0.876	-0.066
hml	0.0015	0.144	0.010	0.992	-0.283	0.286
Omnibus:	======	:========= 14.588	===== Durb	========== in-Watson:	======	1.909
Prob (Omnibus):		0.001		ue-Bera (JB):		27.226
Skew:	-	0.506	-	(JB):		1.22e-06
Kurtosis:		5.125		. No.		39.1
		2.120	3 2 2 2 3 4			

BRK.B OLS Regression Results

=========	:=======	-========	:=======	========	=========	=========
Dep. Variable Model: Method: Date: Time: No. Observat Df Residuals Df Model: Covariance T	ions:	excess Least Squ Sat, 15 Jun 17:4	OLS Actares F-2024 Pr.4:08 Lc.118 AI 114 BI 3		tic):	0.695 0.687 86.41 3.14e-29 256.01 -504.0 -492.9
=========	coef	std err		t P> t	[0.025	0.975]
-	0.0011 0.9105 -0.5782 0.3232	0.059 0.099	15.36 -5.86	2 0.674 5 0.000 0 0.000	-0.004 0.793 -0.774 0.186	1.028 -0.383
Omnibus: Prob(Omnibus Skew: Kurtosis:	;):	0 -0	.813 Ja .137 Pr	rbin-Watson: rque-Bera (J ob(JB): nd. No.		1.950 0.477 0.788 39.1

BLK OLS Regression Results

Dep. Variable Model: Method: Date: Time: No. Observation Df Residuals: Df Model: Covariance Type	ons:	Least Squa Sat, 15 Jun 2 17:44	OLS res 024 :08 118 114	Adj. F-sta Prob	uared: R-squared: atistic: (F-statistic) Likelihood:	:	0.709 0.701 92.56 2.02e-30 213.17 -418.3 -407.3
	coef	std err		t	P> t	[0.025	0.975]
mkt smb	-0.0011 1.3475 -0.0377 0.1791	0.085 0.142	15 -0	5.817).266	0.777 0.000 0.791 0.075	1.179	
Omnibus: Prob(Omnibus) Skew: Kurtosis:	:	0.	863 001 707 332		` '		2.050 18.562 9.32e-05 39.1

Grazie al modello CAPM possiamo calcolare i Beta dei titoli rispetto al mercato:

Ticker	Beta	Volatilità
AVGO	1.2122267449253268	Maggiore rispetto al mercato
AMD	2.140762152610683	Maggiore rispetto al mercato
LLY	0.3319876994094543	Minore rispetto al mercato
PFE	0.6544597632146131	Minore rispetto al mercato
BRK.B	0.7956732278617329	Minore rispetto al mercato
BLK	1.5144789787730544	Maggiore rispetto al mercato

Grazie ai Beta possiamo stimare i rendimenti attesi per ogni asset

Ticker	Rendimento Atteso	Rendimento Atteso Percentuale
AVGO	0.1487109243544486	14.9%
AMD	0.25222311526498586	25.2%
LLY	0.050582763196351424	5.1%
PFE	0.08653162368743744	8.7%
BRK.B	0.10227395832616595	10.2%
BLK	0.1824056985916247	18.2%

Vediamo che il range dei rendimenti è compreso tra il 5.1% e il 25.2%, ovviamente si tratta di una stima e quindi per piccole variazioni mercato queste stime potrebbero venire invalidate.

Costruzione di un portafoglio

In questa sezione viene costruito un portafoglio in termini di media-varianza sugli ultimi 108 mesi di dati.

Per il metodo analitico usiamo la frontiera efficiente per visualizzare il portafoglio ottimale basato sui rendimenti passati e su quelli attesi.

Optimal Portfolio - Monte Carlo Method - Historical Returns

Optimal Portfolio - Monte Carlo Method - Predicted Returns

Il Beta calcolato per il portafoglio ottimale è 1.6635403295725366 superiore al Beta standard per SP500 pari a 1.0. Di conseguenza il portafoglio è più volatile rispetto al mercato.

Invece il Beta del portafoglio effettivo (dove tutti gli asset hanno lo stesso peso) è 0.13712134723683567 che è inferiore rispetto al Beta di SP500 (1.0). Di conseguenza il rischio del portafoglio è minore.

Conclusioni

In base ai dati esaminati, possiamo concludere che essi seguono una distribuzione normale, come evidenziato dalle statistiche descrittive. Inoltre, la deviazione standard dei rendimenti logaritmici mostra una bassa variabilità rispetto alla media, suggerendo stabilità nei dati. Gli asset appartenenti allo stesso settore mostrano una forte correlazione tra di loro.

Il modello di previsione che abbiamo costruito ci consente di stimare l'andamento del mercato con un certo grado di approssimazione, tenendo conto esclusivamente dei dati utilizzati per l'addestramento e non considerando eventi straordinari nei mercati finanziari.

Per quanto riguarda il Beta dei singoli titoli, abbiamo scoperto che metà degli asset presenta una volatilità superiore a quella del mercato. La strategia di previsione analizzata ha mostrato risultati peggiori rispetto alla tradizionale strategia di "Buy and Hold".

Nella costruzione del portafoglio, abbiamo identificato i portafogli ottimali in termini di rapporto rendimento/varianza, sia basandoci sui rendimenti passati che su quelli previsti.