1. Kiterjesztési tételek

1.1. Tétel: Kvázimérték kiterjesztése mértékké

Legyen X egy halmaz, $\mathcal{G}\subseteq\mathcal{P}(X)$ gyűrű, $\widetilde{\mu}:\mathcal{G}\to[0,+\infty]$ kvázimérték. Ekkor van olyan $\Omega\subseteq\mathcal{P}(X)$ szigma-algebra és $\mu:\Omega\to[0,+\infty]$ mérték, hogy $\widetilde{\mu}=\mu|_{\mathcal{G}}$.

Bizonyítás. Legyen tetszőleges $A \in \mathcal{P}(X)$ halmaz esetén

$$\Sigma_A := \left\{ (\sigma_n) : \mathbb{N} \to \mathcal{G} \mid A \subseteq \bigcup_{n=0}^{\infty} \sigma_n \right\}$$

valamint az inf $\emptyset := +\infty$ megállapodás mellett

$$\mu^* : \mathcal{P}(X) \to \overline{\mathbb{R}}, \quad \mu^*(A) := \inf \left\{ \left. \sum_{n=0}^{\infty} \widetilde{\mu}(\sigma_n) \right| (\sigma_n) \in \Sigma_A \right. \right\}$$

Lemma. Az így definiált μ^* halmazfüggvényre a következők igazak.

- 1. Nemnegatív, azaz $\mu^* \geq 0$.
- 2. Eltűnik Ø-ban, azaz $\mu^*(\emptyset) = 0$.
- 3. Monoton, azaz minden $B \subseteq A$ esetén $\mu^*(B) \le \mu^*(A)$.
- 4. Szubadditív, azaz minden A_n $(n \in \mathbb{N})$ halmazsorozat esetén

$$\mu^* \left(\bigcup_{n=0}^{\infty} A_n \right) \le \sum_{n=0}^{\infty} \mu^* (A_n).$$

Bizonyítás.

- 1. Nyilvánvalóan igaz, hiszen $\widetilde{\mu}$ nemnegatív.
- 2. Mivel $\mu^*(\emptyset) \geq 0$, és a konstans üres halmazból képzett $(\emptyset) \in \Sigma_{\emptyset}$, ezért

$$\mu^*(\emptyset) \le \sum_{n=0}^{\infty} \widetilde{\mu}(\emptyset) = 0 \Longrightarrow \mu^*(\emptyset) = 0.$$

- 3. A feltétel miatt $\Sigma_A \subseteq \Sigma_B$, plusz az infimum tulajdonságaiból adódik.
- 4. Két esetet különböztetünk meg.
 - (a) Ha valamilyen $n \in \mathbb{N}$ indexre $\mu^*(A_n) = +\infty$, akkor igaz.
 - (b) Ha minden $n \in \mathbb{N}$ index esetén $\mu^*(A_n)$ véges, akkor az infimum tulajdonság szerint

$$\forall \varepsilon_n > 0\text{-hoz}, \ \exists (\sigma_{nk}) \in \Sigma_{A_n} : \sum_{n=0}^{\infty} \widetilde{\mu}(\sigma_{nk}) < \mu^*(A_n) + \varepsilon_n.$$

Ugyanakkor

$$\bigcup_{n=0}^{\infty} A_n \subseteq \bigcup_{n=0}^{\infty} \bigcup_{k=0}^{\infty} \sigma_{nk}(\sigma_{nk}) \in \Sigma_{\cup A_n}$$

$$\mu^* \left(\bigcup_{n=0}^{\infty} A_n \right) \le \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \mu^*(\sigma_{nk}) < \sum_{n=0}^{\infty} \mu^*(A_n) + \sum_{n=0}^{\infty} \varepsilon_n < \sum_{n=0}^{\infty} \mu^*(A_n) + \varepsilon.$$

Definíció. Egy $A \in \mathcal{P}(X)$ halmaz μ^* -mérhető, amennyiben

$$\forall B \in \mathcal{P}(X) : \quad \mu^*(B) = \mu^*(B \cap A) + \mu^*(B \setminus A).$$

Lemma. Egy $A \in \mathcal{P}(X)$ halmaz pontosan akkor μ^* -mérhető, ha

$$\forall B \in \mathcal{P}(X) : \mu^*(B) \ge \mu^*(B \cap A) + \mu^*(B \setminus A).$$

Bizonyítás. Ugyanis μ^* szubadditív tulajdonsága miatt a

$$\mu^*(B) = \mu^*((B \cap A) \cup (B \setminus A)) \le \mu^*(B \cap A) + \mu^*(B \setminus A)$$

fordított irányú egyenlőtlenség minden $B \in \mathcal{P}(X)$ halmazra fennáll.

Vezessük be a következő halmazrendszert

$$\Omega := \{ A \in \mathcal{P}(X) \mid A \mu^* \text{-m\'erhet\'o} \}.$$

Ekkor $\mathcal{G} \subseteq \Omega$, valamint $\mu^*(G) = \widetilde{\mu}(G)$ minden $G \in \mathcal{G}$ esetén. Ehhez azt kell belátni, hogy minden $G \in \mathcal{G}$, $B \in \mathcal{P}(X)$ halmazra

$$\mu^*(B) \ge \mu^*(B \cap G) + \mu^*(B \setminus G).$$

Ha $\mu^*(B) = +\infty$, akkor az állítás teljesül, különben $\Sigma_B \neq \emptyset$ miatt

$$\exists (\sigma_n) \in \Sigma_B : \sum_{n=0}^{\infty} \widetilde{\mu}(\sigma_n) < \mu^*(B) + \varepsilon.$$

Ugyanakkor $\widetilde{\mu}$ additív, ezért

$$\sum_{n=0}^{\infty} \widetilde{\mu}(\sigma_n) = \sum_{n=0}^{\infty} \widetilde{\mu}(\sigma_n \cap G) + \sum_{n=0}^{\infty} \widetilde{\mu}(\sigma_n \setminus G).$$

Világos, hogy

$$(\sigma_n \cap G) \in \Sigma_{B \cap G}$$
 és $(\sigma_n \setminus G) \in \Sigma_{B \setminus G}$.

Innen μ^* definíció
ja alapján

$$\sum_{n=0}^{\infty} \widetilde{\mu}(\sigma_n \cap G) \ge \mu^*(B \cap G), \qquad \sum_{n=0}^{\infty} \widetilde{\mu}(\sigma_n \setminus G) \ge \mu^*(B \setminus G).$$

Összefoglalva

$$\mu^*(B) + \varepsilon > \mu^*(B \cap G) + \mu^*(B \setminus G).$$

Tekintsük a "kvázi-konstans" halmazsorozatot

$$(G, \emptyset, \emptyset, \dots, \emptyset, \dots) \in \Sigma_G \implies \mu^*(G) \leq \widetilde{\mu}(G).$$

Kihasználjuk, hogy

$$\sigma_n = (\sigma_n \cap G) \cup (\sigma_n \setminus G) \quad (n \in \mathbb{N})$$

diszjunkt felbontás.

Továbbá minden $(\sigma)_n \in \Sigma_B$ halmazsorozat esetén

$$G \subseteq \bigcup_{n=0}^{\infty} \sigma(A_n) \quad \Longrightarrow \quad \widetilde{\mu}(G) \le \sum_{n=0}^{\infty} \widetilde{\mu}(\sigma_n) \quad \Longrightarrow \quad \widetilde{\mu}(G) \le \mu^*(G).$$

Összefoglalva $\mu^*(G) = \widetilde{\mu}(G)$.

Már csak azt kéne bebizonyítani, hogy egy Ω szigma-algebra.

- 1. Az $X \in \Omega$ tartalmazás teljesül. \checkmark
- 2. A komplementerképzésre való zártság is teljesül.
 \checkmark
- 3. Azt kell igazolni, hogy Ω zárt a megszámlálható unióra, vagyis

$$A_n \in \Omega \ (n \in \mathbb{N}) \qquad \Longrightarrow \qquad \bigcup_{n=0}^{\infty} A_n \in \Omega.$$

Először megmutatjuk, hogy bármely $A_0, A_1 \in \Omega$ esetén $A_0 \cup A_1 \in \Omega$. Ugyanis

$$\mu^{*}(B) \geq \mu^{*}(B \cap A_{0}) + \mu^{*}(B \setminus A_{0})$$

$$\geq \mu^{*}((B \cap A_{0}) \cap A_{1}) + \mu^{*}((B \cap A_{0}) \setminus A_{1}) + \mu^{*}((B \setminus A_{0}) \cap A_{1})$$

$$+ \mu^{*}((B \setminus A_{0}) \setminus A_{1})$$

Ugyanis vegyük észre, hogy $(B \setminus A_0) \setminus A_1 = B \cap (A_0 \cup A_1)$, valamint

$$B \cap (A_0 \cup A_1) = ((B \cap A_0) \cap A_1) \cup ((B \cap A_0) \setminus A_1) \cup ((B \cap A_1) \setminus A_0)$$
$$= ((B \cap A_0) \cap A_1) \cup ((B \cap A_0) \setminus A_1) \cup ((B \setminus A_0) \cap A_1).$$

Alkalmazva a μ^* szubadditív tulajdonságát kapjuk, hogy

$$\mu^*(B) > \mu^*(B \cap (A_0 \cap A_1)) + \mu^*(B \setminus (A_0 \cap A_1))$$

azaz Ω valóban zárt a kételemű unióra. Ugyanakkor (lásd $\mu^*\text{-mérhető lemma})$

$$\mu^*(B) = \mu^*(B \cap (A_0 \cap A_1)) + \mu^*(B \setminus (A_0 \cap A_1))$$

Speciálisan $A_0 \cap A_1 = \emptyset$, valamint a $B \leftrightarrow B \cap (A_0 \cup A_1)$ szerepcsere után

$$\mu^*(B \cap (A_0 \cup A_1)) = \mu^*(B \cap A_0) + \mu^*(B \cap A_1).$$

Innen teljes indukcióval adódik, hogy

$$\bigcup_{k=0}^{n} A_k \in \Omega$$

valamint ha az A_n $(n \in \mathbb{N})$ halmazok páronként diszjunktak, akkor

$$\mu^* \left(B \cap \bigcup_{k=0}^n A_k \right) = \sum_{k=0}^n \mu^* (B \cap A_k).$$

Ugyanis minden $B \in \mathcal{P}(X)$ esetén

$$\mu^*(B) = \mu^*(B \cap X) + \mu^*(B \setminus X)$$
$$= \mu^*(B) + \mu^*(\emptyset)$$
$$= \mu^*(B).$$

Amennyiben $A \in \Omega$, akkor

$$\mu^*(B) = \mu^*(B \cap A^c) + \mu^*(B \setminus A^c)$$
$$= \mu^*(B \setminus A) + \mu^*(B \cap A).$$

Legyenek tehát az A_n $(n \in \mathbb{N})$ halmazok páronként diszjunktak. Ekkor

$$\mu^*(B) \ge \mu^* \left(B \cap \bigcup_{k=0}^n A_k \right) + \mu^* \left(B \setminus \bigcup_{k=0}^n A_k \right)$$
$$\ge \sum_{k=0}^n \mu^*(B \cap A_k) + \mu^* \left(B \setminus \bigcup_{k=0}^n A_k \right)$$

Véve az $n \to \infty$ határátmenetet, majd kihasználva μ^* szubadditivitását

$$\mu^*(B) \ge \sum_{k=0}^{\infty} \mu^*(B \cap A_k) + \mu^* \left(B \setminus \bigcup_{k=0}^{\infty} A_k \right) \ge \mu^* \left(B \cap \bigcup_{k=0}^{\infty} A_k \right) + \mu^* \left(B \setminus \bigcup_{k=0}^{\infty} A_k \right)$$

Innen rögtön következik, hogy Ω zárt a megszámlálható unióra, vagyis

$$\bigcup_{n=0}^{\infty} A_n \in \Omega.$$

Tehát Ω valóban szigma-algebra, továbbá speciális választásként

$$B := \bigcup_{n=0}^{\infty} A_n \qquad \Longrightarrow \qquad \mu^* \left(\bigcup_{n=0}^{\infty} A_n \right) = \sum_{n=0}^{\infty} \mu^* (A_n).$$

Vagyis $\mu^*|_{\Omega}$ szigma-additív, ezért minden eddigi alapján $\mu^*|_{\Omega}$ egy mérték.

Ez akkor is igaz, amikor az A_n $(n \in \mathbb{N})$ halmazok nem páronként diszjunktak.

1.2. Definíció: Külső mérték

Legyen X egy halmaz, valamint $\mu^*: \mathcal{P}(X) \to \overline{\mathbb{R}}$ olyan halmazfüggvény, ami

- 1. **nemnegatív**, azaz $\mu^* \geq 0$;
- 2. eltűnik Ø-ban, azaz $\mu^*(\emptyset) = 0$;
- 3. monoton, azaz minden $B \subseteq A$ esetén $\mu^*(B) \le \mu^*(A)$;
- 4. szubadditív, azaz minden A_n $(n \in \mathbb{N})$ halmazsorozat esetén

$$\mu^* \left(\bigcup_{n=0}^{\infty} A_n \right) \le \sum_{n=0}^{\infty} \mu^* (A_n).$$

Ekkor azt mondjuk, hogy μ^* egy külső mérték.

1.3. Tétel: Caratheodory-tétel

Legyen X egy halmaz, $\mu^* : \mathcal{P}(X) \to \overline{\mathbb{R}}$ külső mérték, valamint

$$\Omega := \{ A \in \mathcal{P}(X) \mid A \mu^* \text{-m\'erhet\'o} \}.$$

Ekkor Ω szigma-algebra és $\mu := \mu^*|_{\Omega}$ mérték.