Politechnika Warszawska

Zakład Podstaw Konstrukcji

Projektowanie

mgr inż. Grzegorz Kamiński grzegorz kaminski@pw.edu.pl

18 kwietnia 2023 Wersja 1.22

Dobôr pasowań

Osadzany element	Rodzaj <mark>obc</mark> iążenia	Zalecane pasowanie
koło zęba <mark>te</mark>	zwykłe	H7/p6 dla d<120; H7/r6 dla d>120.
k <mark>oło</mark> zębate	obciążenie dyn <mark>ami</mark> czne	H7/r6 dla d<80; H7/s6 dla d>80.
koło zębate	dla częstego demontażu	H7/k6; H7/n6;
półsprzęgła	zwykłe	H7/k6; H7/n6;
półsprzęgła	obc <mark>iąże</mark> nie d <mark>yn</mark> amiczne	H7, p6; H7/r6; H7/s6
tuleje dystansowe		H7/h6; H8/h7
osadzenie uszczelek		h11

Dobór pasowań opraw łożyskowych

(f)	Warunki pracy mające wpływ na dobór pasowania	m, m	Rodzaj opraw	Symbol	Uwagi
Obracający się wał lub oprawa	Obcią <mark>żenia</mark> oprawy	Rodzaj pracy		pasowania	
Obciążenie miejscowe pierścienia we <mark>wnętr</mark> znego oprawa się obraca	Obciążenie miejscowe pier <mark>ścieni</mark> a wewnętrzn <mark>ego</mark> ni <mark>e</mark> zmienia kierunku	Ciężka lub przy cienkościenn <mark>ej o</mark> prawie Ciężka i normalna Normalna	- Ni <mark>edzie</mark> lone	P7 N7 M7	P <mark>ierś</mark> cień zewnętrzn <mark>y</mark> nie <mark>prze</mark> suwny w opr <mark>awie</mark>
Obciążenie oscylujące pi <mark>erście</mark> nia zewnętrznego wał się obraca	Obciążenie oscylujące pierścien <mark>ia ze</mark> wnętrznego zmienia kierunek lub nie zmienia kierunku	Ciężka Normalna Normalna i lekka	. Niedzie <mark>lone</mark>	N6, M6, M7 K7 K6, J6, J7	Pierścień zewnętrzny w zasadzie nie <mark>prz</mark> esuwny w opr <mark>awi</mark> e Pierścień zewnętrzny w zasadzie przesuwny
) 🤚 🖑 🤚	Lekka	0 0	H6, H5	w oprawie P <mark>ierśc</mark> ień zewnętrzny łatwo przesuwny w oprawie
Obciążenie oscylujące	Obciążenie oscylujące	Ciężka i normalna	Niedzie <mark>l</mark> one	J7, H7	Pierścień zewnętrzny w zasadzie przesuwny w oprawie
pierścienia zewnętrznego	pierścienia zewnętrznego	Normalna Lekka	Dzielona lub <mark>niedz</mark> ielona	H7 H8	Pierścień zewnętrzny łatwo pr <mark>zesu</mark> wny w oprawie
	Łożyska baryłkow	e wzdłużne obciążone siła	mi wzdłużnymi i j	poprzecznymi	
Wał się obraca	Zmienia kierunek	Ciężka Normalna	Niepodzielna	M7 K7	Pierścień zewnętrzny nieprzesuwny w oprawie
Wał się obraca	Nie zmienia kierunku	Ciężka i normalna	"		Pierścień zewnętrzny w zasadzie przesuwny w oprawie

Dobór pasowań czopów wałka pod łożysko

	runki pracy <mark>mają</mark> ce w na dobór pasowania	4111	5	Średnica v	vału 💮 🦴	Symbol	Uwagi
Obracający lub nieobracając <mark>y się w</mark> ał	Obciążenie czopa	Rodzaj pracy	Łożyska kulkowe	Łożyska walc <mark>owe</mark> i stożkowe	Łożyska baryłk <mark>owe</mark>	pasowania	, m, m,
Obciążenie miejscowe pierścienia wewnętrznego	Obciążenie miejscowe pierścienia wewnętrznego	Lekka i normalna				g6	Łatwy przesuw na czopie
wał się nie obraca	nie zmienia kierunku	Normalna i ciężka	e lilli	6m)	<u></u>	h6	Przesuw na czopie niekonieczny
			≤ 18			h5	
-	, m, m, m	Lekka	$18 \div 100$	≤ 40	≤ 40	j6	Dla maszyn do- kładnyc
		i normalna	$100 \div 200$	$40 \div 140$	$40 \div 140$	k6	stosować j5, k5, m5
6 6			1	$140 \div 200$	$140 \div 200$	m6	
Obciążenie			≤ 18			j5	
wirujące	r00-		$18 \div 100$	≤ 40	≤ 40	k5, k6	ette.
lub	zmiana kierunku	Normalna	$100 \div 140$	$40 \div 100$	$40 \div 65$	m5	Dla łożysk stożkowyc
oscylujące	lub	lub	$140 \div 200$	$100 \div 140$	$65 \div 100$	m6	zwykle stosuje się
pierścienia	nie zmienia się kierunek	ciężka	$200 \div 280$	$140 \div 200$	$100 \div 140$	n6	klasę 6
zewnętrznego, gdy	The Zitherna się Kierunek		n)	$200 \div 400$	$140 \div 280$	р6	min m
wał się obraca	in Guil	Gun	Gu		> 280	r6 i r7	Gun
wai się obiaca		Ciężka	_	$50 \div 120$	$50 \div 120$	n6	Potrzeba stosowania
		z uderzeniami		$120 \div 200$	$120 \div 180$	р6	luzów powiększonych
m m m	z uuerzeinaini	11111	(III)	> 180	r7	ruzow powiększonych	
Gun Gun	Gun Gun	Ciężka			ejach stożkowych	h9	Gun
		Normalna	łożyska os	adzone na tul	ejach stożkowych	h10	
Tylko wzdłuż	ne obciążenie			ożyska wzdłu:		j6	1,000/101

Chropowatości powierzchni wału

Typ (III)	Wymiary	Chropowatość
powierzchnie osadzania piast kół przekładn <mark>i</mark> zębatych	$d \leq 80$	₹Ra1,6
powierzchnie osadzania piast kół przekładni zębatych	d > 80	₹a3,2
p <mark>owi</mark> erzchnie o <mark>sad</mark> zania pias <mark>t k</mark> ół przekła <mark>dni</mark> niezębaty <mark>ch i</mark> półsprzęg <mark>ieł</mark>	$d \le 80$	₹ a 3,2
powierzchnie osadzania piast kół przekładni niezębatych i półsprzęgieł	d > 80	₹a6,3
powierzchnie wału współpracujące z uszczelnieniami filcowymi	$v \leq 4m/s$	₹ <u>a3,2</u>
powierzchn <mark>ie w</mark> ału współ <mark>pr</mark> acujące z u <mark>szc</mark> zelnienia <mark>mi</mark> filcowymi	$v \leq 6m/s$	₹ <i>Ra</i> 6,3
powierzchnie wału współpracujące z pierścieniami gumowymi uszczel	niającymi	Ra0,4 Ra1,6
powierzchnia boczna osadzenia łożysk, piast, kół, półsprzęgieł		lasę niż <mark>ej o</mark> d chropo <mark>wato</mark> ści miejsc osadzenia
powierz <mark>ch</mark> nie boczna <mark>row</mark> ka wpus <mark>tow</mark> ego	and "	Ra3,2
powierzchnie dna rowka wpustowego		₹ Ra 6,3

Chropowatości powierzchni wału

Тур	Wymiary	Chropowatość
powierzchnia osadzenia i odsadzenia łożyska tocznego	$d_{wal} \leq 80$	$ \sqrt{Ra}_{0,4} \dots \sqrt{Ra}_{0,8} $
p <mark>o</mark> wierzchn <mark>ia</mark> osadzen <mark>ia i</mark> odsadz <mark>eni</mark> a łożysk <mark>a t</mark> ocznego	$d_{wal} > 80$	$ \sqrt{\frac{Ra_{0,8}}{Ra_{1,6}}} \dots \sqrt{\frac{Ra_{1,6}}{Ra_{1,6}}} $
powierzchnia osadzenia i odsadzenia łożyska tocznego	$D_{oprawa} \le 80$	$\sqrt{Ra_{0,8}} \dots \sqrt{Ra_{1,6}}$
powierzchnia osadzenia i odsadzenia łożyska tocznego	$D_{oprawa} > 80$	$\sqrt{\frac{Ra_{1,6}}{}} \cdots \sqrt{\frac{Ra_{3,2}}{}}$
promienie zaokrągleń przejść wałów		Ra3,2
inne powierzchnie wałów	.	Ra6,3 Ra12,5
p <mark>ow</mark> ierzchni <mark>a o</mark> sadzeni <mark>a i</mark> odsadze <mark>nia</mark> łożysk <mark>śli</mark> zgowych		$ \sqrt{Ra_{0,8}} \dots \sqrt{Ra_{1,6}} $

Tolerancje geometryczne osadzenia łożyska

	ś <mark>re</mark> dnica wału	oprawa $D \ge 150$	oprawa $D > 150$
tolerancja miejsc osadzenia	MIT6 M	IT6	IT7
tolerancja walcowości 🕢	$0.5 \cdot IT4$	0,5 · IT4	0,5·IT5
tolerancja współosiowości		0,5.	
tolerancja	TT 4		W 777 W 1
bi <mark>cia</mark> odsadz <mark>eń</mark>		M M	IT5
tolerancja		0.5 6/	
bicia pro <mark>m</mark> ieniowe <mark>go</mark>		0,5.	@ @ @ <

Tolerancje geometryczne osadzenia kół

Walcowość miejsc osadzenia // – nie większa niż $0,5 \cdot IT_n$ średnicy wału

prędkość obwodowa v ^m / _s części osadzo <mark>n</mark> ych na wale	$v \leq 2$	$2 < v \le 6$	$6 < v \le 10$	v > 10
tolerancja bicia promieniowego miejsc osadzenia kół	$2 \cdot IT_n$	$1,4 \cdot IT_n$	$1 \cdot IT_n$	$0.7 \cdot IT_n$
w por <mark>ów</mark> naniu z IT _n wału	m _s	· · · ·	of the last	m 🔑 6

Tolerancje bicia osiowego kołnierzy wałów

 $\operatorname{\mathsf{Gdy}}
olimits L_p > d_{\mathit{wal}}$ tolerancję bicia osiowego \nearrow należy zwiększyć 1,5 razy.

Bicie osiowe kołnierzy wału,	Klasa	dokładności	średnic <mark>a w</mark> ału			
μ m współrzędnych	Kiasa	doktadilosci	do 55	do 80	od 80	
z piastami kół zębatych		6, 7	20	30	40	
z piastaitii koi zębatycii	Mh	8, 9	30	40	50	
z piastami kół niezębatych,	90	prędkość o	bwodov	$vav\frac{m}{s}$	9	
półsprzęgieł	do 5	do 8	do 12	do 18	do 25 (
poispizęgiei	60	50	40	30	20	

Oznaczenie tolerancji walcowości i bicia na rysunku

Nakiełki

- * nakiełki zwykle (typ A) stosowane dla przedmiotów o małej dokładności wykonania, lub w przypadku, gdy po jednej lub kilku operacjach nakiełki będą usunięte, (np. baza obróbkowa dla otworu osiowego),
- * nakiełki chronione (typ B) stosowane najczęściej podczas wykonywania długich wałów maszynowych. Powierzchnia stożkowa o kącie 120° chroni powierzchnię czołową przed nierównościami, spowodowanymi wybiciem materiału przez kieł tokarki.
- * nakiełki łukowe (typ R) są stosowane dla wałów z materiałów trudno obrabialnych, a kształt nakiełka ma na celu zwiększenie sztywności narzędzia wykonującego nakiełek.

Nakiełki

Nakiełek typ R

Oznaczenie nakiełków

produkcie

Nakiełek wymagany w gotowym produkcie

SO 6411-R d/D;

P<mark>olite</mark>chnika Warszawska

Nakiełek niedopuszczalny na gotowym produkcie

Wymiary nakiełków

Średn	ica d	Wielkość nom	inalna		Тур А	-		Тур В			Typ R	
ponad	do	d d	· m	1 ,	t	D_2	1	lll t	D_3	1	R	D_1
	4	0,5		1,48	0,5			0			0	0
m m	6,3	0,63	rin	1,8	0,6		(D)	riin-	- m	rillo	nîn .	n n
	6,3	0,8	Gun	2,28	0,7	6	")	4		4	4	6,
6,3	16	1		2,87	0,97	2,12	3,17	0,97	3,15	2,64	$2,5 \div 3,15$	2,12
6,3	16	1,25	Cull ²	3,41	1,1	2,65	3,8	1,1	4	3,05	$3,15 \div 4$	2,65
16	32	1,6	0	4,32	1,4	3,35	4,79	1,4	5	3,82	$4 \div 5$	3,35
16	32	2	m)	5,25	1,8	4,25	5,84	1,8	6,3	4,81	$5 \div 6,3$	4,25
32	56	2,5	6	6,52	2,2	5,3	7,3	2,2	8	6,04	$6,3 \div 8$	5,3
32	56	3,15		7,97	2,8	6,7	8,93	2,8	10	7,67	$8 \div 10$	6,7
56	80	4	6111	10,1	3,5	8,5	11,25	3,5	12,5	9,63	$10 \div 12,5$	8,5
56	80	5		12,35	4,4	10,6	13,91	4,4	16	11,9	$12,5 \div 16$	10,6
80	120	6,3	m m	15,18	5,5	13,2	16,56	5,5	18	14,4	$16 \div 20$	13,2
80	120	8	6	19,29	7	17	20,85	7	22,4	19,3	$20 \div 25$	17
120		10	-the	23,9	8,7	21,2	25,86	8,7	28	23	$25 \div 31,5$	21,2

Podcięcia technologiczne

Aby uniknąć koncentracji naprężeń w miejscach przejścia średnic wałka stosuje się podcięcia technologiczne lub promienie przejścia.

Podcięcia technologiczne

Podcię<mark>cie</mark> typ A

Podcięcie typ B

Podcięcie typ D

Podcięcia technologiczne - wymiary

Średni	ca d	W	ymiary p	odcię	ć obr	óbkowych A i B
ponad	do	L	а	L_1	$\bigcup c$	r_p
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	3	1	$0,1_0^{0,05}$	0,8	0,5	0,25
3	10	2	$0,2_0^{0,1}$	1,5	1	0,4
10	18	2	$0,2_0^{0,1}$	1,5	M 1	0,4
18	30	2	$0,2_0^{0,1}$	1,5	1	0,4
30	80	4	$0,3_0^{0,1}$	3,3	1,5	0,6
80		6	$0,4_0^{0,1}$	5	2,3	1

Ś <mark>red</mark> ni	ca d	Wymi	ary p	odcięć	obróbkowych C i D
ponad	do	g_1	L_2	L_3	r
10	18	$0,2_0^{0,1}$	1,6	1,4	m m m m
18	30	$0,3_0^{0,1}$	2,5	2,2	1,6
30	80	$0,3_0^{0,1}$	3,7	3,4	1,6
80		$0,3_0^{0,1}$	3,7	3,4	2,5

Podcięcia technologiczne

Podcięcia technologiczne - wymiary

Śno	dnica d	Rodzaj podcięcia: E						zaj po	dcięc	ia: F
316	uiiica	r		g ₄	80	w	g_4	g ₅	4	w
od	do	seria 1	seria 2	84	14	VV	54	5 5	14 h	W M
18	80	60	0,6	0,3	2,5	1	0,3	0,2	2,5	2,1
18	80	0,8	m m	0,3	2,5		0,3	0,2	2,5	2,3
18	50	0	V1 V	0,2	2,5	V	0,2	0,1	2,5	1,8
18	50	1,2	nîn .	0,2	2,5	1	0,2	0,1	2,5	2
80	0	1,2		0,4	J 4	1	0,4	0,3	4	3,4
50	80	1,6	m m	0,3	4		0,3	0,2	4	3,1

Śred	Średnica d		odzaj	podc	ięcia:	Rodza <mark>j p</mark> odcięci <mark>a: H</mark>				
od	do	r_p	g ₄	g ₅	l_4	w	g ₄	8 5	l_4	w
3	18	0,4	0,2	0,2	0,9	1,1	0,3	0,2	2,5	2,1
18	80	0,8	6	m J	- ^c lu	1	0,3	0,05	2	1,1

Fazowanie wałków

<mark>śre</mark> dnica	$10 \div 18$	$20 \div 28$	$30 \div 48$	$\frac{50}{50} \div 75$	$80 \div 125$	$130 \div 180$	$190 \div 320$
faza	0,6	1,0	1,6	2,0	2,5	3,2	4,0

Występują na końcach wałka a ich wielkość uzależniona jest od średnicy. Fazki wewnątrz projektuje się najczęściej według uznania lub innych potrzeb.

Promienie przejść

, in , in , Ciągi in , in , in , in								
1	2	1	2	1	2	1	2	
0,10	0,10	1,0	1,0	10	10	100	100	
	0,12	h	1,2	Mb	12	m m	125	
0,16	0,16	1,6	1,6	16	16	160	160	
(m)	0,20	, m	2,0	m,	20	·m	200	
0,25	0,25	2,5	2,5	25	25	250	250	
4111	0,30		3,0	e III	32	- Gui	9	
0,40	0,40	4,0	4,0	40	40	m	m r	
0	0,50	0	5,0	6	50	0	0 6	
0,60	0,60	6,0	6,0	63	63	m, m	m,	
	0,80		8,0		80			

Odsadzenia wałka

		10		/.)	/ /	()	/ / /	
	Średnica d _{wal}	≤ 20	≤ 30	≤ 45	≤ 70	≤ 100	≤ 150	
4	promień R ⁰ _{-0,4}	1,0	1,6	2,0	2,5	3,0	4,0	
	faza $c_0^{+0,4}$	1,2	2,0	2,5	3,0	4,0	5,0	

Odsadzenia wałka

Średnica d _{wal}	$10 \div 18$	$20 \div 28$	$30 \div 46$	$48 \div 68$	$70 \div 100$	$105 \div 150$	$155 \div 200$
$R_{\rm W}$	0,8	1,5	2	2,5	3	4	5
R_p	1	2	2,5	3	4	5	6

Ustalenie piasty i tulei dystansowej

Podtoczenia wałka pod łożysko

Prom	ienie zaokrąglenia	Wymiary podtoczenia					
R	R_{W}	b	R_b	t			
0,5	0,3						
1	0,6						
1,5	100	2	1,3	0,2			
2	1 1	2,4	1,5	0,3			
2,5	1,5	3,2	2	0,4			
3	2	4	2,5	0,5			
3,5	2	4	2,5	0,5			
4	2,5	4,7	3	0,5			
5	3	5,9	4	0,5			

Bibliografia

A. Dziurski, E. Mazanek, and L. Kania. Przykłady obliczeń z podstaw konstrukcji maszyn: Łożyska, sprzęgła i hamulce, przekładnie mechaniczne. tom 2. WNT, 2015. isbn: 9788393491360.

L. W. Kurmaz and O. L. Kurmaz. Podstawy konstruowania węzłów i części maszyn: podręcznik konstruowania. Samodzielna Sekcja "Wydawnictwo Politechniki Świetokrzyskiei". 2011. isbn: 9788388906343.

E. Mazanek, A. Dziurski, and L. Kania. Przykłady obliczeń z podstaw konstrukcji maszyn: Połączenia, sprężyny, zawory, wały maszynowe.
tom 1. WNT, 2005. isbn: 9788320435528.

W. Starego. Poradnik konstruktora przekładni pasowych.

