# **Anomaly Detection**





Lecture by Klaus-Robert Müller, TUB 2023

### **Anomalies - introduction**



Two-class (left): select a hyperplane such, that both classes are well separated One-class (right): what is a good model?





# Three approaches to Anomaly detection

- ▶ **Density-based:** Learn a density model of the inlier data p(x), and then classify a new data point as 'outlier' when the probability assigned to it is low.
- **Reconstruction-based:** Learn a reconstruction model of the data  $x \mapsto \operatorname{proj}_{\mathcal{D}}(x)$ , and then classify as 'outlier' when the reconstruction error is high.
- ▶ Boundary-based: Learn a separating surface between the inlier data and the outlier data (e.g. a sphere enclosing all inliers).





Kernel density estimation is a density-based anomaly model, based on the probability function:

$$p(\mathbf{x}) = \frac{1}{Z} \sum_{i=1}^{N} k(\mathbf{x}, \mathbf{x}_i)$$

where we typically choose  $k(\mathbf{x}, \mathbf{x}_i) = \exp(-\gamma ||\mathbf{x} - \mathbf{x}_i||^2)$  i.e. the Gaussian kernel.



Image source: Raykar et al. 2006. Fast optimal bandwidth selection for kernel density estimation

## Feature space view of Kernel Density Estimation:

Nernel density estimation can also be interpreted as some prediction model in kernel feature space. Assume k induces a feature map  $\phi: \mathbb{R}^d \to \mathcal{H}$ , the probability function can be written as:

$$p(\mathbf{x}) = \frac{1}{Z} \sum_{i=1}^{N} k(\mathbf{x}, \mathbf{x}_i)$$

$$= \frac{1}{Z} \sum_{i=1}^{N} \langle \phi(\mathbf{x}), \phi(\mathbf{x}_i) \rangle$$

$$= \langle \phi(\mathbf{x}), \frac{1}{Z} \sum_{i=1}^{N} \phi(\mathbf{x}_i) \rangle$$
mean

i.e. a data point is an inlier if it aligns with the data mean in feature space.

### Feature space view of Kernel Density Estimation:

► KDE can be rewritten as:

$$p(\mathbf{x}) = \left\langle \phi(\mathbf{x}), \underbrace{\frac{1}{Z} \sum_{i=1}^{N} \phi(\mathbf{x}_i)}_{\text{mean}} \right\rangle$$

Visual intuition (one-dimensional input space):





- Input data in two dimensions  $(\mathbf{x} \in \mathbb{R}^2)$ .
- The outlier score is computed from the probability function as:

$$o(\mathbf{x}) = -\log p(\mathbf{x}).$$

The more red, the higher the outlier score.

Outlier score grows in every direction where there is no data.

# **Kernel PCA (reconstruction based)**

Uncentered PCA projection in feature space can be written as:

$$\phi(\mathbf{x}) = \underbrace{\sum_{i=1}^{a} u_{i} u_{i}^{\top} \phi(\mathbf{x})}_{\text{PCA model}} + \underbrace{\sum_{i=a+1}^{h} u_{i} u_{i}^{\top} \phi(\mathbf{x})}_{\text{residuals}}$$

where  $u_1, \ldots, u_a$  are the principal components. Reconstruction error is given by the square distance between the data and its projection in PCA space:

$$o(\mathbf{x}) = \left\| \phi(\mathbf{x}) - \sum_{i=1}^{a} u_i u_i^{\top} \phi(\mathbf{x}) \right\|^2$$
$$= k(\mathbf{x}, \mathbf{x}) - \sum_{i=1}^{a} (u_i^{\top} \phi(\mathbf{x}))^2$$



# **Kernel PCA (reconstruction based)**

**Question:** Can we compute the projections

$$\operatorname{proj}_{i}(\mathbf{x}) = u_{i}^{\top} \phi(\mathbf{x})$$
 ?

**Answer:** Using the decomposition  $K = V\Lambda V^{\top}$ , the projection on the *i*th principal component is given by:

$$\operatorname{proj}_{i}(\boldsymbol{x}) = k(\boldsymbol{x}, X) \cdot V_{:,i} \cdot \lambda_{i}^{-0.5},$$

We can then compute an outlier score using this projection

$$o(\mathbf{x}) = k(\mathbf{x}, \mathbf{x}') - \sum_{i=1}^{a} (\operatorname{proj}_{i}(\mathbf{x}))^{2}.$$







# **Kernel PCA (reconstruction based)**

Two-dimensional example, different choices of kernel functions:



The Gaussian kernel better captures the shape of the data.

## What is one class learning?

### Objective

- Learn common properties of the examples and be able to tell if a test point belongs to the class or not
- Assuming we know the data distribution  $p(\mathbf{x})$ , the task is, to reject all data points with  $p(x) < \nu$  given a pre-defined threshold  $\nu$ .
- Unfortunately, we usually don't know  $p(\cdot)$
- Therefore, we need to estimate it ...

#### **Applications**

Anomaly Detection

#### First Appearance in Literature

Moya & Hush (1996): 'Network constraints and multi-objective optimization for one-class classification', Neural Networks





#### Close Relation To Two-class SVM

- The kernel trick applies!
- Primal & Dual formulation
- Approaching One Class Classification from supervised learning, e.g. via weighting unbalanced classes (for linear kernels)

Possibility of extending One Class
 Classification from unsupervised
 learning, e.g. via active (semi-supervised) learning









# **Support Vector Data description**







### Support Vector Data Description (SVDD)

- $\bullet$  Compute minimal enclosing sphere with center c and radius R
- Anomaly score as the distance to center **c**, that is  $f(\mathbf{x}) = \|\phi(\mathbf{x}) \mathbf{c}\|$
- Accept data point **x** if  $f(\mathbf{x}) \leq R$  and ...

... reject **x** if 
$$f(\mathbf{x}) > R$$





# **Support Vector Data description: optimization**

Primal optimization problem  $0 \le \nu \le 1$ 

$$\min_{R,c,\xi} R^2 + \frac{1}{n\nu} \sum_{i=1}^n \xi_i \qquad \cdots$$

s.t. 
$$\forall_{i=1}^n : \|\phi(\mathbf{x}_i) - \mathbf{c}\|^2 \le R^2 + \xi_i$$
 and  $\xi_i \ge 0$ 

Dual optimization problem

$$\max_{\alpha} \sum_{i=1}^{n} \alpha_{i} k(\mathbf{x}_{i}, \mathbf{x}_{i}) - \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} k(\mathbf{x}_{i}, \mathbf{x}_{j})$$

s.t. 
$$\sum_{i=1}^{n} \alpha_i = 1$$
 and  $0 \le \alpha_i \le \frac{1}{n\nu}$   $\forall i$ 

And center  $\mathbf{c} = \sum_{i}^{n} \alpha_{i} \phi(\mathbf{x}_{i})$ 

# **Support Vector Data description: properties**

Remind: center 
$$\mathbf{c} = \sum_{i=1}^{n} \alpha_{i} \phi(\mathbf{x}_{i})$$
 and  $0 \leq \nu \leq 1$ 

$$\sum_{i=1}^{n} \alpha_i = 1 \quad \text{and} \quad 0 \le \alpha_i \le \frac{1}{n\nu} \quad \forall i$$



- ullet  $\nu$  is an upper bound on the fraction of outliers
- ullet  $\nu$  is a lower bound on the fraction of support vectors
- $\circ$  Center-of-mass method:  $\nu=1$





# **Support Vector Data description: summary**



#### Advantages:

Neat idea, easy to explain..

No labels required

Training set can be comprised of nominal and some anomalous data Convex problem: every optimal solution is a global optimal solution Center  ${\bf c}$  and radius R are infered depending on the location of the data points

#### Drawbacks:

Experts can hardly influence with the adaptation process Resulting classifications may not be interpretable





### **Alternative: One class SVM**



#### One-class SVM

- Separate data from origin with hyperplane with maximum distance to origin
- Model function:  $f(\mathbf{x}) = \langle \mathbf{w}, \phi(\mathbf{x}) \rangle \rho$





# One class SVM:optimization

Primal optimization problem  $0 \le \nu \le 1$ 

$$\min_{\mathbf{w}, \rho, \xi} \frac{1}{2} \|\mathbf{w}\|^2 - \rho + \frac{1}{n\nu} \sum_{i=1}^n \xi_i$$
s.t. 
$$\forall_{i=1}^n : \langle \mathbf{w}, \phi(\mathbf{x}_i) \rangle \ge \rho - \xi_i \quad \text{and} \quad \xi_i \ge 0$$

Dual optimization problem

$$\max_{\alpha} -\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} k(\mathbf{x}_{i}, \mathbf{x}_{j})$$
s.t. 
$$\sum_{i=1}^{n} \alpha_{i} = 1 \text{ and } 0 \leq \alpha_{i} \leq \frac{1}{n\nu} \quad \forall i$$

And expansion  $\mathbf{w} = \sum_{i=1}^{n} \alpha_{i} \phi(\mathbf{x}_{i})$ 

### **One-class SVMs vs. SVDD**

#### One-class SVM vs SVDD

They are equal under fairly general assumption!

Remember SVDD dual optimization objective (constraints are equal for one-class SVM and SVDD:  $\sum_{i=1}^{n} \alpha_i = 1$  and  $0 \le \alpha_i \le \frac{1}{n\nu}$ )?

$$\max_{\alpha} \sum_{i=1}^{n} \alpha_{i} k(\mathbf{x}_{i}, \mathbf{x}_{i}) - \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} k(\mathbf{x}_{i}, \mathbf{x}_{j})$$

• Now, we assume that  $\|\phi(\mathbf{x})\|^2 = k(\mathbf{x}, \mathbf{x}) = \sigma$  (e.g. Gaussian kernel!), then ...

$$\max_{\alpha} \quad \sigma \qquad \sum_{i=1}^{n} \alpha_{i} \qquad -\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} k(\mathbf{x}_{i}, \mathbf{x}_{j})$$

=1 (due to equality constraint)

$$= \max_{\alpha} \quad \sigma - \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} k(\mathbf{x}_{i}, \mathbf{x}_{j})$$

$$= \max_{\alpha} -\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} k(\mathbf{x}_{i}, \mathbf{x}_{j}) = \underline{\text{One-class SVM}}$$





# Semi-supervised anomaly detection (SSAD): idea

Generalize the SVDD by including labels in a SVM fashion

Exploit prior and oracle knowledge to increase anomaly detection accuracy

Enable experts to verify uncertain guesses







# **SSAD:** problem formulation

Semi-supervised generalization of the SVDD

Allows for the inclusion of **unlabeled** and **labeled** data Parameters: center  $\mathbf{c}$ , radius R and confidence  $\gamma$ 



Extended SVDD problem formulation:

$$\min_{\substack{R,\gamma,\mathbf{c},\xi}} R^{2} - \kappa \gamma + \eta_{u} \sum_{i=1}^{n} \xi_{i} + \eta_{I} \sum_{j=n+1}^{n+m} \xi_{j}$$
s.t. 
$$\forall_{i=1}^{n} : \|\phi(\mathbf{x}_{i}) - \mathbf{c}\|^{2} \le R^{2} + \xi_{i}$$

$$\forall_{j=n+1}^{n+m} : y_{j} \left(\|\phi(\mathbf{x}_{j}) - \mathbf{c}\|^{2} - R^{2}\right) \le -\gamma + \xi_{j}$$

$$\forall_{i=1}^{n} : \xi_{i} \ge 0,$$

$$\forall_{j=n+1}^{n+m} : \xi_{j} \ge 0.$$

...BUT non-convex

### **SSAD** - reformulation



- Optimization problem is non-convex
- Remedy: translate the constrained, uncontinuous problem into an unconstrained, continuous problem
- Substitute slack variables:

$$\xi_{i} = \ell_{0,\epsilon} \left( R^{2} - ||\phi(\mathbf{x}_{i}) - \mathbf{c}||^{2} \right)$$
  
$$\xi_{j} = \ell_{0,\epsilon} \left( y_{j} \left( R^{2} - ||\phi(\mathbf{x}_{j}) - \mathbf{c}||^{2} \right) - \gamma \right)$$





## **SSAD: optimization**

Unconstrained, continuous objective:

$$\min_{R,\gamma,\mathbf{c}} P = \min_{R,\gamma,\mathbf{c}} \underbrace{\frac{R^2}{\sum_{\substack{small \\ Radius}}^{n} - \underbrace{\kappa\gamma}_{\substack{large \\ Margin}}^{n} + \eta_u \sum_{i=1}^{n} \ell_{0,\epsilon} \left( R^2 - ||\phi(\mathbf{x}_i) - \mathbf{c}||^2 \right)}_{Error \ on \ unclassified \ Data} + \eta_I \underbrace{\sum_{j=n+1}^{n+m} \ell_{0,\epsilon} \left( y_j \left( R^2 - ||\phi(\mathbf{x}_j) - \mathbf{c}||^2 \right) - \gamma \right)}_{Error \ on \ classified \ Data}$$

- Generalization of SVDD to a semi-supervised method
- Non-convex optimization problem, dual optimization is prohibitive
- Efficiently solvable using gradient descent methods
- Use Representer Theorem to obtain a non-linear version:

$$\mathbf{c} = \sum_{i} \alpha_{i} \phi(\mathbf{x}_{i}) + \sum_{j} \alpha_{j} y_{j} \phi(\mathbf{x}_{j})$$

## **SSAD** - summary



### Semi-supervised Anomaly Detection

Exploit prior and oracle knowledge to increase anomaly detection accuracy

Enable experts to verify uncertain guesses

### Important Special Case

Similar to the relation between SVDD and One-class SVM, there is a one-class SVM-style counterpart for SSAD (if  $\|\phi(\mathbf{x}_i)\| = const$ ) with a convex formulation ( $\mathbf{1}_i = 0$  for unlabeled examples and  $\mathbf{1}_i = 1$  for positive or negative labeled examples):

$$\min_{\mathbf{w}, \rho, \gamma \geq 0, \xi \geq 0} \quad \frac{1}{2} \|\mathbf{w}\|_{2}^{2} - \rho - \kappa \gamma + \sum_{i=1}^{n+m} (\mathbf{1}_{i} \eta_{i} + (\mathbf{1} - \mathbf{1}_{i}) \eta_{u}) \xi_{i}$$
s.t. 
$$\forall_{i=1}^{n+m} : y_{i} \langle \mathbf{w}, \phi(\mathbf{x}_{i}) \rangle \geq y_{i} \rho + \mathbf{1}_{i} \gamma - \xi_{i}$$

# **Overview of Anomaly detection methods**

Many methods for anomaly detection have been proposed. They can be roughly organized in the following table:

|                                                         | Kernel | Deep                                                         |
|---------------------------------------------------------|--------|--------------------------------------------------------------|
| Density-based<br>Reconstruction-based<br>Boundary-based | KPCA   | DBMs, Hierarchical Latent<br>Autoencoder<br>GAN, deep OC-SVM |

- None of the methods above is strictly superior. Each method has its strengths and weaknesses.
- Many other methods exist that are not in this table (isolation forests, local outlier factor). Cf. Ruff et al. [4] for a review of anomaly detection.





# **Anomaly detection in practice**

The MVTec dataset: Finding anomalies for industrial inspection.







# **Anomaly detection in practice**

Performance of different anomaly detection models on different MVTec classes (AUC metric)

|          |            | Gaussian | MVE  | PCA ( | KDE  | SVDD | kPCA | AGAN | DOCC        | AE   |
|----------|------------|----------|------|-------|------|------|------|------|-------------|------|
| Textures | carpet     | 48.8     | 63.5 | 45.6  | 34.8 | 48.7 | 41.9 | 83.1 | 90.6        | 36.8 |
|          | grid       | 60.6     | 67.8 | 81.8  | 71.7 | 80.4 | 76.7 | 91.7 | 52.4        | 74.6 |
|          | leather    | 39.6     | 49.5 | 60.3  | 41.5 | 57.3 | 61.1 | 58.6 | <b>78.3</b> | 64.0 |
|          | tile       | 68.5     | 79.7 | 56.4  | 68.9 | 73.3 | 63.2 | 74.1 | 96.5        | 51.8 |
|          | wood       | 54.0     | 80.1 | 90.4  | 94.7 | 94.1 | 90.6 | 74.5 | 91.6        | 88.5 |
|          | bottle     | 78.9     | 67.0 | 97.4  | 83.3 | 89.3 | 96.3 | 90.6 | 99.6        | 95.0 |
|          | cable      | 56.5     | 71.9 | 77.6  | 66.9 | 73.1 | 75.6 | 69.7 | 90.9        | 57.3 |
|          | capsule    | 71.6     | 65.1 | 75.7  | 56.2 | 61.3 | 71.5 | 60.7 | 91.0        | 52.5 |
|          | hazelnut   | 67.6     | 80.4 | 89.1  | 69.9 | 74.3 | 83.8 | 96.4 | 95.0        | 90.5 |
| sct.     | metal nut  | 54.7     | 45.1 | 56.4  | 33.3 | 54.3 | 59.0 | 79.3 | 85.2        | 45.5 |
| Objects  | pill       | 65.5     | 71.5 | 82.5  | 69.1 | 76.2 | 80.7 | 64.6 | 80.4        | 76.0 |
|          | screw      | 53.5     | 35.5 | 67.9  | 36.9 | 8.6  | 46.7 | 99.6 | 86.9        | 77.9 |
|          | toothbrush | 93.9     | 76.1 | 98.3  | 93.3 | 96.1 | 98.3 | 70.8 | 96.4        | 49.4 |
|          | transistor | 70.2     | 64.8 | 81.8  | 72.4 | 74.8 | 80.0 | 78.8 | 90.8        | 51.2 |
|          | zipper     | 50.1     | 65.2 | 82.8  | 61.4 | 68.6 | 81.0 | 69.7 | 92.4        | 35.0 |





# Beyond prediction: explaining anomalies

Sometimes, it is important to not only detect that a point is anomalous, but also to *understand* why a data point has been classified to be anomalous (to verify that the detection is justified).



**Question:** How to go backward in the model to identify pixels that are responsible for outlierness?





# **Explaining KDE and OC-SVMs**

**Insight:** Models of the type:

$$f(\mathbf{x}) = \sum_{i} \alpha_{i} \exp(-\gamma \|\mathbf{x} - \mathbf{x}_{i}\|^{2})$$

e.g. one-class SVM and kernel density estimation (KDE) can be rewritten as:

$$o(\mathbf{x}) = -\frac{1}{\gamma} \log f(\mathbf{x})$$

$$= -\frac{1}{\gamma} \log \sum_{i} \exp(-\gamma(\|\mathbf{x} - \mathbf{x}_i\|^2 - \log \alpha_i))$$

$$= \min_{i}^{\gamma} \{\|\mathbf{x} - \mathbf{x}_i\|^2 - \log \alpha_i\}$$

i.e. a soft minimum over squared distances [5].





# **Explaining KDE and OC-SVMs**

The outlier score

$$o(\mathbf{x}) = \min_{i}^{\gamma} \{ \|\mathbf{x} - \mathbf{x}_i\|^2 - \log \alpha_i \}$$

can therefore be redistributed in two steps, (1) min-take-most in the pooling layer, and directional redistribution in the distance layer. I.e. using

$$\underset{i}{\operatorname{argmin}}^{\gamma}\{\cdot\}$$

for the pooling part, and

$$(x - x_i)^2 / ||x - x_i||^2$$

for the squared distance (cf. [5]).







# **Explaining anomaly detection**

|          |            | Gaussian | MVE  | PCA ( | KDE  | SVDD | kPCA | AGAN | DOCC | AE   |
|----------|------------|----------|------|-------|------|------|------|------|------|------|
|          | carpet     | 48.8     | 63.5 | 45.6  | 34.8 | 48.7 | 41.9 | 83.1 | 90.6 | 36.8 |
| S        | grid       | 60.6     | 67.8 | 81.8  | 71.7 | 80.4 | 76.7 | 91.7 | 52.4 | 74.6 |
| Textures | leather    | 39.6     | 49.5 | 60.3  | 41.5 | 57.3 | 61.1 | 58.6 | 78.3 | 64.0 |
|          | tile       | 68.5     | 79.7 | 56.4  | 68.9 | 73.3 | 63.2 | 74.1 | 96.5 | 51.8 |
|          | wood       | 54.0     | 80.1 | 90.4  | 94.7 | 94.1 | 90.6 | 74.5 | 91.6 | 88.5 |
|          | bottle     | 78.9     | 67.0 | 97.4  | 83.3 | 89.3 | 96.3 | 90.6 | 99.6 | 95.0 |
|          | cable      | 56.5     | 71.9 | 77.6  | 66.9 | 73.1 | 75.6 | 69.7 | 90.9 | 57.3 |
|          | capsule    | 71.6     | 65.1 | 75.7  | 56.2 | 61.3 | 71.5 | 60.7 | 91.0 | 52.5 |
|          | hazelnut   | 67.6     | 80.4 | 89.1  | 69.9 | 74.3 | 83.8 | 96.4 | 95.0 | 90.5 |
| ž        | metal nut  | 54.7     | 45.1 | 56.4  | 33.3 | 54.3 | 59.0 | 79.3 | 85.2 | 45.5 |
| Objects  | pill       | 65.5     | 71.5 | 82.5  | 69.1 | 76.2 | 80.7 | 64.6 | 80.4 | 76.0 |
|          | screw      | 53.5     | 35.5 | 67.9  | 36.9 | 8.6  | 46.7 | 99.6 | 86.9 | 77.9 |
|          | toothbrush | 93.9     | 76.1 | 98.3  | 93.3 | 96.1 | 98.3 | 70.8 | 96.4 | 49.4 |
|          | transistor | 70.2     | 64.8 | 81.8  | 72.4 | 74.8 | 80.0 | 78.8 | 90.8 | 51.2 |
|          | zipper     | 50.1     | 65.2 | 82.8  | 61.4 | 68.6 | 81.0 | 69.7 | 92.4 | 35.0 |

What prediction strategy the KDE model uses to successfully predict the class 'wood'?





# **Explaining anomaly detection**



- The model detects the anomalous liquid stain, but also reacts to wood's vertical stripes (these are perfectly normal in a wood image!).
- Reliance on vertical stripes could harm generalization on new wood images.





# **Explaining anomaly detection**

**Idea:** Replace in the original KDE model the Euclidean metric by a Malahanobis metric with covariance  $\Sigma$  hardcoded to reduce the high horizontal frequencies.

$$f(\mathbf{x}) = \sum_{i=1}^{N} \frac{1}{N} \exp(-\gamma (\mathbf{x} - \mathbf{x}_i)^{\top} \mathbf{\Sigma} (\mathbf{x} - \mathbf{x}_i))$$



The anomaly decision is now supported by the correct features.





# More applications

## **Application: Detecting attacts in network traffic**

- An Attack is an attempt to compromise the confidentiality, integrity or availability of a system
- An Intrusion Detection System (IDS) is a system monitoring a stream of events for attacks



Imagine: You write a love-letter to your friend
 Only the recipient should read the letter → Confidentiality
 Your message should not be changed → Integrity
 The target mailbox should not be blocked → Availability





## Network intrusion detection – signature based



- Build signatures by searching for significant patterns in malicious data
- Use those signatures for identification of attacks



- Can only detect already known attacks
- Ineffective against attack variants and polymorphism

# Network intrusion detection – machine learning based



- Find unknown attacks
- Embed byte stream in a vector space



- Assumption: Malicious byte streams deviates from normal byte streams
- Learn a concise description of normal data
- Intrusion detection ≈ anomaly detection

## **Network intrusion detection – Feature spaces**

- N-gram vector space: any substring s of length n is represented as a dimension
- Binary: 1 if substring s occures in message x and 0 otherwise
- Frequency: count occurances of substrings s in x

Example:

$$\longmapsto \begin{pmatrix} 1 \\ 1 \\ 1 \\ \vdots \\ 0 \end{pmatrix} \quad \begin{array}{c} \mathsf{ET} \\ \mathsf{T} \\ \Box \\ \vdots \\ \mathsf{bb} \\ \end{array}$$





GE

### **Empirical result**

#### Data

Recorded within 10 Days at Fraunhofer FIRST Institute 145,069 normal HTTP Connections, mean length 489 bytes 27 real Attack classes with 2 – 6 Instances each (Metasploit)

#### Setup

3-gram representation of bytestream

Training (966+34), Holdout (795+27), and Test (795+27)

Attacks of same class occur either in train or test set

10 repetitions, AUC in the false positive interval [0, 0.01]

Obfuscation: attacks fake normal network traffic

attack = randomly chosen normal HTTP-Header + malicious payload

Effect: 3-gram representation is close to that of normal traffic





### Useful for anomaly detection



- Lots of data of one type available but with no or only a few labels:
   e.g. network traffic with only a few attacks
- missing information, e.g. future attacks are different from todays (varying training and test distributions)

# Anomalies in mobile communication

#### Anomaly detection on structured communication data with P3

- Heterogenous, structured Drive-Test Data
  - Fleet of cars all over europe, equipped with multiple smartphones & roof-mounted antennas
  - Smartphones run pre-defined test-sequences for scenarios like:
    - VoLTE (Voice over LTE), ViLTE (Video over LTE)
    - Data up-/downloads, website visits, etc.
  - Scale of Data: Several campaigns per year, with each campaign > 500.000 test sequences
  - Types of Data for the voice and data services
    - Logfiles of a proprietary analyzer
    - Raw Network Traces (pcap-files)
    - Radio Chipset Traces (like connection quality, bitrate changes, etc.)
  - Data is structured by the utilized network protocols, and also temporally and spatially





### Set-up





7. Application: HTTP, DNS
6. Presentation: SSL, TLS
5. Session: SIP
4. Transport: TCP, ESP
3. Network: IP, ICMP
2. Data link: 1. Physical: -

OSI Hierarchy of Network Layers, inc. those used in Drive-Test Data







```
MsgTime: 2014-07-28 11:01:59.432 [STATEMACHINE] CommandPortState
MsgTime: 2014-07-28 11:01:59.436 [STATEMACHINE] CommandPortState-Result (Return: COM_RAS_BUSY)
MsgTime: 2014-07-28 11:01:59.438 [STATEMACHINE] GetConnectionState
MsgTime: 2014-07-28 11:01:59.438 [DASHBOARD ENGINE] TDashboardWrapperSmartphone.DoGetMobileInfo: Start
MsgTime: 2014-07-28 11:01:59.438 [DASHBOARD ENGINE] Sending command: SP GET MOBILE STATE
MsgTime: 2014-07-28 11:01:59.615 [SP_CTRL]VMCCSmarty-Version: 1.8.1.879, IPDumper-Version: 1.2.12.872, Android-Version: 4.3
MsgTime: 2014-07-28 11:01:59.615 [SP_CTRL]Operator: IMSI: 262010050810227; Telekom.de; TDG; 26201
MsgTime: 2014-07-28 11:01:59.615 [SP_CTRL]NETWORK TYPE LTE; Cid: 27535105; Lac: 13890; Psc: 0
```

Raw Network Traces

```
Protocol Length Info
Source
                 Destination
                                               844 Ecno (ping) reply
91.250.77.23
                 10.34.208.9
                                 ICMP
                                                                        id=UXUZet, seg=1/256, ttl=49 (request
10.34.208.9
                 91.250.77.23
                                 ICMP
                                               844 Echo (ping) request id=0x02f0, seq=1/256, ttl=128 (reply i
                                                                        id=0x02f0, seq=1/256, ttl=49 (request
91.250.77.23
                 10.34.208.9
                                 ICMP
                                               844 Echo (ping) reply
10.34.208.9
                 91.250.77.23
                                 ICMP
                                               844 Echo (ping) request id=0x02f1, seq=1/256, ttl=128 (reply i
91.250.77.23
                 10.34.208.9
                                 ICMP
                                               844 Echo (ping) reply
                                                                        id=0x02f1, seg=1/256, ttl=49 (request
                                               844 Echo (ping) request id=0x02f2, seq=1/256, ttl=128 (reply i
10.34.208.9
                 91, 250, 77, 23
                                 ICMP
                                                                        id=0x02f2, seq=1/256, ttl=49 (request
91.250.77.23
                 10.34.208.9
                                 ICMP
                                               844 Echo (ping) reply
10.34.208.9
                 139.7.30.126
                                 DNS
                                                79 Standard guery 0xe445 A gdata.youtube.com
139.7.30.126
                 10.34.208.9
                                 DNS
                                               283 Standard query response 0xe445 CNAME www4.l.google.com A 1
173, 194, 39, 4
                 10.34.208.9
                                 TCP
                                                76 80-52524 [SYN, ACK] Seq=0 Ack=1 Win=14480 Len=0 MSS=1460 SA
10.34.208.9
                 173.194.39.4
                                 TCP
                                                68 52524-80 [ACK] Seg=1 Ack=1 Win=14656 Len=0 TSval=382656 TSe
10.34.208.9
                 173, 194, 39, 4
                                 HTTP
                                               499 GET /feeds/api/videos?q=ZZ2cftjyHys&time=all time&format=2%
173.194.39.4
                 10.34.208.9
                                 TCP
                                                68 80-52524 [ACK] Seq=1 Ack=432 Win=15872 Len=0 TSval=88297479
173.194.39.4
                 10.34.208.9
                                 HTTP
                                              1516 HTTP/1.1 200 OK [Packet size limited during capture]
173.194.39.4
                 10.34.208.9
                                 TCP
                                              1516 80-52524 [ACK] Seq=1449 ACK=432 Win=15872 Len=1448 TSval=88
173.194.39.4
                 10.34.208.9
                                 TCP
                                              1516 80-52524 [ACK] Seq=2897 Ack=432 Win=15872 Len=1448 TSval=88
173.194.39.4
                 10.34.208.9
                                 TCP
                                              1420 80-52524 [PSH, ACK] Seq=4345 Ack=432 Win=15872 Len=1352 TSV
```



```
27 33.811857 91.250.77.23 → 10.122.13.169 TCP 68 80→38644 [ACK] Seq=1 Ack=427 Win=15616 Len=0 TSval=2459653175 TSecr=4294965931
28 33.816469 91.250.77.23 → 10.122.13.169 TCP 1436 [TCP segment of a reassembled PDU]
29 33.817856 10.122.13.169 → 91.250.77.23 TCP 68 38644→80 [ACK] Seq=427 Ack=1369 Win=17504 Len=0 TSval=4294966089 TSecr=2459653175
30 33.816505 91.250.77.23 → 10.122.13.169 TCP 1436 [TCP segment of a reassembled PDU]
31 33.818158 10.122.13.169 → 91.250.77.23 TCP 68 38644→80 [ACK] Seq=427 Ack=2737 Win=20416 Len=0 TSval=4294966089 TSecr=2459653175
32 33.819430 91.250.77.23 → 10.122.13.169 TCP 1436 [TCP segment of a reassembled PDU]
33 33.819718 10.122.13.169 → 91.250.77.23 TCP 68 38644→80 [ACK] Seq=427 Ack=4105 Win=23296 Len=0 TSval=4294966089 TSecr=2459653175
34 33.819463 91.250.77.23 → 10.122.13.169 HTTP 859 HTTP/1.1 200 OK (text/html)
33 3819973 10.122.13.169 → 91.250.77.23 TCP 68 38644→80 [ACK] Seq=427 Ack=4896 Win=26208 Len=0 TSval=4294966089 TSecr=2459653175
36 33.908841 10.122.13.169 → 91.250.77.23 HTTP 510 GET /kepler03/css/kepler.css HTTP/1.1
37 33.919008 10.122.13.169 → 91.250.77.23 HTTP 506 GET /kepler03/css/fi.css HTTP/1.1
```

### **Feature Spaces over communication flow graphs**







Perspectives: BCI, robustness and complex anomalies

#### BBCI Set-up: Let the machines learn



[cf. Müller et al. 2001, 2007, 2008, Dornhege et al. 2003, 2007, Blankertz et al. 2004, 2005, 2006, 2007, 2008]

### **Brain Computer Interfacing: ,Brain Pong'**



### **Berlin Brain Computer Ínterface**

 ML reduces patient training from 300h -> 5min

#### **Applications**

- help/hope for patients (ALS, stroke...)
- neuroscience
- neurotechnology (video coding, gaming, monitoring driving)

Leitmotiv: >let the machines learn<

### BCI goes out of lab

**Today**: In-lab Studies



**Tomorrow**: Out-of-lab applications







Robustness is key

Eye movement <u>Distractions</u>



**Swallowing** 







Multi-Tasking









**Blinks** 



Noise



Movement



Impedance

# **Experiments**

W-MDE better selects representative trials than G-MDE



### Summary

#### Setting

- One-class learning is a harder task than, i.e. two class classification
- Try to learn properties of the given examples that potentially discriminates them from other

#### Methods

- One-class SVM learns a hyperplane that separates the data from the origin with maximum margin
- SVDD learns a center and a radius of a hypershpere that encloses the bulk of the data
- SVDD and One-class SVM are interchangable for a wide choice of kernels (including the Gaussian kernel)
- SSAD is a semi-supervised extension of SVDD: handles positiv and negative labeled examples as well as unlabeled examples

#### Results

- All approaches work well with high dimensions
- Incorporating prior knowledge into the learning problem (SSAD) significantly increases detection performance (not surprisingly)
- Active learning strategy