Introduction to Algebraic Information Theory for Quantitative Finance Homework 4

August 30, 2025

Timothy Tarter
James Madison University
Department of Mathematics

- 1. Show that $x^4 + x + 1$ is irreducible over \mathbb{Z}_2 . Describe $\mathbb{Z}_2[x]/\langle x^4 + x + 1 \rangle$.
- 2. Show that $Gal(\mathbb{C}:\mathbb{R}) \simeq \mathbb{Z}_2$.
- 3. Describe $Gal(\mathbb{Q}[\sqrt{2}, \sqrt{3}, i\sqrt{7}] : \mathbb{Q})$. What is its polynomial? What are its subgroups? For each subgroup H, determine $\Phi(H)$.
- 4. Describe $Gal(\mathbb{Q}[i+\sqrt{2},\sqrt{3}]:\mathbb{Q}[\sqrt{2}])$. What is its polynomial? What are its subgroups? For each subgroup H, determine $\Phi(H)$.
- 5. Describe $Gal(GF(8): \mathbb{Z}_2)$. What are its subgroups? For each subgroup H, determine $\Phi(H)$.
- 6. Describe the Galois Group of $f(x) = x^3 2$.
- 7. Describe the Galois Group of $f(x) = x^4 x^2 + 1$.
- 8. Determine $\operatorname{Aut}\mathbb{Q}$ and $\operatorname{Aut}\mathbb{Z}_p$.
- 9. Show that if K is a finite field, K is unique up to isomorphism, and that it is isomorphic to $GF(p^n)$. Show that K is a splitting field of a $f = x^{p^n} x$ over $\mathbb{Z}_p[x]$.
- 10. Prove that $\forall E$ subfields of L containing K, $\Gamma(E) \leq Gal(L:K)$. Hint: pick arbitrary elements in $\Gamma(E)$, then show that it is a subgroup.
- 11. Prove that $\forall H \leq Gal(L:K)$, $\Phi(H)$ is a subfield of L containing K. Hint: pick arbitrary elements in $\Phi(H)$, then show that it is a subgroup.
- 12. Let $z \in L \setminus K = \{\ell \in L : \ell \notin K\}$. Show that if z is a root of $f \in K[x]$ and if $\alpha \in Gal(L : K)$, $\alpha(z)$ is a root of f.
- 13. Show that $E \subseteq \Phi(\Gamma(E))$ and $H \subseteq \Gamma(\Phi(H))$. Hint: start with a proof by picture.
- 14.