open CV

1. openCV 설치하기: pip install opency-python

- 파이썬 이미지 처리 모듈
 - PILLOW: 기본모듈,단순함, 필요하면이미지를 array로 변환해야함
 - openCV: 강의내용 참조
 - skimg: 흑백2채널을 컬러3채널로 변하는등 데이터분석에 필요한 이미지 전처리에 해당하는 작업이 많음
- 위키정의
 - OpenCV(Open Source Computer Vision)은 실시간 컴퓨터 비전을 목적으로 한 프로그래밍 라이브러리이다. 원래는 인텔이 개발하였다. 실시간 이미지 프로세싱에 중점을 둔 라이브러리이다. 인텔 CPU에서 사용되는 경우 속도의 향상을 볼 수 있는 IPP(Intel Performance Primitives)를 지원한다. 이라이브러리는 윈도우, 리눅스 등에서 사용 가능한 크로스 플랫폼이며 오픈소스 BSD 허가서 하에서 무료로 사용할 수 있다. OpenCV는 TensorFlow, Torch / PyTorch 및 Caffe의 딥러닝 프레임워크를 지원한다.
 - OpenCV는 이미지를 읽을때 배열구조로 읽어 별도의 array변환이 필요없으며,
 - OpenCV 모듈에서 얼굴, 눈, 코등 신체의 일부를 인식하거나, 배경제거등의 컴퓨터비전관련 명령어를 포함하고 있다.
 - 동영상 읽기도 openCV에서 처리한다.

2. openCV로 이미지 자료 읽기

2. openCV로 이미지 자료 읽기

```
#### 그레이스케일로 읽기
   import cv2
   img_grayscale = cv2.imread('sample.jpg',cv2.IMREAD_GRAYSCALE) # img_grayscale = cv2.imread('test.jpg',0)
   print(img_grayscale[0], np.shape(img_grayscale))
   cv2.imshow('grayscale image',img_grayscale)
   cv2.waitKey(0)
12
[153 153 153 ... 153 153 153] (512, 1024)
                                                        III grayscale image
 img_color[0]
                          shape
```

2. openCV로 이미지 자료 읽기

참고: png 에 대하여서는 개념 만 이해합니다. 복잡한 처리는 추후에함

[255 255 255 255] (720, 720, 4)

shape 4채널

opency imread의 flag는 총 3가지가 있다.

정리 openCV로 이미지 읽기

1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
cv2.IMREAD_COLOR	1	이미지 파일을 Color로 읽고, Default값이다.
cv2.IMREAD_GRAYSCALE	0	이미지를 Grayscale로 읽는다.
cv2.IMREAD_UNCHANGED	-1	이미지파일을 alpha channel까지 포함하여 읽는는다.

읽어보기

https://shuka.tistory.com/23

3. OpenCV로 읽은 BGR 자료 → RGB로 변환

openCV로 읽은 자료는 numpy로 읽히며 RGB가아닌 BGR로 읽힘으로 별도의 변환없으면 plt.imshow 에서 색상표가 이상하게 나옴

<matplotlib.image.AxesImage at 0x2b3fdcb8370>

plt.imshow로 보면 그림색이 다름 (rgb가 아닌 bgr로 읽기때문)

```
[128 146 255]]
<matplotlib.image.AxesImage at 0x2b3fdc50df0>
```

[[128 146 255] [128 146 255] [128 146 255]

[128 146 255]

[128 146 255]

bgr을 rgb로 변경해야함

openCV로 읽은 원본 이미지

3. OpenCV로 읽은 BGR 자료 → RGB로 변환

openCV로 읽은 자료는 numpy로 읽히며 RGB가아닌 BGR로 읽힘으로 별도의 변환없으면 plt.imshow 에서 색상표가 이상하게 나옴 cv2.COLOR_BGRRGB

<matplotlib.image.AxesImage at 0x235e8488eb0>

4. 이미지의 일정영역만 띄어내기

이미지의 일정영역은 img[행시작:행종료, 열시작:열종료] 로 지정하면 됨. 단 이 영역은 마우스로 드래그할때는 x,y좌표값으로 들어감으로 이해가 필요함

- 1 img_color = cv2.imread('sample.jpg',cv2.IMREAD_COLOR)
- 2 img_color=cv2.cvtColor(img_color,cv2.COLOR_BGR2RGB)
- 3 tmp=img_color[100:400,200:600]
- 4 plt.imshow(tmp)

<matplotlib.image.AxesImage at 0x235e81eba00>

4. 이미지의 일정영역만 띄어내기

이작업후 마우스로 드래그하여서 이미지의 일정영역을 블러처리하는 코드로 실습함.

img_color[100:400,200:600]=dst plt.imshow(img_color)

5. 다른 이미지 자료 합성하기

이작업후 마우스로 드래그하여서 이미지의 일정영역을 블러처리하는 코드로 실습함.

img_color = cv2.imread('sample.jpg',cv2.IMREAD_COLOR)
img_color=cv2.cvtColor(img_color,cv2.COLOR_BGR2RGB)
tmp1=img_color[100:400,200:600]

plt.imshow(tmp1)

tmp1=tmp2 img_color[100:400,200:600]=tmp1 plt.imshow(img_color) img_color2 = cv2.imread('flower.jpg',cv2.IMREAD_COLOR)
img_color2=cv2.cvtColor(img_color2,cv2.COLOR_BGR2RGB)
tmp2=img_color2[100:400,200:600]

plt.imshow(tmp2)

6. 네모박스 그리기

이작업후 마우스로 드래그하여서 이미지의 일정영역을 블러처리하는 코드로 실습함.

import cv2 import matplotlib.pyplot as plt

img_color1 = cv2.imread('sample.jpg',cv2.IMREAD_COLOR)
img_color1=cv2.cvtColor(img_color1,cv2.COLOR_BGR2RGB)
tmp1=img_color1[100:400,200:600]

rectengle=cv2.rectangle(img_color1,(200,100),(600,400),(0,0,255),5) plt.imshow(rectengle)

img_color2 = cv2.imread('flower.jpg',cv2.IMREAD_COLOR)
img_color2=cv2.cvtColor(img_color2,cv2.COLOR_BGR2RGB)
tmp2=img_color2[100:400,200:600]

rectengle=cv2.rectangle(img_color2,(200,100),(600,400),(0,0,255),5) plt.imshow(rectengle)

https://copycoding.tistory.com/146?category=1042125

01 마우스로 사각형 그리기.ipynb

- 1. 마우스로 사각형 그리고
- 2. 영역지정 위치 csv로 저장

영역지정해서 필터 적용하기

[영역지정해서 모자이크 처리]

같은 위치에 다른 이미지로 채우기

이미지2

이미지 복원

