

CERTIFICATION UNDER 37 CFR 1.10

EM239524640 US: Express Mail Number

Time 18, 1997: Date of Deposit

I hereby certify that this Non-provisional Application Transmittal and the documents referred to as enclosed therein are being deposited with the United States Postal Service "Express Mail Post Office to Addressee" service under 37 CFR 1.10 on the date indicated above and is addressed to the Assistant Commissioner of Patents, Washington, D.C. 20231.

Janet Tse

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

BOX SEQUENCE Assistant Commissioner of Patents Washington, D.C. 20231

NON-PROVISIONAL APPLICATION TRANSMITTAL

Transmitted herewith for filing is the patent application of

Inventor(s): Avi J. Ashkenazi

Kevin Baker Austin Gurney William Wood

For: Apo-2DcR

1. Type of Application

This new application is for an original, non-provisional application.

- 2. Papers Enclosed Which Are Required For Filing Date Under 37 CFR 1.53(b)(non-provisional)
 - 99 pages of specification
 - $_{\underline{3}}$ pages of claims
 - $_{1}$ page(s) of abstract
 - _15_ sheet(s) of drawings
 - [X] formal
- [] informal
- 3. Declaration or Oath
 - X The declaration of the inventor(s) [X] is enclosed [X]unsigned [] will follow.
- 4. Assignment
 - X An Assignment of the invention to GENENTECH, INC. [] is enclosed with attached Recordation Form Cover Sheet [X] will follow.

5. Fee Calculation (37 CFR 1.16)
The fee has been calculated as follows:

		CLAIMS	FOR FEE C	ALCULATION	
Number Filed.		Number Extra		Rate	Basic Fee 37 CFR 1.16(a) \$ 770.00
Total Claims	32	- 20 =	12	X \$22.00	\$264.00
Independe nt Claims	17	- 3=	14	X \$80.00	\$1,120.00
Multiple dependent claim(s), if + 260.00 any Filing Fee Calculation					\$0.00
					\$2,154.00

6. Method of Payment of Fees

- X The Commissioner is hereby authorized to charge Deposit Account No. 07-0630 in the amount of \$2,154.00. A duplicate copy of this transmittal is enclosed.
- 7. Authorization to Charge Additional Fees
 - X The Commissioner is hereby authorized to charge any additional fees required under 37 CFR §1.16 and 1.17, or credit overpayment to Deposit Account No. 07-0630. A duplicate copy of this sheet is enclosed.
- 8. Additional Papers Enclosed
 - [] Information Disclosure Statement (37 CFR §1.98) w/ PTO-1449 and citations
 - [X] Submission of "Sequence Listing", computer readable copy and/or amendment pertaining thereto for biological invention containing nucleotide and/or amino acid sequence.
 - [X] Other: Certificate Re: Sequence Listing

Respectfully submitted, GENENTECH, INC.

Date: June 18, 1997

By: /Waw A / //ac
Diane L. Marschang

Attorney for the Applicants

Marsehare

Reg. No. 35,600

460 Pt. San Bruno Blvd. So. San Francisco, CA 94080-4990

Phone: (415) 225-5416 Fax: (415) 952-9881

PATENT DOCKET NO. P1110 EXPRESS MAIL NO: EM239524640US MAILED: June 18, 1997

5

10

25

30

35

Apo-2DcR

FIELD OF THE INVENTION

The present invention relates generally to the identification, isolation, and recombinant production of novel polypeptides, designated herein as "Apo-2DcR".

BACKGROUND OF THE INVENTION Apoptosis or "Programmed Cell Death"

Control of cell numbers in mammals is believed to be determined, in part, by a balance between cell proliferation and cell death. One form of cell death, sometimes referred to as necrotic cell death, is typically characterized as a pathologic form of cell death resulting from some trauma or cellular injury. In contrast, there is another, "physiologic" form of cell death which usually proceeds in an orderly or controlled manner. orderly or controlled form of cell death is often referred to as "apoptosis" [see, e.g., Barr et al., Bio/Technology, 12:487-493 (1994); Steller et al:, <u>Science</u>, <u>267</u>:1445-1449 (1995)]. cell death naturally occurs in many physiological processes, including embryonic development and clonal selection in the immune system [Itoh et al., <u>Cell</u>, <u>66</u>:233-243 (1991)]. Decreased levels of apoptotic cell death have been associated with a variety of pathological conditions, including cancer, lupus, and herpes virus infection [Thompson, Science, 267:1456-1462 (1995)]. levels of apoptotic cell death may be associated with a variety of other pathological conditions, including AIDS, Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, multiple sclerosis, retinitis pigmentosa, cerebellar degeneration, aplastic anemia, myocardial infarction, stroke, reperfusion injury, and toxin-induced liver disease [see, Thompson, supra].

50070100,0010025

30

35

5

10

Apoptotic cell death is typically accompanied by one or more characteristic morphological and biochemical changes in cells, such as condensation of cytoplasm, loss of plasma membrane microvilli, segmentation of the nucleus, degradation of chromosomal DNA or loss of mitochondrial function. A variety of extrinsic and signals are believed to trigger or intrinsic induce morphological and biochemical cellular changes [Raff, Nature, 356:397-400 (1992); Steller, supra; Sachs et al., Blood, 82:15 (1993)]. For instance, they can be triggered by hormonal stimuli, such as glucocorticoid hormones for immature thymocytes, as well as withdrawal of certain growth factors [Watanabe-Fukunaga et al., Nature, 356:314-317 (1992)]. Also, some identified oncogenes such as myc, rel, and E1A, and tumor suppressors, like p53, have been reported to have a role in inducing apoptosis. chemotherapy drugs and some forms of radiation have likewise been observed to have apoptosis-inducing activity [Thompson, supra].

TNF Family of Cytokines

Various molecules, such as tumor necrosis factor- α ("TNF- α "), tumor necrosis factor- β ("TNF- β " or "lymphotoxin"), CD30 ligand, CD27 ligand, CD40 ligand, OX-40 ligand, 4-1BB ligand, Apo-1 ligand (also referred to as Fas ligand or CD95 ligand), and Apo-2 ligand (also referred to as TRAIL) have been identified as members of the tumor necrosis factor ("TNF") family of cytokines [See, e.g., Gruss and Dower, <u>Blood</u>, <u>85</u>:3378-3404 (1995); Wiley et al., Immunity, <u>3</u>:673-682 (1995); Pitti et al., J. Biol. Chem., 271:12687-12690 (1996)]. Among these molecules, TNF- α , TNF- β , CD30 ligand, 4-1BB ligand, Apo-1 ligand, and Apo-2 ligand (TRAIL) have been reported to be involved in apoptotic cell death. Both TNF- α and $TNF-\beta$ have been reported to induce apoptotic death in susceptible tumor cells [Schmid et al., Proc. Natl. Acad. Sci., 83:1881 (1986); Dealtry et al., Eur. J. Immunol., 17:689 (1987)]. Zheng et al. have reported that TNF- α is involved in poststimulation apoptosis of CD8-positive T cells [Zheng et al., Nature, 377:348-351 (1995)]. Other investigators have reported that CD30 ligand may be involved in deletion of self-reactive T cells in the thymus [Amakawa et al., Cold Spring Harbor Laboratory

Symposium on Programmed Cell Death, Abstr. No. 10, (1995)].

5

10

15

20

25

30

35

Mutations in the mouse Fas/Apo-1 receptor or ligand genes (called lpr and gld, respectively) have been associated with some autoimmune disorders, indicating that Apo-1 ligand may play a role in regulating the clonal deletion of self-reactive lymphocytes in the periphery [Krammer et al., Curr. Op. Immunol., 6:279-289 (1994); Nagata et al., Science, 267:1449-1456 (1995)]. Apo-1 ligand is also reported to induce post-stimulation apoptosis in CD4-positive T lymphocytes and in B lymphocytes, and may be involved in the elimination of activated lymphocytes when their function is no longer needed [Krammer et al., supra; Nagata et al., supra]. Agonist mouse monoclonal antibodies specifically binding to the Apo-1 receptor have been reported to exhibit cell killing activity that is comparable to or similar to that of TNF- α [Yonehara et al., J. Exp. Med., 169:1747-1756 (1989)].

TNF Family of Receptors

Induction of various cellular responses mediated by such TNF family cytokines is believed to be initiated by their binding to specific cell receptors. Two distinct TNF receptors of approximately 55-kDa (TNFR1) and 75-kDa (TNFR2) have been identified [Hohman et al., <u>J. Biol. Chem.</u>, <u>264</u>:14927-14934 (1989); Brockhaus et al., <u>Proc. Natl. Acad. Sci.</u>, <u>87</u>:3127-3131 (1990); EP 417,563, published March 20, 1991] and human and mouse cDNAs corresponding to both receptor types have been isolated and characterized [Loetscher et al., Cell, 61:351 (1990); Schall et al., Cell, 61:361 (1990); Smith et al., Science, 248:1019-1023 (1990); Lewis et al., Proc. Natl. Acad. Sci., 88:2830-2834 (1991); Goodwin et al., Mol. Cell. Biol., 11:3020-3026 (1991)]. Extensive polymorphisms have been associated with both TNF receptor genes [see, e.g., Takao et al., <u>Immunogenetics</u>, <u>37</u>:199-203 (1993)]. Both TNFRs share the typical structure of cell surface receptors including extracellular, transmembrane and intracellular regions. The extracellular portions of both receptors are found naturally also as soluble TNF-binding proteins [Nophar, Y. et al., EMBO J., 9:3269 (1990); and Kohno, T. et al., Proc. Natl. Acad. Sci. U.S.A.,

35

5

10

87:8331 (1990)]. More recently, the cloning of recombinant soluble TNF receptors was reported by Hale et al. [J. Cell. Biochem. Supplement 15F, 1991, p. 113 (P424)].

The extracellular portion of type 1 and type 2 TNFRs (TNFR1 and TNFR2) contains a repetitive amino acid sequence pattern of four cysteine-rich domains (CRDs) designated 1 through 4, starting from the NH2-terminus. Each CRD is about 40 amino acids long and contains 4 to 6 cysteine residues at positions which are well conserved [Schall et al., supra; Loetscher et al., supra; Smith et al., supra; Nophar et al., supra; Kohno et al., supra]. In TNFR1, the approximate boundaries of the four CRDs are as follows: CRD1- amino acids 14 to about 53; CRD2- amino acids from about 54 to about 97; CRD3- amino acids from about 98 to about 138; CRD4- amino acids from about 139 to about 167. In TNFR2, CRD1 includes amino acids 17 to about 54; CRD2- amino acids from about 55 to about 97; CRD3- amino acids from about 98 to about 140; and CRD4- amino acids from about 141 to about 179 [Banner et al., Cell, 73:431-435 (1993)]. The potential role of the CRDs in ligand binding is also described by Banner et al., supra.

A similar repetitive pattern of CRDs exists in several other cell-surface proteins, including the p75 nerve growth factor receptor (NGFR) [Johnson et al., Cell, 47:545 (1986); Radeke et al., Nature, 325:593 (1987)], the B cell antigen CD40 [Stamenkovic et al., <u>EMBO J.</u>, <u>8</u>:1403 (1989)], the T cell antigen OX40 [Mallet et al., EMBO J., 9:1063 (1990)] and the Fas antigen [Yonehara et al., supra and Itoh et al., supra]. CRDs are also found in the soluble TNFR (sTNFR)-like T2 proteins of the Shope and myxoma poxviruses [Upton et al., Virology, 160:20-29 (1987); Smith et al., Biochem. Biophys. Res. Commun., 176:335 (1991); Upton et al., Virology, 184:370 (1991)]. Optimal alignment of these sequences indicates that the positions of the cysteine residues are well conserved. These receptors are sometimes collectively referred to as members of the TNF/NGF receptor superfamily. Recent studies on p75NGFR showed that the deletion of CRD1 [Welcher, A.A. et al., Proc. Natl. Acad. Sci. USA, 88:159-163 (1991)] or a 5-amino acid insertion in this domain [Yan, H. and Chao, M.V., <u>J. Biol. Chem.</u>, <u>266</u>:12099-12104 (1991)] had little or no effect on NGF binding [Yan, H. and Chao, M.V., <u>supra</u>]. p75 NGFR contains a proline-rich stretch of about 60 amino acids, between its CRD4 and transmembrane region, which is not involved in NGF binding [Peetre, C. et al., <u>Eur. J. Hematol.</u>, <u>41</u>:414-419 (1988); Seckinger, P. et al., <u>J. Biol. Chem.</u>, <u>264</u>:11966-11973 (1989); Yan, H. and Chao, M.V., <u>supra</u>]. A similar proline-rich region is found in TNFR2 but not in TNFR1.

5

10

20

25

30

35

Itoh et al. disclose that the Apo-1 receptor can signal an apoptotic cell death similar to that signaled by the 55-kDa TNFR1 [Itoh et al., $\underline{\operatorname{supra}}$]. Expression of the Apo-1 antigen has also been reported to be down-regulated along with that of TNFR1 when cells are treated with either TNF- α or anti-Apo-1 mouse monoclonal antibody [Krammer et al., $\underline{\operatorname{supra}}$; Nagata et al., $\underline{\operatorname{supra}}$]. Accordingly, some investigators have hypothesized that cell lines that co-express both Apo-1 and TNFR1 receptors may mediate cell killing through common signaling pathways [Id.].

The TNF family ligands identified to date, with the exception of lymphotoxin- α , are type II transmembrane proteins, whose C-terminus is extracellular. In contrast, the receptors in the TNF receptor (TNFR) family identified to date are type I transmembrane proteins. In both the TNF ligand and receptor families, however, homology identified between family members has been found mainly in the extracellular domain ("ECD"). Several of the TNF family cytokines, including TNF- α , Apo-1 ligand and CD40 ligand, are cleaved proteolytically at the cell surface; the resulting protein in each case typically forms a homotrimeric molecule that functions as a soluble cytokine. TNF receptor family proteins are also usually cleaved proteolytically to release soluble receptor ECDs that can function as inhibitors of the cognate cytokines.

Recently, other members of the TNFR family have been identified. In Marsters et al., <u>Curr. Biol.</u>, <u>6</u>:750 (1996), investigators describe a full length native sequence human polypeptide, called Apo-3, which exhibits similarity to the TNFR

10

35

5

10

family in its extracellular cysteine-rich repeats and resembles TNFR1 and CD95 in that it contains a cytoplasmic death domain sequence [see also Marsters et al., <u>Curr. Biol.</u>, <u>6</u>:1669 (1996)]. Apo-3 has also been referred to by other investigators as DR3, wsl-1 and TRAMP [Chinnaiyan et al., <u>Science</u>, <u>274</u>:990 (1996); Kitson et al., <u>Nature</u>, <u>384</u>:372 (1996); Bodmer et al., <u>Immunity</u>, <u>6</u>:79 (1997)].

Pan et al. have disclosed another TNF receptor family member referred to as "DR4" [Pan et al., <u>Science</u>, <u>276</u>:111-113 (1997)]. The DR4 was reported to contain a cytoplasmic death domain capable of engaging the cell suicide apparatus. Pan et al. disclose that DR4 is believed to be a receptor for the ligand known as Apo-2 ligand or TRAIL.

The Apoptosis-Inducing Signaling Complex

As presently understood, the cell death program contains at least three important elements - activators, inhibitors, and effectors; in C. elegans, these elements are encoded respectively by three genes, Ced-4, Ced-9 and Ced-3 [Steller, Science, 267:1445 (1995); Chinnaiyan et al., <u>Science</u>, <u>275</u>:1122-1126 (1997)]. the TNFR family members, TNFR1 and Fas/Apo1 (CD95), can activate apoptotic cell death [Chinnaiyan and Dixit, Current Biology, 6:555-562 (1996); Fraser and Evan, Cell; 85:781-784 (1996)]. also known to mediate activation of the transcription factor, NF-kB [Tartaglia et al., Cell, 74:845-853 (1993); Hsu et al., Cell, 84:299-308 (1996)]. In addition to some ECD homology, these two receptors share homology in their intracellular domain (ICD) in an oligomerization interface known as the death domain [Tartaglia et al., supra; Nagata, Cell, 88:355 (1997)]. Death domains are also found in several metazoan proteins that regulate apoptosis, namely, the Drosophila protein, Reaper, and the mammalian proteins referred to as FADD/MORT1, TRADD, and RIP [Cleaveland and Ihle, Cell, 81:479-482 (1995)]. Using the yeast-two hybrid system, Raven et al. report the identification of protein, wsl-1, which binds to the TNFR1 death domain [Raven et al., Programmed Cell Death Meeting, September 20-24, 1995, Abstract at page 127; Raven et al., European Cytokine Network, 7: Abstr. 82 at page 210 (April-June 1996)]. The

wsl-1 protein is described as being homologous to TNFR1 (48% identity) and having a restricted tissue distribution. According to Raven et al., the tissue distribution of wsl-1 is significantly different from the TNFR1 binding protein, TRADD.

5

10

15

And the first from the first

20

25

30

35

Upon ligand binding and receptor clustering, TNFR1 and CD95 are believed to recruit FADD into a death-inducing signalling complex. CD95 purportedly binds FADD directly, while TNFR1 binds FADD indirectly via TRADD [Chinnaiyan et al., Cell, 81:505-512 (1995); Boldin et al., J. Biol. Chem., 270:387-391 (1995); Hsu et al., supra; Chinnaiyan et al., J. Biol. Chem., 271:4961-4965 (1996)]. It has been reported that FADD serves as an adaptor protein which recruits the Ced-3-related protease, MACH α /FLICE (caspase 8), into the death signalling complex [Boldin et al., Cell, 85:803-815 (1996); Muzio et al., Cell, 85:817-827 (1996)]. MACH α /FLICE appears to be the trigger that sets off a cascade of apoptotic proteases, including the interleukin-1 β converting enzyme (ICE) and CPP32/Yama, which may execute some critical aspects of the cell death programme [Fraser and Evan, supra].

It was recently disclosed that programmed cell death involves the activity of members of a family of cysteine proteases related to the *C. elegans* cell death gene, *ced-3*, and to the mammalian IL-1-converting enzyme, ICE. The activity of the ICE and CPP32/Yama proteases can be inhibited by the product of the cowpox virus gene, *crmA* [Ray et al., Cell, 69:597-604 (1992); Tewari et al., Cell, 81:801-809 (1995)]. Recent studies show that CrmA can inhibit TNFR1- and CD95-induced cell death [Enari et al., Nature, 375:78-81 (1995); Tewari et al., J. Biol. Chem., 270:3255-3260 (1995)].

As reviewed recently by Tewari et al., TNFR1, TNFR2 and CD40 modulate the expression of proinflammatory and costimulatory cytokines, cytokine receptors, and cell adhesion molecules through activation of the transcription factor, NF- κ B [Tewari et al., Curr. Op. Genet. Develop., 6:39-44 (1996)]. NF- κ B is the prototype of a family of dimeric transcription factors whose subunits contain conserved Rel regions [Verma et al., Genes Develop., 9:2723-2735]

35

5

10

(1996); Baldwin, Ann. Rev. Immunol., 14:649-681 (1996)]. In its latent form, NF- κ B is complexed with members of the I κ B inhibitor family; upon inactivation of the I κ B in response to certain stimuli, released NF- κ B translocates to the nucleus where it binds to specific DNA sequences and activates gene transcription.

For a review of the TNF family of cytokines and their receptors, see Gruss and Dower, <u>supra</u>.

SUMMARY OF THE INVENTION

Applicants have identified cDNA clones that encode novel polypeptides, designated in the present application as "Apo-2DcR." It is believed that Apo-2DcR is a member of the TNFR family; full-length native sequence human Apo-2DcR polypeptide exhibits similarity to the TNFR family in its extracellular cysteine-rich repeats. Applicants found that Apo-2DcR binds Apo-2 ligand (Apo-2L).

In one embodiment, the invention provides isolated Apo-2DcR polypeptide. In particular, the invention provides isolated native sequence Apo-2DcR polypeptide, which in one embodiment, includes an amino acid sequence comprising residues 1 to 259 of Figure 1A (SEQ ID NO:1). In other embodiments, the isolated Apo-2DcR polypeptide comprises at least about 80% amino acid sequence identity with native sequence Apo-2DcR polypeptide comprising residues 1 to 259 of Figure 1A (SEQ ID NO:1). Optionally, the isolated Apo-2DcR polypeptide includes an amino acid sequence comprising residues identified in Figure 1B as -40 to 259 (SEQ ID NO:3).

In another embodiment, the invention provides an isolated extracellular domain (ECD) sequence of Apo-2DcR. Optionally, the isolated extracellular domain sequence comprises amino acid residues 1 to 236 of Fig. 1A (SEQ ID NO:1) or residues 1 to 161 of Fig. 1A (SEQ ID NO:1).

In another embodiment, the invention provides chimeric molecules comprising Apo-2DcR polypeptide fused to a heterologous polypeptide or amino acid sequence. An example of such a chimeric

35

5

10

molecule comprises an Apo-2DcR fused to an immunoglobulin sequence. Another example comprises an extracellular domain sequence of Apo-2DcR fused to a heterologous polypeptide or amino acid sequence, such as an immunoglobulin sequence.

In another embodiment, the invention provides an isolated nucleic acid molecule encoding Apo-2DcR polypeptide. In one aspect, the nucleic acid molecule is RNA or DNA that encodes an Apo-2DcR polypeptide or a particular domain of Apo-2DcR, or is complementary to such encoding nucleic acid sequence, and remains stably bound to it under at least moderate, and optionally, under high stringency conditions. In one embodiment, the nucleic acid sequence is selected from:

- (a) the coding region of the nucleic acid sequence of Figure 1A (SEQ ID NO:2) that codes for residue 1 to residue 259 (i.e., nucleotides 193-195 through 967-969), inclusive;
- (b) the coding region of the nucleic acid sequence of Figure 1A (SEQ ID NO:2) that codes for residue 1 to residue 236 (i.e., nucleotides 193-195 through 898-900), inclusive;
- (c) the coding region of the nucleic acid sequence of Figure 1B (SEQ ID NO:4) that codes for residue -40 to residue 259 (i.e., nucleotides 73-75 through 967-969), inclusive;
- (d) a sequence corresponding to the sequence of (a), (b) or (c) within the scope of degeneracy of the genetic code.

In a further embodiment, the invention provides a vector comprising the nucleic acid molecule encoding the Apo-2DcR polypeptide or particular domain of Apo-2DcR. A host cell comprising the vector or the nucleic acid molecule is also provided. A method of producing Apo-2DcR is further provided.

In another embodiment, the invention provides an antibody which specifically binds to Apo-2DcR. The antibody may be an agonistic, antagonistic or neutralizing antibody.

In another embodiment, the invention provides non-human, transgenic or knock-out animals.

A further embodiment of the invention provides articles of manufacture and kits that include Apo-2DcR or Apo-2DcR

antibodies.

5

10

15

25

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1A shows the nucleotide sequence of a native sequence human Apo-2DcR cDNA and its derived amino acid sequence (initiation site assigned at residue 1 (nucleotides 193-195)).

Figure 1B shows the nucleotide sequence of a native sequence human Apo-2DcR cDNA and its derived amino acid sequence (initiation site assigned at residue -40 (nucleotides 73-75)).

Figure 2 shows the primary structure and mRNA expression of Apo-2 and Apo-2DcR. The figure depicts the deduced amino acid sequences of human Apo-2 and Apo-2DcR aligned with full-length DR4. The death domain of Apo-2 is aligned with those of DR4, Apo-3/DR3, TNFR1, and CD95; asterisks indicate residues that are essential for death signaling by TNFR1 [Tartaglia et al., supra]. Indicated are the predicted signal peptide cleavage sites (arrows), the two cysteine-rich domains (CRD1, 2) and the transmembrane domain of the hydrophobic C-terminus of Apo-2 and DR4 or(underlined). Also indicated are the five potential N-linked glycosylation sites (black boxes) and the five sequence pseudorepeats (brackets) of Apo-2DcR.

Figure 3 shows hydropathy plots of Apo-2 and Apo-2DcR. Numbers at the top indicate amino acid positions.

Figure 4 shows binding of radioiodinated Apo-2L to Apo-2DcR-transfected cells and its inhibition by pre-treatment of cells with PI-PLC.

Figure 5 shows inhibition of Apo-2L induction of apoptosis by Apo-2DcR.

Figure 6 shows inhibition of Apo-2L activation of NF- κB by Apo-2DcR.

Figure 7 shows expression of Apo-2DcR mRNA in human tissues.

Figure 8 shows the nucleotide sequence of a native sequence human Apo-2 cDNA and its derived amino acid sequence.

Figure 9 shows the derived amino acid sequence of a

35

30

10

native sequence human Apo-2 - the putative signal sequence is underlined, the putative transmembrane domain is boxed, and the putative death domain sequence is dash underlined. The cysteines of the two cysteine-rich domains are individually underlined.

Figure 10 shows the interaction of the Apo-2 ECD with Apo-2L. Supernatants from mock-transfected 293 cells or from 293 cells transfected with Flag epitope-tagged Apo-2 ECD were incubated with poly-His-tagged Apo-2L and subjected to immunoprecipitation with anti-Flag conjugated or Nickel conjugated agarose beads. The precipitated proteins were resolved by electrophoresis on polyacrylamide gels, and detected by immunoblot with anti-Apo-2L or anti-Flag antibody.

Figure 11 shows the induction of apoptosis by Apo-2 and inhibition of Apo-2L activity by soluble Apo-2 ECD. Human 293 cells (A, B) or HeLa cells (C) were transfected by pRK5 vector or by pRK5-based plasmids encoding Apo-2 and/or CrmA. Apoptosis was assessed by morphology (A), DNA fragmentation (B), or by FACS (C-E). Soluble Apo-2L was pre-incubated with buffer or affinity-purified Apo-2 ECD together with anti-Flag antibody or Apo-2 ECD immunoadhesin or DR4 or TNFR1 immunoadhesins and added to HeLa cells. The cells were later analyzed for apoptosis (D). Dose-response analysis using Apo-2L with Apo-2 ECD immunoadhesin was also determined (E).

Figure 12 shows activation of NF- κ B by Apo-2, DR4, and Apo-2L. (A) HeLa cells were transfected with expression plasmids encoding the indicated proteins. Nuclear extracts were prepared and analyzed by an electrophoretic mobility shift assay. (B) HeLa cells or MCF7 cells were treated with buffer, Apo-2L or TNF-alpha and assayed for NF- κ B activity. (C) HeLa cells were preincubated with buffer, ALLN or cyclohexamide before addition of Apo-2L. Apoptosis was later analyzed by FACS.

Figure 13 shows expression of Apo-2 mRNA in human tissues as analyzed by Northern hybridization of human tissue poly A RNA blots.

30

35

5

10

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

I. Definitions

The terms "Apo-2DcR polypeptide" and "Apo-2DcR" when used herein encompass native sequence Apo-2DcR and Apo-2DcR variants (which are further defined herein). These terms encompass Apo-2DcR from a variety of mammals, including humans. The Apo-2DcR may be isolated from a variety of sources, such as from human tissue types or from another source, or prepared by recombinant or synthetic methods.

A "native sequence Apo-2DcR" comprises a polypeptide having the same amino acid sequence as an Apo-2DcR derived from Thus, a native sequence Apo-2DcR can have the amino acid sequence of naturally-occurring Apo-2DcR from any mammal. native sequence Apo-2DcR can be isolated from nature or can be produced by recombinant or synthetic means. The term "native sequence Apo-2DcR" specifically encompasses naturally-occurring truncated or secreted forms of the Apo-2DcR (e.g., an extracellular sequence), naturally-occurring variant forms alternatively spliced forms) and naturally-occurring allelic variants of the Apo-2DcR. In one embodiment of the invention, the native sequence Apo-2DcR is a mature or full-length native sequence Apo-2DcR comprising amino acids 1 to 259 of Fig. 1A (SEQ ID NO:1) or amino acids -40 to 259 of Figure 1B (SEQ ID NO:3).

The "Apo-2DcR extracellular domain" or "Apo-2DcR ECD" refers to a form of Apo-2DcR which is essentially free of transmembrane and cytoplasmic domains. Ordinarily, Apo-2DcR ECD will have less than 1% of such transmembrane and cytoplasmic domains and preferably, will have less than 0.5% of such domains. Optionally, Apo-2DcR ECD will comprise amino acid residues 1 to 236 of Fig. 1A (SEQ ID NO:1) or amino acid residues 1 to 161 of Fig. 1A (SEQ ID NO:1).

"Apo-2DcR variant" means a biologically active Apo-2DcR as defined below having at least about 80% amino acid sequence identity with the Apo-2DcR having the deduced amino acid sequence shown in Fig. 1A (SEQ ID NO:1) for a full-length native sequence

35

5

10

human Apo-2DcR. Such Apo-2DcR variants include, for instance, Apo-2DcR polypeptides wherein one or more amino acid residues are added, or deleted, at the N- or C-terminus of the sequence of Fig. 1A (SEQ ID NO:1). Ordinarily, an Apo-2DcR variant will have at least about 80% amino acid sequence identity, more preferably at least about 90% amino acid sequence identity, and even more preferably at least about 95% amino acid sequence identity with the amino acid sequence of Fig. 1A (SEQ ID NO:1).

"Percent (%) amino acid sequence identity" with respect to the Apo-2DcR sequences identified herein is defined as the percentage of amino acid residues in a candidate sequence that are identical with the amino acid residues in the Apo-2DcR sequence, after aligning the sequences and introducing gaps, if necessary, to achieve the maximum percent sequence identity, and not considering any conservative substitutions as part of the sequence identity. Alignment for purposes of determining percent amino acid sequence identity can be achieved in various ways that are within the skill in the art, for instance, using publicly available computer software such as ALIGN or Megalign (DNASTAR) software. Those skilled in the art can determine appropriate parameters for measuring alignment, including any algorithms needed to achieve maximal alignment over the full length of the sequences being compared.

The term "epitope tagged" when used herein refers to a chimeric polypeptide comprising Apo-2DcR, or a domain sequence thereof, fused to a "tag polypeptide". The tag polypeptide has enough residues to provide an epitope against which an antibody can be made, yet is short enough such that it does not interfere with activity of the Apo-2DcR. The tag polypeptide preferably also is fairly unique so that the antibody does not substantially cross-react with other epitopes. Suitable tag polypeptides generally have at least six amino acid residues and usually between about 8 to about 50 amino acid residues (preferably, between about 10 to about 20 residues).

"Isolated," when used to describe the various

35

5

10

polypeptides disclosed herein, means polypeptide that has been identified and separated and/or recovered from a component of its natural environment. Contaminant components of its natural environment are materials that would typically interfere with diagnostic or therapeutic uses for the polypeptide, and may include enzymes, hormones, and other proteinaceous or non-proteinaceous In preferred embodiments, the polypeptide will be purified (1) to a degree sufficient to obtain at least 15 residues of N-terminal or internal amino acid sequence by use of a spinning cup sequenator, or (2) to homogeneity by SDS-PAGE under nonconditions reducing reducing using Coomassie blue orIsolated polypeptide preferably, silver stain. includes polypeptide in situ within recombinant cells, since at least one component of the Apo-2DcR natural environment will not be present. Ordinarily, however, isolated polypeptide will be prepared by at least one purification step.

An "isolated" Apo-2DcR nucleic acid molecule is a nucleic acid molecule that is identified and separated from at least one contaminant nucleic acid molecule with which it is ordinarily associated in the natural source of the Apo-2DcR nucleic acid. An isolated Apo-2DcR nucleic acid molecule is other than in the form or setting in which it is found in nature. Isolated Apo-2DcR nucleic acid molecules therefore are distinguished from the Apo-2DcR nucleic acid molecule as it exists in natural cells. However, an isolated Apo-2DcR nucleic acid molecule acid molecule includes Apo-2DcR nucleic acid molecules contained in cells that ordinarily express Apo-2DcR where, for example, the nucleic acid molecule is in a chromosomal location different from that of natural cells.

The term "control sequences" refers to DNA sequences necessary for the expression of an operably linked coding sequence in a particular host organism. The control sequences that are suitable for prokaryotes, for example, include a promoter, optionally an operator sequence, and a ribosome binding site. Eukaryotic cells are known to utilize promoters, polyadenylation signals, and enhancers.

35

5

10

Nucleic acid is "operably linked" when it is placed into a functional relationship with another nucleic acid sequence. example, DNA for a presequence or secretory leader is operably linked to DNA for a polypeptide if it is expressed as a preprotein that participates in the secretion of the polypeptide; a promoter or enhancer is operably linked to a coding sequence if it affects the transcription of the sequence; or a ribosome binding site is operably linked to a coding sequence if it is positioned so as to Generally, "operably linked" means that facilitate translation. the DNA sequences being linked are contiguous, and, in the case of a secretory leader, contiquous and in reading phase. enhancers do not have to be contiquous. Linking is accomplished by ligation at convenient restriction sites. If such sites do not exist, the synthetic oligonucleotide adaptors or linkers are used in accordance with conventional practice.

The term "antibody" is used in the broadest sense and specifically covers single anti-Apo-2DcR monoclonal antibodies (including agonist, antagonist, and neutralizing antibodies) and anti-Apo-2DcR antibody compositions with polyepitopic specificity.

The term "monoclonal antibody" as used herein refers to an antibody obtained from a population of substantially homogeneous antibodies, i.e., the individual antibodies comprising population are identical except for possible naturally-occurring mutations that may be present in minor amounts. Monoclonal antibodies are highly specific, being directed against a single Furthermore, in contrast to conventional antigenic site. antibody preparations which typically (polyclonal) different antibodies directed against different determinants (epitopes), each monoclonal antibody is directed against a single determinant on the antigen.

The monoclonal antibodies herein include hybrid and recombinant antibodies produced by splicing a variable (including hypervariable) domain of an anti-Apo-2DcR antibody with a constant domain (e.g. "humanized" antibodies), or a light chain with a heavy chain, or a chain from one species with a chain from another

35

5

10

species, or fusions with heterologous proteins, regardless of species of origin or immunoglobulin class or subclass designation, as well as antibody fragments (e.g., Fab, F(ab')₂, and Fv), so long as they exhibit the desired biological activity. See, e.g. U.S. Pat. No. 4,816,567 and Mage et al., in Monoclonal Antibody Production Techniques and Applications, pp.79-97 (Marcel Dekker, Inc.: New York, 1987).

Thus, the modifier "monoclonal" indicates the character of the antibody as being obtained from a substantially homogeneous population of antibodies, and is not to be construed as requiring production of the antibody by any particular method. For example, the monoclonal antibodies to be used in accordance with the present invention may be made by the hybridoma method first described by Kohler and Milstein, Nature, 256:495 (1975), or may be made by recombinant DNA methods such as described in U.S. Pat. No. 4,816,567. The "monoclonal antibodies" may also be isolated from phage libraries generated using the techniques described in McCafferty et al., Nature, 348:552-554 (1990), for example.

"Humanized" forms of non-human (e.q. murine) antibodies are specific chimeric immunoglobulins, immunoglobulin chains, or fragments thereof (such as Fv, Fab, Fab', F(ab'), or other antigenbinding subsequences of antibodies) which contain minimal sequence derived from non-human immunoglobulin. the most part, For humanized antibodies are human immunoglobulins (recipient antibody) in which residues from a complementary determining region (CDR) of the recipient are replaced by residues from a CDR of a non-human species (donor antibody) such as mouse, rat, or rabbit having the desired specificity, affinity, and capacity. In some instances, Fv framework region (FR) residues of the human immunoglobulin are replaced by corresponding non-human residues. Furthermore, the humanized antibody may comprise residues which are found neither in the recipient antibody nor in the imported CDR or framework These modifications are made to further refine and sequences. optimize antibody performance. In general, the humanized antibody will comprise substantially all of at least one, and typically two,

35

5

10

variable domains, in which all or substantially all of the CDR regions correspond to those of a non-human immunoglobulin and all or substantially all of the FR regions are those of a human immunoglobulin consensus sequence. The humanized antibody optimally also will comprise at least a portion of an immunoglobulin constant region or domain (Fc), typically that of a human immunoglobulin.

"Biologically active" and "desired biological activity" for the purposes herein mean having the ability to modulate apoptosis (either in an agonistic or stimulating manner or in an antagonistic or blocking manner) in at least one type of mammalian cell in vivo or ex vivo.

The terms "apoptosis" and "apoptotic activity" are used in a broad sense and refer to the orderly or controlled form of cell death in mammals that is typically accompanied by one or more characteristic cell changes, including condensation of cytoplasm, loss of plasma membrane microvilli, segmentation of the nucleus, degradation of chromosomal DNA or loss of mitochondrial function. This activity can be determined and measured, for instance, by cell viability assays, FACS analysis or DNA electrophoresis, all of which are known in the art.

The terms "treating," "treatment," and "therapy" as used herein refer to curative therapy, prophylactic therapy, and preventative therapy.

The term "mammal" as used herein refers to any mammal classified as a mammal, including humans, cows, horses, dogs and cats. In a preferred embodiment of the invention, the mammal is a human.

II. Compositions and Methods of the Invention

The present invention provides newly identified and isolated Apo-2DcR polypeptides. In particular, Applicants have identified and isolated various human Apo-2DcR polypeptides. The properties and characteristics of some of these Apo-2DcR polypeptides are described in further detail in the Examples below.

35

5

10

Based upon the properties and characteristics of the Apo-2DcR polypeptides disclosed herein, it is Applicants' present belief that Apo-2DcR is a member of the TNFR family.

A description follows as to how Apo-2DcR, as well as Apo-2DcR chimeric molecules and anti-Apo-2DcR antibodies, may be prepared.

A. Preparation of Apo-2DcR

The description below relates primarily to production of Apo-2DcR by culturing cells transformed or transfected with a vector containing Apo-2DcR nucleic acid. It is of course, contemplated that alternative methods, which are well known in the art, may be employed to prepare Apo-2DcR.

1. Isolation of DNA Encoding Apo-2DcR

The DNA encoding Apo-2DcR may be obtained from any cDNA library prepared from tissue believed to possess the Apo-2DcR mRNA and to express it at a detectable level. Accordingly, human Apo-2DcR DNA can be conveniently obtained from a cDNA library prepared from human tissues, such as libraries of human cDNA described in Example 1. The Apo-2DcR-encoding gene may also be obtained from a genomic library or by oligonucleotide synthesis.

Libraries can be screened with probes (such as antibodies to the Apo-2DcR or oligonucleotides of at least about 20-80 bases) designed to identify the gene of interest or the protein encoded by it. Screening the cDNA or genomic library with the selected probe may be conducted using standard procedures, such as described in Sambrook et al., Molecular Cloning: A Laboratory Manual (New York: Cold Spring Harbor Laboratory Press, 1989). An alternative means to isolate the gene encoding Apo-2DcR is to use PCR methodology [Sambrook et al., supra; Dieffenbach et al., PCR Primer:A Laboratory Manual (Cold Spring Harbor Laboratory Press, 1995)].

One method of screening employs selected oligonucleotide sequences to screen cDNA libraries from various human tissues. Example 1 below describes techniques for screening a cDNA library. The oligonucleotide sequences selected as probes should be of sufficient length and sufficiently unambiguous that false positives

35

10

are minimized. The oligonucleotide is preferably labeled such that it can be detected upon hybridization to DNA in the library being screened. Methods of labeling are well known in the art, and include the use of radiolabels like ³²P-labeled ATP, biotinylation or enzyme labeling. Hybridization conditions, including moderate stringency and high stringency, are provided in Sambrook et al., supra.

Nucleic acid having all the protein coding sequence may be obtained by screening selected cDNA or genomic libraries using the deduced amino acid sequence disclosed herein for the first time, and, if necessary, using conventional primer extension procedures as described in Sambrook et al., supra, to detect precursors and processing intermediates of mRNA that may not have been reverse-transcribed into cDNA.

Apo-2DcR variants can be prepared by introducing appropriate nucleotide changes into the Apo-2DcR DNA, or by synthesis of the desired Apo-2DcR polypeptide. Those skilled in the art will appreciate that amino acid changes may alter post-translational processes of the Apo-2DcR, such as changing the number or position of glycosylation sites or altering the membrane anchoring characteristics.

Variations in the native full-length sequence Apo-2DcR or in various domains of the Apo-2DcR described herein, can be made, for example, using any of the techniques and guidelines for conservative and non-conservative mutations set forth, for instance, in U.S. Pat. No. 5,364,934. Variations may be a substitution, deletion or insertion of one or more codons encoding the Apo-2DcR that results in a change in the amino acid sequence of the Apo-2DcR as compared with the native sequence Apo-2DcR. Optionally the variation is by substitution of at least one amino acid with any other amino acid in one or more of the domains of the Apo-2DcR molecule. The variations can be made using methods known art such as oligonucleotide-mediated (site-directed) mutagenesis, alanine scanning, and PCR mutagenesis. Site-directed mutagenesis [Carter et al., Nucl. Acids Res., 13:4331 (1986);

35

5

10

Zoller et al., <u>Nucl. Acids Res.</u>, <u>10</u>:6487 (1987)], cassette mutagenesis [Wells et al., <u>Gene</u>, <u>34</u>:315 (1985)], restriction selection mutagenesis [Wells et al., <u>Philos. Trans. R. Soc. London SerA</u>, <u>317</u>:415 (1986)] or other known techniques can be performed on the cloned DNA to produce the Apo-2DcR variant DNA.

Scanning amino acid analysis can also be employed to identify one or more amino acids along a contiguous sequence which are involved in the interaction with a particular ligand or receptor. Among the preferred scanning amino acids are relatively small, neutral amino acids. Such amino acids include alanine, glycine, serine, and cysteine. Alanine is the preferred scanning amino acid among this group because it eliminates the side-chain beyond the beta-carbon and is less likely to alter the main-chain conformation of the variant. Alanine is also preferred because it is the most common amino acid. Further, it is frequently found in both buried and exposed positions [Creighton, The Proteins, (W.H. Freeman & Co., N.Y.); Chothia, J. Mol. Biol., 150:1 (1976)]. If alanine substitution does not yield adequate amounts of variant, an isoteric amino acid can be used.

Once selected Apo-2DcR variants are produced, they can be contacted with, for instance, Apo-2L, and the interaction, if any, can be determined. The interaction between the Apo-2DcR variant and Apo-2L can be measured by an in vitro assay, such as described in the Examples below. While any number of analytical measurements can be used to compare activities and properties between a native sequence Apo-2DcR and an Apo-2 variant, a convenient one for binding is the dissociation constant $K_{\rm d}$ of the complex formed between the Apo-2DcR variant and Apo-2L as compared to the $K_{\rm d}$ for the native sequence Apo-2DcR. Generally, a \geq 3-fold increase or decrease in $K_{\rm d}$ per substituted residue indicates that the substituted residue(s) is active in the interaction of the native sequence Apo-2DcR with the Apo-2L.

Optionally, representative sites in the Apo-2DcR sequence suitable for mutagenesis would include sites within the extracellular domain, and particularly, within one or more of the

35

5

10

cysteine-rich domains. Such variations can be accomplished using the methods described above.

The nucleic acid (e.g., cDNA or genomic DNA) encoding Apo-2DcR may be inserted into a replicable vector for further cloning (amplification of the DNA) or for expression. Various vectors are publicly available. The vector components generally include, but are not limited to, one or more of the following: a signal sequence, an origin of replication, one or more marker genes, an enhancer element, a promoter, and a transcription termination sequence, each of which is described below.

(i) Signal Sequence Component

The Apo-2DcR may be produced recombinantly not only directly, but also as a fusion polypeptide with a heterologous polypeptide, which may be a signal sequence or other polypeptide having a specific cleavage site at the N-terminus of the mature protein or polypeptide. In general, the signal sequence may be a component of the vector, or it may be a part of the Apo-2DcR DNA that is inserted into the vector. The heterologous signal sequence selected preferably is one that is recognized and processed (i.e., cleaved by a signal peptidase) by the host cell. The signal sequence may be a prokaryotic signal sequence selected, example, from the group of the alkaline phosphatase, penicillinase, lpp, or heat-stable enterotoxin II leaders. For yeast secretion the signal sequence may be, e.g., the yeast invertase leader, alpha factor leader (including Saccharomyces and Kluyveromyces α-factor leaders, the latter described in U.S. Pat. No. 5,010,182), or acid phosphatase leader, the C. albicans glucoamylase leader (EP 362,179 published 4 April 1990), or the signal described in WO 90/13646 published 15 November 1990. In mammalian cell expression the native Apo-2DcR presequence that normally directs insertion of Apo-2DcR in the cell membrane of human cells in vivo is satisfactory, although other mammalian signal sequences may be used to direct secretion of the protein, such as signal sequences from secreted polypeptides of the same or related species, as well as viral

35

٠,

5

10

secretory leaders, for example, the herpes simplex glycoprotein D signal.

The DNA for such precursor region is preferably ligated in reading frame to DNA encoding Apo-2DcR.

(ii) Origin of Replication Component

Both expression and cloning vectors contain a nucleic acid sequence that enables the vector to replicate in one or more selected host cells. Generally, in cloning vectors this sequence is one that enables the vector to replicate independently of the host chromosomal DNA, and includes origins of replication or autonomously replicating sequences. Such sequences are well known for a variety of bacteria, yeast, and viruses. The origin of replication from the plasmid pBR322 is suitable for most Gramnegative bacteria, the 2μ plasmid origin is suitable for yeast, and various viral origins (SV40, polyoma, adenovirus, VSV or BPV) are useful for cloning vectors in mammalian cells. Generally, the origin of replication component is not needed for mammalian expression vectors (the SV40 origin may typically be used because it contains the early promoter).

Most expression vectors are "shuttle" vectors, i.e., they are capable of replication in at least one class of organisms but can be transfected into another organism for expression. For example, a vector is cloned in *E. coli* and then the same vector is transfected into yeast or mammalian cells for expression even though it is not capable of replicating independently of the host cell chromosome.

DNA may also be amplified by insertion into the host genome. This is readily accomplished using Bacillus species as hosts, for example, by including in the vector a DNA sequence that is complementary to a sequence found in Bacillus genomic DNA. Transfection of Bacillus with this vector results in homologous recombination with the genome and insertion of Apo-2DcR DNA. However, the recovery of genomic DNA encoding Apo-2DcR is more complex than that of an exogenously replicated vector because restriction enzyme digestion is required to excise the Apo-2DcR

10

30

35

(iii) Selection Gene Component

Expression and cloning vectors typically contain a selection gene, also termed a selectable marker. This gene encodes a protein necessary for the survival or growth of transformed host cells grown in a selective culture medium. Host cells not transformed with the vector containing the selection gene will not survive in the culture medium. Typical selection genes encode proteins that (a) confer resistance to antibiotics or other toxins, e.g., ampicillin, neomycin, methotrexate, or tetracycline, (b) complement auxotrophic deficiencies, or (c) supply critical nutrients not available from complex media, e.g., the gene encoding D-alanine racemase for Bacilli.

One example of a selection scheme utilizes a drug to arrest growth of a host cell. Those cells that are successfully transformed with a heterologous gene produce a protein conferring drug resistance and thus survive the selection regimen. Examples of such dominant selection use the drugs neomycin [Southern et al., J. Molec. Appl. Genet., 1:327 (1982)], mycophenolic acid (Mulligan et al., Science, 209:1422 (1980)] or hygromycin [Sugden et al., Mol. Cell. Biol., 5:410-413 (1985)]. The three examples given above employ bacterial genes under eukaryotic control to convey resistance to the appropriate drug G418 or neomycin (geneticin), xgpt (mycophenolic acid), or hygromycin, respectively.

Another example of suitable selectable markers for mammalian cells are those that enable the identification of cells competent to take up the Apo-2DcR nucleic acid, such as DHFR or thymidine kinase. The mammalian cell transformants are placed under selection pressure that only the transformants are uniquely adapted to survive by virtue of having taken up the marker. Selection pressure is imposed by culturing the transformants under conditions in which the concentration of selection agent in the medium is successively changed, thereby leading to amplification of both the selection gene and the DNA that encodes Apo-2DcR. Amplification is the process by which genes in greater demand for

35

5

10

the production of a protein critical for growth are reiterated in tandem within the chromosomes of successive generations of recombinant cells. Increased quantities of Apo-2DcR are synthesized from the amplified DNA. Other examples of amplifiable genes include metallothionein-I and -II, adenosine deaminase, and ornithine decarboxylase.

Cells transformed with the DHFR selection gene may first be identified by culturing all of the transformants in a culture medium that contains methotrexate (Mtx), a competitive antagonist of DHFR. An appropriate host cell when wild-type DHFR is employed is the Chinese hamster ovary (CHO) cell line deficient in DHFR activity, prepared and propagated as described by Urlaub et al., Proc. Natl. Acad. Sci. USA, 77:4216 (1980). The transformed cells are then exposed to increased levels of methotrexate. to the synthesis of multiple copies of the DHFR gene, and, concomitantly, multiple copies of other DNA comprising expression vectors, such as the DNA encoding Apo-2DcR. amplification technique can be used with any otherwise suitable host, e.g., ATCC No. CCL61 CHO-K1, notwithstanding the presence of endogenous DHFR if, for example, a mutant DHFR gene that is highly resistant to Mtx is employed (EP 117,060).

Alternatively, host cells (particularly wild-type hosts that contain endogenous DHFR) transformed or co-transformed with DNA sequences encoding Apo-2DcR, wild-type DHFR protein, and another selectable marker such as aminoglycoside 3'-phosphotransferase (APH) can be selected by cell growth in medium containing a selection agent for the selectable marker such as an aminoglycosidic antibiotic, e.g., kanamycin, neomycin, or G418. See U.S. Patent No. 4,965,199.

A suitable selection gene for use in yeast is the *trp*1 gene present in the yeast plasmid YRp7 [Stinchcomb et al., <u>Nature</u>, <u>282</u>:39 (1979); Kingsman et al., <u>Gene</u>, <u>7</u>:141 (1979); Tschemper et al., <u>Gene</u>, <u>10</u>:157 (1980)]. The *trp*1 gene provides a selection marker for a mutant strain of yeast lacking the ability to grow in tryptophan, for example, ATCC No. 44076 or PEP4-1 [Jones, <u>Genetics</u>,

35

5

10

85:12 (1977)]. The presence of the *trp*1 lesion in the yeast host cell genome then provides an effective environment for detecting transformation by growth in the absence of tryptophan. Similarly, *Leu*2-deficient yeast strains (ATCC 20,622 or 38,626) are complemented by known plasmids bearing the *Leu*2 gene.

In addition, vectors derived from the 1.6 μ m circular plasmid pKD1 can be used for transformation of Kluyveromyces yeasts [Bianchi et al., Curr. Genet., 12:185 (1987)]. More recently, an expression system for large-scale production of recombinant calf chymosin was reported for K. lactis [Van den Berg, Bio/Technology, 8:135 (1990)]. Stable multi-copy expression vectors for secretion of mature recombinant human serum albumin by industrial strains of Kluyveromyces have also been disclosed [Fleer et al., Bio/Technology, 9:968-975 (1991)].

(iv) Promoter Component

Expression and cloning vectors usually contain a promoter that is recognized by the host organism and is operably linked to the Apo-2DcR nucleic acid sequence. Promoters are untranslated sequences located upstream (5') to the start codon of a structural gene (generally within about 100 to 1000 bp) that control the transcription and translation of particular nucleic acid sequence, such as the Apo-2DcR nucleic acid sequence, to which they are operably linked. Such promoters typically fall into two classes, inducible and constitutive. Inducible promoters are promoters that initiate increased levels of transcription from DNA under their control in response to some change in culture conditions, e.g., the presence or absence of a nutrient or a change in temperature. this time a large number of promoters recognized by a variety of potential host cells are well known. These promoters are operably linked to Apo-2DcR encoding DNA by removing the promoter from the source DNA by restriction enzyme digestion and inserting the isolated promoter sequence into the vector. Both the native Apo-2DcR promoter sequence and many heterologous promoters may be used to direct amplification and/or expression of the Apo-2DcR DNA.

Promoters suitable for use with prokaryotic hosts include

35

5

10

the β -lactamase and lactose promoter systems [Chang et al., Nature, 275:615 (1978); Goeddel et al., Nature, 281:544 (1979)], alkaline phosphatase, a tryptophan (trp) promoter system [Goeddel, Nucleic Acids Res., 8:4057 (1980); EP 36,776], and hybrid promoters such as the tac promoter [deBoer et al., Proc. Natl. Acad. Sci. USA, 80:21-25 (1983)]. However, other known bacterial promoters are suitable. Their nucleotide sequences have been published, thereby enabling a skilled worker operably to ligate them to DNA encoding Apo-2DcR [Siebenlist et al., Cell, 20:269 (1980)] using linkers or adaptors to supply any required restriction sites. Promoters for use in bacterial systems also will contain a Shine-Dalgarno (S.D.) sequence operably linked to the DNA encoding Apo-2DcR.

Promoter sequences are known for eukaryotes. Virtually all eukaryotic genes have an AT-rich region located approximately 25 to 30 bases upstream from the site where transcription is initiated. Another sequence found 70 to 80 bases upstream from the start of transcription of many genes is a CXCAAT region where X may be any nucleotide. At the 3' end of most eukaryotic genes is an AATAAA sequence that may be the signal for addition of the poly A tail to the 3' end of the coding sequence. All of these sequences are suitably inserted into eukaryotic expression vectors.

Examples of suitable promoting sequences for use with yeast hosts include the promoters for 3-phosphoglycerate kinase [Hitzeman et al., <u>J. Biol. Chem.</u>, <u>255</u>:2073 (1980)] or other glycolytic enzymes [Hess et al., J. Adv. Enzyme Req., 7:149 (1968); 17:4900 (1978)],such Biochemistry, enolase, Holland. qlyceraldehyde-3-phosphate dehydrogenase, hexokinase, pyruvate decarboxylase, phosphofructokinase, glucose-6-phosphate isomerase, 3-phosphoglycerate mutase, pyruvate kinase, triosephosphate isomerase, phosphoglucose isomerase, and glucokinase.

Other yeast promoters, which are inducible promoters having the additional advantage of transcription controlled by growth conditions, are the promoter regions for alcohol dehydrogenase 2, isocytochrome C, acid phosphatase, degradative enzymes associated with nitrogen metabolism, metallothionein,

35

5

10

glyceraldehyde-3-phosphate dehydrogenase, and enzymes responsible for maltose and galactose utilization. Suitable vectors and promoters for use in yeast expression are further described in EP 73,657. Yeast enhancers also are advantageously used with yeast promoters.

Apo-2DcR transcription from vectors in mammalian host cells is controlled, for example, by promoters obtained from the genomes of viruses such as polyoma virus, fowlpox virus (UK 2,211,504 published 5 July 1989), adenovirus (such as Adenovirus 2), bovine papilloma virus, avian sarcoma virus, cytomegalovirus, a retrovirus, hepatitis-B virus and most preferably Simian Virus 40 (SV40), from heterologous mammalian promoters, e.g., the actin promoter or an immunoglobulin promoter, from heat-shock promoters, and from the promoter normally associated with the Apo-2DcR sequence, provided such promoters are compatible with the host cell systems.

The early and late promoters of the SV40 virus are conveniently obtained as an SV40 restriction fragment that also contains the SV40 viral origin of replication [Fiers et al., Nature, 273:113 (1978); Mulligan and Berg, Science, 209:1422-1427 (1980); Pavlakis et al., Proc. Natl. Acad. Sci. USA, 78:7398-7402 (1981)]. The immediate early promoter of the human cytomegalovirus is conveniently obtained as a HindIII E restriction fragment [Greenaway et al., <u>Gene</u>, <u>18</u>:355-360 (1982)]. A system for expressing DNA in mammalian hosts using the bovine papilloma virus as a vector is disclosed in U.S. Patent No. 4,419,446. modification of this system is described in U.S. Patent No. 4,601,978 [See also Gray et al., Nature, 295:503-508 (1982) on expressing cDNA encoding immune interferon in monkey cells; Reyes et al., Nature, 297:598-601 (1982) on expression of human β interferon cDNA in mouse cells under the control of a thymidine kinase promoter from herpes simplex virus; Canaani and Berg, Proc. Natl. Acad. Sci. USA 79:5166-5170 (1982) on expression of the human interferon $\beta 1$ gene in cultured mouse and rabbit cells; and Gorman et al., <u>Proc. Natl. Acad. Sci. USA</u>, <u>79</u>:6777-6781 (1982) on

10

expression of bacterial CAT sequences in CV-1 monkey kidney cells, chicken embryo fibroblasts, Chinese hamster ovary cells, HeLa cells, and mouse NIH-3T3 cells using the Rous sarcoma virus long terminal repeat as a promoter].

(v) Enhancer Element Component

Transcription of a DNA encoding the Apo-2DcR of this invention by higher eukaryotes may be increased by inserting an enhancer sequence into the vector. Enhancers are cis-acting elements of DNA, usually about from 10 to 300 bp, that act on a promoter to increase its transcription. Enhancers are relatively orientation and position independent, having been found 5' [Laimins et al., <u>Proc. Natl. Acad. Sci. USA</u>, <u>78</u>:993 (1981]) and 3' [Lusky et al., Mol. Cell Bio., 3:1108 (1983]) to the transcription unit, within an intron [Banerji et al., Cell, 33:729 (1983)], as well as within the coding sequence itself [Osborne et al., Mol. Cell Bio., Many enhancer sequences are now known from 4:1293 (1984)]. mammalian genes (globin, elastase, albumin, α -fetoprotein, and Typically, however, one will use an enhancer from a eukaryotic cell virus. Examples include the SV40 enhancer on the replication origin (bp 100-270), side of the cytomegalovirus early promoter enhancer, the polyoma enhancer on the late side of the replication origin, and adenovirus enhancers. See also Yaniv, Nature, 297:17-18 (1982) on enhancing elements for activation of eukaryotic promoters. The enhancer may be spliced into the vector at a position 5' or 3' to the Apo-2DcR coding sequence, but is preferably located at a site 5' from the promoter.

(vi) Transcription Termination Component

Expression vectors used in eukaryotic host cells (yeast, fungi, insect, plant, animal, human, or nucleated cells from other multicellular organisms) will also contain sequences necessary for the termination of transcription and for stabilizing the mRNA. Such sequences are commonly available from the 5' and, occasionally 3', untranslated regions of eukaryotic or viral DNAs or cDNAs. These regions contain nucleotide segments transcribed as polyadenylated fragments in the untranslated portion of the mRNA

30

35

35

5

10

encoding Apo-2DcR.

(vii) Construction and Analysis of Vectors

Construction of suitable vectors containing one or more of the above-listed components employs standard ligation techniques. Isolated plasmids or DNA fragments are cleaved, tailored, and re-ligated in the form desired to generate the plasmids required.

For analysis to confirm correct sequences in plasmids constructed, the ligation mixtures can be used to transform *E. coli* K12 strain 294 (ATCC 31,446) and successful transformants selected by ampicillin or tetracycline resistance where appropriate. Plasmids from the transformants are prepared, analyzed by restriction endonuclease digestion, and/or sequenced by the method of Messing et al., <u>Nucleic Acids Res.</u>, 9:309 (1981) or by the method of Maxam et al., <u>Methods in Enzymology</u>, 65:499 (1980).

(viii) Transient Expression Vectors

Expression vectors that provide for the transient expression in mammalian cells of DNA encoding Apo-2DcR may be employed. In general, transient expression involves the use of an expression vector that is able to replicate efficiently in a host cell, such that the host cell accumulates many copies of the expression vector and, in turn, synthesizes high levels of a desired polypeptide encoded by the expression vector [Sambrook et al., supra]. Transient expression systems, comprising a suitable expression vector and a host cell, allow for the convenient positive identification of polypeptides encoded by cloned DNAs, as well as for the rapid screening of such polypeptides for desired biological or physiological properties. Thus, transient expression systems are particularly useful in the invention for purposes of identifying Apo-2DcR variants.

(ix) Suitable Exemplary Vertebrate Cell Vectors

Other methods, vectors, and host cells suitable for adaptation to the synthesis of Apo-2DcR in recombinant vertebrate cell culture are described in Gething et al., <u>Nature</u>, <u>293</u>:620-625 (1981); Mantei et al., <u>Nature</u>, <u>281</u>:40-46 (1979); EP 117,060; and EP

117,058.

5

10

15

25

30

35

3. Selection and Transformation of Host Cells

Suitable host cells for cloning or expressing the DNA in the vectors herein are the prokaryote, yeast, or higher eukaryote cells described above. Suitable prokaryotes for this purpose include but are not limited to eubacteria, such as Gram-negative or Gram-positive organisms, for example, Enterobacteriaceae such as Escherichia, e.g., E. coli, Enterobacter, Erwinia, Klebsiella, Proteus, Salmonella, e.g., Salmonella typhimurium, Serratia, e.g., Serratia marcescans, and Shigella, as well as Bacilli such as B. subtilis and B. licheniformis (e.g., B. licheniformis 41P disclosed in DD 266,710 published 12 April 1989), Pseudomonas such as P. aeruginosa, and Streptomyces. Preferably, the host cell should secrete minimal amounts of proteolytic enzymes.

In addition to prokaryotes, eukaryotic microbes such as filamentous fungi or yeast are suitable cloning or expression hosts for Apo-2DcR-encoding vectors. Saccharomyces cerevisiae, or common baker's yeast, is the most commonly used among lower eukaryotic host microorganisms. However, a number of other genera, species, and strains are commonly available and useful herein.

Suitable host cells for the expression of glycosylated Apo-2DcR are derived from multicellular organisms. Such host cells are capable of complex processing and glycosylation activities. In principle, any higher eukaryotic cell culture is workable, whether from vertebrate or invertebrate culture. Examples of invertebrate cells include plant and insect cells. Numerous baculoviral strains and variants and corresponding permissive insect host cells from hosts such as Spodoptera frugiperda (caterpillar), Aedes aegypti (mosquito), Aedes albopictus (mosquito), Drosophila melanogaster (fruitfly), and Bombyx mori have been identified [See, e.g., Luckow et al., Bio/Technology, 6:47-55 (1988); Miller et al., in Genetic Engineering, Setlow et al., eds., Vol. 8 (Plenum Publishing, 1986), pp. 277-279; and Maeda et al., Nature, 315:592-594 (1985)]. A variety of viral strains for transfection are publicly available, e.g., the L-1 variant of Autographa californica NPV and the Bm-5

strain of Bombyx mori NPV.

5

10

25

30

35

Plant cell cultures of cotton, corn, potato, soybean, petunia, tomato, and tobacco can be utilized as hosts. Typically, plant cells are transfected by incubation with certain strains of the bacterium Agrobacterium tumefaciens. During incubation of the plant cell culture with A. tumefaciens, the DNA encoding the Apo-2DcR can be transferred to the plant cell host such that it is transfected, and will, under appropriate conditions, express the In addition, regulatory and signal Apo-2DcR-encoding DNA. sequences compatible with plant cells are available, such as the nopaline synthase promoter and polyadenylation signal sequences [Depicker et al., <u>J. Mol. Appl. Gen.</u>, <u>1</u>:561 (1982)]. DNA segments isolated from the upstream region of the T-DNA 780 gene are capable of activating or increasing transcription levels of plant-expressible genes in recombinant DNA-containing plant tissue [EP 321,196 published 21 June 1989].

Propagation of vertebrate cells in culture (tissue culture) is also well known in the art [See, e.g., Tissue Culture, Academic Press, Kruse and Patterson, editors (1973)]. Examples of useful mammalian host cell lines are monkey kidney CV1 line transformed by SV40 (COS-7, ATCC CRL 1651); human embryonic kidney line (293 or 293 cells subcloned for growth in suspension culture, Graham et al., J. Gen Virol., 36:59 (1977)); baby hamster kidney cells (BHK, ATCC CCL 10); Chinese hamster ovary cells/-DHFR (CHO, Urlaub and Chasin, Proc. Natl. Acad. Sci. USA, 77:4216 (1980)); mouse sertoli cells (TM4, Mather, Biol. Reprod., 23:243-251 (1980)); monkey kidney cells (CV1 ATCC CCL 70); African green monkey kidney cells (VERO-76, ATCC CRL-1587); human cervical carcinoma cells (HELA, ATCC CCL 2); canine kidney cells (MDCK, ATCC CCL 34); buffalo rat liver cells (BRL 3A, ATCC CRL 1442); human lung cells (W138, ATCC CCL 75); human liver cells (Hep G2, HB 8065); mouse mammary tumor (MMT 060562, ATCC CCL51); TRI cells (Mather et al., <u>Annals N.Y. Acad. Sci.</u>, <u>383</u>:44-68 (1982)); MRC 5 cells; and FS4 cells.

Host cells are transfected and preferably transformed

35

5

10

with the above-described expression or cloning vectors for Apo-2DcR production and cultured in conventional nutrient media modified as appropriate for inducing promoters, selecting transformants, or amplifying the genes encoding the desired sequences.

Transfection refers to the taking up of an expression vector by a host cell whether or not any coding sequences are in fact expressed. Numerous methods of transfection are known to the ordinarily skilled artisan, for example, CaPO₄ and electroporation. Successful transfection is generally recognized when any indication of the operation of this vector occurs within the host cell.

Transformation means introducing DNA into an organism so that the DNA is replicable, either as an extrachromosomal element or by chromosomal integrant. Depending on the host cell used, transformation is done using standard techniques appropriate to such cells. The calcium treatment employing calcium chloride, as described in Sambrook et al., supra, or electroporation is generally used for prokaryotes or other cells that contain substantial cell-wall barriers. Infection with Agrobacterium tumefaciens is used for transformation of certain plant cells, as described by Shaw et al., Gene, 23:315 (1983) and WO 89/05859 published 29 June 1989. In addition, plants may be transfected using ultrasound treatment as described in WO 91/00358 published 10 January 1991.

For mammalian cells without such cell walls, the calcium phosphate precipitation method of Graham and van der Eb, <u>Virology</u>, <u>52</u>:456-457 (1978) is preferred. General aspects of mammalian cell host system transformations have been described in U.S. Pat. No. 4,399,216. Transformations into yeast are typically carried out according to the method of Van Solingen et al., <u>J. Bact.</u>, <u>130</u>:946 (1977) and Hsiao et al., <u>Proc. Natl. Acad. Sci. (USA)</u>, <u>76</u>:3829 (1979). However, other methods for introducing DNA into cells, such as by nuclear microinjection, electroporation, bacterial protoplast fusion with intact cells, or polycations, e.g., polybrene, polyornithine, may also be used. For various techniques for transforming mammalian cells, see Keown et al., <u>Methods in</u>

35

5

10

Enzymology, 185:527-537 (1990) and Mansour et al., Nature, 336:348-352 (1988).

4. Culturing the Host Cells

Prokaryotic cells used to produce Apo-2DcR may be cultured in suitable media as described generally in Sambrook et al., supra.

The mammalian host cells used to produce Apo-2DcR may be cultured in a variety of media. Examples of commercially available media include Ham's F10 (Sigma), Minimal Essential Medium ("MEM", Sigma), RPMI-1640 (Sigma), and Dulbecco's Modified Eagle's Medium ("DMEM", Sigma). Any such media may be supplemented as necessary with hormones and/or other growth factors (such as insulin, transferrin, or epidermal growth factor), salts (such as sodium chloride, calcium, magnesium, and phosphate), buffers (such as HEPES), nucleosides (such as adenosine and thymidine), antibiotics (such as Gentamycin™ drug), trace elements (defined as inorganic compounds usually present at final concentrations in the micromolar range), and glucose or an equivalent energy source. Any other necessary supplements may also be included at appropriate concentrations that would be known to those skilled in the art. The culture conditions, such as temperature, pH, and the like, are those previously used with the host cell selected for expression, and will be apparent to the ordinarily skilled artisan.

In general, principles, protocols, and practical techniques for maximizing the productivity of mammalian cell cultures can be found in <u>Mammalian Cell Biotechnology: a Practical Approach</u>, M. Butler, ed. (IRL Press, 1991).

The host cells referred to in this disclosure encompass cells in culture as well as cells that are within a host animal.

5. <u>Detecting Gene Amplification/Expression</u>

Gene amplification and/or expression may be measured in a sample directly, for example, by conventional Southern blotting, Northern blotting to quantitate the transcription of mRNA [Thomas, Proc. Natl. Acad. Sci. USA, 77:5201-5205 (1980)], dot blotting (DNA analysis), or in situ hybridization, using an appropriately labeled

35

5

10

probe, based on the sequences provided herein. Various labels may be employed, most commonly radioisotopes, and particularly ³²P. However, other techniques may also be employed, such as using biotin-modified nucleotides for introduction into a polynucleotide. The biotin then serves as the site for binding to avidin or antibodies, which may be labeled with a wide variety of labels, such as radionucleotides, fluorescers or enzymes. Alternatively, antibodies may be employed that can recognize specific duplexes, including DNA duplexes, RNA duplexes, and DNA-RNA hybrid duplexes or DNA-protein duplexes. The antibodies in turn may be labeled and the assay may be carried out where the duplex is bound to a surface, so that upon the formation of duplex on the surface, the presence of antibody bound to the duplex can be detected.

Gene expression, alternatively, may be measured by immunological methods, such as immunohistochemical staining of cells or tissue sections and assay of cell culture or body fluids, to quantitate directly the expression of gene product. With immunohistochemical staining techniques, a cell sample is prepared, typically by dehydration and fixation, followed by reaction with labeled antibodies specific for the gene product coupled, where the labels are usually visually detectable, such as enzymatic labels, fluorescent labels, or luminescent labels.

Antibodies useful for immunohistochemical staining and/or assay of sample fluids may be either monoclonal or polyclonal, and may be prepared in any mammal. Conveniently, the antibodies may be prepared against a native sequence Apo-2DcR polypeptide or against a synthetic peptide based on the DNA sequences provided herein or against exogenous sequence fused to Apo-2DcR DNA and encoding a specific antibody epitope.

6. Purification of Apo-2DcR Polypeptide

Forms of Apo-2DcR may be recovered from culture medium or from host cell lysates. If the Apo-2DcR is membrane-bound, it can be released from the membrane using a suitable detergent solution (e.g. Triton-X 100) or its extracellular domain may be released by enzymatic cleavage. Apo-2DcR can also be released from the cell-

10

surface by enzymatic cleavage of its glycophospholipid membrane anchor.

When Apo-2DcR is produced in a recombinant cell other than one of human origin, the Apo-2DcR is free of proteins or polypeptides of human origin. However, it may be desired to purify Apo-2DcR from recombinant cell proteins or polypeptides to obtain preparations that are substantially homogeneous as to Apo-2DcR. As a first step, the culture medium or lysate may be centrifuged to remove particulate cell debris. Apo-2DcR thereafter is purified from contaminant soluble proteins and polypeptides, with the following procedures being exemplary of suitable purification procedures: by fractionation on an ion-exchange column; ethanol precipitation; reverse phase HPLC; chromatography on silica or on a cation-exchange resin such as DEAE; chromatofocusing; SDS-PAGE; ammonium sulfate precipitation; gel filtration using, for example, Sephadex G-75; and protein A Sepharose columns to remove contaminants such as IgG.

Apo-2DcR variants in which residues have been deleted, inserted, or substituted can be recovered in the same fashion as native sequence Apo-2DcR, taking account of changes in properties occasioned by the variation. For example, preparation of an Apo-2DcR fusion with another protein or polypeptide, e.g., a bacterial or viral antigen, immunoglobulin sequence, or receptor sequence, may facilitate purification; an immunoaffinity column containing antibody to the sequence can be used to adsorb the fusion polypeptide. Other types of affinity matrices also can be used.

A protease inhibitor such as phenyl methyl sulfonyl fluoride (PMSF) also may be useful to inhibit proteolytic degradation during purification, and antibiotics may be included to prevent the growth of adventitious contaminants. One skilled in the art will appreciate that purification methods suitable for native sequence Apo-2DcR may require modification to account for changes in the character of Apo-2DcR or its variants upon expression in recombinant cell culture.

30

35

5

10

7. Covalent Modifications of Apo-2DcR Polypeptides

Covalent modifications of Apo-2DcR are included within the scope of this invention. One type of covalent modification of the Apo-2DcR is introduced into the molecule by reacting targeted amino acid residues of the Apo-2DcR with an organic derivatizing agent that is capable of reacting with selected side chains or the N- or C- terminal residues of the Apo-2DcR.

Derivatization with bifunctional agents is useful for crosslinking Apo-2DcR to a water-insoluble support matrix or surface for use in the method for purifying anti-Apo-2DcR antibodies, and vice-versa. Derivatization with one or more bifunctional agents will also be useful for crosslinking Apo-2DcR molecules to generate Apo-2DcR dimers. Such dimers may increase binding avidity and extend half-life of the molecule in vivo. Commonly used crosslinking agents include, e.g., 1,1-bis(diazoacetyl)-2-phenylethane, glutaraldehyde, N-hydroxysuccinimide esters, for example, esters with 4-azidosalicylic homobifunctional imidoesters, including disuccinimidyl esters such 3,3'-dithiobis(succinimidylpropionate), and bifunctional maleimides such as bis-N-maleimido-1,8-octane. Derivatizing agents methyl-3-[(p-azidophenyl)dithio]propioimidate photoactivatable intermediates that are capable of crosslinks in the presence of light. Alternatively, reactive water-insoluble matrices such as cyanogen bromide-activated carbohydrates and the reactive substrates described in U.S. Patent Nos. 3,969,287; 3,691,016; 4,195,128; 4,247,642; 4,229,537; and 4,330,440 are employed for protein immobilization.

Other modifications include deamidation of glutaminyl and asparaginyl residues to the corresponding glutamyl and aspartyl residues, respectively, hydroxylation of proline and lysine, phosphorylation of hydroxyl groups of seryl or threonyl residues, methylation of the α -amino groups of lysine, arginine, and histidine side chains [T.E. Creighton, <u>Proteins: Structure and Molecular Properties</u>, W.H. Freeman & Co., San Francisco, pp. 79-86 (1983)], acetylation of the N-terminal amine, and amidation of any

35

5

10

C-terminal carboxyl group. The modified forms of the residues fall within the scope of the present invention.

Another type of covalent modification of the Apo-2DcR polypeptide included within the scope of this invention comprises altering the native glycosylation pattern of the polypeptide. "Altering the native glycosylation pattern" is intended for purposes herein to mean deleting one or more carbohydrate moieties found in native sequence Apo-2DcR, and/or adding one or more glycosylation sites that are not present in the native sequence Apo-2DcR.

Glycosylation of polypeptides is typically either N-linked or O-linked. N-linked refers to the attachment of the carbohydrate moiety to the side chain of an asparagine residue. The tripeptide sequences asparagine-X-serine and asparagine-X-threonine, where X is any amino acid except proline, are the recognition sequences for enzymatic attachment of the carbohydrate moiety to the asparagine side chain. Thus, the presence of either of these tripeptide sequences in a polypeptide creates a potential glycosylation site. O-linked glycosylation refers to the attachment of one of the sugars N-aceylgalactosamine, galactose, or xylose to a hydroxylamino acid, most commonly serine or threonine, although 5-hydroxyproline or 5-hydroxylysine may also be used.

glycosylation sites to the Addition of Apo-2DcR polypeptide may be accomplished by altering the amino acid sequence such that it contains one or more of the above-described tripeptide sequences (for N-linked glycosylation sites). The alteration may also be made by the addition of, or substitution by, one or more serine or threonine residues to the native sequence Apo-2DcR (for O-linked glycosylation sites). The Apo-2DcR amino acid sequence may optionally be altered through changes at the DNA level, particularly by mutating the DNA encoding the Apo-2DcR polypeptide at preselected bases such that codons are generated that will translate into the desired amino acids. The DNA mutation(s) may be made using methods described above and in U.S. Pat. No. 5,364,934, supra.

35

5

10

Another means of increasing the number of carbohydrate moieties on the Apo-2DcR polypeptide is by chemical or enzymatic coupling of glycosides to the polypeptide. Depending on the coupling mode used, the sugar(s) may be attached to (a) arginine and histidine, (b) free carboxyl groups, (c) free sulfhydryl groups such as those of cysteine, (d) free hydroxyl groups such as those of serine, threonine, or hydroxyproline, (e) aromatic residues such as those of phenylalanine, tyrosine, or tryptophan, or (f) the amide group of glutamine. These methods are described in WO 87/05330 published 11 September 1987, and in Aplin and Wriston, CRC Crit. Rev. Biochem., pp. 259-306 (1981).

Removal of carbohydrate moieties present on the Apo-2DcR polypeptide may be accomplished chemically or enzymatically or by mutational substitution of codons encoding for amino acid residues that serve as targets for glycosylation. For instance, chemical deglycosylation by exposing the polypeptide to the compound trifluoromethanesulfonic acid, or an equivalent compound can result in the cleavage of most or all sugars except the linking sugar (N-acetylglucosamine or N-acetylgalactosamine), while leaving the polypeptide intact. Chemical deglycosylation is described by Hakimuddin, et al., Arch.Biochem.Biophys., 259:52 (1987) and by Edge et al., Anal.Biochem.Biophys., 259:52 (1987) and by Edge et al., Arch.Biochem.Biophys., 259:52 (1987) and by Edge et al., Arch.Biochem.Biophys., 259:52 (1987) and by Edge et al., Arch.Biochem.Biophys., 259:52 (1987) and by Edge et al., Arch.Biochem.Biophys., 259:52 (1987) and by Edge et al., Arch.Biochem.Biophys., 259:52 (1987) and by Edge et al., Arch.Biochem.Biophys., 259:52 (1987) and by Edge et al., Arch.Biochem.Biophys., 259:52 (1987) and by Edge et al., Arch.Biochem.Biophys. (1987).

Glycosylation at potential glycosylation sites may be prevented by the use of the compound tunicamycin as described by Duskin et al., <u>J. Biol. Chem.</u>, <u>257</u>:3105 (1982). Tunicamycin blocks the formation of protein-N-glycoside linkages.

Another type of covalent modification of Apo-2DcR comprises linking the Apo-2DcR polypeptide to one of a variety of nonproteinaceous polymers, e.g., polyethylene glycol, polypropylene glycol, or polyoxyalkylenes, in the manner set forth in U.S. Patent Nos. 4,640,835; 4,496,689; 4,301,144; 4,670,417; 4,791,192 or 4,179,337.

35

5

10

8. Apo-2DcR Chimeras

The present invention also provides chimeric molecules comprising Apo-2DcR fused to another, heterologous polypeptide or amino acid sequence.

In one embodiment, the chimeric molecule comprises a fusion of the Apo-2DcR with a tag polypeptide which provides an epitope to which an anti-tag antibody can selectively bind. The epitope tag is generally placed at the amino- or carboxyl- terminus of the Apo-2DcR. The presence of such epitope-tagged forms of the Apo-2DcR can be detected using an antibody against the tag polypeptide. Also, provision of the epitope tag enables the Apo-2DcR to be readily purified by affinity purification using an antitag antibody or another type of affinity matrix that binds to the epitope tag.

Various tag polypeptides and their respective antibodies are well known in the art. Examples include the flu HA tag polypeptide and its antibody 12CA5 [Field et al., Mol. Cell. Biol., 8:2159-2165 (1988)]; the c-myc tag and the 8F9, 3C7, 6E10, G4, B7 and 9E10 antibodies thereto [Evan et al., Molecular and Cellular Biology, 5:3610-3616 (1985)]; and the Herpes Simplex virus glycoprotein D (gD) tag and its antibody [Paborsky et al., Protein Engineering, 3(6):547-553 (1990)]. Other tag polypeptides include the Flag-peptide [Hopp et al., BioTechnology, 6:1204-1210 (1988)]; the KT3 epitope peptide [Martin et al., Science, 255:192-194 (1992)]; an α -tubulin epitope peptide [Skinner et al., <u>J. Biol.</u> Chem., 266:15163-15166 (1991)]; and the T7 gene 10 protein peptide tag [Lutz-Freyermuth et al., Proc. Natl. Acad. Sci. USA, 87:6393-6397 (1990)]. Once the tag polypeptide has been selected, an antibody thereto can be generated using the techniques disclosed herein.

Generally, epitope-tagged Apo-2DcR may be constructed and produced according to the methods described above. Apo-2DcR-tag polypeptide fusions are preferably constructed by fusing the cDNA sequence encoding the Apo-2DcR portion in-frame to the tag polypeptide DNA sequence and expressing the resultant DNA fusion

10

construct in appropriate host cells. Ordinarily, when preparing the Apo-2DcR-tag polypeptide chimeras of the present invention, nucleic acid encoding the Apo-2DcR will be fused at its 3' end to nucleic acid encoding the N-terminus of the tag polypeptide, however 5' fusions are also possible. For example, a polyhistidine sequence of about 5 to about 10 histidine residues may be fused at the N- terminus or the C- terminus and used as a purification handle in affinity chromatography.

Epitope-tagged Apo-2DcR can be purified by affinity chromatography using the anti-tag antibody. The matrix to which the affinity antibody is attached may include, for instance, agarose, controlled pore glass or poly(styrenedivinyl)benzene. The epitope-tagged Apo-2DcR can then be eluted from the affinity column using techniques known in the art.

In another embodiment, the chimeric molecule comprises an Apo-2DcR polypeptide fused to an immunoglobulin sequence. The chimeric molecule may also comprise a particular domain sequence of Apo-2DcR, such as the extracellular domain sequence of native Apo-2DcR fused to an immunoglobulin sequence. This includes chimeras in monomeric, homo- or heteromultimeric, and particularly homo- or heterodimeric, or -tetrameric forms; optionally, the chimeras may be in dimeric forms or homodimeric heavy chain forms. Generally, these assembled immunoglobulins will have known unit structures as represented by the following diagrams.

A basic four chain structural unit is the form in which IgG, IgD, and IgE exist. A four chain unit is repeated in the higher molecular weight immunoglobulins; IgM generally exists as a pentamer of basic four-chain units held together by disulfide bonds. IgA globulin, and occasionally IgG globulin, may also exist in a multimeric form in serum. In the case of multimers, each four chain unit may be the same or different.

The following diagrams depict some exemplary monomer, homo- and heterodimer and homo- and heteromultimer structures. These diagrams are merely illustrative, and the chains of the

multimers are believed to be disulfide bonded in the same fashion as native immunoglobulins.

monomer:

5

10

15

20

40

45

50

 $C_{\scriptscriptstyle L}$ or $C_{\scriptscriptstyle H}$

homodimer:

 C_L or C_H

heterodimer:

 C_L or C_H C_L or C_H

homotetramer:

heterotetramer:

and

In the foregoing diagrams, "A" means an Apo-2DcR sequence or an Apo-2DcR sequence fused to a heterologous sequence; X is an additional agent, which may be the same as A or different, a

30

35

5

10

portion of an immunoglobulin superfamily member such as a variable region or a variable region-like domain, including a native or chimeric immunoglobulin variable region, a toxin such a pseudomonas exotoxin or ricin, or a sequence functionally binding to another protein, such as other cytokines (i.e., IL-1, interferon- γ) or cell surface molecules (i.e., NGFR, CD40, OX40, Fas antigen, T2 proteins of Shope and myxoma poxviruses), or a polypeptide therapeutic agent not otherwise normally associated with a constant domain; Y is a linker or another receptor sequence; and V_L , V_H , C_L and C_H represent light or heavy chain variable or constant domains of an immunoglobulin. Structures comprising at least one CRD of an Apo-2DcR sequence as "A" and another cell-surface protein having a repetitive pattern of CRDs (such as TNFR) as "X" are specifically included.

It will be understood that the above diagrams are merely exemplary of the possible structures of the chimeras of the present invention, and do not encompass all possibilities. For example, there might desirably be several different "A"s, "X"s, or "Y"s in any of these constructs. Also, the heavy or light chain constant domains may be originated from the same orAll possible permutations of the illustrated and immunoglobulins. similar structures are all within the scope of the invention herein.

In general, the chimeric molecules can be constructed in a fashion similar to chimeric antibodies in which a variable domain from an antibody of one species is substituted for the variable domain of another species. See, for example, EP 0 125 023; EP 173,494; Munro, Nature, 312:597 (13 December 1984); Neuberger et al., Nature, 312:604-608 (13 December 1984); Sharon et al., Nature, 309:364-367 (24 May 1984); Morrison et al., Proc. Nat'l. Acad. Sci. USA, 81:6851-6855 (1984); Morrison et al., Science, 229:1202-1207 (1985); Boulianne et al., Nature, 312:643-646 (13 December 1984); Capon et al., Nature, 337:525-531 (1989); Traunecker et al., Nature, 339:68-70 (1989).

Alternatively, the chimeric molecules may be constructed

10

The DNA including a region encoding the desired as follows. sequence, such as an Apo-2DcR and/or TNFR sequence, is cleaved by a restriction enzyme at or proximal to the 3' end of the DNA encoding the immunoglobulin-like domain(s) and at a point at or near the DNA encoding the N-terminal end of the Apo-2DcR or TNFR polypeptide (where use of a different leader is contemplated) or at or proximal to the N-terminal coding region for TNFR (where the native signal is employed). This DNA fragment then is readily inserted proximal to DNA encoding an immunoglobulin light or heavy chain constant region and, if necessary, the resulting construct tailored by deletional mutagenesis. Preferably, the Ig is a human immunoglobulin when the chimeric molecule is intended for in vivo therapy for humans. DNA encoding immunoglobulin light or heavy chain constant regions is known or readily available from cDNA libraries or is synthesized. See for example, Adams et al., Biochemistry, 19:2711-2719 (1980); Gough et al., Biochemistry, 19:2702-2710 (1980); Dolby et al., Proc. Natl. Acad. Sci.. USA, 77:6027-6031 (1980); Rice et al., Proc. Natl. Acad. Sci., 79:7862-7865 (1982); Falkner et al., Nature, 298:286-288 (1982); and Morrison et al., <u>Ann. Rev. Immunol.</u>, <u>2</u>:239-256 (1984).

Further details of how to prepare such fusions are found in publications concerning the preparation of immunoadhesins. Immunoadhesins in general, and CD4-Ig fusion molecules specifically are disclosed in WO 89/02922, published 6 April 1989). Molecules comprising the extracellular portion of CD4, the receptor for human immunodeficiency virus (HIV), linked to IgG heavy chain constant region are known in the art and have been found to have a markedly longer half-life and lower clearance than the soluble extracellular portion of CD4 [Capon et al., supra; Byrn et al., Nature, 344:667 (1990)]. The construction of specific chimeric TNFR-IgG molecules is also described in Ashkenazi et al. Proc. Natl. Acad. Sci., [J. Cell. Biochem. <u>88</u>:10535-10539 (1991); Lesslauer et al. Supplement 15F, 1991, p. 115 (P 432)]; and Peppel and Beutler, J. Cell. Biochem. Supplement 15F, 1991, p. 118 (P 439)].

30

35

5

10

B. Therapeutic and Non-therapeutic Uses for Apo-2DcR

Apo-2DcR, as disclosed in the present specification, can be employed therapeutically to regulate apoptosis and/or NF-kB activation by Apo-2L or by another ligand that Apo-2DcR binds to in mammalian cells. This therapy can be accomplished for instance, using in vivo or ex vivo gene therapy techniques and includes the use of the death domain sequences disclosed herein. chimeric molecules (including the chimeric molecules containing the sequence comprising domain of Apo-2DcR) extracellular immunoglobulin sequences can also be employed therapeutically to inhibit Apo-2L activities, for example, apoptosis or induction or the activity of another ligand that Apo-2DcR binds to.

The Apo-2DcR of the invention also has utility in non-therapeutic applications. Nucleic acid sequences encoding the Apo-2DcR may be used as a diagnostic for tissue-specific typing. For example, procedures like in situ hybridization, Northern and Southern blotting, and PCR analysis may be used to determine whether DNA and/or RNA encoding Apo-2DcR is present in the cell type(s) being evaluated. Apo-2DcR nucleic acid will also be useful for the preparation of Apo-2DcR by the recombinant techniques described herein.

The isolated Apo-2DcR may be used in quantitative diagnostic assays as a control against which samples containing unknown quantities of Apo-2DcR may be prepared. Apo-2DcR preparations are also useful in generating antibodies, as standards in assays for Apo-2DcR (e.g., by labeling Apo-2DcR for use as a standard in a radioimmunoassay, radioreceptor assay, or enzymelinked immunoassay), in affinity purification techniques, and in competitive-type receptor binding assays when labeled with, for instance, radioiodine, enzymes, or fluorophores.

Isolated, native forms of Apo-2DcR, such as described in the Examples, may be employed to identify alternate forms of Apo-2DcR; for example, forms that possess cytoplasmic domain(s) which may be involved in signaling pathway(s). Modified forms of the Apo-2DcR, such as the Apo-2DcR-IgG chimeric molecules

35

5

10

(immunoadhesins) described above, can be used as immunogens in producing anti-Apo-2DcR antibodies.

Nucleic acids which encode Apo-2DcR or its modified forms can also be used to generate either transgenic animals or "knock out" animals which, in turn, are useful in the development and screening of therapeutically useful reagents. A transgenic animal (e.g., a mouse or rat) is an animal having cells that contain a transgene, which transgene was introduced into the animal or an ancestor of the animal at a prenatal, e.g., an embryonic stage. A transgene is a DNA which is integrated into the genome of a cell from which a transgenic animal develops. In one embodiment, cDNA encoding Apo-2DcR or an appropriate sequence thereof (such as Apo-2DcR-IqG) can be used to clone genomic DNA encoding Apo-2DcR in accordance with established techniques and the genomic sequences used to generate transgenic animals that contain cells which express DNA encoding Apo-2DcR. Methods for generating transgenic animals, particularly animals such as mice or rats, have become conventional in the art and are described, for example, in U.S. Patent Nos. 4,736,866 and 4,870,009. Typically, particular cells would be targeted for Apo-2DcR transgene incorporation with tissuespecific enhancers. Transgenic animals that include a copy of a transgene encoding Apo-2DcR introduced into the germ line of the animal at an embryonic stage can be used to examine the effect of increased expression of DNA encoding Apo-2DcR. Such animals can be used as tester animals for reagents thought to confer protection for example, pathological conditions associated with In accordance with this facet of the excessive apoptosis. invention, an animal is treated with the reagent and a reduced incidence of the pathological condition, compared to untreated animals bearing the transgene, would indicate potential a therapeutic intervention for the pathological condition. another embodiment, transgenic animals that carry a soluble form of Apo-2DcR such as the Apo-2DcR ECD or an immunoglobulin chimera of such form could be constructed to test the effect of chronic neutralization of Apo-2L, a ligand of Apo-2DcR.

30

35

5

10

Alternatively, non-human homologues of Apo-2DcR can be used to construct an Apo-2DcR "knock out" animal which has a defective or altered gene encoding Apo-2DcR as a result of homologous recombination between the endogenous gene encoding Apo-2DcR and altered genomic DNA encoding Apo-2DcR introduced into an embryonic cell of the animal. For example, cDNA encoding Apo-2DcR can be used to clone genomic DNA encoding Apo-2DcR in accordance with established techniques. A portion of the genomic DNA encoding Apo-2DcR can be deleted or replaced with another gene, such as a gene encoding a selectable marker which can be used to monitor Typically, several kilobases of unaltered flanking integration. DNA (both at the 5' and 3' ends) are included in the vector [see e.g., Thomas and Capecchi, Cell, 51:503 (1987) for a description of homologous recombination vectors]. The vector is introduced into an embryonic stem cell line (e.g., by electroporation) and cells in which the introduced DNA has homologously recombined with the endogenous DNA are selected [see e.g., Li et al., Cell, 69:915 (1992)]. The selected cells are then injected into a blastocyst of an animal (e.g., a mouse or rat) to form aggregation chimeras [see e.g., Bradley, in Teratocarcinomas and Embryonic Stem Cells: A Practical Approach, E. J. Robertson, ed. (IRL, Oxford, 1987), pp. 113-152]. A chimeric embryo can then be implanted into a suitable pseudopregnant female foster animal and the embryo brought to term to create a "knock out" animal. Progeny harboring the homologously recombined DNA in their germ cells can be identified by standard techniques and used to breed animals in which all cells of the animal contain the homologously recombined DNA. Knockout animals can be characterized for instance, for their ability to defend against certain pathological conditions and for their development pathological conditions due to absence of the Apo-2DcR polypeptide, including for example, development of tumors.

C. Anti-Apo-2DcR Antibody Preparation

The present invention further provides anti-Apo-2DcR antibodies. Antibodies against Apo-2DcR may be prepared as follows. Exemplary antibodies include polyclonal, monoclonal,

35

5

10

humanized, bispecific, and heteroconjugate antibodies.

1. Polyclonal Antibodies

antibodies may comprise polyclonal The Apo-2DcR antibodies. Methods of preparing polyclonal antibodies are known to the skilled artisan. Polyclonal antibodies can be raised in a mammal, for example, by one or more injections of an immunizing agent and, if desired, an adjuvant. Typically, the immunizing agent and/or adjuvant will be injected in the mammal by multiple subcutaneous or intraperitoneal injections. The immunizing agent may include the Apo-2DcR polypeptide or a fusion protein thereof. An example of a suitable immunizing agent is a Apo-2DcR-IgG fusion protein or chimeric molecule (including an Apo-2DcR ECD-IgG fusion protein). Cells expressing Apo-2DcR at their surface may also be employed. It may be useful to conjugate the immunizing agent to a protein known to be immunogenic in the mammal being immunized. Examples of such immunogenic proteins which may be employed include but are not limited to keyhole limpet hemocyanin, serum albumin, and soybean trypsin inhibitor. thyroglobulin, bovine aggregating agent such as alum may also be employed to enhance the Examples of adjuvants which may be mammal's immune response. employed include Freund's complete adjuvant and MPL-TDM adjuvant (monophosphoryl Lipid A, synthetic trehalose dicorynomycolate). The immunization protocol may be selected by one skilled in the art without undue experimentation. The mammal can then be bled, and the serum assayed for antibody titer. If desired, the mammal can be boosted until the antibody titer increases or plateaus.

2. Monoclonal Antibodies

The Apo-2DcR antibodies may, alternatively, be monoclonal antibodies. Monoclonal antibodies may be prepared using hybridoma methods, such as those described by Kohler and Milstein, <u>supra</u>. In a hybridoma method, a mouse, hamster, or other appropriate host animal, is typically immunized (such as described above) with an immunizing agent to elicit lymphocytes that produce or are capable of producing antibodies that will specifically bind to the immunizing agent. Alternatively, the lymphocytes may be immunized

35

5

10

in vitro.

The immunizing agent will typically include the Apo-2DcR polypeptide or a fusion protein thereof. An example of a suitable immunizing agent is a Apo-2DcR-IgG fusion protein or chimeric molecule. Cells expressing Apo-2DcR at their surface may also be employed. Generally, either peripheral blood lymphocytes ("PBLs") are used if cells of human origin are desired, or spleen cells or lymph node cells are used if non-human mammalian sources are desired. The lymphocytes are then fused with an immortalized cell line using a suitable fusing agent, such as polyethylene glycol, to form a hybridoma cell [Goding, Monoclonal Antibodies: Principles and Practice, Academic Press, (1986) pp. 59-103]. Immortalized cell lines are usually transformed mammalian cells, particularly myeloma cells of rodent, bovine and human origin. Usually, rat or mouse myeloma cell lines are employed. The hybridoma cells may be cultured in a suitable culture medium that preferably contains one or more substances that inhibit the growth or survival of the unfused, immortalized cells. For example, if the parental cells lack the enzyme hypoxanthine guanine phosphoribosyl transferase (HGPRT or HPRT), the culture medium for the hybridomas typically will include hypoxanthine, aminopterin, and thymidine medium"), which substances prevent the growth of HGPRT-deficient cells.

Preferred immortalized cell lines are those that fuse efficiently, support stable high level expression of antibody by the selected antibody-producing cells, and are sensitive to a medium such as HAT medium. More preferred immortalized cell lines are murine myeloma lines, which can be obtained, for instance, from the Salk Institute Cell Distribution Center, San Diego, California and the American Type Culture Collection, Rockville, Maryland. Human myeloma and mouse-human heteromyeloma cell lines also have been described for the production of human monoclonal antibodies [Kozbor, J. Immunol., 133:3001 (1984); Brodeur et al., Monoclonal Antibody Production Techniques and Applications, Marcel Dekker, Inc., New York, (1987) pp. 51-63].

35

5

10

The culture medium in which the hybridoma cells are cultured can then be assayed for the presence of monoclonal antibodies directed against Apo-2DcR. Preferably, the binding specificity of monoclonal antibodies produced by the hybridoma cells is determined by immunoprecipitation or by an *in vitro* binding assay, such as radioimmunoassay (RIA) or enzyme-linked immunoabsorbent assay (ELISA). Such techniques and assays are known in the art. The binding affinity of the monoclonal antibody can, for example, be determined by the Scatchard analysis of Munson and Pollard, Anal. Biochem., 107:220 (1980).

After the desired hybridoma cells are identified, the clones may be subcloned by limiting dilution procedures and grown by standard methods [Goding, <u>supra</u>]. Suitable culture media for this purpose include, for example, Dulbecco's Modified Eagle's Medium and RPMI-1640 medium. Alternatively, the hybridoma cells may be grown *in vivo* as ascites in a mammal.

The monoclonal antibodies secreted by the subclones may be isolated or purified from the culture medium or ascites fluid by conventional immunoglobulin purification procedures such as, for example, protein A-Sepharose, hydroxylapatite chromatography, gel electrophoresis, dialysis, or affinity chromatography.

The monoclonal antibodies may also be made by recombinant DNA methods, such as those described in U.S. Patent No. 4,816,567. DNA encoding the monoclonal antibodies of the invention can be readily isolated and sequenced using conventional procedures (e.g., by using oligonucleotide probes that are capable of binding specifically to genes encoding the heavy and light chains of murine antibodies). The hybridoma cells of the invention serve as a preferred source of such DNA. Once isolated, the DNA may be placed into expression vectors, which are then transfected into host cells such as simian COS cells, Chinese hamster ovary (CHO) cells, or myeloma cells that do not otherwise produce immunoglobulin protein, to obtain the synthesis of monoclonal antibodies in the recombinant host cells. The DNA also may be modified, for example, by substituting the coding sequence for human heavy and light chain

constant domains in place of the homologous murine sequences [U.S. Patent No. 4,816,567; Morrison et al., <u>supra</u>] or by covalently joining to the immunoglobulin coding sequence all or part of the coding sequence for a non-immunoglobulin polypeptide. Such a non-immunoglobulin polypeptide can be substituted for the constant domains of an antibody of the invention, or can be substituted for the variable domains of one antigen-combining site of an antibody of the invention to create a chimeric bivalent antibody.

5

10

25

30

35

The antibodies may be monovalent antibodies. Methods for preparing monovalent antibodies are well known in the art. For example, one method involves recombinant expression of immunoglobulin light chain and modified heavy chain. The heavy chain is truncated generally at any point in the Fc region so as to prevent heavy chain crosslinking. Alternatively, the relevant cysteine residues are substituted with another amino acid residue or are deleted so as to prevent crosslinking.

In vitro methods are also suitable for preparing monovalent antibodies. Digestion of antibodies to produce fragments thereof, particularly, Fab fragments, can be accomplished using routine techniques known in the art. For instance, digestion can be performed using papain. Examples of papain digestion are described in WO 94/29348 published 12/22/94 and U.S. Patent No. 4,342,566. Papain digestion of antibodies typically produces two identical antigen binding fragments, called Fab fragments, each with a single antigen binding site, and a residual Fc fragment. Pepsin treatment yields an $F(ab')_2$ fragment that has two antigen combining sites and is still capable of cross-linking antigen.

The Fab fragments produced in the antibody digestion also contain the constant domains of the light chain and the first constant domain ($\mathrm{CH_1}$) of the heavy chain. Fab' fragments differ from Fab fragments by the addition of a few residues at the carboxy terminus of the heavy chain $\mathrm{CH_1}$ domain including one or more cysteines from the antibody hinge region. Fab'-SH is the designation herein for Fab' in which the cysteine residue(s) of the constant domains bear a free thiol group. $\mathrm{F}(\mathrm{ab}')_2$ antibody

35

5

10

fragments originally were produced as pairs of Fab' fragments which have hinge cysteines between them. Other chemical couplings of antibody fragments are also known.

3. Humanized Antibodies

The Apo-2DcR antibodies of the invention may further comprise humanized antibodies or human antibodies. Humanized forms antibodies are chimeric murine) (e.q., non-human immunoglobulins, immunoglobulin chains or fragments thereof (such as Fv, Fab, Fab', $F(ab')_2$ or other antigen-binding subsequences of antibodies) which contain minimal sequence derived from non-human immunoglobulin. Humanized antibodies include human immunoglobulins (recipient antibody) in which residues from a complementary determining region (CDR) of the recipient are replaced by residues from a CDR of a non-human species (donor antibody) such as mouse, rat or rabbit having the desired specificity, affinity and In some instances, Fv framework residues of the human immunoglobulin are replaced by corresponding non-human residues. Humanized antibodies may also comprise residues which are found neither in the recipient antibody nor in the imported CDR or In general, the humanized antibody will framework sequences. comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the CDR regions correspond to those of a non-human immunoglobulin and all or substantially all of the FR regions are those of a human The humanized sequence. immunoglobulin consensus of optimally also will comprise at portion least a immunoglobulin constant region (Fc), typically that of a human immunoglobulin [Jones et al., Nature, 321:522-525 (1986); Reichmann et al., <u>Nature</u>, <u>332</u>:323-329 (1988); and Presta, <u>Curr. Op. Struct.</u> Biol., 2:593-596 (1992)].

Methods for humanizing non-human antibodies are well known in the art. Generally, a humanized antibody has one or more amino acid residues introduced into it from a source which is non-human. These non-human amino acid residues are often referred to as "import" residues, which are typically taken from an "import"

35

5

10

variable domain. Humanization can be essentially performed following the method of Winter and co-workers [Jones et al., Nature, 321:522-525 (1986); Riechmann et al., Nature, 332:323-327 (1988); Verhoeyen et al., Science, 239:1534-1536 (1988)], by substituting rodent CDRs or CDR sequences for the corresponding sequences of a human antibody. Accordingly, such "humanized" antibodies are chimeric antibodies (U.S. Patent No. 4,816,567), wherein substantially less than an intact human variable domain has been substituted by the corresponding sequence from a non-human species. In practice, humanized antibodies are typically human antibodies in which some CDR residues and possibly some FR residues are substituted by residues from analogous sites in rodent antibodies.

The choice of human variable domains, both light and heavy, to be used in making the humanized antibodies is very important in order to reduce antigenicity. According to the "bestfit" method, the sequence of the variable domain of a rodent antibody is screened against the entire library of known human variable domain sequences. The human sequence which is closest to that of the rodent is then accepted as the human framework (FR) for the humanized antibody [Sims et al., J. Immunol., 151:2296 (1993); Chothia and Lesk, J. Mol. Biol., 196:901 (1987)]. Another method uses a particular framework derived from the consensus sequence of all human antibodies of a particular subgroup of light or heavy chains. The same framework may be used for several different humanized antibodies [Carter et al., Proc. Natl. Acad. Sci. USA, 89:4285 (1992); Presta et al., J. Immunol., 151:2623 (1993)].

It is further important that antibodies be humanized with retention of high affinity for the antigen and other favorable biological properties. To achieve this goal, according to a preferred method, humanized antibodies are prepared by a process of analysis of the parental sequences and various conceptual humanized products using three dimensional models of the parental and humanized sequences. Three dimensional immunoglobulin models are commonly available and are familiar to those skilled in the art.

5

10

Computer programs are available which illustrate and display probable three-dimensional conformational structures of selected candidate immunoglobulin sequences. Inspection of these displays permits analysis of the likely role of the residues in the functioning of the candidate immunoglobulin sequence, i.e., the analysis of residues that influence the ability of the candidate immunoglobulin to bind its antigen. In this way, FR residues can be selected and combined from the consensus and import sequence so that the desired antibody characteristic, such as increased affinity for the target antigen(s), is achieved. In general, the CDR residues are directly and most substantially involved in influencing antigen binding [see, WO 94/04679 published 3 March 1994].

Transgenic animals (e.g., mice) that are capable, upon immunization, of producing a full repertoire of human antibodies in the absence of endogenous immunoglobulin production can be employed. For example, it has been described that the homozygous deletion of the antibody heavy chain joining region $(J_{\scriptscriptstyle H})$ gene in chimeric and germ-line mutant mice results in complete inhibition of endogenous antibody production. Transfer of the human germ-line immunoglobulin gene array in such germ-line mutant mice will result in the production of human antibodies upon antigen challenge [see, e.g., Jakobovits et al., Proc. Natl. Acad. Sci. USA, 90:2551-255 (1993); Jakobovits et al., <u>Nature</u>, <u>362</u>:255-258 (1993); Bruggermann et al., Year in Immuno., 7:33 (1993)]. Human antibodies can also be produced in phage display libraries [Hoogenboom and Winter, J. Mol. Biol., 227:381 (1991); Marks et al., J. Mol. Biol., 222:581 (1991)]. The techniques of Cote et al. and Boerner et al. are also available for the preparation of human monoclonal antibodies (Cote et al., Monoclonal Antibodies and Cancer Therapy, Alan R. Liss, p. 77 (1985) and Boerner et al., <u>J. Immunol.</u>, <u>147(1)</u>:86-95 (1991)].

35

5

10

4. Bispecific Antibodies

Bispecific antibodies are monoclonal, preferably human or humanized, antibodies that have binding specificities for at least two different antigens. In the present case, one of the binding specificities is for the Apo-2DcR, the other one is for any other antigen, and preferably for a cell-surface protein or receptor or receptor subunit.

Methods for making bispecific antibodies are known in the art. Traditionally, the recombinant production of bispecific antibodies is based on the co-expression of two immunoglobulin heavy-chain/light-chain pairs, where the two heavy chains have different specificities [Millstein and Cuello, Nature, 305:537-539 (1983)]. Because of the random assortment of immunoglobulin heavy and light chains, these hybridomas (quadromas) produce a potential mixture of ten different antibody molecules, of which only one has the correct bispecific structure. The purification of the correct molecule is usually accomplished by affinity chromatography steps. Similar procedures are disclosed in WO 93/08829, published 13 May 1993, and in Traunecker et al., EMBO J., 10:3655-3659 (1991).

According to a different and more preferred approach, antibody variable domains with the desired binding specificities (antibody-antigen combining sites) are fused to immunoglobulin The fusion preferably is with an constant domain sequences. immunoglobulin heavy-chain constant domain, comprising at least part of the hinge, CH2, and CH3 regions. It is preferred to have the first heavy-chain constant region (CH1) containing the site necessary for light-chain binding present in at least one of the fusions. DNAs encoding the immunoglobulin heavy-chain fusions and, if desired, the immunoglobulin light chain, are inserted into separate expression vectors, and are co-transfected into a suitable This provides for great flexibility in adjusting host organism. the mutual proportions of the three polypeptide fragments in embodiments when unequal ratios of the three polypeptide chains used in the construction provide the optimum yields. however, possible to insert the coding sequences for two or all

30

5

10

three polypeptide chains in one expression vector when the expression of at least two polypeptide chains in equal ratios results in high yields or when the ratios are of no particular In a preferred embodiment of this approach, the significance. bispecific antibodies are composed of a hybrid immunoglobulin heavy chain with a first binding specificity in one arm, and a hybrid immunoglobulin heavy-chain/light-chain pair (providing a second binding specificity) in the other arm. It was found that this asymmetric structure facilitates the separation of the desired immunoglobulin unwanted bispecific compound from combinations, as the presence of an immunoglobulin light chain in only one half of the bispecific molecule provides for a facile way of separation. This approach is disclosed in WO 94/04690 published 3 March 1994. For further details of generating bispecific antibodies see, for example, Suresh et al., Methods in Enzymology, 121:210 (1986).

5. <u>Heteroconjugate Antibodies</u>

Heteroconjugate antibodies are also within the scope of the present invention. Heteroconjugate antibodies are composed of Such antibodies have, for two covalently joined antibodies. example, been proposed to target immune system cells to unwanted cells [US Patent No. 4,676,980], and for treatment of HIV infection [WO 91/00360; WO 92/200373; EP 03089]. It is contemplated that the antibodies may be prepared in vitro using known methods in synthetic protein chemistry, including those involving crosslinking For example, immunotoxins may be constructed using a disulfide exchange reaction or by forming a thioether bond. include for this purpose of suitable reagents Examples methyl-4-mercaptobutyrimidate and those iminothiolate and disclosed, for example, in U.S. Pat. No. 4,676,980.

35

5

10

D. Therapeutic and Non-therapeutic Uses for Apo-2DcR Antibodies The Apo-2DcR antibodies of the invention have therapeutic utility. For example, antagonistic antibodies may be used to block excessive apoptosis (for instance in neurodegenerative disease) or to block potential autoimmune/inflammatory effects of Apo-2DcR resulting from NF- κ B activation.

Apo-2DcR antibodies may further be used in diagnostic assays for Apo-2DcR, e.g., detecting its expression in specific cells, tissues, or serum. Various diagnostic assay techniques known in the art may be used, such as competitive binding assays, direct or indirect sandwich assays and immunoprecipitation assays conducted in either heterogeneous or homogeneous phases [Zola, Monoclonal Antibodies: A Manual of Techniques, CRC Press, Inc. (1987) pp. 147-158]. The antibodies used in the diagnostic assays can be labeled with a detectable moiety. The detectable moiety should be capable of producing, either directly or indirectly, a detectable signal. For example, the detectable moiety may be a radioisotope, such as ^{3}H , ^{14}C , ^{32}P , ^{35}S , or ^{125}I , a fluorescent or chemiluminescent compound, such as fluorescein isothiocyanate, such enzyme, as rhodamine, or luciferin, or an phosphatase, beta-galactosidase or horseradish peroxidase. method known in the art for conjugating the antibody to the detectable moiety may be employed, including those methods described by Hunter et al., Nature, 144:945 (1962); David et al., Biochemistry, 13:1014 (1974); Pain et al., J. Immunol. Meth., 40:219 (1981); and Nygren, <u>J. Histochem.</u> and <u>Cytochem.</u>, <u>30</u>:407 (1982).

Apo-2DcR antibodies also are useful for the affinity purification of Apo-2DcR from recombinant cell culture or natural sources. In this process, the antibodies against Apo-2DcR are immobilized on a suitable support, such a Sephadex resin or filter paper, using methods well known in the art. The immobilized antibody then is contacted with a sample containing the Apo-2DcR to be purified, and thereafter the support is washed with a suitable solvent that will remove substantially all the material in the

35

5

10

sample except the Apo-2DcR, which is bound to the immobilized antibody. Finally, the support is washed with another suitable solvent that will release the Apo-2DcR from the antibody.

E. <u>Kits Containing Apo-2DcR or Apo-2DcR Antibodies</u>

In a further embodiment of the invention, there are provided articles of manufacture and kits containing Apo-2DcR or Apo-2DcR antibodies which can be used, for instance, for the therapeutic or non-therapeutic applications described above. The article of manufacture comprises a container with a label. Suitable containers include, for example, bottles, vials, and test tubes. The containers may be formed from a variety of materials such as glass or plastic. The container holds a composition which includes an active agent that is effective for therapeutic or non-therapeutic applications, such as described above. The active agent in the composition is Apo-2DcR or an Apo-2DcR antibody. The label on the container indicates that the composition is used for a specific therapy or non-therapeutic application, and may also indicate directions for either *in vivo* or *in vitro* use, such as those described above.

The kit of the invention will typically comprise the container described above and one or more other containers comprising materials desirable from a commercial and user standpoint, including buffers, diluents, filters, needles, syringes, and package inserts with instructions for use.

The following examples are offered for illustrative purposes only, and are not intended to limit the scope of the present invention in any way.

All patent and literature references cited in the present specification are hereby incorporated by reference in their entirety.

EXAMPLES

All restriction enzymes referred to in the examples were purchased from New England Biolabs and used according to

manufacturer's instructions. All other commercially available reagents referred to in the examples were used according to manufacturer's instructions unless otherwise indicated. The source of those cells identified in the following examples, and throughout the specification, by ATCC accession numbers is the American Type Culture Collection, Rockville, Maryland.

5

10

25

30

35

EXAMPLE 1

Isolation of cDNA clones Encoding Human Apo-2DcR

1. Preparation of oligo dT primed cDNA library ("LIB111")

mRNA was isolated from human breast carcinoma tissue using reagents and protocols from Invitrogen, San Diego, CA (Fast Track 2). This RNA was used to generate an oligo dT primed cDNA library ("LIB111") in the vector pRK5D using reagents and protocols from Life Technologies, Gaithersburg, MD (Super Script Plasmid System). In this procedure, the double stranded cDNA was sized to greater than 1000 bp and the Sall/Notl linkered cDNA was cloned into Xhol/Notl cleaved vector. pRK5D is a cloning vector that has an sp6 transcription initiation site followed by an Sfil restriction enzyme site preceding the Xhol/Notl cDNA cloning sites.

2. Preparation of random primed cDNA library ("LIB118")

A secondary cDNA library was generated in order to preferentially represent the 5' ends of the primary cDNA clones. Sp6 RNA was generated from the primary library (LIB111, described above), and this RNA was used to generate a random primed cDNA library ("LIB118") in the vector pSST-AMY.0 using reagents and protocols from Life Technologies (Super Script Plasmid System, referenced above). In this procedure the double stranded cDNA was sized to 500-1000 bp, linkered with blunt to NotI adaptors, cleaved with SfiI, and cloned into SfiI/NotI cleaved vector. pSST-AMY.0 is a cloning vector that has a yeast alcohol dehydrogenase promoter preceding the cDNA cloning sites and the mouse amylase sequence (the mature sequence without the secretion signal) followed by the yeast alcohol dehydrogenase terminator, after the cloning sites. Thus, cDNAs cloned into this vector that are fused in frame with

amylase sequence will lead to the secretion of amylase from appropriately transfected yeast colonies.

3. Transformation and Detection

5

10

DEED WELLS 20

25

30

35

DNA from LIB118 was chilled on ice to which was added electrocompetent DH10B bacteria (Life Technologies, 20 ml). The bacteria vector mixture was then electroporated as recommended by the manufacturer. Subsequently, SCC media (Life Technologies, 1 ml) was added and the mixture was incubated at 37°C for 30 minutes. The transformants were then plated onto 20 standard 150 mm LB plates containing ampicillin and incubated for 16 hours (37°C). Positive colonies were scraped off the plates and the DNA was isolated from the bacterial pellet using standard protocols, e.g. CsCl-gradient. The purified DNA was then carried on to the yeast protocols below.

The yeast methods employed in the present invention were divided into three categories: (1) Transformation of yeast with the plasmid/cDNA combined vector; (2) Detection and isolation of yeast clones secreting amylase; and (3) PCR amplification of the insert directly from the yeast colony and purification of the DNA for sequencing and further analysis.

While any yeast strain containing a stable mutant ura3 is useable with the present invention, the preferable yeast strain used with the practice of the invention was HD56-5A (ATCC-90785). This strain had the following genotype: MAT alpha, ura3-52, leu2-3, leu2-112, his3-11, his3-15, MAL+, SUC+, GAL+.

Transformation was performed based on the protocol outlined by Gietz et al., Nucl. Acid. Res., 20:1425 (1992). With this procedure, we obtained transformation efficiencies of approximately 1 x 10^5 transformants per microgram of DNA. Transformed cells were then inoculated from agar into YEPD complex media broth (100 ml) and grown overnight at 30°C. The YEPD broth was prepared as described in Kaiser et al., Methods in Yeast Genetics, Cold Spring Harbor Press, Cold Spring Harbor, N.Y, USA, p. 207 (1994). The overnight culture was then diluted to about 2 x 10^6 cells/ml (approx. $OD_{600}=0.1$) into fresh YEPD broth (500 ml) and

35

5

10

regrown to 1 x 10^7 cells/ml (approx. $OD_{600}=0.4-0.5$). This usually took about 3 hours to complete.

The cells were then harvested and prepared for transformation by transfer into GS3 rotor bottles in a Sorval GS3 rotor at 5,000 rpm for 5 minutes, the supernatant discarded, and then resuspended into sterile water, and centrifuged again in 50 ml falcon tubes at 3,500 rpm in a Beckman GS-6KR centrifuge. The supernatant was discarded and the cells were subsequently washed with LiAc/TE (10 ml, 10 mM Tris-HCl, 1 mM EDTA pH 7.5, 100 mM $\rm Li_2OOCCH_3$), and resuspended into LiAc/TE (2.5 ml).

Transformation took place by mixing the prepared cells (100 $\mu l)$ with freshly denatured single stranded salmon testes DNA (Lofstrand Labs, Gaithersburg, MD, USA) and transforming DNA (1 μg , vol. < 10 $\mu l)$ in microfuge tubes. The mixture was mixed briefly by vortexing, then 40% PEG/TE (600 μl , 40% polyethylene glycol-4000, 10 mM Tris-HCl, 1 mM EDTA, 100 mM Li_2OOCCH_3, pH 7.5) was added. This mixture was gently mixed and incubated at 30°C while agitating for 30 minutes. The cells were then heat shocked at 42°C for 15 minutes, and the reaction vessel centrifuged in a microfuge at 12,000 rpm for 5-10 seconds, decanted and resuspended into TE (500 μl , 10 mM Tris-HCl, 1 mM EDTA pH 7.5) followed by recentrifugation. The cells were then diluted into TE (1 ml) and aliquots (200 μl) were spread onto the selective media previously prepared in 150 mm growth plates (VWR).

Alternatively, instead of multiple small reactions, the transformation was performed using a single, large scale reaction, wherein reagent amounts were scaled up accordingly.

The selective media used was a synthetic complete dextrose agar lacking uracil (SCD-Ura) prepared as described in Kaiser et al., Methods in Yeast Genetics, Cold Spring Harbor Press, Cold Spring Harbor, N.Y., USA, p. 208-210 (1994). Transformants were grown at 30°C for 2-3 days.

The detection of colonies secreting amylase was performed by including red starch in the selective growth media. Starch was coupled to the red dye (Reactive Red-120, Sigma) as per the

10

procedure described by Biely et al., <u>Anal. Biochem.</u>, <u>172</u>:176-179 (1988). The coupled starch was incorporated into the SCD-Ura agar plates at a final concentration of 0.15% (w/v), and was buffered with potassium phosphate to a pH of 7.0 (50-100 mM final concentration).

The positive colonies were picked and streaked across fresh selective media (onto 150 mm plates) in order to obtain well isolated and identifiable single colonies. This step also ensured maintenance of the plasmid amongst the transformants. Well isolated single colonies positive for amylase secretion were detected by direct incorporation of red starch into buffered SCD-Ura agar. Positive colonies were determined by their ability to break down starch resulting in a clear halo around the positive colony visualized directly.

4. Isolation of DNA by PCR Amplification

When a positive colony was isolated, a portion of it was picked by a toothpick and diluted into sterile water (30 μ l) in a 96 well plate. At this time, the positive colonies were either frozen and stored for subsequent analysis or immediately amplified. An aliquot of cells (5 μ l) was used as a template for the PCR reaction in a 25 μ l volume containing: 0.5 μ l Klentaq (Clontech, Palo Alto, CA); 4.0 μ l 10 mM dNTP's (Perkin Elmer-Cetus); 2.5 μ l Kentaq buffer (Clontech); 0.25 μ l forward oligo 1; 0.25 μ l reverse oligo 2; 12.5 μ l distilled water. The sequence of the forward oligonucleotide 1 was:

TGTAAAACGACGGCCAGTTAAATAGACCTGCAATTATTAATCT

[SEQ ID NO:5]

The sequence of reverse oligonucleotide 2 was:

CAGGAAACAGCTATGACC<u>ACCTGCACACCTGCAAATCCATT</u>

[SEQ ID NO:6]

PCR was then performed as follows:

a. Denature

b. 3 cycles of Denature
Anneal

92°C,30 seconds 59°C,30 seconds

92°C,5 minutes

-62-

35

30

			Extend	72°C,60	seconas
5	c.	3 cycles o	of Denature Anneal Extend	57°C,30	seconds seconds
	d.	25 cycles	of Denature Anneal Extend	55°C,30	seconds seconds
10	e.		Hold	4°C	

The underlined regions of the oligonucleotides annealed to the ADH promoter region and the amylase region, respectively, and amplified a 307 bp region from vector pSST-AMY.0 when no insert was present. Typically, the first 18 nucleotides of the 5' end of these oligonucleotides contained annealing sites for the sequencing primers. Thus, the total product of the PCR reaction from an empty vector was 343 bp. However, signal sequence-fused cDNA resulted in considerably longer nucleotide sequences.

15

30

Following the PCR, an aliquot of the reaction (5 μ l) was examined by agarose gel electrophoresis in a 1% agarose using a Tris-Borate-EDTA (TBE) buffering system as described by Sambrook et al., <u>supra</u>. Clones resulting in a single strong PCR product larger than 400 bp were further analyzed by DNA sequencing after purification with a 96 Qiaquick PCR clean-up column (Qiagen Inc., Chatsworth, CA).

5. <u>Identification of Full-length Clone</u>

A cDNA sequence ("DNA21705") isolated in the above screen was found to have certain amino acid sequence similarity or homology with human TNFR1:

TNFR1 81 CRECESG-SFTASENHLRHCLSCSKCRKEMG

* * * .* . * . * . * . * . * .

DNA21705 164 CNPCTEGVDYTNASNNEPSCFPCTVCKSD--

QVEISSCTVDRDTVCGCRK (SEQ ID NO:7)

* ****. ***** *...
QKHKSSCTMTRDTVCQCKE (SEQ ID NO:8)

5

10

15

20

25

30

35

Based on the similarity, probes were generated from the sequence of DNA21705 and used to screen a human fetal lung library ("LIB25") prepared as described in paragraph 1 above. The cloning vector was pRK5B (pRK5B is a precursor of pRK5D that does not contain the SfiI site), and the cDNA size cut was less than 2800 bp. A full length clone was identified (DNA33085) (pRK5-hApo-2DcR) (also referred to as Apo2-DcR deposited as ATCC 209087, as indicated below) that single open reading frame with an translational initiation site at nucleotide positions 193-195 [Kozak et al., supra] and ending at the stop codon found at nucleotide positions 970-972 (Fig. 1A; SEQ ID NO:2). The predicted polypeptide precursor is 259 amino acids long and has a calculated Sequence analysis molecular weight of approximately 27.4 kDa. indicated an N-terminal signal peptide, two cysteine-rich domains, a sequence that contains four nearly identical 15 amino acid tandem repeats, and a hydrophobic C-terminal region. (Figures 2 and 3). The hydrophobic sequence at the C-terminus is preceded by a pair of small amino acids (Ala223 and Ala224); this structure and the absence of an apparent cytoplasmic domain suggests that Apo-2DcR may be a glycosylphosphatydilinositol (GPI) anchored protein [see, Moran, J. Biol. Chem., 266:1250-1257 (1991)]. Apo-2DcR contains five potential N-linked glycosylation sites. (Fig. 2)

TNF receptor family proteins are typically characterized by the presence of multiple (usually four) cysteine-rich domains in their extracellular regions -- each cysteine-rich domain being approximately 45 amino acids long and containing approximately 6, regularly spaced, cysteine residues. Based on the crystal structure of the type 1 TNF receptor, the cysteines in each domain typically form three disulfide bonds in which usually cysteines 1

10

15

and 2, 3 and 5, and 4 and 6 are paired together. Like DR4 and Apo-2 (described further below), Apo-2DcR contains two extracellular cysteine-rich pseudorepeats (Fig. 2), whereas other identified mammalian TNFR family members contain three or more such domains [Smith et al., Cell, 76:959 (1994)].

Based on an alignment analysis of the full-length sequence shown in Figure 1A (SEQ ID NO:1), Apo-2DcR shows more sequence identity to DR4 (60%) and Apo-2 (50%) than to other apoptosis-linked receptors, such as Apo-3, TNFR1, or Fas/Apo-1.

In Fig. 1B, Applicants have shown that the apparent translational initiation site may alternatively be assigned at nucleotide positions 93-95 (identified in Fig. 1B as amino acid residue -40; SEQ ID NO:4). The Apo-2DcR shown in Fig. 1B includes amino acid residues -40 to 259.

EXAMPLE 2

Binding of Apo-2DcR to Apo-2L and Effect of PI-PLC on Apo-2DcR Activity

To test whether Apo-2DcR binds to Apo-2L, and to assess whether Apo-2DcR is GPI-linked, binding of radioiodinated Apo-2L to Apo-2DcR-transfected 293 cells was analyzed. The effect of pretreatment of the cells with phosphatidylinositol-specific phospholipase C (PI-PLC) on the binding was also analyzed.

Human 293 cells (ATCC CRL 1573) were plated in 100mm plates (1 x 10 6 cells/plate) and transfected with 20 μ g/plate pRK5 or pRK5 encoding the full-length Apo-2DcR (described in Example 1, ATCC deposit 209087) using calcium phosphate precipitation. After 24 hours, the cells were harvested in PBS/10 mM EDTA, washed in phosphate buffered saline (PBS), resuspended in 2 ml PBS per original plate and divided into two 1 ml aliquots per transfection. PI-PLC [Treanor et al., Nature, 382:80-83 (1996)] (1 μ g/ml) was added to one of the two aliquots derived from each transfection, and the cells were incubated 1 hour at 37 $^\circ$ C. The cells were washed and respuspended in 1 ml PBS containing 1% BSA (Sigma), and 0.04 ml aliquots were placed into tubes in triplicate. To these

35

30

35

5

10

tubes was added approximately 20,000cpm $^{125}\text{I-Apo-2L}$ (Apo-2L is described in Pitti et al., <u>supra</u>, and was radioiodinated by conventional lactoperoxidase methodology) in 0.005ml, along with 0.005 ml PBS, or 0.005 μ l unlabeled Apo-2L in PBS (final concentration 0.5 μ g/ml) for determination of nonspecific binding. After a 1 hour incubation at room temperature, the cells were washed in ice cold PBS, pelleted, and counted for radioactivity.

Transfection by Apo-2DcR led to a marked increase in the amount of specific Apo-2L binding, indicating that Apo-2DcR binds Apo-2L (Fig. 4). Treatment with PI-PLC caused a marked reduction in Apo-2L binding, indicating that Apo-2DcR is a GPI-anchored receptor (Fig. 4).

EXAMPLE 3

Inhibition of Apo-2L Function by Full-length Apo-2DcR

The absence of a cytoplasmic region in Apo-2DcR suggested that this receptor is involved in modulation, rather than in transduction of Apo-2L signaling. Thus, the effect of Apo-2DcR transfection on cellular responsiveness to Apo-2L was examined.

Human 293 cells, which express both DR4 and Apo-2 mRNA (data not shown), were plated in 100mm plates (1 x 10^6 cells/plate) and transfected with 3 μg per plate pRK encoding green fluorescent protein (GFP; purchased from Clontech) together with 20 $\mu g/p$ late pRK5 or pRK5-hApo-2DcR (see Example 2) using calcium phosphate precipitation. After 18 hours, the cells were treated with PBS or with Apo-2L (Pitti et al., supra, 0.5 $\mu g/m$ l) and examined over 6 hours under a fluorescence microscope equipped with Hoffman optics (which enables clear viewing of non-fixed cells on plastic). GFP-positive cells were identified by green fluorescence and scored for apoptosis by morphologic criteria such as membrane blebbing and cytoplasmic condensation.

Transfection by Apo-2DcR markedly reduced responsiveness to Apo-2L as measured by apoptosis induction (Fig. 5).

In a similar experiment, the 293 cells were transfected by pRK5 or pRK5-hApo-2DcR (20 $\mu g/plate$) and analyzed 18 hours later

for activation of NF- κ B by Apo-2L (0.5 μ g/ml), as in Example 10 below. The results showed that Apo-2DcR inhibits Apo-2L function as measured by apoptosis induction as well as by NF- κ B activation (Fig. 6).

5

10

EXAMPLE 4

Northern Blot Analysis

Expression of Apo-2DcR mRNA in human tissues was examined by Northern blot analysis. Human RNA blots were hybridized to a 1.2 kilobase ³²P-labelled DNA probe based on the full length Apo-2DcR cDNA; the probe was generated by digesting the pRK5-Apo-2DcR plasmid with EcoRI and purifying the Apo-2DcR cDNA insert. Human fetal RNA blot MTN (Clontech) and human adult RNA blot MTN-II (Clontech) were incubated with the DNA probes. Blots were incubated with the probes in hybridization buffer (5X SSPE; 2X Denhardt's solution; 100 mg/mL denatured sheared salmon sperm DNA; 50% formamide; 2% SDS) for 60 hours at 42°C. The blots were washed several times in 2X SSC; 0.05% SDS for 1 hour at room temperature, followed by a 30 minute wash in 0.1X SSC; 0.1% SDS at 50°C. The blots were developed after overnight exposure by phosphorimager analysis (Fuji).

As shown in Fig. 7, several Apo-2DcR mRNA transcripts were detected. Relatively high expression was seen in adult peripheral blood leukocytes (PBL), spleen, lung, liver and placenta. Some adult tissues that express Apo-2DcR, e.g., PBL and spleen, have been shown to express Apo-2 (Example 11 below) and DR4 [Pan et al., supra].

EXAMPLE 5

30 <u>Isolation of cDNA clones Encoding Human Apo-2</u>

An expressed sequence tag (EST) DNA database (LIFESEQTM, Incyte Pharmaceuticals, Palo Alto, CA) was searched and an EST was identified which showed homology to the death domain of the Apo-3 receptor [Marsters et al., <u>Curr. Biol.</u>, <u>6</u>:750 (1996)]. Human pancreas ("LIB55") and human kidney ("LIB28") cDNA libraries

35

5

10

(prepared as described in Example 1 above in pRK5 vectors), were screened by hybridization with a synthetic oligonucleotide probe: GGGAGCCGCTCATGAGGAAGTTGGGCCTCATGGACAATGAGATAAAGGTGGCTAAAGCTGAGGCAGCGG (SEQ ID NO:9) based on the EST.

Three cDNA clones were sequenced in entirety. The overlapping coding regions of the cDNAs were identical except for codon 410 (using the numbering system for Fig. 8); this position encoded a leucine residue (TTG) in both pancreatic cDNAs, and a methionine residue (ATG) in the kidney cDNA, possibly due to polymorphism.

The entire nucleotide sequence of Apo-2 is shown in Figure 8 (SEQ ID NO:10). Clone 27868 (also referred to as pRK5-Apo-2 deposited as ATCC 209021, as indicated below) contains a single open reading frame with an apparent translational initiation site at nucleotide positions 140-142 [Kozak et al., supra] and ending at the stop codon found at nucleotide positions 1373-1375 (Fig. 8; SEQ ID NO:10). The predicted polypeptide precursor is 411 amino acids long, a type I transmembrane protein, and has a calculated molecular weight of approximately 45 kDa. Hydropathy analysis (not shown) suggested the presence of a signal sequence (residues 1-53), followed by an extracellular domain (residues 54-183-208), and a transmembrane domain (residues intracellular domain (residues 209-411) (Fig. 9; SEQ ID NO:11). Nterminal amino acid sequence analysis of Apo-2-IgG expressed in 293 cells showed that the mature polypeptide starts at amino acid residue 54, indicating that the actual signal sequence comprises residues 1-53.

Like DR4 and Apo-2DcR, Apo-2 contains two extracellular cysteine-rich pseudorepeats (Fig. 9), whereas other identified mammalian TNFR family members contain three or more such domains [Smith et al., Cell, 76:959 (1994)].

The cytoplasmic region of Apo-2 contains a death domain (amino acid residues 324-391 shown in Fig. 8; see also Fig. 2) which shows significantly more amino acid sequence identity to the death domain of DR4 (64%) than to the death domain of TNFR1 (30%);

35

CD95 (19%); or Apo-3/DR3 (29%) (Fig. 2). Four out of six death domain amino acids that are required for signaling by TNFR1 [Tartaglia et al., <u>supra</u>] are conserved in Apo-2 while the other two residues are semi-conserved (see Fig. 2).

Based on an alignment analysis (using the ALIGN computer program) of the full-length sequence, Apo-2 shows more sequence identity to DR4 (55%) than to other apoptosis-linked receptors, such as TNFR1 (19%); CD95 (17%); or Apo-3 (also referred to as DR3, WSL-1 or TRAMP) (29%).

10

5

EXAMPLE 6

A. Expression of Apo-2 ECD

A soluble extracellular domain (ECD) fusion construct was prepared. An Apo-2 ECD (amino acid residues 1-184 shown in Figure 8) was obtained by PCR and fused to a C-terminal Flag epitope tag (Sigma). (The Apo-2 ECD construct included residues 183 and 184 shown in Figure 8 to provide flexibility at the junction, even though residues 183 and 184 are predicted to be in the transmembrane region). The Flag epitope-tagged molecule was then inserted into pRK5, and expressed by transient transfection into human 293 cells (ATCC CRL 1573).

After a 48 hour incubation, the cell supernatants were collected and either used directly for co-precipitation studies (see Example 7) or subjected to purification of the Apo-2 ECD-Flag by affinity chromatography on anti-Flag agarose beads, according to manufacturer's instructions (Sigma).

B. Expression of Apo-2 ECD as an Immunoadhesin

A soluble Apo-2 ECD immunoadhesin construct was prepared. The Apo-2 ECD (amino acids 1-184 shown in Fig. 8) was fused to the hinge and Fc region of human immunoglobulin G_1 heavy chain in pRK5 as described previously [Ashkenazi et al., <u>Proc. Natl. Acad. Sci.</u>, <u>88</u>:10535-10539 (1991)]. The immunoadhesin was expressed by transient transfection into human 293 cells and purified from cell supernatants by protein A affinity chromatography, as described by

35

5

10

EXAMPLE 7

Immunoprecipitation Assay Showing Binding Interaction Between Apo-2 and Apo-2 Ligand

To determine whether Apo-2 and Apo-2L interact or associate with each other, supernatants from mock-transfected 293 cells or from 293 cells transfected with Apo-2 ECD-Flag (described in Example 6 above) (5 ml) were incubated with 5 μ g poly-histidinetagged soluble Apo-2L [Pitti et al., <u>supra</u>] for 30 minutes at room temperature and then analyzed for complex formation by a coprecipitation assay.

The samples were subjected to immunoprecipitation using 25 μ l anti-Flag conjugated agarose beads (Sigma) or Nickel-conjugated agarose beads (Qiagen). After a 1.5 hour incubation at 4°C, the beads were spun down and washed four times in phosphate buffered saline (PBS). By using anti-Flag agarose, the Apo-2L was precipitated through the Flag-tagged Apo-2 ECD; by using Nickel-agarose, the Apo-2 ECD was precipitated through the His-tagged Apo-2L. The precipitated proteins were released by boiling the beads for 5 minutes in SDS-PAGE buffer, resolved by electrophoresis on 12% polyacrylamide gels, and then detected by immunoblot with anti-Apo-2L or anti-Flag antibody (2 μ g/ml) as described in Marsters et al., J. Biol. Chem., (1997).

The results, shown in Figure 10, indicate that the Apo-2 ECD and Apo-2L can associate with each other.

The binding interaction was further analyzed by purifying Apo-2 ECD from the transfected 293 cell supernatants with anti-Flag beads (see Example 6) and then analyzing the samples on a BIACORETM instrument. The BIACORETM analysis indicated a dissociation constant (K_d) of about 1 nM. BIACORETM analysis also showed that the Apo-2 ECD is not capable of binding other apoptosis-inducing TNF family members, namely, TNF-alpha (Genentech, Inc., Pennica et al., Nature, 312:712 (1984), lymphotoxin-alpha (Genentech, Inc.), or Fas/Apo-1 ligand (Alexis Biochemicals). The data thus shows

10

15

25

30

35

EXAMPLE 8

Induction of Apoptosis by Apo-2

Because death domains can function as oligomerization interfaces, over-expression of receptors that contain death domains may lead to activation of signaling in the absence of ligand [Frazer et al., supra, Nagata et al., supra]. To determine whether Apo-2 was capable of inducing cell death, human 293 cells or HeLa cells (ATCC CCL 2.2) were transiently transfected by calcium phosphate precipitation (293 cells) or electroporation (HeLa cells) with a pRK5 vector or pRK5-based plasmids encoding Apo-2 and/or When applicable, the total amount of plasmid DNA was adjusted by adding vector DNA. Apoptosis was assessed 24 hours after transfection by morphology (Fig. 11A); DNA fragmentation (Fig. 11B); or by FACS analysis of phosphatydilserine exposure (Fig. 11C) as described in Marsters et al., <u>Curr. Biol.</u>, <u>6</u>:1669 (1996). As shown in Figs. 11A and 11B, the Apo-2 transfected 293 cells underwent marked apoptosis.

For samples assayed by FACS, the HeLa cells were cotransfected with pRK5-CD4 as a marker for transfection and apoptosis was determined in CD4-expressing cells; FADD was cotransfected with the Apo-2 plasmid; the data are means \pm SEM of at least three experiments, as described in Marsters et al., Curr. Biol., 6:1669 (1996). The caspase inhibitors, DEVD-fmk (Enzyme Systems) or z-VAD-fmk (Research Biochemicals Intl.) were added at 200 μ M at the time of transfection. As shown in Fig. 11C, the caspase inhibitors CrmA, DEVD-fmk, and z-VAD-fmk blocked apoptosis induction by Apo-2, indicating the involvement of Ced-3-like proteases in this response.

FADD is an adaptor protein that mediates apoptosis activation by CD95, TNFR1, and Apo-3/DR3 [Nagata et al., <u>supra</u>], but does not appear necessary for apoptosis induction by Apo-2L [Marsters et al., <u>supra</u>] or by DR4 [Pan et al., <u>supra</u>]. A dominant-negative mutant form of FADD, which blocks apoptosis

35

induction by CD95, TNFR1, or Apo-3/DR3 [Frazer et al., supra; Nagata et al., supra; Chinnayian et al., supra] did not inhibit apoptosis induction by Apo-2 when co-transfected into HeLa cells with Apo-2 (Fig. 11C). These results suggest that Apo-2 signals apoptosis independently of FADD. Consistent with this conclusion, a glutathione-S-transferase fusion protein containing the Apo-2 cytoplasmic region did not bind to in vitro transcribed and translated FADD (data not shown).

10

5

EXAMPLE 9

Inhibition of Apo-2L Activity by Soluble Apo-2 ECD

Soluble Apo-2L (0.5 μ g/ml, prepared as described in Pitti et al., <u>supra</u>) was pre-incubated for 1 hour at room temperature with PBS buffer or affinity-purified Apo-2 ECD (5 μ g/ml) together with anti-Flag antibody (Sigma) (1 μ g/ml) and added to HeLa cells. After a 5 hour incubation, the cells were analyzed for apoptosis by FACS (as above) (Fig. 11D).

Apo-2L induced marked apoptosis in HeLa cells, and the soluble Apo-2 ECD was capable of blocking Apo-2L action (Fig. 11D), confirming a specific interaction between Apo-2L and Apo-2. Similar results were obtained with the Apo-2 ECD immunoadhesin (Fig. 11E). Dose-response analysis showed half-maximal inhibition at approximately 0.3 nM Apo-2 immunoadhesin (Fig. 11E).

EXAMPLE 10

Activation of NF-kB by Apo-2

An assay was conducted to determine whether Apo-2 activates NF- κ B.

HeLa cells were transfected with pRK5 expression plasmids encoding full-length native sequence Apo-2, DR4 or Apo-3 and harvested 24 hours after transfection. Nuclear extracts were prepared and 1 μ g of nuclear protein was reacted with a 32 P-labelled NF- κ B-specific synthetic oligonucleotide probe

ATCAGGGACTTTCCGCTGGGGACTTTCCG (SEQ ID NO:12) [see, also, MacKay et al., <u>J. Immunol.</u>, <u>153</u>:5274-5284 (1994)], alone or together with a

35

5

10

50-fold excess of unlabelled probe, or with an irrelevant ³²P-labelled synthetic oligonucleotide

AGGATGGGAAGTGTGTGATATATCCTTGAT (SEQ ID NO:13). In some samples, antibody to p65/RelA subunits of NF- κ B (1 μ g/ml; Santa Cruz Biotechnology) was added. DNA binding was analyzed by an electrophoretic mobility shift assay as described by Hsu et al., supra; Marsters et al., supra, and MacKay et al., supra.

The results are shown in Fig. 12. As shown in Fig. 12A, upon transfection into HeLa cells, both Apo-2 and DR4 induced significant NF- κ B activation as measured by the electrophoretic mobility shift assay; the level of activation was comparable to activation observed for Apo-3/DR3. Antibody to the p65/RelA subunit of NF- κ B inhibited the mobility of the NF- κ B probe, implicating p65 in the response to all 3 receptors.

An assay was also conducted to determine if Apo-2L itself can regulate NF- κ B activity. HeLa cells or MCF7 cells (human breast adenocarcinoma cell line, ATCC HTB 22) were treated with PBS buffer, soluble Apo-2L (Pitti et al., supra) or TNF-alpha (Genentech, Inc., see Pennica et al., Nature, 312:721 (1984)) (1 μ g/ml) and assayed for NF- κ B activity as above. The results are shown in Fig. 12B. The Apo-2L induced a significant NF- κ B activation in the treated HeLa cells but not in the treated MCF7 cells; the TNF-alpha induced a more pronounced activation in both cell lines. Several studies have disclosed that NF- κ B activation by TNF can protect cells against TNF-induced apoptosis [Nagata, supra].

The effects of a NF- κ B inhibitor, ALLN (N-acetyl-Leu-Leu-norleucinal) and a transcription inhibitor, cyclohexamide, were also tested. The HeLa cells (plated in 6-well dishes) were preincubated with PBS buffer, ALLN (Calbiochem) (40 μ g/ml) or cyclohexamide (Sigma) (50 μ g/ml) for 1 hour before addition of Apo-2L (1 μ g/ml). After a 5 hour incubation, apoptosis was analyzed by FACS (see Fig. 12C).

The results are shown in Fig. 12C. Both ALLN and cyclohexamide increased the level of Apo-2L-induced apoptosis in

35

the HeLa cells. The data indicates that Apo-2L can induce protective NF- κ B-dependent genes. The data also indicates that Apo-2L is capable of activating NF- κ B in certain cell lines and that both Apo-2 and DR4 may mediate that function.

5

10

EXAMPLE 11

Northern Blot Analysis

Expression of Apo-2 mRNA in human tissues was examined by Northern blot analysis. Human RNA blots were hybridized to a 4.6 kilobase ³²P-labelled DNA probe based on the full length Apo-2 cDNA; the probe was generated by digesting the pRK5-Apo-2 plasmid with EcoRI. Human fetal RNA blot MTN (Clontech) and human adult RNA blot MTN-II (Clontech) were incubated with the DNA probes. Blots were incubated with the probes in hybridization buffer (5X SSPE; 2X Denhardt's solution; 100 mg/mL denatured sheared salmon sperm DNA; 50% formamide; 2% SDS) for 60 hours at 42°C. The blots were washed several times in 2X SSC; 0.05% SDS for 1 hour at room temperature, followed by a 30 minute wash in 0.1X SSC; 0.1% SDS at 50°C. The blots were developed after overnight exposure.

As shown in Fig. 13, a predominant mRNA transcript of approximately 4.6kb was detected in multiple tissues. Expression was relatively high in fetal and adult liver and lung, and in adult ovary and peripheral blood leukocytes (PBL), while no mRNA expression was detected in fetal and adult brain. Intermediate levels of expression were seen in adult colon, small intestine, testis, prostate, thymus, pancreas, kidney, skeletal muscle, placenta, and heart. Several adult tissues that express Apo-2, e.g., PBL, ovary, and spleen, have been shown previously to express DR4 [Pan et al., supra], however, the relative levels of expression of each receptor mRNA appear to be different.

EXAMPLE 12

Chromosomal Localization of the Apo-2, DR4 and Apo-2DcR genes

Chromosomal localization of the human Apo-2 gene was examined by radiation hybrid (RH) panel analysis. RH mapping was

10

performed by PCR using a human-mouse cell radiation hybrid panel (Research Genetics) and primers based on the coding region of the Apo-2 cDNA [Gelb et al., Hum. Genet., 98:141 (1996)]. Analysis of the PCR data using the Stanford Human Genome Center Database indicates that Apo-2 is linked to the marker D8S481, with an LOD of 11.05; D8S481 is linked in turn to D8S2055, which maps to human chromosome 8p21. A similar analysis of DR4 showed that DR4 is linked to the marker D8S2127 (with an LOD of 13.00), which maps Analysis of Apo-2DcR using also to human chromosome 8p21. radiation hybrid panel examination showed that the Apo-2DcR gene is linked to the marker WI-6536, which in turn is linked to D8S298, which maps also to human chromosome 8p21 and is nested between Thus, the human genes for three Apo-2L D8S2005 and D8S2127. receptors, Apo-2, Apo-2DcR and DR4, all map to chromosome 8p21.

To Applicants' present knowledge, to date, no other member of the TNFR gene family has been located to chromosome 8p.

35

5

10

15

Deposit of Material

The following materials have been deposited with the American Type Culture Collection, 12301 Parklawn Drive, Rockville, MD, USA (ATCC):

<u>Material</u>	ATCC Dep. No.	<u>Deposit Date</u>
pRK5-Apo-2	209021	May 8, 1997
Apo2-DcR	209087	May 30, 1997

This deposit was made under the provisions of the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purpose of Patent Procedure and the Regulations thereunder (Budapest Treaty). This assures maintenance of a viable culture of the deposit for 30 years from the date of The deposit will be made available by ATCC under the terms of the Budapest Treaty, and subject to an agreement between Genentech, Inc. and ATCC, which assures permanent and unrestricted availability of the progeny of the culture of the deposit to the public upon issuance of the pertinent U.S. patent or upon laying open to the public of any U.S. or foreign patent application, whichever comes first, and assures availability of the progeny to one determined by the U.S. Commissioner of Patents and Trademarks entitled thereto according to 35 USC §122 and the Commissioner's rules pursuant thereto (including 37 CFR §1.14 with particular reference to 886 OG 638).

The assignee of the present application has agreed that if a culture of the materials on deposit should die or be lost or destroyed when cultivated under suitable conditions, the materials will be promptly replaced on notification with another of the same. Availability of the deposited material is not to be construed as a license to practice the invention in contravention of the rights granted under the authority of any government in accordance with its patent laws.

The foregoing written specification is considered to be sufficient to enable one skilled in the art to practice the

10

invention. The present invention is not to be limited in scope by the construct deposited, since the deposited embodiment is intended as a single illustration of certain aspects of the invention and any constructs that are functionally equivalent are within the scope of this invention. The deposit of material herein does not constitute an admission that the written description herein contained is inadequate to enable the practice of any aspect of the invention, including the best mode thereof, nor is it to be construed as limiting the scope of the claims to the specific illustrations that it represents. Indeed, various modifications of the invention in addition to those shown and described herein will become apparent to those skilled in the art from the foregoing description and fall within the scope of the appended claims.

SEQUENCE LISTING

1 5
1
A.
ingles.
ð
20
F
polity Agent

30

17	١.		T T T T T T T T T T
ιт	. 1	GENERAL	INFORMATION:

5 (i) APPLICANT: Ashkenazi, Avi J.

Baker, Kevin

Gurney, Austin

Wood, William

- 10 (ii) TITLE OF INVENTION: Apo-2DcR
 - (iii) NUMBER OF SEQUENCES: 13
 - (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Genentech, Inc.
 - (B) STREET: 460 Point San Bruno Blvd
 - (C) CITY: South San Francisco
 - (D) STATE: California
 - (E) COUNTRY: USA
 - (F) ZIP: 94080
 - (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: 3.5 inch, 1.44 Mb floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: WinPatin (Genentech)
 - (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER:
 - (B) FILING DATE: 18-Jun-1997
 - (C) CLASSIFICATION:
 - (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Marschang, Diane L.
- 35 (B) REGISTRATION NUMBER: 35,600

	(ix)) TE	ELECC	OMMUN	VICA:	CION	INF	ORMA'I	CION:	:					
		(A	A) TE	ELEPF	ONE :	: 415	5/225	5-541	L6						
5		(E	3) TE	ELEFA	ΔX: 4	115/9	952-9	9881							
		((C) TE	ELEX:	910)/373	L-716	58							
	(2) INFORMATION FOR SEQ ID NO:1:														
10	(i)) SF	OUEN	ICE (THARA	ACTEI	RIST	rcs:							
	(-								is.						
	(A) LENGTH: 259 amino acids (B) TYPE: Amino Acid														
		•		OPOLO											
		(1	, 10	0101		11110	-u1								
T'S	(vi) CE	מידדי א	JCF T)ESCI	2 T DTF 7	r∩n•	SEQ	TD N	J∩ • 1 •					
	(, 51	iQOBI	ven i		\	LOIV.	DHQ	י עד	10.1	•				
	Met A	777	λκα	Tlo	Dro	Larg	Thr	Lou	Luc	Dho	Val	Val	Val	Tle	U a l
		лта	Arg	116	5	шур	TILL	пеа	пуъ	10	var	vai	Vai	116	15
Same and a second	1				5					10					15
€ Sh	7.7 1	7707	T 011	Т ол	Drace	7707	Т ол	77.7~	TT	Com	70 7 0	Πρ.×	Прх	71 7	7\ 20.00
2 -0	Ala '	vaı	цец	ьец		Val	ьеи	Ala	туг		Ата	1111	T 11T	Ата	
and the second					20					25					30
15.00.00.00.00.00.00.00.00.00.00.00.00.00	01 m	~1	Q1	T7-7	Dage	~1 m	al	mb	7707	77.	Dago	<i>α</i> 1, ,	01 ~	01 n	7
	Gln (±LU	GIU	Val		GIII	GIII	IIII	vaı		Pro	GIII	GIII	GIII	
					35					40					45
25		~	-1	_	~7	~ 7	~7	~	_	.	~7	~	'	_	~
	His :	ser	Pne	гуз	_	GIU	GIU	Cys	Pro		GTĀ	ser	HlS	Arg	
					50					55					60
**************************************	_		_	_	_						_	_	_		
	Glu 1	His	Thr	Gly		Cys	Asn	Pro	Cys		Glu	Gly	Val	Asp	_
30					65					70					75
	Thr I	Asn	Ala	Ser	Asn	Asn	Glu	Pro	Ser	Cys	Phe	Pro	Cys	Thr	Val
					80					85					90
35	Cys :	Lys	Ser	Asp	Gln	Lys	His	Lys	Ser	Ser	Cys	Thr	Met	Thr	Arg

-79-

(C) REFERENCE/DOCKET NUMBER: P1110

95	100	105
J J	±00	± 0 0

	Asp	Thr	Val	Cys	Gln 110	Cys	Lys	Glu	Gly	Thr 115	Phe	Arg	Asn	Glu	Asn 120
5	Ser	Pro	Glu	Met	Cys 125	Arg	Lys	Cys	Ser	Arg 130	Cys	Pro	Ser	Gly	Glu 135
10	Val	Gln	Val	Ser	Asn 140	Cys	Thr	Ser	Trp	Asp 145	Asp	Ile	Gln	Cys	Val
	Glu	Glu	Phe	Gly	Ala 155	Asn	Ala	Thr	Val	Glu 160	Thr	Pro	Ala	Ala	Glu 165
T 5	Glu	Thr	Met	Asn	Thr 170	Ser	Pro	Gly	Thr	Pro 175	Ala	Pro	Ala	Ala	Glu 180
	Glu	Thr	Met	Asn	Thr 185	Ser	Pro	Gly	Thr	Pro 190	Ala	Pro	Ala	Ala	Glu 195
(a) Sales (1) (a) (b) (a) (b) (a) (b) (a) (b) (a) (b) (a) (b) (b) (a) (b) (b) (b) (b) (b) (b) (b) (b) (b) (b	Glu	Thr	Met	Thr	Thr 200	Ser	Pro	Gly	Thr	Pro 205	Ala	Pro	Ala	Ala	Glu 210
25	Glu	Thr	Met	Thr	Thr 215	Ser	Pro	Gly	Thr	Pro 220	Ala	Pro	Ala	Ala	Glu 225
	Glu	Thr	Met	Thr	Thr 230	Ser	Pro	Gly	Thr	Pro 235	Ala	Ser	Ser	His	Туг 240
30	Leu	Ser	Cys	Thr	Ile 245	Val	Gly	Ile	Ile	Val 250	Leu	Ile	Val	Leu	Leu 255
	Ile	Val	Phe	Val 259											

15
20
4, 4
¥.
Ţ,
25

(2) INFORMATION	FOR	SEQ	ID	NO:2:
-----------------	-----	-----	----	-------

1	' -:	١	CECTEMOR	CITADA CIDEDA CITA CO	
1	1.	.)	SECUENCE	CHARACTERISTICS	1

- (A) LENGTH: 1180 base pairs
- (B) TYPE: Nucleic Acid
- (C) STRANDEDNESS: Single
- (D) TOPOLOGY: Linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

10

5

GCTGTGGGAA CCTCTCCACG CGCACGAACT CAGCCAACGA TTTCTGATAG 50

ATTTTTGGGA GTTTGACCAG AGATGCAAGG GGTGAAGGAG CGCTTCCTAC 100

CGTTAGGGAA CTCTGGGGAC AGAGCGCCCC GGCCGCCTGA TGGCCGAGGC 150

AGGGTGCGAC CCAGGACCCA GGACGGCGTC GGGAACCATA CC ATG 195

Met

1

GCC CGG ATC CCC AAG ACC CTA AAG TTC GTC GTC GTC ATC 234 Ala Arg Ile Pro Lys Thr Leu Lys Phe Val Val Val Ile

10

GTC GCG GTC CTG CCA GTC CTA GCT TAC TCT GCC ACC 273

Val Ala Val Leu Leu Pro Val Leu Ala Tyr Ser Ala Thr

15 20 25

5

ACT GCC CGG CAG GAG GAA GTT CCC CAG CAG ACA GTG GCC 312 30

Thr Ala Arg Gln Glu Glu Val Pro Gln Gln Thr Val Ala

30 35 40

CCA CAG CAA CAG AGG CAC AGC TTC AAG GGG GAG GAG TGT 351

Pro Gln Gln Arg His Ser Phe Lys Gly Glu Glu Cys

	CCA	GCA	GGA	TCT	CAT	AGA	TCA	GAA	CAT	ACT	GGA	GCC	TGT	390
	Pro	Ala	Gly	Ser	His	Arg	Ser	Glu	His	Thr	Gly	Ala	Cys	
5		55					60					65		
	AAC	CCG	TGC	ACA	GAG	GGT	GTG	GAT	TAC	ACC	AAC	GCT	TCC	429
	Asn	Pro	Cys	Thr	Glu	Gly	Val	Asp	Tyr	Thr	Asn	Ala	Ser	
				70					75					
10														
	AAC	AAT	GAA	CCT	TCT	TGC	TTC	CCA	TGT	ACA	GTT	TGT	AAA	468
	Asn	Asn	Glu	Pro	Ser	Cys	Phe	Pro	Cys	Thr	Val	Cys	Lys	
	80					85					90			
15	TCA	GAT	CAA	AAA	CAT	AAA	AGT	TCC	TGC	ACC	ATG	ACC	AGA	507
15	Ser	Asp	Gln	Lys	His	Lys	Ser	Ser	Cys	Thr	Met	Thr	Arg	
			95					100					105	
	GAC	ACA	GTG	TGT	CAG	TGT	AAA	GAA	GGC	ACC	TTC	CGG	AAT	546
20	Asp	Thr	Val	Cys	Gln	Cys	Lys	Glu	Gly	Thr	Phe	Arg	Asn	
e Lil					110					115				
	GAA	AAC	TCC	CCA	GAG	ATG	TGC	CGG	AAG	TGT	AGC	AGG	TGC	585
	Glu	Asn	Ser	Pro	Glu	Met	Cys	Arg	Lys	Cys	Ser	Arg	Cys	
25		120					125					130		
	CCT	AGT	GGG	GAA	GTC	CAA	GTC	AGT	AAT	TGT	ACG	TCC	TGG	624
	Pro	Ser	Gly	Glu	Val	Gln	Val	Ser	Asn	Cys	Thr	Ser	Trp	
				135					140					
30														
	GAT	GAT	ATC	CAG	TGT	GTT	GAA	GAA	TTT	GGT	GCC	AAT	GCC	663
	Asp	Asp	Ile	Gln	Cys	Val	Glu	Glu	Phe	Gly	Ala	Asn	Ala	
	145					150					155			
						•								
35	ACT	GTG	GAA	ACC	CCA	GCT	GCT	GAA	GAG	ACA	ATG	AAC	ACC	702

15
ļ.
Ħ
Ü
Ø.
20
1
700 P
M
6
T.
T.

	Thr	Val	Glu 160	Thr	Pro	Ala	Ala	Glu 165	Glu	Thr	Met	Asn	Thr 170	
			0 0					100					170	
	AGC	CCG	GGG	ACT	CCT	GCC	CCA	GCT	GCT	GAA	GAG	ACA	ATG	741
5	Ser	Pro	Gly	Thr	Pro	Ala	Pro	Ala	Ala	Glu	Glu	Thr	Met	
					175					180				
	~		- ~ ~	~~-	~~~	_ ~_								
													GAG	780
. .	Asn		Ser	Pro	GIY	Thr		Ala	Pro	Ala	Ala		GIu	
10		185					190					195		
	ACA	ATG	ACC	ACC	AGC	CCG	GGG	ACT	CCT	GCC	CCA	GCT	GCT	819
	Thr	Met	Thr	Thr	Ser	Pro	Gly	Thr	Pro	Ala	Pro	Ala	Ala	
				200					205					
15														
	GAA	GAG	ACA	ATG	ACC	ACC	AGC	CCG	GGG	ACT	CCT	GCC	CCA	858
	Glu	Glu	Thr	Met	Thr	Thr	Ser	Pro	Gly	Thr	Pro	Ala	Pro	
	210					215					220			
20	GCT	GCT	GAA	GAG	ACA	ATG	ACC	ACC	AGC	CCG	GGG	ACT	CCT	897
	Ala	Ala	Glu	Glu	Thr	Met	Thr	Thr	Ser	Pro	Gly	Thr	Pro	
			225					230					235	
	GCC	TCT	TCT	CAT	TAC	CTC	TCA	TGC	ACC	ATC	GTA	GGG	ATC	936
25	Ala	Ser	Ser	His	Tyr	Leu	Ser	Cys	Thr	Ile	Val	Gly	Ile	
e j					240					245				
	АТА	GTT	СТА	ΑΤΤ	GTG	CTT	СТС	ΑͲͲ	GTG	ተተተ	GTT	т 9	70	
						Leu							,	
30		250					255				259			
	GAAA	AGACT	TTC A	ACTGT	rggaz	AG AZ	ATTC	CCTTC	C CTT	[ACC]	[GAA	AGG:	rtcac	GT 1020
	AGG	CGCT	GC 1	GAGG	GCGC	GG GC	GCGC	CTGGZ	A CAC	CTCTC	CTGC	CCTO	GCCTC	CCC 1070
35														

	(2)	INFO	RMAT	ION 1	FOR S	SEQ I	ID NO	0:3:							
	(:	i) SI	EQUEI	NCE (CHARA	ACTEI	RIST:	ICS:							
_0		(2	A) LI	ENGTI	H: 29	99 ar	nino	acio	ds						
		(1	3) T	YPE:	Amir	no Ao	cid								
		(1) T(OPOLO	OGY:	Line	ear								
- 5	(x:	i) SI	EQUEI	NCE 1	DESCE	RIPT	ION:	SEQ	ID I	NO:3	:				
	Met	Gln	Gly	Val	Lvs	Glu	Arq	Phe	Leu	Pro	Leu	Gly	Asn	Ser	Gly
	-40		1		_1 -	-35	J				-30	- 1			- 1
4 6															
Control of the Contro	Asp	Arq	Ala	Pro	Arq	Pro	Pro	Asp	Gly	Arq	Gly	Arq	Val	Arg	Pro
20	-25				J	-20		_	_	J	-15				
¥															
	Arg	Thr	Gln	Asp	Gly	Val	Gly	Asn	His	Thr	Met	Ala	Arg	Ile	Pro
Total	-10					-5					1				5
<u>2</u> 5	Lys	Thr	Leu	Lys	Phe	Val	Val	Val	Ile	Val	Ala	Val	Leu	Leu	Pro
et.					10					15					20
	Val	Leu	Ala	Tyr	Ser	Ala	Thr	Thr	Ala	Arg	Gln	Glu	Glu	Val	Pro
					25					30					35
30															
	Gln	Gln	Thr	Val	Ala	Pro	Gln	Gln	Gln	Arg	His	Ser	Phe	Lys	Gly
					40					45					50
	Glu	Glu	Cys	Pro	Ala	Gly	Ser	His	Arg	Ser	Glu	His	Thr	Gly	Ala
35					55					60					65

TCTGCTGTGT TCCCACAGAC AGAAACGCCT GCCCCTGCCC CAAAAAAAA 1120

5

AAAAAAAAA 1180

5														
10	(:	(E	A) LE B) T? C) S?	ENGTI (PE : [RANI	H: 11 Nucl	l80 k Leic ESS:	ase Acio Sino	pain 1	rs					
10		(1)) 10	OPOLO	JGY:	TITILE	ear							
	(x:	i) SI	EQUEI	NCE I	DESCI	RIPT	ION:	SEQ	ID I	NO:4:	:			
115	GCT	GTGG(GAA (CCTCT	rcca(CG C(GCAC(GAAC'	r cac	GCAZ	ACGA	TTTC	CTGAT	rag 50
	ATT.	TTTGO	GA (3TTTC	GACC	AG AG	3	ATG	CAA	GGG	GTG	AAG	GAG	90
								Met	Gln	Gly	Val	Lys	Glu	
2 0								-40					-35	
R R	CGC	TTC	CTA	CCG	TTA	GGG	AAC	TCT	GGG	GAC	AGA	GCG	CCC	129
25	Arg	Phe	Leu	Pro	Leu -30	Gly	Asn	Ser	Gly	Asp -25	Arg	Ala	Pro	
25	CGG	CCG	CCT	GAT	GGC	CGA	GGC	AGG	GTG	CGA	CCC	AGG	ACC	168
e e e e e e e e e e e e e e e e e e e	Arg	Pro -20	Pro	Asp	Gly	Arg	Gly -15	Arg	Val	Arg	Pro	Arg -10	Thr	
	CAG	GAC	GGC	GTC	GGG	AAC	CAT	ACC	ATG	GCC	CGG	ATC	CCC	207
30	Gln	Asp	Gly	Val	Gly	Asn	His	Thr	Met	Ala	Arg	Ile	Pro	
				-5					1				5	
	AAG	ACC	CTA	AAG	TTC	GTC	GTC	GTC	ATC	GTC	GCG	GTC	CTG	246
	Lys	Thr	Leu	Lys	Phe	Val	Val	Val	Ile	Val	Ala	Val	Leu	
35					10					15				

Val Gly Ile Ile Val Leu Ile Val Leu Leu Ile Val Phe Val

255

259

250

(2) INFORMATION FOR SEQ ID NO:4:

	CTG	CCA	GTC	CTA	GCT	TAC	TCT	GCC	ACC	ACT	GCC	CGG	CAG	285
	Leu	Pro	Val	Leu	Ala	Tyr	Ser	Ala	Thr	Thr	Ala	Arg	Gln	
		20					25					30		
_	~ ~ ~	C 3 3	~	222	G3.G	G7. G	3.03	a ma	~~~		~~ ~	~~~	~~~	201
5				CCC										324
	GIU	GIU	vaı	Pro	Gin	GIN	Tnr	vaı		Pro	GIn	GIN	Gin	
				35					40					
	AGG	CAC	AGC	TTC	AAG	GGG	GAG	GAG	TGT	CCA	GCA	GGA	TCT	363
10	Arg	His	Ser	Phe	Lys	Gly	Glu	Glu	Cys	Pro	Ala	Gly	Ser	
	45					50					55			
	CAT	AGA	TCA	GAA	CAT	ACT	GGA	GCC	TGT	AAC	CCG	TGC	ACA	402
	His	Arg	Ser	Glu	His	Thr	Gly	Ala	Cys	Asn	Pro	Cys	Thr	
1 ,5			60					65					70	
	GAG	GGT	GTG	GAT	TAC	ACC	AAC	GCT	TCC	AAC	AAT	GAA	CCT	441
				Asp										
		_		-	75					80				
7 20														
	TCT	TGC	TTC	CCA	TGT	ACA	GTT	TGT	AAA	TCA	GAT	CAA	AAA	480
	Ser	Cys	Phe	Pro	Cys	Thr	Val	Cys	Lys	Ser	Asp	Gln	Lys	
		85					90					95		
25	CAT	AAA	AGT	TCC	TGC	ACC	ATG	ACC	AGA	GAC	ACA	GTG	TGT	519
	His	Lys	Ser	Ser	Cys	Thr	Met	Thr	Arg	Asp	Thr	Val	Cys	
				100					105					
	CAG	TGT	AAA	GAA	GGC	ACC	TTC	CGG	AAT	GAA	AAC	TCC	CCA	558
30	Gln	Cys	Lys	Glu	Gly	Thr	Phe	Arg	Asn	Glu	Asn	Ser	Pro	
	110					115					120			
				CGG										597
	Glu	Met	-	Arg	Lys	Cys	Ser	_	Cys	Pro	Ser	Gly		•
35			125					130					135	

	OIC	C2 11 1	010	1707	1111	101	ACO	100	100	OHI	OMI	AIC	CAG	030
	Val	Gln	Val	Ser	Asn	Cys	Thr	Ser	Trp	Asp	Asp	Ile	Gln	
					140					145				
5	TGT	GTT	GAA	GAA	TTT	GGT	GCC	AAT	GCC	ACT	GTG	GAA	ACC	675
	Cys	Val	Glu	Glu	Phe	Gly	Ala	Asn	Ala	Thr	Val	Glu	Thr	
		150				,	155					160		
	CCA	GCT	GCT	GAA	GAG	ACA	ATG	AAC	ACC	AGC	CCG	GGG	ACT	714
10	Pro	Ala	Ala	Glu	Glu	Thr	Met	Asn	Thr	Ser	Pro	Gly	Thr	
				165					170					
	CCT	GCC	CCA	GCT	GCT	GAA	GAG	ACA	ATG	AAC	ACC	AGC	CCA	753
	Pro	Ala	Pro	Ala	Ala	Glu	Glu	Thr	Met	Asn	Thr	Ser	Pro	
15	175					180					185			
	GGG	ACT	CCT	GCC	CCA	GCT	GCT	GAA	GAG	ACA	ATG	ACC	ACC	792
	Gly	Thr	Pro	Ala	Pro	Ala	Ala	Glu	Glu	Thr	Met	Thr	Thr	
			190					195					200	
20														
1 5 2 0 2 5	AGC	CCG	GGG	ACT	CCT	GCC	CCA	GCT	GCT	GAA	GAG	ACA	ATG	831
Part .	Ser	Pro	Gly	Thr	Pro	Ala	Pro	Ala	Ala	Glu	Glu	Thr	Met	
					205					210				
25	ACC	ACC	AGC	CCG	GGG	ACT	CCT	GCC	CCA	GCT	GCT	GAA	GAG	870
	Thr	Thr	Ser	Pro	Gly	Thr	Pro	Ala	Pro	Ala	Ala	Glu	Glu	
		215					220					225		
	ACA	ATG	ACC	ACC	AGC	CCG	GGG	ACT	CCT	GCC	TCT	TCT	CAT	909
30	Thr	Met	Thr	Thr	Ser	Pro	Gly	Thr	Pro	Ala	Ser	Ser	His	
				230					235					
	TAC	CTC	TCA	TGC	ACC	ATC	GTA	GGG	ATC	ATA	GTT	CTA	ATT	948
	Tyr	Leu	Ser	Cys	Thr	Ile	Val	Gly	Ile	Ile	Val	Leu	Ile	
35	240					245					250			

GTC CAA GTC AGT AAT TGT ACG TCC TGG GAT GAT ATC CAG 636

GTG CTT CTG ATT GTG TTT GTT T GAAAGACTTC ACTGTGGAAG 990
Val Leu Ile Val Phe Val
255 259

- (2) INFORMATION FOR SEQ ID NO:5:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 43 base pairs
 - (B) TYPE: Nucleic Acid
 - (C) STRANDEDNESS: Single
 - (D) TOPOLOGY: Linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

TGTAAAACGA CGGCCAGTTA AATAGACCTG CAATTATTAA TCT 43

- (2) INFORMATION FOR SEQ ID NO:6:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 41 base pairs
 - (B) TYPE: Nucleic Acid
 - (C) STRANDEDNESS: Single
 - (D) TOPOLOGY: Linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

35

CAGGAAACAG CTATGACCAC CTGCACACCT GCAAATCCAT T 41

	(2) INFORMATION FOR SEQ ID NO:7:	
5	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 49 amino acids(B) TYPE: Amino Acid(D) TOPOLOGY: Linear	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:	
	Cys Arg Glu Cys Glu Ser Gly Ser Phe Thr Ala Ser Glu Asn His	
	Leu Arg His Cys Leu Ser Cys Ser Lys Cys Arg Lys Glu Met Gly 20 25 39	
	Gln Val Glu Ile Ser Ser Cys Thr Val Asp Arg Asp Thr Val Cys	
	Gly Cys Arg Lys 49	
25	(2) INFORMATION FOR SEQ ID NO:8:	
30	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 48 amino acids(B) TYPE: Amino Acid(D) TOPOLOGY: Linear	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:	
	Cys Asn Pro Cys Thr Glu Gly Val Asp Tyr Thr Asn Ala Ser Asi	
35		

	48
10	(2) INFORMATION FOR SEQ ID NO:9:
	(i) SEQUENCE CHARACTERISTICS:
	(A) LENGTH: 70 base pairs
	(B) TYPE: Nucleic Acid
1 5	(C) STRANDEDNESS: Single
A	(D) TOPOLOGY: Linear
五 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:
	GGGAGCCGCT CATGAGGAAG TTGGGCCTCA TGGACAATGA GATAAAGGTG 50
	GCTAAAGCTG AGGCAGCGGG 70
25	(2) INFORMATION FOR SEQ ID NO:10:

(i) SEQUENCE CHARACTERISTICS:

(B) TYPE: Nucleic Acid

(D) TOPOLOGY: Linear

(C) STRANDEDNESS: Single

(A) LENGTH: 1799 base pairs

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

20

35

Asn Glu Pro Ser Cys Phe Pro Cys Thr Val Cys Lys Ser Asp Gln

Lys His Lys Ser Ser Cys Thr Met Thr Arg Asp Thr Val Cys Gln

25

40

30

45

30

5

Cys Lys Glu

	CCC	ACGC(GTC	CGCA:	raaa:	rc a	GCAC	GCGG(C CG(GAGA	ACCC	CGC	AATCI	TCT 50
	GCG	CCCA	CAA .	AATA	CACC	GA CO	GATG(CCCGI	A TC	ract:	ΓΤΑΑ	GGG	CTGAA	AC 100
5	CCA	CGGG	CCT	GAGA(GACTA	AT A	AGAG	CGTT	C CC	racc(GCC			145
				-1								меt 1	Glu	
	CAA	CGG	GGA	CAG	AAC	GCC	CCG	GCC	GCT	TCG	GGG	GCC	CGG	184
10	Gln	Arg	_	Gln	Asn	Ala	Pro		Ala	Ser	Gly	Ala	_	
			5					10					15	
	AAA	AGG	CAC	GGC	CCA	GGA	CCC	AGG	GAG	GCG	CGG	GGA	GCC	223
15 1	Lys	Arg	His	Gly	Pro 20	Gly	Pro	Arg	Glu	Ala 25	Arg	Gly	Ala	
	AGG	CCT	GGG	CTC	CGG	GTC	CCC	AAG	ACC	CTT	GTG	CTC	GTT	262
	Arg	Pro 30	Gly	Leu	Arg	Val	Pro 35	Lys	Thr	Leu	Val	Leu 40	Val	
100 May 100 Ma	GTC	GCC	GCG	GTC	CTG	CTG	TTG	GTC	TCA	GCT	GAG	TCT	GCT	301
	Val	Ala	Ala	Val 45	Leu	Leu	Leu	Val	Ser 50	Ala	Glu	Ser	Ala	
25	CTG	ATC	ACC	CAA	CAA	GAC	CTA	GCT	CCC	CAG	CAG	AGA	GCG	340
	Leu 55	Ile	Thr	Gln	Gln	Asp 60	Leu	Ala	Pro	Gln	Gln 65	Arg	Ala	
	GCC	CCA	CAA	CAA	AAG	AGG	TCC	AGC	CCC	TCA	GAG	GGA	TTG	379
30	Ala	Pro	Gln 70	Gln	Lys	Arg	Ser	Ser 75	Pro	Ser	Glu	Gly	Leu 80	
	TGT	CCA	CCT	GGA	CAC	CAT	ATC	TCA	GAA	GAC	GGT	AGA	GAT	418
35	Cys	Pro	Pro	Gly	His 85	His	Ile	Ser	Glu	Asp	Gly	Arg	Asp	
					J J									

						ACT Thr 105	457
5						AGG Arg	496
10						ACG Thr	535
1 5						TTC Phe	574
						CGC Arg	613
						TGT Cys 170	652
2,5						TCA Ser	691
30						TTG Leu	730
35						AAG Lys	769

GTC CTT CCT TAC CTG AAA GGC ATC TGC TCA GGT GGT 808

•
15
, a
122. N
-
(F)
20
ing soil)
S.
jack)
25
r: _

	CLC	ATG	AGG	AAG	TTG	GGC	CTC	ATG	GAC	AA.I.	GAG	A'I'A	AAG	115	9
	Leu	Met	Arg	Lys	Leu	Gly	Leu	Met	Asp	Asn	Glu	Ile	Lys		
			330					335					340		
5	GTG	GCT	AAA	GCT	GAG	GCA	GCG	GGC	CAC	AGG	GAC	ACC	TTG	119	8
	Val	Ala	Lys	Ala	Glu	Ala	Ala	Gly	His	Arg	Asp	Thr	Leu		
					345					350					
	TAC	ACG	ATG	CTG	ATA	AAG	TGG	GTC	AAC	AAA	ACC	GGG	CGA	123	7
10	Tyr	Thr	Met	Leu	Ile	Lys	Trp	Val	Asn	Lys	Thr	Gly	Arg		
		355					360					365			
•	GAT	GCC	TCT	GTC	CAC	ACC	CTG	CTG	GAT	GCC	TTG	GAG	ACG	127	6
	Asp	Ala	Ser	Val	His	Thr	Leu	Leu	Asp	Ala	Leu	Glu	Thr		
1 5				370					375						
	CTG	GGA	GAG	AGA	CTT	GCC	AAG	CAG	AAG	ATT	GAG	GAC	CAC	131	.5
	Leu	Gly	Glu	Arg	Leu	Ala	Lys	Gln	Lys	Ile	Glu	Asp	His		
	380					385					390				
20															
	TTG	TTG	AGC	TCT	GGA	AAG	TTC	ATG	TAT	CTA	GAA	GGT	AAT	135	4
4	Leu	Leu	Ser	Ser	Gly	Lys	Phe	Met	Tyr	Leu	Glu	Gly	Asn		
inchi inchi			395					400					405		
25	GCA	GAC	TCT	GCC	WTG	TCC	TAAC	GTGT	G AT	rctc:	TTCA	GGAZ	AGTG <i>I</i>	AGA	1400
· :	Ala	Asp	Ser	Ala	Xaa	Ser									
					410	411									
	CCTT	rccc:	rgg :	TTA	CCTTT	rt ti	CTG	3AAAZ	A AG	CCCA	ACTG	GAC	rccac	STC	1450
30															
	AGT	AGGAZ	AAG :	rgccz	ACAAT	rt Gi	CAC	ATGA	C CG	GTAC:	rgga	AGAZ	AACTO	CTC	1500
	CCAT	rcca <i>i</i>	ACA :	CAC	CCAGT	rg ga	ATGG	AACA:	r cc:	rgta <i>i</i>	ACTT	TTC	ACTGO	CAC	1550
35	TTGO	GCAT.	rat :	CTTTZ	ATAAC	GC TO	JAAT(GTGA:	r aat	raag(GACA	CTA	rgga <i>i</i>	AAT	1600

15
20
: · · · · · · · · · · · · · · · · · · ·
25

	GTC'	TGGA:	rca :	rtcco	FTTTG	FT G	CGTA	CTTTC	G AGA	ATTTC	GGTT	TGG	GATGT	CA 1	L650
	TTG'	TTTT(CAC A	AGCA	CTTTT	T T	ATCCI	TAATO	TA?	AATG(CTTT	ATT	rttar	TAT 3	L700
5	TTG	GGCT	ACA :	rtgt <i>i</i>	\AGAT	C C	ATCT	ACAAZ	AAA	AAAA	AAAA	AAA	\AAA/	AAG 3	L750
	GGC	GGCC	GCG A	ACTCT	ΓAGAG	FT C	GACC1	rgca(AA	GCTT	GGCC	GCC	ATGGC	CC 17	799
10	(2)	INFO	RMAT	ION I	FOR S	SEQ	ID NO):11:	:						
10	(:	(<i>1</i>	A) LI 3) T	ENGTI YPE:		.1 an			ls						
15	(x:	i) SI	EQUEI	NCE I	DESCF	RIPT	ION:	SEQ	I DI	NO:11	l:				
	Met 1	Glu	Gln	Arg	Gly 5	Gln	Asn	Ala	Pro	Ala 10	Ala	Ser	Gly	Ala	Arg 15
	Lys	Arg	His	Gly	Pro 20	Gly	Pro	Arg	Glu	Ala 25	Arg	Gly	Ala	Arg	Pro 30
2.5	Gly	Leu	Arg	Val	Pro 35	Lys	Thr	Leu	Val	Leu 40	Val	Val	Ala	Ala	Val 45
·	Leu	Leu	Leu	Val	Ser 50	Ala	Glu	Ser	Ala	Leu 55	Ile	Thr	Gln	Gln	Asp 60
30	Leu	Ala	Pro	Gln	Gln 65	Arg	Ala	Ala	Pro	Gln 70	Gln	Lys	Arg	Ser	Ser 75
	Pro	Ser	Glu	Gly	Leu	Cys	Pro	Pro	Gly	His	His	Ile	Ser	Glu	Asp

					275					280					285
5	Ala	Glu	Ala	Glu	Arg 290	Ser	Gln	Arg	Arg	Arg 295	Leu	Leu	Val	Pro	Ala 300
	Asn	Glu	Gly	Asp	Pro 305	Thr	Glu	Thr	Leu	Arg 310	Gln	Cys	Phe	Asp	Asp 315
10	Phe	Ala	Asp	Leu	Val 320	Pro	Phe	Asp	Ser	Trp 325	Glu	Pro	Leu	Met	Arg 330
1- 5	Lys	Leu	Gly	Leu	Met 335	Asp	Asn	Glu	Ile	Lys 340	Val	Ala	Lys	Ala	Glu 345
	Ala	Ala	Gly	His	Arg 350	Asp	Thr	Leu	Tyr	Thr 355	Met	Leu	Ile	Lys	Trp 360
Z 0	Val	Asn	Lys	Thr	Gly 365	Arg	Asp	Ala	Ser	Val 370	His	Thr	Leu	Leu	Asp 375
15 20 17 17 25	Ala	Leu	Glu	Thr	Leu 380	Gly	Glu	Arg	Leu	Ala 385	Lys	Gln	Lys	Ile	Glu 390
2 5	Asp	His	Leu	Leu	Ser 395	Ser	Gly	Lys	Phe	Met 400	Tyr	Leu	Glu	Gly	Asn 405
30	Ala	Asp	Ser	Ala	Xaa 410										

Val Asn Met Leu Ser Pro Gly Glu Ser Glu His Leu Leu Glu Pro

(2) INFORMATION FOR SEQ ID NO:12:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 29 base pairs
 - (B) TYPE: Nucleic Acid

- (C) STRANDEDNESS: Single
- (D) TOPOLOGY: Linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

ATCAGGGACT TTCCGCTGGG GACTTTCCG 29

(2) INFORMATION FOR SEQ ID NO:13:

10

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 30 base pairs
 - (B) TYPE: Nucleic Acid
 - (C) STRANDEDNESS: Single
 - (D) TOPOLOGY: Linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

AGGATGGGAA GTGTGTGATA TATCCTTGAT 30

5

What is claimed is:

- 1. Isolated Apo-2DcR polypeptide having at least about 80% amino acid sequence identity with native sequence Apo-2DcR polypeptide comprising amino acid residues 1 to 259 of Fig. 1A (SEQ ID NO:1).
- 2. The Apo-2DcR polypeptide of claim 1 wherein said Apo-2DcR polypeptide has at least about 90% amino acid sequence identity.
- 3. The Apo-2DcR polypeptide of claim 2 wherein said Apo-2DcR polypeptide has at least about 95% amino acid sequence identity.
 - 4. Isolated native sequence Apo-2DcR polypeptide comprising amino acid residues 1 to 259 of Fig. 1A (SEQ ID NO:1).
 - 5. Isolated extracellular domain sequence of Apo-2DcR polypeptide comprising amino acid residues 1 to 161 of Fig. 1A (SEQ ID NO:1).
 - 6. The extracellular domain sequence of claim 5 comprising amino acid residues 1 to 236 of Fig. 1A (SEQ ID NO:1).
 - 7. Isolated native sequence Apo-2DcR polypeptide comprising amino acid residues -40 to 259 of Fig. 1B (SEQ ID NO:3).
 - 8. A chimeric molecule comprising the Apo-2DcR polypeptide of claim 1 or the extracellular domain sequence of claim 5 fused to a heterologous amino acid sequence.
 - 9. The chimeric molecule of claim 8 wherein said heterologous amino acid sequence is an epitope tag sequence.
 - 10. The chimeric molecule of claim 8 wherein said heterologous amino acid sequence is an immunoglobulin sequence.
- 11. The chimeric molecule of claim 10 wherein said immunoglobulin sequence is an IgG.

- 12. An antibody which specifically binds to the Apo-2DcR polypeptide of claim 1 or the extracellular domain sequence of claim 5.
- 5 13. The antibody of claim 12 wherein said antibody is a monoclonal antibody.
 - 14. The antibody of claim 12 which is an agonist antibody.
- 10 15. Isolated nucleic acid encoding the Apo-2DcR polypeptide of claim 1 or the extracellular domain sequence of claim 5.
 - 16. The nucleic acid of claim 15 wherein said nucleic acid encodes native sequence Apo-2DcR polypeptide comprising amino acid residues 1 to 259 of Fig. 1A (SEQ ID NO:1).
 - 17. The nucleic acid of claim 15 comprising nucleotides 193 to 969 of Fig. 1A (SEQ ID NO:2).
 - 18. A vector comprising the nucleic acid of claim 15.
 - 19. The vector of claim 18 operably linked to control sequences recognized by a host cell transformed with the vector.
 - 20. A host cell comprising the vector of claim 18.
 - 21. A process of using a nucleic acid molecule encoding Apo-2DcR polypeptide to effect production of Apo-2DcR polypeptide comprising culturing the host cell of claim 20.
 - 22. A non-human, transgenic animal which contains cells that express nucleic acid encoding Apo-2DcR polypeptide.
 - 23. The animal of claim 22 which is a mouse or rat.

- 24. A non-human, knockout animal which contains cells having an altered gene encoding Apo-2DcR polypeptide.
- 25. The animal of claim 24 which is a mouse or rat.
- 26. An article of manufacture, comprising a container and a composition contained within said container, wherein the composition includes Apo-2DcR polypeptide or Apo-2DcR antibodies.
- 10 27. The article of manufacture of claim 26 further comprising instructions for using the Apo-2DcR polypeptide or Apo-2DcR antibodies in vivo or ex vivo.
 - 28. A method of modulating apoptosis in mammalian cells comprising exposing said cells to Apo-2DcR polypeptide.
 - 29. The method of claim 28 wherein said cells are exposed to Apo-2 ligand.

Abstract of the Disclosure

Novel polypeptides, designated Apo-2DcR, which are capable of binding Apo-2 ligand are provided. Compositions including Apo-2DcR chimeras, nucleic acid encoding Apo-2DcR, and antibodies to Apo-2DcR are also provided.

EXPRESS MAIL NO: EM239524640 US

DATED: 18 June 1997

Docket No. P1110

COMBINED DECLARATION FOR PATENT APPLICATION AND POWER OF ATTORNEY

As a below named inventor, I hereby declare that:

My residence, post office address and citizenship are as stated below next to my name,

I believe I am the original first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled

Apo-2DcR

the specification of which (check one) \underline{X} is attached hereto or was filed on as Application Serial No. and was amended on (if applicable).

I hereby state that I have reviewed and understand the contents of the above-identified specification, including the claims, as amended by any amendment referred to above.

I acknowledge the duty to disclose information which is material to the examination of this application in accordance with Title 37, Code of Federal Regulations, Section 1.56. Thereby claim foreign priority benefits under Title 35, United States Code, §119(a)-(d) of any foreign application(s) for patent or inventor's certificate listed below and have also identified below any foreign application for patent or inventor's certificate have a filing date before that of the application on which priority is claimed: Prior Foreign Application(s): Priority Claimed Yes No Day/Month/Year Filed Number Country Thereby claim the benefit under Title 35, United States Code, §119(e) of any United States provisional applications(s) listed below: Application Ser. No. Filing Date I hereby claim the benefit under Title 35, United States Code, §120 of any United States applications(s) listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States application in the manner provided by the first paragraph of Title 35, United States Code, §112, I acknowledge the duty to disclose material information as defined in Title 37, Code of Federal Regulations, §1.56 which occurred between the filing date of the prior application and the national or PCT international filing date of this application: Status: Patented, Pending, Abandoned Application Ser. No. Filing Date

POWER OF ATTORNEY: As a named inventor, I hereby appoint the following attorney(s) and/or agent(s) to prosecute this application and transact all business in the Patent and Trademark Office connected therewith.

Filing Date

Walter E. Buting - Reg. No. 23,092 Deirdre L. Conley - Reg. No. 36,487 Ginger R. Dreger - Reg. No. 33,055

Application Ser. No.

Wendy M. Lee - Reg. No. 40,378 Richard B. Love - Reg. No. 34,659 Diane L. Marschang - Reg. No. 35,600

Status: Patented, Pending, Abandoned

Jånet E. Hasak - Reg. No. 28,616 Sean A. Johnston - Reg. No. 35,910 Dennis G. Kleid - Reg. No. 32,037 Jeffrey S. Kubinec - Reg. No. 36,575 Timothy R. Schwartz - Reg. No. 32,171 Craig G. Svoboda - Reg. No. 39,044 Timothy E. Torchia - Reg. No. 36,700 Daryl B. Winter - Reg. No. 32,637

Send correspondence to Genentech, Inc.

Attn: Diane L. Marschang 460 Point San Bruno Boulevard South San Francisco, CA 94080 Telephone: (415) 225-5416

I hereby declare that all statements made herein of my own knowledge and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment or both, under Section 1001 of Title 18 of the United States Code and that willful false statements may jeopardize the validity of the application or any patent issued thereon.

The undersigned hereby authorizes the U.S. attorney or agent named herein to accept and follow instructions from his foreign patent agent as to any action to be taken in the Patent and Trademark Office regarding this application without direct communication between the U.S. attorney or agent and the undersigned. In the event of a change in the persons from whom instructions may be taken, the U.S. attorney or agent named herein will be so notified by the undersigned.

Full name of sole or first inventor	
Avi J. Ashkenazi	
<u></u>	
nventor's signature	Date
Residence	
1456 Tarrytown Street, San Mateo, California 94402	
Éitizenship	
Israel	
Post Office Address	
460 Point San Bruno Boulevard	
South San Francisco, CA 94080	
Full name of second joint inventor, if any	
「 で で で で で で で で で で で で で	
Kevin P. Baker	
Inventor's signature	Date
	54.0
Residence 1515 South Grant Street, San Mateo, California 94402-1932	
1919 South Grant Street, San Mateo, Cambina 94402-1932	
Citizenship	
Great Britain	
Post Office Address	
460 Point San Bruno Boulevard	
South San Francisco, CA 94080	
Full name of third joint inventor, if any	
Austin Gurney	
Inventor's signature	Date
Residence	
1 Debbie Lane, Belmont, California 94002	
Citizenship	

United States	
Post Office Address	
460 Point San Bruno Boulevard	
South San Francisco, CA 94080	
Full name of fourth joint inventor, if any	
William I. Wood	
Inventor's signature	Date
Residence	
1400 Tarrytown Street, San Mateo, California 94402	
Citizenship	
United States	
Post Office Address	
460 Point San Bruno Boulevard	
South San Francisco, CA 94080	

CAGCCAACGA TITICTGATAG ATTITITGGGA GTTITGACCAG AGATGCAAGG GGTGAAGGAG CGCTITCCTAC	GICGGIIGCI AAAGACIAIC IAAAAACCCI CAAACIGGIC ICIACGIICC CCACIICCIC GCGAAGGAIG	
GGTGAAGGAG	CCACTTCCTC	
AGATGCAAGG	TCTACGTTCC	
GTTTGACCAG	CAAACTGGTC	
ATTTTGGGA	TAAAAACCCT	
TTTCTGATAG	AAAGACTATC	
CAGCCAACGA	GICGGLIGCE	
CGCACGAACT	GCGTGCTTGA	
CCTCTCCACG	GGAGAGGTGC	
1 GCTGTGGGAA CCTCTCCACG CGCACGAACT CAGCC	CGACACCCTT GGAGAGGTGC GCGTGCTTGA GTCGG	

- MetAlaArg CCATGGCCCG GCAATCCCIT GAGACCCCTG TCTCGCGGGG CCGCGGGACT ACCGGCTCCG TCCCACGCTG GGTCCTGGGT CCTGCCGCAG CCCTTGGTAT GGTACCGGGC GGGAACCATA GGACGGCGTC GECCECCTGA TGGCCGAGGC AGGGTGCGAC CCAGGACCCA 101 CGTIAGGGAA CICTGGGGAC AGAGCGCCC
- TCAAGGGGTC ThrLeuLysP heValValVa lIleValAla ValLeuLeuP roValLeuAl aTyrSerAla ThrThrAlaA rgGlnGluGl uValProGln AGTTCCCCAG CATCGTCGCG GTCCTGCTGC CAGTCCTAGC TTACTCTGCC ACCACTGCCC GGCAGGAGGA CCGTCCTCT TGGTGACGGG GTAGCAGCGC CAGGACGACG GTCAGGATCG AATGAGACGG TCGTCGTCGT AGCAGCAGCA ACCCTAAAGT TGGGATTTCA IleProLys GATCCCCAAG CTAGGGGTTC 201
- GlnThrValA laProGlnGl nGlnArgHis SerPheLysG lyGluGluCy sProAlaGly SerHisArgS erGluHisTh rGlyAlaCys AsnProCysThr TGGAGCCTGT AACCCGTGCA ACCTCGGACA CCCCACAGCA ACAGAGGCAC AGCTTCAAGG GGGAGGAGTG TCCAGCAGGA TCTCATAGAT CAGAACATAC GTCTTGTATG CCCTCCTCAC AGGTCGTCCT AGAGTATCTA TCGAAGTTCC TGTCTCCGTG GGGGTGTCGT CAGACAGTGG GTCTGTCACC 301 37
- GGACGTGGTA CCTGCACCAT CATAAAAGTT GTATTTTCAA CAGAGGGTGT GGATTACACC AACGCTTCCA ACAATGAACC TTCTTGCTTC CCATGTACAG TTTGTAAATC AGATCAAAAA TCTAGTTTTT 401
- erCysThrMet GluGlyVa lAspTyrThr AsnAlaSerA snAsnGluPr oSerCysPhe ProCysThrV alCysLysSe rAspGlnLys HisLysSerS TGTTACTTGG AAGAACGAAG GGTACATGTC AAACATTTAG TTGCGAAGGT CCTAATGTGG GTCTCCCACA 71
- TGGGGAAGTC CCACGGGATC ACCCCTTCAG Thrargasp ThrValCysG lnCysLysGl uGlyThrPhe ArgasnGlua snSerProGl uMetCysArg LysCysSerA rgCysProSe rGlyGluVal GGTGCCCTAG TTCACATCGT AGGCACCTTC CGGAATGAAA ACTCCCCAGA GATGTGCCGG AAGTGTAGCA CTACACGGCC TGAGGGGTCT TGTCACACAG TCACATTTCT TCCGTGGAAG GCCTTACTTT GACCAGAGAC ACAGTGTGTC AGTGTAAAGA CICCICICIC 501 104
- GlnValSerA snCysThrSe rTrpAspAsp IleGlnCysV alGluGluPh eGlyAlaAsn AlaThrValG luThrProAl aAlaGluGlu ThrMetAsnThr ACAATGAACA TGTTACTTGT TGCTGAAGAG CGGTGACACC TITGGGGTCG ACGACTICTC ATTGTACGTC CTGGGATGAT ATCCAGTGTG TTGAAGAATT TGGTGCCAAT GCCACTGTGG AAACCCCAGC ACCACGGTTA TAGGICACAC AACTICTIAA GACCCTACTA TAACATGCAG CAAGTCAGTA GTTCAGTCAT 601 137
- hrSerProGly GGTCGGGCCC CCAGCCCGGG CCAGCCCGGG GACTCCTGCC CCAGCTGCTG AAGAGACAAT GAACACCAGC CCAGGGACTC CTGCCCCAGC TGCTGAAGAG ACAATGACCA serProGl yThrProAla ProAlaAlaG luGluThrMe tAsnThrSer ProGlyThrP roAlaProAl aAlaGluGlu ThrMetThrT TGTTACTGGT GACGGGTCG ACGACTTCTC GGTCCCTGAG CTTGTGGTCG TTCTCTGTTA GGTCGACGAC CTGAGGACGG CGTCGGGCCC 701

171

- yThrProAla GACTCCTGCC CCAGCCCGGG GGTCGGGCCC tThrThrSer ProGlyThrP roAlaProAl aAlaGluGlu ThrMetThrT hrSerProGl GACTCCTGCC CCAGCTGCTG AAGAGACAAT GACCACCAGC CCGGGGACTC CTGCCCCAGC TGCTGAAGAG ACAATGACCA TGTTACTGGT GACGGGGTCG ACGACTTCTC GGCCCCTGAG CTGGTGGTCG ThrProAla ProAlaAlaG luGluThrMe TTCTCTGTTA GGTCGACGAC CTGAGGACGG 801 204
- TTTAAGGAAG AAATTCCTTC GAAAGACTTC ACTGTGGAAG CTTTCTGAAG TGACACCTTC GTGTTTGTT CACAAACAAA alLeuIleVa lLeuLeuIle ValPheVal TICIAATIGI GCIICIGAII CGAAGACTAA AAGATTAACA CCCTAGTATC GlyileileV GGGATCATAG CACCATCGTA GTGGTAGCAT sThrileVal ACCTCTCATG TGGAGAGTAC yrLeuSerCy TCTTCTCATT AGAAGAGTAA SerSerHisT 901 237
- TCTGCTGTGT TCCCACAGAC AGAAACGCCT AGACGACACA AGGGTGTCTG TCTTTGCGGA CCTGCCTCCC GGACGGAGGG CACTCTCTGC GTGAGAGACG GGGCGCTGGA CCCGCGACCT TGAGGGCGGG ACTCCCGCCC AGGCGCTGGC TCCGCGACCG AGGTTCAGGT TCCAAGTCCA CTTACCTGAA GAATGGACTT 1001
- TTTTTTTT AAAAAAAAA AAAAAAAAA TTTTTTTT AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAAA TTTTTTTTT CAAAAAAAA CGGGGACGGG GTTTTTTTT GCCCTGCCC 1101

CGCTTCCTAC GCGAAGGATG ArgPheLeuPro	CCATGGCCCG GGTACCGGGC hrMetAlaArg	AGTTCCCCAG TCAAGGGGTC uValProGln	AACCCGTGCA TTGGGCACGT ASnProCysThr	CCTGCACCAT GGACGTGGTA erCysThrMet	TGGGGAAGTC ACCCCTTCAG rGlyGluVal	ACAATGAACA TGTTACTTGT ThrMetAsnThr	CCAGCCCGGG GGTCGGGCCC hrSerProGly	GACTCCTGCC CTGAGGACGG YThrProAla	AAATTCCTTC TTTAAGGAAG	AGAAACGCCT TCTTTGCGGA
GGTGAAGGAG CCACTTCCTC YVallysGlu	GGGAACCATA CCCTTGGTAT GlyAsnHisT	GGCAGGAGGA CCGTCCTCT rgGlnGluGl	TGGAGCCTGT ACCTCGGACA rGlyAlaCys	CATAAAAGTT GTATTTTCAA Hislyssers	GGTGCCCTAG CCACGGGATC rgCysProSe	TGCTGAAGAG ACGACTTCTC AAlaGluGlu	ACAATGACCA TGTTACTGGT ThrMetThrT	CCAGCCCGGG GGTCGGGCCC hrSerProGl	actgtggaag tgacaccttc	TCCCACAGAC AGGGTGTCTG
AGATGCAAGG TCTACGTTCC MetGlnGl	GGACGGCGTC CCTGCCGCAG nAspGlyVal	ACCACTGCCC TGGTGACGGG ThrThrAlaA	CAGAACATAC GTCTTGTATG erGluHisTh	AGATCAAAAA TCTAGTTTTT rAspGlnLys	AAGTGTAGCA TTCACATCGT LysCysSerA	AAACCCCAGC TTTGGGGTCG luThrProAl	TGCTGAAGAG ACGACTTCTC aAlaGluGlu	ACAATGACCA TGTTACTGGT ThrMetThrT	GAAAGACTTC CTTTCTGAAG	TCTGCTGTGT AGACGACACA
GTTTGACCAG CAAACTGGTC	CCAGGACCCA GGTCCTGGGT roArgThrG1	TTACTCTGCC AATGAGACGG aTyrSerAla	TCTCATAGAT AGAGTATCTA SerHisArgS	TTTGTAAATC AAACATTTAG alcyslysse	GATGTGCCGG CTACACGGCC uMetCysArg	GCCACTGTGG CGGTGACACC AlaThrValG	CTGCCCCAGC GACGGGGTCG roAlaProAl	TGCTGAAGAG ACGACTTCTC aAlaGluGlu	GTGTTTGTTT CACAAACAAA ValPheVal	CCTGCCTCCC
ATTTTGGGA TAAAAACCCT	AGGGTGCGAC TCCCACGCTG ArgValArgP	CAGTCCTAGC GTCAGGATCG rovalleuAl	TCCAGCAGGA AGGTCGTCCT SProAlaGly	CCATGTACAG GGTACATGTC ProCysThrV	ACTCCCCAGA TGAGGGGTCT SNSerProGl	TGGTGCCAAT ACCACGGTTA eGlyAlaAsn	CCAGGGACTC GGTCCCTGAG ProGlyThrP	CTGCCCCAGC GACGGGGTCG roalaProal	GCTTCTGATT CGAAGACTAA LLeuLeuIle	CACTCTCTGC GTGAGAGACG
TTTCTGATAG AAAGACTATC	TGGCCGAGGC ACCGGCTCCG pGlyArgGly	GTCCTGCTGC CAGGACGACG ValleuleuP	GGGAGGAGTG CCCTCCTCAC lyGluGluCy	TTCTTGCTTC AAGAACGAAG oSerCysPhe	CGGAATGAAA GCCTTACTTT ArgAsnGluA	TTGAAGAATT AACTTCTTAA alGluGluPh	GAACACCAGC CTTGTGGTCG tAsnThrSer	CCGGGGACTC GGCCCCTGAG	TTCTAATTGT AAGATTAACA AlleulleVa	GGGCGCTGGA CCCGCGACCT
CGCACGAACT CAGCCAACGA GCGTGCTTGA GTCGGTTGCT	GGCCGCCTGA CCGGCGGACT rgProProAs	CATCGTCGCG GTAGCAGCGC llleValAla	AGCTTCAAGG TCGAAGTTCC SerPheLysG	ACAATGAACC TGTTACTTGG SNASNGluPr	AGGCACCTTC TCCGTGGAAG uGlyThrPhe	ATCCAGTGTG TAGGTCACAC IleGlnCysV	AAGAGACAAT TTCTCTGTTA lugluthrme	GACCACCAGC CTGGTGGTCG tThrThrSer	GGGATCATAG CCCTAGTATC Glyllellev	TGAGGGCGGG
	AGAGCGCCCC TCTCGCGGGG ArgAlaProA	TCGTCGTCGT AGCAGCAGCA heValValVa	ACAGAGGCAC TGTCTCCGTG nGlnArgHis	AACGCTTCCA TTGCGAAGGT ASDAASETA	AGTGTAAAGA TCACATTTCT lnCysLysGl	CTGGGATGAT GACCCTACTA rTrpAspAsp	CCAGCTGCTG GGTCGACGAC ProAlaAlaG	AAGAGACAAT TTCTCTGTTA lugluThrMe	CACCATCGTA GTGGTAGCAT sThrileVal	AGGTTCAGGT AGGCGCTGGC TCCAAGTCCA TCCGCGACCG
CCTCTCCACG GGAGAGGTGC	CTCTGGGGAC GAGACCCCTG nSerGlyAsp	ACCCTAAAGT TGGGATTTCA ThrLeuLysP	CCCCACAGCA GGGGTGTCGT laProGlnGl	GGATTACACC CCTAATGTGG LASPTYTThr	ACAGTGTGTC TGTCACACAG ThrValCysG	ATTGTACGTC TAACATGCAG SDCYSThrSe	GACTCCTGCC CTGAGGACGG	CCAGCTGCTG GGTCGACGAC	ACCTCTCATG TGGAGAGTAC	
GCTGTGGGAA CGACACCCTT	CGTTAGGGAA GCAATCCCTT LeuGlyAs	GATCCCCAAG CTAGGGGTTC IleProLys	CAGACAGTGG GTCTGTCACC GlnThrValA	CAGAGGGTGT GTCTCCCACA GluGlyVa	GACCAGAGAC CTGGTCTCTG ThrArgAsp	CAAGTCAGTA GTTCAGTCAT GLNVAlSerA	. CCAGCCCGGG GGTCGGGCCC SerProGl	GACTCCTGCC CTGAGGACGG ThrProAla	TCTTCTCATT AGAAGAGTAA SerSerHisT	. CTTACCTGAA GAATGGACTT
1 -40	101	201	301	401	501	601	701	801	901	1001

	_	
Apo2	1	MEQRGQN&PAASGARKEHGPGPREARGARPGLRVPKTIVE
Apo2DcR	1	
DR4	51	GRGALPTSMGQHGPSAR#R#GRAPGP#PAREASPRLRVHKTFKFVVVG
		4
Apo2	41	VVAAVIILIVSAESALITOODLAPOORAAPOOKRSSPSEGICPPGHHISED
Apo2DcR	13	VIVAVLEPVIAYSATTARQEEVPQQTVAPQQQRHSFKGEL PASSHKSEH
DR4	101	VIVAVILPVLAYSATTAROEEVPOOTVAPOOORHSFKGEECPAGSHRSEH LQVVPSSAATIKLHDQSIGTQQWEHSPLGELCPPGSHRSER
		CPD1
Apo2	91	GRDCISCKYCODYSTHWNDLLFCLRCTRCDSGEVELSPCTTTRNTVCCCE
Apo2DcR	63	TGAC NPC TEGYDYTNASNNEPSCFPCTVCKSDQKHKSSCTMTRDTVCQCK
DR4	142	PGACNRCTEGVGYTNASNNLFACLPCTACKSDEERRSPCTTTENTACQCK
DIA		CRD2
Ano?	141	RCTER EEDS DEMCERCRISCPEGEVKVGDCIPWSDIECVHKE
Apo2	113	EGTFRNENSPEMCRECSR-CPSGEVQVSNCTSWDDIQCVE-EFGANATVE
Apo2DcR	192	PETERNONSAEMCRKCSTGCPRGMVKVKDCTPWSDIECVHKE
DR4	132	I GAT ARDAM THINK THE PARTY OF
Apo2	161	TPAAEETMNTSPGTPAPAAEETMNTSPGTPAPAAEETMTTSPGTPAPAAE
Apo2DcR	161	TPAREETMNTSPGTPAPAREETMITSTGTTATATATATATATATATATATATATATATATATAT
DR4		
_		SGINIGWTWAAVWINIVAVEV
Apo2	183	GUIL IGAL PARA COLUNI CONTROL I SANCILI IMEV
Apo2DcR	211	ETMTTSPGTPAPAAEETMTTSPGTPASSHYLSCTIVGIIVIIVLLIVFV
DR4	234	SENGHNIWVILVVILVVPLILVAV-LIVC
Apo2	203	**************************************
DR4	262	CIGSGCGGDPKCMDRVCFWRLGLLRGPGAEDNAHNEILSNADSLSTFVS
Apo2	253	TOVPEGEMEVGEPAEPTGVNMLSPGESEHLLEPAEAERSORRRLLVPANE
DR4	312	EQQMESQEPADLTGVTVQSPGEAQCLLGPAEAEGSQERELLVPANG
Section 1		* **
Apo2	303	GDPTETLROCFDDFADLVPFDSWEPLMRKLGLMDNEIKVAKAEAACHB
DR4	358	ADPTETEMLFEDKFANIVPFDSWDQLMRQLDETKNEIDVVRAGTAGPG
Apo3/DR3	338	VMDAVPARRWKEFVRTIGEREARIEAVEVEI-GRF-R
TNFR1	322	VVENVPPLRWKEFVRRIGISDHEIDRLELQN-GRCLR
CD95	220	IAGVHTLSQVKGFVRKNGVNEAKIDEIKNDN-VQDTA
Apo2	351	dtlytmeikwynkigk-dasvhilldaletlgerlakoktedhllssgkf
DR4	406	DALYAMIMKWVNKTCK-NASIHTLLDALERMEERHAKEKIODLLVDSCKF
	274	DOOYEMEKRWRQQQPAGLGAVYAALEHMGLDGCVEDLRS
Apo3/DR3	J/4	EAQYSMLATWRRRTPRREATLELLGRVIRDMDLLGCLEDIEE
TNFR1	358	EOKVQLERNWHQLHEKKEAY-DILIKDEKKANLCTLAEKIQT
CD95	256	ENVAOTENING TOTAL
- ^		WWW.CHADEET &
Apo2		MYLEGNADSALS
DR4	455	INTEDGTGSAVSLE

Figure 3

Figure 5

SAAAC STTTG	CACGGCCCAG GTGCCGGGTC HisGlyProGly	CTGAGTCTGC GACTCAGACG laGluSerAla	ATATC FATAG isile	aggtgtgatt TCCacactaa ArgCysaspser	AGATGTGCCG TCTACACGGC luMetCysArg	rcara Agrar leile	ATCTGCTCAG TAGACGAGTC IleCysSerGly	AGCCCACCCA TCGGGTGGGT InProThrGln	CAGAA STCTT laGlu	GACTTGGTGC CTGAACCACG AspLeuValPro
GGGCTGAAAC CCCGACTTTG	CACGGCCCAG GTGCCGGGTC HisGlyProG	CTGAGTCTGC GACTCAGACG laGluserAl	ACACCATATC TGTGGTATAG YHisHisIle	AGGTGTGATT TCCACACTAA ArgCysAspS	AGATGTGCCG TCTACACGGC luMetCysAr	CATCATCATA GTAGTAGTAT YIleileile	ATCTGCTCAG TAGACGAGTC IleCysserG	AGCCCACCCA TCGGGTGGGT InProThrGl	ACCGGCAGAA TGGCCGTCTT uProAlaGlu	GACTTGGTGC CTGAACCACG AspleuvalP
TCTACTTTAA AGATGAAATT	CCGGAAAAGG GGCCTTTTCC aArgLysArg	TTGGTCTCAG AACCAGAGTC Leuvalsera	GTCCACCTGG CAGGTGGACC YSProProGl	GCGCTGCACC CGCGACGTGG uArgCysThr	GATTCTCCTG CTAAGAGGAC AspserProG	AAGAÁTCAGG TTCTTAGTCC YSGluSerGl	CCTGAAAGGC GGACTTTCCG rLeuLysGly	AGTATCTTGC TCATAGAACG SerileLeuG	ATCTGCTGGA TAGACGACCT isLeuLeuGl	TGACTTTGCA ACTGAAACGT PASPPheAla
CGATGCCCGA GCTACGGGCT	CTTCGGGGGC GAAGCCCCCG laSerGlyAl	GGTCCTGCTG CCAGGACGAC aValleuleu	GAGGGATTGT CTCCCTAACA GluGlyLeuC	TTTTCTGCTT AAAAGACGAA euPheCysLe	CCGGGAAGAA GGCCCTTCTT eArgGluGlu	TGTGTCCACA ACACAGGTGT CysValHisL	TCCTTCCTTA AGGAAGGAAT alLeuProTy	TGAGATCGTG ACTCTAGCAC nGlulleVal	GAGTCAGAGC CTCAGTCTCG GluserGluH	AGTGCTTCGA TCACGAAGCT lnCysPheAs
AATACACCGA TTATGTGGCT	GCCCGGCCG CGGGCCGGC AlaProAlaA	TTGTCGCCGC AACAGCGGCG alvalAlaAl	CAGCCCCTCA GTCGGGGAGT rSerProser	AATGACCTCC TTACTGGAGG ASNASPLeuL	AAGGCACCTT TTCCGTGGAA luGlyThrPh	TGACATCGAA ACTGTAGCTT FASPIleGlu	TGGAAGAAAG ACCTTCTTTC TrpLysLysV	ATGTCCTCAA TACAGGAGTT SnValleuAs	GTCCCCCGGG CAGGGGGCCC uSerProGly	ACTCTGAGAC TGAGACTCTG ThrLeuArgG
GCGCCCACAA CGCGGGTGTT	GGGACAGAAC CCCTGTCTTG gGlyGlnAsn	CTTGTGCTCG GAACACGAGC LeuValLeuV	AAAAGAGGTC TTTTCTCCAG lnLysArgSe	CACTCACTGG GTGAGTGACC rThrHisTrp	CAGTGCGAAG GTCACGCTTC GlnCysGluG	CACCCTGGAG GTGGGACCTC hrProTrpSe	GTCTTTACTG CAGAAATGAC SSerLeuLeu	GCTGAGGACA CGACTCCTGT AlaGluAspA	TCAACATGTT AGTTGTACAA alasnMetLe	TCCCACTGAG AGGTGACTC PProThrGlu
CGCAATCTCT GCGTTAGAGA	TGGAACAACG ACCTTGTTGC etGluGlnAr	CCCCAAGACC GGGGTTCTGG lProLysThr	GCCCCACAAC CGGGGTGTTG AlaProGlnG	AGGACTATAG TCCTGATATC lnAspTyrSe	CACAGTGTGT GTGTCACACA nThrvalCys	GGTGATTGTA CCACTAACAT GlyAspCysT	TTGTTTGCAA AACAAACGTT heValCysLy	ACGACCTGGG TGCTGGACCC nArgProGly	CCAACAGGTG GGTTGTCCAC ProThrGlyV	ATGAAGGTGA TACTTCCACT snGluGlyAs
CGGAGAACCC GCCTCTTGGG	CCTACCGCCA GGATGGCGGT M	GGCTCCGGGT CCGAGGCCCA lyLeuArgVa	GCAGAGAGCG CGTCTCTCGC nGlnArgAla	AAATATGGAC TTTATACCTG LYSTYTGLYG	CGACCAGAAA GCTGGTCTTT hrThrArgAs	GGTCAAGGTC CCAGTTCCAG tValLysVal	GTGGCTGTGT CACCGACACA ValAlaValP	GAAGCTCACA CTTCGAGTGT rgserserGl	GCCAGCAGAG CGGTCGTCTC uProAlaGlu	GTTCCAGCAA CAAGGTCGTT VAlProAlaA
AGCACGCGGC	AAGAGCGTTC TTCTCGCAAG	GCCAGGCCTG CGGTCCGGAC AlaArgProG	TAGCTCCCCA ATCGAGGGGT euAlaProGl	CATCTCCTGC GTAGAGGACG slleSerCys	CCCTGCACCA GGGACGTGGT ProCysThrT	CCAGAGGGAT GGTCTCCCTA roArgGlyMe	AGTCTTGATT TCAGAACTAA lValLeuile	CGTGTGGACA GCACACCTGT ArgValAspA	AAGTCCAGGA TTCAGGTCCT luvalGlnGl	GAGGCTGCTG CTCCGACGAC gArgLeuLeu
CGCATAAATC GCGTATTTAG	GAGAGACTAT CTCTCTGATA	GGCGCGGGGA CCGCGCCCT uAlaArgGly	CAACAAGACC GTTGTTCTGG GlnGlnAspL	GTAGAGATTG CATCTCTAAC lyargaspCy	GGAGCTAAGT CCTCGATTCA lGluLeuser	ACAGGGTGTC TGTCCCACAG ThrGlyCysP	TTGCAGCCGT AACGTCGGCA alAlaAlaVa	GGACCCTGAG CCTGGGACTC yASPProGlu	CAGGAAATGG GTCCTTTACC GlnGluMetG	CTCAGAGGAG GAGTCTCCTC erGlnArgAr
CCCACGCGTC	CCACGGGCCT GGTGCCCGGA	GACCCAGGGA CTGGGTCCCT ProArgGl	TCTGATCACC AGACTAGTGG LeuileThr	TCAGAAGACG AGTCTTCTGC SerGluAspG	CAGGTGAAGT GTCCACTTCA GlyGluVa	GAAGTGCCGC CTTCACGGCG LysCysArg	GGAGTCACAG CCTCAGTGTC GlyValThrV	GTGGTGGTGG CACCACC GlyGlyGl	GGTCCCTGAG CCAGGGACTC ValProGlu	GCTGAAAGGT CGACTTTCCA AlaGluArgS
H	101	201	301	401	501	601	701	801	901	1001

1101 CCTTTGACTC CTGGGAGCCG CTCATGAGGA AGTTGGGCCT CATGGATANAGG TGGCTAAAGC TGAGGCAGCG GGCCACGGG ACACCTTGTA GGAAACTGAG GACCCTCGGC GAGTACTCCT TCAACCCGGA GTACCTGTTA CTCTATTTCC ACCGATTTCG ACTCCGTCGC CCGGTGTCCC TGTGGAACAT 322 Pheaspse rtrpGlupro Leumetargt ysLeuGlyLe umetaspasn Gluilelysv alalalysal aglualaala GlyHisarga spThrLeuTyr	GCCTCTGTCC ACACCCTGCT GGATGCCTTG GAGACGCTGG GAGAGAGTT TGCCAAGCAG CGGAGACAGG TGTGGGACGA CCTACGGAAC CTCTGCGACC CTCTCTGTA ACGGTTCGTC AlaserValH isThrLeuLe uAspAlaLeu GluThrLeuG lyGluArgLe uAlaLysGln	ATCTAGAAGG TAATGCAGAC TCTGCCWTGT CCTAAGTGTG ATTCTCTTCA GGAAGTGAGA TAGATCTTCC ATTACGTCTG AGACGGAACA GGATTCACAC TAAGAGAAGT CCTTCACTCT YrLeuGluGl yAsnAlaAsp SerAlaXqqS erOC*	CCAACTG GACTCCAGTC AGTAGGAAAG TGCCACAATT GTCACATGAC CGGTACTGGA AGAAACTCTC GGTTGAC CTGAGGTCAG TCATCCTTTC ACGGTGTTAA CAGTGTACTG GCCATGACCT TCTTTGAGAG	1501 CCATCCAACA TCACCCAGTG GATGGAACAT CCTGTAACTT TTCACTGCAC TTGGCATTAT TTTTATAAGC TGAATGTGAT AATAAGGACA CTATGGAAAT GGTAGGTTGT AGTGGGTCAC CTACCTTGTA GGACATTGAA AAGTGACGTG AACCGTAATA AAAATATTCG ACTTACACTA TTATTCCTGT GATACCTTTA	TTTGGTT TGGGATGTCA TTGTTTTCAC AGCACTTTTT TATCCTAATG TAAATGCTTT ATTTATTATA AAACCAA ACCCTACAGT AACAAAGTG TCGTGAAAAA ATAGGATTAC ATTTACGAAA TAAATAAATA	1701 TIGGGCTACA TIGIAAGAIC CAICTACAAA AAAAAAAAA AAAAAAAAG GGCGGCCGGG ACTCTAGAGT CGACCTGCAG AAGCTIGGCC GCCAIGGCC AACCCGAIGI AACAITCTAG GIAGAIGIIT ITITITITI TITITITIT CCGCCGGCGC IGAGAICICA GCIGGACGIC ITCGAACCGG CGGIAACCGG
TGGCTAA ACCGATT alalaLy	GGATGCC CCTACGG uAspAla	TCTGCCW AGACGGA SerAlaX	TGCCACAATT ACGGTGTTAA	TTTTATAAGC	AGCACTT	ACTCTAG
GAGATANAGG CTCTATTTCC GluilelysV	ACACCCTGCT TGTGGGACGA isThrLeuLe	AAGATTGAGG ACCACTTGTT GAGCTCTGGA AAGTTCATGT ATCTAGAAGG TAATGCAGAC TCTGCCWTGT TTCTAACTCC TGGTGAACAA CTCGAGACCT TTCAAGTACA TAGATCTTCC ATTACGTCTG AGACGGAACA LysileGlua sphisLeule uSerSerGly LysPheMetT yrLeuGluGl yAsnAlaAsp SerAlaXqqS	AGTAGGAAAG TCATCCTTTC	TTGGCATTAT AACCGTAATA	TTGTTTTCAC AGCACTTTTT AACAAAAGTG TCGTGAAAAAA	AAAAAAAAG GGCGGCCGCG ACTCTAGAGT TTTTTTTTC CCGCCGGCGC TGAGATCTCA
CATGGACAAT GTACCTGTTA uMetAspAsn			GACTCCAGTC	TTCACTGCAC AAGTGACGTG	TGGGATGTCA ACCCTACAGT	AAAAAAAAG TTTTTTTTC
AGTTGGGCGT TCAACCCGGA YSLEUGlyLe	CGGGCGAGAT GCCGCTCTA rGlyArgAsp	GAGCTCTGGA AAGTTCATGT CTCGAGACCT TTCAAGTACA uSerSerGly LysPheMetT	AGCCCAACTG TCGGGTTGAC	CCTGTAACTT GGACATTGAA	AGATTTGGTT TCTAAACCAA	aaaaaaaaa Tttttttt
CTGGGAGCCG CTCATGAGGA AGTTGGGCGT GACCCTCGGC GAGTACTCCT TCAACCCGGA TTTPGluPro LeuMetArgL ysLeuGlyLe	ATAAAGTGGG TCAACAAAAC CGGGCGAGAT TATTTCACCC AGTTGTTTTG GCCCGCTCTA IleLysTrpV alasnLysTh rGlyArgAsp	GAGCTCTGGA CTCGAGACCT uSerSerGly	TTCTGGAAAA AAGACCTTTT	GATGGAACAT CTACCTTGTA	GCGTACTTTG	CATCTACAAA GTAGATGTTT
CTGGGAGCCG GACCCTCGGC rTrpGluPro	ATAAAGTGGG TCAACAAAAC CGGGCGAGAT TATTTCACCC AGTTGTTTTG GCCCGCTCTA IleLysTrpV alasnLysTh rGlyArgAsp	AAGATTGAGG ACCACTTGTT TTCTAACTCC TGGTGAACAA LysileGluA spHisLeuLe	CCTTCCCTGG TTTACCTTTT TTCTGGAAAA AGCCCAACTGGGAAGGGACC AAATGGAAAA AAGACCTTTT TCGGGTTGAC	TCACCCAGTG GATGGAACAT CCT AGTGGGTCAC CTACCTTGTA GGA	GTCTGGATCA TTCCGTTTGT GCGTACTTTG AGATTTGGTT CÂGACCTAGT AAGGCAAACA CGCATGAAAC TCTAAACCAA	TTGGGCTACA TTGTAAGATC CATCTACAAA AAAAAAAAAA
CCTTTGACTC GGAAACTGAG PheAspSe	1201 CACGATGCTG ATAAAGTGGG TCAACAAAAC CGGGCGAGAT GTGCTACGAC TATTTCACCC AGTTGTTTTG GCCCGCTCTA 355 ThrMetLeu IleLysTrpV alasnLysTh rGlyArgAsp	1301 AAGATTGAGG ACCACTTGTT GAGCTCTGGA AAGTTCATGT TTCTAACTCC TGGTGAACAA CTCGAGACCT TTCAAGTACA 388 LysileGlua spHisLeuLe uSerSerGly LysPheMetT	1401 CCTTCCCTGG TTTACCTTTT TTCTGGAAAA AGC GGAAGGGACC AAATGGAAAA AAGACCTTTT TCG	CCATCCAACA GGTAGGTTGT	1601 GTCTGGATCA TTCCGTTTGT GCGTACTTTG AGA CÂGACCTAGT AAGGCAAACA CGCATGAAAC TCT	TTGGGCTACA AACCCGATGT
1101	1201	1301	1401	1501	1601	1701

Fig. 8 (cont.)

LAPQQRAAPQQKRSSPSEGLCPPGHHISEDGRDCISCKYGQDYSTHWNDLLFCLRCTRCD SGEVELSPCTTTRNTVCQCEEGTFREEDSPEMCRKCRTGCPRGMVKVGDCTPWSDIECVH KESGIIIGVTVAAVVLIVAVFVCKSLLMKKVLPYLKGICSGGGGDPERVDRSSQRPGAED <u>MEQRGONAPAASGARKRHGPGPREARGARPGLRVPKTLVLVVAAVLLLVSAESALITQQD</u> **NVINEIVSILQPTQVPEQEMEVQEPAEPTGVNMLSPGESEHLLEPAEAERSQRRRLLVPA** NEGDPTETLRQCFDDFADLVPFDSWEPLMRKLGLMDNEIKVAKAEAAGHRDTLYTMLIKW VNKTGRDASVHTLLDALETLGERLAKOKIEDHLLSSGKFMYLEGNADSALS 121 181 241 301 61 361

Fig. 16

F/G. /2

` ·

FIG. 13

Express Mail No. EM239524640 US
Date Mailed: June 18, 1997
Patent Docket P1110

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Application of

Ashkenazi et al.

Serial No.: To Be Assigned

Filed:

June 18, 1997

For: Apo-2DcR

Group Art Unit: To Be Assigned

Examiner: To Be Assigned

CERTIFICATE RE: SEQUENCE LISTING UNDER 37 CFR § 1.821(f)

BOX SEQUENCE Assistant Commissioner of Patents Washington, D.C. 20231

Sir:

I hereby state that the Sequence Listing submitted herewith is submitted in paper copy and a computer-readable diskette, and that the content of the paper and computer readable copies are the same.

Respectfully submitted,

anet Maischan

GENENTECH, INC.

Date: June 18, 1997

Diane L. Marschang

Attorney for the Applicants

Reg. No. 35,600

460 Pt. San Bruno Blvd.

So. San Francisco, CA 94080-4990

Phone: (415) 225-5416 Fax: (415) 952-9881

Revised (10/18/95)