Московский физико-технический институт (ГУ) Физтех-школа прикладной математики и информатики

Дерево Штейнера Алгоритм 2-аппроксимации и его анализ

Андрющенко Соломон Б05-222

Аннотация

Задача минимального дерева Штейнера является одной из фундаментальных в области комбинаторной оптимизации и часто встречается в практических приложениях, таких как проектирование коммуникационных сетей и схемотехники. В данной работе автор исследует версию задачи дерева Штейнера на графах. Он доказывает **NP**-полноту данной задачи и предлагает алгоритм, который гарантирует приближённое решение с коэффициентом приближения 2.

Содержание

1	Введение	3
	1.1 Постановка задачи	. 3
	1.2 Постановка метрической версии задачи	
2	NP-полнота	4
	2.1 Chromatic Number \leq_p Exact Cover	. 4
	2.2 Exact Cover \leq_p Steiner Tree	. 5
3	Алгоритм	6
	3.1 Сведение к метрической версии	6
	3.2 2-приближение	
	3.3 Реализация алгоритма	
	3.4 Анализ работы	
4	Вывод	10
5	Ссылки	10

1 Введение

1.1 Постановка задачи

Дан неориентированный связный граф G=(V,E), в нём выделено множество вершин V_0 . Также имеются веса на рёбрах $w:E\to\mathbb{R}_+$. Требуется найти дерево T минимального веса, покрывающее все вершины V_0 .

1.2 Постановка метрической версии задачи

Дан неориентированный полный граф G=(V,E), в нём выделено множество вершин V_0 . Также имеются веса на рёбрах $w:E\to\mathbb{R}_+$ и выполнено неравенство треугольника: $\forall x,\,y,\,z:\,w(x,\,z)\leqslant w(x,\,y)\,+\,w(y,\,z)$. Требуется найти дерево T минимального веса, покрывающее все вершины V_0 .

2 NР-полнота

Будем доказывать две сводимости: от задачи Chromatic Number к задаче Exact Cover и от задачи Exact Cover к Steiner Tree. **NP**-полнота задачи Chromatic Number предполагается известной. Автор нашёл доказательства в [1] (стр. 15).

Задача Chromatic Number:

INPUT: Граф G, натуральное число k.

PROPERTY: Существует фукнция $\phi : \mathbb{N} \to \mathbb{Z}_k$, такая что, если вершины с номерами u и v соединяются ребром, то $\phi(u) \neq \phi(v)$.

Задача Exact Cover:

INPUT: Семейство $\{S_j\}$ подмножеств $\{1, \ldots, n\}$. PROPERTY: Существует подсемейство $\{T_h\} \subseteq \{S_j\}$, такое что все T_h не пересекаются и $\bigcup T_h = \bigcup S_j = \{1, \ldots, n\}$.

Задача Steiner Tree:

INPUT: Граф G = (V, E), подмножество вершин $V_0 \subseteq V$, функция весов на рёбрах $w : E \to \mathbb{Z}_+ \cup \{0\}$, натуральное число k.

PROPERTY: G имеет поддерево, веса не более k, содержащее в себе все вершины V_0 .

Заметим, что проверить ответ в задаче Steiner Tree можно за полиномиальное время. Действительно, нужно только проверить валидность поддерева и принадлежность всех вершин V_0 этому поддереву, а также что сумма на рёбрах не больше k. Всё это можно сделать за линейное время от размера E. Поэтому эта задача лежит в \mathbf{NP} .

2.1 Chromatic Number \leq_p Exact Cover

Обозначим за E(v) — множество инцидентных рёбер вершине v. Понятно, что вместо множества $M = \{1, \ldots, n\}$ в задаче Exact Cover мы можем брать любое конечное множество, поэтому:

$$\begin{cases} M \ = \ V \cup E \cup \{(v,e,i) : v \in V, \, e \in E(v), \, i \in \{1,\dots,k\}\} \\ S_j \ = \ \begin{bmatrix} \{v\} \cup \{(v,e,i) : e \in E(v)\}, \, v,i - \text{ fixed.} \\ \{e\} \cup \{(v_1,e,i) : i \neq t_1\} \cup \{(v_2,e,j) : j \neq t_2\}, \, e,v_1,v_2,t_1,t_2 - \text{ fixed,} \\ \text{where } v_1, \, v_2 \text{ are incident to } e \text{ and } t_1,t_2 \in \{1,\dots,k\}, t_1 \neq t_2. \end{cases}$$

Пояснение: для каждой вершины мы фиксируем цвет (число $i \in \{1, ..., k\}$) с помощью множеств S_j первого типа, а с помощью множеств второго типа мы проверяем, что у соседних вершин не совпадает цвет.

2.2 Exact Cover \leq_p Steiner Tree

$$\begin{cases} V = \{n_0\} \cup \{S_j\} \cup \{1, \dots, n\} \\ V_0 = \{n_0\} \cup \{1, \dots, n\} \\ E = \{(n_0, S_j)\} \cup \{(S_j, u) : u \in S_j\} \\ w((n_0, S_j)) = |S_j| \\ w((S_j, u)) = 0 \\ k = n \end{cases}$$

Пояснение: мы хотим чтобы семейство $\{S_j\}$ покрывало все вершины $\{1,\ldots,n\}$, поэтому добавляем их всех в терминальные (в V_0). Также добавляем в терминальные фиктивную вершину n_0 , которая является как бы связующим звеном между разными множествами S_j . Так как мы хотим брать только непересекающиеся S_j , то ставим k=n, и $w\left((n_0,S_j)\right)=|S_j|$.

Замечание: если у нас найдётся такое поддерево веса не более k=n, то у него вес будет в точности равен n и в $\{T_h\}$ будут входить множества S_j , соответствующие вершинам S_j поддерева.

3 Алгоритм

Автор нашёл алгоритмы сведения к метрической версии задачи и нахождения 2приближения в [2].

3.1 Сведение к метрической версии

Положим за b(x, y) — вес кратчайшего (по сумме весов на рёбрах) пути от вершины x до вершины y. Заметим, что выполняется неравенство треугольника: $\forall x, y, z$: $b(x, z) \leq b(x, y) + b(y, z)$, так как в правой части неравенства накладывается ограничение на кратчайший путь от x до z — он должен проходить через y. Заметим, что такое преобразование можно выполнить за полиномиальное время от количества вершин воспользовавшись алгоритмом Флойда (точное время работы: $\Theta(|V|^3)$). Теперь докажем, что полученная метрическая версия задачи эквивалентна исходной:

Допустим мы нашли минимальное по весу поддерево T, содержащее V_0 , в метрической версии задачи. Заметим, что мы можем в исходной задаче найти поддерево такого же веса или даже меньше: нужно для каждого ребра (x,y) из T брать кратчайший путь из x в y в исходном графе. Причём, заметим, что верно и обратное, а именно: если мы нашли минимальное по весу поддерево T, содержащее V_0 , в исходной версии задачи, то если мы возьмём то же поддерево (со всеми его рёбрами) в метрической версии задачи, то суммарный вес дерева может только уменьшиться (так как вес каждого ребра заменён теперь на что-то меньшее, а именно на вес кратчайшего пути между парой вершин).

Следовательно, веса минимальных поддеревьев из исходной и из метрической версий задач совпадают. Также, понятно, как имея решение одной задачи сразу получить решение другой (по алгоритму из доказательства выше).

3.2 2-приближение

Приведём полиномиальный алгоритм, который для метрической версии задачи (а значит и для исходной) будет находить подходящее поддерево веса не более удвоенного оптимума (называется 2-аппроксимацией или 2-приближением).

Допустим у нас есть оптимальное поддерево. Давайте раздвоим каждое ребро (создадим на этом месте два противоположных ориентированных ребра) этого поддерева. Следовательно, в этом новом ориентированном графе будет Эйлеров цикл. Далее, возьмём какую-нибудь вершину из V_0 (будем называть такие вершины терминальными) за «первую» и пойдём по этому циклу до следующей не посещённой терминальной вершины, постепенно стягивая рёбра графа (от такой операции суммарный вес полученного дерева не увеличится по неравенству треугольника). Так повторим для «второй» и «третьей» терминальной вершины и так далее, пока не исчерпаем все терминальные вершины. Заметим, что таким образом мы получили новое поддерево только на терминальных вершинах, у которого суммарный вес не более удвоенного веса исходного оптимального поддерева.

Теперь воспользуемся тем, что наше новое поддерево использует только терминальные вершины. Задача сводится к нахождению минимального остова для графа, что можно сделать за $O(|E| \cdot log(|V|))$ по времени с помощью алгоритма Прима, что, конечно, является полиномом от |V|.

Также приведём пример таких графов, где наш алгоритм даёт почти в 2 раза больший ответ, чем оптимальный, тем самым показав, что наша оценка точная. Для этого нужно взять $|V_0| = |V| - 1$ и терминальные вершины образуют клику, где каждое ребро веса 2. Осталась одна нетерминальная вершина, которую соединим со всеми терминальными вершинами, рёбрами веса 1:

Тогда, преобразование графа к метрической версии его не изменит, следовательно, нам нужно найти минимальный остов на клике из терминальных вершин, где каждое ребро веса 2. Это будет 2(|V|-2). С другой стороны, нетрудно понять, что оптимальное поддерево тут будет содержать единственную нетерминальную вершину и все рёбра из неё в терминальные. В таком случае суммарный вес будет |V|-1. Получаем:

$$\frac{2(|V|-2)}{|V|-1} \to 2, |V| \to \infty$$

3.3 Реализация алгоритма

Для проверки алгоритма 2-аппроксимации автор реализовал алгоритм Dreyfus-Wagner, строящий оптимальное поддерево за $O\left(4^t \cdot |V|^2\right)$ (где t — количество терминальных вершин), а также сформулировал оптимизационную задачу с помощью которой написал ещё один точный алгоритм построения дерева Штейнера на библиотеке 'pyscipopt'.

Для построенных алгоритмов написаны тесты, которые проверяют как общие, так и краевые случаи поставленной задачи, а также границы коэффициента аппроксимации.

Посчитано, какую точность даёт построенный приближённый алгоритм, замерено время выполнения всех алгоритмов кроме оптимизационного (он, конечно, даёт всегда оптимальный ответ, но работает несопоставимо долго уже при $|V|\geqslant 20$). Построены соответствующие графики.

Код на C++ получился достаточно большой (около 500 строк), поэтому приведёна только главная часть:

```
int main() {
    . . .
    // reading input data
    Graph graph;
    graph.ReadFromList(std::cin);
    // converting into metric task
    MetricGraph metric_graph(graph);
    metric_graph.Convert();
    // finding minimum spanning tree
    MST mst(metric_graph);
    std::vector<Graph::Edge> metric_edges = mst.Find(terminals);
    // expanding our solution from metric back to initial problem
    std::vector < Graph::Edge > edges = ExpandEdgesFromMetricToInitial(
        metric_graph, metric_edges
    );
    // printing the result edges in a subtree
    for (const Graph::Edge& edge : edges) {
        std::cout << edge.from + 1 << ', ', << edge.to + 1 << '\n';
    }
}
ссылка на алгоритм [3]
```

3.4 Анализ работы

Для сравнения алгоритмов автор решил взять графы G(n, p), так как варьируя параметры n и p по сетке можно получить все возможные графы. Будем обозначать отношение количества терминальных вершин к размеру всего графа за $terminal_p = \frac{|V_0|}{|V|}$.

Оценка сверху на коэффициент приближения не нарушается. Более того, для сгенерированных входных данных приближённый алгоритм даёт приближение не хуже $\frac{4}{3}$. Также можно заметить, что при такой хорошей точности приближённого алгоритма он работает куда быстрее Dreyfus-Wagner. Это можно наблюдать уже при $n=30,\ terminal\ p=0.3$.

Max Approximate Coefficient

$\mathbf{p}\backslash\mathbf{n}$	5	10	15	20	30
0.1	1.0	1.0	1.0	1.0	1.219 1.250 1.333 1.250
0.3	1.0	1.0	1.0	1.0	1.250
0.7	1.0	1.0	1.0	1.0	1.333
0.9	1.0	1.0	1.0	1.0	1.250

 $terminal_p = 0.1$

Average Approximate Coefficient

$\mathbf{p} \backslash \mathbf{n}$	5	10	15	20	30
0.1	1.0	1.0	1.0	1.0	1.034
0.3	1.0	1.0	1.0	1.0	1.042
0.7	1.0	1.0	1.0	1.0	1.042
0.9	1.0	1.0	1.0	1.0	1.034 1.042 1.042 1.051

 $terminal_p = 0.1$

Average Time Complexity (ms) Dreyfus Wagner

				20	
0.1	0.01	0.05	0.01	0.05 0.17 0.17 0.14	0.86
0.3	0.02	0.00	0.01	0.17	0.55
0.7	0.01	0.01	0.01	0.17	0.62
0.9	0.02	0.06	0.02	0.14	0.55

 $terminal_p = 0.1$

Average Time Complexity (ms) 2-Approximation

	5				
0.1	0.01 0.03 0.04 0.00	0.03	0.02	0.02	0.07
0.3	0.03	0.03	0.01	0.02	0.04
0.7	0.04	0.00	0.01	0.11	0.03
0.9	0.00	0.03	0.01	0.05	0.04

 $\mathit{terminal_p} = 0.1$

Max Approximate Coefficient

$\overline{\mathbf{p} \backslash \mathbf{n}}$	5	10	15	20	30
0.1	1.0	1.000	1.200 1.231 1.250 1.286	1.235	1.229
0.3	1.0	1.231	1.231	1.267	1.179
0.7	1.0	1.250	1.250	1.222	1.273
0.9	1.0	1.167	1.286	1.200	1.250

 $terminal_p = 0.3$

Average Approximate Coefficient

$\mathbf{p} \backslash \mathbf{n}$	5	10	15	20	30
0.1	1.0	1.000	1.045	1.053	1.050
0.3	1.0	1.015	1.040	1.047	1.055
0.7	1.0	1.027	1.038	1.043	1.058
0.9	1.0	1.000 1.015 1.027 1.017	1.050	1.042	1.056

 $terminal_p = 0.3$

Average Time Complexity (ms) Dreyfus Wagner

$p \ n$	5	10	15	20	30
0.1	0.02	0.00	0.48	6.14	245.80
0.3	0.01	0.06	0.93	7.28	252.00
0.7	0.00	0.07	0.88	7.36	252.07
0.9	0.02	0.04	0.89	7.37	245.80 252.00 252.07 249.73

 $terminal_p = 0.3$

Average Time Complexity (ms) 2-Approximation

$\mathbf{p} \setminus \mathbf{n}$	5	10	15	20	30
0.1	0.00 0.02 0.01 0.02	0.00	0.00	0.05	0.07
0.3	0.02	0.01	0.01	0.06	0.11
0.7	0.01	0.01	0.06	0.06	0.05
0.9	0.02	0.05	0.02	0.05	0.06

 $terminal_p = 0.3$

4 Вывод

В исследовании была проанализирована одна из ключевых задач в области комбинаторной оптимизации — построение оптимального дерева Штейнера. Мы доказали сложность этой задачи, рассмотрели приближённый метод её решения, и даже получили верхнюю оценку его точности. Также мы провели сравнительный анализ времени работы различных алгоритмов на наборе случайных тестовых задач.

5 Ссылки

- 1. Karp, Reducibility Among Combinatorial problems, 1972. Ссылка
- 2. Algorithms Lab, Approximations algorithms for the Steiner Tree Problem and the Traveling Salesperson Problem (TSP), 2023. Ссылка
- 3. Solomon Andryushenko, Steiner tree 2-approximation polynomial algorithm implementation with tests, 2024. Ссылка