Universidade de São Paulo

Instituto de Física de São Carlos

Lista 4

Pedro Calligaris Delbem 5255417

Professor: Attilio Cucchieri

Sumário

1 Matrix Operations	rix Operations	2	
	1.1	Exercício 1	2

1 Matrix Operations

1.1 Exercício 1

Tarefa: Considere a matriz $n \times n$:

$$A = \begin{pmatrix} -5/2 & 4/3 & -1/12 & 0 & \dots & 0 & 0 \\ 4/3 & -5/2 & 4/3 & -1/12 & \dots & 0 & 0 \\ -1/12 & 4/3 & -5/2 & 4/3 & \dots & 0 & 0 \\ 0 & -1/12 & 4/3 & -5/2 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \dots & -5/2 & 4/3 \\ 0 & 0 & 0 & 0 & \dots & 4/3 & -5/2 \end{pmatrix}$$

- Use o método de Householder para obter a correspondente matriz tridiagonal A_t .
- Verifique o produto $A_t = O^T A O$.
- Calcule o menor e o maior autovalor λ , e os correspondentes autovetores y_t , de A_t .
- Calcule os correspondentes autovetores y de A.
- Verifique a equação $Ay = \lambda y$ para esses autovalores.

Considere os casos n = 10 e n = 20.

O código foi compilado com o comando:

gfortran L6-5255417-ex-2.f90 -Wall -Wextra -pedantic -ffree-form -
o L6-5255417-ex-2.exe