This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

What is claimed is:

- 1. A metallic material for an electronic component, said metallic material consisting of an alloy including mainly Cu and having a composition of Mo in an amount of 0.1 to 3.0% by weight, a plurality of elements selected from a group consisting of Al, Au, Ag, Ti, Ni Co and Si in a total amount of 0.1 to 3.0% by weight and Cu as a remaining content
- 2. A metallic material for an electronic component,
 10 said metallic material consisting of a binary alloy including mainly Cu and Mo in an amount of 0.1 to 3.0% by weight.
- said metallic material consisting of an alloy including mainly Cu and having a composition of one or a plurality of elements selected from the group consisting of Cr, Ta, W and Ti in a total amount of 0.1 to 3.0% by weight, one or a plurality of elements selected from a group consisting of Al, Au, Ag, Ti, Ni Co and Si in a total amount of 0.1 to 3.0% by weight.
 - 4. The metallic material for an electronic component according to one of claims 1 to 3, said metallic material having electrical resistance lower than 10 μ Ω cm.
- 25 5. A metallic material for an electronic component,

said metallic material consisting of a ternary alloy including mainly of Cu, Mo in an amount of 0.1 to 3.0% by weight and one element selected from a group consisting of Al, Au, Ag, Ti, Ni, Co and Si in an amount of 0.1 to 3.0% by weight.

5

- 6. The metallic material for an electronic component according to claim 5, said metallic material having electrical resistance higher than 1.5 μ Ω cm and lower than 7.0 μ Ω cm.
- 7. The metallic material for an electronic component according to one of claim 1, claim 2, claim 3 and claim 5, said metallic material being much as a material for any one of a wiring pattern, an electrode, a contact and a target for a sputtering process.
- 8. An electronic component having a wiring pattern, an electrode or a contact using a metallic material, said metallic material consisting of an alloy including mainly Cu and having a composition of Mo in an amount of 0.1 to 3.0% by weight, one or a plurality of elements selected from a group consisting of Al, Au, Ag, Ti, Ni, Co and Si in a total amount of 0.1 to 3.0% by weight and Cu as a remaining content.
 - 9. An electronic component having a wiring pattern, an electrode or a contact using a metallic material, said metallic material consisting of a binary alloy

including mainly Cu and Mo in an amount of 0.1 to 3.0% by weight.

an electrode or a contact using a metallic material, said metallic material consisting of an alloy including mainly Cu and having a composition of one or a plurality of elements selected from a group consisting of Cr. Ta. W and Ti in a total amount of 0.1 to 3.0% by weight, one or a plurality of elements selected from a group consisting of Cr. Ta. and Consisting of Al. Au. Ag. Ti. Ni Co and Si in a total amount of 0.1 to 3.0% by weight amount of 0.1 to 3.0% by weight and Cu as a remaining content.

2

ij.,

11. The electronic component according to one of claims 8 to 10. Sentent control component having a wiring pattern, an electrode or a contact which are formed by an etching process using a solution including phosphoric acid and nitric acid.

15

20

- 12. The electronic component according to one of claims 8 to 10, said electronic component having a wiring pattern, an electrode or a contact which are formed by an etching process under a gas atmosphere including chlorine.
- 13. The electronic component according to one of claims 8 to 10, said electronic component having region other than a wiring pattern, an electrode and a contact

are formed by an etching process under a gas atmosphere including fluorine.

- 14. The electronic component according to one of claims 8 to 10, said electronic component having a wiring 5 pattern, an electrode or a contact which are formed by a heat treatment in the range of the temperatures from 100 % to 750 %.
- 15. The electronic component according to one of claims 8 to 10, said electronic components having a wiring pattern, an electrode or a contact which are formed on a backing layer made of one of Ti, W, Ta, Mo, indium tin oxide, titanium nitride, exidation silicon and silicon nitride.
- 16. The electronic component according to one of claims 8 to 10, said electronic component having a wiring pattern, an electrode or a contact which are directly formed on a substrate made of one of glass or plastic resin.
- an electrode or a contact using a metallic material, said metallic material consisting of an alloy including mainly Cu and having a composition of Mo in an amount of 0.1 to 3.0 % by weight, one or a plurality of elements selected from a group consisting of Al, Au, Ag, Ti, Ni

 Co and Si in a total amount of 0.1 to 3.0% by weight

and Cu as a remaining content.

5

20

- 18. An electronic device having a wiring pattern, an electrode or a contact using a metallic material, said metallic material consisting of a binary alloy including mainly Cu and Mo in an amount of 0.1 to 3.0 % by weight.
- an electrode or a contact using a metallic material, said metallic material consisting of an alloy including mainly Cu and having a composition of one or a plurality of elements selected from a group consisting of Cr. Ta, wand Ti in autotal amount of 0.1 to 3.0% by weight, one or a plurality of elements relaced from a group consisting of Al, Analyza, Ti Ni Colard Si in a total amount of 0.1 to 3.0% by weight and Cu as a remaining content.
 - 20. The electronic device according to one of claims 17 to 19, said electronic device having a wiring pattern, an electrode or a contact which are formed by an etching process using a solution including phosphoric acid and nitric acid.
 - 21. The electronic device according to one of claims 17 to 19, said electronic device having a wiring pattern, an electrode or a contact which are formed by an etching process under a gas atmosphere including chlorine.

22. The electronic device according to one of claims
17 to 19, said electronic device having region other
than a wiring pattern, an electrode and a contact, are
formed by an etching process under a gas atmosphere
including fluorine.

5

10

15

20

- 23. The electronic device according to one of claims 17 to 19, said electronic device having a wiring pattern, an electrode or a contact which are formed by a heat treatment in the range of the temperatures from 100 $^{\circ}$ C to 750 $^{\circ}$ C.
- 24. The electronic device according to one of claims 17 to 19, said electronic device having a wiring pattern, an electrode or a contact which are formed on a backing layer made of one of Ti, W, Ta, Mo, indium tin oxide, titanium nitride, oxidation silicon and silicon nitride.
- 25. The electronic device according to one of claims
 17 to 19, said electronic device having a wiring pattern,
 an electrode or a contact which are directly formed on
 a substrate made of one of glass or plastic resin.
- 26. A working method of a metallic material, in which a metallic film consisting of an alloy including mainly Cu and having a composition of Mo in an amount of 0.1 to 3.0 % by weight, one or a plurality of elements selected from a group consisting of Al, Au, Ag, Ti, Ni

Co and Si in a total amount of 0.1 to 3.0% by weight and Cu as a remaining content is etched by using a solution including phosphoric acid and nitric acid to form a wiring pattern, an electrode or a contact.

27. A working method of a metallic material, in which a metallic film consisting of a binary alloy including mainly Cu and Mo in an amount of 0.1 to 3.0 % by weight is etched by using a solution including phosphoric acid and nitric acid to form a wiring pattern, an electrode or a contact.

5

10

- which as metallic film acconsisting of an alloy including mainly Cu having a composition of one or a plurality of elements selected an accompanisating of Cr. Ta.

 W and Ti in a total amount of 0.1 to 3.0% by weight, one or a plurality of elements selected from a group consisting of Al. Au. Ag. Ti. Ni Co and Si in a total amount of 0.1 to 3.0% by weight amount of 0.1 to 3.0% by weight and Cu as a remaining content is etched by using a solution including phosphoric acid and nitric acid to form a wiring pattern, an electrode or a contact.
 - 29. A working method of a metallic material, in which a metallic film consisting of an alloy including mainly Cu and having a composition of Mo in an amount of 0.1 to 3.0 % by weight, one or a plurality of elements

selected from a group consisting of Al, Au, Ag, Ti, Ni Co and Si in a total amount of 0.1 to 3.0% by weight and Cu as a remaining content is etched under a gas atmosphere including hydrochloric acid to form a wiring pattern, an electrode or a contact.

5

10

- 30. A working method of a metallic material, in which a metallic film consisting of a binary alloy including mainly of Cu and Mo in an amount of 0.1 to 3.0% by weight is etched under a gas atmosphere including hydrochloric acid to form a wiring pattern, an electrode or a contact.
- 31. A working method of a metallic material, in which a metallic film consisting of an alloy including mainly Cu and having a composition of one or a plurality of elements selected from a group consisting of Cr. Ta. W and Ti in a total amount of 0.1 to 3.0% by weight, one or a plurality of elements selected from a group consisting of Al. Au. Ag. Ti. Ni Co and Si in a total amount of 0.1 to 3.0% by weight and Cu as a remaining content is etched under a gas atmosphere including hydrochloric acid to form a wiring pattern, an electrode or a contact.
- 32. Amanufacturing method of electronic component, in which a metallic film is consisted of an alloy including mainly Cu and having a composition of Mo in

an amount of 0.1 to 3.0 % by weight, one or a plurality of elements selected from a group consisting of Al. Au, Ag, Ti, Ni Co and Si in a total amount of 0.1 to 3.0% by weight and Cu as a remaining content, and a film other than said metallic film is worked by an etching process under a gas atmosphere including fluorine.

- 33. A manufacturing method of an electronic component, in which a metallic film is consisted of a binary alloy including mainly Cu and Mo in an amount of 0.1 to 3.0 % by weight, and a film other than said metallic film is worked by an etching process under a gas atmosphere includes guillustine.
- component pain which a metallic fully is consisted of an alloy including mainly Cu and having a composition of one or a plurality of elements selected from a group consisting of Cr. Ta. W and Ti in a total amount of 0.1 to 3.0% by weight, one or a plurality of elements selected from a group consisting of Al. Au. Ag. Ti. Ni Co and Si in a total amount of 0.1 to 3.0% by weight and Cu as a remaining content, and a film other than said metallic film is worked by an etching process under a gas atmosphere including fluorine.
- 35. A working method of a metallic material, in which a metallic film formed by said metallic material

consisting of an alloy including mainly Cu and having a composition of Mo in an amount of 0.1 to 3.0 % by weight, one or a plurality of elements selected from a group consisting of Al, Au, Ag, Ti, Ni Co and Si in a total amount of 0.1 to 3.0% by weight and Cu as a remaining content is subjected to a heat treatment in the range of temperatures to 100~% to 750~% to form a wiring pattern, an electrode or a contact.

5

which a metallic film formed by said metallic material consisting of a binary alloy including mainly Cu and Mo in an amount of 0.1 to 3.0 % by weight is subjected to a heat treatment in a range of temperatures to 100 °C to 750 °C to form a wiring pattern, an electrode or a contact.

which a metallic film formed by said metallic material consisting of an alloy including mainly Cu and having a composition of one or a plurality of elements selected from a group consisting of Cr. Ta. W and Ti in a total amount of 0.1 to 3.0% by weight, one or a plurality of elements selected from a group consisting of Al. Au. Ag. Ti. Ni Co and Si in a total amount of 0.1 to 3.0% by weight and Cu as a remaining content is subjected to a heat treatment in a range of temperatures to 100 °C

to 750 $^{\circ}$ to form a wiring pattern, an electrode or a contact.

which a metallic film formed by said metallic material, in which a metallic film formed by said metallic material consisting of an alloy including mainly Cu and having a composition of Mo in an amount of 0.1 to 3.0% by weight, one or a plurality of elements selected from a group consisting of Al, Au, Ag, Ti, Ni Co and Si in a total amount of 0.1 to 3.0% by weight and Cu as a remaining content is deposited on a backing layer made of one of Ti, W, Ta, Mo, indium tin oxide, titanium nitride, oxidation silicormand siliconmitative to form a wiring pattern. En electrode are contact.

5

10

- which a metallic film formed by said metallic material consisting of a binary alloy including mainly Cu and Mo in an amount of 0.1 to 3.0 % by weight is deposited on a backing layer made of one of Ti, W, Ta, Mo, indium tin exide, titanium nitride, exidation silicon and silicon nitride to form a wiring pattern, an electrode or a contact.
 - 40. A working method of a metallic material, in which a metallic film formed by said metallic material consisting of an alloy including mainly Cu and having a composition of one or a plurality of elements selected

amount of 0.1 to 3.0% by weigh, one or a plurality of elements selected from a group consisting of Al, Au, Ag, Ti, Ni Co and Si in a total amount of 0.1 to 3.0% by weight and Cu as a remaining content is deposited on a backing layer made of one of Ti, W, Ta, Mo, indium tin oxide, titanium nitride, oxidation silicon and silicon nitride to form a wiring pattern, an electrode or a contact.

- 41. A working method of a metallic material, in which a metallic film formed by said metallic material consisting of an alloy including mainly Cu and having a composition of Mo in an amount of 0.1 to 3.0 % by weight, one or a plurality of elements selected from a group consisting of Al, Au, Ag, Ti, Ni Co and Si in a total amount of 0.1 to 3.0% by weight and Cu as a remaining content is directly deposited on a substrate made of glass or resin such as plastic to form a wiring pattern, an electrode or a contact.
- 42. A working method of a metallic material, in which a metallic film formed by said metallic material consisting of a binary alloy including mainly Cu and Mo in an amount of 0.1 to 3.0 % by weight is directly deposited on a substrate made of glass or resin such as plastic to form a wiring pattern, an electrode or

a contact.

5

- 43. A working method of a metallic material, in which a metallic film formed by said metallic material consisting of an alloy including mainly Cu and having a composition of one or a plurality of elements selected from a group consisting of Cr. Ta. W and Ti in a total amount of 0.1 to 3.0% by weight, one or a plurality of elements selected from a group consisting of Al, Au, Ag, Ti, Ni Co and Si in a total amount of 0.1 to 3.0% by weight and Cu as a remaining content is directly 10 deposited on a substrate made of glass or resin such as plastic to form a wiring pathtern, an electrode or a contact.
- 44. An electronic optical component having reflective film, an electrode or a wiring pattern which 15 are formed by a metallic film consisting of an alloy including mainly Cu and having a content of Mo in an amount of 0.1 to 3.0 % by weight, one or a plurality of elements selected from a group consisting of Al, Au, ... Ag, Ti, Ni, Co and Si in a total amount of 0.1 to 3.0% 20 by weight and Cu as a remaining content.
 - having electronic optical component An reflective film, an electrode or a wiring pattern which are formed by a metallic film consisting of a binary alloy including mainly Cu and Mo in an amount of 0.1

to 3.0 % by weight.

5

10

46. An electronic optical component having reflective film, an electrode or a wiring pattern which are formed by a metallic film consisting of an alloy including mainly Cu and having a composition of one or a plurality of elements selected from a group consisting of Cr. Ta. W and Ti in a total amount of 0.1 to 3.0% by weight, one or a plurality of elements selected from a group consisting of Al. Au. Ag. Ti. Ni Co and Si in a total amount of 0.1 to 3.0% by weight and Cu as a remaining content.