

Reference Specification

Type KX
Safety Standard Certified Lead Type Disc Ceramic Capacitors for General Purpose

Product specifications in this catalog are as of May. 2018, and are subject to change or obsolescence without notice.

Please consult the approval sheet before ordering. Please read rating and Cautions first.

⚠ CAUTION

1. OPERATING VOLTAGE

When DC-rated capacitors are to be used in AC or ripple current circuits, be sure to maintain the Vp-p value of the applied voltage or the Vo-p which contains DC bias within the rated voltage range. When the voltage is started to apply to the circuit or it is stopped applying, the irregular voltage may be generated for a transit period because of resonance or switching. Be sure to use a capacitor within rated voltage containing these irregular voltage.

2. OPERATING TEMPERATURE AND SELF-GENERATED HEAT

Keep the surface temperature of a capacitor below the upper limit of its rated operating temperature range. Be sure to take into account the heat generated by the capacitor itself.

When the capacitor is used in a high-frequency current, pulse current or the like, it may have the self-generated heat due to dielectric-loss. Applied voltage should be the load such as self-generated heat is within 20 °C on the condition of atmosphere temperature 25 °C. When measuring, use a thermocouple of small thermal capacity-K of $\phi 0.1 \text{mm}$ and be in the condition where capacitor is not affected by radiant heat of other components and wind of surroundings. Excessive heat may lead to deterioration of the capacitor's characteristics and reliability.(Never attempt to perform measurement with the cooling fan running. Otherwise, accurate measurement cannot be ensured.)

3. TEST CONDITION FOR WITHSTANDING VOLTAGE

(1) TEST EQUIPMENT

Test equipment for AC withstanding voltage should be used with the performance of the wave similar to 50/60 Hz sine wave.

If the distorted sine wave or over load exceeding the specified voltage value is applied, the defective may be caused.

(2) VOLTAGE APPLIED METHOD

When the withstanding voltage is applied, capacitor's lead or terminal should be firmly connected to the out-put of the withstanding voltage test equipment, and then the voltage should be raised from near zero to the test voltage.

If the test voltage without the raise from near zero voltage would be applied directly to capacitor, test voltage should be applied with the *zero cross. At the end of the test time, the test voltage should be reduced to near zero, and then capacitor's lead or terminal should be taken off the out-put of the withstanding voltage test equipment.

If the test voltage without the raise from near zero voltage would be applied directly to capacitor, the surge voltage may arise, and therefore, the defective may be caused.

*ZERO CROSS is the point where voltage sine wave pass 0V.

- See the right figure -

voltage sine wave

4. FAIL-SAFE

When capacitor would be broken, failure may result in a short circuit. Be sure to provide an appropriate fail-safe function like a fuse on your product if failure would follow an electric shock, fire or fume.

5. VIBRATION AND IMPACT

Do not expose a capacitor or its leads to excessive shock or vibration during use.

6. SOLDERING

When soldering this product to a PCB/PWB, do not exceed the solder heat resistance specification of the capacitor. Subjecting this product to excessive heating could melt the internal junction solder and may result in thermal shocks that can crack the ceramic element.

When soldering capacitor with a soldering iron, it should be performed in following conditions.

Temperature of iron-tip: 400 °C max. Soldering iron wattage: 50W max. Soldering time: 3.5s max.

7. BONDING, RESIN MOLDING AND COATING

In case of bonding, molding or coating this product, verify that these processes do not affect the quality of capacitor by testing the performance of the bonded, molded or coated product in the intended equipment.

In case of the amount of applications, dryness / hardening conditions of adhesives and molding resins containing organic solvents (ethyl acetate, methyl ethyl ketone, toluene, etc.) are unsuitable, the outer coating resin of a capacitor is damaged by the organic solvents and it may result, worst case, in a short circuit.

The variation in thickness of adhesive, molding resin or coating may cause a outer coating resin cracking and/or ceramic element cracking of a capacitor in a temperature cycling.

8. TREATMENT AFTER BONDING, RESIN MOLDING AND COATING

When the outer coating is hot (over 100 °C) after soldering, it becomes soft and fragile. So please be careful not to give it mechanical stress.

Failure to follow the above cautions may result, worst case, in a short circuit and cause fuming or partial dispersion when the product is used.

9. OPERATING AND STORAGE ENVIRONMENT

The insulating coating of capacitors does not form a perfect seal; therefore, do not use or store capacitors in a corrosive atmosphere, especially where chloride gas, sulfide gas, acid, alkali, salt or the like are present. And avoid exposure to moisture. Before cleaning, bonding, or molding this product, verify that these processes do not affect product quality by testing the performance of a cleaned, bonded or molded product in the intended equipment. Store the capacitors where the temperature and relative humidity do not exceed -10 to 40 °C and 15 to 85%.

Use capacitors within 6 months after delivered. Check the solderability after 6 months or more.

10. LIMITATION OF APPLICATIONS

Please contact us before using our products for the applications listed below which require especially high reliability for the prevention of defects which might directly cause damage to the third party's life, body or property.

- 1. Aircraft equipment
- 2. Aerospace equipment
- 3. Undersea equipment
- 4. Power plant control equipment
- 5. Medical equipment
- 6. Transportation equipment (vehicles, trains, ships, etc.)
- 7. Traffic signal equipment
- 8. Disaster prevention / crime prevention equipment
- 9. Data-processing equipment exerting influence on public
- 10. Application of similar complexity and/or reliability requirements to the applications listed in the above.

NOTICE

1. CLEANING (ULTRASONIC CLEANING)

To perform ultrasonic cleaning, observe the following conditions.

Rinse bath capacity: Output of 20 watts per liter or less.

Rinsing time: 5 min maximum. Do not vibrate the PCB/PWB directly.

Excessive ultrasonic cleaning may lead to fatigue destruction of the lead wires.

2. CAPACITANCE CHANGE OF CAPACITORS

· Class 1 capacitors

Capacitance might change a little depending on a surrounding temperature or an applied voltage. Please contact us if you use for the strict time constant circuit.

· Class 2 and 3 capacitors

Class 2 and 3 capacitors like temperature characteristic B, E and F have an aging characteristic, whereby the capacitor continually decreases its capacitance slightly if the capacitor leaves for a long time. Moreover, capacitance might change greatly depending on a surrounding temperature or an applied voltage. So, it is not likely to be able to use for the time constant circuit.

Please contact us if you need a detail information.

3. PERFORMANCE CHECK BY EQUIPMENT

Before using a capacitor, check that there is no problem in the equipment's performance and the specifications.

Generally speaking, CLASS 2 ceramic capacitors have voltage dependence characteristics and temperature dependence characteristics in capacitance. So, the capacitance value may change depending on the operating condition in a equipment. Therefore, be sure to confirm the apparatus performance of receiving influence in a capacitance value change of a capacitor, such as leakage current and noise suppression characteristic.

Moreover, check the surge-proof ability of a capacitor in the equipment, if needed, because the surge voltage may exceed specific value by the inductance of the circuit.

⚠ NOTE

- 1.Please make sure that your product has been evaluated in view of your specifications with our product being mounted to your product.
- 2. You are requested not to use our product deviating from this specification.

EGD08E

1. Application

This specification is applied to Safety Standard Certified Lead Type Disc Ceramic Capacitors Type KX used for General Electric equipment.

Type KX is Safety Standard Certified capacitors of Class X1,Y1.

Do not use these products in any automotive power train or safety equipment including battery chargers for electric vehicles and plug-in hybrids.

Approval standard and certified number

	Standard number	*Certified number	AC Rated volt. V(r.m.s.)
UL	UL60384-14	E37921	
CSA	CSA E60384-14	1343810	
VDE	IEC60384-14, EN60384-14	40002831	
BSI	EN60065 (8.8,14.2), IEC60384-14, EN60384-14	KM 37901	X1:440
SEMKO		1612604	Y1:250
DEMKO	150000444	D-05321	
FIMKO	IEC60384-14, EN60384-14	FI 29602	
NEMKO	LN00304-14	P16221232	
ESTI		18.0079	
IMQ	EN60384-14	V4069	

^{*}Above Certified number may be changed on account of the revision of standards and the renewal of certification.

2. Rating

2-1. Operating temperature range

-40 ~ +125°C

2-2. Part number configuration

ex.)	<u>DE1</u>	E3	<u> </u>	332	M	<u> A5</u>	B	A01
	Product	Temperature	Type	Capacitance	Capacitance	Lead	Packing	Individual
	code	characteristic	name		tolerance	code	style code	specification

Product code

DE1 denotes X1,Y1 class.

• Temperature characteristic

Code	Temperature characteristic
1X	SL
B3	В
E3	Е

Please confirm detailed specification on [Specification and test methods].

• Type name

This denotes safety certified type name Type KX.

Capacitance

The first two digits denote significant figures; the last digit denotes the multiplier of 10 in pF. ex.) In case of 332.

$$33 \times 10^2 = 3300 pF$$

• Capacitance tolerance

Please refer to [Part number list].

• Lead code

Code	Lead style					
A*	Vertical crimp long type					
B*	Vertical crimp short type					
N*	Vertical crimp taping type					

^{*} Please refer to [Part number list]

Solder coated copper wire is applied for termination.

• Packing style code

Code	Packing type					
В	Bulk type					
А	Ammo pack taping type					

• Individual specification

In case part number cannot be identified without 'individual specification', it is added at the end of part number.

A01 denotes smaller body dia. of Char. E.

Please confirm detailed specification on [Part number list].

Note) Murata part numbers might be changed depending on lead code or any other changes. Therefore, please specify only the type name(KX) and capacitance of products in the parts list when it is required for applying safety standard of electric equipment.

3. Marking

Type name : KX

Nominal capacitance : Actual value(under 100pF)

3 digit system(100pF and over)

Capacitance tolerance : Code

Company name code : (Made in Thailand)

Manufacturing year : Letter code(The last digit of A.D. year.)

Manufacturing month : Code

Feb./Mar. → 2 Aug./Sep. → 8

Apr./May → 4 Oct./Nov. → O

Jun./Jul. → 6 Dec./Jan. → D

UL Approval mark : 5\)

CSA Approval mark : (3)

VDE Approval mark : (Example)

: X1Y1

BSI Approval mark : BSI

SEMKO Approval mark : S

DEMKO Approval mark : ①

FIMKO Approval mark : (F)

NEMKO Approval mark : (N)

ESTI Approval mark : 🕏

IMQ Approval mark : 🔞

Class code

Rated voltage mark : 250~

4. Part number list

·Vertical crimp long type (Lead code:A*)

Note) The mark '*' of lead code differ from lead spacing(F) and lead diameter(d).
Please see the following list about details.

Unit · mm

	Unit : mi										
T.C.	Сар.		Customer Part Number	Murata Part Number	Din	nensi	Lead	Pack			
1.0.	(pF)	tol.	Gustomer Fart Number	Murata r art Number	D	Т	F	d	code	qty. (pcs)	
SL	10	±5%		DE11XKX100JA5B	9.0	8.0	10.0	0.6	A5	250	
SL	15	$\pm 5\%$		DE11XKX150JA5B	9.0	8.0	10.0	0.6	A5	250	
SL	22	$\pm 5\%$		DE11XKX220JA5B	9.0	8.0	10.0	0.6	A5	250	
SL	33	±5%		DE11XKX330JA5B	9.0	8.0	10.0	0.6	A5	250	
SL	47	±5%		DE11XKX470JA5B	9.0	8.0	10.0	0.6	A5	250	
SL	68	±5%		DE11XKX680JA5B	9.0	8.0	10.0	0.6	A5	250	
В	100	±10%		DE1B3KX101KA5B	9.0	8.0	10.0	0.6	A5	250	
В	150	±10%		DE1B3KX151KA5B	9.0	8.0	10.0	0.6	A5	250	
В	220	±10%		DE1B3KX221KA5B	9.0	8.0	10.0	0.6	A5	250	
В	330	±10%		DE1B3KX331KA5B	9.0	8.0	10.0	0.6	A5	250	
В	470	±10%		DE1B3KX471KA5B	9.0	8.0	10.0	0.6	A5	250	
В	680	±10%		DE1B3KX681KA5B	10.0	8.0	10.0	0.6	A5	100	
Е	1000	±20%		DE1E3KX102MA5BA01	8.0	8.0	10.0	0.6	A5	250	
Е	1500	±20%		DE1E3KX152MA5BA01	9.0	8.0	10.0	0.6	A5	250	
Е	2200	±20%		DE1E3KX222MA5BA01	10.0	8.0	10.0	0.6	A5	100	
E	3300	±20%		DE1E3KX332MA5BA01	12.0	8.0	10.0	0.6	A5	100	
Е	3900	±20%		DE1E3KX392MA5BA01	13.0	8.0	10.0	0.6	A5	100	
Е	4700	±20%		DE1E3KX472MA5BA01	15.0	8.0	10.0	0.6	A5	100	

Vertical crimp short type (Lead code:B*)

Note) The mark '*' of lead code differ from lead spacing(F) and lead diameter(d).
Please see the following list about details.

T.C. Cap. Cap. Customer Part Number Murata Part Number Code	Offit: Till									111111	
Code Code	Сар.	Сар.		Customer Part Number	Murata Part Number	Dir	nensi	Lead	Pack		
SL 15 ±5% DE11XKX150JB5B 9.0 8.0 10.0 0.6 B5 SL 22 ±5% DE11XKX220JB5B 9.0 8.0 10.0 0.6 B5 SL 33 ±5% DE11XKX330JB5B 9.0 8.0 10.0 0.6 B5 SL 47 ±5% DE11XKX470JB5B 9.0 8.0 10.0 0.6 B5 SL 68 ±5% DE11XKX680JB5B 9.0 8.0 10.0 0.6 B5 B 100 ±10% DE1B3KX101KB5B 9.0 8.0 10.0 0.6 B5 B 150 ±10% DE1B3KX151KB5B 9.0 8.0 10.0 0.6 B5	(pF)	(pF)	tol.	Gustomer Fait Number	Murata i art Number	D	Т	F	d	code	qty. (pcs)
SL 22 ±5% DE11XKX220JB5B 9.0 8.0 10.0 0.6 B5 SL 33 ±5% DE11XKX330JB5B 9.0 8.0 10.0 0.6 B5 SL 47 ±5% DE11XKX470JB5B 9.0 8.0 10.0 0.6 B5 SL 68 ±5% DE11XKX680JB5B 9.0 8.0 10.0 0.6 B5 B 100 ±10% DE1B3KX101KB5B 9.0 8.0 10.0 0.6 B5 B 150 ±10% DE1B3KX151KB5B 9.0 8.0 10.0 0.6 B5	10	10	±5%		DE11XKX100JB5B	9.0	8.0	10.0	0.6	B5	500
SL 33 \pm 5% DE11XKX330JB5B 9.0 8.0 10.0 0.6 B5 SL 47 \pm 5% DE11XKX470JB5B 9.0 8.0 10.0 0.6 B5 SL 68 \pm 5% DE11XKX680JB5B 9.0 8.0 10.0 0.6 B5 B 100 \pm 10% DE1B3KX101KB5B 9.0 8.0 10.0 0.6 B5 B 150 \pm 10% DE1B3KX151KB5B 9.0 8.0 10.0 0.6 B5	15	15	±5%		DE11XKX150JB5B	9.0	8.0	10.0	0.6	B5	500
SL 47 ±5% DE11XKX470JB5B 9.0 8.0 10.0 0.6 B5 SL 68 ±5% DE11XKX680JB5B 9.0 8.0 10.0 0.6 B5 B 100 ±10% DE1B3KX101KB5B 9.0 8.0 10.0 0.6 B5 B 150 ±10% DE1B3KX151KB5B 9.0 8.0 10.0 0.6 B5	22	22	±5%		DE11XKX220JB5B	9.0	8.0	10.0	0.6	B5	500
SL 68 ±5% DE11XKX680JB5B 9.0 8.0 10.0 0.6 B5 B 100 ±10% DE1B3KX101KB5B 9.0 8.0 10.0 0.6 B5 B 150 ±10% DE1B3KX151KB5B 9.0 8.0 10.0 0.6 B5	33	33	±5%		DE11XKX330JB5B	9.0	8.0	10.0	0.6	B5	500
B 100 ±10% DE1B3KX101KB5B 9.0 8.0 10.0 0.6 B5 B 150 ±10% DE1B3KX151KB5B 9.0 8.0 10.0 0.6 B5	47	47	±5%		DE11XKX470JB5B	9.0	8.0	10.0	0.6	B5	500
B 150 ±10% DE1B3KX151KB5B 9.0 8.0 10.0 0.6 B5	68	68	±5%		DE11XKX680JB5B	9.0	8.0	10.0	0.6	B5	500
	100	100	±10%		DE1B3KX101KB5B	9.0	8.0	10.0	0.6	B5	500
B 220 ±10% DE1B3KX221KB5B 9.0 8.0 10.0 0.6 B5	150	150	±10%		DE1B3KX151KB5B	9.0	8.0	10.0	0.6	B5	500
	220	220	±10%		DE1B3KX221KB5B	9.0	8.0	10.0	0.6	B5	500
B 330 ±10% DE1B3KX331KB5B 9.0 8.0 10.0 0.6 B5	330	330	±10%		DE1B3KX331KB5B	9.0	8.0	10.0	0.6	B5	500
B 470 ±10% DE1B3KX471KB5B 9.0 8.0 10.0 0.6 B5	470	470	±10%		DE1B3KX471KB5B	9.0	8.0	10.0	0.6	B5	500
B 680 ±10% DE1B3KX681KB5B 10.0 8.0 10.0 0.6 B5	680	680	±10%		DE1B3KX681KB5B	10.0	8.0	10.0	0.6	B5	250
E 1000 ±20% DE1E3KX102MB5BA01 8.0 8.0 10.0 0.6 B5	1000	1000	±20%		DE1E3KX102MB5BA01	8.0	8.0	10.0	0.6	B5	500
E 1500 ±20% DE1E3KX152MB5BA01 9.0 8.0 10.0 0.6 B5	1500	1500	±20%		DE1E3KX152MB5BA01	9.0	8.0	10.0	0.6	B5	500
E 2200 ±20% DE1E3KX222MB5BA01 10.0 8.0 10.0 0.6 B5	2200	2200	±20%		DE1E3KX222MB5BA01	10.0	8.0	10.0	0.6	B5	250
E 3300 ±20% DE1E3KX332MB5BA01 12.0 8.0 10.0 0.6 B5	3300	3300	±20%		DE1E3KX332MB5BA01	12.0	8.0	10.0	0.6	B5	200
E 3900 ±20% DE1E3KX392MB5BA01 13.0 8.0 10.0 0.6 B5	3900	3900	±20%		DE1E3KX392MB5BA01	13.0	8.0	10.0	0.6	B5	200
E 4700 ±20% DE1E3KX472MB5BA01 15.0 8.0 10.0 0.6 B5	4700	4700	±20%		DE1E3KX472MB5BA01	15.0	8.0	10.0	0.6	B5	200

Vartical crimp taping type (Lead code:N*)

Note) The mark '*' of lead code differ from lead spacing(F), lead diameter(d) and pitch of component(P). Please see the following list or taping specification about details.

	Unit : mm										
T.C.	Cap.	Сар.	Customer Part Number	Murata Part Number	Dimension (mm)					Lead	Pack
1.0.	(pF)	tol.	Customer Fart Number	Widiata Fait Number	D	Т	F	d	Р	code	qty. (pcs)
SL	10	±5%		DE11XKX100JN5A	9.0	8.0	10.0	0.6	25.4	N5	500
SL	15	±5%		DE11XKX150JN5A	9.0	8.0	10.0	0.6	25.4	N5	500
SL	22	±5%		DE11XKX220JN5A	9.0	8.0	10.0	0.6	25.4	N5	500
SL	33	±5%		DE11XKX330JN5A	9.0	8.0	10.0	0.6	25.4	N5	500
SL	47	±5%		DE11XKX470JN5A	9.0	8.0	10.0	0.6	25.4	N5	500
SL	68	±5%		DE11XKX680JN5A	9.0	8.0	10.0	0.6	25.4	N5	500
В	100	±10%		DE1B3KX101KN5A	9.0	8.0	10.0	0.6	25.4	N5	500
В	150	±10%		DE1B3KX151KN5A	9.0	8.0	10.0	0.6	25.4	N5	500
В	220	±10%		DE1B3KX221KN5A	9.0	8.0	10.0	0.6	25.4	N5	500
В	330	±10%		DE1B3KX331KN5A	9.0	8.0	10.0	0.6	25.4	N5	500
В	470	±10%		DE1B3KX471KN5A	9.0	8.0	10.0	0.6	25.4	N5	500
В	680	±10%		DE1B3KX681KN5A	10.0	8.0	10.0	0.6	25.4	N5	500
Е	1000	±20%		DE1E3KX102MN5AA01	8.0	8.0	10.0	0.6	25.4	N5	500
Е	1500	±20%		DE1E3KX152MN5AA01	9.0	8.0	10.0	0.6	25.4	N5	500
Е	2200	±20%		DE1E3KX222MN5AA01	10.0	8.0	10.0	0.6	25.4	N5	500
Е	3300	±20%		DE1E3KX332MN5AA01	12.0	8.0	10.0	0.6	25.4	N5	500
Е	3900	±20%		DE1E3KX392MN5AA01	13.0	8.0	10.0	0.6	25.4	N5	500
Е	4700	±20%		DE1E3KX472MN5AA01	15.0	8.0	10.0	0.6	25.4	N5	500

0.	pecification and			cification				Test r	nethod			
1	Appearance and o			fect on appearan	ice		capacitor s sible evide	hould be ir	spected by	spected by naked eyes ect.		
				[Part number lis	t].		nsions sho					
	Marking	T	To be easily le	gible.			capacitor s				yes	
	Dielectric strength	Between lead wires	No failure.			AC4	capacitor si 000V(r.m.s wires for 6	.)<50/60H			n th	
		insulation				First, the terminals of the capacitor should be connected together. Then, a metal foil should be closely wrapped around the body of the capacitor to the distance of about 3 to 6mm from each terminal. Then, the capacitor should be inserted into a container filled with metal balls of about 1mm diameter. Finally, AC4000V (r.m.s.)<50/60Hz> is applied for 60 s between the capacitor lead wires and metal balls.						
	Insulation Resista	nce (I.R.)	10 000MΩ min			The insulation resistance should be measured DC500±50V within 60±5 s of charging. The voltage should be applied to the capacito				g.		
5	Capacitance		Within specifie	d tolerance.		through a resistor of $1M\Omega$. The capacitance should be measured at 20° 1 ± 0.1 kHz(Char. SL : 1 ± 0.1 MHz) and AC5V(max			1±0.1kHz(Char. SL: 1±0.1MHz) and AC5V(
ô	Q	(2.5)	1000min.			The dissipation factor and Q should be meast at 20°C with 1±0.1kHz(Char. SL: 1±0.1MHz) AC5V(r.m.s.) max						
,	Dissipation Factor Temperature char	` '	Char. B, E : 2.5		00	T:	capacitance			lal b - · ·	1.	
	Tomporataro orial		(Temp. range : Char. B : Witl Char. E : Witl				step speci			ia so mao	_	
				Step Temp.(°C)	_			4 85±2	5 20±2	-		
8	Active flammabilit	y	The cheese-cl on fire.	oth should not be		least chees to 20 disch	capacitors one but m se-cloth. T discharge larges shot tained for 2	ore than to the capacities. The integral of the second sec	vo complet or should b rval betwe The UAc s the last dis	e layers on the subject of the succession in the	f ed	
						C1,2 L1 to R UAc Cx F Ut	L4 : 1.5ml : 100Ω: : UR ±6 : Capac : Fuse,	H±20% 16. ±2%, Ct : 3	BμF±5% 10 Rated volt test	choke kV		

ESKX03D

*2 "C" expresses nominal capacitance value(pF)

	Reference only											
No.	Item		Specification	Test method								
9	Robustness of	Tensile	Lead wire should not cut off.	Fix the body of capacitor, a tensile weight								
	terminations		Capacitor should not be broken.	gradually to each lead wire in the radial direction of								
				capacitor up to 10N and keep it for 10±1 s.								
		Bending		With the termination in its normal position, the								
				capacitor is held by its body in such a manner that								
				the axis of the termination is vertical; a mass								
				applying a force of 5N is then suspended from the end of the termination.								
				The body of the capacitor is then inclined,								
				within a period of 2 to 3 s, through an angle of								
				approximately 90° in the vertical plane and then								
				returned to its initial position over the same period								
				of time; this operation constitutes one bend.								
				One bend immediately followed by a second bend								
				in the opposite direction.								
10	Vibration	Appearance	No marked defect.	The capacitor should be firmly soldered to the								
	resistance	Capacitance	Within the specified tolerance.	supporting lead wire and vibration which is 10 to								
		Q	Char. SL:	55Hz in the vibration frequency range,1.5mm in								
			400+20C*2min.(30pF under)	total amplitude, and about 1min in the rate of								
		D.F.	1000min. (30pF min.)	vibration change from 10Hz to 55Hz and back to								
		D.F.	Char. B, E : 2.5% max.	10Hz is applied for a total of 6 h; 2 h each in 3 mutually perpendicular directions.								
11	Solderability of lead	ls	Lead wire should be soldered	The lead wire of a capacitor should be dipped into a								
''	Jointo ability of load		With uniformly coated on the	ethanol solution of 25wt% rosin and then into								
			axial direction over 3/4 of the	molten solder for 2±0.5 s. In both cases the depth of								
			circumferential direction.	dipping is up to about 1.5 to 2.0mm from the root of								
				lead wires.								
				Temp. of solder:								
				245±5°C Lead Free Solder (Sn-3Ag-0.5Cu)								
				235±5°C H63 Eutectic Solder								
12	Soldering effect	Appearance	No marked defect.	Solder temperature: 350±10°C or 260±5°C								
	(Non-preheat)	Capacitance	Within ±10%	Immersion time : 3.5±0.5 s								
		change I.R.		(In case of 260±5°C : 10±1 s)								
			1 000MΩ min.	The depth of immersion is up to about 1.5 to 2.0mm from the root of lead wires.								
		Dielectric strength	Per item 3	1.5 to 2.0min from the root of lead wires.								
		Strongth		Thermal								
				insulating								
				1.5 to 2.0mm								
				- 1								
				U- 11 (
				Pre-treatment : Capacitor should be stored at								
				85±2°C for 1 h, then placed at								
				*1room condition for 24±2 h								
				before initial measurements. Post-treatment: Capacitor should be stored for 1 to								
				2 h at *1 room condition.								
13	Soldering effect	Appearance	No marked defect.	First the capacitor should be stored at 120+0/-5°C								
'	(On-preheat)	Capacitance	Within ±10%	for 60+0/-5 s.								
	, , ,	change		Then, as in figure, the lead wires should be								
		I.R.	1 000MΩ min.	immersed solder of 260+0/-5°C up to 1.5 to 2.0mm								
		Dielectric	Per item 3	from the root of terminal for 7.5+0/-1 s.								
		strength		Thermal Capacitor								
				Thermal Capacitor insulating								
				1.5								
				1 to 2.0mm								
				solder								
				Pre-treatment : Capacitor should be stored at								
				85±2°C for 1 h, then placed at								
				*1room condition for 24±2 h								
				before initial measurements.								
				Post-treatment : Capacitor should be stored for 1 to								
#1 "		<u> </u>	1	2 h at *1room condition.								
1 *' "ro	om condition" Temper	ature: 15 to 35°0	C, Relative humidity: 45 to 75%, Atmo	ospheric pressure: 86 to 106kPa								

^{*1 &}quot;room condition" Temperature: 15 to 35°C, Rel *2 "C" expresses nominal capacitance value(pF)

N.	Tr.		Construction	T
No.	Item		Specification	Test method
14	Flame test		The capacitor flame discontinue as follows. Cycle Time	The capacitor should be subjected to applied flame for 15 s. and then removed for 15 s until 5 cycle.
			1 to 4 30 s max.	
			5 60 s max.	Gas Burner
15	Passive flammability	y	The burning time should not be exceeded the time 30 s. The tissue paper should not ignite.	The capacitor under test should be held in the flame in the position which best promotes burning. Time of exposure to flame is for 30 s. Length of flame: 12±1mm Gas burner: Length 35mm min. Inside Dia. 0.5±0.1mm Outside Dia. 0.9mm max. Gas: Butane gas Purity 95% min. Capacitor About 8mm Flame 200±5mm
				———— ✓ Tissue About 10mm thick board
16	Humidity	Appearance	No marked defect.	Set the capacitor for 500±12 h at 40±2°C in 90 to
	(Under steady	Capacitance	Char. SL: Within ±5%	95% relative humidity.
	state)	change	Char. B: Within ±10%	
			Char. E: Within ±15%	Post-treatment : Capacitor should be stored for 1 to
		Q	Char. SL:	2 h at *1room condition.
			275+5/2C*2min.(30pF under)	
		D.F.	350min. (30pF min.)	
		D.F.	Char. B, E : 5.0% max.	
		Dielectric	Per item 3	
		strength	1 0. 1011 0	
17	Humidity loading	Appearance	No marked defect.	Apply the rated voltage for 500±12 h at 40±2°C in
		Capacitance	Char. SL: Within ±5%	90 to 95% relative humidity.
		change	Char. B: Within ±10%	
			Char. E: Within ±15%	Post-treatment: Capacitor should be stored for 1 to
		Q	Char. SL:	2 h at *1room condition.
			275+5/2C*2min.(30pF under)	
		D.F.	350min. (30pF min.) Char. B, E: 5.0% max.	
		I.R.	3 000MΩ min.	
		Dielectric	Per item 3	
		strength		
*1 !!			Deletive by reidit v 45 to 750/ Atres	

^{*1 &}quot;room condition" Temperature: 15 to 35°C, Relative humidity: 45 to 75%, Atmospheric pressure: 86 to 106kPa *2 "C" expresses nominal capacitance value(pF)

No.	Item		Specification			Test m	ethod				
18	Life	Appearance	No marked defect.		e voltag						
		Capacitance change	Within ±20%			al capacitor s		•			
		I.R.	3000MΩ min.	1	8kV impulses for three times. Then the capacitors are applied to life test.						
		Dielectric	Per item 3								
		strength	trength	Front time (T1) = 1.2μ s= $1.$							
				The capacitors are placed in a circulating air oven for a period of 1000 h. The air in the oven is maintained at a temperature of 125+2/-0 °C, and relative humidity of 50% max Throughout the test, the capacitors are subjected to a AC425V(r.m.s.)<50/60Hz> alternating voltage							
				of mair	ns frequ	ency, except	that once	e each hou	ır		
				the vol	tage is i	ncreased to	AC1 000\	/(r.m.s.) fo	r 0.1 s.		
				Post-tr	eatmen	t: Capacito 2 h at *1ro	r should b	e stored fo	or 1 to		
19	Temperature and immersion cycle	Appearance	No marked defect.			should be su					
		Capacitance	Char. SL: Within ±5%	cycles,	then co	onsecutively	to 2 imme	ersion cycl	es.		
		change	Char. B: Within ±10% Char. E: Within ±20%	<temp< td=""><td>erature</td><td>cvcle></td><td></td><td></td><td></td></temp<>	erature	cvcle>					
		Q	Char. SL:	110p	Step	Temperatu	ro(0C)	Time	1		
		_	275+5/2C*2min.(30pF under)		1	-40+0/	_ ` ′	30 min			
			350min. (30pF min.)		2	Room te		3 min			
		D.F.	Char. B, E : 5.0% max.		3	+125+3		30 min			
		I.R. Dielectric	3000MΩ min.		4	Room te	emp.	3 min			
		strength	Per item 3				Су	cle time :	5 cycle		
				<pre></pre>							
				Step	Temp	perature(°C)	Time	Immers	er		
				1	+6	65+5/-0	15 min	Clea	er		
				2		0±3	15 min	Sal	er		
							Су	cle time : :	2 cycle		
				Pre-treatment: Capacitor should be stored at 85±2°C for 1 h, then placed at *1room condition for 24±2 h.							
				Post-treatment: Capacitor should be stored for 4 to 24 h at *1 room condition.							

*2 "C" expresses nominal capacitance value(pF)

6. Packing specification

•Bulk type (Packing style code : B)

*1 *2
The number of packing = Packing quantity × n

The size of packing case and packing way

*1: Please refer to [Part number list].

*2 : Standard n = 20 (bag)

Note)

The outer package and the number of outer packing be changed by the order getting amount.

- •Ammo pack taping type (Packing style code : A)
 - · The tape with capacitors is packed zigzag into a case.
 - · When body of the capacitor is piled on other body under it.

7. Taping specification

7-1. Dimension of capacitors on tape

Vertical crimp taping type < Lead code : N5 > Pitch of component 25.4mm / Lead spacing 10.0mm

и	0.1.	D'	Onit . min
Item	Code	Dimensions	Remarks
Pitch of component	Р	25.4±2.0	
Pitch of sprocket hole	P0	12.7±0.3	
Lead spacing	F	10.0±1.0	
Length from hole center to lead	P1	7.7±0.7	
Body diameter	D	Please refer to [Part number list].	
Deviation along tape, left or right	ΔS	0±2.0	They include deviation by lead bend .
Carrier tape width	W	18.0±0.5	
Position of sprocket hole	W1	9.0±0.5	Deviation of tape width direction
Lead distance between reference and	H0	18.0± ₀ ^{2.0}	
bottom planes			
Protrusion length	Q	+0.5~-1.0	
Diameter of sprocket hole	φD0	4.0±0.1	
Lead diameter	φd	$0.60\pm_{0.05}^{0.1}$	
Total tape thickness	t1	0.6±0.3	They include hold down tape thickness.
Total thickness, tape and lead wire	t2	1.5 max.	
Deviation across tape, front	∆h1	2.0 max.	
Deviation across tape, rear	∆h2		
Portion to cut in case of defect	L	11.0± _{1.0}	
Hold down tape width	W0	11.5 min.	
Hold down tape position	W2	1.5±1.5	
Coating extension on lead	е	Up to the end of crimp	
Body thickness	Т	Please refer to [Part number list].	

7-2. Splicing way of tape

1) Adhesive force of tape is over 3N at test condition as below.

- 2) Splicing of tape
 - a) When base tape is spliced
 - •Base tape should be spliced by cellophane tape. (Total tape thickness should be less than 1.05mm.)

No lifting for the direction of progressing

Unit: mm

- b) When hold down tape is spliced
 - •Hold down tape should be spliced with overlapping. (Total tape thickness should be less than 1.05mm.)

- c) When both tape are spliced
 - •Base tape and hold down tape should be spliced with splicing tape.
- 3) Missing components
 - •There should be no consecutive missing of more than three components.
 - •The number of missing components should be not more than 0.5% of total components that should be present in a Ammo pack.

EU RoHS

This products of the following crresponds to EU RoHS.

RoHS

maximum concentration values tolerated by weight in homogeneous materials

- •1000 ppm maximum Lead
- •1000 ppm maximum Mercury
- •100 ppm maximum Cadmium
- •1000 ppm maximum Hexavalent chromium
- •1000 ppm maximum Polybrominated biphenyls (PBB)
- •1000 ppm maximum Polybrominated diphenyl ethers (PBDE)

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Murata:

 DE1E3KX152MB5BA01
 DE1E3KX222MEDBA01
 DE1E3KX332MB5BA01
 DE1E3KX222MN5AA01

 DE1E3KX102MB5BA01
 DE1E3KX152MA5BA01
 DE1E3KX152MN5AA01
 DE1E3KX222MB5AA01

 DE1E3KX222MB5AA01
 DE1E3KX332MA5BA01
 DE1E3KX332MN5AA01
 DE1E3KX472MB5BA01

 DE1E3KX102MN5AA01
 DE1E3KX222MB5BA01
 DE1E3KX472MB5BA01
 DE1E3KX102MA5BA01
 DE11XKX100JA5B

 DE11XKX100JN5A
 DE11XKX220JA5B
 DE1E3KX392MB5BA01
 DE1E3KX472MN5AA01
 DE1E3KX392MA5BA01

 DE1E3KX392MN5AA01
 DE11XKX680JN5A
 DE1E3KX222MA5BA01