#### Silvia S. Pelozo

Becaria doctoral de CONICET (Tipo I) Licenciada en Sistemas (UNNE)

Inicio del doctorado Abril de 2010

Grupo de Sistemas Dependibles

**Tema** Model checking probabilista para el análisis de propiedades del estado de régimen

#### Comisión de doctorado

- Pedro R. D'Argenio [Director]
- Ricardo J. Corin
- Laura Alonso i Alemany
- Héctor L. Gramaglia [Suplente]

# Reasoning about security on distributed probabilistic systems through bounded-reachability

Silvia S. Pelozo

SUPERVISOR: PEDRO R. D'ARGENIO

Córdoba, 2010-12-06





# Our problem

Distributed systems  $+ \text{ random behavior} \\ + \text{ privacy of components} \end{array} \right\} \xrightarrow{\text{model checking}} \left[ \begin{array}{c} P\left(\lozenge \text{GOOD}\right) \\ P\left(\lozenge \text{BAD}\right) \end{array} \right.$ 

# Our problem

- + privacy of components

## **Example**

Player T tosses a coin





Player G tries to guess

# Player T



# Player G





## Formal model

$$\langle S, \hat{s}, A, \rightarrow, \Rightarrow \rangle$$

## Formal model



## Formal model



We require:

$$Dom\left(\rightarrow\right)\cap Dom\left(\Rightarrow\right)=\emptyset$$

Input enabledness:

$$\forall s \in S, a \in A_I : \exists s' \in S : s \xrightarrow{a} s'$$

Input determinism:

$$\forall s \in S, a \in A_I : \exists ! \ s' \in S : s \xrightarrow{a} s'$$

Output isolation:

$$\forall s \in S, a', a'' \in A_O : s \xrightarrow{a'} s' \wedge s \xrightarrow{a''} s''$$

$$\implies a' = a'' \wedge s' = s''$$

## **Parallel Composition**

$$\mathcal{P}$$
 and  $\mathcal{Q}$  are composable if  $A_{\mathcal{Q}}^{\mathcal{P}} \cap A_{\mathcal{Q}}^{\mathcal{Q}} = \emptyset$ 

 $\mathcal{C} := \mathcal{P} \parallel \mathcal{Q}$  will be:

$$\langle S^{\mathcal{P}} \times S^{\mathcal{Q}}, (\hat{s}_{\mathcal{P}}, \hat{s}_{\mathcal{Q}}), A_I^{\mathcal{C}} \cup A_O^{\mathcal{C}}, \rightarrow_{\mathcal{C}}, \Rightarrow_{\mathcal{C}} \rangle$$

where:

$$A_O^{\mathcal{C}} := A_O^{\mathcal{P}} \cup A_O^{\mathcal{Q}} \quad ; \quad A_I^{\mathcal{C}} := (A_I^{\mathcal{P}} \cup A_I^{\mathcal{Q}}) \setminus A_O^{\mathcal{C}}$$

and:

$$\frac{s \xrightarrow{a}_{\mathcal{P}} s'}{(s,t) \xrightarrow{a}_{\mathcal{C}} (s',t)} \quad a \notin A^{\mathcal{Q}} \qquad \frac{t \xrightarrow{a}_{\mathcal{Q}} t'}{(s,t) \xrightarrow{a}_{\mathcal{C}} (s,t')} \quad a \notin A^{\mathcal{P}}$$

$$\frac{s \xrightarrow{a}_{\mathcal{P}} s'}{(s,t) \xrightarrow{a}_{\mathcal{C}} (s',t')} \qquad \frac{s \Rightarrow_{\mathcal{P}} \mu_s}{(s,t) \Rightarrow_{\mathcal{C}} \mu_s \times \mu_t}$$

$$\frac{s \Rightarrow_{\mathcal{P}} \mu_s}{(s,t) \xrightarrow{a}_{\mathcal{C}} (s',t')} \qquad \frac{s \Rightarrow_{\mathcal{P}} \mu_s}{(s,t) \Rightarrow_{\mathcal{C}} \mu_s \times \mu_t}$$

Can be extended to any finite set C.







## Resolution of non-determinism

A *finite path* of C is a sequence  $s_0a_0s_1a_1 \dots a_{n-1}s_n$  where:

$$a_i \in A \text{ and } s_i \xrightarrow{a_i} s_{i+1}$$

or

$$a_i \in Dist(S), s_i \Rightarrow a_i, \text{ and } a_i(s_{i+1}) > 0$$

**An interleaving scheduler** is a function

$$\mathcal{I}: Paths\left(\mathcal{C}\right) \to Dist\left(\left\{\mathcal{P}_1, \dots, \mathcal{P}_n\right\}\right)$$

Defined for paths  $\sigma$  such that  $last(\sigma)$  is vanishing:

$$\mathcal{I}(\sigma)(\mathcal{P}_i) > 0 \implies A_{last(\sigma),\mathcal{P}_i}^{en} \neq \emptyset$$

# Why not all possible schedulers?



# Why not all possible schedulers?



$$P\left(\lozenge \bigcirc\right) = 1$$

### Distributed schedulers

[Giro and D'Argenio, 2009, Giro, 2010]

## **Projections**

$$\mathcal{C} = \mathcal{P}_1 \parallel \cdots \parallel \mathcal{P}_n, \, \sigma \in Paths \, (\mathcal{C}), \, \text{the projection } \sigma \, [\mathcal{P}_i] \, \text{ is:}$$

$$(\hat{s}_{\mathcal{C}}) \, [\mathcal{P}_i] = \pi_i \, (\hat{s}_{\mathcal{C}})$$

$$(\sigma as) \, [\mathcal{P}_i] = \begin{cases} (\sigma) \, [\mathcal{P}_i] & \text{if } a \not\in A^{\mathcal{P}} \\ (\sigma) \, [\mathcal{P}_i] \, a \, (\pi_i \, (s)) & \text{if } a \in A^{\mathcal{P}} \end{cases}$$

$$(\sigma \, (\mu_1 \times \cdots \times \mu_n) \, s) \, [\mathcal{P}_i] = (\sigma \, [\mathcal{P}_i]) \, \mu_i \, (\pi_i \, (s))$$

$$\text{where } \pi_i \, (s_1, \dots, s_n) = s_i.$$

## Strongly distributed schedulers

 $\mathcal{I}$  of  $\mathcal{C} = \mathcal{P}_1 \parallel \cdots \parallel \mathcal{P}_n$  is strongly distributed if:

$$\forall \mathcal{P}_i, \mathcal{P}_j, \sigma, \sigma'$$
:

$$\left. \begin{array}{l} \sigma\left[\mathcal{P}_{i}\right] = \sigma'\left[\mathcal{P}_{i}\right] \\ \sigma\left[\mathcal{P}_{j}\right] = \sigma'\left[\mathcal{P}_{j}\right] \\ \mathcal{I}\left(\sigma\right)\left(\mathcal{P}_{i}\right) + \mathcal{I}\left(\sigma\right)\left(\mathcal{P}_{j}\right) \neq 0 \\ \mathcal{I}\left(\sigma'\right)\left(\mathcal{P}_{i}\right) + \mathcal{I}\left(\sigma'\right)\left(\mathcal{P}_{j}\right) \neq 0 \end{array} \right\} \implies$$

$$\implies \frac{\mathcal{I}\left(\sigma\right)\left(\mathcal{P}_{i}\right)}{\mathcal{I}\left(\sigma\right)\left(\mathcal{P}_{i}\right) + \mathcal{I}\left(\sigma\right)\left(\mathcal{P}_{j}\right)} = \frac{\mathcal{I}\left(\sigma'\right)\left(\mathcal{P}_{i}\right)}{\mathcal{I}\left(\sigma'\right)\left(\mathcal{P}_{i}\right) + \mathcal{I}\left(\sigma'\right)\left(\mathcal{P}_{j}\right)}$$

## Is the problem solved?



$$\sigma\left[\mathcal{G}_{h}\right] = \sigma'\left[\mathcal{G}_{h}\right] \wedge \sigma\left[\mathcal{G}_{t}\right] = \sigma'\left[\mathcal{G}_{t}\right]$$

$$\implies \frac{\mathcal{I}\left(\sigma\right)\left(\mathcal{G}_{h}\right)}{\mathcal{I}\left(\sigma\right)\left(\mathcal{G}_{h}\right) + \mathcal{I}\left(\sigma\right)\left(\mathcal{G}_{t}\right)} = \frac{\mathcal{I}\left(\sigma'\right)\left(\mathcal{G}_{t}\right)}{\mathcal{I}\left(\sigma'\right)\left(\mathcal{G}_{h}\right) + \mathcal{I}\left(\sigma'\right)\left(\mathcal{G}_{t}\right)}$$

#### But...

Unbounded reachability is undecidable [Giro and D'Argenio, 2007] :-(

Bounded reachability IS decidable [Calin et al., 2010]:

Throught parametric interpretation, unfolding, and non-linear constrains → reduces to a non-linear programming problem

Anyway, they are sometimes still too powerful...



 $r_a$ ?

 $r_b$ ?





is a valid scheduler

## Projection up to secrecy equivalence

Given:

$$\mathcal{C} = \mathcal{P}_1 \parallel \cdots \parallel \mathcal{P}_n$$
a path  $\sigma \in Paths (\mathcal{C})$ 
equivalence relations  $\sim \subseteq S_i, \approx \subseteq A_i \ (i = 1, \dots, n)$ 

Projection  $[\sigma [\mathcal{P}_i]]_{\sim}$  of  $\sigma$  is:
$$[(\hat{s}_{\mathcal{C}}) [\mathcal{P}_i]]_{\sim} = [\pi_i \ (\hat{s}_{\mathcal{C}})]_{\sim}$$

$$[(\sigma as) [\mathcal{P}_i]]_{\sim} = \begin{cases} [(\sigma) [\mathcal{P}_i]]_{\sim} & \text{if } a \notin A_{\mathcal{P}_i} \\ [(\sigma) [\mathcal{P}_i]]_{\sim} [a]_{\approx} [\pi_i \ (s)]_{\sim} & \text{if } a \in A_{\mathcal{P}_i} \end{cases}$$

$$[(\sigma (\mu_1 \times \cdots \times \mu_n) s) [\mathcal{P}_i]]_{\sim} = [(\sigma [\mathcal{P}_i])]_{\sim} \mu_i \ ([\pi_i \ (s)]_{\sim})$$

$$\mu_i \ ([s]_{\sim}) = \sum_{s' \in [s]} \mu_i \ (s')$$

## Distributed scheduler with secrecy

$$\mathcal{I}$$
 of  $\mathcal{C} = \mathcal{P}_1 \parallel \cdots \parallel \mathcal{P}_n$  such that  $\forall \mathcal{P}_i, \mathcal{P}_j, \sigma, \sigma'$ :

$$\begin{bmatrix} \sigma \left[ \mathcal{P}_{i} \right] \right]_{\sim} = \left[ \sigma' \left[ \mathcal{P}_{i} \right] \right]_{\sim} & \mathcal{I} \left( \sigma \right) \left( \mathcal{P}_{i} \right) \\ \left[ \sigma \left[ \mathcal{P}_{j} \right] \right]_{\sim} = \left[ \sigma' \left[ \mathcal{P}_{j} \right] \right]_{\sim} & \mathcal{I} \left( \sigma' \right) \left( \mathcal{P}_{i} \right) \\ \mathcal{I} \left( \sigma' \right) \left( \mathcal{P}_{j} \right) \end{bmatrix} \neq 0$$

$$\Downarrow$$

$$\frac{\mathcal{I}\left(\sigma\right)\left(\mathcal{P}_{i}\right)}{\mathcal{I}\left(\sigma\right)\left(\mathcal{P}_{i}\right)+\mathcal{I}\left(\sigma\right)\left(\mathcal{P}_{j}\right)}=\frac{\mathcal{I}\left(\sigma'\right)\left(\mathcal{P}_{i}\right)}{\mathcal{I}\left(\sigma'\right)\left(\mathcal{P}_{i}\right)+\mathcal{I}\left(\sigma'\right)\left(\mathcal{P}_{j}\right)}$$





$$\begin{split} \left[\sigma_{\bigcirc}\left(\mathcal{A}\right)\right]_{\sim} &= \left[\sigma_{\bigcirc}\left(\mathcal{A}\right)\right]_{\sim} \wedge \left[\sigma_{\bigcirc}\left(\mathcal{B}\right)\right]_{\sim} = \left[\sigma_{\bigcirc}\left(\mathcal{B}\right)\right]_{\sim} \\ & \qquad \qquad \downarrow \\ \mathcal{I}\left(\sigma_{\bigcirc}\right)\left(\mathcal{A}\right) &= 1, \mathcal{I}\left(\sigma_{\bigcirc}\right)\left(\mathcal{B}\right) = 0 \\ \mathcal{I}\left(\sigma_{\bigcirc}\right)\left(\mathcal{A}\right) &= 0, \mathcal{I}\left(\sigma_{\bigcirc}\right)\left(\mathcal{B}\right) = 1 \end{split}$$

is NOT a valid scheduler

## Closing remarks

In verification of distributed systems with random behavior + privacy concerns

→ traditional probabilistic model-checking techniques are inadequate

#### Distributed schedulers work better

- + realistic bounds for probabilities
- undecidable in general
- + bounded reachability is decidable → non-linear programming problem
- too powerful in some cases

### We introduce secrecy

- some drawbacks of distributed schedulers
- + even more realistic results
- + also reducible to non-linear program
- ! some validation pending

### References

- [Calin et al., 2010] Calin, G., Crouzen, P., D'Argenio, P., Hahn, E., and Zhang, L. (2010). Time-bounded reachability in distributed input/output interactive probabilistic chains. In van de Pol, J. and Weber, M., editors, *Model Checking Software*, volume 6349 of *Lecture Notes in Computer Science*, pages 193–211. Springer Berlin / Heidelberg. 10.1007/978-3-642-16164-3-15.
- [Giro, 2010] Giro, S. (2010). On the automatic verification of distributed probabilistic automata with partial information. PhD thesis, FaMAF, UNC.
- [Giro and D'Argenio, 2009] Giro, S. and D'Argenio, P. (2009). On the expressive power of schedulers in distributed probabilistic systems. *Electronic Notes in Theoretical Computer Science*, 253(3):45 71. Proceedings of Seventh Workshop on Quantitative Aspects of Programming Languages (QAPL 2009).
- [Giro and D'Argenio, 2007] Giro, S. and D'Argenio, P. R. (2007). Quantitative model checking revisited: Neither decidable nor approximable. In Raskin, J.-F. and Thiagarajan, P. S., editors, *FORMATS*, volume 4763 of *LNCS*, pages 179–194. Springer.