Lógica Matemática

O conceito de limite da função tem grande importância na determinação de comportamento de funções nas vizinhanças fora do domínio.

Dizemos que f(x) tem limite L quando x tende a "x0" e escrevemos

$$\lim_{x \to x_0} f(x) = L$$

Exemplo 1: Calcule o limite para

$$\lim_{x \to 1} (x+1).$$

Exemplo 1: Calcule o limite para

$$\lim_{x \to 1} (x+1).$$

x	x + 1	
2	3	0
1,5	2,5	0
1,1	2,1	0
1,01	2,01	0
1,001	2,001	
1	1	1
1	2	

х	x + 1
0,5	1,5
0,9	1,9
0,99	1,99
0,999	1,999
↓	+
1	2

Exemplo 1: Calcule o limite para

$$\lim_{x \to 1} (x+1).$$

x	x + 1	х
2	3	0,5
1,5	2,5	0,9
1,1	2,1	0,99
1,01	2,01	0,99
1,001	2,001	1
1	1	1
1	2	

x	x + 1
0,5	1,5
0,9	1,9
0,99	1,99
0,999	1,999
1	↓
1	2

Nesse caso a função é definida no ponto x0, dizemos então que a função é contínua em x0

Exemplo 2: Calcule o limite para

$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1}$$

Exemplo 2: Calcule o limite para

$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1}$$

Seja $f(x) = \frac{x^2 - 1}{x - 1}$, $x \ne 1$; f não está definida em x = 1.

Para
$$x \neq 1$$

$$\frac{x^2 - 1}{x - 1} = \frac{(x - 1) \cdot (x + 1)}{(x - 1)}$$

$$f(x) = \frac{x^2 - 1}{x - 1} = x + 1.$$

Exemplo 2: Calcule o limite para

$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1}$$

Seja $f(x) = \frac{x^2 - 1}{x - 1}$, $x \ne 1$; f não está definida em x = 1.

Para
$$x \neq 1$$

$$f(x) = \frac{x^2 - 1}{x - 1}$$

$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1} = \lim_{x \to 1} (x + 1) = 2.$$

Exemplo 3: Calcule o limite para x=3 em

$$f(x) = \begin{cases} x + 2, & se \ x \le 3 \\ 2x, & se \ x > 3 \end{cases}$$

Qual o limite??????

Limites Laterais

Exemplo 3: Calcule o limite para x=3 em
$$f(x) = \begin{cases} x + 2, & se \ x \le 3 \\ 2x, & se \ x > 3 \end{cases}$$

Limite lateral pela direita: dada uma função f(x) e um ponto $b \in D_f$, o limite de f(x) é igual a L quando x tende a b pela direita $(x \rightarrow b+)$, ou seja , à medida que x se aproxima de b por valores maiores do que b:

$$\lim_{x \to b} f(x) = L$$

Limite lateral pela esquerda: dada uma função f(x) e um ponto $b \in D_f$, o limite de f(x) é igual a M quando x tende a b pela esquerda $(x \rightarrow b_-)$, ou seja , à medida que x se aproxima de b por valores menores do que b:

$$\lim_{x \to h} f(x) = M$$

Limites Laterais

Exemplo 3: Calcule o limite para x=3 em $f(x) = \begin{cases} x + 2, & se \ x \le 3 \\ 2x, & se \ x > 3 \end{cases}$

Podemos calcular o limite lateral pela direita assumindo valores para x cada vez mais próximos de 3 "pela direita", ou seja, assumindo valores para x maiores do que 3 cada vez mais próximos de 3 e calculando o valor de y correspondente

x	f(x)
3,1	6,2
3,01	6,02
3,001	6,002

dessa forma,
$$\lim_{x \to 3+} f(x) = 6$$

Limites Laterais

Exemplo 3: Calcule o limite para x=3 em
$$f(x) = \begin{cases} x + 2, & se \ x \le 3 \\ 2x, & se \ x > 3 \end{cases}$$

De forma análoga, podemos calcular o limite lateral pela esquerda assumindo valores para x cada vez mais próximos de 3 "pela esquerda", ou seja, assumindo valores para x menores do que 3 cada vez mais próximos de 3 e calculando o valor de y correspondente

x	f(x)
2,9	4,9
2,9 2,99	4,99
2,999	4,999
• • • •	•••
. 	

dessa forma,
$$\lim_{x \to 3^-} f(x) = 5$$

Exemplo 4: Calcule
$$\lim_{x \to 2} \frac{x+1}{x-2}$$

Exemplo 4: Calcule
$$\lim_{x\to 2} \frac{x+1}{x-2}$$

Aqui a função não é definida para x=2. Calculando os limites laterais, temos

Limite lateral pela direita

$$f(x) = \frac{x+1}{x-2}$$

$$f(2,1) = 31$$

$$f(2,01) = 301$$

$$f(2,001) = 3001$$

$$f(2,0001) = 30001$$

X	у
2,1	31
2,01	301
2,001	3001
2,0001	30001
()	()

$$\lim_{x \to 2^{+}} \frac{x+1}{x-2} = +\infty$$

Exemplo 4: Calcule
$$\lim_{x \to 2} \frac{x+1}{x-2}$$

Limite lateral pela esquerda

$$f(x) = \frac{x+1}{x-2}$$

$$f(1,9) = -29$$

$$f(1,99) = -299$$

$$f(1,999) = -2999$$

$$f(1,9999) = -29999$$

$$f(1,9999) = -29999$$

$$f(...)$$

$$x$$

$$y$$

$$1,9$$

$$1,99$$

$$1,999$$

$$1,9999$$

$$-29999$$

$$(...)$$

$$(...)$$

$$\lim_{x \to 2^{-}} \frac{x+1}{x-2} = -\infty$$

Esse limite é chamado de LIMITE INFINITO

Exercícios

1) Para cada função abaixo f(x) e para cada a, calcule (quando existir):

$$\lim_{x \to a^+} f(x), \quad \lim_{x \to a^-} f(x), \quad \text{e} \quad \lim_{x \to a} f(x).$$

a)
$$f(x) = x^3$$
, $a = 2$

g)
$$f(x) = \begin{cases} 2x, \text{ se } x \le 2 \\ 7, \text{ se } x > 2 \end{cases}, a = 2$$

b)
$$f(x) = 2x + 1$$
, $a = 3$

h)
$$f(x) = \sqrt{3x+4}$$
, $a = 7$

c)
$$f(x) = \frac{x+5}{x-3}$$
, $a = 0$

i)
$$f(x) = \frac{x-2}{x}, a = 2$$

2) Para cada função f(x) abaixo, calcule $\lim_{x \to a^+} f(x)$ e $\lim_{x \to a^-} f(x)$, quando existirem:

a)
$$f(x) = \frac{4}{x-6}$$
, $a = 6$

i)
$$f(x) = \frac{-1}{x^2}, a = 0$$

b)
$$f(x) = \frac{3}{1-x}$$
, $a = 1$

j)
$$f(x) = \frac{1}{x^3}, a = 0$$