

AD-A163 181	PORT DOCUME	ENTATION PAGE	E	(Sec.)		
AP A 103 101		16. RESTRICTIVE M	IARKINGS			
24. SECURITY CLASSIFICATION AUTHORITY		3. DISTRIBUTION/A	VAILABILITY O	FREPORT		
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE		Approved for public release; distribution unlimited				
4. PERFORMING ORGANIZATION REPORT NUM	BER(S)		IGANIZATION R	EPORT NUMBER(S)	-	
		AFGL-TR-86-0			TIC	
6a NAME OF PERFORMING ORGANIZATION Air Force Geophysics	6b. OFFICE SYMBOL (If applicable)	7a. NAME OF MONIT	TORING ORGAN	EL	ECTE	
Laboratory	_OPA		7 7 10 Co	WAL-	1 6 1088	
Sc. ADDRESS (City, State and ZIP Code)	•	7b. ADDRESS (City,	State and ZIP Cod	1e)		
Hanscom AFB				18	Λ	
Massachusetts 01731				7-	A	
86. NAME OF FUNDING/SPONSORING ORGANIZATION	8b. OFFICE SYMBOL (If applicable)	9. PROCUREMENT I	NSTRUMENT ID	ENTIFICATION NU	MBER	
Sc. ADDRESS (City, State and ZIP Code)	<u> </u>	10. SOURCE OF FUN	NDING NOS.			
	ļ	PROGRAM ELEMENT NO.	PROJECT NO.	TASK NO.	WORK UNIT	
	2012					
11. TITLE (Include Security Classification) Optical Radiative Properties of a Deser		62101F	7670	44		
12. PERSONAL AUTHOR(S)	LI HELOSOT MODE	DZIVIE	1010	14	02	
Eric P. Shettle						
13a. TYPE OF REPORT 13b. TIME CO		14. DATE OF REPOR		15. PAGE CO	UNT	
00101102120 2110012111	TO					
Repl Ince	d from: IRS 84: al/Radiation Sym	: Current Proc	olems in Au	mospheric ka	diation	
Proceedings of the International Edited by Giorgio Fiocco	TI Tayler Toll	ibostail, Leina	Jid, Italy	21-20 Aug 0-	,	
17. COSATI CODES	18. SUBJECT TERMS:	ontinue on reverse if ne	ecessary and identi	ity by block number)		
FIELD GROUP SUB. GR.	Desert Aerosol Optical Proper	/				
	Scattering	/				
19. ABSTRACT (Continue on reverse if necessary and	identify by block number	•)				
The Experts Meeting on Aer	rosols and their	r Climatic Eff	ects, unde	r the World (Climate	
Research Program reviewed the s	status of the ae	erosol models	in the Star	ndard Radiat:	ion	
Atmospheres of the IAMAP Radiat aerosol models was identified a	ion Commission.	One of the	major areas	s for improv:	ing these	
recommendations were made for o	developing such	a separate ue	Sert aeros del A de	of model. Se	everal	
based on these recommendations	and other work	will be discu	ussed with	emphasis on .	the Moder	
optical and radiative propertie	es and their var	iations with	wind speed			
OTIE FILE COPY			0 0	7 7 7	2 2 4	
file item			ठ ७	1 15	061	
20. DISTRIBUTION/AVAILABILITY OF ABSTRACT	-	TOTAL OT RECL	TO ACCIEN			
		21. ABSTRACT SECURITY CLASSIFICATION				
UNCLASSIFIED/UNLIMITED D SAME AS RPT.	TIC USERS D	Unclassified				
22a. NAME OF RESPONSIBLE INDIVIDUAL		22b. TELEPHONE NUMBER 22c. OFFICE SYMBOL (Include Area Code)				
Eric P. Shettle		(617) 861–36		OPA		

DD FORM 1473, 83 APR

EDITION OF 1 JAN 73 IS OBSOLETE.

INCLASSIFIED

AFG L-TR-86-000

OPTICAL AND RADIATIVE PROPERTIES OF A DESERT AEROSOL MODEL

E.P. Shettle Air Force Geophysics Laboratory Hanscom AFB, Massachusetts, USA

A

Introduction

One of the major sources of the natural atmospheric aerosols is wind-blown dust and sand. These predominantly originate from the arid and semi-arid regions which make up onethird of the earth's land area (e.g. see Levis ver al., 1980). The serosol models in the Standard Radiation Atmospheres (SRA) of the IAMAP Radiation Commission, do not include a model specifically representative of these regions. For this reason the Experts Heeting on Aerosols and their Climatic Effects (WMO 1983) under the World Climate Research Program, identified as one of the major areas for improving the SRA aerosol models, the need for a separate desert aerosol model. Several recommendations were made for developing such as Sepon deser aerosol model. This paper presents the optical and radiative properties of a desert aerosol model based on those recommendations. Two models are discussed representing the extremes of background conditions and a severe dust storm.

Physical Properties of the Desert Aerosols

The refractive index of the aerosols is based on the work of Volz (1973), Benjamin & Carlson (1980) and Patterson (1981), as discussed below. The real part of the refractive index follows Carlson & Benjamin (1980) for wavelengths, $\lambda \leq 2.5~\mu m$. For longer wavelengths Volz's (1973) measurements from the real part are used. The imaginary part of the refractive index is based on Benjamin and Carlson (1980) for $\lambda \leq 1.0~\mu m$, and is joined smoothly into an average of Volz's (1973) and Patterson's (1981) measurements for imaginary part, which are in good agreement with recent measurements (Fouquart, et al., 1984).

The size distribution is based on the review by Jaenicke (1983). The size distributions for the aerosol models are represented as the sum of 3 log-normal distributions:

$$\frac{dN(r)}{d \log r} = \sum_{i=1}^{3} \frac{N_i}{\sqrt{2\pi} \log \sigma_i} \exp - \frac{(\log r - \log R_i)^2}{2(\log \sigma_i)^2}$$

where N(r) = particle concentration for particles with radius > r.

N_i = total number of particles in the ith
distribution

vi = geometric standard deviation

Ri - mode radius

The values of the parameters N_1 , σ_1 , and R_1 are summarized in Table 1, following WMO, 1983 (their Table 4.1). The number density distribution for these models is shown in Figure 1 and the cross-sectional area distribution is shown in Figure 2. It will be noted that the two model size distributions differ significantly only for the larger aerosols.

Optical and Radiative Properties

The optical and radiative properties were derived from standard Mie scattering calculations. Figure 3 shows our results for the extinction, scattering and absorption coefficients for the Background Desert Aerosol Model and Figure 4 shows the corresponding results for the Desert Dust Storm Model. extinction coefficients for the two models are shown in Figure 5. It will be noted that the Desert Dust Storm Aerosol Hodel extinction excedes the Background Model values by a factor of 40 in the visible and by 3 orders of magnitude in the far IR. This is due to the enhanced numbers of very large aerosols with severe wind conditions. The single scatter albedo (the ratio of scattering to total extinction) is shown in Figure 6, for the two

The asymmetry parameter, which characterizes the angular distribution of the scattered radiation is shown in Figure 7.

References

Carlson, T.N. & S.G. Benjamin (1980), "Radiative Heating Rates for Saharan Dust", J. Atmos. Sci., 37, 193-213.

Fouquart, Y. B. Bonnell, A. Cerf, M. Chaoui, L. Smith, & J.C. Vanhoutte (1984) "Size Distribution and Optical Properties of Saharan Aerosols during ECLATS", in <u>Aerosols</u> and <u>Their Climatic Effects</u>, edited by A. Deepak & H. Gerber, A. Deepak Publishing, in press.

Jaenicke, R. (1983), Presented at the Experts Meeting on Aerosols and Their Climatic Effects (WHO 1983), also to be published in "Aerosol Physics and Chemistry" Meteorology Volume in Landolt-Bornstein.

Levin, Z., J.H. Joseph, & Y. Mekler (1980), Properties of Sharav (Khamsin) Dust -Comparison of Optical and Direct Sampling Data", J. Atmos. Sci., 37, 882-891.

į

Patterson, E.M. (1981), "Optical Properties of the Crustal Aerosol; Relationship to Chemical and Physical Characteristics", <u>J. Geophys. Res.</u>, 86, 3236-3246.

Volz, F.E. (1973), "Infrared Optical Constants of Ammonium Sulfate, Saharan Dust, Volcanic Pumice, and Flyash", Appl. Opt., 12, 564-567.

WMO (1983) "Report of the Experts Meeting on Aerosols and their Climatic Effects" (Williamsburg, VA, 28-30 March 1983), World Climate Research Programme, Report No. WCP-55, Published by the World Meteorological Organization, Dec 1983.

TABLE 1 Parameters for Desert Aerosol Size Distribution

Size Distribution	1	N ₁ (cm ⁻³)	o i	R ₁ (µm)
Background Desert Model	1 2 3	9.97 x 10 ² 8.42 x 10 ² 7.10 x 10 ⁻⁴	0 .328 0 .505 0 .277	0 .0010 0 .0218 6 .24
Desert Dust Storm Model	1 2 3	7 .26 x 10 ² 1 .14 x 10 ³ 1 .78 x 10 ⁻¹	0 .247 0 .770 0 .438	0 .0010 0 .0188 10 .8

Pigure 1. Number Density Distribution (particle/cm³) for the Desert Aerosol Models.

Figure 2. Area Distribution (µm²/cm³ for the Desert Aerosol Models.

Figure 3. The Attenuation Coefficients for the Background Desert Aerosol Model as a Function of Wavelength.

Figure 4. The Attenuation Coefficients for the Desert Dust Storm Aerosol Model as a Function of Wavelength.

Figure 5. Comparison between the Extinction for the Background Desert and the Desert Dust Storm Aerosol Models.

Figure 6. Comparison between the Albedo for Single Scattering for the Background Desert and the Desert Dust Storm Aerosol Models.

Figure 7. Comparison between the Asymmetry
Parameter for the Background Desert
and the Desert Dust Storm Aerosol
Models.

