

软件理论基础:逻辑篇

为什么要学习逻辑?

数理逻辑是一门以**数学方法**为基础,用**符号系统**的形式来研究思维结构及规律的学科.

- ◆数理逻辑在计算机软件硬件设计中的应用
 - >开关电路--布尔代数
 - ▶搜索引擎--索引
 - >关系数据库 --- 谓词逻辑
 - **>.....**

为什么要学习逻辑?

数理逻辑是规范语言、定理证明器、模型检测器的基础

$$\mathcal{M} \vDash \phi$$

其中, \mathcal{M} -模型; ϕ --规范语言(用户需求),以逻辑的形式表示。

中心:设计好的算法计算片

题外话-学得东西都是有用的

- 1. Google 2002年推出了自己的``新闻"服务。和传统媒体的做法不同,这些新闻不是记者写的,也不是人工编辑的,而是由计算机整理、分类和聚合各个新闻网站的内容,一切都是自动生成的。这里面关键的技术就是新闻的自动分类----**背后的数学(余弦定理)**
- 2. Google的网页排名技术。其``PageRank"网页排名算法是革命性的发明--公认的文献检索中最大的贡献之一,有人甚至认为整个公司的成功都是基于这个算法。创始人: 拉里.佩奇、谢尔盖.布林. 佩奇也是因为这个算法在30岁时当选为美国工程院院士,是继乔布斯, 盖茨之后有一位当院士的辍学生. 其背后的数学---线性代数.

中国的大部分软件工程师在一个未知领域都是从直观感觉出发,用``凑"的方法来解决问题,说的不好听,就是山寨. Google招揽理论基础优异的工程师.----吴军《数学之美》

时态逻辑系统

时态逻辑系统

- 表达/刻画逻辑中的时态性:一个公式不是静态地取真值,而是动态地取真值。
- 一个公式可能在某些状态是真的, 而在其它状态是假的。
- 真值的静态性变成动态性。
- 公式随着系统的状态演化而改变真值。

时态逻辑系统

时态逻辑系统可用于模型检测。

- 模型通常是迁移系统/有限自动机,它描述了状态迁移过程,反映状态的演化,而公式是时态逻辑公式φ。
- 模型检测的目的是表明模型M满足公式 ϕ , 即 $M \models \phi$ 。
- 通常实现模型检测,需要做下面三件事情:
 - -建立模型 \mathcal{M} ,
 - -编写公式 ϕ ,
 - 运行模型检测器,输入 \mathcal{M} 和 ϕ ,
- 模型检测器将输出Yes若 $\mathcal{M} \models \phi$ 成立,否则输出No。

时态逻辑系统分类

- 线性时态逻辑系统LTL: 时间是按照线性进行迁移的
- 计算树逻辑系统CTL: 时间是按照树进行迁移的.

- 引入连接词表示时间: X, F, G, U, W, R
 - -X—Next 下一个状态,
 - F—某个Future 状态,
 - -G—所有将来的状态(Globally),
 - U—Until 直到
 - W—Weak-Until,弱直到
 - R—Release, 解释,释放
- 引入原子公式Atoms: $p,q,e,\dots,p_1,p_2,\dots$ 如: 打印机 Q_5 是忙的, 进程3259在悬挂, 记录R1的内容是整数值6, 数据的长度是99,等
- 计算路,也叫状态序列, 简称路

定义 LTL的公式

公式φ定义为

$$\phi ::= \top \mid \bot \mid p \mid \neg \phi \mid \phi \land \phi \mid \phi \lor \phi \mid \phi \to \phi$$

$$(X\phi) \mid (F\phi) \mid (G\phi) \mid (\phi U\phi) \mid (\phi W\phi) \mid (\phi R\phi)$$

例子: $(F(p \to Gr) \lor ((\neg q)Up))$, 画出Parse tree; 非法公式: Ur, pGq.

- 1. 在任何状态下,若有一个请求出现,那么这个请求将会被接受. G (请求出现——) F接受)
- 2. 某个进程往往在每个计算路上被无限次地激活. GF激活
- 3. 一部上升的电梯在第二层时不会改变上升方向直到第5层楼,若电梯内有人要到第5层楼.
 - $G(2层\land 向上\land 有人要到5层\longrightarrow (向上方向U5层楼))$
- 4. 已经到达了开始状态,但准备工作还没有做好是不可能的. $G_{\neg}($ 开始了 \wedge_{\neg} 准备)。

迁移系统(Transition System): 通过状态(静态结构)和迁移(动态结构)来为系统提供模型.

定义 迁移系统

迁移系统 $\mathcal{M} = (S, \rightarrow, L)$ 是由下面三部分组成:

- S是状态集
- →是S上的二元关系,称为迁移关系,使得 $\forall s \in S$,都有 $s' \in S$ 且 $s \to s'$, 即→ 是S上的连续关系
- 标号函数 $L: S \to \mathcal{P}(Atoms)$

注: (1) 迁移系统是一种特殊的Kripke模型。

- (2) 迁移系统可直接称为模型.
- (3) 例子:

线性时态逻辑-LTL: 例子

定义 路

模型 $\mathcal{M} = (S, \to, L)$ 的路是指S中的无限状态序列 $s_1, s_2, \cdots, s_n, \cdots$ 使得 $\forall i \geq 1, s_i \to s_{i+1}$.

通常将路写成: $s_1 \rightarrow s_2 \rightarrow \cdots$, 并用 π 表示一条路.

注: (1) π^i 表示从状态 s_i 开始的路. 请写出上例中的一些路.

(2)计算路的展开(unwinding)。

定义 路满足公式

给定模型 $\mathcal{M} = (S, \to, L)$ 以及路 $\pi = s_1 \to s_2 \to \cdots$ 定义 π 满足公式 ϕ ,记作 $\pi \models \phi$,归纳如下:

- $1. \pi \models \top$
- $2. \pi \not\models \bot$
- $3. \pi \models p$ 当且仅当 $p \in L(s_1)$
- $4. \pi \models \neg \phi 若 \pi \not\models \phi$
- $6. \pi \models \phi \lor \psi \$ 若 $\pi \models \phi$ 或 $\pi \models \psi$.
- 7. $\pi \models \phi \rightarrow \psi \$ 若 $\pi \models \phi$ 则 $\pi \models \psi$
- $8. \pi \models X \phi \$ 若 $\pi^2 \models \phi$
- $9. \pi \models G\phi$ 若 $\forall i \geq 1, \pi^i \models \phi$
- $10. \pi \models F \phi$ 若 $\exists i \geq 1$ 使得 $\pi^i \models \phi$

- $11. \pi \models \phi U \psi$ 若 $\exists i \geq 1$ 使得 $\pi^i \models \psi$ 且对于所有的 $j = 1, 2, \cdots, i-1$ 都有 $\pi^j \models \phi$.
- $12. \pi \models \phi W \psi$ 若或者 $\exists i \geq 1$ 使得 $\pi^i \models \psi$ 且对于所有的 $j = 1, 2, \dots, i-1$ 都有 $\pi^j \models \phi$ 或者对于所有的 $k \geq 1$ 都有 $\pi^k \models \phi$.
- 13. $\pi \models \phi R \psi$ 若或者 $\exists i \geq 1$ 使得 $\pi^i \models \phi$ 且对于所有的 $j = 1, 2, \dots, i$ 都有 $\pi^j \models \psi$ 或者对于所有的 $k \geq 1$ 都有 $\pi^k \models \psi$.

例子:解释

- 原子命题a: $\bigcirc \rightarrow \bigcirc \rightarrow \bigcirc \rightarrow \bigcirc \rightarrow \bigcirc \rightarrow \cdots$ a 任意 任意 \cdots
- $Xa: \bigcirc \rightarrow \bigcirc \rightarrow \bigcirc \rightarrow \bigcirc \rightarrow \bigcirc \rightarrow \cdots$ 任意 a 任意 任意 \cdots

- aWb: 请大家画出

定义 状态满足公式

设 $\mathcal{M} = (S, \to, L)$ 是一个模型, $s \in S$, ϕ 是一个LTL公式, 若对 \mathcal{M} 的 从s出发的每条路 π 都有 $\pi \models \phi$, 则称状态s满足 ϕ , 记作 $\mathcal{M}, s \models \phi$, 或 $s \models \phi$.

例子:接前面的例子,考察迁移系统中,状态满足哪些逻辑公式.

例子:解释

- \bullet $s_0 \models (p \land q);$
- \bullet $s_0 \models \neg r;$
- \bullet $s_0 \models \top$;
- \bullet $s_0 \models Xr;$
- \bullet $s_0 \not\models X(q \wedge r);$
- \bullet $s_0 \models G \neg (p \land r);$
- \bullet $s_2 \models Gr;$
- \bullet $s \models F(\neg q \land r) \rightarrow FGr;$
- $s_0 \not\models GFp$; 路 $s_0 \to s_1 \to s_0 \to s_1 \to \cdots$ 满足该公式, 但路 $s_0 \to s_2 \to s_2 \to s_2 \to \cdots$ 不满足.
- $s_0 \models GFp \rightarrow GFr$, 但 $s_0 \not\models GFr \rightarrow GFp$.

定义 语义等价 $\phi \equiv \psi$

定理 语义等价等价刻画 设 ϕ , ψ 是LTL公式,它们是语义等价的,当且仅当若对于所有的模型M以及M中的所有的状态s都有 $s \models \phi$ 当且仅当 $s \models \psi$.

定理 下面各条成立

de Margan律
$$\phi \wedge \psi \equiv \neg(\neg \phi \vee \neg \psi)$$

$$\phi \lor \psi \equiv \neg(\neg \phi \land \neg \psi)$$

幂等律
$$\neg \neg \phi \equiv \phi$$

对偶性
$$G\phi \equiv \neg F \neg \phi$$

$$F\phi \equiv \neg G \neg \phi$$

$$\phi U \psi \equiv \neg (\neg \phi R \neg \psi)$$

$$\phi R \psi \equiv \neg (\neg \phi U \neg \psi)$$

自对偶性
$$X\phi \equiv \neg X \neg \phi$$

分配性
$$F(\phi \lor \psi) \equiv F\phi \lor F\psi$$

$$G(\phi \wedge \psi) \equiv G\phi \wedge G\psi$$

思考: $F(\phi \wedge \psi) \equiv F\phi \wedge F\psi$ (?); $G(\phi \vee \psi) \equiv G\phi \vee G\psi$ (?)

线性时态逻辑-LTL: 连接词的充分性

定理 连接词相互定义

$$F\phi \equiv \top U\phi$$

$$G\phi \equiv \bot R\phi$$

$$\phi W\psi \equiv \phi U\psi \lor G\phi$$

$$\phi W\psi \equiv \psi R(\phi \lor \psi)$$

$$\phi R\psi \equiv \psi W(\phi \land \psi)$$

$$\phi U\psi \equiv \phi W\psi \land F\psi$$

连接词的充分性: $\{U, X\}, \{R, X\}, \{W, X\}$

综上, LTL可以简便的表示如下:

$$\phi ::= \top \mid p \mid \neg \phi \mid \phi \land \phi \mid X\phi \mid \phi U\phi$$

当并发进程共享资源(如磁盘上的某个文件, 或数据库登陆), 通常要求两个进程不能同时获取进入. 进程不能同时编辑相同的文件.

需要给定某个临界区, 在任意时刻只安排一个进程在临界区.

问题:如何设计协议以确定在任意时刻,哪个进程被允许进入临界区.

- 1. n:表示在非临界状态
- 2. t: 试图进入临界状态
- 3. c: 已在临界区的状态

A model for mutual exclusion.

- 1.安全性: 任何时候最多一个进程在临界区
- 2.活性: 任何进程只要要求进入临界区,最终会进入.
- 3.非阻塞性: 任何进程总能要求进入临界区.

A model for mutual exclusion.

1. 安全性:

$$G \neg (c_1 \wedge c_2)$$

2.活性:

$$G(t_1 \to Fc_1)$$

3.非阻塞性: 不能被LTL表示. 这是因为需要表达:对于满足 n_1 的每个状态, 要有后继状态满足 t_1 ,然而路径上的存在量词不能被LTL表示.

A model for mutual exclusion.

1.安全性:被初始状态满足(每个状态都满足).

2. 活性: **不被**初始状态满足, 这是因为在路 $s_0 \rightarrow s_1 \rightarrow s_3 \rightarrow s_7 \rightarrow s_1 \rightarrow s_3 \rightarrow s_7 \cdots$ 上 c_1 总是错的.

问题: 能否设计满足活性的互斥模型

Another model for mutual exclusion.