Foundations of Computing Lecture 24

Arkady Yerukhimovich

April 20, 2023

Outline

1 Lecture 23 Review

Lecture 23 Review

- The class co- \mathcal{NP}
- Interactive Proofs
- GNI $\in \mathcal{IP}$

Our Goal For Today

Prove that co- $\mathcal{NP} \subseteq \mathcal{IP}$

Graph Non-Isomorphism

Question

How can we prove that two graphs G_0 and G_1 are NOT isomorphic?

The Protocol:

- V chooses $b \leftarrow \{0,1\}$, and applies a random permutation π to the vertices of G_b and sends this graph G^* to P
- ② P determines if G^* is isomorphic to G_0 and sends b'=0 if so, or b'=1 otherwise back to V
- **3** V accepts if b' = b

Why This Works:

Graph Non-Isomorphism

Question

How can we prove that two graphs G_0 and G_1 are NOT isomorphic?

The Protocol:

- V chooses $b \leftarrow \{0,1\}$, and applies a random permutation π to the vertices of G_b and sends this graph G^* to P
- ② P determines if G^* is isomorphic to G_0 and sends b'=0 if so, or b'=1 otherwise back to V
- 3 V accepts if b' = b

Why This Works:

- **1** (Completeness) Suppose that G_0 and G_1 are not isomorphic.
 - Then G^* can only be isomorphic to one of the two graphs
 - P can perfectly determine which one this is
 - So Pr[b' = b] = 1

Graph Non-Isomorphism

Question

How can we prove that two graphs G_0 and G_1 are NOT isomorphic?

The Protocol:

- V chooses $b \leftarrow \{0,1\}$, and applies a random permutation π to the vertices of G_b and sends this graph G^* to P
- ② P determines if G^* is isomorphic to G_0 and sends b'=0 if so, or b'=1 otherwise back to V
- 3 V accepts if b' = b

Why This Works:

- **1** (Completeness) Suppose that G_0 and G_1 are not isomorphic.
 - ullet Then G^* can only be isomorphic to one of the two graphs
 - P can perfectly determine which one this is
 - So Pr[b' = b] = 1

• Thus, Pr[b' = b] = 1/2

- **②** (Soundness) Suppose that G_0 and G_1 are isomorphic
 - Then G^* is isomorphic to both G_0 and G_1
 - P has no way to tell which one V started from
 - イロト (個) (目) (見) (見) (見) (り)

3-UNSAT

3-UNSAT= $\{\langle \phi \rangle \mid \phi \text{ is an unsatisfiable 3-CNF formula}\}$

3-UNSAT

3-UNSAT= $\{\langle \phi \rangle \mid \phi \text{ is an unsatisfiable 3-CNF formula}\}$

• If we can give \mathcal{IP} proof for 3-UNSAT, we can give an \mathcal{IP} proof for any $L \in \text{co-}\mathcal{NP}$

3-UNSAT

3-UNSAT= $\{\langle \phi \rangle \mid \phi \text{ is an unsatisfiable 3-CNF formula}\}$

• If we can give \mathcal{IP} proof for 3-UNSAT, we can give an \mathcal{IP} proof for any $L \in \text{co-}\mathcal{NP}$

The Challenge

3-UNSAT

3-UNSAT= $\{\langle \phi \rangle \mid \phi \text{ is an unsatisfiable 3-CNF formula}\}$

• If we can give \mathcal{IP} proof for 3-UNSAT, we can give an \mathcal{IP} proof for any $L \in \text{co-}\mathcal{NP}$

The Challenge

• Need to prove that for all inputs x, $\phi(x) = 0$

3-UNSAT

3-UNSAT= $\{\langle \phi \rangle \mid \phi \text{ is an unsatisfiable 3-CNF formula}\}$

• If we can give \mathcal{IP} proof for 3-UNSAT, we can give an \mathcal{IP} proof for any $L \in \text{co-}\mathcal{NP}$

The Challenge

- Need to prove that for all inputs x, $\phi(x) = 0$
- But, there are $2^{|x|}$ possible such x

3-UNSAT

3-UNSAT= $\{\langle \phi \rangle \mid \phi \text{ is an unsatisfiable 3-CNF formula}\}$

• If we can give \mathcal{IP} proof for 3-UNSAT, we can give an \mathcal{IP} proof for any $L \in \text{co-}\mathcal{NP}$

The Challenge

- Need to prove that for all inputs x, $\phi(x) = 0$
- But, there are $2^{|x|}$ possible such x
- How can we prove properties about all possible x at once?

Idea

For *n* inputs x_1, x_2, \ldots, x_n , construct a polynomial $\Phi(x_1, \ldots, x_n)$ s.t.

 $\Phi(x_1,\ldots,x_n)=0$ if and only if $\phi(x_1,\ldots,x_n)$ is unsatisfiable

Idea

For *n* inputs x_1, x_2, \ldots, x_n , construct a polynomial $\Phi(x_1, \ldots, x_n)$ s.t.

 $\Phi(x_1,\ldots,x_n)=0$ if and only if $\phi(x_1,\ldots,x_n)$ is unsatisfiable

Idea

For *n* inputs x_1, x_2, \ldots, x_n , construct a polynomial $\Phi(x_1, \ldots, x_n)$ s.t.

 $\Phi(x_1,\ldots,x_n)=0$ if and only if $\phi(x_1,\ldots,x_n)$ is unsatisfiable

Constructing Φ :

Identify 0 = false, and positive integer = true

Idea

For *n* inputs x_1, x_2, \ldots, x_n , construct a polynomial $\Phi(x_1, \ldots, x_n)$ s.t.

 $\Phi(x_1,\ldots,x_n)=0$ if and only if $\phi(x_1,\ldots,x_n)$ is unsatisfiable

- ullet Identify 0 = false, and positive integer = true
- $x_i \rightarrow x_i$, $\overline{x_i} \rightarrow (1-x_i)$

Idea

For *n* inputs x_1, x_2, \ldots, x_n , construct a polynomial $\Phi(x_1, \ldots, x_n)$ s.t.

$$\Phi(x_1,\ldots,x_n)=0$$
 if and only if $\phi(x_1,\ldots,x_n)$ is unsatisfiable

- Identify 0 = false, and positive integer = true
- $\bullet \ x_i \to x_i, \ \overline{x_i} \to (1-x_i)$
- Replace ∨ with +

Idea

For *n* inputs x_1, x_2, \ldots, x_n , construct a polynomial $\Phi(x_1, \ldots, x_n)$ s.t.

$$\Phi(x_1,\ldots,x_n)=0$$
 if and only if $\phi(x_1,\ldots,x_n)$ is unsatisfiable

- Identify 0 = false, and positive integer = true
- $\bullet \ x_i \to x_i, \ \overline{x_i} \to (1-x_i)$
- Replace ∨ with +
- ullet Replace \wedge with imes

Idea

For *n* inputs x_1, x_2, \ldots, x_n , construct a polynomial $\Phi(x_1, \ldots, x_n)$ s.t.

 $\Phi(x_1,\ldots,x_n)=0$ if and only if $\phi(x_1,\ldots,x_n)$ is unsatisfiable

- Identify 0 = false, and positive integer = true
- $x_i \rightarrow x_i$, $\overline{x_i} \rightarrow (1 x_i)$
- \bullet Replace \lor with +
- ullet Replace \wedge with imes

$$\phi(x) = (x_1 \vee x_2 \vee x_3) \wedge (\overline{x_1} \vee x_2 \vee x_3)$$

$$\Phi(x) = (x_1 + x_2 + x_3)((1 - x_1) + x_2 + x_3)$$

- Φ has degree equal to the number (m) of clauses of ϕ
- $\Phi(x_1,\ldots,x_n) \leq 3^m$
- Any clause takes on a positive value iff at least one of its literals is 1
- $\Phi(x_1,\ldots,x_n)>0$ iff all of its clauses are >0
- $\Phi(x_1,...,x_n) > 0$ if $\phi(x_1,...,x_n) = TRUE$
- $\Phi(x_1,...,x_n) = 0$ if $\phi(x_1,...,x_n) = FALSE$

$$\phi \in 3\text{-UNSAT} \iff \sum_{x_1 \in \{0,1\}} \cdots \sum_{x_n \in \{0,1\}} \Phi(x_1, \dots, x_n) = 0$$

$$\overline{\Phi}(x_1, \dots, x_n) + \overline{\Phi}(x_1, \dots, x_n) = 0$$

$$\Phi(x) = (x_1 + x_2 + x_3)((1 - x_1) + x_2 + x_3)$$

$$\Phi(x) = (x_1 + x_2 + x_3)((1 - x_1) + x_2 + x_3)$$

$$\Phi(x) = (x_1 + x_2 + x_3)((1 - x_1) + x_2 + x_3)$$

Consider the value of Φ when the $x_i \in \{0,1\}$

ullet Φ has degree equal to the number (m) of clauses of ϕ

$$\Phi(x) = (x_1 + x_2 + x_3)((1 - x_1) + x_2 + x_3)$$

- ullet Φ has degree equal to the number (m) of clauses of ϕ
- $\Phi(x_1,\ldots,x_n) \leq 3^m$

$$\Phi(x) = (x_1 + x_2 + x_3)((1 - x_1) + x_2 + x_3)$$

- ullet Φ has degree equal to the number (m) of clauses of ϕ
- $\Phi(x_1,\ldots,x_n) \leq 3^m$
- Any clause takes on a positive value iff at least one of its literals is 1

$$\Phi(x) = (x_1 + x_2 + x_3)((1 - x_1) + x_2 + x_3)$$

- Φ has degree equal to the number (m) of clauses of ϕ
- $\Phi(x_1,\ldots,x_n) \leq 3^m$
- Any clause takes on a positive value iff at least one of its literals is 1
- $\Phi(x) > 0$ iff all of its clauses are > 0

$$\Phi(x) = (x_1 + x_2 + x_3)((1 - x_1) + x_2 + x_3)$$

- ullet Φ has degree equal to the number (m) of clauses of ϕ
- $\Phi(x_1,\ldots,x_n) \leq 3^m$
- Any clause takes on a positive value iff at least one of its literals is 1
- $\Phi(x) > 0$ iff all of its clauses are > 0
- $\Phi(x_1,...,x_n) > 0$ if $\phi(x_1,...,x_n) = TRUE$

$$\Phi(x) = (x_1 + x_2 + x_3)((1 - x_1) + x_2 + x_3)$$

- Φ has degree equal to the number (m) of clauses of ϕ
- $\Phi(x_1,\ldots,x_n) \leq 3^m$
- Any clause takes on a positive value iff at least one of its literals is 1
- $\Phi(x) > 0$ iff all of its clauses are > 0
- $\Phi(x_1, ..., x_n) > 0$ if $\phi(x_1, ..., x_n) = TRUE$
- $\Phi(x_1,...,x_n) = 0$ if $\phi(x_1,...,x_n) = FALSE$

$$\Phi(x) = (x_1 + x_2 + x_3)((1 - x_1) + x_2 + x_3)$$

- Φ has degree equal to the number (m) of clauses of ϕ
- $\Phi(x_1,\ldots,x_n) \leq 3^m$
- Any clause takes on a positive value iff at least one of its literals is 1
- $\Phi(x) > 0$ iff all of its clauses are > 0
- $\Phi(x_1,...,x_n) > 0$ if $\phi(x_1,...,x_n) = TRUE$
- $\Phi(x_1,\ldots,x_n)=0$ if $\phi(x_1,\ldots,x_n)=FALSE$

$$\phi \in 3 ext{-UNSAT} \iff \sum_{x_1 \in \{0,1\}} \cdots \sum_{x_n \in \{0,1\}} \Phi(x_1,\ldots,x_n) = 0 \mod q$$
For any prime $q > 2^n 3^m$

$$\phi \in 3\text{-UNSAT} \iff \sum_{x_1 \in \{0,1\}} \cdots \sum_{x_n \in \{0,1\}} \Phi(x_1, \dots, x_n) = 0 \mod q$$
For any prime $q > 2^n 3^m$

- \bullet To prove ϕ is unsatisfiable, enough to prove that expression on the right equals 0
- To do so, we can use the power of algebra:

$$\phi \in \operatorname{3-UNSAT} \quad \Longleftrightarrow \quad \sum_{x_1 \in \{0,1\}} \cdots \sum_{x_n \in \{0,1\}} \Phi(x_1, \dots, x_n) = 0 \, \operatorname{mod} \, q$$
 For any prime $q > 2^n 3^m$

- \bullet To prove ϕ is unsatisfiable, enough to prove that expression on the right equals 0
- To do so, we can use the power of algebra:
 - A polynomial of degree m has at most m roots

$$(x-a)(x-b)(x-c)...$$

$$\phi \in \operatorname{3-UNSAT} \quad \Longleftrightarrow \quad \sum_{x_1 \in \{0,1\}} \cdots \sum_{x_n \in \{0,1\}} \Phi(x_1,\ldots,x_n) = 0 \, \operatorname{mod} \, q$$
 For any prime $q > 2^n 3^m$

- \bullet To prove ϕ is unsatisfiable, enough to prove that expression on the right equals 0
- To do so, we can use the power of algebra:
 - A polynomial of degree m has at most m roots

Arithmetization

$$\phi \in \operatorname{3-UNSAT} \iff \sum_{\substack{x_1 \in \{0,1\} \\ \text{For any prime } q > 2^n 3^m}} \Phi(x_1,\ldots,x_n) = 0 \, \operatorname{mod} \, q$$

- \bullet To prove ϕ is unsatisfiable, enough to prove that expression on the right equals 0
- To do so, we can use the power of algebra:
 - ullet A polynomial of degree m has at most m roots
 - Two different polynomials of degree m can only agree in at most m points

Key Idea

Observations

Arithmetization

$$\phi \in \operatorname{3-UNSAT} \iff \sum_{\substack{x_1 \in \{0,1\} \\ \text{For any prime } q > 2^n 3^m}} \Phi(x_1,\ldots,x_n) = 0 \, \operatorname{mod} \, q$$

- \bullet To prove ϕ is unsatisfiable, enough to prove that expression on the right equals 0
- To do so, we can use the power of algebra:
 - ullet A polynomial of degree m has at most m roots
 - Two different polynomials of degree m can only agree in at most m points

Key Idea

• We only need to prove properties of Φ on inputs $x_i \in \{0,1\}$

Observations

Arithmetization

$$\phi \in \text{3-UNSAT} \iff \sum_{\substack{x_1 \in \{0,1\} \\ \text{For any prime } q > 2^n 3^m}} \Phi(x_1,\ldots,x_n) = 0 \text{ mod } q$$

- \bullet To prove ϕ is unsatisfiable, enough to prove that expression on the right equals 0
- To do so, we can use the power of algebra:
 - ullet A polynomial of degree m has at most m roots
 - Two different polynomials of degree m can only agree in at most m points

Key Idea

- We only need to prove properties of Φ on inputs $x_i \in \{0,1\}$
- We will use the values of Φ on $x_i \in [0, \dots, q-1]$ to check these properties

Goal

Prove that $P(x) = \sum_{x_1 \in \{0,1\}} \cdots \sum_{x_n \in \{0,1\}} \Phi(x_1,\ldots,x_n) = 0 \mod q$

Goal

Prove that
$$P(x) = \sum_{x_1 \in \{0,1\}} \cdots \sum_{x_n \in \{0,1\}} \Phi(x_1,\ldots,x_n) = 0 \mod q$$

• Define $P_1(x_1) = \sum_{x_2 \in \{0,1\}} \cdots \sum_{x_n \in \{0,1\}} \Phi(x_1, x_2 \dots, x_n)$

Goal

Prove that
$$P(x) = \sum_{x_1 \in \{0,1\}} \cdots \sum_{x_n \in \{0,1\}} \Phi(x_1, ..., x_n) = 0 \mod q$$

• Define $P_1(x_1) = \sum_{x_2 \in \{0,1\}} \cdots \sum_{x_n \in \{0,1\}} \Phi(x_1, x_2 \dots, x_n)$

Goal

Prove that $P(x) = \sum_{x_1 \in \{0,1\}} \cdots \sum_{x_n \in \{0,1\}} \Phi(x_1,\ldots,x_n) = 0 \mod q$

• Define $P_1(x_1) = \sum_{x_2 \in \{0,1\}} \cdots \sum_{x_n \in \{0,1\}} \Phi(x_1, x_2 \dots, x_n)$

• Define $P_2(x_2) = \sum_{x_3 \in \{0,1\}} \cdots \sum_{x_n \in \{0,1\}} \Phi(r_1, x_2 \dots, x_n)$

• Define $P_i(x_i) = \sum_{x_{i+1} \in \{0,1\}} \cdots \sum_{x_n \in \{0,1\}} \Phi(r_1, \dots, r_{i-1}, x_i, \dots, x_n)$

11 / 17

Goal

Prove that $P(x) = \sum_{x_1 \in \{0,1\}} \cdots \sum_{x_n \in \{0,1\}} \Phi(x_1, ..., x_n) = 0 \mod q$

• Define $P_1(x_1) = \sum_{x_2 \in \{0,1\}} \cdots \sum_{x_n \in \{0,1\}} \Phi(x_1, x_2 \dots, x_n)$

• Define $P_2(x_2) = \sum_{x_3 \in \{0,1\}} \cdots \sum_{x_n \in \{0,1\}} \Phi(r_1, x_2 \dots, x_n)$

• Define $P_i(x_i) = \sum_{x_{i+1} \in \{0,1\}} \cdots \sum_{x_n \in \{0,1\}} \Phi(r_1, \dots, r_{i-1}, x_i, \dots, x_n)$

$$P_i(0) + P_i(1) = P_{i-1}(r_i)$$

Goal

Prove that $\sum_{x_1 \in \{0,1\}} \cdots \sum_{x_n \in \{0,1\}} \Phi(x_1,\ldots,x_n) = 0 \mod q$

Goal

Prove that
$$\sum_{x_1 \in \{0,1\}} \cdots \sum_{x_n \in \{0,1\}} \Phi(x_1, \dots, x_n) = 0 \mod q$$

9 Both P, and V have ϕ , P constructs poly Φ . V can't construct Φ , but can evaluate $\Phi(x_1, \ldots, x_n)$

Goal

Prove that $\sum_{x_1 \in \{0,1\}} \cdots \sum_{x_n \in \{0,1\}} \Phi(x_1,\ldots,x_n) = 0 \mod q$

- **1** Both P, and V have ϕ , P constructs poly Φ . V can't construct Φ , but can evaluate $\Phi(x_1, \ldots, x_n)$
- 2 V chooses prime $q > 2^n 3^m$

Goal

Prove that $\sum_{x_1\in\{0,1\}}\cdots\sum_{x_n\in\{0,1\}}\Phi(x_1,\ldots,x_n)=0$ mod q

- **1** Both P, and V have ϕ , P constructs poly Φ . V can't construct Φ , but can evaluate $\Phi(x_1, \ldots, x_n)$
- ② V chooses prime $q > 2^n 3^m$
- **3** $V \text{ sets } v_0 = 0$

Goal

Prove that $\sum_{x_1 \in \{0,1\}} \cdots \sum_{x_n \in \{0,1\}} \Phi(x_1, \dots, x_n) = 0 \mod q$

- **1** Both P, and V have ϕ , P constructs poly Φ . V can't construct Φ , but can evaluate $\Phi(x_1, \ldots, x_n)$
- 2 V chooses prime $q > 2^n 3^m$
- **3** V sets $v_0 = 0$
- **4** Repeat the following for i = 1 to n

Goal

Prove that $\sum_{x_1 \in \{0,1\}} \cdots \sum_{x_n \in \{0,1\}} \Phi(x_1,\ldots,x_n) = 0 \mod q$

- **1** Both P, and V have ϕ , P constructs poly Φ . V can't construct Φ , but can evaluate $\Phi(x_1, \ldots, x_n)$
- 2 V chooses prime $q > 2^n 3^m$
- **3** V sets $v_0 = 0$
- **4** Repeat the following for i = 1 to n
 - P sends poly $P_i(y)$ of degree $\leq m$

Goal

Prove that $\sum_{x_1 \in \{0,1\}} \cdots \sum_{x_n \in \{0,1\}} \Phi(x_1,\ldots,x_n) = 0 \mod q$

- **9** Both P, and V have ϕ , P constructs poly Φ . V can't construct Φ , but can evaluate $\Phi(x_1, \ldots, x_n)$
- ② V chooses prime $q > 2^n 3^m$
- **3** V sets $v_0 = 0$
- **4** Repeat the following for i = 1 to n
 - P sends poly $P_i(y)$ of degree $\leq m$
 - *V* does the following:

Goal

Prove that $\sum_{x_1 \in \{0,1\}} \cdots \sum_{x_n \in \{0,1\}} \Phi(x_1, \dots, x_n) = 0 \mod q$

- **9** Both P, and V have ϕ , P constructs poly Φ . V can't construct Φ , but can evaluate $\Phi(x_1, \ldots, x_n)$
- ② V chooses prime $q > 2^n 3^m$
- **3** $V \text{ sets } v_0 = 0$
- **4** Repeat the following for i = 1 to n
 - P sends poly $P_i(y)$ of degree $\leq m$
 - V does the following:
 - V checks that $P_i(0) + P_i(1) = v_{i-1} \mod q$

Goal

Prove that
$$\sum_{x_1 \in \{0,1\}} \cdots \sum_{x_n \in \{0,1\}} \Phi(x_1,\ldots,x_n) = 0 \mod q$$

- **9** Both P, and V have ϕ , P constructs poly Φ . V can't construct Φ , but can evaluate $\Phi(x_1, \ldots, x_n)$
- 2 V chooses prime $q > 2^n 3^m$
- **3** $V \text{ sets } v_0 = 0$
- Repeat the following for i = 1 to n
 - P sends poly $P_i(y)$ of degree $\leq m$
 - V does the following:
 - V checks that $P_i(0) + P_i(1) = v_{i-1} \mod q$
 - V picks $r_i \in [0, \ldots, q-1]$, sets $v_i = P_i(r_i)$ and sends r_i to P

Goal

Prove that $\sum_{x_1 \in \{0,1\}} \cdots \sum_{x_n \in \{0,1\}} \Phi(x_1, \dots, x_n) = 0 \mod q$

- **9** Both P, and V have ϕ , P constructs poly Φ . V can't construct Φ , but can evaluate $\Phi(x_1, \ldots, x_n)$
- 2 V chooses prime $q > 2^n 3^m$
- **3** V sets $v_0 = 0$
- **4** Repeat the following for i = 1 to n
 - P sends poly $P_i(y)$ of degree $\leq m$
 - V does the following:
 - V checks that $P_i(0) + P_i(1) = v_{i-1} \mod q$
 - V picks $r_i \in [0, \ldots, q-1]$, sets $v_i = P_i(r_i)$ and sends r_i to P

If ϕ is not satisfiable

Know that $P(x) = \sum_{x_1 \in \{0,1\}} \cdots \sum_{x_n \in \{0,1\}} \Phi(x_1,\ldots,x_n) = 0 \mod q$

If ϕ is not satisfiable

Know that
$$P(x) = \sum_{x_1 \in \{0,1\}} \cdots \sum_{x_n \in \{0,1\}} \Phi(x_1,\ldots,x_n) = 0 \mod q$$

• Define $P_1(x_1) = \sum_{x_2 \in \{0,1\}} \cdots \sum_{x_n \in \{0,1\}} \Phi(x_1, x_2 \dots, x_n)$

If ϕ is not satisfiable

Know that $P(x) = \sum_{x_1 \in \{0,1\}} \cdots \sum_{x_n \in \{0,1\}} \Phi(x_1,\ldots,x_n) = 0 \mod q$

- Define $P_1(x_1) = \sum_{x_2 \in \{0,1\}} \cdots \sum_{x_n \in \{0,1\}} \Phi(x_1, x_2 \dots, x_n)$
 - $P_1(0) + P_1(1) = P(x) = 0 = v_0$

If ϕ is not satisfiable

Know that $P(x) = \sum_{x_1 \in \{0,1\}} \cdots \sum_{x_n \in \{0,1\}} \Phi(x_1, \dots, x_n) = 0 \mod q$

- Define $P_1(x_1) = \sum_{x_2 \in \{0,1\}} \cdots \sum_{x_n \in \{0,1\}} \Phi(x_1, x_2 \dots, x_n)$
 - $P_1(0) + P_1(1) = P(x) = 0 = v_0$
- Define $P_2(x_2) = \sum_{x_3 \in \{0,1\}} \cdots \sum_{x_n \in \{0,1\}} \Phi(r_1, x_2 \dots, x_n)$

If ϕ is not satisfiable

Know that $P(x) = \sum_{x_1 \in \{0,1\}} \cdots \sum_{x_n \in \{0,1\}} \Phi(x_1, \dots, x_n) = 0 \mod q$

- Define $P_1(x_1) = \sum_{x_2 \in \{0,1\}} \cdots \sum_{x_n \in \{0,1\}} \Phi(x_1, x_2 \dots, x_n)$
 - $P_1(0) + P_1(1) = P(x) = 0 = v_0$
- Define $P_2(x_2) = \sum_{x_3 \in \{0,1\}} \cdots \sum_{x_n \in \{0,1\}} \Phi(r_1, x_2 \dots, x_n)$
 - $P_2(0) + P_2(1) = P_1(r_1) = v_1$

If ϕ is not satisfiable

Know that $P(x) = \sum_{x_1 \in \{0,1\}} \cdots \sum_{x_n \in \{0,1\}} \Phi(x_1, \dots, x_n) = 0 \mod q$

- Define $P_1(x_1) = \sum_{x_2 \in \{0,1\}} \cdots \sum_{x_n \in \{0,1\}} \Phi(x_1, x_2 \dots, x_n)$
 - $P_1(0) + P_1(1) = P(x) = 0 = v_0$
- Define $P_2(x_2) = \sum_{x_3 \in \{0,1\}} \cdots \sum_{x_n \in \{0,1\}} \Phi(r_1, x_2 \dots, x_n)$
 - $P_2(0) + P_2(1) = P_1(r_1) = v_1$
- Define $P_i(x_i) = \sum_{x_{i+1} \in \{0,1\}} \cdots \sum_{x_n \in \{0,1\}} \Phi(r_1, \dots, r_{i-1}, x_i, \dots, x_n)$

If ϕ is not satisfiable

Know that
$$P(x) = \sum_{x_1 \in \{0,1\}} \cdots \sum_{x_n \in \{0,1\}} \Phi(x_1, \dots, x_n) = 0 \mod q$$

- Define $P_1(x_1) = \sum_{x_2 \in \{0,1\}} \cdots \sum_{x_n \in \{0,1\}} \Phi(x_1, x_2 \dots, x_n)$
 - $P_1(0) + P_1(1) = P(x) = 0 = v_0$
- Define $P_2(x_2) = \sum_{x_3 \in \{0,1\}} \cdots \sum_{x_n \in \{0,1\}} \Phi(r_1, x_2 \dots, x_n)$
 - $P_2(0) + P_2(1) = P_1(r_1) = v_1$
- Define $P_i(x_i) = \sum_{x_{i+1} \in \{0,1\}} \cdots \sum_{x_n \in \{0,1\}} \Phi(r_1, \dots, r_{i-1}, x_i, \dots, x_n)$

If P chooses the polys P_i as specified, he will pass all the checks, so V accepts

If ϕ is satisfiable

Know that $P(x) = \sum_{x_1 \in \{0,1\}} \cdots \sum_{x_n \in \{0,1\}} \Phi(x_1,\ldots,x_n) \neq 0 \mod q$

If ϕ is satisfiable

Know that
$$P(x) = \sum_{x_1 \in \{0,1\}} \cdots \sum_{x_n \in \{0,1\}} \Phi(x_1,\ldots,x_n) \neq 0 \mod q$$

• Malicious P is trying to prove that $v_0 = 0$

If ϕ is satisfiable

Know that
$$P(x) = \sum_{x_1 \in \{0,1\}} \cdots \sum_{x_n \in \{0,1\}} \Phi(x_1,\ldots,x_n) \neq 0 \mod q$$

- Malicious P is trying to prove that $v_0 = 0$
- In iteration i, P is trying to prove that

$$v_{i-1} = \sum_{x_i \in \{0,1\}} \cdots \sum_{x_n \in \{0,1\}} \Phi(r_1, \ldots, r_{i-1}, x_i, \ldots, x_n)$$

If ϕ is satisfiable

Know that
$$P(x) = \sum_{x_1 \in \{0,1\}} \cdots \sum_{x_n \in \{0,1\}} \Phi(x_1,\ldots,x_n) \neq 0 \mod q$$

- Malicious P is trying to prove that $v_0 = 0$
- In iteration i, P is trying to prove that

$$v_{i-1} = \sum_{x_i \in \{0,1\}} \cdots \sum_{x_n \in \{0,1\}} \Phi(r_1, \ldots, r_{i-1}, x_i, \ldots, x_n)$$

• P sends poly P'_i

If ϕ is satisfiable

Know that
$$P(x) = \sum_{x_1 \in \{0,1\}} \cdots \sum_{x_n \in \{0,1\}} \Phi(x_1,\ldots,x_n) \neq 0 \mod q$$

- Malicious P is trying to prove that $v_0 = 0$
- In iteration i, P is trying to prove that

$$v_{i-1} = \sum_{x_i \in \{0,1\}} \left(\cdots \sum_{x_n \in \{0,1\}} \Phi(r_1, \dots, r_{i-1}, x_i, \dots, x_n) \right)$$

- P sends poly P'_i
- V checks that $P'_i(0) + P'_i(1) = v_{i-1}$, if so he picks r_i

If ϕ is satisfiable

Know that
$$P(x) = \sum_{x_1 \in \{0,1\}} \cdots \sum_{x_n \in \{0,1\}} \Phi(x_1,\ldots,x_n) \neq 0 \mod q$$

- Malicious P is trying to prove that $v_0 = 0$
- In iteration i, P is trying to prove that

$$v_{i-1} = \sum_{x_i \in \{0,1\}} \cdots \sum_{x_n \in \{0,1\}} \Phi(r_1, \ldots, r_{i-1}, x_i, \ldots, x_n)$$

- P sends poly P'_i
- V checks that $P'_i(0) + P'_i(1) = v_{i-1}$, if so he picks r_i
- Now, P needs to prove that

$$v_i = P_i'(r_i) = \sum_{\substack{x_{i+1} \in \{0,1\}}} \cdots \sum_{x_n \in \{0,1\}} \Phi(r_1, \dots, r_{i-1}, r_i, x_{i+1}, \dots, x_n)$$

Suppose that

$$v_{i-1} \neq \sum_{x_i \in \{0,1\}} \cdots \sum_{x_n \in \{0,1\}} \Phi(r_1, \ldots, r_{i-1}, x_i, \ldots, x_n)$$

Suppose that

$$v_{i-1} \neq \sum_{x_i \in \{0,1\}} \cdots \sum_{x_n \in \{0,1\}} \Phi(r_1, \ldots, r_{i-1}, x_i, \ldots, x_n)$$

Must be the case for some i since $v_0 \neq 0$

Suppose that

$$v_{i-1} \neq \sum_{x_i \in \{0,1\}} \cdots \sum_{x_n \in \{0,1\}} \Phi(r_1, \ldots, r_{i-1}, x_i, \ldots, x_n)$$

Must be the case for some *i* since $v_0 \neq 0$

P succeeds in proving

$$v_i = P'_i(r_i) = \sum_{x_{i+1} \in \{0,1\}} \cdots \sum_{x_n \in \{0,1\}} \Phi(r_1, \ldots, r_{i-1}, r_i, x_{i+1}, \ldots, x_n)$$

with probability $\leq (n-i+1)/q$

Suppose that

$$v_{i-1} \neq \sum_{x_i \in \{0,1\}} \cdots \sum_{x_n \in \{0,1\}} \Phi(r_1, \ldots, r_{i-1}, x_i, \ldots, x_n)$$

Must be the case for some *i* since $v_0 \neq 0$

P succeeds in proving

$$v_i = P'_i(r_i) = \sum_{x_{i+1} \in \{0,1\}} \cdots \sum_{x_n \in \{0,1\}} \Phi(r_1, \ldots, r_{i-1}, r_i, x_{i+1}, \ldots, x_n)$$

with probability $\leq (n-i+1)/q$

Suppose that

$$v_{i-1} \neq \sum_{x_i \in \{0,1\}} \cdots \sum_{x_n \in \{0,1\}} \Phi(r_1, \ldots, r_{i-1}, x_i, \ldots, x_n)$$

Must be the case for some i since $v_0 \neq 0$

P succeeds in proving

$$v_i = P'_i(r_i) = \sum_{x_{i+1} \in \{0,1\}} \cdots \sum_{x_n \in \{0,1\}} \Phi(r_1, \ldots, r_{i-1}, r_i, x_{i+1}, \ldots, x_n)$$

with probability $\leq (n-i+1)/q$

Proof sketch:

• Let $\hat{P}(x_i)$ be the poly P is supposed to send

Suppose that

$$v_{i-1} \neq \sum_{x_i \in \{0,1\}} \cdots \sum_{x_n \in \{0,1\}} \Phi(r_1, \ldots, r_{i-1}, x_i, \ldots, x_n)$$

Must be the case for some i since $v_0 \neq 0$

P succeeds in proving

$$v_i = P'_i(r_i) = \sum_{x_{i+1} \in \{0,1\}} \cdots \sum_{x_n \in \{0,1\}} \Phi(r_1, \ldots, r_{i-1}, r_i, x_{i+1}, \ldots, x_n)$$

with probability $\leq (n-i+1)/q$

- Let $\hat{P}(x_i)$ be the poly P is supposed to send
- Let $P'(x_i)$ be the poly he does send

Suppose that

$$v_{i-1} \neq \sum_{x_i \in \{0,1\}} \cdots \sum_{x_n \in \{0,1\}} \Phi(r_1, \ldots, r_{i-1}, x_i, \ldots, x_n)$$

Must be the case for some i since $v_0 \neq 0$

P succeeds in proving

$$v_i = P'_i(r_i) = \sum_{x_{i+1} \in \{0,1\}} \cdots \sum_{x_n \in \{0,1\}} \Phi(r_1, \ldots, r_{i-1}, r_i, x_{i+1}, \ldots, x_n)$$

with probability $\leq (n-i+1)/q$

- Let $\hat{P}(x_i)$ be the poly P is supposed to send
- Let $P'(x_i)$ be the poly he does send
- If $\hat{P} \neq P'$, then they agree in at most n-i+1 points.

Suppose that

$$v_{i-1} \neq \sum_{x_i \in \{0,1\}} \cdots \sum_{x_n \in \{0,1\}} \Phi(r_1, \ldots, r_{i-1}, x_i, \ldots, x_n)$$

Must be the case for some *i* since $v_0 \neq 0$

P succeeds in proving

$$v_i = P_i'(r_i) = \sum_{x_{i+1} \in \{0,1\}} \cdots \sum_{x_n \in \{0,1\}} \Phi(r_1, \ldots, r_{i-1}, r_i, x_{i+1}, \ldots, x_n)$$

with probability < (n-i+1)/q

- Let $\hat{P}(x_i)$ be the poly P is supposed to send
- Let $P'(x_i)$ be the poly he does send
- If $\hat{P} \neq P'$, then they agree in at most n-i+1 points. So, the probability that r_i is one of these is at most (n-i+1)/q

What Is Going On Here

 To break soundness, P needs to make V think that Φ evaluates to 0 when it doesn't

What Is Going On Here

- To break soundness, P needs to make V think that Φ evaluates to 0 when it doesn't
- To do so, at some level of the recursion he must find a polynomial P' that agrees with the correct restriction of Φ (called P) on a randomly chosen point r_i

What Is Going On Here

- To break soundness, P needs to make V think that Φ evaluates to 0 when it doesn't
- To do so, at some level of the recursion he must find a polynomial P' that agrees with the correct restriction of Φ (called P) on a randomly chosen point r_i
- But, since all these polys are low degree, this is very unlikely

Conclusion

We have now proven that

$$3\text{-}\mathsf{UNSAT} \in \mathcal{IP}$$

Conclusion

We have now proven that

$$3\text{-}\mathsf{UNSAT} \in \mathcal{IP}$$

Implying that

$$\mathsf{co}\text{-}\mathcal{NP}\subseteq\mathcal{IP}$$

Conclusion

We have now proven that

$$3\text{-}\mathsf{UNSAT} \in \mathcal{IP}$$

Implying that

$$\operatorname{\mathsf{co}}
olimits \mathcal{NP} \subseteq \mathcal{IP}$$

But, the proof is not short: Required O(n) rounds of communication.