\mathbf{QCM}

Statistique inférentielle

$\begin{array}{c} {\rm Test} \\ {\rm Examen~du~07/11/2017} \end{array}$

Instructions:

- Le sujet comprend 20 questions. Les questions faisant apparaître le symbole ♣ peuvent présenter zéro, une ou plusieurs bonnes réponses. Les autres ont une unique bonne réponse. Des points négatifs pourront être affectés à de mauvaises réponses.
- Seul le questionnaire à la 5ème page est à rendre. Vous commencerez par colorier les cases correspondant à votre numéro étudiant et renseigner votre nom et prénom.
- Il faut **colorier** les cases correspondants aux bonnes réponses (sur la page 5), mettre une croix dans la case n'est **pas suffisant**.

Durée: 1 heure 15 minutes.

Question 1 \clubsuit Soit X une variable aléatoire réelle de densité f. Cochez la (ou les) assertion(s) vraie(s)

- A L'espérance d'une variable aléatoire réelle est toujours positive ou nulle
- B Un estimateur est un nombre réel
- C Le risque quadratique d'un estimateur est toujours positif ou nul
- D Une densité de probabilité prend toujours des valeurs négatives
- E Un estimateur est une variable aléatoire
- F Le biais d'un estimateur est toujours positif ou nul
- G La variance d'un estimateur est toujours positive ou nulle
- H Aucune de ces réponses n'est correcte.

Question 2 Soit X_1, \ldots, X_n n v.a.r i.i.d. de loi \mathbf{P}_{θ} avec $\theta \in \mathbb{R}$ inconnu. Soit $\hat{\theta}$ un estimateur de θ . On note $b(\hat{\theta})$ son biais. Le risque quadratique de $\hat{\theta}$ vaut (on cochera la (ou les) assertion(s) vraie(s)):

$$\mathbf{A} \mathbf{E}[(\hat{\theta} - \theta)^2]$$

$$\boxed{\mathbf{B}} \mathbf{E}[|\hat{\theta} - \theta|]$$

$$\boxed{\mathbf{C}} b^2(\hat{\theta}) + \mathbf{V}(\theta)$$

$$\boxed{\mathbf{D}} b^2(\hat{\theta}) + \mathbf{V}(\hat{\theta})$$

$$\boxed{\mathbf{E}} b(\hat{\theta}) + \mathbf{V}(\hat{\theta})$$

F Aucune de ces réponses n'est correcte.

Question 3 \clubsuit Soit X une variable aléatoire réelle de densité f. Cochez la (ou les) assertion(s) vraie(s)

- $\overline{\mathbf{A}}$ L'espérance de X est un nombre réel
- $\boxed{\mathbf{B}}$ La fonction de répartition de X vaut $F(x) = \mathbf{P}(x \leq X)$
- $\overline{\mathbb{C}}$ La fonction de répartition de X vaut $F(x) = \mathbf{P}(X < x)$
- $\boxed{\mathbf{D}} \mathbf{E}[X] = \int_{-\infty}^{+\infty} |x| f(x) \, \mathrm{d}x$

- $\boxed{\mathbf{F}} \ \mathbf{E}[X] = \int_{-\infty}^{+\infty} x f(x) \, \mathrm{d}x$
- $\boxed{\mathbf{G}}$ La fonction de répartition de X vaut $F(x) = \mathbf{P}(X \le x)$
- H Aucune de ces réponses n'est correcte.

Question 4 \clubsuit Soit X une variable aléatoire réelle de loi \mathbf{P}_{θ} et de vraisemblance $L(x,\theta)$. L'information de Fisher (si elle existe) associée à X est définie par :

$$\boxed{\mathbf{A}} \mathbf{E} \left[\frac{\partial}{\partial \theta} \log(L(X, \theta)) \right]$$

$$\boxed{\mathbf{B}} \mathbf{E} \left[\left(\frac{\partial}{\partial \theta} \log(L(X, \theta)) \right)^2 \right]$$

$$\boxed{\mathbf{C}} \mathbf{E} \left[\frac{\partial^2}{\partial \theta^2} \log(L(X, \theta)) \right]$$

$$\boxed{\mathbf{D}} \mathbf{V} \left[\frac{\partial}{\partial \theta} \log(L(X, \theta)) \right]$$

$$\boxed{\mathbf{E}} - \mathbf{E} \left[\frac{\partial^2}{\partial \theta^2} \log(L(X, \theta)) \right]$$

$$\boxed{\mathbf{F}} - \mathbf{E} \left[\left(\frac{\partial}{\partial \theta} \log(L(X, \theta)) \right)^2 \right]$$

G Aucune de ces réponses n'est correcte.

Question 5 La densité de X_1 vaut:

$$\boxed{\mathbf{A}} \ f(x) = \frac{1}{10-\theta} \mathbf{1}_{]\theta,10[}(x)$$

C Aucune de ces réponses n'est correcte.

$$D f(x) = (10 - \theta) \mathbf{1}_{]\theta/2,10[}(x)$$

$$\boxed{\mathbf{B}} \ f(x) = \frac{1}{\theta - 10} \mathbf{1}_{]\theta/2, 10[}(x)$$

$$\boxed{\mathbf{E}} \ f(x) = \frac{1}{\theta - 10} \mathbf{1}_{\theta, 10}(x)$$

Question 6 L'estimateur des moments de θ est donné par

$$\boxed{\mathbf{A}} \ 10 - 2\bar{X}_n$$

$$\bar{\mathbf{B}}$$
 \bar{X}_n

$$\boxed{\mathrm{C}} \ 2\bar{X}_n + 10$$

$$\boxed{\mathrm{D}} \ 2\bar{X}_n - 10$$

$$\boxed{\mathrm{E}} \max(X_1,\ldots,X_n)$$

F Aucune de ces réponses n'est correcte.

$$\boxed{\mathbf{G}} \min(X_1,\ldots,X_n)$$

Question 7 L'estimateur du maximum de vraisemblance de θ est donné par

$$\bar{\mathbf{A}}$$
 \bar{X}_n

$$\square$$
 min (X_1,\ldots,X_n)

$$C \ 2\bar{X}_n - 10$$

$$\square$$
 max (X_1,\ldots,X_n)

$$\boxed{\mathrm{E}} \ 2\bar{X}_n + 10$$

$$\boxed{\mathrm{F}} \ 10 - 2\bar{X}_n$$

Question 8 La densité f(t) de l'estimateur du maximum de vraisemblance est donnée par

$$\boxed{\mathbf{A}} \ \frac{(10-t)^{n-1}}{(10-\theta)^{n-1}} \mathbf{1}_{]\theta,10[}(t)$$

$$\boxed{\mathbf{D}} \ \frac{(10-t)^{n-1}}{(10-\theta)^n} \mathbf{1}_{]\theta,10[}(t)$$

$$\mathbb{E} \frac{(t)^{n-1}}{(\theta-10)^n} \mathbf{1}_{]\theta,10[}(t)$$

$$\boxed{\mathbf{C}} \frac{(t-10)^{n-1}}{(\theta-10)^n} \mathbf{1}_{]\theta,10[}(t)$$

$$\boxed{\mathbf{F}} \ \frac{(10-t)^n}{(10-\theta)^n} \mathbf{1}_{]\theta,10[}(t)$$

Pour les 4 questions suivantes on considère X_1, \dots, X_n n variables aléatoires réelles i.i.d de loi définie par

$$\mathbf{P}(X_1 = 0) = \frac{1}{4}, \quad \mathbf{P}(X_1 = 1) = \frac{1+\theta}{4}, \quad \mathbf{P}(X_1 = 3) = \frac{2-\theta}{4}$$

Question 9 L'ensemble des valeurs possibles de θ est

$$A$$
 \mathbb{R}

$$E [-1, 3]$$

$$B [-1, 2]$$

$$[-2, 2]$$

$$G$$
 [-2, 1]

Question 10 L'espérance de X_1 est donnée par

 $A = \frac{1}{4}(2-7\theta)$

 $|E|^{\frac{1}{4}}(7-2\bar{X}_n)$

B Aucune de ces réponses n'est correcte.

 $\boxed{\mathbf{C}} \frac{1}{4}(7-2\theta)$

 $\mathbf{F} = 0$

D \bar{X}_n

 \Box θ

Question 11 L'estimateur des moments de θ est

A Aucune de ces réponses n'est correcte.

 $\mathbb{E} \left[\frac{1}{2} (3 - 2\bar{X}_n) \right]$

 \mathbb{B} $\frac{\bar{X}_n}{4}$

 $|F| \frac{1}{2}(7-4\bar{X}_n)$

C \bar{X}_n $\boxed{D} \frac{1}{2}(2-3\bar{X}_n)$

 $\boxed{\text{G}} \frac{1}{2}(4-7\bar{X}_n)$

Question 12 La borne de Cramer Rao du modèle considéré est donnée par:

 $(1+\theta)(2+\theta)$

 $\frac{(\theta)(2+\theta)}{4n}$

C $\frac{4(1-\theta)(2+\theta)}{2}$

D la borne de Cramer Rao n'existe pas pour ce modèle

H Aucune de ces réponses n'est correcte.

 $\prod \frac{\theta}{n}$

Question 13 (X_n) converge vers X en probabilité si

 $\boxed{\mathbf{A}} \mathbf{P} \left(\{ \omega \in \Omega : \lim_{n \to \infty} X_n(\omega) \neq X(\omega) \} \right) = 1 \qquad \boxed{\mathbf{C}} \mathbf{P} (|X_n - X| \le \varepsilon) \to 0$

 $\boxed{\mathbf{B}} \mathbf{P} (\{\omega \in \Omega : \lim_{n \to \infty} X_n(\omega) \neq X(\omega)\}) = 0 \qquad \boxed{\mathbf{D}} \mathbf{P} (|X_n - X| \geq \varepsilon) \to 0$

Question 14 \clubsuit Soit $(X_n)_{n\in\mathbb{N}}$ une suite de v.a.r. indépendantes, de même loi et qui admettent une espérance. On note $\mathbf{E}[X_1] = \mu$. On a

 $\overline{\mathbf{A}} \ \bar{X}_n \stackrel{\mathbf{P}}{\to} X_1.$

D $\bar{X}_n \stackrel{\mathbf{P}}{\to} \mu$.

 $\boxed{\mathbf{B}} \ \bar{X}_n \stackrel{L_1}{\to} \frac{\mu}{2}.$

 $E \bar{X}_n \stackrel{L_1}{\to} \mu$.

 $\boxed{\mathbf{C}} \ \bar{X}_n \overset{p.s.}{\to} X_1.$

 $[F] \bar{X}_n \stackrel{p.s.}{\to} \mu.$

G Aucune de ces réponses n'est correcte.

Question 15 \clubsuit Soit $(X_n)_n$ une suite de variables aléatoires indépendantes et de même loi de Bernoulli de paramètre p. Cochez la (ou les) assertion(s) vraie(s).

 $\boxed{\mathbf{A}} \sqrt{n}(\bar{X}_n - p) \stackrel{\mathcal{L}}{\rightarrow} \mathcal{N}(\mu, p(1-p))$

 $[E] \bar{X}_n \stackrel{p.s.}{\to} p + X_1.$

 $\boxed{\mathbf{B}} \ \bar{X}_n \overset{p.s.}{\to} p.$

 $\boxed{\mathrm{F}} \ 2\bar{X}_n \overset{p.s.}{\to} 2p.$

 $\boxed{\mathbf{C}} \sqrt{n} \frac{\bar{X}_n - p}{n(1-n)} \xrightarrow{\mathcal{L}} \mathcal{N}(0,1)$

 $\boxed{\mathbf{G}} \sqrt{n} \frac{\bar{X}_n - p}{\sqrt{p(1-p)}} \xrightarrow{\mathcal{L}} \mathcal{N}(0,1)$

 $\boxed{\mathbf{D}} \stackrel{1}{\underset{\sim}{\overline{2}}} \bar{X}_n \stackrel{p.s.}{\underset{\sim}{\overline{2}}} \stackrel{p}{\underset{\sim}{\overline{2}}}.$

| H | Aucune de ces réponses n'est correcte.

Question 16 \clubsuit Si $\hat{\theta}_n$ converge en moyenne quadratique vers θ , alors

- $\boxed{\mathbf{A}}$ Le biais de $\hat{\theta}_n$ tend vers $1-\theta$
- B La variance de $\hat{\theta}_n$ tend vers $\theta/2$
- $\boxed{\mathbf{C}}$ La variance de $\hat{\theta}_n$ tend vers 0
- $\boxed{\mathrm{E}}$ Le biais de $\hat{\theta}_n$ tend vers θ
- F Aucune de ces réponses n'est correcte.

Question 17 (X_n) converge vers X presque sûrement si

$$\boxed{\mathbf{A}} \ \mathbf{P} \left(\{ \omega \in \Omega : \lim_{n \to \infty} X_n(\omega) \neq X(\omega) \} \right) = 1 \qquad \boxed{\mathbf{C}} \ \mathbf{P} (|X_n - X| \ge \varepsilon) \to 0$$

$$\begin{array}{c|c}
\hline
\mathbf{B} & \mathbf{P}(\{\omega \in \Omega : \lim_{n \to \infty} X_n(\omega) \neq X(\omega)\}) = 1 \\
\hline
\mathbf{D} & \mathbf{P}(|X_n - X| \leq \varepsilon) \to 0
\end{array}$$

$$|C| \mathbf{F}(|X_n - X| \ge \varepsilon) \to 0$$

Question 18 \clubsuit Soit $(X_n)_{n\in\mathbb{N}}$ une suite de v.a.r. indépendantes, de même loi et telles que $\mathbf{E}[X_1^2]<+\infty$. On note $\mathbf{E}[X_1]=\mu$ et $\mathbf{V}[X_1]=\sigma^2$. On a

$$\underline{\mathbf{A}} \quad \sqrt{n}(\bar{X}_n - \mu) \xrightarrow{\mathcal{L}} \mathcal{N}(\mu, \sigma^2)$$

$$\boxed{\mathbf{D}} \sqrt{n} \frac{\bar{X}_n - \mu}{\sigma} \xrightarrow{\mathcal{L}} \mathcal{N}(0, 1)$$

$$\boxed{\mathbf{B}} \sqrt{n}(\bar{X}_n - \mu) \xrightarrow{\mathcal{L}} \mathcal{N}(0, \sigma^2)$$

$$\begin{array}{c}
\hline{\mathbf{E}} \ \bar{X}_n \stackrel{p.s.}{\to} X_1. \\
\hline{\mathbf{F}} \ \bar{X}_n \stackrel{p.s.}{\to} \mu.
\end{array}$$

$$\overline{\mathbf{C}} (\bar{X}_n - \mu) \stackrel{\mathcal{L}}{\to} \mathcal{N}(0, \sigma^2/n)$$

 (X_n) converge vers X en moyenne quadratique si Question 19

$$\boxed{\mathbf{A}} \lim_{n \to \infty} \mathbf{E}[|X_n - X|^2] = 0.$$

$$|C| \mathbf{P}(|X_n - X| < \varepsilon) \to 0$$

$$\boxed{\mathbf{B}} \mathbf{P}(|X_n - X| \ge \varepsilon) \to 0$$

$$\boxed{\mathbf{D}} \mathbf{P} (\{\omega \in \Omega : \lim_{n \to \infty} X_n(\omega) \neq X(\omega)\}) = 1$$

Question 20 \clubsuit Soit $(X_n)_n$ une suite de variables aléatoires indépendantes définies par

$$P(X_n = \sqrt{n}) = \frac{1}{n}$$
 et $P(X_n = 0) = 1 - \frac{1}{n}$.

Cochez la (ou les) assertion(s) vraie(s).

$$A X_n \stackrel{L_2}{\rightarrow} 1.$$

$$\boxed{\mathbf{B}} \ X_n \stackrel{L_2}{\to} 0.$$

$$\boxed{\mathbf{C}} X_n \stackrel{L_1}{\to} 1.$$

$$D X_n \stackrel{\mathbf{P}}{\to} 1.$$

$$E \mid X_n \stackrel{\mathbf{P}}{\to} 0.$$

$$\boxed{\mathbf{F}} \ X_n \stackrel{L_1}{\to} 0.$$

|G| Aucune de ces réponses n'est correcte.

Feuille de réponses :

$\begin{bmatrix} 0 \end{bmatrix} \begin{bmatrix} 0 \end{bmatrix}$	0 0	0	0	0
1 1	1 1	1 1	1	1
2 2	2 2	2 2	2	2
3 3	3 3	3 3	3	3
4 4	4 4	$\boxed{4}$	4	4
5 5	5 5	5 5	5	5
6 6	6 6	6 6	6	6
7 7	7 7	7 7	7	7
8 8	8 8	8 8	8	8

9 9 9 9 9 9 9

codez votre numéro d'étudiant cicontre, et inscrivez votre nom et prénom ci-dessous.

Nom (et prénom :

Les réponses aux questions sont à donner exclusivement sur cette feuille : les réponses données sur les feuilles précédentes ne seront pas prises en compte.

QUESTION 1: A B C D E F G H

QUESTION 2: A B C D E F

QUESTION 3: A B C D E F G H
QUESTION 4: A B C D E F G

QUESTION 5: A B C D E

QUESTION 6: A B C D E F G QUESTION 7: A B C D E F G QUESTION 8: A B C D E F

 QUESTION 9:
 A
 B
 C
 D
 E
 F
 G

 QUESTION 10:
 A
 B
 C
 D
 E
 F
 G

QUESTION 11:

 A
 B
 C
 D
 E
 F
 G

QUESTION 12 : $\begin{tabular}{lll} A & B & C & D & E & F & G & H & I \end{tabular}$

QUESTION 13: A B C D

QUESTION 14: A B C D E F G

QUESTION 15: A B C D E F G H

QUESTION 16: A B C D E F

QUESTION 17: A B C D

QUESTION 18: A B C D E F G

QUESTION 19: A B C D

QUESTION 20: A B C D E F G

