Lie Algebras

D. Zack Garza

August 23, 2019

Contents

1	Lect	ture 1	1
	1.1	Overview	2
		1.1.1 Chapter 2	2
		1.1.2 Chapter 3-4	2
	1.2	Classification	2
	1.3	Chapters 4-5	3
		1.3.1 Chapter 6	3
		1.3.2 Chapter 7	3
		1.3.3 Topics	3
	1.4	Content	3
	1.5	Linear Lie Algebras	4
2	Lecture 2		
	2.1	Lie Algebras of Derivations	6
	2.2	Abstract Lie Algebras	7
	2.3	Ideals	
3	Lect	ture 3	8
	3.1	Homomorphisms and Representations	9
	3.2	Automorphisms	
4	Lect	ture 4	10
	4.1	Solvability	10
	4.2	Nilpotency	
5	Loci	turo 5	12

1 Lecture 1

The material for this class will roughly come from Humphrey, Chapters 1 to 5. There is also a useful appendix which has been uploaded to the ELC system online.

1.1 Overview

Here is a short overview of the topics we expect to cover:

1.1.1 Chapter 2

- Ideals, solvability, and nilpotency
- Semisimple Lie algebras
 - These have a particularly nice structure and representation theory
- Determining if a Lie algebra is semisimple using Killing forms
- Weyl's theorem for complete reducibility for finite dimensional representations
- Root space decompositions

1.1.2 Chapter 3-4

We will describe the following series of correspondences:

1.2 Classification

The classical Lie algebras can be essentially classified by certain classes of diagrams:

1.3 Chapters 4-5

These cover the following topics:

- Conjugacy classes of Cartan subalgebras
- The PBW theorem for the universal enveloping algebra
- Serre relations

1.3.1 Chapter 6

Some import topics include:

- Weight space decompositions
- Finite dimensional modules
- Character and the Harish-Chandra theorem
- The Weyl character formula
 - This will be computed for the specific Lie algebras seen earlier

We will also see the type A_{ℓ} algebra used for the first time; however, it differs from the other types in several important/significant ways.

1.3.2 Chapter 7

Skip!

1.3.3 Topics

Time permitting, we may also cover the following extra topics:

- Infinite dimensional Lie algebras [Carter 05]
- BGG Cat-O [Humphrey 08]

1.4 Content

Fix F a field of characteristic zero – note that prime characteristic is closer to a research topic.

Definition 1. A Lie Algebra \mathfrak{g} over F is an F-vector space with an operation denoted the Lie bracket,

$$[\cdot,\cdot]:\mathfrak{g}\times\mathfrak{g}\to\mathfrak{g}$$

 $(x,y)\mapsto[x,y].$

satisfying the following properties:

- $[\cdot, \cdot]$ is bilinear [x, x] = 0
- The Jacobi identity:

$$[x, [y, z]] + [y, [x, z]] + [z, [x, y]] = \mathbf{0}.$$

Exercise 1. Show that [x, y] = -[y, x].

Definition 2. Two Lie algebras $\mathfrak{g}, \mathfrak{g}'$ are said to be isomorphic if $\varphi([x,y]) = [\varphi(x), \varphi(y)]$.

1.5 Linear Lie Algebras

Let $V = \mathbb{F}^n$, and define $\operatorname{End}(V) = \{f : V \to V \ni V \text{ is linear}\}$. We can then define $\mathfrak{gl}(n,V)$ by setting $[x, y] = (x \circ y) - (y \circ x)$.

Exercise 2. Verify that V is a Lie algebra.

Definition 3. Define

$$\mathfrak{sl}(n,V) = \{ f \in \mathfrak{gl}(n,V) \ni \mathrm{Tr}(f) = 0 \}.$$

(Note the different in definition compared to the lie group SL(n, V).).

Definition 4. A subalgebra of a Lie algebra is a vector subspace that is closed under the bracket.

Definition 5. The symplectic algebra

$$\mathfrak{sp}(2\ell, F) = \left\{ A \in \mathfrak{gl}(2\ell, F) \ni MA - A^TM = 0 \right\} \text{ where } M = \left(\begin{array}{c|c} 0 & I_n \\ \hline -I_n & 0 \end{array} \right).$$

Definition 6. The orthogonal algebra

$$\mathfrak{so}(2\ell,F) = \left\{ A \in \mathfrak{gl}(2\ell,F) \ni MA - A^TM = 0 \right\} \text{ where}$$

$$M = \begin{cases} \left(\begin{array}{c|c} 1 & 0 \\ \hline 0 & \overline{-I_n} & 0 \end{array} \right) & n = 2\ell + 1 \text{ odd,} \\ \\ \left(\begin{array}{c|c} 0 & I_n \\ \hline -I_n & 0 \end{array} \right) & \text{else.} \end{cases}$$

Proposition 1. The dimensions of these algebras can be computed;

• The dimension of $\mathfrak{gl}(n,\mathbb{F})$ is n^2 , and has basis $\{e_{i,j}\}$ the matrices if a 1 in the i,j position and

zero elsewhere.

- For type A_{ℓ} , we have $\dim \mathfrak{sl}(n,\mathbb{F}) = (\ell+1)^2 1$.
- For type C_{ℓ} , we have $||\mathfrak{sp}(n,\mathbb{F})| = \ell^2 + 2\left(\frac{\ell(\ell+1)}{2}\right)$, and so elements here

$$\left(\begin{array}{cc} A & B = B^t \\ C = C^t & A^t \end{array}\right).$$

• For type D_{ℓ} we have

$$||\mathfrak{so}(2\ell,\mathbb{F}) = \dim \left\{ \left(\begin{array}{cc} A & B = -B^t \\ C = -C^t & -A^t \end{array} \right) \right\},$$

which turns out to be $2\ell^2 - \ell$.

• For type B_{ℓ} , we have $\dim \mathfrak{so}(2\ell, \mathbb{F}) = 2\ell^2 - \ell + 2\ell = 2\ell^2 + \ell$, with elements of the form

$$\begin{pmatrix} 0 & M & N \\ \hline -N^t & A & C = C^t \\ -M^t & B = B^t & -A^t \end{pmatrix}.$$

Exercise 3. Use the relation $MA = A^{tM}$ to reduce restrictions on the blocks.

Theorem 1. These are *all* of the isomorphisms between any of these types of algebras, in any dimension.

2 Lecture 2

Recall from last time that a Lie Algebra is a vector space with a bilinear bracket, which importantly satisfies the Jacobi identity:

$$[x, [y, z]] + [y, [x, z]] + [z, [x, y]] = \mathbf{0}.$$

Also recall the examples from last time:

- $A_{\ell} \iff \mathfrak{sl}(\ell+1,F)$
- $B_{\ell} \iff \mathfrak{so}(2\ell+1,F)$
- $C_{\ell} \iff \mathfrak{sp}(2\ell, F)$
- $D_{\ell} \iff \mathfrak{so}(2\ell, F)$

Exercise 4. Characterize these matrix subalgebras in terms of basis elements, and compute their dimensions.

2.1 Lie Algebras of Derivations

Definition 7. An *F*-algebra *A* is an *F*-vector space endowed with a bilinear map $A^2 \to A$, $(x,y) \mapsto xy$.

Definition 8. An algebra is associative if x(yz) = (xy)z.

Modern interest: simple Lie algebras, which have a good representation theory. Take a look a Erdmann-Wildon (Springer) for an introductory look at 3-dimensional algebras.

Definition 9. Any map $\delta: A^2 \to A$ that satisfies the Leibniz rule is called a **derivation** of A, where the rule is given by $\delta(xy) = \delta(x)y + x\delta(y)$.

Definition 10. We define $Der(A) = \{\delta \ni \delta \text{ is a derivation } \}.$

Any Lie algebra \mathfrak{g} is an F-algebra, since $[\cdot,\cdot]$ is bilinear. Moreover, \mathfrak{g} is associative iff [x,[y,z]]=0.

Exercise 5. Show that $\operatorname{Der}\mathfrak{g} \leq \mathfrak{gl}(\mathfrak{g})$ is a Lie subalgebra. One needs to check that $\delta_1, \delta_2 \in \mathfrak{g} \implies [\delta_1, \delta_2] \in \mathfrak{g}$.

Exercise 6 (Turn in). Define the adjoint by $ad_x : \mathfrak{g} \circlearrowleft, y \mapsto [x,y]$. Show that $ad_x \in Der(\mathfrak{g})$.

2.2 Abstract Lie Algebras

Fact: Every finite-dimensional Lie algebra is isomorphic to a linear Lie algebra, i.e. a subalgebra of $\mathfrak{gl}(V)$. Each isomorphism type can be specified by certain *structure constants* for the Lie bracket.

Example 1. Any F-vector space can be made into a Lie algebra by setting [x, y] = 0; such algebras are referred to as *abelian*.

Attempting to classify Lie algebras of dimension at most 2.

- 1 dimensional: We can write $\mathfrak{g} = Fx$, and so $[x, x] = 0 \implies [\cdot, \cdot] = 0$. So every bracket must be zero, and thus every Lie algebra is abelian.
- 2 dimensional: Write $\mathfrak{g} = Fx \oplus Fy$, the only nontrivial bracket here is [x,y]. Some cases:
 - $-[x,y]=0 \implies \mathfrak{g}$ is abelian.
 - $-[x,y] = ax + by \neq 0. \text{ Assume } a \neq 0 \text{ and set } x' = ax + by, y' = \frac{y}{a}. \text{ Now compute } [x',y'] = [ax + by, \frac{y}{a}] = [x,y] = ax + by = x'. \text{ Punchline: } \mathfrak{g} \cong Fx' \oplus Fy', [x',y'] = x'.$

We can fill in a table with all of the various combinations of brackets:

Example 2. Let $V = \mathbb{R}^3$, and define $[a, b] = a \times b$ to be the usual cross product.

Exercise 7. Look at notes for basis elements of $\mathfrak{sl}(2, F)$,

$$e = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix},$$

$$h = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix},$$

$$f = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}.$$

Compute the matrices of ad(e), ad(h), ad(g) with respect to this basis.

2.3 Ideals

Definition 11. A subspace $I \subseteq \mathfrak{g}$ is called an **ideal**, and we write $I \subseteq \mathfrak{g}$, if $x, y \in I \implies [x, y] \in I$.

Note that there is no need to distinguish right, left, or two-sided ideals. This can be shown using [x,y]=[-y,x].

Exercise 8. Check that the following are all ideals of \mathfrak{g} :

- $\{0\}, \mathfrak{g}.$
- $\mathfrak{z}(\mathfrak{g}) = \{ z \in \mathfrak{g} \ni [x, z] = 0 \quad \forall x \in \mathfrak{g} \}$
- The commutator (or derived) algebra $[\mathfrak{g},\mathfrak{g}] = \{\sum_i [x_i,y_i] \ni x_i,y_i \in \mathfrak{g}\}.$ - Moreover, $[\mathfrak{gl}(n,F),\mathfrak{gl}(n,F)] = \mathfrak{sl}(n,F).$

Fact: If $I, J \leq \mathfrak{g}$, then

- $I+J = \{x+y \ni x \in I, y \in J\} \leq \mathfrak{g}$
- $I \cap J \leq \mathfrak{g}$
- $[I,J] = \{\sum_i [x_i,y_i] \ni x_i \in I, y_i \in J\} \leq \mathfrak{g}$

Definition 12. A Lie algebra is **simple** if $[\mathfrak{g},\mathfrak{g}] \neq 0$ (i.e. when \mathfrak{g} is not abelian) and has no non-trivial ideals. Note that this implies that $[\mathfrak{g},\mathfrak{g}] = \mathfrak{g}$.

Theorem 2. Suppose that char $F \neq 2$, then $\mathfrak{sl}(2,F)$ is not simple.

Proof. Recall that we have a basis of $\mathfrak{sl}(2,F)$ given by $B=\{e,h,f\}$ where

- [e, f] = h,
- [h, e] = 2e,
- [h, f] = -2f.

So think of $[h,e]=\mathrm{ad}_h$, so h is an eigenvector of this map with eigenvalues $\{0,\pm 2\}$. Since char $F\neq 2$, these are all distinct. Suppose $\mathfrak{sl}(2,F)$ has a nontrivial ideal I; then pick $x=ae+bh+cf\in I$. Then [e,x]=0-2be+ch, and [e,[e,x]]=0-0+2ce. Again since char $F\neq 2$, then if $c\neq 0$ then $e\in I$. Now you can show that $h\in I$ and $f\in I$, but then $I=\mathfrak{sl}(2,F)$, a contradiction. So c=0.

Then $x = bh \neq 0$, so $h \in I$, and we can compute

$$2e = [h, e] \in I \implies e \in I,$$

$$2f = [h, -f] \in I \implies f \in I.$$

which implies that $I = \mathfrak{sl}(2, F)$ and thus it is simple.

Note that there is a homework coming due next Monday, about 4 questions.

3 Lecture 3

Last time, we looked at ideals such as $0, \mathfrak{g}, Z(\mathfrak{g})$, and $[\mathfrak{g}, \mathfrak{g}]$.

Definition: If $I \leq \mathfrak{g}$ is an ideal, then the quotient \mathfrak{g}/I also yields a Lie algebra with the bracket given by [x+I,y+I]=[x,y]+I.

Exercise: Check that this is well-defined, so that if x + I = x' + I and y + I = y' + I then [x, y] + I = [x', y'] + I.

3.1 Homomorphisms and Representations

Definition 13. A linear map $\phi: \mathfrak{g}_1 \to \mathfrak{g}_2$ is a *Lie homomorphism* if $\phi[x,y] = [\phi(x),\phi()]$.

Remark. $\ker \phi \subseteq \mathfrak{g}_1$ and $\operatorname{im} \phi \subseteq \mathfrak{g}_2$ is a subalgebra.

Fact: There is a canonical way to set up a 1-to-1 correspondence $\{I \leq \mathfrak{g}\} \iff \{\hom \phi : \mathfrak{g} \to \mathfrak{g}'\}$ where $I \mapsto (x \mapsto x + I)$ and the inverse is given by $\phi \mapsto \ker \phi$.

Theorem (Isomorphism theorem for Lie algebras):

- If $\phi: \mathfrak{g}_1 \to \mathfrak{g}_2$ is a Lie algebra homomorphism, then $\mathfrak{g}/\ker \phi \cong \operatorname{im} \phi$
- If $I, J \leq \mathfrak{g}$ are ideals and $I \subset J$ then $J/I \leq \mathfrak{g}g/I$ and $(\mathfrak{g}/I)/(J/I) \cong \mathfrak{g}/J$.
- If $I, J \leq \mathfrak{g}$ then $(I+J)/J \cong I/(I \cap J)$.

Definition: A representation of a Lie algebra \mathfrak{g} is a Lie algebra homomorphism $\phi: \mathfrak{g} \to \mathfrak{gl}(V)$ into a linear Lie algebra for some vector space V.

We call V a g-module with action $g \cdot v = \phi(g)(v)$.

Example: The adjoint representation:

ad:
$$\mathfrak{g} \to \mathfrak{gl}(\mathfrak{g})$$

 $x \mapsto [x, \cdot].$

Corollary 1. Any simple Lie algebra is isomorphic to a linear Lie algebra.

Proof: Since \mathfrak{g} is simple, the center $Z(\mathfrak{g}) = 0$. We can rewrite the center as

$$Z(\mathfrak{g}) = \left\{ x \in \mathfrak{g} \ni \mathrm{ad}_{x(y)} = 0 \quad \forall y \in \mathfrak{g} \right\}$$
$$= \ker \mathrm{ad}_x.$$

Using the first isomorphism theorem, we have $\mathfrak{g}/Z(\mathfrak{g}) \cong \operatorname{im} \operatorname{ad} \subseteq \mathfrak{gl}(\mathfrak{g})$. But $\mathfrak{g}/Z(\mathfrak{g}) = \mathfrak{g}$ here, so we are done.

3.2 Automorphisms

Definition: An automorphism of \mathfrak{g} is an isomorphism \mathfrak{g} , and we define

$$\operatorname{Aut}(\mathfrak{g}) = \{ \phi : \mathfrak{g} \circlearrowleft \ni \phi \text{ is an isomorphism } \}.$$

Proposition: If $\delta \in \text{Der}(\mathfrak{g})$ is nilpotent, then

$$\exp(\delta) := \sum \frac{\delta^n}{n!} \in \operatorname{Aut}(\mathfrak{g}).$$

This is well-defined because δ is nilpotent, and a binomial formula holds:

$$\frac{\delta^{n([x,y])}}{n!} = \sum_{i=0}^{n} \left[\frac{\delta^{i}(x)}{i!}, \frac{\delta^{n-i}(y)}{(n-i)!}\right].$$

and for $n = 1, \delta([x, y]) = [x, \delta(y)] + [\delta(x), y].$

Exercise: Show that

$$[(\exp \delta)(x), (\exp \delta)(y)] = \sum_{n=0}^{k-1} \frac{\delta^n([x,y])}{n!}.$$

Example: Let $\mathfrak{g} = \mathfrak{sl}(2, \mathbb{F})$ and define

$$s = \exp(\mathrm{ad}_e) \exp(\mathrm{ad}_{-f}) \exp(\mathrm{ad}_e) \in \mathrm{Aut}\mathfrak{g}.$$

where e, f are defined as (todo, see written notes).

Then define the Weyl group $W = \langle s \rangle$.

Exercise: Check that s(e) = -f, s(f) = -e, s(h) = -h, and so the order of s is 2 and $W = \{1, s\}$.

4 Lecture 4

4.1 Solvability

Idea: Define a semisimple Lie algebra

Definition: The derived series for \mathfrak{g} is given by

$$\begin{split} \mathfrak{g}^{(0)} &= \mathfrak{g} \\ \mathfrak{g}^{(1)} &= [\mathfrak{g}^{(0)}, \mathfrak{g}^{(0)}] \\ &\cdots \\ \mathfrak{g}^{(i+1)} &= [\mathfrak{g}^{(i)}, \mathfrak{g}^{(i)}]. \end{split}$$

The Lie algebra \mathfrak{g} is *solvable* if there is some n for which $\mathfrak{g}^{(n)} = 0$.

Exercise (to turn in): Check that the Lie algebra of upper triangular matrices in $\mathfrak{gl}(n,\mathbb{F})$.

Example: Abelian Lie algebras are solvable

Example: Simple Lie algebras are not solvable.

Proposition: Let \mathfrak{g} be a Lie algebra, then

1. If \mathfrak{g} is solvable, then all subalgebras and all homomorphic images of \mathfrak{g} are also solvable.

- 2. If $I \leq \mathfrak{g}$ and both I and \mathfrak{g}/I are solvable, then so is \mathfrak{g} .
- 3. If $I, J \leq \mathfrak{g}$ are solvable, then so is I + J.

Corollary (of part 3 above): Any Lie algebra has a unique maximal solvable ideal, which we denote the $radical \operatorname{Rad}(\mathfrak{g})$.

Definition: A Lie algebra is semisimple if $Rad(\mathfrak{g}) = 0$.

Example: Any simple Lie algebra is semisimple.

Example: Using part (2) above, we can deduce that we can construct a semisimple Lie algebra from any Lie algebra: for any \mathfrak{g} , the quotient $\mathfrak{g}/\mathrm{Rad}(\mathfrak{g})$ is semisimple.

4.2 Nilpotency

$$\begin{split} \mathfrak{g}^0 &= \mathfrak{g} \\ \mathfrak{g}^1 &= [\mathfrak{g}^0, \mathfrak{g}^0] \\ & \cdots \\ \mathfrak{g}^{i+1} &= [\mathfrak{g}^i, \mathfrak{g}^i]. \end{split}$$

Much like the previous case, we have

Example: Abelian Lie algebras are nilpotent.

Example: Nilpotent Lie algebras are solvable.

Example: The *strictly* upper triangular matrices (with zero on the diagonal) are nilpotent.

- 1. If \mathfrak{g} is nilpotent, then all subalgebras and all homomorphic images of \mathfrak{g} are also nilpotent.
 - 2. If $\mathfrak{g}/Z(\mathfrak{g})$ is nilpotent, then so is \mathfrak{g} .
 - 3. If $\mathfrak{g} \neq 0$ is nilpotent, then $Z(\mathfrak{g}) \neq 0$.

Claim: If \mathfrak{g} is nilpotent, then $\mathrm{ad}_x \in \mathrm{End}(\mathfrak{g})$ is nilpotent for all $x \in \mathfrak{g}$.

Proof: This is because $\mathfrak{g}^n = 0 \iff [\mathfrak{g}, [\mathfrak{g}, [\mathfrak{g}, \cdots]]] = 0$, and so for every $x_i, y \in \mathfrak{g}$ we have $[x_1, [x_2, \cdots [x_n, y]]] = 0$, and so $\mathrm{ad}_{x_1} \circ \mathrm{ad}_{x_2} \circ \cdots \mathrm{ad}_{x_n} = 0$ which implies that $\mathrm{ad}_x^n = 0$ for all $x \in \mathfrak{g}$.

Theorem [Engel]: If ad_x is nilpotent for all $x \in \mathfrak{g}$, then \mathfrak{g} is nilpotent.

Remark: This can be confusing if \mathfrak{g} is a linear algebra, we can consider elements $x \in \mathfrak{g}$ and ask if it is the case x being nilpotent (as an endomorphism) iff $\mathfrak{g}g$ is nilpotent? False, a counterexample is $\mathfrak{g} = \mathfrak{gl}(2,\mathbb{C})$, where there exists an x which is *not* nilpotent while ad_x is nilpotent, which contradicts the above theorem.

Proof:

Lemma: Let $\mathfrak{g} \subseteq \mathfrak{gl}(V)$ be a Lie subalgebra for some finite dimensional vector space V. If x is nilpotent as an endomorphism on V for all $x \in V$, then there exists a nonzero vector $v \in V$ such that $\mathfrak{g}v = 0$, so $x \in \mathfrak{g} \implies x(v) = 0$.

Proof of lemma Use induction on dim \mathfrak{g} , splitting into two separate base cases: - Case dim $\mathfrak{g} = 0$, then $\mathfrak{g} = \{0\}$. - Case dim g = 1, left as an exercise.

Inductive step: Let A be a maximal proper subalgebra and define $\phi: A \to \mathfrak{gl}(\mathfrak{g}/A)$ where $a \mapsto (x+A\mapsto [a,x]+A)$. We need to check that ϕ is a homomorphism, this just follows from using the Jacobi identity.

We also need to show that im $\phi \leq \mathfrak{gl}(\mathfrak{g}/a)$ is a Lie subalgebra, and dim im $\phi < \dim \mathfrak{g}$. The claim is that $\phi(a) \in \operatorname{End}(\mathfrak{g}/A)$ is nilpotent for all $a \in A$. By the inductive hypothesis, there is a nonzero coset $y + A \in \mathfrak{g}/A$ such that $(\operatorname{im} \phi) \cdot (y + A) = A$. Since $y \notin A$, then $\phi(a)(y + A) = A$ for all $a \in A$, and so $[a, y] \in A$.

We want to show that A is a subalgebra of codimension 1, and $A \oplus F_y \leq \mathfrak{g}$ is a Lie subalgebra. This is because $[a_1 + c_1 y, a_2 + c_2 y] = [a_1, a_2] + c_2[a_1, y] - c_2[a_2, y] + c_1c_2[y, y]$. The last term is zero, the middle two terms are in A, and because A is closed under the bracket, the first term is in A as well

But then $A \oplus F_y$ is a larger subalgebra than A, which was maximal, so it must be everything. So $A \oplus F_y = \mathfrak{g}$. So $A \subseteq \mathfrak{g}$ because $[a_1, a_2 + cy]$ is in $A, A \oplus F_y = \mathfrak{g}$ respectively, and this equals $[a_1, a_2] + c[a_1, y]$, where both terms are in A.

Proof to be continued on Friday!

5 Lecture 5

Last time: we had a theorem that said that if $\mathfrak{g} \in \mathfrak{gl}(V)$ and every $x \in \mathfrak{g}$ is nilpotent, then there exists a nonzero $v \in V$ such that $\mathfrak{g}v = 0$.

We proceeded by induction on the dimension of V, constructing im $\phi \subseteq \mathfrak{gl}(\mathfrak{g}/A)$, and showed that $\mathfrak{g} = A \oplus Fy$. Now consider

$$W = \{ v \in V \ni Av = 0 \},$$

which is \mathfrak{g} -invariant, so $\mathfrak{g}(W) \subseteq W$, or for all $a \in A, x \in \mathfrak{g}, v \in W$, we have $a \curvearrowright x(v) = 0$. This is true because $a \curvearrowright x = x \circ a + [a, x] \in \mathfrak{gl}(V)$. But V is killed by any element in A, and both of these terms are in A. In particular, the y appearing in Fy also satisfies $y \in W$. Consider $y|_W \in \operatorname{End}(w)$, and we want to apply the inductive hypothesis to $Fy|_W \subseteq \mathfrak{gl}(V)$.

We need to check that $y|_W \in \text{End}(V)$, which is true exactly because y is nilpotent. So we can construct a nonzero $v \in W \subset V$ such that y(v) = 0, and so $\mathfrak{g}v = 0$.

Claim: $\phi(a) \in \operatorname{End}(\mathfrak{g}/A)$ is nilpotent. Each $a \in A \subset \mathfrak{g}$ is nilpotent by assumption. Define the maps for left multiplication by $a, m_{\ell} : x \mapsto ax$, and the right multiplication $m_r : x \mapsto xa$. These are nilpotent, and since m_{ℓ}, m_r commute, the difference $m_{\ell} - m_r$ is nilpotent, and this is exactly ad_a . But then $\phi(a)$ is nilpotent.

Good proof for using all of the definitions!

Now we can see what the consequences of having such a nonzero vector are. This theorem implies Engel's theorem, which says that if $ad_x \in End(\mathfrak{g})$ is nilpotent for every $x \in \mathfrak{g}$, then \mathfrak{g} is nilpotent.

Proof: By induction on dimension. The base case is easy. For the inductive step, the previous theorem applies to $\operatorname{ad} g \subset \mathfrak{gl}(\mathfrak{g})$. So we can produce the nonzero $v \in \mathfrak{g}$ such that $\operatorname{ad} \mathfrak{g} v = 0$. Then [x,v]=0 for all $x \in \mathfrak{g}$, so either $v \in Z(\mathfrak{g})$ or $Z(\mathfrak{g}) \neq 0$. In either case, $\mathfrak{g}/Z(\mathfrak{g})$ has smaller dimension. Since ad_x is nilpotent, so is $\operatorname{ad}_x + Z(\mathfrak{g})$, and so $\mathfrak{g}/Z(\mathfrak{g})$ is nilpotent. By an earlier proposition, since the quotient is nilpotent, so is the total space. \square