Discrete Mathematics, Section 001, Fall 2016

Lecture 19: Modular arithmetic and congruences

Zsolt Pajor-Gyulai

zsolt@cims.nyu.edu

Courant Institute of Mathematical Sciences

November 28, 2016

Outline

Modular arithmetic

Congruences

New context for basic operations

- Arithmetic is the study of basic operations: $+, -, \cdot, /.$
- The usual context for studying these are number systems like $\mathbb{Z},\mathbb{Q},\mathbb{R}.$

For example, look at divison /:

- In the context of rational numbers \mathbb{Q} , x/y makes sense whenever $y \neq 0$.
- In the context of integers, \mathbb{Z} , x/y makes sense if and only if y|x.

Division takes on slightly different meaning depending on the context!

In this lecture: We introduce a new context for these operations, by performing arithmetic in the set

$$\mathbb{Z}_n := \{0, 1, 2, \dots, n-1\}$$

Modular addition and multiplication

Definition

Let n be a positive integer and $a, b \in \mathbb{Z}_n$ We define

$$a \oplus b := (a+b) \bmod n$$

 $a \otimes b := (ab) \bmod n$

 \oplus is called **addition modulo** n, while \otimes is called **multiplication modulo** n.

For example in \mathbb{Z}_{10} ,

$$\begin{array}{ll} 5 \oplus 5 = 0 & 9 \oplus 8 = 7 \\ 5 \otimes 5 = 5 & 9 \otimes 8 = 2 \end{array}$$

Do Problem 1-2.

Closure property

Let $a, b \in \mathbb{Z}_n$. Then $a \oplus b \in Z_n$ and $a \otimes b \in \mathbb{Z}_n$.

Proof.

Straightforward by the definition of mod.

What about other properties? (Homework)

Proposition

Let *n* be an integer with $n \ge 2$.

- **1** For all $a, b \in \mathbb{Z}_n$, $a \oplus b = b \oplus a$ and $a \otimes b = b \otimes a$
- \bullet For $a \in \mathbb{Z}_n$, $a \oplus 0 = a$, $a \otimes 1 = a$ and $a \otimes 0 = 0$.

In other words \oplus and \otimes are commutative, associative operations with identities 0 and 1 respectively. The last bulletpoint is called the distributive property.

Modular substraction

Ordinary substraction in terms of addition:

Definition

Let $a, b \in \mathbb{Z}$. We define a - b to be the solution of the equation a = b + x.

Then we would prove

- The equation a = b + x has a solution.
- 2 The equation a = b + x has only one solution.

We want to use the same approach defining modular substraction.

Modular substraction

Proposition

Let *n* be a positive integer, and let $a, b \in \mathbb{Z}_n$. Then there is one and only one $x \in \mathbb{Z}_n$ such that $a = b \oplus x$.

Let $x = (a - b) \mod n$.

- By the definition of mod, $x \in \mathbb{Z}_n$.
- Note that x = (a b) + kn for some $k \in \mathbb{Z}$. We calculate

$$b \oplus x = (b+x) \mod n =$$

= $[b+(a-b+kn)] \mod n = (a+kn) \mod n = a$

So the existence part is proved.

[...]

Modular substraction

Proposition

Let *n* be a positive integer, and let $a, b \in \mathbb{Z}_n$. Then there is one and only one $x \in \mathbb{Z}_n$ such that $a = b \oplus x$.

[...]

FTSC, suppose there were two $x, y \in \mathbb{Z}_n$ with $x \neq y$ for which

$$a = b \oplus x$$
, $a = b \oplus y$.

This means that there are $k, j \in \mathbb{Z}$, such that

$$a = b \oplus x = (b + x) \bmod n = b + x + kn$$

$$a = b \oplus y = (b + y) \mod n = b + y + jn$$

Combining these

$$b + x + kn = b + y + jn$$

Proposition

Let *n* be a positive integer, and let $a, b \in \mathbb{Z}_n$. Then there is one and only one $x \in \mathbb{Z}_n$ such that $a = b \oplus x$.

[...] Combining these

$$b + x + kn = b + y + jn$$

which in turn implies

$$x = y + (k - j)n \Rightarrow x \equiv y \pmod{n}$$
.

But since $0 \le x, y < n$, this implies $x = y. \Rightarrow \Leftarrow$

Definition

Let *n* be a positive integer and let $a, b \in \mathbb{Z}_n$. Then $a \ominus b$ is the unique $x \in \mathbb{Z}_n$ such that $a = b \oplus x$.

Note that the above proof also shows $a \ominus b = (a - b) \mod n$.

Do Problem 3 on the worsheet. This shows that \ominus is not commutative.

This operation is very different from its usual counterpart:

- In ordinary division the only division not allowed is by zero.
- In the context of \mathbb{Z}_{10} ,

$$5\otimes 2 = 5\otimes 4 = 0 \qquad \text{ but } \qquad 2 \neq 4$$

and so we can't just \oslash by 5.

Given $a, b \in \mathbb{Z}_{10}$ with $b \neq 0$, must there be a solution to $a = b \otimes x$?

- Let a = 6, b = 2. Then x = 3 and x = 8 are both solutions.
- Let a = 7, b = 2. There are no solutions (check all options).
- Let a = 7, b = 3. There is only one solution x = 9.

In the context of \mathbb{Q} , we define divison by multiplication by the reciprocal:

$$\frac{a}{b} = a \cdot b^{-1}$$

Then we cannot divide by 0 as it doesn't have a reciprocal.

Modular reciprocal

Let n be a positive integer and let $a \in \mathbb{Z}_n$. A **reciprocal** of a is an element $b \in \mathbb{Z}_n$ such that $a \otimes b = 1$. An element of \mathbb{Z}_n that has a reciprocal is called **invertible**.

Natural questions:

- What elements have reciprocals?
- Can an element have more than one reciprocals?

\otimes	0	1	2	3	4	5	6	7	8	9
0	0	0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7	8	9
2	0	2	4	6	8	0	2	4	6	8
3	0	3	6	9	2	5	8	1	4	7
4	0	4	8	2	6	0	4	8	2	6
5	0	5	0	5	0	5	0	5	0	5
6	0	6	2	8	4	0	6	2	8	4
7	0	7	4	1	8	5	2	9	6	3
8	0	8	6	4	2	0	8	6	4	2
9	0	9	8	7	6	5	4	3	2	1

Now we make use of these observations!

0 has no reciprocal.

2, 4, 6, 8 have no reciprocals either.

1, 3, 7, 9 are invertible.

The invertible ones have ony one reciprocal.

The invertible ones are precisely the ones relatively primes to 10.

$$3^{-1} = 7$$
 and $7^{-1} = 3$, $1^{-1} = 9$ and $9^{-1} = 1.$

Proposition

Let n be a positive integer and $a \in \mathbb{Z}_n$. If a has a reciprocal in \mathbb{Z}_n , then it has only one reciprocal.

Proof.

FTSC, suppose a had two reciprocals, $b, c \in \mathbb{Z}_n$ with $b \neq c$. Then

$$b\otimes (a\otimes c)=b\otimes 1=b,$$

$$(b \otimes a) \otimes c = 1 \otimes c = c$$
.

By the associative property, these two are equal and so b = c.

Therefore it make sense to talk about *the* reciprocal of an element *a*.

Propostition

Let n be a positive integer and $a \in \mathbb{Z}_n$. Suppose a is invertible. $b = a^{-1}$, then b is invertible and $a = b^{-1}$. In other words $(a^{-1})^{-1} = a$.

Proof.

Since a^{-1} is the reciprocal of a,

$$a^{-1} \otimes a = 1$$
.

But this also shows that the reciprocal of a^{-1} is a.

Modular division

Let n be a positive integer and let b be an invertible element of \mathbb{Z}_n . Let $a \in \mathbb{Z}_n$ be arbitrary. Then $a \oslash b$ is defined to be $a \otimes b^{-1}$.

For example, in the context of \mathbb{Z}_{10} ,

$$7^{-1} = 3 \qquad \Rightarrow \qquad 2 \oslash 7 = 2 \otimes 3 = 6$$

Practice some by doing Problem 4 on the Worksheet.

We still have not answered:

- In \mathbb{Z}_n , which elements are invertible?
- In \mathbb{Z}_n , given that a is invertible, how do we calculate a^{-1} ?

We could just write out the multiplication table, like we did for \mathbb{Z}_{10} . However, good luck with \mathbb{Z}_{1000} .

Invertible elements of \mathbb{Z}_n

Theorem

Let *n* be a positive integer and let $a \in \mathbb{Z}_n$. Then *a* is invertible if and only if *a* and *n* are relative primes.

Recall:

gcd(a, n) = 1 if and only if there are $b, k \in \mathbb{Z}_n$ such that ab + kn = 1.

(⇒): Suppose *a* is invertible. This means there is a $b \in \mathbb{Z}_n$ such that

$$1 = a \otimes b = (ab) \bmod n.$$

This means that there is $k \in \mathbb{Z}$ such that

$$ab + kn = 1$$

and therefore a and n are relative primes.

[...]

Invertible elements of \mathbb{Z}_n

Theorem

Let *n* be a positive integer and let $a \in \mathbb{Z}_n$. Then *a* is invertible if and only if *a* and *n* are relative primes.

[...]

(\Leftarrow) Suppose *a* and *n* are relative primes. Then there are integers *x*, *y* such that ax + ny = 1. Let

$$b = x \mod n \qquad \Rightarrow \qquad b = x + kn$$

for some $k \in \mathbb{Z}$. Therefore

$$1 = ax + ny = a(b - kn) + ny = ab + (y - ka)n,$$

and
$$a \otimes b = (ab) \mod n = 1$$
 and $b = a^{-1}$.

Invertible elements of \mathbb{Z}_n

This also helps us find a^{-1} for invertible a-s in \mathbb{Z}_n .

Use Euclid's algorithm to find x, y such that

$$ax + ny = 1.$$

2 Then $a^{-1} = x \mod n$.

For example, in \mathbb{Z}_{431} , let's find 29^{-1} .

This is problem 5 on the worksheet.

Solving equations in \mathbb{Z}_n

• Consider $2 \otimes x = 4$ in \mathbb{Z}_{11} . Then clearly gcd(2,11) = 1 and $2^{-1} = 6$ and so

$$x = (2^{-1} \otimes 2) \otimes x = 2^{-1} \otimes (2 \otimes x) = 2^{-1} \otimes 4 = 6 \otimes 4 = 2$$

• Consider, however, $2 \otimes x = 4$ in \mathbb{Z}_{10} . Now 2 doesn't have a reciprocal and the only thing we can do at this point is guess. Checking all the values, we see that x = 2 and x = 7 are the two solutions.

Do Problem 6 on the Worksheet.

Outline

Modular arithmetic

2 Congruences

An application: Solving congruences

For example, try to find all integers x such that

$$3x \equiv 4 \pmod{11}.$$

Note that if x_0 is a solution, then

$$3(x_0 + k \cdot 11) = 3x_0 + 33k \equiv 3x_0 \equiv 4 \pmod{11}$$

for any $k \in \mathbb{Z}$ and therefore $x + k \cdot 11$ is also a solution.

This means that it is enough to find the solutions in \mathbb{Z}_{11} , then all other solutions can be obtained by adding (or substracting) some multiple of 11.

An application: Solving congruences

We need to find $x \in \mathbb{Z}_{11}$ for which $3x \equiv 4 \pmod{11}$. Note

$$3x \equiv 4 \mod 11 \qquad \Leftrightarrow \qquad (3x) \mod 11 = 4 \qquad \Leftrightarrow \qquad 3 \otimes x = 4.$$

$$\Leftrightarrow$$

$$(3x) \mod 11 = 4$$

$$\Leftrightarrow$$

$$3\otimes x=4$$
.

But we know how to solve this as $3^{-1} = 4$ in \mathbb{Z}_{11} and therefore

$$x = (3^{-1} \otimes 3) \otimes x = 3^{-1} \otimes (3 \otimes x) = 3^{-1} \otimes 4 = 4 \otimes 4 = 5$$

Therefore the solutions to the original congruence is

$$\{5+k\cdot 11: k\in \mathbb{Z}\}.$$

An application: Solving congruences

Proposition

Let $a, b, n \in \mathbb{Z}$ with n > 0. Suppose a and n are relatively prime and consider the equation

$$ax \equiv b \pmod{n}$$
.

The set of solutions to this equation is

$$\{x_0 + kn : k \in \mathbb{Z}\}$$

where $x_0 = a_0^{-1} \otimes b_0$ with $a_0 = a \mod n$ and $b_0 = b \mod n$ and \otimes is meant in the context of \mathbb{Z}_n .

Practice this by Problem 7 on the worksheet.

For quiz

- Understand the operations \oplus , \ominus , \otimes within the context of \mathbb{Z}_n .
- Understand the notion of the reciprocal within the context of \mathbb{Z}_n and how to compute this.
- Understand how to use the reciprocals to solve equations in \mathbb{Z}_n .