Indexing & Data Warehouses

CS3200 / CS5200 : Databases

Indexing

Indexes are a data-structure used to help us locate information in our table more quickly.

Advantage:

Faster read access

Disadvantage:

Slower inserts / updates

Storage overhead

More complex backup / recovery requirements (systems can crash at any moment!)

Hash Indexing (single sequential log file)

Secondary Indexes (Non-unique rows)

Sales transactions

```
    0 → { amount : 20.32, state : VT }
    1 → { amount : 34.99, state : MA }
    2 → { amount : 12.98, state : VT }
    3 → { amount : 93.23, state : VT }
    4 → { amount : 50.17, state : CA }
```

What if we want to find transactions in Vermont?

Secondary Index on State

```
VT → { transactions : [0, 2, 3] }
MA → { transactions : [1] }
CA → { transactions : [4] }
```

B-Trees

- Most commonly used since their introduction in the 1970s
- Keys are sorted, enabling efficient range queries
- B-Trees organize the DB into fixed sized blocks (pages) typically 4k or more.
- Each child node is responsible for a contiguous range of keys
- Branching factors of several hundred are common

B-Trees: Key addition with page split

- We want to add a value for key 334 but there is no more room in the page
- The page is split and references to the parent page are updated

After adding key 334:

WAL: Write-Ahead Logs

- A system failure could leave the index in a corrupted state. Why?
- Data pages cannot be written to disk until the log records describing those changes are written to disk FIRST.
- Use WAL for crash recovery

Guidelines for when to add indexes

- When a column is used frequently in search conditions or joins
- When the column contains a large number of distinct values
- When the column is updated infrequently
- Table access dominated by SELECT rather than UPDATE or INSERT

Following tweets: An RDB approach (early twitter)

```
SELECT tweets.*, users.* FROM tweets
JOIN users ON tweets.sender_id = users.id
JOIN follows ON follows.followee_id = users.id
WHERE follows.follower_id = current_user
```


Figure 1-2. Simple relational schema for implementing a Twitter home timeline.

Following tweets: A scalable approach

Figure 1-3. Twitter's data pipeline for delivering tweets to followers, with load parameters as of November 2012 [16].

On average a tweet is delivered to 75 followers – and some users have millions of followers!

Performance objective: Deliver a tweet within 5 seconds.

Hybrid approach: prefetch tweets of celebrities separately and merge them into user's timelines.

Data Warehousing

A data warehouse provides a separate resource for data analytics.

Why is this useful?

Data Warehouse Data Marts

OLTP vs. OLAP

Property

Transaction processing systems (OLTP)

Analytic systems (OLAP)

Aggregate over large number

Bulk import (ETL) or event

OLTP

- Interactive
- Low latency
- Row-level operations

OLAP

- **Batch-oriented**
- Table-level operations
- ETL
- Aggregate Analytics

Main read pattern

Small number of records per query, fetched by key

of records

stream

support

Data warehousing

Main write pattern

Primarily

What data

represents

used by

Random-access, low-latency writes from user input

End user/customer, via web application

Latest state of data (current point in History of events that haptime)

pened over time

Internal analyst, for decision

Northeastern University

Dataset size

Gigabytes to terabytes

Terabytes to petabytes

Star Schema

dim_product table

product_sk	sku	description	brand	category	
30	OK4012	Bananas	Freshmax	Fresh fruit	
31 KA9511		Fish food	Aquatech	Pet supplies	
32	AB1234	Croissant	Dealicious	Bakery	

dim_store table

store_sk	state	city		
1	WA	Seattle		
2	CA	San Francisco		
3	CA	Palo Alto		

fact_sales table \

date_key	product_sk	store_sk	promotion_sk	customer_sk	quantity	net_price	discount_price
140102	31 •	3	NULL	NULL	1	2.49	2.49
140102	69	5	19 🔍	NULL	3	14.99	9.99
140102	74	3	23	191	1	4.49	3.89
140102	33	8	NULL	235	4	0.99	0.99

dim_date table

	date_key	year	month	day	weekday	is_holiday
١	140101	2014	jan	1	wed	yes
	140102	2014	jan	2	thu	no
	140103	2014	jan	3	fri	no

dim_customer table

customer_sk	name	date_of_birth		
190	Alice	1979-03-29		
191	Bob	1961-09-02		
192	Cecil	1991-12-13		

dim_promotion table

promotion_sk	name	ad_type	coupon_type	
18	New Year sale	Poster	NULL	
→ 19	Aquarium deal	Direct mail	Leaflet	
20	Coffee & cake bundle	In-store sign	NULL	

Snowflake Schema

Greater normalization increases complexity, and requires more joins

BUT:

Normalization reduces redundancy and (therefore) storage requirements.

Columnar Storage

Data from each column is stored contiguously on disk. Aggregates on particular columns require less disk I/O.

For example: parquet

fact_sales table

date_key	product_sk	store_sk	promotion_sk	customer_sk	quantity	net_price	discount_price
140102	69	4	NULL	NULL	1	13.99	13.99
140102	69	5	19	NULL	3	14.99	9.99
140102	69	5	NULL	191	1	14.99	14.99
140102	74	3	23	202	5	0.99	0.89
140103	31	2	NULL	NULL	1	2.49	2.49
140103	31	3	NULL	NULL	3	14.99	9.99
140103	31	3	21	123	1	49.99	39.99
140103	31	8	NULL	233	1	0.99	0.99

Columnar storage layout:

date_key file contents: 140102, 140102, 140102, 140103, 140103, 140103, 140103

product_sk file contents: 69, 69, 69, 74, 31, 31, 31

store_sk file contents: 4, 5, 5, 3, 2, 3, 3, 8

promotion_sk file contents: NULL, 19, NULL, 23, NULL, NULL, 21, NULL customer_sk file contents: NULL, NULL, 191, 202, NULL, NULL, 123, 233

quantity file contents: 1, 3, 1, 5, 1, 3, 1, 1

net_price file contents: 13.99, 14.99, 0.99, 2.49, 14.99, 49.99, 0.99 discount_price file contents: 13.99, 9.99, 14.99, 0.89, 2.49, 9.99, 39.99, 0.99

