Optimal Sample Weighting

Student	Q1	Q2	 Q50
Scrooge	×		
Fezziwig			
■ ■			

Scrooge's Mark =
$$\sum_{i} w_{i}$$
 · (ith question is correct)

$$\min_{w} f(w)$$

$$w_i \ge 0, \qquad \sum_{i} w_i = 1$$

$X_i(w)$ - Weighted mark of student i

Discrete Distribution of $X_i(w) \approx \text{Continuous Distribution: } \rho^{(w)}(z)$

KDE:
$$\rho^{(w)}(z) = \frac{1}{N} \sum_{i=1}^{N} \mu(z - X_i(w))$$
 μ is a Gaussian Kernel

$$\mathsf{KL}(\rho^{(w)}, T) = \int \rho^{(w)}(z) \log\left(\frac{\rho^{(w)}(z)}{T(z)}\right) dz$$

$$\min_{w} KL(\rho^{(w)}, T)$$

$$w_i \ge 0, \qquad \sum_{i} w_i = 1$$

Gradient Descent

$$w^{t+1} = w^t - \eta_t \nabla_w f$$

$$w_i \geq 0,$$

$$\sum_i w_i = 1$$

Our Proposal

$$w^{t+1} = w^t - \eta_t w^t (\nabla_w f - w^t \cdot \nabla_w f)$$

$$w_i \geq 0, \qquad \sum_i w_i = 1$$

Convex optimization over a probability simplex – James Chok and Geoffrey M. Vasil

https://arxiv.org/abs/2305.09046