#### ROB 101 - Fall 2021

# Determinant of Product, Matrix Inverses, and Matrix Transposes

September 22, 2021



# **Learning Objectives**

Fill in some gaps that we left during our sprint to an effective means for solving large systems of linear equations.

## **Outcomes**

- Whenever two square matrices A and B can be multiplied, it is true that  $\det(A \cdot B) = \det(A) \cdot \det(B)$ .
- ► What it means to "invert a matrix," and knowing that you rarely want to actually compute a matrix inverse!
- If  $ad bc \neq 0$ , then  $\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$ .
- Matrix transpose takes columns of one matrix into the rows of another.

# Useful Fact Regarding the Matrix Determinant

To find the determinant of a product of matrices, we can simply take the product of the determinants.

#### **Fact**

Let A and B be  $n \times n$  matrices. Then

$$\det(AB) = \det(A) \cdot \det(B)$$

 $lackbox{ Now suppose that we have done the $LU$ factorization of a square matrix $A$.}$ 

- Now suppose that we have done the LU factorization of a square matrix A.
- ▶ Then, using the previous fact, we have

$$\det(A) = \det(L \cdot U) = \det(L) \cdot \det(U).$$

# Recall: Determinant of a Lower Triangular Matrix

#### **Fact**

The matrix determinant of a square lower triangular matrix is equal to the product of the elements on the diagonal.

$$A = \begin{bmatrix} 3 & \mathbf{0} & \mathbf{0} \\ 2 & -1 & \mathbf{0} \\ 1 & -2 & 3 \end{bmatrix} \implies \det(A) = 3 \cdot (-1) \cdot 3 = -9 \neq 0.$$

```
In [1]: using LinearAlgebra
A = [3 0 0; 2 -1 0; 1 -2 3];
det(A)
```

Out[1]: -9.0

# Recall:Determinant of an Upper Triangular Matrix

#### **Fact**

The matrix determinant of a square upper triangular matrix is equal to the product of the elements on the diagonal.

$$A = \begin{bmatrix} 1 & 3 & 2 \\ \mathbf{0} & 2 & 1 \\ \mathbf{0} & \mathbf{0} & 3 \end{bmatrix} \implies \det(A) = 1 \cdot 2 \cdot 3 = 6 \neq 0.$$

```
In [2]: A = [1 3 2; 0 2 1; 0 0 3]; det(A)
```

Out[2]: 6.0

## **Corollary**

Because L and U are triangular matrices, each of their determinants is given by the product of the diagonal elements. Hence, we have a way of computing the determinant for square matrices of arbitrary size.

**Q.** How about LU with row permutation?

$$PA = LU$$
.

Q. How about LU with row permutation?

$$PA = LU$$
.

Mathematically (just carrying out calculations based on facts we know), we have

$$\det(PA) = \det(LU)$$

$$\det(P) \det(A) = \det(L) \det(U)$$

$$\det(A) = \frac{1}{\det(P)} \cdot \det(L) \det(U), \quad \det(P) \neq 0.$$

Mathematically (just carrying out calculations based on facts we know), we have

$$\det(PA) = \det(LU)$$

$$\det(P) \det(A) = \det(L) \det(U)$$

$$\det(A) = \frac{1}{\det(P)} \cdot \det(L) \det(U), \quad \det(P) \neq 0.$$

## **Fact**

For the determinant of a permutation matrix P, we have

$$\det(P) = \pm 1.$$

Compute the matrix determinant of

$$\begin{bmatrix} -2 & -4 & -6 \\ -2 & 1 & -4 \\ -2 & 11 & -4 \end{bmatrix}.$$

Compute the matrix determinant of

$$\begin{bmatrix} -2 & -4 & -6 \\ -2 & 1 & -4 \\ -2 & 11 & -4 \end{bmatrix}.$$

$$\begin{bmatrix}
-2 & -4 & -6 \\
-2 & 1 & -4 \\
-2 & 11 & -4
\end{bmatrix} = \begin{bmatrix}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 3 & 1
\end{bmatrix} \cdot \begin{bmatrix}
-2 & -4 & -6 \\
0 & 5 & 2 \\
0 & 0 & -4
\end{bmatrix}$$

Compute the matrix determinant of

$$\begin{bmatrix} -2 & -4 & -6 \\ -2 & 1 & -4 \\ -2 & 11 & -4 \end{bmatrix}.$$

$$\underbrace{\begin{bmatrix} -2 & -4 & -6 \\ -2 & 1 & -4 \\ -2 & 11 & -4 \end{bmatrix}}_{A} = \underbrace{\begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 3 & 1 \end{bmatrix}}_{L} \cdot \underbrace{\begin{bmatrix} -2 & -4 & -6 \\ 0 & 5 & 2 \\ 0 & 0 & -4 \end{bmatrix}}_{U}$$

Hence,

$$\det(A) = \underbrace{(1) \cdot (1) \cdot (1)}_{\det(L)} \cdot \underbrace{(-2) \cdot (5) \cdot (-4)}_{\det(U)} = 40.$$

det(F.P) = -1.0

# **Identity Matrix**

► The identity matrix is a square matrix denoted *I* that has ones down the main diagonal and zeroes elsewhere.

# **Identity Matrix**

- ► The identity matrix is a square matrix denoted *I* that has ones down the main diagonal and zeroes elsewhere.
- ► Here are some examples of  $1 \times 1$ ,  $2 \times 2$ ,  $3 \times 3$ , and  $4 \times 4$  identity matrices.

$$\begin{bmatrix} 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

# **Identity Matrix**

- ► The identity matrix is a square matrix denoted *I* that has ones down the main diagonal and zeroes elsewhere.
- ► Here are some examples of  $1 \times 1$ ,  $2 \times 2$ ,  $3 \times 3$ , and  $4 \times 4$  identity matrices.

$$\begin{bmatrix} 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

▶ The notation  $I_n$  means an  $n \times n$  identity matrix.

# Multiplication by the Identity Matrix

Suppose A is an  $m \times n$  matrix and  $I_n$  is the  $n \times n$  identity matrix. Then:

$$A \cdot I_n = A$$
.

# Multiplication by the Identity Matrix

Suppose A is an  $m \times n$  matrix and  $I_n$  is the  $n \times n$  identity matrix. Then:

$$A \cdot I_n = A$$
.

- ▶ If  $I_m$  is the  $m \times m$  identity matrix,  $I_m \cdot A = A$ .
- ► See Example 6.2 in ROB 101 book.

## The Inverse of a Matrix

 $\blacktriangleright$  A square  $n\times n$  matrix A is said to have an inverse  $A^{-1}$  if and only if

$$AA^{-1} = A^{-1}A = I_n.$$

▶ In this case, the matrix A is called invertible.

### The Inverse of a Matrix

#### **Claim**

If a matrix has an inverse, it is unique (that is, there is only one of them). If A and B are both  $n \times n$ , then

$$(A \cdot B = B \cdot A = I_n) \iff B = A^{-1}.$$

#### The Inverse of a Matrix

#### **Claim**

If a matrix has an inverse, it is unique (that is, there is only one of them). If A and B are both  $n \times n$ , then

$$(A \cdot B = B \cdot A = I_n) \iff B = A^{-1}.$$

#### Proof.

Suppose  $A^{-1}$  and B both inverses of A. Then we have

$$AA^{-1} = I$$
$$BAA^{-1} = BI$$
$$A^{-1} = B!$$

Consider  $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$  and suppose that  $\det(A) = a \cdot d - b \cdot c \neq 0$ .

- Consider  $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$  and suppose that  $\det(A) = a \cdot d b \cdot c \neq 0$ .
- ► Then,

$$A^{-1} = \frac{1}{a \cdot d - b \cdot c} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} = \frac{1}{\det(A)} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

- Consider  $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$  and suppose that  $\det(A) = a \cdot d b \cdot c \neq 0$ .
- ► Then.

$$A^{-1} = \frac{1}{a \cdot d - b \cdot c} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} = \frac{1}{\det(A)} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

ightharpoonup Applying the above formula for the inverse of a  $2\times 2$  matrix immediately gives that

$$\begin{bmatrix} 4 & 2 \\ 5 & 3 \end{bmatrix}^{-1} = \frac{1}{2} \begin{bmatrix} 3 & -2 \\ -5 & 4 \end{bmatrix}.$$

```
In [1]: using LinearAlgebra
A = [4 2; 5 3];
B = [3/2 -1; -5/2 2]; # B is the inverse of A!

@show A * B
@show B * A

A * B = [1.0 0.0; 0.0 1.0]
B * A = [1.0 0.0; 0.0 1.0]
Out[1]: 2x2 Array{Float64,2}:
```

1.0 0.0 0.0 1.0

Suppose that A is  $n \times n$ . Because the determinant of a product is the product of the determinants, we have that

$$1 = \det(I_n) = \det(A \cdot A^{-1}) = \det(A) \cdot \det(A^{-1}).$$

Suppose that A is  $n \times n$ . Because the determinant of a product is the product of the determinants, we have that

$$1 = \det(I_n) = \det(A \cdot A^{-1}) = \det(A) \cdot \det(A^{-1}).$$

It follows that if A has an inverse, then  $\det(A) \neq 0$  and  $\det(A^{-1}) = \frac{1}{\det(A)}$ 

Suppose that A is  $n \times n$ . Because the determinant of a product is the product of the determinants, we have that

$$1 = \det(I_n) = \det(A \cdot A^{-1}) = \det(A) \cdot \det(A^{-1}).$$

- It follows that if A has an inverse, then  $\det(A) \neq 0$  and  $\det(A^{-1}) = \frac{1}{\det(A)}$
- ▶ If  $det(A) \neq 0$ , then it has an inverse (one also says that  $A^{-1}$  exists). Putting these facts together gives the next result.

#### **Fact**

An  $n \times n$  matrix A is invertible if, and only if,  $det(A) \neq 0$ .

#### **Fact**

Another useful fact about matrix inverses is that if A and B are both  $n \times n$  and invertible, then their product is also invertible and

$$(A \cdot B)^{-1} = B^{-1} \cdot A^{-1}.$$

#### **Fact**

Another useful fact about matrix inverses is that if A and B are both  $n \times n$  and invertible, then their product is also invertible and

$$(A \cdot B)^{-1} = B^{-1} \cdot A^{-1}.$$

Note that the order is swapped when you compute the inverse. To see why this is true, we note that

$$(A \cdot B) \cdot (B^{-1} \cdot A^{-1}) = A \cdot (B \cdot B^{-1}) \cdot A^{-1} = A \cdot (I) \cdot A^{-1} = A \cdot A^{-1} = I.$$

## **LU** and Matrix Inverses

If A is invertible and  $A=L\cdot U$  is the LU factorization of A, then

$$A^{-1} = U^{-1} \cdot L^{-1}.$$

# **Utility of the Matrix Inverse and its Computation**

- ► The primary use of the matrix inverse is that it provides a closed-form solution to linear systems of equations.
- Suppose that A is square and invertible, then

$$Ax = b \iff x = A^{-1} \cdot b.$$

## **Utility of the Matrix Inverse and its Computation**

#### Remark

It is much better to solve Ax = b by factoring  $A = L \cdot U$  and using back and forward substitution, than to first compute  $A^{-1}$  and then multiply  $A^{-1}$  and b. Explicitly computing  $A^{-1}$  can lead to numerical instability.

# Utility of the Matrix Inverse and its Computation

### Remark

If A has any special structure such as sparsity,  $A^{-1}$  in general will not preserve it.

### **Do Not Invert** A!



26

# A Challenge (Test Your Might)

#### **Problem**

Tell me how to invert an  $n \times n$  (invertible) matrix A, without telling me to invert it explicitly!

# A Challenge (Test Your Might)

#### **Problem**

Tell me how to invert an  $n \times n$  (invertible) matrix A, without telling me to invert it explicitly! Hint: use LU factorization of A and  $I_n$ .

The transpose takes the rows of a matrix and turns them into the columns of a new matrix.

- Equivalently, you can view the matrix transpose as taking each column of one matrix and laying the elements out as rows in a new matrix
- ▶ The (i,j)-entry of A becomes the (j,i)-entry of  $A^{\mathsf{T}}$ .

```
In [1]: using LinearAlgebra
          # define A
          A = \begin{bmatrix} -2 & -4 & -6 \\ -2 & 1 & -4 \end{bmatrix}
Out[1]: 2x3 Array{Int64,2}:
            -2 1 -4
In [2]: # A transpose
          Α'
          3x2 Adjoint{Int64,Array{Int64,2}}:
Out[2]:
```

# Properties of the Transpose of a Matrix

Let A be an  $m \times n$  matrix, B an  $n \times p$  matrix, and r and s scalars.

- ▶ Applying the transpose twice we get  $(A^T)^T = A$ .
- ▶ If A is square,  $det(A^T) = det(A)$ .
- Transpose changes the order of matrix multiplication  $(AB)^{\mathsf{T}} = B^{\mathsf{T}}A^{\mathsf{T}}.$
- ▶ Reach the chapter for discussions about these properties.

Matrices that consist of all ones and zeros, with each row and each column having a single one, are called permutation matrices.

- Matrices that consist of all ones and zeros, with each row and each column having a single one, are called permutation matrices.
- We put the  $5 \times 5$  identity matrix on the left and the corresponding permutation matrix P on the right

$$I = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \leftrightarrow P = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix} \leftrightarrow \begin{bmatrix} 3 \to 1 \\ 2 \to 2 \\ 5 \to 3 \\ 1 \to 4 \\ 4 \to 5 \end{bmatrix}.$$

P is still just a re-ordering of the rows of I. You can check that  $P^{\mathsf{T}} \cdot P = P \cdot P^{\mathsf{T}} = I$ .

#### Remark

Hence, the inverse of a permutation matrix is its transpose!

33

P is still just a re-ordering of the rows of I. You can check that  $P^{\mathsf{T}} \cdot P = P \cdot P^{\mathsf{T}} = I$ .

#### Remark

Hence, the inverse of a permutation matrix is its transpose!

### **Corollary**

For the determinant of a permutation matrix P, we have

$$P \cdot P^{\mathsf{T}} = I$$
$$\det(P \cdot P^{\mathsf{T}}) = \det(I)$$
$$\det(P) \det(P^{\mathsf{T}}) = 1$$
$$\det(P)^{2} = 1$$
$$\det(P) = \pm 1$$

```
In [3]: # construct our permutation matrix
        ids = [3,2,5,1,4];
        P = zeros(5,5) + I;
        P = P[ids,:]
       5×5 Array{Float64,2}:
Out[3]:
         0.0 0.0 1.0 0.0 0.0
         0.0 1.0 0.0 0.0 0.0
         0.0 0.0 0.0 0.0 1.0
         1.0 0.0 0.0 0.0 0.0
         0.0 0.0 0.0 1.0 0.0
In [4]:
       # verify its inverse is its transpose!
        P * P'
        5x5 Array{Float64,2}:
Out[4]:
         1.0 0.0 0.0 0.0 0.0
         0.0 1.0 0.0 0.0 0.0
         0.0 0.0 1.0 0.0 0.0
         0.0 0.0 0.0 1.0 0.0
         0.0 0.0 0.0 0.0 1.0
```

### **Next Time**

- ightharpoonup The Vector Space  $\mathbb{R}^n$ : Part 1
- ► Read Chapter 7 of ROB 101 Book