Coding cells of multidimensional digital spaces a framework to write generic digital topology algorithms

Jacques-Olivier Lachaud

LaBRI - Laboratoire Bordelais de Recherche en Informatique Bordeaux, France

Outline

- Motivation
- Digital space representation
 - coding cells, adjacency, incidence
 - oriented cells, boundary operators
- Data structures for subsets of digital space
- Application to digital surface tracking
 - adjacency between boundary elements
 - tracking algorithms
 - benchmarks
- Conclusion and perspectives

Motivation

- Analyzing digital images (2D, 3D, more).
- Writing digital topology and geometry algorithms with application to discrete deformable models.
 - modelling sets of pixels and voxels and their boundaries.
 - tracking digital surfaces; visualizing them.
 - computing geometric characteristics.

Motivation

- Analyzing digital images (2D, 3D, more).
- Writing digital topology and geometry algorithms with application to discrete deformable models.
- digital surface: set of surface elements with topology.
- r-cells and sets of r-cells in n-dimensional space
 - How to represent them ?
 - How to compute their topology: neighborhood, incidences, boundary operators?
 - How to get simple geometric characteristics: centroid, normals?

Motivation

- Analyzing digital images (2D, 3D, more).
- Writing digital topology and geometry algorithms with application to discrete deformable models.
- digital surface: set of surface elements with topology.
- r-cells and sets of r-cells in n-dimensional space
- Objective: generic answer to digital cell representation.
 - independent of space dimension and of cell topology and dimension.
 - efficient in practice.

Digital space

- Main objective: analyzing digital images (2D, 3D, more)
- \Rightarrow finite regular space of dimension n and coordinate upper bounds M^i .
- digital space \mathbb{C}^n : cellular decomposition of \mathbb{R}^n into a regular grid.

Digital space

- Main objective: analyzing digital images (2D, 3D, more)
- \Rightarrow finite regular space of dimension n and coordinate upper bounds M^i .
- digital space \mathbb{C}^n : cellular decomposition of \mathbb{R}^n into a regular grid.
 - good topological properties for surfaces [Kovalevsky89]
 - geometric characteristics are always defined.
 - many high-level image representation on top of \mathbb{C}^n :
 - discrete maps [Braquelaire, Brun, Desbarats, Domenger]
 and [Bertrand, Damiand, Fiorio],
 - cell lists [Kovalevsky],
 - combinatorial pyramids [Brun, Kropatsch].

Usual representations of cells (1/2)

Cells:

- pixels, voxels, spels in nD: static arrays of integer
- surfels: pairs of adjacent spels [Herman92]
- other cells: implicitly represented in algorithms
- Set of cells: characteristic function stored in an "image"; access through offset computation.
- ⇒ Very simple and easy to implement.

But non generic approach

- dimension independence with dynamic allocation (≈ 10 times slower).
- inhomogeneity between representations of n-cells, n-1-cells, etc.

Usual representations of cells (2/2)

- Khalimsky space \mathbb{K}^n : product of n COTS
 - \mathbb{Z} alternating open and closed points: \times \times \times
 - \mathbb{K}^n and \mathbb{C}^n are isomorph [Kong, Khalimsky]
 - any r-cell: n integer coordinates.
 - cell topology: parity of cell Khalismky coordinates
 - Sets of cells: Characteristic function stored in a doubled "image". Access through offset computation.

Usual representations of cells (2/2)

- Khalimsky space \mathbb{K}^n : product of n COTS
- ⇒ Homogeneous representation of cells
- But same implementation problems with dynamic arrays
 - memory cost of a set of r-cells is $2^n \prod (M^i + 1)$ bits.
 - signed topology operators (upper and lower boundary) are cumbersome to write.

Proposed representation of cells

- any r-cell is coded as one integer number,
- all the topology (adjacency, incidence) and the geometry (centroid, normal) can be derived from the cell code,
- unoriented and oriented cells can be coded.
- ⇒ very compact representation of cells and of sets of cells
 - generic: homogeneous representation that is independent of space dimension.
 - efficient (e.g. one cpu register stores any cell)

- Any r-cell c is identified by its Khalimsky coordinates (x_K^0,\dots,x_K^{n-1})
- c is coded as one integer $\alpha \mid x^{n-1} \mid \dots$

- digital coordinate $x^i = x_K^i \operatorname{div} 2$
- ullet each coordinate is binary coded on $N^i = \log_2(M_i) + 1$ bits
- topology $\alpha = \sum_i (x_K^i \bmod 2) 2^i$

- Any r-cell c is identified by its Khalimsky coordinates (x_K^0,\dots,x_K^{n-1})
- c is coded as one integer $|\alpha| x^{n-1} | \dots$

- Elementary properties
 - topology of usual cells: spels (1...1), pointels (0...0), surfels (1...101...1).
 - 32 bits code any cell of 32768×32768 2D image, $1024 \times 1024 \times 512$ 3D image, 128^4 4D image. \Rightarrow enough for most biomedical applications
 - all elementary operations are made with maskings and shiftings, e.g. getting the cell topology or its i-th coordinate.

Topology operations: adjacency

■ Two r-cells with same topology are l-adjacent iff their coordinates differ of ± 1 on l coordinates.

Cell, 1-adjacent cells, 2-adjacent cells

Topology operations: adjacency

- Two r-cells with same topology are l-adjacent iff their coordinates differ of ± 1 on l coordinates.
- Computation of 1-adjacent cells:

α	x^{n-1}		x^{i}		x^0
----------	-----------	--	---------	--	-------

1-adjacent to

α	$\int x^{n-1}$	• • •	$x^i - 1$	• • •	x^0
α	$\int x^{n-1}$		$x^i + 1$	• • •	x^0

c // Cell

// Space is K

K.adjacent(c,i,NEG)

K.adjacent(c,i,POS)

Topology operations: low incidence

• The *low incidence* is the face relation. The 1-low incidence defines the r-1-cells that are faces of a r-cell.

Cell, 1-low incident cells along x, 1-low incident cells along y

● Prop. Any r-cell has two 1-low incident r-1-cells along each coordinate where the cell is open.

Topology operations: low incidence

- The *low incidence* is the face relation. The 1-low incidence defines the r-1-cells that are faces of a r-cell.
- Computation of 1-low incident cells:

has two 1-low incident cells

0	x^{n-1}	 x^i		x^0	
0	x^{n-1}	 x^i -	+1		x^0

C

// Space is K

K.lowIncident(c,i,NEG)

K.lowIncident(c,i,POS)

Topology operations: up incidence

• The *up incidence* is the coface relation. The 1-up incidence defines the r+1-cells that are cofaces of a r-cell.

Cell, 1-up incident cells along x, 1-up incident cells along y

▶ Prop. Any r-cell has two 1-up incident r + 1-cells along each coordinate where the cell is closed.

Topology operations: up incidence

- The *up incidence* is the coface relation. The 1-up incidence defines the r+1-cells that are cofaces of a r-cell.
- Computation of 1-up incident cells:

has two 1-up incident cells

1	x^{n-1}		x^i	- 1	• • •	x^0
1	x^{n-1}	• • •	x^i		x^0	

C

// Space is K

K.upIncident(c,i,NEG)

K.upIncident(c,i,POS)

Cost of elementary cell operations

nb ops required	code	topo, coord	==	set coord	adj.	is $\it l$ -adj.?	inc.	is \emph{l} -inc.?
bits ops	0	1	0	2	0	$\leq 2n$	1	≤ 3
shifts	n	1	0	1	0	0	0	≤ 6
integer ops	n	0	1	0	1	$\leq 2n$	≤ 1	$\leq l+4$
lut access	n	1	0	2	1	$\leq n$	≤ 2	$\leq l+2$
cond. tests	0	0	0	0	1	$\leq 2n$	1	$\leq 3l + 1$

- the dimension n is generally low, and $l \leq n$.
- all these operations on cell codes compete with or are faster than the same operations on cells represented as integer arrays.

- motivation for orienting cells
 - useful for defining digital surfaces, cubical cell complexes and boundary operators.
 - first step to r-dimensional chains
 - necessary for giving a local orientation to cells and for defining consistent adjacencies between surfel elements.

- motivation for orienting cells
- Code of an *oriented cell*: $\alpha \mid s \mid x^{n-1} \mid \dots \mid x^i \mid \dots \mid x^0$ with *orientation* s (0 positive, 1 negative)
- ⇒ most elementary operations are similar.

- motivation for orienting cells
- Code of an *oriented cell*: $\alpha \mid s \mid x^{n-1} \mid \dots \mid x^i \mid \dots \mid x^0$
- **■** Boundary operator \triangle : signed 1-low incidence

$$\begin{split} &\text{if }c = \boxed{i_k \dots i_j \dots i_0} \boxed{s} \boxed{x^{n-1}} \boxed{\dots} \boxed{x^{i_j}} \boxed{\dots} \boxed{x^0} \\ &\Delta_{i_j}c = \\ &\{ \boxed{i_k \dots \overline{i_j} \dots i_0} \boxed{(-1)^{k-j}s} \boxed{x^{n-1}} \boxed{\dots} \boxed{x^{i_j}} \boxed{\dots} \boxed{x^0}, \\ &[i_k \dots \overline{i_j} \dots i_0} \boxed{(-1)^{k-j+1}s} \boxed{x^{n-1}} \boxed{\dots} \boxed{x^{i_j} + 1} \boxed{\dots} \boxed{x^0} \\ &\text{and } \Delta c = \cup_{j=0}^k \Delta_{i_j}c. \end{split} \right. \end{split}$$

- Prop. If R is a set of oriented r-cells, then $\Delta \Delta R = 0$
- \Rightarrow Any boundary has no boundary (ie. is closed).

- motivation for orienting cells
- Code of an *oriented cell*: $\alpha \mid s \mid x^{n-1} \mid \ldots \mid x^i \mid \ldots \mid x^0$
- **Boundary operator** \triangle : signed 1-low incidence
- Coboundary operator ∇: signed 1-up incidence
 - Prop. If R is a set of oriented r-cells, then $\nabla \nabla R = 0$
 - \Rightarrow Any coboundary has no coboundary (ie. is open).

Oriented cells and boundaries

- **●** Def. If a region O is viewed as a set of positively oriented spels, then the boundary of O is ΔO . Any path from O to its complement crosses ΔO .
- \Rightarrow a simple scanning extracts the boundary of a region.
- **Prop.** For any surfel $s \in \Delta O$, $\nabla s = \{+p, -q\}$ with $p \in O$ and $q \notin O$.
- \Rightarrow gives locally the inside and outside of a surface.

set of spels O, positive surfels in ΔO , negative surfels in ΔO

classical data structures for small sets

set data struct.	Is in set?	Set operations	Memory cost (bytes)
dynamic array	O(m)	O(m)+	pprox 4m
linked list	O(m)	O(m)	pprox 24m
RB-tree	$O(\log m) +$	$O(\log m) +$	pprox 3 m
hashtable	O(1)+	O(1)+	$\approx 4m' + 20m,$
			$m'\gg m$

• rather costly for big sets: e.g. 1.000.000 surfels \Rightarrow requires 28Mb in a hashtable with m'=2m.

- classical data structures for small sets
- characteristic function for big sets of r-cells.
 - code of a cell c gives an offset in array of bits

$$offset(c) = LUT[topology(c)] + coords(c)$$

0	00
1	00

with LUT:

$$\binom{n}{r}-1$$
 0...0

⇒ Offset = one LUT access + one masking + one addition

- classical data structures for small sets
- characteristic function for big sets of r-cells.
 - set of r-cells: $\binom{n}{r} 2^{\sum N_i}$ bits (e.g set of surfels in a 256^3 image holds ≈ 50 million surfels with 6Mb).
 - set of oriented r-cells are twice bigger.
 - all set operations are in O(1).
 - computation time of the difference of two sets of surfels in a 512^3 image: 2.5s or 6ns / surfel (Celeron 450Mhz).

- classical data structures for small sets
- characteristic function for big sets of r-cells.
- memory comparison with other cell representations (with space sizes 2^{N^i} and $N = \sum N^i$).

cell rep.	r-cell set of n -cells		set of r -cells	genericity
	(int. words)	(bits)	(bits)	
classical rep.	$\geq n$	2^N	no	no
Khalimsky rep.	n	$2^n 2^N$	$2^n 2^N$	dyn. alloc.
proposed rep.	1	2^N	$\binom{n}{r} 2^N$	yes

Application: digital surface tracking in \mathbb{C}^n

- **Problem:** Given an oriented surfel s and a set of spels O with $s \in \Delta O$, find the whole *connected* component $C(\Delta O, s)$ of ΔO that contains s by tracking *adjacent* element of ΔO .
 - the algorithm should be linear with respect to the number of surfels of $C(\Delta O, s)$.
- an adjacency relation must be defined between surfels of ΔO (or *bels*).
 - $2^{\frac{n(n-1)}{2}}$ different bel adjacencies.
 - two of them corresponds to the classical $(2n, 2n^2)$ and $(2n^2, 2n)$ bel adjacencies [Udupa94].

Bel adjacency in ΔO (1/2)

- 1. Def. A *direct follower* of an oriented r-cell b^r is any r-cell $c^r \neq b^r$ such that $\exists \ r-1$ -cell σ^{r-1} with $+\sigma^{r-1} \in \Delta b^r$ and $-\sigma^{r-1} \in \Delta c^r$. The cell b^r is an *indirect follower* of c^r .
- 2. Prop. Any surfel (or n-1-cell) b has 3 direct and 3 indirect followers along each coordinate where it is open.

$$\nabla b = \{+p, -q\}$$

followers are ordered

Bel adjacency in ΔO (1/2)

- 1. Def. A *direct follower* of an oriented r-cell b^r is any r-cell $c^r \neq b^r$ such that $\exists \ r-1$ -cell σ^{r-1} with $+\sigma^{r-1} \in \Delta b^r$ and $-\sigma^{r-1} \in \Delta c^r$. The cell b^r is an *indirect follower* of c^r .
- 2. Prop. Any surfel (or n-1-cell) b has 3 direct and 3 indirect followers along each coordinate where it is open.
- 3. Def. The direct interior (resp. exterior) adjacent bel to $b \in \Delta O$ along coordinate i is the first (resp. last) of the direct followers of b that is $\in \Delta O$.

Bel adjacency in ΔO (2/2)

Example of direct interior adjacent bel computation.

```
Cell Space::DIAdjBel( Set O, Cell b, int i ) {
                              // Extract p and q
                              int j = orthDir(b);
                              bool orth = direct( b, j );
                              Cell p = unsign( incident( b, j, orth ) );
         pp
                              Cell q = adjacent(p, j, !orth);
                              // Extract pp
                              bool track = direct(b, i);
-q
         qq
                              Cell pp = adjacent(p, i, track);
                              // Check if first follower \in \Delta O
                              if (O.isInSet(pp))
+p
         pp
                                   return incident( pos( pp ), i, track );
                              // Extract qq
                              Cell qq = adjacent( q, i, track );
                              // Check if second follower \in \Delta O
         qq
                              if ( ! O.isInSet( qq ) )
                                   return adjacent(b, i, track);
                              // if not, last follower \in \Delta O
+p
         pp
                              return incident( neg( qq ), i, track );
```

Bel adjacency in ΔO (2/2)

- Example of direct interior adjacent bel computation.
- **▶** Prop. Any bel of ΔO has n-1 direct interior (resp. exterior) adjacent bels in ΔO and n-1 indirect interior (res.p exterior) adjacent bels.
- A *bel adjacency relation* in ΔO is given by fixing for each coordinate couple (i, j), $0 \le i < j < n$, whether the bel adjacency is interior or exterior.
 - \Rightarrow they are $\frac{n(n-1)}{2}$ different bel adjacencies.
 - \Rightarrow connectedness relations on ΔO .
- From $\Delta\Delta O = 0$ and definition of followers, it is easy to find that tracking along only *direct* adjacent bels is sufficient to get the whole connected component of ΔO containing the starting bel.

Digital (hyper)surface tracking

Tracking algorithms

easily implemented with the proposed framework (both nD and 3D algorithms).

Digital (hyper)surface tracking

(B) only direct bel adj. tracking


```
Set Space::directTracking( Set O, Cell b, BelAdj A ) {
    Set S = emptySurfelSet(); // Ouput
    Queue Q; // Cells to process
    Q.push(b); // init tracking
    S.add( b );
    while ( ! Q.empty() ) {
         Cell s = Q.pop(); // current Cell
        for (i = 0; i < dim(); i++)
             if ( i != orthDir( s ) ) {
                  // Get direct adjacent bel along i
                  Cell n = A.directAdj(O, s, i);
                  if (! S.isInSet( n ) ) {
                      S.add( n );
                      Q.push(n);
    return S;
```

Benchmarks of boundary extraction algos

 Experimental results: balls of increasing radius (Celeron 450 Mhz)

Space	Rad.	Nb spels	Nb surf.	Scan (A)	Track (A)	Track (B)
4096^{2}	2000	12566345	16004	2.07s	< 0.01s	< 0.01s
256^{3}	30	113081	16926	3.12s	0.02s	0.01s
256^{3}	60	904089	67734	3.12s	0.09s	0.08s
256^{3}	120	7236577	271350	3.15s	0.36s	0.32s
512^{3}	240	57902533	1085502	25.15s	1.88s	1.85s
32^4	14	190121	92104	0.26s	0.14s	0.11s
64^{4}	14	190121	92104	4.17s	0.20s	0.14s
64^{4}	30	4000425	904648	4.26s	1.91s	1.37s

- ullet scanning linear with number of surfels of space (in nD, 62ns/spel)
- tracking linear with number of bels of boundary (in nD, 1.5 μ s/bel)

Conclusion

- generic framework to represent cells and subsets of digital spaces and to write digital topology algorithms
 - unoriented and oriented r-cells
 - compact sets of r-cells
 - boundary operators (topology invariants)
 - bel adjacency on boundaries
- proposed framework fully implemented in an object oriented language
 - formal algorithms close to implementation
- tests have shown its efficiency and scalability

Perspectives

- check extension of Herman and Webster 3D digital surface algorithm to nD spaces
- computing n-dimensional geometric characteristics

coding cells of hierarchical digital spaces