Работа 3.5.1

Изучение плазмы газового разряда в неоне

Шелихов Дмитрий Группа Б01-305

19 ноября 2024 г.

Цель работы: Снять вольт-амперную характеристику тлеющего разряда и зондовые характеристики при разных токах разряда и по результатам измерений рассчитать концентрацию и температуру электронов в плазме, плазменную частоту, поляризационную длину, дебаевский радиус экранирования и степень ионизации.

В работе используются: стеклянная газоразрядная трубка, наполненная неоном, высоковольтный источник питания, источник питания постоянного тока, делитель напряжения, резистор, потенциометр, амперметры, вольтметры, переключатели.

Экспериментальная установка

Рис. 1: Схема установки для исследования газового разряда

Стекланная газоразрядная трубка имеет холодный (ненагреваемый) полый катод, три анода и геттерный узел - стеклянный баллон, на внутреннюю поверхность которого напылена газопоглощающая плёнка (геттер). Трубка наполнена изотопом неона ^{22}Ne при давлении 2 мм рт. ст. При подключении к ВИП анода 1 между ним и катодом возникает газовый разряд. Ток разряда и падение напряжения измеряются с помощью мультиметров (А1 и U1 соотв.). При подключении к ВИП анода 2 рязряд возникает в пространстве между катодом и анодом 2, где находится двойной зонд, используемый для диагностики плазмы положительного столба.

Переключатель П2 позволяет менять полярность напряжения на зондах.

Зонд изготовлен из молибденовой проволоки диаметром d и имеют длину l.

Ход работы:

І. Вольт-амперная характеристика разряда:

- 1) Подготовим приборы к работе:
- Установим переключатель П1 в положение "Анод 1".
- Поставим ручку регулировки выходного напряжения ВИП в крайнее левое положение и включим прибор в сеть
- Подготовим к работе мультиметр V1

Плавно увеличивая выходное напряжение ВИП, определим напряжение зажигания разряда $U_{\text{заж}}$ (показания вольтметра V1 перед зажиганием)

$$U_{\rm заж} \approx 220 \; \mathrm{B}$$

2) С помощью вольтметра V_1 и амперметра A_1 снимем вольт-амперную характеристику разряда $I_p(U_p)$. Ток разряда I_p будем изменять в диапазоне от 0,5 мA до \approx 5мA.

При нарастании тока		
U_p , B	I_p , мА	
34.93 ± 0.05	0.53 ± 0.01	
33.02 ± 0.05	1.19 ± 0.01	
28.44 ± 0.05	1.51 ± 0.01	
21.88 ± 0.05	2.03 ± 0.01	
17.95 ± 0.05	2.54 ± 0.01	
15.62 ± 0.05	3.02 ± 0.01	
14.00 ± 0.05	3.51 ± 0.01	
11.16 ± 0.05	4.08 ± 0.01	
8.73 ± 0.05	4.50 ± 0.01	

При убывании тока		
U_p , B	I_p , мА	
7.87 ± 0.05	4.63 ± 0.01	
11.35 ± 0.05	4.01 ± 0.01	
13.93 ± 0.05	3.48 ± 0.01	
15.18 ± 0.05	3.07 ± 0.01	
18.00 ± 0.05	2.51 ± 0.01	
21.58 ± 0.05	2.04 ± 0.01	
27.39 ± 0.05	1.55 ± 0.01	
33.84 ± 0.05	1.02 ± 0.01	
34.98 ± 0.05	0.52 ± 0.01	

 $^{8.73 \}pm 0.05$ | 4.50 ± 0.01 | 34.98 ± 0.05 | 0.52 ± 0.01 | 3) Построим вольт-амперную характеристику разряда в координатах $I_p(U_p)$. Данные возьмем при убывании тока.

По наклону кривой определим максимальное дифференциальное сопротивление разряда $R_{\rm диф}={
m dU/dI}.$ Для этого возьмём участок графика, с наименьшим наклоном.

 $R_{
m диф} = (11.9 \pm 0.7) \; {
m кOm}$

Проделаем то же самое для данных при возрастании тока:

$$I_p(U_p)$$

Аналогично выбираем часть графика с наименьшим наклоном и находим $R_{\text{диф}}$:

$$R_{
m диф} = (12.6 \pm 0.7) \;
m kOm$$

Таким образом получаем 2 значения для $R_{\text{диф}}$, которые совпадают в пределах абсолютной погрешности. Усредним значение и далее будем использовать именно его:

$R_{\rm диф^{\rm нараст}}$, к ${ m O}_{ m M}$	$R_{ m диф}$ убыв, кОм	$R_{\text{диф}}^{\text{сред}}$, кОм
12.6 ± 0.7	11.9 ± 0.7	12.3 ± 0.7

Полученный график соответствует поднормальному участку ВАХ (см. приложение в учебнике). При токе $I_p \approx 4.5$ мА кривая переходит в вертикальный участок ГВ графика из приложения (темный таунсендовский разряд. Токи и степень ионизации еще малы, чтобы вызвать свечение, но критерий Таунсенда выполнен).

Зондовые характеристики

- 4) Уменьшим напряжение ВИП до нуля и переведем П1 в положение "Анод 2П2 в положение "+". Подготовим мультиметры А2 и U2, включим приборы в сеть.
- 5) Плавно увеличивая напряжение на ВИП дойдем до возникновения разряда и установим разрядный ток $I_p = (4.73 \pm 0.01)$ мА. Включим в сеть источник питания GPS и установим на нем напряжение $U_2 \approx 25$ В. При помощи потенциометра установим на зонде

максимальное напряжение $U_2 \approx 25 B$.

6) С помощью мультиметров A_2 и U_2 снимем ВАХ двойного зонда $I_3(U_3)$ (в диапазоне +25В до -25В) при фиксированном тока разряда I_p .

U_3 , B	I_3 , мк A	I_p , мА
-25.01 ± 0.05	-115.9 ± 0.1	
-22.25 ± 0.05	-113.4 ± 0.1	
-18.95 ± 0.05	-108.5 ± 0.1	
-16.02 ± 0.05	-101.1 ± 0.1	
-13.15 ± 0.05	-91.2 ± 0.1	
-10.58 ± 0.05	-79.8 ± 0.1	
-7.99 ± 0.05	-66.6 ± 0.1	
-6.00 ± 0.05	-54.5 ± 0.1	
-4.03 ± 0.05	-41.8 ± 0.1	
-2.11 ± 0.05	-27.2 ± 0.1	
-0.55 ± 0.05	-15.0 ± 0.1	4.73 ± 0.01
0.51 ± 0.05	17.6 ± 0.1	
2.11 ± 0.05	27.8 ± 0.1	
4.17 ± 0.05	40.9 ± 0.1	
5.92 ± 0.05	50.6 ± 0.1	
7.93 ± 0.05	60.7 ± 0.1	
10.05 ± 0.05	70.7 ± 0.1	
12.05 ± 0.05	77.5 ± 0.1	
15.07 ± 0.05	86.4 ± 0.1	
18.31 ± 0.05	92.7 ± 0.1	
21.00 ± 0.05	96.0 ± 0.1	

⁷⁾ Построим зондовую характеристику, предварительно отцентрировав кривую ($I_0 = \Sigma I/2$). Найдем ток насыщения $I_{i \text{H}}$ из пересечения асимптоты к верхней и нижней части графика с осью U=0, а также величину $\frac{dI}{dU}$ при U=0.

Откуда:

$\frac{dI}{dU}$, MKA/B	$I_{i\scriptscriptstyle m H}^{ m acumn au ota}$, мк ${ m A}$	$I_{i\scriptscriptstyle m H}^{ m acumn au ota\ cверху},\ { m MKA}$	I_p , MA
14.08 ± 0.61	-70.2 ± 2.8	62.2 ± 2.6	4.73 ± 0.01

Усредним полученное значение для I_{in} : (66.2 \pm 2.7) мкA.

Определим ΔU между точками 1 и 2: $\Delta U = 4.42 \pm 0.38$ В. 8) Аналогичные измерения проделаем для токов разряда $I_p = (2.99 \pm 0.01)$ мА и $I_p =$ $(1.49 \pm 0.01) \text{ MA}.$

U_3 , B	I_3 , мк A	I_p , MA
-24.99 ± 0.05	-59.1 ± 0.1	-
-22.31 ± 0.05	-57.7 ± 0.1	
-19.16 ± 0.05	-55.8 ± 0.1	
-15.75 ± 0.05	-52.9 ± 0.1	
-12.16 ± 0.05	-47.4 ± 0.1	
-10.09 ± 0.05	-43.1 ± 0.1	
-8.19 ± 0.05	-37.8 ± 0.1	
-6.09 ± 0.05	-30.5 ± 0.1	
-4.06 ± 0.05	-22.1 ± 0.1	
-2.08 ± 0.05	-13.3 ± 0.1	
-0.53 ± 0.05	-4.7 ± 0.1	2.99 ± 0.01
0.66 ± 0.05	7.3 ± 0.1	2.55 ± 0.01
2.11 ± 0.05	14.7 ± 0.1	
4.30 ± 0.05	24.6 ± 0.1	
6.01 ± 0.05	31.1 ± 0.1	
8.11 ± 0.05	37.8 ± 0.1	
10.32 ± 0.05	43.0 ± 0.1	
13.25 ± 0.05	48.1 ± 0.1	
16.67 ± 0.05	51.7 ± 0.1	
19.34 ± 0.05	53.5 ± 0.1	
22.58 ± 0.05	55.3 ± 0.1	
24.98 ± 0.05	56.5 ± 0.1	

Откуда:

$\frac{dI}{dU}$, MKA/B	$I_{i_{\rm H}}^{\rm асимптота\ снизу}$, мкА	$I_{i\scriptscriptstyle m H}^{ m acumn au ota\ cверху},$ мк ${ m A}$	I_p , мА
6.94 ± 0.30	-45.0 ± 1.8	43.2 ± 1.8	2.99 ± 0.01

Усредним полученное значение для $I_{i \text{H}}$: (44.1 \pm 1.8) мкА.

Определим ΔU между точками 1 и 2: $\Delta U = 6.90 \pm 0.59$ В.

U_3 , B	I_3 , мк A	I_p , MA
-25.00 ± 0.05	-27.2 ± 0.1	
-22.06 ± 0.05	-26.2 ± 0.1	
-19.17 ± 0.05	-25.3 ± 0.1	
-16.26 ± 0.05	-24.4 ± 0.1	
-13.14 ± 0.05	-23.1 ± 0.1	
-10.86 ± 0.05	-21.5 ± 0.1	
-8.14 ± 0.05	-18.5 ± 0.1	
-6.31 ± 0.05	-15.6 ± 0.1	
-4.14 ± 0.05	-11.1 ± 0.1	
-1.87 ± 0.05	-5.2 ± 0.1	
-0.55 ± 0.05	-1.6 ± 0.1	1.49 ± 0.01
0.49 ± 0.05	2.0 ± 0.1	1.45 ± 0.01
1.95 ± 0.05	5.8 ± 0.1	
4.18 ± 0.05	11.1 ± 0.1	
6.18 ± 0.05	15.0 ± 0.1	
8.15 ± 0.05	17.8 ± 0.1	
10.41 ± 0.05	20.0 ± 0.1	
12.88 ± 0.05	21.6 ± 0.1	
16.46 ± 0.05	22.9 ± 0.1	
19.40 ± 0.05	23.8 ± 0.1	
22.38 ± 0.05	24.7 ± 0.1	
24.97 ± 0.05	25.4 ± 0.1	

Откуда:

$\frac{dI}{dU}$, MKA/B	$I_{i_{\mathrm{H}}}^{\mathrm{асимптота\ chuзy}},\ \mathrm{MKA}$	$I_{i_{ m H}}^{ m acumntota\ csepxy},$ мк ${ m A}$	I_p , MA
2.93 ± 0.13	-19.3 ± 0.8	18.2 ± 0.8	1.49 ± 0.01

Усредним полученное значение для $I_{i_{\rm H}}$: (18.8 \pm 0.8) мкА.

Определим ΔU между точками 1 и 2: $\Delta U = 7.59 \pm 0.65$ В 9) Занесем данные, необходимые для рассчёта $T_e, n_e, r_D, r_{De}, \omega_p, N_D, \alpha$ в таблицу:

I_p , мА	$\left \frac{dI}{dU} \right _{U=0}$, MKA/B	$I_{i_{\mathrm{H}}}$, мк A	ΔU , B	d, мм	l, мм
4.73 ± 0.01	14.08 ± 0.61	66.2 ± 2.7	4.42 ± 0.38		
2.99 ± 0.01	6.94 ± 0.30	44.1 ± 1.8	6.90 ± 0.59	0,2	5,2
1.49 ± 0.01	2.93 ± 0.13	18.8 ± 0.8	7.59 ± 0.65		

10) Рассчитаем температуру электронов T_e по формулам:

$$T_e = \frac{1}{2k} \frac{eI_{iH}}{\frac{dI}{dU}\big|_{U=0}} (1)$$

$$kT_e = \Delta U/2$$
9B(2)

I_p , MA	$T_e^{(1)}, 10^4 \mathrm{K}$	$T_e^{(2)}, 10^4 \mathrm{K}$	$T_e^{\rm cp}, 10^4 {\rm K}$
4.73 ± 0.01	2.7 ± 0.2	2.6 ± 0.2	2.7 ± 0.2
2.99 ± 0.01	3.7 ± 0.3	4.0 ± 0.3	3.9 ± 0.3
1.49 ± 0.01	3.7 ± 0.3	4.4 ± 0.4	4.1 ± 0.4

11) Построим семейство зондовых характеристик $I_{\scriptscriptstyle 3}(U_{\scriptscriptstyle 3})$ на одном листе:

12) Полагая концентрацию элеткронов n_e равной концентрации ионов n_i , определим её, используя формулу Бома:

$$I_i = 0, 4n_e e S \sqrt{\frac{2kT_e}{m_i}}$$

Где S = πdl - площадь поверхности зонда, $m_i = 22 \cdot 1,66 \cdot 10^{-27}$ кг - масса иона неона.

I_p , MA	S, MM^2	$n_e, 10^{16} \text{M}^{-3}$
4.73 ± 0.01		7.0 ± 0.5
2.99 ± 0.01	3.27	3.9 ± 0.3
1.49 ± 0.01		1.6 ± 0.1

13) Рассчитаем плазменную частоту колебаний электронов по формуле:

$$\omega_p = \sqrt{\frac{4\pi n_e e^2}{m_e}} = 5, 6 \cdot 10^4 \sqrt{n_e} \frac{\text{рад}}{\text{c}} [\text{СГC}]$$

I_p , MA	$\omega_p, 10^9 \frac{\mathrm{pag}}{\mathrm{c}}$
4.73 ± 0.01	14.8 ± 0.5
2.99 ± 0.01	11.1 ± 0.4
1.49 ± 0.01	7.1 ± 0.2

При падении на плазму электромагнитного излучения, через неё пройдут волны с частотами превышающими ω_p .

14) Рассчитаем электронную поляризационную длину r_{D_e} по формуле:

$$r_{D_e} = \sqrt{\frac{kT_e}{4\pi n_e e^2}} \text{cm}$$

А также дебаевский радиус экранирования r_D используя формулу:

$$r_D = \sqrt{\frac{kT_i}{4\pi n_e e^2}} \text{cm}$$

Где $T_e >> T_i,\, T_i pprox 300 K$ - температура и
онов приблизительно равна комнатной

I_p , мА	r_{D_e} , MKM	r_D , MKM		
4.73 ± 0.01	43 ± 3	4.5 ± 0.1		
2.99 ± 0.01	69 ± 5	6.1 ± 0.1		
1.49 ± 0.01	111 ± 9	9.5 ± 0.1		

Из полученных значений $r_D~(\approx 10^{-4}-10^{-3}~{\rm cm})$ видим, что плазму можно считать квазинейтральной.

15) Оценим среднее число ионов в дебаевской сфере:

$$N_D = \frac{4}{3}\pi r_D{}^3 n_i$$

I_p , мА	N_D		
4.73 ± 0.01	27 ± 4		
2.99 ± 0.01	37 ± 5		
1.49 ± 0.01	57 ± 5		

 $N_D >> 1$, поэтому плазму можно считать идеальной.

16) Оценим степень ионизации плазмы (долю ионизированных атомов α), если давление в трубке Р \approx 2 торр (2 мм.рт.ст.):

$$lpha=rac{n_i}{n},$$
 где n - общее число частиц в единице объема ($\mathrm{P}=\mathrm{nk}T_i)$

12

I_p , мА	$\alpha, 10^{-7}$		
4.73 ± 0.01	10.9 ± 0.8		
2.99 ± 0.01	6.1 ± 0.5		
1.49 ± 0.01	2.5 ± 0.2		

При нормальных условиях (P = 1 атм = 760 мм.рт.ст., T = 273,15 K) n = $N_{\rm n}$ - число Лошмидта.

17) Построим графики зависимостей электронной температуры и концентрации электронов от тока разряда: $T_e(I_p), n_e(I_p)$.

Откуда видим, что график $T_e(I_p)$ обладает большой погрешностью и конкретных выводов сделать нельзя. Из графика $n_e(I_p)$ видим, что концентрация электронов возрастает при увеличении тока разряда, поскольку чем выше электрическое поле, тем больше скорость электронов, а значит больше столкновений с молекулами газа, то есть ионов становится больше.

Вывод Результаты измерений:

	I_p , MA	$T_e, 10^4 \text{ K}$	$n_e, 10^{16} \text{ m}^{-3}$	$\omega_p \ 10^9 \ \frac{\text{рад}}{c}$	r_{D_e} , MKM	r_D , MKM	N_D	$\alpha, 10^{-7}$
ſ	4.73 ± 0.01	2.7 ± 0.2	7.0 ± 0.5	14.8 ± 0.5	43 ± 3	4.5 ± 0.1	27 ± 4	10.9 ± 0.8
	2.99 ± 0.01	3.9 ± 0.3	3.9 ± 0.3	11.1 ± 0.4	69 ± 5	6.1 ± 0.1	37 ± 5	6.1 ± 0.5
	1.49 ± 0.01	4.1 ± 0.4	1.6 ± 0.1	7.1 ± 0.2	111 ± 9	9.5 ± 0.1	57 ± 5	2.5 ± 0.2