北京建筑大学

信息与计算科学专业 实验任务书指导书

课程名称 《数据分析》 实验名称《主成分分析和聚类分析》实验地点 腾讯会议 指导教师 王恒友

学生姓名: 李金哲 学号: 201707010119 实验日期: 2020.06.06 成绩: __

【实验目的】

- (1) 熟悉利用主成分分析进行数据分析, 能够使用 SPSS 软件完成数据的主成分分析:
 - (2) 熟悉利用聚类分析进行数据分析,能够运用主成分分析的结果,做进一步分析,如聚类分析、回归分析等,能够使用 SPSS 软件完成该任务。

【实验要求】

根据各个题目的具体要求,分别运用 SPSS 软件完成实验任务。

【实验内容】

1、表 4.9(数据见 exercise4_5. txt)给出了 1991 年我国 30 个省市、城镇居民的月平均消费数据,所考察的八个指标如下:(单位均为元/人)

X1: 人均粮食支出:

X2: 人均副食支出:

X3: 人均烟酒茶支出:

X4: 人均其他副食支出;

X5:人均衣着商品支出;

X6: 人均日用品支出;

X7: 人均燃料支出:

X8: 人均非商品支出。

- (1) 求样本相关系数矩阵 R。
- (2)从R出发做主成分分析,求出各主成分的贡献率及前两个主成分的累积 贡献率:
- 2、(1) 对题 1 中的数据,按照原有的八个指标,对 30 个省份进行聚类,给出分为 3 类的聚类结果。
- (2) 利用题 1 得到的前 2 个主成分指标,分别按最短距离法(最近邻居距离)、最长距离法(最远邻居距离)、类平均距离法(组间平均距离)、重心距离法;其中距离均采用欧式平方距离,对样本进行谱系聚类分析,并画出谱系聚类图;给出分为 3 类的聚类结果。并与(1)的结果进行比较。

【实验步骤】

1-1-a 实验过程

- 1、 选择菜单->【分析】->【降维】-> 【因子】(图 1-1)
- 2、 将 V1——V9 拖入变量(图 1-2)
- 3、 点击概述. 勾选系数 和 KMO 和巴特利特球形梯度检验 (图 1-3)
- 4、 点击提取, 勾选碎石图 (图 1-4)
- 5、 点击旋转, 勾选载荷图 (图 1-5)

图 1-1 选择菜单

图 1-2 因子分析窗口

图1-3 描述窗口

图1-4 提取窗口

图1-6旋转窗口

1-1-b 实验分析

表1-1-1是原有变量的相关系数矩阵。可以看到:存在部分的相关系数都较高,各变量呈较强的线性关系,够从中提取公共因子,适合进行因子分析。由表1-1-2可知,巴特利特球度检验统计量的观测值为142.983,相应的概率P-值接近0。如果显著性水平a为0.05,由于概率P值小于显著性水平a,则应拒绝原假设,认为相关系数矩阵与单位阵有显著差异。同时,KMO值为0.569,根据 Kaiser给出的KMO度量标准可知原有变量适合进行因子分析。

表1-1-1 原有变量相关性系数矩阵

相关性矩阵

		V2	V3	V4	V5	V6	V 7	V8	V9
相关性	V2	1. 000	. 334	055	061	289	. 199	. 349	. 319
	V3	. 334	1. 000	023	. 399	−. 156	. 711	. 414	. 835
	V4	055	023	1. 000	. 533	. 497	. 033	139	258
	V 5	061	. 399	. 533	1. 000	. 698	. 468	−. 171	. 313
	V6	289	15 6	. 497	. 698	1. 000	. 280	208	081
	V 7	. 199	. 711	. 033	. 468	. 280	1. 000	. 417	. 702
	V8	. 349	. 414	139	171	208	. 417	1. 000	. 399
	V9	. 319	. 835	258	. 313	081	. 702	. 399	1. 000

表1-1-2 巴特利特球度检验

KMO 和巴特利特检验

KMO 取样适切性量数。		. 569
巴特利特球形度检验	近似卡方	142. 983
	自由度	28
	显著性	. 000

表1-2-1中,第一列是因子编号,以后三列组成一组,每组中数据项的含义依次是特征值(方差贡献)、方差贡献率和累计方差贡献率。

第一组数据项(第二列至第四列)描述了因子分析初始解的情况。可以看到:第1个因子的方差贡献为3.096,解释原有8个变量总方差的38.7%(即3.096÷8×100%),累计方差贡献率为38.7%;第2个因子的方差贡献为2.367,解释原有8个变量总方差的29.59%(即2.367÷8×100%),累计方差贡献率为68.294%[即(3.096+2.367)÷8×100%].其余数据含义类似。在初始解中由于提取了8个因子,原有变量的总方差均被解释,累计方差贡献率为100%。

第二组数据项(第五列至第七列)描述了因子解的情况。可以看到:由于指定提取2个因子,2个因子共解释了原有变量总方差的68.294%。总体上,原有变量的信息丢失较少,因子分析效果较理想,

第三组数据项(第八列至第十列)描述了最终因子解的情况。可见,因子旋转后,总的累计方差贡獻率 没有改变,也就是没有影响原有变量的共同度,但却重新分配了各个因子解释原有变量的方差,改变了各 因子的方差贡献,使因子更易于解释。

表1-2-1 因子解释原有变量总方差的情况

总方差解释

		初始特征值		提取载荷平方和		旋转载荷平方和			
		方差百分			方差百分			方差百分	
成分	总计	比	累积%	总计	比	累积%	总计	比	累积%
1	3. 096	38. 704	38. 704	3. 096	38. 704	38. 704	3. 079	38. 485	38. 485
2	2. 367	29. 590	68. 294	2. 367	29. 590	68. 294	2. 385	29. 809	68. 294
3	. 920	11. 500	79. 794						
4	. 706	8. 824	88. 618						
5	. 498	6. 231	94. 848						
6	. 230	2. 874	97. 722						
7	. 131	1. 635	99. 357						
8	. 051	. 643	100. 000						

提取方法: 主成分分析法。

2-1-a 实验过程

- 1、 选择菜单->【分析】->【分类】-> 【K-均值聚类】(图 2-1-1)
- 2、 将 V1 —— V9 拖入变量(图 2-1-2)
- 3、 点击选项, 勾选初始聚类中心和 ANOVA 表 (图 2-1-3)

图 2-1-1选择菜单

图2-1-2 K-均值聚类

图2-1-3 选项菜单

2-1-b 实验分析

表2-1-1 初始聚类中心

初始聚类中心

聚类

	1	2	3
V2	7. 94	6. 25	12. 47
V3	39. 65	35. 02	76. 39
V4	20. 97	4. 72	5. 52
V5	20. 82	6. 28	11. 24
V6	22. 52	10. 03	14. 52
V7	12. 41	7. 15	22. 00
V8	1. 75	1. 93	5. 46
V9	7. 90	10. 39	25. 50

表 2-1-1 展示了 3 个类的初始类中心点的情况。3 个初始类中心点的数据分别是(7.94, 39.65, 20.97, 20.82, 22.52, 12.41, 1.75, 7.90), (6.25, 35.02, 4.72, 6.28, 10.03、7.15, 1.93, 10.39), (12.47, 76.39, 5.52, 11.24, 14.52, 22.00, 5.46, 25.50)。 可得第 3 类各指数均是最优的,第 1 类次之,第 2 类各指数最不理想。

表2-1-2 迭代记录

迭代历史记录"

聚类中心中的变动

迭代	1	2	3
1	11. 748	8. 572	9. 960
2	8. 583	3. 108	. 000
3	. 729	. 670	. 000

4	1. 053	. 517	. 000
5	. 878	. 537	. 000
6	. 000	. 000	. 000

a. 由于聚类中心中不存在变动或者仅有小幅变动,因此实现了收敛。任何中心的最大绝对坐标变动为 .000。当前迭代为 6。初始中心之间的最小距离为 26.262。

表2-1-2展示了3个类中心点每次送代时的偏移情况。由表2-1-2可知,第1次送代后,3个类的中心点分 別偏移了 11.748,8.572,9.960,第1类中心点偏移最大。第2次跌的同理,直到第5次选代后,3个类的中心点的偏移均小于指定的判定标准(0.02),聚类分析结束

表2-1-3 最终聚类中心

最终聚类中心					
		聚类			
	1	2	3		
V2	8. 79	8. 48	10. 38		
V3	47. 05	31. 14	70. 37		
V4	8. 82	7. 07	6. 76		
V5	12. 80	9. 14	16. 73		
V6	16. 96	16. 31	17. 29		
V7	12. 80	10. 21	18. 56		
V8	1. 88	1. 78	3. 09		
V9	13. 63	11. 51	24. 20		

表2-1-3展示了3个类的最终类中心点的情况。3个最终类中心点的数据分别是(8.79. 47.05. 8.82, 12.80, 16.96, 12.80, 1.88, 13.63),(8.48, 31.14, 7.07, 9.14, 16.31, 10.21, 1.78, 11.51),(10.38, 70.37, 6.76, 16.73, 17.29, 18.56, 3.09, 24.20)。仍然可见,第3类各指数均是最优的,第1类次之,第3类各指数最。

表2-1-4 个案统计量

每个聚类中的个案数目			
聚类	1	10. 000	
	2	18. 000	
	3	2. 000	
有	效	30. 000	
缺	失	. 000	

表2-1-4显示了,聚类2包含的样本最多,聚类3包含的样本最少。通过K聚类分析可以对支出类别情况产生大致的了解。我们可以把不同地区的人均消费水平大致分成3个类:其中第2类最多,其他两类包含的较少。具体地区所属分类见表2-1-5.

表2-1-5 聚类成员

聚类成员

个案号	聚类	距离
1	2	7. 761
2	2	7. 653
3	2	3. 893
4	2	4. 665
5	2	4. 147
6	2	3. 947
7	2	5. 032
8	2	3. 655
9	2	4. 032
10	2	5. 546
11	2	3. 908
12	2	5. 544
13	2	6. 855
14	2	8. 246
15	2	7. 825
16	2	5. 810
17	1	7. 904
18	1	7. 730
19	2	6. 254
20	2	9. 152
21	1	7. 954
22	1	9. 695
23	1	14. 545
24	1	4. 497
25	1	3. 925
26	1	5. 448
27	1	10. 383
28	1	18. 209
29	3	9. 960
30	3	9. 960

2-2-a 实验过程

- 1、 选择菜单->【分析】->【分类】-> 【系统聚类】(图 2-2-1)
- 2、 将 V1——V9 拖入变量(图 2-2-2)
- 3、 单机方法, 然后根据实验方法选择 聚类方法 中的方法 (图 2-2-3)

图2-2-1 选项菜单

图2-2-2 系统聚类菜单

图2-2-3 方法菜单

2-2-b 实验分析

根据图2-2-1 到 图2-2-4可以分别得出,当选择最短聚类法时,可以分成组别1、组别2和其他,这三类;选择类平均距离法时,只能分成(组别1,组别2)和其他,这两类;选择最长距离法时,可以分成(组别1~组别5)和其他,这两类;选择重心距离法时,可以分成组别1、组别2和其他,这三类。

图2-2-1 最短距离法 (最近邻居距离)

图2-2-3 类平均距离法 (组间平均距离)

图2-2-2 最长距离法 (最远邻居距离)

图2-2-4 重心距离法