

Improving the Layout of Oligonucleotide Microarrays: Pivot Partitioning

Sérgio A. de Carvalho Jr. 1,2,3 Sven Rahmann 1,2

 1 Algorithms and Statistics for Systems Biology, Genome Informatics, Technische Fakultät, Universität Bielefeld, Germany

²International NRW Graduate School in Bioinformatics and Genome Research

³Graduiertenkolleg Bioinformatik

Workshop on Algorithms in Bioinformatics, 2006

Outline

- 1 Introduction to Microarray Layout
- Conflict Index Model
- Pivot Partitioning Algorithm

Outline

Introduction •0000

- Introduction to Microarray Layout

High-Density Oligonucleotide Microarrays

00000

Probe Synthesis with Photolitographic Masks

- Probes are synthesized on the chip in a series of steps
- Each step appends a particular nucleotide to selected regions
- Selection occurs by exposure to light directed by a mask

ρ_1	p_2	p_3
ACT	CTG	GAT
<i>p</i> ₄	p_5	p_6
TCC	GAC	GCC
<i>p</i> ₇	p_8	p_9
TAC	CGT	AAT

S =	ACGTACGTACGT
$\varepsilon_1 =$	
$\varepsilon_2 =$	
$\epsilon_3 =$	
$\varepsilon_4 =$	
$\varepsilon_5 =$	
$\varepsilon_6 =$	
ε ₇ =	
E 8 =	
C 0 —	

ρ_1	p ₂	p_3
ACT	CTG	GAT
p_4	p ₅	p_6
TCC	GAC	GCC
P ₇	p ₈	p ₉

```
S = ACGTACGTACGT
```

p_1	p_2	p_3
ACT	CTG	GAT
<i>p</i> ₄	<i>p</i> ₅	p ₆
TCC	GAC	GCC
ρ_7	p_8	p_9

```
S = ACGTACGTACGT
\mathcal{E}_1 = A^{-----}
```

p_1	p_2	p_3
ACT	CTG	GAT
p_4	p ₅	p_6
TCC	G AC	GCC
p_7	<i>p</i> ₈	p ₉
TAC	CGT	AAT

```
S = ACGTACGTACGT
\mathcal{E}_1 = A - - - - - -
\varepsilon_2 = -C -----
\mathcal{E}_3 = --G-----
\mathcal{E}_{5} = --G------
\varepsilon_6 = --G------
\varepsilon_8 = -CG-----
\mathcal{E}_{9} = A - - - - - - -
```

p_1	p ₂	p_3
ACT	CTG	GAT
p_4	p ₅	p_6
TCC	GAC	GCC
. 36		
p ₇	<i>p</i> ₈	<i>p</i> ₉

```
S = ACGTACGTACGT
\varepsilon_1 = A - - - - - -
\varepsilon_2 = -C -----
\varepsilon_3 = --G-----
\mathcal{E}_4 = ---T
\varepsilon_5 = --G-----
\varepsilon_6 = --G------
\mathcal{E}_7 = ---T
\varepsilon_8 = -CGT - - - - -
\mathcal{E} \circ = \Delta - - - - - - -
```

ρ_1	p_2	p_3
ACT	CTG	GAT
p_4	p_5	p_6
TCC	GAC	GCC
<i>p</i> ₇	p_8	p_9
TAC	CGT	AAT

p_1	p_2	p_3
ACT	CTG	GAT
p_4	p_5	p_6
TCC	GAC	GCC
p_7	<i>p</i> ₈	p_9

Right-most:
$$\mathcal{E}_{9}^{"} = A^{----}A^{--1}$$

Left-most: $\mathcal{E}_{9}^{"} = A^{---}A^{--}T^{---}$

Unintended Illumination Problem

Introduction

00000

- Untargeted spots can be accidentally activated
 - Diffraction of light
 - Internal reflection
- Production of defective probes
- More likely near the borders between masked and unmasked spots: border conflict

Border Length Minimization Problem (Hannenhalli et al., 2002)

 Find arrangement (and embeddings) with minimum number of border conflicts

Outline

- Conflict Index Model

- Border Length measures the quality of a particular mask
 - We are more interested in a per-probe measure
- Practical considerations need to be taken into account:
 - a) Stray light might damage probes that lie as far as three cells away from the targeted spot
 - b) Imperfections produced in the middle of a probe are more harmful than in its extremities

ATGACTACCATGCAGTACAACATAC

Definition

Introduction

Conflict Index of a probe p

$$\mathcal{C}(oldsymbol{
ho}) := \sum_{t=1}^T \Bigl(\omega(oldsymbol{
ho},t) \sum_{oldsymbol{
ho}'} \delta(oldsymbol{
ho},oldsymbol{
ho}',t) \Bigr)$$

Distance-dependent weights

$$\delta(p, p', t) := \begin{cases} (d(p, p'))^{-2} & \text{if } p' \text{ is unmasked at step } t, \\ 0 & \text{otherwise,} \end{cases}$$

where d(p, p') is the Euclidean distance between the spots of p and p'.

0.06	0.08	0.10	0.11	0.10	0.08	0.06
0.08	0.13	0.20	0.25	0.20	0.13	0.08
0.10	0.20	0.50	1.00	0.50	0.20	0.10
0.11	0.25	1.00	р	1.00	0.25	0.11
0.10	0.20	0.50	1.00	0.50	0.20	0.10
0.08	0.13	0.20	0.25	0.20	0.13	0.08
0.06	0.08	0.10	0.11	0.10	0.08	0.06

Definition

Conflict Index of a probe p

$$\mathcal{C}(p) := \sum_{t=1}^{T} \left(\omega(p, t) \sum_{p'} \delta(p, p', t) \right)$$

Position-dependent weights

$$\omega(p,t) := \left\{ egin{array}{ll} c \cdot \exp\left(\theta \cdot \lambda(p,t)\right) & \text{if } p \text{ is masked at step } t, \\ 0 & \text{otherwise,} \end{array} \right.$$

where,

$$\lambda(p,t) := 1 + \min(b_{p,t}, \ell_p - b_{p,t}),$$

 $b_{p,t}$ denotes the number of nucleotides synthesized up to and including step t, ℓ_p is the length of probe p, c>0 and $\theta>0$ are constants

Outline

- Pivot Partitioning Algorithm

Previous Work: Place and Re-embed

- The microarray layout problem has been traditionally approached in two phases:
 - 1) Placement of probes given a fixed embedding
 - 2) Re-embedding of probes given a fixed placement

Placement: Row-epitaxial (Kahng et al., 2003)

- Essentially greedy
- Spots are filled in a pre-defined order
 - Select probe from a list Q such that conflicts with filled spots are minimized
- Restrict the maximum size of Q

Previous Work: Place and Re-embed

Re-embedding: several algorithms

- All based on the Optimum Single Probe Embedding (OSPE)
- OSPE re-embed a probe optimally in regards to its neighbors
- Difference is in the order in which re-embeddings take place

Optimum Single Probe Embedding (OSPE)

- Dynamic Programming
- Originally developed for border length minimization
- We extended it for conflict index minimization

Previous Work: Partitioning

More recently, a partitioning algorithm was proposed: Centroid-based Quadrisection (Kahng *et al.*, 2003)

- Recursive partitioning; the chip is divided into four quadrants
- Each sub-problem is treated as a separate placement
 - A placement algorithm is needed in the end
- Reduce run-time; may improve placement

Pivot Partitioning: Motivation

Introduction

E.Coli GeneChip

=: co:: co::co::.p					
Number		Numer of			
of probes	%	embeddings			
1 765	0.78	1			
28 410	12.63	26			
52 913	23.52	351			
63 588	28.26	3 2 7 6			
48 257	21.45	23 751			
22 628	10.06	142 506			
6 372	2.83	736 281			
957	0.43	3 365 856			
86	0.04	13 884 156			
224 976	100.00				

Observation

- Some probes have only a few possible embeddings
- Others may have up to several millions
- Probes with more embeddings are more "flexible"
 - They can adapt better to their neighbors

Pivot Partitioning: Pivots

Introduction

- We use probes with fewer embeddings (pivots) to:
 - Drive the partitioning of the probe set
 - Re-embed the probes before their placement

Algorithm 1: PivotPartitioning

chip dimensions, set of probes $\mathcal{P} = \{p_1, p_2, ...p_n\}$, and maximum partitioning depth t_{max}

Output: placement of the probes $p \in \mathcal{P}$ on the chip

- 1. Select probes p with minimum number of embeddings, E(p):
 - a) Let $Q = \{ p \in P | E(p) \text{ is minimal} \}$
 - b) $\mathcal{P} \leftarrow \mathcal{P} \setminus \mathcal{Q}$
- 2. Let R be a region consisting of all spots
- 3. Return RecursivePartitioning (1, t_{max} , R, Q, P)

Pivot Partitioning

Algorithm 2: RecursivePartitioning

Input: current depth t, maximum depth t_{max} , region R, pivot candidates Q, non-pivot probes P,

Output: placement of probes $p \in \mathcal{P} \cup \mathcal{Q}$ on R

- 1. If $t = t_{max}$ then
 - a) Re-embed $p \in \mathcal{P}$ optimally with respect to all $q \in \mathcal{Q}$
 - b) Return RowEpitaxial $(R, \mathcal{P} \cup \mathcal{Q})$
- 2. Select q' and $q'' \in \mathcal{Q}$ with maximum conflicts c(q', q'')
- 3. Partition \mathcal{P} and \mathcal{Q} :
 - a) Let $\mathcal{Q}' = \{q \in \mathcal{Q} \mid c(q,q') < c(q,q'')\}; \ \mathcal{Q}'' \leftarrow \mathcal{Q} \setminus \mathcal{Q}'$
 - b) Let $\mathcal{P}' = \{ p \in \mathcal{P} \mid c(p, q') < c(p, q'') \}; \, \mathcal{P}'' \leftarrow \mathcal{P} \setminus \mathcal{P}'$
- 4. Partition R into R' and R'' proportionally to $\mathcal{P}' \cup \mathcal{Q}'/\mathcal{P}'' \cup \mathcal{Q}''$
- 5. Return RecursivePartitioning $(t+1, t_{max}, R', Q', P')$ \cup RecursivePartitioning $(t+1, t_{max}, R'', Q'', P'')$

Pivot Partitioning

Introduction

Similar to the Centroid-based Quadrisection but...

- Alternate horizontal and vertical partitions
- Use probes with fewer embeddings as pivots ("centroids")
 - Faster selection, better representatives
- First algorithm to combine placement and embedding
 - Consider all embeddings when assigning probes to regions
 - Re-embed probes optimally in regards to pivots (with OSPE) before the placement

Pivot Partitioning: Results on Random Chips

Border Length Minimization (cost: normalized border length)

	$t_{max}=0$		$t_{max} = 0$ $t_{max} = 2$ Dim Cost Time Cost Time		$t_{max}=4$		$t_{max}=6$	
Dim	Cost	Time	Cost	Time	Cost	Time	Cost	Time
100	42.77	34	39.19	13	40.72	10	42.11	11
200	41.63	429	37.30	155	38.53	62	42.11 40.00	85
300	41.38	1174	36.12	766	37.22	264	38.53	139
500	41.27	3 5 2 4	34.69	3 472	35.50	1 996	36.58	713
	1							

Conflict Index minimization (cost: average conflict index)

	$t_{max}=0$		$t_{max}=0$ $t_{max}=2$		$t_{max}=4$		$t_{max}=6$	
Dim	Cost	Time	Cost	Time	Cost	Time	Cost	Time
100	514.49	45	453.67	37	467.78	19	475.44	15
200	517.07	192	466.22	215	452.41	166	462.55	99
							448.17	
500	517.50	1 471	481.36	1 530	462.33	1 472	445.43	1 295
		'						

Pivot Partitioning (PP) × Centroid-based Quadrisection (CQ)

Border Length Minimization							
	Dim	L=1 CQ	$t_{max}=2$ PP	L=2 CQ	$t_{max} = 4$ PP	L=3 CQ	$t_{max} = 6$ PP
	100	393 218	0.18%	399 312	-1.89%	410 608	-2.48%
	200	1 524 803	2.27%	1 545 825	0.48%	1 573 096	-1.34%
	300	3 493 552	7.12%	3 413 316	2.05%	3 434 964	-0.61%
	500	9 546 351	8.95%	9 355 231	4.67%	9 307 510	1.03%

Summary

- Conflict Index: new model for evaluating microarray layouts
- Pivot Partitioning: new partitioning algorithm
 - Faster and better selection of pivots
 - Improved assignment of probes to regions
 - First to combine placement and re-embedding

Thanks!

- Prof. Dr. Jens Stoye
- Prof. Dr. Robert Giegerich
- AG Genominformatik
- Graduiertenkolleg Bioinformatik
- Graduate School in Bioinformatics and Genome Research
- ...and thank you for your attention!

More info on

http://gi.cebitec.uni-bielefeld.de/assb/chiplayout