PROJECT REPORT

Project Name : SMART FARMER- IOT ENABLED SMART

FARMING APPLICATION.

Team ID : PNT2022TMID24462

Team Members : KAMIREDDY CHATHURYA REDDY

GANAPATHI CHIRUDIVYA

GANDHAVALLI HARIVANDANA

DIVYA.B

1. INTRODUCTION

- Project Overview
- Purpose

2. LITERATURE SURVEY

- 2.1 Existing problem
- 2.2 References
- 2.3 Problem Statement Definition

3. IDEATION & PROPOSED SOLUTION

- 3.1 Empathy Map Canvas
- 3.2 Ideation & Brainstorming
- 3.3 Proposed Solution
- 3.4 Problem Solution fit

4 REQUIREMENT ANALYSIS

- 4.1 Functional requirement
- 4.2 Non-Functional requirements

5 PROJECT DESIGN

- 5.1 Data Flow Diagrams & User Stories
- 5.2 Solution & Technical Architecture

6 PROJECT PLANNING & SCHEDULING

- 6.1 Sprint Planning & Estimation
- 6.2 Sprint Delivery Schedule

7 CODING & SOLUTIONING (Explain the features added in the project along with code)

- 7.1 Feature
- 7.2 Database Schema (if Applicable)

8 TESTING

- 8.1 Test Cases
- 8.2 User Acceptance Testing

9 RESULTS

9.1 Performance Metrics

10 ADVANTAGES & DISADVANTAGES

- 11 CONCLUSION
- 12 FUTURE SCOPE
- 13 APPENDIX
 - **♣** Source Code
 - ♣ GitHub & Project Demo Link

SMART FARMING

1. INTRODUCTION:

PROJECT OVERVIEW:

This is system that enables framers to monitor and their forms with a web based application build with Node-RED.

It uses the IBM IOT Watson cloud platform as its Backend.

PURPOSE:

Smart Farming reduce the ecological foodprint of farming. Minimized or site specific application of inputs, such as fertilizers and pesticides ,in precision agriculture systems will mitigate leaching problems as well as the emission of greenhouse gases.

2. LITERATURE SURVEY:

2.1 EXISTING PROBLEM:

The biggest challenges faced by IoT in the agricultural sector are lack of information, high adoption costs, and security concers, etc. Most of the farmers are not aware of the implementation of IoT in agriculture.

2.2 REFERENCES:

It is the application of modern ICT (Information and Communication Technologies) into agriculture. In IOT- based smart farming, a system is built for monitoring the crop field with the help of sensors (light, humidity, temperature, soil moisture, etc.). The farmers can monitor the field conditions from anywhere.

2.3 PROBLEM STATEMENT DEFINITION:

Overuse of pesticides and fertilizer in agricultural fields leads to destruction of the crop as well as reduces the efficiency of the field increasing the soil vulnerability toward pest. IoT applications may be used to update the farmer/user about type & quantity of pesticide required by the crop.

3. IDEATION & PROPOSED SOLUTION:

3.1 EMPATHY MAP CANVAS:

3.2 IDEATION & BRAINSTORMING:

Ideation is the create process of generating, developing, and communicating new ideas, where an is idea understood as a basic element of thought that can be either visual, concrete, or abstract.

Brainstorming is a group creative technique by which efforts are made to find a conclusion for a specific problem by gathering a list of ideas spontaneously contributed by its members.

IDEATION PROCESS

3.3 Proposed Solution Template:

Project team shall fill the following information in proposed solution template.

S.No.	Parameter	Description
1.	Problem Statement (Problem to be solved)	To provide an effective decision support system employing a wireless sensor network that manages various agricultural activities and provides pertinent farm information on temperature, humidity, and soil moisture content. The weather is to blame for the rising water level. There are many distractions for farmers, which is bad for agriculture.
2.	Idea / Solution description	Solutions for Smart Agricultural Systems offer an integrated IOT platform in the agricultural sector that enables farmers to use sensors, smart gateways, and monitoring systems to gather data, manage numerous farm characteristics, and analyse real-time data to make educated decisions.
3.	Novelty / Uniqueness	The use of IOT principles in agriculture has been the focus of several prominent researchers working toward smart farming. But there are still a number of difficulties that have not yet found an appropriate solution. This study attempts to highlight prior work and unresolved issues in IOT-based agriculture.
4.	Social Impact / Customer Satisfaction	Decreases the pay for workers who are employed in the agricultural sector. It helps people to save lots of time. By enriching the customer experience overall, and also IOT can help strengthen customer relationships.
5.	Business Model (Revenue Model)	Farmers are charged a monthly subscription for the prediction and recommendation of irrigation scheduling based on sensor metrics such as temperature, humidity, and soil moisture.
6.	Scalability of the Solution	Scalability in smart farming refers to a system's ability to expand its capacity, such as the number of technological components like sensors and actuators, while enabling for quick analysis.

3.4 PROBLEM SOLUTIONS FIT:

4.REQUIREMENT ANALYSIS:

4.1 FUNCTIONAL ANALYSIS:

Following are the functional requirements of the proposed solution.

FR No.	Functional Requirement (Epic)	Sub Requirement (Story / Sub-Task)
FR-1	User Registration	Registration through Gmail
FR-2	User Confirmation	Confirmation via Email Confirmation via OTP
FR-3	Log in to system	Check Credentials Check Roles of Access.
FR-4	Manage Modules	Manage System Admins Manage Roles of User Manage User permission
FR-5	Check whether details	Temperature details Humidity details
FR-6	Log out	Exit

4 NON FUNCTIONAL REQUIREMENTS:

Following are the non-functional requirements of the proposed solution.

FR	Non-Functional	Description	
No.	Requirement		
NFR-1	Usability	Time consumability is less, Productivity is high.	
NFR-2	Security	It has low level of security features due to integration of sensor data.	
NFR-3	Reliability	Accuracy of data and hence it is Reliable.	
NFR-4	Performance	Performance is high and highly productive.	
NFR-5	Availability	With permitted network connectivity the application is accessible	
NFR-6	Scalability	It is perfectly scalable many new constraints can be added	

5 PROJECT DESIGN:

5.1 DATA FLOW DIAGRAMS AND USER STORIES:

A Data Flow Diagram (DFD) is a traditional visual representation of the information flows within a system. A neat and clear DFD can depict the right amount of the system requirement graphically. It shows how data enters and leaves the system, what changes the information, and where data is stored.

5.2 SOLUTIONS AND TECHNICAL ARCHITECTURAL:

The Deliverable shall include the architectural diagram as below and the information as per the table 1 & table 2

Table-1 : Components & Technologies:

S.No	Component	Description	Technology
1.	User Interface	How user interacts with application e.g. Web UI, Mobile App, Chatbot etc.	MIT app
2.	Application Logic-1	Logic for a process in the application	Node red/IBM Watson/MIT app
3.	Application Logic-2	Logic for a process in the application	Node red/IBM Watson/MIT app
4.	Application Logic-3	Logic for a process in the application	Node red/IBM Watson/MIT app
5.	Database	Data Type, Configurations etc.	MySQL, NoSQL, etc.
6.	Cloud Database	Database Service on Cloud	IBM cloud.
7.	Temperature sensor	Monitors the temperature of the crop	
8.	Humidity sensor	Monitors the humidity	
9.	Soil moisture sensor (Tensiometers)	Monitors the soil temperature	
10.	Weather sensor	Monitors the weather	
11.	Solar panel		
12.	RTC module	Date and time configuration	
13.	Relay	To get the soil moisture data	

Table-2: Application Characteristics:

S.No	Characteristics	Description	Technology
1.	Open-Source Frameworks	MIT app,Node-Red	Software
2.	Scalable Architecture	Drone technology, pesticide monitoring ,Mineral identification in soil	Hardware

6 PROJECT PLANNING AND SCHEDULING:

Sprint	Functional Require ment (Epic)	User Story Numb er	User Story / Task	Story Points	Priori ty	Team Members
Sprint-1	Hardware	USN-1	Sensors and wi-fi module with python code.	2	High	Kamireddy chathurya Reddy,Ganapathi Chirudivya,Gandhavalli Harivandana,Divya B
Sprint-2	Software	USN-2	IBM Watson IoT platform, Workflows for IoT scenarios using Node-red	2	High	Kamireddy chathurya Reddy,Ganapathi Chirudivya,Gandhavalli Harivandana,Divya B
Sprint-3	MIT app	USN-3	To develop a mobile application using MIT	2	High	Kamireddy chathurya Reddy,Ganapathi Chirudivya,Gandhavalli Harivandana,Divya B
Sprint-4	Web UI	USN-4	To make the user to interact with software.	2		Kamireddy chathurya Reddy,Ganap athi Chirudivya,Ga ndhavalli Harivandana,D ivya B

Burndown Chart:

7 CODING & SOLUTIONS:

7.1 FEATURE:

```
import time
import sys
import ibmiotf.application
import ibmiotf.device
import random
organization = "2pys2a"
deviceType="NodeMCU"
deviceid="12345"
authMethod="token"
authToken="12345678"
def myCommandCallback(cmd):
   print("Message received from IBM IoT Platform: %s" % cmd.data['command'])
   m=cmd.data['command']
   if (m=="motoron"):
       print("Motor is on")
   elif(m=="motoroff"):
       print("Motor is off")
   else :
       print("plese send proper command ")
deviceOptions = {"org": organization, "type": deviceType, "id": deviceId,
"auth-method": authMethod, "auth-token": authToken) deviceCli = ibmiotf.device.Client(deviceOptions)
#......
except Exception as e:
print("Caught exception connecting device: %s" % str(e))sys.exit()
# Connect and send a datapoint "hello" with value "world" into the cloud as an event of type "greeting" 10 times deviceCli.connect()
while True:
#Get Sensor Data from DHT11
```

8 TESTING:

8.1 TEST CASE:

Web application using Node-RED.

8.2 User Acceptance Testing

9 RESULT:

9.1 Performance Metrics

10ADVANTAGES AND DISADVANTAGES:

10.1 ADVANTAGES:

- All the data like climatic conditions and changes in them, soil or crop conditions everything can be easily monitored.
- * Risk of crop damage can be lowered to a greater extent.
- Many difficult challenges can be avoided making the process automated and the quality of crops can be maintained.
- The process included in farming can be controlled using the web applications from anywhere, anytime.

10.2 DISADVANTAGES:

- Smart Agriculture requires internet connectivity continuously, but rural parts cannot fulfil this requirement.
- ❖ Any faults in the sensors can cause great loss in the agriculture, due to wrong records and the actions of automated processes.
- ❖ IOT devices need much money to implement.

11 CONCLUSION:

An IOT based smart agriculture system using Watson IOT platform, Watson simulator, IBM cloud and Node-RED.

12 FUTURE SCOPE:

In future due to more demand of good and more farming in less time, for betterment of the crops and reducing the usage of extravagant resources like electricity and water IOT can be implemented in most of the places.

13 APPENDIX:

```
SOURCE CODE:
```

```
import wiotp.sdk.device
import time
import sys
import ibmiotf.application
import ibmiotf.device
import random
#Provide your IBM Watson Device
organization = "c2pys2a"
deviceType = "NodeMCU"
deviceId = "12345"
authMethod = "token"
authToken ="12345678"
# Initialize GPIO
def myCommandCallback(cmd):
  print("Commandreceived: %s" % cmd.data['command'])
  status=cmd.data['command']
  if status=="motoron":
    print ("motor is on")
  elif status == "motoroff":
```

```
print("motor is off")
  else:
    print ("please send proper command")
try:
    deviceOptions = {"org": organization, "type": deviceType, "id":
deviceId, "auth-method": authMethod, "auth-token": authToken}
    deviceCli = ibmiotf.device.Client(deviceOptions)
#.....
except Exception as e:
 print("Caught exception connecting device: %s" %str(e))
 sys.exit()
# Connect and send a datapoint "hello" with value "world" into the cloud
as an event of type "greeting" 10 times
deviceCli.connect()
while True:
#Get Sensor Data from DHT11
 temp=random.randint(90,110)
 Humid=random.randint(60,100)
 Mois=random. randint(20,120)
 data = { 'temp' : temp, 'Humid': Humid ,'Mois': Mois}
#print data
def myOnPublishCallback():
 print ("Published Temperature = %s C" % temp, "Humidity = %s %%"
%Humid, "Moisture =%s deg c" % Mois, "to IBM Watson")
```

```
success = deviceCli.publishEvent("IoTSensor", "json", data,qos=0,on_publish=myOnPublishCallback)

if not success:
    print("Not connected to IoTF")

time.sleep(10)

deviceCli.commandCallback = myCommandCallback

#Disconnect the device and application from the cloud deviceCli.disconnect()
```

OUTPUT:

```
Python 3.7.0 (v3.7.0:1bf9cc5093, Jun 27 2018, 04:59:51) [MSC v.1914 64 bit (AMD6
4) 1 on win32
Type "copyright", "credits" or "license()" for more information.
 ----- RESTART: C:\Users\ELCOT\Downloads\ibmiotpublishsubscribe.py ------
2022-11-07 20:01:24,074
                            ibmiotf.device.Client
                                                          INFO
                                                                   Connected successfu
lly: d:157uf3:abcd:7654321
Published Moisture = 90 deg C Temperature = 96 C Humidity = 76 % to IBM Watson
Published Moisture = 102 deg C Temperature = 110 C Humidity = 68 % to IBM Watson Published Moisture = 45 deg C Temperature = 99 C Humidity = 100 % to IBM Watson
Command received: motoron
motor is on
Published Moisture = 77 deg C Temperature = 91 C Humidity = 85 % to IBM Watson
Published Moisture = 73 deg C Temperature = 94 C Humidity = 86 % to IBM Watson
Command received: motoroff
motor is off
Published Moisture = 101 deg C Temperature = 104 C Humidity = 87 % to IBM Watson
```

GITHUB LINK : https://github.com/IBM-EPBL/IBM-Project-53584- 1661419143.git
DEMO LINK: https://drive.google.com/file/d/1_pOYDmzyKFLsTjOQj9_w-aNf-jq9xeg_/view?usp=drivesdk

