Lecture 30: Nov 4

Last time

• Common Continuous Distribution

Today

- Common Continuous Distribution
- Distribution Families

Location and Scale families

Let Z be a continuous random variable with pdf f(z). Define the class of rvs

$$X_{\mu,\sigma} = \sigma Z + \mu, \quad \mu \in \mathbb{R}, \sigma > 0$$

Then

1. $X_{\mu,\sigma}$ has pdf

$$f_{\mu,\sigma}(x) = \frac{1}{\sigma} f\left(\frac{x-\mu}{\sigma}\right)$$

2.

$$E(X) = \sigma E(Z) + \mu, \quad Var(X) = \sigma^2 Var(Z)$$

3. The variable $Z = X_{0,1}$ is called the *generator* and is a member of the class.

Location families and scale families

- The family of pdfs $f_{\mu,\sigma}(x)$ is called a *location-scale* family where μ is called the *location parameter*, and σ is called the *scale parameter*.
- The family of pdfs

$$f_{\mu,1}(x) = f(x - \mu)$$

with $\sigma = 1$ is called a *location* family.

• The family of pdfs

$$f_{0,\sigma}(x) = \frac{1}{\sigma} f\left(\frac{x}{\sigma}\right)$$

with $\mu = 0$ is called a *scale* family.

Example (Exponential location family) Let $f(x) = e^{-x}$, $x \ge 0$, and f(x) = 0, x < 0. To form a location family we replace x with $x - \mu$ to obtain

$$f(x|\mu) = \begin{cases} e^{-(x-\mu)} & x - \mu \ge 0 \\ 0 & x - \mu < 0 \end{cases}$$
$$= \begin{cases} e^{-(x-\mu)} & x \ge \mu \\ 0 & x < \mu \end{cases}$$

Figure 3.5.2. Exponential location densities

Figure 29.1: Figure 3.5.2. Exponential location densities.

As shown in the above graph, the densities are shifted. Now the positive part of the density starts at μ rather than at 0. If X measures time, then μ might be restricted to be nonnegative so that X will be positive with probability 1 for every value of μ . In this type of model, where μ denotes a bound on the range of X, μ is sometimes called a *threshold parameter*.

The effect of introducing the scale parameter σ is either to stretch $(\sigma > 1)$ or to contract $(\sigma < 1)$ the graph of f(x) while still maintaining the same basic shape of the graph. This is illustrated in the Figure below.

Figure 29.2: Figure 3.5.3. Members of the same scale family

Exponential Families A family of pdfs or pmfs with vector parameter θ is called an *exponential family* if it can be expressed as

$$f(x|\boldsymbol{\theta}) = h(x)c(\boldsymbol{\theta})exp\left(\sum_{j=1}^{k} w_j(\boldsymbol{\theta})t_j(x)\right), \quad x \in S \subset \mathbb{R}$$
 (1)

where S is not defined in terms of θ , h(x), $c(\theta) \ge 0$ and the functions are just functions of the parameters specified; i.e. h is free of θ , $c(\theta)$ is free of x, etc...

Examples:

• One-dimensional: Exponential, Poisson

• Two-dimensional: Gaussian

Exponential family parameterizations are unique except for multiplying constant factors.

Example: Gaussian Let $f(x|\mu, \sigma^2)$ be the $n(\mu, \sigma^2)$ family of pdfs, where $\boldsymbol{\theta} = (\mu, \sigma)$. Then

$$f(x|\mu, \sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$
$$= \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{\mu^2}{2\sigma^2}\right) \exp\left(-\frac{x^2}{2\sigma^2} + \frac{\mu x}{\sigma^2}\right)$$

Thus

$$h(x) = \frac{1}{\sqrt{2\pi}} \quad c(\mu, \sigma) = \frac{1}{\sigma} \exp\left(-\frac{\mu^2}{2\sigma^2}\right)$$

$$w_1(\mu, \sigma) = -\frac{1}{2\sigma^2} \quad w_2(\mu, \sigma) = \frac{\mu}{\sigma^2}$$

$$t_1(x) = x^2 \quad t_2(x) = x$$

The parameter space is $(\mu, \sigma^2) \in \mathbb{R} \times (0, \infty)$.