

TKP4120

Prosessteknikk Vår 2013

Norges teknisk-naturvitenskapelige universitet Institutt for kjemisk prosessteknologi

Løsningsforslag — Øving 10

a) Innfører reaksjonsomfanget, $\xi_i, i = [1, 2]$. $\hat{\mathbf{n}}_j = \begin{bmatrix} \hat{n}_{\text{CO}}^j & \hat{n}_{\text{CO}_2}^j & \hat{n}_{\text{H}_2}^j & \hat{n}_{\text{CH}_3\text{OH}}^j & \hat{n}_{\text{H}_2\text{O}}^j & \hat{n}_{\text{CH}_4}^j \end{bmatrix}^T \text{ for strøm } j. \text{ Komponent-balansen over reaktoren blir da:}$

$$\hat{\mathbf{n}} = \hat{\mathbf{n}}_{\circ} + \sum_{i} \nu_{i} \xi_{i} \tag{1}$$

hvor ν_i er vektorene med støkiometriske koeffisienter og ξ_i er reaksjonsomfanget, begge for reaksjonene i. Utskrevet gir ligning (1) følgende uttrykk:

$$\hat{n}_{\rm CO} = \hat{n}_{\rm CO}^{\circ} - \xi_1 + \xi_2 \tag{2a}$$

$$\hat{n}_{\text{CO}_2} = \hat{n}_{\text{CO}_2}^{\circ} - 2\xi_2$$
 (2b)

$$\hat{n}_{\rm H_2} = \hat{n}_{\rm H_2}^{\circ} - 2\xi_1 - \xi_2 \tag{2c}$$

$$\hat{n}_{\text{CH}_3\text{OH}} = \hat{n}_{\text{CH}_3\text{OH}}^{\circ} + \xi_1 \tag{2d}$$

$$\hat{n}_{\rm H_2O} = \hat{n}_{\rm H_2O}^{\circ} + \xi_2$$
 (2e)

$$\hat{n}_{\mathrm{CH}_4} = \hat{n}_{\mathrm{CH}_4}^{\circ} \tag{2f}$$

b) Oppgaveteksten opplyser at 70 % av tilført CO og CO₂ omsettes til CH₃OH. Siden kun reaksjon 1 danner metanol betyr dette at $\xi_1 = \hat{n}_{\circ}(x_{\text{CO}}^{\hat{n}_{\circ}} + x_{\text{CO}_2}^{\hat{n}_{\circ}})0,70 = 490\,\text{mol}\,\text{s}^{-1}$. Det dannes også $40\,\text{mol}\,\text{s}^{-1}$ vann. Siden reaksjon 2 er eneste reaksjon som produserer vann betyr det at $\xi_2 = 40\,\text{mol}\,\text{s}^{-1}$. Innsatt i ligning (2) oppnås utstrømmen:

$$\hat{\mathbf{n}} = \begin{bmatrix} 110 & 100 & 4230 & 490 & 40 & 1050 \end{bmatrix}^T \tag{3}$$

med en total molstrøm på $\hat{\mathbf{n}}^T \mathbf{e} = 6020 \,\mathrm{mol}\,\mathrm{s}^{-1}$, hvor \mathbf{e} er en enhetsvektor som oppfyller dim $\mathbf{e} = \dim \hat{\mathbf{n}}$ (det vil si, de er like lange).

c) Energibalansen for reaktoren er gitt i ligning (4).

$$\hat{H}_{\hat{n}} - \hat{H}_{\hat{n}_0} = \hat{Q} \tag{4}$$

Data fra SI nødvendig for å evaulere energibalansen er gitt i tabell 1. Det antas at varmekapasitene er konstante over det aktuelle temperaturintervallet.

Komponent	$M [\operatorname{g} \operatorname{mol}^{-1}]$	$c_p^{\ominus} [\mathrm{J} \mathrm{mol}^{-1} \mathrm{K}^{-1}]$	$\Delta_f h^{\ominus} [\mathrm{kJ} \mathrm{mol}^{-1}]$	$\Delta_f g^{\ominus} [\mathrm{kJ} \mathrm{mol}^{-1}]$
$CH_4(g)$	16	36	-75	-51
$CH_3OH(g)$	32	44	-201	-163
$H_2O(g)$	18	34	-242	-229
CO(g)	28	29	-111	-137
$CO_2(g)$	44	37	-394	-394
$H_2(g)$	2	29	0	0

Tabell 1: Data hentet fra SI Chemical Data.

Evaluerer entalpidifferansen direkte ved å betrakte delprosesser, som illustrert i ligning (5), avkjøling av innstrøm, reaksjon og oppvarming av utstrøm.

$$T_{\hat{n}_{\circ}} = 160 \,^{\circ}\text{C}$$
 $T_{\hat{n}} = 270 \,^{\circ}\text{C}$
 $\hat{q}_{1} \downarrow \text{ii}$ $\hat{q}_{2} \uparrow \text{iii}$ (5)
 $T_{\hat{n}_{\circ}} = 25 \,^{\circ}\text{C}$ $\xrightarrow{\Delta_{r} \hat{H}}$ $T_{\hat{n}} = 25 \,^{\circ}\text{C}$

i) Avkjøling fra 160°C til 25°C er gitt i ligning (6).

$$\hat{q}_1 = \int_{T_0}^T \sum_i (\hat{n}_i c_{p,i}) \tag{6}$$

Her er $T_{\circ} = 160 \,^{\circ}\text{C}$, $T = 25 \,^{\circ}\text{C}$, verdier for $c_{p,i}^{\ominus}$ er hentet fra tabell 1 og \hat{n}_{i}° er molstrømmen av komponent i i $\hat{\mathbf{n}}_{\circ}$. Innsatt i ligning (6) oppnås $\hat{q}_{1} = -28,54 \, \text{MJ s}^{-1}$.

ii) Reaksjonsvarmen for de to reaksjonene ved 25 °C er gitt i ligning (7).

$$\Delta_r \hat{H} = \sum_i \Delta_r h_i^{\ominus} \xi_i \tag{7}$$

hvor $\Delta_r \hat{H}$ er reaksjonsvarmen, $\Delta_r h_i^{\ominus}$ er standard molar reaksjonsentalpi for reaksjon i og ξ_i er reaksjonsomfanget til reaksjon i. Den molare reaksjonsentalpien for reaksjon i beregnes som gitt i ligning (8).

$$\Delta_r h_i^{\ominus} = \sum_k \nu_k \Delta_f h_k^{\ominus} \tag{8}$$

Her er ν_k støkiometrisk koeffisient for komponent k i reaksjon i og $\Delta_f h_k^{\ominus}$ er standard molar dannelsestentalpi for komponent k. Substituert inn i ligning (7) finner man:

$$\Delta_r \hat{H} = \xi_1 \Delta_r h_1^{\ominus} + \xi_2 \Delta_r h_2^{\ominus} = -42,46 \,\mathrm{MJ} \,\mathrm{s}^{-1} \tag{9}$$

iii) Varme nødvendig til oppvarming av produktet finnes på tilsvarende måte som i ligning (6), med $T_{\circ} = 25 \,^{\circ}\text{C}$, $T = 270 \,^{\circ}\text{C}$ og molrater som funnet i oppgave b). Varmebehovet er $\hat{q}_2 = 46,62 \,\text{kJ} \,\text{s}^{-1}$.

Summen av bidragene $\hat{q}_1, \Delta_r \hat{H}$ og \hat{q}_2 bestemmer varme- eller kjølebehovet til reaktoren. Summerer og finner

$$\hat{Q} = \hat{q}_1 + \Delta_r \hat{H} + \hat{q}_2 = -24,38 \,\text{MJ s}^{-1} \tag{10}$$

hvilket betyr at det må fjernes varme tilsvarende \hat{Q} , altså er reaktorens kjølebehov $-24,38\,\mathrm{MJ\,s^{-1}}$.

d) En produksjonsrate av metanol på $490 \,\mathrm{mol \, s^{-1}}$ tilsvarer reaksjonsomfanget ξ_1 som ble funnet i b). Beregner reaksjonsomfanget for reaksjon 2 ved å benytte opplysningen om at $k_2 = 0,016$. «Shift»-reaksjonen gir ikke moltallsendring ($n_{\mathrm{reaktanter}} = n_{\mathrm{produkter}}$), så totalt antall mol i utstrømmen er bevart uansett hvor langt til høyre eller venstre likevekten ligger. Uttrykket for likevekt ved gitt trykk og temeratur er gitt i ligning (11).

$$K = \prod_{k} a_k^{\nu_k} = \prod_{k} \left(\frac{p_k}{p^{\ominus}} \right) \tag{11}$$

Her er K likevektskonstanten for reaksjonen, a_k aktiviteten til komponent k, p_k partialtrykket til komponent k, og p^{\ominus} et referansetrykk (lik 1 bar). I reaksjon 2 er det som nevnt likt antall mol på hver side av reaksjonen, så likevektsuttrykket reduseres til

$$K = \frac{\hat{n}_{\text{CO}}\hat{n}_{\text{H}_2\text{O}}}{\hat{n}_{\text{CO}_2}\hat{n}_{\text{H}_2}} \tag{12}$$

Antall mol av komponentene er gitt av massebalansen over reaktoren:

$$\hat{\mathbf{n}} = \hat{\mathbf{n}}_{\circ} \sum_{i} \nu_{i} \xi_{i} = \hat{\mathbf{n}}_{\circ} + \nu_{1} \xi_{1} + \nu_{2} \xi_{eq}$$

$$\tag{13}$$

hvor ξ_{eq} er reaksjonsomfanget ved likevekt. Innsatt i (12) oppnås uttrykket:

$$K = \frac{(\hat{n}_{\text{CO}}^{\circ} - \xi_1 + \xi_{eq})(\hat{n}_{\text{H}_2\text{O}}^{\circ} + \xi_{eq})}{(\hat{n}_{\text{CO}_2}^{\circ} - \xi_{eq})(\hat{n}_{\text{H}_2}^{\circ} - 2\xi_1 - \xi_{eq})} = 0,016$$
 (14)

Løser dette uttryket for det ukjente reaksjonsomfanget og finner $\xi_{eq} = 50,41 \,\mathrm{mol}\,\mathrm{s}^{-1}$. Produktsammensetningen blir da:

$$\hat{\mathbf{n}} = \begin{bmatrix} 120,14 & 89,59 & 4219,59 & 490 & 50,41 & 1050 \end{bmatrix}^T \tag{15}$$

hvilket summerer til $\hat{\mathbf{n}} = 6020 \,\mathrm{mol}\,\mathrm{s}^{-1}$, som stemmer overens med at «shift»-reaksjonen fortærer like mange mol komponenter som den produserer.

e) For å beregne likevektskonstanten til reaksjon 1 benyttes uttrykket for K gitt i ligning (16).

$$\ln K(T) \triangleq \left(-\frac{\Delta_{rx}g^{\ominus}(T)}{RT}\right) \tag{16}$$

Her er $\Delta_{rx}g^{\ominus}$ standard gibbs energi på molar form ved gitt T og p, R er gasskonstanten og T er temperaturen ved likevekt. For å bestemme $\Delta_{rx}g^{\ominus}(T=543\,\mathrm{K}~(270\,^{\circ}\mathrm{C}=543\,\mathrm{K})$ må $\Delta_{rx}h^{\ominus},\Delta_{rx}s^{\ominus}$ og $\Delta_{rx}g^{\ominus}$ ved $T_{\circ}=298\,\mathrm{K}$ bestemmes:

$$\Delta_{rx} h^{\ominus}(T_{\circ}) \triangleq \sum_{k} \nu_{k} \Delta_{f} h_{k}^{\ominus}(T_{\circ}) = -90 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$$
(17a)

$$\Delta_{rx} g^{\ominus}(T_{\circ}) \triangleq \sum_{k} \nu_{k} \Delta_{f} g_{k}^{\ominus}(T_{\circ}) = -26 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$$
(17b)

$$\Delta_{rx} s^{\ominus}(T_{\circ}) \triangleq \frac{\Delta_{rx} h^{\ominus}(T_{\circ}) - \Delta_{rx} g^{\ominus}(T_{\circ})}{T_{\circ}} = -214.8 \,\mathrm{J} \,\mathrm{mol}^{-1} \,\mathrm{K}^{-1} \qquad (17c)$$

$$\Delta_{rx}c_p^{\ominus}(T_{\circ}) \triangleq \sum_i \nu_i c_{p,i}(T_{\circ}) = -43 \,\mathrm{J}\,\mathrm{mol}^{-1}\,\mathrm{K}^{-1}$$
(17d)

hvor $\Delta_f h_k^{\ominus}$ og $\Delta_f g_k^{\ominus}$ er henholdsvis molar entalpi og molar Gibbs energi for komponent k ved T_{\circ} , ν_k er støkiometrisk koeffisient for komponent k og $c_{p,k}^{\ominus}$ er molar varmekapasitet for komponent k ved T_{\circ} . Entalpi, entropi og Gibbs energi ved $T=543\,\mathrm{K}$ kan beregnes som gitt i ligning (18). Det antas at varmekapasitet, entalpi, entropi og Gibbs fri energi for alle komponenter i reaksjonen er konstant på temperaturintervallet.

$$\Delta_{rx}h^{\ominus}(T) = \Delta_{rx}h^{\ominus}(T_{\circ}) + \int_{T_{\circ}}^{T} \Delta_{rx}c_{p}^{\ominus}(\tau_{\circ}) dT = -100,5 \,\mathrm{kJ}\,\mathrm{mol}^{-1} \qquad (18a)$$

$$\Delta_{rx} s^{\ominus}(T) = \Delta_{rx} s^{\ominus}(T_{\circ}) + \int_{T_{\circ}}^{T} \frac{\Delta c_{p}^{\ominus}(\tau_{\circ})}{T} dT = -240.6 \,\mathrm{J} \,\mathrm{mol}^{-1} \,\mathrm{K}^{-1} \quad (18b)$$

$$\Delta_{rx}g^{\ominus}(T) = \Delta_{rx}h^{\ominus}(T) - \int_{T_{\circ}}^{T} \Delta_{rx}s^{\ominus}(T) dT = 30,2 \text{ kJ mol}^{-1}$$
 (18c)

Verdier funnet i ligning (18) innsatt i ligning (16) gir verdi for likevektskonstanten K = 0.00124. Til sammenligning kan reaksjonskvotienten, gitt i ligning (19), beregnes.

$$Q = \frac{p_{\text{CH}_3\text{OH}}}{p_{\text{CO}}p_{\text{H}_2}^2} = \frac{x_{\text{CH}_3\text{OH}}^{\hat{n}}}{p_{\text{tot}}^2 x_{\text{CO}}^{\hat{n}} x_{\text{H}_2}^{\hat{n}}} = 0,00102$$
 (19)

Observerer at Q < K, hvilket betyr at det produseres litt mindre metanol enn om reaksjonen er ved likevekt. Forskjellen på Q og K er ikke stor, så reaksjonen er svært nær likevekt.