Preparação e Análise de Dados

Prof. Marco Cristo Instituto de Computação

Agenda

- Preparação (limpeza, filtragem, organização e engenharia)
 - Organização
 - Pré-processamento
 - Entendendo variáveis e estatísticas descritivas
 - Entendendo a matriz de dados
 - Outliers, anomalias e visualização

Introdução

- Porquê?
 - Garbage in, Garbage out
 - ▶ 60 a 80% do esforço total em MD
- O quê é necessário?
 - Entender os dados
 - A história dos dados
 - Conhecimento de domínio
 - Seus objetivos!

Introdução

- Entradas
 - Dados puros
- Saídas
 - Treino (quem sabe, Treino e Validação) e Teste (se der)
 - Correto
 - Completo
 - Consistente
 - Atualizado
 - Confiável
 - Interpretável

Dados

- O que é?
 - Exemplos, observações, medidas, eventos, etc.
 - Estruturado, semi ou não
 - Conjunto de atributos
- Como está organizado
 - Relação = conjunto de exemplos
 - Exemplo específico = instância
 - Instância = conjunto de atributos

Organização

- ▶ Tabelas → Relação
 - Desnormalização
 - Coloque relações nas instâncias
 - Duplicidade não é um problema em MD
 - Problemas de integração
 - Mesmo atributo com nomes diferentes em diferentes bancos
 - Valores podem ser conflitantes (ex: idade é numérica em um departamento e nominal em outro)
 - Deduplicação de valores

Pré-processamento

- Operações (dados reais são incompletos, inconsistentes, ruidosos, etc)
 - Limpar os dados
 - Lidar com falta de dados
 - Explorar características de variáveis
 - Mudar a representação (normalização, discretização, transformação)

Variáveis e Estatísticas

- Conheça os tipos das variáveis
 - Simbólicas
 - Nominais (ex: cor = {preto, branco, vermelhor})
 - Ordinais (ex: idade = {crianca, adulto, idoso})
 - Numéricas
 - Intervalos (ex: datas)
 - Reais (ex: numeros quaisquer)
- Conheça suas propriedades estatísticas
 - Nunca variam? São totalmente aleatórias? (min, max, avg, etc)
- Conheça as relações/estruturas
 - Dependentes?
 - Esparsas (falta, N/A, 0?)
 - Como variam? Sem limites? (ex: datas) Ineditismo ocorre no teste? (ex: séries de tempo)
- Limpe, complete, corrija erros
- Melhore ou re-represente

Limpe

Ruído

- Erro de fonte desconhecida (em geral, assumimos Normal)
 - Procure dados suspeitos e remova
 - Suavize por representar como a média dos vizinhos ou outra técnica
- Valores incorretos
 - Instrumentos que falham, pessoas que erram no cadastro, problemas ao transmitir, limitações tecnológicas, inconsistências em convenções, duplicação, dados não informados, etc
 - Aplique conhecimento do domínio e engenharia reversa
 - □ ex: erros gramaticais

Complete

Dados faltantes

- Entenda quanto falta, se os dados que faltam são ou não aleatórios, são dependentes, ocorrem na mesma instância, correlacionam com o alvo
- Se aleatório...
 - Remova instâncias com dados ausentes
 - Remova atributos se faltam em muitas instâncias
- Use constante global se fizer sentido (ex: desconhecido)
- Tente completar o que falta :-o
 - Interpolação
 - Modelos mais sofisticados, baseados em outros atributos ou no que se sabe sobre atributo alvo

Variáveis e Estatísticas

▶ Dados faltantes – ex: nível de glucose em 24 hrs

Variáveis e Estatísticas

Dados faltantes

- Exemplo
 - ▶ Abra bank_missing.arff
 - Que campos tem valores faltantes?
 - Para cada campo com valores faltantes, anote valor máximo e média
 - Preencha com ReplaceMissingValues

Transforme

- Suavize, agregue, normalize, crie!
- Melhore suas variáveis (variáveis mais ricas facilitam aprendizagem)
 - Se você sabe como deduzir um atributo importante, deduza
 - Transforme CEP em latitude x longitude, renda per capita, distancia de ponto de referencia, etc
 - Inclua informação relevante do domínio
 - Quer prever placar de jogo de futebol?
 - □ Informe desempenho de longo prazo
 - □ Informe desempenho de curto prazo
 - Quando atuando como time da casa
 - Quando atuando como visitante

Transforme

Exercício

- Que relação deve ser aprendida?
- Que campo facilitaria seu aprendizado?

Width	Height	Sides	Class
2	4	4	Standing
3	6	4	Standing
4	3	4	Lying
7	8	3	Standing
7	6	3	Lying
2	9	4	Standing
9	1	4	Lying
10	2	3	Lying

Transforme

Discretize

- Particionamento por largura igual
 - N intervalos de mesmo tamanho
- Particionamento por frequência igual
 - N intervalos de mesma frequência

Exemplo

- Atributo "Idade" é numérico
- Como transformar em categórico?

Paciente	Idade	ldade Largura =	ldade Freq =
Joao	8	0-20	< 18
Ana	10	0-20	< 18
Pedro	12	0-20	< 18
Carlos	13	0-20	< 18
André	18	0-20	18 a 29
Helena	25	20-40	18 a 29
Paulo	26	20-40	18 a 29
Alessandra	29	20-40	18 a 29
Hélio	30	20-40	>= 30
Milton	34	20-40	>= 30
Saulo	55	40-60	>= 30
Valéria	60	40-60	>= 30

- Distribuições e Histogramas, Médias, Desvio, etc
 - Variáveis Contínuas
 - Variáveis Discretas
- Normalizações
- Covariâncias/Correlações

0.6

0.5

Temperature Anomaly Distribution

NH Land, Jun–Jul–Aug

Variável

Normal Distribution

951-1961

1961-1971

- Distribuição Normal (ou Gaussiana)
 - Muitos fenômenos seguem essa distribuição
 - "Curva de sino" descrita por média e variância

- Distribuições e Histogramas, Médias, Desvio, etc
 - Variáveis Contínuas
 - Variáveis Discretas
- Normalizações
- Covariâncias/Correlações

- Distribuições e Histogramas, Médias, Desvio, etc
 - Variáveis Contínuas
 - Variáveis Discretas
- Normalizações

média
$$X_{new} = X - mean(X)$$

Covariâncias/Correlações

$$X_{new} = \frac{x - \min(x)}{\max(x) - \min(x)}$$

$$X_{new} = \log(X)$$

Z-score
$$z-score = \frac{x-mean(x)}{std(x)}$$

- Distribuições e Histogramas, Médias, Desvio, etc
 - Variáveis Contínuas
 - Variáveis Discretas
- Normalizações
- Covariâncias/Correlações

#	Salários	Média	Z-score	0a1	log
1	1230	-3366,400	-0,383	0,018	3,090
2	5000	403,600	0,046	0,150	3,699
3	1300	-3296,400	-0,375	0,020	3,114
4	1230	-3366,400	-0,383	0,018	3,090
5	1230	-3366,400	-0,383	0,018	3,090
6	29300	24703,600	2,813	1,000	4,467
7	3500	-1096,400	-0,125	0,097	3,544
8	1250	-3346,400	-0,381	0,018	3,097
9	724	-3872,400	-0,441	0,000	2,860
10	1200	-3396,400	-0,387	0,017	3,079
média	4596,400				
desvio	8782,726				
minimo	724,000				
_maximo 29300,000					

- Distribuições e Histogramas, Médias, Desvio, etc.
 - Variáveis Contínuas
 - Variáveis Discretas
- Normalizações
- Covariâncias/Correlações

#	Salários	Média	Z-score	0a1	log
1	1230	-3366,400	-0,383	0,018	3,090
2	5000	403,600	0,046	0,150	3,699
3	1300	-3296,400	-0,375	0,020	3,114
4	1230	-3366,400	-0,383	0,018	3,090
5	1230	-3366,400	-0,383	0,018	3,090
6	29300	24703,600	2,813	1,000	4,467
7	3500	-1096,400	-0,125	0,097	3,544
8	1250	-3346,400	-0,381	0,018	3,097
9	724	-3872,400	-0,441	0,000	2,860
10	1200	-3396,400	-0,387	0,017	3,079
média	4596,400				
desvio	8782,726				
minimo	724,000				
_maximo-29300,000					

- Distribuições e Histogramas, Médias, Desvio, etc
 - Variáveis Contínuas
 - Variáveis Discretas
- Normalizações
- Covariâncias/Correlações
 - Ausência de correlação não implica necessariamente em independência
 - Média
 - Desvio
 - Variância
 - Covariância

$$\overline{x} = \mu = \frac{1}{n} \sum_{i} x_{i}$$

$$\sigma = \sqrt{\frac{1}{n-1}} \sum_{i} (x_i - \overline{x})(x_i - \overline{x})$$

supondo notação média 0 vetorial

$$\sigma^{2} = \frac{1}{n-1} \sum_{i} (x_{i} - \overline{x})(x_{i} - \overline{x}) = \frac{1}{n-1} \sum_{i} (x_{i})(x_{i}) = \eta \mathbf{x}^{\mathsf{T}} \mathbf{x}$$

$$Cov = \frac{1}{n_{-} - 1} \sum_{i} (x_{i} - \overline{x})(y_{i} - \overline{y}) = \frac{1}{n_{-} - 1} \sum_{i} (x_{i})(y_{i}) = \eta \mathbf{x}^{\mathsf{T}} \mathbf{y}$$

Exemplos

- Abra houses.arff
- Analise pesos com e sem padronização
- Abra mnist_sample.arff
- Qual o efeito de binarização pro NaiveBayes?

Estatísticas sobre a matriz completa

- Base AHW_I.csv (Londres 2012)
 - Veja histogramas
 - ▶ Para cada atributo (sem classe)
 - Peso é dependente do sexo? (considere classe = sexo)
 - Veja correlações
 - Adicione novas variáveis
 - ▶ BMI = peso (Kg) * altura (m)^2 \rightarrow peso * (altura / 100)^2
 - Atletas são obesos?

Exemplos com Weka

Atletas são obesos?

Exemplos com Weka

Atletas são obesos?

Estatísticas sobre a matriz completa

- Base AHW_I.csv (Londres 2012)
 - Transformação
 - Classifique pelo total de medalhas (numérico -> nominal)
 - Caracterize dados ausentes
 - Atletas com peso ausente foram tomados de forma aleatória (por exemplo, em relação à altura)?
 - ▶ Elimine dados faltantes

Anomalias

- O que é?
 - Outlier longe da média
 - O vizinho mais distante
 - Quem produz o maior erro no modelo

Anomalias

O que é?

Outlier – Amplitude Interquartil

i	X	Quartil
I	102	
2	104	
3	105	QI
4	107	
5	108	
6	109	Q2 mediana
7	110	
8	112	
9	115	Q3
10	116	
П	118	

Anomalias

- O que é?
 - Outlier longe da média
 - O vizinho mais distante
 - Quem produz o maior erro no modelo
- Exemplo
 - Abra diabetes.arff
 - Qual o efeito de outliers e valores extremos para o J48 (com CVIO) nesse exemplo em particular?

Muitas variáveis

- ▶ Mais variáveis → Mais Informação (→ Mais ruído :/)
 - ▶ Ruído na variável → seleção
 - ▶ Ruído difuso → redução
- Como fazer?
 - Seleção: retire colunas
 - Grande escala, ruído caracteristicamente na variável!
 - Mais sobre isso no futuro...
 - Redução de Dimensão: reduza dimensões sem tirar colunas específicas
 - Grande escala, ruído difuso!
 - Álgebra à vista ;)

Muitas variáveis

- Redução de dimensionalidade
 - Dado N pontos e P atributos, dados podem ser representados com k < P atributos se
 - Atributos são constantes
 - Atributos são redundantes
 - Atributos só contribuem pra ruído (portanto, os que contribuem para variação dos dados são interessantes!)

Muitas variáveis

Principal Component Analysis (PCA)

- Ache k atributos alternativos (fatores) que podem ser usados para representar os dados
- Primeiro componente é o vetor que maximiza a variância dos dados projetados nele

 K-ésimo componente é o k-ésimo vetor de maior variância, ortogonal a todos os vetores anteriores

Observações

- Quantos K? Tantos quanto necessário para melhorar resultado ou até alcançar 95% da variância total
- ▶ PCA em matriz quadrada = SVD!!!
 - ► SVD mais geral → Fatoração Matricial. Muito usado em Recomendação

novo eixo

- Util para dados numéricos apenas
- Para muitas dimensões, transformação útil para visualização em 2D

PCA: aplicação em compressão de imagem

(a) 1 principal component

(b) 5 principal component

(c) 9 principal component

(d) 13 principal component

(e) 17 principal component

(f) 21 principal component

(g) 25 principal component

(h) 29 principal component

512x512

Conclusão

- Estude seu problema
- Garanta que o modelo não será alimentado com lixo
- É sempre bom saber usar ferramentas que facilitem a sua vida!

