NAME: Jinyi Xia STUDENT ID: 2021212057 CLASS NUMBER: 2021211802

# **ASSIGNMENT 1**

### 1 Exercise 1

When compiling the given statement, 7 tokens will be generated. The 1st token is the keyword int, the 2nd token is the identifier a3, the 3rd token is the operator =, the 4th token is the identifier a, the 5th token is the operator \*, the 6th token is the integer literal 3, and the 7th token is the delimiter;

# 2 Exercise 2

In a string of length n, there are

- 1. n+1 prefixes;
- 2. n-1 proper prefixes;
- 3. 1 prefix of length *m*;
- 4. 1 suffix of length *m*;
- 5. 1 (if  $m \neq n$ ) or 0 (if m = n) proper prefix of length m;
- 6.  $\frac{n(n+1)}{2} + 1$  substrings;
- 7.  $2^n$  subsequences.

## 3 Exercise 3

- 1.  $((\varepsilon|a)^*b^*)^*$  denotes the language of all strings over the alphabet  $\{a,b\}$ .
- 2.  $(a|b)^*a(a|b)(a|b)$  denotes the language of all strings over the alphabet  $\{a,b\}$  that end with aaa, aab, aba or abb.
- 3.  $a^*ba^*ba^*ba^*$  denotes the language of all strings over the alphabet  $\{a,b\}$  where character b appears exactly 3 times.

### 4 Exercise 4

- 1.  $86-0755-[1-9][0-9]^7$ ;
- 2.  $a(a|b)^*b$ ;

3. Let  $consonant \rightarrow (b|c|d|f|g|h|j|k|l|m|n|p|q|r|s|t|v|w|x|y|z)^*$ , the regular expression is consonant a consonant e consonant i consonant o consonant u consonant.

# 5 Optional Exercise 1

The DFA for the language of all strings over  $\Sigma$  without repeated letters is shown in fig. 1.



Figure 1: The DFA's transition diagram

According to the transition diagram, the regular expression for the language of all strings over  $\Sigma$  without repeated letters is

$$\begin{split} & (\varepsilon|a) \left( \varepsilon|b \right) \left( \varepsilon|c \right) | \\ & (\varepsilon|a) \left( \varepsilon|c \right) \left( \varepsilon|b \right) | \\ & (\varepsilon|b) \left( \varepsilon|a \right) \left( \varepsilon|c \right) | \\ & (\varepsilon|b) \left( \varepsilon|c \right) \left( \varepsilon|a \right) | \\ & (\varepsilon|c) \left( \varepsilon|a \right) \left( \varepsilon|b \right) | \\ & (\varepsilon|c) \left( \varepsilon|b \right) \left( \varepsilon|a \right). \end{split}$$