Funkcje tworzące – skrypt do zadań

Mateusz Rapicki, Piotr Suwara

20 maja 2012

1 Kombinatoryka

Definicja 1 (dwumian Newtona). $\binom{n}{k}$ dla liczb całkowitych nieujemnych n, k to liczba sposobów wybrania k elementów z n-elementowego zbioru.

Definicja 2 (silnia).
$$n! = n \cdot (n-1) \cdot ... \cdot 1$$
. $0! = 1$.

Twierdzenie 1. n! to liczba permutacji zbioru n-elementowego (liczba ustawień n elementów w rzędzie).

Twierdzenie 2.
$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$
 dla $0 \le k \le n$, $\binom{n}{k} = 0$ dla $n < k$.

Twierdzenie 3 (wzór dwumianowy).
$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$$

2 Liczby zespolone

2.1 Podstawy

Definicja 3. Liczby zespolone to zbiór $\mathbb{C} = \{a + bi : a, b \in \mathbb{R}\}$, gdzie i jest pewnym symbolem. Możemy je utożsamiać z punktami na płaszczyźnie, tj. a + bi utożsamiamy z punktem o współrzędnych (a, b). Definiujemy działania w taki sposób, że $i^2 = -1$:

- (a+bi) + (c+di) = (a+c) + (b+d)i
- $\bullet (a+bi)(c+di) = (ac-bd) + (ad+bc)i$

Definicja 4 (długość). Dla $z = a + bi \in \mathbb{C}$ definiujemy długość (moduł): $|z| = \sqrt{a^2 + b^2}$.

Definicja 5 (sprzężenie). Sprzężeniem liczby $z=a+bi\in\mathbb{C}$ nazwiemy liczbę $\bar{z}=a-bi\in\mathbb{C}$.

Twierdzenie 4. $z\bar{z} = |z|^2$

Twierdzenie 5. Liczbq odwrotną do a+bi jest $\frac{\bar{z}}{|z|^2}=\frac{a}{a^2+b^2}-\frac{b}{a^2+b^2}i.$

2.2 Postać biegunowa

Definicja 6 (postać biegunowa). Liczbę z = a + bi możemy zapisać w postaci $z = r(\cos \alpha + i \sin \alpha)$ dla r = |z| oraz $\alpha = \arctan \frac{b}{a}$.

Kat α nazywamy argumentem liczby z i oznaczamy Arg z.

W ten sposób możemy patrzeć na liczbę zespoloną z jako na wektor długości r=|z| nachylony pod katem α do dodatniej półosi rzeczywistej.

Twierdzenie 6. Jeśli $z = |z|(\cos \alpha + i \sin \alpha), w = |w|(\cos \beta + i \sin \beta), to zw = |z| \cdot |w| \cdot (\cos(\alpha + \beta) + i \sin(\alpha + \beta)).$

Czyli mnożenie liczb zespolonych to mnożenie ich długości oraz dodawanie ich argumentów.

Twierdzenie 7 (wzór de Moivre'a). $z = |z|(\cos \alpha + i \sin \alpha)$, $wtedy z^n = |z|^n(\cos n\alpha + i \sin n\alpha)$

2.3 Pierwiastki z jedności

Definicja 7. Pierwiastkiem z 1 stopnia n nazwiemy taką liczbę zespoloną z, że $z^n = 1$. Inaczej mówiąc, z jest pierwiastkiem wielomianu $P(x) = z^n - 1$.

Twierdzenie 8. Jeśli z jest pierwiastkiem z jedności stopnia n, to istnieje takie całkowite $0 \le k \le n-1$, że $z = \cos \frac{2k\pi}{n} + i \sin \frac{2k\pi}{n}$.

3 Pochodne

Definicja 8. Niech $f: \mathbb{R} \to \mathbb{R}, x_0 \in \mathbb{R}$. Wówczas, jeżeli istnieje granica $\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$ to nazywamy ją pochodną (albo różniczką) funkcji f w punkcie x_0 i oznaczamy $f'(x_0)$.

Zasadniczo, nie będziemy korzystać z tej definicji, lecz z kilku podstawowych własności pochodnych oraz znajomości pochodnych dla kilku ważnych funkcji. Często spotykany jest zapis (f(x))'. Zwykle oznacza on f'(x). f''(x) to druga pochodna f(x), to znaczy pochodna f'(x): f''(x) = (f'(x))'. Analogicznie, $f^{(n)}(x)$ to n-ta pochodna, czyli pochodna $f^{(n-1)}(x)$, gdzie $f^{(0)}(x) = f(x)$.

Twierdzenie 9 (podstawowe własności). Niech $f, g : \mathbb{R} \to \mathbb{R}, x, c \in \mathbb{R}$ oraz istnieją pochodne f'(x) oraz g'(x). Wówczas zachodzą następujące równości:

Liniowość pochodnej: $(f+g)'(x) = f'(x) + g'(x), \quad (c \cdot f)'(x) = c \cdot f'(x).$

Wzór na pochodną iloczynu: $(f \cdot g)'(x) = f'(x)g(x) + f(x)g'(x)$.

Wzór na pochodną ilorazu, prawdziwy o ile $g(x) \neq 0$: $\left(\frac{f}{g}\right)'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2}$. Wzór na pochodną złożenia: $(g \circ f)'(x) = g'(f(x)) \cdot f'(x)$.

Twierdzenie 10 (pochodne niektórych funkcji). $\forall_{\alpha \in \mathbf{R}}(x^{\alpha})' = \alpha x^{\alpha-1}$, o ile wyrażenie x^{α} ma sens

$$(e^x)' = e^x$$

$$\ln'(x) = \frac{1}{x}, o ile x > 0$$

$$\sin'(x) = \cos(x)$$

$$\cos'(x) = -\sin(x)$$

4 Funkcje tworzące

4.1 Definicja

Definicja 9 (funkcja tworząca). Funkcją tworzącą (szeregiem formalnym) ciągu (a_n) nazywamy szereg formalny $A(x) = \sum_{n \geq 0} a_n x^n$.

Definicja 10 (operacje na funkcjach tworzących). F(x) funkcja tworząca ciągu (f_n) , G(x) funkcja tworząca ciągu (g_n) . Dla uproszczenia zapisu niech $f_{-1} = f_{-2} = \ldots = 0 = g_{-1} = g_{-2} = \ldots$

- $\alpha F(x) + \beta G(x) = \sum_{n \ge 0} (\alpha f_n + \beta g_n) x^n$
- mnożenie: $F(x)G(x) = \sum_{n\geq 0} \left(\sum_{0\leq k\leq n} f_k g_{n-k}\right) x^n$
- różniczkowanie: $G'(x) = \sum_{n \ge 0} (n+1)g_{n+1}x^n$

4.2 Rozwijanie w szereg

Definicja 11 (funkcje analityczne). Funkcje analityczne to takie, które rozwijają się w szereg, tj. f(x) jest analityczna w otoczeniu x_0 , jeśli dla $x \in (x_0 - \varepsilon, x_0 + \varepsilon)$:

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots = \sum_{n \ge 0} \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n.$$

Mówimy wtedy, że funkcja rozwija się w szereg Taylora w x_0 . Jeśli $x_0 = 0$, to mamy szereg Maclaurina:

$$f(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \dots = \sum_{n \geqslant 0} \frac{f^{(n)}(0)}{n!}x^n.$$

Twierdzenie 11. Funkcje: stała, x^a (w tym wielomiany), wykładnicza e^x , logarytmiczna $\ln x$, funkcje trygonometryczne, są analityczne (tam, gdzie są dobrze określone).

Funkcje: odwrotna do analitycznej, suma funkcji analitycznych, iloczyn funkcji analitycznych, iloraz funkcji analitycznych, złożenie funkcji analitycznych są analityczne (tam, gdzie są dobrze określone).

Funkcje tworzące często wolimy analizować w *postaci zwartej*. Korzystając ze wzoru na szereg Maclaurina funkcji otrzymujemy m.in.:

Twierdzenie 12. • $\frac{1}{1-x} = \sum_{n \geqslant 0} x^n$

- $\ln(1+x) = \sum_{n \geqslant 1} \frac{(-1)^{n+1}}{n} x^n$
- $e^x = \sum_{x \geqslant 0} \frac{1}{n!} x^n$

5 Wielomiany

5.1 Podzielność

Definicja 12. Wielomian P(x) dzieli wielomian Q(x), jeśli istnieje taki wielomian R(x), że Q(x) = P(x)R(x).

Twierdzenie 13 (Bézout). Dla dowolnego a, jeśli P(x) to wielomian, to istnieje dokładnie jeden taki wielomian Q(x), że

$$P(x) = (x - a)Q(x) + P(a).$$

5.2 Rozkład w \mathbb{C}

Twierdzenie 14 (zasadnicze twierdzenie algebry). Każdy wielomian ma pierwiastek w \mathbb{C} , to znaczy dla każdego wielomianu P(x) istnieje takie $x_0 \in \mathbb{C}$, że $P(x_0) = 0$.

Z twierdzenia Bézout wynika, że jeśli $P(x_0) = 0$, to $P(x) = (x - x_0)Q(x)$ dla pewnego wielomianu Q(x). Następnie znajdujemy x_1 takie, że $Q(x_1) = 0$ i mamy $P(x) = (x - x_0)Q(x) = (x - x_0)(x - x_1)R(x)$. Kontynuując, otrzymujemy

Twierdzenie 15. Każdy wielomian rozkłada się na czynniki liniowe w \mathbb{C} , to znaczy dla każdego wielomianu P istnieją takie liczby $a, w_1, \ldots, w_n \in \mathbb{C}$, że $P(x) = a(x - w_1)(x - w_2) \ldots (x - x_n) = a \prod_{i=1}^{n} (x - w_i)$.

Uwaga 1. Powyższy rozkład jest jednoznaczny z dokładnością do kolejności czynników.

5.3 Pierwiastki

Definicja 13. Jeśli w jest pierwiastkiem P(x) oraz $P(x) = a \prod_{i=1}^{n} (x - w_i)$, to krotnością pierwiastka w jest liczba wystąpień w w ciągu w_1, \ldots, w_n . Równoważnie, k jest krotnością w, jeśli $P(x) = (x - w)^k Q(x)$ oraz $Q(w) \neq 0$.

Twierdzenie 16 (wzory Viete'a). Jeśli $P(x) = \sum_{k=0}^{n} a_k x^k = a_n \prod_{i=1}^{n} (x - w_n) \ dla \ a_n \neq 0$, to zachodzą równości:

$$\sum_{i=1}^{n} w_{i} = -\frac{a_{n-1}}{a_{n}}$$

$$\sum_{1 \leqslant i_{1} < i_{2} \leqslant n} w_{i_{1}} w_{i_{2}} = \frac{a_{n-2}}{a_{n}}$$

$$\vdots$$

$$\sum_{1 \leqslant i_{1} < \dots < i_{k} \leqslant n} w_{i_{1}} \dots w_{i_{k}} = (-1)^{k} \frac{a_{n-k}}{a_{n}}$$

$$\vdots$$

$$w_{1} w_{2} \dots w_{n} = (-1)^{n} \frac{a_{0}}{a_{n}}$$