DAÑO INDUCIDO POR FLUIDOS DE PERFORACIÓN Y COMPLETAMIENTO

Johanna Vargas Clavijo
Estudiante de Doctorado en Ingeniería – Sistemas Energéticos

Facultad de Minas
Universidad Nacional de Colombia -Sede Medellín
2018

CONTENIDO

1. Introducción

- Definiciones y conceptos principales
- Filtración y Radio de Invasión
- Variables que afectan la tasa de filtración

2. Ecuaciones y procesos

- Protocolos Experimentales
- Deducción de las ecuaciones

Introducción

Revoque Externo e Interno

Invasión de partículas sólidas

Zona invadida

Invasión de filtrado (emulsiones, cambios de humectabilidad, etc.)

Volumen de Filtrado Tasa de Filtración Espesor del Cake

Radio de Invasión (ft)

Profundidad (ft)

Radio de Invasión (ft)

Radio de Invasión (ft)

$$V_f = 2 * \pi * r_{dt} * h * (r_{dt} - r_w)$$

Radio de Invasión

$$V_f = 2 * \pi * r_{dt} * h * (r_{dt} - r_w)$$
 $V_f = \frac{1}{3} * \pi * h * (r_{dt}^2 + r_w^2 + (r_{dt} * r_w)) - \pi * r_w^2 * h$
Radio de Invasión

Cono Cilindro

Variables que afectan la tasa de filtración

Permeabilidad - Porosidad

Sobrebalance – Esfuerzos

Ecuaciones y Procesos

Pruebas Experimentales Construcción del Modelo

Resultados

Prueba de desplazamiento

Permeabilidad absoluta

Permeabilidad efectiva al aceite

Curvas de permeabilidad relativa

Saturación del medio

Daño por Fluido de Perforación

Prueba de desplazamiento

Daño por Fluido de Perforación

Permeabilidad efectiva al aceite - daño

Construcción del Modelo

$$V = C * t^{1/2}$$
 $C = dV/dt^{1/2}$ $dV = A * (K * P_{OB}) + B$

$$V = (A * (K * P_{OB}) + B) * t^{1/2}$$

Calculo Skin

$$S = \left(\frac{K_i}{K_d} - 1\right) \ln \frac{r_d}{r_w}$$

Construcción del Modelo

Construcción del Modelo

Database – Filtration Function

1 Parameter A y B

2 Experimental results

Project Management - Scenario

- 1 General Data: Formation, Field, etc.
- Profile: Depth vs K, Φ, Fracture, Swr

Average: K, Φ, Fracture, Swr

- 3 Drilling and Cementing Information
- 4 Define Filtration Functions

Results

- 1 Skin
- 2 Total invasion volume
- 3 Invasion radius

Profile and average: Drilling and Cementing Section

Drilling and Cementing Information: Total exposure time, Mud and slurry density, Pump rate.

Results

Highcharts.com

~

Drilling Phase

Maximum Calculated	Average Calculated	Total Invasion	Maximum Invasion	Average Invasion
Skin [-]	Skin [-]	Volume (bbl)	Radius (ft)	Radius (ft)
6.11	5.56	759.69	121.90	759.69

Cementing Phase

Maximum Calculated	Average Calculated	Total Invasion	Maximum Invasion	Average Invasion
Skin [-]	Skin [-]	Volume (bbl)	Radius (ft)	Radius (ft)
17.68	15.47	141.08	22.48	141.08

Agradecimientos

Ecopetrol – Equion – Hocol
Universidad Nacional
Gestores Técnicos
Profesores y estudiantes

¿Preguntas?

