Inductor Transient Analysis

Application Areas and Design Support

0201AF Wirewound Ferrite Beads

058 mm

Higher performance than other surface mount ferrite beads in the market.

CST2020 Current Sense Transformers

19.80 mm

Sensed current up to 40 A with a frequency range of 400 Hz to 1 MHz. 0402DC High Q Ceramic Chip Inductors

1.11 mm

Select from a total of 99 values ranging from 2.8 – 120 nH.

Application Areas and Design Support

RF Inductor Finder

- Use this tool to find the Coilcraft inductors best suited to your requirements
- Please use a period for decimals: 1.25 not 1,25

Inductance		Frequency		Q min	Current	DCR max	Body size	Length max	Height max	AEC-Q200	Optimize for	# Footprint # Q factor
L to option O µH ● nH	Lat frequency Lnominal	1	MHz		rms		0201 (0603) ^			Grade 1 (125°)	Move the most important	‡ SRF
		(1 - 3000 MHz)			OA @ mA	O Ω • mΩ	0302 (0805) 0402 (1005) ~	● mm ○ in	mm in	Grade 3 (85°)	factors to the	# Impedance
											top of the list	1 Price

Coilcraft LC Filter Designer Software

New in Version 3.4

Includes new **0402DF** high inductance, low DCR inductors

Links from Parts List to web pages

64- and 32-bit versions

- Design Low Pass Elliptic filters
- Select 3, 5, or 7 poles
- 50 Ohm terminations
- S-Parameter analysis in log and linear frequency scale
- Minimum capa inductor topok Power Inductor Finder
- Uses actual C Find all the power inductors that meet your exact requirements
- Search for the nominal inductance or the <u>actual inductance at your operating current</u>

Request	free i	Required Inputs					Optional Inputs				
		Inductance		Frequency	Current Ripple pk-pk		DCR max Length max		Height max	Construction	AEC-Q200
Download	64-b	to option pH O nH	Lat current L nominal	100 • kHz · MHz	A	40 % A	Ο Ω ● mΩ	● mm ○ in	• mm • in	✓ SMT ✓ Leaded	Grade 1 (125°) Grade 3 (85°)

FIND

RF Inductors – Examples SMT and PCB

Induced Voltage

- Recall:
 - A current carrying conductor produces a magnetic field
 - ☐ This field (strength) is linearly related to the current (amplitude) that created it
- A changing magnetic field can induce a voltage in a neighboring circuit. This voltage is proportional to the time rate of change of the current producing the field.

$$V_L(t) = L \frac{di}{dt}$$

Constant of proportionality

Example

Find V_L(t) for L = 4mH and the current waveform shown below

$$\frac{di}{dt} = \frac{10mA}{2ms} = 5A/s$$

$$\frac{di}{dt} = \frac{-10mA}{5ms} = -2A/s$$

$$\frac{di}{dt} = 0$$

$$0$$

$$\frac{di}{dt} = 0$$

$$0$$

$$1$$

$$10$$

$$\frac{di}{dt} = \frac{-10mA}{5ms} = -2A/s$$

$$\frac{di}{dt} = 0$$

$$0$$

$$1$$

$$10$$

$$\frac{di}{dt} = \frac{-10mA}{5ms} = -10mA$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$10$$

$$V_L(t) = L\frac{di}{dt} \qquad V_L = (4mH)\frac{5A}{s} \qquad V_L = (4mH)\frac{-2A}{s}$$

$$V_L = 20mV \qquad V_L = -8mV$$

Example – Resulting VI(t)

ICP

Given L = 200mH, find $V_L(t)$ for each region (1, 2, 3 and 4)

R-L Transients – What do we know?

$$V_L(t) = L \frac{di}{dt}$$

We can't change the current through an inductor instantaneously

R-L Transients - Qualitatively

$$t = 0^-$$

 $i_L(0^-) = 0A$, no initial current

$$t = 0^+$$

$$i_L(O^+) = OA$$

Therefore, L_1 acts like an open circuit at $t = 0^+$

and
$$V_L(0^+) = E_1$$

R-L Transients - Qualitatively

$$i_L(\infty) = \frac{E_1}{R_1}$$

$$L_{\text{1}} \text{ acts like a short circuit at } t = \infty$$

$$V_L(\infty) = 0V$$

R-L Transients – Qualitative Summary

$$i_L(0^+) = 0A \text{ and } V_L(0^+) = E_1$$

$$i_L(\infty) = \frac{E_1}{R_1}$$
$$V_L(\infty) = 0V$$

$$V_L(\infty) = 0V$$

R-L Transients – Transient Phase: i_L(t)

$$i_L(t) = \frac{E_1}{R_1} \left(1 - e^{-t/\tau} \right) A,$$

$$\tau = \frac{L_1}{R_1}$$

R-L Transients – Transient Phase: i_L(t)

Ŋ

R-L Transients – Transient Phase: VL(t)

$$KVL : E_1 - V_R(t) - V_L(t) = 0$$

$$V_L(t) = E_1 - V_R(t)$$

$$= E_1 - R_1 \cdot i_L(t)$$

$$= E_1 - R_1 \frac{E_1}{R_1} \left(1 - e^{-t/\tau} \right)$$

$$= E_1 - E_1 \left(1 - e^{-t/\tau} \right)$$

$$= E_1 - E_1 + E_1 \cdot e^{-t/\tau}$$

$$V_L = E_{
m l} e^{-t/ au}$$
 V, $au = rac{L_{
m l}}{R_{
m l}}$

N

R-L Transients – Transient Phase: VL(t)

