Tableaux de contingence

25 septembre 2019

Ce laboratoire doit être remis le **2 octobre à 17h sur Moodle**. Dans votre réponse pour chaque question, veuillez inclure une copie du code R utilisé (s'il y a lieu) et des résultats obtenus.

1. Sélection florale d'une espèce de bourdon

En suivant l'activité de butinage de bourdons fébriles (*Bombus impatiens*) sur un site, vous notez le nombre de visites des bourdons sur quatre genres de plantes, ainsi que la proportion des fleurs de chaque genre sur le site.

Genre	Nombre de visites	Proportions des fleurs du site
Rubus	8	0.12
Solidago	8	0.24
Trifolium	18	0.33
Vaccinium	11	0.31

L'hypothèse nulle pour cette étude est que B. impatiens visite chaque genre proportionnellement à sa prévalence sur le site.

- a) Selon l'hypothèse nulle, quelles sont les fréquences attendues pour les visites à chaque genre de plante?
- b) Testez l'hypothèse nulle avec la fonction chisq.test dans R, avec un seuil de signification de 5%. Si l'hypothèse nulle est rejetée, quel(s) genre(s) sont plus ou moins visités que prévus?

2. Butinage de trois espèces de bourdon

Sur le même site que l'exercice précédent, vous observez l'activité de butinage de deux autres espèces de bourdons (*B. affinis* et *B. ternarius*). Voici le tableau de contingence montrant le nombre de visites par espèce de bourdon et par genre de plante.

	Rubus	Solidago	Trifolium	Vaccinium
B. affinis	10	9	15	8
B. impatiens	8	8	18	11
B. ternarius	20	4	6	5

- a) Quelle hypothèse nulle pouvez-vous tester à partir de ce tableau? Quelle est l'hypothèse alternative?
- b) Créez une matrice représentant ce tableau dans R, puis testez l'hypothèse nulle mentionnée en (a) avec la fonction chisq.test, avec un seuil de signification de 5%.
- c) D'après les résultats du test en (b), quel est le nombre de degrés de liberté du χ^2 ? Comment cette valeur est-elle calculée?
- d) Comment pouvez-vous consulter les fréquences attendues selon l'hypothèse nulle, ainsi que les résidus?
- e) Si l'hypothèse nulle est rejetée, quelle paire bourdon-plante a le résidu le plus positif, et laquelle a le résidu le plus négatif? Comment interprétez-vous ces résidus?

3. Applications du χ^2

Voici trois questions de foresterie urbaine. Pour la quelle de ces questions le test du χ^2 est-il le plus approprié? Justifiez votre réponse.

- a) Est-ce que l'âge moyen des arbres dans différents quartiers d'une ville augmente avec l'âge moyen des maisons du quartier?
- b) Est-ce que la distribution des espèces d'arbres plantés diffère entre les quartiers?
- c) La présence d'un grand arbre affecte-t-elle le coût en énergie d'une maison?