Computational Learning Theory

D.M.J. Tax

Contents

- PAC learning, the definitions
- Example: Rectangle Learning
- Discrete hypothesis space and Consistent learners
- Continuous hypothesis space: VC-dimension
- 'No Free Lunch' theorem
- Weak/strong learning
- Boosting
- AdaBoost

PAC learning

- Probably Approximately Correct: PAC
- Here: restricted to boolean valued concepts from noise-free training data (often discrete features, although it can be extended...)
- Goal: learn a concept c from instances randomly drawn from prob.distribution D using learner L.

PAC learning

- X: instance space (all possible instances)
- C: set of target concepts that may have to be learned
- ullet c: a concept, a subset of X $c: X \rightarrow \{0,1\}$
- D: probability distribution over instances x.
- H: possible hypotheses used for approximating the concept c (H should include C)
- L: learner that selects a hypothesis h given a random sample of instances drawn according to D
- error: $\operatorname{error}_D(h) = Pr_{x \in D} \left[c(x) \neq h(x) \right]$

where $Pr_{x \in D}$ excludes objects used in training h.

PAC error

- There is a (hidden) concept
- There is given training data (3 positive, 3 negative)

PAC error

- Here the true error is non-zero, although h and c agree on all six training instances (training error = 0).
- How probable is it that the observed training error gives a misleading estimate of the true error?

PAC learnable

• Characterise target concepts that can be reliably learned from (1) a 'reasonable' number of (randomly drawn) training examples and (2) a 'reasonable' amount of computation.

PAC learnable

- Characterise target concepts that can be reliably learned from (1) a 'reasonable' number of (randomly drawn) training examples and (2) a 'reasonable' amount of computation.
- Sometimes we have an unlucky draw of examples
- With finite number of training examples there are hypotheses that work identical on the training examples: how to choose?
- We will not demand zero error, but an arbitrarily small error (approximately correct)
- We will not demand small error on all training sets, but that the failure is bounded (probably correct)

Probably Approximately Correct (PAC)

PAC learnable

 Characterize target concepts that can be reliably learned from (1) a 'reasonable' number of (randomly drawn) training examples and (2) a 'reasonable' amount of computation.

 We will not demand small error on all training sets, but that the failure is bounded (probably correct)

Probably Approximately Correct (PAC)

• C is PAC-learnable by L using H if for all c, distribution D, the learner L will with probability at least $(1-\delta)$ output a hypothesis h such that $\mathrm{error}_D(h) \leq \varepsilon$ in time/samples that is polynomial in $1/\varepsilon$, $1/\delta$, $\mathrm{size}(c)$, dimensionality n

- ullet Learn an axis-parallel rectangle R from + and examples in \mathbb{R}^2
- Examples are randomly drawn from D
- Adapt hypothesis rectangle R' to approximate R

- The error of R' is $(R-R') \cup (R'-R)$
- What learning strategy to use so we can efficiently learn it?...

- Use the 'tightest fit rectangle' (definition of L!): R'
- We make still an error on the test set: R' is always contained in R
- Can we analyse the error? We can split the error in four strips (shown one in orange: T').

- What is the prob. the learner has error larger than ε ?
- Now define a new strip, T
- \bullet Strip T is 'grown' such that it covers $\varepsilon/4$ of the prob.mass (for given ε)
- Now T may cover T' or may not cover T'

If T covers T' and that holds for all strips, then the error

$$P[\text{error}] = P[\text{yellow}] \le P[T_1] + P[T_2] + P[T_3] + P[T_4]$$

= $4(\varepsilon/4) = \varepsilon$

- Can we now estimate the probability that T does not cover T' (that the error exceeds ε)?
- Can we show that, with sufficient number of training samples, R' will always be so large that T covers T'? And how many training samples then?

 T would have covered T' when none of the positive samples would have hit area T

$$P[\operatorname{random} x \text{ hits } T] = \varepsilon/4$$

$$P[\operatorname{random} x \text{ missed } T] = 1 - \varepsilon/4$$

$$P[m \operatorname{random} x' \text{s miss } T] = (1 - \varepsilon/4)^m$$

(union bound)

We have 4 strips, so

 $P[m \operatorname{random} x' \operatorname{s} \operatorname{miss} \operatorname{any} T \operatorname{s}] = P[\operatorname{miss} T_1] \operatorname{or} P[\operatorname{miss} T_2] \operatorname{or} \dots$ So the probability that our R' has an error larger $\leq 4(1-\varepsilon/4)^m$

• So, the probability that our R' has an error larger than ε is something we want to bound:

 $P[R' \text{ has larger error than } \varepsilon] \leq 4(1 - \varepsilon/4)^m < \delta$

Union bound

• For a countable number of events A1,A2,... the probability that **at least one** of the events happens, is no greater than the sum of the probabilities of the individual events:

$$P(\bigcup_{i} A_i) = P(A_1 \text{ or } A_2 \text{ or...}) \le \sum_{i} P(A_i)$$

If the events are mutually exclusive, then the equality holds

Rectangle learning

• Now we want to bound the chance that our R' makes an error larger than ε by δ

$$4(1-\varepsilon/4)^m < \delta$$

• Now use: $e^{-x} \ge (1-x)$

and we obtain: $4e^{-m\varepsilon/4} \ge 4(1-\varepsilon/4)^m$

• So instead we can demand: $4e^{-m\varepsilon/4} < \delta$

$$-m\varepsilon/4 < \log(\delta/4)$$
$$m\varepsilon/4 > \log(4/\delta)$$

This R' is PAC learnable!

$$m > (4/\varepsilon) \log(4/\delta)$$

More 'interpretation'...

- When I get a few training samples
- then the true error of R' may still be anything
- ... in particular when m is small.

More interpretation...

- When I get more samples, my error tends to become smaller
- But still, I may be unlucky

More interpretation...

• But still, I may be unlucky: for all errors I still have some probability δ that my classifier R' actually is worse than that (red area)

'Conclusion'

- So the general question in Learning Theory is: How many samples m do I need such that my learner L gives a classifier with small error?
- Is the number of samples m 'reasonable' (i.e. not too large)?

Special case: Discrete Hypothesis spaces and Consistent learners

Consistent learner

 The Version Space is the collection of all consistent hypotheses (zero error on training set S, test error can be anything)

Consistent learner has zero error on training set

E-exhausted version space

 The Version Space is the collection of all consistent hypotheses (zero error on training set S, test error can be anything)

• In an ε -exhausted version space, all hypotheses have an error smaller than ε on the test set. GOOD!

When not exhausted?

- What is the probability that the version space is not ε -exhausted?
- Assume there are k hypotheses with error larger than ε
- We fail to exhaust the version space if any of these hypotheses is consistent with our training sample (with m training objects)
- The probability that a hypothesis with error larger than ε is consistent with m objects is at most $(1-\varepsilon)^m$

The probability is...

- Given k hypotheses with error $> \varepsilon$, the probability that at least one of them is consistent with all m training examples is at most: $k(1-\varepsilon)^m$ (union bound)
- Obviously $k \leq |H|$ and using $(1-x) \leq e^{-x}$

$$k(1-\varepsilon)^m \le |H|(1-\varepsilon)^m \le |H|e^{-\varepsilon m}$$

Which means...

- Given k hypotheses with error $> \varepsilon$, the probability that at least one of them is consistent with all m training examples is at most: $k(1-\varepsilon)^m$
- Obviously $k \leq |H|$ and using $(1-x) \leq e^{-x}$

$$k(1-\varepsilon)^m \le |H|(1-\varepsilon)^m \le |H|e^{-\varepsilon m}$$

• So when we want to bound the chance of having a failure: $|H|e^{-\varepsilon m}<\delta$

we need:
$$m \geq \frac{1}{\varepsilon} \left(\ln |H| + \ln(1/\delta) \right)$$

Consistent learners

- We found a very general bound for ANY consistent learner: $m \geq \frac{1}{\varepsilon} \left(\ln |H| + \ln(1/\delta) \right)$
- It depends on the (log of the) size of the hypothesis space
- This number m of training examples is sufficient to assure that any consistent hypothesis will be probably (with prob. (1δ)) approximately (within error ε) correct.
- Note that we assumed consistent algorithms: zero training error in a discrete feature space...

VC-dimension

- We discussed discrete feature spaces and hypothesis spaces with zero class overlap (the learner can perfectly learn the concept)
- Inconsistent learners are also possible (weak learners, later in lecture): the bounds gets less tight
- More class overlap is possible, but too much for this lecture...
- What if we use continuous feature/hypotheses spaces?
- We have seen it in the Pattern Recognition course:
 Vapnik-Chervonenkis dimension

Bounding the true error_(Copied from the PR course)

With probability at least $1-\eta$ the inequality holds:

$$\varepsilon \le \varepsilon_A + \frac{\mathcal{E}(N)}{2} \left(1 + \sqrt{1 + \frac{\varepsilon_A}{\mathcal{E}(N)}} \right)$$

where

$$\mathcal{E}(N) = 4 \frac{h(\ln(2N/h) + 1) - \ln(\eta/4)}{N}$$

V. Vapnik, Statistical learning theory, 1998

 When h is small, the true error is close to the apparent error

TUDelft

VC-dimension and samples

 When you have the VC-dimension of a learner L, then holds:

$$m \geq c_0 \left(\frac{1}{\varepsilon} \log \frac{1}{\delta} + \frac{h}{\varepsilon} \log \frac{1}{\varepsilon} \right)$$
 (similar to the discrete feature continuous feature space) space)

- ullet This VC-dimension is the analogue of |H|
- Similarly, also lower bounds on the number of training samples can be given.
- Only bounds/approximations on the VCdimension are known for most classifiers

'No Free Lunch Theorem'

- There are **no** context-independent reasons to favor one learner over another (Wolpert, 1996)
- Averaged over all possible problems, all learners have the same average performance
- So when one algorithm seems to outperform another, it just fits the problem better, and it does not mean that the one algorithm is inherently better
- Claims in literature that this procedure/ algorithm performs 'best' overall should be considered with some care...

No free lunch...

• Assume we have a discrete feature space (with size |X|), then we need for a consistent learner that the number of samples m:

$$m \ge \frac{1}{\varepsilon} \left(\ln|H| + \ln(1/\delta) \right)$$

- But assume then that **ALL** possible hypotheses are allowed: $|H| = 2^{|X|}$
- For a discrete binary feature space with n features: $|X| = 2^n$
- The number of training examples grows exponentially: $m \geq \frac{1}{c} \left(2^n \ln 2 + \ln(1/\delta) \right)$ learnable

Conclusions

- General statements can be made about the number of required training objects, but additional (strong) assumptions on the feature space or hypothesis space have to be made
- Bounds can be given, but are often very loose (and not always easy to interpret)
- Sometimes constructive algorithms are invented (AdaBoost, Support Vector Machines)
- Averaged over all problems, all methods are equally good

Weak/strong learners

- PAC learning requires that the error ε can be arbitrarily small, and the confidence $1-\delta$ can be set arbitrarily high.
- What if we have a **weak** learner that has a **fixed** error ε_0 and confidence $1 \delta_0$?
- Magically, it appears that there is an algorithm that can use the weak learner to boost it to a full PAC learner (a **strong** learner)
- It also means that PAC learning is very general: the demands on the learner do not have to be that strict (you can always boost it)

Original boosting

- The original idea: resample original data D such that more difficult objects are used to train 2 additional (weak) learners
- The collection of (3) weak learners predict the final label by majority voting
- Later versions do not resample the training set, but split the feature space, or introduce other combinations of weak learners

- Inspired by boosting a weak classifier to a strong one: Adaptive Boosting
- My explanation starts from assumptions on (1) the model, and (2) the error function. The (PAC) theory is not needed in the derivation.
- Assumption 1: the model is linear additive:

$$F_K(\mathbf{x}) = \sum_{k=1}^{K-1} \alpha_k f_k(\mathbf{x}) + \alpha_K f_K(\mathbf{x})$$
 where

$$f_i(\mathbf{x}) = \pm 1$$

and α_i are weights.

(binary outputs!)

• Assumption 2: the loss/error on a training set is measured by: N

$$L = \sum_{i=1}^{N} \exp\left(-y_i F_K(\mathbf{x}_i)\right)$$

- To optimize both the weak classifiers $f_i(\mathbf{x})$ and the weights α_i is an open problem
- Instead, do it incrementally:

$$F_K(\mathbf{x}) = \sum_{k=1}^{K-1} \alpha_k f_k(\mathbf{x}) + \alpha_K f_K(\mathbf{x})$$

- To optimize both the weak classifiers $f_i(\mathbf{x})$ and the weights α_i is an open problem
- Instead, do it incrementally:

- To optimize both the weak classifiers $f_i(\mathbf{x})$ and the weights α_i is an open problem
- Instead, do it incrementally:

Minimize L:

$$L = \sum_{i=1}^{N} \exp\left(-y_i \left[\sum_{k=1}^{K-1} \alpha_k f_k(\mathbf{x}_i) + \alpha_K f_K(\mathbf{x}_i)\right]\right)$$

TUDelft

Delft University of Technology

$$L = \sum_{i=1}^{N} \exp\left(-y_i \left[\sum_{k=1}^{K-1} \alpha_k f_k(\mathbf{x}_i) + \alpha_K f_K(\mathbf{x}_i)\right]\right)$$

$$= \sum_{i=1}^{N} \exp\left(-y_i \sum_{k=1}^{K-1} \alpha_k f_k(\mathbf{x}_i)\right) \exp\left(-y_i \alpha_K f_K(\mathbf{x}_i)\right)$$

$$= \sum_{i=1}^{N} w_i \exp\left(-y_i \alpha_K f_K(\mathbf{x}_i)\right)$$

 Now distinguish correctly and incorrectly classified objects:

$$y_i f_K(\mathbf{x}_i) = 1 \longrightarrow \mathbf{x}_i \in C_K \quad \text{(correct)}$$

 $y_i f_K(\mathbf{x}_i) = -1 \longrightarrow \mathbf{x}_i \in W_K \quad \text{(wrong)}$

TUDelft

Delft University of Technology

$$\begin{split} L &= \sum_{i=1}^{N} w_i \exp(-\alpha_K y_i f_K(\mathbf{x}_i)) & \text{(definition)} \\ &= \sum_{C_K} w_i \exp(-\alpha_K) + \sum_{W_K} w_i \exp(\alpha_K) \text{ (previous page)} \\ &= \sum_{i=1}^{N} w_i \exp(-\alpha_K) - \sum_{W_K} \sup_{i \in S_K} \exp(-\alpha_K) + \sum_{i \in S_K} \sup_{i \in S_K} \exp(\alpha_K) \\ &= \sum_{i=1}^{N} w_i \exp(-\alpha_K) + \sum_{W_K} w_i \exp(\alpha_K) - \exp(-\alpha_K) \\ &= \sum_{i=1}^{N} w_i \exp(-\alpha_K) + \sum_{W_K} w_i \exp(\alpha_K) - \exp(-\alpha_K) \\ &= \sum_{i \in S_K} w_i \exp(-\alpha_K) + \sum_{i \in S_K} w_i \exp(\alpha_K) - \exp(-\alpha_K) \\ &= \sum_{i \in S_K} w_i \exp(-\alpha_K) + \sum_{i \in S_K} w_i \exp(\alpha_K) - \exp(-\alpha_K) \\ &= \sum_{i \in S_K} w_i \exp(-\alpha_K) + \sum_{i \in S_K} w_i \exp(\alpha_K) - \exp(-\alpha_K) \\ &= \sum_{i \in S_K} w_i \exp(-\alpha_K) + \sum_{i \in S_K} w_i \exp(\alpha_K) - \exp(-\alpha_K) \\ &= \sum_{i \in S_K} w_i \exp(-\alpha_K) + \sum_{i \in S_K} w_i \exp(\alpha_K) - \exp(-\alpha_K) \\ &= \sum_{i \in S_K} w_i \exp(-\alpha_K) + \sum_{i \in S_K} w_i \exp(\alpha_K) - \exp(-\alpha_K) \\ &= \sum_{i \in S_K} w_i \exp(-\alpha_K) + \sum_{i \in S_K} w_i \exp(\alpha_K) - \exp(-\alpha_K) \\ &= \sum_{i \in S_K} w_i \exp(-\alpha_K) + \sum_{i \in S_K} w_i \exp(\alpha_K) - \exp(-\alpha_K) \\ &= \sum_{i \in S_K} w_i \exp(-\alpha_K) + \sum_{i \in S_K} w_i \exp(\alpha_K) - \exp(-\alpha_K) \\ &= \sum_{i \in S_K} w_i \exp(-\alpha_K) + \sum_{i \in S_K} w_i \exp(\alpha_K) - \exp(-\alpha_K) \\ &= \sum_{i \in S_K} w_i \exp(-\alpha_K) + \sum_{i \in S_K} w_i \exp(\alpha_K) - \exp(-\alpha_K) \\ &= \sum_{i \in S_K} w_i \exp(-\alpha_K) + \sum_{i \in S_K} w_i \exp(\alpha_K) - \exp(-\alpha_K) \\ &= \sum_{i \in S_K} w_i \exp(-\alpha_K) + \sum_{i \in S_K} w_i \exp(\alpha_K) - \exp(-\alpha_K) \\ &= \sum_{i \in S_K} w_i \exp(-\alpha_K) + \sum_{i \in S_K} w_i \exp(-\alpha_K) - \exp(-\alpha_K) \\ &= \sum_{i \in S_K} w_i \exp(-\alpha_K) + \sum_{i \in S_K} w_i \exp(-\alpha_K) \\ &= \sum_{i \in S_K} w_i \exp(-\alpha_K) + \sum_{i \in S_K} w_i \exp(-\alpha_K) \\ &= \sum_{i \in S_K} w_i \exp(-\alpha_K) + \sum_{i \in S_K} w_i \exp(-\alpha_K) \\ &= \sum_{i \in S_K} w_i \exp(-\alpha_K) + \sum_{i \in S_K} w_i \exp(-\alpha_K) \\ &= \sum_{i \in S_K} w_i \exp(-\alpha_K) + \sum_{i \in S_K} w_i \exp(-\alpha_K) \\ &= \sum_{i \in S_K} w_i \exp(-\alpha_K) + \sum_{i \in S_K} w_i \exp(-\alpha_K) \\ &= \sum_{i \in S_K} w_i \exp(-\alpha_K) + \sum_{i \in S_K} w_i \exp(-\alpha_K) \\ &= \sum_{i \in S_K} w_i \exp(-\alpha_K) + \sum_{i \in S_K} w_i \exp(-\alpha_K) \\ &= \sum_{i \in S_K} w_i \exp(-\alpha_K) + \sum_{i \in S_K} w_i \exp(-\alpha_K) \\ &= \sum_{i \in S_K} w_i \exp(-\alpha_K) + \sum_{i \in S_K} w_i \exp(-\alpha_K) \\ &= \sum_{i \in S_K} w_i \exp(-\alpha_K) + \sum_{i \in S_K} w_i \exp(-\alpha_K) \\ &= \sum_{i \in S_K} w_i \exp(-\alpha_K) + \sum_{i \in S_K} w_i \exp(-\alpha_K) \\ &= \sum_{i \in S_K} w_i \exp(-\alpha_K) + \sum_{i \in S_K} w_i \exp(-\alpha_K) \\ &= \sum_{i \in S_K} w_i \exp(-\alpha_K) + \sum_{i \in S_K} w_i \exp(-\alpha_K) \\ &= \sum_{i \in S_K} w_i \exp(-\alpha_K) + \sum_{$$

ullet To minimize w.r.t. f_K

$$L = \sum_{i=1}^{N} w_i \exp(-\alpha_K) + \sum_{i=1}^{N} w_i \left(\exp(\alpha_K) - \exp(-\alpha_K) \right) \mathcal{I}(f_K(\mathbf{x}_i) \neq y_i)$$
we should minimize $\varepsilon_K = \sum_{i=1}^{N} w_i \mathcal{I}(f_K(\mathbf{x}_i) \neq y_i)$

• Or, in other words, we should find a classifier f_K that minimizes the error where each object is re-weighted by:

$$w_i = \exp\left(-y_i \sum_{k=1}^{K-1} \alpha_k f_k(\mathbf{x}_i)\right)$$

(how bad was x_i classified by the previous F_{K-1})

- Ok, so the classifier should minimize the weighted error, what about the weight α_K ?
- Take derivative of the loss with respect to α_K and set it to zero:

$$\frac{\partial L}{\partial \alpha_K} = -\exp(-\alpha_K) \sum_{i=1}^N w_i + (\exp(\alpha_K) + \exp(-\alpha_K)) \, \varepsilon_K = 0$$
 where:
$$\varepsilon_K = \sum_{i=1}^N w_i \mathcal{I}(f_K(\mathbf{x}_i) \neq y_i)$$
 • Solving it:
$$\sum_{i=1}^N w_i = (\exp(2\alpha_K) + 1) \, \varepsilon_K$$

$$\alpha_K = \frac{1}{2} \log \left(\frac{\sum_i w_i}{\varepsilon_K} - 1 \right)$$

- 1. Give each object a weight $w_i = 1$
- 2. Train a classifier that minimizes the weighted error: $\sum_{N=0}^{N}$

 $\varepsilon_K = \sum w_i \mathcal{I}(f_K(\mathbf{x}_i) \neq y_i)$

3. Compute the weight of the classifier:

$$\alpha_K = \frac{1}{2} \log \left(\frac{\sum_i w_i}{\varepsilon_K} - 1 \right)$$

4. Compute the new object weights:

$$w_i = \exp\left(-y_i \sum_{k=1}^K \alpha_k f_k(\mathbf{x}_i)\right)$$

5. If K not large enough, go to 2, else we're done:

$$F_K(\mathbf{x}) = \sum_{k=1}^K \alpha_k f_k(\mathbf{x})$$

Delft University of Technology

- Use a simple decision stump for weak classifier
- Compute α_K and reweigh each object using

Machine Learning, computational learning theory

49

- Train a new decision stump on reweighted objects
- Recompute α_K and w_i
- Repeat and repeat...

50

• Finally, we end up with:

TUDelft

Delft University of Technology

Conclusions

- PAC learning: theoretical bounds on errors, required sample sizes
- Bounds are hard to get, and not very tight
- Useful by-product: AdaBoost

