BÀI 6. MODELSIM VÀ TESTBENCH

1. Mục tiêu

Thông qua bài thực hành này, sinh viên sẽ hiểu rõ:

- Cách xây dựng testbench để khởi tạo dữ liệu đầu vào và kiểm tra kết quả đầu ra của các khối phần cứng.
- Cách sử dụng công cụ Modelsim để mô phỏng các khối phần cứng.

2. Phần lý thuyết

Trong bài thực hành này, sinh viên sẽ tìm hiểu cách mô phỏng bộ đếm 4 bits – counter4bits.

2.1. Tổng quan mô đun thiết kế

Các tín hiệu của mô đun Counter4bits được mô tả ở hình 1 và bảng 1.

Hình 1. Tín hiệu của mô đun Counter4bits.

Bảng 1. Bảng mô tả các tính hiệu của mô đun Counter4bits.

STT	Tên tín hiệu	Độ rộng	Hướng	Mô tả
		(bits)		
1	iClk	1	Input	Cấp xung clock cho mô đun hoạt động.
2	iReset_n	1	Input	Cấp tín hiệu reset mức thấp cho mô đun.
3	iEnable	1	Input	Nếu iEnable = 1, mô đun được phép hoạt
				động. Ngược lại, iEnable = 0, mô đun
				không hoạt động.
4	iClear	1	Input	Nếu iClear = 1, mô đun xóa giá trị đếm
				đang được lưu trữ.

5	iUp_down	1	Input	Nếu iUp_down = 1, mô đun đếm lên.
				Nếu iUp_down = 0, mô đun đếm xuống.
6	iInitialValue	4	Input	Giá trị khởi tạo ban đầu.
7	oData	4	Output	Giá trị đếm đầu ra.

2.2. Code verilog mô tả mô đun Counter4bits

```
module (
    input
                         iClk,
    input
                         iReset_n,
    input
                         iEnable,
    input
                         iClear,
                         iUp_down,
    input
    input
                [3:0]
                         iInitialValue,
    output reg [3:0]
                         oData
);
always @(posedge iClk, negedge iReset_n)
begin
  if(~iReset_n)
  begin
      oData <= 3'd0;
  end
  else if(iClear)
  begin
      oData <= iInitialValue;</pre>
  else if(iEnable & iUp_down)
  begin
      oData <= oData + 1'b1;
  end
  else if(iEnable & ~iUp_down)
  begin
      oData <= oData - 1'b1;
  end
end
endmodule
```

2.3. Xây dựng testbench cho Counter4bits

```
`timescale 1ns/1ps
module counter4bits_tb();
reg clk;
reg reset_n;
reg enable;
```

```
reg clear;
reg up_down;
reg [3:0] initial_value;
wire [3:0] count value;
// Initialize clk signal
parameter PERIOD = 10; // 50 MHz clock
parameter PERIODx20 = (20 * PERIOD);
parameter PERIODx40 = (40 * PERIOD);
parameter PERIODx100 = (100 * PERIOD);
initial
begin
   clk <= 1'b0;
  forever # (PERIOD) clk <= ~clk;</pre>
end
// Initialize reset n signal
initial
begin
   reset_n <= 1'b0;
  #(PERIODx20)// reset_n is asserted in 10 clocks
  @(negedge clk) reset_n <= 1'b1;</pre>
end
// Initialize clear, enable, up down signal
initial
begin
   clear <= 1'b0;
   enable <= 1'b0;
   up down \leftarrow 1'b0;
   #(PERIODx40) clear <= 1'b1;</pre>
   @(negedge clk) clear <= 1'b0;
  up_down <= 1'b1;
   #(PERIODx40) enable <= 1'b1;</pre>
  #(PERIODx100) up_down <= 1'b0;</pre>
  #(PERIODx100) enable <= 1'b0;</pre>
end
// Initialize initial_value
```

```
initial
begin
   initial_value <= 4'h3;</pre>
end
Counter4bits COUNTER4BITS (
   // Inputs
   .iClk (clk),
   .iReset_n (reset_n),
   .iEnable (enable),
   .iClear (clear),
   .iUp_down (up_down),
   .iInitialValue (initial_value),
   // Outputs
   .oData(count_value)
);
endmodule
```

3. Phần thực hành

3.1. Mô phỏng Counter4bits dùng công cụ ModelSim dưới dạng waveform

- Trong công cụ Modelsim, chọn File → New → Project ... → đặt tên project là Bai6 và đường dẫn lưu project theo: D:/Bai6. Lưu ý: đường dẫn lưu project phải không được chứa khoảng trắng → OK.
- Trong cửa sổ Add items to the Project → chọn Add Existing File (hình 2) → add 2 files Counter4bits.v và Couter4bits_tb.v → OK → Close.

Hình 2. Cửa sổ Add items to Project.

- Chọn Compile → Compile All. Quan sát cửa sổ Transcript để kiểm tra biên dịch có lỗi hay không.
- Chuyển sang tab Library, mở mục work và nhấn đúp chuột vào counter_4bits_tb

như hình 4.

Hình 3. Chuyển sang tab Library

Trong cửa sổ sim, chọn COUNTER4BITS. Ở cửa sổ objects, chọn tín hiệu như hình 4 rồi bấm tổ hợp phảm Ctrl + W để thêm tín hiệu vào cửa sổ Wave.

Hình 4. Cửa sổ sim và objects.

O Sau khi thêm tín hiệu, ta có kết quả ở cửa sổ Wave như hình 5.

Hình 5. Cửa số Wave.

 Trong cửa sổ Wave, gõ 1 ms vào ô thời gian và click Run dể chạy chương trình mô phỏng, hình 6. Quan sát dạng sóng xuất hiện trên cửa sổ Wave.

Hình 6. Kết quả mô phỏng.

BÀI TẬP CHUẨN BỊ Ở NHÀ

Bài. Dựa vào tài liệu tham khảo [1] và [2] , hãy cho biết ý nghĩa các biểu tượng sau trong Modelsim.

BÁO CÁO TRÊN LỚP

- Bài 1. Tiến hành mô phỏng như bài hướng dẫn thực hành.
- Bài 2. Tiến hành mô phòng quá trình đọc ghi 3 thanh ghi của mô đun Compute (Bài 4).

TÀI LIỆU THAM KHẢO

- [1] Modelsim Advanced Verification and Debugging Altera Tutorial.
- [2] Modelsim Tutorial.