

Lista de Exercícios - Flip Flops

1) Para cada circuito:

- Indique o tipo de Flip-Flop, JK, D ou T.
- Indique qual a forma de ativação do sinal de sincronismo C CLK.
- · Levante a Tabela Funcional.
- Faça o diagrama de tempo para as saídas indicadas indicados a operação realizada em cada momento que o FF leu suas entradas sincronas.
- IMPORTANTE: CONSIDERE INICIALMENTE Q = 1 (um).

1a)

Descreva com suas palavras como funciona este circuito.

No borde de subido de CIK, Q=1, se 5=1 e K=0, Q=0, se 5=0 e K=1, Q inverte seu estado se J=K=1 e a perminece instendo nos demois estados.

16)

Identificação (b)	Simbologia (b)	Tabela Funcional (b)					
() Flip-Flop JK () Flip-Flop D () Flip-Flop T		con	A(T)	ELR)		Q	
	A • 0 J Q •	1	0	0	an	Du	Togethe
)BORDA DE SUBIDA)BORDA DE DESCIDA	C	1	0	1	1	0	set
)NÍVEL BAIXO)NÍVEL ALTO	В ••• к Ф	1	1	0	0	1	Reset
		1	1	1	Du	Qu	Man
		1,4,0	X	K	Din	Qu	Desir

Descreva com suas palavras como funciona este circuito.

No bordo de Subido de CKK, Q=1 Se \$=0 e K=1, Q=0, SE \$=7

e K=0, Q inverte se \$=K=0 e se minter seu enclido nos
de mais entrados dos entrados.

1c)

Idem exercicio la, só muda que é na bord le descide

1d)

No momendo de barde de Subide de CK, Q = A, nos demas

1e)

Descreva com suas palavras como funciona este circuito.

11)

No barde de describe de CLK de inverte o ser estado se ACT)-

nos demins estados dos entrados a menter ser estado intercor

- 2) Observe o diagrama esquemático do Flip-Flop do tipo JK apresentado pela figura ao lado. Com base na análise do componente apresentado, qual o procedimento que deve ser realizado para transformar um Flip-Flop JK em um Flip-Flop tipo D?

 J Q
 - a) Curto circuitar os pinos J e K.
 - b) Colocar a entrada J em nível lógico zero.
 - Colocar a entrada K em nível lógico zero.
 Conectar entre J e K uma função lógica NOT.

60 D

3) O gráfico da figura abaixo ilustra o comportamento da saída Q de um tipo flip-flop em função da entrada e sinal de clock. Com base na figura conclui-se que o tipo de flip-flop é:

4) Com relação à funcionalidade do circuito com um flip-flop tipo JK abaixo, podemos afirmar que:

a) A saída C será igual à entrada A, desde que a entrada B esteja em nível lógico alto.
 Caso contrário, a saída permanece inalterada.

A saída C tem o seu valor invertido a cada transição de subida da entrada B, desde que a entrada A esteja em nível lógico alto. Caso contrário, a saída permanece inalterada.

c) A saída C tem o seu valor invertido a cada transição de subida da entrada B, independentemente do nível lógico na entrada A.

d) Após a transição de subida da entrada B, a saída C passa a ter o nível lógico presente na entrada A no instante da transição. X

5) É possível identificar o funcionamento de um flip-flop através de sua tabela-verdade. Acerca desse assunto, é correto afirmar que a tabela-verdade a seguir representa um flip-flop tipo:

a) T ativo em borda de subida.

by D ativo em borda de descida.

c) D ativo em borda de subida.

d) T ativo em borda de descida,

CLK	Entrada	Saída Q
1 - 0	0	0
1 - 0	1	1

6) De acordo com o funcionamento do flip-flop abaixo, todas as alternativas estão corretas, EXCETO uma, assinale-a.

a) A entrada Clear força a saída Q para nível baixo. V

b) O flip-flop tipo D armazena o estado da entrada D na saída Q até que o sinal de clock seja acionado. V

c) A entrada Preset força a saída Q para nível alto

A saída Q será invertida da saída atual sempre que o sinal de clock for acionado.

e) A saída Q em t12 estará em nível alto

7) O flip-flop é um circuito digital pulsado capaz de servir como memória de um bit. Sua utilização principal é na construção de unidades de armazenamento de dados em dispositivos eletrônicos. A Figura a seguir apresenta um flip-flop tipo J-K e sua estrutura lógica. Ele possui dois sinais de entrada J e K, além de uma entrada pulsante, o clock (CLK).

Sobre o flip-flop tipo JK, considere as afirmativas a seguir:

I - Quando houver variação do clock, o valor guardado no flip-flop será mantido se 1 e K forem ambos iguais a 0.

II - Quando houver variação no clock, se os valores de J e K forem diferentes, a saida será 0 se K = 1.

III - Quando houver variação no clock, se os valores de J e K forem diferentes, o valor guardado no flip-flop será mantido se J = 0. É(São) correta(s) APENAS a(s) afirmativa(s):

a) I

b) II

c) III

d) le II

e) II e III

clock mercionado e de bordo de Subido

8) Dado o flip-flop abaixo

a)	lder	ntifiqu flip-f	je o tij lop tip	po de o T;	flip-flo	p. flip-flop	tipo JK; (人) 1	lip-flop tipo	D.	
b)	Ider	ntificu	je pel	o diag	rama (eletrônic	o se o clock d	o flip-flop é	acionado pe	or:
						baixo;			() bord	la de descida
		and the	en not	n dina	rama	aletrônic	o se o reset (F			
										to its state elektroniste
	()	níve	alto;	(X)	nível	baixo;	() borda de	subida;	() bord	la de descida
							o-flop, e use a	última		
1000										
	colu	ına p	ara in	dicar i	a funç	ao execu	itada por cada	combina	^ E	OL D
B		0	A	D	ϵ				4 -1 D	Q-D
cli		n	D	a	Q		função		2	
X		0	X	0	1	CLEAT	R		7	
1		1	0	0	1	Rest		(C - R	Q -
1	_	1	1	1	0	Set				_
43	0	1	X	0.	To	Memo	1102			

- e) Associe os sinais do diagrama de tempo abaixo, as entradas e saídas do flip-flop.
- Apenas para o sinal de clock, indique quais bordas devem ser consideradas na análise, numerando elas em ordem crescente (1, 2, 3, ...)
- g) Desenhe os sinais de saída, dadas as entradas (considere que a saída Q do flip flop está inicialmente ALTO =1):

Movement de Educação Personal e Tecnologica INSTITUTO FEDERAL DE SANTA CATARINA

9) Dado o f	ip-flop	abaixo
-------------	---------	--------

a)	Identifique o tipo de flip-flop.	() flip-flop tipo JK; () flip-flop	
b)		se o clock do flip-flop é acionado por: borda de subida; () borda de	e
c)	(nível alto; () nível baixo;	se o reset (R) do flip-flop é acionado por: () borda de subida; () borda d	e
d)	descida. Determine a tabela funcional do flip- coluna para indicar a função executi	flop, e use a última ada por cada combinação.	

clk	T	R	função	A ← T	Q-D
4	0	0	Memorita		
1	1	0	Tocde		
1,4,0	X	0	Dershindo	C -R	Q - E
×	X	1	Reset		

- h) Associe os sinais do diagrama de tempo abaixo, as entradas e saídas do flip-flop.
- i) Apenas para o sinal de clock, indique quais bordas devem ser consideradas na análise, numerando elas em ordem crescente (1, 2, 3, ...)
- j) Desenhe os sinais de saída, dadas as entradas (considere que a saída Q do flip flop está inicialmente ALTO =1):

10) Para o circuito abaixo, desenhe os sinais de saída, dadas as entradas (considere que as saídas Q dos flip-flops estão inicialmente ALTO =1):

11) Dado o circuito abaixo:

Desenhe os sinais de saída, dadas as entradas (considere que as saídas Q dos flip-flops estão inicialmente ALTO =1):

12) Com relação à funcionalidade do circuito abaixo, podemos afirmar que (assinale as afirmações verdadeiras):

 a) A saída C será igual à entrada A, desde que a entrada B esteja em nível lógico alto.

- A saida D tem o seu valor invertido a cada transição da entrada B, desde que a entrada A esteja em nível lógico alto.
- c) A saída C tem o seu valor invertido a cada transição da entrada B, independentemente do nível lógico na entrada A.
- d) Após a transição de descida da entrada B, a saída C passa a ter o nível lógico presente na entrada A no instante da transição.
- a) A saída D sempre será exatamente o inverso da saída C.
- Após a transição de subida da entrada B, a saída C tem seu valor mantido.

45in , este deathrold

g) O circuito é um flip-flop

13) Com relação à funcionalidade do circuito ao lado, podemos afirmar que (assinale as afirmações verdadeiras):

a) A saída C será igual à entrada A desde que a entrada B esteja em nível lógico alto.

- b) A saída C tem o seu valor invertido a cada transição de descida da entrada B, desde que a entrada A esteja em nível lógico alto. X
- c) A saída C tem o seu valor invertido a cada transição da entrada B, independentemente do nível lógico na entrada A. X
- Após a transição de descida da entrada B, a saída C passa a ter o nível lógico presente na entrada A no instante da transição.
- e) Após a transição de descida da entrada B, a saída C tem seu valor mantido. X
- f) O circuito é um latch X

14) Observe o diagrama esquemático do flip-flop ao lado, qual o procedimento que deveria ser realizado para transformá-lo em um flip-flop tipo T?

Messivere di Educione INSTITUTO FEDERAL DE SANTA CATARINA

- a) Conectar os pinos J e K e designá-la por T.
- b) Colocar a entrada J em nivel lógico alto. ×
- c) Colocar a entrada K em nível lógico alto. 🗶
- d) Conectar de J para K um inversor, e designar a entrada J por T X

- 15) Observe o diagrama esquemático do flip-flop ao lado, qual o procedimento que deveria ser realizado para transformá-lo em um flip-flop tipo D?
 - a) Conectar os pinos J e K e designá-la por D. X
 - b) Colocar a entrada J em nível lógico alto. X
 - c) Colocar a entrada K em nível lógico alto. K
 - Conectar de J para K um inversor, e designar a entrada J por D

16) O diagrama de tempo abaixo mostra o comportamento da saída Q de um tipo circuito em função da entrada e sinal de clock.

Com base no diagrama conclui-se que se trata de um:

- () flip-flop tipo D
- () flip-flop tipo T () flip-flop tipo JK () latch SR

Com base no diagrama conclui-se que o circuito é sensível a:

- () nível alto
- () nível baixo
- borda de subida () borda de descida