М	Α	ГΗ	3	025
171	$\overline{}$		J	ひとこ

NAME: _____

Mathematica Lab #4

Due Monday May 1st 2023 by 11:30 A.M.

All work is to be done in a programming notebook.

Please refer to the blackboard site for commands and examples.

Submissions must be made electronically to njacob@ecok.edu.

You will be graded on the output that I am able to generate from your commands.

Α	В	С	D	Е	F	G	Н	I	J	K	L	М	N	0	Р	Q	R	S	Т	U	V	W	Χ	Υ	Z
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26

1. Let a be the value corresponding to the first letter of your last (family) name. Consider the Bessel function of the first kind

$$J_a(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+a}}{n! (n+a)! 2^{2n+a}}$$

- (a) Find the interval of convergence.
- (b) Graph the partial sums for $0 \le n \le b$ for $0 \le x \le 10$. Where b is 1, 10, and 50.
- (c) Graph the partial sums and the full function using the besselj(a,x) command all on the same coordinate axis.
- (d) Explain in words how well the partial sums approximate the full function.
- 2. Consider the Lissajous figure. Use a as defined above and b as the initial of your first name. Your t should vary between zero and 2π .

$$\begin{cases} x = a \sin 3t \\ y = b \cos t \end{cases}$$

- (a) Use plot_parametric command graph the curve.
- (b) Find the equation of the tangent when $t=\frac{\pi}{12}.$ Graph it together with the curve.
- (c) Find the area under the curve.
- (d) Find the arc length of the curve.