

Agilent E8257D PSG Analog Signal Generator

Data Sheet

The Agilent E8257D is a fully synthesized signal generator with high output power, low phase noise, and optional ramp sweep capability.

Specifications apply over a 0 to 55 °C range, unless otherwise stated, and apply after a 45 minute warm-up time. Supplemental characteristics, denoted as typical, nominal, or measured, provide additional (non-warranted) information at 25 °C, which may be useful in the application of the product.

Definitions

Specifications (spec): Represents warranted performance for instruments with a current calibration.

Typical (typ): Represents characteristic performance which is non-warranted. Describes performance that will be met by a minimum of 80% of all products.

Nominal (nom): Represents characteristic performance which is non-warranted. Represents the value of a parameter that is most likely to occur; the expected mean or average.

Measured: Represents characteristic performance which is non-warranted. Represents the value of a parameter measured on an instrument during design stage.

Table of Contents

Specifications
Frequency
Step (digital) sweep
Ramp (analog) sweep
Output
Spectral purity
Frequency modulation13
Phase modulation13
Amplitude modulation14
External modulation inputs15
Internal modulation source15
Pulse modulation16
Narrow pulse modulation16
Internal pulse generator17
Simultaneous modulation
Remote programming18
General specifications
Input/Output Descriptions
Front panel connectors20
Rear panel connectors20
Options, Accessories, and Related Products
Web Resources
Related Agilent Literature

Specifications

Frequency

Range ¹			
Option 520	250 kHz to 20 GHz		
Option 532	250 kHz to 31.8 GHz		
Option 540	250 kHz to 40 GHz		
Option 550	250 kHz to 50 GHz		
Option 567	250 kHz to 67 GHz (opera	tional up to 70 GHz)	
Resolution			
CW	0.001 Hz		
All sweep modes	0.01 Hz ²		
CW switching speed ^{3, 4}	< 11 ms (typ)		
Phase offset	Adjustable in nominal 0.1	° increments	
Frequency bands			
Band	Frequency range	N^5	
1	250 kHz to 250 MHz	1/8	
2	> 250 to 500 MHz	1/16	
3	> 500 MHz to 1 GHz	1/8	
4	> 1 to 2 GHz	1/4	
5	> 2 to 3.2 GHz	1/2	
6	> 3.2 to 10 GHz	1	
7	> 10 to 20 GHz	2	
8	> 20 to 40 GHz	4	
9	> 40 GHz	8	
Accuracy	± aging rate ± temperature effects		
	± line voltage effects (non	n)	
Internal timebase reference oscillator	*		
	Standard	Option UNR/UNX	
Aging rate	$< \pm 1 \times 10^{-7}$ /year or	$< \pm 3 \times 10^{-8}$ /year or	
	< ±4.5 x 10 ⁻⁹ /day	$< \pm 2.5 \times 10^{-10} / day$	
	after 45 days	after 30 days	
Temperature effects (typ)	< ±5 x 10 ⁻⁸ 0 to 55 °C	< ±4.5 x 10 ⁻⁹ 0 to 55 °C	
Line voltage effects (typ)	< ±2 x 10 ⁻⁹ for	< ±2 x 10 ⁻¹⁰ for	
	+5% to -10% change	±10% change	
External reference frequency			
	1, 2, 2.5, 5, 10 MHz	10 MHz only	
Lock range	±0.2 ppm	±1.0 ppm	
Reference output			
Frequency	10 MHz		
Amplitude	$>$ +4 dBm into 50 Ω load (typ)		
External reference input			
Amplitude	> -3 dBm		
Option UNR/UNX	$5~\mathrm{dBm}~\pm 5~\mathrm{dB}^6$		
Input impedance	50 Ω (nom)		
		<u> </u>	

^{1.} Operational, but unspecified, down to 100 kHz.

^{2.} In ramp sweep mode (Option 007), resolution is limited with narrow spans and slow sweep speeds. Refer to ramp sweep specifications for more information.

^{3.} Time from GPIB trigger to frequency within 0.1 ppm of final frequency above 250 MHz or within 100 Hz below 250 MHz.

^{4.} Add 12 ms (typical) when switching from greater than 3.2 GHz to less than 3.2 GHz.

^{5.} N is a factor used to help define certain specifications within the document.

^{6.} To optimize phase noise use 5 dBm \pm 2 dB.

Step (digital) sweep

Operating modes	Step sweep of frequency or amplitude or both (start to stop)
	 List sweep of frequency or amplitude or both (arbitrary list)
Sweep range	
Frequency sweep	Within instrument frequency range
Amplitude sweep	Within attenuator hold range (see "Output" section)
Dwell time	1 ms to 60 s
Number of points	2 to 65535 (step sweep)
	2 to 1601 per table (list sweep)
Triggering	Auto, external, single, or GPIB
Settling time	-
Frequency	$< 8 \text{ ms } (\text{typ})^1$
Amplitude	< 5 ms (typ)

Ramp (analog) sweep (Option 007)²

Amplitude	< 5 ms (typ)			
Operating modes	Synthesized frequency sweep			
	(start/stop), (d	center/span), (swept CW	')	
	 Power (amplit 	ude) sweep (start/stop)		
	 Manual sweep)		
	RPG control be	etween start and stop fre	quencies	
	 Alternate swe 	ер		
	Alternates suc	ccessive sweeps betweer	n current and	
	stored states			
Sweep span range	Settable from m	inimum ³ to full range		
Maximum sweep rate	Start frequency	Maximum sweep rate	Max span for 100 ms sweep	
	250 kHz to < 0.5 GHz	25 MHz/ms	2.5 GHz	
	0.5 to < 1 GHz	50 MHz/ms	5 GHz	
	1 to < 2 GHz	100 MHz/ms	10 GHz	
	2 to < 3.2 GHz	200 MHz/ms	20 GHz	
	≥ 3.2 GHz	400 MHz/ms	40 GHz	
Frequency accuracy	•	± timebase (at 100 ms s	•	
	• •	ss than maximum values	-	
		es proportionally as sweep		
Sweep time		not including bandswitch a	nd retrace intervals)	
Manual mode settable	10 ms to 200 seconds			
Resolution	1 ms			
Auto mode	Set to minimum value determined by maximum sweep			
		rate and 8757D setting		
Triggering		Auto, external, single, or GPIB		
Markers	10 independent continuously variable frequency markers			
Display	Z-axis intensity or RF amplitude pulse			
Functions	M1 to center, M1/M2 to start/stop, marker delta			
Two-tone (master/slav	Two PSG's can synchronously track each other, with			
measurements ⁵	independent control of start/stop frequencies			
Network analyzer		with Agilent 8757D scal	ar	
compatibility	network analyze			
	Also useable wi	th Agilent 8757A/C/E sc	alar network	
	analyzers for ma	king basic swept measu	ramente 7	

^{1. 19} ms (typ) when stepping from greater than 3.2 GHz to less than 3.2 GHz.

^{2.} During ramp sweep operation, AM, FM, phase modulation, and pulse modulation are useable but performance is not guaranteed.

^{3.} Minimum settable sweep span is proportional to carrier frequency and sweep time. Actual sweep span may be slightly different than desired setting for spans less than [0.00004% of carrier frequency or 140 Hz] x [sweep time in seconds]. Actual span will always be displayed correctly.

^{4.} Typical accuracy for sweep times > 100 ms can be calculated from the equation: [(0.005% of span)/(sweep time in seconds)] ± timebase. Accuracy is not specified for sweep times < 100 ms.

^{5.} For master/slave operation use Agilent part #8120-8806 master/slave interface cable.

^{6.} When measuring low-pass devices in AC mode, dynamic range may be reduced up to 10 dB below 3.2 GHz. An external highpass filter may be required to remove 27 kHz pulse source feed-through (11742A 45 MHz to 26.5 GHz blocking capacitor recommended).

^{7.} GPIB system interface is not supported with 8757A/C/E, only with 8757D. As a result, some features of 8757A/C/E, such as frequency display, pass-through mode, and alternate sweep, do not function with PSG signal generators.

Output	Power ¹ (dBm)
	Frequency rand

Power ¹ (dBm)		
Frequency range	Standard	Option 1EA
Option 520:		spec. (typ)
250 kHz to 3.2 GHz	-20 to +13	-20 to +16 (+19)
250 kHz to 3.2 GHz with Option UNW	-20 to +13	-20 to +11 (+14)
250 kHz to 3.2 GHz with Option 1EH	$-20 \text{ to } +13^2$	-20 to +17 (+14) $-20 \text{ to } +13 (+16)^2$
250 kHz to 3.2 GHz with Options UNW and 1EH		-20 to +10 (+13) ²
> 3.2 Ghz to 5.2 GHz	-20 to +10	-20 to +22 (+23) ⁴
> 5.2 Ghz to 3.2 GHz > 5.2 Ghz to 12 GHz	-20 to +13	-20 to +22 (+23) -20 to +23 (+24) ⁴
> 12 Ghz to 20 GHz	-20 to +13	-20 to +23 (+24) $-20 \text{ to } +21 (+23)^4$
Options 532 and 540:	-20 10 +13	-20 10 +21 (+23)
250 kHz to 3.2 GHz	-20 to +9	20 to ±15 (±19)
250 kHz to 3.2 GHz with Option UNW	-20 to +9	-20 to +15 (+18) -20 to +10 (+13)
250 kHz to 3.2 GHz with Option 1EH	-20 to +9	-20 to +10 (+15) ²
250 kHz to 3.2 GHz with Options UNW and 1EH		-20 to +9 (+12) ²
> 3.2 to 17 GHz	-20 to +9	-20 to +19 (+21) ⁴
> 17 to 37 GHz		-20 to +16 (+19) ⁴
	-20 to +9	
> 37 to 40 GHz	–20 to +9	–20 to +14 (+17)
Options 550 and 567:	20 to 15	20 +0 +14 /+17)
250 kHz to 3.2 GHz	-20 to +5	-20 to +14 (+17)
250 kHz to 3.2 GHz with Option UNW	-20 to +5	-20 to +9 (+12)
250 kHz to 3.2 GHz with Option 1EH	-20 to +5	$-20 \text{ to } +11 (+14)^2$
250 kHz to 3.2 GHz with Options UNW and 1EH		$-20 \text{ to } +8 (+11)^2$
> 3.2 to 10 GHz	-20 to +5	-20 to +14 (+21)
> 10 to 20 GHz	-20 to +5	-20 to +14 (+17)
> 20 to 30 GHz	-20 to +5	-20 to +11 (+17)
> 30 to 65 GHz	-20 to +5	-20 to +11 (+14)
> 65 to 67 GHz	-20 to +5	-20 to +10 (+14)
> 67 to 70 GHz	-20 to +5 (typ)	–20 to +8 (typ)
Option 520 with step attenuator (Option 1E1):	105 4 11	105 (. 15 (. 10)
250 kHz to 3.2 GHz	-135 to +11	-135 to +15 (+18)
250 kHz to 3.2 GHz with Option UNW	-135 to +10	-135 to +10 (+13)
250 kHz to 3.2 GHz with Option 1EH	-135 to +1 ³	-135 to $+12 (+15)^2$
250 kHz to 3.2 GHz with Options UNW and 1EH		-135 to $+9 (+12)^2$
> 3.2 GHz to 10 GHz	-135 to +11	-135 to $+21 (+22)^4$
> 10 GHz to 20 GHz	–135 to +11	-135 to +19 (+20) ⁴
Options 532 and 540 with step attenuator (Opti		
250 kHz to 3.2 GHz	–135 to +7	–135 to +14 (+17)
250 kHz to 3.2 GHz with Option UNW	-135 to +7	-135 to +9 (+12)
250 kHz to 3.2 GHz with Option 1EH	-135 to +7	-135 to $+11 (+14)^2$
250 kHz to 3.2 GHz with Options UNW and 1EH		$-135 \text{ to } +8 (+11)^2$
> 3.2 to 17 GHz	-135 to +7	-135 to +17 (+20) ⁴
> 17 to 37 GHz	–135 to +7	–135 to +14 (+17) ⁴
> 37 to 40 GHz	–135 to +7	-135 to +12 (+16)
Options 550 and 567 with step attenuator (Opti		
250 kHz to 3.2 GHz	–110 to +3	-110 to +13 (+16)
250 kHz to 3.2 GHz with Option UNW	–110 to +3	–110 to +8 (+11)
250 kHz to 3.2 GHz with Option 1EH	–110 to +3	–110 to +10 (+13) ²
250 kHz to 3.2 GHz with Options UNW and 1EH	–110 to +3	–110 to +7 (+10) ²
> 3.2 to 10 GHz	-110 to +3	-110 to +13 (+20)
> 10 to 20 GHz	-110 to +3	-110 to +13 (+16)
> 20 to 30 GHz	-110 to +3	-110 to +9 (+16)
> 30 to 65 GHz	-110 to +3	-110 to +9 (+12)
> 65 to 67 GHz	-110 to +3	-110 to +8 (+12)
> 67 to 70 GHz	-110 to +3 (typ)	-110 to +6 (typ)

^{1.} Maximum power specifications are warranted from 15 to 35 °C, and is typical from 0 to 15 °C. Maximum power over the 35 to 55 °C range typically degrades less than 2 dB.

With harmonic filters switched off. With filters on, maximum output power is reduced 3 dB for frequencies below 2 GHz.

^{3.} With harmonic filters switched off. With filters on, maximum output power is reduced 2 dB for frequencies below 2 GHz.

Specification applies to units with serial numbers ending with 45470000 or greater. For units with lower serial numbers, refer to the data sheet shipped with the unit or the version of this document dated December 16, 2004.

Step attenuator¹ (Option 1E1)

Options 520, 532, and 540 Options 550 and 567 0 dB and 5 dB to 115 dB in 10 dB steps 0 dB to 90 dB in 10 dB steps

Maximum available power (measured)

Attenuator hold range

Minimum From -20 dBm to maximum specified output power with step attenuator in 0 dB position. Can be offset using Option 1E1 attenuator.

Amplitude switching speed²
ALC on or off < 3 ms (typ)
(without power search)

Level accuracy ³ (d	dB)			
Frequency	> +10 dBm	+10 to 0 dBm	0 to -10 dBm	–10 to –20 dBm
250 kHz to 2 GHz	±0.6	±0.6	±0.6	±1.4
> 2 GHz to 20 GHz	±0.8	±0.8	±0.8	±1.2
> 20 to 40 GHz	±1.0	±0.9	±0.9	±1.3
> 40 to 50 GHz		±1.3	±0.9	±1.2
> 50 to 67 GHz		±1.5	±1.0	±1.2 (typ)

^{1.} The step attenuator provides coarse power attenuation to achieve low power levels. Fine power level adjustment is provided by the ALC (Automatic Level Control) within the attenuator hold range.

^{2.} To within 0.1 dB of final amplitude within one attenuator range. Add 10 to 50 ms when using power search.

^{3.} Specifications apply in CW and list/step sweep modes over the 15 to 35 °C temperature range. Degradation outside this range, for power levels > -10 dBm, is typically < 0.3 dB. In ramp sweep mode (with Option 007), specifications are typical. For instruments with Type-N connectors (Option 1ED), specifications are degraded typically 0.2 dB above 18 GHz. Specifications do not apply above the maximum specified power.</p>

Level accuracy with step attenuator (Option 1E1) ¹ (dB)					
Frequency	> +10 dBm	+10 to 0 dBm	0 to -10 dBm	-10 to -70 dBm	-70 to -90 dBm
250 kHz to 2 GH	lz ±0.6	±0.6	±0.6	±0.7	±0.8
> 2 to 20 GHz	±0.8	±0.8	±0.8	±0.9	±1.0
> 20 to 40 GHz	±1.0	±0.9	±0.9	±1.0	±2.0
> 40 to 50 GHz	:	±1.3	±0.9	±1.5	±2.5
> 50 to 67 GHz		±1.5	±1.0	±1.5 (typ)	±2.5 (typ)

Level accuracy (measured)

Resolution	0.01 dB
Temperature stability	0.01 dB/°C (typ) ²
User flatness correction	
Number of points	2 to 1601 points/table
Number of tables	Up to 10,000, memory limited
Path loss	Arbitrary, within attenuator range
Entry modes	Remote power meter ³ , remote bus, manual
	(user edit/view)

^{1.} Specifications apply in CW and list/step sweep modes over the 15 to 35 °C temperature range, with attenuator hold off (normal operating mode). Degradation outside this range, for ALC power levels > -10 dBm, is typically < 0.3 dB. In ramp sweep mode (with Option 007), specifications are typical. For instruments with type-N connectors (Option 1ED), specifications are degraded typically 0.2 dB above 18 GHz. Specifications do not apply above the maximum specified power.</p>

^{2.} Options 550 and 567: 0.03dB/°C (typ) above 2 GHz.

^{3.} Compatible with Agilent EPM Series (E4418B and E4419B) power meters.

Output impedance	50 Ω (nom)	
SWR (internally leveled)		
250 kHz to 2 GHz	< 1.4:1 (typ)	
> 2 GHz to 20 GHz	< 1.6:1 (typ)	
> 20 GHz to 40 GHz	< 1.8:1 (typ)	
> 40 GHz to 67 GHz	< 2.0:1 (typ)	
Leveling modes	Internal leveling, external detector leveling,	
	millimeter source module, ALC off	
External detector leveling		
Range	-0.2 mV to -0.5 V (nom) (-36 dBm to	
	+4 dBm using Agilent 33330D/E detector)	
Bandwidth	Selectable 0.1 to 100 kHz (nom)	
	(Note: not intended for pulsed operation)	
Maximum reverse power	1/2 Watt. 0 Vnc	

Spectral purity

Harmonics ¹	(dBc at +10 dBm or maximum specified
	output power, whichever is lower)
< 10 MHz	–28 dBc (typical below 1 MHz)
10 MHz to 2 GHz	$-30 \text{ dBc}^{2,3}$
10 MHz to 2 GHz (with Option 1EH filters on)	$-55 \mathrm{dBc^4}$
> 2 GHz to 20 GHz	–55 dBc
> 20 GHz to 67 GHz (Option 532, 540, 550 & 567)	–50 dBc (typical)

Harmonics (measured)

- 1. Specifications are typical for harmonics beyond specified frequency range (beyond 50 GHz for Option 567).
- 2. Specification applies to units with serial numbers ending with 45130000 or greater. For units with lower serial numbers, the specification is -28 dBc.
- 3. Typical below 250 MHz if Option 1EH is installed and the filters are off.
- 4. In ramp sweep mode (Option 007), harmonics are -30 dBc below 250 MHz.

Sub-harmonics ¹	(dBc at +10 dB	(dBc at +10 dBm or maximum specified output		
	,	power, whichever is lower)		
250 kHz to 10 GHz	None			
> 10 GHz to 20 GHz	<-60 dBc			
> 20 GHz	<-50 dBc			
Non-harmonics ²	(dBc at +10 dB	Bm or maximum specified output		
	power, whiche	ver is lower, for offsets > 3 kHz		
	[> 300 Hz with	Option UNX or UNR])		
Frequency	Spec	Typical		
250 kHz to 250 MHz	–65	-72 for > 10 kHz offsets		
> 250 MHz to 1 GHz	-80	-88		
> 1 to 2 GHz	-74	-82		
> 2 to 3.2 GHz	-68	–76		
> 3.2 to 10 GHz	-62	–70		
> 10 to 20 GHz	-56	-64		
> 20 to 40 GHz	-50	-58		
> 40 GHz	-44	–52		
SSB phase noise (CW) ³	Offset from car	Offset from carrier (dBc/Hz)		
Frequency	20 kHz	20 kHz (typical)		
250 kHz to 250 MHz ⁴	-130	-134		
> 250 to 500 MHz ⁴	-134	-138		
> 500 MHz to 1 GHz ⁴	-130	-134		
> 1 to 2 GHz ⁴	-124	-128		
> 2 to 3.2 GHz	-120	-124		
> 3.2 to 10 GHz	-110	–113		
> 10 to 20 GHz	-104	-108		
> 20 to 40 GHz	-98	-102		
> 40 to 67 GHz	-92	– 96		

Option UNR: Enhanced SSB phase noise (CW)³

		Offset from ca	rrier (dBc/Hz)	
Frequency	100 Hz	1 kHz	10 kHz	100 kHz
	spec (typ)	spec (typ)	spec (typ)	spec (typ)
250 kHz to 250 MHz ⁴	–94 (–115)	-110 (-123)	-128 (- 132)	-130 (-133)
> 250 to 500 MHz ⁴	-100 (-110)	-124 (-130)	-132 (-136)	-136 (-141)
> 500 MHz to 1 GHz ⁴	-94 (-104)	-118 (-126)	-130 (-135)	-130 (-135)
> 1 to 2 GHz ⁴	-88 (-98)	-112 (-120)	-124 (-129)	-124 (-129)
> 2 to 3.2 GHz	-84 (-94)	-108 (-116)	-120 (-125)	-120 (-125)
> 3.2 to 10 GHz	-74 (-84)	-98 (-106)	-110 (- 115)	–110 (–115)
> 10 to 20 GHz	-68 (-78)	-92 (-100)	-104 (-107)	-104 (-109)
> 20 to 40 GHz	-62 (-72)	-86 (-94)	-98 (-101)	-98 (-103)
> 40 to 67 GHz	-56 (-66)	-80 (-88)	-92 (-95)	-92 (-97)

^{1.} Sub-harmonics are defined as Carrier Freq / N). Specifications are typical for sub-harmonics beyond specified frequency range (beyond 50 GHz for Option 567).

^{2.} Specifications are typical for spurs beyond specified frequency range (beyond 50 GHz for Option 567). Specifications apply for CW mode, without modulation. In ramp sweep mode (Option 007), performance is typical for offsets > 1 MHz.

^{3.} Phase noise specifications are warranted from 15 to 35 $^{\circ}\text{C}.$

^{4.} Measurement at +10 dBm or maximum specified output power, whichever is less.

Option UNX: Absolute SSI	B phase noise (dB	c/Hz) (CW) ¹				
			Offset from carrie	r		
Frequency	1 Hz	10 Hz	100 Hz	1 kHz	10 kHz	100 kHz
	Spec (typ)	Spec (typ)	Spec (typ)	Spec (typ)	Spec (typ)	Spec (typ)
250 kHz to 250 MHz ²	–58 (–66)	-87 (-94)	-104 (- 120)	-121 (- 128)	-128 (- 132)	-130 (- 133)
> 250 to 500 MHz ²	-61 (-72)	-88 (-98)	-108 (-118)	-126 (-132)	-132 (-136)	-136 (-141)
> 500 MHz to 1 GHz ²	-57 (-65)	-84 (-93)	-101 (-111)	-121 (-130)	-130 (-134)	-130 (-135)
> 1 to 2 GHz ²	–51 (–58)	-79 (-86)	-96 (-106)	-115 (-124)	-124 (-129)	-124 (-129)
> 2 to 3.2 GHz	-46 (-54)	−74 (−82)	-92 (-102)	-111 (-120)	-120 (-124)	-120 (-124)
> 3.2 to 10 GHz	-37 (-44)	-65 (-72)	–81 (–92)	-101 (-109)	-110 (-114)	-110 (-115)
> 10 to 20 GHz	-31 (-38)	-59 (-66)	-75 (- 87)	-95 (-106)	-104 (-107)	-104 (-109)
> 20 to 40 GHz	-25 (-32)	-53 (-60)	-69 (-79)	-89 (-99)	-98 (-101)	-98 (-103)
> 40 to 67 GHz	-20 (-26)	-47 (-56)	-64 (-73)	-84 (-90)	-92 (-95)	-92 (-97)
Option UNX: Residual SSE	3 phase noise (dB	c/Hz) (CW) ¹				

Option UN	X: Residual SSB	phase noise	(dBc/Hz)	$(CW)^{T}$

			Offset from carrie	r			
Frequency	1 Hz	10 Hz	100 Hz	1 kHz	10 kHz	100 kHz	
	Spec (typ)	Spec (typ)	Spec (typ)	Spec (typ)	Spec (typ)	Spec (typ)	
250 kHz to 250 MHz ²	(-94)	-100 (-107)	-110 (-118)	-120 (-126)	-128 (-132)	-130 (-133)	
$> 250 \text{ to } 500 \text{ MHz}^2$	(-101)	-105 (-112)	-115 (-122)	-124 (-131)	-132 (-136)	-136 (-141)	
> 500 MHz to 1 GHz ²	(-94)	-100 (-107)	-110 (-118)	-120 (-126)	-130 (-134)	-130 (-134)	
> 1 to 2 GHz ²	(-89)	-96 (-101)	-104 (-112)	-114 (-120)	-124 (-129)	-124 (-129)	
> 2 to 3.2 GHz	(-85)	-92 (-97)	-100 (-108)	-110 (-116)	-120 (-124)	-120 (-124)	
> 3.2 to 10 GHz	(-74)	(-87)	(–98)	(-106)	(-114)	(–115)	

Phase noise specifications are warranted from 15 to 35 °C.
 Measured at +10 dBm or maximum specified power, whichever is less.

Measured phase noise with E5500 and plotted without spurs

Standard phase noise

Option UNX phase noise

Standard vs. Option UNX phase noise

AM noise at 10 GHz

Standard vs. Option UNX phase noise

Residual FM				
(RMS, 50 Hz to	15 kHz bandwidth)			
CW mode		< N x 6 Hz (typ)		
Option UNX/U	NR	< N x 4 Hz (typ)		
Ramp sweep n	node	< N x 1 kHz (typ)		
Broadband no	ise	(CW mode at +10 dBm	n or maximum specifi	ed outpu
		power, whichever is	lower, for offsets >	10 MHz
> 2.4 to 20 GH:	Z	< -148 dBc/Hz (typ)		
> 20 to 40 GHz		< -141 dBc/Hz (typ)		
> 40 GHz		<-135 dBc/Hz (typ)		
Measured RM	S jitter ¹			
Standard				
Carrier	SONET/SDH	RMS jitter	Unit intervals	Time
frequency	data rates	bandwidth	(μUI)	(fs)
155 MHz	155 MB/s	100 Hz to 1.5 MHz	25	158
622 MHz	622 MB/s	1 kHz to 5 MHz	21	34
2.488 GHz	2488 MB/s	5 kHz to 20 MHz	57	23
9.953 GHz	9953 MB/s	10 kHz to 80 MHz	152	15
39.812 GHz	39812 MB/s	40 kHz to 320 MHz	627	16
Option UNX				
Carrier	SONET/SDH	RMS jitter	Unit intervals	Time
frequency	data rates	bandwidth	(μUI)	(fs)
155 MHz	155 MB/s	100 Hz to 1.5 MHz	23	151
622 MHz	622 MB/s	1 kHz to 5 MHz	19	30
2.488 GHz	2488 MB/s	5 kHz to 20 MHz	56	22
9.953 GHz	9953 MB/s	10 kHz to 80 MHz	152	15
39.812 GHz	39812 MB/s	40 kHz to 320 MHz	626	16

^{1.} Calculated from phase noise performance in CW mode only at +10 dBm. For other frequencies, data rate, or bandwidths, please contact your sales representative.

Frequency modulation¹ (Option UNT)

Frequency	Maximum deviation		
250 kHz to 250 MHz	2 MHz		
> 250 to 500 MHz	1 MHz		
> 500 MHz to 1 GHz	2 MHz		
> 1 GHz to 2 GHz	4 MHz		
> 2 GHz to 3.2 GHz	8 MHz		
> 3.2 GHz to 10 GHz	16 MHz		
> 10 GHz to 20 GHz	32 MHz		
> 20 GHz to 40 GHz	64 MHz		
> 40 GHz to 67 GHz	128 MHz		
0.1% of deviation or 1 Hz,	whichever is greater		
< ± 3.5% of FM deviation	+ 20 Hz		
(1 kHz rate, deviations <	N x 800 kHz)		
onse ³ (at 100 kHz deviation)			
1 dB bandwidth	3 dB bandwidth (typ)		
DC to 100 kHz	DC to 10 MHz		
DC to 100 kHz	DC to 1 MHz		
20 Hz to 100 kHz	5 Hz to 10 MHz		
20 Hz to 100 kHz	5 Hz to 1 MHz		
$\pm 0.1\%$ of set deviation +	(N x 8 Hz)		
< 1% (1 kHz rate, deviation			
±1 V _{peak} for indicated dev	±1 V _{peak} for indicated deviation		
FM1 and FM2 are summed internally for composite			
modulation. Either path n	nay be switched to any one of		
	Ext1, Ext2, internal1, internal2.		
The FM2 path is limited to a maximum rate of 1			
The FM2 path must be set to a deviation less than			
	250 kHz to 250 MHz > 250 to 500 MHz > 500 MHz to 1 GHz > 1 GHz to 2 GHz > 2 GHz to 3.2 GHz > 3.2 GHz to 10 GHz > 10 GHz to 20 GHz > 20 GHz to 40 GHz > 40 GHz to 67 GHz 0.1% of deviation or 1 Hz, < ± 3.5% of FM deviation (1 kHz rate, deviations < onse ³ (at 100 kHz deviation) 1 dB bandwidth DC to 100 kHz 20 Hz to 100 kHz 20 Hz to 100 kHz ±0.1% of set deviation + < 1% (1 kHz rate, deviation + < 1% (1 kHz rate, deviation ### The FM2 are summer modulation. Either path in the modulation sources: The FM2 path is limited t		

Phase modulation 5 (Option UNT)

Maximum deviation ⁶	Frequency	Normal BW i	mode High BW mode		
	250 kHz to 250 MHz	20 rad	2 rad		
	> 250 to 500 MHz	10 rad	1 rad		
	> 500 MHz to 1 GHz	20 rad	2 rad		
	> 1 GHz to 2 GHz	40 rad	4 rad		
	> 2 GHz to 3.2 GHz	80 rad	8 rad		
	> 3.2 GHz to 10 GHz	160 rad	16 rad		
	> 10 GHz to 20 GHz	320 rad	32 rad		
	> 20 GHz to 40 GHz	640 rad	64 rad		
	> 40 GHz to 67 GHz	1280 rad	128 rad		
Resolution	0.1% of set deviation				
Deviation accuracy	< ±5% of deviat	ion + 0.01 radia	ns (1 kHz rate, normal		
	BW mode)				
Modulation frequency	response ⁷				
	Normal BW mo	de	High BW mode		
Rates (3 dB BW)	DC to 100 kHz		DC to 1 MHz (typ) ⁸		
Distortion	< 1 % (1 kHz rat	e, Total Harmor	nic Distortion (THD),		
	$dev < N \times 80 \text{ rad}$, normal BW mode)				
Sensitivity	±1 V _{peak} for indicated deviation				
Paths	Φ M1 and Φ M2 are summed internally for composite				
	modulation. Eith	modulation. Either path may be switched to any one of			
	the modulation	sources: Ext1, E	Ext2, internal1, internal2.		
	The ΦM2 path r	nust be set to a	deviation less than Φ M1.		

^{1.} Above 50 GHz, FM is useable; however performance is not warranted.

^{2.} Through any combination of path1, path2, or path1 + path2.

^{3.} Specifications apply in CW and list/step sweep modes. During ramp sweep operation (Option 007), 3 dB bandwidth is typically 50 kHz to 10 MHz (FM1 path), and 50 kHz to 1 MHz (FM2 path).

^{4.} At the calibrated deviation and carrier frequency, within 5 °C of ambient temperature at time of user calibration.

^{5.} Above 50 GHz, phase modulation is useable; however performance is not warranted.

^{6.} Through any combination of path1, path2, or path1 + path2.

^{7.} Specifications apply in CW and list/step sweep modes. During ramp sweep operation (Option 007), 3 dB bandwidth is typically 50 kHz to 1 MHz (high BW mode).

^{8.} Path 1 is useable to 4 MHz for external inputs less than $0.3\ V$ peak.

Amplitude modulation ¹ (part of Option UNT) (typical)

Depth	Linear mode	Exponential (log) mode (downward modulation only)		
Maximum:				
	ALC On:	> 90%	> 20 dB	
ALC Off w	ith Power Search ²			
or ALC 0	n with Deep AM ³ :	> 95 %	> 40 dB	
Settable:		0 to 100 %	0 to 40 dB	
		(0 to 100 %/volt sensitivity)	(0 to 40 dB/volt sensitivity)	
Resolution:		0.1%	0.01 dB	
Accuracy (A	ALC On, 1kHz rate):	$< \pm (6\% \text{ of setting} + 1\%)$	$< \pm (2\% \text{ of setting } +0.2 \text{dB})$	
Ext sensitivi	ty	± 1 V _{peak} for indicated depth	–1 V for indicated depth	
Rates (3 dB	bandwidth, 30% de	pth)		
DC Coupled		0 to 100 kHz		
AC coupled		10 Hz to 100 kHz (useable to 1 MHz)		
Distortion (1	kHz rate, ALC On, I	linear mode, Total Harmonic Dis	stortion)	
30% AM		< 1.5%		
60% AM		< 2%		
Paths AM1 and AM2 are sun		AM1 and AM2 are summed in	nternally for composite	
modulation. Either path may be switched to any o		e switched to any one of		
		the modulation sources: Ext1, Ext2, Internal1, Internal2.		

^{1.} AM specifications are typical. For carrier frequencies below 2 MHz or above 50 GHz, AM is useable but not specified. Unless otherwise stated, specifications apply with ALC on and envelope peaks within ALC operating range (–20 dBm to maximum specified power, excluding step-attenuator setting).

^{2.} ALC Off is used for narrow pulse modulation and/or high AM depths, with envelope peaks below ALC operating range. Carrier power level will be accurate after a Power Search is executed.

^{3.} ALC On with Deep AM provides high AM depths together with closed-loop internal leveling. This mode can be used with a repetitive AM waveform (frequency > 10 Hz) with peaks > -5 dBm (nominal, excluding step-attenuator setting).

External modulation inputs

(Ext1 & Ext2) (Option UNT)

Modulation types	AM, FM, and Φ M
Input impedance	50 or 600 Ω (nom) switched
High/low indicator	
(100 Hz to 10 MHz BW,	Activated when input level error exceeds 3% (nom)
ac coupled inputs only)	

Internal modulation source (Option UNT)

Dual function generators provide	les two independent signals (internal1 and internal2) for
use with AM, FM, Φ M, or LF 0	ut.
Waveforms	Sine, square, positive ramp, negative ramp, triangle,
	Gaussian noise, uniform noise, swept sine, dual sine ¹
Rate range	
Sine	0.5 Hz to 1 MHz
Square, ramp, triangle	0.5 Hz to 100 kHz
Resolution	0.5 Hz
Accuracy	Same as timebase
LF Out	
Output	Internal1 or internal2. Also provides monitoring of internal1or internal2 when used for AM, FM, or Φ M.
Amplitude	0 to 3 V_{peak} , (nom) into 50 Ω
Output impedance	50 Ω (nom)
Swept sine mode: (frequency, p	phase continuous)
Operating modes	Triggered or continuous sweeps
Frequency range	1 Hz to 1 MHz
Sweep rate	0.5 Hz to 100 kHz sweeps/s, equivalent to sweep times
	10 us to 2 s
Resolution	0.5 Hz (0.5 sweep/s)

^{1.} Internal2 is not available when using swept sine or dual sine modes.

Pulse modulation^{1, 2} (Option UNU)

	500 MHz to 3.2 GHz	Above 3.2 GHz
On/Off ratio	80 dB (typ)	80 dB
Rise/Fall times (Tr, Tf)	100 ns (typ)	6 ns (typ)
Minimum pulse width		
Internally leveled	2 us	1 us
Level hold (ALC off with power search)	0.5 us	0.15 us
Repetition frequency		
Internally leveled	10 Hz to 250 kHz	10 Hz to 500 kHz
Level hold (ALC off with power search)	dc to 1 MHz	dc to 3 MHz
Level accuracy (relative to CW)		
Internally leveled	±0.5 dB	±0.5 dB
Level hold (ALC off with power search)	±0.5 dB (typ)	±0.5 dB (typ)
Width compression	±50 ns (typ)	±5 ns (typ)
(RF width relative to video out)		
Video feed-through ³	< 200 mv (typ)	< 2 mv (typ)
Video delay (ext input to video)	50 ns (nom)	50 ns (nom)
RF delay (video to RF output)	270 ns (nom)	35 ns (nom)
Pulse overshoot	< 10% (typ)	< 10% (typ)
Input level	+1 V _{peak} = RF On	+1 V _{peak} = RF On
Input impedance	50 Ω (nom)	50 Ω (nom)

Narrow pulse modulation^{1, 2} (Option UNW)

	10 MHz to 3.2 GHz	Above 3.2 GHz
On/Off ratio	80 dB	80 dB
Rise/Fall times (Tr, Tf)	10 ns (8 ns typical)	10 ns (6 ns typical)
Minimum pulse width		
Internally leveled	1 us	1 us
Level hold (ALC off with power search)	20 ns	20 ns
Repetition frequency		
Internally leveled	10 Hz to 500 kHz	10 Hz to 500 kHz
Level hold (ALC off with power search)	dc to 5 MHz	dc to 10 MHz
Level accuracy (relative to CW)		
Internally leveled	±0.5 dB	±0.5 dB (0.15 dB typical)
Level hold (ALC off with power search)	±1.3 dB (typ)	±0.5 dB (typ)

With ALC off, specs apply after the execution of power search. Specifications apply with Atten Hold Off (default mode for instruments with attenuator), or ALC level between -5 and +10 dBm or maximum specific power, whichever is lower. Above 50 GHz, pulse modulation is useable; however performance is not warranted.

^{2.} Power search is a calibration routine that improves level accuracy with ALC off. The instrument microprocessor momentarily closes the ALC loop to find the modulator drive setting necessary to make the quiescent RF level equal to an entered value, then opens the ALC loop while maintaining that modulator drive setting. When executing power search, RF power will be present for typically 10 to 50 ms; the step attenuator (Option 1E1) can be set to automatically switch to maximum attenuation to protect sensitive devices. Power search can be configured to operate either automatically or manually at the carrier frequency, or over a user-definable frequency range.

^{3.} With attenuator in 0 dB position. Video feed-through decreases with attenuator setting.

	10 MHz to 3.2 GHz	Above 3.2 GHz
Width compression	±5 ns (typ)	±5 ns (typ)
(RF width relative to video out)		
Video feed-through ¹	< 125 mv (typ)	< 2 mv (typ)
Video delay (ext input to video)	50 ns (nom)	50 ns (nom)
RF delay (video to RF output)	45 ns (nom)	35 ns (nom)
Pulse overshoot	< 15% (typ)	< 10% (typ)
Input level	+1 V _{peak} = RF On	+1 V _{peak} = RF On
Input impedance	50 Ω (nom)	50 Ω (nom)

Internal pulse generator (Option UNU or UNW)

Modes	Free-run, triggered, triggered with delay,
	doublet, and gated. Triggered with delay,
	doublet, and gated require external
	trigger source.
Period (PRI) (Tp)	70 ns to 42 s
	(Repetition frequency: 0.024 Hz to
	14.28 MHz)
Pulse width (Tw)	10 ns to 42 s
Delay (Td)	
Free-run mode	$0 \text{ to } \pm 42 \text{ s}$
Triggered with delay and doublet modes	75 ns to 42s with ±10 ns jitter
Resolution	10 ns (width, delay, and PRI)

Td Video delay (variable)
Tw Video pulse width (variable)
Tp Pulse period (variable)
Tm RF delay
Trf RF pulse width
Tf RF pulse fall time
Tr RF pulse rise time
Vor Pulse overshoot
Vf Video feedthrough

Simultaneous modulation

All modulation types (FM, AM, Φ M, and pulse modulations) may be simultaneously enabled except: FM with Φ M, and linear AM with exponential AM. AM, FM, and Φ M can sum simultaneous inputs from any two sources (Ext1, Ext2, internal1, or internal2). Any given source (Ext1, Ext2, internal1, or internal2) may be routed to only one activated modulation type.

Remote programming

Interfaces	GPIB (IEEE-488.2,1987) with listen and talk, RS-232, and 10BaseT LAN interface.	
Control languages	SCPI version 1997.0. Completely code compatible with previous PSG signal generator models: • E8241A • E8244A • E8251A • E8254A • E8257C	
	The E8257D will emulate the applicable commands for the following Agilent signal generators, providing general compatibility with ATE systems: • 8340-series (8340/41B) • 8360-series (836xxB/L) • 83700-series (837xxB) • 8662A/63A	
IEEE-488 functions	SH1, AH1, T6, TE0, L4, LE0, SR1, RL1, PP0, DC1, DT0, C0, E2.	
ISO compliant	This family of signal generators is manufactured in an ISO-9001 registered facility in concurrence with Agilent commitment to quality.	
Agilent IO Libraries	Agilent's IO Library Suite ships with the E8257D to help you quickly establish an error-free connection between your PC and instruments – regardless of the vendor. It provides robust instrument control and works with the software development environment you choose.	

General specifications

Power requirements	90 to 132 VAC 47 to 64 Hz or 365 to 435 Hz; or 195 to 267 VAC 47 to 64 Hz, (automatically selected); < 250 W typical, 300 W maximum.
Operating temperature range	0 to 55 °C
Storage temperature range ¹	-40 to 70 °C
Optimal altitude	< 4,572 m (15,000 ft.)
Shock and vibration	
Operating random vibration ²	5 to 500 Hz, 0.21 g rms
Survival swept sine vibration	5 to 500 Hz, 0.5 g
Survival random vibration	5 to 500 Hz, 2.09 g rms
Functional shock (half-sine, 30 g, 11 ms)	Meets the requirements of MIL-PRF-28800F for
and bench drop test	class 3 equipment.
EMC	Meets the conducted and radiated interference and immunity requirements of IEC/EN 61326-1. Meets radiated emission requirements of CISPR Pub 11/1997 Group 1 class A.
Storage registers	Memory is shared by instrument states and sweep list files. There is 14 MB of flash memory available in the E8257D PSG. Depending on how the memory is used, a maximum of 1000 instrument states can be saved.
Security	Display blanking Memory clearing functions (see Application Note Security of Agilent Signal Generators Issues and Solutions, literature number 5989-1091EN)
Compatibility	Agilent 83550 Series Millimeter Heads and OML millimeter source modules. Agilent 8757D scalar network analyzers. Agilent EPM Series power meters.
Self-test	Internal diagnostic routine tests most modules (including microcircuits) in a preset condition. For each module, if its node voltages are within acceptable limits, then the module "passes" the test.
Weight	< 22 kg (48 lb.) net, < 30 kg (68 lb.) shipping
Dimensions	178 mm H x 426 mm W x 515 mm D (7" H x 16.8" W x 20.3" D in.)
Recommended calibration cycle	24 months

Storage below -20 °C instrument states may be lost.
 As is the case with all signal generation equipment, phase noise specifications are not warranted in a vibrating environment.

Input/Output Descriptions

Front panel connectors

(All connectors are BNC female unless otherwise noted.)¹

RF output	Output impedance 50 Ω (nom)
Option 520	Precision APC-3.5 male, or Type-N with Option 1ED
Options 532, 540 and 550	Precision 2.4 mm male; plus 2.4 – 2.4 mm and
	2.4 – 2.9 mm female adapters
Option 567	Precision 1.85 mm male; plus 1.85 – 1.85 mm and
	2.4 – 2.9 mm female adapters
ALC input	Used for negative external detector leveling. Nominal
	input impedance 120 k Ω , damage level ±15 V.
LF output	Outputs the internally generated LF source. Nominal
	output impedance 50 Ω .
External input 1	Drives either AM, FM, or Φ M. Nominal input impedance
	50 or 600 Ω , damage levels are 5 V_{rms} and 10 V_{peak} .
External input 2	Drives either AM, FM, or Φ M. Nominal input impedance
	50 or 600 Ω , damage levels are 5 V_{rms} and 10 V_{peak} .
Pulse/trigger gate input	Accepts input signal for external fast pulse modulation
	Also accepts external trigger pulse input for internal
	pulse modulation. Nominal impedance 50 Ω . Damage
	levels are 5 V _{rms} and 10 V _{peak} .
Pulse video out	Outputs a signal that follows the RF output in all pulse
	modes. TTL-level compatible, nominal source
	impedance 50 Ω .
Pulse sync out	Outputs a synchronizing pulse, nominally 50 ns width,
	during internal and triggered pulse modulation.
	TTL-level compatible, nominal source impedance 50 Ω .

Rear panel connectors

(all connectors are BNC female unless otherwise noted.)¹

Auxiliary interface (dual mode)	Used for RS-232 serial communication and for
	master/slave source synchronization.
	(9-pin subminiature female connector).
GPIB	Allows communication with compatible devices
LAN	Allows 10BaseT LAN communication
10 MHz input	Accepts an external reference (timebase) input (at 1,
	2, 2.5, 5, 10 MHz for standard and 10 MHz only for
	Option UNX and UNR)
	Nominal input impedance 50 Ω
	Damage levels > +10 dBm
10 MHz output	Outputs internal or external reference signal. Nominal
	output impedance 50 Ω . Nominal output power +8 dBm.
Sweep output (dual mode)	Supplies a voltage proportional to the RF power or
	frequency sweep ranging form 0 volts at the start of
	sweep to +10 volts (nom) at the end of sweep,
	regardless of sweep width.
	During CW operation, supplies a voltage proportional to the output frequency, +10 volts (nom) corresponding
	to the maximum specified frequency.
	When connected to an Agilent 8757D scalar network analyzer (Option 007), generates a selectable number of equally spaced 1 us pulses (nom) across a ramp
	(analog) sweep. Number of pulses can be set form 101 to 1601 by remote control from the 8757D.
	Output impedance: < 1 Ω (nom), can drive 2000 Ω .

^{1.} Digital inputs and output are 3.3 V CMOS unless indicated otherwise. Inputs will accept 5 V CMOS, 3 V CMOS, or TTL voltage levels.

Stop sweep In/Out	Open-collector, TTL-compatible input/output. In ramp sweep operation, provides low level (nominally 0 V) during sweep retrace and bandcross intervals, and high level during the forward portion of the sweep. Sweep will stop when grounded externally, sweep will resume when allowed to go high.
Trigger output (dual mode)	Outputs a TTL signal. High at start of dwell, or when waiting for point trigger; low when dwell is over or point trigger is received. In ramp sweep mode, provides 1601 equally-spaced 1us pulses (nom) across a ramp sweep. When using LF Out, provides 2 us pulse at start of LF sweep.
Trigger input	Accepts TTL signal for triggering point-to-point in manual sweep mode, or to trigger start of LF sweep. Damage levels $\geq +10 \text{ V}$ or $\leq -4 \text{ V}$.
Source module interface	Provides power and leveling connections to the millimeter source modules.
Source settled	Provides an output trigger that indicates when the signal generator has settled to a new frequency or power level. High indicates source not settled, Low indicates source settled.
Z-axis Blank/Markers	During ramp sweep, supplies +5 V (nom) level during retrace and bandswitch intervals. Supplies –5 V (nom) level when the RF frequency is at a marker frequency.
10 MHz EFC	(Option UNR/UNX only) Accepts an external DC voltage, ranging from -5 V to $+5$ V, for electronic frequency control (EFC) of the internal 10 MHz reference oscillator. This voltage inversely tunes the oscillator about its center frequency approximately -0.07 ppm/V. The nominal input impedance is greater than 1 M Ω .

Options, Accessories, and Related Products

Model/option	Description
E8257D-520	Frequency range from 250 kHz to 20 GHz
E8257D-532	Frequency range from 250 kHz to 31.8 GHz
E8257D-540	Frequency range from 250 kHz to 40 GHz
E8257D-550	Frequency range from 250 kHz to 50 GHz
E8257D-567	Frequency range from 250 kHz to 67 GHz
E8257D-007	Analog ramp sweep
E8257D-UNX	Ultra low phase noise
E8257D-UNT	AM, FM, phase modulation, and LF output
E8257D-UNU	Pulse modulation
E8257D-UNW ¹	Narrow pulse modulation
E8257D-1EA	High output power
E8257D-1E1	Step attenuator
E8257D-1ED	Type-N (f) RF output connector (Option 520 only)
E8257D-1EH	Improved harmonics below 2 GHz
E8257D-1EM	Moves all front panel connectors to the rear panel
E8257D-1EZ	Extended support life
E8257D-1CN	Front handle kit
E8257D-1CM	Rackmount flange kit
E8257D-1CP	Rackmount flange and front handle kit
E8257D-C09	Move all front panel connectors to the rear panel except for the RF
	output connector
E8257D-HSM ²	Scan modulation (20 GHz model only)
E8257D-H1S	1 GHz external frequency reference input and output
E8257D-HCC	Connections for phase coherency > 250 MHz
E8257D-HIG	Connections for phase coherency and improved phase stability < 250 MHz
E8257D-H30 ¹	Internal mixer for up conversion capability in the 20, 31.8, and 40 GHz models
E8257D-H60 ¹	Internal mixer for up conversion capability in the 50 and 67 GHz models
E8257D-UK6	Commercial calibration certificate and test data
E8257D-CD1	CD-ROM containing the English documentation set
E8257D-ABA	Printed copy of the English documentation set
E8257D-0BW	Printed copy of the assembly-level service guide
8120-8806	Master/slave interface cable
9211-2656	Transit case
9211-7481	Transit case with wheels
E8257DS15 ³	OML Inc. Millimeter source module, 50 GHz to 75 GHz at +8 dBm
E8257DS13	OML Inc. Millimeter source module, 60 GHz to 90 GHz at +6 dBm
E8257DS10 ³	OML Inc. Millimeter source module, 75 GHz to 110 GHz at +5 dBm
E8257DS08 ³	OML Inc. Millimeter source module, 73 GHz to 110 GHz at 13 dBm
E8257DS06 ³	OML Inc. Millimeter source module, 110 GHz to 170 GHz at –6 dBm
E8257DS05 ³	OML Inc. Millimeter source module, 140 GHz to 220 GHz at –0 dBm
E8257DS03 ³	OML Inc. Millimeter source module, 140 GHz to 325 GHz at –12 dBm
LUZU/ DUU	OWIE Mic. Willimiteter Source moudle, 220 GHZ to 323 GHZ dt -23 GDIII

Must be ordered with Option 1E1.
 Must be ordered with Option UNT and not available with Option UNU.

^{3.} Millimeter source module a product of Oleson Microwave Labs, Inc. and must be ordered with Option 1EA.

Web Resources

For additional information, visit:

www.agilent.com/find/psg

For more information about renting, leasing or financing Agilent's latest technology, visit: www.agilent.com/find/buy/alternatives

For more accessory information, visit:

www.agilent.com/find/accessories

For additional description of Agilent's IO Libraries Suite features and installation requirements, please go to:

www.agilent.com/find/iosuite/database

Related Agilent Literature

Agilent PSG Signal Generators
Brochure, Literature number 5989-1324EN

E8257D PSG Signal Generators
Configuration Guide, Literature number 5989-1325EN

E8267D PSG Vector Signal Generator
Data Sheet, Literature number 5989-0697EN

E8267D PSG Vector Signal Generator Configuration Guide, Literature number 5989-1326EN

Millimeter Wave Source Modules from OML, Inc. for the Agilent PSG Signal Generators Technical Overview, Literature number 5989-2923EN

Security of Agilent Signal Generators Issues and Solutions, Literature number 5989-1091EN

www.agilent.com/find/emailupdates

Get the latest information on the products and applications you select.

www.agilent.com/find/agilentdirect

Quickly choose and use your test equipment solutions with confidence.

www.agilent.com/find/open

Agilent Open simplifies the process of connecting and programming test systems to help engineers design, validate and manufacture electronic products. Agilent offers open connectivity for a broad range of system-ready instruments, open industry software, PC-standard I/O and global support, which are combined to more easily integrate test system development.

Agilent Technologies' Test and Measurement Support, Services, and Assistance

Agilent Technologies aims to maximize the value you receive, while minimizing your risk and problems. We strive to ensure that you get the test and measurement capabilities you paid for and obtain the support you need. Our extensive support resources and services can help you choose the right Agilent products for your applications and apply them successfully. Every instrument and system we sell has a global warranty. Two concepts underlie Agilent's overall support policy: "Our Promise" and "Your Advantage."

Our Promise

Our Promise means your Agilent test and measurement equipment will meet its advertised performance and functionality. When you are choosing new equipment, we will help you with product information, including realistic performance specifications and practical recommendations from experienced test engineers. When you receive your new Agilent equipment, we can help verify that it works properly and help with initial product operation.

Your Advantage

Your Advantage means that Agilent offers a wide range of additional expert test and measurement services, which you can purchase according to your unique technical and business needs. Solve problems efficiently and gain a competitive edge by contracting with us for calibration, extra-cost upgrades, out-of-warranty repairs, and onsite education and training, as well as design, system integration, project management, and other professional engineering services. Experienced Agilent engineers and technicians worldwide can help you maximize your productivity, optimize the return on investment of your Agilent instruments and systems, and obtain dependable measurement accuracy for the life of those products.

www.agilent.com

For more information on Agilent Technologies' products, applications or services, please contact your local Agilent office. The complete list is available at:

www.agilent.com/find/contactus

Phone or Fax

United States:

(tel) 800 829 4444 (fax) 800 829 4433

Canada:

(tel) 877 894 4414 (fax) 800 746 4866

China:

(tel) 800 810 0189 (fax) 800 820 2816

Europe:

(tel) 31 20 547 2111

Japan:

(tel) (81) 426 56 7832 (fax) (81) 426 56 7840

Korea:

(tel) (080) 769 0800 (fax) (080) 769 0900

Latin America:

(tel) (305) 269 7500

Taiwan:

(tel) 0800 047 866 (fax) 0800 286 331

Other Asia Pacific Countries:

(tel) (65) 6375 8100 (fax) (65) 6755 0042 Email: tm_ap@agilent.com Contacts revised: 09/26/05

Product specifications and descriptions in this document subject to change without notice.

© Agilent Technologies, Inc. 2004-2006 Printed in USA, January 11, 2006 5989-0698EN

