

· Redicts the Probability of an observations belonging to one of executs ocust

. In ML , it rakes to a binary classifer boad on addition noisearger sikigal

O When is logistic regression a good choirer

. If the dala is knownly expectals, the decision boundary of logistic regression is a loss, a plane,

or a palablase

Exemple: 0,+0,x+0,x 20

To andrabed the impad of an independent feature.

Example. Select readers based on made coefficion siza or words

0010,2,10,22 20,

٥	Legislic	regiocasion	application
---	----------	-------------	-------------

- · Prodicting hand attack visit
- · Diagrasing partions board on a set of
- · Roditing solotos a customa will partice
- a Product or ball a subscription
- · Pradicting Product -Porture probability
- bodichne merlejage ablackt likalihad

· Logistic regression exemple.

-Scasonio

Teleconomication aloto set:

- of the poster and susualess poet essings.
- . Cosbonal account information
- · Dansdrappic ispusation
- · Coustomars whoise left in the lost month

0 (Upwaxo roisesper te es					varidable.				Depode
				, , , , , ,						ملم
-	fenche	30	oddyess	income	ed	swbjan	equip	aland	carles	chun
0	11.0	33.0	7.0	136.0	5.0	50	0.0	1.0	1.0	405
\	33.0	33.0	12.0	33.0	2.0	0.0	0.0	0.0	0.0	Yas
2	23.6	30,0	90	30.0	1.0	20	0.0	0.0	0.0	NO
3	38.0	35.0	5.0	76.0	2.0	100	1.0	1.0	1.6	NO
4	7.0	35.0	14.0	80.0	2.0	150	0.0	1.0	0.0	?

God? Build a model to product the doss of earl crossomar by considered the producted probabily. About the restormer early churn

· Rodicing down come linea regression Y= Adeal chaging classes 9 = Redicted about dame. No(0) ý= 00 + 0, x, 9=00+Qx 3-0 × € 8; 0 > € P NO(0) ochallenges of linear regression 305E 1: 1 367 Tocords posibilities alop fordion a(x) = 1+6-x Signood fundom

- Probability to dos A	adiation
_	
P==(3) bourdary = 1	05
Probability that	~(9) → 2 0 if ~(9) ×0.5 1 , f ~(9) ≥0.5
Redicting octomor chain	
chain probability:	P(Y=1/x)

P(J=0/X)=1-P(V=1/X) P (Chars / Income, 1992) = 0.8 P(5/ay/Inromp, ago): 1-0.8 =0.2

O Logidic regression training · Idealify poramakes that map input fordings to dayget ochronas

· Objective : Predict classes with minimal erro First paramalas / that a that minimize cost fondion

- · Predict Probability that class = 1
- · Calculula Productions error (cod Costion)
 - · Updale O to reduce prodiction error
 - · Repeat andil:
 - · Roach small log-bes value or

. Targetod rundom of ilactions.

$$\sigma(\hat{y}) \rightarrow \begin{cases} 0 & (\hat{y}) < 0.5 \\ 1 & (\hat{y}) < 0.5 \end{cases}$$

lesseminion of obser exologo to be minimized

· Measures how well (Fi) matches y;

and comed => 100-1000 e small

· Costdod & incorrect: Producted probability of class Os high and incorrect = log-loss is large.

- haveap trailored that railored too existential o
 - . Slop training color log-loss is salis-loclory · Use Gnadien desnot
- o Gradien descent
 - Hordine approach to finding the minimum of a fastics-
 - enteries soles poises and what was derich.

 - · Depends on a specified learning valo Paranalas

Goal: Garge paramolor values and flood path to optimal Parameters to minimize the cost fundion

- · Guadien descend path . Bed baranshoe of whoman of col -Parsolion
- of alcolated over the expression.
- consolo cole: De dolo qual.
 - · Consuge less likely as slops too big to notice penicion
 - · Gradient can be approximated using a random

(app) travels lawbore products (app)

- · Noviational the gradian descent
- · Veas a readom dela
- · Likely to a valock lad
- · Corsiongo quicky lowards a global minimum
- Consider on po inderes (Ourseles on por
 - don Princes leaving rate
 - · Gradudy imasing sample size

Module 3

1 Gasilication

- · Supervised ML method
 - · Uses fully trained models to predict labors on new
 - · Labodes from a confegurated variable with discrete