Math104Hw3

Trustin Nguyen

September 22, 2023

Exercise 1: Use the limit Theorem 9.2 - 9.7 to prove that $\lim(\frac{n^2}{n^2+1}) = 1$. Justify all steps.

Proof. By the theorems:

$$\lim_{n \to \infty} \frac{n^2}{n^2 + 1} = \lim_{n \to \infty} \frac{1}{1 + \frac{1}{n^2}}$$

we have $\lim(\frac{1}{n^2}) = 0$. The limit of the sum of the series $t_n = 1$ and $s_n = \frac{1}{n^2}$ is just the sum of the limits:

 $\lim_{n\to\infty}\frac{1}{1}$

Now since the numerator as a sequence and denominator as a sequence don't converge to 0, the limit of the division is the division of their limits which is just 1.

Exercise 2: Assume that $\lim(s_n)$ and $\lim(t_n)$ exist, and $t_n \ge s_n$ for all n. Prove that $\lim(t_n) \ge \lim(s_n)$.

Proof. We have that $t_n - s_n \geqslant 0$ for all n. Therefore, our sequence $(t_n - s_n)$ is bounded by 0 on the lower end. The limit of this sequence is therefore greater than or equal to 0. But the limit of the sequence $t_n - s_n$ is the sum of the limits. So we have $\lim(t_n - s_n) = \lim(t_n) - \lim(s_n) \geqslant 0$. So we get

$$lim(t_n) \geqslant lim(s_n)$$

as desired. □

Exercise 3: Find the limit of the following sequences if they exist, otherwise write DNE. No proof is required.

• nⁿ;

Answer. The limit of the sequence is ∞ . We can show that it diverges to ∞ by showing that $\forall M > 0$, $\exists N$ such that $\forall n > N$, we have

$$n^n > M$$

Now pick $N = \max(M, 1)$. Then we have $n \ge M$ and $n \ge 1$. Therefore,

$$n^n \ge n$$

but $n > N \ge M$ so n > M. Therefore, we have found an N such that for all n > N,

$$n^n > M$$

• $(-n)^n$;

Answer. The limit does not exist. If we take the subsequence of this sequence where n is even and the subsequence where n is odd, we see that there are two limits. But if S is the set of subsequential limits, then there is a limit iff |S| = 1. In this case, we have the limits ∞ , $-\infty$.

• $(1.1)^n$.

Answer. The limit of the sequence is ∞ . We can rewrite this as

$$\frac{11^{n}}{10^{n}}$$

Divide the numerator and denominator by 11ⁿ:

$$\frac{1}{\frac{10^n}{11^n}}$$

The denominator converges to 0, since $\frac{10}{11}$ < 1. Therefore, we have that the number goes to ∞ .

Exercise 4: Let $s_n = \cos \frac{n\pi}{3}$. Use the definition to find $\limsup(s_n)$ and $\liminf(s_n)$, then explain why s_n has no limit.

Proof. We have by definition:

$$\begin{aligned} & liminf(s_n) = \lim_{N \to \infty} \inf\{s_n : n > N\} \\ & limsup(s_n) = \lim_{N \to \infty} \sup\{s_n : n > N\} \end{aligned}$$

We know that $-1 \le \cos x \le 1$. We will show that $-1, 1 \in \{s_n : n > N\}$ for any N. Clearly, 3N > N. Now let n = 3N. Then we have $\cos N\pi \in \{s_n : n > N\}$. If N is even, then we therefore have $1 \in \{s_n : n > N\}$. The we can also let n = 3(N+1), which gives us $\cos (N+1)\pi = -1 \in \{s_n : n > N\}$ also. For the case when N is odd, we also have that $1, -1 \in \{s_n : n > N\}$.

Now we prove that 1 is the supremum and -1 is the infimum of $\{s_n : n > N\}$ for any N. This is immediate because any upper bound less than 1 is not an upper bound because $1 \in \{s_n : n > N\}$. Same for the infimum argument.

So now we just have:

$$\lim_{N \to \infty} f(s_n) = \lim_{N \to \infty} -1 = -1$$
$$\lim_{N \to \infty} 1 = 1$$

so since $liminf(s_n) \neq limsup(s_n)$, the limit does not exist.

Exercise 5: Define $s_1 = 1$ and $s_{n+1} = \frac{s_n+1}{4}$ for all $n \in \mathbb{N}$. Prove that:

• for all n we have $1 \ge s_n \ge 1/3$

Proof. We will show this by induction:

- Base Case: For s_1 , we have $1 \ge s_1 \ge 1/3$.

– Inductive Case: Suppose that $1 \ge s_n \ge 1/3$ Now we have

$$\frac{4}{3} \leqslant s_n + 1 \leqslant 2$$

and therefore,

$$\frac{1}{3} \le \frac{s_n + 1}{4} = s_{n+1} \le 1/2 \le 1$$

so we have as desired

• (s_n) is decreasing;

Proof. We will check this by taking the difference:

$$s_n - s_{n+1} = s_n - \frac{s_n + 1}{4} = \frac{3s_n + 1}{4}$$

But since $s_n > 0$, we have

$$s_n - s_{n+1} > 0$$

Therefore, (s_n) is decreasing.

• $\lim(s_n)$ exists and find $\lim(s_n)$.

Proof. (Part I) The limit exists because lower bounded decreasing sequences are convergent. We can pick the infimum of the set

$${s:s \in (s_n)}$$

and say that $inf(s_n)+\epsilon$ is not a lower bound, meaning we can find an S_N such that

$$S_N < \inf(s_n) + \varepsilon$$

but since (s_n) is decreasing, we have that for all n > N,

$$-\varepsilon < s_n - \inf(s_n) < \varepsilon$$

so it has a limit.

Now we know that there is a limit, so any subsequence converges to this same limit. So we have $\lim(s_{n+1}) = \lim(s_n)$. We can use the limit theorems to get the following simplifications:

$$\begin{split} \lim(s_{n+1}) &= \lim(\frac{s_n+1}{4}) \\ &\lim(s_n) = \lim(\frac{s_n}{4}) + \lim(\frac{1}{4}) \\ &\lim(\frac{3s_n}{4}) = \frac{1}{4} \\ &\frac{3}{4}\lim(s_n) = \frac{1}{4} \\ &\lim(s_n) = \frac{1}{3} \end{split}$$

which is our limit.

Exercise 6: Directly use the definition of the Cauchy sequence to show that:

• $a_n = 1/n$ is a Cauchy sequence;

Proof. We will show that $\forall \varepsilon > 0$, there is an N such that $\forall n, m > N$ we have

$$|a_n - a_m| < \varepsilon$$

By triangle inequality:

$$|a_n - a_m| \leq ||a_n| + |a_m||$$

it suffices to show that we can find an N such that $\forall n, m > N$:

$$a_n + a_m = \frac{1}{n} + \frac{1}{m} < \varepsilon$$

So we want:

$$\frac{1}{n} < \frac{\varepsilon}{2}$$

or in other words,

$$n > \frac{2}{\varepsilon} \implies N = \frac{2}{\varepsilon}$$

So we can check:

$$n > \frac{2}{\varepsilon}$$

$$\frac{1}{n} < \frac{\varepsilon}{2}$$

$$\frac{1}{n} + \frac{1}{m} < \varepsilon$$

$$\frac{1}{n} + \frac{1}{m} < \varepsilon$$

so we have as desired.

• $b_n = (-1)^n$ is not a Cauchy sequence.

Proof. So we want to show that there is an $\epsilon>0$ such that $\forall N$, we have there are are n,m>N such that

$$|b_n - b_m| \ge \varepsilon$$

Take $\varepsilon = 1$ and let N be arbitrary. Clearly, 2N > N and we have:

$$b_{2N} = (-1)^{2N} = 1$$

and we also have

$$b_{2N+1} = (-1)^{2N+1} = -1$$

Now take n, m = 2N, 2N + 1. Then

$$|b_n - b_m| = |1 - (-1)| = 2 \ge 1 = \varepsilon$$

so this is not a Cauchy sequence.