Real Estate

Fernando Sanz-Extremera, Gael Moreira, Laura Nieto.


```
NAL_XML', false);
are("5.2", PHP_VERSION, ">"))) {
or greater is required!!!");
Info requires the pcre extension to php in order
y.");
PP_ROOT.'/includes/autoloader.inc.php';
APP_ROOT '/config.php';
'PSI_CONFIG_FILE') || !defined('PSI_DEBUG'))
 TempLate("/templates/html/error_config.html
  >fetch();
                         + javascript
```


Datos

PRECIOS	HAB	BAÑOS
TERRENO	ID	FECHA VENTA
FECHA CONSTRUC.	PIES2 ÚTILES	VISITAS
ESPACIO SOTANO	DATOS 15 VECINOS	ETC

01

Exploración básica.

03

Testeo de todos los metodos de regresión y seleccion del mas efectivo.

Limpieza de datos ya revisados.

Representacion de los datos finales

Limpieza

- -Id como Indice
- -33 habitaciones
- -0 hab y 0 baños
- -Fecha a ordinal

Chequeo

Chequeo de distribuciones

Olistribución del precio

Outliers

Observamos todos los outliers que pueda haber

Hacemos un Heatmap de Correlaciones

Eliminamos sqft_above por relación con sqft_living

Método Fer

Modelo Base

Tan solo eliminando la feature que genera multicolinearidad y probamos bastantes modelos de predicción

Modelos intermedios

Eliminamos outliers muy claros Modificamos features:

- sqft living neighbors
- sqft lot neighbors

Modelos fallidos

Probamos a eliminar features Probamos a modificar features:

 Juntar año de construcción y renovación

Modelo final

Volvemos al modelo con mejores métricas

Sopa de Modelos

XGBoost RF Regression

Decision Tree Regression

Ridge Regression

Elastic Net Regression

XGBoost Regression

Neural Network Regression

Polynomial Regression (degree=2)

Lasso Regression

Random Forest Regression

Linear Regression

K-Nearest Neighbors Regression

Bayesian Regression

Gradient Boosting Regression

Support Vector Regression

Base Model

Gradient
Boosting
85,7

Regresion

Model	R²	RMSE	MSE	MAE
Linear Regression	0.7005	207924.99	4.32e+10	127181.99
Ridge Regression	0.7004	207957.99	4.32e+10	127177.60
Lasso Regression	0.7005	207926.16	4.32e+10	127181.60
Elastic Net Regression	0.6115	236829.63	5.60e+10	148877.54
Polynomial Regression (degree=2)	0.8058	167448.28	2.80e+10	102545.23
Decision Tree Regression	0.7290	197795.45	3.91e+10	102487.99
Random Forest Regression	0.8540	145173.51	2.10e+10	73486.95
K-Nearest Neighbors Regression	0.4814	273611.07	7.48e+10	165269.83
Support Vector Regression	-0.0636	391845.82	1.53e+11	226854.95
Neural Network Regression	0.5751	247678.24	6.13e+10	163202.95
Bayesian Regression	0.7004	207958.31	4.32e+10	127177.56
Gradient Boosting Regression	0.8575	143420.99	2.05e+10	80282.63
XGBoost Regression	0.8742	134739.01	1.81e+10	69674.45
XGBoost RF Regression	0.7674	183242.03	3.35e+10	99885.87

Modelo Final

Random XGBoost Gradient 88,7 Boosting 87,7

Regresion

- Creamos lot_diff_neighbors y restamos los pies cuadrados del terreno con los pies cuadrados de la media de los 15 vecinos
- Creamos sqft_diff_neighbors.
 y restamos los pies cuadrados de la casa con los pies cuadrados de la media de los 15 vecinos.

Model	R²	RMSE	MSE	MAE
Linear Regression	0.7034	206688.50	4.27e+10	126068.94
Ridge Regression	0.7034	206712.84	4.27e+10	126042.28
Lasso Regression	0.7034	206689.29	4.27e+10	126067.88
Elastic Net Regression	0.6187	234376.29	5.49e+10	145328.31
Polynomial Regression (degree=2)	0.8352	154097.73	2.37e+10	100342.39
Decision Tree Regression	0.7387	194012.45	3.76e+10	104091.64
Random Forest Regression	0.8800	131469.00	1.72e+10	69690.92
K-Nearest Neighbors Regression	0.4458	282560.25	7.98e+10	166188.14
Support Vector Regression	-0.0620	391139.20	1.52e+11	224906.23
Neural Network Regression	0.5159	264076.50	6.97e+10	168159.08
Bayesian Regression	0.7034	206712.61	4.27e+10	126042.52
Gradient Boosting Regression	0.8787	132185.32	1.74e+10	75400.25
XGBoost Regression	0.8870	127566.00	1.62e+10	66518.98
XGBoost RF Regression	0.8147	163402.32	2.67e+10	92873.72

Problemas principales

Problemas principales

- Usar Funciones
- Correlaccionados con la target
- Buscar Modelos
- Año de renovación == 0, cambiar por año de construcción
- Normalización con Log Transform
- Baños

Gracias!

Regresion

Eliminando:

- 33 habitaciones
- 0 habitaciones y 0 baños

Model	R²	RMSE	MSE	MAE
Linear Regression	0.7034	206688.50	4.27e+10	126068.94
Ridge Regression	0.7034	206712.84	4.27e+10	126042.28
Lasso Regression	0.7034	206689.29	4.27e+10	126067.88
Elastic Net Regression	0.6187	234376.32	5.49e+10	145328.34
Polynomial Regression (degree=2)	0.8351	154147.94	2.37e+10	100477.55
Decision Tree Regression	0.7435	192232.19	3.69e+10	101483.09
Random Forest Regression	0.8809	130993.04	1.71e+10	69446.66
K-Nearest Neighbors Regression	0.4638	277924.38	7.72e+10	160126.65
Support Vector Regression	-0.0620	391138.89	1.52e+11	224906.08
Neural Network Regression	0.4994	268546.82	7.21e+10	169098.55
Bayesian Regression	0.7034	206712.61	4.27e+10	126042.52
Gradient Boosting Regression	0.8743	134584.61	1.81e+10	75994.56
XGBoost Regression	0.8822	130265.68	1.69e+10	66080.33
XGBoost RF Regression	0.8180	161918.88	2.62e+10	92051.23

Escalado min-max

