Table 1: Resuts at End of Training for All Networks

Training	Testing	Training	Testing
Loss	Loss	Accuracy	Accuracy
0.924	0.914	68.3	69.6
0.767	0.876	73.6	70.3
0.781	0.013	73.0	69.2
0.761	0.913	75.0	09.2
0.794	0.802	72.0	71.9
0.928	0.922	68.1	68.7
0.930	0.910	68.3	69.3
	0.924 0.767 0.781 0.794 0.928	Loss Loss 0.924 0.914 0.767 0.876 0.781 0.913 0.794 0.802 0.928 0.922	Loss Loss Accuracy 0.924 0.914 68.3 0.767 0.876 73.6 0.781 0.913 73.0 0.794 0.802 72.0 0.928 0.922 68.1

HW3

Class: CS519 - Deep Learning Name: Ammar Kothari

Date: 03/10/17

(1) Remove Dropout Layer

Reference Figure 1 Reference Figure 2

(2) Additional Fully Connected Layer with 512 filters

Reference Figure 3 Reference Figure 4

(3) Adaptive Schedule Learning Rate Tuning

I implemented Adagrad with the original network structure.

Reference Figure 5 Reference Figure 6

(4) Additional Tuning Methods

Method 1: Replace ReLU with Leaky ReLU

Leaky ReLU implements a small gradient value when the activation is zero. This can help with convergence.

Reference Figure 7 Reference Figure 8

Method 2: Replace Dropout with Gaussian Dropout

I replaced the dropout with Gaussian dropout layers. I changed the values from [0.25, 0.25, 0.50] to [0.5, 0.5, 0.75] for the layers.

Reference Figure 9
Reference Figure 10

Figure 1: Loss During Training with Drop Out Layer Removed

Figure 2: Accuracy During Training with Drop Out Layer Removed

Figure 3: Loss During Training with Additional Convolutional Layer

Figure 4: Accuracy During Training with Additional Convolutional Layer

Figure 5: Loss During Training with Adaptive Scheduling to Tune Learning Rate

Figure 6: Accuracy During Training with Adaptive Scheduling to Tune Learning Rate

Figure 7: Loss During Training with Leaky ReLU

Figure 8: Accuracy During Training with Leaky ReLU

Figure 9: Loss During Training with Gaussian Dropout

Figure 10: Accuracy During Training with Gaussian Dropout