1 Mengen

1.1 Definitionen

Obere/Untere Schranke: $\exists b \in \mathbb{R} \ \forall a \in A: \ a \leq b, \ \exists c \in \mathbb{R} \ \forall a \in A: \ a \geq c$

Maximum/Minimum: $\sup A \in A$, $\inf A \in A$

kompakt: abgeschlossen und beschränkt

abgeschlossen: z.B. [0,1]

1.1.1 Vorgehen zur Bestimmung von Maximum/Minimum

1. Zeigen, dass f(x) stetig ist

2. Zeigen, dass Definitionsmenge kompakt ist

3. Nach Satz von Weierstrass wird Maximum/Minimum angenommen

4. Maximum/Minimum bestimmen

1.2 Identitäten

$$A+B:=\{a+b|a\in A,b\in B\}$$

$$\sup(A+B)=\sup A+\sup B,\ \inf(A+B)=\inf A+\inf B$$

$$\sup(A\cup B)=\max\{\sup A,\sup B\},\ \inf(A\cup B)=\min\{\inf A,\inf B\}$$

2 Komplexe Zahlen

$$\begin{split} z &= x + iy = r(\cos(\varphi) + i\sin(\varphi)) = re^{i\varphi} \\ r &= |z| = \sqrt{x^2 + y^2} \\ \arg(z) &= \varphi = \arctan(\frac{y}{x}) \quad \text{(je nach Quadrant)} \\ x &= r\cos(\varphi) \\ y &= r\sin(\varphi) \\ zw &= (re^{i\varphi}) \cdot (se^{i\psi}) = rse^{i(\varphi + \psi)} \\ \sqrt[q]{z} &= \sqrt[q]{s}e^{i\phi}, \text{ wobei } \phi = \frac{\varphi}{q} \mod \frac{2\pi}{q} \\ e^{i(\frac{\pi}{2} + 2\pi k)} &= i, \ e^{i\pi} = 1, \ e^{-i\pi} = -1 \end{split}$$

$$(a,b) \cdot (c,d) = (ac - bd, ad + bc)$$

$$\overline{z} = x - iy$$

$$z^{-1} = \frac{\overline{z}}{|z|^2}$$

$$i = \sqrt{-1}$$

$$i^{2} = -1$$

$$|z|^{2} = z\overline{z}$$

$$|zw|^{2} = (zw) \cdot \overline{(zw)} = |z|^{2}|w|^{2}$$

3 Grenzwert

3.1 Dominanz

$$\begin{split} \text{F\"{u}r } x \to +\infty: \quad \dots < \log(\log(x)) < \log(x) < x^{\alpha} < \alpha^x < x! < x^x \\ \text{F\"{u}r } x \to 0: \quad \dots < \log(\log(x)) < \log(x) < (\frac{1}{x})^{\alpha} \end{split}$$

3.2 Fundamentallimes

$$\lim_{x \to a} \frac{\sin \odot}{\odot} = \lim_{x \to a} \frac{\tan \odot}{\odot} = 1 \text{ mit } \odot \xrightarrow{x \to a} 0$$

$$\lim_{x \to a} (1 + \frac{1}{\odot})^{\odot} = e \text{ mit } \odot \xrightarrow{x \to a} \infty$$

$$\lim_{x \to a} (1 + \odot)^{\frac{1}{\odot}} = e \text{ mit } \odot \xrightarrow{x \to a} 0$$

3.3 Wurzeltrick

$$\lim_{x \to \infty} \sqrt{\alpha} + \beta = \lim_{x \to \infty} (\sqrt{\alpha} + \beta) \frac{\sqrt{\alpha} - \beta}{\sqrt{\alpha} - \beta}$$

3.4 $e^{\log(x)}$ -Trick

Anforderung: Term der Form $f(x)^{g(x)}$ mit Grenzwert "0", " ∞ 0" oder "1 $^{\infty}$ " für $x \to 0$

Grundsatz:
$$\lim_{x \to a} f(x)^{g(x)} = \lim_{x \to a} e^{g(x) \cdot \log(f(x))}$$

Tipp: Danach den Limes des Exponenten berechnen. Oft ist Bernoulli-de l'Hôpital dazu nützlich.

3.5 Substitution

$$\lim_{x \to \infty} x^2 (1 - \cos(\frac{1}{x})) \Rightarrow u = \frac{1}{x} \Rightarrow \lim_{x \to 0} \frac{1 - \cos(u)}{u^2}$$

3.6 Satz von Bernoulli-de l'Hôpital

Anforderung: Term der Form $\frac{f(x)}{g(x)}$ mit Grenzwert entweder " $\frac{0}{0}$ " oder " $\frac{\infty}{\infty}$ " mit $g'(x) \neq 0$.

Grundsatz:
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

Term	Anforderung	Umformung
f(x)g(x)	$"0\cdot\infty"$	$\frac{g(x)}{\frac{1}{f(x)}}$
$\frac{f(x)}{g(x)} - \frac{h(x)}{i(x)}$	$\infty - \infty$	$\frac{f(x)i(x) - h(x)g(x)}{g(x)i(x)}$

2

3.7 Wichtige Grenzwerte

$$\lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^n = e^x \qquad \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = e$$

$$\lim_{x \to 0} \frac{a^x - 1}{x} = \ln a \qquad \lim_{x \to 0} \frac{\log_a(1 + x)}{x} = \frac{1}{\ln a}$$

$$\lim_{x \to 0} \frac{1 - \cos(x)}{x} = 0 \qquad \lim_{x \to 0} \frac{1 - \cos(x)}{x^2} = \frac{1}{2}$$

$$\lim_{x \to 0} \frac{\tan(x)}{x} = 1 \qquad \lim_{x \to 0} \frac{\sin(x)}{x} = 1$$

$$\lim_{n \to \infty} \frac{n!}{n^n} = 0 \qquad \lim_{n \to \infty} \frac{e^n - 1}{n} = 1$$

$$\lim_{n \to \infty} \sqrt[n]{n!} = \infty \qquad \lim_{n \to \infty} \sqrt[n]{n} = 1$$

$$\lim_{n \to \infty} \ln(n) = \infty \qquad \lim_{x \to 0} \frac{\log_a(1 + x)}{x} = \frac{1}{\ln a}$$

4 Folgen

4.1 Definition

Konvergenz: $\forall \varepsilon > 0 \ \exists N = N(\varepsilon) \in \mathbb{N}, \text{ sodass } \forall n \geq N : |a_n - a| < \varepsilon$ **Divergenz:** $\forall K > 0 \ \exists N = N(K) \in \mathbb{N}, \text{ sodass } \forall n \geq N : |a_n| > K$

4.2 Beweis

- 1. Zeige mittels Induktion, dass die Folge beschränkt ist und monoton steigt/fällt. Benutze dazu z.B. folgende Aussagen: $a_n \le a_{n+1}$ oder $a_{n+1} a_n \ge 0$.
- 2. Grenzwert berechnen mit $a:=\lim_{n\to\infty}a_n$ oder durch die ersten paar Terme abschätzen
- 3. Beweise den Grenzwert (z.B. mit $a_n \geq a$) um Beschränktheit zu beweisen

Tipp: Den Grenzwert in der rekursiven Formel mit a_n und a_{n+1} ersetzen. Für die Formel $a_{n+1} = \frac{1}{2}a_n + \sqrt{a_n}$ muss zum Beispiel gelten: $a = \frac{1}{2}a + \sqrt{a}$ (hier a = 4)

5 Reihen $\sum_{i=1}^{\infty}$

5.1 Konvergenzkriterien

	Eignung	Bemerkung	
Limes des allgemeinen		zeigt nur Divergenz	
Glieds			
Majoranten- und Mino-		ersten Glieder spielen keine	
rantenkriterium		Rolle	
Quotientenkriterium	a_n mit Faktoren wie $n!$,	gleiche Folgerung wie	
	a^n , oder Polynome	Wurzelkriterium	
Wurzelkriterium	$a_n = (b_n)^n$	gleiche Folgerung wie Quo-	
		tientenkriterium	
Leibnitz-Kriterium	$\sin, \cos, \tan, (-1)^n$		
Absolute Konvergenz	$\sin, \cos, \tan, (-1)^n$		
Sandwich-Theorem	\sin , \cos , \tan , $(-1)^n$		

Limes des allgemeinen Glieds

Bemerkung: Mit dieser Methode lässt sich nur die Divergenz beweisen, nicht jedoch die Konvergenz.

- 1. $\sum_{n} a_n$ gegeben
- 2. Grenzwert $\lim_{n\to\infty} a_n$ berechnen
 - falls Grenzwert $\neq 0 \Rightarrow$ divergent
 - falls Grenzwert = $0 \Rightarrow$ keine Aussage

Majoranten- und Minorantenkriterium

Es seien a_n , $b_n > 0$ mit $a_n \ge b_n \ \forall n$ ab einem gewissen n_0 . Dann gilt:

$$\sum_{n} a_{n} \text{ konvergent} \Rightarrow \sum_{n} b_{n} \text{ konvergent} \quad \text{(Majorantenkriterium)}$$

$$\sum_{n} b_{n} \text{ divergent} \Rightarrow \sum_{n} a_{n} \text{ divergent} \quad \text{(Minorantenkriterium)}$$

Vergleichskriterium

- 1. $\sum_{n} a_n$ und $\sum_{n} b_n$ gegeben mit $a_n, b_n > 0$
- 2. Grenzwert $\lim_{n\to\infty} \frac{a_n}{b_n}$ berechnen
 - falls Grenzwert = 0:

 - $-\sum_{n} a_{n}$ divergent $\Rightarrow \sum_{n} b_{n}$ divergent $-\sum_{n} b_{n}$ konvergent $\Rightarrow \sum_{n} a_{n}$ konvergent
 - falls Grenzwert = ∞ :

 - $-\sum_{n} a_{n}$ konvergent $\Rightarrow \sum_{n} b_{n}$ konvergent $-\sum_{n} b_{n}$ divergent $\Rightarrow \sum_{n} a_{n}$ divergent

Quotientenkriterium

- 1. $\sum_{n} a_n \text{ mit } a_n \neq 0 \text{ gegeben}$
- 2. Grenzwert $\lim_{n \mapsto \infty} |\frac{a_{n+1}}{a_n}|$ berechnen
 - falls Grenzwert $> 1 \Rightarrow$ divergent
 - falls Grenzwert $< 1 \Rightarrow$ konvergent
 - falls Grenzwert = $1 \Rightarrow$ keine Aussage

Wurzelkriterium

- 1. $\sum_{n} a_n \text{ mit } a_n \neq 0 \text{ gegeben}$
- 2. Grenzwert $\lim_{n\mapsto\infty} \sqrt[n]{|a_n|}$ berechnen
 - falls Grenzwert $> 1 \Rightarrow$ divergent
 - falls Grenzwert $< 1 \Rightarrow$ konvergent
 - falls Grenzwert = $1 \Rightarrow$ keine Aussage

Leibniz-Kriterium

- 1. $\sum_{n} (-1)^n a_n$ gegeben
- 2. konvergent, falls:
 - (a) $a_n \geq 0$
 - (b) $\lim_{n\to\infty} a_n = 0$
 - (c) a_n monoton fallend

Absolute Konvergenz

- 1. $\sum_{n} (-1)^n a_n$ gegeben
- 2. **konvergent**, falls $\sum_{n} |a_n|$ konvergent

5.2 Geometrische Reihe

Reihe der Form $\sum_{k=0}^{\infty} a \cdot r^k$ mit der **Partialsumme**:

$$S_N = \frac{a - ar^{N+1}}{1 - r}$$

Konvergent, falls 0 < |r| < 1 mit Grenzwert:

$$\sum_{k=0}^{\infty} ar^k = \frac{a}{1-r}$$

5.3 Potenzreihe

Reihe der Form $\sum_{0}^{\infty} a_n x^n$. Konvergent, falls $|x| < \rho$. In diesem Gebiet darf man die Reihe ableiten und integrieren.

$$\rho = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right|$$

$$\rho = \frac{1}{\lim_{n \to \infty} \sqrt[n]{|a_n|}}$$

Konvergenzverhalten am Rand: Es muss noch überprüft werden, ob die Reihe für genau ρ konvergiert. Dazu muss ρ in die Formel eingesetzt werden.

5.3.1 Wichtige Reihen

$$\cos(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!}$$

$$\sin(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!}$$

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$

$$n^2 = \sum_{k=1}^{n} 2k - 1$$

$$\sum_{n=1}^{\infty} \frac{1}{n} = \infty \text{ (harmonisch)}$$

5.3.2 Potenzreihenentwicklung

Grundsatz:
$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} \cdot x^n$$

5

Stetigkeit 6

Lipschitz-Stetigkeit 6.1

Es existiert eine Konstante $L \in \mathbb{R}$, sodass:

$$|f(x) - f(y)| \le L|x - y| \quad \forall x, y \in \Omega$$

Bemerkung: Ist f' auf Ω beschränkt, so ist f Lipschitz-stetig. Lipschitz-Stetigkeit impliziert gleichmässige Stetigkeit.

6.2Weierstrass-Kriterium

Für alle $\epsilon > 0$ gibt es ein $\delta(\epsilon, a) > 0$, sodass für alle $|x - a| < \delta$ gilt:

$$|f(x) - f(a)| < \epsilon$$

6.3 Gleichmässige Stetigkeit

Für alle $\epsilon > 0$ gibt es ein $\delta(\epsilon) > 0$, sodass für alle $|x - y| < \delta$ gilt:

$$|f(x) - f(y)| < \epsilon$$

Bemerkung: Ist f stetig und kompakt, dann ist sie auch gleichmässig stetig.

Punktweise Konvergenz

 $f_n(x)$ konvergiert punktweise falls:

$$\forall x \in \Omega \quad \lim_{n \to \infty} f_n(x) = f(x)$$

Gleichmässige Konvergenz

Grundsatz: Falls eine Folge stetiger Funktionen f_n gleichmässig gegen f konvergiert, muss f stetig sein.

 $f_n(x)$ konvergiert gleichmässig falls:

$$\lim_{n \to \infty} \sup |f_n(x) - f(x)| = 0$$

Bemerkung: Gleichmässige Konvergenz impliziert punktweise Konvergenz.

 $f_n: [0,1] \to \mathbb{R}, \ f_n(x) = (1-x^2)x^n$

 $\lim_{n \to \infty} (1 - x^2)x^n = 0 \equiv f(x)$ punktweisen Limes berechnen:

 \Rightarrow konvergiert gegen 0

 $\sup_{x \in [0,1]} |f_n(x) - f(x)| = \sup_{x \in [0,1]} |f_n(x)| = \sup_{x \in [0,1]} f_n(x)$ Supremum berechnen:

 $\frac{d}{dx}f_n(x)nx^{n-1}(1-x^2) - 2xx^n = x^{n-1}(n-(n+2)x^2) = 0$ Maximum finden:

 $\Rightarrow x_1 = 0, \ x_2 = \sqrt{\frac{n}{n+2}} \Rightarrow x_2 \text{ ist Maximum}$

 $\lim_{n \to \infty} \sup_{x \in [0,1]} |f_n(x) - f(x)| = \lim_{n \to \infty} f_n(x_2) = 0$ Limes berechnen:

Folgerung: f_n konvergiert auf [0,1] glm. gegen f

7 Differenzialrechnung

Eine stetige Funktion ist differenzierbar, falls der Grenzwert $f'(x_0)$ existiert:

$$f'(x_0) := \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

7.1 Umkehrsatz

$$(f^{-1})'(y) = \frac{1}{f'(f^{-1}(y))}$$

7.2 Mittelwertsatz

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

7.3 Taylorpolynom

Das Taylorpolynom m-ter Ordnung von f(x) an der Stelle x = a

$$P_m^a(x) := f(a) + f'(a)(x - a) + \frac{1}{2}f''(a)(x - a)^2 + \dots + \frac{1}{m!}f^{(m)}(a)(x - a)^m$$

mit dem Fehlerterm $R_m^a(x)$, wobei ξ zwischen a und b liegt:

$$R_m^a(x) = \frac{f^{(m+1)}(\xi)}{(m+1)!}(x+a)^{m+1}$$
, wobei $f(x) = P_m^a(x) + R_m^a(x)$

7.4 Hauptsatz der Differential- und Integralrechnung

$$f(x) = \int_{1}^{m(x)} g(t)dt$$

$$f'(x) = g(m(x)) \cdot \frac{d}{dx} m(x)$$

wobei m(x) der Form ax^b ist mit $l \in \mathbb{R}$

7.5 Uneigentliche Integrale

$$\int_0^\infty f(x) \ dx = \lim_{R \to \infty} \int_0^R f(x) \ dx$$
$$\int_{-\infty}^\infty f(x) \ dx = \lim_{R \to -\infty} \int_R^k f(x) \ dx + \lim_{R \to \infty} \int_k^R f(x) \ dx$$

Gibt es eine Unstetigkeitstelle c in dem Integrationsgebiet, so geht man wie folgt vor:

$$\int_{a}^{b} f(x) \ dx = \lim_{\varepsilon \to 0} \int_{a}^{c-\varepsilon} f(x) \ dx + \lim_{\varepsilon \to 0} \int_{c+\varepsilon}^{b} f(x) \ dx$$

7.6 Beweis bijektiver Funktionen

Zu beweisen sind folgende Eigenschaften:

injektiv: Zeig, dass f strickt monoton wächst oder fällt undstetig ist

surjektiv: Zeig, dass alle Werte im Bildbereich angenommen werden (vl. mit Zwischenwertsatz)

Daraus folgt dann, dass f bijektiv ist.

8 Differentialgleichungen

Grundbegriffe 8.1

Ordnung: höchste vorkommende Ableitung

linear: alle y-abhängigen Terme kommen linear vor (keine Terme wie zum Beispiel

 y^2 , $(y'')^3$, $\sin(y)$, $e^{y'}$)

Gleichung ohne Störfunktionen homogen:

Störfunktion: Term, der rein von der Funktionsvariablen x abhängt

8.2 Methoden

	Problem	Anforderungen
Trennung der Variablen	$y' = \frac{dy}{dx} = h(x) \cdot g(y)$	1. Ordnung
Variation der Konstanten	$y' = \frac{dy}{dx} = h(x)y + b(x)$	1. Ordnung
		inhomogen
Euler-Ansatz	$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \dots + a_0 y = 0$	n. Ordnung
		linear
		homogen
Direkter Ansatz	$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \dots + a_0 y = b(x)$	n. Ordnung
		linear
		inhomogen

Trennung der Variable 8.2.1

$$y' + x \tan y = 0, \ y(0) = \frac{\pi}{2}$$

umformen
$$\frac{dy}{dx} = -x \tan y$$

konstante Lösungen
$$y(x) \equiv 0$$
 erfüllt jedoch $y(0) \equiv \frac{\pi}{2}$ nicht

Trennung
$$\frac{dy}{\tan y} = -xdx$$

integrieren
$$\int \frac{\cos y}{\sin y} dy = -\int x dx \Rightarrow \log|\sin y| = -\frac{x^2}{2} + C$$
$$\Rightarrow |\sin y| = e^C e^{\frac{-x^2}{2}} \Rightarrow \sin y = \pm e^C e^{\frac{-x^2}{2}} = C e^{\frac{-x^2}{2}}$$

$$\Rightarrow |\sin y| = e^{C} e^{\frac{\pi}{2}} \Rightarrow \sin y = \pm e^{C} e^{\frac{\pi}{2}}$$

Anfangsbedingung gebrauchen
$$\sin(y(0)) = \sin(\frac{\pi}{2}) = 1 \Rightarrow C = 1$$

Lösung
$$y(x) = \arcsin(e^{\frac{-x^2}{2}})$$

8.2.2 Variation der Konstanten

Grundsatz: $y(x) = y_h(x) + y_p(x)$

$$y'(x+1)+y=x^3,\ y(0)=\sqrt{5}$$
 Trennung
$$\frac{y'}{y}=\frac{-1}{x+1}$$

konstante Lösungen $y(x) \equiv 0$ erfüllt jedoch $y(0) \equiv \sqrt{5}$ nicht

integrieren
$$\int \frac{dy}{y} = -\int \frac{dx}{x+1}$$
$$\Rightarrow \ln|y| = -\ln|x+1| + C$$

Homogene Lösung $y_h(x) = \frac{C}{x+1}$, mit $C = \pm e^C \in \mathbb{R} \setminus 0$

partikulärer Ansatz
$$y_p(x) = \frac{C(x)}{x+1}$$
einsetzen
$$(\frac{C'(x)}{x+1} - \frac{C(x)}{(x+1)^2})(x+1) + \frac{C(x)}{x+1} = x^3$$
$$C'(x) = x^3$$

$$C(x) = \frac{x^4}{4}$$

partkuläre Lösung $y_p(x) = \frac{x^4}{4(x+1)}$

allgemeine Lösung
$$y(x) = y_h(x) + y_p(x) = \frac{C}{x+1} + \frac{x^4}{4(x+1)}$$

Anfangsbedingung benutzen $y(0) = \sqrt{5} \Rightarrow C = \sqrt{5}$

Lösung
$$y(x) = \frac{\sqrt{5}}{x+1} + \frac{x^4}{4(x+1)}$$

8.2.3 Euler-Ansatz

$$y''-2y'-8y=0,\ y(1)=1,y'(1)=0$$
 Euler-Ansatz
$$y(x)=e^{\lambda x}$$
 einsetzen
$$\lambda^2 e^{\lambda x}-2\lambda e^{\lambda x}-8e^{\lambda x}=0$$
 charakt. Polynom
$$\lambda^2-2\lambda-8=(\lambda-4)(\lambda+2)=0$$
 Nullstellen
$$4,-2$$
 allgemeine Lösung
$$y(x)=Ae^{4x}+Be^{-2x}$$
 Anfangsbedingung gebrauchen
$$y(1)=Ae^4+Be^{-2}=1,\ y'(1)=4Ae^4-2Be^{-2}=0$$

$$\Rightarrow A=\frac{1}{3}e^{-4},B=\frac{2}{3}e^2$$
 Lösung
$$y(x)=\frac{1}{3}e^{4x-4}+\frac{2}{3}e^{2-2x}$$

Bemerkung: Zu einer m-fachen Nullstelle λ gehören die m linear unabhängigen Lösungen $e^{\lambda x}$, $x \cdot e^{\lambda x}$, ..., $x^{m-1} \cdot e^{\lambda x}$. Zur m-fachen Nullstelle $\lambda = 0$ gehören die Lösungen $1, x, \ldots, x^{m-1}$.

Komplexe Nullstellen:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Ein komplexes Nullstellenpaar der Form $\alpha \pm \beta i$ liefert folgende homogene Lösung:

$$y(x) = e^{\alpha x} (C_1 \cos(\beta x) + C_2 \sin(\beta x))$$

8.2.4 Direkter Ansatz

Grundsatz: $y(x) = y_{\text{homo}}(x) + y_p(x)$

Inhomogener Term $b(x)$	Ansatz für $y_p(x)$	zu bestimmen
Polynom	$Ax^2 + Bx + C$	A, B, C
ce^{kx}	Ae^{kx}	A
$c\sin(kx)$ oder $c\cos(kx)$	$A\sin(kx) + B\cos(kx)$	A, B

Bemerkung: Kommt der gewählte Ansatz schon in der homogenen Lösung vor, so multipliziert man den Ansatz einfach mit x.

$$y'' - y' + \frac{1}{4}y = \cos(x)$$
 homogener Ansatz
$$y'' + y' + \frac{1}{4}y = 0$$
 Euler-Ansatz anwenden
$$\lambda^2 + \lambda + \frac{1}{4} = (\lambda + \frac{1}{2})^2 = 0$$
 homogene Lösung
$$\Rightarrow y_{\text{homo}}(x) = Ae^{-\frac{x}{2}} + Bx \cdot e^{-\frac{x}{2}}$$
 partikulärer Ansatz wählen
$$y_p(x) = a\cos(x) + b\sin(x)$$

$$\Rightarrow y'_p(x) = -a\sin(x) + b\cos(x), \ y''_p(x) = -a\cos(x) - b\sin(x)$$
 Einsetzen
$$(-a + b + \frac{a}{4})\cos(x) + (-b - a + \frac{1}{4}b)\sin(x) = \cos(x)$$
 Koeffizientenvergleich
$$-\frac{3}{4}a + b = 1, \ -a - \frac{3}{4}b = 0$$
 partikuläre Lösung
$$y_p(x) = -\frac{12}{25}\cos(x) + \frac{16}{25}\sin(x)$$
 Lösung
$$y(x) = Ae^{-\frac{x}{2}} + Bx \cdot e^{-\frac{x}{2}} - \frac{12}{25}\cos(x) + \frac{16}{25}\sin(x)$$

9 Wegintegral

9.1 Standardmethode

$$\vec{v} = \begin{pmatrix} y \\ 0 \end{pmatrix}, \ \gamma : [0,2\pi] \mapsto \mathbb{R}^2, \ t \mapsto \begin{pmatrix} t - \sin(t) \\ 1 - \cos(t) \end{pmatrix}$$
 parametrisieren hier bereits gegeben
$$\gamma \text{ ableiten } \dot{\gamma} = \begin{pmatrix} 1 - \cos(t) \\ \sin(t) \end{pmatrix}$$
 in Formel einsetzen
$$\int_{\gamma} \vec{v} \cdot d\vec{s} = \int_{0}^{2\pi} \begin{pmatrix} 1 - \cos(t) \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 1 - \cos(t) \\ \sin(t) \end{pmatrix} dt$$

$$= \int_{0}^{2\pi} (1 - \cos(t))^2 \ dt = \int_{0}^{2\pi} (1 - 2\cos(t) + \cos^2(t)) \ dt$$
 Lösung
$$2\pi - 0 + \pi = 3\pi$$

Grundsatz: $\int_{\hat{\gamma}} \vec{v} \cdot d\vec{s} := \int_{\hat{\gamma}} \vec{v}(\vec{\gamma}(t)) \cdot \dot{\vec{\gamma}}(t) dt$

9.2 In Potenzialfeldern

Anforderung: Das Vektorfeld \vec{v} ist **konservativ**(= Potenzialfeld, der Weg ist egal). Es existiert ein Potenzial.

Grundsatz:
$$\int_{\gamma} \vec{v} \cdot d\vec{s} = \Phi(\text{Ende}) - \Phi(\text{Anfang})$$

$$\vec{v} = \begin{pmatrix} e^{xy}(1+xy) \\ e^{xy}x^2 \end{pmatrix}, \text{ Kreisbogen von } (1,0) \text{ nach } (-1,0)$$
 gleichsetzen:
$$\vec{v} = \begin{pmatrix} e^{xy}(1+xy) \\ e^{xy}x^2 \end{pmatrix} \stackrel{!}{=} \begin{pmatrix} \frac{\partial \Phi}{\partial x} \\ \frac{\partial \Phi}{\partial y} \end{pmatrix} = \nabla \Phi$$

$$\frac{\partial \Phi}{\partial y} = e^{xy}x^2 \Rightarrow \Phi = \int e^{xy}x^2 \ dy = xe^{xy} + C(x)$$
 ableiten:
$$\frac{\partial \Phi}{\partial x} = e^{xy} + xye^{xy} + C' \stackrel{!}{=} e^{xy} + xye^{xy}$$

$$\Rightarrow C' = 0 \Rightarrow C = \text{const.}$$
 Potenzial:
$$\Phi = xe^{xy} + \text{const.}$$

9.3 Satz von Green

Anforderung: Der Rand muss im positiven mathematischen Sinn umlaufen werden (d.h. im Gegenuhrzeigersinn).

Lösung: $\int_{\gamma} \vec{v} \cdot d\vec{s} = \Phi(-1,0) - \Phi(1,0) = -1 + C - 1 - C = 2$

Grundsatz:
$$\int_{\gamma=\partial C} \vec{v} \cdot d\vec{s} = \int_{C} \left(\frac{\partial v_2}{\partial x} - \frac{\partial v_1}{\partial y}\right) dx dy$$

Bemerkung: Falls das Vektorfeld nicht gegeben ist, können folgende ausgewählt werden: $\vec{v}_1 = \begin{pmatrix} 0 \\ x \end{pmatrix}$ oder $\vec{v}_2 = \begin{pmatrix} -y \\ 0 \end{pmatrix}$

$$\vec{v} = \binom{x+y}{y}, \text{ Kreisbogen mit Radius 1 um } (0,0)$$
 Rotation berechnen:
$$rot(\vec{v}) = \frac{\partial v_2}{\partial x} - \frac{\partial v_1}{\partial y} = 0 - 1 = -1$$
 Normalbereich:
$$E = \{(x,y) \in \mathbb{R}^2 | x^2 + y^2 \leq 1\}$$
 in Formel einsetzen:
$$\int_{\gamma} \vec{v} \cdot d\vec{s} = \int_{E} -1 \ dx dy = -\mu(E) = -\pi$$

9.4 Satz von Stokes

Anforderung: Einfacher in \mathbb{R}^3 , der Rand muss im positiven mathematischen Sinn umlaufen werden (d.h. im Gegenuhrzeigersinn)

Grundsatz:
$$\int_{\gamma=\partial C} \vec{v} \cdot d\vec{s} = \int_{C} \mathrm{rot}(\vec{v}) \cdot \vec{n} \ do$$

$$\vec{v} = \begin{pmatrix} y(z^2-x^2) \\ x(y^2-z^2) \\ z(x^2+y^2) \end{pmatrix}$$
, Rand der oberen Hälfte der Einheitssphäre mit Radiu

Rotation berechnen:
$$rot(\vec{v}) = \begin{pmatrix} 2z(x+y) \\ 2z(y-x) \\ x^2 + y^2 - 2z^2 \end{pmatrix}$$

Einheitssphäre parametrisieren:
$$\Phi(\theta,\phi) = \begin{pmatrix} \sin(\theta)\cos(\phi) \\ \sin(\theta)\sin(\phi) \\ \cos(\theta) \end{pmatrix}$$

Normalvektor berechnen:
$$\Phi_{\theta} = \begin{pmatrix} \cos(\theta)\cos(\phi) \\ \cos(\theta)\sin(\phi) \\ -\sin(\theta) \end{pmatrix}, \ \Phi_{\phi} = \begin{pmatrix} -\sin(\theta)\sin(\phi) \\ \sin(\theta)\cos(\phi) \\ 0 \end{pmatrix}$$

$$\Phi_{\theta} \times \Phi_{\phi} = \begin{pmatrix} \sin^{2}(\theta)\cos(\phi) \\ \sin^{2}(\theta)\sin(\phi) \\ \sin(\theta)\cos(\theta) \end{pmatrix}$$

Grundsatz anwenden:
$$\int_{H} \operatorname{rot}(\vec{v}) \cdot \vec{n} \ do = \frac{\pi}{2}$$

10 Flächenintegral

10.1 Normalbereich

Grundsatz:
$$\Omega = \{(x,y) \in \mathbb{R}^2 | a \le x \le b, f(x) \le y \le g(x) \}$$

$$\int_{\Omega} F \ d\mu = \int_{a}^{b} dx \int_{f(x)}^{g(x)} dy \ F(x,y)$$

$$\int_{\Omega} xy \ d\mu, \ \Omega = \{(x, y) \in \mathbb{R}^2 | y \ge x^2, x \ge y^2 \}$$

als Normalbereich schreiben: $\Omega = \{(x,y) \in \mathbb{R}^2 | 0 \le x \le 1, x^2 \le y \le \sqrt{x} \}$

in Formel einsetzen:
$$\int_{\Omega} xy \ d\mu = \int_0^1 dx \int_{x^2}^{\sqrt{x}} dy xy = \int_0^1 dx \ x \Big[\frac{y^2}{2}\Big]_{x^2}^{\sqrt{x}}$$
$$= \int_0^1 \Big(\frac{x^2}{2} - \frac{x^5}{2}\Big) dx = \frac{1}{12}$$

Bemerkung: Soll nur die Fläche ausgerechnet werden, so wähle F(x,y)=1. Werden Polarkoordinaten benutzt, so wähle $F(r,\phi)=r$.

10.2 Satz von Green

Anforderung: Der Rand muss im positiven mathematischen Sinn umlaufen werden (d.h. im Gegenuhrzeigersinn)

Grundsatz:
$$\mu(C) = \int_{\gamma = \partial C} \vec{v} \cdot d\vec{s}$$
, falls $rot(\vec{v}) = 1$

Flächeninhalt der Ellipse E, berandet durch $x = a\cos(\theta), y = b\sin(\theta)$

Rand parametrisieren:
$$\gamma: [0, 2\pi] \mapsto \mathbb{R}^2, \ \theta \mapsto \begin{pmatrix} a\cos(\theta) \\ b\sin(\theta) \end{pmatrix}$$

Vektorfeld auswählen:
$$\vec{v}_1 = \begin{pmatrix} 0 \\ x \end{pmatrix}$$
 oder $\vec{v}_2 = \begin{pmatrix} -y \\ 0 \end{pmatrix}$

Wegintegral ausrechnen: $\mu(E) = \pi ab$

11 Oberflächenintegral

gegeben:
$$\vec{F}(x,y,z) = \begin{pmatrix} \frac{x^2}{2} \\ -xy \\ x^2 + 3z^2 - 3 \end{pmatrix}$$

gesucht: Fluss durch die Mantelfläche des Kegels

(von Innen nach Aussen)

Vorgehen: Fluss durch den ganzen Kegel

mit Satz von Gauss berechnen

Fluss durch Deckel

mit Standardmethode berechnen

11.1 Standardmethode

Grundsatz:
$$\int_{\partial V} \vec{v} \cdot \vec{n} \ do$$

Normalvektor:
$$\vec{n} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

Vektorfeld anpassen:
$$z = 1 \Rightarrow \vec{F} = \begin{pmatrix} \frac{x^2}{2} \\ -xy \\ x^2 \end{pmatrix}$$

Grundsatz anwenden:
$$\iint_D \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \begin{pmatrix} \frac{x^2}{2} \\ -xy \\ x^2 \end{pmatrix} dxdy = \iint_D x^2 dxdy$$

Koordinatentransformation:
$$\int_0^{2\pi} \int_0^1 r^3 \cos^2(\phi) \ dr d\phi = \frac{\pi}{4}$$

11.2 Satz von Gauss

Grundsatz:
$$\int_{\partial V} \vec{v} \cdot \vec{n} \ do = \int_{V} \operatorname{div}(\vec{v}) \ d\mu$$

wobei \vec{n} die nach aussen gerichtete Normale längs ∂V bezeichnet.

Divergenz berechnen:
$$\operatorname{div}(\vec{F}) = 6z$$

Grundsatz anwenden:
$$\int_{-1}^{1} dz \int_{0}^{2\pi} d\phi \int_{0}^{\frac{z+1}{2}} 6zr \ dr = 2\pi$$

Bemerkung: In diesem Beispiel wurden zylindrische Koordinaten benutzt.

11.3 Satz von Stokes

Anforderung: Einfacher in \mathbb{R}^3 , der Rand muss im positiven mathematischen Sinn umlaufen werden (d.h. im Gegenuhrzeigersinn)

Grundsatz:
$$\int_{\gamma=\partial C} \vec{v} \cdot d\vec{s} = \int_C \operatorname{rot}(\vec{v}) \cdot \vec{n} \ do$$

15

12 Kurvendiskussion

Extremalstelle	$f'(x) = 0 \land f''(x) \neq 0$
Minimalstelle	$f'(x) = 0 \land f''(x) > 0$
Maximalstelle	$f'(x) = 0 \land f''(x) < 0$
Wendepunkt	$f''(x) = 0 \land f'''(x) \neq 0$
Sattelpunkt	$f'(x) = 0 \land f''(x) = 0 \land f'''(x) \neq 0$

kritischer Punkt: $p_0 \in \Omega$ für welchen rank $(df(p_0)) < \min\{m, n\}$ gilt

Kandidaten für Extrema: $p_0 \in \Omega$ für welchen $df(p_0) = 0$ gilt

12.1 Extremwertaufgaben ohne Nebenbedingungen

1. Kandidaten für Extrema finden df(x) = 0

2. Bestimmung:

- (a) $\operatorname{Hess}(f)(p_0)$ positiv definit \Rightarrow lokales Minimum
- (b) $\operatorname{Hess}(f)(p_0)$ negativ definit \Rightarrow lokales Maximum
- (c) $\operatorname{Hess}(f)(p_0)$ indefinit \Rightarrow Sattelpunkt

Bemerkung: Falls alle Eigenwerte von A grösser als 0 sind, dann ist A positiv definit. Hat A sowohl positive als auch negative Eigenwerte, so ist sie indefinit.

12.2 Extremwertaufgaben mit Nebenbedingungen

Beweis

Falls es sich um eine stetige Funktion auf einem kompakten Gebiet handelt, so nimmt f gemäss Weierstrass ein Supremum und Infimum an. Daraus folgt, dass f auf dem Gebiet ein Maximum und Minimum besitzt.

1. Kandidaten im Innern des Gebiets:

- i df(x,y) = 0 auflösen
- ii Überprüfen, ob gefundene Punkte wirklich im Gebiet sind

2. Kandidaten auf den Randstücken des Gebiets:

- i $df(x,y) \lambda dg(x,y) \mu dh(x,y) = 0$ auflösen
- ii Überprüfen, ob gefundene Punkte wirklich auf dem Rand sind
- iii dq(x,y)=0 auflösen und überprüfen, ob gefunden Punkte Nebenbedingung erfüllen
- iv Eckpunkte des Randstückes überprüfen
- \Rightarrow Benutze ein System hergeleitet von $df(x,y) \lambda dg(x,y) \mu dh(x,y) = 0$ und den verschiedenen Nebenbedingungen.

Tipp: Ist das Randstück nicht differenzierbar, muss man es in mehrere Teilstrecken aufteilen.