

Análisis de eficiencia de algoritmos

Algorítmica. Práctica 1

Jose Alberto Hoces Castro Javier Gómez López Moya Martín Castaño

- 1. Introducción
- 2. Análisis de los algoritmos propuestos
- 3. Casos especiales
- 4. Conclusiones

Introducción

Análisis de eficiencia de algoritmos

- Análisis de la eficiencia teórica: estudio de la complejidad teórica de algoritmos.
- Análisis de la eficiencia empírica: ejecución y medición de tiempos de ejecución de los algoritmos estudiados.
- Análisis de la eficiencia híbrida: obtención de las constantes ocultas.

Cálculo de la eficiencia teórica

Consiste en analizar sobre el papel el peor tiempo de ejecución posible en un algoritmo para decidir en qué clase de funciones en notación O se encuentra

Cálculo de la eficiencia empírica

Ejecución de los algortimos en distintos agentes tecnológicos, calculando su tiempo de ejecución con la librería <chrono>.

Cálculo de la eficiencia híbrida

Obtención de las constantes ocultas a través de gnuplot.

Análisis de los algoritmos

propuestos

Algoritmos trabajados

Se ha realizado un análisis de los siguientes algoritmos:

- 1. Algoritmo de Inserción
- 2. Algoritmo de Selección
- 3. Algoritmo de Quicksort
- 4. Algoritmo de Heapsort
- 5. Algoritmo de Floyd
- 6. Algoritmos de las torres de Hanoi

Floyd

El código del algoritmo de Floyd es el siguiente:

```
void Floyd(int **M, int dim)

for (int k = 0; k < dim; k++) //O(n)

for (int i = 0; i < dim;i++) //O(n)

for (int j = 0; j < dim;j++) //O(n)

{
   int sum = M[i][k] + M[k][j];
   M[i][j] = (M[i][j] > sum) ? sum : M[i][j]; //O(1)

//Total O(n^3)
```

Floyd. Eficiencia teórica

En los comentarios del código observamos el análisis de la función. Son tres bucles for anidados, cada uno O(n) y por tanto,

$$T(n) \in O(n^3)$$

Floyd. Eficiencia empírica

Intel Core i7-6700 3.40 GHz		i5-1095G1 1.00 GHz			Ordenador Moya	
Elementos (n)	Tiempo (s)	Elementos (n)	Tiempo (s)	Elem	entos (n)	Tiempo (s)
176	0.0244106	176	0.0274773		176	0.038495
252	0.0721776	252	0.0995705		252	0.111472
328	0.155828	328	0.20657		328	0.244523
404	0.288165	404	0.307902		404	0.45528
480	0.465947	480	0.51806		480	0.761621
556	0.724968	556	0.799187		556	1.17395
632	1.09236	632	1.16729		632	1.73408
708	1.54374	708	1.65895		708	2.4355
784	2.13392	784	2.42549		784	3.29426
860	2.67022	860	3.00331		860	4.35444
936	3.52897	936	3.84788		936	5.64407
1012	4.4074	1012	4.84029		1012	7.16827
1088	5.42559	1088	5.97643		1088	8.91362
1164	6.6698	1164	7.78043		1164	10.9311
1240	8.06967	1240	9.08228		1240	13.2386
1316	9.55022	1316	10.7251		1316	15.8513
1392	11.4197	1392	12.9933		1392	18.7744
1468	13.3942	1468	14.6689		1468	21.9844
1544	15.5	1544	17.2185		1544	25.5768
1620	18.0399	1620	20.2626		1620	29.5543
1696	20.5893	1696	22.9733		1696	33.8275
1772	23.6714	1772	26.0557		1772	38.5849
1848	26.7337	1848	30.2843		1848	43.8038
1924	30.1601	1924	33.4252		1924	49.4368
2000	33.9673	2000	38.5217		2000	55.3965

Tabla 1: Experiencia empírica de algoritmo de Floyd sin optimizar

Floyd. Eficiencia híbrida

- i7-6700 3.4GHz $\to T_1(n) =$ $4.38237 \cdot 10^{-9} x^3 - 4.33753 \cdot 10^{-7} x^2 + 0.000337001x - 0.0504332$
- i5-1095G1 1.00 GHz $\rightarrow T_2(n) = 5.12922 \cdot 10^{-9} x^3 - 1.11315 \cdot 10^{-6} x^2 + 0.00083571x - 0.134397$
- Ordenador Moya $\rightarrow T_3(n) =$ $6.77297 \cdot 10^{-9} x^3 + 5.13099 \cdot 10^{-7} x^2 - 0.000427834x + 0.0714028$

Coeficiente de regresión:

- $T_1(n) \longrightarrow Var.res = 0.00204522$
- $T_2(n) \longrightarrow Var.res = 0.044778$
- $T_3(n) \longrightarrow Var.res = 0.000855184$

Hanoi

El código del algoritmo de las torres de Hanoi es el siguiente:

```
void hanoi (int M, int i, int j)

if (M > 0)

{
    hanoi(M-1, i, 6-i-j);
    hanoi (M-1, 6-i-j, j);
}
```

Hanoi. Eficiencia teórica

Estamos ante un algoritmo recursivo, cuya ecuación de recurrencia es:

$$T(n) = 2T(n-1) + 1$$

$$(x-2)(x-1)=0$$

$$T(n) = c_1 \cdot 2^n + c_2$$

Por tanto:

$$T(n) \in O(2^n)$$

Hanoi. Eficiencia empírica

Intel Core i7-6700 3.40 GHz		i5-1095G	Ord	
Elementos (n)	Tiempo (s)	Elementos (n)	Tiempo (s)	Elementos
8	0.00000136207	8	0.0000037376	8
9	0.00000267907	9	0.00000737613	9
10	0.00000528653	10	0.0000145867	<u> </u>
11	0.0000112702	11	0.0000283526	10
12	0.0000234959	12	0.0000460821	11
13	0.0000457819	13	0.0000722887	12
14	0.0000904406	14	0.000106264	13
15	0.000198225	15	0.000213395	14
16	0.000439214	16	0.000353459	15
17	0.00088158	17	0.000717674	16
18	0.00145113	18	0.00142487	17
19	0.00253865	19	0.00278949	18
20	0.00499491	20	0.00534407	19
21	0.0100156	21	0.0101673	20
22	0.0209075	22	0.0238254	21
23	0.0402523	23	0.0555082	22
24	0.0878626	24	0.112827	23
25	0.171153	25	0.207041	24
26	0.339115	26	0.344851	25
27	0.633015	27	0.761311	26
28	1,28649	28	1.41561	27
29	2.60592	29	2.68719	28
30	5.05092	30	5.41493	29
31	10.1126	31	9.82069	30
32	20.301	32	20.2358	31
32	20.301	32	20.2350	

Ordenador Moya				
Elementos (n)	Tiempo (s)			
8	0.0000017978			
9	0.00000348253			
10	0.00000737093			
11	0.0000137999			
12	0.0000274451			
13	0.0000548052			
14	0.000110116			
15	0.000198426			
16	0.000427075			
17	0.000796963			
18	0.00159355			
19	0.00321857			
20	0.00633508			
21	0.012697			
22	0.0253476			
23	0.0506946			
24	0.101314			
25	0.202542			
26	0.405264			
27	0.809707			
28	1.6195			
29	3.23942			
30	6.47798			
31	12.9623			

Tabla 2: Experiencia empírica de algoritmo de Hanoi sin optimizar

INSERTAR GRÁFICA HANOI

- i7-6700 3.40GHz $\rightarrow T_1(n) =$
- i5-1095G1 1.00 GHz $\to T_2(n)$ =
- Ordenador Moya $\rightarrow T_3(n)$ =

Coeficiente de regresión:

- $T_1(n) \longrightarrow R^2 =$
- $T_2(n) \longrightarrow R^2 =$
- $T_3(n) \longrightarrow R^2 =$

Casos especiales

Intel i7-6700 3.40 GHz

i5-1095G1 1.00 GHz

Casos especiales. Otros posibles ajustes funcionales

Intel i7-6700 3.40 GHz

Casos especiales

i5-1095G1 1.00 GHz

Conclusiones

Conclusiones

El análisis híbrido nos confirma nuestro análisis teórico observando el coeficiente de regresión.

Lo que más influye en el tiempo es el orden de eficiencia del algoritmo.

Diversidad de agentes tecnológicos: diferentes computadores y arquitecturas da lugar a resultados distintos.