Министерство науки и высшего образования Российской Федерации

Калужский филиал

федерального государственного бюджетного образовательного учреждения высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (КФ МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	ИУК «Информатика и управление»		
КАФЕДРА	ИУК4 «Программное обеспечение ЭВМ,		
информационные технологии»			

Лабораторная работа №7

«Основные характеристики маршрутизаторов»

ДИСЦИПЛИНА: «Компьютерные сети»

Выполнил: студент гр. ИУК4	I-72Б	(Сафронов Н.С.		
· · · · · ·	(подпис	сь)	(Ф.И.О.)		
Проверил:		(Красавин Е.В.		
	(подпис	сь)	(Ф.И.О.)		
Дата сдачи (защиты):					
_					
Результаты сдачи (защиты):					
- Балльная оценка:					
- Оценка:					
- C	лцопка.				

Калуга, 2023

Цель работы: формирование практических навыков по настройке маршрутизации.

Постановка задачи

Настроить маршрутизатор и проверить его работоспособность. Для этого нужно:

- 1. Используя инструкцию "Quick Start Guide" для маршрутизаторов Cisco2600 ознакомиться со способами установки модулей в маршрутизатор и назначением разъёмов на его задней панели.
- 2. Подключить консольный порт маршрутизатора к СОМ-порту ПК и настроить эмулятор терминала (9600/8/1). Включить маршрутизатор и проанализировать выводимые при запуске сообщения.
- 3. Используя руководство "Software Configuration Guide" ознакомиться с особенностями операционной системы Cisco IOS маршрутизаторов Cisco:
- Получение справки, переход в командный режим (раздел 2 руководства).
- Работа в режиме командной строки (раздел 3 руководства; в скобках указаны значения, которые необходимо ввести):
- Войдите в командный режим. Задайте имя маршрутизатора (С 2610) и установите пароль на вход в командный режим. Проверьте введенные параметры.
- Сконфигурируйте интерфейс Ethernet (Только для работы с IP протоколом; задайте адрес 10.5.222.26/24) Проверьте работоспособность интерфейса, пропинговав его с любого узла сети.
- Ознакомьтесь с возможностями настройки глобальных интерфейсов, поддерживаемых маршрутизаторами Cisco.
 - Сохраните конфигурацию.
- Подключитесь к маршрутизатору с одного из компьютеров сети используя telnet и убедитесь в отсутствии отличий при работе с консоли или удаленного терминала.

4. Ответить на контрольные вопросы и оформить отчет.

Дополнительные указания:

Для выполнения лабораторной работы выполнить задание в ПО Cisco Packet Tracer. При выполнении задания использовать Router 2911.

Добавим маршрутизатор 2911 – Router0, ПК – PC0, соединим их консольным кабелем (консольный порт маршрутизатора к СОМ-порту ПК).

Результаты выполнения работы

Рисунок 1 – Подключение маршрутизатора к ПК консольным кабелем

Рисунок 2 – Настройка конфигурации терминала

Зайдем в раздел СLI в маршрутизаторе. После его включения выводится следующая информация, содержащая подробности инициализации системы, а также основную информацию о программном обеспечении:

Рисунок 3 — Настройка интерфейсов Gig0/1 и Gig0/0 маршрутизатора Router0 Зададим новое имя маршрутизатора (C2610) и сконфигурируем интерфейс Ethernet (IP-адрес: 10.5.222.26/24). Включим порт GigabitEthernet0/0 командой по shutdown.

```
Router>enable
Router#config
Configuring from terminal, memory, or network [terminal]? terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)#hostname c2610
c2610(config)#interf
% Incomplete command.
c2610(config)#interface GigabitEthernet 0/0
c2610(config-if)#ip address 10.5.222.26 255.255.255.0
c2610(config-if)#
```

Рисунок 4 – Заданный статический маршрут для маршрутизатора Router1

c2610(config-if)#enable secret 228038 c2610(config)#exit c2610#

Рисунок 5 – Заданный статический маршрут для маршрутизатора Router0

Проверим работоспособность интерфейса. Для этого добавим на схему ещё один ΠK – PC1 (с IP-адресом 10.5.222.1/24), после чего проверим доступность маршрутизатора с этого ΠK .

Рисунок 6 – Настройки сети на компьютерах сети 10.14.224.0

Далее установим пароль для доступа к маршрутизатору, после чего осуществим доступ к маршрутизатору с PC1 через telnet.

```
C:\>ping 10.5.222.26

Pinging 10.5.222.26 with 32 bytes of data:

Reply from 10.5.222.26: bytes=32 time<1ms TTL=255

Ping statistics for 10.5.222.26:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss)
Approximate round trip times in milli-seconds:

Minimum = 0ms, Maximum = 0ms, Average = 0ms
```

Рисунок 7 – Настройки сети на компьютерах сети 10.14.226.0

c2610#configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
c2610(config)#line vty 0 4
c2610(config-line)#password 228038
c2610(config-line)#login
c2610(config-line)#exit
c2610(config)#

Рисунок 8 – Проверка работоспособности при обращении от РС3 к РС1

Рисунок 9 – Проверка работоспособности при обращении от РС0 к РС2

Ответы на контрольные вопросы:

1. Назовите основную задачу маршрутизатора.

Основная задача маршрутизатора — выбор наилучшего маршрута в сети.

2. Дайте определение понятию «многопротокольный маршрутизатор».

Маршрутизаторы могут поддерживать как один протокол сетевого уровня (например, IP, IPX или DECnet), так и множество таких протоколов. В последнем случае они называются многопротокольными маршрутизаторами.

3. Перечислите виды маршрутизаторов по областям применения.

- Магистральные маршрутизаторы;
- Маршрутизаторы региональных отделений;
- Маршрутизаторы удаленных офисов;
- Маршрутизаторы локальных сетей.
- 4. Опишите назначение магистральных маршрутизаторов.

Магистральные маршрутизаторы (backbone routers) предназначены для построения центральной сети корпорации. Центральная сеть может состоять из большого количества локальных сетей, разбросанных по разным зданиям и использующих самые разнообразные сетевые технологии, типы компьютеров и операционных систем. Магистральные маршрутизаторы — это наиболее мощные устройства, способные обрабатывать несколько сотен тысяч или даже несколько миллионов пакетов в секунду, имеющие большое количество интерфейсов локальных и глобальных сетей.

5. Опишите назначение маршрутизаторов региональных отделений.

Маршрутизаторы региональных отделений соединяют региональные отделения между собой и с центральной сетью. Сеть регионального отделения, так же, как и центральная сеть, может состоять из нескольких локальных сетей. Такой маршрутизатор обычно представляет собой некоторую упрощенную версию магистрального маршрутизатора.

6. Опишите назначение маршрутизаторов удалённых офисов.

Маршрутизаторы удаленных офисов соединяют, как правило, единственную локальную сеть удаленного офиса с центральной сетью или сетью регионального отделения по глобальной связи. В максимальном варианте такие маршрутизаторы могут поддерживать и два интерфейса локальных сетей.

7. Опишите назначение маршрутизаторов локальных сетей.

Маршрутизаторы локальных сетей (коммутаторы 3-го уровня) предназначены для разделения крупных локальных сетей на подсети. Основное требование, предъявляемое к ним, — высокая скорость маршрутизации, так как в такой конфигурации отсутствуют низкоскоростные

порты. Все порты имеют скорость по крайней мере 10 Мбит/с, а многие работают на скорости 100 Мбит/с.

8. Перечислите основные технические характеристики маршрутизаторов.

- Перечень поддерживаемых сетевых протоколов.
- Перечень протоколов маршрутизации.
- Перечень поддерживаемых интерфейсов локальных и глобальных сетей.

9. Раскройте сущность перечня поддерживаемых сетевых протоколов.

Магистральный маршрутизатор должен поддерживать большое количество сетевых протоколов и протоколов маршрутизации, чтобы обеспечивать трафик всех существующих на предприятии вычислительных систем, а также систем, которые могут появиться на предприятии в ближайшем будущем. Перечень поддерживаемых сетевых протоколов обычно включает протоколы IP, CONS и CLNS OSI, IPX, AppleTalk, DECnet, Banyan VINES, Xerox XNS.

10. Раскройте сущность перечня поддерживаемых интерфейсов локальных и глобальных сетей.

Для локальных сетей — это интерфейсы, реализующие физические и канальные протоколы сетей Ethernet, Token Ring, FDDI, Fast Ethernet, Gigabit Ethernet, 100VG-AnyLAN и ATM.

Для глобальных связей — это интерфейсы физического уровня для связи с аппаратурой передачи данных, а также протоколы канального и сетевого уровней, необходимые для подключения к глобальным сетям с коммутацией каналов и пакетов.

11. Раскройте сущность понятия «общая производительность маршрутизатора».

Общая производительность маршрутизатора зависит от многих факторов, наиболее важными из которых являются: тип используемых процессоров, эффективность программной реализации протоколов, архитектурная организация вычислительных и интерфейсных модулей. Общая производительность маршрутизаторов колеблется от нескольких десятков тысяч пакетов в секунду до нескольких миллионов пакетов в секунду.

12. Приведите дополнительные функциональные возможности маршрутизаторов.

- Поддержка одновременно нескольких протоколов маршрутизации.
 - Приоритеты сетевых протоколов.
 - Поддержка политики маршрутных объявлений.
 - Защита от широковещательных штормов (broadcast storm).
- Поддержка немаршрутизируемых протоколов, таких как NetBIOS, NetBEUI или DEC LAT, которые не оперируют с таким понятием, как сеть.
- Разделение функций построения и использования таблицы маршрутизации.

13. Опишите, в чем заключается поддержка одновременно нескольких протоколов маршрутизации.

В протоколах маршрутизации обычно предполагается, что маршрутизатор строит свою таблицу на основе работы только этого одного протокола. Деление Internet на автономные системы направлено на исключение использования в одной автономной системе нескольких

протоколов маршрутизации. Тем не менее иногда в большой корпоративной сети приходится поддерживать одновременно несколько таких протоколов, чаще всего это складывается исторически. При этом таблица маршрутизации может получаться противоречивой — разные протоколы маршрутизации могут выбрать разные следующие маршрутизаторы для какой-либо сети назначения. Большинство маршрутизаторов решает эту проблему за счет придания приоритетов решениям разных протоколов маршрутизации.

14. Назовите назначение приоритета сетевых протоколов.

Можно установить приоритет одного протокола сетевого уровня над другими. На выбор маршрутов эти приоритеты не оказывают никакого влияния, они влияют только на порядок, в котором многопротокольный маршрутизатор обслуживает пакеты разных сетевых протоколов.

15. Дайте определение понятию «широковещательный шторм».

Одна из характерных неисправностей сетевого программного обеспечения — самопроизвольная генерация с высокой интенсивностью широковещательных пакетов. Широковещательным штормом считается ситуация, в которой процент широковещательных пакетов превышает 20 % от общего количества пакетов в сети.

16. Опишите способы передачи пакетов немаршрутизируемых протоколов.

Маршрутизаторы могут обрабатывать пакеты таких протоколов двумя способами.

В первом случае они могут работать с пакетами этих протоколов как мосты, то есть передавать их на основании изучения МАС-адресов. Маршрутизатор необходимо сконфигурировать особым способом, чтобы по отношению к некоторым немаршрутизируемым протоколам на некоторых портах он выполнял функции моста, а по отношению к маршрутизируемым

протоколам — функции маршрутизатора. Такой мост/маршрутизатор иногда называют brouter (bridge плюс router).

Другим способом передачи пакетов немаршрутизируемых протоколов является инкапсуляция этих пакетов в пакеты какого-либо сетевого протокола.

Вывод: в ходе выполнения лабораторной работы были сформированы практические навыки по настройке и использованию маршрутизаторов для построения локальных компьютерных сетей.