Criação de uma biblioteca padrão para HasCASL

Glauber Módolo Cabral – Orientando Prof. Dr. Arnaldo Vieira Moura – Orientador

Universidade Estadual de Campinas Instituto de Computação

26 de Abril de 2010

Criação de uma biblioteca padrão para HasCASL

Glauber M. Cabral

Roteir

Introdução

Métodos Formai

Linguagens Relacionadas

Linguagem e Ferramentas

Motivação

Objetivos

Desenvolvimento

Contribuições

Problemas Enfrentados

Conclusões

Trabalhos futuros

Roteiro

Introdução

Métodos Formais

Linguagens Relacionadas

Linguagem e Ferramentas Utilizadas

Motivação

Objetivos

Desenvolvimento

Contribuições

Problemas Enfrentados

Conclusões

Trabalhos futuros

Agradecimentos

Criação de uma biblioteca padrão para HasCASL

Glauber M. Cabral

Roteiro

Introdução

Métodos Formai

Linguagens Relacionadas Linguagem e Ferramenta: Utilizadas

Motivação

Objetivos

Doconvolvimor

Contribuições

Problemas

onclusões

-

Trabalhos futuros

Métodos Formais

- Ferramentas de Engenharia de Software que empregam formalismos matemáticos na construção de programas;
- Compostas por uma ou mais linguagens de especificação e algumas ferramentas auxiliares;
- Várias linguagens existentes baseadas em diversos formalismos (Extended ML, Z, B Method, Maude, Larch, CASL ...);
- Variado nível de suporte à verificação automática auxiliada por ferramentas.

Criação de uma biblioteca padrão para HasCASL

Glauber M. Cabral

Roteiro

Introdução Métodos Formais

Linguagens Relacionadas Linguagem e Ferramentas Utilizadas

Motivação

Objetivos

Desenvolvimento

Contribuições

Problemas Enfrentados

nclusões

Frahalhos futuros

Linguagens Relacionadas 🥧

Linguagens Relacionadas

- Z: linguagem de especificação baseada em teoria dos conjuntos.
- MÉTODO B: evolução da linguagem Z que engloba desde a especificação até a tradução para linguagem de programação.
- ► EML: extensão da linguagem de programação ML para especificação de sistemas.
- ► MAUDE: linguagem de especificação executável que permite não-determinista ॣ
- ► LARCH: família de linguagens de especificação com modelagem em duas camadas.

Criação de uma biblioteca padrão para HasCASL

Glauber M. Cabral

Roteir

Introdução

Métodos Formais Linguagens Relacionadas

Motivação

Obietivos

Desenvolvimento

ontribuições

Problemas Enfrentados

onclusões

Trabalhos futuros

CASL (Common Algebraic Specification Language)

- Linguagem de especificação algébrica criada para ser padrão na área;
- Possui 4 tipos de especificações semanticamente independentes;
- Permite extensões e sub-linguagens alterando-se a semântica de apenas 1 tipo de especificação;
- Extensões e sub-linguagens originam uma família de linguagens;
- Possui uma biblioteca padrão com especificações para reuso.

Criação de uma biblioteca padrão para HasCASL

Glauber M. Cabral

Roteir

Introdução

Métodos Formai

Linguagens Relacionadas Linguagem e Ferramentas Utilizadas

Motivação

)bjetivos

Desenvolvimento

ontribuições

Problemas Enfrentados

onclusões

Trabalhos futuros

Haskell

- Linguagem funcional de programação;
- Implementa o conceito de lógica de segunda ordem: tipos que são funções polimorfismo e construtores de tipos;
- Fortemente tipificada: todo elemento possui tipo;
- Avaliação preguiçosa: um argumento de uma função só é avaliado quando é usado no corpo da função;
- Pura: não permite efeitos colaterias ou seja, uma função só altera suas variáveis locais.
- Haskell Prelude: biblioteca padrão com funções de uso comum:
 - ► Tipos básicos (Integer, Char, String, Float, ...);
 - Manipulação de listas;
 - Manipulação de texto;
 - ▶ Mônadas para operações de E/S em tela e arquivo.

Criação de uma biblioteca padrão para HasCASL

Glauber M. Cabral

Roteiro

Introdução

Linguagens Relacionadas Linguagem e Ferramentas Utilizadas

Motivação

Objetivos

Desenvolvimento

ontribuições

Problemas Enfrentados

onclusões

Trabalhos futuros

HasCASI

 Extensão de CASL com conceitos de lógica de segunda ordem: tipos que são funções; polimorfismo e construtores de tipos;

 Tem a linguagem de programação funcional Haskell como sub-conjunto;

 Facilita a transformação da especificação en código Haskell executável;

- Semântica baseada em teoria dos conjuntos para manter-se próxima de CASL e poder importar suas especificações;
- Possui avaliação estrita de parâmetros: parâmetros indefinidos sempre resultam em valores de retorno indefinidos;
- Avaliação preguiçosa de parâmetros pode ser emulada
 com uma combinação de tipos;
- Não possui biblioteca padrão com especificações reutilizáveis.

Criação de uma biblioteca padrão para HasCASL

Glauber M. Cabral

Roteiro

Introdução

Linguagens Relacionadas
Linguagem e Ferramentas

Motivação

)bjetivos

Desenvolvimento

Contribuições

Problemas Enfrentados

Conclusões

Trabalhos futu

Hets: Heterogeneous Tool Set

- Analisador sintático e gerenciador de provas implementado em Haskell;
- Gerencia ferramentas de provas para as lógicas utilizadas nas extensões e sub-linguagens de CASL:
 - ► Lógica de primeira ordem: SPASS;
 - Lógica de segunda ordem: Isabelle.
- Gera um Grafo de Desenvolvimento:
 - Nós: especificações;
 - Arcos: dependência entre especificações;
 - Cores indicam o estado das necessidades de prova;
- Utiliza o editor Emacs como interface:
 - formatação automática de código;
 - execução automática da ferramenta de grafos de desenvolvimento.

Criação de uma biblioteca padrão para HasCASL

Glauber M. Cabral

Roteiro

Introdução

Metodos Formais Linguagens Relacionadas

Linguagem e Ferramentas Utilizadas

Motivação

Objetivos

Desenvolvimento

ontribuições

Problemas Enfrentados

Conclusões

Trabalhos futuros

Isabelle

- Provador de teoremas genérico, semi-automático, que permite o uso de várias lógicas como cálculo formal;
- Automatiza alguns trechos repetitivos de provas: equações, aritmética básica e fórmulas matemáticas;
- Lógicas para escrita de provas: HOL (Higher-Order Language), HOLCF, etc;
- ► A sintaxe de HOL assemelha-se à de Haskell;
- Hets traduz uma especificação em HasCASL para HOL de forma automática;

Criação de uma biblioteca padrão para HasCASL

Glauber M. Cabral

Roteiro

Introdução

Métodos Formai

Linguagens Relacionadas Linguagem e Ferramentas Utilizadas

iviotivaça

Objetivos

Desenvolvimento

ontribuições

roblemas

anclusões

onclusões

rabalhos futuros

Criação de uma biblioteca padrão para HasCASL

Glauber M. Cabral

Roteiro

Introducão

Minde Com

Linguagens Relacionadas Linguagem e Ferramentas Utilizadas

Motivaç

Objetivos

Desenvolvimento

Contribuições

Problemas Enfrentados

onclusões

-

gradecimentos

radeciment

Fonte:

 $http://www.informatik.uni-bremen.de/agbkb/forschung/formal_methods/CoFI/hets/index_e.htm$

Motivação e Justificativa

Criação de uma Biblioteca Padrão

- Contribui para difundir a linguagem;
- Permite o reuso de especificações;
- ▶ Premissa para uso da linguagem em problemas reais.

Biblioteca Prelude como Ponto de Partida

- Possui tipos de dados amplamente utilizados em programas Haskell;
- Permite a importação, em HasCASL, de tipos existentes em Haskell;
- Facilita a transformação de especificações em HasCASL para código executável em Haskell;

Criação de uma biblioteca padrão para HasCASL

Glauber M. Cabral

Roteiro

Introdução

Linguagens Relacionadas

Linguagem e Ferramenta Utilizadas

Motivação

Objetivos

Desenvolvimento

ontribuições

Problemas Infrentados

onclusões

Frabalhos futur

Objetivos

Objetivo Principal

Especificar uma biblioteca para a linguagem HasCASL com tipos de segunda ordem baseada na biblioteca Prelude da linguagem Haskell.

Objetivo Secundário

Provar teoremas criados pela ferramenta Hets durante a análise da especificação utilizando o provador de teoremas Isabelle. Criação de uma biblioteca padrão para HasCASL

Glauber M. Cabral

Roteiro

Introdução

Métodos Formai

Linguagens Relacionadas

Linguagem e Ferramentas

Motivaç

Objetivos

Desenvolvimento

Contribuições

roblemas

.......................

onclusões

Trabalhos futuros

Escolhas iniciais

Avaliação Estrita

faller als

► Emprego de construções mais simples linguagem HASCASL;

► Conhecimento básico de HOL para as provas;

► Escolhida como ponto de partida para a especificação.

Avaliação Preguiçosa

► Emprego das construções mais avançadas da linguagem HASCASL;

Possui pouca documentação e exemplos;

- hoProfundo conhecimento prévio das linguagens $m HOL\ e$ m HOLCF para as provas;
- ► Introduzida em refinamento posterior da especificação.

Criação de uma biblioteca padrão para HasCASL

Glauber M. Cabral

Roteiro

Introdução

Linguagens Relacionadas Linguagem e Ferramentas

Motivação

Objetivos

Desenvolvimento

ontribuições

roblemas Infrentados

onclusões

Trabalhos futuros

Especificando a Biblioteca

Especificação em HASCASL 🎤

- Modelar o problema com axiomas em HASCASL e CASL;
- ► Criar propriedades a serem verificadas com ISABELLE.

Verificação de Teoremas

- Necessário para garantir que as especificações se comportamm como eperado;
- ► Em algumas provas, os axiomas precisam ser reescritos para que ISABELLE consiga usá-los;
- Axiomas são reescritos na forma de lemas e também precisam ser provados para garantir consistência;

Criação de uma biblioteca padrão para HasCASL

Glauber M. Cabral

Roteir

Introdução

Métodos Formais Linguagens Relacionadas

Motivac

Objetivos

Desenvolvimento

ontribuições

roblemas

onclusões

.onciusoes

Trabalhos futuros

Especificação Ord em HASCASL

```
spec Ord = Eq and Bool then
free type Ordering ::= LT | EQ | GT
type instance Ordering: Eq
 . (LT == LT) = True %(IOE01)% %implied
 (LT == E0) = False \%(I0E04)\%
 . (LT \neq E0) = True %(I0E07)% %implied
class Ord < Eq {
 fun __<_ : a * a -> Bool
 var x, y, z, w: a
 (x == y) = True => (x < y) = False
                                   %(LeIrreflexivity)%
 (x < y) = True \Rightarrow y < x = False
                             %(LeTAsymmetry)% %implied
 . (x < y) = True / (y < z) = True
 \Rightarrow (x < z) = True
                                     %(LeTTransitive)%
 . (x < y) = True \lor (y < x) = True
 \bigvee (x == y) = True
                                           %(LeTTotal)%
```

Criação de uma biblioteca padrão para HasCASL

Glauber M. Cabral

Roteiro

Introducão

Métodos Formais

Linguagens Relacionadas Linguagem e Ferramentas Utilizadas

Motivação

Objetivos

 ${\sf Desenvol vimento}$

ontribuições

Problemas Enfrentados

Conclusões

Trabalhos future

Especificação Ord traduzida para HOL

```
LeIrreflexivity [rule_format] :
"ALL (x :: 'a). ALL (y :: 'a).
 x ==' y = True' --> x <' y = False'"
lemma leTrrefl(ontra : " x <' x = True' ==> False"
by auto
theorem LeTAsymmetry:
"ALL (x :: 'a). ALL (y :: 'a).
 x <' y = True' --> y <' x = False'''
apply(auto)
apply(rule ccontr)
apply(simp add: notNot2 NotTrue1)
apply(rule_tac x="x" in LeIrreflContra)
apply(rule_tac y = "y" in LeTTransitive)
by auto
```

Criação de uma biblioteca padrão para HasCASL

Glauber M. Cabral

Roteiro

Introducão

Métodos Formai

Linguagens Relacionadas Linguagem e Ferramentas Utilizadas

Motivação

Objetivos

Desenvolvimento

Contribuições

Problemas

onclusões

oncidoco

Trabalhos futuros

Estado Inicial da Verificação das Especificações

Criação de uma biblioteca padrão para HasCASL

Glauber M. Cabral

Rotei

. . . . , . .

Linguagens Relacionadas Linguagem e Ferramentas

Motiva

Objetivos

Desenvolvimento

Contribuições

Problemas

Conclusões

Trabalhos futuros

 Realizar verificação sintática com a ferramenta HETS no arquivo da especificação (extensão .casl ou .het);

Criação de uma biblioteca padrão para HasCASL

Glauber M. Cabral

Roteiro

Introducão

Métodos Forma

Linguagens Relacionadas Linguagem e Ferramentas Utilizadas

Motivação

Objetivos

Desenvolvimento

ontribuições

Problemas Enfrentados

onclusões

Trabalhos futuros

2. HETS gera o grafo de desenvolvimento da especificação analisada;

Criação de uma biblioteca padrão para HasCASL

Glauber M. Cabral

Roteiro

miroduç

Linguagens Relacionadas

Motivação

Ohietivos

Desenvolvimento

Contribuições

Problemas Enfrentados

onclusões

Trabalhos futuros

3. Executar o comando de prova automático para que ele interprete o grafo e as necessidades de prova;

Criação de uma biblioteca padrão para HasCASL

Glauber M. Cabral

Roteiro

Introdução

Linguagens Relacionadas Linguagem e Ferramentas

Motivação

)bjetivos

Desenvolvimento

ontribuições

roblemas Infrentados

onclusões

Trabalhos futuros

4. Selecionar um nó vermelho (com provas em aberto) para verificar seus teoremas;

Criação de uma biblioteca padrão para HasCASL

Glauber M. Cabral

Rotein

Introducão

Mátodor Forr

Linguagens Relacionadas Linguagem e Ferramentas

Motivação

Objetivos

Desenvolvimento

ontribuições

Problemas Enfrentados

Conclusões

Trabalhos futuros

 Escolher os teoremas a serem provados, o provador de teorema e iniciar a prova;

Criação de uma biblioteca padrão para HasCASL

Glauber M. Cabral

Roteir

Introducão

Métodos For

Linguagens Relacionadas Linguagem e Ferramenta: Utilizadas

Motivação

Objetivos

Desenvolvimento

Contribuições

Problemas Enfrentados

Conclusões

Trabalhos futuros

6. Escrever as provas utilizando a interface *ProofGeneral* para o provador ISABELLE;

Criação de uma biblioteca padrão para HasCASL

Glauber M. Cabral

Roteiro

Introducão

Métodos Formais

Linguagem e Ferramer Utilizadas

Motivação

Objetivos

Desenvolvimento

Contribuições

Problemas Enfrentados

Conclusões

Trabalhos futuros

 Executar a verificação completa do arquivo de prova e fechar a janela;

Criação de uma biblioteca padrão para HasCASL

Glauber M. Cabral

Roteiro

Introducão

Métodos Form

Linguagem e Ferramentas Utilizadas

Motivação

Objetivos

Desenvolvimento

Lontribuições

Problemas Enfrentados

Conclusões

Trabalhos futur

8. Os teoremas que foram provados possuem as respectivas caixas de seleção marcadas;

Criação de uma biblioteca padrão para HasCASL

Glauber M. Cabral

Roteiro

Introducão

Métodos Formais

Linguagem e Ferramentas Utilizadas

Motivação

Objetivos

Desenvolvimento

Contribuições

Problemas

Conclusões

Trabalhos futuros

9. Resultado da verificação no grafo: verde (totalmente verificado), vermelho (teoremas em aberto), amarelo (falta verificação de consistência).

Criação de uma biblioteca padrão para HasCASL

Glauber M. Cabral

Roteir

Introducão

Métodos Formai

Linguagens Relacionadas

Linguagem e Ferramentas

Motivação

Objetivos

Desenvolvimento

Contribuições

Problemas Enfrentados

Conclusões

Trabalhos futuros

Estado Final da Verificação das Especificações

Criação de uma biblioteca padrão para HasCASL

Glauber M. Cabral

Rotei

. . . . , . .

Linguagens Relacionadas Linguagem e Ferramentas

Motiva

Obietivos

Desenvolvimento

Contribuições

Problemas

Conclusões

Trabalhos futuros

Principais Contribuições

- Biblioteca especificada possui os tipos de dados booleano, listas, caracteres e cadeias de caracteres.
- Especificações de exemplo empregam listas e booleanos;
- Duas versões para a biblioteca (aprox. 1000 LOC cada):
 - 1ª Versão Tipos com avaliação estrita devido à complexidade do uso de tipos com avaliação preguiçosa;
 - 2ª Versão Refinamento para suportar tipos com avaliação preguiçosa sem suporte a tipos infinitos;
- ► A maioria das necessidades de prova foram verificadas:
 - 9 especificações verificadas totalmente;
 - ▶ 8 especificações possuem alguns teoremas em aberto.

Criação de uma biblioteca padrão para HasCASL

Glauber M. Cabral

Roteiro

Introducão

Métodos Formais Linguagens Relacionad

Linguagem e Ferramentas Utilizadas

Motivação

bjetivos

Desenvolvimento

Contribuições

Problemas Enfrentados

onclusões

Trabalhos futuros

Subtipos

- Subtipos em CASL ainda não estão mapeados para ISABELLE;
- ► Especificações em HASCASL não podem importar especificações em CASL que utilizam subtipos. Ex: tipos de dados numéricos;

Criação de uma biblioteca padrão para HasCASL

Glauber M. Cabral

Roteiro

Introdução

Métodos Formai

Linguagens Relacionadas Linguagem e Ferramentas

Motivação

Objetivos

Desenvolvimento

ontribuições

Problemas Enfrentados

onclusões

Especificações de Tipos Numéricos

- ► Funções envolvendo tipos numéricos não foram especificadas na versão atual da biblioteca.
- ► A implementação exigiria mapeamentos entre os tipos de dados da biblioteca da linguagem CASL e seus respetivos tipos de dados na linguagem HOL.
- O mapeamento para o tipo de dados Natiexistente está implementado com funções obsoletas e não pode ser usado dentro do provador ISABELLE.

Criação de uma biblioteca padrão para HasCASL

Glauber M. Cabral

Roteiro

Introdução

Métodos Formais

Linguagens Relacionadas Linguagem e Ferramentas Utilizadas

Motivação

Objetivos

Desenvolvimento

ontribuições

Problemas Enfrentados

onclusões

Trabalhos futuros

Tipos Contínuos e Estruturas Infinitas

- Suporte a tipos de dados contínuos exigiria tipos de dados complexos e uma nova lógica no provador de teoremas ISABELLE.
- ► Sem tipos de dados contínuos e estruturas infinitas, não é possível refinar as especificações para o subconjunto executável da linguagem HASCASL.

Criação de uma biblioteca padrão para HasCASL

Glauber M. Cabral

Roteiro

Introdução

Métodos Formai

Linguagens Relacionadas Linguagem e Ferramentas Utilizadas

Motivação

Objetivos

Desenvolvimento

ontribuições

Problemas Enfrentados

.

onclusões

rabalhos futuros

Mudanças na Tradução para HOL

Mudança na tradução de tipos com avaliação preguiçosa e funções parciais mudou e exigiu adaptação e correção de todas as provas desenvolvidas.

Mapeamento Inicial

theory MainHCPairs

types 'a partial = "bool * 'a"

Mapeamento Posterior

theory MainHC

types 'a partial = "'a option"

Criação de uma biblioteca padrão para HasCASL

Glauber M. Cabral

Roteiro

Introducão

Métodos Formais

Linguagens Relacionadas Linguagem e Ferramentas Utilizadas

Motivação

Objetivos

Desenvolvimento

ontribuições

Problemas Enfrentados

onclusões

Trabalhos futuros

Dificuldades com o Provador ISABELLE

- ► Alguns teoremas permanecem sem provas;
- Necessidade de construir e aplicar vários lemas auxiliares:
- ▶ Dificuldade em compreender a aplicação de regras para provar um objetivo em aberto.

Criação de uma biblioteca padrão para HasCASL

Glauber M. Cabral

Roteiro

Introdução

Métodos Formai

Linguagens Relacionadas Linguagem e Ferramentas

Motivação

Objetivos

Desenvolvimento

ontribuições

Problemas

Enfrentados

onclusões

.

......

Conclusões

Objetivos Iniciais

- Especificar uma biblioteca para HASCASL baseada na biblioteca PRELUDE;
- Verificar propriedades da especificação.

Objetivos Alcançados

- Biblioteca possui os tipos de dados booleano, listas, caracteres e cadeias de caracteres
- Tipos numéricos não foram especificados;
- Estado das necessidades de prova geradas:
 - 9 totalmente verificadas;
 - 8 verificadas parcialmente.

Criação de uma biblioteca padrão para HasCASL

Glauber M. Cabral

Roteir

Introdução

Métodos Forma

Linguagens Relacionadas Linguagem e Ferramentas Utilizadas

Motivação

Objetivos

Desenvolvimento

ontribuições

Problemas Enfrentados

Conclusões

Trabalhos futuros

Trabalhos Futuros

- ightharpoonup Escrever novos mapeamentos entre os tipos de dados da biblioteca da linguagem CASL e os tipos de dados da linguagem HOL
- Especificar e verificar tipos de dados numéricos e funções que os envolvam.
- Especificar tipos de dados infinitos;
- Expecificar estruturas de dados mais complexas implementadas por alguns compiladores da linguagem HASKELL.

Criação de uma biblioteca padrão para HasCASL

Glauber M. Cabral

Roteiro

Introdução

Métodos Formais

Linguagem e Ferramentas Utilizadas

Motivação

Objetivos

Desenvolvimento

ontribuições

roblemas

---l...~--

Conclusões

Trabalhos futuros

Agradecimentos

Apoio Financeiro:

Contato:

glauber.sp@gmail.com

Criação de uma biblioteca padrão para HasCASL

Glauber M. Cabral

Roteir

Introdução

Minde Come

Linguagens Relacionadas Linguagem e Ferramentas

Motivaç

Objetivos

_ ...

Contribuições

South Lauren

Problemas Enfrentados

Conclusões

Trabalhos futuros