!pip install yfinance

```
Every Looking in indexes: <a href="https://pypi.org/simple">https://us-python.pkg.dev/colab-wheels/public/simple/</a>
     Collecting yfinance
       Downloading yfinance-0.2.4-py2.py3-none-any.whl (51 kB)
                                                  - 51.4/51.4 KB 1.5 MB/s eta 0:00:00
     Requirement already satisfied: multitasking>=0.0.7 in /usr/local/lib/python3.8/dist-packages (from yfinance) (0.0.11)
     Requirement already satisfied: appdirs>=1.4.4 in /usr/local/lib/python3.8/dist-packages (from yfinance) (1.4.4)
     Requirement already satisfied: pandas>=1.3.0 in /usr/local/lib/python3.8/dist-packages (from yfinance) (1.3.5)
     Collecting frozendict>=2.3.4
       Downloading frozendict-2.3.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (110 kB)
                                                - 111.0/111.0 KB 5.6 MB/s eta 0:00:00
     Collecting html5lib>=1.1
       Downloading html5lib-1.1-py2.py3-none-any.whl (112 kB)
                                                 · 112.2/112.2 KB 8.7 MB/s eta 0:00:00
     Collecting cryptography>=3.3.2
       Downloading cryptography-39.0.0-cp36-abi3-manylinux_2_28_x86_64.whl (4.2 MB)
                                                  - 4.2/4.2 MB 34.1 MB/s eta 0:00:00
     Requirement already satisfied: lxml>=4.9.1 in /usr/local/lib/python3.8/dist-packages (from yfinance) (4.9.2)
     Collecting beautifulsoup4>=4.11.1
       Downloading beautifulsoup4-4.11.1-py3-none-any.whl (128 kB)
                                                 - 128.2/128.2 KB 8.2 MB/s eta 0:00:00
     Collecting requests>=2.26
       Downloading requests-2.28.2-py3-none-any.whl (62 kB)
                                                 - 62.8/62.8 KB 3.8 MB/s eta 0:00:00
     Requirement already satisfied: numpy>=1.16.5 in /usr/local/lib/python3.8/dist-packages (from yfinance) (1.21.6)
     Requirement already satisfied: pytz>=2022.5 in /usr/local/lib/python3.8/dist-packages (from yfinance) (2022.7)
     Collecting soupsieve>1.2
      Downloading soupsieve-2.3.2.post1-py3-none-any.whl (37 kB)
     Requirement already satisfied: cffi>=1.12 in /usr/local/lib/python3.8/dist-packages (from cryptography>=3.3.2->yfinance) (1.15.1)
     Requirement already satisfied: six>=1.9 in /usr/local/lib/python3.8/dist-packages (from html5lib>=1.1->yfinance) (1.15.0)
     Requirement already satisfied: webencodings in /usr/local/lib/python3.8/dist-packages (from html5lib>=1.1->yfinance) (0.5.1)
     Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.8/dist-packages (from pandas>=1.3.0->yfinance) (2.8
     Requirement already satisfied: urllib3<1.27,>=1.21.1 in /usr/local/lib/python3.8/dist-packages (from requests>=2.26->yfinance) (1.24
     Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.8/dist-packages (from requests>=2.26->yfinance) (2
     Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.8/dist-packages (from requests>=2.26->yfinance) (2022.12
     Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.8/dist-packages (from requests>=2.26->yfinance) (2.10)
     Requirement already satisfied: pycparser in /usr/local/lib/python3.8/dist-packages (from cffi>=1.12->cryptography>=3.3.2->yfinance)
     Installing collected packages: soupsieve, requests, html5lib, frozendict, cryptography, beautifulsoup4, yfinance
       Attempting uninstall: requests
         Found existing installation: requests 2.25.1
         Uninstalling requests-2.25.1:
           Successfully uninstalled requests-2.25.1
       Attempting uninstall: html5lib
         Found existing installation: html5lib 1.0.1
         Uninstalling html5lib-1.0.1:
          Successfully uninstalled html5lib-1.0.1
       Attempting uninstall: beautifulsoup4
         Found existing installation: beautifulsoup4 4.6.3
         Uninstalling beautifulsoup4-4.6.3:
          Successfully uninstalled beautifulsoup4-4.6.3
     Successfully installed beautifulsoup4-4.11.1 cryptography-39.0.0 frozendict-2.3.4 html5lib-1.1 requests-2.28.2 soupsieve-2.3.2.post1
import yfinance as yf
import numpy as np
import pandas as pd
import math as m
import matplotlib.pyplot as plt
import scipy
from scipy.stats import norm
data = yf.download("ICICIBANK.NS", start="2018-01-01", end="2023-01-20")
data['Close'].plot()
     [********* 100%*********** 1 of 1 completed
     <matplotlib.axes._subplots.AxesSubplot at 0x7fdb8df76be0>
      800
      600
      400
                       2020
                                       2022
                                              2023
       2018
                               2027
```

#Standard deviation measures how widely returns are dispersed from the average return. It's the most common (and biased) estimator of vodef standard\_deviation(price\_data, window=30, trading\_periods=252, clean=True):

Date

standard\_deviation(data).plot()



Date

#Parkinson's volatility uses the stock's high and low price of the day rather than just close to close prices. It's useful to capture ladef parkinson(price\_data, window=30, trading\_periods=252, clean=True):

parkinson(data).plot()

Date

#volatility measure that handles both opening jumps and drift.
#It is the sum of the overnight volatility (close-to-open volatility) and a weighted average of open-to-close volatility.
#The assumption of continuous prices does mean the measure tends to slightly underestimate the volatility.
def yang\_zhang(price\_data, window=30, trading\_periods=252, clean=True):

```
log_ho = (price_data["High"] / price_data["Open"]).apply(np.log)
log_lo = (price_data["Low"] / price_data["Open"]).apply(np.log)
log_co = (price_data["Close"] / price_data["Open"]).apply(np.log)

log_oc = (price_data["Open"] / price_data["Close"].shift(1)).apply(np.log)
log_oc_sq = log_oc ** 2

log_cc = (price_data["Close"] / price_data["Close"].shift(1)).apply(np.log)
log_cc_sq = log_cc ** 2

rs = log_ho * (log_ho - log_co) + log_lo * (log_lo - log_co)
```

```
close vol = log cc sq.rolling(window=window, center=False).sum() * (
        1.0 / (window - 1.0)
    open_vol = log_oc_sq.rolling(window=window, center=False).sum() * (
        1.0 / (window - 1.0)
    window_rs = rs.rolling(window=window, center=False).sum() * (1.0 / (window - 1.0))
    k = 0.34 / (1.34 + (window + 1) / (window - 1))
    result = (open_vol + k * close_vol + (1 - k) * window_rs).apply(
       np.sqrt
    ) * m.sqrt(trading_periods)
    if clean:
        return result.dropna()
       return result
yang_zhang(data).plot()
<matplotlib.axes._subplots.AxesSubplot at 0x7fdb93e85b20>
      12
      1.0
      0.8
      0.6
      0.4
      0.2
                                       2022
                                                2023
      2018
                               2027
                             Date
#Defining Black Schole Model
def option_value(option_type, S, K, sigma, t=0, r=0):
    Calculate the value of an option using the Black-Scholes model
    :param option_type: "call"/"c" or "put"/"p"
    :type option_type: str
    :param S: price of the underlying
    :type S: float
    :param K: strike price of option
    :type K: float
    :param sigma: input implied volatility
    :type sigma: float
    :param t: time to expiration
    :type t: float, optional
    :param r: risk-free rate
    :type r: float, optional
    with np.errstate(divide='ignore'):
        d1 = np.divide(1, sigma * np.sqrt(t)) * (np.log(S/K) + (r+sigma**2 / 2) * t)
        d2 = d1 - sigma * np.sqrt(t)
    if option_type.lower() in {"c", "call"}:
       return np.multiply(norm.cdf(d1),S) - np.multiply(norm.cdf(d2), K * np.exp(-r * t))
    elif option_type.lower() in {"p", "put"}:
        return -np.multiply(norm.cdf(-d1), S) + np.multiply(norm.cdf(-d2), K * np.exp(-r * t))
# Construction of a butterfly spread
S = np.linspace(50, 150, 1000)
C1 = option_value("c", S, 90, sigma=0.20)
C2 = -option_value("c", S, 100, sigma=0.20)
C3 = option_value("c", S, 110, sigma=0.20)
butterfly = C1 + 2 * C2 + C3
# (Gross) payoff diagram
fig, (ax, ax1) = plt.subplots(1,2, figsize=(12,4), sharey=True)
ax.plot(S, C1, S, C2, S, C3)
ax.set_xlabel("Stock price at expiration")
ax.set_ylabel("Gross payoff")
ax.legend(["long call, 860 strike", "2x short call, $870 strike", "long call, $880 strike"], loc="best")
ax1.plot(S, butterfly, c="m")
```

```
ax1.legend(["long butterfly"], loc="upper left")
# plt.show();
plt.savefig("long_butterfly.png", dpi=200)
```





from google.colab import files
uploaded = files.upload()



Call = pd.read\_excel(uploaded.get('ICICI Call.xlsx'))
Call

| _ |          |   |  |
|---|----------|---|--|
| Ξ | à        | ÷ |  |
| · | <u>_</u> | _ |  |
|   |          |   |  |

| O         590         -         -         248.40         318.65         NaN         NaN           1         600         -         -         239.40         303.95         NaN         NaN           2         610         -         -         245.40         275.50         NaN         1.0           3         620         -         -         245.45         280.95         NaN         NaN           4         630         -         -         212.25         270.45         NaN         NaN           5         640         -         -         194.55         245.55         NaN         NaN           6         650         -         -         198.70         224.55         NaN         NaN           7         660         -         -         198.70         224.55         NaN         NaN           8         670         -         -         176.90         224.55         NaN         NaN           10         690         -         -         167.50         120.50         NaN         NaN           11         70         169.45         -         137.45         141.15         NaN <th< th=""><th></th><th>STRIKE</th><th>LTP</th><th>CHNG</th><th>BID</th><th>ASK</th><th>VOLUME</th><th>OI</th></th<>                                                                                          |    | STRIKE | LTP    | CHNG   | BID    | ASK    | VOLUME | OI     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--------|--------|--------|--------|--------|--------|--------|
| Column         Column< | 0  | 590    | -      | -      | 248.40 | 318.65 | NaN    | NaN    |
| 3         620                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1  | 600    | -      | -      | 239.40 | 303.95 | NaN    | NaN    |
| 4         630                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2  | 610    | -      | -      | 245.40 | 275.50 | NaN    | 1.0    |
| 6         640                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3  | 620    | -      | -      | 224.15 | 280.95 | NaN    | NaN    |
| 6         650           194.55         245.55         NaN         NaN           7         660           194.50         224.55         NaN         NaN           8         670           186.25         213.09         NaN         NaN           9         680           176.00         203.25         NaN         NaN           10         690           167.30         120.00         NaN         NaN           11            167.00              12                  13                  14                  15 <th>4</th> <th>630</th> <th>-</th> <th>-</th> <th>212.25</th> <th>270.45</th> <th>NaN</th> <th>NaN</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4  | 630    | -      | -      | 212.25 | 270.45 | NaN    | NaN    |
| 7         660           198.70         24.4.5         NaN         NaN           8         670          176.90         203.25         NaN         NaN           9         680           176.90         203.25         NaN         NaN           10         690           167.30         192.00         NaN         NaN           11          1694          167.00         173.00          NaN           12            174.00              13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5  | 640    | -      | -      | 203.05 | 262.25 | NaN    | NaN    |
| 8         670           186.25         213.90         Nan         Nan           9         680           176.90         203.25         Nan         Nan           10         690           167.35         192.80         Nan         Nan           11         700         169.45         -20.55         167.95         173.60         1.0         127.00           12         710          -1         147.35         170.70         Nan         Nan           14         730           134.55         149.90         Nan         10.0           15         740           134.55         149.90         Nan         Ann           16         750           132.50         141.15         Nan         Nan           16         750           102.50         129.90         Nan         Ann           16         750           102.50         120.60         Nan         Nan           17         760           767.40         89.80 <th>6</th> <th>650</th> <th>-</th> <th>-</th> <th>194.55</th> <th>245.55</th> <th>NaN</th> <th>NaN</th>                                                                                                                                                                                                                                                                             | 6  | 650    | -      | -      | 194.55 | 245.55 | NaN    | NaN    |
| 9         680         -         -         176.90         203.25         NaN         NaN           10         690         -         -         167.35         192.80         NaN         NaN           11         700         169.45         -20.55         167.95         173.60         1.0         127.0           12         710          -147.35         170.70         NaN         NaN           13         720          -137.40         160.50         NaN         10.0           15         740           134.55         149.90         NaN         10.0           16         750           110.05         129.90         NaN         3.0           16         750           102.50         120.60         NaN         An           16         750           90.60         110.00         NaN         An           18         770           90.60         110.00         NaN         An           20         790           67.40         89.80         NaN         NaN                                                                                                                                                                                                                                                                                                                                        | 7  | 660    | -      | -      | 198.70 | 224.55 | NaN    | NaN    |
| 10         690           167.35         192.80         Nan         Nan           11         700         169.45         -20.55         167.95         173.60         1.0         127.0           12         710           147.35         170.70         Nan         Nan           13         720           137.40         160.50         Nan         10.0           15         740           134.55         141.15         Nan         Nan           16         750           102.50         129.90         Nan         3.0           17         760           102.50         129.90         Nan         3.0           18         770           102.50         129.90         Nan         Nan           19         780           90.60         110.00         Nan         Nan           19         780           67.40         89.80         Nan         Nan           20         790           58.95         63.80                                                                                                                                                                                                                                                                                                                                                                                                  | 8  | 670    | -      | -      | 186.25 | 213.90 | NaN    | NaN    |
| 11         700         169.45         -20.55         167.95         173.60         1.0         127.0           12         710                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9  | 680    | -      | -      | 176.90 | 203.25 | NaN    | NaN    |
| 12         710         -         -         147.35         170.70         Nan         Nan           13         720         -         -         137.40         160.50         Nan         Nan           14         730         -         -         134.55         149.90         Nan         10.00           15         740         -         -         117.35         141.15         Nan         Nan           16         750         -         -         102.50         120.90         Nan         3.0           17         760         -         -         102.50         120.60         Nan         A.0           18         770         -         -         90.60         110.00         Nan         Nan           19         780         -         -         67.40         89.80         Nan         Nan           20         790         -         -         67.40         89.80         Nan         Nan           21         800         63         1.3         70.15         71.30         12.40         20.00           22         810         52.5         3.25         50.65         51.80         20.0                                                                                                                                                                                                   | 10 | 690    | -      | -      | 167.35 | 192.80 | NaN    | NaN    |
| 13         720           137.40         160.50         NaN         NaO           14         730           134.55         149.90         NaN         10.0           15         740           117.35         141.15         NaN         NaN           16         750           110.05         129.90         NaN         3.0           17         760           102.50         120.60         NaN         2.0           18         770           80.40         110.00         NaN         Asa           20         790           82.45         99.60         NaN         NaN           20         790           82.45         99.60         NaN         NaN           20         790           82.45         89.80         NaN         NaN           21         800         69         1.3         70.15         71.30         12.00         30.00           22         810         31.5         22.5         50.85         51.80                                                                                                                                                                                                                                                                                                                                                                                     | 11 | 700    | 169.45 | -20.55 | 167.95 | 173.60 | 1.0    | 127.0  |
| 14         730           134.55         149.90         NaN         10.0           15         740          117.35         141.15         NaN         NaN           16         750          10.05         129.90         NaN         3.0           17         760           10.50         120.60         NaN         2.0           18         770           82.45         99.60         NaN         NaN           20         790           67.40         89.80         NaN         NaN           21         800         69         1.3         70.15         71.30         124.0         200.0           22         810           58.95         63.80         NaN         18.0           23         820         52.5         3.25         50.65         51.80         20.0         37.0           24         830         40.5         2.4         42.25         6.0         86.0           25         840         31.6         1.8         32.45         42.7         1352.0         560.0                                                                                                                                                                                                                                                                                                                            | 12 | 710    | -      | -      | 147.35 | 170.70 | NaN    | NaN    |
| 15         740         -         -         117.35         141.15         Nan         Nal           16         750         -         -         110.05         129.90         Nan         3.0           17         760         -         -         102.50         120.60         Nan         2.0           18         770         -         -         90.60         110.00         Nan         Nan           19         780         -         -         67.40         89.80         Nan         Ana           20         790         -         -         67.40         89.80         Nan         Nan           21         800         69         1.3         70.15         71.30         1240         200           22         810         -         3.25         58.95         63.80         Nan         18.0           23         820         52.5         3.25         51.80         20.0         37.0           24         830         40.5         2.43         24.25         6.0         86.0           25         840         31.6         1.25         124.35         12.45         9861.0         20.0                                                                                                                                                                                                       | 13 | 720    | -      | -      | 137.40 | 160.50 | NaN    | NaN    |
| 16         750         -         -         110.05         129.90         Nan         3.0           17         760         -         -         102.50         120.60         Nan         2.0           18         770         -         -         90.60         110.00         Nan         Nan           19         780         -         -         67.40         89.80         Nan         Nan           20         790         -         -         67.40         89.80         Nan         Nan           21         800         69         1.3         70.15         71.30         124.0         200.0           22         810         -         -         58.95         63.80         Nan         18.0           23         820         52.5         3.25         50.65         51.80         20.0         37.0           24         830         40.5         2.9         41.55         42.25         6.0         86.0           25         840         31.6         1.8         32.50         33.15         43.0         274.0           26         850         24.6         1.85         12.45         12.45         <                                                                                                                                                                                         | 14 | 730    | -      | -      | 134.55 | 149.90 | NaN    | 10.0   |
| 17         760         -         -         102.50         120.60         NaN         2.0           18         770         -         -         90.60         110.00         NaN         NaN           19         780         -         -         82.45         99.60         NaN         6.0           20         790         -         -         67.40         89.80         NaN         NaN           21         800         69         1.3         70.15         71.30         124.0         200.0           22         810         -         -         58.95         63.80         NaN         18.0           23         820         52.5         3.25         50.65         51.80         20.0         37.0           24         830         40.5         2.9         41.55         42.25         6.0         86.0           25         840         31.6         1.85         24.45         24.70         1352.0         560.0           26         850         24.6         1.85         12.45         24.25         480.0         490.0           27         860         17.55         1.35         12.45         24.70 <th>15</th> <th>740</th> <th>-</th> <th>-</th> <th>117.35</th> <th>141.15</th> <th>NaN</th> <th>NaN</th>                                                                              | 15 | 740    | -      | -      | 117.35 | 141.15 | NaN    | NaN    |
| 18         770         -         -         90.60         110.00         NaN         Na           19         780         -         82.45         99.60         NaN         6.0           20         790         -         -         67.40         89.80         NaN         NaN           21         800         699         1.3         70.15         71.30         124.0         200.0           22         810         -         -         58.95         63.80         NaN         18.0           23         820         52.5         3.25         50.65         51.80         20.0         37.0           24         830         40.5         2.9         41.55         42.25         6.0         86.0           25         840         31.6         1.8         24.45         24.70         135.0         274.0           26         850         24.6         1.85         12.45         12.75         43.0         274.0           27         860         17.55         1.35         17.45         17.70         3012.0         113.0           29         880         8.4         0.9         8.30         8.40         85                                                                                                                                                                                    | 16 | 750    | -      | -      | 110.05 | 129.90 | NaN    | 3.0    |
| 19         780         -         -         82.45         99.60         NaN         6.0           20         790         -         -         67.40         89.80         NaN         NaN           21         800         69         1.3         70.15         71.30         124.0         200.0           22         810         -         -         58.95         63.80         NaN         18.0           23         820         52.5         3.25         50.65         51.80         20.0         37.0           24         830         40.5         2.9         41.55         42.25         6.0         86.0           25         840         31.6         1.85         24.45         24.70         1352.0         560.0           26         850         24.6         1.85         24.45         24.70         1352.0         560.0           28         870         12.45         1.25         12.35         12.45         9861.0         502.0           29         880         8.4         0.9         8.30         8.40         8534.0         4950.0           31         900         3.75         0.45         5.65                                                                                                                                                                                     | 17 | 760    | -      | -      | 102.50 | 120.60 | NaN    | 2.0    |
| 20         790         -         -         67.40         89.80         NaN         NaN           21         800         69         1.3         70.15         71.30         124.0         200.0           22         810         -         58.95         63.80         NaN         18.0           23         820         52.5         3.25         50.65         51.80         20.0         37.0           24         830         40.5         2.9         41.55         42.25         6.0         86.0           25         840         31.6         1.85         24.45         24.70         1352.0         560.0           26         850         24.6         1.85         24.45         24.70         1352.0         560.0           26         850         24.6         1.85         17.45         17.70         3012.0         1133.0           26         850         24.6         1.85         12.45         24.70         352.0         560.0           27         860         12.45         1.25         12.35         12.45         386.0         4290.0           30         890         5.65         0.45         5.60         <                                                                                                                                                                       | 18 | 770    | _      | _      | 90.60  | 110.00 | NaN    | NaN    |
| 21         800         69         1.3         70.15         71.30         124.0         200.0           22         810          58.95         63.80         NaN         18.0           23         820         52.5         3.25         50.65         51.80         20.0         37.0           24         830         40.5         2.9         41.55         42.25         6.0         86.0           25         840         31.6         1.85         32.50         33.15         43.0         274.0           26         850         24.6         1.85         24.45         24.70         1352.0         560.0           27         860         17.55         1.35         17.45         17.70         3012.0         133.0           28         870         12.45         1.25         12.35         12.45         9861.0         5026.0           29         880         8.4         0.9         8.30         8.40         8534.0         4950.0           30         890         5.65         0.45         5.60         5.65         4680.0         4219.0           31         900         2.45         0.05         2.40                                                                                                                                                                                   | 19 | 780    | _      | _      | 82.45  | 99.60  | NaN    | 6.0    |
| 22         810          58.95         63.80         NaN         18.0           23         820         52.5         3.25         50.65         51.80         20.0         37.0           24         830         40.5         2.9         41.55         42.25         6.0         86.0           25         840         31.6         1.8         32.50         33.15         43.0         274.0           26         850         24.6         1.85         24.45         24.70         1352.0         560.0           27         860         17.55         1.35         17.45         17.70         3012.0         1133.0           28         870         12.45         1.25         12.35         12.45         9861.0         5026.0           29         880         8.4         0.9         8.30         8.40         8534.0         4950.0           30         890         5.65         0.45         5.60         5.65         4680.0         4219.0           31         900         3.75         0.1         3.70         2.45         4831.0         5372.0           32         910         2.45         0.0         1.56                                                                                                                                                                                  | 20 | 790    | _      | _      | 67.40  | 89.80  | NaN    | NaN    |
| 23         820         52.5         3.25         50.65         51.80         20.0         37.0           24         830         40.5         2.9         41.55         42.25         6.0         86.0           25         840         31.6         1.8         32.50         33.15         43.0         274.0           26         850         24.6         1.85         24.45         24.70         1352.0         560.0           27         860         17.55         1.35         17.45         17.70         3012.0         1133.0           28         870         12.45         1.25         12.35         12.45         9861.0         5026.0           29         880         8.4         0.9         8.30         8.40         8534.0         4950.0           30         890         5.65         0.45         5.60         5.65         4680.0         4219.0           31         900         3.75         0.1         3.70         3.75         7286.0         9775.0           32         910         2.45         0.05         2.40         2.45         4831.0         5372.0           34         930         1.2         0.1 </th <th>21</th> <th>800</th> <th>69</th> <th>1.3</th> <th>70.15</th> <th>71.30</th> <th>124.0</th> <th>200.0</th>                                                 | 21 | 800    | 69     | 1.3    | 70.15  | 71.30  | 124.0  | 200.0  |
| 24         830         40.5         2.9         41.55         42.25         6.0         86.0           25         840         31.6         1.8         32.50         33.15         43.0         274.0           26         850         24.6         1.85         24.45         24.70         1352.0         560.0           27         860         17.55         1.35         17.45         17.70         3012.0         1133.0           28         870         12.45         1.25         12.35         12.45         9861.0         5026.0           29         880         8.4         0.9         8.30         8.40         8534.0         4950.0           30         890         5.65         0.45         5.60         5.65         4680.0         4219.0           31         900         3.75         0.1         3.70         3.75         7286.0         9775.0           32         910         2.45         0.05         2.40         2.45         4831.0         5372.0           33         920         1.7         0.1         1.65         1.70         2889.0         4828.0           34         930         0.25         0.05                                                                                                                                                                  | 22 | 810    | _      | _      | 58.95  | 63.80  | NaN    | 18.0   |
| 25       840       31.6       1.8       32.50       33.15       43.0       274.0         26       850       24.6       1.85       24.45       24.70       1352.0       560.0         27       860       17.55       1.35       17.45       17.70       3012.0       1133.0         28       870       12.45       1.25       12.35       12.45       9861.0       5026.0         29       880       8.4       0.9       8.30       8.40       8534.0       4950.0         30       890       5.65       0.45       5.60       5.65       4680.0       4219.0         31       900       3.75       0.1       3.70       3.75       7286.0       9775.0         32       910       2.45       0.05       2.40       2.45       4831.0       5372.0         33       920       1.7       0.1       1.65       1.70       2889.0       4828.0         34       930       1.2       0.1       1.65       0.75       549.0       1588.0         35       940       0.85       -       0.85       0.90       734.0       1191.0         36       950       0.75<                                                                                                                                                                                                                                                          | 23 | 820    | 52.5   | 3.25   | 50.65  | 51.80  | 20.0   | 37.0   |
| 26         850         24.6         1.85         24.45         24.70         1352.0         560.0           27         860         17.55         1.35         17.45         17.70         3012.0         1133.0           28         870         12.45         1.25         12.35         12.45         9861.0         5026.0           29         880         8.4         0.9         8.30         8.40         8534.0         4950.0           30         890         5.65         0.45         5.60         5.65         4680.0         4219.0           31         900         3.75         0.1         3.70         3.75         7286.0         9775.0           32         910         2.45         0.05         2.40         2.45         4831.0         5372.0           33         920         1.7         0.1         1.65         1.70         2889.0         4828.0           34         930         1.2         0.1         1.20         1.25         1863.0         2048.0           35         940         0.85         -         0.85         0.90         734.0         1191.0           36         950         0.75         0.0<                                                                                                                                                                  | 24 | 830    | 40.5   | 2.9    | 41.55  | 42.25  | 6.0    | 86.0   |
| 27       860       17.55       1.35       17.45       17.70       3012.0       1133.0         28       870       12.45       1.25       12.35       12.45       9861.0       5026.0         29       880       8.4       0.9       8.30       8.40       8534.0       4950.0         30       890       5.65       0.45       5.60       5.65       4680.0       4219.0         31       900       3.75       0.1       3.70       3.75       7286.0       9775.0         32       910       2.45       0.05       2.40       2.45       4831.0       5372.0         33       920       1.7       0.1       1.65       1.70       2889.0       4828.0         34       930       1.2       0.1       1.20       1.25       1863.0       2048.0         35       940       0.85       -       0.85       0.90       734.0       1191.0         36       950       0.75       0.1       0.65       0.75       549.0       1588.0         37       960       0.55       0.05       0.55       0.60       406.0       831.0         38       970       0.45 <th>25</th> <th>840</th> <th>31.6</th> <th>1.8</th> <th>32.50</th> <th>33.15</th> <th>43.0</th> <th>274.0</th>                                                                                                                                              | 25 | 840    | 31.6   | 1.8    | 32.50  | 33.15  | 43.0   | 274.0  |
| 28         870         12.45         1.25         12.35         12.45         9861.0         5026.0           29         880         8.4         0.9         8.30         8.40         8534.0         4950.0           30         890         5.65         0.45         5.60         5.65         4680.0         4219.0           31         900         3.75         0.1         3.70         3.75         7286.0         9775.0           32         910         2.45         0.05         2.40         2.45         4831.0         5372.0           33         920         1.7         0.1         1.65         1.70         2889.0         4828.0           34         930         1.2         0.1         1.20         1.25         1863.0         2048.0           35         940         0.85         -         0.85         0.90         734.0         1191.0           36         950         0.75         0.1         0.65         0.75         549.0         1588.0           37         960         0.55         0.05         0.55         0.60         406.0         831.0           38         970         0.45         0.05                                                                                                                                                                          | 26 | 850    | 24.6   | 1.85   | 24.45  | 24.70  | 1352.0 | 560.0  |
| 29         880         8.4         0.9         8.30         8.40         8534.0         4950.0           30         890         5.65         0.45         5.60         5.65         4680.0         4219.0           31         900         3.75         0.1         3.70         3.75         7286.0         9775.0           32         910         2.45         0.05         2.40         2.45         4831.0         5372.0           33         920         1.7         0.1         1.65         1.70         2889.0         4828.0           34         930         1.2         0.1         1.20         1.25         1863.0         2048.0           35         940         0.85         -         0.85         0.90         734.0         1191.0           36         950         0.75         0.1         0.65         0.75         549.0         1588.0           37         960         0.55         0.05         0.55         0.60         406.0         831.0           38         970         0.45         0.05         0.40         0.45         164.0         477.0           39         980         0.3         0.05                                                                                                                                                                                | 27 | 860    | 17.55  | 1.35   | 17.45  | 17.70  | 3012.0 | 1133.0 |
| 30         890         5.65         0.45         5.60         5.65         4680.0         4219.0           31         900         3.75         0.1         3.70         3.75         7286.0         9775.0           32         910         2.45         0.05         2.40         2.45         4831.0         5372.0           33         920         1.7         0.1         1.65         1.70         2889.0         4828.0           34         930         1.2         0.1         1.20         1.25         1863.0         2048.0           35         940         0.85         -         0.85         0.90         734.0         1191.0           36         950         0.75         0.1         0.65         0.75         549.0         1588.0           37         960         0.55         0.05         0.55         0.60         406.0         831.0           38         970         0.45         0.05         0.40         0.45         164.0         477.0           39         980         0.35         0.05         0.35         0.40         61.0         281.0           41         1000         0.3         0.05                                                                                                                                                                                | 28 | 870    | 12.45  | 1.25   | 12.35  | 12.45  | 9861.0 | 5026.0 |
| 31         900         3.75         0.1         3.70         3.75         7286.0         9775.0           32         910         2.45         0.05         2.40         2.45         4831.0         5372.0           33         920         1.7         0.1         1.65         1.70         2889.0         4828.0           34         930         1.2         0.1         1.20         1.25         1863.0         2048.0           35         940         0.85         -         0.85         0.90         734.0         1191.0           36         950         0.75         0.1         0.65         0.75         549.0         1588.0           37         960         0.55         0.05         0.55         0.60         406.0         831.0           38         970         0.45         0.05         0.40         0.45         164.0         477.0           39         980         0.35         0.05         0.35         0.40         61.0         281.0           41         1000         0.3         0.05         0.25         0.30         170.0         2347.0           42         1010         0.2         0.05         <                                                                                                                                                                       | 29 | 880    | 8.4    | 0.9    | 8.30   | 8.40   | 8534.0 | 4950.0 |
| 32         910         2.45         0.05         2.40         2.45         4831.0         5372.0           33         920         1.7         0.1         1.65         1.70         2889.0         4828.0           34         930         1.2         0.1         1.20         1.25         1863.0         2048.0           35         940         0.85         -         0.85         0.90         734.0         1191.0           36         950         0.75         0.1         0.65         0.75         549.0         1588.0           37         960         0.55         0.05         0.55         0.60         406.0         831.0           38         970         0.45         0.05         0.40         0.45         164.0         477.0           39         980         0.35         0.05         0.35         0.40         61.0         341.0           40         990         0.3         0.05         0.25         0.40         6.0         281.0           41         1000         0.3         0.05         0.25         0.30         170.0         2347.0           42         1010         0.2         0.05         0                                                                                                                                                                           | 30 | 890    | 5.65   | 0.45   | 5.60   | 5.65   | 4680.0 | 4219.0 |
| 32         910         2.45         0.05         2.40         2.45         4831.0         5372.0           33         920         1.7         0.1         1.65         1.70         2889.0         4828.0           34         930         1.2         0.1         1.20         1.25         1863.0         2048.0           35         940         0.85         -         0.85         0.90         734.0         1191.0           36         950         0.75         0.1         0.65         0.75         549.0         1588.0           37         960         0.55         0.05         0.55         0.60         406.0         831.0           38         970         0.45         0.05         0.40         0.45         164.0         477.0           39         980         0.35         0.05         0.35         0.40         61.0         341.0           40         990         0.3         0.05         0.25         0.40         6.0         281.0           41         1000         0.3         0.05         0.25         0.30         170.0         2347.0           42         1010         0.2         0.05         0                                                                                                                                                                           | 31 | 900    | 3.75   | 0.1    | 3.70   | 3.75   | 7286.0 | 9775.0 |
| 34         930         1.2         0.1         1.20         1.25         1863.0         2048.0           35         940         0.85         -         0.85         0.90         734.0         1191.0           36         950         0.75         0.1         0.65         0.75         549.0         1588.0           37         960         0.55         0.05         0.55         0.60         406.0         831.0           38         970         0.45         0.05         0.40         0.45         164.0         477.0           39         980         0.35         0.05         0.35         0.40         61.0         341.0           40         990         0.3         0.05         0.25         0.40         6.0         281.0           41         1000         0.3         0.05         0.25         0.30         170.0         2347.0           42         1010         0.2         0.05         0.15         0.20         13.0         114.0           43         1020         0.15         0.05         0.05         0.15         8.0         152.0           44         1030         0.15         -0.05         0.0                                                                                                                                                                           | 32 | 910    | 2.45   | 0.05   |        |        | 4831.0 | 5372.0 |
| 35         940         0.85         -         0.85         0.90         734.0         1191.0           36         950         0.75         0.1         0.65         0.75         549.0         1588.0           37         960         0.55         0.05         0.55         0.60         406.0         831.0           38         970         0.45         0.05         0.40         0.45         164.0         477.0           39         980         0.35         0.05         0.35         0.40         61.0         341.0           40         990         0.3         0.05         0.25         0.40         6.0         281.0           41         1000         0.3         0.05         0.25         0.30         170.0         2347.0           42         1010         0.2         0.05         0.15         0.20         13.0         114.0           43         1020         0.15         0.05         0.05         0.15         8.0         152.0           44         1030         0.15         -0.05         0.05         0.10         2.5         10.0         39.0           45         1040         0.05         -0.05                                                                                                                                                                           | 33 | 920    | 1.7    | 0.1    | 1.65   | 1.70   | 2889.0 | 4828.0 |
| 36         950         0.75         0.1         0.65         0.75         549.0         1588.0           37         960         0.55         0.05         0.55         0.60         406.0         831.0           38         970         0.45         0.05         0.40         0.45         164.0         477.0           39         980         0.35         0.05         0.35         0.40         61.0         341.0           40         990         0.3         0.05         0.25         0.40         6.0         281.0           41         1000         0.3         0.05         0.25         0.30         170.0         2347.0           42         1010         0.2         0.05         0.15         0.20         13.0         114.0           43         1020         0.15         0.05         0.05         0.15         8.0         152.0           44         1030         0.15         -         0.10         0.25         10.0         39.0           45         1040         0.05         -0.05         0.05         0.10         2.0         32.0           46         1050         0.15         -         0.10                                                                                                                                                                                 | 34 | 930    | 1.2    | 0.1    | 1.20   | 1.25   | 1863.0 | 2048.0 |
| 36         950         0.75         0.1         0.65         0.75         549.0         1588.0           37         960         0.55         0.05         0.55         0.60         406.0         831.0           38         970         0.45         0.05         0.40         0.45         164.0         477.0           39         980         0.35         0.05         0.35         0.40         61.0         341.0           40         990         0.3         0.05         0.25         0.40         6.0         281.0           41         1000         0.3         0.05         0.25         0.30         170.0         2347.0           42         1010         0.2         0.05         0.15         0.20         13.0         114.0           43         1020         0.15         0.05         0.05         0.15         8.0         152.0           44         1030         0.15         -         0.10         0.25         10.0         39.0           45         1040         0.05         -0.05         0.05         0.10         2.0         32.0           46         1050         0.15         -         0.10                                                                                                                                                                                 | 35 | 940    | 0.85   | _      | 0.85   | 0.90   | 734.0  | 1191.0 |
| 37         960         0.55         0.05         0.55         0.60         406.0         831.0           38         970         0.45         0.05         0.40         0.45         164.0         477.0           39         980         0.35         0.05         0.35         0.40         61.0         341.0           40         990         0.3         0.05         0.25         0.40         6.0         281.0           41         1000         0.3         0.05         0.25         0.30         170.0         2347.0           42         1010         0.2         0.05         0.15         0.20         13.0         114.0           43         1020         0.15         0.05         0.05         0.15         8.0         152.0           44         1030         0.15         -         0.10         0.25         10.0         39.0           45         1040         0.05         -0.05         0.05         0.10         2.0         32.0           46         1050         0.15         -         0.10         0.15         7.0         205.0           47         1060         -         -         0.00                                                                                                                                                                                        |    |        |        |        |        |        |        |        |
| 38         970         0.45         0.05         0.40         0.45         164.0         477.0           39         980         0.35         0.05         0.35         0.40         61.0         341.0           40         990         0.3         0.05         0.25         0.40         6.0         281.0           41         1000         0.3         0.05         0.25         0.30         170.0         2347.0           42         1010         0.2         0.05         0.15         0.20         13.0         114.0           43         1020         0.15         0.05         0.05         0.15         8.0         152.0           44         1030         0.15         -         0.10         0.25         10.0         39.0           45         1040         0.05         -0.05         0.05         0.10         2.0         32.0           46         1050         0.15         -         0.10         0.15         7.0         205.0           47         1060         -         -         0.00         0.15         NaN         6.0                                                                                                                                                                                                                                                            |    |        |        |        |        |        |        |        |
| 39         980         0.35         0.05         0.35         0.40         61.0         341.0           40         990         0.3         0.05         0.25         0.40         6.0         281.0           41         1000         0.3         0.05         0.25         0.30         170.0         2347.0           42         1010         0.2         0.05         0.15         0.20         13.0         114.0           43         1020         0.15         0.05         0.05         0.15         8.0         152.0           44         1030         0.15         -         0.10         0.25         10.0         39.0           45         1040         0.05         -0.05         0.05         0.10         2.0         32.0           46         1050         0.15         -         0.10         0.15         7.0         205.0           47         1060         -         -         0.00         0.15         NaN         6.0                                                                                                                                                                                                                                                                                                                                                                     |    |        |        |        |        |        |        |        |
| 40         990         0.3         0.05         0.25         0.40         6.0         281.0           41         1000         0.3         0.05         0.25         0.30         170.0         2347.0           42         1010         0.2         0.05         0.15         0.20         13.0         114.0           43         1020         0.15         0.05         0.05         0.15         8.0         152.0           44         1030         0.15         -         0.10         0.25         10.0         39.0           45         1040         0.05         -0.05         0.05         0.10         2.0         32.0           46         1050         0.15         -         0.10         0.15         7.0         205.0           47         1060         -         -         0.00         0.15         NaN         6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 39 | 980    | 0.35   | 0.05   | 0.35   | 0.40   | 61.0   | 341.0  |
| 41       1000       0.3       0.05       0.25       0.30       170.0       2347.0         42       1010       0.2       0.05       0.15       0.20       13.0       114.0         43       1020       0.15       0.05       0.05       0.15       8.0       152.0         44       1030       0.15       -       0.10       0.25       10.0       39.0         45       1040       0.05       -0.05       0.05       0.10       2.0       32.0         46       1050       0.15       -       0.10       0.15       7.0       205.0         47       1060       -       -       0.00       0.15       NaN       6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    | 990    |        |        |        | 0.40   |        |        |
| 42       1010       0.2       0.05       0.15       0.20       13.0       114.0         43       1020       0.15       0.05       0.05       0.15       8.0       152.0         44       1030       0.15       -       0.10       0.25       10.0       39.0         45       1040       0.05       -0.05       0.05       0.10       2.0       32.0         46       1050       0.15       -       0.10       0.15       7.0       205.0         47       1060       -       -       0.00       0.15       NaN       6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |        |        |        |        |        |        |        |
| 43       1020       0.15       0.05       0.05       0.15       8.0       152.0         44       1030       0.15       -       0.10       0.25       10.0       39.0         45       1040       0.05       -0.05       0.05       0.10       2.0       32.0         46       1050       0.15       -       0.10       0.15       7.0       205.0         47       1060       -       -       0.00       0.15       NaN       6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |        |        |        |        |        |        |        |
| 44       1030       0.15       -       0.10       0.25       10.0       39.0         45       1040       0.05       -0.05       0.05       0.10       2.0       32.0         46       1050       0.15       -       0.10       0.15       7.0       205.0         47       1060       -       -       0.00       0.15       NaN       6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |        |        |        |        |        |        |        |
| 45       1040       0.05       -0.05       0.05       0.10       2.0       32.0         46       1050       0.15       -       0.10       0.15       7.0       205.0         47       1060       -       -       0.00       0.15       NaN       6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |        |        |        |        |        |        |        |
| 46       1050       0.15       -       0.10       0.15       7.0       205.0         47       1060       -       -       0.00       0.15       NaN       6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |        |        |        |        |        |        |        |
| <b>47</b> 1060 0.00 0.15 NaN 6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |        |        |        |        |        |        |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |        | _      | _      |        |        |        |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |        | -      | _      |        |        |        |        |

**49** 1080 - - 0.05 0.20 NaN 1.0 **50** 1090 0.25 - 0.05 0.25 1.0 NaN

Put = pd.read\_excel(uploaded.get('ICICI Put.xlsx'))
Put

| - |   | _ |
|---|---|---|
| - | 7 | Y |

|    | STRIKE       | LTP   | CHNG  | BID    | ASK    | VOLUME | OI     |
|----|--------------|-------|-------|--------|--------|--------|--------|
| 0  | 590          |       |       |        |        | NaN    |        |
| 1  | 600          |       |       |        | 2.05   |        | NaN    |
| 2  | 610          | _     | _     |        | 0.70   |        | 1.0    |
| 3  | 620          | _     |       | NaN    |        |        |        |
| 4  | 630          | _     | _     |        | 2.90   |        |        |
| 5  | 640          | _     | _     |        |        |        | NaN    |
| 6  | 650          | _     | _     |        | 0.70   |        |        |
| 7  | 660          | _     | _     |        |        |        |        |
| 8  | 670          | _     | _     |        |        |        | NaN    |
| 9  | 680          | _     |       |        | 2.05   |        |        |
| 10 | 690          | _     | _     |        |        |        |        |
| 11 | 700          | 0.2   |       | 0.05   |        |        |        |
| 12 | 710          | _     | _     |        | 0.70   |        | NaN    |
| 13 | 720          |       | _     |        |        |        | NaN    |
| 14 | 730          |       | -0.05 |        | 0.30   |        | 3.0    |
| 15 | 740          | _     | _     |        |        | NaN    |        |
| 16 |              |       |       | 0.05   |        | 1.0    |        |
| 17 | 760          | -     | _     |        |        |        |        |
| 18 |              |       | _     |        |        | 1.0    |        |
| 19 |              |       |       | 0.05   |        | 6.0    |        |
| 20 | 790          |       |       | 0.10   |        |        | 360.0  |
| 21 | 800          |       | -0.25 | 0.20   |        | 765.0  |        |
| 22 | 810          |       |       | 0.35   |        | 283.0  |        |
| 23 | 820          |       |       | 0.60   |        | 868.0  |        |
| 24 | 830          |       | -0.85 |        | 1.15   |        |        |
| 25 | 840          |       | -1.3  |        |        | 1863.0 |        |
| 26 | 850          |       | -1.95 | 3.70   | 3.80   |        |        |
| 27 | 860          | 6.9   | -2.3  | 6.85   | 6.95   | 3693.0 |        |
| 28 | 870          |       | -2.55 | 11.55  | 11.65  |        |        |
| 29 | 880          | 17.6  | -3    | 17.50  | 17.70  |        | 1314.0 |
| 30 | 890          | 25.25 | -1.65 | 24.65  |        |        |        |
| 31 | 900          | 33.5  | -3    | 32.70  | 33.05  |        |        |
| 32 | 910          |       | -2.7  | 41.15  | 42.20  |        | 638.0  |
| 33 | 920          | 52.5  | -2.45 | 50.30  | 51.05  | 19.0   |        |
| 34 | 930          | 61.5  | -3.55 | 59.90  | 61.10  | 5.0    | 329.0  |
| 35 | 940          | 70    | -4.6  | 69.40  | 70.75  | 10.0   | 523.0  |
| 36 | 950          | 81    | -0.4  | 78.80  | 80.35  | 17.0   | 233.0  |
| 37 | 960          | _     | _     |        | 98.20  |        |        |
| 38 | 970          | _     | _     |        | 112.95 | NaN    | 2.0    |
| 39 | 980          | _     | _     |        | 112.15 | NaN    | 3.0    |
| 40 | 990          | _     | _     | 111.40 | 121.30 | NaN    | 1.0    |
| 41 | 1000         | 130.5 | -3.5  |        | 130.25 | 13.0   | 57.0   |
| 42 | 1010         | _     | _     |        | 152.85 | NaN    | NaN    |
| 43 | 1020         | _     | _     |        | 157.00 | NaN    | NaN    |
| 44 | 1030         | _     | _     |        | 172.85 | NaN    | NaN    |
| 45 | 1040         | _     | _     |        | 182.75 | NaN    | NaN    |
|    |              |       |       | 170.05 | 192.75 | NaN    | NaN    |
| 46 | 1050         | -     | -     | 170.00 | 102.70 | INGIN  | 14414  |
| 46 | 1050<br>1060 | -     | -     |        |        |        |        |

```
49 1080 - - 198.20 221.05 NaN NaN 50 1090 - - 193.65 245.80 NaN NaN
```

Put.isnull().sum()

→ STRIKE 0 LTP 0 CHNG 0 BID 17 ASK 0 VOLUME 28 OI 22 dtype: int64

# Find midprices from bid/asks
Call["midprice"] = (Call.BID + Call.ASK)/2
Call = Call[Call.midprice > 0]
Put["midprice"] = (Put.BID + Put.ASK)/2
Put = Put[Put.midprice > 0]
Call.tail(30)

| _           |    |        |       |       |       |       |        |        |          |
|-------------|----|--------|-------|-------|-------|-------|--------|--------|----------|
| <del></del> |    | STRIKE | LTP   | CHNG  | BID   | ASK   | VOLUME | OI     | midprice |
|             | 21 | 800    | 69    | 1.3   | 70.15 | 71.30 | 124.0  | 200.0  | 70.725   |
|             | 22 | 810    | -     | -     | 58.95 | 63.80 | NaN    | 18.0   | 61.375   |
|             | 23 | 820    | 52.5  | 3.25  | 50.65 | 51.80 | 20.0   | 37.0   | 51.225   |
|             | 24 | 830    | 40.5  | 2.9   | 41.55 | 42.25 | 6.0    | 86.0   | 41.900   |
|             | 25 | 840    | 31.6  | 1.8   | 32.50 | 33.15 | 43.0   | 274.0  | 32.825   |
|             | 26 | 850    | 24.6  | 1.85  | 24.45 | 24.70 | 1352.0 | 560.0  | 24.575   |
|             | 27 | 860    | 17.55 | 1.35  | 17.45 | 17.70 | 3012.0 | 1133.0 | 17.575   |
|             | 28 | 870    | 12.45 | 1.25  | 12.35 | 12.45 | 9861.0 | 5026.0 | 12.400   |
|             | 29 | 880    | 8.4   | 0.9   | 8.30  | 8.40  | 8534.0 | 4950.0 | 8.350    |
|             | 30 | 890    | 5.65  | 0.45  | 5.60  | 5.65  | 4680.0 | 4219.0 | 5.625    |
|             | 31 | 900    | 3.75  | 0.1   | 3.70  | 3.75  | 7286.0 | 9775.0 | 3.725    |
|             | 32 | 910    | 2.45  | 0.05  | 2.40  | 2.45  | 4831.0 | 5372.0 | 2.425    |
|             | 33 | 920    | 1.7   | 0.1   | 1.65  | 1.70  | 2889.0 | 4828.0 | 1.675    |
|             | 34 | 930    | 1.2   | 0.1   | 1.20  | 1.25  | 1863.0 | 2048.0 | 1.225    |
|             | 35 | 940    | 0.85  | -     | 0.85  | 0.90  | 734.0  | 1191.0 | 0.875    |
|             | 36 | 950    | 0.75  | 0.1   | 0.65  | 0.75  | 549.0  | 1588.0 | 0.700    |
|             | 37 | 960    | 0.55  | 0.05  | 0.55  | 0.60  | 406.0  | 831.0  | 0.575    |
|             | 38 | 970    | 0.45  | 0.05  | 0.40  | 0.45  | 164.0  | 477.0  | 0.425    |
|             | 39 | 980    | 0.35  | 0.05  | 0.35  | 0.40  | 61.0   | 341.0  | 0.375    |
|             | 40 | 990    | 0.3   | 0.05  | 0.25  | 0.40  | 6.0    | 281.0  | 0.325    |
|             | 41 | 1000   | 0.3   | 0.05  | 0.25  | 0.30  | 170.0  | 2347.0 | 0.275    |
|             | 42 | 1010   | 0.2   | 0.05  | 0.15  | 0.20  | 13.0   | 114.0  | 0.175    |
|             | 43 | 1020   | 0.15  | 0.05  | 0.05  | 0.15  | 8.0    | 152.0  | 0.100    |
|             | 44 | 1030   | 0.15  | -     | 0.10  | 0.25  | 10.0   | 39.0   | 0.175    |
|             | 45 | 1040   | 0.05  | -0.05 | 0.05  | 0.10  | 2.0    | 32.0   | 0.075    |
|             | 46 | 1050   | 0.15  | -     | 0.10  | 0.15  | 7.0    | 205.0  | 0.125    |
|             | 47 | 1060   | -     | -     | 0.00  | 0.15  | NaN    | 6.0    | 0.075    |
|             | 48 | 1070   | -     | -     | 0.00  | 0.20  | NaN    | 1.0    | 0.100    |
|             | 49 | 1080   | -     | -     | 0.05  | 0.20  | NaN    | 1.0    | 0.125    |
|             | 50 | 1090   | 0.25  | -     | 0.05  | 0.25  | 1.0    | NaN    | 0.150    |

Call.iloc[:50].reset\_index(drop=True)

|    | PM     |        |        |              |        |              |        | ICIC     |
|----|--------|--------|--------|--------------|--------|--------------|--------|----------|
|    | STRIKE | LTP    | CHNG   |              |        | VOLUME       | 01     | midprice |
| 0  |        | -      | -      |              |        | NaN          |        | 283.525  |
| 1  |        | -      | -      | 239.40       | 303.95 |              |        |          |
| 2  |        | -      | -      | 245.40       | 275.50 | NaN          | 1.0    | 260.450  |
| 3  |        | -      | -      | 224.15       | 280.95 | NaN          | NaN    |          |
| 4  |        | -      | -      |              |        | NaN          | NaN    | 241.350  |
| 5  |        | -      | -      | 203.05       | 262.25 | NaN          | NaN    |          |
| 6  |        | -      | -      | 194.55       | 245.55 | NaN          | NaN    |          |
| 7  |        | -      | -      | 198.70       |        | NaN          | NaN    |          |
| 8  |        | -      | -      | 186.25       | 213.90 | NaN          | NaN    | 200.075  |
| 9  |        | -      | -      |              |        | NaN          | NaN    |          |
| 10 |        | -      | -      |              | 192.80 | NaN          | NaN    | 180.075  |
| 11 |        | 169.45 | -20.55 |              | 173.60 | 1.0          | 127.0  | 170.775  |
| 12 |        | -      | -      |              | 170.70 | NaN          | NaN    |          |
| 13 |        | -      | -      | 137.40       | 160.50 | NaN          | NaN    | 148.950  |
| 14 |        | -      | -      |              | 149.90 | NaN          | 10.0   | 142.225  |
| 15 |        | -      | -      | 117.35       | 141.15 | NaN          | NaN    | 129.250  |
| 16 |        | -      | -      |              | 129.90 | NaN          | 3.0    | 119.975  |
| 17 |        | -      | -      | 102.50       | 120.60 | NaN          | 2.0    |          |
| 18 |        | -      | -      | 90.60        | 110.00 | NaN          | NaN    | 100.300  |
| 19 |        | -      | -      | 82.45        | 99.60  | NaN          | 6.0    | 91.025   |
| 20 |        | -      | -      | 67.40        | 89.80  | NaN          | NaN    | 78.600   |
| 21 |        | 69     | 1.3    | 70.15        | 71.30  | 124.0        | 200.0  | 70.725   |
| 22 |        | -      | -      |              |        | NaN          |        | 61.375   |
| 23 |        | 52.5   | 3.25   |              | 51.80  | 20.0         | 37.0   | 51.225   |
| 24 |        | 40.5   | 2.9    | 41.55        | 42.25  | 6.0          | 86.0   | 41.900   |
| 25 |        |        |        |              |        | 43.0         |        |          |
| 26 |        | 24.6   |        |              |        | 1352.0       |        |          |
| 27 |        |        |        | 17.45        |        |              | 1133.0 |          |
| 28 |        |        |        |              |        | 9861.0       |        |          |
| 29 |        | 8.4    |        | 8.30         |        |              |        | 8.350    |
| 30 |        |        |        | 5.60         |        |              |        | 5.625    |
| 31 |        | 3.75   |        | 3.70<br>2.40 |        | 7286.0       | 5372.0 |          |
| 33 |        |        |        | 1.65         |        |              | 4828.0 |          |
| 34 |        |        |        |              |        | 1863.0       |        |          |
| 35 |        | 0.85   |        |              |        | 734.0        |        |          |
| 36 |        |        |        |              |        |              |        |          |
|    |        |        |        |              |        | 549.0        |        |          |
| 37 |        |        |        |              |        | 406.0        |        |          |
| 38 |        | 0.45   |        |              |        | 61.0         |        | 0.425    |
|    |        | 0.35   |        |              |        |              |        |          |
| 41 |        | 0.3    |        | 0.25         |        | 6.0<br>170.0 |        |          |
| 41 |        |        |        |              |        | 170.0        |        |          |
|    |        | 0.2    |        |              |        |              |        |          |
| 43 |        | 0.15   |        |              |        |              |        | 0.100    |
| 44 | 1030   | 0.15   | -      | 0.10         | 0.25   | 10.0         | 39.0   | 0.175    |

0.10

0.15

0.15

0.20

2.0

7.0

NaN

NaN

32.0

205.0

6.0

1.0

0.075

0.125

0.075

0.100

0.05

0.10

0.00

0.00

45

46

47

48

1040

1050

1060

1070

0.05 -0.05

0.15

**49** 1080 - - 0.05 0.20 NaN 1.0 0.125

```
Put.head(10)
```

```
₹
         STRIKE
                  LTP CHNG
                             BID
                                  ASK VOLUME
                                                    OI midprice
     11
            700
                  0.2
                           - 0.05 0.10
                                            3.0
                                                  113.0
                                                            0.075
     16
            750
                  0.2
                           - 0.05 0.20
                                            1.0
                                                   87.0
                                                            0.125
                                            6.0
                                                  80.0
                                                            0.125
     19
            780
                  0.1
                           - 0.05 0.20
     20
            790
                  0.2
                        0.1 0.10 0.20
                                           11.0
                                                  360.0
                                                            0.150
     21
            800
                  0.2 -0.25 0.20 0.25
                                          765.0
                                                1361.0
                                                            0.225
     22
            810 0.35 -0.25 0.35 0.40
                                          283.0
                                                  503.0
                                                            0.375
     23
            820
                 0.65 -0.55 0.60 0.70
                                          868.0
                                                  653.0
                                                            0.650
                                         1478.0 1012.0
                                                            1.125
     24
            830 1.15 -0.85 1.10 1.15
     25
            840
                 2.05
                        -1.3 2.00 2.10
                                         1863.0
                                                1536.0
                                                            2.050
     26
            850 3.75 -1.95 3.70 3.80
                                         4155.0 3334.0
                                                            3.750
```

```
# Visualise put and call prices
fig, (ax0, ax1) = plt.subplots(1, 2, figsize=(12,6))
ax0.scatter(Call.STRIKE, Call.midprice);
ax1.scatter(Put.STRIKE, Put.midprice);
plt.show()
```

# Construct butterflies

bflys

bflys["prob"] = bflys.price / bflys.max\_profit



```
data = []

for (_, left) ,(_,centre), (_, right) in zip(Call.iterrows(), Call.iloc[1:].iterrows(), Call.iloc[2:].iterrows()):
    # Filter out all zero volume
    if not any(vol > 0 for vol in {left.VOLUME, centre.VOLUME, right.VOLUME}):
        continue
    # Filter out any zero open interest
    if not all(oi > 0 for oi in {left.OI, centre.OI, right.OI}):
        continue
    # Equidistant on either end
    if centre.STRIKE - left.STRIKE != right.STRIKE - centre.STRIKE:
        continue
    butterfly_price = left.midprice - 2* centre.midprice + right.midprice
    max_profit = centre.STRIKE - left.STRIKE
    data.append([centre.STRIKE, butterfly_price, max_profit])

bflys = pd.DataFrame(data, columns=["strike", "price", "max_profit"])
```

| <del>_</del> | strike | price            | max profit | prob          |
|--------------|--------|------------------|------------|---------------|
| 0            | 810    | -8.000000e-01    | 10         | -8.000000e-02 |
| 1            | 820    | 8.250000e-01     | 10         |               |
| 2            |        |                  |            | 8.250000e-02  |
| _            | 830    | 2.500000e-01     | 10         | 2.500000e-02  |
| 3            | 840    | 8.250000e-01     | 10         | 8.250000e-02  |
| 4            | 850    | 1.250000e+00     | 10         | 1.250000e-01  |
| 5            | 860    | 1.825000e+00     | 10         | 1.825000e-01  |
| 6            | 870    | 1.125000e+00     | 10         | 1.125000e-01  |
| 7            | 880    | 1.325000e+00     | 10         | 1.325000e-01  |
| 8            | 890    | 8.250000e-01     | 10         | 8.250000e-02  |
| 9            | 900    | 6.000000e-01     | 10         | 6.000000e-02  |
| 10           | 910    | 5.500000e-01     | 10         | 5.500000e-02  |
| 11           | 920    | 3.000000e-01     | 10         | 3.000000e-02  |
| 12           | 930    | 1.000000e-01     | 10         | 1.000000e-02  |
| 13           | 940    | 1.750000e-01     | 10         | 1.750000e-02  |
| 14           | 950    | 5.000000e-02     |            | 5.000000e-03  |
| 15           | 960    | -2.500000e-02    | 10         | -2.500000e-03 |
| 16           | 970    | 1.000000e-01     | 10         | 1.000000e-02  |
| 17           | 980    | 5.551115e-17     | 10         | 5.551115e-18  |
| 18           | 990    | 0.000000e+00     | 10         | 0.000000e+00  |
| 19           | 1000   | -5.000000e-02    | 10         | -5.000000e-03 |
| 20           | 1010   | 2.500000e-02     | 10         | 2.500000e-03  |
| 21           | 1020   | 1.500000e-01     | 10         | 1.500000e-02  |
| 22           | 1030   | -1.750000e-01 10 |            | -1.750000e-02 |
| 23           | 1040   | 1.500000e-01     | 10         | 1.500000e-02  |
| 24           | 1050   | -1.000000e-01    | 10         | -1.000000e-02 |
| 25           | 1060   | 7.500000e-02     | 10         | 7.500000e-03  |

```
# ICICIBANK was trading around 921.75 when this data was collected
plt.rcParams.update({'font.size': 16})
plt.figure(figsize=(9,6))
plt.scatter(bflys.strike, bflys.prob);
plt.xlabel("Strike")
plt.ylabel("Probability")
plt.show()
# plt.savefig("ICICIBANK_raw_bfly_prob.png", dpi=300)
```



```
from scipy.ndimage import gaussian_filter1d
smoothed_prob = gaussian_filter1d(bflys.prob, 2)
plt.figure(figsize=(9,6))
```

```
plt.plot(bflys.strike, bflys.prob, "o", bflys.strike, smoothed_prob, "rx")
plt.legend(["raw prob", "smoothed prob"], loc="best")
plt.xlabel("Strike")
plt.ylabel("Probability")
plt.show()
# plt.savefig("ICICIBANK_smooth_bfly_prob.png", dpi=300)
```





```
# Find area under curve

raw_total_prob = scipy.integrate.trapz(smoothed_prob, bflys.strike)

print(f"Raw total probability: {raw_total_prob}")

normalised_prob = smoothed_prob / raw_total_prob

total_prob = scipy.integrate.trapz(normalised_prob, bflys.strike)

print(f"Normalised total probability: {total_prob}")

# Don't need to normalise because there is mass in the left tail that we are ignoring

# # Normalise

# normalised_prob = smoothed_prob / raw_total_prob

# total_prob = scipy.integrate.trapz(normalised_prob, bflys.strike)

# print(f"Normalised total probability: {total_prob}")

# # should be less than 1

Table Raw total probability: 9.299505878658644

Normalised total probability: 1.0000000000000000
```

```
# Repeating the same with put butterflies
from scipy.ndimage import gaussian filter1d
for (_, left) ,(_,centre), (_, right) in zip(Put.iterrows(), Put.iloc[1:].iterrows(), Put.iloc[2:].iterrows()):
    # Filter out all zero volume
    if not any(vol > 0 for vol in {left.VOLUME, centre.VOLUME, right.VOLUME}):
        continue
    # Filter out any zero open interest
    if not all(oi > 0 for oi in {left.OI, centre.OI, right.OI}):
    # Equidistant on either end
    if centre.STRIKE - left.STRIKE != right.STRIKE - centre.STRIKE:
       continue
    butterfly_price = left.midprice - 2* centre.midprice + right.midprice
    max_profit = centre.STRIKE - left.STRIKE
    data.append([centre.STRIKE, butterfly_price, max_profit])
put_bflys = pd.DataFrame(data, columns=["strike", "price", "max_profit"])
put_bflys["prob"] = put_bflys.price / put_bflys.max_profit
smoothed_prob_put = gaussian_filter1d(put_bflys.prob, 2)
\verb|plt.plot(put_bflys.strike, put_bflys.prob, "o", put_bflys.strike, smoothed_prob_put, "rx")| \\
plt.legend(["raw prob", "smoothed prob"], loc="best")
plt.show()
₹
       0.6
                   raw prob
                   smoothed prob
       0.4
       0.2
       0.0
      -0.2
                                  900
                                                     1000
              800
                        850
                                            950
put_pdf = scipy.interpolate.interp1d(put_bflys.strike, smoothed_prob_put, kind="cubic",
                                     fill_value=0.0)
x_new = np.linspace(bflys.strike.min(), put_bflys.strike.max(), 100)
plt.plot(x_new, pdf(x_new), "m-", x_new, put_pdf(x_new), "k-");
plt.legend(["call PDF", "put PDF"], loc="best")
plt.show()
<del>____</del>
     0.25
                   call PDF
      0.20
                   put PDF
      0.15
      0.10
      0.05
      0.00
                    850
                               900
                                           950
def construct_pdf(calls_df, make_plot=True, fill_value="extrapolate"):
    if "midprice" not in calls_df.columns:
        calls_df["midprice"] = (calls_df.bid + calls_df.ask) /2
    # Construct butterflies
    data = []
    for (_, left) ,(_,centre), (_, right) in zip(calls_df.iterrows(), calls_df.iloc[1:].iterrows(), calls_df.iloc[2:].iterrows()):
        # Filter out all zero volume
        if not any(vol > 0 for vol in {left.VOLUME, centre.VOLUME, right.VOLUME}):
            continue
        # Filter out any zero open interest
        if not all(oi > 0 for oi in {left.OI, centre.OI, right.OI}):
            continue
        # Equidistant on either end
        if centre.STRIKE - left.STRIKE != right.STRIKE - centre.STRIKE:
            continue
        butterfly_price = left.midprice - 2* centre.midprice + right.midprice
        max_profit = centre.STRIKE - left.STRIKE
```

| ↴ | ŀ |  |
|---|---|--|
| _ |   |  |
|   |   |  |

|    | STRIKE | LTP    | CHNG   | BID    | ASK    | VOLUME | OI     | midprice |
|----|--------|--------|--------|--------|--------|--------|--------|----------|
| 0  | 590    | -      | -      | 248.40 | 318.65 | NaN    | NaN    | 283.525  |
| 1  | 600    | -      | -      | 239.40 | 303.95 | NaN    | NaN    | 271.675  |
| 2  | 610    | -      | -      | 245.40 | 275.50 | NaN    | 1.0    | 260.450  |
| 3  | 620    | -      | -      | 224.15 | 280.95 | NaN    | NaN    | 252.550  |
| 4  | 630    | -      | -      | 212.25 | 270.45 | NaN    | NaN    | 241.350  |
| 5  | 640    | -      | -      | 203.05 | 262.25 | NaN    | NaN    | 232.650  |
| 6  | 650    | -      | -      | 194.55 | 245.55 | NaN    | NaN    | 220.050  |
| 7  | 660    | -      | -      | 198.70 | 224.55 | NaN    | NaN    | 211.625  |
| 8  | 670    | -      | -      | 186.25 | 213.90 | NaN    | NaN    | 200.075  |
| 9  | 680    | -      | -      | 176.90 | 203.25 | NaN    | NaN    | 190.075  |
| 10 | 690    | -      | -      | 167.35 | 192.80 | NaN    | NaN    | 180.075  |
| 11 | 700    | 169.45 | -20.55 | 167.95 | 173.60 | 1.0    | 127.0  | 170.775  |
| 12 | 710    | -      | -      | 147.35 | 170.70 | NaN    | NaN    | 159.025  |
| 13 | 720    | -      | -      | 137.40 | 160.50 | NaN    | NaN    | 148.950  |
| 14 | 730    | -      | -      | 134.55 | 149.90 | NaN    | 10.0   | 142.225  |
| 15 | 740    | -      | -      | 117.35 | 141.15 | NaN    | NaN    | 129.250  |
| 16 | 750    | -      | -      | 110.05 | 129.90 | NaN    | 3.0    | 119.975  |
| 17 | 760    | -      | -      | 102.50 | 120.60 | NaN    | 2.0    | 111.550  |
| 18 | 770    | -      | -      | 90.60  | 110.00 | NaN    | NaN    | 100.300  |
| 19 | 780    | -      | -      | 82.45  | 99.60  | NaN    | 6.0    | 91.025   |
| 20 | 790    | -      | -      | 67.40  | 89.80  | NaN    | NaN    | 78.600   |
| 21 | 800    | 69     | 1.3    | 70.15  | 71.30  | 124.0  | 200.0  | 70.725   |
| 22 | 810    | -      | -      | 58.95  | 63.80  | NaN    | 18.0   | 61.375   |
| 23 | 820    | 52.5   | 3.25   | 50.65  | 51.80  | 20.0   | 37.0   | 51.225   |
| 24 | 830    | 40.5   | 2.9    | 41.55  | 42.25  | 6.0    | 86.0   | 41.900   |
| 25 | 840    | 31.6   | 1.8    | 32.50  | 33.15  | 43.0   | 274.0  | 32.825   |
| 26 | 850    | 24.6   | 1.85   | 24.45  | 24.70  | 1352.0 | 560.0  | 24.575   |
| 27 | 860    | 17.55  | 1.35   | 17.45  | 17.70  | 3012.0 | 1133.0 | 17.575   |
| 28 | 870    | 12.45  | 1.25   | 12.35  | 12.45  | 9861.0 | 5026.0 | 12.400   |
| 29 | 880    | 8.4    | 0.9    | 8.30   | 8.40   | 8534.0 | 4950.0 | 8.350    |
| 30 | 890    | 5.65   | 0.45   | 5.60   | 5.65   | 4680.0 | 4219.0 | 5.625    |
| 31 | 900    | 3.75   | 0.1    | 3.70   | 3.75   | 7286.0 | 9775.0 | 3.725    |
| 32 | 910    | 2.45   | 0.05   | 2.40   | 2.45   | 4831.0 | 5372.0 | 2.425    |
| 33 | 920    | 1.7    | 0.1    | 1.65   | 1.70   | 2889.0 | 4828.0 | 1.675    |
| 34 | 930    | 1.2    | 0.1    | 1.20   | 1.25   | 1863.0 | 2048.0 | 1.225    |
| 35 | 940    | 0.85   | -      | 0.85   | 0.90   | 734.0  | 1191.0 | 0.875    |
| 36 | 950    | 0.75   | 0.1    | 0.65   | 0.75   | 549.0  | 1588.0 | 0.700    |
| 37 | 960    | 0.55   | 0.05   | 0.55   | 0.60   | 406.0  | 831.0  | 0.575    |
| 38 | 970    | 0.45   | 0.05   | 0.40   | 0.45   | 164.0  | 477.0  | 0.425    |
| 39 | 980    | 0.35   | 0.05   | 0.35   | 0.40   | 61.0   | 341.0  | 0.375    |
| 40 | 990    | 0.3    | 0.05   | 0.25   | 0.40   | 6.0    | 281.0  | 0.325    |
| 41 | 1000   | 0.3    | 0.05   | 0.25   | 0.30   | 170.0  | 2347.0 | 0.275    |
| 42 | 1010   | 0.2    | 0.05   | 0.15   | 0.20   | 13.0   | 114.0  | 0.175    |
| 43 | 1020   | 0.15   | 0.05   | 0.05   | 0.15   | 8.0    | 152.0  | 0.100    |
| 44 | 1030   | 0.15   | -      | 0.10   | 0.25   | 10.0   | 39.0   | 0.175    |
| 45 | 1040   | 0.05   | -0.05  | 0.05   | 0.10   | 2.0    | 32.0   | 0.075    |
| 46 | 1050   | 0.15   | -      | 0.10   | 0.15   | 7.0    | 205.0  | 0.125    |
| 47 | 1060   | -      | -      | 0.00   | 0.15   | NaN    | 6.0    | 0.075    |
| 48 | 1070   | -      | -      | 0.00   | 0.20   | NaN    | 1.0    | 0.100    |

```
      49
      1080
      -
      -
      0.05
      0.20
      NaN
      1.0
      0.125

      50
      1090
      0.25
      -
      0.05
      0.25
      1.0
      NaN
      0.150
```

```
Call_sub = Call[(Call.STRIKE > 580) & (Call.STRIKE < 1090)]
plt.figure(figsize=(12,6))
plt.plot(Call_sub.STRIKE, Call_sub.midprice, ".");
plt.xlabel("STRIKE")
plt.ylabel("price")
plt.savefig("call_prices.png", dpi=400)
plt.show()</pre>
```



```
def call_value(S, K, sigma, t=0, r=0):
   # use np.multiply and divide to handle divide-by-zero
   with np.errstate(divide='ignore'):
       d1 = np.divide(1, sigma * np.sqrt(t)) * (np.log(S/K) + (r+sigma**2 / 2) * t)
       d2 = d1 - sigma * np.sqrt(t)
   return np.multiply(norm.cdf(d1),S) - np.multiply(norm.cdf(d2), K * np.exp(-r * t))
def call_vega(S, K, sigma, t=0, r=0):
   with np.errstate(divide='ignore'):
       d1 = np.divide(1, sigma * np.sqrt(t)) * (np.log(S/K) + (r+sigma**2 / 2) * t)
    return np.multiply(S, norm.pdf(d1)) * np.sqrt(t)
def bs_iv(price, S, K, t=0, r=0, precision=1e-4, initial_guess=0.2, max_iter=1000, verbose=False):
   iv = initial_guess
   for _ in range(max_iter):
       P = call_value(S, K, iv, t, r)
       diff = price - P
       if abs(diff) < precision:</pre>
           return iv
       grad = call_vega(S, K, iv, t, r)
       iv += diff/grad
       print(f"Did not converge after {max_iter} iterations")
    return iv
c_test = call_value(871.65, 860, 0.2, t=1/52)
print(c_test)
→ 16.51045069073359
bs_iv(c_test, 871.65,860, t=1/52)
→ 0.2
S = 871.65
t = 1/52
Call["iv"] = Call.apply(lambda row: bs_iv(row.midprice, S, row.STRIKE, t, max_iter=500), axis=1)
iv += diff/grad
     <ipython-input-43-08b1dc83cea8>:4: RuntimeWarning: invalid value encountered in double_scalars
      d1 = np.divide(1, sigma * np.sqrt(t)) * (np.log(S/K) + (r+sigma**2 / 2) * t)
     <ipython-input-43-08b1dc83cea8>:10: RuntimeWarning: invalid value encountered in double_scalars
       d1 = np.divide(1, sigma * np.sqrt(t)) * (np.log(S/K) + (r+sigma**2 / 2) * t)
     <ipython-input-43-08b1dc83cea8>:4: RuntimeWarning: overflow encountered in double_scalars
       d1 = \text{np.divide}(1, \text{sigma} * \text{np.sqrt}(t)) * (\text{np.log}(S/K) + (r+\text{sigma}**2 / 2) * t)
```

```
ICICIBANK.ipynb - Colab
     <ipython-input-43-08b1dc83cea8>:10: RuntimeWarning: overflow encountered in double_scalars
       d1 = np.divide(1, sigma * np.sqrt(t)) * (np.log(S/K) + (r+sigma**2 / 2) * t)
def plot_vol_smile(Call, savefig=False):
    plt.figure(figsize=(9,6))
    plt.plot(Call.STRIKE, Call.iv, ".")
    plt.xlabel("Strike")
    plt.ylabel("IV")
    if savefig:
       plt.savefig("vol_smile.png",dpi=300)
    plt.show()
Call_no_na = Call.dropna()
fig, (ax1, ax2) = plt.subplots(2,1, figsize=(6,7), sharex=True)
ax1.plot(Call_no_na.STRIKE, Call_no_na.midprice, "r.")
ax1.set_ylabel("Call price")
```



ax2.plot(Call\_no\_na.STRIKE, Call\_no\_na.iv, ".")

ax2.set\_ylabel("IV") ax2.set\_xlabel("Strike") plt.tight\_layout()

```
Call_clean = Call.dropna().copy()
Call_clean["iv"] = gaussian_filter1d(Call_clean.iv, 2)
```

plot\_vol\_smile(Call\_clean)



Call\_clean = Call\_clean[(Call\_clean.STRIKE > 790) & (Call\_clean.STRIKE < 1000)]</pre>