ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«ФИНАНСОВЫЙ УНИВЕРСИТЕТ ПРИ ПРАВИТЕЛЬСТВЕ РОССИЙСКОЙ ФЕДЕРАЦИИ»

Факультет информационных технологий и анализа больших данных Департамент анализа данных и машинного обучения

Дисциплина: «Теория вероятностей и математическая статистика» Направление подготовки: 01.03.02 «Прикладная математика и информатика» Π рофиль: «Анализ данных и принятие решений в экономике и финанcax» Φ орма обучения очная, учебный 2020/2021 год, 4 семестр

Билет 130

- 1. Дайте определение случайной величины, которая имеет гамма-распределение $\Gamma(\alpha,\lambda)$, и выведите основные свойства гамма-расределения. Запишите формулы для математичсекого ожидания $\mathbb{E}(X)$ и дисперсии $\mathbb{V}ar(X)$ гамма-распределения Здесь написанно много всего интересного и полезного о гамма-распределении
- 2. Случайные величины X и Y независимы и имеют равномерное распределение на отрезках [0;3] и [0;8] соответственно. Для случайной величины $Z=\frac{Y}{X}$ найдите: 1) функцию распределения $F_Z(x)$; 2) плотность распределения $f_Z(x)$ и постройте график плотности; 3) вероятность $\P(2,475 \leqslant Z \leqslant 4,811)$.
 - 1) Функция распределения $F_Z(x)$ имеет вид: $F_Z(x) = \begin{cases} 0, x \leq 0; \\ \frac{3x}{16}, 0 \leq x \leq \frac{8}{3} \approx 2,667; \\ 1 \frac{4}{3x}, x \geq \frac{8}{3}; \end{cases}$ 2) Плотность распределения $f_Z(x)$ имеет вид: $f_Z(x) = \begin{cases} 0, x \leq 0; \\ 1 \frac{4}{3x}, x \geq \frac{8}{3}; \end{cases}$

3) вероятность равна: $\P(2,475 \leqslant Z \leqslant 4,811) = 0,25884$.

3. Случайная величина Y принимает только значения из множества $\{7,5\}$, при этом P(Y=7)=0.08. Распределение случайной величины X определено следующим образом:

$$X|Y = \begin{cases} 9*y, \text{свероятностью } 0.24 \\ 8*y, \text{свероятностью } 1 - 0.24 \end{cases}$$

Юный аналитик Дарья нашла матожидание и дисперсию X.

Помогите Дарье найти матожидание и дисперсию величины X

Первым этапом надо найти характеристики случайной величины Y

$$E(Y) = 7 * 0.08 + 5 * (1 - 0.08)$$

$$Var(Y) = E(Y^2) - [E(Y)]^2 = 7^2 * 0.08 + 5^2 * (1 - 0.08) - [E(Y)]^2$$

Перейдем к рассмотрению характеристик условной случайно величины Х

$$E(X) = E(E(X|Y)) = E[E(9*Y)*0.24 + E(8*Y)*(1-0.24)] = E(Y)*(9*0.24 + 8*(1-0.24)) = 42.5184$$

$$E(Var(X|Y)) = E[b * Var(c3 * Y) + (1 - b) * Var(c4 * Y)] = Var(Y) * (c3^2 * b + c4^2 * (1 - b))$$

$$Var(E(X|Y)) = E(X^2|Y) - [E(X)]^2 = [E(Y)]^2 * (b * c3^2 + (1 - b) * c4^2) - E(X)]^2$$

 $Var(X) = E(Var(X|Y)) + Var(E(X|Y)) = 24.89926$

- 4. (10) В группе Ω учатся студенты: $\omega_1...\omega_{25}$. Пусть X и Y 100-балльные экзаменационные оценки по математическому анализу и теории вероятностей. Оценки ω_i студента обозначаются: $x_i = X(\omega_i)$ и $y_i = Y(\omega_i), i = 1...25$. Все оценки известны $x_0 = 55, y_0 = 54, x_1 = 64, y_1 = 68, x_2 = 34, y_2 = 51, x_3 = 48, y_3 = 73, x_4 = 81, y_4 = 69, x_5 = 62, y_5 = 69, x_6 = 76, y_6 = 59, x_7 = 84, y_7 = 45, x_8 = 97, y_8 = 77, x_9 = 76, y_9 = 87, x_{10} = 43, y_{10} = 67, x_{11} = 33, y_{11} = 55, x_{12} = 71, y_{12} = 96, x_{13} = 62, y_{13} = 97, x_{14} = 84, y_{14} = 37, x_{15} = 41, y_{15} = 70, x_{16} = 92, y_{16} = 41, x_{17} = 60, y_{17} = 54, x_{18} = 71, y_{18} = 44, x_{19} = 39, y_{19} = 70, x_{20} = 98, y_{20} = 75, x_{21} = 99, y_{21} = 32, x_{22} = 58, y_{22} = 42, x_{23} = 61, y_{23} = 92, x_{24} = 58, y_{24} = 32$ Требуется найти следующие условные эмпирические характеристики: 1) ковариацию X и Y при условии, что одновременно $X \geqslant 50$ и $Y \geqslant 50$; 2) коэффициент корреляции X и Y при том же условии.
 - 1) Ковариация = 276.75 2) Коэффициент корреляции = 1.373
- 5. Распределение результатов экзамена в некоторой стране с 10-балльной системой оценивания задано следующим образом: $\{1:6,\ 2:16,\ 3:9,\ 4:16,\ 5:14,\ 6:4,\ 7:25,$

Работы будут перепроверять 10 преподавателей, которые разделили все имеющиеся работы между собой случайным образом. Пусть \overline{X} - средний балл (по перепроверки) работ, попавших к одному преподавателю.

Требуется найти матожидание и стандартное отклонение среднего балла работ, попавших к одному преподавателю, до перепроверки.

$$k = len(marks) // k$$

ex = np.sum([marks[m] * m for m in marks]) / n

varx = np.var([m for m in marks for temp in range(marks[m])]) / k * (n - k) / (n - 1) $sigmax = varx^{**}(0.5)$ Ответы: 6.14667, 0.65542.

6. (10) Пусть X_1, X_2, X_3, X_4 выборка из $N(\theta, \sigma^2)$. Рассмотрим две оценки параметра θ :

$$\hat{\theta}_1 = \frac{3X_1 + X_2 + 4X_3 + 2X_4}{10}, \hat{\theta}_1 = \frac{X_1 + 6X_2 + 2X_3 + X_4}{10}$$

а) Покажите, что обе оценки несмещенные. б) Какая из оценок оптимальная? Обе они несмещенные, потому что в числителе выходит в сумме 10. Какая-то точно должна быть, а может и нет....

Подготовил

П.Е. Рябов

Утверждаю:

Первый заместитель руководителя департамента

Дата 01.06.2021

Режии Феклин В.Г.