Домашнее задание 11

Ткачев Андрей, группа 166

30 ноября 2016 г.

Задача 1. Обозначим функции $f:A\to B,\ g:C\to D$. По определению $\forall\ a\in A\ \exists!\ b\in B,$ такой что $f:a\mapsto b$ и $\forall\ c\in C\ \exists!\ d\in B,$ такой что $g:c\mapsto d$. Так же $f\subseteq A\times B,\ g\subseteq C\times D$.

а) Пусть $h = f \cup g$. Тогда, $h \subseteq (A \cup C) \times (B \cup D)$. Т.е. $h = \{(x, y) | x \in A \cup C, y \in B \cup D : y = f(x)$ или $y = g(x)\}$.

Пусть $x \in A$. Докажем, что если $x \notin A \cap C$, то $\exists !\ y \in B \cup D : (x,y) \in h$. Существование y вытекает из того, что f - тотально, а значит, существует $y \colon (x,\ y) \in f \subseteq h$. Положим $(x,\ y) \in h$ и $(x,\ y') \in h$. Так как $x \notin A \cap C$ и $x \in A$, то $x \notin C$. Поэтому $(x,\ y) \notin g$ и $(x,\ y') \notin g \Rightarrow (x,\ y) \in f$ и $(x,\ y') \in f$. Но тогда y = y', т.к. f - функция.

Аналогично, если $x \in C$ и $x \notin A \cap C$, то $\exists ! y \in B \cup D : (x, y) \in h$.

Рассмотрим случай, когда $x\in A\cap C$. Поймем, что если $f:x\mapsto y,$ $g:x\mapsto y'$ и $y\neq y'$, то h - не функция, т.к. $(x,y)\in h$ и $(x,y')\in h$. Если же $\forall x\in A\cap C$ верно, что $f:x\mapsto y,$ $g:x\mapsto y'$ влечет y=y' (т.е. $y\in B\cap D$), то h - функция. Иными словами: h - функция тогда и только тогда, когда $h(A\cap C)\subseteq B\cap D$.

- **6)** Пусть $h = f \cap g$. Тогда, $h \subseteq (A \cap C) \times (B \cap D)$. Т.е. $h = \{(x, y) | x \in A \cap C, y \in B \cap D : y = f(x) \text{ и } y = g(x)\}$. Но тогда h функционально в силу того, что $(x, y) \in h \Leftrightarrow y = f(x) = g(x)$, а такой y существует единственный так как f и g тотальны(существование) функциональны(единственность).
- **Задача 2.** Покажем, что в общем случае нельзя поставить какой-то определенный знак, приведя примеры f и A для которых ? в утверждении $f^{-1}(f(A)) \subseteq A$ принимает каждое из значений \subseteq , \supseteq , =.
- 1) Рассмотрим функцию $f:\{0, 1\} \to \{1\}, f=\{(0, 1)\}$. Тогда $f(\{0, 1\})=\{1\}$, а $f^{-1}(\{1\})=\{0\}$. Т.е. $f^{-1}(f(\{0, 1\}))\subseteq \{0, 1\}$.
- **2)** Рассмотрим функцию $f: \{0, 1\} \to \{1\}, f = \{(0, 1), (1, 1)\}$. Тогда $f(\{0\}) = \{1\}, a f^{-1}(\{1\}) = \{0, 1\}$. Т.е. $f^{-1}(f(\{0\})) \supseteq \{0\}$.

3) Рассмотрим функцию $f: \{0, 1\} \rightarrow \{2, 3\}, f = \{(0, 2), (1, 3)\}$. Тогда $f(\{0, 1\}) = \{2, 3\}, a f^{-1}(\{2, 3\}) = \{0, 1\}$. Т.е. $f^{-1}(f(\{0, 1\})) = \{0, 1\}$.

Задача 3. Рассмотрим функцию $f:\{1,2,3\} \to \{1,2\}, f=\{(1,1), (2,2), (3,2)\}.$ Пусть $A=\{1,2\}, B=\{3\}.$ Тогда $f(A\setminus B)=\{1,2\}.$ Однако $f(A)\setminus f(B)=\{1,2\}\setminus \{2\}=\{1\}.$ Т.е. $f(A\setminus B)\not\subseteq f(A)\setminus f(B).$ Значит такое включение не всегда верно.

Пусть $y \in f(A) \setminus f(B)$. Тогда $y \in f(A)$ и $y \notin f(B) \Rightarrow \exists x \in Af(x) = y$, причем $x \notin B$ (иначе $y \in f(B)$) $\Leftrightarrow x \in A \setminus B$ (так как $f : A \cup B \to Y$), что влечет $f(x) = y \in f(A \setminus B)$. Значит $f(A \setminus B) \supseteq f(A) \setminus f(B)$.

Таким образом, всегда верно, что $f(A \setminus B) \supseteq f(A) \setminus f(B)$.

Задача 4. Пусть $x \in f^{-1}(A) \setminus f^{-1}(B)$. Тогда $x \in f^{-1}(A)$ и $x \notin f^{-1}(B) \Rightarrow \exists ! y \in Af(x) = y$, причем $y \notin B$ (иначе $x \in f^{-1}(B)$) $\Leftrightarrow y \in A \setminus B$, что влечет $x \in f(A \setminus B)$. Значит $f(A \setminus B) \supseteq f(A) \setminus f(B)$.

Пусть $x \in f^{-1}(A \setminus B)$. Тогда $\exists y \in A \setminus B : f(x) = y$. Это означает, что $y \in A$ и $y \notin B$ (иначе $y \notin A \setminus B$). Но тогда $x \in f^{-1}(A)$ и $x \notin f^{-1}(B)$. Значит $x \in \supseteq f(A) \setminus f(B)$. Тогда $f(A \setminus B) \subseteq f(A) \setminus f(B)$.

Мы доказали включение в обе стороны $\Rightarrow f(A \setminus B) = f(A) \setminus f(B)$.

Задача 5.

- а) Пусть $A=\{x_1, ..., x_a\}, B=\{y_1, ..., y_b\}$. Тогда $f\subseteq A\times B$ функциональное отношение, если $\forall i\in\{1, ..., a\}: (x_i, y_k)\in f, (x_i, y_j)\Leftrightarrow k=j$. Т.е. при всех прочих фиксированных x_i и их отношений для каждого x_j есть b вариантов функций где x_j в отношении с одним из b элементов мн-ва B + одна функция, где x_j не находится в отношениях (т.к. под функцией мы понимаем не обязательно всюду определенное отношение). Тогда всего функций $(b+1)^a$ для каждого элемента из A существует b+1 способ вступить в отношение с B.
- **б)** Если функция f из A в B инъекция, то каждому $x \in A$ соответствует не более одного $y \in B$ и каждому $y \in B$ соответствует не более одного x из A. Пусть тогда только x из $\{x_{i_1}, ..., x_{i_k}\} \subseteq A$ вступают в отношение с элементами B. Для x_{i_0} выбрать элемент y_0 , такой, чтобы (x_{i_0}, y_0) можно b способами, затем для x_{i_1} b-1 способами и тд. Т.е. для каждого такого мн-ва $S = \{x_{i_1}, ..., x_{i_k}\}$ из A существует $[b]_k$ вариантов функциональных отношений, таких, что S = f(B) ($[b]_k = b(b-1) \cdot ... \cdot (b-k+1)$; $k \leq min(a, b)$, иначе по принципу Дирихле каким-то различным эл-там из A сопоставлен один из B). Всего способов выбрать k элементное подмножество из A: $\binom{a}{k}$. Тогда по правилам суммы и произведения, число функций-инъекций из A в B:

$$\sum_{i=0}^{\min(a, b)} \binom{a}{i} [b]_i$$

Задача 6.

a) Пусть $b \neq 0$.

Рассмотрим отношение $f \subseteq [0, 1] \times [a, b]$, такое, что $(x, y) \in f \Leftrightarrow y =$ bx + a. ($\forall x \in [0, 1] : a \leqslant bx + a \leqslant b$). Докажем, что f - биекция.

Заметим, что f определена на [0, 1] и что f - функция (из построения следует, что любому $x \in [0, 1]$ сопоставлен хотя бы один $y \in [a, b]$; из построения так же следует, что если если $(x, y) \in f$ и $(x, y') \in f$, то y =bx + a = y').

Поймем, что f - инъекция. Действительно, если $(x', y) \in f$ и $(x'', y) \in f$, то $y=bx'+a=bx''+a\Rightarrow bx'=bx''$, а так как $b\neq 0$, то x'=x''.

Докажем, что f - сюръекция. Пусть $y \in [a, b]$, тогда $\exists x \in [0, 1]$, такой, что y = bx + a - так как это уравнение имеет решение $x = \frac{y-a}{b}$, причем $0\leqslant x\leqslant 1\ (b\neq 0,\ 0\leqslant y-a\leqslant b\Rightarrow 0\leqslant \frac{y-a}{b}\leqslant 1).\ \text{T.e.}\ \forall y\in [a,\ b]\exists\ x\in [0,\ 1]:$ f(x) = y.

Tогда f - биекция.

Если b=0, то рассмотрим биекцию $g:[a,b] \rightarrow [a+1,b+1]$ (т.е. к каждому числу из $x \in [a, b]$ взаимно однозначно сопоставим x + 1 из [a+1, b+1]). Тогда если мы построим биекцию из [0, 1] в [a+1, b+1], то пользуясь тем фактом, что композиция биекций - биекция, мы получим биекцию из [0, 1] в [a, b] через [a+1, b+1]: $g \circ f$.

6) Пусть $A = \{a | a \in (0, 1)\}; B = \{b | b \in (0, +\infty)\}.$ Рассмотрим отношение f на $A \times B$, такое, что $(x, y) \in f$, если $y = \frac{1}{1-x} - 1$. Поймем, что при $x \in A, \ \frac{1}{1-x} - 1 \in (0, +\infty)$:

$$\frac{1}{1-x} - 1 > 0$$

$$\updownarrow$$

$$\frac{x-1}{1-x} > 0$$

$$\updownarrow$$

$$x \in (0, 1)$$

Тогда $\forall x \in A \; \exists y \in B : \; (x, y) \in f$, значит f - всюду определено.

Заметим, что f - функция. Действительно, если $(x, y_0) \in f$ и $(x, y_1) \in f$,

то $y_0 = \frac{1}{1-x} - 1 = y_1$. Поймем, что f - инъекция. В самом деле, если $(x', y) \in f$ и $(x'', y) \in f$, то $y = \frac{1}{1-x'} - 1 = \frac{1}{1-x''} - 1 \Rightarrow \frac{1}{1-x''} = \frac{1}{1-x''}$, т.к. $x' \neq 1$ и $x'' \neq 1$, то x' = x''. Докажем, что f - сюръекция. Пусть $y \in B$. Покажем, что $\exists x : (x, y) \in f$:

решим уравнение $\frac{1}{1-x} - 1 = y$ на интервале (0, 1).

$$\begin{cases} \frac{1}{1-x} - 1 = y, \\ x \in (0, 1), \\ y \in (0, +\infty); \end{cases}$$

$$\downarrow 1 - 1 + x = (1 - x)y$$
$$x(y + 1) = y$$
$$x = \frac{y}{y + 1}$$

Тогда $\forall y \in B \; \exists x \in A: \; (x,\; y) \in f \Rightarrow f$ - сюръекция. Тогда по определению $f:A \to B$ - биекция.

в) Сопоставим каждому элементу $x \in [0, 1)$, элемент $y \in (0, 1)$, по правилу: y = f(x), причем $f(0) = \frac{1}{2}$, f(x) = x, если $x \neq \frac{1}{2^n}$, $\forall n \in N \cup 0$ и $f(x) = \frac{x}{2}$ иначе. Докажем, что $f: [0,1) \to (0,1)$ - биекция.

Поймем, что все элементы отличные от 0 и чисел вида $\frac{1}{2^n}$ взаимно однонзначно переходят в равные себе числа, т.е. этот переход инъективен и сюръективен и функционален, т.к. отображение множества переводящее элементы самих в себя - биекция. Заметим, что числам вида $\frac{1}{2^n}$ из $[0,\ 1)$ взаимно однозначно соответствуют числа $\frac{1}{2^{n+1}}$ из $(0,\ 1)$, а числу 0 взаимно однозначно соответствует $\frac{1}{2}$. Тогда каждому числу из $[0,\ 1)$ взаимно однозначно соответствует число из $(0,\ 1)$, т.е. f - биекция.

Задача 7. Докажем, что f - инъекция. Пусть f(x')=x и f(x'')=x. Из условия следует, что $f\circ g\circ f(x')=id_A(x')=x'$. С другой стороны

$$x' = f \circ g \circ f(x') = (f \circ g)(f(x')) = f \circ g(x) = (f \circ g)(f(x'')) = f \circ g \circ f(x'') = x''$$

Т.е. f(x') = x и $f(x'') = x \Leftrightarrow x' = x''$. Значит, f - инъекция. Докажем теперь, что f - сюръекция. Пусть $x' \in A$. В силу тотальности f и g: f(x') = x'', g(x'') = x'''. Но как мы знаем $f \circ g \circ f(x') = x'$ и в силу ассоциативности $f \circ g \circ f(x') = f \circ (g \circ f)(x') = f(x''')$. Тогда f(x''') = x', т.е. $\forall x' \in A \; \exists \; x \in A : f : x \mapsto x'$.

В итоге, f - функционально, тотально, инъективно и сюръективно, значит - биекция!

Задача 8. Нет, не верно. Построим пример иллюстрирующий, что g не всегда всюду определена. Определим функции как $f:\{0\} \to \{0\}$ и $g:\{0,1\} \to \{0\}$, причем $g=\{(0,0)\}$. Тогда очевидно, что $\forall x \in \{0\}: g \circ f(x) = x$. Т.е. $g \circ f = id_{\{0\}}$ Но g - не всюду определена, в частности не определено g(1).