LR4: LR(1) Parsing

LR Parsing

CMPT 379: Compilers

Instructor: Anoop Sarkar

anoopsarkar.github.io/compilers-class

SLR limitation: lack of context

$$S' \rightarrow S$$

 $S \rightarrow L = R \mid R$
 $L \rightarrow *R \mid id$
 $R \rightarrow L$

S'

R

id

\$

id

$$Follow(R) = \{ =, \$ \}$$

2:
$$S \rightarrow L \bullet = R$$

 $R \rightarrow L \bullet$

R

id

\$

S'

Find all lookaheads for reduce $R \rightarrow L$ •

No! $R \rightarrow L \bullet$ reduce and $S \rightarrow L \bullet = R$ do not co-occur due to the $L \rightarrow *R$ rule

Solution: Canonical LR(1)

- Extend definition of configuration
 - Remember lookahead
- New closure method
- Extend definition of Successor

LR(1) Configurations

- [A $\rightarrow \alpha$ • β , a] for a \in T is valid for a viable prefix $\delta \alpha$ if there is a rightmost derivation S \Rightarrow * $\delta A \eta \Rightarrow$ * $\delta \alpha \beta \eta$ and $(\eta = a \gamma)$ or $(\eta = \epsilon)$
- Notation: [A $\rightarrow \alpha$ • β , a/b/c]
 - if [A → α•β, a], [A → α•β, b], [A → α•β, c] are valid configurations

LR(1) Configurations

$$S \rightarrow B B$$

 $B \rightarrow a B \mid b$

$$S \Rightarrow BB \Rightarrow BaB \Rightarrow Bab$$

 $\Rightarrow aBab \Rightarrow aaBab \Rightarrow aaaBab$

- $S \Rightarrow^*_{rm} aaBab \Rightarrow_{rm} aaaBab$
- Item [B → a B, a] is valid for viable prefix
- $S \Rightarrow^*_{rm} BaB \Rightarrow_{rm} BaaB$
- Also, item [B → a B, \$] is valid for viable prefix Baa

$$S \Rightarrow BB \Rightarrow BaB \Rightarrow BaaB$$

LR(1) Closure

Closure property:

- If $[A \rightarrow \alpha \bullet B\beta, a]$ is in set, then $[B \rightarrow \bullet \gamma, b]$ is in set if $b \in First(\beta a)$
- Compute as fixed point
- Only include contextually valid lookaheads to guide reducing to B

Starting Configuration

- Augment Grammar with S' just like for LR(0), SLR(1)
- Initial configuration set is

$$I = closure([S' \rightarrow \bullet S, \$])$$

Example: closure($[S' \rightarrow \bullet S, \$]$)

$$[S' \rightarrow \bullet S, \$]$$

$$[S \rightarrow \bullet L = R, \$]$$

$$[S \rightarrow \bullet R, \$]$$

$$[L \rightarrow \bullet * R, =]$$

$$[L \rightarrow \bullet id, =]$$

$$[R \rightarrow \bullet L, \$]$$

$$[L \rightarrow \bullet * R, \$]$$

 $[L \rightarrow \bullet id, \$]$

$$S' \rightarrow S$$

 $S \rightarrow L = R \mid R$
 $L \rightarrow *R \mid id$
 $R \rightarrow L$

$$S' \rightarrow \bullet S, \$$$

$$S \rightarrow \bullet L = R, \$$$

$$S \rightarrow \bullet R, \$$$

$$L \rightarrow \bullet * R, =/\$$$

$$L \rightarrow \bullet id, =/\$$$

$$R \rightarrow \bullet L, \$$$

LR(1) Successor(C, X)

- Let $I = [A \rightarrow \alpha \bullet B\beta, a]$ or $[A \rightarrow \alpha \bullet b\beta, a]$
- Successor(I, B) = closure([A $\rightarrow \alpha$ B • β , a])
- Successor(I, b) = closure([A $\rightarrow \alpha$ b • β , a])

LR(1) Example

LR(1) Example (contd)

LR(1) Example (contd)

Productions					
1	$S \rightarrow L = R$				
2	$S \rightarrow R$				
3	L → * R				
4	L → id				
5	$R \rightarrow L$				

	id	=	*	\$	S	L	R
0	S 1		S10		7	2	13
1		R4		R4			
2		S 3		R5			
3	S 4		S 8			5	6
4				R4			
5				R5			
6				R1			
7				Acc			
8	S 4					5	9
9				R3			
10	S 1		S 10			11	12
11		R5		R5			
12		R3		R3			
13				R2			

LR(1) Construction

1. Construct $F = \{l_0, l_1, ... l_n\}$ 2. a) if $[A \rightarrow \alpha^{\bullet}, a] \in I_i$ and A := S'then action[i, a] := reduce A $\rightarrow \alpha$ b) if $[S' \rightarrow S^{\bullet}, \$] \in I_i$ then action[i, \$] := accept c) if $[A \rightarrow \alpha \bullet a\beta, b] \in I_i$ and Successor(I_i , a)= I_i then action[i, a] := shift i 3. if Successor(I_i , A) = I_i then goto[i, A] := j

LR(1) Construction (cont'd)

- 4. All entries not defined are errors
- 5. Make sure I_0 is the initial state
- Note: LR(1) only reduces using A $\rightarrow \alpha$ for [A $\rightarrow \alpha$ •, a] if a follows
- LR(1) states remember context by virtue of lookahead
- Possibly many states!
 - LALR(1) combines some states

LR(1) Conditions

- A grammar is LR(1) if for each configuration set (itemset) the following holds:
 - For any item [A $\rightarrow \alpha \bullet x \beta$, a] with $x \in T$ there is no [B $\rightarrow \gamma \bullet$, x]
 - For any two complete items [A $\rightarrow \gamma \bullet$, a] and [B $\rightarrow \beta \bullet$, b] then a != b.
- Grammars:
 - $LR(0) \subset SLR(1) \subset LR(1) \subset LR(k)$
- Languages expressible by grammars:
 - $LR(0) \subset SLR(1) \subset LR(1) = LR(k)$

Set-of-items with Epsilon rules

Canonical LR(1) Recap

- LR(1) uses left context, current handle and lookahead to decide when to reduce or shift
- Most powerful parser so far
- LALR(1) is practical simplification with fewer states

Merging States in LALR(1)

•
$$S' \rightarrow S$$

 $S \rightarrow XX$
 $X \rightarrow aX$
 $X \rightarrow b$

- Same CoreSet
- Different lookaheads

R/R conflicts when merging

•
$$B \rightarrow d$$

 $B \rightarrow f X g$
 $X \rightarrow ...$

 $\begin{array}{c} 4: B \to d \bullet, g \\ B \to f X g \bullet, c \end{array}$

 If R/R conflicts are introduced, grammar is not LALR(1)!

LALR(1)

- LALR(1) Condition:
 - Merging in this way does not introduce reduce/ reduce conflicts
 - Shift/reduce can't be introduced
- Merging brute force or step-by-step
- More compact than canonical LR, like SLR(1)
- More powerful than SLR(1)
 - Not always merge to full Follow Set