Слоения, железные дороги Терстона и гиперболическая геометрия на поверхностях.

Гаянэ Юрьевна Панина

20 июля 2021 г.

Определение 1. S_g — поверхность рода g, т.е. связная ориентируемая компактная поверхность. Говоря иначе, это сфера g ручками.

Лемма 1. $\chi(S_q) = 2 - 2g - xарактеристика Эйлера - есть полный инвариант.$

Определение 2. Поверхность рода g с n дырками — связная компактная ориентируемая поверхность с краем(-ями). Говоря иначе, сфера с g ручками и n дырками.

Лемма 2. $(\chi; n)$ (или же, что равносильно, (g; n)) есть полный инвариант.

Определение 3. Замкнутая кривая γ — непрерывное отображение $\gamma: S^1 \to S_q$, что

- γ без самопересечений,
- γ гладка,
- γ с точностью до изотопии (гомотопии).

без самопересечений.

Определение 4. Гомеоморфизм — отображение между топологическими пространствами

$$\varphi: X \to Y$$
,

ОТР

- φ биекция,
- φ непрерывна,
- φ^{-1} непрерывна.

Определение 5. Диффеоморфизм — гладкий гомеоморфизм.

Замечание 1. Для рассматриваемых пространств верно, что гомеоморфные пространства диффеоморфны.

 Π ример 1.

- 1. Тождественное отображение на X диффеоморфизм.
- 2. К диффеоморфизмам можно применять изотопии.

Задача 1. Любую неразбивающую кривую γ на X (т.е. $X \setminus \gamma$ линейно связно) можно перевести в любую другую неразбивающую.

Определение 6. *Изометрия* — гомеоморфизм, сохраняющий метрику (или, что равносильно, длины кривых).

Задача 2.

- 1. **Первый тор.** Рассмотрим квадрат $[0;1]^2$. Склеим его обычным способом в тор. Получим тор, снабжённый плоской метрикой, т.е. у каждой точки есть окрестность изометричная диску.
- 2. **Второй тор.** Сделаем то же самое, но для параллелограмма натянутого на (1;0) и (1;1).
- 3. **Третий тор.** То же самое, но для параллелограмма натянутого на (1;0) и (0.5;1).

Изометричны ли торы?

Замечание 2. Нельзя склеить поверхность рода g из плоскости. Действительно, если, например, взять обычную развёртку $\prod_{i=1}^{n} (a_i b_i a_i^{-1} b_i^{-1})$. Все вершины будут склеены в одну и сумма углов банально не сойдётся (будет очень большой).

С другой стороны рассмотрим модель плоскости Лобачевского через ортогональные к окружности дуги внутри окружности. Если возьмём правильный 4g-угольник с центром в центре нашей плоскости очень малого размера, то её сумма углов будет больше 2π . Если же взять 4g-угольник, вершины которого бесконечно удалены (лежат на границе нашей плоскости), то сумма углов будет равна $0 < 2\pi$. Значит где-то "посередине" будет 4g-угольник с суммой углов 2π . В таком случае склеивая такой многоугольник таким же образом, мы получаем плоскую метрику.

Определение 7. Модель Пуанкаре плоскости Лобачевского — $\mathbb{H} := \{z \in \mathbb{C} \mid \Im(z) > 0\}$, где прямые — окружности, перпендикулярные $\Im(z) = 0$, а метрика порождается формулой

$$ds = \frac{\sqrt{dx^2 + dy^2}}{y}.$$

Множество изометрий модели Пуанкаре $\mathrm{Iso}^+(\mathbb{H})$ — дробно-рациональные функции с вещественными коэффициентами и положительным определителем, т.е. $\mathrm{PSL}(2,\mathbb{R})$.

Замечание 3. По теореме Брауера у всякой изометрии \mathbb{H} есть неподвижная в замыкании \mathbb{H} . Если она лежит в \mathbb{H} , то такая изометрия равносильно повороту относительно центра в представлении плоскости Лобачевского в качестве круга, где неподвижная точка — центр. Если же она лежит на границе, то это равносильно параллельному переносу на $a \in \mathbb{R}$ в модели плоскости Лобачевского, где неподвижная точка — бесконечно-удалённая точка.

Определение 8.