

# HPL09S0P5N

#### N-Channel Enhancement-Mode MOSFET

Designed for handheld two-way radio applications with frequencies from 136 to 941 MHz. The high gain, ruggedness and Broadband performance of this device make it ideal for large-signal, common-source amplifier applications in handheld radio equipment.

136–941 MHz, 0.5 W, 3.7 V BROADBAND RF POWER TRANSISTOR

**Typical Broadband EVB Performance** (I<sub>DO</sub>=200mA, T<sub>A</sub> = 25 °C, CW)

| Freq. | V<br>DD | Gmax | Po    | ut      | PAE  |
|-------|---------|------|-------|---------|------|
| [MHz] | [V]     | [dB] | [dBm] | [Watts] | [%]  |
|       | 3.7     | 19.6 | 28.0  | 0.6     | 60.0 |
| 440   | 4.5     | 20.0 | 29.6  | 0.9     | 60.1 |
|       | 6.0     | 20.3 | 32.1  | 1.6     | 60.9 |

Capable of Handling 20:1 VSWR @ 6.0Vdc, 1.5Watts, CW

#### **Features**

Characterized for Operation from 136 to 941 MHz

Unmatched Input and Output Allowing Broad Frequency Range Utilization Integrated ESD Protection

Broadband - Full Power Across the Band

**Exceptional Thermal Performance** 

Extreme Ruggedness

# G S



Figure 1. Pin Connections

# **Typical Applications**

Output Stage VHF Band Handheld Radio

Output Stage UHF Band Handheld Radio

Output Stage for 700-800 MHz Handheld Radio

Driver for 10-1000 MHz Applications

# Table1. Maximum Ratings

| Rating                                   | Symbol   | Value       | Unit          |
|------------------------------------------|----------|-------------|---------------|
| Drain-Source Voltage                     | V        | -0.5, +20   | Vdc           |
| Gate-Source Voltage                      | GS       | -0.5, +8    | Vdc           |
| Operating Voltage                        | V<br>DD  | 0, +6       | Vdc           |
| Storage Temperature Range                | I<br>stg | -65 to +150 | ${\mathbb C}$ |
| Case Operating Temperature               | Tc       | -40 to +150 | ${\mathbb C}$ |
| Operating Junction Temperature           | Tı       | -40 to +150 | ${\mathbb C}$ |
| Power Dissipation @T <sub>C</sub> =25 °C | PD       | 3           | W             |

### **Table 2. ESD Protection Characteristics**

| Test Methodology                     | Class             |
|--------------------------------------|-------------------|
| Human Body Model (per JESD22A114)    | 2, passes 2500 V  |
| Machine Model (per EIA/JESD22A115)   | A, passes 100 V   |
| Charge Device Model (per JESD22C101) | IV, passes 2000 V |

# Table 3. Electrical Characteristics ( $T_A=25\,^{\circ}\text{C}$ unless otherwise noted)

| Characteristic                                                                                                               | Symbol                      | Min | Тур.           | Max | Unit |
|------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----|----------------|-----|------|
| Off Characteristics                                                                                                          |                             |     | L.             |     |      |
| Gate-Source Leakage Current (VGS=5Vdc, VDS=0Vdc)                                                                             | I                           | -   | -              | 500 | nAdc |
| Zero Gate Voltage Drain Leakage Current (VDS=16Vdc, VGS=0Vdc)                                                                | I                           | -   | -              | 1   | μAdc |
| Zero Gate Voltage Drain Leakage Current (VDS=3.7Vdc, VGS=0Vdc)                                                               | I                           | -   | -              | 500 | nAdc |
| On Characteristics                                                                                                           |                             |     |                |     |      |
| Gate Threshold Voltage (VDS=3.7Vdc, ID=1mA)                                                                                  | V<br>GS(th)                 | 1.2 | 1.4            | 1.6 | Vdc  |
| Gate Quiescent Voltage (VDD=3.7Vdc, ID=200mA Measured in Functional Test)                                                    | $\mathop{V_{\text{GS(Q)}}}$ | 1.7 | 2.2            | 2.5 | Vdc  |
| Drain-Source On-Voltage (V <sub>GS</sub> =8Vdc, I <sub>D</sub> =200mA)                                                       | V<br>DS(ON)                 | -   | 0.12           | -   | Vdc  |
| Dynamic Characteristics                                                                                                      |                             |     |                |     |      |
| Reverse Transfer Capacitance<br>(V <sub>DG</sub> =3.7V, Level=30mVac@1MHz)                                                   | Crss                        | -   | 1.1            | -   | pF   |
| Output Capacitance<br>(V <sub>DS</sub> =3.7V, Level=30mVac@1MHz)                                                             | Coss                        | -   | 5.0            | -   | pF   |
| Input Capacitance (V <sub>GS</sub> =5V, Level=30mVac@1MHz)                                                                   | Ciss                        | -   | 17.4           | -   | pF   |
| Typical Performances (In DuSemi Narrowband Test<br>Frequency=440MHz, V <sub>DD</sub> =3.7Vdc, I <sub>DO</sub> =200mA, Pin=80 |                             | -   | <u>l</u><br>n) |     |      |

| Frequency=440MHz, | v <sub>DD</sub> =3. | / vac, 1DQ=2 | .00mA, Pin= | 8aBm, 1A=2 | 3 C |
|-------------------|---------------------|--------------|-------------|------------|-----|
|                   |                     |              |             |            |     |

| Output Power     | out | - | 0.5 | - | Watts |
|------------------|-----|---|-----|---|-------|
| Power Gain       | PS  |   | 20  | - | dB    |
| Drain Efficiency | ηD  | - | 60  | - | %     |



Test Circuit Component Layout

Table 5. Test Circuit Component Designations and Value

| Part              | Description                                | Part Number       | Manufacturer |
|-------------------|--------------------------------------------|-------------------|--------------|
| R1                | 470Ohm                                     | _                 | _            |
| R1                | 6.8KOhm                                    | _                 | _            |
| L1,L2             | 3.9nH                                      | _                 | _            |
| L3                | 8 Turns D: 0.5 mm,<br>φ 2.4 mm Enamel Wire | _                 | _            |
| C5, C6,C7,C12,C13 | 100pF Chip Capacitors                      | GQM21P5C1H101JB01 | Murata       |
| C1, C2            | 18pF Chip Capacitors                       | GRM1885C1H201JA01 | Murata       |
| C4,C8             | 1000pF Chip Capacitors                     | GRM1885C1H102JA01 | Murata       |
| C3,C9             | 10uF,25VChip Capacitors                    | _                 | _            |
| C10               | 9pF Chip Capacitors                        | _                 | Murata       |
| C11               | 4.3pF Chip Capacitors                      |                   | Murata       |
| PCB               | FR-4 ,1.6mm,E <sub>r</sub> 4.5             |                   | _            |

## TYPICAL CHARACTERISTICS

#### 1、Power Gain, Drain Efficiency and Output Power versus input power@440MHz

| Freq  | DS  | DS(Q) | Po    | out     | Gain | ηρ   |
|-------|-----|-------|-------|---------|------|------|
| [MHz] | [V] | [mA]  | [dBm] | [Watts] | [dB] | [%]  |
|       | 3.7 |       | 28.0  | 0.6     | 19.6 | 60.0 |
| 440   | 4.5 | 200   | 29.6  | 0.9     | 20.0 | 60.1 |
|       | 6.0 |       | 32.1  | 1.6     | 20.3 | 60.9 |



#### 2 Power Gain, Drain Efficiency and Output Power versus Gate Quiescent Current @440MHz

| Freq  | DS  | DS(Q) | Po    | ut      | Gain | PAE  |
|-------|-----|-------|-------|---------|------|------|
| [MHz] | [V] | [mA]  | [dBm] | [Watts] | [dB] | [%]  |
|       |     | 50    | 28.2  | 0.6     | 14.2 | 58.3 |
| 440   | 3.7 | 100   | 28.0  | 0.6     | 17.3 | 58.6 |
| 440   | 3.7 | 200   | 28.0  | 0.6     | 19.6 | 60.0 |
|       |     | 300   | 28.2  | 0.6     | 20.1 | 60.6 |



#### 3. Power Gain, Drain Efficiency and Output Power versus input power@470MHz

| Freq  | DS  | DS(Q) | Po    | ut      | Gain | PAE  |
|-------|-----|-------|-------|---------|------|------|
| [MHz] | [V] | [mA]  | [dBm] | [Watts] | [dB] | [%]  |
|       | 3.7 |       | 28.3  | 0.6     | 19.5 | 57.8 |
| 470   | 4.5 | 200   | 29.9  | 0.9     | 19.9 | 57.8 |
|       | 6.0 |       | 32.4  | 1.7     | 20.4 | 58.1 |



# PACKAGE Unit: mm



PCB Pad Layout for SOT-89



**Bottom View** 

## PACKAGE DIMENSIONS





## REVISION HISTORY

The following table summarizes revisions to this document.

| Revision | Date     | Description                   |  |
|----------|----------|-------------------------------|--|
| 1.0      | May 2018 | Initial Release of Data Sheet |  |