Importing Libraries

```
In [1]: import numpy as np
    import pandas as pd

import matplotlib.pyplot as plt
    %matplotlib inline
    import seaborn as sns

import warnings
    warnings.filterwarnings('ignore')

In [2]: plt.rcParams['figure.figsize']=(10,5)
    plt.style.use('ggplot')

In [3]: pd.options.display.max_rows = 4000
    pd.options.display.max_columns = 1000
```

Loading the data

Out[4]

]:	Unnamed: 0	Table	Row	Description	Special
0	1	application_data	SK_ID_CURR	ID of loan in our sample	NaN
1	2	application_data	TARGET	Target variable (1 - client with payment diffi	NaN
2	5	application_data	NAME_CONTRACT_TYPE	Identification if loan is cash or revolving	NaN
3	6	application_data	CODE_GENDER	Gender of the client	NaN
4	7	application_data	FLAG_OWN_CAR	Flag if the client owns a car	NaN
5	8	application_data	FLAG_OWN_REALTY	Flag if client owns a house or flat	NaN
6	9	application_data	CNT_CHILDREN	Number of children the client has	NaN
7	10	application_data	AMT_INCOME_TOTAL	Income of the client	NaN
8	11	application_data	AMT_CREDIT	Credit amount of the loan	NaN
9	12	application_data	AMT_ANNUITY	Loan annuity	NaN
10	13	application_data	AMT_GOODS_PRICE	For consumer loans it is the price of the good	NaN
11	14	application_data	NAME_TYPE_SUITE	Who was accompanying client when he was applyi	NaN
12	15	application_data	NAME_INCOME_TYPE	Clients income type (businessman, working, mat	NaN
13	16	application_data	NAME_EDUCATION_TYPE	Level of highest education the client achieved	NaN
14	17	application_data	NAME_FAMILY_STATUS	Family status of the client	NaN
15	18	application_data	NAME_HOUSING_TYPE	What is the housing situation of the client (r	NaN
16	19	application_data	REGION_POPULATION_RELATIVE	Normalized population of region where client I	normalized
17	20	application_data	DAYS_BIRTH	Client's age in days at the time of application	time only relative to the application
18	21	application_data	DAYS_EMPLOYED	How many days before the application the perso	time only relative to the application
19	22	application_data	DAYS_REGISTRATION	How many days before the application did clien	time only relative to the application
20	23	application_data	DAYS_ID_PUBLISH	How many days before the application did clien	time only relative to the application
21	24	application_data	OWN_CAR_AGE	Age of client's car	NaN
22	25	application_data	FLAG_MOBIL	Did client provide mobile phone (1=YES, 0=NO)	NaN
23	26	application_data	FLAG_EMP_PHONE	Did client provide work phone (1=YES, 0=NO)	NaN

	Unnamed: 0	Table	Row	Description	Special
24	27	application_data	FLAG_WORK_PHONE	Did client provide home phone (1=YES, 0=NO)	NaN
25	28	application_data	FLAG_CONT_MOBILE	Was mobile phone reachable (1=YES, 0=NO)	NaN
26	29	application_data	FLAG_PHONE	Did client provide home phone (1=YES, 0=NO)	NaN
27	30	application_data	FLAG_EMAIL	Did client provide email (1=YES, 0=NO)	NaN
28	31	application_data	OCCUPATION_TYPE	What kind of occupation does the client have	NaN
29	32	application_data	CNT_FAM_MEMBERS	How many family members does client have	NaN
30	33	application_data	REGION_RATING_CLIENT	Our rating of the region where client lives (1	NaN
31	34	application_data	REGION_RATING_CLIENT_W_CITY	Our rating of the region where client lives wi	NaN
32	35	application_data	WEEKDAY_APPR_PROCESS_START	On which day of the week did the client apply	NaN
33	36	application_data	HOUR_APPR_PROCESS_START	Approximately at what hour did the client appl	rounded
34	37	application_data	REG_REGION_NOT_LIVE_REGION	Flag if client's permanent address does not ma	NaN
35	38	application_data	REG_REGION_NOT_WORK_REGION	Flag if client's permanent address does not ma	NaN
36	39	application_data	LIVE_REGION_NOT_WORK_REGION	Flag if client's contact address does not matc	NaN
37	40	application_data	REG_CITY_NOT_LIVE_CITY	Flag if client's permanent address does not ma	NaN
38	41	application_data	REG_CITY_NOT_WORK_CITY	Flag if client's permanent address does not ma	NaN
39	42	application_data	LIVE_CITY_NOT_WORK_CITY	Flag if client's contact address does not matc	NaN
40	43	application_data	ORGANIZATION_TYPE	Type of organization where client works	NaN
41	44	application_data	EXT_SOURCE_1	Normalized score from external data source	normalized
42	45	application_data	EXT_SOURCE_2	Normalized score from external data source	normalized
43	46	application_data	EXT_SOURCE_3	Normalized score from external data source	normalized
44	47	application_data	APARTMENTS_AVG	Normalized information about building where th	normalized
45	48	application_data	BASEMENTAREA_AVG	Normalized information about building where th	normalized
46	49	application_data	YEARS_BEGINEXPLUATATION_AVG	Normalized information about building where th	normalized
47	50	application_data	YEARS_BUILD_AVG	Normalized information about building where th	normalized

	Unnamed: 0	Table	Row	Description	Special
48	51	application_data	COMMONAREA_AVG	Normalized information about building where th	normalized
49	52	application_data	ELEVATORS_AVG	Normalized information about building where th	normalized
50	53	application_data	ENTRANCES_AVG	Normalized information about building where th	normalized
51	54	application_data	FLOORSMAX_AVG	Normalized information about building where th	normalized
52	55	application_data	FLOORSMIN_AVG	Normalized information about building where th	normalized
53	56	application_data	LANDAREA_AVG	Normalized information about building where th	normalized
54	57	application_data	LIVINGAPARTMENTS_AVG	Normalized information about building where th	normalized
55	58	application_data	LIVINGAREA_AVG	Normalized information about building where th	normalized
56	59	application_data	NONLIVINGAPARTMENTS_AVG	Normalized information about building where th	normalized
57	60	application_data	NONLIVINGAREA_AVG	Normalized information about building where th	normalized
58	61	application_data	APARTMENTS_MODE	Normalized information about building where th	normalized
59	62	application_data	BASEMENTAREA_MODE	Normalized information about building where th	normalized
60	63	application_data	YEARS_BEGINEXPLUATATION_MODE	Normalized information about building where th	normalized
61	64	application_data	YEARS_BUILD_MODE	Normalized information about building where th	normalized
62	65	application_data	COMMONAREA_MODE	Normalized information about building where th	normalized
63	66	application_data	ELEVATORS_MODE	Normalized information about building where th	normalized
64	67	application_data	ENTRANCES_MODE	Normalized information about building where th	normalized
65	68	application_data	FLOORSMAX_MODE	Normalized information about building where th	normalized
66	69	application_data	FLOORSMIN_MODE	Normalized information about building where th	normalized
67	70	application_data	LANDAREA_MODE	Normalized information about building where th	normalized
68	71	application_data	LIVINGAPARTMENTS_MODE	Normalized information about building where th	normalized
69	72	application_data	LIVINGAREA_MODE	Normalized information about building where th	normalized
70	73	application_data	NONLIVINGAPARTMENTS_MODE	Normalized information about building where th	normalized
71	74	application_data	NONLIVINGAREA_MODE	Normalized information about building where th	normalized

	Unnamed: 0	Table	Row	Description	Special
72	75	application_data	APARTMENTS_MEDI	Normalized information about building where th	normalized
73	76	application_data	BASEMENTAREA_MEDI	Normalized information about building where th	normalized
74	77	application_data	YEARS_BEGINEXPLUATATION_MEDI	Normalized information about building where th	normalized
75	78	application_data	YEARS_BUILD_MEDI	Normalized information about building where th	normalized
76	79	application_data	COMMONAREA_MEDI	Normalized information about building where th	normalized
77	80	application_data	ELEVATORS_MEDI	Normalized information about building where th	normalized
78	81	application_data	ENTRANCES_MEDI	Normalized information about building where th	normalized
79	82	application_data	FLOORSMAX_MEDI	Normalized information about building where th	normalized
80	83	application_data	FLOORSMIN_MEDI	Normalized information about building where th	normalized
81	84	application_data	LANDAREA_MEDI	Normalized information about building where th	normalized
82	85	application_data	LIVINGAPARTMENTS_MEDI	Normalized information about building where th	normalized
83	86	application_data	LIVINGAREA_MEDI	Normalized information about building where th	normalized
84	87	application_data	NONLIVINGAPARTMENTS_MEDI	Normalized information about building where th	normalized
85	88	application_data	NONLIVINGAREA_MEDI	Normalized information about building where th	normalized
86	89	application_data	FONDKAPREMONT_MODE	Normalized information about building where th	normalized
87	90	application_data	HOUSETYPE_MODE	Normalized information about building where th	normalized
88	91	application_data	TOTALAREA_MODE	Normalized information about building where th	normalized
89	92	application_data	WALLSMATERIAL_MODE	Normalized information about building where th	normalized
90	93	application_data	EMERGENCYSTATE_MODE	Normalized information about building where th	normalized
91	94	application_data	OBS_30_CNT_SOCIAL_CIRCLE	How many observation of client's social surrou	NaN
92	95	application_data	DEF_30_CNT_SOCIAL_CIRCLE	How many observation of client's social surrou	NaN
93	96	application_data	OBS_60_CNT_SOCIAL_CIRCLE	How many observation of client's social surrou	NaN
94	97	application_data	DEF_60_CNT_SOCIAL_CIRCLE	How many observation of client's social surrou	NaN
95	98	application_data	DAYS_LAST_PHONE_CHANGE	How many days before application did client ch	NaN

	Unnamed: 0	Table	Row	Description	Special
96	99	application_data	FLAG_DOCUMENT_2	Did client provide document 2	NaN
97	100	application_data	FLAG_DOCUMENT_3	Did client provide document 3	NaN
98	101	application_data	FLAG_DOCUMENT_4	Did client provide document 4	NaN
99	102	application_data	FLAG_DOCUMENT_5	Did client provide document 5	NaN

```
In [5]: credit_data = pd.read_csv("application_data.csv")
    credit_data.head(20)
```

Out[5]:		SK_ID_CURR	TARGET	NAME_CONTRACT_TYPE	CODE_GENDER	FLAG_OWN_CAR	FLAG_OWN_REALTY	CNT_CHILDREN	AMT_INCOME_TOTAL	AMT_CR
	0	100002	1	Cash loans	М	N	Υ	0	202500.000	406
	1	100003	0	Cash loans	F	N	N	0	270000.000	1293
	2	100004	0	Revolving loans	М	Υ	Υ	0	67500.000	135
	3	100006	0	Cash loans	F	N	Υ	0	135000.000	312
	4	100007	0	Cash loans	М	N	Υ	0	121500.000	513
	5	100008	0	Cash loans	М	N	Υ	0	99000.000	490
	6	100009	0	Cash loans	F	Υ	Υ	1	171000.000	1560 [°]
	7	100010	0	Cash loans	М	Υ	Υ	0	360000.000	1530
	8	100011	0	Cash loans	F	N	Y	0	112500.000	1019
	9	100012	0	Revolving loans	М	N	Υ	0	135000.000	405
	10	100014	0	Cash loans	F	N	Υ	1	112500.000	652
	11	100015	0	Cash loans	F	N	Υ	0	38419.155	148.
	12	100016	0	Cash loans	F	N	Υ	0	67500.000	80
	13	100017	0	Cash loans	М	Υ	N	1	225000.000	918
	14	100018	0	Cash loans	F	N	Υ	0	189000.000	773
	15	100019	0	Cash loans	М	Υ	Υ	0	157500.000	299
	16	100020	0	Cash loans	М	N	N	0	108000.000	509

	SK_ID_CURR	TARGET	NAME_CONTRACT_TYPE	CODE_GENDER	FLAG_OWN_CAR	FLAG_OWN_REALTY	CNT_CHILDREN	AMT_INCOME_TOTAL	AMT_CR
17	100021	0	Revolving loans	F	N	Υ	1	81000.000	270
18	100022	0	Revolving loans	F	N	Υ	0	112500.000	157
10	100022	0	Cook loons	г	N1	V	1	00000 000	ГЛЛ

Data Wrangling

Inspecting the data

Out[7]:		SK_ID_CURR	TARGET	CNT_CHILDREN	AMT_INCOME_TOTAL	AMT_CREDIT	AMT_ANNUITY	AMT_GOODS_PRICE	REGION_POPULATION_REI
	count	307511.000000	307511.000000	307511.000000	3.075110e+05	3.075110e+05	307499.000000	3.072330e+05	307511.
	mean	278180.518577	0.080729	0.417052	1.687979e+05	5.990260e+05	27108.573909	5.383962e+05	0.0
	std	102790.175348	0.272419	0.722121	2.371231e+05	4.024908e+05	14493.737315	3.694465e+05	0.0
	min	100002.000000	0.000000	0.000000	2.565000e+04	4.500000e+04	1615.500000	4.050000e+04	0.0
	25%	189145.500000	0.000000	0.000000	1.125000e+05	2.700000e+05	16524.000000	2.385000e+05	0.0
	50%	278202.000000	0.000000	0.000000	1.471500e+05	5.135310e+05	24903.000000	4.500000e+05	0.0
	75%	367142.500000	0.000000	1.000000	2.025000e+05	8.086500e+05	34596.000000	6.795000e+05	0.0
	max	456255.000000	1.000000	19.000000	1.170000e+08	4.050000e+06	258025.500000	4.050000e+06	0.0
4									>
T [0]	m11 .		-+- :()	m/*100/lon/sn	- 1:4				

In [8]: null_perc=credit_data.isna().sum()*100/len(credit_data)
 null_perc.sort_values(ascending=False)

.43 FIVI		
Out[8]:	COMMONAREA_MEDI	69.872297
out[o].	COMMONAREA_AVG	69.872297
	COMMONAREA_MODE	69.872297
	NONLIVINGAPARTMENTS_MODE	69.432963
	NONLIVINGAPARTMENTS_AVG	69.432963
	NONLIVINGAPARTMENTS_MEDI	69.432963
	FONDKAPREMONT_MODE	68.386172
	LIVINGAPARTMENTS_MODE	68.354953
	LIVINGAPARTMENTS_AVG	68.354953
	LIVINGAPARTMENTS_MEDI	68.354953
	FLOORSMIN_AVG	67.848630
	FLOORSMIN_MODE	67.848630
	FLOORSMIN_MEDI	67.848630
	YEARS_BUILD_MEDI	66.497784
	YEARS_BUILD_MODE	66.497784
	YEARS_BUILD_AVG	66.497784
	OWN_CAR_AGE	65.990810
	LANDAREA_MEDI	59.376738
	LANDAREA_MODE	59.376738
	LANDAREA_AVG	59.376738
	BASEMENTAREA_MEDI	58.515956
	BASEMENTAREA_AVG	58.515956
	BASEMENTAREA_MODE	58.515956
	EXT_SOURCE_1	56.381073
	NONLIVINGAREA_MODE	55.179164
	NONLIVINGAREA_AVG	55.179164
	NONLIVINGAREA_MEDI	55.179164
	ELEVATORS_MEDI	53.295980
	ELEVATORS_AVG	53.295980
	ELEVATORS_MODE	53.295980
	WALLSMATERIAL_MODE	50.840783
	APARTMENTS_MEDI	50.749729
	APARTMENTS_AVG	50.749729
	APARTMENTS_MODE	50.749729
	ENTRANCES_MEDI	50.348768
	ENTRANCES_AVG	50.348768
	ENTRANCES_MODE	50.348768
	LIVINGAREA_AVG	50.193326
	LIVINGAREA_MODE	50.193326
	LIVINGAREA_MEDI	50.193326
	HOUSETYPE_MODE	50.176091
	FLOORSMAX_MODE	49.760822
	FLOORSMAX_MEDI	49.760822
	FLOORSMAX_AVG	49.760822

YEARS_BEGINEXPLUATATION_MODE	48.781019
YEARS_BEGINEXPLUATATION_MEDI	48.781019
YEARS_BEGINEXPLUATATION_AVG	48.781019
TOTALAREA_MODE	48.268517
EMERGENCYSTATE MODE	47.398304
OCCUPATION_TYPE	31.345545
EXT_SOURCE_3	19.825307
AMT_REQ_CREDIT_BUREAU_HOUR	13.501631
AMT_REQ_CREDIT_BUREAU_DAY	13.501631
AMT_REQ_CREDIT_BUREAU_WEEK	13.501631
AMT_REQ_CREDIT_BUREAU_MON	13.501631
AMT REQ CREDIT BUREAU QRT	13.501631
AMT_REQ_CREDIT_BUREAU_YEAR	13.501631
NAME_TYPE_SUITE	0.420148
OBS_30_CNT_SOCIAL_CIRCLE	0.332021
DEF_30_CNT_SOCIAL_CIRCLE	0.332021
OBS_60_CNT_SOCIAL_CIRCLE	0.332021
DEF_60_CNT_SOCIAL_CIRCLE	0.332021
EXT_SOURCE_2	0.214626
AMT_GOODS_PRICE	0.090403
AMT_ANNUITY	0.003902
CNT_FAM_MEMBERS	0.000650
DAYS_LAST_PHONE_CHANGE	0.000325
CNT_CHILDREN	0.000000
FLAG_DOCUMENT_8	0.000000
NAME_CONTRACT_TYPE	0.000000
CODE_GENDER	0.000000
FLAG OWN CAR	0.000000
FLAG_DOCUMENT_2	0.000000
FLAG_DOCUMENT_3	0.000000
FLAG_DOCUMENT_4	0.000000
FLAG_DOCUMENT_5	0.000000
FLAG_DOCUMENT_6	0.000000
FLAG_DOCUMENT_7	0.000000
FLAG_DOCUMENT_9	0.000000
	0.000000
	0.000000
FLAG_DOCUMENT_11	0.000000
FLAG OWN REALTY	0.000000
FLAG DOCUMENT 13	0.000000
FLAG_DOCUMENT_14	0.000000
FLAG_DOCUMENT_15	0.000000
FLAG_DOCUMENT_16	0.000000
FLAG_DOCUMENT_17	0.000000
FLAG_OWN_REALTY FLAG_DOCUMENT_13 FLAG_DOCUMENT_14 FLAG_DOCUMENT_15 FLAG_DOCUMENT_16	0.000000 0.000000 0.000000 0.000000 0.000000

```
FLAG DOCUMENT 18
                                  0.000000
FLAG DOCUMENT 19
                                  0.000000
FLAG DOCUMENT 20
                                  0.000000
FLAG_DOCUMENT_12
                                  0.000000
AMT CREDIT
                                  0.000000
                                  0.000000
AMT INCOME TOTAL
FLAG PHONE
                                  0.000000
LIVE CITY NOT WORK CITY
                                  0.000000
REG CITY NOT WORK CITY
                                  0.000000
TARGET
                                  0.000000
REG CITY NOT LIVE CITY
                                  0.000000
LIVE REGION NOT WORK REGION
                                  0.000000
REG REGION NOT WORK REGION
                                  0.000000
REG REGION NOT LIVE REGION
                                  0.000000
HOUR APPR PROCESS START
                                  0.000000
WEEKDAY APPR PROCESS START
                                  0.000000
REGION RATING CLIENT W CITY
                                  0.000000
REGION RATING CLIENT
                                  0.000000
FLAG EMAIL
                                  0.000000
FLAG CONT MOBILE
                                  0.000000
ORGANIZATION_TYPE
                                  0.000000
FLAG_WORK_PHONE
                                  0.000000
FLAG EMP PHONE
                                  0.000000
FLAG MOBIL
                                  0.000000
DAYS ID PUBLISH
                                  0.000000
DAYS REGISTRATION
                                  0.000000
DAYS EMPLOYED
                                  0.000000
DAYS BIRTH
                                  0.000000
REGION POPULATION_RELATIVE
                                  0.000000
NAME HOUSING TYPE
                                  0.000000
NAME FAMILY STATUS
                                  0.000000
NAME EDUCATION TYPE
                                  0.000000
NAME INCOME TYPE
                                  0.000000
SK ID CURR
                                  0.000000
dtype: float64
```

In [9]: # filter top 60 columns with max null values
null perc.sort values(ascending=False).head(60)

Out[9]:	COMMONAREA_MEDI	69.872297
	COMMONAREA_AVG	69.872297
	COMMONAREA_MODE	69.872297
	NONLIVINGAPARTMENTS_MODE	69.432963
	NONLIVINGAPARTMENTS_AVG	69.432963
	–	69.432963
	FONDKAPREMONT_MODE	68.386172
	LIVINGAPARTMENTS_MODE	68.354953
	LIVINGAPARTMENTS_AVG	68.354953
	LIVINGAPARTMENTS_MEDI	68.354953
	FLOORSMIN_AVG	67.848630
	FLOORSMIN_MODE	67.848630
	FLOORSMIN_MEDI	67.848630
	YEARS_BUILD_MEDI	66.497784
	YEARS_BUILD_MODE	66.497784
	YEARS_BUILD_AVG	66.497784
	OWN_CAR_AGE	65.990810
	LANDAREA_MEDI	59.376738
	LANDAREA_MODE	59.376738
	LANDAREA_AVG	59.376738
	BASEMENTAREA_MEDI	58.515956
	BASEMENTAREA_AVG	58.515956
	BASEMENTAREA_MODE	58.515956
	EXT_SOURCE_1	56.381073
	NONLIVINGAREA_MODE	55.179164
	NONLIVINGAREA_AVG	55.179164
	NONLIVINGAREA_MEDI	55.179164
	ELEVATORS_MEDI	53.295980
	ELEVATORS_AVG	53.295980
	ELEVATORS_MODE	53.295980
	WALLSMATERIAL_MODE	50.840783
	APARTMENTS_MEDI	50.749729
	APARTMENTS_AVG	50.749729
	APARTMENTS_MODE	50.749729
	ENTRANCES_MEDI	50.348768
	ENTRANCES_AVG	50.348768
	ENTRANCES_MODE	50.348768
	LIVINGAREA_AVG	50.193326
	LIVINGAREA_MODE	50.193326
	LIVINGAREA_MEDI	50.193326
	HOUSETYPE_MODE	50.176091
	FLOORSMAX_MODE	49.760822
	FLOORSMAX_MEDI	49.760822
	FLOORSMAX_AVG	49.760822

```
YEARS BEGINEXPLUATATION_MODE
                                48.781019
YEARS BEGINEXPLUATATION MEDI
                                48.781019
YEARS BEGINEXPLUATATION AVG
                                48.781019
TOTALAREA MODE
                                48.268517
EMERGENCYSTATE MODE
                                47.398304
OCCUPATION TYPE
                                31.345545
EXT SOURCE 3
                                19.825307
AMT REQ CREDIT BUREAU HOUR
                                13.501631
AMT REQ CREDIT BUREAU DAY
                                13,501631
AMT REQ CREDIT BUREAU WEEK
                                13.501631
AMT REO CREDIT BUREAU MON
                                13.501631
AMT REQ CREDIT BUREAU QRT
                                13.501631
AMT REQ CREDIT BUREAU YEAR
                                13.501631
NAME TYPE SUITE
                                 0.420148
OBS 30 CNT SOCIAL CIRCLE
                                 0.332021
DEF 30 CNT SOCIAL CIRCLE
                                  0.332021
dtype: float64
```

In our case the columns which contains more than 45% null values will be discarded

Data Cleaning

Identifying and Removing null values > 45%

```
In [10]: null_cols=credit_data.isna().sum().sort_values(ascending=False)
null_cols=null_cols[null_cols.values>(.45*len(credit_data))]
no=len(null_cols)
print("There are "+ str(no) + " columns with more than 45% NULLs")
null_cols
```

There are 49 columns with more than 45% NULLs

, 12. 1 0 1 W		
Out[10]:	COMMONAREA_MEDI	214865
00.0[-0].	COMMONAREA_AVG	214865
	COMMONAREA_MODE	214865
	NONLIVINGAPARTMENTS_MODE	213514
	NONLIVINGAPARTMENTS_AVG	213514
	NONLIVINGAPARTMENTS_MEDI	213514
	FONDKAPREMONT_MODE	210295
	LIVINGAPARTMENTS_MODE	210199
	LIVINGAPARTMENTS_AVG	210199
	LIVINGAPARTMENTS_MEDI	210199
	FLOORSMIN_AVG	208642
	FLOORSMIN_MODE	208642
	FLOORSMIN_MEDI	208642
	YEARS_BUILD_MEDI	204488
	YEARS_BUILD_MODE	204488
	YEARS_BUILD_AVG	204488
	OWN_CAR_AGE	202929
	LANDAREA_MEDI	182590
	LANDAREA_MODE	182590
	LANDAREA_AVG	182590
	BASEMENTAREA_MEDI	179943
	BASEMENTAREA_AVG	179943
	BASEMENTAREA_MODE	179943
	EXT_SOURCE_1	173378
	NONLIVINGAREA_MODE	169682
	NONLIVINGAREA_AVG	169682
	NONLIVINGAREA_MEDI	169682
	ELEVATORS_MEDI	163891
	ELEVATORS_AVG	163891
	ELEVATORS_MODE	163891
	WALLSMATERIAL_MODE	156341
	APARTMENTS_MEDI	156061
	APARTMENTS_AVG	156061
	APARTMENTS_MODE	156061
	ENTRANCES_MEDI	154828
	ENTRANCES_AVG	154828
	ENTRANCES_MODE	154828
	LIVINGAREA_AVG	154350
	LIVINGAREA_MODE	154350
	LIVINGAREA_MEDI	154350
	HOUSETYPE_MODE	154297
	FLOORSMAX_MODE	153020
	FLOORSMAX_MEDI	153020
	FLOORSMAX_AVG	153020

```
YEARS_BEGINEXPLUATATION_MODE
YEARS_BEGINEXPLUATATION_MEDI
YEARS_BEGINEXPLUATATION_AVG
TOTALAREA_MODE
EMERGENCYSTATE_MODE
148431
type: int64
```

```
In [11]: # Let's visually look at the columns with NULLs>45% and there NULL counts

plt.figure(figsize=(20,4))
null_cols.plot(kind='bar', color="steelblue")
plt.title('Columns having more thn 45% nulls')
plt.show()
```

```
Columns having more thn 45% nulls
200000
150000
100000
    50000
                                                                                                                                                                                                                                                             YEARS_BUILD_MODE
                                                                                                                                                                                                                                                                           YEARS_BUILD_AVG
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     APARTMENTS_AVG
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 YEARS_BEGINEXPLUATATION_AVG
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                TOTALAREA_MODE
                                                                                                 NONLIVINGAPARTMENTS_AVG
                                                                                                               NONLIVINGAPARTMENTS_MEDI
                                                                                                                                 FONDKAPREMONT_MODE
                                                                                                                                               LIVINGAPARTMENTS_MODE
                                                                                                                                                               LIVINGAPARTMENTS_AVG
                                                                                                                                                                               JVINGAPARTMENTS MEDI
                                                                                                                                                                                             FLOORSMIN_AVG
                                                                                                                                                                                                               FLOORSMIN_MODE
                                                                                                                                                                                                                             FLOORSMIN_MEDI
                                                                                                                                                                                                                                            YEARS_BUILD_MEDI
                                                                                                                                                                                                                                                                                           OWN_CAR_AGE
                                                                                                                                                                                                                                                                                                           LANDAREA_MEDI
                                                                                                                                                                                                                                                                                                                           LANDAREA_MODE
                                                                                                                                                                                                                                                                                                                                           LANDAREA_AVG
                                                                                                                                                                                                                                                                                                                                                        BASEMENTAREA_MEDI
                                                                                                                                                                                                                                                                                                                                                                         BASEMENTAREA_AVG
                                                                                                                                                                                                                                                                                                                                                                                          BASEMENTAREA_MODE
                                                                                                                                                                                                                                                                                                                                                                                                                          NONLIVINGAREA_MODE
                                                                                                                                                                                                                                                                                                                                                                                                                                       NONLIVINGAREA_AVG
                                                                                                                                                                                                                                                                                                                                                                                                                                                        NONLIVINGAREA_MEDI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       ELEVATORS_MODE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     WALLSMATERIAL_MODE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      APARTMENTS_MEDI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     APARTMENTS_MODE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      ENTRANCES MEDI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    ENTRANCES_AVG
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    ENTRANCES_MODE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     LIVINGAREA_AVG
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    LIVINGAREA_MEDI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 HOUSETYPE_MODE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   -LOORSMAX_MODE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  FLOORSMAX_MEDI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                EMERGENCYSTATE_MODE
                                                                                                                                                                                                                                                                                                                                                                                                          EXT_SOURCE_1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                        ELEVATORS_MEDI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    LIVINGAREA_MODE
```

```
In [12]: # Removal of Null columns > 45%

def remove_null_cols(data):
    perc=0.45
    df=data.copy()
    shape_before = df.shape
    remove_cols=(df.isna().sum()/len(df))
```

```
remove cols=list(remove cols[remove cols.values>=perc].index)
             df.drop(labels=remove cols,axis=1,inplace=True)
             print("Number of Columns dropped\t: ",len(remove_cols))
             print("\n0ld dataset rows,columns",shape before,"\nNew dataset rows,columns",df.shape)
             return df
         credit data 1=remove null cols(credit data)
In [13]:
         Number of Columns dropped
                                         : 49
         Old dataset rows, columns (307511, 122)
         New dataset rows, columns (307511, 73)
         Imputing Missing Data
         The below listed columns can be categorized into a group of columns with similar significance as they all represent number of queries made to
         the Credit Bureau
         AMT_REQ_CREDIT_BUREAU_YEAR
         AMT_REQ_CREDIT_BUREAU_MON
         AMT_REQ_CREDIT_BUREAU_WEEK
         AMT_REQ_CREDIT_BUREAU_DAY
         AMT_REQ_CREDIT_BUREAU_HOUR
         AMT_REQ_CREDIT_BUREAU_QRT
In [14]: # Checking value counts for AMT_REQ_CREDIT_BUREAU_YEAR
         credit data 1.AMT REQ CREDIT BUREAU YEAR.value counts()
```

We see that there are 71k 0s

```
71801
         0.0
Out[14]:
         1.0
                 63405
         2.0
                 50192
         3.0
                 33628
         4.0
                 20714
         5.0
                 12052
         6.0
                  6967
         7.0
                  3869
         8.0
                  2127
         9.0
                  1096
         11.0
                     31
         12.0
                     30
         10.0
                     22
                     19
         13.0
         14.0
                     10
         17.0
                     7
         15.0
         19.0
         18.0
         16.0
         25.0
         23.0
         22.0
         21.0
                      1
         20.0
                     1
         Name: AMT REQ CREDIT BUREAU YEAR, dtype: int64
In [15]: credit_data_1.AMT_REQ_CREDIT_BUREAU_YEAR.value_counts(normalize=True)*100
         # so around 71K or approx 27% of the column contains 0
```

```
0.0
                  26.993669
Out[15]:
         1.0
                  23.837183
         2.0
                 18.869740
         3.0
                 12.642485
         4.0
                  7.787452
         5.0
                   4.530963
         6.0
                   2.619252
         7.0
                   1.454555
         8.0
                   0.799648
         9.0
                   0.412042
         11.0
                   0.011654
         12.0
                   0.011279
         10.0
                   0.008271
         13.0
                   0.007143
         14.0
                   0.003760
         17.0
                   0.002632
         15.0
                   0.002256
         19.0
                   0.001504
         18.0
                   0.001504
         16.0
                   0.001128
         25.0
                   0.000376
         23.0
                   0.000376
         22.0
                   0.000376
         21.0
                   0.000376
          20.0
                   0.000376
         Name: AMT REQ CREDIT BUREAU YEAR, dtype: float64
In [16]: # here used mode function to find out the most occured value in each column
         print(credit data 1.AMT REQ CREDIT BUREAU YEAR.mode())
         print(credit data 1.AMT REQ CREDIT BUREAU MON.mode())
         print(credit data 1.AMT REQ CREDIT BUREAU WEEK.mode())
         print(credit data 1.AMT REQ CREDIT BUREAU DAY.mode())
         print(credit data 1.AMT REQ CREDIT BUREAU HOUR.mode())
         print(credit data 1.AMT REQ CREDIT BUREAU QRT.mode())
```

```
0.0
         Name: AMT REQ CREDIT BUREAU YEAR, dtype: float64
         Name: AMT REQ CREDIT BUREAU MON, dtype: float64
              0.0
         Name: AMT REO CREDIT BUREAU WEEK, dtype: float64
         Name: AMT REQ CREDIT BUREAU DAY, dtype: float64
              0.0
         Name: AMT REQ CREDIT BUREAU HOUR, dtype: float64
              0.0
         Name: AMT REQ CREDIT BUREAU QRT, dtype: float64
         credit data 2=credit data 1.copy()
In [17]:
         # Imputing null with 0s
In [18]:
         impute list = ['AMT REQ CREDIT BUREAU YEAR', 'AMT REQ CREDIT BUREAU MON', 'AMT REQ CREDIT BUREAU WEEK',
                         'AMT REQ CREDIT BUREAU DAY', 'AMT REQ CREDIT BUREAU HOUR', 'AMT REQ CREDIT BUREAU QRT']
         for i in impute list:
                 credit_data_2[i] = credit_data_1[i].fillna(credit_data_1[i].mode()[0])
In [19]: # Verifying count of NULLs after imputation
         print(credit data 2['AMT REQ CREDIT BUREAU YEAR'].isnull().sum())
         print(credit data 2['AMT REQ CREDIT BUREAU MON'].isnull().sum())
         print(credit data 2['AMT REQ CREDIT BUREAU WEEK'].isnull().sum())
         print(credit data 2['AMT REQ CREDIT BUREAU DAY'].isnull().sum())
         print(credit data 2['AMT REQ CREDIT BUREAU HOUR'].isnull().sum())
         print(credit data 2['AMT REQ CREDIT BUREAU QRT'].isnull().sum())
         0
         0
```

AMT_Annuity

```
credit_data_1.AMT_ANNUITY.describe()
In [20]:
```

```
307499.000000
          count
Out[20]:
                   27108.573909
         mean
                   14493.737315
         std
         min
                     1615.500000
         25%
                    16524.000000
         50%
                    24903.000000
         75%
                    34596.000000
                   258025.500000
         max
         Name: AMT ANNUITY, dtype: float64
         plt.figure(figsize=(8,4))
In [21]:
         sns.distplot(credit data 1.AMT ANNUITY)
         plt.axvline(credit_data_1.AMT_ANNUITY.mean(),color='blue')
         plt.axvline(credit data 1.AMT ANNUITY.median(),color='green')
         plt.show()
```



```
In [22]: credit_data_1.AMT_ANNUITY.skew()
```

```
Out[22]: 1.5797773638612507
```

A skewness value greater than 1 or less than -1 indicates a highly skewed distribution. A value between 0.5 and 1 or -0.5 and -1 is moderately skewed. A value between -0.5 and 0.5 indicates that the distribution is fairly symmetrical.

Because we see a huge skewness, we will fill the missing value by median.

AMT_GOODS_PRICE

```
In [25]: plt.figure(figsize=(8,4))
    sns.distplot(credit_data_1.AMT_GOODS_PRICE)
    plt.axvline(credit_data_1.AMT_GOODS_PRICE.mean(),color='blue')
    plt.axvline(credit_data_1.AMT_GOODS_PRICE.median(),color='green')
    plt.show()
```



```
In [26]: credit_data_1.AMT_GOODS_PRICE.skew()
Out[26]: 1.3490003414747445
```

hence here also we have to impute median

Fixing Erroneous Data

As seen already with the help of describe function, we know that we need to treat -ve values in days columns.

```
# Confirming that all DAYS fields have -ve values
In [29]:
         print(credit data['DAYS BIRTH'].unique())
         print(credit data['DAYS EMPLOYED'].unique())
         print(credit data['DAYS REGISTRATION'].unique())
         print(credit data['DAYS ID PUBLISH'].unique())
         print(credit data['DAYS LAST PHONE CHANGE'].unique())
          [ -9461 -16765 -19046 ... -7951 -7857 -25061]
           -637 -1188 -225 ... -12971 -11084 -8694]
          [ -3648. -1186. -4260. ... -16396. -14558. -14798.]
         [-2120 -291 -2531 ... -6194 -5854 -6211]
         [-1134. -828. -815. ... -3988. -3899. -3538.]
In [30]: # Preparing the list of columns to be treated
         erroneous cols = [cols for cols in credit data 2 if cols.startswith('DAYS')]
         erroneous cols
         ['DAYS BIRTH',
Out[30]:
           'DAYS EMPLOYED',
           'DAYS REGISTRATION',
           'DAYS ID PUBLISH',
          'DAYS LAST PHONE CHANGE']
         # Changing the column values with Absolute values using abs function
In [31]:
         credit data 2[erroneous cols]= np.abs(credit data 2[erroneous cols])
In [32]: # Verifying absence of -ve values in data
         credit data 2.describe()
```

Out[32]:		SK_ID_CURR	TARGET	CNT_CHILDREN	$\mathbf{AMT_INCOME_TOTAL}$	AMT_CREDIT	AMT_ANNUITY	AMT_GOODS_PRICE	REGION_POPULATION_RE
	count	307511.000000	307511.000000	307511.000000	3.075110e+05	3.075110e+05	307511.000000	3.075110e+05	307511.
	mean	278180.518577	0.080729	0.417052	1.687979e+05	5.990260e+05	27108.487841	5.383163e+05	0.0
	std	102790.175348	0.272419	0.722121	2.371231e+05	4.024908e+05	14493.461065	3.692890e+05	0.0
	min	100002.000000	0.000000	0.000000	2.565000e+04	4.500000e+04	1615.500000	4.050000e+04	0.0
	25%	189145.500000	0.000000	0.000000	1.125000e+05	2.700000e+05	16524.000000	2.385000e+05	0.0
	50%	278202.000000	0.000000	0.000000	1.471500e+05	5.135310e+05	24903.000000	4.500000e+05	0.0
	75%	367142.500000	0.000000	1.000000	2.025000e+05	8.086500e+05	34596.000000	6.795000e+05	0.0
	max	456255.000000	1.000000	19.000000	1.170000e+08	4.050000e+06	258025.500000	4.050000e+06	0.0
∢									•

Replacing XNAs for CODE_GENDER

```
credit_data_2['CODE_GENDER'].value_counts()
In [33]:
                202448
Out[33]:
                105059
         Name: CODE GENDER, dtype: int64
         # Replacing XNAs with F
In [34]:
         credit_data_2.loc[credit_data_2.CODE_GENDER == 'XNA','CODE_GENDER'] = 'F'
         credit data 2.CODE GENDER.value counts()
              202452
Out[34]:
              105059
         Name: CODE_GENDER, dtype: int64
         Replacing XNAs for ORGANIZATION_TYPE
         # Checking value counts for ORGANIZATION_TYPE
In [35]:
```

credit_data_2.ORGANIZATION_TYPE.value_counts()

12.43 FIVI		
Out[35]:	Business Entity Type 3	67992
00.0[00].	XNA	55374
	Self-employed	38412
	Other	16683
	Medicine	11193
	Business Entity Type 2	10553
	Government	10404
	School	8893
	Trade: type 7	7831
	Kindergarten	6880
	Construction	6721
	Business Entity Type 1	5984
	Transport: type 4	5398
	Trade: type 3	3492
	Industry: type 9	3368
	Industry: type 3	3278
	Security	3247
	Housing	2958
	Industry: type 11	2704
	Military	2634
	Bank	2507
	Agriculture	2454
	Police	2341
	Transport: type 2	2204
	Postal	2157
	Security Ministries	1974
	Trade: type 2	1900
	Restaurant	1811
	Services	1575
	University	1327
	Industry: type 7	1307
	Transport: type 3	1187
	Industry: type 1	1039
	Hotel	966
	Electricity	950
	Industry: type 4	877 631
	Trade: type 6	631
	Industry: type 5	599 507
	Insurance Telecom	597
		577 560
	Emergency Industry: type 2	560 458
	Industry: type 2	
	Advertising	429
	Realtor	396

```
Culture
                                     379
         Industry: type 12
                                     369
         Trade: type 1
                                     348
         Mobile
                                     317
         Legal Services
                                     305
         Cleaning
                                     260
         Transport: type 1
                                     201
         Industry: type 6
                                     112
         Industry: type 10
                                     109
                                      85
         Religion
                                      67
         Industry: type 13
         Trade: type 4
                                      64
         Trade: type 5
                                      49
         Industry: type 8
                                      24
         Name: ORGANIZATION TYPE, dtype: int64
          # Replacing XNAs with Nulls
In [36]:
         credit_data_2['ORGANIZATION_TYPE'] = credit_data_1['ORGANIZATION_TYPE'].replace('XNA',np.NaN)
         # Checking value counts for credit_data_2
In [37]:
         credit_data_2.ORGANIZATION_TYPE.value_counts()
```

, 12.43 PIVI		
Out[37]:	Business Entity Type 3	67992
	Self-employed	38412
	Other	16683
	Medicine	11193
	Business Entity Type 2	10553
	Government	10404
	School	8893
	Trade: type 7	7831
	Kindergarten	6880
	Construction	6721
	Business Entity Type 1	5984
	Transport: type 4	5398
	Trade: type 3	3492
	Industry: type 9	3368
	Industry: type 3	3278
	Security	3247
	Housing	2958
	Industry: type 11	2704
	Military	2634
	Bank	2507
	Agriculture Police	2454
		2341
	Transport: type 2	2204
	Postal	2157
	Security Ministries	1974 1900
	Trade: type 2	
	Restaurant	1811
	Services	1575
	University	1327 1307
	<pre>Industry: type 7 Transport: type 3</pre>	
	Industry: type 1	1187
	Hotel	1039 966
	Electricity	950
	Industry: type 4	877
	Trade: type 6	631
	Industry: type 5	599
	Insurance	597
	Telecom	577
	Emergency	560
	Industry: type 2	458
	Advertising	429
	Realtor	396
	Culture	379
	CUILCUIE	3/3

```
Industry: type 12
                             369
Trade: type 1
                            348
Mobile
                            317
Legal Services
                            305
Cleaning
                            260
Transport: type 1
                            201
Industry: type 6
                            112
Industry: type 10
                            109
Religion
                             85
Industry: type 13
                             67
Trade: type 4
                             64
                             49
Trade: type 5
Industry: type 8
                              24
Name: ORGANIZATION TYPE, dtype: int64
```

Adding new columns by Binning Continuous Variables

```
credit data 2['AMT INCOME TOTAL'].describe()
In [38]:
         count
                  3.075110e+05
Out[38]:
                  1.687979e+05
         mean
         std
                  2.371231e+05
                  2.565000e+04
         min
         25%
                  1.125000e+05
         50%
                  1.471500e+05
         75%
                  2.025000e+05
                  1.170000e+08
         max
         Name: AMT INCOME TOTAL, dtype: float64
         # Using pd.qcut function to bin AMT INCOME TOTAL into 5 categories
In [39]:
         credit data 2['AMT INCOME RANGE'] = pd.qcut(credit data 2.AMT INCOME TOTAL,
                                                      q=[0, 0.2, 0.5, 0.8, 0.95, 1],
                                                      labels=['VERY LOW', 'LOW', "MEDIUM", 'HIGH', 'VERY HIGH'])
         credit_data_2['AMT_INCOME_RANGE'].head(7)
```

```
MEDIUM
Out[39]:
                  HIGH
              VERY_LOW
          3
                   LOW
                   LOW
         5
              VERY LOW
                MEDIUM
         Name: AMT_INCOME_RANGE, dtype: category
         Categories (5, object): ['VERY LOW' < 'LOW' < 'MEDIUM' < 'HIGH' < 'VERY HIGH']
         credit data 2['AMT INCOME RANGE'].value counts()
In [40]:
                       106633
         MEDIUM
Out[40]:
          LOW
                        90089
         VERY LOW
                        63671
         HIGH
                        33083
                        14035
         VERY HIGH
         Name: AMT INCOME RANGE, dtype: int64
         Binning AMT_CREDIT
         # Using pd.gcut function to bin AMT CREDIT RANGE into 5 categories
In [41]:
         credit_data_2['AMT_CREDIT_RANGE'] = pd.qcut(credit_data_2.AMT_CREDIT, q=[0, 0.2, 0.5, 0.8, 0.95, 1],
                                                      labels=['VERY LOW', 'LOW', "MEDIUM", 'HIGH', 'VERY HIGH'])
          credit data 2['AMT CREDIT RANGE'].head(7)
                    LOW
Out[41]:
                    HIGH
               VERY LOW
          3
                     LOW
                     LOW
          5
                     LOW
              VERY HIGH
         Name: AMT_CREDIT_RANGE, dtype: category
         Categories (5, object): ['VERY LOW' < 'LOW' < 'MEDIUM' < 'HIGH' < 'VERY HIGH']
         credit data 2['AMT CREDIT RANGE'].value counts()
In [42]:
```

MEDIUM

94750

```
Out[42]:
                       88924
          LOW
          VERY LOW
                       64925
          HIGH
                       44878
                       14034
          VERY HIGH
         Name: AMT CREDIT_RANGE, dtype: int64
          Binning DAYS_BIRTH
In [43]:
          credit data 2['DAYS BIRTH']= (credit data 2['DAYS BIRTH']/365).astype(int)
          credit data 2['DAYS BIRTH'].unique()
         array([25, 45, 52, 54, 46, 37, 51, 55, 39, 27, 36, 38, 23, 35, 26, 48, 31,
Out[43]:
                 50, 40, 30, 68, 43, 28, 41, 32, 33, 47, 57, 65, 44, 64, 21, 59, 49,
                 56, 62, 53, 42, 29, 67, 63, 61, 58, 60, 34, 22, 24, 66, 69, 20]
In [44]: # Using pd.acut function to bin DAYS BIRTH into 5 categories
          credit data 2['DAYS BIRTH BINS']=pd.cut(credit data 2['DAYS BIRTH'],
                                                 bins=[19,25,35,60,100],
                                                 labels=['Very Young', 'Young', 'Middle Age', 'Senior Citizen'])
         credit data 2.head()
In [45]:
Out[45]:
            SK_ID_CURR TARGET NAME_CONTRACT_TYPE CODE_GENDER FLAG_OWN_CAR FLAG_OWN_REALTY CNT_CHILDREN AMT_INCOME_TOTAL AMT_CRE
                                                                                                                0
          0
                 100002
                                            Cash loans
                                                                М
                                                                               Ν
                             1
                                                                                                                             202500.0
                                                                                                                                          40659
                 100003
                                            Cash loans
                                                                 F
                                                                               Ν
                                                                                                  Ν
                                                                                                                0
                                                                                                                              270000.0
                                                                                                                                         129350
          2
                             0
                                                                Μ
                                                                                Υ
                                                                                                  Υ
                                                                                                                0
                 100004
                                        Revolving loans
                                                                                                                              67500.0
                                                                                                                                          1350
                                                                               Ν
                                                                                                                0
          3
                 100006
                             0
                                            Cash loans
                                                                 F
                                                                                                                             135000.0
                                                                                                                                          3126
                                                                                                  Υ
                                                                                                                0
                                            Cash loans
                                                                Μ
                                                                               Ν
                 100007
                             0
                                                                                                                             121500.0
                                                                                                                                          51300
                                                                                                                                            •
          # Checking value counts for DAYS BIRTH BINS
```

```
Out[46]:

Middle_Age 185900
Young 75925
Senior_Citizen 29368
Very_Young 16318
Name: DAYS_BIRTH_BINS, dtype: int64
```

Splitting data based on TARGET

```
In [47]: credit data 2.TARGET.value counts()
              282686
Out[47]:
               24825
         Name: TARGET, dtype: int64
         # Splitting data as per TARGET into deafulter and non-defaulter datasets
In [48]:
         defaulter = credit data 2[credit data 2.TARGET==1]
         non defaulter = credit data 2[credit data 2.TARGET==0]
         print(" Defaulter data shape - " + str(defaulter.shape) )
In [49]:
         print(" Non-Defaulter data shape - " + str(non defaulter.shape) )
          Defaulter data shape - (24825, 76)
          Non-Defaulter data shape - (282686, 76)
In [50]: # Checking % of data split as per TARGET
         print(" Defaulter data % - " + str(round(len(defaulter)*100/len(credit data 2),2) ))
         print(" Non-Defaulter data % - " + str(round(len(non defaulter)*100/len(credit data 2),2) ))
          Defaulter data % - 8.07
          Non-Defaulter data % - 91.93
```

Univariate Analysis

```
In [51]: credit_data_2["OCCUPATION_TYPE"].value_counts()
```

```
Laborers
                                   55186
Out[51]:
         Sales staff
                                   32102
         Core staff
                                   27570
         Managers
                                   21371
         Drivers
                                  18603
         High skill tech staff
                                  11380
         Accountants
                                   9813
         Medicine staff
                                   8537
         Security staff
                                   6721
         Cooking staff
                                   5946
         Cleaning staff
                                   4653
         Private service staff
                                   2652
         Low-skill Laborers
                                   2093
         Waiters/barmen staff
                                   1348
         Secretaries
                                   1305
         Realty agents
                                    751
         HR staff
                                     563
         IT staff
                                     526
         Name: OCCUPATION TYPE, dtype: int64
In [52]: # Distribution of 'OCCUPATION TYPE'
         temp = credit data 2["OCCUPATION TYPE"].value counts()
         sns.barplot(y=temp.index, x = temp.values, color = 'maroon')
         plt.xticks(size = 10)
         plt.yticks( size = 10)
         plt.title('Loan Applications by Occupation Type', size=12,color = 'maroon')
         plt.show()
```

Loan Applications by Occupation Type

We can infer that most of the applications come for Labourers, Sales Staff and Core Staff.

```
In [53]: # Distribution of 'Organization Type'

plt.figure(figsize=(20,4))
  temp = credit_data_2["ORGANIZATION_TYPE"].value_counts()
  sns.barplot(x=temp.index, y = temp.values, color = 'maroon')
  plt.xticks(rotation=90, size = 14)
  plt.yticks( size = 14)
  plt.title('Loan Applications by Organization Type', size=18,color = 'maroon')
  plt.show()
```

Loan Applications by Organization Type

It is observed that majority of the applicants belong to Business Entity Type 3 and Self Employed.

Comparison of Gender Applicants Distribution among Defaulters and Non-Defaulters

```
colors = sns.color palette('tab10')[0:5]
In [54]:
         fig, ax=plt.subplots(nrows =1,ncols=2,figsize=(20,12))
         data1=non defaulter['CODE GENDER'].value counts()
         ax[0].pie(data1.values, labels=data1.index.to list(), colors = colors, autopct='%0.1f%',textprops={'fontsize': 14})
         ax[0].set title('Applicants by CODE GENDER', size=18,color = '#291038')
         ax[0].legend()
         data2=defaulter['CODE GENDER'].value counts()
         ax[1].pie(data2.values, labels=data2.index.to list(), colors = colors, autopct='%0.1f%',textprops={'fontsize': 14})
         ax[1].set title('Defaulters by CODE GENDER', size=18,color = '#291038')
         ax[1].legend()
         plt.show()
```


Insights -

- There is majority of Female loan applicants.
- More Men deafult loans as compared to Women, since the % split has increased further for Men in case of Defaulter distribution.

```
In [55]: # Function for univariate comparison

def univariate_comparison(col,hue=None):
    colors = sns.color_palette('tab10')[0:5]

    fig, ax=plt.subplots(nrows =1,ncols=2,figsize=(25,18))

    data1=non_defaulter[col].value_counts()
    ax[0].pie(data1.values, labels=data1.index.to_list(), colors = colors, autopct='%0.1f%%',textprops={'fontsize': 14})
```

```
ax[0].set_title('Applicants by '+col, size=18,color = '#291038')
ax[0].legend()

data2=defaulter[col].value_counts()
ax[1].pie(data2.values, labels=data2.index.to_list(), colors = colors, autopct='%0.1f%%',textprops={'fontsize': 14})
ax[1].set_title('Defaulters by '+col, size=18,color = '#291038')
ax[1].legend()

plt.show()
```

Comparison of Income Type Distribution among Defaulters and Non Defaulters

Insights -

- Almost half of the Loan applications come from Working professionals.
- Working professionals contribute more than expected to loan defaults. The % split has increased from 51% to 61%

Comparison of Family Status Distribution among Defaulters and Non Defaulters

65 % of the Loan applicants are married.

Single / not married

Family Status doesn't play a significant role in determining whether there will be a loan defaulter.

Comparison of Education Type Distribution among Defaulters and Non Defaulters

In [58]: univariate_comparison('NAME_EDUCATION_TYPE')

Insights-

- More than 2/3rds of Loan applicants have highest education as Secondary.
- Secondary Education class contribute majorly (more than expected too) for loan defaults.
- There is a considerable decrease in % split for loan defaults by people with higher education. (from 25% to 16%)

Comparison of Housing Type Distribution among Defaulters and Non Defaulters

In [59]: univariate_comparison('NAME_HOUSING_TYPE')

Almost 90% of Loan applicants have their own home.

Housing type doesn't play a significant role in determining whether there will be a loan defaulter.

Comparison of Income Range Distribution among Defaulters and Non Defaulters

In [60]: univariate_comparison('AMT_INCOME_RANGE')

Insights-

• Here also, the % split is more or less unchanged for Defaulters. It suggests that Income doesn't play a significant role in loan defaults. Although, further drilldown analysis (later done in this notebook) would tell us a different story.

Comparison of Age Distribution among Defaulters and Non Defaulters

In [61]: univariate_comparison('DAYS_BIRTH_BINS')

Insights -

- There is a significant shift in % split for Middle Age and Young applicants.
- Middle Aged applicants are contributing lesser to loan defaults
- Young applicants are more expected to default on a loan since there is a change in % split from 24% to 32%

Comparison of Loan Type Distribution among Defaulters and Non Defaulters

In [62]: univariate_comparison('NAME_CONTRACT_TYPE')

Insights-

• Cash loans are slightly more likely to be defaulted than revolving loans.

Comparison of Accompany Type Distribution among Defaulters and Non Defaulters

In [63]: univariate_comparison('NAME_TYPE_SUITE')

Insights-

- Majority of loans are applied by single occupants
- This parameter doesn't have any impact on loan defaults as the % split is unchanged in both cases.

Univariate Analysis of Quantitative Variables

```
In [118... # Defining function for Univariate Analysis of Quantitative Variables

def univariate_comparison_quant(col,hue=None):
    fig, axes=plt.subplots(nrows =2,ncols=2,figsize=(20,12))
    axes[0,0].set_title("Displot (Non-Defaulter) for " + col )
    sns.distplot(non_defaulter[~non_defaulter[col].isna()][col],ax=axes[0,0], color="#4CB391")
```

```
axes[0,1].set title("Displot (Defaulter) for " + col )
              sns.distplot(defaulter[~defaulter[col].isna()][col],ax=axes[0,1], color="#4CB391")
              axes[1,0].set title("Boxplot (Non-Defaulter) for " + col )
               sns.boxplot(x=non defaulter[~non defaulter[col].isna()][col],ax=axes[1,0], color="#4CB391")
               axes[1,1].set title("Boxplot (Defaulter) for " + col )
               sns.boxplot(x=defaulter[~defaulter[col].isna()][col],ax=axes[1,1], orient='h',color="#4CB391")
               plt.show()
In [119...
          defaulter['AMT ANNUITY']
                     24700.5
Out[119]:
          26
                     27076.5
                     35028.0
          40
          42
                    16258.5
          81
                    14593.5
                     . . .
          307448
                     32746.5
          307475
                     46809.0
                    19975.5
          307481
          307489
                     23089.5
          307509
                     20205.0
          Name: AMT ANNUITY, Length: 24825, dtype: float64
In [66]: # Univariate Analysis for Annuity Amount
```

univariate comparison quant('AMT ANNUITY')

Insights -

- Applicants with lower Annuity Amount are slightly more likely to default on a loan.
- Majority of Loan applicants come from 1st quartile of Annuity data (Low salary people)

In [67]: # Univariate Analysis for Loan Amount

Insights-

0.0

• We can infer that Loan Amount doesn't correlate with Loan defaults since the Loan Amount has the exact quartile boundaries in two cases.

4.0

0.5

2.0

In [68]: # Univariate Analysis for Goods Price Amount

1.0

0.5

3.5

4.0

Insights-

• The distribution are almost unchanged for Defaulters and Non Defaulters, hence we can say that Goods Price doesn't impact the chance of a loan default.

Bivariate & Multivariate Analysis

```
In [97]: # Function for Multivariate analysis

def multivariate(col1,col2,col3=None):
    fig, axes=plt.subplots(nrows =1,ncols=2,figsize=(20,12))
        axes[0].set_title('Loan Amount by ' + col2 + ' & ' + col3 + ' (Non-Defaulter)', size=15,color = 'blue')
        sns.boxplot(data=non_defaulter,x=col1, y=col2,palette = 'rainbow', hue= col3,ax=axes[0])
        axes[1].set_title('Loan Amount by ' + col2 + ' & ' + col3 + ' (Defaulter)', size=15,color = 'blue')
        sns.boxplot(data=defaulter,x=col1, y=col2,palette = 'rainbow', hue= col3,ax=axes[1])

In [98]: # Analysis of AMT_INCOME_RANGE, AMT_CREDIT & NAME_FAMILY_STATUS

multivariate('AMT_INCOME_RANGE', 'AMT_CREDIT', 'NAME_FAMILY_STATUS')
```


Insights-

- With increase in Income range, the loan amount increases proportionally.
- On family status axis, we observe that Married applicants have higher loan amount than others.

In [99]: # Analysis of NAME_EDUCATION_TYPE, AMT_CREDIT & NAME_FAMILY_STATUS
multivariate('NAME_EDUCATION_TYPE','AMT_CREDIT','NAME_FAMILY_STATUS')

Insights-

- Higher the education, lesser is the likelihood of a loan default
- Among different family status, married ones have the highest likelihood of loan default

Drilldown Analysis

Here we'll look for % defaulters within different classes in a particular variable.

```
In [115...
          credit data 2.head()
Out[115]:
             SK ID CURR TARGET NAME CONTRACT TYPE CODE GENDER FLAG OWN CAR FLAG OWN REALTY CNT CHILDREN AMT INCOME TOTAL AMT CRE
           0
                  100002
                                                                                 Ν
                                                                                                                  0
                                             Cash loans
                                                                  М
                                                                                                                               202500.0
                                                                                                                                            4065
                  100003
                               0
                                             Cash loans
                                                                  F
                                                                                 Ν
                                                                                                   Ν
                                                                                                                  0
                                                                                                                               270000.0
                                                                                                                                           12935
                                                                                                                  0
           2
                  100004
                              0
                                         Revolving loans
                                                                  М
                                                                                 Υ
                                                                                                   Υ
                                                                                                                                67500.0
                                                                                                                                            1350
                                                                                                                  0
           3
                               0
                                                                  F
                                                                                 Ν
                  100006
                                             Cash loans
                                                                                                                               135000.0
                                                                                                                                            3126
                                                                                                                  0
           4
                  100007
                               0
                                             Cash loans
                                                                  М
                                                                                 Ν
                                                                                                   Υ
                                                                                                                               121500.0
                                                                                                                                            5130
           # Defining function for drilldown analysis
In [109...
          def perc defaulters(col):
               fig, axes=plt.subplots(nrows =1,ncols=2,figsize=(20,10))
               total = credit data 2[[col, 'TARGET']].groupby(col).count()
               defaulter 1 = defaulter[[col, 'TARGET']].groupby(col).count()
               perc = defaulter 1*100/total
               axes[0].set title("Application Counts by "+ col )
               sns.barplot(x=total.index,y=total.TARGET,color='grey',order=total.sort_values('TARGET',ascending=False).index,ax=axes[0])
               axes[0].set_xticklabels(total.sort_values('TARGET',ascending=False).index,rotation=60, ha='right')
               axes[1].set_title("Defaulter % by " + col )
```

```
sns.barplot(x=perc.index,y=perc.TARGET,color='#ff597d',order=perc.sort_values('TARGET',ascending=False).index,ax=axes[1])
axes[1].set_xticklabels(perc.sort_values('TARGET',ascending=False).index,rotation=60, ha='right')
plt.show()
```

In [110...

Drilldown analysis of AMT_INCOME_RANGE
perc_defaulters('AMT_INCOME_RANGE')

Insights-

- Median income range professionals have maximum applications in the data
- Low Income range have maximum % of loan defaults
- As the Income range increases, loan default probability decreases

In [111...

Drilldown analysis of NAME_INCOME_TYPE

perc_defaulters('NAME_INCOME_TYPE')

Insights-

- Applicants on Maternity leave have a whopping 40% loan default rate
- The second to the list are Unemployed applicants with 35% loan defaults

In [116...

Drilldown analysis of NAME_CONTRACT_TYPE

perc_defaulters('NAME_CONTRACT_TYPE')

Insights-

• Majority of the loans are cash loans. Cash loans also have almost double probability of a loan default than revolving loans.

In [117... # Drilldown analysis of NAME_EDUCATION_TYPE

perc_defaulters('NAME_EDUCATION_TYPE')

Insights-

- Higher the education of an applicant, lesser the chance of loan default
- Lower secondary applicants have a concerning 11% loan default rate, but the count of applicants is low
- The major concern is of Secondary education applicants. They have highest applicants and a significant 9% loan default rate as well.

In [120...

Drilldown analysis of OCCUPATION_TYPE

perc_defaulters('OCCUPATION_TYPE')

Insights-

- Low skill labourers have an alarming 17% loan default rate. The positive here is that they don't have a high applicant count.
- Labourers & Sales staff will be a major area of concern here, with maximum applicants and a significant loan default rate as well.

• Drivers also have an alarming combination of counts and default %.

Pivot table of all loan default %

Out[122]:		NAME_EDUCATION_TYPE	Academic degree	Higher education	Incomplete higher	Lower secondary	Secondary / secondary special
	CODE_GENDER	AMT_INCOME_RANGE					
	F	VERY_LOW	0.000000	5.606793	8.639863	8.019324	7.677801
		LOW	0.000000	4.902183	8.007537	11.388889	7.952316
		MEDIUM	0.000000	5.025389	7.843137	9.698276	7.569169
		HIGH	10.526316	4.151552	7.431341	3.896104	7.073552
		VERY_HIGH	7.692308	3.728906	8.225108	6.666667	6.593002
	М	VERY_LOW	0.000000	8.041061	12.396694	12.500000	11.806626
		LOW	0.000000	7.330468	9.777778	14.285714	12.369265
		MEDIUM	0.000000	7.008598	9.513024	15.051546	11.346642
		HIGH	0.000000	5.591114	7.462687	8.163265	9.348442
		VERY_HIGH	0.000000	4.407996	7.758621	6.451613	8.993853

Insights -

Categories with more than 9% default rate -

- Females, High Income, Academic degree
- Male, Very Low income , Incomplete higher
- Male, Low Income , Incomplete higher
- Male, Medium Income , Incomplete higher
- Female, Low Income, Lower Secondary

- Female, Medium Income, Lower Secondary
- Male, Very Low Income, Lower Secondary
- Male, Low Income, Lower Secondary
- Male, Medium Income, Lower Secondary
- Male, {ALL INCOME RANGES}, Secondary

Final Insights

Following are the driving factors for a loan default -

- Lower the highest education of an applicant, higher the chance of loan default. This is one of the core driving factor in loan defaults.
- Labourers & Sales staff are major area of concern, with maximum applicants and a significant loan default rate. Drivers also have an alarming combination of counts and default %.
- Applicants on Maternity leave have a whopping 40% loan default rate. Unemployed applicants also have 35% loan defaults
- Low Income range have maximum % of loan defaults. As the Income range increases, loan default probability decreases
- Among different family status, married ones have the highest likelihood of loan default
- Applicants with lower Annuity Amount are slightly more likely to default on a loan.
- Young applicants are more expected to default on a loan.
- More Men default loans as compared to Women