Тренировочная работа по МАТЕМАТИКЕ

11 класс

20 декабря 2016 года Вариант МА10209 (профильный уровень)

Выполнена: ФИО	 класс	

Инструкция по выполнению работы

На выполнение работы по математике отводится 3 часа 55 минут (235 минут). Работа состоит из двух частей, включающих в себя 19 заданий.

Часть 1 содержит 8 заданий базового уровня сложности с кратким ответом. Часть 2 содержит 4 задания повышенного уровня сложности с кратким ответом и 7 заданий повышенного и высокого уровней сложности с развёрнутым ответом.

Ответы к заданиям 1–12 записываются в виде целого числа или конечной десятичной дроби.

При выполнении заданий 13–19 требуется записать полное решение на отдельном листе бумаги.

При выполнении заданий можно пользоваться черновиком. Записи в черновике не учитываются при оценивании работы.

Баллы, полученные Вами за выполненные задания, суммируются.

Постарайтесь выполнить как можно больше заданий и набрать наибольшее количество баллов.

Желаем успеха!

Математика. 11 класс. Вариант МА10209 (Запад, профильный уровень)

Часть 1

Ответом к каждому заданию является конечная десятичная дробь, целое число или последовательность цифр. Запишите ответы к заданиям в поле ответа в тексте работы.

Флакон шампуня стоит 140 рублей. Какое наибольшее количество флаконов можно купить на 900 рублей во время распродажи, когда скидка составляет 35 %?

Ответ: . .

На рисунке жирными точками показана цена нефти на момент закрытия биржевых торгов во все рабочие дни с 4 по 19 апреля 2002 года. По горизонтали указываются числа месяца, по вертикали цена барреля нефти в долларах США. Для наглядности жирные точки на рисунке соединены линией. Определите по рисунку наибольшую цену нефти на момент закрытия торгов в указанный период (в долларах США за баррель).

Этвет:	

Найдите площадь трапеции, изображённой на клетчатой бумаге с размером клетки $1 \text{ см} \times 1 \text{ см}$ (см. рис.). Ответ дайте в квадратных сантиметрах.

Ответ:

© СтатГрад 2016–2017 уч. г.

В группе туристов 32 человека. Их вертолётом в несколько приёмов забрасывают в труднодоступный район по 4 человека за рейс. Порядок, в котором вертолёт перевозит туристов, случаен. Найдите вероятность того, что турист К. полетит пятым рейсом вертолёта.

Ответ: _____

Найдите корень уравнения $\sqrt{\frac{2}{2x-54}} = \frac{1}{3}$.

Ответ: ______.

6 Сторона *AB* треугольника *ABC* равна 37. Противолежащий ей угол *C* равен 150°. Найдите радиус окружности, описанной около этого треугольника.

Ответ: _____

На рисунке изображён график функции y = f'(x) — производной функции f(x). На оси абсцисс отмечены девять точек: x_1 , x_2 , x_3 , x_4 , x_5 , x_6 , x_7 , x_8 , x_9 . Сколько из этих точек лежит на промежутках возрастания функции f(x)?

Ответ: _____

В правильной четырёхугольной пирамиде SABCD точка O — центр основания, S — вершина, SO = 24 , SD = 26 . Найдите длину отрезка AC .

Ответ: ______.

Часть	1
часть	4

 $\frac{9}{16^{4,05}}$. Найдите значение выражения $\frac{8^{6,4}}{16^{4,05}}$.

Ответ: _____

Высота над землёй подброшенного вверх мяча меняется по закону $h(t) = 1.8 + 10t - 5t^2$, где h — высота в метрах, t — время в секундах, прошедшее с момента броска. Какое время мяч будет находиться на высоте не менее 5 метров? Ответ дайте в секундах.

Ответ:

От пристани A к пристани B, расстояние между которыми равно 154 км, отправился с постоянной скоростью первый теплоход, а через 3 часа после этого следом за ним со скоростью на 3 км/ч большей, отправился второй. Найдите скорость первого теплохода, если в пункт B оба теплохода прибыли одновременно. Ответ дайте в км/ч.

Ответ: _____

12 Найдите наибольшее значение функции $y = (x-2)^2(x-4)+5$ на отрезке [1;3].

Ответ: _____

Для записи решений и ответов на задания 13–19 используйте отдельный лист. Запишите сначала номер выполняемого задания (13, 14 и т. д.), а затем полное обоснованное решение и ответ. Ответы записывайте чётко и разборчиво.

- а) Решите уравнение $\frac{2\cos^2 x \sqrt{3}\cos x}{\log_4(\sin x)} = 0.$
 - б) Найдите все корни этого уравнения, принадлежащие отрезку $\left[-3\pi; -\frac{3}{2}\pi \right]$.

- **14** Дана правильная треугольная призма $ABCA_1B_1C_1$, у которой сторона основания равна 2, а боковое ребро равно 3. Через точки A, C_1 и середину T ребра A_1B_1 проведена плоскость.
 - а) Докажите, что сечение призмы указанной плоскостью является прямо-угольным треугольником.
 - б) Найдите угол между плоскостью сечения и плоскостью АВС.
- Решите неравенство $\frac{3^{2x} 54 \cdot \left(\frac{1}{3}\right)^{2(x+1)} 1}{x+3} \le 0.$
- Дан треугольник ABC. Серединный перпендикуляр к стороне AB пересекается с биссектрисой угла BAC в точке K, лежащей на стороне BC.
 - а) Докажите, что $AC^2 = BC \cdot CK$.
 - б) Найдите радиус окружности, вписанной в треугольник AKB, если $\cos B = \frac{2}{3}, \ AC = 36$, а площадь треугольника AKC равна $126\sqrt{5}$.
- По бизнес-плану предполагается вложить в четырёхлетний проект целое число миллионов рублей. По итогам каждого года планируется прирост средств вкладчика на 20 % по сравнению с началом года. Начисленные проценты остаются вложенными в проект. Кроме этого, сразу после начислений процентов нужны дополнительные вложения: по 20 миллионов рублей в первый и второй годы, а также по 10 миллионов в третий и четвёртый годы. Найдите наименьший размер первоначальных вложений, при котором они за два года станут больше 100 миллионов, а за четыре года станут больше 170 миллионов рублей.
- **18** Найдите все значения параметра *a*, при каждом из которых система

$$\begin{cases} \left((x-5)^2 + (y-3)^2 - 9 \right) \left((x-2)^2 + (y+1)^2 \right) \le 0, \\ y = ax + a + 3 \end{cases}$$

не имеет решений.

19 Возрастающие арифметические прогрессии $a_1, a_2, ..., a_n, ...$ и $b_1, b_2, ..., b_n, ...$ состоят из натуральных чисел.

Математика. 11 класс. Вариант МА10209 (Запад, профильный уровень)

- а) Существуют ли такие прогрессии, для которых $\frac{a_1}{b_1}$, $\frac{a_2}{b_2}$ и $\frac{a_4}{b_4}$ различные натуральные числа?
- б) Существуют ли такие прогрессии, для которых $\frac{a_1}{b_1}$, $\frac{b_2}{a_2}$ и $\frac{a_4}{b_4}$ различные натуральные числа?
- в) Какое наименьшее значение может принимать дробь $\frac{a_2}{b_2}$, если известно, что $\frac{a_1}{b_1}$, $\frac{a_2}{b_2}$ и $\frac{a_{10}}{b_{10}}$ различные натуральные числа?

Ответы на тренировочные варианты 10209-10212 (профильный уровень) от 20.12.2016

	1	2	3	4	5	6	7	8	9	10	11	12
10209	9	26,5	21	0,125	36	37	3	20	8	1,2	11	5
10210	7	24	26	0,1	137	42	5	72	49	1,6	12	-1
10211	190	4	8	0,4	10	64,5	5	70	6	0,75	9	- 7
10212	105	315	3	0,45	-0,75	31,5	7	155	2	2,6	10	- 6

Критерии оценивания заданий с развёрнутым ответом

- a) Решите уравнение $\frac{2\cos^2 x \sqrt{3}\cos x}{\log_4(\sin x)} = 0.$
- б) Найдите все корни этого уравнения, принадлежащие отрезку $\left| -3\pi; -\frac{3}{2}\pi \right|$.

Решение.

Перейдём к системе
$$\begin{cases} 2\cos^2 x - \sqrt{3}\cos x = 0; \\ \sin x \neq 1; \\ \sin x > 0. \end{cases}$$

Решаем уравнение системы $2\cos x \left(\cos x - \frac{\sqrt{3}}{2}\right) = 0$.

Получаем
$$\cos x = 0;$$
$$\cos x - \frac{\sqrt{3}}{2} = 0.$$

C учётом всех ограничений $x = \frac{\pi}{6} + 2\pi n, \ n \in \mathbb{Z}.$

б) С помощью числовой окружности отберём корни, принадлежащие отрезку $\left| -3\pi; -\frac{3}{2}\pi \right|$.

Получим число
$$-\frac{11\pi}{6}$$
.

Отбор корней может быть обоснован и любым другим способом: с помощью графика, решения двойных неравенств и т. п.

Ответ: a)
$$\frac{\pi}{6} + 2\pi n, n \in \mathbb{Z}$$
; б) $-\frac{11\pi}{6}$

Ответ : a) $\frac{\pi}{6} + 2\pi n, n \in \mathbb{Z}$; б) $-\frac{11\pi}{6}$.	
Содержание критерия	Баллы
Обоснованно получены верные ответы в обоих пунктах	2
Обоснованно получен верный ответ в пункте a или в пункте δ .	1
ИЛИ	
Получен неверный ответ из-за вычислительной ошибки, но при этом	
имеется верная последовательность всех шагов решения	
Решение не соответствует ни одному из критериев, перечисленных	0
выше	

Максимальный балл

Математика. 11 класс. Вариант МА10209 (Запад, профильный уровень)

- 14 Дана правильная треугольная призма $ABCA_1B_1C_1$, у которой сторона основания равна 2, а боковое ребро равно 3. Через точки A, C_1 и середину Tребра A_1B_1 проведена плоскость.
 - а) Докажите, что сечение призмы указанной плоскостью является прямоугольным треугольником.
 - б) Найдите угол между плоскостью сечения и плоскостью ABC .

Решение.

а) Прямая C_1T перпендикулярна A_1B_1 , поскольку C_1T — медиана равностороннего треугольника $A_1B_1C_1$. Кроме того, прямая C_1T перпендикулярна AA_1 , поскольку AA_1 перпендикулярна плоскости основания $A_1B_1C_1$. Значит, прямая C_1T перпендикулярна плоскости AA_1B_1 , и потому C_1T перпендикулярна AT.

Следовательно, треугольник AC_1T прямоуголь-

б) Так как прямая C_1T перпендикулярна прямым A_1T и AT, угол A_1TA искомый. Имеем $\operatorname{tg} \angle A_1 T A = \frac{AA_1}{A_1 T} = \frac{3}{1} = 3.$

Ответ: б) arctg 3.

Содержание критерия			
Имеется верное доказательство утверждения пункта а, и	2		
обоснованно получен верный ответ в пункте δ			
Верно доказан пункт а.	1		
ИЛИ			
Верно решён пункт δ при отсутствии обоснований в пункте a			
Решение не соответствует ни одному из критериев, перечис-	0		
ленных выше			
Максимальный балл	2		

4

15

Решите неравенство
$$\frac{3^{2x} - 54 \cdot \left(\frac{1}{3}\right)^{2(x+1)} - 1}{x+3} \le 0.$$

Решение.

Имеем

$$\frac{3^{2x} - 54 \cdot \left(\frac{1}{3}\right)^{2(x+1)} - 1}{x+3} \le 0;$$

$$\frac{9^{x} - \frac{6}{9^{x}} - 1}{x+3} \le 0;$$

$$\frac{9^{2x} - 9^{x} - 6}{(x+3)} \le 0;$$

$$\frac{9^{x} - 3}{x+3} \le 0.$$

Решая неравенство, находим $x \in (-3,0,5]$.

Ответ: (-3;0,5].

Содержание критерия	Баллы
Обоснованно получен верный ответ	2
Решение содержит вычислительную ошибку, возможно, приведшую	1
к неверному ответу, но при этом имеется верная последовательность	
всех шагов решения	
Решение не соответствует ни одному из критериев, перечисленных	0
выше	
Максимальный балл	2

16 Дан треугольник ABC. Серединный перпендикуляр к стороне AB пересекается с биссектрисой угла BAC в точке K, лежащей на стороне BC.

а) Докажите, что $AC^2 = BC \cdot CK$.

б) Найдите радиус окружности, вписанной в треугольник AKB, если $\cos B = \frac{2}{3}, \ AC = 36$, а площадь треугольника AKC равна $126\sqrt{5}$.

Решение.

3

а) Точка K лежит на серединном перпендикуляре к отрезку AB, значит, $\Delta AKH = \Delta BKH$ и $\angle ABC = \angle BAK = \angle CAK$. Треугольники ABC и KAC подобны по двум углам, поэтому $\frac{AC}{BC} = \frac{CK}{AC}$.

Следовательно, $AC^2 = BC \cdot CK$.

б) Пусть $\angle KAB = \angle KBA = \beta$. Тогда

$$\sin \beta = \sqrt{1 - \cos^2 \beta} = \sqrt{1 - \frac{4}{9}} = \frac{\sqrt{5}}{3},$$

$$S_{ACK} = \frac{1}{2}AC \cdot AK \cdot \sin\beta,$$

или

$$126\sqrt{5} = \frac{1}{2} \cdot 36 \cdot AK \cdot \frac{\sqrt{5}}{3},$$

откуда AK = 21. Далее

$$\cos \beta = \frac{AB}{2AK}$$
, $AB = 2AK\cos \beta = 2 \cdot 21 \cdot \frac{2}{3}$,

откуда AB = 28. Тогда

$$S_{ABK} = \frac{1}{2}AB \cdot AK \cdot \sin \beta = \frac{1}{2}28 \cdot 21 \cdot \frac{\sqrt{5}}{3} = 98\sqrt{5}$$
.

Пусть r — радиус окружности, вписанной в треугольник AKB. Тогда

$$r = \frac{2S_{AKB}}{AK + KB + AB} = \frac{2 \cdot 98\sqrt{5}}{21 + 21 + 28} = \frac{14\sqrt{5}}{5}.$$

Ответ:
$$\frac{14\sqrt{5}}{5}$$
.

Содержание критерия	Баллы
Имеется верное доказательство утверждения пункта а, и обосно-	3
ванно получен верный ответ в пункте δ	
Получен обоснованный ответ в пункте δ .	2
ИЛИ	
Имеется верное доказательство утверждения пункта а, и при	
обоснованном решении пункта δ получен неверный ответ из-за	
арифметической ошибки	
Имеется верное доказательство утверждения пункта а.	1
ИЛИ	
При обоснованном решении пункта δ получен неверный ответ из-за	
вычислительной ошибки.	
ИЛИ	
Обоснованно получен верный ответ в пункте δ с использованием	
утверждения пункта a , при этом пункт a не выполнен	
Решение не соответствует ни одному из критериев, перечисленных	0
выше	
Максимальный балл	3

По бизнес-плану предполагается вложить в четырёхлетний проект целое число миллионов рублей. По итогам каждого года планируется прирост средств вкладчика на 20 % по сравнению с началом года. Начисленные проценты остаются вложенными в проект. Кроме этого, сразу после начислений процентов нужны дополнительные вложения: по 20 миллионов рублей в первый и второй годы, а также по 10 миллионов в третий и четвёртый годы. Найдите наименьший размер первоначальных вложений, при котором они за два года станут больше 100 миллионов, а за четыре года станут больше 170 миллионов рублей.

Решение.

Пусть S миллионов рублей — первоначальные вложения. K началу 2-го года получится 1,2S+20 миллионов рублей, а K началу 3-го года — 1,2(1,2S+20)+20=1,44S+44. По условию 1,44S+44>100, откуда $S>\frac{56}{1.44}>38,8$.

К началу 4-го года имеем 1,2(1,44S + 44)+10, а в конце проекта

$$1,2(1,2(1,44S+44)+10) = 2,0736S+63,36+12 = 2,0736S+75,36$$
.

По условию $2{,}0736S + 75{,}36 > 160{\,}$, откуда $S > \frac{84{,}64}{2{,}0736} > 40{,}8{\,}$.

А значит, минимальное возможное целое число, удовлетворяющее условию S=41 .

Ответ: 41 миллион руб.

© СтатГрад 2016-2017 уч. г.

Содержание критерия	Баллы
Обоснованно получен верный ответ	3
Верно построена математическая модель, решение сведено к	2
исследованию этой модели, получен неверный ответ из-за	
вычислительной ошибки	
Верно построена математическая модель и решение сведено к	1
исследованию этой модели, при этом решение не завершено	
Решение не соответствует ни одному из критериев, перечисленных	0
выше	
Максимальный балл	3

Найдите все значения параметра а, при каждом из которых система

$$\begin{cases} \left((x-5)^2 + (y-3)^2 - 9 \right) \left((x-2)^2 + (y+1)^2 \right) \le 0, \\ y = ax + a + 3 \end{cases}$$

не имеет решений.

Решение.

Уравнение y = ax + a + 3 задает прямую. Эта прямая при всех a проходит через точку A(-1;3).

Неравенство системы $((x-5)^2+(y-3)^2-9)((x-2)^2+(y+1)^2)\leq 0$ задаёт объединение круга с центром в точке K(5;3) и радиусом 3 и точки M(2;-1). Система не будет иметь решений тогда и только тогда, когда прямая y=ax+a+3 не имеет общих точек с кругом и не проходит через точку M.

Расстояние между точками A(-1;3) и K(5;3) равно 6, а радиус круга равен 3, значит, касательные к кругу, проведённые из точки A(-1;3), образуют углы $\frac{\pi}{6}$ с прямой AK. Этим касательным соответствуют значения $a=\pm\frac{1}{\sqrt{3}}$.

Прямая AM имеет угловой коэффициент $-\frac{4}{3}$.

Отсюда получаем $a < -\frac{4}{3}; -\frac{4}{3} < a < -\frac{1}{\sqrt{3}}; \ a > \frac{1}{\sqrt{3}}$

Otbet: $\left(-\infty; -\frac{4}{3}\right); \left(-\frac{4}{3}; -\frac{1}{\sqrt{3}}\right); \left(\frac{1}{\sqrt{3}}; +\infty\right).$

\ -/\(\(\frac{1}{2}\)\(\frac{1}2\)\(\frac{1}{2}\)\(\frac{1}2\)\(\frac{1}2\)\(\frac{1}2\)\(
Содержание критерия	Баллы
Обоснованно получен верный ответ	4
С помощью верного рассуждения получены все значения a , но ответ	3
содержит лишнее значение	1
Начато верное рассуждение и даже получено одно какое-нибудь	2
значение параметра, но до конца задача не доведена	1
Задача верно сведена к исследованию взаимного расположения	1
прямой и окружности (аналитически или графически)	1
Решение не соответствует ни одному из критериев, перечисленных	0
выше	1
Максимальный балл	4

- Возрастающие арифметические прогрессии $a_1,\ a_2,\ ...,\ a_n,\ ...$ и $b_1,\ b_2,\ ...,\ b_n,\ ...$ состоят из натуральных чисел.
- а) Существуют ли такие прогрессии, для которых $\frac{a_1}{b_1}$, $\frac{a_2}{b_2}$ и $\frac{a_4}{b_4}$ различные натуральные числа?
- б) Существуют ли такие прогрессии, для которых $\frac{a_1}{b_1}$, $\frac{b_2}{a_2}$ и $\frac{a_4}{b_4}$ различные натуральные числа?
- в) Какое наименьшее значение может принимать дробь $\frac{a_2}{b_2}$, если известно, что $\frac{a_1}{b_1}$, $\frac{a_2}{b_2}$ и $\frac{a_{10}}{b_{10}}$ различные натуральные числа?

Решение.

- а) Подходящим примером являются прогрессии 1, 6, 11, 16,... и 1, 2, 3, 4, ... соответственно. Для этих прогрессий имеем $\frac{a_1}{b_1}$ = 1, $\frac{a_2}{b_2}$ = 3 и $\frac{a_4}{b_4}$ = 4.
- б) Предположим, что такие прогрессии существуют. Тогда одно из чисел $\frac{a_1}{b_1}$ или $\frac{b_2}{a_2}$ не меньше 1, а второе больше 1. Значит, либо $a_1 \ge b_1$ и $a_2 < b_2$, либо $a_1 > b_1$ и $a_2 \le b_2$, и, следовательно, $a_2 a_1 < b_2 b_1$. Отсюда, используя свойства арифметической прогрессии, получаем

$$a_4 = a_2 + 2(a_2 - a_1) < b_2 + 2(b_2 - b_1) = b_4 \text{ if } \frac{a_4}{b_4} < 1.$$

Пришли к противоречию.

в) Обозначим через c и d разности арифметических прогрессий $a_1,\ a_2,\ ...,\ a_n,\ ...$ и $b_1,\ b_2,\ ...,\ b_n,\ ...$ соответственно. Из условия следует, что числа c и d натуральные, а $\frac{a_2}{b_2}-\frac{a_1}{b_1}$ и $\frac{a_{10}}{b_{10}}-\frac{a_2}{b_2}$ целые и не равные нулю.

Имеем

$$\frac{a_2}{b_2} - \frac{a_1}{b_1} = \frac{a_1 + c}{b_1 + d} - \frac{a_1}{b_1} = \frac{cb_1 - da_1}{b_1(b_1 + d)} \text{ M}$$

$$\frac{a_{10}}{b_{10}} - \frac{a_2}{b_2} = \frac{a_1 + 9c}{b_1 + 9d} - \frac{a_1 + c}{b_1 + d} = \frac{8(cb_1 - da_1)}{(b_1 + d)(b_1 + 9d)}$$

Знаменатели дробей $\frac{cb_1-da_1}{b_1(b_1+d)}$ и $\frac{8(cb_1-da_1)}{(b_1+d)(b_1+9d)}$ положительны,

а числители этих дробей имеют одинаковый знак. Значит, числа $\frac{a_2}{b_2} - \frac{a_1}{b_1}$ и $\frac{a_{10}}{b_{10}} - \frac{a_2}{b_2}$ имеют одинаковый знак, то есть либо $1 \le \frac{a_1}{b_1} < \frac{a_2}{b_2} < \frac{a_{10}}{b_{10}}$, либо

 $1\!\leq\!\frac{a_{10}}{b_{10}}\!<\!\frac{a_2}{b_2}\!<\!\frac{a_1}{b_1}.\text{ B обоих случаях получаем, что }\frac{a_2}{b_2}\!\geq\!2.$

Если прогрессии $a_1,\ a_2,\ ...,\ a_n,\ ...$ и $b_1,\ b_2,\ ...,\ b_n,\ ...$ являются прогрессиями 9, 32, ..., 216,... и 9, 16, ..., 72, ... соответственно, то $\frac{a_1}{b_1}$ = 1, $\frac{a_2}{b_2}$ = 2 и $\frac{a_{10}}{b_{10}}$ = 3.

Этот пример показывает, что наименьшее возможное значение дроби $\frac{a_2}{b_2}$ равно 2.

[©] СтатГрад 2016-2017 уч. г.

Ответ: а) да, например, 1, 6, 11, 16,... и 1, 2, 3, 4, ... соответственно; б) нет; в) 2.

Содержание критерия	Баллы
Верно получены все перечисленные (см. критерий на 1 балл)	4
результаты	
Верно получены три из перечисленных (см. критерий на 1 балл)	3
результатов	
Верно получены два из перечисленных (см. критерий на 1 балл)	2
результатов	
Верно получен один из следующих результатов:	1
- пример в п. a ,	
$-$ обоснованное решение в п. δ ,	
– искомая оценка в п. в,	
$-$ пример в п. ϵ , обеспечивающий точность предыдущей оценки	
Решение не соответствует ни одному из критериев, перечисленных	0
выше	
Максимальный балл	4