Free Radical Chain Mechanism

1.
$$\operatorname{Br}_2 \xrightarrow{k_1} 2 \operatorname{Br}$$
 inititation experimental rate law:

2. Br +
$$H_2 \xrightarrow{K_2} HBr + H$$
 propagation d[HBr] k_2 [H2][Br2]

3.
$$H + Br_2 \xrightarrow{k_3} HBr + Br$$
 propagation $\frac{d[HBr]}{dt} = \frac{k_a [H_2][Br_2]^{1/2}}{k_b + k_a}$

1.
$$Br_2 \xrightarrow{k_2} 2 Br$$
 inititation experimental rate laws

2. $Br + H_2 \xrightarrow{k_2} HBr + H$ propagation

3. $H + Br_2 \xrightarrow{k_4} HBr + Br$ propagation

4. $H + HBr \xrightarrow{k_4} H_2 + Br$ inhibition

1. $Br_2 \xrightarrow{k_1} 2 Br$ inititation experimental rate laws

2. $ar_1 \xrightarrow{k_2} br_2 = br_3$

3. $ar_2 \xrightarrow{k_3} br_4 = br_4$

4. $ar_3 \xrightarrow{k_4} br_5 = br_5$

3. $ar_4 \xrightarrow{k_4} br_5 = br_6$

4. $ar_5 \xrightarrow{k_4} br_5 = br_6$

3. $ar_5 \xrightarrow{k_4} br_5 = br_6$

4. $ar_5 \xrightarrow{k_4} br_5 = br_6$

4. $ar_5 \xrightarrow{k_5} br_5 = br_6$

5. $ar_5 \xrightarrow{k_5} br_5 = br_6$

6. $ar_5 \xrightarrow{k_5} br_5 = br_6$

7. $ar_5 \xrightarrow{k_5} br_5 = br_6$

8. $ar_5 \xrightarrow{k_5} br_5 = br_6$

9. $ar_5 \xrightarrow{k_5} br_5 = br_6$

10. $ar_5 \xrightarrow{k_5} br_7 = br_7$

11. $ar_5 \xrightarrow{k_5} br_7 = br_7$

12. $ar_5 \xrightarrow{k_5} br_7 = br_7$

13. $ar_5 \xrightarrow{k_5} br_7 = br_7$

14. $ar_5 \xrightarrow{k_5} br_7 = br_7$

15. $ar_5 \xrightarrow{k_5} br_7 = br_7$

16. $ar_5 \xrightarrow{k_5} br_7 = br_7$

17. $ar_5 \xrightarrow{k_5} br_7 = br_7$

18. $ar_5 \xrightarrow{k_5} br_7 = br_7$

18. $ar_5 \xrightarrow{k_5} br_7 = br_7$

19. $ar_5 \xrightarrow{k_5} br_7 = br_7$

5.
$$2 \operatorname{Br} \xrightarrow{K_5} \operatorname{Br}_2$$
 breaking

I.
$$\frac{d[HBr]}{dt} = k_2 [Br][H_2] + k_3 [H][Br_2] - k_4 [H][HBr]$$

II.
$$\frac{d[Br]}{dt} = 0 = 2 k_1[Br_2] - k_2 [Br][H_2] + k_3 [H][Br_2] + k_4 [H][HBr] - 2 k_5[Br]^2$$

III.
$$\frac{d[H]}{dt} = 0 = k_2 [Br][H_2] - k_3 [H][Br_2] - k_4 [H][HBr]$$

IV.
$$\underline{\text{add II} + \text{III}} : 0 = 2 \text{ k}_1[\text{Br}_2] - 2 \text{ k}_5 [\text{Br}]^2 \Rightarrow [\text{Br}] = \left(\frac{k_1}{k_5} [\text{Br}_2]\right)^{1/2}$$

V. solve III for [H]: [H] =
$$\frac{k_2[Br][H_2]}{k_3[Br_2] + k_4[HBr]} = \frac{k_2(\frac{k_1}{k_5})^{1/2}[H_2][Br_2]^{1/2}}{k_3[Br_2] + k_4[HBr]}$$

VI. subtract III from I:
$$\frac{d[HBr]}{dt} = 2 k_3 [H][Br_2]$$

$$\underline{\text{substitute V into VI:}} \quad \frac{d[HBr]}{dt} = \frac{2 k_3 k_2 k_1^{1/2} k_5^{-1/2} [H_2][Br_2]^{1/2} [Br_2]}{k_3[Br_2] + k_4[HBr]}$$

$$\frac{d[HBr]}{dt} = \frac{2 k_3 k_2 k_1^{1/2} k_5^{-1/2} [H_2][Br_2]^{1/2}}{k_3 + k_4 \frac{[HBr]}{[Br_2]}}$$