Erlang/OTP: magas rendelkezésre állású elosztott rendszerek fejlesztése

Czinkos Zsolt

2012-04-28

Kivon at

Az Erlang programozási nyelvet az Ericssonnál hozták létre hálózati eszközök, telefonrendszerek programozására. A magas telekom elvárások tükröződnek az Erlangban fejlesztett rendszerek architektúrájában, amely az Open Telecom Platform szoftverkönyvtárban ölt testet. A dolgozat bemutatja az Erlang programozási nyelvet, a fejlesztési elveket és alkalmazási lehetőségeit a webes technológiára épülő alkalmazások területén.

Tartalomjegyzék

1.	Bev	rezetés	5
2.	Elméleti alapok		7
	2.1.	Funkcionális programozás	8
	2.2.	Aktor modell	10
	2.3.	Elosztott (distributed) Erlang	11
	2.4.	Az Erlang programozási nyelv alapjai	13
		2.4.1. Típusok	14
		2.4.2. Mintaillesztés (pattern matching)	15
		2.4.3. Függvény definiálása	18
		2.4.4. Modulok	20
		2.4.5. Konkurens programozás	20
	2.5.	Open Telecom Platform (OTP)	24
3.	Soft	realtime messaging – a simple demo	25
4.	A messaging szerver		26
	4.1.	Felépítés	26
	4.2.	Hibatűrés	26
	4.3.	Elosztott rendszer – kell a redundancia	26
5.	Wel	b interfész	27
	5.1.	RESTful webservices	27
	5.2.	HTML5 – websockets	27
6.	Üzemeltetés, karbantartás		28
	6.1.	Naplózás	28
	6.2.	Hibakeresés	28
	6.3.	Hibajavítás, verzióléptetés	28
	6.4.	Szállítás	28
7.	A lk:	almazási lehetőségek, kitekintés	29

8. Összegzés 30

Bevezetés

Az Internet – azon belül különösen a Web – terjedésével párhuzamosan nőtt az igény kiszámítható, jó minőségű szolgáltatásokra. A szolgáltatóknak egyre magasabb elvárásoknak kell megfelelnie – nem utolsó sorban azért, mert a felhasználók fejében a web és az ingyenes tartalom összeforrt. Még színvonalas termékekért is nehezen adnak ki pénzt, nemhogy hibás, elavult tartalomért, akadozó és kiszámíthatatlanul működő szolgáltatásokért. Ma már a hálózat nem csupán mérnököknek, kutatóknak érdekes kábelezést jelent, amely így-úgy hasznos a tudományos kutatásaik során, hanem a mindennapi élet részét képező társadalmi kapcsolatok reprezentációját is. A felhasználó egyre aktívabb cselekvője ezeknek a valós vagy virtuális világban létrejött hálózatoknak, egyre inkább itt keresi (és többnyire találja meg) azt a teret, ahol ismerik, és ő is ismer, ahol ura annak az eszköztárnak, amelynek birtokában különböző – rövid, prompt, aszinkron, szöveg, hang vagy videó – üzenetek segítségével ápolni tudja kapcsolatait. Ez a kapcsolatrendszer és eszköztár jelenti azt az új mikroikozmoszt, amelyben a felhasználó – cselekvő- és befolyásolóképessége tudatában – kényelemben és biztonságban érzi magát.

Ez a kényelem és biztonság függővé tesz: világunk megszokott működésének zavarait nehezen vagy egyáltalán nem tudjuk tolerálni, kiszolgáltatottnak és tehetetlennek érezzük magunkat. Ilyenkor derül ki, hogy bár mikrokozmoszunkat ismerni véljük, az azt működtető rendszer elemeit meg sem tudjuk nevezni, csak azt tudjuk, hogy "van" (ez a valami pillanatnyilag a legtöbb ember számára néhány cég szolgáltatásában ölt testet: Facebook, Google, Twitter). A szoftverfejlesztőknek, tervezőknek ennek a világnak a működtetéséhez szükséges rendszert kell tudniuk megépíteni és üzemeltetni úgy, hogy a felhasználók a lehető legkevesebb alkalommal szembesüljenek azzal, hogy kihúzták alóluk a talajt. Nem emberbaráti, hanem üzleti megfontolások miatt.

A weben a sikerhez elengedhetetlen a folyamatos és megbízható szolgáltatás, nagyon alacsony az ingerküszöb, ha egy oldal betöltődése tovább tart mint 4 másodperc, már odébb is állt a felhasználó (Akamai felmérés, 2006). Ha túl sokszor

kap hibaüzenetet – amitől jobb esetben ingerült lesz, rosszabb esetben halálra rémül, hátha ő rontott el valamit –, keres mást. Éppen ezért nagyon fontos, hogy olyan rendszert építsünk, amely

- 1. folyamatosan, megszakítás nélkül működik;
- 2. megfelelő válaszidővel, sebességgel működik;
- 3. funkcionálisan jól működik;
- 4. a felmerülő hibák nyomon követhetők, kezelhetők.

A fentebb már említett vezető webes cégek mind megfelelnek ezeknek a követelményeknek, persze nem kevés munka és pénz árán. A felhasználót azonban a legkevésbé sem érdekli, hogy a szolgáltatást nyújtó üzleti vállalkozás hogyan tudja működtetni rendszerét, hány embert alkalmaz, stb. Őt az érdekli, hogy neki ingyen vagy elérhető áron a lehető legtöbbet nyújtsa. Ez az elvárása sajnos (vagy szerencsére) nem csak a mammutcégekkel szemben áll fent, hanem minden webes céggel szemben, mindenhol szeretné megkapni azt a minőséget, amihez hozzászokott. Azt a céget tekinti profinak, jónak, amely ugyanazt tudja nyújtani. Ha egy cég sikert akar, akkor már induláskor fel kell készülnie arra, hogy ha elsül a kapanyél, és özönlenek a felhasználók, akkor tartani tudja az iramot, ki tudja szolgálni ugrásszerűen megnőtt ügyfélkörét; miközben egy kezdő vállalkozás nem engedhet meg magának földrajzilag diverzifikált többtízezer gépes szerverparkot: kicsiből indulva kell képesnek lennie a növekedésre.

Hogyan lehet olyan rendszert építeni, amellyel neki lehet vágni egy webes vállalkozásnak úgy, hogy ne kelljen attól félni, mi lesz, ha holnap regisztrál még 10 ezer felhasználó (4 másodperc!), vagy ha tönkremegy az egyik gép?

Számos programozási nyelv és környezet közül lehet ma már választani, amely alkalmas erre a feladatra, ez a dolgozat az Erlang programozási nyelvet és a hozzá kapcsolódó Open Telecom Platform-ot (OTP) mutatja be. Az Erlang egy funkcionális programozási nyelv, amelyet az Ericsson fejlesztett ki mintegy 20 évvel ezelőtt telefonrendszerek, szoftveres kapcsolóközpontok programozásához, a telekommunikációs iparban szokásos rendkívül magas elvárásoknak megfelelően.

Az Erlang megalkotásánál az elsődleges cél magas rendelkezésre állású (highly available), hibatűrő (fault tolerant) redundáns rendszerek építése volt. Ez az, amire az Erlang igazán alkalmas, ez az a terület, ahol az Erlangnak évtizedes múltja van: akár 99,999%-os rendelkezésre állás biztosításában. Az hozzávetőleg 5 perc kiesés évente (?).

1998-ban open source-szá vált a nyelv és a platformot adó szoftverkönyvtárak, azóta bárki használhatja bármilyen feladatra, számos önkéntes és cég teszi be a közösbe a maga alkalmazását: HTTP szervert, NoSQL adatbáziskezelőt, stb.

Elméleti alapok

Az Erlang nyelvet rendkívül magas rendelkezésre állású, elosztott rendszerek készítéséhez hozták létre. Nem akadémiai környezetben született, a legfőbb cél az volt, hogy profitot termeljenek a segítségével: a szoftverek hamarabb készüljenek el; a megrendelő azt kapja, amit szeretett volna; a termékek karbantarthatóak legyenek; redundáns, elosztott környezetben működjenek (folyamatosan); kapacitásuk növelhető legyen. A vezérelv az volt, hogy "minden szoftver hibás", mindig előfordul olyan hiba, amelyet nem kellő körültekintéssel, nem megfelelő specifikáció birtokában megírt szoftver okoz. Nem lehet úgy tenni, mintha egy szoftver valaha is "készen" lenne, és utána már nem kellene javítani, új igényeknek megfelelően bővíteni (újabb hibákat elkövetni). Azt is figyelembe kellett venni, hogy a magas rendelkezésre állás megkövetelte redundáns architektúra párhuzamos programozást igényel, nem egy processzoron kell futni, hanem többön, sőt több gépen. Az Erlang egyik megalkotója, Joe Armstrong, az itt leírt elvekre, módszerekre a concurrency-oriented programming kifejezést használta.

Az Erlang lényegében egy magas szintű nyelv konkurens rendszerek fejlesztéséhez. A párhuzamos programozás komplex feladatok esetében sokkal képzettebb, tapasztaltabb (így drágább) fejlesztőket kíván meg, egyáltalán nem kicsi a lépés a nem párhuzamos pogramozástól (sequential programming). Egyszerűen fogalmazva: egynél több cselekvő dolgozik egyazon rendszeren belül, ezért az egyes állapotváltoztatásoknál gondoskodni kell arról, hogy a több helyről kezdeményezett műveletek után a rendszer allapota konzisztens maradjon.

A Java nyelvben például a párhuzamos programozást a thread-ek teszik lehetővé, a konzisztens állapot megőrzését pedig a synchronized kulcsszóval jelölt metódusok-kal, programblokkokkal lehet elérni. Az Erlanggal más utat választottak, két alapra építettek: a funkcionális programozásra és az aktor modellre.

2.1. Funkcionális programozás

Az Erlang funkcionális programozási nyelv. Az imperatív nyelvekkel szemben, ahol egy implicit állapot (state) változik adott nyelvi konstrukciók eredményeképp, a tisztán funkcionális nyelvekben nincs implicit állapot, a függvények mellékhatásmentesek ($side\ effect\ free$). Minden függvényhívás tartalmaz minden szükséges argumentumot, ami az eredményhez szükséges (akár explicit állapotot is, ha szükséges), és az azonos paraméterekkel rendelkező függvényhívások mindig ugyanazt az eredményt adják ($referential\ transparency$). Egyszerű matematikai példával élve: az f(x) = x + 1 függvény azonos x értékekre mindig azonos eredményt ad.

A széles körben elterjedt imperatív nyelvekben (Java, C) az állapot változtatására szolgáló, a vezérlést végző nyelvi elemek egymásutáni használatával lehet leírni a működés "hogyanját". Változók értékadása, feltételes elágazások, ciklusok adják a működés logikáját, mit mi után milyen feltételek teljesülése esetén kell végrehajtani. Például a Fibonacci-sor Java megvalósítása:

Listing 2.1. Fibonacci – Java

```
int a=0, b=1;
public static int fib(int n) {
  for(int i=0; i<n; i++) {
    int c = a;
    a = b;
    b = c + b;
}
return a;
}</pre>
```

A fenti egyszerű példában szerepel értékadás, feltétel vizsgálat és ciklus is. A végrehajtás során az 'a' változó többször kap új értéket, a ciklus futásának végén tartalmazza az eredményt.

Az Erlang deklaratív nyelv, a "hogyan" helyett a "mit" írja le: a fejlesztő kifejezéseket ad meg, mintaillesztésekkel – kijelentéseket tesz. Funkcionális nyelveknél a függvény alapvető nyelvi elem, amelynek segítségével a működés leírható. A Fibonacci példa Erlang változata:

Listing 2.2. Fibonacci – Erlang

```
\begin{array}{l} \mbox{fib} \, (0) \, \to \, 0; \\ \mbox{fib} \, (1) \, \to \, 1; \\ \mbox{fib} \, (N) \, \, \mbox{when} \, \, N \, > \, 0 \, \to \, \mbox{fib} \, (N\!-\!1) \, + \, \mbox{fib} \, (N\!-\!2). \end{array}
```

Ebben az esetben a fib függvény deklarációja három állítás (function clause), melyik argumentum esetén mit kell tenni. Az imperatív nyelvekben megszokott struktúrák helyett más megoldásokkal kell élni. Ciklus helyett rekurzív függvényhívásokkal, feltételes elágazás helyett a függvény deklarációba írt kifejezéssel (jelen esetben pozitív számokra értelmezett a függvény).

A funkcionális pogramnyelvek fontos ismérve az is, hogy a fügvények teljes jogú elemei a nyelvnek (first class functions). Bárhol, ahol valamilyen érték szerepelhet, függvény is: listák, rekordok, adatszerkezetek elemeként. Függvény argumentuma illetve visszatérési értéke is lehet függvény (higher order functions). Például egy lista elemeit többféle szempont szeretnénk szűrni. Először a páros számokat, majd utána a páratlanokat:

A lists:filter függvény a megadott lista minden elemére lefuttatja a Paros vagy a Paratlan függvényt, és ha igaz értéket kap vissza, akkor bennehagyja a listában a vizsgált elemet. A Paros illetve Paratlan függvények változók (amik nem igazi változók, csak egyszer kaphatnak értéket), amelyek értéke egy-egy névtelen függvény (λ function).

Az Erlang nem tisztán funkcionális környezet – lévén ipari alkalmazásra készült – lehet írni olyan függvényeket, amelyek nem mellékhatás mentesek, például fájl- és adatbázis műveletek. A funkcionális programozás alapelvei azonban jelen vannak, lehet tisztán funkcionális alkalmazást is írni, és a fentebb ismertetett elvek maradéktalanul alkalmazhatók. Nem léteznek globális változók, amelyek értékét több függvényből is módosítani lehetne, minden változó (pontosabban értékadás egy névhez) csak az adott függvényen belül értelmezett, a szükséges állapotot a függvény argumentumai közt explicit kell megadni, és a visszatérési értékbe is betenni. A párhuzamos programozást ez nagyban megkönnyíti: nem kell attól félni, hogy egy értéket egy másik folyamat vagy függvényhívás felülír, mindig minden "kézben van". Hogyan lehet így bármi használhatót írni? Hogyan lehet egy komplex rendszert felépíteni, amelynek egyes moduljai inputokar várnak más moduloktól?

Az egyes folyamatok (process) üzeneteket küldenek egymásnak, amelyek egy-egy másolatát (nem csak egy referenciát!) kapja meg a címzett fél, az üzenetváltás után a küldő és a fogadó fél is birtokában van az adatnak, nincs megosztott állapot (shared state), még véletlenül sem fordulhat elő, hogy egyik folyamat módosít valamit, amire egy másik folyamat is épít (kivéve, ha side-effect-eket használ a program – például adatbázist).

Az Erlang architektúra alapja a fentebb leírt üzenet alapú modell: az aktor modell.

2.2. Aktor modell

Az aktor modell létrehozását több száz, több ezer mikroprocesszorból álló rendszerek készítése motiválta. 1973-ban írta le először Carl Hewitt. Az aktor modell alapeleme az aktor, azaz a cselekvő, amely önálló entitás, saját memóriával, viselkedési mintával (behaviour), üzenetküldési és fogadási képességgel. Az egyes aktorok közötti kommunikációs csatorna biztosítja az összeköttetést. Akárcsak a valós világban: a cselekvők cselekszenek valamilyen viselkedési minta szerint, egymással üzenetet váltanak, észlelik a másik cselekvő halálát, diszfunkcionalitását. A világ konkurens, az aktorok egymással egy időben működnek, kommunikálnak, megfelelő protokoll szerint megértik egymás üzeneteit, esetleg – megállapodás alapján – figyelnek egymásra. Ha egyikkel történik valami, a másik észreveszi, és ha tud, csinál valami hasznosat.

Például egy telefonbeszélgetés során két aktor üzeneteket vált egymással (hang-csatornán keresztül):

- Jó napot! Béla vagyok.
- Jó napot! Mondja a számot.
- -42.
- Köszönöm.

Vagy:

- Jó napot! Az adóhivataltól vagyok.
- Sajnálom, ez biztos téves.

A fenti kis párbeszédekben a résztvevők értelmezni tudják a bejövő üzenetet, és annak megfelelően adnak választ. Ugyanígy a számítógépes aktorok (Erlangban: process) is képesek:

- üzeneteket küldeni;
- üzeneteket fogadni;

- a beérkező üzeneteket minta alapján szűrni, és azokra adekvát választ adni;
- meghatározni azt a viselkedés mintát, amellyel a beérkező üzeneteket kezelni fogja;
- további aktorokat létrehozni;
- észlelni a megfigyelt aktorok leállását.

A kommunikáció nagyon fontos eleme az aktor modellnek, az üzenetküldés elkülöníti a kommunikáció megoldását az aktortól, lehetővé téve az aszinkron üzenetküldést (asynchron message passing). Az Erlang architektúra ezen a modellen alapszik, nagyon gyorsan és hatékonyan lehet process-eket nagyon nagy számban indítani és futtatni; minden process saját memóriával, levelesládával (mailbox) rendelkezik, egymással aszinkron módon tudnak kommunikálni. A processzek azonosítóval rendelkeznek, ez a cím, ahova küldeni lehet az üzenetet, és – ami nagyon fontos a redundáns rendszerek építésénél – az üzenetküldés két külön gépen lévő process között teljesen transzparens, a programozónak nem kell külön erőfeszítést tennie, ha másik gépen lévő process-szel akar kommunikálni. A szintaxis ugyanaz helyben mint gépek között.

A párhuzamos programozás lehetőségét ez az aktor modell nyújtja az Erlang platformon. Nincs közös állapot (shared state), az egyes folyamatok aszinkron üzenetküldéssel kommunikálnak egymással, az üzenetek másolata kerül a címzett birtokába, a feladó "eredeti példánya" megmarad. A valós életben sem törlődik az agyunkból semmi, csak mert elmondjuk másnak (kivéve esetleg az egyetemi vizsgákat). Ez a másolás teszi lehetővé a gépek közti transzparens kommunikációt.

2.3. Elosztott (distributed) Erlang

Egy gép nem gép, ha magas rendelkezésre állást kell biztosítani. Hiába van remekül megírva a szoftver, ha a hardver meghibásodik alatta vagy kimegy az áram. Egy gép nem gép akkor sem, ha a feladat olyan időigényes, vagy olyan nagy adatigénye van, hogy egyetlen mai számítógép sem elegendő hozzá önmagában. A feladatot ilyenkor partícionálni kell, és az egyes részfeladatokat egymással párhuzamosan kell elvégezni. Több gépre kell szoftvert írni, és ez az Erlang erőssége. A fentebb röviden ismertetett funkcionális programozás elve, és az aktor modell egyszerűbbé, átláthatóbbá teszi a programok szerkezetét, magas szintű nyelven lehet elosztott rendszert fejleszteni, az egyes Erlang egységek (node) közti kommunikáció mikéntjéről mit sem kell tudni (az OSI hálózati hierarchia applikációs szintjén biztosított protokoll, és a nyelvbe épített egyszerű üzenetküldési, fogadási szintaxis biztosítja a teljes transzparenciát a programozó számára).

Az Erlang hálózat alapegysége a node. A node egy teljesen önálló Erlang rendszer, saját névvel, virtuális géppel (virtual machine, VM), külön operációs rendszer folyamatban. Egy gépen egy vagy több node is futtatható, egymáshoz való viszonyuk nem különbözik attól, mintha külön gépen futnának. Ahhoz, hogy a node-ok egy Erlang hálózatot alkossanak, egy közös cookie-val kell rendelkezniük, az Erlang VM-et ezt az értéket megadva kell elindítani. Az Erlang hálózatban minden node tud minden node-ról, közvetlen kapcsolatban vannak egymással. Ez a hálózati felépítés korlátozza a node-ok számát egy hálózaton belül, bizonyos szám felett már túl nagy terhelést jelent a node-ok egymás közti adminisztrációs kommunikációja. Szerencsére node-ot lehet rejtett üzemmódban is indítani, így nem jelenik meg a többi node listáján.

Erlang hálózatok belső, biztonságos környezetben használatosak, a klaszteren (cluster) kívüli világgal, az interneten keresztül, valamelyik IP alapú protokollal – TCP, UDP, SCTP – lehet kommunikálni. Egy webszolgáltatás esetében például a belső hálózat Erlang node-okból áll, a külvilág – a böngésző – pedig HTTP protokollon keresztül éri el a HTTP szervert futtató gépet.

Elosztott rendszereknél bizonyos méret fölött, különösen földrajzilag is diverzifikált rendszereknél a CAP-elméletnek megfelelően a következő háromból valamelyiket fel kell adni:

Consistency

A rendszer által tárolt adatok mindig, minden pillanatban konzisztensek, a referenciák érvényesek és minden felhasználó ugyanazt látja. Ha egy darab könyv van raktáron, és azt valaki megveszi, akkor egy másik vásárló ugyanezt a könyvet már nem tudja megvenni, azt fogja látni, hogy elfogyott.

A vailability

A kliens mindig kap választ, a rendszer mindig elérhető. A válasz lehet sikeres vagy sikertelen végrehajtás eredménye is, a lényeg, hogy a kérést intéző fél mindig kap információt az eredményről.

Partition Tolerance

Csak a teljes rendszer hibás működése esetén fordulhat elő, hogy a kliens rossz választ kapjon, vagy egyáltalán ne kapjon választ.

A fenti korlátozás a rendszer növekedésével párhuzamosan válik szembetűnővé. Amíg egy gép van (sok-sok redundáns diszkkel), addig minden konzisztens, viszont a legegyszerűbb hardver hiba is elég, hogy ne legyen elérhető. Nő a forgalom, a működtető nem akar kiesést, egyre több gépet állít csatasorba, az adatok nem férnek már el semmilyen számítógépen, elosztott architektúrára van szükség. Ha az is meg van, akkor felmerül, hogy ha tűz üt ki az épületben, akkor nem lesz elérhető semmi. Földrajzilag is el kell különíteni az egyes részeket: ekkor az a probléma, hogy meg kell

oldani a konzisztens adatmódosítást úgy, hogy közben az elérhetőség (elfogadható válaszidő) ne sérüljön. A CAP-elmélet ezt állítja, valamelyik feltétel a háromból mindenképpen sérül.

Az ebben a dolgozatban a .. fejezetben bemutatott alkalmazás esetében az elérhetőségről (availability) mondunk le. A rendszer egy Erlang node-okból álló klasztert alkot egy biztonságos helyi hálózaton belül, földrajzilag nincs elkülönítve egyetlen része sem (ez az irány – nevezetesen a konzisztencia feladása – egy későbbi dolgozat tárgya lehet). A rendszer állapota mindig konzisztens, és a rendszer mindaddig válaszképes, amíg akár egyetlen node is üzemel.

A dolgozat célja nem egy Google vagy Amazon-méretű cég technológiai hátterének elemzése, hanem az Erlang/OTP platform bemutatása, ezért ezt a feltételt dobjuk el. Egy így felépíthető rendszer kapacitása, képességei is messze meghaladják egy átlagos magyar vállalkozás vagy akár egyetemi tanulmányi rendszer követelményeit. Biztosítani képes a folyamatos működést és az elfogadható válaszidőt (soft-realtime).

2.4. Az Erlang programozási nyelv alapjai

Az ebben a részben bemutatásra kerülő Erlang szintaxis nem fedi le a teljes nyelvet, a cél, hogy a következőkben bemutatott alkalmazás felépítése, a modulok érthetőek legyenek.

Minden Erlang folyamathoz tartozik egy shell, amely egy REPL (Read Eval Process Loop alkalmazás a futó környezethez. Ennek segítségével egy egyszerű parancssoros felületen ki lehet próbálni parancsokat, műveleteket, sőt – mint később még látni fogjuk – "éles" (production) környzeteknél is hozzáférhetünk a rendszerhez (például hibakeresés céljából).

Az Erlang shell indítása után egy *prompt*-ot ad, a sor eleji szám a beírt kifejezések ('.'-tal bezárólag) sorszámát jelenti. Induláskor:

```
\$ erl -sname a 
 Erlang R13B03 (erts -5.7.4) [source] [smp:2:2] ... 
 Eshell V5.7.4 (abort with ^G) 
 (a@notebook)1> 1 + 2 + 3. 
 6 
 (a@notebook)2>
```

2.4.1. Típusok

Az Erlang dinamikus típusos nyelv (dynamic typed programming language). A statikus típusos nyelvekkel (pl. Java) szemben a típusellenőrzés futásidőben (runtime) történik nem fordításkor, nem a változóknak van típusa, hanem az értékeknek. Például egy függvény argumentumánál nem kell deklarálni, hogy milyen típusú paramétert fog kapni, kaphat bármilyet, az futásidőben derül ki, hogy mit kapott, és azt tudja-e kezelni.

Funkcionális nyelv lévén a változó nem igazi változó, csak egyszer kaphat értéket, utána nem lehet módosítani. Az egyszerűség kedvéért használjuk az angol *variable* szó magyar megfelelőjét. Az Erlangban a változó nevét mindig nagy betűvel kell kezdeni.

Egy függvény definíció példa. Egy téglalap területét számolja ki a megadott oldalaiból.

```
terulet (A, B) ->
A * B.
```

A függvényen belül sem az A sem a B változóhoz nem lehet új értéket rendelni. Amennyiben ciklusra lenne szükségünk, rekurzióval kell megoldani.

Integer. Egész számok: 100, 3.1415, -5. Méretét a memória mérete határozza meg, nincs felső korlát.

Float. Lebegőpontos számok az IEEE 754 64-bites ábrázolásnak megfelelően.

Binary. Byte sorozat.

Atom. Kis betűvel kezdődő alfanumerikus karaktersorozat. Például: ok, error, true, false. Nem *string*!

Fun. Függvény típus. A függvények a többi típushoz hasonlóan használhatók változók értékeként. fun(N) -> N * N end.

Reference. Egyedi azonosító, amely összehasonlítás céljából állítható elő az Erlang make_ref() függvényével.

Pid. Process azonosító.

Port. Az Erlangon kívüli kommunikáció port-okon keresztül zajlik. Az Erlang open_port() függvényével hozható létre például C-ben megírt könyvtárak használatához.

List. Lista. Eleme bármilyen változó lehet. [1,2,3,4,5,6]. Az üres lista jelölése: [].

Tuple. Több változó egy egységben való kezelésére szolgál. Az egyes elemeknek nincs nevük, nem lehet közvetlenül hivatkozni rájuk. Egy tuple bármilyen más változót tartalmazhat, újabb tuple-t is. A szintaxis: {teglalap, {2, 3}}. Ez esetben a tuple eleme egy atom és egy tuple, amely két egész számot tartalmaz.

Record. A rekord szintaktikai egyszerűsítés tuple-ök használatához. Egy rekord egy olyan tuple, amelynek az első eleme a rekord nevét tartalmazó atom. A rekord mezőinek neve van, amelyekkel lehet hivatkozni az egyes elemekre. Futás közben semmiben sem különböznek a tuple-től, a programozás megkönnyítésére szolgál. Például:

```
-record (sikidom , \ \{ \ nev , \ a \setminus \_oldal , \ b \setminus \_oldal \}). terulet (S) \longrightarrow \\ S\#sikidom . \ a\_oldal \ * \ S\#sikidom . \ b\_oldal .
```

String. Szintaktikai egyszerűsítés egész számok listájához. A "kakukk" kifejezés ekvivalens a [107,97,107,117,107,107] és [\$k,\$a,\$k,\$u,\$k,\$k] listákkal.

2.4.2. Mintaillesztés (pattern matching)

A mintaillesztés nagyon fontos fegyver az Erlang arzenálban. Mintaillesztéssel lehet egy változónak értéket adni, komplex adatszerkezetből adatot kinyerni, a vezérlést irányítani. A mintaillesztés általános formája:

Pattern = Expression

A baloldali minta (pattern) tartalmazhat bármilyen adattípust, változót, a jobboldalon azonban csak olyan változó szerepelhet, amelynek van értéke. A kifejezés ezen kívül még tartalmazhat műveletet, függvényhívást is. A mintában szereplő, még értékkel nem rendelkező változó a jobboldali kifejezés alapján kap értéket. Amennyiben a baloldalon álló változónak már van értéke, a mintaillesztés csak akkor lesz sikeres, ha a jobboldali kifejezésben, a megfelelő helyen, ugyanaz az érték szerepel.

A mintaillesztésnek két eredménye van: vagy sikeres vagy nem. Néhány példa az egyszerű értékadástól, a komplexebb szerkezetig.

```
1> A = A + 2.

* 1: variable 'A' is unbound

2> A = 2.

2

3> A = A + 2.

** exception error: no match of right hand side value 4

4> B = A + 2.

4

5> B.

4

6> B = A + A.

4

7> B = 2 * A.

4

8> C = A + B.

6

9> C.

6
```

Az 1. utasítás nem értelmezhető, mert az A változónak nincs értéke (unbound), és a jobb oldalon nem szerepelhet így (nincs is értelme). A 3. utasításnál az A változónak van értéke (2), de a mintaillesztés nem sikeres, mert a bal oldalon így 2 szerepel, a jobb oldalon meg 4.

Listáknál a mintaillesztésnél használható az alábbi szintaxis a lista első elemének (head) kinyerésére.

```
[Head|Tail] = [1,2,3,4,5]
```

Ebben az esetben a Head változóban lesz a lista első eleme (1), a Tail változóban a többi elem listája ([2,3,4,5]). Néhány példa listás mintaillesztésre.

```
1> List = [1,2,3,4,3,2,1].
[1,2,3,4,3,2,1]
2> [Head | Tail] = List.
[1,2,3,4,3,2,1]
3> Head.
1
4> Tail.
[2,3,4,3,2,1]
5> [H1,H2|T] = List.
[1,2,3,4,3,2,1]
6> H2.
```

```
2
7> T.
[3,4,3,2,1]
8> A = 3.
3
9> [1,2,E,4,E,2,1] = List.
[1,2,3,4,3,2,1]
10> E.
3
11> [1,2,F,4,3,F,1] = List.
** exception error: no match of right hand side value [1,2,3,4,3,2,1]
```

A 9. utasítás sikeres, mert az E változónak nincs értéke, és a jobb oldalon lévő lista 3. és 5. eleme megegyezik. A mintaillesztés sikeres, és az E változó a 3-as értéket kapja. A 11. utasításnál azért nem sikerül az illesztés, mert az F változó két olyan helyen szerepel a listában, ahol különböző érték áll a jobboldali kifejezésben. Hasonlóképpen a tuple-öknél.

```
1> C = {degree, celsius, 37}.
    {degree, celsius, 37}
2> F = {degree, fahrenheit, 99}.
    {degree, fahrenheit, 99}
3>
3> {degree, Type, Value} = C.
    {degree, celsius, 37}
4> {Type, Value}.
    {celsius, 37}
```

A rekordok valójában tuple-ök, amelyeknek az első eleme a rekord neve, így a rekordokat is lehet használni a mintaillesztésekben. A fenti példa rekordra átírva.

```
1> rd(degree, { type, value}).
degree
2> T = #degree{ type=celsius, value=37 }.
#degree{type = celsius, value = 37}
3> #degree{type=celsius} = T.
#degree{type = celsius, value = 37}
4> #degree{type=Type} = T.
#degree{type = celsius, value = 37}
5> Type.
celsius
6> {degree, celsius, Value} = T.
#degree{type = celsius, value = 37}
```

```
7> Value.
37
```

A rekord szintaxis több mezőnél válik hasznossá, amikor csak egy-egy mező értékét szeretnénk kinyerni (és a rekord szintaxisú mintaillesztések akkor is működni fognak, ha a mezőszám megváltozik, míg tuple-nél az összes helyen módosítani kellene a kódot, ahol mintaillesztésben szerepel). A 6. utasításnál látszik, hogy a tuple szintakxisú minta is megfelel a jobboldali rekordnak.

2.4.3. Függvény definiálása

A mintaillesztés a függvények definiálásánál is nagyon hasznos, a függvény argumentumainak mintát megadva lehet a komplexebb paraméterből változóknak értéket adni, illetve külön állításokat (function clause) megfogalmazni a függvényhez, milyen input esetén mit csináljon. Egy névvel, és azonos számú argumentummal (function arity) egy függvényt lehet definiálni, de több állítást lehet tenni azon belül. Egy névvel, de eltérő számú argumentummal akármennyi különálló függvényt lehet definiálni. Az általános szintaxis jól látszik a következő egyszerű példán:

```
convert ( celsius , T) ->
    9 * T / 5 + 32;
convert (fahrenheit , T) ->
    5 * (T - 32) / 9;
convert (_,_) ->
    unkown.

convert () ->
    nothing.
convert (A) ->
A.
```

A fenti példa három függvény-definíciót tartalmaz. Az egyik a convert függvény két paraméterrel (Erlangban a jelölése: convert/2), paraméter nélkül (convert/0) és egy paraméterrel (convert/1). A két paraméteres függvény három function clasue-ból áll: a kapott paraméter alapján mintaillesztéssel dől el, hogy melyik rész fut le. Az '_' jel azt jelenti, hogy "bármi", mindenre illeszkedik. Ha tehát a függvényhívás a következő: convert(celsius, 36), akkor a legelső számítás eredményét adja vissza, mert a celsius atom megegyezik a mintával, a T változó pedig megkapja értéknek a 36-ot.

Anoním függvények definiálása hasonló módon történik, csak ott a név helyett a fun kulcsszó szerepel, az egyes function clause-oknál pedig csak a zárójelbe írt argumentumlista. Anoním függvényt bárhol definiálhatunk, ahol változót is írhatnánk.

```
Convert = fun(celsius, T) ->
9 * T / 5 + 32;
(fahrenheit, T) ->
5 * (T - 32) / 9;
(_,_) ->
unkown
end.
```

Ebben az esetben a Convert változó értéke lesz a függvény, és a következő módon lehet meghívni: Convert(celsius, 36). Az anoním függvény definiálása az end kulcsszóval zárul.

Végezetül egy példa egy jellemző rekurzív függvény bemutatására. Az alábbi insert függvény egy elemet illeszt be egy rendezett listába.

```
insert(I, []) ->
   [I];
insert(I, [H|T]) when I > H ->
   [H | insert(I, T)];
insert(I, [H|T]) ->
   [I, H|T].
```

A when kulcsszó utáni feltétel neve: guard. Ezzel lehet tovább finomítani a mintában megfogalmazott feltételeket. Jelen esetben addig hívja meg újra és újra az insert függvényt (2. function clause), amíg a beillesztendő elem nagyobb az aktuális listaelemnél (folyamatosan a lista elejére téve a megvizsgált listelemet). Amikor ez a feltétel nem teljesül, akkor beilleszti a fennmaradó lista elejére az elemet, és nem vizsgálódik tovább (3. function clause). Az egyes lépések eredményei egy rövid kis listán.

```
1> list:insert (4, [1, 3, 4, 6]).
3. function clause [4,4,6]
2. function clause [3,4,4,6]
2. function clause [1,3,4,4,6]
[1,3,4,4,6]
2> list:insert (7, [1, 3, 4, 6]).
1. function clause [7]
2. function clause [6,7]
```

```
2. function clause [4,6,7]
2. function clause [3,4,6,7]
2. function clause [1,3,4,6,7]
[1,3,4,6,7]
```

A list:insert kifejezés jelentése: a list modulban lévő insert függvény.

2.4.4. Modulok

A modulok szolgálnak logikailag összetartozó függvények csoportosítására. A modulok nem alkotnak hierarchiát (*flat namespace*), elnevezéssel lehet megoldani a szükséges tagolást. A modulokban az alábbi részek szerepelhetnek:

- modul attribútumok, verziószám, szerző, név, interfész függvények;
- rekord, makró definíciók, külső fájlok (header) beillesztése;
- függvények.

Egy egyszerű modul.

A fenti modul az egy argumentummal rendelkező convert függvényt exportálja, csak ezt lehet meghívni más modulokból. A modul neve temp, kötelező ugyanilyen nevű fájlba tenni.

2.4.5. Konkurens programozás

A fentebb röviden bemutatott aktor modellen alapul a párhuzamos programozás az Erlangban. Az aktorok *process*-ek, amelyek tudnak üzenetet fogadni (*receive*),

és küldeni (send). A process az Erlang VM fennhatósága alá tartozik, nem külön operációs rendszer folyamat, indítása nem igényel sok erőforrást, egy-egy rendszeren belül akár többszázezer process-t is lehet indítani. Például egy HTTP szerver megvalósítása lehet az, hogy minden kapcsolathoz tartozik egy önálló webszerver process. Ha ebben valami hiba történik (pl. 0-val osztás), akkor ez a process leáll, a többi működik tovább.

Process-ek programozásához az eddigieken bemutatottakon túl mindössze három műveletre van szükség:

Process indítása. Process-t a spawn függvénnyel lehet indítani helyben vagy akár egy másik node-on.

```
P = \mathbf{spawn}(\mathbf{module}, \ \text{function}, \ [P1, P2 \dots]).
```

A process-ek egyedi azonosítót kapnak, amely a címük, ide lehet küldeni az üzenetet. Van lehetőség arra is, hogy a process nevet kapjon, ezt hosszabb ideig futó processeknél érdemes megtenni.

Üzenet küldése. Üzenetet küldeni a következők szerint lehet:

```
P!"Hello".
```

ahol P a process azonosítója vagy regisztrált neve, a ! a küldés operátor. A jobboldalon álló kifejezés az üzenet, amely nem csak *string* lehet, mint a fenti példában, hanem bármilyen Erlang kifejezés (tuple, fun, lista, stb). Másik node-ra ugyanígy lehet üzenetet küldeni, nincs különbség.

Üzenet fogadása. A receive utasítás szolgál az üzenetek fogadására.

A függvényekhez hasonlóan clause-okat tartalmaz, és itt is mintaillesztés alapján dől el, melyik ág fog lefutni. Minden process-hez tartozik egy mailbox, amelyből a receive utasítással lehet kiolvasni az üzeneteket. Az utasítás addig olvassa a mailbox-ot, amíg nem talál egy olyan üzenetet, amely illeszkedik valamelyik ág mintájára. Ekkor kiolvassa, és az üzenet törlődik a mailbox-ból. Ha egyik mintára sem illeszkednek a beérkező üzenetek, akkor előbb-utóbb megtelik a memória. Éppen ezért szokás a legtöbb esetben az utolsó ág mintáját '_'-ként megadni. Ez a minta mindenre illeszkedik, így végül minden üzenet törlődik a mailbox-ból. Az after utasítással meg lehet adni, hogy ha Time ideig nem érkezett olyan üzenet, ami valamelyik mintára illeszkedett, akkor mit hajtson végre a program (timeout).

Az egyes process-ek – azonkívül, hogy tudnak egymásnak üzeneteket küldeni – monitorozni is tudják egymást, nem múlt-e ki a másik. Ennek módja a process-ek összekapcsolása a link függvénnyel.

```
start() ->
  process_flag(trap_exit, true),
  Pid = spawn(module, function, []),
  link(Pid),
  receive
    {'EXIT', Pid, Reason} ->
      io:format("Process ~p has just died.~n", [Pid])
  end.
```

A fenti start függvény elindít egy másik process-t, és összekapcsolja a jelenlegivel. Amikor a másik process leáll, érkezik egy üzenetet erről, aminek a formátumát a fenti receive blokkban szereplő mintán lehet látni.

Ahhoz, hogy egy process folyamatosan fusson, újra és újra meg kell hívni a receive utasítást (hogy várakozzon üzenetre). Az alábbi modul egy egy process-t futtat, amíg egy stop atomot nem kap üzenetként. A ?MODULE makró a modul nevét tartalmazza.

```
-module(temp).
-export([start/0, loop/0]).

start() ->
    spawn(?MODULE, loop, []).

loop() ->
    receive
    {From, celsius, T} ->
        From ! {fahrenheit, c2f(T)},
        loop();
```

```
{From, fahrenheit, T} ->
From! {celsius, f2c(T)},
loop();
stop ->
stopped;
-->
loop()
end.

f2c(F) ->
5 * (F - 32) / 9.

c2f(C) ->
9 * C / 5 + 32.
```

A puding próbája az evés – az Erlang shellben. A self() függvény az aktuális process azonosítóját adja vissza, jelen esetben az shell-ét; a flush() shell-utasítás pedig kilistázza és törli a shell mailbox-át.

```
1> c(temp).
{ok, temp}
2 > P = temp: start().
< 0.42.0 >
3> P ! { self(), fahrenheit, 99.9 }.
\{<0.35.0>, fahrenheit, 99.9\}
4> flush().
Shell got {celsius, 37.722222222222}
5 > P ! stop.
stop
6> flush().
ok
7> P! { self(), fahrenheit, 99.9 }.
\{<0.35.0>, fahrenheit, 99.9\}
8> flush().
ok
```

Az ebben a részben bemutatott téglákból építkezik az Erlang részét képező, a leggyakoribb feladattípusok megoldására létrehozott Open Telecom Platform (OTP) szoftverkönyvtár, amely központjában a magas rendelkezésre állású, párhuzamos rendszerek építése áll.

2.5. Open Telecom Platform (OTP)

Nagyobb szoftverek fejlesztésekor elkerülhetetlen, hogy a fejlesztők valamilyen közös implementációs gyakorlatot kövessenek. Enélkül minden egyes fejlesztő kitalálja magának a világ legjobb megoldását (és ebben rendkívül kreatívak tudnak lenni), amit rajtuk kívül senki más nem ért. Az OTP formalizált keretet ad a processfejlesztéshez. Hasonlóan a Java EE servlet-eihez, egy interfészt definiál, amelyet minden Erlang fejlesztő ért, így a rendszer különböző emberek által fejlesztett részei egy koherens egészet alkotnak. Ezek mögött az interfészek mögött ráadásul általános problémák megoldásai állnak, nem kell újra és újra kitalálni például a hibakezelés módját.

Az OTP viselkedésmintákat definiál (behaviour), amelyekhez a megadott callback függvényeket (a Java interfész függvényeinek implementálásahoz lehet hasonlítani) implementálva egy process-modul hozható létre. Ezt a modult az OTP kezeli, és adott eseménynél meghívja a megfelelő függvényt. Az OTP-ben a process-ek hierarchiába rendezhetők, ennek megfelelően van háromféle típusú process.

Application. Az OTP application behaviour egy Erlang/OTP alkalmazás, amely összefogja a modulok egy csoportját, és a process hierarchia csúcsán áll.

Supervisor. Olyan behaviour, amelynek feladata más processek felügyelete, folyamatosan monitorozza azok állapotát, észleli, ha a processben hiba történt, és a megadott újraindítási stratégiának megfelelően újraindítja vagy hagyja leállni. Supervisor processek alá tartozhatnak worker és további supervisor processek.

Worker. Olyan process, amely valamilyen alkalmazás-specifikus feladatot végez, nem felügyel más process-eket. Az OTP az alábbi behaviour-öket biztosítja:

- Generic server (gen server): általános szerver;
- Generic Finit State Machine (gen fsm): véges automata;
- Generic Event Manager (gen event): események, alarmok kezeléséhez.

A fenti celsius-fahrenheit átváltó modul gen server átirata:

```
-module(temp_otp).
-behaviour(gen_server).

-export([start_link/0]).
-export([init/1, handle_call/3, handle_cast/2, handle_info/2, code_change/3,
-record(state, {}).
```

```
start link() ->
    gen_server:start_link({local, ?MODULE}, ?MODULE, [], []).
init (_Options) ->
  {ok, #state{ } }.
handle_cast({From, celsius, T}, State) ->
  From ! {fahrenheit, c2f(T)},
  {noreply, State};
handle_cast({From, fahrenheit, T}, State) ->
 From ! \{celsius, f2c(T)\},
  {noreply, State};
handle_cast(stop, State) ->
  {stop, normal, State};
handle cast ( Info, State) ->
  {noreply, State}.
handle_call(_Request, _From, State) ->
  {noreply, State}.
handle_info(_Info, State) ->
  {noreply, State}.
terminate (Reason, State) ->
  ok.
code_change(_OldVsn, State, _Extra) ->
  {ok, State}.
f2c(F) ->
  5 * (F - 32) / 9.
c2f(C) ->
  9 * C / 5 + 32.
```

Soft realtime messaging – a simple demo

A messaging szerver

Protokoll kialakítása ().

- 4.1. Felépítés
- 4.2. Hibatűrés
- 4.3. Elosztott rendszer kell a redundancia

Web interfész

- 5.1. RESTful webservices
- $5.2. \quad HTML5 websockets$

Üzemeltetés, karbantartás

6.1. Naplózás

Event manager, event handler.

6.2. Hibakeresés

Trace.

6.3. Hibajavítás, verzióléptetés

Upgrade.

6.4. Szállítás

Alkalmazási lehetőségek, kitekintés

Összegzés

Irodalomjegyzék

- Armstrong, Joe (2003): Making reliable distributed systems in the presence of software errors. PhD. thesis, The Royal Institute of Technology Stockholm, Sweden. Web: http://www.erlang.org/download/armstrong_thesis_2003.pdf, letöltés dátuma: 2012-04-01
- Armstrong, Joe (2007): Programming Erlang: Software for a Concurrent World. USA: The Pragmatic Bookshelf.
- Cesarini, Francesco Thomson, Simon (2009): Erlang programming. USA: O'Reilly Media.
- Logan, Martin Merritt, Eric Carlsson, Richard (2011): Erlang and OTP in Action. USA: Manning Publications.
- Fielding, Roy Thomas (2001): Architectural Styles and the Design of Network-based Software Architectures. PhD. thesis, University of California, Irvine. Web: http://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf, letöltés dátuma: 2012-04-01.
- Erlang documentation... (2011) Web: http://www.erlang.org
- Akamai felmérés (2006): Retail web site performance: Consumer Reaction to a Poor Online Shopping Experience http://www.akamai.com/dl/reports/Site_Abandonment_Final_Report.pdf