

16 septembre 2021

BARRÉ Théo CHEN Longteng C. A. F. Bruno

1 THÉORIE

1.1 Estimation par moindres carrés du vecteur $oldsymbol{eta}$

1. Montrer que toute solution $\hat{\mathbf{u}} \in \arg\min_{\mathbf{u} \in \mathbb{R}^p} J_n(\mathbf{u})$ est solution des équations d'estimation en $\mathbf{u} \in \mathbb{R}^p$:

$$\mathbf{Z}^T\mathbf{Y} = \mathbf{Z}^T\mathbf{Z}\mathbf{u}$$

Comme l'espace d'image de \mathbf{Z} , $\operatorname{Im}\mathbf{Z}$ est un espace fermé, on peux faire la décomposition orthogonale. On suppose que $\mathbf{Y} = \mathbf{Y_1} + \mathbf{Y_2}$, où $\mathbf{Y_1} \in \operatorname{Im}\mathbf{Z}^{\perp}, \mathbf{Y_2} \in \operatorname{Im}\mathbf{Z}$. Et $\mathbf{Y_2}$ est la projection de \mathbf{Y} sur $\operatorname{Im}\mathbf{Z}$, alors on a $\mathbf{Z}^T(\mathbf{Y} - \mathbf{Y_2}) = 0, \mathbf{Y_2} = \mathbf{Z}\hat{\mathbf{u}}$.

Pour tout \mathbf{u} , $\|\mathbf{Y} - \mathbf{Z}\mathbf{u}\|^2 = \langle \mathbf{Y} - \mathbf{Z}\mathbf{u}, \mathbf{Y} - \mathbf{Z}\mathbf{u} \rangle = \|\mathbf{Y}_1\|^2 + \|\mathbf{Z}(\hat{\mathbf{u}} - \mathbf{u})\|^2$, donc si \mathbf{u} minimise $J_n(\mathbf{u})$, alors $\mathbf{u} = \hat{\mathbf{u}}$ et il satisfait :

$$\mathbf{Z}^T\mathbf{Y} = \mathbf{Z}^T\mathbf{Z}\mathbf{u}$$
.

2. Montrer que $\mathbf{Z}^{\#}\mathbf{Z} = \mathbf{I}_{p}$ et $\mathbf{Z}\mathbf{Z}^{\#} = H$ où H est le projecteur orthogonal sur l'espace vectoriel engendré par les colonnes de la matrice \mathbf{Z} .

 $\mathbf{Z}^{\#}\mathbf{Z} = (\mathbf{Z}^{T}\mathbf{Z})^{-1}\mathbf{Z}^{T}\mathbf{Z} = \mathbf{I}_{p}$, et $\mathbf{Z}\mathbf{Z}^{\#} = \mathbf{Z}(\mathbf{Z}^{T}\mathbf{Z})^{-1}\mathbf{Z}^{T}$, on se souvient que lorsque \mathbf{Z} est de rang p, le projecteur sur Im \mathbf{Z} est $\mathbf{Z}(\mathbf{Z}^{T}\mathbf{Z})^{-1}\mathbf{Z}^{T}$.

3. Montrer que l'estimateur des moindres carrés est unique et a pour expression :

$$\hat{\boldsymbol{\beta}} := (\mathbf{Z}^T \mathbf{Z})^{-1} \mathbf{Z}^T \mathbf{Y} = \mathbf{Z}^\# \mathbf{Y}$$

Si on considère l'estimateur des moindres carrés $\hat{\boldsymbol{\beta}}$, il doit minimiser $J_n(\mathbf{u})$, donc il satisfait $\mathbf{Z}^T\mathbf{Y} = \mathbf{Z}^T\mathbf{Z}\hat{\boldsymbol{\beta}}$, car $\mathbf{Z}^T\mathbf{Z}$ est inversible, $\hat{\boldsymbol{\beta}} = \mathbf{Z}^{\#}\mathbf{Y}$

4. Montrer que l'estimateur des moindres carrés est un estimateur sans biais de β .

$$\mathbb{E}_{ heta}\left[\hat{oldsymbol{eta}}
ight] = \mathbf{Z}^{\#}\mathbb{E}_{ heta}\left[\mathbf{Y}
ight] = \mathbf{Z}^{\#}\mathbf{Z}oldsymbol{eta} = oldsymbol{eta}.$$

5. Montrer que pour tout $\theta \in \Theta$, la matrice de covariance de cet estimateur est donnée par :

$$\operatorname{Var}_{\theta}(\hat{\boldsymbol{\beta}}) = \sigma^2(\mathbf{Z}^T\mathbf{Z})^{-1}$$

$$\operatorname{Var}_{\theta}(\hat{\boldsymbol{\beta}}) = \mathbf{Z}^{\#} \operatorname{Var}_{\theta}(\mathbf{Z}^{\#})^{T} = \sigma^{2}(\mathbf{Z}^{T}\mathbf{Z})^{-1}\mathbf{Z}^{T}\mathbf{Z}(\mathbf{Z}^{T}\mathbf{Z})^{-1} = (\mathbf{Z}^{T}\mathbf{Z})^{-1}.$$

6. Montrer que l'estimateur $\tilde{\boldsymbol{\beta}}$ est sans biais si et seulement si $\mathbf{BZ} = \mathbf{I}_p$. Si on a $\boldsymbol{\beta} = \mathbb{E}_{\theta} \left[\tilde{\boldsymbol{\beta}} \right] = \mathbf{BE}_{\theta} \left[\mathbf{Y} \right] = \mathbf{BZ} \boldsymbol{\beta}$, ce résultat doit être vrai pour tout $\boldsymbol{\beta}$, donc $\mathbf{BZ} = \mathbf{I}_p$, et si $\mathbf{BZ} = \mathbf{I}_p$, on a naturellement que $\tilde{\boldsymbol{\beta}}$ est sans biais.

1. Théorie

7. Montrer que pour tout $\theta \in \Theta$,

$$\mathbb{E}_{\theta}\left[(\tilde{\boldsymbol{\beta}} - \boldsymbol{\beta})(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})^T\right] = \sigma^2 \mathbf{B}(\mathbf{Z}^{\#})^T = \sigma^2 (\mathbf{Z}^T \mathbf{Z})^{-1}$$

Noter que cette quantité est la matrice de covariance $Cov_{\theta}(\tilde{\boldsymbol{\beta}},\hat{\boldsymbol{\beta}})$

$$\mathbb{E}_{\theta}\left[(\tilde{\boldsymbol{\beta}} - \boldsymbol{\beta})(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})^T\right] = \operatorname{Cov}_{\theta}(\tilde{\boldsymbol{\beta}}, \hat{\boldsymbol{\beta}}) = \mathbf{B}\operatorname{Var}_{\theta}(\mathbf{Y})(\mathbf{Z}^{\#})^T = \sigma^2\mathbf{B}\mathbf{Z}(\mathbf{Z}^T\mathbf{Z})^{-1} = \sigma^2(\mathbf{Z}^T\mathbf{Z})^{-1}$$

8. Montrer que pour tout $\theta \in \Theta$, $\operatorname{Var}_{\theta}(\tilde{\beta}) \succeq \operatorname{Var}_{\theta}(\hat{\beta})$.

Pour tout $x \in \mathbb{R}^p$, soit $h_1 = x^T(\tilde{\boldsymbol{\beta}} - \boldsymbol{\beta}), h_2 = x^T(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})$, on va montrer que $\operatorname{Var}_{\theta}(h_1) \geq \operatorname{Var}_{\theta}(h_2)$, on considère

$$r = \frac{\operatorname{Cov}_{\theta}(h_1, h_2)}{\sqrt{\operatorname{Var}_{\theta}(h_1)\operatorname{Var}_{\theta}(h_2)}}$$

On sait que $|r| \leq 1$ et $r = \frac{x^T \operatorname{Cov}_{\theta}(\tilde{\boldsymbol{\beta}}, \hat{\boldsymbol{\beta}}) x}{\sqrt{\operatorname{Var}_{\theta}(h_1) \operatorname{Var}_{\theta}(h_2)}} = \frac{x^T \operatorname{Var}_{\theta}(\hat{\boldsymbol{\beta}}) x}{\sqrt{x^T \operatorname{Var}_{\theta}(\hat{\boldsymbol{\beta}}) x x^T \operatorname{Var}_{\theta}(\hat{\boldsymbol{\beta}}) x}},$ on a $x^T \operatorname{Var}_{\theta}(\hat{\boldsymbol{\beta}}) x \leq x^T \operatorname{Var}_{\theta}(\tilde{\boldsymbol{\beta}}) x$. Alors, $\operatorname{Var}_{\theta}(\tilde{\boldsymbol{\beta}}) \succeq \operatorname{Var}_{\theta}(\hat{\boldsymbol{\beta}})$.

1.2 Estimation de la variance σ^2 et Coefficient de détermination

9. En observant que pour tout vecteur $w \in \mathbb{R}^l$, on a $Tr(ww^T) = ||w||^2$, montrer que

$$\hat{\sigma}^2 = (n-p)^{-1}SSE = \frac{1}{n-p}||Y - \mathbf{Z}\hat{\beta}||^2$$

est un estimateur sans biais de la variance σ^2 .

Donc, on va montrer que $\hat{\sigma}^2$ est un estimateur ainsi que $E_{\theta}[\hat{\sigma}^2] = \sigma^2$.

On a:

$$E_{\theta}[\hat{\sigma}^2] = \frac{1}{n-p} Tr(E_{\theta}(Y^T(I_n - H)^T(I_n - H)Y)) = \frac{1}{n-p} E_{\theta}(Y^T(I_n - H)Y)$$

Et on a $Y = Y_1 + Y_2$ avec où $Y_1 \in \operatorname{Im} \mathbf{Z}^{\perp}, Y_2 \in \operatorname{Im} \mathbf{Z}, Y_2 = HY$, donc $E_{\theta}[\hat{\sigma}^2] = \frac{1}{n-p} E_{\theta}(||Y_1||^2) =$, or $Y_1 = Y - HY = (I_n - H)(\mathbf{Z}\beta + \beta\epsilon(\theta)) = \sigma(I_n - H)\epsilon(\theta)$. Alors

$$E_{\theta}(||Y_1||^2) = \sigma^2 Tr(I_n - H)$$

Car H est un projecteur de rang p, donc Tr(H)=p. On a alors $E_{\theta}[\hat{\sigma}^2]=\sigma^2$, $\hat{\sigma}^2$ est non-biaisé.

1. Théorie

10. Montrer que

$$||Y||^2 = RSS + SSE$$

$$RSS + SSE = ||Y_1||^2 + ||Y_2||^2 = ||Y||^2$$

1.3 Cas de la régression linéaire gaussienne

11. Déterminer l'estimateur du maximum de vraisemblance du paramètre θ

Alors on va trouver le vecteur θ tel que la fonction

$$n\log\sigma + \sigma^{-2}\frac{1}{2}(Y - \mathbf{Z}\beta)^T(Y - \mathbf{Z}\beta)$$

atteigne son minimum. On a les équations suivantes :

$$\sigma^{2} = \frac{1}{n} (Y - \mathbf{Z}\beta)^{T} (Y - \mathbf{Z}\beta)$$
$$(Y - \mathbf{Z}\beta)^{T} \mathbf{Z} = 0$$

Donc
$$\hat{\beta} = (\mathbf{Z}^T \mathbf{Z})^{-1} \mathbf{Z}^T Y, \hat{\sigma}^2 = \frac{1}{n} ||Y - \mathbf{Z} \hat{\beta}||^2$$

12. Pour tout $\theta \in \Theta$, déterminer la distribution de l'estimateur des moindres carrés $\hat{\beta}$ sous \mathbb{P}_{θ}

 $\hat{\beta} = (\mathbf{Z}^T \mathbf{Z})^{-1} \mathbf{Z}^T Y$, donc $\hat{\beta}$ est un vecteur gaussien avec l'espérance $(\mathbf{Z}^T \mathbf{Z})^{-1} \mathbf{Z}^T \mathbb{E}_{\theta}(Y) = \beta$, la matrice de covariance $(\mathbf{Z}^T \mathbf{Z})^{-1} \mathbf{Z}^T Cov_{\theta}(Y) ((\mathbf{Z}^T \mathbf{Z})^{-1} \mathbf{Z}^T)^T = \sigma^2 (\mathbf{Z}^T \mathbf{Z})^{-1}$

Donc,
$$\hat{\beta} \sim N(\beta, \sigma^2(\mathbf{Z}^T\mathbf{Z})^{-1})$$

13. Pour tout $\theta \in \Theta$, déterminer la distribution de $\hat{\sigma^2}$ sous \mathbb{P}_{θ}

$$\hat{\sigma}^2 = \frac{1}{n} ||Y - \mathbf{Z}\hat{\beta}||^2 = \frac{1}{n} ||(I_n - H)(Y - \mathbf{Z}\beta)||^2, \text{ ici } H = \mathbf{Z}(\mathbf{Z}^T\mathbf{Z})^{-1}\mathbf{Z}^T, Y - \mathbf{Z}\beta \sim N(0, \sigma^2 I_n)$$

De plus $H^2=H$ est un projecteur de rang p, d'après le théorème de Cochran on a alors que $\frac{n}{(n-p)\sigma^2}\hat{\sigma^2}\sim \chi^2(n-p)$

14. Pour tout $\theta \in \Theta$, montrer que $\hat{\beta}$ et $\hat{\sigma}^2$ sont indépendants sous \mathbb{P}_{θ}

D'après le théorème de Cochran, Y-HY et HY sont indépendants, donc $\hat{\sigma}^2 = g(Y-HY)$ et $\hat{\beta} = (\mathbf{Z}^T\mathbf{Z})^{-1}\mathbf{Z}^THY = f(HY)$ sont indépendants.

1.4 Tests statistiques, cas régression linéaire gaussienne

15. Soit $x \in \mathbb{R}^p$. Montrer que sous \mathbb{P}_{θ} ,

$$\eta = \frac{x^T \hat{\beta} - x^T \beta}{\hat{\sigma} \sqrt{x^T (Z^T Z)^{-1} x}}$$

suit une loi de Student à (n-p) degrés de liberté.

 $X=rac{x^T\hat{eta}-x^Teta}{\sigma\sqrt{x^T(Z^TZ)^{-1}x}}$ suit la loi de $N(0,1),\ S=rac{\hat{\sigma^2}}{\sigma^2}$ suit la loi de $\chi^2(n-p)$, de plus d'après la conclusion précédente X,S sont indépendants, donc $\eta=rac{X}{\sqrt{S}}$ suit la loi de Student à degrés de liberté.

16. Soit $\alpha \in (0,1)$. Déterminer un intervalle de confiance bilatéral de niveau de couverture $1-\alpha$ pour $\beta^T x$.

 $\beta^T x = x^T \beta$, et η suit une loi de Student à degrés de liberté.

$$\mathbb{P}_{\theta}[|\eta| \le t_{n-p}(1 - \alpha/2)] = 1 - \alpha$$

Donc on a un intervalle de confiance bilatéral I de niveau de couverture $1-\alpha$ pour $\beta^T x$, $I = [x^T \hat{\beta} - t_{n-p}(1-\alpha/2)\hat{\sigma}\sqrt{x^T(Z^TZ)^{-1}x}, x^T \hat{\beta} + t_{n-p}(1-\alpha/2)\hat{\sigma}\sqrt{x^T(Z^TZ)^{-1}x}]$.

$$\mathbb{P}_{\theta}[\beta^T x \in I] = \mathbb{P}_{\theta}[|\eta| \le t_{n-p}(1 - \alpha/2)] = 1 - \alpha$$

17. Soit $\alpha \in (0,1)$. Construire un test de l'hypothèse

$$H_0: \beta^T x = 0$$
, contre $H_1: \beta^T x \neq 0$

de niveau α .

On rejette H_0 si et seulement si |T| > c, ici $T = \frac{x^T \hat{\beta}}{\hat{\sigma} \sqrt{x^T (Z^T Z)^{-1} x}}$ donc on doit avoir

$$\mathbb{P}_{\beta^T x = 0}(|T| > c) \le \alpha$$

Quand $\beta^T x = 0$, T suit une loi de Student à (n-p) degrés de liberté. On peut prendre $c = t_{n-p}(1-\alpha/2)$. i.e. Quand $|T| > t_{n-p}(1-\alpha/2)$, on rejette H_0 .

18. Déterminer la p-valeur de ce test. $\hat{\alpha}(Z) = \inf\{\alpha \in (0,1) : Z \in \mathcal{R}_{\alpha}\}, \text{ ici } Z \in \mathcal{R}_{\alpha} \text{ si et seulement si } |T(Z)| > t_{n-p}(1-\alpha/2)$ C'est-à-dire que $\alpha > 2 - 2\phi(|T(Z)|), \phi$ est la loi de distribution de Student à (n-p) degrés de liberté. Alors la p-valeur est $2 - \phi(|\frac{x^T\hat{\beta}}{\hat{\sigma}\sqrt{x^T(Z^TZ)^{-1}x}}|)$

2. Pratique

19. Soit A une matrice de taille $q \times p$ de rang $q \leq p$. Montrer que sous \mathbb{P}_{θ}

$$\frac{1}{q\hat{\sigma}^2} \{ A(\hat{\beta} - \beta) \}^T [A(Z^T Z)^{-1} A^T] \{ A(\hat{\beta} - \beta) \}$$

suit une loi de Fisher à (q, n-p) degrés de liberté.

Soit $v = A(\hat{\beta} - \beta)$, v suit la loi de $N(0, \sigma^2 A(Z^T Z)^{-1} A^T)$, et

B est inversible. De plus $B^T=B$, B est définie positive. Donc on peut trouver une matrice inversible Q de taille $q\times q$ tel que $QQ^T=B$. Soit $w=Q^{-1}v\sim N(0,\sigma^2Q^{-1}B(Q^T)^{-1})=N(0,\sigma^2I_q)$. Donc $\frac{w^Tw}{\sigma^2}$ suit la loi de $\chi^2(q)$, de plus $(n-p)\frac{\hat{\sigma}^2}{\sigma^2}$ suit la loi de $\chi^2(n-p)$, et w est une fonction de $\hat{\beta}$, donc w est indépendant de $\hat{\sigma}$. Donc $\frac{w^Tw}{q\hat{\sigma}^2}$ suit une loi de Fisher à (q,n-p) degrés de liberté. $w^Tw=v^T(QQ^T)^{-1}v=vB^{-1}v$, donc $\frac{1}{q\hat{\sigma}^2}\{A(\hat{\beta}-\beta)\}^T[A(Z^TZ)^{-1}A^T]\{A(\hat{\beta}-\beta)\}$ suit une loi de Fisher à (q,n-p) degrés de liberté.

20. Déterminer une région de confiance pour le vecteur (β_1, β_2) (on a posé $\beta = [\beta_1, ..., \beta_p]^T$).

Avec la conclusion précédente, on peut poser que $A = (a_{ij})_{2\times p} = [I_2, 0]$, avec cela on a $\{A(\beta)\}^T = (\beta_1, \beta_2)$

Soit $v=A(\hat{\beta}-\beta)$, $T=\frac{v^TB^{-1}v}{2\hat{\sigma}^2}$ suit une loi de Fisher à (2,n-p) degrés de liberté. Car

$$\mathbb{P}_{\theta}(T \le F_{2,n-n}(1-\alpha)) = 1 - \alpha$$

Donc la région de confiance pour le vecteur (β_1, β_2) est la zone

$$\Omega = \{ (\beta_1, \beta_2) | a(\hat{\beta}_1 - \beta_1)^2 + b(\hat{\beta}_2 - \beta_2)^2 + 2c(\hat{\beta}_1 - \beta_1)(\hat{\beta}_2 - \beta_2) \le 2\hat{\sigma}^2 F_{2,n-p}(1 - \alpha) \}$$

Ici $a = z_{11}, b = z_{22}, c = z_{12}$, si on suppose que $(Z^T Z)^{-1} = (z_{ij})_{p \times p}$, comme elle est inversible et définie positive, on a $ab > c^2$, donc Ω est une ellipse.

PRATIQUE

cf jupyter notebook