Ćwiczenie 5: Układy synchroniczne

Zadanie:

Zbudować układ synchroniczny konwersji szeregowej kodu binarnego na kod Graya.

Zamianę kodu binarnego na kod Graya opisuje wzór:

$$\begin{cases} g_n = b_n & \text{przepisać najstarszy bit} \\ g_i = b_{i+1} \oplus b_i & \text{dla} \quad i = N-1 \dots 0 \end{cases}$$

Konwersja realizowana jest od bitów starszych do bitów młodszych.

Stan układu to zapamiętany poprzedni bit binarny $(q_i = b_{i+1})$, a wejściem jest bieżący bit binarny (b_i) .

Wyjście układu (bit w kodzie Graya) wynika ze wzoru: $g_i = g_i \oplus b_i$.

Graf układu oraz tabele przejść stanów (klasyczna i Karnaugha) mają postać:

q	b	q'	g
0	0	0	0
0	1	1	1
1	0	0	1
1	1	1	0

q^{b}	0	1
0	0/0	1/1
1	0/1	1/0

Sterowanie przerzutnikiem JK dla bitu q Tabela wyjścia g

Zasada działania przerzutnika JK

q^{b}	0	1
0	0, x	/ 1\x
1	$\mathbf{x}, 1$	\ x' ₁ 0

q^{b}	0	1
0	0	(1)
1	$(\widehat{\mathbb{T}})$	0

Wyniki: J = b, $K = \overline{b}$, $g = \overline{q} \cdot b + q \cdot \overline{b} = q \oplus b$

Stan początkowy przerzutnika: q = 0.

Liczbę binarną należy wpisać do rejestru i wyjście rejestru podłączyć do wejścia b układu.

Wynik g konwersji szeregowej wpisywać do drugiego rejestru.

W zestawie wejścia zegarowe wszystkich układów są podłączone do wspólnego sygnału taktującego (gen).

(UWAGA! W SPRAWOZDANIU KAŻDY SCHEMAT MUSI BYĆ NARYSOWANY RĘCZNIE)