3 Neural Networks

- 1. Give brief definitions of the following terms:
 - neuron

an information processing unit.

· action potential

the signal outputted by a biological neuron.

· firing rate

the number of action potentials emitted during a defined time-period.

synapse

the connection between two neurons.

· an artificial neural network

a parallel architecture composed of many simple processing elements interconnected to achieve certain collective computational capabilities.

2. A neuron has a transfer function which is a linear weighted sum of its inputs and an activation function that is the Heaviside function. If the weights are $\mathbf{w} = [0.1, -0.5, 0.4]$, and the threshold zero, what is the output of this neuron when the input is: $\mathbf{x}_1 = [0.1, -0.5, 0.4]^t$ and $\mathbf{x}_2 = [0.1, 0.5, 0.4]^t$?

Output of neuron is defined as:

$$y = H(\mathbf{w}\mathbf{x} - \theta)$$

$$y_1 = H(\mathbf{w}\mathbf{x}_1 - \theta) = H((0.1 \times 0.1) + (-0.5 \times -0.5) + (0.4 \times 0.4) - 0) = H(0.42) = 1$$

$$y_2 = H(\mathbf{w}\mathbf{x}_2 - \theta) = H((0.1 \times 0.1) + (-0.5 \times 0.5) + (0.4 \times 0.4) - 0) = H(-0.08) = 0$$

3. A Linear Threshold Unit has one input, x_1 , that can take binary values. Apply the sequential Delta learning rule so that the output of this neuron, y, is equal to $\bar{x_1}$ (or NOT(x_1)), *i.e.*, such that:

$$\begin{array}{c|cc}
x_1 & y \\
0 & 1 \\
1 & 0
\end{array}$$

Assume initial values of $\theta=1.5$ and $w_1=2$, and use a learning rate of 1.

Using Augmented notation, $y = H(\mathbf{w}\mathbf{x})$ where $\mathbf{w} = [-\theta, w_1]$, and $\mathbf{x} = [1, x_1]^T$.

For the Delta rule, weights are updated such that: $\mathbf{w} \leftarrow \mathbf{w} + \eta(t-y)\mathbf{x}^t$ Initial $\mathbf{w} = [-1.5, 2]$

\mathbf{x}^t	t	$y = H(\mathbf{w}\mathbf{x})$	t-y	$\eta(t-y)\mathbf{x}^t$	\mathbf{w}
(1,0)	1	$H(-1.5 \times 1 + 2 \times 0) = H(-1.5) = 0$	1	[1, 0]	[-0.5, 2]
(1,1)	0	$H(-0.5 \times 1 + 2 \times 1) = H(1.5) = 1$	-1	[-1,-1]	[-1.5, 1]
(1,0)	1	$H(-1.5 \times 1 + 1 \times 0) = H(-1.5) = 0$	1	[1,0]	[-0.5, 1]
(1,1)	0	$H(-0.5 \times 1 + 1 \times 1) = H(0.5) = 1$	-1	[-1,-1]	[-1.5, 0]
(1,0)	1	$H(-1.5 \times 1 + 0 \times 0) = H(-1.5) = 0$	1	[1, 0]	[-0.5, 0]
(1,1)	0	$H(-0.5 \times 1 + 0 \times 1) = H(-0.5) = 0$	0	[0, 0]	[-0.5, 0]
(1,0)	1	$H(-0.5 \times 1 + 0 \times 0) = H(-0.5) = 0$	1	[1,0]	[0.5, 0]
(1,1)	0	$H(0.5 \times 1 + 0 \times 1) = H(0.5) = 1$	-1	[-1,-1]	[-0.5, -1]
(1,0)	1	$H(-0.5 \times 1 - 1 \times 0) = H(-0.5) = 0$	1	[1,0]	[0.5, -1]
(1,1)	0	$H(0.5 \times 1 + -1 \times 1) = H(-0.5) = 0$	0	[0, 0]	[0.5, -1]
(1,0)	1	$H(0.5 \times 1 - 1 \times 0) = H(0.5) = 1$	0	[0, 0]	[0.5, -1]

Learning has converged, so required weights are $\mathbf{w}=[0.5,-1]$, or equivalently $\theta=-0.5$, $w_1=-1$.

4. Repeat the above question using the batch Delta learning rule.

Epoch 1, initial $\mathbf{w} = [-1.5, 2]$

\mathbf{x}^t	t	$y = H(\mathbf{w}\mathbf{x})$	t-y	$\eta(t-y)\mathbf{x}^t$	w	
(1,0)	1	$H(-1.5 \times 1 + 2 \times 0) = H(-1.5) = 0$	1	[1,0]		
(1,1)	0	$H(-1.5 \times 1 + 2 \times 1) = H(0.5) = 1$	-1	[-1, -1]		
	total weight change $[0,-1]$					

Epoch 2, initial $\mathbf{w} = [-1.5, 1]$

\mathbf{x}^t	t	$y = H(\mathbf{w}\mathbf{x})$	t-y	$\eta(t-y)\mathbf{x}^t$	w
(1,0)	1	$H(-1.5 \times 1 + 1 \times 0) = H(-1.5) = 0$	1	[1,0]	
(1,1)	0	$H(-1.5 \times 1 + 1 \times 1) = H(-0.5) = 0$	0	[0,0]	
	total weight change $[1,0]$				[-0.5, 1]

Epoch 3, initial $\mathbf{w} = [-0.5, 1]$

\mathbf{x}^t	t	$y = H(\mathbf{w}\mathbf{x})$	t-y	$\eta(t-y)\mathbf{x}^t$	\mathbf{w}
(1,0)	1	$H(-0.5 \times 1 + 1 \times 0) = H(-0.5) = 0$	1	[1, 0]	
(1,1)	0	$H(-0.5 \times 1 + 1 \times 1) = H(0.5) = 1$	-1	[-1, -1]	
	total weight change $[0,-1]$				

Epoch 4, initial $\mathbf{w} = [-0.5, 0]$

	\mathbf{x}^t	t	$y = H(\mathbf{w}\mathbf{x})$	t-y	$\eta(t-y)\mathbf{x}^t$	\mathbf{w}
ſ	(1,0)	1	$H(-0.5 \times 1 + 0 \times 0) = H(-0.5) = 0$	1	[1, 0]	
	(1, 1)	0	$H(-0.5 \times 1 + 0 \times 1) = H(-0.5) = 0$	0	[0, 0]	
	total weight change [1,0] [0					

Epoch 5, initial $\mathbf{w} = [0.5, 0]$

\mathbf{x}^t	t	$y = H(\mathbf{w}\mathbf{x})$	t-y	$\eta(t-y)\mathbf{x}^t$	w
(1,0)	1	$H(0.5 \times 1 + 0 \times 0) = H(0.5) = 1$	0	[0, 0]	
(1, 1)	0	$H(0.5 \times 1 + 0 \times 1) = H(0.5) = 1$	-1	[-1, -1]	
	total weight change $\begin{bmatrix} -1, -1 \end{bmatrix}$				

Epoch 6, initial $\mathbf{w} = [-0.5, -1]$

\mathbf{x}^t	t	$y = H(\mathbf{w}\mathbf{x})$	t-y	$\eta(t-y)\mathbf{x}^t$	w
(1,0)	1	$H(-0.5 \times 1 - 1 \times 0) = H(-0.5) = 0$	1	[1, 0]	
(1,1)	0	$H(-0.5 \times 1 - 1 \times 1) = H(-1.5) = 0$	0	[0,0]	
	total weight change				[0.5, -1]

Epoch 7, initial $\mathbf{w} = [0.5, -1]$

\mathbf{x}^t	t	$y = H(\mathbf{w}\mathbf{x})$	t-y	$\eta(t-y)\mathbf{x}^t$	w
(1,0)	1	$H(0.5 \times 1 - 1 \times 0) = H(0.5) = 1$	0	[0,0]	
(1, 1)	0	$H(0.5 \times 1 - 1 \times 1) = H(-0.5) = 0$	0	[0,0]	
total weight change $[0,0]$					

Learning has converged, so required weights are $\mathbf{w} = [0.5, -1]$, or equivalently $\theta = -0.5$, $w_1 = -1$.

5. A Linear Threshold Unit has two inputs, x_1 and x_2 , that can take binary values. Apply the sequential Delta learning rule so that the output of this neuron, y, is equal to x_1 AND x_2 , *i.e.*, such that:

Assume initial values of $\theta=-0.5$, $w_1=1$ and $w_2=1$, and use a learning rate of 1.

Using Augmented notation, $y = H(\mathbf{w}\mathbf{x})$ where $\mathbf{w} = [-\theta, w_1, w_2]$, and $\mathbf{x} = [1, x_1, x_2]^t$.

For the Delta rule, weights are updated such that: $\mathbf{w} \leftarrow \mathbf{w} + \eta(t-y)\mathbf{x}^t$

Initial w=[0.5, 1, 1]

\mathbf{x}^t	t	$y = H(\mathbf{w}\mathbf{x})$	t-y	$\eta(t-y)\mathbf{x}^t$	w
(1,0,0)	0	$H(0.5 \times 1 + 1 \times 0 + 1 \times 0) = H(0.5) = 1$	-1	[-1, 0, 0]	[-0.5, 1, 1]
(1,0,1)	0	$H(-0.5 \times 1 + 1 \times 0 + 1 \times 1) = H(0.5) = 1$	-1	[-1, 0, -1]	[-1.5, 1, 0]
(1,1,0)	0	$H(-1.5 \times 1 + 1 \times 1 + 0 \times 0) = H(-0.5) = 0$	0	[0, 0, 0]	[-1.5, 1, 0]
(1, 1, 1)	1	$H(-1.5 \times 1 + 1 \times 1 + 0 \times 1) = H(-0.5) = 0$	1	[1, 1, 1]	[-0.5, 2, 1]
(1,0,0)	0	$H(-0.5 \times 1 + 2 \times 0 + 1 \times 0) = H(-0.5) = 0$	0	[0, 0, 0]	[-0.5, 2, 1]
(1,0,1)	0	$H(-0.5 \times 1 + 2 \times 0 + 1 \times 1) = H(0.5) = 1$	-1	[-1, 0, -1]	[-1.5, 2, 0]
(1,1,0)	0	$H(-1.5 \times 1 + 2 \times 1 + 0 \times 0) = H(0.5) = 1$	-1	[-1, -1, 0]	[-2.5, 1, 0]
(1,1,1)	1	$H(-2.5 \times 1 + 1 \times 1 + 0 \times 1) = H(-1.5) = 0$	1	[1, 1, 1]	[-1.5, 2, 1]
(1,0,0)	0	$H(-1.5 \times 1 + 2 \times 0 + 1 \times 0) = H(-1.5) = 0$	0	[0, 0, 0]	[-1.5, 2, 1]
(1,0,1)	0	$H(-1.5 \times 1 + 2 \times 0 + 1 \times 1) = H(-0.5) = 0$	0	[0, 0, 0]	[-1.5, 2, 1]
(1,1,0)	0	$H(-1.5 \times 1 + 2 \times 1 + 1 \times 0) = H(0.5) = 1$	-1	[-1, -1, 0]	[-2.5, 1, 1]
(1,1,1)	1	$H(-2.5 \times 1 + 1 \times 1 + 1 \times 1) = H(-0.5) = 0$	1	[1, 1, 1]	[-1.5, 2, 2]
(1,0,0)	0	$H(-1.5 \times 1 + 2 \times 0 + 2 \times 0) = H(-1.5) = 0$	0	[0, 0, 0]	[-1.5, 2, 2]
(1,0,1)	0	$H(-1.5 \times 1 + 2 \times 0 + 2 \times 1) = H(0.5) = 1$	-1	[-1, 0, -1]	[-2.5, 2, 1]
(1,1,0)	0	$H(-2.5 \times 1 + 2 \times 1 + 1 \times 0) = H(-0.5) = 0$	0	[0, 0, 0]	[-2.5, 2, 1]
(1, 1, 1)	1	$H(-2.5 \times 1 + 2 \times 1 + 1 \times 1) = H(0.5) = 1$	0	[0, 0, 0]	[-2.5, 2, 1]
(1,0,0)	0	$H(-2.5 \times 1 + 2 \times 0 + 1 \times 0) = H(-2.5) = 0$	0	[0, 0, 0]	[-2.5, 2, 1]
(1,0,1)	0	$H(-2.5 \times 1 + 2 \times 0 + 1 \times 1) = H(-1.5) = 0$	0	[0, 0, 0]	[-2.5, 2, 1]

Learning has converged, so required weights are $\mathbf{w}=[-2.5,2,1]$, or equivalently $\theta=2.5$, $w_1=2$, $w_2=1$.

The decision surface looks like this:

6. Consider the following linearly separable data set.

\mathbf{x}^t	class
(0,2)	1
(1,2)	1
(2,1)	1
(-3,1)	0
(-2,-1)	0
(-3, -2)	0

Apply the Sequential Delta Learning Algorithm to find the parameters of a linear threshold neuron that will correctly classify this data. Assume initial values of $\theta=-1$, $w_1=0$ and $w_2=0$, and a learning rate of 1.

Using Augmented notation, $y = H(\mathbf{w}\mathbf{x})$ where $\mathbf{w} = [-\theta, w_1, w_2]$, and $\mathbf{x} = [1, x_1, x_2]^T$. So initial weight values are $\mathbf{w} = [1, 0, 0]$ and the dataset is:

\mathbf{x}^t	t
(1, 0, 2)	1
(1, 1, 2)	1
(1, 2, 1)	1
(1, -3, 1)	0
(1, -2, -1)	0
(1, -3, -2)	0

For the Sequential Delta Learning Algorithm, weights are updated such that: $\mathbf{w} \leftarrow \mathbf{w} + \eta(t-y)\mathbf{x}^t$. Here, $\eta = 1$.

iteration	\mathbf{w}	\mathbf{x}^t	$y = H(\mathbf{w}\mathbf{x})$	t	$\mathbf{w} \leftarrow \mathbf{w} + (t - y)\mathbf{x}^t$
1	[1, 0, 0]	[1, 0, 2]	1	1	[1, 0, 0]
2	[1, 0, 0]	[1, 1, 2]	1	1	[1, 0, 0]
3	[1, 0, 0]	[1, 2, 1]	1	1	[1, 0, 0]
4	[1, 0, 0]	[1, -3, 1]	1	0	[1,0,0] - [1,-3,1] = [0,3,-1]
5	[0, 3, -1]	[1, -2, -1]	0	0	[0, 3, -1]
6	[0, 3, -1]	[1, -3, -2]	0	0	[0, 3, -1]
7	[0, 3, -1]	[1, 0, 2]	0	1	[0,3,-1] + [1,0,2] = [1,3,1]
8	[1, 3, 1]	[1, 1, 2]	1	1	[1, 3, 1]
9	[1, 3, 1]	[1, 2, 1]	1	1	[1, 3, 1]
10	[1, 3, 1]	[1, -3, 1]	0	0	[1, 3, 1]
11	[1, 3, 1]	[1, -2, -1]	0	0	[1, 3, 1]
12	[1, 3, 1]	[1, -3, -2]	0	0	[1, 3, 1]
13	[1, 3, 1]	[1, 0, 2]	1	1	[1, 3, 1]

Learning has converged (we have gone through all the data without needing to update the weights), so required parameters are $\mathbf{w} = (1, 3, 1)$.

7. A negative feedback network has three inputs and two output neurons, that are connected with weights $\mathbf{W} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}$. Determine the activation of the output neurons after 5 iterations when the input is $\mathbf{x} = (1,1,0)^T$, assuming that the output neurons are updated using parameter $\alpha = 0.25$, and the activations of the output neurons are initialised to be all zero.

The activation of a negative feedback network is determined by iteratively evaluating the following equations:

$$\mathbf{e} = \mathbf{x} - \mathbf{W}^T \mathbf{y}$$
$$\mathbf{y} \leftarrow \mathbf{y} + \alpha \mathbf{W} \mathbf{e}$$

iteration	\mathbf{e}^{T}	$(\mathbf{We})^T$	\mathbf{y}^T	$(\mathbf{W}^T\mathbf{y})^T$
1	(1, 1, 0)	(2,2)	(0.5, 0.5)	(1, 1, 0.5)
2	(0,0,-0.5)	(0, -0.5)	(0.5, 0.375)	(0.875, 0.875, 0.375)
3	(0.125, 0.125, -0.375)	(0.25, -0.125)	(0.5625, 0.34375)	(0.90625, 0.90625, 0.34375)
4	(0.09375, 0.09375, -0.34375)	(0.1875, -0.15625)	(0.60938, 0.30469)	(0.91406, 0.91406, 0.30469)
5	(0.085938, 0.085938, -0.30469)	(0.17188, -0.13281)	(0.65234, 0.27148)	(0.92383, 0.92383, 0.27148)

So output is
$$\left(\begin{array}{c} 0.65234 \\ 0.27148 \end{array} \right)$$

Note, competition results in the first neuron increasing its output, while the output of the second neuron is suppressed. Also, note that the vector $\mathbf{W}^T\mathbf{y}$ becomes similar to the input \mathbf{x} . $\mathbf{W}^T\mathbf{y}$ converges towards a reconstruction of the input.

8. Repeat the previous question using a value of $\alpha=0.5$.

$$\mathbf{e} = \mathbf{x} - \mathbf{W}^T \mathbf{y}$$
$$\mathbf{y} \leftarrow \mathbf{y} + \alpha \mathbf{W} \mathbf{e}$$

iteration	\mathbf{e}^T	$(\mathbf{We})^T$	\mathbf{y}^T	$(\mathbf{W}^T\mathbf{y})^T$
1	(1, 1, 0)	(2,2)	(1,1)	(2, 2, 1)
2	(-1, -1, -1)	(-2, -3)	(0, -0.5)	(-0.5, -0.5, -0.5)
3	(1.5, 1.5, 0.5)	(3, 3.5)	(1.5, 1.25)	(2.75, 2.75, 1.25)
4	(-1.75, -1.75, -1.25)	(-3.5, -4.75)	(-0.25, -1.125)	(-1.375, -1.375, -1.125)
5	(2.375, 2.375, 1.125)	(4.75, 5.875)	(2.125, 1.8125)	(3.9375, 3.9375, 1.8125)

So output is
$$\left(\begin{array}{c} 2.125 \\ 1.8125 \end{array}\right)$$

Note, competition results in oscillatory responses. If α is too large the network becomes unstable. Instability is a common problem with recurrent neural networks.

9. A more stable method of calculating the activations in a negative feedback network is to use the following update rules:

$$\mathbf{e} = \mathbf{x} \oslash \left[\mathbf{W}^T \mathbf{y} \right]_{\epsilon_2}$$
$$\mathbf{y} \leftarrow \left[\mathbf{y} \right]_{\epsilon_1} \odot \tilde{\mathbf{W}} \mathbf{e}$$

where $[v]_{\epsilon} = \max(\epsilon, v)$; ϵ_1 and ϵ_2 are parameters; $\tilde{\mathbf{W}}$ is equal to \mathbf{W} but with each row normalised to sum to one; and \odot and \odot indicate element-wise division and multiplication respectively.

This is called Regulatory Feedback or Divisive Input Modulation.

Determine the activation of the output neurons after 5 iterations when the input is $\mathbf{x}=(1,1,0)^T$, and $\mathbf{W}=\begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}$, assuming that $\epsilon_1=\epsilon_2=0.01$, and the activations of the output neurons are initialised to be all zero.

26

$$\tilde{\mathbf{W}} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & 0\\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{pmatrix}$$

iteration	\mathbf{e}^T	$(ilde{\mathbf{W}}\mathbf{e})^T$	\mathbf{y}^T	$(\mathbf{W}^T\mathbf{y})^T$
1	(100, 100, 0)	(100, 66.66667)	(1, 0.66667)	(1.6667, 1.6667, 0.66667)
2	(0.6, 0.6, 0)	(0.6, 0.4)	(0.6, 0.26667)	(0.86667, 0.86667, 0.26667)
3	(1.1538, 1.1538, 0)	(1.1538, 0.76923)	(0.69231, 0.20513)	(0.89744, 0.89744, 0.20513)
4	(1.1143, 1.1143, 0)	(1.1143, 0.74286)	(0.77143, 0.15238)	(0.92381, 0.92381, 0.15238)
5	(1.0825, 1.0825, 0)	(1.0825, 0.72165)	(0.83505, 0.10997)	(0.94502, 0.94502, 0.10997)

So output is
$$\left(\begin{array}{c} 0.83505 \\ 0.10997 \end{array} \right)$$

Note, competition results in the first neuron increasing its output, while the output of the second neuron is suppressed. Also, note that the vector $\mathbf{W}^T\mathbf{y}$ becomes similar to the input \mathbf{x} . $\mathbf{W}^T\mathbf{y}$ converges towards a reconstruction of the input.

10. The figure below shows an autoencoder neural network.

Draw a diagram of a de-noising autoencoder and briefly explain how a de-noising autoencoder is trained.

The network is trained so that the output, \mathbf{r} , reconstructs the input, \mathbf{x} . However, before encoding is performed the input is corrupted with noise. This mitigates overfitting.