

# UTS FISIKA 1B 2012/2013 Dibuat oleh: Reynald Saputra

# Soal Ujian Pendek

1. Sebuah perahu cepat A berbelok dengan jari-jari 80 m, perahu cepat B berbelok dengan jari-jari 240 m. kedua perahu yang memiliki massa sama tersebut juga mengalami percepatan sentripetal yang sama. Tentukanlah perbandingan laju  $v_A/v_B$  dari kedua perahu?

Solusi:

$$a_{sp}$$
 perahu A =  $a_{sp}$  perahu B 
$$\frac{v_A^2}{r_A} = \frac{v_B^2}{r_B}$$
 
$$\frac{v_A^2}{v_B^2} = \frac{r_A}{r_B}$$
 
$$\frac{v_A^2}{v_D^2} = \frac{80}{240} = \frac{1}{3}$$

2. Sebuah gaya sebesar 10 N yang membentuk sudut 30° terhadap dinding (lihat gambar) menekan buku 0,5 kg pada dinding vertikal. Buku awalnya dalam keadaan diam. Jika koefisien gesekan buku dengan dinding  $\mu_k = 0,6$  dan  $\mu_s = 0,8$ , tentukan besar dan arah percepatan buku.

## Solusi:

Cek buku bergerak atau tidak:

$$F\cos 30^{\circ} - f_{s,max} - W = 10 \times \frac{\sqrt{3}}{2} - \mu_s N - mg$$

$$= 5\sqrt{3} - 0, 8 \times F \sin 30^{\circ} - (0, 5)(10)$$

$$= 5\sqrt{3} - 0, 8 \times 10 \times \frac{1}{2} - 5$$

$$= 5\sqrt{3} - 4 - 5$$

$$= 5\sqrt{3} - 9 < 0$$

Jadi, buku tidak bergerak sehingga tidak ada percepatan (percepatan bernilai 0).

3. Sebuah benda (m= 0,2 kg) dijatuhkan dari keadaan diam di posisi A, kemudian bergerak dalam lintasan 1/4 lingkaran menuju B tanpa gesekan. Kemudian benda bergerak dari B ke C diatas lantai kasar ( $mu_k = 0, 4$ ), sehingga benda berhenti di C. Tentukan jarak BC.

## Solusi:

Proses A ke B:

$$EK_A + EP_A = EK_B + EP_B$$

$$0 + mgR = \frac{1}{2}mv_B^2 + 0$$

$$mgR = \frac{1}{2}mv_B^2$$

$$v_B^2 = 2gR = 2(10)(1, 6) = 32$$

Misalkan s jarak dari B ke C. Proses B ke C:

$$v_C^2 = v_B^2 - 2as$$

$$0 = 32 - 2as$$

$$2as = 32$$

$$s = \frac{16}{a}$$

$$s = \frac{16}{f_k/m}$$

$$s = \frac{16m}{f_k}$$

$$s = \frac{16m}{\mu_k N} = \frac{16m}{\mu_k mg}$$

$$s = \frac{16}{\mu_k g} = \frac{16}{(0,4)(10)}$$

$$s = 4 \text{ meter}$$

4. Sebuah benda bermassa 2 kg sedang bergerak dalam arah garis lurus. Gambar di bawah ini menunjukkan grafik resultan gaya yang bekerja pada benda tersebut sebagai fungsi waktu. Bila dari kecepatan awal benda adalah -5 m/s, hitung kecepatan benda setelah 20 detik.

Solusi:

$$\Delta \vec{p} = \int_0^{20} F(t)dt \text{ (luas daerah)}$$

$$mv_{20} - mv_0 = \frac{1}{2}(15)(10)$$

$$2v_{20} - 2(-5) = 75$$

$$2v_{20} + 10 = 75$$

$$2v_{20} = 65$$

$$v_{20} = 32, 5 \text{ m/s}$$

5. Sebuah balok dari keadaan diam di puncak A meluncur di atas permukaan licin berbentuk setengah bola berjari-jari R. Pada sudut  $\alpha$  berapa balok mulai terlepas dari permukaan bola?

### Solusi:

Ketika mulai terlepas dari permukaan, gaya normal N=0 sehingga

$$W \cos \alpha - N = ma_{sp}$$

$$mg \cos \alpha - 0 = m\frac{v_B^2}{R}$$

$$mg \cos \alpha = m\frac{v_B^2}{R}$$

$$v_B^2 = gR \cos \alpha$$

Berdasarkan hukum kekekalan energi,

$$EK_A + EP_A = EK_B + EP_B$$

$$0 + mgR = \frac{1}{2}mv_B^2 + mgR\cos\alpha$$

$$mgR = \frac{1}{2}mv_B^2 + mgR\cos\alpha$$

$$gR = \frac{1}{2}v_B^2 + gR\cos\alpha$$

$$gR = \frac{1}{2}gR\cos\alpha + gR\cos\alpha$$

$$1 = \frac{1}{2}\cos\alpha + \cos\alpha$$

$$1 = \frac{3}{2}\cos\alpha$$

$$\cos\alpha = \frac{2}{3}$$

$$\alpha = \cos^{-1}\left(\frac{2}{3}\right)$$

6. Sebuah rangkaian kereta yang terdiri dari lokomotif dan sebuah gerbong sedang bergerak dengan kecepatan 10 m/s ( $m_L = 2500$  kg,  $m_G = 1000$  kg). Suatu ketika sambungan antara lokomotif dan gerbong terputus, sehingga kecepatan gerbong menjadi setengah dari nilai mula-mulanya. Berapakah kecepatn lokomotif saat itu? Anggap rel licin.

#### Solusi:

Berdasarkan hukum kekekalan momentum,

$$m_L v_{L1} + m_G v_{G1} = m_L v_{L2} + m_G v_{G2}$$

$$(2500)(10) + (1000)(10) = (2500)v_{L2} + (1000)(0, 5 \times 10)$$

$$25000 + 10000 = 2500v_{L2} + 5000$$

$$35000 = 2500v_{L2} + 5000$$

$$2500v_{L2} = 30000$$

$$v_{L2} = 12 \text{ m/s}$$

7. Jika benda m di bawah ini berada dalam keadaan setimbang, tentukanlah besar dan arah gaya gesek statik antara lantai dan benda  $m(\mu_s = 0, 6)$ . Diketahui besar  $F_1 = 100 \text{ N}, F_2 = 50 \text{ N}, m = 20 \text{ kg}, \tan \alpha = 3/4.$ 

Solusi:

$$\sum F_x = 0$$

$$F_1 - F_2 \sin \alpha - f = 0$$

$$100 - 50 \times \frac{3}{5} - f = 0$$

$$100 - 30 - f = 0$$

$$70 - f = 0$$

$$f = 70 \text{ N}$$

Gaya gesek statik besarnya 70 N dengan arah ke kiri.

8. Sebuah benda yang bermassa 4 kg berada di atas bidang datar licin, ditarik dengan gaya 50 N berarah membentuk sudut 37° terhadap arah mendatar, tentukan besar dan arah percepatan benda tersebut.

Solusi:

$$\sum F_x = ma$$

$$50 \cos 37^\circ = 4a$$

$$50 \times \frac{4}{5} = 4a$$

$$40 = 4a$$

$$a = 10 \text{ m/s}^2$$

Jadi, percepatan sebesar  $10 \text{ m/s}^2$  ke arah kanan.

9. Sebuah benda bermassa 20 kg melaju dengan kecepatan konstan dalam suatu bidang dengan kemiringan 30° menempuh jarak 1.5 km. Jika selama menempuh kemiringan tersebut gaya dorong angin yang berlawanan dengan arah gaya kendaraan sebesar 50 N, berapakah gaya gesek antara benda tersebut dengan bidang miring?

## Solusi:

Kecepatan konstan mengakibatkan percepatan bernilai nol.

$$\sum F = 0$$

$$W \sin 30^{\circ} - 50 - f = 0$$

$$mg \sin 30^{\circ} - 50 - f = 0$$

$$(20)(10)(0, 5) - 50 - f = 0$$

$$100 - 50 - f = 0$$

$$50 - f = 0$$

$$f = 50 \text{ N}$$

10. Gambar di bawah ini adalah grafik antara kecepatan sebuah benda sebagai fungsi dari waktu. Tentukanlah kecepatan rata-rata benda antara t=10s dan t=20s.

4

Solusi:

$$v_{rata-rata} = \frac{x(t_2) - x(t_1)}{t_2 - t_1}$$

$$= \frac{x(20) - x(10)}{20 - 10}$$

$$= \frac{luas(0 - 20) - luas(0 - 10)}{10}$$

$$= \frac{luas(10 - 20)}{10}$$

$$= \frac{-50}{10}$$

$$= -5 \text{ m/s}$$

11. Sebuah pesawat terbang mendatar dengan kecepatan 180 km/jam, lalu melepaskan sebuah bom. Ternyata butuh waktu 10 detik sebelum bom mengenai tanah. Berapakah ketinggian pesawat tersebut?

## Solusi:

Kecepatan 180 km/jam = 50 m/s

$$h = v_{0y}t + \frac{1}{2}gt^2$$

$$= 0 + \frac{1}{2}(10)(10^2)$$

$$= 500 \text{ m}$$

12. Dua buah balok dengan massa  $m_1$  dan  $m_2$  ditempatkan berdampingan pada bidang miring yang membentuk sudut  $\alpha$  terhadap bidang horizontal seperti pada gambar. Kedua balok sedang bergerak turun dengan kecepatan konstan. Koefisien gesekan antara bidang miring dengan masing-masing balok adalah dengan  $\mu_{k1} > \mu_{k2}$ . Tentukan besarnya gaya kontak antara kedua balok tersebut dinyatakan dalam  $m_1$ ,  $m_2$ , g,  $\mu_{k1}$ ,  $\mu_{k2}$ .

# Solusi:

Untuk benda 1:

$$\sum F = m_1 a$$

$$W_1 \sin \alpha + F_{12} - f_{k1} = m_1 a$$

$$m_1 g \sin \alpha + F_{12} - \mu_{k1} N_1 = m_1 a$$

$$m_1 g \sin \alpha + F_{12} - \mu_{k1} W_1 \cos \alpha = m_1 a$$

$$m_1 g \sin \alpha + F_{12} - \mu_{k1} m_1 g \cos \alpha = m_1 a$$

Untuk benda 2:

$$\sum F = m_2 a$$

$$W_2 \sin \alpha - F_{12} - f_{k2} = m_1 a$$

$$m_2 g \sin \alpha - F_{12} - \mu_{k2} N_2 = m_2 a$$

$$m_2 g \sin \alpha - F_{12} - \mu_{k2} W_2 \cos \alpha = m_2 a$$

$$m_2 g \sin \alpha - F_{12} - \mu_{k2} m_2 g \cos \alpha = m_2 a$$

Jumlahkan kedua persamaan, diperoleh

$$\frac{(m_1 + m_2)g\sin\alpha - \mu_{k1}m_1g\cos\alpha - \mu_{k2}m_2g\cos\alpha = (m_1 + m_2)a}{(m_1 + m_2)g\sin\alpha - \mu_{k1}m_1g\cos\alpha - \mu_{k2}m_2g\cos\alpha} = a$$

Substitusikan nilai a kembali ke persamaan awal,

$$F_{12} = m_1 a - m_1 g \sin \alpha + \mu_{k1} m_1 g \cos \alpha$$

$$= m_1 \frac{(m_1 + m_2)g \sin \alpha - \mu_{k1} m_1 g \cos \alpha - \mu_{k2} m_2 g \cos \alpha}{m_1 + m_2} - m_1 g \sin \alpha + \mu_{k1} m_1 g \cos \alpha$$

$$= \frac{(\mu_{k1} - \mu_{k2})m_1 m_2 g \cos \alpha}{m_1 + m_2}$$

13. Setelah mengalami tumbukkan tidak elastik, dua benda dengan massa dan laju awal yang sama bergerak bersama-sama dengan setengah dari laju awalnya. Tentukan sudut antara kecepatan awal kedua benda tersebut.

#### Solusi:

Jika diasumsikan benda bergerak dalam sumbu-x, kedua benda pada awalnya harus bergerak dalam arah yang berlawanan sehingga sudut antara kecepatan awal kedua benda tersebut adalah  $180^{\circ}$ .

14. Pesawat ruang angkasamempunyai 2 mesin pendorong, yang bekerja saling tegaklurus,dalam arah x menghasilkan percepatan  $a_x = 3 \text{ m/s}^2$  dan dalam arah y menghasilkan percepatan  $a_y = 2 \text{ m/s}^2$ . Tentukan besar kecepatan akhir pesawat ruang angkasa ini setelah 3 detik mesin dinyalakan bila kecepatan awal pesawat  $v_{0x} = 5 \text{ m/s}$ ,  $v_{0y} = 0 \text{ m/s}$ .

#### Solusi:

$$a(t) = 3\mathbf{i} + 2\mathbf{j}$$

$$v(t) = (3t + c_1)\mathbf{i} + (2t + c_2)\mathbf{j}$$

$$v(0) = c_1\mathbf{i} + c_2\mathbf{j} = 5\mathbf{i}$$

$$\Rightarrow c_1 = 5, c_2 = 0$$

$$\Rightarrow v(t) = (3t + 5)\mathbf{i} + (2t)\mathbf{j}$$

$$\Rightarrow v(3) = (3(3) + 5)\mathbf{i} + (2(3))\mathbf{j} = 14\mathbf{i} + 6\mathbf{j}$$

15. Sebuah benda dilempar vertikal ke atas dari ketinggian 10 m di atas tanah dengan laju awal 8 m/s. Maka pada ketinggian berapa dari tanah, benda akan memiliki laju setengah dari besar kecepatan awalnya. Abaikan gesekan udara.

# Solusi:

$$v_t^2 = v_0^2 - 2g(h - 10)$$

$$(0.5v_0)^2 = v_0^2 - 2g(h - 10)$$

$$0.25v_0^2 = v_0^2 - 2g(h - 10)$$

$$2g(h - 10) = 0.75v_0^2$$

$$h - 10 = \frac{0.75v_0^2}{2g} = \frac{(0.75)(8^2)}{20}$$

$$h - 10 = 2.4$$

$$h = 12.4 \text{ meter}$$

# Soal Essay

- 1. Sebuah balok dengan massa m=1.5 kg bergerak dengan kecepatan  $v_0=1$  m/s di atas lantai yang licin dan akhirnya balok naik ke atas sebuah papan panjang dengan massa M yang dalam keadaan diam. Oleh karena itu gesekan antara balok dan permukaan papan, maka balok di perlambat dan pada saat yang bersamaan papan mulai bergerak bersama-sama. Besar gaya gesekan antara papan dan balok pada saat balok mulai naik ke atas papan hingga balok dan papan mulai bergerak bersama-sama diberikan oleh grafik di bawah ini.
  - (a) Berapakah impuls total yang dialami oleh papan M?
  - (b) Berapakan gaya rata-rata yang dialami oleh papan M?
  - (c) Berapakah kecepatan balok dan papan pada saat telah bergerak bersama-sama?
  - (d) Berapakah massa M dari papan?

## Solusi:

(a) Impuls total yang dialami oleh papan M

$$I = \int F(t)dt = luas$$
$$= \frac{1}{2}(0,5)(4)$$
$$= 1 \text{ Ns}$$

(b)  $F_{rata-rata} = \frac{I}{\Delta t} = \frac{1}{0.5} = 2$  Newton.

(c)

$$\Delta p = I$$

$$p_{akhir} - p_{awal} = -1$$

$$mv - mv_0 = -1$$

$$(1, 5)v - (1, 5)(1) = -1$$

$$(1, 5)v - 1, 5 = -1$$

$$(1, 5)v = 0, 5$$

$$v = \frac{1}{3} \text{ m/s}$$

(d) Berdasarkan Hukum kekekalan momentum

$$mv_0 = (m+M)v$$
  
 $(1,5)(1) = (1,5+M)\left(\frac{1}{3}\right)$   
 $4,5 = 1,5+M$   
 $M = 3 \text{ kg}$ 

- 2. Seorang pemain skateboard (m=60~kg) mulai meluncur dari titik A dengan laju awal 5.4~m/s pada lintasan yang berbentuk setengah lingkaran berjari-jari 3 m. Gaya non-konservatif yang bekerja pada pemain (gaya gesek) besarnya 8 N.
  - (a) Berapa kecepatan di titik terendah B dari lintasan?

- (b) Pada titik terendah tersebut, berapa gaya tekan pada lintasan.
- (c) Berapa energi yang hilang oleh gaya gesek pada lintasan ketika pemain sampai di ujung lintasan?
- (d) Berapa tinggi maksimum h pemain saat lepas dari ujung C.

# Solusi:

(a)

$$W_{total} = \Delta E_k$$

$$W_W + W_f = \frac{1}{2} m v_B^2 - \frac{1}{2} m v_A^2$$

$$mgR - (8) \frac{\pi R}{2} = \frac{1}{2} (60) v_B^2 - \frac{1}{2} (60) (5, 4)^2$$

$$(60)(10)(3) - (8) \frac{3\pi}{2} = 30 v_B^2 - 874, 8$$

$$1800 - 12\pi = 30 v_B^2 - 874, 8$$

$$2674, 8 - 12\pi = 30 v_B^2$$

$$v_B = \sqrt{\frac{2674, 8 - 12\pi}{30}} \approx 9,38 \text{ m/s}$$

(b)

$$N = W = mg = (60)(10) = 600 \text{ N}$$

(c) Cari kecepatan di C terlebih dahulu

$$W_{total} = \Delta E_k$$

$$W_W + W_f = \frac{1}{2} m v_C^2 - \frac{1}{2} m v_B^2$$

$$-mgR - (8) \frac{\pi R}{2} = \frac{1}{2} (60) v_C^2 - \frac{1}{2} (60) \left( \frac{2674, 8 - 12\pi}{30} \right)$$

$$-(60)(10)(3) - (8) \frac{3\pi}{2} = 30 v_c^2 - (2674, 8 - 12\pi)$$

$$-1800 - 12\pi = 30 v_c^2 - 2674, 8 + 12\pi$$

$$874, 8 - 24\pi = 30 v_c^2$$

$$v_c = \sqrt{\frac{874, 8 - 24\pi}{30}} \approx 5, 16 \text{ m/s}$$

Energi yang hilang adalah

$$\begin{split} E &= \Delta E_{mekanik} \\ &= \Delta E K + \Delta E P \\ &= \frac{1}{2} m v_C^2 - \frac{1}{2} m v_A^2 + 0 \\ &= \frac{1}{2} m (v_C^2 - v_A^2) \\ &= \frac{1}{2} (60) \left( \frac{874, 8 - 24\pi}{30} - 5, 4 \right) \\ &= 874, 8 - 24\pi - (5, 4)(30) \\ &= 874, 8 - 24\pi - 162 \\ &= 712, 8 - 24\pi \approx 637, 4 \text{ J} \end{split}$$

$$\begin{aligned} v_t^2 &= v_C^2 - 2gh \\ 0 &= v_C^2 - 2gh \\ 2gh &= v_C^2 \\ h &= \frac{v_C^2}{2g} = \frac{874, 8 - 24\pi}{(30)(20)} \approx 1,33 \text{ meter} \end{aligned}$$