Contents

	Bilinear forms		
	0.1.1	Representing bilinear forms	1
	0.1.2	Orthonormal basis and $M = I \dots \dots \dots$	1

0.1 Bilinear forms

A bilinear form takes two vectors and produces a scalar from the underlying field.

This is in contrast to a linear form, which only has one input.

In addition, the function is linear in both arguments.

$$\phi(au + x, bv + y) = \phi(au, bv) + \phi(au, y) + \phi(x, bv) + \phi(x, y)$$

$$\phi(au+x,bv+y) = ab\phi(u,v) + a\phi(u,y) + b\phi(x,v) + \phi(x,y)$$

0.1.1 Representing bilinear forms

They can be represented as:

$$\phi(u, v) = v^T M u$$

$$f(M) = f([v_1, v_2])$$

We introduce e_i , the element vector. This is 0 for all entries except for i where it is 1. Any vector can be shown as a sum of these vectors multiplied by a scalar.

$$f(M) = f([\sum_{i=1}^{m} a_{1i}e_i, \sum_{i=1}^{m} a_{2i}e_i])$$

$$f(M) = \sum_{k=1}^{m} f([a_{1k}e_k, \sum_{i=1}^{m} a_{2i}e_i])$$

$$f(M) = \sum_{k=1}^{m} \sum_{i=1}^{m} f([a_{1k}e_k, a_{2i}e_i])$$

Because this in linear in scalars:

$$f(M) = \sum_{k=1}^{m} \sum_{i=1}^{m} a_{1k} a_{2i} f([e_k, e_i])$$

$$f(M) = \sum_{k=1}^{m} \sum_{i=1}^{m} a_{1k} a_{2i} e_k^T M e_i$$

0.1.2 Orthonormal basis and M = I

$$f(M) = \sum_{k=1}^{m} \sum_{i=1}^{m} a_{1k} a_{2i} e_k^T e_i$$

$$f(M) = \sum_{k=1}^{m} \sum_{i=1}^{m} a_{1k} a_{2i} \delta_{i}^{k}$$

$$f(M) = \sum_{i=1}^{m} a_{1i} a_{2i}$$