Лабораторная работа 5.6.1

Исследование резонансного поглощения у – квантов (эффект Мессбауэра)

Описание работы: С помощью метода доплеровского сдвига мессбауэровских линий испускания и поглощения исследуется резонансное поглощение γ квантов, испускаемых ядрами олова ^{119}Sn при комнатной температуре. Определяется положение максимума резонансного поглощения, его величина , а так же экспериментальная ширина линии $\Gamma_{\mathsf{aкc}}$. Оценивается время жизни возбужденного состояния ядра ^{119}Sn .

Схема установки:

Теоретическая часть:

Ширина линии:

$$\Gamma \tau \cong \hbar$$

Условие резонансного поглощения:

$$2R \leq \Gamma$$

Энергия отдачи для одиночного ядра ^{119}Sn :

$$R = \frac{E_{\gamma}^2}{2M_{\alpha}c^2} \approx 2.5 \cdot 10^{-3} eV$$

Доплеровская ширина линии:

$$D = 2\sqrt{Rk_{\rm B}T} \approx 1.5 \cdot 10^{-2} eV$$

Ход работы:

- 1. Включим установку и проверим ее функционирование.
- 2. Изменяя нижний порог окна сцинтилляционного спектрометра шириной 0,5В, измерим спектр источника:

U_1, B	1,5	2,0	2,5	3,0	3,5	4,0	4,5	5,0	5,5	6,0	6,5	7,0	7,5	8,0	8,5	9,0	9,5
I,c^{-1}	2,4	4,6	9,2	25,8	47,2	69,6	86,8	108,8	118,0	121,4	107,8	81,0	56,8	34,8	13,6	6,0	4,8

3. Построим график зависимости $I = f(U_1)$:

Энергия 23,8 eV соответствует $U_1 = 5,5$ В

- 4. Установим окно сцинтилляционного спектрометра, соответствующее ширине линии спектра излучения $4 \div 7\mathrm{B}$, и проведем измерения резонансного поглощения:
 - 1. Поглощение на $Sn(300\mu)$

		•			•							
v, мм/с	0,00	0,87	1,22	1,48	1,54	1,88	2,39	2,88	3,28	3,08	2,64	2,77
I, c^{-1}	588,4	572,8	571,4	561,0	545,8	524,7	452,4	475,1	520,9	504,4	448,0	465,0
ε, %	0,922	0,934	0,935	0,944	0,957	0,976	1,051	1,026	0,980	0,996	1,056	1,037
v, мм/с	2,14	2,24	3,72	4,11	4,45	4,77	5,04	5,30	5,49	5,66	5,80	
I, c^{-1}	476,1	463,7	550,2	564,6	574,1	584,0	575,4	581,0	587,7	578,6	589,8	
ε, %	1,025	1,038	0,953	0,941	0,933	0,925	0,932	0,928	0,922	0,930	0,921	

2. Поглощение на $Sn(100\mu)$

		•	•	. ,							
<i>v</i> , мм/с	0,87	1,23	1,48	1,55	1,90	2,38	2,86	3,31	3,67	4,13	4,48
I, c^{-1}	3353,6	3350,0	3329,6	3297,6	3208,5	2952,0	3050,3	3245,7	3279,1	3345,4	3341,8
ε,%	0,386	0,386	0,388	0,389	0,395	0,412	0,405	0,392	0,390	0,387	0,387
<i>v</i> , мм/с	3,07	2,07	2,26	2,13	2,17	2,59	4,77	2,79	2,70	3,10	
I, c^{-1}	3146,1	3114,8	2981,2	3072,4	3041,3	2902,1	3352,5	2978,9	2945,8	3153,3	
ε, %	0,399	0,401	0,410	0,403	0,405	0,415	0,386	0,410	0,412	0,398	

Поглощение на $Sn(300\mu)$

$$\begin{split} 2\Gamma_{\text{\tiny 3KCII}} &= (1.4 \pm 0.1)\text{MM/c} = (13.4 \pm 0.9) \cdot 10^{-8} eV \\ v_p &= \frac{\Delta E}{E_0} c \Rightarrow \Delta E_{\text{\tiny XHM}} = (20.5 \pm 0.4) \cdot 10^{-8} eV \\ \varepsilon \big(v_p\big) &= \frac{I_\infty - I\big(v_p\big)}{I_\infty - I_\Phi} = (23 \pm 4)\% \end{split}$$

Поглощение на $Sn(100\mu)$

$$\begin{split} 2\Gamma_{\mbox{\tiny 3KCII}} &= (1,0\pm0,1)\mbox{mm/c} = (9,6\pm0,9)\cdot 10^{-8}eV \\ v_p &= \frac{\Delta E}{E_0}c \Rightarrow \Delta E_{\mbox{\tiny XHM}} = (20,6\pm0,4)\cdot 10^{-8}eV \\ \varepsilon \big(v_p\big) &= \frac{I_{\mbox{\tiny }} - I\big(v_p\big)}{I_{\mbox{\tiny }} - I_{\mbox{\tiny }}} = (13\pm4)\% \end{split}$$