Quantile-critical value (single tail)

- Single side
 - 0 1% 5% 10% 2.326 1.645 1.28
- Two-side
 - 5% 10% 0 1% 2.58 1.96 1.65

VaR Define

- Return
 - Arithmetic: r = (P2-P1+D)/P1, no reinvestment, not suitable for long time
 - Geometric: $R = \ln ((P2+D)/P1)$, continuously reinvest
- **Parametric**
 - o Normal (arithmetic return)

$$r = \frac{P_2 - P_1}{P_1} \sim N(\mu, \sigma)$$

$$P_2 - P_1 = P_1 \times (u - z \times \sigma) < 0$$

$$P_2 - P_1 = P_1 \times (u - z \times \sigma) < 0$$

$$VaR = P1 - P2 = P_1 \times (z \times \sigma - \mu) > 0$$

- o Lognormal (geometric return)
 - $R = \ln P_2 \ln P_1 = \ln \frac{P_2}{P_1} \sim N(\mu, \sigma)$
 - $P_2 P_1 = P_1 \times e^R P_1 = P_1 \times (e^R 1) = P_1 \times (e^{u z \times \sigma} 1) < 0$ $VaR = P1 P2 = P_1 \times (1 e^{u z \times \sigma}) > 0$

Non-parametric

- o Historical simulation and Variants (realized return)
- **Historical Simulation (Raw data)**
 - Given a confidence level c, order returns in ascending order, find the separating point: $\frac{alpha * n + 1}{n}$, whose cumulative probability > $\frac{alpha = 1}{n}$ confidence level 大于不是等于
 - o Assumes that losses in the future will occur with the same frequency and magnitude as they have in the past.
 - Cannot adjust for changing economic conditions or abrupt shift
 - **Ghost effect**: a point remains after n periods
 - o assume i.i.d
- **HS Variants**
 - HS + **Bootstrap** (Sample)
 - Sampling with Replacement
 - Apply to VaR and ES
 - More prices ES than raw data
 - **HS** + Smooth (**Density Estimation**)
 - Discrete -> continuous
 - Connect the middle point using line or connect curves
- **HS Weighting**
 - HS + Age-Weighted / Hybrid Approach
 - Weight recent data more and distant less, decay
 - W i = lambda (i-1)*W 1
 - W 1 = 1- lambda / (1lambda ^n)
 - Decay inverse to lambda
 - Lambda large, decay slow
 - HS + Volatility-Weighted

- r t, s t and r, s => r t' = r t/s t*s (adjust using recent volatility)
- s can be forecasted by GARCH and EWMA
- near-term VaR are sensible to current market condition, sensitive to changing market conditions
- VaR can be higher than estimates with historical data/can predict loss outside historical range
- HS + Correlation-Weighted
 - Covariance matrix (historical -> updated/revised to new information)
- HS + Filtered (Conditional Volatility + Bootstrap)
 - Most comprehensive, most complicated
 - Conditional Volatility model (GARCH or asymmetric GARCH)
 - Suitable: longer holding period, multi-asset portfolios, large portfolios
 - Flexible: can capture **conditional** volatility, volatility **clustering**, surprise factor that have an **asymmetric** effect on volatility.

Advantage

- o Intuitive, simple
- No underlying assumption
- o Not hindered by skewness, fat-tails
- o Avoids complex variance-covariance matrix and dimension problems
- Data is readily available and does **not** require adjustment (financial statements adjustments)
- o Can do complex analysis

Disadvantages

- o Rely on historical data
- o insufficient data
- o volatile periods -> high, quite period -> low
- o difficult to detect structural shifts/regime changes
- o difficult to estimate loss **larger** than historical (volatility-weighted, to some degree)
- Non-parametric MC (hypothesis return)
- Stressed VaR
- Liquid VaR
- OpVaR
- Portfolio VaR

Log

 $Log_a{}^b = 1 / log_b{}^a$

Other Risk Measures

- Expected Shortfall (ES)
 - o E(loss | loss > VaR), Expected loss > threshold 大于
 - o n increase -> ES increase
 - \circ \sum P i / (1-C) * Loss i, where
 - P i is the global probability 不是累计概率,是区间概率
 - C is the confidence level, 1-c=alpha
 - P i / (1-C) is the local probability
 - o Example
 - $2\% \$30, 3\% \$20, 5\% \$10 \Rightarrow c=10\%$

ES = 2/10 * 30 + 3/10 * 20 + 5/10*10 = 17

• Coherent Measure

- o Generalize ES to all 0-100 quantile.
- o Given n, divide the tail into n-1 regions, then average the quantile weighted by a function.

QQ-plot

- o Identify an empirical distribution to a theoretical distribution
- o Empirical vs theoretical

Backtesting VaR

• Difficulties

- o VaR is on static portfolio, but actual portfolio is dynamic
 - Use a relatively short time horizon
 - Test both actual and hypothetical returns

Failure rate

- o **VaR Confidence** level c, one side, failure rate p = 1-c, VaR 是单边的
- o Binomial distribution B (p*T, sqrt(p*(1-p)*T))
- o Z-score= (x u) / s = (x n*T) / sqrt(p*(1-p)*T)
- o **Test** Confidence level, **two** side, 95% -> 1.96, 双边检验
- o Confidence level small is better
 - Too large, a small number of samples, a long time to wait until exceptions happen,可以接受范围减少。
- Sample size
 - Large, non-reject area is too small,
 - 样本多,拒绝区间增加,更容易拒绝

• Type I and Type II errors

- o Type I (bad luck): reject a model when it is true
- o Type II (faulty model): accept a model when it is false
- o Confidence level decrease, Type I and Type II increase

• Unconditional Coverage (log-likelihood ratio)

- Kupiec test, LR = $2 \log P(N/T) / P(p)$, where $P(x) = C_N^T * x^N (1-x)^{(T-N)}$
- o Concern with the total number of exceptions, not the independence or timing
- \circ LR > (1.96)^2=3.84 => **reject** the model
- o Sample size increase => easily to reject the model
- o Confidence level increase => **difficult** to backtest since the numbers of small
- o T large, chi-squared distribution with df=1

• Conditional Coverage (serially independence)

- LR_cc = LR_uc + LR_ind, chi-squared
- o Assume exceptions are equally distributed and serial independence
- \circ LR cc>5.99 => reject the model at 95%
- \circ LR ind > 3.84 = > reject the independence alone
- When exceptions are **clustered**, should use this

• Breach Cluster

o Solution: decrease horizon and decrease confidence

• Basel Committee Rules

- o More concerned about type II problem
- o 250 days, 99% confidence level,
- Zone (#exceptions and multiplier)
 - Green: 0-4 => 3

- Yellow: 5-> 3.4, 6-> 3.5, 7-> 3.65, 8->3.75, 9-> 3.85
- Red: >=10 => 4
- Category
 - Model lack basic integrity => should apply
 - Model accuracy needs improvement => should apply
 - Intraday trading activity => considered
 - Bad luck => no guidance is provided

Market Risk Charge

o MRC = max(VaR(99%,10-day), k*VaR(60 day average))

VaR Mapping

- Advantages
 - Aggregate risk exposure
 - o Simplify risk exposure into primitive risk factors
 - o Can Measure changes over time
 - When no historical data
- Map (头寸->因子)
 - o map each position (market value) -> risk factors
 - Sum each risk factor exposures from all positions -> risk factor exposure distribution
- General and specific risk factors

0

• Mapping Fixed-income securities

- Principle mapping (average maturity)
 - M=\sum w_i * T_i, where w_i=P_i/P is principle%, T_i is the maturity
- O Duration mapping (average duration = delta_P / detal_r)
 - Decompose into cash flow
 - Sum cash flow for each time
 - Discount into PV
 - $D = \sum PV * t / sum PV$
- o Cash flow mapping
 - Decompose into cash flow, sum cash flow for each time,
 - Consider inter-maturity correlations
 - Undiversified VaR = \sum t PV t * VaR t 直接求和
 - Diversified VaR = $y^T C y$, where y t = PV t * VaR t

• Stress Testing

 \circ PV, VaR -> New PV = PV - PV * VaR% = PV(1-VaR%)

• Benchmark

- Match duration
- o Tracking error: std of the return difference
- o Minimize abs VaR != minimize tracking error (cash flow match)
- o The tracking error VaR is smallest when it matches based on **cash flow**.

• Mapping Linear Derivative

- Delta-normal linear
- Foreign Currency Forward
 - Long forward contract = Long foreign currency spot + Long foreign currency bill + Short U.S. dollar bill
- o Forward rate agreement (FRA)
 - Long 6 x 12 FRA = Long 6-month bill + Short 12-month bill

- Sell 6*12 FRA on P: Borrow P for a 6-month, invest in 12-month
- o Interest Rate Swap
 - Interest-rate swaps can be viewed in two different ways: as (1) a combined position in a fixed -rate bond and in a floating-rate bond or (2) a portfolio of forward contracts.

• Mapping Nonlinear Derivative

- o Delta-normal can be applied to short periods of time
- Option
 - Long option = Long Δ *asset + Short (Δ *asset c) bill

Delta

- o Deep in the money: 1
- o At the money: 0.5
- o Deep out of money: 0
- o Forward: 1

Messages from the Academic Literature on Risk Measurement for the Trading Book

• VaR Implementation

- Time-varying volatility
 - Underestimate risk, also need to consider time-varying correlations
 - Tend to use short time horizons, 10-day VaR
 - Longer period should be used for economic capital.
 - Backtesting not effective
 - The number of exceptions is small
 - Longer time horizons due to portfolio instability

• Liquidity VaR

- o Exogenous liquidity 外生性
 - market specific, average transaction costs, ask-bid spread
 - LVaR = VaR + V * spread/2
- o Endogenous liquidity 内生性
 - price effect of liquidating positions
 - most applicable to exotic/complex trading positions and high-stress market conditions
 - trade size, elasticity of price to trading volume
 - E = dp% / N%

• Risk Measures

- o VaR
 - Not consider the severity of loss in the tail of the return distribution
 - Not subadditive
- o ES
- Complex and computationally intensive
- Solve the two issues of VaR
- mitigate the impact a specific confidence level choice
- Spectral Risk
 - Consider investment manager's risk aversion
 - Better smoothing properties when weighting observations
 - Modify to reflect investor's specific risk aversion
 - Rarely used in practice

• Stress Testing

- Historical scenarios
 - Previous market data
- Predefined scenarios
 - Predetermined risk factors
- Mechanical-search stress tests
 - Automated routines to cover possible changes in risk factors

Stressed VaR

o VaR in Financial stressed period

• Integrated VaR

- Compartmentalized
 - For each individual type, and summed
 - Basel capital requirements
- Unified
 - Consider correlations of risk types

• Risk Aggregation

- o Top-down
 - Cleanly divided into market, credit, and operational risk measures
- o Bottom-up
 - Interaction (diversification or risk compounding)

• Balance Sheet Management

- Actively managed -> Leverage become procyclical
- Cyclical Feedback
 - Leverage **inversely** related to market value
 - Purchase assets when prices are rising
 - Sell assets when prices are declining
- o VaR / Economic Capital requirements
 - Amplify boom and bust cycles
 - Current regulation to limit risk-taking actual **increase** risk

Some Correlation Basics: Properties, Motivation, Terminology

• Correlation Risk

- o An increase in correlation is typical in a severe systemic crisis
- Structured products are becoming an increasing area of concern regarding correlation risk.

• CDS

- The **spread** is based on the default probability of the **reference asset** and the joint default correlation of CDS **seller**.
- o If there is **positive** correlation risk between Bank and France bonds, the investor has wrong-way risk (**WWR**).
- o The **higher** the correlation risk, the **lower** the CDS spread.

• Quanto Option

- o allows a **domestic** invest or to exchange his potential option payoff in a foreign currency back into his home currency at a fixed exchange rate.
- o US investor buy Japan Nikkei index and currency USD/JPY.
- o correlation between foreign index Nikkei and foreign currency USD/JPY.
 - The more **positive** the correlation coefficient, the **lower** the price for the quanto option. Favorable for the seller.
 - the **lower** the correlation, the more expensive the quanto option.

• Correlation swap

o Buyer Pay fixed correlation, receive actual average pair-wise correlation

- $r_realized = sum_i > j p_i j / (n^2-n)/2$
- Buy index call option + sell individual call option
 - buy call options on an index such as the Dow Jones Industrial Average (the Dow) and sell call options on individual stocks of the Dow.
 Benefit from increasing correlation.
 - There is a positive relationship between correlation and volatility.

• Variance Swap

A further way to buy correlation is to pay fixed in a variance swap on an
index and to receive fixed in variance swaps on individual components of the
index.

• Correlation Crisis

- o The first correlation-related crisis occurred in May 2005.
- Hedge funds had put on a strategy where they were **short** the equity tranche of CDO to receive **high** premium and **long** the mezzanine tranche of CDO to pay **low** premium.
- When the correlations of the assets in the CDO **decreased**, the hedge funds lost on both position.
- The equity tranche **premium increased** sharply. Hence the **fixed** premium that the hedge funds received in the original transaction was now significantly lower than the current market spread, resulting in a loss.
- o In addition, the hedge funds lost on their long mezzanine tranche positions. since a lower correlation lowers the mezzanine tranche **premium**. Hence the spread that the hedge funds paid in the original transactions was now **higher** than the market spread, resulting in a loss.

• 2007-2009 Crisis

- From 2007 to 2009, **default correlations** of the mortgages in the CDOs increased.
- o If default correlations **increase**, the equity (mezzanine) tranche premium **decreases** (increases), leading to an **increase** (decrease) in the value of the equity (mezzanine) tranche.
- o Premium increase -> price decrease

• Correlation Risk and Market Risk

- o Market risk: interest rate, currency, equity, commodity
- o Covariance is an integral part of market risk VaR

• Correlation Risk and Credit Risk

- o default correlation within sectors is higher than between sectors.
- For most investment grade bonds, the term structure of default probabilities increases in time.
- o For bonds in distress, however, the default term structure of default probabilities **decreases** in time.

• Correlation Risk and Systemic Risk

o Systemic risk and correlation risk are highly dependent.

• Correlation Risk and Concentration Risk

- Concentration risk is the risk of financial loss due to a concentrated exposure to a group of counterparties.
- **Output** Concentration ratio = 1/number of counterparties
- a lower concentration ratio and a lower correlation coefficient reduce the worst-case scenario for a creditor, the joint probability of default of his debtors.

Empirical Properties of Correlation: How Do Correlations Behave in the Real World?

- Equity Correlation Study
 - The correlation levels are lowest in strong economic growth times. The
 reason may be that in strong growth periods equity prices react primarily to
 idiosyncratic, not macroeconomic factors.
 - In recessions, correlation levels typically increase. Macroeconomic factors seem to dominate idiosyncratic factors, leading to a downturn of multiple stocks.
 - o A positive relationship between correlation level and correlation volatility.
 - Correlation are high for recessions, and correlation volatility is highest for normal periods. Volatility: recession > expansion
 - o 相关水平:经济好时低(百花齐放,互不相关),经济不好时(一切凋 零,都很相关)
 - o 相关波动性: 经济正常时最高,不确定性高,可以变好,也可以变差。 经济不好时

• Mean Reversion of Equity Correlation

- o Relationship: $D(S_t S_{t-1})/DS_{t-1} < 0$
- o Formula
 - $S_t S_{t-1} = a (u S_{t-1}) dt + sigma*e*sqrt(dt)$
 - Simplified: $S_t S_{t-1} = a (u S_{t-1})$
- Regression
 - Y = alpha + beta X
 - $Y = S_t S_{t-1} X = S_{t-1}$
 - alpha = au, beta=-a

• Autocorrelation

- One-period auto correlation + mean reversion = 1
- o Autocorrelation is the "reverse property" to mean reversion
- o Autocorrelation: ARCH and GARCH
- o Autocorrelation of correlation

$$AC(\rho_t, \rho_{t-i}) = \frac{Cov(\rho_t, \rho_{t-i})}{\sigma(\rho_t)\sigma(\rho_{t-i})}$$

 ρ_t : Correlation values for time period t

- ρ_{t-i} : Correlation values for time period t i
- o It decays with longer time period lags

• Best-fit distribution

- Equity JSB
 - **Johnson SB** distribution (two shape, one location, one scale)
 - Poor: Normal, lognormal, beta
 - Mean reversion is high
- o Bond GEV
 - Generalized extreme value
 - Normal is also good
- o Default probability JSB
 - Johnson SB

Statistical Correlation Models: Can We Apply Them To Finance?

- The Pearson correlation Limitations
 - o Linear relationship
 - o Zero does not mean independence

- o Correlation is not defined unless variances are **finite**.
- o Correlation is a good measure of dependence when the measured variables are distributed as multivariate **elliptical**.
- Not meaningful for transformed.
- The Spearman rank correlation nonprametric
 - Steps
 - Compute rank for X
 - Compute rank for Y
 - Compute rank difference squared: (Rx Ry)^2
 - Metric
 - Sum (Rx Ry)^2 / T
 - $T = n(n^2-1)/6$
- The Kendall's τ nonprametric
 - o Steps
 - Compute rank for X
 - Compute rank for Y
 - Classify each point 对每个点的分类
 - Positive: Rx < Ry 正的
 - Negative: Rx > Ry 负的
 - Zero: Rx = Ry 零 (最后不会考虑的)
 - Sum by category 按照类别统计次数
 - p: number of positive points 正类的个数
 - n: number of negative points 负类的个数
 - z: number of zeros points 零类的个数
 - N = p + n + z
 - 逻辑
 - Positive 类别里互相是 concordant
 - Negative 类别里互相是 Concordant
 - Positive 和 Negative 之间的是 Discordant
 - Pairs 计算对数
 - Concordant: $C_n^2 + C_p^2$ 一致的对数
 - Discordant: n × p 不一致的对数
 - Total: C_N² 总对数
 - Metric

$$\frac{C_n^2 + C_p^2 - n \times p}{C_N^2}$$

Pair Combination

	Positive	Negative	Zero
Positive	C_p^2		
Negative	n×p	C_n^2	
Zero	$z \times p$	$z \times n$	C_z^2

组合只看下三角: 红色是 concordant pairs, 蓝色是 discordant pairs, 黑色是被忽略的

需要证明下三角之后是所有的对数

$$C_p^2 + C_n^2 + n \times p + z \times p + z \times n + C_z^2 = C_N^2$$

$$=> C_p^2 + C_n^2 + n \times p + z \times (N - z) + C_z^2 = C_N^2$$

$$=> p \times (p - 1) + n \times (n - 1) + 2 \times p \times n + 2 \times z \times (N - z) + z \times (z - 1)$$

$$= N \times (N - 1)$$

$$=> p^2 - p + n^2 - n + 2 \times p \times n + 2 \times z \times (N - z) + z^2 - z = N^2 - N$$

$$=> p^2 + 2 \times p \times n + n^2 + 2 \times z \times (N - z) + z^2 - n - p - z = N^2 - N$$

$$=> (p + n)^2 + 2 \times z \times (N - z) + z^2 = N^2$$

$$=> (N - z)^2 + 2 \times z \times (N - z) + z^2 = N^2$$

$$=> (N - z + z)^2 = N^2$$

Weakness

- o Ordinal (有序的): Spearman, Kendall
- Good for credit rating
- o Should not be used for cardinal or numeric (基数)
- Less sensitive to outliers
- o Under stress conditions, underestimate risk by ignoring outliers.
- o Kendall
 - A large number of pairs are neither concordant or discordant.
 - They are ignored

Financial Correlation Modeling Bottom-Up Approaches

Copula

- A copula creates a **joint** probability distribution between two or more variables while maintaining their individual **marginal** distributions.
- Mapping multiple distributions to a **single multivariate** distribution
- o Copula enables the **structures** of **correlation** between variables to be calculated separately from their **marginal** distributions.

Gaussian Copula

- \circ Maps the marginal distribution to the **standard normal** distribution N(0,1)
- o Mapping is done on **percentile-to-percentile** basis.

• Gaussian default time copula

o Marginal distributions of cumulative default probabilities

• Correlated Default Time (sample)

- When a Gaussian copula is used to derive the default time relationship for more than two assets, a Cholesky decomposition is used to derive a sample
- \circ Mn(x) = Q i(t i)

Empirical Approaches to Risk Metrics and Hedging

• DV01-Neutral Hedge

- Assumes that the yield on a bond and the yield on a hedging instrument rise and fall by the same number of basis points.
- The nominal yield adjusts by more than one basis point for every basis point adjustment in the real yield.

• Regression Hedge - volatility

- o Using a regression hedge examines the **volatility** of historical rate differences and adjusts the DV01 hedge accordingly, based on historical **volatility**.
- o It automatically gives an estimate of the hedged portfolio s **volatility**.
- o TIPS: real interest, T-Bond: nominal interest

- o DV01 Neutral hedge
 - $F_r \times DV01_r = F_n \times DV01_n$
- Regression: Hedge Adjustment Factor
- Regression Hedge

 - $\mathbf{F_r} \times \mathbf{DV01_r} \times \Delta \mathbf{y_r} = \mathbf{F_n} \times \mathbf{DV01_n} \times \Delta \mathbf{y_n}$ $\mathbf{F_r} = F_n \times \frac{DV01_n}{DV01_r} \times \frac{\Delta \mathbf{y_n}}{\Delta \mathbf{y_r}} = F_n \times \frac{DV01_n}{DV01_r} \times \beta$

Two-Variable Regression Hedge

- o Use 10 and 30 years to hedge 20 years
- o Equation: F10*DV10*Dy10+ F30*DV30*Dy30=F20*DV20*Dy20
- o Regression: Dy20 = a + beta10 * Dy10 + beta30*Dy30
- o Beta
 - Beta 10 = Dy20/Dy10 = F10*DV10 / F20*DV20
 - Beta30 =Dy30/Dy10 = F30*DV30 / F20*DV20

Level and Change Regression

- Change-on-Change: Dy t = alpha + beta Dx t + de t (somewhat correlated)
 - Dy $t = y \ t y \ (t-1)$, Dx $t = x \ t x \ (t-1)$
- Level-on-Level: y = alpha + beta * x t + e t (completely correlated)
- o Both are unbiased, correct, not efficient (error terms are serially correlated)
- o Error-on-Error
 - e t = r * e (t-1) + v t

• PCA

- Explain all factor exposures using a small number of uncorrelated exposures
- Minimize the sum of variances

The Science of Term Structure Models

- **Interest Rate Tree (Binomial Model)**
 - The interest rates at each node in this interest rate tree are 1-period forward rates corresponding to the nodal period. Beyond the root of the tree,

Construction - Forward

- o The values for **on-the-run issues** generated using an interest rate tree should match its market price to prohibit arbitrage opportunities.
- It must maintain the interest rate volatility assumption of the underlying model.

Valuation – Backward Induction

- Node value: average of present values of two values from the next period. The interest rate is determined at the **beginning** of a year.
- o (Average + coupon) then discount.

Risk-Neutral Pricing Tree

- Probabilities
 - True probability: 0.5 up and 0.5 down
 - Risk-neutral probability: equate PV = market price
 - Interest rate drift: difference between true and risk-neutral probabilities

Risk-Neutral Tree

- Adjust interest rate: Start with spot and forward rates, then adjust the interest rate. Use real-world probability.
- Adjust risk-neutral probability, take the rates on the tree as given.

Recombining and Nonrecombining Tree

- o Recombining tree: Up-then-down probability = down-then-up probability
- o Nonrecombining: does not equal
 - State-dependent volatility

• Value Bond Derivative

- Steps
 - Compute the **value** of the bond at each node
 - Compute the **intrinsic** value of derivative at each node at maturity
 - Compute the expected discounted value by using backward induction

• Value European Option

- o Option is exercised at maturity.
- o Compute the bond price of nodes **at maturity**, no need to compute it for the former nodes, then work backward.
- o For a node, its **price** does **not include** its **coupon**. It includes the discounted expected coupon of its next nodes.

• Constant Maturity Treasury Swap (CMT)

• Each node: price = cash flow + discounted expected value of next nodes

• Option-Adjusted Spread (OAS)

o The interest **spread** added to **each node** to equal the current market price=PV

• Fixed-Income Securities and BSM (does not apply)

- o No upper **limit**. But bond has a **maximum** when interest=0
- o Assume **risk-free** rate is constant. But changes in short-term rate occur.
- Assume price **volatility** is constant. But bond volatility **decreases** as bond approaches maturity.

Bond with Embedded Options

- o Callable bond
 - Issuer has the right to buy it back at a fixed price.
 - Less price volatility.
 - At low yield: negative convexity, capital gains are capped, reinvestment risk rises
- Puttable bond
 - Buyer has the right to sell it back at a fixed price

The Evolution of Short Rates and the Shape of the Term Structure

• Interest Rate Expectation

- Node rate are forwards rates => spot rate (geometric mean)
- Volatility creates convexity => lower spot rate
- o Flat, upward-sloping, downward-sloping
- Can describe short-term not long-term shape but can describe the level of interest rates for long-term horizons.

• Interest Rate Volatility

O There is uncertainty regarding expected rates, the **volatility** of expected rates causes the future spot rates to be **lower**. With the implied rate, we can compute the value of **convexity** for the 2-year zero-coupon bond as: 8%-7.9816% = 0.0184% or 1.84 basis points.

• Convexity Effect

- o Jensen's equity: E[1/(1+r)] > 1 / E[1+r]
 - f(x) = 1/x, convex, E[f(x)] > f(E[x]), let x = 1+r
- o convexity occurs due to volatility.
- o convexity increases with volatility and maturity.

o convexity increases PV, lower **yields**, reduction in yield is the value of convexity

• Risk Premium

- o Convexity lower spot rate and use risk premium to increase spot rate
- o risk-averse investors require a risk premium for bearing this interest rate risk
- There is only **uncertainty** in what the 1-year rate will be one and two years from today.
- o Two-year zero-coupon bond 30bps, three-year zero-coupon bond 60bpps

The Art of Term Structure Models: Drift

- Short-Term Interest Rate Tree Construction
- Parameters
 - o dt small interval in year, 1 month=1/12 year
 - o s: volatility
 - o Normal distribution $dw \sim N(0, sqrt(dt))$
- Model 1 No Drift
 - o $dr = s^* dw$ (expected rate change)
 - Change to rate => parallel shift, a flat term structure of volatility
 - Limitations
 - Not flexible, only one factor, volatility is flat, parallel shift

• Negative Interest Rate

- o Problem is greater when interest rate is low or the time get longer
- Solutions
 - Lognormal or chi-squared distribution
 - But introduce Skewness or inappropriate volatilities
 - Set to zero (preferred)
- o Bond less affected, but option depends on asymmetric payoff affected more
- Model 2 Constant Drift
 - \circ dr = lambda * dt + s * dw
 - o Positive drift -> positive risk premium
 - Limitations
 - value of drift is high.
- Ho-Lee Model Time-dependent Drift
 - \circ dr = lambda t * dt + s * dw
- Arbitrage-Free and Equilibrium Models
 - Arbitrage models
 - Used to quote the prices of securities that are illiquid or customized.
 - Constructed using on-the-run Treasury securities, predict off-the-run securities
 - Pricing derivative based on observable prices of underlying securities
 - Assumption: Prices are **accurate**, subject to suitability of model.
 - o Equilibrium
 - Used for relative analysis

• Vasicek Model – Mean-Reversion

- \circ dr = k (theta r) dt + s * dw
 - theta: **long-run equilibrium rate** value of short-term rate assuming risk neutrality
- o lambda = k (theta r l) = annual drift
 - theta = r + lambda / k, where r + lis the long-run true rate of interest

o non-recombine

- r ud: take the average of the up-then-down and down-then-up rates
- modify up p and down probability (1-p)
- modify up-and-up r uu and down-and-down probability r dd
- Equations for computing p and r uu
 - Mean: p*r uu + (1-p)*r ud = r 0 + k(theta-r)dt
 - Variance: $p*(r uu m)^2 + (1-p)(r ud mean)^2 = s * sqrt(dt)$

o Exponentially Decay

- Difference decay exponentially exp(-k*t)
- Interest Rate at time t
 - $r_t = r_0 * w + theta* (1-w), where w = exp(-kt)$
 - $r_t = r_0 * \exp(-kt) + \text{theta} * (1 \exp(-kt))$
 - theta $r_t = (\text{theta } r_0) \exp(-kt)$
- half life
 - $\exp(kt) = 2 => t = \ln 2 / k$

Effectiveness

- It produces a term structure of volatility that is **declining**. The short-term volatility is **overstated** and long-term volatility is **understated**
- Nonparallel shift: Upward shift in short term rate, short-term rate will be impacted more than long-term rate
- Natural shock: larger (smaller) k, quicker (slower) the news is incorporated; smaller -> news is long-lived

The Art of Term Structure Models: Volatility and Distribution

- Time-dependent volatility
 - \circ dr = lambda(t) dt + sigma(t) dw
- Model 3
 - \circ dr = lambda(t) dt + sigma * exp(-alpha * t) dw
 - \circ volatility decrease exponentially to 0 when alphan > 0
 - o Effectiveness
 - Caps and floors

• Model 3 and Vasicek

- Same STD: The same initial volatility and decay rate (alpha) = mean-reverting rate (k), the **standard deviations** of the terminal distributions are the same.
- Same **Distribution**: If time-dependent drift = average interest rate path in Vasicek Model, terminal distributions are **identical**.
- o Difference
 - Model 3 parallel shift, Vasicek nonparallel shift
- o Application
 - Price options on fixed income instruments, model 3
 - Value or hedge fixed income or options, Vasicek (mean reverting)

• Cox-Ingersoll-Ross (CIR)

- o Basis-point volatility increase with short-term rate sqrt(t)
- o dr = k (theta r) dt + sigma * sqrt(r) * dw

• Lognormal - Deterministic Shift Model 4

- \circ dln(r) = lambda(t) * dt + sigma * dw
 - dr = lambda * r * dt + sigma * r * dw
 - lnr 0 + lamba dt + sigma dw
 - $r = 0 \Rightarrow r = 0$ exp(lambda dt) exp(sigma dw), multiplicative

• Lognormal with Mean Reversion (Black- Karasinski)

- o d[ln(r)] = k(t) [ln(theta(t)) ln(r)] dt + sigma(t) dw
- o not recombing: the time intervals between interest rate changes are recalibrated to force the nodes to recombine.

Volatility Smile (strike price)

- Call-Put Parity (no-arbitrage equilibrium)
 - \circ $c p = S X \exp(-rT)$ (market)
 - \circ c bsm p bsm = S X exp(-rT) (BSM)
 - \circ c mkt p mkt = c bsm p bsm

• Volatility Smiles - Foreign Currency Options

- o volatility depend on **strike** price, volatility smiles
- o Higher for deep in-the-money and deep out-of-the-money (away-from-money)
- Greater chance of extreme price movements than predicted by a lognormal distribution

• Volatility Smirk/Skew (half-smile) - Equity Options

- o High **implied** volatility for **low** strike price options
 - In-the-money call and out-of-the-money puts

Left-Skewed Distribution (asymmetric)

 Large down movements in price than large up movements in price, compared with a lognormal distribution

Leverage (inverse relation between volatility and asset value)

- Equity value decrease -> leverage increase -> increase volatility asset
- Equity value increase -> leverage decrease -> decrease volatility asset

o Crashophobia

- Used since U.S. stock market crisis of 1987. Afraid of another crash, place a premium on the probability of stock prices falling precipitously
- Deep-out-of-money puts have high premium since they provide protection against drop in equity prices.
- Implied volatilities are higher for low strike price because traders want to protect themselves against another substantial drop in the market.

• Alternative Volatility Smile

- O Stock price, $X \rightarrow X/S$ 0 => more stable volatility smile.
- \circ Forward price of asset, X -> X/F_0 => better gauge of at the money option
- Option's delta, X -> Delta => other than European and American options

• Volatility term structure (TTM)

- o A function of time to expiration for at-the-money options.
- o Similar to mean-reverting characteristic

• Volatility Surface (TTM * Strike)

o Combination of volatility term structure with volatility smiles

Option Greeks

- o Sticky strike rule: assume implied volatility is the same over short time period
- o Sticky delta rule: delta will be larger than that given by BSM
- o Both assume volatility smile is **flat** for all option **maturities**.

• Price Jump / Volatility frowns

- O News cause the price to move up or down by a large amount.
- o jumps occur in asset prices.
- Two lognormal model

只看左边的 2 个图,不需要去记住那个分布图。 equity 就是下面的 foreign currency 就是上面的图 考试时

- 1 先画图 (equity, currency)
- 2 画一个水平线,在中间的那个虚线和曲线相交的地方,横着画一个线(可以认为这个线就是对应的 lognormal)
- 3 根据 in/out-of-money call/put 画点

根据这个关系图推理: 值高,波动高, fat tail

Extreme Value Theory (EVT)

- Focuses on data that is generally considered outliers.
- For low probability, high impact events; not everyday occurrences.
- A Cluster analysis is appropriate for financial data with time dependency.
- Distributions
 - Weilbull distribution
 - o Frechet distribution
 - o Generalized Pareto distribution

peaks-over-threshold (POT)

- A Fewer estimated parameters than the GEV approach and shares one parameter with the GEV
- Determine the cut-off between typical and extreme values.

Overnight Indexed Swap (OIS)

- Is a stable **proxy** in **stressed** market conditions
- Does not lead to an incorrect no-default value
- Does not result in **double** counting for credit risk.
- Generally reflects low credit risk
- The rate reflects a lack of credit risk because it is a function of the federal funds overnight rate, which bears minimal default risk and the adjustment to the rate in a transaction with a counterparty is typically **small**.

LIBOR

 as the discount rate to value a non-collateralized portfolio may result in double counting for risk.

- LIBOR is more volatile than the OIS rate and, therefore, not reflective of a true risk-free rate.
- LIBOR is a rate on **unsecured** borrowing.

Delta-Normal & Option

- The delta-normal VaR method cannot be expected to provide an accurate estimate of true VaR over ranges where deltas are unstable. That would occur when options are **at-the-money**.
- Deep-out-of-the-money and deep-in-the-money options have relatively **stable** deltas.

Price Value of a basis point (PVBP)

16

- PVBP: Change in Portfolio value for a 1bps change in rates
- At x% probability level change in interest rates is y% or higher.
 VaR at (100-x)% is PVBP * y * 100