

TECHNICAL REPORT ECOM-00394-15
**HIGH VOLTAGE BREAKDOWN
STUDY**

FIFTEENTH QUARTERLY PROGRESS REPORT

16 May 1968 through 15 August 1968

Prepared by:

ION PHYSICS CORPORATION
BURLINGTON, MASSACHUSETTS

DECEMBER 1968

DISTRIBUTION STATEMENT

Each transmittal of this document outside the
agencies of the U. S. Government must have
prior approval of Commanding General, U. S.
Army Electronics Command, Fort Monmouth,
New Jersey 07701, Attn: AMSEL-KL-TS.

JAN 21 1969

ECOM

UNITED STATES ARMY ELECTRONICS COMMAND • FORT MONMOUTH, N.J. 07703

SPONSORED BY: Advanced Research Projects Agency, ARPA Order No. 517
CONTRACT DA-28-043-AMC-00394(E)

ION PHYSICS CORPORATION
Burlington, Massachusetts 01803

Reproduced by the
CLEARINGHOUSE
for Federal Scientific & Technical
Information Springfield Va. 22151

**BEST
AVAILABLE COPY**

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department to the Army position, unless so designated by the authorized documents.

The citation of trade names and names of manufacturers in this report is not to be construed as official Government endorsement or approval of commercial products or services referenced herein.

Disposition

Destroy this report when it is no longer needed. Do not return to the originator.

ACCESSION FOR	
REF ID:	WHITE SECTION
'98	DATA SECTION
ANNOUNCED	
JUSIFICATION	
BY	
DISTRIBUTION/AVAILABILITY GUIDE	
DISP.	ANNUAL AND OR SPANISH

Technical Report ECOM-00394-15

OSD-1366
December 1968

HIGH VOLTAGE BREAKDOWN STUDY

**Fifteenth Quarterly Progress Report
16 May 1968 through 15 August 1968**

Report No. 15

**Contract No. DA-28-043-AMC-00394(E)
AMC Task No. 7900.21.243.40.00**

Prepared for:

**U. S. ARMY ELECTRONICS COMMAND
FORT MONMOUTH, NEW JERSEY**

Sponsored by:

**ADVANCED RESEARCH PROJECTS AGENCY
ARPA Order No. 517**

Prepared by:

**W. R. Bell, P. C. Bolin, M. J. Mulcahy,
F. Y. Tse and A. Watson**

**ION PHYSICS CORPORATION
BURLINGTON, MASSACHUSETTS**

DISTRIBUTION STATEMENT

**This document has been approved for public
release and sale; its distribution is unlimited.**

TABLE OF CONTENTS

<u>Section</u>		<u>Page</u>
	PURPOSE	1
	ABSTRACT	2
	LECTURES, CONFERENCES AND PUBLICATIONS	3
1	INTRODUCTION	5
2	300 KV TEST VEHICLE	7
	2. 1 Vacuum Chamber and System	7
	2. 2 High Voltage Feedthrough Bushing	7
	2. 3 Bushing Resistor	7
	2. 4 Dielectric Envelope	7
	2. 5 Energy Storage and Crowbar System	7
	2. 5. 1 General Electrical Design	7
	2. 5. 2 Energy Storage Capacitor Bank	8
	2. 5. 3 High Pressure Gas Crowbar	8
	2. 5. 4 Resistors	11
3	DESCRIPTION OF THE "FIRST SIXTEEN" EXPERIMENT	13
	3. 1 Introduction	13
	3. 2 Experimental Procedure	13
	3. 2. 1 Electrode Preparation	16
	3. 2. 2 Vacuum System and Bakeout	16
	3. 2. 3 Power Supply and External Circuit	16
	3. 2. 4 Bushing Conditioning	17
	3. 2. 5 Variables Monitored	17
	3. 3 Test Sequence	17
	3. 3. 1 Voltage Application	17
	3. 3. 2 First Day	18
	3. 3. 3 Second Day - Magnetic Field Tests	18
	3. 3. 4 Third Day - Gas Exposure Tests	18

TABLE OF CONTENTS (Continued)

<u>Section</u>	<u>Page</u>
3.4 Summary	19
4 RESULTS OF THE "FIRST SIXTEEN" EXPERIMENT	21
4.1 Breakdown Voltage	21
5 ANALYSIS AND INTERPRETATION OF "FIRST SIXTEEN" EXPERIMENT	29
5.1 Introduction	29
5.2 Factorial Analysis by Yates' Algorithm	30
5.3 Breakdown Voltage as a Function of Electrode Separation	30
5.4 Breakdown Voltage as a Function of Prior Sparking	35
5.5 Breakdown Voltage as a Function of Transverse Magnetic Field	35
5.6 Interpretation	36
5.6.1 Introduction	36
5.6.2 Analysis	36
5.6.3 Conclusions	37
6 DESIGN OF "SECOND SIXTEEN" EXPERIMENT	89
6.1 Introduction	89
6.2 Dielectric Envelope Tests	89
6.3 Energy Storage and Crowbarring	90
7 FUTURE EFFORT	91
8 IDENTIFICATION OF PERSONNEL	93

LIST OF ILLUSTRATIONS

<u>Figure</u>		<u>Page</u>
1	Outline of Energy Storage and Crowbar System	9
2	Crowbar Schematic	10
3	Sample Plot Showing Sequence of Breakdowns (Treatment bce) for First Days' Tests	39
4	Breakdown Voltage vs Square Root Gap Separation for Treatment 4 (repeat)	40
5	Breakdown Voltage vs Square Root Gap Separation for Treatment ae	41
6	Breakdown Voltage vs Square Root Gap Separation for Treatment be	42
7	Breakdown Voltage vs Square Root Gap Separation for Treatment abe (repeat)	43
8	Breakdown Voltage vs Square Root Gap Separation for Treatment ce	44
9	Breakdown Voltage vs Square Root Gap Separation for Treatment ace (repeat)	45
10	Breakdown Voltage vs Square Root Gap Separation for Treatment bce	46
11	Breakdown Voltage vs Square Root Gap Separation for Treatment abce	47
12	Breakdown Voltage vs Square Root Gap Separation for Treatment de	48
13	Breakdown Voltage vs Square Root Gap Separation for Treatment ade	49
14	Breakdown Voltage vs Square Root Gap Separation for Treatment bde	50
15	Breakdown Voltage vs Square Root Gap Separation for Treatment abde	51
16	Breakdown Voltage vs Square Root Gap Separation for Treatment cde	52
17	Breakdown Voltage vs Square Root Gap Separation for Treatment acde	53
18	Breakdown Voltage vs Square Root Gap Separation for Treatment bcde	54

LIST OF ILLUSTRATIONS (Continued)

<u>Figure</u>		<u>Page</u>
19	Breakdown Voltage vs Square Root Gap Separation for Treatment abcde	55
20	Breakdown Voltage vs Square Root Gap Separation for Treatment e	56
21	Breakdown Voltage vs Square Root Gap Separation for Treatment abe	57
22	Breakdown Voltage vs Square Root Gap Separation for Treatment ace	58
23	Breakdown Voltage vs Square Root Gap Separation for Treatment dc (repeat)	59
24	Breakdown Voltage vs $(\text{Gap})^{1/2}$ for Average of All Treatments (First Days' Tests)	60
25	Linear Plot of Average Breakdown Voltage vs Gap for First Days' Tests	61
26	Breakdown Voltage vs $(\text{Gap})^{1/2}$ for Second Days Tests (Magnetic Field Tests)	62
27	Breakdown Voltage vs $(\text{Gap})^{1/2}$ for Third Days' Tests After Exposure	63
28	Breakdown Voltage vs $(\text{Gap})^{1/2}$ for Third Days' Tests Before Exposure	64
29	Sample Plot, Average Breakdown Voltage Over 16 Treatments	65
30	Breakdown Voltage Conditioning Plot for Treatment e (repeat)	66
31	Breakdown Voltage Conditioning Plot for Treatment ae	67
32	Breakdown Voltage Conditioning Plot for Treatment be	68
33	Breakdown Voltage Conditioning Plot for Treatment abe (repeat)	69
34	Breakdown Voltage Conditioning Plot for Treatment ce	70
35	Breakdown Voltage Conditioning Plot for Treatment ace (repeat)	71

LIST OF ILLUSTRATIONS (Continued)

<u>Figure</u>		<u>Page</u>
36	Breakdown Voltage Conditioning Plot for Treatment bce	72
37	Breakdown Voltage Conditioning Plot for Treatment abce	73
38	Breakdown Voltage Conditioning Plot for Treatment de	74
39	Breakdown Voltage Conditioning Plot for Treatment ade	75
40	Breakdown Voltage Conditioning Plot for Treatment bde	76
41	Breakdown Voltage Conditioning Plot for Treatment abde	77
42	Breakdown Voltage Conditioning Plot for Treatment cde	78
43	Breakdown Voltage Conditioning Plot for Treatment acde	79
44	Breakdown Voltage Conditioning Plot for Treatment bcde	80
45	Breakdown Voltage Conditioning Plot for Treatment abcde	81
46	Breakdown Voltage Conditioning Plot for Treatment de (repeat)	82
47	Breakdown Voltage Conditioning Plot for Treatment e	83
48	Breakdown Voltage Conditioning Plot for Treatment ace	84
49	Breakdown Voltage Conditioning Plot for Treatment abe	85
50	Average Breakdown Voltage as a Function of Transverse Magnetic Field (Second Days' Tests)	86
51	Average Breakdown Voltage as a Function of Transverse Magnetic Field (Third Days' Tests)	87

LIST OF TABLES

<u>Table</u>		<u>Page</u>
1	Factors Investigated in Factorial Experiment	14
2	Treatment Combination for "First Sixteen"	15
3	Test Sequence for "First Sixteen" Experiment	22
4	First Days' Tests	23
5	Second Days' Tests, Magnetic Field Tests	24
6	Third Day Before Exposure, Magnetic Field Tests	25
7	Third Day After Exposure, Magnetic Field Tests	26
8	Breakdown Voltages of Treatments Considered to be Replications	27
9	Yates' Estimates for First Days' Tests	31
10	Yates' Estimates for Magnetic Field Tests	32
11	Yates' Estimates for Magnetic Field Tests Before Exposure	33
12	Yates' Estimates for Magnetic Field Tests After Exposure	34

PURPOSE

The factors influencing breakdown in high voltage vacuum devices will be studied. The information obtained will provide the basis for improvement in the design of microwave and modulator tubes that must operate at voltages greater than 100 kilovolts without breakdown.

ABSTRACT

This report describes the fifteenth quarter of a study of high voltage breakdown in vacuum. During this period, the first half of a five-factor, full-factorial experiment investigating the effect of anode material, cathode material, electrode pretreatment, anode size and anode shape was completed. A summary of experimental conditions and procedures is given, breakdown voltage results are reported, and an analysis of the presently available data carried out. Anode and cathode material were both important influences, with copper giving significantly higher breakdown voltage than aluminum. Electrode pretreatment (vacuum or hydrogen firing) had an influence which depended on both anode and cathode material; the only simply described result being that vacuum firing is better for aluminum while hydrogen firing is better for copper. Conditioning - the change in breakdown voltage due to a series of breakdowns - was found to influence in several ways the effects reported above and makes impossible the assigning of a single unique breakdown voltage to any pair of electrodes at a given gap setting. However, the changes due to conditioning can be described, limiting values determined and the variation around this level specified. Breakdown voltage was found to vary linearly with gap below about 1.0 cm and to follow a square root law above 1.0 cm. A weak transverse magnetic field (100 to 400 gauss) was found to lower breakdown voltage for large gaps (> 1.0 cm) and to raise it for small gaps (< 1.0 cm).

LECTURES, CONFERENCES AND PUBLICATIONS

Lectures and Conferences

21 May 1968

M. J. Mulcahy visited Fort Monmouth to discuss progress under the contract, in particular the final procedures for the first Block of Sixteen.

19 June 1968

M. J. Mulcahy and W. R. Bell visited Fort Monmouth to discuss the analysis of the preliminary results and designs of the Block of Sixteen.

26 June 1968

Professor H. Freeman visited Ion Physics Corporation to discuss factorial design and analysis.

11 July 1968

M. M. Chrepta visited Ion Physics Corporation to discuss progress under the contract, in particular the results of the Block of Sixteen.

13 August 1968

M. J. Mulcahy visited Fort Monmouth to discuss the results of the first Block of Sixteen, and the final design and procedure for the second Block of Sixteen.

Publications

There were no publications during this period.

SECTION 1

INTRODUCTION

This report describes the fifteenth three months of a study of high voltage breakdown in vacuum. The study has particular reference to problems encountered in the development of high power vacuum tubes.

During the present period, the first sixteen treatments and four repeat treatments of a 32-treatment experiment were completed. This five-factor, two-level, full-factorial experiment investigates the influence on vacuum breakdown of anode material, cathode material, anode size, anode shape and electrode treatment. At present, the first half of this experiment is complete; and since one factor (anode shape) was held constant during these treatments, the results can be analyzed as a four-factor, full-factorial experiment. The experimental results and a preliminary analysis are contained in this report. The effects of gas exposure and a transverse magnetic field were also studied by a technique of stacking.

Experimentation continues on the second half of the overall experiment, with three treatments completed to date. In this series, the effects of exposure to atmosphere, energy storage with crowbarring, magnetic fields, and a dielectric envelope are being investigated as flexible factors.

Regular maintenance of the test equipment has been carried out. The energy storage and crowbar system was installed and tested with satisfactory results. The dielectric envelope assembly is complete and has been used during two tests.

SECTION 2

300 KV TEST VEHICLE

2. 1 Vacuum Chamber and System

The vacuum chamber and system have functioned well with only minor modifications during this period. Deteriorated electrode heaters have been replaced several times and a new heater unit is being designed. The ion pump has been cleaned as per General Electric specifications and a standby pump is being maintained under vacuum. A new ion pump control has been installed that automatically turns the pump back on if it turns off due to a temporary overload.

2. 2 High Voltage Feedthrough Bushing

The original bushing has been used for all treatments during this test period and was sandblasted and cleaned during May.

2. 3 Bushing Resistor

The bushing resistor used until 1 August 1968 was a deposited film carbon resistor that persistently suffered surface deterioration due to flash-over. This problem has been eliminated by replacing the carbon resistor with a liquid electrolyte (CuSO_4) resistor of ~ 80 ohms. This appears to be working well with no flashover problem.

2. 4 Dielectric Envelope

The dielectric envelope assembly as described in Quarterly Progress Reports 13 and 14, is complete and has been used twice. In these tests, envelope flashover often occurred before gap breakdown for the larger gaps. This becomes especially troublesome in the presence of a transverse magnetic field.

2. 5 Energy Storage and Crowbar System

2. 5. 1 General Electrical Design

The energy storage and crowbar system, as discussed in previous Quarterly Progress Reports and as implemented during this test period, is designed to deliver controlled amounts of energy to the vacuum gap. The basic

design is given in the schematic of Figure 1. A capacitor bank stores energy ($1/2 CV^2$) which is available to the vacuum gap at the other end of about 25 feet of 300 kV coaxial cable. The crowbar, when triggered, diverts energy from the capacitor bank to ground, thus limiting in a controlled fashion the energy reaching the vacuum gap. Presently, the crowbar requires a minimum of 600 ns to trigger. This system makes possible a controlled variation in the type and quantity of energy available to the vacuum arc. Further variation can be achieved by changing the capacitor and bushing resistors.

2. 5. 2 Energy Storage Capacitor Bank

The energy storage is supplied from four capacitors in series. These are insulated in a steel pressure vessel with 2 atmospheres of SF₆ gas. An epoxy bushing is used to lead in the 300 kV cable and the crowbar is installed directly above the capacitor stack in the same pressure vessel. The total energy available at 300 kV is 7000 joules.

2. 5. 3 High Pressure Gas Crowbar

The crowbar system consists of a high pressure gas insulated trigatron gap, designed to withstand up to 300 kV and its associated breakdown sensing and triggering circuitry (Figure 2). When current begins to flow through the test gap that is to be protected, a voltage is produced in an inductive pick-up probe. The probe signal (~ 5 volts) triggers electronic circuitry which produces a 6 kV trigger voltage. This voltage in turn fires the main trigger generator, a three stage Marx circuit which will then apply a 70 kV pulse across the trigatron gap causing it to close. When crowbar gap length and pressure are adjusted properly to suit the test gap voltage, diversion can be achieved within 1 microsecond after the inductive pick-up signal occurs.

Because of the large amount of energy being diverted in this application, special electrode materials and gas mixtures have been used. Calibration curves and operating characteristics are now being obtained. Since the range of voltage over which a set vacuum gap may be expected to break down is quite large (often 25 to 30%), it may prove necessary to vary the crowbar settings as test gap voltage is raised. This could be done by varying either crowbar gap spacing or gas pressure. Changing the gas pressure is probably more practical and will be used if required.

Present tests indicate that the crowbar can be fired within 600 ns of vacuum gap breakdown.

Figure 1. Outline of Energy Storage and Crowbar System

Figure 2. Crowbar Schematic

1-2908

2. 5. 4

Resistors

In the energy storage circuit, resistances of about 4 to 100 ohms are used in series with the capacitors, cable and vacuum gap. These are constructed of lucite and filled with a liquid electrolyte (CuSO_4). Enough units will be used in parallel to keep the temperature rise below 3°C . These resistors limit the current and make possible wave shape variation.

To isolate the high voltage power supply from transients which might cause damage during energy storage tests, a 3 megohm spiral resistor is inserted between the high voltage terminal and test cable. This additional isolation resistor is used only during energy storage tests.

BLANK PAGE

SECTION 3

DESCRIPTION OF THE "FIRST SIXTEEN" EXPERIMENT

3.1

Introduction

The first half of a five factor, two level, full factorial experiment has been completed. This investigates the influence on vacuum breakdown of:

- (1) anode material,
- (2) cathode material,
- (3) electrode pretreatment,
- (4) anode size,
- (5) anode shape.

Voltages up to 300 kV and gap separations from 0.25 cm to 3.0 cm were used. The cathode was a 2-inch diameter sphere. Table 1 outlines the factors and levels investigated.

In this first half of the experimental series, anode shape was held constant at the high level (Bruce profile). This enables the present results to be considered as a four-factor, full-factorial experiment which may be analyzed while the second half of the experiment is performed. The order of performance of the experiments making up the First Sixteen was randomized to minimize any "historical" error. Four replications have been completed. Transverse magnetic fields and gas exposure were studied as additional flexible factors. Table 2 summarizes the treatment combinations and gives the dates and order of experimentation.

3.2

Experimental Procedure

Each set of electrodes used in the First Sixteen experiment consists of a different combination of the two levels of the four factors being studied (see Tables 1 and 2). One week is required per treatment during which the electrodes and test apparatus are prepared according to strictly defined procedure and then subjected to a rigidly specified sequence of breakdowns at various gaps, magnetic field levels and gas exposure conditions. The complete preparation and testing procedures will now be summarized. Detailed description of and motivation for the procedures used can be found in previous Quarterly Progress Reports.

Table 1. Factors Investigated in Factorial Experiment

Factors		Levels	
Factorial Code	Physical Factor	High Level	Low Level
A	Anode Material	Copper	Aluminum
B	Cathode Material	Copper	Aluminum
C	Electrode Treatment	Vacuum Firing	Hydrogen Firing
D	Anode Size	4 Inch Diameter	4/3 Inch Diameter
E	Anode Shape	Bruce Profile	Sphere

Note: The designations of "high" level and "low" level are completely arbitrary and are made only for manipulative convenience.

Table 2. Treatment Combination for "First Sixteen"

Factorial Treatment Code	A Anode Material	B Cathode Material	C Electrode Treatment	D Anode Size	Date of Testing
e	Al	Al	H ₂	Small	2/26/68
ae	Cu	Al	H ₂	Small	4/22/68
be	Al	Cu	H ₂	Small	3/26/68
abe	Cu	Cu	H ₂	Small	2/5/68
ce	Al	Al	Vac	Small	4/8/68
ace	Cu	Al	Vac	Small	3/18/68
bce	Al	Cu	Vac	Small	6/3/68
abce	Cu	Cu	Vac	Small	3/4/68
de	Al	Al	H ₂	Large	3/11/68
ade	Cu	Al	H ₂	Large	4/29/68
bde	Al	Cu	H ₂	Large	5/21/68
abde	Cu	Cu	H ₂	Large	2/12/68
cde	Al	Al	Vac	Large	4/15/68
acde	Cu	Al	Vac	Large	5/6/68
bcde	Al	Cu	Vac	Large	5/27/68
abcde	Cu	Cu	Vac	Large	2/19/68
e (repeat)	Al	Al	H ₂	Small	6/24/68
abe (repeat)	Cu	Cu	H ₂	Small	7/22/68
ace (repeat)	Cu	Al	Vac	Small	6/10/68
de (repeat)	Al	Al	H ₂	Large	7/1/68

Cathode in all cases was a 2 inch diameter sphere.

Small = 4/3 Inch

Large = 4 Inches

A treatment is designated by a code of lower case letters. The presence of the letter in the code indicates that the corresponding factor was at its "high" level, the absence of a letter indicates that the corresponding factor was at its "low" level.

3.2.1 Electrode Preparation

The electrodes are machined to the appropriate profile (Bruce or sphere) and then hand ground to a 600 grit silicon carbide finish with green soap and distilled water. Next they are cleaned by an ultrasonic process and several solvents.

The electrode treatment factor, C, consists of either vacuum or hydrogen firing. For copper the firing is carried out at 900°C for 6 hours with either a pressure below 3×10^{-7} torr (vacuum firing) or with a positive pressure flow of hydrogen. Aluminum is treated in the same way except that the firing temperature is 600°C. Ion pumps provide a clean vacuum environment and final pressure is about 5×10^{-9} torr in the vacuum firing case.

Electrodes are removed only after cooling to ambient temperature. They are handled only with lint-free cotton gloves and installed directly in the vacuum test chamber using a dry nitrogen transfer system. This procedure is usually completed on Thursday afternoon of each week.

3.2.2 Vacuum System and Bakeout

The spherical stainless steel vacuum chamber is sealed with gold and copper O-rings and pumped by a combination of a Varian "gasp" pump, two Varian sorption pumps, and a 500 liter per second General Electric ion pump. After installation of electrodes, the chamber is pumped overnight to a pressure of less than 10^{-7} torr.

The chamber is then baked at 375°C for 6 hours with concurrent electrode bake at 400°C. Then the chamber and electrodes are allowed to cool to ambient temperature over the weekend. Final pressure is less than 10^{-8} torr.

3.2.3 Power Supply and External Circuit

A Universal Voltronics 300 kV dc power supply with a maximum current capability of 2 mA serves as a high voltage power supply. Voltage is measured by a calibrated resistor in the power supply. Coaxial high voltage cable connects the power supply output to the chamber. Epoxy bushings are used for terminations.

A resistor of about 80 ohms (of deposited carbon for the First Sixteen experiment) serves to limit the current to the vacuum gap. It is located between the 300 kV cable and feedthrough bushing in a 30 psi SF₆ environment.

3.2.4 Bushing Conditioning

The bakeable ceramic-copper feedthrough bushing requires conditioning to reach 300 kV. This conditioning is accomplished by applying voltage to the bushing with the electrodes at maximum separation (about 5 cm). The voltage is progressively raised until bushing current and gas evolution limit the voltage due to current overload. Gradually this diminishes and the voltage can again be raised. Conditioning is done before each day's testing and usually takes an hour on the first day and 30 minutes thereafter. The bushing is held at a voltage of 300 kV for 20 minutes.

3.2.5 Variables Monitored

The primary variable is voltage which is measured by a calibrated high voltage resistor in the power supply. Prebreakdown current to the cathode is measured by a Keithley logarithmic electrometer ammeter (from 10^{-2} A to 10^{-4} A). A strip recorder is used to record the hydrogen partial pressure as obtained by a mass spectrometer mounted on the chamber wall.

A capacitive pickup opposite the high voltage feedthrough bushing and a Tektronix 519 oscilloscope provide a record of voltage collapse waveform due to breakdown.

Visual observation of the gap is the primary criterion for breakdown. This is done through a glass window via a mirror system.

Total pressure in the vacuum chamber, ion pump current (and hence the pumping load), radiation level, and power supply charging current are also observed.

3.3 Test Sequence

3.3.1 Voltage Application

The voltage is applied in steps of 10 kV each minute until breakdown occurs. This is done at first from zero voltage level and then, after a probable breakdown range has been established, from some voltage level 30 or 40 kV below a possible breakdown voltage. Thus, obtaining each breakdown takes up to 10 minutes. The tests done on each day will now be outlined.

3.3.2

First Day

On this day, a series of breakdowns on clean, baked, unsparked electrodes at various gap separations is obtained. The test sequence is:

- (1) 3 breakdowns at 1.0 cm;
- (2) 1 breakdown each at 1.5 cm, 2.0 cm, 3.0 cm, 0.25 cm, 0.50 cm, 0.75 cm and 1.0 cm;
- (3) repeat cycle (2).

Cycle (2) is referred to as "unconditioned" while cycle (3) is referred to as "conditioned". Each breakdown in cycle (3) has had 6 more preceding sparks than the similar breakdown in cycle (2).

3.3.3

Second Day - Magnetic Field Tests

On this day, a transverse magnetic field (produced by coils located outside the vacuum chamber) is introduced as a flexible factor. Five levels (0, 100, 200, 300 and 400 gauss) are used. The sequence is:

- (1) at 1 cm gap - 3 breakdowns at 0 field, 1 each 100, 200, 300, 400 and 0 gauss;
- (2) at 2.0 cm gap - 1 breakdown each at 0, 100, 200, 300, 400 and 0 gauss;
- (3) at 0.25 cm gap - 1 breakdown each at 0, 100, 200, 300, 400 and 0 gauss;
- (4) at 0.50 cm gap - 1 breakdown each at 0, 100, 200, 300, 400 and 0 gauss;
- (5) final breakdown at 1.0 cm gap, 0 field.

3.3.4

Third Day - Gas Exposure Tests

First, a series of breakdowns are obtained to establish comparison values which are termed "before exposure". Then the chamber is exposed for 1 minute to 20% oxygen and 80% nitrogen mixture at a pressure of 10^{-6} torr. Next, the chamber is pumped back to its base pressure of about 10^{-8} torr and the test series is repeated. The breakdown sequence in each case (before and after exposure) is:

- (1) at 1.0 cm gap - 3 breakdowns at 0 field, 1 each at 200, 400 and 0 gauss;
- (2) at 1.5 cm gap - 1 breakdown each at 0, 200, 400 and 0 gauss;
- (3) at 0.25 cm gap - 1 breakdown each at 0, 200, 400 and 0 gauss;

(4) at 0.50 cm gap - 1 breakdown each at 0, 200, 400 and 0 gauss.

A final breakdown at 1.0 cm is taken at the end of the "after exposure" series.

3.4 Summary

The "First Sixteen" experiment varies four factors at two levels each to produce 16 sets of electrodes. These electrodes are carefully prepared and installed under identical environmental conditions. Their vacuum insulation properties are then explored in detail by a sequence of about 90 breakdowns over a three day test period. Their performance with and without a transverse magnetic field and before and after gas exposure is part of this test sequence. Gap separation is varied from 0.25 cm to 3.0 cm at voltages up to 300 kV.

BLANK PAGE

SECTION 4
RESULTS OF THE
"FIRST SIXTEEN" EXPERIMENT

4. 1 Breakdown Voltage

The variable of greatest interest in vacuum insulation is, naturally, the breakdown voltage. As outlined in the previous section, about 90 breakdowns were obtained with each pair of electrodes. Table 3 presents the breakdown sequence and provides a code for labeling each breakdown. A Roman numeral is used for the test series and a number gives the order of the spark within the test series.

The experimental results of the "First Sixteen" experiment are presented in standard factorial order in Tables 4, 5, 6 and 7. The results of the treatments that are considered to be replications appear in Table 8. As can be seen several breakdowns were omitted in some of these tests. When this occurs in the treatments used for factorial analysis (Tables 4 through 7) extrapolated values have been inserted.

Table 3. Test Sequence for "First Sixteen" Experiment

	I	II	III	IV	
	Gap (cm)	Cap (cm)	Field (Gauss)	Gap (cm)	Field (Gauss)
1	1.0	1	1.0	1	1.0
2	1.0	2	1.0	2	1.0
3	1.0	3	1.0	3	1.0
4	1.5	4	1.0	4	1.0
5	2.0	5	1.0	5	1.0
6	3.0	6	1.0	6	1.0
7	0.25	7	1.0	7	1.5
8	0.50	8	1.0	8	1.5
9	0.75	9	2.0	9	1.5
10	1.0	10	2.0	10	1.5
11	1.5	11	2.0	11	2.0
12	2.0	12	2.0	12	2.0
13	3.0	13	2.0	13	2.0
14	0.25	14	2.0	14	2.0
15	0.50	15	0.25	15	0.25
16	0.75	16	0.25	16	0.25
17	1.0	17	0.25	17	0.25
		18	0.25	18	0.25
		19	0.25	19	0.50
		20	0.25	20	0.50
		21	0.50	21	0.50
		22	0.50	22	0.50
		23	0.50	23	0.50
		24	0.50	24	0.50
		25	0.50	25	0.50
		26	0.50	26	0.50
		27	1.0	27	1.0

- I. First Days' Tests
- II. Second Days' Tests, Magnetic Field Tests
- III. Third Day Before Exposure, Magnetic Field Tests
- IV. Third Day After Exposure, Magnetic Field Tests

Table 4. First Days' Tests

Gap (cm)	1.0			1.5			2.0			3.0			0.25			0.50			0.75		
Gauss	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
Spark No.	1	2	3	10	17	4	11	5	12	6	13	7	14	8	15	9	16				
e(R)	166	166	160	180	205	240	240	300	293	>300	>300	37	42	89	99	138	147				
ae	145	167	180	220	220	240	269	280	290	295	>300	49	47	124	105	179	152				
be	220	220	210	180	175	262	230	260	260	290	290	45	47	90	103	140	150				
abe(R)	180	180	190	240	260	275	260	300	297	>300	>300	56	73	120	136	157	190				
ce	130	150	170	200	230	260	270	282	294	>300	300	70	72	117	115	170	185				
ace(R)	160	185	207	190	200	287	250	300	270	>300	>300	50	47	105	97	131	160				
bce	82	107	117	160	200	180	250	255	300	>300	>300	29	48	87	104	128	155				
abce	80	110	120	150	160	200	190	266	250	>300	300	33	37	80	100	123	146				
de	100	100	120	160	180	170	220	210	280	290	300	30	56	89	90	120	135				
ade	130	150	170	150	190	240	220	252	240	>300	>300	31	44	86	96	119	142				
bde	130	160	180	198	199	190	250	260	270	260	260	65	67	100	129	130	174				
abde	127	180	170	209	220	210	230	230	280	290	>300	99	125	156	160	190	200				
cde	100	133	150	200	200	220	260	270	290	296	297	28	37	105	118	165	150				
acde	170	180	190	190	210	250	230	290	260	>300	300	40	58	109	112	157	166				
bcde	126	137	170	198	180	230	230	270	290	>300	>300	44	50	108	115	147	140				
abcde	174	170	185	160	210	210	200	238	250	296	295	44	50	100	97	147	159				

Table 5. Second Days' Tests, Magnetic Field Tests

Gap (cm)	1.0					2.0					3.25					0.50					1.0					
	Gauss	0	100	200	300	400	0	100	200	300	400	0	100	200	300	400	0	100	200	300	400	0	100	200	300	400
Spark No.	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	
e(R)	190	147	153	160	150	175	289	250	280	230	240	295	37	39	40	40	40	42	80	89	90	95	94	90	156	
a ^c	216	110	150	150	170	170	250	251	260	260	250	279	50	52	60	61	60	69	149	140	150	150	154	140	210	
b ^c	199	150	160	160	170	170	275	250	220	210	230	278	44	40	50	50	50	51	100	109	104	100	105	90	130	
a ^b e(R)	258	220	228	240	230	240	300	300	300	280	300	>300	(40)	(42)	(44)	(45)	(47)	(50)	96	100	118	107	115	120	(245)	
c ^c	217	220	200	190	180	230	296	260	280	260	230	291	53	60	67	70	75	74	140	130	136	130	130	135	229	
a ^c e(R)	200	200	180	170	150	190	295	295	290	280	298	295	53	64	70	70	73	76	130	130	140	129	132	136	214	
b ^c e	200	147	200	170	200	200	295	220	240	230	210	240	30	35	53	56	57	60	109	120	124	127	130	130	204	
a ^b c ^c	166	170	180	200	180	170	280	240	270	279	290	57	70	77	85	83	94	170	159	170	150	160	149	230		
d ^c e	188	187	200	140	169	140	250	220	210	270	260	280	38	42	45	44	48	42	90	100	90	96	97	95	179	
a ^d e	170	160	160	190	150	176	259	257	220	210	210	260	35	39	42	40	44	46	109	110	116	110	100	119	171	
b ^d e	210	210	200	220	220	230	260	240	260	250	220	270	70	69	73	76	74	77	117	119	125	129	128	134	210	
a ^b d ^c	200	230	220	230	230	222	280	285	284	286	287	296	125	128	129	133	145	145	180	194	190	196	220	210	280	
c ^d e	219	190	190	200	200	190	280	230	250	220	230	210	58	55	58	61	54	58	109	126	103	110	127	127	200	
a ^c d ^e	190	204	220	170	170	209	272	230	240	230	240	260	60	69	67	79	77	78	147	150	157	150	159	140	210	
b ^c d ^e	205	150	170	160	170	140	200	180	190	230	230	240	55	59	60	66	66	67	130	130	135	116	120	120	160	
a ^b c ^d ^e	140	210	199	200	180	199	270	245	210	220	210	200	59	69	67	70	75	75	129	150	153	150	160	160	210	

Note: () Parentheses indicate extrapolated, not experimental, values.
OL indicates overload ($> 2 \times 10^{-4}$ amperes), no spark.

Table 6. Third Day Before Exposure, Magnetic Field Tests

Gap (cm)	1.0				1.5				2.0				0.25				0.50				
Gauss	0	0	0	200	400	0	0	200	400	0	0	200	400	0	0	200	400	0	0		
Spark No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19		
e(R)	180	180	171	143	160	174	260	249	240	270	290	294	295	280	50	60	60	60	110	100	
a*	220	220	209	210	200	220	260	260	269	270	300	294	290	300	77	80	83	80	140	140	
b*	197	199	190	180	160	190	230	194	160	240	280	240	220	280	50	47	50	50	97	100	
abe (R)	260	260	250	250	200	234	299	245	299	>300	300	>300	300	>300	87	92	97	95	175	170	
c*	250	250	246	230	210	250	280	230	279	280	290	280	290	290	95	99	104	100	170	170	
ace(R)	220	220	220	220	220	190	280	280	270	280	300	299	300	300	46	65	68	80	144	134	
bcr*	220	225	200	210	220	232	280	231	230	286	300	300	300	300	70	67	74	77	110	150	
abc*	254	254	262	239	250	250	275	263	270	290	289	280	290	300	90	97	110	116	187	179	
de	110	130	150	170	177	170	248	230	220	250	270	250	240	269	49	49	47	50	96	107	
ade	210	210	210	200	170	210	260	210	210	259	292	240	240	292	34	40	50	57	127	130	
bch*	150	226	226	220	210	240	240	250	217	250	280	290	220	285	86	79	90	85	117	130	
abde	280	240	289	230	250	250	(2.05)	(2.65)	(2.75)	(2.90)	300	290	>300	(120)	(130)	(130)	(150)	157	190	200	
cch*	140	200	190	210	200	210	240	240	230	290	270	240	240	290	47	49	51	54	107	100	
acde	150	200	210	170	160	210	260	225	210	250	284	260	230	279	65	73	80	85	140	150	
bcde	140	210	210	180	190	220	270	220	240	260	290	230	250	50	58	69	72	139	147	147	
abcd	210	215	215	190	210	220	253	260	269	275	>300	295	300	307	(80)	(120)	(130)	(115)	130	156	159

Note: () parentheses indicate extrapolated, not experimental, values.

OL indicates overload ($I_{gap} > 2 \times 10^{-4}$ amperes), no spark.

Table 7. Third Day After Exposure, Magnetic Field Tests

Gap (cm)	1.0					1.5					2.0					0.25					0.50					1.0						
	Gauss	0	0	0	200	400	0	0	200	400	0	0	200	400	0	0	200	400	0	0	200	400	0	0	200	400	0	0	200	400	0	0
Spark No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23									
e(R)	154	200	200	180	180	190	248	248	160	170	250	257	250	260	55	58	60	50	104	109	100	119	140									
ac	224	224	225	227	220	234	249	260	260	270	290	290	300	62	70	80	95	160	177	170	170	170	230									
bc	170	170	188	159	140	190	227	180	180	220	231	210	200	230	48	48	50	55	94	100	105	106	169									
abe(R)	250	250	255	240	220	260	280	250	260	300	>300	270	>300	>300	75	99	110	106	190	190	170	190	260									
cc	230	230	240	237	217	240	250	260	260	270	275	280	285	285	75	88	88	87	130	150	150	148	220									
ace(R)	229	237	220	230	236	230	265	267	277	270	>300	297	300	>300	56	90	98	100	160	160	160	158	160	240								
bce	225	227	230	230	220	230	257	257	257	259	280	280	280	290	84	80	80	89	140	120	140	140	218									
abc	230	262	268	260	240	230	290	283	289	297	300	290	291	>300	110	100	102	130	190	170	170	200	280									
de	176	176	186	190	190	200	264	237	250	250	280	260	270	290	45	60	60	58	104	117	117	119	187									
ade	220	230	239	210	200	220	250	220	240	280	290	250	235	277	49	63	66	70	140	140	150	120	220									
bde	220	240	210	200	205	210	270	235	220	205	274	250	230	275	70	75	75	80	130	130	140	140	210									
abde	273	260	268	274	263	258	277	277	291	280	>300	290	290	>300	80	84	96	104	193	200	200	180	240									
cde	186	210	200	209	190	210	240	220	220	250	257	255	240	266	49	40	50	50	106	120	125	120	210									
acde	210	210	210	190	180	214	240	240	220	239	270	260	230	270	90	100	104	105	180	179	188	160	229									
bcde	200	210	195	160	150	190	261	220	200	270	280	230	220	270	60	75	70	70	130	138	140	150	219									
abcde	230	230	250	230	220	250	(280)	(250)	(260)	(285)	>300	290	290	>300	93	98	100	100	200	200	200	200	260									

Note: () Parentheses indicate extrapolated, not experimental, values.
OL indicates overload ($> 2 \times 10^{-4}$ amperes), no spark.

**Table 8. Breakdown Voltages of Treatments
Considered to be Replications**

I. First Days' Tests

Gap (cm)	1.0	1.5	2.0	3.0	0.25	0.50	0.75	1.0	1.5	2.0	3.0	0.25	0.50	0.75	1.0
Gauss	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Spark No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
e	180	190	209	250	286	>300	50	120	189	209	280	290	>300	53	119
abe	120	200	220	282	---	---	52	128	190	210	280	290	---	---	114
ace	127	150	190	268	277	290	57	127	160	200	267	280	293	67	120
de (R)	85	102	103	180	220	>300	28	70	102	136	180	240	>300	34	82

Note: The breakdown sequence was not followed exactly during treatments "e" and "abe".

II. Second Days' Test, Magnetic Field Tests

Gap (cm)	1.0				2.0				0.25				0.50				1.0		
Gauss	0	0	0	100	200	300	400	0	0	100	200	300	400	0	0	100	200	300	400
Spark No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
e	224	250	---	200	190	210	200	220	294	251	270	260	297	--	--	--	--	--	--
abe	140	180	230	220	200	210	210	230	287	220	230	270	238	290	55	57	60	77	70
ace	195	210	206	200	200	200	200	282	278	280	260	270	260	55	57	65	63	66	135
de (R)	160	160	150	149	180	180	170	184	290	250	230	210	230	40	47	49	57	59	64
													OL				115	117	120
																	115	200	

Table 8. Breakdown Voltages of Treatments
Considered to be Replications (Continued)

III. Third Day, Magnetic Field Tests Before Exposure

Gap (cm)	1.0				1.5				2.0				0.25				0.50			
Gauss	0	0	0	200	400	0	0	200	400	0	0	200	400	0	0	200	400	0	0	
Spark No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	
c	---	136	125	128	---	200	190	180	210	250	220	210	250	--	83	90	89	--	--	
abe	240	255	220	170	200	240	---	---	---	---	270	210	240	290	--	--	--	88	140	160
ace	240	---	240	225	226	240	240	290	240	250	300	270	294	300	80	85	90	90	135	139
de (R)	150	206	206	200	190	220	240	250	220	230	2300	300	270	288	53	53	59	53	106	109
					OL							OL							115	110

IV. Third Day, Magnetic Field Tests After Exposure

Gap (cm)	1.0				1.5				2.0				0.25				0.50				
Gauss	0	0	0	200	400	0	0	200	400	0	0	200	400	0	0	200	400	0	0		
Spark No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	
c	200	200	---	190	190	210	280	260	220	280	297	290	260	297	4R	49	49	52	52	125	110
abe	222	230	236	200	210	232	---	---	---	---	255	228	236	270	--	--	--	--	160	159	150
ace	220	230	220	210	200	240	270	256	260	270	300	230	290	300	76	99	96	100	170	160	170
de (R)	190	190	203	200	220	220	280	270	240	278	250	220	200	270	40	49	59	59	110	120	124
												OL							134	180	

SECTION 5
ANALYSIS AND INTERPRETATION
OF "FIRST SIXTEEN" EXPERIMENT

5.1 Introduction

Since this experiment is concerned with high voltage vacuum breakdown, the primary variable is breakdown voltage. The First Sixteen experiment provides about 1400 breakdown voltage values obtained under rigidly specified conditions. The physical situation contributing to the occurrence of a breakdown is described by the following measurable parameters:

Flexible Factors

(May be varied at will during experimentation)

- (1) gap
- (2) transverse magnetic field
- (3) method of voltage application
- (4) gas exposure
- (5) vacuum conditions

Inflexible Factors

(Can be controlled only before experimentation begins)

- (1) anode material
- (2) cathode material
- (3) anode size
- (4) electrode firing (preparation)

Variables

(Observed but not under direct control)

- (1) electrical stress history of the electrodes
(conditioning)
- (2) prebreakdown current
- (3) pressure surges
- (4) external electrical parameters

It is assumed that during the First Sixteen experiment any other factors influencing vacuum breakdown (such as cathode shape, cathode size, electrode surface finish, electrode temperature, etc) are constant. The breakdown voltage may then be related to the observed parameters, with the objective to obtain the simplest, most general and useful description of the functional dependence of breakdown voltage on the pertinent parameters. To do this, changes in one or several parameters are correlated with changes in breakdown voltage.

A fundamental difficulty arises at this point because the measurable parameters do not correspond directly or simply to the parameters that are postulated to be active in various theories of vacuum breakdown. Thus it is difficult to decide beforehand which factors merit consideration or how they should be varied and correlated. This circumstance makes the factorial design very useful, since it will, in a minimum number of experiments, point out which factors are important and which factors interact. The "inflexible" factors are the ones directly examined through the factorial design. The other parameters will be examined in a number of ways.

The first four sections that follow deal primarily with analysis, while the other section concerns interpretation. It should be noted that this analysis is preliminary in nature and complete analysis will not be possible until the second half of the overall experiment is completed.

5.2 Factorial Analysis by Yates' Algorithm

Yates' algorithm provides a standard and convenient way of computing the influence on breakdown voltage of the factors studied in this two level, full factorial experiment. Table 1 has presented the factors and levels used in the First Sixteen experiment. Tables 9, 10, 11 and 12 contain Yates' estimates of the mean, the main effects, and interactions. These results were obtained with the help of a computer and follow the form that has been used in previous reports, particularly in the Block-of-Eight Experiment.

When studying the effect of the four factors of the First Sixteen, it is possible to compute only Yates' estimates from breakdown voltages obtained with all other pertinent parameters constant. For completeness separate sets of Yates' estimates for each breakdown in the test sequence have been computed. Thus, the effects of factors such as magnetic field, gas exposure and gap are not explicitly contained in Tables 9 through 12.

Discussion of the validity of this approach and examination of interesting trends is reserved for Section 5.6.

5.3 Breakdown Voltage as a Function of Electrode Separation

To examine the effect of electrode separation on breakdown voltage, the latter is plotted versus the square root of gap separation. Figure 3 shows a typical plot and gives the sequence of breakdowns. The ultimate prebreakdown current has also been included. This has been done in Figures 4 through 23 for the First Day tests of each treatment and in Figures 24 through 28 for suitable averaged sets of breakdown voltage.

Table 9. Yates' Estimates for First Day's Tests

Gap (cm)	0.25	0.5	0.75	1.0	1.5	2.0
Spark No.	7	14	8	15	9	16
U	46	56	104	111	147	159
A	6	7	11	3	10	9
B	10	11	2	14	- 4	9
AB	5	10	5	6	7	9
C	- 9	-12	- 5	- 7	- 3	- 3
AC	- 7	-11	- 17	- 15	- 23	- 9
BC	-19	-19	- 17	- 20	- 14	- 24
ABC	- 2	-12	- 7	- 6	3	- 4
D	1	9	5	7	3	- 2
AD	5	9	0	0	7	7
BD	20	12	16	7	12	10
ABD	0	1	5	- 3	4	- 3
CD	- 8	-11	3	0	12	- 5
ACD	2	5	3	0	1	10
BCD	- 1	- 2	- 4	- 9	- 7	- 3
ABCD	- 8	-10	- 10	- 3	- 11	0

Table 10. Yates' Estimates for Magnetic Field Tests

Gap (cm)	1.0				2.0				0.25				0.50				1.0				
Gauss	0	100	200	300	400	0	0	100	200	300	400	0	0	100	200	300	400	0	0	100	200
Spark No.	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
U	200	184	189	184	182	190	271	247	250	246	245	268	54	58	62	65	66	69	124	128	131
A	-6	7	9	18	0	12	7	31	18	28	10	11	16	13	15	17	20	29	26	35	-9
B	3	13	9	26	30	11	-3	-4	-7	3	1	-5	12	11	13	14	15	16	9	13	17
AB	3	25	14	21	14	10	17	13	20	18	18	6	8	9	6	6	8	7	0	5	0
C	-6	14	5	-3	-7	0	3	-19	-8	-5	-8	-30	-1	3	4	8	6	7	17	16	9
AC	-20	1	-5	-13	-17	-10	3	-1	-5	0	3	5	-3	-1	-3	-2	-3	-4	-7	-5	-5
BC	-22	-37	-20	-26	-22	-38	-20	-28	-30	-10	-18	-15	-17	-15	-14	-15	-15	-14	-6	-7	-7
ABC	-6	-13	-14	8	-2	2	-1	0	-8	-15	-25	-17	-1	-3	-1	-2	-4	-2	7	3	1
D	-10	17	15	8	7	-4	-26	-22	-34	-14	-18	-32	17	16	10	11	12	9	4	12	4
AD	-14	8	4	-1	-7	13	15	5	-7	-24	-26	-6	2	3	3	7	4	0	6	4	8
BD	3	1	-10	1	-2	7	-8	7	13	10	0	4	17	18	16	15	18	15	13	17	18
ABD	0	-2	-4	-13	2	-11	4	4	-9	0	3	-17	6	4	7	5	7	6	0	10	0
CD	13	-22	-10	-8	-4	-8	-9	-10	-13	-23	-8	-18	-7	-10	-13	-12	-16	-15	-13	-8	-10
ACD	13	18	19	1	14	23	4	-2	0	6	-10	-4	-8	-7	-6	-5	-6	-3	-4	0	4
BCD	3	6	0	-6	-15	-10	-7	7	-20	-3	1	1	-13	-12	-14	-17	-17	-14	-21	-24	-20
ABCD	5	12	4	18	5	16	18	15	12	-13	-11	-16	-12	-13	-13	-16	-17	-17	-28	-21	-20

Table 11. Yates' Estimates for Magnetic Field Tests Before Exposure

Gap (cm)	1.0				1.5				2.0				0.25				0.50					
Gauss	0	0	0	200	400	0	200	400	0	200	400	0	0	-200	-400	0	0	200	400	0		
Spark No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	
U	202	217	216	203	199	217	266	246	243	269	289	274	267	288	68	75	80	82	134	143	142	140
A	47	30	36	20	16	12	11	19	32	10	11	18	26	16	12	23	26	28	31	35	46	46
B	34	32	30	18	24	25	1	0	4	5	5	9	4	2	21	21	24	24	9	IR	23	24
AB	17	7	13	9	15	6	13	25	34	16	-2	10	28	6	17	23	21	19	14	6	q	IR
C	2	9	6	5	16	11	10	7	13	10	1	-3	9	1	-1	6	11	9	13	q	0	6
AC	-35	-28	-21	-23	-11	-23	-22	-3	-22	-13	-6	3	-11	-2	-8	-3	-4	-5	-13	-22	-14	-7
BC	-7	-23	-25	-21	-4	-10	-7	-11	-1	0	3	-3	10	-3	-12	-7	-4	-9	-8	0	-7	-25
ABC	4	9	4	13	4	13	-14	-2	-10	-3	-4	-9	-13	8	2	2	4	-1	0	0	6	1
D	-46	-17	-7	-14	-6	-1	-7	-18	-13	-7	-22	-35	-	9	-4	-1	-1	-15	-9	-1	1	1
AD	19	4	0	-18	-13	0	-4	-14	-17	-4	4	3	8	4	4	8	q	7	-8	0	-14	3
BD	18	14	0	14	6	0	22	28	1	8	21	20	0	14	22	20	19	8	15	17	1	
ABD	-5	-13	-16	-1	10	-13	-2	-2	-5	0	0	5	11	8	-2	1	-2	-1	-23	-7	-6	-10
CD	-20	-14	-18	-23	-28	-13	-5	-9	-6	-3	0	-10	-9	-6	-10	-5	-5	-13	-8	-10	-3	-22
ACD	-11	-3	6	-1	10	-3	11	12	0	1	18	7	4	15	14	13	6	1	16	2	2	
BCD	4	-11	-7	-1	-14	-12	-3	-3	0	-4	1	-15	-5	-5	-14	-8	-6	-11	1	-8	-6	8
ABCD	-6	-1	-9	4	0	-5	4	7	5	9	3	15	13	10	-12	-7	-7	-10	-13	-19	-17	-7

Table 12. Yates' Estimates for Magnetic Field Tests After Exposure

Gap (cm)	1.0				1.5				2.0				0.25				0, z₀				1.0						
Gauss	0	0	0	0	200	400	0	0	200	400	0	0	200	400	0	0	200	400	0	0	200	400	0	0			
Spark No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24			
U	214	222	224	214	204	222	259	244	240	257	279	266	262	282	68	76	84	146	149	151	151	227	227	227	231		
A	38	30	35	37	35	29	14	23	43	40	27	26	31	22	16	22	27	33	59	52	48	42	35	35	35	35	
B	21	16	18	10	5	10	17	0	8	14	6	-4	0	2	17	11	9	14	22	10	13	23	10	10	10	10	
AB	3	8	18	26	21	15	13	18	17	11	5	15	28	11	7	3	5	2	10	12	5	16	20	20	20	20	
C	6	8	5	8	4	4	2	11	15	20	5	13	8	6	16	14	11	14	15	10	14	16	15	15	15	15	15
AC	-23	-14	-15	-18	-11	-16	2	-3	-16	-30	-8	-3	-9	-7	4	3	1	0	-3	-7	-8	-1	0	0	0	0	
BC	-13	-6	0	-6	-3	-8	6	5	-1	5	7	4	6	7	1	-2	-6	-3	-1	-6	-6	1	1	1	1	1	
ABC	0	3	7	4	0	1	-4	-11	1	4	-5	-3	-9	-5	1	-8	-8	-1	-6	-2	0	-1	-4	-4	-4	-4	
D	0	-4	-8	-12	-9	-6	2	-13	-5	0	3	-11	-23	-2	-3	-4	-5	-9	1	7	12	-5	14	14	14	14	
AD	0	-6	8	0	-3	3	-11	-5	-13	-10	-3	-10	-11	5	1	0	-3	1	0	5	-9	-30	-30	-30	-30	-30	
BD	11	12	4	6	13	6	6	16	1	-9	7	13	13	8	0	6	5	2	7	17	11	14	14	14	14	14	
ABD	0	-12	-6	9	10	6	-3	-1	18	6	0	10	14	4	-8	-11	-7	-5	-4	0	0	-4	9	9	9	9	
CD	-22	-19	-17	-29	-33	-10	-12	-21	-40	-13	-15	-16	-20	-15	-4	-6	-5	-10	-2	2	-3	1	-24	-24	-24	-24	
ACD	12	1	3	7	9	15	4	9	16	5	7	12	18	13	10	14	13	11	14	14	15	14	24	24	24	24	
BCD	-2	-12	-4	-14	-15	0	0	-17	1	21	4	-10	0	-1	-12	1	0	-7	-6	-2	-5	-4	14	14	14	14	
ABCD	0	10	3	4	8	5	4	-1	-7	-9	3	4	6	2	-4	-2	-1	-7	-1	-9	-7	-5	-14	-14	-14	-14	

In the plots of the First Day tests, a point on the "conditioned" breakdown curve has experienced six more previous breakdowns than a corresponding point on the "unconditioned" curve. In this and for most treatments, the 3.0 cm breakdown proved to be beyond the experimental limit of 300 kV.

The tests on subsequent days introduce a magnetic field so the effects of electrode separation are confounded with the effects of a magnetic field. For this reason, only appropriate average values of breakdown voltage have been plotted versus square root of the gap separation (Figures 26, 27 and 28) for those tests.

At smaller gap separations, the breakdown voltage appears to vary linearly with gap. To illustrate this, the average breakdown voltage for the First Day tests have been plotted versus gap separation in Figure 25.

The interpretation of these graphs is reserved for Section 5.6.

5.4

Breakdown Voltage as a Function of Prior Sparking

When a breakdown occurs, the surfaces of both electrodes experience violent damage. Subsequent breakdowns are influenced by the changed surface state and may occur at higher or lower voltages than the initial breakdowns. Exposing the electrodes to a number of breakdowns is termed "conditioning". Thus, the curves of Section 5.3 are referred to as "conditioned" or "unconditioned".

To investigate this process in more detail for the type of electrodes and external circuit parameters used in the First Sixteen experiment, breakdown voltage has been plotted as a function of "spark order" for several prime gaps for each treatment. By "spark order" is meant the chronological sequence for a certain gap. Between two sparks in a sequence for one gap, there may have been several sparks at other gap settings. Sparks with the transverse magnetic field are so designated on the graphs. Figure 29 illustrates this procedure. Figures 30 through 49 present conditioning plots for each treatment and the four replications.

The sample plot (Figure 29) uses the average breakdown voltage of the sixteen treatments as computed by Yates' algorithm.

5.5

Breakdown Voltage as a Function of Transverse Magnetic Field

The influence of a weak (100 to 400 gauss) transverse magnetic field on breakdown voltage was examined and analyzed in the Block-of-Eight experiment (see Quarterly Progress Report Nos. 11 and 12). The First

Sixteen experiment investigates this effect during the second and third days of testing. Table 3 shows how magnetic field tests are included in the test sequence. The procedure was to set a certain gap and then obtain a series of breakdowns without, with and again without a transverse magnetic field of several levels.

While the effect of a transverse magnetic field on breakdown voltage appears quite variable if a single treatment is examined (see Figures 30 through 49), the average breakdown voltages with and without a transverse magnetic field present a relatively clear pattern:

For Large Gaps: presence of transverse magnetic field lowers breakdown voltage.

For Small Gaps: presence of transverse magnetic field raises breakdown voltage very slightly.

These effects are evident in the plots of average breakdown voltage versus magnetic field strength in Figures 50 and 51. Such a pattern is in accord with the results of the Block-of-Eight experiment which investigated the magnetic effect at only 2.0 and 3.0 cm gaps.

5. 6 Interpretation

5. 6. 1 Introduction

The First Sixteen experiment has been presented so far as a phase in an ongoing experimental project investigating vacuum breakdown. While such an approach is appropriate to a Quarterly Progress Report, it is helpful for purposes of interpretation to regard it as an independent study. From that perspective, a more structured and complete understanding can be obtained.

To date, it has yielded a considerable amount of data. Each set of physical factors (a pair of electrodes) has been tested to establish its performance in terms of breakdown voltage. These breakdown voltages are the primary output and have been presented in Section 4. 1 of this report. Other parameters such as prebreakdown current, pressure surges and time to voltage collapse will be presented in future reports. Electrode damage due to sparking has been photographed and will also be reported.

5. 6. 2 Analysis

After the initial data was compiled in a useable form, it was subjected to various analytical manipulations in order to bring out meaningful

patterns. The breakdown voltage has been presented in Sections 5.3 to 5.5 as a function of square root of gap, gap, prior sparking (conditioning), and transverse magnetic field level. Section 5.2 contains an analysis according to Yates' algorithm of the effect on breakdown voltage of the four factors under investigation. These analytical techniques will be extended to other observed variables in future reports. Other techniques will also be considered, in particular a statistical analysis of the error associated with the various measurements.

5.6.3 Conclusions

The present analysis of the First Sixteen experiment supports the following conclusions:

- Effect of Factors

The most influential factors emerging from this factorial experiment are those related to electrode material. In particular, the effect of anode material becomes greater as conditioning proceeds, with copper giving significantly higher breakdown voltages. Cathode material has a less predominant effect but again copper is superior to aluminum. These observations are in line with the very obvious transfer of anode material to the cathode surface as breakdowns occur. In most cases, the sequence of about 90 breakdowns produced an adherent and relatively continuous coating of anode material on the cathode; this result being especially evident when dissimilar metals were being used for anode and cathode.

As a consequence of the use of different materials for cathode and anode, the effect of pretreatment (vacuum or hydrogen firing) was complex. The results do indicate superior performance for vacuum fired aluminum electrodes with hydrogen firing preferred for copper. When two metals are involved, the interactions preclude simple conclusions.

- Breakdown Voltage as a Function of Gap Separation

A functional relation of linear form below 0.50 to 1.0 cm and of square root form above 0.50 to 1.0 cm appears to describe the dependence of breakdown voltage on gap. The transition from linear to square root regime depends on the treatment.

- Breakdown Voltage as a Function of Prior Sparking

Prior sparking (or conditioning) almost invariably results in higher average breakdown voltages. This increase is often as much as 50%. The number of breakdown events necessary to reach a plateau varies from several to a hundred or more. On the other hand, continued sparking in some cases reduced breakdown voltage. Thus, it is usually impossible to define a single unique breakdown voltage for any treatment or gap. It is possible, however, to describe the changes in breakdown voltage as a function of prior sparking and other pertinent factors (such as gas exposure). It has been found that in most cases the "conditioning curve" rises monotonically to a plateau which can be maintained throughout many breakdowns. However, the variation of breakdown voltage about this limiting level is often quite large ($> 20\%$), and must be considered when specifying an average working level for the gap conditions.

- Breakdown Voltage as a Function of Magnetic Field

A transverse magnetic field of 100 to 400 gauss on the average lowers breakdown voltage for large (> 1.0 cm) gaps and raises it slightly for small gaps (< 1.0 cm). Such results for a weak field such as employed here has previously received little attention. Sanford* has reported briefly on this effect. Watson (see Addendum to Quarterly Progress Report No. 14) has presented a theory to account for this phenomenon based upon the Hall effect.

* Sanford, J. R., Proceedings of First International Symposium on Insulation of High Voltages in Vacuum, 431 (1964).

Figure 3. Sample Plot Showing Sequence of Breakdowns
(Treatment bce) for First Days' Tests

1-2910

Figure 4. Breakdown Voltage vs Square Root Gap Separation for Treatment e (repeat)

1-2911

Figure 5. Breakdown Voltage vs Square Root Gap Separation for Treatment as

1-2912

Figure 6. Breakdown Voltage vs Square Root Gap Separation for Treatment b
e

1-2913

1-2914

Figure 7. Breakdown Voltage vs Square Root Gap Separation for Treatment abe (repeat)

Figure 8. Breakdown Voltage vs Square Root Gap Separation for Treatment c.e

1-2915

Figure 9. Breakdown Voltage vs Square Root Gap Separation for Treatment ace (repeat)

1-2916

Figure 10. Breakdown Voltage vs Square Root Gap Separation for Treatment bce

1-2917

Figure 11. Breakdown Voltage vs Square Root Gap Separation for Treatment abc

1-2918

Figure 12. Breakdown Voltage vs Square Root Gap Separation for Treatment de

1-2919

Figure 13. Breakdown Voltage vs Square Root Gap Separation for Treatment ade

1-2920

Figure 14. Breakdown Voltage vs Square Root Gap Separation for Treatment bde

1-2921

Figure 15. Breakdown Voltage vs Square Root Gap Separation for Treatment abde

1-2922

Figure 16. Breakdown Voltage vs Square Root Gap Separation for Treatment cde

1-2923

1-2924

Figure 17. Breakdown Voltage vs Square Root Gap Separation for Treatment acde

Figure 18. Breakdown Voltage vs Square Root Gap Separation for Treatment bcde

1-2925

Figure 19. Breakdown Voltage vs Square Root Gap Separation for Treatment abcde

1-2926

Figure 20. Breakdown Voltage vs Square Root Gap Separation for Treatment e

1-2927

1-2928

Figure 21. Breakdown Voltage vs Square Root Gap Separation for Treatment abe

Figure 22. Breakdown Voltage vs Square Root Gap Separation for Treatment ace

1-2929

Figure 23. Breakdown Voltage vs Square Root Gap Separation for Treatment dc (repeat)

1-2930

Figure 24. Breakdown Voltage vs (Gap) $^{1/2}$ for Average
of All Treatments (First Days' Tests)

1-2931

1-2932

Figure 25. Linear Plot of Average Breakdown Voltage vs Gap for First Days' Tests

Figure 26. Breakdown Voltage $\text{vs } (\text{Gap})^{1/2}$ for
Second Days Tests (Magnetic Field Tests)

1-2933

Figure 27. Breakdown Voltage vs $(\text{Gap})^{1/2}$ for
Third Days' Tests After Exposure

1-2934

1-2935

Figure 28. Breakdown Voltage vs $(Gap)^{1/2}$ for
Third Days Tests Before Exposure

Figure 29. Sample Plot, Average Breakdown Voltage Over 16 Treatments

1-2936

Figure 30. Breakdown Voltage Conditioning Plot for Treatment e (repeat)

1-2937

Figure 31. Breakdown Voltage Conditioning Plot
for Treatment a_e

1-2938

Figure 32. Breakdown Voltage Conditioning Plot for Treatment b

1-2939

1-2940

Figure 33. Breakdown Voltage Conditioning Plot for Treatment abe (repeat)

Figure 34. Breakdown Voltage Conditioning Plot for Treatment ce

Figure 35. Breakdown Voltage Conditioning Plot
for Treatment ace (repeat)

1-2942

Figure 36. Breakdown Voltage Conditioning Plot
for Treatment bce

1-2943

Figure 37. Breakdown Voltage Conditioning Plot for Treatment abce

1-2944

Figure 38. Breakdown Voltage Conditioning Plot
for Treatment de

1-2945

Figure 39. Breakdown Voltage Conditioning Plot for Treatment ade

1-2946

Figure 40. Breakdown Voltage Conditioning Plot
for Treatment bde

1-2947

Figure 41. Breakdown Voltage Conditioning Plot
for Treatment abde

1-2948

Figure 42. Breakdown Voltage Conditioning Plot for Treatment cde

1-2949

1-2950

Figure 43. Breakdown Voltage Conditioning Plot for Treatment acde

Figure 44. Breakdown Voltage Conditioning Plot
for Treatment bcde

1-2951

Figure 45. Breakdown Voltage Conditioning Plot
for Treatment abcde

1-2952

Figure 46. Breakdown Voltage Conditioning Plot
for Treatment de (repeat)

1-2953

Figure 47. Breakdown Voltage Conditioning Plot for Treatment e

1-2954

Figure 48. Breakdown Voltage Conditioning Plot for Treatment ace

1-2955

Figure 49. Breakdown Voltage Conditioning Plot for Treatment abe

1-2956

Figure 50. Average Breakdown Voltage as a Function of Transverse Magnetic Field (Second Days' Tests)

1-2957

Figure 51. Average Breakdown Voltage as a Function of Transverse Magnetic Field (Third Days' Tests)

1-2958

SECTION 6
DESIGN OF
"SECOND SIXTEEN" EXPERIMENT

6.1 Introduction

The First Sixteen and Second Sixteen experiments are independent but closely related parts of the overall five factor, two-level, full-factorial experiment. The factors and levels have been described in Table 1. The First Sixteen investigated the factor of anode shape at its high level which was Bruce profile. The Second Sixteen will investigate this factor at its low level which is sphere profile. The other factors remain the same.

Experimental procedure will not change as far as electrode and system preparation is concerned. The first two days' tests will be carried out in substantially the same way. However, on the third day of testing, the First Sixteen experiment investigated the effects of gas exposure on breakdown voltage. In place of these tests, the Second Sixteen will look into the effects of a dielectric envelope and energy storage with crowbarring. Three treatments have been completed so far and will be reported on in a later Quarterly Progress report.

6.2 Dielectric Envelope Tests

The presence of a dielectric envelope around the electrodes is of interest because this is the usual situation in high voltage vacuum tubes. To model this in the present experiments, a dielectric envelope assembly has been constructed that can be mounted around the electrodes in the vacuum chamber (see Quarterly Progress Report No. 3). The present pyrex dielectric envelope is 1/4 inch thick, 8 inches in diameter and 10 inches long. It is mounted upright on the anode bushing with metalized end faces for good electrical contact. A metal ring on the cathode end allows monitoring any current flowing over the envelope surfaces.

Since the envelope cannot be inserted without opening the vacuum chamber to atmosphere, the following procedure is used to separate the effects of the dielectric envelope from the effects of exposure to atmosphere:

- (1) series of breakdowns before exposure;
- (2) chamber is exposed to atmosphere and pumped down, another series of breakdowns after exposure;
- (3) chamber opened and dielectric envelope inserted, pumped down, final series of breakdowns with dielectric envelope.

Preliminary results indicate that it is difficult to distinguish between exposure and envelope effects. In addition, flashover of the envelope often occurs before gap breakdown at the larger gap settings. It is expected that these problems can be overcome by maintaining a flexible approach.

6.3 Energy Storage and Crowbarring

The "conditioning" effects of a vacuum arc are dependent to a large extent on the parameters of the external electrical circuit. Specifically on the energy available to the arc once breakdown has taken place. Presently, there seems to be no clear evidence as to the time energy profile required for optimum conditioning. To investigate this, an energy storage and crowbar system, as described in Section 2.5 of this report, has been constructed. This system will make possible application to the gap of varying amounts of energy for different time intervals. A maximum of 7000 joules is available and a minimum crowbarring time of 600 ns has been achieved.

The specific test procedures will evolve during the tests. Present results, although not suitable for detailed reporting, indicate that the presence of energy storage and crowbarring does have an effect on the breakdown voltage levels obtained during a series of sparks.

SECTION 7

FUTURE EFFORT

The following tasks are planned for the next quarter:

- Continue with remaining treatments.
- Investigate effect of dielectric envelope.
- Investigate effect of energy storage with crowbarring.
- Regular maintenance of main chamber, pumps, electrode firing system, instrumentation, high voltage power supply, magnets and their supplies.
- Design, fabricate and install new electrode heater assemblies.
- Continue analysis of First Sixteen.
- Report on theoretical model of breakdown process.
- Initiate design of next experiment.

SECTION 8

IDENTIFICATION OF PERSONNEL

The following personnel were active in the program during the period under review:

Dr. S. V. Nablo	- Vice President Director, Particle Physics Division
Dr. M. J. Mulcahy	- Project Manager
A. C. Stewart	- Engineering Manager
W. R. Bell	- Senior Electrical Engineer
M. M. Thayer	- Senior Metallurgist
A. Watson	- Senior Scientist
F. Y. Tse	- Electrical Engineer
P. C. Bolin	- Electrical Engineer
R. M. Parsons	- Engineering Aide
D. Bryant	- Technician
R. Benoit	- Design Engineer
C. Boudreau	- Engineering Aide
L. Indingaro	- Metallurgical Technician
D. J. Maynard	- Senior Mechanical Engineer
S. K. Wiley	- Group Leader, Mechanical Engineering
Prof. H. Freeman	- Consultant Massachusetts Institute of Technology Department of Economics and Social Science
Prof. A. Argon	- Consultant Massachusetts Institute of Technology Department of Mechanical Engineering
Dr. N. E. Woldman	- Consultant Metallurgy

UNCLASSIFIED

Security Classification

DOCUMENT CONTROL DATA - R & D

(Security classification of title, body or abstract and Indexing annotation must be entered when the overall report is classified)

1. ORIGINATING ACTIVITY (Corporate author) Ion Physics Corporation Burlington, Massachusetts		2a. REPORT SECURITY CLASSIFICATION Unclassified
		2b. GROUP N/A
3. REPORT TITLE High Voltage Breakdown Study		
4. DESCRIPTIVE NOTES (Type of report and inclusive dates) Fifteenth Quarterly Progress Report (16 May 1968 through 15 August 1968)		
5. AUTHOR(S) (First name, middle initial, last name) W. R. Bell, P. C. Bolin, M. J. Mulcahy, F. Y. Tse and A. Watson		
6. REPORT DATE December 1968		7a. TOTAL NO. OF PAGES 102
8a. CONTRACT OR GRANT NO. DA-28-043-AMC-00394(E)		8b. ORIGINATOR'S REPORT NUMBER(S)
b. PROJECT NO. 7910.21.243.40.01		
c.		9b. OTHER REPORT NO(S) (Any other numbers that may be assigned this report) ECOM-00394-15
d.		
10. DISTRIBUTION STATEMENT This document has been approved for public release and sale; its distribution is unlimited.		
11. SUPPLEMENTARY NOTES N/A		12. SPONSORING MILITARY ACTIVITY U. S. Army Electronics Command Fort Monmouth, New Jersey 07703 AMSEL-KL-TS
13. ABSTRACT This report describes the fifteenth quarter of a study of high voltage breakdown in vacuum. The study has particular relevance to problems encountered in the development of high power vacuum tubes. During the present period the first sixteen treatments and four repeat treatments of a 32 treatment experiment were completed. This five-factor, two-level, full-factorial experiment investigates the influence on vacuum breakdown of anode material, cathode material, anode size, anode shape and electrode treatment. At present the first half of this experiment is complete; and since one factor (anode shape) was held constant during these treatments, the results can be analyzed as a four factor, full factorial experiment. The experimental results and a preliminary analysis are contained in this report. The effects of gas exposure and a transverse magnetic field were also studied by a technique of stacking.		

~~UNCLASSIFIED~~

~~Security Classification~~

14.

KEY WORDS

Electrical Breakdown in Vacuum
Conditioning Procedure
Optical and X-Radiation
Partial Pressure and Gap Current
Etching

LINK A

LINK B

LINK C

ROLE

WT

ROLE

WT

ROLE

WT

~~UNCLASSIFIED~~

~~Security Classification~~