Gesundheit & Ernährung

Makronährstoffe II: Fette

Adrian Helberg

30.06.2021

Agenda

- Theorie
 - Profil
 - Sättigung
 - Nahrungsfette
 - Eicosanoide
 - Nachteile von MUFS
 - Tagesbedarf von MUFS
 - Cholesterin
 - Lioproteine
- 2 Praxis
- Fragerunde

Theorie

Fett im Profil I

Abbildung: Schlagworte in Verbindung mit Fett

Fett im Profil II

Was ist Fett?

- Fettsäuren als kleinste Bausteine von Fett
- Die meisten Fettsäuren können (wie Traubenzucker) in den meisten Zellen des Körpers zu Energie verbrannt werden
- Einige Fettsäuren können in großen Mengen im Fettgewebe gespeichert werden
- Manche Fettsäuren werden als Baustoff für bspw. Zellwende benötigt

Abbildung: Fettsäure

Fett im Profil III

Abbildung: Aufbau von Fettsäuren

Fett im Profil IV

Abbildung: Fettsäuren mit unterschiedlich vielen Kohlenstoffatomen

Sättigung von Fettsäuren I

Abbildung: Gesättigte (oben) und ungesättigte (unten) Fettsäure

Sättigung von Fettsäuren II

Gesättigte Fettsäuren ...

- sind bei Raumtemperatur fest (bspw. Butter)
- können zu Energie verbrannt werden (einfach ungesättigte FS auch)
- können im Fettgewebe gespeichert werden
- können selbst hergestellt werden
- können den Cholesterienspiegel erhöhen

Sättigung von Fettsäuren III

Ungesättigte Fettsäuren ...

- sind bei Raumtemperatur flüssig (bspw. Olivenöl)
- werden in einfache und mehrfache Un-sättigung eingeteilt

Mehrfach ungesättigte Fettsäuren ...

- werden nicht zu Energie verbrannt
- sind Baustoff für Zellwände und Immunstoffe
- können nicht vom Körper selbst hergestellt werden
- sind lebenswichtige Nährstoffe
- werden unterschieden in Omega-3 und Omega-6

Sättigung von Fettsäuren IV

Abbildung: Kategorisierung Nahrungsfette

Nahrungsfette I

Abbildung: Fettprofile einiger Lebensmittel

Eicosanoide I

Eicosanoide . . .

- werden für die Regulierung von Entzündungen gebraucht
- sind Botenstoffe des Immunsystems

Abbildung: Verschiedene Eicosanoide

Eicosanoide II

Abbildung: Konkurrierender Umbau von Omega-Fettsäuren zu Eicosanoiden

Eicosanoide III

Abbildung: Fetter Seefisch ist besonders wertvoll

Nachteile von MUFS

Mehrfach ungesättigte Fettsäuren ...

- sind sehr reaktionsfreudig
- verderben schnell
- sind anfällig für Oxidationsprozesse
- müssen duch reichlich Antioxidantien geschützt werden
- können bei umbedachter Supplementation gefährlich werden (Fischöl-Kapseln)

Tagesbedarf von MUFS

Abbildung: 40g Hering ODER 10g Leinsamen ODER 20g Walnüsse

Cholesterin I

Vorteile: Cholesterin . . .

- hat fettähnliche Eigenschaften
- wird vom Körper selbst hergestellt
- baut Zellwände auf
- produziert Gallensäure
- bildet Hormone
- erfüllt also lebenswichtige Aufgaben

Cholesterin II

Nachteile: Cholesterin . . .

 kann in Wände von Blutgefüßen eindringen, was zur Erkrankung Arteriosklerose führt (echter Nachteil?)

Arteriosklerose . . .

- führt zu Herzinfakt
- ist die häufigste Todesursache der westlichen Welt
 - jeder zweite Mensch über 65 verstirbt
 - jeder dritte Mensch unter 65 verstirbt

Abbildung: Cholesterin

Cholesterin III

Abbildung: Blutgefäß mit Gefäßwänden und Cholesterien-Einlagerungen

Cholesterin IV

Abbildung: Blutgefäß mit entzündeten Gefäßwänden

Cholesterin V

Abbildung: Entzündeten Gefäßwänden werden durchlässiger

Cholesterin VI

Abbildung: Entzündeten Gefäßwänden werden durchlässiger

Cholesterin VII

Woher kommt das Cholesterin?

- ullet 50er Jahre: Hoher Cholesterin-Spiegel o Cholesterin-Ablagerungen
- 60er Jahre: 7-Länder-Studie von Ancel Keys Viele GFS in der Ernährung \rightarrow Hoher Cholesterin-Spiegel
- 70er Jahre: Dietary Guidelines (USA, auch DE)
 Fett- und Cholesterinarme Ernährung →
 Energiebedarf aus Kahlenhydraten
- ullet 80er Jahre: Nachhaltige Angst vor Cholesterin in der Bevölkerung o Butter, Eier, Fleisch wird verteufelt
- ullet 90er Jahre: Insulin-Resistenz als neuer Risikofaktor o Stellt 40 Jahre Forschung in Frage

Cholesterin VIII

Abbildung: Forschung 90er Jahre

Cholesterin IX

Heute

- Moderne Forschung ist einen großen Schritt weiter
- Nahrungs-Cholesterin spielt keine Rolle
- Cholesterin-Spiegel spielt keine Rolle
- Lösung: Lipoproteine

Lioproteine I

Lipoproteine . . .

- transportieren Fettsäuren durch das Blut
- sind sowohl fett- und wasserlöslich
- LDL (Low Density Lipoprotein)
 - bringt Cholesterin zu den zellen
 - Je kleiner, desto höher die Neigung in Gefäßwände einzudringen
- HDL (High Density Lipoprotein)
 - bringt überschüssiges Cholesterin zurück zur Leber

Abbildung: Lipoprotein

Lioproteine II

Abbildung: Herstellung von Lipoproteinen einer gestressten Leber

Praxis

Tipps & Tricks

- Omega-6 reiche Nahrungsmittel redizieren
 - Reaffinierte Pflanzenöle, wie Sonnenblumenöl, Maiskeimöl, etc.
 - Magarine
 - Fertigprodukte (vor allem Backwaren)
- Omega-3 reiche Nahrungsmittel gezielt in die Ernährungs einbauen
 - Fetter Seefisch, wie Lachs, Makrele, etc.
 - Leinsamen
 - Nüsse, wie Walnüsse, Haselnüsse, etc.
- Gefährliche Lebensstilfaktoren verringern
 - Überernährung mit Kohlenhydraten
 - Bewegngsmangel
 - Stress
 - Fettleber

Fragerunde