Lecture Schedule for MA-UY 2114 Calculus III, Fall 2021

 ${\bf Instructors:}$ Joseph Esposito & Ken Cereste

9/8	Sections 12.1 & 12.2 Three-Dimensional Coordinate Systems & Vectors					
	Identify points in space, the coordinates planes and planes parallel to the coordinate planes.					
	Compute the distance between two points in space					
	Understand and identify the equation of a sphere as an extension of the distance formula in two-dimensional Cartesian coordinates and its geometric connection to circles and/or its derivation via right triangles.					
	What are vectors? Algebraic and geometric properties of vectors, displacement vectors and the unit coordinate vectors \vec{i}, \vec{j} , and \vec{k}					
9/13	Section 12.3 The Dot Product					
	Algebraic and geometric properties of the dot product.					
	Using the sign of the dot product to determine if the angle between two vectors is acute, obtuse, or forms a right angle.					
	Projections of a vectors including parallel and orthogonal projections.					
9/15	Section 12.4 The Cross Product					
	Algebraic and geometric properties of the cross product.					
	Scalar triple product and its geometric interpretation as the volume of a parallelepiped and identifying coplanar vectors.					
	Omit Torque					
9/20	Sections 12.5 & 12.6 Lines, Planes, Cylinders and Quadric Surfaces					
	Parametric equation of a line and the parametric equation of a line segment.					
	Vector equation of a plane and its linear equation					
	Identify and sketch the traces of cylinders and quadric surfaces					
9/22	2 Sections 13.1 & 13.2 Vector Functions					
	What is a vector-valued function?					
	\square Examples of space curves and plane curves.					
	Vector algebra extended to vector-valued functions.					
	Extension of basic concepts of calculus, such as limits, continuity, derivatives and integrals of scalar-valued functions to vector-valued functions.					

\square The t	\square The tangent vector to a curve.						
\Box Discussion of the tangent vector for plane curves, i.e., the tangent vector to a plane curve contain the slope of the tangent line.							
\square Omit	subsection using	g computer	s to draw space curves.				
■ 9/27	Section 13.3	Arc Lengt	h				
☐ Compute the arc length of a parameterized curve. Define the arc length function and reparameter a curve with respect to arc length.							
\square Consequences and interpretations of a reparameterization of a curve with respect to arc length.							
\square Curvature, normal, and binormal vectors.							
■ 9/29 S	Section 13.4	Velocity an	d Acceleration				
☐ Motio	on of a particle is	n 2- or 3-sp	pace: position, velocity, speed	l, and acceleration.			
\Box Find	the tangential ar	nd normal	components of the acceleration	on vector.			
□ Exam	nples of motion a	along a line	, circle, ellipse, and/or helix.				
■ 10/4	Section 14.1	Functions	of Several Variables				
			s? Special attention to the in ogy to linear functions (lines)	importance of linear functions (planes) in single variable calculus.			
□ Visua	alizing functions	of several v	rariables via contour maps (or	or level curves or level surfaces).			
■ 10/6 S	Section 14.3 I	Partial Deri	vatives				
\square Empl	hasis on the geor	metric inter	pretation of the partial derivation	rative.			
□ Parti	al derivatives and	d implicit o	lifferentiation				
			econd-order derivatives, high of Mixed Partial Derivatives	ner order-derivatives, and consequences			
☐ Partial Differential Equations							
□ Omit	\square Omit The Cobb-Douglas Production Function						
■ 10/12	Section 14.4	Tang	ent Planes and Linear Approx	eximations, Review			
\square Find	tangent planes t	o surfaces.					
	netric and analyt linear functions			entiable functions are indistinguishable			
☐ Usage of the differential as an application to estimate the maximum error in a measurement.							
■ 10/13	Exam						
1 0/18	Sections 14.5 &	14.6	The Chain Rule, Directional I	Derivatives, and the Gradient Vector			
\Box The $\mathfrak g$	\Box The general version of the chain rule.						
□ Usage	\Box Usage of the chain rule to further clarify implicit differentiation.						
□ Some	\Box Some implications of the Implicit Function Theorem.						
\Box The \dot{c}	directional deriva	ative as a ge	neralization of the partial deri	ivative and its geometric interpretation.			

\Box The	e gradient vector a	and its signi	ficance.		
\Box The	e tangent plane an	d normal li	ine to a surface at a po	int via the gradient v	vector.
10/20	Section 14.7	Maximum	and Minimum Values		
□ Fin	ding and classifying	ng local ext	rema as local maxima,	minima, or saddle pe	oint.
			cal extrema as parabolo Derivative Test via seco	,	(hyperbolic paraboloids) nomials.
	cussion of the exi	stence of g	lobal extrema on close	d and bounded sets	via the Extreme Value
□ Exa	amples of global ex	ktrema on s	simple domains such as	a parallelogram or t	riangle.
10/25	Section 14.8	Lagrange	Multipliers		
	e method of Lagra blems.	nge multipl	liers to solve both equa	ality and inequality c	onstrained optimization
□ The valu	_	erpretation	of the Lagrange mult	iplier as the rate of	change of the optimum
□ Sol	ve optimization pr	oblems with	h two constraints.		
10/27	Sections 15.1 &	15.2 D	ouble Integrals		
☐ Doı	uble Integrals over	Rectangles	s (Ref. Sec. 15.1 Omit	The Midpoint Rule).	
☐ Dot	uble Integrals over	General R	egions (Ref. Sec. 15.2)		
11/1 Integrals	Sections 15.3 &	15.4 I	Oouble Integrals in Pol	lar Coordinates and	Applications of Double
	uble Integrals in legration such as tr		dinates (Ref. Sec. 15	.3) with examples a	lso including regions of
	\square Interpretations of the double and triple integral in the context of total mass or total electric charge via a given density function.				
□ Cer	nters of Mass				
11/3	Section 15.6	Triple Inte	egrals		
□ Tri _]	ple integrals over	General Reg	gions		
11/8	Sections 15.7 &	15.8 Tr	riple Integrals in Cylind	drical and Spherical	Coordinates
□ Tri _]	ple integrals in spl	nerical and	cylindrical coordinates		
11/10	Sections 16.1 &	16.2 V	Vector Fields and Line	Integrals	
□ Exa	amples of vector fi	elds in the	plane and space.		
\Box The	e flow of a vector f	field.			
	_	_	s work and/or circulati	on.	
□ Lin	e Integrals over pa	arameterize	d paths.		
11/15	Sections 16.3	The Fun	ndamental Theorem for	Line Integrals and F	Review

$\hfill\Box$ The Fundamental Theorem for Line Integrals.								
■ 11/17 Exam								
\blacksquare 11/22 Sections 16.4 & 16.5 Green's Theorem, Curl, & Divergence								
 □ Green's Theorem □ Algebraic definition, properties, and implications of the curl and divergence of a vector field. □ Interpretation as a measure of rotation and spread of a vector field. □ Vector forms of Green's Theorem. 								
■ 11/24 Section 16.6 Parametric Surfaces and Their Areas								
 Parametric surfaces in space. Examples should include but are not limited to parametric descriptions of a sphere, cylinder, and graphs in general. Grid curves usage in computer-generated surfaces. The surface area of parametric surfaces. 								
■ 11/29 Section 16.7 Surface Integrals								
\Box Oriented surfaces and surface integrals of vector fields with an emphasis on its interpretation as a flux integral.								
\square Examples of flux integrals over cylinders, spheres, graphs, and parametric surfaces.								
■ 12/1 Section 16.8 Stokes' Theorem								
☐ Stokes' Theorem over simply connected domains								
\Box The physical interpretation of the curl as circulation and approximating the circulation of a vector field.								
■ 12/6 Section 16.9 The Divergence Theorem								
 □ The divergence theorem over closed simple surfaces. □ Approximating the flux of a vector field through a closed surface. 								
■ 12/8 Section 16.10 Summary and Supplemental Notes								
☐ Summary of the fundamental theorems								
$\hfill\Box$ The divergence test and the curl test								
\blacksquare 12/13 Review								