## 1. Eigenvalues for the domain disk

Radius function:

$$R(\theta) = 1$$

Adaptive finite element method of degree 2 with 109340 triangles.

1.1. Geometric quantities (perimeter L and constants  $g_i$ ). All quantities evaluated using boundary integral for a very fine mesh. For  $g_i$  we use geometric representations from Lemma 6.2.

$$L = 6.28318520641 \quad g_0 = 1.00000003208 \quad g_1 = 1.0 \quad g = 1.00000001604$$

1.2. **Eigenvalues.** Upper bounds are obtained by plugging numerical eigenfunctions into the Rayleigh quotient. Numbers in parentheses are numerical eigenvalues of the discrete problem. Finally  $\rho_i$  are the rescaled sums  $(\sigma_1 + \cdots + \sigma_n)L$  on the domain divided by the same quantity on the disk.

| $\sigma_1 \le 1.00000001562$    | (1.00000001553) | $\rho_1 = 0.99999999586$    |
|---------------------------------|-----------------|-----------------------------|
| $\sigma_2 \le 1.00000001638$    | (1.00000001633) | $\rho_2 = 0.99999999964$    |
| $\sigma_3 \le 2.00000003076$    | (2.00000003066) | $\rho_3 = 0.99999999652$    |
| $\sigma_4 \le 2.00000003338$    | (2.00000003327) | $\rho_4 = 0.99999999985$    |
| $\sigma_5 \le 3.00000006857$    | (3.00000006849) | $\rho_5 = 1.00000000226$    |
| $\sigma_6 \le 3.00000007367$    | (3.00000007362) | $\rho_6 = 1.00000000383$    |
| $\sigma_7 \le 4.00000023091$    | (4.00000023087) | $\rho_7 = 1.00000001329$    |
| $\sigma_8 \le 4.00000024074$    | (4.00000024066) | $\rho_8 = 1.00000001946$    |
| $\sigma_9 \le 5.00000073535$    | (5.00000073539) | $\rho_9 = 1.00000004178$    |
| $\sigma_{10} \le 5.00000075564$ | (5.00000075557) | $\rho_{10} = 1.00000005733$ |



## 1.4. Sizes of mesh triangles and list of other parameters.

Initial polygon: 20 sides. Adaptive: try to find 4 eigenfunctions, use at most None. Refine to at least 400000 triangles.

Sizes of mesh triangles after adaptive refinement (blue - small):

