We consider a birth and cleath process with parameters $\lambda_n = \lambda$ for $n \in \mathbb{N}_0$ and $\mu_n = \mu$ for $n \in \mathbb{N}$.

According to eq (6.37) the stationary distribution exists whenever the sum $\sum_{i=0}^{\infty} \theta_i = \sum_{i=0}^{\infty} \left(\frac{\lambda}{\mu}\right)^i$ converges. Therefore, the convergence enterior reciuces to $\lambda < \mu$.

The fraction λ/μ is often referred to as the traffic intensity in queueing theory and denoted by p. Thus, our convergence criterion is p < 1. Whenever this is satisfied, eq. (6.37) gives the stationary distribution as

Mi = Oi / (ZK=0 OK).

Since the sum converges, we know that $\sum_{k=0}^{\infty} \theta_k = \sum_{k=0}^{\infty} \rho^k = (1-\rho)^{-1} = (1-\lambda/m)^{-1}$.

Thus,

 $\mathcal{T}_{i} = \Theta_{i} / (\Sigma_{\kappa=0} \Theta_{\kappa}) = \beta^{i} / (1-\beta)^{-1} = \beta^{i} (1-\beta)$ $= (\lambda/\mu)^{i} (1-\lambda/\mu).$