UNULAGGE 35-16

AEDC-TSR-85-V16 C.2

C006 VB

DEC 1 2 1985

JUL 25 190R

02021381 APR 24 1992

1804 27 1986

DOC NUM UNC28871-PDC

INVESTIGATION OF THE DEVELOPMENT OF LAMINAR BOUNDARY-LAYER INSTABILITIES ALONG A SHARP CONE

> J. C. Donaldson and S. A. Simons Calspan Corporation/AEDC Division

Property of U. S. Air Force AEDO LIBRATIY F40600-81-C-3004

TECHNICAL REPORTS FILE COPY

April 1985 Final Report for Period February 12 - 15, 1985

Approved for public release; distribution unlimited.

ARNOLD ENGINEERING DEVELOPMENT CENTER ARNOLD AIR FORCE STATION, TENNESSEE AIR FORCE SYSTEMS COMMAND **UNITED STATES AIR FORCE** UNCLASSIFED

NOTICES

When U. S. Government drawings, specifications, or other data are used for any purpose other than a definitely related Government procurement operation, the Government thereby incurs no responsibility nor any obligation whatsoever, and the fact that the government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise, or in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

References to named commercial products in this report are not to be considered in any sense as an endorsement of the product by the United States Air Force or the Government.

APPROVAL STATEMENT

This report has been reviewed and approved.

Actq Dep Dir, Aerospače

Flight Dynamics Test Deputy for Operations

Approved for publication:

FOR THE COMMANDER

Actg Dir, Aerospace Flt Dyn Test

Deputy for Operations

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE						
18 REPORT SECURITY CLASSIFICATION UNCLASSIFIED	1b. RESTRICTIVE MARKINGS					
2a SECURITY CLASSIFICATION AUTHORITY		3. DISTRIBUTION/AVAILABILITY OF REPORT				
26. DECLASSIFICATION/DOWNGRADING SCHE	DULE	Approved for public release; distribution unlimited.				
4 PERFORMING ORGANIZATION REPORT NUM	IBER(S)	5. MONITORING OF	GANIZATION R	EPORT NUMBER(S)	
AEDC-TSR-85-V16					,	
SA NAME OF PERFORMING ORGANIZATION Arnold Engineering	6b. OFFICE SYMBOL (If applicable)	7s. NAME OF MONITORING ORGANIZATION				
Development Center Bc. ADDRESS (City, State and ZIP Code)	<u>D0</u>					
Air Force Systems Command Arnold Air Force Station, TN 3	7b. ADDRESS (City, State and ZIP Code)					
MAME OF FUNDING/SPONSORING ORGANIZATION AEDC/DOE and AFWAL/FIMG	8b. OFFICE SYMBOL (If applicable)	9. PROCUREMENT I	MSTRUMENT ID	ENTIFICATION NU	MBER	
Sc. ADDRESS (City, State and ZIP Code)		10 SOURCE OF FUR	IDING NOS.			
Arnold AFS, TN Wright Patter 37389-5000 Dayton, OH	rson AFB	PROGRAM ELEMENT NO.	PROJECT	TASK NO.	WORK UNIT	
11 TITLE (Include Security Classification) SEE REVERSE OF THIS PAGE		61102F	CD06VB	VB-0G		
12. PERSONAL AUTHORIS)	A Coleman Co		0.00		-	
Donaldson, J. C. and Simons, S. 136. TYPE OF REPORT 136. TIME CO.	OVERED	14. DATE OF REPOF	L UTVISION	15. PAGE CO	UNT	
	12/85 to 2/15/85	April		58		
18. SUPPLEMENTARY NOTATION						
17 COSATI COOES	18. SUBJECT TERMS (C	ontinue on reverse if no	cessary and identi	(y by block number)	-	
FIELD GROUP SUB. GR. 20 04	hypersonic flo sharp cones	W laminar boundary-layer surveys hot-wire anemometry				
	wind tunnel te	sts bour	ndary-layer	stability		
Measurements of mean-flow and fluctuating-flow parameters were made in the boundary layer on a sharp 7-deg cone in an investigation of the stability of laminar boundary layers. The flow fluctuation measurements were made using hot-wire anemometry techniques. Flow-field profiles and model surface conditions were also measured. The testing was performed at a free-stream Mach number of 8 for free-stream Unit Reynolds numbers of 1.0-, 2.0-, and 3.0-million per foot. The test equipment and techniques and the data acquisition and reduction procedures are described. Analysis of the hot-wire anemometer data is beyond the scope of this report.						
UNCLASSIFIED/UNLIMITED 🗆 SAME AS APT (🛭 DTIC USERS 🖸	UNCLASSIFIED				
22a. NAME OF RESPONSIBLE INDIVIOUAL		226 TELEPHONE NUMBER 22c OFFICE SYMBOL			OL	
W. O. Cole		(Include Area God 454-7813	(e)	DOS		
D EODM 1472 GO ADD				UCLACOTETE		

1.	TITLE					
	Investigation Along a Sharp	of the Cone	Development of	Laminar	Boundary-Layer	Instabilities
						,
						·
					•	

CONTENTS

		<u>Page</u>
1.0 2.0	NOMENCLATURE	2 7
2.0	2.1 Test Facility	7 8 8 9
3.0		11 13 15 18
4.0		18 19
	ILLUSTRATIONS	
Figu	<u>re</u>	
1. 2. 3. 4. 5. 6. 7. 8. 9.	Tunnel B	21 22 23 24 26 28 29 32 33
<u>Tabl</u>	e <u>s</u>	
1. 2. 3. 4.	Model Instrumentation Locations	35 37 41 48
Samp	<u>le Data</u>	
1. 2. 3. 4. 5.	Model Surface Measurements (Type 2)	50 52 53 57 58

NOMENCLATURE

ALPHA Angle of attack, deg

CONFIG Model configuration designation

CURRENT Anemometer heating current, mamp

DATA TYPE Code indicating nature of data tabulated:

SURFACE HEAT TRANSFER - Cold wall model surface heat-transfer measurements

"2" - Model surface pressure and temperature measurements

"4" - Mean boundary-layer profile measurements using pitot pressure and total temperature probes

"6" - Probe flow calibration data

"9" - Quantitative hot-wire anemometer data at particular point locations within a survey or within the free stream

DEL Boundary-layer total thickness, in.

DEL* Boundary-layer displacement thickness, in.

DEL** Boundary-layer momentum thickness, in.

DITTD Enthalpy difference at boundary-layer thickness,

DEL, ITTD-ITWL, Btu/lbm

DITTL Local enthalpy difference, ITTL-ITWL, Btu/lbm

EBAR Anemometer mean voltage, mv

ERMS Anemometer output rms voltage, mv rms

ETA Effective total-temperature probe recovery factor

ETA=(TTLU-T)/(TT-T) or (TTTU-T)/(TT-T)

HT(TT) Heat-transfer coefficient based on TT, QDOT/(TT-TW)

Btu/ft2-sec-OR

ITT Enthalpy based on TT, Btu/lbm

ITTD Enthalpy based on TTD. Btu/lbm

ITTL Enthalpy based on TTL, Btu/lbm

ITW Enthalpy based on TW. Btu/lbm

ITWL Enthalpy based on TWL, Btu/lbm

LRE Local unit Reynolds number, in.-1

Unit Reynolds number at the boundary-layer LRED

thickness, DEL, in.-1

Local "normal shock" unit Reynolds number (based on MUTTL), in.-1 LRET

"Normal shock" Unit Reynolds number at LRETA

the anemometer location (based on MUTTL), in.-1

"Normal shock" unit Reynolds number at LRETD

boundary-layer thickness, DEL (based on

MUTTD), in -1

M, MACH Free-stream Mach number

Mach number interpolated to the anemometer location MA

MD Local Mach number at boundary-layer thickness,

DEL. in.-1

ME Mach number at boundary-layer edge

ML Local Mach number

Dynamic viscosity based on T. lbf-sec/ft2 MU

Dynamic viscosity based on TD, lbf-sec/ft2 MUTD

MUTL Dynamic viscosity based on TL, lbf-sec/ft2

Dynamic viscosity based on TT, lbf-sec/ft2 MUTT

Dynamic viscosity based on TTD, lbf-sec/ft2 MUTTD

MUTTL Dynamic viscosity based on TTL, lbf-sec/ft2

P Free-stream static pressure, psia

PHI Roll angle, deg

POINT Data point number

PP Probe pitot pressure, psia

PPD Pitot pressure at boundary-layer thickness,

DEL, psia

PPE Pitot pressure at boundary-layer edge, psia

PT Tunnel stilling chamber pressure, psia

PT2 Free-stream total pressure downstream of a

normal shock wave, psia

PW Model surface pressure, psia

PWL Model wall static pressure used for boundary-

layer survey calculations, psia

Q Free-stream dynamic pressure, psia

QDOT Heat-transfer rate, Btu/ft2-sec

RE Free-stream unit Reynolds number, in.-1

RE/FT Free-stream unit Reynolds number, ft-1

RETD Local "normal shock" Reynolds number based on

total temperature probe thermocouple diameter

and viscosity of MUTTL

RHO Free-stream density, 1bm/ft³

RHOD Density at boundary-layer thickness, DEL, 1bm/ft3

RHOL Local density, lbm/ft3

RHOUD (RHOD) * (UD), 1bm/sec-ft²

RN Model nose radius, in.

RUN	Data set identification number
s	Curvilinear surface distance from model stagnation point, in.
SD PW	Model wall pressure standard deviation
SD TW	Model wall temperature standard deviation
ST(TT)	Stanton number based on stilling chamber temperature (TT),
	$ST(TT) = \frac{QDOT}{(RHO) (V)(ITT-ITW)}$
T	Free-stream static temperature, OR, or OF
TAP	Pressure orifice identification number
T/C	Identification number of model surface thermocouples
TCXXX	Identification number of thermocouples on model interior surface
TD	Static temperature at boundary-layer thickness, DEL, o_R
TDRK	Temperature of Druck probe transducer, OF
ТНЕТА	Peripheral angle on the model measured from ray on model top, positive clockwise when looking upstream, deg
TL	Local static temperature, OR
TRAKE	Temperature of survey probe rake, OR
TT	Tunnel stilling chamber temperature, OR, or OF
TTA	Local total temperature interpolated to the anemometer location, ${}^{\tt O}{\tt R}$
TTD	Total temperature at boundary-layer edge thickness, DEL, OR

TTE

Total temperature at boundary-layer edge, ${}^{\rm O}{\rm R}$

TTL	Local total temperature, OR
TTLU	Uncorrected (measured) probe recovery temperature, interpolated at ZP, $^{\rm OR}$
TTTU	Uncorrected (measured) probe recovery temperature, in free stream, ${}^{\rm O}R$
TW	Coax gage surface temperature, OR
TWL	Model wall temperature used for boundary-layer survey calculations, OR
UD	Local velocity component parallel to model surface at boundary-layer thickness, DEL, ft/sec
UE	Local velocity component parallel to model surface at boundary-layer edge, ft/sec
UL	Local velocity component parallel to model surface, ft/sec
γ	Free-stream velocity, ft/sec
X	Axial location measured from virtual apex of cone model, in.
XC	Calculated X location of survey station, in.
XSTA	Nominal X location of survey station, in.
ZA	Anemometer probe height, distance to probe centerline along normal to model surface, in.
ZP	Pitot-pressure probe height, distance to probe centerline along normal to model surface, in.
ZT	Total-temperature probe height, distance to probe centerline along normal to model surface, in.

1.0 INTRODUCTION

The work reported herein was performed by the Arnold Engineering Development Center (AEDC), Air Force Systems Command (AFSC), under Program Element 61102F, Control Number 2307, at the request of Air Force Wright Aeronautical Laboratory (AFWAL/FIMG) and AEDC Directorate of Aerospace Flight Dynamics Test (AEDC/DOF). The AFWAL program manager was Kenneth F. Stetson and the AEDC/DOF program manager was Elton R. Thompson. The results were obtained by Calspan Corporation/AEDC Division, operating contractor for the Aerospace Flight Dynamics testing effort at the AEDC, AFSC, Arnold Air Force Station, Tennessee, 37389. The test was performed in the von Karman Gas Dynamics Facility (VKF) Hypersonic Wind Tunnel (B) on February 12-15, 1985, under the AEDC Project Number CD06VB (Calspan Project Number V--B-OG).

This test was the fifth in a series of studies designed to investigate the development of laminar boundary-layer instabilities on sharp and blunt cones in hypersonic flow (Refs. 1-4). The present investigation extended the studies into the region of initial development of the instabilities, that is, near the apex of the sharp cone. Boundary-layer and free-stream flow-field data were obtained using hot-wire anemometer-, total temperature-, and pitot pressure-probes. Model surface pressure and temperature distributions, as well as cold-wall surface heat-transfer measurements were obtained. The model configuration was a 7-deg (half-angle) cone with a sharp nosetip (0.0015- in. radius) only. The test was conducted at unit Reynolds numbers of 1.0-, 2.0-, and 3.0-million per foot and angles-of-attack of zero and -4 degrees with an equilibrium wall temperature ratio (TW/TT) of approximately 0.82.

Inquiries to obtain copies of the test data should be directed to AEDC/DOF, Arnold Air Force Station, Tennessee 37389. A microfilm record has been retained in the VKF at AEDC.

2.0 APPARATUS

2.1 TEST FACILITY

Tunnel B (Fig. 1) is a closed circuit hypersonic wind tunnel with a 50-in.-diam test section. Two axisymmetric contoured nozzles are available to provide Mach numbers of 6 and 8, and the tunnel may be operated continuously over a range of pressure levels from 20 to 300 psia at Mach number 6, and 50 to 900 psia at Mach number 8, with air supplied by the VKF main compressor plant. Stagnation temperatures sufficient to avoid air liquefaction in the test section (up to 1350°R) are obtained through the use of a natural gas fired combustion heater. The entire tunnel (throat, nozzle, test section, and diffuser) is cooled by integral, external water jackets. The tunnel is equipped with a model injection system, which allows removal of the model from the test

section while the tunnel remains in operation.

2.2 TEST ARTICLE

The basic LUBARD model (fabricated by AEDC) was used for this investigation as well as for the previous tests (Refs. 1-4). The model was a stainless-steel, seven-degree half-angle cone of 40-in. virtual length and 9.823-in. base diameter featuring interchangeable nose sections (Fig. 2). In the present study, a nominally sharp nose of 0.0015-in. radius was used.

The model was instrumented with 24 pressure orifices and 30 surface thermocouple gages. Table 1 lists the instrumentation locations and indicates that the top centerline (THETA = 0) of the model was the main ray of pressure instrumentation, and the bottom centerline (THETA = 180 deg) was the only ray instrumented with thermocouple gages. Pressure orifices were also installed on the THETA = 180 and 270 deg rays at three additional axial stations. A model installation photograph is presented in Fig. 3.

2.3 FLOW-FIELD SURVEY MECHANISM

Surveys of the flow field were made using a retractable survey system (X-Z Survey Mechanism) designed and fabricated by AEDC. This mechanism makes it possible to change survey probes while the tunnel remains in operation. The mechanism is housed in an air lock immediately above a port in the top of the Tunnel B test section. Access to the test section is through a 40-in.-long by 4-in.-wide opening which can be sealed by a pneumatically operated door when the mechanism is retracted. Separate drive motors are provided to (1) insert the mechanism into the test section or retract it into the housing, (2) position the mechanism at any desired axial station over a range of 35 in., and (3) survey a flow field of approximately 10-in. depth. A pneumatically-operated shield was provided to protect the probes during injection and retraction through the tunnel boundary layer, during changes in tunnel conditions, and at times when the probes were not in use.

The probes required for flow-field survey measurements are rake-mounted on the X-Z mechanism at the foot of a strut that is extended or retracted to accomplish the survey. The direction of the survey with respect to the vertical is fixed by manually sweeping the strut to the selected angle between 5 deg (swept upstream) and -15 deg (swept downstream) and locking the strut in position.

A sketch of the survey probe rake is shown in Fig. 4. The top and rear surfaces of the rake are designed to mate to the strut of the X-Z Survey Mechanism. The rake is provided with four 0.10-in. I.D. tubes through which are mounted the hot-wire anemometer-, the pitot pressure-, and total temperature probes. The fourth tube was used in the present test for housing a thermocouple to monitor the rake temperature. The

tubes were slotted to accommodate spring clips attached to the rake which were used to hold the probes in position.

2.4 FLOW-FIELD SURVEY PROBES

The hot-wire anemometer probes (Fig. 5a) were fabricated by the VKF. Platinum-10% rhodium wires, drawn by the Wollaston process, of 20-or 50-micro-inch nominal diameter and approximately 150 diameters length, were attached to sharpened 3-mil nickel wire supports using a bonding technique developed by Philco-Ford Corporation (Ref. 5). The wire supports were inserted in an alumina cylinder of 0.032-in. diameter and 0.25-in. length, which was, in turn, cemented to an alumina cylinder of 0.093-in. diameter and 3.0-in. length that carried the hot-wire leads through the probe holder of the survey mechanism.

The pitot pressure probe (Fig. 5b) had a cylindrical tip of 0.006-in. inside diameter. This probe was fabricated by cold-drawing a stainless steel tube through a set of wire-drawing dies until the desired inside diameter was obtained. The outside surface of the drawn tube was subsequently electropolished to a diameter of 0.012 in. to minimize interference with the flow field surveyed.

The unshielded total temperature probe was fabricated from a length of sheathed thermocouple wire (0.020-in. 0.D.) with two 0.004-in. diameter wires. The wires were bared for a length of about 0.015 in. and a thermocouple junction of approximately 0.005-in. diameter was made. Details of this probe are shown in Fig. 5c.

2.5 TEST INSTRUMENTATION

2.5.1 Standard Instrumentation

The measuring devices, recording devices, and calibration methods for all parameters measured during this test are listed in Table 2. Also, Table 2 identifies the standard wind tunnel instruments and measuring techniques used to define test parameters such as the model attitude, the model surface pressure, probe positions, and probe measurements. Additional special instrumentation used in support of this test effort is discussed in the following subsections.

2.5.2 Model Surface Instrumentation

Thirty coaxial surface thermocouple gages (0.125-in. diam) were used to measure the cone surface temperature. The coax gage consists of an electrically insulated Chromel $^{\odot}$ center enclosed in a cylindrical Constantan $^{\odot}$ sleeve. After assembly and installation in the model, the gage materials were blended together with a file and fine sandpaper creating a thermal and electrical contact in a thin layer at the surface

of the gage. A complete description and the data reduction procedure for this gage can be found in Refs. 6 and 7. The recording and calibrating procedures are summarized in Table 2.

Eighteen surface pressure taps were located along the zero ray of the model. Four additional taps were located on the 180-deg ray and three taps on the 270-deg ray. These taps, having approximate diameters of 0.062-in., were connected by tubing either to Druck or Electronic Scanning Pressure (ESP) transducers.

2.3.3 Hot-Wire Anemometry

Flow fluctuation measurements were made using hot-wire anemometry Constant-current hot-wire anemometer instrumentation with auxiliary electronic equipment was furnished by AEDC. The anemometer current control (Philco-Ford Model ADP-13) which supplies the heating current to the sensor is capable of maintaining the current at any one of 15 preset levels individually selected using push-button switches. The anemometer amplifier (Philco-Ford Model ADP-12), which amplifies the wire-response signal, contains the circuits required to compensate the signal electronically for thermal lag which is a characteristic of the capacity of the wire. Α square-wave finite heat (Shapiro/Edwards Model G-50) was used in determining the time constant of the sensor whenever required. The sensor heating current and mean voltage were fed to autoranging digital voltmeters for a visual display of these parameters and to a Bell and Howell model VR3700B magnetic tape machine and to the tunnel data system for recording. The sensor response a-c voltage was fed to an oscilloscope for visual display of the raw signal and to a wave analyzer (Hewlett-Packard Model 85538/8552B) for visual display of the spectra of the fluctuating signal and was recorded on magnetic tape for subsequent analysis by AEDC. A detailed description of the hot-wire anemometer instrumentation is given in Ref. 8.

The a-c response signal from the hot-wire anemometer was recorded using the Bell and Howell Model VR3700B magnetic tape machine in the FM-WBII mode. This channel, when properly calibrated and adjusted, has a signal-to-noise ratio of 35 db for a 1.000 volt rms output and a frequency response of +1 to -3 db over a frequency range of 0 to 500 kHz. A sine wave generator is used to check each channel at several discrete frequencies, using an rms-voltmeter which is periodically checked on 1, 10, and 100 volt ranges. The sensor heating current and mean voltage signals from the hot-wire anemometer were also tape-recorded using the FM-WBI mode. Magnetic tape recordings were made at a tape speed of 120 in./sec.

2.5.4 Pitot Probe Pressure Instrumentation

Pitot probe pressures were measured during surveys of the model boundary layer using a 15-psid Druck transducer calibrated for 10-psid full scale. The small size of the pitot probe adjacent to the orifice

(Section 2.4) was characterized by time delays for the stabilization of the pressure level within the probe tubing between orifice and transducer, when the probe was moved across the boundary layer. In order to reduce this lag time, the pitot pressure transducer was housed in a water-cooled package attached to the trailing edge of the strut on which the probe rake was mounted (Section 2.3). The distance between orifice and transducer was approximately 18 in. The resultant lag time was of the order of one second.

3.0 TEST DESCRIPTION

3.1 TEST CONDITIONS AND PROCEDURES

A summary of the nominal test conditions is given below.

<u>M</u>	PT, psia	TT, OR	V, ft/sec	Q, psia	T, OR	P, psia	<u>RE/FT x 10</u> -6
7.94	220	1280	3775	1.04	94.0	0.024	1.05
7.98	440	1315	382 7	2.04	95.7	0.046	1.99
8.00	675	1330	3850	3.10	96.4	0.069	2.98

A summary of the present testing is presented in Tables 3 and 4 together with that of each of the four previous efforts, which are documented in Refs. 1-4. This table provides a complete summary of the various types of measurements made with each configuration for the five tests. The individual tests may be identified by RUN numbers. For Ref. 1, RUN < 200; for Ref. 2, 200 < RUN < 300; Ref. 3, 300 < RUN < 400; Ref. 4, 400 < RUN < 500; and for the present testing, RUN > 500.

In the continuous flow Tunnel B, the model is mounted on a sting support mechanism in an installation tank directly underneath the tunnel test section. The tank is separated from the tunnel by a pair of fairing doors and a safety door. When closed, the fairing doors, except for a slot for the pitch sector, cover the opening to the tank and the safety door seals the tunnel from the tank area. After the model is prepared for a data run, the personnel access door to the installation tank is closed, the tank is vented to the tunnel flow, the safety and fairing doors are opened, the model is injected into the airstream, and the fairing doors are closed. After the data are obtained, the model is retracted into the tank and the sequence is reversed with the tank being vented to atmosphere to allow access to the model in preparation for the next run. The sequence is repeated for each configuration change.

Probes mounted to the X-Z mechanism are deployed for measurements by the following sequence of operations: the air lock is closed, secured over the mechanism, and evacuated; and the access door to the tunnel test section is opened. The various drive systems (see Section 2.3) are used to inject the probes into the test section and position the probes at a designated survey station along the length of the model, the shield protecting the probes is raised, exposing them to the flow, and the flow field is traversed in the direction normal to the model surface to the probe height (or heights) selected for measurements. When the traverse has been concluded, the shield is closed over the probes and the mechanism is repositioned along the model. When the surveys are completed or when a probe is to be replaced, the X-Z Mechanism is retracted from the flow and the access door is closed. The air lock is then opened for probe work.

The survey probe height relative to the model was monitored using a high-magnification closed-circuit television (CCTV) system. The camera for this system was fitted with a telescopic lens system which gives a magnification factor of 20 for the monitor image. The probe and model were back-lighted using the collimated light beam of the Tunnel B shadowgraph system which produced a high-contrast silhouette of the model-probe outline. The camera was mounted on a horizontal-vertical traversing mount to facilitate alignment of the camera with the probe at various model stations visible through the test section windows. video camera was interfaced with an image analyzer/digitizer system (IADS) which was used to measure the distance between the probe and model surface using computer-assisted image analysis techniques. software for making these measurements was designed to locate the lower edge of the probe and the upper edge of the model surface automatically, thus minimizing inconsistencies associated with location of the edges by an operator using a cursor. The measurement accuracy was further improved by calibrating the system prior to testing, using the automated edge-location technique to locate edges separated by a known distance.

A hardcopy of the video image of the probes and model edge was provided in near real-time showing, by means of a graphics line, the location of the edges measured and displaying a printout of the measured distance and other pertinent documentation (Fig. 6). The accuracy of this measurement technique was determined to be better than ±0.0007-in. over a range of 0.003 to 0.2 in. under air-off conditions. Provisions were made to determine the magnitude of edge movement caused by probe and model vibrations and to calculate a correction factor for the measurements if required. However, vibrations of the model and probes were negligible when measurements were made under the present test conditions.

The model was oriented in roll to avoid interference of the surface instrumentation with the boundary-layer probes. The flow-field surveys were obtained only after the model had reached equilibrium temperature. Initial probe positioning near the model surface prior to each survey was accomplished by manual maneuvers of the probe controller while observing the CCTV monitor. The docking and surveys were accomplished by the following procedures.

After model injection, the probe mechanism was positioned by the controller (in manual mode) to the count reading which corresponded to the desired survey station location (X-position); the X-drive was locked into this position and held constant during the survey. The probe mechanism was then slowly driven downward in the direction normal to the surface until the lowest mounted probe was just above the model surface as viewed by the CCTV monitor. At this time, measurements were made using the IADS and were entered into the data reduction program as manual inputs. The flow field was then traversed in selected increments to acquire the desired data. At the completion of the traverse, the X-drive was unlocked and repositioned at the next survey station on the model.

3.2 DATA ACQUISITION

The primary test technique used in the present investigation of the initial development of instabilities in a laminar boundary layer was hot-wire anemometry. In addition, mean-flow boundary-layer profile data (pitot pressure and total temperature) were acquired in order to define the flow environment in the vicinity of the hot-wire. Surface pressure and temperature distributions on the model were obtained to supplement the profile data. Model surface heat-transfer data were acquired to assess effects of model angle of attack on the location of boundary-layer transition. The various types of data acquired are summarized in Table 3. Model stations for mean-flow surveys are listed in Table 4.

3.2.1 Hot-Wire Anemometry Data

The hot-wire anemometer data acquired during the present testing were of two general categories: (1) continuous-traverse surveys of the boundary layer to map the response of the hot-wire anemometer as a function of distance normal to the surface and (2) quantitative hot-wire measurements using the wire operated at each of a series of wire heating currents at one location on each profile. The anemometer probes used are identified in Table 3g.

Data of the first category were acquired with the hot wire operated using a single heating current, in the present case the maximum (practical) current. The probe was generally translated in a continuous manner from near the model surface outward to a distance of approximately 2 (DEL). These data were recorded as analog plots of the hot-wire response (rms of the a-c voltage component) versus probe height normal to the model surface. The plot was used primarily for the purpose of determining the station in the boundary-layer profile where the hot-wire output had a maximum level.

Quantitative hot-wire data (second category) were acquired at locations determined from the continuous-traverse surveys (first category data). The point of maximum rms voltage output of the hot wire, the "maximum energy point" of the profile, was selected for quantitative measurements at each model station. The quantitative data were acquired using each of a sequence of two or more wire heating currents; one current was nominal-zero to obtain a measurement of the electronic noise of the anemometer instrumentation. Each wire heating current, wire mean voltage (d-c component) and the rms value of the wire voltage fluctuation (a-c component) were measured 40 times, using the Tunnel B data system, at the same time the parameters were being recorded (generally, a five-second record duration) on magnetic tape with a tape transport speed of 120 in./sec.

3.2.2 Flow-Field Survey Data

Mean-flow boundary-layer profiles extended from a height of 0.02 in. above the model surface to somewhat beyond the edge of the boundary layer. A profile typically consisted of 25 to 40 data points (heights). The probe direction of travel was normal to the surface.

3.2.3 Model Surface Data

Surface pressure and temperature distributions on the model were obtained to supplement the boundary-layer profile data. For surface heat-transfer data, the model was injected into the tunnel test section at a fixed attitude. The data were recorded continuously for a period of approximately five seconds beginning one second after the model encountered tunnel centerline. The model was then retracted into the test section tank and cooled with high pressure air.

3.2.4 Anemometer and Total Temperature Probe Calibrations

The evaluation of flow fluctuation quantitative measurements made using hot-wire anemometry techniques requires a knowledge of certain thermal and physical characteristics of the wire sensor employed. In application of the hot wire to wind tunnel tests, two complementary calibrations are used to evaluate the wire characteristics needed. The first calibration of each hot-wire probe is performed in the instrumentation laboratory prior to the testing: the probe is placed in an oven, and the resistance of the wire is determined as a function of applied wire heating current at several oven temperatures between room temperature and 600°F. The wire reference resistance at 32°F and the thermal coefficient of resistance, also at 32°F, are obtained from the results; the wire aspect (length-to-diameter) ratio is determined, using the wire resistance per unit length specified by the manufacturer with each supply of wire. Moreover, it has been established that the exposure of the probes to the elevated temperatures of the oven calibration often serves to eliminate probes with inherent weaknesses.

Each hot-wire probe used for flow-field measurements is calibrated in the wind tunnel free-stream flow to obtain both the heat-loss coefficient (Nusselt number) and the temperature recovery factor characteristics of the wire sensor as functions of local Reynolds number. The variations of Reynolds number in the free stream are obtained by varying the tunnel total pressure (PT) while holding the tunnel total temperature (TT) at a nominally constant level. The resulting relationships are used to determine the values of the various wire sensitivity parameters required in the reduction of the quantitative measurements.

A calibration of the recovery factor of the total-temperature probe as a function of local Reynolds number was made in the free-stream flow of the tunnel test section simultaneously with the calibration of the hot-wire probes. The local total temperature for the probes in free-stream flow was assumed to be equal to the measured stilling chamber temperature, TT (see Section 3.3.4).

3.3 DATA REDUCTION

3.3.1 Hot-Wire Anemometry (Data Types 6 and 9)

In the present discussion, as it pertains to the reduction of hot-wire anemometer data, only the basic measurements tabulated in the data package that accompanies this report will be considered. (Examples of these tabulations are shown in Appendix III.) The data processing associated with spectral analysis, modal analysis, and determination of amplification rates of laminar disturbances is beyond the scope of this report. Extended data reduction of the hot-wire results to achieve these analyses is planned for the present measurements.

The basic measurements associated with quantitative hot-wire data are the following parameters: wire heating current, wire mean voltage, and the rms value of the wire fluctuating response voltage. The average value of 40 measurements of each of these three parameters was determined over a period of 5 sec for each nominal wire heating current employed, and the results were tabulated under the designation "DATA TYPE 9" together with certain associated model, flow field, and tunnel conditions. (See Sample 1, Appendix III.)

Free-stream tunnel conditions that are applicable to anemometer and total-temperature probe calibrations are tabulated under the designation "DATA TYPE 6". (See Sample 2, Appendix III.)

3.3.2 Mean Flow-Field Surveys (Data Type 4)

The mean flow-field data reduction included calculation of the local Mach number and other local flow parameters, determination of the height of each probe relative to the model surface, correction of the total-temperature probe using an appropriate recovery factor, definition of the boundary-layer total thickness, and evaluation of the

displacement and momentum thicknesses. Sample tabulated data are shown in Sample 3, Appendix III, and typical plotted results are shown in Fig. 7. The data reduction procedures are outlined as follows.

The local Mach number in the flow field around the model was determined using the measured pitot pressure (PP) and the local model static pressure (PWL) with the Rayleigh pitot formula.

The height of each probe above the model surface, in the normal direction, was calculated for each point in a given flow-field survey, taking into consideration the following parameters: the initial vertical distance determined from the CCTV image, the distance traversed in the vertical direction from the initial position employing the survey probe drive, the lateral displacement of the probe from the vertical plane of symmetry of the model, and the local radius of the model at the survey station.

The height of the pitot pressure probe above the model surface (ZP) was used as the reference for all probes because the pitot probe was located in the vertical plane of symmetry of the model. The totaltemperature probe recovery temperature measurements (TTTU) were used to interpolate (three-point) a value (TTLU) corresponding to each height of the pitot probe. Correction of the interpolated recovery temperature, using the probe calibration data, was achieved by iteration on the local Reynolds number beginning with the value calculated using the recovery temperature (TTLU) to determine an initial value for the local dynamic viscosity (MUTTL). The iteration was continued until successive values of the "corrected" total temperature differed by no more than 0.1 deg R. For those surveys wherein the pitot probe was positioned below the total-temperature probe (closer to the model surface), the corrected total temperature at the corresponding pitot probe heights was determined from a second-order curve fit using three points, namely: the model surface temperature (TWL) and the corrected total temperature at the first two probe heights, where it was available.

The total thickness of the model boundary layer in any given profile was inferred from the profile of the total-temperature probe recovery temperature (TTLU). Recovery temperatures measured above the edge of the boundary layer (in the shock layer) remained constant or essentially independent of the probe height. There was generally a very distinct "overshoot" in the recovery temperature profile immediately before the onset of the constant portion of the profile. The height at which this constant portion of the profile began was defined as the edge of the boundary layer and the corresponding distance normal to the model surface was defined as the boundary-layer total thickness (DEL). Displacement and momentum thicknesses were determined by integration accounting for the model cone angle and local radius of curvature. Probe/model interference was noted for some of the data points near the model surface; these points were omitted from the integrations.

Model surface pressure and temperature distributions were measured during mean flow-field surveys, "DATA TYPE 4" (Sample 3, Appendix III). These measurements were made each time that probe data were acquired and the 25 to 40 values for each pressure or temperature were averaged. The averaged values and their respective standard deviations are included in the tabulations of DATA TYPE 4.

3.3.3 Model Surface Measurements (Data Type 2)

Model surface pressure and temperature distributions generally were obtained when the survey probe mechanism was located so as not to interfere with the measurements. These data are tabulated under the designation "DATA TYPE 2". (See Appendix III, Sample 4.)

The local model surface pressure, PWL, used in the boundary-layer calculations was determined using a fairing of the measured pressure distributions (selected runs of DATA TYPE 2). The static pressure was assumed to be constant across the boundary layer and shock layer and equal to the local model surface pressure at each survey station. The fairing of the surface pressure distribution used for each test condition is shown in Fig. 8.

The local model surface temperature, TWL, was determined for each survey from the measured surface temperature data in the vicinity of the survey station, using linear interpolation. A typical surface temperature distribution is shown in Fig. 9.

3.3.4 Total-Temperature Probe Calibration (Data Type 6)

The recovery factor ETA used in reducing the total-temperature probe survey data is defined generally as a function of the local Reynolds number based on probe diameter. In the case of the probe used in the present test, the factor ETA was essentially independent of Reynolds number; that is, ETA = constant for the test conditions being considered.

Free-stream tunnel conditions that are applicable to the total-temperature probe calibration are tabulated under the designation "DATA TYPE 6" (Appendix III. Sample 2).

3.3.5 Surface Heat-Transfer Data

The basic heat-transfer measurement is the wall temperature (TW). The heat-flux rate, calculated from the response of the coaxial thermocouple gage, is used to determine the heat-transfer coefficient, HT(TT), and the Stanton number, ST(TT). These values are tabulated under the designation "SURFACE HEAT TRANSFER". A sample tabulation is given in Appendix III, Sample 5.

3.4 UNCERTAINTY OF MEASUREMENTS

In general, instrumentation calibrations and data uncertainty estimates were made using methods recognized by the National Bureau of Standards (NBS), (Ref. 9). Measurement uncertainty (U) is a combination of bias and precision errors defined as:

$$U = \pm (B + t_{95}S)$$

where B is the bias limit, S is the sample standard deviation, and tog is the 95th percentile point for the two-tailed Students "t" distribution, which equals approximately 2 for degrees of freedom greater than 30.

Estimates of the measured data uncertainties for this test, including the basic hot-wire anemometer measurements discussed in this report, are given in Tables 2a and b. Estimates of uncertainties in flow fluctuations derived from the hot-wire anemometer measurements and in other calculated flow survey parameters fall outside the scope of this report. In general, measurement uncertainties are determined from in-place calibrations through the data recording system and data reduction program.

The propagation of the estimated bias and precision errors of the measured data through the data reduction was determined for free-stream parameters in accordance with Ref. 9, and is summarized in Table 2b.

4.0 DATA PACKAGE PRESENTATION

Boundary-layer profile data, model surface data, probe calibration data, and basic hot-wire anemometer data from the test were reduced to tabular and graphical form for presentation as a Data Package. Examples of the basic data tabulations are shown in Appendix III.

Figure 7 is an example of the plotted mean-flow boundary-layer survey results for the sharp cone configuration at a particular survey station which are included in the Data Package.

REFERENCES

- 1. Siler, L. G. and Donaldson, J. C. "Boundary-Layer Measurements on Slender Blunt Cones at Free-Stream Mach Number 8," AEDC-TSR-79-V71, December 1979.
- Carver, D. B., Siler, L. G., and Donaldson, J. C. "Boundary-Layer Measurements on Slender Blunt cones at Mach Number 8 - Part II," AEDC-TSR-80-V36, July 1980.
- Donaldson, J. C. and Hildebrandt, L. A. "Boundary-Layer Measurements on Slender Blunt Cones at Mach Number 8 - Part III," AEDC-TSR-81-V27, August 1981.
- Donaldson, J. C., Simons, S. A., and Byers, M. J. "Boundary-Layer Stability Measurements on a Sharp Cone at Small Angles of Attack," AEDC-TSR-83-V42, November 1983.
- 5. Doughman, E. L. "Development of a Hot-Wire Anemometer for Hypersonic Turbulent Flows," Philos-Ford Corporation Publication No. U-4944, December 1971; and The Review of Scientific Instruments, Vol. 43, No. 8, August 1972, pp. 1200-1202.
- 6. Trimmer, L. L. et al. "Measurements of Aerodynamic Heat Rates at the AEDC von Karman Facility." Reprint from ICIASF 1973 Record, International Congress on Instrumentation in Aerospace Simulation Facilities, September 1973.
- 7. Cook, W. J. and Felderman, E. J. "Reduction of Data from Thin-Film Heat Transfer Gages: A Concise Numerical Technique," AIAA Journal Vol. 4, No. 3, March 1966, p. 561.
- 8. Donaldson, J. C., Nelson, C. G., and O'Hare, J. E. "The Development of Hot-Wire Anemometer Test Capabilities for M_{∞} = 6 and M_{∞} = 8 Applications," AEDC-TR-76-88 (AD A029570), September 1976.
- 9. Abernethy, R. B. et al., and Thompson, J. W. "Handbook Uncertainty is Gas Turbine Measurements," AEDC-TR-73-5 (AD755356), February 1973.

APPENDIX I ILLUSTRATIONS

a. Tunnel assembly

b. Tunnel test section Fig. 1. Tunnel B

Thermocouples and Pressure Taps

Figure 2. Model geometry and gage locations

Figure 3. Test Installation

a. Rake and Probe Installation

Figure 4. Survey Probe Rake

b. Rake/probe mounted above Model Surface Figure 4. Concluded

Hot-wire anemometer probe Probe details Figure 5.

b. Pitot probe

All Dimensions in Inches Not Drawn to Scale

c. Total-temperature probeFigure 5. Concluded

Figure 6. Video image of probe-model edge with measurement printout

Figure 7. Sample results of a mean-flow boundary-layer survey

Figure 7. Continued

HYPERSONIC BOUNDARY LAYER STABILITY TEST

Figure 7. Concluded

Figure 8. Surface pressure distributions

\

Figure 9. Typical Surface Temperature Distribution, RE/FT = 3.0 million

APPENDIX II TABLES

TABLE 1. Model Instrumentation Locations
a. Pressure taps

TAP	THETA	х,				, in.		•	
NO.	deg	in.	RN-0.0015	0.15	0.25	0.50	0.70	0.90	2.00
1	0	39.50	39.790	38.796	38.126	36 .4 52	35.113	33.774	26.409
2	l. 1	38.51	38.790	37.796	37 ,126	35,452	34 .113	32 .774	25.409
3		38.01	38.290	.37 .296	36 .626	34 .952	33.613	32.274	24 .909
4		36'.03	36.290	35.296	.34 .626	32,952	31.613	30.274	22.909
5		34 .04	- 34 .290	33.296	32 .626	30.952	29,613	26 .274	20.909
7		30.01	30.230	29.236	28.566	26 ,892	25.553	24.214	16.849
В		28.03	28 .230	27.236	26 .566	24 .892	23.553	22.214	14 .849
Ð		26.05	26.230	25,236	24 .566	22.892	21.553	20.214	12.849
10		24,06	24.230	23.236	22,566	20.892	19.553	18 .214	10.849
11		22 .07	22.230	21.236	20.566	18.892	17.553	16.214	8.649
12		20.00	20.140	19.146	18.476	16,802	15.463	14 .124	· .
13		17.02	17,140	16.146	15,476	13,802	12.463	11,124	
14		15.04	15.140	14.146	13.476	11.802	10.463	9.124	.]
15		13.05	13,140	12,146	11.476	9:802	8 .463	7.124	•
16		11.07	11.140	10.146	9.746	.7.802	6.463	5,124	
17		9.08	9.140	8:146	7.476	5,802	4.463	3.124	
18	1	8.09	8.140	7.146	6.476	4 .802	3,463	2,124	
19	270	11.07	11,140	10.146	9.476	7.802	6.463	5,124	
20	180	11.07	11.140	10.146	9.476,	7.802	6 ,463	5,124	
21	270	30.01	30.230	29.236	28.566	26.892	25.553	24.214	16 .850
22	180	30.01	30.230	29.236	28.566	26 .892	25.553	24 .214	16.850
23	270	39.50	39.790	38.796	38 .126	36 .452	35.113	33.774	26 .410
24	180	39,50	39.790	38.796	38.126	36 .4 52	35,113	33.774	26.410

Table 1. Concluded b. Thermocouple locations

T/C	THETA,	Х,				S, in.		-	-
No.	deg	in.	HN= 0.0015	0.15	0.25	0.50	0.70	0.90	2.00
	180	38.51	38.790	37,796	37,126	35,452	34,113	32,774	25,409
2		38.01	38.290		36,626	34.952	33,613	32.274	24.909
3		37.32	37.590		35.926	34.252	32.913	31.574	24.209
4]]	36.03		35,296		32.952	31.613	30.274	22.909
5	l 1 i	35.04	35.290			31.952	30.613	29.274	
6		34 .04		33.296		30.952	29.613	28.274	
7		33.05		32,296		29.952	28.613	27.274	
В	1 1 1	32.00		31.236		28.892	27.553	26.214	
9	1	31.01		30.236		27.892	26.553	25.214	
10		29.72	29.930		_	26.592	25.253	23.914	
11		29,02	29.230		27.566	25.892	24.553	23,214	15.849
i -	[- • •				
13		27.04	27.230	26.236	25.566	23.892	22.553	21;214	13.849
		_,,,,,		-*•			22.000		
15	1 1	25.05	25.230	24.236	23.566	21.892	20.553	19.214	11.849
, ,				~~~~;		.,,,,,	20.000	````	*****
17		23.07	23.230	22,236	21.566	19.892	18.553	17.214	9.849
					1	- ; • - ; -	-	* * * * *	2,0.2
19	·	20,99	21.140	20.146	19.476	17.802	16.463	15.124	2.932
20		20.00	20.140	19,146	18.476	16.802	.15.463	14.124	0.977
21	' ' '	19.01	19.140	18.146		15.802		13.124	
22	1	18.02	18.140	17,146			13.463	12,124	•
23	ŀ	17.02	17.140	16.146		13.802	12.463	11.124	
24		16.03	16.140		14.476	12.802	11.463	10,124	:
25		15,04	15.140		13,476	11.802	10.463	9.124	• 1
26		14.05	14.140	13,146		:10.802	9.463	B.124	
27	1 [13,05	13.140		11.476	9.802	8.463	7.124	
28		12,06	12.140	11,146	10.476	B.802		6.174	
29		10.77	10.840	9.846	9.176	7.502		4.824	
30	l [10.08	10,140	9,146	8.476	6.902	5.463	4.124	
31		9.08	9.140	8.146	7.476	5,802	4 .463	3.124	
32	 	8.09	B.140	7,146	6.476	4.802	3.463	2,124	
101		18.5	37.3	17.7	17.0	15.3	13.95	12.6	
102	l –	25	25,2	24.2	23.6	21.9	20.55	19.2	11.9
103	-	35	35.3	34.3	33,6	32.0	30.65	29.3	21.9
No street		<u> </u>		1111					· · · · · ·

NOTES: 1. Thermocouples 1-32 were conxial surface thermocouples and thermocouples 101-103 were simply attached to inside of model surface (model wall thickness ≈0.25 in.).

2. Locations of thermocouples 101-103 are approximate.

TABLE 2. Estimated Uncertainties

a. Basic measurements

	SIEADY-	STATE	ESTIMATED MEASUR	EMENT"		·		
Patrueter	Precision Index (S)		Bias (B)	Uncertainty ±(D + 1958)			•	
Persuater Designation	Percent of Beading Unit of Went	Degree of Freedom	Percent of Reading Unit of Neasure-	Percent of Reading Unit of Messure-	Range	Type of Measuring Device	Type of Recording Device	Hethod of System Calibration
TILLING CHAMBER RESSURE (PT or PT _R).	±0.3 psfa		‡0.1 psis	±0.3 psfa	Q to 900 psia	Paroscientific Digi- quariz Pressure Transducer		in-place application of multiple pressure levels measured with a pressure measuring device calibrat in the standards laburato
OTAL TEMPERATURE IT), °F	± 1° F ± 1° F	30	±z* F ±0.375	24° F 240.3752 + 2° F)	32" to 530" F 530" to 2300"F	Chromel-Alumel Thermocouple	Digital Thermometer and Micro Processor Averaged for Primary (TTp); Digital Thermometer for Redundant (TTA)	Thermocouples verification of MBS conforming/voltage substitution calibration
ITCH AKGLE (ALPI). 193	*0.025 *	30		10.05°	±15°	Potentiometer	system/analog-to-digital	Heidenhaln rotary encoder ROD700 Resolution: 0.0006*
DLL AMGLE (PHII). egs	± 9.15 *	30		10.3 °	±180°	Potentivmeter		Overall accuracy: 0.601
ITOT PRESSURE (PP).	± 0.002 ps1a		±0.010 ps la	±0.014 ps ia	<10 psid	Druck 215 psid straft gage transducers	digital data acquisition	In-place application of multiple pressure levels measured with a pressure peasuring device calibrat in the standards laborato
ПU, °F	±1.0 ±1.0	30 30	±2° F ±0.375	±4° F ±{0.375%+2°F}	<530 °F <2300 °F	Unshielded Chromet- Alumel Thermocouple		Thermocoupie verification of MBS conformic voltage substitution calibration

TABLE 2. Estimated Uncertainties

a. Continued

			LSTI MATED MEASUR	LHLNT*					
_	Precision Index (5)		Bias (B)	Uncert ±(B +]			Nethod of
Parameter Designation	Percent of Resding Unit of Messure-	Degree of Freedom	Percent Of Reading Unit of Mexaure-	Percent of Resolan	Unit of Meseure-	Range	Type of Hensuring Device	Type of Recording Device	System Calibration
ODEL PRESSURE (PM), osia	±0.0075 psi ±0.002 psi ±0.003	30 30 30	±1.0 ±0.1 ±0.002	±{0.0015 psi ±{0.004 psi	-	0.15 ps fc 0.15 ≤ P ≤ 1.5 ps fc	gage transducers		in-place application of unitable pressure levels measured with a pressure weasuring device calibrat in the standards laburator
TOUGH TEMPERATURE	±1° F ±1° F	30	\$2.2°F	£D., 380	±4.2" F	<600 <1600	Chromel Constantan coaxial Thermocoup m		Imremocouple verification of MRS conformic voltage substitution calibration
ZP, ZT, ZA, in.	±0.001	30	10,003	,	±0.005	<0.5	Potentiometer and Optical	Digital (bis Acquisition System Analoy-to-Digital Converter	Pracision Micrometer
(SURVEY STATION), In.	± 0.005	30	±0.020		±0.030	<35	Potentiometer and Optical Gradicule	Digital Data Acquisition System A/D Converter Optically Positioned Zero	Pracision Microseter
ERMS, and CURRENT, was EBAR, my	± q.5 ± q.5 ± q.5		0+ 0+	1] 1] 2]		<1200 <5 <300	Philco Ford Corp. Hodel #ADP-12/13 Hot-wire Anemometer System	Digital DAta Acquisition System Analog-to-Digital Converter	Preciston Digital Yollmeter
				·					
			1			İ			

NOTE: + -Bias assumed to be zero.

TABLE 2. Continued

a. Concluded

	57E/ Precipion Inde	DY-ST	ATE ESTIMATED MEASU	Uncertainty	Range++			,
	(6)		(B)	±(8 + t ₉₅ \$)	Kangery	Type of	Type of	Kethod of System
Parouvier Designation	Percuat of Bending Unit of Mensure-	Degree of Freedom	Jose Jose Jose Jose Jose Jose Jose Jose	Porcept of Resided Boseve	AMPLITUDE FREQUENCY	Messuring Device	According Davica	Calibration
Flow Turbulence	Ųaksova		Vaknova	Unknown	DC to 1 DC to 250 voit RMS ENZ or 500 (Heating ENZ freq. Currents response up to 3 ms) band deter- since by filters used.	motor System (20 microlach wire)	eAnalog data recorded on tape for subso- quent playback and reduction • Wo loops of data recorded on digital data acquisition system (AD converter) for each rum	Wire characteristic by oven calibration Heat transfer char- acteriatics by cali bration in tunnel free-stream
			·	,		·		•

. Incl iD messurements

TABLE 2. Concluded

b. Calculated parameters

		STEADY-	-STAT	E ESTIMA	TED MEASUR	EMENT*		
		ion Index (\$)			as B)	Uncert ±(B +		
Parameter Designation	Percent of Reading	Unit of Measure- ment	Degree of Freedom	Percent of Reading	Unit of Measure- ment	Percent of Reading	Unit of Measure- ment	RE/FT x10 ⁻⁶
P,psia PT2,psia Q,psia T. ^O R V,ft/sec RHO,1bm/ft ³ MU,1bf-sec/ft ² M RE,per ft	1.23 0.86 0.85 0.36 0.04 0.88 0.36 0.19++		>30	0.25 0.25 0.25 0.25 0.12 0.35 0.25 0+		2.72 1.96 1.96 0.97 0.20 2.12 0.97 0.38 1.50		1.0
P,psia PT2,psia Q,psia T.OR V,ft/sec RHO.1bm/ft ³ MU.1bf-sec/ft ² M RE,per ft	0.82 0.57 0.57 0.25 0.04 0.59 0.25 0.13		>30	0.25 0.25 0.25 0.24 0.12 0.35 0.24 0		1.89 1.39 1.39 0.74 0.20 1.53 0.74 0.26		2.0
P,psia PT2,psia Q,psia T,OR V,ft/sec RHO,1bm/ft MU,1bf-sec/ft ² M RE.per ft	0.82 0.57 0.56 0.24 0.04 0.59 0.25 0.13** 0.36	•	>30	0.25 0.25 0.25 0.25 0.12 0.35 0.24 0+ 0.44		1.89 1.39 1.37 0.73 0.20 1.53 0.74 0.26 1.16		3.0

NOTE:

*Bias assumed to be zero.

⁺⁺Determined from test section repeatability and uniformity during tunnel calibration.

TABLE 3. Test Summary
a. Surface heat-transfer runs

Model Config.	ALPHA, deg	PHI,deg	RN, in.	RE/FT x10 ⁻⁶	RUNS
7-deg Cone	Q.	-90	0.0015	2.5	2 4
1	1	1	1	1.2	4
			0.750	1.0	5 1
	İ		0.150 0.250	2.5 3.5	202
ļ		ŀ	0.500	3.5	3
	†	*	2.000	3.5	113,116,119
Ì	0	0	0.0015	1.0	401,402
	+2	ŀ		1	403
	+4	1	1		404
	-2		l		405
	-4				406 . 521
	+4 +3				519
	+3		1		517
	+1	1	ŀ	- 1	515
	0		İ		513,522
	-]			İ	514
	-2		i		516
	-3		1	. ↓	518 520
	-4 +4		0.0015	2.0	509,510
	+3	Ì	0.00.5	i	507
	+2				505
	+1		İ		503
	0				501,511,547
1	_			İ	548,549,550
]	-1	1			502 504
	-2 -3				50 4 506
	-4		. ♦	†	508,512
ł	+4		0.0015	3.0	544
	+3		1		542
	+2]		540
	+1	ŀ			538 626 646 646
	0		ļ		536,545,546 537
	-1 -2	l		Ì	53 <i>7</i> 539
ĺ	-2 -3	-		1	541
†	-4	†	•	*	543

NOTE: Run numbers <200 from Ref. 1; Run numbers <300 from Ref. 2; Run numbers <400 from Ref. 3; Run numbers <500 from Ref. 4; Run numbers >500 are present test data.

TABLE 3. Continued
b. Surface pressure and temperature
(Type 2 Data)

MODEL CONFIG	ALPHA,deg	PHI,deg	RN, in.	RE/FT ×10 ⁻⁶	RUN
7-deg Cone	0 -2 +2 -2 -4 -2	-90 -85	0.0015 0.150 0.350 0.700	3.5 2.5 2.5 2.5 2.5 2.5 1.0 1.0 0.6 0.6 0.6 1.0	358 72,73 210,211 302,303,305 312,313,314 315,317,322 330,339,340, 341,343,349 130,131 408,409,410 411,412 429 430 431 448,449 450,451 452,453 471,472 477
	0	0 -110	0.0015	2.0	524 525,526,529,531, 532,553,554,564, 565,577,578,604, 605,606,607
	-4 -4 +4 0	20 0 0 -110	0.0015	3.0	608,609 617,618 619,620 579,580,581,582,
		0	0,0015		583,584,591,592, 595,596 586,587

- NOTES: 1. Run numbers <200 from Ref. 1; Run numbers <300 from Ref. 2; Run numbers <400 from Ref. 3; Run numbers <500 from Ref. 4; Run numbers > 500 are present test data.
 - 2. Surface pressure measurements are also included on Boundary-Layer Survey Data (Type 4).

TABLE 3. Continued

c. Mean-flow boundary-layer survey matrix (Type 4 Data)

RN,	RE/ET	ALPHA						X	STAT	ION (NOMI	MLÌ									
in.	RE/FT x10 ⁻⁶	deg		6	8	10	11	15	16	18	20	24	25	26	28	30	31	32	35	36	37
0.0015	0.5	0			•													<u> </u>			272
	1.0	0				112		111			110		109			108		 	107		286ª
	1.0	+2					459 ^b			458 ^b										456 ^b 457 ^b	
	1.3	Q													373	372		371		370	
ļ	2.0			601				602				603						<u> </u>			<u> </u>
_	3.0			600·																	
0.15	2.5		1			106	105				76 104		103			75 102			74 101		
0.25	2.5					255 ^e 254							249			241 208 ^C 207 ^C			240 242 ^C		
0.70	2.5													376			377				378
0.90	2.5												257 ^e 256								
2.00	3.5								124 125				123						122		

NOTES: 1. PHI = -90 deg except where noted.

 Run nos. < 200 from Ref. 1; Run nos. < 300 from Ref. 2; Run nos. < 400 from Ref. 3; Run nos. < 500 from Ref. 4; Run nos. > 500 are present test data

3. Superscripts:

a - ALPHA = -2.0 deg, PHI = 0. deg, windward survey

b - PHI = -85 deg

c - Cold wall data: TWL \approx 525-, 640-, 640-deg R. for Runs 207, 208, 242, respectively.

All other data obtained at hot wall conditions (TWL ≥ 860 deg R).

e - Extended survey of preceding RUN, all outside boundary layer.

TABLE 3. Continued

 d. Hot-wire qualitative survey matrix (Type 3/Type 4 Data), runs

RN,	RE/FT	ALPHA,						X ST	NOITA	(NO	MINA	_)		•						
in.	x10 ⁻⁶	deg.	10	14	15	17	19	20	25	26	27	28	30	31	32	33	34	35	36	37
0.0015	1.0	0	51	46		42		34			26		21			16	15	12	11	8
	1.3	0										373	372		371				370	<u></u>
0.15	2.5	0	96	88		84		79	67		64		60			57				54
0.25	2.5	0	255 ⁶ 254										208 ⁹ 207					240 242 ^C		
0.50	3.5	0	140		141	142		139	138		•							134		
0.70	2.5	0								376				377						378
0.90	2.5	0							257 ⁶ 256											
2.00	3.5	0																129 132		

NOTES:

- 1. RUN numbers < 200 from Ref. 1; RUN numbers < 300 from Ref. 2; RUN numbers < 400 from Ref. 3.
- 2. RUN numbers < 200 obtained as Data Type 3; RUN numbers > 200 obtained as Data Type 4.
- 3. Superscripts:
- c-- Cold Wall data, TWL≈ 525-, 640-, 540-deg R. for RUNS 207,208, 242, respectively. All others at hot wall conditions (TWL≥ 860 deg R).
- e Extended survey of preceding run, all outside boundary layer.

TABLE 3. Continued

. e. PART-I. Hot-wire quantitative run matrix (Type 9 Data) for ALPHA = 0, runs

_	HE//1,		u. T					_							_										T	TAT !	4															PEEE-V	
123. - Ja	10-6	Lie.		J	7	Ä	Ы	Ţ		T	is]	11	14	Į3	116	1	<u> </u>	•	Ĭ,	10	1	22	1	24	25	36	12!	29	111	Œ	15	[52	<u></u>	14	n	*	71	34	19	41	1.7	A) N	1/2
	0.5	0					L		1_	_l.	_	2497	L.,	14	1.	79		_],	100		261		35		24.1	. 1	363.	ļ-	701	T	760"	ĪΤ	235"		7160	,,,,	7710	1	ł	l	1	110	174.1
0.0015	10	٩						×	Ŧ	•	4		13		6			٠.	15	"	и	71	×		110	_	1	Į 24	11		15	10	11	111	l ii		17	1-	1	 _		16 30	9 1/G
	1.3	0					Ľ.	t_	Ť.,	I T.	[_		Ľ		1	1		_1		L		<u> </u>		ഥ	111	Jui	lu.	baz:	1610	1660	ini.	m <u>s</u>	14.75	MT		<u> </u>	1-		i		L
	2.0	0	_[er)	262	26 B y	357	50	55	<u>, , , , , , , , , , , , , , , , , , , </u>	541	5551	566	587 ⁴	\$66	569	1,23	٠,	2)3	577,	512	74	125	570	<u> </u>	l.	<u> </u>	<u>l_</u>	<u>l</u>	Ì		Ι_			<u></u>		_	L	L	Ì.,	L	\$51	-7-
	7.1	ه		971			581			_L	l				<u> </u>	L	L	_L	_1	اــــا		L	<u> </u>	L_	<u>l</u>	<u>l_</u>	<u> </u>	L.	L		<u> 1</u>	1			<u> </u>	1	L	<u>l</u>	1_	1_			1
0.15	2.5	•	$\overline{}$		_			27	1	*	73	17	7	96	85	•	1	2	11	74	71	70	47	46	66	**	63	0.2	1	39	51	Γ	94	П	33	Π	31	Τ	T	T	T	160	1.37
0.25	2.5	a	Ħ					Γ	Ι	1							T	Ţ		Mog	[<u>, </u>		Γ.		12T	134	133	334	223	223	121		21.7	21.5	21.3 732	2 100	228 265]_	Τ	Γ		ļ—	Ι-
			1					L	L	1	╝	i			<u> </u>			1	_1			Ľ	Z		150		151 151	333	224	277	670	2114	214	711	312 234	129	227 244		$ $ _	<u> </u>			
0.50	3.6	0	7	ĺ			Ī			I				_	Г		Ι				l		Ì Ì	Ψ.		-		} -	-	 -	 -	F-			131	{-			-		[_	113	14.3
d.71	2.5	۰													Γ		Ţ			_			נע	374	"	ļ.,	353) 324	340 151	347	и	143	324 244 254	333		12 0 132 137	321 214 251	,,,	217 328	720 141	217		
2.00	J. 6		1					Γ		7							Τ	T				Γ	Γ		F-	-	-	F	F	F	F	F :	-		127	F	-	\top	Ī	-			

HOTES:

- 1. Boll neritude: Pla 40 dag for NURS < 500; PRE -10 deg for NURS > 500.

 1. BUR numbers 200 from Ref. 1, BUR numbers < 302 from Ref. 2; BUR numbers 4 500 from Ref. 1, BUR numbers 200 from Ref. 1, BUR numbers > 500 ore present test date,

 1. Two distinct maximum disturbance energy poshs were noted for some tume, "Outer Posh" BUR numbers listed above dushed line,

 1. Superscripts:

 2. Superscripts:

 3. Superscripts:

 4. Superscripts:

 4. Superscripts:

 5. Superscripts:

 5. Superscripts:

 5. Superscripts:

 6. Superscripts:

 6. Superscripts:

 6. Superscripts:

 6. Superscripts:

 6. Superscripts:

 6. Superscripts:

 6. Superscripts:

 6. Superscripts:

 6. Superscripts:

 6. Superscripts:

 6. Superscripts:

 6. Superscripts:

 6. Superscripts:

 6. Superscripts:

 6. Superscripts:

 6. Superscripts:

 6. Superscripts:

 6. Superscripts:

 6. Superscripts:

 6. Superscripts:

 6. Superscripts:

 6. Superscripts:

 6. Superscripts:

 6. Superscripts:

 6. Superscripts:

 6. Superscripts:

 6. Superscripts:

 6. Superscripts:

 6. Superscripts:

 6. Superscripts:

 6. Superscripts:

 6. Superscripts:

 6. Superscripts:

 6. Superscripts:

 6. Superscripts:

 6. Superscripts:

 6. Superscripts:

 6. Superscripts:

 6. Superscripts:

 6. Superscripts:

 6. Superscripts:

 6. Superscripts:

 6. Superscripts:

 6. Superscripts:

 6. Superscripts:

 6. Superscripts:

 6. Superscripts:

 6. Superscripts:

 6. Superscripts:

 6. Superscripts:

 6. Superscripts:

 6. Superscripts:

 6. Superscripts:

 6. Superscripts:

 6. Superscripts:

 6. Superscripts:

 6. Superscripts:

 6. Superscripts:

 6. Superscripts:

 6. Superscripts:

 6. Superscripts:

 6. Superscripts:

 6. Superscripts:

 6. Superscripts:

 6. Superscripts:

 6. Superscripts:

 6. Superscripts:

 6. Superscripts:

 6. Superscripts:

 6. Superscripts:

 6. Superscripts:

 6. Superscripts:

 6. Superscripts:

 6. Superscripts:

 6. Superscripts:

 6. Superscripts:

 6. Superscripts:

 6. Superscripts:

 7. Superscripts:

 7. Superscripts:

 8. Superscripts:

 8. Superscripts:

 8. Superscripts:

 8. Superscripts:

 8. Superscripts:

 8.

23

- a lingin summittetty for MM numbers on noted. For all other PVIS data bere obtained on il vire usneltivicies.

 d Bo Sinner peak" observed, date ubrained at approximate height where peak was provionely observed.

e. FART-II. Hot-Wire Quantitative Rum Metric (Type 9 Data) for ALPHA / 8, AUSS

IDI,	NE/FT	AI PHA,														1	SFAI	ION	(%	#IS	N.I			_		_						-	-	
le.	1 10°	deg	Je	Ш	12	[1]	14	ļŞ	15	17	13	19	- 20	21	77	73	24	25	176	27	· 28	71	10	П	77	11	34	115	16	7/				\blacksquare
	0.5	2.0		432	433		4]4 8 15		414	L	127		119		6.15	ì 1	440		441	Ĺ	447	Γ	441		144		45	446	41					
0.0018	1.0	-2.0						427	426		175		24		423		122		245 421	284	20) 172	762	20 I		279 418	278	277 417			i	 i			
1		4.8										74	430		473		169	4	`	47	İ.	466	Γ	465		4		16)	452	400		П		
	7.0	-4.0	612	617	611	413	610		15						Γ	Γ				Г	Γ	Π	Γ					Γ				П		
0.70	2.5	-2.Q																	Т		Г								Т	475 476		П		

MOTES: 1. Rum numbers < 300 from Ref. 2; RUM numbers between 400 and 600 from Ref. 4; RUM numbers > 500 arm present test data.

2. Single wire sensitivity for each MM.

TABLE 3. Continued

f. Hot-wire anemometer and total-temperature probe calibration in free stream (Type 6 Data)

6 202-355 0.75-1.3 6 7 150-352 0.56-1.3 7 37 152-352 0.57-1.3 7 52 352-579 1.3-2.1 8 77 349-577 1.3-2.1 14 80 300-582 1.1-2.1 15 92 300-577 1.1-2.1 17 114 400-804 1.4-2.9 3 126 399-808 1.4-2.9 2 133 398-806 1.4-2.9 1 137 399-807 1.4-2.9 16 209 200-580 0.74-2.1 31	RUN	ange)x10 ⁻⁵	PT (range) psia RE	nge)x10 ⁻⁵ , per in.	Hot-Wire No.
137 399-807 1.4-2.9 16	6 7 37 52 77 80 92	0.75-1.3 0.56-1.3 0.57-1.3 1.3-2.1 1.3-2.1 1.1-2.1 1.1-2.1 1.4-2.9	202-355 150-352 152-352 352-579 349-577 300-582 300-577 400-804	0.75-1.3 0.56-1.3 0.57-1.3 1.3-2.1 1.3-2.1 1.1-2.1 1.1-2.1 1.4-2.9	6 7 7 8 14 15
226 201-579 0.76-2.1 33 243 199-579 0.74-2.1 40 301 214-581 0.80-2.1 4 304 298-583 1.09-2.1 6 306 582 2.1 7 316 296-581 1.09-2.1 8 323 583 2.1 8 329 298-582 1.09-2.1 11 331 302-583 1.10-2.1 15 333 582 2.1 17 342 360-581 1.32-2.1 16 350 360-582 1.31-2.1 52 413 226-601 0.85-2.2 33 454 228-602 0.84-2.2 33	133 137 209 226 243 301 304 306 316 323 329 331 333 342 350 413	1.4-2.9 1.4-2.9 0.74-2.1 0.76-2.1 0.80-2.1 1.09-2.1 2.1 1.09-2.1 1.10-2.1 2.1 1.32-2.1 1.31-2.1 0.85-2.2	398-806 399-807 200-580 201-579 199-579 214-581 298-583 582 296-581 583 298-582 302-583 582 360-581 360-582 226-601	1.4-2.9 1.4-2.9 0.74-2.1 0.76-2.1 0.80-2.1 1.09-2.1 2.1 1.09-2.1 2.1 1.09-2.1 1.10-2.1 2.1 1.31-2.1 0.85-2.2	16 31 33 40 4 6 7 8 11 15 17 16 52 33

NOTES:

- 1. Run numbers < 200 from Ref. 1; Run numbers < 300 from Ref. 2; Run numbers < 400 from Ref. 3; Run numbers < 500 from Ref. 4; Run numbers > 500 are present test data.
- Hot-wire probes were numbered independently for each of the five test programs represented in this table. For example, Hot-Wire No. 6 for RUN 6 was not the same sensor as that used for RUN 304.

TABLE 3. Concluded

g. Hot-wire identification

Hot-Wire No.	RUN No.	Wire Diameter
6 7 8 14 15 17 3 2 1	6 7-51 52-71 77-79 80-91 92-100 114-121 126-128 133-136 137-142	20 u-in.
HF-4 31 33 39 40	207-208 209-225 226-239,250-285 242 243-249	20 µ-in.
4 6 7 8 11 15 17 16 52	301 304 306-311 316,318-321,323 324-329 331-332 333-338 342,344-349 350-357,359-378	20 μ-in. 50 μ-in.
33	414-427,432-447 455,460-470,473-476	20 μ-in.
54 76	523 551,552,555-559 561-563,566-576	20 μ-in. 50 μ-in.
71 74 177 73	585 588 ~ 590 597 610 ~ 616	50 μ-in. 50 μ-in. 50 μ-in. 50 μ-in.

NOTES: 1. Run numbers <200 from Ref. 1, Run numbers <300 from Ref. 2; Run numbers < 400 from Ref. 3; Run numbers < 500 from Ref. 4; Run numbers > 500 are present test data.

2. A hot-film probe was used for RUNS 207-208 (HF-4)

3. Hot-wire probes were numbered indenpendently for each of the five test programs represented in this table. For example, Hot-Wire No.6 for RUN 6 was not the same sensor as that used for RUN 304.

TABLE 4. Stations for Mean-Flow Surveys

	-				S,in.			
X(STATION)	RN,in.	0.0015	0.15	0.25	0.50	0.70	0.90	2.00
6		6.00*						
6 10		10.07	9.08	8.40	6.73			
ן ון		11.18]				
14		14.10	13.11	1	11 76		İ	
15		15.10,14.93*	14.11	1 1	11.76			2.73
16		17.10	16 12	1 1	13.78			2.73
17		17.12	16.13	İ İ	13.70			
18		18.08			15.95			
19		00.14	19.15		15.55			
20 24		20.14	19.10			 		ļ
24		24.01* 25.18	24.19	23.51	21.84		19.16	11.80
25		23.10	27.13	20.01	21.0.	21.51		
25 26 27		27.19	26.20	1 í]		
28		28.20	20,00	i I		1		
20		30.22	29.23	28.55				
30 31 . 32		00.22				26.55		ļ
32		32.23				ļ		,
33		33.24	32.25					
34		34.25						A1 03
35	1	35.25	34.26	33.59	31.91	1	1	21.87
36	i	36.26				30 50		
37		37.27	36.28	1		32.59		

* Indicates present test data.

APPENDIX III

SAMPLE DATA

ARVIN/CALSPAN FIELD SERVICES, INC.
AEDC DIVIE M
VON KAPPA, AS DYNAMICS FACILLYY
ARNULD AIR FURCE STATION, TEMB BOUNDAPY LAYER STABILITY INVESTIGATION DATE COMPUTED 13-FF5-85
DATE PECOPPED 13- -85
TIME RECORDED 2: 21H
TIPE COMPUTED 02:46
PROJECT 40 V 8-0G

CONFIG: SHARP 7-DEG CONE (AN = 0.4015 IN.)
XSTA = 13.00

DATA TYPE 9
HOL WIRE ANEMDMETER DATA

PUN NUMBER 551 PAGE 1

POINT	CUPEFAT	FPAP	EPMS	ХC	PŤ	77	P	Q	T	RE.	S.V
	(HEMP)	(FA)	(MA)	(181)	(PSIA)	(DEG R)	(PSIA)	(PS1A)	(DEG R)		(IMa)
1	0.003	0.00	535.78	0.00	4.403E+02	1,3178403	4,597102	2.0176+00	9.556E+01	1.671++05	A.120F-03
2	0.511	21.91	537.12	0.00	4,4061+02	1.1171.+03	4.600E-02	2.0496.00	9.556E+01	1.6735,405	A,020F-01
3	1.030	48.57	541.17	0.40	4.406E+02	1.3128+63	4.6002-02	2.049F+00	9.5566.401	1.6736+05	0.0208-03
4	1.603	75.96	554.18	0.00	4.4051.402	1.3126+03	4.599E-02	2.04HE+00	9.55(4.401	1.6724+05	8.0206-03
Š	2.007	95.55		0.00	4.40ht +02	1.3171+03	4.6006-02	2.0495+00	9.5565+01	1.6731+05	H.128E-03
6	2.448	119.30	563.26	0.00	4.4061+02	1.3128.403	4.6008-02	2.0496+00	9,551++01	1,6736+05	8.0206-03
ÿ	3.037	145.96		0.00	4_406F+02	1.3126+03	4.60nE-02	2.049E+00	9.5518401	1.671++05	8_2196+03
8	3.510	171.50		0.40	4.4071-+02	1.3176+03	4. FU1F02	2.049++00	9.5548.401	1.673++05	8.120E-03
g	3.900	192.38	545.16	0.00	4.406E+02	1.312E+03	4.600E-02	2.0496+00	9.558 ++01	1.6736+05	#.120F-03
10	4.276	213.09	591.08	0.00	4.40PF+02	1.3128+03	4.602E-02	2.0506+00	9.55fE+01	1.673E+05	8.020E=03
11	4.684	236.31	597.84	0.00	4.407E+02	1.3121.03	4.601E-02	2.0496+00	9.55fE+01	1.673F+45	6.030103
12	4 997	254.55	602.94	0.00	4.404++02	1.3128+03	4.598E-02	2.048E+00	9.556E+01	1.6726+05	H.2191-03

ALPHA = 0.00

RUN NUMPER 551

Sample 1. Hot-wire anemometer data (Type 9)

ARVIN/CALSPAP FIFLD SERVICES, INC.
AEDC DIVIS "I
VUN KAPMAA 'S DYNAHICS FACILITY
PROUCE AIR FORCE STATION, TENN
ROUNDAPY GAYER STAR[LITY INVESTIGATION

DATE COMPUTED 13-45
BATE PECOHOFO 13-45
TIME RECOMPUTED 02:46
PPOJECT NO V B-UG

CONFIG: SHAPP 7-DEG CONE (RN = 0.0015 IN.) XSTA = 13.00

DATA TYPE 9
HOT WIFF ANEMONETER DATA

RUN NUMBER 551 PAGE 2

PUINT	PŤ	17	PWL	TW.	2P	ФÞ	ML	771U/TF	すてむ/すて
	(PSTA)	. (NEG F)	(b21y)	(DEG R)	(14)	(PSJA)			
	4.403E+07	1.3126+03	6_177E=03	8.6216+02	2.300F-02	3.9616+80	2,2024E+01	9.3656-01	1.0005+00
5	4.4061.07	1.312F+03	6.1778-03	0.651F+02	2.1001-02	3.8651+00	2.2036E+01	9.3706-01	1.4906.490
ī	4.4066+02	1.312F+03	6.1772-03	8.6676+02	2.300F-02	3.8661+00	2.20391.+01	9,370E-01	1.0701.400
ā	4.4U5E+02	1.J12F+03	6.177E-03	8.6F41+02	2.300F-02	3.8666+00	2.20396+01	9,1746-01	1.000-+00
ζ.	4_4066+02	1.312F+03	6.177E-03	8.700F+02	2.300F-02	3.8706+00	2.20506.001	9.371E-01	1.0108+00
ž.	4.4064+02	1.312F+03	6.1778-03	8.7201+02	2.100F-02	3.9706.400	2.2050E+01	9.3711-01	1.0001.400
7	4.406F+02	1.312F+03	6.177E-03	8.74FL.02	2.3001:-02	3.8718:00	2.20536+01	9.3726-01	1.0000;+00
Ř	4.407E+02	1.312E+03	6.1776-03	8.7536+02	2.3006-02	3.8701100	2.2050F+01	9.373L-UI	1.000++00
9	4.4066+02	1.312F+03	6.177E-03	8.7791.02	2.300F-02	1-9706+00	2.2050L+U1	9.370E-01	[.0008.+00
10	4.40Pt.02	1.312F+03	6-1775-03	8.7945.02	2.300E-02	3.977E+U0	2.2056E+01	9.3706-01	1.0001.400
11	4.407t+02	1.312E+03	6-1776-63	8_810F+02	2.300F-02	3.8718.+00	2.20536+01	9.370E-01	1.0006.+00
12	4.4048.102	1.312F+03	6.1776-03	8.8285+02	2.30nF-02	3.871E+U0	. 2,20536+01	9,370E-01	1.000E+00

ALPHA = 0.00 "

M = 7.977

RUN NUMBER 551

ARVIN/CAISPAN FIELD SERVICES, INC.
AEDC DIL ON
YON KARMAN GAS DYNAMICS FACILITY
ARNOLD AIR FORCE STATION. TENN
GOUNDARY LAYER STABILITY INVESTIGATION

DATE COMPUTED 1 24-95
DATE RECORDED 13-7-E8-85
TIME RECORDED 2:13:10
TIME COMPUTED 02:36
PROJECT NO V B-0G

RUN AUNBER 552 PAGE 1

CUNFIG: SHARP 7-DEG CONE (RM = 0.0015 1M.) XSTA = 13.00 IN.

DATA TYPE: 6. PROBE FLOW CALIBRATION

POINT	N	PT	TT	RE	99	MI.	TTTU	ままむしてま	ETA	RETD##.5
		(PSTA)	(DEG R)		(A189)		(DEG R)			
t	7.97	398.44	1311.67	1.515E+05	3.5144	7.9320	1220.1304	0.9363	0.9313	9.043E+00
2	7.97	398.44	1311.67	1.515E+05	3.5144	7.9320	1228_1384	0.9363	0.9313	9.043E+00
3	7.96	340.04	1312.67	1.329E+05	3.0841	7.9279	1228.5556	0.9359	0.3107	8.4HUE.+UQ
•	7.96	348.64	1312.67	1.329E+05	3.0841	7.9279	1228.4515	0.4728	0.9308	B,480E+00
5	7.95	298.94	1311.67	1.143E+05	2.6476	7.9248	1227,3076	0.9357	0.9306	7.8786.+00
6	7.95	298.94	1311.67	1.143E+05	2.6496	7.9234	1227,1344	0.4356	0.9305	7.8776+00
7	7.98	438,74	1309.67	1.669E+05	3.8542	7.9391	1226.5072	0.9365	0,9315	9,480E+00
9	7.99	438.84	1309.67	1.670E+05	3.8552	7.9391	1226.6983	0.9366	0.9317	9_4B1E+00

RUN NUMBER 552

Sample 2. Probe flow calibration (Type 6)

ARVIN/CALSPAN FIFLD SEPVICES, INC. AEDC OIVIST YON KAPPAN . . DYNAMICS FACILITY ARBULO AIR FOICE STATION, THEN BOUNDAPY LAYER STAPILITY INVESTIGATION DATE COMPOTED 23-APP-85 DATE RECORDED 15-FF 15 TIME PECHAPOPO 5154176 TIME COMPUTED 22:42 PROJECT NO V 6-06

CONFIG: SHARP 7-DEG COPE (PN = 0.0015 (#.) XSTA = 24.00 IN.

OF TATYPE 4 FLUF FLELD SURVEYS

RUN NUMBER 603 PAGE 1

POINT	ዮተ	17	PT2	P	2.P	PP	Pbl	TWJ.	Z۲	UTIT	ZA	ATT.	A.A.	LRETA
	(4124)	(OFG R)	(PSIA)	(PSIA)	(TH)	(PS14)	(PSIA)	(DEG R)	(1H)	(DEG R)	([H]	reg a)		
1	439,00	1309.7	3.783	0_046 0.	0150	0.205	0.127	1098.5	0.0176	1167.8	0,0176	1171.5	9.03+-01	1.7086+03
2	440.10	1309.7	3.705	0.046 0.	0420	0.312	0.123	1099.2	0.0446	1162.6	0.0446	1143.4	1.31F+00	2.1778+03
3	439,90	1310.7	3.783	0.046 0.	0508	0.408	0.123	1097.4	0.0514	1168.7	0.0534	1195.8	1,501+00	3.4236+03
i i	439 PU	1309.7	3.787	0.046 0.	0615	0,540	0.171	100% 0	0.0641	1180.3	0.0611	1216.3	1,93E+00	4,530++03
5	439,00	1309.7	1.787	0.045 0.	071ь	0.868	0.173	1098_2	0.0742	1194.5	0,0747	1240.7	2,346.00	6.0716403
6	439.9(1	1309.7	7,783	0.046 0.	0 # 1 4	1.746	0.173	1098.7	0.0840	1712.9	0.0840	1768.9	2.956.00	A.250F+03
7	439,80	1329.7	3.782	0.046 0.	0909	1,914	0.123	1097.9	U_U435	1730.4	0,0915	1295.6	3.617+00	1.131++04
ø	439.80	1309.7	3,782	0.046 0.	1015	2.655	0_121	1098.0	U_1941	1247.t	0,1441	1320.1	4.416.000	1.5726.404
9	439,90	1309.7	3.783	0.046 0.	1170	4.069	0.123	1048.0	0.1146	1254.2	0.1146	1332.6	5.25++00	2.140F+04
10	439.20	1309,7	3.787	0.046 0.	1215	5,433	0.123	1008.7	0.1240	1748.8	0.1240	1330.2	6.03F+00	2.7671404
11	434,60	1409.7	3,782	0,046 0.	1315	6.704	6.123	1097.9	0.1940	1738.5	0_1340	1371.3	6.635+00	3.3438+04
12	434.70	1309.7	3.762	0,046 0.	1414	7.434	0.123	1047.9	0.1439	1232.0	0.1439	1314.8	6.87F+00	3.5481+04
13	439.60	1310.7	3.761	0,046 0,	1467	7.551	0.173	1097.1	U.1492	1229.9	0.1497	1312.6	6.906+00	3 . 6 106 444
14	439,50	1310.7	3,780	0.046 0.	1514	7.575	0.123	1097.3	0.1534	1229,0	0.1539	1311.6	6.011.00	3-6448.+04
15	439.40	1310.7	3.779	0.046 0.		7.589	0.123	1077.1	0.1567	1226.4	0.1507	1310.9	6.901100	3.6421+44
1 h	439.40	1310.7	3,779	6,046 0.		7.554	0.173	1097.0	0.1535	1277.6	0.1n39	1310.2	6.895+04	3.6241+04
17	439.50	1310.7	3.780	0.046 9.		7.540	0.173	1497.1	0.1691	1227.4	0.1691	1305.9	6.861+00	3.6251+04
14	440.10	1310.7	3.795	0.046 0.		7.531	0.123	1097.0	0.1729	1277.6	0.1729	1309.9	6.PEF+00	3.6196+04
19	440.10	1309.7	3.765	0.046 0.		7.512	0.123	1497.6	U.1762	1227.5	0,1782	1309.9	6,671+40	3.413E+D4
70	440.50	1309.7	3.780	0.046 9.		7.513	0.123	1098.0	0.1936	1727.1	0,1836	1309.6	6 H71 +09	3.615++04
71	440,60	1309.7	3,707	0.446 0.		7.506	0,123	1097.9	0.1892	1727.2	0.1892	1309.6	6.H7E+00	3.611+04
72	410,70	1307.7	3.790	0.046 0.		7.501	0.123	1998.1	0.1942	1726.8	0.1942	1309.3	6.67F+00	3.6117+04
21	440,50	1309.7	3,788	9,046 0.		7.503	0.173	1.306.1	0,2041	1226.8	0.2011	1309.7	6.871+00	3.6136+04
74	440.FU	1304,7	3,791	0.046 0.		7.506	0.123	1097.9	0.2136	1726.9	0,2136	1304.2	6.871+00	3.6146.404
25	430,90	1309.7	3.792	0.046 0.		7.506	0.123	1999.0	0.7749	1220.9	0,2239	1300,3	6.87F+00	3.6141 +04
20	140.90	1305.7	3.797	0.046 0.		7.505	0,123	1098.9	0.2340	1220.9	0.2340	1309,3	6,67E+00	3.6116+04
77	440.73	1309.7	3,790	0.046 0.		7.505	0.123	1098.9	D.2441	1227.0	0.2441	1309.4	6.471+00	3.6175.04
2 B	440.R4	1309.7	7,791	0.046 0.		7.505	0.123	1098.0	0.2535	1227.1	0,2635	1309.5	6,871.00	3.6121.+04
79	441,10	1310,7	3.793	0,046 0.		7.500	0,123	1996.2	0.3036	1226.5	0.2836	1308.9	6.871.00	3.6126+01
313	441,10	1109.7	3,793	0.045 0.		7.409	0.121	1097.9	0.3033	1236.8	0,1033	1109.1	6,415+00	3.610++04
31	440,70	1309.7	3.790	0.046 0.		7.486	0.123	1097.8	U.3733	1227.0	0.3233	1309.4	6.861.00	1.603/+04
3.2	440.50	1109.7	1,791	0.046 0.		7.445	0.124	1048.9	0.3435	1226.7	0.3435	1309.1	6, Ful +09	3.0046+04
33	440,90	1309,7	3,797	0.046 0.		7.476	0.123	1097.6	0.3634	1276.4	0.3534	1308.9	h.huf+00	3.6646 +04
3.4	411.00	1309.7	3,792	0,046 0,	3011	7.471	0.123	1097.8	U.3P34	1226.8	0.3834	1308.3	6.F5E+00	3.5476+04
35	441,00	1309.7	3,792	0.046 0.	4013	7.468	0.123	1097.9	V.4036	1226.8	0,4036	1409.1	6,851+00	3.596F+U4

MPAN VALUES

PT = 440.3 FSIA P= 0,0460 FS1A 0.127 PSIA TT =1309.9 DEG R PWG = PT7 = 3.786 PSTA TWL = 1098.7 OFG R KF = 1_675E+05 PFP IN V = 3870.11 T/SEC 0 = 2.04" F51A MU = 7.680+-0R LBF-SEC/FT2 RHO = 4.9656.400 LBM/FT3 T = 95.4 PEG R

PUN NUMBER 603

PHI =+109.9

ALPHA = -0.0

DFW = -64.

M = 7.98

Sample 3. Flow-field survey data (Type 4)

ARVIP/CALSPAN FIELD SERVICES, INC.
AEDC DIVIS "
VUH KAPMAA - S DYNAMICS FACULITY
ARNULD AIR FURCE STATIOM, TEAM
BOULDARY LAYER STARLLITY INVESTIGATION

DATE COMPUTED 23-APH-85
DATE RECORDED 15-1 -85
TIME RECORDED 5:5-:25
TIME COMPUTED 72:42
PROJECT NO V 8-0G

RUN NUMBER 603 PAGE 2 CUNFIG: SHAPP 7-DET COME (RN = 0.0015 IN.)

1874 = 24.00 IN.

DATA TYPE 4 FLOW FIELD SUPVEYS

POTHT	2P (111)	PP/FPE	нь	MIJHE	TTLU (DFG R)	TTI. (DFG P)	またい/すてを	JT (DEG A)	a _{l.} (FT/8EC)	91.√.1€	FRE	j,RET	EHHS
1	0.0150	0.028	F.41F-01	0.130	1161.1	1172,3	0,895	1011.6	1,190E+03	0.3-9	1,951F+03	1.771E+03	2,88996+02
2	0.0470	0.047	1.25E+00	0.112	1161.5	1181.0	0.902	401.0	1.4346+03	0.446	3.124L+03	7.6178403	2,48916.02
3	0.0508	0.055	1.485+00	0.216	1166.6	1191.6	0.910	824.8	2.0968403	0,553	4.0678+03	3.206h+03	2.88716+02
4	0.0615	0.079	1.036(00	0.247	1177.0	1210.8	0.925	724,7	2.4172+03	0.611	5.4596+03	4.212E+03	2,84711+11/
5	0.0716	0.115	2.2bF+00	0,330	1190,4	1233,9	0,942	649.2	J.740E+03	0.727	9.1218+03	5.6116+03	2.89071+112
٥	0.0614	0,172	7,79F+00	0.407	1208.1	1261,6	0.964	443.6	3.0386+03	D, R 16	1,4476.04	7.571E+03	2.844×F+07
7	0,0909	6.25h	3.43F+00	0.501	1275.9	1200.8	0.944	344.4	3.2976+03	0.874	2,504E+04	1.041£+04	2.8903F+02
H	0.1015	4.382	4,21++00	0.614	1213_9	1315.3	1.065	244.4	3.5118+03	0,911	4.534++04	1,4530404	3.86846.65
9	0.1120	v.545	5.44F+00	0.736	1253.8	1331.2	1.017	218.8	3.6568+03	0.9/0	8,135:.+04	1.9876+04	2.86461+02
10	0.1215	0.729	5.846+00	0,852	1250.7	1331,5	1,017	170.4	3.735t+03	4.6.7	1.3691+05	2.606E+04	3.444/1+02
11	0.1315	u_996	A.52F+00	U.951	1240.8	1323.2	1.011	134.3	3.1176+03	1.010	2.070L+05	3.2371464	5"hep5L+U3
12	0,1114	(1,995	6_P4F+00	0.99H	1233.4	1316,1	1.005	127.7	3.7NuE+01	1.002	2.488t+05°	3.5591+04	3.86366403
1.3	0.1467	1.611	4*56L100	1.696	1230.6	1313.5	[,40]	125.1	3,7746+03	1.007	7.570E+05	1.6216+04	2.89456402
14	0,1514	1.014	6.90F+00	1.097	1229.4	1312,0	1,002	124.6	3.777£+03	1.002	2,564e+05	3.6376+04	5.8452F+05
15	0,1562	1.016	6,91F+00	1.008	1228.7	1311.3	1.902	124.3	3,7776+03	1.002	7,601F+05	3.6466+04	3 MR421+03
16	0.1013	1.011	6.89F+00	1.000	1727.9	1310,5	1.001	174.9	3.1748+03	1.001	2.580F+05	3.4321404	2. FF671+67
17	0.1660	1.010	6.695+00	1.005	1727.4	1309,9	1.001	175.0	3.//36+03	1.001	2.573E+05	3,6276+64	2,84171402
1 8	0.1704	1.008	4.48F.00	1.094	1227.4	1309.9	1.001	125.1	3.7716+03	1.601	2,567++05	3.6236404	2.89401+02
19	0.1757	1.006	6.87F+U0	1,003	1277.6	1310.0	1.001	175.4	3.7736+03	1.001	2.5551+05	3.614E4U4	2. Hh76E+U/
20	0.1511	1.000	6.87£100	1.077	1277.2	1309.6	1.000	175.3	3.//26+03	1,000	2.5571+05	3.615E+64	2. FF31F+02
21	0.1867	1.085	6.87E±00	1.093	1227.3	1309.7	1,000	125.5	3.772E+03	1.000	2.5521+05	3,6126+04	2.44451.+02
5.5	0.1917	1.604	K.87F.00	1.002	1277.0	1309.4	1.000	125.5	1.7726.03	1 _ (+++0	2,5501+05	3.0117.04	2. 66656447
23	0.2016	1.005	A.A?F+NO	1.002	1276,8	1304.2	1.000	175.5	3.771E+03	1,000	2.521+05	3.6176 + 04	2.84646.462
24	6.2111	1.605	6.P7E+00	1.003	1276.8	1309.2	1.000	125.4	3.7726+03	1.040	2.554F+05	3.6142+04	2.84628+62
25	0.2214	1,005	Რ .₽7₽+06	1.003	1226.9	1309.3	1.400	125.4	3.7726+03	1.040	2.554F+05	3.6141 +04	2.FH54F+67
76	0.2315	1.005	6.878+40	1.002	1226.9	1309,3	1.000	125.4	3.772E+03	1,040	2.5536+05	3.6136+04	2.64406+02
27	0.2417	1.005	6.471+00	1.002	1277.0	1309.4	1_060	125.4	3,772k+03	1.000	2,557F+05	3.6126+04	2.68/18.62
2 ผ	P. 2011	1.005	6.H7F+00	1.002	1727.1	1309.6	1.000	175.5	3.777F+03	1.040	7.5578+05	3.6176+64	2.89456001
79	0.7012	1.604	6.875+00	1.602	1776.5	1308.9	1.000	125.5	3.7/1E+03	1.000	2.5512+05	3.6174+64	7. 44646402
30	9,3009	1.064	6.87F+NU	1.002	1226.7	1309.1	1.000	125.5	3.771E+03	1.000	2.544E+U5	3.6111+04	2.90076442
31	0.3209	1.007	6.86F+00	1.001	1227.0	1309.4	1,000	125.7	3.7716+03	1.000	2.5401+05	3,604£+04	2.F#34F+03
32	0,3411	1,002	6.9aF+00	1_001	1226.8	1309.1	1_000	125.7	3.7716+03	1.000	2.540L+05	3,604E+04	2.80266+0/
3 3	0.3410	1.601	<u> 6.8հ</u> €+ՈՄ	1.001	1226.6	1308.9	1.000	125.R	3.7766+63	1.000	7.5356+05	3.601E+04	2.8H+4E+62
34	0,3811	1.000	6.85E400	1.000	1226.9	1309.2	1.000	125.9	3.7716+03	1,040	2.531E+05	3.5971+44	2.8851E+02
35	0.4013	1.000	6.856+00	1.600	1226.8	1309.2	1.000	126.0	3.771E+03	1.000	2,5301+05	3.596t+G4	2.68741+02

MEAN VALUES EDGE VALUES

OF T = 440.3 PSIA THE/TTE = 0.8388 PFF = 7.468F40G PSI

PPF = 7.468F40G PSTA PHI =-104.9 DEG PT = 440.3P814 Phi = 0.172 PSIA FE = 6.852F400 M = 7.98 Tr =1309.9 OFG R A1.PHA= -0_0 DEG P = 0.0460 PSIA THE =1098.2 OFG R TIE = 1.309F+03 DFG R T = 95.4DEG R UE = 0.377F+04 FT/SFC

RIN NUMBER 603 I

ARVIN/CALSPAN FIFLD SERVICES.INC.
AEDC DIVIS'
VON FAPMAR: S DYNAMICS FACILITY
ARRULD AIR FORCE STATION, TERM
FOURDARY LAYER STARILITY INVESTIGATION

DATE COMPUTED 23-RF"-65 DATE RECORDED 15-F 85 TIME RECORDED 5:5426 TIME COMPUTED 27:42 PROJECT NO V B-OG

RUM WORMER 603 PAGE 3 CONFIG: SWARP 7-PEG COMP (RN = 0.0015 lN.)

XSTA = 24.00 lN.

DATA TYPE 4
MODEL SURFACE MEASUPEMENTS

TAP	s	THETA	Þh	Sti P#	D416	T/C	s	THETA	TW	SD TV	TH/TT
	(41)	(DEG)	(P51A)	(PSI)			(TN)	(DFG)	(DEG R)	(DEG P)	
1	19.790	n	0.1259	0.0001	2,7596	1	36.790	180			
4	30.790	n	0,1283	0.0002	2.7596	2	3B.290	180	1004.3	0,22	0.767
3	38.290	0	0.1342	0.0007	2.7596	3	17,590	160	1021.0	U.31	0.774
4	36.230	0	0.1256	0.0002	2.759h	4	36.290	160	1035.7	G.43	0.791
5	34.290	D	0.1242	0.0002	2.7546	5	15.290	180	1047.1	0.55	0.799
							34.290	180	1053.3	0.68	0.804
7	30,730	n	0.1746	0.0002	2,7546	7	31.290	160	1059.6	0.83	0.869
ų	20.210	0	0.127#	0.0003	7.7546	a	12.230	1 1 0	1069.4	1.00	0.916
4	26.210	n	0.125R	0.0003	2.7596	9	31.230	180	1078.6	1.17	0.573
10	24.730	Ð	0.1151	0.0004	2,7596	10	74.930	180	10k3,4	1.19	0.827
11	27.736	O	0.1175	0.0602	2.7596	11	24.230	1 4 0	1071.6	1.26	0.833
12	20,110	0	0,1113	0.0062	7.7596	12	78.230	180	1096.0	1.23	0.847
1.3	17,140	0	0.1228	0.0001	2,1596	13	21.234	. 140	1073.2	1.04	0.835
14	15.140	a	0.1191	0.0002	2.7596	14	26.230	180	1075.9	0.72	0.837
15	13.140	. "	0.1113	0.0002	7.759b	15	75.230	180	1077.1	0.48	0.838
16	11.149	G		•••	•	16	74.23u	180	1048.2	0,44	0.838
17	9.146	a	0.1296	0.0007	2.7596	17	23.230	180	1073.4	0.62	0.834
18	8,110	ŋ	0,1315	0.0007	2.7546	•		•	•		
19	11.110	270	0.1272	0.0001	2.7596	. 19	71.140	180	1101.6	1.47	0.841
20	11.110	150	0.1299	0.0462	-2.7596	20	20.140	180	1043.5	1.69	0,839
21	30.230	2/0	0.1354	0.0005	2.7596	21	19.140	180	•		
22	30,230	140	0.1301	0.0001	2.7546	22	18.140	160			
23	39.740	270	0.1301	0.0002	2.7596	23	17.140	180	1083.5	1,97	0.831
24	30.790	140	0.1406	0.0017	2,7596					- •	
25	27.730	100	0.1183	0.0002	2.7596	25	15.140	180	1073.5	1.85	0.823
				-•		26	14.140	180	1475.6	1.73	0.871
						77	13,110	180	10/2.8	1.61	0,819
						211	12.140	180	1971.0	1,52	0.817
						29	10.840	180	1061.8	1.41	0.611
						30	10.140	180			
						31	9.140	180			
						32	8.140	180			
							,				

THE VALUES OF THE FOLIOPING THERMOCOUPLES HAVE BEEN INTERPOLATED 4 6 8 25 27

HEAN VALUES

PHI =-109_9 DFG PT = 440,3 PSIA TORK = 507.7 DEG R
H = 7.98 TT =1309.9 DFG R
ALPHA = -0.0 OFG P = 0.0440 PSIA T = 95.4 DEG R
XC = 7.402E+01

RUN NUMAFF 603

ARVIN/CALSPAN FILLS SEPVICES, INC.
AEDC DIVIS!
VON KAPHAN - 3 DYNAMICS FACILITY
ARNULD AIR FURCE STATION, TENN
BUUKDAMY LAYEN STANILITY INVESTIGATION

RUN NUMBER 603 PAGE 4

DATE COMPUTED 23-AP*-85
DATE RECORDED 15-F 35
TIME RECORDED 5:54:26
TIME COMPUTED 22:42
PROJECT NO Y B-OG

CONFIG: SHARP 7-DEG COHE (RN = 0.0015 IN.)
KSTA = 24.00 IN.

DATA TYPE 4 INTEGRAL EVALUATION

THIO	ZP/1・E1・	PP/IPD	HIJPD	ナナルノナナい	TLATO	RUOLZRHOD	01.700	MIITL/MUTD	LPE/LPED	DITTLANTATE	FEFTAPRE.
	3.73nf =02	7.750L-07	1.3016-01	R.955F-U1	8_029E+00	1.245E-01	3.686F-01	5,9531.+00	7.7115-03		4.926E-0
2	1.0178-01	4.179F-02	1.6198-01	9,021101	7.157F+00	1.3986-01	4_8646-01	5.5071.+00	1.235F-02		7.264£ -0
•	1.26 bf -01	5.461r07	2.155F=01	9,1031-01	6.586F+00	1.5146-01	5.531F-01	5.2U4F+00	1.6141-02		8,4161-0
4	1.5334-01	7-4046-07	2.6731-01	9.2496-01	5.752E+00	1.7392-01	6.410E-01	4.731F.+60	2.356F-02		1.1716-0
5	1.7016-01	1.163E-01	3.3041-01	9.425101	4.8356+00	2.0646-01	7.266E-01	4.16#6+00	1.605F-02		1.56080
6	2.0786-01	1 7721 - 01	4.0701-01	9.6366-01	3.91 HE+00	2.553F-01	8.0576-01	3.5471.+00	5.7441-02		2,1056-0
7	2.2656-01	2.5636-01	5.6051-01	9.845E-01	3.051F+00	3.2776,-01	8.741101	2.8456.+00	9,904-42		3.4441-0
μ̈́	2.5791-01	3.427E-#1	0-1441-01	1.0056+00	2.2971+00	4.3536-01	9.3121+01	2.259F.+00	1,7946-01	1.0246+00	4.0421-4
q	2.7416-01	5.4491-01	7.1501-01	1.0171.00	1.7371+00	5.7546-01	9.6966-01	1.1366 (00	3,216F-01	1.1066.400	5.5756-0
-	3-0246-01	7.275t-01	8.5171-01	1.0176+00	1.3536+00	7.3921-01	9.906E-01	1.35.1+.+00	5,4176-01	1.1038.400	7.2451-0
10	3.277F-01	9.057601	9.5131-01	1.0138+00	1.10u++00	9_0456-01	1.000F+00	1,106F.400	8.1835-61	1.0676.00	H.441F-(
11		9.9558:-01	9.4771-01	1.0051+00	1.0096+04	9.4046-01	1.0026+00	1.0006+60	9.8376-01	1.0141480	9.4911-0
12	3.5246-01	1.0112 + 00	1 0065+00	1.0936+00	9.9335-01	1.0076100	1.0026+00	9,9136,-01	1.0161+00	1.0216+00	1.0076+0
13	3.65nt-01	1.0145.440	1.007F+00	1.0421.+00	9.893F-41	1.0116+00	1.007F+00	9.8431-01	1.024F+90	1.0136.400	1.0116+
11	3.77 45 -01		1.0086.00	1.0025.400	9.4708-01	1.0136:00	1.0426.400	9. 8701 -01	1.02#6400	1.0106490	1.0146+
15	3.892F-01	1_016F+00	1.0061.00	1_001E+00	9.406F-H1	1.0096+00	1.0011+00	9.9066-01	1.0706+00	1.0078400	1.010F+
16	4.014F-01	1.0111400	1.0055400	1.0016.400	9.9196-01	1.0085400	1.0016+00	9.4191-01	1.0171400	1.0045400	1.0041
17	4.1571-01	1.0045.400	1.004F+00	1.0016+00	9,9791-01	1.0078.400	1.001E+00	9.9291-01	1.015#+00	1.0048+00	1,9075+
ľ H	4.2466-01	1.0066.00	1.0031+00	1.7016400	9 953E-01	1.0056:00	1,0018+00	9,9531-01	1,0104+00	1.0056+00	1.0051+
19	4.378F-01		1.003F+00	1.000++00	9.9446-01	1.005E+00	1.000F+00	9.9146-01	1.0111+00		1.0050
20	4,5146-01	1.0066488 1.0655488	1.0031 100	1.0001.00	9.9546-01	1.0946400	1.0008400	9.95FF-01	1.0691+00	1.0035400	1.00414
21	4.6521-01	1.0046.+00	1.0026.00	1.00%.100	9.9626-01	1.0046400	1,000++00	9,9621-01	1.60**+00	1.0001+00	. 0D4F4
2.7	4.7771-01	1.0058.400	1.0021.00	1.0001.00	9.9586-01	1.0046.+00	1.0001+00	9,9544,-61	1,0046+00	0,446E+01	1.00464
23	5,0241-01	1.0056.400	1.0026400	1.0001+00	9.9548-01	1.0056400	1,0006+00	9.9548-61	1,009F400	1.0006 (40	1,00564
24	5.2601-01	1.0050+00	1.0036+00	1.000++00	9.9536-01	1.0056.+00	1.0001+00	9,953F-01	1.0106+00	9,9606-01	1.0056+
25 25	5.5171-01	1.0054,000	1.0031.00	1 .0001 +00	9.9566-01	1.0041+00	1.0001.+00	9.956E-01	1.004F+00	9,958t-01	1.09564
76	5.769F-01 0.023F-01	1.0056+00	1-4021.+00	1.0001.+00	9.9578-01	1.0041.700	1.5005+00	9.9571-01	1.0095+00	9.96HE-01	1,00564
27		1.005:+00	1.002F+00	1.0006.00	9.9588-01	1.0048+00	1.0001+00	9,9581,-61	1,009E+00	1.0026+00	1.00414
2 A	6.5001-01	1.064600	1.0026+00	4.9982-01	9_959F-01	1.0046+00	1.0006+00	9.9596-01	1.0087+00	9.937L-01	1.094F
29	7,6071-01		1.4028+00	1,0001.00	9.9626-01	1.0048+90	1.0006+00	9.4626-01	1.9868+60	1.0006.+00	1.0056
30	7.4741-01	1.0646+98	1.0015+00	1_000E+00	9.9801-01	1.0026+00	1.000++00	9.9806.+01	1.004F+00	1.0076+00	1.00%E+
31	7.9975-01		1.0015+00	1.0001.100	9.979E-01	1.003E+00	1,0006+00	9.9796-01	1.004E+00	9,953t +01	1.0076.
3?	#.500F-01	1,0021+00	1.0018+00	9.9988-01	9.988F-01	1.0016+00	1.0005+00	9.9886+01	1.0076.+00	1.0006+00	1.00LL+
33	8.9961-01	1.0016400 1.0006400	1.000F+00	1.0001.00	9.9971-01	1.000F+00	1.000E+00	9.9976-01	1.001F+00	1.0016+00	1.0000.+
34	9,491+-01		1.0000100	1.000E+00	1.0005+00	1.0006+00	1.0000 +00	1.000E+00	1.000E+00	1.0001+00	1.000k+
35	1.0001.400	1.0001.00	1.0000400	1 . 0000007000	* * * * * * * * * * * * * * * * * * * *	- 4 A	- 9 - 4 - 51		-		

VALUES AT DELTA

риг =-109.9	bec	DFL = 4.9136-01 IN	PPD = 7.468F+80 PSIA	RHOD № 2.6266-03 ኒ용ዮ/የተነ
N = 7.48		DFL+ = 9.9041-07 IN	HD = 6.8524++00	PHOND = 9.902F+00 [AM/SFC-FT2
ALPHA = -0.0	OFG	DEL ** 3.666t-03 IN	TD = 1.260F+02 DEG R	MUTD = 1.0141-07 LPF-SEC/FT2
MEPHA = -0,0	*** ()	Organia Statement of the	TTD = 1.309F+03 DFG R	p17TD = 5.407F+01 BTU/LE4
		teen = 2.530E+05 PER IN	00 = 3.771E+03 FT/SFC	LHETO = 3.596F+04 PFR 1N

PUN NUMBER 603

ARVIN/CALSPAN FIELD SERVICES.INC. AEOC DIVITION VON KARMI IAS DYNAMICS FACILITY ARNOLD AIR FURCE STATION. TENN BOUNDARY LAYER STABILITY INVESTIGATION DATE COMPUTED 15-7-B-65
DATE RECORDED 15 3-85
TIME RECORDED 2:19: 9
TIME COMPUTED 02:20
PROJECT NO V B-05

RUN NUMBER 591 PAGE 1

CONFIG: SHARP 7-DEG CONE.(RN = 0.0015, IN.)

DATA TYPE 2 MODEL SURFACE MEASUREMENTS

TAP	s	THETA	PW	PW/P	·T/C	S	THETA	Tw	TIVET
	(NI)	(DEG)	·(PSIA)			(TN)	·(PFG)	(DEG R)	
4	39.790	0	0.1196	2.7395	11	38.790	180		
ž	30.790	O	0.1891	2.7323	2	38.290	11 HQ	1038.1	0.780
3	30.290	Ō	0.1943	2.8792	3	37.590	11 HO	1054.5 -	0.792
4	36.290	0	0.4843	2.7354	4	36.290	1 40		
5	34.290	Ō	0.1866	2.6966	5	35.290	'1 HO	1078.3	0.810
-	- ••	_			6	34.290	180		
7	30.230	D	0.1985	2.0685	7	33.790	180	1008.8	0.818
8	20.230	Ö	0.1974	2.8524	8	32.230	986		
ē	26.230	Ō	0.1969	2.0455	9	31.230	180	1107.1	0.031
10	24.230	0	0.1833	2.6491	10	29.930	100	1112.3	0.835
ii	22.230	Ö	0.1856	2,6810	11	29.230	180	1121.7	0.842
12	20.140	D	0.1802	2.6038	12	28.230	180	1128.6	0.847
13 14 15	17.140	0	0.1903	2.7489	13	27.230	180	1129.8	0.848
īå	15.140	Ď	0.1830	2,6443	14	26.230	146	1137:8	0.854
íš	13.140	0	0.1798	2.5985	15	25.230	1 # 0	1141.5	0.857
16	11.140	0			16	24.210	186	1145.8	0.860
17	9.140	0	0.1944	2.8094	17	23.230	180	1149.1	0.863
18	B. 140	0	0.2032	2.9358					
19	11.140	270	0.2032	2,9361	19	21.140	180	1149.6	0.863
20	11.140	180	0.1946	2.8113	20	20.140	180	1147.1	0.861
21	30.230	270	0.1959	2.8311	21	19.140	180	1141.7	0.657
22	30,230	180	0.1989	2.0736	22	18.140	180		
23	39.790	270	0.1928	2.7864	2.5	17.140	1 80	1135.3	0.853
24	39.790	180	0.1886	2.7251	24	16.140	1 # 0		
30	22.230	. 180	0.1894	2.7369	30	15.140	180	1125.5	0.645
					26	14.140	1#0		
					27	13.140	180		
					28	12.140	1 # 6	1113.2	0.836
					39	10.840	180	1101.0	0.827
					30	10.140	180		
					31	9.140	180		
					35	8.140	180		

TC101 1134.670 TC102 1147.670 TC103 1072.670

₽ #₹ ≠	-109.9	DEG	PT	=	676.2	PSIA	TDRK =	501.7
M =	8.00	09	11	=	1331.7	DEG R		
ALPHA =	0.0	DEG	P	=	0.0697	PSIA		
DE# =	-67.		RE		0.2498+06	PER IN		
-			PT2	#	5.736	PSIA		

Sample 4. Model surface measurements (Type 2)

DEG R

ARVIN/CALFTAN FIELD SERVICES. INC. AEDC DIVI N VON KARMAN GAS DYNANICS FACILITY ARNOLD AIR FORCE STATION. TENNESSEE BOUNDARY LAYER STABILITY INVEST DATE COMPUTE 3-FEM-85 TIME COMPUTE 01;43:51 DATE RECORDED 13-FEM-84 TIME RECORDED 1:43:22 PROJECT NUMBER V 8-66

RUN NUMBER 550

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
DATA TYPE:	SURFACE	HEAT TRANS	IFER		SHARP 7-DEG CONE	(RN=0.0015 IN.)
GAGE	S	THETA	anat	TV	RT(TT)	ST(TT)
NO	IN	DEG	BTU/FT2-SEC	DEG R	BTU/FT2-SEC-R	
1'	38.790	180.000	1.233	586.69	1.704E-03	1.376E-03
2	38.290	180.000	1.185	588.86	1-6426-03	1.326E-03
3	37.590	180.000	1.171	594.08	1.6356-03	1.320E-03
4	36,290	180,000	1.212	600.20	1.707E-03	1.377E-03
5	35.290	180.000	d.915	601.08	1.2906-03	1.041E-03
6	34.290	180.000	1.268	603.75	(.794E-03'	1.447E-03
7	33.290	180.000	f.114	606.43	1.502E-03	1.276E-03
g	32.230	000.081	1.363	610.62	1.9486-03	1.571E-03
9	31.230	1 RO . 000	1, 235	612.15	1.769E-03	1_4266-03
10	29.930	180.000	1.235	612.85	1.770E-03	1.427E-03
11	29.230	180.000	1.436	613.95	2.061E-03	1.662E-03
17	28.230	180.000	7			•
13	27.230	160.000	1.102	613.38	1.581E-09	1.275E-03
14	26.230	180.000	1.311	61,8.24	1.8936-03	1.526E-03
15	25.230	1,80.000	1.277	617.65	1.8426-03	1.485E-03
16	24.230	180.000	1, 3,25	616.61	1.9106-03	1.540E-03
17	23,230	180.000	6.913	117.88	5.795E-03	4-802E-03
18	-	•	• •	• • •	_	
19	21.140	180.000	1.021	608.37.	1.453E-03	1.172E+03
20	20.140	160.000	0.411	604.32	1.14HE-03	9_260E-04
21	1,9 . 140.	1,80.000	0.941	599.07	1.323E-03	1.067E-03
22	14.140	1,80.000,	0.687,	592.64	9.567E-04	7.723E-04
23,	17, 140	1,80,.000,	6.7,89.	589.16	1.0936-03	8.829E-04
24		·				
25	1,5.140	180.000	0.573.	502.33	78686-04	6.355E-04
26	1,4.1,40	1,60.000	9.624,	580.27,	8.545E-04	6.901E-04
27,	1,3 . l,40	1,80.000.				
28	12.140	180.000	Q_405	578.52	5.532E-04	4.469E-04
29,	1,0.840	1,80.000				
30	10,140	1 BD_000	0_1,72	57.6.05	2.336E-04	1-888E-04
31,	9.140	1,80,000	0.475	5 77 1.0	6.472E-04	5.2296-04
32	8 . 1,40	1,89,000.	0-735	57.71, 23,	7/. 24RE-04	5.856E-04
PHI =	0.02 DEG	P.T.	a 440.94	PSIA	V , = 3	0821.19 FT/SEC
Я в	7,98	T.T.			0. =	2.050 PSTA
AGPHA =	-0.06 DEG		= 4_603E-02		r, =	95.49 DEG R
	55.40 DEG				P12 =	U.U1 PS1A
RUM NUMBER	550	HU,		LBF-SEC/FT		OLE-OJ LBA/FT3

Sample 5. Surface heat-transfer data