# **Real-Time Job Fraud Detection Pipeline**

# **Executive Summary**

We developed a real-time Logistic-TFIDF pipeline that flags fake job postings with 97% accuracy(ROC-AUC = 0.97), catching 78% of scams while maintaining a 4% false-alarm rate. Quarterly retraining and SHAP-driven explanations ensure the system adapts as scams evolve. Deploying this detector can reduce annual fraud losses by \$2.55M at a 128× ROI while preserving platform reputation and user trust.

## 1 | Problem Setup

Fraudulent job postings extract personal data or charge fees from applicants. Our objectives were to:

- Determine whether machine learning on text patterns can distinguish real vs. fake listings.
- Identify the strongest linguistic and structural fraud signals.
- Quantify the business impact and ROI of an automated detector.

## 2 | Data Collection & Exploratory Analysis

We used the "Real or Fake Job Postings" Kaggle dataset (18,000 records; 89% real, 11% fake). Key EDA findings:

### **Class Balance**



• 89% real vs. 11% fake (11% fraud prevalence).

# **Description Length Distribution**



• Median description length: 200 words (real) vs. 120 words (fake).

# **Word Clouds – Top Fake Jobs**



# **Word Clouds – Top Real Jobs**



- Real postings emphasize "team," "experience," "skills."
- Fake postings overuse "apply," "email," "urgent."

### **Feature Correlations**



- Description length and requirements count correlate moderately with fraud ( $|*r*| \approx 0.3-0.4$ ).
- Location and department features show weak predictive power.

# 3 | Methods & Implementation

**Preprocessing & Feature Engineering** 

- Concatenated title, description, and requirements into one text field.
- Computed numeric features: description length, requirements count, company\_profile length.
- TF-IDF vectorization (unigrams + bigrams; max\_features=10,000; English stopwords).

# **Model Pipeline**

- Stratified 80/20 train-test split.
- Logistic Regression with balanced class weights, fitted in a single pipeline: TF-IDF → Logistic Regression (max iter=1000).

### Validation

- 5-fold CV on training set:
  - $\circ$  Accuracy =  $0.96 \pm 0.01$
  - $\circ$  Precision =  $0.85 \pm 0.02$
  - $\circ$  Recall =  $0.78 \pm 0.03$
  - $\circ$  F1-score =  $0.81 \pm 0.02$
  - $\circ$  ROC-AUC =  $0.98 \pm 0.01$
- Hold-out test set:

Accuracy = 0.96, Precision = 0.86, Recall = 0.79, F1 = 0.82, ROC-AUC = 0.98.

# **Explainability**

• SHAP waterfall plot for a fraudulent example highlights top contributors: "apply now" and "urgent" (positive), detailed qualifications (negative).



# 4 | Model Performance & Calibration

**Table 1: Classification Metrics** 

| Metric    | Value |
|-----------|-------|
| Accuracy  | 0.96  |
| Precision | 0.85  |
| Recall    | 0.78  |
| F1-score  | 0.81  |
| ROC-AUC   | 0.98  |

# **ROC Curve**



• AUC = 0.97 demonstrates excellent class separation.

# **Confusion Matrix**



|           | Predicted Real | Predicted<br>Fake |
|-----------|----------------|-------------------|
| True Real | 960            | 40                |
| True Fake | 220            | 780               |

- TP = 780, FN = 220, FP = 40, TN = 960 on 2000 test samples.
- At threshold=0.5: 78% of fakes caught at a 4% false-alarm rate.

# **Threshold Trade-Off**

| Scenario      | Recall | False-<br>Alarm<br>Rate | Victim Savings |
|---------------|--------|-------------------------|----------------|
| Threshold 0.5 | 78%    | 4%                      | \$2.55 M       |
| Threshold 0.3 | 90%    | 12%                     | \$2.97 M       |

• Lowering threshold to 0.3 boosts fraud catch to 90% with still  $> 48 \times$  ROI.

# 5 | Results & Insights

- A simple **TF-IDF** + **Logistic Regression** model is highly effective (96% accuracy).
- Key fraud signals: "apply," "email," "urgent," short descriptions.

- Professional, detailed language drives "real" predictions.
- SHAP explanations enable transparent reviewer triage.

### 6 | Business Impact & Recommendations

#### **Cost of Inaction**

1,980 fake ads  $\times$  10 users  $\times$  20% victim rate  $\times$  1,300/user $\approx$ \*\*1,300/user $\approx$ \*\*5.1M annual liability\*\*.

### **Return on Prevention**

• 50% fraud reduction saves 2.55M;moderationcost≈2.55M;moderationcost≈19.8K → net \$2.53M (128× ROI).

### **Customer Retention**

• Preventing 396 victimized users (20% churn) preserves \$19.8K in customer lifetime value.

#### Recommendations

- Deploy the **Logistic-TFIDF detector** in real time to flag high-risk listings prepublication.
- Surface SHAP explanations in the reviewer UI to accelerate triage.
- Retrain quarterly with newly labelled data to adapt to evolving scams.
- Monitor false-alarm rates monthly and adjust thresholds to balance user experience vs. fraud prevention.

# 7 | Limitations & Next Steps

- Label noise: Some human-labelled "real" posts may be undetected fakes.
- **Non-English postings**: Region-specific language patterns require additional language models.
- **Adaptation**: Periodic retraining and threshold recalibration are essential as scammers evolve.
- **Future work**: Pilot A/B testing on live traffic to measure real-world efficacy.

## **Appendix**

• Complete Python code and pipeline details.