ASSIGNMENT – 3 Python Programming

Assignment Date	28-10-2022
Student Name	Puttu Bharath Kumar
Student Roll Number	410719106014
Maximum Marks	2 Mark

Question-1:

1. Importing Required Package

Solution:

```
import pandas as pd import
seaborn as sns import
numpy as np
from matplotlib import pyplot as plt
%matplotlib inline
```

Question-2:

2. Loading the Dataset Solution:

```
df = pd.read_csv("abalone.csv")
df
```

Output:

0.01	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
0	M	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.1500	15
1	M	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.0700	7
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.2100	9
3	M	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.1550	10
4	- 1	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.0550	7
	-	0.555	1 550		-5555	2573	27.5%	225.3	
4172	F	0.565	0.450	0.165	0.8870	0.3700	0.2390	0.2490	11
4173	M	0.590	0.440	0.135	0.9660	0.4390	0.2145	0.2605	10
4174	M	0.600	0.475	0.205	1.1760	0.5255	0.2875	0.3080	9
4175	F	0.625	0.485	0.150	1.0945	0.5310	0.2610	0.2960	10
4176	M	0.710	0.555	0.195	1,9485	0.9455	0.3765	0.4950	12

3. Visualizations Question-3:

3.1 Univariate Analysis Solution:

```
sns.displot(df.Sex)
```


3.2 Bi-Variate Analysis Solution:

df.plot.line()

Output:

3.3 Multi - Variate Analysis

```
sns.lmplot("Diameter", "Length", df, hue="Length", fit_reg=False);
```


4. Perform descriptive statistics on the dataset. Question-4:

Solution:

df.describe()

Output:

	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
count	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000
mean	0.523992	0.407881	0.139516	0.828742	0.359367	0.180594	0.238831	9.933684
std	0.120093	0.099240	0.041827	0.490389	0.221963	0.109614	0.139203	3.224169
min	0.075000	0.055000	0.000000	0.002000	0.001000	0.000500	0.001500	1.000000
25%	0.450000	0.350000	0.115000	0.441500	0.186000	0.093500	0.130000	8.000000
50%	0.545000	0.425000	0.140000	0.799500	0.336000	0.171000	0.234000	9.000000
75%	0.615000	0.480000	0.165000	1.153000	0.502000	0.253000	0.329000	11.000000
max	0.815000	0.650000	1.130000	2.825500	1.488000	0.760000	1.005000	29.000000

5. Handle the Missing values. Question-5:

```
data = pd.read_csv("abalone.csv")
pd.isnull(data["Sex"])
Output:
```

```
False
      False
       False
       False
       False
     False
4172
       False
4173
4174
       False
4175
       False
4176
       False
Name: Sex, Length: 4177, dtype: bool
```

Question-6:

6. Find the outliers and replace the outliers.

Solution:

```
df["Rings"] = np.where(df["Rings"] >10, np.median,df["Rings"]) df["Rings"]
```

Output:

Question-7:

7. Check for Categorical columns and perform encoding.

```
pd.get_dummies(df, columns=["Sex", "Length"], prefix=["Length", "Sex"]
).head()
```

D	iameter	Height	wnoie weight	Snucked weight	viscera weight	Snell weight	Rings	Length_F	Length_1	Length_M		Sex_0.745	Sex_0.75	Sex_0.755	Sex_0.76	Sex_0.765	Sex_0.7	7 Sex_0.7	75 Sex	_0.78 Se	x_0.8
0	0.365	0.095	0.5140	0.2245	0.1010	0.150	<function at<br="" median="">0x7f6c9fd64cb0></function>	0	c) 1		0	0	0	0	0	()	0	0	0
1	0.265	0.090	0.2255	0.0995	0.0485	0.070	7	0	(1	810	0	0	0	0	0	()	0	0	0
2	0.420	0.135	0.6770	0.2565	0.1415	0.210	9	1	0) 0	0 300	0	0	0	0	0	()	0	0	0
3	0.365	0.125	0.5160	0.2155	0.1140	0.155	10	0	() 1		0	0	0	0	0	()	0	0	0
4	0.255	0.080	0.2050	0.0895	0.0395	0.055	7	0	- 1	0		0	0	0	0	0	()	0	0	0
5 rows	× 144 col	lumns																			

Question-8:

- 8. Split the data into dependent and independent variables
 - 8.1 Split the data into Independent variables.

Solution:

```
X = df.iloc[:, :-2].values
print(X)
Output:

[['M' 0.455 0.365 ... 0.514 0.2245 0.101]
  ['M' 0.35 0.265 ... 0.2255 0.0995 0.0485]
  ['F' 0.53 0.42 ... 0.677 0.2565 0.1415]
  ...
  ['M' 0.6 0.475 ... 1.176 0.5255 0.2875]
  ['F' 0.625 0.485 ... 1.0945 0.531 0.261]
  ['M' 0.71 0.555 ... 1.9485 0.9455 0.3765]]
```

8.2 Split the data into Dependent variables.

```
Y = df.iloc[:, -1].values
print(Y)
Output:
```

Question-9:

9. Scale the independent variables Solution:

```
import pandas as pd
from sklearn.preprocessing import MinMaxScaler scaler
= MinMaxScaler()
df[["Length"]] = scaler.fit_transform(df[["Length"]])
print(df)
```

Output:

1	ed weight	ucked	ight S	Whole we	Height	iameter	Length D		Sex	
	0.2245		5140	0.	0.095	0.365	.513514	0.	M	0
	0.0995		2255	0.	0.090	0.265	.371622	0.	M	1
	0.2565		6770	0.	0.135	0.420	.614865	0.	F	2
	0.2155		5160	0.	0.125	0.365	.493243	0.	M	3
	0.0895		2050	0.	0.080	0.255	.344595	0.	I	4
			200			***			9999	
	0.3700		8870	0.	0.165	0.450	.662162	0.	F	4172
	0.4390		9660	0.	0.135	0.440	.695946	0.	M	4173
	0.5255		1760	1.	0.205	0.475	.709459	0.	M	4174
	0.5310		0945	1.	0.150	0.485	.743243	0.	F	4175
	0.9455		9485	1.	0.195	0.555	.858108	0.	M	4176
ings	R				eight	Shell w	ra weight	scen	Vis	
cbe	c7f6c9fd64	t 0x71	median	function	.1500	6	0.1010			0
7					.0700	6	0.0485			1
9					.2100	9	0.1415			
16					.1550	9	0.1140			2
7					.0550	6	0.0395			4

cb0	c7f6c9fd64	t 0x71	median	function	.2490	6	0.2390			4172
16					.2605	6	0.2145			4173
9					.3080	6	0.2875			4174
16					.2960	6	0.2610			4175
cb0	7f6c9fd64	t 0x71	median	function	.4950	6	0.3765			4176

Question-10:

10. Split the data into training and testing Solution:

```
from sklearn.model_selection import train_test_split train_size=0.8
X = df.drop(columns = ['Sex']).copy()
y = df['Sex']
X_train, X_rem, y_train, y_rem = train_test_split(X,y, train_size=0.8) test_size
= 0.5
X_valid, X_test, y_valid, y_test = train_test_split(X_rem,y_rem, test_size=0.5)
print(X_train.shape), print(y_train.shape)
print(X_valid.shape), print(y_valid.shape)
print(X_test.shape), print(y_test.shape)
```

```
(3341, 8)
(3341,)
(418, 8)
(418,)
(418, 8)
(418,)
(None, None)
```

11.Build the Model

```
test_size = 0.33 seed
= 7
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size, random state=seed)
```

12.Train the model

X train

Output:

	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
4131	0.682432	0.425	0.145	0.8300	0.3790	0.1605	0.2575	<function 0x7f6c9fd64cb0="" at="" median=""></function>
3204	0.797297	0.530	0.185	1.3955	0.4560	0.3205	0.4900	<function 0x7f6c9fd64cb0="" at="" median=""></function>
2622	0.844595	0.575	0.205	1.7975	0.7295	0.3935	0.5165	<function 0x7f6c9fd64cb0="" at="" median=""></function>
2114	0.074324	0.095	0.035	0.0105	0.0050	0.0065	0.0035	4
1422	0.871622	0.575	0.215	2.1730	0.9515	0.5640	0.5365	<function 0x7f6c9fd64cb0="" at="" median=""></function>
				10707	220	1775	8772	U.***
1372	0.729730	0.475	0.165	1.0230	0.4905	0.1955	0.3035	<function 0x7f6c9fd64cb0="" at="" median=""></function>
919	0.452703	0.310	0.090	0.3335	0.1635	0.0610	0.0910	6
2550	0.277027	0.220	0.080	0.1315	0.0660	0.0240	0.0300	5
537	0.290541	0.230	0.075	0.1165	0.0430	0.0255	0.0400	7
1220	0.344595	0.250	0.095	0.2085	0.1020	0.0395	0.0520	7

```
y_train
```

```
4131 I

3204 F

2622 F

2114 I

1422 M

...

1372 F

919 I

2550 I

537 M

1220 I

Name: Sex, Length: 2798, dtype: object
```

13.Test the model:

 X_{test}

Output:

	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
1157	0.716216	0.470	0.165	1.1775	0.6110	0.2275	0.2920	9
1125	0.641892	0.425	0.150	0.8315	0.4110	0.1765	0.2165	£10
2053	0.520270	0.345	0.110	0.4595	0.2350	0.0885	0.1160	7
3591	0.777027	0.475	0.165	1.3875	0.5800	0.3485	0.3095	9
455	0.675676	0.470	0.140	0.8375	0.3485	0.1735	0.2400	<function 0x7f6c9fd64cb0="" at="" median=""></function>
		22		242	440	849	354	pro-
3150	0.783784	0.505	0.165	1.3670	0.5835	0.3515	0.3960	10
3037	0.655405	0.450	0.145	0.8940	0.3885	0.2095	0.2640	9
2050	0.506757	0.350	0.130	0.4655	0.2075	0.1045	0.1350	8
1690	0.743243	0.500	0.170	1.0985	0.4645	0.2200	0.3540	9
253	0.675676	0.460	0.185	1.0940	0.4485	0.2170	0.3450	<function 0x7f6c9fd64cb0="" at="" median=""></function>

y_test

Output:

```
1157 F
1125 M
2053 M
3591 F
455 M
...
3150 F
3037 M
2050 M
1690 M
253 F
Name: Sex, Length: 1379, dtype: object
```

14. Measure the performance using Metrics

```
from sklearn.metrics import r2_score from
sklearn.metrics import mean_absolute_error from
sklearn.metrics import mean_squared_error X_train =
[5, -1, 2, 10] y_test = [3.5, -0.9, 2, 9.9] print
('R Squared =',r2_score(X_train, y_test)) print
('MAE =',mean_absolute_error(X_train, y_test)) print
('MSE =',mean squared error(X train, y test))
```

Output:

```
R Squared = 0.9656060606060606
MAE = 0.424999999999993
MSE = 0.567499999999999
```