

Aprendizagem 2024

Labs 6-7: Perceptron and Gradient Descent

Practical exercises

I. Perceptron

1. Considering the following linearly separable training data

	У1	У2	У3	output
χ_1	0	0	0	- 1
χ_2	0	2	1	+1
x_3	1	1	1	+1
χ_4	1	-1	0	— 1

Given the perceptron learning algorithm with a learning rate of 1 for simplicity, sign activation, and all weights initialized to one (including the bias).

- a) Considering y1 and y2, apply the algorithm until convergence. Draw the separation hyperplane.
- b) Considering all input variables, apply one epoch of the algorithm. Do weights change for an additional epoch?
- c) Identify the perceptron output for $x_{new} = [001]^T$
- d) What happens if we replace the sign function by the step function?

$$\Theta(x) = \{1x \ge 0 \ 0x < 0$$

Specifically, how would you change the learning rate to get the same results?

- 2. Show graphically, instantiating the parameters, that a perceptron:
 - a) can learn the following logical functions: NOT, AND and OR
 - b) cannot learn the logical XOR function for two inputs

II. Gradient descent learning

Considering the following training data

	У1	У2	output
x_1	1	1	1
x_2	2	1	1
x_3^2	1	3	0
x_4	3	3	0

3. Let us consider the following activation

$$z^{\wedge} = output(x, w) = \frac{1}{1 + exp(-2w \cdot x)}$$

and half sum of squared errors as the loss function

$$E(w) = \frac{1}{2} \sum_{k=1}^{N} \left(z_k - z_k^{\prime} \right)^2 wherez_k^{\prime} = output(x_k, w)$$

- a) Determine the gradient descent learning rule for this unit.
- b) Compute the first gradient descent update assuming an initialization of all ones
- c) Compute the first stochastic gradient descent update assuming an initialization of all ones.
- 4. Let us consider the following function:

$$output(x, w) = \frac{1}{1 + exp(-w \cdot x)}$$

and the cross-entropy loss function

$$E(w) = -\log(p(z \vee w)) = -\sum_{k=1}^{N} \left(z_k \log(z_k^*) + (1 - z_k) \log(1 - z_k^*)\right)$$

- a) Determine the gradient descent learning rule for this unit
- b) Compute the first gradient descent update assuming an initialization of all ones
- c) Compute the first stochastic gradient descent update assuming an initialization of all ones
 - 5. Let us consider the following function:

$$output(x, w) = exp((w \cdot x)^2)$$

and half sum of squared errors as the loss function

- a) Determine the gradient descent learning rule for this unit.
- b) Compute the stochastic gradient descent update for input $x_{new} = \begin{bmatrix} 11 \end{bmatrix}^T$, $z_{new} = 0$ initialized with $w = \begin{bmatrix} 010 \end{bmatrix}^T$ and learning rate η =2
- 6. Consider the sum squared and cross-entropy losses. Any stands out? What changes when one changes the loss function?