Assignment 6 Advanced Algorithms & Data Structures PS

Christian Müller 1123410 Daniel Kocher, 0926293

April 26, 2016

Aufgabe 11

- i.) Fügen Sie die Schlüssel f, g, h, e, b, a, c in einen (anfangs leeren) Treap ein. Die Prioritäten dieser Schlüssel sind wie folgt gegeben: a:8, b:15, c:2, e:3, f:7, g:6, h:25, i:22, j:19, k:13.
- ii.) Entfernen Sie e aus dem Treap.
- iii.) Fügen Sie die Schlüssel i, j, k in einen anderen (anfangs leeren) Treap ein. Vereinigen Sie anschließend die zwei Treaps.
- iv.) Führen Sie $Spalte(T, d, T_1, T_2)$ durch, wobei T der Treap aus dem vorigen Punkt ist.

Geben Sie den Treap vor und nach jeder Rotation an.

Für den Pseudocode bzw. die grundlegenden Vorgehensweise der Operationen Suchen, Einfügen, Rotiere-NachLinks/Rechts, Entfernen, Vereinige und Spalte, sei auf die Folien vom 14.04.2016 verwiesen.

i.) Fügen Sie die Schlüssel f, g, h, e, b, a, c in einen (an fangs leeren) Treap ein. Die Prioritäten dieser Schlüssel sind wie folgt gegeben: a:8, b:15, c:2, e:3, f:7, g:6, h:25, i:22, j:19, k:13.

Insert g_6 :

Insert h_{25} :

(a) Keine Rotation notwendig

Insert e_3 :

Insert b_{15} :

(a) Keine Rotation notwendig

Insert a_8 :

Insert c_2 :

(c) nach: RotiereNachLinks (a_8)

(d) Nachher (nach: Rotiere NachRechts (e_3))

ii.) Entfernen Sie e aus dem Treap.

(a) Start

(a) nach: g_6 is rechtes Kind von $e_3 \implies$ RotiereNachLinks (e_3)

(b) nach: f_7 is rechtes Kind von $e_3 \implies$ RotiereNachLinks (e_3)

iii.) Fügen Sie die Schlüssel i_{22} , j_{19} , k_{13} in einen anderen (anfangs leeren) Treap ein. Vereinigen Sie anschließend die zwei Treaps.

Insert j_{19} :

(a) Vorher

(b) Nachher (nach: Rotiere Nach
Links (i_{22}))

Insert k_{13} :

(a) Vorher

(b) Nachher (nach: RotiereNachLinks (j_{19}))

Vereinige (T_1,T_2) :

Sei \dot{k} ein Schlüssel mit key $(x_1) < \dot{k} < \ker(x_2)$ für alle $x_1 \in T_1$ und $x_2 \in T_2$. Ein echter Buchstabe kann hier nicht verwendet werden, da ein solcher im deutschen Alphabet (natürliche Ordnung) nicht existiert. Es gilt also: $a < b < c < \ldots < \dot{k} < i < j < k < \ldots < z$.

(a) Neuer Knoten mit Schlüssel \dot{k} als Wurzel.

Entferne Wurzel aus Treap:

(a) nach: c_2 is linkes Kind von $\dot{k}_{-\infty} \implies \text{RotiereNachRechts}(\dot{k}_{-\infty})$

(c) nach: k_{13} is rechtes Kind von $\dot{k}_{-\infty} \implies \text{RotiereNachLinks}(\dot{k}_{-\infty})$

(e) nach: i_{22} is rechtes Kind von $\dot{k}_{-\infty}\implies \text{RotiereNachLinks}(\dot{k}_{-\infty})$

(b) nach: g_6 is linkes Kind von $\dot{k}_{-\infty} \implies \text{RotiereNachRechts}(\dot{k}_{-\infty})$

(d) nach: j_{19} is rechtes Kind von $\dot{k}_{-\infty} \implies \text{RotiereNachLinks}(\dot{k}_{-\infty})$

(f) nach: h_{25} ist linkes Kind von $\dot{k}_{-\infty} \implies$ RotiereNachRechts $(\dot{k}_{-\infty})$ Der Hilfsknoten $\dot{k}_{-\infty}$ ist jetzt ein Blatt und kann einfach entfernt werden.

iv.) Führen Sie $Spalte\left(T,d,T_{1},T_{2}\right)$ durch, wobe
iTder Treap aus dem vorigen Punkt ist.

Füge Knoten $d_{-\infty}$ in T ein:

(a) Vorher

(b) nach: $d_{-\infty}$ ist linkes Kind von $f_7 \implies \text{RotiereNachRechts}(f_7)$

(c) nach: $d_{-\infty}$ ist linkes Kind von $g_6 \implies \text{RotiereNachRechts}(g_6)$

(d) nach: $d_{-\infty}$ ist rechtes Kind von $c_2 \implies \text{RotiereNachLinks}(c_2)$

(e) T_1

(f) T₂

Aufgabe 12

Der linke Rand in einem binären Suchbaum T ist der Pfad von der Wurzel zum Knoten mit dem kleinsten Schlüssel. Der rechte Rand in einem binären Suchbaum T ist der Pfad von der Wurzel zum Knoten mit dem größten Schlüssel. Betrachten Sie einen Treap T direkt nach dem Einfügen eines Objektes x. Sei C die Länge des rechten Randes des linken Unterbaums des Knotens mit dem Element x und sei D die Länge des linken Randes des rechten Unterbaums des Knotens mit dem Element x. Zeigen Sie, dass die Anzahl der Rotationen, die während des Einfügens von x durchgeführt wurden, C + D ist.

Linker Rand eines binären Suchbaums: von der Wurzel zum linkesten Kind, d.h. verfolge ausgehend von der Wurzel immer die Kante zum linken Kind.

Rechter Rand eines binären Suchbaums: analog (verfolge immer die Kante zum rechten Kind).

 $C\dots$ Länge des rechten Randes des linken Unterbaums des Knotens mit dem Element x.

 $D\dots$ Länge des linken Randes des rechten Unterbaums des Knotens mit dem Element x.

 $R \dots \#$ der Rotationen, die während des Einfügens von x durchgeführt wurden.

Zu zeigen: C + D = R

Proof. Ausgehend von der Annahme, dass C + D = R vor der ersten Rotation gilt, zeigen wir nun, dass C + D = R auch nach der darauffolgenden Rotation gilt.

I.A.: C + D = 0 gilt trivialerweise, da C = D = 0.

I.B.: C + D = R gilt für N Rotation.

I.S.: Seien C, D, C_{NR} und D_{NR} wie folgt:

C... Länge des rechten Randes des linken Unterbaums des Knotens mit dem Element x vor der Rotation.

 $D\dots$ Länge des linken Randes des rechten Unterbaums des Knotens mit dem Element x vor der Rotation.

 $C_{NR}\dots$ Länge des rechten Randes des linken Unterbaums des Knotens mit dem Element x nach der Rotation.

 D_{NR} ... Länge des linken Randes des rechten Unterbaums des Knotens mit dem Element x nach der Rotation.

Es gibt nun zwei Fälle zu unterscheiden.

Fall 1: Linksrotation bzgl. Knoten x

Vor der Rotation hat der linke Rand des rechten Unterbaums von x die Länge D. Analog hat der rechte Rand des linken Unterbaums von x die Länge C.

Bei einer Linksrotation passiert Folgendes. Sei y der Elternknoten von x vor der Linksrotation.

- x wird auf die Position von y geschoben und y wird linkes Kind von x.
- Der linke Unterbaum von x wird zum rechten Unterbaum von y.
- Der rechte Unterbaum von x bleibt dessen rechter Unterbaum.
- \bullet Der linke Unterbaum von y bleibt dessen linker Unterbaum.

Figure 16: Links- und Rechtsrotation bzgl. x

Durch die "Nach-Unten-Verschiebung" des linken Unterbaums von x um eine Ebene, wird der rechte Rand des linken Unterbaums des Knotens mit dem Element x ebenfalls um 1 länger, d.h. $C_{NR} = C + 1$. Die Länge des linken Randes des rechten Unterbaums des Knotens mit dem Element x bleibt hingegen unverändert, d.h. $D_{NR} = D$.

Für diesen Fall gilt also für N Rotationen, dass C N-mal um 1 länger wird, d.h. $C_{NR} = C + \sum_{i=1}^{N} 1 = C + N = N$. D_{NR} bleibt hingegen immer gleich bleibt, d.h. $D_{NR} = D = 0$.

Daraus folgt:
$$C_{NR} + D_{NR} = N = N$$
 für N Rotationen.

Fall 2: Rechtsrotation bzgl. Knoten x

Die selbe Argumentation kann für die Rechtsrotation verwendet werden. Der einzige Unterschied liegt in der Veränderung des Baumes. Bei einer Rechtsrotation gilt Folgendes. Sei y das linke Kind von x vor der Rechtsrotation.

- y wird der neue Elternknoten von x.
- \bullet Der linke Unterbaum von y bleibt dessen linker Unterbaum.
- \bullet Der rechte Unterbaum von y wird linker Unterbaum von x.
- x wird das rechte Kind von y.

In diesem Fall wir der Pfad D um 1 länger und C bleibt unverändert, d.h. $D_{NR} = D + 1$ und $C_{NR} = C$.

Analog zu Fall 1 ergibt sich daraus für N Rotationen: $C_{NR} + D_{NR} = N = N$.

Das heißt, dass C+D=R auch für die Kombination von Links- und Rechtsrotationen gilt, da nur entweder D oder C um 1 länger werden.

Aufgabe 13

Sei $U = \{0, ..., N-1\}$, wobei N eine Primzahl ist und sei m = 4. Seien $a_i = 40i$ und $b_i = 60i$. Wir definieren folgende Klasse von Hashfunktionen:

$$H = \left\{ h_i(k) = \left((a_i k + b_i) \mod N - 1 \right) \mod m \right\} \text{ für } i \in \left\{ 1, \dots, N(N-1) \right\}$$
 (1)

Ist H universell? Warum? Falls H nicht universell ist, so modifizieren Sie h_i , a_i und b_i , sodass Sie eine universelle Klasse erhalten.

H ist nicht universell.

Proof. Da N prim ist, wissen wir, dass (1) (N-1) keine Primzahl ist (außer N=3) und (2) (N-1) eine gerade Zahl ist (da alle Primzahlen außer 2 ungerade sind).

Weiters wissen wir, dass $a_i = 40i$ und $b_i = 60i$ beides gerade Zahlen sind, da eine Multiplikation mit einer geraden Zahl immer eine gerade Zahl ergibt.

Dies hat zur Folge, dass $H = \{h_i(k) = (40ik + 60i) \mod N - 1 \mod 4\}$ immer eine gerade Zahl ergibt (gerade Zahl mod gerader Zahl ergibt immer gerade Zahl). Dadurch wird nur der halbe Bereich von m ausgenutzt (nämlich nur jede zweite - gerade - Zahl), d.h. nur $\frac{m}{2}$.

Damit H universell ist, muss nun Folgendes für (x, y) mit $x \neq y$ erfüllt sein:

$$\frac{\left|\left\{h \in H : h\left(x\right) = h\left(y\right)\right\}\right|}{|H|} \le \frac{1}{m} \iff \left|\left\{h \in H : h\left(x\right) = h\left(y\right)\right\}\right| \le \frac{|H|}{m} \tag{2}$$

Da $i \in \{1, ..., N(N-1)\}$, ist |H| = N(N-1). Weiters ist m = 4. Da nur jede zweite - gerade - Zahl aus dem Wertebereich von m genutzt wird, ist $|\{h \in H : h(x) = h(y)\}| = \frac{|H|}{2} = \frac{N(N-1)}{2}$. Eingesetzt in (2) ergibt sich dadurch

$$\frac{N(N-1)}{2} \le \frac{N(N-1)}{4} \Longleftrightarrow \frac{1}{2} \le \frac{1}{4} \tag{3}$$

(3) ist nicht erfüllt $\Rightarrow H$ ist nicht universell.

Damit H universell ist, halten wir uns nun an den Satz von Folie 20:

$$H = \{ h_{a,b}(x) | 1 \le a < N \land 0 \le b < N \}$$
(4)

ist eine universelle Klasse von Hash-Funktionen.

Das heißt, wir müssen a_i , b_i und h_i so anpassen, dass Folgendes gilt:

$$a_i \in \{1, \dots, N-1\}, b_i \in \{0, \dots, N-1\}, h_i(x) = ((a_i k + b_i) \mod N) \mod m$$
 (5)

Es wurde in der Vorlesung bewiesen, dass diese Klasse von Hash-Funktionen universell ist.

$$a_{i} = f(i, N), f(i, N) \in \{1, \dots, N-1\} \text{ für } i \in \{1, \dots, N(N-1)\}$$
 (6)

$$b_i = g(i, N), g(i, N) \in \{0, \dots, N-1\} \text{ für } i \in \{1, \dots, N(N-1)\}$$
 (7)

Die folgenden Funktionen f(i, N) und g(i, N) erfüllen diese Bedingungen:

$$a_i = 1 + ((i-1) \mod N - 1)$$
 (8)

$$b_i = \left\lceil \frac{i-1}{N} \right\rceil \tag{9}$$

Daraus ergibt sich

$$H = \left\{ h_i(x) = \left((a_i k + b_i) \mod N \right) \mod m \right\}$$
 (10)

was eine universelle Klasse von Hash-Funktionen ist.