# Lab 1. 논리 게이트의 기초

2017 Fall Logic Design Lab

Department of Computer Science and Engineering

Seoul National University

### **Outline**

1. 논리 게이트(logic gate) 의 기초

2. NAND TTL 칩 특성 파악 및 동작 확인

3. 빵판과 NAND 게이트를 이용한 논리 회로 구현

Logic Design Lab 2017 FALL 2/24 논리 게이트의 기초

### 논리 게이트의 이해

- 논리 게이트란?
  - 디지털 회로를 구성하는 기본 단위

- 불 함수(boolean function)의 기능 수행
  - 하나 이상의 이진 데이터(0 또는 1) 입력을 받아 이진 데이터 결과를 출력
  - 일반적으로 2개의 이진 데이터를 입력하여 하나의 결과값을 출력하는 것을 논리 게이트라 지칭(2-입력 게이트, two-input gate)

- 가장 대표적인 논리 게이트의 예
  - AND, OR, NOT, NAND….

Logic Design Lab 2017 FALL 3/24 논리 게이트의 기초

### 논리 게이트의 표현

- 논리 게이트의 표현 방법
  - 회로도(schematics)
    - 실제 사진 대신 추상적인 기호를 사용하여 회로의 구성을 표현



- 진리표(truth table)
  - 이진 입력이 가질 수 있는 각각의 경우에 대하여 출력 값을 표시한 표

| X | Y | X AND Y |
|---|---|---------|
| 0 | 0 | 0       |
| 0 | 1 | 0       |
| 1 | 0 | 0       |
| 1 | 1 | 1       |

## 논리 게이트의 종류

| Х | Y | 0 | AND |   | Х |   | Y | XOR | OR | NOR | XNOR | NOT Y |   | NOT X |   | NAND | 1 |
|---|---|---|-----|---|---|---|---|-----|----|-----|------|-------|---|-------|---|------|---|
| 0 | 0 | 0 | 0   | 0 | 0 | 0 | 0 | 0   | 0  | 1   | 1    | 1     | 1 | 1     | 1 | 1    | 1 |
| 0 | 1 | 0 | 0   | 0 | 0 | 1 | 1 | 1   | 1  | 0   | 0    | 0     | 0 | 1     | 1 | 1    | 1 |
| 1 | 0 | 0 | 0   | 1 | 1 | 0 | 0 | 1   | 1  | 0   | 0    | 1     | 1 | 0     | 0 | 1    | 1 |
| 1 | 1 | 0 | 1   | 0 | 1 | 0 | 1 | 0   | 1  | 0   | 1    | 0     | 1 | 0     | 1 | 0    | 1 |

- 2-input 논리 게이트의 종류
  - 4가지의 입력 값의 종류에 따라 열 여섯(24 = 16) 종류의 출력값이 존재 가능
  - 불 대수(boolean algebra)의 기본이 되는 세 가지 게이트
    - AND, OR, NOT
  - 그 밖에 디지털 시스템에서 자주 사용되는 게이트
    - XOR, NAND, NOR 등

### AND, OR, NOT 게이트







| X | Y | X AND Y |
|---|---|---------|
| 0 | 0 | 0       |
| 0 | 1 | 0       |
| 1 | 0 | 0       |
| 1 | 1 | 1       |

| Χ | Υ | X OR Y |
|---|---|--------|
| 0 | 0 | 0      |
| 0 | 1 | 1      |
| 1 | 0 | 1      |
| 1 | 1 | 1      |

| X | NOT X |
|---|-------|
| 0 | 1     |
| 1 | 0     |

- 불 대수를 구성하는 가장 기본이 되는 게이트
  - AND: X와 Y가 모두 1일 때만 1 출력
  - OR: X 또는 Y 둘 중 하나라도 1일 때 1 출력
  - NOT: 입력 값과 반대되는 값 출력

## NAND, NOR, XOR 게이트







| X | Υ | X NAND Y |
|---|---|----------|
| 0 | 0 | 1        |
| 0 | 1 | 1        |
| 1 | 0 | 1        |
| 1 | 1 | 0        |

| Χ | Υ | X NOR Y |
|---|---|---------|
| 0 | 0 | 1       |
| 0 | 1 | 0       |
| 1 | 0 | 0       |
| 1 | 1 | 0       |

| Χ | Υ | X XOR Y |
|---|---|---------|
| 0 | 0 | 0       |
| 0 | 1 | 1       |
| 1 | 0 | 1       |
| 1 | 1 | 0       |

- 디지털 시스템 구성에 자주 사용되는 논리 게이트
  - NAND: NOT + AND. X와 Y가 모두 1이어야만 0출력
  - NOR: NOT + OR. X와 Y가 모두 0이어야만 1출력
  - XOR: X와 Y의 값이 서로 다를 때 1출력

### 논리 게이트의 함수적 완전성

- 함수적 완전성(functional completeness)
  - 주어진 불 함수들만 대상으로 조합했을 때, 모든 가능한 불 함수들을 표현할 수 있는
     가를 나타냄
  - 함수적으로 완전한 논리 게이트 집합의 예
    - 16가지의 모든 가능한 불 함수를 만들어낼 수 있음
    - { AND, OR, NOT }
    - { NAND }
    - { NOR }
  - 함수적으로 완전하지 않은 논리 게이트 집합의 예
    - 16가지 경우의 수 중 만들 수 없는 불 함수가 존재
    - { AND, OR }
- 이번 실습에서는 NAND 게이트를 사용하여 실습 진행

## TTL 집적 회로 칩

- TTL 집적 회로
  - 집적 회로(integrated circuit)
    - 트랜지스터, 다이오드, 캐패시터와 같은 여러 개의 전자부품들을 하나의 작은 반도체에 집어넣어 복잡한 기능을 수행하도록 만든 칩
  - TTL (Transistor-Transistor Logic)
    - 집적 회로의 한 종류로 RTL (Regsiter-Transistor Logic) 등의 방식에 비하여 높은 처리 성능을 가짐
    - 1960-70년대에 널리 사용되면서 사실상의 표준으로 인식됨
    - AND, OR, NOT, NAND 등 대부분의 logic gate들이 TTL 패키징 형태로 개발



### SN7400 NAND와 데이터시트

#### SN7400, SN74LS00, SN74S00 QUADRUPLE 2-INPUT POSITIVE-NAND GATES

SDLS025B - DECEMBER 1983 - REVISED OCTOBER 2003



#### 데이터시트

- 칩의 동작 전압, 출력 전압, 연결
   및 출력 핀 등의 정보 표기
- 부품 번호 부여 규칙에서74XX00 등 숫자 중간에 들어가 는 알파벳은 칩의 특성 표시
  - 기능과는 무관
  - 74 뒤 2자리 숫자가 기능 표현

#### recommended operating conditions (see Note 3)

|                 |                                |     | SN5400 |      |      |     | SN7400 |      |  |  |
|-----------------|--------------------------------|-----|--------|------|------|-----|--------|------|--|--|
|                 |                                | MIN | NOM    | MAX  | MIN  | NOM | MAX    | UNIT |  |  |
| Vcc             | Supply voltage                 | 4.5 | 5      | 5.5  | 4.75 | 5   | 5.25   | ٧    |  |  |
| VIH             | High-level input voltage       | 2   |        |      | 2    | ,   |        | ٧    |  |  |
| V <sub>IL</sub> | Low-level input voltage        |     |        | 0.8  |      |     | 0.8    | ٧    |  |  |
| ЮН              | High-level output current      |     |        | -0.4 |      |     | -0.4   | mA   |  |  |
| loL             | Low-level output current       |     |        | 16   |      |     | 16     | mA   |  |  |
| TA              | Operating free-air temperature | -55 |        | 125  | 0    |     | 70     | °C   |  |  |

NOTE 3: All unused inputs of the device must be held at V<sub>CC</sub> or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

## SN7400 NAND와 데이터시트

#### SN7400, SN74LS00, SN74S00 QUADRUPLE 2-INPUT POSITIVE-NAND GATES

SDLS025B - DECEMBER 1983 - REVISED OCTOBER 2003

## electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

|                 |                        |                         |                            |     | SN5400 |      |     |      |      |      |
|-----------------|------------------------|-------------------------|----------------------------|-----|--------|------|-----|------|------|------|
| PARAMETER       |                        | TEST CONDITIO           | NS+                        | MIN | TYP§   | MAX  | MIN | TYP§ | MAX  | UNIT |
| V <sub>IK</sub> | V <sub>CC</sub> = MIN, | I <sub>I</sub> = −12 mA |                            |     |        | -1.5 |     |      | -1.5 | V    |
| Voн             | V <sub>CC</sub> = MIN, | $V_{IL} = 0.8 V$ ,      | $I_{OH} = -0.4 \text{ mA}$ | 2.4 | 3.4    |      | 2.4 | 3.4  |      | V    |
| V <sub>OL</sub> | V <sub>CC</sub> = MIN, | V <sub>IH</sub> = 2 V,  | $I_{OL} = 16 \text{ mA}$   |     | 0.2    | 0.4  |     | 0.2  | 0.4  | V    |
| lį              | $V_{CC} = MAX$ ,       | V <sub>I</sub> = 5.5 V  |                            |     |        | 1    |     |      | 1    | mA   |
| lін             | $V_{CC} = MAX$ ,       | V <sub>I</sub> = 2.4 V  |                            |     |        | 40   |     |      | 40   | μΑ   |
| I <sub>IL</sub> | $V_{CC} = MAX$ ,       | V <sub>I</sub> = 0.4 V  |                            |     |        | -1.6 |     |      | -1.6 | mA   |
| los¶            | V <sub>CC</sub> = MAX  |                         |                            | -20 |        | -55  | -18 |      | -55  | mA   |
| Iссн            | $V_{CC} = MAX$ ,       | V <sub>I</sub> = 0 V    |                            |     | 4      | 8    |     | 4    | 8    | mA   |
| ICCL            | V <sub>CC</sub> = MAX, | V <sub>I</sub> = 4.5 V  |                            |     | 12     | 22   |     | 12   | 22   | mA   |

<sup>&</sup>lt;sup>‡</sup> For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

<sup>§</sup> All typical values are at  $V_{CC}$  = 5 V,  $T_A$  = 25°C.

 $<sup>\</sup>P$  Not more than one output should be shorted at a time.

## 빵판(breadboard)

- 빵판(breadboard)
  - 기판에 납땜이나 랩핑(wrapping) 등의 작업을 하지 않고 회로를 쉽게 구성할 수 있는 도구
  - 종류에 따라 조금씩 형태가 다르지만, 아래와 같이 구성됨
    - 전원(5V, GND) 구성을 위해 가로로 연결된 가로선(P, N)
    - 칩의 다리와 전선 등을 연결하기 위한 세로선(V)
    - 칩을 설치하기 위한 공백 부분(C)



 Logic Design Lab 2017 FALL
 12/24
 논리 게이트의 기초

## 빵판 사용하는 방법(1)



- 빵판 회로 연결의 예
  - a 는 5V 전원에 연결 가정
  - b 지점으로 전원을 공급하고 싶을 경우 (또는 논리값 1을 입력하고 싶을 경우)

 Logic Design Lab 2017 FALL
 13/24
 논리 게이트의 기초

## 빵판 사용하는 방법(2)



## 빵판 사용하는 방법(3)



#### DC 전원 공급 장치와 멀티미터 사용법



#### DC 전원 공급 장치(power supply) & 멀티미터(multimeter) 설정

왼쪽 그림과 같이 직류전원공급기에서 원하는 출력전압을 설정한 다음,
 On/Off 버튼을 누르면 전원이 출력된다. 멀티 미터의 경우 측정하고자 하는
 AC/DC 전류, 전압 등 버튼을 누른 다음, 측정범위를 설정하면 된다.

**Logic Design Lab 2017 FALL** 16/24 논리 게이트의 기초

## 실험 1 - NAND 게이트 특성 확인(1)

- 목표
  - NAND 게이트에 전원을 연결하여 동작을 확인한다.
- 실험 내용
  - 1. 전원 공급 장치에서 5V 직류 전원을 생성하도록 설정한다.
  - 2. 빵판의 양쪽 가로선(P, N)으로  $V_{CC}$ , GND에 연결한다.
  - 가운데 홈을 이용하여 SN7400 NAND 칩을 부착한다.
  - 4. 데이터시트를 참고하여 NAND 칩 전원 연결(그림 참고)하고, 세팅이 완료되면 1A,1B 위치에 적당한 전압을 인가하여 1Y출력 값을 확인한다.
  - 5. 기존의 알고있던 NAND 게이트의 진리표와 비교해본다.
- 제출 사항
  - 없음



## 실험 1 - NAND 게이트 특성 확인(2)

#### ■ 실험 내용

- 전원 공급 장치에서 5V 직류 전원을 생성하도록 설정한다.
- 2. 빵판의 양쪽 가로선(P, N)으로 V<sub>cc</sub> , GND에 연결한다.
- 3.가운데 홈을 이용하여 SN7400 NAND 칩을 부착한다.
- 데이터시트를 참고하여 NAND 칩 전원 연결(그림 참고)하고, 세팅이 완료되면 1A,1B 위치에 적당한 전압을 인가하여 1Y출력 값을 확인한다.
- 5. 기존의 알고있던 NAND 게이트의 진리표와 비교해본다.





### 실험 2 – 플로팅 입력시의 게이트 동작 확인

- 목표
  - 게이트에 플로팅 입력(floating input)을 인가하면 어떻게 동작하는지 확인한다.
- 실험 내용
  - 1. 플로팅 입력이란  $V_{CC}$ , GND 등 일정한 전압을 가진 전원에 연결되지 않은 입력 값 상태이다. 이 경우 칩의 구현에 따라 동작이 다를 수 있다.
  - 2. 실험 1의 구성에서 하나의 입력을 제거하여 플로팅 입력을 만든다.
- 제출 사항
  - 없음



## 실험 3 - 입력 전압 변화에 따른 게이트 동작 변화 확인(1)

- 목표
  - 게이트에 인가하는 전압을 변화시키면 동작이 어떻게 변화하는지 확인한다.
- 실험 내용
  - 1. 데이터 시트에는 정상 동작을 하는  $V_{CC}$  (공급 전압),  $V_{HI}$ (입력 전압)등의 정보가 명시되어 있다.
  - 2. 실제 동작을 확인하기 위해 두 입력 값을 모두 GND로 세팅한 뒤 (두 입력을 0으로 고정) 전원 공급 장치에서  $V_{CC}$  (공급 전압)를 낮추면서 실험한다.
  - 3.  $V_{OH}$  (출력 전압)를 그래프 형태로 표시하면서 이 데이터 시트에 표기된 값보다 작아 지는  $V_{CC}$  (공급 전압) 값을 찾는다.
- 제출 사항
  - V<sub>CC</sub> (공급 전압) 값과 V<sub>OH</sub> (출력 전압)의 관계를 그래프로 나타낸다.

## 실험 3 - 입력 전압 변화에 따른 게이트 동작 변화 확인(2)

- 실험 내용
  - 1. 데이터 시트에는 정상 동작을 하는  $V_{CC}$  (공급 전압),  $V_{HI}$ (입력 전압)등의 정보가 명시되어 있다.
  - 2. 실제 동작을 확인하기 위해 두 입력 값을 모두 GND로 세팅한 뒤 (두 입력을 0으로 고정) 전원 공급 장치에서  $V_{CC}$  (공급 전압)를 낮추면서 실험한다.
  - 3.  $V_{OH}$  (출력 전압)를 그래프 형태로 표시하면서 이 데이터 시트에 표기된 값보다 작아 지는  $V_{CC}$  (공급 전압) 값을 찾는다.
- 제출 사항
  - V<sub>CC</sub> (공급 전압) 값과 V<sub>OH</sub> (출력 전압)의 관계를 그래프로 나타낸다.



Logic Design Lab 2017 FALL 21/24 논리 게이트의 기초

## 실험 4 - NAND 칩을 이용한 회로 구성(1)

- 목표
  - NAND 게이트를 사용하여 NOT 게이트(inverter) 만들기
- 실험 내용
  - 1. { NAND }가 함수적으로 완전하기 때문에 NAND 게이트 만으로 다른 논리 게이트를 표현할 수 있다.
  - 2. NAND 게이트만을 사용하여 NOT 게이트를 구성해 본다.
  - 3. 5V 전압을 인가하여 동작을 확인해본다.
  - 4. 조교에게 동작 검증받기
- 제출 사항
  - 없음.



## 실험 4 - NAND 칩을 이용한 회로 구성(2)

- 목표
  - NAND 게이트를 사용하여 NOT 게이트(inverter) 만들기
- 실험 내용
  - 1. { NAND }가 함수적으로 완전하기 때문에 NAND 게이트 만으로 다른 논리 게이트를 표현할 수 있다.
  - 2. NAND 게이트만을 사용하여 NOT 게이트를 구성해 본다.
  - 3. 5V 전압을 인가하여 동작을 확인해본다.
  - 4. 조교에게 동작 검증받기



 Logic Design Lab 2017 FALL
 23/24
 논리 게이트의 기초

## 실험과제 제출 안내

#### ■ 보고서 포함 사항

- 실험3 V<sub>CC</sub> (공급 전압) 값과 V<sub>OH</sub> (출력 전압)의 관계에 대한 그래프
- 추가적인 내용은 자유롭게 작성
- 하나의 pdf 문서로 정리

- 제출 방법 및 기한
  - ETL **과제 게시판**에 팀별로 제출
  - 일요일 오후 6시 까지