f:A->B is a surjective function define a relation on A by $a_0 \sim a$, if $f(a_c) = f(a_i)$. Show that it is an equivalence we lation for ac A f(a) = f(a) so ana if $f(a_i) = f(a_2)$ then $f(a_2) = f(a_1)$ 50 a, ~ a2 -> a2~a, if all and armas then $f(a) = f(a_2) = f(a_3)$ 50 a, a_3 · let A be the set of equivalence classes Spow there is a bijective correspondance between A and B. [a] $\in A^{\bullet}$ s, t [a] = $S \tilde{a} \in A$, $\tilde{a} \sim a \tilde{s}$ f([a]) = f(a), Since f is surjective We know that for each beB I at least let $g: B \rightarrow A^*$ sit g(f(a)) = [a]then g(f(a)) = [a] for all $[a] \in A^{\circ}$ and f(g(b)) = f(g(f(a))) = f(a) = f(a) = b Hence by jew in

