Lasso Regression

Nipun Batra

July 26, 2025

IIT Gandhinagar

Lasso Regression

 \bullet LASSO \longrightarrow Least absolute shrinkage and selection operator

Lasso Regression

- ullet LASSO \longrightarrow Least absolute shrinkage and selection operator
- Popular as it leads to a sparse solution.

Constructing the Objective Function

ullet Find a $heta_{
m opt}$ such that

$$m{ heta}_{ ext{opt}} = rg \min_{m{ heta}} \left(\mathbf{y} - \mathbf{X} m{ heta}
ight)^T (\mathbf{y} - \mathbf{X} m{ heta}) : ||m{ heta}||_1 < s$$
 (1)

Constructing the Objective Function

• Find a θ_{opt} such that

$$m{ heta}_{ ext{opt}} = rg \min_{m{ heta}} \left(\mathbf{y} - \mathbf{X} m{ heta}
ight)^T (\mathbf{y} - \mathbf{X} m{ heta}) : \ ||m{ heta}||_1 < s$$

• Using KKT conditions

$$\theta_{\text{opt}} = \underbrace{\arg\min_{\boldsymbol{\theta}} (\mathbf{y} - \mathbf{X}\boldsymbol{\theta})^T (\mathbf{y} - \mathbf{X}\boldsymbol{\theta}) + \delta^2 ||\boldsymbol{\theta}||_1}_{\text{convex function}}$$
(2)

Solving the Objective

• Since $||\theta||_1$ is not differentiable, we cannot solve,

$$\frac{\partial (\mathbf{y} - \mathbf{X}\boldsymbol{\theta})^T (\mathbf{y} - \mathbf{X}\boldsymbol{\theta}) + \delta^2 ||\boldsymbol{\theta}||_1}{\partial \boldsymbol{\theta}} = 0$$
 (3)

Solving the Objective

• Since $||\theta||_1$ is not differentiable, we cannot solve,

$$\frac{\partial (\mathbf{y} - \mathbf{X}\boldsymbol{\theta})^T (\mathbf{y} - \mathbf{X}\boldsymbol{\theta}) + \delta^2 ||\boldsymbol{\theta}||_1}{\partial \boldsymbol{\theta}} = 0$$
 (3)

• How to Solve? Use coordinate descent!

Sample Dataset

Geometric Interpretation

Lasso regression

 $\mu = 1.0 \label{eq:mu}$ (on the <code>Sample Dataset</code>)

 $\mu = 1.25 \label{eq:mu}$ (on the Sample Dataset)

 $\mu = 1.5 \label{eq:mu}$ (on the <code>Sample Dataset</code>)

 $\mu = 1.75 \label{eq:mu}$ (on the <code>Sample Dataset</code>)

 $\mu = 2.0 \label{eq:mu}$ (on the Sample Dataset)

Regularization path of lasso regression

Regularization path of θ_i

LASSO and feature selection

• LASSO inherently does feature selection!

LASSO and feature selection

- LASSO inherently does feature selection!
- Sets coefficients of "less important" features to zero.

LASSO and feature selection

- LASSO inherently does feature selection!
- Sets coefficients of "less important" features to zero.
- Sparse and memory efficient and often more interpretable models.

Subgradient

• Generalises gradient to convex but non-differentiable problems

Subgradient

- Generalises gradient to convex but non-differentiable problems
- Examples:

Subgradient

- Generalises gradient to convex but non-differentiable problems
- Examples:
 - f(x) = |x|

Task at hand

• TASK: find derivative of f(x) at $x = x_0$

• Construct a differentiable g(x)

- Construct a differentiable g(x)
 - Intersecting f(x) at $x = x_0$

- Construct a differentiable g(x)
 - Intersecting f(x) at $x = x_0$
 - Below or on f(x) for all x

• Compute slope of g(x) at $x = x_0$

Another Example: f(x) = |x|

• Subgradient of f(x) belongs to [-1,1]

• Another optimisation method (akin to gradient descent)

- Another optimisation method (akin to gradient descent)
- Objective: $\min_{\theta} f(\theta)$

- Another optimisation method (akin to gradient descent)
- Objective: $\min_{\theta} f(\theta)$
- Key idea: Sometimes difficult to find minimum for all coordinates

- Another optimisation method (akin to gradient descent)
- Objective: $\min_{\theta} f(\theta)$
- Key idea: Sometimes difficult to find minimum for all coordinates
- ..., but, easy for each coordinate

- Another optimisation method (akin to gradient descent)
- Objective: $\min_{\theta} f(\theta)$
- Key idea: Sometimes difficult to find minimum for all coordinates
- ..., but, easy for each coordinate
- turns into a one-dimensional optimisation problem

• Picking next coordinate:

• Picking next coordinate:

- Picking next coordinate: random, round-robin
- No step-size to choose!

- Picking next coordinate: random, round-robin
- No step-size to choose!
- Converges for Lasso objective

Learn $y = \theta_0 + \theta_1 x$ on following dataset, using coordinate descent where initially $(\theta_0, \theta_1) = (2, 3)$ for 2 iterations.

x	у
1	1
2	2
3	3

Our predictor,
$$\hat{y} = \theta_0 + \theta_1 x$$

Error for
$$i^{th}$$
 datapoint, $\epsilon_i = y_i - \hat{y}_i$

$$\epsilon_1 = 1 - \theta_0 - \theta_1$$

$$\epsilon_2 = 2 - \theta_0 - 2\theta_1$$

$$\epsilon_3 = 3 - \theta_0 - 3\theta_1$$

$$\mathsf{MSE} = \tfrac{\epsilon_1^2 + \epsilon_2^2 + \epsilon_3^2}{3} = \tfrac{14 + 3\theta_0^2 + 14\theta_1^2 - 12\theta_0 - 28\theta_1 + 12\theta_0\theta_1}{3}$$

$$\mathsf{MSE} = \tfrac{1}{3}(14 + 3\theta_0^2 + 14\theta_1^2 - 12\theta_0 - 28\theta_1 + 12\theta_0\theta_1)$$

INIT:
$$\theta_0 = 2$$
 and $\theta_1 = 3$

$$\theta_1=3$$
 optimize for θ_0

INIT:
$$\theta_0 = 2$$
 and $\theta_1 = 3$

$$\theta_1=3$$
 optimize for θ_0

$$\frac{\partial \,\mathsf{MSE}}{\partial \theta_0} = 6\theta_0 + 24 = 0$$

$$\theta_0 = -4$$

$$\mathsf{MSE} = \tfrac{1}{3}(14 + 3\theta_0^2 + 14\theta_1^2 - 12\theta_0 - 28\theta_1 + 12\theta_0\theta_1)$$

INIT:
$$\theta_0 = -4$$
 and $\theta_1 = 3$

$$\theta_0 = -4$$
 optimize for θ_1

INIT:
$$\theta_0 = -4$$
 and $\theta_1 = 3$

$$\theta_0 = -4$$
 optimize for θ_1

$$\theta_1 = 2.7$$

$$\mathsf{MSE} = \tfrac{1}{3}(14 + 3\theta_0^2 + 14\theta_1^2 - 12\theta_0 - 28\theta_1 + 12\theta_0\theta_1)$$

INIT:
$$\theta_0 = -4$$
 and $\theta_1 = 2.7$

$$\theta_1=2.7$$
 optimize for θ_0

INIT:
$$\theta_0 = -4$$
 and $\theta_1 = 2.7$

$$\theta_1=2.7$$
 optimize for θ_0

$$\theta_0 = -3.4$$

$$\mathsf{MSE} = \tfrac{1}{3}(14 + 3\theta_0^2 + 14\theta_1^2 - 12\theta_0 - 28\theta_1 + 12\theta_0\theta_1)$$

• Express error as a difference of y_i and $\hat{y_i}$

$$\hat{y}_i = \sum_{j=0}^d \theta_j x_i^j = \theta_0 x_i^0 + \theta_1 x_i^1 + \theta_2 x_i^2 + \ldots + \theta_d x_i^d$$
 (4)

$$\epsilon_i = y_i - \hat{y}_i = y_i - \theta_0 x_i^0 - \theta_1 x_i^1 - \dots - \theta_d x_i^d = y_i - \sum_{j=0}^d \theta_j x_i^j$$
 (5)

$$\sum_{i=1}^{n} \epsilon^2 = RSS = \sum_{i=1}^{n} \left(y_i - \left(\theta_0 x_i^0 + \ldots + \theta_j x_i^j + \theta_d x_i^d \right) \right)^2$$

$$\sum_{i=1}^{n} \epsilon^{2} = RSS = \sum_{i=1}^{n} \left(y_{i} - \left(\theta_{0} x_{i}^{0} + \ldots + \theta_{j} x_{i}^{j} + \theta_{d} x_{i}^{d} \right) \right)^{2}$$
$$\frac{\partial RSS(\theta_{j})}{\partial \theta_{j}} = 2 \sum_{i=1}^{n} \left(y_{i} - \left(\theta_{0} x_{i}^{0} + \ldots + \theta_{j} x_{i}^{j} + \ldots \right) \right) \left(-x_{i}^{j} \right)$$

$$\sum_{i=1}^{n} \epsilon^{2} = RSS = \sum_{i=1}^{n} \left(y_{i} - \left(\theta_{0} x_{i}^{0} + \ldots + \theta_{j} x_{i}^{j} + \theta_{d} x_{i}^{d} \right) \right)^{2}$$

$$\frac{\partial RSS(\theta_{j})}{\partial \theta_{j}} = 2 \sum_{i=1}^{n} \left(y_{i} - \left(\theta_{0} x_{i}^{0} + \ldots + \theta_{j} x_{i}^{j} + \ldots \right) \right) \left(-x_{i}^{j} \right)$$

$$= 2 \sum_{i=1}^{n} \left(y_{i} - \left(\theta_{0} x_{i}^{0} + \ldots + \theta_{d} x_{i}^{d} \right) \right) \left(-x_{i}^{j} \right) + 2 \sum_{i=1}^{n} \theta_{j} (x_{i}^{j})^{2}$$

$$\sum_{i=1}^{n} \epsilon^{2} = RSS = \sum_{i=1}^{n} \left(y_{i} - \left(\theta_{0} x_{i}^{0} + \ldots + \theta_{j} x_{i}^{j} + \theta_{d} x_{i}^{d} \right) \right)^{2}$$

$$\frac{\partial RSS(\theta_{j})}{\partial \theta_{j}} = 2 \sum_{i=1}^{n} \left(y_{i} - \left(\theta_{0} x_{i}^{0} + \ldots + \theta_{j} x_{i}^{j} + \ldots \right) \right) \left(-x_{i}^{j} \right)$$

$$= 2 \sum_{i=1}^{n} \left(y_{i} - \left(\theta_{0} x_{i}^{0} + \ldots + \theta_{d} x_{i}^{d} \right) \right) \left(-x_{i}^{j} \right) + 2 \sum_{i=1}^{n} \theta_{j} (x_{i}^{j})^{2}$$

where:

$$\hat{y}_i^{(-j)} = \theta_0 x_i^0 + \ldots + \theta_d x_i^d$$

is \hat{y}_i without θ_j

$$\operatorname{Set} \frac{\partial \operatorname{RSS}(\theta_j)}{\partial \theta_j} = 0$$

$$\theta_j = \sum_{i=1}^n \frac{\left(y_i - \left(\theta_0 x_i^0 + \dots + \theta_d x_i^d\right)\right) \left(x_i^j\right)}{\left(x_i^j\right)^2} = \frac{\rho_j}{z_j}$$

$$\rho_j = \sum_{i=1}^n x_i^j \left(y_i - \hat{y}_i^{(-j)}\right) \quad \text{and} \quad z_j = \sum_{i=1}^n \left(x_i^j\right)^2$$

 z_j is the squared of ℓ_2 norm of the j^{th} feature

$$\begin{split} & \text{Minimise} \underbrace{\sum_{i=1}^{n} \epsilon^2 + \delta^2 \left\{ |\theta_0| + |\theta_1| + \ldots |\theta_j| + \ldots |\theta_d| \right\}}_{\text{LASSO OBJECTIVE}} \\ & \frac{\partial}{\partial \theta_j} (\text{LASSO OBJECTIVE}) = -2\rho_j + 2\theta_j z_j + \delta^2 \frac{\partial}{\partial \theta_j} |\theta_j| \\ & \frac{\partial}{\partial \theta_j} |\theta_j| = \left\{ \begin{array}{cc} 1 & \theta_j > 0 \\ [-1,1] & \theta_j = 0 \\ -1 & \theta_i < 0 \end{array} \right. \end{split}$$

• Case 1: $\theta_i > 0$

$$-2\rho_j + 2\theta_j z_j + \delta^2 = 0$$

$$\theta_j = \frac{\rho_j - \frac{\delta^2}{2}}{z_j}$$

$$\rho_j > \frac{\delta^2}{2} \Rightarrow \theta_j = \frac{\rho_j - \frac{\delta^2}{2}}{z_j}$$

• Case 1: $\theta_i > 0$

$$-2\rho_j + 2\theta_j z_j + \delta^2 = 0$$

$$\theta_j = \frac{\rho_j - \frac{\delta^2}{2}}{z_j}$$

$$\rho_j > \frac{\delta^2}{2} \Rightarrow \theta_j = \frac{\rho_j - \frac{\delta^2}{2}}{z_j}$$

• Case 2: $\theta_j < 0$

$$\rho_j < \frac{\delta^2}{2} \Rightarrow \theta_j = \frac{\rho_j + \delta^2/2}{z_j} \tag{6}$$

• Case 3: $\theta_i = 0$

$$\frac{\partial}{\partial \theta_j}(\mathsf{LASSO}\;\mathsf{OBJECTIVE}) = -2\rho_j + 2\theta_j z_j + \delta^2 \underbrace{\frac{\partial}{\partial \theta_j}|\theta_j|}_{[-1,1]}$$

$$\in \underbrace{[-2\rho_j - \delta^2, -2\rho_j + \delta^2]}_{\text{{0}} \text{ lies in this range}}$$

$$-2\rho_j - \delta^2 \leq 0 \text{ and } -2\rho_j + \delta^2 \geq 0$$

$$-\frac{\delta^2}{2} \leq \rho_j \leq \frac{\delta^2}{2} \Rightarrow \theta_j = 0$$

Summary of Lasso Regression

$$\theta_{j} = \begin{bmatrix} \frac{\rho_{j} + \frac{\delta^{2}}{2}}{z_{j}} & \text{if} & \rho_{j} < -\frac{\delta^{2}}{2} \\ 0 & \text{if} & -\frac{\delta^{2}}{2} \leq \rho_{j} \leq \frac{\delta^{2}}{2} \\ \frac{\rho_{j} - \frac{\delta^{2}}{2}}{z_{j}} & \text{if} & \rho_{j} > \frac{\delta^{2}}{2} \end{bmatrix}$$

$$(7)$$