Homework 5 BY: NOA SHADMON

ID: 5980

Honor Code: "The codes and results derived by using these codes constitute my own work. I have consulted the following resources regarding this assignment:" (ADD: names of persons or web resources, if any, excluding the instructor, TAs, and materials posted on course website)

Kathleen Zhen, code posted on piazza, and discussion notes (posted by Nick)

Problem 1

The first time we run the code, we get $\beta_0=$ -5.071102 and $\beta_1=$ 2.016006 with $\sigma^2=$ 0.9827592. For all 10 runs, the theoretical confidence interval for β_0 is always greater than that for bootstrap procedure. This is also true for β_1 . This is again seen when we calculate the average values for the slope and intercept coefficients for the theoretical and bootstrap samples. The average theoretical $\beta_0=$ 0.830346 and the average bootstrap $\beta_0=$ 0.6838061. The average theoretical $\beta_1=$ 0.1230048 and the average bootstrap $\beta_1=$ 0.1046841.

Problem 2

Using the logistic model, we created a confusion model. Of the 20 plants (using Sepal.Length as the predictor), the system predicted 12 setosa plants and 8 versicolor plants even though there are 10 of each. This model is 90% accurate (code to calculate accuracy attached).

Using the linear discriminant analysis the system predicted 13 setosa plants and 7 versicolor plants (using Sepal.Length as the predictor). This model predicted 85% correctly.

> lda_con

model
true setosa versicolor
setosa 10 0
versicolor 3 7

Using the k nearest neighbor's algorithm, when k=3 the confusion matrix is as such:

> knn_con3

model
true setosa versicolor
setosa 10 0
versicolor 4 6

Here, the system predicted 14 setosas and 6 versicolor. This model is 80% accurate. When k=5, the confusion shows a prediction of 12 setosas and 8 versicolors. This model is 90% accurate.

> knn_con5

model
true setosa versicolor
setosa 10 0
versicolor 2 8

From the tables and using the calculated accuracy values, we can conclude that the logistic model and k nearest neighbors (with k=5) is the best for classification prediction when sepal.length is the predictor.

APPENDIX

```
library(readr)
library(broom)
library(MASS)
library(class)
#PROBLEM 1
resample = function(data) {
n = nrow(data)
# Sample row numbers (i) rather than values (e_i)
idx = sample(n, n, replace = TRUE)
# Use row numbers to get new residuals (e2_i).
 res_samp = data$.resid[idx]
 y_2i = b_0 + b_1 * x_i + e_2i
 y_samp = data$.fitted + res_samp
 # Insert new response (y_i) into data frame, keeping old covariates (x_i)
 data$gift_aid = y_samp
 # Fit the same model with new data (y2_i, x_i).
 new_mod = Im(gift_aid ~ x, data)
return (coef(new_mod))
}
prob1 = function(seed) {
set.seed(seed) # only set the seed once, at the beginning
# Part 1
x = rchisq(n = 100, df = 6)
 e = rnorm(n = 100, mean = 0, sd = 1)
y = -5 + 2*x + e
 # Part 2
 mod = Im(y \sim x)
 summ = summary(mod)
 print(summ$coefficients)
 sigma = summ$sigma
 print(sigma)
 resid = augment(mod)
 # Part 3
 theo = confint(mod)
 boot = sapply(1:400, function(i) resample(resid))
```

```
ci intercept = quantile(boot[1, ], c(0.05, 0.95))
 ci slope = quantile(boot[2, ], c(0.05, 0.95))
 theo diff int = abs(theo[3] - theo[1])
 theo diff x = abs(theo[4] - theo[2])
 diff_int = abs(ci_intercept[[1]] - ci_intercept[[2]])
 diff_slope = abs(ci_slope[[1]] - ci_slope[[2]])
 ci_widths = data.frame(theo_diff_int, theo_diff_x, diff_int, diff_slope)
 # Return widths of both the theoretical and bootstrap confidence intervals:
 return (ci_widths)
}
all_ci_widths = sapply(1:10, prob1)
#average of theoretical intercept confidence interval
theo avg int = mean(as.numeric(as.vector(all ci widths[1,])))
#average of theoretical slope confidence interval
theo avg x = mean(as.numeric(as.vector(all ci widths[2,])))
#average of boot intercept confidence interval
diff_avg_int = mean(as.numeric(as.vector(all_ci_widths[3,])))
#average of boot slope confidence interval
diff avg slope = mean(as.numeric(as.vector(all ci widths[4,])))
#part 2
data(iris)
data = iris[1:100,]
test = rbind(data[41:50,], data[91:100,])
training = rbind(data[1:40,], data[51:90,])
test = droplevels(test)
training = droplevels(training)
log_model = glm(Species ~ Sepal.Length, training,family = binomial)
# Predict for test data. Use type = "response" to get class probabilities.
log_pred = predict(log_model, test, type = "response")
# Convert predictions to 1 or 2, for category 1 or 2 respectively.
\log \text{ pred} = (\log \text{ pred} > 0.5) + 1
log_pred = levels(training$Species)[log_pred]
log con = tabcle(true = test$Species, model = log pred)
acc_log = sum(log_con[1],log_con[4])/sum(log_con[1],log_con[2],log_con[3],log_con[4])
Ida = Ida(Species~Sepal.Length, training)
```

```
lda pred = predict(lda, test, type = "response")
lda pred = levels(training$Species)[lda pred$class]
lda_con = table(true = test$Species, model = lda_pred)
acc_lda = sum(lda_con[1],lda_con[4])/sum(lda_con[1],lda_con[2],lda_con[3],lda_con[4])
knn_pred3 = knn(
 # Note the use of [] rather than $ or [[]].
 # The knn() function expects a matrix or data frame for the train and test
 # arguments. Using $ or [[]] would get a vector rather than a data frame.
train = training["Sepal.Length"], # 1-col data frame
test = test["Sepal.Length"], # 1-col data frame
 cl = training$Species,
                                   # vector
k = 3
)
knn_con3 = table(true = test$Species, model = knn_pred3)
acc knn3 =
sum(knn_con3[1],knn_con3[4])/sum(knn_con3[1],knn_con3[2],knn_con3[3],knn_con3[4])
knn_pred5 = knn(
train = training["Sepal.Length"], # 1-col data frame
test = test["Sepal.Length"], # 1-col data frame
 cl = training$Species,
                                   # vector
 k = 5
knn_con5 = table(true = test$Species, model = knn_pred5)
acc knn5 =
sum(knn_con5[1],knn_con5[4])/sum(knn_con5[1],knn_con5[2],knn_con5[3],knn_con5[4])
```