



#### Software Project Lab - 1

## Google's PageRank Algorithm

#### Presented by

Shah Alam Abir

Roll: 1439

Session: 2021-2022

#### Supervised by

Dr. Ahmedul Kabir Associate Professor IIT, University of Dhaka

# Table of contents CONTENTS

1 Introduction

4 The Web as a Graph

2 Project Motivation

5 Random Surfer Model

3 Features

6 PageRank Formula



#### Introduction

- Google's PageRank Algorithm is an algorithm used by Google Search Engine to rank web pages in search engine results.
- It was developed by Larry Page and Sergey Brin, the co-founders of Google, while they were graduate students at Stanford University.

#### Introduction

- PageRank is designed to assess the importance and relevance of web pages in the context of search engine results.
- The underlying idea is that valuable and authoritative web pages are more likely to be linked to by other web pages.
- Therefore, a web page with many high-quality incoming links is considered more valuable and is likely to rank higher in search results.



## Project Motivation

- Foundation of Modern Search Engines
- Refining Search Precision
- Impact on Accessibility
- Real-World Applications
- Academic and Research Value



#### Features

#### **Main Feature:**

 Implementation of PageRank Algorithm (that was developed by Larry Page & Sergey Brin) by solving 2 core page ranking problems.

#### **Sub Feature:**

- Can add new pages
- Can find neighbours of a particular page
- Show List of the dangling nodes
- Visualizing Pages ranking after every iterations of iterative model
- Showing Initial Transition Matrix (made from the web graph)
- Showing Gooogle Matrix (made of PageRank formula)

The Web as a Graph

#### The web as a Graph

We can represent WWW's structure as a huge directed graph, where node's
of that graph are the webpages and edges are the links between webpages.



## The web as a Graph

- Inbound links are links that point from another website to the target website
- Outbound links are links that point to another websites from target website



## The web as a Graph

- Dangling Nodes are the nodes with no outbound links
- Dangling Links are links that point to the dangling nodes



- Here **D** is a Dangling Node
- **BD** is a dangling Link

5

Random Surfer Model

#### Random Surfer Model

 The Random Surfer Model is a conceptual framework used in the context of web page ranking algorithms, particularly in understanding Google's PageRank algorithm. It is a simplified representation of how a hypothetical internet user behaves when navigating the web and is used to explain the concept of PageRank.



#### Random Surfer Model



#### **Matrix Presentation**

$$r_{(k+1)}(P_i) = \sum_{Pj \in B_{P_j}} \frac{r_k(P_j)}{|P_j|}$$

The PageRank of a page  $P_i$ , denoted  $r(P_i)$ , is the sum of the Page-Ranks of all pages pointing into  $P_i$ .

where  $B_{P_i}$  is the set of pages pointing into  $P_i$  and  $|P_j|$  is the number of out-links from page  $P_j$ .

|   | Α   | В | C   | D   |
|---|-----|---|-----|-----|
| Α | 0   | 0 | 0.5 | 0.5 |
| В | 1   | 0 | 0   | 0   |
| С | 0.5 | 0 | 0   | 0.5 |
| D | 0   | 1 | 0   | 0   |

Transition matrix **H** 

## Random Surfer Model (Iterative Calculation)

Initializing page rank for every page with 1/n. Where, n is the total number of webpages of the graph. Thus, we will have another matrix **X** with initialized page-rank value.

From previous slide we got Transition matrix **H** 

We will perform matrix multiplication  $\mathbf{X} = \mathbf{H}\mathbf{X}$  iteratively until it converge. Then we will get a modified page-rank matrix  $\mathbf{X}$ . Now, if we sort them according to probability, then we will get webpages in descending order.

| А | 1/4 |
|---|-----|
| В | 1/4 |
| С | 1/4 |
| D | 1/4 |

Matrix X

#### Problems with Random Surfer Model

But, there is two major problem with this Random Surfer Model. These are –

- 1. If there is any dangling node [webpage], then all the elements of the final matrix will be 0.
- 2. If some nodes of the graph is highly connected, then probability of these particular group of nodes becomes significantly higher then other nodes. Because of this, a random surfer iterates through a group of nodes again and again.

To solve first problems-

We have to convert **H** matrix to a *Stochastic* matrix. This *Stochastic* matrix solves the problem of dangling node by initializing nodes probability with a value. If **S** is a *Stochastic* matrix, then-

$$S = H + a(1/ne^T)$$

Here,

S, Stochastic Matrix

H, Transition Matrix

a, is a (nx1) matrix. Value of  $a_i$  is 1 if a dangling node else 0  $e^T$ , is a (1xn) matrix. Every element is 1.

To solve second problems-

We have to make *GOOGLE* (*G*) matrix from *S* matrix & *H* matrix. This *G* matrix ensures teleportation from the dense part to the sparse part of the graph. If *G* is a *GOOGLE* matrix, then-

$$G = \alpha S + (1 - \alpha) \frac{1}{\alpha} e e^T = \alpha H + (\alpha a + (1 - \alpha)e) \frac{1}{n} e^T$$

Here,

G, GOOGLE Matrix

S, Scholastic Matrix

H, Transition Matrix

a, is a (nx1) matrix. Value of  $a_i$  is 1 if a dangling node else 0

e, is a (nx1) matrix. Every element is 1

 $e^T$ , is a (1xn) matrix. Every element is 1.

 $\alpha$ , is the damping factor. It ensures the teleportation.

#### **Damping Factor**

The damping factor in the PageRank algorithm is a parameter that represents the probability that a random surfer, navigating the web by clicking on links, will continue to browse and click on links within the current web page rather than jumping to a completely random page.

Now, we got our final formula to make a *GOOGLE matrix* by doing *Stochastic adjustment* & *Primitive adjustment* of the initial *Transition matrix*, **H**.

$$G = \alpha S + (1 - \alpha) \frac{1}{\alpha} e e^T = \alpha H + (\alpha a + (1 - \alpha)e) \frac{1}{n} e^T$$

Now, We will perform Iterative matrix multiplication  $\mathbf{X} = \mathbf{H}\mathbf{X}$  until it converges. Then we will get a modified page-rank matrix,  $\mathbf{X}$ .

Now, if we sort matrix **X** according to probabilistic value, then we will get webpages in descending order.

## Thank you