NAME : RAJ SHAH

ROLL: 2021 CSB 065

SUBJECT: THEORY OF COMPUTATION

HOME TASK 1

1a)

Let a DFA, $M = (Q, \Sigma, S, Q_o, f)$ L(M) : Language of machine M. (set of all strings accepted by the DFA) $L(M) = \int W \in \Sigma^* : Maccepts W.$

Let Σ be an apphabet and $A \subseteq \Sigma^*$ be a language over Σ .

The language A is originar, if there exists a DFA such that L(M) = A

 $L_1 = \{ \omega \in \{0,1\}^* \mid \omega \text{ stanks with 0 and with 1} \}$ ends with 1} ends with 1} ends with 1} a bfA M, such that $L(M_1) = L_1$, $\Sigma = \{0,1\}$

To design state digram of the DFA M,,
we define 4 states > 90, 91, 92, 93 where
go is the initial state.

: State Diagram :

Since language L, has a corresponding DFA M_1 — such that $L(M_1) = L_1$, B_1 , L_1 is a regular language

L₂ = { w ∈ {0,1}* | w contains 1010 as substring} b)

 $\Sigma = \{0/1\}$.

If Lz is a language then there exists a DFA M2, such that L(M2) = L2.

Let us consider 5 states of DFA as follows,

Po → Seen nothing p, → Seen "1"

P2 -> Seen "10"

13 -> Seen "101"

P4 -> Seen "1010"

So state diagram of DFA M2 =)

Po 1 P1 0 P2 1 P3 0 P4

Since L2 has a concesponding DFAM2 such that L(M2) = L2 L2 is a sa segular language.

Li and L2 are both originar languages as there exists DFA's Mi and M2 suspectively such that L, = L(M,) and 12 = L(M2)

To check of we have seen L, & L₂

are singularies. We know originar

languages are closed under union

operation. Since L, & L₂ are

operation. Languages, L, VL₂ is

also originar languages, L, VL₂ is

also originar this we will construct a

To justify this we will construct a

DFA M₃, with states X such that

DFA M₃, with states X such that

X C Q x P, initial state (90, Po), such

that L(M₃) = L, VL₂

To design the state table of the DFA we

meed its state table

	State	0	1
	Q0/P0	9,,00	931P1
	9,,60	9.,10	92/191
	/(q2/P1)	9,, 92	92191
ر لاما .	91,12	9.,00	P2/P3
Accepted by	- (92/P3)	91,19	92181
DFA /	(q,,Pa)	91,84	9,2,89
\	(92/P4)	91, 19	92184
	93,P1	93182	9,3, P1
	93/12	93/80	9,31 P3
		9,3,80	93/P)
	93, Po 93, P3	9,3,89	93, 81
	(97 PA)	92, 84	93, PA

State Diagram (90,00) 21,14 93, Pi 0 93, 12) 1 93, 83) 93, Po

language.