

(19)

JAPANESE PATENT OFFICE

PATENT ABSTRACTS OF JAPAN

(11) Publication number: 06077888 A

(43) Date of publication of application: 18 . 03 . 94

(51) Int. Cl

H04B 7/26
H04B 17/00
H04Q 7/04

(21) Application number: 04247271

(71) Applicant: NEC CORP

(22) Date of filing: 24 . 08 . 92

(72) Inventor: AZUMA HIROYUKI

(54) CELL SYSTEM RADIO TELEPHONE SYSTEM

reduced and the battery service life is extended.

(57) Abstract:

COPYRIGHT: (C)1994,JPO&Japio

PURPOSE: To reduce the power consumption by decreasing the frequency of the operation of a reception circuit at the time of measurement in the cell system radio telephone system in which a mobile station refers to a measurement object channel list for hand-over to measure a reception electric field strength.

CONSTITUTION: For example, a base station A stores a measurement object channel list A for cells B, C, D, E, F, G being adjacent cells to a cell A. Upon the receipt of the list, a mobile station (a) measures the reception electric field strength of a frequency channel on the list and sends the measurement result to the base station A. The base station A discriminates to which cell hand-over is to be implemented based on the result of measurement and gives a command to the mobile station (a). The mobile station (a) selects a cell according to the command. Thus, since only a measurement object channel of cells adjacent to each cell is represented on the measurement object channel referenced by the mobile station, the reception electric field strength of only cells possibly being objects of succeeding hand-over has only to be measured and the frequency of the reception circuit operation at the measurement is reduced, then the power consumption is

(19)日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11)特許出願公開番号

特開平6-77888

(43)公開日 平成6年(1994)3月18日

(51)Int.Cl.⁵

H 04 B 7/26

17/00

H 04 Q 7/04

識別記号

107

7304-5K

D 7170-5K

G 7170-5K

K 7304-5K

F I

技術表示箇所

審査請求 未請求 請求項の数2(全7頁)

(21)出願番号

特願平4-247271

(22)出願日

平成4年(1992)8月24日

(71)出願人 000004237

日本電気株式会社

東京都港区芝五丁目7番1号

(72)発明者 東 博之

東京都港区芝五丁目7番1号 日本電気株式会社内

(74)代理人 弁理士 菅野 中

(54)【発明の名称】 セル方式無線電話システム

(57)【要約】

【目的】 ハンドオーバーのために、移動局が測定対象チャネルリストを参照して受信電界強度測定を行うセル方式無線電話システムにおいて、測定時の受信回路動作の頻度を下げ、消費電力を低減する。

【構成】 例えば基地局Aは、セルAの隣接セルであるセルB, C, D, E, F, Gの測定対象チャネルリストAを格納しておく。移動局aは、リストを受信すると、リスト上の周波数チャネルの受信電界強度を測定し、測定結果を基地局へ送信する。基地局Aは測定結果をもとにどのセルへハンドオーバすべきかを判断し、移動局aへ指示を出す。移動局aはこの指示に従い、セルの切り替えを行う。これにより移動局が参照する測定対象チャネルリストには、それぞれのセルに隣接するセルの測定対象チャネルのみが示されているため、次のハンドオーバーの対象となる可能性の高いセルのみの受信電界強度を測定すればよく、測定時の受信回路動作の頻度が減少するために消費電力が減少し、電池寿命が延びる。

【特許請求の範囲】

【請求項1】 ハンドオーバーを行うために、移動局が受信電界強度測定対象チャネルリストを参照することによって複数基地局からの受信電界強度を測定する機能を有するセル方式無線電話システムであって、

前記受信電界強度測定対象チャネルリストには、少なくとも各セルに隣接するセルの測定対象チャネルのみが示されており、

前記移動局は、そのリストを参照して、現在サービスを受けている（無線通信リンクが確立している）セルに隣接したセルに関してのみ受信電界強度を測定することを特徴とするセル方式無線電話システム。

【請求項2】 ハンドオーバーを行うために、移動局が受信電界強度測定対象チャネルリストを参照することによって複数基地局からの受信電界強度を測定する機能を有するセル方式無線電話システムであって、

移動局自身は、あらかじめ各セルに対応する測定対象チャネルリストを移動通信網内の全セル分所有している構成となっており、

セル内でサービスを受けている移動局は、該移動局内に格納されている測定対象チャネルリスト群の中から前記セルに対応するリストを選択し、このリストを参照して隣接セルの受信電界強度測定を行うことを特徴とするセル方式無線電話システム。

【発明の詳細な説明】

【0001】

【産業上の利用分野】 本発明は、セル方式無線電話システムに関する。

【0002】

【従来の技術】 図6は、従来のセル方式無線電話システムにおける、1通信事業者が管理する移動通信網内でのセル配置例を示す図である。ここで、受信電界強度の測定対象周波数チャネルは1つの基地局に対し1チャネルが割り当てられている。

【0003】 今、移動局aがセルA内でサービスを受けているとする。移動局aの移動により、基地局Aとの位置関係は変化し、受信あるいは送信状態が悪くなる場合を考えられ、そうなった場合は、より通信状況のよい他のセルへチャネルを切り替える（ハンドオーバーする）必要がある。

【0004】 移動局は、このハンドオーバーをすべきか否かの判断基準を得るために現在のセル及び周辺のセルの受信電界強度を測定する。この際、移動局は、移動局自身が保有する、あるいは基地局から送られてきた測定対象チャネルリストを参照して測定を行う。移動局aが、受信電界強度測定に用いる測定対象チャネルリストは図6に示すように移動通信網内の全てのセル数分のチャネルを含んでいる。つまり、1移動通信網で1つの測定対象チャネルリストを管理し、この網内にいる移動局は全てこのリストを元に測定を行う必要がある。

【0005】 次にこの従来のセル方式無線電話システムにおいてハンドオーバーを行うまでの手順を図7に示す。移動局aは基地局から受信した（あるいは移動局内に格納されている）測定対象チャネルリストを参照し、このリストに示される全ての周波数チャネルの受信電界強度を測定する。図8に測定タイミングの概略を示す。ここで測定を行う際の条件を仮に以下のように決めるとする。

- 1チャネルあたりのサンプル数：3
- 測定間隔：5 msec
- 測定周期：300 msec (300 msec内で測定を終了する)

【0006】 まず、5 msec間隔で測定対象リスト中の全チャネルを順番に一通り測定する。これで1サンプル目の測定が終わる。同様にして、2サンプル目、3サンプル目を連続して受信していく、全チャネルのサンプルがとれた時点で測定を終了し各チャネルごとに平均値を求め、その平均値をそれぞれのチャネルの受信電界強度として扱う。

【0007】 測定対象リストには、移動通信網X内の全てのセルの測定対象周波数チャネルが示されているから、図6の構成の場合、測定チャネル数は18、すなわち全部で $18 \times 3 = 54$ 回の測定を行う必要がある。従って、3サンプル分の測定を終了するのに265 msecかかる。このようにして得られたサンプルを各チャネルごとに平均化し、その平均値をそれぞれのチャネルの受信電界強度として扱う。

【0008】 次に受信電界強度の大きいもの上位幾つかが選出され、ここで初めてハンドオーバーの対象となり得る隣接セルがわかる。選出したハンドオーバー候補チャネルリストは基地局へ送信され、基地局がそのリストの中でどのセルにハンドオーバーするのが適切かを判断し、移動局へ通知する。その通知を受けた移動局は指定されたセルのチャネルに切り替えて通話を再開する。

【0009】

【発明が解決しようとする課題】 この従来のセル方式無線電話システムでは、例えば基地局Aから遠く離れた基地局Lからの受信電界強度は極めて低く、ハンドオーバーの対象セルになる可能性はまず有り得ない。しかし、どのセルがハンドオーバーの対象セルとなり得るかはリスト上の全チャネル、すなわち1つの移動通信網内の全セルについて測定して上位いくつかのセルを選定するまでわからない。

【0010】 従って、本来なら測定する必要が無い遠方のセルについても測定しなくてはならないため、測定に要する時間がかかる。また、測定時に受信回路などが動作する頻度が大きいため消費電力が増大し、電池寿命が短くなる。あるいは長時間の運用を想定すると大容量の電池を必要とするなどの欠点があつた。

【0011】 本発明の目的は、測定時の受信回路動作の

頻度を下げ、消費電力を低減するセル方式無線電話システムを提供することにある。

【0012】

【課題を解決するための手段】前記目的を達成するため、本発明に係るセル方式無線電話システムは、ハンドオーバを行うために、移動局が受信電界強度測定対象チャネルリストを参照することによって複数基地局からの受信電界強度を測定する機能を有するセル方式無線電話システムであって、前記受信電界強度測定対象チャネルリストには、少なくとも各セルに隣接するセルの測定対象チャネルのみが示されており、前記移動局は、そのリストを参照して、現在サービスを受けている（無線通信リンクが確立している）セルに隣接したセルに関してのみ受信電界強度を測定するものである。

【0013】また、ハンドオーバを行うために、移動局が受信電界強度測定対象チャネルリストを参照することによって複数基地局からの受信電界強度を測定する機能を有するセル方式無線電話システムであって、移動局自身は、あらかじめ各セルに対応する測定対象チャネルリストを移動通信網内の全セル分所有している構成となっており、セル内でサービスを受けている移動局は、該移動局内に格納されている測定対象チャネルリスト群の中から前記セルに対応するリストを選択し、このリストを参照して隣接セルの受信電界強度測定を行うものである。

【0014】

【作用】本発明によれば、移動局が参照する測定対象チャネルリストには、その移動局が現在サービスを受けているセルに隣接するセルの測定対象チャネルのみが示されているため、次のハンドオーバの対象となる可能性の高いセルのみの受信電界強度を測定すればよく、測定時の受信回路動作の頻度が減少するために消費電力が減少し、電池寿命が延びる。

【0015】

【実施例】次に本発明について図面を参照して説明する。

【0016】（実施例1）図1は、本発明の実施例1に係るセル方式無線電話システムにおけるセルの配置と測定対象チャネルの関係を示した図である。ここで受信電界レベルの測定対象チャネルは1つの基地局に対し1チャネルが割り当てられている。

【0017】図1において、セルAを基準にとった場合、その隣接セルはセルB, C, D, E, F, Gである。通信事業者はあらかじめこれらの隣接セルに対応した測定対象チャネルナンバのリストをリストA1として作成し、基地局A内の記憶部に格納しておく。

【0018】同様にしてセルBはリストB1を、セルCはリストC1をというように全基地局がそのセルにおける測定対象チャネルリストを所有する構成となっている。

【0019】ここで本発明のことを特徴とするところは、測定対象チャネルリストの内容は、そのセルに隣接するセルのチャネルのみに限られ、そのリストを基地局ごとに所有しているところにある。

【0020】次にこのセル方式無線電話システムにおいてハンドオーバを行うまでの動作を説明する。図2にハンドオーバを行うまでの手順を、図3に測定タイミングの概略を示す。移動局aは基地局Aから測定対象チャネルリストA1を受信し格納しておく。このリストを見10て、例えば、セルBのチャネルナンバ2から受信電界強度を測定していく。ここで測定を行う際の条件は以下の通りとする。

- ・1チャネルあたりのサンプル数：3
- ・測定間隔：5 msec
- ・測定周期：300 msec (300 msec内で測定を終了する)

【0021】本発明のシステム構成において、測定対象チャネルリストにはハンドオーバの候補となり得る隣接セルのみが示されているから、測定チャネル数は6である。この場合、全18回の測定で済み、測定に要する時間は85 msecとなる。

【0022】この測定を全く同じ条件で従来の方式の下で行った場合と比べると、測定対象チャネル数が3分の1に減っているために測定回数及び測定時間も3分の1となっている。

【0023】このように本発明によれば測定回数を減少させることができるため、測定に要する時間が短くなる。また、測定時に受信回路などが動作する頻度が小さくなるため、消費電力が減少し、電池寿命が長くなる。30あるいは、長時間の運用にも大容量の電池を必要としなくなる。

【0024】（実施例2）図4は、本発明の実施例2に係るセルと測定対象チャネルリストの関係を、図5はこの例でのハンドオーバ手順を示す図である。この例では、あらかじめ移動局自身が各セルに対応する測定対象チャネルリストを移動通信網X内の全セル分所有している構成となっている。セルA内でサービスを受けている移動局aは、移動局a内に格納されている測定対象チャネルリスト群の中からセルAに対応するリストA1を選択し、このリストを参照して隣接セルの受信電界強度測定を行う。測定手順については、実施例1と同様である。

【0025】この構成では移動局内に記憶した各セルに40対応するリストを参照すればよいため、測定そのものに要する消費電力等の低減はもとより、基地局から測定対象チャネルリストを受信する作業が不要になり、ハンドオーバに関わる処理がさらに簡易化、低消費電力化される。

【0026】

【発明の効果】以上説明したように本発明によれば、移

動局が参照する測定対象チャネルリストには、その移動局が現在サービスを受けているセルに隣接するセルの測定対象チャネルのみが示されているため、次のハンドオーバーの対象となる可能性の高いセルのみの受信電界強度を測定すればよく、測定時の受信回路動作の頻度が低下するために消費電力が減少し、電池寿命が延びるという効果が得られる。

【図面の簡単な説明】

【図1】本発明の実施例1を示す構成図である。

【図2】本発明においてリストを受信して隣接セルへチャネル切り替えを行までのフローを示す図である。 10

【図3】本発明の通信時における時間軸上での受信電界強度測定タイミングを示す図である。

【図4】本発明において、移動局がリストを保有している場合の構成を示す図である。

* 【図5】本発明において移動局内のリストを参照して隣接セルへチャネル切り替えを行うまでのフローを示す図である。

【図6】従来例を示す構成図である。

【図7】従来例において隣接セルへチャネル切り替えを行までのフローを示す図である。

【図8】従来例の通信時における時間軸上での受信電界強度測定タイミングを示す図である。

【符号の説明】

A～S セル及び基地局ナンバ

a 移動局

X セルA～Sから構成される無線電話用移動通信網

A1, B1 基地局A, Bがそれぞれ保有するセルナンバと測定対象チャネルナンバのリスト

*

【図1】

【図3】

【図2】

【図5】

【図4】

【図6】

【図8】

【図7】

