Neural Word Embeddings

Antoine Bosselut

Announcements

- Lectures are being recorded and MediaSpace channel will be posted to the course website
- Projects should be done in teams of 4
- Yes, you can audit the class, but project milestones won't be graded and can't guarantee access to resources

Today's Outline

- Recap: Words are vectors!
- New: Learning self-supervised vector representations CBOW, Skipgram, GloVe, fastText

Word Representations

How do we represent natural language sequences for NLP problems?

In neural natural language processing, words are vectors!

I really enjoyed the movie we watched on Saturday!

Three Parts in our System

- Embeddings: how do we represent sequences of discrete words?
- **Model:** how do we compose these embeddings to get sequence-level meaning representations?
- **Prediction:** how do we map our model's representation of a sequence to a task-relevant prediction?

Today, let's talk about embeddings in more detail!

Choosing a vocabulary

- Language contains many words (e.g., ~600,000 in English)
 - What about other tokens: Capitalisation? Accents ? Typos!? Words in other languages!? In other scripts!? Emojis !? Unicode !?
 - Millions of potential unique tokens! Most rarely appear in our training data (Zipfian distribution)
 - Model has limited capacity
- How should we select which tokens we want our model to process?
 - Week 11 tokenisation!
 - For now, initialize a vocabulary V of tokens that we can represent as a vector
 - Any token not in this vocabulary V is mapped to a special <UNK> token (i.e., "unknown").

How to represent words: sparse embeddings

- Define a vocabulary V
- Each word in the vocabulary is represented by a sparse vector
- Dimensionality of sparse vector is size of vocabulary (e.g., thousands, possibly millions)

$$x_i \in \{0,1\}^V$$

Problem: sparse embeddings

With sparse vectors, similarity is a function of common words!

How do you learn learn similarity between words?

```
enjoyed → [0...001...00]

loved → [0...1...0000]
```

sim(enjoyed, loved) = 0

Embeddings Goal

How do we train semantics-encoding embeddings of words?

Dense Embeddings

- Represent each word as a high-dimensional*, real-valued vector
 - $*Low-dimensional compared to V-dimension sparse representations, but still usually <math>O(10^2 10^3)$

word vectors

word embeddings

neural embeddings

dense embeddings

others...

Similarity of vectors represents similarity of meaning for particular words

Learn embeddings from the task!

What Does It Mean?

- 1. "Learn using backpropagation"
 - Backpropagation is the algorithm used to train neural networks. It updates the embeddings based on how well (or poorly) the model is performing.
- 2. "Compute gradients of loss with respect to initial embeddings X"
 - Initially, word embeddings X are random or pre-trained (e.g., Word2Vec, GloVe).
 - During training, the model computes the loss (how wrong the predictions are).
 - Then, it calculates gradients (small changes needed) to improve the embeddings.
 - These gradients tell the model how to slightly adjust the embeddings to minimize the loss.
- 3. "Learn embeddings that allow you to do the task successfully!"
 - The embeddings are not fixed but are optimized based on the specific task.
 - For example
 - If the task is sentiment analysis, embeddings adjust so that "great" and "excellent" are closer to each other in vector space.
 - If the task is **machine translation**, embeddings adjust so that "dog" (English) and "chien" (French) have similar representations.

• Suppose v

• Suppose we start with random word embeddings for "great", "bad", and "movie".

Step 2: Train the model using backpropagation

Step 1: Initialize embeddings randomly

- We feed in labeled data (e.g., "great movie" → Positive, "bad movie" → Negative).
- The model makes predictions and computes loss (error).
- Backpropagation updates the embeddings to improve classification.

Step 3: Adjust embeddings

• After training, "great" and "amazing" will have similar embeddings, while "bad" and "terrible" will be closer in the vector space.

Learn using **backpropagation**: compute gradients of loss with respect to initial embeddings *X*

Learn embeddings that allow you to do the task successfully!

Logistic Regression

- $S=\,$ I really enjoyed the movie we watched on Saturday!
- ✓ Embeddings are not static; they are learned based on the task.
- ✓ Backpropagation adjusts embeddings to minimize loss and improve performance.
- ✓ Final embeddings encode task-specific relationships between words.

Learn embeddings from the task!

- Supervised learning with a task-specific objective
 - Learn word embeddings that help complete the task
- Q: Downsides of learning embeddings this way?
 - Data scarcity (clean labeled data is expensive to collect)
 - Embeddings are optimised for this task maybe not others!

Question

What could be a better way to learn word embeddings?

Self-supervised learning

"You shall know a word by the company it keeps"

-J.R. Firth, 1957

Context Representations

Solution:

Rely on the context in which words occur to learn their meaning

Context is the set of words that occur nearby

I really enjoyed the ____ we watched on Saturday!

The ___ growled at me, making me run away.

I need to go to the ____ to pick up some dinner.

Foundation of distributional semantics

Learning Word Embeddings

- Many options, huge area of research, but three standard approaches
- Word2vec Continuous Bag of Words (CBOW)
 - Learn to predict missing word from surrounding window of words
- Word2vec Skip-gram
 - Learn to predict surrounding window of words from given word
- GloVe
 - Not covered today

Predict the missing word from a window of surrounding words

Predict the missing word from a window of surrounding words

max *P*(*movie* | *enjoyed*, *the*, *we*, *watched*)

$$\max P(x_t | x_{t-2}, x_{t-1}, x_{t+1}, x_{t+2})$$

$$\max P(x_t | \{x_s\}_{s=t-2}^{s=t+2})$$

Predict the missing word from a window of surrounding words

$$P(x_t | \{x_s\}_{s=t-2}^{s=t+2}) = \mathbf{softmax} \left(\mathbf{U} \sum_{s=t-2}^{t+2} \mathbf{x}_s \right)$$

$$\mathbf{x}_s \in \mathbb{R}^{1 \times d}$$

Vocabulary Space Projection

 $P(w_i | \text{vector for "enjoyed the we watched"})$

Let's say our output vocabulary consists of just four words: "movie", "show", "book", and "shelf".

$$h_t = \sum_{S=t-2}^{t+2} \mathbf{x}_S$$

$$s = t-2$$

$$s \neq t$$

Low-dimensional representation of context: "enjoyed the we watched"

Let's say our output vocabulary consists of just four words: "movie", "show", "book", and "shelf".

movie show book shelf <0.6, 0.2, 0.1, 0.1>

We want to get a probability distribution over these four words

Low-dimensional representation of context: "enjoyed the we watched"

Let's say our output vocabulary consists of just four words: "movie", "show", "book", and "shelf".

$$\mathbf{U} = \left\{ \begin{array}{l} 1.2, -0.3, 0.9 \\ 0.2, 0.4, -2.2 \\ 8.9, -1.9, 6.5 \\ 4.5, 2.2, -0.1 \end{array} \right\}$$

first, we'll project our 3-d context representation to 4-d with a matrix-vector product

$$h_t = \langle -2.3, 0.9, 5.4 \rangle$$

Here's an example 3-d prefix vector

How do we get there?

$$\mathbf{U} = \left\{ \begin{array}{l} 1.2, -0.3, 0.9 \\ 0.2, 0.4, -2.2 \\ 8.9, -1.9, 6.5 \\ 4.5, 2.2, -0.1 \end{array} \right\}$$

$$h_t = \langle -2.3, 0.9, 5.4 \rangle$$

intuition: each dimension of h_t corresponds to a feature of the context

How do we get there?

 $h_t = \langle -2.3, 0.9, 5.4 \rangle$

intuition: each dimension of h_t corresponds to a feature of the context

$$\mathbf{U}h_t = \langle 1.8, -11.9, 12.9, -8.9 \rangle$$

How did we compute this? It's just the dot product of each row of ${\bf U}$ with h_t

$$h_t = \langle -2.3, 0.9, 5.4 \rangle$$

$$\mathbf{U}h_t = \langle 1.8, -11.9, 12.9, -8.9 \rangle$$

How did we compute this? It's just the dot product of each row of ${\bf U}$ with h_t

$$\mathbf{U} = \begin{cases} 1.2, -0.3, 0.9 \\ 0.2, 0.4, -2.2 \\ 8.9, -1.9, 6.5 \\ 4.5, 2.2, -0.1 \end{cases}$$

$$h_t = \langle -2.3, 0.9, 5.4 \rangle$$

$$\mathbf{U}h_t = \langle 1.8, -11.9, 12.9, -8.9 \rangle$$

How did we compute this? It's just the dot product of each row of ${\bf U}$ with h_t

$$U = \begin{cases} 1.2, -0.3, 0.9 \\ 0.2, 0.4, -2.2 \\ 8.9, -1.9, 6.5 \\ 4.5, 2.2, -0.1 \end{cases}$$

$$h_t = \langle -2.3, 0.9, 5.4 \rangle$$

Softmax

• The **softmax** function generates a probability distribution from the elements of the vector it is given

$$\mathbf{softmax}(\mathbf{a})_i = \frac{e^{a_i}}{\sum_{j=1}^{|\mathbf{a}|} e^{a_j}}$$

- a is a vector
- a_i is dimension *i* of **a**
- each dimension *i* of the softmaxed output represents the probability of class *i*

Softmax

• The **softmax** function generates a probability distribution from the elements of the vector it is given

$$\mathbf{softmax(a)}_{i} = \frac{e^{a_{i}}}{\sum_{j=1}^{|\mathbf{a}|} e^{a_{j}}}$$

- a is a vector
- a_i is dimension *i* of **a**
- each dimension *i* of the softmaxed output represents the probability of class *i*

$$Uh_t = \langle 1.8, -1.9, 2.9, -0.9 \rangle$$

softmax(U h_t **)** = $\langle 0.24, 0.006, 0.73, 0.02 \rangle$

Softmax will keep popping up, so be sure to understand it!

Predict the missing word from a window of surrounding words

$$P(x_t | \{x_s\}_{s=t-2}^{s=t+2}) = \mathbf{softmax} \left(\mathbf{U} \sum_{s=t-2}^{t+2} \mathbf{x}_s \right)$$

$$\mathbf{x}_s \in \mathbb{R}^{1 \times d}$$

$$P(x_t | \{x_s\}_{s=t-2}^{s=t+2}) = \mathbf{softmax} \left(\mathbf{U} \sum_{s=t-2}^{t+2} \mathbf{x}_s \right)$$

$$s \neq t$$

- Model is trained to maximise the probability of the missing word
 - For computational reasons, the model is typically trained to minimise the negative log probability of the missing word
- Here, we use a window of N=2, but the window size is a hyperparameter
- For computational reasons, a hierarchical softmax used to compute distribution (Eisenstein, 14.5.3)

• We can also learn embeddings by predicting the surrounding context from a single word

Context:

max *P*(*enjoyed*, *the*, *we*, *watched* | *movie*)

$$\max P(x_{t-2}, x_{t-1}, x_{t+1}, x_{t+2} | x_t)$$

• We can also learn embeddings by predicting the surrounding context from a single word

Context:

max *P*(*enjoyed*, *the*, *we*, *watched* | *movie*)

$$= \max P(x_{t-2}, x_{t-1}, x_{t+1}, x_{t+2} | x_t)$$

$$= \max \log P(x_{t-2}, x_{t-1}, x_{t+1}, x_{t+2} | x_t)$$

$$= \max \left(\log P(x_{t-2} | x_t) + \log P(x_{t-1} | x_t) + \log P(x_{t+1} | x_t) + \log P(x_{t+1} | x_t) + \log P(x_{t+2} | x_t) \right)$$

• We can also learn embeddings by predicting the surrounding context from a single word

Context:

$$P(x_s | x_t) = \mathbf{softmax}(\mathbf{U}\mathbf{x}_t)$$

$$\mathbf{x}_t \in \mathbb{R}^{1 \times d}$$

We can also learn embeddings by predicting the surrounding context from a single word

- Model is trained to minimise the negative log probability of the surrounding words
- Here, we use a window of N=2, but the window size is a hyperparameter.
 - Larger window = more information about related words in embedding
- Typically, set large window (N=10), but randomly select $i \in [1,N]$ as dynamic window size so that closer words contribute more to learning

Question

What is the major conceptual difference between the CBOW and Skipgram methods for training word embeddings?

Skip-gram vs. CBOW

• **Question:** Do you expect a difference between what is learned by CBOW and Skipgram methods?

Feature	CBOW	Skip-gram
Focus	Frequent words, general meanings	Rare words, detailed meanings
Word Relationships	More general, broad similarities	More specific, nuanced similarities
Similarity Scores	More balanced, spread out	More extreme, focused

Example

CBOW

```
top_cbow = cbow.wv.most_similar('cut', topn=10)
print(tabulate(top_cbow, headers=["Word", "Simi")
              Similarity
Word
_____
slice
                0.662173
                0.650036
crosswise
                0.630569
score
                0.618827
tear
dice
                0.563946
                0.557231
lengthwise
cutting
                0.557228
break
                0.551517
                0.541566
chop
                0.537967
carve
```

- If you want embeddings that generalize well → Use CBOW
- If you want embeddings with fine-grained, rare-word relationships → Use Skip-gram

Why Does Skip-gram Have Higher Similarity Scores?

- More precise word relationships
 - Since Skip-gram learns to predict words near the target word, it builds embeddings that reflect specific word associations, making words like "crosswise" and "cut" more strongly related
- Handles rare words better
 - Skip-gram learns detailed representations for uncommon words, leading to more meaningful embeddings and higher similarity scores for relevant words.
- CBOW is more smoothed and general
 - CBOW tends to produce less extreme similarity scores since it generalizes word meanings over common contexts.

Skip-gram

```
top_sg = skipgram.wv.most_similar('cut', topn=10)
print(tabulate(top_sg, headers=["Word", "Similarity
                  Similarity
Word
                    0.72921
crosswise
                    0.702693
score
slice
                    0.696898
                    0.680091
crossways
1/2-inch-thick
                    0.678496
diamonds
                    0.671814
diagonally
                    0.670319
lengthwise
                    0.665378
cutting
                    0.66425
wise
                    0.656825
```

Other Resources of Interest

- GloVe Embeddings (Pennington et al., 2014)
 - Use co-occurrence statistics to speed up training of skip-gram-like embeddings
 - Word pairs are training examples, rather than windows in a textual training corpus
- FastText Embeddings (Bojanowski et al., 2017; Mikolov et al., 2018)
 - Enhancement of Skip-gram model that handles morphology
 - Divide words into character n-grams of size n <where> = <wh, whe, her, ere, re>
- Retrofitting word vectors to semantic lexicons (Faruqui et al., 2014)
 - Training word vectors to encode relationships (e.g., synonymy) from high-level semantic resources: WordNet, PPDB, and FrameNet
- <u>S:</u> (n) **sofa**, <u>couch</u>, <u>lounge</u> (an upholstered seat for more than one person)
 - direct hyponym | full hyponym
 - direct hypernym / inherited hypernym / sister term
 S: (n) seat (furniture that is designed for sitting on)
 - derivationally related form

Recap

- **Problem:** Learning word embeddings from scratch using labeled data for a task is data-inefficient!
- **Solution:** Word embeddings can be learned in a self-supervised manner from large quantities of raw text
- Three main algorithms: Continuous Bag of Words (CBOW), Skip-gram, and GloVe

Resources

- word2vec: https://code.google.com/archive/p/word2vec/
- GloVe: https://nlp.stanford.edu/projects/glove/
- FastText: https://fasttext.cc/
- Gensim: https://radimrehurek.com/gensim/

Download pre-trained word vectors

- Pre-trained word vectors. This data is made available under the <u>Public Domain Dedication and License</u> v1.0 whose full text can be found at: http://www.opendatacommons.org/licenses/pddl/1.0/.
 - Wikipedia 2014 + Gigaword 5 (6B tokens, 400K vocab, uncased, 50d, 100d, 200d, & 300d vectors, 822 MB download): glove.6B.zip
 - Common Crawl (42B tokens, 1.9M vocab, uncased, 300d vectors, 1.75 GB download): glove.42B.300d.zip
 - Common Crawl (840B tokens, 2.2M vocab, cased, 300d vectors, 2.03 GB download): glove.840B.300d.zip
 - Twitter (2B tweets, 27B tokens, 1.2M vocab, uncased, 25d, 50d, 100d, & 200d vectors, 1.42 GB download): glove.twitter.27B.zip
- Ruby <u>script</u> for preprocessing Twitter data

References

- Firth, J.R. (1957). A Synopsis of Linguistic Theory, 1930-1955.
- Mikolov, T., Chen, K., Corrado, G.S., & Dean, J. (2013a). Efficient Estimation of Word Representations in Vector Space. *International Conference on Learning Representations*.
- Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., & Dean, J. (2013b). Distributed Representations of Words and Phrases and their Compositionality. *ArXiv*, abs/1310.4546.
- Pennington, J., Socher, R., & Manning, C.D. (2014). GloVe: Global Vectors for Word Representation. Conference on Empirical Methods in Natural Language Processing.
- Bojanowski, P., Grave, E., Joulin, A., & Mikolov, T. (2017). Enriching word vectors with subword information. *Transactions of the association for computational linguistics.*
- Mikolov, T., Grave, E., Bojanowski, P., Puhrsch, C., & Joulin, A. (2018). Advances in pre-training distributed word representations. International Conference on Language Resources and Evaluation.