

USTC

https://github.com/Luciennnnnn/ustc-functional-analysis-exercise-set

实变函数与泛函分析习题集

1 集合与实数

1.1 题目

1. [**选择题**] 下列条件哪些是实数列 $\{a_n\}$ 为基本列的充分条件: (1) $\lim_{n,m\to\infty} (a_n - a_m) = 0$; (2) 对任意 的 k, 均有 $\lim_{n\to\infty} (a_{n+k}-a_n)=0$; (3) 存在一个收敛到零的数列 $\{b_n\}$, 使对任意的 k 及充分大的 n, 均有 $|a_{n+k} - a_n| \leq b_n$ [C]

(A) 3 个结论都正确

(B)(2)与(3)正确,(1)不正确

(C)(1)与(3)正确,(2)不正确

(D)(1)正确,(2)与(3)不正确

2. [选择题] 下列是一些关于稠密性的结论,判断它们的正确性:(1)在无理数中稠密的数集必在整个实 数中稠密;(2)若两个数集的并集在实数中稠密,则其中必有一个数集在实数中稠密;(3)若两个数 集分别在关于实数集互为余集的两个数集中稠密,则它们的并集必在整个实数中稠密 [C]

(A) 3 个结论都不正确

(B) 3 个结论都正确

(C)(1)与(3)正确,(2)不正确

(D)(1)正确,(2)与(3)不正确

3. [**选择题**] 设 F_1, F_2, \cdots 为一列闭实数集, 则下列结论正确的是:

[D]

(A) 若 G_1, G_2, \cdots 为一列互不相交的开集, 且 $F_n \subset G_n, n = 1, 2, \cdots, 则 \bigcup_{n=1}^{\infty} F_n$ 为闭集 (C) 若每个 F_n 均无极限点, 则 $\bigcup_{n=1}^{\infty} F_n$ 为闭

(B) 若 G_1, G_2, \cdots 为一列互不相交的闭集, 且 $F_n \subset G_n, n = 1, 2, \cdots, 则 \bigcup_{n=1}^{\infty} F_n$ 为闭集

(D) 若 $F_n \subset (n, n+1), n = 1, 2, \dots, 则$ $\bigcup_{n=1}^{\infty} F_n$ 为闭集

解析: (A) 的一个反例考虑一系列单点集 $\left\{\frac{1}{n}\right\}$, 其中 n 是正整数,这些闭集互不相交,它们的并为 $\left\{\frac{1}{n} \mid n \in N\right\}$, 然后这个集合不是闭集,因为它的闭包包含 0,但是 0 并不在原集合中。

4. [**选择题**] 设 $F_n \subset (n, n+1), n=1, 2, \cdots$, 且每个 F_n 为闭集, 判断下列结论的正确性: (1) $\bigcup_{n=1}^{\infty} F_n$ 为闭集; (2) 定义 $f(x) = a_n, x \in (n-1,n), n = 1,2,\cdots$, 其中每个 a_n 为常数,则 f 在 $\bigcup_{n=1}^{\infty} F_n$ 上 连续。 [B]

(A) 2 个结论都不正确

(B) 2 个结论都正确

(C) (1) 正确, (2) 不正确

(D) (1) 不正确, (2) 正确

解析: (2) 的证明见例 1.4.1。

5. [**选择题**] 设 $F_n, n = 1, 2, \cdots$ 为实数集中一列互不相交的非空闭集, $F = \bigcup_{n=1}^{\infty} F_n$, 在 F 上定义 函数 f 如下: 当 $x \in F_n$ 时, $f(x) = a_n$, 其中 $a_n, n = 1, 2, \cdots$ 均为实常数, 则下列条件: (1) $(a_n, b_n), n = 1, 2, \cdots$ 是一列互不相交的开区间, $F_n \subset (a_n, b_n)$,且点集 $\{a_n\} \cup \{b_n\}$ 无极限点; (2) 对任意的 $x_n \in F_n$, $n = 1, 2, \dots$, 点集 $\{x_n\}$ 无极限点,哪些是函数 f 在 F 上连续的充分条件? [B] (A) 2 个都不是

(B) 2 个都是

(C) (1) 是, (2) 不是

(D) (1) 不是, (2) 是

解析:函数 f 在孤立点处是连续的。函数 f 在 x 点连续 $\Leftrightarrow \forall \epsilon > 0, \exists \delta > 0, \exists \delta < E \cap \delta(x)$ 时,均 有 $f(x) \in \epsilon(f(x))$ 。而根据孤立点的定义,对于孤立点 x_0 , $\exists \delta > 0$,使得 $E \cap \delta(x_0) = \{x_0\}$,因此对 于 $\forall \epsilon > 0, \exists \delta > 0, \exists x \in E \cap \delta(x_0)$ 时, x 只能取 x_0 , 有 $f(x) = f(x_0) \in \epsilon(f(x))$ 成立。也因此, $f(x) = f(x_0) \in \epsilon(f(x))$ 成立。也因此, $f(x) = f(x_0) \in \epsilon(f(x))$ 一定在孤立集上连续。对于(1), f 一定在闭集 F_n 上连续,又点集 $\{a_n\} \cup \{b_n\}$ 无极限点,因此 f在 F 上的所有极限点上连续。对于 (2), F 是一个孤立集, f 一定在 F 上连续。

6. [选择题] 设 $F_n, n = 1, 2, \cdots$ 为实数集中一列互不相交的非空闭集, $F = \bigcup_{n=1}^{\infty} F_n$,在 F 上定义函数 f 如下: 当 $x \in F_n$ 时, $f(x) = a_n$, 其中 $a_n, n = 1, 2, \cdots$ 均为实常数,则下列条件: (1) 若每个 F_n 均无极限点; (2) 若 $F_n \subset (n-1,n), n=1,2,\cdots,$ 则 F 为闭集; 哪些是 F 为闭集的充分条件? [A]

(A) 2 个都不是

(B) 2 个都是

(C) (1) 是, (2) 不是

(D) (1) 不是, (2) 是

解析: 注意 $F_n \subset (n-1,n)$ 和 $F_n \subset (n,n+1)$ 的区别。如果是前者, 那么 $F_1 \subset (0,1)$, 如果 $F_1 = \left\{\frac{1}{n}\right\}, n = 1, 2, \cdots$,那么显然 F_1 不为闭集,因为 F_1 的闭包包含 0,则 F 不为闭集。

1.2 有用的结论

- 1. 几类点:内点,外点,边界点,聚点,孤立点
- 2. E = 聚点 (内点 + 边界点) + 孤立点
- 3. 单点集没有聚点, 单点集的导集为空集, 单点集是闭集

2 测度与积分

2.1 题目

1. [**选择题**] 设数集 $\{a_1, a_2, \dots\}$ 在实数 R 中稠密, E ⊂ R, f 和 g 为 E 上的实函数, 对 $\forall \sigma \in R$, 记 $B = \bigcup_{n=1}^{\infty} \left[E\left(f > a_n \right) \cap E\left(g < a_n - \sigma \right) \right], \ C = E\left(f - g > \sigma \right). \ \mathbb{M}:$ [A]

(A) B=C

(C) B 是 C 的真子集

(D) B 与 C 互不包含

2. [选择题] 设 f 为 $E \subset R$ 上的一个实函数, 对 $\sigma \in R$, 若数列 $\{\sigma_n\}$ 严格单减, 且 $\sigma_n \to \sigma$, 则 $E(f > \sigma) =$: [B]

(A) $\bigcap_{n=1}^{\infty} E(f \ge \sigma_n)$

(C) $\bigcup_{n=1}^{\infty} E(f \leq \sigma_n)$

(B) $\bigcup_{n=1}^{\infty} E(f \ge \sigma_n)$ (D) $\bigcap_{n=1}^{\infty} E(f \le \sigma_n)$

3. [**选择题**] 设 $\sum_{n=1}^{\infty} a_n$ 为一个条件收敛级数, 定义

$$f(x) = \begin{cases} a_n, & x \in (n-1,n), n = 1, 2, \dots, \\ -a_n, & x \in (-n, -n+1), n = 1, 2, \dots, \end{cases}$$

则: [D]

(A) f R 上 Lebesgue 可积

(B) f 在 R 上 Lebesgue 不可积, 但有积分值

(C) |f| 在 R 上 Lebesgue 不可积,且无积分值

(D) |f| 在 R 上 Lebesgue 不可积,但有积分值

4. [判断题] 设 f(x) 是有界可测集 E 上的可测函数,则 f(x) 在 E 上有积分值。

答: 错。有界可测集上的有界可测函数一定有积分值,对于一般函数则不成立。比如[-1,1]上的函 数 ½, 可测但无积分值。

5. [判断题] 设 $\sum_{n=1}^{\infty} a_n$ 为一个条件收敛级数, 第

$$f(x) = \begin{cases} a_n, & x \in (n-1,n), n = 1, 2, \dots, \\ -a_n, & x \in (-n, -n+1), n = 1, 2, \dots, \end{cases}$$

则 f 在 R 上 Lebesgue 可积;

相关知识:

- (a) 条件收敛级数: $\sum_{n=1}^{\infty} a_n$ 收敛,但是 $\sum_{n=1}^{\infty} |a_n|$ 不收敛。
- (b) $f \in L(E) \Leftrightarrow |f| \in L(E)$

 $\int_{R} f(x)dx = \int_{R} f^{+}(x)dx - \int_{R} f^{-}(x)dx = \int_{[0,+\infty)} |f(x)|dx - \int_{[0,+\infty)} |f(x)|dx = \sum_{n=1}^{\infty} |a_{n}| - \int_{[0,+\infty)} |f(x)|dx = \sum_{n=1}^{\infty} |a_{n}|dx = \sum_{n=1}^{\infty} |a_{n}|$ $\sum_{n=1}^{\infty} |a_n| = \infty - \infty$,因此 L 不可积。

或者由 fL 可积和 |f|L 可积的等价性, $\int_R |f(x)| dx = 2 \int_{[0,+\infty)} |f(x)| dx = 2 \sum_{n=1}^{\infty} |a_n| = +\infty$,因此

6. [判断题] 设 $\sum_{n=1}^{\infty} a_n$ 为一个条件收敛级数, 定义

$$f(x) = \begin{cases} a_n, & x \in (n-1, n), n = 1, 2, \dots, \\ -a_n, & x \in (-n, -n+1), n = 1, 2, \dots, \end{cases}$$

则 |f| 在 R 上 Lebesgue 不可积,但有积分值;

答: 正确。 $\int_R |f(x)| dx = 2 \int_{[0,+\infty)} |f(x)| dx = 2 \sum_{n=1}^{\infty} |a_n| = +\infty$,因此 f(x)L 不可积,但 f(x) 有积分值,为 $+\infty$ 。

7. [判断题] 设 $\{a_n\}$ 为一个单调减的实数列, 且 $a_n \to 0$, 在区间 $[0, +\infty)$ 上定义

$$f(x) = (-1)^{n-1}a_n, x \in [n-1, n), n = 1, 2, \dots,$$

则 f 在 $[0, +\infty)$ 上 Lebesgue 可积。

答: 错。令 $a_n = \frac{1}{n}$,则 f^+ 和 f^- 虽然在 $[0, +\infty)$ 上都有积分值,但同时为 $+\infty$;或者由于 |f| 在 $[0, +\infty)$ 上 Lebesgue 不可积,故 f 也不可积。

8. [证明题] 设 f 为 [0,1] 上的非负有界可测函数,Q 为 [0,1] 中的无理数集。(1) 若对任意的 $x \in Q$,均有 f(x) = 0,证明 f 在 [0,1] 上存在子集式分割 D,使其积分大和 $S_D = 0$,用上积分、下积分等概念证明 f 在 [0,1] 上 Lebesgue 可积,并求积分值:(2) 若对任意的 $x \in Q$,均有 f(x) > 0,证明 $\int_{[0,1]} f dx > 0$ 。 证:(1) 对分割 D : $[0,1] = P \cup Q$,其中 P 为 [0,1] 的有理数集,有 m(P) = 0,m(Q) = 1。故积分上和 $S_D = m(P) \sup_{x \in P} \{f(x)\} + m(Q) \sup_{x \in Q} \{f(x)\}$,因为 f 是有界函数,所以存在 $K \in N$,使得 $\sup_{x \in P} \{f(x)\} <= K$,所以 $S_D <= 0 \times K + 1 \times 0 = 0$ 。

由于 $f \ge 0$, 故有

$$0 \le \underline{\int_{[0,1]} f dx} \le \overline{\int}_{[0,1]} f dx \le S_D = 0,$$

于是 $\int_{[0,1]}fdx=\overline{\int}_{[0,1]}fdx=0$, 故根据定义, f 在 [0,1] 上可积, 且 $\int_{[0,1]}fdx=0$ 。

(2) 用反证法。若不然, 则有 $\int_{[0,1]} f dx = 0$ 。任取 a > 0, 并记 E = [0,1], 则

$$0 = \int_{[0,1]} f dx = \int_{E(f>a)} f dx + \int_{E(f$$

从而有, $m[E(f \ge a)] = 0$ 。故 $E(f > 0) = \bigcup_{n=1}^{\infty} E\left(f \ge \frac{1}{n}\right)$ 为零测集, 这与假设矛盾。

9. [证明题] 设 E 为 R 中的一个 Lebesgue 零测集, 在 R 上定义

$$f(x) = \begin{cases} e^{x^2}, & x \in E, \\ 0, & x \notin E. \end{cases}$$

1. 证明 f 在任意闭区间 [a,b] 上存在分割 D,使其积分大和 $S_D=0$,并根据定义,证明 f 在 [a,b] 上 Lebesgue 可积: (10 分) 2. 根据一般可测集上一般函数积分的定义,证明 f 在 R 上 Lebesgue 可积,并 求 $\int_R f dx$ 。 (6 分)

解: 1. 对分割 $D: [a,b] = E_1 \cup E_2$, 其中 $E_1 = [a,b] \cap E$, $E_2 = [a,b] \cap E^c$ 。故积分上和 $S_D = m(E_1) \sup_{x \in E_1} \{f(x)\} + m(E_2) \sup_{x \in E_2} \{f(x)\}$,因为 f 在 E_1 上是有界函数,所以存在 $K \in N$,使得 $\sup_{x \in E_1} \{f(x)\} <= K$,所以 $S_D <= 0 \times K + (b-a) \times 0 = 0$ 。

由于 $f \ge 0$, 故有

$$0 \le \int_{[a,b]} f dx \le \overline{\int_{[a,b]}} f dx \le S_D = 0,$$

于是 $\int_{[a,b]}fdx=\overline{\int_{[a,b]}}fdx=0$, 故根据定义, f 在 [a,b] 上可积, 且 $\int_{[a,b]}fdx=0$ 。

2. 对任意的 $n\in N$,根据 1 的证明可知,f 在 [-n,n] 上可积,且 $\int_{[-n,n]}fdx=0$,,故 $\lim_{n\to\infty}\int_{[-n,n]}fdx=0$ 。 又由于 $f\geq 0$,故 f 在 R 上 Lebesgue 可积,且 $\int_Rfdx=0$ 。

10. [证明题] 设 E 为 R 中的一个 Lebesgue 零测集, 在 R 上定义

$$f(x) = \begin{cases} xe^{|x|}, & x \in E, \\ 0, & x \notin E. \end{cases}$$

1. 试用积分证明 f 在任意闭区间 [a,b] 上 Lebesgue 可积,并求 $\int_{[a,b]} f dx$ 的值;2. 问 f 在 R 上是否 Lebesgue 可积,证明你的结论。(必须用定义,即上积分与下积分等概念,否则不给分)证: 参看题8。

11. **[证明题**] 设 f 为闭区间 [0,1] 上的一个实可测函数,Q 为 [0,1] 中的无理数集。1. 如果对于任意的 $x \in Q$,均有 f(x) = 0,试用上积分、下积分与积分定义等概念证明 f 在 [0,1] 上 Lebesgue 可积,并求积分值。2. 如果对任意的 $x \in Q$,均有 f(x) > 0,试证明 $\int_{[0,1]} f dx > 0$ 。

证: 1. 考虑 f^+ 的第 n 个截断函数

$$f_{(n)}^+(x) = \begin{cases} f^+(x), & 0 \le f^+(x) \le n \\ 0, & f^+(x) > n. \end{cases}$$

对分割 $D: [0,1] = Q \cup Q^C$, 其中 P 为 [0,1] 的有理数集, 有 m(P) = 0, m(Q) = 1。故积分上和 $S_D = m(P) \sup_{x \in P} \{f^+_{(n)}(x)\} + m(Q) \sup_{x \in Q} \{f^+_{(n)}(x)\}$,因为 $f^+_{(n)}$ 是有界函数,所以存在 $K \in N$,使 得 $\sup_{x \in P} \{f^+_{(n)}(x)\} <= K$,所以 $S_D <= 0 \times K + 1 \times 0 = 0$ 。

由于 $f_{(n)}^+ \geq 0$, 故有

$$0 \le \int_{[0,1]} f_{(n)}^+ dx \le \overline{\int}_{[0,1]} f_{(n)}^+ dx \le S_D = 0,$$

于是 $\underline{\int}_{[0,1]} f_{(n)}^+ dx = \overline{\int}_{[0,1]} f_{(n)}^+ dx = 0$,故根据定义, $f_{(n)}^+$ 在 [0,1] 上可积,且 $\int_{[0,1]} f_{(n)}^+ dx = 0$ 。

因 $\left\{ \int_{[0,1]} f_{(n)}^+ dx \right\}$ 是一增数列, 故 $\int_{[0,1]} f^+ dx = \lim_{n \to \infty} \int_{[0,1]} f_{(n)}^+ dx = 0$.

同理可得 $\int_{[0,1]} f^- dx = 0$, 所以 $\int_{[0,1]} f dx = \int_{[0,1]} f^+ dx - \int_{[0,1]} f^- dx = 0 - 0 = 0$ 。

- 2. 参看 7 题第二小问。
- 12. **[证明题**] 设 f 在 $(-\infty, +\infty)$ 上 Riemann 可积,记 E 为 f 的所有不连续点组成的集合。1. 证明 E 为 R 上的 Lebesgue 可测集,并求 E 的测度;2. 定义 $g(x) = \begin{cases} f(x), & x \in E, \\ 0, & x \notin E. \end{cases}$,试用上积分、下积分与积分定义等概念证明 g 在闭区间 [a,b] 上 Lebesgue 可积;3. 证明 g 在 R 上也 Lebesgue 可积,并求 $\int_{B} g dx$ 的值。

证: 1. 由 Riemann 可积的必要条件可知,E 为 R 上的一个零测集,而零测集总是 Lebesgue 可测集且 测度 m(E)=0。

- 2 和 3. 由 Riemann 可积的必要条件可知, f 在 $(-\infty, +\infty)$ 上有界。剩下参考第 8 题。

由于 $f^+ \ge 0$, 故有

$$0 \le \underline{\int}_E f^+ dx \le \overline{\int}_E f^+ dx \le S_D = 0,$$

于是 $\underline{\int}_E f^+ dx = \overline{\int}_E f^+ dx = 0$, 故根据定义, f^+ 在 E 上可积, 且 $\underline{\int}_E f^+ dx = 0$ 。同理可得 $\underline{\int}_E f^- dx = 0$,所以 $\underline{\int}_E f dx = 0$,后来 $\underline{\int}_E f^- dx = 0$,

- 2. 由 1 的证明可知,f 在有界可测集 [-n,n] 上 Lebesgue 可积,且积分为 0。剩下参看第 8 题第 2 小问。
- 14. [**证明题**] 设 f 为可测集 E 上的函数, $A \subset R$, 记 Ω 为 A 的所有上确界不可达的有界子集组成的集合。 1. 若数列 $\{\sigma_n\}$ 递增, 且 $\sigma_n \to \sigma$, 证明 $E(f \geq \sigma) = \bigcap_{n=1}^{\infty} E(f > \sigma_n)$; 2. 若对 $\forall a \in A, E(f > a)$ 可测, 且 $R = \{\sup B \mid B \in \Omega\}$, 试证 f 在 E 上可测。
 - 证: 1. 对于任意的 $x \in E(f \ge \sigma)$, 我们有 $f(x) \ge \sigma_0$, 由于 $\{\sigma_n\}$ 是递增的并且 $\sigma_n \to \sigma$, 所以对于所有的 n, 我们有 $\sigma_n < \sigma \le f(x)$, 这就意味着 $x \in E(f > \sigma_n)$ 。因此, $E(f \ge \sigma) \subseteq \bigcap_{n=1}^\infty E(f > \sigma_n)$ 。 另一方面,对于任意的 $x \in \bigcap_{n=1}^\infty E(f > \sigma_n)$,我们有 $f(x) > \sigma_n$ 对于所有的 n 。由于 $\{\sigma_n\}$ 是递增的并且 $\sigma_n \to \sigma$,我们可以得到 $f(x) \ge \sigma$,这就意味着 $x \in E(f \ge \sigma)$ 。因此, $\bigcap_{n=1}^\infty E(f > \sigma_n) \subseteq E(f \ge \sigma)$ 。 综上,我们得到 $E(f \ge \sigma) = \bigcap_{n=1}^\infty E(f > \sigma_n)$ 。
 - 2. 对于任意的 $a \in A$, 我们知道 E(f > a) 是可测的。由于 $R = \{\sup B \mid B \in \Omega\}$, 我们可以找到一个序列 $\{a_n\}$ 属于 A 使得 $a_n \to \sup B$ 。由于 $E(f > a_n)$ 是可测的并且 $a_n \to \sup B$,我们可以得到 $E(f > \sup B) = \bigcap_{n=1}^{\infty} E(f > a_n)$ 是可测的。因此,对于任意的 $r \in R$,E(f > r) 是可测的,这就意味着 f 在 E 上是可测的。

2.2 知识点

- 1. **判断可积的思路**: 首先用 $f = f^+ f^-$ 转化为两个非负函数的差,如果 f^+ 和 f^- 均在 E 上有积分值,且不同时为 $+\infty$,则 f 在 E 上有积分值。若 f^+ 和 f^- 均在 E 上可积,则称 f 在 E 上可积。然后:
 - (1). 对于有界集有界函数 f,因为有界集有界函数可测与可积等价,可以通过判别 f 是否可测来判断是否可积。(2). 对于有界集无界函数 f,通过截断函数转为有界函数处理,然后讨论截断函数的极限。(3). 对于无界集上的函数 f,考虑在 [-n,n] 上是否可积(转化为有界集),然后套用 (1), (2) 判断是否可积,最后考察 $n \to \infty$ 的情况。

3 距离空间

3.1 题目

- 1. [选择题] 设 A 为一个至少含有 2 个实数的集合, 且存在 $\delta > 0$, 使对 $\forall x, y \in A, x \neq y$, 有 $|x y| \ge \delta$ 。 令 $X = \{\{x_n\} \mid x_n \in A\}$, 在 X 中定义距离 $\rho(\{x_n\}, \{y_n\}) = \sup_n |x_n y_n|$, 则:
 - (A) (X, ρ) 是可分的完备距离空间

- $(B)(X,\rho)$ 是不可分的完备距离空间
- $(C)(X,\rho)$ 是不完备的可分距离空间
- $(D)(X,\rho)$ 是不完备的不可分距离空间

解析:由定义可知, X 是一个不可数的离散距离空间,因此一定完备不可分。

- 2. [**选择题**] 设 X 与 Y 是两个距离空间, $D \subset X$, $f : D \to Y$ 为 1 1 的连续映射, 则下列结论正确的是: [A]
 - (A) 如果 D 为 X 可分的子空间,则 f(D) 为 Y 可分的子空间
 - (C) 如果 D 为 X 中的致密集, 则 f(D) 为 Y 中的致密集
- (B) 如果 D 为 X 中的全有界集, 则 f(D) 为 Y 中的全有界集
- (D) 如果 D 为 X 的完备子空间,则 f(D) 为 Y 的完备子空间
- 3. [**选择题**] 设 X 与 Y 是两个赋范空间, $D \subset X$, $f: D \to Y$ 为 1-1 的连续映射, 则下列结论正确的是: [A]

- (A) 如果 D 为 X 可分的子空间,则 f(D) 为 Y 可分的子空间
- (C) 如果 D 为 X 中的致密集, 则 f(D) 为 Y 中的致密集
- (B) 如果 D 为 X 中的有界集, 则 f(D) 为 Y 中的有界集
- (D) 如果 D 为 X 的完备子空间,则 f(D) 为 Y 的完备子空间
- 4. [选择题] 设 $A = \{a_1, a_2, \dots, a_k\}$ 为一个实数集,令 $X = \{\{x_n\} | x_n \in A\}$,在 X 中定义距离 $\rho(\{x_n\}, \{y_n\}) = \max_n |x_n y_n|$,则:
 - (A) (X, ρ) 是可分的完备距离空间

- (B) (X, ρ) 是不可分的完备距离空间
- (C) (X, ρ) 是不完备的可分距离空间
- $(D)(X,\rho)$ 是不完备的不可分距离空间

解析: X 是一个有限距离空间,有限距离空间一定是完备可分的。

5. [选择题] 对 $x = x(t), y = y(t) \in C_{[a,b]}$, 定义

$$\rho(x,y) = \begin{cases} 1 + \max_{a \le t \le b} |x(t) - y(t)|, & x \ne y, \\ 0, & x = y. \end{cases}$$

则 $(C_{[a,b]},\rho)$ 是一个距离空间,且为

[B]

(A) 可分的完备的

(B) 完备的不可分的

(C) 可分的不完备的

(D) 不完备的不可分的

解析:由定义 $(C_{[a,b]},\rho)$ 是一个不可数的离散距离空间,一定是完备不可分的。

6. [**选择题**] 设 X 为有理数集, 对 $x, y \in X$, 定义。

$$\rho(x,y) = \left\{ \begin{array}{ll} a, & x \neq y, \\ 0, & x = y, \end{array} \right.$$

其中 a > 0 为常数,则:

[A]

(A) (X, ρ) 是可分的完备距离空间

- $(B)(X,\rho)$ 是不可分的完备距离空间
- (C) (X, ρ) 是不完备的可分距离空间
- $(D)(X,\rho)$ 是不完备的不可分距离空间
- 7. [判断题] 记有界数列全体为 X,对 $x = \{x_n\}$, $y = \{y_n\} \in X$,定义 $\rho(x,y) = \sup_n |x_n y_n|$,则其中的每个非空有界集都是全有界集。

答: 错。 $A = \{\{x_n\} \mid x_n \in \{0,1\}\}$,显然 A 非空,A 中任意两个不同点之间的距离均为 1,当然在 X 中有界,由于 A 不可分,故其不是全有界集。

8. [判断题] 设 $A \subset R$ 为有界集,且 A 无聚点,令 $X = \{\{x_n\} | x_n \in A\}$,并在 X 中定义距离 $\rho(\{x_n\}, \{y_n\}) = \sup_n |x_n - y_n|, \, \text{则}(X, \rho)$ 是完备的距离空间。

答: 对。因为 A 无聚点,故存在 $\epsilon > 0$,使对任意的 $x,y \in A$, $|x-y| \ge \epsilon$,于是可知,对任意的 $\{x_n\}$, $\{y_n\} \in X$, $\{x_n\} \neq \{y_n\}$,有 $\rho(\{x_n\},\{y_n\}) = \sup_n |x_n - y_n| \ge \epsilon$,即 (X,ρ) 是离散的距离空间,故其完备。

9. [判断题] 设 X 是一个距离空间, $M \subset X$,则 M 是 X 完备子空间的充分必要条件是 M 为 X 中的闭集。

答: 错。M 为 X 中的闭集并不能推出 M 是 X 完备子空间。令 X 为 Q,X 上的距离是标准的欧几里得距离,则 $M=\bigcap_{n=1}^{+\infty}\left\{\left|x-\sqrt{2}\right|\leq\frac{1}{n}\mid x\in Q\right\}$ 是 Q 中的一个闭集。但存在 M 的一个 Cauchy 列收敛于 $\sqrt{2}\notin M$,因此 M 不是 Q 中的完备子空间。

10. [判断题] 设 X,Y 是一个距离空间, $D \subset X$,f 为 D 到 Y 的一个连续算子,若 D 为 X 中的闭集,则 f(D) 为 Y 中的闭集。

答: 错。设 X = Y = R, $D = [0, +\infty)$ 。定义 D 到 Y 的连续算子 f 为 $f(x) = \frac{1}{x+1}$ 。D 是闭集,但是 f(D) = (0, 1],不是 R 中的闭集。

11. [**判断题**] 设 X, Y 是一个距离空间, $D \subset X$,f 为 D 到 X 的一个连续算子,若 D 为 X 中的致密集,则 f(D) 为 Y 中的致密集。

答: 错。考虑 X=Y=R, $D=(-\frac{\pi}{2},\frac{\pi}{2})$ 为 X 上的有界集,tan 为 D 到 Y 的连续算子。 $tan(D)=(-\infty,+\infty)$ 是 Y 上的无界集。因此连续算子不保持有界性,又致密集一定是有界集,因此连续算子也不保持致密性。

12. [判断题] 设 X 是一个距离空间,M 为 X 中的致密集,若把 M 看作是 X 中的子距离空间,则其是一个紧空间。

答: 正确。若把 M 看作是一个距离空间,则 M 一定是闭的,且 M 为 X 中的致密集,因此 M 一定是紧空间。

- 13. [判断题] 假设 F , 是 X 中的一个 , $A: F \to X$ 是一个压缩映像 , 则 A 在 F 上存在唯一的不动点。 答:错误。
- 14. **[证明题**] 令 X 表示极限为零的实数列全体, 在 X 中定义距离 $\rho(x,y) = \sup_n |x_n y_n|$, 其中, $x = \{x_n\}$, $y = \{y_n\} \in X$ 。(1) 证明 X 完备;(2) 记 M 为仅有限项不为零的实数列全体, 证明 M 在 X 中稠;(3) 证明 X 可分;(4) 令 $l = \{\{x_n\} \subset R | \sum_{n=1}^{\infty} |x_n| < +\infty\}$, 则 $l \subset X$,证明 l 不是 X 的完备子空间,并求 l 的完备化空间。

证: (1) 设 $\{x_k\}$ 为 X 中的基本列, 其中 $x_k = \{\zeta_n^{(k)}\}$, 则对 $\forall \varepsilon > 0, \exists K, \, \exists k, m \geq K$ 时, 有 $\rho(x_k, x_m) = \sup_n \left| \zeta_n^{(k)} - \zeta_n^{(m)} \right| < \frac{\varepsilon}{2}$, 故对每一个 $n \in N$, 均有

$$\left|\zeta_n^{(k)} - \zeta_n^{(m)}\right| < \frac{\varepsilon}{2} \tag{*}$$

于是, 对每个固定的 n, $\left\{\zeta_n^{(k)}\right\}$ 为 R 中的基本列, 而 R 完备,因而收敛。设 $\zeta_n^{(k)} \to \zeta_n(k \to \infty)$,令 $x = \{\zeta_n\}$,在不等式 (*) 中,令 $m \to \infty$,即知,对 $\forall n \in N$,有

$$\left|\zeta_n^{(k)} - \zeta_n\right| \le \frac{\varepsilon}{2} (k \ge K)$$

即当 $k \ge K$ 时, 有 $\rho(x_k, x) \le \frac{\varepsilon}{2} < \varepsilon$, 故 $x_k \to x(k \to \infty)$ 。

下面证 $x \in X$ 。由于 $\zeta_n^{(k)} \to 0 (n \to \infty)$,故 $\exists N$,当 $n \ge N$ 时,有 $\left| \zeta_n^{(k)} \right| < \frac{\varepsilon}{2}$,于是有

$$|\zeta_n| \le |\zeta_n - \zeta_n^{(k)}| + |\zeta_n^{(k)}| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon,$$

即 $\zeta_n \to 0 (n \to \infty)$, 故 $x \in X$, X 完备。

- (2) 对 $\forall x = \{x_n\} \in X$, 令 $z_n = \{x_1, x_2, \cdots, x_n, 0, \cdots\}$, $n = 1, 2, \cdots$, 则显然, $\{z_n\} \subset M$, 且由于 $x_n \to 0$, 故 $\rho(z_n, x) = \sup_{k \ge n+1} |x_k| \to 0 (n \to \infty)$, 即 $z_n \to x$, 故 M 在 X 中稠。
- (3) 令 $F = \{\{r_1, r_2, \cdots, r_n, 0, \cdots\} \mid r_k \in Q, n \in N\}$, 其中,Q 为有理数集,则 F 可数,且对 $\forall x = \{x_1, \cdots, x_n, 0, \cdots\} \in M$,根据有理数在实数中的稠密性,对于任意的 ϵ ,存在 $r_i \in Q, i = 1, 2, \cdots, n$,使得 $|r_i x_i| < \epsilon$ 。令 $w = \{r_1, \cdots, r_n, 0, \cdots\}$,则 $w \in F$,且 $\rho(w, x) = \sup_i |r_i x_i| < \epsilon$ 。故 F 在 M 中稠,又 M 在 X 中稠,于是 F 在 X 中稠,从而 X 可分。

(也可以这样写: 令 $F = \{\{r_1, r_2, \cdots, r_n, 0, \cdots\} \mid r_k \in Q, n \in N\}$, 其中,Q 为有理数集,则 F 可数,且 对 $\forall x = \{x_1, \cdots, x_n, 0, \cdots\} \in M$,根据有理数在实数中的稠密性,存在 $r_{ik} \in Q$, $i = 1, 2, \cdots, n, k = 1, 2, \cdots$,使 $r_{ik} \to x_i (k \to \infty)$, $i = 1, 2, \cdots, n$ 。令 $w_k = \{r_{1k}, \cdots, r_{nk}, 0, \cdots\}$,则 $\{w_k\} \subset F$,且 $\rho(w_k, x) = \sup_i |r_{ik} - x_i| \to 0 (k \to \infty)$ 。故 F 在 M 中稠,又 M 在 X 中稠,于是 F 在 X 中稠,从 而 X 可分。)

(4) 只要证 l 不为闭集即可。令 $x_n = \left\{1, \frac{1}{2}, \cdots, \frac{1}{n}, 0, \cdots\right\}, n = 1, 2, \cdots, 则 \left\{x_n\right\} \subset l, 令 x = \left\{1, \frac{1}{2}, \cdots\right\},$ 显然 $x \in X$,且 $\rho(x_n, x) = \sup_{k \geq n+1} \frac{1}{k} = \frac{1}{n+1} \to 0 (n \to \infty)$,故 $x_n \to x (n \to \infty)$, $x \to l$ 的一个极限点,但 $x \notin l$ 。

l 的完备化空间为 X, 因为 M 在 X 中稠, 而 $M \subset l$, 因此 l 在 X 中稠。

- 15. [证明题] 令 X 表示极限为零的实数列全体,在 X 中定义距离 $\rho(x,y) = \sup_n |x_n y_n|$,其 中, $x = \{x_n\}, y = \{y_n\} \in X$ 。(1) 证明 X 完备;(2) 证明 X 是可分的;(3) 令 $l = \{\{x_n\} \subset R \mid \sum_{n=1}^{\infty} |x_n| < +\infty\}$,证明 l 不是 X 中的闭集。 证:参考题 13。
- 16. **[证明题**] 令 X 表示极限为零的实数列全体,在 X 中定义距离 $\rho(x,y) = \sup_n |x_n y_n|$,其 中, $x = \{x_n\}, y = \{y_n\} \in X$ 。(1) 证明 X 完备;(2) 证明 X 是可分的;(3) 令 $l = \{\{x_n\} \subset R \mid \sum_{n=1}^{\infty} |x_n|^2 < +\infty\}$,证明 l 不是 X 中的闭集。证:参考题 13。
- 17. **[证明题**] 令 Y 表示所有收敛的实数列全体,对 $x = \{\xi_n\}, y = \{\zeta_n\} \in Y$,如果 $\lim_{n \to \infty} \xi_n = \lim_{n \to \infty} \zeta_n$,规定 x = y 。现在 Y 中定义 $\rho(x,y) = |\lim_{n \to \infty} \xi_n \lim_{n \to \infty} \zeta_n|$ 。 1. 验证 ρ 为 Y 上的一个距离;(5 分) 2. 证明 Y 完备且可分;(8 分) 3. 令 X 表示极限为有理数的实数列全体,问 X 是不是 Y 中的闭集,证明你的结论。(5 分)

解: 1. 非负性显然。规定性: 如果 x = y, 则 $\lim_{n \to \infty} \xi_n = \lim_{n \to \infty} \zeta_n$, 故 $\rho(x,y) = 0$; 反之, 如果 $\rho(x,y) = 0$, 则 $\lim_{n \to \infty} \xi_n = \lim_{n \to \infty} \zeta_n$, 故 x = y。 三角不等式: 对任意的 $x = \{\xi_n\}$, $y = \{\zeta_n\}$, $z = \{\varsigma_n\} \in Y$, 显然对任意的 n, 有 $|\xi_n - \zeta_n| \le |\xi_n - \varsigma_n| + |\zeta_n - \varsigma_n|$, 取极限即得, $\rho(x,y) \le \rho(x,z) + \rho(y,z)$

2. 法一: 定义 $T: Y \to R$, $\{\xi_n\} \mapsto \lim_{n \to \infty} \xi_n$, 则对任意的 $\xi \in R$, 令 $\xi_n = \xi$, 则有, $T\{\xi_n\} = \lim_{n \to \infty} \xi_n = \xi$, 故 T 是满的。又对任意的 $x = \{\xi_n\}$, $y = \{\zeta_n\} \in Y$, 显然有

$$|Tx - Ty| = \left| \lim_{n \to \infty} \xi_n - \lim_{n \to \infty} \zeta_n \right| = \rho(x, y),$$

故 T 是等距的, 于是 Y 与 R 等距同构, 由于 R 完备且可分, 故 Y 完备且可分。

法二: 设 $\{x_n\}$ 为 Y 中的一个基本列, 其中 $x_n = \left\{\xi_k^{(n)}\right\}$, 则对任意的 $\varepsilon > 0$, 存在 N, 当 $n, m \geq N$ 时, 有 $\rho(x_n, x_m) = \left|\lim_{k \to \infty} \xi_k^{(n)} - \lim_{k \to \infty} \xi_k^{(m)}\right| < \varepsilon$ 。设 $\lim_{k \to \infty} \xi_k^{(n)} = \xi^{(n)}$,令 $x = \left\{\xi^{(n)}\right\}$,则当 $n, m \geq N$ 时, 有 $\left|\xi^{(n)} - \xi^{(m)}\right| < \varepsilon$,故 $\left\{\xi^{(n)}\right\}$ 为 R 中的基本列, 而 R 完备,故 $\left\{\xi^{(n)}\right\}$ 收敛,即 $x \in Y$ 。设 $\xi^{(n)} \to \xi$,则 $\rho(x_n, x) = \left|\lim_{k \to \infty} \xi_k^{(n)} - \lim_{k \to \infty} \xi^{(k)}\right| = \left|\xi^{(n)} - \xi\right| \to 0$,故 Y 完备;

(这种写法也可以: 令 $M=\{\{r,r,\cdots,r,\cdots\}\mid r\in Q,n\in N\}$, 其中,Q 为有理数集,则显然 M 为可数集。又对任意的 $x=\{\xi_n\}\in Y$,记 $\xi=\lim_{n\to\infty}\xi_n$ 。由于有理数在实数中稠密,故存在 $\{r_k\},r_k\in Q$,使 $r_k\to \xi(k\to\infty)$ 。令 $w^{(k)}=\{r_k,r_k,\cdots,r_k,\cdots\}$,则 $\{w^{(k)}\}\subset M$,且 $\rho\left(w^{(k)},x\right)=\lim_{n\to\infty}w_n^{(k)}-\lim_{n\to\infty}\xi_n\Big|=|r_k-\xi|\to 0\ (k\to\infty)$ 。故 M 在 Y 中稠,从而 Y 可分。)

3. 法一:根据 2 中法一的结论可知,Y与 R等距同构,由于有理数集不是 R 中的闭集,故 X 不是 Y 中的闭集。

法二: 令 $x_n = \left\{\sqrt{2} - \frac{1}{n}, \sqrt{2} - \frac{1}{n}, \cdots, \sqrt{2} - \frac{1}{n}, \cdots\right\}, n = 1, 2, \cdots, 则 \left\{x_n\right\} \subset X, 令 x = \left\{\sqrt{2}, \sqrt{2}, \cdots, \sqrt{2}, \cdots\right\},$ 显然 $x \in Y$, 且 $\rho(x_n, x) = \left|\sqrt{2} - \frac{1}{n} - \sqrt{2}\right| = \frac{1}{n} \to 0 (n \to \infty),$ 故 $x_n \to x(n \to \infty), x$ 为 X 的一个极限点,但 $x \notin X$,因此 X 不是闭集。

18. [证明题] 令 $X = \left\{ \left\{ x_n \right\} \subset R \left| \sum_{n=1}^{\infty} |x_n|^2 < + \infty \right. \right\}, \ \ \forall \ x = \left\{ x_n \right\}, y = \left\{ y_n \right\} \in X, \ 定义距离$

$$\rho\left(x,y\right) = \sqrt{\sum_{n=1}^{\infty} \left|x_n - y_n\right|^2}$$

1. 证明 X 完备;2. 证明 X 可分;3. 令 M 为所有仅有限项不为零的实数列全体,试问 M 是不是 X 中的闭集。证明你的结论。

证明: 1. 设 $\{x_n\}$ 为 X 中的一个 Cauchy 列,其中 $x_n=\left\{\xi_k^{(n)}\right\}$,则对任意的 $\epsilon>0$,存在 N,当 $n,m\geq N$ 时,有

$$\rho(x_n, x_m) = \sqrt{\sum_{k=1}^{\infty} \left| \xi_k^{(n)} - \xi_k^{(m)} \right|^2} < \epsilon$$
 (*)

则对任意固定 k,都有 $\left|\xi_k^{(n)} - \xi_k^{(m)}\right| < \epsilon$ 。也即 $\left\{\xi_k^{(n)}\right\}$ 为 R 中的基本列,而 R 完备,因而 $\left\{\xi_k^{(n)}\right\}$ 收敛,存在 ξ_k ,使得 $\xi_k^{(n)} \to \xi_k (n \to \infty)$ 。令 $x = \{\xi_k\} \in X$,在不等式 (*) 中,令 $m \to \infty$,有 $\rho(x_n,x) < \epsilon(n \geq N)$,故 $x_n \to x(n \to \infty)$,所以 X 完备。

2. 取 $E_0 = \{(r_1, r_2, \dots, r_n, 0, \dots, 0, \dots) \mid r_i \in Q, n \in N\} \subset X$,显然 E_0 等价于 $\bigcup_{n=1}^{\infty} Q^n$,可知 E_0 可数,下面证 E_0 在 X 中稠密。

 $\forall x = (x_1, x_2, \dots, x_n, \dots) \in X, \ \text{fi} \sum_{i=1}^{\infty} |x_i|^2 < +\infty, \ \text{But } \forall \epsilon > 0, \exists N \in N, \ \text{if } n > N \text{ if } n > N \text{$

$$\sum_{n=N+1}^{\infty} |x_i|^2 < \frac{\epsilon^2}{2}$$

又因 Q 在 R 中稠密,对每个 $x_i(1 \le i \le N)$,存在 $r_i \in Q$,使得

$$|x_i - r_i|^2 < \frac{\epsilon^2}{2N}, \quad (i = 1, 2, 3, \dots, N)$$

于是得

$$\sum_{i=1}^{N} |x_i - r_i|^2 < \frac{\epsilon^2}{2}$$

 $\Rightarrow x_0 = (r_1, r_2, \dots, r_N, 0, \dots, 0, \dots) \in E_0, \ \mathbb{M}$

$$\rho(x_0, x) = \sqrt{\sum_{i=1}^{N} |x_i - r_i|^2 + \sum_{i=N+1}^{\infty} |x_i|^2} < \sqrt{\frac{\epsilon^2}{2} + \frac{\epsilon^2}{2}} = \epsilon$$

因此 E_0 为 X 的一个可数稠子集, X 可分。

3. 取 $x_n = \left\{1, \frac{1}{2}, \cdots, \frac{1}{n}, 0, \cdots\right\} \in M$,则有 $\{x_n\} \to x = \left\{1, \frac{1}{2}, \cdots, \frac{1}{n}, \cdots\right\} \notin M$,故 M 不是 X 中的闭集。

19. [证明题] 令 $X = \left\{ \left\{ x_n \right\} \subset R \left| \sum_{n=1}^{\infty} |x_n|^2 < +\infty \right. \right\}, \ \ \forall \ x = \left\{ x_n \right\}, y = \left\{ y_n \right\} \in X, \ \ 定义距离$

$$\rho(x,y) = \sqrt{\sum_{n=1}^{\infty} |x_n - y_n|^2}$$

1. 证明 X 完备;2. 证明 X 可分;3. 令 M 为只有有限项不为零的实数列全体,证明 M 不是 X 中的 完备子空间,并求 M 的完备化空间。

证: 1. 同 17 题。

- 2. 同 17 题。
- 3. 见 17 题,因为 M 不是 X 中的闭集,因此 M 也不是 X 的完备子空间。 M 的完备化空间为 X,因为 M 是 X 中的稠子集。

下面证明 M 在 X 中稠,给定 $x = \{x_n\} \in X$ 。因为 $\sum_{n=1}^{\infty} |x_n|^2 < +\infty$,所以对于任意 $\epsilon > 0$,存在 N,使得当 $n \geq N$ 时,有

$$\sqrt{\sum_{k=n+1}^{\infty} |x_k|^2} < \epsilon,$$

则令 $m = \{x_1, x_2, \dots, x_n, 0, 0, \dots, 0, \dots\} \in M$,有

$$\rho(x,m) = \sqrt{\sum_{k=n+1}^{\infty} |x_k|^2} < \epsilon.$$

因此, $M \in X$ 中稠。

20. [证明题] 令 X 表示极限为零的实数列全体, 对 $x = \{x_n\} \in X$,定义范数

$$||x|| = \sup_{n} |x_n|$$

1. 记 M 为只有有限项不为零的实数列全体,证明 M 在 X 中稠密;2. 证明 X 可分;3. 证明 X 完备;4. 令 $l = \left\{ \{x_n\} \subset R \mid \sum_{n=1}^{\infty} |x_n|^2 < +\infty \right\}$,则 $l \subset X$,试问 l 是否为 X 中的完备子空间,证明你的结论。

证: 对于线性赋范空间 X,按照距离 $\rho(x,y) = \|x-y\| = \sup_n |x_n-y_n|$ 成为距离空间。剩下的参考 13 题。

21. **[证明题**] 令 X 表示仅有限项不为零的实数列全体,对 $x = \{x_n\}$, $y = \{y_n\} \in X$,定义距离 $\rho(x,y) = \max_n |x_n - y_n|$ 。1. 证明 X 不完备;2. 证明 X 可分;3. 给出 X 的完备化空间 Y,证明 Y 完备且 X 在 Y 中稠密。

证: 1. 令 $x_n = \left\{1, \frac{1}{2}, \cdots, \frac{1}{n}, 0, 0, \cdots\right\}$,则对于任意 $\epsilon > 0$,存在 $N, \frac{1}{N} < \epsilon$,当 n, m > N,有 $\rho(x_n, x_m) < \epsilon$ 。因此 x_n 是一个 Cauchy 序列,但是 x_n 收敛到 $x = \left\{1, \frac{1}{2}, \cdots, \frac{1}{n}, \cdots\right\} \notin X$,因此 X 不完备。

- 2. 用仅有限项不为零的有理数列全体作为可数稠子集。
- 3. X 的完备化空间 Y 为极限为零的实数列全体。Y 完备:见 13 题 1 小问。X 在 Y 中稠密:见 13 题 2 小问。

3.2 知识点

- 1. 离散距离空间是完备的: 给定一个离散距离空间中的 Cauchy 序列 $\{A_n\}$,对于任意的 $\epsilon > 0$,存在一个正整数 k,使得当 n,m > k 时,我们有 $|A_n A_m| < \epsilon$ 。由于是离散距离空间,这意味着只有当 $A_n = A_m$ 时, $|A_n A_m|$ 才能小于任意小的 ϵ 。因此,对于所有的 n,m > k,我们有 $A_n = A_m$ 。从某一点开始,序列 $\{A_n\}$ 的所有项都相等。我们可以说序列 $\{A_n\}$ 收敛于 A_k ,因为对于所有的 $n > k, A_n = A_k$ 。
- 2. 不可数的离散距离空间不可分(例 3.2.4)。
- 3. 距离空间上的连续映射可以保持可分性

连续映射: 在数学中,连续映射是一种在拓扑空间中保持连续性的函数。在度量空间或者距离空间中,连续映射可以被定义为对于任意的 $\epsilon > 0$,存在 $\delta > 0$ 使得当 $d(x,y) < \delta$ 时,有 $d(f(x),f(y)) < \epsilon$ 。证明: 假设我们有一个可分的距离空间 (X,d_X) ,和一个距离空间 (Y,d_Y) ,以及一个从 X 到 Y 的连续映射 f。我们需要证明的是,f(X) 是 Y 的一个可分子集。

由于 X 是可分的,所以存在一个可数的子集 D,使得 D 在 X 中是稠密的。我们需要证明 f(D) 在 Y 中是稠密的。为了证明这一点,我们需要证明对于任意的 $y \in Y$ 和任意的 $\epsilon > 0$,存在一个 $d \in D$,使得 $d_Y(f(d),y) < \epsilon$ 。

由于 f 是连续的,所以对于任意的 $y \in Y$ 和任意的 $\epsilon > 0$,存在一个 $\delta > 0$,使得当 $d_X(x, f^{-1}(y)) < \delta$ 时,有 $d_Y(f(x), y) < \epsilon$ 。由于 D 在 X 中是稠密的,所以存在一个 $d \in D$,使得 $d_X(d, f^{-1}(y)) < \delta$ 。因此, $d_Y(f(d), y) < \epsilon$ 。

所以,我们证明了 f(D) 在 Y 中是稠密的,因此 f(X) 是 Y 的一个可分子集。这就证明了距离空间上的连续映射可以保持可分性。

4. 距离空间上的连续映射不保持完备性

设 D 为 X 的完备子空间, 我们证明 f(D) 不一定是 Y 的完备子空间。

证明:

为了证明这个结论,我们可以构造一个反例。假设我们有两个距离空间 X 和 Y,其中 X 是实数集合, Y 是 (0,1) 区间,距离函数分别是标准的欧几里得距离。定义映射 $f: X->Y, f(x)=1/(1+e^{-x})$ 。 这是一个连续的、1-1 的映射。

我们取 X 的子空间 D 为整数集合 Z,它是完备的,因为任何 Z 中的 Cauchy 序列都收敛到 Z 中的一个元素。然而,f(D) 是 (0,1) 区间中的一个离散集合,存在 f(D) 中的 Cauchy 序列,其极限点不在 f(D) 中。考虑序列 $\{x_n\}$,其中 $x_n = -n$, $\{f(x_n)\}$ 为一个 f(D) 中的 Cauchy 序列,但是并不是收敛列,因为该序列的极限为 0,而 0 不在 f(D) 中,因此 f(D) 不是完备的。

5. 距离空间上的连续映射不保持有界性

证明: 考虑 $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ 到 R 的一个连续映射 tan(x), 则显然不保持有界性。

6. (0,1) 是一个全有界集

证明: 对于任意正实数 ϵ ,存在正整数 N,使得 $\frac{1}{N} < \epsilon$ 。令 $x_i = \frac{i}{N}, i = 1, 2, ..., N$,则 $\{x_i\}$ 构成 (0,1) 的一个有限 ϵ — 子网

- 7. 全有界集 ⇒ 可分
- 8. 致密集 ⇒ 全有界集 ⇒ 有界集
- 9. 在 \mathbb{R}^n 中, 致密集 \Leftrightarrow 全有界集 \Leftrightarrow 有界集
- 11. L^p 空间, p 次可积的函数构成的空间, p 越大元素越少, $1 \le q \le p, L^p \subset L^q$, $L^\infty \subset L^p$ (p50)。
- 12. l^p 空间, p 次可和的序列构成的空间, p 越大元素越多, $1 \le q \le p, l^q \subset l^p, l^p \subset l^\infty$ (p61)。
- 13. 在拓扑空间中,全集和空集同时是开集也是闭集。因此距离空间总是闭集,如果距离空间是致密集,则也是紧集。

4 有界线性算子

4.1 题目

1. [选择题] 下列哪些条件是结论"线性赋范空间 X 为有限维"的充分条件: (1) X 中的单位球而 $\{x \in X \mid \|x\| = 1\}$ 是全有界集: (2) X 中的单位球面 $\{x \in X \mid \|x\| = 1\}$ 是致密集: (3) X 中的每个有界集都是全有界集。

(A) 3 个都是

(B) 3 个都不是

(C) (2) 与 (3) 是, (1) 不是

(D) (3) 是, (1) 与 (2) 不是

2. [判断题] 设 X 与 Y 为两个赋范空间, T 为 X 到 Y 的一个线性算子, 若对 $\forall x \in X$, 均有 ||Tx|| = ||x||, 则 X 与 TX 同构。

答: 正确。T 是保范的,且 T 是 X 到 TX 的 1-1 映射,因此 T 是 X 到 TX 的一个线性等距映射,X 与 TX 保范线性同构。

3. [判断题] 设 X 为一个线性赋范空间,如果 X 中的单位球面 $\{x \in X \mid ||x|| = 1\}$ 是一个全有界集,则 X 为一个有限维空间。

答:正确。

4. [判断题] 设 X 是一个 Banach 空间, $D \subset X$,T 为 D 到 X 的一个线性算子,若对任意的 $\{x_n\} \subset D$, $x_n \to x$, $Tx_n \to y$,有 $x \in D$,且 y = Tx,如果 T 无界,则 D 一定不是 X 中的闭集。

答:正确。根据习题 4.13 可知,T 为闭算子,如果 D 为 X 中的闭集,由于 X 为 Banach 空间,故 D 也为 Banach 空间,于是根据闭图像定理,T 有界,矛盾。

- 5. [判断题] 设 X 是一个 Banach 空间, $D \subset X$,T 为 D 到 X 的一个无界线性算子,若对任意的 $\{x_n\} \subset D$, $x_n \to x$, $Tx_n \to y$,均有 $x \in D$,且 y = Tx,则 D 一定不是 X 中的闭集。 答:正确。同 4 题。
- 6. [判断题] 设 x_1, x_2, \dots, x_n 是实数域 R 上的线性赋范空间 X 中的一个线性无关组,记 $M = \left\{ (\zeta_1, \zeta_2, \dots, \zeta_n) \in R^n \mid \sum_{k=1}^n |\zeta_k|^2 = 1 \right\}$,定义函数 $f(\zeta_1, \zeta_2, \dots, \zeta_n) = \|\sum_{k=1}^n \zeta_k x_k\|$,则 f 在 M 上能取到最小值 a,且 a > 0。

答: 正确。因为 x_1, x_2, \dots, x_n 是一个线性无关组,对于任意不全为 0 的实数组 $(\zeta_1, \zeta_2, \dots, \zeta_n)$, $\sum_{k=1}^n \zeta_k x_k$ 不为零。又对于范数 $\|x\| = 0 \Leftrightarrow x = 0$,因此函数 $f(\zeta_1, \zeta_2, \dots, \zeta_n) = \|\sum_{k=1}^n \zeta_k x_k\|$ 总是大于 0。另一方面,由于 M 是一个紧集 (闭且有界),而 f 是一个实连续函数,f 在 M 上一定能取到最小值。因此,存在一个最小值 a,且 a > 0。

7. [判断题] 设 X 为闭区间 [a,b] 上所有连续可微函数构成的集合,在 X 中定义范数 $\|x\| = \max_{a \le t \le b} \{|x(t)|, |x'(t)|\}$, 则 $S = \{x \in X \mid \|x\| = 1\}$ 一定不是紧集。

8. [判断题] 给定赋范空间 X 上的两个范数 $\|\cdot\|_1$ 和 $\|\cdot\|_2$,有单位算子 $A:(X,\|\cdot\|_1) \to (X,\|\cdot\|_2)$ 连续,则 $\|\cdot\|_1$ 比 $\|\cdot\|_2$ 强。

答: 正确。单位算子 A 是连续的线性算子,因而 A 有界。存在 M>0,使得 $\|Ax\|_2=\|x\|_2\leq M\|x\|_1$,因此 $\|\cdot\|_1$ 比 $\|\cdot\|_2$ 强。

9. [证明题] 在复线性赋范空间 l^1 中, 对每个自然数 n, 定义算子

$$A_n\{\xi_1,\xi_2,\cdots,\xi_n,\cdots\} = \{\xi_1,\xi_2,\cdots,\xi_{n-1},\xi_{n+1},\cdots\}, \{\xi_n\} \in l^1$$

证明: (1) 对每个自然数 n,有 $A_n \in B\left(l^1 \to l^1\right)$: (2) $\lim_{n \to \infty} \|A_n\| = 1$: (3) 如果 $|\lambda| > 1$,则 λ 为 A_n 的正则值,如果 $|\lambda| < 1$,则 λ 为 A_n 的特征值。

证: (1) 对于 $\forall \xi, \zeta \in l^1$, 有

$$A_{n}(\alpha\xi + \beta\zeta) = A_{n} \{\alpha\xi_{1} + \beta\zeta_{1}, \alpha\xi_{2} + \beta\zeta_{2}, \cdots, \alpha\xi_{n} + \beta\zeta_{n}, \cdots\}$$

$$= \{\alpha\xi_{1} + \beta\zeta_{1}, \alpha\xi_{2} + \beta\zeta_{2}, \cdots, \alpha\xi_{n-1} + \beta\zeta_{n-1}, \alpha\xi_{n+1} + \beta\zeta_{n+1}, \cdots\}$$

$$= \alpha\{\xi_{1}, \xi_{2}, \cdots, \xi_{n-1}, \xi_{n+1}, \cdots\} + \beta\{\zeta_{1}, \zeta_{2}, \cdots, \zeta_{n-1}, \zeta_{n+1}, \cdots\}$$

$$= \alpha A_{n}(\xi) + \beta A_{n}(\zeta)$$

则 A_n 为线性算子。

对于 l^1 的任意元素 ξ ,有 $\|A_n\xi\| = \sum_{k\neq n} |\xi_k| < \sum_{k=1}^{\infty} |\xi_n| = \|\xi\| < +\infty, n = 1, 2, \cdots$,因此 $A_n \in B(l^1 \to l^1), n = 1, 2, \cdots$ 。

(2) 由(1),对 $\forall \xi \in l^1, n \in N$,有 $\|A_n \xi\| \leq \|\xi\|$,故有, $\|A_n\| = \sup_{\|\xi\| \neq 0} \frac{\|A_n \xi\|}{\|\xi\|} \leq 1$ 。又若令 $e_n = \{\overbrace{0, \cdots, 0}^{n-1}, 1, 0, \cdots\}, n = 1, 2, \cdots, \ \mathbb{M} \|e_n\| = 1, \ \mathbb{H} A_n e_{n+1} = e_n, \ \text{故有}, \ \|A_n\| \geq \frac{\|A_n e_{n+1}\|}{\|e_{n+1}\|} = 1.$ 于是, $\|A_n\| = 1$ 。故 $\lim_{n \to \infty} \|A_n\| = 1$ 。

(3) 根据定理 4.6.1 可知,当 $|\lambda| > 1 = ||A_n||$ 时, λ 为 A_n 的正则值。由于 A_n 不是 1-1 的,故 $\lambda = 0$ 为 A_n 的特征值,而当 $|\lambda| < 1$,且 $\lambda \neq 0$ 时,令 $x_n = \{0, \dots, 0, \lambda, \lambda^2, \dots\}$,则 $x_n \in l^1, x_n \neq \theta$,且 $(A_n - \lambda I) x_n = \theta, n = 1, 2, \dots$,即方程 $(A_n - \lambda I) x = \theta$ 有非零解,故 λ 为 A_n 的特征值。

- 10. **[证明题**] 记 $C^1_{[a,b]}$ 表示闭区间 [a,b] 上连续可微的实函数全体, 试证明: 1. $C^1_{[a,b]}$ 作为 $C_{[a,b]}$ 的子空间是不完备的; 2. 如果在 $C^1_{(n,b)}$ 中定义范数 $\|x\| = \max_{\alpha \leq t \leq b} \{|x(t)|, |x'(t)|\}$, 则微分算子 $T = \frac{d}{dt}$ 是 $C^1_{[a,b]}$ 到 $C_{[a,b]}$ 的连续算子; 3. 如果 $C^1_{[a,b]}$ 按照 2 中的范数, 则 $\|T\| = 1$ 。证明:
 - 1. 考虑在 [a,b] 上的函数序列 $\{f_n\}$,其中 $f_n(x) = \sqrt{x^2 + \frac{1}{n}}$ 。每个 f_n 都在 [a,b] 上连续可微,因此 $f_n \in C^1_{[a,b]}$ 。然而,当 $n \to \infty$ 时, f_n 在 $C_{[a,b]}$ 中收敛到 f(x) = |x|,而 f 在 x = 0 处不可微。因此 $C^1_{[a,b]}$ 不是 $C_{[a,b]}$ 中的闭集,而 $C_{[a,b]}$ 完备,因此 $C^1_{[a,b]}$ 作为 $C_{[a,b]}$ 的子空间是不完备的。
 - 2. 对于任意 $f \in C^1_{[a,b]}$, 我们有

$$||Tf||_{C_{[a,b]}} = \max_{a < t < b} |f'(t)| \le \max_{a < t < b} \{|f(t)|, |f'(t)|\} = ||f||_{C^1_{[a,b]}},$$

所以 $||Tf||_{C_{[a,b]}} \le ||f||_{C_{[a,b]}^1}$, 这说明 T 有界,因而连续。

3. 由第2小问的结论, 我们有

$$||T|| = \sup_{f \neq 0} \frac{||Tf||_{C_{[a,b]}}}{||f||_{C_{[a,b]}^1}} \le 1,$$

考虑函数 $f_0(t)=e^t$,我们有 $f_0'(t)=e^t$,所以 $\|f_0\|=\max_{a\leq t\leq b}\{|e^t|,|e^t|\}=\max_{a\leq t\leq b}\{|e^t|\}$,且 $\|Tf_0\|=\max_{a\leq t\leq b}\{|e^t|\}$,有 $\|T\|=\sup_{\|f\|\neq 0}\frac{\|Tf\|}{\|f\|}\geq \frac{\|Tf_0\|}{\|f_0\|}=1$ 。因此,我们有 $\|T\|=1$ 。所以,当 $0\leq a< b\leq 1$ 时, $\|T\|=1$ 。

11. [证明题] 记 $C^1_{[a,b]}$ 表示闭区间 [a,b] 上连续可微的实函数全体, 对任意的 $x\in C^1_{[a,b]}$,定义

$$||x|| = \max_{\alpha \le t \le b} \{|x(t)|, |x'(t)|\}$$

1. 验证 $\|\cdot\|$ 为 $C^1_{[a,b]}$ 上的一个范数;2. 证明微分算子 $T=\frac{d}{dt}$ 是 $C^1_{[a,b]}$ 到 $C_{[a,b]}$ 的有界线性算子;3. 若 $0 \le a < b \le 1$,求 $\|T\|$ 。

证: 1. 非负性: 对于任意 $x \in C^1_{[a,b]}$, 我们有 $\|x\| = \max_{a \leq t \leq b} \left\{ |x(t)|, |x'(t)| \right\} \geq 0$ 。规定性: $\|x\| = 0 \Rightarrow \max_{a \leq t \leq b} \left\{ |x(t)|, |x'(t)| \right\} = 0 \Rightarrow x(t) = 0, x'(t) = 0, a \leq t \leq b$,因此 x 为零函数。当 x 为零函数时,显然有 $\|x\| = 0$,则规定性成立。正齐性: 对于任意 $x \in C^1_{[a,b]}$ 和任意实数 λ ,我们有

$$\|\lambda x\| = \max_{a \leq t \leq b} \left\{ |\lambda x(t)|, |\lambda x'(t)| \right\} = |\lambda| \max_{a \leq t \leq b} \left\{ |x(t)|, |x'(t)| \right\} = |\lambda| \|x\|_{\diamond}$$

次可加性: 对于任意 $x, y \in C^1_{[a,b]}$, 我们有

$$||x + y|| = \max_{a \le t \le b} \{|x(t) + y(t)|, |x'(t) + y'(t)|\} \le \max_{a \le t \le b} \{|x(t)| + |y(t)|, |x'(t)| + |y'(t)|\}$$

$$\le \max_{a \le t \le b} \{|x(t)|, |x'(t)|\} + \max_{a \le t \le b} \{|y(t)|, |y'(t)|\} = ||x|| + ||y||$$

2. 线性: 对于任意 $x,y\in C^1_{[a,b]}$ 和任意实数 λ,μ , 我们有

$$T(\lambda x + \mu y) = \frac{d}{dt}(\lambda x(t) + \mu y(t)) = \lambda \frac{d}{dt}x(t) + \mu \frac{d}{dt}y(t) = \lambda T(x) + \mu T(y),$$

因此 T 是线性算子。

有界: 对于任意 $x \in C^1_{[a,b]}$, 我们有 $||Tx|| = \max_{a \le t \le b} \{|x'(t)|\} \le \max_{a \le t \le b} \{|x(t)|, |x'(t)|\} = ||x||$, 所以 T 是有界的,且 $||T|| \le 1$ 。

- 3. 由第 2 小问,已知 $\|T\| \le 1$ 。考虑函数 $x_0(t) = t$,我们有 $x_0'(t) = 1$,所以 $\|x_0\| = \max_{a \le t \le b}\{|t|, |1|\} = 1$,且 $\|Tx_0\| = \max_{a \le t \le b}\{|1|\} = 1$,有 $\|T\| = \sup_{\|x\| \ne 0} \frac{\|Tx\|}{\|x\|} \ge \frac{\|Tx_0\|}{\|x_0\|} = 1$ 。因此,我们有 $\|T\| = 1$ 。所以,当 $0 \le a < b \le 1$ 时, $\|T\| = 1$ 。
- 12. **[证明题**] $L_{[a,b]}^{\infty}$ 表示闭区间 [a,b] 上的所有本性有界可测函数全体,按照函数的通常加法与数乘构成一个线性空间,规定几乎处处相等的函数为同一个元素,定义

$$\rho(x_1, x_2) = \inf_{E \in \Sigma} \left(\sup_{[a,b] - E} |x_1(t) - x_2(t)| \right), x_1, x_2 \in L^{\infty}_{[a,b]}$$

其中, $\Sigma = \{E \subset [a,b] \mid m(E) = 0\}$ 为 [a,b] 中的零测集全体。1. 验证 ρ 为 $L^{\infty}_{[a,b]}$ 上的一个距离;2. 设 $\{x_n\}$ 为 $L^{\infty}_{[a,b]}$ 中的一个点列, $x \in L^{\infty}_{[a,b]}$,证明 $\{x_n\}$ 在 $L^{\infty}_{[a,b]}$ 中收敛到 x 的充分必要条件是函数 列 $\{x_n(t)\}$ 在 [a,b] 上几乎处处一致收敛到 x(t);3. 设 $\{x_n\}$ 为 $L^{\infty}_{[a,b]}$ 中的一个基本列,证明 $\{x_n\}$ 在 $L^{\infty}_{[a,b]}$ 中收敛。

13. **[证明题**] 在线性赋范空间 l^{∞} 中, 对每个自然数 n, 定义算子

$$A_n \{\xi_1, \xi_2, \dots\} = \{\xi_{n+1}, \xi_{n+2}, \dots\}, \{\xi_n\} \in l^{\infty}$$

又令 $M = \{\{\xi_n\} \subset R \mid \sum_{n=1}^{\infty} |\xi_n|^p < +\infty\} \ (p > 1), \ \text{则} \ M \subset l^{\infty}. \ 1. 证明 \ A_n \in B \ (l^{\infty} \to l^{\infty}); \ 2. 证明 \lim_{n \to \infty} \|A_n\| = 1; \ 3. \ \text{问} \ M$ 是否为 l^{∞} 的完备子空间,证明你的结论。

1. 对于 $\forall \xi, \zeta \in l^{\infty}$,有

$$A_n(\alpha\xi + \beta\zeta) = A_n \left\{ \alpha\xi_1 + \beta\zeta_1, \alpha\xi_2 + \beta\zeta_2, \cdots \right\}$$

$$= \left\{ \alpha\xi_{n+1} + \beta\zeta_{n+1}, \alpha\xi_{n+2} + \beta\zeta_{n+2}, \cdots \right\}$$

$$= \alpha \left\{ \xi_{n+1}, \xi_{n+2}, \cdots \right\} + \beta \left\{ \zeta_{n+1}, \zeta_{n+2}, \cdots \right\}$$

$$= \alpha A_n(\xi) + \beta A_n(\zeta)$$

则 A_n 为线性算子。

对于任意的 $\{\xi_n\}$ ∈ l^{∞} , 我们有

$$||A_n \{\xi_1, \xi_2, \dots\}||_{\infty} = \sup_{k \ge 1} |\xi_{n+k}| \le \sup_{k \ge 1} |\xi_k| = ||\{\xi_1, \xi_2, \dots\}||_{\infty},$$

 A_n 有界,所以 $A_n \in B(l^\infty \to l^\infty)$ 。

2. 对于任意的 $\{\xi_k\}$ ∈ l^{∞} , 我们有

$$||A_n\{\xi_1,\xi_2,\cdots\}||_{\infty} = \sup_{k>1} |\xi_{n+k}| \le \sup_{k>1} |\xi_k| = ||\{\xi_1,\xi_2,\cdots\}||_{\infty},$$

所以 $||A_n|| \leq 1$ 。

另一方面, 对于序列 $\xi_0 = \{0,0,\cdots,0,1,0,0,\cdots\}$ (第 n+1 项为 1 , 其余项为 0), 我们有 $\|A_n(\xi_0)\|_{\infty} = \|\xi_0\|_{\infty} = 1$,所以 $\|A_n\| = \sup_{\|\xi\| \neq 0} \frac{\|A_n(\xi)\|}{\|\xi\|} \geq \frac{\|A_n(\xi_0)\|}{\|\xi_0\|} = 1$ 。 因此, $\lim_{n \to \infty} \|A_n\| = 1$ 。

3. 因为 l^{∞} 为完备空间,只要证 M 不为闭集即可。令 $x_n = \left\{1, \frac{1}{2}^{\frac{1}{p}}, \cdots, \frac{1}{n}^{\frac{1}{p}}, 0, \cdots\right\}, n = 1, 2, \cdots, 则$ $\{x_n\} \subset M$,令 $x = \left\{1, \frac{1}{2}^{\frac{1}{p}}, \cdots, \frac{1}{n}^{\frac{1}{p}}, \cdots\right\}$,显然 $x \in l^{\infty}$,且 $\rho(x_n, x) = \sup_{k \geq n+1} \frac{1}{k} = \frac{1}{n+1} \to 0 (n \to \infty)$,故 $x_n \to x(n \to \infty)$, $x \to l$ 的一个极限点,但 $||x|| = +\infty$, $x \notin M$ 。

14. [**证明题**] 在复线性赋范空间 l^2 中, 对每个自然数 n, 定义算子。

$$A_n \{\xi_1, \xi_2, \dots, \xi_n, \dots\} = \{\xi_{n+1}, \xi_{n+2}, \dots\}, \{\xi_n\} \in l^2$$

证明: 1. $A_n \in B(l^2 \to l^2)$; 2. $\lim_{n\to\infty} ||A_n|| = 1$; 3. 如果 $|\lambda| > 1$, 则 λ 为 A_1 的正则值, 如果 $|\lambda| < 1$, 则 λ 为 A_1 的特征值。

证: (1) 对于 $\forall \xi, \zeta \in l^2$, 有

$$A_{n}(\alpha\xi + \beta\zeta) = A_{n} \left\{ \alpha\xi_{1} + \beta\zeta_{1}, \alpha\xi_{2} + \beta\zeta_{2}, \cdots, \alpha\xi_{n} + \beta\zeta_{n}, \cdots \right\}$$

$$= \left\{ \alpha\xi_{1} + \beta\zeta_{1}, \alpha\xi_{2} + \beta\zeta_{2}, \cdots, \alpha\xi_{n-1} + \beta\zeta_{n-1}, \alpha\xi_{n+1} + \beta\zeta_{n+1}, \cdots \right\}$$

$$= \alpha\left\{ \xi_{1}, \xi_{2}, \cdots, \xi_{n-1}, \xi_{n+1}, \cdots \right\} + \beta\left\{ \zeta_{1}, \zeta_{2}, \cdots, \zeta_{n-1}, \zeta_{n+1}, \cdots \right\}$$

$$= \alpha A_{n}(\xi) + \beta A_{n}(\zeta)$$

则 A_n 为线性算子。

对于 l^2 的任意元素 ξ ,有 $\|A_n\xi\| = \sum_{k\neq n} |\xi_k| < \sum_{k=1}^{\infty} |\xi_n| = \|\xi\| < +\infty, n = 1, 2, \cdots$,因此 $A_n \in B(l^2 \to l^2), n = 1, 2, \cdots$ 。

(2) 由(1),对 $\forall \xi \in l^2, n \in N$,有 $\|A_n \xi\| \leq \|\xi\|$,故有, $\|A_n\| = \sup_{\|\xi\| \neq 0} \frac{\|A_n \xi\|}{\|\xi\|} \leq 1$ 。又若令 $e_n = \{\overbrace{0, \cdots, 0}^{n-1}, 1, 0, \cdots\}, n = 1, 2, \cdots, \ \mathbb{M} \|e_n\| = 1, \ \mathbb{H} A_n e_{n+1} = e_n, \ \text{故有}, \ \|A_n\| \geq \frac{\|A_n e_{n+1}\|}{\|e_{n+1}\|} = 1$ 。于是, $\|A_n\| = 1$ 。故 $\lim_{n \to \infty} \|A_n\| = 1$ 。

(3) 根据定理 4.6.1 可知,当 $|\lambda| > 1 = ||A_1||$ 时, λ 为 A_1 的正则值。由于 A_1 不是 1-1 的,故 $\lambda = 0$ 为 A_1 的特征值,而当 $|\lambda| < 1$,且 $\lambda \neq 0$ 时,令 $x = \{\lambda, \lambda^2, \dots\}$,则 $x \in l^2, x \neq \theta$,且 $(A_1 - \lambda I) x = \theta, n = 1, 2, \dots$,即方程 $(A_1 - \lambda I) x = \theta$ 有非零解,故 λ 为 A_1 的特征值。

5 Hilbert 空间

5.1 题目

- 1. [选择题] 设 f 为 $n(n \ge 2)$ 维内积空间 U 上非零的线性泛函,记 $M = \{x \in U \mid f(x) = 0\}$,则下列结论不正确的是:
 - (A) M 是一个 Hilbert 空间

(B) M 是 U 的真子线性空间

(C) M^{\perp} 是一个 1 维线性空间

(D) M^{\perp} 是一个 n-1 维线性空间

解析: (1) (2) 因为 f 为一个非零的线性泛函,则一定存在 $x \in U$,但是 $x \notin M$,则 M 是 U 的真子线性空间。(3) 因为 f 为一个非零的线性泛函,则 f 的像空间 range(f) 至少有一个非 0 元素,维度为 1,根据线性变换的基本定理,dim(U) = dim(null(f)) + dim(range(f)),因此 f 的零空间 M 的维度为 n-1。

- 2. [选择题] 设 f 为 $n(n \ge 2)$ 维内积空间 U 上非零的线性泛函,记 $M = \{x \in U \mid f(x) = 0\}$,判断下列 结论的正确性: (1) M 是一个 Hilbert 空间; (2) M 是 U 的真子线性空间; (3) M 是一个 n-1 维 线性空间
 - (A) 3 个都不正确

- (B) 3 个都正确
- (C)(2)正确,(1)与(3)不正确
- (D)(1)与(2)正确,(3)不正确
- 3. [选择题] 设 $\{e_k\}$ 为不完备内积空间 U 中的标准直交系,记 $M=span\{e_k\}$,则下列结论不正确的是: [C]
 - (A) 若 $\{e_k\}$ 完备,则 M 在 U 中稠密
- (B) 若 $\overline{M} = U$,则 $\{e_k\}$ 完备
- (C) 若 $\{e_k\}$ 完全,则M在U中稠密
- (D) 若 $\overline{M} = U$, 则 $\{e_k\}$ 完全

解析: $\{e_k\}$ 完备,则 U 中所有元素都能由 $\{e_k\}$ 线性表示。因此(A)和(B)是正确的,又由 $\{e_k\}$ 完备一定能推出 $\{e_k\}$ 完全,一定能推出(D)完全。(C)不一定成立。

4. [判断题] 设 X 与 Y 为两个内积空间,T 为 X 到 Y 的一个线性算子,若对任意的 $x \in X$,均有 (Tx,Tx)=(x,x),则 X 与 TX 保内积线性同构。

答: 正确。由 (Tx,Tx)=(x,x) 可知 U 上的范数 $\|x\|=\sqrt{(x,x)}$,满足 $\|Tx\|=\|x\|$,T 是保范算子,且 T 是 X 到 TX 的 1-1 映射,因此 T 是 X 与 TX 之间的一个保范线性映射,X 与 TX 保范线性同构,也因此 X 与 TX 保内积线性同构。

5. [判断题] $\left\{\frac{1}{\sqrt{2\pi}},\frac{\cos x}{\sqrt{\pi}},\frac{\sin x}{\sqrt{\pi}},\frac{\cos 2x}{\sqrt{\pi}},\frac{\sin 2x}{\sqrt{\pi}},\cdots\right\}$ 为实内积空间 $L^2_{[-\pi,x]}$ 中一个完备的标准直交系,故对 $\forall f \in L^2_{[-\pi,\pi]}$,均有 f 关于上述标准直交系的 Fourier 级数收敛到 f,因此,对 $\forall x \in [-\pi,\pi]$,有

$$f(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k \cos kx + b_k \sin kx)$$

成立。其中,

$$a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos kx dx, k = 0, 1, 2, \dots, \quad b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin kx dx, k = 1, 2, \dots$$

答:错误。

6. [判断题] 设 $\{e_n\}_{n\in N}$ 为 Hilbert 空间 H 中的标准直交系, $T\in B(H\to H)$,记 $e_{kn}=(Te_k,e_n)$,则对任意的 $n\in N$, $\sum_{k=1}^{\infty}|e_{kn}|^2$ 收敛。

答: 首先, $T \in B(H \to H)$,则存在一个常数 $M < +\infty$,使得 $\|Te_k\|^2 = M$ 。根据 Bessel 不等式,对于 Hilbert 空间 H 中的标准直交系 $\{e_n\}$, $x \in H$,我们有 $\sum_{n=1}^{\infty} |(x,e_n)|^2 \leq \|x\|^2$ 。因此对于 $Te_k \in H$,有 $\sum_{n=1}^{\infty} |(Te_k,e_n)|^2 = \sum_{n=1}^{\infty} |e_{kn}|^2 \leq \|Te_k\|^2 = M$,则 $\sum_{k=1}^{\infty} |e_{kn}|^2$ 收敛。

7. [**证明题**] 设 *H* 为 Hilbert 空间, $T \in B(H \to H)$, 对给定的 $y \in H$, 定义 f(x) = (Tx, Ty), (1) 证明 f 为 H 上的一个连续线性泛函: (2) 在 T 和 y 已知的条件下, 给出 ||f|| 的一个表达式。

解: (1) 由于 T 线性,且内积关于第一变元线性,故 f 线性。又 T 连续,且内积关于第一变元连续,故 f 连续; 或者,根据 Cauchy-Schwartz 不等式,有

$$|f(x)| = |(Tx, Ty)| \le ||Tx|| ||Ty|| \le ||Ty|| ||T|| ||x||,$$

故 f 有界, 从而连续。

- (2) 因为 H 是 Hilbert 空间,则 T 在 H 上存在共轭算子 T^* ,故 $f(x)=(Tx,Ty)=(x,T^*Ty)$,于是,根据 Riesz 表示定理可知, $\|f\|=\|T^*Ty\|$ 。
- 8. [**证明题**] 设 $\{e_1, e_2, \dots, e_n\}$ 为 n 维内积空间 X 的一个标准直交系,f 为 X 上的一个线性泛函。1. 证明 f 连续: (8 分) 2. 求 f 的范数。(8 分)

解: 1. 根据假设和线性空间维数的定义, $\{e_1,e_2,\cdots,e_n\}$ 也是 X 完备的标准直交系,故对任意的 $x\in X$,有 $x=\sum_{i=1}^n c_i e_i$,且 $\|x\|^2=\sum_{i=1}^n |c_i|^2$ 。由于 f 线性,有

$$|f(x)| = \left| f(\sum_{i=1}^{n} c_i e_i) \right| = \left| \sum_{i=1}^{n} c_i f(e_i) \right| \le \sum_{i=1}^{n} |c_i f(e_i)|,$$

又根据 Cauchy 不等式,有

$$|f(x)| \le \sum_{i=1}^{n} |c_i f(e_i)| \le \sqrt{\sum_{i=1}^{n} |c_i|^2} \cdot \sqrt{\sum_{i=1}^{n} |f(e_i)|^2} = M||x||$$

其中, $M = \sqrt{\sum_{i=1}^{n} |f(e_i)|^2}$ 。故 f 有界,且 $||f|| \le M$,从而 f 连续。

2. 令 $y = \sum_{i=1}^{n} \overline{f(e_i)} e_i$, 其中 $\overline{f(e_i)}$ 为 $f(e_i)$ 的共轭复数,显然

$$||y|| = \sqrt{\sum_{i=1}^{n} |\overline{f(e_i)}|^2} = \sqrt{\sum_{i=1}^{n} |f(e_i)|^2} = M,$$

故

$$||y||^2 = \sum_{i=1}^n |f(e_i)|^2 = \left|\sum_{i=1}^n \overline{f(e_i)} f(e_i)\right| = |f(y)| \le ||f|| ||y||,$$

于是又有, $||f|| \ge ||y|| = M$,故 $||f|| = \sqrt{\sum_{i=1}^{n} |f(e_i)|^2}$ 。

9. [证明题] 设 f 为无限维内积空间 U 上的线性泛函,令 $M=\{x\in U\mid f(x)=0\}$ 为 f 的零空间,如果 M^\perp 不是零维线性空间,试证明 M^\perp 是一个 Hilbert 空间。(10 分)

证:根据假设存在 $x\in M^\perp$,且 $x\neq \theta$ 。设 $x,y\in M^\perp$,且 $x\neq \theta$,则由于 $M\cap M^\perp\subset\{\theta\}$,故有 $f(x)\neq 0$ 。又 f 线性,故 $f\left(y-\frac{f(y)}{f(x)}x\right)=0$,于是 $y-\frac{f(y)}{f(x)}x\in M$ 。而 M^\perp 是线性空间,故 $y-\frac{f(y)}{f(x)}x\in M^\perp$ 。于是, $y-\frac{f(y)}{f(x)}x=\theta$,即 x,y 线性相关。故 M^\perp 只能是 1 维线性空间,当然是 Hilbert 空间。

10. [证明题] 设 M 为内积空间 U 的一个完备子空间,对固定的一个 $a \in U$,定义 M 上的一个泛函 $f(x) = \|x - a\|, x \in M$,试证明 f 可在 M 上取到最小值,且取到最小值的点是唯一的。

证:由投影定理,因为 M 为内积空间 U 的一个完备子空间,则对于任意 $a \in U$,存在唯一的投影 p,有 $\|a-p\| = \min_{x \in M} \|a-x\|$,对于任意的 $x \in M$,我们都有 $\|a-p\| \le \|a-x\|$,也就是说 $f(p) \le f(x)$ 。因此,f(x) 在 M 上能取到唯一的最小值 f(p)。

11. **[证明题**] 设 M 为内积空间 U 的一个线性子空间,且 U 中的每个元素均在 M 上存在直交投影,对固定的一个 $a \in U$,定义 M 上的一个泛函 $f(x) = \|x - a\|, x \in M$,试证明 f 可在 M 上取到最小值,且取到最小值的点是唯一的。

证: 先证对于任意的 $a \in U$,如果 a 在 M 上的投影存在,则唯一。设 $p,q \in M$ 为 a 在 M 上两个不同的投影,则 (a-p,p-q)=0,(a-q,p-q)=0,两式相减有 (a-q,p-q)-(a-p,p-q)=(a-q-a+p,p-q)=(p-q,p-q)=0,与 $p \neq q$ 矛盾。剩下与第 10 题相同。

12. [**证明题**] 设 $\{e_n\}$ 为内积空间 X 中不完备的标准直交系,如果 M 在 X 中稠密,试证明:在 M 中至 少存在一个元素,它不能由 $\{e_n\}$ 中的有限个元素线性表示。

反证法: 假设 M 中的任一元素都能由 $\{e_n\}$ 线性表示。

因为 $\{e_n\}$ 不完备,则存在 $x \in X$,使 $\epsilon = \|x\|^2 - \sum_{k=1}^{\infty} |c_k|^2 > 0$ 。又因为 M 在 X 中稠密,则对于 $\sqrt{\epsilon} > 0$,存在 $m = \sum_{k=1}^{N} a_k e_k \in M$,使得 $\|x - m\| < \sqrt{\epsilon}$,则有

$$\epsilon = ||x||^2 - \sum_{k=1}^{\infty} |c_k|^2 \le ||x||^2 - \sum_{k=1}^{N} |c_k|^2 = ||x - \sum_{k=1}^{N} c_k e_k||^2$$

$$\le ||x - \sum_{k=1}^{N} a_k e_k||^2 = ||x - m||^2$$

$$\le \epsilon$$

显然矛盾,则在M中至少存在一个元素,它不能由 $\{e_n\}$ 中的有限个元素线性表示。

13. [**证明题**] 设 f 为 $n(n \ge 2)$ 维内积空间 U 上非零的线性泛函, 令 $M = \{x \in U \mid f(x) = 0\}$ 为 f 的零空间, 记 Dim(V) 为线性空间 V 的维数, 证明: 1. $Dim(M) + Dim(M^{\perp}) = n$; 2. Dim(M) = n - 1.