PART B – Geometry-Free Ambiguity Resolution

Goals:

- B1) Determine recursively the $\nabla \Delta N_1$ and $\nabla \Delta N_2$ ambiguities for all satellite-receiver pairs in a least-square manner over all epochs using double-differenced observations.
- B2) Form the wide-lane $\nabla \Delta$ ambiguities as $\nabla \Delta N_{WL} = \nabla \Delta N_1 \nabla \Delta N_2$ and plots their evolution.
- B3) Determine ambiguity integer values \hat{N}_1 , \hat{N}_2 by the method of Clyde Goad.
- B4) Analyze the differential delay of the ionosphere using the phase measurement for all satellite-receiver pairs by plotting their evolution over all epochs.

Input: As in Part A + note that for E1 and E5a frequencies, $F_1=154$ and $F_2=115$ respectively.

Output:

- 4. Printed ambiguity values using observations from all epochs for each SV-Rx pair.
- 5. Plots of wide-line ambiguity determination per SV-Rx pairs.
- 6. Your interpretation of the plots in B3 & B4 (explains the observed patterns).
- 7. Printed Matlab code.

Hints:

B1-2: Self-control (useful for debugging purposes) – with base PRN 8
Ambiguities: 1st epoch (cycle):

DD(
$$8-2$$
): N1= -15.7 N2= -49.7

Ambiguities all epochs (cycles):

DD(8-2):	N1=	-16.4(-16)	N2=	-50.3(-50)	Nw =	33.9
DD(8-3):	N1=	-18.9(-18)	N2=	-47.6(-47)	Nw =	28.7
DD(8-5):	N1=	-12.5(-11)	N2=	-40.1(-39)	Nw =	27.6
DD(8-11):	N1=	8.0(9)	N2=	2.3(3)	Nw =	5.8
DD(8-12):	N1=	-17.8(-17)	N2=	-12.6(-12)	Nw =	-5.2
DD(8-24):	N1=	-33.4(-33)	N2=	-106.2(-106)	Nw =	72.9
DD(8-25):	N1=	-40.1 (-40)	N2=	-49.0(-49)	Nw =	8.9

- B3: Follow the simple algorithm proposed by Clyde Goad in the Equation below:

$$\begin{split} K_{1} &= round \left(N_{1} - N_{2} \right) \\ K_{2} &= round \left(F_{2}N_{1} - F_{1}N_{2} \right) \\ \hat{N}_{2} &= round \left[\left(F_{2}K_{1} - K_{2} \right) / \left(F_{1} - F_{2} \right) \right] \\ \hat{N}_{1} &= K_{1} + \hat{N}_{2} \end{split}$$

- B4: Express the differential ionospheric delay I_{ij}^{bk} as a solution of the following system:

$$\begin{split} \phi_{ij,1}^{bk} &= \rho_{ij}^{*bk} - I_{ij}^{bk} + \lambda_1 N_{ij,1}^{bk} \\ \phi_{ij,2}^{bk} &= \rho_{ij}^{*bk} - \left(f_1^2 / f_2^2 \right) I_{ij}^{bk} + \lambda_2 N_{ij,2}^{bk} \end{split}$$