# CIS 5710 Computer Organization and Design

Unit 3: Arithmetic

Based on slides by Profs. Amir Roth & Milo Martin & C.J. Taylor

#### This Unit: Arithmetic



- A little review
  - Binary + 2s complement
  - Ripple-carry addition (RCA)
- Fast integer addition
  - Carry-select (CSeA)
  - Carry Lookahead Adder (CLA)
- Shifters
- Integer multiplication and division
- Floating point arithmetic

# Readings

- P&H
  - Chapter 3

#### The Importance of Fast Arithmetic



- Addition of two numbers is most common operation
  - Programs use addition frequently
  - Loads and stores use addition for address calculation
  - Branches use addition to test conditions and calculate targets
  - All insns use addition to calculate default next PC
- Fast addition is critical to high performance

## Review: Binary Integers

Computers represent integers in binary (base2)

$$3 = 11, 4 = 100, 5 = 101, 30 = 11110$$

- + Natural since only two values are represented
- Addition, etc. take place as usual (carry the 1, etc.)

$$17 = 10001$$
 $+5 = 101$ 
 $22 = 10110$ 

- Some old machines use decimal (base10) with only 0/1
   30 = 011 000
  - Often called BCD (binary-coded decimal)
  - Unnatural for digital logic, implementation complicated & slow
  - + Required for precise currency operations

#### Fixed Width

- On pencil and paper, integers have infinite width
- In hardware, integers have fixed width
  - N bits: 16, 32 or 64
  - LSB is 2<sup>0</sup>, MSB is 2<sup>N-1</sup>
  - **Range**: 0 to 2<sup>N</sup>-1
  - Numbers >2<sup>N</sup> represented using multiple fixed-width integers
    - In software (e.g., Java BigInteger class)

## What About Negative Integers?

#### Sign/magnitude

- Unsigned plus one bit for sign 10 = 000001010, -10 = 100001010
- + Matches our intuition from "by hand" decimal arithmetic
- representations of both +0 and -0
- Addition is difficult
- symmetric range: -(2<sup>N-1</sup>-1) to 2<sup>N-1</sup>-1

#### Option II: two's complement (2C)

- Leading 0s mean positive number, leading 1s negative 10 = 00001010, -10 = 11110110
- + One representation for 0 (all zeroes)
- + Easy addition
- asymmetric range: –(2<sup>N-1</sup>) to 2<sup>N-1</sup>–1

#### The Tao of 2C

- How did 2C come about?
  - "Let's design a representation that makes addition easy"
  - Think of subtracting 10 from 0 by hand with 8-bit numbers
  - Have to "borrow" 1s from some imaginary leading 1

$$0 = 100000000$$

$$-10 = 00000010$$

$$-10 = 011111110$$

Now, add the conventional way...

```
\begin{array}{rcl}
-10 & = & 11111110 \\
+10 & = & 00000010 \\
0 & = & 100000000
\end{array}
```

#### Still More On 2C

- What is the interpretation of 2C?
  - Same as binary, except MSB represents  $-2^{N-1}$ , not  $2^{N-1}$

$$\bullet$$
 -10 = 11110110 = -2<sup>7</sup>+2<sup>6</sup>+2<sup>5</sup>+2<sup>4</sup>+2<sup>2</sup>+2<sup>1</sup>

- + Extends to any width
  - $\bullet$  -10 = 110110 = -2<sup>5</sup>+2<sup>4</sup>+2<sup>2</sup>+2<sup>1</sup>
  - Why?  $2^N = 2*2^{N-1}$
  - $-2^5+2^4+2^2+2^1 = (-2^6+2*2^5)-2^5+2^4+2^2+2^1 = -2^6+2^5+2^4+2^2+2^1$
- Equivalent to computing modulo 2<sup>N</sup>
- Trick to negating a number quickly: -B = B' + 1
  - -(1) = (0001)'+1 = 1110+1 = 1111 = -1
  - -(-1) = (1111)'+1 = 0000+1 = 0001 = 1
  - $\bullet$  -(0) = (0000)'+1 = 1111+1 = 0000 = 0
  - Think about why this works

# **Addition**

#### 1st Grade: Decimal Addition

- Repeat N times
  - Add least significant digits and any overflow from previous add
  - Carry "overflow" to next decimal place
    - Overflow: any digit other than least significant of sum
  - Both two addends and the sum are shifted right by one
- Sum of two N-digit numbers can yield an N+1 digit number

## Binary Addition: Works the Same Way

```
\begin{array}{rcl}
1 & 111111 \\
43 & = 00101011 \\
+29 & = 00011101 \\
72 & = 01001000
\end{array}
```

- Repeat N times
  - Add least significant bits and any overflow from previous add
  - Carry the overflow to next addition
  - Shift two addends and sum one bit to the right
- Sum of two N-bit numbers can yield an N+1 bit number
- More steps (smaller base)
- + Each one is simpler (adding just 1 and 0)

#### The Half Adder

- How to add two binary integers in hardware?
- Start with adding two bits
  - When all else fails ... look at truth table

- $S = A^B$
- CO (carry out) = AB
- This is called a half adder



#### The Other Half

- We could chain half adders together, but to do that...
  - Need to incorporate a carry out from previous adder



- S = C'A'B | C'AB' | CA'B' | CAB = C ^ A ^ B
- CO = C'AB | CA'B | CAB' | CAB = CA | CB | AB
- This is called a full adder

## Ripple-Carry Adder

- N-bit ripple-carry adder
  - N 1-bit full adders "chained" together
    - $CO_0 = CI_1$ ,  $CO_1 = CI_2$ , etc.
    - $CI_0 = 0$
    - CO<sub>N-1</sub> is carry-out of entire adder
      - $CO_{N-1} = 1 \rightarrow$  "overflow"
- Example: 16-bit ripple carry adder
  - How fast is this?
  - How fast is an N-bit ripple-carry adder?



## Quantifying Adder Delay

- Combinational logic dominated by gate delays
  - How many gates between input and output?
  - Array storage dominated by wire delays
  - Longest delay or critical path is what matters
- Can implement any combinational function in "2" logic levels
  - 1 level of AND + 1 level of OR (PLA)
  - NOTs are "free": push to input (DeMorgan's) or read from latch
  - Example: delay(FullAdder) = 2
    - d(CarryOut) = delay(AB | AC | BC)
    - d(Sum) = d(A ^ B ^ C) = d(AB'C' | A'BC' | A'B'C | ABC) = 2
    - Note '^' means Xor (just like in C & Java)
- Caveat: "2" assumes gates have few (<8 ?) inputs</li>

## Ripple-Carry Adder Delay

- Longest path is to CO<sub>15</sub> (or S<sub>15</sub>)
  - $delay(CO_{15}) = 2 + MAX(d(A_{15}), d(B_{15}), d(CI_{15}))$ 
    - $d(A_{15}) = d(B_{15}) = 0$ ,  $d(CI_{15}) = d(CO_{14})$
  - $d(CO_{15}) = 2 + d(CO_{14}) = 2 + 2 + d(CO_{13}) \dots$
  - $d(CO_{15}) = 32$
- $d(CO_{N-1}) = 2N$ 
  - Too slow!
  - Linear in number of bits
- Number of gates is also linear



# **Division**

#### 4th Grade: Decimal Division

- Shift divisor left (multiply by 10) until MSB lines up with dividend's
- Repeat until remaining dividend (remainder) < divisor</li>
  - Find largest single digit q such that (q\*divisor) < dividend</li>
  - Set LSB of quotient to q
  - Subtract (q\*divisor) from dividend
  - Shift quotient left by one digit (multiply by 10)
  - Shift divisor right by one digit (divide by 10)

## **Binary Division**

$$\begin{array}{rcl}
 & \underline{1001} & = \underline{9} \\
3 & | 29 & = & 0011 & | 011101 \\
 & \underline{-24} & = & \underline{-011000} \\
5 & = & 000101 \\
 & \underline{-3} & = & \underline{-000011} \\
2 & = & 000010
\end{array}$$

## **Binary Division Hardware**

- Same as decimal division, except (again)
  - More individual steps (base is smaller)
  - + Each step is simpler
  - Find largest bit q such that (q\*divisor) < dividend</li>
    - q = 0 or 1
  - Subtract (q\*divisor) from dividend
    - q = 0 or  $1 \rightarrow$  no actual multiplication, subtract divisor or not
- Complication: largest q such that (q\*divisor) < dividend</li>
  - How do you know if (1\*divisor) < dividend?</li>
  - Human can "eyeball" this
  - Computer does not have eyeballs
    - it must subtract and see if result is negative

## Software Divide Algorithm

- Can implement this algorithm in software
- Inputs: dividend and divisor

```
Outputs: quotient = dividend / divisor
rem = dividend % divisor
 remainder = 0;
 quotient = 0;
 for (int i = 0; i < 32; i++) {
   remainder = (remainder << 1) | (dividend >> 31);
   if (remainder >= divisor) {
     quotient = (quotient << 1) | 1;
     remainder = remainder - divisor;
   } else {
     quotient = (quotient << 1) | 0;
   dividend = dividend << 1;
```

## Divide Example

Input: Divisor = 00011 , Dividend = 11101

| <u>Step</u> | Remainder | Quotient            | Remainder | Dividend      |
|-------------|-----------|---------------------|-----------|---------------|
| 0           | 00000     | 00000               | 00000     | <b>1</b> 1101 |
| 1           | 00001     | 00000               | 00001     | <b>1101</b> 0 |
| 2           | 00011     | 00001               | 00000     | <b>101</b> 00 |
| 3           | 00001     | 00010               | 00001     | 01000         |
| 4           | 00010     | 00100               | 00010     | 10000         |
| 5           | 00101     | 0100 <mark>1</mark> | 00010     | 00000         |

• Result: Quotient: 1001, Remainder: 10

#### **Divider Circuit**



N cycles for n-bit divide

## **Fast Addition**

#### Theme: Hardware != Software

- Hardware can do things that software fundamentally can't
  - And vice versa (of course)
- In hardware, it's easier to trade resources for latency
- One example of this: speculation
  - Slow computation waiting for some slow input?
  - Input one of two things?
  - Compute with both (slow), choose right one later (fast)
- Does this make sense in software? Not on a single core
- Difference? hardware is parallel, software is sequential

## Carry-Select Adder

#### Carry-select adder

- Do  $A_{15-8}+B_{15-8}$  twice, once assuming  $C_8$  (CO<sub>7</sub>) = 0, once = 1
- Choose the correct one when CO<sub>7</sub> finally becomes available
- + Effectively cuts carry chain in half (break critical path)
- Extra mux increases delay





## Multi-Segment Carry-Select Adder

- Multiple segments
  - Example: 5, 5, 6 bit = 16 bit
- Hardware cost
  - Still mostly linear (~2x)
  - Compute each segment with 0 and 1 carry-in
  - Serial mux chain
- Delay
  - 5-bit adder (10) +
     Two muxes (4) = 14



## Carry-Select Adder Delay

- What is two segment carry-select adder delay?
  - $d(CO_{15}) = MAX(d(CO_{15-8}), d(CO_{7-0})) + 2$
  - $d(CO_{15}) = MAX(2*8, 2*8) + 2 = 18$
  - In general: 2\*(N/2) + 2 = N+2 (vs **2N** for RCA)
- What about four equal segments?
  - Would it be 2\*(N/4) + 2 = 10? Not quite
  - $d(CO_{15}) = MAX(d(CO_{15-12}), d(CO_{11-0})) + 2$
  - $d(CO_{15}) = MAX(2*4, MAX(d(CO_{11-8}), d(CO_{7-0})) + 2) + 2$
  - $d(CO_{15}) = MAX(2*4,MAX(2*4,MAX(d(CO_{7-4}),d(CO_{3-0})) + 2) + 2) + 2$
  - $d(CO_{15}) = MAX(2*4,MAX(2*4,MAX(2*4,2*4) + 2) + 2) + 2$
  - $d(CO_{15}) = 2*4 + 3*2 = 14$
- N-bit adder in M equal pieces: 2\*(N/M) + (M-1)\*2
  - 16-bit adder in 8 parts: 2\*(16/8) + 7\*2 = 18

#### 16b Carry-Select Adder Delay



## **Another Option: Carry Lookahead**

- Is carry-select adder as fast as we can go?
  - Nope!
- Another approach to using additional resources
  - Instead of redundantly computing sums assuming different carries
  - Use redundancy to compute carries more quickly
    - This approach is called carry lookahead (CLA)

#### A & B → Generate & Propagate

- Let's look at the single-bit carry-out function
  - CO = AB|AC|BC
  - Factor out terms that use only A and B (available immediately)
  - CO =(AB)|(A|B)C
  - (AB): generates carry-out regardless of incoming C → rename to G
  - (A | B): propagates incoming C → rename to P



#### **Infinite Hardware CLA**

- Can expand C<sub>1...N</sub> in terms of G's, P's, and C<sub>0</sub>
  - Example: C<sub>16</sub>
    - $\bullet$  C<sub>16</sub> = G<sub>15</sub> | P<sub>15</sub>C<sub>15</sub>
    - $C_{16} = G_{15} | P_{15}(G_{14}|P_{14}C_{14})$
    - $C_{16} = G_{15} | P_{15}G_{14} | ... | P_{15}P_{14}...P_2P_1G_0 | P_{15}P_{14}...P_2P_1P_0C_0$
  - Similar expansions for C<sub>15</sub>, C<sub>14</sub>, etc.
- How much does this cost?
  - C<sub>N</sub> needs: N AND's + 1 OR's, largest have N+1 inputs
  - $C_N...C_1$  needs: N\*(N+1)/2 AND's + N OR's, max N+1 inputs
  - N=16: 152 total gates, max input 17
  - N=64: 2144 total gates, max input 65
- And how fast is it really?
  - Not that fast, unfortunately, 17-input gates are really slow

# 3b Infinite CLA example

#### Compromise: Multi-Level CLA

#### Ripple carry

- + Few small gates: 5N gates, max 3 inputs
- Laid in series: 2N (linear) latency

#### Infinite hardware CLA

- Many big gates: N\*(N+3)/2 additional gates, max N+1 inputs
- + Laid in parallel: constant 4 latency
- Is there a compromise?
  - Reasonable number of small gates?
  - Sublinear (doesn't have to be constant) latency?
  - Yes, multi-level CLA: exploits hierarchy to achieve this

## Carry Lookahead Adder (CLA)

- Calculate "propagate" and "generate" based on A, B
  - Not based on carry in
- Combine with tree structure
- High-level idea
  - Tree gives logarithmic delay
  - Reasonable area



CIS 5710: Comp Org & Design | Dr. Joe Devietti |

#### Individual G & P → Windowed G & P

- Windowed G/P: useful abstraction for multi-level CLA
- Individual carry equations
  - $C_1 = G_0 \mid P_0C_0, C_2 = G_1 \mid P_1C_1$
- Infinite hardware CLA equations
  - $C_1 = G_0 \mid P_0C_0$
  - $C_2 = G_1 | P_1G_0 | P_1P_0C_0$
- Group terms into "windows"
  - $C_2 = (G_1 | P_1G_0) | (P_1P_0)C_0$
  - $C_2 = G_{1-0} | P_{1-0}C_0$
- G<sub>1-0</sub>, P<sub>1-0</sub> are window G & P
  - a single bit summarizing information from all the bits in the window
  - G<sub>1-0</sub>: carry-out generated by bits [1:0]
  - P<sub>1-0</sub>: carry-out propagated by bits [1:0]
    - would a carry-in to the start of the window create a carry-out?

## 3b Windowed G&P Example

#### Two-Level CLA for 4-bit Adder

- Individual carry equations
  - $C_1 = G_0 \mid P_0C_0$ ,  $C_2 = G_1 \mid P_1C_1$ ,  $C_3 = G_2 \mid P_2C_2$ ,  $C_4 = G_3 \mid P_3C_3$
- Infinite hardware CLA equations
  - $C_1 = G_0 \mid P_0C_0$
  - $C_2 = G_1 | P_1G_0 | P_1P_0C_0$
  - $C_3 = G_2 | P_2G_1 | P_2P_1G_0 | P_2P_1P_0C_0$
  - $C_4 = G_3 | P_3G_2 | P_3P_2G_1 | P_3P_2P_1G_0 | P_3P_2P_1P_0C_0$
- Hierarchical CLA equations
  - First level: expand C<sub>2</sub> using C<sub>1</sub>, C<sub>4</sub> using C<sub>3</sub>
    - $C_2 = G_1 | P_1(G_0 | P_0C_0) = (G_1 | P_1G_0) | (P_1P_0)C_0 = G_{1-0} | P_{1-0}C_0$
    - $C_4 = G_3 | P_3(G_2 | P_2C_2) = (G_3 | P_3G_2) | (P_3P_2)C_2 = G_{3-2} | P_{3-2}C_2$
  - Second level: expand C<sub>4</sub> using expanded C<sub>2</sub>
    - $C_4 = G_{3-2} | P_{3-2}(G_{1-0} | P_{1-0}C_0) = (G_{3-2} | P_{3-2}G_{1-0}) | (P_{3-2}P_{1-0})C_0$
    - $C_4 = G_{3-0} \mid P_{3-0}C_0$

#### Two-Level CLA for 4-bit Adder

- Top first-level CLA block
  - Input: C<sub>0</sub>, G<sub>0</sub>, P<sub>0</sub>, G<sub>1</sub>, P<sub>1</sub>
  - Output: C<sub>1</sub>, G<sub>1-0</sub>, P<sub>1-0</sub>
- Bottom first-level CLA block
  - Input: C<sub>2</sub>, G<sub>2</sub>, P<sub>2</sub>, G<sub>3</sub>, P<sub>3</sub>
  - Output: C<sub>3</sub>, G<sub>3-2</sub>, P<sub>3-2</sub>
- Second-level CLA block
  - Input: C<sub>0</sub>, G<sub>1-0</sub>, P<sub>1-0</sub>, G<sub>3-2</sub>, P<sub>3-2</sub>
  - Output: C<sub>2</sub>, G<sub>3-0</sub>, P<sub>3-0</sub>
- These 3 blocks are "the same"
- C<sub>4</sub> block
  - Input: C<sub>0</sub>, G<sub>3-0</sub>, P<sub>3-0</sub>
  - Output: C<sub>4</sub>



CIS 5710: Comp Org & Design| Dr. Joe Devietti |

- Which signals are ready at 0 gate delays (d0)?
  - C<sub>0</sub>
  - A<sub>0</sub>, B<sub>0</sub>
  - A<sub>1</sub>, B<sub>1</sub>
  - A<sub>2</sub>, B<sub>2</sub>
  - A<sub>3</sub>, B<sub>3</sub>



CIS 5710: Comp Org & Design| Dr. Joe Devietti | Arithmetic

- Signals ready from before
  - d0: C<sub>0</sub>, A<sub>i</sub>, B<sub>i</sub>
- New signals ready at d1
  - $P_0 = A_0 \mid B_0, G_0 = A_0 B_0$
  - $P_1 = A_1 \mid B_1, G_1 = A_1B_1$
  - $P_2 = A_2 \mid B_2, G_2 = A_2B_2$
  - $P_3 = A_3 \mid B_3, G_3 = A_3B_3$



CIS 5710: Comp Org & Design | Dr. Joe Devietti |

- Signals ready from before
  - d0: C<sub>0</sub>, A<sub>i</sub>, B<sub>i</sub>
  - d1: P<sub>i</sub>, G<sub>i</sub>
- New signals ready at d3
  - $P_{1-0} = P_1 P_0$
  - $G_{1-0} = G_1 \mid P_1G_0$
  - $C_1 = G_0 \mid P_0C_0$
  - $P_{3-2} = P_3 P_2$
  - $G_{3-2} = G_3 \mid P_3G_2$
  - C<sub>3</sub> is not ready



CIS 5710: Comp Org & Design | Dr. Joe Devietti |

**Arithmetic** 

- Signals ready from before
  - d0: C<sub>0</sub>, A<sub>i</sub>, B<sub>i</sub>
  - d1: P<sub>i</sub>, G<sub>i</sub>
  - d3: P<sub>1-0</sub>, G<sub>1-0</sub>, C<sub>1</sub>, P<sub>3-2</sub>, G<sub>3-2</sub>
- New signals ready at d5
  - $P_{3-0} = P_{3-2}P_{1-0}$
  - $G_{3-0} = G_{3-2} \mid P_{3-2}G_{1-0}$
  - $C_2 = G_{1-0} \mid P_{1-0}C_0$



- Signals ready from before
  - d0: C<sub>0</sub>, A<sub>i</sub>, B<sub>i</sub>
  - d1: P<sub>i</sub>, G<sub>i</sub>
  - d3: P<sub>1-0</sub>, G<sub>1-0</sub>, C<sub>1</sub>, P<sub>3-2</sub>, G<sub>3-2</sub>
  - d5: P<sub>3-0</sub>, G<sub>3-0</sub>, C<sub>2</sub>
- New signals ready at d7
  - $C_3 = G_2 | P_2C_2$
  - $C_4 = G_{3-0} \mid P_{3-0}C_0$
- S<sub>i</sub> ready d1 after C<sub>i</sub>



#### Two-Level CLA for 4-bit Adder

#### Size?

CLA blocks: 5 gates, max 3 inputs (akin to infinite CLA with N=2)

• 3 of these

• C<sub>4</sub> block: 2 gates, max 2 inputs

Total: 17 gates, max 3 inputs

• Infinite: 14, 5

#### Latency?

• 2 for "top" CLA, 4 for "first-level"

G/P go "up", C go "down"

Total: 8 (7 for CLA, 1 for sum)

• Infinite: 4

• 2L is bigger **and** slower ⊗



#### Two-Level CLA for 16-bit Adder

- 4 G/P inputs per level
- Hardware?
  - First level: 14 gates \* 4 blocks
  - Second level: 14 gates \* 1 block
  - C<sub>16</sub> block: 2 gates
  - Total: **72 gates** 
    - largest gate: 4 inputs
    - Infinite: 152 gates, 17 inputs
- Latency?
  - Total: 8(1+2+2+2+1)
  - Infinite: 4 (1 + 2 + 1)
- CLA for a 64-bit adder?



What is ready after 0 gate delays?

• C<sub>0</sub>



CIS 5710: Comp Org & Design| Dr. Joe Devietti | Arithmetic

- What is ready after 1 gate delay?
  - Individual G/P



CIS 5710: Comp Org & Design| Dr. Joe Devietti | Arithmetic

- What is ready after 3 gate delays?
  - 1st level group G/P
  - Interior carries of 1st group
    - C<sub>1</sub>, C<sub>2</sub>, C<sub>3</sub>



- And after 5 gate delays?
  - Outer level group G/P
  - Outer level "interior" carries
    - C<sub>4</sub>, C<sub>8</sub>, C<sub>12</sub>



- And after 7 gate delays?
  - C<sub>16</sub>
  - First level "interior" carries
    - C<sub>5</sub>, C<sub>6</sub>, C<sub>7</sub>
    - C<sub>9</sub>, C<sub>10</sub>, C<sub>11</sub>
    - C<sub>13</sub>, C<sub>14</sub>, C<sub>15</sub>
  - Essentially, all remaining carries
- S<sub>i</sub> ready 1 gate delay after C<sub>i</sub>
  - All sum bits ready after 8 delays!
  - Same as 2-level 4-bit CLA
  - All 2-level CLAs have similar delay structure



#### Adders In Real Processors

- Real processors super-optimize their adders
  - Ten or so different versions of CLA
  - Highly optimized versions of carry-select
  - Other gate techniques: carry-skip, conditional-sum
  - Sub-gate (transistor) techniques: Manchester carry chain
  - Combinations of different techniques
    - Alpha 21264 used CLA+CSelA+RippleCA
    - Used at different levels
- Even more optimizations for incrementers
  - Why?



FIG 10.47 Area vs. delay of synthesized adders

## **Shifts & Rotates**

#### Shift and Rotation Instructions

- Left/right shifts are useful...
  - Fast multiplication/division by small constants (next)
  - Bit manipulation: extracting and setting individual bits in words
- Right shifts
  - Can be **logical** (shift in 0s) or **arithmetic** (shift in copies of MSB)

```
srl 110011, 2 = 001100
sra 110011, 2 = 111100
```

- Caveat: for negative numbers, sra is not equal to division by 2
  - Consider: -1 / 16 = ?
- Rotations are less useful...
  - But almost "free" if shifter is there
- MIPS and LC4 have only shifts, x86 has shifts and rotations CIS 5710: Comp Org & Design| Dr. Joe Devietti | Arithmetic

### Compiler Opt: Strength Reduction

• Strength reduction: compilers will do this (sort of)

```
A * 4 = A << 2

A * 5 = (A << 2) + A

A / 8 = A >> 3 (only if A is unsigned)
```

Useful for address calculation: all basic data types are 2<sup>M</sup> in size
 int A[100];

```
&A[N] = A+(N*sizeof(int)) = A+N*4 = A+N<<2
```

### A Simple Shifter

- The simplest 16-bit shifter: can only shift left by 1
  - Implement using wires (no logic!)
- Slightly more complicated: can shift left by 1 or 0
  - Implement using wires and a multiplexor (mux16\_2to1)





#### **Barrel Shifter**

- What about shifting left by any amount 0–15?
- 16 consecutive "left-shift-by-1-or-0" blocks?
  - Would take too long (how long?)
- Barrel shifter: 4 "shift-left-by-X-or-0" blocks (X = 1,2,4,8)
  - What is the delay?



Similar barrel designs for right shifts and rotations

## Shifter in Verilog

- Logical shift operators << >>
  - performs zero-extension for >>

```
wire [15:0] a = b << c[3:0];
```

- Arithmetic shift operator >>>
  - performs sign-extension
  - requires a signed wire input

```
wire signed [15:0] b;
wire [15:0] a = b >>> c[3:0];
```

# Multiplication

## 3rd Grade: Decimal Multiplication

```
19 // multiplicand

* 12 // multiplier

38
+ 190
228 // product
```

- Start with product 0, repeat steps until no multiplier digits
  - Multiply multiplicand by least significant multiplier digit
  - Add to product
  - Shift multiplicand one digit to the left (multiply by 10)
  - Shift multiplier one digit to the right (divide by 10)
- Product of N-digit and M-digit numbers may have N+M digits

### Binary Multiplication: Same Refrain

- ± Smaller base → more steps, each is simpler
  - Multiply multiplicand by **least significant multiplier digit** + 0 or  $1 \rightarrow$  no actual multiplication, add multiplicand or not
  - Add to total: we know how to do that
  - Shift multiplicand left, multiplier right by one digit

#### Software Multiplication

- Can implement this algorithm in software
- Inputs: md (multiplicand) and mr (multiplier)

```
int pd = 0;  // product
int i = 0;
for (i = 0; i < 16 && mr != 0; i++) {
   if (mr & 1) {
      pd = pd + md;
   }
   md = md << 1;  // shift left
   mr = mr >> 1;  // shift right
}
```

### Hardware Multiply: Sequential



- **Control**: repeat 16 times
  - If least significant bit of multiplier is 1...
    - Then add multiplicand to product
  - Shift multiplicand left by 1
  - Shift multiplier right by 1

## Hardware Multiply: Combinational



- Multiply by N bits at a time using N adders
  - Example: N=5, terms (P=product, C=multiplicand, M=multiplier)
  - P = (M[0] ? (C) : 0) + (M[1] ? (C<<1) : 0) + (M[2] ? (C<<2) : 0) + (M[3] ? (C<<3) : 0) + ...
  - Arrange like a tree to reduce gate delay critical path
- Delay? N<sup>2</sup> vs N\*log N? Not that simple, depends on adder
- Approx "2N" versus "N + log N", with optimization: O(log N) CIS 5710: Comp Org & Design| Dr. Joe Devietti | Arithmetic

#### Partial Sums/Carries

- Observe: carry-outs don't have to be chained immediately
  - Can be saved for later and added back in

```
00111 = 7

+00011 = 3

00100  // partial sums (sums without carrries)

+00110  // partial carries (carries without sums)

01010 = 10
```

- Partial sums/carries use simple half-adders, not full-adders
- + Aren't "chained" → can be done in two levels of logic
- Must sum partial sums/carries eventually, and this sum is chained
  - d(CS-adder) = 2 + d(normal-adder)
- What is the point?

### Three Input Addition

Observe: only 0/1 carry-out possible even if 3 bits added

```
00111 = 7

00011 = 3

+00010 = 2

00110  // partial sums (sums without carrries)

+00110  // partial carries (carries without sums)

01100 = 12
```

- Partial sums/carries use full adders
- + Still aren't "chained" → can be done in two levels of logic
- The point is delay(CS-adder) = 2 + delay(normal-adder)...
- …even for adding 3 numbers!
- 2 + delay(normal-adder) < 2 \* delay(normal-adder)</li>

#### Hardware != Software: Part Deux

- Recall: hardware is parallel, software is sequential
- Exploit: evaluate independent sub-expressions in parallel
- Example I: S = A + B + C + D
  - Software? 3 steps: (1) S1 = A+B, (2) S2 = S1+C, (3) S = S2+D
  - + Hardware? 2 steps: (1) S1 = A+B, S2=C+D, (2) S = S1+S2
- Example II: S = A + B + C
  - Software? 2 steps: (1) S1 = A+B, (2) S = S1+C
  - Hardware? 2 steps: (1) S1 = A+B (2) S = S1+C
  - + Actually hardware can do this in 1.2 steps! (CSA adder)

## Carry Save Addition (CSA)

- Carry save addition (CSA): delay(N adds) < N\*d(1 add)</li>
  - Enabling observation: unconventional view of full adder
    - 3 inputs  $(A,B,C_{in}) \rightarrow 2$  outputs  $(S,C_{out})$
  - If adding two numbers, only thing to do is chain C<sub>out</sub> to C<sub>in+1</sub>
    - But what if we are adding three numbers (A+B+D)?
  - One option: back-to-back conventional adders
    - $(A,B,C_{inT}) \rightarrow (T,C_{outT})$ , chain  $C_{outT}$  to  $C_{inT+1}$
    - $(T,D,C_{inS}) \rightarrow (S,C_{outS})$ , chain  $C_{outS}$  to  $C_{inS+1}$
  - Notice: we have three independent inputs to feed first adder
    - $(A,B,D) \rightarrow (T,C_{outT})$ , no chaining (CSA: 2 gate levels)
      - T: A+B+D (the partial sum)
      - C<sub>outT</sub>: A+BD (the partial carry)
    - $(T,C_{outT},C_{inS}) \rightarrow (S,C_{outS})$ , chain  $C_{outS}$  to  $C_{inS+1}$

## Carry Save Addition (CSA)





- CSA+RC adder
  - Subtraction works too

### **Carry Save Addition Delay**





- CSA isn't faster :-(
  - why not?

#### Let's use CLA instead of RC



#### • 4-bit CLA

- all outputs available at the same time, after 4 gate delays
- see slide <u>45. Two-Level</u>
   CLA for 4-bit Adder



#### Now CSA helps

 even large gains with more/larger numbers to add

## **CSA Tree Multiplier**

- Use 3-to-2 CSA adders
  - Build a tree structure
  - called a "Wallace Tree"
- 16-bit
  - Start: 16 bits
  - $1^{st}$ : 5\*(3->2)+1 = 11
  - $2^{nd}$ : 3\*(3->2)+2=8
  - $3^{rd}$ : 2\*(3->2)+2=6
  - $4^{th}$ : 2\*(3->2)+0=4
  - $5^{th}$ : 1\*(3->2)+1=3
  - $6^{th}$ : 1\*(3->2)+0=2
  - 7<sup>th</sup>: CLA
  - delay: 2+(6\*2)+8=22



CIS 5710: Comp Org & Design| Dr. Joe Devietti

## Consecutive Addition: Carry Save Adder



- 2 N-bit RC adders
  - + 2 + d(add) gate delays
- M N-bit RC adders delay
  - Naïve: O(M\*N)
  - Actual: O(M+N)



- M N-bit Carry Select?
  - Delay calculation tricky
- Carry Save Adder (CSA)
  - 3-to-2 CSA tree + adder
  - Delay: O(log M + log N)

# **Floating Point**

## Floating Point (FP) Numbers

- Floating point numbers: numbers in scientific notation
  - Two uses
- Use I: real numbers (numbers with non-zero fractions)
  - 3.1415926...
  - 2.1878...
  - $6.62 * 10^{-34}$
- Use II: really big numbers
  - $3.0 * 10^8$
  - $6.02 * 10^{23}$
- Aside: best not used for currency values

#### Scientific Notation

#### Scientific notation:

- Number [S,F,E] = S \* F \* 2<sup>E</sup>
- S: **sign**
- F: **significand** (fraction)
- E: exponent
- "Floating point": binary (decimal) point has different magnitude
- + "Sliding window" of precision using notion of significant digits
  - Small numbers very precise, many places after decimal point
  - Big numbers are much less so, not all integers representable
  - But for those instances you don't really care anyway
- Caveat: all representations are just approximations
  - Sometimes wierdos like 0.9999999 or 1.0000001 come up
  - + But good enough for most purposes

#### IEEE 754 Standard Precision/Range

- Single precision: float in C
  - 32-bit: 1-bit sign + 8-bit exponent + 23-bit significand
  - Range:  $2.0 * 10^{-38} < N < 2.0 * 10^{38}$
  - Precision: ~7 significant (decimal) digits
  - Used when exact precision is less important (e.g., 3D games)
- Double precision: double in C
  - 64-bit: 1-bit sign + 11-bit exponent + 52-bit significand
  - Range:  $2.0 * 10^{-308} < N < 2.0 * 10^{308}$
  - Precision: ~15 significant (decimal) digits
  - Used for scientific computations
- Numbers  $>10^{308}$  don't come up in many calculations
  - $10^{80} \sim$  number of atoms in universe

### Floating Point is Inexact

- Accuracy problems sometimes get bad
  - FP arithmetic not associative: (A+B)+C not same as A+(B+C)
  - Addition of big and small numbers (summing many small numbers)
  - Subtraction of two big numbers
- Example, what's  $(1*10^{30} + 1*10^{0}) 1*10^{30}$ ?
  - Intuitively: 1\*10° = 1
  - But:  $(1*10^{30} + 1*10^{0}) 1*10^{30} = (1*10^{30} 1*10^{30}) = 0$
- Reciprocal math: "x/y" versus "x\*(1/y)"
  - Reciprocal & multiply is faster than divide, but less precise
- Compilers are generally conservative by default
  - GCC flag: –ffast-math (allows assoc. opts, reciprocal math)
- Numerical analysis: field formed around this problem
  - Re-formulating algorithms in a way that bounds numerical error
- In your code: never test for equality between FP numbers
  - Use something like: if (abs(a-b) < 0.00001) then ...

## Pentium FDIV Bug

- Pentium shipped in August 1994
- Intel actually knew about the bug in July
  - But calculated that delaying the project a month would cost ~\$1M
  - And that in reality only a dozen or so people would encounter it
  - They were right... but one of them took the story to EE times
- By November 1994, firestorm was full on
  - IBM said that typical Excel user would encounter bug every month
    - Assumed 5K divisions per second around the clock
  - People believed the story
  - IBM stopped shipping Pentium PCs
- By December 1994, Intel promises full recall
  - Total cost: ~\$550M

#### **Arithmetic Latencies**

- Latency in cycles of common arithmetic operations
- Source: *Agner Fog,*<a href="https://www.agner.org/optimize/#manuals">https://www.agner.org/optimize/#manuals</a>
  - AMD Ryzen core

|              | Int 32 | Int 64 | Fp 32 | Fp 64 |
|--------------|--------|--------|-------|-------|
| Add/Subtract | 1      | 1      | 5     | 5     |
| Multiply     | 3      | 3      | 5     | 5     |
| Divide       | 14-30  | 14-46  | 8-15  | 8-15  |

- Divide is variable latency based on the size of the dividend
  - Detect number of leading zeros, then divide
- Why is FP divide faster than integer divide?

### Summary



- Integer addition
  - Most timing-critical operation in datapath
  - Hardware != software
    - Exploit sub-addition parallelism
- Fast addition
  - Carry-select: parallelism in sum
- Multiplication
  - Chains and trees of additions
- Division
- Floating point
- Next: single-cycle datapath