STA447/STA2006 Stochastic Processes

Gun Ho Jang

Lecture on March 20, 2014

Note

This lecture note is prepared for the course STA447/STA2006 Stochastic Processes. This lecture note may contain flaws. Please consult text book or reference books for confidence.

- Gun Ho Jang
- * indicates graduate level. So you may skip those parts.

5.3 Optional Sampling Theorem

Theorem 68. Let X_n be a submartingale and T is a stopping time with $P(T \le k) = 1$. Then $\mathbb{E}X_0 \le \mathbb{E}X_T \le \mathbb{E}X_k$.

Proof. Since $X_{T \wedge n}$ is also a submartingale, $\mathbb{E}X_0 = \mathbb{E}X_{T \wedge 0} \leq \mathbb{E}X_{T \wedge k} = \mathbb{E}X_T$. Let $K_n = 1(T < n) = 1(T \leq n-1) \in \mathcal{F}_{n-1}$ so that it is predictable. $(K \cdot X)_n = X_n - X_{N \wedge n}$ is also a submartingale and $\mathbb{E}X_k - \mathbb{E}X_N = \mathbb{E}(K \cdot X)_k \geq \mathbb{E}(K \cdot X)_0 = 0$.

Example 63. Let X_n be a submartingale and S,T be stopping times with $S \leq T$ a.s. Further suppose $P(T \leq k) = 1$. Let $K_n = 1(M < n \leq N) = 1(M \leq n-1) - 1(M \leq n-1, N \leq n-1) = 1(M \leq n-1) - 1(N \leq n-1) \in \mathcal{F}_{n-1}$. Then $(K \cdot X)_n = (X_n - X_{S \wedge n}) - (X_n - X_{T \wedge n}) = X_{T \wedge n} - X_{S \wedge n}$ and $\mathbb{E}X_T - \mathbb{E}X_S = \mathbb{E}(K \cdot X)_k \geq \mathbb{E}(K \cdot X)_0 = 0$. Hence $\mathbb{E}X_S \leq \mathbb{E}X_T$.

Theorem 69 (Doob's inequality). Let X_n be a submartingale. Then, for any $\lambda > 0$,

$$\lambda P(\max_{0 \le m \le n} X_m^+) \le \mathbb{E} X_n^+.$$

Proof. Let $T = n \wedge \inf\{m : X_m \ge \lambda\}$ so that $X_N \ge \lambda$ on $A = \{\max_{0 \le m \le n} X_m^+ \ge \lambda\}$. Hence,

$$\lambda P(A) \leq \mathbb{E} X_T 1_A = \mathbb{E} X_T - \mathbb{E} X_T 1_{A^c} \leq \mathbb{E} X_n - \mathbb{E} X_n 1_{A^c} = \mathbb{E} X_n 1_A \leq \mathbb{E} X_n^+.$$

In the last inequality, $X_n 1_A \leq X_n^+ 1_A \leq X_n^+$ is used.

Example 64. Let $X_1, X_2, ...$ be independent with $\mathbb{E}X_n = 0$ and $\mathbb{E}X_n^2 < \infty$ and $S_n = X_1 + \cdots + X_n$. Then, S_n is a martingale w.r.t. $\mathcal{F}_n = \sigma(X_1, ..., X_n)$ and S_n^2 is a submartingale. The Kolmogorov's maximal inequality, for $\alpha > 0$,

$$P(\max_{1 \le i \le n} |S_n| > \alpha) \le \alpha^{-2} \mathbb{V}ar(S_n)$$

is a special case of Doob's inequality, that is, $P(\max_{1 \le i \le n} S_n^2 > \alpha^2) \le \alpha^{-2} \mathbb{E} \max(0, S_n^2) = \alpha^{-2} \mathbb{E} S_n^2$.

Theorem 70. Let X_n be a submartingale and T be a stopping time. Suppose there exists c > 0 such that $|X_{T \wedge n}| < c$ a.s. for all n. Then $\mathbb{E}X_T \geq \mathbb{E}X_0$.

Proof. Note that $\sup_n \mathbb{E} X_{T \wedge n}^+ \leq c$. By the martingale convergence theorem $X_{T \wedge n}$ converges to X_T almost surely. By the bounded convergence theorem, $\mathbb{E} X_T = \lim_{n \to \infty} \mathbb{E} X_{T \wedge n} \geq \lim_{n \to \infty} \mathbb{E} X_{T \wedge 0} = \mathbb{E} X_0$.

Example 65 (Branching process). Let $X, X_{i,j}$ be i.i.d. F which having positive probability only on non-negative integers. Let $Z_0 = 1$ and $Z_n = X_{n,1} + \cdots + X_{n,Z_{n-1}}$ if $Z_{n-1} > 0$ and $Z_n = 0$ otherwise. Then Z_n is a homogeneous Markov chain having transition probability p given by p(0,0) = 1, p(0,j) = 0 for j > 0 and

$$p(i,j) = P(Y_1 + \dots + Y_i = j)$$

for i > 0 and $j \ge 0$ where Y_1, Y_2, \ldots are i.i.d. F.

Let $W_n = Z_n/\mu^n$ for $\mu = \mathbb{E}X$. Then

$$\mathbb{E}[W_{n+1} \mid \mathcal{F}_n] = \mathbb{E}[\mu^{-n-1} \sum_{i=1}^{Z_n} X_{n+1,i} \mid \mathcal{F}_n] = \mu^{-n-1} Z_n \mu = \mu^{-n} Z_n = W_n.$$

implies W_n is a martingale.

Subcritical: If $\mu < 1$, then $P(Z_n > 0) \le \mu^n Z_0 \to 0$ as $n \to \infty$.

Note $\mathbb{E}Z_n = \mu^n \mathbb{E}W_n = \mu^n \mathbb{E}W_0 = \mu^n \mathbb{E}Z_0$. Using Markov's inequality, $P(Z_n \ge 1) \le \mathbb{E}Z_n = \mu^n \mathbb{E}Z_0 \to 0$.

Critical: If $\mu = 1$ and P(X = 1) < 1, then $Z_n \to 0$ almost surely as $n \to \infty$.

The martingale convergence theorem implies $Z_n \to Z$ almost surely. If P(X=0)=0, then $\mathbb{E}X \ge 1$ with the equality only when P(X=1)=0. Hence $p_0=P(X=0)>0$. Note that the state 0 is absorbing and i is transient for i>0 because $p(i,0)=p_0^i>0$ but $\rho_{0,i}=0$. Hence, for i>0, $P(Z_n=i)=p^{(n)}(1,i)\to 0$. Which implies $P(Z_n>0)\to 0$.

Supercritical: If $\mu > 1$, then $Z_n/\mu^n \to W$ almost surely as $n \to \infty$.

Since W_n is a nonnegative supermartingale, it converges to W with $\mathbb{E}W < \infty$.

Nontrivial limit: P(W > 0) > 0 if and only if $\mathbb{E}[1(X > 0)X \log X] < \infty$.

A proof is in "A Limit Theorem for Multidimensional Galton-Watson Processes by H. Kesten and B.P. Stigum in Annals of Mathematical Statitics, vol 37."

6 Brownian Motion

Brownian motion was introduced to describe the movement of particles. Nowadays Brownian motion is one of the most popular stochastic processes.

Definition 44. A stochastic process B_t is called a standard Brownian motion if it satisfies

- (a) $B_0 = 0$
- (b) [independent increment] For $0 \le t_1 < t_2 \le t_3 < t_4$, $B_{t_2} B_{t_1}$ and $B_{t_4} B_{t_3}$ are independent
- (c) [stationary increment] The distribution of $B_t B_s$ only depends on t s for $0 \le s < t$.
- (d) [normal distribution] $B_t \sim N(0,t)$ for all $t \geq 0$.
- (e) [continuity] The map $t \mapsto B_t$ is continuous.

The existence of Brownian motion should be proved. A heuristic construction is given below. Let X_1, X_2, \ldots be i.i.d. with mean 0 and variance 1 and $S_n = X_1 + \cdots + X_n$. Consider $B_{t,n} = n^{-1/2} S_{\lfloor tn \rfloor}$. For any fixed $t \in (0,1)$, $B_{t,n} = (\lfloor tn \rfloor/n)^{1/2} \times \lfloor tn \rfloor^{-1/2} S_{\lfloor tn \rfloor} \to tN(0,1) \sim N(0,t)$ in distribution by the central limit theorem. Independent increment is each to check because $X_{\lfloor t_1n \rfloor+1}, \ldots, X_{\lfloor t_2n \rfloor}$ and $X_{\lfloor t_3n \rfloor+1}, \ldots, X_{\lfloor t_4n \rfloor}$ are independent. Similarly stationary increment is satisfied. Also the continuity can be satisfied but it requires higher level of probability theory. Hence there must exist a standard Brownian motion.

For a Brownian motion, we consider a Brownian filtration which is the natural filtration $\mathcal{F}_t = \sigma(B_s : s \leq t)$.

Theorem 71. A standard Brownian motion B_t is a Markov chain and a martingale.

Exercise 38. Prove the above theorem.

Theorem 72. Let B_t be a standard Brownian motion.

- (a) $\mathbb{E}B_t = 0$, $\mathbb{V}\operatorname{ar}(B_t) = t$.
- (b) $\mathbb{E}(B_t B_s) = 0$, $\mathbb{V}ar(B_t B_s) = t s$.
- (c) $\mathbb{E}(B_t B_s) = \min(s, t)$ for $s, t \ge 0$.
- (d) $B_t^2 t$ is a martingale.

Proof. (c) if $s \leq t$, then $B_t - B_s$ and B_s are independent. Thus $\mathbb{E}B_tB_s = \mathbb{E}(B_t - B_s)B_s + \mathbb{E}B_s^2 = \mathbb{E}(B_t - B_s)\mathbb{E}B_s + \mathbb{E}B_s^2 = 0 + s = s$.

(d) for
$$s < t$$
, $\mathbb{E}[B_t^2 - t \mid \mathcal{F}_s] = -t + \mathbb{E}[B_s^2 + 2B_s(B_t - B_s) + (B_t - B_s)^2 \mid \mathcal{F}_s] = -t + B_s^2 + 0 + t - s = B_s^2 - s$. \square

Exercise 39. Show that B_t^{2k-1} is a Martingale for any positive integer k.

Definition 45. A stochastic process X_t is called a $L\acute{e}vy$ process if it satisfies

- (a) $X_0 = 0$
- (b) [independent increment] For $0 \le t_1 < t_2 \le t_3 < t_4$, $X_{t_2} X_{t_1}$ and $X_{t_4} X_{t_3}$ are independent
- (c) [stationary increment] For $0 \le s < t, X_t X_s$ and X_{t-s} have the same distribution.
- (e) [continuity in probability] The map $t \mapsto X_t$ is continuous, that is, for any $\epsilon > 0$ and $t \ge 0$, $\lim_{h\to 0} P(|X_{t+h} X_t| > \epsilon) = 0$.

Example 66. A homogeneous Poisson process with parameter λ is a Lévy process. A standard Brownian motion is a Lévy process.

Definition 46. A process X_t satisfying $X_t = \mu t + \sigma B_t$ is called a Brownian motion with drift μ .

Exercise 40. Show that a Brownian motion with drift is a Lévy process.

Theorem 73 (Reflection principle). Let B_t be a standard Brownian motion. Then $P(\sup_{0 \le s \le t} B_s \ge x) = 2P(B_t \ge x)$ for x > 0.

Proof. Let $T = \inf\{t \geq 0 : B_t = x\}$. It is known that $P(T < \infty) = 1$. Using the strong Markov property, $X_t = B_{T+t} - x$ and B_t have the same distribution and are independent given B_T . Then $P(\sup_{0 \leq s \leq t} B_s \geq x) = P(\sup_{0 \leq s \leq t} B_s \geq x) + P(\sup_{0 \leq$

Example 67. The water level of a reservoir follows a stochastic process $X_t = a + B_t$ where a > 0 and B_t is the standard Brownian motion. What is the probability the reservoir dries up within a 4 unit time when a = 5?

The probability is $P(\inf_{0 \le t \le 4} X_t \le 0) = P(\inf_{0 \le t \le 4} B_t \le -5) = P(\sup_{0 \le t \le 4} -B_t \ge 5) = P(\sup_{0 \le t \le 4} B_t \ge 5) = 2P(B_4 \ge 5) = 2(1 - \Phi(5/\sqrt{4})) = 0.0124$