模块二 位置关系的判定

第1节 平行关系证明思路大全(★★)

强化训练

1. $(2022 \cdot 延边一模 \cdot \star \star)$ 在四棱锥 P-ABCD 中,PD 工平面 ABCD,AB // CD, $AB \perp AD$, AB = 2CD = 2AD = 2, $\angle PAD = 45^{\circ}$, $E \neq PA$ 的中点,G 在线段 $AB \perp$,且 $CG \perp BD$,证明:DE // 平面 PBC.

证明:(尝试过 C 作 DE 的平行线 CT,作出来就发现 CDET 像平行四边形,且观察发现 T 应为中点)如图,取 PB 中点 T,连接 CT,因为 E 为 PA 中点,所以 ET//AB 且 AB = 2ET,又 AB//CD 且 AB = 2CD,所以 ET//CD 且 ET = CD,从而四边形 CDET 为平行四边形,故 DE//CT,因为 $DE \not\subset$ 平面 PBC, $CT \subset$ 平面 PBC,所以 DE// 平面 PBC.

2. $(2022 \cdot \text{上海模拟} \cdot \bigstar \star)$ 如图,将边长为 2 的正方形 ABCD 沿对角线 BD 折叠,使平面 ABD 上平面 CBD,若 AE 上平面 ABD,且 $AE = \sqrt{2}$,证明: EC // 平面 ABD.

证明:(尝试过 A 作 EC 的平行线 AF,作出来就发现 AFCE 像平行四边形,且观察发现 F 应为中点)如图,取 BD 中点 F,连接 AF,CF,由题意, $\angle BCD = 90^\circ$,BC = CD = 2,所以 $CF = \sqrt{2}$,且 $CF \perp BD$,又平面 $ABD \perp$ 平面 CBD,平面 CBD 平面 CBD 形以 $CF \perp$ 平面 CBD 平行四边形,

3.(2022 • 河池模拟 • $\star\star$)如图,在斜三棱柱 $ABC-A_1B_1C_1$ 中,点 D_1 为 A_1C_1 的中点,证明: BC_1 // 平面 AB_1D_1 .

证明: (观察发现 BC_1 和 A_1 位于面 AB_1D_1 两侧,由内容提要 2 的①可知只需连接 A_1B ,证明 BC_1 // D_1T 即可)如图,连接 A_1B 交 AB_1 于点 T,因为 ABB_1A_1 是平行四边形,所以 T 为 A_1B 的中点,

又 D_1 为 A_1C_1 的中点,所以 D_1T // BC_1 ,因为 BC_1 ot= 平面 AB_1D_1 , D_1T ot= 平面 AB_1D_1 ,所以 BC_1 // 平面 AB_1D_1 .

4. $(2022 \cdot \text{哈尔滨模拟} \cdot ★★)$ 如图,在四棱锥 P-ABCD 中, $PA\bot$ 底面 ABCD,AB//DC, $AD\bot AB$, AB=AP=2, DA=DC=1,E 为 PC 上一点, $PE=\frac{2}{3}PC$,证明: PA//平面 BDE.

证明: (观察发现 PA 和 C 位于面 BDE 两侧,由内容提要 2 的①可知只需连接 AC,证明 PA 平行于交线 EF 即可,但观察发现 F 不是中点,故考虑通过证线段成比例来证平行)

如图,连接 AC 交 BD 于点 F,连接 EF,因为 AB//DC,所以 $\Delta CFD \hookrightarrow \Delta AFB$,故 $\frac{CF}{AF} = \frac{CD}{AB} = \frac{1}{2}$,

又
$$PE = \frac{2}{3}PC$$
, 所以 $\frac{CE}{PE} = \frac{1}{2}$, 从而 $\frac{CF}{AF} = \frac{CE}{PE}$, 故 $EF//PA$,

因为 $PA \not\subset$ 平面BDE, $EF \subset$ 平面BDE, 所以PA // 平面BDE.

5. (2023・陕西模拟・★★)如图,平面 PAC ⊥ 平面 ABC, $AB \perp BC$, AB = BC , D 为 PA 的中点,点 O 在 AC 上,且 OD // 平面 PBC,证明: O 为 AC 中点.

证明:(给了线面平行,故考虑线面平行的性质定理)

因为 OD // 平面 PBC, $OD \subset$ 平面 PAC, 平面 $PAC \cap$ 平面 PBC = PC, 所以 OD // PC,

又由题意,D为PA的中点,所以O为AC的中点.

6. (2023 •湖北模拟 •★★) 如图, $AE \perp \text{平面 } ABCD$,BF // 平面 ADE,CF // AE, $AD \perp AB$,AB = AD = 2 ,AE = BC = 4 ,证明: AD // BC.

《一数•高考数学核心方法》

证明: (条件中有线面平行,要证的是线线平行,这些都提示了我们该考虑性质定理,结合图形知可先证面 BCF//面 ADE,再用面面平行的性质定理证结论)

因为 CF//AE, $CF \not\subset$ 平面 ADE, $AE \subset$ 平面 ADE, 所以 CF// 平面 ADE,

又由题意,BF//平面 ADE,且 CF, $BF \subset$ 平面 BCF, $CF \cap BF = F$,所以平面 BCF// 平面 ADE,因为平面 $ABCD \cap$ 平面 BCF = BC ,平面 $ABCD \cap$ 平面 ADE = AD ,所以 AD// BC.

7. ($\star\star$) 如图,三棱柱 $ABC-A_1B_1C_1$ 的所有棱长均为 2, $\angle BAC=\angle BAA_1=\angle CAA_1=60^\circ$,P,Q 分别在 AB, A_1C_1 上(不包括端点), $AP=A_1Q$,证明: PQ//平面 BCC_1B_1 .

证法 1: (先过 C_1 作 PQ 的平行线,观察发现 PQC_1D 像平行四边形,思路就有了)

如图 1,作 PD//AC 交 BC 于 D,则 ΔBPD 是正三角形,设 $AP = A_iQ = x(0 < x < 2)$,则 BP = 2 - x,

所以PD = 2 - x,又 $C_1Q = A_1C_1 - A_1Q = 2 - x$,所以 $PD = C_1Q$,

因为 C_1Q // AC,PD // AC,所以 C_1Q // PD,从而四边形 PQC_1D 是平行四边形,故PQ // C_1D ,因为PQ 文平面 BCC_1B_1 , $C_1D \subset BCC_1B_1$,所以PQ // 平面 BCC_1B_1 .

证法 2: (若没想到构造平行四边形,也可尝试造面,不妨先过 P 作面 BCC_1B_1 的平行线)

如图 2,作 PE//BC 交 AC 于 E,连接 QE,因为 $PE \neq$ 平面 BCC_1B_1 , $BC \subset$ 平面 BCC_1B_1 ,所以 PE// 平面 BCC_1B_1 ①,

由题意, $\triangle ABC$ 是正三角形,所以 $\triangle APE$ 也是正三角形,故AE = AP,又 $AP = A_1Q$,所以 $AE = A_1Q$,结合 $AE // A_1Q$ 可得四边形 AA_1QE 是平行四边形,所以 $AE = A_1Q$,所以 $AE = A_1Q$,所以 $AE = A_1Q$,所以 $AE = A_1Q$, 据以 $AE = A_1Q$, 是一个 AA_1QE 是平行四边形,所以 $AE = A_1Q$,所以 $AE = A_$

因为 QE, PE \subset 平面 PQE, $QE \cap PE = E$, 结合①②可得平面 PQE // 平面 BCC_1B_1 ,因为 PQ \subset 平面 PQE,所以 PQ // 平面 BCC_1B_1 .

8. $(2022 \cdot 新高考 II 卷节选 \cdot \star \star \star \star)$ 如图,PO 是三棱锥 P-ABC 的高,PA=PB , $AB \perp AC$,E 为 PB 的中点,证明:OE // 平面 PAC.

证法 1: (观察发现 OE 和 B 在面 PAC 的同侧,符合内容提要 2 中②的情况,故可通过延长 BO 找平行线)连接 OA,延长 BO 交 AC 于点 G,连接 PG,如图 1,

(要证 OE//PG,结合 E 为 PB 中点知只需证 O 为 BG 中点,注意到 $\angle BAG = 90^\circ$,故又只需证 AO = OB) 因为 PO 是三棱锥 P-ABC 的高,所以 PO 上平面 ABC,又 OA,OB 二平面 ABC,故 PO 上OA ,PO 上OB ,结合 PA = PB , PO = PO 可得 $\Delta POA \cong \Delta POB$,所以 OA = OB ,又 $AB \perp AC$,所以 O 为 BG 中点,因为 E 为 PB 中点,所以 OE//PG,因为 $OE \varpropto$ 平面 PAC,PG 二平面 PAC,所以 OE// 平面 PAC. 证法 2: (若没想到证法 1 的方法,也可通过造面来证结论,不妨先过点 E 作 PA 的平行线交 AB 于 F ,E 应为 E 的中点,观察发现构造的面即为 EOF,思路就有了)

取 AB 中点 F, 连接 EF, OF, PF, 如图 2, 因为 E 是 PB 中点,所以 EF // PA, 又 $EF \not\subset \text{平面 } PAC$, $PA \subset \text{平面 } PAC$, 所以 EF // 平面 PAC ①;

(再证 OF // 平面 PAC,只需证 OF //AC,结合 $AC \perp AB$ 知又只需证 $OF \perp AB$)

因为 PO 是三棱锥 P-ABC 的高,所以 PO 上平面 ABC,又 AB \subset 平面 ABC,所以 AB \bot PO,因为 PA = PB,所以 AB \bot PF,而 PO, PF \subset 平面 POF, PO \cap PF = P ,所以 AB \bot \to POF , PO , PF \to PO \to PO \to PF \to PO \to \to PO \to PO \to PO \to PO \to PO \to PO \to PO

【反思】证线面平行时,很多题目内容提要里涉及的三种思路常常都可以做,但复杂度可能有差异.

《一数•高考数学核心方法》