Modelo Conceitual

(Outros recursos)

Banco de Dados I

Entidade Fraca

 Entidade que só existe quando relacionada a outra entidade, sendo seu identificador composto por atributos identificadores da entidade forte

Identificador de Relacionamentos

 Uma ocorrência de relacionamento diferencia-se das demais ocorrências do mesmo relacionamento pelas ocorrências de entidades que dele participam

 Há casos nos quais entre as mesmas ocorrências de entidade podem existir diversas ocorrências de relacionamento

Generalização/Especialização

 Através deste conceito é possível atribuir propriedades particulares a um subconjunto das ocorrências (especializadas) de uma entidade genérica

Generalização/Especialização

- Um relacionamento é uma associação entre entidades
- Não foi previsto originalmente no modelo ER:
 - A associação entre uma entidade e um relacionamento
 - A associação de dois relacionamentos entre si
- Existem situações em que é desejável permitir a associação de uma entidade a um relacionamento

 Suponha que seja necessário modificar o modelo abaixo para incluir que medicamentos existem e que medicamentos foram prescritos em cada consulta

- A questão agora é:
 - Com que entidade existente deve estar relacionada a nova entidade (Medicamento)?

- Se Medicamento fosse relacionado a Médico:
 - Teríamos apenas a informação de que médico prescreveu que medicamento, faltando a informação do paciente que os teve prescritos.

- Se Medicamento fosse relacionado a Paciente:
 - Faltaria a informação do médico que prescreveu o medicamento.

• Solução:

- Relacionar Medicamento à Consulta, isto é, vamos relacionar uma entidade a um relacionamento.
- Como fazer isso: usar o conceito de "Entidade Associativa" ou "Agregação"

A figura do slide anterior é equivalente a:

Aspecto Temporal

Atributos cujos valores modificam ao longo do tempo:

Aspecto Temporal

Relacionamentos que modificam ao longo do tempo:

Aspecto Temporal

Relacionamentos que modificam ao longo do tempo:

Verificação do Modelo

- Um modelo deve ser validado e verificado:
 - Controle de qualidade para garantir que o produto gerado pelo modelo tenha qualidade
- Para ser considerado bom um modelo deve preencher requisitos:
 - Completo
 - Correto
 - Não contém redundâncias

Modelo deve ser Correto

- Tipos possíveis de erros:
 - Sintáticos:
 - Quando não se respeita as regras de construção de um modelo ER.
 - Ex:
 - Associação de atributos com atributos
 - Associação de relacionamentos a atributos
 - Associação de relacionamentos a outro relacionamento
 - Especializar atributos ou relacionamentos

Modelo deve ser Correto

- Tipos possíveis de erros:
 - Semânticos:
 - Quando, apesar de obedecer as regras sintáticas, o modelo reflete a realidade de forma inconsistente.
 - Ex:
 - Associações incorretas.
 - Usar uma entidade do modelo como atributo de outra entidade:
 - » Entidade Banco, e no mesmo modelo colocar Banco como atributo de uma entidade Cliente.
 - » Cada objeto da realidade modelada deve aparecer uma única vez no modelo ER.
 - Usar o número incorreto de entidades em um relacionamento:
 - » Fundir dois relacionamentos binários independentes em um único ternário.

Modelo deve Evitar Redundâncias

- Um modelo deve ser mínimo:
 - Não deve conter conceitos redundantes
- Ex:
 - Relacionamentos redundantes:
 - São relacionamentos que são resultados da combinação de outros relacionamentos entre as mesmas entidades
 - Possível eliminá-los sem que haja perda de informação no BD

Modelo deve Evitar Redundâncias

Ex: Relacionamentos redundantes

Simbologia utilizada no DER

Generalização/Especialização Cardinalidade mínima/máxima (n,n)

Estratégias de Modelagem

- Estratégia de modelagem ER:
 - Uma sequência de passos (uma "receita-debolo") de transformação de modelos, desde o modelo inicial de modelagem, até o final.
- Diferentes estratégias:
 - Top-down
- Bottom-upInside-out

Estratégias de Modelagem (top-down)

- Modelo Abstrato de Dados
- Ir gradativamente refinando estes conceitos em conceitos mais detalhados.
- Modelagem superficial:
 - Enumeração das entidades.
 - Identificação dos relacionamentos
 - cardinalidade máxima e
 - hierarquias de generalização/especialização entre as entidades.
 - Determinação dos atributos de entidades e relacionamentos.
 - Determinação dos identificadores de entidades e relacionamentos.
 - O banco de dados é verificado quanto ao aspecto temporal.

Estratégias de Modelagem (top-down)

- Modelagem detalhada:
 - Domínios dos atributos
 - Cardinalidades mínimas
 - Demais restrições de integridade

- Validação do modelo:
 - Construções redundantes ou deriváveis a partir de outras no modelo
 - Validação com o usuário

Estratégias de Modelagem (bottom-up)

- Início: necessidade de desenvolvimento de um sistema específico
- Declaração de requisitos
 - entradas e saídas de sistemas computacionais existentes
 - análise dos formulários e relatórios de sistemas manuais existentes
 - entrevistas com os usuários para saber de suas necessidades (Sistemas de Informação)
- Identificação da necessidade de um Banco de Dados:
 - Modelo de Dados
 - Implementação do Banco de Dados

EMPREGADO

Estratégias de Modelagem

Enfoque do Modelo ER é "top-down"

Referências Bibliográficas

- Material originalmente elaborado por Prof. Gilberto Irajá Müller. Material autorizado e cedido pelo autor. Revisado e atualizado por Prof. João Tavares.
- HEUSER, Carlos Alberto. Projeto de Banco de Dados. 6. ed. Bookman Companhia Ed, 2009.
- DATE, C. J. Introdução aos Sistemas de Bancos de Dados. Rio de Janeiro: Campus, 2004.
- SILBERSCHATZ, Abraham; KORTH, Henry F.; SUDARSHAN, S. Sistemas de Banco de Dados. 3^a. Ed. São Paulo: Makron Books, 2010.