Report Number: **B50723D1 FCC Part 15 Subpart B** and **FCC Section 15.249** Test Report

EcoTouch Model: SS6560

FCC PART 15, SUBPART B and C TEST REPORT

for

ECOTOUCH

MODEL: SS6560

Prepared for

TELKONET, INC. 10200 INNOVATION DRIVE, SUITE 300 MILWAUKEE, WISCONSIN 53226

Prepared by:	
	KYLE FUJIMOTO
Approved by:	
	JAMES ROSS

COMPATIBLE ELECTRONICS INC. 114 OLINDA DRIVE BREA, CALIFORNIA 92823 (714) 579-0500

DATE: AUGUST 28, 2015

	REPORT	APPENDICES				TOTAL	
	BODY	A B C D E					
PAGES	18	2	2	2	20	40	84

This report shall not be reproduced except in full, without the written approval of Compatible Electronics.

Model: SS6560

TABLE OF CONTENTS

Section / Title	PAGE
GENERAL REPORT SUMMARY	4
SUMMARY OF TEST RESULTS	5
1. PURPOSE	6
2. ADMINISTRATIVE DATA	7
2.1 Location of Testing	7
2.2 Traceability Statement	7
2.3 Cognizant Personnel	7
2.4 Date Test Sample was Received	7
2.5 Disposition of the Test Sample	7
2.6 Abbreviations and Acronyms	7
3. APPLICABLE DOCUMENTS	8
4. DESCRIPTION OF TEST CONFIGURATION	9
4.1 Description of Test Configuration - Emissions	9
4.1.1 Cable Constructions and Termination	9
5. LISTS OF EUT, ACCESSORIES AND TEST EQUIPMENT	10
5.1 EUT and Accessory List	10
6. TEST SITE DESCRIPTION	12
6.1 Test Facility Description	12
6.2 EUT Mounting, Bonding and Grounding	12
7. TEST PROCEDURES	13
7.1 RF Emissions	13
7.1.1 Radiated Emissions (Spurious and Harmonics) Test – Lab B	13
7.1.2 Radiated Emissions (Spurious and Harmonics) Test – Lab D	15
7.1.3 Conducted Emissions Test	16
7.1.4 RF Emissions Test Results	17
8. CONCLUSIONS	18

LIST OF APPENDICES

APPENDIX	TITLE		
A	Laboratory Accreditations and Recognitions		
В	Modifications to the EUT		
С	Additional Models Covered Under This Report		
D	Diagrams and Charts		
	Test Setup Diagrams		
	Antenna and Effective Gain Factors		
E	Data Sheets		

LIST OF FIGURES

FIGURE	TITLE	
1	Conducted Emissions Test Setup	
2	Plot Map And Layout of Radiated Site	
3	Layout of the Semi-Anechoic Test Chamber	

LIST OF TABLES

FIGURE	TITLE
1.0 2.0	Conducted Emissions Test Results Radiated Emissions Test Results

Model: SS6560

GENERAL REPORT SUMMARY

This electromagnetic emission test report is generated by Compatible Electronics Inc., which is an independent testing and consulting firm. The test report is based on testing performed by Compatible Electronics personnel according to the measurement procedures described in the test specifications given below and in the "Test Procedures" section of this report.

The measurement data and conclusions appearing herein relate only to the sample tested and this report may not be reproduced without the written permission of Compatible Electronics, unless done so in full.

This report must not be used to claim product certification, approval or endorsement by NVLAP, NIST or any agency of the federal government.

Device Tested: EcoTouch

Model: SS6560

S/N: N/A

Product Description: See Expository Statement.

Modifications: The EUT was not modified during testing.

Customer: Telkonet, Inc.

10200 Innovation Drive, Suite 300 Milwaukee, Wisconsin 53226

Test Dates: July 22 and 23, 2015

Test Specifications: Emissions requirements

CFR Title 47, Part 15, Subpart B; and Subpart C, sections 15.205, 15.207, 15.209, and

15.249

Test Procedure: ANSI C63.4

Test Deviations: The test procedure was not deviated from during the testing.

Report Number: **B50723D1**FCC Part 15 Subpart B and FCC Section 15.249 Test Report

EcoTouch Model: SS6560

SUMMARY OF TEST RESULTS

TEST	DESCRIPTION	RESULTS
1	Spurious Radiated RF Emissions, 10 kHz – 25,000 MHz (Transmitter and Digital portion)	Complies with the Class B limits of CFR Title 47, Part 15 Subpart B; and the limits of CFR Title 47, Part 15, Subpart C, section 15.205, 15.209 and 15.249
2	Conducted RF Emissions, 150 kHz to 30 MHz	Complies with the Class B limits of CFR Title 47, Part 15 Subpart B; and the limits of CFR Title 47, Part 15, Subpart C, section 15.207

EcoTouch Model: SS6560

1. PURPOSE

This document is a qualification test report based on the emissions tests performed on the EcoTouch, Model: SS6560. The emissions measurements were performed according to the measurement procedure described in ANSI C63.4. The tests were performed in order to determine whether the electromagnetic emissions from the equipment under test, referred to as EUT hereafter, are within the Class B specification limits defined by CFR Title 47, Part 15, Subpart B; and Subpart C, sections 15.205, 15.207, 15.209, and 15.249.

2. ADMINISTRATIVE DATA

2.1 Location of Testing

The emissions tests described herein were performed at the test facility of Compatible Electronics, 114 Olinda Drive, Brea, California 92823.

2.2 Traceability Statement

The calibration certificates of all test equipment used during the test are on file at the location of the test. The calibration is traceable to the National Institute of Standards and Technology (NIST).

2.3 Cognizant Personnel

Telkonet, Inc.

Jeffery Sobieski CTO

Compatible Electronics Inc.

Kyle Fujimoto Test Engineer James Ross Test Engineer

2.4 Date Test Sample was Received

The test sample was received prior to the initial test date.

2.5 Disposition of the Test Sample

The test sample has not been returned to Telkonet, Inc. as of the date of this test report.

2.6 Abbreviations and Acronyms

The following abbreviations and acronyms may be used in this document.

RF Radio Frequency

EMI Electromagnetic Interference

EUT Equipment Under Test

P/N Part Number S/N Serial Number HP Hewlett Packard

ITE Information Technology Equipment

CML Corrected Meter Limit

LISN Line Impedance Stabilization Network

N/A Not Applicable DNF Do Not Fit

PCB Printed Circuit Board

cm Centimeter

3. APPLICABLE DOCUMENTS

The following documents are referenced or used in the preparation of this emissions Test Report.

SPEC	TITLE
FCC Title 47, Part 15 Subpart C	FCC Rules - Radio frequency devices (including digital devices) – Intentional Radiators
FCC Title 47, Part 15 Subpart B	FCC Rules - Radio frequency devices (including digital devices) – Unintentional Radiators
ANSI C63.4 2009	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
ANSI C63.10: 2009	American National Standard for Testing Unlicensed Wireless Devices
EN 50147-2: 1997	Anechoic chambers. Alternative test site suitability with respect to site attenuation

Model: SS6560

4. DESCRIPTION OF TEST CONFIGURATION

4.1 Description of Test Configuration - Emissions

The EcoTouch, Model: SS6560 (EUT) was connected to the AC mains via a Class 2 Transformer for AC mode. The EUT was connected to 2 AA batteries for battery mode. A laptop computer was used to set the channel of the EUT and then removed from the test setup during testing.

The EUT was tested for emissions at the low, middle, and high channels in both AC and battery modes. The EUT was continuously transmitting.

The final radiated data for the EUT as was taken in the modes described above. Please see Appendix E for the data sheets.

4.1.1 Cable Constructions and Termination

- <u>Cable 1</u> This is a 30 cm unshielded cable connecting the EUT to the Class 2 Transformer. The cable was hardwired to the transformer and had a two pin power connector on the EUT end. This cable was only used during AC mode testing.
- <u>Cable 2</u> This is a 30 cm unshielded cable connecting the EUT to the battery holder. The cable was hardwired to the battery holder and had a five pin power connector on the EUT end. This cable was only used during the battery mode testing.

Model: SS6560

5. LISTS OF EUT, ACCESSORIES AND TEST EQUIPMENT

5.1 EUT and Accessory List

EQUIPMENT	MANUFACTURER	MODEL NUMBER	SERIAL NUMBER	FCC ID
ECOTOUCH	TELKONET, INC.	SS6560	N/A	XV6SS6560
BATTERY HOLDER	N/A	N/A	N/A	N/A
LAPTOP COMPUTER	НР	G60-441US	2CE927RF3Q	DoC
CLASS 2 TRANSFORMER	JARD	TA202424-B51	N/A	N/A

EcoTouch Model: SS6560

5.2 Emissions Test Equipment

EQUIPMENT	MANU-	MODEL	SERIAL	CALIBRATION	CAL. CYCLE		
TYPE	FACTURER	NUMBER	NUMBER	DATE			
GENERAL TEST EQUIPMENT USED IN LAB B							
Computer	Compaq	CQ5210F	CNX9360CF9	N/A	N/A		
Monitor	Hewlett Packard	HPs2031a	3CQ046N3MD	N/A	N/A		
EMI Receiver	Rohde & Schwarz	ESIB40	100194	December 4, 2014	1 Year		
	GENERA	L TEST EQUIP	MENT USED IN 1	LAB D			
TDK TestLab	TDK RF Solutions, Inc.	9.22	700145	N/A	N/A		
Computer	Hewlett Packard	p6716f	MXX1030PX0	N/A	N/A		
LCD Monitor	Hewlett Packard	52031a	3CQ046N3MG	N/A	N/A		
EMI Receiver, 20 Hz – 26.5 GHz	Agilent Technologies	N9038A	MY51100115	April 3, 2015	1 Year		
	RF RADI	ATED EMISSIC	NS TEST EQUIP	MENT			
CombiLog Antenna	Com-Power	AC-220	61060	May 20, 2014	2 Year		
Preamplifier	Com-Power	PA-118	551024	March 6, 2015	1 Year		
Loop Antenna	Com-Power	AL-130	17089	February 6, 2015	2 Year		
Horn Antenna	Com-Power	AH-118	071175	February 26, 2014	2 Year		
Preamplifier	Com-Power	PA-840	711013	May 13, 2014	2 Year		
Horn Antenna	Com-Power	AH-826	0071957	N/A	N/A		
Antenna Mast	Com Power	AM-100	N/A	N/A	N/A		
System Controller	Sunol Sciences Corporation	SC110V	112213-1	N/A	N/A		
Turntable	Sunol Sciences Corporation	2011VS	N/A	N/A	N/A		
Turntable	Com-Power Corporation	TT-100	N/A	N/A	N/A		
Antenna-Mast	Sunol Sciences Corporation	TWR95-4	112213-3	N/A	N/A		
	RF COND	UCTED EMISSI	ONS TEST EQUI	PMENT			
Shield Room Test	Compatible Electronics	11CD	N/A	N/A	N/A		
Spectrum Analyzer – Main Section	Hewlett Packard	8566B	3638A08784	May 27, 2015	1 Year		
Spectrum Analyzer – Display Section	Hewlett Packard	85662A	2648A14530	May 27, 2015	1 Year		
Quasi-Peak Adapter	Hewlett Packard	85650A	2811A01363	May 27, 2015	1 Year		
LISN	Com-Power	LI-215	12076	June 9, 2015	1 Year		
LISN	Com-Power	LI-215	12090	June 9, 2015	1 Year		
Transient Limiter	Com-Power	252A910	1	October 10, 2014	1 Year		

Model: SS6560

6. TEST SITE DESCRIPTION

6.1 Test Facility Description

Please refer to section 2.1 and 7.1 of this report for emissions test location.

6.2 EUT Mounting, Bonding and Grounding

The EUT was mounted on a 1.0 by 1.5 meter non-conductive table 0.8 meters above the ground plane.

The EUT was not grounded.

Model: SS6560

7. TEST PROCEDURES

The following sections describe the test methods and the specifications for the tests. Test results are also included in this section.

7.1 RF Emissions

7.1.1 Radiated Emissions (Spurious and Harmonics) Test – Lab B

The EMI Receiver was used as a measuring meter. A preamplifier was used to increase the sensitivity of the instrument. The Com Power Microwave Preamplifier Model: PA-118 was used for frequencies above 1 GHz and the PA 840 for frequencies above 18 GHz. The EMI Receiver was used in the peak detect mode with the "Max Hold" feature activated. In this mode, the EMI Receiver records the highest measured reading over all the sweeps.

For frequencies above 1 GHz, the readings were averaged using the RMS detector in the EMI receiver.

The measurement bandwidth and transducer used for the radiated emissions test were:

FREQUENCY RANGE	EFFECTIVE MEASUREMENT BANDWIDTH	TRANSDUCER
1 GHz to 25 GHz	1 MHz	Horn Antenna

The open field test site of Compatible Electronics, Inc. was used for radiated emission testing. This test site is set up according to ANSI C63.4: 2009. Please see section 6.2 of this report for mounting, bonding and grounding of the EUT. The turntable supporting the EUT is remote controlled using a motor. The turntable permits EUT rotation of 360 degrees in order to maximize emissions. Also, the antenna mast allows height variation of the antenna from 1 meter to 4 meters. Data was collected in the worst case (highest emission) configuration of the EUT by the Radiated Emission Manual Test software. At each reading, the EUT was rotated 360 degrees and the antenna height was varied from 1 to 4 meters (for E field radiated field strength). The gunsight method was used when measuring with the horn antenna in order to ensure accurate results.

Radiated Emissions (Spurious and Harmonics) Test – Lab B (con't)

The presence of ambient signals was verified by turning the EUT off. In case an ambient signal was detected, the measurement bandwidth was reduced temporarily and verification was made that an additional adjacent peak did not exist. This ensures that the ambient signal does not hide any emissions from the EUT. The EUT was tested at a 3 meter test distance from 1 GHz to 25 GHz to obtain the final test data.

The EUT was tested at a 3 meter test distance. The six highest emissions are listed in Table 1.0.

Test Results:

The EUT complies with the **Class B** limits of CFR Title 47, Part 15, Subpart B; and the limits of CFR Title 47, Part 15, Subpart C, Sections 15.209 and 15.249 for radiated emissions. Please see Appendix E for the data sheets.

Model: SS6560

7.1.2 Radiated Emissions (Spurious and Harmonics) Test – Lab D

The EMI Receiver was used as the measuring meter. A built-in, internal preamplifier was used to increase the sensitivity of the instrument. The EMI Receiver was initially used with the Analyzer mode feature activated. In this mode, the EMI receiver can then record the actual frequency to be measured. This final reading is then taken accurately in the EMI Receiver mode, which takes into account the cable loss, amplifier gain and antenna factors, so that a true reading is compared to the true limit. A quasi-peak reading was taken only for those readings, which are marked accordingly on the data sheets.

The EMI test chamber of Compatible Electronics, Inc. was used for radiated emissions testing. This test site is set up according to ANSI C63.4 and EN 50147-2. Please see section 6.2 of this report for mounting, bonding and grounding of the EUT.

The turntable supporting the EUT is remote controlled using a motor. The turntable permits EUT rotation of 360 degrees in order to maximize emissions. Also, the antenna mast allows height variation of the antenna from 1 meter to 4 meters. Data was collected in the worst case (highest emission) configuration of the EUT. At each reading, the EUT was rotated 360 degrees and the antenna height was varied from 1 to 4 meters (for E field radiated field strength).

The measurement bandwidths and transducers used for the radiated emissions test were:

FREQUENCY RANGE	EFFECTIVE MEASUREMENT BANDWIDTH	TRANSDUCER
10 kHz to 150 kHz	200 Hz	Active Loop Antenna
150 kHz to 30 MHz	9 kHz	Active Loop Antenna
30 MHz to 1 GHz	120 kHz	CombiLog Antenna

The EUT was tested at a three meter distance. The six highest emissions are located on Table 1.0

Test Results:

The EUT complies with the **Class B** limits of CFR Title 47, Part 15, Subpart B; and the limits of CFR Title 47, Part 15, Subpart C, Sections 15.209 and 15.249 for radiated emissions. Please see Appendix E for the data sheets.

Model: SS6560

7.1.3 Conducted Emissions Test

The spectrum analyzer was used as a measuring meter. The data was collected with the spectrum analyzer in the peak detect mode with the "Max Hold" feature activated. The quasi-peak was used only where indicated in the data sheets. A transient limiter was used for the protection of the spectrum analyzer input stage, and the offset was adjusted accordingly to read the actual data measured. The LISN output was measured using the spectrum analyzer. The output of the second LISN was terminated by a 50-ohm termination. The effective measurement bandwidth used for this test was 9 kHz.

Please see section 6.2 of this report for mounting, bonding, and grounding of the EUT. The EUT was powered through the LISN, which was bonded to the ground plane. The LISN power was filtered and the filter was bonded to the ground plane. The EUT was set up with the minimum distances from any conductive surfaces as specified in ANSI C63.4. The excess power cord was wrapped in a figure eight pattern to form a bundle not exceeding 0.4 meters in length.

The conducted emissions from the EUT were maximized for operating mode as well as cable placement. The final data was collected under program control by the Shield Room Test software in several overlapping sweeps by running the spectrum analyzer at a minimum scan rate of 10 seconds per octave. The final qualification data is located in Appendix E.

The EUT was tested at 120 VAC. The six highest emissions are listed in Table 2.0.

Test Results:

The EUT complies with the **Class B** limits of **CFR** Title 47, Part 15, Subpart B; and the limits of **CFR** Title 47, Part 15, Subpart C, Section 15.107 for conducted emissions.

EcoTouch Model: SS6560

7.1.4 RF Emissions Test Results

Table 1.0 RADIATED EMISSION RESULTS

EcoTouch, Model: SS6560

Frequency MHz	Corrected Reading* dBuV	Specification Limit dBuV	Delta (Cor. Reading – Spec. Limit) dB
2445 (Middle Channel) (Y-Axis) (AC Mode) (V)	93.27 (Avg)	94.00	-0.73
138.20 (High Channel) (Y-Axis) (AC Mode) (V)	42.61 (QP)	43.50	-0.89
139.50 (High Channel) (Y-Axis) (AC Mode) (V)	42.47 (QP)	43.50	-1.03
2405 (Low Channel) (Y-Axis) (Battery Mode) (V)	92.70 (Avg)	94.00	-1.30
2480 (High Channel) (Y-Axis) (Battery Mode) (H)	92.31 (Avg)	94.00	-1.69
2405 (Low Channel) (Y-Axis) (AC Mode) (V)	91.87 (Avg)	94.00	-2.13

Table 2.0 CONDUCTED EMISSION RESULTS

EcoTouch, Model: SS6560

Frequency MHz	Corrected Reading* dBuV	Specification Limit dBuV	Delta (Cor. Reading – Spec. Limit) dB
0.637 (BL)	37.54	46.00	-8.46
0.634 (WL)	35.82	46.00	-10.18
1.663 (WL)	35.01	46.00	-10.99
1.197 (BL)	34.76	46.00	-11.24
0.858 (BL)	34.63	46.00	-11.37
1.708 (BL)	34.32	46.00	-11.68

Notes:

(H)	Horizontal
(V)	Vertical
(QP)	Quasi-Peak
(BL)	Black Lead
(WL)	White Lead
(Avg)	Average

* The complete emissions data is given in Appendix E of this report.

Model: SS6560

8. CONCLUSIONS

The EcoTouch, Model: SS6560, as tested, meets all of the specification limits defined in FCC Title 47, Part 15, Subpart B and Subpart C, sections 15.205, 15.207, 15.209, and 15.249.

Report Number: **B50723D1**FCC Part 15 Subpart B and FCC Section 15.249 Test Report

EcoTouch Model: SS6560

APPENDIX A

LABORATORY ACCREDITATIONS AND RECOGNITIONS

LABORATORY ACCREDITATIONS AND RECOGNITIONS

For US, Canada, Australia/New Zealand, Japan, Taiwan, Korea, and the European Union, Compatible Electronics is currently accredited by NVLAP to ISO/IEC 17025. Please follow the link to the NIST/NVLAP site for each of our facilities' NVLAP certificate and scope of accreditation NVLAP listing links

Agoura Division / Brea Division / Silverado/Lake Forest Division .Quote from ISO-ILAC-IAF Communiqué on 17025:

"A laboratory's fulfilment of the requirements of ISO/IEC 17025:2005 means the laboratory meets both the technical competence requirements and management system requirements that are necessary for it to consistently deliver technically valid test results and calibrations. The management system requirements in ISO/IEC 17025:2005 (Section 4) are written in language relevant to laboratory operations and meet the principles of ISO 9001:2008 Quality Management Systems — Requirements."

ANSI listing CETCB

Compatible Electronics has been nominated as a Conformity Assessment Body (CAB) for EMC under the US/EU Mutual Recognition Agreement (MRA).

US/EU MRA list NIST MRA site

Compatible Electronics has been nominated as a Conformity Assessment Body (CAB) for Taiwan/BSMI under the US/APEC (Asia-Pacific Economic Cooperation) Mutual Recognition Agreement (MRA). **APEC MRA list NIST MRA site**

We are also listed for IT products by the following country/agency:

VCCI Support member: Please visit http://www.vcci.jp/vcci_e/

FCC Listing, from FCC OET site

FCC test lab search https://fjallfoss.fcc.gov/oetcf/eas/reports/TestFirmSearch.cfm

Compatible Electronics IC listing can be found at: http://www.ic.gc.ca/eic/site/ic1.nsf/eng/home

APPENDIX B

MODIFICATIONS TO THE EUT

Model: SS6560

MODIFICATIONS TO THE EUT

The modifications listed below were made to the EUT to pass FCC Subpart B and FCC 15.249 specifications.

All the rework described below was implemented during the test in a method that could be reproduced in all the units by the manufacturer.

No modifications were made to the EUT during the testing.

APPENDIX C

ADDITIONAL MODELS COVERED UNDER THIS REPORT

ADDITIONAL MODELS COVERED UNDER THIS REPORT

USED FOR THE PRIMARY TEST

EcoTouch Model: SS6560 S/N: N/A

ADDITIONALS MODELS COVERED UNDER THIS REPORT

No additional models were covered under this report.

COMPATIBLE ELECTRONICS

DIAGRAMS AND CHARTS

FIGURE 1: CONDUCTED EMISSIONS TEST SETUP

Model: SS6560

FIGURE 2: PLOT MAP AND LAYOUT OF RADIATED SITE

OPEN LAND > 15 METERS

OPEN LAND > 15 METERS

X = GROUND RODS = GROUND SCREEN

D = TEST DISTANCE (meters) = WOOD COVER

FIGURE 3: LAYOUT OF THE SEMI-ANECHOIC TEST CHAMBER

COM-POWER AL-130

LOOP ANTENNA

S/N: 17089

CALIBRATION DATE: FEBRUARY 6, 2015

FREQUENCY (MHz)	MAGNETIC (dB/m)	ELECTRIC (dB/m)
0.009	-33.18	18.32
0.01	-34.10	17.40
0.02	-38.65	12.85
0.03	-39.28	12.22
0.04	-40.09	11.41
0.05	-40.85	10.65
0.06	-40.88	10.62
0.07	-41.07	10.43
0.08	-41.04	10.46
0.09	-41.19	10.31
0.1	-41.20	10.30
0.2	-41.52	9.98
0.3	-41.53	9.97
0.4	-41.42	10.08
0.5	-41.53	9.97
0.6	-41.53	9.97
0.7	-41.43	10.07
0.8	-41.23	10.27
0.9	-41.13	10.37
1	-41.14	10.36
2	-40.80	10.70
3	-40.66	10.84
4	-40.61	10.89
5	-40.33	11.17
6	-40.53	10.97
7	-40.47	11.03
8	-40.48	11.02
9	-39.93	11.57
10	-39.81	11.69
15	-43.35	8.15
20	-39.16	12.34
25	-40.24	11.26
30	-43.18	8.32

COM-POWER AC-220

COMBILOG ANTENNA

S/N: 61060

CALIBRATION DATE: MAY 20, 2014

FREQUENCY	FACTOR	FREQUENCY	FACTOR
(MHz)	(dB)	(MHz)	(dB)
30	23.40	200	14.40
35	23.70	250	16.40
40	24.20	300	17.90
45	22.60	350	15.60
50	22.10	400	19.90
60	17.90	450	20.40
70	12.70	500	21.60
80	11.60	550	21.50
90	12.20	600	22.30
100	13.20	650	23.50
120	15.70	700	23.70
125	15.80	750	25.90
140	13.60	800	25.90
150	16.90	850	26.40
160	14.20	900	27.00
175	14.90	950	27.70
180	15.00	1000	27.50

COM POWER AH-118

HORN ANTENNA

S/N: 071175

CALIBRATION DATE: FEBRUARY 26, 2014

FREQUENCY (GHz)	FACTOR (dB)	FREQUENCY (GHz)	FACTOR (dB)
1.0	24.23	10.0	38.43
1.5	25.84	10.5	40.19
2.0	28.14	11.0	40.49
2.5	29.51	11.5	41.39
3.0	31.20	12.0	42.02
3.5	32.17	12.5	43.30
4.0	31.40	13.0	42.77
4.5	31.86	13.5	40.18
5.0	34.82	14.0	42.59
5.5	34.38	14.5	41.74
6.0	36.31	15.0	41.84
6.5	34.81	15.5	38.48
7.0	37.48	16.0	39.52
7.5	36.98	16.5	37.85
8.0	36.66	17.0	41.33
8.5	38.47	17.5	44.96
9.0	37.22	18.0	48.50
9.5	37.86		

COM-POWER PA-118

PREAMPLIFIER

S/N: 551024

CALIBRATION DATE: MARCH 6, 2015

FREQUENCY	FACTOR	FREQUENCY	FACTOR
(GHz)	(dB)	(GHz)	(dB)
1.0	39.76	6.0	38.77
1.1	40.46	6.5	38.46
1.2	40.05	7.0	38.27
1.3	40.58	7.5	38.77
1.4	39.50	8.0	39.25
1.5	39.92	8.5	38.63
1.6	40.40	9.0	39.58
1.7	40.10	9.5	42.12
1.8	40.49	10.0	38.53
1.9	38.86	11.0	40.21
2.0	41.53	12.0	41.15
2.5	41.05	13.0	40.51
3.0	40.29	14.0	40.32
3.5	40.82	15.0	39.47
4.0	40.88	16.0	39.88
4.5	41.37	17.0	39.79
5.0	40.73	18.0	40.61
5.5	39.05		

COM-POWER AH-826

HORN ANTENNA

S/N: 71957

FREQUENCY	FACTOR	FREQUENCY	FACTOR
(GHz)	(dB)	(GHz)	(dB)
18.0	33.5	22.5	35.5
18.5	33.5	23.0	35.9
19.0	34.0	23.5	35.7
19.5	34.0	24.0	35.6
20.0	34.3	24.5	36.0
20.5	34.9	25.0	36.2
21.0	34.7	25.5	36.1
21.5	35.0	26.0	36.2
22.0	35.0	26.5	35.7

COM-POWER PA-840

MICROWAVE PREAMPLIFIER

S/N: 711013

CALIBRATION DATE: MAY 13, 2014

FREQUENCY	FACTOR	FREQUENCY	FACTOR
(GHz)	(dB)	(GHz)	(dB)
18.0	25.19	31.0	25.69
19.0	24.48	31.5	25.74
20.0	24.39	32.0	26.35
21.0	24.73	32.5	26.64
22.0	23.49	33.0	25.98
23.0	24.23	33.5	24.68
24.0	24.59	34.0	24.61
25.0	25.32	34.5	23.78
26.0	25.66	35.0	24.74
26.5	25.99	35.5	24.39
27.0	26.26	36.0	23.46
27.5	25.33	36.5	23.71
28.0	24.49	37.0	26.35
28.5	24.74	37.5	23.49
29.0	25.93	38.0	25.42
29.5	26.28	38.5	24.87
30.0	26.17	39.0	22.60
30.5	26.11	39.5	20.57
		40.0	19.15

FRONT VIEW

AC MODE

TELKONET, INC. ECOTOUCH MODEL: SS6560

FCC SUBPART B AND C - RADIATED EMISSIONS - BELOW 1 GHz

PHOTOGRAPH SHOWING THE EUT CONFIGURATION FOR MAXIMUM EMISSIONS

REAR VIEW

AC MODE

TELKONET, INC. ECOTOUCH MODEL: SS6560

FCC SUBPART B AND C - RADIATED EMISSIONS - BELOW 1 GHz

PHOTOGRAPH SHOWING THE EUT CONFIGURATION FOR MAXIMUM EMISSIONS

FRONT VIEW

BATTERY MODE

TELKONET, INC. ECOTOUCH MODEL: SS6560

FCC SUBPART B AND C - RADIATED EMISSIONS - BELOW 1 GHz

REAR VIEW

BATTERY MODE

TELKONET, INC. ECOTOUCH MODEL: SS6560

FCC SUBPART B AND C - RADIATED EMISSIONS - BELOW 1 GHz

FRONT VIEW

AC MODE

TELKONET, INC. ECOTOUCH MODEL: SS6560

FCC SUBPART B AND C - RADIATED EMISSIONS - ABOVE 1 GHz

REAR VIEW

AC MODE

TELKONET, INC. ECOTOUCH MODEL: SS6560

FCC SUBPART B AND C - RADIATED EMISSIONS - ABOVE 1 GHz

FRONT VIEW

BATTERY MODE

TELKONET, INC. ECOTOUCH MODEL: SS6560

FCC SUBPART B AND C - RADIATED EMISSIONS - ABOVE 1 GHz

REAR VIEW

BATTERY MODE

TELKONET, INC. **ECOTOUCH** MODEL: SS6560

FCC SUBPART B AND C - RADIATED EMISSIONS - ABOVE 1 GHz

FRONT VIEW

TELKONET, INC.
ECOTOUCH
MODEL: SS6560
FCC SUBPART B AND C – CONDUCTED EMISSIONS

REAR VIEW

TELKONET, INC.
ECOTOUCH
MODEL: SS6560
FCC SUBPART B AND C – CONDUCTED EMISSIONS

PHOTOGRAPH SHOWING THE EUT CONFIGURATION

APPENDIX E

DATA SHEETS

RADIATED EMISSIONS

DATA SHEETS

AC MODE

FCC 15.249

Telkonet, Inc. Date: 07/22/2015

EcoTouch Lab: B

Model: SS6560 Tested By: Kyle Fujimoto

Low Channel - AC Power Y-Axis

					Peak /	Ant.	lable	
Freq.	Level	Pol			QP /	Height	Angle	
(MHz)	(dBuV)	(v/h)	Limit	Margin	Avg	(m)	(deg)	Comments
2405	95.71	V	114	-18.29	Peak	1.25	155	
2405	91.87	V	94	-2.13	Avg	1.25	155	
4810	48.61	V	74	-25.39	Peak	1.25	155	
4810	40.51	V	54	-13.49	Avg	1.25	155	
7215	59.32	V	74	-14.68	Peak	1.35	165	
7215	50.99	V	54	-3.01	Avg	1.35	165	
9620								No Emission
9620								Detected
12025								No Emission
12025								Detected
14430								No Emission
14430								Detected
16835								No Emission
16835								Detected
19240								No Emission
19240								Detected
21645								No Emission
21645								Detected
0.105								
24050								No Emission

24050

Detected

FCC 15.249

Telkonet, Inc.

Date: 07/22/2015
EcoTouch

Lab: B

Model: SS6560 Tested By: Kyle Fujimoto

Low Channel - AC Power Y-Axis

					Peak /	Ant.	Lable	
Freq.	Level	Pol			QP /	Height	Angle	
(MHz)	(dBuV)	(v/h)	Limit	Margin	Avg	(m)	(deg)	Comments
2405	91.11	Н	114	-22.89	Peak	1.25	45	
2405	87.57	Н	94	-6.43	Avg	1.25	45	
4810	46.31	Н	74	-27.69	Peak	1.25	45	
4810	35.97	Н	54	-18.03	Avg	1.25	45	
7215	49.27	Ξ	74	-24.73	Peak	1.35	165	
7215	38.04	Н	54	-15.96	Avg	1.35	165	
9620								No Emission
9620								Detected
12025								No Emission
12025								Detected
14430								No Emission
14430								Detected
16835								No Emission
16835								Detected
19240								No Emission
19240								Detected
21645								No Emission
21645								Detected
24050								No Emission
24050								Detected

FCC 15.249

Telkonet, Inc. Date: 07/22/2015

EcoTouch Lab: B Model: SS6560 Tested By: Kyle Fujimoto

Middle Channel - AC Power

Milagie	Channel	- AC	Powe	21
Y-Axis				

					Peak /	Ant.	Lable	
Freq.	Level	Pol			QP/	Height	Angle	
(MHz)	(dBuV)	(v/h)	Limit	Margin	Avg	(m)	(deg)	Comments
2445	96.09	V	114	-17.91	Peak	1.25	180	
2445	93.27	٧	94	-0.73	Avg	1.25	180	
4890	51.74	V	74	-22.26	Peak	1.35	180	
4890	45.99	٧	54	-8.01	Avg	1.35	180	
7335	58.46	V	74	-15.54	Peak	1.45	180	
7335	51.27	V	54	-2.73	Avg	1.45	180	
9780								No Emission
9780								Detected
12250								No Emission
12250								Detected
14670								No Emission
14670								Detected
47445								
17115								No Emission
17115								Detected
40500								N. E
19560								No Emission
19560								Detected
22005								No Emission
22005								Detected
22003								Detected
24450								No Emission
24450								Detected
21100								Detected

FCC 15.249

Telkonet, Inc. Date: 07/22/2015

EcoTouch Lab: B

Model: SS6560 Tested By: Kyle Fujimoto

Middle Channel - AC Power

					Peak /	Ant.	Lable	
Freq.	Level	Pol			QP /	Height	Angle	
	(dBuV)		Limit	Manain		_	_	Comments
(MHz)		(v/h)		Margin	Avg	(m)	(deg)	Comments
2445	88.18	Н	114	-25.82	Peak	1.25	145	
2445	81.27	Н	94	-12.73	Avg	1.25	145	
4890	51.31	Н	74	-22.69	Peak	1.25	225	
4890	39.64	Н	54	-14.36	Avg	1.25	225	
7335	52.14	Н	74	-21.86	Peak	1.25	180	
7335	37.98	Н	54	-16.02	Avg	1.25	180	
9780								No Emission
9780								Detected
12250								No Emission
12250								Detected
14670								No Emission
14670								Detected
17115								No Emission
17115								Detected
19560								No Emission
19560								Detected
22005								No Emission
22005								Detected
24450								No Emission
24450								Detected
21100								Dottottou

FCC 15.249

Telkonet, Inc.

Date: 07/22/2015
EcoTouch

Lab: B

Model: SS6560 Tested By: Kyle Fujimoto

High Channel - AC Power

					Peak /	Ant.	Lable	
Freq.	Level	Pol			QP /	Height	Angle	
(MHz)	(dBuV)	(v/h)	Limit	Margin	Avg	(m)	(deg)	Comments
2480	93.28	V	114	-20.72	Peak	1.25	315	
2480	89.84	V	94	-4.16	Avg	1.25	315	
2100	00.01	•		1.10	Avg	1.20	010	
4960	48.01	V	74	-25.99	Peak	1.35	275	
4960	45.45	V	54	-8.55	Avg	1.35	275	
7440	52.86	V	74	-21.14	Peak	1.25	285	
7440	41.78	V	54	-12.22	Avg	1.25	285	
9920								No Emission
9920								Detected
12400								No Emission
12400								Detected
14880								No Emission
14880								Detected
17360								No Emission
17360								Detected
19840								No Emission
19840								Detected
00005								
22320								No Emission
22320								Detected
04000								N. F
24800								No Emission
24800								Detected

FCC 15.249

Telkonet, Inc. Date: 07/22/2015

EcoTouch Lab: B

Model: SS6560 Tested By: Kyle Fujimoto

High Channel - AC Power

					Peak /	Ant.	Lable	
Freq.	Level	Pol			QP /	Height	Angle	
(MHz)	(dBuV)	(v/h)	Limit	Margin	Avg	(m)	(deg)	Comments
2480	94.91	H	114	-19.09	Peak	1.25	180	
2480	91.18	H	94	-2.82	Avg	1.25	180	
					9			
4960	51.89	Н	74	-22.11	Peak	1.25	180	
4960	48.06	Н	54	-5.94	Avg	1.25	180	
7440	55.33	Н	74	-18.67	Peak	1.35	235	
7440	44.56	Н	54	-9.44	Avg	1.35	235	
9920								No Emission
9920								Detected
12400								No Emission
12400								Detected
14880								No Emission
14880								Detected
17360								No Emission
17360								Detected
40040								
19840								No Emission
19840								Detected
22220								No Fortester
22320 22320								No Emission
22320								Detected
24800								No Emission
24800				\vdash				No Emission Detected
24000								Detected

Report Number: B50723D1 FCC Part 15 Subpart B and FCC Section 15.249 Test Report

EcoTouch Model: SS6560

Title: Pre-Scan - FCC Class B File: Agilent - Radiated Pre-Scan 30-1000 MHz - FCC Class B - AC Powered - 07-23-2015.set Operator: Kyle Fujimoto EUT Type: EcoTouch EUT Condition: The EUT is Continuously Transmitting - AC Powered

Sequence: Preliminary Scan

7/23/2015 2:19:47 PM

Comments: Customer: Telkonet, Inc.

Model: SS6560

Pre-Scan - FCC Class B

7/23/2015 2:30:37 PM

Sequence: Final Measurements

Report Number: **B50723D1 FCC Part 15 Subpart B** and **FCC Section 15.249** Test Report

EcoTouch Model: SS6560

Title: Radiated Final - 30-1000 MHz - FCC Class B

File: Agilent - Radiated Final Scan 30-1000 MHz - FCC Class B - AC Powered - 07-23-2015.set

Operator: Kyle Fujimoto

EUT Type: EcoTouch

EUT Condition: The EUT is Continuously Transmitting - AC Powered

Comments: Customer: Telkonet, Inc.

Model: SS6560

Table19

Freq	Pol	(PEAK) EMI	(QP) EMI	(PEAK) Margin	(QP) Margin	Limit	Cable	Transducer	Ttbl Agl	Twr Ht
(MHz)		(dBµV/m)	(dBµV/m)	(dB)	(dB)	(dBµV/m)	(dB)	(dB)	(deg)	(cm)
118.30	н	39.13	34.28	-4.37	-9.22	43.50	0.78	15.50	31.25	256.14
118.50	V	39.42	34.56	-4.08	-8.94	43.50	0.78	15.55	340.75	190.83
120.10	V	38.63	33.58	-4.87	-9.92	43.50	0.79	15.69	0.00	126.00
121.60	V	38.54	34.17	-4.96	-9.33	43.50	0.79	15.73	112.25	363.25
136.30	V	41.76	37.74	-1.74	-5.76	43.50	0.85	14.11	335.50	255.01
138.20	V	46.70	42.61	3.20	-0.89	43.50	0.86	13.84	306.00	223.25
139.50	V	46.88	42.47	3.38	-1.03	43.50	0.86	13.67	306.25	223.19

Date: 07/22/2015

Labs: B and D

FCC 15.249 and FCC Class B Telkonet, Inc. EcoTouch

Model: SS6560 Tested By: Kyle Fujimoto

Radiated Emissions 10 kHz to 30 MHz and 1 GHz to 25 GHz - AC Power

						Peak /	Lable	
Axis of	Freq.	Level	Pol			QP /	Angle	
EUT	(MHz)	(dBuV)	(v/h)	Limit	Margin	Avg	(deg)	Comments
EUI	(MITIZ)	(abuv)	(V/II)	LIIIII	wargin	Avg	(deg)	
								No Emissions Detected
								from 10 kHz to 30 MHz
								for the Non-Harmonic
								Emissions from the
								EUT for both the Vertical and
								Horizontal Polarizations.
								No Emissions Detected
								from 10 kHz to 30 MHz
								for the Digital Portion
								of the EUT
								for both the Vertical and
								Horizontal Polarizations.
								No Emissions Detected
								from 1 GHz to 25 GHz
								for the Non-Harmonic
								Emissions from the
								EUT for both the Vertical and
								Horizontal Polarizations.
								No Emissions Detected
								from 1 GHz to 25 GHz
								for the Digital Portion
								of the EUT
								for both the Vertical and
								Horizontal Polarizations.

RADIATED EMISSIONS

DATA SHEETS

BATTERY MODE

FCC 15.249

Telkonet, Inc. Date: 07/23/2015

EcoTouch Lab: B

Model: SS6560 Tested By: Kyle Fujimoto

Low Channel - Battery Power

					Peak /	Ant.	Lable	
Freq.	Level	Pol			QP /	Height	Angle	
(MHz)	(dBuV)	(v/h)	Limit	Margin	Avg	(m)	(deg)	Comments
2405	98.6	V	114	-15.4	Peak	1.25	180	
2405	92.7	V	94	-1.3	Avg	1.25	180	
4810	49.73	V	74	-24.27	Peak	1.25	180	
4810	36.72	٧	54	-17.28	Avg	1.25	180	
7215	52.11	V	74	-21.89	Peak	1.25	180	
7215	42.39	V	54	-11.61	Avg	1.25	180	
9620								No Emission
9620								Detected
12025								No Emission
12025								Detected
14430								No Emission
14430								Detected
16835								No Emission
16835								Detected
10015								
19240								No Emission
19240								Detected
04045								
21645								No Emission
21645								Detected
04050								
24050								No Emission
24050								Detected

FCC 15.249

Telkonet, Inc.

Date: 07/23/2015

EcoTouch Lab: B

Model: SS6560 Tested By: Kyle Fujimoto

Low Channel - Battery Power

Freq. (MHz)						Peak /	Ant.	Lable	
2405 91.91 H 114 -22.09 Peak 1.25 135 2405 88.5 H 94 -5.5 Avg 1.25 135 4810 53.62 H 74 -20.38 Peak 1.25 135 4810 50.74 H 54 -3.26 Avg 1.25 135 7215 51.92 H 74 -22.08 Peak 1.35 270 7215 43.54 H 54 -10.46 Avg 1.35 270 9620 Image: Peak strip of the strip of th	Freq.	Level	Pol			QP/	Height	Angle	
2405 88.5 H 94 -5.5 Avg 1.25 135 4810 53.62 H 74 -20.38 Peak 1.25 135 4810 50.74 H 54 -3.26 Avg 1.25 135 7215 51.92 H 74 -22.08 Peak 1.35 270 7215 43.54 H 54 -10.46 Avg 1.35 270 9620 Image: Peak of the control o	(MHz)	(dBuV)	(v/h)	Limit	Margin	Avg	(m)	(deg)	Comments
4810 53.62 H 74 -20.38 Peak 1.25 135 4810 50.74 H 54 -3.26 Avg 1.25 135 7215 51.92 H 74 -22.08 Peak 1.35 270 7215 43.54 H 54 -10.46 Avg 1.35 270 9620	2405	91.91	Н	114	-22.09	Peak	1.25	135	
4810 50.74 H 54 -3.26 Avg 1.25 135 7215 51.92 H 74 -22.08 Peak 1.35 270 7215 43.54 H 54 -10.46 Avg 1.35 270 9620 Image: Control of the control of	2405	88.5	Н	94	-5.5	Avg	1.25	135	
4810 50.74 H 54 -3.26 Avg 1.25 135 7215 51.92 H 74 -22.08 Peak 1.35 270 7215 43.54 H 54 -10.46 Avg 1.35 270 9620 Image: Control of the control of									
7215 51.92 H 74 -22.08 Peak 1.35 270 7215 43.54 H 54 -10.46 Avg 1.35 270 9620						Peak			
7215 43.54 H 54 -10.46 Avg 1.35 270 9620 No Emission Detected 12025 No Emission Detected 14430 No Emission Detected 16835 No Emission Detected 19240 No Emission Detected 21645 No Emission Detected 24050 No Emission No Emission No Emission Detected No Emission No Emission Detected No Emission 24050 No Emission Detected	4810	50.74	Н	54	-3.26	Avg	1.25	135	
7215 43.54 H 54 -10.46 Avg 1.35 270 9620 No Emission Detected 12025 No Emission Detected 14430 No Emission Detected 16835 No Emission Detected 19240 No Emission Detected 21645 No Emission Detected 24050 No Emission No Emission No Emission Detected No Emission No Emission Detected No Emission 24050 No Emission Detected									
9620									
9620 Detected 12025 No Emission 12025 Detected 14430 No Emission 14430 Detected 16835 No Emission 16835 Detected 19240 No Emission 19240 Detected 21645 No Emission 24050 No Emission	7215	43.54	Н	54	-10.46	Avg	1.35	270	
9620 Detected 12025 No Emission 12025 Detected 14430 No Emission 14430 Detected 16835 No Emission 16835 Detected 19240 No Emission 19240 Detected 21645 No Emission 24050 No Emission									
12025									
12025 Detected Detected	9620								Detected
12025 Detected Detected	40005								
14430 No Emission 14430 Detected 16835 No Emission 16835 Detected 19240 No Emission 19240 Detected 21645 No Emission 24050 No Emission No Emission Detected									
14430 Detected 16835 No Emission 16835 Detected 19240 No Emission 19240 Detected 21645 No Emission 24050 No Emission No Emission Detected	12025								Detected
14430 Detected 16835 No Emission 16835 Detected 19240 No Emission 19240 Detected 21645 No Emission 24050 No Emission No Emission Detected	14420								No Footoston
16835 No Emission 16835 Detected 19240 No Emission 19240 Detected 21645 No Emission 24050 Detected No Emission Detected No Emission Detected									
16835 Detected 19240 No Emission 19240 Detected 21645 No Emission 21645 Detected 24050 No Emission	14430								Detected
16835 Detected 19240 No Emission 19240 Detected 21645 No Emission 21645 Detected 24050 No Emission	16025								No Emission
19240									
19240 Detected 21645 No Emission 21645 Detected 24050 No Emission	10033								Detected
19240 Detected 21645 No Emission 21645 Detected 24050 No Emission	19240								No Emission
21645 No Emission 21645 Detected 24050 No Emission									
21645 Detected 24050 No Emission	10240								Detected
21645 Detected 24050 No Emission	21645								No Emission
24050 No Emission									
	24050								No Emission

FCC 15.249

Telkonet, Inc. Date: 07/22/2015

EcoTouch Lab: B

Model: SS6560 Tested By: Kyle Fujimoto

Middle Channel - Battery Power

					Peak /	Ant.	Lable	
Freq.	Level	Pol			QP /	Height	Angle	
(MHz)	(dBuV)	(v/h)	Limit	Margin	Avg	(m)	(deg)	Comments
2445	95.23	V	114	-18.77	Peak	1.25	135	
2445	90.85	V	94	-3.15	Avg	1.25	135	
					9			
4890	49.83	V	74	-24.17	Peak	1.35	145	
4890	42.25	V	54	-11.75	Avg	1.35	145	
7335	51.22	V	74	-22.78	Peak	1.25	155	
7335	42.63	V	54	-11.37	Avg	1.25	155	
9780								No Emission
9780								Detected
12250								No Emission
12250								Detected
14670								No Emission
14670								Detected
17115								No Emission
17115								Detected
10505								
19560								No Emission
19560								Detected
00005								
22005								No Emission
22005								Detected
04450								No Fort
24450								No Emission
24450								Detected

FCC 15.249

Telkonet, Inc. Date: 07/22/2015

EcoTouch Lab: B

Model: SS6560 Tested By: Kyle Fujimoto

Middle Channel - Battery Power

					Peak /	Ant.	Lable	
Freq.	Level	Pol			QP /	Height	Angle	
(MHz)	(dBuV)	(v/h)	Limit	Margin	Avg	(m)	(deg)	Comments
2445	91.06	Н	114	-22.94	Peak	1.25	225	
2445	85.84	Н	94	-8.16	Avg	1.25	225	
4890	51.74	Н	74	-22.26	Peak	1.25	135	
4890	43.99	Н	54	-10.01	Avg	1.25	135	
7335	54.03	Н	74	-19.97	Peak	1.35	125	
7335	44.91	Н	54	-9.09	Avg	1.35	125	
9780								No Emission
9780								Detected
12250								No Emission
12250								Detected
14670								No Emission
14670								Detected
17115								No Emission
17115								Detected
40500								
19560								No Emission
19560								Detected
00005								
22005								No Emission
22005								Detected
24450								No Francisco
24450 24450								No Emission
24450								Detected

COMPATIBLE ELECTRONICS

EcoTouch Model: SS6560

FCC 15.249

Telkonet, Inc. Date: 07/23/2015

EcoTouch Lab: B

Model: SS6560 Tested By: Kyle Fujimoto

High Channel - Battery Power

					Peak /	Ant.	Lable	
Freq.	Level	Pol			QP /	Height	Angle	
			Limit	Manain		_	_	Comments
(MHz)	(dBuV)	(v/h)		Margin	Avg	(m)	(deg)	Comments
2480	94.94	V	114	-19.06	Peak	1.25	135	
2480	91.45	V	94	-2.55	Avg	1.25	135	
4960	47.43	V	74	-26.57	Peak	1.25	180	
4960	36.81	V	54	-17.19	Avg	1.25	180	
7440	49.73	V	74	-24.27	Peak	1.35	175	
7440	39.11	V	54	-14.89	Avg	1.35	175	
9920								No Emission
9920								Detected
12400								No Emission
12400								Detected
14880								No Emission
14880								Detected
17360								No Emission
17360								Detected
19840								No Emission
19840								Detected
22320								No Emission
22320								Detected
24800								No Emission
24800								Detected
2 1000								Detected

FCC 15.249

Telkonet, Inc. Date: 07/23/2015

EcoTouch Lab: B

Model: SS6560 Tested By: Kyle Fujimoto

High Channel - Battery Power

				_	Peak /	Ant.	Lable	
Freq.	Level	Pol			QP /	Height	Angle	
			1 ::4	Manain		_	_	Comments
(MHz)	(dBuV)	(v/h)	Limit	Margin	Avg	(m)	(deg)	Comments
2480	95.88	Н	114	-18.12	Peak	1.25	180	
2480	92.31	Н	94	-1.69	Avg	1.25	180	
4960	52.74	Н	74	-21.26	Peak	1.35	135	
4960	48.95	Н	54	-5.05	Avg	1.35	135	
7440	54.44	Н	74	-19.56	Peak	1.25	145	
7440	46.08	Н	54	-7.92	Avg	1.25	145	
9920								No Emission
9920								Detected
12400								No Emission
12400								Detected
14880								No Emission
14880								Detected
								2010104
17360								No Emission
17360								Detected
11000								Detected
19840								No Emission
19840								Detected
100-10								Detected
22320								No Emission
22320								Detected
22320								Detected
24800								No Emission
24800								
24800								Detected

Report Number: **B50723D1 FCC Part 15 Subpart B** and **FCC Section 15.249** Test Report

EcoTouch Model: SS6560

Title: Pre-Scan - FCC Class B
File: Agilent - Radiated Pre-Scan 30-1000 MHz - FCC Class B - Battery Powered - 07-23-2015.set
Operator: Kyle Fujimoto
EUT Type: EcoTouch
EUT Condition: The EUT is Continuously Transmitting - Battery Powered

7/23/2015 1:18:01 PM Sequence: Preliminary Scan

Comments: Customer: Telkonet, Inc.

Model: SS6560

Pre-Scan - FCC Class B

(PEAK) EMI (V)

Report Number: **B50723D1 FCC Part 15 Subpart B** and **FCC Section 15.249** Test Report

EcoTouch Model: SS6560

Title: Radiated Final - 30-1000 MHz - FCC Class B File: Agilent - Radiated Final Scan 30-1000 MHz - FCC Class B - Battery Powered - 07-23-2015.set Operator: Kyle Fujimoto 7/23/2015 1:46:09 PM Sequence: Final Measurements

EUT Type: EcoTouch

EUT Condition: The EUT is Continuously Transmitting - Battery Powered

Comments: Customer: Telkonet, Inc.

Model: SS6560

Table19

Freq	Pol	(PEAK) EMI	(QP) EMI	(PEAK) Margin	(QP) Margin	Limit	Cable	Transducer	Ttbl Agl	Twr Ht
(MHz)		(dBµV/m)	(dBµV/m)	(dB)	(dB)	(dBµV/m)	(dB)	(dB)	(deg)	(cm)
117.40	V	37.42	31.84	-6.08	-11.66	43.50	0.78	15.38	118.00	400.14
119.70	V	36.73	31.21	-6.77	-12.29	43.50	0.79	15.64	355.50	237.46
121.20	V	37.63	32.43	-5.87	-11.07	43.50	0.79	15.72	0.00	142.89
128.50	V	40.03	35.20	-3.47	-8.30	43.50	0.81	15.30	337.75	239.13
130.20	V	43.73	38.94	0.23	-4.56	43.50	0.82	14.98	308.50	223.67
144.60	Н	40.21	35.91	-3.29	-7.59	43.50	0.88	15.11	16.75	159.49

FCC 15.249 and FCC Class B Telkonet, Inc. EcoTouch Model: SS6560

Date: 07/23/2015 Labs: B and D

Tested By: Kyle Fujimoto

Radiated Emissions 10 kHz to 30 MHz and 1 GHz to 25 GHz - Battery Power

						Peak /	Table	
Axis of	Freq.	Level	Pol			QP /	Angle	
EUT	(MHz)	(dBuV)	(v/h)	Limit	Margin	Avg	(deg)	Comments
								No Emissions Detected
								from 10 kHz to 30 MHz
								for the Non-Harmonic
								Emissions from the
								EUT for both the Vertical and
								Horizontal Polarizations.
								No Emissions Detected
								from 10 kHz to 30 MHz
								for the Digital Portion of the EUT
								for both the Vertical and
								Horizontal Polarizations.
								No Emissions Detected
								from 1 GHz to 25 GHz
								for the Non-Harmonic
								Emissions from the
								EUT for both the Vertical and
								Horizontal Polarizations.
								No Emissions Detected
								from 1 GHz to 25 GHz
								for the Digital Portion
								of the EUT
								for both the Vertical and
								Horizontal Polarizations.

Report Number: **B50723D1 FCC Part 15 Subpart B** and **FCC Section 15.249** Test Report

EcoTouch Model: SS6560

BAND EDGES

DATA SHEETS

AC MODE

COMPATIBLE ELECTRONICS

EcoTouch Model: SS6560

FCC 15.249

Telkonet, Inc.

Date: 07/22/2015
EcoTouch

Lab: B

Model: SS6560 Tested By: Kyle Fujimoto

Band Edges - Vertical Polarization - AC Power

Will as years									
Case Axis of EUT	Freq. (MHz)	Level (dBuV)	Pol (v/h)	Limit	Margin	Peak / QP / Avg	Ant. Height (m)	Table Angle (deg)	Comments
Y-Axis	2405	95.71	V	114	-18.29	Peak	1.25	155	Fundamental of
Y-Axis	2405	91.87	V	94	-2.13	Avg	1.25	155	Low Channel @ 3 Meters
Y-Axis	2400	48.33	V	74	-25.67	Peak	1.5	180	Band Edge of
Y-Axis	2400	42.81	V	54	-11.19	Avg	1.5	180	Low Channel @ 3 Meters
Y-Axis	2480	93.28	V	114	-20.72	Peak	1.25	315	Fundamental of
Y-Axis	2480	89.84	V	94	-4.16	Avg	1.25	315	High Channel @ 3 Meters
Y-Axis	2483.5	55.84	V	74	-18.16	Peak	1.25	315	Band Edge of
Y-Axis	2483.5	50.03	V	54	-3.97	Avg	1.25	315	High Channel @ 3 Meters

FCC 15.249

Telkonet, Inc. Date: 07/22/2015

EcoTouch Lab: B

Model: SS6560 Tested By: Kyle Fujimoto

Band Edges - Horizontal Polarization - AC Power

WARA									
Worst Case Axis of EUT	Freq. (MHz)	Level (dBuV)	Pol (v/h)	Limit	Margin	Peak / QP / Avg	Ant. Height (m)	Table Angle (deg)	Comments
Y-Axis	2405	91.11	Н	114	-22.89	Peak	1.25	45	Fundamental of
Y-Axis	2405	87.57	Н	94	-6.43	Avg	1.25	45	Low Channel @ 3 Meters
Y-Axis	2400	43.33	Η	54	-10.67	Peak	1.25	45	Band Edge of
Y-Axis	2400	38.63	Н	54	-15.37	Avg	1.25	45	Low Channel @ 3 Meters
Y-Axis	2480	94.91	Η	114	-19.09	Peak	1.25	180	Fundamental of
Y-Axis	2480	91.18	Η	94	-2.82	Avg	1.25	180	High Channel @ 3 Meters
Y-Axis	2483.5	56.93	Ξ	54	2.93	Peak	1.25	180	Band Edge of
Y-Axis	2483.5	51.8	Η	54	-2.2	Avg	1.25	180	High Channel @ 3 Meters

Band Edge - Low Channel - Vertical Polarization - AC Mode - Y-Axis - Worst Case

Band Edge - Low Channel - Horizontal Polarization - AC Mode - Y-Axis - Worst Case

Band Edge - High Channel - Vertical Polarization - AC Mode - Y-Axis - Worst Case

Band Edge - High Channel - Horizontal Polarization - AC Mode - Y-Axis - Worst Case

Report Number: **B50723D1 FCC Part 15 Subpart B** and **FCC Section 15.249** Test Report

EcoTouch Model: SS6560

BAND EDGES

DATA SHEETS

BATTERY MODE

FCC 15.249

Telkonet, Inc.

Date: 07/23/2015

EcoTouch Lab: B
Model: SS6560 Tested By: Kyle Fujimoto

Band Edges - Vertical Polarization - Battery Power

Case	107.4.04.1									
Y-Axis 2405 92.7 V 94 -1.3 Avg 1.25 180 Low Channel @ 3 Meters Y-Axis 2400 50.68 V 74 -23.32 Peak 1.25 180 Band Edge of Y-Axis 2400 45.9 V 54 -8.1 Avg 1.25 180 Low Channel @ 3 Meters Y-Axis 2480 94.94 V 114 -19.06 Peak 1.25 135 Fundamental of Y-Axis 2480 91.45 V 94 -2.55 Avg 1.25 135 High Channel @ 3 Meters Y-Axis 2483.5 58.36 V 74 -15.64 Peak 1.25 135 Band Edge of	Case Axis of				Limit	Margin	QP/	Height	Angle	Comments
Y-Axis 2400 50.68 V 74 -23.32 Peak 1.25 180 Band Edge of Y-Axis 2400 45.9 V 54 -8.1 Avg 1.25 180 Low Channel @ 3 Meters Y-Axis 2480 94.94 V 114 -19.06 Peak 1.25 135 Fundamental of Y-Axis 2480 91.45 V 94 -2.55 Avg 1.25 135 High Channel @ 3 Meters Y-Axis 2483.5 58.36 V 74 -15.64 Peak 1.25 135 Band Edge of	Y-Axis	2405	98.6	V	114	-15.4	Peak	1.25	180	Fundamental of
Y-Axis 2400 50.68 V 74 -23.32 Peak 1.25 180 Band Edge of Y-Axis 2400 45.9 V 54 -8.1 Avg 1.25 180 Low Channel @ 3 Meters Y-Axis 2480 94.94 V 114 -19.06 Peak 1.25 135 Fundamental of Y-Axis 2480 91.45 V 94 -2.55 Avg 1.25 135 High Channel @ 3 Meters Y-Axis 2483.5 58.36 V 74 -15.64 Peak 1.25 135 Band Edge of	Y-Axis	2405	92.7	V	94	-1.3	Avg	1.25	180	Low Channel @ 3 Meters
Y-Axis 2400 45.9 V 54 -8.1 Avg 1.25 180 Low Channel @ 3 Meters Y-Axis 2480 94.94 V 114 -19.06 Peak 1.25 135 Fundamental of Y-Axis 2480 91.45 V 94 -2.55 Avg 1.25 135 High Channel @ 3 Meters Y-Axis 2483.5 58.36 V 74 -15.64 Peak 1.25 135 Band Edge of										
Y-Axis 2400 45.9 V 54 -8.1 Avg 1.25 180 Low Channel @ 3 Meters Y-Axis 2480 94.94 V 114 -19.06 Peak 1.25 135 Fundamental of Y-Axis 2480 91.45 V 94 -2.55 Avg 1.25 135 High Channel @ 3 Meters Y-Axis 2483.5 58.36 V 74 -15.64 Peak 1.25 135 Band Edge of	Y-Axis	2400	50.68	V	74	-23.32	Peak	1.25	180	Band Edge of
Y-Axis 2480 94.94 V 114 -19.06 Peak 1.25 135 Fundamental of Y-Axis 2480 91.45 V 94 -2.55 Avg 1.25 135 High Channel @ 3 Meters Y-Axis 2483.5 58.36 V 74 -15.64 Peak 1.25 135 Band Edge of	Y-Axis	2400	45.9	V	54	-8.1	Avg	1.25	180	
Y-Axis 2480 91.45 V 94 -2.55 Avg 1.25 135 High Channel @ 3 Meters Y-Axis 2483.5 58.36 V 74 -15.64 Peak 1.25 135 Band Edge of										
Y-Axis 2483.5 58.36 V 74 -15.64 Peak 1.25 135 Band Edge of	Y-Axis	2480	94.94	V	114	-19.06	Peak	1.25	135	Fundamental of
Y-Axis 2483.5 58.36 V 74 -15.64 Peak 1.25 135 Band Edge of	Y-Axis	2480	91.45	V	94	-2.55	Avg	1.25	135	High Channel @ 3 Meters
v										
Y-Axis 2483.5 52.43 V 54 -1.57 Avg 1.25 135 High Channel @ 3 Meters	Y-Axis	2483.5	58.36	V	74	-15.64	Peak	1.25	135	Band Edge of
	Y-Axis	2483.5	52.43	V	54	-1.57	Avg	1.25	135	High Channel @ 3 Meters

COMPATIBLE
ELECTRONICS

EcoTouch Model: SS6560

FCC 15.249

Telkonet, Inc. Date: 07/23/2015

EcoTouch Lab: B

Model: SS6560 Tested By: Kyle Fujimoto

Band Edges - Horizontal Polarization - Battery Power

187 A PAR									
Case Axis of EUT	Freq. (MHz)	Level (dBuV)	Pol (v/h)	Limit	Margin	Peak / QP / Avg	Ant. Height (m)	Table Angle (deg)	Comments
Y-Axis	2405	91.91	Н	114	-22.09	Peak	1.25	135	Fundamental of
Y-Axis	2405	88.5	Н	94	-5.5	Avg	1.25	135	Low Channel @ 3 Meters
Y-Axis	2483.5	44.69	Н	74	-29.31	Peak	1.25	135	Band Edge of
Y-Axis	2483.5	39.81	Н	54	-14.19	Avg	1.25	135	Low Channel @ 3 Meters
Y-Axis	2480	95.88	Н	114	-18.12	Peak	1.25	180	Fundamental of
Y-Axis	2480	92.31	Н	94	-1.69	Avg	1.25	180	High Channel @ 3 Meters
Y-Axis	2483.5	58.72	Н	74	-15.28	Peak	1.25	180	Band Edge of
Y-Axis	2483.5	52.68	Н	54	-1.32	Avg	1.25	180	High Channel @ 3 Meters

Band Edge - Low Channel - Vertical Polarization - Battery Mode - Y-Axis - Worst Case

Band Edge - Low Channel - Horizontal Polarization - Battery Mode - Y-Axis - Worst Case

Band Edge - High Channel - Vertical Polarization - Battery Mode - Y-Axis - Worst Case

Band Edge - High Channel - Horizontal Polarization - Battery Mode - Y-Axis - Worst Case

Report Number: **B50723D1 FCC Part 15 Subpart B** and **FCC Section 15.249** Test Report

EcoTouch Model: SS6560

CONDUCTED EMISSIONS DATA SHEETS

EMISSION LEVEL [dBuV] PEAK Graph for Peak

07/23/15 16:01:08

FREQUENCY [MHz]

page 1/1

07/23/15 16:01:08

FCC Class B - Black Lead

Telkonet, Inc. EcoTouch Model: SS6560

Black Lead - 115 VAC BL LI-215 12090 - Due 6-9-2016 Test Engineer: Kyle Fujimoto

39 highest peaks above -50.00 dB of FCC - Class B - Average limit line

Peak criteria:	1.00 dB	3, Curve : Peak
----------------	---------	-----------------

Peak criteria: 1.00 dB, Curve: Peak							
Peak#	Freq(MHz)	Amp(dBuV)	Limit(dB)	Delta(dB)			
1	0.637	37.54	46.00	-8.46			
2	1.197	34.76	46.00	-11.24			
3	0.858	34.63	46.00	-11.37			
4	1.708	34.32	46.00	-11.68			
5	1.374	34.18	46.00	-11.82			
6	1.290	34.07	46.00	-11.93			
7	2.840	34.05	46.00	-11.95			
8	4.249	34.04	46.00	-11.96			
9	2.449	33.85	46.00	-12.15			
10	0.494	33.85	46.09	-12.25			
11	3.761	33.74	46.00	-12.26			
12	2.796	33.65	46.00	-12.35			
13	1.908	33.64	46.00	-12.36			
14	4.092	33.64	46.00	-12.36			
15	2.013	33.55	46.00	-12.45			
16	0.676	33.44	46.00	-12.56			
17	0.984	33.43	46.00	-12.57			
18	1.441	33.38	46.00	-12.62			
19	1.172	33.35	46.00	-12.65			
20	2.384	33.35	46.00	-12.65			
21	4.432	33.34	46.00	-12.66			
22	3.862	33.24	46.00	-12.76			
23	1.089	33.14	46.00	-12.86			
24	0.751	33.14	46.00	-12.86			
25	0.872	33.13	46.00	-12.87			
26	2.190	33.05	46.00	-12.95			
27	3.294	33.05	46.00	-12.95			
28	1.929	33.04	46.00	-12.96			
29	3.663	33.04	46.00	-12.96			
30	0.713	33.04	46.00	-12.96			
31	0.731	33.04	46.00	-12.96			
32	0.924	33.03	46.00	-12.97			
33	1.338	32.97	46.00	-13.03			
34	1.325	32.97	46.00	-13.03			
35	2.077	32.95	46.00	-13.05			
36	2.423	32.95	46.00	-13.05			
37	2.514	32.95	46.00	-13.05			
38	1.544	32.90	46.00	-13.10			
39	1.472	32.89	46.00	-13.11			

EMISSION LEVEL [dBuV] PEAK Graph for Peak

07/23/15 16:07:28

FREQUENCY [MHz]

page 1/1

07/23/15 16:07:28

FCC Class B - White Lead

Telkonet, Inc. **EcoTouch** Model: SS6560

White Lead - 115 VAC WL LI-215 12090 - Due 6-9-2016 Test Engineer: Kyle Fujimoto

39 highest peaks above	-50.00 dB of FCC - Class	s B - Average limit line
------------------------	--------------------------	--------------------------

	teria: 1.00 dB, Cı		Class B - Avi	erage iii iii ii ii
Peak#	Freq(MHz)	Amp(dBuV)	Limit(dB)	Delta(dB)
1	0.634	35.82	46.00	-10.18
2	1.663	35.01	46.00	-10.99
3	1.112	33.75	46.00	-12.25
4	1.136	33.65	46.00	-12.35
5	2.111	33.65	46.00	-12.35
6	3.075	33.64	46.00	-12.36
6 7	0.831	33.63	46.00	-12.37
8	1.504	33.59	46.00	-12.41
9	2.298	33.55	46.00	-12.45
10	2.514	33.55	46.00	-12.45
11	3.761	33.55	46.00	-12.45
12	2.811	33.55	46.00	-12.45
13	4.672	33.54	46.00	-12.46
14	0.547	33.52	46.00	-12.48
15	2.044	33.45	46.00	-12.55
16	0.914	33.43	46.00	-12.57
17	0.621	33.42	46.00	-12.58
18	2.651	33.35	46.00	-12.65
19	0.801	33.33	46.00	-12.67
20	0.679	33.33	46.00	-12.67
21	0.595	33.32	46.00	-12.68
22	1.646	33.31	46.00	-12.69
23	1.441	33.28	46.00	-12.72
24	4.182	33.24	46.00	-12.76
25	0.979	33.23	46.00	-12.77
26	0.672	33.23	46.00	-12.77
27	4.384	33.14	46.00	-12.86
28	4.928	33.14	46.00	-12.86
29	0.508	33.12	46.00	-12.88
30	1.382	33.08	46.00	-12.92
31	2.475	33.05	46.00	-12.95
32	3.365	33.04	46.00	-12.96
33 34	4.249 1.060	33.04	46.00	-12.96 -12.96
34 35		33.04	46.00	-12.96
36	1.011 0.944	33.03 33.03	46.00 46.00	
36	0.944	33.03	46.00	-12.97

1.077

0.701

1.810

37

38

39

32.94

32.93

32.93

-13.06

-13.07

-13.07

46.00

46.00

46.00