

Universidade Federal do Acre

Genética médica

Doenças genéticas

Profa. Leila P Peters

O que veremos hoje?

- > Termos genéticos;
- > Efeito das mutações sobre a função proteica;
- Estrutura da hemoglobina;
- ➤ Globinas genes
- Expressão dos genes das hemoglobinas
- > Anemia falciforme
- > Talassemia

Termos genéticos

> Heterozigoto composto

Exemplo: A hipercolesterolemia familiar (HF) é uma doença genética causada por um defeito primário no gene que codifica o receptor da LDL. Mutações diferentes no mesmo gene caracterizam um heterozigoto composto.

> Heterozigoto composto –herança autossômica codominante

Hipercolesterolemia familiar

Mutações no gene LDLR, que codifica o receptor LDL

Hipercolesterolemia familiar

Sintomas

Podem surgir lesões provocadas por depósito de colesterol nas pálpebras e em outras partes do corpo (xantelasmas), além de dor no peito, falta de ar e cansaço.

Bases moleculares das doenças genéticas

Doenças genéticas

Distúrbios nos quais o evento primário causador da doença é uma alteração, herdada ou adquirida, que afeta um gene (s), suas estruturas e/ou expressões

Modifica a quantidade e/ou o produto gênico

O que pode leva esses distúrbios para alterar o DNA?

Bases moleculares das doenças genéticas

> Efeito das mutações sobre a função proteica

Perda de função
Ganho de função
Expressão heterotrófica — expressão
de um gene em um momento errado
Expressão ectópica — expressão de
um gene em um local errado

> Perda de função

Perda de função

Ocasionada por substituições, deleções, inserções ou rearranjos da sequência nucleotídica

Exemplos
β-talassemias
α-talassemias
Monossomias – síndrome de Turner
Retinoblastoma – mutação em genes
supressores de tumores

➤ Ganho de função

Doença de Charcot-Tooph tipo 1ª

Duplicação do gene *PMP22* cromossomo 17

Codifica uma glicoproteína integrante da membrana – essa proteína é encontrada na mielina compactada

A mutação leva a incapacidade de formar e manter a mielina compacta

➤ Ganho de função — Doença de Charcot-Tooph tipo 1

É uma neuropatia periférica hereditária e apresenta uma incidência de 1:2.500 pessoas

Sintomas

Fraqueza muscular, principalmente dos músculos intrínsecos do pé, originando pé cavo e dedos em garra, além de déficit muscular da região fibular;

Câimbras, parestesias, disestesias (sensação de formigamento) e hipoestesia (diminuição da sensibilidade);

Setas: aumento do arco plantar.

> Mutações associadas com expressão gênica ectópica

Mutações que ocorrem em regiões regulatórias do gene

Câncer – proliferação celular

Hemoglobinopatias

> Doenças hereditárias das hemoglobinas

Variantes Estruturais

Aumento ou diminuição de uma das cadeias

de globina. Ex.

β-talassemia

Persistência Hereditária da **Talassemias** Hemoglobina Fetal

> Há a produção substancial da cadeia de γglobina na vida pós-natal - HbF

Altera sequência aminoácidos: Ex. Anemia **Falciforme**

Estrutura da hemoglobina

 \triangleright Possui 4 subunidades: duas cadeias de α -globina e duas cadeias de β -globina

Estrutura da hemoglobina

- ➤ 8 regiões helicoidais (A-H).
- ➤ 2 resíduos conservados: Phe42 (envolve o anel de porfirina) e His92 (o ferro do heme liga-se covalentemente).

Estrutura da hemoglobina

 \triangleright Possui 4 subunidades: duas cadeias de α -globina e duas cadeias de β -globina

Estado T: diminui a afinidade pelo O_2 (estado tenso);

Estado R: aumenta a afinidade pelo O_2 (estado relaxado).

Hemoglobinas humana

HEMOGLOBINA	COMPOSIÇÃO	REPRESENTAÇÃO
Α	α2β2	95-98% da Hb do adulto
A2	α2δ2	1,5-3,5% da Hb do adulto
F	α2γ2	HbFetal, 0,5-1% da Hb do adulto
Gower 1	ζ2ε2	Hemoglobina embrionária
Gower 2	α2ε2	Hemoglobina embrionária
Portland	γ2γ2	Hemoglobina embrionária

Sigma

Epsilon

Gama

Alfa

Beta

Globinas - genes

> Organização dos genes de globina humana

Expressão dos genes da hemoglobina

➤ As mudanças temporais da síntese de globinas são acompanhadas por mudanças no principal sítio da eritropoiese → processo de "liga e desliga"

Expressão dos genes da hemoglobina

Regulação da expressão gênica – cluster β-globina

LCR =região controladora do *locus*

LCR é definida por 5 sítios hipersensíveis a Dnase I (estado aberto da cromatina).

Expressão dos genes da hemoglobina

> Regulação da expressão gênica – cluster β-globina

Caso Clínico

Histórico

- T.V.F.F, nascida em Ji-Paraná-RO; 5 anos de idade, parda, sexo feminino.
- A doença foi detectada pelo teste do pezinho;

Principais sintomas

Febre, dor de cabeça e abdominal e no exame físico estava hipocorada, hidratada e com o abdômen semigloboso;

A doença está correlacionada com a **proteína** que possui como função transportar oxigênio no organismo.

Doença genética causada por uma mutação de ponto – Glu -> Val

Mudança do sexto aa da β-globina;

Vaso-oclusão levou ao não funcionamento do baço;

Não funcionamento correto do baço é responsável pela suscetibilidade aumentada a infecções bacterianas.

Figura 3.20
Eventos celulares e moleculares que levam a uma crise falciforme.

Sintomas

Atraso no crescimento e desenvolvimento;

Esplenomegalia;

Infecções bacterianas recorrentes;

Úlceras nas pernas;

Perda visual;

Síndrome torácica aguda.

Dactilite – tumefação dolorosa das mãos ou do pés pela oclusão dos capilares.

25

- > A homozigose leva à anemia falciforme autossômica recessiva Hb^s Hb^s
- \Leftrightarrow Hemoglobina falciforme $\alpha^2 \beta^{2S}$
- > Traço falciforme heterozigotos Hb^A Hb^S
- * 8% afro-americanos e > 8% africanos (centro-oeste)

- > A homozigose leva à anemia falciforme autossômica recessiva Hb^s Hb^s
- \bullet Hemoglobina falciforme $\alpha^2 \beta^{2S}$
- ➤ Traço falciforme heterozigotos Hb^A Hb^S
- ❖ 8% afro-americanos e > 8% africanos (centro-oeste)

> Vantagem do heterozigoto

Uma única cópia de um alelo não resulta na doença, mas traz tolerância ao parasita *Plasmodium*.

> Anemia falciforme – vantagem do hererozigoto

A hemoglobina falciforme induz a expressão da heme oxigenase-1 (HO-1)

HO-1 produz monóxido de carbono (CO), que confere proteção contra a malária

O CO não modula a carga parasitária do hospedeiro

Hemoglobina falciforme confere tolerância do hospedeiro à malária

Talassemias

- > São os distúrbios monogênicos mais comuns no mundo;
- \triangleright Mutações reduzem a síntese ou a estabilidade de α -globina e β -globina;

Gene da cadeia α -globina = α -talassemia Gene da cadeia β -globina = β -talassemia

α-Talassemia

➤ Mutação ocorre no cromossomo 16

- > Autossômica recessiva
- Geralmente causada pela deleção de genes de globina-α.

Formação de uma hemoglobina anormal, o que resulta na destruição das hemácias e consequente anemia.

Principal causa das α -talassemias: deleção completa de um ou mais genes de globina α (α^0)

α-Talassemia - genótipos

Condição Clínica	No de genes α funcionais	Genótipo gene da α -globina	Produção de cadeia α
Normal	4	αα/ αα	100%
Portador silencioso	3	αα/ α-	75%
Traço de α-talassemia	2	$\alpha\alpha$ / – – ou α –/ α –	50%
Doença da Hemoglobina H (β4)	1	α-/	25%
Hidropsia fetal ou Hemoglobina Bart (Hb Bart: γ4)	0	/	0%

α-Talassemia - genótipos

Figura 7.5 α -talassemia: hidropsia fetal, resultado da supressão dos quatro genes de α -globina (α^0 -talassemia homozigótica). A principal hemoglobina presente é a Hb Barts (γ_4). A doença é incompatível com a vida além do estágio fetal. (Cortesia do Prof. D. Todd.)

β-Talassemia

- Autossômica recessiva
- > Reduz a produção de hemoglobina

Principal causa das β-talassemias: mutações nos genes da globina β, levando à não produção (β⁰) ou baixa produção da globina mutada (β⁺)

β-Talassemia

Classificações

Talassemia maior – o indivíduo carrega os dois alelos da B-talassemia

Apresenta anemia severa e precisa de cuidados médicos por toda a vida - esplenomegalia e são dependentes de transfusão

Talassemia menor – portadores de um alelo da B-talassemia

Apresenta uma vida normal – esses indivíduos em hemácias hipocrômicas e microcíticas (anemia leve)

β-Talassemia

> Hemácias hipocrômicas e microcíticas

Microcítica – tamanho menor da hemácia Hipocrômica têm uma coloração mais clara devido à diminuição do ferro na molécula de hemoglobina;

➤ Quantidade reduzida — Hb Hammersmith

> Quantidade reduzida - Hb Hammersmith

Hb Hammersmith

Essa mutação (Phe → serina – aa pequeno) permite que o grupo heme saia do bolso;

Instabilidade e baixa afinidade pelo oxigênio

aa segura o grupo heme em um "bolso" dentro no monômero da cadeia B-globina

> Quantidade reduzida - Hb Hammersmith

- A) Pa
- B) Mãe
- C) Filha com 6 anos de idade