

Fundamentos de Imagens Digitais

Visão Computacional

Pontifícia Universidade Católica de Campinas

Prof. Dr. Denis M. L. Martins

Objetivos de Aprendizado

- Definir o que é processamento digital de imagens.
- Compreender os fundamentos matemáticos da imagem digital: função bidimensional, amostragem e quantização.
- Explicar a representação digital de imagens em escala cinza e coloridas.

O que é Processamento Digital de Imagens (PDI)?

- Transformação de sinais ópticos em dados digitais para análise, interpretação e manipulação.
- Envolve aquisição, pré-processamento, segmentação, reconhecimento e pós-processamento de imagens.
- Fundamenta aplicações em diagnóstico médico, controle industrial, multimídia e sistemas autônomos.

Processos Computacionais com Imagens¹

Computação Gráfica (CG)	Visão Computacional (VC)	Processamento Digital de Imagens (PDI)
Cria e altera imagens a partir de dados.	Análise de imagem para criação de modelos.	Transformação de imagem (tratamento)
modelo → imagem	imagem → modelo	imagem → imagem

¹ Retirado de https://covap-utfpr.github.io/pdi/intro.html#intro

olho hundeno

- > Primatas precisam enxergar cores porque comem frutos e necessitam distinguir frutas
- Os Peixes, anfíbios, repteis e aves também enxergam cores.

Elementos da percepção visual

- Fótons são convertidos em sinais elétricos por fotopigmentos.
- Conexão axonal via nervo óptico até o cérebro (córtex visual).
- Sistema tricomático: cones L (vermelho), M (verde) e S (azul).
- Cores são interpretadas como combinações de respostas desses três tipos.
- Resolução espacial limitada pelo tamanho do pixel ocular (~1 μm).
- Atenção seletiva: apenas uma fração das informações visuais é processada conscientemente.

Espectro Eletromagnético

Fonte: Imagem da Wikipedia

Podemos entender imagens como funções f(x,y)

Fundamentos da imagem digital

Imagem como **função**

$$f(x,y) = egin{bmatrix} f(0,0) & f(0,1) & \cdots & f(0,n-1) \ f(1,0) & f(1,1) & \cdots & f(1,n-1) \ dots & dots & dots \ f(m-1,0) & f(m-1,1) & \cdots & f(m-1,n-1) \end{bmatrix}$$

Fundamentos da imagem digital

- ullet Imagem: Função bidimensional f(x,y) que descreve a intensidade de cada ponto no plano.
- ullet Em tons de cinza (grayscale) de 8 bits, temos: $f:[a,b] imes[c,d] \longrightarrow [0,255].$
- ullet Matrix $M_{m imes n}\in \mathbb{Z}_0^{L-1}$, onde $L=2^k$ e k é o número de bits por pixel.

Imagem colorida

- Uma versão estendida de uma imagem em tons de cinza.
- Em Red, Green, and Blue (RGB): cada pixel da imagem tem 3 canais.
- f(x,y) como um vetor de 3 valores, ao invés de 1.
 - Em 8 bits, temos cada pixel variando entre 0 e 255 em cada canal.
 - \circ Um total de $256\times256\times256=16.777.216$ combinações.

Resolução espacial

- Densidade de pixels: pixels por unidade de distância, dots per inch (pontos por polegada ou dpi).
- Abaixo, podemos notar os efeitos da resolução na imagem.

Fonte da Imagem: https://covap-utfpr.github.io/pdi/formacaoImagem.html#formacaoImg.

Resolução espacial

Resolução espacial em imagens aéreas. Fonte: Landsat

Aquisição de Imagem

- Sensores CCD / CMOS: convertam fótons em carga elétrica ou corrente direta.
- Exposição (tempo de captura).
- Conversão analógica-digital (ADC).
- Formato bruto: dados RAW antes de qualquer correção ou compressão.

Exemplo de um sistema de aquisição de imagem. Fonte: Digital Image Processing Book @ResearchGate

Amostragem

- Conversão de espaço contínuo para espaço discreto.
 - Sequência infinita de números reais
 - Representação digital finita (pense em armazenamento na memória)
- Amostragem pelo sensor de captura: representação de parte do sinal.
- Quantização: capturar pontos do sinal (ainda mantendo sua estrutura)

Exemplo de um sistema de aquisição de imagem. Fonte: Digital Image Processing Book @ResearchGate

Quantização

Resultado da amostragem e quantização da imagem. Fonte: Digital Image Processing Book @ResearchGate

Exemplos de áreas que utilizam o PDI

Área	Aplicações típicas	
Medicina	Radiologia (CT, MRI), microscopia celular, análise histológica	
Segurança	Reconhecimento facial, vigilância por vídeo, inspeção de bagagens	
Indústria	Controle de qualidade em linhas de montagem, inspeção visual de componentes	
Satélite / Aeronáutica	Análise de imagens de satélite, mapeamento topográfico	
Entretenimento	Efeitos visuais, renderização 3D, realidade aumentada	
Agricultura	Monitoramento de culturas via UAVs, detecção de pragas	

Saúde e Medicina

Fonte: https://radiology.medicine.arizona.edu/research/image-processing

Formato de imagens digitais

Formato Bruto (RAW)

- Dados sem processamento; contém todas as informações capturadas pelo sensor.
- Requer pipeline de correção: remoção de cor, gamma, white-balance e compressão.

Formatos Sem Perda

- o TIFF: Imagens de alta qualidade (eletrônica médica, impressão). Compressão LZW/ZIP.
- PNG: Web, gráficos vetoriais; preserva transparência. Compressão Deflate.

Formato com Perda:

JPEG. Usado em fotografia digital, web. Compressão DCT-based.

Formato Profissional

- DICOM: padrão para imagens médicas (raios X, tomografia).
- JPEG-2000: compressão wavelet, usada em radiologia e satélite.

Considerações Práticas

- o Canais de Cor: RGB, CMYK, YCbCr, HSV escolha depende da aplicação final.
- Metadados: Exif, IPTC e XMP armazenam informações sobre câmera, localidade, direitos autorais.

Conclusão

- Processamento digital de imagens é essencial em diversas áreas: medicina, manutenção preventiva, astronomia, fotografia, cinema, etc.
- Imagem como função discreta: f(x, y) representa intensidades pixel-por-pixel.
- Perspectiva futura: os conceitos aqui apresentados fundamentam técnicas avançadas de filtragem, transformação e análise que serão exploradas nas próximas aulas.

Atividade recomendada: Leitura dos capítulos 1 e 2.