Projekt 2, Zadanie 36

Wiktor Murawski, 333255, grupa 3, środa 12:15

Metoda Adamsa-Bashfortha rzędu 4-go dla liniowych równań różniczkowych pierwszego i drugiego rzędu. Wartości początkowe $y_1,\ y_2,\ y_3$ obliczane metodą Rungego-Kutty rzędu 4-go (wzór Ralstona).

Równanie różniczkowe pierwszego rzędu

Dane jest równanie różniczkowe liniowe pierwszego rzędu oraz warunek początkowy:

$$a_1(x)y' + a_0(x)y = b(x), y(x_0) = y_0$$

Przekształcając równanie otrzymujemy

$$y' = f(x, y) = \frac{b(x) - a_0(x)y}{a_1(x)}$$

Równanie różniczkowe drugiego rzędu

Dane jest równanie różniczkowe liniowe drugiego rzędu oraz warunki początkowe:

$$a_2(x)y'' + a_1(x)y' + a_0(x)y = b(x),$$
 $y(x_0) = y_0$
 $y'(x_0) = y'_0$

Sprowadzamy równanie do układu równań różniczkowych liniowych stopnia pierwszego:

$$Y' = F(x, Y),$$

gdzie

$$Y = \begin{bmatrix} y \\ y' \end{bmatrix} \stackrel{\text{ozn}}{=} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} \qquad \qquad Y' = \begin{bmatrix} y_1' \\ y_2' \end{bmatrix}$$

Przekształacając równanie otrzymujemy

$$Y' = F(x, Y) = \begin{bmatrix} y_2 \\ \frac{1}{a_2(x)} (b(x) - a_0 y_1 - a_1 y_2) \end{bmatrix}$$

Jawne metody Rungego-Kutty 4-go rzędu

Mając wartość Y_n , jawne metody Rungego-Kutty rzędu czwartego pozwalają na wyznaczenie wartości Y_{n+1} następująco:

$$K_1 = hF(x_n, Y_n)$$

$$K_2 = hF(x_n + a_2h, Y_n + b_{21}K_1)$$

$$K_3 = hF(x_n + a_3h, Y_n + b_{31}K_1 + b_{32}K_2)$$

$$K_4 = hF(x_n + a_4h, Y_n + b_{41}K_1 + b_{42}K_2 + b_{43}K_3)$$

$$Y_{n+1} - Y_n = c_1K_1 + c_2K_2 + c_3K_3 + c_4K_4$$

Współczynniki a_i, b_{ij}, c_i przedstawione w tablicy Butchera:

Ogólne wzory na współczynniki

Współczynniki a_i, b_{ij}, c_i tworzą rodzinę dwuparametrową zależną od parametrów α i β gdzie $\alpha \neq 0, \beta \neq 0, \alpha \neq 1, \beta \neq 1, \alpha \neq \beta$.

Dla parametrów $\alpha=\frac{2}{5}$ i $\beta=\frac{7}{8}-\frac{3\sqrt{5}}{16}$ otrzymujemy ograniczenie górne na E, gdzie:

$$y(x_{n+1}) = y_{n+1} + Eh^5$$

$$|E| < 5.46 \cdot 10^{-2} ML^4$$

gdzie, dla pewnego obszaru B(x,y) zawierającego (x_n,y_n) , zachodzi

$$|f(x,y)| \leq M \qquad \qquad \frac{\partial^{i+j} f}{\partial x^i \partial y^j} < \frac{L^{i+j}}{M^{j-1}}$$

Tabela Butchera (wartości dokładne)

0	0	0	0	0
$\frac{2}{5}$	$\frac{2}{5}$	0	0	0
$\frac{14 - 3\sqrt{5}}{16}$	$\frac{-2889 + 1428\sqrt{5}}{1024}$	$\frac{3785 - 1620\sqrt{5}}{1024}$	0	0
1	$\frac{-3365 + 2094\sqrt{5}}{6040}$	$\frac{-975 - 3046\sqrt{5}}{2552}$	$\frac{467040 + 203968\sqrt{5}}{240845}$	0
	$\frac{263 + 24\sqrt{5}}{1812}$	$\frac{125 - 1000\sqrt{5}}{3828}$	$\frac{3426304 + 1661952\sqrt{5}}{5924787}$	$\frac{30 - 4\sqrt{5}}{123}$

Tabela Butchera (wartości przybliżone)

0	0	0	0	0
0.4	0.4	0	0	0
0.45573725	0.29697761	0.15875964	0	0
1	0.21810039	-3.05096515	3.83286476	0
	0.17476028	-0.55148066	1.20553560	0.17118478

Metoda Adamsa-Bashfortha

Metoda Adamsa-Bashfortha rzędu czwartego jest metodą wielokrokową opartą na 4 węzłach: $x_n, x_{n-1}, x_{n-2}, x_{n-3}$. Y_{n+1} obliczane jest następująco:

$$Y_{n+1} = Y_n + h \sum_{i=0}^{3} \alpha_i F(Y_{n-i})$$

Z faktu, że Y' = F(x, Y), otrzymujemy:

$$\int_{x_n}^{x_{n+1}} Y'(x) dx = \int_{x_n}^{x_{n+1}} F(Y(x)) dx$$

$$Y(x_{n+1}) = Y(x_n) + \int_{x_n}^{x_{n+1}} F(Y(x)) dx$$

Chcemy dobrać współczynniki α_i tak, aby metoda dawała najlepsze przybliżenie całki w powyższym wyrażeniu.

Współczynniki metody Adamsa-Bashfortha

Chcemy, aby kwadratura

$$h\sum_{i=0}^{3} \alpha_i F(Y_{n-i}) \approx \int_{x_n}^{x_{n+1}} F(Y(x)) dx$$

była dokładna dla wielomianów stopnia ≤ 3 .

Wyznaczone współczynniki mają następujące wartości:

$$\alpha_0 = \frac{55}{24}$$
 $\alpha_1 = -\frac{59}{24}$ $\alpha_2 = \frac{37}{24}$ $\alpha_3 = -\frac{9}{24}$

Ostatecznie otrzymujemy:

$$Y_{n+1} = Y_n + h\left(\frac{55}{24}F(Y_n) - \frac{59}{24}F(Y_{n-1}) + \frac{37}{24}F(Y_{n-2}) - \frac{9}{24}F(Y_{n-3})\right)$$

$$y'=4x^3, \qquad y(0)=0, \qquad x \in [0,10]$$
 Rozwiązanie: $y=x^4$

i	$h = 2^{-i}$	Błąd globalny
0	1.0	1.421085×10^{-14}
1	0.5	8.881784×10^{-16}
2	0.25	5.551115×10^{-17}
3	0.125	3.469447×10^{-18}
4	0.0625	2.168404×10^{-19}
5	0.03125	1.355253×10^{-20}
6	0.015625	8.470329×10^{-22}
7	0.0078125	5.293956×10^{-23}
8	0.00390625	3.308722×10^{-24}
9	0.001953125	2.067952×10^{-25}
10	0.0009765625	1.292470×10^{-26}

$$y^{\prime\prime}=12x^2, \qquad y(0)=0, \quad y^{\prime}(0)=0, \qquad x\in[0,10]$$
 Rozwiązanie: $y=x^4$

i	$h = 2^{-i}$	Błąd globalny
0	1.0	1.421085×10^{-13}
1	0.5	8.881784×10^{-15}
2	0.25	5.551115×10^{-16}
3	0.125	3.469447×10^{-17}
4	0.0625	2.168404×10^{-18}
5	0.03125	1.355253×10^{-19}
6	0.015625	8.470329×10^{-21}
7	0.0078125	5.293956×10^{-22}
8	0.00390625	3.308722×10^{-23}
9	0.001953125	2.067952×10^{-24}
10	0.0009765625	1.292470×10^{-25}

$$y'=5x^4, \qquad y(0)=0, \qquad x\in [0,10]$$
 Rozwiązanie: $y=x^5$

$h = 2^{-i}$	Błąd globalny
1.0	2.926973×10^2
0.5	2.221971×10^{1}
0.25	1.511423
0.125	9.829805×10^{-2}
0.0625	6.263444×10^{-3}
0.03125	3.952096×10^{-4}
0.015625	2.481748×10^{-5}
0.0078125	1.555003×10^{-6}
0.00390625	9.727955×10^{-8}
0.001953125	6.097252×10^{-9}
0.0009765625	3.565219×10^{-10}
	1.0 0.5 0.25 0.125 0.0625 0.03125 0.015625 0.0078125 0.00390625 0.001953125

$$y^{\prime\prime}=20x^3, \qquad y(0)=0, \quad y^\prime(0)=0, \qquad x\in[0,10]$$
 Rozwiązanie: $y=x^5$

i	$h = 2^{-i}$	Błąd globalny
0	1.0	2.933776×10^{2}
1	0.5	2.224097×10^{1}
2	0.25	1.512087
3	0.125	9.831881×10^{-2}
4	0.0625	6.264093×10^{-3}
5	0.03125	3.952298×10^{-4}
6	0.015625	2.481812×10^{-5}
7	0.0078125	1.555018×10^{-6}
8	0.00390625	9.727955×10^{-8}
9	0.001953125	6.097252×10^{-9}
10	0.0009765625	3.565219×10^{-10}

Testy numeryczne

Zaimplementowana metoda Adamsa-Bashfortha jest rzędu czwartego, zatem błąd globalny

$$E = \max_{0 \le k \le N} |y(x_k) - y_k|$$

powinien zmieniać się proporcjonalnie do h^4 . Przykładowo, dwukrotne zmniejszenie h powinno spowodować szesnastokrotne zmniejszenie wartości błędu globalnego.

Testy numeryczne

$$y'' - 2y' + 2y = 0$$
, $y(0) = 1$, $y'(0) = 0$, $x \in [0, 10]$

Rozwiązanie: $y = e^x(\cos(x) - \sin(x))$

· .	i		
i	$h = 2^{-i}$	Błąd globalny	Zmiana błędu
0	1.0	8.090118×10^4	_
1	0.5	8.386933×10^3	9.646
2	0.25	3.662088×10^{2}	22.902
3	0.125	4.481169×10^{1}	8.172
4	0.0625	3.849399	11.641
5	0.03125	2.780551×10^{-1}	13.844
6	0.015625	1.862380×10^{-2}	14.930
7	0.0078125	1.204076×10^{-3}	15.467
8	0.00390625	7.652592×10^{-5}	15.734
9	0.001953125	4.822753×10^{-6}	15.868
10	0.0009765625	3.027453×10^{-7}	15.930
11	0.00048828125	1.870649×10^{-8}	16.184
12	0.000244140625	1.072294×10^{-9}	17.445
13	0.0001220703125	5.074980×10^{-10}	2.113

Testy numeryczne - porównanie do ode45

$$y'' + xy' + x^2y = x^3$$
, $y(0) = 0$, $y'(0) = 0$, $x \in [0,3]$

Za dokładne wartości y przyjęto rozwiązanie uzyskane przez użycie funkcji ode45 środowiska MATLAB z ustawieniami RelTol=1e-12 oraz AbsTol=1e-12.

i	$h = 2^{-i}$	Błąd globalny	Zmiana błędu
0	1.0	1.607416×10^{-1}	_
1	0.5	6.927388×10^{-1}	0.232
2	0.25	1.772034×10^{-2}	39.093
3	0.125	1.231859×10^{-3}	14.385
4	0.0625	7.846671×10^{-5}	15.699
5	0.03125	4.937812×10^{-6}	15.891
6	0.015625	3.085769×10^{-7}	16.002
7	0.0078125	1.927596×10^{-8}	16.008
8	0.00390625	1.204157×10^{-9}	16.008
9	0.001953125	7.514256×10^{-11}	16.025
10	0.0009765625	4.589662×10^{-12}	16.372
11	0.00048828125	4.662937×10^{-13}	9.843
12	0.000244140625	6.226131×10^{-13}	0.749
13	0.0001220703125	6.359357×10^{-13}	0.979

Wykres zależności błędu globalnego od wartości kroku

$$y'' = 20x^3$$
, $y(0) = 0$, $y'(0) = 0$, $x \in [0, 100]$

Źródła

- [1] Paweł Keller. *Numerical Methods 2*. Leon. 2022. URL: https://leon.pw.edu.pl/pluginfile.php/108139/mod_resource/content/1/NM2_Script.pdf.
- [2] Max Lotkin. "On the accuracy of Runge-Kutta's method". W: Mathematics of Computation 5 (1951), s. 128-133. URL: https://www.ams.org/journals/mcom/1951-05-035/S0025-5718-1951-0043566-3/S0025-5718-1951-0043566-3.pdf.
- [3] Anthony Ralston. "Runge-Kutta methods with minimum error bounds". W: Mathematics of Computation 16 (1962), s. 431–437. URL: https://www.ams.org/journals/mcom/1962-16-080/S0025-5718-1962-0150954-0/S0025-5718-1962-0150954-0.pdf.
- [4] Wikipedia. List of Runge-Kutta methods. URL: https://en.wikipedia.org/wiki/List_of_Runge-Kutta_methods.