AMENDMENTS TO THE CLAIMS:

This listing of claims will replace all prior versions, and listings, of claims in the application:

LISTING OF CLAIMS:

Claims 1 to 14. (Canceled).

15 (Previously Presented) A device for a motor vehicle, comprising: at least one laser sensor configured to determine at least one of a position and a distance of an object in a scanning area, the laser sensor including:

a device configured to sweep at least one laser beam emitted by the laser sensor in the scanning area; and

a power supply configured to vary a power of the laser beam as a function of a beam direction.

- 16. (Previously Presented) The device according to claim 15, wherein the power supply is configured to supply variable power to the laser sensor, the power supply being further configured to supply power to the laser sensor as a function of the laser beam direction.
- 17. (Currently Amended) A [[The]] device according to claim 16, for a motor vehicle, comprising:

at least one laser sensor configured to determine at least one of a position and a distance of an object in a scanning area, the laser sensor including:

a device configured to sweep at least one laser beam emitted by the laser sensor in the scanning area; and

a power supply configured to vary a power of the laser beam as a function of a beam direction;

wherein the scanning area is subdivided into segments, each segment having a different detection relevance, and wherein the power supply is configured to supply more power to a first segment having a higher detection relevance and to supply less power to a second segment having a lesser detection relevance.

NY01 675179 2

- 18. (Previously Presented) The device according to claim 15, wherein a characteristic curve of the laser beam power is continuously variable.
- 19. (Currently Amended) A [[The]] device according to claim 15, for a motor vehicle, comprising:

at least one laser sensor configured to determine at least one of a position and a distance of an object in a scanning area, the laser sensor including:

a device configured to sweep at least one laser beam emitted by the laser sensor in the scanning area; and

a power supply configured to vary a power of the laser beam as a function of a beam direction;

wherein at least one of a maximum power of the laser sensor and a power characteristic across the scanning area is a function of a motor vehicle speed.

20. (Currently Amended) A [[The]] device according to claim 15, for a motor vehicle, comprising:

at least one laser sensor configured to determine at least one of a position and a distance of an object in a scanning area, the laser sensor including:

a device configured to sweep at least one laser beam emitted by the laser sensor in the scanning area; and

a power supply configured to vary a power of the laser beam as a function of a beam direction;

wherein the device configured to sweep the at least one laser beam is further configured to sweep the at least one laser beam to traverse the scanning area at different scanning speeds.

21. (Currently Amended) A [[The]] device according to claim 15, for a motor vehicle, comprising:

at least one laser sensor configured to determine at least one of a position and a distance of an object in a scanning area, the laser sensor including:

a device configured to sweep at least one laser beam emitted by the laser sensor in the scanning area; and

a power supply configured to vary a power of the laser beam as a function of a beam direction;

wherein at least one of a maximum power of the at least one laser sensor and a power characteristic across the scanning area is a function of at least one of a distance of an object detected by the laser sensor, a direction of an object detected by the laser sensor and a type of an object detected by the laser sensor.

22. (Previously Presented) A method for operating a laser sensor of a motor vehicle to ascertain at least one of a position and a distance of an object in a scanning area, comprising the steps of:

sweeping at least one laser beam in the scanning area; and varying a power of the at least one laser beam as a function of a beam direction.

23. (Currently Amended) A [[The]] method according to claim 22, further comprising the steps of: for operating a laser sensor of a motor vehicle to ascertain at least one of a position and a distance of an object in a scanning area, comprising the steps of:

sweeping at least one laser beam in the scanning area;

varying a power of the at least one laser beam as a function of a beam direction;

subdividing the scanning area into segments, each segment having a different detection relevance; and

emitting the at least one laser beam at a higher beam power in a first segment having a higher detection relevance and at a lower beam power in a second segment having a lesser detection relevance.

- 24. (Previously Presented) The method according to claim 23, further comprising the step of emitting the at least one laser beam at a maximum beam power in a direction of travel of the motor vehicle.
- 25. (Previously Presented) The method according to claim 22, further comprising the step of continuously varying a beam power characteristic of the at least one laser beam.

NY01 675179 4

26. (Currently Amended) A [[The]] method according to claim 22, further comprising the step of for operating a laser sensor of a motor vehicle to ascertain at least one of a position and a distance of an object in a scanning area, comprising the steps of:

sweeping at least one laser beam in the scanning area;

varying a power of the at least one laser beam as a function of a beam direction; and

selecting at least one of a maximum beam power of the at least one laser beam and a power characteristic of the at least one laser beam across the scanning area as a function of a vehicle speed.

27. (Currently Amended) A [[The]] method according to claim 22, further comprising the step of for operating a laser sensor of a motor vehicle to ascertain at least one of a position and a distance of an object in a scanning area, comprising the steps of:

sweeping at least one laser beam in the scanning area;

varying a power of the at least one laser beam as a function of a beam direction; and

traversing the scanning area of the laser sensor at different scanning speeds.

28. (Currently Amended) A [[The]] method according to claim 22, further comprising the step of for operating a laser sensor of a motor vehicle to ascertain at least one of a position and a distance of an object in a scanning area, comprising the steps of:

sweeping at least one laser beam in the scanning area;

varying a power of the at least one laser beam as a function of a beam direction; and

selecting at least one of a maximum beam power of the at least one laser sensor and a power characteristic across the scanning area as a function of at least one of a distance of an object detected by the laser sensor, a direction of an object detected by the laser sensor and a type of an object detected by the laser sensor.

NY01 675179 5