Week 4: Chapter 4 – Simplex method for standard problems

Barbie and Ken (again!)

```
B = the number of Barbies to make per week K = the number of Kens to make per week Maximize Z = 6B + 6.5K (profit $) Subject to: 12B + 14K \le 100,000 (plastic oz) 5B \le 30,000 (nylon oz) 4B + 4K \le 35,000 (cardboard oz) B \ge 0 and K \ge 0 (non-negativity)
```

The idea geometrically

- (1) Start at a corner (namely the origin).
- (2) Pick the direction (edge) giving the largest increase in the objective
- (3) Find the nearest intersection (corner) in that direction
- (4) Check to see if we've found the best objective value

Translating to algebra, i.e., make it programmable

$$Z - 6B - 6.5K$$
 = 0
 $12B + 14K + s1$ = 100,000
 $5B + s2$ = 30,000
 $4B + 4K + s3 = 35,000$

Non-Basic Variables	Basic Variables (AKA Basis)	Feasible?	Objective? (Z=?)
B = 0, K = 0	s1 = 100000, s2 = 30000, s3 = 35000	Yes	0
B = 0, s1 = 0	K = 7142.86, s2 = 30000, s3 = 6428.57	Yes	46428.57
B = 0, s2 = 0	not possible (see constraint 2)	No	XXX
B = 0, s3 = 0	K = 8750, s1 = -22500, s2 = 30000	No (s1 < 0)	XXX
K = 0, s1 = 0	B = 8333.33, s2 = -11666.67, s3 = 1666.67	No (s2 < 0)	XXX
K = 0, s2 = 0	B = 6000, s1= 28000, s3 = 11000	Yes	36000
K = 0, s3 = 0	B = 8750, s1 = -5000, s2 = -13750	No (s2 < 0)	XXX
s1 = 0, s2 = 0	B = 6000, K= 2000, s3 = 3000	Yes	49000
s1 = 0, s3 = 0	B = 11250, K= -2500, s2 = -26250	No (s2< 0)	XXX
s2 = 0, s3 = 0	B = 6000, K = 2750, s1 = -10500	No (s1 < 0)	XXX

Mirroring the Geometry

Start at the origin adding slack variables (Initialize):

	В	K	s1	s2	s3	rhs
Z	-6	-6.5	0	0	0	0
s1	12	14	1	0	0	100000
s2	5	0	0	1	0	30000
s3	4	4	0	0	1	35000

(2) Optimality? If not, pick the direction (edge) giving the largest increase in the objective (Entering Variable)

	В	K	s1	s2	s3	rhs
Z	-6	-6.5	0	0	0	0

(3) Find the nearest intersection (corner) in that direction (Leaving Variable)

s1	12	14	1	0	0	100000
s 2	5	0	0	1	0	30000
s3	4	4	0	0	1	35000

(4) Check to see if we've found the best objective value (Pivot and check)

	В	K	s1	s2	s3	rhs
Z	-6	-6.5	0	0	0	0
s1	12	14	1	0	0	100000
s2	5	0	0	1	0	30000
s3	4	4	0	0	1	35000

	В	K	s1	s2	s 3	rhs
Z						
K						
s2						
s3						

	В	K	s1	s2	s3	rhs
Z						
K						
s 2						
s3						

Summary of Simplex Method

- (1) Build the initial tableau, adding slack variables for each constraint and rearranging the objective.
- (2) Choose the entering variable by finding the largest negative coefficient in the objective. Circle that column.
- (3) Choose the leaving variable by finding the smallest non-negative $\frac{rhs}{entering\ variable\ coefficient}$. Circle that row.
- (4) Pivot the tableau by changing the leaving variable to the entering variable in the first column and then unitizing the entering variable column.
- (5) If there is still a negative in the objective row, go to step 2, if not the optimal corner has been found.

Another Example: Maximize $3x + 2y$ such that $x + y \le 10$ and $2x + y \le 1$	l 6
---	------------

What weirdness might happen:

1) Tie for entering variable

	Х	Υ	S1	S2	S3	rhs
Z	-2	-2	0	0	0	0
S1	4	3	1	0	0	62
S2	1	3	0	1	0	50
S3	0	1	0	0	1	20

2) Tie for leaving variable

	х	Υ	S1	S2	S3	rhs
Z	0	-3	2	0	0	4
Х	1	2	-1	0	0	20
S2	0	3	2	1	0	30
S3	0	6	-2	0	1	120

3) No leaving variable

	X	Υ	S1	S2	S3	rhs
Z	0	-3	2	0	2	4
X	1	-2	-1	0	-2	11
S2	0	-1	2	1	1	12

4) Multiple optimal solutions

	X	Υ	S1	S2	S3	rhs	
Z	0	3	0	0	2	4	
X	1	2	-1	0	-2	11	
S2	0	1	2	1	1	12	

5) Other forms of the problem (minimize objective; = or ≥ constraints... Next time!