ME 430A - Técnicas de Amostragem Segundo semestre de 2011

Prova III Data: 28/11/2011

Nome:	RA:
0	10111

Leia atentamente as instruções abaixo:

- Coloque seu nome completo e RA em todas as folhas que você recebeu, inclusive nesta.
- Utilize somente um dos lados de cada folha.
- Leia atentamente cada uma das questões.
- Enuncie, claramente, todos os resultados que você utilizar.
- Justifique, adequadamente, seus desenvolvimentos, sem, no entanto, escrever excessivamente.
- O(a) aluno(a) só poderá sair da sala após as 16h30, mesmo que já tenha finalizado a prova. Após a saída do(a) primeiro(a) aluno(a) não será permitido a entrada de nenhum(a) outro(a) aluno(a).
- Não é permitdo empréstimo de material.
- Não serão dirimidas dúvidas de quaisquer natureza.
- Resolva a prova, preferencialmente, à caneta, e procure ser organizado(a). Se fizer à lápis, destaque, à caneta, sua resposta.
- O(a) aluno(a) deverá portar sua carteira de estudante e apresentá-la, quando for solicitada sua assinatura.
- Contestações a respeito da nota, só serão consideradas se estiverem por escrito.
- A nota do aluno(a) será $\frac{NP}{NT} \times 10$, em que NP é o número de pontos obtidos na prova e NT é o numero total de pontos da prova.
- Os resultados numéricos finais devem ser apresentados com duas casas decimais, apenas.
- A prova terá duração de 120 minutos, das 16h às 18h, improrrogáveis.

Faça uma excelente Prova!!

Questões

1. A Tabela abaixo apresenta informações sobre a=3 conglomerados sorteados segundo um procedimento AASc (com reposição) de uma população dividida em A = 90 conglomerados. Considere que todos os conglomerados têm o mesmo tamanho B=5. O interesse é estimar μ (média populacional). Responda os itens:

α	$\widehat{\mu}_{\alpha}$	$\widehat{\sigma}_{\alpha}^{2}$	$(\widehat{\mu}_{\alpha} - \widehat{\mu}_{C})^{2}$
1	15,00	120,00	225,00
2	16,00	110,00	256,00
3	12,00	130,00	144,00

- a) Obtenha uma estimativa para o coeficiente de correlação intraclasse. Interprete o resultado em termos da qualidade da divisão da população em conglomerados para a estimação do parâmetro de interesse (50 pontos).
- b) Utilizando o estimador $\widehat{\mu}_C$, obtenha uma estimativa pontual, o erro-padrão associado à esta e um IC (intervalo de confiança) assintótico com coeficiente de confiança de aproximadamente $\gamma = 0,95$ para μ (média populacional) (100 pontos).
- c) Considerando que a amostra acima foi obtida segundo um planejamento AASc (com reposição), ou seja, sem a estrutura de conglomerados, obtenha uma estimativa pontual, o erro-padrão associado à esta e um IC assintótico com coeficiente de confiança de aproximadamente $\gamma=0,95$ para μ (média populacional), de modo apropriado. Justifique, adequadamente, seu desenvolvimento (100 pontos).
- d) Compare os resultados obtidos nos itens b) e c), através dos erros-padrão associados às duas estimativas e dos IC's assintóticos obtidos. Qual das estimativas seria preferível para se estimar μ ? Sua conclusão está de acordo com o resultado obtido no item a)? Justifique, adequadamente, sua resposta (50 pontos).
- e) Prove que o tamanho da amostra que satisfaz $P(|\widehat{\mu}_C \mu| < \delta) \approx \gamma$, é dado por $a = \frac{\sigma_{ec}^2 z^2}{\delta^2}$, em que $P(Z > z) = \frac{1 \gamma}{2}$. Calcule a para $\gamma = 0,95$, $\delta = 0,5$ e a estimativa de σ_{ec}^2 obtida no item b) (50 pontos).
- 2. Considere uma população dividida em A conglomerados da qual se seleciona, segundo AASs (sem reposição), uma amostra de a conglomerados. Considere que todos os conglomerados têm o mesmo tamanho, ou seja $B_{\alpha} = B, \forall \alpha$ e o estimador $\widehat{\mu}_{C}$ para estimar μ . Responda os itens:
 - a) Prove que $\mathcal{E}_{A_2}(\widehat{\mu}_C) = \mu$ e $\mathcal{V}_{A_2}(\widehat{\mu}_C) = \left(1 \frac{a}{A}\right) \frac{s_{ec}^2}{a}, s_{ec}^2 = \frac{A}{A 1} \sigma_{ec}^2$, utilizando os resultados da AASs tradicional, ou seja sem a população estar dividida em conglomerados (100 pontos).

2

- b) Calcule o EPA do estimador $\hat{\mu}_C$ considerando a amostragem por conglomerados (AC) sem reposição em relação à amostragem por conglomerados com resposição. Qual dos procedimentos amostrais leva ao melhor estimador (AC com ou sem reposição)? Justifique, adequadamente, sua resposta (50 pontos).
- 3. A Tabela abaixo apresenta informações sobre a=3 conglomerados sorteados segundo um procedimento AASc (com reposição) de uma população dividida em A=30 conglomerados. O interesse é estimar μ (média populacional). Considere que $\overline{B}=15$ (tamanho médio dos conglomerados na população). Responda os itens:

α	b_{lpha}	$\widehat{\mu}_{lpha}$	$\widehat{\sigma}_{lpha}^{2}$	$\widehat{ au}_{lpha}$	$b_{\alpha}\widehat{\sigma}_{\alpha}^2$	$\left(\frac{b_{\alpha}}{\overline{B}}\widehat{\mu}_{\alpha}-\widehat{\mu}_{C_{1}}\right)^{2}$	$\left(\frac{b_{\alpha}}{\overline{b}}\right)^2 \left(\widehat{\mu}_{\alpha} - \widehat{\mu}_{C_2}\right)^2$	$\widehat{\left(\widehat{\mu}_{\alpha}-\widehat{\mu}_{C_3}\right)^2}$
1	10	25,00	350,00	250,00	3500,00	0,20	0,44	0,00
2	5	23,00	330,00	115,00	1650,00	89,20	1,78	4,00
3	15	27,00	370,00	405,00	5550,00	97,79	4,00	4,00

- a) Obtenha as estimativas pontuais para μ , usando cada um dos estimadores $\widehat{\mu}_{C_i}$, i = 1, 2, 3. Obtenha também os respectivos erros-padrão associados (100 pontos).
- b) Usando cada um dos estimadores considerados no item a), obtenha IC's assintóticos com coeficiente de confiança $\gamma=0,99$ para μ . Usando os erros-padrão e os IC's, compare os estimadores do item a) e diga qual deles você escolheria para estimar μ . Sua conclusão era esperada? Justifique, adequadamente, sua resposta (100 pontos).
- c) Considerando que a amostra acima foi obtida segundo um planejamento AASc (com reposição), ou seja, sem a estrutura de conglomerados, obtenha uma estimativa pontual, o erro-padrão associado à esta e um IC assintótico com coeficiente de confiança de aproximadamente $\gamma=0,99$ para μ (média populacional), de modo apropriado. Justifique, adequadamente, seu desenvolvimento (100 pontos).
- d) Compare os resultados obtidos no item c) com o resultado do estimador eleito no item b). Qual dos dois você escolheria para estimar μ ? Sua conclusão era esperada? Justifique, adequadamente, suas respostas (100 pontos).

Formulário

Amostragem Aleatória Simples

1. Parâmetros populacionais de interesse:

$$\mu = \frac{1}{N} \sum_{i=1}^{N} y_i \; ; \; \sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (y_i - \mu)^2 \; ; \; s^2 = \frac{1}{N-1} \sum_{i=1}^{N} (y_i - \mu)^2.$$

2. Estimadores:

$$\widehat{\mu} = \frac{1}{n} \sum_{i \in s} Y_i \; ; \; \widehat{\sigma}^2 = \widehat{s}^2 = \frac{1}{n-1} \sum_{i \in s} (Y_i - \widehat{\mu})^2.$$

3. Variâncias dos estimadores

(a) AASc :
$$V(\widehat{\mu}) = \frac{\sigma^2}{n}$$
.

(b) AASs:
$$V(\widehat{\mu}) = \left(1 - \frac{n}{N}\right) \frac{s^2}{n}$$
.

4. Estimadores não viciados para as variâncias dos estimadores

(a) AASc :
$$\widehat{\mathcal{V}}(\widehat{\mu}) = \frac{\widehat{\sigma}^2}{n}$$
.

(b) AASs:
$$\widehat{\mathcal{V}}(\widehat{\mu}) = \left(1 - \frac{n}{N}\right) \frac{\widehat{s}^2}{n}$$
.

Amostragem por conglomerados (sortendo-se os conglomerados segundo um planejamento AASc)

Conglomerados de mesmo tamanho

1. Parâmetros populacionais de interesse:

$$\mu = \frac{1}{N} \sum_{\alpha=1}^{A} \sum_{i=1}^{B_{\alpha}} y_{\alpha i} = \frac{1}{A} \sum_{\alpha=1}^{A} \frac{B_{\alpha}}{\overline{B}} \mu_{\alpha} \; \; ; \; \; \tau = N \\ \mu = \sum_{\alpha=1}^{A} \tau_{\alpha} \; \; ; \; \; \sigma^{2} = \sigma_{ec}^{2} + \sigma_{dc}^{2}; \; \;$$

$$\sigma_{ec}^2 = \frac{1}{A} \sum_{\alpha=1}^{A} (\mu_{\alpha} - \mu)^2 \; ; \; \sigma_{dc}^2 = \frac{1}{A} \sum_{\alpha=1}^{A} \sigma_{\alpha}^2 \; ; \; \rho_{int} = \frac{\sigma_{ec}^2 - \frac{\sigma_{dc}^2}{B - 1}}{\sigma_{ec}^2 + \sigma_{dc}^2}.$$

2. Estimadores

$$\widehat{\mu}_C = \frac{1}{a} \sum_{\alpha=1}^a \widehat{\mu}_{\alpha} \; ; \; \widehat{\rho}_{int} = \frac{\widehat{\sigma}_{ec}^2 - \frac{\widehat{\sigma}_{dc}^2}{B - 1}}{\widehat{\sigma}_{ec}^2 + \widehat{\sigma}_{dc}^2} \; ;$$

$$\widehat{\sigma}_{ec}^2 = \frac{1}{a - 1} \sum_{\alpha=1}^a (\widehat{\mu}_{\alpha} - \widehat{\mu}_{C})^2 \; ; \; \widehat{\sigma}_{dc}^2 = \frac{1}{a} \sum_{\alpha=1}^a \widehat{\sigma}_{\alpha}^2.$$

3. Variância do estimador

$$\mathcal{V}(\widehat{\mu}_C) = \frac{\sigma_{ec}^2}{a}$$

4. Estimador para a variância dos estimador

$$\widehat{\mathcal{V}}(\widehat{\mu}_C) = \frac{\widehat{\sigma}_{ec}^2}{a}$$

Conglomerados de tamanhos desiguais

5. Estimadores

Estimadores
$$\widehat{\mu}_{C_1} = \frac{\widehat{\overline{\tau}}}{\overline{B}}, \ \widehat{\overline{\tau}} = \frac{1}{a} \sum_{\alpha=1}^{a} \widehat{\tau}_{\alpha} \ ;$$

$$\widehat{\mu}_{C_2} = \frac{\widehat{\overline{\tau}}}{\overline{b}}, \ \overline{b} = \frac{1}{a} \sum_{\alpha=1}^{a} b_{\alpha} \ ;$$

$$\widehat{\mu}_{C_3} = \frac{1}{a} \sum_{\alpha=1}^{a} \widehat{\mu}_{\alpha} \ ;$$

$$\widehat{\rho}_{C_2} = \frac{\widehat{\sigma}_{eq}^2 - \frac{\widehat{\sigma}_{dc}^2}{\overline{B} - 1}}{\widehat{\sigma}_{eq}^2 + \widehat{\sigma}_{dc}^2} \ ;$$

$$\widehat{\sigma}_{eq}^2 = \frac{1}{a - 1} \sum_{\alpha=1}^{a} \left(\frac{b_{\alpha}}{\overline{b}}\right)^2 (\widehat{\mu}_{\alpha} - \widehat{\mu}_{C_2})^2 \ ; \ \widehat{\sigma}_{dc}^2 = \frac{1}{a} \sum_{\alpha=1}^{a} \frac{b_{\alpha}}{\overline{B}} \widehat{\sigma}_{\alpha}^2.$$

$$\widehat{\sigma}_{ect}^2 = \frac{1}{a - 1} \sum_{\alpha=1}^{a} \left(\frac{b_{\alpha}}{\overline{b}} \widehat{\mu}_{\alpha} - \widehat{\mu}_{C_1}\right)^2 \ ; \ \widehat{\sigma}_{em}^2 = \frac{1}{a - 1} \sum_{\alpha=1}^{a} (\widehat{\mu}_{\alpha} - \widehat{\mu}_{C_3})^2.$$

6. Estimadores para as variâncias dos estimadores

$$\widehat{\mathcal{V}}(\widehat{\mu}_{C_1}) = \frac{\widehat{\sigma}_{ect}^2}{a}$$

$$\widehat{\mathcal{V}}(\widehat{\mu}_{C_2}) = \frac{\widehat{\sigma}_{eq}^2}{a}$$

$$\widehat{\mathcal{V}}(\widehat{\mu}_{C_3}) = \frac{\widehat{\sigma}_{em}^2}{a}$$