

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
3 October 2002 (03.10.2002)

PCT

(10) International Publication Number
WO 02/077278 A1

(51) International Patent Classification⁷: C12Q 1/68 (81) Designated States (*national*): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(21) International Application Number: PCT/IN01/00055 (84) Designated States (*regional*): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

(22) International Filing Date: 28 March 2001 (28.03.2001)

(25) Filing Language: English

(26) Publication Language: English

(71) Applicant (*for all designated States except US*): COUNCIL OF SCIENTIFIC AND INDUSTRIAL RESEARCH [IN/IN]; Rafi Marg, New Delhi 110 001 (IN).

(72) Inventors; and

(75) Inventors/Applicants (*for US only*): VERMA, Sunil, Kumar [IN/IN]; Centre for Cellular and Molecular Biology, Hyderabad 500 007 (IN). SINGH, Lalji [IN/IN]; Centre for Cellular and Molecular Biology, Hyderabad 500 007 (IN).

(74) Agent: GABRIEL, Devadoss, Calab; Kumaran & Sagar, 84-C, C6 Lane, (Off Central Avenue), Sainik Farms, New Delhi 110 062 (IN).

Published:

— with international search report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 02/077278 A1

(54) Title: UNIVERSAL PRIMERS FOR WILDLIFE IDENTIFICATION

(57) Abstract: The invention provides novel universal primers that can amplify the fragment of cytochrome b gene of any animal species in polymerase chain reaction (PCR) and reveal the identity of the biological material of any unknown animal origin and a method for identification of the specific animal from a given biological sample.

BEST AVAILABLE COPY

UNIVERSAL PRIMERS FOR WILDLIFE IDENTIFICATION

TECHNICAL FIELD

The invention relates to the identification of novel universal primers that can amplify the fragment of cytochrome b gene of any animal species in polymerase chain reaction (PCR) and reveal the identity of the biological material of any unknown animal origin at species and sub-species sources. The invention also provides a method for the identification of fragments on mitochondrial cytochrome b gene in biological material of unknown origin.

BACKGROUND ART

A large number of studies in evolutionary biology utilize phylogenetic information obtained from mitochondrial cytochrome b gene. It has been identified a potent molecule to distinguish the phylogenetic depth of different lineages to family, genus and species in molecular taxonomy¹⁻⁶⁶. A vast database of the sequences of cytochrome b gene of different animal species has accumulated in public databases such as GenBank, NCBI (<http://www.ncbi.nlm.nih.gov>) etc. We have utilized this capacity of cytochrome b gene in establishing the identity of the origin of animal parts and product to its family, genus and species sources. The technique developed is based on a pair of universal primer that can amplify a small fragment of cytochrome b gene from a vast range of animal species.

Establishing identity of confiscated animal parts and products is a great challenge to law enforcement agencies because none of the methods available till date is too efficient to reveal the identity of animal remains beyond a reasonable doubt. Morphological markers, described for certain species allow the identification of complete specimen of animals⁶⁷. However, a complete specimen is confiscated very rarely by the investigation agencies; therefore, these marker are not practical in wildlife forensics. The biochemical traits such as the bile characteristics⁶⁸ blood haem analysis^{69,70} etc. have also been employed in wildlife forensic for identification of individual species. The difficulty of these markers are that these markers are limited in number and are rarely found in their natural forms in which these were originally described as the characteristic of a particular species.

The molecular approaches such as micro-satellite based identification⁷¹, Restriction fragment length polymorphism analysis of mitochondrial genes or PCR based species specific STS markers require the prior information of the species to establish the identity^{72,73}. These methods also need a significant amount of DNA material to be analysed. We may not have the prior information about the species origin of confiscated animal parts and product in forensics, therefore, these methods are not really useful and

practical in wildlife identification. The technique invented by us is universal, therefore does not require any background information to establish the identity of any unknown confiscated remains at family, genus and species sources. Being a PCR based procedure it can be applied with trace amount of any biological material. Because the amplicon length 5 is small (472 bp); therefore, it can work perfectly with the mutilated remains, which are commonly seized by the crime investigation agencies. It does not require the large amount of genetic material i.e. DNA to be analyzed to establish the identity, hence, can detect a minute amount of adulteration in food products. The procedure described is simple and very fast. Due to the said advantages, the procedure invented by us is most suited for 10 forensic wildlife identification.

OBJECTS OF THE INVENTION

The main object of the invention is to identify a fragment on mitochondrial cytochrome b gene capable of significantly discriminating among various evolutionary lineages of 15 different animal species.

Another object is to identify a fragment on mitochondrial cytochrome b gene which is flanked by the highly conserved sequences at a vast range of animal species.

Yet another object is to detect a fragment on mitochondrial cytochrome b gene which is polymorphic inter-specifically, but monomorphic at intra species sources.

20 Still another object is to develop the universal primers to amplify the fragment on mitochondrial cytochrome b gene using polymerase chain reaction.

Another object is to develop a PCR protocol that works universally with DNA template of any unknown origin (i.e. all the animal species).

25 Yet another object is to provide a universal method for identification of species of analyzed material (i.e. the DNA isolated from confiscated animal remain of unknown origin) using the public databases such as GenBank, NCBI etc.

Still another object is to provide a universal method of animal identification to establish the crime with the criminal beyond a reasonably doubt.

30 Another object is provide a universal method to establish the identity of biological materials such as skin, horns etc confiscated from animal poachers, if it is that of an endangered species.

Yet another object is to provide a universal method for establishment of the identity of confiscated animal parts and products of endangered animal species for the purpose of production of molecular evidence of animal hunting and related crime in the court of law, 35 so that the human violation to the wildlife resources could be controlled.

Still another object is to provide a universal technique to have an idea of the geographical location of the commitment of wildlife crime based on the haplotype of poached animal - identified by the universal primer invented.

Another object is to provide a universal technique of animal identification to detect the 5 adulteration of animal meat/products in vegetarian food product for the purpose of food fortification, by the food fortification agencies.

Yet another object is to provide a universal technique for detection of the origin of blood or blood stains etc collected from the scene of crime related to offences such as murder, rape etc, in order to establish the origin of blood found at scene of crime when it sounds as 10 if criminals have wontedly spread the blood of an animal at the scene of crime, to confuse the crime investigation agencies and forensic scientists with human blood.

Another object is to invent and authenticate a universal technique that can be converted to a (a) 'MOLECUALR KIT' and (b) 'DNA CHIPS' based application to meet the requirements of above objectives.

15 SUMMARY OF THE INVENTION

Accordingly, the invention provides novel universal primers that can amplify the fragment of cytochrome b gene of any animal species in polymerase chain reaction (PCR) and reveal the identity of the biological material of any unknown animal origin

DETAILED DESCRIPTION OF THE INVENTION

20 Keeping in view the above objectives, the cytochrome b gene sequences (1140 bp) of 221 distantly related animal species (listed in Table 1) representing various families were obtained from public database NCBI (<http://www.ncbi.nlm.nih.gov>). These sequences were aligned using the software *Clustal X*(1.8)(NCBI, USA) and a fragment (of 472 bp, alignment shown in Table 2) of gene was identified which had all the features mentioned 25 above under column 1, 2 and 3 of sub-heading 'Objectives of invention'. As for the identity of this fragment we would like to mention that it includes the nucleotides between 398 to 869 in *Antilope cervicapra* and *Felis catus*; however, 399 to 870 in *Homo sapiens sapiens* species. Except at few positions (marked as star (*)) in Table 2, the nucleotide sequences of this fragment are highly variable amongst the animal species, giving rise to 30 their unique molecular signature. These molecular signatures are characteristic of its species and form the basis of revealing the identity of the biological material of an unknown animal origin by the procedure invented by us. Considering *Antilope cervicapra* as a representative species, the sequence of this fragment is mentioned herewith:

Mitochondrial cytochrome b gene sequence (398-869 bp) of *Antilope cervicapra*:

"taccatgaggacaataatctttttagggacaacagtcatccaatctccttcagcaatccatacatcggtacaaaccttagtaga
atgaatctgaggagggtctcagtagataaagcaacccttacccgattttcgccttcactttatcctccatttatcattgcagccct
accatagtacacctactgtttccacgaaacaggatccaacaacccacaggaatctcatcagacgcagacaaaattccatccac
ccctactacactatcaaagatatcctaggagctctacttaatttaaccctcatgcttctagcctattctcaccggaccgcgtggag
5 acccagacaactatacaccagcaaacccacttaatacacccacatatcaagcccgaatgatacttcctatttgcatacgcaatcct
ccgatcaattctaacaacttaggagg".

A pair of universal primer was designed to amplify this fragment in polymerase chain reaction (PCR). These primers were named as 'mcb398' and 'mcb869' because of its property to amplify a region of mitochondrial cytochrome b gene between nucleotides 398 to 869 of *Antilope cervicapra*, a representative animal species for this invention. We took this animal species as representative species because the idea of developing such a novel primers came in the mind of inventors while they were working on the genome of this animal in Centre for Cellular and Molecular Biology, Hyderabad, India. These primers work universally because its 3' end are highly conserved amongst a vast range of animal species (shown in Table 2). As mentioned above, the DNA fragment (sequence of which is shown above) targeted by these primers is highly polymorphic inter-specifically; however, it is monomorphic among the individual of same species (Tables 6, 7a, 7b, 7c, :d and 8, respectively). These unique features of the targeted region enable these primers to generate the molecular signatures of an individual species; thereby, enabling them to differentiate 10 amongst the animals of different species (see in Figure 1c). The variation within the fragment amplified by these primers increase with increasing distances of evolutionary lineages of two animals (Table 8). These unique features of the fragment amplified by the universal primers 'mcb398' and 'mcb869' invented by the applicants fulfill the objectives 15 of invention.

20 Thus, the primers invented by us can generate the molecular signature from any biological material of unknown animal origin, which actually is the characteristic of its family, genus and more precisely, the species. When these signatures are compared *in-silico* with the signatures already available in public databases (viz., GenBank, NCBI database etc) using 'BLAST software⁷³', it indicates identity of the family, genus or species of the analyzed 25 material, which in turn is confirmed practically by comparing with the reference animals of the revealed family, genus or species, by including them in the further analysis by the primers 'mcb398' and 'mcb869'. The complete procedure involved in the *analyses* (the word, 'analyses' should be understood with the stepwise procedure to establish the identity 30 of the biological remain of any unknown animal origin for the aims mentioned in columns

1-13 under sub-heading 'Objectives of invention') is briefed under 'Examples 5 and 6, respectively, as well as illustrated in Figures 1a, 1b and 1c, respectively.

BRIEF DESCRIPTION OF DRAWING AND TABLES

Figure 1a. Illustration of the step-wise procedure involved in *analyses*. The unknown biological material i.e. 'adil.flesh' refers to the confiscated skin mentioned in 'Example 6'. The arrow marks indicate the stepwise procedure involved. The brief description of Figure 1a is as follows:

The biological material i.e. the confiscated skin 'adil.flesh' was subjected to DNA isolation using the standard procedures⁷⁴. The DNA obtained was amplified using the primers 'mcb398' and 'mcb869' in PCR, fractionated in 2% (w/v) agarose gel, visualized and photographed under UV light using Gel Documentation System (Syngene, USA). The lane 'M' shown in the photograph represents the molecular weight marker (Marker XIII, Boehringer mannheim). Lane 1 shows the PCR amplicon (472 bp) obtained from 'adil.flesh' using primers 'mcb398' and 'mcb869'. The PCR amplicon obtained were sequenced at both the strand using "ABI Prism 3700 DNA Analyzes, PE-Applied Bio-systems). The chromatogram shows the sequences (about 80 bp long, i.e. between 150-230 bp of sequence (328 bp), revealed from the PCR product of 472 bp length) obtained from 'adil.flesh'.

Figure 1b. Illustrates the further steps involved in *analyses*. The sequence (328 bp) revealed from 'adil.flesh' was subjected to homology search in *nr* (i.e. *non-redundant*) database of National Centre for Biological Information (NCBI), USA. The sequences producing significant alignments are shown along with its bits score and E values. It indicates the extent of homology amongst the sequence enquired (i.e. the 328 bp sequence from adil.flesh) and the sequences registered in *nr* database of NCBI. BLAST analysis revealed the highest homology of the sequence revealed from 'adil.flesh' with the sequence of *Panthera pardus* (gene bank registration number 'AY005809'), indicating the identity of adil.flesh as that of a leopard (*Panthera pardus*) origin. Figure 1b further illustrates the multiple alignments of the sequences obtained from reference animals (listed in Table 5) along with the sequence obtained from 'adil.flesh'. The sequences of 'adil.flesh' is similar to the sequences of 'gz1L' further confirming the identity of the source of confiscated remain 'adil.flesh' as that of a *Panthera pardus* origin.

Figure 1c illustrates the NJ-tree (Neighbor Joining tree) constructed using CLUSTAL X (1.8) from the sequences revealed from 'adil.flesh' and reference animals listed in Table 5.

The animals belonging to similar species cluster together; however, the animals of different species group in different clusters. The confiscated material under investigation (i.e. 'adil.flesh') clusters with 'gz1L' (i.e. the known normal leopard '*Panthera pardus*') indicating the identity of the species of 'adil.flesh' as that of a *Panthera pardus* source.

5 **Figure 2** shows the Agarose gel electrophorogram showing the PCR amplicons (472 bp) obtained from the reference animals of family felidae listed in Table 5, using universal primers 'mcb398 and 'mcb869'. Description of different lanes is as follows:

Lanes 1-21: The PCR profiles of the animals 1-21, respectively, listed in Table 5.

10 Lane 22: The PCR profiles of DNA isolated from confiscated skin of unknown animal origin 'i.e. adil.flesh'

Lane 23: Negative control (no DNA)

Lane M: Molecular weight marker (marker XIII, Boehringer mannheim)

Figure 3. Shows PCR amplicons obtained from animals listed in Table 9. The primers used in PCR are 'AFF' and 'AFR'. The description of different lanes shown is as follows:

15 Lane 1-4: The PCR profiles of animals 1-4, respectively, listed in Table 9, showing amplicons of 354 bp.

Lane M: Molecular weight marker (marker XIII, Boehringer mannheim)

20 **Figure 4.** Shows PCR amplicons obtained from animals listed in Table 12. This experiment demonstrates the universal nature of our primers among a vast range of animal species. Description of different lanes shown is as follows:

Lanes 1-23: The PCR profiles of the animals 1-23, respectively, listed in Table 12. The PCR product of 472 bp is amplified universally from all the animal species analyzed.

Lane 24: Negative control (no DNA)

Lane M: Molecular weight marker (marker XIII, Boehringer mannheim)

25 **Table 1.** List of 221 animal species used for *In-silico* analysis to design the universal primers 'mcb398' and 'mcb869'. Table also demonstrate the 'P,S scores' of 'mcb398' and 'mcb869' for different templates. The descriptions of various symbols used in this table are as follows:

Symbol (#) refers to Number

30 Symbol (*) refers to the animal species which is either protected species (listed in Wildlife (Protection) Act , 1972 (Central Act NO 53 of 1972), or an endangered/rare animal species

Symbol (^sP,S/F) refers to Probability of match and Stability of match of primer 'mcb398' with different templates (i.e. the cytochrome b gene from different species origin). A higher P, S score refers to the higher probabilities of significant amplification of specific

template by the primer. It is calculated by *Amplify (1.2)* software.

Symbol ("P,S/R) refers to Probability of match and Stability of match of primer 'mcb869' with different templates. A higher P,S score refers to the higher probabilities of significant amplification of specific template by the primer. It is calculated by *Amplify (1.2)* software.

5 **Table 2.** Multiple sequence alignment of 472 bp fragment of mitochondrial cytochrome b gene (identified by inventors to fulfill the requirements of column 1, 2 and 3 mention under sub-heading 'Objectives of invention') of 221 animal species listed in Table 1. Alignments also show the binding sites for universal primers 'mcb398' and 'mcb869'. The symbol (*) refers to the nucleotide bases which are conserved amongst 221 animal species listed in Table 1). The alignments have been done using software *CLUSTAL X (1.8)*. The nucleotide positions that are unmarked are variable amongst 221 animal species analyzed. These variable sites together constitute the molecular signature of an individual species, giving rise to molecular basis of species identification by our primers.

10 **Table 3.** Results of the blast analysis of the sequence revealed from 'adil.flesh' in 'mito' database of NCBI. It shows the most significant alignment of cytochrome b sequence (328 bp) revealed from confiscated skin piece 'adil.flesh' with *felis catus* cytochrome b gene sequence (genbank registration number NC_001700.1, bits score 365, E value, e-101) registered in NCBI database (bits score 365 and E value e-101). It gives an indication that the species of analyzed material belongs to family felidae. It also fulfills the requirements 15 of column 6 mention above under sub-heading 'Objectives of invention'.

15 **Table 4.** Results of the blast analysis of the sequence revealed from 'adil.flesh' in 'nr' database of NCBI. It shows the most significant alignment of cytochrome b sequence (328 bp) revealed from confiscated skin piece 'adil.flesh' with *Panthera pardus* cytochrome b gene sequence (genbank registration number AY005809, bits score 603, E value, e-170) registered in NCBI database. It gives an indication that the species of analyzed material 20 belongs to *Panthera pardus* origin. It also fulfills the requirements of column 6 mention above under sub-heading 'Objectives of invention'.

25 **Table 5.** Reference animal belonging to family felidae selected for comparison with 'adil.flesh' to confirm the findings of BLAST analysis results of which are mentioned in Table 3 and 4, respectively. The animals listed in SN. 1-21 represent different species of family felidae. SN. 22 and 23 are primate species taken for out-group comparisons.

30 **Table 6** Multiple sequence alignments of cytochrome b sequences (328 bp) revealed from 'adil.flesh' and reference animals listed in Table 5. The positions that have a common nucleotide in all the animal species under investigation are shown with a star (*) mark:

however, the positions that are variable in any of the animals under investigation are unmarked. The nucleotides at these positions constitute the molecular signature of an individual species, which are unique and highly specific for its species. These signatures are the molecular basis of identification of individual animal species using our primers 5 'mcb398' and 'mcb869'.

Table 7 (Tables 7a, 7b, 7c and 7d). The comparison of the molecular signatures of different animal species investigated along with 'adil.flesh', the confiscated skin of unknown animal origin. This table demonstrates the variable positions (i.e. the positions which are not marked with star (*) symbol in Table 6), amongst the 328 bp fragment 10 revealed from the animals listed in Table 5. The dot (.) mark represents the presence of the similar nucleotide as listed in lane 1 i.e. the sequence from "adil.flesh" at that position. It demonstrates that the signatures of each species are unique and specific to its species. The molecular signatures of 'adil.flesh' are comparable (except for position 37 which has a transition from 'T' to 'C') to the molecular signature of 'gz1L' i.e. the known leopard 15 'Panthera pardus' source, indicating the identity of the source of confiscated skin 'adil.flesh' as that of a leopard 'Panthera pardus' source. The nucleotide variations (at the positions 153, 198, 223, 264, among the known leopards, (i.e. gz1L, gz2L, and gz3L, respectively)), give an idea about the geographical habitat of each animals. Various studies referring to molecular evolution of different animal species support this hypothesis⁷⁵; 20 however, it could further be confirmed by taking the reference animals from different geographical areas and analyzing by our primers 'mcb 398' and 'mcb869'. If we could generate the database of different haplotypes (i.e. habitat specific molecular signatures) of the animal species, it would also enable our primers to reveal the geographical location of the commitment of wildlife crime.

25 **Table 8.** Percent similarity matrix calculated by pair-vise comparisons of nucleotide sequences aligned (illustrated in Table 6). The cytochrome b gene sequence of DNA isolated from confiscated material had maximum similarity (99.7% and 98.2%, with the lineages of animals 'gz2L' and 'gz3L', respectively) with the sequences obtained from known normal leopard source, indicating its identity as that of a leopard origin. The 30 similarity matrix has been calculated using the software *PHYLIP* (3.5).

Table 9. Animals selected for validation of minimum P,S score for efficient amplification of cytochrome b gene of different origin by the primers 'mcb398' and 'mcb869'. P,S score of primers 'AFF' and 'AFR' for these animals are shown.

Table 10. BLAST analysis of primers 'mcb398' in *nr* database of NCBI . It demonstrates

that the 3' end of this primer is highly conserved among a vast range of animal species. It also shows the significant homology among the primer and templates (i.e. the cytochrome b gene fragment of different animal species), confirming the universal nature of our primer

Table 11. BLAST analysis of primers 'mcb869' in *nr* database of NCBI. It demonstrates

5 that the 3' end of this primer is highly conserved among a vast range of animal species. It also shows the significant homology among the primer and templates (i.e. the cytochrome b gene fragment of different animal species), confirming the universal nature of our primer.

Table 12. Other animal belonging to distantly related animal species, investigated to 10 confirm the universal nature of primers 'mcb398' and 'mcb869'. Gel photograph showing the PCR amplicons from these animals are shown in Figure 4.

The mitochondrial cytochrome b gene has very widely been used in molecular taxonomic studies. It has immense capabilities to reveal different evolutionary lineages of animals in family, genus and species specific manner. It has also been used to classify the population 15 of a particular species according to its demographic distributions⁷⁵. The vast database of cytochrome b sequences of different animal species has accumulated in public databases such as Genbank and NCBI¹⁻⁶⁵. We have explored these unique characteristics of cytochrome b gene to establish the identity of confiscated remains of any unknown animal by inventing a pair of novel primers, 'mcb398' and 'mcb869', that can amplify a small 20 fragment (472 bp) of cytochrome b gene of wide range of animal species in universal manner. These primers work universally because its 3' ends target within a highly conserved region.

The fragment of cytochrome b gene identified had all the features mentioned in columns 1, 2 and 3 listed under sub-heading 'Objective of invention'. We identified this fragment by 25 aligning the cytochrome b gene sequences (1140 bp) of 221 different animal species listed in Table 1. These sequences are publicly available in NCBI DNA databases. These sequences were aligned using the software *CLUSTAL X* (1.8). As mentioned before, the 1 472 bp fragment of cytochrome b gene identified by us to have the features mentioned in columns 1, 2 and 3 listed under sub-heading 'Objective of invention' includes the 30 nucleotides between 398 to 869 in *Antilope cervicapra* and *Felis catus*; however, 399 to 870 in *Homo sapiens sapiens* species. Except at few positions (marked as star (*)) in Table 2, the nucleotide sequences of this fragment are highly variable amongst the animal species, revealing the identity of the biological material belonging to that of an unknown animal origin by the procedure invented by us. As for identity of this fragment we are

considering *Antilope cervicapra* as a representative species, and the sequence the above fragment of cytochrome b gene of *Antilope cervicapra* is mentioned herewith:

Mitochondrial cytochrome b gene sequence (398-869 bp) of *Antilope cervicapra*

"taccatgaggacaaatatctttttagggacaacagtcatcaccatctccttcagcaatcccatacatcggtacaaaccttaga

5 atgaatctgaggagggtctcagtagataaagcaacccttacccgattttgcctccactttatcctccatttatcattgcagccctt accatagtacacactactgtttctccacgaaacaggatccaacaaccccacaggaatctcatcagacgcagacaaaaatccac ccctactacactatcaaagatatcctaggagctactattaattttaccctcatgcctcttagtcctatttcaccggacctgctggag acccagacaactatacaccagcaaacccacttaatacaccatcatcaagcccgaatgatacttcatttgcatacgcaatcct ccgatcaattctaacaacttaggagg

10 Table 2 presents the alignment of the above fragment of cytochrome b gene of 221 animal species. Each species in table 2 has been represented by a unique code, which is decoded in Table 1. We selected these species to represent the vast range of animal families of distant orders. Of 221 species, about 65 were the protected/endangered or rare species listed in Wildlife (Protection) Act , 1972 (Central Act NO 53 of 1972). These species are marked 15 with symbol (*) in Table 1. The NCBI accession number refers to its registration number in NCBI database and the number in superscript represent the reference cited. Based on the aligned cytochrome b sequences of different 221 animal species the primers designed were as follow:

Primers name	Sequence (5'-3')
--------------	------------------

20 'mcb398' "TACCATGAGGACAAATATCATTCTG"

'mcb869' "CCTCCTAGTTGTTAGGGATTGATCG"

Tables 2, 10 and 11, respectively, demonstrates that the 3' ends of the primers are highly conserved amongst all the animal species analyzed *in-silico* (In total 221 animal species listed in Table 1 and about 500 species listed in Tables 10 and 11, respectively) Also, the

25 5' end of the primers were selected within the conserved region of cytochrome b gene to improve the probability and stability of match of the primers to their target sequences (i.e. the above mentioned 472 bp fragment of cytochrome b gene). The primers were thoroughly checked for internal stabilities, loop or dimer formation using different software viz., 'Amplify (1.2)', 'Primer3' (<http://www.genome.wi.mit.edu/cgi-bin/primer/primer3.cgi>) as well as manually. We assigned the P,S score (P=Probability of 30 match, S=Stability of match) to the primers for each template using the software *Amplify* (1.2). The higher scores of P and S ensure a good amplification if all other conditions standard (which are mentioned under 'Example 3') are optimum. The Highest score for 'mcb398' was 98.63 (i.e. the situation where the primer has perfect match with template):

however, the highest P, S for 'mcb869' was recorded as 98, 68 for a complete match between the primer and template. The lowest P,S score observed for 'mcb398' was 81,50 for species *Talpa europaea* whereas 'mcb869' had a high P, S score for this species (92, 57). The another species which have lowest P, S score for one of the two primers were 5 *Eumeces egredios* and *Equus aious*. *Eumeces egredios* had P, S score 86, 55 and 73,51 for 'mcb398' and 'mcb869', respectively; however, the P, S score of *Equus aious* was calculated as 91,61 and 73, 51 for 'mcb398' and 'mcb869', respectively. All other animals had higher P, S scores then the above mentioned species. To ensure that these primers would work efficiently with the DNA template from the animals having the lowest P, S 10 score for one of the primers, we designed an another experiment to validate the lower limits of one of the two primers sufficient for efficient amplification in PCR. We designed an another primer pair (AFF= 5'tagtagaatgaatctgaggagg3' and AFR=5'atgcaaataggaagtatcattc3'.) having more mis-pairing at their annealing sites (but not at ends), therefore have less internal stability and lower P, S scores for its templates (listed 15 in Table 9). The P,S scores of 'AFF' and 'AFR' were as calculated as low as 41 and 49 for *Platanista gangetica* and *Sus scrofa* These species were amplified efficiently using the primers 'AFF' and 'AFR' (results shown in Figure 3) (keeping all other conditions standard i.e. the conditions mentioned in 'Example 3'). The lowest P,S scores (86, 55 and 73,51 for species *Eumeces egredios*) for our primers 'mcb398' and 'mcb869', 20 respectively, were higher then the above range of combined P, S scores of 'AFF' and 'AFR' for species *Sus scrofa* (87, 52 and 87, 41), which was efficiently amplified by the primers 'AFF' and 'AFR'. It gives an indication that the primers 'mcb 398' and 'mcb 869' 25 would work with all the species including *Eumeces egredios* efficiently to give rise to the expected product in PCR. This experiment confirmed that the primers 'mcb398' and 'mcb 869' are capable of amplifying the cytochrome b fragment of most of the animal species in a universal manner.

For further confirmation of universal nature of our primers, we blasted the sequence of our primers against the *mito* and *nr* databases of NCBI using BLAST software. The results of these analyses are shown in Tables 10, and 11, respectively.

30 Finally, the universal nature of the primers was tested in our laboratory with some more animal species listed in Table 12. These primers amplified all the animal species efficiently, giving rise to the band of expected size (472 bp). The results are shown in Figure 4. This experiments substantiated the results of P.S analysis and other *in-silico* analyses to show that the primers 'mcb398' and 'mcb 869' are universal primers.

The flow chart of establishing identity of the species of biological material of unknown animal origin using primers 'mcb398' and 'mcb869'

Examples

Example 1

Example for identification of a fragment of cytochrome b gene fulfilling the requirements of columns 1, 2 and 3 mentioned under sub-heading 'Objectives of invention' of heading 5 'Brief summary of invention'

The cytochrome b molecule has very vastly been used in molecular taxonomic studies. Being a slow evolving gene, It has a tremendous information in its nucleotide sequences to distinguish the animals to their family, genus and species sources¹⁻⁶⁵. A vast database of the sequences of cytochrome b gene of different animal species has accumulated in the *nr* 10 and *mito* databases of NCBI. We have explored these qualities of cytochrome b gene to establish the identity of confiscated remains of unknown animal origin to its family, genus and species sources. For this purpose, we have identified a fragment of cytochrome b gene which is highly polymorphic inter-specifically, however, it is monomorphic among the individual of same species, therefore it can group the individual of an unknown species 15 with the known individuals of reference species to which it belongs. In order to amplify this fragment from DNA isolated form any unknown origin, it was necessary that it remain flanked with the highly conserved sequences amongst a vast range of animal families. To identify such a unique fragment within the cytochrome b gene, we aligned the sequences of 20 221 distantly related animal species (listed in Table 1) representing various families using software CLUSTAL X (1.8). These sequences were obtained from public database NCBI (<http://www.ncbi.nlm.nih.gov>). The aligned data was examined carefully for the conserved sites amongst all the species included in *in-silico* analysis. We identified a fragment (472 bp) of cytochrome b gene that was fulfilling all the requirements mentioned above and also under column 1, 2 and 3 of sub-heading 'Objectives of invention'. 25 As for the identity of this fragment we would like to mention that it includes the nucleotides between 398 to 869 in *Antilope cervicapra* and *Felis catus*; however, 399 to 870 in *Homo sapiens sapiens* species. Except at few positions marked as star (*) in Table 2, the nucleotide sequences of this fragment are highly variable amongst the animal species, giving rise to their unique molecular signature. These molecular signatures are 30 characteristic of its species and form the basis of revealing the identity of the biological material of an unknown animal origin by the procedure invented by us. Considering *Antilope cervicapra* as a representative species, the sequence of this fragment is mentioned herewith:

Mitochondrial cytochrome b gene sequence (398-869 bp) of *Antilope cervicapra*

“taccatgaggacaaatctttttagggagaacagtcatcaccatctcccttcagcaatccatacatcggtacaaaccttaga
atgaatctgaggagggtctcagtatcaaagcaacccttacccgattttcgccctccactttatcctccatttatcattgcagccctt
accatagtacacctactgtttccacgaaacaggatccaacaacccacaggaatctcatcagacgcagacaaaattccattccac
ccctactacactatcaaagatatcctaggagctactattaatttaaccctcatgcttctagtcctattctcaccggaccgtgtggag
5 acccagacaaactatacaccagcaaacccacttaatacacccacatatcaagccgaatgatacttcctatttgcatacgcaatcc
ccgatcaattctaacaacttaggagg”

Example 2:

Example for development of universal primers to amplify the fragment identified mentioned under ‘Example 1’.

10

A pair of universal primer was designed which has the following features:

1. It targets the fragment identified (mentioned under ‘Example 1’) to amplify it in polymerase chain reaction (PCR).
2. Its 3’ and 5’ ends that are highly conserved (marked as star (*) in Table 2), amongst a vast range of animal species ensuring the amplification of the fragment mentioned above in a universal manner. The sequencing of the fragment amplified by these primes reveals the molecular signature of the species of analyzed material, which on comparison with the sequences of the known reference animals reveals the identity of the species of unknown biological material under investigation.
3. The *tm* (melting temperature) of both primers was almost similar (about 58 degree centigrade) ensuring the significant annealing of both the primers to its template, therefore significant amplification of targeted region in PCR.
4. The internal stability and P, S, score of the primers were ensured higher while designing it. The possibilities of internal loop formation, dimmer formation etc were also excluded by selecting its sequence uniquely. This ensured that the primer would be a good primer to be used in PCR for amplification of DNA from unknown animal origin.
5. The 3’ end of the primers were ensured to have either ‘G’ or ‘C’ to increase the probability of strong bonding at its 3’ends, which is necessary for efficient amplification of DNA template in PCR. It also strengthens the universal nature of the primer.
6. The sequences of the primers were ensured to be unique so that it does not give rise to non-specific and spurious products in PCR leading to confusion. It improved the efficiency and quality of the technique invented by us.

7. These primers were named as 'mcb398' and 'mcb869' because of its property to amplify a region of mitochondrial cytochrome b gene between nucleotides 398 to 869 of *Antilope cervicapra*, a representative animal species for this invention. We took this animal species as representative species because the idea of developing such a novel primers came in the mind of inventors while they were working on the genome of this animal in Centre for Cellular and Molecular Biology, Hyderabad, India.

5 8. The sequences of the universal primers invented are as follows:

	Primers name	Sequence (5'-3')
10	'mcb398'	"TACCATGAGGACAAATATCATTCTG"
	'mcb869'	"CCTCCTAGTTGTTAGGGATTGATCG"

15 **Example 3:**

Example for development of universal PCR conditions to ensure the amplification of a template of any unknown origin in PCR, hence strengthening the universal nature of the technique invented by us

The PCR conditions developed had the following unique features:

- 1 These were capable of amplifying the DNA template of any animal origin in an universal manner using the universal primers mentioned under 'Example 2'.
- 20 2. The conditions were selected to ensure the comparable annealing temperature for both the primers i.e. 'mcb398' and 'mcb869'.
3. The PCR conditions standardized herewith are universal; therefore, the possibility of PCR failure with a template of unknown origin due to non-standard conditions is excluded. It ensures the universal nature of our technique to be used in
- 25 4. The universal conditions mentioned above are:

Amplification reactions should be carried out in 20 μ l reaction volume containing approximately 20 μ g of template DNA, 100 μ M each of dNTPs, 1.25 pmole of each primer, 30 1.5mM MgCl₂, 0.5 unit of AmpliTaq Gold (Perkin-Elmer-Cetus, USA) DNA polymerase and 1X PCR buffer (10mM Tris-HCl, pH 8.3, and 50mM KCl). The amplification profiles followed should be: an initial denaturation at 95°C for 10 min, followed by 35 cycles each of denaturation at 95°C for 45 s, annealing at 51°C for 1 min, and extension at 72°C for 2 min. The extension step at 35th cycles should be held for 10 min.

Example 4:

Establishing the universal nature of our primer and experimental evidences to demonstrate the universal nature of primers:

The universal nature of the primers 'mcb398' and 'mcb 869' was ensured by the following 5 measures:

(a) Selecting the primers from the aligned cytochrome b gene sequences of 221 animal of distantly related species:

The cytochrome b gene sequences (1140 bp) were aligned using software *CLUSTAL X* (1.8). The region of cytochrome b gene that was most conserved amongst 221 animal 10 species was selected to design the primers.

(b) Selecting the 3' and 5' ends of the primers at the highly conserved positions of cytochrome b gene:

The 3' and 5' ends of the primers were ensured to anneal to a highly conserved position amongst 221 animal species representing a vast range of animal families. It was done to 15 ensure an efficient amplification of all the species in PCR. These positions are shown with star (*) mark in Table 2.

(c) Ensuring either 'G' or 'C' at the 3' end of the primers:

It was ensured the primers to have either 'G' or 'C' at its 3' ends as these are the nucleotides that ensure the strong bonding at the 3' ends of the primers due to three 20 hydrogen bonds while pairing with each other. The strong bonding at 3' ends helps the primers to anneal properly with its template resulting in significant amplification in PCR.

(d) Selecting the sequences of the primers to ensure a higher internal stability, higher P, S score, and no primer dimer and loop formation:

The sequences of the primers were selected to have a high P, S score for a vast range of 25 animal species (Shown in Table 1). The care was taken to exclude the possibilities of loop or primer dimer formation that could reduce the efficiency of the primers in PCR.

(e) Selecting the sequence of the primers with a comparable melting temperature:

The sequences of the primers were selected to have a comparable melting temperature so that these could work together to amplify a DNA template in PCR at a similar annealing 30 temperature. The melting temperature of both the primers was about 58 degree centigrade and the annealing temperature used in PCR is 51 degree centigrade.

Experimental evidences to demonstrate the universal nature of primers:

(1) Evidence from *In-silico* analysis :

(a) Selecting the primers within the most conserved region of mitochondrial cytochrome b gene

As mentioned above, the primers were designed to anneal within a highly conserved region of mitochondrial cytochrome b gene fragment of 472 bp. Table 2 presents the alignment of the above fragment of cytochrome b gene of 221 animal species representing a vast range of animal families. The conserved positions of nucleotide sequences are shown with star (*) mark in Table 2

Table 2 also demonstrates that the 3' ends of the primers are highly conserved amongst all the animal species analyzed *in-silico*. In the aligned sequences, the conserved nucleotides are marked with symbol (*). Also, the 5' end of the primers were selected within the conserved region of cytochrome b gene to improve the probability and stability of match of the primers to their target sequences (i.e. the above mentioned 472 bp fragment of cytochrome b gene). The primers were thoroughly checked for internal stabilities, loop or dimmer formation using different software viz., 'Amplify (1.2)', 'Primer3' (<http://www.genome.wi.mit.edu/cgi-bin/primer/primer3.cgi>) as well as manually.

(b) P, S, score analysis:

We assigned the P,S score (P=Probability of match, S=Stability of match) to the primers for each template using the software *Amplify* (1.2). The higher scores of P and S ensure a good amplification if all other conditions standard (which are mentioned under 'Example 20 3') are optimum. The Highest score for 'mcb398' was 98,63 (i.e. the situation where the primer has perfect match with template); however, the highest P, S for 'mcb869' was recorded as 98, 68 for a complete match between the primer and template. The lowest P,S score observed for 'mcb398' was 81,50 for species *Talpa europaea* whereas 'mcb869' had a high P, S score for this species (92, 57). The another species which have lowest P, S 25 score for one of the two primers were *Eumeces eggregios* and *Equus aious*. *Eumeces eggregios* had P, S score 86, 55 and 73,51 for 'mcb398' and 'mcb869', respectively; however, the P, S score of *Equus aious* was calculated as 91,61 and 73, 51 for 'mcb398' and 'mcb869', respectively. All other animals had higher P, S scores then the above 30 mentioned species. To ensure that these primers would work efficiently with the DNA template from the animals having the lowest P, S score for one of the primers, we designed an another experiment to validate the lower limits of one of the two primers sufficient for efficient amplification in PCR. We designed an another primer pair (AFF= ^{5'}ctagtagaatgaatctgaggagg^{3'} and AFR= ^{5'}atgcattatggaaatgtatccattc^{3'}.) that have more mis-pairing at their annealing sites (but not at ends), therefore have less internal stability

and lower P, S scores for its templates (listed in Table 9). The P,S scores of 'AFF' and 'AFR' were as calculated as low as 41 and 49 for *Platanista gangetica* and *Sus scrofa*. These species were amplified efficiently using the primers 'AFF' and 'AFR' (results shown in Figure 3) (keeping all other conditions standard i.e. the conditions mentioned in 5 'Example 3'). The lowest P,S scores (86, 55 and 73,51 for species *Eumeces egreios*) for our primers 'mcb398' and 'mcb869', respectively, were higher then the above range of combined P, S scores of 'AFF' and 'AFR' for species *Sus scrofa* (87, 52 and 87, 41), which was efficiently amplified by the primers 'AFF' and 'AFR'. It gives an indication 10 that the primers 'mcb 398' and 'mcb 869' would work with all the species including *Eumeces egreios* efficiently to give rise to the expected product in PCR. This experiment confirmed that the primers 'mcb398' and 'mcb 869' are capable of amplifying the cytochrome b fragment of most of the animal species in a universal manner.

© BLAST analysis:

15 The sequences of primers 'mcb398' and 'mcb869' were blasted against mito and nr databases of NCBI to see its significant alignments with the sequences registered in GenBank. As expected, the most significant alignments of the sequences were found with the cytochrome b gene regions (within the 472 bp fragment mentioned in 'Example 1') of different animal species. This analysis also showed that the 3' as well as 5' ends of the 20 primers were highly conserved amongst a vast range of animal species, confirming the universal nature of the primers (Tables 10 and 11, respectively)

(2) Evidence from bench work/experiments done in laboratory conditions:

25 The DNA from different animals belonging to distantly related species (mentioned in Table 12) was isolated and subjected to PCR amplification using the primers invented by us i.e. the primers 'mcb398' and 'mcb869'. The PCR products amplified were resolved in agarose gel by electrophoresis and visualized under UV light. The PCR products of expected size (472bp) were obtained from all the animals confirming the universal nature 30 of our primers. These results are shown in Figure 4.

Example 5:

Example to establish the identity of confiscated remains from unknown animal origin using the universal primers 'mcb398' and 'mcb869'.

35 The step-wise procedure to establish the identity of the biological material from an unknown animal source is mentioned below:

5

10

15

20

25

30

Identification of sequence from the aligned sequences

that is homologous (or significantly similar) to the cytochrome b gene sequence of the DNA obtained from biological material of unknown animal origin.

The species of homologous sequence would be the species of the biological material under investigation

Application of the above information for the objectives mentioned in columns 7-13 under sub-heading 'Objective of invention' of heading 'Summary of invention'

Example 6:

The actual execution of the technique invented

As a first application and to demonstrate the ease and utility of this method, we investigated a case of forensic identification submitted at our laboratory to seek scientific opinion on animal hunting evidence. In this case, we received the half burned remains of

an unknown animal, confiscated by the crime investigation agencies. The DNA was isolated from the above material following standard methods⁷⁴ and subjected to PCR amplification using the primers mentioned above (viz., 'mcb398' and 'mcb869').

Amplification reactions were carried out in 20 μ l reaction volume containing 20 η g of template DNA, 100 μ m each of dNTPs, 1.25 pmole of each primer, 1.5mM MgCl₂, 0.5 unit

of AmpliTaq Gold (Perkin-Elmer-Cetus, USA) DNA polymerase and 1X PCR buffer (10mM Tris-HCl, pH 8.3, and 50mM KCl). The amplification profiles followed were: an initial denaturation at 95°C for 10 min, followed by 35 cycles each of denaturation at 95°C for 45 s, annealing at 51°C for 1 min, and extension at 72°C for 2 min. The extension step at 35th cycles was held for 10 min.

The PCR products obtained were sequenced in automated work station (ABI Prism 3700, PE-Biosystems) on both strands in triplicate and the sequence resolved (328 bp, shown in Figure 1a) was blasted against *mito* databases of NCBI using BLAST program⁷⁵. The most significant alignment (bits Value 365, E value e^{-101}) of this sequence was produced with the cytochrome b gene sequence of *Felis catus*, (Table 3) indicating that species of

analyzed material belongs to family felidae. Further, the above sequence revealed from the confiscated remain was blasted against *nr* databases of NCBI using BLAST program. The most significant alignment (bits Value 603, E value e^{-170}) of this sequence was produced with the cytochrome b gene sequence of *Panthera pardus* (Table 4), indicating the identity 5 of the analyzed material as that of a *Panthera pardus* source. Based on this information, we selected the reference animals listed in Table 5 representing different species and subspecies of felidae. The DNA isolated from reference animals was amplified and sequenced on both strands in triplicate using the primer pair mentioned above. Consensus sequences obtained were aligned using program *CLUSTAL X (1.8)* (Table 6). Sequence 10 comparisons identified 113 variable sites in total amongst all animals analyzed (Table 7). Pair-vise comparisons of sequences were performed to find out the variation among different animals investigated. All the species investigated were differentiated by their unique nucleotides sequences. The molecular signatures of different reference animals were compared with the molecular signature of the confiscated skin 'adil.flesh'. Table 7 15 demonstrate that the maximum similarity of the adil.flesh with 'gz11' i.e. known Leopard (*Panthera pardus*) species, indicating the identity of the adil.flesh, the confiscated skin, as that of a *Panthera pardus* origin. We also calculated the similarity matrix showing the pair-vise similarity amongst the animal species under investigation using *PHYLIP* software. This matrix is shown in Table 8. It demonstrates that the animals belonging to different 20 species had more variation; however, the animals of same species had maximum similarity among their cytochrome b sequences. The cytochrome b gene sequence of DNA isolated from confiscated material had maximum similarity with the sequences obtained from known Leopard source(99.7%, and 98.2 with 'gz11' and 'gz21', respectively); establishing the identity of the source of confiscated material as that of a Normal leopard (*Panthera pardus*) species. The step-vise procedure involved in above analysis is illustrated in Figure 25 1a, 1b and 1c, respectively.

Thus, the primers invented by us can generate the molecular signature from any biological material of unknown animal origin, which actually is the characteristic of its family, genus and more precisely, the species. When these signatures are compared *in-silico* with the 30 signatures already available in public databases (viz., GenBank, NCBI database etc) using *BLAST* software⁷³, it indicates identity of the family, genus or species of the analyzed material, which in turn is confirmed practically by comparing with the reference animals of the revealed family, genus or species, by including them in the further analysis by the primers 'mcb398' and 'mcb869'. Application of the information revealed could be in

fulfilling the requirements of objectives mentioned in columns 7-13 under sub-heading 'Objective of invention' of heading 'Summary of invention'

The method of the invention can be used to establish the identity of confiscated animal parts and products is one of the key requirements of wildlife identification in forensics. It
5 is needed to establish the crime with the criminal beyond a reasonable doubt to avoid the human violation of wildlife resources. Various morphological biochemical and molecular approaches have been given for this purpose; however, none of the current methods is universally applicable to detect the mutilated animal remains of unknown origin. We have identified a fragment on the mitochondrial cytochrome b gene, which has enormous
10 information to differentiate among various animal species back to the family, genus and species sources. We have also found that this fragment is flanked by the highly conserved sequences amongst a vast range of animal species. We invented a pair of universal primer that can amplify this fragment of DNA isolated from the biological material of an unknown animal origin in polymerase chain reaction (PCR) to reveal its identity at species
15 and sub-species sources. This novel invention has great potential to revolutionize the whole scenario of wildlife forensic identification and crime investigation.

Table 1. The animal species included in the study for *in-silico* analysis

SN. Code	Name	NCBI accession #	⁶ P,S/F	⁷ P,S/R
1 aep.mel	<i>Aepyceros melampus</i>	AF036289 ¹	97, 60	94, 62
2 ore.ore	<i>Oreotragus oreotragus</i>	AF036288 ¹	88, 52	94, 62
3 add.nas	<i>Addax nasomaculatus</i>	AF034722 ²	97, 60	95, 66
4 ory.dam	<i>Oryx dammah</i>	AJ222685 ¹	90, 58	95, 66
5 hip.equ	<i>Hippotragus equinus</i>	AF022060 ³	98, 63	85, 55
6 alc.bus	<i>Alcelaphus buselaphus</i>	AJ222681 ¹	97, 60	98, 68
7 sig.lic	<i>Sigmoderos lichtensteinii</i>	AF034967 ⁴	97, 60	98, 68
8 bea.hun	<i>Beatragus hunteri</i>	AF034968 ⁴	97, 60	94, 62
9 dam.lun	<i>Damaliscus lunatus</i>	AF016635 ³	97, 60	77, 55
10 con.tau	<i>Connochaetes taurinus</i>	AF016638 ³	82, 56	93, 62
11 bis.bon	<i>Bison bonasus</i>	Y15005 ⁵	90, 58	87, 63
12 bos.gru	<i>Bos grunniens</i> *	AF091631 ⁶	90, 58	94, 62
13 bos.tra	<i>Bos tragocamelus</i> *	AJ222679 ¹	90, 58	95, 66
14 bub.bub	<i>Bubalus bubalis</i> *	D34637 ⁷	97, 60	93, 64
15 bub.min	<i>Bubalus mindorensis</i>	D82895 ⁸	97, 60	87, 62
16 tra.ang	<i>Tragelaphus angasii</i>	AF091633 ⁶	97, 60	87, 63
17 tra.eur	<i>Tragelaphus eurycerus</i>	AF036276 ¹	90, 58	97, 64
18 nem.ca	<i>Nemorhaedus caudatus</i> *	U17861 ⁹	95, 61	93, 59
19 pse.nay	<i>Pseudois nayaur</i>	AF034732 ²	89, 55	89, 59
20 amm.ler	<i>Ammotragus lervia</i>	AF034731 ²	94, 58	97, 63
21 cap.fal	<i>Capra falconeri</i> *	D84202 ¹⁰	98, 63	95, 66
22 cap.ibe	<i>Capra ibex</i> *	AF034735 ²	98, 63	89, 58
23 hem.jem	<i>Hemitragus jemlahicus</i> *	AF034733 ²	95, 61	90, 61
24 rup.pyr	<i>Rupicapra pyrenaica</i>	AF034726 ²	95, 61	89, 59
25 rup.rup	<i>Rupicapra rupicapra</i>	AF034725 ²	95, 61	94, 64
26 pan.hod	<i>Panthalops hodgsoni</i>	AF034724 ²	98, 63	95, 66
27 bud.tax.tax	<i>Budorcas taxicolor taxicolor</i> *	U17868 ⁹	90, 53	95, 66
28 ovi.amm	<i>Ovis ammon</i> *	AF034727 ²	98, 63	97, 64
29 ovi.vig	<i>Ovis vignei</i> *	AF034729 ²	98, 63	97, 64
30 cap.cri	<i>Capcornis crispus</i> *	AJ304502 ¹¹	98, 63	94, 63
31 ovi.mos	<i>Ovibos moschatus</i>	U17862 ⁹	98, 63	92, 61
32 ore.ame	<i>Oreamnos americanus</i>	AF190632 ¹²	98, 63	94, 62
33 cep.dor	<i>Cephalophus dorsalis</i>	AF091634 ⁶	97, 58	90, 61
34 cep.max	<i>Cephalophus maxwellii</i>	AF096629 ¹³	97, 60	88, 53
35 alc.alc	<i>Alces alces</i>	AJ000026 ¹⁴	95, 61	93, 59
36 hyd.ine	<i>Hydropotes inermis</i>	AJ000023 ¹⁴	97, 60	90, 63
37 mun.mun	<i>Muntiacus muntjak</i> *	AF042718 ¹⁵	90, 58	93, 64
38 cer.ele.kan	<i>Cervus elaphus kansuensis</i> *	AB021098 ¹⁶	98, 63	82, 59
39 cer.ele.xan	<i>Cervus elaphus xanthopygus</i> *	AB021097 ¹⁶	98, 63	82, 59
40 cer.ele.can	<i>Cervus elaphus canadensis</i> *	AB021096 ¹⁶	98, 63	90, 61
41 cer.nip.ca	<i>Cervus nippon centralis</i>	AB021094 ¹⁶	98, 63	90, 61
42 cer.nip.ye	<i>Cervus nippon yesoensis</i>	AB021095 ¹⁶	98, 63	90, 61
43 cer.nip.ke	<i>Cervus nippon keramae</i>	AB021091 ¹⁶	98, 63	90, 61

44	cer.nip.pu	<i>Cervus nippon pulchellus</i>	AB021090 ¹⁶	98, 63	90, 61
45	cer.nip.ni	<i>Cervus nippon nippon</i>	AB021093 ¹⁶	98, 63	90, 61
46	cer.elasc	<i>Cervus elaphus scoticus</i>	AB021099 ¹⁶	98, 63	90, 61
47	cer.dam	<i>Cervus dama</i>	AJ000022 ¹⁴	98, 63	88, 53
48	ran.tar	<i>Rangifer tarandus</i>	AJ000029 ¹⁴	98, 63	89, 57
49	mos.fus	<i>Moschus fuscus</i> [*]	AF026888 ¹⁷	90, 59	90, 61
50	mos.leu	<i>Moschus leucogaster</i> [*]	AF026889 ¹⁷	90, 59	90, 61
51	mos.chr	<i>Moschus chrysogaster</i> [*]	AF026887 ¹⁷	90, 59	90, 61
52	mos.ber	<i>Moschus berezovskii</i> [*]	AF026886 ¹⁷	90, 59	90, 61
53	mos.mos	<i>Moschus moschiferus</i> [*]	AF026883 ¹⁷	90, 59	92, 61
54	kob.ell	<i>Kobus ellipsiprymnus</i>	AF022059 ³	91, 61	95, 66
55	kob.meg	<i>Kobus megaceros</i>	AJ222686 ¹	91, 61	83, 56
56	red.aru	<i>Redunca arundinum</i>	AF096628 ¹³	91, 61	94, 62
57	red.ful	<i>Redunca fulvorufula</i>	AF036284 ¹	89, 57	94, 62
58	neo.mos	<i>Neotragus moschatus</i>	AJ222683 ¹	89, 57	94, 62
59	pel.cap	<i>Pelea capreolus</i>	AF022055 ³	91, 61	90, 61
60	ant.cer	<i>Antilope cervicapra</i> [*]	AF022058 ³	82, 56	93, 64
61	sai.tat	<i>Saiga tatarica</i>	AF064487 ¹⁸	91, 61	92, 61
62	gaz.dam	<i>Gazella dama</i>	AF025954 ³	91, 61	92, 61
63	our.our	<i>Ourebia ourebi</i>	AF036288 ¹	82, 56	82, 59
64	gaz.gaz	<i>Gazella gazella</i> [*]	AJ222682 ¹	91, 61	89, 57
65	rap.mel	<i>Raphicerus melanotis</i>	AF022053 ³	81, 54	80, 50
66	mad.kir	<i>Madoqua kirki</i>	AF022070 ³	90, 58	97, 65
67	ant.lame	<i>Antilocapra americana</i>	AF091629 ⁶	98, 63	98, 68
68	tra.jav	<i>Tragulus javanicus</i> [*]	D32189 ¹⁹	86, 57	86, 59
69	tra.nap	<i>Tragulus napu</i> [*]	X56288 ²⁰	81, 52	93, 58
70	bal.acu	<i>Balaenoptera acutorostrata</i>	X75753 ²¹	89, 56	97, 61
71	bal.bon	<i>Balaenoptera bonaerensis</i>	X75581 ²¹	89, 56	93, 59
72	bal.bor	<i>Balaenoptera borealis</i> [*]	X75582 ²¹	89, 56	93, 59
73	bal.edi	<i>Balaenoptera edeni</i>	X75583 ²¹	89, 56	88, 54
74	esc.rob	<i>Eschrichtius robustus</i> [*]	X75585 ²¹	97, 61	86, 57
75	bal.mus	<i>Balaenoptera musculus</i> [*]	NC_001601 ²²	97, 57	93, 59
76	meg.nov	<i>Megaptera novaeangliae</i> [*]	X75584 ²¹	97, 61	94, 63
77	bal.phy	<i>Balaenoptera physalus</i> [*]	NC_001321 ²³	97, 57	94, 63
78	cap.mar	<i>Caperea marginata</i>	X75586 ²¹	93, 55	91, 53
79	cep.com	<i>Cephalorhynchus commersonii</i>	AF084073 ²⁴	85, 51	88, 55
80	cep.eut	<i>Cephalorhynchus eutropis</i> [*]	AF084072 ²⁴	85, 51	92, 59
81	lag.obl	<i>Lagenorhynchus obliquidens</i>	AF084067 ²⁴	94, 59	92, 59
82	cep.hec	<i>Cephalorhynchus heavisidii</i>	AF084070 ²⁴	89, 56	97, 63
83	cep.hec	<i>Cephalorhynchus hectori</i> [*]	AF084071 ²⁴	89, 56	92, 59
84	lag.aus	<i>Lagenorhynchus australis</i>	AF084069 ²⁴	86, 54	92, 59
85	lag.cru	<i>Lagenorhynchus cruciger</i>	AF084068 ²⁴	86, 54	92, 59
86	lag.obs	<i>Lagenorhynchus obscurus</i>	AF084066 ²⁴	86, 54	92, 59
87	lis.bor	<i>Lissodelphis borealis</i>	AF084064 ²⁴	85, 51	92, 59
88	lis.per	<i>Lissodelphis peronii</i>	AF084065 ²⁴	86, 54	92, 59
89	glo.mac	<i>Globicephala macrorhynchus</i>	AF084055 ²⁴	94, 59	88, 55
90	glo.mel	<i>Globicephala melas</i>	AF084056 ²⁴	94, 59	88, 55
91	fer.att	<i>Feresa attenuata</i> [*]	AF084052 ²⁴	94, 59	92, 59

92 pep.clc	<i>Peponocephala elecra</i> *	AF084053 ²⁴	94, 59	83, 55
93 gra.gni	<i>Grampus griseus</i>	AF084059 ²⁴	97, 61	89, 59
94 pse.cra	<i>Pseudorca crassidens</i> *	AF084057 ²⁴	94, 59	92, 59
95 lag.acu	<i>Lagenorhynchus acutus</i>	AF084075 ²⁴	98, 63	89, 59
96 orci.bre	<i>Orcinus orca</i>	AF084061 ²⁴	86, 57	82, 52
97 orca.bre	<i>Orcaella brevirostris</i>	AF084063 ²⁴	86, 57	91, 54
98 del.cap	<i>Delphinus capensis</i>	AF084087 ²⁴	96, 54	97, 63
99 del.tro	<i>Delphinus tropicalis</i>	AF084088 ²⁴	97, 57	97, 63
100 del.del	<i>Delphinus delphis</i>	AF084055 ²⁴	97, 57	97, 63
101 sten.cly	<i>Stenella clymene</i>	AF084083 ²⁴	97, 57	97, 63
102 sten.coe	<i>Stenella coeruleoalba</i>	AF084082 ²⁴	97, 57	97, 66
103 tur.adu	<i>Tursiops aduncus</i>	AF084092 ²⁴	97, 57	97, 63
104 sten.fro	<i>Stenella frontalis</i>	AF084090 ²⁴	97, 57	97, 63
105 saus.chi	<i>Sousa chinensis</i>	AF084080 ²⁴	97, 57	88, 59
106 sten.lon	<i>Stenella longirostris</i>	AF084103 ²⁴	97, 61	97, 63
107 turs.tru	<i>Tursiops truncatus</i>	AF084095 ²⁴	97, 57	96, 59
108 lage.alb	<i>Lagenorhynchus alborostris</i>	AF084074 ²⁴	97, 61	97, 66
109 sten.bre	<i>Steno bredanensis</i>	AF084077 ²⁴	97, 61	94, 64
110 sota.flu	<i>Sotalia fluviatilis</i>	AF304067 ²⁵	97, 61	97, 63
111 del.leu	<i>Delphinapterus leucas</i>	U72037 ²⁶	97, 61	95, 66
112 mono.mon	<i>Monodon monoceros</i>	U72038 ²⁶	97, 61	95, 66
113 plat.gan	<i>Platanista gangetica</i> *	AF304070 ²⁵	97, 61	86, 59
114 plat.min	<i>Platanista minor</i> *	X92543 ²⁷	97, 61	86, 59
115 kogi.bre	<i>Kogia breviceps</i>	U72040 ²⁶	97, 59	90, 63
116 kogi.sim	<i>Kogia simus</i>	AF304072 ²⁵	96, 55	92, 63
117 phys.cat	<i>Physeter catodon</i>	AF304073 ²⁵	97, 57	80, 58
118 lipo.vex	<i>Lipotes vexillifer</i> *	AF304071 ²⁵	89, 56	88, 53
119 phoc.sin	<i>phocoena sinus</i>	AF084051 ²⁴	87, 49	92, 62
120 ber.bai	<i>Berardius bairdii</i>	X92541 ²⁷	96, 55	90, 59
121 ziph.car	<i>Ziphius cavirostris</i>	X92540 ²⁷	97, 61	89, 57
122 meso.eur	<i>Mesoplodon europaeus</i>	X92537 ²⁷	97, 57	90, 61
123 meso.bid	<i>Mesoplodon bidens</i>	X92538 ²⁷	97, 61	92, 61
124 meso.den	<i>Mesoplodon densirostris</i>	X92536 ²⁷	91, 61	94, 63
125 hype.amp	<i>Hyperoodon ampullatus</i> *	X92539 ²⁷	97, 61	90, 65
126 meso.per	<i>Mesoplodon peruvianus</i>	AF304074 ²⁵	97, 61	86, 58
127 pont.blia	<i>Pontoporia blainvilliei</i>	AF304069 ²⁵	92, 59	88, 55
128 hipp.amp	<i>Hippopotamus amphibius</i>	Y08813 ²⁹	92, 58	95, 66
129 hex.lib	<i>Hexaprotodon liberiensis</i>	Y08814 ²⁹	98, 63	97, 66
130 rhin.son	<i>Rhinoceros sondaicus</i> *	AJ245725 ¹⁰	90, 59	87, 61
131 cera	<i>Ceratotherium simum</i>	NC_001805 ¹²	90, 59	90, 63
132 dic.sum	<i>Dicerorhinus sumatrensis</i>	AJ245723 ¹⁰	90, 59	86, 57
133 equu	<i>Equus asinus</i>	NC_001783 ¹¹	91, 61	73, 51
134 baby.bab	<i>Babyrousa babyrussa</i>	Z50106 ¹¹	89, 56	85, 56
135 phac.afr	<i>Phacocherus africanus</i>	Z50090 ¹¹	90, 59	87, 54
136 sus.scr.ew	<i>Sus scrofa hainanensis</i> *	AF136549 ¹⁴	97, 57	83, 54
137 sus.bar	<i>Sus barbatus</i>	Z50107 ¹¹	97, 57	85, 55
138 lama.gla	<i>Lama glama</i>	U06429 ¹¹	89, 55	85, 53
139 lama.gua	<i>Lama guanicoe</i>	Y08812 ²⁹	89, 54	86, 57

140	vic.vic	<i>Vicugna vicugna</i>	U06430 ¹⁵	89,55	85,53
141	cam.bac	<i>Camelus bactrianus</i>	U06427 ¹⁵	94,58	86,58
142	arc.for	<i>Arctocephalus forsteri</i>	XS2293 ¹⁶	97,60	87,64
143	arc.gaz	<i>Arctocephalus gazella</i>	X82292 ¹⁶	94,58	87,64
144	cum.jub	<i>Eumetopias jubatus</i>	X82311 ¹⁶	97,57	86,57
145	zal.cal	<i>Zalophus californianus</i>	X82310 ¹⁶	89,55	86,57
146	odo.ros	<i>Odobenus rosmarus</i>	X82299 ¹⁶	91,61	81,52
147	pho.vit	<i>Phoca vitulina</i>	X82306 ¹⁶	90,58	87,64
148	pho.fascia	<i>Phoca fasciata</i>	X82302 ¹⁶	93,63	95,66
149	pho.gro	<i>Phoca groenlandica</i>	X82303 ¹⁶	92,59	90,61
150	cys.cri	<i>Cystophora cristata</i>	X82294 ¹⁶	89,56	87,64
151	hyd.lep	<i>Hydrurga leptonyx</i>	X82297 ¹⁶	89,55	82,54
152	lep.wed	<i>Leptonychotes weddelli</i>	X72005 ¹⁷	98,63	91,66
153	mir.leo	<i>Mirounga leonina</i>	X82298 ¹⁶	89,55	82,59
154	eri.bar	<i>Erignathus barbatus</i>	X82295 ¹⁶	89,56	87,63
155	mon.sch	<i>Monachus schauinslandi</i>	X72209 ¹⁷	91,61	87,60
156	hela.mal	<i>Helarctos malayanus</i> *	U18899 ¹⁸	84,54	90,63
157	sel.thi	<i>Selenarctos thibetanus</i> *	AB020910 ¹⁹	89,57	87,64
158	ail.ful	<i>Ailurus fulgens</i> *	X94919 ⁴⁰	93,55	87,64
159	fel	<i>Felis carus</i>	NC_001700 ⁴¹	85,56	90,63
160	can	<i>Canis familiaris</i>	NC_002008 ⁴²	98,58	84,54
161	tal	<i>Talpa europaea</i>	NC_002391 ⁴³	81,50	92,57
162	glasab	<i>Glaucomys sabrinus</i>	AF011738 ⁴⁴	90,59	82,54
163	gla.vol	<i>Glaucomys volans</i>	AB030261 ⁴⁵	90,59	87,60
164	hyl.pha	<i>Hylopetes phayrei</i> *	AB030259 ⁴⁵	91,61	81,50
165	per.set	<i>Petromys setosus</i> *	AB030260 ⁴⁵	91,61	81,50
166	bel.pea	<i>Belomys pearsonii</i> *	AB030262 ⁴⁵	91,61	87,64
167	pte.mom	<i>Pteromys momonga</i> *	AB030263 ⁴⁵	97,61	90,63
168	gala.demi	<i>Galago demidoff</i>	AF271411 ⁴⁶	97,58	87,64
169	pero.pot	<i>Perodicticus potto</i>	AF271413 ⁴⁶	97,60	87,63
170	gala.mat	<i>Galago matschiei</i>	AF271409 ⁴⁶	97,60	90,61
171	gala.moh	<i>Galago moholi</i>	AF271410 ⁴⁶	97,57	95,66
172	oto.gar	<i>Otolemur garnettii</i>	AF271412 ⁴⁶	92,58	87,60
173	lor.tar	<i>Loris tardigradus</i> *	US3581 ⁴⁷	97,60	93,59
174	nyc.cou	<i>Nycticebus coucang</i> *	US3580 ⁴⁷	97,60	95,66
175	mus	<i>Mus musculus</i>	NC_001569 ⁴⁸	97,60	86,59
176	gorr	<i>Gorilla gorilla</i>	NC_001645 ⁴⁹	89,57	80,58
177	homo	<i>Homo sapiens sapiens</i>	NC_001807 ⁵⁰	96,55	84,64
178	dug.dug	<i>Dugong dugong</i> *	U07564 ⁵¹	97,60	89,59
179	ele.max	<i>Elephas maximus</i> *	AB002412 ⁵²	97,60	76,57
180	afr.con	<i>Afropavo congensis</i>	AF013760 ⁵³	97,58	87,63
181	pavo.mul	<i>Pavo muticus</i> *	AF013763 ⁵³	97,57	87,63
182	tra.bly	<i>Tragopan blythii</i> *	AF200722 ⁵⁴	89,55	85,57
183	tra.sac	<i>Tragopan satyra</i> *	AF229837 ⁵⁴	89,55	86,61
184	tra.cob	<i>Tragopan caboti</i>	AF200723 ⁵⁴	89,55	86,61
185	tra.tem	<i>Tragopan temminckii</i> *	AF029502 ⁵⁵	89,55	81,56
186	arg.arg	<i>Argusianus argus</i>	AF013761 ⁵⁵	89,55	87,63
187	cat.wal	<i>Catrcus wallacii</i> *	AF029792 ⁵⁵	88,54	85,57

188 cro.cro	<i>Crossoptilon crassoptilon</i> *	AF028794 ⁵³	89, 55	85, 57
189 sym.ree	<i>Syrmaticus reevesi</i> *	AF028801 ⁵³	89, 55	85, 57
190 bam.tho	<i>Bambusicola thoracica</i> *	AF028790 ⁵³	80, 48	94, 64
191 fra.fra	<i>Francolinus francolinus</i>	AF013762 ⁵³	97, 58	86, 61
192 ith.cru	<i>Ithaginis cruentus</i> *	AF068193 ⁵³	98, 63	85, 57
193 ant.par	<i>Anthropoides paradiseus</i>	U27557 ⁵⁶	85, 56	82, 58
194 ant.vir	<i>Anthropoides virgo</i>	U27545 ⁵⁶	84, 54	82, 52
195 gru.ant.an	<i>Grus antigone antigone</i>	U11060 ⁵⁷	90, 53	87, 63
196 gru.ant.gi	<i>Grus antigone gillae</i>	U11064 ⁵⁷	90, 53	87, 63
197 gru.any.sh	<i>Grus antigone sharpei</i>	U11061 ⁵⁷	90, 53	87, 63
198 gru.leu	<i>Grus leucogeranus</i> *	U27549 ⁵⁶	90, 53	87, 63
199 gru.can.pr	<i>Grus canadensis pratensis</i>	U27553 ⁵⁶	97, 60	87, 63
200 gru.can.ro	<i>Grus canadensis rowani</i>	U27552 ⁵⁶	97, 60	87, 63
201 gru.can.ta	<i>Grus canadensis tabida</i>	U27551 ⁵⁶	98, 63	87, 63
202 gru.can.ca	<i>Grus canadensis canadensis</i>	U27554 ⁵⁶	97, 61	87, 63
203 gru.ame	<i>Grus americana</i>	U27555 ⁵⁶	90, 53	87, 63
204 gru.gru	<i>Grus grus</i>	U27546 ⁵⁶	89, 54	87, 63
205 gru.mon	<i>Grus monacha</i> *	U27548 ⁵⁶	90, 53	87, 63
206 gru.nig	<i>Grus nigricollis</i> *	U27547 ⁵⁶	90, 58	87, 63
207 gru.jap	<i>Grus japonensis</i>	U27550 ⁵⁶	81, 54	87, 63
208 cic.boy	<i>Ciconia boyciana</i> *	NC_002196 ⁵⁸	94, 58	79, 60
209 rhe.ame	<i>Rhea americana</i>	AF090339 ⁵⁹	93, 63	79, 60
210 ant.alb	<i>Anthracoboceros albirostris</i> *	U89190 ⁶⁰	97, 61	86, 59
211 fal.fam	<i>Falco femoralis</i>	U83310 ⁶¹	97, 61	86, 60
212 fal.ver	<i>Falco verpertinus</i>	U83311 ⁶¹	97, 61	85, 57
213 fal.par	<i>Falco peregrinus</i> *	U83307 ⁶¹	97, 61	84, 52
214 fal.spa	<i>Falco sparverius</i>	U83306 ⁶¹	92, 59	80, 51
215 ayt.ame	<i>Aythya americana</i>	NC_000877 ⁶²	98, 63	94, 62
216 smi.sha	<i>Smithornis sharpei</i>	NC_000879 ⁵⁹	97, 58	90, 61
217 vid.cha	<i>Vidua chalybeata</i>	NC_000880 ⁵⁹	97, 60	87, 64
218 chry.pic	<i>Chrysemys picta</i>	NC_002073 ⁶³	89, 56	86, 57
219 emy.orb.ku	<i>Emys orbicularis</i>	AJ131425 ⁶⁴	90, 59	94, 63
220 che.mud	<i>Chelonia mydas</i> *	AB012104 ⁵⁵	90, 58	94, 63
221 eum.egr	<i>Eumeces egregius</i>	AB016606 ⁵³	86, 55	73, 51

Table 2. Multiple sequence alignment of 472 bp segments of mitochondrial cytochrome b gene of 221 animal species

cer.elaxan	TACCATGAGGACAAATATCATTCTGAGGAGCAACGGTCATTACCAACCTCTCAGCAA 60
cer.elacan	TACCATGAGGACAAATATCATTCTGAGGAGCAACAGTCATTACCAACCTCTCAGCAA 60
cer.nip.cent	TACCATGAGGACAAATATCATTCTGAGGAGCAACAGTCATTACCAACCTCTCAGCAA 60
cer.nip.yes	TACCATGAGGACAAATATCATTCTGAGGAGCAACAGTCATTACCAACCTCTCAGCAA 60
cer.nip.ker	TACCATGAGGACAAATATCATTCTGAGGAGCAACAGTCATTACCAACCTCTCAGCAA 60
cer.nip.pul	TACCATGAGGACAAATATCATTCTGAGGAGCAACAGTCATTACCAACCTCTCAGCAA 60
cer.nip.nip	TACCATGAGGACAAATATCATTCTGAGGAGCAACAGTCATTACCAACCTCTCAGCAA 60
cer.elasco	TACCATGAGGACAAATATCATTCTGAGGAGCAACAGTCATCACCAACCTCTCAGCAA 60
cer.dam	TACCATGAGGACAAATATCATTCTGAGGAGCAACAGTTATTACCAATCTCTCAGCAA 60
ran.tar	TACCATGAGGACAAATATCATTCTGAGGAGCAACAGTTATCACAAACCTCTCAGCAA 60
mos.fus	TACCTTGAGGACAAATATCTTCTGAGGAGGACAGTTATTACCAATCTCTCAGCAA 60
mos.leu	TACCTTGAGGACAAATATCTTCTGAGGAGCAACAGTTATTACCAATCTCTCAGCAA 60
mos.chr	TACCTTGAGGACAAATATCTTCTGAGGAGCAACAGTTATTACCAATCTCTCAGCAA 60
mos.ber	TACCTTGAGGACAAATATCTTCTGAGGAGCAACAGTTATTACCAATCTCTCAGCAA 60
mos.mos	TACCTTGAGGACAAATATCTTCTGAGGAGCAACAGTCATCACTAACCTCTCAGCAA 60
tra.jav	TACCCCTGAGGACAGATATCTTCTGAGGAGGCAACAGTCATCACCAACCTCTCAGCAA 60
trag.nap	TACCCCTGAGGGCAAATATCTTCTGAGGAGCTACAGTCATCACTAACCTCTCAGCAA 60
bala.acu	TACCCCTGAGGACAAATATCATTTGAGGTGCAACCGTCATCACCAACCTCTCAGCAA 60
bala.bon	TACCCCTGAGGACAAATATCATTTGAGGCGAACCGTCATCACCAACCTCTCAGCAA 60
bala.bor	TACCCCTGAGGACAAATATCATTTGAGGCGAACCGTCATCACCAACCTCTCAGCAA 60
bala.edi	TACCCCTGAGGACAAATATCATTTGAGGCGAACCGTCATCACCAACCTCTCAGCAA 60
esch.rob	TACCCCTGAGGACAAATATCATTTGAGGCGAACCGTTATCACCAACCTCTCAGCAA 60
bala.mus	TGCCCTGAGGACAAATATCATTTGAGGCGAACCGTCATCACCAACCTCTCAGCAA 60
mega.nov	TACCCCTGAGGACAAATATCATTTGAGGCGAACCGTCATCACCAACCTCTCAGCAA 60
bala.phy	TGCCCTGAGGACAAATATCATTTGAGGCGAACCGTCATCACCAACCTCTCAGCAA 60
cap.mar	TGCCCTGAGGACAGATATCATTTGAGGCGAACCGTCATCACCAACCTCTCAGCAA 60
ceph.com	TACCCCTGGGGACAGATATCATTTGAGGCGAACAGTCATCACCAACCTCTCAGCAA 60
ceph.eut	TACCCCTGAGGACAGATATCATTTGAGGCGAACAGTCATCACCAACCTCTCAGCAA 60
lage.obl	TACCCCTGAGGACAGATATCATTTGAGGCGAACAGTCATCACCAACCTCTCAGCAA 60
ceph.hea	TACCCCTGAGGACAAATATCATTTGAGGCGAACAGTCATCACCAACCTCTCAGCAA 60
ceph.hec	TACCCCTGAGGACAAATATCATTTGAGGCGAACAGTCATCACCAACCTCTCAGCAA 60
lage.aus	TACCCCTGAGGACAGATATCATTTGAGGCGAACAGTCATCACCAACCTCTCAGCAA 60
lage.cru	TACCCCTGAGGACAGATATCATTTGAGGCGAACAGTCATCACCAACCTCTCAGCAA 60
lage.obs	TACCCCTGAGGACAGATATCATTTGAGGCGAACAGTCATCACCAACCTCTCAGCAA 60
lisso.bor	TACCCCTGAGGGCAGATATCATTTGAGGCGAACCGTCATCACCAACCTCTCAGCAA 60
lisso.per	TACCCCTGAGGACAGATATCATTTGAGGCGAACCGTCATCACCAACCTCTCAGCAA 60
glo.mac	TACCCCTGAGGACAGATATCATTTGAGGCGAACCGTCATCACCAATCTCTCAGCAA 60
glo.mel	TACCCCTGAGGACAGATATCATTTGAGGCGAACCGTCATCACCAATCTCTCAGCAA 60
fere.att	TACCCCTGAGGACAGATATCATTTGAGGCGAACCGTCATCACCAATCTCTCAGCAA 60
pepo.ele	TACCCCTGAGGACAGATATCATTTGAGGCGAACCGTCATCACCAATCTCTCAGCAA 60
gram.gri	TACCCCTGAGGACAAATATCATTTGAGGCGAACCGTCATCACCAATCTCTCAGCAA 60
pse.cra	TACCCCTGAGGACAGATATCATTTGAGGCGAACCGTCATCACCAATCTCTCAGCAA 60
lage.acu	TACCATGAGGACAAATATCATTTGAGGCGAACCGTTATCACCAATCTCTCAGCAA 60
orti.bre	TACCCCTGAGGACAGATATCATTTGAGGCGAACCGTCATTACTAATCTCTCAGCAA 60
erca.bre	TACCCCTGAGGACAGATATCCTTCTGAGGCGAACCGTCATCACCAATCTCTCAGCAA 60
del.cap	TGCCCTGGGGACAAATATCATTTGAGGCGAACCGTCATCACCAACCTCTCAGCAA 60
del.cro	TGCCCTGAGGACAAATATCATTTGAGGCGAACCGTCATCACCAACCTCTCAGCAA 60
del.del	TGCCCTGAGGACAAATATCATTTGAGGCGAACCGTCATCACCAACCTCTCAGCAA 60
sten.cly	TGCCCTGAGGACAAATATCATTTGAGGCGAACCGTCATCACCAACCTCTCAGCAA 60
sten.coe	TGCCCTGAGGACAAATATCATTTGAGGCGAACCGTCATCACCAACCTCTCAGCAA 60
tur.adu	TGCCCTGAGGACAAATATCATTTGAGGCGAACCGTCATCACCAACCTCTCAGCAA 60
sten.fro	TGCCCTGAGGACAAATATCATTTGAGGCGAACCGTCATCACCAACCTCTCAGCAA 60
saus.chi	TGCCCTGAGGACAAATATCATTTGAGGCGAACCGTTATCACCAACCTCTCAGCAA 60
sten.lan	TACCCCTGAGGACAAATATCATTTGAGGCGAACCGTCATCACCAACCTCTCAGCAA 60
turs.tru	TGCCCTGAGGACAAATATCATTTGAGGCGAACCGTCATCACCAACCTCTCAGCAA 60
lage.alb	TACCCCTGAGGACAAATATCATTTGAGGCGAACCGTCATCACTAATCTCTCAGCAA 60
sten.bre	TACCCCTGAGGACAAATATCATTTGAGGCGAACCGTCATTACCAACCTCTCAGCAA 60
sota.flu	TACCCCTGAGGACAAATATCATTTGAGGCGAACCGTCATTACCAATCTCTCAGCAA 60

del.leu	TACCCCTGAGGACAAATATCATTCTGAGGCAGAACCGTCATTACCAATCTCCTATCAGCAA 60
mono.mon	TACCCCTGAGGACAAATATCATTCTGAGGTCAACCGTCATCACCAACCTCTATCAGCAA 60
plat.gan	TACCCCTGAGGACAAATATCATTCTGAGGTCAACCGTCATCACCAACCTTTATCAGCAA 60
plat.min	TACCCCTGAGGACAAATATCATTCTGAGGTCAACCGTCATCACCAACCTTATCAGCAA 60
kogi.bre	TACCCCTGAGGACAAATATCATTCTGAGGTCAACCGTCATCACCAACCTTATCAGCAA 60
kogi.sim	TGCCCTGAGGCAAAATATCATTCTGAGGAGCAACCGTCATCACCAACCTTATCAGCAA 60
phys.cat	TGCCCTGAGGACAAATATCATTCTGAGGCGCAACCGTTATCACAAACCTTATCAGCAA 60
lipo.vex	TACCCCTGAGGACAAATATCATTCTGAGGCGCAACCGTCATCAGTATCTTCTATCAGCAA 60
phoc.sin	TGCCCTGGGCACAAATATCATTGAGGTGCTACCGTCATCACAAACCTTATCAGCAA 60
bera.bai	TGCCCTGAGGCAAAATATCATTCTGAGGTCAACCGTCATCACAAACCTTATCAGCAA 60
ziph.car	TACCTTGAGGACAAATATCATTCTGAGGTCAACCGTCATCACAAACCTTATCAGCAA 60
meso.eur	TTCCCTGAGGACAAATATCATTCTGAGGCGCAACCGTTATTACCAACCTCTATCCGCCA 60
meso.bid	TACCCCTGAGGACAAATATCATTCTGAGGCGCAACCGTCATTACCAATCTCCTATCCGCTA 60
meso.den	TACCATGAGGACAAATATCCTTCTGAGGTGCACTGTCACTAACCTCTATCAGCAA 60
hype.amp	TACCCCTGAGGACAAATATCATTCTGAGGCGCAACCGTCATCACCAATCTCCTATCCGCCA 60
meso.per	TACCCCTGAGGACAAATGTCACTCTGAGGTGCCACTGTCACTAACCTCTATCAGCAA 60
pont.bla	TACCATGAGGACAAATATCATTCTGAGGGGCAACAGTCATCACCAACTTACTATCAGCAA 60
hex.lib	TGCCATGAGGACAAATGTCACTCTGAGGGGCAACAGTCATTACCAACTTACTGTCACTA 60
hipp.amp	TACCATGAGGTCAAATATCCTTCTGAGGAGCCACAGTTATCACAAATCTCCTCTCAGCAA 60
dic.sum	TACCATGAGGTCAAATATCCTTCTGAGGGGCTACAGTCATTACAAATCTCCTCTCAGCAA 60
rhin.scn	TACCATGAGGCAAAATATCCTTCTGAGGGGCTACAGTCATTACAAACCTCTCTCAGCAA 60
cera	TACCATGAGGACAAATATCCTTCTGAGGAGCTACCGTCATTACAAACCTACTATCAGCAA 60
equu	TACCATGAGGACAAATATCCTTCTGAGGAGCTACCGTCATTACAAACCTACTATCAGCAA 60
baby.bab	TACCTTGAGGACAAATATCATTCTGAGGAGCTACCGTCATTACAAACCTACTATCAGCAA 60
phac.afr	TGCCCTGAGGACAAATATCATTCTGAGGAGCTACGGTCATCACAAATCTACTATCAGCAA 60
sus.baz	TGCCCTGAGGACAAATATCATTCTGAGGAGCTACGGTCATCACAAATCTACTATCAGCAA 60
sus.scr.ewb3	TCCCATGAGGACAAATATCATTCTGAGGGGCAACAGTAATTACAAACCTACTCTCAGCAA 60
lama.gla	TCCCATGAGGCAAAATATCATTCTGAGGGGCAACAGTAATTACAAACCTACTCTCAGCAA 60
lama.gua	TCCCATGAGGACAAATATCATTCTGAGGGGCAACAGTAATTACAAACCTACTCTCAGCAA 60
vic.vic	TCCCATGAGGACAGATATCATTCTGGGGAGCAACAGTAATTACAAACCTACTCTCAGCAA 60
cam.bac	TTCCATGAGGACAAATATCATTCTGAGGAGCTACGGTCATTACCAACCTCTATCAGCAA 60
arc.for	TTCCATGAGGACAGATATCATTCTGAGGAGCTACGGTCATTACCAACCTCTGTCACTA 60
arc.gaz	TTCCATGAGGACAAATATCATTCTGAGGAGCTACGGTCATTACCAACCTCTGTCACTA 60
eum.jub	TTCCGTGAGGACAAATATCATTCTGAGGAGCAACCGTCATTACCAACCTCTATCAGCAA 60
zal.cal	TTCCATGAGGACAAATATCATTCTGAGGAGCAACCGTCATTACCAACCTCTGTCACTA 60
odo.ros	TACCATGAGGACAAATATCATTCTGAGGAGCAACCGTCATCACCAACTTCTGTCACTA 60
pho.fasciata	TACCATGAGGACAAATATCATTCTGAGGAGCAACAGTCATCACCAACTTACTATCAGCAA 60
pho.gro	TACCATGAGGACAAATATCATTCTGAGGAGCAACAGTCATTACCAACTTACTATCAGCAA 60
pho.vit	TACCGTGAGGACAAATATCATTCTGAGGAGCAACAGTCATTACCAACTTACTATCAGCAA 60
cys.cri	TGCCATGAGGACAAATATCATTCTGAGGAGCAACCGTTATTACCAACTTACTATCAGCAA 60
hyd.lep	TACCATGAGGACAAATATCATTCTGAGGAGCAACCGTCATTACCAACTTACTATCAGCAA 60
lep.wed	TACCATGAGGACAAATATCATTCTGAGGAGCAACCGTCATTACCAACTTACTATCAGCAA 60
mir.leo	TACCATGAGGACAAATATCATTCTGAGGAGCAACCGTCATTACCAACTTACTATCAGCAA 60
eri.bar	TACCATGAGGACAAATATCATTCTGAGGAGCAACCGTCATTACCAACTTACTATCAGCAA 60
mon.sch	TACCATGAGGACAAATATCATTCTGAGGAGCAACCGTCATTACCAACTTACTATCAGCAA 60
hela.mal	TACCCCTGAGGCCAAATGTCTTCTGAGGAGCAACCGTCATTACCAACTTCTATCAGCAA 60
sel.thi	TACCCCTGAGGCCAAATATCCTTCTGAGGAGCAACCGTCATTACCAACCTCTATCAGCAA 60
ail.ful	TGCCCTGAGGACAGATATCATTCTGAGGAGCAACCGTTATCACCAACCTACTATCAGCAA 60
fel	TACCATGAGGACAAATATCATTCTGAGGAGCAACCGTCATTACCAACTTACTATCAGCAA 60
can	TACCATGAGGACAAATATCATTCTGAGGAGCAACCGTCATTACCAACTTACTATCAGCAA 60
tal	TACCATGGGTCAAATATCATTCTGAGGAGCAACCGTCATTACCAACTTACTATCAGCAA 60
gla.sab	TACCCCTGAGGACAAATATCTTCTGAGGAGCAACCGTCATTACCAACCTCTCTCAGCAA 60
gla.vol	TACCCCTGAGGACAAATATCTTCTGAGGAGCAACCGTCATTACCAACCTCTCTCAGCAA 60
hyl.pha	TACCATGAGGACAAATATCTTCTGAGGAGCAACCGTCATTACCAACTTACTATCAGCAA 60
pet.set	TACCATGAGGACAAATATCTTCTGAGGAGCAACCGTCATTACCAACTTACTATCAGCAA 60
bel.pea	TACCATGAGGACAAATATCTTCTGAGGAGCAACCGTCATTACCAACTTCTCTCAGCAA 60
psc.mcm	TACCCCTGAGGACAAATATCTTCTGAGGAGCAACCGTCATTACCAACTTCTCTCAGCAA 60
gala.demi	TTCCATGAGGCCAAATATCATTCTGAGGAGCAACCGTCATTACCAACTTACTATCAGCAA 60

pero.pot	TCCCCATGAGGACAAATATCATTCTGAGGTGCCACAGTAATCACAAACCTCCTATCAGCAA	60
gala.mat	TCCCCATGAGGACAAATATCATTCTGAGGGCGTACCGTAATCACAAACCTCCTCTCAGCAA	60
gala.moh	TTCCGTGAGGACAAATATCATTCTGAGGGCGTACCGTAATCACTAACCTCCTCTCAGCAA	60
oto.gaz	TCCCCATGAGGACAAATGTCAATTCTGAGGGCCAACCGTAATCACAAACCTCCTCTCAGCAA	60
lor.tar	TCCCCATGAGGACAAATATCATTCTGAGGAGCCACAGTAATTACCAACCTACTATCAGCAA	60
nyc.cou	TCCCCATGAGGACAAATATCATTCTGAGGTGCCACCGTACATCACTAACCTACTATCAGCAA	60
mus	TTCCCATGAGGACAAATATCATTCTGAGGTGCCACAGTAATTACAAACCTCCTATCAGCAA	60
gorz	TCCCCATGAGGCCAAATATCATTCTGAGGAGCCACAGTAATTACAAACTTGTCTTCCGCAA	60
hemo	TCCCCGTGAGGCCAAATATCATTCTGAGGGGCCACAGTAATTACAAACTTACTATCCGCAA	60
dug.dug	TCCCCATGAGGACAAATATCATTCTGAGGAGCAACCGTAAATTACTAACCTCCTCTCAGCTA	60
ele.max	TTCCCATGAGGACAAATATCATTCTGAGGGGGCAACTGTACATCACAAACCTATACTCAGCAA	60
afr.ccn	TCCCCATGAGGCCAAATATCATTCTGAGGGGGCAACTGTACATCACAAACCTATACTCAGCAA	60
pavo.mut	TCCCCATGAGGTCAAATGTCAATTCTGAGGGGGCAACTGTAAATCACAAATCTATTCTCAGCAA	60
tra.bly	TCCCCATGAGGACAAATATCATTCTGAGGGGGCTACCGTACATCACAAACTTATTCTCAGCAA	60
tra.sac	TCCCCATGAGGACAAATATCATTCTGAGGGGGCTACCGTACATCACAAATTATTCTCAGCAA	60
tra.cob	TCCCCATGAGGACAAATATCATTCTGAGGGGGCTACCGTACATCACAAATTATTCTCAGCAA	60
tra.tem	TCCCCATGAGGACAAATATCATTCTGAGGGGGCTACCGTACATCACAAATTATTCTCAGCAA	60
arg.arg	TCCCCATGAGGACAAATATCATTCTGAGGGGGCTACCGTACATCACAAACCTATTCTCAGCAA	60
cat.wal	TCCCCATGAGGACAAATATCATTCTGAGGGGGCTACCGTACATCACAAATTCTATTCTCAGCAA	60
cro.cro	TCCCCATGAGGACAAATATCATTCTGAGGGGGCAACCGTACATCACAAATTCTATTCTCAGCAA	60
sym.ree	TCCCCATGAGGACAAATATCATTCTGAGGGGGCTACCGTACATCACAAATTCTATTCTCAGCAA	60
bam.tho	TCCCCATGAGGACAAATATCATTCTGAGGGGGCTACCGTACATCACAAATTCTATTCTCAGCAA	60
fra.fra	TCCCCATGAGGACAAATATCATTCTGAGGGGGCTACCGTACATCACAAATTCTATTCTCAGCAA	60
ith.cru	TACCATGAGGACAAATATCATTCTGAGGAGCCACTGTAAATCACAAACCTACTCTCAGCAA	60
ant.par	TACCATGAGGACAAATGTCAATTCTGAGGGGGCTACAGTCAATCACAAATTCTCTTCAGCCG	60
ant.vir	TACCATGGGGACAAATGTCAATTCTGAGGGGGCTACAGTAAATCACAAATTCTCTTCAGCCG	60
gru.ant.ant	TACCATGAGGACAAATATCATTCTGAGGGGGCTACAGTCAATCACAAATTCTCTTCAGCCG	60
gru.ant.gil	TACCATGAGGACAAATATCATTCTGAGGGGGCTACAGTCAATCACAAATTCTCTTCAGCCG	60
gru.ant.sha	TACCATGAGGACAAATATCATTCTGAGGGGGCTACAGTCAATCACAAATTCTCTTCAGCCG	60
gru.leu	TACCATGAGGACAAATATCATTCTGAGGGGGCTACAGTCAATCACAAATTCTCTTCAGCCG	60
gru.can.pra	TGCCATGAGGACAAATATCATTCTGAGGGGGCTACAGTCAATTACCAACCTCTTCAGCCG	60
gru.can.row	TGCCATGAGGACAAATATCATTCTGAGGGGGCTACAGTCAATTACCAACCTCTTCAGCCG	60
gru.can.tab	TACCATGGGGACAAATATCATTCTGAGGGGGCTACAGTCAATTACCAACCTCTTCAGCCG	60
gru.can.can	TACCATGGGGACAAATATCATTCTGAGGGGGCTACAGTCAATTACCAACCTCTTCAGCCG	60
gru.ame	TACCATGGGGACAAATATCATTCTGAGGGGGCTACAGTAAATCACAAATTCTCTTCAGCCG	60
gru.gru	TACCATGGGGACAAATGTCAATTCTGAGGGGGCTACAGTAAATCACAAATTCTCTTCAGCCG	60
gru.mca	TACCATGGGGACAAATATCATTCTGAGGGGGCTACAGTAAATCACAAACCTCTTCAGCCG	60
gru.nig	TACCATGGGGACAAATATCATTCTGAGGGGGCTACAGTAAATCACAAACCTCTTCAGCCG	60
gru.jap	TACCATGGGGACAAATATCATTCTGAGGGGGCTACAGTAAATCACAAACCTATTCTCAGCTA	60
cic.boy	TGCCATGAGGACAGATATCATTCTGAGGGGGCTACAGTAAATCACAAACCTATTCTCAGCTA	60
the.ame	TACCATGAGGACAAATATCATTCTGAGGGAGCTACAGTAAATTACCAACCTATTCTCAGCTA	60
att.alb	TACCATGAGGGCAAATATCATTCTGAGGGGCCACCGTACATCACAAACCTATTCTCAGCTA	60
fal.fam	TACCATGAGGACAAATATCATTCTGAGGGGGCTACAGTCAATCACAAACCTATTCTCAGCTA	60
fal.vec	TACCATGAGGACAAATATCATTCTGAGGAGCCACAGTCAATTACCAACCTATTCTCAGCTA	60
fal.per	TACCATGAGGACAAATATCATTCTGAGGAGCCACAGTCAATTACCAACCTATTCTCAGCTA	60
fal.spa	TACCATGAGGACAAATGTCAATTCTGAGGGAGCCACAGTCAATTACCAACCTATTCTCAGCTA	60
ayc.ame	TACCATGAGGACAAATATCATTCTGAGGGGGCCACCGTACATCACAAACCTATTCTCAGCTA	60
smi.sha	TCCCCATGAGGCCAAATATCATTCTGAGGTGCTTACAGTAATCACAAACCTCTTCAGCTA	60
vid.cha	TGCCATGAGGACAAATATCATTCTGAGGGGGCTACAGTAAATCACAAACCTATTCTCAGCTA	60
chry.pic	TACCATGGGGCAAATATCATTCTGAGGTGCTTACAGTAAATCACAAACCTCTTCAGCTA	60
emy.orb.kuc	TACCATGAGGCCAAATATCATTCTGAGGTGCTTACAGTAAATCACAAACCTCTTCAGCTA	60
che.mud	TACCATGAGGACAAATATCATTCTGAGGGGCCACCGTACATCACAAACCTACTCTCAGCTA	60
eum.egg	TCCCCATGGGACAGATATCATTCTGAGGGGCCACCGTACATCACAAACCTATTCTCAGCTA	60
	• •	
sep.mel	TCCCCATACATTGGTACAAACCTAGTAAATCTGAGGGGTTTCACTAGACAAAG	120
ore.ore	TTCCCATATATTGGCACAAACCTGGTGGTAAATCTGAGGGGTTTCACTAGACAAAG	120
adi.nas	TCCCCATATATGGCACAGACCTTGTGAAATTATCTGAGGGGTTTCACTAGACAAAG	120

oxy.dam	TCCCATACATCGGCACAAAACCTAGTCGAATGAATTGAGGGGGATTCTCCGTAGACAAAG	120
hip.equ	TCCCATATATTGGCACAAACCTAGTCGAATGAATCTGACGGGGATTCTCCGTAGACAAAG	120
alc.bus	TCCCATATATTGGCACAGACCTAGTAGAATGAATCTGAGGGGGATTCTCACTAGACAAAG	120
sig.lic	TCCCATATATTGGCACAGACCTAGTAGAATGAATCTGAGGGGGATTCTCACTAGACAAAG	120
bea.hun	TTCCCATATATTGGCACAAACCTAGTCGAATGAATCTGAGGGGGATTCTCACTAGACAAAG	120
dam.lun	TTCCCATACATCGGCACAAAACCTAGTCGAATGAATCTGAGGGGGATTCTCACTAGACAAAG	120
con.tau	TCCCATACATGGCACTAAACCTAGTCGAATGAATCTGAGGGGGATTCTCACTAGACAAAG	120
amm.les	TCCCATACATGGCACAGACCTGGCGAATGAATCTGAGGGGGATTCTCACTAGACAAAG	120
pse.ray	TCCCATATATTGGCACAAACCTAGTCGAATGGATCTGAGGGGGATTCTCACTAGACAAAG	120
cap.ibe	TCCCATATATTGGCACAAAACCTAGTCGAATGAATCTGAGGGGGATTCTCACTAGACAAAG	120
hem.jem	TTCCCATATATTGGCACAAACCTAGTCGAATGAATCTGAGGGGGATTCTCACTAGACAAAG	120
cap.fal	TCCCATATATTGGCACAAACCTAGTCGAATGAATCTGAGGGGGATTCTCACTAGACAAAG	120
sup.pyr	TCCCATACATGGCACAGACCTAGTCGAATGGATCTGAGGGGGATTCTCACTAGACAAAG	120
sup.sup	TCCCGTATATTGGCACAGACCTAGTCGAATGAATCTGAGGGGGATTCTCACTAGACAAAG	120
rem.cau	TCCCATATATTGGCACAAACCTAGTCGAATGAATCTGAGGGGGATTCTCACTAGACAAAG	120
bud.tax.tax	TCCCATACATGGCACAAACCTAGTCGAATGGATCTGAGGGGGATTCTCACTAGACAAAG	120
pan.hod	TCCCATACATGGCACAGACCTAGTCGAATGAATCTGAGGGGGATTCTCACTAGACAAAG	120
ovi.amm	TTCCCATATATTGGCACAAACCTAGTCGAATGAATCTGAGGGGGATTCTCACTAGACAAAG	120
ovi.vig	TTCCCATATATTGGCACAAACCTAGTCGAATGAATCTGAGGGGGATTCTCACTAGACAAAG	120
cap.cri	TCCCATATATTGGCACAAACCTAGTCGAATGAATCTGAGGGGGATTCTCACTAGACAAAG	120
cvi.mcs	TCCCATACATCGGCACAAAACCTAGTCGAATGAATCTGAGGGGGATTCTCGGTAGACAAAG	120
ore.ame	TTCCCATACATCGGTACAGACCTAGTCGAATGAATCTGAGGGGGATTCTCGGTAGACAAAG	120
cep.dor	TCCCATACATTGGTACAAACCTAGTCGAATGAATCTGAGGGGGATTCTCGGTAGACAAAG	120
cep.max	TTCCCATATATCGGCACAAACCTAGTCGAATGAATCTGAGGGGGATTCTCGGTAGACAAAG	120
bis.bca	TCCCATACATCGGCACAAACCTAGTCGAATGAATCTGAGGGGGATTCTCGGTAGACAAAG	120
bos.gru	TTCCCATACATCGGCACAAACCTAGTCGAATGGATCTGAGGGGGTTCTCACTAGACAAAG	120
bos.cra	TCCCATACATCGGCACAAACCTAGTCGAATGAATCTGAGGGGGATTCTCACTAGACAAAG	120
bub.mia	TCCCATACATGGCACAAACCTAGTCGAATGGATCTGAGGGGGATTCTCACTAGACAAAG	120
buba.bub	TCCCATACATGGTACAGTCGGTGAATGAATTGAGGGGGATTCTCACTAGACAAAG	120
tra.ang	TCCCATATATTGGCACCAACCTAGTCGAATGAATCTGAGGGGGATTCTCGGTAGACAAAG	120
tra.eur	TCCCTTATATTGGCACCCAGCCTAGTCGAATGAATCTGAGGGGGATTCTCGGTAGACAAAG	120
kob.ell	TTCCCATACATTGGCACAAACCTAGTCGAATGAATCTGAGGGGGATTCTCACTAGACAAAG	120
kob.mes	TCCCATATATCGGCACAAACCTAGTCGAATGAATCTGAGGGGGATTCTCACTAGACAAAG	120
red.atu	TCCCATACATCGGCACAAACCTAGTCGAATGAATCTGAGGGGGATTCTCGGTAGACAAAG	120
red.ful	TCCCATATATCGGCACAAACCTAGTCGAATGAATCTGAGGGGGATTCTCGGTAGACAAAG	120
red.mos	TCCCATACATGGTACAAACCTAGTCGAATGAATCTGAGGGGGATTCTCGGTAGACAAAG	120
pel.cap	TCCCATACATCGGCACAGACCTAGTCGAATGAATCTGAGGGGGATTCTCGGTAGACAAAG	120
gaz.dam	TCCCATACATCGGCACAAAACCTAGTCGAATGAATCTGAGGGGGATTCTCGGTAGACAAAG	120
our.our	TTCCCATACATTGGTACAAACCTAGTCGAATGAATCTGAGGGGGATTCTCGGTAGACAAAG	120
ant.ces	TCCCATACATCGGTACAAACCTAGTCGAATGAATCTGAGGGGGATTCTCGGTAGACAAAG	120
sai.tat	TCCCATATATCGGCACAGACCTAGTCGAATGAATCTGAGGGGGATTCTCGGTAGACAAAG	120
mad.kiz	TCCCATATATCGGCACAAACCTAGTCGAATGAATCTGAGGGGGATTCTCGGTAGACAAAG	120
zag.mel	TTCCCATACATTGGCACAAACCTAGTCGAATGAATCTGAGGGGGATTCTCGGTAGACAAAG	120
gaz.gaz	TCCCATACATCGGCACAAACCTAGTCGAATGAATCTGAGGGGGATTCTCGGTAGACAAAG	120
ant.ame	TCCCATACATTGGTACTAAACCTAGTCGAATGAATCTGAGGGGGATTCTCGGTAGACAAAG	120
hyd.ine	TTCCCATACATTGGTACAAACCTAGTCGAATGAATCTGAGGGGGATTCTCGGTAGACAAAG	120
muu.muu	TTCCCATATATTGGCACAAACCTAGTCGAATGAATCTGAGGGGGATTCTCGGTAGACAAAG	120
alc.alc	TTCCCATACATTGGTACTAAACCTAGTCGAATGAATCTGAGGGGGATTCTCGGTAGACAAAG	120
cer.elia.kan	TTCCCATACATTGGCACAAACCTAGTCGAATGAATCTGAGGGGGATTCTCGGTAGACAAAG	120
cer.elia.kan	TTCCCATACATTGGCACAAACCTAGTCGAATGAATCTGAGGGGGATTCTCGGTAGACAAAG	120
cer.elia.cin	TTCCCATACATTGGCACAAACCTAGTCGAATGAATCTGAGGGGGATTCTCGGTAGACAAAG	120
cer.nip.reat	TTCCCATATATTGGCACAAACCTAGTCGAATGAATCTGAGGGGGATTCTCGGTAGACAAAG	120
cer.nip.yes	TTCCCATACATTGGCACAAACCTAGTCGAATGAATCTGAGGGGGATTCTCGGTAGACAAAG	120
cer.nip.hes	TTCCCATACATTGGCACAAACCTAGTCGAATGAATCTGAGGGGGATTCTCGGTAGACAAAG	120
cer.nip.pul	TTCCCATACATTGGCACAAACCTAGTCGAATGAATCTGAGGGGGATTCTCGGTAGACAAAG	120
cer.nip.nip	TTCCCATACATTGGCACAAACCTAGTCGAATGAATCTGAGGGGGATTCTCGGTAGACAAAG	120
cer.elia.sco	TTCCCATACATTGGCACAAACCTAGTCGAATGAATCTGAGGGGGATTCTCGGTAGACAAAG	120
cer.elia.sco	TTCCCATACATTGGCACAAACCTAGTCGAATGAATCTGAGGGGGATTCTCGGTAGACAAAG	120

zan.car	TTCCATATATGGTACAAATCTAGTCGAATGAAATTGACGGAGGATTTCTGTAGATAAG	120
mos.fus	TTCCATACATTGGTACTAATCTGGTAAATGAAATTGACGGAGGCTTCTCACTAGACAAAG	120
mos.leu	TTCCATACATTGGTACTAATCTGGTAAATGAAATTGACGGAGGCTTCTCACTAGACAAAG	120
mos.chr	TTCCATACATTGGTACTAATCTGGTAAATGAAATTGACGGAGGCTTCTCACTAGACAAAG	120
mos.bcr	TTCCCTACATTGGTACTAATCTGGTAAATGAAATTGACGGAGGCTTCTCACTAGACAAAG	120
mcs.mos	TTCCCTACATTGGTACTAATCTGGTAAATGAAATTGACGGAGGCTTCTCACTAGACAAAG	120
tca.jav	TCCCATACTGGCACCAGACTGGTAAATGAAATTGACGGAGGCTTCTCACTAGACAAAG	120
trag.nap	TCCCATACTGGTACTAATGAAATTGACGGAGGCTTCTCACTAGACAAAG	120
bala.acu	TCCCATACTGGTACTAATGAAATTGACGGAGGCTTCTCACTAGACAAAG	120
bala.bcn	TCCCATACTGGTACTAATGAAATTGACGGAGGCTTCTCACTAGACAAAG	120
bala.bcr	TCCCATACTGGTACTAATGAAATTGACGGAGGCTTCTCACTAGACAAAG	120
bala.edi	TCCCATACTGGTACTAATGAAATTGACGGAGGCTTCTCACTAGACAAAG	120
esch.rob	TCCCATACTGGTACTAATGAAATTGACGGAGGCTTCTCACTAGACAAAG	120
bala.mus	TCCCATACTGGTACTAATGAAATTGACGGAGGCTTCTCACTAGACAAAG	120
mega.nov	TCCCATACTGGTACTAATGAAATTGACGGAGGCTTCTCACTAGACAAAG	120
bala.phy	TCCCATACTGGTACTAATGAAATTGACGGAGGCTTCTCACTAGACAAAG	120
cap.mar	TCCCATACTGGTACTAATGAAATTGACGGAGGCTTCTCACTAGACAAAG	120
ceph.com	TCCCATACTGGTACTAATGAAATTGACGGAGGCTTCTCACTAGACAAAG	120
ceph.eut	TCCCATACTGGTACTAATGAAATTGACGGAGGCTTCTCACTAGACAAAG	120
lage.obl	TCCCATACTGGTACTAATGAAATTGACGGAGGCTTCTCACTAGACAAAG	120
ceph.hea	TCCCATACTGGTACTAATGAAATTGACGGAGGCTTCTCACTAGACAAAG	120
ceph.hec	TCCCATACTGGTACTAATGAAATTGACGGAGGCTTCTCACTAGACAAAG	120
lage.aus	TCCCATACTGGTACTAATGAAATTGACGGAGGCTTCTCACTAGACAAAG	120
lage.cru	TCCCATACTGGTACTAATGAAATTGACGGAGGCTTCTCACTAGACAAAG	120
lage.cbs	TCCCATACTGGTACTAATGAAATTGACGGAGGCTTCTCACTAGACAAAG	120
lisso.bcr	TCCCATACTGGTACTAATGAAATTGACGGAGGCTTCTCACTAGACAAAG	120
lisso.per	TCCCATACTGGTACTAATGAAATTGACGGAGGCTTCTCACTAGACAAAG	120
glo.mac	TCCCATACTGGTACTAATGAAATTGACGGAGGCTTCTCACTAGACAAAG	120
glo.mel	TCCCATACTGGTACTAATGAAATTGACGGAGGCTTCTCACTAGACAAAG	120
fere.att	TCCCATACTGGTACTAATGAAATTGACGGAGGCTTCTCACTAGACAAAG	120
pepo.ele	TCCCATACTGGTACTAATGAAATTGACGGAGGCTTCTCACTAGACAAAG	120
gram.gr	TCCCATACTGGTACTAATGAAATTGACGGAGGCTTCTCACTAGACAAAG	120
pse.cra	TCCCATACTGGTACTAATGAAATTGACGGAGGCTTCTCACTAGACAAAG	120
lage.acu	TCCCATACTGGTACTAATGAAATTGACGGAGGCTTCTCACTAGACAAAG	120
crcl.bre	TCCCATACTGGTACTAATGAAATTGACGGAGGCTTCTCACTAGACAAAG	120
crca.bre	TCCCATACTGGTACTAATGAAATTGACGGAGGCTTCTCACTAGACAAAG	120
del.cap	TCCCATACTGGTACTAATGAAATTGACGGAGGCTTCTCACTAGACAAAG	120
del.tro	TCCCATACTGGTACTAATGAAATTGACGGAGGCTTCTCACTAGACAAAG	120
del.del	TCCCATACTGGTACTAATGAAATTGACGGAGGCTTCTCACTAGACAAAG	120
sten.cly	TCCCATACTGGTACTAATGAAATTGACGGAGGCTTCTCACTAGACAAAG	120
sten.coe	TCCCATACTGGTACTAATGAAATTGACGGAGGCTTCTCACTAGACAAAG	120
cur.adu	TCCCATACTGGTACTAATGAAATTGACGGAGGCTTCTCACTAGACAAAG	120
sten.fro	TCCCATACTGGTACTAATGAAATTGACGGAGGCTTCTCACTAGACAAAG	120
saus.chi	TCCCATACTGGTACTAATGAAATTGACGGAGGCTTCTCACTAGACAAAG	120
sten.lor	TCCCATACTGGTACTAATGAAATTGACGGAGGCTTCTCACTAGACAAAG	120
turs.tru	TCCCATACTGGTACTAATGAAATTGACGGAGGCTTCTCACTAGACAAAG	120
lage.alb	TCCCATACTGGTACTAATGAAATTGACGGAGGCTTCTCACTAGACAAAG	120
sten.bre	TCCCATACTGGTACTAATGAAATTGACGGAGGCTTCTCACTAGACAAAG	120
sota.flu	TCCCATACTGGTACTAATGAAATTGACGGAGGCTTCTCACTAGACAAAG	120
del.leu	TCCCATACTGGTACTAATGAAATTGACGGAGGCTTCTCACTAGACAAAG	120
mono.mcn	TCCCATACTGGTACTAATGAAATTGACGGAGGCTTCTCACTAGACAAAG	120
plat.gan	TCCCATACTGGTACTAATGAAATTGACGGAGGCTTCTCACTAGACAAAG	120
plat.mim	TCCCATACTGGTACTAATGAAATTGACGGAGGCTTCTCACTAGACAAAG	120
koegi.bce	TCCCATACTGGTACTAATGAAATTGACGGAGGCTTCTCACTAGACAAAG	120
koegi.sim	TCCCATACTGGTACTAATGAAATTGACGGAGGCTTCTCACTAGACAAAG	120
phys.cat	TCCCATACTGGTACTAATGAAATTGACGGAGGCTTCTCACTAGACAAAG	120
lipo.wek	TCCCATACTGGTACTAATGAAATTGACGGAGGCTTCTCACTAGACAAAG	120
phoe.sla	TCCCATACTGGTACTAATGAAATTGACGGAGGCTTCTCACTAGACAAAG	120

bera.bai	TTCCCTTATATCGGCACCACTCTTGTGAAATGAAATCTGAGGTGCGCTTCGGTAGATAAAG	120
ziph.cat	TCCCCCTATATCGGCACACTCTAGTCGAATGAAATCTGAGGTGGCTTTTCAGTAGATAAAG	120
meso.euz	TCCCCCTATATTGGCACACTCTAGTCGAATGAAATCTGAGGTGCGCTTCGGTAGATAAAG	120
meso.bid	TTCCCTACATCGGCACACTACCCCTAGTGAATGAAATCTGAGGTGGCTTCGGTAGACAAAG	120
meso.den	TTCCCTATATTGGCACACCCTAGTCGAATGAAATCTGAGGTGGCTTCGGTAGACAAAG	120
hype.amp	TTCCCTATATCGGCACACTACCCCTAGTGAATGAAATCTGAGGTGGCTTCGGTAGACAAAG	120
meso.per	TTCCCTATATTGGCACACCCTAGTGAATGAAATCTGAGGTGGCTTCGGTAGACAAAG	120
ponc.bla	TCCCCCTACATCGGCACACTACCCCTAGTGAATGAAATCTGAGGTGGCTTCGGTAGACAAAG	120
hex.lib	TTCCCTACATCGGCACACTACCCCTAGTGAATGAAATCTGAGGTGGCTTCGGTAGACAAAG	120
hipp.amp	TCCCCCTATATTGGAACACGACCTAGTGAATGAAATCTGAGGAGGCTTCGGTAGACAAAG	120
dic.sum	TCCCATACATCGGCACCGACCTTGAGAATGAAATCTGAGGGGGATTTCGGTAGACAAAG	120
rhin.scn	TCCCCCTATATCGGTACCCACCTTGAGAATGAAATCTGAGGAGGATTTCAGTCGACAAAG	120
ceta	TCCCTTACATCGGCACCCACCTCGTAGAATGAAATCTGAGGAGGATTTCGGTAGACAAAG	120
equu	TCCCCCTACATCGGCACCGACCTTGAGAATGAAATCTGAGGAGGCTTCGGTAGACAAAG	120
baby.bab	TTCCCTATATCGGAACACGACCTAGTGAATGAAATCTGAGGAGGTTTCGGTAGACAAAG	120
phac.afr	TCCCCCTACATCGGAACACGACCTAGTGAATGAAATCTGAGGAGGCTTCGGTAGACAAAG	120
sus.bar	TCCCCCTATATCGGAACACGACCTAGTGAATGAAATCTGAGGAGGCTTCGGTAGACAAAG	120
sus.scr.ewb3	TCCCTTATATCGGAACACGACCTCGTAGAATGAAATCTGAGGGGGCTTCGGTAGACAAAG	120
lama.gla	TTCCATATGTTGGCACACACTAGTCGAATGAAATTGAGGAGGATTTCGGTAGACAAAG	120
lama.gua	TTCCATATGTTGGCACACACTAGTCGAATGAAATTGAGGAGGTTTCGGTAGACAAAG	120
vic.vic	TTCCATACGGTGGTACACACTAGTCGAATGAAATTGAGGAGGATTTCGGTAGACAAAG	120
cam.bac	TTCCCTATATCGGCACACACTAGTGAATGAAATTGAGGTGGCTTCGGTAGACAAAG	120
arc.for	TCCCCCTACATCGGAACACGACCTAGTGAATGAAATCTGAGGAGGATTTCAGTTGATAAAG	120
arc.gaz	TCCCCCTACATCGGAACACGACCTAGTGAATGAAATCTGAGGAGGATTTCAGTTGATAAAG	120
eum.jub	TCCCCCTACATCGGAACACGACCTAGTGAATGAAATCTGAGGAGGATTTCAGTTGATAAAG	120
sal.cal	TCCCCCTACATCGGAACACGACCTAGTGAATGAAATCTGAGGAGGATTTCAGTTGATAAAG	120
odo.zos	TTCCCTATATCGGAACACGACCTAGTGAATGAAATTGAGGAGGTTTCAGTTGATAAAG	120
pho.fasciata	TTCCCTATATCGGAACACGACCTAGTGAATGAAATTGAGGAGGATTTCAGTTGATAAAG	120
pho.gto	TCCCCCTACATCGGAACCGATCTAGTACAATGAAATCTGAGGAGGTTTCAGTTGATAAAG	120
pho.vit	TCCCCCTATGTCGGAACCGACCTTGAGAATGAAATCTGAGGAGGTTTCAGTTGATAAAG	120
cys.cri	TCCCCCTACATCGGAGCCATCTAGTACAATGAAATCTGAGGAGGATTTCAGTTGATAAAG	120
hyd.lep	TTCCCCCTACATCGGAACCGACCTAGTACAATGAAATCTGAGGCGGATTTCAGTTGATAAAG	120
lep.wed	TTCCCTTACATCGGAACACTGACTTAGTACAATGAAATCTGAGGAGGATTTCAGTTGATAAAG	120
mir.les	TTCCCTTACATCGGAACACTGACTTAGTACAATGAAATCTGAGGAGGATTTCAGTTGATAAAG	120
eri.bar	TCCCCCTACATCGGAACACTGACTTAGTACAATGAAATCTGAGGAGGATTTCAGTTGATAAAG	120
mon.sch	TTCCCTTACATCGGAACACTGACTTAGTACAATGAAATCTGAGGAGGCTTCGGTAGACAAAG	120
hela.mai	TCCCCCTATATCGGAACCGATCTAGTACAATGAAATCTGAGGCGGTTTCAGTTGATAAAG	120
sel.chi	TCCCCCTATATCGGAACCGATCTAGTACAATGAAATCTGAGGCGGTTTCAGTTGATAAAG	120
ail.ful	TTCCCTTATATCGGAACACTGACTTAGTACAATGAAATTGAGGAGGTTTCAGTTGATAAAG	120
fel	TTCCATACATCGGAACACTGACTTAGTACAATGAAATCTGAGGAGGTTTCAGTTGATAAAG	120
can	TCCCCCTATATCGGAACACTGACTTAGTACAATGAAATCTGAGGAGGTTTCAGTTGATAAAG	120
cal	TTCCCTACATCGGTACAGACCTAGTACAATGAAATTGAGGAGGTTTCAGTTGATAAAG	120
gla.sab	TTCCCTATATCGGACACACTTGAGAATGAAATCTGAGGAGGTTTCAGTTGATAAAG	120
gla.vol	TTCCCTTATATCGGACACACTTGAGAATGAAATCTGAGGAGGTTTCAGTTGATAAAG	120
hyl.pha	TCCCCCTACATCGGAACACTGACTTGAGAATGAAATCTGAGGAGGTTTCAGTTGATAAAG	120
pet.ses	TCCCCCTATATCGGAACACTGACTTGAGAATGAAATCTGAGGAGGTTTCAGTTGATAAAG	120
bel.pea	TCCCCCTATATCGGAACACTGACTTGAGAATGAAATCTGAGGAGGTTTCAGTTGATAAAG	120
pte.mcm	TCCCCCTATATCGGAACACCTTGAGAATGAAATCTGAGGAGGTTTCAGTTGATAAAG	120
gala.demi	TCCCCCTATATCGGAACACCTTGAGAATGAAATCTGAGGAGGTTTCAGTTGATAAAG	120
pte.pct	TCCCCCTATATCGGAACACCTTGAGAATGAAATCTGAGGAGGTTTCAGTTGATAAAG	120
gala.mac	TCCCCCTATATCGGAACACCTTGAGAATGAAATCTGAGGAGGTTTCAGTTGATAAAG	120
gala.mch	TCCCCCTATATCGGAACACCTTGAGAATGAAATCTGAGGAGGTTTCAGTTGATAAAG	120
pte.gac	TCCCCCTATATCGGAACACCTTGAGAATGAAATCTGAGGAGGTTTCAGTTGATAAAG	120
pte.sac	TCCCCCTATATCGGAACACCTTGAGAATGAAATCTGAGGAGGTTTCAGTTGATAAAG	120
pte.sou	TCCCCCTATATCGGAACACCTTGAGAATGAAATCTGAGGAGGTTTCAGTTGATAAAG	120
mus	TCCCCCTATATCGGAACACCTTGAGAATGAAATCTGAGGAGGTTTCAGTTGATAAAG	120
pte	TCCCCCTATATCGGAACACCTTGAGAATGAAATCTGAGGAGGTTTCAGTTGATAAAG	120
homo	TCCCCCTATATCGGAACACCTTGAGAATGAAATCTGAGGAGGTTTCAGTTGATAAAG	120

dug.dug	TCCCCTACATCGGCACCAACCTAGTCGAAATGAGT...TGACGGGGATTCTCACTAGACAAAC	120
ele.max	TTCCCTACATCGGCACCAACCTAGTCGAAATGAGT...GAGGAGGCTTTCTCGCTAGATAACC	120
afr.con	TCCCCTATATTGGCAAACCTAGTAGAAATGGCCCTGAGGAGGATTCTCACTGACAAACC	120
pavo.mut	TCCCTTATATTGGACAAACCTAGTAGAAATGACCTGAGGGGGATTCTCACTGACAAACC	120
cra.bly	TCCCATACTGGCAAACCTAGTAGAAATGACCTGAGGGAGGCTTTCTAGTTGACAATC	120
cra.sac	TCCCATACTGGCAAACCTAGTAGAAATGACCTGAGGGGGCTTTCTAGTTGACAATC	120
cra.cob	TCCCATACTGGCAAACCTAGTAGAAATGACCTGAGGGGGCTTTCTAGTTGACAATC	120
cra.tem	TCCCATACTGGCAAACCTAGTAGAAATGACCTGAGGGAGGATTCTCACTGACAAACC	120
arg.arg	TCCCTTATATTGGACAAACCTAGTAGAACTGAGCTGAGGGGGCTTTCTAGTTGACAATC	120
cat.wal	TCCCTACATCGGACAGACCTAGTAGAAATGAGCCTGAGGGAGGATTCTCACTGACAAACC	120
cro.cro	TCCCTACATGGACAAACCTAGTCGAGTGAGCCTGAGGGGGATTCTCACTGACAAACC	120
sym.ree	TTCCCTACATCGGACAAACCTAGTAGAACTGAGCCTGAGGGGGATTCTCACTGACAAACC	120
bam.tho	TTCCCTACATGGACAAACCTTAGTAGAAATGAGCCTGAGGGGGATTCTCACTGACAAACC	120
fra.fra	TTCCCTACATGGACAAACCTTAGTAGAAATGAGCCTGAGGGGGATTCTCACTGACAAACC	120
ish.cru	TCCCATACTGGCAAACCTTGAGAAATGAGCTTGAGGGAGGATTCTAGTAGATAACC	120
ant.par	TCCCATACTGGCAAACCTTGAGAAATGAGCTTGAGGGAGGATTCTAGTAGACAATC	120
ant.vir	TCCCATACTGGCAAACCTTGAGAAATGAGCTTGAGGGGGTTCTAGTAGACAATC	120
gru.ant.ant	TCCCATACTGGCAAACCTTGAGAAATGAGCTTGAGGGGGCTTCTAGTAGACAATC	120
gru.ant.gil	TCCCATACTGGCAAACCTTGAGAAATGAGCTTGAGGGGGCTTCTAGTAGACAATC	120
gru.ant.sha	TCCCATACTGGCAAACCTTGAGAAATGAGCTTGAGGGGGATTCTAGTAGACAATC	120
gru.leu	TCCCATACTGGCAAACCTTGAGAAATGAGCTTGAGGGGGTTCTAGTAGACAATC	120
gru.can.pra	TCCCATACTGGCAAACCTTGAGAAATGAGCTTGAGGGGGCTTCTAGTAGACAATC	120
gru.can.tow	TCCCATACTGGCAAACCTTGAGAAATGAGCTTGAGGGGGCTTCTAGTAGACAATC	120
gru.can.tab	TCCCATACTGGCAAACCTTGAGAAATGAGCTTGAGGGGGCTTCTAGTAGACAATC	120
gru.can.can	TCCCATACTGGCAAACCTTGAGAAATGAGCTTGAGGGGGCTTCTAGTAGACAATC	120
gru.ame	TCCCATACTGGCAAACCTTGAGAAATGAGCTTGAGGGGGCTTCTAGTAGACAATC	120
gru.gru	TCCCATACTGGCAAACCTTGAGAAATGAGCTTGAGGGGGCTTCTAGTAGACAATC	120
gru.mon	TCCCATACTGGCAAACCTTGAGAAATGAGCTTGAGGGGGCTTCTAGTAGACAATC	120
gru.sig	TCCCATACTGGCAAACCTTGAGAAATGAGCTTGAGGGGGCTTCTAGTAGACAATC	120
gru.jap	TCCCATACTGGCAAACCTTGAGAAATGAGCTTGAGGGGGCTTCTAGTAGACAATC	120
cic.bcy	TCCCATACTGGCAAACCTTGAGAAATGAGCTTGAGGGGGCTTCTAGTAGACAATC	120
the.ame	TCCCATACTGGCAAACCTTGAGAAATGAGCTTGAGGGGGCTTCTAGTAGACAATC	120
ant.alb	TCCCATACTGGCAAACCTTGAGAAATGAGCTTGAGGGGGCTTCTAGTAGACAATC	120
sal.fam	TCCCATACTGGCAAACCTTGAGAAATGAGCTTGAGGGGGCTTCTAGTAGACAATC	120
sal.ver	TCCCATACTGGCAAACCTTGAGAAATGAGCTTGAGGGGGCTTCTAGTAGACAATC	120
sal.per	TCCCATACTGGCAAACCTTGAGAAATGAGCTTGAGGGGGCTTCTAGTAGACAATC	120
sal.spa	TCCCATACTGGCAAACCTTGAGAAATGAGCTTGAGGGGGCTTCTAGTAGACAATC	120
ayt.ame	TCCCATACTGGCAAACCTTGAGAAATGAGCTTGAGGGGGATTCTAGTAGACAATC	120
smi.sha	TCCCATACTGGCAAACCTTGAGAAATGAGCTTGAGGGGGATTCTAGTAGACAATC	120
vid.cha	TCCCATACTGGCAAACCTTGAGAAATGAGCTTGAGGGGGATTCTAGTAGACAATC	120
chr.pic	TCCCATACTGGCAAACCTTGAGAAATGAGCTTGAGGGGGATTCTAGTAGACAATC	120
emy.oct.kuz	TCCCATACTGGCAAACCTTGAGAAATGAGCTTGAGGGGGATTCTAGTAGACAATC	120
che.mud	TCCCATACTGGCAAACCTTGAGAAATGAGCTTGAGGGGGATTCTAGTAGACAATC	120
eum.egr	TCCCATACTGGCAAACCTTGAGAAATGAGCTTGAGGGGGATTCTAGTAGACAATC	120
	...	
sep.mel	CAACCTNACCGATTTTGGCTTCACTTCATGTTCACTGATTGGGGCACTAG	130
cre.ore	CAACCTTACCGATTTTGGCTTCACTTCATGTTCACTGATTGGGGCACTAG	130
add.nas	CAACCTTACCGATTTTGGCTTCACTTCATGTTCACTGATTGGGGCACTAG	130
cty.dam	CAACCTTACCGATTTTGGCTTCACTTCATGTTCACTGATTGGGGCACTAG	130
hip.equ	CAACCTTACCGATTTTGGCTTCACTTCATGTTCACTGATTGGGGCACTAG	130
alc.bus	CAACCTTACCGATTTTGGCTTCACTTCATGTTCACTGATTGGGGCACTAG	130
sig.lit	CAACCTTACCGATTTTGGCTTCACTTCATGTTCACTGATTGGGGCACTAG	130
bea.bra	CAACCTTACCGATTTTGGCTTCACTTCATGTTCACTGATTGGGGCACTAG	130
tim.lun	CAACCTTACCGATTTTGGCTTCACTTCATGTTCACTGATTGGGGCACTAG	130
con.tan	CAACCTTACCGATTTTGGCTTCACTTCATGTTCACTGATTGGGGCACTAG	130
uvm.lee	CAACCTTACCGATTTTGGCTTCACTTCATGTTCACTGATTGGGGCACTAG	130
pur.nay	CAACCTTACCGATTTTGGCTTCACTTCATGTTCACTGATTGGGGCACTAG	130

cap.ibe	CCACTCTCACCCGATTCTTCCCTTCACTTCATCTCCCATTCAATTACAGGCCCTCG	130
hem.jem	CTACCCCTAACCCGATTCTTCCCTTCACTTCATCTCCCATTCAATTACAGGCCCTCG	130
cap.fal	CCACCCCTCACCGATTCTTCCCTTCACTTCATCTCCCATTCAATTACAGGCCCTCG	130
sup.pyr	CTACCCCTCACCGATTCTTCCCTTCACTTCATCTCCCATTCAATTACAGGCCCTCG	130
sup.sup	CTACCCCTCACCGATTCTTCCCTTCACTTCATCTCCCATTCAATTACAGGCCCTCG	130
nem.cau	CTACTCTCACCCGATTCTTCCCTTCACTTCATCTCCCATTCAATTACAGCTACTG	130
bud.tak.tak	CTTCCCTCACCGATTCTTCCCTTCACTTCATCTCCCATTCAATTACAGACCTCG	130
pan.hed	CTACCCCTAACCGATTCTTCCCTTCACTTCATCTCCCATTCAATTACAGGCCCTCG	130
ovi.amm	CCACCCCTGACCGATTCTTCCCTTCACTTCATCTCCCATTCAATTACAGGCCCTCG	130
ovi.vig	CTACCCCTCACCGATTCTTCCCTTCACTTCATCTCCCATTCAATTACAGGCCCTCG	130
cap.czi	CCACCCCTCACCGATTCTTCCCTTCACTTCATCTCCCATTCAATTACAGGCCCTCG	130
ovi.mos	CCACCCCTCACCGATTCTTCCCTTCACTTCATCTCCCATTCAATTACAGGCCCTCG	130
ore.ame	CTACCCCTCACCGATTCTTCCCTTCACTTCATCTCCCATTCAATTACAGGCCCTCG	130
cap.dor	CAACTCTCACCGATTCTTCCCTTCACTTCATCTCCCATTCAATTACAGGCCCTCG	130
cap.max	CAACCCCTCACTCGATTCTTCCCTTCACTTCATCTCCCATTCAATTACAGGCCCTCG	130
bis.bon	CAACCCCTCACCGATTCTTCCCTTCACTTCATCTCCCATTCAATTACAGGCCCTCG	130
bcs.sru	CAACCCCTCACCGATTCTTCCCTTCACTTCATCTCCCATTCAATTACAGGCCCTCG	130
bcs.tra	CAACCCCTCACCGATTCTTCCCTTCACTTCATCTCCCATTCAATTACAGGCCCTCG	130
bub.min	CAACCCCTCACCGATTCTTCCCTTCACTTCATCTCCCATTCAATTACAGGCCCTCG	130
buba.bub	CAACCCCTCACCGATTCTTCCCTTCACTTCATCTCCCATTCAATTACAGGCCCTCG	130
tra.ang	CAACCCCTAACCGATTCTTCCCTTCACTTCATCTCCCATTCAATTACAGGCCCTCG	130
tra.eur	CAACCCCTAACCGATTCTTCCCTTCACTTCATCTCCCATTCAATTACAGGCCCTCG	130
kob.ell	CAACCCCTAACCGATTCTTCCCTTCACTTCATCTCCCATTCAATTACAGGCCCTCG	130
kob.meg	CAACCCCTAACCGATTCTTCCCTTCACTTCATCTCCCATTCAATTACAGGCCCTCG	130
red.aru	CAACCCCTAACCGATTCTTCCCTTCACTTCATCTCCCATTCAATTACAGGCCCTCG	130
red.fil	CAACCCCTAACCGATTCTTCCCTTCACTTCATCTCCCATTCAATTACAGGCCCTCG	130
neo.mos	CAACCCCTAACCGATTCTTCCCTTCACTTCATCTCCCATTCAATTACAGGCCCTCG	130
pel.cap	CAACCCCTAACCGATTCTTCCCTTCACTTCATCTCCCATTCAATTACAGGCCCTCG	130
gas.dam	CAACCCCTAACCGATTCTTCCCTTCACTTCATCTCCCATTCAATTACAGGCCCTCG	130
cur.cur	CAACCCCTAACCGATTCTTCCCTTCACTTCATCTCCCATTCAATTACAGGCCCTCG	130
ant.cer	CAACCCCTAACCGATTCTTCCCTTCACTTCATCTCCCATTCAATTACAGGCCCTCG	130
sai.sat	CAACCCCTAACCGATTCTTCCCTTCACTTCATCTCCCATTCAATTACAGGCCCTCG	130
mad.kir	CAACCCCTAACCGATTCTTCCCTTCACTTCATCTCCCATTCAATTACAGGCCCTCG	130
rap.mel	CAACCCCTAACCGATTCTTCCCTTCACTTCATCTCCCATTCAATTACAGGCCCTCG	130
gas.gaz	CAACCCCTAACCGATTCTTCCCTTCACTTCATCTCCCATTCAATTACAGGCCCTCG	130
ant.ame	CAACCCCTAACCGATTCTTCCCTTCACTTCATCTCCCATTCAATTACAGGCCCTCG	130
hyd.ine	CTACCCGTACCCGATTCTTCCCTTCACTTCATCTCCCATTCAATTACAGGCCCTCG	130
mun.mun	CAACCCCTAACCGATTCTTCCCTTCACTTCATCTCCCATTCAATTACAGGCCCTCG	130
alc.alc	CAACCCCTAACCGATTCTTCCCTTCACTTCATCTCCCATTCAATTACAGGCCCTCG	130
cer.elakar	CAACCCCTAACCGATTCTTCCCTTCACTTCATCTCCCATTCAATTACAGGCCCTCG	130
cer.elaxan	CAACCCCTAACCGATTCTTCCCTTCACTTCATCTCCCATTCAATTACAGGCCCTCG	130
cer.elacan	CAACCCCTAACCGATTCTTCCCTTCACTTCATCTCCCATTCAATTACAGGCCCTCG	130
cer.nip.cenc	CAACCCCTAACCGATTCTTCCCTTCACTTCATCTCCCATTCAATTACAGGCCCTCG	130
cer.nip.yes	CAACCCCTAACCGATTCTTCCCTTCACTTCATCTCCCATTCAATTACAGGCCCTCG	130
cer.nip.ker	CAACCCCTAACCGATTCTTCCCTTCACTTCATCTCCCATTCAATTACAGGCCCTCG	130
cer.nip.pul	CAACCCCTAACCGATTCTTCCCTTCACTTCATCTCCCATTCAATTACAGGCCCTCG	130
cer.nip.nip	CAACCCCTAACCGATTCTTCCCTTCACTTCATCTCCCATTCAATTACAGGCCCTCG	130
cer.elasce	CAACCCCTAACCGATTCTTCCCTTCACTTCATCTCCCATTCAATTACAGGCCCTCG	130
cer.dam	CAACCCCTAACCGATTCTTCCCTTCACTTCATCTCCCATTCAATTACAGGCCCTCG	130
can.cer	CAACCCCTAACCGATTCTTCCCTTCACTTCATCTCCCATTCAATTACAGGCCCTCG	130
mos.fus	CAACCCCTAACCGATTCTTCCCTTCACTTCATCTCCCATTCAATTACAGGCCCTCG	130
mos.leu	CAACCCCTAACCGATTCTTCCCTTCACTTCATCTCCCATTCAATTACAGGCCCTCG	130
mos.chc	CAACCCCTAACCGATTCTTCCCTTCACTTCATCTCCCATTCAATTACAGGCCCTCG	130
mos.bec	CAACCCCTAACCGATTCTTCCCTTCACTTCATCTCCCATTCAATTACAGGCCCTCG	130
mos.nes	CAACCCCTAACCGATTCTTCCCTTCACTTCATCTCCCATTCAATTACAGGCCCTCG	130
tra.jay	CAACCCCTAACCGATTCTTCCCTTCACTTCATCTCCCATTCAATTACAGGCCCTCG	130

bala.bon	CAACATTAAACACGCT.....GCCTTCACTTCATCCTCCCTTCATTATCCTAACATTAG	180
bala.bor	CAACACTAACACGCT.....GCCTTCACTTCATTCTCCCTTCATTATCCTAACATTAG	180
bala.edi	CAACACTAACACGCT.....GCCTTCACTTCATTCTCCCTTCATTATCCTAACATTAG	180
esch.rob	CAACACTAACACGCT.....GCCTTCACTTCATTCTCCCTTCATTATCCTAACATTAG	180
bala.mus	CAACACTAACACGCT.....GCCTTCACTTCATTCTCCCTTCATTATCCTAACATTAG	180
mega.nov	CAACACTAACACGCT.....GCCTTCACTTCATTCTCCCTTCATTATCCTAACATTAG	180
bala.phy	CAACACTAACACGCT.....GCCTTCACTTCATTCTCCCTTCATTATCCTAACATTAG	180
cap.mar	CAACACTAACACGCT.....GCCTTCACTTCATTCTCCCTTCATTATCCTAACATTAG	180
ceph.com	CAACACTAACACGCT.....GCCTTCACTTCATTCTCCCTTCATTATCCTAACATTAG	180
ceph.euc	CAACACTAACACGCT.....GCCTTCACTTCATTCTCCCTTCATTATCCTAACATTAG	180
lage.obl	CAACACTAACACGCT.....GCCTTCACTTCATTCTCCCTTCATTATCCTAACATTAG	180
ceph.heu	CAACACTAACACGCT.....GCCTTCACTTCATTCTCCCTTCATTATCCTAACATTAG	180
ceph.hec	CAACACTAACACGCT.....GCCTTCACTTCATTCTCCCTTCATTATCCTAACATTAG	180
lage.aus	CAACACTAACACGCT.....GCCTTCACTTCATTCTCCCTTCATTATCCTAACATTAG	180
lage.cru	CAACACTAACACGCT.....GCCTTCACTTCATTCTCCCTTCATTATCCTAACATTAG	180
lage.cbs	CAACACTAACACGCT.....GCCTTCACTTCATTCTCCCTTCATTATCCTAACATTAG	180
lisso.bor	CAACACTAACACGCT.....GCCTTCACTTCATTCTCCCTTCATTATCCTAACATTAG	180
lisso.pez	CAACACTAACACGCT.....GCCTTCACTTCATTCTCCCTTCATTATCCTAACATTAG	180
glo.mac	CAACACTAACACGCT.....GCCTTCACTTCATTCTCCCTTCATTATCCTAACATTAG	180
glo.mel	CAACACTAACACGCT.....GCCTTCACTTCATTCTCCCTTCATTATCCTAACATTAG	180
fere.att	CAACACTAACACGCT.....GCCTTCACTTCATTCTCCCTTCATTATCCTAACATTAG	180
pepo.ele	CAACACTAACACGCT.....GCCTTCACTTCATTCTCCCTTCATTATCCTAACATTAG	180
gram.gri	CAACACTAACACGCT.....GCCTTCACTTCATTCTCCCTTCATTATCCTAACATTAG	180
pse.cra	CAACACTAACACGCT.....GCCTTCACTTCATTCTCCCTTCATTATCCTAACATTAG	180
lage.acu	CAACACTAACACGCT.....GCCTTCACTTCATTCTCCCTTCATTATCCTAACATTAG	180
orci.bre	CAACACTAACACGCT.....GCCTTCACTTCATTCTCCCTTCATTATCCTAACATTAG	180
orca.bre	CAACACTAACACGCT.....GCCTTCACTTCATTCTCCCTTCATTATCCTAACATTAG	180
del.cap	CAACATTAAACACGCT.....GCCTTCACTTCATTCTCCCTTCATTATCCTAACATTAG	180
del.cro	CAACATTAAACACGCT.....GCCTTCACTTCATTCTCCCTTCATTATCCTAACATTAG	180
del.del	CAACATTAAACACGCT.....GCCTTCACTTCATTCTCCCTTCATTATCCTAACATTAG	180
sten.ciy	CAACATTAAACACGCT.....GCCTTCACTTCATTCTCCCTTCATTATCCTAACATTAG	180
sten.coe	CAACATTAAACACGCT.....GCCTTCACTTCATTCTCCCTTCATTATCCTAACATTAG	180
tur.adu	CAACATTAAACACGCT.....GCCTTCACTTCATTCTCCCTTCATTATCCTAACATTAG	180
sten.fro	CAACATTAAACACGCT.....GCCTTCACTTCATTCTCCCTTCATTATCCTAACATTAG	180
sauv.chi	CAACATTAAACACGCT.....GCCTTCACTTCATTCTCCCTTCATTATCCTAACATTAG	180
sten.lon	CAACATTAAACACGCT.....GCCTTCACTTCATTCTCCCTTCATTATCCTAACATTAG	180
tuza.ztu	CAACATTAAACACGCT.....GCCTTCACTTCATTCTCCCTTCATTATCCTAACATTAG	180
lage.alb	CAACATTAAACACGCT.....GCCTTCACTTCATTCTCCCTTCATTATCCTAACATTAG	180
sten.bre	CAACATTAAACACGCT.....GCCTTCACTTCATTCTCCCTTCATTATCCTAACATTAG	180
scra.flu	CAACATTAAACACGCT.....GCCTTCACTTCATTCTCCCTTCATTATCCTAACATTAG	180
del.leu	CAACATTAAACACGCT.....GCCTTCACTTCATTCTCCCTTCATTATCCTAACATTAG	180
mono.mon	CAACATTAAACACGCT.....GCCTTCACTTCATTCTCCCTTCATTATCCTAACATTAG	180
plat.gan	CAACATTAAACACGCT.....GCCTTCACTTCATTCTCCCTTCATTATCCTAACATTAG	180
plat.mia	CAACATTAAACACGCT.....GCCTTCACTTCATTCTCCCTTCATTATCCTAACATTAG	180
koji.bre	CAACATTAAACACGCT.....GCCTTCACTTCATTCTCCCTTCATTATCCTAACATTAG	180
koji.sim	CAACATTAAACACGCT.....GCCTTCACTTCATTCTCCCTTCATTATCCTAACATTAG	180
phys.cat	CAACATTAAACACGCT.....GCCTTCACTTCATTCTCCCTTCATTATCCTAACATTAG	180
lipo.vex	CAACATTAAACACGCT.....GCCTTCACTTCATTCTCCCTTCATTATCCTAACATTAG	180
phoc.sin	CAACATTAAACACGCT.....GCCTTCACTTCATTCTCCCTTCATTATCCTAACATTAG	180
bera.bal	CAACATTAAACACGCT.....GCCTTCACTTCATTCTCCCTTCATTATCCTAACATTAG	180
ciph.cis	CAACATTAAACACGCT.....GCCTTCACTTCATTCTCCCTTCATTATCCTAACATTAG	180
meso.ebs	CAACATTAAACACGCT.....GCCTTCACTTCATTCTCCCTTCATTATCCTAACATTAG	180
meso.bld	CAACATTAAACACGCT.....GCCTTCACTTCATTCTCCCTTCATTATCCTAACATTAG	180
meso.den	CAACATTAAACACGCT.....GCCTTCACTTCATTCTCCCTTCATTATCCTAACATTAG	180
mype.amp	CAACATTAAACACGCT.....GCCTTCACTTCATTCTCCCTTCATTATCCTAACATTAG	180
meso.pes	CAACATTAAACACGCT.....GCCTTCACTTCATTCTCCCTTCATTATCCTAACATTAG	180
poni.bla	CAACATTAAACACGCT.....GCCTTCACTTCATTCTCCCTTCATTATCCTAACATTAG	180
hex.116	CAACATTAAACACGCT.....GCCTTCACTTCATTCTCCCTTCATTATCCTAACATTAG	180

cat.wal	CAACTCTCACCGGATTCTCCCTGACTTCTCCCTCGTAATTCCAGGAATCA	130
cro.cro	CAACCTCACCGGATTCTCCCTGACTTCTCCCTCGTAATTCCAGGAATTA	130
sym.ree	CAACCTCACCGGATTCTCCCTGACTTCTCCCTCGTAATCACAGGAATCA	130
bam.cho	CAACTCTCACCGGATTCTCCCTGACTTCTCCCTCGTAATCGCAGGAATTA	130
fra.fra	CAACCTCACCGGATTCTCCCTGACTTCTCCCTCGTAATTCCAGGAATCA	130
ich.ctu	CAACCTCACCGGATTCTCCCTGACTTCTCCCTCGCAATCGCAGGAATTA	130
anc.par	CCACATTAATCGATTCTTACACTTCTCCATTGATAATTATAGGCCTCA	130
anc.vit	CCACATTAATCGATTCTTACCTTACACTTCTCCATTGATAATCATAGGCCTCA	130
gru.ant.anc	CCACATTAATCGATTCTTACCTTACACTTCTCCATTGATAATCATAGGCCTCA	130
gru.ant.gil	CCACATTAATCGATTCTTACCTTACACTTCTCCATTGATAATCATAGGCCTCA	130
gru.ant.sha	CCACATTAATCGATTCTTACCTTACACTTCTCCATTGATAATCATAGGCCTCA	130
gru.leu	CCACATTAATCGATTCTTACCTTACACTTCTCCATTGATAATCATAGGCCTCA	130
gru.can.ptz	CCACATTAACCGATTCTTACCTTACACTTCTCCATTGATAATTATAGGCCTCA	130
gru.can.row	CCACATTAACCGATTCTTACCTTACACTTCTCCATTGATAATTATAGGCCTCA	130
gru.can.cab	CCACATTAACCGATTCTTACCTTACACTTCTCCATTGATAATTATAGGCCTCA	130
gru.can.can	CCACATTAACCGATTCTTACCTTACACTTCTCCATTGATAATCATAGGCCTCA	130
gru.ame	CCACATTAACCGATTCTTACCTTACACTTCTCCATTGATAATCATAGGCCTCA	130
gru.gru	CCACATTAACCGATTCTTACCTTACACTTCTCCATTGATAATCATAGGCCTCA	130
gru.mon	CCACATTAATCGATTCTTACCTTACACTTCTCCATTGATAATCATAGGCCTCA	130
gru.nig	CCACATTAATCGATTCTTACCTTACACTTCTCCATTGATAATCATAGGCCTCA	130
gru.jap	CCACATTAATCGATTCTTACCTTACACTTCTCCATTGATAATCATAGGCCTCA	130
cic.boy	CCACATTAACCCGATTCTTACCTTACACTTCTCCATTGATAATTATAGGCCTCA	130
rhe.ame	CTACCTAACCCGATTCTTACCTTACACTTCTCCATTGATAATTCCAGGCTTA	130
ant.alb	CAACCTGACACGATTCTTACCTTACACTTCTCCATTGATAATTCCAGGCTTA	130
fal.fam	CAACACTGACCCGATTCTTACCTTACACTTCTCCATTGATAATTCCAGGCTTA	130
fal.ver	CAACACTAACCGATTCTTACCTTACACTTCTCCATTGATAATTCCAGGCTTA	130
fal.per	CAACACTAACCGATTCTTACCTTACACTTCTCCATTGATAATTCCAGGCTTA	130
fal.spa	CAACACTAACCGATTCTTACCTTACACTTCTCCATTGATAATTCCAGGCTTA	130
ayt.ame	CAACCTAACCCGATTCTTACCTTACACTTCTCCATTGATAATTCCAGGCTTA	130
smi.sha	CAACCTAACCCGATTCTTACCTTACACTTCTCCATTGATAATTCCAGGCTTA	130
vid.che	CAACACTAACCGATTCTTACCTTACACTTCTCCATTGATAATTCCAGGCTTA	130
chry.pic	CAACCTAACCCGATTCTTACCTTACACTTCTCCATTGATAATTCCAGGCTTA	130
emy.orb.kur	CAACCTAACCCGATTCTTACCTTACACTTCTCCATTGATAATTCCAGGCTTA	130
che.mud	CAACCTAACCCGATTCTTACCTTACACTTCTCCATTGATAATTCCAGGCTTA	130
eum.egz	CAACCTCACCCGATTCTTACCTTACACTTCTCCATTGATAATTCCAGGCTTA	130

aep.mel	CCATAGTCCACCTACTCTTCTTACGAAACAGGATTAACGACCCATCGGAATCTCAT	140
cre.cre	CCATAGTACACCTACTCTTCTTACGAAACAGGATTAACGACCCATCGGAATCTCAT	140
add.nas	CCATAGTCCATCTACTCTTCTTACGAAACAGGATTAACGACCCATCGGAATCTCAT	140
cry.dam	CCATAGTCCACCTACTCTTCTTACGAAACAGGATTAACGACCCATCGGAATCTCAT	140
hip.equ	CCATAGTACACCTACTCTTCTTACGAAACAGGATTAACGACCCATCGGAATCTCAT	140
alc.bus	CCATAGTACACCTACTCTTCTTACGAAACAGGATTAACGACCCATCGGAATCTCAT	140
sig.luc	CCATAGTACACCTACTCTTCTTACGAAACAGGATTAACGACCCATCGGAATCTCAT	140
bea.hun	CCATAGTCCACCTTTTACGAAACAGGATTAACGACCCATCGGAATCTCAT	140
dam.lun	CTATAGTCCATCTTCTTACGAAACAGGATTAACGACCCATCGGAATCTCAT	140
con.tau	CCATAGTCCACCTTTTACGAAACAGGATTAACGACCCATCGGAATCTCAT	140
amm.les	CCATAGTCCACCTTTTACGAAACAGGATTAACGACCCATCGGAATCTCAT	140
pse.nay	CCATAGTCCACCTTTTACGAAACAGGATTAACGACCCATCGGAATCTCAT	140
cap.lib	CCATAGTCCACCTTTTACGAAACAGGATTAACGACCCATCGGAATCTCAT	140
hem.jem	CCATAGTCCACCTTTTACGAAACAGGATTAACGACCCATCGGAATCTCAT	140
cap.fal	CCATAGTCCACCTTTTACGAAACAGGATTAACGACCCATCGGAATCTCAT	140
cap.pic	CCATAGTCCACCTTTTACGAAACAGGATTAACGACCCATCGGAATCTCAT	140
sup.sup	CCATAGTCCACCTTTTACGAAACAGGATTAACGACCCATCGGAATCTCAT	140
nem.tan	CCATAGTCCACCTTTTACGAAACAGGATTAACGACCCATCGGAATCTCAT	140
bud.tan.cax	CCATAGTCCACCTTTTACGAAACAGGATTAACGACCCATCGGAATCTCAT	140
pan.hod	CCATAGTCCACCTTTTACGAAACAGGATTAACGACCCATCGGAATCTCAT	140
zvi.amm	CCATAGTCCACCTTTTACGAAACAGGATTAACGACCCATCGGAATCTCAT	140

ceph.euc	CAGCCGTCCACCTACTATTCCATACCGAAAACAGGATCCAACAAACCCCACAGGAATCCCAT	240
lage.obl	CAGCCGTCCACCTACTATTCCATACCGAAAACAGGATCCAACAAACCCCACAGGAATCCCAT	240
ceph.hea	CAGCCGTCCATCTACTATTCCATACCGAAAACAGGATCCAACAAACCCCACAGGAATCCCAT	240
ceph.hec	CAGCCGTCCACCTACTATTCCATACCGAAAACAGGATCCAACAAACCCCACAGGAATCCCAT	240
lage.aus	CAGCCGTCCACCTACTATTCCATACCGAAAACAGGATCCAACAAACCCCACAGGAATCCCAT	240
lage.cru	CAGCCGTCCACCTGCTATTCCATACCGAAAACAGGATCCAACAAACCCCACAGGAATCCCAT	240
lage.obs	CAGCCGTCCACCTACTATTCCATACCGAAAACAGGATCCAACAAACCCCACAGGAATCCCAT	240
lisso.bor	CAGCTGTTCACCTACTATTCCATACCGAAAACAGGATCCAACAAACCCCACAGGAATCCCAT	240
lisso.per	CAGCTGTTCACCTACTGTTCTACACGAGACAGGATCCAATAACCCCACAGGAATCCCAT	240
glo.mac	TAGCTGTCCACCTGCTATTCCATACCGAAAACAGGATCCAATAACCCCACAGGAATCCCAT	240
glo.mel	TAGCTGTTCACCTGCTATTCCATACCGAAAACAGGATCCAATAACCCCACAGGAATCCCAT	240
fere.att	TAGCTGTCCACCTGCTATTCCATACCGAAAACAGGATCCAATAACCCCACAGGAATCCCAT	240
pepo.ele	TAGCTGTTCACCTGCTATTCCATACCGAAAACAGGATCCAATAACCCCACAGGAATCCCAT	240
gram.gri	CAGCTACCCACCTACTATTCCATACCGAGACTGGATCCAATAACCCCACAGGAATCCCAT	240
pse.cra	CAGCTGTTCACCTGCTATTCCATACCGAGACAGGATCCAATAACCCCACAGGAATCCCAT	240
lage.acu	CAGCTGTTCACCTACTGTTCTACCGAGACAGGATCCAATAACCCCACAGGAATCCCAT	240
orci.bre	CAGCTGTTCACCTACTATTCCATACCGAAAACAGGATCCAATAACCCCACAGGAATCCCAT	240
orca.bre	TAACTGTTCACCTACTATTCCATACCGAAAACAGGATCCAATAACCCCACAGGAATCCCAT	240
del.cap	CAGCCGTTCACCTGCTATTCCATACCGAAAACAGGATCCAATAACCCCACAGGAATCCCAT	240
del.tro	CAGCCGTTCACCTGCTATTCCATACCGAAAACAGGATCCAATAACCCCACAGGAATCCCAT	240
del.del	CAGCCGTTCACCTGCTATTCCATACCGAAAACAGGATCCAATAACCCCACAGGAATCCCAT	240
sten.cly	CAGCCGTTCACCTGCTATTCCATACCGAAAACAGGATCCAATAACCCCACAGGAATCCCAT	240
sten.coe	CAGCCGTTCACCTGCTATTCCATACCGAAAACAGGATCCAATAACCCCACAGGAATCCCAT	240
cur.adu	CAGCCGTTCACCTACTATTCCATACCGAAAACAGGATCCAATAACCCCACAGGAATCCCAT	240
sten.fro	CAGCCGTTCACCTACTATTCCATACCGAAAACAGGATCCAATAACCCCACAGGAATCCCAT	240
saus.chi	TAGCCGTTCACCTGCTATTCCATACCGAAAACAGGATCCAATAACCCCACAGGAATCCCAT	240
sten.lon	CAGCCGTTCACCTACTATTCCATACCGAAAACAGGATCCAATAACCCCACAGGAATCCCAT	240
ters.ttu	CAGCCGTTCACCTACTATTCCATACCGAAAACAGGATCCAATAACCCCACAGGAATCCCAT	240
lage.alb	TAAGCTGTTCACCTACTATTCCATACCGAAAACAGGATCCAATAACCCCACAGGAATCCCAT	240
sten.bre	CAGCCGTTCACCTACTATTCCATACCGAAAACAGGATCCAATAACCCCACAGGAATCCCAT	240
sota.flu	CAGCCGTTCACCTACTATTCCATACCGAAAACAGGATCCAATAACCCCACAGGAATCCCAT	240
del.leu	CAGCCGTTCACCTACTATTCCATACCGAAAACAGGATCCAATAACCCCACAGGAATCCCAT	240
mono.mcn	CAACTGTCCACCTACTATTCCATACCGAAAACAGGATCCAATAACCCCACAGGAATCCCAT	240
plat.gan	CAGCCGTTCACCTACTATTCCATACCGAAAACAGGATCCAATAACCCCACAGGAATCCCAT	240
plat.mjn	CAGCCGTTCACCTACTATTCCATACCGAAAACAGGATCCAATAACCCCACAGGAATCCCAT	240
kogi.bre	TGGCCGTCACCTATTATTCCATACCGAAAACAGGATCCAACAAACCCCACAGGAATCCCAT	240
kggi.sim	CAATTATCCACCTACTATTCCATACCGAAAACAGGCTCAAACAAACCCCACAGGAATCCCAT	240
phys.cat	CAATGGTCCACCTCTTATTCCATACCGAAAACAGGATCCAACAAACCCCACAGGAATCCCAT	240
lipo.vex	CAATAATCCACCTCTTATTCCATACCGAAAACAGGATCCAACAAACCCCACAGGAATCCCAT	240
phoc.sin	CAATAGTACATCTCTTATTCCATACCGAAAACAGGATCCAACAAACCCCACAGGAATCCCAT	240
beza.bai	CAACCGTCCACCTACTATTCCATACCGAAAACAGGATCCAACAAACCCCACAGGAATCCCAT	240
ziph.cat	TAATCGTCCATCTACTATTCCATACCGAAAACAGGCTCAAACAAACCCCACAGGAATCCCAT	240
meso.euf	CAGCCGTCACCTACTATTCCATACCGAAAACAGGATCCAACAAACCCCACAGGAATCCCAT	240
meso.bid	CAGCCGTCACCTACTATTCCATACCGAAAACAGGATCCAATAACCCCACAGGAATCCCAT	240
meso.den	CAATCGTCCACCTACTATTCCATACCGAAAACAGGATCCAATAACCCCACAGGAATCCCAT	240
hyde.amp	CAATCGTCCACCTACTATTCCATACCGAAAACAGGATCCAATAACCCCACAGGAATCCCAT	240
meso.per	CAATTGTCCATTACTATTCCATACCGAAAACAGGATCTAAATAACCCCACAGGAATCCCAT	240
poac.bla	TTATAGTCCACCTGCTATTCCATACCGAAAACAGGATCCAACAAACCCCACAGGAATCCCAT	240
hex.lib	CCGGCCGTCACCTACTTTTCTCACCGAAAACAGGATCCAACAAACCCCACAGGAATCCCAT	240
hipp.amp	CCATCGTCCATCTACTATTCCATACCGAAAACAGGATCCAACAAACCCCACAGGAATCCCAT	240
dic.sum	CAATTACCCACCTGCTATTCCATACCGAAAACAGGATCCAATAACCCCACAGGAATCCCAT	240
stir.con	CGATCACCCACCTACTATTCCATACCGAAAACAGGATCCAATAACCCCACAGGAATCCCAT	240
ceta	CAATCACCCACCTACTATTCCATACCGAAAACAGGATCCAACAAACCCCACAGGAATCCCAT	240
equu	TAATCGTCCATCTACTATTCCATACCGAAAACAGGATCCAACAAACCCCACAGGAATCCCAT	240
baby.bab	CAACCGTACATCTATTCCATACCGAAAACAGGATCCAATAACCCCACAGGAATCCCAT	240
phac.agg	CAACCGTACATCTATTCCATACCGAAAACAGGATCCAATAACCCCACAGGAATCCCAT	240
sus.bac	CAGCCGTCACCTATTCCATACCGAAAACAGGATCCAATAACCCCACAGGAATCCCAT	240
sus.scc.wb1	CAGCCGTCACCTATTCCATACCGAAAACAGGATCCAATAACCCCACAGGAATCCCAT	240

lama.gla	CAGGAGTACATCTACTATTTTACACGAAAACAGGCTCCAAACAATCCAACACGGAA	240
lama.gua	CAGGAGTGCATCTACTATTTTACACGAAAACAGGCTCCAAACAATCCAACACGGAA	240
vic.vic	CGGGAGTACATCTACTATTTTACACGAAAACAGGCTCCAAACAACCCAAACACGGAA	240
cam.bac	TAGCCGTACACCTATTCTTACACGAAAACAGGCTCTAAATAACCCGACACGGAA	240
arc.for	TAATAGTACATCTGCTATTCTTACATGAAAACAGGATCCAAATAACCCATCAGGAGT	240
arc.gaz	TAATAGTGCACCTACTATTCTTACACGAAAACAGGATCCAAACAACCCATCAGGAGT	240
eum.jub	TAATAGTACACCTATTCTTACACGAAAACAGGATCCAAACAATCCATCAGGAA	240
zal.cal	TAATAGTACACCTATTCTTACACGAAAACAGGATCCAAACAACCCCTCGGAATCCTA	240
odo.ros	CAGCAGTACACCTACTATTCTTACACGAAAACAGGATCCAAACAACCCCTCGGAATCGTAT	240
pho.fasciata	CGGCAGTTCACCTACTATTCTTACACGAAAACAGGATCCAAACAACCCACCGGAATCGTAT	240
pho.gro	CGGCAGTTCACCTACTATTCTTACACGAAAACAGGATCAAACAAACCCCTCGGAATCATAT	240
pho.vit	CAGCAGTCCACCTACTATTCTTACACGAAAACAGGATCTAAATAACCCCTCGGAATCACAT	240
cys.cri	CAGCAGTACATCTACTATTCTTACACGAAAACAGGATCCAAATAACCCCTCGGAATCCAT	240
hyd.lep	CAGCAGTACATCTACTATTCTTACACGAAAACAGGATCCAAACAACCCCTCGGAATCCAT	240
lep.wed	CAGCAGTACATCTACTATTCTTACACGAAAACAGGATCCAAACAACCCCTCGGAATCCAT	240
mir.les	CAGCAGTACATCTACTATTCTTACACGAAAACAGGATCCAAACAACCCCTCGGAATCCAT	240
exi.bar	CAGCAGTCCACCTATTCTTACACGAAAACAGGATCTAAATAACCCCTCGGAATCCAT	240
mon.sch	CAGCAGTCCACCTATTCTTACACGAAAACAGGATCCAAACAACCCCTCGGAATCCAT	240
bela.mal	CAGCGGTCCACCTATTCTTACACGAAAACAGGATCCAAACAACCCCTCGGAATCCAT	240
sel.thi	CAGCAGTTCACCTATTGTCCTACACGAAAACAGGATCCAAACAACCCCTCGGAATCCAT	240
ail.ful	CAACTATCCATCTCTTATTCTTACATGAAAACAGGATCTAAATAACCCCTCAGGATCCCAT	240
fel.	CAGGAGTACACCTCTTATTCTTACACGAAAACAGGATCCAAACAACCCCTCAGGAATTACAT	240
can	CAATAGTACACCTCCTTATTCTTACACGAAAACAGGATCCAAACAACCCATCAGGACTCTCAT	240
tal	CTGGAGTTCACCTGTTATTCTTACACGAAAACAGGATCAAACAAACCCATCAGGACTCTCAT	240
gla.sab	CCATAATCCATCTACTCTTTACACGAAAACAGGATCAAACAAACCCATCAGGACTAACT	240
gla.vol	CCATAATCCATCTACTCTTTACACGAAAACAGGATCAAACAAACCCATCAGGACTAACT	240
byl.pha	CTATAATTCACCTTCTCTTTACACGAAAACAGGATCAAACAAACCCATCAGGCTAACT	240
pet.set	CTATAATTCCACCTTCTCTTTACACGAAAACAGGATCAAACAAACCCATCAGGCTAACT	240
bel.pea	CAATAGTCCACCTTCTTTACACGAAAACAGGATCAAACAAACCCATCAGGACTTACCT	240
pte.mom	CAATAGTTCACCTACTTTCTTACATGAAAACAGGATCAAACAAACCCATCAGGACTCCAT	240
gala.demi	TCATAATCCACCTCCTTACATGAAAACAGGATCAAACAAACCCATCAGGACTAACT	240
pero.pct	CCACAACTCACCTCTTACATGAAAACAGGATCAAACAAACCCATCAGGACTAACT	240
gala.maz	CCATAATTCACCTTCTTACATGAAAACAGGATCAAACAAACCCATCAGGACTAACT	240
gala.moh	CCATAATTCACTTCTTACATGAAAACAGGATCAAACAAACCCATCAGGACTAACT	240
oro.gaz	TCATAATCCACCTCCTTACATGAAAACAGGATCAAACAAACCCATCAGGACTAACT	240
lcz.taz	CTGCATTTCACCTACTTTCTTACACGAAAACAGGATCAAACAAACCCATCAGGACTCTCAT	240
nyc.cou	TTGTGATTCACCTCATCTTACATGAAAACAGGATCAAACAAACCCATCAGGACTAACT	240
mus	CAATCGTTCACCTCTTACACGAAAACAGGATCAAACAAACCCATCAGGACTAACT	240
gott	CAACCCCTCCATCTCTTACACGAAAACAGGATCAAACAAACCCATCAGGACTAACT	240
homo	CAACACTCCACCTCCTTACATGAAAACAGGATCAAACAAACCCATCAGGACTAACT	240
dug.dug	TAATAGTCCACCTACTATTCTTACACGAAAACAGGATCAAACAAACCCACTAGGCTCTCAT	240
ele.max	CAGGAGTGCACCTAACCTTCTTACACGAAAACAGGATCAAACAAACCCACTAGGCTCTCAT	240
air.con	CAATTATCCACCTCACATTCTTACATGAAAATCAGGCTCAAATAACCCACTAGGCTCTCAT	240
pavo.mut	CCATCATCCACCTCATCTTACATGAAAATCAGGCTCAAATAACCCACTAGGCTCTCAT	240
tea.bily	CTATCATACACCTCATCTTACATGAAAATCAGGCTCAAATAACCCACTAGGCTCTCAT	240
tea.sac	CCATCATCCACCTCATCTTACATGAAAATCAGGCTCAAACAACCCACTAGGCTCTCAT	240
tea.cob	CCATCATCCACCTCATCTTACATGAAAATCAGGCTCAAACAACCCACTAGGCTCTCAT	240
tea.tem	CCATCATCCACCTCATCTTACATGAAAATCAGGCTCAAACAACCCACTAGGCTCTCAT	240
arg.arg	CCATCATCCACCTCATCTTACATGAAAATCAGGCTCAAACAACCCACTAGGCTCTCAT	240
cas.wal	CCATCATCCACCTCATCTTACATGAAAATCAGGCTCAAACAACCCACTAGGCTCTCAT	240
cct.cct	CTGTCAACCCACCTCATATTCTTACACGAAAATCAGGCTCAAACAACCCACTAGGCTCTCAT	240
sym.ree	CCATCACACATCTTACACGAAAATCAGGCTCAAACAACCCACTAGGCTCTCAT	240
bam.cho	CCATTATCCACCTCACATTCTTACACGAAAATCAGGCTCAAACAACCCACTAGGCTCTCAT	240
eca.eca	CTATCATCCACCTCACATTCTTACACGAAAATCAGGCTCAAACAACCCACTAGGCTCTCAT	240
lch.cct	CTGTCAACCCACCTCATATTCTTACACGAAAATCAGGCTCAAACAACCCACTAGGCTCTCAT	240
int.pac	CCCTTAATCCACCTCACATTCTTACACGAAAATCAGGCTCAAACAACCCACTAGGCTCTCAT	240
int.vic	CCCTTAATCCACCTCACATTCTTACACGAAAATCAGGCTCAAACAACCCACTAGGCTCTCAT	240
gct.4rc.4rc	CCCTTAATCCACCTCACATTCTTACACGAAAATCAGGCTCAAACAACCCACTAGGCTCTCAT	240

gru.ant.gil	CCCTAACTCCACCTCACCTTCTTACCGAAATCCGGCTCAAAACAAACCCCTAGGCATCGTAT	240
gru.ant.sha	CCCTAACTCCACCTCACCTTCTTACCGAAATCCGGCTCAAAACAAACCCCTAGGCATCGTAT	240
gru.leu	CCCTAACTCCACCTCACCTTCTTACCGAAATCCGGCTCAAAACAAACCCCTAGGCATCGTAT	240
gru.can.pra	CCCTAACTCCACCTCACCTTCTTACCGAAATCCGGCTCAAAACAAACCCCTAGGCATCGTAT	240
gru.can.zow	CCCTAACTCCACCTCACCTTCTTACCGAAATCCGGCTCAAAACAAACCCCTAGGCATCGTAT	240
gru.can.tab	CCCTAACTCCACCTCACCTTCTTACCGAAATCCGGCTCAAAACAAACCCCTAGGCATCGTAT	240
gru.can.can	CCCTAACTCCACCTCACCTTCTTACCGAAATCCGGCTCAAAACAAACCCCTAGGCATCGTAT	240
gru.ame	CCCTAACTCCACCTCACCTTCTTACCGAAATCCGGCTCAAAACAAACCCCTAGGCATCGTAT	240
gru.gru	CCCTAACTCCACCTCACCTTCTTACCGAAATCCGGCTCAAAACAAACCCCTAGGCATCGTAT	240
gru.mon	CCCTAACTCCACCTCACCTTCTTACCGAAATCCGGCTCAAAACAAACCCCTAGGCATCGTAT	240
gru.nig	CCCTAACTCCACCTCACCTTCTTACCGAAATCCGGCTCAAAACAAACCCCTAGGCATCGTAT	240
gru.jap	CCCTAACTCCACCTCACCTTCTTACCGAAATCCGGCTCAAAACAAACCCCTAGGCATCGTAT	240
cic.boy	CCCTAACTCCACCTCACCTTCTTACCGAAATCCGGCTCAAAACAAACCCCTAGGCATCGTAT	240
rhe.ame	CTCTTATCCACCTCACCTTCTTACCGAAATCCGGCTCAAAACAAACCCCTAGGAATCGTAT	240
ant.alb	TCCTAACTCACCTGGCATTCCTCACCGAAATCAGGCTCAAAACAAACCCACTAGGCATCACAT	240
sal.sam	CCTTAATCCACCTCACCTTCTTACATGAAATCAGGTTCAAAACAAACCCCTAGGAATCACAT	240
sal.ver	CCCTAACTCACCTCACCTTCTTACATGAAATCAGGCTCAAAACAAACCCCTAGGAATCACAT	240
sal.per	CCCTAACTCACCTCACCTTCTTACATGAAATCAGGCTCAAAATAACCCCTAGGAATCACAT	240
sal.spa	CCTTAATCCACCTCACCTTCTTACATGAAATCAGGTTCAAAACAAACCCCTAGGAGTCACAT	240
ayt.ame	CCCTAGTCCACCTAACTTCTGCACGAGTCAGGCTCAAAACAAACCCCTAGGCATTGTAT	240
smi.sha	CACTCATCCATCTCACCTTCTCATGAAATCAGGTTCAAAACAAACCCCTAGGTATCTCAT	240
vid.cha	CTCTAGTCCACCTCACATTCTACCGAAAACAGGATCAAAACAAATCCAAATAGGAATTCCAT	240
chz.pic	CAATAGTACACCTACTTTCTACATGAAAATGGATCAAAACAAACCCAAACAGGATTAACCT	240
emy.orb.kuz	CAATAGTACACCTACTCTTCTACCGAAAACGGATCAAAACAAATCCAAACAGGATTAACCT	240
che.mud	CAGCAGTACATCTATTATTCTCACGAAAACGGATCAAAACAAACCCAAACAGGATTAACCT	240
eum.est	CAATAACTCACCTACTATTCTCACGAAAACAGGATCAAAATAACCCAAACCGGACTAAATT	240

aep.mel	CAGATTAGATAAAAATTCCATTCCACCCCTACTATACTATTCAGACATCCTAGGAATCC	300
ore.ore	CAGACACAGACAAAAATTCCATTCCACCCCTACTATACTATTCAGACATCCTAGGCGCC	300
add.nas	CAGACACAGACAAAAATTCCATTCCACCCCTACTATACTATTCAGACATCCTAGGCGCC	300
oxy.dam	CAGACACAGACAAAAATTCCATTCCACCCCTACTATACTATTCAGACATCCTAGGCGCC	300
hip.equ	CAGACACAGACAAAAATTCCATTCCACCCCTACTATACTATTCAGACATCCTAGGCGCC	300
alc.bus	CAGACTCCGATAAAAACCCATTCCACCCCTACTACACCATTAAGACATTCCTAGGCGCC	300
sig.lic	CAGACCCAGATAAAAATCCATTCCACCCCTACTATACAACTCAAGGACATTCTAGGCGCC	300
bea.hua	CAGACCCAGATAAAAATCCATTCCACCCCTACTATACAACTCAAGGACATTCTAGGCGCC	300
dam.luz	CAGATGCCGACAAAAATCCATTCCACCCCTACTACACTATCAAGACATTCTAGGCGCC	300
con.cau	CCGACACCCGATAAAAATCCATTCCCCCTATTACACCATCAAGACATTCTAGGCGCC	300
amm.les	CAGACCGAGACAAAAATCCATTCCACCCCTACTACACCATCAAGATATTCTAGGCCTG	300
pse.nay	CAGACACAGACAAAAATCCATTCCACCCCTACTACACCATTAAGATATTCTAGGCCTG	300
cap.ibe	CAGACACAGACAAAAATCCATTCCACCCCTACTACACCATTAAGATATTCTAGGCCTG	300
hem.jem	CAGATACAGACAAAAATCCATTCCACCCCTACTACACCATTAAGATATTCTAGGCCTG	300
cap.fal	CAGACACAGACAAAAATCCATTCCACCCCTACTACACCATTAAGATATTCTAGGCCTG	300
sup.pty	CAGATGCCGATRAAAATCCATTCCACCCCTACTATACCATTAAGACATTCTAGGCCTG	300
sup.tup	CAGATGCCGACAAAAATCCATTCCACCCCTATTACACCATCAAGACATTCTAGGCCTG	300
nem.cau	CAGACATAGACAAAAATCCATTCCACCCCTATTACACCATTAAGATATTCTAGGCCTG	300
bud.tax.tax	CACATGCCAGATAAAAATTCCATTCCACCCCTATTACACCATTAAGATATTCTAGGAGCTA	300
par.hod	CAGATCCAGACAAAAATCCATTCCACCCCTACTATACCATTAAGACATTCTAGGCCTG	300
ovi.amm	CGGACACAGATAAAAATTCCATTCCACCCCTACTACACCATTAAGACATTCTAGGTGCC	300
ovi.vig	CGGACACAGACAAAAATCCATTCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	300
cap.cti	CAGACACAGACAAAAATCCATTCCACCCCTACTACACCATTAAGATATTCTAGGCCTG	300
ovi.mos	CAGACACCCGACAAAAATCCATTCCACCCCTACTATACAACTCAAGACATTCTAGGCCTG	300
cte.ame	CAGACCCAGACAAAAATCCATTCCACCCCTACTATACATTAAGATATTCTAGGCCTG	300
cap.dos	CGGACCCAGACAAAAATCCATTCCACCCCTACTACACCATTAAGACATTCTAGGCCTG	300
cap.max	CAGACCCAGACAAAAATCCATTCCACCCCTACTACACCATTAAGACATTCTAGGCCTG	300
bis.bon	CAGACACACACAAAAATTCCATTCCACCCCTACTATACCATTAAGACATTCTAGGCCTG	300
bct.jeu	CAGACCCAGACAAAAATTCCATTCCACCCCTACTATACCATTAAGACATTCTAGGCCTG	300
bct.jeu	CAGACCCAGACAAAAATTCCATTCCACCCCTACTATACCATTAAGACATTCTAGGCCTG	300

bub.min	CAGACACAGACAAAATCCATTCCACCCCTACTACACCATTAAAGACATTCTAGGGCCCC	300
buba.bub	CAGACACAGACAAAATCCATTCCACCCCTATTACACCATTAAAGACATTCTAGGGCCCC	300
tra.ang	CAGACATAGACAAAATCCATTCCACCCCTATTACACTATCAAGGACATTCTAGGTGCC	300
tra.eur	CAGACATAGACAAAATCCATTCCACCCCTATTACACTATCAAGGACATTCTAGGTGCC	300
kob.ell	CAGACATAGACAAAATCCATTCCACCCCTATTACACTATCAAGGACATTCTAGGTGCC	300
kob.meg	CAGACACAGACAAAATCCATTCCACCCCTATTACACTATCAAGGACATTCTAGGTGCC	300
ted.aru	CAGATGTAGACAAAATCCATTCCACCCCTACTACACTATCAAGGACCTTAGGGGCC	300
ted.ful	CAGAYATGGACAAAATCCATTCCACCCNTACTACACCATTAAAGATATTCTAGGTGCC	300
neo.mos	CAGACCCAGACAAAATCCATTCCACCCCTACTACACCATTAAAGACATTCTAGGCGCC	300
pel.cap	CCGACATAGACAAAATCCATTCCACCCCTACTACACCATTAAAGATATTCTAGGCCT	300
gas.dam	CAGATGCAGACAAAATCCATTCCCTTCACCCCTACTACACCATTAAAGACATTCTAGGAGC	300
our.our	CAGATGCAGACAAAATCCATTCCACCCCTACTACACCATTAAAGACATTCTAGGTGCC	300
ant.cer	CAGACGGAGACAAAATCCATTCCACCCCTACTACACTATCAAGATATTCTAGGAGCT	300
sai.cat	CAGATTAGACAAAATCCATTCCACCCCTACTACACCATTAAAGACATTCTAGGTGCC	300
mad.kir	CAGACGGAGACAAAATCCATTCCACCCCTACTACACCATTAAAGACATTCTAGGTGCC	300
rap.mel	CAGATATAGACAAAATCCATTCCACCCCTACTACACCATTAAAGACATTCTAGGAGCC	300
gas.gaz	CAGACGGAGACAAAATCCATTCCACCCCTACTACACCATTAAAGACATTCTAGGAGC	300
ant.ame	CAGACGGAGACAAAATCCATTCCACCCCTACTACACCATTAAAGACATTCTAGGAGC	300
hyd.ine	CAGATGCAGATAAAAATCCATTCCACCCCTACTACACCATTAAAGATATTCTAGGTGTC	300
mun.mun	CAGATGTAGACAAAATCCATTCCACCCCTACTACACCATTAAAGATATTCTAGGTGCC	300
alc.alc	CAGACGGAGACAAAATCCATTCCACCCCTACTACACCATTAAAGATATTCTAGGCACT	300
cer.el.a.kan	CAGACGGAGACAAAATCCATTCCACCCCTACTACACCATTAAAGATATTCTAGGCACT	300
cer.el.a.xan	CAGACGGAGACAAAATCCATTCCACCCCTACTACACCATTAAAGATATTCTAGGCACT	300
cer.el.a.can	CAGACGGAGACAAAATCCATTCCACCCCTACTACACCATTAAAGATATTCTAGGCACT	300
cer.nip.cant	CGGACGGAGACAAAATCCATTCCACCCCTACTACACCATTAAAGATATTCTAGGCACT	300
cer.nip.yes	CGGACGGAGACAAAATCCATTCCACCCCTACTACACCATTAAAGATATTCTAGGCACT	300
cer.nip.ker	CGGACGGAGACAAAATCCATTCCACCCCTACTACACCATTAAAGATATTCTAGGCACT	300
cer.nip.pul	CGGACGGAGACAAAATCCATTCCACCCCTACTACACCATTAAAGATATTCTAGGCACT	300
cer.nip.nip	CGGACGGAGACAAAATCCATTCCACCCCTACTACACCATTAAAGATATTCTAGGCACT	300
cer.el.a.sco	CAGACGGAGACAAAATCCATTCCACCCCTACTACACCATTAAAGATATTCTAGGCACT	300
cer.dam	CAGATGTAGATAAAAATCCATTCCACCCCTACTACACCATTAAAGATATTCTAGGCACT	300
tan.tan	CAGACTCAGATAAAAATCCATTCCACCCCTATTACACCATTAAAGACATTCTAGGTGTCC	300
mos.fus	CAGATATAGACAAAATCCATTCCACCCCTACTACACCATTAAAGACATTCTAGGTGTCC	300
mos.leu	CAGATATAGACAAAATCCATTCCACCCCTACTACACCATTAAAGACATTCTAGGTGTCC	300
mos.chr	CAGACATAGACAAAATCCATTCCACCCCTACTACACCATTAAAGACATTCTAGGTGTCC	300
mos.bcr	CAGACATAGACAAAATCCATTCCACCCCTACTACACCATTAAAGACATTCTAGGTGTCC	300
mos.mos	CAGACATAGACAAAATCCATTCCACCCCTACTACACCATTAAAGACATTCTAGGTGTCC	300
tra.jav.	CAGACGGAGACAAAATCCATTCCACCCCTACTACACCATTAAAGATATTCTAGGGCTC	300
trac.nap	CAGACGGAGACAAAATCCATTCCACCCCTACTACACCATTAAAGATATTCTAGGGCTC	300
bala.acu	CTGACATAGACAAAATCCATTCCACCCCTACTACACCATTAAAGACATTCTAGGCGCC	300
bala.bon	CTGATATAGACAAAATCCATTCCACCCCTATTACACCATTAAAGACATTCTAGGCGCC	300
bala.bor	CCGACATAGACAAAATCCATTCCACCCCTACTACACCATTAAAGACATTCTAGGCGCC	300
bala.edi	CCAACATAGACAAAATCCATTCCACCCCTATTACACCATTAAAGACATTCTAGGCGCC	300
esch.sob	CCAACATAGACAAAATCCATTCCACCCCTATTACACCATTAAAGACATTCTAGGCGCC	300
bala.mus	CTGACATAGATAAAAATCCATTCCACCCCTACTACACCATTAAAGACATTCTAGGCGCC	300
mega.nov	CCAACATAGACAAAATCCATTCCACCCCTACTACACCATTAAAGACATTCTAGGCGCC	300
bala.phy	CCAACATAGACAAAATCCATTCCACCCCTATTACACCATTAAAGACATTCTAGGCGCC	300
cap.mar	CCAACATAGACATAATCCATTCCACCCCTATTACACCATTAAAGACATTCTAGGCGCC	300
ceph.com	CCAACATAGACATAATCCATTCCACCCCTATTACACCATTAAAGACATTCTAGGCGCC	300
ceph.but	CCAACATAGACATAATCCATTCCACCCCTATTACACCATTAAAGACATTCTAGGCGCC	300
lage.dbl	CCAACATAGACATAATCCATTCCACCCCTATTACACCATTAAAGACATTCTAGGCGCC	300
ceph.hea	CCAACATAGACATAATCCATTCCACCCCTATTACACCATTAAAGACATTCTAGGCGCC	300
ceph.hes	CCAACATAGACATAATCCATTCCACCCCTATTACACCATTAAAGACATTCTAGGCGCC	300
lage.ans	CCAACATAGACATAATCCATTCCACCCCTATTACACCATTAAAGACATTCTAGGCGCC	300
lage.sru	CCAACATAGACATAATCCATTCCACCCCTATTACACCATTAAAGACATTCTAGGCGCC	300
lage.sbs	CCAACATAGACATAATCCATTCCACCCCTATTACACCATTAAAGACATTCTAGGCGCC	300
lige.boc	CCAACATAGACATAATCCATTCCACCCCTATTACACCATTAAAGACATTCTAGGCGCC	300
lige.poc	CCAACATAGACATAATCCATTCCACCCCTATTACACCATTAAAGACATTCTAGGCGCC	300

glo.mac	CCAAACATAGACATAATTCCATTCCACCCCTATTATAACAATTAAAGACATCCTAGGGGGCCC	300
glo.mel	CCAAACATAGACATAATTCCATTCCACCCCTATTATAACAATTAAAGATATCCTAGGGGGCCC	300
fere.att	CCAAACATAGACATAATTCCATTCCACCCCTATTATAACAATTAAAGATATCCTAGGTGCC	300
pepo.ele	CCAAACATAGACATAATTCCATTCCACCCCTATTATAACAATTAAAGACATCCTAGGGGCTC	300
gram.gri	CCAAACATAGACATAATTCCATTCCACCCCTATTACACAATTAAAGACATCCTAGGGGGCCC	300
pse.cra	CCAAACATAGACATAATTCCATTCCACCCCTATTACACAATTAAAGATATCCTAGGGGGCTT	300
lage.acu	CTAAACATAGATATAATCCCATTCCACCCCTATTACACAATTAAAGATATCCTAGGGGGCTT	300
occ.bre	CCAAACATAGACATAATTCCATTCCACCCCTATTACACAATTAAAGACATCCTAGGGGGCCC	300
osca.bre	CCAAATATAGACATAATTCCATTCCACCCCTATTACACAATTAAAGATATCCTAGGTGCC	300
del.cap	CCAAACATAGACATAATTCCATTCCACCCCTATTACACAATTAAAGATATCCTAGGTGCC	300
del.tro	CCAAATATAGACATAATTCCATTCCACCCCTATTACACAATTAAAGATATCCTAGGTGCC	300
del.del	CCAAATATAGACATAATTCCATTCCACCCCTATTACACAATTAAAGACATCCTAGGTGCC	300
sten.cly	CCAAATATAGACATAATTCCATTCCACCCCTATTACACAATTAAAGATATCCTAGGTGCC	300
sten.coe	CCAAATATAGACATAATTCCATTCCACCCCTATTACACAATTAAAGACATCCTAGGTGCC	300
tur.adu	CCAAATATAGACATAATTCCATTCCACCCCTATTACACAATTAAAGATATCCTAGGTGCC	300
sten.fro	CCAAATATAGACATAATTCCATTCCACCCCTATTACACAATTAAAGACATCCTAGGTGCC	300
saus.chi	CCAAACATAGACATAATTCCATTCCACCCCTATTACACAATTAAAGACATCCTAGGTGCC	300
sten.lon	CCAAACATAGACATAATTCCATTCCACCCCTATTACACAATTAAAGACATCCTAGGTGCC	300
turs.tri	CCAAACATAGACATAATTCCATTCCACCCCTATTACACAATTAAAGACATCCTAGGTGCC	300
lage.alb	CCAAACATAGACATAATTCCATTCCACCCCTATTACACAATTAAAGACATCCTAGGTGCC	300
sten.bre	CCAAACATAGACATAATTCCATTCCACCCCTATTACACAATTAAAGACATCCTAGGTGCC	300
sota.flu	CCAAACATAGACATAATTCCATTCCACCCCTATTACACAATTAAAGACATCCTAGGTGCC	300
del.leu	CCAAACATGGATACAATTCCATTCCACCCCTACTACACAATTAAAGACATCCTAGGTGCC	300
mono.mon	CCAAACATAGACATAATTCCATTCCACCCCTACTACACAATTAAAGACATCCTAGGTGCC	300
plat.gan	CCGACACTGACAAAATTCCATTCCACCCCTACTACACAATTAAAGACACCCCTAGGGGGCCC	300
plat.min	CCGACATAGACAAAATTCCATTCCACCCCTACTACACAATTAAAGACATCCTAGGGGGCCC	300
kogi.bre	CTGATATAGACAAAATTCCATTCCACCCCTACTACACAATTAAAGATATCCTAGGGGGCCC	300
kogi.sim	CCAAACATAGACAAAATTCCATTCCACCCCTACTACACAATTAAAGACACCCCTAGGGGGCCC	300
phys.cat	CTGATATAGACAAAATTCCATTCCACCCCTACTACACAATTAAAGATATCCTAGGGGGCCC	300
lipo.vex	CCAAACATAGACAAAATTCCATTCCACCCCTACTACACAATTAAAGATATCCTAGGGGGCCC	300
phoc.sin	CTAACATAGACAAAATTCCATTCCACCCCTACTACACAATTAAAGATATCCTAGGGGGCCC	300
bera.bai	CTAACATAGACATAATTCCATTCCACCCCTACTACACAATTAAAGATATCCTAGGGGGCCC	300
ziph.caz	CCGATATAGACAAAATTCCATTCCACCCCTACTACACAATTAAAGACATCCTAGGGGGCTC	300
meso.eur	CTGATATAGACAAAATTCCATTCCACCCCTACTACACAATTAAAGATATCCTAGGGGGCCC	300
meso.bid	CCGACATAGATAAAATTCCATTCCACCCCTACTACACAATTAAAGATATCCTGGGAGCCC	300
meso.den	CTGACATAGACAAAATTCCATTCCACCCCTACTACACAATTAAAGACACTCTAGGGGGCCC	300
hype.amp	CTGACATAGACAAAATTCCATTCCACCCCTACTACACAATTAAAGATATCCTAGGGGGCCC	300
meso.per	CTAACATAGATCCCATTCCACCCCTACTACACAATTAAAGATATCCTGGGAGCCC	300
pont.bla	CAAACGGAGACAAAATTCCATTCCACCCCTATTACACAATTAAAGACATCCTAGGTATCC	300
hex.lib	CTAACATAGACAAAATTCCATTCCACCCCTACTACACAATTAAAGACATCCTAGGGGGCCC	300
hipp.amp	CTAACATAGACAAAATTCCATTCCACCCCTACTACACAATTAAAGACATCCTGGGAGCCC	300
dic.sum	CTGACATAGACAAAATTCCATTCCACCCCTACTACACAATTAAAGACATCCTGGGAGCCC	300
chin.son	CTAACATAGACAAAATTCCATTCCACCCCTACTACACAATTAAAGACATCCTGGGAGCCC	300
cera	CCAAACATAGACAAAATTCCATTCCACCCCTACTACACAATTAAAGACATCCTGGGAGCCC	300
equu	CTGACATAGACAAAATTCCATTCCACCCCTACTACACAATTAAAGACATCCTAGGGGGCCC	300
baby.bab	CAGATATAGACAAAATTCCATTCCACCCCTACTACACAATTAAAGACATCCTAGGGGGCCC	300
phac.aff	CAGACATAGACAAAATTCCATTCCACCCCTACTACACAATTAAAGACATCCTAGGGGGCCC	300
sus.bat	CAGACATAGACAAAATTCCATTCCACCCCTACTACACAATTAAAGACATCCTAGGGGGCCC	300
sus.scr.ewb3	CGGATATAGACAAAATTCCATTCCACCCCTACTACACAATTAAAGACATCCTAGGGGGCCC	300
lama.gla	CGGATATAGACAAAATTCCATTCCACCCCTACTACACAATTAAAGACATCCTAGGGGGCCC	300
lama.gua	CGGATATAGACAAAATTCCATTCCACCCCTACTACACAATTAAAGACATCCTAGGGGGCCC	300
vic.vic	CGGATATAGACAAAATTCCATTCCACCCCTACTACACAATTAAAGACATCCTAGGGGGCCC	300
cam.bac	CGGATATAGACAAAATTCCATTCCACCCCTACTACACAATTAAAGACATCCTAGGGGGCCC	300
acc.foc	CTGACTCAGACAAAATTCCATTCCACCCCTACTACACAATTAAAGACATCCTGGGAGCCC	300
acc.gac	CTGACTCAGACAAAATTCCATTCCACCCCTACTACACAATTAAAGACATCCTGGGAGCCC	300
eum.jub	CCAACTCAGACAAAATTCCATTCCACCCCTACTACACAATTAAAGACATCCTAGGAGCCC	300
cal.cal	CTGACTCAGACAAAATTCCATTCCACCCCTACTACACAATTAAAGACATCCTAGGAGCCC	300
edo.coi	CTGACTCAGACAAAATTCCATTCCACCCCTACTACACAATTAAAGACATCCTAGGAGCCC	300

pho.fasciata	CCGACTCACACAAAAATCCCATTCCACCCATACTATACAATTAAAGATATCCTAGGAGCCC	300
pho.gro	CCGACTCACACAAAAATCCCATTCCACCCATACTATACAATTAAAGATATCCTAGGAGCCC	300
pho.vic	CCAACTCACACAAAAATCCCATTCCACCCATACTATACAATTAAAGATATCCTAGGGGCC	300
cys.cri	CCGACTCACACAAAAATCCCATTCCACCCATACTATACAATTAAAGACATCCTAGGAGCCC	300
hyd.lep	CCAACTCACACAAAAATCCCATTCCACCCATACTACACATTCAAGACATCCTAGGAGCCC	300
lep.wed	CTGACTCACACAAAAATCCCATTCCACCCATACTACACATTCAAGACATCCTAGGAGCCC	300
mir.leo	CCGACTCACACAAAAATCCCATTCCACCCATACTACACATTCAAGATATCTTAGGAGCCC	300
eri.bar	CCGACTCACACAAAAATCCCATTCCACCCATACTATACAGTCAGGACATCTTAGGGGCC	300
mcn.sch	CCAACTCACACAAAAATCCCATTCCACCCATACTATACAGTCAGGACATCTAGGAGCT	300
hela.mal	CTGACTCACACAAAAATCCCATTCCACCCATACTATACAGTCAGGACATCCTAGGGGCC	300
sel.thi	CCAACTCGGACAAAAATCCCATTCCACCCATACTATACAATTAAAGACGCCCTAGGGGCC	300
ail.ful	CCAACTCACACAAAAATCCCATTCCACCCATACTATACAATTAAAGACATCTAGGAGCT	300
fel	CCGATTCAAGACAAAAATCCCATTCCACCCATACTATACAATTCAAGACATCCTAGGTCTC	300
can	CAGACTCACACAAAAATCCCATTCCACCCATACTACACATTCAAGGATATCCTAGGAGCT	300
tal	CAGATACGGATAAAAAATCCCATTCCACCCATACTATTACACTATAAGACATCCTAGGAGCAC	300
gla.sab	CTGACTCACACAAAAATCCCATTCCACCCATTTCAGTCAATTAAAGACACCCTAGGATTCT	300
gla.vol	CTGACTCACACAAAAATCCCATTCCACCCATACTTCAGTCAATTAAAGATATCCTAGGGGCC	300
hyl.pha	CCGATTCAAGACAAAAATCCCATTCCACCCATACTATTCAATTAAAGATATCCTAGGGGCC	300
pet.set	CCGATTCAAGACAAAAATCCCATTCCACCCATACTATTCAATTAAAGATATCCTAGGGGCC	300
bel.pea	CTGAATCTGATAAAAGTACCATCCACCCATACTTCACATTCAAGATATTCTGGCGCCC	300
pse.mcm	CCGAATCCGACAAAAATCCCATTCCACCCCTACTTCACATTAAAGACATTCTAGGAGCAC	300
gala.demi	CAGACTCACACAAAAATCCCATTCCACCCCTACTACACCAATTAAAGACTTACTAGGAGCCA	300
pero.pot	CAGAATCACACAAAAATCCCATTCCACCCCTACTACACCAATTAAAGACCTACTAGGAGCCA	300
gala.mat	CAGACTCCGACAAAAATCCCATTCCACCCCTACTACACCAATTAAAGACCTACTAGGAGCAA	300
gala.moh	CAGACTCTGACAAAAATCCCATTCCACCCCTACTACACCAATTAAAGACCTTCTAGGGGCTA	300
oto.gaz	CAGACTCTGACAAAAATCCCATTCCACCCCTACTACACCAATTAAAGATATTCTAGGAGTAA	300
lcr.tar	CAGACTCTGACATAAGATTCCATTCCACCCCTACTACACTAAAGACCTCTAGGAGTGG	300
ryc.cou	CAGATGCAGATAAAAATCCCATTCCACCCCTACTATACAAATTCAAGATATCCTAGGTATCC	300
mus	CCCACTCTGACAAAAATCCCATTCCACCCCTACTACACCAATTCAAGACATCCTAGGCCTAT	300
gozz	CCCAATTCCGATAAAAATCCCATTCCACCCCTACTACACCAATTCAAGACATCCTAGGCCTTAC	300
homo	CCGACTCACACAAAAATCCCATTCCACCCATACTATTCAAGTCAATTAAAGACCTCTAGGCCT	300
dug.dug	CAGACTCACACAAAAATCCCATTCCACCCATACTATACTCAAAAGACTTCCTAGGCTAC	300
ele.max	CCAATTTCAGATAAAAATCCCATTCCACCCGTACTACTCCCTCAAGATATCCTAGGCCTAA	300
afr.con	CCAACTCACACAAAAATCCCATTCCACCCATACTACTCCCTCAAGATATCCTAGGCCTAA	300
pavo.mut	CTAACTCTGACAAAAATCCCATTCCACCCGTACTACTCCCTCAAGATATCCTGGGTCTAA	300
tra.bly	CCAACTCTGACAAAAATCCCATTCCACCCATACTACTCCCTCAAGGATATCCTAGGCCTAA	300
tra.sat	CTGACTCTGACAAAAATCCCATTCCACCCGTACTACTCCCTCAAGGATATCCTAGGCCTAA	300
tra.cob	CTAACTCTGACAAAAATCCCATTCCACCCGTACTACTCCCTCAAGGATATCCTAGGCCTAA	300
tra.tem	CTAACTCTGACAAAAATCCCATTCCACCCATACTACTCCCTCAAGGATATCCTAGGCCTAA	300
arg.arg	CTAACTCCGACAAAAATCCCATTCCACCCATACTACTCCCTCAAGGATATCCTAGGCCTAA	300
cat.wal	CTAACTCCGACAAAAATCCCATTCCACCCATACTACTCCCTCAAGGATATCCTAGGCCTAA	300
cro.cro	CTAAATTCCGACAAAAATCCCATTCCACCCCTACTACTCCCTCAAGGATATCCTAGGCCTAA	300
sym.ree	CTAAACTCTGACAAAAATCCCATTCCACCCATACTACTCCCTCAAGGATATCCTAGGCCTAA	300
bam.cho	CTAACTCCGACAAAAATCCCATTCCACCCATACTACTCCCTCAAGGATATCCTAGGCCTAA	300
fra.fra	CTGACTCTGACAAAAATCCCATTCCACCCATACTACACCCCTCAAGGATATCCTAGGCCTAA	300
ith.cru	CTAACTCTGACAAAAATCCCATTCCACCCATACTACTCCCTCAAGGATATCCTAGGCCTAA	300
ant.pas	CAAACCTGGGATAAAAATCCCATTCCACCCCTATTTCCTAAAGATATCCTAGGATTCA	300
ant.vic	CAAACCTGGGATAAAAATCCCATTCCACCCCTATTTCCTAAAGATATCCTAGGATTCA	300
gru.ant.ant	CAAACCTGGGATAAAAATCCCATTCCACCCCTACTTTTCCTAAAGATATCCTAGGATTCA	300
gru.ant.gil	CAAACCTGGGATAAAAATCCCATTCCACCCCTACTTTTCCTAAAGATATCCTAGGATTCA	300
gru.ant.sha	CAAACCTGGGATAAAAATCCCATTCCACCCCTACTTTTCCTAAAGATATCCTAGGATTCA	300
gru.leu	CAAACCTGGGATAAAAATCCCATTCCACCCCTACTTTTCCTAAAGATATCCTAGGATTCA	300
gru.can.pra	CAAACCTGGGATAAAAATCCCATTCCACCCCTATTTCCTAAAGATATCCTAGGATTCA	300
gru.can.cow	CAAACCTGGGATAAAAATCCCATTCCACCCCTATTTCCTAAAGATATCCTAGGATTCA	300
gru.can.tab	CAAACCTGGGATAAAAATCCCATTCCACCCCTATTTCCTAAAGATATCCTAGGATTCA	300
gru.can.sar	CAAACCTGGGATAAAAATCCCATTCCACCCCTATTTCCTAAAGATATCCTAGGATTCA	300
gru.ame	CAAACCTGGGATAAAAATCCCATTCCACCCCTATTTCCTAAAGACATCTAGGATTCA	300
gru.351	CAAACCTGGGATAAAAATCCCATTCCACCCCTATTTCCTAAAGATATCCTAGGATTCA	300

gru.mon	CAAACTGGATAAAATCCATTCCACCCCTATTTCTTAAAGATACTCTAGGATTCA	300
gru.nig	CAAACTGGATAAAATCCATTCCACCCCTATTTCTTAAAGATACTCTAGGATTCA	300
gru.jap	CAAACTGTGATAAAATCCATTCCACCCCTATTTCTTAAAGATACTCTAGGATTCA	300
cic.boy	CAAACTGGACAAAATCCATTCCACCCCTACTTCTCCCTAAAGATACTCTAGGATTCA	300
rhe.ame	CTCACTCTGACAAAATCCATTCCACCCCTACTTCTCCCTAAAGATGCCCTAGGACTAG	300
ant.alb	CCAACCTGGACAAAATCCATTCCACCCCTACTTGCCTAAAGACATCCTAGGATTCA	300
fal.fam	CAAACTGGATAAAATCCATTCCATCCCTTACTCTCAAAAGACCTCTAGGATTCA	300
fal.ver	CAAACTGGACAAAATCCATTCCATCCCTTACTCTCAAAAGACCTCTAGGATTCA	300
fal.per	CAAAATTGGACAAAATCCATTCCACCCCTACTCTCAAAAGATACTCTAGGATTCA	300
fal.spa	CAAAACTGTGACAAAATCCATTCCACCCCTACTCTCAAAAGACCTCTAGGATTCA	300
ayt.ame	CAGACTGGACAAAATCCATTCCACCCCTACTCTCAAAAGACATCCTAGGATTCA	300
smi.sha	CTAAACTCCGATAAAATCCATTCCACCCCTACTCTCCATAAAAGACCTCTAGGCTTG	300
vid.cha	CAGACTGTGACAAAATCCATTCCACCCCTACTACACCACAAAGGACATCCTAGGCTTG	300
chry.pic	CAAAACACTGACAAAATCCATTCCACCCCTTACTCTCAAAAGACCTCTAGGATTCA	300
emy.orb.kuz	CAAAACACCGATAAAAATCCCTTCCATTCCCTACTCTCAAAAGACCTCTAGGATTCA	300
che.mud	CAAAATACCGACAAAATCCCTTCCACCCCTACTCTCAAAAGACTTACTAGGATTCA	300
eum.egr	CTAGCACAGATAAGGTGCCATTCCACCCCTTACACATCAAAAGACCTCTGGTTCA	300
* * * * *		
aep.mel	TATTAATAATTCTAGTCCTAATACTCCTAGTACTATTCACTCCGACCTACTAGGAGACC	360
ore.ore	TATTACTAATTCTAGCTTAACTACTCTAGTATTATTCAACACCTGACCTACTTGGAGACC	360
add.nas	TACTACTAATTCTAGTCCTAATCTACTACTAGTATTCAACACCCGACCTACTTGGAGACC	360
ory.dam	TACTACTAATTCTAGCCCTTATGTTGCTAGTATTCTGCACCCGACCTACTTGGAGACC	360
hip.equ	TACTACTAATTCTAGCCCTCATACTACTAGTACTATTGCACCCGACCTACTTGGAGACC	360
alc.bus	TATTACTAATTCTAGCCCTCATACTACTAGTACTATTGCACCCGACCTGCTCGGAGACC	360
sig.lic	TATTACTAATTCTAGCCCTCATACTACTAGTACTATTGCACCCGACCTGCTCGGAGACC	360
bea.buz	TACTACTAATTCTAGCCCTCATACTACTAGTACTATTGCACCCGACCTGCTCGGAGACC	360
dam.luz	TACTACTAATTCTAGCCCTCATACTACTAGTACTATTGCACCCGACCTGCTCGGAGACC	360
cen.cau	TATTACTAATTCTAGCCCTCATACTACTAGTACTATTGCACCCGACCTGCTCGGAGACC	360
amm.ler	TGCTACTAATTCTCACCCCTCATACTACTAGTACTATTACACCCGACCTACTCGGGGACC	360
pse.nay	CACTGCTAATTCTCGCCCTGATAATTACTAGTATTACACCCGACCTACTCGGGGACC	360
cap.ibe	TGCTACTAATTCTTGTCTTAATTACTAGTACTATTACACCCGACCTACTCGGGGACC	360
hem.jem	TACTACTAATTCTCGCCCTGATGCTACTAGTACTATTACACCCGACCTACTCGGGGACC	360
cap.fal	TACTACTAATTCTCACCCCTCATACTACTAGTACTATTACACCCGACCTACTCGGGGACC	360
rup.pyt	TACTACTAATTCTCACCCCTCATACTACTAGTACTATTACACCCGACCTACTCGGGGACC	360
rup.rup	TACTACTAATTCTCACCCCTCATACTACTAGTACTATTACACCCGACCTACTCGGGGACC	360
nem.cau	TACTACTAATTCTCACCCCTATTACTGGTATTATTACACCCGACCTACTCGGGGACC	360
bud.tax.tax	TACTACTAATTCTCGCTCATGTTGCTACTATTACACCCGACCTACTCGGGGACC	360
pan.hod	TACTACTAATTCTTAATTACTAGTACTATTACACCCGACCTACTCGGGGACC	360
ovi.amm	TCCTACTAATTCTCACCCCTCATACTACTAGTACTATTACACCCGACCTACTCGGGGACC	360
ovi.vig	TCCTACTAATTCTCATCTCATGCTGCTACTATTACACCCGACCTACTCGGGGACC	360
cap.cri	TGCTACTAATTCTCACCCCTCATACTACTAGTACTGTTCACACCCGACCTACTCGGGGACC	360
ovi.mos	TACTACTAATTCTTACCCCTATTACTACTAGTATTACACCCGACCTACTCGGGGACC	360
ore.ame	TACTACTCATCTCACCCCTATTACTACTAGTATTACACCCGACCTACTCGGGGACC	360
cep.dor	TACTACTCATCTCACCCCTATTACTACTAGTATTACACCCGACCTACTCGGGGACC	360
cep.max	TATTACTTATTCTAGCCCTTAATTACTACTAGTATTACACCCGACCTACTCGGGGACC	360
bis.bon	TATTACTAATTCTAATTACTACTAGTACTATTACACCCGACCTCTCGGAGACC	360
bos.gru	TATTACTAATTCTAGCCCTTAATTACTACTAGTACTATTACACCCGACCTCTCGGAGACC	360
bos.tza	TACTACTTATTCTAGCCCTTAATTACTACTAGTACTATTACACCCGACCTCTCGGAGACC	360
bub.min	TGCTATTAACTCTAGCCCTTAATTACTACTAGTACTATTACACCCGACCTCTCGGAGACC	360
buba.bub	TACTATTAACTCTAGCCCTTAATTACTACTAGTACTATTACACCCGACCTCTCGGAGACC	360
tza.ang	TACTATTAACTCTAGCCCTTAATTACTACTAGTACTATTACACCCGACCTCTCGGAGACC	360
tza.euz	TACTGCTAACTCTAACTACTACTAGTACTATTACACCCGACCTCTCGGAGACC	360
kob.eil	TACTACTAATTCTACTCTAACTACTACTAGTACTATTACACCCGACCTACTCGGAGACC	360
kob.meg	TCCTATTAACTCTAACTACTACTAGTACTATTACACCCGACCTACTCGGAGACC	360
ced.acu	TACTGCTAACTCTACTACTACTAGTACTATTACACCCGACCTACTCGGAGACC	360
ced.ful	TACTACTAATTCTGCGCTTAACACTATTACTACTATTACACCCGACCTACTCGGAGACC	360
nec.mos	TCCTACTAATTCTACTCTAACTATTACTACTATTACACCCGACCTACTCGGAGACC	360

pel.cap	TATTACTAATCCTAATCCTAACACTCCTAAGTATTACCCCTGACCTATTAGGAGACC	360
gaz.dam	TACTTATTAAATTCTAGCCCTCATACTCCTAAGTCTATTACACCGAGATCTGCTTGGAGACC	360
our.our	TCCTACTAATTCAGCCCTCATGCTCCTAAGTCTATTACACCGAGACCTGCTTGGAGACC	360
ant.cer	TACTTATTAAATTAAACCCCTCATGCTCCTAAGTCTATTCTCACCGGACCTGCTTGGAGACC	360
sai.cat	TACTACTTATTCTAATCCTCATACTCCTAAGTCTATTCTCACCGAGACCTGCTTGGAGACC	360
mad.kir	TACTACTAATTAAGCCCTCATACTCCTAAGTCTATTCTCACCGAGACCTGCTTGGAGACC	360
rap.mel	TCCTATTAAATCCTAACCCCTATGCTTCTAAGTCTATTCCACCGACCTGCTTGGAGACC	360
gaz.gaz	TACTACTAATCCTAGTTCTATACTCCTAAGTCTATTCTCACCGAGACCTGCTTGGAGACC	360
ant.ame	TACTTATAATCTTACCCCTAATTAATCTACTAGTACTATTCTCACCGAGACCTGCTTGGAGACC	360
hyd.ine	TCCTCTAAATTCTTCTTCTAATGCTTATCTACTAGTATTCTCACCGAGACCTGCTTGGAGACC	360
mun.mun	TACTCTAAATTCTCTTCTAATATTATTAGTATTCTCACCGAGACCTGCTTGGAGACC	360
alc.alc	TACTCTTAAACTCTTCTTCTAACACTACTAGTACTCTTCTCACCGAGACCTGCTTGGAGACC	360
cer.el.a.kan	TACTCTAGTACTCTTCTAATATTACTAGTATTCTCACCGAGACCTGCTTGGAGACC	360
cer.el.a.xan	TACTCTAGTACTCTTCTAATATTACTAGTATTCTCACCGAGACCTGCTTGGAGACC	360
cer.el.a.ca	TACTCTAAATCTTCTTCTAATATTACTAGTATTCTCACCGAGACCTGCTTGGAGACC	360
cer.nip.cent	TACTCTAGTACTCTTCTTCTAATATTACTAGTATTCTCACCGAGACCTGCTTGGAGATC	360
cer.nip.yes	TACTCTAGTACTCTTCTTCTAATATTACTAGTATTCTCACCGAGACCTGCTTGGAGATC	360
cer.nip.ker	TACTCTAACTGACTCTTCTGATATTACTAGTATTCTCACCGAGACCTGCTTGGAGATC	360
cer.nip.pul	TACTCTAGTACTCTTCTGATATTACTAGTATTCTCACCGAGACCTGCTTGGAGATC	360
cer.nip.nip	TACTCTTGTACTCTTCTTAAATATTACTAGTATTCTCACCGAGACCTGCTTGGAGATC	360
cer.el.a.sco	TATTCCCTATTCTTCTTAAATACACTAGTACTATTGCACCGAGACTGCTTGGAGACC	360
cer.dam	TACTCCTAATTCTCTTCTTAAATACACTAGTACTATTGCACCGAGACTGCTTGGAGACC	360
ran.tar	TATTACTAATCTTAGTCTTAAATACACTAGTACTATTGCACCTGATTACTGGAGACC	360
mos.fus	TATTACTAATCTTAGTCTTAAATACACTAGTACTATTGCACCTGATTACTGGAGACC	360
mos.leu	TATTACTAATCCTAGTCTTAAATACACTAGTACTATTGCACCTGATTACTGGAGACC	360
mos.chr	TAATACTAATCTTAGTCTTAAATAGCACTAGTGTCTATTACACCCGACCTACTGGAGATC	360
mcs.bez	TATTACTAATCTTAAATCTAAAGCACTAGTGTCTATTACACCCGACCTACTGGAGACC	360
mos.mos	TAGCCCTATTCTAGCCCTAAATACACTAGTCTTCTCACCCGACCTACTGGAGACC	360
tra.jav	TAGCCTAATACTAGCTTCTTACTAGTCTTCTCACCGGACCTGTTGGAGACC	360
trag.nap	TACTACTAATCTAACCCCTACTAGCACTAACCCCTATTCCGACCCGACCTGCTTGGAGACC	360
bala.acu	TACTACTAATCTAACCCCTACTAGCACTAACCCCTATTCCGACCCGACCTGCTTGGAGACC	360
bala.bon	TACTACTAATCTAACCCCTACTAGCACTAACCCCTATTCCGACCCGACCTGCTTGGAGACC	360
bala.bor	TACTACTAATCTAACCCCTACTAGCACTAACCCCTATTCCGACCCGACCTACTGGAGACC	360
bala.edi	TACTACTAATCTAACCCCTACTAGCACTAACCCCTATTCCGACCCGACCTACTGGAGACC	360
esch.rcb	TGCTACTAATCTAACCCCTACTAGCACTAACCCCTATTCCGACCCGACCTACTGGAGACC	360
bala.mus	TACTACTAATCTAACCCCTACTAGCACTAACCCCTATTCCGACCCGACCTACTGGAGACC	360
mega.nov	TATTACTAATCTAACCCCTACTAGCACTAACCCCTATTCCGACCCGACCTACTGGAGACC	360
bala.phy	TATTACTAATCTAACCCCTACTAGCACTAACCCCTATTCCGACCCGACCTACTGGAGACC	360
cap.maz	TATTACTAATCTAACCCCTACTAGCACTAACCCCTATTCCGACCCGACCTACTGGAGACC	360
ceph.com	TATTACTAATCTAACCCCTACTAGCACTAACCCCTATTCCGACCCGACCTACTGGAGACC	360
ceph.eut	TATTACTAATCTAACCCCTACTAGCACTAACCCCTATTCCGACCCGACCTACTGGAGACC	360
lage.obl	TATTACTAATCTAACCCCTACTAGCACTAACCCCTATTCCGACCCGACCTACTGGAGACC	360
ceph.hea	TATTACTAATCTAACCCCTACTAGCACTAACCCCTATTCCGACCCGACCTACTGGAGACC	360
ceph.hec	TATTACTAATCTAACCCCTACTAGCACTAACCCCTATTCCGACCCGACCTACTGGAGACC	360
lage.aug	TATTACTAATCTAACCCCTACTAGCACTAACCCCTATTCCGACCCGACCTACTGGAGACC	360
lage.ctu	TATTACTAATCTAACCCCTACTAGCACTAACCCCTATTCCGACCCGACCTACTGGAGACC	360
lage.obs	TATTACTAATCTAACCCCTACTAGCACTAACCCCTATTCCGACCCGACCTACTGGAGACC	360
lisso.bor	TATTCTTAATTCTGACCCCTACTAGCACTAACCCCTATTCCGACCCGACCTACTGGAGACC	360
lisso.pet	TATTCTTAATTCTGACCCCTACTAGCACTAACCCCTATTCCGACCCGACCTACTGGAGACC	360
glo.mac	TACTCTTAATCTGACCCCTACTAGCACTAACCCCTATTCCGACCCGACCTACTGGAGACC	360
glo.mei	TACTCTTAATCTGACCCCTACTAGCACTAACCCCTATTCCGACCCGACCTACTGGAGACC	360
fere.att	TACTCTTAATCTGACCCCTACTAGCACTAACCCCTATTCCGACCCGACCTACTGGAGACC	360
pepo.ele	TACTCTTAATCTGACCCCTACTAGCACTAACCCCTATTCCGACCCGACCTACTGGAGACC	360
gram.gsi	TACTCTTAATCTGACCCCTACTAGCACTAACCCCTATTCCGACCCGACCTACTGGAGACC	360
pse.cca	TACTCTTAATCTGACCCCTACTAGCACTAACCCCTATTCCGACCCGACCTACTGGAGACC	360
lage.acu	TACTCTTAATCTGACCCCTACTAGCACTAACCCCTATTCCGACCCGACCTACTGGAGACC	360
occi.bre	TACTCTTAATCTGACCCCTACTAGCACTAACCCCTATTCCGACCCGACCTACTGGAGACC	360
occa.bre	TACTCTTAATCTGACCCCTACTAGCACTAACCCCTATTCCGACCCGACCTACTGGAGACC	360

del.cap	TACTCTTAATCTTAACCCCTACTAGCCACTAACCCATTCACTCCAGACCTACTAGGAGACC	360
del.tro	TACTCTTAATCTTAACCCCTACTAGCCACTAACCCATTCACTCCCACCTACTAGGAGACC	360
del.del	TACTCTTAATCTTAACCCCTACTAGCCACTAACCCATTCACTCCCACCTACTAGGAGACC	360
sten.cly	TACTCTTAATCTTAACCCCTACTAGCCACTAACCCATTCAACCCCCAACCTACTAGGAGACC	360
sten.coe	TACTCTTAATCTTAACCCCTACTAGCCACTAACCCATTCAACCCCCAACCTACTAGGAGACC	360
tau.adu	TACTCTTAATCTTAACCCCTACTAGCCACTAACCCATTCAACCCCCAACCTACTAGGAGACC	360
sten.fro	TACTCTTAATCTTAACCCCTACTAGCCACTAACCCATTCAACCCCCAACCTACTAGGAGACC	360
saus.chi	TACTCTTAATCTTAACCCCTACTAGCCACTAACCCATTCAACCCCCAACCTACTAGGAGACC	360
scen.lon	TACTCTTAATCTTAACCCCTACTAGCCACTAACCCATTCAACCCCCAACCTACTAGGAGACC	360
tau.s.tru	TACTCTTAATCTTAACCCCTACTAGCCACTAACCCATTCAACCCCCAACCTACTAGGAGACC	360
lage.alb	TACTCTTAATCTTAACCCCTACTAGCCACTAACCCATTCAACCCCCAACCTACTAGGAGACC	360
sten.bre	TACTCTTAATCTTAACCCCTACTAGCCACTAACCCATTCAACCCCCAACCTACTAGGAGACC	360
sota.flu	TACTCTTAATCTTAACCCCTACTAGCCACTAACCCATTCAACCCCCAACCTACTAGGAGACC	360
del.leu	TACTACTTAATCTTAACCCCTACTAGCCACTAACCCATTCAACCCCCAACCTACTAGGAGACC	360
mono.mcn	TCCTACTTAATCTTAACCCCTACTAGCCACTAACCCATTCAACCCCCAACCTACTAGGAGACC	360
plat.gan	TCATCTTAATCTTAACCCCTACTAGCCACTAACCCATTCAACCCCCAACCTACTAGGAGACC	360
plat.min	TCATCTTAATCTTAACCCCTACTAGCCACTAACCCATTCAACCCCCAACCTACTAGGAGACC	360
kogi.bre	TACTGCTTAATCTCGCCCTACTAACCTTAAACCCATTTCGCAACCGACCTACTAGGAGACC	360
kogi.sim	TACTACTTAATCTCGCCCTACTAACCTTAAACCTAACCCATTTCGCAACCGACCTACTAGGAGACC	360
phys.cat	TACTACTTAATCTCGCCCTACTAACCTTAAACCTAACCCATTTCGCAACCGACCTACTAGGAGACC	360
lipo.vex	TTCTTATTAATTTGTTCTACTAACCTAACCTTAAACCTAACCCATTTCGACCTTCTAGGAGACC	360
phoc.siz	TACTATTATTCCTAACTTAACTAACCTAACCTAACCCATTTCGCAACCGACCTACTAGGAGACC	360
bera.bai	TACTACTTAATCTAGCCCTACTAACCTAACCCATTTCGCAACCGACCTACTAGGAGACC	360
ziph.car	TACTATTATTCCTAGCCCTACTAACCTAACCCATTTCGCAACCGACCTACTAGGAGACC	360
meso.eur	TACTACTTAATCTAGCCCTACTAACCTAACCCATTTCGCAACCGACCTACTAGGAGACC	360
meso.bid	TACTACTTAATCTAGCCCTACTAACCTAACCCATTTCGCAACCGACCTACTAGGAGACC	360
meso.den	TACTACTTAATCTAGCCCTACTAACCTAACCCATTTCGCAACCGACCTACTAGGAGACC	360
hype.amp	TACTATTATTCCTAGCCCTACTAACCTAACCCATTTCGCAACCGACCTACTAGGAGACC	360
meso.per	TATTATTAAATTAGTCCTACTAACCTAACCCATTTCGACCTTCTAGGAGACC	360
pcat.bla	TATTATTAAATCTAACCTAACCTAACCCATTTCGACCTTCTAGGAGACC	360
bex.lib	TACTTCTTAATTAACCTAACCTAACCCATTTCGACCTTCTAGGAGACC	360
hipp.amp	TACTCCTTAATTAACCAACTAACCTAACCCATTTCGACCTTCTAGGAGACC	360
dic.sum	TACTTCTTAATCTAGCCCTACTAACCTAACCCATTTCGACCTTCTAGGAGACC	360
shin.sch	TGTTCTTAATTAACCTAACCTAACCCATTTCGACCTTCTAGGAGACC	360
cera	TACTCCTTAATCTAGCCCTACTAACCTAACCCATTTCGACCTTCTAGGAGACC	360
equu	TCCTCCTAGTCCTACTAACCTAACCCATTTCGACCTTCTAGGAGACC	360
baby.bab	TACTCATAATTATAGCTCTTAATCTAGTACTAACCTAACCCATTTCGACCTTCTAGGAGACC	360
phac.afr	TATTCTATAACTAACCTAACCCATTTCGACCTTCTAGGAGACC	360
sus.baz	TATTCTATAACTAACCTAACCCATTTCGACCTTCTAGGAGACC	360
sus.scr.ewb3	TATTCTATAACTAACCTAACCCATTTCGACCTTCTAGGAGACC	360
lama.gla	TACTACTTAATCTAACCTAACCCATTTCGACCTTCTAGGAGACC	360
lama.gua	TACTACTTAATCTAACCTAACCCATTTCGACCTTCTAGGAGACC	360
vic.vic	TACTACTTAATCTAACCTAACCCATTTCGACCTTCTAGGAGACC	360
cam.bac	TCCTACTTAATTAATCTAACCTAACCCATTTCGACCTTCTAGGAGACC	360
arc.for	TCCTACTTAATCTAACCTAACCCATTTCGACCTTCTAGGAGACC	360
arc.gaz	TCCTACTTAATCTAACCTAACCCATTTCGACCTTCTAGGAGACC	360
eum.jub	TCCTACTTAATCTAACCTAACCCATTTCGACCTTCTAGGAGACC	360
zal.cal	TCCTACTTAATCTAACCTAACCCATTTCGACCTTCTAGGAGACC	360
odo.scs	TCCTACTTAATCTAACCTAACCCATTTCGACCTTCTAGGAGACC	360
pho.fasciata	TACTCTCATCTAACCTAACCCATTTCGACCTTCTAGGAGACC	360
pho.gro	TACTCTCATCTAACCTAACCCATTTCGACCTTCTAGGAGACC	360
pho.vic	TACTCTCATCTAACCTAACCCATTTCGACCTTCTAGGAGACC	360
sys.csi	TACTCTCATCTAACCTAACCCATTTCGACCTTCTAGGAGACC	360
nyd.lep	TACTCTCATCTAACCTAACCCATTTCGACCTTCTAGGAGACC	360
lep.wed	TACTCTCATCTAACCTAACCCATTTCGACCTTCTAGGAGACC	360
nic.les	TACTCTCATCTAACCTAACCCATTTCGACCTTCTAGGAGACC	360
sci.buc	TACTCTCATCTAACCTAACCCATTTCGACCTTCTAGGAGACC	360
ion.ach	TACTCTCATCTAACCTAACCCATTTCGACCTTCTAGGAGACC	360

helia.mal	TACCTCTTACCCCTACCCCTACCTTCTTCCCGGACTTACTACCGAGACC 360
sel.thi	TACCTCTTACCCCTACCCCTACCTTCTTCCCGGACTTACTACCGAGACC 360
ail.ful	TACCTCTTACCCCTACCTTCTTCCCGGACTTACTACCGAGACC 360
fel	TACCTCTTACCCCTACCTTCTTCCCGGACTTACTACCGAGACC 360
can	TACCTCTTACCCCTACCTTCTTCCCGGACTTACTACCGAGACC 360
tal	TACCTCTTACCCCTACCTTCTTCCCGGACTTACTACCGAGACC 360
gia.sab	TACCTCTTACCCCTACCTTCTTCCCGGACTTACTACCGAGACC 360
gia.vol	TACCTCTTACCCCTACCTTCTTCCCGGACTTACTACCGAGACC 360
hyl.pha	TACCTCTTACCCCTACCTTCTTCCCGGACTTACTACCGAGACC 360
pet.set	TACCTCTTACCCCTACCTTCTTCCCGGACTTACTACCGAGACC 360
bel.pea	TACCTCTTACCCCTACCTTCTTCCCGGACTTACTACCGAGACC 360
pte.mcm	TACCTCTTACCCCTACCTTCTTCCCGGACTTACTACCGAGACC 360
gala.demi	TACCTCTTACCCCTACCTTCTTCCCGGACTTACTACCGAGACC 360
pero.pct	TACCTCTTACCCCTACCTTCTTCCCGGACTTACTACCGAGACC 360
gala.mat	TACCTCTTACCCCTACCTTCTTCCCGGACTTACTACCGAGACC 360
gala.moc	TACCTCTTACCCCTACCTTCTTCCCGGACTTACTACCGAGACC 360
cto.gaz	TACCTCTTACCCCTACCTTCTTCCCGGACTTACTACCGAGACC 360
lor.tar	TACCTCTTACCCCTACCTTCTTCCCGGACTTACTACCGAGACC 360
sys.cou	TACCTCTTACCCCTACCTTCTTCCCGGACTTACTACCGAGACC 360
mus	TACCTCTTACCCCTACCTTCTTCCCGGACTTACTACCGAGACC 360
gort	TACCTCTTACCCCTACCTTCTTCCCGGACTTACTACCGAGACC 360
homo	TACCTCTTACCCCTACCTTCTTCCCGGACTTACTACCGAGACC 360
dug.dug	TACCTCTTACCCCTACCTTCTTCCCGGACTTACTACCGAGACC 360
ele.max	TACCTCTTACCCCTACCTTCTTCCCGGACTTACTACCGAGACC 360
afz.con	TACCTCTTACCCCTACCTTCTTCCCGGACTTACTACCGAGACC 360
pavo.mut	TACCTCTTACCCCTACCTTCTTCCCGGACTTACTACCGAGACC 360
tra.bly	TACCTCTTACCCCTACCTTCTTCCCGGACTTACTACCGAGACC 360
tra.sac	TACCTCTTACCCCTACCTTCTTCCCGGACTTACTACCGAGACC 360
tra.cob	TACCTCTTACCCCTACCTTCTTCCCGGACTTACTACCGAGACC 360
tra.tem	TACCTCTTACCCCTACCTTCTTCCCGGACTTACTACCGAGACC 360
arg.arg	TACCTCTTACCCCTACCTTCTTCCCGGACTTACTACCGAGACC 360
cat.wai	TACCTCTTACCCCTACCTTCTTCCCGGACTTACTACCGAGACC 360
cro.cro	TACCTCTTACCCCTACCTTCTTCCCGGACTTACTACCGAGACC 360
sym.zee	TACCTCTTACCCCTACCTTCTTCCCGGACTTACTACCGAGACC 360
bam.cho	TACCTCTTACCCCTACCTTCTTCCCGGACTTACTACCGAGACC 360
tra.tra	TACCTCTTACCCCTACCTTCTTCCCGGACTTACTACCGAGACC 360
ich.ctr	TACCTCTTACCCCTACCTTCTTCCCGGACTTACTACCGAGACC 360
anz.pas	TACCTCTTACCCCTACCTTCTTCCCGGACTTACTACCGAGACC 360
anz.vir	TACCTCTTACCCCTACCTTCTTCCCGGACTTACTACCGAGACC 360
gru.ant.anc	TACCTCTTACCCCTACCTTCTTCCCGGACTTACTACCGAGACC 360
gru.ant.gil	TACCTCTTACCCCTACCTTCTTCCCGGACTTACTACCGAGACC 360
gru.ant.sha	TACCTCTTACCCCTACCTTCTTCCCGGACTTACTACCGAGACC 360
gru.leu	TACCTCTTACCCCTACCTTCTTCCCGGACTTACTACCGAGACC 360
gru.can.pca	TACCTCTTACCCCTACCTTCTTCCCGGACTTACTACCGAGACC 360
gru.can.cow	TACCTCTTACCCCTACCTTCTTCCCGGACTTACTACCGAGACC 360
gru.can.cab	TACCTCTTACCCCTACCTTCTTCCCGGACTTACTACCGAGACC 360
gru.can.ca	TACCTCTTACCCCTACCTTCTTCCCGGACTTACTACCGAGACC 360
gru.ame	TACCTCTTACCCCTACCTTCTTCCCGGACTTACTACCGAGACC 360
gru.gru	TACCTCTTACCCCTACCTTCTTCCCGGACTTACTACCGAGACC 360
gru.mon	TACCTCTTACCCCTACCTTCTTCCCGGACTTACTACCGAGACC 360
gru.alg	TACCTCTTACCCCTACCTTCTTCCCGGACTTACTACCGAGACC 360
gru.jap	TACCTCTTACCCCTACCTTCTTCCCGGACTTACTACCGAGACC 360
cic.bey	TACCTCTTACCCCTACCTTCTTCCCGGACTTACTACCGAGACC 360
che.ame	TACCTCTTACCCCTACCTTCTTCCCGGACTTACTACCGAGACC 360
anz.ale	TACCTCTTACCCCTACCTTCTTCCCGGACTTACTACCGAGACC 360
tal.fim	TACCTCTTACCCCTACCTTCTTCCCGGACTTACTACCGAGACC 360
tal.yuc	TACCTCTTACCCCTACCTTCTTCCCGGACTTACTACCGAGACC 360
tal.pct	TACCTCTTACCCCTACCTTCTTCCCGGACTTACTACCGAGACC 360

fal.spa	TGCTCATACTCCTGCCCTAAAGCCCTAGCCCTATTCAACCCAAACCTGCTAGGAGACC	360
ayt.ame	TCCTCATGCTCACCCCCCTAAAGCACTAGCCCTATTCTCACCAAAACCTCCTAGGAGACC	360
emi.sha	CAATCATACTAACACCACTAAACCCCTAGCCATATTCTCTCTAACCTCCTAGGAGACC	360
vid.cha	TACTAATATTGCACTCCTAGCTTCCATAGCCCTATTCTCTCCAAACATACTAGGAGATC	360
chry.pic	TTCTAATACTAACCTCCTACTAACCTAACACTATTCTCTCCAAACCTTTAGGGAGCC	360
emy.orb.kur	TCCTAATACTAGCCTCCTGCTAACCTAACACTATTCTCTCCAAACCTCTAGGAGACC	360
che.mud	TTTAATACTAACCTCCTAACCTAACACTTTCTCCCTACTTACTAGGAGACC	360
eum.egr	TCATTATACTGTCTGTTCTACTAGCCCTGCCCTTCTCACCAAAACCTCTAGGGAGCC	360
	• • • • • • • • • •	
aep.mel	CAGACAANNACATCCCCGAAACCCACTCAACACCCCTCCCCACATCAAGCCGAATGGT	420
ore.ore	CAGATAACTACACCCAGCAAAACCCACTCAACACTCCCCCTCACATTAAACCGAAATGGT	420
add.nas	CAGACAATTATAACCCAGCRAATCCACTTAGCACGGCCCCCTCACATCAAAACCTGAATGAT	420
ory.dam	CAGATAATTATAACCCAGCAAAATCCACTAACACACCCCTCACATCAAAACCGAAATGAT	420
hip.equ	CAGACAACATGCCCCAGCAAAACCCACTCAACACGGCCCCCTCACATTAAACCGAAATGAT	420
alc.bus	CAGACAACATACCCCCCGCAAAACCCACTAACACACACCCCTCACATCAAGCCCGAAATGAT	420
sig.lic	CAGACAACATACCCCCCGCAAAACCCACTAACACACACCCCTCACATCAAGCCCGAAATGAT	420
bea.bun	CAGACAACATACCCCCCGCAAAACCCACTAACACACACCCCTCACATCAAGCCCGAAATGAT	420
dam.lun	CAGACAACATACCCCCCGCAAAACCCACTAACACACACCCCTCACATCAAGCCCGAAATGAT	420
con.tau	CAGACAACATACCCCCCGCAAAACCCACTAACACACACCCCTCACATCAAGCCCGAAATGAT	420
amm.ler	CAGACAACATACCCCCAGCAAAACCCACTAACACACACCCCTCACATCAACCTGAATGAT	420
pse.nay	CAGACAACATACCCCCAGCAAAACCCACTAACACACACCCCTCACATCAACCTGAATGAT	420
cap.ibe	CAGACAACATACCCCCAGCAAAACCCACTAACACACACCCCTCACATCAACCTGAATGAT	420
hem.jem	CAGACAACATACCCCCAGCAAAACCCACTAACACACACCCCTCACATCAACCTGAATGAT	420
cap.fal	CAGATAACTATACCCAGCRAATCCACTCAACACACACCCCTCACATCAACCTGAATGAT	420
rup.pyr	CAGATAACTATACCCAGCRAATCCACTCAACACACACCCCTCACATCAACCTGAATGAT	420
rup.rup	CAGATAACTATACCCAGCRAACCCACTAACACACACCCCTCACATCAACCTGAATGAT	420
dem.cau	CAGACAACATACCCCCAGCAAAACCCACTAACACACACCCCTCACATCAACCTGAATGAT	420
bud.tax.tax	CAGATAATTATAACCCAGCRAATCCACTAACACACACCCCTCACATCAACCTGAATGAT	420
paz.hod	CAGACAATTATAACCCAGCAAAACCCACTAACACACACCCCTCACATCAACCTGAATGAT	420
ovi.amm	CAGACAACATACCCCCAGCAAAACCCACTAACACACACCCCTCACATCAACCTGAATGAT	420
ovi.vig	CAGACAACATACCCCCAGCAAAACCCACTAACACACACCCCTCACATCAACCTGAATGAT	420
cap.cri	CAGACAACATACCCCCAGCRAACCCACTAACACACACCCCTCACATCAAGCCCGAGTGAT	420
ovi.mos	CAGACAACATACCCCCAGCAAAACCCACTAACACACACCCCTCACATCAACCTGAATGAT	420
ore.ame	CAGACAACATACCTCAGCRAACCCACTAACACACACCCCTCACATCAAGCCCGAAATGAT	420
cep.dor	CAGATAATTATACTCCAGCAAAACCCACTAACACACACCCCTCACATCAACCTGAATGAT	420
cep.max	CAGATAATTATACTCCAGCAAAACCCACTAACACACACCCCTCACATCAACCTGAATGAT	420
bis.bon	CAGATAACTACACCCAGCAAAACCCACTAACACACACCCCTCACATCAACCTGAATGAT	420
bos.gtu	CAGACAACATACCCCCAGCAAAACCCACTAACACACACCCCTCACATCAACCTGAATGAT	420
bos.cra	CAGACAACATACCCCCAGCAAAACCCACTAACACACACCCCTCACATCAACCTGAATGAT	420
bub.min	CAGACAACATACCCCCAGCAAAACCCACTAACACACACCCCTCACATCAACCTGAATGAT	420
buba.bub	CAGACAACATACCCCCAGCAAAACCCACTAACACACACCCCTCACATCAACCTGAATGAT	420
cra.ang	CCGACAACATACACCCAGCGAAACCCCTCAATACACCTCCCCATATCAACCTGAATGAT	420
cra.euz	CCGACAACATACACCCAGCGAAACCCCTCAATACACCTCCCCATATCAACCTGAATGAT	420
kob.ell	CTGACAACATGCCCCAGCAAAACCCACTAACACGGCCCCCTCACATTAAACCTGAATGAT	420
kob.meg	CTGACAATTATAACCCAGCAAAACCCACTAACACACCTCCCCATATTAAACCGAAATGAT	420
zed.aru	CCGACAATTATACTCCAGCAAAACCCACTAACACACACCCCTCACATTAAACCGAAATGAT	420
zed.ful	CCGACAATTACACCCAGCAAAACCCACTAACACACACCCCTCACATTAAACCGAAATGAT	420
neo.mos	CAGACAACATACCCCCCGCAAAACCCCTCTAACACGGCCCTCCCCATATCAACCGAAATGAT	420
pel.cap	CTGACAATTACACCCCTGCCAAACCCGCTCAACACACCCCTCACATTAAACCGAAATGAT	420
gaz.dam	CAGACAACATACACCCAGCAAAACCCACTAACACACACCCCTCACATTAAACCGAAATGAT	420
our.our	CAGACAACATACACCCAGCAAAACCCACTAACACACACCCCTCACATTAAACCGAAATGAT	420
anz.cet	CAGACAACATACACCCAGCAAAACCCACTAACACACACCCCTCACATTAAACCGAAATGAT	420
sai.tat	CAGACAACATACACCCAGCAAAACCCACTAACACACACCCCTCACATTAAACCGAAATGAT	420
mad.kir	CAGACAACATACACCCAGCAAAACCCACTAACACACACCCCTCACATTAAACCGAAATGAT	420
rap.mel	CAGACAACATACACCCAGCAAAACCCACTAACACACACCCCTCACATTAAACCGAAATGAT	420
gaz.gaz	CAGACAACATACACCCAGCAAAACCCACTAACACACACCCCTCACATTAAACCGAAATGAT	420
ant.ame	CCCACAACATACACCCAGCTAACACACACCCCTCACATTAAACCGAAATGAT	420

turs.cru	CTGATAACTACACCCAGCAAACCCACTAAGCAGCCCTGCACACATCAAACCGAGAATGAT	420
lage.alb	CCGATAACTATAACCCAGCAAATCCACTAACGCACTCCTGCACACATCAAACCGAGAATGCT	420
stea.bre	CCGACAACTATAACCCAGCAAATCCACTAACGCAACCCCTGCACACATCAAACCGAGAATGCT	420
sota.flu	CCGACAACTATAACTCCAGCAAATCCACTAACGCAACCCCTGCACACATCAAACCGAGAATGCT	420
del.leu	CAGACAAATTACACCCAGCAAACCCACTAACGACCCCCGACACATCAAACCGAGAATGCT	420
mono.mon	CTGACAAATTATAACCCAGCAAACCCACTAACGACCCCCCTGCACACATCAAACCGAGAATGAT	420
plat.gan	CCGATAACTACACCCAGCAAACCCCTTAATACCCACGACATATCAAACCGAGAATGAT	420
plat.mia	CCGATAACTACACCCAGCAAACCCCTTAATACCCACGACATATCAAACCGAGAATGAT	420
kogi.bre	CTGACAACTACACCCAGCAAACCCACTAACGACCCCCGACACATCAAACCGAGAATGAT	420
kogi.sim	CCGACAACTATAACCCAGCAAACCCACTAACGACCCCCGACACATCAAACCGAGAATGCT	420
phys.cat	CTGACAACTACACCCAGCAAATCCACTAACGACCCCCGACACATCAAACCGAGAATGAT	420
lipo.vex	CTGACAACTACACCCAGCAAACCCACTAACGACCCCCGACACATCAAACCGAGAATGAT	420
phoc.sin	CTGACAACTACACCCAGCAAACCCACTAACGACCCCCGACACATCAAACCGAGAATGAT	420
bera.bai	CCGACAACTATAACCCGGCAAACCCGCTAACGACCCCCGACACATATAAGCCAGAATGAT	420
ziph.car	CCGACAACTATAACCCAGCAAATCCACTAACGACCCCCGACACATCAAACCGAGAATGAT	420
meso.eur	CCGACAAATTACACCCAGCAAACCCACTAACGACACATCAAACCGAGAATGAT	420
meso.bid	CCGACAACTATAACCCAGCAAACCCACTAACGACCCCCGACACATCAAACCGAGAATGAT	420
meso.den	CCGACAACTATAACCCAGCAAACCCACTAACGACCCCCGACACATCAAACCGAGAATGAT	420
type.amp	CTGACAACTATAACCCAGCAAACCCACTAACGACCCCCGACACATCAAACCGAGAATGAT	420
meso.per	CTGACAAATTACACTCCAGCAAACCCACTTAGCACCCGACACATATAACCAGAATGAT	420
genz.bla	CAGACAACTATAACCCAGCAAACCCGAGAAACCCAGAGCACATTAAACCGAGAATGCT	420
hex.lib	CAGACAACTACACCCCCGCAAACCCCTTAGCACACCCACACATCAAACCGAGAATGAT	420
hipp.amp	CAGACAACTACACCCCCGCAAACCCCTTAGCACACCCACACATCAAACCGAGAATGAT	420
dic.sum	CCGACAACTACACCCCCGCAAACCCCTCTCACGACCCCCCTCCACACATATAACCAGAATGAT	420
rbiz.sor	CAGACAACTACACCCAGCCATAACCCCTTAGCACACCCACACATCAAACCGAGAATGAT	420
cera	CTGACAACTACACCCCTGCCATACTCTCACGACTCCCCACACATCAAACCGAGAATGAT	420
eqiu	CAGACAACTACACCCAGCTAACCCACTAACGACCCCCCAGATAATAAGCCAGAATGAT	420
baby.bab	CCGACAACTATACTCCAGCAAACCCACTAACGACCCCCCAGATAATAAGCCAGAATGAT	420
phac.afr	CAGACAACTATAACCCAGCAAACCCACTAACGACACCCACACATCAAACCGAGAATGAT	420
sus.bar	CAGACAACTACACCCCCAGCAAACCCACTAACGACACCCACACATCAAACCGAGAATGAT	420
sus.scr.ewb3	CCGACAACTATACTCCCCTGCTAACCCCTCAACACACCGCCCCATAATAACCAGAATGAT	420
lama.gla	CCGACAACTATACTCCCCTGCTAACCCCTCAACACACCGCCCCATAATAACCAGAATGAT	420
lama.sua	CCGACAACTATAACCCCGCTAACCCCTTAACACACCCACACATCAAACCGAGAATGAT	420
vic.vic	CTGACAACTATACTCCCCTGCTAACCCCTCAACACACCGCCCCACACATATAAGCCGGAAATGAT	420
cam.bac	CAGACAACTACACCCAGCCATAACCCCTGCTAACGACTCCACACATATAACCCTGAATGAT	420
arc.for	CAGACAACTACATCCCAGCCATAACCCCTGCTAACGACTCCACACATATAACCCTGAATGAT	420
arc.gaz	CAGACAACTACATCCCAGCCATAACCCCTGCTAACGACTCCACACATATAACCCTGAATGAT	420
eum.jub	CAGACAACTACATCCCAGCCATAACCCCTGCTAACGACTCCACACATATAACCCTGAATGAT	420
zal.cal	CAGACAACTATACTCCAGCCATAACCCCTGCTAACGACTCCACACATATAACCCTGAATGAT	420
odo.zos	CCGACAACTACACCCAGCCATAACCCCTGCTAACGACTCCACACATATAACCCTGAATGAT	420
pho.fasciata	CCGACAACTACACCCCTGCTAACCCCTTAAGCACCCACACATATAAGCCGGAAATGAT	420
pho.gro	CCGACAACTACATCCCCTGCTAACCCCTTAAGCACCCACACATATAAGCCGGAAATGAT	420
pho.vit	CCGACAACTACACCCCTGCTAACCCCTTAAGCACCCACACATATAAGCCGGAAATGAT	420
cys.cri	CCGACAACTATACTCCCCTGCTAACCCCTTAAGCACCCACACATATAAGCCGGAAATGAT	420
hyd.lep	CCGACAACTATACTCCCCTGCTAACCCCTTAAGCACCCACACATATAAGCCGGAAATGAT	420
leg.wed	CCGACAACTACACCCCTGCTAACCCCTTAAGCACCCACACATATAAGCCGGAAATGAT	420
mic.les	CCGACAACTACACCCCTGCTAACCCCTTAAGCACCCACACATATAAGCCGGAAATGAT	420
eti.bac	CCGACAACTACACCCCTGCTAACCCCTTAAGCACCCACACATATAAGCCGGAAATGAT	420
non.sch	CTGACAACTACATCCCCTGCTAACCCCTTAAGCACCCACACATATAAGCCGGAAATGAT	420
vel.mal	CTGACAACTACATCCCCTGCTAACCCCTTAAGCACCCACACATATAAGCCGGAAATGAT	420
vel.chi	CTGACAACTATAACCCCTGCTAACCCCTTAAGCACCCACACATATAAGCCGGAAATGAT	420
vil.fil	CTGACAACTATAACCCCTGCTAACCCCTTAAGCACCCACACATATAAGCCGGAAATGAT	420
lei	CAGACAACTACATCCCCTGCTAACCCCTTAAGCACCCACACATATAAGCCGGAAATGAT	420
tan	CAGACAACTACACCCCTGCTAACCCCTTAAGCACCCACACATATAAGCCGGAAATGAT	420
ai	CAGACAACTACACCCCTGCTAACCCCTTAAGCACCCACACATATAAGCCGGAAATGAT	420
la.sib	CAGACAACTATAACCCCTGCTAACCCCTTAAGCACCCACACATATAAGCCGGAAATGAT	420
la.vol	CAGACAACTATAACCCCTGCTAACCCCTTAAGCACCCACACATATAAGCCGGAAATGAT	420
yl.pha	CTGACAACTACACCCCCCAGCAAACCCCTTAAGCACCCACACATATAAGCCGGAAATGAT	420

aep.mel	ACTTCCTATTNGCATACGCAATCCTACGATCAATCCCCATAAACTAGGAGG	472
ore.ore	ATTTCTATTNGCATATGCAATCCTACGATCAATCCCCATAAACTAGGAGG	472
add.nas	ATTTCTATTGCAATACGCAATTCTACGATCAATCCCCATAAACTAGGAGG	472
ory.dam	ATTTCTATTGCAATGCAATCTACGATCAATCCCCATAAACTAGGAGG	472
hip.equ	ATTTCTATTGCAATGCAATCTACGATCAATCCCCATAAACTAGGAGG	472
alc.bus	ATTTCTATTGCAATGCAATCTACGATCAATCCCCATAAACTAGGAGG	472
sig.lic	ATTTCTATTGCAATGCAATCTACGATCAATCCCCATAAACTAGGAGG	472
bea.hun	ATTTCTATTGCAATGCAATCTACGATCAATCCCCATAAACTAGGAGG	472
dam.lun	ATTTCTATTGCAATGCAATCTACGATCAATCCCCATAAACTAGGAGG	472
con.tau	ATTTCTATTGCAATGCAATCTACGATCAATCCCCATAAACTAGGAGG	472
amm.lem	ATTTCTATTGCAATGCAATCTACGATCAATCCCCATAAACTAGGAGG	472
pse.nay	ATTTCTATTGCAATGCAATCTACGATCAATCCCCATAAACTAGGAGG	472
cap.ibe	ATTTCTATTGCAATGCAATCTACGATCAATCCCCATAAACTAGGAGG	472
hem.jem	ATTTCTATTGCAATGCAATCTACGATCAATCCCCATAAACTAGGAGG	472
cap.fal	ATTTCTATTGCAATGCAATCTACGATCAATCCCCATAAACTAGGAGG	472
rup.pyr	ATTTCTATTGCAATGCAATCTACGATCAATCCCCATAAACTAGGAGG	472
rup.rup	ATTTCTATTGCAATGCAATCTACGATCAATCCCCATAAACTAGGAGG	472
nem.cau	ATTTCTATTGCAATGCAATCTACGATCAATCCCCATAAACTAGGAGG	472
bud.tax.tax	ATTTCTATTGCAATGCAATCTACGATCAATCCCCATAAACTAGGAGG	472
pan.hod	ATTTCTATTGCAATGCAATCTACGATCAATCCCCATAAACTAGGAGG	472
ovi.amm	ATTTCTATTGCAATGCAATCTACGATCAATCCCCATAAACTAGGAGG	472
ovi.vig	ATTTCTATTGCAATGCAATCTACGATCAATCCCCATAAACTAGGAGG	472
cap.cri	ATTTCTATTGCAATGCAATCTACGATCAATCCCCATAAACTAGGAGG	472
ovi.mcs	ATTTCTATTGCAATGCAATCTACGATCAATCCCCATAAACTAGGAGG	472
ore.ame	ATTTCTATTGCAATGCAATCTACGATCAATCCCCATAAACTAGGAGG	472
cep.dor	ATTTCTATTGCAATGCAATCTACGATCAATCCCCATAAACTAGGAGG	472
cep.max	ATTTCTATTGCAATGCAATCTACGATCAATCCCCATAAACTAGGAGG	472
bis.bon	ATTTCTATTGCAATGCAATCTACGATCAATCCCCATAAACTAGGAGG	472
bos.gru	ATTTCTATTGCAATGCAATCTACGATCAATCCCCATAAACTAGGAGG	472
bos.tra	ATTTCTATTGCAATGCAATCTACGATCAATCCCCATAAACTAGGAGG	472
bub.mis	ATTTCTATTGCAATGCAATCTACGATCAATCCCCATAAACTAGGAGG	472
bub.a.bub	ATTTCTATTGCAATGCAATCTACGATCAATCCCCATAAACTAGGAGG	472
tra.ang	ATTTCTATTGCAATGCAATCTACGATCAATCCCCATAAACTAGGAGG	472
tra.eur	ATTTCTATTGCAATGCAATCTACGATCAATCCCCATAAACTAGGAGG	472
kob.ell	ATTTCTATTGCAATGCAATCTACGATCAATCCCCATAAACTAGGAGG	472
kob.mes	ATTTCTATTGCAATGCAATCTACGATCAATCCCCATAAACTAGGAGG	472
red.aru	ATTTCTATTGCAATGCAATCTACGATCAATCCCCATAAACTAGGAGG	472
red.ful	ATTTCTATTGCAATGCAATCTACGATCAATCCCCATAAACTAGGAGG	472
neo.mos	ATTTCTATTGCAATGCAATCTACGATCAATCCCCATAAACTAGGAGG	472
pel.cap	ATTTCTATTGCAATGCAATCTACGATCAATCCCCATAAACTAGGAGG	472
gaz.dam	ATTTCTATTGCAATGCAATCTACGATCAATCCCCATAAACTAGGAGG	472
our.out	ATTTCTATTGCAATGCAATCTACGATCAATCCCCATAAACTAGGAGG	472
ant.cer	ATTTCTATTGCAATGCAATCTACGATCAATCCCCATAAACTAGGAGG	472
sai.cat	ATTTCTATTGCAATGCAATCTACGATCAATCCCCATAAACTAGGAGG	472
mad.kit	ATTTCTATTGCAATGCAATCTACGATCAATCCCCATAAACTAGGAGG	472
rup.mel	ATTTCTATTGCAATGCAATCTACGATCAATCCCCATAAACTAGGAGG	472
gaz.gaz	ATTTCTATTGCAATGCAATCTACGATCAATCCCCATAAACTAGGAGG	472
anc.ame	ATTTCTATTGCAATGCAATCTACGATCAATCCCCATAAACTAGGAGG	472
hyd.ine	ATTTCTATTGCAATGCAATCTACGATCAATCCCCATAAACTAGGAGG	472
mun.mun	ATTTCTATTGCAATGCAATCTACGATCAATCCCCATAAACTAGGAGG	472
alc.alc	ATTTCTATTGCAATGCAATCTACGATCAATCCCCATAAACTAGGAGG	472
cer.elia.kan	ATTTCTATTGCAATGCAATCTACGATCAATCCCCATAAACTAGGAGG	472
cer.elia.xan	ATTTCTATTGCAATGCAATCTACGATCAATCCCCATAAACTAGGAGG	472
cer.elia.can	ATTTCTATTGCAATGCAATCTACGATCAATCCCCATAAACTAGGAGG	472
cer.nip.esc	ATTTCTATTGCAATGCAATCTACGATCAATCCCCATAAACTAGGAGG	472
cer.nip.yes	ATTTCTATTGCAATGCAATCTACGATCAATCCCCATAAACTAGGAGG	472
cer.nip.ker	ATTTCTATTGCAATGCAATCTACGATCAATCCCCATAAACTAGGAGG	472

cer.nip.pul	ATTTCTTATTCGATACCGAATCTTACGGATCAATTCCAAACAAAC...AUGAUU	472
cer.nip.nip	ATTTCTTATTCGATACCGAATCTTACGGATCAATTCCAAACAAACTAGGAGG	472
cer.elas.co	ATTTCTTATTCGATACCGAATCTTACGGATCAATTCCAAACAAACTAGGAGG	472
cer.dam	ACTTCCTTATTCGATACCGAATCTTACGGATCAATTCCAAATAAACTAGGAGG	472
ran.taz	ACTTCCTTATTCGATACCGAATCTTACGGATCAATTCCAAATAAACTAGGAGG	472
mos.fus	ATTTCTTATTCGATATGCCATTCTACGGATCAATTCCAAACAAACTAGGAGG	472
mos.leu	ATTTCTTATTCGATATGCCATTCTACGGATCAATTCCAAACAAACTAGGAGG	472
mos.chr	ATTTCTTATTCGATATGCCATTCTACGGATCAATTCCAAACAAACTAGGAGG	472
mos.bez	ATTTCTTATTCGATATGCCATTCTACGGATCAATTCCAAACAAACTAGGAGG	472
mos.mos	ATTTCTTATTCGATATGCCATTCTACGGATCAATTCCAAACAAACTAGGAGG	472
era.jav	ATTTCTTATTCGATACCGAATTCTCGGTCAATTCCAAATAAACTAGGAGG	472
trag.nap	ATTTCTTATTCGATACCGAATCTTACGGATCAATTCCAAATAAACTAGGAGG	472
bala.acu	ACTTCCTTATTCGATACCGAATCTTACGGATCAATTCCAAATAAACTAGGAGG	472
bala.bon	ATTTCTTATTCGATATGCCATTCTACGGATCAATTCCAAACAAACTAGGAGG	472
bala.bor	ATTTCTTATTCGATATGCCATTCTACGGATCAATTCCAAACAAACTAGGAGG	472
bala.edi	ATTTCTTATTCGATATGCCATTCTACGGATCAATTCCAAACAAACTAGGAGG	472
esch.rob	ATTTCTTATTCGATACCGAATTCTCGGTCAATTCCAAATAAACTAGGAGG	472
bala.mus	ATTTCTTATTCGATACCGAATCTTACGGATCAATTCCAAACAAACTAGGAGG	472
mega.scv	ATTTCTTATTCGATACCGAATCTTACGGATCAATTCCAAACAAACTAGGAGG	472
bala.phy	ATTTCTTATTCGATACCGAATCTTACGGATCAATTCCAAACAAACTAGGAGG	472
cap.mar	ATTTCTTATTCGATATGCCATTCTACGGATCAATTCCAAACAAACTAGGAGG	472
ceph.com	ATTTCTTATTCGATATGCCATTCTACGGATCAATTCCAAACAAACTAGGAGG	472
ceph.eut	ACTTCCTTATTCGATATGCCATTCTACGGATCAATTCCAAACAAACTAGGAGG	472
lage.obl	ACTTCCTTATTCGATATGCCATTCTACGGATCAATTCCAAACAAACTAGGAGG	472
ceph.hea	ACTTCCTTATTCGATATGCCATTCTACGGATCAATTCCAAACAAACTAGGAGG	472
ceph.hec	ACTTCCTTATTCGATATGCCATTCTACGGATCAATTCCAAACAAACTAGGAGG	472
lage.aus	ACTTCCTTATTCGATATGCCATTCTACGGATCAATTCCAAACAAACTAGGAGG	472
lage.cru	ACTTCCTTATTCGATATGCCATTCTACGGATCAATTCCAAACAAACTAGGAGG	472
lage.obs	ACTTCCTTATTCGATATGCCATTCTACGGATCAATTCCAAACAAACTAGGAGG	472
lisso.bor	ACTTCCTTATTCGATACCGAATTCTACGGATCAATTCCAAACAAACTAGGAGG	472
lisso.per	ACTTCCTTATTCGATACCGAATTCTACGGATCAATTCCAAACAAACTAGGAGG	472
glo.mac	ATTTCTTATTCGATATGCCATTCTACGGATCAATTCCAAACAAACTAGGAGG	472
glo.mel	ATTTCTTATTCGATATGCCATTCTACGGATCAATTCCAAACAAACTAGGAGG	472
fere.att	ATTTCTTATTCGCTATGCCATTCTACGGATCAATTCCAAACAAACTAGGAGG	472
pepo.ele	ATTTCTTATTCGCTATGCCATTCTACGGATCAATTCCAAACAAACTAGGAGG	472
gram.gri	ATTTCTTATTCGCTATGCCATTCTACGGATCAATTCCAAACAAACTAGGAGG	472
pse.cra	ATTTCTTATTCGCTATGCCATTCTACGGATCAATTCCAAACAAACTAGGAGG	472
lage.acu	ATTTCTTATTCGCTATGCCATTCTACGGATCAATTCCAAACAAACTAGGAGG	472
creci.bre	ACTTCCTTATTCGCTATGCCATTCTACGGATCAATTCCAAACAAACTAGGAGG	472
creca.bre	ACTTCCTTATTCGCTATGCCATTCTACGGATCAATTCCAAACAAACTAGGAGG	472
del.cap	ACTTCCTTATTCGCTATGCCATTCTACGGATCAATTCCAAACAAACTAGGAGG	472
del.tro	ACTTCCTTATTCGCTATGCCATTCTACGGATCAATTCCAAACAAACTAGGAGG	472
del.del	ACTTCCTTATTCGCTATGCCATTCTACGGATCAATTCCAAACAAACTAGGAGG	472
steen.cly	ACTTCCTTATTCGCTATGCCATTCTACGGATCAATTCCAAACAAACTAGGAGG	472
steen.coe	ACTTCCTTATTCGCTATGCCATTCTACGGATCAATTCCAAACAAACTAGGAGG	472
tut.adu	ACTTCCTTATTCGCTATGCCATTCTACGGATCAATTCCAAACAAACTAGGAGG	472
steen.fro	ACTTCCTTATTCGCTATGCCATTCTACGGATCAATTCCAAACAAACTAGGAGG	472
saus.chi	ACTTCCTTATTCGCTATGCCATTCTACGGATCAATTCCAAACAAACTAGGAGG	472
steen.lon	ACTTCCTTATTCGCTATGCCATTCTACGGATCAATTCCAAACAAACTAGGAGG	472
ters.tru	ACTTCCTTATTCGCTATGCCATTCTACGGATCAATTCCAAACAAACTAGGAGG	472
lage.alb	ACTTCCTTATTCGCTATGCCATTCTACGGATCAATTCCAAACAAACTAGGAGG	472
steen.bre	ACTTCCTTATTCGCTATGCCATTCTACGGATCAATTCCAAACAAACTAGGAGG	472
scta.flu	ACTTCCTTATTCGCTATGCCATTCTACGGATCAATTCCAAACAAACTAGGAGG	472
del.leu	ACTTCCTTATTCGCTATGCCATTCTACGGATCAATTCCAAACAAACTAGGAGG	472
mono.mon	ACTTCCTTATTCGCTATGCCATTCTACGGATCAATTCCAAACAAACTAGGAGG	472
plac.gan	ACTTCCTTATTCGCTATGCCATTCTACGGATCAATTCCAAACAAACTAGGAGG	472
plac.mia	ACTTCCTTATTCGCTATGCCATTCTACGGATCAATTCCAAACAAACTAGGAGG	472
kogi.bce	ACTTCCTTATTCGCTATGCCATTCTACGGATCAATTCCAAACAAACTAGGAGG	472

hyd.ine	CAGACAAATTATACTCCAGCAAACCCACTCAATACACCCCCCACATTAAACCGAAATGAT	430
mun.mun	CCGACAAATTATACCCCAGCAAACCCACTCAATACACCCCCCACATCAAGCCTGAATGAT	430
alc.alc	CAGACAACTACACCCAGCTAATCCACTCAACACACCCCCCACATTAAACCGAAATGAT	430
cer.ela.kan	CAGACAACTATAACCCAGCAAATCCACTCAATACACACCCCCCACATTAAACCGAAATGAT	430
cer.ela.xan	CAGACAACTATAACCCAGCAAATCCACTCAACACACCCCCCACATTAAACCGAAATGAT	430
cer.ela.can	CAGACAACTATAACCCAGCAAATCCACTCAACACACCCCCCACATTAAACCGAAATGAT	430
cer.nip.cent	CAGACAACTATAACCCAGCAAATCCACTCAACACACCCCCCACATCAACACCTGAATGAT	430
cer.nip.yes	CAGACAACTATAACCCAGCAAATCCACTCAACACACCCCCCACATTAAACCGAAATGAT	430
cer.nip.kes	CAGACAACTACACCCAGCAAATCCGCTCAACACACCCCCCACATCAACACCTGAATGAT	430
cer.nip.pul	CAGACAACTACACCCAGCAAATCCGCTCAACACACCCCCCACATCAACACCTGAATGAT	430
cer.nip.nip	CAGACAACTACACCCAGCAAATCCGCTCAACACACCCCCCACATCAACACCTGAATGAT	430
cer.ela.sco	CAGATAACTACACCCAGCAAACCCACTCAACACACCCCCCATATTAAACCGAAATGAT	430
cer.dam	CAGACAAATTACACTCCAGCAAATCCACTCAACACACCCCCCATATTAAACCGAAATGAT	430
zan.tar	CGGACAACTATAACCCAGCAAACCCATTAAATACGCCCGCACATATTAAACCGAAATGAT	430
mcs.fus	CGGACAAATTATAACCCAGCAAACCCATTAAATACACCCCCCACATATTAAACCGAAATGAT	430
mos.leu	CGGACAAATTATAACCCGGCAAACCCATTAAATACGCCCGCACATATTAAACCGAAATGAT	430
mos.chr	CGGACAAATTATAACCCAGCAAACCCATTAAATACACACCCACCATATTAAACCGAAATGAT	430
mcs.ber	CGGACAACTACACTCCAGCAAACCCATTAAATACACCTCCACATATTAAACCGAAATGAT	430
mcs.mos	CAGATAACTACACCCGGCAAACCCATTAAACACACACCCCCATATTAAACCGAAATGAT	430
tra.jav	CCGACAAATTACACTCCGGCAAACCCATTAAACACACCCACCATATTAAAGCCAGAGTGGT	430
traj.nap	CCGACAACTATAACCCAGCAAACCCACTCAGTACCCAGCACCATATTAAACCGAAATGAT	430
bala.acu	CCGACAACTACACCCAGCAAACCCACTCAGTACCCAGCACCATATTAAACCGAAATGAT	430
bala.bon	CAGACAACTACACCCAGCAAATCCACTCAGTACCCAGCACCATATTAAACCGAAATGAT	430
bala.bot	CAGACAACTACACCCAGCAAATCCACTCAGTACCCAGCACCATATTAAACCGAAATGAT	430
bala.edi	CAGACAACTACACTCCAGCAAACCCACTCAGTACCCAGCACCATATTAAACCGAAATGAT	430
esch.rob	CAGACAACTATAACCCAGCAAACCCACTCAGTACCCAGCACCATATTAAACCGAAATGAT	430
bala.mus	CAGACAACTACACCCAGCAAACCCACTCAGTACCCAGCACCATATTAAACCGAAATGAT	430
mega.acv	CAGACAACTATAACCCAGCAAACCCACTCAGTACCCAGCACCATATTAAACCGAAATGAT	430
bala.phy	CTGACAACTACACCCAGCAAATCCATTAAAGCACCCCCGGCACACATCAAGCCAGAATGAT	430
cap.maz	CTGATAACTATAACCCAGCAAATCCATTAAAGCACCCCCGGCACACATCAACCGAAATGAT	430
ceph.com	CTGATAACTATAACCCAGCAAATCCATTAAAGCACCCCCGGCACACATCAACCGAAATGAT	430
ceph.eut	CTGATAACTATAACCCAGCAAATCCATTAAAGCACCCCCGGCACACATCAACCGAAATGAT	430
lage.obi	CTGATAACTATAACCCAGCAAATCCATTAAAGCACCCCCGGCACACATCAACCGAAATGAT	430
ceph.hea	CTGATAACTATAACCCAGCAAATCCATTAAAGCACCCCCGGCACACATCAACCGAAATGAT	430
ceph.hec	CTGATAACTATAACCCAGCAAATCCATTAAAGCACCCCCGGCACACATCAACCGAAATGAT	430
lage.aus	CTGACAACTATAACCCAGCAAATCCATTAAAGCACCCCCGGCACACATCAACCGAAATGAT	430
lage.cru	CTGACAACTATAACCCAGCAAATCCATTAAAGCACCCCCGGCACACATCAACCGAAATGAT	430
lage.cbs	CTGACAACTATAACCCAGCAAATCCATTAAAGCACCCCCGGCACACATCAACCGAAATGAT	430
lisso.bor	CTGACAACTACACCCAGCAAATCCATTAAAGCACCCCCGGCACACATCAACCGAAATGAT	430
lisso.per	CTGACAACTATAACCCAGCAAATCCATTAAAGCACCCCCGGCACACATCAACCGAAATGAT	430
glo.mac	CTGACAACTATAACCCAGCAAATCCATTAAAGCACCCCCGGCACACATCAACCGAAATGAT	430
glo.mel	CTGACAACTATAACCCAGCAAATCCATTAAAGCACCCCCGGCACACATCAACCGAAATGAT	430
fero.att	CTGACAACTATAACCCAGCAAACCCACTAAGCACCCCCGGCACACATCAACCGAAATGAT	430
pepo.ele	CTGACAACTATAACCCAGCAAACCCACTAAGCACCCCCGGCACACATCAACCGAAATGAT	430
gram.gri	CTGACAACTACACTCCAGCAAACCCACTAAGCACCCCCGGCACACATCAACCGAAATGAT	430
pse.cra	CTGACAACTATAACCCAGCAAACCCACTAAGCACCCCCGGCACACATCAACCGAAATGAT	430
lage.acu	CTGACAACTACACTCCAGCAAACCCACTAAGCACCCCCGGCACACATCAACCGAAATGAT	430
orci.bre	CTGACAACTATAACCCAGCAAACCCACTAAGCACCCCCGGCACACATCAACCGAAATGAT	430
orca.bre	CTGACAACTATAACCCAGCAAACCCACTAAGCACCCCCGGCACACATCAACCGAAATGAT	430
del.cap	CTGACAACTATAACCCAGCAAATCCACTAAGCACCCCCGGCACACATCAACCGAAATGAT	430
del.cca	CTGACAACTATAACCCAGCAAATCCACTAAGCACCCCCGGCACACATCAACCGAAATGAT	430
del.del	CTGACAACTATAACCCAGCAAATCCACTAAGCACCCCCGGCACACATCAACCGAAATGAT	430
sten.cly	CTGACAACTATAACCCAGCAAATCCACTAAGCACCCCCGGCACACATCAACCGAAATGAT	430
sten.coe	CTGACAACTATAACCCAGCAAATCCACTAAGCACCCCCGGCACACATCAACCGAAATGAT	430
sten.adu	CTGACAACTATAACCCAGCAAATCCACTAAGCACCCCCGGCACACATCAACCGAAATGAT	430
sten.fro	CTGACAACTATAACCCAGCAAATCCACTAAGCACCCCCGGCACACATCAACCGAAATGAT	430
taus.chi	CTGACAACTATAACCCAGCAAATCCACTAAGCACCCCCGGCACACATCAACCGAAATGAT	430
sten.lon	CTGACAACTATAACCCAGCAAATCCACTAAGCACCCCCGGCACACATCAACCGAAATGAT	430

kogi.sim	ACTTTCTATTGCCATACGCCATTCTACGATCAATTCTAACAACTGGGAGG 472
phys.cat	ATTTCTTATTGCCGTACGCCATCCTACGATCTGTCCTAAATAAACTAGGAGG 472
lipo.vex	ATTTCTCTTCCGATACGCAATTCTACGATCAATTCCAATAAAACTAGGAGG 472
phoc.sin	ATTTCTCTTCCGATACGCAATTCTACGATCAATTCCAATAAAACTAGGAGG 472
beza.bai	ACTTCCTGTTCCGATACGCAATTCTACGATCAATTCCAATAAAACTAGGAGG 472
ziph.car	ACTTCCTATTGCCATACGCAATTCTACGATCAATTCCAATAAAACTAGGAGG 472
meso.eus.	ACTTCCTATTGCCATACGCAATTCTACGATCAATTCCAATAAAACTAGGAGG 472
meso.bid	ATTTCTTATTGCCATACGCAATTCTACGATCAATTCCAATAAAACTAGGAGG 472
meso.den	ATTTCTTATTGCCATACGCAATTCTACGATCAATTCCAATAAAACTAGGAGG 472
hyde.amp	ACTTCCTATTGCCATACGCAATTCTACGATCAATTCCAATAAAACTAGGAGG 472
meso.per	ATTTCTTATTGCCATACGCAATTCTACGATCAATTCCAATAAAACTAGGAGG 472
pont.bla	ATTTCTTATTGCCATACGCAATTCTACGATCAATTCCAATAAAACTAGGAGG 472
hex.lib	ATTTCTGTTCCGATACGCAATTCTCCGATCAATTCCAATAAAACTAGGAGG 472
hipp.amp	ATTTCTGTTCCGATACGCAATTCTACGATCAATTCCAATAAAACTAGGAGG 472
dic.sum	ACTTCCTATTGCCCTACGCAATTCTACGATCAATTCCAATAAAACTAGGAGG 472
rhin.son	ATTTCTTATTGCCATACGCAATTCTACGATCAATTCCAATAAAACTAGGAGG 472
cera	ACTTCCTATTGCCATTACGCCATTCTACGATCAATTCCAATAAAACTAGGAGG 472
equu	ATTTCTTATTGCCATTACGCCATTCTACGATCAATTCCAATAAAACTAGGAGG 472
baby.bab	ACTTCCTATTGCCATTACGCCATTCTACGATCAATTCCAATAAAACTAGGAGG 472
phac.aff	ACTTCCTATTGCCATTACGCCATTCTACGATCAATTCCAATAAAACTAGGAGG 472
sus.baz	ACTTCCTATTGCCATTACGCCATTCTACGATCAATTCCAATAAAACTAGGAGG 472
sus.scr.ewb3	ATTTCTTATTGCCATTACGCCATTCTACGATCAATTCCAATAAAACTAGGAGG 472
lama.gla	ACTTCCTATTGCCATTACGCCATTCTACGATCAATTCCAATAAAACTAGGAGG 472
lama.gua	ACTTCCTATTGCCATTACGCCATTCTACGATCAATTCCAATAAAACTAGGAGG 472
vic.vic	ATTTCTTATTGCCATTACGCCATTCTACGATCAATTCCAATAAAACTAGGAGG 472
cam.bac	ACTTCCTATTGCCATTACGCCATTCTACGATCAATTCCAATAAAACTAGGAGG 472
arc.for	ATTTCTTATTGCCATTACGCCATTCTACGATCAATTCCAATAAAACTAGGAGG 472
arc.gaz	ATTTCTTATTGCCATTACGCCATTCTACGATCAATTCCAATAAAACTAGGAGG 472
eum.jub	ATTTCTTATTGCCATTACGCCATTCTACGATCAATTCCAATAAAACTAGGAGG 472
zal.cal	ATTTCTTATTGCCATTACGCCATTCTACGATCAATTCCAATAAAACTAGGAGG 472
odo.ros	ATTTCTTATTGCCATTACGCCATTCTACGATCAATTCCAATAAAACTAGGAGG 472
pbo.fasciata	ACTTCCTATTGCCATTACGCCATTCTACGATCAATTCCAATAAAACTAGGAGG 472
pho.gro	ACTTCCTATTGCCATTACGCCATTCTACGATCAATTCCAATAAAACTAGGAGG 472
pho.vit	ACTTCCTATTGCCATTACGCCATTCTACGATCAATTCCAATAAAACTAGGAGG 472
cys.cri	ACTTCCTATTGCCATTACGCCATTCTACGATCAATTCCAATAAAACTAGGAGG 472
hyd.lep	ATTTCTTATTGCCATTACGCCATTCTACGATCAATTCCAATAAAACTAGGAGG 472
leg.wed	ATTTCTTATTGCCATTACGCCATTCTACGATCAATTCCAATAAAACTAGGAGG 472
mir.leo	ATTTCTTATTGCCATTACGCCATTCTACGATCAATTCCAATAAAACTAGGAGG 472
eri.bar	ATTTCTTATTGCCATTACGCCATTCTACGATCAATTCCAATAAAACTAGGAGG 472
mon.sch	ATTTCTTATTGCCATTACGCCATTCTACGATCAATTCCAATAAAACTAGGAGG 472
hela.mal	ATTTCTTATTGCCATTACGCCATTCTACGATCAATTCCAATAAAACTAGGAGG 472
sel.chi	ATTTCTTATTGCCATTACGCCATTCTACGATCAATTCCAATAAAACTAGGAGG 472
ail.ful	ATTTCTTATTGCCATTACGCCATTCTACGATCAATTCCAATAAAACTAGGAGG 472
fel	ATTTCTTATTGCCATTACGCCATTCTACGATCAATTCCAATAAAACTAGGAGG 472
can	ATTTCTTATTGCCATTACGCCATTCTACGATCAATTCCAATAAAACTAGGAGG 472
cal	ATTTCTTATTGCCATTACGCCATTCTACGATCAATTCCAATAAAACTAGGAGG 472
gla.sab	ACTTCCTATTGCCATTACGCCATTCTACGATCAATTCCAATAAAACTAGGAGG 472
gla.vcl	ACTTCCTATTGCCATTACGCCATTCTACGATCAATTCCAATAAAACTAGGAGG 472
hyl.pha	ACTTCCTATTGCCATTACGCCATTCTACGATCAATTCCAATAAAACTAGGAGG 472
pet.set	ACTTCCTATTGCCATTACGCCATTCTACGATCAATTCCAATAAAACTAGGAGG 472
bel.pea	ACTTCCTATTGCCATTACGCCATTCTACGATCAATTCCAATAAAACTAGGAGG 472
pie.mom	ATTTCTTATTGCCATTACGCCATTCTACGATCAATTCCAATAAAACTAGGAGG 472
gala.demi	ACTTCCTATTGCCATTACGCCATTCTACGATCAATTCCAATAAAACTAGGAGG 472
pero.pot	ACTTCCTATTGCCATTACGCCATTCTACGATCAATTCCAATAAAACTAGGAGG 472
gala.mat	ACTTCCTATTGCCATTACGCCATTCTACGATCAATTCCAATAAAACTAGGAGG 472
gala.moh	ACTTCCTATTGCCATTACGCCATTCTACGATCAATTCCAATAAAACTAGGAGG 472
oco.gac	ATTTCTTATTGCCATTACGCCATTCTACGATCAATTCCAATAAAACTAGGAGG 472
los.euc	ATTTCTTATTGCCATTACGCCATTCTACGATCAATTCCAATAAAACTAGGAGG 472

nyc.cou	ATTTCTATTGCCTACGCCATCCTCGATCAAATCCCAACAAACTAGGAGG 472
mus	ATTTCTATTGCCTACGCCATCCTCGATCAAATCCCAATAAACTAGGAGG 472
gorz	ATTTCTATTGCCTACGCCATCCTCGATCTCTCCCAATAAACTAGGAGG 472
homo	ATTTCTATTGCCTACGCCATCCTCGATCTCTCCCAATAAACTAGGAGG 472
dug.dug	ATTTCTATTGCCTACGCCATCCTCGATCTCTCCCAATAAACTAGGAGG 472
ele.max	ACTTTCTATTGCCTACGCCATCCTCGATCTCTCCCAATAAACTAGGAGG 472
aff.con	ACTTTCTATTGCCTACGCCATCCTCGATCTCTCCCAATAAACTAGGAGG 472
pavo.mut	ATTTCTATTGCCTACGCCATCCTCGATCTCTCCCAATAAACTAGGAGG 472
era.bly	ACTTTCTATTGCCTACGCCATCCTCGATCTCTCCCAATAAACTAGGAGG 472
era.sat	ACTTTCTATTGCCTACGCCATCCTCGATCTCTCCCAATAAACTAGGAGG 472
era.cob	ACTTTCTATTGCCTACGCCATCCTCGATCTCTCCCAATAAACTAGGAGG 472
era.tem	ATTTCTGTTCGCTTATGCCATCCTACGCTCAAATCCCAACAAACTCGGAGG 472
arg.arg	ACTTTCTATTGCCTATGCCATCCTACGCTCAAATCCCAACAAACTCGGAGG 472
cat.wal	ACTTTCTATTGCCTATGCCATCCTACGCTCAAATCCCAAAATAAACTCGGAGG 472
cro.cro	ACTTTCTATTGCCTATGCCATCCTACGCTCAAATCCCAAAATAAACTCGGAGG 472
sym.ree	ACTTTCTATTGCCTACGCCATCCTACGCTCAAATCCCAACAAACTGGGGGG 472
bam.tho	ACTTTCTATTGCCTACGCCATCCTACGCTCAAATCCCAACAAACTCGGAGG 472
fra.fra	ACTTTCTATTGCCTACGCCATCCTACGCTCAAATCCCAAAATAAACTCGGAGG 472
ich.cru	ACTTTCTATTGCCTACGCCATCCTACGCTCAAATCCCAAAATAAACTCGGAGG 472
ant.par	ACTTTCTATTGCCTACGCCATCCTACGCTCAAATCCCAAAATAAACTCGGAGG 472
ant.vir	ACTTTCTATTGCCTACGCCATCCTACGCTCAAATCCCAACAAACTAGGAGG 472
gru.ant.ant	ACTTTCTATTGCCTACGCCATCCTACGCTCAAATCCCAACAAACTAGGAGG 472
gru.ant.gil	ACTTTCTATTGCCTACGCCATCCTACGCTCAAATCCCAACAAACTAGGAGG 472
gru.ant.sha	ACTTTCTATTGCCTACGCCATCCTACGCTCAAATCCCAACAAACTAGGAGG 472
gru.leu	ACTTTCTATTGCCTACGCCATCCTACGCTCAAATCCCAACAAACTAGGAGG 472
gru.can.pra	ACTTTCTATTGCCTACGCCATCCTACGCTCAAATCCCAACAAACTAGGAGG 472
gru.can.row	ACTTTCTATTGCCTACGCCATCCTACGCTCAAATCCCAAAATAAACTAGGAGG 472
gru.can.tab	ACTTTCTATTGCCTACGCCATCCTACGCTCAAATCCCAAAATAAACTAGGAGG 472
gru.can.can	ACTTTCTATTGCCTACGCCATCCTACGCTCAAATCCCAAAATAAACTAGGAGG 472
gru.ame	ACTTTCTATTGCCTACGCCATCCTACGCTCAAATCCCAACAAACTAGGAGG 472
gru.gru	ACTTTCTATTGCCTACGCCATCCTACGCTCAAATCCCAACAAACTAGGAGG 472
gru.mon	ACTTTCTATTGCCTACGCCATCCTACGCTCAAATCCCAACAAACTAGGAGG 472
gru.zig	ACTTTCTATTGCCTACGCCATCCTACGCTCAAATCCCAACAAACTAGGAGG 472
gru.jap	ACTTTCTATTGCCTACGCCATCCTACGCTCAAATCCCAACAAACTAGGAGG 472
cic.boy	ACTTCCTCTTGCTACGCCATCCTACGCTCAAATCCCAACAAACTAGGAGG 472
the.ame	ATTTCTATTGCCTACGCCATCCTACGCTCAAATCCCAAAATAAACTAGGAGG 472
ant.alb	ATTTCTATTGCCTACGCCATCCTACGCTCAAATCCCAAAATAAACTAGGAGG 472
fal.sam	ACTTCCTATTGCCTACGCCATCCTACGCTCAAATCCCAAAACAACTAGGTGG 472
fal.ver	ACTTCCTATTGCCTACGCCATCCTACGCTCAAATCCCAAAACAACTGGGTGG 472
fal.pet	ACTTCCTATTGCCTACGCCATCCTACGCTCAAATCCCAAAACAATAAACTAGGAGG 472
fal.spa	ACTTCCTATTGCCTACGCCATCCTACGCTCAAATCCCAAAACAATAAACTAGGAGG 472
ayt.ame	ACTTCCTATTGCCTACGCCATCCTACGCTCAAATCCCAAAACAATAAACTAGGAGG 472
smi.sha	ATTTCTATTGCCTACGCCATCCTACGCTCAAATCCCAAAACAATAAACTAGGAGG 472
vid.cha	ACTTCCTATTGCCTACGCCATCCTACGCTCAAATCCCAAAACAATAAACTAGGAGG 472
chry.pic	ACTTCCTATTGCCTACGCCATCCTACGCTCAAATCCCAAAACAATAAACTAGGAGG 472
emy.osb.kuc	ACTTCCTATTGCCTACGCCATCCTACGCTCAAATCCCAAAACAATAAACTAGGAGG 472
che.mud	ACTTCCTATTGCCTACGCCATCCTACGCTCAAATCCCAAAACAATAAACTAGGAGG 472
eum.egg.	ACTTCCTATTGCCTACGCCATCCTACGCTCAAATCCCAAAACAATAAACTAGGAGG 472
PRIMER 'scb869'	CGATCAAATCCCAAAACAATAAACTAGGAGG
.....	

Results for RID 984593689-1224-27110

BLASTN 2.1.2 (Nov-13-2000)

Reference:

Altschul, Stephen F., Thomas L. Madden, Alejandro A. Schäffer, Jinghui Zhang, Zheng Zhang, Webb Miller, and David J. Lipman (1997). "Gapped BLAST and PSI-BLAST: a new generation of protein database search programs", Nucleic Acids Res. 25:3389-3402.

RID: 984593689-1224-27770

Query=

(328 letters)

Database: Sequences from complete mitochondrial genomes
129 sequences; 3,164,247 total letters

If you have any problems or questions with the results of this search
please refer to the BLAST FAQs

Taxonomy reportsDistribution of 80 Blast Hits on the Query Sequence

Mouse-over to show details and scores. Click to show alignments

Sequences producing significant alignments:

			(bits)	Value
ref NC_001700_1	Felis catus mitochondrion, complete genome	365	e-101	
ref NC_001325_1	Phoca vitulina mitochondrion, complete genome	198	1e-51	
ref NC_002008_1	Canis familiaris mitochondrion, complete g...	190	4e-49	
ref NC_001602_1	Halichoerus grypus mitochondrion, complete...	180	3e-46	
ref NC_000884_1	Cavia porcellus complete mitochondrial genome	176	5e-45	
ref NC_001808_1	Ceracotherium simum mitochondrion, complet...	165	2e-41	
ref NC_001892_1	Myoxus glis mitochondrion, complete genome	153	8e-18	
ref NC_001783_1	Equus asinus mitochondrion, complete genome	151	3e-37	
ref NC_002073_1	Orycteropus afer complete mitochondrial ge...	149	1e-36	
ref NC_001821_1	Dasyurus novemcinctus mitochondrion, comple...	141	3e-34	
ref NC_001779_1	R.unicornis complete mitochondrial genome	135	2e-32	
ref NC_001569_1	Mus musculus mitochondrion, complete genome	133	7e-32	
ref NC_000889_1	Hippopotamus amphibius mitochondrion, comp...	125	2e-29	
ref NC_001640_1	Equus caballus mitochondrion, complete genome	125	2e-29	
ref NC_001794_1	Macropus robustus mitochondrion, complete ...	123	7e-29	
ref NC_000845_1	Sus scrofa mitochondrion, complete genome	121	3e-28	
ref NC_001665_1	Rattus norvegicus mitochondrial genome	121	3e-28	
ref NC_001567_1	Bos taurus mitochondrion, complete genome	121	3e-28	
ref NC_001643_1	Pan troglodytes mitochondrion, complete ge...	117	4e-27	
ref NC_001941_1	Ovis aries mitochondrion, complete genome	109	1e-24	
ref NC_002391_1	Talpa europaea mitochondrion, complete genome	103	7e-23	
ref NC_001913_1	Oryctolagus cuniculus mitochondrion, compl...	103	7e-23	
ref NC_001644_1	Pan paniscus mitochondrion, complete genome	101	3e-22	
ref NC_001807_2	Human mitochondrion, complete genome	99	4e-21	
ref NC_001601_1	Balaenoptera musculus mitochondrion, compl...	98	4e-21	
ref NC_002009_1	Artibeus jamaicensis mitochondrion, comple...	96	2e-20	
ref NC_001645_1	Gorilla gorilla mitochondrion, complete ge...	92	2e-19	
ref NC_001321_1	Balaenoptera physalus mitochondrion, compl...	90	1e-18	
ref NC_001610_1	Didelphis virginiana mitochondrion, comple...	80	9e-16	
ref NC_002082_1	Hylobates lar mitochondrion, complete genome	70	9e-13	
ref NC_001727_1	Crossostoma lacustre mitochondrion, comple...	68	4e-12	
ref NC_001804_1	Latimeria chalumnae mitochondrion, comple...	56	1e-11	
ref NC_000880_1	Vidua chalybeata mitochondrion, complete g...	56	6e-11	
ref NC_002069_1	Corvus frugilegus mitochondrion, complete ...	62	2e-10	
ref NC_000886_1	Chelonia mydas mitochondrial DNA, complete...	62	2e-10	
ref NC_001646_1	Pongo pygmaeus mitochondrion, complete genome	62	2e-10	
ref NC_001606_1	Cyprinus carpio mitochondrion, complete ge...	60	9e-10	
ref NC_000890_1	Mustelus manazo mitochondrion, complete ge...	50	9e-10	
ref NC_001323_1	Gallus gallus mitochondrion, complete genome	53	3e-09	
ref NC_002079_1	Carassius auratus mitochondrion, complete ...	55	1e-08	
ref NC_000934_1	Loxodonta africana mitochondrion, complete...	56	1e-08	
ref NC_000878_1	Falco peregrinus mitochondrion, complete g...	56	1e-08	
ref NC_000846_1	Rhea americana mitochondrion, complete genome	54	5e-08	
ref NC_002196_1	Ciconia boyciana mitochondrion, complete g...	54	5e-08	
ref NC_001960_1	Salmo salar mitochondrion, complete genome	54	5e-08	
ref NC_001778_1	Polypterus ornatus mitochondrion, compl...	52	2e-07	
ref NC_002083_1	Pongo pygmaeus abelii mitochondrion, compl...	52	2e-07	
ref NC_001953_1	Struthio camelus complete mitochondrial ge...	52	2e-07	
ref NC_001947_1	Pelomedusa subrufa mitochondrion, complete...	52	2e-07	
ref NC_001770_1	Arbacia lixula mitochondrion, complete genome	52	2e-07	

Alignments

empseq_0 1	tgaatccgaggaggctccatcagtagacaaagctaccctgacacgatccctgcctccac	60
NC_001700 15524g...g.....c.....d.....g.....	15583
NC_001325 15580a...t.....t....a...c.a.....c.....	15639
NC_002008 14673c.....g.....a....a.....a.....	14729
NC_001602 15553s...t.....a...t.a...g.....c.....	15612
NC_000884 14650g...g.....c.....d.....	14709
NC_001808 14662s...t.c...t.....c...a...c.....c...e...	14713
NC_001892 14654c.....c.....c.....t...a...c.....t...a...t...	14730
NC_001788 14671t...s.....c....t...c.....t...c.....t...	14716
NC_002078 14663c....t....c.....a...a...a.....c.....	14716
NC_001951 14657a...t...a...c.....c.....	14723
NC_001779 14664s.....c.....c...c...c.....t.....	14684
NC_001562 14629c....g.....c...t...c.....c...t.....	14717
NC_000889 14658t...c.....c.....t.....t.....	14711
NC_001640 14674t...s.....c....t...c.....c...t.....	14727
NC_001724 14670g...s...c.....c...c...c...c...c...c...c...	14727

<u>NC_001804</u>	14928g..c.....t... 14948
<u>NC_000880</u>	15567ac.....a.....a 15591
<u>NC_002069</u>	14244	...c....a..c...g.a...g...gc...a..cc...t...aacc.....a 14303
		14780
<u>NC_000886</u>	14778	... 14796
<u>NC_001646</u>	14737a..a..c..c.....ca.....a..a.cc.t.....a 15841
<u>NC_001606</u>	15839	... 14902
<u>NC_000890</u>	14901	... 15862
<u>NC_002079</u>	15842	...c....a..... 14708
<u>NC_000934</u>	14693t..... 14277
<u>NC_000878</u>	14264	...c.a..... 14246
<u>NC_000846</u>	14135a.....a 14189
<u>NC_000846</u>	14187	... 15932
<u>NC_001960</u>	15930	... 14833
<u>NC_001778</u>	14823t..... 14184
<u>NC_001953</u>	14170	...c....c..... 15122
<u>NC_001770</u>	15120	... 14836
<u>tmpseq_0</u>	121	acaggatccaacaaacccctcaggaatagcatccgactcagacaaaatccaccttaccca 180
<u>NC_001700</u>	15644tac.....t.....c..... 15703
<u>NC_001325</u>	15700a.....c.....ca.....c.....c..... 15759
<u>NC_002008</u>	14790	..c....c.....c.....cac...a.....c.....c..... 14849
<u>NC_001602</u>	15673a.....c.....ca..c.....c.....c..... 15732
<u>NC_000884</u>	14770a.....a.....c..aac..a....c.....c..... 14829
<u>NC_001808</u>	14782c..c....a.....ccc...a..ac.....c.....c..... 14841
<u>NC_001892</u>	14774s..t....a.....t..aac..a..a.....c.....c..... 14833
<u>NC_001788</u>	14791c.....ccc...t..at.....c.....c..... 14850
<u>NC_002078</u>	14777c.....t..a.t.....c.....c..... 14836
<u>NC_001821</u>	14777a.....a....t..ccc...aa..at.....c.....c..... 14843
<u>NC_001779</u>	14784s..c.....a.....aa.....t..aac..a..t...c.....c..... 14804
<u>NC_001569</u>	14745a.....aa.....t..aac..a..t...c.....c..... 14837
<u>NC_000889</u>	14778c.....aa.....ccc...aa..s.....c.....c..... 14853
<u>NC_001640</u>	14794t.....ccc.....tacg.....c.....c..... 14849
<u>NC_001794</u>	14790	..c..t.....a..t.....caacc.....c.....c..... 16007
<u>NC_000845</u>	15948	..c....c.....ta.c.....ccc...a..ac.....c..... 14789
<u>NC_001665</u>	14730a..t.....a.....t..aac.....s.....c.....c..... 15179
<u>NC_001567</u>	15120c..c.....aa.....ccc...a...s.....c.....c..... 14830
<u>NC_001643</u>	14771a..t.....cc.....cacc...c....c.....a.c.....c 14824
<u>NC_001941</u>	14765c.....a.....ccc...s...a....t.....c.....c..... 14814
<u>NC_002391</u>	14791a.....a..... 14840
<u>NC_001913</u>	14815t.....c..t.....c.....c..... 14831
<u>NC_001644</u>	14772a..t.....cc.....c....c.....a.c.....c 15412
<u>NC_001807</u>	15353	..g....a.....cc.....cacc...c.t..c..t....ca.c.....c 15275
<u>NC_001601</u>	15216c.....a....t..ccc...t...at.....c.....c..... 14815
<u>NC_002009</u>	14756a....c..tcc...a..c.....t.....c.....c 14834
<u>NC_001545</u>	14775a.....tcc...c..ccc...c....t.....ca.c.....c 15278
<u>NC_001321</u>	15219c.....a....c..ccc.....at....t.....c.....c 14842
<u>NC_001610</u>	14783a.g...t..aa....cc.....a.....t.....c.....c 14832
a.		
<u>NC_002082</u>	14773a.....t....c...c...ccc...c.ac.....c...c.....c 15943
<u>NC_001727</u>	15884c..c.....s...cc..aac.....s....c....c.....c 14965
<u>NC_001804</u>	14949c..... 15651
<u>NC_000880</u>	15592a.....t..aac.....ccc...a....gt..... 14363
<u>NC_002069</u>	14304c..a.....gt...c..ccc...a....gc.....c..... 14814
<u>NC_001645</u>	14797a..t..... 15561
<u>NC_001123</u>	15531c.....c.....c.....c..... 15961
<u>NC_002079</u>	15939c..c..t..... 14812
<u>NC_000234</u>	14786c.....c..... 14383
<u>NC_000878</u>	14361c.....c..... 14306
<u>NC_000846</u>	14247	..c..g..c.....c.....c...cc...t.....c.....c..... 16391
<u>NC_002195</u>	16371c.....c..... 14866
<u>NC_002081</u>	14858c.....c..... 14289
<u>NC_001953</u>	14269c.....c..... 14836
<u>tmpseq_0</u>	181	cacctcacatccaaatgtatccctggcccccgtactatccatggcaccatccatcc 240
<u>NC_001700</u>	15704c.....t.....a..t.....t..t..a..... 15763
<u>NC_001123</u>	15760c.....c.....a..ggcc...c..c..c..t..cc..a..c..... 14973
<u>NC_002229</u>	14850t..... 15755
<u>NC_001493</u>	15733c.....c..... 15772
<u>NC_001996</u>	15706a..... 15772

<u>NC_000884</u>	14830	..c.....	14846
<u>NC_001808</u>	14842c.....aa..c..c.c.....ac.cGCC..a	14901
<u>NC_001892</u>	14834	..c.....c.....c..a....a..cc...c..cc.cccc.....acc..a	14893
<u>NC_001788</u>	14851c....c....a....a....	14882
<u>NC_001788</u>	15080	15095
<u>NC_002078</u>	14837	14853
<u>NC_001821</u>	14837c....c.....	14859
<u>NC_001779</u>	14844c....	14866
<u>NC_001569</u>	14805c.....	14827
<u>NC_000889</u>	14838	..c.....g..c....	14960
<u>NC_001640</u>	14854	..c..c....c....c....	14876
<u>NC_001640</u>	15085	15098
<u>NC_001794</u>	14850	..c..c..c.....	14867
<u>NC_000845</u>	16008c..c....	16024
<u>NC_001665</u>	14790	..c..c....c....	14806
<u>NC_001567</u>	15180c..c..c..g..c...c....c....c....c..a.....a	15239

|

ag

<u>NC_001643</u>	14831	14853
<u>NC_001941</u>	14825	..c....c..c....c....	14847
<u>NC_001913</u>	14841	14857
<u>NC_001644</u>	14832c.....	14854
<u>NC_001807</u>	15413	15429
<u>NC_001601</u>	15276c....	15292
<u>NC_002009</u>	14816c..c..c.....	14835
<u>NC_001645</u>	14835c....a....	14863
<u>NC_001321</u>	15279	...c.....c....	15295
<u>NC_001610</u>	14843c..c..a.....	14865
<u>NC_002082</u>	14833c.....c....	14855
<u>NC_001727</u>	15944	15947
<u>NC_000880</u>	15652	15659
<u>NC_002069</u>	14364c.....	14381
<u>NC_001323</u>	15562c..ct.....c..c....	15588
<u>NC_002079</u>	15962	15965
<u>NC_000934</u>	14813	14817
<u>NC_000878</u>	14384c..cc.....	14406
<u>NC_000846</u>	14307	14310
<u>NC_002196</u>	16392c..c..cc.....a....	16421
<u>NC_002083</u>	14867c.....a....	14895
<u>NC_001953</u>	14290	14293

<u>cmpseq_0</u>	241	gtccctatccaccagacccgtcaggagacccggataaccacatccctggccaaacctccca	300
<u>NC_001700</u>	15764c.....c.....a..c.....a.....a.....c..	15823
<u>NC_001125</u>	15820	..g.....c.....a..c.....a..c.....c.....	15867
<u>NC_002008</u>	14914c....c....a.....a.....a.....c.....a.....c...	14969
<u>NC_001602</u>	15793	..a.....c....a..g.....c.....c.....c..c...	15852
<u>NC_000884</u>	14900c....a.....a.....ca..c.....g..g	14949
<u>NC_001808</u>	14902	..c.....a..cc.....c..c.....c.....c.....c....	14960
<u>NC_001892</u>	14894	...t.....c..a.....c..c.....c.....c.....a...	14953
<u>NC_002078</u>	14909a.....	14928
<u>NC_000845</u>	16071ac.....a..c.....c..a..a....a...	16127
<u>NC_001567</u>	15240	..a.....g....c....cc..c.....a.....c..a....	15232
<u>NC_001913</u>	14901c.....a.....a..c.....c.....c.....c..c..	14960
<u>NC_001644</u>	1484	1492
<u>NC_001807</u>	15476cc....c....a..c..c..c..ca.....cc..	15532
<u>NC_002009</u>	14880c.....cc.....a..c..c..c..c..a..a..c..c	14935
<u>NC_001645</u>	14898cc.....a..c.....c..c..c.....c..c..c..c..	14954
<u>NC_001610</u>	14907c..c.....c..c..c..c..c..c..c..c..c..c..	14962
<u>NC_002082</u>	14950	14952
<u>NC_001904</u>	15071a..c...a.....a....	15108
<u>NC_000985</u>	14980a..c....c..c..a.....	15017
<u>NC_002196</u>	16454ca....sc....c....a..g....c..c..a.....	16507
<u>NC_001950</u>	16155c....	16159

<u>cmpseq_0</u>	301	atataccccccccataccasagctgaaat	328
<u>NC_001700</u>	15824c..a.....	15831
<u>NC_002008</u>	14970	..c.....c....c..a....	14775
<u>NC_001567</u>	15833	.gc.....c.....	15872
<u>NC_000985</u>	14950	14758
<u>NC_001950</u>	14754	.g.....	14770

63

<u>NC_001779</u>	3081	3094
<u>NC_000845</u>	16128	..c.....a.....	16144
<u>NC_001911</u>	14961	14980
<u>NC_001644</u>	1493	...c.....	1501
<u>NC_001807</u>	15533	..c.....c.....c....	15560
<u>NC_002009</u>	14936c....a....	14963
<u>NC_001645</u>	14955	.gc.....a.....c....	14974
<u>NC_001610</u>	14963	..c....g..c.....a....	14990
<u>NC_002082</u>	14953	..c.....c....	14972
<u>NC_001960</u>	16170	gc...t..a..t.....	16197
<u>NC_001951</u>	14416c....	14437

Database: Sequences from complete mitochondrial genomes

Posted date: Jun 28, 2000 10:56 AM

Number of letters in database: 3,164,247

Number of sequences in database: 129

Lambda	K	H
1.37	0.711	1.31

Gapped

Lambda	K	H
1.37	0.711	1.31

Matrix: blastn matrix:1 -3

Gap Penalties: Existence: 5, Extension: 2

Number of Hits to DB: 788

Number of Sequences: 129

Number of extensions: 788

Number of successful extensions: 168

Number of sequences better than 10.0: 77

length of query: 328

length of database: 3,164,247

effective HSP length: 15

effective length of query: 313

effective length of database: 3,162,312

effective search space: 989803656

effective search space used: 989803656

T: 0

A: 30

X1: 6 (11.9 bits)

X2: 15 (29.7 bits)

S1: 12 (24.3 bits)

S2: 14 (28.2 bits)

Table 4

BLASTN 2.1.2 (Nov-13-2000)

Reference:

Altschul, Stephen F., Thomas L. Madden, Alejandro A. Schäffer, Jinghui Zhang, Zheng Zhang, Webb Miller, and David J. Lipman (1997). "Gapped BLAST and PSI-BLAST: a new generation of protein database search programs", Nucleic Acids Res. 25:3389-3402.

RID: 984593400-28182-3122

Query:

(328 letters)

Database: nt

807,597 sequences; 2,863,827,885 total letters

If you have any problems or questions with the results of this search
please refer to the BLAST FAQs

Taxonomy reportsDistribution of 50 Blast Hits on the Query Sequence

Mouse-over to show defline and scores. Click to show alignments

Sequences producing significant alignments:

		Score (bits)	E Value
gb AY005809.1	Panthera pardus cytochrome b gene, partial c...	603	e-170
gb AF053054.1 AF053055	Panthera tigris sumatrae isolate Sul...	527	e-147
gb AF053053.1 AF053053	Panthera tigris tigris isolate 87 mi...	527	e-147
gb AF053050.1 AF053050	Panthera tigris corbetti isolate C2 ...	476	e-132
gb AF053049.1 AF053049	Panthera tigris corbetti isolate C1 ...	475	e-132
gb AF053025.1 AF053025	Panthera tigris tigris isolate 89 cy...	450	e-127
gb AF053024.1 AF053024	Panthera tigris tigris isolate 88 cy...	450	e-127
gb AF053023.1 AF053023	Panthera tigris tigris isolate 87 cy...	450	e-127
gb AF053022.1 AF053022	Panthera tigris tigris isolate 86 cy...	450	e-127
gb AF053021.1 AF053021	Panthera tigris tigris isolate 85 cy...	450	e-127
gb AF053018.1 AF053018	Panthera tigris tigris isolate 82 cy...	450	e-127
gb AF053051.1 AF053051	Panthera tigris corbetti isolate C3 ...	452	e-125
gb AF053048.1 AF053048	Panthera tigris sumatrae isolate Sul...	452	e-125
gb AF053047.1 AF053047	Panthera tigris sumatrae isolate Su9...	452	e-125
gb AF053046.1 AF053046	Panthera tigris sumatrae isolate Su7...	452	e-125
gb AF053045.1 AF053045	Panthera tigris sumatrae isolate Su6...	452	e-125
gb AF053044.1 AF053044	Panthera tigris sumatrae isolate Su5...	452	e-125
gb AF053042.1 AF053042	Panthera tigris sumatrae isolate Su3...	452	e-125
gb AF053041.1 AF053041	Panthera tigris sumatrae isolate Su1...	452	e-125
gb AF053040.1 AF053040	Panthera tigris altaica isolate S15 ...	452	e-125
gb AF053039.1 AF053039	Panthera tigris altaica isolate S14 ...	452	e-125
gb AF053038.1 AF053038	Panthera tigris altaica isolate S13 ...	452	e-125
gb AF053037.1 AF053037	Panthera tigris altaica isolate S12 ...	452	e-125
gb AF053036.1 AF053036	Panthera tigris altaica isolate S11 ...	452	e-125
gb AF053035.1 AF053035	Panthera tigris altaica isolate S10 ...	452	e-125
gb AF053034.1 AF053034	Panthera tigris altaica isolate S8 c...	452	e-125
gb AF053033.1 AF053033	Panthera tigris altaica isolate S7 c...	452	e-125
gb AF053032.1 AF053032	Panthera tigris altaica isolate S6 c...	452	e-125
gb AF053031.1 AF053031	Panthera tigris altaica isolate S5 c...	452	e-125
gb AF053030.1 AF053030	Panthera tigris altaica isolate S4 c...	452	e-125
gb AF053029.1 AF053029	Panthera tigris altaica isolate S3 c...	452	e-125
gb AF053028.1 AF053028	Panthera tigris altaica isolate S2 c...	452	e-125
gb AF053027.1 AF053027	Panthera tigris altaica isolate S1 c...	452	e-125
gb AF053026.1 AF053026	Panthera tigris tigris isolate 84 cy...	452	e-125
gb AF053020.1 AF053020	Panthera tigris tigris isolate 83 cy...	452	e-125
gb AF053019.1 AF053019	Panthera tigris sumatrae isolate Su4...	444	e-122
gb AF053043.1 AF053043	P.tigris mitochondrial cytochrome b gene	444	e-122
emb X82301.1 M1PTCYTB	Panthera leo cytochrome b (cytb) gene...	440	e-121
gb AF053052.1 AF053052	Panthera leo mitochondrial cytochrome b gene	438	e-121
emb X82300.1 M1PLCYTB	Felis catus mitochondrial DNA for c...	399	e-106
dbj AB004238.1 AB004238	Felis catus mitochondrial DNA for c...	381	e-103
dbj AB004237.1 AB004237	Felis catus mitochondrial cytochrome...	377	e-102
emb X82296.1 M1FDCYTB	F.domesticus mitochondrial cytochrome	365	1e-98
emb NC_001700.1	Felis catus mitochondrial, complete genome	365	1e-98
gb U20753.1 FCU20753	Felis catus mitochondrial, complete ge...	276	7e-72
gb AF125145.1 AF125145	Viverricula indica cytochrome b gene...	270	4e-70
gb AF125144.1 AF125144	Chrotogale owstoni cytochrome b gene...	255	7e-66
gb AF154975.1 AF154975	Martes martes specimen_vouchers AF175...	255	7e-66
dbj AB051237.1 AB051237	Martes martes mitochondrial cytb ge...	246	6e-63
gb AF125149.1 AF125149	Viverra tangalunga cytochrome b gene...	246	6e-63

Alignments

compseq 0	1	cgaaatccggaggcccttcagtagacaaagctaccctggacatccctggccatccac 60
AY005809	39g.....
AF053054	487g.....
AF053051	487g.....
AF053050	487g..c.....
AF053049	487g..c.....
AF053025	487g..c.....
AF053024	487g..c.....
AF053023	487g..c.....
AF053022	487g..c.....
AF053021	487g..c.....
AF053018	487g..c.....
AF053017	487g..c.....
AF053016	487g..c.....
AF053015	487g..c.....
AF053014	487g..c.....
AF053013	487g..c.....
AF053012	487g..c.....
AF053011	487g..c.....
AF053010	487g..c.....
AF053009	487g..c.....
AF053008	487g..c.....

<u>AF053046</u>	487g..t.....	546
<u>AF053045</u>	487g..t.....	546
<u>AF053044</u>	487g..t.....	546
<u>AF053042</u>	487g..t.....	546
<u>AF053041</u>	487g..t.....	546
<u>AF053040</u>	487g..t.....	546
<u>AF053039</u>	487g..t.....	546
<u>AF053038</u>	487g..t.....	546
<u>AF053037</u>	487g..t.....	546
<u>AF053036</u>	487g..t.....	546
<u>AF053035</u>	487g..t.....	546
<u>AF053034</u>	487g..t.....	546
<u>AF053033</u>	487g..t.....	546
<u>AF053032</u>	487g..t.....	546
<u>AF053031</u>	487g..t.....	546
<u>AF053030</u>	487g..t.....	546
<u>AF053029</u>	487g..t.....	546
<u>AF053028</u>	487g..t.....	546
<u>AF053027</u>	487g..t.....	546
<u>AF053026</u>	487g..t.....	546
<u>AF053020</u>	487g..t.....	546
<u>AF053019</u>	487g..t.....	546
<u>AF053043</u>	487g..t.....	546
<u>X82301</u>	487g..t.....	546
<u>AF053052</u>	487c.....	546
<u>X82300</u>	490c.....	546
<u>A3004238</u>	487g.....c.....a.....	546
<u>A3004237</u>	487g.....c.....a.....c.....	546
<u>X82296</u>	487g.....c.....a.....c.....	546
<u>NC 001700</u>	15524g..g.....c.....a.....g.....	15583
<u>U20753</u>	15524g..g.....c.....a.....g.....	15583
<u>AF125145</u>	357t.....c.....c..t.a..c.....c.....	416
<u>AF125144</u>	357t.....g.....c.....c..a..c.....c.....	416
<u>AF154975</u>	487g.....g.....c.....a..g.....c.....	546
<u>A3051237</u>	487g.....g.....c.....a..g.....c.....	546
<u>AF125149</u>	357g.....c.....g..c..t.a.....c.....	416
<u>empseq_0</u>	61	ccatcccttcattatcatccatcagcagtcacccctatccctcacgag	120
<u>AY005809</u>	99	158
<u>AF053054</u>	547c.....c.....	606
<u>AF053053</u>	547c.....c.....	606
<u>AF053050</u>	547g.....c.....	606
<u>AF053049</u>	547g.....c.....	606
<u>AF053025</u>	547g.....g.....c.....	606
<u>AF053024</u>	547g.....g.....c.....	606
<u>AF053023</u>	547g.....g.....c.....	606
<u>AF053022</u>	547g.....g.....c.....	606
<u>AF053021</u>	547g.....g.....c.....	606
<u>AF053018</u>	547g.....g.....c.....	606
<u>AF053051</u>	547g.....g.....c.....	606
<u>AF053048</u>	547g.....g.....c.....	606
<u>AF053047</u>	547g.....g.....c.....	606
<u>AF053046</u>	547g.....g.....c.....	606
<u>AF053045</u>	547g.....g.....c.....	606
<u>AF053044</u>	547g.....g.....c.....	606
<u>AF053043</u>	547g.....g.....c.....	606
<u>AF053041</u>	547g.....g.....c.....	606
<u>AF053040</u>	547g.....g.....c.....	606
<u>AF053039</u>	547g.....g.....c.....	606
<u>AF053038</u>	547g.....g.....c.....	606
<u>AF053037</u>	547g.....g.....c.....	606
<u>AF053036</u>	547g.....g.....c.....	606
<u>AF053035</u>	547g.....g.....c.....	606
<u>AF053034</u>	547g.....g.....c.....	606
<u>AF053033</u>	547g.....g.....c.....	606
<u>AF053032</u>	547g.....g.....c.....	606
<u>AF053031</u>	547g.....g.....c.....	606
<u>AF053030</u>	547g.....g.....c.....	606
<u>AF053029</u>	547g.....g.....c.....	606
<u>AF053028</u>	547g.....g.....c.....	606

<u>AY005E09</u>	219	278
<u>AF05J054</u>	667	a.....	726
<u>AF05J053</u>	667	a.....	726
<u>AF05J050</u>	667	c.....	a.c.....	726
<u>AF05J049</u>	667	c.....	a.c.....	726
<u>AF05J025</u>	667	c.....	a.c.....	726
<u>AF05J024</u>	667	c.....	a.c.....	726
<u>AF05J023</u>	667	c.....	a.c.....	726
<u>AF05J022</u>	667	c.....	a.c.....	726
<u>AF05J021</u>	667	c.....	a.c.....	726
<u>AF05J018</u>	667	c.....	a.c.....	726
<u>AF05J051</u>	667	c.....	a.c.....	726
<u>AF05J048</u>	667	c.....	g.....	726
<u>AF05J047</u>	667	c.....	g.....	726
<u>AF05J046</u>	667	c.....	g.....	726
<u>AF05J045</u>	667	c.....	g.....	726
<u>AF05J044</u>	667	c.....	g.....	726
<u>AF05J042</u>	667	c.....	g.....	726
<u>AF05J041</u>	667	c.....	g.....	726
<u>AF05J040</u>	667	c.....	g.....	726
<u>AF05J039</u>	667	c.....	g.....	726
<u>AF05J038</u>	667	c.....	g.....	726
<u>AF05J037</u>	667	c.....	g.....	726
<u>AF05J036</u>	667	c.....	g.....	726
<u>AF05J035</u>	667	c.....	g.....	726
<u>AF05J034</u>	667	c.....	g.....	726
<u>AF05J033</u>	667	c.....	g.....	726
<u>AF05J032</u>	667	c.....	g.....	726
<u>AF05J031</u>	667	c.....	g.....	726
<u>AF05J030</u>	667	c.....	g.....	726
<u>AF05J029</u>	667	c.....	g.....	726
<u>AF05J028</u>	667	c.....	g.....	726
<u>AF05J027</u>	667	c.....	g.....	726
<u>AF05J026</u>	667	c.....	g.....	726
<u>AF05J020</u>	667	c.....	g.....	726
<u>AF05J019</u>	667	c.....	g.....	726
<u>AF05J043</u>	667	c.....	g.....	726
<u>X82101</u>	667	c.....	g.....	726
<u>AF05J052</u>	667	a.....	g.....	726
<u>X82300</u>	667	a.....	g.....	726
<u>A8004238</u>	667	c.....	g.....	726
<u>A8004237</u>	667	c.....	g.....	726
<u>X82296</u>	667	c.....	g.....	726
<u>NC_001700</u>	15704	c.....	g.....	15763
<u>U20751</u>	15704	c.....	g.....	15763
<u>AF125145</u>	537	c.....	g.....	596
<u>AF125144</u>	537	c.....	g.....	596
<u>AF154975</u>	667	c.....	g.....	726
<u>AB051237</u>	667	c.....	g.....	726
<u>AF125149</u>	537	c.....	g.....	596
<u>cmpseq_0</u>	241	300
<u>AY005B09</u>	279	338
<u>AF05J054</u>	727	a.....	g.....	785
<u>AF05J053</u>	727	a.....	g.....	785
<u>AF05J050</u>	727	a.....	g.....	785
<u>AF05J049</u>	727	a.....	g.....	785
<u>AF05J025</u>	727	a.....	g.....	785
<u>AF05J024</u>	727	a.....	g.....	785
<u>AF05J023</u>	727	a.....	g.....	785
<u>AF05J021</u>	727	a.....	g.....	785
<u>AF05J020</u>	727	a.....	g.....	785
<u>AF05J018</u>	727	a.....	g.....	785
<u>AF05J019</u>	727	a.....	g.....	785
<u>AF05J051</u>	727	a.....	g.....	785
<u>AF05J049</u>	727	a.....	g.....	785
<u>AF05J047</u>	727	a.....	g.....	785
<u>AF05J046</u>	727	a.....	g.....	785
<u>AF05J045</u>	727	a.....	g.....	785
<u>AF05J044</u>	727	a.....	g.....	785
<u>AF05J043</u>	727	a.....	g.....	785
<u>AF05J042</u>	727	a.....	g.....	785
<u>AF05J041</u>	727	a.....	g.....	785

<u>AF053030</u>	727a.....c.....c.....c... 786
<u>AF053039</u>	727a.....c.....c.....c... 786
<u>AF053038</u>	727a.....c.....c.....c... 786
<u>AF053037</u>	727a.....c.....c.....c... 786
<u>AF053036</u>	727a.....c.....c.....c... 786
<u>AF053035</u>	727a.....c.....c.....c... 786
<u>AF053034</u>	727a.....c.....c.....c... 786
<u>AF053033</u>	727a.....c.....c.....c... 786
<u>AF053032</u>	727a.....c.....c.....c... 786
<u>AF053031</u>	727a.....c.....c.....c... 786
<u>AF053030</u>	727a.....c.....c.....c... 786
<u>AF053029</u>	727a.....c.....c.....c... 786
<u>AF053028</u>	727a.....c.....c.....c... 786
<u>AF053027</u>	727a.....c.....c.....c... 786
<u>AF053026</u>	727a.....c.....c.....c... 786
<u>AF053020</u>	727a.....c.....c.....c... 786
<u>AF053019</u>	727a.....c.....c.....c... 786
<u>AF053043</u>	727a.....c.....c.....c... 786
<u>X82301</u>	727a.....c.....c.....c... 786
<u>AF053052</u>	727a.....c.....c.....c... 786
<u>X82300</u>	727a.....c.....c.....c... 786
<u>A3004238</u>	727c.....c.....a..c..g.....a.....c.. 786
<u>A3004237</u>	727c.....c.....a..c.....a.....c.. 786
<u>X82296</u>	727c.....c.....a..c.....a.....c.. 786
<u>NC_001700</u>	15764c.....c.....a..c.....a.....c.. 15823
<u>U20753</u>	15764c.....c.....a..c.....a.....c.. 15823
<u>AF125145</u>	597t.....c.....a.....t.....c..c..... 650
<u>AF125144</u>	597	..t.....c.....t.....a..c.....c.....a..... 656
<u>AF154975</u>	727	..a.....c.....c..g.....a..c.....c.....a..c 786
<u>A3051237</u>	727	..a.....c.....c..g.....a..c.....c.....a..c 786
<u>AF125149</u>	597t.....c.....a.....c.....c..... 656

<u>tmpseq_0</u>	301	aataccccccccatatacgcccgaaat 328
<u>AY005809</u>	339 366
<u>AF053054</u>	787	..c..... 808
<u>AF053053</u>	787	..c..... 808
<u>AF053050</u>	787t.....c.... 814
<u>AF053049</u>	787t.....c.... 814
<u>AF053025</u>	787c.....c.... 814
<u>AF053024</u>	787t.....c.... 814
<u>AF053023</u>	787t.....c.... 814
<u>AF053022</u>	787t.....c.... 814
<u>AF053021</u>	787t.....c.... 814
<u>AF053018</u>	787t.....c.... 814
<u>AF053051</u>	787t.....c.... 814
<u>AF053048</u>	787t.....c.... 814
<u>AF053047</u>	787t.....c.... 814
<u>AF053046</u>	787t.....c.... 814
<u>AF053045</u>	787t.....c.... 814
<u>AF053044</u>	787t.....c.... 814
<u>AF053042</u>	787c.....c.... 814
<u>AF053041</u>	787t.....c.... 814
<u>AF053040</u>	787t.....c.... 814
<u>AF053039</u>	787t.....c.... 814
<u>AF053038</u>	787t.....c.... 814
<u>AF053037</u>	787t.....c.... 814
<u>AF053036</u>	787t.....c.... 814
<u>AF053035</u>	787t.....c.... 814
<u>AF053034</u>	787c.....c.... 814
<u>AF053033</u>	787c.....c.... 814
<u>AF053032</u>	787c.....c.... 814
<u>AF053031</u>	787c.....c.... 814
<u>AF053030</u>	787c.....c.... 814
<u>AF053029</u>	787c.....c.... 814
<u>AF053028</u>	787c.....c.... 814
<u>AF053027</u>	787c.....c.... 814
<u>AF053026</u>	787c.....c.... 814
<u>AF053025</u>	787c.....c.... 814
<u>AF053024</u>	787c.....c.... 814
<u>AF053023</u>	787c.....c.... 814

<u>AF053052</u>	787	.gc.....a.....	812
<u>X82100</u>	787	.gc.....a.....	814
<u>AB004218</u>	787c..a.....	814
<u>AB004237</u>	787c..a.....	814
<u>X82296</u>	787c..a.....	814
<u>NC_001700</u>	15824c..a.....	15851
<u>U20753</u>	15824c..a.....	15851
<u>AF125144</u>	657	..c.....	664
<u>AF154975</u>	787	..c..a..a.....	803
<u>AB051237</u>	787	..c..a..a.....	803
<u>AF125149</u>	657	..c.....	664

Database: nc

Posted date: Mar 2, 2001 12:20 AM

Number of letters in database: 2,863,827,885

Number of sequences in database: 807,597

Lambda	K	H
1.37	0.711	1.31

Gapped Lambda	K	H
1.37	0.711	1.31

Matrix: blasen matrix:1 -3

Gap Penalties: Existence: 5, Extension: 2

Number of Hits to DB: 460542

Number of Sequences: 807597

Number of extensions: 460542

Number of successful extensions: 22671

Number of sequences better than 10.0: 6487

length of query: 328

length of database: 2,863,827,885

effective HS? length: 20

effective length of query: 308

effective length of database: 2,847,675,945

effective search space: 877084191060

effective search space used: 877084191060

T: 0

A: 30

X1: 6 (11.9 bits)

X2: 15 (29.7 bits)

S1: 12 (24.3 bits)

S2: 19 (38.2 bits)

Table 5. Reference animals and the allocated code numbers included in the study

SN.	Code number	Name of the animal	Zoological name
1	bhz25t	Indian tiger	<i>Panthera tigris tigris</i>
2	bhz26t	Indian tiger	<i>Panthera tigris tigris</i>
3	bhz30t	Indian tiger	<i>Panthera tigris tigris</i>
4	bhz45t	Indian tiger	<i>Panthera tigris tigris</i>
5	bhz56t	Indian tiger	<i>Panthera tigris tigris</i>
6	bhz63t	Indian tiger	<i>Panthera tigris tigris</i>
7	bhz20wt	Indian white tiger	<i>Panthera tigris bengalensis</i>
8	bhz22wt	Indian white tiger	<i>Panthera tigris bengalensis</i>
9	bhz23wt	Indian white tiger	<i>Panthera tigris bengalensis</i>
10	bhz28wt	Indian white tiger	<i>Panthera tigris bengalensis</i>
11	gz1l	Normal leopard	<i>Panthera pardus</i>
12	gz2l	Normal leopard	<i>Panthera pardus</i>
13	gz3l	Normal leopard	<i>Panthera pardus</i>
14	gz21cl	Clouded leopard	<i>Neofelis nebulosa</i>
15	gz22cl	Clouded leopard	<i>Neofelis nebulosa</i>
16	darz14sl	Snow leopard	<i>Panthera unicia</i>
17	darz15sl	Snow leopard	<i>Panthera unicia</i>
18	darz16sl	Snow leopard	<i>Panthera unicia</i>
19	sbz22al	Asiatic lion	<i>Panthera leo persica</i>
20	sbz38al	Asiatic lion	<i>Panthera leo persica</i>
21	sbz39al	Asiatic lion	<i>Panthera leo persica</i>
22	humsk	Human	<i>Homo sapiens sapiens</i>
23	chimss	Chimpanzee	<i>Pan sp.</i>

Table 6. Multiple sequence alignments of the cytochrome b sequences of reference animals with the sequence obtained from confiscated animal remain

Table 7a

Table 7b

Table 7c

Table 7d

Position	273	276	279	282	284	285	287	288	291	294	297	298	302	303	309	315	318	321	323	324
adII.flesh	C	T	C	C	T	C	C	T	C	C	T	C	A	T	T	T	C	G	C	T
gz11
gz21
gz21
bhz25t	C	.	.	.	C	.	.	.	G	C	.	
bhz26t	C	.	.	.	C	.	.	.	G	C	.	
bhz30t	C	.	.	.	C	.	.	.	G	C	.	
bhz45t	C	.	.	.	C	.	.	.	G	C	.	
bhz56t	C	.	.	.	C	.	.	.	G	C	.	
bhz20wt	C	.	.	.	C	.	.	.	G	C	.	
bhz22wt	C	.	.	.	C	.	.	.	G	C	.	
bhz23wt	C	.	.	.	C	.	.	.	G	C	.	
dz14sl	C	.	.	.	C	.	.	.	C	.	.	
dz15sl	C	.	.	.	C	.	.	.	C	.	.	
sbz22al	.	C	.	T	C	.	.	C	.	T	.	G	C	.	.	A	.	.	.	
sbz38al	.	C	.	T	C	.	.	C	.	T	.	G	C	.	.	A	.	.	.	
gz21cl	T	C	T	.	C	T	.	C	
gz22cl	T	C	T	.	C	T	.	C	
ch1mss	S	S	S	S	A	A	C	S	S	A	S	A	C	S	A	S	S	S	C	
humsk	S	S	S	S	A	A	C	S	S	A	S	A	C	S	A	S	S	S	C	

Table 8. Percent similarity matrix calculated by pair-wise comparisons of cytochrome b gene sequences revealed from 'adlt.flesh' and different feids

	bhz20wt	bhz25l	dz14sl	humsk	chlmss	sbzz22al	0z1L	0z2L	0z3L	0z21cl	adlt.flesh
bhz20wt	100	99.1	81.7	78.7	93.3	95.1	95.4	95.4	89.6	95.4	
bhz25l	100	99.1	81.7	78.7	93.3	95.1	95.4	95.4	89.6	95.4	
dz14sl	99.1	99.1	81.4	78.4	93	94.8	95.1	95.1	89.3	95.1	
humsk	81.7	81.7	81.4	86.9	79.6	81.1	80.2	80.2	79	81.4	
chlmss	78.7	78.7	78.4	86.9	78.7	79.6	78.7	78.7	76.8	79.9	
sbzz22al	93.3	93.3	93	79.6	78.7	92.1	92.4	92.4	89	92.4	
0z1L	95.1	95.1	94.8	81.1	79.6	92.1	98.5	98.5	89.3	99.7	
0z2L	95.4	95.4	95.1	80.2	78.7	92.4	98.5	98.5	100	88.1	98.2
0z3L	95.4	95.4	95.1	80.2	78.7	92.4	98.5	98.5	88.1	88.1	98.2
0z21cl	89.6	89.6	89.3	79	76.8	89	89.3	88.1	88.1	89.6	
adlt.flesh	95.4	95.4	95.1	81.4	79.9	92.4	99.7	98.2	98.2	89.6	

Table 1C

BLASTN 2.1.2 [Nov-13-2000]Reference:

Altschul, Stephen F., Thomas L. Madden, Alejandro A. Schäffer, Jinghui Zhang, Zheng Zhang, Webb Miller, and David J. Lipman (1997). "Gapped BLAST and PSI-BLAST: a new generation of protein database search programs", Nucleic Acids Res. 25:3389-3402.

RID: 984591695-10075-13605

Query:

(25 letters)

Database: nt

807,597 sequences; 2,863,827,885 total letters

If you have any problems or questions with the results of this search
please refer to the BLAST FAQs

Taxonomy reportsDistribution of 500 Blast Hits on the Query Sequence

Mouse-over to show defline and scores. Click to show alignments

Sequences producing significant alignments:

		Score (bits)	E Value
gb AF231651.1 AF231651	Strongylura notata clone HB-81 cytoc...	50	2e-05
gb AF231650.1 AF231650	Strongylura notata clone HB-159 cyto...	50	2e-05
ref NC_002672.1	Dinornis giganteus mitochondrion, complete...	50	2e-05
ref NC_002673.1	Emeus crassus mitochondrion, complete genome	50	2e-05
gb AF232015.1 AF232015	Nothrotheriops shastensis cytochrome...	50	2e-05
gb AF232013.1 AF232013	Bradypterus variegatus cytochrome b gen...	50	2e-05
gb AY016015.1	Emeus crassus mitochondrion, complete genome	50	2e-05
gb AY016013.1	Dinornis giganteus mitochondrion, complete g...	50	2e-05
gb AY016014.1	Dromaius novaehollandiae mitochondrion, part...	50	2e-05
gb AF230167.1 AF230167	Bonasa umbellus cytochrome b (CytB) ...	50	2e-05
gb AF074594.1 AF074594	Baeolophus bicolor cytochrome b gene...	50	2e-05
gb AY005210.1	Poospiza melanoleuca isolate 3 cytochrome b ...	50	2e-05
gb AY005209.1	Poospiza melanoleuca isolate 2 cytochrome b ...	50	2e-05
gb AY005208.1	Poospiza melanoleuca isolate 1 cytochrome b ...	50	2e-05
gb AY005205.1	Poospiza hispaniolensis cytochrome b (cytb) ...	50	2e-05
cb AY005204.1	Poospiza garleppi cytochrome b (cytb) gene, ...	50	2e-05
gb AY005203.1	Poospiza erythrophrys cytochrome b (cytb) ge...	50	2e-05
gb AY005201.1	Poospiza boliviana cytochrome b (cytb) gene....	50	2e-05
gb AY005199.1	Poospiza alticola isolate 2 cytochrome b (cy...	50	2e-05
cb AY005198.1	Poospiza alticola isolate 1 cytochrome b (cy...	50	2e-05
gb AF155870.1 AF155870	Heterocephalus glaber cytochrome b (...)	50	2e-05
gb AF189123.1 AF189123	Glyptotermes eukalypti cytochrome b ...	50	2e-05
gb AF102099.1 AF102099	Criniferoides leucogaster cytochrome...	50	2e-05
gb AF102095.1 AF102095S1	Corythaixoides concolor cytochrome...	50	2e-05
cb AF271065.1 AF271065	Mustela erminea specimen-vouchez AF1...	50	2e-05
cb AF243857.1 AF243857	Strongylura notata notata cytochrome...	50	2e-05
cb AF243856.1 AF243856	Strongylura notata forsychia cytochr...	50	2e-05
ref NC_001567.1	Bos taurus mitochondrion, complete genome	50	2e-05
cb AF306872.1 AF306872	Brachyramphus marmoratus haplotype M...	50	2e-05
cb AF306871.1 AF306871	Brachyramphus marmoratus haplotype M...	50	2e-05
cb AF306870.1 AF306870	Brachyramphus brevirostris haplotype...	50	2e-05
cb AF306869.1 AF306869	Brachyramphus brevirostris haplotype...	50	2e-05
gb AF306868.1 AF306868	Brachyramphus brevirostris haplotype...	50	2e-05
gb AF010406.1 AF010406	Ovis aries complete mitochondrial ge...	50	2e-05
cb AF248662.1 AF248662	Gryllus campestris haplotype 2 cytoc...	50	2e-05
cb AF248661.1 AF248661	Gryllus campestris haplotype 1 cytoc...	50	2e-05
cb AF096462.1 AF096462	Rhipidura albicollis cytochrome b ge...	50	2e-05
gb AF283644.1 AF283644	Elaphe obsoleta cytochrome b gene, c...	50	2e-05
gb AF283643.1 AF283643	Elaphe obsoleta cytochrome b gene, c...	50	2e-05
gb AF283642.1 AF283642	Elaphe obsoleta cytochrome b gene, c...	50	2e-05
gb AF283641.1 AF283641	Elaphe obsoleta cytochrome b gene, c...	50	2e-05
gb AF283640.1 AF283640	Elaphe obsoleta cytochrome b gene, c...	50	2e-05
gb AF283639.1 AF283639	Elaphe obsoleta cytochrome b gene, c...	50	2e-05
gb AF283637.1 AF283637	Elaphe obsoleta LSUMZ 45359 cytochro...	50	2e-05
gb AF283636.1 AF283636	Elaphe obsoleta LSUMZ 44662 cytochro...	50	2e-05
gb AF283635.1 AF283635	Elaphe obsoleta LSUMZ 40443 cytochro...	50	2e-05
gb AF283634.1 AF283634	Elaphe obsoleta LSUMZ 44335 cytochro...	50	2e-05
gb AF283633.1 AF283633	Elaphe obsoleta LSUMZ 42624 cytochro...	50	2e-05
gb AF283632.1 AF283632	Elaphe obsoleta LSUMZ K1911 cytochro...	50	2e-05
gb AF283631.1 AF283631	Elaphe obsoleta LSUMZ 41197 cytochro...	50	2e-05
gb AF283630.1 AF283630	Elaphe obsoleta LSUMZ 41189 cytochro...	50	2e-05
gb AF283629.1 AF283629	Elaphe obsoleta LSUMZ 41188 cytochro...	50	2e-05
gb AF283628.1 AF283628	Elaphe obsoleta LSUMZ 41187 cytochro...	50	2e-05
gb AF283627.1 AF283627	Elaphe obsoleta LSUMZ 41186 cytochro...	50	2e-05
gb AF283626.1 AF283626	Elaphe obsoleta LSUMZ 40943 cytochro...	50	2e-05
gb AF283625.1 AF283625	Elaphe obsoleta LSUMZ 37493 cytochro...	50	2e-05
gb AF283624.1 AF283624	Elaphe obsoleta LSUMZ 44480 cytochro...	50	2e-05
gb AF283623.1 AF283623	Elaphe obsoleta LSUMZ 44451 cytochro...	50	2e-05
gb AF283622.1 AF283622	Elaphe obsoleta LSUMZ 40444 cytochro...	50	2e-05
gb AF283621.1 AF283621	Elaphe obsoleta LSUMZ 39925 cytochro...	50	2e-05
gb AF283620.1 AF283620	Elaphe obsoleta LSUMZ 39163 cytochro...	50	2e-05
gb AF283619.1 AF283619	Elaphe obsoleta LSUMZ 39162 cytochrom...	50	2e-05
gb AF283618.1 AF283618	Elaphe obsoleta LSUMZ K19876 cytochro...	50	2e-05
gb AF283617.1 AF283617	Elaphe obsoleta LSUMZ K15892 cytochro...	50	2e-05
gb AF283616.1 AF283616	Elaphe obsoleta LSUMZ 15891 cytochro...	50	2e-05
gb AF283615.1 AF283615	Elaphe obsoleta LSUMZ K15870 cytochro...	50	2e-05
gb AF283614.1 AF283614	Elaphe obsoleta LSUMZ K15867 cytochro...	50	2e-05
gb AF283613.1 AF283613	Elaphe obsoleta LSUMZ K15844 cytochro...	50	2e-05

Table 9. Animals selected for validation of minimum P'S score for efficient amplification of DNA templates in PCR

SL.	Name	P, S/AFF	P, S/AFR
1	Indian black buck (<i>Antilope cervicapra</i>)	97, 58	96, 54
2	Sheep (<i>Ovis</i>	87, 53	96, 54
3	Pig (<i>Sus scrofa</i>)	87, 52	87, 41
4	Fresh water dolphin (<i>Platanista gangetica</i>)	86, 49	82, 47

Sequences producing significant alignments:

		Score (bits)	E Value
gb AF231651.1 AF231651	Strongylura notata clone HB-82 cyto...	50	2e-05
gb AF231650.1 AF231650	Strongylura notata clone HB-159 cyto...	50	2e-05
ref NC_002672.1	Dinornis giganteus mitochondrion, complete...	50	2e-05
ref NC_002673.1	Emeus crassus mitochondrion, complete genome	50	2e-05
gb AF232015.1 AF232015	Nothrotheriops shastensis cytochrome...	50	2e-05
gb AF232013.1 AF232013	Bradypterus variegatus cytochrome b gen...	50	2e-05
gb AY016015.1	Emeus crassus mitochondrion, complete genome	50	2e-05
gb AY016013.1	Dinornis giganteus mitochondrion, complete g...	50	2e-05
gb AY016014.1	Dromaius novaehollandiae mitochondrion, part...	50	2e-05
gb AF230167.1 AF230167	Bonasa umbellus cytochrome b (CYTB) ...	50	2e-05
gb AF074594.1 AF074594	Baeolophus bicolor cytochrome b gene...	50	2e-05
gb AY005210.1	Poospiza melanoleuca isolate 3 cytochrome b ...	50	2e-05
gb AY005209.1	Poospiza melanoleuca isolate 2 cytochrome b ...	50	2e-05
gb AY005208.1	Poospiza melanoleuca isolate 1 cytochrome b ...	50	2e-05
gb AY005205.1	Poospiza hispaniolensis cytochrome b (cytb) ...	50	2e-05
gb AY005204.1	Poospiza garleppi cytochrome b (cytb) gene. ...	50	2e-05
cb AY005203.1	Poospiza erythrophrys cytochrome b (cytb) ge...	50	2e-05
gb AY005201.1	Poospiza boliviana cytochrome b (cytb) gene. ...	50	2e-05
gb AY005199.1	Poospiza alticola isolate 2 cytochrome b (cy...	50	2e-05
gb AY005198.1	Poospiza alticola isolate 1 cytochrome b (cy...	50	2e-05
gb AF155870.1 AF155870	Heterocephalus glaber cytochrome b (...)	50	2e-05
gb AF189123.1 AF189123	Glyptotermes eukalypti cytochrome b ...	50	2e-05
gb AF102099.1 AF102099	Criniferoides leucogaster cytochrome...	50	2e-05
gb AF102095.1 AF102095S1	Corythaixoides concolor cytochrome...	50	2e-05
gb AF271065.1 AF271065	Mustela erminea specimen-voucher AF1...	50	2e-05
cb AF243857.1 AF243857	Strongylura notata notata cytochrome...	50	2e-05
gb AF243856.1 AF243856	Strongylura notata forsythia cytoch...	50	2e-05
ref NC_001567.1	Bos taurus mitochondrion, complete genome	50	2e-05
cb AF306872.1 AF306872	Brachyramphus marmoratus haplotype M...	50	2e-05
cb AF306871.1 AF306871	Brachyramphus marmoratus haplotype M...	50	2e-05
cb AF306870.1 AF306870	Brachyramphus brevirostris haplotype...	50	2e-05
cb AF306869.1 AF306869	Brachyramphus brevirostris haplotype...	50	2e-05
gb AF306868.1 AF306868	Brachyramphus brevirostris haplotype...	50	2e-05
gb AF010406.1 AF010406	Ovis aries complete mitochondrial ge...	50	2e-05
gb AF248662.1 AF248662	Gryllus campestris haplotype 2 cytoc...	50	2e-05
gb AF248661.1 AF248661	Gryllus campestris haplotype 1 cytoc...	50	2e-05
gb AF096462.1 AF096462	Rhipidura albicollis cytochrome b ge...	50	2e-05
gb AF283644.1 AF283644	Elaphe obsoleta cytochrome b gene, c...	50	2e-05
gb AF283643.1 AF283643	Elaphe obsoleta cytochrome b gene, c...	50	2e-05
gb AF283642.1 AF283642	Elaphe obsoleta cytochrome b gene, c...	50	2e-05
gb AF283641.1 AF283641	Elaphe obsoleta cytochrome b gene, c...	50	2e-05
gb AF283640.1 AF283640	Elaphe obsoleta cytochrome b gene, c...	50	2e-05
gb AF283639.1 AF283639	Elaphe obsoleta cytochrome b gene, c...	50	2e-05
gb AF283637.1 AF283637	Elaphe obsoleta LSUMZ 45359 cytochro...	50	2e-05
gb AF283636.1 AF283636	Elaphe obsoleta LSUMZ 44662 cytochro...	50	2e-05
gb AF283635.1 AF283635	Elaphe obsoleta LSUMZ 40443 cytochro...	50	2e-05
gb AF283634.1 AF283634	Elaphe obsoleta LSUMZ 44335 cytochro...	50	2e-05
gb AF283633.1 AF283633	Elaphe obsoleta LSUMZ 42624 cytochro...	50	2e-05
gb AF283632.1 AF283632	Elaphe obsoleta LSUMZ K1911 cytochro...	50	2e-05
gb AF283631.1 AF283631	Elaphe obsoleta LSUMZ 41197 cytochro...	50	2e-05
gb AF283630.1 AF283630	Elaphe obsoleta LSUMZ 41189 cytochro...	50	2e-05
gb AF283629.1 AF283629	Elaphe obsoleta LSUMZ 41188 cytochro...	50	2e-05
gb AF283628.1 AF283628	Elaphe obsoleta LSUMZ 41187 cytochro...	50	2e-05
gb AF283627.1 AF283627	Elaphe obsoleta LSUMZ 41186 cytochro...	50	2e-05
gb AF283626.1 AF283626	Elaphe obsoleta LSUMZ 40943 cytochro...	50	2e-05
gb AF283625.1 AF283625	Elaphe obsoleta LSUMZ 37499 cytochro...	50	2e-05
gb AF283624.1 AF283624	Elaphe obsoleta LSUMZ 44480 cytochro...	50	2e-05
gb AF283623.1 AF283623	Elaphe obsoleta LSUMZ 44451 cytochro...	50	2e-05
gb AF283622.1 AF283622	Elaphe obsoleta LSUMZ 40444 cytochro...	50	2e-05
gb AF283621.1 AF283621	Elaphe obsoleta LSUMZ 39925 cytochro...	50	2e-05
gb AF283620.1 AF283620	Elaphe obsoleta LSUMZ 39163 cytochro...	50	2e-05
gb AF283619.1 AF283619	Elaphe obsoleta LSUMZ 39162 cytochro...	50	2e-05
gb AF283618.1 AF283618	Elaphe obsoleta LSUMZ K15876 cytochro...	50	2e-05
gb AF283617.1 AF283617	Elaphe obsoleta LSUMZ K15872 cytochro...	50	2e-05
gb AF283616.1 AF283616	Elaphe obsoleta LSUMZ 15871 cytochro...	50	2e-05
gb AF283615.1 AF283615	Elaphe obsoleta LSUMZ K15870 cytochro...	50	2e-05
gb AF283614.1 AF283614	Elaphe obsoleta LSUMZ K15869 cytochro...	50	2e-05
gb AF283613.1 AF283613	Elaphe obsoleta LSUMZ K15868 cytochro...	50	2e-05

gb AF283611.1 AF283612	Elaphe obsoleta LSUMZ H15884 cytochr...	50	2e-05
gb AF283611.1 AF283611	Elaphe obsoleta LSUMZ H15031 cytochr...	50	2e-05
gb AF283610.1 AF283610	Elaphe obsoleta LSUMZ H15030 cytochr...	50	2e-05
gb AF283609.1 AF283609	Elaphe obsoleta CAS 169468 cytochrome...	50	2e-05
gb AF283608.1 AF283608	Elaphe obsoleta LSUMZ H14782 cytochr...	50	2e-05
gb AF283607.1 AF283607	Elaphe obsoleta LSUMZ H14781 cytochr...	50	2e-05
gb AF283606.1 AF283606	Elaphe obsoleta LSUMZ H14724 cytochr...	50	2e-05
gb AF283605.1 AF283605	Elaphe obsoleta cytochrome b gene. c...	50	2e-05
gb AF283604.1 AF283604	Elaphe obsoleta cytochrome b gene. c...	50	2e-05
gb AF283603.1 AF283603	Elaphe obsoleta cytochrome b gene. c...	50	2e-05
gb AF283602.1 AF283602	Elaphe obsoleta LSUMZ H3388 cytochr...	50	2e-05
gb AF283601.1 AF283601	Elaphe obsoleta LSUMZ H3385 cytochr...	50	2e-05
gb AF283600.1 AF283600	Elaphe obsoleta LSUMZ H3384 cytochr...	50	2e-05
gb AF283599.1 AF283599	Elaphe bairdi LSUMZ H3382 cytochrome...	50	2e-05
gb AF283598.1 AF283598	Elaphe bairdi LSUMZ H3381 cytochrome...	50	2e-05
gb AF283597.1 AF283597	Elaphe obsoleta LSUMZ H3379 cytochr...	50	2e-05
cb AF283596.1 AF283596	Elaphe obsoleta LSUMZ 39616 cytochr...	50	2e-05
gb AF283595.1 AF283595	Elaphe obsoleta LSUMZ H3376 cytochr...	50	2e-05
gb AF283594.1 AF283594	Elaphe obsoleta LSUMZ H3345 cytochr...	50	2e-05
cb AF283593.1 AF283593	Elaphe obsoleta LSUMZ H3309 cytochr...	50	2e-05
gb AF283592.1 AF283592	Elaphe obsoleta LSUMZ H3306 cytochr...	50	2e-05
gb AF283591.1 AF283591	Elaphe obsoleta LSUMZ H3276 cytochr...	50	2e-05
gb AF283590.1 AF283590	Elaphe obsoleta LSUMZ H3246 cytochr...	50	2e-05
gb AF283589.1 AF283589	Elaphe obsoleta LSUMZ H3212 cytochr...	50	2e-05
gb AF283588.1 AF283588	Elaphe obsoleta LSUMZ H3209 cytochr...	50	2e-05
cb AF283587.1 AF283587	Elaphe obsoleta LSUMZ H3206 cytochr...	50	2e-05
gb AF283586.1 AF283586	Elaphe obsoleta LSUMZ H3191 cytochr...	50	2e-05
cb AF283585.1 AF283585	Elaphe obsoleta LSUMZ H3190 cytochr...	50	2e-05
cb AF283584.1 AF283584	Elaphe obsoleta LSUMZ H3189 cytochr...	50	2e-05
cb AF283583.1 AF283583	Elaphe obsoleta LSUMZ H3188 cytochr...	50	2e-05
gb AF283582.1 AF283582	Elaphe obsoleta LSUMZ H3186 cytochr...	50	2e-05
cb AF283581.1 AF283581	Elaphe obsoleta LSUMZ H3169 cytochr...	50	2e-05
gb AF283580.1 AF283580	Elaphe obsoleta CAS 203083 cytochr...	50	2e-05
gb AF283579.1 AF283579	Elaphe obsoleta CAS 203079 cytochr...	50	2e-05
gb AF283578.1 AF283578	Elaphe obsoleta LSUMZ H2286 cytochr...	50	2e-05
cb AF283577.1 AF283577	Elaphe obsoleta CAS 208631 cytochr...	50	2e-05
gb AF283576.1 AF283576	Elaphe obsoleta LSUMZ H2229 cytochr...	50	2e-05
gb AF187030.1 AF187030	Rhinophylla pumilio isolate TK46001 ...	50	2e-05
cb AF310052.1 AF310052	Poospiza hispaniolensis cytochrome b...	50	2e-05
gb AF310046.1 AF310046	Volatinia jacarina cytochrome b gene...	50	2e-05
gb AF171919.1 AF171919	Deinagkistrodon acutus cytochrome b ...	50	2e-05
gb AF171897.1 AF171897	Trimeresurus mucrosquamatus cytb gen...	50	2e-05
gb AF290174.1 AF290174	Agelaius cyanopus cytochrome b (cytb...	50	2e-05
cb AF290173.1 AF290173	Agelaius phoeniceus cytochrome b (cy...	50	2e-05
gb AF290171.1 AF290171	Quiscalus major cytochrome b (cytb) ...	50	2e-05
gb AF290170.1 AF290170	Amblycercus holosericeus cytochrome ...	50	2e-05
gb AF290150.1 AF290150	Volatinia jacarina cytochrome b (cyt...	50	2e-05
gb AF176252.1 AF176252	Reithrodontomys zacatecae cytochrome...	50	2e-05
gb AF176251.1 AF176251	Reithrodontomys zacatecae cytochrome...	50	2e-05
gb AF163907.1 AF163907	Microtus xanthognathus cytochrome b ...	50	2e-05
gb AF163904.1 AF163904	Microtus pinetorum cytochrome b gene...	50	2e-05
gb AF163901.1 AF163901	Microtus ochrogaster cytochrome b ge...	50	2e-05
gb AF153899.1 AF163899	Microtus miurus cytochrome b gene. c...	50	2e-05
gb AF163891.1 AF163891	Microtus californicus cytochrome B (...	50	2e-05
gb AF163890.1 AF163890	Microtus abbreviatus cytochrome B (c...	50	2e-05
gb AF288524.1 AF288524	Dipsoschelys dussumieri isolate Germa...	50	2e-05
gb AF288523.1 AF288523	Dipsoschelys dussumieri isolate white...	50	2e-05
gb AF288522.1 AF288522	Dipsoschelys dussumieri isolate Aldy ...	50	2e-05
gb AF123510.1 AF123510	Psilopogan pyrolaphus cytochrome b (...	50	2e-05
gb AF123512.1 AF123512	Eubucco bourcierii cucinkae cytochr...	50	2e-05
gb AF206548.1 AF206548	Adolfus vaucluselli cytochrome b gen...	50	2e-05
gb AF197867.1 AF197867	Cymnorhina tibicen cytochrome b gene...	50	2e-05
gb U61197.2 SEU61197	Sitta europaea cytochrome b gene. part...	50	2e-05
gb NC_001945.1 Dinodon semicarinatus	Dinodon semicarinatus mitochondrial, compl...	50	2e-05
gb NC_001811.1 Dasypus novemcinctus	Dasypus novemcinctus mitochondrial, comple...	50	2e-05
gb AF141217.1 AF141217	Dasymys incomtus country Tanzania cy...	50	2e-05
gb AF201615.1 AF201615	Panodon buchholzi cytochrome b gene...	50	2e-05
gb AF077920.1 AF077920	Bombus nevadensis cytochrome b gene...	50	2e-05
gb AF190612.1 AF190612	Oreamnos americanus cytochrome b (cy...	50	2e-05
gb J01194.1 BOVNT	Bos taurus mitochondrial, complete genome	50	2e-05
gb AF191810.1 AF191810	Cochlearius cochlearius cytochrome b...	50	2e-05

gb U89161.1 CAU89161	<i>Calostoma aureocinctus</i> cytochrome ...	50	2e-05
gb U84171.1 AFU84171	<i>Asio flammeus</i> cytochrome b (cytb) gene...	50	2e-05
gb AF217633.1 AF217633	<i>Homalopsis lacteus</i> cytochrome b ge...	50	2e-05
gb AF217822.1 AF217822	<i>Hydrophis semperi</i> cytochrome b gene...	50	2e-05
gb AF217813.1 AF217813	<i>Acanthophis antarcticus</i> cytochrome b...	50	2e-05
gb AF220406.1 AF220408	<i>Calliophis kelloggi</i> cytochrome b (cy...	50	2e-05
gb AF126430.1 AF126430	<i>Ellobius fuscocapillus</i> cytochrome b ...	50	2e-05
gb AF090337.1 AF090337	<i>Aythya americana</i> mitochondrion, comp...	50	2e-05
gb AF059111.1 AF059111	<i>Sarcidornis melanotos</i> cytochrome b ...	50	2e-05
gb AF059053.1 AF059053	<i>Aix sponsa</i> cytochrome b gene, partial...	50	2e-05
gb AF099308.1 AF099308	<i>Icterus wagleri</i> wagleri cytochrome b...	50	2e-05
gb AF099295.1 AF099295	<i>Icterus gularis yucatanensis</i> cytochr...	50	2e-05
gb AF099294.1 AF099294	<i>Icterus gularis tamaulipensis</i> cytoch...	50	2e-05
gb AF099293.1 AF099293	<i>Icterus gularis gularis</i> cytochrome b...	50	2e-05
gb AF160610.1 AF160610	<i>Cricetomys emini</i> Cemi636 cytochrome ...	50	2e-05
gb AF036280.1 AF036280	<i>Tragelaphus strepsiceros</i> cytochrome ...	50	2e-05
gb AF036277.1 AF036277	<i>Tragelaphus scriptus</i> cytochrome b (c...	50	2e-05
gb AF036274.1	<i>Tetracerus quadricornis</i> cytochrome b (cytb) ...	50	2e-05
gb AF194218.1 AF194218	<i>Phrynosoma platyrhinos</i> cytochrome b ...	50	2e-05
gb AF194216.1 AF194216	<i>Urosaurus ornatus</i> cytochrome b gene...	50	2e-05
ref NC_002009.1	<i>Artibeus jamaicensis</i> mitochondrion, comple...	50	2e-05
ref NC_001941.1	<i>Ovis aries</i> mitochondrion, complete genome	50	2e-05
ref NC_000877.1	<i>Aythya americana</i> mitochondrion, complete g...	50	2e-05
ref NC_000846.1	<i>Rhea americana</i> mitochondrion, complete genome	50	2e-05
gb U27551.1 GCU27551	<i>Grus canadensis</i> tabida cytochrome b (c...	50	2e-05
gb AF089058.1 AF089058	<i>Quiscalus quiscula</i> cytochrome b (cyt...)	50	2e-05
gb AF089055.1 AF089055	<i>Quiscalus major</i> cytochrome b (cytb) ...	50	2e-05
gb AF089054.1 AF089054	<i>Quiscalus lugubris</i> cytochrome b (cyt...)	50	2e-05
gb AF089046.1 AF089046	<i>Oreopsar bolivianus</i> cytochrome b (cy...)	50	2e-05
cb AF089042.1 AF089042	<i>Molothrus badius</i> cytochrome b (cytb) ...	50	2e-05
cb AF089039.1 AF089039	<i>Macroagelaius imthurni</i> cytochrome b ...	50	2e-05
cb AF089037.1 AF089037	<i>Lampropsartanagrinus</i> cytochrome b (...)	50	2e-05
cb AF089026.1 AF089026	<i>Gymnomystax mexicanus</i> cytochrome b (...)	50	2e-05
cb AF089025.1 AF089025	<i>Gnorimopsar chopi</i> cytochrome b (cytb...)	50	2e-05
cb AF089024.1 AF089024	<i>Euphagus cyanocephalus</i> cytochrome b ...	50	2e-05
cb AF089023.1 AF089023	<i>Euphagus carolinus</i> cytochrome b (cyt...)	50	2e-05
cb AF089021.1 AF089021	<i>Dives warzewitschi</i> cytochrome b (cyt...)	50	2e-05
cb AF089020.1 AF089020	<i>Curaeus curaeus</i> cytochrome b (cytb) ...	50	2e-05
cb AF089016.1 AF089016	<i>Amblycerus holosericeus</i> cytochrome ...	50	2e-05
cb AF089013.1 AF089013	<i>Agelaius xanthophthalmus</i> cytochrome ...	50	2e-05
cb AF089012.1 AF089012	<i>Agelaius xanthomus</i> cytochrome b (cyt...)	50	2e-05
cb AF089008.1 AF089008	<i>Agelaius phoeniceus</i> sub-species phoe...	50	2e-05
gb AF089006.1 AF089006	<i>Agelaius humeralis</i> cytochrome b (cyt...)	50	2e-05
cb AF089005.1 AF089005	<i>Agelaius cyanopus</i> cytochrome b (cytb...)	50	2e-05
gb AF108695.1 AF108695	<i>Scolomys jurae</i> cytochrome b (cyt...)	50	2e-05
gb AF108685.1 AF108685	<i>Wiedomys pyrrhorhinos</i> cytochrome b (...)	50	2e-05
cb AF108677.1 AF108677	<i>Thomasomys oreas</i> cytochrome b (cytB) ...	50	2e-05
cb AF145511.1 AF145511	<i>Melanoplus foedus</i> cytochrome b gene...	50	2e-05
gb AF145511.1 AF145511	<i>Melanoplus angustipennis</i> cytochrome ...	50	2e-05
gb U89527.1 BPU89527	<i>Bolitoglossa marmoreta</i> cytochrome b (cy...	50	2e-05
cb U89523.1 BPU89523	<i>Batrachoseps pacificus</i> cytochrome b (c...	50	2e-05
gb AF181470.1 AF181470	<i>Okapia johnstoni</i> cytochrome b gene...	50	2e-05
gb AF094075.1 AF094075	<i>Lagenorhynchus acutus</i> cytochrome b g...	50	2e-05
gb U90301.1 OMU90301	<i>Ovibos moschatus</i> cytochrome b (cytb) g...	50	2e-05
cb U90302.1 OMU90302	<i>Ovibos moschatus</i> cytochrome b (cytb) g...	50	2e-05
gb U90301.1 OMU90301	<i>Ovibos moschatus</i> cytochrome b (cytb) g...	50	2e-05
gb U90300.1 OMU90300	<i>Ovibos moschatus</i> cytochrome b (cytb) g...	50	2e-05
gb AF038883.1 AF038883	<i>Deinagkistrodon acutus</i> cytochrome b ...	50	2e-05
gb AF039269.1 AF039269	<i>Agkistrodon constrictor</i> cytochrome b ...	50	2e-05
gb AF039367.1 AF039367	<i>Boa constrictor</i> cytochrome b (cytb) ...	50	2e-05
gb S49215.1 S49215	apocytochrome b (sheep, domestic, Merino...)	50	2e-05
gb AF158698.1 AF158698	<i>Geomys pinetis</i> cytochrome b gene, co...	50	2e-05
gb AF158692.1 AF158692	<i>Geomys bursarius</i> jugularis cyto...	50	2e-05
gb AF058193.1 AF058193	<i>Ichaginia cruentus</i> cytochrome b (cyt...)	50	2e-05
gb AF091639.1 AF091639	<i>Ancilomenes americana</i> cytochrome b (...)	50	2e-05
gb AF022051.1	<i>Tragelaphus strepsiceros</i> cytochrome b (cytb) ...	50	2e-05
gb AF022052.1	<i>Tragelaphus derbianus</i> cytochrome b (cytb) ge...	50	2e-05
gb AF022050.1	<i>Hippotragus equinus</i> cytochrome b (cytb) gene...	50	2e-05
gb AF022057.1	<i>Tragelaphus oxy</i> cytochrome b (cytb) gene, m...	50	2e-05
gb AF111500.1 AF111500	<i>Lagenorhynchus acutus</i> isolate LACU74 ...	50	2e-05
gb AF111499.1 AF111499	<i>Lagenorhynchus acutus</i> isolate LACU75 ...	50	2e-05

gb UC4645.1 LNUC4645	Loxocemus bicolor cytochrome b (cytb) ...	50	2e-05
gb U65E10.1 EMU65E10	Eunecces notaeus cytochrome b (cytb) S...	50	2e-05
gb UC5A0F.1 EMU5A0F	Eunecces murinus cytochrome b (cytb) S...	50	2e-05
gb U69749.1 ESU69749	Epicrates striatus fosteri cytochrome ...	50	2e-05
gb U69746.1 ESU69746	Epicrates striatus striatus cytochr...	50	2e-05
gb U69745.1 ESU69745	Epicrates striatus striatus cytochr...	50	2e-05
gb U69744.1 ESU69744	Epicrates striatus mcraniei cytochro...	50	2e-05
gb U69743.1 ESU69743	Epicrates striatus mcraniei cytochro...	50	2e-05
gb U69742.1 EMU69742	Epicrates monensis cytochrome b (cytb) ...	50	2e-05
gb U69740.1 EMU69740	Epicrates monensis cytochrome b (cytb) ...	50	2e-05
cb U69786.1 EFU69786	Epicrates fodi cytochrome b (cytb) ge...	50	2e-05
gb U69784.1 EFU69784	Epicrates fodi cytochrome b (cytb) ge...	50	2e-05
gb U69779.1 ECU69779	Epicrates cenchria cytochrome b (cytb) ...	50	2e-05
gb U69777.1 ECU69777	Epicrates cenchria cytochrome b (cytb) ...	50	2e-05
cb U69776.1 EAU69776	Epicrates angulifer cytochrome b (cytb...	50	2e-05
gb U69774.1 EAU69774	Epicrates angulifer cytochrome b (cytb...	50	2e-05
cb U69772.1 CEU69772	Corallus enydris cytochrome b (cytb) g...	50	2e-05
gb U69771.1 CEU69771	Corallus enydris cytochrome b (cytb) g...	50	2e-05
gb U69770.1 CEU69770	Corallus enydris cytochrome b (cytb) g...	50	2e-05
gb U69769.1 CEU69769	Corallus enydris cytochrome b (cytb) g...	50	2e-05
cb U69752.1 CAU69752	Candoia aspera cytochrome b (cytb) gen...	50	2e-05
gb U69746.1 BCU69746	Boa constrictor cytochrome b (cytb) ge...	50	2e-05
gb U69740.1 BCU69740	Boa constrictor cytochrome b (cytb) ge...	50	2e-05
cb AF139057.1 AF139057	Isoodon macrourus cytochrome b gene, ...	50	2e-05
gb AF090339.1 AF090339	Rhea americana mitochondrion, comple...	50	2e-05
cb AF006275.1 AF006275	Cnemidophorus tigris strain Isla Ang...	50	2e-05
cb AF006267.1 AF006267	Cnemidophorus tigris strain Isla Smi...	50	2e-05
gb AF034969.1 AF034969	Connochaetes taurinus cytochrome b g...	50	2e-05
cb AF028822.1 AF028822	Alcelaphus buselaphus cytochrome b g...	50	2e-05
cb AF028821.1 AF028821	Damaliscus lunatus cytochrome b gene...	50	2e-05
gb AF061340.1 AF061340	Artibeus jamaicensis mitochondrial D...	50	2e-05
gb AF076093.1 AF076093	Thalassarche impavida cytochrome b (...	50	2e-05
gb AF076091.1 AF076091	Thalassarche carteri cytochrome b (c...	50	2e-05
gb AF076072.1 AF076072	Pelagodroma marina cytochrome b (cyt...	50	2e-05
gb AF076063.1 AF076063	Oceanodroma furcata cytochrome b (cy...	50	2e-05
gb AF076059.1 AF076059	Hydrobates pelagicus cytochrome b (cyt...	50	2e-05
gb AF076056.1 AF076056	Garrodia nereis cytochrome b (cytb) ...	50	2e-05
gb AF076053.1 AF076053	Fregata tropica cytochrome b (cytb) ...	50	2e-05
gb AF076050.1 AF076050	Diomedea gibsoni cytochrome b (cytb) ...	50	2e-05
gb AF076049.1 AF076049	Diomedea epomophora cytochrome b (cyt...	50	2e-05
gb AF076048.1 AF076048	Diomedea chionoptera cytochrome b (c...	50	2e-05
gb AF076047.1 AF076047	Diomedea antipodensis cytochrome b (...	50	2e-05
gb U83314.1 MSU83314	Micrastur semitorquatus cytochrome b (...	50	2e-05
cb U83318.1 MSU83318	Microrhynchus erythrogenys cytochrome b ...	50	2e-05
cb U37303.1 SAU37303	Synchliboramphus acutus cytochrome b ...	50	2e-05
gb U37302.1 PAU37302	Psychoramphus aleuticus cytochrome b g...	50	2e-05
cb U37296.1 CPU37296	Cyclorhynchus psittacula cytochrome b ...	50	2e-05
gb U37289.1 SAU37289	Brachyramphus brevirostris cytochrome ...	50	2e-05
gb U37286.1 PAU37286	Aechia pygmaea cytochrome b gene, mito...	50	2e-05
gb U37104.1 PAU37104	Aechia pusilla cytochrome b gene, mito...	50	2e-05
gb U37087.1 ACU37087	Aechia cristatella cytochrome b gene, ...	50	2e-05
gb U87525.1 HGU87525	Heterocephalus glaber cytochrome-b gen...	50	2e-05
gb U87524.1 HGU87524	Heterocephalus glaber cytochrome-b gen...	50	2e-05
gb U87523.1 HGU87523	Heterocephalus glaber cytochrome-b gen...	50	2e-05
gb U87522.1 HGU87522	Heterocephalus glaber cytochrome-b gen...	50	2e-05
gb U17964.1 STU17964	Saiga tatarica cytochrome b gene, mito...	50	2e-05
gb U17863.1 OAU17863	Oreamnos americanus cytochrome b gene, ...	50	2e-05
gb U17862.1 OMU17862	Ovis moschatus moschatus cytochrome ...	50	2e-05
gb U17860.1 ODU17860	Ovis dalli cytochrome b gene, mitochon...	50	2e-05
gb U17859.1 OCU17859	Ovis canadensis cytochrome b gene, mit...	50	2e-05
gb U55274.1 TBU55274	Thomomys bottae cytochrome b (cytb) ge...	50	2e-05
gb U55257.1 TBU55257	Thomomys bottae cytochrome b (cytb) ge...	50	2e-05
gb U55250.1 TBU55250	Thomomys bottae cytochrome b (cytb) ge...	50	2e-05
gb U55301.1 PAU55301	Perognathus amplus cytochrome b (cytb) ...	50	2e-05
gb AF034719.1 AF034719	Capra aegagrus cytochrome b (cytb) g...	50	2e-05
gb AF034719.1	Capra caucasica cytochrome b (cytb) gene, mito...	50	2e-05
gb AF034717.1	Capra cylindricornis cytochrome b (cytb) gen...	50	2e-05
gb AF034716.1 AF034716	Capra falconeri cytochrome b (cytb) ...	50	2e-05
gb AF034715.1	Capra ibex cytochrome b (cytb) gene, mitochon...	50	2e-05
gb AF034710.1 AF034710	Ovis aries cytochrome b (cytb) gene, ...	50	2e-05
gb AF034709.1 AF034709	Ovis vignei cytochrome b (cytb) gene, ...	50	2e-05

gb AF034724.1	Ovis dalli calli cytochrome b (cytb) gene, m...	50	2e-05
gb AF034727.1	Ovis ammon darwini cytochrome b (cytb) gene...	50	2e-05
gb AF034724.1 AF034724	Panthalops hodgsoni cytochrome b (cyt...	50	2e-05
gb AF057131.1 AF057132	Taxides taxus cytochrome b (cytb) ge...	50	2e-05
gb U94805.1 TMU94805	Trogon melanurus cytochrome b gene, mi...	50	2e-05
gb U95803.1 TCU94804	Trogon comptus cytochrome b gene, mico...	50	2e-05
gb U94803.1 TVU94803	Trogon violaceus cytochrome b gene, mico...	50	2e-05
gb AF006251.1 AF006251	Sericossypha albocristata cytochrome...	50	2e-05
gb AF006249.1 AF006249	Pyrrhocoma ruficeps cytochrome b (cy...	50	2e-05
gb AF006238.1 AF006238	Lamprospiza melanoleuca cytochrome b...	50	2e-05
gb AF006234.1 AF006234	Hemispingus acroptileus cytochrome b ...	50	2e-05
gb AF005226.1 AF006226	Cypsnagra hirundinacea cytochrome b ...	50	2e-05
gb AF006215.1 AF006215	Chlorophanes spiza cytochrome b (cyt...	50	2e-05
gb AF006214.1 AF006214	Chlorochrysa calliparaea cytochrome ...	50	2e-05
gb AF006213.1 AF006213	Calochaetes coccineus cytochrome b (...	50	2e-05
gb AF006212.1 AF006212	Buchlaupis montana cytochrome b (cyt...	50	2e-05
emb AJ293419.1 RRU293419	Rupicapra rupicapra rupicapra mito...	50	2e-05
emb AJ293416.1 RPU293416	Rupicapra pyrenaica pyrenaica mito...	50	2e-05
emb AJ293415.1 RPU293415	Rupicapra pyrenaica parva mitochon...	50	2e-05
emb AJ293414.1 RPU293414	Rupicapra pyrenaica ornata mitochon...	50	2e-05
emb AJ293412.1 RPU293412	Rupicapra rupicapra rupicapra mito...	50	2e-05
emb AJ293418.1 CFA293418	Capra falconeri mitochondrial part...	50	2e-05
gb U07578.1 DCU07578	Dasyurus criscicauda mitochondrion c...	50	2e-05
emb AJ004180.1 HPAJ4180	Hydrobates pelagicus mitochondrial ...	50	2e-05
emb Y15695.1 SMY15695	Schilbe myrus mitochondrial cytb gen...	50	2e-05
emb Y15697.1 EDY15697	Eutropius depressirostris mitochondri...	50	2e-05
emb Y15696.1 EDY15696	Eutropius depressirostris mitochondri...	50	2e-05
gb AF015035.1 AF015035	Stearacanthus casuarinus 20 cytochrom...	50	2e-05
gb AF015761.1 AF015761	Palmeria dolei cytochrome b (Cytb) 9...	50	2e-05
gb AF015758.1 AF015758	Oreomystis mana cytochrome b (Cytb) ...	50	2e-05
gb AF015756.1 AF015756	Vestiaria coccinea cytochrome b (Cyt...	50	2e-05
gb AF015754.1 AF015754	Himatione sanguinea cytochrome b (Cyt...	50	2e-05
gb U76052.1 DNU76052	Dromaius novaehollandiae cytochrome b ...	50	2e-05
emb AJ236634.1 CGL236834	Clethrionomys glareolus mitochondrial ...	50	2e-05
gb U83158.1 POU83158	Pelecanus onocrotalus cytochrome B gen...	50	2e-05
gb U83157.1 POU83157	Pelecanus onocrotalus cytochrome B gen...	50	2e-05
gb U83156.1 AAU83156	Anhinga anhinga cytochrome B gene, mit...	50	2e-05
gb U83155.1 AAU83155	Anhinga anhinga cytochrome B gene, mit...	50	2e-05
gb U83154.1 AAU83154	Anhinga anhinga cytochrome B gene, mit...	50	2e-05
gb U83156.1 CLU83156	Chelodina longicollis cytochrome b gen...	50	2e-05
emb AJ277676.1 ESC277676	Elaphe scalaris mitochondrial part...	50	2e-05
emb AJ277675.1 ESC277675	Elaphe scalaris mitochondrial part...	50	2e-05
emb AJ277672.1 ELO277672	Elaphe longissima mitochondrial pa...	50	2e-05
emb AJ277671.1 ELO277671	Elaphe longissima mitochondrial pa...	50	2e-05
emb Y11832.1 MTDNCOMN	Dasyurus novemcinctus complete mitoch...	50	2e-05
emb AJ388467.1 N3A188467	Nemacheilus barbatus mitochondrial ...	50	2e-05
emb AJ388468.1 IME189468	Ictalurus melas mitochondrial cyt b...	50	2e-05
emb AJ388459.1 LDE188459	Leucaspis delineatus mitochondrial...	50	2e-05
gb U46167.1 SCU46167	Sciurus carolinensis cytochrome b gene...	50	2e-05
emb AJ245571.1 SIN245571	Schilbe intermedius partial mitoch...	50	2e-05
emb AJ245578.1 SIN245578	Schilbe intermedius partial mitoch...	50	2e-05
emb AJ245577.1 EDE245577	Eutropius depressirostris partial ...	50	2e-05
emb AJ245576.1 EDE245576	Eutropius depressirostris partial ...	50	2e-05
emb AJ245575.1 EDE245575	Eutropius depressirostris partial ...	50	2e-05
emb AJ245674.1 EDE245674	Eutropius depressirostris partial ...	50	2e-05
emb Y16884.1 MTRACOMP	Rhea americana complete mitochondria...	50	2e-05
gb U60768.1 PCU60768	Parus cinctus cytochrome b gene, mitoc...	50	2e-05
gb U48255.1 TMU48255	Thalassarche melanophrys melanophrys C...	50	2e-05
gb U48954.1 TCU48954	Thalassarche chrysostoma cytochrome b ...	50	2e-05
gb U48944.1 TCU48944	Thalassarche chrysostoma chlorochry...	50	2e-05
gb U48943.1 PPU48943	Phoebetria palpebrata cytochrome b (cy...	50	2e-05
gb U48942.1 PFU48942	Phoebetria fusca cytochrome b (cytb) g...	50	2e-05
gb U48941.1 MCU48941	Macronectes giganteus cytochrome b (cy...	50	2e-05
gb U48940.1 DEU48940	Diomedea exulans dabbenena cytochrome ...	50	2e-05
gb U48946.1 DEU48946	Diomedea epomophora sanfordi cytochro...	50	2e-05
gb U48949.1 DAU48949	Diomedea amstelodamensis cytochrome b ...	50	2e-05
gb U5755.1 PRU15755	Piranga rubra cytochrome b gene, mitoc...	50	2e-05
gb U45509.1 APU45509	Accipiter plenirostris cytochrome b (cyt...	50	2e-05
gb U55507.1 ADU45507	Accipiter obscurus cytochrome b (cytb) ...	50	2e-05
gb U55505.1 AQU45505	Accipiter obsoletus cytochrome b (cytb) ...	50	2e-05

gb U66505.1 AUU66505	<i>Artibeus lituratus</i> cytochrome b (cytb) ...	50	2e-05
gb U66506.1 AUU66506	<i>Artibeus jamaicensis</i> cytochrome b (cyt...)	50	2e-05
gb U66507.1 AUU66507	<i>Artibeus jamaicensis</i> cytochrome b (cyt...)	50	2e-05
gb U66508.1 AUU66508	<i>Artibeus intermedius</i> cytochrome b (cyt...)	50	2e-05
gb U66509.1 AUU66509	<i>Artibeus inopinatus</i> cytochrome b (cytb...)	50	2e-05
gb U66510.1 AUU66510	<i>Artibeus hirsutus</i> cytochrome b (cytb) ...	50	2e-05
gb U66511.1 AUU66511	<i>Artibeus fraterculus</i> cytochrome b (cyt...)	50	2e-05
gb U66512.1 AUU66512	<i>Artibeus timbriciacus</i> cytochrome b (cytb...)	50	2e-05
gb U63061.1 B9U63061	<i>Brachyramphus brevirostris</i> cytochrome ...	50	2e-05
gb U63060.1 B9U63060	<i>Brachyramphus brevirostris</i> cytochrome ...	50	2e-05
gb U63059.1 B9U63059	<i>Brachyramphus brevirostris</i> cytochrome ...	50	2e-05
gb U63058.1 B9U63058	<i>Brachyramphus brevirostris</i> cytochrome ...	50	2e-05
gb U58386.1 SJU58386	<i>Scolomys juruaense</i> cytochrome b (cyt-b...)	50	2e-05
gb L11905.1 CGYMTCYTB	<i>Cratogeomys gymnurus</i> mitochondrial c...	50	2e-05
gb U34672.1 MNU34672	<i>Mesachirus nudicaudatus</i> cytochrome b l...	50	2e-05
gb U34671.1 MNU34671	<i>Mesachirus nudicaudatus</i> cytochrome b l...	50	2e-05
emb Y14951.1 MTY14951	<i>Capreolus capreolus</i> mitochondrial cyt...	50	2e-05
emb Y14371.1 MTCCCYTB	<i>Capreolus capreolus</i> mitochondrial cyt...	50	2e-05
gb L11909.1 CGYMTCYTBH	<i>Cratogeomys tylorhinus</i> mitochondrial...	50	2e-05
gb L11901.1 PPGMYTCYTB	<i>Geomys bursarius</i> jugosicularis mito...	50	2e-05
gb L11904.1 CGYMTCYTBG	<i>Cratogeomys goldmani</i> goldmani mitoch...	50	2e-05
emb X94928.1 SPCYTB	<i>S. putorius</i> mitochondrial DNA for cytoch...	50	2e-05
gb U46770.1 ARU46770	<i>Anchus richardi</i> cytochrome b gene, mit...	50	2e-05
gb U46769.1 ABU46769	<i>Anchus berthelotii</i> cytochrome b gene, ...	50	2e-05
gb U46183.1 SSU46183	<i>Sciurus sciamineus</i> cytochrome b gene, ...	50	2e-05
emb Y10728.1 PSMY10728	<i>P. schwarzii</i> mitochondrial cytb gene, ...	50	2e-05
emb X95768.1 NLMC9	<i>N. leucopterus</i> mitochondrial cytochrome b...	50	2e-05
emb X95767.1 NGRIMC9	<i>N. griseus</i> mitochondrial cytochrome b gene	50	2e-05
emb X86763.1 MTVGCYTB6	<i>V. gryphus</i> mitochondrial cytb gene	50	2e-05
emb X86754.1 MTLCYTB7	<i>L. crumeniferus</i> mitochondrial cytb gene	50	2e-05
emb X86743.1 MTCACYTB	<i>C. aura</i> mitochondrial cytb gene	50	2e-05
gb A8035242.1 A8035242	<i>Pantodon buchholzi</i> mitochondrial cy...	50	2e-05
emb X60946.1 MITDC933	<i>T. dorbigyni</i> mitochondrial gene for c...	50	2e-05
emb AJ000029.1 MIRTCYB29	<i>Rangifer tarandus</i> mitochondrial cy...	50	2e-05
emb X82302.1 MIPFCYTBG	<i>P. fasciata</i> mitochondrial cytochrome ...	50	2e-05
emb X56291.1 MIOHCYTB	<i>O. hemionus</i> mitochondrion cytb gene fo...	50	2e-05
emb X56284.1 MIOACYTB	<i>O. aries</i> mitochondrion cytb gene for c...	50	2e-05
emb AJ000022.1 MIMSCYB22	<i>Dama dama</i> mitochondrial cytb gene	50	2e-05
emb X72005.1 MILWCYTB	<i>L. weddelli</i> mitochondrial gene for cyt...	50	2e-05
emb Y09914.1 MILHCYTBG	<i>K. liberianus</i> mitochondrial cytochro...	50	2e-05
emb X60942.1 MIGTC933	<i>Gymnorhina tibicen</i> mitochondrial gene...	50	2e-05
emb X56290.1 MIDDCYTB	<i>D. dama</i> mitochondrion cytb gene for cy...	50	2e-05
emb AJ000021.1 MICECYB21	<i>Cervus elaphus</i> mitochondrial cytb ...	50	2e-05
emb AJ000024.1 MICCCYB24	<i>Capreolus capreolus</i> mitochondrial ...	50	2e-05
emb V00654.1 MIBTXX	<i>Bos taurus</i> complete mitochondrial genome	50	2e-05
emb X56286.1 MIAACYTB3A	<i>A. americana</i> mitochondrion cytb gene ...	50	2e-05
gb L19718.1 ARUMTCYTB	<i>Artibeus lituratus</i> mitochondrial cyto...	50	2e-05
gb U27543.1 BRU27543	<i>Balearica regulorum</i> cytochrome b (cytb...)	50	2e-05
gb A8030025.1 A8030025	<i>Sciurus sciamineus</i> mitochondrial cy...	50	2e-05
gb U18258.1 SCU18258	<i>Sphasagermon campestris</i> cytochrome b ge...	50	2e-05
gb U18257.1 SCU18257	<i>Sphasagermon coliae</i> cytochrome b gene...	50	2e-05
gb U18253.1 TPU18253	<i>Trimerotropis picturata</i> cytochrome b...	50	2e-05
gb U18250.1 CPU18250	<i>Cannula pellucida</i> cytochrome b gene, m...	50	2e-05
gb U17904.1 CCU17904	<i>Circotettix carlinianus</i> mitochondrion ...	50	2e-05
gb D84202.1 GOTMTCB8	<i>Capra falconeri</i> mitochondrial DNA for...	50	2e-05
gb D82889.1 D82889	<i>Bos javanicus</i> mitochondrial DNA for cyt...	50	2e-05
gb D32195.1 CCRMTCB25	<i>Capricornis sumatrensis</i> mitochondrial...	50	2e-05
gb D32191.1 CCRMTCB21	<i>Capricornis crispus</i> mitochondrial ge...	50	2e-05
gb A8021098.1 AB021098	<i>Cervus elaphus kamsuensis</i> mitochond...	50	2e-05
gb A8021097.1 AB021097	<i>Cervus elaphus xanthopygus</i> mitochond...	50	2e-05
gb A8021095.1 AB021095	<i>Cervus nippon yessoensis</i> mitochondr...	50	2e-05
gb A8021094.1 AB021094	<i>Cervus nippon cendaiensis</i> mitochondr...	50	2e-05
gb A8021092.1 AB021092	<i>Cervus nippon mageshimaensis</i> mitochondr...	50	2e-05
gb A8021091.1 AB021091	<i>Cervus nippon ketamae</i> mitochondr...	50	2e-05
gb AB001612.1 AB001612	<i>Cervus elaphus</i> mitochondrial DNA fo...	50	2e-05
gb D94205.1 SKPMTCB8	Sheep mitochondrial DNA for cytochrome...	50	2e-05
gb D94203.1 SKPMTCB8C	<i>Ovis musimon</i> mitochondrial DNA for cyt...	50	2e-05
gb D94202.1 BOVMTCB8	<i>Bos javanicus</i> mitochondrial gene for ...	50	2e-05
gb D94201.1 BOVMTCB8A	<i>Bovine</i> mitochondrial gene for cytochro...	50	2e-05
gb D94200.1 ORMMTCB8B	<i>Oreamnos americanus</i> mitochondrial ge...	50	2e-05
gb D71195.1 NACMTCB8	<i>Nemorhaedus goral</i> mitochondrial gene...	50	2e-05

dbj CB2142.1 CEUMTC000	<i>Cervus nippon</i> mitochondrial gene 102...	50	2e-05
dbj AB021056.1 AB021057	<i>Cervus elaphus scoticus</i> mitochondrial...	50	2e-05
dbj AB021056.1 AB021056	<i>Cervus elaphus canadensis</i> mitochond...	50	2e-05
dbj AB021053.1 AB021053	<i>Cervus nippon nippon</i> mitochondrial ...	50	2e-05
dbj AB021050.1 AB021050	<i>Cervus nippon pulchellus</i> mitochond...	50	2e-05
dbj AB006836.1 AB006836	<i>Dinocodon semicarinatus</i> mitochondrial...	50	2e-05
dbj AB006800.1 AB006800	<i>Ovis aries</i> mitochondrial DNA for cy...	50	2e-05
gb L12763.1 LDHMTCYTB	<i>Lepidochelys kempi</i> (LX-3) mitochondri...	50	2e-05
gb L06032.1 CP1UMTCYTB	<i>Caccharrinus plumbeus</i> mitochondrial ...	50	2e-05
gb L28941.1 URRCYB	<i>Uroderma bilobatum</i> cytochrome b gene, 5'...	50	2e-05
gb L28927.1 CDECYB	<i>Chiroderma doriae</i> cytochrome b gene, 5' end	50	2e-05
emb AJ010056.1 CPY010056	<i>Capra pyrenaica</i> (individual 12) mi...	50	2e-05
emb AJ010054.1 CPY010054	<i>Capra pyrenaica</i> (individual 11) mi...	50	2e-05
emb AJ010053.1 CPY010053	<i>Capra pyrenaica</i> (individual 10) mi...	50	2e-05
emb AJ010052.1 CPY010052	<i>Capra pyrenaica</i> (individual 9) mit...	50	2e-05
emb AJ010051.1 CPY010051	<i>Capra pyrenaica</i> (individual 8) mit...	50	2e-05
emb AJ010050.1 CPY010050	<i>Capra pyrenaica</i> (individual 7) mit...	50	2e-05
emb AJ010049.1 CPY010049	<i>Capra pyrenaica</i> (individual 6) mit...	50	2e-05
emb AJ010048.1 CPY010048	<i>Capra pyrenaica</i> (individual 5) mit...	50	2e-05
emb AJ010047.1 CPY010047	<i>Capra pyrenaica</i> (individual 4) mit...	50	2e-05
emb X95777.1 CLMCA	<i>C. longirostris</i> mitochondrial cytochrome ...	50	2e-05
emb AJ009879.1 C139879	<i>Capra ibex</i> <i>ibexiana</i> mitochondrial cyt...	50	2e-05
emb AJ010055.1 C13010055	<i>Capra ibex</i> (individual 1) ibex mit...	50	2e-05
gb U08946.1 CAU08946	<i>Coragyps atratus</i> mitochondrion cytochr...	50	2e-05
gb U08945.1 C3U08945	<i>Cathartes burrovianus</i> mitochondrion cy...	50	2e-05
gb U08944.1 VGU08944	<i>Vultur gryphus</i> mitochondrion cytochrom...	50	2e-05
gb U08941.1 PAU08941	<i>Platalea alba</i> mitochondrion cytochrome...	50	2e-05
gb U08940.1 PRU08940	<i>Phoenicopterus ruber</i> mitochondrion cyt...	50	2e-05
emb X95773.1 ACMCB	<i>A. cristatus</i> mitochondrial cytochrome b gene	50	2e-05
emb X95774.1 ACMCB	<i>A. bennettii</i> mitochondrial cytochrome b gene	50	2e-05
emb X95764.1 AAMCB	<i>A. albertisi</i> mitochondrial cytochrome b gene	50	2e-05
cb AF040383.1 AF040383	<i>Alces alces</i> cytochrome b (cytb) gene...	45	8e-05
cb AF232033.1 AF232023	<i>Tamandua tetradactyla</i> clone 7 cytoch...	45	3e-04
cb AF232022.1 AF232022	<i>Tamandua tetradactyla</i> clone 6 mitoch...	45	3e-04
cb AF232021.1 AF232021	<i>Tamandua tetradactyla</i> clone 5 cytoch...	45	3e-04
cb AF157466.1 AF157466	<i>Lepus timidus</i> cytochrome b (Cytb) gen...	45	3e-04
cb AF157465.1 AF157465	<i>Lepus granatensis</i> cytochrome b (Cytb) ...	45	3e-04
cb AF157454.1 AF157464	<i>Lepus corsicanus</i> haplotype 1 cytochr...	45	3e-04
cb AF157453.1 AF157463	<i>Lepus corsicanus</i> haplotype 3 cytochr...	45	3e-04
cb AF157460.1 AF157460	<i>Lepus europaeus</i> cytochrome b (Cytb) 9...	45	3e-04
cb AF231664.1 AF231664	<i>Tylosurus crocodilus</i> crocodilus cyto...	45	3e-04
cb AF231663.1 AF231663	<i>Tylosurus crocodilus</i> clone STR1-1517...	45	3e-04
gb AF231662.1 AF231662	<i>Tylosurus crocodilus</i> clone HB-156 cy...	45	3e-04
gb AF231660.1 AF231660	<i>Tylosurus acus pacificus</i> cytochrome ...	45	3e-04
gb AF231659.1 AF231659	<i>Tylosurus acus melanotus</i> clone STR1...	45	3e-04
gb AF231658.1 AF231658	<i>Tylosurus acus melanotus</i> clone STR1...	45	3e-04
gb AF231657.1 AF231657	<i>Tylosurus acus imperialis</i> cytochrome...	45	3e-04
gb AF231656.1 AF231656	<i>Tylosurus acus acus</i> cytochrome b cxi...	45	3e-04
gb AF231644.1 AF231644	<i>Strongylura hubbsi</i> cytochrome b oxid...	45	3e-04
gb AF231639.1 AF231639	<i>Ablennes hians</i> cytochrome b oxidase ...	45	3e-04
gb AF232019.1 AF232019	<i>Tamandua tetradactyla</i> clone 3 cytoch...	45	3e-04
gb AF232017.1 AF232017	<i>Tamandua tetradactyla</i> clone 1 cytoch...	45	3e-04
gb AF232014.1 AF232014	<i>Mylodon darwini</i> cytochrome b gene. ...	45	3e-04
gb AF18564.1 AF18564	<i>Alligator mississippiensis</i> isolate S...	45	3e-04
gb AF18563.1 AF18563	<i>Alligator mississippiensis</i> isolate S...	45	3e-04
gb AF18562.1 AF18562	<i>Alligator mississippiensis</i> isolate S...	45	3e-04
gb AF18561.1 AF18561	<i>Alligator mississippiensis</i> isolate G...	45	3e-04
gb AF18560.1 AF18560	<i>Alligator mississippiensis</i> isolate G...	45	3e-04
gb AF18559.1 AF18559	<i>Alligator mississippiensis</i> isolate A...	45	3e-04
gb AF18558.1 AF18558	<i>Alligator mississippiensis</i> isolate A...	45	3e-04
gb AF18557.1 AF18557	<i>Alligator mississippiensis</i> isolate S...	45	3e-04
gb AF18556.1 AF18556	<i>Alligator mississippiensis</i> isolate S...	45	3e-04
gb AF18555.1 AF18555	<i>Alligator mississippiensis</i> isolate S...	45	3e-04
gb AF18554.1 AF18554	<i>Alligator mississippiensis</i> isolate S...	45	3e-04
gb AF18553.1 AF18553	<i>Alligator mississippiensis</i> isolate L...	45	3e-04
gb AF18552.1 AF18552	<i>Alligator mississippiensis</i> isolate L...	45	3e-04
gb AF18551.1 AF18551	<i>Alligator mississippiensis</i> isolate L...	45	3e-04
gb AF18550.1 AF18550	<i>Alligator mississippiensis</i> isolate F...	45	3e-04
gb AF18549.1 AF18549	<i>Alligator mississippiensis</i> isolate F...	45	3e-04
gb AF18548.1 AF18548	<i>Alligator mississippiensis</i> isolate F...	45	3e-04
gb AF17011.1 AF17011	<i>Sorex monticolus</i> specimen-voucher AF...	45	3e-04

<u>gb AF326272.1 AF326272</u>	Myospalax myospalax cytochrome b (cy... gb AF326271.1 AF326271	Myospalax psilurus isolate 2 cytochr... gb AF326270.1 AF326270	Myospalax psilurus isolate 1 cytochr... gb AF326266.1 AF326266	Eospalax fontanieri isolate 4 cytoc... emb AJ004340.1 ADAJ4340	Acrocephalus dumetorum mitochondria... emb AJ004264.1 ADAJ4264	Acrocephalus dumetorum mitochondria...
						..46 3e-04
						..46 3e-04
						..46 3e-04
						..46 3e-04
						..44 0.001
						..44 0.001

Alignments

<u>tmpseq_0</u>	1	taccatgaggacaaatcatcccg	25
<u>AF231651</u>	398	422
<u>AF231650</u>	398	422
<u>NC_002672</u>	15560	15584
<u>NC_002671</u>	15552	15576
<u>AF232015</u>	398	422
<u>AF232013</u>	398	422
<u>AY016015</u>	15552	15576
<u>AY016013</u>	15560	15584
<u>AY016014</u>	11516	11540
<u>AF230167</u>	266	290
<u>AF074594</u>	206	230
<u>AY005210</u>	290	314
<u>AY005209</u>	290	314
<u>AY005208</u>	290	314
<u>AY005205</u>	290	314
<u>AY005204</u>	290	314
<u>AY005203</u>	290	314
<u>AY005201</u>	290	314
<u>AY005199</u>	290	314
<u>AY005198</u>	290	314
<u>AF155870</u>	398	422
<u>AF189123</u>	326	350
<u>AF102099</u>	215	239
<u>AF102095</u>	208	232
<u>AF271065</u>	398	422
<u>AF243857</u>	275	299
<u>AF243856</u>	275	299
<u>NC_001567</u>	14911	14935
<u>AF306872</u>	302	326
<u>AF306871</u>	302	326
<u>AF306870</u>	302	326
<u>AF306869</u>	302	326
<u>AF306868</u>	302	326
<u>AF010406</u>	14556	14580
<u>AF248662</u>	303	327
<u>AF248661</u>	303	327
<u>AF096462</u>	264	288
<u>AF283644</u>	374	398
<u>AF283643</u>	374	398
<u>AF283642</u>	374	398
<u>AF283641</u>	374	398
<u>AF283640</u>	374	398
<u>AF283619</u>	374	398
<u>AF283617</u>	374	398
<u>AF283615</u>	374	398
<u>AF283614</u>	374	398
<u>AF283613</u>	374	398
<u>AF283612</u>	374	398
<u>AF283611</u>	374	398
<u>AF283610</u>	374	398
<u>AF283629</u>	374	398
<u>AF283628</u>	374	398
<u>AF283627</u>	374	398
<u>AF283625</u>	374	398
<u>AF283622</u>	374	398
<u>AF283621</u>	374	398
<u>AF283620</u>	374	398

<u>AF283619</u>	374	398
<u>AF283618</u>	374	398
<u>AF283617</u>	374	398
<u>AF283616</u>	374	398
<u>AF283615</u>	374	398
<u>AF283614</u>	374	398
<u>AF283613</u>	374	398
<u>AF283612</u>	374	398
<u>AF283611</u>	374	398
<u>AF283610</u>	374	398
<u>AF283609</u>	374	398
<u>AF283608</u>	374	398
<u>AF283607</u>	374	398
<u>AF283606</u>	374	398
<u>AF283605</u>	374	398
<u>AF283604</u>	374	398
<u>AF283603</u>	374	398
<u>AF283602</u>	374	398
<u>AF283601</u>	374	398
<u>AF283600</u>	374	398
<u>AF283599</u>	374	398
<u>AF283598</u>	374	398
<u>AF283597</u>	374	398
<u>AF283596</u>	374	398
<u>AF283595</u>	374	398
<u>AF283594</u>	374	398
<u>AF283593</u>	374	398
<u>AF283592</u>	374	398
<u>AF283591</u>	374	398
<u>AF283590</u>	374	398
<u>AF283589</u>	374	398
<u>AF283588</u>	374	398
<u>AF283587</u>	374	398
<u>AF283586</u>	374	398
<u>AF283585</u>	374	398
<u>AF283584</u>	374	398
<u>AF283583</u>	374	398
<u>AF283582</u>	374	398
<u>AF283581</u>	374	398
<u>AF283580</u>	374	398
<u>AF283579</u>	374	398
<u>AF283578</u>	374	398
<u>AF283577</u>	374	398
<u>AF283576</u>	374	398
<u>AF187030</u>	398	422
<u>AF310052</u>	299	323
<u>AF310046</u>	299	323
<u>AF171919</u>	302	326
<u>AF171897</u>	297	321
<u>AF290174</u>	281	305
<u>AF290173</u>	281	305
<u>AF290171</u>	281	305
<u>AF290170</u>	281	305
<u>AF290150</u>	281	305
<u>AF176252</u>	398	422
<u>AF176251</u>	398	422
<u>AF161907</u>	398	422
<u>AF161904</u>	398	422
<u>AF161901</u>	398	422
<u>AF161899</u>	398	422
<u>AF161891</u>	398	422
<u>AF161890</u>	398	422
<u>AF288524</u>	401	425
<u>AF288523</u>	401	425
<u>AF288522</u>	401	425
<u>AF121510</u>	303	327
<u>AF121512</u>	303	327
<u>AF206548</u>	303	327
<u>AF197967</u>	401	425
<u>V61197</u>	303	327
<u>NC 001943</u>	15302	15326

<u>NC_001821</u>	14568	14592
<u>AF141217</u>	398	422
<u>AF201615</u>	385	409
<u>AF077920</u>	154	178
<u>AF190632</u>	398	422
<u>J01194</u>	14911	14935
<u>AF191830</u>	302	326
<u>U89181</u>	401	425
<u>U89171</u>	401	425
<u>AF217833</u>	371	395
<u>AF217822</u>	374	398
<u>AF217813</u>	374	398
<u>AF220408</u>	413	437
<u>AF126430</u>	398	422
<u>AF090137</u>	15123	15147
<u>AF059111</u>	305	329
<u>AF059053</u>	305	329
<u>AF099308</u>	303	327
<u>AF099295</u>	303	327
<u>AF099294</u>	303	327
<u>AF099293</u>	303	327
<u>AF160610</u>	398	422
<u>AF036280</u>	398	422
<u>AF036277</u>	398	422
<u>AF036274</u>	398	422
<u>AF194218</u>	302	326
<u>AF194216</u>	302	326
<u>NC_002009</u>	14547	14571
<u>NC_001941</u>	14556	14580
<u>NC_000877</u>	15123	15147
<u>NC_000846</u>	14038	14062
<u>U27551</u>	401	425
<u>AF089058</u>	281	305
<u>AF089055</u>	281	305
<u>AF089054</u>	281	305
<u>AF089046</u>	281	305
<u>AF089042</u>	272	296
<u>AF089039</u>	281	305
<u>AF089037</u>	281	305
<u>AF089026</u>	281	305
<u>AF089025</u>	281	305
<u>AF089024</u>	281	305
<u>AF089023</u>	281	305
<u>AF089021</u>	281	305
<u>AF089020</u>	281	305
<u>AF089016</u>	281	305
<u>AF089013</u>	281	305
<u>AF089012</u>	281	305
<u>AF089008</u>	281	305
<u>AF089006</u>	257	281
<u>AF089005</u>	281	305
<u>AF108696</u>	398	422
<u>AF108685</u>	392	416
<u>AF108677</u>	398	422
<u>AF145531</u>	169	193
<u>AF145511</u>	169	193
<u>U89627</u>	360	384
<u>U89623</u>	360	384
<u>AF181470</u>	303	327
<u>AF084075</u>	398	422
<u>U90101</u>	398	422
<u>U90102</u>	398	422
<u>U90101</u>	398	422
<u>U90100</u>	398	422
<u>AF018883</u>	392	416
<u>AF019268</u>	392	416
<u>AF019367</u>	392	416
<u>S19215</u>	56	80
<u>AF138698</u>	398	422
<u>AF138693</u>	398	422
<u>AF069121</u>	401	425

<u>AF091629</u>	398	422
<u>AF022063</u>	398	422
<u>AF022062</u>	398	422
<u>AF022060</u>	398	422
<u>AF022057</u>	398	422
<u>AF113500</u>	384	408
<u>AF113499</u>	363	387
<u>U69845</u>	374	398
<u>U69810</u>	374	398
<u>U69808</u>	374	398
<u>U69799</u>	374	398
<u>U69796</u>	374	398
<u>U69795</u>	374	398
<u>U69794</u>	374	398
<u>U69793</u>	374	398
<u>U69792</u>	374	398
<u>U69790</u>	374	398
<u>U69786</u>	374	398
<u>U69784</u>	374	398
<u>U69779</u>	374	398
<u>U69777</u>	374	398
<u>U69776</u>	374	398
<u>U69774</u>	374	398
<u>U69772</u>	374	398
<u>U69771</u>	374	398
<u>U69770</u>	374	398
<u>U69769</u>	374	398
<u>U69752</u>	74	98
<u>U69746</u>	374	398
<u>U69740</u>	374	398
<u>AF1139057</u>	398	422
<u>AF090339</u>	15199	15223
<u>AF006275</u>	475	499
<u>AF006267</u>	475	499
<u>AF034969</u>	398	422
<u>AF028822</u>	398	422
<u>AF028821</u>	398	422
<u>AF061340</u>	14547	14571
<u>AF076093</u>	401	425
<u>AF076091</u>	401	425
<u>AF076072</u>	401	425
<u>AF076063</u>	401	425
<u>AF076059</u>	401	425
<u>AF076056</u>	401	425
<u>AF076053</u>	401	425
<u>AF076050</u>	401	425
<u>AF076049</u>	401	425
<u>AF076048</u>	401	425
<u>AF076047</u>	401	425
<u>U83314</u>	401	425
<u>U83318</u>	401	425
<u>U37303</u>	303	327
<u>U37302</u>	303	327
<u>U37296</u>	303	327
<u>U37289</u>	303	327
<u>U37286</u>	303	327
<u>U37104</u>	303	327
<u>U37087</u>	303	327
<u>U87525</u>	380	404
<u>U87524</u>	385	409
<u>U87523</u>	354	378
<u>U87522</u>	379	403
<u>U17864</u>	398	422
<u>U17863</u>	329	353
<u>U17862</u>	398	422
<u>U17860</u>	398	422
<u>U17859</u>	329	353
<u>U65274</u>	398	422
<u>U65267</u>	398	422
<u>U65269</u>	398	422
<u>U65191</u>	398	422

<u>AF034719</u>	398	422
<u>AF034738</u>	398	422
<u>AF034737</u>	398	422
<u>AF034736</u>	398	422
<u>AF034735</u>	398	422
<u>AF034730</u>	398	422
<u>AF034729</u>	398	422
<u>AF034728</u>	398	422
<u>AF034727</u>	398	422
<u>AF034724</u>	398	422
<u>AF057132</u>	396	425
<u>U94805</u>	401	425
<u>U94804</u>	401	425
<u>U94803</u>	401	425
<u>AF006251</u>	303	327
<u>AF006249</u>	303	327
<u>AF006238</u>	303	327
<u>AF006234</u>	303	327
<u>AF006226</u>	303	327
<u>AF006215</u>	303	327
<u>AF006214</u>	303	327
<u>AF006213</u>	303	327
<u>AF006212</u>	303	327
<u>AJ293419</u>	398	422
<u>AJ293416</u>	398	422
<u>AJ293415</u>	398	422
<u>AJ293414</u>	398	422
<u>AJ293412</u>	398	422
<u>AJ293418</u>	398	422
<u>U07578</u>	398	422
<u>AJ004180</u>	302	326
<u>Y15695</u>	432	456
<u>Y15697</u>	432	456
<u>Y15696</u>	432	456
<u>AF015035</u>	448	472
<u>AF015761</u>	303	327
<u>AF015758</u>	303	327
<u>AF015756</u>	303	327
<u>AF015754</u>	303	327
<u>U76052</u>	401	425
<u>AJ236834</u>	398	422
<u>U83158</u>	302	326
<u>U83157</u>	304	328
<u>U83156</u>	302	326
<u>U83155</u>	303	327
<u>U83154</u>	300	324
<u>U81356</u>	320	344
<u>AJ277676</u>	299	323
<u>AJ277675</u>	299	323
<u>AJ277672</u>	299	323
<u>AJ277671</u>	299	323
<u>Y11832</u>	14568	14592
<u>AJ388457</u>	305	329
<u>AJ388468</u>	305	329
<u>AJ388459</u>	305	329
<u>U46167</u>	398	422
<u>AJ245673</u>	400	424
<u>AJ245678</u>	400	424
<u>AJ245677</u>	400	424
<u>AJ245676</u>	400	424
<u>AJ245675</u>	400	424
<u>AJ245674</u>	400	424
<u>Y16884</u>	14038	14062
<u>U60768</u>	263	267
<u>U48955</u>	401	425
<u>U48954</u>	401	425
<u>U48944</u>	401	425
<u>U48941</u>	401	425
<u>U48942</u>	401	425
<u>U48941</u>	401	425

<u>U48947</u>	401	425
<u>U48946</u>	401	425
<u>U48948</u>	401	425
<u>U15725</u>	303	327
<u>U66508</u>	398	422
<u>U66507</u>	398	422
<u>U66506</u>	398	422
<u>U66505</u>	398	422
<u>U66504</u>	398	422
<u>U66503</u>	398	422
<u>U66502</u>	398	422
<u>U66501</u>	398	422
<u>U66500</u>	398	422
<u>U66499</u>	398	422
<u>U66498</u>	398	326
<u>U63061</u>	302	326
<u>U63060</u>	302	326
<u>U63059</u>	302	326
<u>U63058</u>	302	422
<u>U58386</u>	398	422
<u>L11905</u>	398	422
<u>U34672</u>	398	422
<u>U34671</u>	398	422
<u>Y14951</u>	398	422
<u>Y14371</u>	398	422
<u>L11909</u>	398	422
<u>L11901</u>	398	422
<u>L11904</u>	398	422
<u>X94928</u>	398	326
<u>U46770</u>	302	326
<u>U46769</u>	302	422
<u>U46183</u>	398	323
<u>Y10728</u>	299	327
<u>X95768</u>	303	327
<u>X95767</u>	303	323
<u>X86763</u>	299	323
<u>X86754</u>	299	323
<u>X86743</u>	299	422
<u>AB035242</u>	398	422
<u>X60946</u>	302	326
<u>AJ000029</u>	398	422
<u>X82302</u>	398	422
<u>X56291</u>	398	422
<u>X56284</u>	398	422
<u>AJ000022</u>	398	422
<u>X72005</u>	398	422
<u>Y08814</u>	398	326
<u>X60942</u>	302	422
<u>X56290</u>	398	422
<u>AJ000021</u>	398	422
<u>AJ000024</u>	398	422
<u>V00654</u>	14911	14935
<u>X56286</u>	398	422
<u>L119718</u>	398	422
<u>U27541</u>	401	425
<u>AB030025</u>	343	367
<u>U18258</u>	169	193
<u>U18257</u>	169	193
<u>U18253</u>	169	193
<u>U18250</u>	169	193
<u>U17904</u>	169	193
<u>D84202</u>	398	422
<u>D82889</u>	398	422
<u>D72195</u>	243	267
<u>D72191</u>	398	422
<u>AB0211998</u>	398	422
<u>AB0211997</u>	398	422
<u>AB0211995</u>	398	422
<u>AB0211994</u>	398	422
<u>AB0211992</u>	398	422
<u>AB0211991</u>	398	422

<u>AB001612</u>	398	422
<u>D84205</u>	398	422
<u>D84203</u>	398	422
<u>D34636</u>	398	422
<u>D34615</u>	398	422
<u>D32198</u>	243	267
<u>D32196</u>	243	267
<u>D32192</u>	398	422
<u>AB021099</u>	398	422
<u>AB021096</u>	398	422
<u>AB021093</u>	398	422
<u>AB021090</u>	398	422
<u>AB008532</u>	15302	15326
<u>AB006800</u>	398	422
<u>L12763</u>	260	284
<u>L08032</u>	401	425
<u>L28941</u>	398	422
<u>L28937</u>	398	422
<u>AJ010056</u>	269	293
<u>AJ010054</u>	269	293
<u>AJ010053</u>	269	293
<u>AJ010052</u>	269	293
<u>AJ010051</u>	269	293
<u>AJ010050</u>	269	293
<u>AJ010049</u>	269	293
<u>AJ010048</u>	269	293
<u>AJ010047</u>	269	293
<u>X95777</u>	407	431
<u>AJ009879</u>	269	293
<u>AJ010055</u>	269	327
<u>U08946</u>	303	327
<u>U08945</u>	303	327
<u>U08944</u>	303	327
<u>U08941</u>	303	327
<u>U08940</u>	303	327
<u>X95775</u>	303	327
<u>X95774</u>	303	327
<u>X95764</u>	303	327
<u>AF040383</u>	287	310
<u>AF232023</u>	400	422
<u>AF232022</u>	400	422
<u>AF232021</u>	400	422
<u>AF157466</u>	322	344
<u>AF157465</u>	324	346
<u>AF157464</u>	324	346
<u>AF157463</u>	324	346
<u>AF157460</u>	321	343
<u>AF231664</u>	400	422
<u>AF231663</u>	400	422
<u>AF231662</u>	400	422
<u>AF231660</u>	400	422
<u>AF231659</u>	400	422
<u>AF231658</u>	400	422
<u>AF231657</u>	400	422
<u>AF231656</u>	400	422
<u>AF231644</u>	400	422
<u>AF231639</u>	400	422
<u>AF232019</u>	400	422
<u>AF232017</u>	400	422
<u>AF232014</u>	400	422
<u>AF118564</u>	345	367
<u>AF118561</u>	345	367
<u>AF118562</u>	344	366
<u>AF118561</u>	344	366
<u>AF118560</u>	344	366
<u>AF118559</u>	344	366
<u>AF118558</u>	344	366
<u>AF118557</u>	381	403
<u>AF118556</u>	381	403
<u>AF118553</u>	381	403
<u>AF118551</u>	381	403

<u>AF318551</u>	381	403
<u>AF318552</u>	381	403
<u>AF318551</u>	381	403
<u>AF318550</u>	381	403
<u>AF318549</u>	381	403
<u>AF318548</u>	381	403
<u>AF238041</u>	400	422
<u>AF326272</u>	400	422
<u>AF326271</u>	400	422
<u>AF326270</u>	400	422
<u>AF326266</u>	400	422
<u>AJ004340</u>	302n.....	326
<u>AJ004264</u>	302n.....	326

Database: nt

Posted date: Mar 2, 2001 12:20 AM

Number of letters in database: 2,863,827,885

Number of sequences in database: 807,597

Lambda K H
1.37 0.711 1.31

Gapped
Lambda K H
1.37 0.711 1.31

Matrix: blastn matrix:1 -3

Gap Penalties: Existence: 5, Extension: 2

Number of Hits to DB: 39355

Number of Sequences: 807597

Number of extensions: 39355

Number of successful extensions: 15066

Number of sequences better than 10.0: 5706

length of query: 25

length of database: 2,863,827,885

effective HSP length: 17

effective length of query: 8

effective length of database: 2,850,098,736

effective search space: 22800789888

effective search space used: 22800789888

T: 0

A: 30

X1: 6 (11.9 bits)

X2: 15 (29.7 bits)

S1: 12 (24.3 bits)

S2: 16 (32.2 bits)

Table 11. BLAST analysis of primers 'mcb869' in *nr* database of NCBI. It demonstrates that the 3' end of this primer is highly conserved among a vast range of animal species. It also shows the significant homology among the primer and templates (i.e. the cytochrome b gene fragment of different animal species), confirming the universal nature of our primer.

BLASTN 2.1.2 [Nov-13-2000]

Reference:

Altschul, Stephen F., Thomas L. Madden, Alejandro A. Schäffer,
Jinghui Zhang, Zheng Zhang, Webb Miller, and David J. Lipman (1997),
"Gapped BLAST and PSI-BLAST: a new generation of protein database search
programs", Nucleic Acids Res. 25:3389-3402.

RID: 984593033-24247-14777

Query:

(26 letters)

Database: nt

807,597 sequences; 2,863,827,885 total letters

If you have any problems or questions with the results of this search
please refer to the [BLAST FAQs](#)

Taxonomy reports

Distribution of 500 Blast Hits on the Query Sequence

Mouse-over to show defline and scores. Click to show alignments

Sequences producing significant alignments:

		Score (bits)	E Value
<u>gb AF189111.1 AF189111</u>	<i>Cryptotermes austrinus</i> cytochrome b ...	52	6e-06
<u>gb U86834.1 U86834</u>	<i>Phyllocis wolffsohni</i> MS8 67270 cytochrome...	52	6e-06
<u>gb AF123633.1 AF123633</u>	<i>Perissoccephalus tricolor</i> cytochrome ...	52	6e-06
<u>gb AF123617.1 AF123617</u>	<i>Pipreola acciaca</i> cytochrome b gene, ...	52	6e-06
<u>gb AF127202.1 AF127202</u>	<i>Hyloperus fulviventris</i> cytochrome b ...	52	6e-06
<u>gb AF127194.1 AF127194</u>	<i>Grallaria guatimalensis</i> cytochrome b...	52	6e-06
<u>gb AF217828.1 AF217828</u>	<i>Aspidelaps scutatus</i> cytochrome b gen...	52	6e-06
<u>gb AF160578.1 AF160578</u>	<i>Hypogeomys antimena</i> Mant555 cytochro...	52	6e-06
<u>gb AF009931.2 AF009931</u>	<i>Archocentrus centrarchus</i> cytochrome ...	52	6e-06
<u>gb AF091629.1 AF091629</u>	<i>Antilocapra americana</i> cytochrome b (...)	52	6e-06
<u>gb AF034967.1 </u>	<i>Sigmoceros lichtensteinii</i> cytochrome b gene, ...	52	6e-06
<u>gb AF038290.1 AF038290</u>	<i>Antechinus</i> sp. cytochrome b gene, mi...	52	6e-06
<u>gb U07577.1 AMU07577</u>	<i>Antechinus melanurus</i> mitochondrial cyt...	52	6e-06
<u>gb U81343.1 CFU81343</u>	<i>Chelus fimbriata</i> cytochrome b gene, mi...	52	6e-06
<u>emb AJ222631.1 ABCYT08</u>	<i>Alcelaphus buselaphus</i> mitochondrial ...	52	6e-06
<u>gb M99464.1 PNZMTCYTB</u>	<i>Planigale</i> sp. cytochrome b gene, comp...	52	6e-06
<u>emb AJ225116.1 DNJ225116</u>	<i>Dryomys nitedula</i> mitochondrial gen...	52	6e-06
<u>gb U25738.1 PRU25738</u>	<i>Paradisaea raggiana</i> cytochrome b gene, ...	52	6e-06
<u>gb U25736.1 PRU25736</u>	<i>Paradisaea rubra</i> cytochrome b gene, mi...	52	6e-06
<u>gb U15202.1 SMU15202</u>	<i>Seleucidis melanoleuca</i> mitochondrial c...	52	6e-06
<u>gb U15204.1 PR15204</u>	<i>Paradisaea raggiana</i> mitochondrial cytoc...	52	6e-06
<u>emb X56290.1 MIDCYTB</u>	<i>D.dama</i> mitochondrial cyt b gene for cy...	52	6e-06
<u>emb X56286.1 MIAACYTB</u>	<i>A.americana</i> mitochondrial cyt b gene ...	52	6e-06
<u>dbj D88639.1 D88639</u>	<i>Anoa depressicornis</i> mitochondrial DNA ...	52	6e-06
<u>dbj D82890.1 D82890</u>	<i>Bubalus depressicornis</i> mitochondrial DN...	52	6e-06
<u>gb AF119261.1 AF119261</u>	<i>Peromyscus maniculatus</i> cytochrome b ...	45	3e-04
<u>gb AF123615.1 AF123615</u>	<i>Rupicola rupicola</i> cytochrome b gene, ...	45	3e-04
<u>gb AF160603.1 AF160603</u>	<i>Apodemus sylvaticus</i> Asyl588 cytochro...	45	3e-04
<u>gb U62697.1 CCOLCYTB2</u>	<i>Charadrius collaris</i> cytochrome b (cyt...)	45	3e-04
<u>gb U62685.1 CBICCYTB2</u>	<i>Charadrius bicinctus</i> cytochrome b (cyt...)	45	3e-04
<u>gb AF022071.1 </u>	<i>Madoqua guentheri</i> cytochrome b (cytb) gene, ...	45	3e-04
<u>gb AF022070.1 </u>	<i>Madoqua kirkii</i> cytochrome b (cytb) gene, mit...	45	3e-04
<u>gb U83317.1 PSU83317</u>	<i>Polihierax semitorquatus</i> cytochrome b ...	45	3e-04
<u>gb U37293.1 CCU37293</u>	<i>Cephus columba</i> cytochrome b gene, mit...	45	3e-04
<u>gb U37292.1 CCU37292</u>	<i>Cephus carbo</i> cytochrome b gene, mitoc...	45	3e-04
<u>gb U37291.1 BMU37291</u>	<i>Brachyramphus marmoratus</i> perdist cytoch...	45	3e-04
<u>gb AF082055.1 AF082055</u>	<i>Rupicola rupicola</i> cytochrome b gene, ...	45	3e-04
<u>gb U72770.1 JMU072770</u>	<i>Jabiru mycteria</i> cytochrome b gene, mit...	45	3e-04
<u>gb U07578.1 DCU07578</u>	<i>Dasyercuscristicauda</i> mitochondrial c...	45	3e-04
<u>gb AF031908.1 GOCCCYTB1</u>	<i>Geopsittacus occidentalis</i> cytochrome...	45	3e-04
<u>emb AJ004231.1 SBAJ4231</u>	<i>Sula bassana</i> mitochondrial cytb gen...	45	3e-04
<u>emb AJ004210.1 SBAJ4230</u>	<i>Sula bassana</i> mitochondrial cytb gen...	45	3e-04
<u>emb AJ004229.1 SBAJ4229</u>	<i>Sula bassana</i> mitochondrial cytb gen...	45	3e-04
<u>emb AJ004232.1 SBAJ4232</u>	<i>Sula bassana</i> mitochondrial cytb gen...	45	3e-04
<u>gb U88865.1 </u>	<i>Pomacentrus</i> sp. cytochrome b (cytb) gene, mito...	45	3e-04
<u>gb U90001.1 MBU90001</u>	<i>Morus bassanus</i> cytochrome b gene, mito...	45	3e-04
<u>gb U63057.1 BMU63057</u>	<i>Brachyramphus marmoratus</i> perdist cytoch...	45	3e-04
<u>dbj AB036404.1 AB036404</u>	<i>Rana porosa</i> brevipoda mitochondrial...	45	3e-04
<u>dbj AB036402.1 AB036402</u>	<i>Rana porosa</i> brevipoda mitochondrial...	45	3e-04
<u>dbj AB036400.1 AB036400</u>	<i>Rana porosa</i> brevipoda mitochondrial...	45	3e-04
<u>dbj AB036398.1 AB036398</u>	<i>Rana porosa</i> porosa mitochondrial DN...	45	3e-04
<u>gb U19611.1 JMU19611</u>	<i>Jabiru mycteria</i> cytochrome b gene, mit...	45	3e-04
<u>emb X92539.1 HACYTB</u>	<i>H.ampullatus</i> cytochrome b gene (complet...	45	3e-04
<u>gb L08034.1 GAEMTCYTB</u>	<i>Galeocerdo cuvier</i> mitochondrial cyto...	45	3e-04
<u>gb L08033.1 CPUMTCYTB</u>	<i>Carcharhinus porosus</i> mitochondrial c...	45	3e-04
<u>gb AY015012.1 </u>	<i>Crypturellus caeruleus</i> mitochondrial, partial ...	44	0.001
<u>gb AF074591.1 AF074591</u>	<i>Petrochelidon pyrrhonota</i> cytochrome ...	44	0.001
<u>gb AY005213.1 </u>	<i>Poospiza whitii</i> isolate 2 cytochrome b (cytb...)	44	0.001
<u>gb AY005211.1 </u>	<i>Poospiza whitii</i> isolate 1 cytochrome b (cytb...)	44	0.001
<u>gb AF182132.1 AF182123</u>	<i>Cryptotermes cecropialis</i> cytochrome b ...	44	0.001
<u>gb AF182120.1 AF182120</u>	<i>Cryptotermes secundus</i> cytochrome b 1...	44	0.001
<u>gb AF182119.1 AF182119</u>	<i>Cryptotermes primus</i> isolate 2 cytoch...	44	0.001
<u>gb AF182117.1 AF182117</u>	<i>Cryptotermes primus</i> isolate 1 cytoch...	44	0.001
<u>gb AF199115.1 AF197115</u>	<i>Cryptotermes dulcyl</i> cytochrome b (Cy...)	44	0.001
<u>gb AF112117.1 AF112119</u>	<i>Ovis canadensis</i> cytochrome b gene, p ...	44	0.001
<u>gb AF112117.1 AF112112</u>	<i>Ovis canadensis</i> canadensis cytochrome ...	44	0.001
<u>gb AF112119.1 AF112119</u>	<i>Ovis canadensis</i> nebrascensis cytochrome b ...	44	0.001
<u>gb AF221222.1 AF221222</u>	<i>Vicugna cecina</i> cecina apicalmen...nu	44	0.001

gb AF081989.1 AF081989	Vireo cassinii cassinii specimen-vou...	44	0.001
gb AF081988.1 AF081988	Vireo cassinii cassinii specimen-vou...	44	0.001
gb AF081987.1 AF081987	Vireo cassinii cassinii specimen-vou...	44	0.001
gb AF081986.1 AF081986	Vireo cassinii cassinii specimen-vou...	44	0.001
gb AF081985.1 AF081985	Vireo cassinii cassinii specimen-vou...	44	0.001
gb AF081984.1 AF081984	Vireo cassinii cassinii specimen-vou...	44	0.001
gb AF081983.1 AF081983	Vireo cassinii cassinii specimen-vou...	44	0.001
gb AF081982.1 AF081982	Vireo cassinii cassinii specimen-vou...	44	0.001
gb AF081981.1 AF081981	Vireo cassinii cassinii specimen-vou...	44	0.001
gb AF081980.1 AF081980	Vireo cassinii cassinii specimen-vou...	44	0.001
gb AF081979.1 AF081979	Vireo cassinii cassinii specimen-vou...	44	0.001
gb AF081978.1 AF081978	Vireo cassinii cassinii specimen-vou...	44	0.001
gb AF081977.1 AF081977	Vireo cassinii cassinii specimen-vou...	44	0.001
gb AF081976.1 AF081976	Vireo cassinii cassinii specimen-vou...	44	0.001
gb AF081975.1 AF081975	Vireo cassinii cassinii specimen-vou...	44	0.001
gb AF081974.1 AF081974	Vireo cassinii cassinii specimen-vou...	44	0.001
gb AF081973.1 AF081973	Vireo cassinii cassinii specimen-vou...	44	0.001
gb AF081972.1 AF081972	Vireo cassinii cassinii specimen-vou...	44	0.001
gb AF081971.1 AF081971	Vireo cassinii cassinii specimen-vou...	44	0.001
gb AF081970.1 AF081970	Vireo solitarius alticola country US...	44	0.001
gb AF081969.1 AF081969	Vireo solitarius alticola country US...	44	0.001
gb AF081968.1 AF081968	Vireo solitarius alticola country US...	44	0.001
gb AF081967.1 AF081967	Vireo solitarius alticola country US...	44	0.001
gb AF081966.1 AF081966	Vireo solitarius solitarius specimen...	44	0.001
gb AF081965.1 AF081965	Vireo solitarius solitarius specimen...	44	0.001
gb AF081964.1 AF081964	Vireo solitarius solitarius specimen...	44	0.001
gb AF081962.1 AF081962	Vireo flavifrons specimen-voucher LS...	44	0.001
gb AF081961.1 AF081961	Vireo flavifrons specimen-voucher LS...	44	0.001
gb AF081960.1 AF081960	Vireo leucophrys leucophrys specimen...	44	0.001
gb AF081959.1 AF081959	Vireolanius leucotis leucotis cytoch...	44	0.001
gb AF112405.2 AF112405	Barbus anoplus cytochrome b (cytb) g...	44	0.001
gb AF144317.1 AF144317	Amphiprion ocellaris isolate 3 haplo...	44	0.001
gb AF144316.1 AF144316	Amphiprion ocellaris haplotype 3DH11...	44	0.001
gb AF144315.1 AF144315	Amphiprion ocellaris haplotype 3DH15...	44	0.001
gb AF144314.1 AF144314	Amphiprion ocellaris isolate 2 haplo...	44	0.001
gb AF144313.1 AF144313	Amphiprion ocellaris isolate 1 haplo...	44	0.001
gb AF144312.1 AF144312	Amphiprion ocellaris haplotype 3DH12...	44	0.001
gb AF144311.1 AF144311	Amphiprion ocellaris haplotype 3DH1 ...	44	0.001
gb AF144310.1 AF144310	Amphiprion ocellaris isolate 2 haplo...	44	0.001
gb AF144309.1 AF144309	Amphiprion ocellaris isolate 1 haplo...	44	0.001
gb NC 001567.1 Bos taurus mitochondrion, complete genome	44	0.001	
gb AF212124.1 AF212124	Anolis schwartzi cytochrome b gene. ...	44	0.001
gb AF182706.1 AF182706	Phapitreron amethystina cytochrome b:...	44	0.001
gb AF010406.1 AF010406	Ovis aries complete mitochondrial ge...	44	0.001
gb AF096452.1 AF096452	Platysteira cyanea cytochrome b gene...	44	0.001
gb AF281619.1 AF281619	Elaphe obsoleta LSUMZ39162 cytochrom...	44	0.001
gb AF281618.1 AF281618	Elaphe obsoleta LSUMZ H15896 cytochr...	44	0.001
gb AF281608.1 AF281608	Elaphe obsoleta LSUMZ H14782 cytochr...	44	0.001
gb AF281602.1 AF281602	Elaphe obsoleta LSUMZ H3388 cytochro...	44	0.001
gb AF310069.1 AF310069	Elaenia martinica cytochrome b gene....	44	0.001
gb AF146615.1 AF146615	Actophilornis africanus cytochrome b...	44	0.001
gb AF271410.1 AF271410	Galago moholi cytochrome b (cyt b) g...	44	0.001
gb AF290139.1 AF290139	Peucedramus taeniosus cytochrome b (...	44	0.001
gb NC 002504.1 Lama pacos mitochondrion, complete genome	44	0.001	
gb AF161901.1 AF161901	Micrathetus ochrogaster cytochrome b ge...	44	0.001
gb AF119263.1 AF119263	Myopus schisticolor cytochrome b gen...	44	0.001
gb AF119259.1 AF119259	Synapcomys borealis cytochrome b gen...	44	0.001
gb AF288454.1 AF288454	Nyctereutes procyonoides koreensis C...	44	0.001
gb AF163895.1 AF163895	Micrathetus gregalis cytochrome B (cytB...	44	0.001
gb AF121542.1 AF121542	Machaeropterus regulus ecclolatus cy...	44	0.001
gb AF121547.1 AF121547	Machaeropterus pyrocephalus cytochro...	44	0.001
gb AF121545.1 AF121545	Xenopipo attonitena cytochrome b gen...	44	0.001
gb AF121545.1 AF121545	Pipra fasciicauda cytochrome b gene....	44	0.001
gb AF121544.1 AF121544	Pyroderces scutatus cytochrome b gene...	44	0.001
gb AF121542.1 AF121542	Cephalopterus ornatus cytochrome b g...	44	0.001
gb AF121529.1 AF121529	Turdampelte cryptoleophus cytochrome ...	44	0.001
gb AF121526.1 AF121526	Porphyrrolaemus porphyrolaemus cytochro...	44	0.001
gb AF121519.1 AF121519	Anguilloloides techudii cytochrome b g...	44	0.001
gb AF121518.1 AF121518	Pipcoala chlorolepidota cytochrome b...	44	0.001
gb AF121514.1 AF121514	Rupicola peruviana cytochrome b gene...	44	0.001
gb AF121511.1 AF121511	Oolicornis atrocapillus cytochrome b gene...	44	0.001

<u>gb AF127201.1 AF127201</u>	Myrmothera campanisona cytochrome b ...	44	0.001
<u>gb AF127192.1 AF127192</u>	Grallaria ruficapilla cytochrome b g...	44	0.001
<u>gb AF127189.1 AF127189</u>	Grallaria varia cytochrome b gene, p...	44	0.001
<u>gb AF197849.1 AF197849</u>	Sericornis frontalis cytochrome b ge...	44	0.001
<u>gb AF197847.1 AF197847</u>	Pardalotus striatus cytochrome b gen...	44	0.001
<u>ref NC_000889.1 </u>	Hippopotamus amphibius mitochondrion, comp...	44	0.001
<u>ref NC_002079.1 </u>	Carassius auratus mitochondrion, complete ...	44	0.001
<u>ref NC_001794.1 </u>	Macropus robustus mitochondrion, complete ...	44	0.001
<u>ref NC_001610.1 </u>	Didelphis virginiana mitochondrion, comple...	44	0.001
<u>gb AF201612.1 AF201612</u>	Stomatorhinus sp. CU79703 cytochrome...	44	0.001
<u>gb AF097931.1 AF097931</u>	Amphiprion clarkii cytochrome b gene...	44	0.001
<u>gb AF097927.1 AF097927</u>	Amphiprion ocellaris cytochrome b ge...	44	0.001
<u>gb J01394.1 80VMT_Bos</u>	taurus mitochondrion, complete genome	44	0.001
<u>gb AF168760.1 AF168760</u>	Apalone spinifera isolate TXsc cytoc...	44	0.001
<u>gb AF168759.1 AF168759</u>	Apalone spinifera isolate TXki cytoc...	44	0.001
<u>gb AF168758.1 AF168758</u>	Apalone spinifera isolate TXcc cytoc...	44	0.001
<u>gb AF168756.1 AF168756</u>	Apalone spinifera isolate NMrg cytoc...	44	0.001
<u>gb AF182381.1 AF182381</u>	Petrochelidon rufocollaris isolate E...	44	0.001
<u>gb AF182380.1 AF182380</u>	Petrochelidon rufocollaris isolate E...	44	0.001
<u>gb U89187.1 MMU89187</u>	Momotus mexicanus cytochrome b (cytb) ...	44	0.001
<u>gb AF193833.1 AF193833</u>	Botaurus lentiginosus cytochrome b g...	44	0.001
<u>gb AF193822.1 AF193822</u>	Ardea alba cytochrome b gene, partia...	44	0.001
<u>gb AF193821.1 AF193821</u>	Ardea herodias cytochrome b gene, pa...	44	0.001
<u>gb AF217837.1 AF217837</u>	Paranaja multifasciata cytochrome b ...	44	0.001
<u>gb AF217835.1 AF217835</u>	Naja kaouthia cytochrome b gene, com...	44	0.001
<u>gb AF217834.1 AF217834</u>	Laticauda colubrina cytochrome b gen...	44	0.001
<u>gb AF217831.1 AF217831</u>	Calliophis japonicus cytochrome b ge...	44	0.001
<u>gb AF217823.1 AF217823</u>	Micruroides euryxanthus cytochrome b...	44	0.001
<u>gb AF217819.1 AF217819</u>	Drysdalia coronata cytochrome b gene...	44	0.001
<u>gb AF217815.1 AF217815</u>	Austrelaps superbus cytochrome b gen...	44	0.001
<u>gb AF118156.1 AF118156</u>	Terenura humeralis specimen-voucher ...	44	0.001
<u>gb AF209938.1 AF209938</u>	Euura atra isolate 62 cytochrome b: g...	44	0.001
<u>gb AF209933.1 AF209933</u>	Euura atra isolate C cytochrome b ge...	44	0.001
<u>gb AF059104.1 AF059104</u>	Marmaronetta angustirostris cytochro...	44	0.001
<u>gb AF059102.1 AF059102</u>	Lophonetta specularoides cytochrome ...	44	0.001
<u>gb AF059054.1 AF059054</u>	Amazonetta brasiliensis cytochrome b...	44	0.001
<u>gb AF192646.1 AF192646</u>	Hippocampus barbouri haplotype PH.22...	44	0.001
<u>gb AF192645.1 AF192645</u>	Hippocampus barbouri haplotype PH.13...	44	0.001
<u>gb AF160614.1 AF160614</u>	Cricetomys gambianus Cgam518 cytochr...	44	0.001
<u>gb AF160613.1 AF160613</u>	Cricetomys emini Cemi511 cytochrome ...	44	0.001
<u>gb AF160612.1 AF160612</u>	Cricetomys emini Cemi530 cytochrome ...	44	0.001
<u>gb AF160611.1 AF160611</u>	Cricetomys emini Cemi537 cytochrome ...	44	0.001
<u>gb AF160610.1 AF160610</u>	Cricetomys emini Cemi536 cytochrome ...	44	0.001
<u>gb AF160604.1 AF160604</u>	Calomyscus bailwardi Cbal576 cytochr...	44	0.001
<u>gb AF160560.1 AF160560</u>	Eliurus majori Emaj642 cytochrome b ...	44	0.001
<u>gb AF160559.1 AF160559</u>	Eliurus majori Emaj641 cytochrome b ...	44	0.001
<u>gb AF160558.1 AF160558</u>	Eliurus majori Emaj639 cytochrome b ...	44	0.001
<u>gb AF160557.1 AF160557</u>	Eliurus majori Emaj638 cytochrome b ...	44	0.001
<u>gb AF160555.1 AF160555</u>	Eliurus majori Emaj614 cytochrome b ...	44	0.001
<u>gb AF160554.1 AF160554</u>	Eliurus majori Emaj617 cytochrome b ...	44	0.001
<u>gb AF160553.1 AF160553</u>	Eliurus majori Emaj573 cytochrome b ...	44	0.001
<u>gb AF160552.1 AF160552</u>	Eliurus majori Emaj556 cytochrome b ...	44	0.001
<u>gb AF160551.1 AF160551</u>	Eliurus majori Emaj561 cytochrome b ...	44	0.001
<u>gb AF160550.1 AF160550</u>	Eliurus majori Emaj443 cytochrome b ...	44	0.001
<u>gb AF160549.1 AF160549</u>	Eliurus majori Emaj444 cytochrome b ...	44	0.001
<u>gb AF016287.1 AF016287</u>	Damaliscus pygargus cytochrome b (cy...	44	0.001
<u>gb AF016286.1 AF016286</u>	Oryx leucoryx cytochrome b (cytb) ge...	44	0.001
<u>gb AF016285.1 AF016285</u>	Antilope cervicapra cytochrome b (cy...	44	0.001
<u>gb AF016284.1 AF016284</u>	Antidorcas maculata cytochrome b ...	44	0.001
<u>gb AF016278.1 AF016278</u>	Tragelaphus oxyurus cytochrome b (cytb) ...	44	0.001
<u>gb AF016276.1 AF016276</u>	Tragelaphus euryceros cytochrome b (...	44	0.001
<u>gb AF016274.1 </u>	Tetracerus quadricornis cytochrome b (cytb) ...	44	0.001
<u>ref NC_001941.1 </u>	Ovis aries mitochondrion, complete genome	44	0.001
<u>gb AF109698.1 AF109698</u>	Microcyzomyia minutus cytochrome B (c...	44	0.001
<u>gb AF109697.1 AF109697</u>	Rhipidomyia nicea cytochrome B (cytb) ...	44	0.001
<u>gb AF109671.1 AF109671</u>	Thomomys dephini cytochrome B (cytb) ...	44	0.001
<u>gb AF109652.1 AF109652</u>	Scaptoecomyia tumidus cytochrome B (cy...	44	0.001
<u>gb AF012720.1 AF012720</u>	Megamuntiacus vuquangensis cytochro...	44	0.001
<u>gb AF012719.1 AF012719</u>	Muntiacus muntjak cytochrome b gene, mitocho...	44	0.001
<u>gb AF012718.1 AF012718</u>	Stenella coeruleoalba cytochrome b g...	44	0.001
<u>gb AF012717.1 AF012717</u>	Stenella coeruleoalba cytochrome b g ...	44	0.001

<u>gb AF084074.1 AF084074</u>	<i>Lagenorhynchus albirostris</i> cytochrome...	<u>44</u>	0.001
<u>gb AF090750.1 AF090750</u>	<i>Gobio gobio balcanicus</i> cytochrome b ...	<u>44</u>	0.001
<u>gb AF157939.1 AF157939</u>	<i>Spermophilus columbianus columbianus</i> ...	<u>44</u>	0.001
<u>gb AF157937.1 AF157937</u>	<i>Spermophilus washingtoni</i> isolate S89 ...	<u>44</u>	0.001
<u>gb AF157936.1 AF157936</u>	<i>Spermophilus washingtoni</i> isolate S88 ...	<u>44</u>	0.001
<u>gb AF157915.1 AF157915</u>	<i>Spermophilus richardsoni</i> isolate S63 ...	<u>44</u>	0.001
<u>gb AF157914.1 AF157914</u>	<i>Spermophilus richardsoni</i> isolate S62 ...	<u>44</u>	0.001
<u>gb AF157912.1 AF157912</u>	<i>Spermophilus undulatus</i> isolate S60 c ...	<u>44</u>	0.001
<u>gb AF157906.1 AF157906</u>	<i>Spermophilus undulatus</i> isolate S55 c ...	<u>44</u>	0.001
<u>gb AF157891.1 AF157891</u>	<i>Spermophilus elegans elegans</i> isolate ...	<u>44</u>	0.001
<u>gb AF157882.1 AF157882</u>	<i>Spermophilus columbianus columbianus</i> ...	<u>44</u>	0.001
<u>gb AF157859.1 AF157859</u>	<i>Spermophilus citellus</i> isolate S118 c ...	<u>44</u>	0.001
<u>gb AF157858.1 AF157858</u>	<i>Spermophilus citellus</i> isolate S117 c ...	<u>44</u>	0.001
<u>gb AF157839.1 AF157839</u>	<i>Spermophilus elegans elegans</i> isolate ...	<u>44</u>	0.001
<u>gb AF030497.1 AF030497</u>	<i>Crocidura brunnea</i> cytochrome b (cyt ...	<u>44</u>	0.001
<u>gb U03541.2 LAU03541</u>	<i>Lenoxus apicalis</i> cytochrome b gene, pa...	<u>44</u>	0.001
<u>gb AF009951.2 AF009951</u>	<i>Heros appendiculatus</i> cytochrome b (c...	<u>44</u>	0.001
<u>gb AF009941.1 AF009941</u>	<i>Tomocichla tuba</i> cytochrome b (cytb) ...	<u>44</u>	0.001
<u>gb AF009925.1 AF009925</u>	<i>Archocentrus sajica</i> cytochrome b (cy...	<u>44</u>	0.001
<u>gb AF094633.1 AF094633</u>	<i>Stachyris whiteheadi</i> cytochrome b ge...	<u>44</u>	0.001
<u>gb AF094621.1 AF094621</u>	<i>Eminia lepida</i> cytochrome b gene, par...	<u>44</u>	0.001
<u>gb AF094618.1 AF094618</u>	<i>Hypergerus atericeps</i> cytochrome b gen...	<u>44</u>	0.001
<u>gb AF166348.1 AF166348</u>	<i>Phascolarctos cinereus</i> cytochrome b ...	<u>44</u>	0.001
<u>gb AF158697.1 AF158697</u>	<i>Geomys bursarius ozarkensis</i> cytochro...	<u>44</u>	0.001
<u>gb AF158694.1 AF158694</u>	<i>Geomys bursarius majusculus</i> cytochro...	<u>44</u>	0.001
<u>gb AF158693.1 AF158693</u>	<i>Geomys bursarius bursarius</i> cytochrom...	<u>44</u>	0.001
<u>gb AF158688.1 AF158688</u>	<i>Geomys bursarius missouriensis</i> cytoc...	<u>44</u>	0.001
<u>gb AF100720.1 AF100720</u>	<i>Spermophilus citellus</i> cytochrome b (...	<u>44</u>	0.001
<u>gb AF091632.1 AF091632</u>	<i>Bubalus depressicornis</i> cytochrome b ...	<u>44</u>	0.001
<u>gb AF102815.1 AF102815</u>	<i>Dromiciops gliroides</i> cytochrome b ge...	<u>44</u>	0.001
<u>gb AF102814.1 AF102814</u>	<i>Vombatus ursinus</i> cytochrome b gene, ...	<u>44</u>	0.001
<u>gb AF022065.1 </u>	<i>Tragelaphus euryceus</i> cytochrome b (cytb) ge...	<u>44</u>	0.001
<u>gb AF022059.1 </u>	<i>Kobus ellipsiprymnus</i> cytochrome b (cytb) gen...	<u>44</u>	0.001
<u>gb AF022058.1 </u>	<i>Antilope cervicapra</i> cytochrome b (cytb) gene...	<u>44</u>	0.001
<u>gb AF022057.1 </u>	<i>Tragelaphus oryx</i> cytochrome b (cytb) gene, a...	<u>44</u>	0.001
<u>gb AF022054.1 </u>	<i>Antidorcas marsupialis</i> cytochrome b (cytb) g...	<u>44</u>	0.001
<u>gb AF016637.1 AF016637</u>	<i>Connochaetes gnou</i> cytochrome b (cytb...	<u>44</u>	0.001
<u>gb U69863.1 PSU69863</u>	<i>Python sebae</i> cytochrome b (cytb) gene,...	<u>44</u>	0.001
<u>gb U69844.1 LTU69844</u>	<i>Lichenura trivirgata</i> cytochrome b (cyt...	<u>44</u>	0.001
<u>gb AF143193.1 AF143193</u>	<i>Epinephelus</i> sp. cytochrome b (cytb) ...	<u>44</u>	0.001
<u>gb AF121222.1 AF121222</u>	<i>Amphiprion ocellaris</i> isolate 8 cytoc...	<u>44</u>	0.001
<u>gb AF096625.1 AF096625</u>	<i>Kobus ellipsiprymnus defassa</i> cytochri...	<u>44</u>	0.001
<u>gb AF096624.1 AF096624</u>	<i>Kobus ellipsiprymnus ellipsiprymnus</i> c...	<u>44</u>	0.001
<u>gb AF081052.1 AF081052</u>	<i>Eulemur rubriventer</i> cytochrome b (cy...	<u>44</u>	0.001
<u>gb AF081049.1 AF081049</u>	<i>Eulemur macaco macaco</i> cytochrome b (...	<u>44</u>	0.001
<u>gb AF081048.1 AF081048</u>	<i>Eulemur fulvus albifrons</i> cytochrome ...	<u>44</u>	0.001
<u>gb AF082063.1 AF082063</u>	<i>Elminia longicauda</i> cytochrome b gene...	<u>44</u>	0.001
<u>emb AJ010957.1 HAAJ10957</u>	<i>Hippopotamus amphibius</i> complete mi...	<u>44</u>	0.001
<u>gb U76506.1 CLU76506</u>	<i>Chlamydera lauterbachii</i> cytochrome b g...	<u>44</u>	0.001
<u>gb U76504.1 CCU76504</u>	<i>Chlamydera cerviniventris</i> cytochrome b ...	<u>44</u>	0.001
<u>gb U76505.1 ASU76505</u>	<i>Amblyornis subalaris</i> cytochrome b gene...	<u>44</u>	0.001
<u>gb U76503.1 APU76503</u>	<i>Archboldia papuensis</i> cytochrome b gene...	<u>44</u>	0.001
<u>gb U76508.1 AIU76508</u>	<i>Amblyornis inornatus</i> cytochrome b gene...	<u>44</u>	0.001
<u>gb AF034959.1 AF034969</u>	<i>Connochaetes taurinus</i> cytochrome b g...	<u>44</u>	0.001
<u>gb AF051875.1 AF051875</u>	<i>Rhodeus ocellatus</i> cytochrome b (cytb ...	<u>44</u>	0.001
<u>gb AF082007.1 AF082007</u>	<i>Vireo plumbeus</i> plumbeus specimen-vou...	<u>44</u>	0.001
<u>gb AF082005.1 AF082005</u>	<i>Vireo plumbeus</i> plumbeus specimen-vou...	<u>44</u>	0.001
<u>gb AF082009.1 AF082009</u>	<i>Vireo plumbeus</i> plumbeus specimen-vou...	<u>44</u>	0.001
<u>gb AF082004.1 AF082004</u>	<i>Vireo plumbeus</i> plumbeus specimen-vou...	<u>44</u>	0.001
<u>gb AF082003.1 AF082001</u>	<i>Vireo plumbeus</i> plumbeus specimen-vou...	<u>44</u>	0.001
<u>gb AF082002.1 AF082002</u>	<i>Vireo plumbeus</i> plumbeus specimen-vou...	<u>44</u>	0.001
<u>gb AF091991.1 AF091991</u>	<i>Vireo plumbeus</i> plumbeus specimen-vou...	<u>44</u>	0.001
<u>gb AF091990.1 AF091990</u>	<i>Vireo plumbeus</i> plumbeus specimen-vou...	<u>44</u>	0.001
<u>gb AF091999.1 AF091999</u>	<i>Vireo plumbeus</i> plumbeus specimen-vou...	<u>44</u>	0.001
<u>gb AF091999.1 AF091999</u>	<i>Vireo plumbeus</i> plumbeus specimen-vou...	<u>44</u>	0.001
<u>gb AF091997.1 AF091997</u>	<i>Vireo plumbeus</i> plumbeus specimen-vou...	<u>44</u>	0.001
<u>gb AF091995.1 AF091995</u>	<i>Vireo plumbeus</i> plumbeus specimen-vou...	<u>44</u>	0.001
<u>gb AF091994.1 AF091994</u>	<i>Vireo plumbeus</i> plumbeus specimen-vou...	<u>44</u>	0.001
<u>gb AF091993.1 AF091993</u>	<i>Vireo plumbeus</i> plumbeus specimen-vou...	<u>44</u>	0.001
<u>gb AF091992.1 AF091992</u>	<i>Vireo plumbeus</i> plumbeus specimen-vou...	<u>44</u>	0.001
<u>gb AF091991.1 AF091991</u>	<i>Vireo plumbeus</i> plumbeus specimen-vou...	<u>44</u>	0.001
<u>gb AF091990.1 AF091990</u>	<i>Vireo plumbeus</i> plumbeus specimen-vou...	<u>44</u>	0.001
<u>gb AF091989.1 AF091989</u>	<i>Vireo plumbeus</i> plumbeus specimen-vou...	<u>44</u>	0.001
<u>gb AF091988.1 AF091988</u>	<i>Vireo plumbeus</i> plumbeus specimen-vou...	<u>44</u>	0.001
<u>gb AF091987.1 AF091987</u>	<i>Vireo plumbeus</i> plumbeus specimen-vou...	<u>44</u>	0.001
<u>gb AF091986.1 AF091986</u>	<i>Vireo plumbeus</i> plumbeus specimen-vou...	<u>44</u>	0.001
<u>gb AF091985.1 AF091985</u>	<i>Vireo plumbeus</i> plumbeus specimen-vou...	<u>44</u>	0.001
<u>gb AF091984.1 AF091984</u>	<i>Vireo plumbeus</i> plumbeus specimen-vou...	<u>44</u>	0.001
<u>gb AF091983.1 AF091983</u>	<i>Vireo plumbeus</i> plumbeus specimen-vou...	<u>44</u>	0.001
<u>gb AF091982.1 AF091982</u>	<i>Vireo plumbeus</i> plumbeus specimen-vou...	<u>44</u>	0.001
<u>gb AF091981.1 AF091981</u>	<i>Vireo plumbeus</i> plumbeus specimen-vou...	<u>44</u>	0.001
<u>gb AF091980.1 AF091980</u>	<i>Vireo plumbeus</i> plumbeus specimen-vou...	<u>44</u>	0.001
<u>gb AF091979.1 AF091979</u>	<i>Vireo plumbeus</i> plumbeus specimen-vou...	<u>44</u>	0.001
<u>gb AF091978.1 AF091978</u>	<i>Vireo plumbeus</i> plumbeus specimen-vou...	<u>44</u>	0.001
<u>gb AF091977.1 AF091977</u>	<i>Vireo plumbeus</i> plumbeus specimen-vou...	<u>44</u>	0.001
<u>gb AF091976.1 AF091976</u>	<i>Vireo plumbeus</i> plumbeus specimen-vou...	<u>44</u>	0.001
<u>gb AF091975.1 AF091975</u>	<i>Vireo plumbeus</i> plumbeus specimen-vou...	<u>44</u>	0.001
<u>gb AF091974.1 AF091974</u>	<i>Vireo plumbeus</i> plumbeus specimen-vou...	<u>44</u>	0.001
<u>gb AF091973.1 AF091973</u>	<i>Vireo plumbeus</i> plumbeus specimen-vou...	<u>44</u>	0.001
<u>gb AF091972.1 AF091972</u>	<i>Vireo plumbeus</i> plumbeus specimen-vou...	<u>44</u>	0.001
<u>gb AF091971.1 AF091971</u>	<i>Vireo plumbeus</i> plumbeus specimen-vou...	<u>44</u>	0.001
<u>gb AF091970.1 AF091970</u>	<i>Vireo plumbeus</i> plumbeus specimen-vou...	<u>44</u>	0.001
<u>gb AF091969.1 AF091969</u>	<i>Vireo plumbeus</i> plumbeus specimen-vou...	<u>44</u>	0.001
<u>gb AF091968.1 AF091968</u>	<i>Vireo plumbeus</i> plumbeus specimen-vou...	<u>44</u>	0.001
<u>gb AF091967.1 AF091967</u>	<i>Vireo plumbeus</i> plumbeus specimen-vou...	<u>44</u>	0.001
<u>gb AF091966.1 AF091966</u>	<i>Vireo plumbeus</i> plumbeus specimen-vou...	<u>44</u>	0.001
<u>gb AF091965.1 AF091965</u>	<i>Vireo plumbeus</i> plumbeus specimen-vou...	<u>44</u>	0.001
<u>gb AF091964.1 AF091964</u>	<i>Vireo plumbeus</i> plumbeus specimen-vou...	<u>44</u>	0.001
<u>gb AF091963.1 AF091963</u>	<i>Vireo plumbeus</i> plumbeus specimen-vou...	<u>44</u>	0.001
<u>gb AF091962.1 AF091962</u>			

<u>gb AF081991.1 AF081991</u>	Vireo plumbeus plumbeus specimen-vou...	<u>44</u>	0.001
<u>gb S7J150.1 S7J150</u>	cytochrome b (<i>Spizomophilus richardsonii</i>)...	<u>44</u>	0.001
<u>gb AF012235.1 AF012235</u>	<i>Cryptomys hottentotus natalensis</i> cyc...	<u>44</u>	0.001
<u>gb US3580.1 NCUS3580</u>	<i>Nycticebus coucang</i> cytochrome b (cyt b...)	<u>44</u>	0.001
<u>gb US3577.1 EFUS3577</u>	<i>Eulemur fulvus rufus</i> cytochrome b (cyt...	<u>44</u>	0.001
<u>gb US3576.1 EFUS3576</u>	<i>Eulemur fulvus collaris</i> cytochrome b (...)	<u>44</u>	0.001
<u>gb U95512.1 ESERCYT82</u>	<i>Eptesicus serotinus</i> 3' cytochrome b (...)	<u>44</u>	0.001
<u>gb U95508.1 PKUHLCYT82</u>	<i>Pipistrellus kuhli</i> 5' cytochrome b (...)	<u>44</u>	0.001
<u>gb U17868.1 BTU17868</u>	<i>Budorcas taxicolor taxicolor</i> cytochrom...	<u>44</u>	0.001
<u>gb U17867.1 BTU17867</u>	<i>Budorcas taxicolor bedfordi</i> cytochrome...	<u>44</u>	0.001
<u>gb U17860.1 ODU17860</u>	<i>Ovis dalli</i> cytochrome b gene, mitochon...	<u>44</u>	0.001
<u>gb U17859.1 OCU17859</u>	<i>Ovis canadensis</i> cytochrome b gene, mit...	<u>44</u>	0.001
<u>emb AJ010556.1 ASP010556</u>	<i>Acomys spinosissimus</i> mitochondrial...	<u>44</u>	0.001
<u>gb AF034736.1 AF034736</u>	<i>Capra falconeri</i> cytochrome b (cytb) ...	<u>44</u>	0.001
<u>gb AF034730.1 AF034730</u>	<i>Ovis aries</i> cytochrome b (cytb) gene, ...	<u>44</u>	0.001
<u>gb AF034729.1 AF034729</u>	<i>Ovis vignei</i> cytochrome b (cytb) gene...	<u>44</u>	0.001
<u>gb AF034728.1 </u>	<i>Ovis dalli dalli</i> cytochrome b (cytb) gene, m...	<u>44</u>	0.001
<u>gb AF034727.1 </u>	<i>Ovis ammon darwini</i> cytochrome b (cytb) gene, ...	<u>44</u>	0.001
<u>gb AF034724.1 AF034724</u>	<i>Pantholops hodgsoni</i> cytochrome b (cy...	<u>44</u>	0.001
<u>gb AF034722.1 AF034722</u>	<i>Addax nasomaculatus</i> cytochrome b (cy...	<u>44</u>	0.001
<u>gb U72038.1 MMU72038</u>	<i>Monoceros monoceros</i> cytochrome b (cytb)...	<u>44</u>	0.001
<u>gb U72037.1 DLU72037</u>	<i>Delphinapterus leucas</i> cytochrome b (cy...	<u>44</u>	0.001
<u>gb M99455.1 MUXMTCYTB</u>	<i>Murexia longicaudata</i> cytochrome b gen...	<u>44</u>	0.001
<u>gb L29055.1 SKPMTDLOOP</u>	Sheep mitochondrial cytochrome b (Cy...)	<u>44</u>	0.001
<u>gb AF082047.1 AF082047</u>	<i>Coccyzus americanus</i> cytochrome b gen...	<u>44</u>	0.001
<u>gb AF038286.1 AF038286</u>	<i>Antechinus minimus</i> cytochrome b gene...	<u>44</u>	0.001
<u>gb AF038284.1 AF038284</u>	<i>Antechinus swainsonii</i> cytochrome b g...	<u>44</u>	0.001
<u>gb AF059093.1 AF059093</u>	<i>Anas undulata</i> cytochrome b gene, par...	<u>44</u>	0.001
<u>gb AF059092.1 AF059092</u>	<i>Anas superciliosa rogersi</i> cytochrome...	<u>44</u>	0.001
<u>gb AF059091.1 AF059091</u>	<i>Anas sparsa</i> cytochrome b gene, parti...	<u>44</u>	0.001
<u>gb AF059080.1 AF059080</u>	<i>Anas melleri</i> cytochrome b gene, part...	<u>44</u>	0.001
<u>gb AF059078.1 AF059078</u>	<i>Anas laysanensis</i> cytochrome b gene, ...	<u>44</u>	0.001
<u>gb AF052240.1 AF052240</u>	<i>Anairetes flavirostris</i> cytochrome b ...	<u>44</u>	0.001
<u>gb AF006240.1 AF006240</u>	<i>Micropingus cassini</i> cytochrome b (...)	<u>44</u>	0.001
<u>gb AF006227.1 AF006227</u>	<i>Dacnis cayana</i> cytochrome b (cytb) ge...	<u>44</u>	0.001
<u>gb AF047447.1 AF047447</u>	<i>Oryx leucoryx</i> cytochrome b gene, mit...	<u>44</u>	0.001
<u>gb U07576.1 AHU07576</u>	<i>Antechinus habbema</i> mitochondrion cytoc...	<u>44</u>	0.001
<u>gb AF028180.1 AF028180</u>	<i>Urocyon cinereoargenteus</i> cytochrome ...	<u>44</u>	0.001
<u>gb AF028178.1 AF028178</u>	<i>Pseudalopex sechurae</i> cytochrome b (c...	<u>44</u>	0.001
<u>gb AF028170.1 AF028170</u>	<i>Vulpes zerda</i> cytochrome b (cytb) gen...	<u>44</u>	0.001
<u>gb M99454.1 ASWMTCYTB</u>	<i>Antechinus stuartii</i> cytochrome b gen...	<u>44</u>	0.001
<u>gb M99453.1 ASWMTCYTB</u>	<i>Antechinus swainsonii</i> cytochrome b ge...	<u>44</u>	0.001
<u>gb U23461.1 ANU23461</u>	<i>Antechinus naso</i> cytochrome b gene, mit...	<u>44</u>	0.001
<u>gb U87138.1 TVU87138</u>	<i>Trichosurus vulpecula</i> cytochrome b (cy...	<u>44</u>	0.001
<u>gb U07590.1 PMU07590</u>	<i>Planigale maculata</i> mitochondrion cytoc...	<u>44</u>	0.001
<u>emb AJ004326.1 PTAJ4326</u>	<i>Phylloscopus trichilus</i> mitochondria...	<u>44</u>	0.001
<u>gb AF020255.1 AF020255</u>	<i>Cyclura nubila</i> cytochrome b (cytb) g...	<u>44</u>	0.001
<u>emb Y19184.1 LPA19184</u>	Lama pacos complete mitochondrial genome	<u>44</u>	0.001
<u>gb U88862.1 </u>	<i>Amphilophus ctenrinellum</i> cytochrome b (cytb) ge...	<u>44</u>	0.001
<u>gb U88859.1 </u>	<i>Thorichthys aureum</i> cytochrome b (cytb) gene, m...	<u>44</u>	0.001
<u>gb U88858.1 </u>	<i>Thorichthys cf. aureum</i> cytochrome b (cytb) gen...	<u>44</u>	0.001
<u>gb U88857.1 </u>	<i>Herichthys labridens</i> cytochrome b (cytb) gene, ...	<u>44</u>	0.001
<u>gb U88856.1 </u>	<i>Herichthys carpintis</i> cytochrome b (cytb) gene, ...	<u>44</u>	0.001
<u>emb Y10524.1 MIMRCEN</u>	<i>Macropus robustus</i> complete mitochondri...	<u>44</u>	0.001
<u>gb U81157.1 CSU81157</u>	<i>Chelydra serpentina</i> cytochrome b gene...	<u>44</u>	0.001
<u>gb U81156.1 CLU81156</u>	<i>Chelodina longicollis</i> cytochrome b gen...	<u>44</u>	0.001
<u>gb U75154.1 LUU75154</u>	<i>Leptomyrmex unicolor</i> cytochrome b gene...	<u>44</u>	0.001
<u>gb U77132.1 CCU77132</u>	<i>Gymnocheirus cyanocephala</i> cytochrome-b ...	<u>44</u>	0.001
<u>emb Z22573.1 OVMTGNME</u>	<i>Didelphis virginiana</i> complete mitocho...	<u>44</u>	0.001
<u>emb AJ222679.1 BTCYT08</u>	<i>Boselaphus tragocamelus</i> mitochondria...	<u>44</u>	0.001
<u>emb AJ222689.1 TSCYT08</u>	<i>Tragelaphus spekii</i> mitochondrial cyc...	<u>44</u>	0.001
<u>emb AJ222589.1 T0RCCT08</u>	Oryx dammah mitochondrial cytochrome...	<u>44</u>	0.001
<u>gb M79456.1 PMLMTCYTB</u>	<i>Perameles nasuta</i> cytochrome b gene, c...	<u>44</u>	0.001
<u>gb M99453.1 THNMTCYTB</u>	<i>Thylacineus cynocephalus</i> cytochrome b...	<u>44</u>	0.001
<u>gb M22459.1 DAVMTCYTB</u>	<i>Oasyurus hallucatus</i> cytochrome b gen...	<u>44</u>	0.001
<u>gb U122717.1 PMU122717</u>	<i>Perodiplosis minor</i> cytochrome b gene, mi...	<u>44</u>	0.001
<u>gb U12201.1 PRU12201</u>	<i>Perodiplosis rudolphi</i> mitochondrion cyc...	<u>44</u>	0.001
<u>gb U12203.1 PAU12203</u>	<i>Eptimachus albocinctus</i> mitochondrion cyc...	<u>44</u>	0.001
<u>gb U12202.1 DRU12202</u>	<i>Diphyliodes repulica</i> mitochondrion c...	<u>44</u>	0.001
<u>emb A199434.1 3TAJ434</u>	<i>Sorex tundrenus</i> partial mitochondri...	<u>44</u>	0.001
<u>emb A199431.1 3TAJ431</u>	<i>Sorex tundrenus</i> partial mitochondri...	<u>44</u>	0.001

<u>emb AJ000438.1 SIAJ438</u>	Sorex isodon partial mitochondrial c...	44	0.001
<u>emb AJ000437.1 SIAJ437</u>	Sorex isodon partial mitochondrial c...	44	0.001
<u>emb AJ000428.1 SAAJ428</u>	Sorex arcticus partial mitochondrial...	44	0.001
<u>emb AJ000427.1 SAAJ427</u>	Sorex arcticus ssp. maritimensis par...	44	0.001
<u>emb AJ000426.1 SAAJ426</u>	Sorex asper partial mitochondrial cy...	44	0.001
<u>emb AJ000425.1 SAAJ425</u>	Sorex asper partial mitochondrial cy...	44	0.001
<u>emb AJ000418.1 SGAJ418</u>	Sorex granarius partial mitochondria...	44	0.001
<u>emb AJ000417.1 SGAJ417</u>	Sorex granarius partial mitochondria...	44	0.001
<u>emb AJ000416.1 SAAJ416</u>	Sorex araneus partial mitochondrial ...	44	0.001
<u>emb AJ004793.1 HCAJ4793</u>	Hippolais caligata ssp. caligata mi...	44	0.001
<u>emb AJ004792.1 HCAJ4792</u>	Hippolais caligata ssp. rama mitoch...	44	0.001
<u>gb U15718.1 RSU15718</u>	Ramphocelus sanguinolentus cytochrome ...	44	0.001
<u>gb L11905.1 CGYMTCYTB</u>	Cratogeomys gymnurus mitochondrial c...	44	0.001
<u>gb U34679.1 POU34679</u>	Philander opossum cytochrome b light s...	44	0.001
<u>gb L11907.1 CGYMTCYTF</u>	Cratogeomys goldmani rubellus mitoch...	44	0.001
<u>gb L11906.1 CGYMTCYTE</u>	Cratogeomys merriami mitochondrial c...	44	0.001
<u>gb L11902.1 CGYMTCYTA</u>	Cratogeomys castanops castanops mito...	44	0.001
<u>emb X92524.1 SLCYTB</u>	S.longirostris cytochrome b gene (compl...	44	0.001
<u>gb U46771.1 ACU46771</u>	Anthus campestris cytochrome b gene, m...	44	0.001
<u>dbi AB021773.1 AB021773</u>	Anguilla interioris mitochondrial c...	44	0.001
<u>dbi AB006953.1 AB006953</u>	Carassius auratus langsdorfi mitoch...	44	0.001
<u>emb Z73492.1 MTPTRCYTB</u>	P.trochilus mitochondrial cytochrome...	44	0.001
<u>dbi AB035239.1 AB035239</u>	Osteoglossum ferreirai mitochondria...	44	0.001
<u>emb X92532.1 MMCYTB2</u>	M.monoceros cytochrome b gene (complet...	44	0.001
<u>emb X74260.1 MIVOCYTE</u>	V.olivaceus mitochondrion gene for cy...	44	0.001
<u>emb X56293.1 MISLCYTB</u>	S.longirostris mitochondrion cytb gen...	44	0.001
<u>emb X56292.1 MISLCYTB</u>	S.longirostris mitochondrion cytb ge...	44	0.001
<u>emb X74256.1 MIPVCYTB</u>	P.violaceus mitochondrion gene for cy...	44	0.001
<u>emb X82304.1 MIPHCYTBG</u>	P.hispida mitochondrial cytochrome b...	44	0.001
<u>emb X82302.1 MIPFCYTBG</u>	P.fasciata mitochondrial cytochrome ...	44	0.001
<u>emb X56284.1 MIOACTYB</u>	O.aries mitochondrion cytb gene for c...	44	0.001
<u>emb X74252.1 MIMKCYTB</u>	M.keraudrenii mitochondrion gene for ...	44	0.001
<u>emb X72005.1 MILWCYTB</u>	L.weddelli mitochondrial gene for cyt...	44	0.001
<u>emb X74259.1 MILLCYTB</u>	L.ludovicianus mitochondrion gene for...	44	0.001
<u>emb Y08814.1 MIHLCYTBG</u>	H.liberiensis mitochondrial cytochro...	44	0.001
<u>emb Y08811.1 MIHACYTB</u>	H.amphibius mitochondrial cytochrome ...	44	0.001
<u>emb X56287.1 MIGCCYTB</u>	G.camelopardalis mitochondrion cytb g...	44	0.001
<u>emb X74253.1 MIEFCYTB</u>	E.fastuosus mitochondrion gene for cy...	44	0.001
<u>emb X60941.1 MIEACB13</u>	Epimachus albertisii mitochondrial ge...	44	0.001
<u>emb X74255.1 MIDMCYTB</u>	D.magnificus mitochondrion gene for c...	44	0.001
<u>emb X56289.1 MICHCYTB</u>	C.hircus mitochondrion cytb gene for ...	44	0.001
<u>emb V00654.1 MI3TXX</u>	Bos taurus complete mitochondrial genome	44	0.001
<u>emb X50940.1 MIAMC313</u>	A.macgregoriae mitochondrial gene for...	44	0.001
<u>emb X92530.1 LACYTB</u>	L.albirostris cytochrome b gene (comple...	44	0.001
<u>gb U09265.1 CAU09265</u>	Coccycus americanus mitochondrion cyto...	44	0.001
<u>dbi AB023905.1 AB023905</u>	Petaurista leucogenys mitochondrial...	44	0.001
<u>dbi AB023905.1 AB023905</u>	Petaurista leucogenys mitochondrial...	44	0.001
<u>dbi AB023904.1 AB023904</u>	Petaurista leucogenys mitochondrial...	44	0.001
<u>dbi AB023903.1 AB023903</u>	Petaurista leucogenys mitochondrial...	44	0.001
<u>dbi D88983.1 D88983</u>	Bubalus bubalis mitochondrial DNA for c...	44	0.001
<u>dbi D88638.1 D88638</u>	Bubalus bubalis mitochondrial DNA for c...	44	0.001
<u>dbi D88636.1 D88636</u>	Bubalus bubalis mitochondrial DNA for c...	44	0.001
<u>dbi D88635.1 D88635</u>	Bubalus bubalis mitochondrial DNA for c...	44	0.001
<u>dbi D88633.1 D88633</u>	Bubalus bubalis mitochondrial DNA for c...	44	0.001
<u>dbi D88632.1 D88632</u>	Bubalus bubalis mitochondrial DNA for c...	44	0.001
<u>dbi D88630.1 D88630</u>	Bubalus bubalis mitochondrial DNA for c...	44	0.001
<u>dbi D88628.1 D88628</u>	Bubalus bubalis mitochondrial DNA for c...	44	0.001
<u>dbi D88627.1 D88627</u>	Bubalus bubalis mitochondrial DNA for c...	44	0.001
<u>dbi D84204.1 GOTMTCB0</u>	Capra aegagrus mitochondrial DNA for ...	44	0.001
<u>dbi D84202.1 GOTMTCB0</u>	Capra falconeri mitochondrial DNA for ...	44	0.001
<u>dbi D82891.1 D82891</u>	Bubalus bubalis mitochondrial DNA for c...	44	0.001
<u>dbi D82892.1 D82892</u>	Bubalus bubalis mitochondrial DNA for c...	44	0.001
<u>dbi D82899.1 D82899</u>	Bos javanicus mitochondrial DNA for cyt...	44	0.001
<u>dbi D02121.1 BBUMTCB21</u>	Bubalus arnee bubalis mitochondrial ...	44	0.001
<u>dbi D014537.1 BBUMTCB0</u>	Bubalus bubalis mitochondrial gene for ...	44	0.001
<u>dbi AB00471.1 AB00471</u>	Capra hircus mitochondrial DNA for ...	44	0.001
<u>dbi AB00473.1 AB00473</u>	Capra hircus mitochondrial DNA for ...	44	0.001
<u>dbi AB00471.1 AB00471</u>	Capra hircus mitochondrial DNA for ...	44	0.001
<u>dbi AB00472.1 AB00472</u>	Capra aegagrus mitochondrial DNA for ...	44	0.001
<u>dbi D99540.1 D99540</u>	Anas depressirostris mitochondrial DNA for ...	44	0.001
<u>dbi D99527.1 D99527</u>	Bubalus bubalis mitochondrial DNA for c...	44	0.001

<u>dbj D88634.1 D88634</u>	Bubalus bubalis mitochondrial DNA for c...	44	0.001
<u>dbj D88631.1 D88631</u>	Bubalus bubalis mitochondrial DNA for c...	44	0.001
<u>dbj D88629.1 D88629</u>	Bubalus bubalis mitochondrial DNA for c...	44	0.001
<u>dbj D84205.1 SHPMCBE</u>	Sheep mitochondrial DNA for cytochrom...	44	0.001
<u>dbj D84203.1 SHPMCBC</u>	Ovis musimon mitochondrial DNA for cy...	44	0.001
<u>dbj D84201.1 GOTMCBA</u>	Goat mitochondrial DNA for cytochrome...	44	0.001
<u>dbj D82894.1 D82894</u>	Bubalus bubalis mitochondrial DNA for c...	44	0.001
<u>dbj D82891.1 D82891</u>	Bubalus quarlesi mitochondrial DNA for ...	44	0.001
<u>dbj D34638.1 BBUMTCBB</u>	Bubalus bubalis mitochondrial gene fo...	44	0.001
<u>dbj D34636.1 BOVMTCBB</u>	Bos javanicus mitochondrial gene for ...	44	0.001
<u>dbj AB037602.1 AB037602</u>	Talpa altaica mitochondrial cytb ge...	44	0.001
<u>dbj AB018985.1 AB018985</u>	Cichlasoma citrinellum mitochondria...	44	0.001
<u>dbj AB004075.1 AB004075</u>	Capra hircus mitochondrial DNA for ...	44	0.001
<u>dbj AB004073.1 AB004073</u>	Capra hircus mitochondrial DNA for ...	44	0.001
<u>dbj AB004070.1 AB004070</u>	Capra hircus mitochondrial DNA for ...	44	0.001
<u>emb X92531.1 DLCYTB</u>	D.leucas cytochrome b gene (complete se...	44	0.001
<u>gb U07565.1 HAU07565</u>	Hippopotamus amphibius mitochondrion c...	44	0.001
<u>gb U10367.1 PVU10367</u>	Ptilonorhynchus violaceus mitochondrio...	44	0.001
<u>gb U10364.1 CMU10364</u>	Chlamydeza maculata mitochondrion cyto...	44	0.001
<u>emb Z96068.1 ASZ96068</u>	Acomys spinosissimus DNA for mitochon...	42	0.005
<u>gb U76507.1 AIU76507</u>	Amblyornis inornatus cytochrome b gene...	40	0.021
<u>gb AF157466.1 AF157466</u>	Lepus timidus cytochrome b (Cyb) gen...	40	0.021
<u>gb AF157464.1 AF157464</u>	Lepus corsicanus haplotype 1 cytochr...	40	0.021
<u>gb AF157463.1 AF157463</u>	Lepus corsicanus haplotype 3 cytochr...	40	0.021
<u>gb AY016019.1 AY016018S3</u>	Mullerornis agilis cytochrome b ge...	40	0.021
<u>gb AF027330.1 </u>	Akodon olivaceus canescens museum catalog nu...	40	0.021
<u>gb AF027329.1 </u>	Akodon olivaceus canescens museum catalog nu...	40	0.021
<u>gb AF027328.1 </u>	Akodon olivaceus canescens museum catalog nu...	40	0.021
<u>gb AF027327.1 </u>	Akodon olivaceus canescens museum catalog nu...	40	0.021
<u>gb AF027326.1 </u>	Akodon olivaceus canescens museum catalog nu...	40	0.021
<u>gb AF027325.1 </u>	Akodon olivaceus canescens museum catalog nu...	40	0.021
<u>gb AF027324.1 </u>	Akodon olivaceus canescens museum catalog nu...	40	0.021
<u>gb AF027323.1 </u>	Akodon olivaceus canescens museum catalog nu...	40	0.021
<u>gb AF027322.1 </u>	Akodon olivaceus beatus museum catalog numbe...	40	0.021
<u>gb AF027321.1 </u>	Akodon olivaceus beatus museum catalog numbe...	40	0.021
<u>gb AF027320.1 </u>	Akodon olivaceus beatus museum catalog numbe...	40	0.021
<u>gb AF027319.1 </u>	Akodon olivaceus beatus museum catalog numbe...	40	0.021
<u>gb AF027318.1 </u>	Akodon olivaceus beatus museum catalog numbe...	40	0.021
<u>gb AF027317.1 </u>	Akodon olivaceus beatus museum catalog numbe...	40	0.021
<u>gb AF027316.1 </u>	Akodon olivaceus beatus museum catalog numbe...	40	0.021
<u>gb AF027315.1 </u>	Akodon olivaceus beatus museum catalog numbe...	40	0.021
<u>gb AF027314.1 </u>	Akodon olivaceus beatus museum catalog numbe...	40	0.021
<u>gb AF027313.1 </u>	Akodon olivaceus beatus museum catalog numbe...	40	0.021
<u>gb AF027312.1 </u>	Akodon olivaceus brachiotis museum catalog n...	40	0.021
<u>gb AF027311.1 </u>	Akodon olivaceus brachiotis museum catalog n...	40	0.021
<u>gb AF027310.1 </u>	Akodon olivaceus brachiotis museum catalog n...	40	0.021
<u>gb AF027309.1 </u>	Akodon olivaceus brachiotis museum catalog n...	40	0.021
<u>gb AF027308.1 </u>	Akodon olivaceus brachiotis museum catalog n...	40	0.021
<u>gb AF027307.1 </u>	Akodon olivaceus brachiotis museum catalog n...	40	0.021
<u>gb AF265188.1 AF265188</u>	Gillichthys mirabilis cytochrome b m...	40	0.021
<u>gb AF24034.1 AF24034</u>	Phyllobates aurotaenia isolate Quebec...	40	0.021
<u>gb AF272619.1 AF272619</u>	Clethrionomys gapperi specimen-vouch...	40	0.021
<u>gb AF272636.1 AF272636</u>	Clethrionomys gapperi specimen-vouch...	40	0.021
<u>gb AF272634.1 AF272634</u>	Clethrionomys gapperi specimen-vouch...	40	0.021
<u>gb AF272633.1 AF272633</u>	Clethrionomys gapperi specimen-vouch...	40	0.021
<u>gb AF182711.1 AF182711</u>	Geopelia cuneata cytochrome b gene. ...	40	0.021
<u>gb AF182687.1 AF182687</u>	Columbina picui cytochrome b gene. P...	40	0.021
<u>gb AF155422.1 AF155422</u>	Sigmodon ochrognathus cytochrome b (...	40	0.021
<u>gb AF155400.1 AF155400</u>	Peromyscus pectoralis laccianus cyto...	40	0.021
<u>gb AF155195.1 AF155195</u>	Peromyscus attwateri isolate La cyto...	40	0.021
<u>gb AF155194.1 AF155194</u>	Peromyscus attwateri isolate La cyto...	40	0.021
<u>gb AF155593.1 AF155593</u>	Sigmodon ochrognathus isolate ActizAC...	40	0.021
<u>gb AF155591.1 AF155591</u>	Sigmodon ochrognathus isolate McElv7...	40	0.021
<u>gb AF155590.1 AF155590</u>	Sigmodon ochrognathus isolate Duncan...	40	0.021
<u>gb AF155589.1 AF155589</u>	Sigmodon ochrognathus isolate ElmerB...	40	0.021
<u>gb AF155589.1 AF155589</u>	Sigmodon ochrognathus isolate Bbend4...	40	0.021
<u>gb AF121911.1 AF121911</u>	Trochymenus daemudii cytochrome b ...	40	0.021
<u>gb AF254947.1 AF254947</u>	Ureus agilis cytochrome b gene. co...	40	0.021
<u>gb AF295911.1 AF295911</u>	Podarcis sicula cytochrome b gene. P...	40	0.021
<u>gb AF127706.1 AF127706</u>	Hippocampus zosterophorus haplotype FK.14...	40	0.021
<u>gb NC_009991.1 Carlo porcellus complex mitochondrial genome</u>	Carlo porcellus complex mitochondrial genome	40	0.021

<u>gb AF004572.1 AF004572</u>	Arvicaphis niloticus cytochrome b (...	<u>40</u>	<u>0.021</u>
<u>gb AF088932.1 AF088932</u>	Sminchopsis psammophila cytochrome b...	<u>40</u>	<u>0.021</u>
<u>gb U62697.1 ORUCYTB2</u>	Oreopholus ruficollis cytochrome b (cy...	<u>40</u>	<u>0.021</u>
<u>gb U62681.1 CACYTB2</u>	Charadrius australis cytochrome b (cyt ...	<u>40</u>	<u>0.021</u>
<u>gb U62707.1 CVERCYTB2</u>	Charadrius veredus cytochrome b (cytb...	<u>38</u>	<u>0.084</u>
<u>emb AJ004315.1 HCAJ4315</u>	Hippolais caligata mitochondrial cy...	<u>38</u>	<u>0.084</u>

Alignments

<u>empseq_0</u>	1	cccccttagttcgccagggactgatcg	26
<u>AF189111</u>	797	772
<u>U86834</u>	858	833
<u>AF123633</u>	56	31
<u>AF123617</u>	104	79
<u>AF127202</u>	107	82
<u>AF127194</u>	107	82
<u>AF217828</u>	845	820
<u>AF160578</u>	869	844
<u>AF009931</u>	869	844
<u>AF091629</u>	869	844
<u>AF034967</u>	869	844
<u>AF038290</u>	869	844
<u>U07577</u>	869	844
<u>U81143</u>	791	766
<u>AJ222681</u>	869	844
<u>M99464</u>	869	844
<u>AJ225116</u>	869	844
<u>U25738</u>	872	847
<u>U25736</u>	872	847
<u>U15202</u>	872	847
<u>U15204</u>	872	847
<u>X56290</u>	869	844
<u>X56286</u>	869	844
<u>D88639</u>	869	844
<u>D82890</u>	869	844
<u>AF119261</u>	869	847
<u>AF123615</u>	101	79
<u>AF160603</u>	866	844
<u>U62687</u>	179	157
<u>U62685</u>	179	157
<u>AF022071</u>	866	844
<u>AF022070</u>	866	844
<u>U83317</u>	872	850
<u>U37293</u>	774	752
<u>U37292</u>	774	752
<u>U37291</u>	774	752
<u>AF082055</u>	51	29
<u>U72770</u>	798	776
<u>U07578</u>	869	847
<u>AF011908</u>	187	165
<u>AJ004211</u>	773	751
<u>AJ004210</u>	773	751
<u>AJ004212</u>	773	751
<u>AJ004212</u>	773	751
<u>U98865</u>	850	828
<u>U90001</u>	536	514
<u>U61057</u>	773	751
<u>AB036404</u>	173	151
<u>AB036402</u>	173	151
<u>AB036400</u>	173	151
<u>AB036398</u>	173	151
<u>U19611</u>	774	752
<u>K22519</u>	869	847
<u>L00011</u>	872	850
<u>L00011</u>	872	850
<u>AF016012</u>	11937	11912
<u>AF071591</u>	677	652
<u>AF092712</u>	761	736
<u>AF092511</u>	761	736
<u>AF182113</u>	797	773
<u>AF182110</u>	797	772

<u>AF189118</u>	797a.....	772
<u>AF189117</u>	797a.....	772
<u>AF189116</u>	797g.....	772
<u>AF112140</u>	310g.....	285
<u>AF112139</u>	310g.....	285
<u>AF112138</u>	310g.....	285
<u>AF081990</u>	872c.....	847
<u>AF081989</u>	872c.....	847
<u>AF081988</u>	872c.....	847
<u>AF081987</u>	872c.....	847
<u>AF081986</u>	872c.....	847
<u>AF081985</u>	872c.....	847
<u>AF081984</u>	872c.....	847
<u>AF081983</u>	872c.....	847
<u>AF081982</u>	872c.....	847
<u>AF081981</u>	872c.....	847
<u>AF081980</u>	872c.....	847
<u>AF081979</u>	872c.....	847
<u>AF081978</u>	872c.....	847
<u>AF081977</u>	872c.....	847
<u>AF081976</u>	872c.....	847
<u>AF081975</u>	872c.....	847
<u>AF081974</u>	872c.....	847
<u>AF081973</u>	872c.....	847
<u>AF081972</u>	872c.....	847
<u>AF081971</u>	872c.....	847
<u>AF081970</u>	872c.....	847
<u>AF081969</u>	872c.....	847
<u>AF081968</u>	872c.....	847
<u>AF081967</u>	872c.....	847
<u>AF081966</u>	872c.....	847
<u>AF081965</u>	872c.....	847
<u>AF081964</u>	872c.....	847
<u>AF081962</u>	754c.....	729
<u>AF081961</u>	872c.....	847
<u>AF081960</u>	872g.....	847
<u>AF081959</u>	872c.....	847
<u>AF112405</u>	869c.....	844
<u>AF144317</u>	161g.....	136
<u>AF144316</u>	161g.....	136
<u>AF144315</u>	161g.....	136
<u>AF144314</u>	161g.....	136
<u>AF144313</u>	161g.....	136
<u>AF144312</u>	161g.....	136
<u>AF144311</u>	161g.....	136
<u>AF144310</u>	161g.....	136
<u>AF144309</u>	161g.....	136
<u>NC_001567</u>	15382g.....	15357
<u>AP212124</u>	425c.....	400
<u>AF182706</u>	739a.....	714
<u>AF010406</u>	15027a.....	15002
<u>AF096452</u>	735c.....	710
<u>AF283619</u>	845a.....	820
<u>AF283618</u>	845a.....	820
<u>AF283608</u>	845a.....	820
<u>AF283603</u>	845a.....	820
<u>AF310059</u>	770a.....	745
<u>AF146616</u>	95g.....	70
<u>AF371410</u>	869g.....	844
<u>AF290112</u>	752g.....	727
<u>NC_002504</u>	15022g.....	14297
<u>AF161901</u>	869g.....	844
<u>AF1119261</u>	869g.....	844
<u>AF1119252</u>	869g.....	844
<u>AF788454</u>	91a.....	65
<u>AF161923</u>	867c.....	844
<u>AF1221612</u>	68g.....	43
<u>AF1221617</u>	68g.....	43
<u>AF1221616</u>	104g.....	77
<u>AF1221613</u>	68g.....	43
<u>AF1221611</u>	64g.....	39

	c.....	79
<u>AF123628</u>	104g.....	79
<u>AF123621</u>	85g.....	60
<u>AF123619</u>	104g.....	79
<u>AF123618</u>	104g.....	79
<u>AF123614</u>	104g.....	79
<u>AF123613</u>	101g.....	76
<u>AF127201</u>	107g.....	82
<u>AF127192</u>	107c.....	82
<u>AF127189</u>	107g.....	82
<u>AF197849</u>	872g.....	847
<u>AF197847</u>	872c.....	847
<u>NC 000889</u>	15040g.....	15015
<u>NC 002079</u>	16164g.....	16139
<u>NC 001794</u>	15052a.....	15027
<u>NC 001610</u>	15045c.....	15020
<u>AF201612</u>	520t.....	495
<u>AF097931</u>	869a.....	844
<u>AF097927</u>	869g.....	844
<u>J01394</u>	15382g.....	15357
<u>AF168760</u>	507a.....	482
<u>AF168759</u>	507a.....	482
<u>AF168758</u>	507a.....	482
<u>AF168756</u>	507a.....	482
<u>AF182381</u>	692t.....	667
<u>AF182380</u>	692t.....	667
<u>U89187</u>	872a.....	847
<u>AF193833</u>	773g.....	748
<u>AF193822</u>	773g.....	748
<u>AF193821</u>	773a.....	748
<u>AF217837</u>	845c.....	820
<u>AF217835</u>	845c.....	820
<u>AF217834</u>	845a.....	820
<u>AF217831</u>	845g.....	820
<u>AF217823</u>	845a.....	820
<u>AF217819</u>	845a.....	820
<u>AF217815</u>	845c.....	820
<u>AF118156</u>	101g.....	76
<u>AF209938</u>	418a.....	393
<u>AF209933</u>	418a.....	393
<u>AF059104</u>	776c.....	751
<u>AF059102</u>	776c.....	751
<u>AF059054</u>	776c.....	751
<u>AF192646</u>	869t.....	844
<u>AF192645</u>	869c.....	844
<u>AF160614</u>	869g.....	844
<u>AF160613</u>	869g.....	844
<u>AF160612</u>	869g.....	844
<u>AF160611</u>	238g.....	213
<u>AF160610</u>	869g.....	844
<u>AF160604</u>	869g.....	844
<u>AF160560</u>	869a.....	844
<u>AF160552</u>	869a.....	844
<u>AF160558</u>	869a.....	844
<u>AF160557</u>	869a.....	844
<u>AF160555</u>	869a.....	844
<u>AF160554</u>	869a.....	844
<u>AF160551</u>	869a.....	844
<u>AF160552</u>	869a.....	844
<u>AF160551</u>	869a.....	844
<u>AF160550</u>	869a.....	844
<u>AF160549</u>	869a.....	844
<u>AF016297</u>	869g.....	844
<u>AF016286</u>	869g.....	844
<u>AF016281</u>	869a.....	844
<u>AF016281</u>	869a.....	844
<u>AF016278</u>	869g.....	844
<u>AF016276</u>	869a.....	844
<u>AF016274</u>	869g.....	844
<u>NC 001241</u>	15027a.....	15002
<u>AF198628</u>	869a.....	844

<u>AF108682</u>	869a.....	844
<u>AF108673</u>	869g.....	844
<u>AF108669</u>	857g.....	832
<u>AF042720</u>	869a.....	844
<u>AF042718</u>	869a.....	844
<u>AF084082</u>	869a.....	844
<u>AF084081</u>	869a.....	844
<u>AF084074</u>	869a.....	844
<u>AF090750</u>	869a.....	844
<u>AF157939</u>	869a.....	844
<u>AF157937</u>	869a.....	844
<u>AF157936</u>	869a.....	844
<u>AF157915</u>	869a.....	844
<u>AF157914</u>	869a.....	844
<u>AF157912</u>	869g.....	844
<u>AF157906</u>	869g.....	844
<u>AF157891</u>	869g.....	844
<u>AF157882</u>	869a.....	844
<u>AF157859</u>	869a.....	844
<u>AF157858</u>	869a.....	844
<u>AF157839</u>	869g.....	844
<u>AF030497</u>	50a.....	25
<u>U03541</u>	869g.....	844
<u>AF009951</u>	866a.....	841
<u>AF009941</u>	869g.....	844
<u>AF009925</u>	869a.....	844
<u>AF094633</u>	737g.....	712
<u>AF094621</u>	737c.....	712
<u>AF094618</u>	737c.....	712
<u>AF156348</u>	869g.....	844
<u>AF158697</u>	869a.....	844
<u>AF158694</u>	869a.....	844
<u>AF158693</u>	869a.....	844
<u>AF158688</u>	869a.....	844
<u>AF100720</u>	869a.....	844
<u>AF091632</u>	869a.....	844
<u>AF102815</u>	869a.....	844
<u>AF102814</u>	869c.....	844
<u>AF022065</u>	869a.....	844
<u>AF022059</u>	869g.....	844
<u>AF022058</u>	869a.....	844
<u>AF022057</u>	869g.....	844
<u>AF022054</u>	869a.....	844
<u>AF016637</u>	869c.....	844
<u>U69863</u>	845c.....	820
<u>U69844</u>	845c.....	820
<u>AF143193</u>	869a.....	844
<u>AF121222</u>	140g.....	115
<u>AF096625</u>	869g.....	844
<u>AF096624</u>	869g.....	844
<u>AF081052</u>	869a.....	844
<u>AF081049</u>	869a.....	844
<u>AF081048</u>	869g.....	844
<u>AF082063</u>	54g.....	29
<u>AJ010957</u>	15040g.....	15015
<u>U76506</u>	773g.....	748
<u>U76504</u>	773g.....	748
<u>U76505</u>	773c.....	748
<u>U76501</u>	773c.....	748
<u>U76508</u>	773c.....	748
<u>AF034962</u>	869g.....	844
<u>AF051876</u>	869c.....	844
<u>AF082007</u>	872c.....	847
<u>AF092006</u>	872c.....	847
<u>AF092003</u>	872c.....	847
<u>AF092001</u>	872c.....	847
<u>AF092001</u>	872c.....	847
<u>AF092002</u>	872c.....	847
<u>AF092001</u>	872c.....	847
<u>AF092002</u>	872c.....	847
<u>AF092002</u>	872c.....	847
<u>AF092002</u>	872c.....	847

<u>AF081998</u>	872c.....	847
<u>AF081997</u>	872c.....	847
<u>AF081996</u>	872c.....	847
<u>AF081995</u>	872c.....	847
<u>AF081994</u>	872c.....	847
<u>AF081993</u>	872c.....	847
<u>AF081992</u>	872c.....	847
<u>AF081991</u>	872c.....	847
<u>S73150</u>	869a.....	844
<u>AF012235</u>	860a.....	835
<u>US3580</u>	869g.....	844
<u>US3577</u>	869g.....	844
<u>US3576</u>	869a.....	844
<u>U95512</u>	31g.....	6
<u>U95508</u>	31a.....	6
<u>U17868</u>	869g.....	844
<u>U17867</u>	869g.....	844
<u>U17860</u>	869g.....	844
<u>U17859</u>	800g.....	775
<u>AJ010556</u>	869g.....	844
<u>AF034736</u>	869g.....	844
<u>AF034730</u>	869a.....	844
<u>AF034729</u>	869a.....	844
<u>AF034728</u>	869g.....	844
<u>AF034727</u>	869a.....	844
<u>AF034724</u>	869g.....	844
<u>AF034722</u>	869g.....	844
<u>U72038</u>	869g.....	844
<u>U72037</u>	869g.....	844
<u>M99455</u>	869a.....	844
<u>L29055</u>	260a.....	235
<u>AF082047</u>	54g.....	29
<u>AF038286</u>	869c.....	844
<u>AF038284</u>	869c.....	844
<u>AF059093</u>	776c.....	751
<u>AF059092</u>	776c.....	751
<u>AF059091</u>	776c.....	751
<u>AF059080</u>	776c.....	751
<u>AF059078</u>	776c.....	751
<u>AF052240</u>	61a.....	36
<u>AF006240</u>	774c.....	749
<u>AF006227</u>	774g.....	749
<u>AF047447</u>	41g.....	16
<u>U07576</u>	869g.....	844
<u>AF028180</u>	65g.....	40
<u>AF028178</u>	69g.....	44
<u>AF028170</u>	77g.....	52
<u>M99454</u>	869a.....	844
<u>M99453</u>	869c.....	844
<u>U23461</u>	869c.....	844
<u>U87118</u>	869g.....	844
<u>U97590</u>	869g.....	844
<u>A7004726</u>	773c.....	748
<u>AF030255</u>	819g.....	794
<u>X19184</u>	15022g.....	14997
<u>U88862</u>	843a.....	818
<u>U88859</u>	867g.....	842
<u>U88858</u>	843c.....	818
<u>U88857</u>	863g.....	838
<u>U88856</u>	867g.....	842
<u>X10534</u>	15052a.....	15027
<u>U81157</u>	791c.....	766
<u>U81156</u>	791a.....	766
<u>U73154</u>	432a.....	427
<u>U77113</u>	872g.....	847
<u>Z22371</u>	15049c.....	15020
<u>A1222672</u>	869g.....	844
<u>A1222680</u>	869a.....	844
<u>A1222681</u>	869g.....	844
<u>M22166</u>	869a.....	844
<u>M22172</u>	869c.....	844

<u>M99460</u>	869g.....	844
<u>U25717</u>	872a.....	847
<u>V15201</u>	872c.....	847
<u>V15205</u>	872c.....	847
<u>V15200</u>	872g.....	847
<u>AJ000424</u>	740g.....	715
<u>AJ000423</u>	740g.....	715
<u>AJ000438</u>	740a.....	715
<u>AJ000437</u>	740a.....	715
<u>AJ000428</u>	740a.....	715
<u>AJ000427</u>	740a.....	715
<u>AJ000426</u>	740g.....	715
<u>AJ000425</u>	740g.....	715
<u>AJ000418</u>	740a.....	715
<u>AJ000417</u>	740a.....	715
<u>AJ000416</u>	740a.....	715
<u>AJ004793</u>	770c.....	745
<u>AJ004792</u>	770c.....	745
<u>U15718</u>	774c.....	749
<u>L11905</u>	869a.....	844
<u>U34679</u>	869c.....	844
<u>L11907</u>	869a.....	844
<u>L11906</u>	869a.....	844
<u>L11902</u>	869a.....	844
<u>X92524</u>	869a.....	844
<u>U46771</u>	773g.....	748
<u>AB021773</u>	869a.....	844
<u>AB006953</u>	16164g.....	16139
<u>Z73492</u>	770c.....	745
<u>AB035239</u>	869c.....	844
<u>X92532</u>	869g.....	844
<u>X74260</u>	872g.....	847
<u>X56293</u>	869a.....	844
<u>X56292</u>	869a.....	844
<u>X74256</u>	872g.....	847
<u>X82304</u>	869g.....	844
<u>X82302</u>	869g.....	844
<u>X56284</u>	869a.....	844
<u>X74252</u>	872g.....	847
<u>X72005</u>	869g.....	844
<u>X74259</u>	872g.....	847
<u>X08814</u>	869c.....	844
<u>X08813</u>	869g.....	844
<u>X56287</u>	869g.....	844
<u>X74251</u>	872g.....	847
<u>X60941</u>	773c.....	748
<u>X74255</u>	872g.....	847
<u>X56289</u>	869g.....	844
<u>V00654</u>	15382g.....	15357
<u>X60940</u>	773c.....	748
<u>X92510</u>	869a.....	844
<u>V09265</u>	774g.....	749
<u>AB021905</u>	842a.....	817
<u>AB021905</u>	842a.....	817
<u>AB021904</u>	842a.....	817
<u>AB021903</u>	842a.....	817
<u>Q88691</u>	869a.....	844
<u>Q88618</u>	869a.....	844
<u>Q88616</u>	869a.....	844
<u>Q88615</u>	869a.....	844
<u>Q88613</u>	869a.....	844
<u>Q88612</u>	869a.....	844
<u>Q88610</u>	869a.....	844
<u>Q88628</u>	869a.....	844
<u>Q88627</u>	869a.....	844
<u>Q81194</u>	869g.....	844
<u>Q81193</u>	869g.....	844
<u>Q81192</u>	869a.....	844
<u>Q81191</u>	869a.....	844
<u>Q81190</u>	869g.....	844
<u>Q12121</u>	869a.....	844

<u>D34637</u>	869a.....	844
<u>AB004074</u>	869g.....	844
<u>AB004072</u>	869g.....	844
<u>AB004071</u>	869g.....	844
<u>AB004069</u>	869g.....	844
<u>D88640</u>	869a.....	844
<u>D88637</u>	869a.....	844
<u>D88634</u>	869a.....	844
<u>D88631</u>	869a.....	844
<u>D88629</u>	869a.....	844
<u>D84205</u>	869a.....	844
<u>D84203</u>	869a.....	844
<u>D84201</u>	869g.....	844
<u>D82894</u>	869a.....	844
<u>D82891</u>	869a.....	844
<u>D34638</u>	869a.....	844
<u>D34636</u>	869g.....	844
<u>AB037602</u>	869a.....	844
<u>AB018985</u>	869a.....	844
<u>AB004075</u>	869g.....	844
<u>AB004073</u>	869g.....	844
<u>AB004070</u>	869g.....	844
<u>X92531</u>	869g.....	844
<u>U07565</u>	869g.....	844
<u>U10367</u>	773g.....	748
<u>U10364</u>	773g.....	748
<u>Z96068</u>	869g.....	844
<u>076507</u>	773t.....	749
<u>AF157466</u>	791	772
<u>AF157464</u>	793	774
<u>AF157463</u>	793	774
<u>AY016019</u>	93	74
<u>AF027330</u>	869	850
<u>AF027329</u>	869	850
<u>AF027328</u>	869	850
<u>AF027327</u>	869	850
<u>AF027326</u>	869	850
<u>AF027325</u>	869	850
<u>AF027324</u>	869	850
<u>AF027323</u>	869	850
<u>AF027322</u>	869	850
<u>AF027321</u>	869	850
<u>AF027320</u>	869	850
<u>AF027319</u>	869	850
<u>AF027318</u>	869	850
<u>AF027317</u>	869	850
<u>AF027316</u>	869	850
<u>AF027315</u>	869	850
<u>AF027314</u>	869	850
<u>AF027313</u>	869	850
<u>AF027312</u>	869	850
<u>AF027311</u>	869	850
<u>AF027310</u>	869	850
<u>AF027309</u>	869	850
<u>AF027308</u>	869	850
<u>AF027307</u>	869	850
<u>AF266188</u>	371	152
<u>AF124014</u>	408	189
<u>AF272619</u>	869	850
<u>AF272616</u>	869	850
<u>AF272614</u>	869	850
<u>AF272611</u>	869	850
<u>AF182711</u>	712	693
<u>AF192697</u>	774	755
<u>AF155122</u>	869	850
<u>AF155109</u>	869	850
<u>AF155105</u>	869	850
<u>AF155101</u>	869	850
<u>AF155121</u>	869	850
<u>AF155122</u>	869	850
<u>AF155123</u>	869	850
<u>AF155124</u>	869	850

<u>AF155589</u>	869	850
<u>AF155588</u>	869	850
<u>AF121531</u>	771	752
<u>AF264047</u>	869	850
<u>AF206531</u>	771	752
<u>AF192706</u>	863	844
<u>NC_000884</u>	15032	15013
<u>AF004572</u>	869	850
<u>AF088932</u>	869	850
<u>U62697</u>	176	157
<u>U62681</u>	179	160
<u>U62707</u>	179g.....a..	154
<u>AJ004315</u>	773t.....a....	748

Database: nt

Posted date: Mar 2, 2001 12:20 AM

Number of letters in database: 2,863,827,885

Number of sequences in database: 807,597

Lambda K H
1.37 0.711 1.31

Gapped
Lambda K H
1.37 0.711 1.31

Matrix: blastn matrix:1 -3

Gap Penalties: Existence: 5, Extension: 2

Number of Hits to DB: 19068

Number of Sequences: 807597

Number of extensions: 19068

Number of successful extensions: 7580

Number of sequences better than 10.0: 2441

length of query: 26

length of database: 2,863,827,885

effective RSP length: 17

effective length of query: 9

effective length of database: 2,850,098,736

effective search space: 25650888624

effective search space used: 25650888624

T: 0

A: 30

X1: 6 (11.9 bits)

X2: 15 (29.7 bits)

S1: 12 (24.3 bits)

S2: 16 (32.2 bits)

Table 12. The other animals belonging to distantly related species analyzed by our primers to demonstrate its universal nature

SN.	Name of the animal
1.	Indian black buck no.1
2.	Indian black buck no 2
3	sheep
4	pig
5	dog
6	chimpanzee (chimss)
7	human (humsk)
8	Hamster
9	crocodile no1
10	crocodile no2
11	turtle no1
12	turtle no2
13	mouse
14	varanus
15	Naga-naga snake
16	Indian elephant
17	hen
18	dugong
19	lizard
20	weaver bird no 1
21	weaver bird no.2
22	buffalo no 1
23	buffalo no 2

CLAIMS

1 Universal primers named as 'mcb 398' and 'mcb 869' capable of amplifying a fragment of cytochrome b gene of any animal species in polymerase chain reaction (PCR) and revealing the identity of the biological material of any animal of unknown origin at species and sub-species level, said primers, having the sequences:

primers name	Sequence (5'-3')
mcb 398	"TACCATGAGGACAAATATCATTCTG"
mcb 869	"CCTCCTAGTTGTTAGGGATTGATCG"

5 2. Primers as claimed in claim 1 wherein the fragment of mitochondrial cytochrome b gene is capable of significantly discriminating amongst various evolutionary lineages of different animal species.

10 3. Primers as claimed in claim 1 wherein the fragment of mitochondrial cytochrome b gene is flanked by the highly conserved sequences amongst a vast range of animal species.

15 4. Primers as claimed in claim 1 wherein the fragment on mitochondrial cytochrome b gene which is polymorphic inter-specifically, but monomorphic at intra species sources.

5. Primers as claimed in claim 1 wherein in *Antilope cervicapra* species, the sequences of the fragment mentioned under claim 1 are as follows:

20 Mitochondrial cytochrome b gene sequence (398-869 bp) of *Antilope cervicapra*:
"taccatgaggacaaatatcttttgaggagcaacagtcatcaccaatctccttcagcaatcccatacatcggtacaaacctagtagaatgaatctgaggagggtctcagtagataaagcaacccttacccgattttcgccttccactttatcccccattttatgcagcccttaccatagtacacctactgtttccacgaaacaggatccaacaacccacaggaatctcatcagacgcagacaaaattccatccaccctactacactatcaaagatatcctaggagctactatataatttttaaccctcatgcttctagtcctatttcacc25 ggacctgcgtggagacccagacaactatacaccagcaaacccttaatacacccccacatataagcccaatgatacttcctatttgcatacgcaatcctccgatcaattcctaacaacttaggagg"

25 6. A method for the identification of the animal from a biological sample, said method comprising the steps of:

30 a) isolating and amplifying the DNA from the biological sample to be tested using the primers as claimed in claim 1,

b) sequencing the amplified products,

c) blasting the sequence resolved in step (b) against mito database of National Centre for Biotechnology Information (NCBI) using BLAST program and determining the most likely family of the animal source of the biological sample.

d) blasting the sequence resolved in step (b) against non-redundant (nr) database of National Centre for Biotechnology Information (NCBI) using BLAST program and determining the most likely genus, species or more precisely the sub-species of the animal source of the biological sample,

5 e) identifying the most significant alignment of the sequence resolved with cytochrome b gene sequence of the animal identified in steps (c) and (d) respectively and selection of these animals as 'reference animals' for further studies,

10 f) isolating and amplifying and sequencing the DNA sequences from the reference animal on both strands in triplicate using the primers as claimed in claim 1,

15 g) aligning the sequences obtained using CLUSTAL program and identifying the variable sites amongst the animals analyzed,

h) comparing the nucleotide sequences pair-wise to determine the variation among the animals resolved and identifying the nucleotide sequence to which the DNA sequence of the biological sample bears maximum similarity as the source animal of the biological sample.

7. A method as claimed in claim 6 wherein the universal PCR protocol works universally with the DNA template of any unknown animal origin and the universal primers mentioned under column 4.

20 8. A method as claimed in claim 6 wherein the Amplification reactions should be carried out in 20 μ l reaction volume containing approximately 20 η g of template DNA, 100 μ m each of dNTPs, 1.25 pmole of each primer, 1.5mM MgCl₂, 0.5 unit of AmpliTaq Gold (Perkin-Elmer-Cetus, USA) DNA polymerase and 1X PCR buffer (10mM Tris-HCl, pH 8.3, and 50mM KCl). The amplification profiles followed should be: an initial denaturation at 95°C for 10 min, followed by 35 cycles each of denaturation at 95°C for 45 s, annealing at 51°C for 1 min, and extension at 72°C for 2 min. The extension step at 35th cycles should be held for 10 min.

25 9. A method as claimed in claim 6 wherein the method enables identification of species of analyzed material (i.e. the DNA isolated from confiscated animal remain of unknown origin) using the public databases such as GenBank, NCBI etc.

10. A method as claimed in claim 6 wherein the method is used for animal identification to establish the crime with the criminal beyond a reasonably doubt.

30 11. A method as claimed in claim 6 wherein the method is used to establish the identity of

biological materials such as skin, horns etc confiscated from animal poachers, if it is that of an endangered species.

12. A method as claimed in claim 6 wherein the method is used for establishment of the identity of confiscated animal parts and products of endangered animal species for the purpose of production of molecular evidence of animal hunting and related crime in the court of law, so that the human violation of the wildlife resources could be controlled.
- 5 13. A method as claimed in claim 6 wherein the method is used to have an idea of the geographical location of the commitment of wildlife crime based on the cytochrome b gene haplotype of poached animal identified by the universal primer invented.
- 10 14. A method as claimed in claim 6 wherein the method is used for animal identification to detect the adulteration of animal meat in food products for the purpose of food fortification, by the food fortification agencies.
- 15 15. A method as claimed in claim 6 wherein the method is used to provide a universal technique for detection of the origin of blood or blood stains etc collected from the scene of crime related to offences such as murder, rape etc, in order to establish the origin of blood found at scene of crime when it sounds as if criminals have wontedly spread the blood of an animal at the scene of crime, to confuse the crime investigation agencies and forensic scientists with human blood.
16. A method as claimed in claim 6 wherein the method is used so that it can be converted to a (a) COMMERCIAL 'MOLECUALR KIT' and (b) 'DNA CHIPS' based applications for wildlife identification in forensics.
- 20

Figure 1 a

Sequence of cytochrome b gene (328 bp) revealed from biological material of unknown origin i.e. 'adil.flesh' using primers 'mcb398' and 'mcb869'

Homology search in 'nr' database using 'BLAST'

<http://www.ncbi.nlm.nih.gov/BLAST/>

Sequences producing significant alignments:	Score (bits)	E Value
gb AY005809.1 <i>Panthera pardus</i> cytochrome b gene, partial c...	603	e-170
gb AF053054.1 AF053054 <i>Panthera tigris sumatrae</i> isolate Su1...	527	e-147
gb AF053053.1 AF053053 <i>Panthera tigris tigris</i> isolate B7 mi...	527	e-147
gb AF053050.1 AF053050 <i>Panthera tigris corbetti</i> isolate C2 ...	476	e-132
gb AF053049.1 AF053049 <i>Panthera tigris corbetti</i> isolate C1 ...	476	e-132

Selection of reference animals based on above information
and further analysis using primers 'mcb398' and 'mcb869'

Multiple sequence alignments
using 'Autoassembler'

Sequence alignment showing multiple reference sequences (gb|AY005809.1|, gb|AF053054.1|, gb|AF053053.1|, gb|AF053050.1|, gb|AF053049.1|) aligned against the query sequence (tmpseq_0). The alignment shows high conservation of the cytochrome b gene across these species.

Figure 1 b

Figure 1c

4/6

Figure 2

5/6

Figure 3

6/6

Figure 4

INTERNATIONAL SEARCH REPORT

Inte	Application No
PCT/IN 01/00055	

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 C12Q1/68

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 C12Q

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)
--

BIOSIS, EPO-Internal, EMBL, WPI Data, PAJ, MEDLINE, EMBASE

C. DOCUMENTS CONSIDERED TO BE RELEVANT
--

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	KOCHER T D ET AL: "DYNAMICS OF MITOCHONDRIAL DNA EVOLUTION IN ANIMALS AMPLIFICATION AND SEQUENCING WITH CONSERVED PRIMERS" PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES, vol. 86, no. 16, 1989, pages 6196-6200, XP002189444 1989 ISSN: 0027-8424 the whole document ---	1-16
Y	WO 92 05277 A (DAVIDSON WILLIAM SCOTT ;BARTLETT SYLVIA ERNESTINE (CA)) 2 April 1992 (1992-04-02) the whole document ---	1-16 -/-

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents:

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the International filing date but later than the priority date claimed

- *T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- *&* document member of the same patent family

Date of the actual completion of the international search	Date of mailing of the international search report
---	--

28 February 2002

12/03/2002

Name and mailing address of the ISA	Authorized officer
-------------------------------------	--------------------

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.
Fax: (+31-70) 340-3016

Authorized officer

Hagenmaier, S

INTERNATIONAL SEARCH REPORT

Int'l Application No

PCT/IN 01/00055

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	IRWIN D M ET AL: "EVOLUTION OF THE CYTOCHROME BETA GENE OF MAMMALS" JOURNAL OF MOLECULAR EVOLUTION, SPRINGER VERLAG, NEW YORK, NY, US, vol. 2, no. 3, June 1995 (1995-06), pages 128-144, XP000892117 ISSN: 0022-2844 the whole document ---	1-16
Y	DATABASE EMBL 'Online! ID/AC AAF56513, 28 November 2000 (2000-11-28) ZH NIPPON KAGAKU SENI KENSA KYOKAI: "Animal fibre identification PCR primer #3" XP002191314 abstract ---	1-16
Y	WO 93 15215 A (HYDROCARBON RESEARCH INC) 5 August 1993 (1993-08-05) the whole document ---	1-16
Y	EP 0 807 690 A (KARL SCHMITZ SCHOLL FONDS FUER) 19 November 1997 (1997-11-19) the whole document ---	1-16
Y	MATTHEE CONRAD A ET AL: "Cytochrome b phylogeny of the family Bovidae: Resolution within the Alcelaphini, Antilopini, Neotragini, and Tragelaphini." MOLECULAR PHYLOGENETICS AND EVOLUTION, vol. 12, no. 1, June 1999 (1999-06), pages 31-46, XP001053239 ISSN: 1055-7903 the whole document ---	1-16
Y	SHANKARANARAYANAN PATTABHIRAMAN ET AL: "Mitochondrial DNA sequence divergence among big cats and their hybrids." CURRENT SCIENCE (BANGALORE), vol. 75, no. 9, 10 November 1998 (1998-11-10), pages 919-923, XP001063942 ISSN: 0011-3891 the whole document ---	1-16
A	THOMPSON JULIE D ET AL: "A comprehensive comparison of multiple sequence alignment programs." NUCLEIC ACIDS RESEARCH, vol. 27, no. 13, 1 July 1999 (1999-07-01), pages 2682-2690, XP002191669 ISSN: 0305-1048 the whole document -----	

INTERNATIONAL SEARCH REPORT

Information on patent family members

Int	Application No
PCT/US	01/00055

Patent document cited in search report	Publication date		Patent family member(s)	Publication date
WO 9205277	A 02-04-1992	CA AT AU WO DE DE DK EP ES FI NO	2026264 A1 119943 T 8515391 A 9205277 A1 69108249 D1 69108249 T2 550491 T3 0550491 A1 2072618 T3 931318 A 931124 A	27-03-1992 15-04-1995 15-04-1992 02-04-1992 20-04-1995 09-11-1995 24-07-1995 14-07-1993 16-07-1995 24-05-1993 21-05-1993
WO 9315215	A 05-08-1993	US AU WO US	5372929 A 3597993 A 9315215 A1 5565320 A	13-12-1994 01-09-1993 05-08-1993 15-10-1996
EP 0807690	A 19-11-1997	US EP WO	5786144 A 0807690 A1 9743618 A2	28-07-1998 19-11-1997 20-11-1997

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.