EYP1025-1027 Modelos Probabilísticos

Profesor: Reinaldo B. Arellano Valle

Departamento de Estadística Pontificia Universidad Católica de Chile

Programa

Objetivo: Proporcionar las bases necesarias de la teoría de probabilidad, y que sean fundamentales para el estudio de la estadística.

Contenido:

- ▶ Modelo de Probabilidad
- Variables aleatorias
- ▶ Transformaciones y valor esperado
- Vectores aleatorios, distribuciones conjuntas y condicionales.
- Distribuciones muestrales y teoremas límites.

Evaluación: Tres interrogaciones (70%) y un exámen (30%).

Ayudante: Por definir

Resumen

- ▶ La teoría de probabilidad es la base sobre la cual se construyen todas las herramientas estadísticas.
- ▷ Ella proporciona un modelo probabilístico para representar poblaciones, experimentos o fenómenos aleatorios.
- ➤ A través de estos modelos, los estadísticos pueden hacer inferencias sobre aspectos desconocidos mediante resultados experimentales (o información parcial).
- Así como la estadística se fundamenta en la teoría de la probabilidad, esta última, a su vez, se apoya en la teoría de conjuntos, que es por donde comenzamos.

Contenido I

- Conceptos Preliminares Básicos
 - Conjuntos

Definición 1.1

- \triangleright Un conjunto Ω se dice contable (o discreto) si es finito o si sus elementos pueden colocarse en correspondencia uno a uno con algún subconjunto del conjunto de los números naturales $\mathbb{N} = \{1, 2, ...\}$.
- \triangleright En caso contrario diremos que Ω no es contable.

Ejemplo 1.1

- 1) $\Omega_1 = \{0, 1\}, \ \Omega_2 = \{(i, j) : i, j = 1, 2, 3, 4, 5, 6\} \ y \ \Omega_3 = \{1, 3, 5, ...\}$ son contables.
- 2) $\Omega_4 = (0,1), \ \Omega_5 = [0,\infty) \ y \ \Omega_6 = \{(x,y) : x^2 + y^2 \le 1\}$ no son contables.

Inclusión:

- ightharpoonup Un conjunto A es subconjunto de un conjunto B o que A está contenido en B, y escribimos $A\subseteq B$, si para cada $x\in A$, tenemos que $x\in B$.
- ightharpoonup El conjunto A es subconjunto propio de B, y escribimos $A\subset B$, si $A\subseteq B$ y $\exists\,x\in B$ tal que $x\not\in A$.

Recuerde también que:

- $\, \triangleright \, A = B \, \operatorname{ssi} \, A \subseteq B \, \operatorname{y} \, B \subseteq A.$
- $\flat \ \emptyset \subseteq A \ {\rm y} \ A \subseteq A \ {\rm para} \ {\rm todo} \ {\rm subconjunto} \ A, \ {\rm donde} \ \emptyset \ {\rm denota} \ {\rm el} \ {\rm conjunto} \ {\rm vac\'io}.$

Definición 1.2

Dados dos conjuntos A y B, definimos las siguientes operaciones elementales.

Unión: La unión de A y B, escrita como $A \cup B$, es el conjunto de elementos que pertenecen ya sea a A o B o ambos,

$$A \cup B = \{x : x \in A \text{ o } x \in B\}$$

Intersección: La intersección de A y B, escrita como $A \cap B$, es el conjunto de elementos que pertenecen a ambos, a A y B,

$$A \cap B = \{x : x \in A \ y \ x \in B\}$$

Complemento: El complemento de A, escrito como A^c , es el conjunto de todos los elementos que no estan en A,

$$A^c = \{x : x \notin A\}$$

Deferencia: La diferencia de dos conjuntos A y B, escrita como A-B, es conjunto de todos aquellos elementos de A que no pertenecen a B,

$$A - B = A \cap B^c = \{x : x \in A, \ x \notin B\}$$

Definición 1.3

- \triangleright Los conjuntos A y B se dicen disjuntos si: $A \cap B = \emptyset$.
- \triangleright Una secuencia de conjuntos $\{A_i\}_{i\in\mathbb{N}}$ se dice mutuamente (dos a dos) disjunta si: $A_i \cap A_j = \emptyset \ \forall i \neq j$.

Teorema 1.1

Si A, B, y C tres conjuntos, entonces valen las siguientes operaciones:

a) Commutatividad:

$$A \cup B = B \cup A, \quad A \cap B = B \cap A$$

b) Asociatividad:

$$A \cup (B \cup C) = (A \cup B) \cup C, \quad A \cap (B \cap C) = (A \cap B) \cap C$$

c) Leyes distributivas:

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C), \quad A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

d) Leyes de Morgan:

$$(A \cup B)^c = A^c \cap B^c, \quad (A \cap B)^c = A^c \cup B^c$$

Demostración 1.1 (Tarea!)

Las operaciones de **unión** e **intersección** pueden extenderse a colecciones (secuencias o sucesiones) infinitas de conjuntos:

 \triangleright Si A_1,A_2,\ldots es una colección de conjuntos definida dentro de un conjunto $\Omega,$ entonces

$$\cup_{i=1}^{\infty} A_i = \left\{ x \in \Omega : x \in A_i \text{ para algún } i \right\} \\ \cap_{i=1}^{\infty} A_i = \left\{ x \in \Omega : x \in A_i \text{ para todo } i \right\}$$

ho Por ejemplo, si $\Omega=(0,1]$ y $A_i=[(1/i),1]$ $i=1,2,\ldots$, entonces

$$\begin{array}{l} \cup_{i=1}^{\infty}A_{i}=\cup_{i=1}^{\infty}[(1/i),1]=\{x\in(0,1]:x\in[(1/i),1] \text{ para algún } i\}\\ &=\{x\in(0,1]\}=(0,1]\\ \cap_{i=1}^{\infty}A_{i}=\cap_{i=1}^{\infty}[(1/i),1]=\{x\in(0,1]:x\in[(1/i),1] \text{ para todo } i\}\\ &=\{x\in(0,1]:x\in[1,1]\}=\{1\} \end{array}$$

También es posible definir uniones e intersecciones sobre colecciones de conjuntos no contables; es decir, si Γ es un conjunto de índices, entonces

$$\cup_{a \in \Gamma} A_a = \{x \in \Omega : x \in A_a \text{ para algún } a\}$$

$$\cap_{a \in \Gamma} A_a = \{x \in \Omega : x \in A_a \text{ para todo } a\}$$

- ho Por ejemplo, si $\Gamma=\{$ todos los números reales positivos $\}$ y $A_a=(0,a]$, entonces $\mathrm{U}_{a\in\Gamma}A_a=(0,\infty)$ es una unión no contable.
- > Aunque las uniones e intersecciones no contables no juegan un rol muy importante en estadística, ellas pueden ser un mecanismo útil para resolver ciertos problemas.

Definición 1.4

Una secuencia A_1, A_2, \ldots de subconjuntos de un conjunto Ω se llama partición de Ω si

- i) $\bigcup_{i=1}^{\infty} A_i = \Omega$ (exahustivos), y
- ii) $A_i \cap A_j = \emptyset \, \forall \, i \neq j$ (mutuamente excluyentes)

Ejemplo 1.2

Sea $\Omega = \{a, b, c, d\}$. Entonces, la colección de subconjutos

$$\{A_i\}_{i=1}^4 = \{\emptyset, \{a\}, \{a,b\}, \{c\}\}\$$
 no es una partición de Ω , ya que:

- i) $\cup_i A_i = \{a, b, c\} \neq \Omega, y$
- ii) $A_2 \cap A_3 \neq \emptyset$

Ejemplo 1.3

Considere la secuencia:

$$A_i = [i, i+1), \quad i = 0, 1, 2, \dots$$

Entonces, los A_i 's son conjuntos disjuntos de a pares. Además,

$$\cup_{i=0}^{\infty} A_i = [0, \infty).$$

Luego, la secuencia $A_i = [i, i+1), i = 0, 1, 2, ...,$ constituye una partición de $\Omega = [0, \infty)$.

Definición 1.5

Una secuencia conjuntos $\{A_n\}_{n\in\mathbb{N}}$ se dice **monótona** si:

- i) $A_1 \subseteq A_2 \subseteq A_3 \subseteq ...$, es decir, $\{A_n\}$ es creciente $(\forall n \in \mathbb{N}, A_n \subseteq A_{n+1}) : A_n \uparrow$
- ii) $A_1 \supseteq A_2 \supseteq A_3 \supseteq ...$, es decir, $\{A_n\}$ es decreciente $(\forall n \in \mathbb{N}, A_n \supseteq A_{n+1}) : A_n \downarrow$

Definición 1.6

El límite de una secuencia monótona se define por:

- i) Si $A_n \uparrow$, entonces $\lim_{n \to \infty} A_n = \bigcup_{n=1}^{\infty} A_n$
- ii) Si $A_n \downarrow$, entonces $\lim_{n \to \infty} A_n = \bigcap_{n=1}^{\infty} A_n$

Ejemplo 1.4

Si a y b son números reales tales que $-\infty < a < b < \infty$, entonces

i) La secuencia $A_n = [a + \frac{1}{n}, b - \frac{1}{n}], n = 1, 2, \dots$ es monónotona creciente; luego

$$A_n = [a + \frac{1}{n}, b - \frac{1}{n}] \uparrow \bigcup_{n=1}^{\infty} A_n = (a, b).$$

ii) La secuencia $A_n = [a - \frac{1}{n}, b + \frac{1}{n}], n = 1, 2, \dots$ es monónotona decreciente; luego

$$A_n = (a - \frac{1}{n}, b + \frac{1}{n}) \downarrow \bigcap_{n=1}^{\infty} A_n = [a, b],$$

Ejercicio: Dibuje las secuencias anteriores sobre la recta real.

Definición 1.7

Una colección α de subconjuntos de un conjunto Ω (no vacío) constituye una σ - algebra (sigma algebra), si satisface los tres siguientes axiomas:

- A1) $\Omega \in \mathcal{A}$ (el conjunto Ω es un elemento de \mathcal{A})
- A2) Si $A \in \mathcal{A}$, entonces $A^c \in \mathcal{A}$ (\mathcal{A} es cerrada bajo complemento)
- A3) si $A_1, A_2, \ldots \in \mathcal{A}$, entonces $\bigcup_{i=1}^{\infty} A_i \in \mathcal{A}$ (\mathcal{A} es cerrada bajo uniones contables)

Definición 1.8

Sea α una σ - algebra de subconjuntos de Ω :

- \triangleright Al par $(\Omega,\,\mathcal{A})$ se le denomina espacio medible o espacio de sucesos.
- \triangleright Si $A \in \mathcal{A}$, se dice que A es medible.

Teorema 1.2

Sea \mathcal{A} es una σ - algebra de subconjuntos de Ω (no vacío). Entonces: a) $\emptyset \in \mathcal{A}$; b) \mathcal{A} es cerrada bajo intersecciones contables; c) \mathcal{A} es cerrada bajo uniones e intersecciones finitas.

Demostración 1.2

- a) Como $\emptyset \subset \Omega$ y $\Omega^c = \emptyset$, los Axiomas A1) y A2) implican que \emptyset también esta en α .
- b) Si $A_1, A_2, \ldots \in \mathcal{A}$ entonces $A_1^c, A_2^c, \ldots \in \mathcal{A}$, por el Axioma A2), de modo que $\bigcup_{i=1}^{\infty} A_i^c \in \mathcal{A}$, por el Axioma A3); por la aplicación de las leyes de Morgan se tiene que $(\bigcup_{i=1}^{\infty} A_i^c)^c = \bigcap_{i=1}^{\infty} A_i$; usando nuevamente el Axioma A2), se concluye que $\bigcap_{i=1}^{\infty} A_i \in \mathcal{A}$.
- c) Como $\bigcup_{i=1}^n A_i = \bigcup_{i=1}^\infty A_i$ con $A_i = \emptyset$ para i = n+1, n+2, ..., se concluye facilmente que $\bigcup_{i=1}^n A_i$ y $\bigcap_{i=1}^n A_i$ también son elementos de \mathcal{A} .

Ejemplo 1.5

- 1) $\alpha = \{\emptyset, \Omega\} : \sigma$ algebra trivial
- 2) $\mathcal{A} = \{\emptyset, A, A^c, \Omega\}$ es σ algebra para todo subconjunto A de Ω
- 3) $\mathcal{A} = \{ \text{ todos los subconjuntos de } \Omega \}: \mathcal{P}(\Omega) \text{ o } 2^{\Omega} \sigma \text{ algebra}$
- 4) Sea $\Omega = \{1,2,3,4\}$ y $\mathcal{A}=\{\emptyset,\{1\},\{2\},\{3\},\{4\},\{1,2\},\{1,3\},\{1,4\},\{2,3\},\{2,4\},\{1,2,3\},\{1,3,4\},\{2,3,4\},\Omega\}$ Es \mathcal{A} un σ algebra para Ω ?
- 5) Sean $A_1,A_2\subset\Omega$ y C = $\{A_1,A_2\}$. Encuentre un σ algebra que contenga a C

Ejemplo 1.6

Si $\Omega = \mathbb{R} = (-\infty, \infty)$ es la recta real, entonces eligimos α de modo que contenga a todos los intervalos de la forma,

$$[a, b], (a, b), (a, b), (a, b), -\infty < a < b < \infty.$$

Además, de las propiedades de una σ - algebra sigue que $\mathcal A$ contiene a todos los subconjuntos de $\mathbb R$ que se pueden formar tomando uniones e intersecciones (posiblemente infinitas) de los intervalos anteriores. En este caso, $\mathcal A \equiv \mathcal B$ se llama σ - algebra de Borel, y sus elemento se llaman Borelianos.

Nota: La extensión para los Borelianos en \mathbb{R}^n es similar (remplazando los intervalos por rectángulos), y la σ - algebra correspondiente se denota como \mathcal{B}_n .

Ejercicio 1.1

Dada una secuencia contable de conjuntos A_1, A_2, \ldots , defina la secuencia $B_1 = A_1$ y $B_i = A_1^c \cap A_2^c \cap \cdots \cap A_{i-1}^c \cap A_i$ para $i = 2, 3, \ldots$.

Pruebe que:

i)
$$B_i \cap B_j = \emptyset \ \forall i \neq j \ (\text{los } B_i \text{'s son dos a dos disjuntos});$$

$$ii) \cup_{i=1}^{\infty} B_i = \cup_{i=1}^{\infty} A_i.$$

References

Casella, G. y Berger, R.L. (2002). *Statistical Inference*. Second Edition. Duxbury, California.