allowed). You are also not allowed to directly use any convolution operation. mn[n] = 10FTn[Xn[b] Hn[b]] = xcn)(N)h[n] by the circular convolution theorem First find lanour convolution y(n)=x(n)+h(n) N=7: my(n)= X(n) () h (0) = { Z y(n-7r), oln (6) = y(n) (equal to lawor round.) N=4: m4[n]=x[n](h[n]= { = { y(n-4)}, o(n < 3) = { y(n)+ y(n+4) } o , ow.) = { = 2 32=2 34; } We can use overlapp-add or overlap save methodes:

Overlapp-add: Or Choose blacksive B such that NRB+4-1

Overlapp-add: Or Choose blacksive B such that Oppsive xen howsive (2* Divide xm) who hon-overlapping blocks of size B=2: x0 xm, x, cn) x00 3* Calculate 5-pt DFT of xico), xico), how): Xolo), xce), H(x) @x Calculate yours = 10FTs {X,[e]th[e]}, you = 10FTs {X,[e]th[e]}.

She Add overlapping regions of your, your to find route you:

your - g. (n) = 4, (n-2)

1) The impulse response, h[n], of an LTI system is zero outside the interval $0 \le n \le 3$. The 4-point DFT

 $H[k] = 2\delta[k] + \delta[k-1] + \delta[k-3].$

 $x[n] = \delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3].$

b) If we denote the N-point DFT of x[n] and h[n] by $X_N[k]$ and $H_N[k]$, respectively, find and plot

Describe <u>clearly and briefly</u> a method to find the output y[n] of the LTI system where you can use only 5-point DFT and IDFT operations (other length DFT and IDFT operations are not

the N-point IDFT $m_N[n]$ of $M_N[k] = X_N[k]H_N[k]$ for N=7 and N=4.

of h[n] is given as

The input, x[n], to the LTI system is given by

a) Find and plot h[n] for all n

- 2) Consider a signal $x_C(t)$ that is bandlimited to 5 kHz with its spectrum, $X_C(j\Omega)$, plotted below. We want to filter $x_C(t)$ by using a discrete-time system and obtain a continuous-time output $y_C(t)$. The system is shown as the upper branch of the figure below. The desired effective frequency response $H_{eff}(j\Omega) = \frac{Y_C(j\Omega)}{X_C(j\Omega)}$ is constrained to be nonzero for $|\Omega| < \pi 10^4$.
 - a) Consider the upper branch. Let $H_0\left(e^{j\omega}\right)=\frac{\sin(\omega)}{\omega}, |\omega|<\pi$ and $T_1=10^{-4}$ sec.
 - +6 i) Obtain $X(e^{j\omega})$ and $Z_0(e^{j\omega})$ in terms of $X_C(j\Omega)$. Roughly <u>plot</u> $X(e^{j\omega})$, $H_0(e^{j\omega})$ and $Z_0(e^{j\omega})$, and label the axes clearly.
 - +6 ii) Write $Y_C(j\Omega)$ in terms of $Z_H(e^{j\omega})$. Determine T_2 and $H_{eff}(j\Omega)$. Plot $H_{eff}(j\Omega)$.
 - b) Consider the lower branch now. Let $T_1=10^{-5}$ seconds and $T_3=10^{-4}$ sec. In order to obtain $y_1(t)=y_C(at)$ for some positive real number a, find
 - +3 i) the frequency response $H_1(e^{j\omega})$
 - +y ii) conditions on M and a
- +3 iii) and a relation between M and a.

 $X_{\mathcal{C}}(J\Omega)$

Ti let

a) X(e) = + 2 Xdj(学, 学)) Since no aliasing occurs (e. 平 > 2·(10)), X(e) = + Xe(i元), ImKT

 $Z_{o}(e^{i\omega}) = \chi(e^{i\omega}) \cdot H_{o}(e^{i\omega}) = \frac{1}{11} \chi_{o}(\frac{i\omega}{T_{1}}) \cdot \frac{\sin(\omega)}{\omega}, \quad |\omega| < \pi.$ $\frac{1}{T_{1}} = \frac{10^{4}}{10^{4}}$

 $|T_2 = T_1 = 10^{44} \text{ sec.}| \Rightarrow |Y_c(j_1) = \left\{ H_b(e^{j_1M_2}) \cdot |X_c(j_1)|, |S_1| < T_1, |D|^2 \right\}$ $|T_2 = T_1 = 10^{44} \text{ sec.}| \Rightarrow |Y_c(j_1)| = \left\{ H_b(e^{j_1M_2}) \cdot |X_c(j_1)|, |S_1| < T_1, |D|^2 \right\}$ $|T_2 = T_1 = 10^{44} \text{ sec.}| \Rightarrow |Y_c(j_1)| = \left\{ H_b(e^{j_1M_2}) \cdot |X_c(j_1)|, |S_1| < T_1, |D|^2 \right\}$ $|T_2 = T_1 = 10^{44} \text{ sec.}| \Rightarrow |Y_c(j_1)| = \left\{ H_b(e^{j_1M_2}) \cdot |X_c(j_1)|, |S_1| < T_1, |D|^2 \right\}$ $|T_2 = T_1 = 10^{44} \text{ sec.}| \Rightarrow |Y_c(j_1)| = \left\{ H_b(e^{j_1M_2}) \cdot |X_c(j_1)|, |S_1| < T_1, |D|^2 \right\}$ $|T_2 = T_1 = 10^{44} \text{ sec.}| \Rightarrow |Y_c(j_1)| = \left\{ H_b(e^{j_1M_2}) \cdot |X_c(j_1)|, |S_1| < T_1, |D|^2 \right\}$ $|T_2 = T_1 = 10^{44} \text{ sec.}| \Rightarrow |Y_c(j_1)| = \left\{ H_b(e^{j_1M_2}) \cdot |X_c(j_1)|, |S_1| < T_1, |D|^2 \right\}$

$$7 = 10^{5} \text{ Ser.} \qquad X(e^{i\omega}) = \frac{1}{7} \cdot X_{e}(\frac{i\omega}{7}, \frac{i\omega}{7}) \cdot (\omega | e^{i\omega}) = \frac{1}{16} \cdot \frac{1}{16} \cdot$$