

INDIAN INSTITUTE OF TECHNOLOGY, KANPUR

EE-619 VLSI SYSTEM DESIGN

VERILOG PROJECT

GROUP NO: 7

ANANYA 190126 ADITI 190055 MADIHA FATIMA 19807465 SAI VEDANT-210901

Course Instructor: Dr. Rik Dey

- Icarus Verilog and gtkwave can be used to simulate all the circuits designed.
- All the simulation files are present in the folder itself.
- Commands to run the simulations are given along with each part.

Q1 a)

0 0 1 0
1 0
0
0
U
1
1
1

S	Out
0	В
1	A
	(b)

• Structural modelling of 2-to-1 Multiplexer

Verilog file: mux2s.v

Testbench: mux2s_tb.v

Command to run testbench:

\$ iverilog -o mux2s_tb.vvp mux2s_tb.v

\$ vpp mux2s_tb.vpp

gtkwave file: mux2s_tb.vcd

• Behavorial modelling of 2-to-1 Multiplexer

Verilog file: mux2b.v

Testbench: mux2b_tb.v

Command to run testbench:

\$ iverilog -o mux2b_tb.vvp mux2b_tb.v

\$ vpp mux2b_tb.vpp

gtkwave file: mux2b_tb.vcd

```
PS C:\Users\saive\Desktop\ee> iverilog -o mux2b_tb.vvp mux2b_tb.v
PS C:\Users\saive\Desktop\ee> vvp mux2b_tb.vvp
VCD info: dumpfile mux2b_tb.vcd opened for output.
Results
A=00
        S=0
                out=0
        S=1
A=00
                out=0
A=01
        S=0
                out=0
        S=1
A=01
                out=1
        S=0
A=10
                out=1
        S=1
A=10
                out=0
A=11
        S=0
                out=1
A=11
        S=1
                out=1
A=00
        S=0
                out=0
A=00
        S=1
                out=0
A=01
        S=0
                out=0
        S=1
A=01
                out=1
        S=0
A=10
                out=1
A=10
        S=1
                out=0
        S=0
A=11
                out=1
A=11
        S=1
                out=1
A=00
        S=0
                out=0
        S=1
A=00
                out=0
A=01
        S=0
                out=0
A=01
        S=1
                out=1
mux2b_tb.v:18: $finish called at 100 (1ns)
PS C:\Users\saive\Desktop\ee>
```


• 2n-to-1 Multiplexer using 2-to-1 Multiplexer and implementation of 5 variable function

Verilog file: mux2n.v

Testbench: mux2n_tb.v

Command to run testbench:

\$ iverilog -o mux2n_tb.vvp mux2n_tb.v

\$ vpp mux2n_tb.vpp

gtkwave file: mux2n_tb.vcd

32-to-1 multiplexer was implemented using the 2-to-1 multiplexer designed above. As an example the arbitrary function

F=ABCDE+A'B'C'D'E' was implemented in the testbench.

```
PS C:\Users\saive\Desktop\ee> iverilog -o mux2n_tb.vvp mux2n_tb.v
PS C:\Users\saive\Desktop\ee> vvp mux2n_tb.vvp
VCD info: dumpfile mux2n tb.vcd opened for output.
Results
S=00000 out=1
                      F=1
S=00001 out=0
S=00010 out=0
                      F=0
S=00011 out=0
                      F=0
S=00100 out=0
                      F=0
S=00101 out=0
                      F=0
S=00110 out=0
                      F=0
S=00111 out=0
                      F=0
S=01000 out=0
                      F=0
S=01001 out=0
                      F=0
S=01010 out=0
                      F=0
                S=01011 out=0
F=0
S=01100 out=0
                      F=0
S=01101 out=0
                      F=0
S=01110 out=0
                      F=0
S=01111 out=0
                      F=0
S=10000 out=0
                      F=0
F=0
                S=10001 out=0
S=10010 out=0
                      F=0
S=10011 out=0
                      F=0
S=10100 out=0
S=10101 out=0
                      F=0
S=10110 out=0
                      F=0
S=10111 out=0
                      F=0
S=11000 out=0
                      F=0
S=11001 out=0
                      F=0
S=11010 out=0
                      F=0
S=11011 out=0
S=11100 out=0
                      F=0
S=11101 out=0
                      F=0
S=11110 out=0
                      F=0
S=11111 out=1
                      F=1
```


JK flip-flop symbol

Truth table of JK flip-flop

C	J	K	Q	Q`
HIGH	0	0	Latch	Latch
HIGH	0	1	0	1
HIGH	1	0	1	0
HIGH	1	1	Toggle	Toggle
LOW	0	0	Latch	Latch
LOW	0	1	Latch	Latch
LOW	1	0	Latch	Latch
LOW	1	1	Latch	Latch

• Behavorial modelling of JK Flip Flop

Verilog file: jkb.v

Testbench: jkb tb.v

Command to run testbench:

\$ iverilog -o jkb_tb.vvp jkb_tb.v

\$ vpp jkb tb.vpp

gtkwave file: jkb_tb.vcd

```
PS C:\Users\saive\Desktop\Verilog Project EE619A Group 7> iverilog -o jkb_tb.vvp jkb_tb.v
PS C:\Users\saive\Desktop\Verilog Project EE619A Group 7> vvp jkb_tb.vvp
VCD info: dumpfile jkb_tb.vcd opened for output.
        k=x
                q=0
                        qbar=1
        k=x
                         qbar=1
                q=0
j=0
        k=0
                        qbar=1
                q=0
j=0
                        qbar=1
        k=1
                q=0
j=1
                        qbar=0
        k=0
                q=1
                q=0
j=1
        k=1
                        qbar=1
jkb_tb.v:40: $finish called at 60 (1ns)
PS C:\Users\saive\Desktop\Verilog Project EE619A Group 7>
```


Values that are in Red are Undefined('x' values)

• Structural modelling of JK Flip Flop

Verilog file: jks.v

Testbench: jks_tb.v

Command to run testbench:

\$ iverilog -o jks_tb.vvp jks_tb.v

\$ vpp jks_tb.vpp

gtkwave file: jks_tb.vcd

• 4 bit synchronous counter using JK FlipFlop

Rst	CLK	03	02	01	00
1	1	0	0	0	0
0	1	0	0	0	1
0	1	0	0	1	0
0	1	0	0	1	1
0	1	0	1	0	0
0	1	0	1	0	1
0	1	0	1	1	0
0	1	0	1	1	1
0	1	1	0	0	0
0	1	1	0	0	1
0	1	1	0	1	0
0	1	1	0	1	1
0	1	1	1	0	0
0	1	1	1	0	1
0	1	1	1	1	0
0	1	1	1	1	1
0	1	0	0	0	0

Verilog file: count.v

Testbench: count_tb.v

Command to run testbench:

\$ iverilog -o count_tb.vvp count_tb.v

\$ vpp count_tb.vpp

gtkwave file: count_tb.vcd

```
PS C:\Users\saive\Desktop\Verilog Project EE619A Group 7> iverilog -o count_tb.vvp count_tb.v
PS C:\Users\saive\Desktop\Verilog Project EE619A Group 7> vvp count_tb.vvp
VCD info: dumpfile count_tb.vcd opened for output.
         0
0
                  0
         0
                            1
0
                  1
                            0
         0
0
                  1
         0
                            1
0
         1
                  0
                            0
0
         1
                  0
0
                  1
         1
0
         1
                  1
                            1
1
                  0
         0
                  0
         0
                            1
         0
                  1
         0
                  1
                            1
         1
                  0
                            0
         1
                  0
                            1
         1
                  1
                            0
1
0
0
         1
                  1
                            1
         0
                  0
                            0
         0
                  0
                            1
0
         0
                            0
0
         0
                            1
0
                  0
         1
                            0
0
                  0
         1
                            1
0
                            0
0
1
1
1
1
         0
                            0
         0
                            0
         0
                  0
                            0
                  0
                            1
1
                            0
1
                  1
count_tb.v:31: $finish called at 320 (1ns)
PS C:\Users\saive\Desktop\Verilog Project EE619A Group 7> gtkwave
```


As we can see the Register A is synchronously increasing to 15.