

David Birch
Imperial College
@VerifyVeracity

EuSpRIG 2013

IRM Models

Challenges

Conceptual Approach

Methodolog

Model Extraction Visualise

Model MetriDiscipline Coupsemsitivity Ana

Conclusions

Imperial College London ARUP

Multidisciplinary Engineering Models: Methodology and Case Study in Spreadsheet Analytics

David.Birch@Imperial.ac.uk

Imperial College London

David Birch

Paul H J Kelly

Tony Field

Joan Ko

Alvise Simondetti

Helen Liang
Glen Mullineux

ARUP

We are an independent firm of designers, planners, engineers, consultants and technical specialists offering a broad range of professional services.

Bosight

We shape a better world

My Goal

To demonstrate how spreadsheet analytics can give insight into the conceptual model of multidisciplinary engineering models

Context – Urban Masterplanning

Design of a new campus, suburb or city at a high level of abstraction

- Multiple Disciplines
- Multiple Objectives
- Multiple Models

Integrated Resource Management

Ayaz E. and Levitas J. Spatially linked integrated resource management (IRM): A tool to inform eco-city planning. In *Proceedings of the 8th International Eco-city Conference, Eco-city 08*, December 2008

IRM Conceptual Model

Page J., Grange N. and Kirkpatrick N. The integrated resource management (IRM) model - guidance tool for sustainable urban design. In *25th Conference on Passive and Low Energy Architecture, PLEA08*, October 2008

IRM Spreadsheet Model

- Interdisciplinary communication, disparity of data & assumptions
- Large data requirements
- Complexity of modelling

For	mulas Used in IRM mo	dels
IRM 2008	IRM 2009	IRM 2011
1,234 Cells	2,357 Cells	37,926 Cells
2,360 References	3,404 References	253,222 References

- Models too broad => model evolution
- Models too narrow => model evolution

- Models too broad => model evolution
- Models too narrow => model evolution
- Constant difficult project adaptation

- Cause & Effect unclear
- Validation (model vs real world)
- Verification (spreadsheet vs model)
- Difficulty of optimisation

Scientific Model Making

Scientific Model

Real World
Conceptual Model
Mathematical Description
Code

Verification / Validation

Scientific Model

http://www.easterbrook.ca/steve/?p=2030

Spreadsheets

Scientific Model

Real World

- Conceptual Model
- Mathematical Description
 - Code

Excel Models

Real World

Conceptual Model

Excel Formulas

 The excel model has become the math and the code

Spreadsheets

Scientific Model

Excel Engineering Model

 The excel model has become the conceptual model

Spreadsheets

Scientific Model

Excel Engineering Model

- Real World
 Conceptual Model
 Mathematical Description
 Code
- Real World

Excel Model Formulas

- What can code metrics tell practitioners about their conceptual model?
- Particularly in multi-disciplinary models

- 1. Obtain Model and project objectives.
- 2. Define Key Performance Indicators (KPIs) of interest

^{*} Liang, H. and Birch, D. (2011), "Extraction and Analysis Methodology for Supporting Complex Sustainable Design", Proceedings of the 18th International Conference on Engineering Design (ICED11).

- 1. Obtain Model and project objectives.
- 2. Define Key Performance Indicators (KPIs) of interest
- **3. Extract** Slice model to expose and reduce complexity

^{*} Liang, H. and Birch, D. (2011), "Extraction and Analysis Methodology for Supporting Complex Sustainable Design", Proceedings of the 18th International Conference on Engineering Design (ICED11).

- 1. Obtain Model and project objectives.
- 2. Define Key Performance Indicators (KPIs) of interest
- 3. Extract Slice model to expose and reduce complexity
- **4. Analyse Visualise** Aid comprehension & show cause & effect.
- Analyse Metrics For insight into model composition.

^{*} Liang, H. and Birch, D. (2011), "Extraction and Analysis Methodology for Supporting Complex Sustainable Design", Proceedings of the 18th International Conference on Engineering Design (ICED11).

- 1. Obtain Model and project objectives.
- 2. Define Key Performance Indicators (KPIs) of interest
- 3. Extract Slice model to expose and reduce complexity
- Analyse Visualise Aid comprehension & show cause & effect.
- 5. Analyse Metrics For insight into model composition.
- **6. Optimise** Set variable ranges to formalise implicit knowledge enabling sensitivity analysis to give insight and focus optimisation effort.

^{*} Liang, H. and Birch, D. (2011), "Extraction and Analysis Methodology for Supporting Complex Sustainable Design", Proceedings of the 18th International Conference on Engineering Design (ICED11).

Model Extraction

- Recursive extraction, parsing and evaluating of cell formulas from KPI's backwards
- Slice model to reduce complexity

Model Extraction

- Modified version of http://ncalc.codeplex.com
- It's a .Net expression language in C#
- Re-implemented functions (sum, lookup,...)
- Allows classification of link type
- Now bug compatible with Excel

	А	В
1	apples	oranges
2	2	4
3	3	5
4	=++A1++A2++A3	=+++SUM(B1:B3)

Model Extraction

```
Expression e = new Expression("Round(Pow(Pi, 2) + Pow([Pi2], 2) + X, 2)");
e.Parameters["Pi2"] = new Expression("Pi * Pi");
e.Parameters["X"] = 10;

e.EvaluateParameter += delegate(string name, ParameterArgs args)
{
    if (name == "Pi")
        args.Result = 3.14;
    };

Debug.Assert(117.07 == e.Evaluate());
```

	А	В
1	apples	oranges
2	2	4
3	3	5
4	=++A1++A2++A3	=+++SUM(B1:B3)
	#VALUE!	9

Model Complexity

Model Metrics

	For	mulas Used	in IRM mo	dels	
IRM :	2008	IRM	2009	IRM 2	011
1,234	Cells	2,357	' Cells	37,926	Cells
2,360 Re	ferences	3,404 Re	ferences	253,222 Re	eferences
SUM	79	SUM	176	IF	5250
		IF	99	MATCH	2714
		TYPE	81	HLOOKUP	2714
				ROUNDUP	1717
				ISERROR	1357
				SUM	1223
				VLOOKUP	198
				SUMIF	78
				AND	57
				ISNUMBER	28
				Misc	7

Formula Length

Formula Length Frequency

"Magic" Constants

- Total Constants Found: 27,783
- Cells with Constants: 11.88%
- Average Constants in cells with constants: 3.32
- Maximum Constants Found: 9
 - Most common Constants
 - > 0 occurred 12664 times
 - > False occurred 4430 times
 - > 1 occurred 4185 times
 - > True occurred 1989 times
 - > 0.99 occurred 1112 times
 - > 100 occurred 565 times
 - 2 occurred 474 times
 - 1000000 occurred 338 times

- 'ON' occurred 274 times
- 3.28 occurred 272 times
- > 1000 occurred 265 times
- 'OFF' occurred 198 times
- > 0.85 occurred 139 times
- > 0.9 occurred 113 times
- > 3 occurred 108 times

Common Sub Expressions

Most Common Sub Expressions:

- ([Control_Panel!\$J\$59])= True appeared in 449 formulas
- ([Control_Panel!\$L\$59])= True appeared in 392 formulas
 - These two relate to whether or not Waste Reduction strategies are enabled
- 3.28 ^ 2 appeared in 272 formulas
 - Conversion factor guess units!
- 1 ([Control_Panel!\$Q\$75]) appeared in 240 formulas
- 1 ([Control_Panel!\$R\$75]) appeared in 240 formulas
 - These two capture % of journeys within developments not removed through design
- ([Control_Panel!\$J\$70])= True appeared in 126 formulas
- ([Control_Panel!\$L\$70])= True appeared in 126 formulas
 - Enabling of anaerobic digestion
- ([Control_Panel!\$Q\$78])= 1 appeared in 120 formulas
 - Does the modal split of transport add up to 100%?

IRM Per Capita Carbon calculation has 1224 inputs

Discipline Metrics

Discipline Model	Cell Counts	Inputs	% Inputs	Average Valency
Land Use (LU)	38	24	63%	3.24
Socio Economic (SE)	38	23	61%	1.87
Passenger Trans (PT)	210	180	86%	1.57
Pass Trans Coeff (PTCo)	140	99	71%	2.44
Energy Demands (ED)	477	371	78%	1.89
Logistics (Lo)	133	111	83%	1.33
Logistics Coeff (LoCo)	16	16	100%	2.75
Water (Wa)	111	111	100%	1.00
Energy Supply (ES)	34	33	97%	1.79
Energy Sup Coeff (ESCo)	12	12	100%	6.00
Convert Factors (CF)	2	2	100%	18.00
Out: Energy Dem (SSED)	185	12	6%	3.32
Out: Energy Sup (SSES)	244	48	20%	4.40
Out: Logistics (SSLo)	67	0	0%	3.99
Out: Pass Trans (SSPT)	366	0	0%	3.71
Out: Socio-Econ (SSSE)	14	0	0%	4.21
Out: Water (SSW)	264	75	28%	4.08
Project Outputs (Out)	6	0	0%	14.83

Discipline Coupling Matrix

Shows references from cells to their data

Sheet {Row} makes X references to data in Sheet {Col}

Cells in Sheet {Col} are used by sheet {Row} X times

ces					Cei	15 111 3	neet (Col} a	re use	u by s	neet {	KOW}	v ume	5			I		
.0/10	Buildings	Carbon_C	Carbon	Construct	Control_P	Energy_C	Energy	Extraction	Land	Land_C	Materials	Sum_Land	Sum_Reso	Transport	Transport	Waste	Water	Waste_C	Water_C
Buildings	309	0	0	0	132	0	0	0	66	0	0	0	0	0	0	0	0	0	0
Carbon_C	0	57488	52724	0	292	533	0	0	0	2716	252	0	0	350	35	0	0	350	0
Carbon	0	0	5772	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Construction	0	0	0	2205	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Control_Panel	0	0	0	0	640	0	0	0	66	0	0	4	28	0	0	0	0	0	0
Energy_C	0	0	0	0	288	12384	4720	0	0	1843	0	0	0	0	0	0	0	0	489
Energy	0	0	0	0	0	0	5219	0	0	0	0	0	0	0	0	0	0	0	0
Extraction	0	0	0	0	0	0	0	0	0	0	0	2	3	0	0	0	0	0	0
Land	378	0	0	0	132	0	0	0	1596	0	0	0	0	0	0	0	0	0	0
Land_C	5151	0	0	0	133	0	0	0	860	37047	0	0	0	1587	0	0	0	0	0
Materials_C	0	0	0	4410	168	0	0	0	0	2910	7908	0	0	0	0	0	0	0	0
Sum_Land_Use	0	0	0	0	2	0	0	0	0	5	0	20	0	0	0	0	0	0	0
Sum_Resources	0	486	0	0	0	153	0	0	0	25	0	0	3020	84	84	0	0	126	171
Transport_C	0	0	0	0	1440	0	0	0	0	2328	0	0	0	25056	18816	0	0	0	0
Transport	0	0	0	0	0	0	0	0	0	0	0	0	0	0	14789	0	0	0	0
Waste	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1067	0	0	0
Water	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	8009	0	0
Waste_C	0	0	0	0	2640	0	0	0	0	1455	0	0	0	0	0	3792	0	12372	0
Water_C	0	0	0	0	514	4	0	0	0	4559	0	0	0	0	0	0	6372	0	13696

Discipline Coupling Matrix

Shows references from cells to their data

Sheet {Row} makes X references to data in Sheet {Col}

Cells in Sheet {Col} are used by sheet {Row} X times

ces					Cei	115 111 3	neer	Coi} a	ie use	u by s	neet t	NOW }	\ tillle	:5					
10/1	Buildings	Carbon_C	Carbon	Construct	Control_P	Energy_C	Energy	Extraction	Land	Land_C	Materials	Sum_Land	Sum_Reso	Transport	Transport	Waste	Water	Waste_C	Water_C
Buildings	309	0	0	0	132	0	0	0	66	0	0	0	0	0	0	0	0	0	0
Carbon_C	0	57488	52724	0	292	533	0	0	0	2716	252	0	0	350	35	0	0	350	0
Carbon	0	0	5772	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Construction	0	0	0	2205	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Control_Panel	0	0	0	0	640	0	0	0	66	0	0	4	28	0	-	0	0	0	0
Energy_C	0	0	0	0	288	12384	4720	0	0	1843	0	0	0	0	0	0	0	0	489
Energy	0	0	0	0	0	0	5219	0	0	0	0	0	0	0	0	0	0	0	0
Extraction	0	0	0	0	0	0	0	^	n	۸	n	າ	2	0	0	0	0	0	0
Land	378	0	0	0	132	0	0		nerg	gy an			ort	0	0	0	0	0	0
Land_C	5151	0	0	0	133	0	0				't tall			1587	0	0	0	0	0
Materials_C	0	0	0	4410	168	0	0	S	o wh	at ak		elect	ric	0	0	0	0	0	0
Sum_Land_Use	0	0	0	0	2	0	0			ca	irs?			0	0	0	0	0	0
Sum_Resources	0	486	0	0	0	103	0	K ₀	0	25	0	0	3020	84	84	0	0	126	171
Transport_C	0	0	0	0	1440	0	0	0	0	2328	0	0	0	25056	18816	0	0	0	0
Transport	0	0	0	0	0	0	0	0	0	0	0	0	0	0	14789	0	0	0	0
Waste	0	0	0	0	0	5	0	0	0	0		Sul	oseq	uent		1067	0	0	0
Water	0	0	0	0	0	0	0	0	0	0	im	prov	emei	nt to	IRM	0	8009	0	0
Waste_C	0	0	0	0	2640	0	0	0	0	1455	mo	odel	resol	ved :	this.	3792	0	12372	0
Water_C	0	0	0	0	514	4	0	0	0	4559	0	0	0	0	0	0	6372	0	13696

V1 Discipline Coupling

	01LU	02SE	03PT	03PTCo	04ED	05Lo	05LoCo	07Water	08ES	08ESCo	CF	SSEDES	SS_Lo SS	_Wa SS_	C02
01LU	0	() () () ()	0 () () 0	0	0	<u>24</u>	0 🜘	18	0
02SE	0	() () () ()	0 () (0	0	0	0	0	16 🔵	1
03PT	0	(0 0 10	5 0) ()	0 () (0	0	0	0	0	0	60
03PTCo	0	() () () ()	0 () (0	0	0	0	0	0	105
04ED	0	() () () ()	0 () (0	0	0	8 0	0	0 🔵	0
05Lo	0	() () 0) (0 🔵 1	6 () (0	0	0	0	31	0	45
05LoCo	0	() () () ()	0 () (0	0	0	0	0	0	135
07Water	0	() () 0) ()	0 () (0	0	0	0	0	111	0
08ES	0	() () 0) ()	0 () (0	0	0	8 0	0	0 🔴	0
08ESCo	0	() () 0) ()	0 () (0	0	0	0	0	0	87
CF	0	() () () ()	0 () () 0	0	0	0	1 0	29	0
SS_ED_ES	0	() () () ()	0 () () 0	0	0	0 10	0	0	21
SS_Lo	0	() () 0) ()	0 () (0	0	0	0	0	0	48
SS_Water	0	() () 0) ()	0 () (0	0	0	0	0	353	7
SS_Carbon	0	() () () ()	0 () (0	0	0	0	0	0	1066

Focus on Energy Supply, Water & CO2

V2 Discipline Coupling

New Focus on Passenger Transport

	01LU	02	2SE	031	PT	PΊ	ГСо	041	ED	05L	0	Lo	Со	Wa	3	08ES	ES	Со	Ç.	5	SS_L	5	SS_PT	SS	_SE	SS	_ES	SS	_w	SS	_ED	(Out
01LU	19		5		0		0		0		0		0	<u> </u>	ו כ	0		0	0			0	0		12		0		15		53		0
02SE	0		19		0		0		0		0		0		וֹ כ	0		0	0		7	0	0		23		0		5		0		0
03PT	, i o		0	•	60		0		0		0		0	<u> </u>	ָר כ	0		0	0); (0	210		0		0		0		0		0
PTCo	, i o		0		0		81		0		0		0		ָר כ	0		0	0		<u>;</u> ; (0	180		0		0		0		0		0
04ED	0		0		0		0	4	24		0		0		ָר כ	0		0	0		<u>)</u> ;)	0		0		0		0		53		0
05Lo	, i o		0		0		0		0	4	4		0		ו כ	0		0	0		8	9	0		0		0		0		0		0
LoCo	0		0		0		0		0		0		0	<u> </u>	ָר כ	0		0	0		4	4	0		0		0		0		0		0
Wa	, i o		0		0		0		0		0		0	<u> </u>	ָר כ) O		0	0		<u>)</u> :)	0		0		0		111		0		0
08ES	0		0		0		0		0		0		0	· · · · · · · · · · · · · · · · · · ·	0	1		0	0		<u>)</u>)	0		0		59		0		0		0
ESCo	, i o		0		0		0		0		0		0		וֹ כ	0		0	0		<u>;</u> ;)	0		0		72		0		0		0
CF	, i o		0		0		0		0		0		0		וֹ כ	į O		0	0			1	0		0		0		35		0		0
SS_Lo	, i o		0		0		0		0		0		0	· · · · · · · · ·	ו ס	, i 0		0	0		4	4	0		0		0		0		45		0
SS_PT	0		0		0		0		0		0		0	<u> </u>	ָר כ	0		0	0) (0	9 453		0		0		0		60		3
SS_SE	0		0		0		0		0		0		0	· · · · · · · · · · · · · · · · · · ·	ָר כ	0		0	0)	0		6		0		7		0		5
SS_ES	0		0		0		0		0		0		0	· · · · · · · · · · · · · · · · · · ·	ָר כ	0		0	و			0	0		0	_	424		0		1		59
ss_w	0		0		0		0		0		0		0	· · · · · ·	ָר כ	0		0	0): (0	0	7	0		0		449		6		0
SS_ED	0		0		0		0		0		0		0	· · · ·	ָר כ	0		0	0				0		0		35		0		175		12
Out	, i o		0		0		0		0		0		0	· · · · · ·	<u>ַ</u>	0		U	0		<u>;</u> ; ()	0		0		0		0		0		5

Higher Internal Complexity

New Focus on Energy Demand

V3 Discipline Coupling

RO	OW referenced				Inp	uts							Calculation	1				Out	puts	
	by COLUMN	Land	Buildings	Carbon	Construct	Energy	Transport	Waste	Water	Land_C	Materials	Transport	Waste_C	Water_C	Energy_C	Carbon_C	Sum_Land	Sum_Reso	Outputs	Control_P
	Land	1596	66	0	0	0	0	0	0	860	0	0	0	0	0	0	0	0	0	66
	Buildings	378	309	0	0	0	0	0	0	5151	0	0	0	0	0	0	0	0	0	0
	Carbon	0	0	5772	0	0	0	0	0	0	0	0	0	0	0	52724	0	0	0	0
Inputs	Construction	0	0	0	2205	0	0	0	0	0	4410	0	0	0	0	0	0	0	0	0
dul	Energy	0	0	0	0	5219	0	0	0	0	0	0	0	0	4720	0	0	0	0	0
	Transport	0	0	0	0	4	14789	0	0	0	0	18816	0	0	5	35	0	84	0	0
	Waste	0	0	0	0	0	0	1067	0	0	0	0	3792	0	0	0	0	0	0	0
	Water	0	0	0	0	0	0	0	8009	0	0	0	0	6372	0	0	0	0	0	0
	Land_C	0	0	0	0	0	0	0	0	37047	2910	2328	1455	4559	1843	2716	5	25	0	0
_	Materials_C	0	0	0	0	0	0	0	0	0	7908	0	0	0	0	252	0	0	0	0
Calculation	Transport_C	0	0	0	0	3	0	0	0	1587	0	25056	0	0	8	350	0	84	0	0
eins	Waste_C	0	0	0	0	0	0	0	0	0	0	0	12372	0	0	350	0	126	0	0
cale	Water_C	0	0	0	0	0	0	0	0	0	0	0	0	13696	489	0	0	171	0	0
	Energy_C	0	0	0	0	0	0	0	0	0	0	0	0	4	12384	533	0	153	0	0
	Carbon_C	0	0	0	0	0	0	0	0	0	0	0	0	0	0	57488	0	486	0	0
S	Sum_Land_Use	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	20	0	2	4
put	Sum_Resources	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3020	3	28
Outputs	Outputs	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
•	Control_Panel	132	132	0	0	0	0	0	0	133	168	1440	2640	514	288	292	2	0	0	640

New Materials Focus

V3 Discipline Coupling

Electric Cars

RC	OW referenced				Inp	outs							Calculation	1				Out	puts	
	by COLUMN	Land	Buildings	Carbon	Construct	Energy	Transport	Waste	Water	Land_C	Materials	Transport	Waste_C	Water_C	Energy_C	Carbon_C	Sum_Land	Sum_Reso	Outputs	Control_P
	Land	1596	66	0	0	0	0	0	0	860	0	0	0	0	0	0	0	0	0	66
	Buildings	378	309	0	0	0	0	0	0	5151	0	0	0	0	0	0	0	0	0	0
	Carbon	0	0	5772	0	0		0	0	0	0	0	0	0	0	52724	0	0	0	0
puts	Construction	0	0	0	2205	0	0	0	0	0	4410	0	0	0	0	0	0	0	0	0
lnp	Energy	0	0	0	0	5219	0		0	0	0	0	0	0	A720	0	0	0	0	0
	Transport	Lan	ıd/Bı	uildin	gs	4	14789	0	0	0	0	18816	0	0	5	35	0	84	0	0
	Waste		ore d			0	0	1067	0	0	0	0	3792	0	Û	U	0	0	0	0
	Water	0	0	0	0	0	0	0	8009	1	0	0	0	6372	0	0	0	0	0	0
	Land_C	0	0	0	0	0	0	0	0	37047	2910	2328	1455	4559	1843	2716	5	25	0	0
_	Materials_C	0	Higl		0	0	Q	0	U	0	7908	0	0	0	0	252	0	0	0	0
Calculation	Transport_C	0	Coup	oling	0	3	0	0	0	1587	0	25056	0	0	8	350	0	84	0	0
ula	Waste_C	0	0	0	0	0	0	0	0	0	0	0	12372	0	0	350	0	126	0	0
Calc	Water_C	0	New	Con	trol	0	0	0	0	0	0	0	0	13696	489	0	0	171	0	0
	Energy_C	0	0 P	anel	0	0	0	0	0	0	U	0	0	4	12384	533	0	153	0	0
	Carbon_C	9	0	0	0	0	0	0	0	U	0	0	0	0	0	57488	0	486	0	0
s	Sum_Land_Use	0	0	0	0	0	0	0	8	0	0	0	0	0	0	0	20	0	2	4
puts	Sum_Resources	0	0	0	0	U	w Wa	U	0	0	0	0	0	0	0	0	0	3020	3	28
Out	Outputs	0	0	0	0	0	oçus	0	0	0	0	0	0	0	0	0	0	0	0	0
	Control_Panel	132	132	0	0	0	0	0	0	133	168	1440	2640	514	288	292	2	0	0	640

Discipline Stability

- Afferent Couplings (Ca): The number of other packages that depend upon classes within the package is an indicator of the <u>package's responsibility</u>.
- Efferent Couplings (Ce): The number of other packages that the classes in the package depend upon is an indicator of the <u>package's independence</u>.
- Instability (I): The ratio of efferent coupling (Ce) to total coupling (Ce + Ca) such that I = Ce / (Ce + Ca). This metric is an indicator of the package's resilience to change. The range for this metric is 0 to 1, with
 - I=0 indicating a completely stable package and
 - I=1 indicating a completely instable package.

Discipline Stability

	Afferent	Efferent	
	Coupling	Coupling	Instability
	(Responsibility)	(Independence)	
Land Use	4	0	0%
Socio Economic	2	1	33%
Passenger Trans	1	0	0%
Pass Trans Coeff	1	0	0%
Energy Demands	1	0	0%
Logistics	1	0	0%
Logistics Coeff	1	0	0%
Water	1	0	0%
Energy Supply	1	0	0%
Energy Sup Coeff	1	0	0%
Convert Factors	2	0	0%
Out: Energy Dem	2	6	75 %
Out: Energy Sup	2	3	60%
Out: Logistics	1	3	75%
Out: Pass Trans	2	2	50%
Out: Socio-Econ	2	2	50%
Out: Water	1	5	83%
Project Outputs	0	4	100%

• Afferent = # dependants

- +ve = Likely to break other disciplines

• Efferent = # dependencies

— +ve = likely to be broken

Instability =

dependencies

(#dependants+#dependencies)

Sensitivity Analysis

- Demonstrates which input variables an output indicator is most sensitive to changes in.
- Indicates which variables have the most scope for changing the output variable.
- A relative metric between input variables.

Run many designed experiments then compute sensitivities

PB Analysis

- Plackett Burman Designs specify a series of experimental runs.
- They require a number of runs linear with respect to the number of parameters
- Only exist for certain sizes
- Do not take account of aliasing / confounding the effect of interactions between parameters.

Inputs

- Model
- Factors to Analyse
 - Cell identifier,
 - Friendly name
 - Low value
 - High value
- KPI's to consider

Sensitivity Analysis

	Normalised Sensitivity for CO₂e Emissions Per Capita					
Variable	Total		Non-Domestic Buildings		External Transport	
FuelType Petrol City Car		100		0		100
CO2 emissions from gas combustion		91		100		0
FuelType Electric Heavy Rail		78		0		78
District Heat Demand - Gas Boiler		71		73		0
District Heat Efficiency - Gas Boiler		71		73		0
Gas Network Efficiency		68		83		0
Gas Network Demand		62		78		0
Electricity Demand from CHP		57		68		0
CH4 emissions from biomass		47		52		0
Efficiency of Heat from biomass		46		55		0

Value

- Focus engineers upon decisions with most scope for impact
- Identify relative scope for impact of design decisions
- Identify impact of uncertainty in model assumptions

Conclusions

- Approach: use spreadsheet analytics to explore the conceptual model
- Shown the value of Spreadsheet Analytics!
 - Extraction and Analysis Methodology (EAM)*
 - Visualisation to show communication
 - Model metrics indicate complexity and focus
 - Discipline coupling shows interdisciplinary comm.
 - Sensitivity analysis aids optimisation tasks

^{*} Liang, H. and Birch, D. (2011), "Extraction and Analysis Methodology for Supporting Complex Sustainable Design", Proceedings of the 18th International Conference on Engineering Design (ICED11).