Dynamical Systems: Homework 2

Chris Hayduk

September 29, 2020

Problem 1.

We have,

$$\Sigma = \Sigma_b = \{X = (x_k)_{k=-\infty}^{\infty} : x_k \in \{0, \dots, b-1\}\}$$

and,

$$d(x,y) = d_{\theta}(x,y) = \begin{cases} 0 & \text{if } \mathbf{x} = \mathbf{y} \\ \theta^{\min\{|k|: x_k \neq y_k\}} \end{cases}$$

where $0 < \theta < 1$.

Need to show that (Σ, d) is compact.

Let us suppose that (Σ, d) is closed and bounded but not compact, and then prove that this gives us compactness.

Consider $C_{-k,k}(x) = \{ y \in \Sigma : y_{-k} = x_{-k}, \dots, y_k = x_k \}$. Then

$$C_{-k,k}(x) = B(x, \theta^k)$$

= $\{y \in \Sigma : d_{\theta}(x, y) < \theta^k\}$

Hence, $C_{-k,k}(x)$ is open. $C_{-k,k}$ is also closed.

 $C_{-1,1} = \{x_{-1}, x_0, x_1\}, x \in \Sigma.$ There are b^3 possibilities.

For $C_{-1,1}$, we have

$$C_{-1,1}(x) = \bigcup_{y \in C_{-1,1}(x)} C_{-2,2}(y)$$

So there are b^2 cylinders.

Since Σ is assumed to be bounded, we have a sequence of cylinders C_{ℓ} in Σ such that $\Sigma \cap C_{\ell}$ does not have a finite subcover.

We claim $(\Sigma \cap C_{\ell}) \to 0$.

For every ℓ , there exists $x_{\ell} \in \Sigma \cap C_{\ell}$

This implies that $(x_{\ell})_{\ell}$ is a Cauchy sequence. Since Σ is complete, the limit of this sequence exists and we write,

$$x = \lim_{\ell \to \infty} x_{\ell}$$

Since Σ is assumed to be closed, we have $x \in \Sigma$

Hence, $\exists \lambda_x$ such that $x \in U_{\lambda_x}$ with U_{λ_x} open.

Thus, $\exists r > 0$ such that $B(x,r) \subset U_{\lambda_r}$

Since claim $(C_{\ell}) \to 0$ and $x_{\ell} \in C_{\ell}$, we can conclude that,

$$C_{\ell} \subset B(x,r) \subset U_{\lambda_x}$$

Hence, $\Sigma \cap C_{\ell} \subset U_{\lambda_x}$ and thus $\{U_{\lambda_x}\}$ is a finite subcover of $\Sigma \cap C_{\ell}$, a contradiction. Thus, (Σ, d) is compact.

Problem 2.

Suppose Σ_A is not closed. That is, there exists a sequence $(y)_{\ell} \in \Sigma_A$ which converges to a limit not in Σ_A . Let us call this limit y.

Since $y \notin \Sigma_A$, there exists $j \in \mathbb{Z}$ such that $a_{y_j,y_{j+1}} = 0$. Let this be the index with smallest absolute value |j| such that this occurs. Since every element of the sequence $(y_k)_{\ell} \in \Sigma_A$, we have that $a_{y_{m_j},y_{m_{j+1}}} = 1$ for every $m \in \mathbb{N}$

Note then that $d(y, y_m) \ge \theta^j$ for every $m \in \mathbb{N}$. Hence, if we fix $\epsilon_j < \theta^j$, we have that,

$$d(y, y_m) \ge \theta^j > \epsilon_j$$

for every $m \in \mathbb{N}$. As a result, we have that $(y)_{\ell}$ does not converge, a contradiction. Hence, Σ_A must be closed.

Now consider the shift map σ (which shifts each entry in a sequence one space to the left) and the inverse shift map σ^{-1} (which shifts each entry in a sequence one space to the right).

Suppose $x \in \Sigma_A$. Then $a_{x_i,x_{i+1}} = 1$ for every $i \in \mathbb{Z}$.

Problem 3.

We have $f_{\mu}(x) = \mu x(1-x)$

(a) Suppose $\mu = 1$. Then we have,

$$f_{\mu}(x) = x(1-x)$$

Suppose $x \in (0,1]$. Then we have,

$$x(1-x) < x$$

since $0 \le 1 - x < 1$. Hence, if we take $x_1 = f_{\mu}(x)$, then

$$f_{\mu}(x_1) = f_{\mu}^2(x) = x_1(1 - x_1) < x_1 = f_{\mu}(x) < x$$

This extends for all $n \in \mathbb{N}$. Note also that,

$$f_{\mu}(0) = 0(1-0) = 0$$

and that $0 \le f_{\mu}(x) \le 0.25$ for every $x \in (0,1]$. That is, if our initial $x \in (0,1]$, then $f_{\mu}^{n} \in [0,0.25]$ for any choice of n.

Thus, we have that $f_{\mu}^{n}(x)$ is a monotonically decreasing sequence of real numbers with lower bound 0 if the initial $x \in (0, 1]$.

Now note that we have,

$$x = f_{\mu}(x)$$

$$\iff x = x(1 - x)$$

$$\iff 1 = 1 - x$$

$$\iff x = 0$$

so 0 is the only fixed point of $f_{\mu}(x)$.

Hence, we cannot have $\lim_{n\to\infty} f_{\mu}^n > 0$ since there are no positive fixed points. In addition, we cannot have $\lim_{n\to\infty} f_{\mu}^n < 0$ since $f_{\mu}^n \geq 0$ for every n. Thus, we must have,

$$\lim_{n\to\infty} f_{\mu}^n = 0$$

for every $x \in (0,1]$.

(b) Let $1 < \mu < 3$ and consider $p_{\mu} = \frac{\mu - 1}{\mu}$. We have,

$$f_{\mu}\left(\frac{\mu-1}{\mu}\right) = \mu\left(\frac{\mu-1}{\mu}\right)\left(1 - \frac{\mu-1}{\mu}\right)$$

$$= (\mu-1)\left(1 - \frac{\mu-1}{\mu}\right)$$

$$= \mu-1 - \frac{(\mu-1)(\mu-1)}{\mu}$$

$$= \mu-1 - \frac{\mu^2 - 2\mu + 1}{\mu}$$

$$= \frac{\mu^2 - \mu - \mu^2 + 2\mu - 1}{\mu}$$

$$= \frac{\mu-1}{\mu}$$

So we have shown that $p_{\mu} = \frac{\mu - 1}{\mu}$ is a fixed point of $f_{\mu}(x)$.

Now consider,

$$f_{\mu}(x) = \mu x(1-x)$$

$$\Longrightarrow f'_{\mu}(x) = \mu(1-2x)$$

So,

$$f'_{\mu}\left(\frac{\mu-1}{\mu}\right) = \mu\left(1-2\left(\frac{\mu-1}{\mu}\right)\right)$$
$$= \mu-2\mu\left(\frac{\mu-1}{\mu}\right)$$
$$= \mu-2\mu+2$$
$$= 2-\mu$$

Since $1 < \mu < 3$, we have,

$$-1 < 2 - \mu < 1$$

and,

$$\left| f_{\mu}' \left(\frac{\mu - 1}{\mu} \right) \right| < 1$$

Thus, p_{μ} is an attracting fixed point.

Now we need to show that $W_{loc}^s(p_\mu) = (0,1)$. Note that,

$$W^{s}(a) = \{x \in X : f^{n}(x) \to a \text{ as } n \to \infty\}$$

= \{x \in X : \lim_{n \to \infty} |f^{n}(a) - f^{n}(x)| = 0\}

and

$$W^s_{\text{loc}}(a)$$
 = the connected component of $W^s(a)$ containing a = $\bigcup_{n \in \mathbb{N}_0} f^{-n} (W^s_{\text{loc}}(a))$

Problem 4.

Let $f: \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = \frac{1}{2}(x^3 + x)$. We have,

$$x = \frac{1}{2}(x^3 + x)$$

$$\iff \frac{x^3}{2} + \frac{x}{2} - x = 0$$

$$\iff \frac{x^3}{2} - \frac{x}{2} = 0$$

$$\iff x^3 - x = 0$$

$$\iff x(x^2 - 1) = 0$$

$$\iff x = 0 \text{ or } x^2 = 1$$

So, we have that the fixed points of f(x) are,

$$f(0) = 0, f(1) = 1, f(-1) = -1$$

Now observe that,

$$f'(x) = \frac{1}{2}(3x^2 + 1)$$

so we have,

$$f'(0) = \frac{1}{2}$$
$$f'(1) = 2$$
$$f'(-1) = 2$$

Hence, 0 is an attracting fixed point and 1, -1 are repelling fixed points.

Observe that, if x > 1, then $x^3 - x > 2x$ and we get,

$$\frac{1}{2}(x^3+x) > \frac{1}{2}(2x) = x$$

Hence, for every x > 1, we have,

Now fix x < -1. Then we have $x^3 - x < 2x$ and we get

$$f(x)\frac{1}{2}(x^3+x) < \frac{1}{2}(2x) = x$$

for every x < -1.

Now let $x \in (-1,0)$. We have, $x^3 - x > 2x$, so

$$f(x) = \frac{1}{2}(x^3 + x) < \frac{1}{2}(2x) = x$$

for every $x \in (-1,0)$. Since 0 is an attracting fixed point and $f^n(x)$ is a monotonically increasing sequence with supremum 0 when $x \in (-1,0)$, we have that $\lim_{n\to\infty} f^n(x) = 0$ in this case.

Now assume $x \in (0,1)$. Then we have $x^3 - x < 2x$ and we get

$$f(x)\frac{1}{2}(x^3+x) < \frac{1}{2}(2x) = x$$

for every $x \in (0,1)$. Since 0 is an attracting fixed point and $f^n(x)$ is a monotonically decreasing sequence with infimum 0 when $x \in (1,0)$, we have that $\lim_{n\to\infty} f^n(x) = 0$ in this case.

Thus, we get the following limit,

$$\lim_{n \to \infty} f^n(x) = \begin{cases} -\infty & x < -1 \\ -1 & x = -1 \\ 0 & -1 < x < 1 \\ 1 & x = 1 \\ \infty & x > 1 \end{cases}$$