COMCHA ML Challenge Introduction

1st COMCHA School Barcelona, October 4th, 2019

Overview

- Goal: find neutrino oscillation
- Detector: photo emulsion
- Data taking: 2008-2012

http://operaweb.lngs.infn.it

The OPERA detector

OPERA ECC brick

- While passing through lead material neutrino can scatter
 - → on atomic nuclei known behaviour (hadronic showers)
 - → on atomic electron resulting in electro-magnetic showers

Brick structure

Variables in data:

Id - ID of a track

X - X coordinate of the track start

Y - Y coordinate of the track start

Z - Z coordinate of the track start

TX - angle of the track in XZ plane

TY - angle of the track in YZ plane

chi2 - goodness of fit of the track line to the track hits

(See baseline classifier for more details on data structure)

The dataset

- Data Background: 1 brick, ~10⁶ basetracks (signal=0)
- MC Signal: simulation of pure EM showers (100 events, 10² 10³ basetracks per shower) (signal=1)
 - Origin of the mother-particle is known

(See baseline classifier for more details on data structure)

Challenge

- Detect basetracks coming from signal electromagnetic shower
- Figure of Merit: ROC AUC

October 7th, 11 a.m.: presentation of results

Hints

- Use information about origin
- Consider tracks within certain angle from every known origin
- Play with new features:
 - distance between tracks
 - \Alpha (see figure on the right)
 - \Theta (angle btw basetracks)
 - dTX, dTY (slope difference)
 - IP Impact Parameter

