iSWAP - Interposer SWAP

By

Nesara Eranna Bethur & Atrey Hosmane

Problem Statement

- To avoid deadlocks in systems where-in deadlock free chiplets and deadlock free interposer are integrated.
- Prior approaches involves
 - Using global system-level knowledge of the SoC
 - High costs of required virtual channels.
 - Turn restrictions on local routing algorithms.

Qualitative Comparison of Deadlock Freedom Mechanism - Modularity Centric

Design	Topology	VC	Flow Control
Dally/Turn Restriction [1]	× ×	9	9
Duato/Escape VC[2]	X	X	9
BFC Based[3]	9		× ×
Deflection Based[4]	Ø		× ·
Coordination-based[5]	(X
iSWAP	(9	9

Qualitative Comparison of Modular Deadlock Freedom Mechanisms

Design	Full Path diversity	W/O Injection Control	Topology Agnostic	Router Micro Architecture Modularity
Composable Routing[5]	X	9	X	9
Remote Control[6]	9	× ·	×	9
UPP [7]	9	(× ×
iSWAP				

Proposed Solution - iSWAP

iSWAP

- Interposer will always have a portion of integration induced deadlock cycle.
- Using SWAP[8] only in interposer -> reducing area overhead and complexity overhead, gaining chiplet design modularity

Advantages:

- Deadlock freedom.
- Modularity support.
- Performance boost with better path diversity.

iSWAP in action

Implementation

Topology

- 2ⁿ routers as per garnet2.0 requirement.
- Inherited mesh 8x8 topology.
- Modified the links to model the heterogeneity.
- By choosing the edge routers as boundary routers, we are avoiding the usage of higher radix routers

Routing

Composable - with Turn restrictions

For inter-mesh traffic

iSWAP routing

For inter-mesh traffic

SWAP: Main Ideas

- SWAP implies interchanging two packets from two adjacent routers
- Requires no additional buffers
- Leverages the bidirectional links to simultaneously send two packets
- Topology and Routing Algorithm agnostic
- If any VC at the downstream is empty, SWAP is not performed

iSWAP: Extension of SWAP

Evaluation

Network Configuration			
Topology	Heterogenous Mesh		
VCs	4 VCs per Vnet		
Link	128 bit		
Flow Control	VCT		
Packet Size	1 flit per packet		
Synthetic Traffic	Uniform Random		

Continued ...

Network Configuration		
Topology	4x4 Mesh	
VCs	4 VCs per Vnet	
Link	128 bit	
Flow Control	VCT	
Packet Size	1 flit per packet	
Synthetic Traffic	Uniform Random	

Regular 4x4 Mesh Topolgy

Future work

- Improving performance with iSWAP
- Implementing the same in Garnet 3.0
- Using different routing and number of VCs in each of the chiplets
- Power estimation and comparison

Q & A

References

- [1]: Deadlock-free message routing in multiprocessor interconnection networks [IEEE Trans. Computer, 1987]
- [2]: A new theory of deadlock-free adaptive routing in wormhole networks. [IEEE Trans. On Parallel and Dist. Sys, 1993]
- [3]: Bubble Flow Control [IPDPS 2011]
- [4]: BLESS [ISCA'09] CHIPPER [HPCA'11]
- [5]: DISHA [IPDPS'95] Static Bubble [HPCA'17] SPIN [ISCA'18]
- [6]: Modular routing design for chiplet-based systems," in 2018 ACM/IEEE 45th Annual International Symposium on Computer Architecture (ISCA), 2018
- [7]: Remote control: A simple deadlock avoidance scheme for modular systems-on-chip," *IEEE Transactions on Computers*
- [8]: SWAP: Synchronized Weaving of Adjacent Packets for Network Deadlock Resolution

