Intelligent Drivesystems, Worldwide Services

GB

BU 0000

NORD CON

Manual for NORD CON

1 Introduction	10
1.1 About NORD CON	10
1.2 How to use NORD CON	10
2 Graphic user interface	13
2.1 Structure of the program interface	13
2.2 Main menu	14
2.2.1 Category "File"	14
2.2.2 Category "Edit"	16
2.2.3 Category "Project"	17
2.2.4 Category "Device"	18
2.2.5 Category "View"	19
2.2.6 Category "Extras"	20
2.2.7 Category "Help"	20
2.3 Toolbars	22
2.3.1 Standard	22
2.3.2 Device	23
2.3.3 Start	24
2.4 View "Project"	24
2.4.1 Structure of popup menu	25
2.5 View "Messages"	27
2.6 View "Remote"	
2.7 Docking and Undocking	28
3 Communication	
3.1 Overview	34
3.2 USS	34
3.2.1 General settings	34
3.2.2 Bus scan	
3.3 USS over TCP	37
3.3.1 General settings	
3.3.2 TCP	
4 Parameterization	

4.1 Overview	40
4.2 Parameter Viewing	40
4.3 How to manipulate parameters	41
4.4 Selective parameterization	42
4.5 Off-line Parameterization	42
4.6 How to compare parameters	43
4.7 Parameter upload from device	43
4.8 Parameter download to device	44
5 Control	46
5.1 Overview	46
5.2 Standard control	47
5.3 Detailed control	47
5.3.1 Overview	47
5.3.2 Control	48
5.3.3 Management of setting values and actual values	49
5.3.4 Formatting of Setpoint and/or actual value	49
5.3.5 Control word	50
5.3.6 Status word	51
6 Remote	53
6.1 Overview	53
6.2 Standard	53
6.3 SK 200E/SK 190E/SK 180E	54
6.4 SK 700E/SK 500E/SK 300E	55
6.5 NORDAC vector mc	56
6.6 NORDAC vector ct	
7 Oscilloscope	58
7.1 Overview	58
7.2 Display	58
7.3 Handling	59
7.4 Measurement	61
7.5 Save and Print	61
8 Macro editor	63
8.1 Graphic user interface	63

8.1.1 Window "Variables"	63
8.1.2 Window "Properties"	63
8.1.3 Window "Log"	66
8.2 Working with macros	66
8.2.1 Create a new macro	66
8.2.2 Open a macro	66
8.2.3 Save a macro	66
8.2.4 Copy from instruction	67
8.2.5 Cut from instruction	
8.2.6 Paste from instruction	
8.2.7 Delete from instruction	
8.2.8 Search and replace	
8.2.9 Shift up a instruction	
8.2.10 Shift down a instruction	
8.2.11 Generate new instructions	
8.3 Scheduler	
8.3.1 Run a macro	
8.3.2 Cancel a macro	
8.3.3 Execute next instruction	
9 PLC	
9.1 General	
9.1.1 Specification of the PLC	71
9.1.2 PLC structure	
9.1.2.1 Memory	
9.1.2.2 Process Image	
9.1.2.4 Setpoint processing	
9.1.2.5 Data processing via accumulator	
9.1.3 Scope of functions	73
9.1.3.1 Motion Control Lib	74
9.1.3.2 Electronic gear with Flying Saw	74
9.1.3.3 Visualisation	74
9.1.3.3.1 ControlBox	74
9.1.3.3.2 ParameterBox.	
9.1.3.4 Process controller.	
9.1.3.5 CANopen communication	
9.2 Creation of PLC programs	75

9.2.1 Loading, saving and printing	75
9.2.2 Editor	75
9.2.2.1 Variables and FB declaration	76
9.2.2.2 Input window	77
9.2.2.3 Watch and Breakpoint display window	77
9.2.2.4 PLC message window	78
9.2.3 Load PLC program into the FI	78
9.2.4 Debugging	78
9.2.4.1 Observation points (Watchpoints)	
9.2.4.2 Holding points (Breakpoints)	
9.2.4.3 Single Step	
9.2.5 PLC configuration	
9.3 Languages	
9.3.1 AWL (Instruction List, IL)	
9.3.1.1 General	
9.3.1.1.1 Data types	
9.3.1.1.2 Literal	
9.3.1.1.3 Comments	
9.3.1.1.4 Jump marks	
9.3.1.1.5 Function call-ups.	
9.3.1.1.6 Bit-wise access.to.variables	80
9.3.2 Structured text (ST)	83
9.3.2.1 General	
9.3.2.1.1 Data types	83
9.3.2.1.2 Assignment.operator.	
9.3.2.1.3 Call-up of function blocks.in. S.T.	
9.3.2.1.4 Evaluation of expressions	
9.3.2.2 Procedure	
9.3.2.2.1 RETURN	
9.3.2.2.2 IF	
9.3.2.2.3 CASE	
9.3.2.2.4 FOR loop	
9.3.2.2.5 REPEAT loop	
9.3.2.2.6 WHILE loop	
9.3.2.2.7 Exit	84
9.4 Operators	88
9.4.1 Arithmetical operators	88
9.4.1.1 ABS	
9.4.1.2 ADD und ADD(
9.4.1.3 DIV und DIV(
9.4.1.4 LIMIT	
9.4.1.5 MAX	
9.4.1.6 MIN	
9.4.1.7 MUX	

9.4.1.8 MOD und MOD(92
9.4.1.9 MUL und MUL(
9.4.1.10 SUB und SUB(93
9.4.2 Extended mathematical operators	94
9.4.2.1 EXP	
9.4.2.2 LOG	
9.4.2.3 LN	
9.4.2.4 SQRT	
9.4.2.3 COS, ACOS, SIN, ASIN, TAN, ATAN	
·	
9.4.3.1 NOT	
9.4.3.3 ANDN und ANDN(
9.4.3.4 OR und OR(
9.4.3.5 ORN und ORN(
9.4.3.6 ROL	101
9.4.3.7 ROR	
9.4.3.8 SHL	
9.4.3.9 SHR	
9.4.3.10 S und R	
9.4.3.11 XOR und XOR(
9.4.4 Loading and storage operators (AWL)	
9.4.4.1 LD	
9.4.4.3 ST	
9.4.4.4 STN	
9.4.5 Comparison operators	107
9.4.5.1 EQ	
9.4.5.2 GE	
9.4.5.3 GT	108
9.4.5.4 LE	109
9.4.5.5 LT	
9.4.5.6 NE	
9.5 Jumps (AWL)	110
9.5.1 JMP	111
9.5.2 JMPC	111
9.5.3 JMPCN	111
9.6 Type conversion	112
9.6.1 BYTE_TO_BOOL	112
9.6.2 BOOL_TO_BYTE	113
9.6.3 INT_TO_BYTE	113
9.6.4 BYTE_TO_INT	

9.6.5 DINT_TO_INT	114
9.6.6 INT_TO_DINT	115
9.7 Process values	115
9.7.1 Inputs and outputs	115
9.7.2 PLC setpoints and actual values	120
9.7.3 Bus setpoints and actual values	
9.7.4 ControlBox and ParameterBox	
9.7.5 Info parameters	124
9.7.6 PLC errors	126
9.7.7 PLC parameter	127
9.8 Function blocks	129
9.8.1 Standard	129
9.8.1.1 CTD downward counter	130
9.8.1.2 CTU upward counter	131
9.8.1.3 CTUD upward and downward counter	132
9.8.1.4 SR Flip Flop	133
9.8.1.5 RS Flip Flop	134
9.8.1.6 R_TRIG und F_TRIG	134
9.8.1.7 TON switch-on delay	135
9.8.1.8 TOF switch-off delay	137
9.8.1.9 TP time pulse	138
9.8.2 Motion Control	139
9.8.2.1 MC_ReadParameter	140
9.8.2.2 MC_WriteParameter_16 / MC_WriteParameter_32	141
9.8.2.3 MC_MoveVelocity	142
9.8.2.4 MC_MoveAbsolute	
9.8.2.5 MC_MoveRelative	144
9.8.2.6 MC_MoveAdditive	145
9.8.2.7 MC_Home	146
9.8.2.8 MC_Power	147
9.8.2.9 MC_Control	148
9.8.2.10 MC_ReadStatus	149
9.8.2.11 MC_ReadActualPos	150
9.8.2.12 MC_Reset	
9.8.2.13 MC_Stop	151
9.8.3 Electronic gear unit with flying saw	152
9.8.3.1 Overview	152
9.8.3.2 FB_Gearing	
9.8.3.3 FB_FlyingSaw	
9.8.4 FB_FunctionCurve	155
9.8.5 FB_PIDT1	156

9.8.6 Visualisation with the ParameterBox	158
9.8.6.1 Overview	158
9.8.6.2 FB_STRINGToPBox	
9.8.6.3 FB_DINTToPBox	
9.8.7 CANopen	
9.8.7.1 Overview	
9.8.7.3 FB_PDOConfig	
9.8.7.4 FB_PDOSend	
9.8.7.5 FB_PDOReceive	
9.8.8 Detection of rapid events (FB_Capture)	
9.8.9 Access to memory areas of the frequency inverter	
9.8.9.1 FB_WriteTrace9.8.9.2 FB_ReadTrace	
9.8.10 Weighing function (FB_Weigh)	
9.9 PLC Error messages	
10 Projectmode	176
10.1 Overview	176
11 Settings	178
11.1 Overview	178
11.2 Interface	179
11.3 Device report	179
11.4 Control	180
11.5 Project	181
11.6 Directories	182
11.7 Macro editor	183
11.8 Parameter	183
11.9 PLC	184
12 Messages	186
12.1 Errors and informations	186
13 NORD DRIVESYSTEMS	190
13.1 NORD In Short	190
13.2 NORD corporate history	191
13.3 Frequency Inverters	194
13.3.1 SK 135E	194
13.3.2 SK 180E	195

Inde	ex1	99
13	3.3.4 SK 500E1	97
13	3.3.3 SK 200E1	96

1 Introduction

1.1 About NORD CON

NORD CON is a PC program intended to control and parameterizes the inverters and option modules produced by Getriebebau NORD .

With NORD CON, up to 31 frequency inverters can be controlled simultaneously via the integrated RS485 interface. Communication with the frequency inverters is handled by the PC's serial interface.

To enable trial runs or system start-ups, the connected frequency inverters can be controlled via the PC. The program also provides for continuous monitoring of the current status of the frequency inverter while these activities are going on. Complete process sequences can be developed using macros.

With NORD CON, you can perform, document, and save the parameter settings of a frequency inverter which will be read out by the inverter or transmitted to it respectively. Parameter databases can be created or manipulated off-line - i.e. without a frequency inverter being connected.

The program further provides for remote control of the connected frequency inverters. For the frequency inverter to be remote-controlled the operating unit of the type in question is simulated on the PC. This is a convenient way of operating devices which are either difficult to access or haven't got an operating unit themselves.

1.2 How to use NORD CON

Attention

For the parameterization and controlling of the devices with NORD CON, your PC requires a serial interface.

1. Installation

Please start the installation program of NORD CON on the enclosed CD or load the installation program from the Internet ("http://www2.nord.com/cms/de/documentation/software/software-overview.jsp"). Enter all necessary information and install NORD CON into the standard directory.

2. Connect

If the frequency inverter is equipped with an RS232 optional interface, it can be directly connected to the PC with a serial 1-1 cable. In this case, only one frequency inverter can be connected. Each NORDAC vector frequency inverter features an integrated RS485 interface which can be activated via the control terminals. This interface allows for configuration of a master/slave bus system with up to 31 devices max. For NORD CON to be connected to such a bus, an RS232 - RS485 converter will be required.

Attention

If several devices are operated simultaneously, make absolutely sure that a unique USS address is assigned to each of the devices connected, and that all of them have the same <u>baud rate</u> setting (see also Operating Instructions of the frequency inverter type involved).

3. Run NORD CON

In order to start NORD CON, you use the shortcut "NORD CON start" or "Start->Program->Nord->NORD CON 2.1->NORD CON".

4. Setup of the communication module

In order to set the communication parameters, one must select the appropriate module in the project view. Over the menu entry "Device-> Parameterize" the parameter dialog of the module can be opened. In the edit field "Port" must be insert the correct COM port number. After that you have to push the button "Apply". Additional settings are not necessary for the first application and the window can be closed.

5. Bus scan

After the start of bus scan, all ready and connected devices are searched for. All found devices are represented in the project tree and in the equipment overview. Subsequently, the first device in the list is marked and the users can use all device-specific functions.

6. Work with the devices

The user can now select the device by clicking the device in the device overview or in the project tree. Functions, like control or parametrizes, are available in the popup menu of the project tree, the tool bar or the main menu.

2 Graphic user interface

2.1 Structure of the program interface

If you run "NORD CON" for the first time, the window shown down is opened. The window consists of main menu, toolbars, work area, and the different views. In the work area the different editor windows like parameter windows or macros are shown. The windows can be positioned freely or be docked at the sides of the work area. In order to change the position of a docked window, click on the header bar of the window and keep the mouse button pressed. Subsequently, the new position can be specified with the pointer of mouse. A colored rectangle shows the current position and dock condition. After releasing the left mouse button, the actual action is implemented. In addition, the user can dock or undock the window by clicking on the header bar. The layout is stored when closing application and resumed with the restart.

The interface is divided into the following areas:

- Main Menu
- Toolbars
- · Working Area
- View "Project"
- View "Log"
- View "Remote"

2.2 Main menu

The main menu is the central place for all actions of application. All editor windows register their window-specific actions there. The actions are divided in categories.

- Category "File"
- Category "Edit"
- Category "Device"
- Category "View"
- Category "Extras"
- Category "Help"

2.2.1 Category "File"

Name of action	Combination of keys	lcon	Description
New dataset		=	The action opens the parameter window for a new device. The user must select the desired device in a previous window.
New macro			The action opens the macro editor with a new document. If the macro window is already opened, the user can store the current document. Attention:
			In the current version, only one macro window can be opened!
PLC program		5113 12 11	The action opens the PLC editor with an empty document. If a PLC program is already opened, the user can store the current document.
Open	Ctrl + O	<u>a</u>	The action opens the file choice dialog in order to open a stored document. The user selects a document type with the file filter, and selects the file afterwards.

Name of action	Combination of keys	lcon	Description
			The following types are supported:
			Parameter files (*.ndbx, *.db (V1.27))
			• Scope files (*.scox, *.sco (V1.27))
			Macro files (*.ncmx, *.ncm (V1.27))
			PLC files (*.awlx, *.awl, *.nstx)
Save	Ctrl + S		The action stores the current document. The action is passed on to the active editor window and implemented there. Depending upon the type of editor, different operations can be implemented.
Save as			The action stores the current document with a new name. The action is passed on to the active editor window and implemented there. Depending upon the type of editor, different operations can be implemented.
Export	Ctrl + E	₽	The action exports the data active editor windows into a file. The action is passed on to the active editor window and implemented there. Depending upon the type of editor, different operations can be implemented.
Reopen			The action contains a submenu in which the opened last documents are listed. History is limited to 5. When clicking on one of the files, it is opened again.
Print	Ctrl + P		The action is passed on to the active editor window and implemented there. Depending upon the type of editor, different operations can be implemented. This action is deactivated if no editor window is opened or the editor does not support the action.
Print preview		Ø	The action opens a print preview for the active editor. Depending upon editor, the printing preview can be differently developed. This action is deactivated if no editor window is opened or the editor does not support the action.
Quit		•	The action closes application.

Note

A action is deactivated if no editor window is opened or if the editor does not support the action.

2.2.2 Category "Edit"

Name of action	Combinatio n of keys	Icon	Description	
Undo	Ctrl+Z	Ŋ	The action undoes the last action. The action is passed on to the active editor window and implemented there. Depending upon the type of editor, different operations can be implemented.	
Cut	Ctrl+X	*	The action cuts the selected object and copies it into the clipboard. The action is passed on to the active control member and implemented there. Depending upon the type of editor, different operations can be implemented.	
Сору	Ctrl + C	P	The action copies the selected object into the clipboard. The action is passed on to the active control member and implemented there. Depending upon the type of editor, different operations can be implemented.	
Paste	Ctrl + V		The action copies contents of the clipboard to the selected position. The action is passed on to the active control member and implemented there. Depending upon the type of editor, different operations can be implemented.	
			Note:	
			The action is deactivated if the current control element does not support this action or the contents of the clipboard cannot be inserted.	
Delete	Ctrl + Del	×	The action deletes the selected object. The action is passed on to the active control and implemented there. Depending upon the type of editor, different operations can be implemented.	
Select all	Ctrl + A	=	The action selects all objects of the active control.	
Replace	Ctrl + H		The action searches for the indicated text and replaces these then by other text. In a dialog, the appropriate option can be adjusted.	
Up	Ctrl + U	<u> </u>	The action shifts the delected object one position upward.	
Down	Ctrl + D	₽	The action entry shifts the delected object one position downward.	

The action is deactivated if the current control element does not support this action.

2.2.3 Category "Project"

Name of action	Combination of keys	lcon	Description
Save all in file			The action read all parameters of devices and save it in a file.
Send all from file		P	The action opens a file and sends the stored parameters to the devices.

2.2.4 Category "Device"

Name of action	Combin ation of keys	lcon	Description
Rename			With the action the user can change the name of the selected device.
Connect	F2	*	The action starts or stops the connection to the selected device.
Upload parameters from device	F3	i i	The action uploads the parameters from the device to the PC.
Download parameters to device	F4	(The action downloads the parameters from the PC to the device.
Update firmware			The action starts the firmware upload program.
Control	F6	<u> </u>	The action opens the "control" window of the selected device in the work area. If the window was already opened, it is brought into the foreground.
Remote	F8	@	The action opens the "remote" window of the selected device. If the window was already opened, it is brought into the foreground.
Parameterize	F7	=	The action opens the "Parameter" window of the selected device in the work area. If the window was already opened, it is brought into the foreground.
Oscilloscope			The action opens the "oscilloscope" of the selected device in the work area. If the window was already opened, it is brought into the foreground.
PLC		6113 211	The action entry opens the PLC editor of the selected device in the work area. If the window was already opened, it is brought into the foreground.
Bus scan	Ctrl+F5	Æ	The action implements a network scan for the selected communication module.
			Note:
			With a network scan, all devices are removed from the device list and all device-specific windows are closed!

2.2.5 Category "View"

Name of action	Combinati on of keys	Description
Layout -> Standard		The action build the standard - layout of application for all views. The position of the editor windows is not changed.
Layout -> Standard all windows		The action build the standard layout of application for all windows including the work area.
Device report		The action closes or opens the device report.
Project		The action closes or opens the view "project".
Log		The action closes or opens the view "log".
Remote		The action closes or opens the view "remote control".
Toolbar->Standard		The action closes or opens the toolbar "standard".
Toolbar->Device		The action closes or opens the toolbar "device".
Toolbar ->Start		The action closes or opens the toolbar "device".
Macro		The action opens a submenu. In this submenu, all special actions of the macro editor are listed. The status as well as the execution of the actions is incumbent on the active macro window. If no window is active, all actions are deactivated.
Oscilloscope		The action opens a submenu. In this submenu, all special actions of the oscilloscope are listed. The status, as well as the execution of the actions, is incumbent on the active oscilloscope. If no window is active, all actions are deactivated.

2.2.6 Category "Extras"

	Combination of keys	Description
Settings		The action opens a window to edit the global settings of the program.
Log		The action opens a submenu. In this submenu all special actions of the view "log" are listed. The status, as well as the execution of the actions, is incumbent on the view.

2.2.7 Category "Help"

	Combination of keys	Description
Help	F1	The action opens online help and selects the register map "Contents".
Index		The action opens online help and selects the register map "Index".
About NORD CON		The action opens a dialog with the program information.

2.3 Toolbars

In the toolbars, the most common actions are available for fast access. By clicking the appropriate symbol in the bar with the mouse, the desired action is specified.

The following toolbars are available:

- Standard
- Device
- Start

2.3.1 Standard

Name of action	Icon	Description	
New data set	III	The action opens the parameter window for a new device. Before the user can open the dialog, the device must be selected.	
New Macro	圃	The action opens the macro editor with an empty document. If a macro is already ope the user can store the current document.	
		Attention:	
		In the current version, only one macro window can be opened!	
New PLC program	5113 311	The action opens the PLC editor with an empty document. If a program is already opened, the user can store the current document.	
Open	2	The action opens the file dialog in order to open a stored document. The user selects a document type with the file filter and select the file afterwards. The following types are supported:	
		Parameter dataset V1.27 (*.db)	
		Parameter dataset (*.ndbx)	
		• Scope-File (*.sco)	
		• Scope-File V2.1 (*.scox)	
		Macro (*.ncmx)	
		• Macro V1.27 (*.ncm)	
		PLC Program (*.awlx)	
Save		The action stores the current document. The action is passed on to the active editor window and implemented there. Depending upon the type of editor, different operations can be implemented.	
Cut	*	The action cut the selected object and copies it into the clipboard. The action is passed on to the active control element and implemented there. Depending upon the type of editor, different operations can be implemented.	
Сору		The action copies the selected object into the clipboard. The action is passed on to the active control element and implemented there. Depending upon the type of editor, different operations can be implemented.	
Paste	î	The action copies contents of the clipboard to the selected position. The action is passed on to the active control member and implemented there. Depending upon the type of editor, different operations can be implemented.	
		Note:	

Name of action	Icon	Description	
		The action is deactivated if the current control element does not support this action or the contents of the clipboard cannot be inserted.	
Delete	×	The action deletes the selected object. The action is passed on to the active control member and implemented there. Depending upon the type of editor, different operations can be implemented.	
Up	2	The action shifts the selected object a position upward.	
Down	₩	The action shifts the selected object a position downward.	
Preview	P	The action opens a print preview for the active editor. Depending upon editor, the printing preview can be differently developed. This action is deactivated if no editor window is opened or the editor does not support the action.	
Print		The action print the content from the active editor. This action is deactivated if no editor window is opened or the editor does not support the action.	
Fast print	**	The action print the content from the active editor without the print dialog. This action is deactivated if no editor window is opened or the editor does not support the action.	
Settings	Q	The action opens a window to edits the global settings of the program.	

2.3.2 Device

Name of action	lcon	Description
Bus scan	74	The action implements a network scan for the selected communication module.
		Note:
		With a network scan, all devices are removed from the device list and all device-specific windows are closed!
Connect	*	The action connects or disconnects the connection to the selected device.
Control	(a)	The action opens "control" window of the selected device in the work area. If the window was already opened, it is brought into the foreground.
Remote	•	The action opens "remote" window of the selected device. If the window was already opened, it is brought into the foreground.
Parameterize	=	The action opens the "parameter" window of the selected device in the work area. If the window was already opened, it is brought into the foreground.
Oscilloscope		The action opens the "oscilloscope" of the selected device in the work area. If the window was already opened, it is brought into the foreground.
Plc	6113 72 11	The action opens the PLC editor of the selected device in the work area. If the window was already opened, it is brought into the foreground.
Upload parameters from device		The action uploads the parameters from the device to the PC.
Download parameters to device	(%)	The action downloads the parameters from the PC to the device.

2.3.3 Start

Name of action	Combinatio n of keys	lcon	Description
PLC settings		Q	The action opens the settings of the PLC.
Compile	Shift + F7	(E) 1.	The action starts the translation of a PLC program.
Programming	Shift F8	₽ ■	The action loads a PLC program to the Device.
Run	F9	b	The action runs a PLC program or a macro. The action is passed on to the active editor window and implemented there. Depending upon the type of editor, different operations can be implemented.
Cancel	F11	0	The action terminates running a PLC program or macro. The action is passed on to the active editor window and implemented there. Depending upon the type of editor, different operations can be implemented.
Next	F12	~	The action executes the next instruction. The action is passed on to the active editor window and implemented there. Depending upon the type of editor, different operations can be implemented.
Debug	Shift + F5	*	The action runs the PLC program with the debug mode.

2.4 View "Project"

In View "Project", all devices of the project are shown in a tree structure. It can be closed or opened with the main menu option "View->Project". With the help of the mouse, you can navigate between the individual devices. If the view possesses the input focus, you can additionally select a device with the arrow keys "up" and "down". If the pointer of mouse is over a device entry, a reference about the type of device and fieldbus address is indicated. After the selection of a device, the user can execute all actions with the tool bar as well as the popup menu. If an action is shaded grey, the selected devices do not support. The popup menu is opened by clicking the right mouse button in the view.

Status of device

The connection to the device is offline

Used topics:

Structure of popup menu, Structure of the program interface, Main menu, Toolbars, View "Log", View "Remote", Docking and Undocking

2.4.1 Structure of popup menu

The representation shows the popup menu of the project view. The menu always refers to the selected nodes in the project tree.

Name of action	Combination of keys	Description
Rename		With the action the user can change the name of the selected device.
Upload parameters from device	F3	The action uploads the parameters from the device to the PC.
Download parameters to device	F4	The action downloads the parameters from the PC to the device.
Update firmware		The action starts the firmware upload program.
Control	F6	The action opens then "control" window of the selected device in the work area. If the window was already opened, it is brought into the foreground.
Remote	F8	The action opens the "remote" window of the selected device. If the window was already opened, it is brought into the foreground.
Parameterize	F7	The action opens the "parameter" window of the selected device in the work area. If the window was already opened, it is brought into the foreground.
Oscilloscope		The action opens the "oscilloscope" of the selected device in the work area. If the window was already opened, it is brought into the foreground.
PLC		The action opens the PLC editor of the selected device in the work area. If the window was already opened, it is brought into the foreground.
Bus scan	Ctrl + F5	The action implements a network scan for the selected communication module.
		Note:
		With a network scan, all devices are removed from the device list and all device-specific windows are closed!

2.5 View "Messages"

The view contains a list of all "NORD CON" messages. The entries are displayed by default time ascending. The sortation can be adjusted by clicking on a column header. Following filters available are for the filtering:

Filter	lcon	Description
Error	8	This filter is enabled, displays all errors. In addition, it shows the number of errors in the caption of the button.
Warning	A	This filter is enabled, all warnings are displayed. The number of warnings is displayed in the caption of the button.
Information	0	This filter is enabled, all information will be displayed. The number of information is displayed in the caption of the button.
System	Q	This filter is enabled, all messages of the "System" category are displayed.
Communicati on	M_U	This filter is enabled, all messages of the "Communications" category are displayed.
PLC	6113 711	This filter is enabled, all messages of the "PLC" category are displayed.
Macro	E	This filter is enabled, displays all messages in the "Macro" category.
Parameter	=	This filter is enabled, displays all messages in the "Parameter" category.

The messages can be saved or deleted via the popup menu (right mouse button). These actions can be carried out via the main menu ("Extras/Messages").

Name of action	Description	
Delete	The action deletes the list.	
Save	The action stores the entries into a file.	

2.6 View "Remote"

The view "remote" contains all windows of the function "Remote". The view opens automatically when opening the first window and closes after closing the latest. The view can be docked or undocked like all views to the work area. If the view was closed by the user, it can be opened by the action "Remote" again. The new windows are always docked to the left side of the last window. With the help of the mouse, it can be undocked or docked again. If the view is opened for the first time with the menu "View->Remote", each device in the list the window "Remote" is opened automatically.

Windows of type "Remote" can be docked only into the view "Remote".

2.7 Docking and Undocking

With the new design of NORD CON, the user has the possibility to adapt the layout of the surface to their own requirements. In principle, you can undock each view and editor window and position them freely on the screen. For this, the user must press the left mouse button over the title border and pull the colored rectangle to the desired position. After releasing the mouse button, the view or editor windows remains in those positions as independent windows. With the editor windows, there is additionally the possibility - with the popup menu, which opens when clicking with the right mouse button on the title border, to undock the windows. The docking functions are similar to the undocking functions. The colored rectangle indicates in each case the current docking position.

Type of window	Rule
View of main window(e.g. Project, Logs, Remote)	The views of the main window can be docked only to the left, right and/or lower edge of the work area. Within these windows, there are no rules and the user can select the position freely.
Editor window (e.g. Macro editor, Parameter window, Oscilloscope)	The editor windows can only be docked into the work area. The adjustment is fixed however on down and/or above, or as register map.
Views of the Macro editor	The views of the macro editor can be docked only to the macro window. The adjustment here is fixed on left, right or down. Within the views, no rules are defined.
Views of the oscilloscope	The views of the oscilloscope window can be docked only to the oscilloscope window. The adjustment here is fixed on left, right or down. Within the views no rules are defined.
"Remote" windows	"Remote" windows can only be docked to the view "Remote". Here the adjustment is fixed on left.

Docking position left

Docking position right

Docking position down

Docking position up

Docking position tab

3 Communication

3.1 Overview

In order to start a connection to a device, you must insert the appropriate communication module in the project. After the installation, a USS module is configured. With the action "Parameterize" the user can modified the parameters of the module.

Presently the following communication modules are supported:

• USS over serial interface

3.2 USS

3.2.1 General settings

Name

In the edit field, the user can assign a name for the communication module.

Port

In the communication window, you can choose the COM-Ports of the computer where the inverter is connected to.

Telegram error

The user defines the max number of allowed telegram errors. Telegram errors occur if the content of a telegram is not correct. That means the answer does not fit to the parameter order. Normally, each parameter order is answered after 2 telegrams. The number of allowable telegram errors is the number of tries before the error message appears.

Bus error

The user defines the max number of acceptable bus errors. The bus error appears in the case when the receiving telegram or the sending telegram was wrong. Incorrect telegrams are ignored. Here you can program the max number of incorrect bus telegrams before the error message is generated. In an installation with many interferring signals, the setting of acceptable errors should be programmed to a higher number.

Simulation of Hardware

With this feature, the user activates or deactivates the simulation of the connected hardware.

Attention

All changes are only available if the user push the button "apply". With the button "Restore" then user can undo all changes.

3.2.2 Bus scan

Baud rate

In the selection box, the user can choose the communication speed of the serial interface. The same value must be chosen on the frequency inverter. When using multiple frequency inverters, the setting must be identical on all connected devices. The Baud rates over 115200 Bit/s are user specific Baud rates and not by all devices are supported.

Attention

Older serial PC interfaces are sometimes not able to justify the accurate user specific Baud rate. From this reason no connection can be made to the device.

Bus-Scan with all baud rates

With the action, the user activates or deactivates the bus scan with all baud rates. If the baud rate of the connected device is unknown, the search with all baud rates can find the right one to start communication.

Starting baud rate

In the selection box, the user can define the baud rate for start of the baud rate search.

Starting address

In this field, the USS address can be defined, from where the search run of NORD CON starts to find connected devices. All frequency inverters with lower address cannot be found by NORD CON.

End address

In this field, the user can define the USS address for the ending of the search for connected devices. All inverters with a higher address number cannot be found by NORD CON.

Stop all connected devices

With the action, the user can activate or deactivate the stopping (disable) of connected devices. When this function is active, all enabled devices are stopped if the interface of the device is programmed to "bus".

Automatic device search after start of program

With this action the user can activate or deactivate the automatic device search after start of the program. When this function is active, NORD CON automatically starts the bus scan after the program is started.

Attention

All changes are only available if the user push the button "apply". With the button "Restore" then user can undo all changes.

3.3 USS over TCP

3.3.1 General settings

Name

In the edit field, the user can assign a name for the communication module.

Telegram error

The user defines the max number of allowed telegram errors. Telegram errors occur if the content of a telegram is not correct. That means the answer does not fit to the parameter order. Normally, each parameter order is answered after 2 telegrams. The number of allowable telegram errors is the number of tries before the error message appears.

Bus error

The user defines the max number of acceptable bus errors. The bus error appears in the case when the receiving telegram or the sending telegram was wrong. Incorrect telegrams are ignored. Here you can program the max number of incorrect bus telegrams before the error message is generated. In an installation with many interfering signals, the setting of acceptable errors should be programmed to a higher number.

USS over TCP

If this option is enabled, NORD CON attempts to establish communication with a Ethernet bus module (eg Profinet, Ethernet IP) via LAN. In addition, the connected devices must be configured in the device list (see TCP).

Stop all found devices

If this option is enabled, each detected device will be sent the "Disable" command after search. Provided that the device can be controlled via bus.

Automatic search at program start

If this option is enabled, the device search is initiated after the program start.

Attention

All changes are only available if the user push the button "apply". With the button "Restore" then user can undo all changes.

3.3.2 TCP

Add bus module 📅

The button adds a new bus module in the device list.

Add device \bot

The button adds a new device in the device list.

Delete X

The button removes the highlighted entry in the list of devices.

Value - bus module (Address):

In the column you have to enter the IP address of the bus module.

Value - device:

In the column you have to enter the slot on the device (see following table).

Slot 1	Slot 2	Slot 3	Slot 4	Slot 5	Slot 6	Slot 7	Slot 8
System bus address 32 or SK 5xxE over TU3	System bus address 34	System bus address 36	System bus address 38	System bus address 40	System bus address 42	System bus address 44	System bus address 46

Sample:

Bus module	Slot 1	Slot 2	Slot 3	Slot 4
SK TU3-EIP V1.2	SK 5xxE	not available	not available	not available
SK TU3-PNT V1.2				
SK CU4-EIP V1.2	SK 5xxE	SK 5xxE	SK 5xxE	SK 5xxE
SK TU4-EIP V1.2	SK 2xxE	SK 2xxE	SK 2xxE	SK 2xxE
SK CU4-PNT V1.2	SK 19xE	SK 19xE	SK 19xE	SK 19xE
	SK 18xE	SK 18xE	SK 18xE	SK 18xE

Additional - device:

In this column, the user specifies the number of IO extensions.

Attention

Please note that you need access rights for parameter changes or control via the bus module. To set it accordingly please check the data sheet of your field bus module.

Attention

All changes are only available if the user push the button "apply". With the button "Restore" then user can undo all changes.

4 Parameterization

4.1 Overview

All parameters of the frequency inverter that can be changed can also be changed by NORD CON. All of the parameters can be stored and retransmitted to the frequency inverter. Parameters which have been read out can be printed out for documentation purposes.

- Parameter Viewing
- How to manipulate parameters
- · Selective parameterization
- Off-line Parameterization
- Comparison
- Parameter upload from device
- Parameter download to device

4.2 Parameter Viewing

Each parameter has a parameter name and a unique parameter number by which it can directly be accessed. The parameters are devided into menu groups.

Each parameter has a parameter value and parameter characteristics:

Parameter set Actual value Actual Malue New Value Unit P1: 2 2 s 2 P2: 2 s Properties Settings Parameter characteristics New settings for transmitting

When a parameter has been selected, values of all parameter sets, if it can be set differently in the sets, are displayed.

4.3 How to manipulate parameters

The selected parameter is read out and the value transferred to the 'Current Setting' box. Management of the parameters of a frequency inverter is ensured by databases. These databases can be stored, printed out or manipulated again at a later date.

The menu "Parameterize" is indicated only if a parameter window were marked.

NORD CON features two ways of parameter manipulation:

Aktion	Place	Description
New	File -> New -> Dataset	The current database is re-initialized, in other words the current and the new settings are deleted.
Open	File -> Open	Any database that was saved can be reopened.
Save	File -> Save	The current database is saved by the current name.
Save us	File -> Save us	The current database is saved with a new name.
Print preview	File -> Print preview	The current parameter settings are printed out.
Read all parameter or Read all	Parameterize -> Read -> All Parameter	All of the parameters of the frequency inverter are read out and entered into the database.
Read actual menu group	Parameterize -> Read -> Actual menu group	The parameters of the selected menu group are read out and entered into the database.
Send new settings	Parameterize -> Send -> new Values	All parameters for which a new value was entered in the 'New settings' box are transmitted to the frequency inverter. A

Aktion	Place	Description
		selection is possible as to whether this operation is to be performed on all parameters or only on those belonging to the current menu group.
Send Factory settings	Parameterize -> Send -> Reset values	The settings transmitted will be the default settings of all parameters or of the parameters of the current menu group respectively
Selection Enable	Parameterize -> Selection -> Release	All of the parameters (or those included in the current menu group respectively), are enabled.
Selection Disable	Parameterize -> Selection -> no Release	None of the parameters (or of those belonging to the current menu group), are enabled.
Standard	Button "Standard"	The default value is allocated to the currently selected parameter.
Send	Button "Send"	The value "new setting" of the current parameter is transferred to the inverter
Read	Button "Read"	The selected parameter is read out and the value transferred to the 'Current Setting' box.

With the Auto-read option the selected parameter is read out automatically.

4.4 Selective parameterization

NORD CON allows for masking some parameters or other, a feature which may facilitate manipulation or serve the purpose of restricting parameter readout or transmission to those which remain unmasked or in other words have been filtered out.

Note

When a filter has been activated, all operations are executed only on those parameters which are displayed.

Before any parameter can be masked the enable command must be inactivated. This can be done using the checkbox preceding the parameter, or via the Selection menu. The Filter box provides for the setting options mentioned below:

- ▶ Selection only Only the enabled parameters are displayed (i.e. where the check box preceding the parameter was clicked upon once).
- No standard Only the parameters with a value that is different from the standard setting are displayed.
- Info parameters
 - Yes Information parameters are displayed.
 - No Information parameters are not displayed.
 - Only Information parameters are displayed exclusively.

4.5 Off-line Parameterization

Off-line parameterization implies that a database is manipulated which is not allocated to any frequency inverter connected.

Off-line parameterization is started via the database menu in the main window.

Name	Description
New	A new database can be created. The new database is allocated to a frequency inverter type which is set using a selection box.
Open	Any database that was read into memory can be opened and manipulated.

4.6 How to compare parameters

The report shows the differences and/or thing in common of two data record. In principle only data records of one device family can be compared. The parameters are represented in form of a list. If two parameter values are different, the line with a grey bar is marked. Additionally it is examined whether a value differs from the default value. In this case the value is red represented.

Online / Offline compare

Connect the device with NORD CON. Afterwards the parameter window must be opened and it be recommended to readout all parameters. With the parameter filters you can limit the selection of the parameters. Over the menu option " Parameterize - > Compare" you can generate a report. After the call of the function the user must select a stored data record. If the selected parameters are to be used as backup, the user must store afterwards the current data record. Thereupon the report is generated and showed.

Attention

As reference for the parameters and the default values the configuration of the equipment is used. A data record with the configuration of the equipment not agrees selected, possibly non-existent parameters are empty represented and marked as difference.

Offline / Offline compare

For the comparison a stored or new data record must be opened. With the parameter filters you can limit the selection of the parameters. Over the menu option " Parameterize - > Compare" you can generate a report. After the call of the function the user must select a stored data record.

Attention

As reference for the parameters and the default values the configuration of the opened parameter set is used. A data record with the configuration of the equipment not agrees selected, possibly non-existent parameters are empty represented and marked as difference.

4.7 Parameter upload from device

The function loads the parameters of a device to the PC and then stores the values in a parameter file. The action can be started through the tool bar "Device" or over the menu option "Device/Parameter upload from device". After executing the function that opens following window and the upload the parameter starts automatically. Communication errors occur during the transfer, they displayed in the message window. At the end of the transfer the user prompts one to enter a file name for the file. The user must confirm with "Save" to store the values.

4.8 Parameter download to device

The function opens a parameters file on the PC and sends all values to the device. The action can be started via the tool bar "Device" or "Device/parameter download to the device" menu item. After executing the function, the following window and a file dialog opens. In this dialog selects the user the parameter file and confirm with "Open". The program checks whether the parameter file to the selected device fits. In this case the download will start.

5 Control

5.1 Overview

The program NORD CON can be used to control NORDAC vector. To use this function the inverter must be parametriesed in the right way. Because of different settings of different inverter types the user must check the manual to find the right settings. Before the inverter can be controlled the Bus-scan must be done. After the scanning process has finished all connected inverter are displayed in the main window. Now the inverter to be controlled can be chosen by mouse click. The window "control" can be opened via "device/control (F6) in the main menu or via pull-down menu (right mouse click).

Now the control configuration of the inverter is read and checked with the standard setting (setting/control/control configuration check). If the "control" of inverter limited or impossible there will be a warning note on the screen.

In the window "Control" there are two versions available:

Standard Control

The frequency inverter can be released and the setting value can be increased or

decreased. Direction change and error acknowledge is possible, too.

<u>Detailed Control</u> Mit diesem Fenster können sämtliche Steuerungsmöglichkeiten ausgenutzt werden.

5.2 Standard control

Using the Standard Control the following functions are available:

- Enable of the frequency inverter
- Increase or decrease of the setting value
- · Change of direction
- Error Acknowledge

To use this functionality, the inverter must be programmed for control via bus. You can find the required parameter and settings in the manual available for each inverter type.

On the "Standard" display only the first setting value and first actual value are displayed. The form of value is fixed for each configuration.

By pressing the button 'Detail' you can switch to the extended control function.

5.3 Detailed control

5.3.1 Overview

In the mode "Detailed Control" some extra functions are available:

- Setting of control word and display of status word
- Management of setting values and actual values
- Sending of broadcast telegramme
- · Choice of different parameter sets
- · Automatic sending of control word and setting values

5.3.2 Control

The controlword is displayed as a hexadecimal value in the field "control word". By entering a new value (hexadecimal) the user can change the control word. For a bit-coded setting of control word the user can open up a new editorial window by pressing the button "control word edit". In this window the control word is displayed in bits.

The status word is displayed hexadecimal in the screen "status word". To display the status word in the bit resolution the button "bit orientated detail view" can be chosen. The status is displayed in the status line of the status machine as clear text.

5.3.3 Management of setting values and actual values

For controlling the inverter the user can define up to 3 different setpoints and actual values (see user manual). The setpoints and actual values are displayed according to the formatting (Button "formatting setting value x"). The input of setpoins can be done in same way.

With the option "setting/control/ parameter set individual management" the setting values and actual values can be managed individually. So setting values can be set for each parameter set. With activation of a parameter set its setting values are transmitted to the frequency inverter. This is necessary because for each parameter set the setting values and actual values can be defined individually. The active parameter set is marked with a star.

If the option "setting/control/configuration automatically checked" was not activated, the user can transmit the new configuration by pressing the button "update".

5.3.4 Formatting of Setpoint and/or actual value

Char	Name	Description
"%"	16 Bit standardised values	This standardisation transforms the setpoint/actual value to a 16 Bit standardised value. Standardisation means a scaling of value range and is between -200% and 199% of a basic value (e.g. nominal frequency).
"16"	16 Bit not standardised	By this formatting the setpoint and actual value are transformed to 16 Bit value and transmitted to inverter and displayed without any scaling.
"B"	DigInBits	By this Formatting the setpoint and actual value are transformed to 8 Bit value. The bit status is displayed individual in check boxes. In these check boxes each bit of setting value can be changed.
"L"	32 Bit Low-Word	By this formatting the setpoint and actual value are taken as the low word (16 Bit) of a 32 Bit wordIf there is another setpoint or actual value parametriesed with formatting "32 Bit High-Word", then both values are combined in the top display. The setting value can be given as a 32 Bit value.
"H"	32 Bit High-Word	By this formatting the setpoint and actual value are taken as the high word (16 Bit) of a 32 Bit word. (see "32 Bit Low-Word").

"P"	16 Bit Posicon Arr control clamps (SK7xx, Vector CT with Posicon)	By this formatting the setpoint and actual value are taken as the "Posicon position array". The meaning of each bit you can find in the Posicon manual. This option is only available for inverter with Posicon functionality.
" "	16 Bit Posicon Inc control clamps (SK7xx, Vector CT with Posicon)	By this formatting the setpoint and actual value are taken as "Posicon position increment array". You can find the meaning of each bit in the Posicon manual. This option is only available for inverter with Posicon functionality.
"32"	32 Bit standardised (SK7xx, Vector CT with Posicon)	By this formatting the setpoint and actual value is taken as an 32 Bit value without standadisation. This option is only available for inverter with Posicon functionality.

5.3.5 Control word

The present status word is displayed with each bit in the window "status word". All bits are listed in a table including bit number, name and status. According to bit value and function there is a coloured LED shown.

Importance of LEDs:

LED	Importance
	The Bit is set and/or the inverter is enabled.
	An error is active or an enable signal is missing.
	The Bit is not set.

With the standard setting the status word is read in cycles and the changes are displayed in the window. For deactivating the cyclic reading switch off the function "automatic" in the menu (right mouse click).

The window is docked left next to the "control" window. If the window should be free on desktop, you should choose the popup menu "docking/no". To save space the window can be added as an index card next to the index card "general". To do this the window must be moved (pressed left mouse button) over the index card "general". After release of the button the window is shown as an index card. With double click (left mouse button) on the index card you get back to window mode.

5.3.6 Status word

The present control word is displayed with each bit in the window "status word". All bits are listed in a table including bit number, name and status. According to bit value and function there is a coloured LED shown. If inverter is programmed to USS control then the bits can be set by control buttons. Each change of control word is sent immediately to the inverter (see "automatic sending").

Importance of LEDs:

LED	Importance
	The Bit is set and/or the inverter is enabled.
	An error is active or an enable signal is missing.
	The Bit is not set.

With the standard setting the control word is read in cycles and the changes are displayed in the window. For deactivating the cyclic reading switch off the function "automatic" in the menu (right mouse click).

The window is docked left next to the "control" window. If the window should be free on desktop, you should choose the popup menu "docking/no". To save space the window can be added as an index card next to the index card "general". To do this the window must be moved (pressed left mouse button) over the index card "general". After release of the button the window is shown as an index card. With double click (left mouse button) on the index card you get back to window mode.

6 Remote

6.1 Overview

NORD CON can simulate the control unit of the respective frequency inverter. For this purpose the frequency inverter transfers the content of its display to NORD CON. The key functions are simulated on the PC and transmitted to the frequency inverter.

The frequency inverter can only be controlled via the Remote, if it has not previously been enabled via the control terminals or via a serial interface (P509 = 0 and P510 = 0). In addition, for this the parameter "PotentiometerBox Function" (P549) must not be set to function {4} "Frequency addition" or function {5} "Frequency subtraction".

- Remote Standard
- Remote NORDAC SK2xxE
- Remote NORDAC SK7xxE/SK5xxE/SK300E
- Remote NORDAC vector mc
- Remote NORDAC vector ct

Note

NORDAC vector can be controlled via the keyboard (enable, setpoint +/-, phase sequence etc.). As the timeout monitoring function is not active in this mode, any breakdown of the connection between PC and frequency inverter will make further control impossible.

6.2 Standard

The standard window for the function "Remote" is used for all Devices, if the option "<u>Use device-specific remote</u> windows" were not activated.

Name	Icon	Description
Enable	·	Switching on the frequency inverter. The frequency inverter is now enabled with the set jog frequency (P113). A preset minimum frequency (P104) may at least be provided. Parameter >Interface< P509 and P510 must = 0.
Disable		Switching off the frequency inverter. The output frequency is reduced to the absolute minimum frequency (P505) and the frequency inverter shuts down.
Change dir		The motor rotation direction changes when this key is pressed. "Rotation to the left" is indicated by a minus sign.

		Attention: Take care when operating pumps. screw conveyors, ventilators, etc. Block the key with parameter P540.
Up		Press key to increase the frequency. During parameterisation, the parameter number or parameter value is increased.
Down	-	Press the key to reduce the frequency. During parameterisation, the parameter number or parameter value is reduced.
Enter	G	Press "ENTER" to store an altered parameter value, or to switch between parameter number or parameter value.
		Note : If a changed value is not to be stored, the key can be used to exit the parameter without storing the change.
Change Dir + Stop		By simultaneously pressing the STOP key and the "Change direction key", an quick stop can be initiated.
Enter + Start		If the inverter is enabled via the "ON" key, the parameterisation mode can be reached by pressing the ON and ENTER keys simultaneously.

6.3 SK 200E/SK 190E/SK 180E

The window for remote control of the frequency inverters of the NORDAC SK 200 E series looks like this:

Name	lcon	Description
Enable	0	Switching on the frequency inverter. The frequency inverter is now enabled with the set jog frequency (P113). A preset minimum frequency (P104) may at least be provided. Parameter >Interface < P509 and P510 must = 0.
Disable	0	Switching off the frequency inverter. The output frequency is reduced to the absolute minimum frequency (P505) and the frequency inverter shuts down.
Change dir	0	The motor rotation direction changes when this key is pressed. "Rotation to the left" is indicated by a minus sign. Attention:
		Take care when operating pumps. screw conveyors, ventilators, etc. Block the key with parameter P540.
Up	(A)	Press key to increase the frequency. During parameterisation, the parameter number or parameter value is increased.

Down	\odot	Press the key to reduce the frequency. During parameterisation, the parameter number or parameter value is reduced.
Enter	①	Press "ENTER" to store an altered parameter value, or to switch between parameter number or parameter value.
		Note: If a changed value is not to be stored, the key can be used to exit the parameter without storing the change.
Change Dir + Stop		By simultaneously pressing the STOP key and the "Change direction key", an quick stop can be initiated.
Enter + On		If the inverter is enabled via the "ON" key, the parameterisation mode can be reached by pressing the ON and ENTER keys simultaneously.

6.4 SK 700E/SK 500E/SK 300E

The window for remote control of the frequency inverters of the NORDAC SK 700/500/300 E series looks like this:

Name	Icon	Description
Enable	0	Switching on the frequency inverter. The frequency inverter is now enabled with the set jog frequency (P113). A preset minimum frequency (P104) may at least be provided. Parameter >Interface < P509 and P510 must = 0.
Disable	0	Switching off the frequency inverter. The output frequency is reduced to the absolute minimum frequency (P505) and the frequency inverter shuts down.
Change dir	0	The motor rotation direction changes when this key is pressed. "Rotation to the left" is indicated by a minus sign.
		Attention: Take care when operating pumps. screw conveyors, ventilators, etc. Block the key with parameter P540.

Up		Press key to increase the frequency. During parameterisation, the parameter number or parameter value is increased.
Down	\odot	Press the key to reduce the frequency. During parameterisation, the parameter number or parameter value is reduced.
Enter	•	Press "ENTER" to store an altered parameter value, or to switch between parameter number or parameter value. Note: If a changed value is not to be stored, the key can be used to exit the parameter without storing the change.
Change Dir + Stop		By simultaneously pressing the STOP key and the "Change direction key", an quick stop can be initiated.
Enter + On		If the inverter is enabled via the "ON" key, the parameterisation mode can be reached by pressing the ON and ENTER keys simultaneously.

6.5 NORDAC vector mc

The window for remote control of the frequency inverters of the NORDAC vector mc series looks like this:

Name	Icon	Description
Enable	0	Switching on the frequency inverter. The frequency inverter is now enabled with the set jog frequency (P113). A preset minimum frequency (P104) may at least be provided. Parameter >Interface < P509 and P510 must = 0.
Disable	0	Switching off the frequency inverter. The output frequency is reduced to the absolute minimum frequency (P505) and the frequency inverter shuts down.
Change dir	0	The motor rotation direction changes when this key is pressed. "Rotation to the left" is indicated by a minus sign.

Up	0	Attention: Take care when operating pumps. screw conveyors, ventilators, etc. Block the key with parameter P540. Press key to increase the frequency. During parameterisation, the parameter number or parameter
ОР		value is increased.
Down	\odot	Press the key to reduce the frequency. During parameterisation, the parameter number or parameter value is reduced.
Enter	①	Press "ENTER" to store an altered parameter value, or to switch between parameter number or parameter value.
		Note:
		If a changed value is not to be stored, the key can be used to exit the parameter without storing the change.
Change Dir + Stop		By simultaneously pressing the STOP key and the "Change direction key", an quick stop can be initiated.
Enter + On		If the inverter is enabled via the "ON" key, the parameterisation mode can be reached by pressing the ON and ENTER keys simultaneously.

6.6 NORDAC vector ct

The following functions are available for remote control of the NORDAC vector CT series:

All functions available with the operating unit (control box) of the frequency inverter can be performed.

7 Oscilloscope

7.1 Overview

The oscilloscope function integrated in NORD CON can show process data of an NORDAC vector as an arithmetic chart.

Note:

This option is not available in all types of NORDAC vector ct and NORDAC vector mc!

The features of oscilloscope-function are:

- Monitoring of up to 4 channels
- Many different ways of trigger
- · Scaling of each measurement
- Calculation of average values, effective value, etc.
- Save, print and export of measurement data

7.2 Display

The oscilloscope function can measure and display 4 channels max:

The following settings can be done:

Name	Description	
Auto	Automatic Scaling of all measured data	
Offset	Selection of display detail (displace of all data in x- or y-direction)	
Zoom	Display size (Zoom of all data)	
	Note:	
	With the right mouse button you can choose between modi 'Move' and 'Measurement', if the mouse pointer is on the display. In 'Move' mode you can choose the detail of display by mouse pointer by pressing the left mouse button while moving over the display.	
Auto scrolling	With this option during a recording the time axis is scrolled automatically to the last point.	
Resolution	In this combination field the user can change the scaling of the time axis.	
Comment	Additional information field, in that further information to the series of measurements to be stored can (max. 255 indications).	
Cursor	Execution of measurement	

7.3 Handling

Follow the next steps to execute a measurement:

1. Choise of channels

There is a popup menu to make the choice of the 4 channels. There is a color referring to each channel. Each channel can be switched on and off by checkbox's. The resolution and offset can be chosen for each channel separately. Displaying the results of measurement the values of the vertical axis of each channel can be chosen and indicated.

Importance of measure value

Mesure value	Description
(=P[Number]) [Name]	The value of this measuring function is updated in the time slot pattern by approx. 100 ms and corresponds to the value indicated of the parameter.
[Name]	The value of this measuring function is updated in a time slot pattern by approx. 100 ms.
(~P[Number]) [Name]	The value of this measuring function is updated in a time slot pattern by approx. 50 ms.
(~P[Number]) [Name]	The value of this measuring function is updated in a time slot pattern of approx. 250 µs.

2. Setting of trigger

The trigger starts the measurement. First choose the source of trigger. Trigger sources can be measurement values, digital inputs, status of inverter, etc. The starting conditions are defined by trigger level resp. trigger edge.

ATTENTION

The increments of the trigger levels are different depending on the trigger source. Therefore not every value can be set. After starting a recording, the closest possible values is calculated and set.

Time between two measured values is set by sampling rate. Numbers of measured values and sampling rate define the time of sampling.

The Pre-trigger/Delay set the beginning of the measurement in relation to the trigger event.

Note:

The dynamic of measured values defines the best rate of sampling: fast changing values need a low sampling rate. The number of measured values defines the time of sending the values from inverter to NORD CON.

3. Sampling modes

The oscilloscope has 2 differently modes. The user can choose between "Single" and "Roll" mode. The "Single" mode is the standard mode. In this mode starts a recording with the current trigger settings. The recording time

depends on the oscilloscope memory of the device and amounts to max. 2000s. The values are noted in the adjusted sampling rate.

The roll mode makes a recording over larger period. The noted values are transferred immediately to the PC. Therefore the user cannot change the sampling rate. It depends on the speed of the transmission.

4. Starting of measurement

The Start-Button activates the measurement. The event of trigger is detected. When the event appears the record starts in the inverter. The transmission of data to NORD CON starts in the same moment. This can be cancelled by Stop. After transferring all data a new measurement can be started or new settings can be done by pressing the New-Button.

7.4 Measurement

After recording the measurement completely, measurements on the results can be done by cursors.

There are two cursors available for this. The cursors can be moved by . The choice of cursor is done by . To choose the mode 'move' and 'measurement' by right mouse button the pointer has to be on display. In the measure mode the cursors can be set by left mouse button.

The values of the measured lines 1 and 2 are displayed on cursor 1 and cursor 2. Additionally the calculations like average values are performed. Pressing on calculation button starts the shift of calculation.

7.5 Save and Print

The recorded series of measurement can be saved, exported or printed.

Menu item "File"

Name	Description	
	A stored measurement data file can be chosen and loaded. During loading there is the choice if only the setting should be loaded or all data of measurement.	

Name	Description	
Save as	The present measurement data and settings are saved with new name.	
Export	The data can be exported as graphic file or data table.	
Print	Print The lines of measurement are printed with present settings (colour of background: white).	

Scope Offline

In Offline-mode (no inverter is connected) a saved measurement file can be loaded by menuitem File|Open.

8 Macro editor

The macro editor is designed in order to provide simple process cycles. The surface offers the possibility to create a macro by popup menus, toolbars or tool window. The individual instructions can be shifted by drag n drop in the opinion. The built-in functions, as memory and shop macros are integrated likewise into the popup menu. The macros are stored in the standard format "XML ". The format of the previous version can be imported over the menu option "opening" type of file "macro files V1.27".

8.1 Graphic user interface

More views are required for handling of the macro generator additionally to the editor window. These views are available as tool windows. These windows can be docked or undocked to the edge of the main window. With the menu option "view" of the popup menu all views can be opened and closed.

- Window "Variables"
- Window "Properties"
- Window "Log"

8.1.1 Window "Variables"

The view "variables" can be opened and closed over the menu option "View->Macro->Variables". It is used for debugging. In this window after starting macros all variables and objects macros with current rating are indicated. The expenditure of the value can be stopped in the view "Properties->Display format".

There are the following formatting:

- Decimal
- Hexadecimal
- Binary

8.1.2 Window "Properties"

The view "properties" can be opened and closed over the menu option "View->Macro->Properties". In this window all characteristics are indicated to the current instruction. Depending upon instruction the kind and number of characteristics can be change.

Name	Description
Result With this characteristic one can change the object to give a new value. Only objects can be which one can assign a new value (e.g. control word, parameter or variable).	
Operand	With this characteristic the user can select the object, which is to be used with an assignment or an operation.
Operator With this characteristic the user can select the object, which is to be used with an assignment operation.	
Comment	With this feature the user can add a comment to each command.

In the macro variables, control word or status word, setpoints, actual values or parameters are called objects. Each of these objects has different parameters.

Object	Parameter	Description
Variable	Name	The parameter specifies the name of the variable or absolute term. In the selection box all variables already used are indicated. If one would like to put on a new variable, a name not used yet must be registered with case insensitivity.
	Display format	The parameter specifies the display format in the view "variables ". It can be selected between the following representations:
		Decimale
		Hexadecimale
		Binary
Constant	Value	The parameter specifies the value of the absolute term.
	Display format	The parameter specifies the display format in the view "variables ". It can be selected between the following representations:
		Decimale
		Hexadecimale
		Binary
Control word or status	Node ID	The parameter specifies the USS address of the desired device.
word		Note:
		Since the current control word cannot be read from the device, when starting scheduler the control word is set to 0.
	Display format	The parameter specifies the display format in the view "variables ". It can be selected between the following representations:
		Decimale
		Hexadecimale
		Binary
Set point	Node ID	The parameter specifies the USS address of the desired device.
and Actual values		Note:
values		Since the current control word cannot be read from the device, when starting scheduler the control word is set to 0.
	Туре	The parameter specifies the type of a value (see actual setpoint and actual value types).
	Format	The parameter specifies formatting from set point and/or actual values (see set point and actual value of formatting").
	Resolution	The parameter specifies the resolution to set point and/or actual values. It is used only for the display in the editor.
	Display format	The parameter specifies the display format in the view "variables ". It can be selected between the following representations:
		Decimal
		Hexadecimal
		Binary
Parameter	Node ID	The parameter specifies the USS address of the device.
	ParamNo	The value specifies the number of the parameter.

Object	Parameter	Description
	Subindex	The value specifies the Subindex of the parameter.
	Resolution	The parameter specifies the resolution to set point and/or actual values. It is used only for the display in the editor.
	Data type	The value specifies the data type of the parameter. In the current devices only 2 data types are used (16 bits Integer and 32 bits Integer).
	Display format	The parameter specifies the display format in the view "variables ". It can be selected between the following representations:
		• Decimal
		Hexadecimal
		Binary

Types of set point and/or actual value

Туре	Description		
Value 1 (16bit)	The 1.2 and/or 3 set point and/or actual value is to be used.		
Value 12 (32bit)	The first and second set point and/or actual value is to be used as a 32bit value.		
	Note:		
	For this configuration the device must be accordingly configured accordingly (see " Set point and/or actual value formatting").		
Value 13 (32bit)	it) The 1st and 3rd set point and/or actual value are to be used as a 32bit value.		
	Note:		
	For this configuration the device must be accordingly configured accordingly (see Set point and/or actual value formatting ").		
Value 23 (32bit) The 2nd and 3rd set point and/or actual value are to be used as a 32bit value.			
	Note:		
	For this configuration the device must be accordingly configured accordingly (see " Set point and/or actual value formatting").		

Formatting of Set point and/or actual value

Formatting	Description	
Normiert	This formatting interprets the set point and/or actual value as 16 bits standardized value. Normalization means a scaling of the range of values and lies between -200% and 199% of a base value (e.g. nominal frequency).	
Unnormiert	In this formatting the set point or actual value is interpreted as 16 bits value, which is indicated without scaling.	
Lowword (32bit)	This formatting specifies, that the first value is the Low word and the 2nd value is the High word value 12 (32bit). This value can be selected only with the 32bit types.	
Highword (32bit) This formatting specifies, that the first value is the high word and the 2nd value is the low word value (32bit). This value can be selected only with the 32bit types.		

Note:

Please consider that the configuration of the device must be identical to the settings.

8.1.3 Window "Log"

All events of the scheduler are stored in log. In order to indicate logs, one must open over the menu entry "View->Log" the view "Log". The window is likewise a tool window and can to the edge of the main window be docked or undocked. In the window all log entries in a sorted list are represented. Here the last entry is in at the beginning of the list.

Name of action	Description
Delete	The action deletes the list.
Save	The action stores the entries into a file.

8.2 Working with macros

8.2.1 Create a new macro

A new document (macro) is generated by the menu option "New" in the context menu. Depending if document was opened before, the macro editor offers a storing of the old document. If the user does not confirm with "Cancel", a new document is generated. At the same time only one document can be opened in the current version.

8.2.2 Open a macro

Opening macros is implemented in the menu option "open" or with the combination of keys "Ctrl+O". Subsequently, a selection of files dialog opens, in which the user can select the desired macro. If the user would like to open a macro of the previous version, he must change the data type in the selection of files dialog accordingly.

8.2.3 Save a macro

Storing macros is implemented in the menu option "Save" or the combination of keys "a Ctrl+S ". This function is available however only for already generated documents. For all new documents the function must be implemented "Save as… ".

The function is implemented in the menu option "Save as…". Subsequently, a selection of files dialog opens, in which the user must select the file name as well as the path. After the confirmation with "Save" the macro is stored. After the completion of the procedure the new name macros in the title bar is indicated.

8.2.4 Copy from instruction

The function is implemented in the menu option "Copy" or the combination of keys "Ctrl+C". It copies the marked line into the clipboard of the editor. In the current version in each case a line can be marked. Accordingly an instruction can be copied, too. The exception forms the instruction for block. It can be copied only as a whole.

8.2.5 Cut from instruction

The function is implemented in the menu option "Cut" or the combination of keys "Ctrl+X". It copies the marked instruction into the clipboard of the editor. With the inserting cut out of the instruction the old instruction is deleted from the document. The restriction to cut only one instruction can exists also with this function.

8.2.6 Paste from instruction

The function is implemented in the menu option "Paste" or the combination of keys "Ctrl+V ". It adds a before copied or low-cut instruction below the current position in the document. The menu is deactivated if no instruction was copied or low-cut before. In the current version you can insert each copied or low-cut instruction only once.

8.2.7 Delete from instruction

The function is implemented in the menu option "Delete" or the combination of keys "Ctrl + Del". It deletes the marked instruction from the document.

8.2.8 Search and replace

The function "Search and replace" is implemented in the menu "Search and replace" or the combination of keys "Ctrl+H". Then the dialog "Search and replace" opens..Here you can insert the search and replacement vocabulary and start the change procedure.

8.2.9 Shift up a instruction

The function is implemented in the menu option "Up". It shifts the marked instruction a line upward. If the top line of document is marked no action is implemented. Shifting of instructions can be done by drag n drop with the mouse, too.

8.2.10 Shift down a instruction

The function is implemented in the menu option "Down". It shifts the marked instruction one line downwards. If the last line of the document is marked no action is implemented. Shifting instructions can be done by by drag n drop with the mouse, too.

8.2.11 Generate new instructions

Generating of new instructions can be done in the menu option "Functions" in the context menu. The new instructions are always inserted below the marked line. Subsequently, the user can change the position of the new instruction (see "Upward and downward shift").

The following functions are to the user at the disposal in this version:

object, or the usparameters of the sparameters of the sparameters. Note: An assignment The instruction of the jump mark can be changed double names of the sparameters. Example: Label1: // Define of the instruction is sparameters. Sleep The instruction puthe instruction is sparameters. Sleep 1000 ms or sleep 500 ms // Sleep 500 ms // Sleep 500 ms // Sleep 1000 ms or sparameters. Goto The instruction gline of the jump resignored. Still if first label is always sparameters. Example: Goto Start // goto Condition The instruction printo the line of the sparameters.	
Device 00 Co Var1 = Device Note: An assignment The instruction of the jump mark can be changed double names co Example: Label1: // Define cor Start: // Define cor Start	assigns a new value to a macro object. The new value can be picked out from another user defines a constant. According to standard the line is inserted in the example 1. The the function can be changed in the view "Properties".
Note: An assignment The instruction of of the jump mark can be changed double names of Example: Label1: // Define or Start: // Define or The instruction prine of the jump resist is gnored. Still if first label is always Example: Goto Start // goto Condition The instruction printo the line of the start of	
Note: An assignment The instruction of the jump mark can be changed double names completed. Example: Label1: // Define completed. Sleep The instruction puthe instruction is Example: Sleep 1000 ms or Sleep 500 ms // Goto The instruction gline of the jump reduced is always. Example: Goto Start // goto Condition The instruction puthe instr	Control word = 047F hex // Assign to the control word the value 1151
An assignment Jump mark The instruction of the jump mark can be changed double names co Example: Label1: // Define cor Start: // Define cor The instruction prints ignored. Still if first label is always Example: Goto Start // goto Condition The instruction prints the line of the	ce 00 Status word // Assign to the variable the value of the status word
Jump mark The instruction of of the jump mark can be changed double names of Example: Label1: // Define of the instruction is Example: Sleep The instruction puthe instruction is Example: Sleep 1000 ms or Sleep 500 ms // Goto The instruction gline of the jump ris ignored. Still if first label is alway Example: Goto Start // goto Condition The instruction pinto the line of the goto Condition The instruction pinto the line of the goto Condition The instruction pinto the line of the goto Condition The instruction pinto the line of the goto Condition The instruction pinto the line of the goto Condition	
of the jump mark can be changed double names completed to be changed double names completed. The instruction part is ignored. Still if first label is always a sor so the instruction of the jump of t	t of desired values can be implemented only within an instruction for block.
Condition Label1: // Defined or Start: // Defined The instruction p the instruction is Example: Sleep 1000 ms or Sleep 500 ms // The instruction g line of the jump r is ignored. Still if first label is alway Example: Goto Start // goto Condition The instruction p into the line of the	defines a jump mark in macro. With the help of the function "Goto" you can jump to the place ark. According to standard the line is inserted in the example 1. The parameters of the function d in the view "Properies". The name of the jump marks are to be changed in any case, as causes problems. The generator always jumps to the first branch mark in the macro.
Start: // Defined Start: // Defined Sleep The instruction p the instruction is Example: Sleep 1000 ms or Sleep 500 ms // Goto The instruction g line of the jump r is ignored. Still if first label is alway Example: Goto Start // goto Condition The instruction p into the line of the	
Start: // Defined Sleep The instruction p the instruction is Example: Sleep 1000 ms or Sleep 500 ms // Goto The instruction g line of the jump r is ignored. Still if first label is alway Example: Goto Start // goto Condition The instruction p into the line of the	ned the label "Label1"·
Sleep The instruction p the instruction is Example: Sleep 1000 ms or Sleep 500 ms // Goto The instruction g line of the jump r is ignored. Still if first label is alway Example: Goto Start // goto Condition The instruction p into the line of the	
Example: Sleep 1000 ms or Sleep 500 ms // Goto The instruction gline of the jump ris ignored. Still if first label is alway Example: Goto Start // goto Condition The instruction pinto the line of the	ed the label "Start"
Sleep 1000 ms or Sleep 500 ms // Goto The instruction gline of the jump ris ignored. Still if first label is alway Example: Goto Start // goto Condition The instruction pinto the line of the	produces a break in the expiration macros. The time base is in "ms ". According to standard is inserted in the example 1. The time can be changed in the view "Properties".
Goto The instruction gline of the jump ris ignored. Still if first label is alway Example: Goto Start // goto Condition The instruction pinto the line of the	
Goto The instruction gline of the jump ris ignored. Still if first label is alway Example: Goto Start // goto Condition The instruction pinto the line of th	s // Wait 1s
Goto The instruction gline of the jump ris ignored. Still if first label is alway Example: Goto Start // goto Condition The instruction pinto the line of the	
line of the jump r is ignored. Still if first label is alwa Example: Goto Start // goto Condition The instruction p into the line of th	// Wait 0,5s
Goto Start // goto Condition The instruction p into the line of th	generates a jump in the macro. After activation of this instruction the generator jumps into the mark with the contained name. If the generator does not find a label with the name, the line if no label is defined in the macro, the menu entry is deactivated. According to standard the ways registered. The names of the label can be changed in the view "Properties".
Goto Start // goto Condition The instruction p into the line of th	
into the line of th	oto jump mark "Start"
instruction can b	produces a conditioned jump in the macro. If the condition is true then the generator jumps the jump mark with the name. According to standard the line is inserted in the example 1. The be changed in the view "Properties"
Example:	
	ontrolword == 047F hex then // Status word is of value 1150
	hen go to jump mark "Start"

Name	Description	
Block	The instruction makes it possible to increases assignments in an instruction to implement. These assignments are limited to the objects "control word" and set point values". Depending upon configuration of the device and intended purpose the user can select between "control word with 1 set point value", "control word with 2 set point values" or "control word with 3 set point values".	
	Example: -	
	Block	
	Device 00 Controlword = 1151 // assign to control word the value 1150	
	Device 00 Setpoint1 = 20,0 // assign to setpoint 1 the value 20	
Mathematic s and logic function		
	Example:	
	Var1 = Device 00 Controlword + 047F hex // Addition ·	
	Var1 = Device 00 Statusword AND 047F hex // logic "And "	

8.3 Scheduler

The scheduler controls the sequence of the macros. For the module there are two options.

Auto

With this option activated (automatic mode) after starting the scheduler line for line is processed. If it is deactivated (single step mode) (menu entry "Next" or combination of keys "F12") you must run each instruction manually.

Loop

With this option activated the macro in a continuous loop is implemented. That means after doing the last instruction the scheduler jumps back to the beginning of the macro.

Used topics:

Run a macro, Cancel a macro, Execute next instruction

8.3.1 Run a macro

The scheduler is started in the menu option "Start" or the combination of keys "F9". The automatic mode is actively processed now line for line now. In the single step mode after starting only the first line is implemented. For the next lines the user must call in each case the action "next ones". The scheduler can be started only again if the macro was processed or the user has canceled the expiration. While the scheduler runs the characteristic of the instructions cannot be changed.

8.3.2 Cancel a macro

The scheduler is terminated in the menu option "Cancel" or the combination of keys "F11".

8.3.3 Execute next instruction

This function can be found in the menu option "Next" or with the key "F12 ". It is available only in the single step mode and instructs the scheduler to implement the next instruction in the macro. If the last instruction was implemented, the scheduler is terminated automatically.

9 PLC

9.1 General

The NORDAC vector contains logic processing which is similar to the current IEC61131-3 standard for memory programmable control units (SPS / PLC). The reaction speed or computing power of this PLC is suitable to undertake smaller tasks in the area of the inverter. Inverter inputs or information from a connected field bus can be monitored, evaluated and further processed into appropriate setpoint values for the frequency inverter. In combination with other NORD devices, visualization of system statuses or the input of special customer parameters is also possible. Therefore, within a limited range, there is a potential for savings via the elimination of a previous external PC solution. AWL is supported as the programming language. AWL is a machine-orientated, text-based programming language whose scope and application is specified in IEC61131-3.

NOTE

Programming and download into the frequency inverter is exclusively via the NORD software NORD CON

9.1.1 Specification of the PLC

Function	Specification		
Standard	Orientated to IEC61131-3		
Language	Instruction List (IL), Structured text (ST)		
Task	A cyclic task, program call-up every 5ms		
Computer performance	Approximately 200 AWL commands per 1ms		
Program memory	SK 5xxE, SK2xxE	SK 190E, SK 180E	
	8128 Byte for flags, functions and the PLC program	2092 Byte for flags, functions and the PLC program	
Max. possible number of commands	Approximately 2580\660 commands Notice! This is an average value. Heavy use of flags, process data and functions considerably reduces the possible number of lines; see Resources section		
Freely accessible CAN mailboxes	20		

9.1.2 PLC structure

9.1.2.1 Memory

The PLC memory is divided into the program memory and the flag memory. In addition to the variables, instances of function blocks are saved in the area of the flag memory. Instance is a memory area in which all internal input and output variables of function command are saved. Each function command declaration requires a separate instance. The boundary between the program memory and the flag memory is determined dynamically, depending on the size of the flag area.

In the flag memory, two different classes of variables are stored in the variable section:

[VAR]

Memory variable for saving auxiliary information and statuses. Variables of this type are initialized every time the PLC starts. The memory content is retained during the cyclic sequence of the PLC.

[VAR ACCESS]

These are used to read and describe process data (inputs, outputs, setpoints, etc.) of the frequency inverter. These values are regenerated with every PLC cycle.

9.1.2.2 Process Image

Several physical dimensions such as torque, speed, position, inputs, outputs etc. are available to the inverter. These dimensions are divided into actual and setpoint values. They can be loaded into the process image of the PLC and influenced by it. The required processes must be defined in the list of variables under the class VAR_ACCESS. With each PLC cycle, all of the process data for the inverter which is defined in the list of variables is newly read in. At the end of each PLC cycle the writable process data are transferred back to the inverter, see following illustration.

Because of this sequence it is important to program a cyclic program sequence. Programming loops in order to wait for a certain event (e.g. change of level at an input) does not produce the required result. This behaviour is different in the case of function blocks which access process values. Here, the process value is read on call-up of the function block and the process values are written immediately when the block is terminated.

NOTE

If the Motion blocks MC_Power, MC_Reset, MC_MoveVelocity, MC_Move, MC_Home or MC_Stop are used, the process values "PLC_Control_Word" and "PLC_Set_Val1" up to "PLC_Set_Val5" may not be used. Otherwise the values in the list of variables would always overwrite the changes to the function block.

9.1.2.3 Program Task

Execution of the program in the PLC is carried out as a single task. The task is called up cyclically every 5ms and its maximum duration is 3ms. If a longer program cannot be executed in this time, the program is interrupted and continued in the next 5ms task.

9.1.2.4 Setpoint processing

The inverter has a variety of setpoint sources, which are ultimately linked via several parameters to form a frequency inverter setpoint.

If the PLC is activated (P350=1) preselection of setpoints from external sources (main setpoints) is carried out via P509 and P510[-01] Via P351, a final decision is made as to which setpoints from the PLC or values input via P509/P510[-01] are used. A mixture of both is also possible. No changes to the auxiliary setpoints (P510[-02]) are associated with the PLC function. All auxiliary setpoint sources and the PLC transfer their auxiliary setpoint to the frequency inverter with equal priority.

9.1.2.5 Data processing via accumulator

The accumulator forms the central computing unit of the PLC. Almost all AWL commands only function in association with the accumulator. The PLC has three accumulators. These are the 23 Bit Accumulator 1 and Accumulator 2 and the AE in BOOL format. The AE is used for all boolean loading, saving and comparison operations. If a boolean value is loaded, it is depicted in the AE Comparison operations transfer their results to the AE and conditional jumps are triggered by the AE. Accumulator 1 and Accumulator 2 are used for all operands in the data format BYTE, INT and DINT. Accumulator 1 is the main accumulator and Accumulator 2 is only used for auxiliary functions. All loading and storage operands are handled by Accumulator 1. All arithmetic operands save their results in Accumulator 1. With each Load command, the contents of Accumulator 1 are moved to Accumulator 2. A subsequent operator can link the two accumulators together or evaluate them and save the result in Accumulator 1, which in the following will generally be referred to as the "accumulator".

9.1.3 Scope of functions

The PLC supports a wide range or operators, functions and standard function modules, which are defined in IEC61131-3. There is a detailed description in the following sections. In addition, the function blocks which are also supported are explained.

9.1.3.1 Motion Control Lib

The Motion Control Lib is based on the PLCopen specification "Function blocks for motion control". This mainly contains function blocks which are used to move the drive. In addition, function blocks for reading and writing FI parameters are also provided.

9.1.3.2 Electronic gear with Flying Saw

The frequency inverter is equipped with the functions Electronic gear unit (synchronous operation in positioning mode) and Flying saw. Via these functions the inverter can follow another drive unit with angular synchronism. As well as this, with the additional function Flying saw it is possible to synchronize to the precise position of a moving drive unit. The operating mode Electronic gear unit can be started and stopped at any time. This enables a combination of conventional position control with its move commands and gear unit functions. For the gear function a NORDAC vector Frequenzumrichter with internal CAN bus is required on the master axis.

9.1.3.3 Visualisation

Visualization of the operating status and the parameterization of the frequency inverter is possible with the aid of a ControlBox or a ParameterBox. Alternatively, the CANopen Master functionality of the PLC CAN bus panel can be used to display information.

9.1.3.3.1 ControlBox

The simplest version for visualisation is the ControlBox. The 4-digit display and the keyboard status can be accessed via two process values. This enables simple HMI applications to be implemented very quickly. P001 must be set to "PLC-ControlBox Value" so that the PLC can access the display. A further special feature is that the parameter menu is no longer accessed via the arrow keys. Instead, the "On" and "Enter" keys must be pressed simultaneously.

9.1.3.3.2 ParameterBox

In visualization mode, each of the 80 characters in the P-Box display (4 rows of 20 characters) can be set via the PLC. It is possible to transfer both numbers and texts. In addition, keyboard entries on the P-Box can be processed by the PLC. This enables the implementation of more complex HMI functions (display of actual values, change of window, transfer or setpoints etc.). Access to the P-Box display is obtained via the function blocks in the PLC. Visualization is via the operating value display of the Parameter Box. The content of the operating value display is set via the P-Box parameter P1003. This parameter can be found under the main menu item "Display". P1003 must be set to the value "PLC display". After this, the operating value display can be selected again by means of the right and left arrow keys. The display controlled by the PLC is then shown. This setting remains in effect even after a further switch-on.

9.1.3.4 Process controller

The process controller is a PID-T1 controller with a limited output size. With the aid of this function module in the PLC it is possible to simply set up complex control functions, by means of which various processes, e.g. pressure regulation, can be implemented in a considerably more elegant manner than with the commonly used two-point controllers.

9.1.3.5 CANopen communication

In addition to the standard communication channels, the PLC provides further possibilities for communication. Via the internal CAN bus of the inverter (connection via the RJ45 sockets), it can set up additional communications with other devices. The protocol which is used for this is CANopen. Communications are restricted to PDO data transfer

and NMT commands. The standard CANopen inverter communication via SDO, PDO1, PDO2 and Broadcast remains unaffected by this PLC function.

PDO (Process Data Objects)

Other frequency inverters can be controlled and monitored via PDO. However, it is also possible to connect devices from other manufacturers to the PLC. These may be IO modules, CANopen encoders, panels, etc. With this, the number of inputs/outputs of the frequency encoder can be extended as far as is required; analog outputs would then be possible.

NMT (Network Management Objects)

All CANopen devices must be set to the CANopen bus state "Operational" by the bus master. PDO communication is only possible in this bus state. If there is no bus master in the CANopen bus, this must be performed by the PLC. The function module FB_NMT is available for this purpose.

9.2 Creation of PLC programs

Creation of the PLC programs is carried out exclusively via the PC program **NORD CON**. The PLC editor is opened either via the menu item "File/New/PLC program" or via the symbol . This button is only active if a frequency inverter with PLC functionality forms the focus of the device overview.

9.2.1 Loading, saving and printing

The functions Load, Save and Print are carried out via the appropriate entries in the main menu or in the symbol bars. On opening it is advisable to set the file type to "PLC Program" (*.awlx) in the "Open" dialogue. With this, only files which can be read by the PLC editor are displayed. If the PLC program which has been created is to be saved, the PLC Editor window must be active. The PLC program is saved by actuating "Save" or "Save as". With the operation "Save as" this can also be detected from the entry of the file type (Program PLC (*.awlx)). The appropriate PLC window must be active in order to print the PLC program. Printout is then started via "File/Print" or the appropriate symbol.

9.2.2 Editor

The PLC Editor is divided into four different windows.

The individual windows are described in more detail in the following sections.

9.2.2.1 Variables and FB declaration

All the variables, process values and function blocks which are required by the program are declared in this window.

Variables

Variables are created by setting the Class "VAR". The Name of the variable can be freely selected. In the Type field, a selection between BOOL, BYTE, INT and DINT can be made. A starting initialisation can be entered under Init-Value.

Process values

These are created by selecting the entry "VAR_ACCESS" under Class. The Name is not freely selectable and the field Init-Value is barred for this type.

Function modules

The entry "VAR" is selected under Class. The Name for the relevant instance of the function module (FB) can be freely selected. The required FB is selected under Type. An Init-Value cannot be set for function modules.

All menu items which relate to the variable window can be called up via the context menu. Via this, entries can be added and deleted. Variables and process variables for monitoring (Watchdog function) or debugging (Breakpoint) can be activated.

9.2.2.2 Input window

The input window is used to enter the program and to display the AWL program. It is provided with the following functions:

- · Highlight syntax
- Bookmark
- · Declaration of variables
- Debugging

Syntax Highlighting

If the command and the variable which is assigned to it are recognised by the Editor, the command is displayed in blue and the variable in black. As long as this is not the case, the display is in thin black italics.

Bookmarks

As programs in the Editor may be of considerable length, it is possible to mark important points in the program with the function Bookmark and to jump directly to these points. The cursor must be located in the relevant line in order to mark it. Via the menu item "Switch bookmark" (right mouse button menu) the line is marked with the required bookmark. The bookmark is accessed via the menu item "Go to bookmark".

Declaring Variables

Via the Editor menu "Add Variable" (right mouse button) new variables can be declared using the Editor.

Debugging

For the Debugging function, the positions of the breakpoints and watchpoints are specified in the Editor. This can be done via the menu items "Switch breakpoint" (Breakpoints) and "Switch monitoring point" (Watchpoints). The position of Breakpoints can also be specified by clicking on the left border of the Editor window. Variables and process values which are to be read out from the frequency inverter during debugging must be marked. This can be done in the Editor via the menu items "Debug variable" and "Watch variable". For this, the relevant variable must be marked before the required menu item is selected.

9.2.2.3 Watch and Breakpoint display window

This window has two tabs, which are explained below.

Holding points

This window displays all of the breakpoints and watchpoints which have been set. These can be switched on and off via the checkboxes and deleted with the "Delete key". A corresponding menu can be called up with the right mouse button.

Observation list

This displays all of the variables which have been selected for observation. The current content is displayed in the Value column. The display format can be selected with the Display column.

9.2.2.4 PLC message window

All PLC status and error messages are entered in this window. In case of a correctly translated program the message "Translated without error" is displayed. The use of resources is shown on the line below this. In case of errors in the PLC program, the message "Error X" is displayed. The number of errors is shown in X. The following lines show the specific error message in the format:

[Line number]: Error description

9.2.3 Load PLC program into the FI

In order for a program to be loaded into the FI the PLC window must be online and the program translated without errors. The PLC window is online if the PLC window is shown in the tree diagram of the FI (54xE). See following picture.

This is achieved if the PLC window is opened via the PLC symbol . If a PLC program has been opened in an offline window, the user can assign the PLC program to a device via the menu item "PLC->Connect". The PLC program can be reset to offline mode with the menu item "PLC -> Detach".

The PLC program is loaded into the FI via the symbol and is saved immediately. After this, the program can be started in the frequency inverter via the symbol.

9.2.4 Debugging

As programs only rarely function the very first time, the PLC provides several possibilities for finding faults. These possibilities can be roughly divided into two categories, which are described in detail below.

9.2.4.1 Observation points (Watchpoints)

The simplest debugging variant is the Watchpoint function. This provides a rapid overview of the behaviour of several variables. For this, an observation point is set at an arbitrary point in the program. When the PLC processes this line, up to 5 values are saved and displayed in the observation list (window "Observation List") The 5 values to be observed can be selected in the entry window or in the variable window using the context menu.

NOTE

In the current version, variables of functions cannot be added to the watch list!

9.2.4.2 Holding points (Breakpoints)

Via holding points it is possible to deliberately stop the PLC program at a specific line of the program. If the PLC runs into a Breakpoint, the AE, Accumulator 1 and Accumulator 2 are read out, as well as all variables which have

been selected via the menu item "Debug variables". Up to 5 Breakpoints can be set in a PLC program. This

function is started via the symbol. The program now runs until a holding point is triggered. Further actuation of the symbol bar allows the program to continue running until it reaches the next holding point. If the program is to continue running, the symbol is actuated.

9.2.4.3 Single Step

With this debugging method it is possible to execute the PLC program line for line. With each individual step, all the selected variables are read out of the FI PLC and displayed in the "Observation list" window. The values to be observed can be selected in the input window or the variable window by means of the right mouse button menu. The condition for debugging in single steps is that at least one Breakpoint has been set before starting debugging. The

debugging mode is switched on by actuating the symbol. Only when the program has run into the first

breakpoint, can the following lines be debugged via the symbol. Some command lines contain several individual commands. Because of this, two or more individual steps may be processed before the step indicator jumps forward in the entry window. The actual position is shown by a small arrow in the left PLC Editor window.

When the symbol is actuated, the program continues running until the next holding point. If the program is to continue running, the symbol is actuated.

9.2.5 PLC configuration

The PLC configuration dialogue is opened via the symbol. Here, basic settings for the PLC can be made, which are described in further detail below.

Cycle time monitoring

This function monitors the maximum processing time for a PLC cycle. With this, unintended continuous program loops in the PLC program can be caught. Error 22.4 is triggered in the frequency inverter if this time is exceeded.

Allow ParameterBox function module

If visualisation via the ParameterBox is to be performed in the PLC program, this option must be enabled (see Section 3.5.5). Otherwise the corresponding function blocks generate a Compiler Error when the frequency inverter is started.

Invalid control data

The PLC can evaluate control words which are received from the possible bus systems. However, the control words can only get through if the bit "PZD valid" (Bit 10) is set. This option must be activated if control words which are not compliant with the USS protocol are to be evaluated by the PLC. Bit 10 in the first word is then no longer queried.

Do not pause the system time at holding point

The system time is paused during debugging if the PLC is in the holding point or in single step mode. The system time forms the basis for all timers in the PLC. This function must be activated if the system time is to continue running during debugging.

9.3 Languages

9.3.1 AWL (Instruction List, IL)

9.3.1.1 General

9.3.1.1.1 Data types

The PLC supports the data types listed below.

Name	Required memory space	Value range
BOOL	1 Bit	0 bis 1
BYTE	1 Byte	0 bis 255
INT	2 Byte	-32768 bis 32767
DINT	4 Byte	-2.147.483.648 bis 2.147.483.647
LABEL_ADDRESS	2 Byte	Jump marks

9.3.1.1.2 Literal

For greater clarity it is possible to enter constants for all data types in various display formats. The following table gives an overview of all possible variants.

Literal	Example	Number displayed in decimal
Bool	FALSE	0
	TRUE	1
	BOOL#0	0
	BOOL#1	1
Dual (Basis 2)	2#01011111	95
	2#0011_0011	51
	BYTE#2#00001111	15
	BYTE#2#0001_1111	31

Oktal (Basis 8)	8#0571	377
	8#05_71	377
	BYTE#8#10	8
	BYTE#8#111	73
	BYTE#8#1_11	73
Hexadecimal (Basis 16)	16#FFFF	-1
	16#0001_FFFF	131071
	INT#16#1000	4096
	DINT#16#0010_2030	1056816
Integer (Basis 10)	10	10
	-10	-10
	10_000	10000
	INT#12	12
	DINT#-100000	-100000
Time	TIME#10s50ms	10,050 seconds
	T#5s500ms	5,5 seconds
	TIME#5.2s	5,2 seconds
	TIME#5D10H15M	5days+10hours+15minutes
	T#1D2H30M20S	1day+2hours+30minutes+20seconds

9.3.1.1.3 Comments

It is advisable to provide the sections of the program with comments in order to make the PLC program understandable at a later date. In the application program these comments are marked by starting with the character sequence "(*" and finishing with "*)" as shown in the following examples.

Example:

```
(* Comment about a program block *)
LD 100 (* Comment after a command *)
ADD 20
```

9.3.1.1.4 Jump marks

With the aid of the operators JMP, JMPC or JMPCN whole sections of the program can be bypassed. A jump mark is given as the target address. With the exception of diacritics and ß it may contain all letters, the numbers 0 to 9 and underscores; other characters are not permitted. The jump mark is terminated with a colon. This may stand on its own. There may also be further commands after in the same line after the jump mark.

Possible variants may appear as follows:

Example:

```
Jump mark: LD 20
```

```
This_is_a_jumpmark:
ADD 10

MainLoop: LD 1000
```

A further variant is the transfer of a jump mark as a variable. This variable must be defined as type LABLE_ADDRESS in the variable table, then this can be loaded into the variable 'jump marks'. With this, status machines can be created very simply, see below.

Example:

```
LD FirstTime
JMPC AfterFirstTime
(* The label address must be initialized at the beginning *)
LD Address_1
ST Address_Var
LD TRUE
ST FirstTime
AfterFirstTime:
JMP Address_Var
Address_1:
LD Address_2
ST Address_Var
JMP Ende
Address_2:
LD Address_3
ST Address_Var
JMP Ende
Address_3:
LD Address_1
ST Address_Var
Ende:
```

9.3.1.1.5 Function call-ups

The Editor supports one form of function call-ups. In the following version, the function CTD is called up via the instance I_CTD. The results are saved in variables. The meaning of the functions used below is described in further detail later in the manual.

Example

```
LD 10000
ST I_CTD.PV
LD LoadNewVar
ST I_CTD.LD
LD TRUE
ST I_CTD.CD
CAL I_CTD
LD I_CTD.Q
ST ResultVar
LD I_CTD.CV
ST CurrentCountVar
```

9.3.1.1.6 Bit-wise access to variables

A simplified form is possible for access to a bit from a variable or a process variable.

Command	Description
LD Var1.0	Loads Bit 0 of Var1 into the AE
ST Var1.7	Stores the AE on Bit 7 of Var1
EQ Var1.4	Compares the AE with Bit 4 of Var1

9.3.2 Structured text (ST)

Structured text consists of a series of instruction, which are executed as in plain language ("IF..THEN..ELSE) or in loops (WHILE.. DO).

Example:

```
IF value < 7 THEN
  WHILE value < 8 DO
   value := value + 1;
  END_WHILE;
END_IF;</pre>
```

9.3.2.1 General

9.3.2.1.1 Data types

The PLC supports the data types listed below.

Name	Required memory space	Value range
BOOL	1 Bit	0 bis 1
BYTE	1 Byte	0 bis 255
INT	2 Byte	-32768 bis 32767
DINT	4 Byte	-2.147.483.648 bis 2.147.483.647

9.3.2.1.2 Assignment operator

On the left hand side of an assignment there is an operand (variable, address) to which the value of an expression on the right hand side is assigned with the assignment operator "=".

Example:

```
Var1 := Var2 * 10;
```

After execution of this line, Var1 has ten times the value of Var2.

9.3.2.1.3 Call-up of function blocks in ST

A function block is called in ST by writing the name of the instance of the function block and then assigning the values of the parameters. In the following example a timer is called up with assignment of its parameters IN and PT Then the result variable Q is assigned to the variable A.

The result variable is accessed as in IL with the name of the function block, a following period and the name of the variable.

Example:

```
Timer(IN := TRUE, PT := 300);
A := Timer.O
```

9.3.2.1.4 Evaluation of expressions

The evaluation of the expression is performed by processing the operators according to certain linking rules. The operator with the strongest link is processed first and then the operator with the next strongest link, etc. until all of the operators have been processed. Operators with links of the same strength are processed from left to right.

The table below shows the ST operators in the order of the strength of their links:

Operation	Symbol	Link strength
Brackets	(Expression)	Strongest
Function call	Function name (parameter list)	
Negated complement formation	NOT	
Multiply	*	
Divide	/	
Modulus	MOD	
AND	AND	
Add	+	
Subtract	-	
OR	OR	
XOR	XOR	
Compare	<,>,<=,>=	Light
Equality	=	
Inequality	<>	

9.3.2.2 Procedure

9.3.2.2.1 RETURN

The RETURN instruction can be used to jump to the end of the program, for example, depending on a condition.

9.3.2.2.2 IF

With the IF instruction, a condition can be tested and instructions carried out depending on this condition.

Syntax:

The part in the curly brackets {} is optional. If <Boolean_Expression1> is TRUE, then only the <IF_Instructions> are executed and none of the other instructions.. Otherwise, starting with <Boolean_Expression2>, the boolean expressions are evaluated in sequence until one of the expressions is TRUE. Then, only the expressions following this boolean expression and before the next ELSE or ELSIF are evaluated. If none of the boolean expressions is TRUE, only the <ELSE_Instructions> are evaluated.

Example:

```
IF temp < 17 THEN
Bool1 := TRUE;
ELSE
Bool2 := FALSE;
END_IF;</pre>
```

9.3.2.2.3 CASE

With the CASE instruction, several conditional instructions with the same condition variables can be combined into a construct.

Syntax:

```
CASE <Var1> OF
  <Value1>: <Instruction 1>
  <Value2>: <Instruction 2>
  <Value3, Value4, Value5: <Instruction 3>
  <Value6 .. Value10 : <Instruction 4>
    ...
  <Value n>: <Instruction n>
ELSE <ELSE-Instruction>
END_CASE;
```

A CASE instruction is processed according to the following pattern:

- If the variable in <Var1> has the value <Value i>, the instruction <Instruction i> is executed.
- If <Var 1> does not have any of the stated values, the <ELSE instruction> is executed.
- If the same instruction is to be executed for several values of the variable, these values can be written separately in sequence, separated with commas as the condition of the common instruction.
- If the same instruction is to be executed for a range of values of the variable, the initial value and the end value can be written separated by a colon as the condition for the common instruction.

Example:

```
CASE INT1 OF

1, 5:

BOOL1 := TRUE;

BOOL3 := FALSE;

2:

BOOL2 := FALSE;

BOOL3 := TRUE;

10..20:

BOOL1 := TRUE;

BOOL3:= TRUE;

BOOL3:= TRUE;

ELSE

BOOL1 := NOT BOOL1;

BOOL2 := BOOL1 OR BOOL2;

END_CASE;
```

9.3.2.2.4 FOR loop

Repetitive processes can be programmed with the FOR loop.

Syntax:

```
FOR <INT_Var> := <INIT_VALUE> TO <END_VALUE> {BY <STEP>} DO <Instruction>
END FOR;
```

The part in the curly brackets {} is optional. The <Instructions> are executed as long as the counter <INT-Var> is not larger than the <END_VALUE>. This is checked before the execution of the <Instructions> so that the <Instructions> are never executed if the <INIT_VALUE> is larger than the <END_VALUE>. Whenever the <Instructions> are executed, the <INIT-Var> is increased by a <Step size>. The step size can have any integer value. If this is missing, it is set to 1. The loop must terminate, as <INT_Var> is larger.

Example:

```
FOR Count :=1 TO 5 BY 1 DO
  Var1 := Var1 * 2;
END FOR;
```

9.3.2.2.5 REPEAT loop

The REPEAT loop is different from the WHILE loop in that the termination condition is only tested after the loop has been executed. As a result, the loop must be run through at least once, regardless of the termination condition.

Syntax:

The <Instructions> are executed until the <Boolean Expression> is TRUE. If the <Boolean Expression> is TRUE with the first evaluation, the <Instructions> are executed exactly once. If the <Boolean Expression> is never TRUE, the <Instructions> will be executed endlessly, which will create a runtime error.

NOTE

The programmer must ensure that no endless loops are created by changing the condition in the instruction part of the loop, for example a counter which counts upwards or downwards.

Example:

```
REPEAT
  Var1 := Var1 * 2;
  Count := Count - 1;
UNTIL
  Count = 0
END_REPEAT
```

9.3.2.2.6 WHILE loop

The WHILE loop can be used like in the same way as the FOR loop, with the difference that the termination condition can be any boolean expression. This means that a condition is stated, which, if it is true, will result in the execution of the loop.

Syntax:

```
WHILE <Boolean Expression> DO <Instructions> END_WHILE;
```

The <Instructions> are executed repeatedly for as long as the <Boolean_Expression> is TRUE. If the <Boolean_Expression> is FALSE in the first evaluation, the <Instructions> will never be executed. If the <Boolean_Expression> is never FALSE, the <Instructions> will be repeated endlessly.

NOTE

The programmer must ensure that no endless loops are created by changing the condition in the instruction part of the loop, for example a counter which counts upwards or downwards.

Example:

```
WHILE Count <> 0 DO
Var1 := Var1*2;
Count := Count - 1;
END_WHILE
```

9.3.2.2.7 Exit

If the EXIT instruction occurs in a FOR, WHILE or REPEAT loop, the innermost loop will be terminated, regardless of the termination condition.

9.4 Operators

9.4.1 Arithmetical operators

Operator	Description
ABS	Absolute value
ADD	Addition
DIV	Division
<u>LIMIT</u>	Limiter
MAX	Determines the larger of two numbers
MIN	Determines the lesser of two numbers
MUX	Multiplexer
MOD	Modulo operation
MUL	Multiplication
SUB	Subtraction

NOTE

Some of the following operators may also contain further commands. These must be placed in brackets behind the operator. It must be noted that a space must be included behind the opened bracket. The closing bracket must be placed on a separate line of the program.

```
LD Var1
ADD( Var2
SUB Var3
```

9.4.1.1 ABS

Forms the absolute value from the accumulator.

	BOOL	BYTE	INT	DINT
Possible data types			X	X

	SK 5xxE	SK 2xxE	SK1xxE
Possible devices	х	Х	х

Example AWL:

```
LD -10 (* Load the value -10 *)
ABS (* Accumulator = 10 *)
ST Value1 (* Saves the value 10 in Value1 *)
```

Example ST:

```
Value1 := ABS(-10); (* The result is 10 *)
```

9.4.1.2 ADD und ADD(

Adds variables and constants together with the correct prefixes. The first value for addition is in the AE/ accumulator, the second is loaded with the ADD command or is inside the bracket. Several variables or constants can be added to the ADD command. For bracket addition, the accumulator is added to the result of the expression in brackets. Up to 6 bracket levels are possible. The values to be added must belong to the same type of variable.

	BOOL	BYTE	INT	DINT
Possible data types		X	х	х

	SK 5xxE	SK 2xxE	SK1xxE
Possible devices	X	X	х

Example AWL:

```
LD 10
ADD 204 (* Addition of two constants *)
ST Value
LD 170 (* Addition of a constant and 2 variables. *)
ADD Var1, Var2 (* 170dez + Var1 + Var2 *)
ST Value
LD Var1
ADD( Var2
SUB Var3 (* Var1 + ( Var2 - Var3 ) *)
)
ST Value
```

Example ST:

```
Ergebnis := 10 + 30; (* The result is 40 *)
Ergebnis := 10 + Var1 + Var2;
```

9.4.1.3 DIV und DIV(

Divides the accumulator by the operands For divisions by zero, the maximum possible result is entered into the accumulator, e.g. for a division with INT values, this is the value 0x7FFF or the value 0x8000 if the divisor is negative. For bracket division, the accumulator is divided by the result of the expression in brackets. Up to 6 bracket levels are possible. The values to be divided must belong to the same type of variable.

	BOOL	BYTE	INT	DINT
Possible data types		x	х	Х

	SK 5xxE	SK 2xxE	SK1xxE
Possible devices	х	х	Х

Example AWL:

```
LD 10
```

```
DIV 3 (* Division of two constants *)

ST iValue (* The result is 9 *)

LD 170 (* Division of a constant and 2 variables. *)

DIV Var1, Var2 (* (170dez : Var1) : Var2 *)

ST Value

LD Var1 (* Divide Var1 by the content of the brackets *)

DIV( Var2

SUB Var3
) (* Var1 : ( Var2 - Var3 ) *)

ST Value
```

```
Ergebnis := 30 / 10; (* The result is 3 *)
Ergebnis := 30 / Var1 / Var2;
```

9.4.1.4 LIMIT

The command limits the value in the accumulator to the transferred minimum and maximum values. If this is exceeded, the maximum value is entered in the accumulator and if it is undershot, the minimum value is entered. If the value lies between the limits, there is no effect.

	BOOL	BYTE	INT	DINT
Possible data types		Х	Х	X

	SK 5xxE	SK 2xxE	SK1xxE
Possible devices	х	X	х

Example AWL:

```
LD 10 (* Loads the value 10 into the accumulator *)

LIMIT 20, 30 (* The value is compared with the limits 20 and 30. *)

(* The value in the accumulator is smaller, the Accumulator is overwritten with ST iValue (* Saves the value 20 in Value1 *)
```

Example ST:

```
Ergebnis := Limit(10, 20, 30); The result is 20 *)
```

9.4.1.5 MAX

This value determines the maximum value of two variables or constants For this, the current value of the accumulator is compared with the value transferred in the MAX command. After the command, the larger of the two values is in the accumulator. Both values must belong to the same type of variable.

	BOOL	BYTE	INT	DINT
Possible data types		х	х	х

	SK 5xxE	SK 2xxE	SK1xxE
Possible devices	x	х	х

```
LD 100 (* Load 100 into the accumulator *)
MAX 200 (* Compare with the value 200 *)
ST iValue (* Save 200 in Value2 (because larger value) *)
```

Beispiel in ST:

```
Result := Max(100, 200); (* The result is 200 *)
```

9.4.1.6 MIN

This command determines the minimum value of two variables or constants. For this, the current value of the accumulator is compared with the value transferred in the MIN command. After the command, the smaller of the two values is in the accumulator. Both values must belong to the same type of variable.

	BOOL	BYTE	INT	DINT
Possible data types		х	х	х

	SK 5xxE	SK 2xxE	SK1xxE
Possible devices	х	Х	х

Example AWL:

```
LD 100 (* Load 100 into the accumulator *)
MIN 200 (* Compare with the value 200 *)
ST Value2 (* Save 100 in Value2 (because smaller value) *)
```

Example ST::

```
Result := Min(100, 200); (* Save 100 in Value2 (because smaller value) *)
```

9.4.1.7 MUX

Various constants or variables can be selected via an index, which is located in front of the command in the accumulator. The first value is accessed via the Index 0. The selected value is loaded into the accumulator. The number of values is only limited by the program memory.

	BOOL	BYTE	INT	DINT
Possible data types		Х	Х	x

	SK 5xxE	SK 2xxE	SK1xxE
Possible devices	х	х	X

```
LD 1 (* Select the required element *) MUX 10,20,30,40, Value1 (* MUX command with 4 constants and a variable *) ST Value (* Save result = 20 *)
```

Example ST:

```
Result := Mux(1, 10, 20, 30, 40, Value1) (* Save result = 20 *)
```

9.4.1.8 MOD und MOD(

The Accumulator is divided by one or more variables or constant and the remainder of the division is the result in the accumulator. For the bracket Modulus, the accumulator is divided by the result of the expression in the brackets and the modulus is formed from this. Up to 6 bracket levels are possible.

	BOOL	BYTE	INT	DINT
Possible data types		х	х	Х

	SK 5xxE	SK 2xxE	SK1xxE
Possible devices	х	Х	х

Example AWL:

```
LD 25     (* Load the dividend *)
MOD 20     (* Division 25/20 to Modulus = 5 *)

ST Var1     (* Save result 5 in Var1 *)

LD 25     (* Load the dividend *)
MOD( Var1 (* Result = 25/(Var1 + 10) to Modulus in the Accu *)
ADD 10
)
ST Var3     (* Save result 10 in Var3 *)
```

Example ST:

```
Result := 25 MOD 20; (* Save result 5 in Var1 *) Result := 25 MOD (Var1 + 10); (* Result = 25/(\text{Var1} + 10) per modulus into the Accumulator *)
```

9.4.1.9 MUL und MUL(

Multiplication of the accumulator with one or more variables or constants. For bracket multiplication, the accumulator is multiplied by the result of the expression in brackets. Up to 6 bracket levels are possible. Both values must belong to the same type of variable.

	BOOL	BYTE	INT	DINT
Possible data types		X	Х	Х

	SK 5xxE	SK 2xxE	SK1xxE
Possible devices	х	Х	х

Example ST:

```
Result := 25 * Var1 * Var2;
Result := 25 * (Var1 + Var2);
```

9.4.1.10 SUB und SUB(

Subtracts the accumulator from one or more variables or constants. For bracket subtraction, the accumulator is subtracted from the result of the expression in brackets. Up to 6 bracket levels are possible. The values to be subtracted must belong to the same type of variable.

	BOOL	BYTE	INT	DINT
Possible data types		X	Х	Х

	SK 5xxE	SK 2xxE	SK1xxE
Possible devices	X	X	X

Example AWL:

Result := 10 - Value1;

9.4.2 Extended mathematical operators

Operator	Description
EXP	Exponential function
LOG	Logarithm, base 10
LN	Logarithm, base e
SQRT	Root
COS, ACOS	
SIN, ASIN	Trigonometrical operators
TAN, ATAN	

NOTE

The operators listed here require intensive computing. This may result in a considerably longer running time for the PLC program.

9.4.2.1 EXP

Forms the exponential function to the base of Euler's Number (2.718) from the Accumulator. Up to 3 places behind the decimal point may be stated, i.e. 1.002 must be entered as 1002.

$$AE = e^{\left(\frac{AE}{1000}\right)} \cdot 1000$$

	BOOL	BYTE	INT	DINT
Possible data types				Х

	SK 5xxE	SK 2xxE	SK1xxE
Possible devices	X	х	

Example AWL:

```
LD 1000
EXP
ST Result (* Result = 2718 *)
```

```
Result := EXP(1000); (* Result = 2718 *)
```

9.4.2.2 LOG

Forms the base 10 logarithm from the accumulator. Up to 3 places behind the decimal point may be stated, i.e. 1.000 must be entered as 1000.

$$AE = log_{10} \left(\frac{AE}{1000} \right) \cdot 1000$$

	BOOL	BYTE	INT	DINT
Possible data types				X

	SK 5xxE	SK 2xxE	SK1xxE
Possible devices	Х	X	

Example AWL:

```
LD 1234
LOG
ST Result (* Result = 91 *)
```

Example ST:

```
Result := LOG(1234); (* Result = 91 *)
```

9.4.2.3 LN

Logarithm to base e (2.718). Up to 3 places behind the decimal point may be stated, i.e. 1.000 must be entered as 1000.

$$AE = \ln\left(\frac{AE}{1000}\right) \cdot 1000$$

	BOOL	BYTE	INT	DINT
Possible data types				Х

	SK 5xxE	SK 2xxE	SK1xxE
Possible devices	X	х	

Example AWL:

```
LD 1234
LN
ST Result
```

```
Result := LN(1234); (* Result = 210 *)
```

9.4.2.4 SQRT

Forms the square root from the accumulator. Up to 3 places behind the decimal point may be stated, i.e. 1.000 must be entered as 1000.

$$AE = \sqrt{\left(\frac{AE}{1000}\right)} \cdot 1000$$

	BOOL	BYTE	INT	DINT
Possible data types				Х

	SK 5xxE	SK 2xxE	SK1xxE
Possible devices	х	х	

Example AWL:

```
LD 1234
SQRT
ST Result (* Result = 1110 *)
```

Example ST:

```
Result := SQRT(1234); (* Result = 1110 *)
```

9.4.2.5 COS, ACOS, SIN, ASIN, TAN, ATAN

Calculation of the relevant mathematical function. The value to be calculated must be available in minutes of arc. The scaling corresponds to 1 = 1000.

Conversion: Angle in radians = (Angle in degrees * PI / 180)*1000 e.g. an angle of 90° is converted as follows: 90° * 3.14 / 180) *1000 = 1571

$$AE = \sin\left(\frac{AE}{1000}\right) \cdot 1000 \qquad AE = \cos\left(\frac{AE}{1000}\right) \cdot 1000 \qquad AE = \tan\left(\frac{AE}{1000}\right) \cdot 1000$$

	BOOL	BYTE	INT	DINT
Possible data types				Х

	SK 5xxE	SK 2xxE	SK1xxE
Possible devices	X	X	

```
LD 1234
SIN
ST Result (* Result = 943 *)
```

Example ST:

```
Result := COS(1234); (* Result = 330 *)
Result := ACOS(330); (* Result = 1234 *)
Result := SIN(1234); (* Result = 943 *)
Result := ASIN(943); (* Result = 1231 *)
Result := TAN(999); (* Result = 1553 *)
Result := ATAN(1553); (* Result = 998 *)
```

9.4.3 Bit operators

Operator	Description
NOT	Negation
AND	UND
ANDN	UND negated
<u>OR</u>	ODER
<u>ORN</u>	ODER negated
ROL	Rotate left
ROR	Rotate right
SHL	Shift left
SHR	Shift right
S und R	Set & Reset
XOR	Exclusive OR
XORN	Exclusive OR negated

9.4.3.1 NOT

Bit-wise negation of the accumulator.

	BOOL	BYTE	INT	DINT
Possible data types	X	х	х	Х

	SK 5xxE	SK 2xxE	SK1xxE
Possible devices	х	х	х

```
LD BYTE#10 (* Load the value 10dec into the ACCU in Byte format *)

NOT (* The value is resolved on the Bit level (0000 1010), *)

(* Negated bit-wise (1111 0101) and then converted back *)

(* to a decimal value, result = 245dec *)

ST Var3 (* Save result as variable Var3 *)
```

Example ST:

```
Result := not BYTE#10; (* Result = 245dec *)
```

9.4.3.2 AND und AND(

Bitweise UND Verknüpfung des AE/Akku mit einer oder zwei Variablen oder Konstanten. Bitweise UND() Verknüpfung mit dem AE/Akku und dem AE/Akku welches zuvor in der Klammer gebildet wurde. Es sind bis zu 6 Klammerebenen möglich. Alle Werte müssen demselben Variablentyp angehören.

	BOOL	BYTE	INT	DINT
Possible data types	X	X	X	X

	SK 5xxE	SK 2xxE	SK1xxE
Possible devices	х	Х	х

Example AWL:

Example ST:

```
Result := 170 AND 204; (* Result = 136dec *)
```

Var2	Var1	Result
0	0	0
0	1	0
1	0	0

1 1 1	
-------	--

Example: 170dec (1010 1010bin) AND 204dec (1100 1100bin) = (1000 1000bin) 136dec

9.4.3.3 ANDN und ANDN(

Bit-wise AND linking of the AE/accumulator with a negated operand. Bit-wise AND (...) linking of the AE/accumulator and the negated result of the bracket. Up to 6 bracket levels are possible. The values to be linked must belong to the same type of variable.

	BOOL	BYTE	INT	DINT
Possible data types	x	X	X	X

	SK 5xxE	SK 2xxE	SK1xxE
Possible devices	х	х	х

Example AWL:

Var2	Var1	Result
0	0	1
0	1	1
1	0	1
1	1	0

9.4.3.4 OR und OR(

Bit-wise OR link of the AE/accumulator with one or two variables or constants. Bit-wise OR(...) linking with the AE/accumulator and the AE/accumulator which was previously formed in the bracket. Up to 6 bracket levels are possible. All values must belong to the same type of variable.

	SK 5xxE	SK 2xxE	SK1xxE
Possible devices	x	х	х

```
LD 170
OR 204 (* OR link between 2 constants *)

LD 170 (* Link between a constant and 2 variables. *)
OR Var1, Var2 (* Accu = 170d OR Var1OR Var2 *)

LD Var1
OR ( Var2 (* AE/Accu = Var1 OR ( Var2 AND Var3 ) *)
AND Var3
)
```

Example ST:

```
Result := 170 or 204; (* Result = 238 *)
```

Var2	Var1	Result
0	0	0
0	1	1
1	0	1
1	1	1

9.4.3.5 ORN und ORN(

Bit-wise OR linking of the AE/accumulator with a negated operand. Bit-wise OR (...) linking of the AE/accumulator and the negated result of the bracket. Up to 6 bracket levels are possible. The values to be linked must belong to the same type of variable.

	BOOL	BYTE	INT	DINT
Possible data types	X	Х	X	X

	SK 5xxE	SK 2xxE	SK1xxE
Possible devices	х	х	х

Example AWL:

```
LD 2#0000_1111

ORN 2#0011_1010 (* ORN link between 2 constants *)

(* Accu = 2#1100_0000 *)

LD 170 (* Link between a constant and 2 variables. *)
```

```
ORN Var1, Var2 (* Accu = 170d ORN Var1 ORN Var2 *)

LD Var1

ORN ( Var2 (* AE/Accu = Var1 ORN ( Var2 OR Var3 ) *)

OR Var3
)
```

```
Result := 2#0000_1111 ORN 2#0011_1010; (* Result = 2#1100_0000 *)
```

Var2	Var1	Result
0	0	1
0	1	0
1	0	1
1	1	1

9.4.3.6 ROL

Bit-wise rotation of the accumulator to the left The content of the accumulator is shifted n times to the left, whereby the left bit is inserted again on the right.

	BOOL	BYTE	INT	DINT
Possible data types		х	Х	х

	SK 5xxE	SK 2xxE	SK1xxE
Possible devices	X	х	х

Example AWL:

```
LD 175 (* Loads the value 1010_11111*)
ROL 2 (* Accu content is rotated 2x to the left *)
ST Value1 (* Saves the value 1011_1110 *)
```

Example ST:

```
Result := ROL(BYTE#175, 2); (* Result = 2#1011_1110 *) Result := ROL(INT#175, 2); (* Result = 16\#C02B *)
```

9.4.3.7 ROR

Bit-wise rotation of the accumulator to the right. The content of the accumulator is shifted n times to the right, whereby the right bit is inserted again on the left.

	BOOL	BYTE	INT	DINT
--	------	------	-----	------

	SK 5xxE	SK 2xxE	SK1xxE
Possible devices	х	X	х

```
LD 175 (* Loads the value 1010_1111 *)

ROR 2 (* Accu content is rotated 2x to the right *)

ST Value1 (* Saves the value 1110_1011 *)
```

Example ST:

```
Result := ROR(BYTE#175, 2); (* Result = 2#1110_1011 *)
```

9.4.3.8 SHL

Bit-wise left shift of the accumulator. The content of the accumulator is shifted n times to the left and the bits which are pushed out are lost.

	BOOL	BYTE	INT	DINT
Possible data types		х	х	х

	SK 5xxE	SK 2xxE	SK 1xxE
Possible devices	x	x	x

Example AWL:

```
LD 175 (* Loads the value 1010_1111 *)
SHL 2 (* Accu content is shifted 2x to the left *)
ST Value1 (* Saves the value 1011_1100 *)
```

Example ST:

```
Result := SHL(BYTE#175, 2); (* Result = 2#1011_1100 *)
Result := SHL(INT#175, 2); (* Result = 16#2BC *)
```

9.4.3.9 SHR

Bit-wise right shift of the accumulator. The content of the accumulator is shifted n times to the right and the bits which are pushed out are lost.

BOOL	BYTE	INT	DINT
DOOL	D	1141	D.141

	SK 5xxE	SK 2xxE	SK1xxE
Possible devices	X	X	x

```
LD 175 (* Loads the value 1010_1111 *)

SHR 2 (* Accu content is shifted 2 x to the right *)

ST Value1 (* Saves the value 0010_1011 *)
```

Example ST:

```
Result := SHR(BYTE#175, 2); (* Result = 2#0010_1011 *)
```

9.4.3.10 S und R

Sets and resets a boolean variable if the result of the previous link (the AE) was TRUE.

	BOOL	BYTE	INT	DINT
Possible data types	Х			

	SK 5xxE	SK 2xxE	SK1xxE
Possible devices	х	х	Х

Example AWL:

```
LD TRUE (* Loads the AE with TRUE *)
S Var1 (* VAR1 is set to TRUE *)
R Var1 (* VAR1 is set to FALSE *)
```

Example ST:

```
Result := TRUE;
Result := FALSE;
```

9.4.3.11 XOR und XOR(

Bit-wise "exclusive OR" link between the AE/accumulator and one or two variables or constants. The first value is located in the AE/accumulator and the second is loaded with the command or is within the brackets. The values to be linked must belong to the same type of variable.

BOOL BYTE INT DINT

Possible data types	х			
---------------------	---	--	--	--

	SK 5xxE	SK 2xxE	SK1xxE
Possible devices	X	X	X

Example ST:

```
Result := 2#0000_{1111} XOR 2#0011_{1010}; (* Result = 2#0011_{0101} *)
```

Var2	Var1	Result
0	0	0
0	1	1
1	0	1
1	1	0

9.4.3.12 XORN und XORN(

Bit-wise Exclusive OR linking of the AE/accumulator with a negated operand. Bit-wise Exclusive OR (...) linking of the AE/accumulator and the negated result of the bracket. Up to 6 bracket levels are possible. The values to be linked must belong to the same type of variable.

	BOOL	BYTE	INT	DINT
Possible data types	X			

	SK 5xxE	SK 2xxE	SK1xxE
Possible devices	х	х	х

Example AWL:

Var2	Var1	Result
0	0	1
0	1	0
1	0	0
1	1	1

9.4.4 Loading and storage operators (AWL)

Operator	Description
<u>LD</u>	Load
LDN	Load negated (BOOL)
ST	Store
STN	Store negated (BOOL)

9.4.4.1 LD

Loads a constant or a variable into the AE or the accumulator.

	BOOL	BYTE	INT	DINT
Possible data types	Х	Х	Х	Х

	SK 5xxE	SK 2xxE	SK1xxE
Possible devices	х	Х	Х

Example AWL:

```
LD 10 (* Loads 10 as BYTE *) LD -1000 (* Loads -1000 as INTEGER *) LD Valuel (* Loads variable Value 1 *)
```

9.4.4.2 LDN

Loads a negated boolean variable into the AE.

	BOOL	BYTE	INT	DINT
Possible data types	х			

	SK 5xxE	SK 2xxE	SK1xxE
Possible devices	х	Х	х

Example AWL:

```
LDN Value1 (* Value1 = TRUE à AE = FALSE *)
ST Value2 (* Store to Value2 = FALSE *)
```

9.4.4.3 ST

Stores the content of the AE/accumulator to a variable. The variable to be saved must match the previously loaded and processed data type.

	BOOL	BYTE	INT	DINT
Possible data types	х	X	X	X

	SK 5xxE	SK 2xxE	SK1xxE
Possible devices	X	Х	Х

Example AWL:

```
LD 100 (* Loads the value 1010_1111 *)
ST Value1 (* Accumulator content 100 is saved in Value1 *)
```

9.4.4.4 STN

Stores the content of the AE to a variable and negates it. The variable to be saved must match the previously loaded and processed data type.

	BOOL	BYTE	INT	DINT
Possible data types	X			

SK 5xxE	SK 2xxE	SK1xxE

Possible devices	X	Х	Х
------------------	---	---	---

```
LD Value1 (* Value1 = TRUE à AE = TRUE *)
STN Value2 (* Store to Value2 = FALSE *)
```

9.4.5 Comparison operators

Operator	Description
EQ	Equal
GE	Greater or Equal
GT	Greater
<u>LE</u>	Less and Equal
LT	Less
<u>NE</u>	Not equal

9.4.5.1 EQ

Compares the content of the accumulator with a variable or constant. If the values are equal, the AE is set to TRUE.

	BOOL	BYTE	INT	DINT
Possible data types		Х	Х	х

	SK 5xxE	SK 2xxE	SK1xxE
Possible devices	х	х	х

Example AWL:

```
LD Value1 (* Value1 = 5 *)

EQ 10 (* AE = Is 5 equal to 10 ? *)

JMPC NextStep (* AE = FALSE - program does not jump *)

ADD 1

NextStep:

ST Value1
```

Example ST:

```
(* Ist Value = 10 *)
if Value = 10 then
   Value2 := 5;
end_if;
```

9.4.5.2 GE

Compares the content of the accumulator with a variable or constant. If the value in the accumulator is greater or equal to the variable or constant, then AE is set to TRUE.

	BOOL	BYTE	INT	DINT
Possible data types		X	х	X

	SK 5xxE	SK 2xxE	SK1xxE
Possible devices	X	х	X

Example AWL:

```
LD Value1 (* Value1 = 5 *)
GE 10 (* Is 5 greater than or equal to 10? *)
JMPC NextStep (* AE = FALSE - program does not jump *)
ADD 1
NextStep:
ST Value1
```

Example ST:

```
(* Is 5 greater than or equal to 10? *)
if Value >= 10 then
  Value := Value - 1
end_if;
```

9.4.5.3 GT

Compares the content of the accumulator with a variable or constant. If the value in the accumulator is greater than the variable or constant, the AE is set to TRUE.

	BOOL	BYTE	INT	DINT
Possible data types		Х	Х	Х

	SK 5xxE	SK 2xxE	SK1xxE
Possible devices	х	х	х

Example AWL:

```
LD Value1(* Value1 = 12 *)

GT 8 (* Is 12 greater than 8? *)

JMPC NextStep (* AE = TRUE - program jumps *)

ADD 1

NextStep:

ST Value1
```

```
(* Is 12 greater than 8? *)
if Value > 8 then
  Value := 0;
end_if;
```

9.4.5.4 LE

Compares the content of the accumulator with a variable or constant. If the value in the Accumulator is less than or equal to the variable or constant, then AE is set to TRUE.

	BOOL	BYTE	INT	DINT
Possible data types		х	х	х

	SK 5xxE	SK 2xxE	SK1xxE
Possible devices	х	х	х

Example AWL:

```
LD Value1 (* Value1 = 5 *)
LE 10 (* Is 5 less than or equal to 10? *)
JMPC NextStep:
ST Value1
```

Example ST:

```
(* Is 5 less than or equal to 10? *)
if Value <= 10 then
  Value := 11;
end_if;</pre>
```

9.4.5.5 LT

Compares the content of the accumulator with a variable or constant. If the value in the accumulator is less than the variable or constant the AE is set to TRUE.

	BOOL	BYTE	INT	DINT
Possible data types		х	Х	Х

	SK 5xxE	SK 2xxE	SK 1xxE
Possible devices	х	х	х

Example AWL:

```
LD Value1 (* Value1 = 12 *)
LT 8 (* Is 12 less than 8? *)
JMPC NextStep (* AE = FALSE - program does not jump *)
ADD 1
NextStep:
ST Value1
```

```
(* Is 12 less than 8? *)
if Value < 0 then
   Value := 0;
end_if;</pre>
```

9.4.5.6 NE

Compares the content of the accumulator with a variable or constant. If the value in the Accumulator is not equal to the variable or constant, the AE is set to TRUE.

	BOOL	BYTE	INT	DINT
Possible data types		X	х	X

	SK 5xxE	SK 2xxE	SK1xxE
Possible devices	х	х	х

Example AWL:

```
LD Value1 (* Value1 = 5 *)
NE 10 (*Is 5 not equal to 10?*)
JMPC NextStep (* AE = TRUE - program jumps *)
ADD 1
NextStep:
ST Value1
```

Example ST:

```
if Value <> 5 then
   Value := 5;
end_if;
```

9.5 Jumps (AWL)

Operator	Description
<u>JMP</u>	Jump
<u>JMPC</u>	Jump if AE=TRUE
<u>JMPCN</u>	Jump if AE=FALSE

9.5.1 JMP

Unconditional jump to a jump mark.

	BOOL	BYTE	INT	DINT
Possible data types				

	SK 5xxE	SK 2xxE	SK1xxE
Possible devices	x	х	х

Example AWL:

```
JMP NextStep (* Unconditional jump to NextStep *)
ADD 1
NextStep:
ST Value1
```

9.5.2 JMPC

Conditional jump to a jump point If AE = TRUE, the command JMPC jumps to the stated jump point.

	BOOL	BYTE	INT	DINT
Possible data types	Х	Х	Х	Х

	SK 5xxE	SK 2xxE	SK1xxE
Possible devices	X	X	х

Example AWL:

```
LD 10

JMPC NextStep (* AE = TRUE - program jumps *)

ADD 1

NextStep:

ST Value1
```

9.5.3 JMPCN

Conditional jump to a jump point JMPCN jumps if the AE register = FALSE. Otherwise the program continues with the next instruction.

BOOL BYTE INT DINT	ROOL RYTE INT DIN
--------------------	-------------------

Possible data types	х	х	х	х
---------------------	---	---	---	---

	SK 5xxE	SK 2xxE	SK1xxE
Possible devices	x	х	x

Example AWL:

```
LD 10

JMPCN NextStep (* AE = TRUE - program does not jump *)

ADD 1

NextStep:
ST Value1
```

9.6 Type conversion

Operator	Description
BYTE TO BOOL	Conversion from BYTE to BOOL
BOOL TO BYTE	Conversion from BOOL to BYTE
INT TO BYTE	Conversion from INT to BYTE
BYTE TO INT	Conversion from BYTE to INT
DINT TO INT	Conversion from DINT to INT
INT TO DINT	Conversion from INT to DINT

9.6.1 BYTE_TO_BOOL

Converts the data type from BYTE to BOOL. As long as BYTE is not equal to zero, this always gives the conversion result TRUE.

	BOOL	BYTE	INT	DINT
Possible data types		Х		

	SK 5xxE	SK 2xxE	SK1xxE
Possible devices	х	X	Х

Example AWL:

```
LD 10
BYTE_TO_BOOL (* AE = TRUE *)
```

Example ST:

```
Result := BYTE_TO_BOOL(10); (* Result = TRUE *)
```

9.6.2 BOOL_TO_BYTE

Converts the data type of the AE from BOOL to BYTE. If the AE is FALSE, the accumulator is converted to 0. If the AE is TRUE, the accumulator is converted to 1.

	BOOL	BYTE	INT	DINT
Possible data types	x			

	SK 5xxE	SK 2xxE	SK1xxE
Possible devices	х	Х	х

Example AWL:

```
LD TRUE
BOOL_TO_BYTE (* AE = 1 *)
```

Example ST:

```
Result := BOOL_TO_BYTE(TRUE); (* Result = 1 *)
```

9.6.3 INT_TO_BYTE

Converts the data type from INT to BYTE. Here, the High component of the INT value is not transferred. Prefixes are lost as the BYTE type does not have prefixes.

	BOOL	BYTE	INT	DINT
Possible data types			Х	

	SK 5xxE	SK 2xxE	SK1xxE
Possible devices	х	Х	х

Example AWL:

```
LD 16#5008
INT_TO_BYTE (* Akku = 8 *)
```

Example ST:

```
Result := INT_TO_BYTE(16#5008); (* Result = 8 *)
```

9.6.4 BYTE_TO_INT

Converts the data type from BYTE to INT. The BYTE is copied into the Low component of the INT and the High component of INT is set to 0.

	BOOL	BYTE	INT	DINT
Possible data types		х		

	SK 5xxE	SK 2xxE	SK1xxE
Possible devices	X	X	х

Example AWL:

```
LD 10
BYTE_TO_INT (* Akku = 10 *)
```

Example ST:

```
Result := BYTE_TO_INT(10); (* Result = 10 *)
```

9.6.5 DINT_TO_INT

Converts the data type from DINT to INT. The High component of the DINT value is not transferred.

	BOOL	BYTE	INT	DINT
Possible data types				X

	SK 5xxE	SK 2xxE	SK1xxE
Possible devices	х	Х	х

Example AWL:

```
LD 200000
DINT_TO_INT (* Akku = 3392 *)

LD DINT# -5000
DINT_TO_INT (* Akku = -5000 *)

LD DINT# -50010
DINT_TO_INT (* Akku = 15526 *)
```

Example ST:

```
Result := DINT_TO_INT(200000); (* Result = 3392 *)
Result := DINT_TO_INT(-5000); (* Result = -5000 *)
Result := DINT_TO_INT(-50010); (* Result = 15526 *)
```

9.6.6 INT_TO_DINT

Converts the data type from INT to DINT. The INT is copied into the Low component of the DINT and the High component of the DINT is set to 0.

	BOOL	BYTE	INT	DINT
Possible data types			x	

	SK 5xxE	SK 2xxE	SK1xxE
Possible devices	X	х	X

Example AWL:

```
LD 10
INT_TO_DINT (* Akku = 10 *)
```

Example ST:

```
Result := INT_TO_DINT(10); (* Result = 10 *)
```

9.7 Process values

All analog and digital inputs and outputs or bus setpoints and actual values can be read and processed by the PLC or can be set by the PLC (if they are output values). Access to the individual values is via the process values listed below. For all output values, the output (e.g. digital outputs or PLC setpoint) must be programmed so that the PLC is the source of the event. All process data is read in from the PLC by the FI at the start of each cycle and is only written to the frequency inverter at the end of the program. The following table lists all of the values which can be directly accessed by the PLC. All other process values must be accessed via the function blocks MC_ReadParameter or MC_WriteParameter.

9.7.1 Inputs and outputs

Here, all process values which describe the I/O interface of the frequency inverter are listed.

Index	Name	Function	Standardization	Туре	Access	Device
0	_0_Set_digital_output	Set digital outputs	Bit 0: Mfr1	UINT	R/W	SK 54xE
			Bit 1: Mfr2			
			Bit 2: Dout1			
			Bit 3: Dout2			
			Bit 4: dig. Fct. Aout			
			Bit 5: Dout3 (Din7)			
			Bit 6: Bus Statusword Bit 8			
			Bit 7: Statusword Bit 9			

Bit 8: Bus IO Bit0 Bit 9: Bus IO Bit1	
Bit 10: Bus IO Bit2	
Bit 11: BusIO Bit3	
Bit 12: BusIO Bit4	
Bit 13: Bus IO Bit5	
Bit 14: Bus IO Bit6	
Bit 15: Bus IO Bit7	
0 _0_Set_digital_output Set analog output FI Bit 0: Relais 1 UINT R/W	SK 52xE
Bit 1: Relais 2	SK 53xE
Bit 2: DOUT1	
Bit 3: DOUT2	
Bit 4: Dig. Analog Out	
Bit 5: free	
Bit 6: Bus PZD Bit 10 Bit 7: Bus PZD Bit 13	
Bit 8: BusIO Bit0	
Bit 9: BusIO Bit1	
Bit 10: BusIO Bit2	
Bit 11: Bus IO Bit3	
Bit 12: Bus IO Bit4	
Bit 13: Bus IO Bit5	
Bit 14: Bus IO Bit6	
Bit 15: Bus IO Bit7	
0 _0_Set_digital_output Set analog output FI Bit 0: DOUT1 UINT R/W	SK 2xxE
Bit 1: Bus IO Bit0	
Bit 2: Bus IO Bit1	
Bit 3: Bus IO Bit2	
Bit 4: BusIO Bit3	
Bit 5: Bus IO Bit4	
Bit 6: BusIO Bit5	
Bit 7: Bus IO Bit6	
Bit 8: Bus IO Bit7	
Bit 9: Bus PZD Bit 10	
Bit 10: Bus PZD Bit 13 Bit 11: DOUT2	
0 _0_Set_digital_output Set analog output FI Bit 0: DOUT1 UINT R/W	SK 1xxE
Bit 1: DOUT2	
Bit 2: Bus IO Bit0	
Bit 3: Bus IO Bit1	
Bit 4: Bus IO Bit2	
Bit 5: Bus IO Bit3	
Bit 6: Bus IO Bit4	
Bit 7: Bus IO Bit5	

				I	ı	I
			Bit 8: Bus IO Bit6			
			Bit 9: Bus IO Bit7			
			Bit10: Bus PZD Bit 10			
			Bit11: Bus PZD Bit 13			
1	_1_Set_analog_output	Set analog output 1. IOE	10,0V = 100	BYTE	R/W	SK 5xxE
2	_2_Set_external_analog_o ut1	Set analog output 1. IOE	10,0V = 100	BYTE	R/W	SK 54xE SK 2xxE SK 1xxE
3	_3_Set_external_analog_o ut2	Set analog output 2. IOE	10,0V = 100	BYTE	R/W	SK 54xE SK 2xxE SK 1xxE
4	_4_State_digital_output	State of digital outputs	Bit 0: Mfr1 Bit 1: Mfr2 Bit 2: Dout1 Bit 3: Dout2 Bit 4: dig. Fkt. Aout Bit 5: Dout3 (Din7) Bit 6: Bus Statusword Bit 8 Bit 7: Statusword Bit 9 Bit 8: BusIO Bit0 Bit 9: BusIO Bit1 Bit 10: BusIO Bit2 Bit 11: BusIO Bit3 Bit 12: BusIO Bit4 Bit 13: BusIO Bit5 Bit 14: BusIO Bit6 Bit 15: BusIO Bit7	INT	R	SK 54xE
4	_4_State_digital_output	State of digital outputs	P711	BYTE	R	SK 52xE SK 53xE SK 2xxE SK 1xxE
5	_5_State_Digital_input	State of digital inputs	Bit 0: DIN1 Bit 1: DIN2 Bit 2: DIN3 Bit 3: DIN4 Bit 4: DIN5 Bit 5: DIN6 Bit 6: DIN7 Bit 7: Digital function AIN1 Bit 8: Digital function AIN2	INT	R	SK 54xE
5	_5_State_Digital_input	State of digital inputs	Bit 0: DIN1 Bit 1: DIN2 Bit 2: DIN3	INT	R	SK 52xE SK 53xE

			Bit 3: DIN4			
			Bit 4: DIN5			
			Bit 5: DIN6			
			Bit 6: DIN7			
5	_5_State_Digital_input	State of digital	Bit 0: DIN1	INT	R	SK 2xxE
		inputs	Bit 1: DIN2			SK 1xxE
			Bit 2: DIN3			
			Bit 3: AIN1			
			Bit 4: AIN2			
			Bit 5: PTC			
			Bit 6: free			
			Bit 7: free			
			Bit 8: DIN1 IOE 1			
			Bit 9: DIN2 IOE 1			
			Bit 10: DIN3 IOE 1			
			Bit 11: DIN4 IOE 1			
			Bit 12: DIN1 IOE 2			
			Bit 13: DIN2 IOE 2			
			Bit 14: DIN3 IOE 2			
			Bit 15: DIN4 IOE 2			
6	6_Delay_digital_inputs	State of digital	Bit 0: DIN1	INT	R	SK 54xE
	_o_boldy_digital_inputo	inputs according to	Bit 1: DIN2			OR O IXE
		P475	Bit 2: DIN3			
			Bit 3: DIN4			
			Bit 4: DIN5			
			Bit 5: DIN6			
			Bit 6: DIN7			
			Bit 7: Digital function AIN1			
			Bit 8: Digital function AIN2			
6	_6_Delay_digital_inputs	State of digital	Bit 0: DIN1	INT	R	SK 52xE
		inputs according to P475	Bit 1: DIN2			SK 53xE
		1475	Bit 2: DIN3			
			Bit 3: DIN4			
			Bit 4: DIN5			
			Bit 5: DIN6			
			Bit 6: DIN7			
6	_6_Delay_digital_inputs	State of digital	Bit 0: DIN1	INT	R	SK 2xxE
		inputs according to P475	Bit 1: DIN2			SK 1xxE
			Bit 2: DIN3			
			Bit 3: AIN1			
			Bit 4: AIN2			
			Bit 5: PTC			
			Bit 6: free			

			Bit 7: free			
			Bit 8: DIN1 IOE 1			
			Bit 9: DIN2 IOE 1			
			Bit 10: DIN3 IOE 1			
			Bit 11: DIN4 IOE 1			
			Bit 12: DIN1 IOE 2			
			Bit 13: DIN2 IOE 2			
			Bit 14: DIN3 IOE 2			
			Bit 15: DIN4 IOE 2			
7	_7_Analog_input1	Value of analog	10,00V = 1000	INT	R	SK 5xxE
		input 1 (AIN1)				SK 2xxE
						SK 1xxE
8	_8_Analog_input2	Value of analog	10,00V = 1000	INT	R	SK 5xxE
		input 2 (AIN2)				SK 2xxE
						SK 1xxE
9	_9_Analog_input3	Value of analog	10,00V = 1000	INT	R	SK 54xE
		function DIN2				
10	_10_Analog_input4	Value of analog	10,00V = 1000	INT	R	SK 54xE
		function DIN3				
11	_11_External_analog_inpu	Value of analog	10,00V = 1000	INT	R	SK 54xE
	t1	input 1 (1.IOE)				SK 2xxE
						SK 1xxE
12	_12_External_analog_inpu	Value of analog	10,00V = 1000	INT	R	SK 54xE
	t2	input 2 (1.IOE)				SK 2xxE
						SK 1xxE
13	_13_External_analog_inpu	Value of analog	10,00V = 1000	INT	R	SK 54xE
	t3	input 1 (2.IOE)				SK 2xxE
						SK 1xxE
14	_14_External_analog_inpu	Value of analog	10,00V = 1000	INT	R	SK 54xE
	t4	input 2 (2.IOE)				SK 2xxE
						SK 1xxE
15	_15_State_analog_output	Status of analog	10,0V = 100	BYTE	R	SK 54xE
		output				
16	_16_State_ext_analog_out	Status of analog	10,00V = 1000	INT	R	SK 54xE
	1	output (1. IOE)				SK 2xxE
						SK 1xxE
17	_17_State_ext_analog_out	Status of analog	10,00V = 1000	INT	R	SK 54xE
	2	output (2. IOE)				SK 2xxE
						SK 1xxE
	·		-	-	-	

9.7.2 PLC setpoints and actual values

The process values listed here form the interface between the PLC and the frequency inverter. The function of the PLC setpoints is specified in (P553).

NOTE

The process value PLC_control_word overwrites the function block MC_Power. The PLC setpoints overwrite the function blocks MC_Move. and MC_Home.

Index	Name	Function	Standardization	Туре	Access	Device
20	_20_PLC_control_word	PLC Controlword	Corresponds to USS profile	INT	R/W	SK 5xxE SK 2xxE SK 1xxE
21	_21_PLC_set_val1	PLC setpoint 1	100% = 4000h	INT	R/W	SK 5xxE SK 2xxE SK 1xxE
22	_22_PLC_set_val2	PLC setpoint 2	100% = 4000h	INT	R/W	SK 5xxE SK 2xxE SK 1xxE
23	_23_PLC_set_val3	PLC setpoint 3	100% = 4000h	INT	R/W	SK 5xxE SK 2xxE SK 1xxE
24	_24_PLC_set_val4	PLC setpoint 4	100% = 4000h	INT	R/W	SK 5xxE SK 2xxE
25	_25_PLC_set_val5	PLC setpoint 5	100% = 4000h	INT	R/W	SK 5xxE SK 2xxE
26	_26_PLC_additional_contr ol_word1	PLC additional control word 1	Corresponds to USS profile	INT	R/W	SK 5xxE SK 2xxE SK 1xxE
27	_27_PLC_additional_contr ol_word2	PLC additional control word 2	Corresponds to USS profile	INT	R/W	SK 5xxE SK 2xxE SK 1xxE
28	_28_PLC_status_word	PLC status word	Corresponds to USS profile	INT	R/W	SK 5xxE SK 2xxE SK 1xxE
29	_29_PLC_act_val1	PLC actual value 1	100% = 4000h	INT	R/W	SK 5xxE SK 2xxE SK 1xxE
30	_30_PLC_act_val2	PLC actual value 2	100% = 4000h	INT	R/W	SK 5xxE

						SK 2xxE SK 1xxE
31	_31_PLC_act_val3	PLC actual value 3	100% = 4000h	INT	R/W	SK 5xxE SK 2xxE SK 1xxE
32	_32_PLC_act_val4	PLC actual value 4	100% = 4000h	INT	R/W	SK 5xxE SK 2xxE
33	_33_PLC_act_val5	PLC actual value 5	100% = 4000h	INT	R/W	SK 5xxE SK 2xxE
34	_34_PLC_Busmaster_Co ntrol_word	Master function control word (bus master function) via PLC	Corresponds to USS profile	INT	R/W	SK 5xxE SK 2xxE SK 1xxE
35	_35_PLC_32Bit_set_val1	32Bit PLC setpoint - P553[1] = Low part of 32Bit value - P553[2] = High part of 32Bit value	_	LONG	R/W	SK 5xxE SK 2xxE SK 1xxE
36	_36_PLC_32Bit_act_val1	32Bit PLC actual value - PLC actual value 1 = Low part of 32Bit value - PLC actual value 2 = High part of 32Bit value	_	LONG	R/W	SK 5xxE SK 2xxE SK 1xxE

9.7.3 Bus setpoints and actual values

These process values reflect all setpoints and actual values which are transferred to the frequency inverter via the various bus systems.

Index	Name	Function	Standardization	Туре	Acces s	Device
40	_40_Inverter_status	FI status word	Corresponds to USS profile	INT	R	SK 5xxE SK 2xxE SK 1xxE
41	_41_Inverter_act_val1	Fl actual value 1	100% = 4000h	INT	R	SK 5xxE SK 2xxE SK 1xxE
42	_42_Inverter_act_val2	Fl actual value 2	100% = 4000h	INT	R	SK 5xxE SK 2xxE SK 1xxE
43	_43_Inverter_act_val3	Fl actual value 3	100% = 4000h	INT	R	SK 5xxE

						SK 2xxE SK 1xxE
44	_44_Inverter_act_val4	Fl actual value 4	100% = 4000h	INT	R	SK 54xE
45	_45_Inverter_act_val5	Fl actual value 5	100% = 4000h	INT	R	SK 54xE
46	_46_Inverter_lead_val1	Broadcast Master Function: Master value 1	100% = 4000h	INT	R	SK 5xxE SK 2xxE SK 1xxE
47	_47_Inverter_lead_val2	Broadcast Master Function: Master value 2	100% = 4000h	INT	R	SK 5xxE SK 2xxE SK 1xxE
48	_48_Inverter_lead_val3	Broadcast Master Function: Master value 3	100% = 4000h	INT	R	SK 5xxE SK 2xxE SK 1xxE
49	_49_Inverter_lead_val4	Broadcast Master Function: Master value 4	100% = 4000h	INT	R	SK 54xE
50	_50_Inverter_lead_val5	Broadcast Master Function: Master value 5	100% = 4000h	INT	R	SK 54xE
51	_51_Inverter_control_wor	Resulting bus control word	Corresponds to USS profile	ÎNT	R	SK 5xxE SK 2xxE SK 1xxE
52	_52_Inverter_set_val1	Resulting main bus setpoint 1	100% = 4000h	INT	R	SK 5xxE SK 2xxE SK 1xxE
53	_53_Inverter_set_val2	Resulting main bus setpoint 2	100% = 4000h	INT	R	SK 5xxE SK 2xxE SK 1xxE
54	_54_Inverter_set_val3	Resulting main bus setpoint 3	100% = 4000h	INT	R	SK 5xxE SK 2xxE SK 1xxE
55	_55_Inverter_set_val4	Resulting main bus setpoint 4	100% = 4000h	INT	R	SK 54xE
56	_56_Inverter_set_val5	Resulting main bus setpoint 5	100% = 4000h	INT	R	SK 54xE
57	_57_Broadcast_set_val1	Broadcast Slave: Auxiliary setpoint 1	100% = 4000h	INT	R	SK 5xxE SK 2xxE SK 1xxE
58	_58_Broadcast_set_val2	Broadcast Slave: Auxiliary setpoint 2	100% = 4000h	INT	R	SK 5xxE SK 2xxE SK 1xxE
59	_59_Broadcast_set_val3	Broadcast Slave: Auxiliary setpoint 3	100% = 4000h	INT	R	SK 5xxE SK 2xxE

						SK 1xxE
60	_60_Broadcast_set_val4	Broadcast Slave: Auxiliary setpoint 4	100% = 4000h	INT	R	SK 54xE
61	_61_Broadcast_set_val5	Broadcast Slave: Auxiliary setpoint 5	100% = 4000h	INT	R	SK 54xE
62	_62_Inverter_32Bit_set_v al1	Resulting 32Bit main setpoint 1 Bus - Low part in P546[1] - High part in P546[2]	_	LONG	R	SK 5xxE SK 2xxE SK 1xxE
63	_63_Inverter_32Bit_act_v al1	FI 32Bit actual value 1 - Low part in P543[1] - High part in P543[2]	_	LONG	R	SK 5xxE SK 2xxE SK 1xxE
64	_64_Inverter_32Bit_lead_ val1	32Bit lead value 1 - Low part in P502[1] - High part in P502[2]	_	LONG	R	SK 54xE SK 2xxE SK 1xxE
65	_65_Broadcast_32Bit_se t_val1	32Bit Broadcast Slave auxiliary setpoint 1 - Low part in P543[1] - High part in P543[2]	_	LONG	R	SK 5xxE SK 2xxE SK 1xxE
66	_66_BusIO_input_bits	Incoming Bus I/O data - Bit1 8 = Bus I/O In Bit 0 7 - Bit 9 = Flag 1 - Bit 10 = Flag 2 - Bit 11 = Bit 8 of Bus control word - Bit 12 = Bit 9 of Bus control word	_	INT	R	SK 5xxE SK 2xxE SK 1xxE

9.7.4 ControlBox and ParameterBox

The control boxes can be accessed via the process values listed here. This enables the implementation of simple HMI applications.

Index	Name	Function	Standardization	Туре	Acces s	Device
70	_70_Set_controlbox_sho w_val	Display value for the ControlBox	Display value = Bit 29 Bit 0 Decimal point position = Bit 31 - Bit 30	DINT	R/W	SK 5xxE SK 2xxE SK 1xxE
71	_71_Controlbox_key_stat e	ControlBox keyboard status	Bit 0: ON Bit 1: OFF Bit 2: DIR Bit 3: UP Bit 4: DOWN Bit 5: Enter	BYTE	R	SK 5xxE SK 2xxE SK 1xxE

72	_72_Parameterbox_key_s tate	ParameterBox keyboard status	Bit 0: Bit 1: Bit 2: Bit 3: Bit 4: Bit 5: Bit 6: Bit 7:	ON OFF DIR UP DOWN Enter Right Left	ВҮТЕ	R	SK 5xxE SK 2xxE SK 1xxE
----	--------------------------------	---------------------------------	--	-------------------------------------	------	---	-------------------------------

9.7.5 Info parameters

The most important actual values for the frequency inverter are listed here.

Index	Name	Function	Standardization	Туре	Access	Device
80	_80_Current_fault	Number of actual fault	Error 10.0 = 100	BYTE	R	SK 5xxE SK 2xxE SK 1xxE
81	_81_Current_warning	Actual warning	Warning 10.0 = 100	ВҮТЕ	R	SK 5xxE SK 2xxE SK 1xxE
82	_82_Current_reason_FI_b locked	Actual reason for switch-on block state	Problem 10.0 = 100	BYTE	R	SK 5xxE SK 2xxE SK 1xxE
83	_83_Input_voltage	Actual mains voltage	100 V = 100	INT	R	SK 5xxE SK 2xxE SK 1xxE
84	_84_Current_frequenz	Actual frequency	10Hz = 100	INT	R	SK 5xxE SK 2xxE SK 1xxE
85	_85_Current_set_point_fre quency1	Actual setpoint frequency from the setpoint source	10Hz = 100	INT	R	SK 5xxE SK 2xxE SK 1xxE
86	_86_Current_set_point_fre quency2	Actual inverter setpoint frequency	10Hz = 100	INT	R	SK 5xxE SK 2xxE SK 1xxE
87	_87_Current_set_point_fre quency3	Actual setpoint frequency after ramp	10Hz = 100	INT	R	SK 5xxE SK 2xxE SK 1xxE
88	_88_Current_Speed	Calculated actual speed	100rpm = 100	INT	R	SK 5xxE SK 2xxE SK 1xxE
89	_89_Actual_current	Actual output current	10.0A = 100	INT	R	SK 5xxE SK 2xxE

						SK 1xxE
90	_90_Actual_torque_current	Actual torque current	10.0A = 100	INT	R	SK 5xxE SK 2xxE SK 1xxE
91	_91_Current_voltage	Actual voltage	100V = 100	ÎNT	R	SK 5xxE SK 2xxE SK 1xxE
92	_92_Dc_link_voltage	Actual link circuit voltage	100V = 100	INT	R	SK 5xxE SK 2xxE SK 1xxE
93	_93_Actual_field_current	Actual field current	10.0A = 100	INT	R	SK 5xxE SK 2xxE SK 1xxE
94	_94_Voltage_d	Actual voltage component d-axis	100V = 100	INT	R	SK 5xxE SK 2xxE SK 1xxE
95	_95_Voltage_q	Actual voltage component q-axis	100V = 100	INT	R	SK 5xxE SK 2xxE SK 1xxE
96	_96_Current_cos_phi	Actual Cos(phi)	0.80 = 80	BYTE	R	SK 5xxE SK 2xxE SK 1xxE
97	_97_Torque	Actual torque	100% = 100	INT	R	SK 5xxE SK 2xxE SK 1xxE
98	_98_Field	Actual field	100% = 100	BYTE	R	SK 5xxE SK 2xxE SK 1xxE
99	_99_Apparent_power	Actual apparent power	1,00KW = 100	INT	R	SK 5xxE SK 2xxE SK 1xxE
100	_100_Mechanical_power	Actual mechanical power	1,00KW = 100	INT	R	SK 5xxE SK 2xxE SK 1xxE
101	_101_Speed_encoder	Actual measured speed	100rpm = 100	INT	R	SK 5xxE
102	_102_Usage_rate_motor	Actual motor usage rate (instantaneous value)	100% = 100	INT	R	SK 5xxE SK 2xxE SK 1xxE
103	_103_Usage_rate_motor_ l2t	Actual motor usage rate I2t	100% = 100	INT	R	SK 54xE SK 2xxE

						SK 1xxE
104	_104_Usage_rate_brake_ resistor	Actual brake resistor usage rate	100% = 100	INT	R	SK 5xxE SK 2xxE SK 1xxE
105	_105_Head_sink_temp	Actual heat sink temperature	100°C = 100	INT	R	SK 5xxE SK 2xxE SK 1xxE
106	_106_Inside_temp	Actual inside temperature	100°C = 100	INT	R	SK 54xE SK 2xxE SK 1xxE
107	_107_Motor_temp	Actual motor temperature	100°C = 100	INT	R	SK 5xxE SK 2xxE SK 1xxE
141	_141_Pos_Sensor_Inc	Position of incremental encoder	0.001 rotation	DINT	R	SK 5xxE SK 2xxE SK 1xxE
142	_142_Pos_Sensor_Abs	Position of absolute encoder	0.001 rotation	DINT	R	SK 5xxE SK 2xxE SK 1xxE
143	_143_Pos_Sensor_Uni	Position of universal encoder	0.001 rotation	DINT	R	SK 54xE
144	_144_Pos_Sensor_HTL	Position of HTL encoder	0.001 rotation	DINT	R	SK 54xE
145	_145_Actual_pos	Actual position	0.001 rotation	DINT	R	SK 5xxE SK 2xxE SK 1xxE
146	_146_Actual_ref_pos	Actual setpoint position	0.001 rotation	DINT	R	SK 5xxE SK 2xxE SK 1xxE
147	_147_Actual_pos_diff	Difference in position between setpoint and actual value	0.001 rotation	DINT	R	SK 5xxE SK 2xxE SK 1xxE

9.7.6 PLC errors

The FI errors E23.0 to E23.2 can be set from the PLC program via the User Error Flags.

Index	Name	Function	Standa	rdisation	Туре	Acessf	Device
110	_110_ErrorFlags	Generates user error in FI	Bit 0: Bit 1:	E 23.0 E 23.1	BYTE	R/W	SK 5xxE SK 2xxE

			Bit 2: Bit 3: Bit 4: Bit 5: Bit 6: Bit 7:	E 23.2 E 23.3 E 23.4 E 23.5 E 23.6 E 23.7			SK 1xxE
111	_111_ErrorFlags_ext	Generates user error in FI	Bit 0: Bit 1: Bit 2: Bit 3: Bit 4: Bit 5: Bit 6: Bit 7:	E 24.0 E 24.1 E 24.2 E 24.3 E 24.4 E 24.5 E 24.6 E 24.7	ВУТЕ	R/W	SK 5xxE SK 2xxE SK 1xxE

9.7.7 PLC parameter

The PLC parameters P355, P356 and P360 can be directly accessed via this group of process data.

Index	Name	Function	Standardisation	Туре	Access	Device
115	_115_PLC_P355_1	PLC INT parameter P355 [-01]	-	INT	R	SK 5xxE SK 2xxE SK 1xxE
116	_116_PLC_P355_2	PLC INT parameter P355 [-02]	-	INT	R	SK 5xxE SK 2xxE SK 1xxE
117	_117_PLC_P355_3	PLC INT parameter P355 [-03]	-	INT	R	SK 5xxE SK 2xxE SK 1xxE
118	_118_PLC_P355_4	PLC INT parameter P355 [-04]	-	INT	R	SK 5xxE SK 2xxE SK 1xxE
119	_119_PLC_P355_5	PLC INT parameter P355 [-05]	-	INT	R	SK 5xxE SK 2xxE SK 1xxE
120	_120_PLC_P355_6	PLC INT parameter P355 [-06]	-	INT	R	SK 5xxE SK 2xxE SK 1xxE
121	_121_PLC_P355_7	PLC INT parameter P355 [-07]	-	INT	R	SK 5xxE SK 2xxE SK 1xxE
122	_122_PLC_P355_8	PLC INT parameter P355 [-08]	-	INT	R	SK 5xxE SK 2xxE SK 1xxE

123	_123_PLC_P355_9	PLC INT parameter P355 [-09]	-	INT	R	SK 5xxE SK 2xxE SK 1xxE
124	_124_PLC_P355_10	PLC INT parameter P355 [-10]	-	INT	R	SK 5xxE SK 2xxE SK 1xxE
125	_125_PLC_P356_1	PLC LONG parameter P356 [-01]	-	DINT	R	SK 5xxE SK 2xxE SK 1xxE
126	_126_PLC_P356_2	PLC LONG parameter P356 [-02]	-	DÎNT	R	SK 5xxE SK 2xxE SK 1xxE
127	_127_PLC_P356_3	PLC LONG parameter P356 [-03]	-	DINT	R	SK 5xxE SK 2xxE SK 1xxE
128	_128_PLC_P356_4	PLC LONG parameter P356 [-04]	-	DINT	R	SK 5xxE SK 2xxE SK 1xxE
129	_129_PLC_P356_5	PLC LONG parameter P356 [-05]	-	DINT	R	SK 5xxE SK 2xxE SK 1xxE
130	_130_PLC_P360_1	PLC display parameter P360[-01]	-	DINT	R/W	SK 5xxE SK 2xxE SK 1xxE
131	_131_PLC_P360_2	PLC display parameter P360[-02]	-	DINT	R/W	SK 5xxE SK 2xxE SK 1xxE
132	_132_PLC_P360_3	PLC display parameter P360[-03]	-	DINT	R/W	SK 5xxE SK 2xxE SK 1xxE
133	_133_PLC_P360_4	PLC display parameter P360[-04]	-	DINT	R/W	SK 5xxE SK 2xxE SK 1xxE
134	_134_PLC_P360_5	PLC display parameter P360[-05]	-	DINT	R/W	SK 5xxE SK 2xxE SK 1xxE
135	135_PLC_Scope_Int_1	PLC Scope display value 1	-	INT	R/W	SK 5xxE SK 2xxE SK 1xxE
136	_136_PLC_Scope_Int_2	PLC Scope display	-	INT	R/W	SK 5xxE SK 2xxE

		value 2				SK 1xxE
137	_137_PLC_Scope_Int_3	PLC Scope display value 3	-	INT	R/W	SK 5xxE SK 2xxE SK 1xxE
138	_138_PLC_Scope_Int_4	PLC Scope display value 4	-	INT	R/W	SK 5xxE SK 2xxE SK 1xxE
139	_139_PLC_Scope_Bool_1	PLC Scope display value 5	-	INT	R/W	SK 5xxE SK 2xxE SK 1xxE
140	_140_PLC_Scope_Bool_2	PLC Scope display value 6	-	INT	R/W	SK 5xxE SK 2xxE SK 1xxE

9.8 Function blocks

Function blocks are small programs, which can save their status values in internal variables. Because of this, a separate instance must be created in the NORD CON variable list for each function block. E.g. if a timer is to monitor 3 times in parallel, it must also be set up three times in the list of variables.

NOTE

In order for the following function blocks to detect a flank at the input, it is necessary for the function call-up to be carried out twice with different statuses at the input.

9.8.1 Standard

Function blocks	Description
CTD	Downward counter
CTU	Upward counter
CTUD	Upward and downward counter
SR	Bi-stable function, set dominant
RS	Bi-stable function, Reset dominant
R_TRIG	Flank detection, rising flank
F_TRIG	Flank detection, falling flank
TON	Switch-on delay

TOF	Switch-off delay
<u>TP</u>	Time pulse

9.8.1.1 CTD downward counter

With a rising flank on **CD** the counter of the function block **CV** is reduced by one, as long as CV is larger than -32768. If **CV** is less than or equal to 0, the output **Q** remains TRUE. Via **LD** the counter **CV** can be set to the value saved in **PV**.

VAR_INPUT			VAR_OUTPUT		
Input	Description	Туре	Output	Description	Туре
CD	Counter input	BOOL	Q	TRUE, if CV <= 0	BOOL
LD	Load starting value	BOOL	cv	Actual counter reading	INT
PV	Starting value	INT			

	SK 5xxE	SK 2xxE	SK 1xxE
Possible devices	X	Х	Х

Example AWL:

LD VarBOOL1

ST CTDInst.CD

LD VarBOOL2

ST CTDInst.LD

LD VarINT1

ST CTDInst.PV

CAL CTDInst

LD CTDInst.Q

```
ST VarBOOL3
LD CTDInst.CV
ST VarINT2
```

```
CTDInst(CD := VarBOOL1, LD := VarBOOL2, PV := VarINT1);
VarBOOL3 := CTDInst.Q;
VarINT2 := CTDInst.CV;
```

9.8.1.2 CTU upward counter

With a rising flank on **CU**, the counter of the function block **CV** is increased by one. **CV** can be counted up to the value 32767. As long as **CV** is greater than or equal to **PV**, output **Q** remains TRUE. Via **R** the counter **CV** can be reset to zero.

VAR_INPUT		VAR_OUTPUT			
Input	Description	Туре	Output	Description	Туре
CU	Counter input	BOOL	Q	TRUE, if CV >= PV	BOOL
R	Reset: counter reading	BOOL	CV	Actual counter reading	INT
PV	Max. counter value	INT			

	SK 5xxE	SK 2xxE	SK 1xxE
Possible devices	X	Х	Х

Example AWL:

```
LD VarBOOL1
ST CTUINST.CU
LD VarBOOL2
ST CTUINST.R
LD VarINT1
ST CTUINST.PV
CAL CTUINST
LD CTUINST.Q
```

```
ST VarBOOL3
LD CTUInst.CV
ST VarINT2
```

```
CTUInst(CU := VarBOOL1, R := VarBOOL2, PV := VarINT1);
VarBOOL3 := CTUInst.Q;
VarINT2 := CTUInst.CV;
```

9.8.1.3 CTUD upward and downward counter

With a rising flank on **CU** the counter CV is increased by one, as long as CV is less than 32767. With a rising flank on **CD** the counter **CV** is reduced by one, as long as **CV** is greater than -32768. Via **R** the counter **CV** can be set to zero. Via **LD** the value saved in **PV** is copied to **CV**.

LD and **R** have priority over CU and CV. **PV** can be changed at any time, **QU** always relates to the value which is currently set.

VAR_INPUT			VAR_OUTPUT		
Input	Description	Туре	Output	Description	Туре
CU	Counting upwards	BOOL	QU	TRUE, if CV >= PV	BOOL
CD	Counting downwards	BOOL	QD	TRUE, if CV <= 0	BOOL
R	Reset: counter reading	BOOL	CV	Actual counter reading	INT
LD	Load starting value	BOOL			

PV	Starting value	INT		

	SK 5xxE	SK 2xxE	SK1xxE
Possible devices	X	х	х

Example AWL:

```
LD VarBOOL1
ST CTUDINST.CU
LD VarBOOL3
ST CTUDINST.R
LD VarBOOL4
ST CTUDINST.LD
LD VARINT1
ST CTUINST.PV
CAL CTUDINST
LD CTUDINST
LD CTUDINST
LD CTUDINST
LD CTUDINST
LD CTUDINST.QD
ST VARBOOL5
LD CTUINST.CV
ST VARINT2
```

Example ST:

```
CTUDInst(CU:=VarBooL1, R:=VarBooL3, LD:=VarBooL4, PV:=VarINT1);
VarBooL5 := CTUDInst.QU;
VarBooL5 := CTUDInst.QD;
VarINT2 := CTUDInst.CV;
```

9.8.1.4 SR Flip Flop

Bi-stable function; via **S1** the output **Q1** is set and via **R** it is deleted again. If **R** and **S1** are both TRUE, **S1** is dominant.

VAR_INPUT		VAR_OUTPUT			
Input	Description	Туре	Outpu t	Description	Туре
S1	Set	BOOL	Q1	Output	BOOL
R	Reset	BOOL			

	SK 5xxE	SK 2xxE	SK1xxE
Possible devices	х	х	х

Example AWL:

```
LD VarBOOL1
ST SRInst.S1
LD VarBOOL2
ST SRInst.R
CAL SRInst
LD SRInst.Q1
ST VarBOOL3
```

```
SRInst(S1:= VarBOOL1 , R:=VarBOOL2);
VarBOOL3 := SRInst.Q1;
```

9.8.1.5 RS Flip Flop

Bi-stable function: via **S** the output **Q1** is set and via**R1** it is deleted again. If **R1** and **S** are both TRUE, **R1** is dominant.

VAR_INPUT		VAR_OUTPUT			
Input	Description	Туре	Output	Description	Туре
S	Set	BOOL	Q1	Output	BOOL
R1	Reset	BOOL			

	SK 5xxE	SK 2xxE	SK1xxE
Possible devices	х	х	Х

Example AWL:

```
LD VarBOOL1
ST RSInst.S
LD VarBOOL2
ST RSInst.R1
CAL RSInst
LD RSInst.Q1
ST VarBOOL3
```

Example ST:

```
SRInst(S1:= VarBOOL1 , R:=VarBOOL2);
VarBOOL3 := SRInst.Q1;
```

9.8.1.6 R_TRIG und F_TRIG

Both functions are used for flank detection. If a flank is detected on CLK, Q is set to TRUE until the next function call-up, after which it is reset to FALSE. Only with a new flank can Q become TRUE again for a cycle.

R_TRIG = Rising flank

• F_TRIG = Falling flank

VAR_INPUT		VAR_OUTPUT			
Input	Description	Туре	Output Description		Туре
CLK	Set	BOOL	Q	Output	BOOL

	SK 5xxE	SK 2xxE	SK1xxE
Possible devices	х	X	Х

Example AWL:

LD VarBOOL1

ST RSInst.S

LD VarBOOL2

ST RSInst.R1

CAL RSInst

LD RSInst.Q1 ST VarBOOL3

Example ST:

```
SRInst(S1:= VarBOOL1 , R:=VarBOOL2);
VarBOOL3 := SRInst.Q1;
```

NOTE

The output of the function only changes if the function is called up. Because of this it is advisable to continually call up flank detection with the SPS cycle.

9.8.1.7 TON switch-on delay

If IN = TRUE is set, the timer counts upwards. If ET = PT, Q is set to TRUE and the timer stops. Q remains TRUE for as long as IN is also TRUE. With a new rising flank on IN the counter starts again from zero. PT can be changed

while the timer is running. The time period in PT in is entered in milliseconds. This enables a time delay between 5ms and 24.8 days. As the time base of the PLC is 5ms, the minimum time delay is also 5ms.

Here, literals can be used for simplified input, e.g.

- LD TIME#50s20ms = 50.020 seconds
- LD TIME#1d30m = 1 day and 30 minutes

VAR_INPUT		VAR_OUTPUT			
Input	Input Description Type		Output	Description	Туре
IN	Timer active	BOOL	Q	TRUE ß (IN=TRUE & ET=PT)	BOOL
PT	Duration	DINT	ET	Current timer reading	DINT

	SK 5xxE	SK 2xxE	SK1xxE
Possible devices	х	X	X

Example AWL:

LD VarBOOL1

ST TONInst.IN

LD DINT#5000

ST TONInst.PT

CAL TONInst

LD TONInst.Q

ST VarBOOL2

Example ST:

TONInst(IN := VarBOOL1, PT:= T#5s);
VarBOOL2 := TONInst.Q;

NOTE

The time ET runs independently of a PLC cycle. Starting of the timer with IN and setting of the output Q are only executed with the function call-up "CAL". The function call-up takes place within a PLC cycle. However, with PLC programs which are longer than 5ms this may result in the occurrence of jitter.

9.8.1.8 TOF switch-off delay

If IN = TRUE, then Q is set to TRUE. If IN changes to FALSE, the timer counts upwards. As long as the timer is running (ET < PT) Q remains set to TRUE. If (ET = PT) the timer stops and Q becomes FALSE. With a new rising flank on IN, the timer ET is reset to zero.

Here, literals can be used for simplified input, e.g.

- LD TIME#50s20ms = 50.020 seconds
- LD TIME#1d30m = 1 day and 30 minutes

VAR_INPUT		VAR_OUTPUT			
Input	t Description Type Output		Output	Description	Туре
IN	Timer active	BOOL	Q	TRUE ß (ET <pt)< th=""><th>BOOL</th></pt)<>	BOOL
PT	Duration	DINT	ET	Current timer reading	DINT

	SK 5xxE	SK 2xxE	SK1xxE
Possible devices	х	Х	X

Example AWL:

```
LD VarBOOL1
```

ST TOFInst.IN

LD DINT#5000

ST TOFInst.PT

CAL TOFInst

LD TOFInst.Q

ST VarBOOL2

Example ST:

```
TONInst(IN := VarBOOL1, PT:= T#5s);
VarBOOL2 := TONInst.Q;
```

NOTE

The time ET runs independently of a PLC cycle. Starting of the timer with IN and setting of the output Q are only executed with the function call-up "CAL". The function call-up takes place within a PLC cycle. However, with PLC programs which are longer than 5ms this may result in the occurrence of jitter.

9.8.1.9 TP time pulse

With a positive flank on IN the timer is started with the value 0. The timer runs up to the value which is entered PT and then stops. This process cannot be interrupted! PT can be changed during counting. The output Q is TRUE, as long as the timer ET is less than PT

If ET = PT and a rising flank is detected on IN the timer is started again at 0.

Here, literals can be used for simplified input, e.g.

- LD TIME#50s20ms = 50.020 seconds
- LD TIME#1d30m = 1 day and 30 minutes

VAR_INPUT		VAR_OUTPUT			
Input Description Type		Output	Description	Туре	
IN	Timer active	BOOL	Q	TRUE ß (ET < PT)	BOOL
PT	Duration	DINT	ET	Current timer reading	DINT

	SK 5xxE	SK 2xxE	SK1xxE
Possible devices	X	X	X

Example AWL:

LD VarBOOL1

ST TPInst.IN

LD DINT#5000

ST TPInst.PT

CAL TPInst

LD TPInst.Q

ST VarBOOL2

```
TPInst(IN := VarBOOL1, PT:= T#5s);
VarBOOL2 := TPInst.Q;
```

NOTE

The time ET runs independently of a PLC cycle. Starting of the timer with IN and setting of the output Q are only executed with the function call-up "CAL". The function call-up takes place within a PLC cycle. However, with PLC programs which are longer than 5ms this may result in the occurrence of jitter.

9.8.2 Motion Control

The Motion Control Lib is based on the PLCopen specification "Function blocks for motion control". It contains function blocks for controlling and moving a frequency inverter and provides access to its parameters. Several settings must be made to the parameters of the frequency inverter in order for the Motion Blocks to function.

Function blocks	Required settings
MC_MoveVelocity	P350 = PLC active
	P351 = Main setpoint comes from the PLC
	· P553 [-xx] = Setpoint frequency
	P600 = Position control (positioning mode) is disabled
MC_MoveAbsolute	· P350 = PLC active
	P351 = Main setpoint comes from the PLC
MC_MoveRelative	P600 = Position control (positioning mode) is enabled
MC MoveAdditive	In P553 [-xx] (PLC_Setpoints) the setpoint position High Word must be parameterised
_	In P553 [-xx] (PLC_Setpoints) the setpoint position Low Word must be parameterised
MC_Home	In P553 [-xx] (PLC_Setpoints) the setpoint frequency must be parameterised
MC_Power	· P350 = PLC active
MC_Reset	P351 = Control word comes from the PLC
MC_Stop	

NOTE

The PLC_Setpoints 1 to 5 and the PLC control word can also be described via process variables. However, if the Motion Control FBs are used, no corresponding process variable may be declared in the table of variables, as otherwise the outputs of the Motion Control FBs would be overwritten.

NOTE

In order for the following function blocks to detect a flank at the input, it is necessary for the function call-up to be carried out twice with different statuses at the input.

Function blocks	Description
MC_ReadParameter	Reading access to FI parameters
MC_WriteParameter	Writing access to FI parameters
MC_MoveVelocity	Move command in speed mode
MC_MoveAbsolute	Move command with specification of absolute position
MC_MoveRelative	Move command with specification of relative position
MC_MoveAdditive	Move command with additive specification of position
MC_Home	Starts a home run
MC_Power	Switches the motor voltage on or off
MC_ReadStatus	FI status
MC_ReadActualPos	Reads out the actual position
MC_Reset	Error reset in the FI
MC_Stop	Stops all active movement commands

9.8.2.1 MC_ReadParameter

Reads out a parameter cyclically from the frequency inverter as long as ENABLE is set to 1. The parameter which is read is saved in Value and is valid if DONE is set to 1. For the duration of the reading process the BUSY output is set to 1. If ENABLE remains set to 1, the parameter is read out cyclically. The parameter number and index can be changed at any time when ENABLE is active. However, it is difficult to identify when the new value is read out, as the DONE signal remains 1 for the whole time. In this case it is advisable to set the ENABLE signal to 0 for one cycle, as the DONE signal is then reset. The parameter index results from the index in the documentation minus 1. E.g. P700 Index 3 ("Reason for switch-on block") is queried via the parameter index 2. In case of error ERROR is set to 1. DONE in this case is 0 and the ERRORID contains the error code. If the ENABLE signal is set to 0, all signals and the ERRORID are deleted.

VAR_INPUT			VAR_OUT	/ar_output		
Input	Description	Туре	Output	Description	Туре	
ENABLE	Enable	BOOL	DONE	Value is valid	BOOL	
PARAMETERNUMBER	Parameter number	INT	ERROR	Reading has failed	BOOL	
PARAMETERINDEX	Parameter index	INT	BUSY	The process is not complete	BOOL	

		ERRORID	Error code	INT			
		VALUE	Parameter read out	DINT			
ERRORID	Description	Description					
0	Invalid parameter numb	Invalid parameter number					
3	Incorrect parameter ind	Incorrect parameter index					
4	No array	No array					
201	Invalid order element in	Invalid order element in the last order received					
202	Internal response label	Internal response label cannot be depicted					

	SK 5xxE	SK 2xxE	SK1xxE
Possible devices	X	х	х

```
(* Motion module FB_ReadParameter *)
ReadParam(Enable := TRUE,Parameternumber := 102, ParameterIndex := 0);
IF ReadParam.Done THEN
   Value := ReadParam.Value;
   ReadParam(Enable := FALSE);
END_IF
```

9.8.2.2 MC_WriteParameter_16 / MC_WriteParameter_32

Writes a 16/32 Bit parameter into the frequency inverter if EXECUTE changes from 0 to 1 (flank). The parameter has been written if DONE is set to 1. For the duration of the reading process the BUSY output is set to 1. In case of error, ERROR is set to 1 and the ERRORID contains the error code. The signals DONE, ERROR, ERRORID remain set until EXECUTE changes back to 0. If the EXECUTE signal changes to 0, the writing process is not cancelled. Only the DONE signal remains set for 1 PLC cycle. If the input RAMONLY set to 1, then the value is only stored RAM. The changed settings are lost when you turn off the device.

VAR_INPUT			VAR_OUTPUT			
Input	Description	Туре	Output	Description	Туре	
EXECUTE	Enable	BOOL	DONE	Value is valid	BOOL	
PARAMETERNUMBER	Parameter number	INT	BUSY	The writing process is active	BOOL	
PARAMETERINDEX	Parameter index	INT	ERROR	Reading has failed	BOOL	
VALUE	Value to be written	INT, DINT	ERRORID	Error code	INT	
RAMONLY	Store the value only in RAM (from V2.1)	BOOL				
ERRORID	Description	Description				
0	Invalid parameter number					
1	Parameter value canno	Parameter value cannot be changed				

2	Lower or upper value limit exceeded
3	Incorrect parameter index
4	No array
5	Invalid data type
6	Only resettable (only 0 may be written)
7	Description element cannot be changed
201	Invalid order element in the last order received
202	Internal response label cannot be depicted

	SK 5xxE	SK 2xxE	SK1xxE
Possible devices	х	Х	х

```
WriteParam16(Execute := TRUE, ParameterNumber := 102, ParameterIndex := 0, Value := 300);
IF WriteParam16.Done THEN
    WriteParam16(Execute := FALSE);
END_IF;
```

9.8.2.3 MC_MoveVelocity

Sets the setpoint frequency for the frequency inverter if EXECUTE changes from 0 to 1 (flank). If the frequency inverter has reached the setpoint frequency, INVELOCITY is set to 1. While the FI is accelerating to the setpoint frequency, the BUSY output is active. If EXECUTE has already been set to 0, then INVELOCITY is only set to 1 for one cycle. If the process is to be aborted (e.g. by another MC function module), COMMANDABORTED is set. With a negative flank on EXECUTE, all outputs are reset to 0.

VELOCITY is entered with scaling according to the following formula:

VELOCITY = (Setpoint frequency (Hz) x 0x4000) / P105

VAR_INPUT		VAR_OUTPUT			
Input	Description	Туре	Output	Description	Туре
EXECUTE	Enable	BOOL	INVELOCITY	Specified setpoint frequency reached	BOOL
VELOCITY	Setpoint frequency	INT	BUSY	Setpoint frequency not yet reached	BOOL
			COMMAND- ABORTED	Command aborted	BOOL
			ERROR	Error in FB	BOOL
			ERRORID	Error code	INT
ERRORID	Description				

0	No error
1000h	FI is not enabled
1100h	FI not in speed mode (position control enabled)
1101h	No setpoint frequency parameterized (P553)

	SK 5xxE	SK 2xxE	SK1xxE
Possible devices	х	X	х

Example AWL:

```
CAL Power
CAL Move

LD TRUE
ST Power.Enable

(* Set 20 Hz (Max. 50 Hz) *)
LD DINT#20
MUL 16#4000
DIV 50

DINT_TO_INT
ST Move.Velocity

LD Power.Status
ST Move.Execute
```

Example ST:

```
(* Device ready for operation if DIG1 set *)
Power(Enable := _5_State_digital_input.0);
IF Power.Status THEN
   (* Device enabled with 50% of max. frequency if DIG2 set *)
   MoveVelocity(Execute := _5_State_digital_input.1, Velocity := 16#2000);
END_IF
```

9.8.2.4 MC_MoveAbsolute

Writes a position and speed setpoint to the frequency inverter if EXECUTE changes from 0 to 1 (flank). The setpoint frequency VELOCITY is transferred according to the scaling explained in MC_MoveVelocity.

POSITION:

MODE = False:

The setpoint position results from the value transferred into POSITION.

MODE = True:

The value transferred into POSITION corresponds to the index from parameter P613 increased by 1. The position saved in this parameter index corresponds to the setpoint position.

Example:

Mode = True; Position = 12

The FB moves to the position which is in the current parameter set of P613[-13].

If the inverter has reached the setpoint position DONE is set to 1. DONE is deleted by resetting EXECUTE. If

EXECUTE is deleted before the target position is reached, DONE is set to 1 for one cycle. During movement to the setpoint position BUSY is active. If the process is to be aborted (e.g. by another MC function module), COMMANDABORTED is set. In case of error, ERROR is set to 1 and the corresponding error code is set in ERRORID. DONE is 0 in this case. With a negative flank on EXECUTE, all outputs are reset to 0.

VAR_INPUT			VAR_OUTPUT				
Input	Description	Туре	Output	Description	Туре		
EXECUTE	Enable	BOOL	DONE	Specified setpoint position reached	BOOL		
POSITION	Setpoint position	DINT	BUSY	Setpoint position not reached	BOOL		
VELOCITY	Setpoint frequency	INT	COMMAND -ABORTED	Befehl abgebrochen	BOOL		
MODE	Mode source is the setpoint position	BOOL	ERROR	Error in FB	BOOL		
			ERRORID	Error code	INT		
ERRORID	Description						
0	No error						
0x1000	FI is not enabled	FI is not enabled					
0x1200	Position control not activated						
0x1201	The High position has not bee	n entered	in the PLC se	tpoints (P553)			
0x1202	The Low position has not bee	n entered i	n the PLC set	points (P553)			

	SK 5xxE	SK 2xxE	SK1xxE
Possible devices	х	х	х

Example ST:

```
(* The device is enabled if DIG1 = TRUE *)
Power(Enable := _5_State_digital_input.0);
IF Power.Status THEN
   (* The device is enabled and moves to position 20000 with 50% max. frequency.
        For this action the motor requires an encoder and position control must be enabled. *)
   MoveAbs(Execute := _5_State_digital_input.1, Velocity := 16#2000, Position := 20000);
END_IF
```

9.8.2.5 MC_MoveRelative

Except for the input DISTANCE this corresponds in all points with MC_MoveAbsolute. The setpoint position results from the addition of the current actual position and the transferred DISTANCE.

VAR_INPUT		VAR_OUTPUT			
Input	Description	Туре	Output	Description	Туре

EXECUTE	Enable	BOOL	DONE	Specified setpoint position reached	BOOL	
DISTANCE	Setpoint position	DINT	BUSY	Setpoint position not reached	BOOL	
VELOCITY	Sollfrequenz	INT	COMMAND -ABORTED	Command aborted	BOOL	
MODE	Mode source is the setpoint position	BOOL	ERROR	Error in FB	BOOL	
			ERRORID	Error code	INT	
ERRORID	Description					
0	No error					
1000h	FI is not enabled					
1200h	Position control not activated					
	The High position has not been entered in the PLC setpoints (P553)					
1201h	The High position has not bee	en entered	I in the PLC s	etpoints (P553)		

	SK 5xxE	SK 2xxE	SK1xxE
Possible devices	х	Х	х

9.8.2.6 MC_MoveAdditive

Except for the input DISTANCE this corresponds in all points with MC_MoveAbsolute. The setpoint position results from the addition of the actual setpoint position and the transferred DISTANCE.

VAR_INPUT			VAR_OUTPUT		
Input	Description	Туре	Output	Description	Туре
EXECUTE	Enable	BOOL	DONE	Specified setpoint position reached	BOOL
DISTANCE	Setpoint position	DINT	COMMAND- ABORTED	Command aborted	BOOL
VELOCITY	Setpoint frequency	INT	ERROR	Error in FB	BOOL
MODE	Mode source is the setpoint position	BOOL	ERRORID	Error code	INT
			BUSY	Setpoint position not reached	BOOL
ERRORID	Description				

	SK 5xxE	SK 2xxE	SK1xxE
Possible devices	х	Х	х

9.8.2.7 MC_Home

Causes the frequency inverter to start a reference run, if EXECUTE changes from 0 to 1 (flank). The frequency inverter moves with the setpoint frequency which is entered in VELOCITY. The direction of rotation is reversed if the input with the position reference signal (P420[-xx] = Reference point) becomes active. With a negative flank of the position reference signal, the value in POSITION is adopted. The frequency inverter then brakes to 0Hz and the DONE signal changes to 1. During the entire HOME run, the BUSY output is active. If the input is "MODE" is set to True, the inverter runs in the middle of the initiator after homing.

If the process is to be aborted (e.g. by a different MC function module), COMMANDABORTED is set. In case of error, ERROR is set to 1 IN this case, DONE is 0. The corresponding error code in ERRORID then applies.

VAR_INPUT			VAR_OUTPUT		
Input	Description	Туре	Output	Description	Туре
EXECUTE	Enable	BOOL	DONE	Specified setpoint position reached	BOOL
POSITION	Setpoint position	DINT	COMMAN D- ABORTED	Command aborted	BOOL
VELOCITY	Setpoint frequency	INT	ERROR	Error in FB	BOOL
MODE	Home Mode (from V2.1)	BOOL	ERRORID	Error code	INT
			BUSY	Home run active	BOOL
ERRORID	Description				•
0	No error				
1000h	FI is not enabled				
1200h	Position control not activated				
1201h	The High position has not been entered in the PLC setpoints (P553)				
1202h	The Low position has not be	en entere	ed in the PLC	setpoints (P553)	

	SK 5xxE	SK 2xxE	SK1xxE
Possible devices	X	х	X

Example ST:

```
(* One digital input must be set as the reference point (23). The setpoint frequency and the setpoint position must be set in the PLC setpoint (553.x). POSICON must be enabled (P600) *)
```

```
(* Enable device with DIG1 *)
Power.Enable := _5_State_digital_input.0;
(* Position after the reference run *)
Home.Position := 5000;
(* Speed during the reference run 50% of the max. frequency (P105) *)
Home.Velocity := 16#2000;
(* Perform reference run when the device is switched on *)
Home.Execute := Power.Status;
Home;
Power;
```

9.8.2.8 MC Power

The output stage of the frequency inverter can be switched on and off with this function. If the ENABLE input is set to 1, the output stage is enabled. The condition for this is that the FI is in the state "Switch-on Block" or "Ready for Switch-on. If the FI is in the "Fault" or "Fault reaction active" state, the fault must first be remedied and acknowledged. Only then can enabling be carried out via this block. If the frequency inverter is in the state "Not Ready for Switch-on", switch-on is not possible. IN In all cases, the FB goes into the error state and ENABLE must be set to 0 to acknowledge the fault.

If the ENABLE input is set to 0, the frequency inverter is switched off. If this happens while the motor is running, it is first run down to 0Hz via the ramp set in P103.

The output STATUS is 1 if the output stage of the frequency inverter is switched on; otherwise it is 0.

ERROR and ERRORID are reset, if ENABLE is switched to 0.

VAR_INPUT		VAR_OUTPUT				
Input	Description	Туре	Output	Description	Туре	
ENABLE	Enable	BOOL	STATUS	Motor is supplied with current	BOOL	
			ERROR	Error in FB	BOOL	
			ERRORID	Error code	INT	
ERRORID	Description					
0	No error					
1001h	Stop function is active					
1300h	The FI is not in the state "Ready for Switch-on" or "Switch-on Block"					

	SK 5xxE	SK 2xxE	SK1xxE
Possible devices	х	х	х

Example AWL:

```
CAL Power
CAL Move

LD TRUE
ST Power.Enable

(* (* Set 20 Hz (Max. 50 Hz) *) *)
LD DINT#20
MUL 16#4000
```

```
DIV 50

DINT_TO_INT
ST Move.Velocity

LD Power.Status
ST Move.Execute
```

```
(* Enable Power Block *)
Power(Enable := TRUE);
IF Power.Status THEN
  (* The device is ready for switch-on *)
END_IF
```

9.8.2.9 MC_Control

This FB is used to control the FI and offers the possibility of creating the FI control word in a more detailed form than MC_Power. The FI is controlled via the inputs ENABLE, DISABLEVOLTAGE and QUICKSTOP. See the following table.

Inputs mo	Inputs module		Frequency inverter behaviour
ENABLE	QUICKSTOP	DISABLEVOLTAGE	
High	Low	Low	The frequency inverter is switched on.
Low	Low	Low	The frequency inverter brakes to 0Hz (P103) and then disconnects the motor from the voltage supply.
Х	Х	High	The frequency inverter is disconnected from the voltage supply immediately and the motor runs to a standstill without braking.
X	High	Low	The frequency inverter makes an emergency stop (P426) and then disconnects the voltage from the motor.

The active parameter set can be set via the input PARASET. If the output STATUS = 1, the FI is switched on and current is supplied to the motor.

VAR_INPUT			VAR_OUTPUT			
Input	Description	Туре	Output	Description	Туре	
ENABLE	Enable	BOOL	STATUS	Motor is supplied with current	BOOL	
DISABLEVOLTAGE	Switch off voltage	BOOL	ERROR	Error in FB	BOOL	
QUICKSTOP	Quick stop	BOOL	ERRORID	Error code	INT	
PARASET	Active parameter set Value range: 0 - 3	BYTE				
ERRORID	Description					
0	No error					

1001h	Stop function is active
1300h	The FI is in an unexpected state

	SK 5xxE	SK 2xxE	SK1xxE
Possible devices	х	Х	х

```
(* Device enabled with Dig3 *)
Control.Enable := _5_State_digital_input.2;
(* Parameter sets are specified via Dig1 and Dig2. *)
Control.ParaSet := INT_TO_BYTE(_5_State_digital_input and 2#11);
Control;
(* Is the device enabled? *)
if Control.Status then
  (* Should a different position be moved to? *)
  if SaveBit3 <> _5_State_digital_input.3 then
   SaveBit3 := _5_State_digital_input.3;
   if SaveBit3 then
      Move.Position := 500000;
    else
      Move.Position := 0;
    end_if;
    Move(Execute := False);
  end_if;
end_if;
(* Move to position if device is enabled. *)
Move(Execute := Control.Status);
```

9.8.2.10 MC_ReadStatus

Reads out the status of the frequency inverter. The status machine is orientated to the PLCopen specification "Function blocks for motion control". The status is read out as long as ENABLE is set to 1.

VAR_INPUT			VAR_OUTPUT			
Input	Description	Туре	Output	Description	Туре	
ENABLE	Enable	BOOL	VALID	Output is valid	BOOL	
			ERROR	Error in FB	BOOL	
			ERRORSTOP	FI has an error	BOOL	
			DISABLED	FI output stage is switched off	BOOL	
			STOPPING	A Stop command is active	BOOL	
			DISCRETEMOTION	One of the three positioning FBs is active	BOOL	
			CONTINUOUSMOTION	The MC_Velocity is active	BOOL	
			HOMING	The MC_Home is active	BOOL	
			STANDSTILL	The FI has no active Move command. It is at a standstill with 0 rpm and the output stage	BOOL	

	SK 5xxE	SK 2xxE	SK1xxE
Possible devices	X	х	х

```
ReadStatus(Enable := TRUE);
IF ReadStatus.Valid THEN
  fError := ReadStatus.ErrorStop;
  fDisable := ReadStatus.Disabled;
  fStopping := ReadStatus.Stopping;
  fInMotion := ReadStatus.DiscreteMotion;
  fInVelocity := ReadStatus.ContinuousMotion;
  fInHome := ReadStatus.Homing;
  fStandStill := ReadStatus.StandStill;
end_if
```

9.8.2.11 MC ReadActualPos

Continually delivers the actual position of the frequency inverter if ENABLE is set to 1. As soon as there is a valid position at the output VALID is set to valid. In case of error, ERROR is set to 1 and in this case VALID is 0.

Position scaling: 1 motor revolution = 1000

VAR_INPUT VAR_OUTPUT			VAR_OUTPUT			
Input	Description	Туре	Output	Dutput Description		
ENABLE	Freigabe	BOOL	VALID	Ausgang ist gültig	BOOL	
			ERROR	Fehler im FB	BOOL	
			POSITION	Aktuelle Istposition des FU	DINT	

	SK 5xxE	SK 2xxE	SK 1xxE
Possible devices	X	X	X

Example ST:

```
ReadActualPos(Enable := TRUE);
IF ReadActualPos.Valid THEN
   Pos := ReadActualPos.Position;
END_IF
```

9.8.2.12 MC_Reset

Resets an error in the frequency inverter (fault acknowledgement), on a rising flank from EXECUTE. In case of error ERROR is set to 1 and the cause of the fault is entered in ERRORID. With a negative flank on EXECUTE all errors are reset.

VAR_INPUT			VAR_OUTPUT				
Input	Description	Туре	Output	Description	Туре		
EXECUTE	Start	BOOL	DONE	FI error reset	BOOL		
			ERROR	Error in FB	BOOL		
			ERRORID	Error code	INT		
			BUSY	Reset process is still active	BOOL		
ERRORID	Description						
0	No error						
1001h	Stop function is active						
1700h	An error reset could not be perfo	rmed, be	cause the cau	ise of the error is still present.			

	SK 5xxE	SK 2xxE	SK 1xxE
Possible devices	x	x	X

```
Reset(Execute := TRUE);
IF Reset.Done THEN
  (* The error has been reset *)
  Reset(Execute := FALSE);
ELSIF Reset.Error THEN
  (* Reset could not be executed, as the cause of the error is still present *)
  Reset(Execute := FALSE);
END_IF
```

9.8.2.13 MC_Stop

With a rising flank (0 to 1) the frequency inverter is set to the state STANDINGSTILL. All motion functions which are active are cancelled. The frequency inverter brakes to 0Hz and switches off the output stage. As long as the Stop command is active (EXECUTE = 1), all other Motion FBs are blocked. The BUSY output becomes active with the rising flank on EXECUTE and remains active until there is a falling flank on EXECUTE.

VAR_INPUT		VAR_OUTPUT			
Input Description Type		Output	Description	Туре	
EXECUTE	Start	BOOL	DONE	Command has been executed	BOOL
			BUSY	Command is active	BOOL

	SK 5xxE	SK 2xxE	SK1xxE
Possible devices	х	х	х

9.8.3 Electronic gear unit with flying saw

For the electronic gear unit ("angularly synchronised operation") and the sub-function flying saw there are two function blocks which enable control of these functions. In addition, various parameters must be set for the correct execution of the two function blocks in the master and slave frequency inverters. An example of this is shown in the following table.

Master Fl			Slave Fl		
Parameter	Settings	Description	Parameter	Settings	Description
P502[-01]	20	Setpoint frequency according to freq. ramp	P509	10 *	CANopen Broadcast*
P502[-02]	15	Actual position in incl. High word	P510[-01]	10	CANopen Broadcast
P502[-03]	10	Actual position in incl. Low word	P510[-02]	10	CANopen Broadcast
P503	3	CANopen	P505	0	0,0Hz
P505	0	0,0Hz	P515[-02]	P515[-03] Master	Broadcast Slave address
P514	5	250kBaud (min. 100kBaud)	P546[-01]	4	Frequency addition
P515[-03]	P515[-02] Slave	Broadcast Master address	P546[-02]	24	Setpoint pos. Incl. High Word
			P546[-03]	23	Setpoint pos. Incl. Low Word
			P600	1,2	Position control ON
			Nur für den	FB_Gearing	
			P553[-01]	21	Position setpoint pos. Low word
			P553[-02]	22	Position setpoint pos. High word

^{* (}P509) must not necessarily be set to {10} "CANopen Broadcast". However, in this case the Master (P502 [-01]) must be set to {21} "Actual frequency without slip".

NOTE

The actual position of the master MUST be communicated in "Increments" (Inc) format.

9.8.3.1 Overview

Function module	Description
-----------------	-------------

FB_Gearing	FB for simple gear unit function
FB_FlyingSaw	FB for gear unit function with Flying Saw

9.8.3.2 FB_Gearing

The position and speed of the frequency inverter can be synchronised to that of a master inverter via the function module FB_Gearing. The slave which used this function always follows the movements of the master inverter. Synchronisation is absolute, i.e. the positions of the slave and the master are always the same.

NOTE

If the slave is switched to gear unit mode at a different position to the master, the slave moves to the position of the master with the maximum frequency. If a gear ratio is specified, this also results in a new position when switched on again.

The position value to which synchronisation is carried out, as well as the speed, must be communicated via the Broadcast channel. The function is enabled via the input ENABLE. For this, the position control and the output stage must be enabled. The output stage can be enabled e.g. with the function MC_Power. If ENABLE is set to 0, the frequency inverter brakes to 0Hz and remains at a standstill. The inverter is now in position control mode again. If MC_Stop is activated, the frequency inverter exits from the gear unit mode and the ABORT output changes to 1. In case of errors in the FB ERROR changes to 1 and the cause of the error is indicated in ERRORID. By setting ENABLE to 0,ERROR, ERRORID and ABORT can be reset.

VAR_INPUT			VAR_OUTPUT			
Input	Description	Туре	Output	Description	Туре	
ENABLE	Synchronous running active	BOOL	VALID	Gear unit function is active	BOOL	
RELATIV E	Relative Mode (V2.1 and above)	BOOL	ABORT	Command aborted	BOOL	
			ERROR	Error in FB	BOOL	
			ERRORID	Error code	INT	
ERRORID	Description					
0	No error					
1000h	FI is not enabled					
1200h	Position control not activated					
1201h	The PLC setpoint position High is not parameterised					
1202h	The PLC setpoint position Low is	not para	meterised			

	SK 5xxE	SK 2xxE	SK1xxE
Possible devices	X	х	X

Gear ratios or a change of direction of rotation can be set via the parameters P607[-05] or P608[-05] Further details can be found in Manual BU0510 (Supplementary manual for POSICON position control).

9.8.3.3 FB_FlyingSaw

The flying saw function is an extension of the gear unit function. With the aid of this function it is possible to synchronise a running drive unit to a precise position. In contrast to FB_Gearing, synchronisation is relative, i.e. the slave axis moves synchronously to the position of the master which applied at the start of the "Flying Saw" The synchronisation process is illustrated in the figure below.

If the function is started, the slave frequency inverter accelerates to the speed of the master axis. The acceleration is specified via ACCELERATION. At low speeds the ramp is flatter and at high speeds there is a steep ramp for the slave frequency inverter. The acceleration path is stated in revolutions (1000 = 1,000 rev.) if P553 is specified as the setpoint position. If the setpoint position INC is used for P553, the acceleration path is specified in increments.

If the initiator is set with the distance of the position of the slave drive which is saved in ACCELERATION, the slave is precisely synchronised with the triggering position from the master drive.

The FB must be switched on via the ENABLE input. The function can be started either via the digital input (P420[-xx]=64, Start Flying Saw) or via EXECUTE. The frequency inverter then accelerates to the speed of the master axis. When synchronisation with the master axis is achieved, the DONE output is switched to 1.

Via the STOP input or the digital input function P420[-xx] = 77, Stop Flying Saw, the gear unit function is switched off, the frequency inverter brakes to 0Hz and remains at a standstill. Via the HOME input, the inverter is made to move to the absolute position 0. After the end of the HOME or STOP command the relevant allocated output is active. The gear unit function can be restarted with renewed activation of EXECUTE or the digital input. With the digital input function (P420[-xx] = 63, Stop synchronisation) the gear unit function can be stopped and then moved to the absolute position 0.

If the function is interrupted by the MC_Stop function, ABORT is set to 1. In case of error, ERROR is set to 1 and the error code is set in ERRORID. These three outputs are reset if ENABLE is switched to 0.

VAR_INPUT		VAR_OUTPUT			
Input	Description	Туре	Output	Description	Туре
ENABLE	Enable	BOOL	VALID	Specified setpoint frequency reached	BOOL
EXECUTE	Start of synchronisation	BOOL	DONEHOME	Home run completed	

STOP	Stop synchronisation	BOOL	DONESTOP	Stop command executed	
HOME	Moves to position 0	BOOL	ABORT	Command aborted	BOOL
ACCELERATION	Acceleration path (1rev. = 1.000)	DINT	ERROR	Error in FB	BOOL
			ERRORID	Error code	INT
ERRORID	Erläuterung				
0	No error				
1000h	Fl is not enabled				
1200h	Position control not activated				

	SK 5xxE	SK 2xxE	SK1xxE
Possible devices	х	Х	х

9.8.4 FB_FunctionCurve

This function module produces a mapping control. Defined points can be communicated to the function block, with which it emulates a function. The output then behaves according to the saved map. Linear interpolation is carried out between the individual base points. The base point are defined with X and Y values. The X values are always of the INTtype, the Y values can either be of the INT or the DINT type, depending on the size of the largest base point. More memory is required if DINT is used. The base points are entered in the column "Init Value" in the variables window. If TRUE is detected at the ENABLE input, on the basis of the input value INVALUE the corresponding output value OUTVALUE is calculated. VALID = TRUE indicates that the output value OUTVALUE is valid. As long as VALID is FALSE, the output OUTVALUE has the value 0. If the input value INVALUE exceeds the upper or the lower end of the characteristic range, the first or the last output value of the characteristic range remain until the INVALUE returns to within the area of the characteristic range. If the characteristic range is exceeded or undershot, the appropriate output MINLIMIT or MAXLIMIT is set to TRUE. ERROR becomes TRUE, if the abscissa values (X values) of the characteristic range do not continuously increase or if no table is initialised. The appropriate error is output by ERRORID and the starting value is 0. The error is reset if ENABLE = FALSE.

VAR_INPUT		VAR_OUTPUT			
Input	Description	Туре	Output	Description	Туре
ENABLE	Execute	BOOL	VALID	Output value is valid	BOOL
INVALUE	Input value (x)	INT	ERROR	Error in FB	BOOL
			ERRORID	Error code	INT
			MAXLIMIT	Maximum limit reached	BOOL
			MINLIMIT	Minimum limit reached	BOOL
			OUTVALUE	Output value (y)	DINT
ERRORID	Description				
0	No error				

1400h	Abscissa values (X values) of the characteristic range do not always increase
1401h	No map initialised

	SK 5xxE	SK 2xxE	SK1xxE
Possible devices	х	Х	х

9.8.5 FB_PIDT1

The P-I-DT1 is a freely parameterisable individual controller. If individual components or the P, I or DT1 component are not required, their parameters are written as 0. The T1 component only functions together with the D component. Therefore a PT1 controller cannot be parameterised. Due to internal memory limitations, the control parameters are restricted to the following areas:

Permissible value range for control parameters					
Parameter	Value range	Scaling	Resulting value range		
P (Kp)	0 – 32767	1/100	0,00 – 32,767		
I (Ki)	0 – 10240	1/100	0,00 - 10,240		
D (Kd)	0 – 32767	1/1000	0,000 – 3,2767		
T1 (ms)	0 – 32767	1/1000	0,000 – 3,2767		
Max	-32768 – 32767				
Min	-32768 – 32767				

The controller starts to calculate when ENABLE is set to TRUE. The control parameters are only adopted with a rising flank from ENABLE. While ENABLE is TRUE, changes to the control parameters have no effect.. If ENABLE is set to FALSE, the output remains at its last value.

The output bit VALID is set, as long as the output value of Q is within the Min and Max limits and the ENABLE input is TRUE.

ERROR is set as soon as an error occurs. The VALID bit is then FALSE and the cause of the fault can be identified from the ERRORID (see table below).

If the RESET bit is set to TRUE, the content of the integrator and the differentiator are set to 0. If the ENABLE input is FALSE, the OUTPUT output is also set to 0. If the ENABLE input is set to TRUE, only the P component has an effect on the OUTPUT output.

If the output value OUTPUT is outside of the range of the maximum or minimum output values, the corresponding bit MAXLIMIT or MINLIMIT is set and the VALID bit is set to FALSE.

NOTE

If the entire program cannot be executed within a PLC cycle, the controller calculates the output value a second time with the old scanning values. This ensures a constant scanning rate. Because of this it is essential that the CAL command for the PIDT1 controller is executed in each PLC cycle and only at the end of the PLC program.

_INPUT		VAR_OUTPUT			
Input	Description	Туре	Output	Description	Туре
ENABLE	Execute	BOOL	VALID	Output value is valid	BOOL
RESET	Reset outputs	BOOL	ERROR	Error in FB	BOOL
Р	P component (Kp)	INT	ERRORID	Error code	INT
I	I component (Ki)	INT	MAXLIMIT	Maximum limit reached	BOOL
D	D component (Kd)	INT	MINLIMIT	Minimum limit reached	BOOL
T1	T1 component in ms	INT	OUTPUT	Output value	INT
MAX	Maximum output value	INT			
MIN	Minimum output value	INT			
SETPOINT	Setpoint	INT			
VALUE	Actual value	INT			
ERRORID	Description				
0	No error				
1600h	P component not within value range				
1601h	I component not within value range				
1602h	D component not within value range				
1603h	T1 component not within value r	ange			

	SK 5xxE	SK 2xxE	SK1xxE
Possible devices	х	Х	х

9.8.6 Visualisation with the ParameterBox

In the ParameterBox, the entire display can be used for the display of information. For this, the ParameterBox must be switched to visualisation mode. This is possible with the ParameterBox (Parameter P1308) firmware version V4.3 or higher, and is carried out as follows:

- In the menu item "Display", set the parameter P1003 to "PLC Display"
- · Switch to the operating value display with the left or right arrow key
- PLC display is now enabled in the ParameterBox and remains permanently enabled.

In the visualisation mode of the ParameterBox, the content of the display can be set with the two FBs described below. However, before the item "Allow ParameterBox function modules" must be activated in the PLC configuration

dialogue (Button). With the process value "Parameterbox_key_state", the keyboard status of the box can also be queried. With this, input into the PLC program can be implemented. The display structure and the keys to be read out for the ParameterBox can be seen in the figure below.

9.8.6.1 Overview

Function module	Description
-----------------	-------------

FB_STRINGToPBox	Copies a string into the P-Box
FB_DINTToPBox	Copies a DINT value to the P-Box

9.8.6.2 FB_STRINGToPBox

This function module copies a string (chain of characters) into the memory array of the ParameterBox. Via ROW and COLUMN the starting point of the string is set in the ParameterBox display. The parameter TEXT transfers the required string to the function module; the name of the string can be obtained from the table of variables. As long as ENABLE is set to 1, all changes to the inputs are adopted immediately. If the CLEAR input is set, the entire display content is overwritten with space characters before the selected string is written. If DONE changes to 1, the string has been correctly transferred. In case of error ERROR is set to 1. DONE is 0 in this case. In the ERRORID the relevant error code is then valid. With a negative flank on ENABLE, DONE, ERROR and ERRORID are reset.

VAR_INPUT			VAR_OUTPUT			
Input	Description	Тур	Output Description 1			
ENABLE	Transfer of the string	BOOL	DONE	String transferred	BOOL	
CLEAR	Clear display	BOOL	ERROR	Error in FB	BOOL	
ROW	Line of the display Value range = 0 to 3	BYTE	ERRORID	Error code	INT	
COLUMN	Column of the display Value range = 0 to 19	BYTE				
TEXT	Text to be displayed	INT				
ERRORID	Description					
0	No error					
1500h	String overwrites the memory are	a of the	P-Box array			
1501h	Value range exceeded at ROW in	put				
1502h	Value range exceeded at COLUMN input					
1503h	The selected string number does not exist					
1506h	The option "Allow ParameterBox	function	modules" is r	not activated in the PLC configurati	on.	

	SK 5xxE	SK 2xxE	SK 1xxE
Possible devices	x	X	X

Example ST:

```
(* Initialisation *)
if FirstTime then
   StringToPBox.ROW := 1;
   StringToPBox.Column := 16;
   FirstTime := False;
end_if;

(* Query actual position *)
ActPos(Enable := TRUE);
```

```
if ActPos. Valid then
  (* Display position in the PBox displays (PBox P1003 = PLC display ) *)
  DintToPBox.Value := ActPos.Position;
 DintToPBox.Column := 9;
 DintToPBox.LENGTH := 10;
 DintToPBox(Enable := True);
end_if;
(* Switch device on or off via DIG1 *)
Power(Enable := _5_State_digital_input.0);
if OldState <> Power.Status then
 OldState := Power.Status;
  (* Is device switched on?
  if Power.Status then
   StringToPBox(Enable := False, Text := TextOn);
   StringToPBox(Enable := False, Text := TextOff);
  end_if;
  StringToPBox(Enable := TRUE);
else
 StringToPBox;
end_if;
```

9.8.6.3 FB DINTToPBox

This function module converts a DINT value into an ASCII string and copies this into the ParameterBox. The output can be in decimal, binary or hexadecimal format; the selection is performed via MODE. Via ROW and COLUMN the starting point of the string is set in the ParameterBox display. The parameter LENGTH transfers the length of the string in characters. In decimal MODE the parameter POINT positions a decimal point in the number which is to be displayed. In POINT it is stated how many characters are to the right of the decimal point. With the setting 0 the POINT function is disabled. If the number contains more characters than the length allows and no decimal point is set, the overflow is indicated by the character "#". If there is a decimal point in the number, all numbers behind the decimal point may be omitted if required. In hexadecimal and binary MODE the lowest value bits are displayed if the set length is too short. As long as ENABLE is set to 1, all changes to the inputs are adopted immediately. If DONE changes to 1, the string has been correctly transferred. In case of error ERROR is set to 1. DONE is 0 in this case. In the ERRORID the relevant error code is then valid. With a negative flank on ENABLE, DONE, ERROR and ERRORID are reset.

Examples:

Setting	Number to be displayed	P-Box display		
Length = 5	12345	12345		
Point = 0	12040	12040		
Length = 5	-12345	#####		
Point = 0	-12040	ппппп		
Length = 10	123456789	123456,789		
Point = 3	123430709	123430,769		
Length = 8	123456789	123456,7		
Point = 3	123430709			

	VAR_INPUT	VAR_OUTPUT	
--	-----------	------------	--

Input	Description	Туре	Output	Description	Туре		
ENABLE	Transfer of the string	BOOL	DONE	String transferred	BOOL		
MODE	Display format 0 = Decimal 1 = Binary 2 = Hexadecimal Value range = 0 to 2	BYTE	ERROR	Error in FB	BOOL		
ROW	Line of the display Value range = 0 to 3	BYTE	ERRORID	Error code	INT		
COLUMN	Column of the display Value range = 0 to 19	BYTE					
POINT	Position of decimal point Value range = 0 to 10 0 = Function is disabled	BYTE					
LENGTH	Output length Value range = 1 to 11	BYTE					
VALUE	Number to be output	DINT					
ERRORID	Description						
0	No error						
1500h	String overwrites the memory a	area of the	P-Box array	1			
1501h	Value range exceeded at LINE	Value range exceeded at LINE input					
1502h	Value range exceeded at ROW	Value range exceeded at ROW input					
1504h	Value range exceeded at POIN	IT input					
1505h	Value range exceeded at LENG	GTH input					
1506h	Value range exceeded at MOD	E input					

	SK 5xxE	SK 2xxE	SK1xxE
Possible devices	х	Х	х

```
(* Initialisation *)
if FirstTime then
   StringToPBox.ROW := 1;
   StringToPBox.Column := 16;
   FirstTime := False;
end_if;

(* Query actual position *)
ActPos(Enable := TRUE);
if ActPos.Valid then
   (* Display position in the PBox displays (PBox P1003 = PLC display ) *)
   DintToPBox.Value := ActPos.Position;
   DintToPBox.Column := 9;
   DintToPBox.LENGTH := 10;
```

```
DintToPBox(Enable := True);
end_if;

(* Switch device on or off via DIG1 *)
Power(Enable := _5_State_digital_input.0);
if OldState <> Power.Status then
   OldState := Power.Status;
   (* Is device switched on? *)
   if Power.Status then
        StringToPBox(Enable := False, Text := TextOn);
   else
        StringToPBox(Enable := False, Text := TextOff);
   end_if;

StringToPBox(Enable := TRUE);
else
   StringToPBox;
end_if;
```

9.8.7 CANopen

The PLC can configure, monitor and transmit on PDO channels via function blocks. The PDO can transmit or receive up to 8 bytes of process data via a PDO. Each of these PDOs is accessed via an individual address (COB-ID). Up to 20 PDOs can be configured in the PLC. For simpler operation, the COB-ID is not entered directly. Instead, the device address and the PDO number are communicated to the FB. The resulting COB-ID is determined on the basis of the Pre-Defined Connection Set (CiA DS301). This results in the following possible COB-IDs for the PLC.

Sende PDO		Überwachte PDO		
PDO	COB-ID	PDO	COB-ID	
PDO1	200h + Device address	PDO1	180h + Device address	
PDO2	300h + Device address	PDO2	280h + Device address	
PDO3	400h + Device address	PDO3	380h + Device address	
PDO4	500h + Device address	PDO4	480h + Device address	

NORD inverters use PDO1 to communicate process data. PDO2 is only used for setpoint/actual value 4 and 5.

9.8.7.1 Overview

Function module	Description
FB PDOConfig	PDO configuration
FB_PDOSend	Transmit PDO
FB_PDOReceive	Receive PDO
FB_NMT	Enable and bar PDO

9.8.7.2 FB NMT

After a Power UP all CAN participants are in the bus state Pre-Operational. In this state, they can neither transmit nor receive a PDO. In order for the PLC to be able to communicate with other participants on the CON bus, these must be set to an operational state. Usually, this is performed by the bus master. If there is no bus master, this task can be performed by the FB_NMT. The status of all of the participants connected to the bus can be controlled via the inputs PRE, OPE or STOP. The inputs are adopted with a positive flank on EXECUTE. The function must be called up until the output DONE or ERROR has been set to 1.

If the ERROR is set to 1, there is either no 24V supply to the RJ45 CAN socket of the inverter, or the CAN driver of the inverter is in the status Bus off. With a negative flank on EXECUTE, all outputs are reset to 0.

VAR_INPUT			VAR_OUTPUT			
Input	Input Description Type			Description	Туре	
EXECUTE	Execute	BOOL	DONE	NMT command is transmitted	BOOL	
PRE	Sets all participants to Pre- Operational status	BOOL	ERROR	Error in FB	BOOL	
OPE	Sets all participants to Operational status	BOOL				
STOP	Sets all participants to Stopped status	BOOL				

	SK 5xxE	SK 2xxE	SK1xxE
Possible devices	х	Х	

9.8.7.3 FB_PDOConfig

The PDOs are configured with this FB. With an instance of this function, all of the required PDOs can be configured. The FB must only be called up once for each PDO. Up to 20 PDOs can be set up. Each PDO has its own parameterisation. Assignment of the PDOs in the other CANopen FBs is carried out via the Messagebox Number. The TARGETID represents the address of the device. With NORD frequency inverters, this is set in P55 or via DIP switches. The required Messagebox number is entered under PDO (see Introduction). LENGTH specifies the transmission length of a PDO. The transmission/reception direction is specified with DIR. The data are adopted with a positive flank on the EXECUTE input. The DONE output can be queried immediately after the call-up of the FB. If DONE is set to 1, the PDO channel has been configured. If ERROR = 1 there has been a problem, whose precise cause is saved in ERRORID. With a negative flank on EXECUTE, all outputs are reset to 0.

VAR_INPUT		VAR_OUTPUT			
Input	t Description Type		Output	Description	Туре
EXECUTE	Execute	BOOL	DONE	PDO configured	BOOL
NUMBER	Messagebox number Value range = 0 to 19	BYTE	ERROR	Error in FB	BOOL
TARGETI D	Device address Value range = 1 to 127	BYTE	ERRORID	Error code	INT
PDO	PDO Value range = 1 to 4	BYTE			

LENGTH	PDO length Value range = 1 to 8	BYTE				
DIR	Transmit or receive Transmit = 1 / Receive = 0	BOOL				
ERRORID	Description					
0	No error					
1800h	Number value range exceeded					
1801h	TARGETID value range exceeded					
1802h	PDO value range exceeded					
	LENGTH value range exceeded					

	SK 5xxE	SK 2xxE	SK1xxE
Possible devices	х	х	

CAN-IDs which are already being used by the frequency inverter may not be parameterized!

NOTE

This applies to the following reception addresses:

- CAN ID = 0x180 + P515[-01] PDO1
- CAN ID = 0x180 + P515[-01] + 1
 CAN ID for absolute encoders
- CAN ID = 0x280 + P515[-01] PDO2

This applies to the following transmission addresses:

CAN ID = 0x200 + P515[-01] PDO1
 CAN ID = 0x300 + P515[-01] PDO2

Example in ST:

```
(* Configure PDO *)
PDOConfig(
   Execute := TRUE,
   (* Configure Messagebox 1 *)
   Number := 1,
   (* Set CAN node number *)
   TargetID := 50,
    (* Select (Standard for PDO1 control word, setpoint1, setpoint2, setpint3) *)
   PDO := 1,
    (* Specify length of data (Standard for PDO1 is 8 *)
   LENGTH := 8,
   (* Transmit *)
   Dir := 1);
(* Configure PDO *)
PDOConfig(
   Execute := TRUE,
    (* Configure Messagebox 1 *)
   Number := 2,
```

```
(* Set CAN node number *)
   TargetID := 50,
    (* Select PDO (Standard for PDO2 setpoint4, setpoint5 SK540E) *)
   PDO := 2,
    (* Specify length of data (Standard for PDO2 is 4 *)
   LENGTH := 4,
    (* Transmit *)
   Dir := 1);
(* Configure PDO *)
PDOConfig(
   Execute := TRUE,
   (* Configure Messagebox 2 *)
   Number := 2,
    (* Set CAN node number *)
   TargetID := 50,
   (* Select PDO (Standard for PDO1 status word, actual value1, actual value2, actual
value3) *)
   PDO := 1,
    (* Specify length of data (Standard for PDO1 is 8 *)
   LENGTH := 8,
   (* Receive *)
   Dir := 0);
```

9.8.7.4 FB_PDOSend

With this FB, PDOs can be transmitted on a previously configured channel. This is possible either as a one-off or cyclical transmission. The data to be transmitted is entered in WORD1 to WORD4. Transmission of the PDO is possible regardless of the CANopen state of the frequency inverter. The previously configured PDO channel is selected via NUMBER. The data to be transmitted is entered into WORD1 to WORD4. Via CYCLE one-off transmission (setting = 0) or cyclical transmission can be selected. The PDO is sent with a positive flank on EXECUTE. IF DONE = 1 all entries were correct and the PDO is sent. IF ERROR = 1 there was a problem. The precise cause is saved in ERRORID. All outputs are reset with a negative flank on EXECUTE. The time base of the PLC is 5ms; this also applies for the CYCLE input. Only transmission cycles with a multiple of 5ms can be implemented.

VAR_INPUT		VAR_OUTPUT			
Input	Description	Туре	Output	Description	Туре
EXECUTE	Execute	BOOL	DONE	PDO transmitted = 1	BOOL
NUMBER	Messagebox number Value range = 0 to 19	BYTE	ERROR	Error in FB	BOOL
CYCLE	Transmission cycle Value range = 0 to 255 0 = Disabled 1 to 255 = Transmission cycle in ms	BYTE	ERRORID	Error code	INT
WORD1	Transmission data Word 1	INT			
WORD2	Transmission data Word 2	INT			
WORD3	Transmission data Word 3	INT			
WORD4	Transmission data Word 4	INT			

ERRORID	Description
0	No error
1800h	Number value range exceeded
1804h	Selected box is not configured correctly
1805h	No 24V for bus driver or bus driver is in "Bus off" status

	SK 5xxE	SK 2xxE	SK1xxE
Possible devices	x	X	

If DONE changes to 1, the message to be transmitted has been accepted by the CAN module, but has not yet been transmitted. The actual transmission runs in parallel in the background. If several messages are now to be sent directly in sequence via an FB, it may be the case that on the new call-up the previous message has not yet been sent. This can be identified by the fact that neither DONE nor the ERROR signal have been set to 1 after the CAL call-up. The CAL call-up can be repeated until one of the two signals changes to 1. If several different CAN IDs are to be written via a single FB, this is possible with a new configuration of the FB. However, this must not be done in the same PLC cycle as the transmission. Otherwise there is a danger that the message which is to be transmitted will be deleted by the FB_PDOConfig.

Example in ST:

```
IF bFirstTime THEN
  (* Set the device to the status Pre-Operational *)
  NMT(Execute := TRUE, OPE := TRUE);
  IF not NMT.Done THEN
   RETURN;
 END_IF;
  (* Configure PDO*)
  PDOConfig(
   Execute := TRUE,
    (* Configure Messagebox 1 *)
   Number := 1,
   (* Set CAN node number *)
   TargetID := 50,
   (* Select PDO (Standard for PDO1 control word, setpoint1, setpoint2, setpoint3) *)
   PDO := 1,
   (* Specify length of data (Standard for PDO1 is 8 *)
   LENGTH := 8,
    (* Transmit *)
   Dir := 1);
  IF not PDOConfig.Done THEN
   RETURN;
 END_IF;
  (* Transmit PDO - Set device to status Ready for Operation *)
  PDOSend(Execute := TRUE, Number := 1, Word1 := 1150, Word2 := 0, Word3 := 0, Word4 := 0);
  IF NOT PDOSend.Done THEN
   RETURN;
 END_IF;
 PDOSend(Execute := FALSE);
 bFirstTime := FALSE;
END_IF;
CASE State OF
  0:
```

```
(* If digital input 1 is set *)
      IF _5_State_digital_input.0 THEN
        (* Transmit PDO - Set device to status Ready for Operation *)
        PDOSend(Execute := TRUE, Number := 1, Word1 := 1150, Word2 := 0, Word3 := 0, Word4 :
= 0);
       State := 10;
       RETURN;
      END_IF;
      (* If digital input 2 is set *)
      IF _5_State_digital_input.1 THEN
       (* Transmit PDO - Enable device and setpoint frequency to 50\% of the maximum
frequency *)
       PDOSend(Execute := TRUE, Number := 1, Word1 := 1151, Word2 := 16#2000, Word3 := 0,
Word4 := 0);
       State := 10;
       RETURN;
      END_IF;
 10:
     PDOSend;
      IF PDOSend.Done THEN
       PDOSend(Execute := FALSE);
       State := 0;
     END IF;
END_CASE;
```

9.8.7.5 FB_PDOReceive

This FB monitors a previously configured PDO channel for incoming messages. Monitoring starts if the ENABLE input is set to 1. After the function has been called up, the NEW output must be checked. If it changes to 1, a new message has arrived. The NEW output is deleted with the next call-up of the function. The data which have been received are in WORD1 to WORD4. The PDO channel can be monitored for cyclical reception via TIME. If a value between 1 and 32767ms is entered in TIME, a message must be received within this period. Otherwise the FB goes into the error state (ERROR = 1). This function can be disabled with the value 0. The monitoring timer runs in 5ms steps. In case of error ERROR is set to 1. DONE is 0 in this case. In the ERRORID the relevant error code is then valid. With a negative flank on ENABLE, DONE, ERROR and ERRORID are reset.

VAR_INPUT		VAR_OUTPUT			
Input	Description	Туре	Output	Description	Туре
ENABLE	Execute	BOOL	NEW	New PDO received	BOOL
NUMBER	Messagebox number Value range = 0 to 19	BYTE	ERROR	Error in FB	BOOL
TIME	Watchdog function Value range = 0 to 32767 0 = Disabled 1 to 32767 = Monitoring time	INT	ERRORID	Error code	INT
			WORD1	Received data Word 1	INT
			WORD2	Received data Word 2	INT
			WORD3	Received data Word 3	INT
			WORD4	Received data Word 4	INT
ERRORID	Description				

0	No error
1800h	Number value range exceeded
1804h	Selected box is not configured correctly
1805h	No 24V for bus driver or bus driver is in "Bus off" status
1807h	Reception timeout (Watchdog function)

	SK 5xxE	SK 2xxE	SK1xxE
Possible devices	х	х	

NOTE

The PLC cycle is about 5ms, i.e. with one call-up of the function in the PLC program, a CAN message can only be read every 5ms. Messages may be overwritten if several messages are sent in quick succession.

Example in ST:

```
IF bFirstTime THEN
  (* Set the device to the status Pre-Operational *)
 NMT(Execute := TRUE, OPE := TRUE);
 IF not NMT.Done THEN
   RETURN;
 END_IF;
  (* Configure PDO *)
  PDOConfig(
   Execute := TRUE,
   (* Configure Messagebox 2 *)
   Number := 2,
   (* Set CAN node number *)
   TargetID := 50,
   (* Select PDO (Standard for PDO1 status word, actual value1, actual value2, actual value2)
   PDO := 1,
    (* Specify length of data (Standard for PDO1 is 8 *)
   Length := 8,
   (* Receive *)
   Dir := 0);
END_IF;
(* Read out status and actual values *)
PDOReceive(Enable := TRUE, Number := 2);
IF PDOReceive.New THEN
 State := PDOReceive.Word1;
 Sollwert1 := PDOReceive.Word2;
 Sollwert2 := PDOReceive.Word3;
 Sollwert3 := PDOReceive.Word4;
END IF
```

9.8.8 Detection of rapid events (FB_Capture)

The cycle time of the PLC is 5ms. This cycle may be too long to detect very rapid external events. Via FB Capture it is possible to capture certain physical values on flanks at the FI inputs. Monitoring of the inputs is carried out in a 1ms cycle. The values which are saved can be read by the PLC later.

With a positive flank on EXECUTE all inputs are read in and the Capture function is enabled. The FI input which is

to be monitored is selected via the INPUT input. Via EDGE, the type of flank and the behaviour of the module are selected.

EDGE = With the first positive flank, the selected value is saved under OUTPUT1 and DONE1 is set to 1. The next positive flank saves under OUTPUT2 and DONE2 is set to 1. The FB is then disabled.

EDGE = Behaviour as for EDGE = 0, with the difference that triggering is with the negative flank.

EDGE = With the first positive flank, the selected value is saved under OUTPUT1 and DONE1 is set to 1. The next positive flank saves under OUTPUT2 and DONE2 is set to 1. The FB is then disabled.

EDGE = Behaviour as for EDGE = 2, with the difference that triggering is first with the negative and then with the positive flank.

If the input CONTINUOUS is set to 1, then only the settings = and 1 are relevant to EDGE. The FB continues to run and always saves the last triggering event under OUTPUT1. DONE1 remains active as of the first event. DONE2 and OUTPUT2 are not used.

The BUSY output remains active until both Capture events (DONE1 and DONE2) have occurred.

The function of the module can be terminated at any time with a negative flank on EXECUTE. All outputs retain their values. With a positive flank on EXECUTE first, all outputs are deleted and then the function of the module is started.

VAR_INPUT			VAR_OUTPUT			
Input	Description	Туре	Output	Description	Туре	
EXECUTE	Execute	BOOL	DONE1	Value in OUTPUT1 valid	BOOL	
CONTINUOUS	Single execution or continuous operation	BOOL	DONE2	Value in OUT valid	BOOL	
INPUT	Input to be monitored 0 = Input 1 7 = Input 8	ВҮТЕ	BUSY	FB still waiting for a Capture event	BOOL	
EDGE	Triggering flank	BYTE	ERROR	the FB has an error	BOOL	
SOURCE	Value to be saved 0 = Position in rotations 1 = Actual frequency 2 = Torque	ВҮТЕ	ERRORID	Error code	INT	
			OUTPUT1	Value for 1st Capture event	DINT	
			OUTPUT2	Value for 2nd Capture event	DINT	
ERRORID	Description					
0	No error					
1900h	INPUT value range exceeded					
1901h	EDGE value range exceeded					
1902h	SOURCE value range exceeded					
1903h	More than two instances are act	ive				

	SK 5xxE	SK 2xxE	SK1xxE
Possible devices	X	X	Х

Example in ST:

```
Power(ENABLE := TRUE);
IF Power.STATUS THEN
  Move(EXECUTE := TRUE, POSITION := Pos, VELOCITY := 16#2000);
  (* The FB waits for a High signal on DIG1. If this
    is detected, the FB saves the actual position. The value can
    be queried with the property "OUTPUT1". *)
  Capture(EXECUTE := TRUE, INPUT := 0);

IF Capture.DONEl THEN
    Pos := Capture.OUTPUT1;
    Move(EXECUTE := FALSE);
    END_IF;
END_IF;
```

NOTE

Several instances of this FB may exist in the PLC program. However, only two instances may be active at the same time!

9.8.9 Access to memory areas of the frequency inverter

If the intermediate saving of large quantities of data, its transmission to or reception from other devices is necessary, the modules FB WriteTrace and FB ReadTrace should be used.

Function module	Explanation
FB WriteTrace	Saves individual data or larger quantities of data
FB ReadTrace	Reads individual data or larger quantities of data

9.8.9.1 FB WriteTrace

Via this FB, individual values or large numbers of values can be intermediately saved in the FI. The values are not permanently saved, i.e. the values are lost if the FI is restarted.

If the FB detects a positive flank on ENABLE, all parameters with are present on the input are adopted. The value in VALUE is written to the storage address indicated in STARTINDEX and MEMORY. If the writing process is successful, the VALID output changes to 1.

If the FB is now called up several times and the ENABLE input remains at 1, then with each call up of the FB the input VALUE is read and saved and the memory address is increased by 1. The current memory index for the next access can be read out under the output ACTINDEX. If the end of the memory is reached, the output FULL changes to 1 and the saving process is stopped. However, if the input OVERWRITE is set to 1, the memory index is reset to the STARTINDEX and the values which have been previously written are overwritten.

Values can be saved in INT or DINT format. For INT values, only the Low component is evaluated by the VALUE input. Allocation is carried out via the SIZEinput; a 0 stands for INT and a 1 for DINT values.

The allocation of memory areas is carried out via the MEMORY input:

MEMORY = 1 to P613[0-251] corresponds to 504 INT or 252 DINT values MEMORY = 0 to P900[0-247] up to corresponds to 3200 INT or 1600 DINT values P906[0-111]

The FB cannot be interrupted by other blocks. With a negative flank on ENABLE all outputs are set to 0 and the function of the FB is ended.

VAR_INPUT			VAR_OUTPUT			
Input	Description	Туре	Output	Description	Туре	
ENABLE	Execute	BOOL	VALID	Writing process successful	BOOL	
SIZE	Memory format	BOOL	FULL	Entire memory is full	BOOL	
OVERWRITE	Memory can be overwritten	BOOL	ERROR	the FB has an error	BOOL	
MEMORY	Selection of memory area	BYTE	ERRORID	Error code	INT	
STARTINDEX	Indicates the memory cell to be written to	INT	ACTINDEX	Actual memory index, to which saving will be carried out in the next cycle	DINT	
VALUE	Value to be saved	DINT				
ERRORID	Erläuterung					
0	No error					
1A00h	STARTINDEX value range exceeded					
1A01h	MEMORY value range exceed	led				

	SK 5xxE	SK 2xxE	SK1xxE
Possible devices	x	х	

NOTE

Notice: the memory area in the setting MEMORY = 0 is also used by the Scope function. Use of the Scope function overwrites the saved values!

9.8.9.2 FB_ReadTrace

The memory areas of the FI can be read out directly with the aid of this FB.

If the FB detects a positive flank on ENABLE, all parameters with are present on the input are adopted. The memory address which is to be read out is indicated with STARTINDEX and MEMORY. If the reading process is successful the VALID output changes to 1 and the value which has been read out is in VALUE.

If the FB is now called up several times and the ENABLE input remains at 1, with each call up the memory address which is to be read out is increased by 1 and the content of the new memory address is immediately copied to the output VALUE.

The current memory index for the next access can be read out under the output ACTINDEX. If the end of the memory has been reached, the READY changes to 1 and the reading process is stopped.

Values can be read in INT or DINT format. For INT values, only the Low component is evaluated by the VALUE output. Allocation is carried out via the SIZE input; a 0 stands for INT and a 1 for DINT values.

Allocation of the memory areas is carried out via the MEMORY input:

MEMORY = 1 to P613[0-251] corresponds to 504 INT or 252 DINT values

MEMORY = 0 to P900[0-247] up to corresponds to 3200 INT or 1600 DINT values P906[0-111]

The FB cannot be interrupted by other blocks

With a negative flank on ENABLE, all outputs are set to 0 and the function of the FB is terminated.

VAR_INPUT			VAR_OUTPUT		
Input	Description	Туре	Output	Description	Туре
ENABLE	Execute	BOOL	VALID	Reading process successful	BOOL
SIZE	Memory format	BOOL	READY	The entire memory has been read out	BOOL
MEMORY	Selection of memory area	BYTE	ERROR	the FB has an error	BOOL
STARTINDEX	Indicates the memory cell to be written to	INT	ERRORID	Error code	INT
			ACTINDE X	Actual memory index, to which will be read in the next cycle	INT
			VALUE	Value read out	DINT
ERRORID	Description				
0	No error				
1A00h	STARTINDEX value range exceeded				
1A01h	MEMORY value range exceeded				

	SK 5xxE	SK 2xxE	SK1xxE
Possible devices	X	X	

9.8.10 Weighing function (FB_Weigh)

This module is used to determine the average torque during movement at a constant speed. From this value, physical values, such as the weight which is being moved can be determined.

The FB is started via a positive flank on the EXECUTE input. With the flank, all inputs are adopted by the FB. The FI moves with the speed which is set in SPEED. The measurement is started after the elapse of the time which is set in STARTTIME. The duration of the measurement is defined under MEASURETIME. The FI stops after the elapse of the measurement time. If the input REVERSE = 1, the measurement process starts again, but with a negative speed. Otherwise the measurement is complete, the output DONE changes to 1 and the measurement result is in VALUE.

As long as the measurement process is running, BUSY is active. The scaling of the measurement result VALUE is 1 = 0.01% of the rated torque of the motor. Call-up of another Motion FB stops the measurement function and the

output ABORT changes to 1. All outputs of the FB are reset with a new positive flank on EXECUTE.

VAR_INPUT		VAR_OUTPUT			
Input	Description	Туре	Output	Description	Туре
EXECUTE	Execute	BOOL	DONE	Measurement ended	BOOL
REVERSE	Change of rotation direction	BOOL	BUSY	Measurement running	BOOL
STARTTIME	Time to start of measurement in ms	INT	ABORT	Measurement aborted	BOOL
MEASURETIME	Measurement time in ms	INT	ERROR	the FB has an error	BOOL
SPEED	Measuring speed in % (standardised to the maximum frequency, 16#4000 corresponds to 100%)	INT	ERRORID	Error code	INT
			VALUE	Measurement result	INT
ERRORID	Description				
0	No error				
0x1000	FI not switched on				
0x1101	Setpoint frequency not parameterised as a setpoint (P553)				
0x1C00	STARTTIME value range exceeded				
0x1C01	MEASURETIME value range exceeded				
0x1C02	The tolerance of the measurement values with respect to each other is greater than 1/8				

	SK 5xxE	SK 2xxE	SK1xxE
Possible devices	x	X	

Example in ST:

```
(* Enable device *)
Power(Enable := TRUE);
(* Is the device enabled? *)
if Power.Status then
  (* Specify starting time 2000 ms *)
 Weigh.STARTTIME := 2000;
  (* Specify measuring time 1000 ms *)
  Weigh.MEASURETIME := 1000;
  (* Specify speed 25% of maximum speed *)
  Weigh.SPEED := 16#1000;
end_if;
Weigh(EXECUTE := Power.Status);
(* Was weighing completed? *)
if Weigh.done then
  Value := Weigh.Value;
end_if;
```

NOTE

Only one instance of this FB is permissible in the PLC program!

9.9 PLC Error messages

Error messages cause the frequency inverter to switch off, in order to prevent a device fault. With PLC error messages execution by the PLC is stopped and the PLC goes into the status "PLC Error". With other error messages the PLC continues operation. The PLC restarts automatically after the error has been acknowledged.

The PLC continues to operate with PLC User Fault 23.X!

SimpleBox		Fault	Cause		
Group	Details in P700[-01] / P701	Text in the ParameterBox	Remedy		
E022	22.0	No PLC program	The PLC has been started but there is no PLC program in the FI - Load PLC program into the FI		
	22.1	PLC program is faulty	The checksum check via the PLC program produced an error Restart the FI (Power ON) and try again - Alternatively, reload PLC program		
	22.2	Incorrect jump address	Program error, behaviour as for Error 22.1		
	22.3	Stack overflow	More than 6 bracket levels were opened during the run time of the program - Check the program for run time errors		
	22.4	Max. PLC cycles exceeded	The stated maximum cycle time for the PLC program was exceeded - Change the cycle time or check the program		
	22.5	Unknown command code	A command code in the program cannot be executed because it is not known. - Program error, behaviour as for Error 22.1 - Version of the PLC and the NORD CON version do not match		
	22.6	PLC write access	The program content has been changed while the PLC program was running		
	22.9	PLC General error	The cause of the fault cannot be precisely determined - Behaviour as in Error 22.1		
E023	23.0	PLC User Fault 1	This error can be triggered by the PLC program in order to externally indicate problems in the execution of the PLC		

23.1	PLC User Fault 2	program. Triggered by writing the process variable
23.2	PLC User Fault 3	"ErrorFlags".

10 Projectmode

10.1 Overview

NORD CON has been extended to include a further operating mode. As default, this is deactivated and must be activated in the Settings. The new mode enables users to manage entire systems. Individual projects can be loaded and saved. All device parameters and PLC programs are saved in a project file. After opening NORD CON, the last saved project is always open. Was the file on the system no longer be found, a new project is created. This mode makes it considerably easier to save and copy entire systems. After a device search all device parameters in the system can be saved with a single action. As the PLC program can no longer be read out with the current version, the device programs and the project file are compared by the action. If they are not identical a warning is displayed inNORD CON. The action may take several minutes, as depending on the particular plant, the device list may contain several devices. The progress of the action is displayed in a separate window. NORD CON cannot be used during this process.

Notice

If errors occur during backup, these are noted in the log and the backup is continued. All of the parameters which are noted in the log are not saved in the project file. We recommend that the fault is remedied and a new backup carried out for the device.

If the action is cancelled by the user, not all parameters are read out and the data in the project file is incomplete. If device parameters are saved in the project file, this is indicated with a special device symbol in the project structure. The same applies for the PLC program. However, the existence of the device symbol does not provide any information with regard to the current status and completeness of the data. Backup can also be carried out for a single device. To do this, the parameter editor must be opened and all parameters read out. After this, the parameters must be saved.

Restoration or transmission of all device parameters and PLC programs can also be carried out with an action. For this, the parameters which are saved in the project file are sent to the devices. In the second step, the PLC programs which are saved in the project are loaded, translated and sent to the device. Depending on the number of devices, the action may take several minutes. The progress of the action is displayed in a separate window. NORD CON cannot be used during this process.

Attention

If errors occur during the process, this is noted in the log and the process is continued All of the parameters which are noted in the log could not be saved in the project file. The same applies for the PLC programs. We recommend that the fault is remedied and to restart the action.

If the action is cancelled by the user, not all of the parameters or PLC programs are sent to the devices. After the cancellation, the data for the project and the devices are no longer consistent.

As in normal mode, the parameters for a device can be read and edited with the parameter editor. When the parameters are saved, the values are not saved in a separate file, but rather in the project file. If the parameters are to be saved in a separate file in this mode, the action "Save as" must be executed.

As in normal mode, the PLC program for a device is edited with the PLC editor. When the editor is opened, the PLC program is automatically loaded from the project file. After editing, the program can be saved again in the project file with the action "Save". If the the PLC program is to be saved in a separate file in this mode, the action "Save as" must be executed.

A further application for the project mode is the use of NORD CON as an HMI. The user can adapt the interface to the HMI according as required. When the project is saved, the layout and the device list is saved by NORD CON. After a restart, the saved layout and the device list are restored.

Attention

When a project is loaded, it is not checked whether the devices which are contained in the project are actually connected. If other devices are connected to the bus, this may result in communication errors.

Category	Name	Description
File	New project	The action creates an empty project.
	Open project	The action opens a file selection dialogue and the user must select a project file.
	Save project	The action opens a file selection dialogue and the user specifies a name for the project file. After this, the project is saved under this name.
	Save all	The action save the project to harddisk.
Project	Send all data	The action sends all parameters and the PLC program to the devices.
	Read all data	The action loads all parameters from the devices and saves them in the project file. In addition, the PLC program in the device is compared with that in the project. If they are not identical a warning is displayed in the log.
	Export parameters	The action exports the parameters for the selected device to a file.
	Export PLC program	The action exports the PLC program for the selected device to a file.
PLC	Save	The action saves the PLC in the project file.
	Save as	The action opens a file selection dialogue and the user must select a file name. After this, the PLC program is saved in a separate file.
Parameter setup	Save	The action saves the parameters in the project file.
	Save as	The action opens a file selection dialogue and the user must select a file name. After this, the parameters are saved in a separate file.

11 Settings

11.1 Overview

The user can change the current program settings with the menu option "Extras->Settings". The attitudes are divided into the following categories:

- Interface
- Device report
- Control
- Communication
- Project
- Directories
- Macro editor
- Parameter

11.2 Interface

In this category the user can change the settings of the user interface. The following options are available:

Language

With this option the user can choose the language for the interface.

Use other language for parameter setting

With choice of this option the user can choose a different language for the parameter names in the dialog "Parameterisation" in the choice box "Parameter language".

Parameter language

With this option the user can choose a different language for the parameter name in the dialog "Parameterisation". This choice is activated by the option "**Use other language for parameter setting**".

Save window setting

By activation of this option the window settings like position and size is stored and re activated after opening again.

Use device-specific remote windows

If this option is activated, for each type of device special remote windows are produced. Otherwise the standard window is used.

11.3 Device report

In the category the user can change the settings of the window "Device overview".

Border width

With the parameter the user can change the border width of the device display. A value can be set between 0 and 10 pixels. More largely or if smaller value is registered, the largest or smallest value is used automatically.

Optimal number of columns

If this option is selected than the application calculates the optimal number of columns.

Number of columns

With this parameter the user specifies a firm number of columns. The value can be set between 1 and 10. If a larger or smaller value is registered, the largest or smallest value used automatically.

Attention:

This parameter can be only changed, if the option "optimal number of columns" was not selected.

Recover info parameters

If this option is selected, the adjusted info parameters of the device are stored and restored with a bus scan or a restart of application.

11.4 Control

In the category "Control" the user can change the settings of the "control" window.

Manage parameter sets individually

By activation of the option the setting values and actual values are managed individually in the window "control".

Evaluate control configuration

The option activated or deactivates the control configuration. With this function being active some functions are released or blocked after checking the configuration. Additionally the names of the parameterised setting value functions or actual value functions are displayed in the window in cleartext.

Read configuration automatically

The option activates or deactivates the automatic checking of the configuration. With this function activated the control configuration is checked again after focusing of the window.

Note:

The function "Evaluate control configuation" is not available in all devices!

11.5 Project

In the category "Project" the user can define the path of the project file. This file stores settings like used interface, bus scan settings, devices names, etc. By choice of an exisiting file old settings might be used.

11.6 Directories

In this category you can set the directories, where the parameter data base, configuration files, macro files and internal data bases are stored. To change one of the paths choose the directory in the list with left mouse button and choose the new path by pressing the button "change". With the buttons "Standard" you can choose a standard directory for each directory.

Parameter date bases

The changed parameter data bases are stored inside this directory.

Configuration files

These files contain all settings (e.g. used interface, bus scan settings, device name, etc.).

Macro files

In these Files macros are stored.

Internal data bases

These files are used for internal program run. Here the parameter structure of the inverter types is provided.

11.7 Macro editor

In the category you can do settings of macro editor.

Macro execution step by step

The option activates or deactivates the macro execution step by step. With this option being activated each macro step must be activated separately (cycle/start).

Open last macro

The option activates or deactivates the function to load the last opened macro.

11.8 Parameter

In the category you can choose settings of the parameter window.

Read parameter automatically after selection

The option activates or deactivates the automatic reading of a parameter after selecting.

Show also the value with text parameter

The option activates or deactivates the display of numerical value with a text parameter.

11.9 PLC

Delete old log entries before compiling

Is this option enabled, the old log entries are deleted before compiling.

Jump to current breakpoint (debug mode)

Is this option enabled, the line of the current breakpoint is moved into the visual range.

12 Messages

12.1 Errors and informations

When a fault has occurred, the number of the error by which it is registered in the program is displayed along with a concise error information.

The error messages are to be interpreted as follows:

No	Description
100	Parameter num. inadmissible
101	Parameter Value cannot be changed
102	Parameter limit exceeded
103	Error in sub-index
104	Not an array
105	Description cannot be changed
106	Description data does not exist
107	Time out receive data
108	Time out send data
109	Error in receive data
110	Different order and answer
200	Could not open serial port!
201	Could not close serial port!
202	First close old serial port!
203	Serial port is not open!
204	The settings of the communication module could not be set. Examine whether the current baud rate are supported.
205	Buffer setup impossible!
206	Timeout setup impossible!
207	Communication not possible!
208	Internal object error!
210	Error writing file!
211	Telegramm not created!
212	No high-resolution Timer found!
213	No device found!
214	Only with 16 Bit SetPoint!
215	Inverter is running. Close ?
216	The firmware update can only be executed if the device address is zero!
217	The firmware update tool could not be started! Please install NORD CON again, in order to repair the problem.
218	Please add a communication module!
219	Do you want to import the file into online view?
220	Here no device can be added!
221	Were found more to than 1 device at the bus! An update could cause problems. Would you like to continue?
222	It comes to the inconsistency of the control data, if you use macros and control windows simultaneously! Please close all control windows or the macro editor.
223	The transfer cannot be started, because the parameter editor is opened! Please close the editor and restart the function.
224	The on-line help could not be found! Please install NORD CON again, in order to repair the problem.
225	The device cannot be disconnected, because still at least one window of the device is opened.
226	The file cannot be opened. The format of the file is unknown.

227	The file could not be read!
228	The format of the file is unknown!
229	The file was changed by the user!
230	The action cannot be executed, because the device is not connected!
231	The settings were changed. Would you like to store the changes?
232	Their computer does not support Chinese characters, therefore representation error can occur!
232	The value cannot be converted into INT16!
234	
	The current version of the device does not support a firmware update over the system bus!
235	The current version of the technology box does not support a firmware update over the system bus!
236	The DLO is not as interest Blacks and the system bus!
237	The PLC is not registered! Please contact the support (+49 (0)180 500 61 84).
238	The registration code is not correct! Please contact the support (+49 (0)180 500 61 84).
239	The firmware down load can be executed only with a baud rate of 38400 baud!
240	The report cannot be printed, since no printer is installed!
241	The file could not be found on your system!
242	The current version of the technology box TU3 don"t support a firmware update!
243	No more devices can be added!
244	The project changed! Would you like to save the project?
245	Failed to contact the device!
246	No PLC program could be found for device!
247	Parameter could not be found for the device!
248	Transfer canceled by user!
249	At least one error occurred during the transfer!
250	At least one warning occurred during the transfer!
251	The ip address you have entered is not valid!
252	No more device can be added!
253	The file is corrupted or is manipulated!
254	In mode "USS over TCP" the firmware update is not possible!
255	The changes require a bus scan! Do you want to accept the modification?
256	The project file could not be found!
257	Please insert a bus modul first.
258	It can not be transferred all settings to the selected bus module! Would you like to continue?
259	An error has occurred during the write operation!
260	PLC program for device is not correct!
261	Do you want to save the project now?
262	IP address is already in use!
263	The directory could not be found!
300	The path for the internal database have got to correct!
301	The path for the internal database is not correct. NORD CON will abort.
302	Error while open database!
303	FU-Type in database is not compatible!
304	FU-Type in database is different!
305	Save actual database?
306	Cannot open database!
307	Unallowed folder!
308	Cannot store database!
309	Read all parameter immediately?

310	Please update NORD CON! Faultless parameter transfer isn't guaranteed.
311	Printer isn't correct installed!
312	Sorry, two parameter window cannot run simultaneously. View the open window?
313	You have to close to parameter window to quit NORD CON!
314	You have to close to parameter window to make a Busscan!
315	A comparison of parameters can be saved only as PDF.
316	The parameters were still not saved permanently in the device. Would you still close?
400	The file could not be loaded, since the file version is unknown!
401	The file could not be loaded, since the file format is unknown!
402	The file was changed by the user!
403	Error open file!
405	No macro file!
406	Empty macro list!
407	Macro list executed!
408	Jump-Label not found!
409	The function cannot be executed, because the scheduler was started.
410	Would you like to save the changes in the macro?
411	The file was changed by the user! Would you like to open the file?
500	Load only the settings?
501	The types of device are different? Would you like to open the file?
502	The file could not be opened, because the version of the file format is unknown!
503	The file could not be opened, because the file format is unknown!
504	The file was changed by the user! Would you like to open the file?
600	The controlling of the device is reduced or not possible from the following reason: the controlword (P509) is not for USS configures!
601	The controlling of the device is reduced or not possible from the following reason: the source of setpoint 1 (P510.0) is not for USS configures!
602	The controlling of the device is reduced or not possible from the following reason: the source of setpoint 2 (P510.1) is not for USS configures!
603	The controlling of the device is reduced or not possible from the following reasons: the controlword (P509) and the source of setpoint 1 (P510.0) are not for USS configures!
604	The controlling of the device is reduced or not possible from the following reasons: the controlword (P509) and the source of setpoint 2 (P510.1) are not for USS configures!
605	The controlling of the device is reduced or not possible from the following reasons: the source of setpoint 1 (P510.0) and 2 (P510.1) are not for USS configures!
606	The controlling of the device is reduced or not possible from the following reasons: the controlword (P509), the source of setpoint 1 (P510.0) and 2 (P510.1) are not for USS configures!
607	Telegram time-out (P513) is not active!
700	The action cannot be executed, because the connection to the device is interrupted!
701	The remote operation is limited because of the following reason! The parameters are read-only.
800	The parameter transfer was successfully executed
801	Errors occurred during the parameter transfer!
802	The parameter tranfer was cancelled by user!
803	Errors occurred during the parameter transfer! Would you like to save?
804	The parameter tranfer was cancelled by user! Would you like to save?
805	Do you want to see the report?
806	The generation of the report was canceled by the user!
807	The connection to the devices is now rebuilt! Would you like to continue?
900	Maximally 5 variables can be registered into the watch list!

901	The file must be stored, before you can translate it. Would you like to create a new file?
902	The file could not be opened, because the file format is unknown!
903	The file could not be read!
904	The file was changed by the user! Would you like to open the file?
905	The function is not implemented yet!
906	The PLC program must be saved before you start programming!
907	The PLC program has been changed! Do you want to save?
908	The settings have changed! Do you want to save?
909	PLC format 1.0 not supported.

13 NORD DRIVESYSTEMS

13.1 NORD In Short

NORD on the road to success

NORD was founded in 1965 and now has net sales of approximately 460 million Euro. Our successful climb to the elite list of gearmotor manufacturers is due to our strategy to listen to and work closely with our customers. Together with the help of our customers we have created optimal drive solutions and have had solid growth as a company as well.

Global Knowledge and Local Support

NORD gear is represented in over 60 countries in the world. With more than 3,100 employees to ensure minimum short lead times and fast customer service, you can expect to receive your drive and have your questions answered regardless of your geographic location.

Putting Everything in Motion

With our powerful drive solutions, we put even the Goliaths of this world into motion: huge cranes in harbor facilities, retractable roofs sports stadiums, luggage conveyor belts in airports and ski lifts. No matter what your application is, NORD is sure to put it into motion

Motoring Ahead

Our products embody an innovative combination between compact mechanics and intelligent electronics. We market and produce a complete product line of mechanical and electronic drive components including, quality gear reducers, motors, frequency inverters, servo controllers and decentralized drive technology.

Moving Together

Our high quality and service standards result from our customer focus. We develop precise fitting, innovative drive solutions based on customer input. Together, NORD and our customers are building long term successful business relationship.

- NORD history
- <u>SK 135E</u>
- <u>SK 180E</u>
- SK 200E
- SK 500E

13.2 NORD corporate history

Ever since NORD was founded in 1965, all companies of the group have adhered to the common strategy of satisfying the demands of our customers.

Construction of a modern gear production factory

Establishment of worldwide subsidiaries Worldwide expansion of assembly centres

NORD's UNICASE™ "leak-proof" housing design introduced

Construction of NORD's first motor manufacturing facility

Construction of NORD's first frequency inverter manufacturing facility

Machining factory for castings & steel components built.

1997 Construction of motor manufacturing plant in Italy

1998 New assembly plant in France

2000 New assembly plants in Great Britain and Austria

2001 New assembly plant in China

2002 Expansion of Gadebusch machining plant (app.7.200 m²)

2003 Construction of an assembly plant in Russia

2004 Construction of a new motor plant in Italy

2005 40 years of Nord Gear

2009

Opening of the high-rack storage system in Bargteheide, Germany Construction of a new assembly centre in China.

New production plant for electronic products opened in Aurich, Germany

2007 Construction of new assemly plants in India and Czech Republic

2008 Expandation at Getriebebau NORD, Bargteheide - Construction of a parking garage

Expandation at Getriebebau NORD, Bargteheide

- Construction of a next high rack storage

- Construction of a assembly center for industrial gear units
- NORD DRIVESYSTEMS is celebrating the inauguration of the fourth construction stage of the production facility in Gadebusch and the 25th anniversary of NORD GEAR Ltd in Brampton, Canada. In China, NORD is celebrating the opening of a second factory in Tianjin, about 100 km south-east of Beijing, while on the fifth continent, the NORD Australian subsidiary is opening in Darwin.
- At present NORD DRIVESYSTEMS is represented by 35 subsidiaries throughout the world. The NORD sales and service network is supplemented by sales and service partners in more than 60 countries. With a highly motivated team of employees and a complete range of technologically excellent and high quality drive technology products, the company is ideally equipped to face the challenges of the future.
- New construction of a further production facility in Souzhou
- 2014 Modernisation of the service area and the painting plant at the headquarters in Bargteheide

2015

- 50th company anniversary
- New construction of an office building

13.3 Frequency Inverters

13.3.1 SK 135E

Performance: 0,25 7,5 kW

SK 135E Decentralised motor starter

Many applications, including those in the field of material handling require electronic starting and stopping of the drive units. NORD has developed the new, innovative motor starter SK 135E for this. Due to its versatility, not only motor starting functions, but also gentle starting or reversing mode are possible. Extensive monitoring functions e.g. protect against overheating. Thanks to the l2t triggering characteristic, a motor protection switch is not required. The integrated mains filter of the motor starter SK 135E (with motor-mounting) meets the very highest EMC requirements.

Features and Characteristics

- · Gentle start function
- Reversing function
- Motor or wall-mounting
- IP55, (optional IP66)
- Power range: 3~ 200 240V from 0.25 kW to 4.0 kW3~ 380 500V from 0.25 kW to 7.5 kW
- Control and connection of an electromechanical brake
- Integrated mains filter (EMC Class C1 / C2)
- · 2 digital inputs
- 2 digital outputs
- Temperature sensor input (TF+/TF-)
- RS232 interface via RJ12 plug
- Optional ATEX Zone 22 3D (in preparation)

Please find further details for the motor starter SK 135E here

13.3.2 SK 180E

Performance: 0,25 2,2 kW

SK 180E - economical decentralised frequency inverter

The SK 180E is the answer for all applications in the lower power range, where the main task is speed control. Tried-and-tested NORD know-how is used, so that the proven sensorless current vector control ensures an optimum voltage/frequency ratio at all times. The SK 180E achieves significant advantages for the EMC classification. Because of this, a motor-mounted frequency inverter with an integrated mains filter can even be used in a residential environment (Class C1).

13.3.3 SK 200E

NEW - The SK 200E for distributed control versatility 0,33 - 30 hp

After many years of experience with motor-mounted AC Vector drives, with the release of the SK 200E NORD has now introduced a new series of devices which enable a wide range of decentralized drive technology solutions. These robust, reliable and economic systems are suitable for extensive plant, e.g. conveyors, and were specially optimiszd for price-sensitive market segments. Similar to the SK 500E Panel Mount family, an application-oriented performance level is available which offers the same high quality functionality. Expected features of decentralized components such as robust design, integration of plug connectors, rapid replacement and decentralized modules for communication and I/O signals ensure reliable integration of distributed drive units at the field level.

Scope of supply - SK 200E:

- 1~ 115 V 0.25 0.75 kW
 - 1~ 230 V 0.25 1.1 kW
 - 1~ 230 V 0.25 4.0 kW
 - 3~ 480 V 0.55 7.5 kW
- Wall-mounted version
- Decentralized modules (also with gateway functionality)

IP55 protection class as standard. Optional:

- Size 1 3: IP66 (components with "C" = coated)
- Size 4: Component with "C" = coated, with retention of protection class IP55
- Size 1 3: ATEX Zone 22. 3D or harsh ambient conditions

SK 205E Basic Unit

- High quality control process through sensorless current vector control (ISD)
- External 24DCV control card supply
- 4 control inputs, which can be parameterized to various digital functions
- Externally visible status LEDs (signal state of control inputs)
- 2 externally adjustable setpoint potentiometers
- Plug-in memory storage module (EEPROM)
- Automatic motor parameter identification
- Four parameter sets, switchable online

- Incremental encoder evaluation (HTL)
- regenerative, 4 quadrant generator 4Q operation possible by means of optional braking resistor
- PID controller and process controller
- RS 232 & RS485 (RJ12 connector) diagnostic interface
- Motor potentiometer function

SK 215E

- Basic equipment as SK 205E (see above)
- Safety function "Safe stop" as per EN 954-1 (EN13849) up to max. Category 4, Stop category 0 and 1.

SK 225E

- Basic equipment as SK 205E (see above)
- · ASi interface on board

SK 235E

- Basic equipment as SK 205E (see above)
- Safety function "Safe stop" as per EN 954-1 (EN13849) up to max. Category 4, Stop category 0 and 1.
- · ASi interface on board

13.3.4 SK 500E

Performance: 0,25 2,2 kW 1/3 AC 200 ... 240 V

3,0 18,5 kW

3 AC 200 ... 240 V 0,55 90 kW 3 AC 380 ... 480 V 0,25 160kW

Output frequency 0 ... 400 Hz

Manuals Manuals

Manual SK 54xE

The SK 500E by NORD - an AC Vector drive of (almost) unlimited possibilities!

The SK 500E AC Vector drive allows for intelligent configurations to be implemented at a very favorable price. With its high functionality and numerous options the scope of possible uses is virtually unlimited. Easy to parameterize and with fully automatic motor identification, the SK 500E ensures that system start-up is accomplished in a very short time. While the SK 500E is appropriate for standard applications, the SK 520E version which is provided with an extra set of features is ideal for processes with more complex requirements.

SK 500E the versatile inverter among the compact-class units

Even the basic type has got a multiplicity of features sufficient for the majority of requirements:

- · four sets of parameters switchable online
- sensorless vectorial current control ensuring torques of up to 400%
- automatic motor parameter identification
- 5 control inputs to be parameterized for various digital and analogue control functions
- · 2 digital outputs, 1 analogue output
- integrated braking chopper and control of an electromagnetic motor brake
- PID controller and process controller
- RS 232 & RS 485 interface
- 32 fixed frequencies (binary-coded)
- · motor potentiometer function
- · limit switch control
- · flying start

SK 520E - a member of the supper class

Wherever drive control is of the intricate kind the SK 520E with its extra features and options will cope:

- encoder interface (TTL)
- CANopen interface
- 2 additional digital inputs
- · 2 additional digital outputs
- integrated safety features as per EN 654-1 cat. 3. Stop categories 0 and 1 to be available soon

Index		Device report19, 178, 1	
		DINT_TO_INT	114
		Directories	178
Α		DIV	89
About	20	DIV(89
AboutNORD CON	10	Docking	28
ABS	88	Down	22
ACOS	96	E	
ADD	89	_	
ADD(89	Ein- und Ausgänge	
AND	98	Einstellung PLC	
AND(Einzelschritt	
ANDN		Elektronisches Getriebe mit Fliegende Säge.	
ANDN(End address	
Arithmetische Operatoren		EQ	107
ASIN		Errors and error information	
ATAN		Erweiterte mathematische Operatoren	94
	90	Execute bus scan with all baud rates	35
В		Exit	87
Baud rate	35	EXP	94
Beobachtungspunkte	79	Export	14
Bit Operatoren	97	F	
Bitweiser Zugriff auf Variablen	83	•	400
BOOL_TO_BYTE	113	FB_DINTToPBox	
Border width	179	FB_FlyingSaw	
Bus error	34	FB_FunctionCurve	
Bus scan		FB_Gearing	
BYTE_TO_BOOL	,	FB_PIDT1	
BYTE_TO_INT		FB_STRINGToPBox	
		FB_Weigh	172
С		First steps	10
Cancel	24	For	86
case	85	Formatting of actual value	49
Close	14	Formatting of setpoint	49
Communication	34, 178	Funktionsblöcke	129
Compile	24	G	
Configuration	34	GE	100
Connect	18, 23	GT	
Control	18, 23, 46, 178, 180	GI	108
Controlword	50	Н	
Copy	16, 22	Haltepunkte	79
COS	96	Help	
CTD	130	How to use NORD CON	10
CTU		1	
CTUD		•	
Cut		lf	
	, 22	Index	
D		INT_TO_BYTE	
· ·		INT_TO_DINT	
Delete	16, 22	Interface	178, 179
Detail Control	47	Interface and views	13

Introduction10	New14
Iterations35	New Macro22
J	New parameter set
JMP111	New PLC program
JMPC111	Next
JMPCN	NORD CON10
	NOT97
L	0
Language179	Open14, 22
Layout	OR
Standard19	OR(
LD105	ORN
LDN106	ORN(
LE109	Oscilloscope
LIMIT90	·
LN95	P
LOG19, 20, 27, 95	Parameter34, 41, 178
LT109	Auto-Read41
M	Edit41
Macro19	Filter42
Macro editor	Off-line42
Main menu	Viewing40
Makro	Parameter download to device18, 23, 44
Makro-Generator	Parameter language179
MAX90	Parameter Overview40
MC Home146	Parameter retore44
MC_MoveAbsolute143	Parameter upload from device18, 23, 43
MC_MoveAdditive145	Parameterize18
MC MoveRelative	Parameterizes23
MC_MoveVelocity142	Paste
MC_Power147	PLC18, 23
MC_ReadActualPos	PLC CANopen Kommunikation74
MC_ReadParameter140	PLC Datentypen80, 83
MC_ReadStatus149	PLC Datenverarbeitung über Akku73
MC_Reset	PLC Debugging78
MC_Stop	PLC Editor75
MC_WriteParameter16141	PLC Elektronisches Getriebe mit Fliegender Säge74
MC_WriteParameter32141	PLC Funktionsaufrufe82
Menu	PLC Funktionsumfang73
MIN	PLC Input window77
MOD92	PLC Kommentare81
MOD(92	PLC Konfiguration79
MUL	PLC Literale80
MUL(92	PLC Meldungsfenster78
MUX	PLC Motion Control Lib74
	PLC Programm Task
N	PLC Prozessabbild72
	PLC Prozessregler74
NE110	PLC Sollwert Verarbeitung73

PLC Speicher	71	SK 200E	196
PLC Sprungmarke	81	SK 220E	196
PLC Visualisierung	74	SK 230E	196
PLC Watch- & Breakpoint Anzeigefenst	er77	SK 500E	197
Port	34	SK 51xE	197
Print	14	SK 52xE	197
Print preview	14	SK 53xE	197
Programming	24	SK 54xE	197
Project	19, 24, 178	Sprünge	110
Popupmenu	25	SQRT	96
Project mode			
Prozesswerte	115	ST	106
Q		Standard	22
	4.4	Standard Control	47
Quit	14	Start address	35
R		Start baud rate	35
R_TRIG	134	Statusword	51
Remote18, 1	9, 23, 27, 53, 55	STN	106
SK 200 E			
SK 300 E		SUB	
SK 500 E			
SK 700 E		T	
Standard		•	
Vector ct		TAN	
Vector mc		Telegramm error	
Rename		TOF	
Repeat		TON	
Replace		Toolbar	
Return		Device	
ROL		Standard	
RS		Start	
Run		TP	
		Typkonvertierung	112
S		U	
S und R		Undo	16
Save	•	Undocking	
Save as	14	Up	
Save the parameter	43	Update firmware	
Scope	18	USS	
Select all	16		
Settings	20, 22	V	
Shift down	16	Vergleichs Operatoren	107
Shift up	16	View	27
SHL	102	W	
SHR	102	While	07
Simulate hardware	34		8/
SIN	96	X	
SK 135E	194	XOR	103
SK 180E	195	XOR(103
SK 190E	195	XORN	104

XORN(......104

Intelligent Drivesystems, Worldwide Services

Getriebebau NORD GmbH & Co. KG Rudolf-Diesel-Str. 1 D- 22941 Bargteheide Fon +49 (0) 4532/401 - 0 Fax +49 (0) 4532/401 - 253 info@nord.com www.nord.com

