Principles of Abstract Interpretation MIT press

Ch. 7, Maximal trace semantics

Patrick Cousot

pcousot.github.io

PrAbsInt@gmail.com github.com/PrAbsInt/

These slides are available at http://github.com/PrAbsInt/slides/slides/slides-07--maximal-trace-semantics-PrAbsInt.pdf

Chapter 7

Ch. 7, Maximal trace semantics

Finite maximal trace semantics

- $\mathcal{S}^+[S](\pi_1 \text{at}[S])$ is the set of maximal finite traces $\text{at}[S]\pi_2 \text{after}[S]$ of S continuing the trace $\pi_1 \text{at}[S]$ and reaching after[S].
- Schematically,

$$\xrightarrow{\pi_1} \underbrace{\operatorname{at}[\![S]\!] \xrightarrow{\pi_2} \operatorname{after}[\![S]\!]}_{\in \mathscr{S}^+[\![S]\!](\pi_1 \operatorname{at}[\![S]\!])}$$

Prefixes of a trace

- If $\pi = \ell_0 \xrightarrow{e_0} \dots \ell_i \xrightarrow{e_i} \dots \ell_n$ is a finite trace then its prefix $\pi[0..p]$ at p is
 - π when $p \ge n$
 - $\ell_0 \xrightarrow{e_0} \dots \ell_j \xrightarrow{e_j} \dots \ell_p$ when $0 \le p \le n$.
- If $\pi = \ell_0 \xrightarrow{e_0} \dots \ell_i \xrightarrow{e_i} \dots$ is an infinite trace then its prefix $\pi[0..p]$ at p is $\ell_0 \xrightarrow{e_0} \dots \ell_j \xrightarrow{e_j} \dots \ell_p$.

Prefixes of a trace

- If $\pi = \ell_0 \xrightarrow{e_0} \dots \ell_i \xrightarrow{e_i} \dots \ell_n$ is a finite trace then its prefix $\pi[0..p]$ at p is
 - π when $p \ge n$
 - $\ell_0 \xrightarrow{e_0} \dots \ell_j \xrightarrow{e_j} \dots \ell_p$ when $0 \le p \le n$.
- If $\pi = \ell_0 \xrightarrow{e_0} \dots \ell_i \xrightarrow{e_i} \dots$ is an infinite trace then its prefix $\pi[0..p]$ at p is $\ell_0 \xrightarrow{e_0} \dots \ell_i \xrightarrow{e_j} \dots \ell_p$.

Limit of prefix traces (I)

• Given a set $T \in \wp(\mathbb{T}^+)$ of finite traces, its limit $\lim T$ is the set of infinite traces which prefixes are traces in T.

$$\lim \mathcal{T} \triangleq \{ \pi \in \mathbb{T}^{\infty} \mid \forall n \in \mathbb{N} : \pi[0..n] \in \mathcal{T} \} .$$

- $\lim \emptyset = \emptyset$.
- Requires T to be prefix closed.

Limit of prefix traces (I)

• Given a set $T \in \wp(\mathbb{T}^+)$ of finite traces, its limit $\lim T$ is the set of infinite traces which prefixes are traces in T.

$$\lim \mathcal{T} \triangleq \{\pi \in \mathbb{T}^{\infty} \mid \forall n \in \mathbb{N} : \pi[0..n] \in \mathcal{T}\} .$$

- $\lim \emptyset = \emptyset$.
- Requires T to be prefix closed.

en.wikipedia.org/wiki/Inverse_limit

Example I of limit of prefix traces

■ The prefix semantics of the program $S = \text{while } \ell_1$ (tt) ℓ_2 x = x + 1; ℓ_3 is

$$\mathbf{S}^*[\![\mathbf{S}]\!](\ell_1) = \Big\{ \Big(\ell_1 \xrightarrow{\ \ \ \ } \ell_2 \xrightarrow{\ \ \ \ \ \ \ } \ell_1 \Big)_{i=1}^n, \Big(\ell_1 \xrightarrow{\ \ \ \ \ \ \ } \ell_2 \xrightarrow{\ \ \ \ \ \ \ } \ell_1 \Big)_{i=1}^n \xrightarrow{\ \ \ \ \ \ } \ell_2 \Big| \ n \in \mathbb{N} \Big\}.$$

- Its limit is $\lim (S^*[S](\ell_1)) = \{\pi\}$ where the infinite trace is $\pi = (\ell_1 \xrightarrow{tt} \ell_2 \xrightarrow{x = i})_{i=1}^{\infty}$.
- All prefixes of π belong to $S^*[S](\ell_1)$.

Multiple limits

For a given set of prefixes, the limit is unique.

Limit of prefix traces (II)

- A general definition of the limit should not require the set $\mathcal{T} \in \wp(\mathbb{T}^+)$ of finite traces to be closed by prefix
- It consists in defining limit $\lim \mathcal{T}$ as the set of infinite traces which prefixes can be extended to a trace in \mathcal{T} .

```
\lim \mathcal{T} \triangleq \{\pi \in \mathbb{T}^{\infty} \mid \forall n \in \mathbb{N} : \exists p \geq n : \pi[0..p] \in \mathcal{T}\} .
```

Limit of prefix traces (II)

- A general definition of the limit should not require the set $\mathcal{T} \in \wp(\mathbb{T}^+)$ of finite traces to be closed by prefix
- It consists in defining limit $\lim T$ as the set of infinite traces which prefixes can be extended to a trace in T.

$$\lim \mathcal{T} \triangleq \{\pi \in \mathbb{T}^{\infty} \mid \forall n \in \mathbb{N} : \exists p \geq n : \pi[0..p] \in \mathcal{T}\} .$$

Example II of limit of prefix traces

$$\blacksquare \lim \left\{ \left(\ell_1 \xrightarrow{\operatorname{tt}} \ell_2 \xrightarrow{\mathsf{x} = i} \ell_1 \right)_{i=1}^n \mid n \in \mathbb{N} \right\} = \{ \pi \} \text{ where } \pi = \pi = \left(\ell_1 \xrightarrow{\operatorname{tt}} \ell_2 \xrightarrow{\mathsf{x} = i} \right)_{i=1}^{\infty}.$$

■ All prefixes of π are of the form $\left(\ell_1 \xrightarrow{\text{tt}} \ell_2 \xrightarrow{\text{x} = i} \ell_1\right)_{i=1}^n$ or

$$\begin{pmatrix} \ell_1 & \xrightarrow{\text{tt}} & \ell_2 & \xrightarrow{\text{x} = i} & \ell_1 \end{pmatrix}_{i=1}^n \xrightarrow{\text{tt}} & \ell_2 \text{ and this last one can be extended to a finite trace}$$

$$\begin{pmatrix} \ell_1 & \xrightarrow{\text{tt}} & \ell_2 & \xrightarrow{\text{x} = i} & \ell_1 \end{pmatrix}_{i=1}^{n+1}.$$

Infinite maximal trace semantics

$$\mathcal{S}^{\infty}[\![S]\!](\pi^{\ell}) \triangleq \lim (\mathcal{S}^*[\![S]\!](\pi^{\ell})).$$

Maximal finite and infinite trace semantics

The maximal trace semantics is the set of traces which are either finite

$$\mathcal{S}^{+}\llbracket S \rrbracket(\pi_{1} \operatorname{at} \llbracket S \rrbracket) \triangleq \{\pi_{2}^{\ell} \in \mathcal{S}^{*}\llbracket S \rrbracket(\pi_{1} \operatorname{at} \llbracket S \rrbracket) \mid \ell = \operatorname{after} \llbracket S \rrbracket \}$$

$$(6.9)$$

or infinite defined as limits of finite prefix traces.

$$\mathcal{S}^{+\infty}[\![\mathbf{S}]\!](\pi^{\ell}) \triangleq \mathcal{S}^{+}[\![\mathbf{S}]\!](\pi^{\ell}) \cup \mathcal{S}^{\infty}[\![\mathbf{S}]\!](\pi^{\ell})$$

$$\mathcal{S}^{+\infty}[\![\mathbf{S}]\!]\Pi \triangleq \bigcup \{\mathcal{S}^{+\infty}[\![\mathbf{S}]\!](\pi^{\ell}) \mid \pi^{\ell} \in \Pi\}$$

$$\mathcal{S}^{+\infty}[\![\mathbf{S}]\!] \triangleq \mathcal{S}^{+\infty}[\![\mathbf{S}]\!](\mathbb{T}^{+})$$

$$\mathcal{S}^{+\infty}[\![\mathbf{P}]\!] \triangleq \mathcal{S}^{+\infty}[\![\mathbf{P}]\!](\{\mathsf{at}[\![\mathbf{P}]\!]\}).$$

$$(7.7)$$

Example II of limit of prefix traces

• The maximal trace semantics of the program $S = \text{while } \ell_1 \text{ (tt) } \ell_2 \text{ x = x + 1 }; \ell_3 \text{ is}$

$$\mathbf{S}^{+\infty}[\![\mathbf{S}]\!](\ell_1) = \left\{ \left(\ell_1 \xrightarrow{\quad \mathsf{tt} \quad} \ell_2 \xrightarrow{\quad \mathsf{x} = i \quad} \right)_{i=1}^{\infty} \right\}.$$

Conclusion

- We have defined the maximal trace semantics of a subset of C
- Its abstractions will yield verification and static analysis methods for safety and security

Home work

Read Ch. 7 "Maximal trace semantics" of
 Principles of Abstract Interpretation
 Patrick Cousot
 MIT Press

The End, Thank you