Abstract

5 The use of cyclic compounds of the formula (I)

10

25

30

where

n is a number in the range from 1 to 7,

15 X-Y-Z, in each case independently of one another, is O-C=N, N=C-O, NR 5 -C=N, N=C-NR 5 , N $^+$ R 5 ₂-C=N, N=C-N $^+$ R 5 , O-C=N $^+$ R 5 , N $^+$ R 5 =C-O, S-C=N $^+$ R 5 , N $^+$ R 5 =C-S, S-C=N, N=C-S,

R¹, R² and R³ each independently are, for example, H or a substituent

or corresponding heterocyclic compounds in which at least one group $-CR^1$ =, $-CR^2$ =, CR^3 = is replaced by -N,

R⁵ in each case independently are, for example, H or a substituent

 R^7 , in each case independently of one another, are H, C_{1-12} -alkyl or C_{6-12} -aryl,

or metal complexes of the cyclic compounds or complexes of the cyclic compounds with mineral acids,

5

chloride, sulfate, bisulfate, phosphate, hydrogen phosphate, nitrate, BF₄ or methanesulfonate being present as opposite ions X in the case of cationic cyclic structures,

as light absorbers, materials for hole injection layers in OLEDs, light-emitting compounds in OLED, phase-transfer catalysts or synergistic agents for the dispersing of pigments or for optical data storage, is described.