4. Matematické kyvadlo

Vyšetrite závislosť doby kmitu matematického kyvadla od výchylky. Z nameranej závislosti určte dobu kmitu $T(0^{\circ})$ a hodnotu tiažového zrýchlenia g v laboratóriu.

TEORETICKÝ ÚVOD

Matematické kyvadlo je idealizovaný mechanický oscilátor, pozostávajúci z bodu s hmotnosťou m zavesenom na nehmotnej niti s dĺžkou $\mathcal L$ (obr. 4.1).

Pohybová rovnica fyzikálneho
i matematického kyvadla je totožná s rovnicou opisujúcou pohyb
telesa okolo osi, ktorá neprechádza ťažiskom

$$\overrightarrow{M} = I \overrightarrow{\varepsilon}$$
 (4.1)

kde I je moment zotrvačnosti pohybujúceho sa telesa vzhľadom na os O. Pre kyvadlo na obr. 4.1 bude mať rovnica (4.1) tvar

Obr. 4.1 Matematické kyvadlo

$$I = \frac{d^2 \varphi}{dt^2} = -mg \ell \sin \varphi \qquad (4.2)$$

kde $oldsymbol{\mathcal{L}}$ je dĺžka závesu matematického kyvadla.

Kyvadlo bude vykonávať harmonický pohyb len pri malých výchylkách z rovnovážnej polohy, keď sila udržiavajúca kyvadlo v pohybe je úmerná okamžitej výchylke z rovnovážnej polohy a smeruje proti nej. Vtedy sin $\varphi \, \, \stackrel{\text{\tiny i}}{=} \, \varphi \,$ a rovnica (4.2) sa zjednoduší a bude mať tvar

$$I - \frac{d^2 \varphi}{dt^2} = - mg \ell \varphi \tag{4.3}$$

Riešením rovnice (4.3) je harmonická funkcia

$$\varphi(t) = A \sin(\omega_0 t) + B \cos(\omega_0 t) \tag{4.4}$$

kde

$$\omega_0^2 = \frac{mg\ell}{I} = \frac{mg\ell}{m\ell^2} = \frac{g}{\ell}$$

Ak začiatok počítania času zvolíme v okamihu maximálnej **výchyl**ky φ_0 kyvadla, môžeme pohyb kyvadla opísať funkciou

$$\varphi(t) = \varphi_0 \cos(\omega_0 t)$$

Doba kmitu T $_0$ pre malé uhly $arphi_0$ (do 5 0) je potom daná vzťahom

$$T_0 = \frac{2\pi}{\omega_0} = 2\pi \sqrt{\frac{\ell}{g}}$$
 (4.5)

a nezávisí od výchylky $arphi_0.$

METÓDA MERANIA

Pohyb v laboratóriu realizovaného "matematického kyvadla" nie je netlmený harmonický pohyb, ale uplatňuje sa tlmenie kyvadla brzdením v prostredí pohybu a pri väčších výchylkách kyvadla z rovnovážnej polohy pohyb kyvadla už nie je prísne harmonický a jeho pohybový stav opisuje rovnica (4.2). Jej riešením dostaneme pre dobu kmitu kyvadla vzťah

$$T(\varphi_0) = T_0 \left[1 + \left(\frac{1}{2} \right)^2 \sin^2 \frac{\varphi_0}{2} + \left(\frac{1 \cdot 3}{2 \cdot 4} \right)^2 \sin^4 \frac{\varphi_0}{2} + \dots \right]$$
 (4.6)

kde T $_0$ je doba kmitu pri výchylkách $arphi_0 \longrightarrow 0^{\circ}.$

Pre praktické meranie postačuje uvažovať prvé dva členy v zátvorke na pravej strane vzťahu (4.6), takže doba kmitu T($arphi_0$) bude daná vzťahom

$$T(\varphi_0) = T_0 \left(1 + \frac{1}{4} \sin^2 \frac{\varphi_0}{2}\right)$$
 (4.7)

Vplyv tlmenia sa prejaví v zmenšovaní sa výchylky s časom i zmenou uhlovej frekvencie podľa vzťahov

$$\varphi(t) = \varphi_0 e^{-bt} \cos(\omega t)$$

$$\omega = \sqrt{\omega_0^2 - b^2}$$
(4.8)

kde b je koeficient útlmu, pre ktorý platia vzťahy

$$\ln \frac{\varphi(t)}{\varphi(t+T)} = bT$$

alebo

kde T je doba kmitu tlmených kmitov, $\varphi(t_1)$ a $\varphi(t_2)$ sú amplitúdy kmitov odmerané v časoch t_1 a t_2 .

OPIS APARATÚRY A POSTUP PRÁCE

a) Prístroje a pomôcky: matematické kyvadlo – realizované guľôčkou zavesenou na dvojitom vlákne, čím
zabezpečíme, že kyvadlo kmitá v rovine
rovnobežnej s rovinou uhlomeru (obr. 4.2)
presné stopky, dĺžkové meradlo

Obr. 4.2 Model matematického kyvadla

b) Postup práce:

- 1. Odmerajte dobu kmitu T $_0$ pre malé výchylky kyvadla ($\varphi_0 \sim 5^0$). Merajte dobu 50-tich kmitov niekoľkokrát (Tab. 4.1) a vypočítajte aritmetický priemer. Odmerajte vzdialenosť ℓ .
- 2. Pre uhly 10^{0} 50^{0} odmerajte závislosť T(φ_{0}) (tab. 4.2) a porovnajte ju s teoretickou závislosťou podľa vzťahu (4.7).
- 3. Pre amplitúdu φ_0 = 50° odmerajte výchylku po 50-tich kmitoch a vypočítajte koeficient útlmu b; odmerajte aj dobu kmitu T tlmených kmitov.

Vyhodnotenie:

Na základe merania č. 1 vypočítajte hodnotu tiažového zrýchlenia g použitím vzťahu (4.5). Extrapoláciou závislosti T(φ_0) alebo lineárnej závislosti T($\sin^2\frac{\varphi_0}{2}$) určte T(o^0) a pomocou nej vypočítajte hodnotu tiažového zrýchlenia g. Porovnajte tento výsledok s hodnotou určenou z merania č. 1 a v obidvoch prípadoch určte relatívnu chybu merania použijúc hodnotu $g_B = 9,806~\mathrm{m.s}^{-2}$ pre Bratislavu.

Tab. 4.1 ℓ =

i	1	2	3	
50 T ₀ (s)	÷			

Tab. 4.2

g		2 T (s)							T	Ψo	2 40		
0	1	2	3	4	5	6	7	8	9	10	(s)	2	$\sin^2\frac{1}{2}$
							y-						

OTÁZKY a PROBLÉMY

- Ktorá poloha krajná alebo rovnovážna je výhodnejšia na meranie doby kmitov a prečo?
- 2. Aký tvar tlmiacej sily prepokladáme v prípade, ktorý vedie k vzťahu (4.8)?