VE320 – Summer 2024

Introduction to Semiconductor Devices

Instructor: Yaping Dan (但亚平) yaping.dan@sjtu.edu.cn

Chapter 7 The pn Junction

Outline

- 7.0 Introduction to semiconductor devices
- 7.1 Basic structure of the pn junction
- 7.2 Zero applied bias
- 7.3 Reverse applied bias

7.0 Introduction to semiconductor devices

Light emitting diodes

Cold light source

Photodetector: CMOS image sensor

7.0 Introduction to semiconductor devices

Semiconductor lasers

Solar cells

Outline

7.0 Introduction to semiconductor devices

7.1 Basic structure of the pn junction

7.2 Zero applied bias

7.3 Reverse applied bias

7.1 Basic structure of pn junction

SiO₂
Al
n+
p-

7.1 Basic structure of pn junction

7.1 Basic structure of pn junction

Outline

7.1 Basic structure of the pn junction

7.2 Zero applied bias

7.3 Reverse applied bias

Built-in potential barrier

Built-in potential barrier

Charge carrier distribution

Potential profile

Energy band diagram

Check your understanding

Problem Example #1

Two pieces of p-type silicon are in contact. The doping concentrations are 10¹⁶ cm⁻³ and 10¹⁸ cm⁻³. Calculate the built-in potential between these two pieces of silicon and plot the energy band bending diagram.

Poisson's equation

$$\frac{d^2V(x)}{dx^2} = -\frac{\rho(x)}{\varepsilon}$$

Poisson's equation

$$\frac{d^2V(x)}{dx^2} = -\frac{\rho(x)}{\varepsilon}$$

Poisson's equation

Third time approximation

$$\frac{d^2V(x)}{dx^2} = -\frac{\rho(x)}{\varepsilon}$$

Poisson's equation

$$\frac{d^2V(x)}{dx^2} = -\frac{\rho(x)}{\varepsilon}$$

Check your understanding

Problem Example #2

A silicon pn junction at T=300K with zero applied bias has doping concentration of $N_d = 5 \times 10^{16} \text{ cm}^{-3}$ and $N_a = 5 \times 10^{15} \text{ cm}^{-3}$. Determine x_n , x_p , W and $|E_{max}|$.

Outline

- 7.1 Basic structure of the pn junction
- 7.2 Zero applied bias
- 7.3 Reverse applied bias

Space charge width and electric field

$$V_{ ext{total}} = |oldsymbol{\phi}_{Fn}| + |oldsymbol{\phi}_{Fp}| + V_R$$

Space charge width and electric field

Junction capacitance

Check your understanding

Problem Example #3

Consider a GaAs pn junction at T = 300K doped to $N_a = 5 \times 10^{15}$ cm⁻³ and $N_d = 2 \times 10^{16}$ cm⁻³. (a) Calculate V_{bi} . (b) Determine the junction capacitance C' for $V_R = 4V$.

One-sided junction

One-sided junction

Check your understanding

Problem Example #4

Control sample: Au is in contact with a uniform doped n-type Si substrate forming a device similar to a pn junction.

SAMM-doped sample: Au is in contact with Si that is doped with SAMM

Take Au as p^{++} doping in this case.

ARTICLE

DOI: 10.1038/s41467-017-02564-3

OPEN

Deep level transient spectroscopic investigation of phosphorus-doped silicon by self-assembled molecular monolayers

Xuejiao Gao 1, Bin Guan 1, Abdelmadjid Mesli², Kaixiang Chen & Yaping Dan 1

