CS1231(S) Tutorial 7: Number Theory 2 Solutions

National University of Singapore

2020/21 Semester 1

- 1. Compute gcd(a, b) for the following pairs of a and b, and express gcd(a, b) in the form of ax + by where $x, y \in \mathbb{Z}$:
 - (a) a = 17 and b = 5;
 - (b) a = 275 and b = 407.

Solution.

Hence
$$\gcd(17,5) = 1 = 5 - 2 \times 2$$
 by (2);
= $5 - (17 - 5 \times 3) \times 2$ by (1);
= $17 \times (-2) + 5 \times 7$.

(b)
$$407 \operatorname{mod} 275 = 132 \quad \longleftarrow \quad 132 = 407 - 275 \times 1$$
 (3)
$$275 \operatorname{mod} 132 = 11 \quad \longleftarrow \quad 11 = 275 - 132 \times 2$$
 (4)
$$132 \operatorname{mod} 11 = 0$$

Hence
$$\gcd(407,275) = 11 = 275 - 132 \times 2$$
 by (4);
 $= 275 - (407 - 275 \times 1) \times 2$ by (3);
 $= 407 \times (-2) + 275 \times 3$.

- 2. Let $a, b, c \in \mathbb{Z}$. Suppose a and b divide c, and $\gcd(a, b) = 1$. Prove that ab divides c. Solution.
 - 1. Use the definition of divisibility to find $k, \ell \in \mathbb{Z}$ such that c = ka and $c = \ell b$.
 - 2. Apply Bézout's Lemma to find $s, t \in \mathbb{Z}$ such that $as + bt = \gcd(a, b) = 1$.
 - 3. Then c = c(as + bt) as as + bt = 1;
 - 4. = cas + cbt
 - 5. $= (\ell b)as + (ka)bt$ by line 1;
 - 6. $= ab(\ell s + kt), \quad \text{where } \ell s + kt \in \mathbb{Z}.$
 - 7. So $ab \mid c$ by the definition of divisibility.

This can also be proved by considering the prime factorizations of a, b, and c.

1. If a = 0 = b, then 1 = as + bt = 0s + 0t = 0, which is a contradiction.

- 3. Let $a, b, s, t \in \mathbb{Z}$ such that as + bt = 1. Show that $\gcd(a, b) = 1$.
 - Solution.
 - 2. So $a \neq 0$ or $b \neq 0$.
 - 3. This implies gcd(a, b) exists and $gcd(a, b) \ge 1$.
 - 4. Let $d = \gcd(a, b)$.

- 5. Then $d \mid a$ and $d \mid b$ by the definition of gcd.
- 6. \therefore $d \mid as + bt$ by the Closure Lemma.
- 7. \therefore $d \mid 1$ as as + bt = 1 by assumption.
- 8. \therefore $d \leq |d| \leq |1| = 1$ by Theorem 7.4.
- 9. So gcd(a, b) = d = 1 by line 3.
- 4. Let $a,b,s,t\in\mathbb{Z}$ such that $as+bt=\gcd(a,b).$ Prove that $\gcd(s,t)=1.$

Solution.

- 1. The definition of gcd(a, b) tells us $gcd(a, b) \mid a$ and $gcd(a, b) \mid b$.
- 2. Use the definition of divisibility to find $k, \ell \in \mathbb{Z}$ such that $a = k \gcd(a, b)$ and $b = \ell \gcd(a, b)$.
- 3. Then $k \gcd(a,b) \cdot s + \ell \gcd(a,b) \cdot t = \gcd(a,b)$ as $as + bt = \gcd(a,b)$ by assumption.
 - $ks + \ell t = 1$
 - $s + \ell t = 1$ as gcd(a, b) is positive if it exists.
- 5. \therefore $\gcd(s,t)=1$
- by Question 3.

5. Let $a, b \in \mathbb{Z}$ with $a \neq 0$ or $b \neq 0$. Prove that

$$\gcd\Bigl(\frac{a}{\gcd(a,b)},\frac{b}{\gcd(a,b)}\Bigr)=1.$$

Solution.

- 1. On the one hand, apply Bézout's Lemma to find $s, t \in \mathbb{Z}$ such that gcd(a, b) = as + bt.
- 2. On the other hand, we know $gcd(a, b) \mid a$ and $gcd(a, b) \mid b$ by the definition of gcd.
- 3. Use the definition of divisibility to find $k, \ell \in \mathbb{Z}$ such that $a = k \gcd(a, b)$ and $b = \ell \gcd(a, b)$.
- 4. Combining the two, we have $gcd(a,b) = as + bt = k gcd(a,b) \cdot s + \ell gcd(a,b) \cdot t$.
- 5. So $1 = ks + \ell t$.
- 6. This implies, by Question 3 and the choice of k and ℓ ,

$$1 = \gcd(k, \ell) = \gcd\left(\frac{a}{\gcd(a, b)}, \frac{b}{\gcd(a, b)}\right). \quad \Box$$

This can also be proved by considering the prime factorizations of a and b.

6. Let $a, b \in \mathbb{Z}$ with $a \neq 0$ or $b \neq 0$. Prove that an integer n is an integer linear combination of a and b if and only if $gcd(a, b) \mid n$.

Solution.

- 1. Let $n \in \mathbb{Z}$.
- 2. ("Only if")
 - 2.1. Let $s, t \in \mathbb{Z}$ such that n = as + bt.
 - 2.2. By the definition of gcd, we know $gcd(a, b) \mid a$ and $gcd(a, b) \mid b$.
 - 2.3. So $gcd(a, b) \mid as + bt$ by the Closure Lemma.
 - 2.4. This means $gcd(a, b) \mid n$.
- 3. ("If")
 - 3.1. Suppose $gcd(a, b) \mid n$.
 - 3.2. Use the definition of divisibility to find $k \in \mathbb{Z}$ such that $n = k \gcd(a, b)$.
 - 3.3. Apply Bézout's Lemma to find $s, t \in \mathbb{Z}$ such that gcd(a, b) = as + bt.
 - 3.4. Then $n = k \gcd(a, b)$ by line 3.2;
 - 3.5. = k(as + bt) by line 3.3;
 - 3.6. = a(ks) + b(kt) where $ks, kt \in \mathbb{Z}$.
 - 3.7. So n is an integer linear combination of a and b.

7. Find $x, y, z \in \mathbb{Z}$ such that 12x - 15y + 50z = 1.

Solution. Observe that gcd(12,15) = 3 and gcd(gcd(12,15),50) = gcd(3,50) = 1. Thus Bézout's Lemma tells us that 3 is an integer linear combination of 12 and 15, and that 1 is an integer linear combination of 3 and 50. By observation, we have

$$3 = 15 - 12 = 15 \times 1 + 12 \times (-1), \tag{5}$$

$$1 = 51 - 50 = 50 \times (-1) + 3 \times 17. \tag{6}$$

(One can also use the Euclidean Algorithm here.) So

$$1 = 50 \times (-1) + 3 \times 17$$
 by (6);
= $50 \times (-1) + (15 \times 1 + 12 \times (-1)) \times 17$ by (5);
= $12 \times (-17) - 15 \times (-17) + 50 \times (-1)$.

Thus, we can let x, y, z be -17, -17, -1 respectively. (Note: there are other solutions.)

- 8. Determine the prime factorization of each of the following integers:
 - (a) 14351;
 - (b) 14369.

Solution.

- (a) $14351 = 113 \times 127$.
- (b) 14369 = 14369, i.e., 14369 is prime.

This exercise is to illustrate the difficulty of factorizing large numbers.

- 9. For each of the following pairs of a and n, determine whether a has a multiplicative inverse modulo n, and find one if it has any:
 - (a) a = 3 and n = 8;
 - (b) a = 6 and n = 14;
 - (c) a = 31 and n = 24.

Solution.

Hence

(a) Note that gcd(3,8) = 1. So 3 has a multiplicative inverse modulo 8 by Theorem 8.7. One readily observes that

$$1 = 9 - 8 = 3 \times 3 - 8 \equiv 3 \times 3 \pmod{8}$$
.

Thus 3 is a multiplicative inverse of 3 modulo 8.

- (b) Note that $gcd(6, 14) = 2 \neq 1$. So 6 does not have a multiplicative inverse modulo 14 by Theorem 8.7.
- (c) Note that gcd(31, 24) = 1. So 31 has a multiplicative inverse modulo 24 by Theorem 8.7. By the Euclidean Algorithm,

$$31 \mod 24 = 7 \leftarrow 7 = 31 - 24 \times 1$$
 (7)

$$24 \bmod 7 = 3 \leftarrow -- 3 = 24 - 7 \times 3$$
 (8)

$$7 \mod 3 = 1 \longleftarrow 1 = 7 - 3 \times 2 \tag{9}$$

 $3 \mod 1 = 0$

$$\gcd(31, 24) = 1 = 7 - 3 \times 2 \qquad \text{by (9)};$$

$$= 7 - (24 - 7 \times 3) \times 2 \qquad \text{by (8)};$$

$$= 24 \times (-2) + 7 \times 7$$

$$= 24 \times (-2) + (31 - 24 \times 1) \times 7 \quad \text{by (7)};$$

$$= 31 \times 7 + 24 \times (-9)$$

$$\equiv 31 \times 7 \pmod{24}.$$

Thus 7 is a multiplicative inverse of 31 modulo 24.

- 10. For each of the congruence equations below, find all integers x, if any, that satisfy it:
 - (a) $5x \equiv 2 \pmod{32}$;
 - (b) $4x \equiv 6 \pmod{48}$.

Solution.

(a) Note that gcd(32,5)=1. So 5 has a multiplicative inverse modulo 32 by Theorem 8.7. One readily observes that

$$1 = 65 - 64 = 5 \times 13 + 32 \times (-2) \equiv 5 \times 13 \pmod{32}$$
.

So 13 is a multiplicative inverse of 5 modulo 32. Therefore, for all $x \in \mathbb{Z}$,

$$5x \equiv 2 \pmod{32} \Leftrightarrow x \equiv 13 \times 2 = 26 \pmod{32}$$

by Theorem 8.8.

- (b) We prove that no $x \in \mathbb{Z}$ makes $4x \equiv 6 \pmod{48}$ by contradiction.
 - 1. Let $x \in \mathbb{Z}$ such that $4x \equiv 6 \pmod{48}$.
 - 2. Use the alternative definitions of congruence to find $k \in \mathbb{Z}$ such that 4x = 48k + 6.
 - 3. Note then 6 is an integer linear combination of 4 and 48 as 6 = 4x + 48(-k).
 - 4. Thus Question 6 tells us $gcd(4,48) \mid 6$.
 - 5. However, we know gcd(4,48) = 4 and $4 \nmid 6$ by Definition 7.1, as $6/4 = 1.5 \notin \mathbb{Z}$.
 - 6. This is the required contradiction.
- 11. Let $a, b \in \mathbb{Z}$ and $m, n \in \mathbb{Z}^+$ with gcd(m, n) = 1. Consider the following system of simultaneous congruence equations:

$$\begin{cases} x \equiv a \pmod{m}; \\ x \equiv b \pmod{n}. \end{cases}$$

Apply Bézout's Lemma to find $s, t \in \mathbb{Z}$ such that ms + nt = 1. Let $c_0 = ant + bms$.

- (a) Verify that $x = c_0$ is a solution to the system of simultaneous congruence equations above.
- (b) Let $c \in \mathbb{Z}$. Prove that x = c is a solution to the system of simultaneous congruence equations above if and only if $c \equiv c_0 \pmod{mn}$.

Solution.

(a)
$$c_0 = ant + bms \qquad \text{by the definition of } c_0;$$

$$= a(1 - ms) + bms \qquad \text{by the choice of } s \text{ and } t;$$

$$= a + m(-as + bs)$$

$$\equiv a \pmod{m} \qquad \text{as } -as + bs \in \mathbb{Z}.$$

$$c_0 = ant + bms \qquad \text{by the definition of } c_0;$$

$$= ant + b(1 - nt) \qquad \text{by the choice of } s \text{ and } t;$$

$$= b + n(at - bt)$$

$$\equiv b \pmod{n} \qquad \text{as } at - bt \in \mathbb{Z}.$$

- (b) 1. ("Only if")
 - 1.1. Suppose x = c is a solution to the system of simultaneous congruence equations.
 - 1.2. This means $c \equiv a \pmod{m}$ and $c \equiv b \pmod{n}$.

- 1.3. As congruence is symmetric and transitive, we deduce that $c \equiv c_0 \pmod n$ and $c \equiv c_0 \pmod n$ by part (a).
- 1.4. So $m \mid (c c_0)$ and $n \mid (c c_0)$ by the alternative definitions of congruence.
- 1.5. As gcd(m, n) = 1 by assumption, this implies $mn \mid (c c_0)$ by Question 2.
- 1.6. Hence the alternative definitions of congruence tell us $c \equiv c_0 \pmod{mn}$. 2. ("If")
 - 2.1. Suppose $c \equiv c_0 \pmod{mn}$.
 - 2.2. Use the alternative definitions of congruence to find $k \in \mathbb{Z}$ such that $c = k(mn) + c_0$.
 - 2.3. Then $c = c_0 + m(kn)$
 - $2.4. \equiv c_0 \pmod{m}$
 - 2.5. $\equiv a \pmod{m}$ by part (a).
 - 2.6. Similarly, $c = c_0 + n(km)$
 - 2.7. $\equiv c_0 \pmod{n}$
 - 2.8. $\equiv b \pmod{n}$ by part (a).
 - 2.9. So x=c is a solution to the system of simultaneous congruence equations.