Algoritmi Avanzati, A.A. 2017-2018

Prova scritta

Martedì 6 febbraio 2018

Esercizio 1

È dato il seguente dataset di m=8 campioni, con n=3 attributi (X_1 numerico; X_2, X_3 categorici) e un output Y categorico (binario):

i	x_{i1}	x_{i2}	x_{i3}	y_i
1	3	brutto	diritto	sì
2	4	bello	diritto	no
3	4	brutto	rovescio	sì
4	4	brutto	diritto	no
5	3	brutto	rovescio	no
6	3	bello	diritto	sì
7	2	bello	rovescio	sì
8	5	bello	rovescio	no

- **1.1**) Definire (a parole) l'impurità di Gini di una distribuzione di probabilità discreta e ricavarne la formula sulla base della definizione data.
- **1.2**) Costruire l'albero di decisione sulla base dell'impurità di Gini, procedendo in modo greedy fino ad ottenere delle foglie pure. Per la variabile numerica, considerare la soglia data dalla mediana.

Esercizio 2

Considerato il dataset dell'esercizio 1, definiamo la seguente distanza nello spazio dei vettori di attributi:

$$dist(\mathbf{x}, \mathbf{x}') = |x_1 - x_1'| + \chi_{\neq}(x_2, x_2') + \chi_{\neq}(x_3, x_3'),$$

dove

$$\chi_{\neq}(a,b) = \begin{cases} 0 & \text{se } a = b \\ 1 & \text{se } a \neq b \end{cases}$$

è la cosiddetta "funzione caratteristica della disuguaglianza". Ad esempio:

$$\begin{aligned} \operatorname{dist}(\boldsymbol{x}_4, \boldsymbol{x}_5) &= \operatorname{dist} \big((4, \operatorname{brutto}, \operatorname{diritto}), (3, \operatorname{brutto}, \operatorname{rovescio}) \big) \\ &= |4 - 3| + \chi_{\neq} (\operatorname{brutto}, \operatorname{brutto}) + \chi_{\neq} (\operatorname{diritto}, \operatorname{rovescio}) \\ &= 1 + 0 + 1 = 2 \end{aligned}$$

2.1) Calcolare la distanza single-linkage fra i due insiemi

$$C_1 = \{x_1, x_3, x_7\}, \qquad C_2 = \{x_4, x_8\}$$

2.2) Calcolare la distanza complete-linkage fra gli stessi due insiemi.

Esercizio 3

- **3.1**) Definire (a parole) l'entropia di Shannon di una distribuzione di probabilità discreta e ricavarne la formula sulla base della definizione data.
- **3.2**) Scrivere la formula della funzione sigmoide e le sue principali proprietà (dominio, codominio, asintoti, derivata); motivarne l'uso nella regressione logistica.

Esercizio 4

Si consideri l'albero di decisione ricavato con l'esercizio 1, troncato a profondità 2 (dove la radice è a profondità 0); raggiunto il nodo di livello 2, l'albero risponde con il valore di Y più rappresentato nel nodo. In caso di parità, si supponga che vincano i sì.

- **4.1)** Considerando il valore sì come classe positiva, stimare l'accuratezza, la precisione, la sensibilità e lo score F_1 del classificatore utilizzando lo stesso dataset utilizzato per l'addestramento.
- **4.2)** Sulla base dell'analisi empirica appena svolta, discutere l'opportunità di utilizzare il classificatore per i seguenti compiti: (i) fungo velenoso (sì) / mangereccio (no); (ii) automobile usata in buone condizioni (sì) / catorcio (no).