TP Final : Développer une API d'Analyse de Sentiments

Contexte

Vous travaillez pour une entreprise fictive, **SocialMetrics AI**, spécialisée dans l'analyse de données pour les réseaux sociaux. Le client, Daunale Treupe, souhaite surveiller les opinions exprimées sur **X** (anciennement Twitter). Votre mission est de concevoir un service permettant d'évaluer le sentiment des tweets en fonction de leur contenu.

Objectifs

- Développer une API avec Flask.
- Implémenter un modèle de machine learning basé sur la régression logistique.
- Réentraîner régulièrement le modèle avec des données annotées.
- Générer et analyser des matrices de confusion pour évaluer les performances.

Besoins Fonctionnels

1. Endpoint d'Analyse des Sentiments :

- Créer une API avec Flask comprenant un endpoint POST .
- L'endpoint doit accepter une liste de tweets sous forme de tableau de chaînes (string[]).
- Pour chaque tweet, calculer un score de sentiment entre -1 (très négatif) et 1 (très positif).
- Retourner la réponse au format JSON:

```
{
  "tweet1": score1,
  "tweet2": score2,
  ...
}
```

2. Base de Données MySQL:

- Créer une table nommée tweets pour stocker les tweets annotés. Cette table servira de dataset pour entraîner le modèle.
- Structure de la table tweets :
 - id : Identifiant unique.
 - text : Contenu du tweet.
 - positive: 1 si le tweet est jugé positif, 0 sinon.
 - negative : 1 si le tweet est jugé négatif, 0 sinon.

3. Modèle de Machine Learning :

- o Utiliser une régression logistique de scikit-learn pour analyser les sentiments.
- Entraîner le modèle sur les données de la table tweets :
 - positive comme label pour les prédictions positives.
 - negative comme label pour les prédictions négatives.
- o Tester les performances du modèle sur un jeu de données de validation.

4. Réentraînement du Modèle :

- Mettre en place un mécanisme pour réentraîner le modèle chaque semaine avec les données les plus récentes de la table tweets .
- Automatiser ce réentraînement à l'aide d'un cronjob ou d'une tâche planifiée.

5. Rapport d'Évaluation :

- Générer une **matrice de confusion** pour les prédictions positives (basées sur positive) et une autre pour les prédictions négatives (basées sur negative).
- o Rédiger une analyse des performances du modèle en se basant sur les observations suivantes :
 - Précision, rappel et F1-score pour les classes positives et négatives.
 - Identifier les biais éventuels dans les prédictions.
 - Proposer des pistes pour améliorer les performances.

Contraintes Techniques

- Utiliser Python et le framework Flask pour l'API.
- Utiliser une base de données MySQL pour stocker les données annotées.
- Implémenter le modèle de machine learning avec LogisticRegression de scikit-learn .
- Fournir un script pour automatiser le réentraînement du modèle.
- Documenter l'installation, l'utilisation de l'API, et les étapes de réentraînement.

Livrables Attendus

- 1. Code Source sur un repo public sur Github :
 - Fichiers Python pour l'API, le modèle et la gestion de la base de données.
 - Script pour configurer la base de données MySQL et créer la table tweets .
 - Script pour automatiser le réentraînement.
- 2. Rapport d'Évaluation en pdf sur Github aussi (dans le même repo) :
 - Les deux matrices de confusion (positive et négative).
 - Analyse détaillée des performances du modèle:
 - Précision, rappel et F1-score pour chaque classe.
 - Observations sur les erreurs fréquentes ou éventuels biais.
 - Recommandations pour améliorer le modèle.

Barème d'Évaluation

Catégorie	Critères	Points
1. Fonctionnalités de l'API		50
	Endpoint POST fonctionnel : accepte une liste de tweets et retourne les scores attendus	10
	Structure JSON correcte dans la réponse	10
	Connexion à la base de données MySQL fonctionnelle	10
	Gestion des erreurs : cas des listes vides, formats incorrects, etc.	10

	Documentation de l'API : guide clair avec exemples d'utilisation	10
2. Modèle de Machine Learning		30
	Implémentation correcte du modèle LogisticRegression	10
	Réentraînement automatisé via cronjob ou tâche planifiée	10
	Performance de base : prédictions cohérentes et fonctionnelles	10
3. Base de Données MySQL		10
	Structure correcte de la table tweets : colonnes id, text, positive, negative	5
	Stockage correct des données annotées	5
4. Rapport d'Évaluation		30
	Matrice de confusion pour les prédictions positives, avec interprétation	5
	Matrice de confusion pour les prédictions négatives, avec interprétation	5
	Calcul et interprétation des mesures : précision, rappel, F1-score	10
	Analyse des performances : forces, faiblesses, biais	5
	Recommandations claires pour améliorer le modèle	5
Total		120