

Modeling III

Introduction

Instructions

- Download Tutorial 12 Zip
- Unzip Folder
- Required Packages
 - library(tidyverse)
 - library(modelr)
 - library(xtable)
- Open .Rmd File and Knit
- Within R, Run all Code Chunks for Parts 1,2, and 3 (This was Covered in Tutorial 11)

Logistic Model

$$W = l + \frac{h}{1 + e^{a - bA}} + \varepsilon$$

- "Smart" Model Based On Physical Relationship Between A and W
- Four Parameters
 - Controls the Shape of the Relationship
 - l and h
 - a and b
- What Shape Do You Think This Function Makes?
 - Idea: Precalculus

- Plant that Seed
- Example Model

- Parameter Investigation
 - What Does 7 Represent?
 - What Does 12 Represent?
 - What Does 4 Represent?
 - What Does 1 Represent?

- Creation of Modeling Function
- Creation of MSE Function Specific to this Model
- Run Chunk 3
 - Use optim() Function With Smart Starting Values Based on Understanding of The Model
 - Finds Estimates Based on Minimization of MSE

- Use Logistic Model Function and Estimated Parameters from optim() to Obtain
 - Predictions
 - Residuals

Intermission

- Run Code Chunk
 - save.image() = Used to Save
 Workspace into .Rdata File
 - load() = Used to Load
 Workspace from .Rdata File
 - .Rdata = File Extension of R
 Workspace File (All Objects in Global Environment)

Run Chunk 1

- Plots of Different Models
- What Can We Say About the Different Models?

Which Model Would You Use?

- Comparing Predictions vs Actual Maximum Water Temperatures
- Models Give Similar Predictions

- Shows Residuals Under the 4
 Models Plotted Over Time
- What is the Problem?

Run Chunk 4

 Evaluate Models For the Three Locations Separately

Run Chunk 5

 Evaluate Error For the Three Locations Separately (by A)

Run Chunk 6

 Evaluate Error For the Three Locations Separately (by Time)

- Run Chunk 1
 - Mean Bias

$$MB = \frac{1}{N} \sum \hat{\varepsilon}_k$$

Mean Absolute Error

$$MAE = \frac{1}{N} \sum |\hat{\varepsilon}_k|$$

Root Mean Squared Error

$$RMSE = \sqrt{\frac{1}{N}} \sum \hat{\varepsilon}_k^2$$

 MB, MAE, and RMSE are in Degrees Celsius

- Summarizing Table
 - Evaluate MB, MAE, and RMSE on Test Data to Choose Best Model Going Forward
 - Sketch of Table We Want

Model	MB	MAE	RMSE
Linear			
Poly(2)			
Poly(3)			
Poly(4)			
Logistic			

 Before Writing Code, Have a Plan for the Output

Chunk 2

- Run Line-By-Line
- Think About Ways to Quickly Apply All 3 Functions to All Residuals
- Run Chunk 3
 - Combine rename(), gather(), group_by(), and summarize()
- Chunk 4
 - Change eval=F to eval=T and Knit the File (What is Seen?)

My Results Based on My Seed

Model	MB	MAE	RMSE
<fct></fct>	<db 1=""></db>	<db 7=""></db>	<db 7=""></db>
Linear	-0.350	2.18	2.87
Poly(2)	-0.387	2.17	2.86
Poly(3)	-0.466	2.11	2.82
Poly(4)	-0.492	2.10	2.83
Logistic	-0.426	2.13	2.83

 When Results Are This Close, Always Consider the Most Simple Model

Discussion

- Problems With The Approach
 - Same Model For All Locations
 - Not All Locations Used in Train
 - Not All Locations Used in Test
 - Residuals Indicate that Model Can Be Improved
 - All Models Have the Same Issue if Used for Predicting the Maximum Water Temperature Given the Maximum Air Temperature

Closing

Disperse and Make Reasonable Decisions