Summary of TLA⁺

The Constant Operators

Miscellaneous Constructs

Action Operators

Temporal Operators

User-Definable Operator Symbols

? ← → C **Precedence Ranges of Operators**

Ι Operators Defined in Standard Modules.

 \mathbf{S} **ASCII** Representation of Typeset Symbols

The Constant Operators

Logic

```
\wedge \vee \neg \Rightarrow \equiv
TRUE FALSE BOOLEAN [the set {TRUE, FALSE}]
\forall x \in S : p \quad ^{(1)} \qquad \exists x \in S : p \quad ^{(1)}
CHOOSE x \in S : p [An x in S satisfying p]
```

Sets

$$= \neq \in \notin \cup \cap \subseteq \setminus [\text{set difference}]$$

 $\{e_1, \dots, e_n\}$ [Set consisting of elements e_i]
 $\{x \in S : p\}$ (2) [Set of elements x in S satisfying p]

$$\{x \in S : p\}$$
 (Set of elements x in S satisfying p] $\{e : x \in S\}$ (1) [Set of elements e such that x in S]

Subset S

[Set of subsets of S] [Union of all elements of S] UNION S

Functions

```
f[e]
                                    [Function application]
DOMAIN f
                                   [Domain of function f]
[x \in S \mapsto e] (1)
                                   [Function f such that f[x] = e for x \in S]
[S \rightarrow T]
                                   [Set of functions f with f[x] \in T for x \in S]
[f \text{ EXCEPT } ![e_1] = e_2]^{(3)}
                                   [Function \hat{f} equal to f except \hat{f}[e_1] = e_2]
```

Records

```
e.h
                                  [The h-field of record e]
[h_1 \mapsto e_1, \dots, h_n \mapsto e_n] [The record whose h_i field is e_i]
[h_1: S_1, \ldots, h_n: S_n]
                                 [Set of all records with h_i field in S_i]
[r \text{ EXCEPT } !.h = e]^{(3)}
                                 [Record \hat{r} equal to r except \hat{r}.h = e]
```

Tuples

```
[The i^{\text{th}} component of tuple e]
e[i]
\langle e_1, \ldots, e_n \rangle [The n-tuple whose i^{\text{th}} component is e_i]
S_1 \times \ldots \times S_n [The set of all n-tuples with i^{\text{th}} component in S_i]
```

⁽¹⁾ $x \in S$ may be replaced by a comma-separated list of items $v \in S$, where v is either a comma-separated list or a tuple of identifiers.

⁽²⁾ x may be an identifier or tuple of identifiers.

⁽³⁾ $![e_1]$ or !.h may be replaced by a comma separated list of items $!a_1 \cdots a_n$, where each a_i is $[e_i]$ or $.h_i$.

Miscellaneous Constructs

Let $d_1 \stackrel{\triangle}{=} e_1 \ldots d_n \stackrel{\triangle}{=} e_n$ in e [e in the context of the definitions]

 $\land p_n$ $\lor p_n$

Action Operators

 $\begin{array}{ll} e' & \qquad & [\text{The value of } e \text{ in the final state of a step}] \\ [A]_e & \qquad & [A \lor (e' = e)] \\ \langle A \rangle_e & \qquad & [A \land (e' \neq e)] \\ \text{ENABLED } A & \qquad & [\text{An } A \text{ step is possible}] \\ \text{UNCHANGED } e & \qquad & [e' = e] \\ A \cdot B & \qquad & [\text{Composition of actions}] \end{array}$

Temporal Operators

User-Definable Operator Symbols

Infix Operators

? ←
C
I

шх оре	erators				
+ (1)	_ (1)	* (1)	(2)	0 (3)	++
· (1)	% (1)	^ (1,4)	(1)		
\oplus $^{(5)}$	\ominus ⁽⁵⁾	\otimes	\oslash	\odot	**
< (1)	> (1)	\leq (1)	> ⁽¹⁾	П	//
\prec	\succ	\preceq	\succeq	\sqcup	^^
«	>>	<:	$:>^{(6)}$	&	&&
			\supseteq		%%
\subset	\supset		\supseteq	*	@@(6)
\vdash	\dashv	=	=	•	##
\sim	\simeq	\approx	\cong	\$	\$\$
\bigcirc	::=	\approx	≐	??	!!

Postfix Operators (7)

 \propto

- (1) Defined by the Naturals, Integers, and Reals modules.
- (2) Defined by the *Reals* module.
- (3) Defined by the Sequences module.
- (4) x^y is printed as x^y .
- (5) Defined by the Bags module.
- (6) Defined by the *TLC* module.
- (7) e^+ is printed as e^+ , and similarly for * and *#.

Precedence Ranges of Operators

The relative precedence of two operators is unspecified if their ranges overlap. Left-associative operators are indicated by (a).

Prefix Operators

?	「	4-4		4-15	UNION	8-8
←	ENABLED	4 - 15	\Diamond	4 - 15	DOMAIN	9 - 9
	UNCHANGED	4 - 15	SUBSET	8-8	_	12 - 12
→						

Infix Operators

mix operators							
\Rightarrow	1-1	\leq	5-5	<:	7-7	\ominus	11–11 (a)
$\stackrel{+}{\longrightarrow}$	2-2	«	5-5	\	8-8	_	11–11 (a)
≡	2-2	\prec	5-5	\cap	8–8 (a)		11-11 (a)
\sim	2-2	\preceq	5-5	U	8–8 (a)	&	13-13 (a)
\wedge	3 - 3 (a)	\propto	5-5		9-9	&&	13-13 (a)
\vee	3-3 (a)	\sim	5-5		9-9	\odot	13-13 (a)
\neq	5-5	\simeq	5-5	!!	9-13	\oslash	13-13
\dashv	5-5		5-5	##	9-13 (a)	\otimes	13-13 (a)
::=	5-5		5-5	\$	9-13 (a)	*	13-13 (a)
:=	5-5		5-5	\$\$	9-13 (a)	**	13-13 (a)
<	5-5	⊒	5-5	??	9-13 (a)	/	13-13
=	5-5	\subset	5-5	П	9-13 (a)	//	13-13
=	5-5	\subseteq	5-5		9-13 (a)	\bigcirc	13-13 (a)
>	5-5	\succ	5-5	\forall	9-13 (a)	•	13-13 (a)
\approx	5-5	\succeq	5-5	}	9-14	÷	13-13
\asymp	5-5	\supset	5-5	\oplus	10-10 (a)	0	13-13 (a)
\cong	5-5	\supseteq	5-5	+	10-10 (a)	*	13-13 (a)
\doteq	5-5	\vdash	5-5	++	10-10 (a)	^	14 - 14
\geq	5-5	=	5-5	%	10-11	^^	14 - 14
\gg	5-5	.(1)	5-14 (a)	%%	10-11 (a)	.(2)	17-17(a)
\in	5-5	@@	6-6 (a)		10-11 (a)		
∉	5-5	:>	7-7		10–11 (a)		

Postfix Operators

^+	15 - 15	^*	15 - 15	^#	15 - 15	/	15 - 15
----	---------	----	---------	----	---------	---	---------

⁽¹⁾ Action composition (\cdot).

 \mathbf{C}

⁽²⁾ Record field (period).

Operators Defined in Standard Modules.

Modules Naturals, Integers, Reals

- (1) Only infix is defined in Naturals.
- (2) Defined only in *Reals* module.
- (3) Exponentiation.
- (4) Not defined in Naturals module.

Module Sequences

? ← →

Ι

 \mathbf{S}

Module FiniteSets

IsFiniteSet Cardinality

Module Bags

\oplus	BagIn	CopiesIn	SubBag
\ominus	${\it BagOfAll}$	EmptyBag	
	BagToSet	IsABag	
BagCardinality	BagUnion	SetToBag	

Module RealTime

RTBound RTnow now (declared to be a variable)

Module TLC

ASCII Representation of Typeset Symbols

⁽¹⁾ s is a sequence of characters.

← →C

 \mathbf{S}

⁽²⁾ x and y are any expressions.

⁽³⁾ a sequence of four or more - or = characters.