

Switching Technologies

- Circuit Switching
- Packet Switching
 - Datagram
 - Virtual Circuit

1-4

Circuit Switching

- Uses a dedicated path between two stations
- Process consists of three phases
 - establish
 - transfer
 - disconnect
- Bandwidth inefficient
 - channel capacity dedicated for duration of connection
 - if no data, capacity wasted
- Set up (connection) takes time
- Once connected, transfer is transparent
- Can provide deterministic performance guarantees

1-9

9

Packet Switching

- Source breaks long message into "information transporting segments" (packets).
- Packets are sent one at a time to the network.
- Packets contain user data and control/signaling information.
 - user data may be part of a larger message
 - control information includes routing/addressing information
- Packets are received, stored "briefly" (buffered) and are passed onto the next node.

Characteristics

- Line efficiency
 - single link shared by many packets over time
 - packets queued and transmitted as fast as possible
- Data rate conversion
 - stations connect to local nodes at their own speed
 - nodes buffer data if required to equalize rates
- Packets are accepted even when the "line" is busy
- Priorities can be used to support users' needs, instead of dedicating resources regardless if they are used or not (becoming wasted if they are not)

1-11

11

Virtual Circuits versus Datagram

- Virtual circuits
 - network can provide sequencing
 - traffic engineering can be applied, enabling more practical provision of quality of service (QoS) support
 - less reliable in cases of switching node failures
- Datagram
 - no call setup phase
 - more flexible
 - more reliable in cases of switching node failures
 - difficult to control network's state and provide quality of service (QoS)

Circuit versus Packet Switching: Comparison

- Circuit Switching
 - Dedicated channels/resources
 - Constant delay
 - Blocking
 - Continuous flow
 - Point-to-Point

- Packet Switching
 - Shared channels
 - Variable delay
 - Store-and-forward point-to-point & multipoint

1-13

13

Virtual Packet Switching Networks

- Integrated Services Digital Network (ISDN)
- Narrowband ISDN: X25 & Frame Relay
- X-25:
 - ITU-T standard for interface between host and packet switched network.
 - almost universal on packet switched networks and packet switching in ISDN.
- Frame Relay
 - designed to eliminate most X.25 overhead, improves efficiency
 - requires high level of network reliability.
- Broadband ISDN: Asynchronous Transfer Mode (ATM)
 - based on the use of <u>fixed size</u> packets (53 bytes, called ATM cells).
 - first Broadband ISDN (B-ISDN).
 - offered quality of service (QoS) choices.

1-17

17

What is ATM?

- ATM was born out of B-ISDN in mid 1980s.
- It was a new multiplexing and switching technique.
- First broadband, QoS capable switching technology.
- It is based on fixed-length packets, called "cells".
- Cell structure facilitated silicon implementation of switch fabric for fast packet switching.
- Supports high performance cell switching or "cell relay".

Why all the Interest in ATM?

- Need for world-wide standard to allow interoperability of information.
- Historically there were separate methods used to transmit information among the following users:
 - Local Area Networks
 - Wide Area Networks
- It was thought that ATM will provide a network for efficient traffic integration and a solution for application to both; LAN and WAN environments.
- ATM allowed to consolidate networks; instead of using separate networks for different applications (e.g. integrate voice, video, data).
- ATM can support communications at all speeds; from Megabits to Terabits.

1-19

19

Basic Principles of ATM

- ATM is based on fixed length cells
 - · information field
 - · header used for addressing
 - cell sequence integrity is preserved
- ATM is connection oriented
 - Header values are assigned to each section of a connection.
 - Signaling and user information are carried on separate virtual channels.
- The information field is carried transparently through the network
 - no processing like error control is performed by the network.
 - ATM does not guarantee that cells arrive.
 - for efficient operation, a highly reliable physical layer is required (bit error rates in the order of 10⁻⁹ to 10⁻¹²).
- All services (voice, video, even connectionless data) can be supported via ATM.
 - to accommodate various services, an adaptation function is provided.

ATM Cell Format

5 bytes header

48 bytes of information

- Small cells reduce queuing delay for high priority cells
- Small cells can be switched more efficiently
- Easier to implement switching of small cells in hardware

1-21

21

ATM Cell Header

- 5 bytes in length
- Contains a Header Error Check (HEC) to find cell boundaries
- Receiver locks on 5 bytes that satisfy the HEC algorithm (on first 4 bytes)

1-22

ATM UNI Cell					
UNI - User Network Interface				GFC - Generic	
1	GFC	VPI		Flow Control VPI - Virtual Path Identifier	
2	VPI	VCI			
3	VCI			VCI - Virtual Channel Identifier	
4	VCI	PT	CLP	PT - Payload Type	
5	HEC			CLP - Cell Loss Priority	
6-53	User Information			HEC - Header Error Check	
				1-23	

Virtual Connections

- VPI Virtual Path Identifier
 - 8 bits ==> 256 paths (UNI)
 - 12 bits ==> 4096 paths (NNI)
- VCI Virtual Path Identifier
 - 16 bits ==> 65,536 channels
- Each VPI holds a bundle of circuits.
- These are per physical medium, regardless of speed or bandwidth.

1-26

Payload Type Identifier

- Used to identify the following cells:
- Network generated cells
 - used for maintenance & control of network
 - used for call set-up, loopbacks and keep alives
- Customer generated cells
 - user information

1-27

27

Cell Loss Priority

- CLP in the header
 - CLP = o: High priority, last likely to be discarded
 - CLP =1: Low priority, maybe discarded during congested intervals
- CLP can be set:
 - by the terminal
 - by the ATM switch
- CLP determines the class of service or service contract

1-28

Virtual Connections

- Permanent Virtual Circuits (PVC)
 - network operator connects endpoints
- Switched Virtual Circuits (SVC)
 - can be switched like PSTN
 - Call set-up routine

1-29

29

Service Categories (1)

- Quality of Service (QoS) are parameters that are set for end-to-end network performance
 - Cell Transfer Delay (CTD): delay between start & finish of cell
 - Peak to Peak Cell Delay Variation (CDV): difference between maximum CTD and minimum CTD
 - Cell Loss Ratio (CLR): % of cells lost
 - Sustained Cell Rate (SCR): average rate of transmitted cells
 - Bust Tolerance (BT): maximum burst size at PCR
 - Maximum Burst Size (MBS): maximum No. of cells sent at PCR
 - Minimum Cell Rate (MCR)

1-30

Service Categories (2)

- ATM is divided into (5 + 1=) 6 service categories
 - Constant Bit Rate (CBR).
 - CTD & CDV are tightly constrained, low CLR
 - Real Time Variable Bit Rate (rt VBR)
 - CTD & CDV are tightly constrained
 - Non-Real Time Variable Bit Rate (nrt VBR)
 - CTV is tightly constrained
 - Available Bit Rate (ABR)
 - Minimize CTD, CDV and CLR
 - Unspecified Bit Rate (UBR)
 - No CTD, CVD or CLR constraints
 - Guaranteed Frame Rate (guarantees delivery of "x"% of frames to user)

1-31

31

Available Bit Rate (ABR)

- It guarantees to the sources a minimum rate. It is based on adaptation of the source rate to use resources when available and reduce transmission rate when resource are scarce, in order to avoid congestion.
- Its primary use was to carry Internet traffic
- Two main categories
 - Rate Based Control
 - Credit Based Control

Traffic Shaping(1)

- Traffic shaping is forcing your traffic to conform to certain specified behaviour
- Each service has a contract
- If the contract is violated, the network has the right to discard the cells
- The ATM switch monitors the traffic flow
- The shaping and policing is based on the Generic Cell Rate Algorithm (Leaky Bucket)

1-34

Traffic Shaping(2)

- Traffic parameters
 - Mean Cell Rate (Sustained Rate)
 - Peak Cell Rate
 - Burst Frequency
 - Burst Length
 - Cell-loss Priority
 - Cell-loss Rate

1-35

35

ATM Layers

Higher Layer

ATM Adaptation Layer (AAL)

ATM Layer (ATM-L)

Physical Layer (PL)

AAL adapts from other protocols to ATM.

ATM-L is responsible for routing and switching the cells.

PL is responsible for sending and receiving bits on the medium.

1-37

37

ATM Layers (2)

- ATM Layer
 - Generic Flow Control (applied to UNI to alleviate short term overload)
 - Cell header generation/extraction
 - Cell Virtual Path Identifier(VPI)/Virtual Circuit Identifier (VCI) translation
 - Cell multiplexing/demultiplexing.

1-38

ATM Layers (3)

- ATM Adaptation Layer is subdivided into:
 - Segmentation And Reassembly (SAR)
 - Convergence Service Specific (CS)

CS

CS - interfaces with the upper layer protocol information - provides padding and CRC checking.

SAR

SAR - generates the ATM payload.

1-39

39

ATM Adaptation Layers

- Standardized ATM Adaptation Layers
 - AAL1 provides connection oriented Constant Bit Rate services that have timing and delay requirements
 - AAL2 provides connection oriented Variable Bit Rate services that have timing and delay requirements
 - AAL₃/₄ provides connection-oriented Variable Bit Rate services with no timing requirements (e.g., frame relay)
 - AAL5 provides connectionless Variable Bit Rate services with no timing requirements

1-40

ATM Interfaces

- User to Network Interface (UNI)
 - specifies how cells come to a public network
- Broadband Inter-Carrier Interface (B-ICI)
 - specifies how two carriers interact their services
 - defines the traffic contract between two carriers
- ATM Data Exchange Interface (DXI)
 - protocol between router and CSU/DSU
- Network to Network Interface (NNI)
 - connection between switches

1-41

41

1-42