問1 ソフトウェア開発に関する次の記述を読んで、設問1~3に答えよ。

U社は、IoT機器の開発を行う、従業員数 400 名の企業である。IoT機器のソフトウェアの開発には C/C++言語を使っている。IoT機器に搭載する OS には、Linux を利用してきたが、今後は Linux 以外も利用する予定である。これまで製品に大きなトラブルはなかったが、2020 年東京オリンピック・パラリンピックに向けて IoT 機器に関するセキュリティリスクが高まると経営層が判断し、開発におけるセキュリティ対策を強化することになった。そこで、開発部の L 部長と X 主任がセキュリティ対策技術を調査した。

[メモリ破壊攻撃の概要]

メモリ破壊脆弱性は、プログラム実行時に、メモリ上にある制御情報を書き換えることによって、実行制御を奪うなどのメモリ破壊攻撃に悪用される。メモリ破壊 脆弱性の一種にバッファオーバフロー脆弱性がある。

例えば、図1に示すプログラム Vuln があったとする。Vuln は、スタックバッファオーバフロー脆弱性の学習用に作成した、32 ビット版 Linux で実行可能なプログラムである。図 2 は Vuln 内の関数 foo が呼び出された後のメモリマップである。プログラム実行時に、変数 b が指し示すデータが不正な場合、そのデータによって、a が あ に書き換えられると、関数 foo の終了時に shell コードへ処理が遷移する。しかし、①このような遷移があっても、データ実行防止機能(以下、DEPという)が機能していると、攻撃は成功しない。
攻撃者が、DEP を回避するため、図 2 中の shell コードへ処理を遷移させる代わり

攻撃者が、DEPを回避するため、図 2 中の shell コードへ処理を遷移させる代わりに、 b 中の実行可能なコードや c 領域にマップされている Vuln の断片コードを利用するケースがある。例えば、攻撃の際、 a を b 関数の先頭アドレスで書き換えて、攻撃者の意図した b 関数を呼び出す d 攻撃もある。

```
(省略)
1: int main(int argc, char *argv[]) {
2:
      char *a, *x;
      (省略, argvに応じてサイズを確保する。)
      (省略,ここでa,xがポイントする領域にargvからデータをコピーする。)
      foo(a, x);
      (省略、ここでその他の必要な処理をする。)
4: }
5: int foo(char *b, char *c) {
      char d[100];
      (省略)
7:
      strcpv(d, b);
      if (d[0] == 0) {
8:
        err out(c);
9:
        (省略)
10:
      (省略)
11:
      return 0;
12: }
   int err out(char *errmsg) {
13:
      char s1[100];
14:
15:
      int i=0;
      (省略)
      while ((s1[i++] = *errmsg++) != '\(\frac{1}{2}\);
16:
      fprintf(stderr, "Error : %s ¥n", s1);
17:
      (省略)
      return 0;
18:
19:
```

図1 スタックバッファオーバフロー脆弱性のあるプログラム Vuln

図 2 関数 foo が呼び出された後のメモリマップ

[メモリ破壊攻撃に対する対策技術]

現在、メモリ破壊攻撃に対する対策技術(以下、M 対策技術という)が普及している。X主任は、DEPを含めた代表的な M 対策技術を調査し、表 1 にまとめた。

技術名	概要	期待される効果	備考 プログラムによっては適 用できない。				
DEP	(省略)	(省略)					
SSP (Stack Smashing Protection)	スタック領域で canary と呼ばれる値を利用してス タックバッファオーバフローの有無を確認する技 術	スタックバッファ オーバフローを検 知し,抑制する。	(省略)				
ASLR (Address Space Layout Randomization)	プログラムの実行時に,データ領域,ヒープ領域,スタック領域及びライブラリを,ランダムにマップする OS の技術	(省略)	32 ビット OS の場合, 効 果が限定的である。				
PIE (Position Independent Executable)	プログラムの実行時に、ASLR が対象とする領域 に加えて、テキスト領域もランダムにマップする 技術	(省略)	プログラムによっては適 用できない。				
Automatic Fortification	バッファオーバフロー脆弱性の原因となりうる脆弱なライブラリ関数を,コンパイル時に境界チェックを行う安全な関数に置換する技術	境界チェックによ って,オーバフロ ーを抑制する。	境界チェックにおいて, 書込み先のサイズが不明 な場合は機能しない。				

表1 M対策技術の概要

[M 対策技術の動作概要]

例えば、Vuln のコンパイル時に SSP が適用されていると、関数 foo を呼び出す際、 図 2 のベースポインタレジスタ保存値より下位に が挿入される。もしも, が上書きされた場合は、攻撃と判断し、Vuln の実行を停止する。 なお、Vuln の場合は簡単ではないが、攻撃者が の値を正確に推測して e 上書きできてしまうと, a の書換えが可能となり, 攻撃を防げ ない。その対策としては、ライブラリ関数のアドレス推定を困難にさせる が有効である。 f ■領域にある実行可能なコードを用いる攻撃に対 しかし、 f は c しては効果がない。そうした攻撃は PIE によって緩和される。さらに、Vuln の場合、 Automatic Fortification によって、ライブラリ関数 g を安全な関数に置き換 えることで、バッファオーバフローの原因を排除することができる。

[脆弱性対策強化]

L 部長と X 主任が表 1 の技術を確認したところ、表 1 の備考欄の指摘以外にも②

Automatic Fortification ではバッファオーバフローの原因を排除できないケースがある と分かった。

L部長は次に、表1の技術を適用することによる影響を確認した。その結果、次の ことが分かった。例えば、ソースコードに脆弱性があっても、SSP を適用してコンパ イルしていると、メモリ破壊攻撃が成立しないが、そのソースコードを③別の開発 環境でコンパイルすると問題となる場合があることが分かった。

これらについては、 [] 社内でコーディングスタンダードを定め、それによって対処

	- S			650 (55.0)	1225 NULL 14525 U.	350	· are real and a service
するこ	とに	した。検討	か結果, I	U 社は表 1	の技術を	全	て採用することにした。
設問 1	[×=	モリ破壊攻	(撃の概要)	について	, (1) ~(3)	に答えよ。
(1)	本	文中の	a	~ d]に入	ħ	る適切な字句を, 解答群の中か
	ら選び	び,記号で	答えよ。				
þ	解答種	詳					
	ア	Return-to	o-libc		イ		ROP
	ウ	テキスト			エ	0	ヒープ
	オ	ベースポ	インタレ	ジスタ保存	値カ		ライブラリ
	+	リターン	アドレス	X			
(2)	本	文中の	あり	こ入れる適	切なアド	V	へス値を図 2 中から選び,⑦~
⑦ の記号で答えよ。							
(3)	本	文中の下縞	(①につい	て,攻撃が	成功しな	V)理由を35字以内で述べよ。
設問2	(M)	対策技術の	動作概要	について	, (1), (2)	に答えよ。
(1)	本	文中の	е ,	f	一に入れ	13	る適切な字句を、表 1 中の用語
7	を用い	いて答えよ	0				
(2)	本	文中の	g K	入れる適t	切なライ	ブ	ラリ関数名を答えよ。
設問3	〔脆弱	 居性対策強	化〕につい	ヽて, (1),	(2) に答	え	よ。
(1)	本	文中の下線	(②につい	て. 図 1 0	のプログ	ラ	ムにおいて、排除できないケー

(2) 本文中の下線③について、どのような問題か。また、どのような開発環境 の場合に問題となるか。それぞれ25字以内で述べよ。

スに該当する処理を行番号で答えよ。また、排除できない理由を 30 字以内で

述べよ。