Gradient Descent

Machine Learning

Agenda

- Introduction
- Linear models
- Gradient Descent for quadratic function
- Stochastic Gradient Descent

Two aspects of a learner

- How it uses inputs to predict outputs
 - DT traverse tree asking questions until arrive at leaf with target
 - Perceptron predict +1 if $\mathbf{w} \cdot \mathbf{x} + \mathbf{b} >= 0$
- How it learns
 - DT split data using best question and recurse on splits
 - Perceptron update w and b if made a mistake

Two aspects of a learner

- How it uses inputs to predict outputs
 - Model
- How it learns
 - Optimization algorithm

Modularity

- Often parameters (e.g. weights) of the same model can be found in many different ways
- Standard optimization algorithms for many types of problems
 - Often can be treated as a black box

How to participate?

Event code **ALFXDE**

Enable answers by SMS

@ Copy participation link

Which of the following ML methods is(are) a non-linear classifier?

Linear models

- Linear models are based on a weighted sum of features
- (Multiclass) Classification
- (Multivariate) Regression

Go to wooclap.com and use the code ALFXDE

What is the most common model for regression?

‡

Ordinary least squares

For example linear regression

$$y = \mathbf{w} \cdot \mathbf{x} + b$$

Go to wooclap.com and use the code ALFXDE

How can we find the best w?

‡

How can we find best w?

Use specialized formula for linear regression

OR

- Convert into problem of finding minimum of function
- Standard solvers
 - Newton's method
 - (Stochastic) gradient descent
- This approach works for many types of models

Go to wooclap.com and use the code ALFXDE

What is the error metric for measuring how well our regression line fits the data points?

RMSE
R2 R squared
MSE and RMSE

Median absolute error

Sum of squared errors

- Want to find w,b for which error on training data is smallest
- We can use SSE as a measure of error

$$SSE = \sum_{i=1}^{N} (y_{\text{pred}}^{i} - y^{i})^{2}$$

Error as a function of w,b

$$\operatorname{Error}(\mathbf{w}, b) = \sum_{i=1}^{N} (\mathbf{w} \cdot \mathbf{x}^{i} + b - y^{i})^{2}$$

Regression example – Iris

Iris

- Find regression line which predicts
 petal length from sepal length
- $\neg For simplicity, fix b = 0$
- How does Error(w) change as we vary w?

Find w for which Error(w) is lowest

Start with something even simpler

$$\operatorname{Error}(\mathbf{w}, b) = \sum_{i=1}^{N} (\mathbf{w} \cdot \mathbf{x}^{i} + b - y^{i})^{2}$$

Work through example of a simpler function:

$$f(w) = w^2$$

How can we find the value of w which minimizes f(w)?

- Start at a random value of w
- Check slope of function at this point
- \Box Descend the slope: adjust w to decrease f(w)

Gradient vs slope

- Slope describes steepness of a single dimension
- We usually work with functions with vectors as arguments, e.g. Error(w)
- Gradient is the collection of slopes, one for each dimension

Agenda

- Introduction
- Linear models
- Gradient Descent for quadratic function
- Stochastic Gradient Descent

Gradient descent for $f(w) = w^2$

Go to wooclap.com and use the code ALFXDE

How do we compute the slope of a function?

slope Pythagora theorem
another Calculus
Line tangent
right Find
Change in y per 1 unit of x

Delta y/ Delta x delta y / delta x

‡

How do we compute the slope of a function?

First derivative

 \Box For function f, first derivative can be written f'

□ Then f'(a) is the slope of function f at point a

First derivative

If we define

$$f(w) = w^2$$

The first derivative is

$$f'(w) = 2w$$

Ready to descend

- Initialize w to some value (e.g. 1.0)
- Update:

$$w_{\text{new}} = w_{\text{old}} - \eta \times f'(w_{\text{old}})$$

- η is the **learning rate**, controlling speed of descent (e.g. 0.01 or 0.2)
- Stop when w doesn't change much any more

Back to function Error(w,b)

$$b_{\text{new}} = b_{\text{old}} - \eta \times 2 \sum_{i=1}^{N} (y_{\text{pred}}^i - y^i)$$

$$\mathbf{w}_{\text{new}} = \mathbf{w}_{\text{old}} - \eta \times 2 \sum_{i=1}^{N} (y_{\text{pred}}^i - y^i) \mathbf{x}^i$$

Visualization

(Keep fixed b=0 to make it easier to plot)

Gradient descent

- For many types of models, we can find good model parameters with gradient descent
- Important to use appropriate learning rate!

Go to wooclap.com and use the code ALFXDE

What do you think will happen if the learning rate is too big (small)?

‡

Problem: learning rate

- What will happen if the learning rate is too small?
- And if it's too big?

Gradient descent with big datasets

$$\mathbf{w}_{\text{new}} = \mathbf{w}_{\text{old}} - \eta \times 2 \sum_{i=1}^{N} (y_{\text{pred}}^{i} - y^{i}) \mathbf{x}^{i}$$

We have to compute predictions and calculate residuals for all the examples before making an update. Can we do something faster?

Idea: update more often

 Instead, we could update after every example (or after every 100):

1: **for** i = 1 **to** N **do**

2:
$$\mathbf{w}_{\text{new}} = \mathbf{w}_{\text{old}} - \eta \times 2(y_{\text{pred}}^i - y^i)\mathbf{x}^i$$

Stochastic Gradient Descent

Stochastic gradient descent (aka SGD)

GD vs SGD

Batch Gradient Descent

Stochastic Gradient Descent

Stochastic Gradient Descent

- Stochastic gradient descent (aka SGD)
- Suitable for online learning scenarios
- Compare with the Perceptron update rule
- Workhorse of modern Machine Learning
- Large, deep neural networks

Go to wooclap.com and use the code ALFXDE

Can we use a variable learning rate?

How would we vary it?

Momentum

- A modification to SGD which smooths gradient estimates with memory
- No modification to learning rate

$$\mathbf{u}_t = \beta \mathbf{u}_{t-1} + (1 - \beta) f'(\mathbf{w}_{\text{old}})$$

$$\mathbf{w}_{\text{new}} = \mathbf{w}_{\text{old}} - \eta \mathbf{u}_t$$

How do we find the derivatives?

- Symbolic or automatic differentiation
- We can get gradients for complicated functions composed of differentiable operations
- Automatic application of chain rule
- Tensorflow, PyTorch

What about local minima?

- Potential problem for non-linear models
- e.g. Neural Networks
- In practice, not necessarily a big problem in high-dimensional data

Summary

- Modular learning:Model + Optimization
- Gradient descent to find model parameters with lowest error
- Stochastic version widely used.