Latches - one type of memory element.







How does this work + how does it have "memory"

| S            | $\mathcal{R}$ | Q | Q                                     |
|--------------|---------------|---|---------------------------------------|
| 60           | 00            | 1 | 0 ← "Set"<br>0 ← "hobly (after 5R=10) |
| 9 0<br>7 (Q) | 1             | 0 | (= "reset"                            |
| 60           | Ď             | 0 | 1 (= hold" (after SR=01)              |
|              |               | 0 | 0) (= undesirable                     |
|              |               |   |                                       |

\* Can sot Q=1, can reset Q=0, can hold previous vailue.

| 5R-   | Latch  |
|-------|--------|
| Søt — | , Do-0 |
| 0     |        |

| 00  | ) |
|-----|---|
| 9   | } |
| V 0 | 1 |
| l1  | 0 |



Garted Latch

\*Add a "gate" to control whether or not the Lorton





| Gorte | Set | Reset | a ā                                         |
|-------|-----|-------|---------------------------------------------|
| 1     | 0   | 0     | l 0 set<br>0 ) resof<br>Previous value hold |
|       |     |       | 1 1 underreable                             |
| 0     | X   | X     | previous hold                               |



\* Output changes whenever G=1 (i.e., on the hovel of G"). \* Would like a bit more control ors to when a can Change. \* The "interval" should be an "instant". thip flops Master-Slave Flip Flop When G=1 Y=D (Y Sollows D) Q=Holding Change G From 1 to O. Y=holding the value of D just before G changed W=Y(D follows Y) - D just before Negative-Edge Triggered FlipSlop =)Edge Sensitive

Symbol: D-51ipstop means edge triggend Gate