Using a Load Balancer in the CORE Emulator

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

REDES DE COMPUTADORES – Prof. Tiago Ferreto

Aluno Március R. Neutzling Dias

Some historical perspective

- Commercial Internet started in Brazil in 1995.
- First ISPs (Internet Service Providers) UOL, BOL, NutecNet/ZAZ/Terra.
- Mostly everybody follow the model "one server to rule them all".

Fortunately the business grew up ©.

• To scale services, upgrade the (only one) server.

• Switch to a new server after couple of months (not very good ☺).

Big idea, split the services between servers!

Fortunately the business kept growing ©©

• To scale services, upgrade the (only one) server.

• Switch to a new server after couple of months (not very good ⊗⊗).

• This sounds familiar...

Big idea, split the same service between many servers!

Sounds great, but how to do that?

• Let's use a load balancer. Problem, they don't exist yet.

• DNS Round-robin! We can have multiple IP serving same service.

DNS Round-robin – drawbacks (few of them)

• Just does load distribution (and not very well).

• DNS caches (client side) can affect load distribution.

• If one server fail, users keep reaching the server.

There is no persistence (we can't have sessions).

Load balancers 1st generation (ArrowPoint)

Load balancers 1st gen, features

• Just L4 TCP (no UDP).

All servers must be physically connected to them.

• Not exactly the most stable platform (strange things happened in the LAN).

Load balancers 2st generation (Alteon)

Load balancers 2st gen, much better

Now we have L7 and it works!

• We still have a few issues, but much more stable.

So what for load balancers are used to?

Horizontal escalability.

• High availability.

Today we have software based load balancers.

HAProxy (L7)

Linux Virtual Server (L4)

Why L7 it is relevant?

Pros

- The content can be modified.
- We can have rewrite rules.
- Clients and servers are not required to use the same protocol (for example IPv4 vs IPv6, clear vs SSL).

• Cons

- Much more cpu intensive.
- There is no DRS (direct server response).

Load balancing – algorithms and estrategies

- Round-robin (for short connections, pick each server in turn).
- Leastconn (pick the least recently used of the servers with the lowest connection count).
- Least Response Time.
- Source (directly depends on the client's source address)
- Algorithms must support per-server weights so that it is possible to accommodate from different server sizes/generations in same farm.

Hashing and persistence

• Consistent hashing protects server farms against massive users redistribution when adding or removing servers in a farm.

Hashing can apply to various elements such as client's source address,
URL components, header field values, cookie.

• That's very important in large cache farms and it allows slow-start to be used to refill cold caches.

Referências

• HAProxy Documentation http://cbonte.github.io/haproxy-dconv/1.9/intro.html