

OTTAWA HULL K1A 0C9

(11) (C) **2,000,984**

(22) **1989/10/18**

(43) **1991/04/18**

(45) **1994/11/08**

(52) **196-20**
C.L. CR. 259-42.2

BREVETS

MARQUES
DE COMMERCE

DROITS
D'AUTEUR

DESSINS
INDUSTRIELS

TOPOGRAPHIES
DE CIRCUITS
INTÉGRÉS

PATENTS

TRADE-MARKS

COPYRIGHT

INDUSTRIAL
DESIGN

INTEGRATED
CIRCUIT
TOPOGRAPHY

5
(51) INTL.CL. B03B-009/02; B28C-005/06

(19) (CA) CANADIAN PATENT (12)

(54) Mixer Circuit for Oil Sand

(72) Leung, Antony H. S. , Canada
Cyberman, George J. , Canada
Maciejewski, Waldemar B. , Canada

(73) Alberta Energy Company Ltd. , Canada
Canadian Occidental Petroleum Ltd. , Canada
Esso Resources Canada Limited , Canada
Gulf Canada Resources Limited , Canada
Majesty the Queen (Her) in right of the Province of
Alberta, as represented by the Minister of Energy and
Natural Resources , Canada
HBOG-Oil Sands Limited Partnership , Canada
PanCanadian Petroleum Limited , Canada
Petro-Canada Inc. , Canada

(57) 6 Claims

Consommation et
Affaires commerciales Canada

Consumer and
Corporate Affairs Canada

3469

Canada

1 ".mixer circuit for oil sand"

2 ABSTRACT OF THE DISCLOSURE

3 The mixer circuit comprises a vertically oriented,
4 open-topped mixer vessel having a cylindrical side wall
5 terminating with a shallow conical bottom. The bottom wall forms
6 a central bottom outlet. Recycled slurry and fresh water streams
7 are fed tangentially to the inner surface of the vessel, thereby
8 forming a vortex. The oil sand enters as a continuous, free-
9 flowing stream moving along a downward trajectory; the stream
10 impinges the vortex, wherein it is dispersed and mixed to create
11 slurry. The slurry exits through the bottom outlet, is screened
12 to remove oversize material, and enters a holding vessel. Part
13 of the slurry in the holding vessel is recycled to the mixer
14 vessel through a pipe loop incorporating a pump. The slurry is
15 energized by the pump and functions to maintain and partly create
16 the rapidly moving vortex that carries out the mixing and lump-
17 disintegration actions. The balance of the slurry in the holding
18 vessel is pumped out as product. The circuit is adapted to
19 consistently produce a dense slurry.

1 FIELD OF THE INVENTION

2 This invention relates to a circuit for mixing oil sand
3 in hot water to produce a slurry suitable for conveyance in a
4 pipeline.

5 BACKGROUND OF THE INVENTION

6 The invention has been developed in connection with
7 mixing oil sand in hot water. While not limited to that
8 application, it will now be described in connection therewith.

9 Bitumen, a heavy oil, is currently being extracted on
10 a commercial basis from oil sand. Presently, two very large
11 scale commercial operations are producing synthetic crude oil
12 from oil sand in the Fort McMurray district of Northern Alberta.

13 At each of these operations, the oil sand is strip-
14 mined and conveyed on conveyor belts, often several kilometers
15 in length, to an extraction plant. At the extraction plant, the
16 bitumen is separated from the solids and recovered. This is
17 accomplished using a process known as the 'hot water process'.

18 The hot water process involves mixing the oil sand with
19 hot water (95°C) and a small amount of caustic in a rotating
20 horizontal drum (or 'tumbler'). Steam is added to the mixture
21 as it moves through the tumbler, to ensure that its exit
22 temperature is about 80°C. In the tumbler, the bitumen is
23 separated from the solids, lumps of the cohesive oil sand are
24 ablated and disintegrated and minute flecks of freed oil coalesce
25 to form larger globules. In addition air bubbles are entrained
26 in the slurry. Some of the oil flecks contact air bubbles and
27 coat them, whereby the oil (or bitumen) is aerated. The term
28 "conditioning" is used to denote the sum of the mechanisms

1 occurring in the tumbler. On leaving the tumbler, the slurry is
2 diluted with additional hot water and retained under quiescent
3 conditions for a prolonged period in a thickener-like vessel
4 referred to as a primary separation vessel ("PSV"). In the PSV,
5 other bitumen globules attach to and film around bubbles of air
6 entrained in the slurry. Much of the aerated bitumen rises to
7 form froth on the surface of the vessel contents. This froth is
8 recovered. A dragstream is withdrawn from the central part of
9 the PSV and this dragstream is processed in a bank of sub-
10 aerated flotation cells to produce a secondary yield of bitumen
11 froth. The froth streams are combined and further processed to
12 remove entrained water and solids and yield essentially pure
13 bitumen.

14 Now, the belt conveyors extending between the mine and
15 the extraction plant are characterized by a number of problems.
16 They are expensive to install, operate and maintain. And their
17 use requires that the solids, which have no value, must be
18 conveyed to the extraction plant and then returned by truck to
19 the mine pits for disposal. In addition, the tumblers cannot be
20 increased in size to permit of improvement of the system. They
21 are presently so large that it would be technically difficult to
22 manufacture them in a larger size and convey them to the plant
23 site. As a result, it is difficult to reduce the heat
24 requirements of the process by lowering the slurry temperature,
25 because such a step would require increasing the tumbler
26 retention time, which would necessitate larger tumblers.

27 In a co-pending application, applicants teach use of
28 a pipeline to convey an aqueous slurry of the oil sands from the
29 mine site to the extraction plant. The pipelined slurry may be

1 fed directly to the PSV, thereby eliminating the need for the
2 tumbler. The invention in the co-pending application is based
3 on the discovery that the slurry will undergo adequate
4 conditioning in the pipeline over a distance that is
5 significantly shorter than the length of pipeline needed to get
6 it to the extraction plant. In addition, the slurry will not be
7 over-conditioned if it continues to move through the pipeline
8 after conditioning is complete. (Conditioning is considered to
9 be complete if good bitumen recovery in the form of good quality
10 froth can be achieved in the downstream PSV.) This pipeline
11 scheme has the further advantage that most of the coarse solids
12 may be removed in a settler positioned part way along the length
13 of the pipeline.

14 So pipelining of the oil sand in slurry form between
15 the mine and the PSV is now considered by applicants to be a
16 viable procedure.

17 The present invention is directed toward providing a
18 mixer circuit which satisfactorily blends the oil sand with hot
19 water and entrains air to yield a consistent, dense (e.g. about
20 60% - 65% by weight solids) aerated slurry, preferably having a
21 relatively low temperature (e.g. 50°C), that is amenable to
22 pipeline conveyance.

23 In this connection, it needs to be appreciated that oil
24 sand is tacky, cohesive, erosive material incorporating a
25 significant content of "oversize". Oversize is a term applied
26 to the rocks, oil sand lumps, and clay lumps that occur in oil
27 sand (often up to a size of 20 inches).

28 If one were to feed a stream of oil sand into a tank
29 containing hot water and proceed to withdraw a mixture from the

1 base of the tank with a pump, the oil sand would simply pipe up
2 in the tank, fill it, and plug the pump. So a mixer circuit for
3 this purpose must be capable of suspending the oil sand in the
4 water with which it is mixed.

5 It has been mentioned that it is desirable to produce
6 a dense slurry. This need arises from the fact that one wants
7 to minimize the amount of hot water supplied at the mine site
8 for this purpose. Heating water is expensive and there are many
9 reasons why these plants need to conserve water to the maximum.

10 And of course the mixer circuit has to be capable of
11 coping with the oversize material. Equipment having moving
12 parts, such as a tank equipped with paddle mixers, would be
13 inappropriate for use with the erosive sand associated with
14 oversize chunks.

15 SUMMARY OF THE INVENTION

16 In accordance with the invention, as-mined but
17 preferably pre-sized oil sand is mixed with streams of recycled
18 slurry and fresh hot water in the cylindrical chamber of a
19 vertically oriented, open-topped mixer vessel, to produce a
20 slurry. The slurry exits the mixing chamber through a centrally
21 positioned bottom outlet and is screened to remove oversize,
22 thereafter entering the chamber of a holding vessel. Part of the
23 slurry moving through the holding vessel is recycled, to provide
24 the previously mentioned recycled slurry stream entering the
25 mixer vessel. This is done by pumping it through a pipe loop
26 that communicates with the mixing chamber through an inlet that
27 feeds the slurry tangentially to the inner surface of the mixer
28 vessel wall.

1 The recycled slurry is therefore controllably and
2 mechanically given energy by the pump in the recycle loop. Due
3 to its tangential entry into the mixing chamber, the slurry
4 adopts the form of a rotating vortex, into which the oil sand and
5 fresh water are added and into which air is entrained. The oil
6 sand is fed into the vortex as a free-flowing stream that moves
7 along a downwardly extending trajectory. The trajectory is
8 directed to cause the stream of oil sand to impinge and enter the
9 vortex adjacent the latter's upper end. The added oil sand and
10 fresh water mix with the rotating recycled slurry to produce a
11 satisfactorily consistent, dense, aerated slurry leaving the
12 mixer vessel through its bottom outlet. The intensity of the
13 vortex can be varied by adjusting the output of the recycle loop
14 pump.

15 In a preferred feature, the fresh water stream is
16 injected into the mixing chamber tangentially to the inner
17 surface of the mixer vessel wall. This incrementally increases
18 the energy supplied to the vortex, although the main energy
19 contributor remains the dense, pumped, recycled slurry.

20 The proportion of the slurry, produced by the mixer
21 vessel, which is recycled is quite large. The rate of
22 recirculation is maintained so as to ensure that the vortex is
23 capable of accepting and suspending the dry oil sand. Typically
24 the rate of recirculation is 2 to 3 times the discharged slurry
25 rate.

26 The mixer circuit is characterized by the following
27 features:

28 - the mixer vessel's upright circular bounding
29 surface of relatively small diameter is coupled

1 with a pumped, dense, tangentially-directed
2 recycle stream to create a relatively thick and
3 fast-moving vortex that has been found to be
4 capable of dispersing and suspending the dry oil
5 sand while only about 35 to 40% by weight fresh
6 water is consumed in creating the slurry;
7 - the recycle loop, having a pump, is used to
8 contribute most of the energy needed to carry out
9 the mixing function;
10 - the screen is provided between the two vessels to
11 remove the oversize, so that recycle and product
12 pumping can be accomplished; and
13 - the mixer vessel does not incorporate moving parts
14 and can accommodate the passage therethrough of
15 the oversize.

16 DESCRIPTION OF THE DRAWING

17 Figure 1 is a schematic sectional side view of the
18 mixer circuit.

19 DESCRIPTION OF THE PREFERRED EMBODIMENT

20 The mixer circuit 1 comprises a vertically orientated
21 mixer vessel 2 forming a cylindrical, open-topped mixing chamber
22 3. The mixer vessel 2 has a conical bottom which forms a
23 centrally positioned bottom outlet 4.

24 A vibrating screen 5 is positioned beneath the outlet
25 4, to retain and reject oversize material 6 unsuitable for
26 subsequent pumping.

1 A holding vessel 7, forming an open-topped chamber 8,
2 is positioned beneath the screen 5, to receive the slurry passing
3 through the latter.

4 A recycle pipe loop 9 connects the holding vessel
5 chamber 8 with the mixing chamber 3. The loop 9 connects with
6 an inlet port 10 adapted to feed recycled slurry tangentially to
7 the lower end of the inside surface 11 of the mixer vessel wall
8 12.

9 A variable pump 15 is connected into the recycle loop
10 9, for pumping slurry from the holding vessel chamber 8 into the
11 mixing chamber 3.

12 A conveyor 16 is provided to feed oil sand 17 from a
13 point spaced to one side of the vertical axis of mixer vessel 2.
14 The oil sand forms a free-falling stream that follows a downward
15 and lateral trajectory and penetrates into the slurry vortex 18,
16 which has been formed by pumping slurry through the inlet port
17 10 and into the mixing chamber 3.

18 A line 19, connected with a source (not shown) of hot
19 water, is connected with a port 20 adapted to feed the water
20 tangentially to the mixer vessel inner surface 11.

21 In practice, the rate at which the oil sand is fed to
22 the mixer vessel 1 tends to be irregular. As a result, the
23 swirling vortex 18 can overflow the rim of the vessel. To cope
24 with this problem, an inwardly projecting flange 21 is provided
25 around the rim, to serve as an annular dam. If slurry rises
26 about the dam, an overflow conduit 22 is provided to drain it
27 into the holding vessel chamber 8.

1 A line 23 and outlet pump 24 withdraw product slurry
2 from the holding vessel 7, for conveyance to the pipeline (not
3 shown).

4 The operation and performance of the mixer circuit 1
5 are exemplified by the following test results from a pilot run
6 using the circuit.

7 Example

8 A mixer circuit in accordance with Figure 1 was tested
9 in the field. The cylindrical section of the mixer vessel had
10 a 4 foot diameter and 4 foot height, with a 15° conical section
11 at its base. A 12 inch bottom outlet was provided. A vibrating
12 screen was positioned beneath the outlet, for rejecting plus 1
13 inch material.

14 Oil sand, pre-crushed to -5 inches, was introduced at
15 90 tons/hour and mixed with fresh hot water (90°C), added at the
16 rate of 360 gallons/minute, and recycled slurry. The slurry was
17 recycled at a rate sufficient to maintain the vortex.

18 The product from the holding vessel had a density of
19 about 1.6 (about 60% by weight solids) and temperature of about
20 50°C. The density was consistently maintained within 10% for a
21 period of more than 2 hours.

1 THE EMBODIMENTS OF THE INVENTION IN WHICH AN EXCLUSIVE
2 PROPERTY OR PRIVILEGE IS CLAIMED ARE DEFINED AS FOLLOWS:

3 1. A mixing circuit for slurring oil sand in water,
4 comprising:

5 a vertically oriented open-topped mixer vessel forming
6 a circular mixing chamber, said vessel having a centrally
7 positioned bottom outlet leading from the chamber;

8 means for feeding a free-falling stream of oil sand
9 into the upper end of the mixing chamber;

10 means for introducing heated fresh water into the
11 mixing chamber;

12 an open screen for screening the freely discharged
13 slurry stream leaving the bottom outlet, to remove oversize
14 solids;

15 an open-topped holding vessel for receiving the
16 screened slurry and providing positive suction to an output pump;
17 and

18 a pipe loop, incorporating a pump, connecting the
19 holding vessel with the mixing chamber, said loop being adapted
20 to feed recycled slurry, passing therethrough, tangentially to
21 the inner surface of the mixer vessel wall to form a slurry
22 vortex therein.

23 2. The mixing circuit as set forth in claim 1 wherein:
24 the means for introducing heated fresh water is adapted
25 to feed it tangentially to the inner surface of the mixer vessel
26 wall.

1 3. A continuous process for mixing oil sand with water
2 to produce an aerated slurry, comprising:

3 introducing a stream of recycled slurry into a circular
4 mixing chamber formed by an open-topped mixer vessel, so that the
5 stream tangentially contacts the inner surface of the mixer
6 vessel wall and forms a swirling vortex comprising a body of
7 slurry and a central air core;

8 adding fresh water to the vortex;

9 feeding a free-falling stream of oil sand into the
10 upper part of the vortex, whereby the oil sand, fresh water and
11 recycled slurry mix in the vortex and entrain air to form an
12 aerated slurry;

13 removing the so-produced slurry through a central
14 outlet at the base of the mixing chamber;

15 screening the slurry leaving the central outlet to
16 remove oversize solids;

17 collecting the slurry leaving the mixer vessel outlet
18 in a holding vessel;

19 withdrawing a first stream of slurry from the holding
20 vessel and pumping it through a pipe loop communicating with the
21 mixing chamber, to provide the aforesaid stream of recycled
22 slurry; and

23 withdrawing a second stream of slurry from the holding
24 vessel, for conveyance to a pipeline.

25 4. The process as set forth in claim 3 wherein the
26 rates of oil sand and fresh water addition and the rate of slurry
27 recycle are controlled to produce a slurry containing in the
28 order of 60 percent by weight solids.

1 5. The mixing circuit as set forth in claim 1 wherein:
2 a conduit interconnects the upper end of the mixing
3 chamber with the holding vessel for draining overflow from the
4 former to the latter.

5 6. The mixing circuit as set forth in claim 1 wherein:
6 the means for introducing fresh water is adapted to
7 feed it tangentially to the inner surface of the mixer vessel
8 wall; and
9 a conduit interconnects the upper end of the mixing
10 chamber with the holding vessel for draining overflow from the
11 former to the latter.

2000984

Fig. 1.