# Capstone 2 Project: Credit Card Approval Prediction

Dev Joshi<sup>1</sup>

(1) Spring Board Bootcamp

## **Executive Summary**

- Manual Analysis of credit card is difficult to make for the financial institutions
- Machine Learning approaches can be applied to automate the task
- We applied machine learning models for the task resulting in ~ 300 % increase in revenue over and above a naive model doing the same job
- The monetary gain for the best performing machinelearning model is \$8,120,000 as compared against the naive model



#### **Problem Statement**

The personal information and data submitted by credit-card applicants can be used to decide creditworthiness of the applicants.



#### The dataset source is:

https://www.kaggle.com/datasets/rikdifos/credit-card-approval-prediction.

- Machine learning approaches can be applied to automate the approval of credit-card applications
- In this project, we build an automatic credit card approval predictor using machine learning techniques

#### **Datasets**

#### Two datasets:

- (i) one with the application records, and
- (ii) another with the credit-card records.
- The Application record dataset: 438557 rows and 18 columns.
  - The credit record dataset:1048575 rows and 3 columns.
  - Both the datasets have a common column name ('ID') connecting both the datasets.
- The length of intersection of two datasets is found to be 36457.
  - The data-types in the application record are converted from the non-numeric data (object datatype) to numeric data using labelencoder.



### **Features**



- Few variables in the application record data-set checked if there are outliers
- Plot shows outliers in 'Children counts', 'Total Income Amount', 'Family members count'

## **Features**



 Removed the outliers in the above columns of the application record data-set

#### **Credit-Record Dataset**

The credit-record dataset records the creditworthiness of a consumer into eight categories :

- 0 : 1 29 days past due
- 1:30 59 days past due
- 2:60 89 days over due
- 3:90 119 days over due
- 4: 120 149 days over due
  - 5 : Overdue or bad debts, write-offs for more than 150 days
    - C : paid off that month
  - X : no loan for the month

We regrouped these categories into only two: 0 (creditworthiness – 0. C, X) and 1 (no creditworthiness (1, 2, 3, 4, 5).

## **SMOTE Algorithm**



- The 'status' which is the target 'variable' has 87.97 % as 0 (creditworthiness) and 12.03 % as 1 (no credit-worthiness) (image in the left)
- The creditworthy category has larger population than the non-creditworthy. It suffers oversampling.
- We divided the data into those that will be used to train the model and those that will be used to predict the approval: 70 % for training and 30 % testing.
- To correct the over-sampling, we applied SMOTE (Synthetic Minority Over-sampling Technique) algorithm to generate the second category of data (non-creditworthiness) (image in the right)

#### **CONFUSION Matrix**



- We applied machine-learning models to the processed data.
- We began with the Decision Tree Classifier.
- The confusion matrix above shows it has high True Negative and True Positive.
- The accuracy score from this confusion matrix is 0.80.

#### **CONFUSION Matrix**



- Next, we fitted the Random Forest model on the training set of the data and use the model to make prediction using the test data.
- The accuracy score from this confusion matrix is 0.81.
- The Random Forest model was run with three variables: n\_estimators = 150, max\_depth = 16 and min\_samples\_lead = 12.
- We employed GridSearchCV to get the optimum values of these parameters and found n estimators = 300, max depth = 20 and min samples leaf =9.
- We refitted the model using these parameters and got the accuracy to be 0.80 similar to previous value.

### **CONFUSION Matrix**



- We then repeated the process of plotting the confusion matrix with the Logistic Regression model.
- We got the accuracy of this model to be 0.52.

## **Performance Metrics: Table**

| Model                  | Precision | Recall | F-score | Accuracy | Revenue          |
|------------------------|-----------|--------|---------|----------|------------------|
| Decision<br>Tree       | 0.71      | 0.87   | 0.78    | 0.80     | +\$5,101,000.00  |
| Random<br>Forest       | 0.70      | 0.89   | 0.78    | 0.81     | +\$4,837,000.00  |
| Logistic<br>Regression | 0.78      | 0.51   | 0.62    | 0.52     | +\$5,294,000.00  |
| 'Naive'                | 0.43      | 0.53   | 0.47    | 0.52     | -\$ 2,826,000.00 |

- The Random Forest model has the highest accuracy.
- The cost-analysis shows that Logistic Regression Model would make highest revenue gain as compared to a naive model we picked up.

#### **Conclusions**

- We built a machine learning-based classifier that predicts if a credit card application will get approved or not, based on the information provided in the application.
- While building this credit card approval predictor, we learned about common preprocessing steps such as label encoding, and handling outliers.
- We implemented three different machine learning models, optimized the hyper-parameters for one, and evaluated the performance using the accuracy score.
- Based on the accuracy score, we found the Random Forest Model to be most accurate.
- We have used python's machine learning libraries to implement machine learning algorithms. In the future, we can investigate to estimate the tangible benefits of the predictions of these machine learning models.

# Thank You!