Guided Policy Search

Sergey Levine

Learning on PR2

Shape sorting cube

Learned Visuomotor Policy: Shape sorting cube

Visuomotor Policies

Various Experiments Including the policy input

Guided Policy Search

update λ with subgradient descent:

$$\lambda_t \leftarrow \lambda_t + \eta D_t(\pi_\theta, p)$$

Supervised Learning Objective

$$\theta = \arg\min_{\theta} \sum_{t=1}^{T} E_{p(\mathbf{x_t})} [\rho_t D_{KL}(\pi_{\theta}(\mathbf{u}_t | \mathbf{x}_t) || p(\mathbf{u}_t | \mathbf{x}_t)) + \lambda_t^T E_{\pi_{\theta}(\mathbf{u}_t | \mathbf{x}_t)} [\mathbf{u}_t]]$$

$$\pi_{\theta}(\mathbf{u}_t|\mathbf{x}_t) = \mathcal{N}(\mu_{\pi}(\mathbf{x}_t), \Sigma_{\pi}(\mathbf{x}_t))$$

$$p(\mathbf{u}_t|\mathbf{x}_t) = \mathcal{N}(\mu_p(\mathbf{x}_t), \Sigma_p(\mathbf{x}_t))$$

generate samples from $p(\mathbf{x}_t)$ by executing $p(\mathbf{u}_t|\mathbf{x}_t)$

$$\frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \rho_t D_{KL}(\pi_{\theta}(\mathbf{u}_t | \mathbf{x}_t) || p(\mathbf{u}_t | \mathbf{x}_t)) + \lambda_t^T \mu_{\pi}(\mathbf{x}_t)$$

$$\frac{1}{N} \sum_{t=1}^{N} \sum_{t=1}^{T} \frac{\rho_t}{2} \left[(\mu_{\pi}(\mathbf{x}_t) - \mu_p(\mathbf{x}_t))^T \Sigma_p(\mathbf{x}_t)^{-1} (\mu_{\pi}(\mathbf{x}_t) - \mu_p(\mathbf{x}_t)) + \operatorname{tr}\left(\Sigma_{\pi}(\mathbf{x}_t) \Sigma_p(\mathbf{x}_t)^{-1}\right) + \log \frac{|\Sigma_p(\mathbf{x}_t)|}{|\Sigma_{\pi}(\mathbf{x}_t)|} \right] + \lambda_t^T \mu_{\pi}(\mathbf{x}_t)$$

$$\mu_{\pi} : \frac{1}{N} \sum_{t=1}^{N} \sum_{t=1}^{T} \frac{\rho_t}{2} \|\mu_{\pi}(\mathbf{x}_t) - \mu^{\star}(\mathbf{x}_t)\|_{\Sigma_p(\mathbf{x}_t)^{-1}} \qquad \mu^{\star}(\mathbf{x}_t) = \mu_p(\mathbf{x}_t) - \Sigma_p(\mathbf{x}_t) \lambda_t$$

Trajectory Optimization (without GPS)

Goal: optimize Gaussian trajectory distribution $p(\tau)$ w.r.t. $E_p[c(\tau)]$

Must optimize time-varying linear-Gaussian controller $p(\mathbf{u}_t|\mathbf{x}_t)$

Controller has form $p(\mathbf{u}_t|\mathbf{x}_t) = \mathcal{N}(\mathbf{K}_t\mathbf{x}_t, \Sigma_t)$

Use LQR to get \mathbf{K}_t , but what is Σ_t ?

If \mathbf{x}_t is Markovian, $\Sigma_t = 0$ always (but this is boring...)

Let's instead optimize
$$E_p[c(\tau)] - \mathcal{H}(p) = \sum_{t=1}^T E_{p(\mathbf{x}_t, \mathbf{u}_t)}[c(\mathbf{x}_t, \mathbf{u}_t)] - \mathcal{H}(p(\mathbf{u}_t | \mathbf{x}_t))$$
(we'll see why soon...)
$$E_p[c(\tau)] - \mathcal{H}(p)$$

Maximum entropy solution is simply $p(\mathbf{u}_t|\mathbf{x}_t) = \mathcal{N}(\mathbf{K}_t\mathbf{x}_t, \mathbf{R}_t + \mathbf{B}_t^T\mathbf{P}_{t+1}\mathbf{B})$ $\text{LQR cost-to-go w.r.t. } \mathbf{u}_t, \text{ sometimes written as } Q_{\mathbf{u}\mathbf{u}t}$

Trajectory Optimization

- 1. Run time-varying policy $p(\mathbf{u}_t|\mathbf{x}_t)$ on robot N times
- 2. Collect dataset $\mathcal{D} = \{\tau_i\}$ where $\tau_i = \{\mathbf{x}_{1i}, \mathbf{u}_{1i}, \dots, \mathbf{x}_{Ti}, \mathbf{u}_{Ti}\}$
- 3. For each $t \in \{0, \ldots, T-1\}$, fit linear Gaussian $p(\mathbf{x}_{t+1}|\mathbf{x}_t, \mathbf{u}_t)$
- 4. Solve control problem to get new $p(\mathbf{u}_t|\mathbf{x}_t)$

Trajectory Optimization

$$\min_{p(\tau)} E_p[c(\tau)] \text{ s.t. } D_{KL}(p(\tau) || \bar{p}(\tau)) \leq \epsilon$$

$$\frac{1}{\eta} \mathcal{L}(p, \eta) = E_p \left[\frac{1}{\eta} c(\tau) - \log \bar{p}(\tau)\right] - \mathcal{H}(p) - \epsilon$$

$$\min_{p(\tau)} E_p(\tilde{c}(\tau)] - \mathcal{H}(p) \qquad \tilde{c}(\tau) = \frac{1}{\eta} c(\tau) - \log \bar{p}(\tau)$$

[see Levine & Abbeel '14 for details]

Trajectory Optimization (with GPS)

$$\min_{p(\tau)} \sum_{t=1}^{T} E_{p(\mathbf{x}_t, \mathbf{u}_t)} [c(\mathbf{x}_t, \mathbf{u}_t) + \mathbf{u}_t^T \lambda_t + \rho_t D_{KL}(p(\mathbf{u}_t | \mathbf{x}_t) || \pi_{\theta}(\mathbf{u}_t | \mathbf{x}_t))]$$
s.t. $D_{KL}(p(\tau) || \bar{p}(\tau)) \le \epsilon$

$$\mathcal{L}(p, \eta) = \sum_{t=1}^{T} E_{p(\mathbf{x}_t, \mathbf{u}_t)} [c(\mathbf{x}_t, \mathbf{u}_t) + \mathbf{u}_t^T \lambda_t + \rho_t D_{KL}(p(\mathbf{u}_t | \mathbf{x}_t) | \pi_{\theta}(\mathbf{u}_t | \mathbf{x}_t)) + \eta D_{KL}(p(\mathbf{u}_t | \mathbf{x}_t | \bar{p}(\mathbf{u}_t, \mathbf{x}_t)))]$$

$$\mathcal{L}(p, \eta) = \sum_{t=1}^{T} E_{p(\mathbf{x}_t, \mathbf{u}_t)} [c(\mathbf{x}_t, \mathbf{u}_t) + \mathbf{u}_t^T \lambda_t - \rho_t \log \pi_{\theta}(\mathbf{u}_t | \mathbf{x}_t) - \eta \bar{p}(\mathbf{u}_t, \mathbf{x}_t)] - (\rho_t + \eta) \mathcal{H}(p(\mathbf{u}_t | \mathbf{x}_t))$$

$$\tilde{c}(\mathbf{x}_t, \mathbf{u}_t)$$

$$\mathcal{L}(p, \eta) = \sum_{t=1}^{T} E_{p(\mathbf{x}_t, \mathbf{u}_t)} [\tilde{c}(\mathbf{x}_t, \mathbf{u}_t)] - \nu_t \mathcal{H}(p(\mathbf{u}_t | \mathbf{x}_t))$$

maximum entropy objective (like before)

Instrumented Training

training time

test time

Experimental Tasks

Shape sorting cube

Learned Visuomotor Policy: Shape sorting cube

Hanger

Learned Visuomotor Policy: Hanger Task

Learned Visuomotor Policy: Hammer Task

Bottle

Learned Visuomotor Policy: Bottle Task

Locomotion

better trajectory optimization + large scale simulation

Igor Mordatch

Darwin Robot

better trajectory optimization + large scale simulation + adaptation to real world dynamics

Guided Policy Search Applications

manipulation

with N. Wagener and P. Abbeel

dexterous hands

with V. Kumar and E. Todorov

locomotion

aerial vehicles

with G. Kahn, T. Zhang, P. Abbeel

tensegrity robot

with M. Zhang, K. Caluwaerts, P. Abbeel

DAGGER

A simpler way to turn policy search into supervised learning

Requires a "stronger" teacher – must give optimal action ${\bf u}$ in any state ${\bf x}$

Typically used for imitation learning from a human expert

Initialize $\mathcal{D} \leftarrow \emptyset$.

Initialize $\hat{\pi}_1$ to any policy in Π .

typically 0.0, except when i = 1, then 1.0

 $\mathbf{for}\ i=1\ \mathbf{to}\ N\ \mathbf{do}$

Let $\pi_i = \beta_i \hat{\pi}^* + (1 - \beta_i) \hat{\pi}_i$.

Sample T-step trajectories using π_i .

Get dataset $\mathcal{D}_i = \{(s, \pi^*(s))\}$ of visited states by π_i and actions given by expert.

Aggregate datasets: $\mathcal{D} \leftarrow \mathcal{D} \cup \mathcal{D}_i$.

Train classifier $\hat{\pi}_{i+1}$ on \mathcal{D} .

end for

Return best $\hat{\pi}_i$ on validation.

DAGGER Video

See http://videolectures.net/aistats2011_ross_reduction/

Trajectory Optimization – Dynamics Fitting

- 1. Run time-varying policy $p(\mathbf{u}_t|\mathbf{x}_t)$ on robot N times
- 2. Collect dataset $\mathcal{D} = \{\tau_i\}$ where $\tau_i = \{\mathbf{x}_{1i}, \mathbf{u}_{1i}, \dots, \mathbf{x}_{Ti}, \mathbf{u}_{Ti}\}$
- 3. For each $t \in \{0, \ldots, T-1\}$, fit linear Gaussian $p(\mathbf{x}_{t+1}|\mathbf{x}_t, \mathbf{u}_t)$
- 4. Solve control problem to get new $p(\mathbf{u}_t|\mathbf{x}_t)$

Learned Motion Skills

More Visuomotor Experiments

Beyond Instrumented Training

training time

test time

Finn, Tan, Duan, Darrell, L., Abbeel '15

Learning Visual State Spaces

$$ilde{\mathbf{x}}_t = egin{bmatrix} \mathbf{x}_t \ \mathbf{f}_t \end{bmatrix}$$

Visual State Space Experiments

Bag Transfer Task