Lecture: Central-Bank Balance Sheet Policies: comparative statics

```
by on February 14, 2024
```

Intro

> An anecdote

"The problem with QE is it works in practice, but it doesn't work in theory."

Ben Bernanke

> An anecdote

"The problem with QE is it works in practice, but it doesn't work in theory."

Ben Bernanke

Divorce within Central Bank units

* Forecast Units: DSGE modeling

* Operations: fine-tune QE and policy rate

Supervision: balance-sheet stats

> An anecdote

"The problem with QE is it works in practice, but it doesn't work in theory."

Ben Bernanke

- Divorce within Central Bank units
 - * Forecast Units: DSGE modeling
 - * Operations: fine-tune QE and policy rate
 - Supervision: balance-sheet stats
- Regulation and Operations
 - * Operations + Supervision: role of frictions
 - * Frictions: key for transmission

New Keynesian Model:

* articulates: interest-rate + inflation tax channels

New Keynesian Model:

- * articulates: interest-rate + inflation tax channels
- * single instrument
 - * environment w/o financial frictions

New Keynesian Model:

- * articulates: interest-rate + inflation tax channels
- * single instrument
 - * environment w/o financial frictions

Policy in Practice

* many rates moved by central banks

New Keynesian Model:

- * articulates: interest-rate + inflation tax channels
- * single instrument
 - * environment w/o financial frictions

Policy in Practice

- * many rates moved by central banks
- * banks trade reserves, face frictions

New Keynesian Model:

- * articulates: interest-rate + inflation tax channels
- * single instrument
 - * environment w/o financial frictions

Policy in Practice

- $_{\star}\,$ many rates moved by central banks
- * banks trade reserves, face frictions
- * implementation: M eases frictions and moves spreads

> Many Questions...

- * When does CB balance sheet size matter?
 - * when does it stimulate credit?
 - * when does it translate into price level?

> Many Questions...

- When does CB balance sheet size matter?
 - * when does it stimulate credit?
 - * when does it translate into price level?
- When does CB balance sheet composition matter?
 - * Are all QE instruments equal?
 - * can CBs target sectors | regions of the economy?

> Goal

- * Leading framework: new-Keynesian
 - * irrelevant for these questions
 - QE works: only through forward-guidance on fiscal considerations (Caramp-Silva '21)

> Goal

- * Leading framework: new-Keynesian
 - irrelevant for these questions
 - QE works: only through forward-guidance on fiscal considerations (Caramp-Silva '21)

- Goal: Simple framework
 - * comparative statics analysis
 - * encompasses multiple channels
 - * bank frictions and market segmentation

> Contribution

- Identify key elasticities
 - * elasticities: associated with different channels
 - * elasticities: identifies sources of neutrality
 - * elasticities: measure strength of channels
- Empirical goal (not today)
 - * estimate elasticities
 - quantify effects through different channels
 - use theory

Baseline Framework

* Baseline

Baseline Framework

* Baseline

> Notation

* R real rates

> Notation

- R real rates
- * i nominal rates
- * All individual variables are real
- $_*$ all aggregate quantities real...except for M

> Non Banking: Asset Demand System

* critical: segmentation

> Non Banking: Asset Demand System

« critical: segmentation

Demand System

Deposit supply:

$$D = (R_{t+1}^D)^{\epsilon^D}$$

Loan demand:

$$L = \left(R_{t+1}^{\ell}\right)^{\epsilon^{\ell}}$$

> Central Bank

* Standard Instrument:

$$i^m \to R^m \equiv \frac{1 + i^m}{1 + \pi}$$

* Second Instrument (quantity of reserves):

Μ

> Central Bank

* Standard Instrument:

$$i^m \to R^m \equiv \frac{1+i^m}{1+\pi}$$

* Second Instrument (quantity of reserves):

Μ

* Classic exercise:

$$P \cdot T$$
 + Discount Window Loans = $M(1 + i^m) - M'$

 $_{\star}$ T transfers (a.k.a. printing press, helicopter drops, or "maquinita")

> Bank's Problem | No Frictions

Bank maximizes:

$$\max_{\{\ell, m, d, \textit{Div}\} \geq 0} \textit{Div} + \beta \underbrace{R^{\ell}\ell + R^m m - R^d d}_{\{\text{Expected Portfolio Returns}\}}$$

budget:

$$Div + \ell + m = n + d$$

> Bank's Problem w|o Frictions

No frictions no arbitrage

Return Parity

$$\frac{1}{\beta} = R^{\ell} = R^{m} = R^{d}.$$

> Bank's Problem | Settlement Frictions

* Portfolio Return now:

$$\underbrace{\mathbb{R}^{\ell}\ell + R^m m - R^d d}_{\text{Expected Portfolio Returns}} + \underbrace{\mathbb{E}\left[\chi(s|\theta)\right]}_{\text{Expected Settlement Costs}}$$

> Bank's Problem | Settlement Frictions

* Portfolio Return now:

$$\underbrace{\mathbb{R}^{\ell}\ell + R^m m - R^d d}_{\text{Expected Portfolio Returns}} + \underbrace{\mathbb{E}\left[\chi(s|\theta)\right]}_{\text{Expected Settlement Costs}}$$

* Balance at central bank:

$$s = m - \delta d$$

or

$$s = m$$

 \star χ : liquidity risk

 $> \chi$ encodes interbank market

* χ capture settlement costs:

$$\chi(s;\theta) = \begin{cases} \chi^- \cdot s & \text{if } s \le 0 \\ \chi^+ \cdot s & \text{if } s > 0 \end{cases}$$

> Consequences

* Rates now depend on liquidity service and risk:

$$R^{\ell} = R^m + \frac{1}{2} \underbrace{\left[\chi^+ + \chi^-\right]}_{\text{liquidity service}\mathcal{L}} = R^d - \frac{\delta}{2} \underbrace{\chi^-}_{\text{liquidity risk}}$$

Liquidity Premia

$$\frac{1}{\beta} = R^{\ell} > R^{d} > R^{m}$$

> Consequences...

Inelastic loan rate:

$$\frac{1}{\beta} = R^{\ell}$$

- Fixed liquidity premium
 - If R^m fixed by fixing i^m and future inflation...

$$\frac{1}{\beta} - R^m = \mathcal{L}$$

Neutrality

One time "helicopter drop"

$$\uparrow M = m(\mathcal{L}) \cdot \uparrow P$$

Constant Real Deposits:

$$D = d(\mathcal{L})$$

> In General - Equilibrium System

- * Fully characterize equilibrium
- * Static System of N equations, N unknowns
- System expressed in terms of local elasticities
- $_*$ flexible and easily scalable

> Quantitative Easing (QE)

Differential form of the central bank's budget constraint

$$dL^g = dM + \underbrace{d\left[Pe^g(P) + T_0^b + T_0^{nb}\right]}_{\text{Revaluation effects}}$$

- Consider
 - nominal transfers
 - nominal assets/liabilities
- * Then, we study

$$\mathrm{d}L^g=\mathrm{d}M$$

> Remarks

* $\frac{dP}{P}$ not expected inflation:

$$\frac{P'}{P} = (1+\pi) \rightarrow d\frac{P'}{P} = 0.$$

Is counterfactual price change or (surprise inflation)

$$\frac{dP}{P}$$

> Key Elasticities

- Key elasticities:
 - 1. $\frac{1}{\sqrt{n}}$ internal equity elasticity
 - 2. ϵ^d external funding elasticity
 - 3. ϵ_{P}^{ℓ} and ϵ_{P}^{ℓ} , loan demand elasticities w.r.t. (expected) interest rate and price level
 - 4. $\mathcal{L}^m \epsilon_{\theta}^{\mathcal{L}^m}$ and $\mathcal{L}^d \epsilon_{\theta}^{\mathcal{L}^d}$ (semi) elasticities of liquidity premia w.r.t. market tightness
 - 5. Consolidated equity (of central bank and private banks) exposure to price level:

$$\epsilon_P^e = \frac{e'(P)}{e(P)} \frac{P}{dP}.$$

Key Financial ratios:

$$\omega_{\mathbf{e}} = \frac{1}{\operatorname{div}/e^b(P)}, \quad \omega_{\ell} = -\frac{\ell^b/e^b(P)}{\operatorname{div}/e^b(P)}, \quad \omega_{\mathbf{d}} = \frac{\operatorname{d}/e^b(P)}{\operatorname{div}/e^b(P)}$$

> Summary of effects over aggregate credit

Effects over aggregate credit

		Nominal Rigidity				
		None	Consolidated equity	Central bank equity	Sticky wages	
	None	N	N	N	N	
Financial	Settlement friction	N	Y	N	Υ	
Friction	Risk absorption	N	Y	N	N	
	Both	N	Y	Υ	Y	

> Summary of effects over aggregate credit

Effects over aggregate credit

		Nominal Rigidity				
		None	Consolidated equity	Central bank equity	Sticky wages	
Financial Friction	None	N	N	N	N	
	Settlement friction	N	Υ	N	Υ	
	Risk absorption	N	Υ	N	N	
	Both	N	Υ	Υ	Y	

General expression

$$\begin{split} \frac{\mathrm{d}\ell}{\ell} &= \frac{1}{D\mathrm{en}} \left\{ \left(\omega_{\mathrm{e}} \epsilon_{P}^{e} + \omega_{\tau_{h}} \right) \left(R^{f} R^{d} \mathcal{L}^{m} \epsilon_{y}^{\mathcal{D}^{h}} + \varphi \gamma \mathbb{V} \left(R^{\ell} \right) \epsilon_{R^{\ell}}^{\ell} R^{f} \mathbf{m}^{-} \right) + \epsilon_{P}^{\ell} \mu \left(R^{\ell} \epsilon^{d} \omega_{d} \left(\mathcal{L}^{m,\mathcal{L}^{m}} + \mathcal{L}^{\mathcal{D}^{e}} \mathcal{L}^{d} \right) \right) \right\} \\ & \dots - \left(e^{\mathcal{B}}(P) - \frac{T_{0}^{b} + T_{0}^{b}}{P} \right) \varphi \gamma \mathbb{V} \left(R^{\ell} \right) \epsilon_{R^{\ell}}^{\ell} \left(R^{d} \mathcal{L}^{m,\mathcal{L}^{m}} \psi + R^{f} \epsilon^{d} \omega_{d} \left(\mathcal{L}^{m,\mathcal{L}^{m}} + \mathcal{L}^{\mathcal{D}^{e},\mathcal{L}^{d}} \right) \right) \right\} \frac{\mathrm{d}M}{M} \end{split}$$

> Remarks

- * Differential system captures essential elements of the theory
- Connect w/ number of results
 - Modigliani-Miller Theory
 - * Fisherian-Debt Deflation
 - * Liquidity Trap
 - Loan market segmentation

* Framework useful to ask about QE

* Framework useful to ask about QE

* 2009-2015 Inflation: very mild!

* Framework useful to ask about QE

* 2009-2015 Inflation: very mild!

* 2020-2022 Inflation: very high!

- Framework useful to ask about QE
- * 2009-2015 Inflation: very mild!
- 2020-2022 Inflation: very high!
- « Can QE be partially responsible?
 - * QE on different assets
 - * stronger financial sector funding elasticity
 - * stronger credit sector loan elasticity
 - * smoking gun: nominal deposit growth

Directed Monetary Policy

> Neutrality under heterogeneity

- When does composition of balance sheet matter?
- Multiple dimensions of heterogeneity
 - * bank specific
 - funding elasticity
 - liquidity exposure
 - sectoral loan/deposit demand
 - elasticities
 - cross-bank elasticities
- * These dimensions do not matter
 - * as long as assets have similar liquidity/risk properties
 - interbank market is integrated

> Bank's Problem | Government Bonds

* Portfolio Return with government bond:

$$\underbrace{R^{\ell}\ell + R^{b}b + R^{T}b^{T} + + R^{m}m - R^{d}d}_{\text{Expected Portfolio Returns}} + \mathbb{E}\left[\chi(s|\theta)\right]$$

> Bank's Problem | Government Bonds

* Portfolio Return with government bond:

$$\underbrace{R^{\ell}\ell + R^{b}b + R^{T}b^{T} + + R^{m}m - R^{d}d}_{\text{Expected Portfolio Returns}} + \mathbb{E}\left[\chi(s|\theta)\right]$$

* Settlement balance:

$$s = m + b - \delta d$$

> Short-term Rate Puzzle

* We now have:

$$R^{\ell} > R^{b} = R^{m} + \frac{1}{2}\chi^{+}$$

> Short-term Rate Puzzle

* We now have:

$$R^{\ell} > R^{b} = R^{m} + \frac{1}{2}\chi^{+}$$

* Think of illiquid *long-term* gov bond: R^T

$$R^{\ell} = \underbrace{R^{\mathsf{T}} > R^{\mathsf{b}} > R^{\mathsf{m}}}_{}.$$

- * CB: can move yield curve!
 - * no interest-rate risk
 - * liquidity premium!

> Bank's Problem | Sectoral Bonds

* Sectors i and j:

$$\underbrace{R^{i}\ell^{i} + R^{j}\ell^{j} + R^{m}m - R^{d}d}_{} + \mathbb{E}\left[\chi(s|\theta)\right]$$

Expected Portfolio Returns

> Bank's Problem | Sectoral Bonds

* Sectors i and j:

$$\underbrace{ \frac{\mathbf{R}^{i} \boldsymbol{\ell}^{i} + \mathbf{R}^{i} \boldsymbol{\ell}^{j} + \mathbf{R}^{m} m - \mathbf{R}^{d} \boldsymbol{d}}_{\text{Expected Portfolio Returns}} + \mathbb{E} \left[\chi(\boldsymbol{s} | \boldsymbol{\theta}) \right]$$

Settlement balance:

$$s = m + \psi^{i} \ell^{i} + \delta d$$

> Bank's Problem | Asset Purchase Program

- * When is does asset purchase of *i* work?
 - $_{\star}$ same: segmentation + lack of satiation

> Bank's Problem | Asset Purchase Program

- * When is does asset purchase of *i* work?
 - \star same: segmentation + lack of satiation
- * When does it have a differentiated impact on i vs j?
 - $_{\star}$ collateral values differ $\psi^{i}>0$

> Bank's Problem | Asset Purchase Program

- When is does asset purchase of i work?
 - * same: segmentation + lack of satiation
- * When does it have a differentiated impact on i vs j?
 - $_*$ collateral values differ $\psi^i>0$
- Bank specific effects (e.g. LTRO)?
 - * could have bank specific loan-demand curves (does not matter)

Small Semi-Open Economies

> Small Semi-Open Economy Considerations

- Open Economy
 - * what are the effects of reserve accumulation
 - * why are internventions sterilized
 - * of reserve requiremetns in different currency

> Small Semi-Open Economy Considerations

- Open Economy
 - * what are the effects of reserve accumulation
 - * why are internventions sterilized
 - * of reserve requiremetns in different currency
- Impossible Trinity
 - * how did Peru control inflation and FX for decades?

> Central Bank

* Now allow: M, F*, T

$$T + \frac{\textit{M}'}{\textit{P}} + \text{Discount Window} + \textit{R}^{\ell}\textit{L}^{\textit{g}} + \textit{R}^{\textit{m}}\textit{F}^{\bullet} \frac{\textit{e}}{\textit{P}} = \textit{R}^{\textit{m}}\frac{\textit{M}}{\textit{P}} + \textit{F}^{\bullet}{'}\frac{\textit{e}}{\textit{P}} + \textit{L}^{\textit{g}\prime}$$

- * L^g are private loans held by the central bank
- * F* reserves

> Central Bank

Bank maximizes:

$$\max_{\{b,m^*,d^*,d,m\}\geq 0} \quad \text{Div+} \quad \beta \left[R^{\ell} \cdot \ell + R^m m - R^d d + \mathbb{E} \left[\chi \left(m,d \right) \right] \right] \\ + \quad \beta \left[\underbrace{\left\{ R^{m,*} m^* - R^{*,d} d^* \right\}}_{\text{Dollar Portfolio Returns}} + \mathbb{E} \left[\chi^* \left(m^*,d^* \right) \right] \right]$$

w/ budget

$$Div + \ell + m^* + m = n + d + d^*$$

Dollar balances:

$$s^* = m^* - \rho^* d^* + \delta^* d^*$$

or

$$s^* = m^* - \rho^* d^*$$

> Carry Trade and Local Optimization

* Foreign investors attracted by interest-rate differential:

$$\frac{M_{t+1}^*}{M_t^*} = \epsilon^f \left(R^d - R^{m,*} \right)$$

but capital moves slowly.

* Optimization of savings:

$$R^d \approx R^{d*}$$

> Forex

So long as capital not perfectly mobile:

- break impossible trinity
- * not capital controls, just mobility

> Forex

So long as capital not perfectly mobile:

- break impossible trinity
- * not capital controls, just mobility

Forex and Sterilization

1) Dollar purchases:

$$\uparrow F^* \rightarrow \uparrow e$$

2) There's a bond purchase such that:

$$\uparrow F^*, \uparrow L^g \rightarrow \uparrow e, \bar{P}$$

> Dollarization

- * Dollarization does not impair MP
- But has costs...
 - * current account deficit:

$$R^{d*} > R^{m*}$$

discount window

> Reserve Requirements

- Introduction of capital requirments
 - * appreciates dollar
 - * increase liquidity ratio in dollars

Forex and Sterilization

* Increase in ρ^*

$$\uparrow \rho^* \to \uparrow e, \uparrow \mu^*, \downarrow D^*$$

Extensions

> Other Considerations

- Approach is flexible and scalable
 - * flexible to accommodate other mechanisms
 - $_{\star}\,$ scalable to more granular information

> Other Considerations

- Approach is flexible and scalable
 - * flexible to accommodate other mechanisms
 - * scalable to more granular information
- incorporating other mechanisms and information
 - regulation
 - * risk absorption
 - * heterogeneity: asset markets, geography, institutions

Other Mechanisms: Regulation and Risk

- * Regulation
- * Risk

Other Mechanisms: Regulation and Risk

- * Regulation
- * Risk

> Other Mechanism | Capital Requirements

Assume there are capital requirements:

$$d \leq \kappa e^b(P)$$

Modifies funding elasticity:

$$\frac{\mathrm{d}d}{d} = \kappa \epsilon_P^{\mathrm{e}} \frac{\mathrm{d}P}{P}$$

$$\begin{bmatrix} \frac{\mathrm{d}P}{P} \\ \frac{\mathrm{d}\ell}{\ell} \end{bmatrix} = \mathcal{A}^{-1} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \frac{\mathrm{d}M}{M}.$$

where

$$\mathcal{A} \equiv \left[\begin{array}{cc} \left(1 - \frac{1}{\psi} \omega_{d} \kappa\right) \epsilon_{P}^{\mathsf{e}} & \frac{1}{\epsilon_{\ell}} \frac{R^{\ell}}{\mathcal{L}^{m}} \frac{1}{\epsilon_{\theta}^{\mathcal{L}^{m}} (1 + \theta^{-1})} \\ -\frac{1}{\psi} \left(\omega_{e} + \omega_{d} \kappa\right) \epsilon_{P}^{\mathsf{e}} & \frac{1}{\epsilon_{\ell}} + \frac{1}{\psi} \omega_{\ell} \end{array} \right]$$

> Other ECB considerations

- Risky Absorption
 - * QE: again neutral if internal funding frictionless
 - * Risk-absorption? bank must be specifically exposed to non diversified risk

Other Mechanisms: Regulation and Risk

- * Regulation
- * Risk

> Bank's Problem | Risk

* Add risk and risk-weights:

$$v(n) = \max_{\{b,m,d,n\} \ge 0} Div + \beta \mathbb{E} \left[\frac{\Lambda}{\Lambda} (X) \cdot v(n') \right]$$

> Policy | Risk-Absorption

* Again, nothing changes:

$$\frac{1}{\beta} = \mathbb{E}\left[\Lambda\left(X\right)R^{b}\left(X\right)\right]$$

> Policy | Risk-Absorption

* Again, nothing changes:

$$\frac{1}{\beta} = \mathbb{E}\left[\Lambda\left(X\right)R^{b}\left(X\right)\right]$$

Similar logic

> Policy | Risk-Absorption

Again, nothing changes:

$$\frac{1}{\beta} = \mathbb{E}\left[\Lambda\left(X\right)R^{b}\left(X\right)\right]$$

- Similar logic
- No direct effects
 - * possible: forward guidance

> Policy | Different Bank Equity Segmented?

* Yes: risk absorption can impact risk weights

$$\ell \leq \kappa \, (\mathsf{risk}) \, n$$

* or bank "risk aversion"

$$\mathbb{CE}\left[\right]$$

Modifies:

$$R^{\ell} - R^{\mathsf{x}} = \mathsf{same} + \underbrace{\Gamma}_{\mathsf{risk premium}}$$

- * Takeaway: need bank segmentation again
 - * Silva's JMP

Geographical Heterogeneity

> "Geographical" differences

- * Bank j: differs in access to loan markets, preferences, etc.
- * Geography i: physical location, industrial sector, consumer vs. firm, etc.
- $_*$ ℓ^{ij} such that:

$$\ell^i = \sum_{j \in \mathcal{J}} \ell^{ij}$$

- example:
 - * same interbank market, inelastic deposits

> "Geographical" differences

- * Bank j: differs in access to loan markets, preferences, etc.
- « Geography i: physical location, industrial sector, consumer vs. firm, etc.
- $_*$ ℓ^{ij} such that:

$$\ell^i = \sum_{j \in \mathcal{J}} \ell^{ij}$$

- * example:
 - * same interbank market, inelastic deposits

QE Effects

Consider QE $dM = dL^g$ when $d = \kappa$. Then:

$$\left[egin{array}{c} rac{\mathrm{d}P}{P} \ rac{\mathrm{d}\ell^{ij}}{\ell} \end{array}
ight] = \mathcal{A}^{-1} \left[egin{array}{c} 1 \ 0 \end{array}
ight] rac{\mathrm{d}M}{M}.$$

for suitable ${\cal A}$

$$rac{\mathsf{d}\ell^i}{\ell} = \Omega^{ij}rac{\mathsf{d}\ell^{ij}}{\ell}$$

Asset Liquidity Heterogeneity

> Bank's Problem | Government Bonds

Portfolio Return with government bond:

$$\underbrace{R^{\ell}\ell + R^{b}b + R^{T}b^{T} + + R^{m}m - R^{d}d}_{\text{Expected Portfolio Returns}} + \mathbb{E}\left[\chi(\mathbf{s}|\theta)\right]$$

> Bank's Problem | Government Bonds

Portfolio Return with government bond:

$$\underbrace{R^{\ell}\ell + R^{b}b + R^{T}b^{T} + + R^{m}m - R^{d}d}_{\text{Expected Portfolio Returns}} + \mathbb{E}\left[\chi(s|\theta)\right]$$

Settlement balance:

$$s = m + b - \delta d$$

Tightness (interbank market conditions)

$$\theta = -\underbrace{\frac{m - \delta a}{m - b}}_{\text{surplus}}$$

> Affecting - Liquidity Component of Yields

* We now have:

$$R^{\ell} > R^{b} = R^{m} + \frac{1}{2}\chi^{+}$$

> Affecting - Liquidity Component of Yields

We now have:

$$R^{\ell} > R^{b} = R^{m} + \frac{1}{2}\chi^{+}$$

* Think of illiquid *long-term* gov bond: R^T

$$R^{\ell} = \underbrace{R^{\mathsf{T}} > R^b > R^m}_{}.$$

- * CB: can move yield curve!
 - * interest-rate risk: deficit
 - * liquidity premium!

> Bank's Problem | Sectoral Bonds

* Sectors i and j:

$$\underline{R^{i}\ell^{i} + R^{j}\ell^{j}} + R^{m}m - R^{d}d + \mathbb{E}\left[\chi(s|\theta)\right]$$

Expected Portfolio Returns

> Bank's Problem | Sectoral Bonds

* Sectors i and j:

$$\underbrace{ \frac{\mathbf{R}^{i} \boldsymbol{\ell}^{i} + \mathbf{R}^{i} \boldsymbol{\ell}^{j} + \mathbf{R}^{m} m - \mathbf{R}^{d} \boldsymbol{d}}_{\text{Expected Portfolio Returns}} + \mathbb{E} \left[\chi(\boldsymbol{s} | \boldsymbol{\theta}) \right]$$

Settlement balance:

$$s = m + \psi^{i} \ell^{i} + \delta d$$

> Bank's Problem | Asset Purchase Program

- * When do asset purchase of *i* work?
 - $_{\star}$ same: segmentation + lack of satiation

> Bank's Problem | Asset Purchase Program

- * When do asset purchase of i work?
 - $_{\star}$ same: segmentation + lack of satiation
- * When differentiated impact on i vs j?
 - * symmetric effects
 - $_{\star}$ only when eligible as collateral $\psi^{i}>0$

Conclusion

> Conclusion

- * Present an introduction to a framework to think of MP
 - * framework focused on short-run comparative statics
 - * flexible to accommodate various considerations

> Conclusion

- * Present an introduction to a framework to think of MP
 - * framework focused on short-run comparative statics
 - * flexible to accommodate various considerations
- End goal
 - * estimate key-elasticities
 - * build a tool to evaluate central bank QE

Extension: Price-Level Target

> Variation

- We kept price level constant
- * Redo with inflation target:
 - * similar lessons

Example

Version with Inflation Target

$$\frac{d\ell^b}{\ell^b} = -\frac{\left(1-\zeta^b\right)-\epsilon^B\epsilon_m^{\mathcal{L}^d}}{\epsilon^B\epsilon_d^{\mathcal{L}^m}-\zeta^b}\frac{d\ell^{\mathsf{g}}}{\ell^{\mathsf{g}}}$$

and

$$\frac{d[d]}{d} = \frac{\left(1-\zeta^b\right)-\epsilon^B\epsilon_{\ell^g}^{\mathcal{L}^m}}{\epsilon^B\epsilon_d^{\mathcal{L}^m}-\zeta^b}\frac{d\ell^g}{\ell^g}.$$