Universidad de Costa Rica Escuela de Matemática Miércoles 26 de setiembre II ciclo del 2018

Facultad de Ciencias

Duración: 3 horas

MA0292 Álgebra Lineal para computación Puntaje: 62 puntos

Examen parcial No I

<u>Instrucciones</u>: Favor presentar su identificación. Muestre todos los cálculos y operaciones necesarias que justifiquen sus respuestas. Utilice lapicero azul o negro para poder tener derecho a reclamos. No se permite el uso de calculadoras gráfico-programables, tabletas, etc.

- (10pts) Conteste verdadero (V) o falso (F) en su cuaderno, debe justificar su respuesta para obtener puntaje. (2pts c/u).
- V a. Si $A \in M(n,\mathbb{R})$ es una matriz diagonal, entonces A es antisimétrica.
- **V** b. Si $A, B \in M(n, \mathbb{R})$ y det(A)=2, det(B)=3. Entonces det($4A^{-1}B^{t}$)^t = 6.
- \mathcal{F} c. Sea $A \in M(n,\mathbb{R})$. Si A es invertible y $A^3 = A$, entonces $A^{-1} = A$.
- \checkmark d. Sean $v_1, v_2, v_3 \in \mathbb{R}^3$ tales que v_1 es paralelo a v_2 , entonces v_1 es paralelo a $\text{Proy}_{v_3}^{v_3}$.
- p e. Si $A \in M(4,6,\mathbb{R})$, entonces A puede asumir rango 5.
- 2) (11pts) Considere la ecuación $(C'X)^t = (2X)^t + A$.
 - a. (5pts) Aplicando el álgebra de matrices, determine la matriz \int numérica X que satisface dicha ecuación, suponiendo que C-2I es invertible.
 - b. (6pts) Si $C = \begin{pmatrix} 3 & 1 & 0 \\ 0 & 3 & 0 \\ 1 & 1 & 3 \end{pmatrix}$ y $A = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}$ encuentre la matriz X.
- 3) (12pts) Considere el sistema de ecuaciones lineales:

$$x - y = 2$$

$$x + kz = -1$$

$$3x - 2y + z = 1$$

Utilice eliminación gaussiana para determinar los valores de k para los cuales el sistema tiene solución única y calcule dicha solución.

- 4) (11pts) Sean los vectores $\vec{u} = (-1,0,1)^t$ y $\vec{v} = (0,1,2)^t$.
 - a. (5pts) Calcule $\text{Proy}_{v} u \cdot \sqrt{}$
 - b. (3pts) Encuentre un vector ortogonal simultáneamente tanto a \vec{u} como a \vec{v} .
 - c. (3pts) Calcule el área del paralelogramo definido por los vectores $2\vec{u}$ y \vec{v} . \checkmark
- 5) (17pts) Considere la matriz $A = \begin{pmatrix} \lambda 4 & 0 & \lambda 4 \\ 0 & \lambda + 3 & 0 \\ 1 & 0 & \lambda 2 \end{pmatrix}$
 - a. (3pts) Encuentre el valor de det (A).
 - b. (3pts) ¿Para qué valores de λ el sistema Ax=0 tiene soluciones no nulas?
 - c. (6pts) Calcule la inversa de A si λ =0. $\sqrt{}$
 - d. (5pts) Si $b = (1,1,0)^t$, use Cramer para calcular " x_3 " all resolver Ax = b cuando $\lambda = 0$.