Advanced Topics in Control 2020: Large-Scale Convex Optimization

Exercise 1: Convex Sets

Goran Banjac, Mathias Hudoba de Badyn, Andrea Iannelli, Angeliki Kamoutsi, Ilnura Usmanova

February 26, 2020

Date due: March 5, 2019 at 23:59.

Please submit your solutions via Moodle as a PDF with filename Ex01_Surname.pdf, replacing Surname with your surname.

1 Convex Sets

Show that the following sets are convex.

- (a) A wedge, i.e., a set of the form $\{x \in \mathbb{R}^n : a_1^\top x \leq b_1, a_2^\top x \leq b_2\}$, where $a_1, a_2 \in \mathbb{R}^n$ and $b_1, b_2 \in \mathbb{R}$.
- (b) A norm ball with center $x_0 \in \mathbb{R}^n$ and radius r > 0, i.e., the set

$$B(x_0, r) := \{ x \in \mathbb{R}^n : ||x - x_0|| \le r \},\$$

where $\|\cdot\|$ is a norm in \mathbb{R}^n .

Hint: Use the definition of convexity.

(c) The set of points closer to a given point than a given set, i.e.,

$$\{x \in \mathbb{R}^n : ||x - x_0||_2 \le ||x - y||_2 \text{ for all } y \in S\},$$

where $S \subset \mathbb{R}^n$.

Hint: First show that for fixed $y \in S$, the set $C_y := \{x \in \mathbb{R}^n : ||x - x_0||_2 \le ||x - y||_2\}$ is an affine halfspace.

2 Convex Combinations and Convex Hulls

Prove the following statements.

- (a) A set $C \subset \mathbb{R}^n$ is convex if and only if it contains every convex combination of its elements. *Hint*: Use mathematical induction on the number of elements k.
- (b) The convex hull of a set $S \subset \mathbb{R}^n$ is the intersection of all convex sets containing S, i.e.,

$$\operatorname{conv} S = \bigcap \{C: C \text{ is convex and } S \subset C\}.$$

(c) Let $S = C_1 \cup \ldots \cup C_k$, where C_1, \ldots, C_k are convex sets in \mathbb{R}^n . Then,

conv
$$S = \{ \sum_{i=1}^{k} a_i x_i : x_i \in C_i, \ a_i \ge 0, \ i = 1, \dots, k, \sum_{i=1}^{k} a_i = 1 \}.$$

3 Polar Cone and Separation of Convex Sets

(a) Consider the conical hull of m points x_1, \ldots, x_m in \mathbb{R}^n , i.e.,

$$K = \{ \sum_{j=1}^{m} a_j x_j : a_j \ge 0 \text{ for } j = 1, \dots, m \}.$$

Show that $K^{\circ} = \{ s \in \mathbb{R}^n : s^{\top} x_j \leq 0 \text{ for } j = 1, \dots, m \}.$

(b) Let K be a convex cone (not necessarily closed) with polar K° . Show that the polar $K^{\circ\circ}$ of K° is the closure of K.

Hint: For the inclusion $\operatorname{cl} K \subset K^{\circ\circ}$ use the fact that a polar cone is always closed (why?). For the inverse inclusion, assume for the sake of contradiction that there exists $x_0 \in K^{\circ\circ}$ with $x_0 \notin \operatorname{cl} K$. Since $\operatorname{cl} K$ is closed and convex (why?) you can use the strict separation theorem.

(c) Using your results in (a) and (b) find the polar of $\{s \in \mathbb{R}^n : s^\top x_j \leq 0 \text{ for } j = 1, \dots, m\}$.

4 Normal Cone and Tangent Cone

- (a) Show that the normal cone of a set C at $x \in C$ is a closed convex cone (with no assumptions on C).
- (b) Give a simple description of the normal cone and tangent cone of a polyedron $C = \{x \in \mathbb{R}^n : s_j^\top x \leq r_j \text{ for } j = 1, \dots, m\}$ at a point $x \in C$.