Kevin Sekuj

CS-225: Discrete Structures in CS

Homework 6

Canvas Problems #1-5

1.

$$e_k = 5e_{k-1} + 3$$
 for all integers $k \ge 2$ recurrence relation $e_1 = 2$ initial condition

$$e_2 = 5(e_1) + 3 = 5(2) + 3 = 5^1 \cdot 2 + 5^0 \cdot 3$$

$$e_3 = 5(e_2) + 3 = 5(5^1 \cdot 2 + 5^0 \cdot 3) + 3 = 5^2 \cdot 2 + 5^1 \cdot 3 + 5^0 \cdot 3$$

$$e_4 = 5(e_3) + 3 = 5(5^2 \cdot 2 + 5^1 \cdot 3 + 5^0 \cdot 3) = 5^3 \cdot 2 + 5^2 \cdot 3 + 5^1 \cdot 3 + 5^0 \cdot 3$$

$$e_5 = 5(e_4) + 3 = 5(5^3 \cdot 2 + 5^2 \cdot 3 + 5^1 \cdot 3 + 5^0 \cdot 3) = 5^4 \cdot 2 + 5^3 \cdot 3 + 5^2 \cdot 3 + 5^1 \cdot 3 + 5^0 \cdot 3$$

Guess:

$$e_n = 5^{n-1} \cdot 2 + 5^{n-2} \cdot 3 + 5^{n-3} \cdot 3 + \ldots + 5^2 \cdot 3 + 5^1 \cdot 3 + 5^0 \cdot 3$$

$$e_n = 5^{n-1} \cdot 2 + 3(5^{n-2} + 5^{n-3} + ... + 5^2 + 5^1 + 5^0)$$

$$= 5^{n-1} \cdot 2 + 3 \cdot \sum_{i=0}^{n-2} 5i$$

$$= 2 \cdot 5^{n-1} + 3 \cdot \frac{5^{n-2+1} - 1}{5 - 1} \text{ by formula } \sum_{k=0}^{n} r^k = \frac{r^{n+1} - 1}{r - 1}$$

$$= \frac{4 \cdot 2 \cdot 5^{n-1}}{4} + \frac{3(5^{n-1} - 1)}{4} = \frac{8 \cdot 5^{n-1} + 3 \cdot 5^{n-1} - 3}{4} = \frac{11 \cdot 5^{n-1} - 3}{4} \text{ (ans)}$$

2. Proof by mathematical induction:

Let $e_1, e_2, e_3 \dots$ be the sequence defined by $e_1 = 2$ and $e_k = 5e_{k-1} + 3$ for all integers $k \ge 2$, and let the property P(n) be the definition

$$e_n = \frac{11 \cdot 5^{n-1} - 3}{4}$$
 for each integer $n \ge 1$. We must prove that for each integer $n \ge 1$, $P(n)$ is true.

Basis step:

We have
$$P(1) = e_1 = \frac{11 \cdot 5^{1-1} - 3}{4} = \frac{11 \cdot 1 - 3}{4} = \frac{8}{4} = 2$$

Also the initial condition gives e_1 = 2. Therefore, P(1) is true.

<u>Inductive hypothesis</u>: Let m be any integer with $m \ge 1$ and suppose P(m) is true.

$$P(m) \equiv e_m = \frac{11 \cdot 5^{m-1} - 3}{4}$$

Inductive step: We will show that for all integers $m \ge 1$, if P(m) is true, then P(m+1) is true. We must show that $P(m+1) \equiv e_{m+1} = \frac{11 \cdot 5^{m-1+1} - 3}{4}$

The left hand side of P(m+1) is:

 $e_{m^{+1}} = 5e_{(m\text{-}1)\,^{+}1} + 3\;$ by recursive definition of the sequence $= 5e_m + 3\;$

= $5 \cdot \frac{11 \cdot 5^{m-1} - 3}{4} + \frac{3 \cdot 4}{4}$ substitution from inductive hypothesis and rewriting 3 as a fraction

=
$$\frac{5 \cdot 11 \cdot 5^{m-1} - 15 + 12}{4}$$
 by expressing 5 · (-3) as -15

$$= \frac{11 \cdot 5^{1} \cdot 5^{m-1} - 3}{4}$$
 by property of exponents

$$= \frac{11 \cdot 5^{m-1+1} - 3}{4}$$

Which is the right hand side of P(m+1). Hence the property is true for n = m + 1. Since both the basis step and inductive step has been proved, P(n) is true for all integers $n \ge 1$.

3.
$$t_k = t_{k\text{-}1} + 7k + 2 \text{ for all integers } k \geq 1 \\ t_0 = 0 \qquad \qquad \text{initial condition}$$

$$t_1 = t_0 + 7(1) + 2 = 7 \cdot 1 + 2$$

$$t_2 = t_1 + 7(2) + 2 = (7 \cdot 1 + 2) + (7 \cdot 2 + 2)$$

$$t_3 = t_2 + 7(3) + 2 = (7 \cdot 1 + 2) + (7 \cdot 2 + 2) + (7 \cdot 3 + 2)$$

$$t_4 = t_3 + 7(4) + 2 = (7 \cdot 1 + 2) + (7 \cdot 2 + 2) + (7 \cdot 3 + 2) + (7 \cdot 4 + 2)$$

Guess:

$$\begin{split} t_n &= (7 \cdot 1 + 2) + (7 \cdot 2 + 2) + (7 \cdot 3 + 2) + \dots (7 \cdot n + 2) \\ &= (7 \cdot 1 + 7 \cdot 2 + 7 \cdot 3 + 7 \cdot 4 \dots + 7 \cdot n) + (2 + 2 + 2 + 2 \dots \text{for however many n times}) \\ &= 7(1 + 2 + 3 + 4 \dots + n) + 2n \end{split}$$

$$= 7 \cdot \frac{n(n+1)}{2} + 2n$$

by formula

$$\sum_{k=1}^{n} k$$

$$\frac{n(n+1)}{2}$$

$$= \frac{7n(n+1)}{2} + 2n$$

$$= \frac{7 n(n+1)+4n}{2}$$

$$= \frac{n(7(n+1)+4)}{2}$$

$$= \frac{n(7n+7+4)}{2}$$

$$= \frac{n(7n+11)}{2} = t_n = \frac{7n^2+11n}{2}$$
 for all $n \ge 1$ (ans)

4.

Let S be the set of all strings of a's and b's where all strings contain exactly one a -

- 1. Base: $a \in S$
- II. Recursion: If $u \in S$, then
 - a. bu \in S
 - b. $ub \in S$
- III. Restriction: There are no elements of S other than those obtained from the base and recursion of S.

5.

Let S be the set of all strings of a's and b's where all strings are odd lengths -

- I. Base: $a \in S$ and $b \in S$
- II. Recursion: If $u \in S$, then
 - a. aau \in S
 - b. bbu $\in S$
 - c. bau \in S
 - d. abu $\in S$
- III. Restriction: There are no elements of S other than those obtained from the base and recursion of S.