

= R.H.S.

Hence, the given result is proved.

Question 3:

$$\begin{array}{cccc} \cos\alpha\cos\beta & \cos\alpha\sin\beta & -\sin\alpha \\ -\sin\beta & \cos\beta & 0 \\ \sin\alpha\cos\beta & \sin\alpha\sin\beta & \cos\alpha \end{array}$$
 Evaluate

Answer

$$\Delta = \begin{vmatrix} \cos \alpha \cos \beta & \cos \alpha \sin \beta & -\sin \alpha \\ -\sin \beta & \cos \beta & 0 \end{vmatrix}$$

$$\Delta = \begin{vmatrix} -\sin\beta & \cos\beta \\ \sin\alpha\cos\beta & \sin\alpha\sin\beta \end{vmatrix}$$

Expanding along C₃, we have:

$$\Delta = -\sin\alpha \left(-\sin\alpha \sin^2\beta - \cos^2\beta \sin\alpha \right) + \cos\alpha \left(\cos\alpha \cos^2\beta + \cos\alpha \sin^2\beta \right)$$

 $\cos \alpha$

$$= \sin^2 \alpha \left(\sin^2 \beta + \cos^2 \beta \right) + \cos^2 \alpha \left(\cos^2 \beta + \sin^2 \beta \right)$$

$$= \sin^2 \alpha (1) + \cos^2 \alpha (1)$$

=1

Question 4:

$$\Delta = \begin{vmatrix} b+c & c+a & a+b \\ c+a & a+b & b+c \\ a+b & b+c & c+a \end{vmatrix} = 0$$

If a, b and c are real numbers, and

Show that either a + b + c = 0 or a = b = c.

Answer

$$\Delta = \begin{vmatrix} b+c & c+a & a+b \\ c+a & a+b & b+c \\ a+b & b+c & c+a \end{vmatrix}$$

Applying $R_1 \rightarrow R_1 + R_2 + R_3$, we have:

$$\Delta = \begin{vmatrix} 2(a+b+c) & 2(a+b+c) & 2(a+b+c) \\ c+a & a+b & b+c \\ a+b & b+c & c+a \end{vmatrix}$$

$$= 2(a+b+c)\begin{vmatrix} 1 & 1 & 1 \\ c+a & a+b & b+c \\ a+b & b+c & c+a \end{vmatrix}$$

Applying $C_2 \rightarrow C_2 - C_1$ and $C_3 \rightarrow C_3 - C_1$, we have:

$$\Delta = 2(a+b+c)\begin{vmatrix} 1 & 0 & 0 \\ c+a & b-c & b-a \\ a+b & c-a & c-b \end{vmatrix}$$

Expanding along R₁, we have:

$$\Delta = 2(a+b+c)(1)[(b-c)(c-b)-(b-a)(c-a)]$$

$$= 2(a+b+c)[-b^2-c^2+2bc-bc+ba+ac-a^2]$$

$$= 2(a+b+c)[ab+bc+ca-a^2-b^2-c^2]$$

It is given that $\Delta = 0$.

$$(a+b+c)[ab+bc+ca-a^2-b^2-c^2]=0$$

$$\Rightarrow$$
 Either $a+b+c=0$, or $ab+bc+ca-a^2-b^2-c^2=0$.

Now.

$$ab+bc+ca-a^2-b^2-c^2=0$$

$$\Rightarrow$$
 $-2ab - 2bc - 2ca + 2a^2 + 2b^2 + 2c^2 = 0$

$$\Rightarrow (a-b)^2 + (b-c)^2 + (c-a)^2 = 0$$

$$\Rightarrow (a-b)^2 = (b-c)^2 = (c-a)^2 = 0$$

$$\left[(a-b)^2, (b-c)^2, (c-a)^2 \text{ are non-negative} \right]$$

$$\Rightarrow (a-\sigma)=(\sigma-c)=(c-a)=0$$

Hence, if $\Delta = 0$, then either a + b + c = 0 or a = b = c.

Question 5:

$$\begin{vmatrix} x+a & x & x \\ x & x+a & x \\ x & x & x+a \end{vmatrix} = 0, a \neq 0$$
 Solve the equations

Answer

$$\begin{vmatrix} x+a & x & x \\ x & x+a & x \\ x & x & x+a \end{vmatrix} = 0$$

Applying $R_1 \rightarrow R_1 + R_2 + R_3$, we get:

$$\begin{vmatrix} 3x+a & 3x+a & 3x+a \\ x & x+a & x \\ x & x & x+a \end{vmatrix} = 0$$
$$\Rightarrow (3x+a)\begin{vmatrix} 1 & 1 & 1 \\ x & x+a & x \\ x & x & x+a \end{vmatrix} = 0$$

Applying $C_2 \rightarrow C_2 - C_1$ and $C_3 \rightarrow C_3 - C_1$, we have:

$$(3x+a) \begin{vmatrix} 1 & 0 & 0 \\ x & a & 0 \\ x & 0 & a \end{vmatrix} = 0$$

Expanding along R₁, we have:

$$(3x+a)[1\times a^2] = 0$$

$$\Rightarrow a^2(3x+a)=0$$

But $a \neq 0$.

Therefore, we have:

$$3x + a = 0$$

$$\Rightarrow x = -\frac{a}{3}$$

Question 6:

$$\begin{vmatrix} a^2 & bc & ac+c^2 \\ a^2+ab & b^2 & ac \\ ab & b^2+bc & c^2 \end{vmatrix} = 4a^2b^2c^2$$
 Prove that

Answer

$$\Delta = \begin{vmatrix} a^2 & bc & ac + c^2 \\ a^2 + ab & b^2 & ac \\ ab & b^2 + bc & c^2 \end{vmatrix}$$

Taking out common factors a, b, and c from C_1 , C_2 , and C_3 , we have:

$$\Delta = abc \begin{vmatrix} a & c & a+c \\ a+b & b & a \\ b & b+c & c \end{vmatrix}$$

Applying $R_2 \rightarrow R_2 - R_1$ and $R_3 \rightarrow R_3 - R_1$, we have:

$$\Delta = abc \begin{vmatrix} a & c & a+c \\ b & b-c & -c \\ b-a & b & -a \end{vmatrix}$$

Applying $R_2 \rightarrow R_2 + R_1$, we have:

$$\Delta = abc \begin{vmatrix} a & c & a+c \\ a+b & b & a \\ b-a & b & -a \end{vmatrix}$$

Applying $R_3 \rightarrow R_3 + R_2$, we have:

$$\Delta = abc \begin{vmatrix} a & c & a+c \\ a+b & b & a \\ 2b & 2b & 0 \end{vmatrix}$$

$$= 2ab^{2}c \begin{vmatrix} a & c & a+c \\ a+b & b & a \\ 1 & 1 & 0 \end{vmatrix}$$

Applying $C_2 \rightarrow C_2 - C_1$, we have:

$$\Delta = 2ab^{2}c \begin{vmatrix} a & c-a & a+c \\ a+b & -a & a \\ 1 & 0 & 0 \end{vmatrix}$$

Expanding along R_3 , we have:

$$\Delta = 2ab^2c \left[a(c-a) + a(a+c) \right]$$

$$= 2ab^2c \left[ac - a^2 + a^2 + ac \right]$$

$$= 2ab^2c \left(2ac \right)$$

$$= 4a^2b^2c^2$$

Hence, the given result is proved.

Question 8:

$$A = \begin{bmatrix} 1 & -2 & 1 \\ -2 & 3 & 1 \\ 1 & 1 & 5 \end{bmatrix}_{\text{verify that}}$$
Let
$$(i) \begin{bmatrix} adjA \end{bmatrix}^{-1} = adj \begin{pmatrix} A^{-1} \end{pmatrix}$$

$$(ii) \begin{pmatrix} A^{-1} \end{pmatrix}^{-1} = A$$
Answer
$$A = \begin{bmatrix} 1 & -2 & 1 \\ -2 & 3 & 1 \\ 1 & 1 & 5 \end{bmatrix}$$

$$\therefore |A| = 1(15-1) + 2(-10-1) + 1(-2-3) = 14 - 22 - 5 = -13$$
Now, $A_{11} = 14$, $A_{12} = 11$, $A_{13} = -5$

$$A_{21} = 11$$
, $A_{22} = 4$, $A_{23} = -3$

$$A_{31} = -5$$
, $A_{32} = -3$, $A_{13} = -1$

$$\therefore adjA = \begin{bmatrix} 14 & 11 & -5 \\ 11 & 4 & -3 \\ -5 & -3 & -1 \end{bmatrix}$$

$$\therefore A^{-1} = \frac{1}{|A|} \begin{pmatrix} adjA \end{pmatrix}$$

$$= -\frac{1}{13} \begin{bmatrix} 14 & 11 & -5 \\ 11 & 4 & -3 \\ -5 & -3 & -1 \end{bmatrix} = \frac{1}{13} \begin{bmatrix} -14 & -11 & 5 \\ -11 & -4 & 3 \\ 5 & 3 & 1 \end{bmatrix}$$

$$|adjA| = 14(-4-9)-11(-11-15)-5(-33+20)$$

= 14(-13)-11(-26)-5(-13)
= -182+286+65=169

We have,

********* END *******