ARITHMETIC

Chapter 7

Criterios de Divisibilidad

HISTORIA DE LOS CRITERIOS DE DIVISIBILIDAD

Desde hace mucho tiempo, el hombre se ha visto ante la necesidad de tener que repartir cantidades de cosas entre personas, dándole a cada una el mismo número de unidades.

A través de la práctica el hombre descubrió que este problema a veces sí tenía solución y a veces no. Esto causo la búsqueda de cierta forma de resolver estos problemas dando inicio a la divisibilidad.

"La divisibilidad de los números es conocida desde tiempos remotos. Así, los hindúes ya conocían la divisibilidad por tres, siete y nueve y los egipcios conocían los números pares e impares. El matemático griego Euclides demostró los teoremas básicos de la divisibilidad de números enteros. Ya posteriormente, el matemático francés Pascal (1623-1662) propuso las reglas para conocer la divisibilidad de cualquier número".

CRITERIOS DE DIVISIBILIDAD

Son ciertas reglas prácticas que aplicadas a las cifras de un numeral permitirán determinar su divisibilidad respecto a cierto módulo.

Criterios de divisibilidad entre potencias de 2

Criterio por 2:

$$\overline{abcde} = \overset{\circ}{2} \rightarrow e = \overset{\circ}{2}$$

Criterio por 4:

$$\overline{abcde} = \overset{\circ}{4} \rightarrow \overline{de} = \overset{\circ}{4}$$

Criterio por 8:

Obs.
$$\frac{1}{20} = \frac{1}{20} = \frac{1}$$

Criterios de divisibilidad entre potencias de 5

Criterio por 5:

$$abcde = \overset{\circ}{5}$$
 \rightarrow $e = \overset{\circ}{5}$

Criterio por 25:

$$\frac{1}{\text{abcde}} = \overset{\circ}{25} \rightarrow \overline{\text{de}} = \overset{\circ}{25}$$

Criterio por 125:

$$\frac{\circ}{\text{abcde}} = 125 \rightarrow \overline{\text{cde}} = 125$$

Criterios de divisibilidad entre 3 o 9

Criterio por 3:

$$\overline{abcd} = \overset{\circ}{3}$$
 \rightarrow $a + b + c + d = \overset{\circ}{3}$

Criterio por 9:

$$\overline{abcd} = \overset{\circ}{9}$$
 \rightarrow $a + b + c + d = \overset{\circ}{9}$

Criterios de divisibilidad entre 7

$$\frac{1\overline{2}\,\overline{3}\,\overline{1}\,2\,3\,1}{a\,b\,c\,d\,e\,f\,g} = \overset{\circ}{7}$$

$$\Rightarrow a - 2b - 3c - d + 2e + 3f + g = \overset{\circ}{7}$$

Criterios de divisibilidad entre 11

$$\frac{-+-+}{abcd} = \stackrel{\circ}{11}$$
 \rightarrow $-a+b-c+d= \stackrel{\circ}{11}$

Criterios de divisibilidad entre 13

$$\begin{array}{c}
143\overline{1}\overline{4}\overline{3}1 \\
a b c d e f g = 13
\end{array}$$

$$\begin{array}{c}
a + 4b + 3c - d - 4e - 3f + g = 13
\end{array}$$

Criterios de divisibilidad entre 33 o 99

Criterio por 33:

$$abcdefg = 33 \rightarrow a + bc + de + fg = 33$$

Criterio por 99:

$$abcdefg = \overset{\circ}{99} \rightarrow a + \overline{bc} + \overline{de} + \overline{fg} = \overset{\circ}{99}$$

1. Al dividir a2853a entre 13 se obtuvo como resto 2. Halle el valor de a.

A) 1

B) 2

2) 4

D) 3

E) 7

$$\frac{43\overline{1}\overline{4}\overline{3}1}{a2853a} = 13 + 2$$

$$\begin{array}{c}
0 \\
13+4a+6-8-20-9+a = 13+2 \\
5a-31=13+2 \\
5a-33=13 \\
5a-26-7=13 \\
5a-7=13
\end{array}$$

2. Halle el valor de a en $\overline{a577n} = 72$.

- C) 3
- B) 2 E) 6

$$\frac{0}{a577} = \frac{0}{72} < \frac{0}{9}$$

* 8:
$$\frac{421}{77n} = 8 \rightarrow 28+14+n = 8$$

* 8:
$$\frac{421}{77n} = 8 \rightarrow 28+14+n = 8$$

* 9: $a+5+7+7+6=9$
 $a+7=9$

3. Calcule el mayor valor de mn si 7m46n es divisible por 56.

- A) 4
- B) 6

2) 36

- D) 49
- E) 56

Resolución:

$$\frac{0}{7}$$
 $\frac{0}{7}$ $\frac{0}{8}$

* 8:
$$\frac{421}{46n} = 8 \rightarrow 16+12+n = 8$$

*
$$7: \frac{\sqrt[3]{1231}}{7m464} = \frac{9}{7} \rightarrow -m+8+18+4 = \frac{9}{7}$$

$$\rightarrow$$
 mn = $2.4=8$
9.4=36

•• Mayor mn = 36

4. Calcule ab si $\overline{a713b}$ es divisible por 88.

A) 20

B) 24

C) 25

D) 18

E) 16

$$\frac{1}{a713b} = 88 < \frac{8}{11}$$

* 8:
$$\frac{421}{13b} = 8 \rightarrow 4+6+b = 8$$

*
$$11: \frac{+-+-+}{a7136} = 11 \rightarrow a-7+1-3+6 = 11$$

$$a-3 = 11$$

5. Sabiendo que $\overline{abc} = 8$, $\overline{bca} = 5$ y $\overline{ab} = 17$, Calcule a+b+c.

A) 6

B) 7

D) 9

E) 10

*
$$\overline{ab} = 17$$
 \rightarrow $\overline{5b} = 17$

$$* \overline{abc} = \overset{0}{8} \to \overset{421}{51c} = \overset{0}{8} \to 20 + 2 + c = \overset{0}{8}$$

6. Sabiendo que a ≠ b y además o 7a5b63 = 99 , ¿cuántos pares de números cumplen con la igualdad?

A) 2

B/4

C) 5

D) 3

E) 6

Resolución:

$$\rightarrow$$
 7a + 5b + 63 = 99

$$\rightarrow$$
 183 + a + b = 99

$$\Rightarrow$$
 a+b = 15

4 pares

7. ¿Cuántos valores toma \overline{ab} si $\overline{ab2416}$

- A) 2
- D) 5

P) 3

C) 4

Resolución:

$$ab2416 = 33$$

$$\rightarrow$$
 ab + 24 + 16 = 33

$$\rightarrow$$
 ab +33+7 = 33

$$\frac{1}{ab} + 7 = 33$$

3 valores

8. Determine el valor de x para que el numeral $\overline{34x67}$ al dividirlo entre 11 deje 3 de residuo.

- A) 2
- **B**) 3

C) 5

D) 7

E) 8

$$\frac{+-+-+}{34\times67} = 11 + 3$$

$$\rightarrow 3-4+x-6+7 = 11 + 3$$

$$x-3 = 11$$

$$x = 3$$

9. Halle un número capicúa de cinco cifras múltiplo de 65 sabiendo que su cifra de centenas excede en 1 a la de sus decenas. Dé como respuesta la suma de sus cifras.

A) 15

B) 16

9/17

D) 18

E) 19

Resolución:

Sea el número: $\overline{abcba} = 65$

$$\frac{13}{ab(b+1)ba} = 65 < \frac{5}{65}$$

*
$$\overline{ab(b+1)ba} = \overset{\circ}{5} \rightarrow a = 5$$

*
$$\frac{31}{5b(b+1)b5} = \frac{31}{13}$$

$$\rightarrow$$
 ab(b+1)ba = 52325

10. Un número de tres cifras es divisible por 9; si se invierte el orden de sus cifras es múltiplo de 5 y el número formado por sus dos primeras cifras es múltiplo de 8. Calcule la suma de la cifra del primer orden con la de tercer orden.

A) 11

- B) 12
- E) 9

C) 13

Resolución:

Sea el número: $\overline{abc} = 9 \dots (1)$

$$\rightarrow$$
 $\overline{cba} = \overset{\circ}{5} \rightarrow a = 5 \rightarrow \overline{cb} = \overset{\circ}{8}...(2)$

$$\rightarrow$$
 abc = 504

c+a = 9