Tafel 8 Verschiedene Profile für Axialturbomaschinen

- a) Profilformen, b) Profilmaße, c) Auftriebsbeiwerte als Funktion der Anstellung δ für $\Lambda = \infty$,
- d) Umrechnungsformeln, e) Profil-Polaren für $\Lambda=\infty$

b) Profiltabelle

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
Profil Nr.	<i>x</i> %	0	1,25	2,5	5,0	7,5	10	15	20	30	40	50	60	70	80	90	95	100
387	yo	3,2	6,25	7,65	9,40	10,85	11,95	13,40	14,40	15,05	14,60	13,35	11,35	8,90	6,15	3,25	1,75	0,15
	yu	3,2	1,50	1,05	0,55	0,25	0,10	0	0	0,20	0,40	0,45	0,50	0,45	0,30	0,15	0,05	0,15
490	y_{o}	2,0	3,60	4,60	5,95	7,0	7,70	8,65	9,20	9,60	9,05	8,55	7,45	6,05	4,40	2,50	1,45	0,15
	yu	2,0	0,85	0,50	0,15	0	0	0,20	0,40	0,95	0,80	0,80	0,60	0,40	0,15	0	0,05	0,15
623	yo	3,25	5,45	6,45	7,90	9,05	9,90	10,95	11,55	12,0	11,70	10,65	9,15	7,35	5,15	2,80	1,60	0,30
	yu	3,25	1,95	1,50	0,90	0,35	0,20	0,10	0,05	0	0	0	0	0	0	0	0	0
624	yo	4,0	7,15	8,50	10,40	11,75	12,85	14,35	15,30	16,0	15,40	14,05	12,0	9,50	6,60	3,55	2,0	0,50
	yu	4,0	2,25	1,65	0,95	0,60	0,40	0,15	0,05	0	0	0	0	0	0	0	0	0
Munk 6	yo	0	1,98	2,81	4,03	4,94	5,71	6,82	7,55	8,22	8,05	7,26	6,03	4,58	3,06	1,55	0,88	0
	$y_{\rm u}$	0	-1,76	-2,20	-2,73	-3,03	-3,24	-3,47	-3,62	-3,70	-3,90	-3,94	-3,82	-3,48	-2,83	-1,77	-1,08	0
NACA	yo	0	2,67	3,61	4,91	5,80	6,43	7,19	7,50	7,55	7,14	6,41	5,47	4,36	3,08	1,68	0,92	0
23012	$y_{\rm u}$	0	-1,23	-1,71	-2,26	-2,61	-2,92	-3,50	-3,97	-4,46	-4,48	-4,17	-3,67	-3,00	-2,16	-1,23	-0,70	0
443	$\begin{pmatrix} y_0 \\ y_u \end{pmatrix}$	0	0,60	0,85	1,15	1,45	1,60	1,90	2,15	2,50	2,50	2,35	2,05	1,60	1,15	0,65	0,30	0

d) Formeln für das Umrechnen von Auftriebsbeiwert $\zeta_{\rm A}$ und Anstellwinkel δ für verschiedene Werte des Verhältnisses $y_{\rm max}/L$ im Punkt des besten Gleitverhältnisses ε (Gleitzahl).

Profile Gö 387 und Gö 490

$$\zeta_{\rm A} = 4.4 \cdot (y_{\rm max}/L) + 0.092 \cdot \delta^0$$

Profile Gö 623 und Gö 624

$$\zeta_{\rm A} = 4.0 \cdot (y_{\rm max}/L) + 0.092 \cdot \delta^0$$

Profil NACA 23012

$$\zeta_{\rm A} = 1.08 \cdot (y_{\rm max}/L) + 0.106 \cdot \delta^0$$

Profil Munk 6

$$\zeta_{\rm A} = 1.3 \cdot (y_{\rm max}/L) + 0.106 \cdot \delta^0$$

Trotz schlechtem ε günstig, da kavitations- und überschallfest, d. h. S_y und S_{verf} hoch (Kapitel 5).

Symmetrische Profile, z. B. Gö 443

$$\zeta_{\rm A} = 0.095 \cdot \delta^0$$

Günstig sind allgemein

$$d_{\text{max}}/L \approx 0.1$$
 und $f/L \approx 0.4$