8. Dado un triángulo ABC cuyos lados miden a=BC, b=CA y c=AB, demuestre que $a^2-b^2=bc$ si y sólo si $\widehat{BAC}=2\cdot\widehat{ABC}$

SOLUCIÓN: Sea P el pie de la bisectriz del ángulo \widehat{BAC} sobre el lado BC. Probaremos que las tres condiciones siguientes son equivalentes, lo que de paso resolverá el problema:

i)
$$a^2 - b^2 = bc$$

academiadeimos.es

ii) Los triángulos ABC y PAC son semejantes

iii)
$$\widehat{BAC} = 2 \cdot \widehat{ABC}$$

 $i) \Rightarrow ii)$ Supóngase que es $a^2 - b^2 = bc$, es decir, $a^2 = b(b+c)$, o también

$$\frac{a}{b+c} = \frac{b}{c} \tag{1}$$

Los triángulos ABC y PAC comparten el ángulo en C, luego serán semejantes si y sólo si los lados AC y BC del primero son proporcionales a los lados respectivos PC y AC del segundo, es decir, si y sólo si

$$\frac{AC}{BC} = \frac{PC}{AC}$$
, o lo que es igual, $PC = \frac{b^2}{a}$

Por el Teorema de la bisectriz, las longitudes PB y PC son directamente proporcionales a las longitudes c y b de los lados AB y CA, es decir,

$$\frac{PC}{b} = \frac{PB}{c} = \frac{PC + PB}{b + c} = \frac{BC}{AC + AB} = \frac{a}{b + c} \implies PC = \frac{ab}{b + c}$$

y, según (1),

academiadeimos.es

$$PC = b \cdot \frac{a}{b+c} = b \cdot \frac{b}{a} = \frac{b^2}{a}$$

 $ii) \Rightarrow iii)$ Si los triángulos ABC y PAC son semejantes, el ángulo \widehat{PAC} del primero y el ángulo \widehat{CBA} del segundo coinciden, así que

$$\widehat{BAC} = 2 \cdot \widehat{CAP} = 2 \cdot \widehat{ABC}$$

 $iii) \Rightarrow i$) Supongamos que se cumple la relación $\overrightarrow{BAC} = 2 \cdot \overrightarrow{ABC}$ y sea $\beta \coloneqq \overrightarrow{ABC}$ y, por tanto, $\overrightarrow{CAB} = 2\beta$. Por el $Teorema\ de\ los\ senos$, es academiadeimos.es

$$\frac{a}{\sec 2\beta} = \frac{b}{\sec \beta} \implies \frac{a}{2\sec \beta \cos \beta} = \frac{b}{\sec \beta}$$

y como es sen $\beta \neq 0$, deducimos que

$$\frac{a}{2\cos\beta} = b$$
, es decir, $\cos\beta = \frac{a}{2b}$

Si ahora se aplica el Teorema del coseno, se obtiene que

$$\cos\beta = \frac{a^2 + c^2 - b^2}{2ac}$$

y al igualar las dos expresiones de $\cos \beta$, se deduce que

$$\frac{a^2+c^2-b^2}{2ac} = \frac{a}{2b} \quad \Rightarrow \quad a^2b+bc^2-b^3 = a^2c \quad \Rightarrow$$

$$\Rightarrow a^2b - a^2c = b^3 - bc^2 \Rightarrow a^2(b-c) = b(b^2 - c^2) \Rightarrow$$

$$\Rightarrow a^2(b-c) = b(b+c)(b-c)$$
 (2)

Si fuese b = c, el triángulo ABC sería isósceles y $\overline{ACB} = \overline{CBA} = \beta$, con lo que la suma de los ángulos del triángulo sería $4\beta = \pi$ y, en consecuencia, $2\beta = \frac{\pi}{2}$. El triángulo ABC sería entonces rectángulo además de isósceles, por lo que, según el Teorema de Pitágoras, sería $a^2 = b^2 + b^2 = b^2 + bc$, como buscábamos. Si es $b \neq c$, al dividir en (2) por b - c se deduce que $a^2 = b(b + c)$, que no es más que otra forma de escribir $a^2 - b^2 = bc$.