Deep likelihood-free inference of phylogenetic trees

Luc Blassel, Nicolas Lartillot, Bastien Boussau, Laurent Jacob

MASAMB - September 8th, 2025

Context - Phylogenetic inference

Goal: describe evolutionary-history of MSA

Context - The problem with phylogenetic inference

- Phylogenies are hard!
- 2. **Super-exponential** tree space

$$N_{topo}(n) = \frac{(2n-3)!}{2^{n-2}(n-2)!}$$

Felsenstein 1978

Context - Likelihood-based tree reconstruction

 $x : MSA, \quad \theta = (\tau, \ell) : Phylogenetic tree, \quad \phi : Evolution model$

Context - Likelihood-based tree reconstruction

Pros:

- These methods are accurate
- The **whole MSA** is considered in $P(x|\theta,\phi)$

Cons:

- These methods are slow
 - 1. Computing the likelihood is costly
 - 2. We have to **explore** the tree-space with **topological** moves
- We are **limited** to models where $P(x|\theta,\phi)$ is **computable**

Motivation - Likelihood-free inference

- We can simulate many¹ (tree, MSA) pairs
- Can we learn the mapping from MSA to tree?

 $^{^{1}}$ pretty much practically ∞

Related Work - Phyloformer, our first approach

- Input an MSA, get a Distance matrix
- Feed Distance matrix to FastME to get tree

Nesterenko et al. 2025; Lefort et al. 2015

Related Work - Phyloformer is good!

Tree inference accuracy (KF)

Runtime

- Fairly competitive even on simple LG+GC model
- Fast because we use GPUs 1

Nesterenko et al. 2025, ¹ ▲ Jean-Zay

L. Blassel - MASAMB 2025

7/23

Related Work - But also sometimes less good...

Topological accuracy (RF)

Memory usage

- Gap between PF and ML methods
- PF is by far the most memory intensive

8/23

Related Work - Why does Phyloformer struggle with topology?

- Phyloformer predicts **distance** matrices, as **proxy** for trees
- In **theory** it is **equivalent**, but in practice ...
- Could we get rid of the proxy, and predict trees directly?

How to do phylogenetic inference

end-to-end?

Methods - Neural Posterior Estimation (NPE)

- Given a **probabilistic model** $p(x|\theta)$ with some prior $p(\theta)$
- We want to **estimate the posterior**: $p(\theta|x)$
- We build $q_{\psi}(\theta|\mathbf{x})$ a **family** of distributions **parametrized** by ψ (our NN)
- We find $q_{\psi^*} = \operatorname*{argmin}_{\psi} \mathbb{E}_{p(\mathsf{x})}[\mathit{KL}(q_{\psi}(heta|\mathsf{x})||p(heta|\mathsf{x})]$
- In practice we maximize $\mathbb{E}_{p(\mathbf{x},\theta)}[\log q_{\psi(\mathbf{x})}(\theta|\mathbf{x})]$ by sampling from $p(\mathbf{x},\theta)$

 $x: MSA, \quad \theta = (\tau, \ell): Phylogenetic tree, \quad \psi(x): NN applied to x$

Methods - How do we do NPE?

- During **training** find $\psi^* = \operatorname*{argmin}_{\psi} \sum_i \log q_{\psi(\mathbf{x}_i)}(\theta_i | \mathbf{x}_i)$
- At **inference** time **sample** from: $q_{\psi^*(x_E)}(\theta_E|x_E)$

11/23

Methods - The EvoPF module, intro

the EvoPF module is an **adaptation** of the **EvoFormer** module from **AlphaFold2**. The tasks are **transpositions** of each other:

given input MSA
$$(n \times r)$$

EvoFormer represent $r \times r$ relationships between sites **EvoPF** represent $n \times n$ relationships between sequences

More expressive than MSA transformer **More lightweight** than PF

Methods - The EvoPF module, details

- Input an MSA and get: sequence embedding $\{s_i\}$ sequence-pair embeddings $\{z_{ii}\}$
- · Both embedding-types used to update each-other

Figure inspired by Jumper et al. 2021

We want to describe the following tree:

Methods - the BayesNJ module

- Tree is an ordered set of merges: $\theta : \{m^{(1)}, \dots, m^{(N-1)}\}$
- We **factorize** $q_{\psi(\mathbf{x})}(\theta|\mathbf{x})$ as the product of successive merge probabilities:

$$q_{\psi(x)}(\theta|x) = \prod_{k=1}^{N-1} q_m(m^{(k)}|m^{(< k)}) q_{\ell}(\ell^{(k)}|m^{(\le k)})$$

Merge probabilities have 2 components:

topological: $q_m(m^{(k)}|m^{(< k)})$ branch-length: $q_\ell(\ell^{(k)}|m^{(\le k)})$

Methods - BayesNJ, evaluating topological probabilities

Compute merge probability

Methods - BayesNJ, evaluating topological probabilities

Update clade representation for next merge

Methods - BayesNJ, evaluating branch length probabilities

Compute branch-length probabilities

Methods - BayesNJ sampling mode

- Sample merges and branch lengths until topology resolved
- Two sampling modes given $\psi(x_E)$:

 Bayesian Sample from distributions

 Greedy MAP Choose mode

Does it work?

Results - Training topology only

 overfitting on tree-size is an issue

Results - Training topology only

- overfitting on tree-size is an issue
- Fine tuning helps

Results - Training topology only

- overfitting on tree-size is an issue
- Fine tuning helps
- We beat ML methods in certain cases
- Marked improvement w.r.t Phyloformer

Results - Scalability

10³
10³
10³
10⁴
10⁵

Execution time

Memory usage¹

 $^{^1}$ With 2 \times bigger sequence, and 4 \times bigger pair embeddings...

Results - What next?

This is very much still a work in progress...

Training with gaps is more complicated

Results - What next?

This is very much still a work in progress...

 Adding branch lengths is harder than we thought

Results - What next?

This is very much still a work in progress...

 We need to adjust our priors to compare to MCMC

Perspectives - Intractable likelihoods

- Topologically we manage to beat IQTree¹ on LG
- Can we do **better** with complex models where computing $p(\theta|x)$ is **difficult** or **intractable**?
- Interaction models:
 - CherryML, residue pair coevolution
 - Potts models, How do we simulate?
 - Epistasis models
- Models taking selection into account: e.g. SelReg
- Confident this can work given our experience with PF

Conclusion

- WIP but we are close to truly end-to-end likelihood-free phylogenetic inference
- Still limitations:
 - · Better than PF but scalability is still an issue
 - Length overfitting also an issue
- Where do we go once PF2 is done?
 - · Extend to unaligned sequence
 - Predict Ancestral sequences or characters
 - Downstream tasks: population dynamics, reconciliation, epidemiology, ecology ...

Thanks to:

- Luca Nesterenko
- Laurent Jacob
- · Bastien Boussau
- Nicolas Lartillot
- Philippe Veber
- Vincent Garot
- Amélie Leroy
- Anybody that listened to me!

References

- Dong, J. et al. (2024). Flex Attention: A Programming Model for Generating Optimized Attention Kernels.
- Duchemin, L. et al. (2023). Evaluation of methods to detect shifts in directional selection at the genome scale. In: Molecular Biology and Evolution 40.2, msac247.
- Felsenstein, J. (1978). *The Number of Evolutionary Trees.* In: Systematic Zoology 27.1, p. 27.
- (1993). PHYLIP (phylogeny inference package), version 3.5 c. Joseph Felsenstein.
- Jumper, J. et al. (2021). *Highly accurate protein structure prediction with AlphaFold*. In: *Nature* 596.7873, pp. 583–589.
- Kleinman, C. L. et al. (2010). Statistical Potentials for Improved Structurally

 Constrained Evolutionary Models. In: Molecular Biology and Evolution 27.7,

 pp. 1546–1560.
- Latrille, T. et al. (2021). *Inferring Long-Term Effective Population Size with Mutation–Selection Models*. In: *Molecular Biology and Evolution* 38.10, pp. 4573–4587.
- Lefort, V. et al. (2015). FastME 2.0: a comprehensive, accurate, and fast distance-based phylogeny inference program. In: Molecular biology and evolution 32.10, pp. 2798–2800.

Nesterenko, L. et al. (2025). Phyloformer: Fast, Accurate, and Versatile Phylogenetic **Reconstruction with Deep Neural Networks.** In: Molecular Biology and Evolution 42.4. msaf051.

Prillo, S. et al. (2023). CherryML: scalable maximum likelihood estimation of phylogenetic models. In: Nature methods 20.8, pp. 1232-1236.

Rao, R. M. et al. (2021). MSA Transformer. In: Proceedings of the 38th International

Conference on Machine Learning. Ed. by M. Meila and T. Zhang. Vol. 139. Proceedings of Machine Learning Research. PMLR, pp. 8844–8856.

Supp. Methods - EvoPF, the MSA stack

Column-wise attention with pair-bias

Row-wise attention

L. Blassel - MASAMB 2025

Sup. Methods - EvoPF, the pair stack

Pair attention

Outer product mean

Dong et al. 2024

L. Blassel - MASAMB 2025

Sup. Methods - BayesNJ evaluation mode

Sup. Methods - Ensuring the merge order is unique

Ensuring a **unique order** on merges ensures that we **define a distribution**. It also keeps **training** and **sampling** comparable ¹

- On a given tree au always **merge** the **shortest** available **cherry**
- When sampling, add constraints:
 - 1. Start with a $N \times N$ constraints matrix $M_{ii} = 0$
 - 2. At iteration k sample merge $m^{(k)} = (i, j)$ and cherry length $s^{(k)} = M_{ii} + X$
 - 3. **Update constraints** for cherries **available** when sampling $m^{(k)}$: $M'_{ii} = max(M_{ij}, s^{(k)})$ $M'_{ui} = 0$
- During evaluation compute $p_{PF2}(s^{(k)} M_{ij}|m^{(\leq k)})$

¹ Which is not the same if we use the NI merge order

Sup. Methods - Tree simulation

L. Blassel - MASAMB 2025