Racecar 101

James Wright

September 7, 2022

Outline

What makes a car fast?

Vehicle Basics

Note

This first part is a very simplified breakdown

- It's not the most accurate
- It's not to insult anyone's intelligence

It's simply to not distract from the things that can be easily forgotten or muddied.

$$Time = \frac{Distance}{Velocity}$$

 James Wright
 Racecar 101
 September 7, 2022
 4 / 15

¹Assuming distance is constant

$$Time = \frac{Distance}{Velocity}$$

• To lower time, we need to increase velocity¹

¹Assuming distance is constant

$$Time = \frac{Distance}{Velocity}$$

- To lower time, we need to increase velocity¹
- All motorsports have velocity changes during a race
 - Excluding top-speed records of course

¹Assuming distance is constant

$$Time = \frac{Distance}{Velocity}$$

- To lower time, we need to increase velocity¹
- All motorsports have velocity changes during a race
 - Excluding top-speed records of course
- Change in velocity is...

$$Time = \frac{Distance}{Velocity}$$

- To lower time, we need to increase velocity¹
- All motorsports have velocity changes during a race
 - Excluding top-speed records of course
- Change in velocity is... Acceleration

¹Assuming distance is constant

$$Time = \frac{Distance}{Velocity}$$

- To lower time, we need to increase velocity¹
- All motorsports have velocity changes during a race
 - Excluding top-speed records of course
- Change in velocity is... Acceleration
- To maximize velocity, you must maximize acceleration
 - ie. Whatever changes in velocity you make, do them as quickly as possible

¹Assuming distance is constant

$$Time = \frac{Distance}{Velocity}$$

- To lower time, we need to increase velocity¹
- All motorsports have velocity changes during a race
 - Excluding top-speed records of course
- Change in velocity is... Acceleration
- To maximize velocity, you must maximize acceleration
 - ie. Whatever changes in velocity you make, do them as quickly as possible

To make a car faster, you must make the car accelerate more

¹Assuming distance is constant

What famous equation involves acceleration?

What famous equation involves acceleration?

Newton's 2nd law!

$$F=ma$$

What famous equation involves acceleration?

Newton's 2nd law!

$$F = ma$$

We care about acceleration, so rearange:

$$a = \frac{F}{n}$$

$$a = \frac{F}{m}$$

Decrease Mass

Make things lighter

$$a = \frac{F}{m}$$

Decrease Mass

Make things lighter

Increase Force

$$a = \frac{F}{m}$$

Decrease Mass

Make things lighter

Increase Force

• Increase the force the tires can apply to the ground

$$a = \frac{F}{m}$$

Decrease Mass

Make things lighter

Increase Force

- Increase the force the tires can apply to the ground
- Increase power output

$$a = \frac{F}{m}$$

Decrease Mass

Make things lighter

Increase Force

- Increase the force the tires can apply to the ground
- Increase power output
- Increase braking torque

$$a = \frac{F}{m}$$

Decrease Mass

Make things lighter

Increase Force

- Increase the force the tires can apply to the ground
- Increase power output
- Increase braking torque

The latter two hold only if the tires can transfer the torque

Sometimes \uparrow mass $+ \uparrow$ force $= \uparrow$ acceleration

Sometimes \uparrow mass $+ \uparrow$ force $= \uparrow$ acceleration

Bigger Engine

Increases the total vehicle mass, but increases power output Depending on the ratio, can lead to better acceleration.

Sometimes \uparrow mass $+ \uparrow$ force $= \uparrow$ acceleration

Bigger Engine

Increases the total vehicle mass, but increases power output Depending on the ratio, can lead to better acceleration.

Sometimes \downarrow mass $+ \downarrow$ force $= \uparrow$ acceleration

Sometimes \uparrow mass $+ \uparrow$ force $= \uparrow$ acceleration

Bigger Engine

Increases the total vehicle mass, but increases power output Depending on the ratio, can lead to better acceleration.

Sometimes \downarrow mass $+ \downarrow$ force $= \uparrow$ acceleration

Smaller/Narrower Tires

Decreases total vehicle mass, but decreases total acceleration potential

Also reduces unsprung mass (improves vehcile handling and response)

Simplest acceleration to model:

$$a = \frac{F}{m}$$

Tire traction capacity sets upper limit of the acceleration.

Simplest acceleration to model:

$$a = \frac{F}{m}$$

Tire traction capacity sets upper limit of the acceleration.

Divided into 2 components:

Simplest acceleration to model:

$$a = \frac{F}{m}$$

Tire traction capacity sets upper limit of the acceleration. Divided into 2 components:

Braking (negative)

Simplest acceleration to model:

$$a = \frac{F}{m}$$

Tire traction capacity sets upper limit of the acceleration.

Divided into 2 components:

Braking (negative)

Simplest acceleration to model:

$$a = \frac{F}{m}$$

Tire traction capacity sets upper limit of the acceleration.

Divided into 2 components:

Braking (negative)

- This is as much for safety as it is performance
- Ensure that care is capable of absolute maximum braking acceleration

Simplest acceleration to model:

$$a = \frac{F}{m}$$

Tire traction capacity sets upper limit of the acceleration.

Divided into 2 components:

Braking (negative)

- This is as much for safety as it is performance
- Ensure that care is capable of absolute maximum braking acceleration
- Power (positive)

Simplest acceleration to model:

$$a = \frac{F}{m}$$

Tire traction capacity sets upper limit of the acceleration.

Divided into 2 components:

Braking (negative)

- This is as much for safety as it is performance
- Ensure that care is capable of absolute maximum braking acceleration
- Power (positive)
 - Almost always limited by the power unit (ICE, electric motor, rubber band windup, etc.)

Lateral Acceleration

Turning causes Lateral Acceleration, which is not a change in speed, but of direction:

$$a_{\text{lat}} = \frac{V^2}{r}$$

where V is velocity, and r is the turning radius.

Lateral Acceleration

Turning causes Lateral Acceleration, which is not a change in speed, but of direction:

$$a_{\text{lat}} = \frac{V^2}{r}$$

where V is velocity, and r is the turning radius.

Plugging back into momentum balance yields:

$$F = m \frac{V^2}{r} \implies V = \sqrt{\frac{Fr}{m}}$$

Lateral Acceleration

Turning causes Lateral Acceleration, which is not a change in speed, but of direction:

$$a_{\text{lat}} = \frac{V^2}{r}$$

where V is velocity, and r is the turning radius.

Plugging back into momentum balance yields:

$$F = m\frac{V^2}{r} \implies V = \sqrt{\frac{Fr}{m}}$$

Therefore given:

- \bullet a force, F (tire traction)
- \bullet a mass, m (the car)
- \bullet and a radius, r (the track/racing line)

there is a limit to the maximum velocity

Lateral Acceleration cont.

How do we maximize the velocity? $V=\sqrt{\frac{Fr}{m}}$

Lateral Acceleration cont.

How do we maximize the velocity? $V=\sqrt{\frac{Fr}{m}}$

lacktriangle Decrease mass m

Lateral Acceleration cont.

How do we maximize the velocity? $V=\sqrt{\frac{Fr}{m}}$

- lacktriangle Decrease mass m
 - Add lightness
 - Has compounding affect due to load transfer (discussed later)

- $lue{}$ Decrease mass m
 - Add lightness
 - Has compounding affect due to load transfer (discussed later)
- $oldsymbol{0}$ Increase force F

- lacktriangle Decrease mass m
 - Add lightness
 - Has compounding affect due to load transfer (discussed later)
- $oldsymbol{0}$ Increase force F
 - Increase the maximum force the tires can exert

- lacktriangle Decrease mass m
 - Add lightness
 - Has compounding affect due to load transfer (discussed later)
- $oldsymbol{o}$ Increase force F
 - Increase the maximum force the tires can exert
 - How?

- lacktriangle Decrease mass m
 - Add lightness
 - Has compounding affect due to load transfer (discussed later)
- $oldsymbol{o}$ Increase force F
 - Increase the maximum force the tires can exert
 - How?
 - Aero downforce
 - Different tires
 - Suspension design, etc....

Quick Review

Higher Acceleration = Faster Car

	Limited by	How to make better?
Longitudinal	Force (Braking and Power)	Bigger Engine/Brakes
Acceleration	Mass	Reduce it
Lateral	Force (Tire Traction)	Increase Grip
Acceleration	Mass	Reduce it

What about lateral and longitudinal acceleration at the same time?

What about lateral and longitudinal acceleration at the same time? Answer: look at a G-G curve for the car

G-G Curve (or Traction Circle)

Acceleration G

Figure 2

What about lateral and longitudinal acceleration at the same time? Answer: look at a G-G curve for the car

G-G Curve (or Traction Circle)

 Plots maximum steady-state acceleration that a vehicle can have in any direction

Figure 2

What about lateral and longitudinal acceleration at the same time? Answer: look at a G-G curve for the car

- Plots maximum steady-state acceleration that a vehicle can have in any direction
- Outside circle = lost traction, locked wheels, etc

Figure 2

What about lateral and longitudinal acceleration at the same time? Answer: look at a G-G curve for the car

- Plots maximum steady-state acceleration that a vehicle can have in any direction
- Outside circle = lost traction, locked wheels, etc
- Inside circle = within limits of the vehicle

Figure 2

What about lateral and longitudinal acceleration at the same time? Answer: look at a G-G curve for the car

- Plots maximum steady-state acceleration that a vehicle can have in any direction
- Outside circle = lost traction, locked wheels, etc
- Inside circle = within limits of the vehicle
- On the circle = driving at the edge

Figure 2

Circles

Figure 2

- Circles
 - Shape of the curve is circular, due to tires

Figure 2

- Circles
 - Shape of the curve is circular, due to tires
 - Tires can be assumed to have a maximum force vector which can be applied in any direction

Figure 2

- Circles
 - Shape of the curve is circular, due to tires
 - Tires can be assumed to have a maximum force vector which can be applied in any direction
- Positive Acceleration shape

Figure 2

- Circles
 - Shape of the curve is circular, due to tires
 - Tires can be assumed to have a maximum force vector which can be applied in any direction
- Positive Acceleration shape
 - Top part of curve isn't quite circular

Figure 2

Circles

- Shape of the curve is circular, due to tires
- Tires can be assumed to have a maximum force vector which can be applied in any direction
- Positive Acceleration shape
 - Top part of curve isn't quite circular
 - Positive acceleration is nearly always limited by the power unit, not the tires
 - For (nearly) all cars, the power unit is the most severe acceleration limitation

Figure 2

Newton's Law of Friction

$$F = N\mu$$

where F is the max static friction force, N is the normal force, and μ is the static friction coefficient

Newton's Law of Friction

$$F = N\mu$$

where F is the max static friction force, N is the normal force, and μ is the static friction coefficient

- Tires create force via **static friction**
 - A tire is in kinetic friction if it's locked up or doing a burnout

Newton's Law of Friction

$$F = N\mu$$

where F is the max static friction force, N is the normal force, and μ is the static friction coefficient

- Tires create force via static friction
 - A tire is in kinetic friction if it's locked up or doing a burnout
- \bullet μ is generally assumed to be constant
 - ullet So F is linearly dependent on N

• Tires **do not** have a constant μ :

$$F = N\mu(N)$$

• Tires **do not** have a constant μ :

$$F = N\mu(N)$$

• This phenomena is known as Load Sensitivity

• Tires **do not** have a constant μ :

$$F = N\mu(N)$$

- This phenomena is known as Load Sensitivity
- \bullet Generally, μ and N are inversely proportional
 - As $\uparrow N$, $\downarrow \mu$

• Tires **do not** have a constant μ :

$$F = N\mu(N)$$

- This phenomena is known as Load Sensitivity
- \bullet Generally, μ and N are inversely proportional
 - As $\uparrow N$, $\downarrow \mu$

Load Sensitivity is the singular most impactful thing in racecar design

It alters practically every single decision