Formula Sheet 4 CXC

Area and Perimeter Formula

Perimeter = distance around the outside (add all sides).

Area triangle =
$$\frac{1}{2}bh$$

Area parallelogram = bh

Area rectangle = bh or lw

Area square = bh or s^2

Area trap ezoid =
$$\frac{1}{2}h(b_1+b_2)$$

Area circle = πr^2

Circumference of circle = $2\pi r = \pi d$

Trigonometric Formula

Opposite – side opposite to angle

Adjacent –side beside hyp (adjacent) to angle

Hypotenuse- longest side

$$\sin \theta = \frac{opposite}{hypotenus}$$

$$\cos\theta = \frac{adjacent}{hypotenus}$$

$$\tan \theta = \frac{opposite}{adjacent}$$

Remember: works only on right angle triangles

Pythagorean Theorem

$$c^2 = a^2 + b^2$$

Triples: 3,4,5 5,12,13 8,15,17

C is the hypotenuse, a and b are the other sides.

Remember: works only on right angle triangles

Coordinate Geometry Formula

Volume and Surface Area

V(rectangular solid) = h h

SA(rect. solid) = 2lh + 2hw + 2hw

 $V(\text{cylinder}) = \pi r^2 h$

 $SA(\text{cylinder}) = 2\pi r h + 2\pi r^2$

Distance Formula:

$$d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

Midpoint Formula:

$$(x,y) = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$

Equation of a line

Slope-Intercept Method:

$$y = mx + c$$

Point-Gradient Method:

$$y - y_1 = m(x - x_1)$$

Gradient Formula:

$$m = \frac{y_1 - y_2}{x_1 - x_2} \qquad m = \frac{rise}{run}$$

Parallel lines have equal slope. Perpendicular lines have negative reciprocal gradients.

Angle Information

Complementary angles - two angles whose sum is 90.

Supplementary angles - two angles whose sum is 180.

General Triangle Information

Sum of angles of triangle = 180.

Measure of exterior angle of triangle = the sum of the two non-adjacent interior angles.

The sum of any two sides of a triangle is greater than the third side.

Polygons

Sum of Interior Angles: 180(n-2)

Sum of Exterior Angles: **360**

Each Interior Angle (regular poly): 180(n-2)

n

Each Exterior Angle (regular poly): **360**

n

Quadratic Formula

 $If ax^2 + bx + c = 0$

then

$$x - \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Parallel lines

Corresponding angles are equal. 1= 5,

$$52 = 6$$
, $3 = 7$, $4 = 8$

Alternate Interior angles are equal. 3= 6, 4= 5

Alternate Exterior angles are equal.

$$\stackrel{\checkmark}{=} 1 = 8, \quad 2 = 7$$

Same side interior angles are supplementary.

m 3+m 5=180, m 4+m 6=180

Solving triangles

Sine rule

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} \quad \text{or} \quad \frac{\sin A}{a} - \frac{\sin B}{b} - \frac{\sin C}{c}$$

Used when any two sides and their corresponding angles are involved to find one missing side or angle.

Cosine rule

$$a^2 - b^2 + c^2 - 2bc \times \cos A$$

$$b^2 - a^2 + c^2 - 2ac \times \cos B$$

$$c^2 - a^2 + b^2 - 2ab \times \cos C$$

Used when three sides and an angle between them are given to find the other side

Heron's Formula

Area of a triangle given only the length of the sides

$$A = \sqrt{s(s-a)(s-b)(s-c)}$$

where
$$s - \frac{a+b+c}{2}$$

Capital letters represent Angles Common letters represent sides

Circle Facts

Sector

Diameter = $2 \times$ radius

Area of circle = πr^2

Circumference of circle = $2\pi r$ or πd

Length of arc =
$$2\pi r \times \frac{\theta}{360}$$

Area of sector = $\pi r^2 \times \overline{360}$

Area of Segment = Area of sector - Area of triangle

$$= \left(\pi r^2 \times \frac{\theta}{360}\right) - \left(\frac{1}{2}r^2 \sin\theta\right)$$

Angles in circles

- 1. a,b,c,d Angle at the center in twice angle at the circumference.
- 2. Angle formed on the diameter in 90°
- 3. Angles in the same segment are equal
- 4. opposite angles in a cyclic

 Quadrilateral are supplimentary(add up to 180°)

Tangent

- 5. Radius to tangent is 90° at point of contact.
- 6. The tangents to a circle from an external point T are equal in length.
- 7. Angle between tangent to circle and chord at the point of contact is equal to the to the angle in the alternet segment

3.

Adding or subtracting matrices

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \pm \begin{pmatrix} e & f \\ g & h \end{pmatrix} = \begin{pmatrix} a \pm e & b \pm f \\ c \pm g & d \pm h \end{pmatrix}$$

Multiplying Matrices

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \times \begin{pmatrix} e & f \\ g & h \end{pmatrix} = \begin{pmatrix} ae + bg & af + bh \\ ce + dg & cf + dh \end{pmatrix}$$

Determinant of 2×2 Matrix

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

If
$$|A| = ad - cb$$

A singular matrices has a determinant of 0

Adjoint of 2×2 matrix

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

$$A \quad adjo \text{ int} = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

Inverse of 2×2 matrix

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

$$A^{-1} = \frac{1}{|A|} \times A$$
 adjoint

or

$$A^{-1} = \frac{1}{ad - bc} \times \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

Reverse oppertions

REFLECTION

Multiply matrices by each point to get reflection in

TRANSLATION

Movement of x in x direction and y in ydirection add matrix

ROTATION

Multiply by matrices to get rotation of Θ -degrees clockwise about origin (0,0)

$$R_{\theta} \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \qquad \qquad R_{\theta\theta} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

$$R_{180} \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \qquad \qquad R_{270} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

Enlargment

Multiply each point by scale factor K to get the image of the point for an enlargment from the origin.

Sets

 ξ = universal set

 \in is a member of

∉= is not a member of

 \cup = union

 \cap = intersect

Ø= null set

A' =Elements not in set A

Factoring Formulas

$$x^{2}-a^{2} = (x+a)(x-a)$$

$$x^{2}+2ax+a^{2} = (x+a)^{2}$$

$$x^{2}-2ax+a^{2} = (x-a)^{2}$$

$$x^{2}+(a+b)x+ab = (x+a)(x+b)$$

Arithmetic Operations

$$ab + ac = a(b+c)$$

$$a\left(\frac{b}{c}\right) = \frac{ab}{c}$$

$$\frac{\left(\frac{a}{b}\right)}{c} = \frac{a}{bc}$$

$$= \frac{a}{bc} \qquad \qquad \frac{a}{\left(\frac{b}{c}\right)} = \frac{a}{c}$$

$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}$$

$$\frac{a-b}{c-d} = \frac{b-a}{d-c}$$

$$\frac{ab+ac}{a} = b+c, \ a \neq 0 \qquad \frac{\left(\frac{a}{b}\right)}{\left(\frac{c}{c}\right)} = \frac{ad}{bc}$$

$$a\left(\frac{b}{c}\right) = \frac{ab}{c}$$

$$\frac{a}{\left(\frac{b}{c}\right)} = \frac{ac}{b}$$

$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd} \qquad \qquad \frac{a}{b} - \frac{c}{d} = \frac{ad - bc}{bd}$$

$$\frac{a+b}{c} = \frac{a}{c} + \frac{b}{c}$$

$$\frac{\left(\frac{a}{b}\right)}{\left(\frac{c}{d}\right)} = \frac{ad}{bc}$$

Exponent Properties

$$a^n a^m = a^{n+m}$$

$$\frac{a^n}{a^m} = a^{n-m} = \frac{1}{a^{m-n}}$$

$$\left(a^{n}\right)^{m}=a^{nm}$$

$$a^0 = 1$$
, $a \neq 0$

$$(ab)^n = a^n b^n$$

$$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$$

$$a^{-n} = \frac{1}{a^n}$$

$$\frac{1}{a^{-n}} = a^n$$

$$\left(\frac{a}{b}\right)^{-n} = \left(\frac{b}{a}\right)^{n} = \frac{b^{n}}{a^{n}} \qquad a^{\frac{n}{m}} = \left(a^{\frac{1}{m}}\right)^{n} = \left(a^{n}\right)^{\frac{1}{m}}$$

$$a^{\frac{n}{m}} = \left(a^{\frac{1}{m}}\right)^n = \left(a^n\right)^{\frac{1}{m}}$$

Completing the Square

Solve $2x^2 - 6x - 10 = 0$

(1) Divide by the coefficient of the x^2

$$x^2 - 3x - 5 = 0$$

(2) Move the constant to the other side.

$$x^2 - 3x = 5$$

(3) Take half the coefficient of x, square it and add it to both sides

$$x^{2} - 3x + \left(-\frac{3}{2}\right)^{2} = 5 + \left(-\frac{3}{2}\right)^{2} = 5 + \frac{9}{4} = \frac{29}{4}$$

(4) Factor the left side

$$\left(x-\frac{3}{2}\right)^2 = \frac{29}{4}$$

(5) Use Square Root Property

$$x - \frac{3}{2} = \pm \sqrt{\frac{29}{4}} = \pm \frac{\sqrt{29}}{2}$$

(6) Solve for x

$$x = \frac{3}{2} \pm \frac{\sqrt{29}}{2}$$

Shape	Volume	Surface Area
Cube	$l \times l \times l = l^3$	6F
Cuboid	lwh	2lw+2hw+2lh
Prism h b	$\frac{1}{2}bhl$	bh + lb + sl + hl
Cylinder		
h r	$\pi r^2 h$	$2\pi r^2 + 2\pi rh$ or $2\pi r(r+h)$
Cone	$\frac{1}{3}\pi r^2 h$	$\pi r^2 + \pi r s$
Sphere	$\frac{4}{3}\pi r^3$	$4\pi r^2$

©2006 D. Ferguson