SISTEMA DE VISÃO COMPUTACIONAL PARA INSPEÇÃO MULTIPEÇAS EM LINHA DE PRODUÇÃO UTILIZANDO OPENCV

Curso de Engenharia Elétrica

Sumário de apresentação

- Introdução à visão computacional
- Objetivos do trabalho
- Processamento de imagem
- OpenCV
- Aplicação
- Desenvolvimento
- Conclusões finais

Introdução à visão computacional

- Conceitos básicos
- Aplicações diversas
- Dificuldades

GOD 66

Objetivos do trabalho

- Ideia do funcionamento
- Objetivos específicos

Processamento de imagem

- Conceito básico
- Passos do processamento

OpenCV

- Biblioteca
- Baseada em C/C++
- Python, Matlab, Visual Basic...
- Linux, Windows, Android...

Aplicação

- Objetos escolhidos
 - Cápsulas Nescafé Dolce Gusto
- Características dos objetos
 - Tamanho
 - Cor

- Protótipo
- Câmeras
- Interface de comunicação
- Iluminação
- Hardware
- Software -> desenvolvido

Modelo	Notebook ASUS X550C
CPU	Intel® Core™ i3-3217U 1,80GHz
Memória RAM	4GB
Sistema Operacional	Windows 10 (x64)

- Code::Blocks
- Biblioteca OpenCV
- Processamento de imagem
 - Filtros
 - Limiarização
 - Subtração de fundo
 - Detecção e reconhecimento de objetos
 - Processamento morfológico

Lógica final

- Pré-processamento
 - Subtração de fundo
 - Filtros passa-baixa
- Segmentação e detecção de objetos
 - Limiarização
 - Processamento morfológico
 - Aproximação poligonal

- Extração de características
 - Cor por pixel
 - Raio
 - Centro
- Reconhecimento e interpretação
 - Média de cor RGB
 - Tamanho em mm
 - Coordenadas em mm

//Approximate contours to polygons + center + radius
approxPolyDP(Mat(contours[i]), contours_poly[i], 3, true);
minEnclosingCircle((Mat)contours_poly[i], center[i], radius[i]);

- Interface gráfica
- Qt Creator

Conclusões finais

Pontos positivos

- Assertividade na inspeção
- Coordenadas corretas
- Funcionamento linear em tempo real
- Atende os objetivos propostos

Pontos a melhorar

- Variações na segmentação dos objetos
- Reflexo da iluminação nos selos das cápsulas
- Desempenho em média de 20 FPS

SISTEMA DE VISÃO COMPUTACIONAL PARA INSPEÇÃO MULTIPEÇAS EM LINHA DE PRODUÇÃO UTILIZANDO OPENCV

Augusto Abling 2017

