

$$x_i(t)$$
 = species abundances, locations $i = 1, ..., N$, times $1, ..., T$.

$$\mu_i = \operatorname{mean}(x_i); v_{ii} = \operatorname{var}(x_i); v_{ij} = \operatorname{cov}(x_i, x_j); m_{iii} = 3^{\operatorname{rd}} \operatorname{moment of } x_i; x_{\operatorname{tot}} = \sum_i x_i(t).$$

 $CV_{com}^2 = var(x_{tot})/(mean(x_{tot}))^2 = community instability measured using variance.$

 CV_{nta}^2 = what CV_{com}^2 would be without tail associations.

 $CV_{\text{ind}}^2 = (\sum_i v_{ii})/(\sum_i \mu_i)^2 = \text{what } CV_{\text{com}}^2 \text{ would be without species interactions.}$

 $S_{\text{com}} = \text{skew}(x_{\text{tot}}) = \text{community instability measured using skewness.}$

 S_{nta} = what S_{com} would be without tail associations.

 $S_{\rm ind} = (\sum_i m_{iii})/(\sum_i v_i)^{3/2}$ = what $S_{\rm com}$ would be without species interactions.