STATIKUS OPTIMALIZÁLÁS

Tétel (optimum általános szükséges feltétele): Legyen $E = R^m$, $x_0 \in E$, k és n természetes egész, $F_i : E \to R^1$ valósértékű függvények, melyeknek létezik és folytonos a deriváltja az x_0 egy környezetében, i = 0, ..., n+k, $A \subset E$ konvex és létezik belső pontja. Legyen

$$Q = \{x \in E : F_i(x) \le 0, i = 1,...,n,$$

$$F_i(x) = 0, i = n + 1,...,n + k,$$

$$x \in A\}$$

a korlátozás, $x_0 \in Q$ és létezzen x_0 -nak olyan U környezete, hogy

$$\min_{x \in Q \cap U} F_0(x) = F_0(x_0).$$

Akkor léteznek olyan λ_i számok, i = 0, ..., n + k, hogy

- 1) $\lambda := (\lambda_0, \dots, \lambda_{n+k}) \neq 0$
- 2) $\lambda_i \ge 0$, i = 0,...,n és $\lambda_i F_i(x_0) = 0$, i = 1,...,n,
- 3) $f(x) := \sum_{i=0}^{n+k} \lambda_i F_i'(x_0) x$ összefüggéssel definiált függvényre teljesül

$$\forall x \in A \Rightarrow f(x) \ge f(x_0).$$

Tétel (Karush-Kuhn-Tucker): Legyen $E = R^m$, $x_0 \in E$, k és n természetes egész, $F_i : E \to R^1$ valósértékű függvények, melyeknek létezik és folytonos a deriváltja az x_0 egy környezetében, $i = 0, \dots, n+k$. Legyen

$$Q = \{x \in E : F_i(x) \le 0, i = 1,...,n,$$
$$F_i(x) = 0, i = n + 1,...,n + k\}$$

a korlátozás, $x_0 \in Q$ és létezzen x_0 -nak olyan U környezete, hogy

$$\min_{x \in Q \cap U} F_0(x) = F_0(x_0).$$

Akkor léteznek olyan λ_i számok, i = 0, ..., n + k, hogy

- 1) $\lambda := (\lambda_0, \dots, \lambda_{n+k}) \neq 0$
- 2) $\lambda_i \ge 0$, i = 0,...,n és $\lambda_i F_i(x_0) = 0$, i = 1,...,n,

$$\lambda_0 F_0'(x_0) + \sum_{i=1}^{n+k} \lambda_i F_i'(x_0) = 0$$

Megjegyzés: A fenti tétel az előző tétel speciális esete, ha az A korlátozás hiányzik, azaz A = E a teljes tér. Nem elfajuló esetben feltehető $\lambda_0 = 1$.

Tétel (Lagrange-multiplikátor szabály): Legyen

 $E = R^m$, $x_0 \in E$, n természetes egész, $F_i : E \to R^1$ valósértékű függvények, melyeknek létezik és folytonos a deriváltja az x_0 egy környezetében, i = 0, ..., n. Legyen

$$Q = \{x \in E : F_i(x) = 0, i = 1,...,n\}$$

a korlátozás, $x_0 \in Q$ és létezzen x_0 -nak olyan U környezete, hogy

$$\min_{x \in Q \cap U} F_0(x) = F_0(x_0).$$

Akkor léteznek olyan λ_i számok, ú.n. Lagrangemultiplikátorok, i = 1, ..., n, hogy $\lambda := (\lambda_1, ..., \lambda_n) \neq 0$ és

$$F_0'(x_0) + \sum_{i=1}^n \lambda_i F_i'(x_0) = 0$$

Megjegyzés: Ha az $F_0: E \to R^1$ költségfüggvény <u>konvex</u>, továbbá az $F_i(x) = 0$, i = 1, ..., n korlátozások <u>lineárisak</u>, akkor a Lagrange-multiplikátor szabály az optimumnak nemcsak szükséges, hanem elégséges feltétele is.

Példák statikus optimalizálásra:

LQ optimum probléma diszkrét időben: A költségfüggvény kvadratikus:

$$F_0(x,u) = \frac{1}{2} \sum_{k=0}^{N-1} \{ \langle Q_k x_k, x_k \rangle + \langle R_k u_k, u_k \rangle \} + \frac{1}{2} \langle Q_N x_N, x_N \rangle \rightarrow \min,$$

és $Q_k \ge 0$, $R_k > 0$ miatt konvex, a korlátozás lineáris:

$$x_{k+1} = A_k x_k + B_k u_k, \ k = 0, ..., N, \ x_0 = a$$

A megoldást $x = \{x_k\}_{k=0}^N$, $u = \{u_k\}_{k=0}^{N-1}$ esetén keressük.

Kalman-féle szűrési feladat: A zajjal terhelt rendszer

$$x_{k+1} = A_k x_k + B_k u_k + v_k,$$

$$y_k = C_k x_k + z_k$$

ahol u_k determinisztikus jel, v_k és z_k nulla várhatóértékű zajok. Keressük az optimális F_k , G_{k+1} , H_k mátrixokat az

$$\hat{x}_{k+1} = F_k \hat{x}_k + G_{k+1} y_{k+1} + H_k u_k, \ \hat{x}(0)$$

lineáris állapotbecslőben, amelyek az állapotbecslési hibát várhatóértékben nullává teszik és szórását minimalizálják.

OPTIMUMKERESŐ ELJÁRÁSOK

Optimumkeresés egy skalárváltozóban:

Legyen a cél x_k -ból kiindulva a d_k csökkenési irány mentén a minimum-hely jó $\lambda_k \approx \arg\min \{f(x_k + \lambda d_k) : \lambda \geq 0\}$ közelítésének meghatározása. Legyen $\varphi : R^1 \to R^1$ és tegyük fel, hogy $\varphi(\lambda)$ konvex és differenciálható.

Legyen F megoldása az $F^2 + F - 1 = 0$ egyenletnek, azaz $F = (\sqrt{5} - 1)/2 \approx 0.618$ a Fibonacci-szám, golden section.

Algoritmus (Cauchy-elv, Fibonacci-keresés):

- 1. Meghatározandó egy $[a_0,b_0]$ intervallum, amely a minimum λ_k helyét tartalmazza. Legyen i = 0.
- 2. Ha $b_i a_i \le \varepsilon$, akkor stop és a minimum helyére teljesül $\lambda_k \in [a_i, b_i]$.
- 3. Legyen $v_i := b_i F(b_i a_i)$, $w_i := a_i + F(b_i a_i)$.
- 4. Ha $\varphi(v_i) < \varphi(w_i)$, akkor legyen $a_{i+1} \coloneqq a_i, b_{i+1} \coloneqq w_i,$ $i \coloneqq i+1$ és ugrás a 2. lépésre.

Ha $\varphi(v_i) \ge \varphi(w_i)$, akkor legyen $a_{i+1} := v_i$, $b_{i+1} := b_i$, i := i+1 és ugrás a 2. lépésre.

Az F választás biztosítja, hogy a ciklusban csak 1 új függvényértéket kell kiszámítani, a másik már kész.

Gradiens módszer: Ha $g_k = f'(x_k)$ jelöli a gradienst és a csökkenési irány a negatív gradiens iránya: $d_k = -g_k$, akkor a minimum helyének új becslését meghatározhatjuk a d_k irány mentén optimum kereséssel a Cauchy-elv szerint (Fibonacci-keresés, más néven golden section). Ha nem akarunk alkalmazni iránymenti keresést, akkor választható valamilyen fix λ_0 lépésköz, és a minimum helyének újabb közelítése

$$x_{k+1} \coloneqq x_k - \lambda_0 \frac{g_k}{\|g_k\|}$$

Konjugált gradiens módszer: Tekintsük a korlátozás nélküli esetet, és legyen az optimalizálási kritérium egy konvex és kvadratikus valósértékű függvény:

$$f(x) = \frac{1}{2} \langle Ax, x \rangle + \langle b, x \rangle + c, \ A = A^{T} \rangle 0$$

$$g := f'(x) = Ax + b \text{ (gradiens)},$$

$$f''(x) = A \text{ (Hess-mátrix)}.$$

A feladat elvben ekvivalens az $f'(x_0) = Ax_0 + b = 0$ lineáris egyenletrendszer megoldásával, de erre nem fogunk építeni, mivel a módszert általánosabb függvényekre is alkalmazni kívánjuk.

Konjugált irányok: Azt mondjuk, hogy a $\{d_0, d_1, ..., d_k\}$ irányok A-ra vonatkozóan konjugált irányok, ha minden i < k esetén $< d_k, Ad_i >= 0$ és $< g_k, g_i >= 0$.

Konjugált gradiens algoritmus kvadratikus függvény esetén:

- 1. Legyen x_0 az induló érték, $g_0 \coloneqq f'(x_0) = Ax_0 + b$, $d_0 = -g_0$, k = 0.
- 2. Tegyük fel, hogy már meg lett határozva x_k , $g_k = f'(x_k) = Ax_k + b$, d_k és teljesül $\forall i < k$ esetén $\langle d_k, Ad_i \rangle = 0$ és $\langle g_k, g_i \rangle = 0$. Legyen x_{k+1} a minimum helye a d_k irányban, és válasszuk a következő értékeket:

$$\begin{split} \lambda_k &\coloneqq -\frac{< d_k, g_k >}{< d_k, Ad_k >}, \ x_{k+1} \coloneqq x_k + \lambda_k d_k, \\ g_{k+1} &\coloneqq f'(x_{k+1}) = Ax_{k+1} + b, \\ \beta_k &\coloneqq \frac{< g_{k+1}, Ad_k >}{< d_k, Ad_k >}, \ d_{k+1} \coloneqq -g_{k+1} + \beta_k d_k. \end{split}$$

Ismételjük a 2. lépést k = n eléréséig, akkor x_n a minimum helye.

Indoklás:

i) Legyen $\varphi(\lambda) \coloneqq f(x_k + \lambda d_k)$, akkor a d_k iránymenti minimum helyén $\varphi'(\lambda) = 0$, tehát $\varphi'(\lambda) = \langle f'(x_k + \lambda d_k), d_k \rangle = \langle A(x_k + \lambda d_k) + b, d_k \rangle = 0$, ahonnan $g_k = Ax_k + b$ miatt következik $\lambda_k \coloneqq -\langle d_k, g_k \rangle / \langle d_k, Ad_k \rangle$.

ii) Ha $d_{k+1} := -g_{k+1} + \beta_k d_k$ választással élünk, akkor d_{k+1} -gyel bővítve a konjugált irányokat teljesülnie kell a $< d_{k+1}, Ad_k > = < -g_{k+1} + \beta_k d_k, Ad_k > = 0$ feltételnek, ahonnan következik $\beta_k = < g_{k+1}, Ad_k > / < d_k, Ad_k >$.

Megjegyzés: A konstrukció szerint

$$g_{k+1} = Ax_{k+1} + b = A(x_k + \lambda_k d_k) + b = g_k + \lambda_k Ad_k \Rightarrow$$

$$Ad_k = \frac{1}{\lambda_k} (g_{k+1} - g_k),$$

majd ezt behelyettesítve β_k -ba, kapjuk hogy

$$\beta_k := \frac{\langle g_{k+1}, g_{k+1} - g_k \rangle}{\langle d_k, g_{k+1} - g_k \rangle}$$

Az összefüggés nem igényli az *A* mátrixot, ezért általánosítható nem kvadratikus célfüggvényre is.

Konjugált gradiens algoritmus tetszőleges függvény esetén:

- 1. Inicializálás: Legyen x_0 az induló érték, $g_0 \coloneqq f'(x_0)$, $d_0 = -g_0$, k = 0.
- 2. Tegyük fel, hogy már meg lett határozva x_k , $g_k = f'(x_k)$ és d_k . Keressük meg a minimumát a $\varphi(\lambda) = f(x_k + \lambda d_k)$ függvénynek, és legyen λ_k a minimum helye. Határozzuk meg az új keresési irányt a következő szabály szerint:

$$x_{k+1} := x_k + \lambda_k d_k, \quad g_{k+1} := f'(x_{k+1}),$$

$$\beta_k := \frac{\langle g_{k+1}, g_{k+1} - g_k \rangle}{\langle d_k, g_{k+1} - g_k \rangle},$$

$$d_{k+1} := -g_{k+1} + \beta_k d_k.$$

Ismételjük a 2. lépést k=n eléréséig, ha $\|g_k\|>0$. Ha elértük k=n-et, akkor legyen $x_0:=x_n$ és folytassuk az 1. lépéstől (újra inicializálás). Ha $\|g_k\|\approx 0$, akkor fogadjuk el a minimum helyének x_k -t és stop.

Megjegyzés: Ha f(x) nem kvadratikus, akkor a módszer csak közelítő, és általában nem érhető el a minimum n lépés alatt.

Newton-módszer: Legyen f(x) konvex és kvadratikus valós függvény, és írjuk fel az

$$f(x) = \frac{1}{2} < A(x - x_0, x - x_0), \quad A > 0,$$

$$g := f'(x) = A(x - x_0),$$

$$f''(x) = A$$

alakban, ahol x_0 a globális minimum helye. Világos, hogy tetszőleges x esetén teljesül

$$x_0 = x - A^{-1} \{ A(x - x_0) \},$$

ami felírható a következő, Newton-féle alakban is:

$$x_{k+1} := x_k - [f''(x_k)]^{-1} f'(x_k).$$

Következmény: A Newton-módszer szerint tetszőleges konvex és kvadratikus valós függvény globális minimumát tetszőleges helyről indítva egy lépésben meg lehet határozni. A módszer azonban igényli nem csak a gradiens, hanem a Hess-mátrix rendelkezésre állását is. Ha a függvény nem kvadratikus, akkor a módszer csak egy közelítő eljárás.

Kereséskor elvárjuk, hogy $f(x_{k+1}) < f(x_k)$, ilyenkor a módszer csökkenési irányokat használ. Ez a feltétel azonban általában nem biztosítja, hogy az $\{x_k\}$ sorozat x^* torlódási pontjaiban a gradiens nullává váljon, ami a minimum szükséges feltétele. Megfelelő meredekségű csökkenési irány mennyiségi jellemzésre használható az F-függvény (forcing function). A $\rho:[0,\infty)\to[0,\infty)$ függvényt F-függvénynek nevezzük, ha minden $\{t_k\}\subset[0,\infty)$ sorozat esetén $\lim_{k\to\infty}\rho(t_k)=0 \Rightarrow \lim_{k\to\infty}t_k=0$.

Gradienshez hasonló eljárások algoritmusa:

- 1. Kiindulási $x_0 \in \mathbb{R}^n$ választása, k := 0.
- 2. Ha $f'(x_k) \approx 0$, akkor legyen $x^* := x_k$ a minimum helyének közelítése, stop.
- 3. Kiszámítandó egy olyan $d_k \neq 0$ irányvektor, hogy minden x_k és a lerögzített $\rho(\cdot)$ F-függvény esetén teljesüljön a következő egyenlőtlenség:

$$\sigma_k := \frac{\langle f'(x_k), d_k \rangle}{\|d_k\|} \le -\rho(\|f'(x_k)\|)$$

- 4. Meghatározandó λ_k a Cauchy-elv vagy a Goldstein-elv szerint.
- 5. Legyen $x_{k+1} := x_k + \lambda_k d_k$, k := k+1 és ugrás a 2. lépésre.

Davidon/Fletcher/Powell (DFP) eljárás: Iinicializáláskor igényel egy $H_0 > 0$ szimmetrikus és pozitív definit mátrixot is x_0 mellett. A keresési irány a 3. lépésben $d_k := -H_k f'(x_k)$, a 4. lépésben pedig λ_k értékét a Cauchy elv alapján kell meghatározni. Az 5. lépésben korrigálni kell a mátrixot a következő szabály szerint:

$$q_k := f'(x_{k+1}) - f'(x_k), \quad r_k := x_{k+1} - x_k,$$

$$H_{k+1} := H_k + \frac{r_k r_k^T}{\langle r_k, q_k \rangle} - \frac{(H_k q_k)(H_k q_k)^T}{\langle q_k, H_k q_k \rangle}.$$

Az algoritmus garantálja, hogy $H_k > 0$ marad.

Az f''(x)-re vonatkozó bizonyos simasági és korlátossági feltételek teljesülésekor a Davidon/Fletcher/Powell eljárás gradienshez hasonló eljárás, $\rho(t)$ a korlátokból meghatározható és a konvergencia erősebb a lineárisnál.

Megjegyzés:

DFP eljárás és kvadratikus célfüggvény esetén H_k konvergál a Hess-mátrix inverzéhez.

Létezik egy hasonló módszer, a Broiden-módszer, amelynél az iteráció úgy van megválasztva, hogy az ottani \boldsymbol{H}_k mátrix kvadratikus célfüggvény esetén a Hess-mátrixhoz konvergál.

DISZKRÉTIDEJŰ LQ OPTIMÁLIS IRÁNYÍTÁS

Időben változó rendszer és véges időintervallum:

Legyen az optimalizálási kritérium kvadratikus:

$$\begin{split} J(x,u) = & \frac{1}{2} \sum_{k=0}^{N-1} \{ < Q_k x_k, x_k > + < R_k u_k, u_k > \} + \frac{1}{2} < Q_N x_N, x_N > , \\ Q_N, Q_k \ge 0 \text{ (pozitív szemidefinit)}, \ R_k > 0 \text{ (pozitív definit)}, \ k = 0, \dots, N-1, \end{split}$$

az irányítandó rendszer pedig lineáris:

$$x_{k+1} = A_k x_k + B_k u_k, k = 0,1,...,N-1,$$

ahol a kezdeti feltétel $x_0 = a$. Az optimális megoldást az $x = \{x_k\}_{k=0}^N$ és $u = \{u_k\}_{k=0}^{N-1}$ változókban keressük. A feladat tehát egy optimalizálási feladat végesdimenziós térben kvadratikus kritérium és lineáris korlátozások esetén, ezért az optimális megoldás szükséges és elégséges feltételét a Lagrange-multiplikátor szabály adja.

Egészítsük ki a J(x,u) célfüggvényt a vektor-Lagrange-multiplikátorokkal súlyozott $F_k(x,u)$ korlátozásokkal, akkor

$$\begin{split} L(x,u) &= J(x,u) + \sum_{k} <\lambda_{k} \,, F_{k}(x,u) > = \\ &= \frac{1}{2} \sum_{k=0}^{N-1} \{ < Q_{k} x_{k} \,, x_{k} > + < R_{k} u_{k} \,, u_{k} > \} + \frac{1}{2} < Q_{N} x_{N} \,, x_{N} > + \\ &+ < \lambda_{0} \,, a - x_{0} > + < \lambda_{1} \,, A_{0} x_{0} \, + B_{0} u_{0} - x_{1} > + \dots + < \lambda_{N} \,, A_{N-1} x_{N-1} \, + B_{N-1} u_{N-1} - x_{N} > . \end{split}$$

Figyelembe véve, hogy $<\lambda$, $Ax + Bu > = < A^T \lambda$, $x > + < B^T \lambda$, u >, a Lagrange-multiplikátor szabály a következő összefüggésekre vezet:

$$\frac{\partial L}{\partial x_0} = Q_0 x_0 - \lambda_0 + A_0^T \lambda_1 = 0$$

$$\vdots$$

$$\frac{\partial L}{\partial x_{N-1}} = Q_{N-1} x_{N-1} - \lambda_{N-1} + A_{N-1}^T \lambda_N = 0$$

$$\frac{\partial L}{\partial x_N} = Q_N x_N - \lambda_N = 0, \qquad \lambda_N = Q_N x_N$$

$$\frac{\partial L}{\partial u_0} = R_0 u_0 + B_0^T \lambda_1 = 0$$

$$\vdots$$

$$\frac{\partial L}{\partial u_{N-1}} = R_{N-1} u_{N-1} + B_{N-1}^T \lambda_N = 0$$

$$u_k = -R_k^{-1} B_k^T \lambda_{k+1}$$

Mivel a korlátozásoknak teljesülni kell, ezért u_k visszahelyettesítendő az állapotegyenletbe: $x_{k+1} = A_k x_k - B_k R_k^{-1} B_k^T \lambda_{k+1}$. Az optimum szükséges és elégséges feltétele ezért a következő:

A kevert kezdeti és végérték feltételek sugallják, hogy célszerű a megoldást a $\lambda_k := P_k x_k$ alakban keresni. Ekkor eltünik a λ_k Lagrange-multiplikátor vektor, de megjelenik a P_k mátrix helyette, amelynek azonban ismert a végértéke, mert $P_N = Q_N$. A helyettesítés hasznossága attól függ, hogy lehet-e rekurzív összefüggést levezetni P_k -ra. Az is világos, hogy ha igen, akkor az optimális irányítás állapot-visszacsatolás lesz, mert x_{k+1} kifejezhető x_k -val:

$$x_{k+1} = A_k x_k - B_k R_k^{-1} B_k^T P_{k+1} x_{k+1} \Rightarrow x_{k+1} = (I + B_k R_k^{-1} B_k^T P_{k+1})^{-1} A_k x_k$$

Inverz mátrix lemma:

$$(A + BCD)^{-1} = A^{-1} - A^{-1}B(DA^{-1}B + C^{-1})^{-1}DA^{-1}$$

Választás: A := I, $B := B_k$, $C := R_k^{-1}$, $D := B_k^T P_{k+1}$, akkor a lemma szerint kapjuk, hogy

$$(I + B_k R_k^{-1} B_k^T P_{k+1})^{-1} = I - B_k (B_k^T P_{k+1} B_k + R_k)^{-1} B_k^T P_{k+1}$$

$$x_{k+1} = \{I - B_k (B_k^T P_{k+1} B_k + R_k)^{-1} B_k^T P_{k+1} \} A_k x_k$$

$$u_k = -R_k^{-1} B_k^T \lambda_{k+1} =$$

$$= -R_k^{-1} B_k^T P_{k+1} \{I - B_k (B_k^T P_{k+1} B_k + R_k)^{-1} B_k^T P_{k+1} \} A_k x_k := -K_k x_k,$$

$$K_k = \{R_k^{-1} - R_k^{-1} B_k^T P_{k+1} B_k (B_k^T P_{k+1} B_k + R_k)^{-1} \} B_k^T P_{k+1} A_k =$$

$$= \{R_k^{-1} - R_k^{-1} B_k^T P_{k+1} B_k (R_k^{-1} B_k^T P_{k+1} B_k + I_k)^{-1} \} R_k^{-1} B_k^T P_{k+1} A_k$$

ahol

Alkalmazzuk az inverz mátrix lemmát fordított irányban az $A := R_k$, $B := B_k^T P_{k+1} B_k$, C = D := I választás mellett, akkor a következő rekurzív összefüggéshez jutunk:

$$K_k = (B_k^T P_{k+1} B_k + R_k)^{-1} B_k^T P_{k+1} A_k$$

Másrészt viszont

$$\lambda_{k} = Q_{k} x_{k} + A_{k}^{T} \lambda_{k+1} = Q_{k} x_{k} + A_{k}^{T} P_{k+1} x_{k+1} =$$

$$= Q_{k} x_{k} + A_{k}^{T} P_{k+1} \{ I - B_{k} (B_{k}^{T} P_{k+1} B_{k} + R_{k})^{-1} B_{k}^{T} P_{k+1} \} A_{k} x_{k} =$$

$$= \{ Q_{k} + A_{k}^{T} P_{k+1} A_{k} - A_{k}^{T} P_{k+1} B_{k} (B_{k}^{T} P_{k+1} B_{k} + R_{k})^{-1} B_{k}^{T} P_{k+1} A_{k} \} x_{k} =$$

$$= P_{k} x_{k}$$

ahonnan következik egy rekurzív összefüggés P_k -ra is, nevezetesen Diszkrétidejű Riccati differenciaegyenlet:

$$P_k = Q_k + A_k^T P_{k+1} A_k - A_k^T P_{k+1} B_k (B_k^T P_{k+1} B_k + R_k)^{-1} B_k^T P_{k+1} A_k.$$

amelynek $P_k \ge 0$ megoldása választandó.

Célszerű bevezetni egy közbenső M_{k+1} mátrixot, amelynek segítségével P_k egyszerű alakra hozható:

$$M_{k+1} = P_{k+1} - P_{k+1}B_k (B_k^T P_{k+1}B_k + R_k)^{-1} B_k^T P_{k+1}$$

$$P_k = Q_k + A_k^T M_{k+1} A_k$$

Összefoglalva az eredményeket megállapítható, hogy időben változó rendszer és/vagy véges időintervallum esetén a tervezést rendszerint nem lehet valós időben elvégezni, hanem előre el kell végezni jelentős mennyiségű és adattömegű számítást (hátratartó rekurzió), mielőtt az optimális irányítást valós időben megvalósítanánk (előretartó rekurzió).

Diszkrétidejű LQ optimális irányítási algoritmus LTV rendszer és véges időintervallum esetén:

Offline tervezés:

- 1. Inicializálás: k = N és $P_N = Q_N$.
- 2. Hátratartó rekurzió: k = N 1, N 2, ..., 1
 - i) M_{k+1} meghatározása
 - ii) P_k meghatározása

Online irányítás:

- 1. Inicializálás: x_0 kezdeti állapot beállítása.
- 2. Előretartó rekurzió: k = 0,1,...,N-1
 - i) K_k meghatározása
 - ii) $u_k := -K_k x_k$ kiadása a rendszerre
 - iii) $x_{k+1} = A_k x_k + B_k u_k$ meghatározása

Ha az állapot nem mérhető, akkor alkalmazhatunk (aktuális, teljesrendű stb.) állapotmegfigyelőt a becslésére. A referencia jelhez meghatározható egy névleges bemenő jel (u_c) , amellyel korrigálhatjuk u_k -t.

Reciprok gyök tulajdonság diszkrétidejű LTI rendszer esetén:

Az LTI rendszer

$$x_{k+1} = Ax_k - BR^{-1}B^T \lambda_{k+1},$$

$$\lambda_k = Qx_k + A^T \lambda_{k+1},$$

ahonnan Z-transzformációval kapjuk, hogy

$$zx = Ax - BR^{-1}B^{T}z\lambda \Rightarrow (zI - A)x + BR^{-1}B^{T}(z\lambda) = 0,$$
$$\lambda = Qx + A^{T}z\lambda \Rightarrow -Qx + (z^{-1}I - A^{T})(z\lambda) = 0,$$

vagy mátrix alakban

$$\begin{bmatrix} zI - A & BR^{-1}B^T \\ -Q & z^{-1}I - A^T \end{bmatrix} \begin{pmatrix} x \\ z\lambda \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

A nemtriviális megoldás feltétele, hogy a mátrix determinánsa egyenlő legyen nullával. Megmutatható, hogy a determináns faktorizálható

$$\det\begin{bmatrix} zI - A & BR^{-1}B^T \\ -Q & z^{-1}I - A^T \end{bmatrix} = \varphi(z)\varphi(z^{-1})a(z)a(z^{-1})$$

alakban, ahol φ és a polinomok.

LQ optimális konstans szabályozó LTI rendszer és végtelen intervallum esetén:

Feltesszük, hogy $\exists A^{-1}$ (tehát z = 0 nem sajátértéke Anak, a rendszer nem tartalmaz holtidőt). Ekkor λ_{k+1} kifejezhető x_k -val és λ_k -val, ezért

$$\lambda_{k+1} = -A^{-T} Q x_k + A^{-T} \lambda_k$$
$$x_{k+1} = A x_k - B R^{-1} B^T \{ -A^{-T} Q x_k + A^{-T} \lambda_k \}$$

ahonnan kapjuk, hogy

$$\begin{pmatrix} x_{k+1} \\ \lambda_{k+1} \end{pmatrix} = \begin{bmatrix} A + BR^{-1}B^TA^{-T}Q & -BR^{-1}B^TA^{-T} \\ -A^{-T}Q & A^{-T} \end{bmatrix} \begin{pmatrix} x_k \\ \lambda_k \end{pmatrix}$$

$$=: H_c \begin{pmatrix} x_k \\ \lambda_k \end{pmatrix}$$

Legyen a $H_c: \mathbb{R}^{2n} \to \mathbb{R}^{2n}$ mátrixnak z sajátértéke és $\begin{pmatrix} x \\ \lambda \end{pmatrix}$ a hozzátartozó sajátvektora, akkor

$$(A + BR^{-1}B^T A^{-T}Q)x - BR^{-1}B^T A^{-T}\lambda = zx,$$
$$-A^{-T}Qx + A^{-T}\lambda = z\lambda.$$

Világos, hogy a második egyenletből következik

$$\lambda = Qx + A^{T} z \lambda \Leftrightarrow -Qx + (z^{-1}I - A^{T})z \lambda = 0,$$

$$BR^{-1}B^{T}A^{-T}Qx - BR^{-1}B^{T}A^{-T}\lambda = -BR^{-1}B^{T}A^{-T}A^{T}z\lambda,$$

$$zx = Ax - BR^{-1}B^{T}z\lambda \Leftrightarrow (zI - A)x + BR^{-1}B^{T}z\lambda = 0,$$

amely ekvivalens a korábbi reciprok gyök tulajdonságnál szereplő alakkal, következésképp

$$\det(zI_{2n} - H_c) = \varphi(z)\varphi(z^{-1})a(z)a(z^{-1})$$

rendelkezik a reciprok gyök tulajdonsággal.

Beláttuk, hogy a H_c $(2n) \times (2n)$ méretű mátrixnak n sajátértéke az egységkör belsejében helyezkedik el (z_i) , n sajátértéke pedig az egységkör külsejében $(z_o = z_i^{-1})$. Ha a sajátértékek egyszeresek, akkor a sajátvektorok bázist alkotnak, és áttérve a sajátvektorok bázisára H_c diagonális (Jordan) alakra transzformálható.

Tekintsük az egységkörön belüli és egységkörön kívüli sajátértékekhez (SÉ) tartozó sajátvektorokat (SV):

$$z_i \to \left(\frac{\overline{x}_i}{\overline{\lambda}_i}\right) \text{ és } z_o = z_i^{-1} \to \left(\frac{\overline{x}_o}{\overline{\lambda}_o}\right).$$

Helyezzük el a sajátvektorokat rendre egy $\begin{bmatrix} X_i \\ A_i \end{bmatrix}$, illetve egy $\begin{bmatrix} X_o \\ A_o \end{bmatrix}$ mátrixban, akkor a diagonális alakra hozó koordináta-transzformáció

$$T^{-1} := \begin{bmatrix} X_i & X_o \\ A_i & A_o \end{bmatrix} \text{ és } \begin{pmatrix} \widetilde{x} \\ \widetilde{\lambda} \end{pmatrix} = T\begin{pmatrix} x \\ \lambda \end{pmatrix}$$

révén van meghatározva. Mivel ekkor

$$\begin{split} \widetilde{H}_c &= TH_c T^{-1} = \begin{bmatrix} \operatorname{diag}(z_i) & 0 \\ 0 & \operatorname{diag}(z_i^{-1}) \end{bmatrix}_{2n \times 2n} \\ \left(\begin{matrix} \widetilde{\chi} \\ \widetilde{\lambda} \end{matrix} \right)_k &= (\widetilde{H}_c)^k \begin{pmatrix} \widetilde{\chi} \\ \widetilde{\lambda} \end{matrix} \right)_0 = \begin{bmatrix} \operatorname{diag}(z_i) & 0 \\ 0 & \operatorname{diag}(z_i^{-1}) \end{bmatrix}^k \begin{pmatrix} \widetilde{\chi} \\ \widetilde{\lambda} \end{matrix} \right)_0 \\ \overline{\chi}_k &= \operatorname{diag}(z_i)^k \widetilde{\chi}_0 \end{split}$$

$$\widetilde{\lambda}_k = \operatorname{diag}(z_i^{-1})^k \widetilde{\lambda}_0 \xrightarrow{v\acute{e}ges} \widetilde{\lambda}_0 = 0,$$

ezért

$$\begin{bmatrix} x \\ \lambda \end{bmatrix}_k = T^{-1} \begin{pmatrix} \widetilde{x} \\ \widetilde{\lambda} \end{pmatrix}_k = \begin{bmatrix} X_i & X_o \\ \Lambda_i & \Lambda_o \end{bmatrix} \begin{pmatrix} \widetilde{x}_k \\ 0 \end{pmatrix} = \begin{bmatrix} X_i \\ \Lambda_i \end{bmatrix} \widetilde{x}_k$$

$$x_k = X_i \operatorname{diag}(z_i)^k \widetilde{x}_0 \Rightarrow \widetilde{x}_0 = \operatorname{diag}(z_i)^{-k} X_i^{-1} x_k$$
$$\lambda_k = \Lambda_i \widetilde{x}_k = \Lambda_i \underbrace{\operatorname{diag}(z_i)^k \operatorname{diag}(z_i)^{-k}}_{I} X_i^{-1} x_k,$$

ahonnan kapjuk, hogy

$$\lambda_k = \Lambda_i X_i^{-1} x_k =: P_{\infty} x_k$$

Itt felhasználtuk, hogy $\lambda_k = P_k x_k$ és $P_k = P_{\infty}$ konstans a végtelen időintervallumú esetben.

Összefoglalva megállapíthatjuk, hogy időinvariáns rendszer, konstans súlyozó mátrixok és végtelen időintervallum esetén az optimális LQ irányítás konstans állapotvisszacsatolás, amely a következő módon határozható meg:

$$P_{\infty} = \Lambda_i X_i^{-1}$$

$$K_{\infty} = (R + B^T P_{\infty} B)^{-1} B^T P_{\infty} A$$

$$u_k = -K_{\infty} x_k.$$

Itt P_{∞} -t sajátérték/sajátvektor technikával határoztuk meg. Egy másik lehetőség MATLAB+CST környezetben:

Diszkrétidejű algebrai Riccati egyenlet (DARE):

$$P_{\infty} = Q + A^T P_{\infty} A - A^T P_{\infty} B (B^T P_{\infty} B + R)^{-1} B^T P_{\infty} A$$

KALMAN-SZŰRŐ LTV RENDSZER ESETÉN

Tekintsük a zajokkal terhelt diszkrétidejű lineáris rendszert:

$$x_{k+1} = A_k x_k + B_k u_k + v_k, \quad x(0)$$
$$y_k = C_k x_k + z_k$$

Itt u_k determinisztikus jel. A v_k rendszerzajra és a z_k mérési zajra, valamint az x(0) kezdeti állapotra a következő sztochasztikus hipotézis legyen érvényes (δ_{kl} a Kronecker-delta):

x(0) független v_k -tól és z_k -tól,

$$Ex(0) = x_0$$
, $E[(x(0) - x_0)(x(0) - x_0)^T] = \Sigma_0 \ge 0$ (pozitív szemidefinit)

$$Ev_k = 0$$
, $E[v_k v_l^T] = R_{v,k} \delta_{kl}$, $R_{v,k} \ge 0$ (pozitív szemidefinit)

$$Ez_k = 0$$
, $E[z_k z_l^T] = R_{z,k} \delta_{kl}$, $R_{z,k} > 0$ (pozitív definit)

$$E[v_k z_l^T] = 0$$
, $E[z_l v_k^T] = 0$ (v_k és z_l korrelálatlanok)

Keressük azt a lineáris szűrőt, amely az u_k és y_{k+1} mérési eredményekből az

$$\hat{x}_{k+1} = F_k \hat{x}_k + G_{k+1} y_{k+1} + H_k u_k, \quad \hat{x}(0)$$

algoritmus alapján az x_k állapot optimális \hat{x}_k becslését adja abban az értelemben, hogy

$$E[x_k - \hat{x}_k] = 0, \ \forall k$$

$$E[(x_k - \hat{x}_k)(x_k - \hat{x}_k)^T] = \mathcal{E}_k \to \text{infimum}$$

Az infimum az $M_{n \times n}^s$ szimmetrikus mátrixok (kvadratikus alak révén definiált) részben rendezése szerint értendő. Az optimális megoldás a kovarianciamátrix összes sajátértékét egyszerre teszi minimálissá. A feltételek alapján teljesülnie kell, hogy

$$E\hat{x}(0) = \hat{x}_0 := x_0 \Rightarrow E[(x_0 - \hat{x}_0)(x_0 - \hat{x}_0)^T] = \Sigma_0.$$

Képezzük a becsült állapotot és a futó hibát k + 1 esetén:

$$\begin{split} \hat{x}_{k+1} &= F_k \hat{x}_k + G_{k+1} (C_{k+1} x_{k+1} + z_{k+1}) + H_k u_k = \\ &= F_k \hat{x}_k + G_{k+1} \{C_{k+1} (A_k x_k + B_k u_k + v_k) + z_{k+1} \} + H_k u_k = \\ &= F_k \hat{x}_k + G_{k+1} C_{k+1} A_k x_k + (G_{k+1} C_{k+1} B_k + H_k) u_k + G_{k+1} C_{k+1} v_k + G_{k+1} z_{k+1} \\ x_{k+1} &= A_k x_k + B_k u_k + v_k \\ x_{k+1} - \hat{x}_{k+1} &= (I - G_{k+1} C_{k+1}) A_k x_k + [(I - G_{k+1} C_{k+1}) B_k - H_k] u_k - \\ &- F_k \hat{x}_k + (I - G_{k+1} C_{k+1}) v_k - G_{k+1} z_{k+1}. \end{split}$$

A hiba várható értékére vonatkozó feltétel szerint

$$F_k := (I - G_{k+1}C_{k+1})A_k, \quad H_k := (I - G_{k+1}C_{k+1})B_k$$

ezért

$$\begin{split} \widetilde{x}_{k+1} &\coloneqq x_{k+1} - \hat{x}_{k+1} = \\ &= (I - G_{k+1}C_{k+1})A_k \left(x_k - \hat{x}_k\right) + (I - G_{k+1}C_{k+1})v_k - G_{k+1}z_{k+1} = \\ &= (I - G_{k+1}C_{k+1})\{A_k x_k + B_k u_k + v_k - A_k \hat{x}_k - B_k u_k\} - G_{k+1}z_{k+1} \end{split}$$

Vezessük be az

$$\begin{aligned} & \overline{x}_{k+1} \coloneqq A_k \hat{x}_k + B_k u_k \\ & M_{k+1} \coloneqq E[(x_{k+1} - \overline{x}_{k+1})(x_{k+1} - \overline{x}_{k+1})^T] \end{aligned}$$

jelölést, akkor

$$\Sigma_{k+1} = (I - G_{k+1}C_{k+1})M_{k+1}(I - G_{k+1}C_{k+1})^T + G_{k+1}R_{z,k+1}G_{k+1}^T.$$

Mivel Σ_{k+1} -et infimummá kell tenni, ezért Σ_{k+1} -nek a G_{k+1} szerinti deriváltjának a $\mathscr{O}(\cdot)$ nulla transzformációt kell adnia. Képezzük ezért a G_{k+1} szerinti differenciált:

$$\begin{split} -dG_{k+1}C_{k+1}M_{k+1}(I-G_{k+1}C_{k+1})^T - (I-G_{k+1}C_{k+1})M_{k+1}C_{k+1}^T(dG_{k+1})^T + \\ +dG_{k+1}R_{z,k+1}G_{k+1}^T + G_{k+1}R_{z,k+1}(dG_{k+1})^T = \mathscr{O}(dG_{k+1}). \end{split}$$

Vezessük be az $U(X) := X + X^T$ és $T(X) := X^T$ transzformációkat.

A differenciált átírhatjuk az

$$U\{[-(I - G_{k+1}C_{k+1})M_{k+1}C_{k+1}^T + G_{k+1}R_{z,k+1}]T(dG_{k+1})\} = \mathcal{O}(dG_{k+1})$$

alakba, ahonnan következik az infimum alábbi feltétele operátor alakban:

$$U\{[-(I-G_{k+1}C_{k+1})M_{k+1}C_{k+1}^T+G_{k+1}R_{z,k+1}]T(\cdot)\}=\mathscr{O}(\cdot).$$

Tetszőleges X esetén teljesül, hogy $U\{XT(\cdot)\} = \mathcal{O}(\cdot) \Leftrightarrow U\{XT(Y)\} = 0$ minden Y esetén $\Leftrightarrow X = 0$. Az infimum feltétele ezért, hogy a szögletes zárójelben álló mátrix nulla:

$$\begin{split} 0 &= -(I - G_{k+1}C_{k+1})M_{k+1}C_{k+1}^T + G_{k+1}R_{z,k+1} = \\ &= -M_{k+1}C_{k+1}^T + G_{k+1}C_{k+1}M_{k+1}C_{k+1}^T + G_{k+1}R_{z,k+1} = \\ &= -M_{k+1}C_{k+1}^T + G_{k+1}(C_{k+1}M_{k+1}C_{k+1}^T + R_{z,k+1}), \end{split}$$

ahonnan következik, hogy az optimális megoldás

$$G_{k+1} = M_{k+1}C_{k+1}^{T}(C_{k+1}M_{k+1}C_{k+1}^{T} + R_{z,k+1})^{-1}.$$

Helyettesítsük vissza az optimális G_{k+1} megoldást Σ_{k+1} kifejezésébe:

$$\begin{split} & \boldsymbol{\varSigma}_{k+1} = (I - G_{k+1}C_{k+1})\boldsymbol{M}_{k+1} - (I - G_{k+1}C_{k+1})\boldsymbol{M}_{k+1}C_{k+1}^TG_{k+1}^T + G_{k+1}R_{z,k+1}G_{k+1}^T = \\ & = (I - G_{k+1}C_{k+1})\boldsymbol{M}_{k+1} + \underbrace{\{-\boldsymbol{M}_{k+1}C_{k+1}^T + G_{k+1}(C_{k+1}\boldsymbol{M}_{k+1}C_{k+1}^T + R_{z,k+1})\}}_{0}G_{k+1}^T = \\ & = (I - G_{k+1}C_{k+1})\boldsymbol{M}_{k+1} = \boldsymbol{M}_{k+1} - G_{k+1}C_{k+1}\boldsymbol{M}_{k+1} \end{split}$$

A becslési hiba optimális kovariancia mátrixa ezért

$$\Sigma_{k+1} = M_{k+1} - M_{k+1}C_{k+1}^T(C_{k+1}M_{k+1}C_{k+1}^T + R_{z,k+1})^{-1}C_{k+1}M_{k+1}.$$

Bontsuk fel a becsült állapot képzését a mérési időpontok között elvégezhető \bar{x}_{k+1} frissítésre és az új mérés y_{k+1} pillanatában elvégezhető \hat{x}_{k+1} állapotbecslésre:

$$\begin{split} \overline{x}_{k+1} &= A_k \hat{x}_k + B_k u_k, \\ x_{k+1} &- \overline{x}_{k+1} = A_k (x_k - \hat{x}_k) + v_k, \\ M_{k+1} &= A_k \Sigma_k A_k^T + R_{v,k}, \end{split}$$

ahol M_{k+1} szintén meghatározható a mérési időpontok között. Másrészt a becsült állapot felírható

$$\begin{split} \hat{x}_k &= F_{k-1} \hat{x}_{k-1} + G_k \, y_k \, + H_{k-1} u_{k-1} = \\ &= (I - G_k C_k) A_{k-1} \hat{x}_{k-1} + G_k \, y_k + (I - G_k C_k) B_{k-1} u_{k-1} = \\ &= A_{k-1} \hat{x}_{k-1} + B_{k-1} u_{k-1} + G_k \{ y_k - C_k (A_{k-1} \hat{x}_{k-1} + B_{k-1} u_{k-1}) \} = \\ &= \overline{x}_k + G_k \, (y_k - C_k \, \overline{x}_k) \end{split}$$

alakban is.

Végül felhasználván az optimális megoldás alakját, G_k tovább egyszerűsíthető:

$$\begin{split} G_k &= \boldsymbol{M}_k \boldsymbol{C}_k^T \left(\boldsymbol{C}_k \boldsymbol{M}_k \boldsymbol{C}_k^T + \boldsymbol{R}_{z,k} \right)^{-1} \Rightarrow \\ \boldsymbol{M}_k \boldsymbol{C}_k^T &= \boldsymbol{G}_k \left(\boldsymbol{C}_k \boldsymbol{M}_k \boldsymbol{C}_k^T + \boldsymbol{R}_{z,k} \right) = \boldsymbol{G}_k \boldsymbol{C}_k \boldsymbol{M}_k \boldsymbol{C}_k^T + \boldsymbol{G}_k \boldsymbol{R}_{z,k} \\ \boldsymbol{G}_k \boldsymbol{R}_{z,k} &= (\boldsymbol{I} - \boldsymbol{G}_k \boldsymbol{C}_k) \boldsymbol{M}_k \boldsymbol{C}_k^T = \boldsymbol{\Sigma}_k \boldsymbol{C}_k^T \Rightarrow \\ \boldsymbol{G}_k &= \boldsymbol{\Sigma}_k \boldsymbol{C}_k^T \boldsymbol{R}_{z,k}^{-1}. \end{split}$$

Az "aktuális" Kalman-szűrő (KF) algoritmusa:

1. *Frissítés mérési időpontok között* (time update between measurements):

$$\begin{split} \overline{x}_k &= A_{k-1} \hat{x}_{k-1} + B_{k-1} u_{k-1}, \\ M_k &= A_{k-1} \Sigma_{k-1} A_{k-1}^T + R_{v,k-1}, \\ \Sigma_k &= M_k - M_k C_k^T (C_k M_k C_k^T + R_{z,k})^{-1} C_k M_k, \\ G_k &= M_k C_k^T (C_k M_k C_k^T + R_{z,k})^{-1} = \Sigma_k C_k^T R_{z,k}^{-1}. \end{split}$$

2. Mérési eredmény frissítése (measurement update):

$$\hat{x}_k = \overline{x}_k + G_k (y_k - C_k \overline{x}_k)$$

A KF algoritmus egyenletei előretartó rekurzív egyenletek, ezért a Kalman-féle szűrési algoritmus *online* realizálható. Ez lényeges egyszerűsítést jelent az időben változó rendszerek LQ optimális irányításához képest.

A Kalman-féle szűrési algoritmus időben változó rendszer esetén a következő sémával ábrázolható:

Inicializálás:

$$\hat{x}_0 := x_0 = Ex(0), \ \Sigma_0 := E[(x(0) - x_0)(x(0) - x_0)^T]$$

Előretartó rekurzió k = 1, 2, ...:

$$\hat{x}_{k-1} \longrightarrow M_k, \Sigma_k, G_k, \overline{x}_k \stackrel{y_k}{\longrightarrow} \hat{x}_k$$

Aktuális Kalman-szűrő időinvariáns (LTI) rendszer esetén:

Időinvariáns rendszer, valamint konstans R_v kovariancia mátrixú rendszerzaj és konstans R_z kovariancia mátrixú kimeneti zaj esetén a Kalman-féle szűrési algoritmus az időinvariáns rendszer LQ optimális irányítási algoritmusának duálisa, és amint az az eddigi eredményekből kiolvasható, a két feladat között a következő megfeleltetések állnak fenn:

Megjegyzés:

Vegyük észre, hogy $(A^T, C^T, R_v, R_z) \xrightarrow{LQ} K_\infty \neq G_\infty^T$, mivel K-ban szerepel A, míg G-ben nem. Minden más tekintetben a hasonlóság teljes.

OPTIMÁLIS LQG IRÁNYÍTÁS

Tekintsük a zajokkal terhelt

$$x_{k+1} = A_k x_k + B_k u_k + v_k, \quad x(0)$$
$$y_k = C_k x_k + z_k$$

rendszert a korábbi sztochasztikus hipotézis esetén. Keressük azt az

$$u_k = f(u_0, ..., u_{k-1}, y_0, ..., y_k)$$

irányítást, amelyik optimális a

$$\hat{J} = E[J] = E[\frac{1}{2} \sum_{k=0}^{N-1} \{ \langle Q_k x_k, x_k \rangle + \langle R_k u_k, u_k \rangle \} + \frac{1}{2} \langle Q_N x_N, x_N \rangle] \rightarrow \min$$

sztochasztikus optimum kritérium szempontjából, ahol E a várható érték operátora és J(x,u) pedig az LQ optimalizálási feladatnál szereplő kritérium szerint van definiálva.

Tétel (LQG szeparációs tétel): Az optimális LQG irányítási startégia

$$u_k = -K_k \hat{x}_k$$
$$\hat{x}_k = \overline{x}_k + G_k (y_k - C \overline{x}_k)$$

ahol K_k a J(x,u) determinisztikus kritérium szerinti LQ optimális állapot-visszacsatolás és \hat{x}_k a sztochasztikus hipotézishez tartozó aktuális Kalman-szűrő által képzett becsült állapot.

Megjegyzés:

- Vegyük észre, hogy az optimális irányítás a véges memóriájú nemlineáris szabályozások körében is a lineáris állapot-visszacsatolás LTV sztochasztikus rendszer és kvadratikus sztochasztikus optimum kritérium esetén.
- Az optimalitáshoz azonban nem lehet akármilyen állapotbecslőt választani, hanem csakis Kalman-szűrőt.

LQG SZABÁLYOZÁS STRUKTÚRÁJA

KITERJESZTETT KALMAN-SZŰRŐ (EKF)

Tekintsük a következő nemlineáris rendszert diszkrét időben:

$$x_{k+1} = f(x_k, u_k, v_k)$$
$$y_k = g(x_k, z_k)$$

Teljesüljenek a lineáris eset sztochasztikus hipotézisei.

Tekintsük a nemlineáris rendszert a [(k-1)T,kT] intervallumban, amelynek bal odali végpontjában már ismert az állapot \hat{x}_{k-1} becslése. Linearizáljuk a nemlineáris rendszer f állapotfüggvényét az \hat{x}_{k-1} és $v_{k-1}=0$ munkapontban, a g kimeneti függvényét pedig az \bar{x}_k és $z_k=0$ munkapontban. A linearizált rendszerre alkalmazzuk az LTV rendszerekre kidolgozott aktuális Kalman-szűrő algoritmust. Az így kapott állapotbecslő az ú.n. kiterjesztett Kalman szűrő (extended Kalman filter, EKF).

Ennek során vegyük figyelembe, hogy $\bar{x}_k = f(\hat{x}_{k-1}, u_{k-1}, 0)$ és

$$\begin{split} x_k &\approx f(\hat{x}_{k-1}, u_{k-1}, 0) + \frac{\partial f(\hat{x}_{k-1}, u_{k-1}, 0)}{\partial x} (x_{k-1} - \hat{x}_{k-1}) + \frac{\partial f(\hat{x}_{k-1}, u_{k-1}, 0)}{\partial v} v_k \\ y_k &\approx g(\overline{x}_k, 0) + \frac{\partial g(\overline{x}_k, 0)}{\partial x} (x_k - \overline{x}_k) + \frac{\partial g(\overline{x}_k, 0)}{\partial z} z_k \end{split}$$

További módosítás, hogy $E[(Bv)(Bv)^T] = BE[vv^T]B^T$ stb.

EKF algoritmus:

$$\begin{split} \overline{x}_{k} &= f(\hat{x}_{k-1}, u_{k-1}, 0) \\ A_{k-1} &= \frac{\partial f(\hat{x}_{k-1}, u_{k-1}, 0)}{\partial x}, \ B_{v,k-1} = \frac{\partial f(\hat{x}_{k-1}, u_{k-1}, 0)}{\partial v} \\ C_{k} &= \frac{\partial g(\overline{x}_{k}, 0)}{\partial x}, \ C_{z,k} = \frac{\partial g(\overline{x}_{k}, 0)}{\partial z} \\ R_{v,k-1} &\coloneqq B_{v,k-1} R_{v,k-1} B_{v,k-1}^{T}, \ R_{z,k} \coloneqq C_{z,k} R_{z,k} C_{z,k}^{T} \end{split}$$

$$\begin{split} \overline{x}_k &= f(\hat{x}_{k-1}, u_{k-1}, 0) \\ M_k &= A_{k-1} \Sigma_{k-1} A_{k-1}^T + R_{v,k-1}, \\ \Sigma_k &= M_k - M_k C_k^T (C_k M_k C_k^T + R_{z,k})^{-1} C_k M_k, \\ G_k &= M_k C_k^T (C_k M_k C_k^T + R_{z,k})^{-1} = \Sigma_k C_k^T R_{z,k}^{-1}. \\ \hat{x}_k &= \overline{x}_k + G_k (y_k - g(\overline{x}_k, 0)) \end{split}$$

Vegyük észre, hogy a Taylor-sor helyett a nemlineáris függvény értékét írtuk vissza.

$$G_{k}\{y_{k} - g(\overline{x}_{k}, 0) + \frac{\partial g(\overline{x}_{k}, 0)}{\partial x}\overline{x}_{k} - C_{k}\overline{x}_{k}\} =$$

$$= G_{k}\{y_{k} - g(\overline{x}_{k}, 0)\}$$