Информационная безопасность. Отчет по лабораторной работе №1

Установка и конфигурация операционной системы на виртуальную машину

Серенко Данил Сергеевич

Цель работы

Целью данной работы является приобретение практических навыков установки операционной системы на виртуальную машину, настройки минимально необходимых для дальнейшей работы сервисов [1].

Выполнение лабораторной работы

Создайте новую виртуальную машину. Для этого в VirtualBox выберите "Машина->Создать" [2]. Укажите имя виртуальной машины (ваш логин в дисплейном классе - ymgorbunova), тип операционной системы — Linux, RedHat (@fig:1).

Окно «Имя машины и тип ОС»

Укажите размер основной памяти виртуальной машины (@fig:2) — 2048 МБ (или большее число, кратное 1024 МБ, если позволяют технические характеристики вашего компьютера).

Окно «Размер основной памяти»

Задайте конфигурацию жёсткого диска — загрузочный, VDI (BirtualBox Disk Image), динамический виртуальный диск (@fig:3-@fig:5).

Окно подключения или создания жёсткого диска на виртуальной машине

Окно определения формата виртуального жёсткого диска Задайте размер диска — 40 ГБ (@fig:6).

← Создать виртуальный жёсткий диск

Укажите имя и размер файла

Окно определения размера виртуального динамического жёсткого диска и его расположения

Выберите в VirtualBox для Вашей виртуальной машины "Настройки -> Носители". Добавьте новый привод оптических дисков и выберите образ операционной системы, скачанный с официального сайта (@fig:7).

Окно «Носители» виртуальной машины: подключение образа оптического диска

Запустите виртуальную машину (@fig:7-1), выберите язык интерфейса (@fig:8) и перейдите к настройкам установки операционной системы (@fig:9).

Запуск виртуальной машины

Установка языка интерфейса ОС

Окно настройки установки образа ОС

При необходимости скорректируйте часовой пояс, раскладку клавиатуры (рекомендуется добавить русский язык, но в качестве языка по умолчанию указать английский язык; задать комбинацию клавиш для переключения между раскладками клавиатуры — например Alt + Shift). В разделе выбора программ укажите в качестве базового окружения Server with GUI, а в качестве дополнения — Development Tools (@fig:10).

Окно настройки установки: выбор программ

Отключите KDUMP (@fig:11).

Окно настройки установки: отключение КDUMP

Место установки ОС оставьте без изменения (@fig:12).

Окно настройки установки: место установки

Включите сетевое соединение и в качестве имени узла укажите user.localdomain (@fig:13), где вместо user укажите имя своего пользователя в соответствии с соглашением об именовании.

Окно настройки установки: сеть и имя узла

Установите пароль для root (@fig:14) и пользователя с правами администратора (@fig:15).

Установка пароля для root

После завершения установки операционной системы корректно перезапустите виртуальную машину и примите условия лицензии.

B VirtualBox оптический диск должен отключиться автоматически, но если это не произошло, то необходимо отключить носитель информации с образом, выбрав Свойства->Носители->Rocky-версия-dvd1.iso->Удалить устройство.

Войдите в ОС под заданной вами при установке учётной записью. В меню Устройства виртуальной машины подключите образ диска дополнений гостевой ОС (@fig:16), при необходимости введите пароль пользователя гооtвашей виртуальной ОС.

Подключение образа диска дополнений гостевой ОС

После загрузки дополнений нажмите Return или Enter и корректно перезагрузите виртуальную машину.

##Домашнее задание Дождитесь загрузки графического окружения и откройте терминал. В окне терминала проанализируйте последовательность загрузки системы, выполнив команду dmesg. Можно просто просмотреть вывод этой команды: dmesg | less (@fig:17).

```
ⅎ
                           dsserenko@dsserenko:~ - less
                                                                     Ħ
    0.000000] DMI: innotek GmbH VirtualBox/VirtualBox, BIOS VirtualBox 12/01/20
    0.000000] Hypervisor detected: KVM
    0.000000] kvm-clock: Using msrs 4b564d01 and 4b564d00
    0.000000] kvm-clock: cpu 0, msr c8a01001, primary cpu clock
    0.000002] kvm-clock: using sched offset of 8997216857 cycles
    0.000004] clocksource: kvm-clock: mask: 0xfffffffffffffff max cycles: 0x1c
d42e4dffb, max idle ns: 881590591483 ns
    0.000006] tsc: Detected 2894.560 MHz processor
    0.000747] e820: update [mem 0x00000000-0x00000fff] usable ==> reserved
    0.000750] e820: remove [mem 0x000a0000-0x000fffff] usable
    0.000754] last pfn = 0x120000 max arch pfn = 0x400000000
    0.000765] Disabled
    0.000766] x86/PAT: MTRRs disabled, skipping PAT initialization too.
    0.000768] CPU MTRRs all blank - virtualized system.
    0.000770] x86/PAT: Configuration [0-7]: WB WT UC- UC WB WT UC- UC
    0.000779] last pfn = 0xdfff0 max arch pfn = 0x400000000
    0.000800] found SMP MP-table at [mem 0x0009fff0-0x0009ffff]
    0.001316] RAMDISK: [mem 0x3168b000-0x34b3dfff]
    0.001320] ACPI: Early table checksum verification disabled
    0.001327] ACPI: XSDT 0x00000000DFFF0030 00003C (v01 VBOX
                                                            VBOXXSDT 0000000
 ASL 00000061)
```

Последовательность загрузки ОС

Можно использовать поиск с помощью grep: dmesg | grep -i "то, что ищем". Получите следующую информацию. 1. Версия ядра Linux (Linux version) (@fig:18). 2. Частота процессора (Detected Mhz processor) (@fig:19). 3. Модель процессора (CPU0) (@fig:20). 4. Объем доступной оперативной памяти (Memory available) (@fig:21). 5. Тип обнаруженного гипервизора (Hypervisor detected) (@fig:22). 6. Тип файловой системы корневого раздела (@fig:23). 7. Последовательность монтирования файловых систем (@fig:24).

Версия ядра Linux

```
[dsserenko@dsserenko ~]$ dmesg | grep "Detected"
[ 0.000006] tsc: Detected 2894.560 MHz processor
```

Частота процессора

Модель процессора

```
[dsserenko@dsserenko~]$ dmesg | grep "Memory"
[ 0.089116] Memory: 3635116K/4193848K available (14345K kernel code, 5945K rw
data, 9052K rodata, 2548K init, 5460K bss, 246364K reserved, 0K cma-reserved)
```

Объем доступной оперативной памяти

```
[dsserenko@dsserenko ~]$ dmesg | grep "Hypervisor"
[ 0.000000] Hypervisor detected: KVM
```

Тип обнаруженного гипервизора

```
[dsscrenko@dsscrenko -]$ dmesg | grep "File.*system"
[ 2.859675] XFS (dm-0): Mounting V5 Filesystem
[ 6.303871] XFS (sda1): Mounting V5 Filesystem
```

Тип файловой системы корневого раздела

```
[dsserenko@dsserenko ~]$ dmesg | grep "mount"
    2.939529] XFS (dm-0): Ending clean
    3.838423] systemd[1]: Set up auto
                                            Arbitrary Executable File Formats Fi
le System Autom
                   Point.
    3.961961] systemd[1]: Starting Remo
                                            Root and Kernel File Systems...
    6.696452] XFS (sda1): Ending clean
[dsserenko@dsserenko ~]$ dmesg | grep "Mount"
                 mt-cache hash table entries: 8192 (order: 4, 65536 bytes, line
ar)
                  ntpoint-cache hash t∭ble entries: 8192 (order: 4, 65536 bytes,
    0.113642] #6
linear)
    2.859675] XFS (dm-0): Mounting V5 Filesystem
    3.849893] systemd[1]: Mounting Huge Pages File System...
                           Mounting POSIX Message Queue File System...
    3.851308] systemd[1]:
    3.865119] systemd[1]:
                               ing Kernel Debug File System...
    3.867958] systemd[1]:
                                ing Kernel Trace File System...
                               ing V5 Filesystem
    6.303871] XFS (sda1): Mou
```

Последовательность монтирования файловых систем

Выводы

Приобретены практические навыки установки операционной системы на виртуальную машину, настройки минимально необходимых для дальнейшей работы сервисов.

Список литературы

- 1. Методические материалы курса
- 2. Задание к лабораторной работе № 1