基于 BO-CNN-LSTM 的股价预测研究

万梦洁

【摘要】为提高股价预测的精确度,本文提出贝叶斯优化的卷积神经网络 - 长短期记忆神经网络股价预测模型。基于卷积神经网络(Convolutional Neural Network,CNN)、长短期记忆神经网络(Long Short-Term Memory,LSTM)的原理特性,将二者串行结合,构建 CNN-LSTM 模型。针对 CNN-LSTM 模型参数多,人工调优难的问题,利用贝叶斯优化(Bayesian Optimization,BO)寻找最优超参数组合,构建 BO-CNN-LSTM 模型。实验表明经过贝叶斯优化后的 CNN-LSTM 模型 R²提高了 1.923%,对股价预测更优。

【关键词】股价预测; 贝叶斯优化; 卷积神经网络; 长短期记忆神经网络

股票数据呈现为时间序列形式,差分移动平均模型(Autoregressive Integrated Moving Average,ARIMA)、广义自回归条件异方差模型 (Generalized Autoregressive Conditional Heteroskedasticity,GARCH) 等可以对其进行预测。杨琦、曹显兵利用ARMA-GARCH模型预测大众公用股票,发现ARIMA与GARCH模型的结合可以提高预测准确性。然而时间序列通常是非线性、非平稳的,传统模型在时序预测上存在局限性。

近年来,机器学习在股票预测领域得到了广泛应用。韩旭等结合商空间和支持向量机(Support Vector Machines,SVM)预测黄金价格,该方法比传统模型预测效果更好。随着深入研究,深度学习成为目前最先进的技术之一。陈祥一通过 CNN 预测沪深 300 指数的涨跌,相较传统机器学习表现更佳。彭燕等利用 LSTM 模型预测苹果公司的股价,提升了预测的准确率。然而单一的神经网络被证实存在一定的局限性,无法兼备提取时序数据的长期依赖性和关键特征的能力。混合网络模型可以有效整合单个模型的优点,从而提升模型的鲁棒性和预测能力。基于此,本文以沪深 300 指数为例,结合 CNN、LSTM 在空间、时间维度上的特征提取能力,同时针对调参难的问题,使用贝叶斯算法优化 CNN-LSTM 模型的超参数,构建 BO-CNN-LSTM 模型。

一、基本原理

1. 卷积神经网络 (Convolutional Neural Network, CNN)

CNN 主要由卷积层、池化层和全连接层组成。卷积层为其核心,卷积层利用卷 积核对输入特征进行卷积操作,实现特征提取。

2. 长短期记忆神经网络(Long Short-Term Memory, LSTM) LSTM 主要包含记忆细胞和输入门、遗忘门、输出门三个门控结构。 遗忘门: 选择性地遗失不需要的信息。

$$f_t = \sigma(W_f \cdot [h_{t-1}, x_t] + b_f) \tag{1}$$

作者简介:万梦洁(2001—),女,重庆万州人,汉族,硕士研究生,成都信息工程大学统计学院,研究方向:数据挖掘

输入门:决定输入层信息是否进入记忆细胞。

$$i_t = \sigma(W_i \cdot [h_{t-1}, x_t] + b_i) \tag{2}$$

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C) \tag{3}$$

细胞状态:确定新信息的更新。

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t \tag{4}$$

输出门:决定输出信息。

$$o_t = \sigma(W_o \cdot [h_{t-1}, x_t] + b_o) \tag{5}$$

$$h_t = o_t * \tanh(C_t) \tag{6}$$

 x_t 为第 t 时刻输入数据, h_{t-1} 为 t-1 时刻隐藏层状态, f_t 为 t 时刻遗忘门控制值, i_t 为 t 时刻输入门控制值, C_t 为 t 时刻细胞状态候选值, C_{t-1} 为 t-1 时刻细胞状态, C_t 为 t 时刻细胞状态实际值, o_t 为 t 时刻输出门控制值, h_t 为 t 时刻隐藏状态输出向量, W_t , W_t , W_c , W_o , 为权重矩阵, b_t , b_c , b_c , b_a , 为偏置向量, σ 为 sigmoid 函数,t anh 函数。

3. 贝叶斯优化 (Bayesian Optimization, BO)

贝叶斯优化算法优化超参数,避免了人工调参带来的局限性。给定优化的目标函数,不断添加样本点更新目标函数的后验分布。以 f(x) 作为超参数的目标函数, $X=x_1,x_2,x_3,x_3,\dots,x_n$ 为一组超参数组合。找到 $x \in X$,使得:

$$x^* = argminf(x) \tag{7}$$

x*为最优超参数集。

二、实证分析

本文数据来自英为财情 (Investing.com),选取深沪300 指数 (SH000300) 2010 年 1 月 4 日到 2024 年 1 月 25 日,共 3421 的交易日数据,获取特征有开盘价、最高价、最低价、收盘价、成交量、涨跌幅。构造的输入为预测日前5 天影响收盘价的变量数据,输出为预测日收盘价。将2010年1月4日到2020年7月22日2566条数据作为训练集;2020年7月23日到2022年8月30日513条数据作为验证集;2022年8月31日到2024年1月25日342条数据作为测试集。

1. 特征选取

本文旨在利用股票历史数据来预测未来股票收盘价, 通过对数据特征进行相关性分析,可以观察到收盘价与开盘价、最高价、最低价、成交量之间相关性较高,与涨跌幅的相关性较低,因此最终选择的特征为开盘价、最高价、最低价、收盘价、成交量。相关系数矩阵如表1所示。

表 1 相关系数矩阵

	开盘价	最高价	最低价	收盘价	成交量	涨跌幅
开盘价	1.000000	0.999389	0. 999221	0.998519	0. 523473	-0.017045
最高价	0.999389	1.000000	0.998928	0.999275	0.535508	0.003416
最低价	0.999221	0.998928	1.000000	0.999245	0.512863	0.006364
收盘价	0.998519	0.999275	0.999245	1.000000	0.526449	0.029986
成交量	0. 523473	0.535508	0.512863	0. 526449	1.000000	0.073396
涨跌幅	-0.017045	0.003416	0.006364	0.029986	0.073396	1.000000

2. 数据归一化

本文使用 Min-Max 归一化方法消除变量量纲的影响。

$$x' = \frac{x - x_{min}}{x_{max} - x_{min}} \tag{8}$$

x为原始数据, x_{min} 、 x_{max} 分别为最大值、最小值。 3. 模型构建

(1) CNN-LSTM 模型

将卷积神经网络与长短期记忆神经网络结合,对股票收盘价做短期预测。首先通过卷积层和最大池化层提取输入数据的特征,将其输入LSTM 网络层,其次经过第一个全连接层(Dense)以及防止模型过拟合而增加的Dropout层,最后通过全连接层(Dense)输出预测结果。CNN-LSTM模型结构如图1所示。

图 1 CNN-LSTM 模型结构

(2) BO-CNN-LSTM 模型

为了解决 CNN-LSTM 模型中参数众多,人工难以调优的问题,本文构建了 BO-CNN-LSTM 模型。首先对股票数据进行预处理,将数据划分为训练集、验证集、测试集; 其次将训练集输入 CNN-LSTM 网络中进行训练,验证集用于在训练过程中验证模型性能,最小化损失函数,同时使用贝叶斯优化算法调整 CNN-LSTM 网络的超参数,得到最优的超参数组合;最后使用最优化超参数组合的模型对测试集进行测试。BO-CNN-LSTM 组合模型的预测流程如图 2 所示。

图 2 基于 BO-CNN-LSTM 组合模型的预测流程

利用贝叶斯算法,通过计算返回目标函数中的最小值对 CNN-LSTM 模型中的学习率、卷积核个数、卷积核尺寸大小、LSTM 层神经元个数、第一个 Dense 层神经元个数、批大小六个超参数进行组合优化。得到目标函数最小值下的最优超参数组合如表 2 所示。

表 2 贝叶斯优化参数组合

超参数	设定范围	值	
卷积核大小	[1, 5]	2	
卷积核数量	[8, 64]	22	
LSTM 层神经元个数	[32, 128]	33	
Dense 层神经元个数	[32, 128]	123	
批大小	[32, 256]	70	
学习率	[0.001, 0.01]	0.004	

由表 2 可以看出,基于贝叶斯优化之后的最优超参数组合卷积核大小、卷积核数量、LSTM 层神经元个数、Dense 层神经元个数、批大小、学习率分别为 2、22、33、123、70、0.004。经过多次实验将迭代次数 (epoch) 设置为 41,确保实验误差收敛。

4. 评价指标

本文选取平均绝对误差 (MAE)、均方误差 (MSE)、均方根误差 (RMSE)、决定系数 (R^2) 评估模型。

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{y}_i|$$

$$RMSE = \sqrt{MSE} = \sqrt{\frac{1}{n}} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$R^2 = 1 - \frac{\sum (\hat{y}_i - y_i)^2}{\sum (\hat{y}_i - y_i)^2}$$
(12)

n为样本个数, y_i 为第i个样本的真实值, \hat{y}_i 为第i个样本的预测值, \bar{y} 为样本平均值。

5. 实验结果

用测试集对 BO-CNN-LSTM 模型进行测试,将该模型与 CNN-LSTM、CNN、LSTM 的预测结果对比。

由图 3 可见, BO-CNN-LSTM 模型的拟合曲线更接近真实值,拟合效果更好。相比之下,CNN、LSTM、CNN-LSTM 这几种模型的拟合曲线与真实值之间存在的

图 3 不同模型预测结果对比

偏差更大。因此,本文构建的 BO-CNN-LSTM 模型的预测效果更好。

表 3 模型评价指标对比

模型	R ²	MAE	MSE	RMSE
CNN	0.94364	0.01363	0.00030	0.01718
LSTM	0.95186	0.01289	0.00025	0.01588
CNN-LSTM	0.95624	0.01186	0.00023	0.01514
BO-CNN-LSTM	0.97547	0.00854	0.00013	0.01133

由表 3 可见, BO-CNN-LSTM 模型的 MAE、MSE、RMSE 值分别为 0.00854、0.00013、0.01133, 其值均小于其他三种模型。此外, BO-CNN-LSTM 模型的 R^2 达到了 0.97547, 相较于其他三种模型分别提高了 3.183%、2.361%、1.923%, 进一步印证了本文构建的 BO-CNN-LSTM 模型 在股价短期预测方面有着更高的精度。

三、结论

本文提出基于贝叶斯优化的 CNN-LSTM 模型,利用卷积、池化等操作提取数据特征,再将其输入到 LSTM 中,同时用贝叶斯算法寻找模型的最优超参数组合,最终构建了 BO-CNN-LSTM 模型,对沪深 300 指数进行预测。实验对比了 BO-CNN-LSTM 模型与其他三种模型的预测效果,结果表明,BO-CNN-LSTM 模型比其他三种模型的预测效果更优,相比 CNN-LSTM 模型 MAE、MSE、RMSE值分别下降 0.332%、0.01%、0.381%, R²提高了 1.923%。利用该模型能够有效提高股价预测的精度。

参考文献

[1] 冯盼, 曹显兵. 基于 ARMA 模型的股价分析与预测的实证研究[]]. 数学的实践与认识, 2011,41(22):84-90.

[2] 韩旭,杨珊,王喜梅.基于商空间的黄金价格 SVM 模型预测 [J]. 黄金科学技术, 2020,28(1):148-157.

[3] 陈祥一. 基于卷积神经网络的沪深 300 指数预测 [D]. 北京: 北京邮电大学, 2018.

[4] 彭燕, 刘宇红, 张荣芬. 基于 LSTM 的股票价格预测建模与分析 [J]. 计算机工程与应用, 2019,55(11):209-212.

[5] 景楠, 史紫荆, 舒毓民. 基于注意力机制和 CNN-LSTM 模型的 沪铜期货高频价格预测 [J/OL]. 中国管理科学: 1-13[2023-03-12].