

upGrad

Capstone Project Report

FRAUD DETECTION MODEL

Prediction of Credit Card fraud (FindDefault)

Presented by Rajat Kumar

Executive Summary

Problem Statement:

Credit card fraud is a critical issue in the financial sector, causing significant monetary losses and security risks. Traditional fraud detection methods, such as rule-based systems, fail to adapt to evolving fraud patterns, making them inefficient.

Goal of the Study:

The objective of this study is to develop an accurate, scalable, and explainable fraud detection model using Machine Learning while addressing challenges of imbalanced data, feature selection, and real-time deployment.

Key Findings

- The dataset is highly imbalanced (0.17% fraud cases), requiring SMOTE for balancing.
- Random Forest emerged as the best model based on precision-recall and AUC-ROC.
- Optimized decision threshold (0.19) improved recall while minimizing false positives.
- The final model is ready for real-time deployment and batch fraud detection.

Deployment Considerations

- Real-Time API Deployment: The model has been successfully deployed as a Flask API, allowing real-time fraud detection via API requests.
- Cloud & On-Premise Readiness: The API is designed to be deployed on cloud platforms (AWS, Render, Heroku) or on-premise financial security systems.
- Fraud Detection API: Users can send transaction data to the /predict endpoint to receive fraud probability and classification.
- Optimized Decision Threshold: The final model applies a threshold of 0.19, improving recall and minimizing false positives.

Introduction

What is Credit Card Fraud?

Credit card fraud occurs when unauthorized transactions are made using a stolen or cloned credit card. It leads to financial losses and compromises consumer trust.

Why is Fraud Detection Important?

- Prevents financial losses.
- Enhances customer trust and security.
- Reduces operational costs related to fraud management.

Challenges in Fraud Detection

- Class Imbalance: Fraud cases are rare, making model training difficult.
- Concept Drift: Fraud patterns evolve over time.
- Real-Time Detection Needs: Fraudulent transactions need to be identified instantly.

FindDefault Credit Card Fraud Detection Using Machine Learning

upGrad Capstone Project Report

by Rajat Kumar

Objective of the Study

This study aims to build a scalable, high-performance fraud detection system using Machine Learning models while addressing:

- Class imbalance issues.
- Feature selection & interpretability.
- Real-time fraud detection capabilities.

Dataset & Data Processing

Dataset Overview

- Source Link: Credit Card Fraud Detection Dataset (Provided by upGrad).
- Data Points: 284,807 transactions.
- Features: 30 anonymized numerical features + Amount + Time.
- Fraud Cases: Only **0.17%** of transactions are fraudulent.

Preprocessing Steps

- Feature Scaling: Standardized Amount and Time for better model performance.
- Class Balancing: Applied SMOTE (Synthetic Minority Over-sampling Technique) to generate synthetic fraud cases and handle class imbalance.

Feature Engineering

Feature Selection Process

Feature selection helps remove redundant data, reduce model complexity, and improve interpretability.

Approach Used:

- Random Forest Feature Importance to select top 13 features.
- Removed low-impact features that did not contribute significantly to fraud detection.

Feature Importance Analysis

Key Features Driving Fraud Prediction:

- V14, V10, V12, V4, V17, and V3 have the strongest correlation with fraud.
- Higher values of these features indicate a greater likelihood of fraud.
- These insights help financial institutions focus on key risk areas.

Model Selection & Evaluation

Algorithms Considered

- 1. Logistic Regression (Baseline model, but weak recall)
- 2. Decision Tree (Good interpretability, prone to overfitting)
- 3. Random Forest (Best performance & interpretability)
- 4. XGBoost (Strong but computationally expensive)

FindDefault Credit Card Fraud Detection Using Machine Learning

upGrad Capstone Project Report

by Rajat Kumar

Performance Metrics Used

- Accuracy (Overall correctness, but not ideal for imbalanced data)
- Precision & Recall (Key metrics for fraud detection)
- F1-score (Balance between precision & recall)
- AUC-ROC Curve (Evaluates model discrimination power)

Best Model Selection

• Random Forest achieved best results:

F1-score	Precision	Recall	AUC-ROC
85%	93%	79%	96%

Why Random Forest?

- Balanced precision & recall for optimal fraud detection.
- Computationally efficient for real-time fraud predictions.
- Feature interpretability supports business decision-making.

Threshold Tuning & Fraud Probability Optimization

Why Default 0.5 Threshold is Not Optimal?

- Standard 0.5 threshold led to high false negatives.
- Optimized Threshold = 0.19 increased recall significantly.

Comparison: Default vs. Optimized Threshold

Threshold	Precision	Recall	F1-Score
0.5	44%	87%	58.6%
0.19 (Optimized)	23%	91%	36%

Fraud Detection Model Deployment

1. Deployment Pipeline:

- Final model trained using **Random Forest** and optimized with **threshold tuning (0.19)**.
- Model saved as **final_fraud_detection_model.pkl** for seamless loading.

2. API Development

- Built a Flask API that accepts transaction data via a POST request.
- Endpoint /predict allows real-time fraud classification.

3. Testing & Validation

- Successfully tested fraudulent and non-fraudulent transactions using API calls.
- Example Request:

```
{
  "features": [-4.3, 2.1, -1.8, 3.0, -2.5, 1.7, -0.9, 2.3, -1.5, 0.6, -0.7, 1.2, 120.5]
}
```

• To be Run in Command Prompt:

```
curl -X POST http://127.0.0.1:5000/predict -H "Content-Type: application/json" -d "{\"features\": [-4.3, 2.1, -1.8, 3.0, -2.5, 1.7, -0.9, 2.3, -1.5, 0.6, -0.7, 1.2, 120.5]}"
```

FindDefault Credit Card Fraud Detection Using Machine Learning

upGrad Capstone Project Report

by Rajat Kumar

• Expected Output:

```
{
    "fraud_probability": 0.0313,
    "prediction": "Safe Transaction"
}
```

4. Real-Time Fraud Prevention & Batch Processing

- Immediate Fraud Screening: API classifies transactions instantly before payment approval.
- **Batch Transaction Analysis**: The model supports large-scale fraud detection for financial institutions.

Business Insights & Recommendations

Key Takeaways for Financial Institutions

- Fraud Detection API ensures real-time security against financial fraud.
- Financial Institutions can integrate the model into payment systems for instant fraud screening.
- Automated fraud prevention reduces manual transaction verification efforts, saving operational costs.
- Cloud-ready model enables large-scale fraud monitoring with minimal infrastructure costs.

Conclusion & Future Work

Final Model Selection Summary

- Random Forest emerged as the best model for fraud detection.
- Threshold tuning (0.19) significantly improved fraud recall.
- Final model is ready for real-time & batch processing deployment.

Future Improvements

- Explore Deep Learning (LSTMs, Autoencoders) to detect evolving fraud patterns.
- Implement Anomaly Detection models for adaptive fraud detection.
- Reduce False Positives to avoid unnecessary fraud alerts for customers.

This model is a highly scalable, real-world fraud detection solution, ensuring financial security and trust.

**** End of Report ****