Homework 4

Hand in sheet

Write in or copy and paste the answers for the following:

Part 1

	V	irus = n	virus = y
1. priors	6/10		4/10
2. likelihoods			
a) $gen = F$	4/6	2/4	
gen = M	2/6	2/4	
b) group = 1	0/6	3/4	
group = 2	2/6	1/4	
group = 3	4/6	0/4	

3. likelihoods (numeric)

a)	pulse mean	71.8	33	63.750
	pulse sd	4.956	9.945	
b)	test mean	66.166 45		0
	test sd	5.91	3	5.377

Part 2

- 1. Less likely to have the virus
- 2 Male
- 3. categorize (fill in the numbers for virus=n and virus=y) numerator for n numerator for y class label

```
a) 1.923811e-05 3.680086e-05 p(virus=? | gender=f, ageGroup=2, pulse=66, test=50)
```

- c) 7.510184e-08 2.108054e-05 p(virus=? | gender=m, ageGroup=3, pulse=90, test=55)
- 4. Lower the pulse rate.

Part 3

1. attach the code for the analysis you did in parts a through d

```
# read the data
df = read.table("hw03dataSenate.txt", header = TRUE)

# make pol, law, mil, soc, edu, med, bus, agr, fin and approval, factors
colFactNames = c("pol", "law", "mil", "soc", "edu", "med", "bus", "agr",
"fin", "approval")
for (col in colnames(df)) {
    if(!is.element(col, colFactNames)) {
        next
    }
    df[,col] = as.factor(df[,col])
}

# build a model using approval as the class and the rest of the attributes
model = naiveBayes(approval~., df)

# display the model
print(model)
```

- 2. answers for part e
 - e) agr pol