CS 330 : Discrete Computational Structures

Fall Semester, 2015

ASSIGNMENT #7 **Due Date:** Sunday, Oct 25

Cahlen Brancheau

Suggested Reading: Rosen Section 5.3; LLM Chapter 6.1 - 6.3

These are the problems that you need to turn in. For more practice, you are encouraged to work on the other problems. Always explain your answers and show your reasoning.

- 1. [12 Pts] Let S defined recursively by (1) $5 \in S$ and (2) if $s \in S$ and $t \in S$, then $st \in S$. Let $A = \{5^i \mid i \in \mathbb{Z}^+\}$. Prove that
 - (a) [6 Pts] $A \subseteq S$ by mathematical induction.

Answer:

Basis: $5^1 = 5$ and by definition $5 \in S$

Inductive Step:

Assume $5^k \in S$ where $k \in \mathcal{Z}$

Prove: $5^{k+1} \in S$

 $5^{k+1} = 5^k * 5$, $5^k \in S$ by the IH and $5 \in S$ by step (1) in the recursive definition of S.

Therefore $5^k * 5 \in S$ by step (2) in the recursive definition of S.

Quod erat demonstrandum.

(b) [6 Pts] $S \subseteq A$ by structural induction.

Answer:

Basis: $5 \in S$ by step (1) in the recursive definition of S and $5 = 5^1 \in A$

Inductive Step:

Let $a, b \in S$, $a * b \in S$ by step (2) in the recursive definition of S.

Assume $a, b \in A$ Prove: $a * b \in A$

By the IH $a=5^x$ and $b=5^y$ where $x,y\in\mathcal{Z}.$ $a*b=5^x*5^y=5^{x+y}.$ $x+y\in\mathcal{Z}$ therefore

 $a*b \in A$.

Quod erat demonstrandum.

- 2. [12 Pts] Let S be defined by (1) $(0,0) \in S$, and (2) if $(a,b) \in S$, then $(a,b+5) \in S$, $(a+1,b+4) \in S$ and $(a+2,b+3) \in S$.
 - (a) [6 Pts] Use structural induction to prove that if $(a, b) \in S$ then 5 divides a + b. Answer:

Basis: $(0,0) \in S$ and 5 divides 0+0=0

Inductive Step:

Assume $(a,b) \in S$ where 5 divides a+b $(x,y) \in S$ and let $(a,b) \in S$ where (a,b) is the relation that the recursive definition of S was applied to in order to get to (x,y).

It must be the case that x = a, y = b + 5 or x = a + 1, y = b + 4 or x = a + 2, y = b + 3.

Case 1: x = a, y = b + 5. x + y = a + b + 5. By the IH 5 divides a + b and 5 divides 5. **Case 2**: x = a + 1, y = b + 4. x + y = a + b + 5. By the IH 5 divides a + b and 5 divides 5.

Case 2: x = a + 2, y = b + 3. x + y = a + b + 5. By the IH 5 divides a + b and 5 divides 5.

Quod erat demonstrandum.

(b) [6 Pts] Disprove the converse of the statement above, *i.e.*, show that if $a, b \in \mathcal{N}$, and a + b is divisible by 5, it does not follow that $(a, b) \in S$. Modify the recursive definition of S to make the converse true.

Answer:

5 divides 3+2=5, but $(3,2) \notin S$

New Definition of S

 $(1) (0,0) \in S$

(2) if $(a,b) \in S$, then $(a,b+5) \in S$, $(a+1,b+4) \in S$, $(a+2,b+3) \in S$ $(a+3,b+2) \in S$, $(a+4,b+1) \in S$, $(a+5,b) \in S$.

Quod erat demonstrandum.

3. [6 Pts] Give a recursive definition of the set of bit strings that are palindromes.

Answer:

Basis: An empty string is a palindrome and string with a one bit length is a palindrome.

Inductive Step:

A strings in the form pcp are palindromes, where c is a bit and p is a palindrome.

Quod erat demonstrandum.

4. **[20 Pts]**

(a) [8 Pts] Give an inductive definition of the set $L = \{(a, b) \mid a, b \in \mathcal{Z}, (a - b) \mod 3 = 0\}$. Let L' be the set obtained by your inductive definition.

Answer:

Basis:
$$(0,0) \in L'$$

Recursive: if
$$(x, y) \in L'$$
 then $(x + 1, y + 1) \in L'$, $(x - 1, y - 1) \in L'$, $(x, y + 3) \in L'$, $(x, y - 3) \in L'$.

(b) [6 Pts] Prove that $L' \subseteq L$.

Answer:

By definition of $L' \subseteq L$ all pairs in L' must be divisible by 3. In other words for any $(a,b) \in L', a-b=3k$ where $k \in \mathcal{Z}$

With the recursive definition of L' the possible options are thus:

Case 1: (a-1,b-1), this is the same as a-b therefore still divisible by 3.

Case 2: (a+1,b+1), this is the same as a-b therefore still divisible by 3.

Case 3: (a, b + 3), a - b + 3 = 3k - 3 = 3(k - 1) therefore still divisible by 3.

Case 4: (a, b - 3), a - b - 3 = 3k + 3 = 3(k + 1) therefore still divisible by 3.

(c) [6 Pts] Prove that $L \subseteq L'$.

Answer:

All pairs in L must be divisible by 3. In other words for any $(a,b) \in L, a-b=3k \to b=3k-a$ where $k \in \mathcal{Z}$.

Any element in L with be in the form (a, 3k - a). To get to any other pair using the definition of L' we apply the following.

(1) (0,0) to (0,3k). If $k \ge 0$ apply (x,y+3) k times, else apply (x,y-3) k times.

(2) (0,3k) to (a,3k-a). If $a \ge 0$ apply (x+1,b+1) a times, else apply (x-1,y-1) a times.