Suggested exercises Section 1 Solutions

Exercise 1.2. Let R be the ring of continuous real-valued functions on [0,1]. Show that $\{f \in R \mid f(0) = 0\}$ is a maximal ideal of R.

Solution. By definition, $R = \{f : [0,1] \to \mathbb{R} \mid f \text{ continuous}\}$. Let $I = \{f \in R \mid f(0) = 0\}$. We can assume (or else prove is as a health check) that R is a commutative ring for pointwise addition and multiplication of functions. The zero constant function and the difference of two functions in I is an element of I. So I is an additive subgroup of R. Let $f \in I$ and let $g \in R$. By definition, (gf)(0) = g(0)f(0) = 0. So I is an ideal.

Let $\varphi:R\to\mathbb{R}$ be the evaluation at zero, i.e. $\varphi(f)=f(0)$. So φ is a ring homomorphism. For all $a\in\mathbb{R}$, the constant function $f_a:[0,1]\to\mathbb{R},\ f_a(x)=a$ for all $x\in[0,1]$ is an element of R. So φ is surjective. We have $\ker(\varphi)=I$, and therefore $R/I\cong\mathbb{R}$, which proves that I is maximal.

Exercise 1.4. Let R be a ring, and let $e \in R$. Assume that e is a nontrivial idempotent.

- i. Prove that e is a zero divisor, and that $1 2e \in R^{\times}$.
- ii. Prove that eR is a ring with multiplicative identity e. Hence, find a ring S and a ring isomorphism $R \cong eR \times S$.
- iii. Let S be a ring. Describe $\mathrm{Nil}(R \times S)$. Deduce that if R and S are reduced rings, then $R \times S$ is reduced too.
- iv. Prove that an ID is reduced, but there are reduced rings which are not IDs, and find an example of such a reduced commutative ring.

Solution.

- i. By assumption, $e, 1 e \neq 0$, and we have e(1 e) = 0. So e is a zero divisor. For the second part, we calculate $(1 2e)^2 = 1$.
- ii. For any $ea \in eR$, we have e(ea) = ea = eae, which shows that $e = 1_{eR}$. Similarly, let S = (1-e)R. Then S is a commutative ring with multiplicative identity 1-e. Therefore, $(e,1-e) = 1_{eR \times S}$. Define $\varphi: R \to eR \times S$ by $\varphi(a) = (ea, (1-e)a)$. It is routine to check that φ is a ring homomorphism. Define $\psi: eR \times S \to R$ by $\psi(ea, (1-e)b) = ea + (1-e)b$. It is routine to check, using that e(1-e) = 0 and that e, 1-e are idempotents, that φ is a ring homomorphism. We then check that $\varphi \psi$ and $\psi \varphi$ are the identity maps.
- iii. $\operatorname{Nil}(R \times S) = \{(a,b) \in R \times S \mid \exists n \in \mathbb{N} \text{ with } (a,b)^n = 0\}$. Since $(a,b)^n = (a^n,b^n)$, we have $(a,b)^n = 0$ if and only if a,b are both nilpotent (we can pick n large enough for such an equality to hold). So, $\operatorname{Nil}(R \times S) = \operatorname{Nil}(R) \times \operatorname{Nil}(S)$. Hence, if R and S are reduced (i.e. they have no nonzero nilpotent elements), then $R \times S$ is reduced too.
- iv. An ID is reduced since it has no zero divisors. There are reduced rings which are not IDs, for instance the cartesian product $\mathbb{Z} \times \mathbb{Z}$.

Exercise 1.5. Find the maximal ideals in the local rings $\mathbb{Z}_{(p)},\ k[x]/(x^2)$ and k[[x]], where p is a prime and k is a field.

Solution. $\mathbb{Z}_{(p)}$ has maximal ideal $p\mathbb{Z}_{(p)}$, $k[x]/(x^2)$ has maximal ideal $xk[x]/(x^2)$ and k[[x]] has maximal ideal xk[[x]]. The quotients are \mathbb{F}_p , k and k, respectively.

Exercise 1.11. Let R be a commutative ring and let U be a multiplicative subset of R. Let I be an ideal of R such that I is maximal in the poset

$$\{J \text{ ideal of } R \mid J \cap U = \emptyset\},\$$

where the order relation is given by the inclusion of ideals. Prove that I is prime.

Solution. Let $a,b\in R\setminus I$. We need to show that $ab\notin I$. Let $X=\{J \text{ ideal of } R\mid J\cap U=\emptyset\}$. Since (a)+I,(b)+I contain I properly, the assumption implies that $(a)+I\cap X\neq\emptyset$ and $(b)+I\cap X\neq\emptyset$. That is, there exist $c,d\in I,\ r,s\in R$ and $u,v\in U$ such that u=ra+c and v=sb+d, which gives (using commutativity of R)

$$uv = rsab + rda + scb + cd \in U$$
 since U is a multiplicative subset or R.

Since $c,d \in I$, we have $rda + scb + cd \in I$. Since $uv \notin I$, we cannot have $rsab \in I$. Hence $ab \notin I$ as we wanted to show.

Exercise 1.12. Let R be a ring and let I be an ideal of R. Prove that the following statements are equivalent:

- i. I is prime.
- ii. If J, K are ideals of R such that $JK \subseteq I$, then at least one of J or K must be contained in I.
- iii. There do not exist ideals J, K of R with $J \not\subseteq I$ and $K \not\subseteq I$, and such that $JK \subseteq I$.

Solution. $[i\Rightarrow ii]$ Suppose i, and let J,K be ideals of R such that the product ideal JK is contained in I. Suppose that $J\not\subseteq I$. We prove that $K\subseteq I$. Pick $a\in J$ such that $a\notin I$. Now, for all $b\in K$, we have $ab\in JK\subseteq I$, and since I is prime, we obtain that $b\in I$ for all $b\in K$. Therefore ii holds.

 $[ii\Rightarrow iii]$ Suppose ii. By contrapositive, whenever J,K are ideals of R which are not contained in I, then JK is not contained in I. Thus iii holds.

 $[iii \Rightarrow i]$ Finally, suppose that iii holds, and let $a, b \in R$ such that $ab \in I$. Suppose that $a \notin I$. We need to show that $b \in I$. Consider the ideals

$$J = aR + I = \{ax + u : x \in R, u \in I\}$$
 and $K = bR + I = \{by + v : y \in R, v \in I\}.$

Our assumption implies that $I \subseteq J$. Now, using the commutativity of R,

$$JK = \{ \sum_{\text{finite sum}} (ax+u)(by+v) = \sum_{\text{finite sum}} abxy + \underbrace{axv+uby+uv}_{\in I} \ : \ x,y \in R, \ u,v \in I \},$$

where the finite sum is on finitely many elements $x, y \in R$, $u, v \in I$.

Since $ab \in I$ by assumption, we conclude that $JK \subseteq I$. By hypothesis iii, and since we assume that $J \not\subseteq I$, we must have $K \subseteq I$. That is $bR + I \subseteq I$, which shows that $b \in I$, and i holds.

Exercise 1.13. Describe $\operatorname{Spec}(\mathbb{Z}[x])$ and $\operatorname{MaxSpec}(\mathbb{Z}[x])$. Same question with \mathbb{R} and with \mathbb{C} instead of \mathbb{Z} . (Hint: Theorem 1.13 may be useful.)

Solution. An ideal I of R[x] is prime if and only if R[x]/I is an ID and maximal if and only if the quotient ring is a field. Since R[x] is a PID if and only if R is a field, the question is much easire to answer for $R=\mathbb{R}$ and \mathbb{C} . In both cases, $\operatorname{Spec}(R[x])=\operatorname{MaxSpec}(R[x])\sqcup\{0\}$, where $\operatorname{MaxSpec}(R[x])=\{fR[x]\mid f\in R[x] \text{ is irreducible}\}$. (Recall that in a PID, prime and irreducible elements coincide.) For $\mathbb{Z}[x]$, the principal prime ideals have the form $p\mathbb{Z}[x]$ or $f\mathbb{Z}[x]$, where $p\in\mathbb{Z}$ is prime or zero (regarded as constant polynomials) and $f\in\mathbb{Z}[x]$ irreducible. The quotient rings are isomorphic to $\mathbb{F}_p[x]$ and \mathbb{Z} , respectively. Hence, we obtain maximal ideals of the form $p\mathbb{Z}[x]+f\mathbb{Z}[x]$, for $p\in\mathbb{Z}$ prime, regarded as constant polynomial, and $f\in\mathbb{Z}[x]$ irreducible.

We claim that these are the only prime and the only maximal ideals of $\mathbb{Z}[x]$. Let $P \in \operatorname{Spec}(\mathbb{Z}[x])$. The inclusion $\mathbb{Z} \to \mathbb{Z}[x]$ implies that the contraction P^c is a prime ideal of \mathbb{Z} , ie. $P^c = (p)$ with p = 0 or p prime.

Suppose that $P^c=(0)$. Consider $U=\mathbb{Z}\backslash\{0\}$ as a multiplicative subset of $\mathbb{Z}[x]$. Then, the localisation $\mathbb{Z}[x]_U\cong\mathbb{Q}[x]$, and the canonical map $\theta:\mathbb{Z}[x]\hookrightarrow\mathbb{Q}[x]$ maps $\theta(P)\in\operatorname{Spec}(\mathbb{Q}[x])$, by Theorem 1.37. Since $\mathbb{Q}[x]$ is a PID, there is $f\in\mathbb{Q}[x]$ irreducible such that $\theta(P)=f\mathbb{Q}[x]$. Say $f=\frac{g}{d}$, with $g\in\mathbb{Z}[x]$ and $d\in\mathbb{Z}\setminus\{0\}$. But by definition of $\theta(P)$, we can choose such g in P. Hence $df\in P$. Since P is prime and $d\notin P$, we must have $f\in P$. Therefore $f\mathbb{Z}[x]\subseteq P$. Conversely, if $h\in P$, wlog h primitive, then $\theta(h)=\frac{fg}{d}\in f\mathbb{Q}[x]$, for some $g\in\mathbb{Z}[x]$ and $d\in\mathbb{Z}\setminus\{0\}$ such that d does not divide the content c(g) of g. Since \mathbb{Q} is the field of fractions of \mathbb{Z} , it follows from Gauss's lemma that the factorisation $h=\frac{fg}{d}\in\mathbb{Q}[x]$ can be realised in $\mathbb{Z}[x]$. Thus $\frac{c(g)}{d}f\in\mathbb{Z}[x]$. Writin f in reduced form, i.e. such that if α is the least common denominator of the coefficients of f, then $\alpha f\in\mathbb{Z}[x]$ is primitive, we see that $h\in f\mathbb{Z}[x]$.

Suppose that $P^c=(p)$ with p prime. The reduction mod p of the coefficients induces a surjective ring homomorphism $\pi:\mathbb{Z}[x]\to\mathbb{F}_p[x]$. Hence $\pi(P)\in\operatorname{Spec}(\mathbb{F}_p[x])$ for all $P\in\operatorname{Spec}(\mathbb{Z}[x])$. Suppose taht $\pi(P)\neq(0)$. Since $\mathbb{F}_p[x]$ is a PID, $\pi(P)=f\mathbb{F}_p[x]$, with $f\in\mathbb{F}_p[x]$ irreducible. Thus $P=(p)+(\dot{f})$ for some $\dot{f}\in\pi^{-1}(f)$ irreducible.

Exercise 1.14. Let $f: R \to S$ be a ring homomorphism.

- i. Prove that the preimage $f^{-1}(J)$ is an ideal of R for every ideal J of S. If the image f(I) an ideal of S for an ideal I of R?
- ii. If I is a prime ideal of S, is $f^{-1}(I)$ a prime ideal of R? Same question for maximal ideals.

Solution.

- i. The first part is a routine checking of the axioms. The answer to the question is NO: for instance, if $f: \mathbb{Z} \to \mathbb{Q}$ is the inclusion, then the image of any nonzero ideal of \mathbb{Z} is not an ideal of \mathbb{Q} .
- ii. If $I \in \operatorname{Spec}(S)$, then $f^{-1}(I) \in \operatorname{Spec}(R)$, but this is not true for maximal ideals. Indeed, if $a, b \in R$ such that $ab \in f^{-1}(I)$, then $f(a)f(b) \in I$, and since I is prime conclusion follows.

This is no longer true for maximal ideals. The same example as above proves the claim.

Exercise 1.15. Let R be a commutative ring, let I be an ideal in R and let X be a nonempty subset of R. Define

$$(I\ :\ X)=\{a\in R\ :\ aX\subseteq I\},\quad \text{where}\quad aX=\{ax\ :\ x\in X\}.$$

- i. Prove that (I : X) is an ideal of R.
- ii. Let J be the ideal in R generated by the subset X of R. Prove that (I:X)=(I:J), for any ideal I.

- iii. Let I, J be two ideals in R. Prove the following.
 - (a) $I \subseteq (I : J)$.
 - (b) $J(I : J) \subseteq I$.
 - (c) if $I = I_1 \cap I_2$, then $(I : J) = (I_1 : J) \cap (I_2 : J)$.
 - (d) if $J = J_1 + J_2$, then $(I : J) = (I : J_1) \cap (I : J_2)$.

Solution.

- i. Routine. $0 \in (I:X)$ since $0x = 0 \in I$ for all $x \in X$. So $(I:X) \neq \emptyset$. Let $a,b \in (I:X)$ and $c \in R$. We have (a-b)x = ax bx for all $x \in X$. Since $ax,bx \in I$, and I is an ideal, then $ax bx \in I$ for all $x \in X$, showing that $a b \in (I:X)$. Finally, (ca)x = c(ax) for all $x \in X$. Since $ax \in I$, and I is an ideal, then $c(ax) \in I$ for all $x \in X$, showing that $ca \in (I:X)$. Therefore (I:X) is an ideal of R.
- ii. If $a \in (I : X)$, then $ax \in I$ for all $x \in X$, and so, for any $b = \sum_{x \in X} \lambda_x x \in J$, we have $ab = \lambda_x ax \in I$ because I is an ideal. So $(I : X) \subseteq (I : J)$.
- iii. (a) $I \subseteq (I : X)$ because $ax \in I$ for all $a \in I$ and all $x \in R$.
 - (b) J(I:J) is the set of all the finite sums $\sum_i b_i a_i$ of elements $b_i \in J$ and $a_i \in (I:J) = \{a \in R: ab \in I \ \forall \ b \in J\}$. So each summand $b_i a_i \in I$, and therefore $\sum_i b_i a_i \in I$ for all $\sum_i b_i a_i \in J(I:J)$. So $J(I:J) \subseteq I$.
 - (c) Suppose that $I=I_1\cap I_2$. If $a\in (I_1:J)\cap (I_2:J)$, then $ab\in I_i$ for i=1,2, and so $ab\in I$ for all $b\in J$. Therefore $a\in (I:J)$, and we conclude that $(I_1:J)\cap (I_2:J)\subseteq (I:J)$. Conversely, if $a\in (I:J)$, then for any $b\in J$, we have $ab\in I\subseteq I_i$, which shows that $a\in (I_i:J)$, for i=1,2. So $(I_1:J)\cap (I_2:J)\supseteq (I:J)$.
 - (d) Suppose that $J=J_1+J_2$. Let $a\in (I:J)$. Since $aJ_i\subseteq a(J_1+J_2)\subseteq I$ for i=1,2, we conclude that $(I:J)\subseteq (I:J_1)\cap (I:J_2)$. Conversely, any $a\in (I:J_1)\cap (I:J_2)$ is such that $a(b_1+b_2)=ab_1+ab_2\in I$ for all $b_i\in J_i$, for i=1,2. Therefore $(I:J)\supseteq (I:J_1)\cap (I:J_2)$.

Exercise 1.16. Use the Chinese remainder theorem with $R = \mathbb{Q}[x]$, $I = (x^3 - 8)R$ and $J = (x^2 + 1)R$, and find a polynomial $f \in R$ such that $f \equiv x \mod I$ and $f \equiv (x + 1) \mod J$.

Solution. We want to solve the system of modular equations

$$\begin{cases} f \equiv x \pmod{x^3 - 8}, \\ f \equiv x + 1 \pmod{x^2 + 1}. \end{cases}$$

We start by using the Euclidean algorithm to find $a,b\in\mathbb{Q}[x]$ such that $1=a(x^3-8)+b(x^2+1)$. Since $\deg x^3+8>\deg x^2+1$, we divide x^3-8 by x^2+1 , and we obtain

$$x^3 - 8 = (x^2 + 1)x + (-x - 8).$$

Then dividing $x^2 + 1$ by -x - 8 gives

$$x^{2} + 1 = (-x - 8)(-x + 8) + 65.$$

Since 65 is invertible, the algorithm stops and we write

$$1 = \frac{1}{65} ((x^2 + 1) - (-x - 8)(-x + 8))$$

$$1 = \frac{1}{65} ((x^2 + 1) + (x - 8)((x^3 - 8) - (x^2 + 1)x))$$

$$1 = \frac{1}{65} ((x - 8)(x^3 - 8) + (-x^2 + 8x + 1)(x^2 + 1))$$

Therefore, $\frac{1}{65}(-x^2+8x+1)(x^2+1)\equiv 1\pmod{x^3-8}$ and $\frac{1}{65}(x-8)(x^3-8)\equiv 1\pmod{x^2+1}$, and we put

$$x = \frac{1}{65}x(-x^2 + 8x + 1)(x^2 + 1) + \frac{1}{65}(x + 1)(x - 8)(x^3 - 8) = \frac{1}{65}(x^4 - 8x^3 + 57x + 64).$$

(The full solution set is $\{\frac{1}{65}(x^4 - 8x^3 + 57x + 64) + (x^3 - 8)(x^2 + 1)f \mid f \in \mathbb{Q}[x].$)

Exercise 1.17. Let $f = 2x^3 + 3x^2 + 5x + a \in \mathbb{Z}/7[x]$.

- i. Find all $a \in \mathbb{Z}/7$ such that f is irreducible.
- ii. Let a=1.
 - (a) Prove that the principal ideal $I = f\mathbb{Z}/7[x]$ is maximal. Let $\pi : \mathbb{Z}/7[x] \longrightarrow (\mathbb{Z}/7[x])/I$ be the projection map.
 - (b) Prove that $\pi(g) \neq 0$, for $g = 3x^2 + 4x + 5 \in \mathbb{Z}/7[x]$.
 - (c) Find $(\pi(g))^{-1}$ in $(\mathbb{Z}/7[x])/I$.

Solution.

i. $\mathbb{Z}/7$ is a field, and so f is irreducible if and only if f has no root in $\mathbb{Z}/7$. To find the possible roots, we evaluate f at each element of $\mathbb{Z}/7$:

$$f(0) = f(4) = f(5) = a, \ f(1) = f(2) = f(6) = 3 + a$$
 and $f(3) = 5 + a.$

So f is irreducible if and only if $a \neq 0, 4, 2$, respectively, i.e. if and only if $a \in \{1, 3, 5, 6\}$.

- ii. Let a=1.
 - (a) $\mathbb{Z}/7[x]$ is a PID because $\mathbb{Z}/7$ is a field. So $I=f\mathbb{Z}/7[x]$ is maximal if and only if f is irreducible, which we have just proved for a=1. Let $\pi:\mathbb{Z}/7[x]\longrightarrow (\mathbb{Z}/7[x])/I$ be the canonical projection map.
 - (b) $\pi(g) \neq 0$, for $g = 3x^2 + 4x + 5 \in \mathbb{Z}/7[x]$, if and only if $f \nmid g$. This holds because $\deg g < \deg f$.
 - (c) f is irreducible (hence prime in the PID $\mathbb{Z}/7[x]$), so that $\gcd(f,g)=1$ can be written as a $\mathbb{Z}/7[x]$ -linear combination of f and g. We calculate, using the Euclidean algorithm twice:

$$f = g(3x+4) + (2x+2)$$
, and then $g = (2x+2)(5x+4) + 4 \in (\mathbb{Z}/7[x])^{\times}$.

So the algorithm stops and we can first write: (recall that $-1=6\in\mathbb{Z}/7$)

$$4 = g + (2x + 2)(6(5x + 4))$$

$$4 = g + (f + g(6(3x + 4)))(6(5x + 4))$$

$$4 = g + (f + g(4x + 3))(2x + 3)$$

$$4 = g(1 + (4x + 3)(2x + 3)) + f(2x + 3)$$

$$4 = g(x^{2} + 4x + 3) + f(2x + 3) \text{ and so}$$

$$1 = g(2x^{2} + x + 6) + f(4x + 6).$$

It follows that
$$1=\pi(1)=\pi\big(g(2x^2+x+6)+f(4x+6)\big)=\pi(g)\pi(2x^2+x+6)+0$$
, giving
$$\big(\pi(g)\big)^{-1}=\pi(2x^2+x+6)\quad\text{in }(\mathbb{Z}/7[x])/I.$$

Exercise 1.18. Let R be a commutative ring.

- i. Prove that Nil(R) and Rad(R) are ideals of R and that $Nil(R) \subseteq Rad(R)$.
- ii. Prove that if $I \in \operatorname{Spec}(R)$, then $\sqrt{I} = I$.
- iii. Find a commutative ring R and a radical ideal $I = \sqrt{I}$ such that $I \notin \operatorname{Spec}(R)$. (Hint: consider $\mathbb Z$ and an ideal $n\mathbb Z$ with n a product of distinct primes.)
- iv. Prove that $Nil(R/Nil(R)) = \{0\}.$

Solution.

- i. By definition $Nil(R) = \bigcap_{P \in Spec(R)} P \subseteq \bigcap_{P \in MaxSpec(R)} P = Rad(R)$.
- ii. Let $I \in \operatorname{Spec}(R)$ and let $a \in R$. By induction on $n \in \mathbb{N}$, we have $a^n \in I$ if and only if $a \in I$. The equality follows.
- iii. For example the ideal $6\mathbb{Z}$ of \mathbb{Z} is radical but not prime.
- iv. We know that the prime ideals of $R/\operatorname{Nil}(R)$ are in 1-1 correspondence with the prime ideals of R containing $\operatorname{Nil}(R)$. So their intersection is equal to $\operatorname{Nil}(R)$, i.e. we have $\operatorname{Nil}(R/\operatorname{Nil}(R)) = \{0\}$.

Exercise 1.19. Let p be a prime number. Prove that the saturated ideals of \mathbb{Z} with respect to $\mathbb{Z}\setminus (p)$ are those generated by the powers of p, i.e. of the form $(p^n)=p^n\mathbb{Z}$ for some $n\in\mathbb{N}$. (Note that there is a unique prime ideal of \mathbb{Z} which does not meet $\mathbb{Z}\setminus (p)$, and that $\mathbb{Z}_{(p)}$ has a unique nonzero prime hence maximal - ideal.)

Solution. By definition, $\mathbb{Z}_{(p)}=\{\frac{a}{b}\in\mathbb{Q}\mid\gcd(p,b)=1\}$ is the localisation of \mathbb{Z} with respect to $\mathbb{Z}-(p)=\{a\in\mathbb{Z}\mid\gcd(a,p)=1\}$. Let $\theta:\mathbb{Z}\to\mathbb{Z}_{(p)}$ the inclusion $\theta(a)=\frac{a}{1}$. The proper ideals of $\mathbb{Z}_{(p)}$ are precisely the ideals of the form $\frac{p^n}{1}\mathbb{Z}_{(p)}=\theta(p^n\mathbb{Z})=\theta(p^nd\mathbb{Z})$, for some $n\in\mathbb{N}$ and $d\in\mathbb{Z}$ with $\gcd(p,d)=1$. Indeed, every integer coprime to p is mapped by θ to a unit of $\mathbb{Z}_{(p)}$. Now, we note that $\theta^{-1}(\frac{p^n}{1}\mathbb{Z}_{(p)})=p^n\mathbb{Z}$, which proves the assertion.

Exercise 1.20. Let k be a field, let R = k[x, y] and let $\lambda \in k$. Consider the ideal $I = (x - \lambda y)$ of R.

- i. Prove that the quotient ring R/I is isomorphic to k[y].
- ii. Deduce from the above that the ideal $I = (x \lambda y)$ is prime.

Solution.

i. Let $\varepsilon: R \to k[y]$ be the evaluation at $x = \lambda y$, i.e. $\varepsilon(f) = f(\lambda y, y) \in k[y]$ for all $f \in R$. Observe that ε is a surjective ring homomorphism, and $I \subseteq \ker(\varepsilon)$. It remains to check that $I = \ker(\varepsilon)$, since the first isomorphism theorem gives the required isomorphism.

Let $f \in \ker(\varepsilon)$, and write $f = (x - \lambda y)g + h$, for some $g \in R$ and some $h \in k[y]$. Note that we can do so by grouping all the monomials containing x together. So we calculate

$$0=\varepsilon(f)=f(\lambda y,y)=0\\ g(\lambda y,y)+h(y)\quad \text{implying that}\quad h=0.$$

That is, $f = (x - \lambda y)g \in I$, for all $f \in \ker(\varepsilon)$.

ii. The isomorphism $R/I \cong k[y]$, with k[x] an ID shows that I is prime. (Note that I is not maximal since k[y] is not a field.)