Deep learning Neural networks

Matthew Greenberg

May 2022

This course

- 1. Introduction
- 2. Convolutional neural networks (CNNs) for computer vision
- 3. Text processing and recurrent neural networks (RNNs)

Deep learning

- ▶ Probabilistic models based on *neural networks*.
- Transformative for computer vision, natural language processing, automation, robotics, molecular modeling, simulation...
- Benefits of deep learning most pronounced for analysis of unstructured, high-dimensional data.

Using deep learning powered APIs and packages

- Many companies sell access deep learning powered APIs for common data processing and analysis tasks.
- Let's look at how to use Google's cloud vision API...
- ► Instead of accessing the model via API, you can download it and incorporate it into your code.
- ► Let's download a transformer model for extractive question answering from HuggingFace...

Artificial intelligence (AI)

https://www.youtube.com/watch?v=VsnQf7exv5I (11:49)

Machine learning (ML)

Show the computer lots of examples of inputs together with the desired outputs. Let the computer learn how to map inputs to outputs using a general purpose learning procedure.

input	output	input	output
image	label	English text	French translation
	deer	Can I borrow your magazine?	Puis-je emprunter votre magazine?
	frog	Please pass the ketchup.	Veuillez passer le ketchup.
100	truck	His shirt was made in turkey.	Sa chemise a été con- fectionnée en Turquie.

Deep learning (DL)

Yann LeCun @ylecun · Dec 24, 2019

Some folks still seem confused about what deep learning is. Here is a

definition:

DL is constructing networks of parameterized functional modules & training them from examples using gradient-based optimization.... facebook.com/722677142/post...

Q 37

1 551

⁾ 1.8K

1

Networks

Traditional machine learning

Deep learning

 $ightharpoonup \hat{p}$ is a vector of class probabilities.

Feature hierarchy

Linear layers

Trainable parameters:

- weights: $W \in \mathbb{R}^{p \times q}$
- **biases:** $b \in \mathbb{R}^q$

More concisely:

$$u \longrightarrow L_{W,b} \longrightarrow v$$

$$v = L_{W,b}(u) = uW + b$$

Compositions of linear layers are linear

$$u \longrightarrow L_{W_1,b_1} \longrightarrow L_{W_2,b_2} \longrightarrow v$$

$$L_{W_2,b_2}(L_{W_1,b_1}(u)) = L_{W_2,b_2}(uW_1 + b_1)$$

$$= (uW_1 + b_1)W_2 + b_2$$

$$= u\underbrace{W_1W_2}_{W} + \underbrace{b_1W_2 + b_2}_{b}$$

$$= L_{W,b}(u)$$

ReLU-activated linear layers

$$R_{W,b}(u) = \text{ReLU}\left(L_{W,b}(u)\right)$$
 (apply ReLU componentwise)

A simple classification network

▶ The **flatten** layer flattens an RGB image tensor with shape $m \times n \times c$ to an mnc-dimensional vector.

The classification layer: softmax-activated linear layer

▶ The classification layer of a *K*-class classification network typically performs **logistic regression**, mapping features output by the hidden layers onto class probabilities.

The softmax function

▶ The **softmax function** converts "raw scores" u_0, \ldots, u_{p-1} into a **distribution vector**, i.e. a vector with nonnegative components that sum to 1:

softmax
$$(u_0, \dots, u_{p-1}) = \frac{1}{\sum_i e^{u_j}} (e^{u_0}, \dots, e^{u_{p-1}})$$

Using pretrained image classification models

- You can download many pretrained image classification models.
- ▶ Most are trained on the **ImageNet dataset**, with
 - ▶ 1000 object classes,
 - \triangleright > 1.2 million training images

Example: the CIFAR-10 dataset

- ▶ 60000 RGB images, 32×32 pixels
- ▶ 10 classes

label/class	examples	label/class	examples
0/airplane		5/dog	
$1/{\sf automobile}$		6/frog	@ T
2/bird		7/horse	THE WAY
3/cat		8/ship	E -
4/deer	10 30	9/truck	

An image classifier for CIFAR-10

- ▶ input x: tensor with shape $32 \times 32 \times 3$
- ▶ target: $y \in \{0, 1, ..., 9\}$
- ightharpoonup output \widehat{p} : vector of length 10, where

$$\widehat{p}_j = \text{probability that } x \text{ has class } j$$

ightharpoonup trainable parameters: θ , initialized randomly

Training the classifier

loss function: penalize misclassifications

$$L(y,\widehat{p}) = -\log \widehat{p}_y$$

$$\widehat{p}_y$$

$$\widehat{p}_y$$

Adjust parameters to decrease loss via

$$\theta \leftarrow \theta - \alpha \nabla_{\theta} L(y, \widehat{p})$$

(α is a positive hyperparameter called the **learning rate**.)

Batches and epochs

- ► One training **epoch**:
 - ▶ Partition training data into N/I batches of size I.
 - for $0 \le k \le N/I$:
 - Compute

$$\widehat{p}_i = f_{\theta}(x_i), \quad kI \le i < (k+1)I.$$

Adjust parameters to decrease average loss over the batch via

$$\theta \leftarrow \theta - \alpha \nabla_{\theta} \left\{ \frac{1}{I} \sum_{bI \leq i < (b+1)I} L(y_i, \widehat{p}_i) \right\}.$$

Train multiple epochs, until convergence.

```
model.fit(x train, v train, batch size=100, epochs=20);
Epoch 1/20
500/500 [========== ] - 1s 2ms/step - loss: 2.0992 - accuracy: 0.2314
Epoch 2/20
500/500 [=======] - 1s 2ms/step - loss: 1.8704 - accuracy: 0.3424
Epoch 3/20
Epoch 18/20
Epoch 19/20
500/500 [============ ] - 1s 2ms/step - loss: 1.7164 - accuracy: 0.4129
Epoch 20/20
Training loss
                                     Training accuracy
 2.00
                             0.40
 1.95
                             0.38
 1.90
                            accuracy
                             0.36
S 1.85
                             0.34
 1.80
                             0.32
 175
                             0.30
                             0.28
 1.70
              10
                   15
                                          10
                                                15
                                                     20
              epoch
                                          epoch
```