(a)
$$E[\hat{\alpha}] = E[\bar{x}^2] = var(\bar{x}) + E[\bar{x}]^2$$

$$= var\{\frac{1}{N}\sum_{n=0}^{N-1}x[n]^2\} + E[\frac{1}{N}\sum_{n=0}^{N-1}x[n]]^2$$

$$= \frac{1}{N^2}(N\sigma^2) + A^2$$

$$= \frac{1}{N}\sigma^2 + A^2$$

$$+ A^2 \Rightarrow unbiased$$

(b)
$$\operatorname{Var}(\hat{\alpha}) = \operatorname{Var}(\bar{x}^2) = E[\bar{x}^4] - E[\bar{x}^2]^2$$

$$= (A^4 + 6A^2 \frac{\sigma^2}{N} + 3 \frac{\sigma^4}{N^2}) - (\frac{\sigma^4}{N^2} + 2A^2 \frac{\sigma^2}{N} + A^4)$$

$$= 4A^2 \frac{\sigma^2}{N} + 2 \frac{\sigma^4}{N^2}$$

$$T(\theta) = -E\left[\frac{\partial^{2} \ln P(x;\theta)}{\partial \theta^{2}}\right] = \frac{1}{\sigma^{2}} \cdot N$$
Let $q(A) = A^{2} \Rightarrow \left(\frac{\partial q(A)}{\partial A}\right)^{2} = 4A^{2}$

$$\Rightarrow \text{Var} \left\{\hat{\alpha}\right\} \ge \frac{4A^{2}}{\sigma^{2}} = \frac{4A^{2}\sigma^{2}}{N}$$

does not auhieve CRLB

If
$$N \to \infty$$
, $var(\hat{a}) \to cRLB$

(v)
$$\tilde{q}(\bar{x}) = q(A) + \frac{dq(A)}{dA}(\bar{x} - A)$$

= $A^2 + 2A(\bar{x} - A)$

(d)
$$E[\tilde{q}(\bar{x})] = E[A^2 + 2A(\bar{x} - A)]$$

$$= A^2 + 2A(E[\bar{x}] - A)$$

$$= A^2$$

$$= A^2$$

$$= A^2$$

$$= A^2$$

$$= A^2$$

$$= A^2 \times a_{\bar{x}}(\bar{x})$$

$$= A^2 \times a_{\bar{x}}(\bar{x})$$

$$var(\tilde{q}(\bar{x})) = 4A^{2} var(\bar{x}) \qquad var(\tilde{q}(\bar{x}))$$

$$= 4A^{2} \frac{\sigma^{2}}{N} \qquad \frac{2A^{2}\sigma^{2}}{64}A^{2}\sigma^{2}$$

(e) Let
$$A = 1$$
, $\sigma^2 = 0.1$

(a)
$$E[\hat{\alpha}] = \frac{o(1)}{N} + 1$$

(b)
$$var(\hat{a}) = \frac{0.4}{N} + \frac{0.02}{N^2}$$

CRLB = $\frac{0.4}{N}$

(a)
$$\tilde{g}(\bar{x}) = 1 + 2(\bar{x} - 1) = 2\bar{x} - 1$$

(d)
$$E[\tilde{q}(\bar{x})] = 1$$

 $var(\tilde{q}(\bar{x})) = \frac{0.4}{N}$

$$E[\hat{\alpha}] = E[\tilde{q}(\bar{x})] + \frac{o.1}{N}$$
When $N \to \infty$, $E[\hat{\alpha}] \to E[\tilde{q}(\bar{x})]$

$$var(\hat{\alpha}) = var(\tilde{q}(\bar{x})) + \frac{0.02}{N^2}$$

When $N \to \infty$, $var(\hat{\alpha}) \to var(\tilde{q}(\bar{x}))$

 $= -\frac{N}{2\sigma^{2}} + \frac{1}{2} d^{-\frac{1}{2}} \sum_{i} \frac{x_{i}}{\sigma^{2}} \frac{e^{\frac{i\alpha}{r^{2}}x_{i}} - e^{\frac{i\alpha}{r^{2}}x_{i}}}{e^{\frac{i\alpha}{r^{2}}x_{i}} + e^{\frac{i\alpha}{r^{2}}x_{i}}}$ $= -\frac{N}{2\sigma^2} + \frac{1}{2\sigma^2 \sqrt{\alpha}} \sum_{i} x_i \tanh\left(\frac{\sqrt{\alpha}}{\sigma^2} x_i\right)$ Let $\frac{\partial \ln P(\alpha_j \times)}{\partial \alpha} = 0$ $\Rightarrow \alpha^{-\frac{1}{2}} \sum_{i} x_{i} tanh \left(\frac{\sqrt{\alpha}}{\sigma^{2}} x_{i} \right) = N$ $\Rightarrow d = \hat{A}^2 ML$