This work in under 60 seconds

Selling points

- First methodology with theoretical guarantees
- Significantly faster than bootstrap and fully Bayesian approaches
- Easy to implement
- Easily adapted to new statistical tasks

Set up

Uncertainty quantification

Credible balls with suitably blown up radius give coverage

- log(n) in simulations
- $\log(n)^3$ in theory

Conclusion

Empirical Bayesian deep neural networks provide a great way to do uncertainty quantification.

Fast uncertainty quantification in Deep learning

Introduction

We provide the first methodology for uncertainty quantification using deep neural networks and a theoretical study.

Earlier results

- Johannes
- Suzuki
- Judith + Botond

Assumptions

- True function is β -smooth
- Have $k_n = n^{1/(2\beta+d)}$ basis functions
- Have found a good (local) optimizer of the deep neural network
- Sparse deep neural networks¹
- Near orthogonal basis functions²

¹Needed in theory to get best rates

²Needed in theory to get control on radius of credible ball

Simulation studies

Simulations were done using dense neural networks and gradient descent

Regression

Classification

Theoretical guarantees for regression

Denote $\epsilon_n = n^{\frac{-\beta}{2\beta+d}}$ and $\tilde{\epsilon_n} = \epsilon_n \log(n)^3$.

Theorem 0.1. Let β , M > 0. Under some conditions

■ The posterior contracts at near minimax rate:

$$\limsup_{n\to\infty} \sup_{f_0\in W_M^\beta} \mathbb{E}_{f_0}\left(\Pi\left(\|f-f_0\|_2 \geq M_n \tilde{\epsilon}_n | \mathcal{D}_n\right)\right) = 0,$$

for all $M_n \to \infty$.

The credible balls have uniform near optimal coverage: There exists $L_{\epsilon,\alpha}$ such that if $B(c_{\alpha},R_{\alpha})$ is an α -credible ball, the ball $B=B(c_{\alpha},L_{\epsilon,\alpha}\log(n)^3R_{\alpha})$ satisfies

$$\liminf_n \inf_{f_0 \in \mathcal{W}^eta_M([0,1]^d)} \mathbb{P}^{(n)}_{f_0}(f_0 \in B) \geq 1 - \epsilon$$

■ The credible balls have uniform near optimal size:

$$\liminf_n \inf_{f_0 \in W^{eta}_M([0,1]^d)} \mathbb{P}^{(n)}_{f_0}(R_lpha \leq C\epsilon_n) \geq 1-\epsilon$$

for some large enough C > 0.