Log-Free Concurrent Data Structures

Tudor David¹, Aleksandar Dragojević², Rachid Guerraoui³, Igor Zablotchi³ ¹IBM Research Zurich, ²MSR Cambridge, ³EPFL

Introduction

Designing fast data structures for NVRAM: challenging

Stores may not reach NVRAM in program order

Need expensive instructions for ordering & persistence

Previous approaches: transactions & logging

Writes might not

reach NVRAM

immediately

1. Log intention

2. Apply to data structure

3. Log completion

easy to use

high overhead (need to wait for log)

Our objective

© Design durable concurrent data structures that do not perform any logging in the common case.

Our insights

- Description Lock-free algorithms are good candidates: they are always in a consistent (recoverable) state.
- Pointer marking can ensure store atomicity w/o logging
- Batching write-backs can improve throughput
- © Locality in allocation & deallocation can be exploited to reduce or eliminate logging from memory management

Our Techniques

Link-and-Persist

- 1. Prepare new node & persist dependent links
- 2. Link new node & add mark (★)
- 3. Make the new link persistent
- 4. Remove mark

Link Cache

^Q Cache modified data structure links and write them to NVRAM in batches \rightarrow better performance.

NV-Epochs

- Instead of logging each allocation/deallocation, keep track of active pages
- When there is locality, no need to log at all

Results

Log-free vs. log-based (update-only)

Link-and-Persist & Link Cache (update-only)

NV-Epochs (update-only)

Recovery time (ns)

Find out more in our paper & on our website:

T. David, A. Dragojević, R. Guerraoui, I. Zablotchi. Log-Free Concurrent Data Structures. 2018 USENIX Annual Technical Conference. https://lpd.epfl.ch/site/nvram

