## **Bachelorarbeit Surface Caching und Lightmapping**

Markus Pawellek

markuspawellek@gmail.com



Abbildung 1: Die erste Skizze auf der linken Seite zeigt den Verlauf einer Vertex-Normalen-Funktion  $\nu$  anhand eines Beispiels.  $A_{\triangle}$  und  $B_{\triangle}$  sind dabei die Eckpunkte eines Dreiecks  $\triangle$ .  $\mu_A$  und  $\mu_B$  sind die jeweilig gegebenen Vertex-Normalen an den Eckpunkten. Im rechten Bereich der Abbildung ist die durch  $\nu$  approximierte gekrümmte Fläche  $\tilde{S}(\triangle)$ , für die Normalen  $\nu(x)$  äußere Normalen bezeichnet, eingezeichnet.



Abbildung 2: Die Abbildung zeigt eine beispielhafte Menge von Dreiecken  $\left\{ \triangle^{(i)} \mid i \in \mathbb{N}, i \leq 7 \right\}$ . Verschiedene Gruppen von Dreiecken bilden eine Approximation einer Oberfläche im Raum. Dabei werden die Eckpunkte der Dreiecke geteilt und es gilt zum Beispiel  $\triangle^{(1)}_B = \triangle^{(3)}_A$  und  $\triangle^{(1)}_C = \triangle^{(3)}_C$ .



Abbildung 3: Die Abbildung zeigt eine Skizze, welche das Sichtbarkeitsproblem und den Raytracing-Algorithmus verdeutlicht.

Der ausgesendete Strahl trifft in der Szene genau zwei Punkte. Dabei wird der Zweite durch den ersten verdeckt.

Für den ersten Punkt ergibt die Sichtbarkeitsfunktion also 1 und für den Zweiten gerade 0.



Abbildung 4



Abbildung 5



Abbildung 6