Chapter 1

Mostero, Corey

February 14, 2023

Contents

1 Units & Dim 1 2 SI Units $\mathbf{2}$ Unit Conversion $\mathbf{2}$ Notable Derivatives 3 Notable Integrals 3

Units & Dim 1

$$[\cdots] = \text{``Units of''}$$

$$[\text{mass}] = kg$$

$$[\text{length}] = m$$

$$[\text{time}] = s$$

$$(4)$$

Physics 1A has 3 unit systems

Sys	[L]	T	[M]
Mks	m	s	kg
CGS	cm	s	g
US Customary	$\int ft$	s	slug

$$[v] = \frac{\text{length}}{\text{time}}$$

$$[v]_{CGS} = \frac{cm}{s}$$

$$[v]_{MKS} = \frac{m}{s}$$

$$[v]_{US} = \frac{ft}{s}$$
(8)

$$[v]_{CGS} = \frac{cm}{s} \tag{6}$$

$$[v]_{\text{MKS}} = \frac{m}{s} \tag{7}$$

$$[v]_{\rm US} = \frac{ft}{s} \tag{8}$$

$$[F] = [m][a] \tag{9}$$

$$[F] = [m] \frac{[v]}{[T]} \tag{10}$$

$$[F] = [m] \frac{[L]}{[T]^2} \tag{11}$$

$$[F]_{\rm MKS} = kg\frac{m}{s^2} = N \tag{12}$$

$$[F]_{\text{CGS}} = g \frac{cm}{s^2} = \text{dyne}$$
 (13)

$$[F]_{\rm US} = (sl)\frac{ft}{s^2} = lb \tag{14}$$

$$[C] = 1 \tag{15}$$

$$[p] = \frac{kg}{m^3} \tag{16}$$

$$[A] = m^2 \tag{17}$$

$$[v] = \frac{m}{s} \tag{18}$$

2 SI Units

Prefix	Symbol	Power	Amount
giga	G	10^{9}	1,000,000,000
mega	M	10^{6}	1,000,000
kilo	k	10^{3}	1,000
base	_	10^{0}	1
centi	c	$10^{-2} \\ 10^{-3}$	$\frac{1}{100}$
$_{ m milli}$	m	10^{-3}	$\frac{1}{1,000}$
micro	μ	10^{-6}	$\frac{1}{1,000,000}$
nano	n	10^{-9}	$\frac{1}{1,000,000,000}$
pico	p	10^{-12}	-

3 Unit Conversion

Given: $mi = 1609m \ hr = 3600s$

$$\left(\frac{60mi}{1hr}\right)\left(\frac{1609m}{1mi}\right)\left(\frac{1hr}{3600s}\right) = 27^m/s$$

Find 9.8 m/s^2 in mph/s

$$\left(\frac{9.8m}{s^2}\right)\left(\frac{1mi}{1609m}\right)\left(\frac{3,600s}{1hr}\right) = 22^{mph/s}$$

Notable Derivatives

$$\frac{d(x^n)}{dx} = nx^{n-1} \tag{19}$$

$$\frac{d(x^n)}{dx} = nx^{n-1}$$

$$\frac{d(\frac{1}{x^n})}{dx} = \frac{d(x^{-n})}{dx} = -nx^{-n-1}$$
(20)

$$\frac{d(Ae^{kx})}{dx} = Ake^{kx} \tag{21}$$

Notable Integrals **5**

$$\int (x^n)dx = \frac{1}{n+1}x^{n+1} + C \tag{22}$$

$$\int (x^{-n})dx = \frac{1}{-n+1}x^{1-n} + C(n \neq 1)$$
 (23)

$$\int \left(\frac{1}{x}\right) dx = \ln|x| + C \tag{24}$$