# 理论力学实验报告

| 学 | 院 |  |
|---|---|--|
| 班 | 级 |  |
| 学 | 号 |  |
| 姓 | 名 |  |
| 成 | 绩 |  |

合肥工业大学土木与水利工程学院力学实验室

二零二一年 六月

## 实验一 电荷放大器的使用和加速度传感器灵敏度的校准

| 专业                        | 班级             | 同组成员 | 成绩 | 指导教师 |
|---------------------------|----------------|------|----|------|
| 一、实验目的                    |                |      |    |      |
| 二、实验原理                    | <u>1</u>       |      |    |      |
|                           |                |      |    |      |
|                           |                |      |    |      |
|                           |                |      |    |      |
| 三、 <b>实验数据</b><br>1. 标准组件 | <b>居及结果</b>    |      |    |      |
| 电荷放大                      | 、器灵敏度 <b>:</b> |      |    |      |
| 加速度传                      | 感器灵敏度:         |      |    |      |
| 标准传感                      | ·器编号:          |      |    |      |
| 2. 相对校准                   | 实验记录           |      |    |      |
| 工作传感                      | 落编号:           |      |    |      |

#### 表一 相对校准实验记录表

| 信号频率 (Hz) | 标准通道测量加<br>速度值<br>(m/s²) | 工作通道测量加<br>速度值<br>(m/s²) | 工作电荷放大器<br>灵敏度 | 工作传感器计算<br>灵敏度 |
|-----------|--------------------------|--------------------------|----------------|----------------|
| 30        |                          |                          |                |                |
| 50        |                          |                          |                |                |
| 90        |                          |                          |                |                |
| 160       |                          |                          |                |                |

## 3. 工作传感器相对法测量灵敏度验证实验记录

## 表二 工作传感器相对法测量灵敏度验证实验记录

| 信号频率 (Hz) | 标准通道测量加<br>速度值<br>(m/s²) | 工作通道测量加<br>速度值<br>(m/s²) | 工作电荷放大器<br>灵敏度 | 工作传感器<br>灵敏度 |
|-----------|--------------------------|--------------------------|----------------|--------------|
| 30        |                          |                          |                |              |
| 50        |                          |                          |                |              |
| 90        |                          |                          |                |              |
| 160       |                          |                          |                |              |

### 4. 绝对校准实验记录

## 表三 绝对校准实验记录

| 信号频率<br>(Hz) | 被测点<br>振动幅值<br>(mm) | 被测点振动绝<br>对加速度值<br>(m/s²) | 工作通道测量<br>加速度值<br>(m/s²) | 工作电荷放大<br>器灵敏度 | 工作传感器计<br>算灵敏度 |
|--------------|---------------------|---------------------------|--------------------------|----------------|----------------|
| 30           |                     |                           |                          |                |                |
| 50           |                     |                           |                          |                |                |
| 90           |                     |                           |                          |                |                |

5. 工作传感器绝对法测量灵敏度验证实验记录

表四 工作传感器绝对法测量灵敏度验证实验记录

| 信号频率 (Hz) | 标准通道测量加<br>速度值<br>(m/s²) | 工作通道测量加<br>速度值<br>(m/s²) | 工作电荷放大器<br>灵敏度 | 工作传感器<br>灵敏度 |
|-----------|--------------------------|--------------------------|----------------|--------------|
| 30        |                          |                          |                |              |
| 50        |                          |                          |                |              |
| 90        |                          |                          |                |              |

#### 四、实验小结

- 1. 根据实验结果,总结绝对校准法和相对校准法的特点。
- 2. 分析相对校准法中,工作传感器和标准传感器的不同安装方法对实验结果的影响, 并结合运动学知识进行理论分析。
- 3. 实验结果误差分析。

## 实验二 单自由度系统自由振动实验

| 专业         | 班级              | 同组成员      | 成绩 |  |
|------------|-----------------|-----------|----|--|
| < <u>т</u> | <i></i> -Jユ-Jス_ | PISLUA XX |    |  |

一、实验目的

二、实验原理

三、实验数据及结果

## 1. 实验数据与计算结果

| A <sub>i</sub> (mm) | $A_{i+m}$ (mm) | m | $\delta = \frac{1}{m} \ln \frac{A_i}{A_{i+m}}$ | F <sub>d</sub> (Hz) | $n = \delta f_d$ | $\zeta = \frac{\delta}{2\pi}$ |
|---------------------|----------------|---|------------------------------------------------|---------------------|------------------|-------------------------------|
|                     |                |   |                                                |                     |                  |                               |
|                     |                |   |                                                |                     |                  |                               |

2. 判读系统的固有频率  $f_{\mathfrak{M}} =$ \_\_\_\_\_Hz

## 实验三 单自由度系统受迫振动实验

| 专业_         |      | 班级 | 同组成员 | _成绩 | 指导教师 |
|-------------|------|----|------|-----|------|
| —、 <u>3</u> | 实验目的 |    |      |     |      |
|             |      |    |      |     |      |
|             |      |    |      |     |      |
|             |      |    |      |     |      |
|             |      |    |      |     |      |

二、实验原理

### 三、实验数据及结果

1. 加速度幅频响应曲线数据记录表

| 激振频率<br>f/Hz |  |  |  |  |
|--------------|--|--|--|--|
|              |  |  |  |  |
| 响应值(mv)      |  |  |  |  |
|              |  |  |  |  |
| 激振频率<br>f/Hz |  |  |  |  |
|              |  |  |  |  |
| 响应值(mv)      |  |  |  |  |
|              |  |  |  |  |

2. 幅频响应曲线

3. 共振时的振动时域曲线

注: 由受迫振动的幅频响应曲线求阻尼比,可用半功率点法,其公式为





- 4. 判读系统固有频率
- (1) 由幅频响应曲线判读固有频率f=\_\_\_\_\_Hz
- (2)由幅频响应曲线求系统的阻尼比  $\delta$ =\_\_\_\_\_\_

### 四、问题讨论

1. 振动系统固有频率的理论值由下式确定

2. 试将固有频率的理论值与上述各测量结果进行比较,并分析产生误差的原因。

## 实验四 主动隔振和被动隔振

| 专业 | <u> </u> | _班级           | _同组成员_ |                        | 成绩                                           | 指导教师 |  |
|----|----------|---------------|--------|------------------------|----------------------------------------------|------|--|
| 一、 | 实验目的     |               |        |                        |                                              |      |  |
|    |          |               |        |                        |                                              |      |  |
| 二、 | 实验原理     |               |        |                        |                                              |      |  |
|    |          |               |        |                        |                                              |      |  |
|    |          |               |        |                        |                                              |      |  |
| =, | 实验数据。    | 及结果           |        |                        |                                              |      |  |
| _, |          | 的固有频率 $f_n$ = |        | _Hz; f <sub>n被</sub> = | <u>.                                    </u> | Hz   |  |
|    |          |               |        |                        |                                              |      |  |

四、隔振传递率曲线

| 项目<br>类型    | 激振频率 <i>f</i><br>/Hz | 基础振动<br>幅度 A/mv | 仪器振动<br>幅度 <i>B/</i> mv | 频率比 $\frac{f}{f_n}$ | 传递率 $\eta = \frac{B}{A}$ |
|-------------|----------------------|-----------------|-------------------------|---------------------|--------------------------|
| -           |                      |                 |                         |                     |                          |
| 被<br>动      |                      |                 |                         |                     |                          |
| 隔<br>振      |                      |                 |                         |                     |                          |
| 无<br>阻<br>尼 |                      |                 |                         |                     |                          |
| ) <u> </u>  |                      |                 |                         |                     |                          |
|             |                      |                 |                         |                     |                          |
| -           |                      |                 |                         |                     |                          |
| 被动          |                      |                 |                         |                     |                          |
| 隔<br>振      |                      |                 |                         |                     |                          |
| 有<br>阻<br>尼 |                      |                 |                         |                     |                          |
| , =         |                      |                 |                         |                     |                          |
|             |                      |                 |                         |                     |                          |

## 五、讨论隔振设计方法和隔振效果测试方法

## 实验五 悬臂钢尺振动表演实验

| 专业 | 班级 | 同组成员 | 成绩 | 指导教师 |
|----|----|------|----|------|
|    |    |      |    |      |

一、实验目的与要求

二、实验原理

#### 三、实验结果

将实验数据填写在下表,并与理论计算值进行比较

| 数值 | 固有频率 fn            |                             |                                                       | 节点位置 |   |   |   |   |
|----|--------------------|-----------------------------|-------------------------------------------------------|------|---|---|---|---|
| 振型 | 实测值 f <sub>n</sub> | 计算值 <i>f</i> <sub>n</sub> ' | 误差 $\frac{\left f_n - f_n'\right }{f_n} \times 100\%$ | 1    | 2 | 3 | 4 | 5 |
| 一阶 |                    |                             |                                                       |      |   |   |   |   |
| 二阶 |                    |                             |                                                       |      |   |   |   |   |
| 三阶 |                    |                             |                                                       |      |   |   |   |   |

四、实验小结

## 实验六 动力消振表演实验

| 专业 | 班级 | 同组成员 | 成绩 | 指导教师 |
|----|----|------|----|------|
|    |    |      |    |      |

一、实验目的与要求

二、实验装置与原理概述

三、实验小结