Asymptotic Properties of a Probabilistic Tabu Search Algorithm

Siyeong Lee

Dept. of Electronic Engineering
Sogang University

May 30, 2017

Introduction

• Unfortunately, we still know little about the behavior of the method, its asymptotic properties, and probability of finding an optimal solution, even for classical combinatorial problems.

May 30, 2017 2 / 3

Introduction

Strategy

- Memorize the feature of local opt ima → "Tabu list(queue)"
 - prevent repetition of the same state
- Efficient search space exploration
 - search for an optimum solution with out stagnation

Good

This method can be easy adapted to complicated models and is simple to code

Figure 1: Difference between GA and TS

May 30, 2017 3 / 39

Problem setting – Optimization problem

Definition 1. Combinatory Optimization problem

B: the boolean cube

Minimize
$$f_0(x)$$

Subject to
$$f_i(x) \leq b_i$$
, $i = 1, ..., m$

$$f_0: \mathbf{B}^n \to \mathbf{R}$$
; Objective function $x = (x_1, ..., x_n) \in \mathbf{B}^n$: Optimization variables

To find the global optimum $f_{opt} = f(x_{opt})$

May 30, 2017 4 / 39

Representation

- Teminology
 - A neighborhood of the point x: N(x)
 - Assume that it contains all neighboring points $y \in B^n$ with Hamming distance $d(x, y) \le 2$.
 - * At most, differ from 2 bit.
 - A randomized neighborhood $N_p(x)$ with probabilistic threshold p, $0 \le p \le 1$,
 - Subset of N(x)
 - For each $y \in N(x)$, $y \in N_p(x)$ randomly with prob. p
 - Independently from other points.

May 30, 2017 5 / 39

Representation

- Consider a finite sequence $\{x_t\}$, $1 \le t \le k$ with property $x_{t+1} \in N(x_t)$.
- Tabu list (or tabu queue)
 - An ordered set $\varphi = \{(i_k, j_k), (i_{k-1}, j_{k-1}), \dots, (i_{k-l+1}, j_{k-l+1})\}$
 - if vectors x_t and x_{t+1} differ by coordinates (i_t, j_t) .
 - The constant *l* is called the length of the tabu list.
 - 1. i_t and j_t may be equal
 - * the vectors x_t and x_{t+1} are differed by exactly one coordinate.
 - 2. $i_t = j_t = 0 \text{ if } x_{t+1} = x_t$.
- $N_p(x_t, \varphi)$: a set of points $y \in N_p(x_t)$ not forbidden by the tabu list φ .

 $N_p(x_t, \varphi)$ may be empty for nonempty set $N_p(x_t)$.

May 30, 2017 6 / 39

Algorithm PTS

- 1. Initialize $x_0 \in B^n$, $f^* := f(x_0)$, $\varphi := \emptyset$, t := 0.
- 2. While a stopping condition is not fulfilled do
 - 2.1. Generate neighborhood $N_p(x_t, \varphi)$.
 - 2.2. If $N_p(x_t, \varphi) = \emptyset$ then $x_{t+1} := x_t$, else find x_{t+1} such that $f(x_{t+1}) = \min\{f(y), y \in N_p(x_t, \varphi)\}$.
 - 2.3. If $f(x_{t+1}) < f^*$ then $f^* := f(x_{t+1})$.
 - 2.4. Update the tabu list φ and the counter t := t + 1.

$$\varphi = \emptyset$$

May 30, 2017

Search space S

(Current Point)

Algorithm PTS

- 1. Initialize $x_0 \in B^n$, $f^* := f(x_0)$, $\varphi := \emptyset$, t := 0.
- 2. While a stopping condition is not fulfilled do
 - 2.1. Generate neighborhood $N_p(x_t, \varphi)$.
 - 2.2. If $N_p(x_t, \varphi) = \emptyset$ then $x_{t+1} := x_t$, else find x_{t+1} such that $f(x_{t+1}) = \min\{f(y), y \in N_p(x_t, \varphi)\}$.
 - 2.3. If $f(x_{t+1}) < f^*$ then $f^* := f(x_{t+1})$.
 - 2.4. Update the tabu list φ and the counter t := t + 1.

$$\varphi = \emptyset$$

Search space S

(Current Point)

Algorithm PTS

- 1. Initialize $x_0 \in B^n$, $f^* := f(x_0)$, $\varphi := \emptyset$, t := 0.
- 2. While a stopping condition is not fulfilled do
 - 2.1. Generate neighborhood $N_p(x_t, \varphi)$.
 - 2.2. If $N_p(x_t, \varphi) = \emptyset$ then $x_{t+1} := x_t$, else find x_{t+1} such that $f(x_{t+1}) = \min\{f(y), y \in N_p(x_t, \varphi)\}$.
 - 2.3. If $f(x_{t+1}) < f^*$ then $f^* := f(x_{t+1})$.
 - 2.4. Update the tabu list φ and the counter t := t + 1.

$$\varphi = \emptyset$$

Search space S

(Current Point)

Algorithm PTS

- 1. Initialize $x_0 \in B^n$, $f^* := f(x_0)$, $\varphi := \emptyset$, t := 0.
- 2. While a stopping condition is not fulfilled do
 - 2.1. Generate neighborhood $N_p(x_t, \varphi)$.
 - 2.2. If $N_p(x_t, \varphi) = \emptyset$ then $x_{t+1} := x_t$, else find x_{t+1} such that $f(x_{t+1}) = \min\{f(y), y \in N_p(x_t, \varphi)\}$.
 - 2.3. If $f(x_{t+1}) < f^*$ then $f^* := f(x_{t+1})$.
 - 2.4. Update the tabu list φ and the counter t := t + 1.

$$\varphi = \emptyset$$

Search space S

(Current Point)

Algorithm PTS

- 1. Initialize $x_0 \in B^n$, $f^* := f(x_0)$, $\varphi := \emptyset$, t := 0.
- 2. While a stopping condition is not fulfilled do
 - 2.1. Generate neighborhood $N_p(x_t, \varphi)$.
 - 2.2. If $N_p(x_t, \varphi) = \emptyset$ then $x_{t+1} := x_t$, else find x_{t+1} such that $f(x_{t+1}) = \min\{f(y), y \in N_p(x_t, \varphi)\}$.
 - 2.3. If $f(x_{t+1}) < f^*$ then $f^* := f(x_{t+1})$.
 - 2.4. Update the tabu list φ and the counter t := t + 1.

$$\varphi = \{(1,1)\}$$

Search space S

(Current Point)

Algorithm PTS

- 1. Initialize $x_0 \in B^n$, $f^* := f(x_0)$, $\varphi := \emptyset$, t := 0.
- 2. While a stopping condition is not fulfilled do
 - 2.1. Generate neighborhood $N_p(x_t, \varphi)$.
 - 2.2. If $N_p(x_t, \varphi) = \emptyset$ then $x_{t+1} := x_t$, else find x_{t+1} such that $f(x_{t+1}) = \min\{f(y), y \in N_p(x_t, \varphi)\}$.
 - 2.3. If $f(x_{t+1}) < f^*$ then $f^* := f(x_{t+1})$.
 - 2.4. Update the tabu list φ and the counter t := t + 1.

$$\varphi = \{(1,1)\}$$

Search space S

Algorithm PTS

- 1. Initialize $x_0 \in B^n$, $f^* := f(x_0)$, $\varphi := \emptyset$, t := 0.
- 2. While a stopping condition is not fulfilled do
 - 2.1. Generate neighborhood $N_p(x_t, \varphi)$.
 - 2.2. If $N_p(x_t, \varphi) = \emptyset$ then $x_{t+1} := x_t$, else find x_{t+1} such that $f(x_{t+1}) = \min\{f(y), y \in N_p(x_t, \varphi)\}$.
 - 2.3. If $f(x_{t+1}) < f^*$ then $f^* := f(x_{t+1})$.
 - 2.4. Update the tabu list φ and the counter t := t + 1.

$$\varphi = \{(0,0), (1,1)\}$$

Search space S

(Current Point)

Algorithm PTS

- 1. Initialize $x_0 \in B^n$, $f^* := f(x_0)$, $\varphi := \emptyset$, t := 0.
- 2. While a stopping condition is not fulfilled do
 - 2.1. Generate neighborhood $N_p(x_t, \varphi)$.
 - 2.2. If $N_p(x_t, \varphi) = \emptyset$ then $x_{t+1} := x_t$, else find x_{t+1} such that $f(x_{t+1}) = \min\{f(y), y \in N_p(x_t, \varphi)\}$.
 - 2.3. If $f(x_{t+1}) < f^*$ then $f^* := f(x_{t+1})$.
 - 2.4. Update the tabu list φ and the counter t := t + 1.

$$\varphi = \{(0,0), (1,1)\}$$

Search space S

(Current Point)

Algorithm PTS

- 1. Initialize $x_0 \in B^n$, $f^* := f(x_0)$, $\varphi := \emptyset$, t := 0.
- 2. While a stopping condition is not fulfilled do
 - 2.1. Generate neighborhood $N_p(x_t, \varphi)$.
 - 2.2. If $N_p(x_t, \varphi) = \emptyset$ then $x_{t+1} := x_t$, else find x_{t+1} such that $f(x_{t+1}) = \min\{f(y), y \in N_p(x_t, \varphi)\}$.
 - 2.3. If $f(x_{t+1}) < f^*$ then $f^* := f(x_{t+1})$.
 - 2.4. Update the tabu list φ and the counter t := t + 1.

$$\varphi = \{(0,0), (1,1)\}$$

Search space S

(Current Point)

Algorithm PTS

- 1. Initialize $x_0 \in B^n$, $f^* := f(x_0)$, $\varphi := \emptyset$, t := 0.
- 2. While a stopping condition is not fulfilled do
 - 2.1. Generate neighborhood $N_p(x_t, \varphi)$.
 - 2.2. If $N_p(x_t, \varphi) = \emptyset$ then $x_{t+1} := x_t$, else find x_{t+1} such that $f(x_{t+1}) = \min\{f(y), y \in N_p(x_t, \varphi)\}$.
 - 2.3. If $f(x_{t+1}) < f^*$ then $f^* := f(x_{t+1})$.
 - 2.4. Update the tabu list φ and the counter t := t + 1.

$$\varphi = \{(0,0), (1,1)\}$$

Search space S

(Current Point)

Algorithm PTS

- 1. Initialize $x_0 \in B^n$, $f^* := f(x_0)$, $\varphi := \emptyset$, t := 0.
- 2. While a stopping condition is not fulfilled do
 - 2.1. Generate neighborhood $N_p(x_t, \varphi)$.
 - 2.2. If $N_p(x_t, \varphi) = \emptyset$ then $x_{t+1} := x_t$, else find x_{t+1} such that $f(x_{t+1}) = \min\{f(y), y \in N_p(x_t, \varphi)\}$.
 - 2.3. If $f(x_{t+1}) < f^*$ then $f^* := f(x_{t+1})$.
 - 2.4. Update the tabu list φ and the counter t := t + 1.

$$\varphi = \{(1,4), (0,0), (1,1)\}$$

Search space S

(Current Point)

Toy Problem

Representation of Solutions

Search space S

- Neighbor of current solution x
 - $N(x) = \{y \in S \mid \text{hamming distance } d(x, y) \le 2 \}$
 - $N_p(x, \varphi) \subset N(x)$; For each $y \in N(x)$, $y \in N_p(x)$ randomly with prob. p
- Tuba condition
 - If Project j added (removed) in this step,
 will not be removed (added) for the next k steps.

Toy Problem

Preliminary

- Properties of Markov chain
 - finite
 - if the set of outcomes is finite.
 - homogeneous
 - if the transition probabilities do not depend on the step number.
 - e.g. For l=0, PTS algorithm generates a finite homogeneous Markov chain on the Boolean cube B^n .
 - irreducible
 - if for each pair of outcomes x, y, there is a positive probability of reaching y from x in a finite number of steps.

May 30, 2017 20 / 39

Theorem 1.

For arbitrary l>0 and 0< p<1, the PTS algorithm generates an irreducible Markov chain on Ω .

proof. Suppose l = 0

■ Therefore, the selection of x_{t+1} depends on the current point x_t and does not depend on the previous points x_s , s < t

a finite homogeneous Markov chain on the boolean cube B^n

May 30, 2017 21 / 39

- From the definition of $N_p(x)$, it is follows that the Markov chain is irreducible
 - So, we can obtain

$$f^* = \min_{t < k} f(x_t) = f_{opt}$$
 for large k .

irreducible

if for each pair of outcomes x, y, there is a positive probability of reaching y from x in a finite number of steps.

- Without any restrictions for the length of tabu list l?
 - If l > |N(x)|, then all points may be forbidden and $N_p(x, \varphi) = \emptyset$
 - For this case, we get $x_{t+1} = x_t$ on the step 2.2 and $(i_t, j_t) = (0,0)$
- The algorithm regulates the tabu list by itself.

May 30, 2017 22 / 39

- From the definition of $N_p(x)$, it is follows that the Markov chain is irreducible
 - So, we can obtain

is that the Markov chain is irreducible can obtain
$$f^* = \min_{t \le k} f(x_t) - \max_{t \le k} f(x_t) - \min_{t \ge k} f$$

This element of self learning allows us curctions for the length of tabu list *l*?

- |N(x)|, then all points may be forbidden and $N_p(x,\varphi) = \emptyset$
- For this case, we get $x_{t+1} = x_t$ on the step 2.2 and $(i_t, j_t) = (0,0)$
- The algorithm regulates the tabu list by itself.

This element of self learning allows us to prove the theorem and get asymptotic properties of the algorithm

- Denote a randomized neighborhood of x by $N_r(x, \varphi)$ which contains e xactly r > 1 unforbidden points from N(x)
 - The algorithm PTS with $N_r(x,\varphi)$ neighborhood generates a Markov chain
 - But we can not prove the irreducibility for this case

In $r = |N_x - l|$, Deterministic Tabu Search algorithm DTS

- If the *l* is too small algorithm, DTS finds a local optimum and has no opportunity to escape from it
- If not, DTS can not find the optimal solution.

Corollary 2.

For an arbitrary initial point $x_0 \in B^n$

- 1. $\lim_{t\to\infty} \Pr\{f^* = f_{opt}\} = 1$
- 2. there exist constants b > 0 and 1 > c > 0 such that $\Pr\{\min_{\tau \le t} f(x_{\tau}) \ne f_{opt}\} \le bc^t$
- 3. the Markov chain $\{x_t, \varphi_t\}$ has a unique stationary distribution $\pi > 0$.

Proof. The first and the second properties immediately follow from the property of irreducibility. In order to prove the last statement, it suffice to note that the Marko v chain is aperiodic

May 30, 2017 25 / 3

Property 1

- obtains an optimal solution with probability 1 for sufficiently large number of steps.
- Don't say that
 - $\lim_{t\to\infty} \Pr\{x_t \in Xopt\} = 1$, where X_{opt} is the set of all optimal solutions.

Property 2

• guarantees a geometrical rate of convergence with the constant c < 1.

Property 3

- generates an ergodic Markov chain with a positive limiting distribution $\pi(x, \cdot)$
- we can find a global optimum from an arbitrary initial point.

?

Stopping Rules

- Many stopping rules for Markov chains
 - Stopping after a prescribed number of steps
 - Stopping if the best solution f^* so far does not change during a prescribed number of steps

Denote by H(x, y) the expected number of steps to reach y from x. Suppose that at the t-th step, we are at the points x_t

Corollary 3.

For each $x \in B^n$, we have $\pi(x) = \sum_{\varphi} \pi(x, \varphi) = 1/H(x, x)$

The value of $\pi(x)$: the probability to be in the point x on the t for large t

May 30, 2017 27 / 39

Stopping Rules

Obviously, x depends on the parameters p and l of algorithm PTS.

About p

- 1. For large values of the threshold p>0.9, the least value of H is achieved on the large tabulist l=100
- 2. For small p, best results are obtained with small tabu lists l=10,50

About the minima

• The pair p = 0.6, l = 50 seems to be best values of the parameters H

Figure 2: $H(x_{opt}, x_{opt})$ as a function of the threshold p

The best values of the parameters $H(x_{opt}, x_{opt}) \approx 500$

If PTS returns to x very often then the algorithm is stopped and restarted with a new initial point.

- Traveling Salesman Problem
 - Finding a shortest closed tour
 - Visiting each node of a given graph with given edge length exactly once.

Figure 3: Traveling Salesman Problem.

Let
$$G=(X,E,W)$$
 be a complete weight graph,
$$X=(x_1,x_2,...,x_n)\ (n\geq 3)$$

$$E=\{e_{ij}\big|x_i,x_j\in X\}$$

$$W=\{w_{ij}\big|w_{ij}\geq 0\ and\ w_{ii}=0,\qquad for\ all\ i,j\in\{1,2,...,n\}\}$$

May 30, 2017 29 / 39

- Solution Representation
 - represented as a sequence of nodes
 - each node appearing only once and in the order it is visited.

3 5 2 4 7 6 8 1

Figure 4: Solution Representation

- Initial solution
 - Each time find the nearest unvisited node from the current node until all the nodes are visited

Neighborhood

• given solution, any other solution that is obtained by a pair wise exchange of any two nodes in the solution.

Figure 5: example of Neighborhood solution

■ Tabu list

the attribute used is a pair of nodes that have been exchanged recently.

May 30, 2017 31 / 39

- Best Objective Value: 704.73
- Number of Customers Visited: 49
- Sequence of Customers Visited
 - [1, 32, 11, 38, 5, 49, 10, 39, 33, 45, 15, 37, 17, 44, 42, 19, 41, 13, 25, 14, 18, 4, 47, 12, 46, 51, 27, 6, 48, 23, 24, 43, 7, 26, 8, 31, 28, 3, 36, 35, 20, 29, 21, 34, 30, 9, 50, 16, 2, 22, 1]
- CPU Time (s): 39.19

- Initial solution
 - path = [1,2,3,5,6,7,8,12,13,18,28,1]
 - greedy solution

	X	y	prof
0			
1	37	52	0
2	49	49	27
3	52	64	31
4	20	26	26
5	40	30	17
6	21	47	18
7	17	63	32
8	31	62	29
9	52	33	20
10	51	21	18

May 30, 2017 33 / 39

- Current solution
 - path = [1,2,3,8,7,6,5,12,13,18,28,1]
 - Change \rightarrow [3,5 8,12]

	X	y	prof
0			
1	37	52	0
2	49	49	27
3	52	64	31
4	20	26	26
5	40	30	17
6	21	47	18
7	17	63	32
8	31	62	29
9	52	33	20
10	51	21	18

May 30, 2017 34 / 39

- Current solution
 - path = [1,2,3,8,7,6,18,13,12,5,28,1]
 - Change \rightarrow [6,5 18,28]

	x	y	prof
0			
1	37	52	0
2	49	49	27
3	52	64	31
4	20	26	26
5	40	30	17
6	21	47	18
7	17	63	32
8	31	62	29
9	52	33	20
10	51	21	18

May 30, 2017 35 / 39

- Current solution
 - path = [1,2,5,12,13,18,6,7,8,3,28,1]
 - Change \rightarrow [2,3 5,28]

	X	y	prof
0			
1	37	52	0
2	49	49	27
3	52	64	31
4	20	26	26
5	40	30	17
6	21	47	18
7	17	63	32
8	31	62	29
9	52	33	20
10	51	21	18

May 30, 2017 36 / 39

- Current solution
 - path = [1,28,3,2,5,12,13,18,6,7,8,1]
 - Change \rightarrow [1,2 8,3]

	X	y	prof
0			
1	37	52	0
2	49	49	27
3	52	64	31
4	20	26	26
5	40	30	17
6	21	47	18
7	17	63	32
8	31	62	29
9	52	33	20
10	51	21	18

May 30, 2017 37 / 39

- Current solution
 - path = [1,28,3,2,5,12,18,13,6,7,8,1]
 - Change \rightarrow [6,18 13,12]

	X	y	prof
0			
1	37	52	0
2	49	49	27
3	52	64	31
4	20	26	26
5	40	30	17
6	21	47	18
7	17	63	32
8	31	62	29
9	52	33	20
10	51	21	18

May 30, 2017 38 / 39

References

[1] Kochetov, Yuri A., and Eugene N. Goncharov. "BEHAVIOR OF A PROBABILISTIC TABU SEARCH ALGORITHM FOR THE MULTI STAGE UN CAPACITATED FACILITY LOCATION PROBLEM."

[2] Kochetov, Yuri A., and Eugene N. Goncharov. "Probabilistic tabu sear ch algorithm for the multi-stage uncapacitated facility location problem." *Operations research proceedings*. Springer Berlin Heidelberg, 2001.

May 30, 2017 39 / 39