HW 5 - Chaoran Lin

1

a. $P => \neg Q$, $Q => \neg P$

P	Q	$\neg P$	$\neg Q$	$P = > \neg Q$	$Q = > \neg P$
Т	Т	F	F	F	F
Т	F	F	Т	Т	Т
F	Т	Т	F	Т	Т
F	F	Т	Т	Т	Т

Therefore, $P = > \neg Q$ is equivalent to $Q = > \neg P$

b. $P <=> \lnot Q$, $((P \land \lnot Q) \lor (\lnot P \land Q))$

P	Q	$\neg P$	$\neg Q$	$P \wedge \neg Q$	$\neg P \wedge Q$	$P <=> \neg Q$	$((P \wedge \neg Q) \vee (\neg P \wedge Q))$
Т	Т	F	F	F	F	F	F
Т	F	F	Т	Т	F	Т	Т
F	Т	Т	F	F	Т	Т	Т
F	F	Т	Т	F	F	F	F

Therefore, $P <=> \neg Q$ is equivalent to $((P \wedge \neg Q) \vee (\neg P \wedge Q))$

2

a. $(Smoke => Fire) => (\neg Smoke => \neg Fire)$

Smoke	Fire	$\neg Smoke$	$\neg Fire$	Smoke => Fire	$\neg Smoke => \neg Fire$	$(Smoke => Fire) => (\lnot Smoke => \lnot Fire)$
Т	Т	F	F	Т	Т	Т
Т	F	F	Т	F	Т	Т
F	Т	Т	F	Т	F	F
F	F	Т	Т	Т	Т	Т

Since the clause is true in some worlds but not all, it is neither valid nor unsatisfiable.

 $\mathsf{b.}\ (Smoke => Fire) => ((Smoke \lor Heat) => Fire)$

Smoke	Fire	Smoke => Fire	$Smoke \lor Heat$	$((Smoke \lor Heat) => Fire)$	$(Smoke => Fire) => ((Smoke \lor Heat) => Fire)$
Т	Т	Т	Т	Т	Т
Т	F	F	Т	F	Т
F	Т	Т	Т	Т	Т
F	F	Т	F	Т	Т

Since the clause is true in all worlds, it is valid.

 $\textbf{c.} \; ((Smoke \land Heat) => Fire) <=> ((Smoke => Fire) \lor (Heat => Fire))$

Smoke	Heat	Fire	$Smoke \wedge Heat$	$Smoke \land Heat => Fire$	Smoke => Fire	Heat => Fire	$((Smoke => Fire) \lor (Heat => Fire))$	$((Smoke \wedge Heat) => Fire) <=> ((Smoke => Fire)$
Т	Т	Т	Т	Т	Т	Т	Т	Т
Т	Т	F	Т	F	F	F	F	Т
Т	F	Т	F	Т	Т	Т	Т	Т
Т	F	F	F	Т	F	Т	Т	Т
F	Т	Т	F	Т	Т	Т	Т	Т
F	Т	F	F	Т	Т	F	Т	Т
F	F	Т	F	Т	Т	Т	Т	Т
F	F	F	F	Т	Т	Т	Т	Т

hw5.html

Since the clause is true in all worlds, it is valid.

3

If the unicorn is mythical, then it is immortal, but if it is not mythical, then it is a mortal mammal. If the unicorn is either immortal or a mammal, then it is horned. The unicorn is magical if it is horned.

a.

- Y = "the unicorn is mythical"
- I = "the unicorn is immortal"
- M = "the unicorn is mortal"
- A = "the unicorn is a mammal"
- H = "the unicorn is horned"
- G = "the unicorn is magical"

b.

 $(Y=>I) \wedge (\lnot Y=>(M \wedge A)) \wedge ((I \vee A)=>H) \wedge (H=>G)$

 $= (\neg Y \vee I) \wedge (Y \vee (M \wedge A)) \wedge (\neg (I \vee A) \vee H) \wedge (\neg H \vee G)$

 $= (\neg Y \lor I) \land (Y \lor M) \land (Y \lor A) \land (\neg (I \lor A) \lor H) \land (\neg H \lor G)$

 $= (\lnot Y \lor I) \land (Y \lor M) \land (Y \lor A) \land ((\lnot I \land \lnot A) \lor H) \land (\lnot H \lor G)$

 $= (\neg Y \lor I) \land (Y \lor M) \land (Y \lor A) \land (\neg I \lor H) \land (\neg A \lor H) \land (\neg H \lor G)$

C.

ullet Prove that the unicorn is mythical (Y)

	Statement	Reason
1	$\neg Y \vee I$	Given
2	Y ee M	Given
3	Y ee A	Given
4	$ eg I \lor H$	Given
5	eg A ee H	Given
6	$\neg H \vee G$	Given
7	eg Y	Assume opposite of conclusion
8	M	Resolution(2,7)
9	A	Resolution(3,7)
10	H	Resolution(5,9)
11	G	Resolution (6,10)
12	Y ee H	Resolution(3,5)
13	H	Resolution (6,9)

We see that there is a cyclic derivation with steps 10 and 13. After testing the other resolution possibilities, we see that we have exhausted all the possible options and it is impossible to derive a contradiction from assuming $\neg Y$. Thus, we cannot prove that Y must be true, i.e. the unicorn is mythical.

• Prove that the unicorn is magical (*G*)

	Statement	Reason
1	$\neg Y \vee I$	Given
2	$Y \lor A$	Given
3	$ eg I \lor H$	Given
4	$\neg A \vee H$	Given
5	eg H ee G	Given
6	$\neg G$	Assume opposite of conclusion
7	$\neg H$	Resolution(5,6)
8	$\neg A$	Resolution(4,7)
9	$\neg I$	Resolution(3,7)
10	Y	Resolution(2,8)
11	eg Y	Resolution(1,9)
12	FALSE	Contradiction (10,11)

 ${\cal G}$ is false.

Therefore, G must be true, i.e. the unicorn is magical.

ullet Prove that the unicorn is horned (H)

	Statement	Reason
1	eg Y ee I	Given
2	$Y \lor A$	Given
3	$ eg I \lor H$	Given
4	eg A ee H	Given
5	eg H ee G	Given
6	$\neg H$	Assume opposite of conclusion
7	$\neg I$	Resolution(3,6)
8	$\neg A$	Resolution(4,6)
9	$\neg Y$	Resolution(1,7)
10	Y	Resolution(2,8)
11	FALSE	Contradiction(9,10)

H is false.

Therefore, H must be true, i.e. the unicorn is horned.