import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
import seaborn as sns

df=pd.read_csv('/content/Employee.csv')
df.head()

 $\overline{\mathbf{T}}$ \blacksquare Education JoiningYear ${\tt City \ PaymentTier \ Age \ Gender \ EverBenched \ ExperienceInCurrentDomain \ LeaveOrNot}}$ 0 0 Bachelors 2017 Bangalore 3 34 Male No 0 īl. Bachelors 2013 Pune 28 Female No 3 1 2 2014 New Delhi 2 Bachelors 3 38 Female No 0 3 Masters 2016 Bangalore 3 27 Male No 5 2017 24 2 Masters Pune 3 Male Yes

Next steps:

Generate code with df

New interactive sheet

df.tail()

→		Education	JoiningYear	City	PaymentTier	Age	Gender	EverBenched	ExperienceInCurrentDomain	LeaveOrNot	
	4648	Bachelors	2013	Bangalore	3	26	Female	No	4	0	ılı
	4649	Masters	2013	Pune	2	37	Male	No	2	1	
	4650	Masters	2018	New Delhi	3	27	Male	No	5	1	
	4651	Bachelors	2012	Bangalore	3	30	Male	Yes	2	0	
	4652	Bachelors	2015	Bandalore	3	33	Male	Yes	4	0	

df.shape

→ (4653, 9)

df.describe()

→		JoiningYear	PaymentTier	Age	ExperienceInCurrentDomain	LeaveOrNot
	count	4653.000000	4653.000000	4653.000000	4653.000000	4653.000000
	mean	2015.062970	2.698259	29.393295	2.905652	0.343864
	std	1.863377	0.561435	4.826087	1.558240	0.475047
	min	2012.000000	1.000000	22.000000	0.000000	0.000000
	25%	2013.000000	3.000000	26.000000	2.000000	0.000000
	50%	2015.000000	3.000000	28.000000	3.000000	0.000000
	75%	2017.000000	3.000000	32.000000	4.000000	1.000000
	max	2018.000000	3.000000	41.000000	7.000000	1.000000

df.replace(('Bachelors':1, 'Masters':2, 'PHD':3), inplace=True)
df.head()

_	Edu	cation	JoiningYear	City	PaymentTier	Age	Gender	EverBenched	ExperienceInCurrentDomai	in L	.eaveOrNot	\blacksquare
C)	1	2017	Bangalore	3	34	Male	No		0	0	ılı
1	I	1	2013	Pune	1	28	Female	No		3	1	
2	2	1	2014	New Delhi	3	38	Female	No		2	0	
3	3	2	2016	Bangalore	3	27	Male	No		5	1	
4	1	2	2017	Pune	3	24	Male	Yes	_	2	1	

Next steps:

Generate code with df

View recommended plots

New interactive sheet

df.replace(('Bangalore':1, 'Pune':2, 'New Delhi':3), inplace=True)
df.head()

🛬 <ipython-input-7-2c79d39905ab>:1: FutureWarning: Downcasting behavior in `replace` is deprecated and will be removed in a future ver df.replace({'Bangalore':1, 'Pune':2, 'New Delhi':3}, inplace=True) Ħ Education JoiningYear City PaymentTier Age Gender EverBenched ExperienceInCurrentDomain LeaveOrNot Male No ılı Female No Female No Male No Male Yes Next steps: Generate code with df View recommended plots New interactive sheet df.replace({'Male':1, 'Female':2}, inplace=True) df.head() <ipython-input-8-cedbb1bc21a8>:1: FutureWarning: Downcasting behavior in `replace` is deprecated and will be removed in a future ver df.replace({'Male':1, 'Female':2}, inplace=True) П Education JoiningYear City PaymentTier Age Gender EverBenched ExperienceInCurrentDomain LeaveOrNot Nο No Nο No Yes Generate code with df View recommended plots New interactive sheet Next steps: df.replace({'Yes':1, 'No':2 }, inplace=True) df.head() <ipython-input-9-689c9e7f3934>:1: FutureWarning: Downcasting behavior in `replace` is deprecated and will be removed in a future ver $\overline{\Rightarrow}$ df.replace({'Yes':1, 'No':2}, inplace=True) Education JoiningYear City PaymentTier Age Gender EverBenched ExperienceInCurrentDomain LeaveOrNot ıl. View recommended plots New interactive sheet Generate code with df Next steps: df.to csv("/content/Employee-new.csv",index=False) new_df=pd.read_csv("/content/Employee-new.csv") new_df.head() $\overline{2}$ **Education** JoiningYear City PaymentTier Age Gender EverBenched ExperienceInCurrentDomain LeaveOrNot Δ Generate code with new df View recommended plots New interactive sheet Next steps: Step 1: Choosing the Right Number of Clusters Using the Elbow Method

from sklearn.cluster import KMeans
import matplotlib.pyplot as plt

[#] Sample DataFrame (replace `df` with your actual DataFrame)

```
df=pd.read_csv('/content/Employee-new.csv')
# Elbow Method function
def elbow_method(df, max_clusters=10):
    wcss = [] # List to store within-cluster sum of squares
    for i in range(1, max_clusters + 1):
        kmeans = KMeans(n_clusters=i, init='k-means++', random_state=42)
        kmeans.fit(df)
        wcss.append(kmeans.inertia_) # Append WCSS for each k
    # Plotting the Elbow Curve
   plt.figure(figsize=(10, 5))
    plt.plot(range(1, max_clusters + 1), wcss, marker='o')
    plt.title('Elbow Method for Optimal K')
    plt.xlabel('Number of Clusters (k)')
    plt.ylabel('Within-cluster Sum of Squares (WCSS)')
    plt.show()
# Call the elbow method function to find the optimal number of clusters
elbow_method(df)
```


Step 2: Apply K-means Clustering

```
from sklearn.cluster import KMeans

# Define the optimal number of clusters based on the Elbow Method plot
optimal_clusters = 4  # Replace this with the number you choose from the elbow plot
kmeans = KMeans(n_clusters=optimal_clusters, init='k-means++', random_state=42)
kmeans_labels = kmeans.fit_predict(df)

# kmeans_labels contains the cluster labels for each data point
```

Step 3: Apply K-medoids Clustering

!pip install scikit-learn-extra

from sklearn_extra.cluster import KMedoids

```
# Apply K-medoids Clustering with the chosen number of clusters
kmedoids = KMedoids(n_clusters=optimal_clusters, random_state=42)
kmedoids_labels = kmedoids.fit_predict(df)
```

kmedoids_labels contains the cluster labels for each data point

```
/usr/local/lib/python3.10/dist-packages/sklearn_extra/cluster/_k_medoids.py:329: UserWarning: Cluster 1 is empty! self.labels_[self warnings.warn(
/usr/local/lib/python3.10/dist-packages/sklearn_extra/cluster/_k_medoids.py:329: UserWarning: Cluster 2 is empty! self.labels_[self warnings.warn(
/usr/local/lib/python3.10/dist-packages/sklearn_extra/cluster/_k_medoids.py:329: UserWarning: Cluster 3 is empty! self.labels_[self warnings.warn(
```

Step 4: Visualizing the Clusters for Both K-means and K-medoids

```
import matplotlib.pyplot as plt
# Plotting K-means Clusters
plt.figure(figsize=(12, 5))
plt.subplot(1, 2, 1)
plt.scatter(df.iloc[:, 0], df.iloc[:, 1], c=kmeans_labels, cmap='viridis')
plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1], s=300, c='red', marker='X', label='Centroids')
plt.title('K-means Clustering')
plt.xlabel('Feature 1')
plt.ylabel('Feature 2')
plt.legend()
# Plotting K-medoids Clusters
plt.subplot(1, 2, 2)
plt.scatter(df.iloc[:, 0], df.iloc[:, 1], c=kmedoids_labels, cmap='viridis')
plt.scatter(df.iloc[kmedoids.medoid_indices_, 0], df.iloc[kmedoids.medoid_indices_, 1], s=300, c='blue', marker='X', label='Medoids')
plt.title('K-medoids Clustering')
plt.xlabel('Feature 1')
plt.ylabel('Feature 2')
plt.legend()
plt.show()
```

