Thévenin's theorem

Oriol Gomis & Eduardo Prieto

CITCEA-UPC

oriol.gomis@upc.edu // eduardo.prieto-araujo@upc.edu

d'Enginveria Industrial de Barcelona

Escola Tècnica Superior

Thévenin's Theorem

Basics

- Thévenin's theorem is one of the most important theorems of electric circuits
- The theorem was independently derived in 1853 by Hermann von Helmholtz and in 1883 by Léon Charles Thévenin
- Any linear electrical network with voltage and current sources and impedances can be reduced to a two-terminal circuit consisting of a single voltage source in series with a single impedance
- Thévenin's theorem allows to reduce complicated circuits to a single voltage source \underline{U}_{th} and a single impedance \underline{Z}_{th}

Thévenin's Theorem

Procedure to obtain a circuit Thévenin equivalent

- Remove the load from the circuit and label the two terminals (A-B) 1.
- Determine the open circuit voltage between the terminals A-B. The resulting open 2. circuit voltage will be the value of the Thévenin voltage, $\underline{U}_{\rm th}$
- **Determine the Thévenin equivalent impedance** \underline{Z}_{th} by calculating the impedance 3. "seen" between terminals A-B. Two different methods:
 - Direct calculation of the impedance (no dependent sources and magnetic 1. couplings in the circuit) using series-parallel association imposing:
 - Voltage sources are set to zero by replacing them with short circuits
 - Current sources are set to zero by replacing them with open circuits
 - Short circuit current method 2.
 - Short circuit terminals A-B, measure the short circuit current and calculate the Thévenin equivalent impedance \underline{Z}_{th} using the Thévenin voltage \underline{U}_{th}
- **Draw and solve the equivalent circuit** using the calculated Thévenin voltage (Step 2) 4. and the Thévenin impedance (Step 3), connecting the load

d'Enginyeria Industrial de Barcelona

Escola Tècnica Superior

Thévenin's Theorem

Application example 1 – DC circuit

- The same procedure is applied considering that impedances are resistances
- Objectives:
 - Obtain the Thévenin equivalent seen from the load $R_{\rm L}$
 - Solve the circuit (obtain the current $I_{\rm L}$)

Procedure to obtain a circuit Thévenin equivalent (Example in DC current)

Remove the load from the circuit and label the two resulting terminals 1.

Escola Tècnica Superior

d'Enginveria Industrial de Barcelona

Thévenin's Theorem

Procedure to obtain a circuit Thévenin equivalent (Example in DC current)

Determine the open circuit voltage between the A-B terminals. The resulting open circuit voltage will be the value of the Thévenin voltage, $U_{\rm th}$.

Circuit equations:

$$I_1 = I_2 + I_L = I$$

 $U - U_{AB} = R I$
 $U_{th} = U_{AB} = U - R I = 24 - 1 \cdot 1 = 23 V$

Thévenin's Theorem

Procedure to obtain a circuit Thévenin equivalent (Example in DC current)

- **3**. **Determine the Thévenin equivalent resistance** R_{th} by calculating the resistance "seen" between terminals A-B **'Direct calculation method'** is used for this example (simple DC circuit)
 - Set the voltage and current sources to zero

Calculate the equivalent 'seen' from A-B

Wind Power

Thévenin's Theorem

Procedure to obtain a circuit Thévenin equivalent (Example in DC current)

Draw the equivalent circuit using the calculated Thévenin voltage (Step 2) and the Thévenin resistance (Step 3), connecting again the load

Then, the circuit can be solved

$$U_{\rm th} = (R_{\rm th} + R_{\rm L}) I_{\rm L}$$
 \longrightarrow $I_{\rm L} = \frac{U_{\rm th}}{R_{\rm th} + R_{\rm L}}$ \longrightarrow $I_{\rm L} = \frac{23}{1 + 16} = 1,35 \,\text{A}$

The positive sign of the current means that it is following in the same direction as we have assumed

d'Enginyeria Industrial de Barcelona UNIVERSITAT POLITÈCNICA DE CATALUNYA

Thévenin's Theorem

Understanding the results

The original circuit is:

And its Thévenin equivalent circuit:

$$U_{\rm th} = 23 \, \rm V$$

$$R_{\rm th} = 1 \Omega$$

In both circuits the same voltage is applied to the load and therefore the current is identical

UNIVERSITAT POLITÈCNICA DE CATALUNYA

Wind Power

Oriol Gomis / Eduardo Prieto

Thévenin's Theorem

Application example 2 – AC circuit

- Objective: obtain the Thévenin equivalent seen from the load Z_L and solve the circuit
- Circuit data:
 - Voltage: 230 V
 - Frequency: 50 Hz
 - Load: $\underline{Z}_L = 50 + j2 \Omega$ $\underline{Z} = 2 + j2 \Omega$
- $X_{\rm L} = 0.5 \, \Omega$
- $X_{\rm C} = 200 \, \Omega$

Procedure to obtain a circuit Thévenin equivalent (Example in AC current)

Remove the load from the circuit and label the two resulting terminals

d'Enginyeria Industrial de Barcelona

Escola Tècnica Superior

Wind Power

Oriol Gomis / Eduardo Prieto

Thévenin's Theorem

Procedure to obtain a circuit Thévenin equivalent (Example in AC current)

Determine the open circuit voltage between the A-B terminals. The resulting open circuit voltage will be the value of the Thévenin voltage, $\underline{U}_{\rm th}$.

 $U_{\rm th} = 232,90 \, \rm V$

Circuit equations:

$$\underline{I}_{1} = \underline{I}_{2} + \underline{I}_{L} = \underline{I}$$

$$\underline{U} = \underline{I} (jX_{L} + \underline{Z} - jX_{C})$$

$$\underline{U}_{AB} = -jX_{C} \underline{I}$$

$$\underline{U} = U$$

$$\underline{I}_{1} = \underline{I}_{2} + \underline{I}_{L} = \underline{I}$$

$$\underline{I} = \frac{\underline{U}}{jX_{L} + \underline{Z} - jX_{C}} = \frac{230}{j0.5 + (2 + j2) - j200} = 0.012 + j1.16 \text{ A}$$

$$\underline{U}_{AB} = -jX_{C} \underline{I}$$

$$\underline{U}_{th} = \underline{U}_{AB} = -jX_{C} \underline{I} = 232.89 - j2.35 \text{ V}$$

d'Enginyeria Industrial de Barcelona

Escola Tècnica Superior

Thévenin's Theorem

Procedure to obtain a circuit Thévenin equivalent (Example in AC current)

3. **Determine the Thévenin equivalent impedance** Z_{th} by calculating the impedance "seen" between terminals A-B. First, the 'Direct calculation method' is used.

Set the voltage source to zero

Calculate the equivalent 'seen' from A-B

Wind Power

Oriol Gomis / Eduardo Prieto

Thévenin's Theorem

Procedure to obtain a circuit Thévenin equivalent (Example in AC current)

3. Based on the 'Direct calculation method', the impedance can be calculated using the following data:

$$\underline{Z} = 2 + j2 \Omega$$

$$X_{L} = 0.5 \Omega$$

$$X_{C} = 200 \Omega$$

$$X_{C} = 200 \Omega$$

$$X_{C} = 200 \Omega$$

$$X_{C} = 200 \Omega$$

$$\underline{Z}_{\text{th}} = \frac{1}{\frac{1}{jX_{\text{L}} + \underline{Z}} + \frac{1}{-jX_{\text{C}}}} = \frac{1}{\frac{1}{j0,5 + (2 + j2)} + \frac{1}{-j200}} = 2,05 + j2,51 \,\Omega$$

This method is limited to simple circuits that can be reduced by series-parallel associations. It is not applicable if magnetic couplings are present in the circuit. 12 d'Enginveria Industrial de Barcelona

Escola Tècnica Superior

Wind Power

Oriol Gomis / Eduardo Prieto

Thévenin's Theorem

Procedure to obtain a circuit Thévenin equivalent (Example in AC current)

- An alternative method to find the Thévenin impedance is the 'Short-circuit current method' which does not have limitations as the 'Direct impedance method'. It can be applied as follows
 - Create a short circuit between A and B in the initial circuit

And calculate the short circuit current

$$\underline{U} = (jX_{L} + \underline{Z}) \underline{I}_{SC}$$

$$\underline{U} = U$$

$$\underline{\underline{U}} = (jX_{L} + \underline{Z})\underline{I}_{SC}$$

$$\underline{\underline{U}} = U$$

$$\underline{\underline{I}_{SC}} = \frac{\underline{U}}{(jX_{L} + \underline{Z})} = \frac{230}{(j0.5 + 2 + j2)} = 44.88 - j56.10 \text{ A}$$
short circuit

through this branch will be 0 due to the

Oriol Gomis / Eduardo Prieto

Thévenin's Theorem

Procedure to obtain a circuit Thévenin equivalent (Example in AC current)

3. Similarly, applying a short-circuit to the Thévenin equivalent

The Thévenin impedance can be expressed as

$$\underline{U}_{\text{th}} = \underline{Z}_{\text{th}} \, \underline{I}_{\text{SC}} \longrightarrow \underline{Z}_{\text{th}} = \frac{\underline{U}_{\text{th}}}{I_{\text{SC}}}$$

Then, based on the obtained Thévenin voltage and short circuit current, the Thévenin impedance is:

$$\underline{Z}_{\text{th}} = \frac{\underline{U}_{\text{th}}}{I_{\text{SC}}} = \frac{232,89 - j2,35}{44.88 - j56.09} = 2,05 + j2,51 \,\Omega$$

- Impedance comparison between methods
 - Direct method: $\underline{Z}_{\rm th} = 2.05 + j2.51 \,\Omega$
 - Short circuit method: $\underline{Z}_{\rm th} = 2.05 + j2.51~\Omega$

Wind Power

Oriol Gomis / Eduardo Prieto

Thévenin's Theorem

Procedure to obtain a circuit Thévenin equivalent (Example in AC current)

4. **Draw the equivalent circuit** using the calculated Thévenin voltage (step 2) and the Thévenin impedance (Step 3), connecting again the load.

Then, the circuit can be solved

$$\underline{U}_{\text{th}} = (\underline{Z}_{\text{th}} + \underline{Z}_{\text{L}}) \underline{I}_{\text{L}} \longrightarrow \underline{I}_{\text{L}} = \frac{\underline{U}_{\text{th}}}{(Z_{\text{th}} + Z_{\text{L}})} = 4,44 - j0,43 \text{ A}$$

Then, the current flowing through the circuit is

$$I_{\rm L} = 4,46 \, {\rm A}$$

d'Enginyeria Industrial de Barcelona

Wind Power

Oriol Gomis / Eduardo Prieto

Thévenin's Theorem

Understanding the results

The original circuit is:

And its Thévenin equivalent circuit:

$$\underline{U}_{\text{th}} = 232,89 - j2,35 \text{ V}$$

 $\underline{Z}_{\text{th}} = 2,05 + j2,51 \Omega$

In both circuits the same voltage is applied to the load and therefore the current is identical. 16

Oriol Gc

UNIVERSITAT POLITÈCNICA DE CATALUNYA

Grid Thévenin equivalent

Short circuit power

- The Short circuit power $S_{\rm SC}$ is the product between the current in the short circuit at a point of a system, and a conventional voltage, generally the operating voltage.
- The grid operating voltage $U_{\rm g}$ in a system is the value of the voltage under **normal conditions**, at a given instant and a given point of the system (this value may be expected, estimated or measured)
- Then, the grid Thévenin equivalent can be calculated as

$$U_{\rm th} = U_{\rm g}$$
 $Z_{\rm th} = \frac{U_{\rm g}^2}{S_{\rm SC}}$

The ratio between R and X of the grid impedance Z_{th} depends on the type of grid *IEC (International Electrotechnical Commission) (transmission or distribution)

d'Enginyeria Industrial de Barcelona

Escola Tècnica Superior

Relevant Thévenin application case

Thévenin circuit equivalent connected to a load

The problem to be solved is:

- It is a simple 'Power flow analysis' case, considering only two nodes.
- Two different cases can be differentiated based on the known data
 - It is assumed that the Grid Thévenin is known (\underline{U}_{th} and \underline{Z}_{th})
 - Case 1: P and Q known Find voltage U_2
 - Case 2: P and U_2 known Find reactive power Q

Relevant Thévenin application case

Case 1: P and Q known, U_2 unknown

The problem to be solved is:

The circuit equations are:

Equation 1:
$$\underline{U}_{th} = \underline{Z}_{th} \underline{I}_{L} + \underline{U}_{2} = (R_{th} + jX_{th}) \underline{I}_{L} + \underline{U}_{2}$$

Equation 2:
$$\underline{S} = \underline{U}_2 \, \underline{I}_L^* = P + jQ$$
 \longrightarrow $\underline{I}_L^* = \frac{\underline{S}}{\underline{U}_2}$ \longrightarrow $\underline{I}_L = \frac{\underline{S}^*}{\underline{U}_2^*}$

Substituting the expression of the current $I_{\rm L}$ in equation 1

$$\underline{U}_{\rm th} = (R_{\rm th} + jX_{\rm th}) \frac{\underline{S}^*}{\underline{U}_2^*} + \underline{U}_2 \xrightarrow{\times \underline{U}_2^*} \underline{U}_{\rm th} \ \underline{U}_2^* = (R_{\rm th} + jX_{\rm th}) \underline{S}^* + \underline{\underline{U}_2} \underline{\underline{U}_2^*}$$

Relevant Thévenin application case

Case 1: P and Q known, U_2 unknown

Then:

$$\underline{U}_{\text{th}} \ \underline{U}_{2}^{*} = (R_{\text{th}} + jX_{\text{th}})\underline{S}^{*} + U_{2}^{2}$$

$$U_{\text{th}} U_2^* = (R_{\text{th}} + jX_{\text{th}})(P - jQ) + U_2^2$$

Operating the previous equation:

$$\underline{U}_{\text{th}} \ \underline{U}_{2}^{*} = R_{\text{th}}P - jR_{\text{th}}Q + jX_{\text{th}}P - j^{2}X_{\text{th}}Q + U_{2}^{2}$$

$$\underline{U}_{\text{th}} \ \underline{U}_{2}^{*} = R_{\text{th}}P + X_{\text{th}}Q + U_{2}^{2} + j \frac{(X_{\text{th}}P - R_{\text{th}}Q)}{(X_{\text{th}}P - R_{\text{th}}Q)}$$

Then, calculating the square of the absolute value of the previous expression

$$U_{\text{th}}^2 \ U_2^2 = (R_{\text{th}}P + X_{\text{th}}Q + U_2^2)^2 + (X_{\text{th}}P - R_{\text{th}}Q)^2$$
 Real part

 $U_{\text{th}}^{2} U_{2}^{2} = R_{\text{th}}^{2} P^{2} + X_{\text{th}}^{2} Q^{2} + U_{2}^{4} + 2R_{\text{th}} P X_{\text{th}} Q + 2R_{\text{th}} P U_{2}^{2} + 2X_{\text{th}} Q U_{2}^{2} + X_{\text{th}}^{2} Q^{2} - 2R_{\text{th}} P X_{\text{th}} Q + 2R_{\text{th}} Q + 2R_{\text{th}} P X_{\text{th}} Q + 2R_{\text{th}} Q + 2R_{\text{th}} Q + 2R_{\text{th}$

Real part

Imaginary part

Imaginary part

Escola Tècnica Superior

Relevant Thévenin application case

Case 1: P and Q known, U_2 unknown

Reordering the previous expression

$$U_2^4 - U_{\text{th}}^2 U_2^2 + \frac{R_{\text{th}}^2 P^2}{R_{\text{th}}^2 P^2} + \frac{X_{\text{th}}^2 Q^2}{R_{\text{th}}^2 Q^2} + 2R_{\text{th}} P U_2^2 + 2X_{\text{th}} Q U_2^2 + \frac{X_{\text{th}}^2 P^2}{R_{\text{th}}^2 Q^2} + \frac{R_{\text{th}}^2 Q^2}{R_{\text{th}}^2 Q^2} = 0$$

Knowing that:

$$\frac{R_{\rm th}^2 P^2 + X_{\rm th}^2 Q^2}{R_{\rm th}^2 Q^2} + X_{\rm th}^2 P^2 + \frac{R_{\rm th}^2 Q^2}{R_{\rm th}^2 Q^2} = (R_{\rm th}^2 + X_{\rm th}^2)(P^2 + Q^2) = Z_{\rm th}^2 S^2$$

The expression can be simplified as

$$U_2^4 - U_{\text{th}}^2 U_2^2 + 2R_{\text{th}}P U_2^2 + 2X_{\text{th}}Q U_2^2 + Z_{th}^2S^2 = 0$$

• Simplifying (U_2^2 common factor):

$$U_2^4 - U_2^2(U_{\text{th}}^2 - 2(R_{\text{th}}P + X_{\text{th}}Q)) + Z_{\text{th}}^2S^2 = 0$$

Provided that

$$R_{\rm th}P + X_{\rm th}Q$$

$$\operatorname{Re}\left(\underline{Z_{\operatorname{th}}}\,\underline{S}^{*}\right) = \operatorname{Re}\left(\left(R_{\operatorname{th}} + jX_{\operatorname{th}}\right)\left(P - jQ\right)\right) = \operatorname{Re}\left(R_{\operatorname{th}}P - j^{2}X_{\operatorname{th}}Q - jR_{\operatorname{th}}Q + jX_{\operatorname{th}}P\right)$$

Then, the final expression to obtain the load voltage U_2 is:

$$U_2^4 - U_2^2 \left(U_{\text{th}}^2 - 2 \operatorname{Re} \left(\underline{Z}_{\text{th}} \underline{S}^* \right) \right) + Z_{\text{th}}^2 S^2 = 0$$

d'Enginveria Industrial de Barcelona

Escola Tècnica Superior

Wind Power

Oriol Gomis / Eduardo Prieto

Relevant Thévenin application case

Case 1: P and Q known, U_2 unknown

Then, the equation must be solved

$$U_2^4 - U_2^2(U_{\text{th}}^2 - 2 \text{ Re}(\underline{Z}_{\text{th}} \underline{S}^*)) + Z_{\text{th}}^2 S^2 = 0$$

- As an example:
 - Voltage: $U_{\rm th} = 230 \, \rm V$
 - Frequency: 50 Hz
 - Impedance: \underline{Z}_{th} = 0,5 + j1,2 Ω
- Load:

•
$$P = 1 \text{ kW}$$

•
$$\cos \varphi = 0.9$$

ad:

$$P = 1 \text{ kW}$$
 • $S = \frac{P}{\cos \varphi}$

- The numeric solutions of the biguadratic equation are $\pm 225,16$ V and $\pm 6,42$ V
- Considering the positive values: 225,16 V and 6,42 V
- Finally, the adequate solution should be selected, considering the system operational voltage and its constraints. The most suitable solution is $U_2=225,16\,\mathrm{V}$ as the voltage magnitude is close to the grid 230 V value

Escola Tècnica Superior

Relevant Thévenin application case

Case 1: P and Q known, U_2 unknown

In order to confirm this selection, the current flowing through the circuit can be obtained (taking U_2 as reference)

$$\underline{S} = U_2 \, \underline{I}_{L}^* = P + jQ \longrightarrow \underline{I}_{L} = \frac{\underline{S}^*}{U_2}$$

- For $U_2 = 225,16 \text{ V} \rightarrow I_L = 4,93 \text{ A (logical current)}$
- For $U_2 = 6.42 \text{ V} \rightarrow I_1 = 173.20 \text{ A}$ (high current)
- Also, the equivalent impedance of the load can be obtained:

$$\underline{S} = U_2 \underline{I}_L^*
\underline{U}_2 = \underline{Z}_L \underline{I}_L$$

$$\underline{Z}_L = \underline{U}_2^2
\underline{S}^* \qquad \underline{Z}_L = 41,06 + j19,89 \Omega$$

Wind Power

Relevant Thévenin application case

Understanding the results

The obtained results can be depicted as

Escola Tècnica Superior

Wind Power

Relevant Thévenin application cases

Case 2: P and U_2 known, Q unknown

The problem to be solved is:

Recalling the obtained expression:

$$U_2^4 - U_2^2 \left(U_{\text{th}}^2 - 2 \operatorname{Re} \left(\underline{Z}_{\text{th}} \underline{S}^* \right) \right) + Z_{\text{th}}^2 \underline{S}^2 = 0$$

Expanding terms

$$U_2^4 - U_{\text{th}}^2 U_2^2 + 2R_{\text{th}}P U_2^2 + 2X_{\text{th}}Q U_2^2 + Z_{th}^2 (P^2 + Q^2) = 0$$

$$U_2^4 - U_{\text{th}}^2 U_2^2 + 2R_{\text{th}}P U_2^2 + 2X_{\text{th}} Q U_2^2 + Z_{\text{th}}^2 P^2 + Z_{\text{th}}^2 Q^2 = 0$$

Then, the reactive power can be obtained:

$$Q^{2} Z_{\text{th}}^{2} + 2X_{\text{th}} U_{2}^{2} Q + (U_{2}^{4} - U_{\text{th}}^{2} U_{2}^{2} + 2R_{\text{th}} P U_{2}^{2} + Z_{\text{th}}^{2} P^{2}) = 0$$