CHAPITRE II Introduction et Propriétés de la Programmation Linéaire

Programmation linéaire

Définition (Programme linéaire). Modèle mathématique dans lequel la fonction objectif et les contraintes sont linéaires en les variables.

Applications

Optimisation de l'usage de ressources limitées dans les domaines militaire, industriel, agricole, économique, ...

Existence d'algorithmes très efficaces pour résoudre des problèmes de très grande taille (simplex)

Un programme linéaire générique s'écrit sous la forme

ou, sous une forme plus compacte,

$$\max_{x} \sum_{j=1}^{n} c_{j} x_{j}$$

$$\sum_{j=1}^{n} a_{ij} x_{j} \leq b_{i}, \quad i = 1, \dots, m.$$

La ligne

$$\sum_{j=1}^{n} c_j x_j$$

représente la fonction objectif, que nous souhaitons maximiser. La maximisation se fait en respectant les m contraintes

$$\sum_{j=1}^{n} a_{ij} x_j \le b_i, \quad i = 1, \dots, m.$$

Sous forme matricielle, le problème se réecrit

$$\max_{x} c^{T} x$$
$$Ax \le b,$$

avec

$$x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}, \quad c = \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix}, \quad b = \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix}$$
$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}.$$

La terminologie "linéaire" vient du fait que toutes les fonctions impliquées sont linéaires. Typiquement, nous ajouterons également des contraintes de non-négativités:

$$x_i \ge 0, \ i = 1, \dots, n,$$

ou, en abrégé,

$$x \geq 0$$
.

Exemples de modèles linéaires

Exemple (Production de peinture). Une société produit de la peinture d'intérieur et d'extérieur à partir de deux produits de base M1 et M2.

Données

	Quantité utilisée par tonne		Quantité disponible par jour
	Extérieure	Intérieure	
M1	6	4	24
M2	1	2	6
Profit par tonne	5	4	

Contraintes supplémentaires

- Demande maximum en peinture d'intérieur : 2 tonnes / jour.
- La production en peinture d'intérieur ne dépasser que d'une tonne celle d'extérieur.

Exemples de modèles linéaires

Formulation (Production de peinture)

Alternatives (variables, inconnues du problème)

- x_1 = tonnes de peinture d'extérieur produites par jour
- x_2 = tonnes de peinture d'intérieur produites par jour

Fonction objectif à optimiser

$$\max z = 5x_1 + 4x_2$$

Restrictions (contraintes)

$$6x_{1} + 4x_{2} \leq 24$$

$$x_{1} + 2x_{2} \leq 6$$

$$x_{2} \leq 2$$

$$x_{2} - x_{1} \leq 1$$

$$x_{1}, x_{2} \geq 0$$

Exemples de modèles linéaires

Solutions et méthodes de résolution

Solution admissible: satisfait toutes les contraintes.

$$x_1 = 3, x_2 = 1 \ (\Rightarrow z = 19)$$

- Nous voulons trouver la solution (admissible) optimale.
- Infinité de solutions admissibles!

Méthodes pour trouver l'optimum

- Méthode graphique
- Simplexe

Forme standard

Définition (Forme standard). Un programme linéaire est sous forme standard lorsque toutes ses contraintes sont des égalités et toutes ses variables sont non-négatives.

Représentation matricielle

$$\max c^T x$$

$$Ax = b$$

$$x \ge 0$$

n variables, m contraintes, $m < n, c, x \in \mathbb{R}^n, b \in \mathbb{R}^m, A \in \mathbb{R}^{m \times n}$.

Forme canonique

Définition (Forme canonique). Un programme linéaire est sous forme canonique lorsque toutes ses contraintes sont des inégalités et toutes ses variables sont non-négatives.

Représentation matricielle

$$\max \quad c^T x$$

$$Ax \le b$$

$$x \ge 0$$

n variables, *m* contraintes, $c, x \in \mathbb{R}^n$, $b \in \mathbb{R}^m$, $A \in \mathbb{R}^{m \times n}$.

Théorème (Equivalence des formes standard et canonique). Tout programme linéaire peut s'écrire sous forme standard et sous forme canonique.

Démonstration.

- Une containte d'inégalité $a^Tx \le b$ peut être transformée en égalité par l'introduction d'une variable d'écart :

$$a^T x + s = b,$$

$$s \ge 0.$$

Forme standard du problème de production de peinture

$$\begin{array}{rcl} \max z = 5x_1 + 4x_2 & \leq & 24 \\ s.c.6x_1 + 4x_2 & \leq & 24 \\ x_1 + 2x_2 & \leq & 6 \\ x_2 & \leq & 2 \\ x_2 - x_1 & \leq & 1 \\ x_1, x_2 & \geq & 0 \end{array}$$

Forme standard

$$\begin{array}{lllll} \max z = & 5x_1 \ +4x_2 \\ \text{s.c.} & 6x_1 \ +4x_2 \ +s_1 & = 24 \\ & x_1 \ +2x_2 & +s_2 & = 6 \\ & x_2 & +s_3 & = 2 \\ & -x_1 \ +x_2 & +s_4 = 1 \\ & x_1, \ x_2, \ s_1, \ s_2, \ s_3, \ s_4 \ \geq 0 \end{array}$$

Forme matricielle

$$\max c^T x$$
s.t. $Ax = b$

$$c = \begin{pmatrix} 5 \\ 4 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, x = \begin{pmatrix} x_1 \\ x_2 \\ s_1 \\ s_2 \\ s_3 \\ s_4 \end{pmatrix},$$

$$A = \begin{pmatrix} 6 & 4 & 1 & 0 & 0 & 0 \\ 1 & 2 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ -1 & 1 & 0 & 0 & 0 & 1 \end{pmatrix}, b = \begin{pmatrix} 24 \\ 6 \\ 2 \\ 1 \end{pmatrix}$$