Appello di Settembre

Fisica Nucleare e Subnucleare I

5 Settembre 2022

Esercizio 1

1. Volete produrre pioni carichi π^+ facendo interagire fasci di protoni, in una interazione del tipo

$$p + p \rightarrow \pi^+ + \text{qualcosa.}$$

Scrivete una delle possibili reazioni che prevedono la produzione di almeno un π^+ , spiegando attraverso quale interazione avviene e specificando quali leggi di conservazione sono rispettate.

- 2. Siete riusciti a produrre un fascio di 5×10^{11} pioni carichi π^+ ogni secondo, con un impulso di $5 \,\mathrm{GeV}$. Calcolate l'intensità media in ampere del fascio quando il fascio ha raggiunto la fine di un tunnel di $200 \,\mathrm{m}$ al cui interno è stato fatto il vuoto, ricordando che il pione non è una particella stabile.
- 3. Supponete ora che il tunnel sia invece riempito di elio allo stato gassoso monoatomico (${}_{2}^{4}$ He, densità $0.1785 \,\mathrm{kg/m^3}$). Se la sezione d'urto di interazione fra π^+ ed atomi di elio è di 1.3 mb, calcolare la riduzione dell'intensità del fascio dovuta all'interazione pione-elio (trascurando in questo caso l'effetto del decadimento del pione).

Soluzione dell'esercizio 1

• Una reazione possibile è

$$p + p \to \pi^+ + \pi^- + p + p$$
,

che avviene per interazione forte (tutti i numeri quantici sono conservati, e coinvolge solo particelle adroniche).

• L'intensità di corrente del fascio prima del tunnel è di

$$I_0 = 5 \times 10^{11} e/s = 80 \,\text{nA}.$$

La vita media del pione è di $\tau=26\,\mathrm{ns},$ che corrisponde a una lunghezza media viaggiata prima di decadere di

$$L_0 = \beta \gamma c \tau = \frac{p}{E} \frac{E}{m} c \tau = \frac{p}{m} c \tau = \frac{5 \, \mathrm{GeV}}{139.6 \, \mathrm{MeV}} \times 30 \, \mathrm{cm/ns} \times 26 \, \mathrm{ns} \approx 279.37 \, \mathrm{m},$$

dove abbiamo usato $c \approx 30\,\mathrm{cm/ns}$. Ne segue che l'intensità dopo aver attraversato 200 m di tunnel si riduce a

$$I = I_0 \exp\left\{-\frac{200 \,\mathrm{m}}{L_0}\right\} \approx 80 \,\mathrm{nA} \times \exp\left\{-\frac{200 \,\mathrm{m}}{279.37 \,\mathrm{m}}\right\} \approx 39.1 \,\mathrm{nA},$$

corrispondente al 48.9% dell'intensità iniziale.

• L'elio ha una densità di volume dei bersagli (atomi di elio) pari a

$$n_B = \rho \frac{\mathcal{N}_A}{A} = 0.1785 \,\mathrm{kg/m^3} \times 1 \times 10^3 \,\mathrm{g/kg} \times (1 \times 10^{-2} \,\mathrm{m/cm})^3 \times \frac{6 \times 10^{23} \,\mathrm{mol}^{-1}}{4 \,\mathrm{g/mol}} \approx 2.68 \times 10^{19} \,\mathrm{cm}^{-3}.$$

Nell'ipotesi in cui la vita media del pione sia infinita, l'intensità del fascio si riduce comunque esponenzialmente all'aumentare della distanza percorsa a causa dell'interazione pioni-elio, quantificabile in termini della lunghezza di attenuazione

$$\lambda = \frac{1}{\sigma n_B} \approx \frac{1}{1.3 \times 10^{-3} \, \mathrm{b} \times 1 \times 10^{-24} \, \mathrm{cm}^2/\mathrm{b} \times 2.68 \times 10^{19} \, \mathrm{cm}^{-3}} \approx 2.9 \times 10^8 \, \mathrm{m}.$$

Visto che la lunghezza del tunnel è di soli 200 m, la differenza fra aver usato elio invece di aver fatto il vuoto è trascurabile.

1

Esercizio 2

Un fascio di K^+ incide su una lastra di scintillatore, all'interno della quale i K^+ si fermano, decadendo in $K^+ \to \mu^+ \nu_\mu$. Di fronte allo scintillatore viene posto un rivelatore Cherenkov (C_1) come in figura. Il rivelatore Cherenkov è spesso 2 cm, ha un indice di rifrazione n=1.49 e una densità $\rho = 1.2 \,\mathrm{g/cm^3}$. Si chiede:

- 1. Se il muone di decadimento incide sul rivelatore Cherenkov, è in grado di produrre un segnale?
- 2. Per ridurre il rate di falsi segnali nel rivelatore Cherenkov, se ne pone un secondo (C_2) identico al primo e dietro di esso come in figura. Il secondo rivelatore darà un segnale Cherenkov? Si considerino solo muoni che incidono perpendicolarmente al rivelatore, e si approssimi il $\frac{dE}{dx} = 2.5 \,\mathrm{MeV/g\,cm^2}$.

Soluzione dell'esercizio 2

1. I kaoni vengono fermati nello scintillatore, quindi si tratta di un decadimento in due corpi da fermo. Dalla relazione della massa invariante:

$$M_K^2 = (E_\mu + E_\nu)^2 - |\vec{p}_\mu + \vec{p}_\nu|^2 = E_\mu^2 + E_\nu^2 + 2E_\mu E_\nu + 0 = p_\mu^2 + m_\mu^2 + p_\nu^2 + m_\nu^2 + 2\sqrt{p_\mu^2 + m_\mu^2} p_\nu$$

poiché il decadimento è da fermo $|\vec{p}_{\mu}| = |\vec{p}_{\nu}| \equiv p.$ Quindi

$$\begin{split} M_K^2 &= p^2 + m_\mu^2 + p^2 + 2p\sqrt{p^2 + m_\mu^2} \\ M_K^2 &- 2p^2 - m_\mu^2 = 2p\sqrt{p^2 + m_\mu^2} \\ M_K^4 &+ 4p^4 + m_\mu^4 - 4M_K^2p^2 - 2M_K^2m_\mu^2 + 4m_\mu^2p^2 = 4p^4 + 4p^2m_\mu^2 \\ p &= \frac{\sqrt{M_K^4 + m_\mu^4 - 2M_K^2m_\mu^2}}{2M_K} = 235.6\,\mathrm{MeV} \end{split}$$

La condizione affinché ci sia emissione di luce Cherenkov è che il β del muone sia al di sopra della soglia $\beta_{thr} = 1/n = 0.67$. Per i muoni di decadimento:

$$\beta = \frac{p}{E} = \frac{p}{\sqrt{p^2 + m_{\mu}^2}} = \frac{235.6 \,\mathrm{MeV}}{258.4 \,\mathrm{MeV}} = 0.912$$

quindi $\beta > \beta_{thr}$ e quindi viene emessa luce Cherenkov.

2. Nell'attraversare lo spessore di 2 cm del rivelatore Cherenkov, l'energia persa per ionizzazione dai muoni è:

$$\Delta E = \frac{dE}{dx} \times \rho \times \Delta x = 2.5 \,\text{MeV/g cm}^2 \times 1.2 \,\text{g/cm}^3 \times 2 \,\text{cm} = 6 \,\text{MeV}$$

quindi l'energia del muone all'entrata di C_2 è di:

$$E_{\mu}(2) = 258.4 \,\text{MeV} - 6 \,\text{MeV} = 252.4 \,\text{MeV}$$

e quindi un impulso $p_{\mu}(2)=229.1\,\mathrm{MeV},$ che corrisponde a un

$$\beta(2) = \frac{p_{\mu}(2)}{E_{\mu}(2)} = 0.907$$

che è ancora di gran lunga maggiore di β_{thr} , e quindi si ha ancora emissione di luce Cherenkov in C_2 .

Part.	$ m M \ [MeV/c^2]$	I	I_3	$J^{P(C)}$	В	S	τ [s]
π^+	139.6	1	1	0-	0	0	$2.6 \ 10^{-8}$
$\overline{\pi^-}$	139.6	1	-1	0-	0	0	$2.6 \ 10^{-8}$
$\frac{\pi^-}{\pi^0}$	135.0	1	0	0-+	0	0	8.4×10^{-17}
K^+	493.7	1/2	1/2	0-	0	1	$1.2 \ 10^{-8}$
$\overline{K^-}$	493.7	1/2	-1/2	0-	0	-1	$1.2 \ 10^{-8}$
$\frac{K^{-}}{K^{0}}$	497.6	1/2	-1/2	0-	0	1	non definita
\overline{K}^0	497.6	1/2	1/2	0-	0	-1	non definita
\overline{p}	938.272	1/2	1/2	$1/2^{+}$	1	0	stabile
$ \frac{\rho^{0}}{\rho^{0}} $ $ \frac{\rho^{0}}{\rho^{+}} $ $ \frac{\rho^{-}}{f_{0}^{2}} $ $ \frac{d(pn)}{d(pn)} $	939.565	1/2	-1/2	$1/2^{+}$	1	0	8.79×10^{2}
ϕ^0	1019.5	0	0	1	0	0	1.54×10^{-22}
ρ^0	770	1	0	1	0	0	4.5×10^{-24}
ρ^+	770	1	1	1-	0	0	4.5×10^{-24}
$\overline{\rho^-}$	770	1	-1	1-	0	0	4.5×10^{-24}
f_{2}^{0}	1275.5	0	0	2++	0	0	6.76×10^{-21}
d(pn)	1875.6	0	0	1+	2	0	stabile
$\alpha({}_{2}He)$	3727.4	0	0	0+	4	0	stabile
Λ^0	1115.7	0	0	$1/2^{+}$	1	-1	2.63×10^{-10}
	1189.4	1	1	$1/2^{+}$	1	-1	8.01×10^{-11}
Σ^0	1192.6	1	0	$1/2^{+}$	1	-1	7.4×10^{-20}
Σ^-	1197.3	1	-1	$1/2^{+}$	1	-1	1.48×10^{-10}
$ \begin{array}{c c} \Sigma^{+} \\ \hline \Sigma^{0} \\ \hline \Sigma^{-} \\ \hline \Xi^{0} \\ \hline \Xi^{-} \end{array} $	1314.9	1/2	1/2	$1/2^{+}$	1	-2	2.90×10^{-10}
Ξ-	1321.7	1/2	-1/2	$1/2^{+}$	1	-2	1.64×10^{-10}
Ξ^{0*}	1531.8	1/2	1/2	3/2+	1	-2	7.23×10^{-23}
J/ψ	3096.9	0	0	1	0	0	7.2×10^{-21}

Tabella 1: Massa (M), isospin $(I, e \text{ sua terza componente } I_3)$, spin (J), parità (P), coniugazione di carica (C), stranezza (S), numero barionico (B) e vita media (τ) di diverse particelle adroniche.

Part.	$M [MeV/c^2]$	τ [s]
e^-	0.511	stabile
$\overline{\mu^-}$	105.6	2.2×10^{-6}
$\overline{\tau}^{-}$	1776	2.9×10^{-13}
$ u_{e/\mu/\tau} $	0	stabile

Tabella 2: Massa (M) e vita media (τ) dei leptoni.

Costanti utili:

- $\hbar c = 197 \,\mathrm{MeV} \,\mathrm{fm}$
- \bullet costante di normalizzazione per $\frac{\mathrm{d}E}{\mathrm{d}x}$ di ionizzazione: $C=0.307~\mathrm{MeV~g^{-1}~cm^2}$

Formule utili:

 \bullet Energia della particella B prodotta in un decadimento a due corpi $A \to B + C,$ con A fermo:

$$E_B = \frac{m_A^2 + m_B^2 - m_C^2}{2m_A}$$