Regulating Self-Adaptive Multi-Agent Systems with Real-Time Interventions

Wen Shen

Research Advisor: Dr. Jacob Crandall

RSC: Dr. Iyad Rahwan, Dr. Zeyar Aung

May 15th, 2013

Outline

- Background, Challenges and Objectives
- The Jiao Tong Game
- Regulating Multi-Agent Systems (MAS) with unlimited interventions
- Regulating MAS with limited interventions
- Conclusions and future work

Background

- Dynamic Resource Allocation: real-world applications, e.g.,
 - Transportation Systems
 - Building Management Systems
 - Power Grids
 - Water Supply Systems
- Existing approaches:
 - Mechanism Design
 - Approximation Algorithms
 - Machine Learning Algorithms
 - Human Supervisory Control

Challenges

Environment:

- highly dynamic
- very complex

Agents:

- autonomous and self-interested
- have partial information of the environment
- reactive or adaptive to the dynamic environment

Regulators:

- have no or little knowledge of the decision-making process of agents
- do not have full control over the agents
- interventions available to influence the decision-making of the agents.

Objectives

- To better understand the general principles of human interventions in MAS.
- To investigate:
 - whether
 - under what conditions
 - to what extent
 people are able to create effective interventions.

Outline

- Background, Challenges and Objectives
- The Jiao Tong Game
- Regulating MAS with unlimited interventions
- Regulating MAS with limited interventions
- Conclusions and future work

The Jiao Tong Game

The Jiao Tong Game

- Metrics:
 - running throughput (main)
 - sliding throughput
- The agents:
 - learning agents
 - static agents
- The regulator

Outline

- Background, Challenges and Objectives
- The Jiao Tong Game
- Regulating MAS with unlimited interventions
- Regulating MAS with limited interventions
- Conclusions and future work

Regulating MAS with Unlimited Interventions

Hypothesis 1 (Unlimited Interventions)

Test 1(Unlimited Interventions)

Hypothesis 2 (Unlimited Interventions)

Test 2 (Unlimited Interventions)

Hypothesis 3 (Unlimited Interventions)

Test 3 (Unlimited Interventions)

Hypothesis 4 (Unlimited Interventions)

Test 4 (Unlimited Interventions)

Running Throughput Over Time

Outline

- Background, Challenges and Objectives
- The Jiao Tong Game
- Regulating MAS with unlimited interventions
- Regulating MAS with limited interventions
- Conclusions and future work

Regulating MAS with Limited Interventions

Hypothesis 5 (Limited Interventions)

Test 5 (Limited Interventions)

Hypothesis 6 (Limited Interventions)

Test 6 (Limited Interventions)

Running Throughput Over Time

Outline

- Background, Challenges and Objectives
- The Jiao Tong Game
- Regulating MAS with unlimited interventions
- Regulating MAS with limited interventions
- Conclusions and future work

Conclusion

- Without interventions:
 - learning > static
- With unlimited interventions:
 - static: 1
 - learning: —
- People are better at regulating static agents than learning agents.
- With limited interventions:
 - static : short term | long term –
 - learning : ___

Future Work

 How to help regulators improve their understandings of agents' behavior?

How to help them create better interventions?

GIANSNERS QUESTIONS

