BAYESIAN STATISTICS

CLASS 3

Sampling distribution is Lognormal – there are two parameters for a Lognormal: μ , σ^2

 $\mu \sim \text{Uniform}(0.80)$ $\sigma^2 \sim \text{Uniform}(0.80)$

```
data{
 int <lower=0> n;
 real y[n];
parameters {
 real mu;
 real <lower=0> sigma;
model {
 mu ~uniform(0,80);
 sigma~uniform(0,80);
 for (i in 1:n)
 y[i] ~ lognormal(mu,sigma);
```

STAN

R Code

```
library(Imtest)
library(rstan)
lognorm.dat<-list(y=unemployment[, I],n=length(unemployment[, I]))</pre>
log.stan=stan(file='Q:\\My
Drive\Bayesian\Code\lognormal_model.stan',data=lognorm.dat,seed=10678)
log.extract=extract(log.stan)
new.mu=log.extract$mu
new.sigma=log.extract$sigma
mean(new.mu)
mean(new.sigma)
mean(new.sigma/new.mu)
```

mu.sigma=cbind(new.mu,new.sigma) head(mu.sigma)

		Posterior Joint distribution:
new.mu n	iew.sigma	$P(\mu,\sigma Y)$
[1,] 1.780556 0.5	5457839	
[2,] 1.663109 0.6	6653600	Posterior Marginal distribution of mean:
[3,] 1.646789 0.5	F70//00	$P(\mu Y)$
[4,] 1.606961 0.5		\(\frac{1}{1}\)
[5,] 1.698649 0.5	5329611	Posterior Marginal distribution of std dev:
[6,] 1.765465 0.0	4531450	$P(\sigma Y)$
		\ I /

Together, these are the posterior joint distribution, however, you can just use one column for the posterior marginal distribution

Histogram of new.mu

1.6

new.mu

1.7

1.8

1.9

Histogram of new.sigma/new.mu

new.sigma

Histogram of new.sigma

NOTE: SIGMA is the **standard deviation** (not variance)

1.5

Linear Regression assumes Normal distribution with a mean of $X\beta$ and constant standard deviation

'Liv.Area', 'Base.Area', 'Garage.Area', 'Porch.Area', 'Age

Recall Ames Housing data....trying to predict Y (sales price of house)

We will use the following predictor variables: XI = Living Area, X2 = Basement Area, X3 = Garage Area, X4 = Porch Area and X5 = Age of house

$$Log(Y) = \alpha + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4 + \beta_5 5 x_5 + \varepsilon$$

```
data{
 int <lower=0> n;
 vector[n] y;
 matrix[n,5] x;
parameters{
 real alpha;
 vector[5] beta;
 real<lower=0> sigma;
model {
y ~normal(alpha + x*beta, sigma);
```

Regression in stan

```
library(sas7bdat)
ameshousing<-read.sas7bdat('Q:\\My Drive\\Summer II - Statistics Bootcamp\\Bootcamp
Data\\ameshousing3.sas7bdat')
x=cbind(ameshousing$Gr Liv Area, ameshousing$Basement Area,
ameshousing$Garage Area, ameshousing$Deck Porch Area, ameshousing$Age Sold)
x=as.data.frame(scale(x))
colnames(x)=c('Liv.Area','Base.Area','Garage.Area','Porch.Area','Age')
regress.dat=list(n=nrow(x),x=x,y=ameshousingLog Price)
regress.stan=stan(file='Q:\\My
Drive\Bayesian\Code\\ameshousing.stan',data=regress.dat,seed=93457)
output.stan=extract(regress.stan)
traceplot(regress.stan,inc warmup=T)
```


0.12 -

print(regress.stan, probs=c(.025,.975))

	mean	se_mean	sd Z	2.5%	97.5%	n_eff	Rhat
alpha	11.79	0.00	0.01	11.78	11.81	6588	I
beta[1]	0.12	0.00	0.01	0.10	0.14	5907	ı
beta[2]	0.09	0.00	0.01	0.07	0.11	5643	I
beta[3]	0.06	0.00	0.01	0.04	0.08	5779	I
beta[4]	0.03	0.00	0.01	0.01	0.05	6864	I
beta[5]	-0.09	0.00	0.01	-0.10	-0.07	5316	I
sigma	0.14	0.00	0.01	0.13	0.15	5456	I
lp	440.42	0.05	1.89	435.92	443.12	1744	I