Package 'vocaldia'

October 12, 2022

License GPL-3
LazyData true
Type Package

Title Create and Manipulate Vocalisation Diagrams

Version 0.8.4 **Date** 2022-08-14

Description Create adjacency matrices of vocalisation graphs from dataframes containing sequences of speech and silence intervals, transforming these matrices into Markov diagrams, and generating datasets for classification of these diagrams by 'flattening' them and adding global properties (functionals) etc. Vocalisation diagrams date back to early work in psychiatry (Jaffe and Feldstein, 1970) and social psychology (Dabbs and Ruback, 1987) but have only recently been employed as a data representation method for machine learning tasks including meeting segmentation (Luz, 2012) <doi:10.1145/2328967.2328970> and classification (Luz, 2013) <doi:10.1145/2522848.2533788>.

Depends R (>= 3.0.0) **Suggests** igraph, foreign **Imports** graphics, stats, utils **RoyvgenNote** 7.2.1

RoxygenNote 7.2.1 Encoding UTF-8

URL https://git.ecdf.ed.ac.uk/sluzfil/vocaldia

BugReports https://git.ecdf.ed.ac.uk/sluzfil/vocaldia/-issues

NeedsCompilation no

Author Saturnino Luz [aut, cre]

Maintainer Saturnino Luz < luzs@acm.org>

Repository CRAN

Date/Publication 2022-08-14 20:40:02 UTC

2 vocaldia-package

R topics documented:

vocaldia-package
anonymise
appendSpeechRate
atddia
getEntropy
getIDs
getPauseType
getPID
getPofAgivenB
getSampledVocalCountMatrix
getSampledVocalMatrix
getSilences
getSyllablesAndSilences
getTranscript
getTurnTakingMatrix
getTurnTakingProbMatrix
getTurnType
identifyGrpVocalisations
identifyPauses
identify Vocalisations
igraph.vocaldia
makeSessionDataSet
makeVocalStatsDataset
matrixExp
namePauses
plot.matrixseries
plot.vocaldia
printARFFfile
read.cha
startmatrix
staticMatrix
toDotNotation
vocmatrix
write.vocaldia
3

Index

anonymise 3

Description

Create adjacency matrices of vocalisation graphs from dataframes containing sequences of speech and silence intervals, transforming these matrices into Markov diagrams, and generating datasets for classification of these diagrams by 'flattening' them and adding global properties (functionals) etc. Vocalisation diagrams date back to early work in psychiatry (Jaffe and Feldstein, 1970) and social psychology (Dabbs and Ruback, 1987) but have only recently been employed as a data representation method for machine learning tasks including meeting segmentation (Luz, 2012) doi: 10.1145/2328967.2328970 and classification (Luz, 2013) doi: 10.1145/2522848.2533788.

Author(s)

Saturnino Luz < luzs@acm.org>

References

- S. Luz. Automatic identification of experts and performance prediction in the multimodal math data corpus through analysis of speech interaction. In *Proceedings of the 15th ACM on International Conference on Multimodal Interaction, ICMI'13*, pages 575–582, New York, NY, USA, 2013. ACM.
- S. Luz. The non-verbal structure of patient case discussions in multidisciplinary medical team meetings. *ACM Transactions on Information Systems*, 30(3):17:1–17:24, 2012
- Dabbs, J. M. J. and Ruback, B. Dimensions of group process: Amount and structure of vocal interaction. *Advances in Experimental Social Psychology* 20, 123-169, 1987.
- Jaffe, J. and Feldstein, S. Rhythms of dialogue. ser. *Personality and Psychopathology*. Academic Press, New York, 1976.

See Also

Useful links:

- https://git.ecdf.ed.ac.uk/sluzfil/vocaldia
- Report bugs at https://git.ecdf.ed.ac.uk/sluzfil/vocaldia/-issues

anonymise

anonymise: anonymise a vocalisation diagram

Description

Anonymise a vocalisation diagram

4 appendSpeechRate

Usage

```
anonymise(vd)
## S3 method for class 'vocaldia'
anonymise(vd)
## Default S3 method:
anonymise(vd)
```

Arguments

vd a vocalisation diagram (vocaldia object)

Details

"anonymise" a vocaldia turn taking probability matrix by replacing speaker names by variables $s_1, ..., s_n s.t. s_1$ is the speaker who spoke the least and s_n the one who did the most talking.

Value

a new vocaldia with speaker names replaced by variables $s_1, ..., s_n$ s.t. s_1 is the speaker who spoke the least and s_n the one who did the most talking.

Examples

Description

appendSpeechRate: append pre-generated speech rate data (see audioproc.R)

Usage

```
appendSpeechRate(t, file = NULL)
```

Arguments

t a table read through read.cha

file speech rate file

atddia 5

Value

dataframe t bound to speech rates per utterance

Author(s)

luzs

atddia

A sample Medical Team Meeting dialogue encoded as a vocaldia

Description

A dataset containing 38 dialogues (17 control patients, and 21 AD patients) and 7869 vocalisation events.

Usage

atddia

Format

A data frame with 7869 rows and 7 variables:

id The dialogue indentifier

begin The start time of a speech turn or silence interval

end The end time of a speech turn or silence interval

speaker An identifier for the speaker of the turn, or Floor for silence.

role The speaker's role (patient, interviewer, other, or Floor

trans The transcription of the turn (blanked out for anonymity)

dx The diagnosis (ad or nonad

Source

This dataset was generated from the Carolina Conversations Collection, and used in the work described in De La Fuente, Albert and Luz: "Detecting cognitive decline through dialogue processing", 2017. For the full data set, please contact the Medical University of South Carolina (MUSC) http://carolinaconversations.musc.edu/

6 getIDs

getEntropy

getEntropy: safely return the Shannon entropy of a distribution.

Description

Compute the entropy of a distribution.

Usage

```
getEntropy(distribution)
```

Arguments

distribution a probability distribution.

Details

Compute the entropy of a distribution.

Value

a numeric value.

getIDs

getIDs get speaker role IDs (PAR, INV) and info from CHA content

Description

getIDs get speaker IDs from CHA content

Usage

```
getIDs(text)
```

Arguments

text

a string vector containing the lines of a CHA file

Value

a vector with participants IDs

Author(s)

luzs

getPauseType 7

getPauseType

getPauseType: name pause type between two vocalisation events.

Description

Identify the type of pause between vocalisations.

Usage

```
getPauseType(prevspeaker, nextspeaker)
```

Arguments

```
prevspeaker speaker of the vocalisation immediately before Floor
nextspeaker speaker of the vocalisation immediately after Floor
```

Details

The type of pause a 'Floor' (silence) event represents can be: 'Pause', 'SwitchingPause', 'Grp-Pause', or 'GrpSwitchingPause'. See (Luz, 2013) for details.

Value

the pause type.

See Also

namePauses

Examples

```
getPauseType('a', 'b')
## [1] "SwitchingPause"
getPauseType('a', 'Grp')
## [1] "SwitchingPause"
getPauseType('Grp', 'Grp')
## [1] "GrpPause"
getPauseType('Grp', 'a')
## [1] "GrpSwitchingPause"
getPauseType('a', 'a')
##[1] "Pause"
```

8 getPofAgivenB

getPID

getIDs get study-wide unique patient IDs from CHA content

Description

getPIDs get study-wide unique patient IDs from CHA content

Usage

```
getPID(text)
```

Arguments

text

a string vector containing the lines of a CHA file

Value

a vector with participants IDs

Author(s)

luzs

getPofAgivenB

getPofAgivenB: transtion probability.

Description

Conditional (transition) probability

Usage

```
getPofAgivenB(a, b, ttarray)
```

Arguments

a target node
b source node
ttarray adjacency matrix

Details

Retrieve p(a|b), probability of a transition from b to a in an adjacency matrix

Value

a transition probability.

```
getSampledVocalCountMatrix
```

getSampledVocalCountMatrix: generate vocalisation diagrams

Description

Generate a count vocalisation diagram through 'sampling'.

Usage

```
getSampledVocalCountMatrix(
  cdf,
  rate = 1,
  individual = FALSE,
  noPauseTypes = FALSE,
  begin = "begin",
  end = "end",
  nodecolumn = "role"
)
```

Arguments

cdf	a data frame consisting, minimally, of a column for vocalisation/pause start times, a column for end times, and a column identifying the speaker, speaker role or 'Floor' (for silences).
rate	the rate at which to sample the vocalisation events (in seconds)
individual	whether to include individual speakers or group them into a single Vocalisation node
noPauseTypes	if TRUE, ignore distinctions between pauses (SwitchingPause, GrpSwitchingPause, etc) $ \\$
begin	the name of the column containing the start time of the vocalisation event in a row.
end	the name of the column containing the end time of the vocalisation event in the same row.
nodecolumn	the name of the column containing the node (speaker) name (e.g. 'speaker', 'role').

Details

A vocalisation diagram (vocaldia) is a representation of a dialogue as a Markov process whose cell <m,n> contains the transition probability from node n to node m). This function for 'cases' (an identifier for a case or a vector of identifiers identifying a set of cases) in data frame 'df', obtained by sampling the timeline every 'rate'-th second (see getSampledVocalCountMatrix).

Value

a vocaldia object, consisting of a vocalisation matrix (vocmatrix) where cell <m,n> contains the counts of transitions from node n to node m, and a table of prior probabilities (stationary distribution) per node.

See Also

```
(Luz, 2013)
```

Examples

```
data(vocdia)
getSampledVocalCountMatrix(subset(atddia,
    id=='Abbott_Maddock_01'), nodecolumn='role')
```

getSampledVocalMatrix getSampledVocalCountMatrix: generate vocalisation diagrams

Description

Generate a probabilistic vocalisation diagram through 'sampling'.

Usage

```
getSampledVocalMatrix(df, ...)
```

Arguments

df

a data frame consisting, minimally, of a column for vocalisation/pause start times, a column for end times, and a column identifying the speaker, speaker role or 'Floor' (for silences).

... general parameter to be passed to getSampledVocalCountMatrix

Details

A vocalisation diagram (vocaldia) is a representation of a dialogue as a Markov process whose cell <m,n> contains the transition probability from node n to node m).

Value

a vocaldia object, consisting of a vocalisation matrix (vocmatrix) where cell <m,n> contains the transition probability from node n to node m, and a table of prior probabilities (stationary distribution) per node.

Author(s)

Saturnino Luz < luzs@acm.org>

getSilences 11

References

S. Luz. Automatic identification of experts and performance prediction in the multimodal math data corpus through analysis of speech interaction. In *Proceedings of the 15th ACM on International Conference on Multimodal Interaction, ICMI'13*, pages 575–582, New York, NY, USA, 2013. ACM.

See Also

```
getSampledVocalCountMatrix
```

Examples

getSilences

getSilences read silences file

Description

getSilences read silences file

Usage

```
getSilences(file, sildir = NULL, silsuffix = "c.mp3.csv")
```

Arguments

file CSV formatted silences file sildir dir where silence files are silsuffix ## suffix for silence files

Value

silences dataframe

Author(s)

luzs

12 getTranscript

```
getSyllablesAndSilences
```

getSyllablesAndSilences: process Praat's grid for syllable nuclei

Description

getSyllablesAndSilences: process Praat's grid for syllable nuclei, based on De Jong's approach

Usage

```
getSyllablesAndSilences(txtgrid)
```

Arguments

txtgrid

Path to Praat grid file generated by praat-syllable-syllable-nuclei-v2

Value

list of syllables and silences

Author(s)

luzs

References

De Jong, N. H. and Wempe, T. (2009). Praat script to detect syllable nuclei and measure speech rate automatically. Behavior Research Methods, 41(2):385–390, May.

getTranscript

getTranscript: get transcription lines from .cha content

Description

```
getTranscript
```

Usage

```
getTranscript(text)
```

Arguments

text

a string vector containing the lines of a CHA file

Value

a list of transcriptions (participant and interviewer utterances)

getTurnTakingMatrix 13

Author(s)

luzs

getTurnTakingMatrix getSampledVocalCountMatrix: generate vocalisation diagrams

Description

Generate a vocalisation diagram with absolute vocalisation durations.

Usage

```
getTurnTakingMatrix(
   df,
   begin = "begin",
   end = "end",
   nodecolumn = "role",
   individual = FALSE,
   noPauseTypes = FALSE
)
```

Arguments

df	a data frame consisting, minimally, of a column for vocalisation/pause start times, a column for end times, and a column identifying the speaker, speaker role or 'Floor' (for silences).
begin	the name of the column containing the start time of the vocalisation event in a row.
end	the name of the column containing the end time of the vocalisation event in the same row.
nodecolumn	the name of the column containing the node (speaker) name (e.g. 'speaker', 'role').
individual	whether to include individual speakers or group them into a single Vocalisation node
noPauseTypes	if TRUE, ignore distinctions between pauses (SwitchingPause, GrpSwitchingPause, etc)

Details

A vocalisation diagram (vocaldia) is a representation of a dialogue as a Markov process whose cell <m,n> contains the transition probability from node n to node m). Unlike getSampledVocalCountMatrix this function accumulates event durations directly, therefore resulting in no self-transitions (in general).

Value

a vocaldia object, consisting of a vocalisation matrix (vocmatrix) where cell <m,n> contains the counts of transitions from node n to node m, and a table of absolute durations of vocalisation events.

References

S. Luz. Automatic identification of experts and performance prediction in the multimodal math data corpus through analysis of speech interaction. In *Proceedings of the 15th ACM on International Conference on Multimodal Interaction, ICMI'13*, pages 575–582, New York, NY, USA, 2013. ACM.

See Also

```
(Luz, 2013) and getTurnTakingMatrix.
```

Examples

```
x <- subset(atddia, id=='Abbott_Maddock_01')
getTurnTakingMatrix(x)
getTurnTakingMatrix(x, individual=TRUE)</pre>
```

getTurnTakingProbMatrix

getTurnTakingProbMatrix: create a vocaldia from a data.frame.

Description

Convert a data frame into a vocalisation diagram using counts rather than sampling.

Usage

```
getTurnTakingProbMatrix(df, individual = FALSE, ...)
```

Arguments

df a data frame consisting, minimally, of a column for vocalisation/pause start

times, a column for end times, and a column identifying the speaker, speaker

role or 'Floor' (for silences).

individual whether to include individual speakers or group them into a single Vocalisation

node

... other parameters to be passed to getTurnTakingMatrix.

Details

Unlike getSampledVocalMatrix, this function is based on transition counts rather than sampled intervals. As a result, where in this version self transitions will always be set to 0 (since a vocalisation by a speaker is never followed by another vocalisation by the same speaker) in the sampled version self transitions will usually dominate the distribution, since the speaker who is speaking now is very likely to be the one who were speaking one second ago.

getTurnType 15

Value

a vocaldia object, consisting of a vocalisation matrix (vocmatrix) where cell (m, n) contains the probabilities P(n|m) transitions to node n from node m, and a table of prior probabilities (stationary distribution) per node.

See Also

```
(Luz, 2013) and getTurnTakingMatrix.
```

S. Luz. Automatic identification of experts and performance prediction in the multimodal math data corpus through analysis of speech interaction. In *Proceedings of the 15th ACM on International Conference on Multimodal Interaction, ICMI'13*, pages 575–582, New York, NY, USA, 2013. ACM.

Examples

```
x <- subset(atddia, id=='Abbott_Maddock_01')
getTurnTakingProbMatrix(x)
getTurnTakingProbMatrix(x, individual=TRUE)</pre>
```

getTurnType

getTurnType: return type of turn

Description

Identify turn types

Usage

```
getTurnType(
  df,
  i,
  individual = FALSE,
  nodecolumn = "speaker",
  noPauseTypes = F
)
```

Arguments

df	a data frame consisting, minimally, of a column for vocalisation/pause start times, a column for end times, and a column identifying the speaker, speaker role or 'Floor' (for silences).
i	the identifier (index number) whose type will be returned
individual	if TRUE, return the identifier, a Pause or Grp
nodecolumn	the name of the column containing the node (speaker) name (e.g. 'speaker', 'role').
noPauseTypes	if TRUE, ignore distinctions between pauses (SwitchingPause, GrpSwitchingPause, etc)

Details

Return one of Vocalisation, GrpVocalisation, ... or identifier.

Value

a string containing the turn type or identifier.

Examples

```
data(vocdia)
atddia[1:10,]
getTurnType(atddia, 3, nodecolumn='role') ## a vocalisation
getTurnType(atddia, 4, nodecolumn='role') ## a pause
```

identifyGrpVocalisations

identifyGrpVocalisations: replace appropriate vocalisation types

Description

Identify group vocalisations

Usage

```
identifyGrpVocalisations(vocvector)
```

Arguments

vocvector

a character vector containing a sequence of vocalisation events

Details

Standardise identifier for group vocalisations

Value

A vector with all events replaced by the appropriate type identifier.

Examples

```
data(vocdia)
identifyGrpVocalisations(atddia$speaker[1:60])
```

identifyPauses 17

identifyPauses

identifyPauses: label pauses according to type.

Description

Assign types to the pauses (Floor events) in a sequence

Usage

```
identifyPauses(vocvector)
```

Arguments

vocvector

a character vector containing a sequence of vocalisation events

Details

Identify the pauses in a vector as one of the pauses in pauseTypes

Value

A vector with all Floor events replaced by the appropriate pause type identifier.

Examples

```
data(vocdia)
identifyPauses(atddia$speaker[1:60])
```

 $identify Vocalisations: \ \textit{replace appropriate vocalisation types}$

Description

Identify switching vocalisations

Usage

```
identifyVocalisations(vocvector, idswitchvoc = T)
```

Arguments

vocvector a character vector containing a sequence of vocalisation events

idswitchvoc if TRUE distinguise between Switching Vocalisation and Vocalisation.

18 igraph.vocaldia

Details

Switching Vocalisation is a vocalisation that signals a immediate speaker transition; that is, a transition from speaker to speaker (as opposed to speaker to Grp or speaker to Pause).

E.g (speakers A, B, C):

AAAAAAABBBBBBBCCCCCBBBBBPauseBBBBSwitchingPauseAAAAAGrp

Value

A vector with all events replaced by the appropriate type identifier.

Examples

```
data(vocdia)
identifyVocalisations(atddia$speaker[1:60])
```

igraph.vocaldia

igraph.vocaldia: Create an igraph vocalisation diagram

Description

Create an igraph vocalisation diagram

Usage

```
igraph.vocaldia(vd, ...)
```

Arguments

vd a vocalisation diagram
... arguments for the layout algorithm

Details

Create a vocalisation diagram

Value

an igraph

makeSessionDataSet 19

Examples

makeSessionDataSet

makeSessionDataSet: create a data frame for a session (e.g. cookie scene description) based on .cha transcription files

Description

makeSessionDataSet: create a data frame for a session (e.g. cookie scene description)

Usage

```
makeSessionDataSet(
   f,
   sildir = NULL,
   silsuffix = "c.mp3.csv",
   srdir = "../data/ADReSS/speech_rate/",
   srsuffix = "sra",
   sprate = T
)
```

Arguments

f	CHA file to read
sildir	directory where silence profiles are stored
silsuffix	suffix for silence files
srdir	directory where speech rate csv (1 value per utterance) files are stored
srsuffix	the suffix of the speech rate files (default: sre)
sprate	estimate speech rate? (default: TRUE)

Value

a speech session data frame

Author(s)

luzs

20 makeVocalStatsDataset

makeVocalStatsDataset makeVocalStatsDataset: create a dataset of vocalisation statistics (1 row per patient)

Description

Build a data frame createwith vocalisation statistics

Usage

```
makeVocalStatsDataset(
    dir = c("data/Pitt/Dementia/cookie", "data/Pitt/Control/cookie"),
    sildir = NULL,
    silsuffix = "c.mp3.csv",
    srdir = "data/Pitt/speech_rate/",
    srsuffix = "sra",
    sprate = T
)
```

Arguments

dir	a string or vector containing the location (directory path) of the DementiaBank transcript files (.cha files)
sildir	directory where silence csv files are stored
silsuffix	the suffix of the silence profile files 'c.mp3.csv'. The format of such files should be the format used by Audacity label files, i.e. 'start time, end time, label' (without header), where 'label' should be 'silence'
srdir	directory where speech rate csv (1 value per utterance) files are stored
srsuffix	the suffix of the speech rate files (default: sre)
sprate	compute speech rate? (not in use yet)

Value

a session's vocalisation feature stats

Examples

matrixExp 21

matrixExp

matrixExp: raise matrix to exp.

Description

Matrix exponentials

Usage

```
matrixExp(matrix, exp, mmatrix = matrix)
```

Arguments

matrix a matrix

exp the power to which matrix will be raised

mmatrix a placeholder.

Details

A (sort of) exponential function for matrix multiplication (to be used with staticMatrix).

Value

matrix^exp

Examples

```
data(vocdia)
matrixExp(vocmatrix$ttarray, 3)
```

namePauses

namePauses: name pause types.

Description

Replace identified pause pause types in data frame.

Usage

```
namePauses(df, nodecolumn = "role")
```

22 plot.matrixseries

Arguments

df a data frame consisting, minimally, of a column for vocalisation/pause start

times, a column for end times, and a column identifying the speaker, speaker

role or 'Floor' (for silences).

nodecolumn the name of the column containing the node (speaker) name (e.g. 'speaker',

role').

Details

replace all 'Floor' speakers in df by 'Pause', 'SwitchingPause' etc, and return a new data fame containing pause types in place of 'Floor' (see markov.R, identifyPauses() for a better implementation)

Value

a data.frame with pauses in nodecolumn replaced by different pause types.

See Also

```
identifyPauses for a better implementation
```

Examples

```
data(vocdia)
x <- subset(atddia, id=='Abbott_Maddock_01')
x[1:15,1:6]
namePauses(x)[1:15,1:6]</pre>
```

plot.matrixseries

plotConvergence: plots Markov diagram convergence.

Description

Visualise convergence properties of vocalisation graphs

Usage

```
## S3 method for class 'matrixseries'
plot(x, ..., par = list(), interact = F)
```

Arguments

x an object of class matrixseries; a list where the i^{th} element corresponds to M^i .

... extra graphics parameters for plot.

par graphic parameters alist

interact if TRUE, pauses the drawing after each node.

plot.vocaldia 23

Details

A 'toy' for visualisation of convergence properties of vocalisation graphs. Plot the convergence paths of each Vocalisation event (i.e. each row-column transition probability, grouped by colour according to the inciding node)

Value

the matrixseries

Examples

```
data(vocdia)
plot(staticMatrix(vocmatrix$ttarray, digits=4, history=TRUE))
```

plot.vocaldia

plot.vocaldia

Description

Plot a vocalisation diagram

Usage

```
## S3 method for class 'vocaldia' plot(x, ...)
```

Arguments

x a vocalisation diagram

arguments for the layout algorithm

Details

Plot a vocalisation diagram

Value

NULL

Examples

24 printARFFfile

printARFFfile

printARFFfile: Create arff files by creating and flattening vocaldias

Description

Generate ARFF files from vocalisation diagrams

Usage

```
printARFFfile(
   df,
   ids = c(),
   idcolumn = "id",
   noPauseTypes = F,
   sampled = 0,
   individual = TRUE,
   nodecolumn = "role",
   classcolumn = "dx",
   file = ""
)
```

Arguments

df	df a data frame consisting, minimally, of a column for vocalisation/pause start times, a column for end times, and a column identifying the speaker, speaker role or 'Floor' (for silences).
ids	Ids of dialogues to generate (as defined in column named idcolumn)
idcolumn	the name of the column containing the dialogue id
noPauseTypes	if TRUE, ignore distinctions between pauses (SwitchingPause, GrpSwitchingPause, etc)
sampled	if >0 use getSampledVocalMatrix with rate=sampled
individual	whether to include individual speakers or group them into a single Vocalisation node
nodecolumn	the name of the column containing the node (speaker) name (e.g. 'speaker', 'role').
classcolumn	the name of the column containing the target class (or value).
file	name of ARFF file to be generated, or "" (print to console).

Details

Use this function to generate turn-taking diragrams in ARFF format for

read.cha 25

References

S. Luz. Automatic identification of experts and performance prediction in the multimodal math data corpus through analysis of speech interaction. In *Proceedings of the 15th ACM on International Conference on Multimodal Interaction, ICMI'13*, pages 575–582, New York, NY, USA, 2013. ACM.

See Also

```
getSampledVocalCountMatrix, getTurnTakingProbMatrix.
```

Examples

read.cha

read.cha read CHA transcription file (format used by DementiaBank)

Description

read.cha: read CHA transcription file (format used by DementiaBank)

Usage

```
read.cha(file, sildir = NULL, silsuffix = "c.mp3.csv")
```

Arguments

```
file .cha file to reas
sildir silences directory
silsuffix silence files suffix
```

Value

a list containing the PID, a dataframe containing the speaker IDs and demographics, and a dataframe containing the speaker IDs, transcribed utterances, start and en times, speech rates etc.

Author(s)

luzs

26 startmatrix

startmatrix

startmatrix: return the first matrix of a converging series.

Description

Access initital matrix in a matrixseries

Usage

```
startmatrix(mseries)
## Default S3 method:
startmatrix(mseries)
## S3 method for class 'matrixseries'
startmatrix(mseries)
```

Arguments

mseries

a matrixseries object

Details

Access initital matrix in a matrixseries

Value

the initial matrix.

Examples

```
## Not run:
data(vocdia)
x2 <- staticMatrix(vocmatrix$ttarray, digits=4, history=TRUE)
## original matrix
startmatrix(x2)
## End(Not run)</pre>
```

staticMatrix 27

Description

Compute the stationary distribution for a Markov diagram

Usage

```
staticMatrix(matrix, limit = 1000, digits = 4, history = F)
```

Arguments

matrix	an adjecency matrix of trnasition probabilities
limit	maximum number of iterations until we give up on convergence
digits	the number of decimal places to compare
history	if TRUE, keep track of all matrix products

Details

Return static matrix (i.e. the stationary distribution) for the Markov process represented by the given adjacency matrix. In the particular case of vocaldia's, each column should roughly correspond to the amount of time a speaker held the floor for). Of course, not all Markov chains converge, an example being:

```
1
/---->----\
A B
\----<---/
1
which gives
```

Value

a matrixseries object; that is, a list where each element is either the initial matrix or the product of the two preceding matrices

28 toDotNotation

Examples

```
data(vocdia)
x2 <- staticMatrix(vocmatrix$ttarray, digits=4, history=TRUE)
## original matrix
round(x2[[1]],3)
## stationary matrix (M^139)
round(x2[[length(x2)]],3)</pre>
```

toDotNotation

toDotNotation: conver vocaldia to graphviz dot notation

Description

Create vocalisation diagram to file in dot (graphviz) notation

Usage

```
toDotNotation(
  vd,
  individual = T,
  varsizenode = T,
  shape = "circle",
  fontsize = 16,
  rankdir = "LR",
  nodeattribs = "fixedsize=true;",
  comment = ""
)
```

Arguments

vd a vocalisation diagram

individual if TRUE write individual node names

varsizenode if true set varsizenode in dot

shape node shape fontsize font size

rankdir direction of ranking (LR, RF etc)

nodeattribs attributes for node

comment comments

Details

Create a vocalisation diagram in dot notation

Value

character data containing the diagram in dot format.

vocmatrix 29

See Also

graphviz manual

Examples

vocmatrix

A sample vocalisation matrix

Description

A vocaldia object containing a 3-speaker dialogue

Usage

vocmatrix

Format

A list containing 2 arrays

ttarray The vocaldia adjacency matrix

tdarray The proportional durations (stationary probabilities) of each event (node)

Source

This dataset was generated from the Multomodal Learning Analytics dataset, for the eponymous ICMI'13 Grand Challenge. The use these vocaldias were put to is described in Luz (2013). The full dataset and code is available at https://gitlab.scss.tcd.ie/saturnino.luz/icmi-mla-challenge

References

S. Luz. Automatic identification of experts and performance prediction in the multimodal math data corpus through analysis of speech interaction. In *Proceedings of the 15th ACM on International Conference on Multimodal Interaction, ICMI'13*, pages 575–582, New York, NY, USA, 2013. ACM.

30 write.vocaldia

write.vocaldia

write.vocaldia

Description

Write vocalisation diagram to file in dot (graphviz) notation

Usage

```
write.vocaldia(vd, file = "", ...)
```

Arguments

vd a vocalisation diagram

file name of file to which dot diagram will be written.

... arguments passed on to toDotNotation. If "", write to STDOUT.

Details

Write a vocalisation diagram

Value

NULL

Examples

Index

```
* datasets
                                                 staticMatrix, 21, 27
    atddia, 5
                                                 toDotNotation, 28
    vocmatrix, 29
                                                 vocaldia (vocaldia-package), 2
anonymise, 3
                                                 vocaldia-package, 2
appendSpeechRate, 4
                                                 vocmatrix, 29
atddia, 5
                                                 write.vocaldia, 30
getEntropy, 6
getIDs, 6
getPauseType, 7
getPID, 8
getPofAgivenB, 8
getSampledVocalCountMatrix, 9, 10, 11, 13,
getSampledVocalMatrix, 10, 14, 24
getSilences, 11
{\tt getSyllablesAndSilences}, 12
getTranscript, 12
getTurnTakingMatrix, 13, 14, 15
getTurnTakingProbMatrix, 14, 25
getTurnType, 15
identifyGrpVocalisations, 16
identifyPauses, 17, 22
identify Vocalisations, \\ 17
igraph.vocaldia, 18
makeSessionDataSet, 19
makeVocalStatsDataset, 20
matrixExp, 21
namePauses, 7, 21
plot.matrixseries, 22
plot.vocaldia, 23
printARFFfile, 24
read.cha, 25
startmatrix, 26
```