Übungsblatt 12 zur Kommutativen Algebra

Aufgabe 1. (m+m+2+1+1) Spiel und Spaß mit p-adischen Zahlen

Sei \mathbb{Z}_p der Ring der p-adischen Ganzzahlen, konstruierbar als $\varprojlim_n \mathbb{Z}/(p^n)$ oder Vervollständigung von \mathbb{Z} bezüglich der (p)-adischen Topologie.

- a) Sei $f \in \mathbb{Z}[X]$ ein Polynom, das modulo p eine einfache Nullstelle besitzt. Zeige, dass f in \mathbb{Z}_p eine Nullstelle besitzt.
- b) Sei n eine zu p teilerfremde ganze Zahl. Zeige, dass n in \mathbb{Z}_p invertierbar ist.
- c) Berechne $\lim_{n\to\infty} \frac{1}{1+p^n}$ und $\lim_{n\to\infty} \frac{p^n}{1+p^n}$ in \mathbb{R} und in \mathbb{Z}_p .
- d) Seien x und y ganze Zahlen. Finde eine Folge p-adischer Zahlen, die in \mathbb{R} gegen x und in \mathbb{Z}_p gegen y konvergiert.
- e) Gibt es in \mathbb{Z}_{13} eine Quadratwurzel aus -1?

Aufgabe 2. (3+m+3+1) Hensels Lemma

Sei A ein Ring. Sei $f \in A[X]$ ein Polynom, das modulo einem Ideal $\mathfrak a$ eine einfache Nullstelle besitzt: ein Element $x_1 \in A$ mit $f(x_1) \equiv 0$ modulo $\mathfrak a$, sodass es ein Element $y \in A$ mit $f'(x_1)y \equiv 1$ modulo $\mathfrak a$ gibt. Wir definieren für $n \geq 1$: $x_{n+1} := x_n - yf(x_n)$.

- a) Zeige für alle $n \ge 1$, dass $x_n \equiv x_m \pmod{\mathfrak{a}^m}$ für alle m < n und dass $f(x_n) \equiv 0 \pmod{\mathfrak{a}^n}$.
- b) Zeige, dass $(x_n)_n$ eine Cauchyfolge bezüglich der \mathfrak{a} -adischen Topologie ist.
- c) Sei A vollständig bezüglich dieser Topologie. Zeige, dass f eine Nullstelle in A besitzt.
- d) Unter welchem Namen ist das Konstruktionsverfahren für die x_n bekannt? Bewundere die Einheit der Mathematik.

Aufgabe 3. (2) Regularität unter Vervollständigung

Sei x ein reguläres Element in einem topologischen Ring A. Zeige, dass das Bild von x unter dem kanonischen Homomorphismus $A \to \hat{A}$ ebenfalls regulär ist.

Aufgabe 4. (m) Potenzreihenentwicklung der Quadratwurzel

Sei K ein Körper mit $2 \neq 0$. Zeige: Es gibt eine Potenzreihe $p \in K[X]$ mit $p^2 = 1 + X$.