Université de Bretagne-Sud

STA 2209 : Statistique Bayésienne

Problème 5 : Modèle de Pareto

Dans l'industrie deux types d'essais sont souvent mis en oeuvre pour étudier la fiabilité d'un équipement. Un premier type – essai de type I – consiste à observer les durées de fonctionnement de ces équipements pendant une période donnée, C. L'essai s'arrête au temps C et sur les n équipements mis en test, on enregistre les k équipements défaillants. Le second type d'essai – essai de type II – consiste à arrêter le test lorsqu'un nombre k fixé de pannes est survenu. Soit (X_1, X_2, \dots, X_n) , un n– échantillon d'observations de durées de fonctionnement.

Pour un essai de type I, on disposera donc de réalisations (x_1, \dots, x_k) de la durée de fonctionnement et pour les n-k durées restantes, la seule information disponible sera qu'elles sont supérieure à C.

Pour un essai de type II, on observera les k premières durées et les n-k restantes seront supérieures à $x_{(k)}$.

On suppose que X suit la loi de Pareto définie par :

$$f(x|m,\theta) = \frac{\theta m^{\theta}}{x^{\theta+1}} \, \, \mathbb{1}_{[m,+\infty[}(x) \,\,, \quad \theta > 1$$

- 1. Ecrire la vraisemblance pour les deux types d'essai en remarquant que la contribution à la vraisemblance des données censurés i.e X supérieures à C ou à la date de la $k^{\grave{e}me}$ panne, est P(X>C) ou $P(X>x_{(k)})$. On note $x_{(1)}\leq x_{(2)}\cdots\leq x_{(k)}$, les observations de durées ordonnées.
- 2. On note $S_k = \sum_{i=1}^k \log x_{(i)} + (n-k) \log x_{(k)}$.

Pour le type II, montrer que la vraisemblance est de la forme :

$$L(\nu, \theta|S_k) \propto \exp[-\theta(S_k - n\nu)], \ \nu < \log x_{(1)} \ avec \ \nu = \log m.$$

- 3. On se donne les lois a priori $\nu \sim \Gamma(a_1, b_1)$ et $\theta \sim \Gamma(a_2, b_2)$ $\mathbb{1}(\theta > 1)$. ν et θ sont supposés indépendants. Exprimer les lois a posteriori conditionnelles $\pi(\theta|\nu, S_k)$ et $\pi(\nu|\theta, S_k)$.
- 4. Décrire un algorithme pour générer des réalisations de la loi jointe : $\pi(\nu, \theta|S_k)$.
- 5. On considère maintenant une loi a priori uniforme sur \mathbb{R}^+ pour m et une loi Gamma de support $[1, +\infty[$ de paramètres (a_2, b_2) pour θ . Exprimer la loi a posteriori $\pi(\theta, m|S_k)$ et la loi conditionnelle de $\theta|\nu, S_k$.
- 6. Montrer que la loi de $m|\theta, S_k$ est une loi uniforme généralisée. On rappelle la densité d'une loi uniforme généralisée de paramètres (a, b, c):

$$f(t) = \frac{(a+1)t^a}{c^{a+1} - b^{a+1}} \, \, \mathbbm{1}_{[b,c]}(t) \,\,, \ \, a > 0.$$

7. Proposer un algorithme por générer des réalisations de la loi $\pi(\theta, m|S_k)$.

D'après R. C. Tiwari, Y. Yang, J. N. Zalkikar, "Bayes Estimation for the Pareto Failure-Model Using Gibbs Sampling", IEEE Transactions on Reliability, vol.45, 3, 1996.