Pigeon Hole: Hilbert's hotel paradox: make sure the function is bijective

Absolute functions are not one-to-one

 $\textbf{Impl} \ \text{breakout/contrapos:} \ p \ \rightarrow q \ \equiv \neg p \ \lor q \ \equiv \neg q \ \rightarrow \neg p$

The function is continuous and always increasing->one-to-one.

Strong induction: splitting something

Weak induction: everything else basically

For all functions: (if there is a point where the function is undefined, it is not a function)

 $\forall x \exists y [f(x)=y] \text{ is true}$

 $\exists x \in A \ \forall y \in B \ [f(x)=y]$ is false (this is saying there are multiple out to the same in)

For **surjectivity** (onto), we ask: "Does every output have at least one input?" $\forall y \exists x [f(x)=y]$

For **injectivity** (one-to-one), we ask: "Does every input have exactly one unique output?" $\forall x \exists y [f(x)=f(y)->x=y]$

Composition functions: if comp is bi, outside is onto and inside is one-to-one

Def. of mod: a=b+mk

If the total number of pigeons is even, there won't be leftovers, but highly likely it's odd and the middle number gets left out(still gets its own hole)-> Pigeons that don't work are still in holes

Injective (1-1) and Surjective (Onto) Proofs Red: assumption

Suppose that $f: A \to B$.

To show that f is injective Show that if f(x) = f(y) for arbitrary $x, y \in A$, then x = y.

To show that f is not injective Find particular elements $x, y \in A$ such that $x \neq y$ and f(x) = f(y).

To show that f is surjective Consider an arbitrary element $y \in B$ and find an element $x \in A$ such that f(x) = y.

To show that f is not surjective Find a particular $y \in B$ such that $f(x) \neq y$ for all $x \in A$.

If $f: A \to B$ is one-to-one,

If $a: B \to A$ is one-to-one.

To prove |A| = |B|:

Schroeder-Bernstein Theorem:

Ways to show $|A| \le |B|$

then $|A| \leq |B|$

then $|A| \geq |B|$

If $|A| \le |B|$ and $|B| \le |A|$, then |A| = |B|

Give a bijection $A \to B$, or a bijection $B \to A$, OR ** Easiest ** Give a one-to-one function $A \to B$ and a

one-to-one function $B \rightarrow A$

C Complex Imaginary

Proving onto

Let $b \in \mathbb{R}^+$ be arbitrary. Let $a = \frac{2}{b}$. Note b > 0 so $a \in \mathbb{R}^+$.

$$f(a) = f(2/b)$$

$$= \left| \frac{2}{2/b} \right|$$

$$= |b|$$

$$= b \qquad b > 0$$

Recurrence: nothing is One-to-one, Onto, and Cardinality

also one way If there are no restrictions on repeating, you can repeat

Guide for Induction Proofs

Ways to show $|B| \le |A|$

- Restate the claim you are trying to prove
- Base case: Prove the claim holds for the "first" value of n
 - Prove P(n₀) is true
- Inductive Step: Prove that P(k) → P(k + 1) for an arbitrary integer k in the desired range.
 - Let k be an arbitrary integer with k ≥ n₀
 - Assume P(k)
 - Show that P(k + 1) holds

Equivalently: Show $P(k-1) \rightarrow P(k)$

Conclusion: explain that you've proven the desired claim.

x-axis x-axis x-axis X: universe of discourse (unrestricted domain) "the function" (the "semi-computable" range) Ø. <Ø. Ø> <5, Ø> · Ø "effective <3, 0> computable range" or just domain "the range <2, e><4, e> "domain <1, u> of definition" computable" The "total function" is the set = $\{ <3,0>, <2,e>, <4,e> \}$

The "computable function" is the set = $\{ <3,0>, <2,e>, <4,e>, <1,u> \}$ The "partial function" is the set = $\{ <\emptyset,\emptyset>, <5,\emptyset>, <3,0>, <2,e>, <4,e>, <1,u> \}$

Function	Domai n	Codomai n	Injective (One-to- One)	Surjective (Onto)	Bijecti ve
$f(x)=x^2$	R	R	No	No	No
$f(x) = x^2$	\mathbb{R}^+	\mathbb{R}^+	Yes	Yes	Yes
$f(x)=x^2+1$	R	R	No	No	No
$f(x)=x^2+1$	R	\mathbb{R}^+	No	Yes	No
f(x)=31-x	R	R	Yes	Yes	Yes
f(x)=203x	R	R	Yes	Yes	Yes
$f(x)=203^x$	\mathbb{R}	\mathbb{R}^+	Yes	Yes	Yes
f(x)=2x+1	Z	\mathbb{Z}	Yes	No	No
$f(x) = \lfloor x \rfloor$	R	Z	No	Yes	No
f(x) = 3/(1 - x)	ℝ − {1}	R	Yes	No	No
f(x) = x	R	R	Yes	Yes	Yes
$f(x) = \log_{10}(x)$	\mathbb{R}^+	R	Yes	Yes	Yes
$f(x) = \ln(x)$	\mathbb{R}^{+}	R	Yes	Yes	Yes
$f(x) = \sin(x)$	R	R	No	No	No
$f(x) = \sin(x)$	$[0,\pi]$	[-1, 1]	Yes	Yes	Yes
$f(x) = \sin(x)x^2$	R	R	No	No	No

Guide for **Strong** Induction Proofs

Restate the claim you are trying to prove

Equivalently: Show $[P(n_0) \land P(n_0 + 1) \land \cdots \land P(k)] \rightarrow P(k + 1)$

value depends

Inductive Step: Prove that for an arbitrary integer k in the desired range,

 $[P(n_0) \land P(n_0+1) \land \cdots \land P(k-1)] \rightarrow P(k)$

- Let k be an arbitrary integer with $k \ge 1$
- Assume P(j) is true for all $n_o \le j \le k-1$
- Show that P(k) holds
- Base case(s): Prove the claim holds for the "first" value(s) of n
 - Prove P(n₀) is true
 - May also need to prove $P(n_0 + 1)$ and more, depending on the inductive step
- Conclusion: explain that you've proven the desired claim.