

CFD Lab: Final Project

3D Navier Stokes Code for Arbitrary Geometries

Norbert Schmidbartl, Wei Ni, Zhibin Cheng, Eva Breznik

Technische Universität München Fakultät für Informatik

July 16, 2015

Project Topic

- 3D Navier Stokes for arbitrary geometries
- (TO remove Free Surface flow, unless we wanna explain why we didn't do it at the beginning of presentation??)

Project Topic

3D Navier Stokes for arbitrary geometries

- To handle truly arbitrary scenarios, our code allows any of the following standard boundary conditions to be employed in any domain cell:
 - no slip
 - free slip
 - inflow
 - outflow
 - moving wall
- Therefore, even the obstacles inside the domain can have arbitrary boundaries, as opposed to only allowing that on the domain walls (as in worksheet 3).

3D Navier Stokes for arbitrary geometries

- Special numbering of cells when generating input pgm files
- Geometries represented by a grayscale image with 7 levels of brightness.

Cell type	Number code		
water	0		
air	1		
no-slip	2		
free-slip	3		
inflow	4		
outflow	5		
moving wall	6		

Lid driven cavity example case

...and its input pgm files

2	2	2	2
2	2	2	2
2	$\overline{2}$	$\overline{2}$	$\frac{2}{2}$
2	2	2	2
2 2 2 2 2 2 2 2 2 2 2 2	2	2	2
2	0	0	$\frac{2}{2}$
2	0	0	2
2	2	2	$\frac{2}{2}$
2	2	2	2
2	0	0	$\frac{2}{2}$
2	0	0	2
2	2	2	$\frac{2}{2}$
6	6	6	6
6	6	6	6
6	6	6	6
6	6	6	6

Boundary conditions

skip?

Theory

	Palabos	OpenLB	LBSim	SailFish	LB3D
Language	C++ (Java, Python)	C++	C++	Python	Fortran90
Visualiz.	ASCII, gif	vtk	OpenGL	numpy, vtk	XDR

Problems

blablablablalalablablalalalabla

Title Subtitle

- first
- second
 - second sub 1
 - second sub 2
- own third

Important: Something.

Parameters used for the simulation: alalalala

Results:

one | 5.217 s two | 6.999 s three | 5.522 s

Some links

Palabos

- Dam Break (free-surface flows): http://www.palabos.org/gallery/ multi-phase-free-surface-flow/23-dam-break
- Volcanic Eruption
 http://www.palabos.org/gallery/incompressible-isothermal-flow/22-volcanic-eruption
- Rayleigh-Taylor Instability: http://www.palabos.org/gallery/ incompressible-isothermal-flow/ 43-rayleigh-taylor-instability

Inflow through a pipe

- Geometry
- Streamlines

- Inflow through part of wall
- Outflow through pipe

Flow over step

• Streamlines

Flow over step

Particle paths

Flow across TUM :)

Streamlines

Flow across TUM :)

Particle paths

Conclusion and Further Development

- Conclusion
- Further Development
 - Free Surface flow
 - Parallelization