Sensors measurement analysis for Transport Mode Detection

Alessandro Giacchè, Paola Persico

University Alma Mater Studiorum of Bologna

May 1, 2021

Overview

- Introduction
- 2 Acquisition
- 3 Pre-processing
- 4 Modeling
- Implementation
- 6 Results

Introduction

- ullet Goal: Transport Mode Detection o multi-label classification
 - HAR for Context-Aware Systems
- Approach: Smartphone sensors analysis
- How: Machine Learning algorithms
 - SVM
 - Gaussian Naive Bayes
 - QDA
 - Random Forest
 - Feedforward Neural Network

Acquisition: Transportation Mode Detection Dataset

- 5,893 **samples**
- 64 features
 - 16 sensors sampling
 - 5 seconds window feature extraction
 - 4 stats per sensor
 - minimum
 - maximum
 - standard deviation
 - mean
- 5 classes

Acquisition: Distribution per feature

Acquisition: Missing values per feature

Pre-processing: Feature Selection

- 4 datasets
 - $D_0 \rightarrow$ **64 features** full dataset
 - $D_1 \rightarrow$ **46 features** features with less than 30% of *NaN*
 - $D_2 \rightarrow$ **40 features** removing:
 - light
 - gravity
 - magnetic field
 - pressure
 - proximity
 - $D_3 \rightarrow 16$ features keeping low-battery sensors:
 - gyroscope (calibrated and uncalibrated)
 - accelerometer
 - sound

Pre-processing

- ullet Missing values replacement o Median
- Normalization
 - Min-Max Scaling
 - Standardization
- Train-test splitting

Train Set Size	Validation Set Size	Test Set Size
72%	8%	20%

Modeling: Classic Models

- Gaussian Naive Bayes
- QDA
- Tuned Models:
 - SVM
 - kernel
 - C, γ, d
 - Random Forest
 - #TREES

Validation

Hyperparameters tuning and validation scoring are performed using a 10–fold cross–validation technique

Modeling: Feedforward Neural Network

- Architecture
 - 3 Hidden Layers
 - Activation function: ReLU + SoftMax
 - Loss function: Multi-class Cross Entropy
 - Optimizer: Stochastic Gradient Descent
 - Learning rate decay
 - Batch normalization
- \bullet Hyperparameters: hidden size, epochs, minibatch size and γ (decay rate)
- Hold-out validation

Implementation (1/2)

- Libraries
 - Pandas
 - Numpy
 - Scikit–learn
 - Pytorch
 - Matplotlib
 - Seaborn
 - Joblib

Implementation: Classic models CV

```
def run_crossvalidation(X_trainval, y_trainval, clf, params, cv=5,
    verbose=True):
    params["scaler"] = [StandardScaler(), MinMaxScaler()]
    pipeline = Pipeline([('scaler', StandardScaler()), ('clf', clf)])

    grid_search = GridSearchCV(pipeline, params, cv=cv, verbose=10 if verbose
    → else 0, n_jobs=16, return_train_score=True)
    grid_search.fit(X_trainval, y_trainval)

    return pd.DataFrame(grid_search.cv_results_), grid_search.best_estimator_
```

Implementation: MLP Validation

Results: Timing

- Fitting time
 - **1** Gaussian Naive Bayes, QDA \rightarrow <0.05s
 - 2 SVM, Random Forest \rightarrow 1-5s
- Prediction time
 - **1** Gaussian Naive Bayes, QDA \rightarrow <0.01s
 - 2 SVM \rightarrow 0.05s
 - 3 Random Forest \rightarrow 0.72-1.07s
 - **4** MLP \rightarrow 0.53-3.49s

Results: Validation

Validation accuracies per Dataset

Results: Testing (1/3)

Best Dataset: D₀

• Best model: Random Forest

• QDA: better performance in D_1

Results: Testing (2/3)

- Large AUC: Walking
- Small AUC: Car

ROC Curves per Model (Features Count: 64)

ODA

Results: Testing (3/3)

Confusion Matrices per Model (Features Count: 64)

Conclusions

- TMD task solvable through sensor analysis
- Further work: exploit feature importance
 - accelerometer
 - linear acceleration
 - speed

References

Luca Bedogni, Marco Di Felice, Luciano Bononi (2016)

Context-Aware Android Applications through Transportation Mode Detection Techniques

Claudia Carpineti, Vincenzo Lomonaco, Luca Bedogni, Marco Di Felice, Luciano Bononi (2018)

Custom Dual Transportation Mode Detection by Smartphone Devices Exploiting Sensor Diversity