8. Mátrixok

8.1. Legyenek adottak az A, B, C és D mátrixok a következőképpen:

$$A = \begin{pmatrix} 4 & -1 & 0 \\ 1 & 5 & -3 \end{pmatrix} \quad B = \begin{pmatrix} 0 & 3 & -2 \\ 1 & 1 & 4 \end{pmatrix} \quad C = \begin{pmatrix} 2 & -1 & 1 \\ -1 & 3 & 10 \\ 4 & 0 & 4 \end{pmatrix} \quad D = \begin{pmatrix} 1 \\ -2 \\ 7 \end{pmatrix}$$

Végezzük el az alábbi műveleteket, amennyiben lehetséges!

$$A + B$$
, $3A - 2B$, $A^{T} + B^{T}$, AD , CB , CD , $D^{T}D$, $AC + BC$, $(A + B)C$

8.2. Legven

$$v = \begin{pmatrix} 4 \\ -3 \end{pmatrix}, \quad w = \begin{pmatrix} 0 \\ -1 \end{pmatrix}, \quad A = \begin{pmatrix} -1 & 3 \\ 2 & -4 \end{pmatrix},$$
$$B = \begin{pmatrix} 4 & 2 \\ -2 & -3 \end{pmatrix}, \quad C = \begin{pmatrix} 2 & -3 \\ -3 & -5 \end{pmatrix}, \quad E = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

Számítsuk ki a következő kifejezések értékét!

$$v^T w$$
, $v w^T$, $A v$, $A w$ $A(u + v)$, $w^T A^T$, $A + B$, $(-2C)^T$, $2A - 3B$, $(A + B)^T$, AB , BA , $B^T A^T$, AE , EA , AC , $A(B + C)$, $C(A - 2B)$, $A^T A$, AA^T .

8.3. Legyen

$$v = \begin{pmatrix} -4 \\ -2 \\ 1 \end{pmatrix}, \quad w = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \quad A = \begin{pmatrix} -1 & 7 & -3 \\ 4 & 2 & 2 \\ -2 & 0 & 3 \end{pmatrix},$$

$$B = \begin{pmatrix} 1 & 5 & -1 \\ 2 & 0 & -6 \\ -3 & 3 & 4 \end{pmatrix}, \quad C = \begin{pmatrix} -4 & 2 & -3 \\ -3 & 1 & -5 \\ 0 & -2 & 2 \end{pmatrix}, \quad E = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Számítsuk ki a következő kifejezések értékét!

$$Av$$
, Aw $A(u+v)$, $w^{T}A^{T}$, $A+B$, $(-2C)^{T}$, $2A-3B$, $(A+B)^{T}$, AB , BA , $B^{T}A^{T}$, AE , EA , AC , $A(B+C)$, $C(A-2B)$, $A^{T}A$, AA^{T} .

8.4. Valaki egy adott napon kétféle müzliszeletet eszik, az I. típusúból x_1 , a II. típusúból x_2 darabot. A müzliszeletek egyes darabjainak cukor és fehérjetartalmát (grammban) a lenti táblázat tartalmazza:

Ha

$$A = \begin{pmatrix} 9 & 8 \\ 7 & 10 \end{pmatrix}, \quad x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix},$$

akkor mit adnak meg az y = Ax vektor koordinátái?

- **8.5.** Élőlények egy zárt populációjában az egyedek legfeljebb 3 évig élnek. Az egyedeknek az első évben nem keletkezik utódja, a másodéves egyedek esetén az átlagos reprodukciósszám 6, a harmadik éves egyedeknél 8. Az 1 és 2 éves egyedek 50 50%-a éli meg a következő évet. Ha az $x = (x_1, x_2, x_3)^T$ vektor koordinátái adják az 1, 2 és 3 éves egyedek számát egy adott évben, akkor adja meg azt az A mátrixot, mellyel y = Ax koordinátái a következő év egyedszámait adják. Mit ad meg az A^2x , illetve az A^5x vektor?
- **8.6.** December elején egy jótékonysági szervezet ajándékcsomagokat készít. Kétféle csomag készül, az egyikbe 3 gyümölcs és 3 csokoládé, a másikba 2 gyümölcs és 4 csokoládé kerül. Arra vagyunk kíváncsiak, hogy melyik csomagból mennyi készült, ha összesen 170 gyümölcsöt és 250 csokoládét használtak fel. Írja fel a megoldandó egyenletet mátrix-vektor alakban.
- 8.7. Számoljuk ki az alábbi mátrixok determinánsát a Sarrus-szabály segítségével.

(a)
$$\begin{pmatrix} 1 & 3 \\ 1 & -2 \end{pmatrix}$$
 (d) $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 9 \end{pmatrix}$

(b)
$$\begin{pmatrix} 5 & -2 \\ 2 & 1 \end{pmatrix}$$
 (e) $\begin{pmatrix} 2 & 0 & 0 \\ -5 & 1 & 2 \\ 3 & 8 & -7 \end{pmatrix}$

(c)
$$\begin{pmatrix} 2 & 1 \\ 4 & 2 \end{pmatrix}$$
 (f) $\begin{pmatrix} \cos \alpha & \sin \alpha & 0 \\ -\sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{pmatrix}$

8.8. Határozzuk meg az alábbi mátrixok inverzét, amennyiben létezik.

(a)
$$\begin{pmatrix} 4 & 3 \\ 7 & 5 \end{pmatrix}$$
 (c) $\begin{pmatrix} 3 & 1 \\ -1 & 2 \end{pmatrix}$ (e) $\begin{pmatrix} 6 & -3 \\ 4 & 2 \end{pmatrix}$

(b)
$$\begin{pmatrix} 2 & 3 \\ 2 & 2 \end{pmatrix}$$
 (d) $\begin{pmatrix} 6 & -2 \\ -3 & 1 \end{pmatrix}$ (f) $\begin{pmatrix} 5 & -2 \\ 4 & 1 \end{pmatrix}$

8.9. Számoljuk ki az alábbi mátrixok determinánsát kifejtési tétellel.

(a)
$$\begin{pmatrix} 2 & 0 & 0 \\ -5 & 1 & 2 \\ 3 & 8 & -7 \end{pmatrix}$$
 (b) $\begin{pmatrix} 2 & -1 & 1 \\ -5 & 1 & 2 \\ 3 & 0 & -5 \end{pmatrix}$ (c) $\begin{pmatrix} -2 & 2 & -1 & 2 \\ 0 & -3 & 0 & 5 \\ 3 & -2 & 4 & 1 \\ -4 & 3 & 0 & 1 \end{pmatrix}$