

Data Analysis and Integration

String matching

- Comparing the two databases
 - departments

- Comparing the two databases
 - job titles

- Applications of string matching in data integration
 - schema matching

- Applications of string matching in data integration
 - schema matching via data matching

String matching

String matching is based on measures

- -measures of distance between strings
 - lower is better, higher is worse
- -measures of similarity between strings
 - higher is better, lower is worse

Outline

- String matching measures
 - -sequence-based
 - -set-based
 - -phonetic

Sequence Based Metrics

Sequence-based measures

- Edit distance (Levenshtein)
- Damerau-Levenshtein distance
- Needleman-Wunsch measure
- -Jaro measure
- -Jaro-Winkler measure

View the strings as sequences of characters

- Number of changes to transform one string into another
 - if the character matches: no change
 - if the character does not match: mismatch or use gap

- Number of changes to transform one string into another
 - if the character matches: no change
 - if the character does not match: mismatch or use gap

- Number of changes to transform one string into another
 - if the character matches: no change
 - if the character does not match: mismatch or use gap

- Minimum number of changes to transform one string into another
 - corresponds to an optimal alignment

- Create a score matrix to find the best string alignment
 - edit distance is 4

		Α	u	S	t	r	i	a
	0	1	2	3	4	5	6	7
Α	1	0	1	2	3	4	5	6
u	2	1	0	1	2	3	4	5
t	3	2	1	1	1	2	3	4
r	4	3	2	2	2	1	2	3
i	5	4	3	3	3	2	1	2
С	6	5	4	4	4	3	2	2
h	7	6	5	5	5	4	3	3
e	8	7	6	6	6	5	4	4

Create a score matrix to find the best string alignment

Create a score matrix to find the best string alignment

Create a score matrix to find the best string alignment

- Create a score matrix to find the best string alignment
 - in each cell, choose minimum of 3 possibilities

- Create a score matrix to find the best string alignment
 - in each cell, choose minimum of 3 possibilities

- Create a score matrix to find the best string alignment
 - in each cell, choose minimum of 3 possibilities

Austria... A

- Create a score matrix to find the best string alignment
 - in each cell, choose minimum of 3 possibilities

Austria...
A ...

A____... Autriche...

- Create a score matrix to find the best string alignment
 - in each cell, choose minimum of 3 possibilities

		Α	u	S	t	r	i	a	
	0	1	2	3	4	5	6	7	Au (diagonally)
Α	1	0	1	2	3	4	5	6	Au Ochanges
u	2	1-	0						
t	3	2							Au_ (vertically)
r	4	3							A_u 2 changes
i	5	4							
С	6	5							A_u (horizontally)
h	7	6							Au_ 2 changes
e	8	7							

- Create a score matrix to find the best string alignment
 - in each cell, choose minimum of 3 possibilities

- Create a score matrix to find the best string alignment
 - in each cell, choose minimum of 3 possibilities

		Α	u	S	t	r	i	a
	0	1	2	3	4	5	6	7
Α	1	0	1	2	3	4	5	6
u	2	1	0	1	2	3	4	5
t	3	2	1					
r	4	3	-2					
i	5	4	- 3					
C	6	5_	4					
h	7	6	→Š					
е	8	7	-6					

Austria... Au<u>___</u>...

Au____... Autriche...

- Create a score matrix to find the best string alignment
 - in each cell, choose minimum of 3 possibilities

		Α	u	S	t	r	i	а	
	0	1	2	3	4		6	7	AUS (diagonally)
Α	1	0	1	2	3	4	5	6	Aut 1 change
u	2	1	0	1	2	3	4	5	A 116 (II)
t	3	2	1-	1					AUS (vertically) Au_t Au_t
r	4	3	2						Au_t
i	5	4	3						All S (bonizontal
С	6	5	4						Au_s (horizontal Aut_
h	7	6	5						Auc
e	8	7	6						

- Create a score matrix to find the best string alignment
 - in each cell, choose minimum of 3 possibilities

		Α	u	S	t	r	i	a	A 4
	0	1	2	3	4	5	6	7	Aust (diagonally)
Α	1	0	1	2	3	4	5	6	Au_t 1 change
u	2	1	0	1	2	3	4	5	Auct (
t	3	2			M 1				Aust_ (vertically) Au t 3 changes
r	4	3	2						Au c
i	5	4	3						Aust (horizontally)
С	6	5	4						Aut 2 changes
h	7	6	5						, (3, 5,
e	8	7	6						

- Create a score matrix to find the best string alignment
 - in each cell, choose minimum of 3 possibilities

		Α	u	S	t	r	i	a
	0	1	2	3	4	5	6	7
Α	1	0	1	2	3	4	5	6
u	2	1	0	1	2	3	4	5
t	3	2	1	1	1-	-2-	→ 3–	4
r	4	3	2					
i	5	4	3					
C	6	5	4					
h	7	6	5					
е	8	7	6					

Austria...
Au_t___...

- Create a score matrix to find the best string alignment
 - in each cell, choose minimum of 3 possibilities

		Α	u	S	t	r	i	a	
	0	1	2	3	4	5	6	7	Au_s (diagonally)
Α	1	0	1	2	3	4	5	6	Autr ^{2 changes}
u	2	1	0	1	2	3	4	5	
t	3	2	1	1	1	2	3	4	Aus_ (vertically)
r	4	3	2	-2					Autr 2 changes
i	5	4	3						
С	6	5	4						AuS (horizontally)
h	7	6	5						Autr_ 3 changes
e	8	7	6						

- Create a score matrix to find the best string alignment
 - in each cell, choose minimum of 3 possibilities

		Α	u	S	t	r	i	a
	0	1	2	3	4	5	6	7
Α	1	0	1	2	3	4	5	6
u	2	1	0	1	2	3	4	5
t	3	2	1	1	1	2	3	4
r	4	3	2	2				
i	5	4	3_	- 3				
С	6	5	4	4				
h	7	6	5_	→ 5				
е	8	7	6	-6				

- Create a score matrix to find the best string alignment
 - in each cell, choose minimum of 3 possibilities

		Α	u	S	t	r	i	a
	0	1	2	3	4	5	6	7
Α	1	0	1	2	3	4	5	6
u	2	1	0	1	2	3	4	5
t	3	2	1	1	1	2	3	4
r	4	3	2	2	- 2			
i	5	4	3	3	- 3			
C	6	5	4	4	4			
h	7	6	5	5	3 5			
е	8	7	6	6-	6			

- Create a score matrix to find the best string alignment
 - in each cell, choose minimum of 3 possibilities

		Α	u	S	t	r	i	а
	0	1	2	3	4	5	6	7
Α	1	0	1	2	3	4	5	6
u	2	1	0	1	2	3	4	5
t	3	2	1	1	1	2	3	4
r	4	3	2	2	2	1		
i	5	4	3	3	3			
С	6	5	4	4	4			
h	7	6	5	5	5			
е	8	7	6	6	6			

- Create a score matrix to find the best string alignment
 - in each cell, choose minimum of 3 possibilities

		Α	u	S	t	r	i	a
	0	1	2	3	4	5	6	7
Α	1	0	1	2	3	4	5	6
u	2	1	0	1	2	3	4	5
t	3	2	1	1	1	2	3	4
r	4	3	2	2	2	1-	-2-	3
i	5	4	3	3	3			
С	6	5	4	4	4			
h	7	6	5	5	5			
е	8	7	6	6	6			

- Create a score matrix to find the best string alignment
 - in each cell, choose minimum of 3 possibilities

		Α	u	S	t	r	i	a
	0	1	2	3	4	5	6	7
Α	1	0	1	2	3	4	5	6
u	2	1	0	1	2	3	4	5
t	3	2	1	1	1	2	3	4
r	4	3	2	2	2	1	2	3
i	5	4	3	3	3_	-2		
С	6	5	4	4	4	- 3		
h	7	6	5	5	5–	- 4		
e	8	7		6	6	→5		

- Create a score matrix to find the best string alignment
 - in each cell, choose minimum of 3 possibilities

		Α	u	S	t	r	i	а
	0	1	2	3	4	5	6	7
Α	1	0	1	2	3	4	5	6
u	2	1	0	1	2	3	4	5
t	3	2	1	1	1	2	3	4
r	4	3	2 3	2	2	1	2	3
i	5	4	3	3	3	2	1	
С	6	5	4	4	4	3		
h	7	6	5	5	5	4		
e	8	7	6	6	6	5		

- Create a score matrix to find the best string alignment
 - in each cell, choose minimum of 3 possibilities

		Α	u	S	t	r	i	a
	0	1	2	3	4	5	6	7
Α	1	0	1	2	3	4	5	6
u	2	1	0	1	2	3	4	5
t	3	2	1	1	1	2	3	4
r	4	3	2	2	2	1	2	3
i	5	4	3	3	3	2	1-	2
С	6	5	4	4	4	3		
h	7	6	5	5	5	4		
e	8	7	6	6	6	5		

- Create a score matrix to find the best string alignment
 - in each cell, choose minimum of 3 possibilities

		Α	u	S	t	r	i	а
	0	1	2	3	4	5	6	7
Α	1	0	1	2	3	4	5	6
u	2	1	0	1	2	3	4	5
						2		4
r	4					1		3
i	5	4	3	3	3	2	1	2
С	6	5	4	4	4	3-	- 2	
h	7	6	5	5	5	4	-}3	
е	8	7	6	6	6	5-	4	

- Create a score matrix to find the best string alignment
 - in each cell, choose minimum of 3 possibilities

		Α	u	S	t	r	i	a
	0	1	2	3	4	5	6	7
Α	1	0	1	2	3	4	5	6
u	2	1	0		2	3	4	5
t	3	2	1	1	1	2	3	4
r	4	3	2	2	2	1	2	3
i	5	4	3	3	3	2		2
С	6	5	4	4	4	3	•	2
h	7	6	5	5	5	4	3	
e	8	7	6	6	6	5	4	

- Create a score matrix to find the best string alignment
 - in each cell, choose minimum of 3 possibilities

		Α	u	S	t	r	i	а
	0	1	2	3	4	5	6	7
Α	1	0	1	2	3	4	5	6
u	2	1	0	1	2	3	4	5
t	3	2	1	1	1	2	3	4
r	4	3	2	2	2	1	2	3
i	5	4	3	3	3	2	1	2
С	6	5		4		3	2	2
h	7	6	5	5	5	4	3	3
e	8	7	6	6	6	5	4	

- Create a score matrix to find the best string alignment
 - in each cell, choose minimum of 3 possibilities

		Α	u	S	t	r	i	а
	0	1	2	3	4	5	6	7
Α	1	0	1	2	3	4	5	6
u	2	1	0	1	2	3	4	5
t	3	2	1	1	1	2	3	4
r	4	3	2	2	2	1	2	3
i	5	4	3	3	3	2	1	2
С	6	5	4	4	4	3	2	2
h	7	6	5	5	5	4	3 4	3
e	8	7	6	6	6	5	4	4

- Create a score matrix to find the best string alignment
 - edit distance is 4

		Α	u	S	t	r	i	а
	0	1	2	3	4	5	6	7
Α	1	0	1	2	3	4	5	6
u	2	1	0	1	2	3	4	5
t	3	2	1	1	1	2	3	4
r	4	3	2	2	2	1	2	3
i	5	4	3	3	3	2	1	2
C	6	5	4	4	4	3	2	2
h	7	6	5	5	5	4	3	3
е	8	7	6	6	6	5	4	4

- Create a score matrix to find the best string alignment
 - going backwards: there are 3 possible alignments

		Α	u	S	t	r	i	a
	0	1	2	3	4	5	6	7
Α	1	0	1	2	3	4	5	6
u	2	1	0	1	2	3	4	5
t	3	2	1	1	1	2	3	4
r	4	3	2	2	2	1	2	3
i	5	4	3	3	3	2	1	2
C	6	5	4	4	4	3	2	2
h	7	6	5	5	5	4	3	3
е	8	7	6	6	6	5	4	4

Austria__ Au triche

- Create a score matrix to find the best string alignment
 - going backwards: there are 3 possible alignments

			Α	u	S	t	r	i	а	Austria <u> </u>
		0	1	2	3	4	5	6	7	Au_triche
4	Α	1	0	1	2	3	4	5	6	
	u	2	1	0	1	2	3	4	5	Austri_a_
•	t	3	2	1	1	1	2	3	4	Au_triche
	r	4	3	2	2	2	1	2	3	
	i	5	4	3	3	3	2	1	2	
	C	6	5	4	4	4	3	2	2	
	h	7	6	5	5	5	4	3	3	
	e	8	7	6	6	6	5	4	4	

- Create a score matrix to find the best string alignment
 - going backwards: there are 3 possible alignments

		Α	u	S	t	r	i	a
	0	1	2	3	4	5	6	7
Α	1	0	1	2		4	5	6
u	2	1	0	1	2	3	4	5
t	3	2	1	1	1	2	3	4
r	4	3	2	2	2	1	2	3
i	5	4	3	3	3	2	1	2
С	6	5	4	4	4	3	2	2
h	7	6	5	5	5	4	3	3
е	8	7	6	6	6	5	4	4

Austria__ Au triche

Austri_a_ Au_triche

Austri__a Au_triche

- Recurrence equation
 - for two strings $\mathbf{x} = x_1 x_2 \cdots x_n$ and $\mathbf{y} = y_1 y_2 \cdots y_m$

$$d(i,j) = \min \begin{cases} \begin{cases} d(i-1,j-1) & if \quad x_i = y_j \\ d(i-1,j-1) + 1 & if \quad x_i \neq y_j \end{cases} \\ d(i-1,j) + 1 & \text{(vertically)} \\ d(i,j-1) + 1 & \text{(horizontally)} \end{cases}$$

- Recurrence equation
 - for two strings $\mathbf{x} = x_1 x_2 \cdots x_n$ and $\mathbf{y} = y_1 y_2 \cdots y_m$

$d(i,j) = min \begin{cases} d(i-1,j-1) & if \quad x_i = y_j \\ d(i-1,j-1) + 1 & if \quad x_i \neq y_j \\ d(i-1,j) + 1 \\ d(i,j-1) + 1 \end{cases}$

using a gap costs 1

Damerau-Levenshtein distance

- Similar to edit distance, but considers another type of change
 - mismatch
 - use gap
 - transposition between two adjacent characters

In the Levenshtein distance this would be 2 changes instead of 1

Damerau-Levenshtein distance

	Austria Autriche	Ireland Ierland	Dinamarca Danimarca	Chipre Cypern
Levenshtein	4	2	2	4
Damerau-Levenshtein	4	1	2	4

- Similar to edit distance but:
 - mismatch and gap have negative scores
 - match has zero or positive score
- Needleman-Wunsch is a similarity measure
 - the higher the score, the better
- Needleman-Wunsch is flexible
 - scores for match, mismatch and gap can be adjusted

Example

mismatch = -1 gap = -1 match = 0 mismatch = -1 gap = -1 match = 2

		Α	u	S	t	r	i	а
	0	-1	-2	-3	-4	-5	-6	-7
Α	-1	0	-1	-2	_	=	_	-6
u	-2	-1	0	-1	-2	-3	-4	-5
t	-3	-2	-1	-1	-1	-2	-3	-4
r	-4	-3	-2	-2	-2	-1	-2	-3
i	-5	-4	_	-3	_	_	-1	-2
С	-6	-5	-4	-4	-4	-3	-2	-2
h	-7	_	_	-5	_	-	-3	
e	-8	-7	-6	-6	-6	-5	-4	-4

		Α	u	S	t	r	i	а
	0	-1	-2	-3	-4	-5	-6	-7
Α	-1	2	1	0	-1	-2	-3	-4
u	-2	1	4	3	2	1	0	-1
t	-3	0	3	3	5	4	3	2
r	-4	-1	2	2	4	7	6	5
i	-5	-2	1	1	3	6	9	8
С	-6	-3	0	0	2	5	8	8
h	-7	-4	-1	-1	1	4	7	7
е	-8	-5	-2	-2	0	3	6	6

- Scores can also be configured on a per-letter basis
 - e.g. match A-A with higher score than T-T
 - e.g. mismatch A-C with lower score than A-E
- Such scores can be configured in a score matrix

- Example of score matrix
 - match between vowels (+2) and between consonants (+1)
 - mismatch between vowels (-2) and between consonants (-1)

```
      a
      b
      c
      d
      e
      f
      ...

      a
      +2
      -2
      -2
      -2
      -1
      -2
      ...

      b
      -2
      +1
      -1
      -2
      -1
      ...

      c
      -2
      -1
      +1
      -1
      -2
      -1
      ...

      d
      -2
      -1
      -1
      +1
      -2
      -1
      ...

      e
      -1
      -2
      -2
      +2
      -2
      ...

      f
      -2
      -1
      -1
      -1
      -2
      +1
      ...

      ...
      ...
      ...
      ...
      ...
      ...
      ...
```

- Recurrence equation
 - for two strings $\mathbf{x} = x_1 x_2 \cdots x_n$ and $\mathbf{y} = y_1 y_2 \cdots y_m$

Jaro measure

- Used to compare short strings, such as first/last names
- Main focus on common characters and transpositions
 - common character means $x_i = y_j$ and

$$\left|i-j\right| \leq \frac{\min\left\{\left|x\right|,\left|y\right|\right\}}{2}$$

(i.e. x_i and y_j must be equal and not too distant)

- compare sequence of common chars (should be equal unless there are transpositions)
- each mismatch counts as one transposition

Jaro measure

$$\left|i-j\right| \leq 3$$
Austria
 $\left| \right| ///$
Autriche
 $c=5$

$$|i-j| \le 3$$
Ireland
 $|X|$
Ierland
 $c = 7$

$$t = 2$$

Jaro measure

Formula

$$jaro(x,y) = \frac{1}{3} \left(\frac{c}{|x|} + \frac{c}{|y|} + \frac{c - \frac{t}{2}}{c} \right)$$

$$c = 5$$

$$t = 0$$

$$jaro \approx 0.78$$

Ireland | X | | | |

Ierland

$$c = 7$$

$$t = 2$$

$$jaro \approx 0.95$$

Dinamarca

Danimarca

$$c = 9$$

$$t = 2$$

$$jaro \approx 0.96$$

Chipre

Cypérn

$$c = 4$$

$$t = 2$$

 $jaro \approx 0.69$

Jaro-Winkler measure

A variant of Jaro for strings with a common prefix

- let PL be the prefix length
- let PW be the prefix weight (typically 0.1)

$$jarowinkler(x, y) = (1 - PL * PW) * jaro(x, y) + PL * PW$$

Jaro-Winkler measure

• Examples

	<u>Au</u> stria <u>Au</u> triche	<u>I</u> reland <u>I</u> erland	<u>D</u> inamarca <u>D</u> animarca	<u>C</u> hipre <u>C</u> ypern	Österreich Österrike
Jaro	0.78	0.95	0.96	0.69	0.85
Jaro- Winkler	0.82	0.96	0.97	0.72	0.91

Set Based Metrics

- This is a set-based measure based on n-grams (substrings with length n)
 - most common are 2-grams or bigrams

```
Austria {#A, Au, us, st, tr, ri, ia, a#}
Autriche {#A, Au, ut, tr, ri, ic, ch, he, e#}
```

In the two sets of bigrams above, there are bigrams in common

- Let B_x be the set of bigrams of string x
- Let B_v be the set of bigrams of string y

number of common bigrams (no duplicates)

number of all bigrams
(no duplicates)

set-based metric, and sets have no duplicates

$$jaccard(x, y) = \frac{4}{13} \approx 0.31$$

$$jaccard(x, y) = \frac{5}{11} \approx 0.45$$

Phonetic Metrics

Phonetic similarity measures

- Match strings based on their sound
 - -Soundex
 - Refined Soundex
 - -etc.

- This is a phonetic measure, used primarily to match surnames
 - Written in a different way, but sounding very similar
 - E.g. Meyer, Meier, Mire; Smith, Smithe, Smythe

The Soundex phonetic rules

- 1. Keep the first letter
- 2. Remove all occurrences of H and W
- 3. Replace each letter with a digit (table below)
- 4. Collapse any sequence of identical digits
- 5. Drop all non-digit letters (except first one)
- 6. Keep only four characters (pad with zero if needed)

BFPV	1
CGJKQSXZ	2
DT	3
L	4
MN	5
R	6

note: not every letter is included

Properties

- It is tuned to a particular language (American English)
 - variants have been developed for other languages
- Many false positives
 - Christopher (C623) vs. Christine (C623)
 - Ackermann (A265) vs. Azuron (A265)
- Some false negatives
 - Christian (C623) vs. Kristian (K623)
 - Shultz (S432) vs. Shulz (S420)

- Uses a different table (more groups)
- Has a group for vowels + H + W + Y
- No truncation to 4 characters
- First letter is kept and encoded as well

AEHIOUWY	0
ВР	1
FV	2
CKS	3
G J	4
QXZ	5
DT	6
L	7
MN	8
R	9

- Properties
 - Less false positives
 - Christopher (C3090360109) vs. Christine (C309036080)
 - Ackermann (A0309808) vs. Azuron (A050908)

- Other variants and improvements
 - Algorithms with more complex rules
 - Metaphone, Double Metaphone, etc.