บทที่ 2 Getting to know your data

-ขนาดของข้อมูลในแต่ละมิติ ประกอบด้วย 1 มิติ 2 มิติ และ 3 มิติ

ถ้าเป็น 4 มิติลักษณะก็จะเป็นรูปแบบ 3 มิติเรียงซ้อนๆกัน

| 1       |    |    |    |    |     | . 1  | 12   | 2  | 5  |
|---------|----|----|----|----|-----|------|------|----|----|
|         | 1  | 12 | 2  | 5  | 1   | 2    | 11   | 7  | 2  |
| 2       | 2  | 11 | 7  | 2  | : 2 | 1    | 15   | 9  | 3  |
| 1       | 1  | 15 | 9  | 3  | : 1 | 0    | 10   | 1  | -3 |
| 0       | 0  | 10 | 1  | -3 | : 0 | 0 -1 | 20   | 12 | -2 |
| -1      | -1 | 20 | 12 | -2 | ( . | 1    | 19   | 6  | -5 |
| 1       | 1  | 19 | 6  | -5 |     | 1    |      |    | -5 |
| 1<br>1D |    |    | 2D |    | 1   |      | 13 0 | -3 |    |
| ***     |    |    |    |    |     |      | 3D   |    |    |
|         |    |    |    |    |     |      | 3D   |    |    |

ตัวอย่างข้อมูลที่เป็นตารางตัวเลข เรียกว่า ด้าตาเซตหรือกลุ่มของข้อมูล

|          |             | Data        |             |             |     |
|----------|-------------|-------------|-------------|-------------|-----|
| 9        | Attribute 1 | Attribute 2 | Attribute 3 | Attribute 4 |     |
| Record 1 | 1           | 12          | 2 I         | 5           |     |
| Record 2 | 2           | 11          | 7           | 2           |     |
| Record 3 | 1           | 15          | 9           | 3           | .0  |
| Record 4 | 0           | 10          | 1           | -3          |     |
| Record 5 | -1          | 20          | 12          | -2          |     |
| Record 6 | 1           | 19          | 6           | -5          | - 0 |

จะใช้ database มาช่วยในการจัดเก็บข้อมูลที่ให้ซ์บซ้อนน้อยลง เพื่อประหยัดพื้นที่ในการจัดเก็บข้อมูล

|                |                  |        |            |          |             |             |        |     | Pv   | HIGH    |      |        |              |                |     |           |                |
|----------------|------------------|--------|------------|----------|-------------|-------------|--------|-----|------|---------|------|--------|--------------|----------------|-----|-----------|----------------|
| Relation       | al reco          | rds    |            |          |             |             |        |     |      | m1, (1) |      | WH.    |              | 311            | - 1 | Chy       |                |
| Delast         | !!               |        | 100        | Sept. 10 |             | and the     |        |     | -    | 0       | -    | Det_   | -            | ried           | 4   | 200000    | The Control of |
| Relati         | onal tal         | pies   | , n        | gni      | structi     | rred        |        |     | - 1- | ÷       | Ov   | Apr.   | -            | Car            | +   | Volume la | - sa estidar   |
| Data ma        | triv o           | g +    | HITT       | porie    | al matr     | iv cros     | eta    | hs  | -    | 6       | - 0  |        | Corte: No.   |                |     |           |                |
| Data IIIa      | LI IA, C.        | 5.4    | 1411       | ICH      | ai mati     | IA, CIUS    | a r.d. | 03  |      | 4       | Ter  | MAIL I | 1.7          | d) Artic       |     | From.     |                |
| 1              | 1000000          | No.    | fraction 6 | has.     | less   lets | tene:       |        |     | 0    |         | (REI |        |              |                | 397 | 101       |                |
|                | nen Spree Street |        | in te      | 2.00     | 120 1000    | 101.00      |        |     | - 6  | 00.00   | . 10 | utori. | $\mathbf{T}$ | No.            |     | Value     | Forc31         |
| Andrew Street  |                  | 144    | 100        | 1-0      | 400.00      | 100.00      |        |     |      | 215     | San  | Sity.  | -            | 185            | _   | 700000    |                |
| Sulface leaves | there            |        | 1,56       |          | 141.40      | 10.00       |        |     |      | 111     |      | Nigir  |              | THO            | 4   | 110000    | 1.6            |
| Amount the     |                  | 5.49   | 5.00       | _        | 10-91       | 100.000     |        |     | - 1- | 204     | Per  | graft. | -            | 100            | -   | 900       | 1              |
| Stange Ga      |                  | 1.0    | 114        | 10.00    | 100 (00.0)  | 10.00       |        |     | - 1- | 701     | -    | 40     |              | <del>THE</del> | -   | 1000d     | -              |
| Director State |                  |        | 1.74       | - 00     | 19-21       | Tel         |        |     | - 8- | 70      | _    | 44     | +            | 2901           | -   | 7000      | 100            |
| Trial          |                  | 11.01  | 7116       | 71-01    | 1000 1251 H | 196 (0)     |        |     | - [  | RF.     | 1/2  | de.    |              | Time           |     | 3000      | 1.1            |
|                |                  | 60.    |            |          |             | -           |        |     |      | 1       |      |        |              |                |     |           |                |
| Transact       | ion dat          | a      |            |          |             |             | -      | 14  |      | 12      |      | 4      | 16           | 12             | T   | 1         |                |
| 710 A          | MI .             |        |            |          |             |             |        | 1   | - 1  | 1.5     | 1    | ì      | 0.3          | 8.             | 1   | 1         |                |
| 1 2            | wit, Cake, 3     | 10     | _          |          |             |             |        | 1   |      |         |      |        |              |                |     |           |                |
| 2 B            | ew, Broad        |        | _          |          |             | Daniel A    | 1      |     | 4    | ,       | 1    | 4      |              | 3              |     | ,         |                |
| 3 2            | err, Coko, Da    | per. 3 | I ABID     |          |             |             | -      | -   |      | -       | -    | -      | -            | -              | 2   |           |                |
| 4 8            | er, Bress, D     | isper. | NE ER      |          |             | Decorate: 2 |        | Ψ.  |      | Y       | 10   |        | 9            | 2              |     | (5)       |                |
| 4 6            | skr. Daper.      | NEWS.  |            | _        |             | Discovery 2 | 0.     | 4.7 |      | 100     | 140  | 1.0    | -            |                | 4   | 140       |                |

จากรูปในตารางจะบอกรายละเอียด การเชื่อมต่อของข้อมูลต่อตาราง

ตัวอย่าง Data มราเป็นกราฟ (นอกจาดตาราง)



ตัวอย่าง Data ที่เป็นรูปภาพ/วิดีโอ(อาจมีการบอกพิกัดด้วย)



ตัวอย่าง data ที่เป็นรูปภาพในแต่ละวินาทีมาเชื่อมต่อเป็นวิดีโอ เช่น ข้อมูลราคาหุ้น DNA



### คุณสมบัติต่างๆ

| Z Dimensionality                            |  |
|---------------------------------------------|--|
| □ Dimensionality                            |  |
| <ul> <li>Curse of dimensionality</li> </ul> |  |
| □ Sparsity                                  |  |
| Only presence counts                        |  |
| □ Resolution                                |  |
| Patterns depend on the scale                |  |
| □ Distribution                              |  |
| Centrality and dispersion                   |  |

|   | Data Objects                                                            |
|---|-------------------------------------------------------------------------|
| 0 | Data sets are made up of data objects                                   |
| 0 | A data object represents an entity                                      |
| 0 | Examples:                                                               |
|   | sales database: customers, store items, sales                           |
|   | medical database: patients, treatments                                  |
|   | university database: students, professors, courses                      |
|   | Also called samples , examples, instances, data points, objects, tuples |
| 0 | Data objects are described by attributes                                |
| 0 | Database rows → data objects; columns → attributes                      |

# ชนิดของข้อมูล

# Attributes Attribute (or dimensions, features, variables) A data field, representing a characteristic or feature of a data object. E.g., customer\_ID, name, address Types: Nominal (e.g., red, blue) Binary (e.g., {true, false}) Ordinal (e.g., {freshman, sophomore, junior, senior}) Numeric: quantitative Interval-scaled: 100°C is interval scales Ratio-scaled: 100°K is ratio scaled since it is twice as high as 50 °K Q1: Is student ID a nominal, or dinal, or interval-scaled data? Q2: What about eye color? Or color in the color spectrum of physics?

### รายละเอียด เพิ่มเติม



0 แท้ และ 0 ไม่แท้ คืออะไร

0 (ศูนย์) แท้ เช่น น้ำหนัก ความสูง อายุ เป็นต้น

ศูนย์ของข้อมูลระดับนี้ไม่ได้หมายความว่าไม่มี แต่เป็นศูนย์ที่เกิดจากการสมมติขึ้น เช่น การวัดอุณหภูมิ 0 องศา เซลเซียสไม่ได้หมายความว่าไม่มีอุณหภูมิ

|           | Numeric Attribute Types                                                                                                                          |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| □ Quanti  | ty (integer or real-valued)                                                                                                                      |
| ☐ Interva | al .                                                                                                                                             |
| 0         | Measured on a scale of equal-sized units                                                                                                         |
|           | Values have order                                                                                                                                |
|           | □ E.g., temperature in C*or F*, calendar dates                                                                                                   |
| 0         | No true zero-point                                                                                                                               |
| □ Ratio   |                                                                                                                                                  |
| 0         | Inherent zero-point                                                                                                                              |
| 0         | We can speak of values as being an order of magnitude larger than the unit of measurement (10 K $^{\circ}$ is twice as high as 5 K $^{\circ}$ ). |
|           | e.g., temperature in Kelvin, length, counts, monetary quantities                                                                                 |



การใช้สถิติมาอธิบาย Data เบื้องต้น เพื่อให้เข้าใจมากขึ้น

เช่น คนไทย ห้องนี้อายุ 20ปี (ใช้ฐานนิยม)

ค่ากลาง ได้แก่ ค่าเฉลี่ย มัฐยฐาน และฐานนิยม

# Chapter 2. Getting to Know Your Data

- Data Objects and Attribute Types
- Basic Statistical Descriptions of Data



- Data Visualization
- Measuring Data Similarity and Dissimilarity
- Summary

# **Basic Statistical Descriptions of Data**

- Motivation
- □ To better understand the data: central tendency, variation and spread
- Data dispersion characteristics
- Median, max, min, quantiles, outliers, variance, ...
- Numerical dimensions correspond to sorted intervals
- Data dispersion:
- Analyzed with multiple granularities of precision
- Boxplot or quantile analysis on sorted intervals
- Dispersion analysis on computed measures
- Folding measures into numerical dimensions
- Boxplot or quantile analysis on the transformed cube

18