

Project				Job Ref.		
Section				Sheet no./rev.		
Calc. by	Date 5/28/2024	Chk'd by	Date	App'd by	Date	

PAD FOOTING ANALYSIS AND DESIGN (BS8110-1:1997)

Tedds calculation version 2.0.07

Pad footing details

Length of pad footing L = 2900 mm Width of pad footing B = 500 mm

Area of pad footing $A = L \times B = 1.450 \text{ m}^2$

Depth of pad footing h = 500 mm Depth of soil over pad footing $h_{\text{soil}} = \textbf{0} \text{ mm}$

Density of concrete $\rho_{conc} = 25.0 \text{ kN/m}^3$

Column detailsColumn AColumn BColumn base length $I_A = 300 \text{ mm}$ $I_B = 300 \text{ mm}$ Column base width $b_A = 300 \text{ mm}$ $b_B = 300 \text{ mm}$ Column eccentricity in x $e_{PxA} = 1133 \text{ mm}$ $e_{PxB} = -1133 \text{ mm}$ Column eccentricity in y $e_{PyA} = -25 \text{ mm}$ $e_{PyB} = -25 \text{ mm}$

Soil details

 $\begin{array}{ll} \text{Density of soil} & \rho_{\text{soil}} = 17.0 \text{ kN/m}^3 \\ \text{Design shear strength} & \phi' = 33.0 \text{ deg} \\ \text{Design base friction} & \delta = 25.0 \text{ deg} \\ \text{Allowable bearing pressure} & P_{\text{bearing}} = 100 \text{ kN/m}^2 \end{array}$

Axial loading on columns	Column A	Column B	
Dead axial load on column	$P_{GA} = 55.0 \text{ kN}$	$P_{GB} = 55.0 \text{ kN}$	
Imposed axial load on column	PQA = 0.0 kN	$P_{QB} = 0.0 \text{ kN}$	
Wind axial load on column	PwA = 0.0 kN	$P_{WB} = 0.0 \text{ kN}$	
Total axial load on column	Pa = 55.0 kN	Рв = 55.0 kN	

Foundation loads

Dead surcharge load $F_{\text{Gsur}} = \textbf{0.000} \text{ kN/m}^2$ Imposed surcharge load $F_{\text{Qsur}} = \textbf{0.000} \text{ kN/m}^2$

Pad footing self weight $F_{\text{swt}} = h \times \rho_{\text{conc}} = \textbf{12.500} \text{ kN/m}^2$ Soil self weight $F_{\text{soil}} = h_{\text{soil}} \times \rho_{\text{soil}} = \textbf{0.000} \text{ kN/m}^2$

Total foundation load $F = A \times (F_{Gsur} + F_{Qsur} + F_{swt} + F_{soil}) = 18.1 \text{ kN}$

Horizontal loading on column bases	Column A	Column B
Dead horizontal load in x direction	$H_{GxA} = 0.0 \text{ kN}$	$H_{GxB} = 0.0 \text{ kN}$
Imposed horizontal load in x direction	$H_{QxA} = 0.0 \text{ kN}$	$H_{QxB} = 0.0 \text{ kN}$
Wind horizontal load in x direction	HwxA = -4.5 kN	HwxB = 4.5 kN
Total horizontal load in x direction	$H_{xA} = -4.5 \text{ kN}$	$H_{xB} = 4.5 \text{ kN}$

Tekla , Tedds	Project				Job Ref.		
	Section				Sheet no./rev.		
	Calc. by	Date 5/28/2024	Chk'd by	Date	App'd by	Date	
Dead horizontal load in y direction		H _{GyA} = 0.0 kN		H _{GyB} = (0.0 kN		
Imposed horizontal load in y direct	ion	$H_{QyA} = 0.0 \text{ kN}$		$H_{QyB} = 0$	0.0 kN		
Wind horizontal load in y direction		$H_{WyA} = 2.5 \text{ kN}$		HwyB = 1	2.5 kN		
Total horizontal load in y direction		$H_{yA} = 2.5 \text{ kN}$		$H_{yB} = 2$. 5 kN		
Check stability against sliding Resistance to sliding due to base to	friction						
					soil) \times A], 0 kN) \times	$tan(\delta) = 59.7 k$	
Passive pressure coefficient		$K_p = (1 + \sin(\phi))$)) / (1 - sin(φ')) = 3.392			
Stability against sliding in y dire	ection						
Passive resistance of soil in y direct	ction	$H_{ypas} = 0.5 \times K_{F}$	\times (h ² + 2 \times h	\times h _{soil}) \times L \times ρ	soil = 20.9 kN		
Total resistance to sliding in y dire	ction	$H_{yres} = H_{friction} +$	$H_{ypas} = 80.6 \text{ k}$	ί N			
		PASS - Resistance	e to sliding	is greater thar	n horizontal loa	d in y directio	
Check stability against overturn	ing in y dire	ction					
Total overturning moment		$M_{yOT} = M_{yA} + M$	ув + (Н уА + Н у	в) × h = 2.500 l	kNm		
Restoring moment in y direction	1						
Foundation loading		$M_{ysur} = A \times (F_{G_s})$	sur + Fswt + Fso	ii) × B / 2 = 4.5	31 kNm		
Axial loading on column		$M_{yaxial} = (P_{GA}) \times$	(B / 2 - e _{PyA})	+ (PgB) × (B / 2	2 - e _{РуВ}) = 30.25	0 kNm	
Total restoring moment		Myres = Mysur + N	Myres = Mysur + Myaxial = 34.781 kNm				
	PAS	SS - Overturning sa	ety factor ex	ceeds the mir	nimum of 1.5 ir	the y directio	
Calculate pad base reaction							
Total base reaction		$T = F + P_A + P_B$	s = 128.1 kN				
Eccentricity of base reaction in x		$e_{Tx} = (P_A \times e_{PxA})$	+ P _B × e _{PxB} +	· МхА + МхВ + (Н	$H_{xA} + H_{xB} \times h$ /	T = 0 mm	
Eccentricity of base reaction in y		$e_{Ty} = (P_A \times e_{PyA})$	+ P _B × e _{PyB} +	MyA + MyB + (H	$H_{yA} + H_{yB}) \times h) /$	T = -2 mm	
Check pad base reaction eccent	ricity						
•		abs(e⊤x) / L + a	bs(e _{Ty}) / B = (0.004			
			Ва	ise reaction a	cts within midd	lle third of bas	
Calculate pad base pressures							
		$q_1 = T / A - 6 \times$	T × e _{Tx} / (L ×	A) - 6 × T × ету	$_{1}/(B \times A) = 90.4$	31 kN/m ²	
					- //D A\ 00		
		$q_2 = T / A - 6 \times$	$T \times e_{Tx} / (L \times$	A) + $6 \times T \times e_T$	$\text{ by } / \text{ (D } \times \text{A)} = \textbf{00}.$	293 kN/m²	
		-	•	•	$\operatorname{fy}/\left(B\timesA\right)=66.$ $\operatorname{fy}/\left(B\timesA\right)=90.$		
		$q_3 = T / A + 6 \times$	T × e _{Tx} / (L ×	A) - 6 × T × e _T		431 kN/m ²	
Minimum base pressure		$q_3 = T / A + 6 \times$	$T \times e_{Tx} / (L \times T \times e_{Tx} / (L \times T \times e_{Tx} / (L \times E_{Tx} / E_{Tx} / E_{Tx} / E_{Tx})$	A) - $6 \times T \times e_T$ A) + $6 \times T \times e_T$	$T_y / (B \times A) = 90.$	431 kN/m ²	
Minimum base pressure Maximum base pressure		$q_3 = T / A + 6 \times q_4 = T / A + 6 \times q_5 = T / $	$T \times e_{Tx} / (L \times T \times e_{Tx} / (L \times 2, q_3, q_4) = 86$	A) - 6 × T × e _T A) + 6 × T × e _T 2.293 kN/m ²	$T_y / (B \times A) = 90.$	431 kN/m ²	
•		$q_3 = T / A + 6 \times$ $q_4 = T / A + 6 \times$ $q_{min} = min(q_1, q_2)$	$T \times e_{Tx} / (L \times T \times e_{Tx} / (L \times 2, q_3, q_4) = 86$ $q_2, q_3, q_4) = 9$	A) - $6 \times T \times e_T$ A) + $6 \times T \times e_T$.293 kN/m ² 0.431 kN/m ²	$f_y / (B \times A) = 90.$ $f_y / (B \times A) = 86.$	431 kN/m ² 293 kN/m ²	
•		$q_3 = T / A + 6 \times q_4 = T / A + 6 \times q_{min} = min(q_1, q_1, q_2, q_3)$ $q_{max} = max(q_1, q_3, q_3)$	$T \times e_{Tx} / (L \times T \times e_{Tx} / (L \times 2, q_3, q_4) = 86$ $q_2, q_3, q_4) = 9$	A) - $6 \times T \times e_T$ A) + $6 \times T \times e_T$.293 kN/m ² 0.431 kN/m ²	$f_y / (B \times A) = 90.$ $f_y / (B \times A) = 86.$	431 kN/m ² 293 kN/m ²	
Maximum base pressure		$q_3 = T / A + 6 \times q_4 = T / A + 6 \times q_{min} = min(q_1, q_1, q_2, q_3)$ $q_{max} = max(q_1, q_3, q_3)$	$T \times e_{Tx} / (L \times T \times e_{Tx} / (L \times 2, q_3, q_4) = 86$ $q_2, q_3, q_4) = 9$	A) - $6 \times T \times e_T$ A) + $6 \times T \times e_T$.293 kN/m ² 0.431 kN/m ²	Ty / (B × A) = 90. Ty / (B × A) = 86 an allowable be	431 kN/m ² 293 kN/m ²	
Maximum base pressure		$q_3 = T / A + 6 \times q_4 = T / A + 6 \times q_{min} = min(q_1, q_1, q_2, q_3)$ $q_{max} = max(q_1, q_3, q_3)$	$T \times e_{Tx} / (L \times T \times e_{Tx} / (L \times 2, q_3, q_4) = 86$ $q_2, q_3, q_4) = 9$	A) - $6 \times T \times e_T$ A) + $6 \times T \times e_T$.293 kN/m ² 0.431 kN/m ²	Ty / (B × A) = 90. Ty / (B × A) = 86 an allowable be	431 kN/m ² 293 kN/m ²	

90.4 kN/m²

90.4 kN/m²

Project	oct				Job Ref.	
Section				Sheet no./rev.		
Calc. by	Date 5/28/2024	Chk'd by	Date	App'd by	Date	

Partial safety factors for loads

Partial safety factor for dead loads $\gamma_{\text{FG}} = \textbf{1.40}$ Partial safety factor for imposed loads $\gamma_{\text{FQ}} = \textbf{1.60}$ Partial safety factor for wind loads $\gamma_{\text{FW}} = \textbf{0.00}$

Ultimate axial loading on columns

Ultimate axial load on column A $P_{UA} = P_{GA} \times \gamma_{fG} + P_{QA} \times \gamma_{fQ} + P_{WA} \times \gamma_{fW} = \textbf{77.0 kN}$ Ultimate axial load on column B $P_{UB} = P_{GB} \times \gamma_{fG} + P_{QB} \times \gamma_{fQ} + P_{WB} \times \gamma_{fW} = \textbf{77.0 kN}$

Ultimate foundation loads

Ultimate foundation load $F_u = A \times [(F_{Gsur} + F_{swt} + F_{soil}) \times \gamma_{fG} + F_{Qsur} \times \gamma_{fQ}] = 25.4 \text{ kN}$

Ultimate horizontal loading on column A

Ultimate horizontal load in x direction $H_{xuA} = H_{GxA} \times \gamma_{fG} + H_{QxA} \times \gamma_{fQ} + H_{wxA} \times \gamma_{fW} = \textbf{0.0 kN}$ Ultimate horizontal load in y direction $H_{yuA} = H_{GyA} \times \gamma_{fG} + H_{QyA} \times \gamma_{fQ} + H_{wyA} \times \gamma_{fW} = \textbf{0.0 kN}$

Ultimate horizontal loading on column B

Ultimate horizontal load in x direction $H_{\text{xuB}} = H_{\text{GxB}} \times \gamma_{\text{fG}} + H_{\text{QxB}} \times \gamma_{\text{fQ}} + H_{\text{wxB}} \times \gamma_{\text{fW}} = \textbf{0.0 kN}$ Ultimate horizontal load in y direction $H_{\text{yuB}} = H_{\text{GyB}} \times \gamma_{\text{fG}} + H_{\text{QyB}} \times \gamma_{\text{fQ}} + H_{\text{wxB}} \times \gamma_{\text{fW}} = \textbf{0.0 kN}$

Ultimate moment on column A

Ultimate moment on column in x direction $M_{XUA} = M_{GXA} \times \gamma_{fG} + M_{QXA} \times \gamma_{fQ} + M_{WXA} \times \gamma_{fW} = \textbf{0.000 kNm}$ Ultimate moment on column in y direction $M_{YUA} = M_{GYA} \times \gamma_{fG} + M_{QYA} \times \gamma_{fQ} + M_{WYA} \times \gamma_{fW} = \textbf{0.000 kNm}$

Ultimate moment on column B

Ultimate moment on column in x direction $M_{\text{XuB}} = M_{\text{GxB}} \times \gamma_{\text{fG}} + M_{\text{QxB}} \times \gamma_{\text{fQ}} + M_{\text{WxB}} \times \gamma_{\text{fW}} = \textbf{0.000} \text{ kNm}$ Ultimate moment on column in y direction $M_{\text{yuB}} = M_{\text{GyB}} \times \gamma_{\text{fG}} + M_{\text{QyB}} \times \gamma_{\text{fQ}} + M_{\text{WyB}} \times \gamma_{\text{fW}} = \textbf{0.000} \text{ kNm}$

Calculate ultimate pad base reaction

Ultimate base reaction $T_u = F_u + P_{uA} + P_{uB} = 179.4 \text{ kN}$

Eccentricity of ultimate base reaction in x $e_{Txu} = (P_{uA} \times e_{PxA} + P_{uB} \times e_{PxB} + M_{xuA} + M_{xuB} + (H_{xuA} + H_{xuB}) \times h)/T_u = \mathbf{0} \text{ mm}$ Eccentricity of ultimate base reaction in y $e_{Tyu} = (P_{uA} \times e_{PyA} + P_{uB} \times e_{PyB} + M_{yuA} + M_{yuB} + (H_{yuA} + H_{yuB}) \times h)/T_u = \mathbf{-21} \text{ mm}$

Calculate ultimate pad base pressures

$$\begin{split} q_{1u} &= T_u/A - 6 \times T_u \times e_{Txu}/(L \times A) - 6 \times T_u \times e_{Tyu}/(B \times A) = \textbf{155.569 kN/}m^2 \\ q_{2u} &= T_u/A - 6 \times T_u \times e_{Txu}/(L \times A) + 6 \times T_u \times e_{Tyu}/(B \times A) = \textbf{91.845 kN/}m^2 \\ q_{3u} &= T_u/A + 6 \times T_u \times e_{Txu}/(L \times A) - 6 \times T_u \times e_{Tyu}/(B \times A) = \textbf{155.569 kN/}m^2 \\ q_{4u} &= T_u/A + 6 \times T_u \times e_{Txu}/(L \times A) + 6 \times T_u \times e_{Tyu}/(B \times A) = \textbf{91.845 kN/}m^2 \end{split}$$

Minimum ultimate base pressure $q_{minu} = min(q_{1u}, q_{2u}, q_{3u}, q_{4u}) = \textbf{91.845 kN/m}^2$ Maximum ultimate base pressure $q_{maxu} = max(q_{1u}, q_{2u}, q_{3u}, q_{4u}) = \textbf{155.569 kN/m}^2$

Calculate rate of change of base pressure in x direction

Left hand base reaction $f_{uL} = (q_{1u} + q_{2u}) \times B / 2 = \textbf{61.853 kN/m}$ Right hand base reaction $f_{uR} = (q_{3u} + q_{4u}) \times B / 2 = \textbf{61.853 kN/m}$

Length of base reaction $L_x = L = 2900 \text{ mm}$

Rate of change of base pressure $C_x = (f_{UR} - f_{UL}) / L_x = 0.000 \text{ kN/m/m}$

Calculate pad lengths in x direction

Left hand length $L_L = L / 2 + min(e_{PXA}, e_{PXB}) = 317 \text{ mm}$

Middle length $L_M = max(e_{PxA}, e_{PxB}) - min(e_{PxA}, e_{PxB}) = 2266 \text{ mm}$

Right hand length $L_R = L/2 - max(e_{PxA}, e_{PxB}) = 317 \text{ mm}$

Calculate shear forces in x direction

Shear at left hand column $S_L = f_{UL} \times L_L + C_X \times L_L^2 / 2 - F_U \times L_L / L = 16.834 \text{ kN}$

Shear at right hand column $S_R = \int_{UL} \times (L_L + L_M) + C_X \times (L_L + L_M)^2 / 2 - P_{UB} - F_U \times (L_L + L_M) / L = 60.166$

kΝ

Calculate ultimate moments in x direction

Ultimate positive moment in x direction $M_x = f_{uL} \times L_L^2 / 2 + C_x \times L_L^3 / 6 - F_u \times L_L^2 / (2 \times L) = 2.668 \text{ kNm}$

5/28/2024

Position of maximum negative moment $L_z = 1450 \text{ mm}$

Ultimate negative moment in x direction $M_{xneg} = f_{uL} \times L_{z^2} / 2 + C_x \times L_{z^3} / 6 - P_{uB} \times (L_z - L_L) - F_u \times L_{z^2} / (2 \times L) + H_{xuB} \times (L_z - L_L) + H_{x$

h + M_{xuB}

 $M_{xneg} = -31.416 \text{ kNm}$

Calculate rate of change of base pressure in y direction

Top edge base reaction $f_{uT} = (q_{2u} + q_{4u}) \times L / 2 = 266.350 \text{ kN/m}$ Bottom edge base reaction $f_{uB} = (q_{1u} + q_{3u}) \times L / 2 = 451.150 \text{ kN/m}$

Length of base reaction $L_y = B = 500 \text{ mm}$

Rate of change of base pressure $C_y = (f_{uB} - f_{uT}) / L_y = 369.600 \text{ kN/m/m}$

Calculate pad lengths in y direction

Top length $L_T = B / 2 - e_{PyA} = 275 \text{ mm}$ Bottom length $L_B = B / 2 + e_{PyA} = 225 \text{ mm}$

Calculate ultimate moments in y direction

Ultimate moment in y direction $M_y = f_u \tau \times L \tau^2 / 2 + C_y \times L \tau^3 / 6 - F_u \times L \tau^2 / (2 \times B) = \textbf{9.433 kNm}$

Material details

 $\begin{array}{ll} \text{Characteristic strength of concrete} & f_{\text{cu}} = \textbf{30} \text{ N/mm}^2 \\ \text{Characteristic strength of reinforcement} & f_{\text{y}} = \textbf{500} \text{ N/mm}^2 \\ \text{Characteristic strength of shear reinforcement} & f_{\text{yv}} = \textbf{500} \text{ N/mm}^2 \\ \text{Nominal cover to reinforcement} & c_{\text{nom}} = \textbf{30} \text{ mm} \\ \end{array}$

Moment design in x direction

Diameter of tension reinforcement $\phi_{XB} = 16 \text{ mm}$

Depth of tension reinforcement $d_x = h - c_{nom} - \phi_{xB} / 2 = 462 \text{ mm}$

Design formula for rectangular beams (cl 3.4.4.4)

 $K_x = M_x / (B \times d_x^2 \times f_{cu}) = \textbf{0.001}$

 $K_x' = 0.156$

 $K_x < K_{x'}$ compression reinforcement is not required

Lever arm $z_x = d_x \times min([0.5 + \sqrt{(0.25 - K_x / 0.9)}], 0.95) = 439 \text{ mm}$

Area of tension reinforcement required $A_{s_x_req} = M_x / (0.87 \times f_y \times z_x) = 14 \text{ mm}^2$ Minimum area of tension reinforcement $A_{s_x_min} = 0.0013 \times B \times h = 325 \text{ mm}^2$ Tension reinforcement provided 5 No. 16 dia. bars bottom (100 centres)

Area of tension reinforcement provided $A_{s_xB_prov} = N_xB \times \pi \times \phi_xB^2 / 4 = 1005 \text{ mm}^2$

PASS - Tension reinforcement provided exceeds tension reinforcement required

Negative moment design in x direction

Diameter of tension reinforcement $\phi_{xT} = 16 \text{ mm}$

Depth of tension reinforcement

 $d_x = h - c_{nom} - \phi_{xT} / 2 = 462 \text{ mm}$

Design formula for rectangular beams (cl 3.4.4.4)

 $K_x = -M_{xneg} / (B \times d_x^2 \times f_{cu}) = 0.010$

 $K_{x}' = 0.156$

 $K_x < K_x'$ compression reinforcement is not required

Lever arm $z_x = d_x \times min([0.5 + \sqrt{0.25 - K_x / 0.9}], 0.95) = 439 \text{ mm}$

Area of tension reinforcement required $A_{s_x_{req}} = -M_{xneg} / (0.87 \times f_y \times z_x) = 165 \text{ mm}^2$

Minimum area of tension reinforcement $A_{s_x_min} = 0.0013 \times B \times h = 325 \text{ mm}^2$ Tension reinforcement provided **5 No. 16 dia. bars top (100 centres)** Area of tension reinforcement provided $A_{s_xT_prov} = N_{xT} \times \pi \times \phi_{xT}^2 / 4 = 1005 \text{ mm}^2$

PASS - Tension reinforcement provided exceeds tension reinforcement required

Moment design in y direction

Diameter of tension reinforcement $\phi_{yB} = 16 \text{ mm}$

Depth of tension reinforcement $d_y = h - c_{nom} - \phi_{xB} - \phi_{yB} / 2 = 446 \text{ mm}$

Design formula for rectangular beams (cl 3.4.4.4)

 $K_y = M_y / (L \times d_y^2 \times f_{cu}) = 0.001$

 $K_{v}' = 0.156$

K_y < K_y' compression reinforcement is not required

Lever arm $z_y = d_y \times min([0.5 + \sqrt{(0.25 - K_y / 0.9)}], 0.95) = 424 \text{ mm}$

Area of tension reinforcement required $A_{s_y_req} = M_y / (0.87 \times f_y \times z_y) = 51 \text{ mm}^2$ Minimum area of tension reinforcement $A_{s_y_min} = 0.0013 \times L \times h = 1885 \text{ mm}^2$ Tension reinforcement provided 23 No. 16 dia. bars bottom (125 centres)

Area of tension reinforcement provided $A_{S_yB_prov} = N_{yB} \times \pi \times \phi_{yB}^2 / 4 = 4624 \text{ mm}^2$

PASS - Tension reinforcement provided exceeds tension reinforcement required

Calculate ultimate shear force at d from left face of column A

Ultimate pressure for shear $q_{su} = (q_{2u} + C_x \times (L/2 + e_{PxA} - I_A/2 - d_x)/B + q_{1u})/2$

 $q_{su} = 123.707 \text{ kN/m}^2$

Area loaded for shear $A_s = B \times \min((L/2 + e_{PXA} - I_A/2 - d_x), 3 \times (L/2 + e_{TX})) = 0.986 \text{ m}^2$

Ultimate shear force $V_{su} = A_s \times (q_{su} - F_u / A) - P_{uB} = 27.667 \text{ kN}$

Shear stresses at d from left face of column A (cl 3.5.5.2)

Design shear stress $v_{su} = V_{su} / (B \times d_x) = \textbf{0.120 N/mm}^2$

From BS 8110:Part 1:1997 - Table 3.8

Design concrete shear stress $v_c = 0.79 \text{ N/mm}^2 \times \min(3, [100 \times A_{s_xB_prov} / (B \times d_x)]^{1/3}) \times \max((400 \text{ mm} / B_s)^{1/3}) \times \min(3, [100 \times A_{s_xB_prov} / (B \times d_x)]^{1/3}) \times \min(3, [100 \times A_{s_xB_prov} / (B \times d_x)]^{1/3}) \times \min(3, [100 \times A_{s_xB_prov} / (B \times d_x)]^{1/3}) \times \min(3, [100 \times A_{s_xB_prov} / (B \times d_x)]^{1/3}) \times \min(3, [100 \times A_{s_xB_prov} / (B \times d_x)]^{1/3}) \times \min(3, [100 \times A_{s_xB_prov} / (B \times d_x)]^{1/3}) \times \min(3, [100 \times A_{s_xB_prov} / (B \times d_x)]^{1/3}) \times \min(3, [100 \times A_{s_xB_prov} / (B \times d_x)]^{1/3}) \times \min(3, [100 \times A_{s_xB_prov} / (B \times d_x)]^{1/3}) \times \min(3, [100 \times A_{s_xB_prov} / (B \times d_x)]^{1/3}) \times \min(3, [100 \times A_{s_xB_prov} / (B \times d_x)]^{1/3}) \times \min(3, [100 \times A_{s_xB_prov} / (B \times d_x)]^{1/3}) \times \min(3, [100 \times A_{s_xB_prov} / (B \times d_x)]^{1/3}) \times \min(3, [100 \times A_{s_xB_prov} / (B \times d_x)]^{1/3}) \times \min(3, [100 \times A_{s_xB_prov} / (B \times d_x)]^{1/3}) \times \min(3, [100 \times A_{s_xB_prov} / (B \times d_x)]^{1/3}) \times \min(3, [100 \times A_{s_xB_prov} / (B \times d_x)]^{1/3}) \times \min(3, [100 \times A_{s_xB_prov} / (B \times d_x)]^{1/3}) \times \min(3, [100 \times A_s]^{1/3}) \times \min(3, [100$

 $d_x)^{1/4},\, 0.67) \times (min(f_{cu} \ / \ 1 \ N/mm^2,\, 40) \ / \ 25)^{1/3} \ / \ 1.25 = \textbf{0.491} \ N/mm^2$

Allowable design shear stress $v_{max} = min(0.8 \text{ N/mm}^2 \times \sqrt{(f_{cu} / 1 \text{ N/mm}^2)}, 5 \text{ N/mm}^2) = 4.382 \text{ N/mm}^2$

PASS - Vsu < Vc - No shear reinforcement required

Calculate ultimate punching shear force at face of column A

Ultimate pressure for punching shear $q_{puA} = q_{1u} + [(L/2 + e_{PxA} - I_A/2) + (I_A)/2] \times C_x/B - [(B/2 + e_{PyA} - b_A/2) + (b_A)/2] \times C_y/L = (B/2 + e_{PxA} - I_A/2) + (B/2 + e_{PyA} - b_A/2) + (B/2 + e_{PyA} - b_A/2)$

126.893 kN/m²

Average effective depth of reinforcement $d = (d_x + d_y) / 2 = \textbf{454} \text{ mm}$ Area loaded for punching shear at column $A_{pA} = (I_A) \times (b_A) = \textbf{0.090} \text{ m}^2$ Length of punching shear perimeter $u_{pA} = 2 \times (I_A) + 2 \times (b_A) = \textbf{1200} \text{ mm}$

Tekla Tedds	Project			Job Ref.		
				Sheet no./rev.		
	Calc. by	Date 5/28/2024	Chk'd by	Date	App'd by	Date

Ultimate shear force at shear perimeter $V_{puA} = P_{uA} + (F_u / A - q_{puA}) \times A_{pA} = 67.155 \text{ kN}$

Effective shear force at shear perimeter $V_{puAeff} = V_{puA} = 67.155 \text{ kN}$

Punching shear stresses at face of column A (cl 3.7.7.2)

Design shear stress $v_{puA} = V_{puAeff} / (u_{pA} \times d) = 0.123 \text{ N/mm}^2$

Allowable design shear stress $v_{max} = min(0.8N/mm^2 \times \sqrt{(f_{cu}/1 N/mm^2)}, 5 N/mm^2) = 4.382 N/mm^2$

PASS - Design shear stress is less than allowable design shear stress

Calculate ultimate punching shear force at face of column B

Ultimate pressure for punching shear $q_{puB} = q_{1u} + [(L/2 + e_{PxB} - l_B/2) + (l_B)/2] \times C_x/B - [(B/2 + e_{PyB} - b_B/2) + (b_B)/2] \times C_y/L = (B/2 + e_{PxB} - l_B/2) + (B/2 + e_{PyB} - b_B/2) + (B/2 + e_{PyB} - b_B/2)$

126.893 kN/m²

Average effective depth of reinforcement d = (dx + dy) / 2 = 454 mmArea loaded for punching shear at column $A_{pB} = (l_B) \times (b_B) = 0.090 \text{ m}^2$ Length of punching shear perimeter $u_{pB} = 2 \times (l_B) + 2 \times (b_B) = 1200 \text{ mm}$

Ultimate shear force at shear perimeter $V_{PUB} = P_{UB} + (F_U / A - q_{PUB}) \times A_{PB} = 67.155 \text{ kN}$

Effective shear force at shear perimeter $V_{puBeff} = V_{puB} = 67.155 \text{ kN}$

Punching shear stresses at face of column B (cl 3.7.7.2)

Design shear stress $v_{puB} = V_{puBeff} / (u_{pB} \times d) = 0.123 \text{ N/mm}^2$

Allowable design shear stress $V_{max} = min(0.8N/mm^2 \times \sqrt{(f_{cu}/1 \text{ N/mm}^2)}, 5 \text{ N/mm}^2) = \textbf{4.382 N/mm}^2$

PASS - Design shear stress is less than allowable design shear stress

5 No. 16 dia. bars btm (100 c/c), 5 No. 16 dia. bars top (100 c/c)

--- Shear at d from column face