San Francisco Crime Classification Kaggle competition

Łukasz Rados, Wojciech Kusa

Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza w Krakowie

24 stycznia 2016

1 Wprowadzenie

Celem projektu było stworzenie oprogramowania pozwalającego dokonać klasyfikacji przestępstw na podstawie danych czasoprzestrzennych z raportów policyjnych dla miasta San Francisco w Stanach Zjednoczonych. Pełen opis projektu, wraz z danymi wejściowymi znajduje się na portalu kaggle, pod adresem: www.kaggle.com/c/sf-crime/.

2 Dane

Zbiór danych zawiera incydenty zgłoszone policji w San Francisco pomiędzy 01.01.2003r. a 13.05.2015r.. Podzielony jest na dwie podgrupy (prawie równoliczne, w każdej po około 850 tysięcy elementów):

- zbiór treningowy zawierający zgłoszenia z tygodni parzystych,
- zbiór testowy zawierający zgłoszenia z tygodni nieparzystych.

Przykładowe wiersze danych treningowych znajdują się na Rysunku 1. Dane składają się z następujących pól:

- Dates znacznik czasu przestępstwa
- DayOfWeek dzień tygodnia
- PdDistrict nazwa departamentu policji odbierającego zgłoszenie
- Address przybliżony adres przestępstwa
- X długość geograficzna
- Y szerokość geograficzna

- Category kategoria przestępstwa (tylko dla zbioru treingowego). Jest to zmienna, którą należało przewidzieć w wyniku działania algorytmu
- Descript szczegółowy opis przestępstwa (tylko dla zbioru treingowego)
- Resolution jaki był wynik działania policji (tylko dla zbioru treingowego)

2003-01-07 07:52:00	WARRANTS	WARRANT ARREST	Tuesday	SOUTHERN	ARREST, BOOKED	5TH ST / SHIPLEY ST	-122.402843	37.779829
2003-01-07 04:49:00	WARRANTS	ENROUTE TO OUTSIDE JURISDICTION	Tuesday	TENDERLOIN	ARREST, BOOKED	CYRIL MAGNIN STORTH ST / EDDY ST	-122.408495	37.784452
2003-01-07 03:52:00	WARRANTS	WARRANT ARREST	Tuesday	NORTHERN	ARREST, BOOKED	OFARRELL ST / LARKIN ST	-122.417904	37.785167
2003-01-07 03:34:00	WARRANTS	WARRANT ARREST	Tuesday	NORTHERN	ARREST, BOOKED	DIVISADERO ST / LOMBARD ST	-122.442650	37.798999
2003-01-07 01:22:00	WARRANTS	WARRANT ARREST	Tuesday	SOUTHERN	ARREST, BOOKED	900 Block of MARKET ST	-122.409537	37.782691
2003-01-06 23:30:00	WARRANTS	ENROUTE TO OUTSIDE JURISDICTION	Monday	BAYVIEW	ARREST, BOOKED	REVERE AV / INGALLS ST	-122.384557	37.728487
2003-01-06 23:14:00	WARRANTS	WARRANT ARREST	Monday	CENTRAL	ARREST, BOOKED	BUSH ST / HYDE ST	-122.417019	37.789110
2003-01-06 22:45:00	WARRANTS	WARRANT ARREST	Monday	SOUTHERN	ARREST, BOOKED	800 Block of BRYANT ST	-122.403405	37.775421
2003-01-06 22:45:00	WARRANTS	ENROUTE TO OUTSIDE JURISDICTION	Monday	SOUTHERN	ARREST, BOOKED	800 Block of BRYANT ST	-122.403405	37.775421
2003-01-06 22:19:00	WARRANTS	ENROUTE TO OUTSIDE JURISDICTION	Monday	NORTHERN	ARREST, BOOKED	GEARY ST / POLK ST	-122.419740	37.785893
2003-01-06 21:54:00	WARRANTS	ENROUTE TO OUTSIDE JURISDICTION	Monday	NORTHERN	ARREST, BOOKED	SUTTER ST / POLK ST	-122.420120	37.787757

Rysunek 1: Przykładowe dane treningowe. Źródło: https://www.kaggle.com/c/sf-crime/data

2.1 Wstępna analiza zbioru treningowego

Na rysunku 2 znajduje się mapa San Francisco z zaznaczpnymi wszystkimi przestępstami podzielonymi ze względu na posterunek odbierający zgłoszenie.

2.2 Zastosowane deskryptory

Dane poddane zostały preprocessingowi celem poprawy brakujących rekordów, a następnie, poza podstawowymi zmiennymi przedstawionymi w sekcji 2, przygotowano dodatkowe deskryptory mające pomóc wytrenować model. Poniżej zostały opisane najważniejsze z nich, mające istotny wpływ na poprawę działania modelu:

- \bullet $Dates.Hours\cdot 60+Dates.Minutes$ Liczba z zakreu 0, 1440 opisująca, w której minucie dnia zostało dokonane zgłoszenie
- \bullet $X \cdot Y$ wskazuje na nieliniową korelację długości i szerokości geograficznej

Rysunek 2: Przestępstwa podzielone ze względu na posterunek odbierający zgłoszenie.

- $\bullet~X+Y$ jak wyżej, zmienna wskazująca na korelację długości i szerokości geograficznej
- \bullet informacja czy przestępstwo zostało dokonane na skrzyżowaniu / rogu ulicy wyciągnięta ze zmiennej Address
- informacja czy przestępstwo zostało dokonane w bloku wyciągnięta ze zmiennej Address
- \bullet DayOfWeek + Dates.Hour powiązuje godzinę zdarzenia z dniem tygodnia
- $DayOfWeek \cdot Dates.Hour$ jak wyżej, powiązuje godzinę zdarzenia z dniem tygodnia

- 3 Zastosowane algorytmy
- 3.1 Lasy losowe Random Forest
- 3.2 Generalized Linear Model

4 Implementacja

Kody źródłowe zaimplementowanych modeli znajdują się w repozytorium on-line pod adresem www.github.com/WojciechKusa/sf_crime.

Model wykorzystujący GLM zaimplementowany został w języku R z wykorzystaniem bibliotek MASS, readr, rpart oraz caret. Do ostatecznego modelu wzięte zostały następujące zmienne:

- \bullet PdDistrict
- X
- Y
- X · Y
- $\bullet X + Y$
- DayOfWeek
- \bullet Dates. Year
- \bullet Dates. Month
- Dates.Hour
- \bullet Dates. $Hours \cdot 60 + Dates. Minutes$
- $\bullet \ DayOfWeek + Dates.Hour$
- $\bullet \ DayOfWeek \cdot Dates. Hour$
- \bullet AddType

5 Ewaluacja oraz wyniki

5.1 Ocena modeli

Ocena modeli dokonywana była na podstawie wielo-klasowej straty logarytmicznej (ang. *multi-class logarithmic loss*). Dane zawierały prawdopodobieństwa wystąpienia danego przestępstwa przy podanych danych czasoprzestrzennych.

5.2 Uzyskane wyniki

W przypadku zastosowania modelu GLM uzyskany wynik to 2.54389 punkta co na dzień 24.01.2016r. dało 314 miejsce na 1200 uczestników. Dla modelu RF otrzymano wynik 5.70246 co plasuje go na 889 miejscu. Wyniki te można uznać za satysfakcjonując gdy weźmie się pod uwagę fakt, że najlepszy aktualnie wynik to 2.05079 a pierwsze 900 rezultatów to wyniki poniżej 10 punktów.

6 Podsumowanie