Cahiers du baccalauréat 2006 Examen du baccalauréat

Epreuve : Mathématiques

Section: Mathématiques

SESSION PRINCIPALE 2006

Solutions de l'exercice 1 :

1) a)
$$f_{\theta}(1+i) = 2i - (i+e^{i\theta})(1+i) + (1+i)(-1+e^{i\theta}) = 0$$

b)
$$z'+z''=\frac{-b}{a}$$
 d'où $z'+(1-i)=i+e^{i\theta}$ alors $z'=-1-i+i+e^{i\theta}=-1+e^{i\theta}$

d'où z'=
$$-1 + e^{i\theta}$$
 et z" =1+i

2) a) AM=
$$|z_M - z_A| = |-1 + e^{i\theta} + 1| = |e^{i\theta}| = 1$$

Donc M varie sur le cercle de centre A et de rayon 1

b) (BM) est tangente an cercle (C) $\Leftrightarrow \overline{AMetBM}$ sont

orthogonaux.
$$\Leftrightarrow \left(\overrightarrow{AM}, \overrightarrow{BM}\right) = \frac{\pi}{2}(\pi)$$

$$\Leftrightarrow \arg\left(\frac{Z_M - Z_B}{Z_M - Z_A}\right) = \frac{\pi}{2}(\pi) \qquad \Leftrightarrow \frac{Z_M - Z_B}{Z_M - Z_A} \in iR \qquad \Leftrightarrow R_e\left(\frac{Z_M - Z_B}{Z_M - Z_A}\right) = 0$$

Or
$$\frac{Z_M - Z_B}{Z_M - Z_A} = \frac{-1 + e^{i\theta} - i\sqrt{3}}{-1 + e^{i\theta} + 1} = \frac{-1 - i\sqrt{3} + e^{i\theta}}{e^{i\theta}} = 2e^{i\frac{4\pi}{3}}e^{-i\theta} + 1 = 2e^{i\left(\frac{4\pi}{3} - \theta\right)} + 1$$

Re
$$\left(\frac{Z_M - Z_B}{Z_M - Z_A}\right) = 2\cos\left(\frac{4\pi}{3} - \theta\right) + 1 = 2\cos\left(-\frac{2\pi}{3} - \theta\right) + 1 = 2\cos\left(\frac{2\pi}{3} + \theta\right) + 1$$

$$\operatorname{Re}\left(\frac{Z_{M}-Z_{B}}{Z_{M}-Z_{A}}\right) = \Leftrightarrow \operatorname{Cos}\left(\frac{2\pi}{3}-\theta\right) = -\frac{1}{2} \iff \operatorname{Cos}\left(\frac{2\pi}{3}+\theta\right) = \operatorname{Cos}\left(\frac{2\pi}{3}\right)$$

$$\Leftrightarrow \frac{2\pi}{3} + \theta = \frac{2\pi}{3} + 2\kappa\pi$$
 ou $\frac{2\pi}{3} + \theta = -\frac{2\pi}{3} + 2\kappa\pi \Leftrightarrow \theta = 2k\pi$ ou

$$\theta = \frac{2\pi}{3} + 2k\pi$$

Comme $\theta \in [0,2\pi[$ alors : (BM) est tangente an cercle (C) $\Leftrightarrow \theta \in \left\{o,\frac{2\pi}{3}\right\}$

2eme méthode:

la droite (BM) est tangente an cercle (C) $\Leftrightarrow \overline{AMetBM}$ sont orthogonaux. $\Leftrightarrow \overline{AM}$.

BM = 0

$$\Leftrightarrow 1 - \cos \theta - \sqrt{3} \sin \theta = 0 \Leftrightarrow \cos \theta + \sqrt{3} \sin \theta = 1 \Leftrightarrow \cos (\theta - \frac{\pi}{3}) = \frac{1}{2} \Leftrightarrow \theta \in \left\{ o, \frac{2\pi}{3} \right\}$$

EXERCICE 2 (6 points)

Dans le plan orienté, on considère un cercle $\mathscr C$ de centre O et de diamètre [AB]. On désigne par F le point de $\mathscr C$ tel que $\left(\overrightarrow{\mathsf{OB}}, \overrightarrow{\mathsf{OF}}\right) \equiv \frac{\pi}{3} \left[2\pi\right]$ et par Δ la perpendiculaire à (AB) en A.

La tangente à $\mathscr C$ en F coupe la droite Δ en un point A'. Soit $\mathscr P$ la parabole de foyer F et directrice (AB).

- a Montrer que le point A' appartient à la parabole P.
 b Préciser la tangente à P en A'.
- Soit T la tangente à ℰ au point B et soit B' le point d'intersection de cette tangente avec la droite (A'F).
 Montrer que le triangle A'OB' est rectangle.
- 3) Soit \mathscr{D} la droite passant par F et parallèle à (AB) et K le projeté orthogonal de F sur (AB).
 - a Soit M un point de $\mathscr D$ distinct de F et soit H son projeté orthogonal sur la droite (AB). Montrer que si M appartient à la parabole $\mathscr P$, alors FMHK est un carré.
- b En déduire une construction des deux points d'intersection de la droite ${\mathscr D}$ avec la parabole ${\mathscr P}$.

de quoi s'agit-il?

Paraboles.

Tangentes à une parabole.

Construction des points d'intersection d'une parabole et d'une droite.

Solutions de l'exercice 2 :

1) a) On a : d(A',(AB)) = A'A = A'F (Les triangles A'FO et A'AO sont isométriques).

Donc $A \in \rho$

b) La tangente à P en A' est la bissectrice intérieure de (A'F, A'A) c'est (A'O).

2)
$$\left(\overrightarrow{OB}', \overrightarrow{OA}'\right) \equiv \left(\overrightarrow{OB}', \overrightarrow{OF}\right) + \left(\overrightarrow{OF}, \overrightarrow{OA}'\right) \qquad [2\pi]$$

$$\equiv \frac{1}{2} \left(\overrightarrow{OB}, \overrightarrow{OF}\right) + \frac{1}{2} \left(\overrightarrow{OF}, \overrightarrow{OA}\right) \qquad [2\pi]$$

$$\equiv \frac{1}{2} \left(\overrightarrow{OB}, \overrightarrow{OA}\right) \qquad [2\pi]$$

$$\equiv \frac{1}{2} \left(\overrightarrow{OB}, \overrightarrow{OA}\right) \qquad [2\pi]$$

$$\equiv \frac{\pi}{2} \qquad [2\pi]$$

3) a) – si $M \in P$ alors MF = d(M,(AB)) = MH

Le quadrilatère FMHK étant visiblement un rectangle et a deux côtés consécutifs isométriques c'est un carré.

b) Si M_1 et M_2 sont les points d'intersection de D avec P alors F M_1 H₁ K est un carré , F M_2 H₂ K est un carré et M_1 H₁ = M_2 H₂ = FK

Alors ces carrées sont isométriques et $M_1F = M_2F$ donc M_1 et M_2 sont les points d'intersection du cercle de centre F et de rayon FK avec D d'où leur construction.

Solutions du problème :

Partie A:

1) a)
$$f'(x) = 1 + \frac{-2e^{-2x}}{1 + e^{-2x}} = \frac{1 + e^{-2x} - 2e^{-2x}}{1 + e^{-2x}} = \frac{1 - e^{-2x}}{1 + e^{-2x}}$$

- b) $\lim_{x \to +\infty} (f(x) x) = 0$ donc D est asymptote à C an voisinage de $+\infty$
- c) $f(x) x = Log(1 + e^{-2x}) \phi 0$ donc C est au dessus de D.

- 2) a) f est continue et strictement croissante sur $[0,+\infty[$ elle réalise donc une bijection de $[0,+\infty[$ sur f π $[0,+\infty[$ $\phi=[Log\,2,+\infty[$
- b) (C') est le symétrique de (C) par rapport à D.

3) a)
$$1-t-\frac{1}{1+t}=\frac{1-t^2-1}{1+t}=\frac{-t^2}{1+t}$$
 donc $1-t \le \frac{1}{1+t}$, $\forall t \in [0,+\infty[$

$$\frac{1}{1+t} \le 1 \quad puisque1 + t \ge 1 \quad \forall t \in [0, +\infty[\quad \text{donc } 1 - t \le \frac{1}{1+t} \le 1]$$

b) d'après ce qui précède $1-t \le \frac{1}{1+t} \le 1$

donc
$$\int_{6}^{x} (1-t)dt \le \int_{6}^{x} \frac{1}{1+t} \le \int_{6}^{x} 1.dt$$
 alors $\left[-\frac{1}{2} (1-t)^{2} \right]_{0}^{x} \le \left[Log(1+t) \right]_{0}^{x} \le x$

Donc:

$$-\frac{1}{2}(1-x)^2 + \frac{1}{2} \le Log(1+x) \le x$$

c'est à dire $x - \frac{1}{2}x^2 \le Log(1 - x) \le x$

c) d'après ce qui précède pour tout $x \in [0,+\infty[$ $x - \frac{1}{2}x^2 \le Log(1+x) \le x$

Donc pour $t \in [0,+\infty[$, $e^{-2t} - \frac{1}{2}e^{-4t} \le Log(1+e^{-2t}) \le e^{-2t}$

4) a)
$$S_n = \int_0^x (f(x) - x) dx = \int_0^x Log(1 + e^{-x}) dx$$

D'après ce qui précédé, $e^{-2x} - \frac{1}{2}e^{-4x} \le Log(1 + e^{-2x}) \le e^{-2x}$

Donc:

$$\int_{6}^{x} \left(e^{-2x} - \frac{1}{2} e^{-4x} \right) dn \le \int_{0}^{x} Log(1 + e^{-2x}) dn \le \int_{6}^{x} e^{-2x} dn$$

or

$$\int_{6}^{n} \left(e^{-2x} - \frac{1}{2} e^{-4x} \right) dx = \int_{6}^{n} e^{-2x} dx - \frac{1}{2} \int_{6}^{n} e^{-4x} dx = \left[-\frac{1}{2} e^{-2x} \right]_{6}^{n} - \frac{1}{2} \left[-\frac{1}{4} e^{-4x} \right]_{6}^{n}$$

$$= -\frac{1}{2}e^{-2n} + \frac{1}{2} + \frac{1}{8}e^{-4n} - \frac{1}{8} = \frac{3}{8} - \frac{1}{2}e^{-2n} + \frac{1}{8}e^{-4n}$$

et
$$\int_0^n e^{-2x} dx = \left[-\frac{1}{2} e^{-2x} \right]_0^n = -\frac{1}{2} e^{-2n} + \frac{1}{2}$$

Alors:
$$\frac{3}{8} - \frac{1}{2}e^{-2n} + \frac{1}{8}e^{-4n} \le S_n \le \frac{1}{2} - \frac{1}{2}e^{-2n}$$

b)
$$S_{n-1} - S_n = \int_0^{n+1} Log(1 + e^{-2x}) dx - \int_0^n Log(1 + e^{-2x}) dx$$

$$\int_{0}^{n+1} Log(1+e^{-2x})dx$$

Or
$$Log(1+e^{-2x})dn \neq 0$$
 $car 1+e^{-2x} \neq 1$ alors $\int_{n}^{n+1} Log(1+e^{-2x})dn \geq 0$

donc $S_{n+1} - S_n \ge 0$ alors S_n est croissante.

d'autre part et d'après ce qui précède a)

$$S_n \le \frac{1}{2} - \frac{1}{2}e^{-2n}$$
 Donc $S_n \le \frac{1}{2}$ c.â.d S_n est majorée par $\frac{1}{2}$

croissante et majorée S_n est convergente.

Et puisque :
$$\frac{3}{8} - \frac{1}{2}e^{-2n} + \frac{1}{8}e^{-4n} \le S_n \le \frac{1}{2} - \frac{1}{2}e^{-2n}$$
 Alors, $\frac{3}{8} \le \lambda \le \frac{1}{2}$

Puisque
$$\lim_{n\to+\infty} e^{-kn} = 0$$

Partie B:

1)
$$U_0 = \int_0^{Log^2} dx = Log 2$$

$$\begin{split} U_1 &= \int_0^{Log} f'(x) dx = \left[f(x) \right]_0^{Log^2} &= f(Log 2) - f(0) &= Log 2 + Log (1 + e^{-2Log 2}) - Log 2 \\ &= Log (1 + e^{-Log 4}) &= Log (1 + \frac{1}{4}) &= Log (\frac{5}{4}) \end{split}$$

2) a)
$$0 \le x \le Log 2$$
 donc $-2Log 2 \le -2x \le 0$ d'ou $\frac{1}{4} \le e^{-2x} \le 1$

Alors
$$\frac{5}{4} \le 1 + e^{-2x} \le 2$$
 et par suite $\frac{1}{2} \le \frac{1}{1 + e^{-2x}} \le \frac{4}{5}$ d'autre part

$$0 \le 1 - e^{-2x} \le \frac{3}{4}$$

alors
$$a \le f'(x) \le \frac{3}{4}$$

b)
$$0 \le f'(x) \le \frac{3}{5} \text{ donc } 0 \le \int_6^{Log 2} [f'(x)]^n dx \le \int_0^{Log 2} (\frac{3}{5})^n dx \text{ d'où}$$

$$0 \le Un \le (Log 2)(\frac{3}{5})^n$$

$$\lim_{n\to +\infty} U_n = 0 \text{ puisque } \lim_{n\to +\infty} \left(\frac{3}{5}\right)^n = 0.$$

3) a)
$$1 - f''(x) = 1 - \left(\frac{1 - e^{-2x}}{1 + e^{-2x}}\right)' = \frac{\left(1 + e^{-2x}\right)^2 - \left[2e^{-2x}\left(1 + e^{-2x}\right) + \left(2e^{-2x}\right)\left(1 - e^{-2x}\right)\right]}{\left(1 + e^{-2x}\right)^2}$$

$$= \frac{\left((1 + e^{-2x})^2 \left[-4e^{-2x} \right] \right)}{\left(1 + e^{-2x} \right)^2} = \frac{\left(1 - e^{-2x} \right)^2}{\left(1 + e^{-2x} \right)^2}$$

b)
$$Un = \int_0^{Log 2} (f'(x))^n dx$$

Or
$$(f'(x))^n = (f'(x))^2 (f'(x))^{n-2} = (1 - f''(x))(f'(x))^{n-2} = (f'(x))^{n-2} - f''(x)(f'(x))^{n-2}$$

Alors,
$$U_n = U_{n-2} - \left[\frac{1}{n-1} (f'(x))^{n-1} \right]_0^{\log 2} = U_{n-2} - \frac{1}{n-1} (\frac{3}{5})^{n-1}$$

c)
$$U_{2n} = U_{2n-2} - \frac{1}{2n-1} \left(\frac{3}{5}\right)^{n-1} \text{ et } U_{2n+1} = U_{2n-1} - \frac{1}{2n} \left(\frac{3}{5}\right)^{2n}$$

par itération (ou par récurrence) on obtient :

$$U_{2n} = U_0 - \sum_{k=1}^{n} \frac{1}{2k-1} \left(\frac{3}{5}\right)^{2k-1} \text{ et } U_{2n-1} = U_1 - \sum_{k=1}^{n} \frac{1}{2k} \left(\frac{3}{5}\right)^{2k}$$

4)
$$V_{n} = \sum_{k=1}^{2n} \frac{1}{k} \left(\frac{3}{5}\right)^{k} = \sum_{k=1}^{n} \frac{1}{2k} \left(\frac{3}{5}\right)^{2k} + \sum_{k=1}^{n} \frac{1}{2k-1} \left(\frac{3}{5}\right)^{2k-1} = U_{0} - U_{2n} + U_{1} - U_{2n+1}$$
$$= \left(U_{0} + U_{1}\right) - \left(U_{2n} + U_{2n+1}\right)$$

$$\lim_{n \to +\infty} V_n = (U_0 + U_1), car \quad \lim_{n \to +\infty} U_n = 0$$

$$= Log 2 + Log \frac{5}{4} = Log \frac{5}{2}$$