一元微积分学 (2021.01)

1. 求下列极限:

(a)
$$\lim_{x\to 0} \left(\frac{\sin x}{x}\right)^{\frac{1}{1-\cos x}}$$

(b)
$$\lim_{n \to +\infty} \left(\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{n+n} \right);$$

(c)
$$\lim_{n \to +\infty} \left(\frac{\sin \frac{\pi}{n}}{n^2 + 1} + \frac{\sin \frac{2\pi}{n}}{n^2 + 2} + \dots + \frac{\sin \pi}{n^2 + n} \right); \left(= \frac{2}{\pi} \right)$$

(d)
$$\lim_{n \to +\infty} n \left[\left(1 + \frac{1}{n} \right)^n - e \right]; \left(= -\frac{e}{2} \right)$$

(e)
$$\lim_{n \to +\infty} [n \sin(\pi n! e)]; (= \pi)$$

(f)
$$\lim_{n \to +\infty} \left(\frac{\sqrt[n]{a} + \sqrt[n]{b} + \sqrt[n]{c}}{3} \right)^n, \not \exists \vdash a, b, c > 0; \left(= \sqrt[3]{abc} \right)$$

(g)
$$\lim_{x \to \infty} e^{-x} \left(1 + \frac{1}{x} \right)^{x^2}; \left(= e^{-\frac{1}{2}} \right)$$

(h)
$$\lim_{x\to 0} \frac{(1+x)^{\frac{2}{x}} - e^2[1 - \ln(1+x)]}{x}$$
; (= 0)

(i)
$$\lim_{x\to 0} \left(\frac{e^x + e^{2x} + \dots + e^{nx}}{n}\right)^{\frac{e}{x}}$$
, 其中 n 是给定的正整数; $\left(=e^{\frac{n-1}{2}e}\right)$

(j)
$$\lim_{x \to \infty} \frac{\left(\int_0^x e^{u^2} du\right)^2}{\int_0^x e^{2u^2} du}$$
; (= 0)

(k)
$$\lim_{n \to +\infty} \left(1 + \sin \pi \sqrt{1 + 4n^2} \right)^n$$
; $\left(= e^{\frac{1}{4}} \right)$

(1)
$$\lim_{n \to +\infty} \cos \frac{\theta}{2} \cos \frac{\theta}{2^2} \cdots \cos \frac{\theta}{2^n} \left(= \frac{\sin \theta}{\theta}, 1 \right);$$

(m)
$$4115 \lim_{x \to +\infty} \sqrt[3]{x} \int_{x}^{x+1} \frac{\sin t}{t + \cos t} dt$$
. (= 0)

2. 若
$$f(x)$$
 在点 $x = a$ 可导,且 $f(a) = 0$,求 $\lim_{n \to \infty} \left(\frac{f\left(a + \frac{1}{n}\right)}{f(a)} \right)^n \cdot \left(= e^{\frac{f'(a)}{f(a)}} \right)$

3. 设
$$f(x)$$
 在 $x = 1$ 处附近有定义,且在 $x = 1$ 处可导,并已知 $f(1) = 0$, $f'(1) = 2$. 求 $\lim_{x \to 0} \frac{f(\sin^2 x + \cos x)}{x^2 + x \tan x}$.

4. 设
$$f(1) = 0$$
, $f'(1)$ 存在. 求 $\lim_{x \to 0} \frac{f(\sin^2 x + \cos x) \tan 3x}{(e^x - 1) \sin x}$. $\left(= \frac{3}{2} f'(1) \right)$

5. 设
$$f(x)$$
 在 $[0, +\infty)$ 上连续,并且无穷积分 $\int_0^{+\infty} f(x) dx$ 收敛. 求 $\lim_{x \to +\infty} \frac{1}{x} \int_0^x t f(t) dt$. (= 0)

6. 设
$$f(x)$$
 在 $[0, +∞)$ 上一致连续,且对任一固定的 $x \in [0, +∞)$,有 $\lim_{n \to +∞} f(x + n) = 0$ (其中 $n \in \mathbb{N}$). 证明函数 列 $\{f(x + n)\}_{n \in \mathbb{N}}$ 在 $[0, 1]$ 上一致收敛于0.

7. 求
$$x \to 1^-$$
 时, 与 $\sum_{n=0}^{\infty} x^{n^2}$ 等价的无穷大量.

8. 设
$$\{a_n\}$$
 为数列, $a_n\lambda$ 为有限数, 证明:

8. 设
$$\{a_n\}$$
 为数列, a, λ 为有限数. 证明:
 (1) 若 $\lim_{n \to +\infty} a_n = a$, 则 $\lim_{n \to +\infty} \frac{a_1 + a_2 + \cdots + a_n}{n} = a$;

(2). 若存在正整数
$$p$$
,使得 $\lim_{n\to+\infty}(a_{n+p}-a_n)=\lambda$,则 $\lim_{n\to+\infty}\frac{a_n}{n}=\frac{\lambda}{n}$.

9.
$$\exists \exists \lim_{x \to 0} \left(1 + x + \frac{f(x)}{x} \right)^{\frac{1}{x}} = e^3, \ \vec{x} \lim_{x \to 0} \frac{f(x)}{x^2}. \ (= 2)$$

- 11. 设函数 f(x)在闭区间 [-1,1] 上具有连续的三阶导数,且f(-1) = 0, f(1) = 1, f'(0) = 0. 求证:在开区间 (-1,1) 内至少存在一点 x_0 ,使得 $f'''(x_0) = 3$.
- 12. 设函数 f(x) 在 [0,1] 上有二阶导数,且有正常数 A,B 使得 $|f(x)| \le A$, $|f''(x)| \le B$. 证明:对任意 $x \in [0,1]$, 有 $|f'(x)| \le 2A + \frac{B}{2}$.
- 13. 设函数 f(x) 在 [0,1] 上连续,在 (0,1) 内可微,且 f(0) = f(1) = 0, $f\left(\frac{1}{2}\right) = 1$. 证明:
 - (1) 存在一个 $\xi \in (\frac{1}{2}, 1)$, 使得 $f(\xi) = \xi$;
 - (2) 存在一个 $\eta \in (0,\xi)$, 使得 $f'(\eta) = f(\eta) \eta$.
- 14. 设 f(x) 在 (a,b) 内二次可导,且存在常数 α , β , 使得对于 $\forall x \in (a,b)$, $f'(x) = \alpha f(x) + \beta f''(x)$. 则 f(x) 在 (a,b) 内无穷次可导.
- 15. 设 n > 1 为整数, $F(x) = \int_0^x e^{-t} \left(1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!} \right) dt$. 证明: 方程 $F(x) = \frac{n}{2}$ 在 $(\frac{n}{2}, n)$ 内至少有一个根.
- 16. 设函数 f(x) 在 $(-\infty, +\infty)$ 上具有二阶导数,并且 f''(x) > 0, $\lim_{h \to +\infty} f'(x) = \alpha > 0$, $\lim_{x \to -\infty} f'(x) = \beta < 0$, 且存在一点 x_0 使得 $f(x_0) < 0$. 证明:方程 f(x) = 0 在 $(-\infty, +\infty)$ 内恰有两个实根.
- 17. 设函数 f(x) 二阶可导,且 f(0) = f'(0) = 0, f''(0) > 0. 求极限 $\lim_{x \to 0} \frac{x^3 f(u)}{f(x) \sin^3 u}$, 其中 u 是曲线 y = f(x)上点 p = (x, f(x)) 处的切线在 x 轴上的截距. (= 2)
- 18. 设函数 f(x) 在 x = 0 的某邻域内有二阶连续导数,且 f(0), f'(0), f''(0) 均不为零.证明:存在唯一一组实数 k_1, k_2, k_3 , 使得

$$\lim_{h \to 0} \frac{k_1 f(h) + k_2 f(2h) + k_3 f(3h) - f(0)}{h^2} = 0.$$

- 19. 设 $f \in C^4(-\infty, +\infty)$, $f(x+h) = f(x) + f'(x)h + \frac{f''(x+\theta h)}{2!}h^2$, 其中 θ 是与 x,h 无关的常数. 证明 f 是不超过三次的多项式.
- 20. 设函数 y = y(x) 由 $x^3 + 3x^2y 2y^3 = 2$ 所确定. 求 y(x) 的极值. (y(0) = -1, y(-2) = 1)
- 21. 设函数 f(x) 连续, $g(x) = \int_0^1 f(xt)dt$, 且 $\lim_{x\to 0} \frac{f(x)}{x} = A$, A 为常数. 求 g'(x) 并讨论 g'(x) 在 x = 0 处的连续性.
- 22. 已知 $y_1 = xe^x + e^{2x}$, $y_2 = xe^x + e^{-x}$, $y_3 = xe^x + e^{2x} e^{-x}$ 是某二阶常系数线性非齐次微分方程的三个解,试求此微分方程. $(y'' y' 2y = e^x 2xe^x)$
- 23. 设抛物线 $y = ax^2 + bx + 2 \ln c$ 过原点,当 $0 \le x \le 1$ 时, $y \ge 0$,又已知该抛物线与x轴及直线 x = 1 所围图形的面积为 $\frac{1}{3}$. 试确定a,b,c,使此图形绕 x 轴旋转一周而成的旋转体的体积 y 最小. $(a = -\frac{5}{4}, b = \frac{3}{2}, c = 1)$
- 24. 过曲线 $y = \sqrt[q]{x}$ ($x \ge 0$) 上的点 A 作切线, 使该切线与曲线及 x 轴所围成的平面图形的面积为 $\frac{3}{4}$, 求点 A 的坐标. (= (1,1))
- 25. 设当 x > -1 时, 可微函数 f(x) 满足条件 $f''(x) + f(x) \frac{1}{1+x} \int_0^y f(t) dt = 0$, 且 f(0) = 1, 试证: 当 $x \ge 0$ 时, 有 $e^{-x} \le f(x) \le 1$ 成立.
- 26. 是否存在区间 [0,2] 上的连续可微函数 f(x), 满足 f(0)=f(2)=1, |f'(x)|<1, $\int_0^2 f(x)dx \le 1$? 请说明理由.
- 27. 设 $|f(x)| \le \pi$, $f'(x) \ge m > 0$ $(a \le x \le b)$. 证明 $\left| \int_a^b \sin f(x) dx \right| \le \frac{m}{2}$.

28. 设 f(x) 在 [0,1] 上可导, f(0) = 0, 且当 $x \in (0,1)$, 0 < f'(x) < 1. 试证当 $a \in (0,1)$,

$$\left(\int_0^a f(x)dx\right)^2 > \int_0^a f^3(x)dx.$$

- 29. 设函数 $f \in C[0,1]$, 且 $\int_0^1 f(x)dx = 0$, $\int_0^1 x f(x)dx = 1$. 试证:
 - (1) $\exists x_0 \in [0,1]$ 使 $f(x_0) > 4$;
 - (2) $\exists x_1 \in [0, 1]$ 使 $f(x_1) = 4$
- 30. 计算积分 $\int_0^{2\pi} x \left(\int_x^{2\pi} \frac{\sin^2 t}{t^2} dt \right) dx$. $\left(= \frac{\pi}{2} \right)$
- 31. 设 n 为正整数, 计算 $\int_{e^{-2n\pi}}^{1} \left| \cos \left(\ln \frac{1}{x} \right) \right| dx$. (= 4n)
- 32. 计算定积分 $\int_{-\pi}^{\pi} \frac{x \sin x \cdot \arctan e^x}{1 + \cos^2 x} dx$. $\left(= \frac{\pi^3}{8}\right)$
- 33. 设 s > 0,求 $I_n = \int_0^{+\infty} e^{sx} x^n dx$, $n = 1, 2, \cdots$.
- 34. 计算 $\int_0^{+\infty} e^{-2x} |\sin x| dx$. $\left(=\frac{e^{2\pi}+1}{5(e^{2\pi}-1)}\right)$
- 35. 设区间 $(0, +\infty)$ 上的函数 u(x) 定义为 $u(x) = \int_0^{\infty} +\infty e^{-xt^2} dt$. 求 u(x) 的初等函数表达式. $\left(= \frac{\sqrt{\pi}}{2\sqrt{x}} \right)$
- 36. 证明广义积分 $\int_0^{+\infty} \frac{\sin x}{x} dx$ 不是绝对收敛的.
- 37. 求最小实数 C, 使得满足 $\int_0^1 |f(x)| dx = 1$ 的连续的函数 f(x) 都有 $\int_0^1 f(\sqrt{x}) dx \le C$. (= 2)
- 38. 设 $f(x) \in C[0,1]$, 且满足 $\int_0^1 f(x)dx = 1$. 求一个这样的函数 f(x), 使得积分 $I = \int_0^1 (1+x^2)f^2(x)dx$ 取得最小值. $\left(= \frac{4}{\pi(1+x^2)} \right)$
- 39. 求直线 $l_1: \left\{ \begin{array}{l} x-y=0, \\ z=0 \end{array} \right.$ 与直线 $l_2: \frac{x-2}{4} = \frac{y-1}{-2} = \frac{z-3}{-1}$ 的距离. $\left(= \sqrt{\frac{19}{2}} \right)$
- 40. 求通过直线 $l: \left\{ \begin{array}{ll} 2x+y-3z+2=0, \\ 5x+5y-4z+3=0 \end{array} \right.$ 的两个相互垂直的平面 π_1 和 π_2 ,使其中一个平面过点 (4,-3,1). $(3x+4y-z+1=0,\ x-2y-5z+3=0)$
- 41. 设函数 y = f(x) 由参数方程 $\begin{cases} x = 2t + t^2, \\ y = \psi t \end{cases}$ 所确定. 且 $\frac{d^2y}{dx^2} = \frac{3}{4(1+t)}$, 其中 $\psi(t)$ 具有二阶导数,曲线 $y = \psi(t)$ 与 $y = \int_1^{t^2} e^{-u^2} du + \frac{3}{2e}$ 在 t = 1 处相切. 求函数 $\psi(t)$. $\left(= t^3 + \frac{1}{2e}t^2 + \left(\frac{1}{e} 3 \right)t + 2 \right)$ $\left(t > -1 \right)$
- 42. 712 设 M 是以三个正半轴为母线的半圆锥面,求其方程. (xy + yz + zx = 0)
- 43. 在平面上, 有一条从点 (a,0) 向右的射线,线密度为 ρ . 在点 (0,h) 处(其中h>0)有一质量为 m 的质点. 求射线对该质点的引力. $\left(=\left(F_x,F_y\right)\right)=\left(\frac{Gm\rho}{\sqrt{h^2+a^2}},\frac{Gm\rho}{h}\left(1-\sin\arctan\frac{a}{h}\right)\right)$
- 44. 设 f 在 [a,b] 上非负连续, 严格单增, 且存在 $x_n \in [a,b]$ 使得 $[f(x_n)]^n = \frac{1}{b-a} \int_a^b [f(x)]^n dx$. 求 $\lim_{x\to-\infty} x_n$. (= b)
- 45. 设 $f(x) \in C[a;b]$. 证明: $2 \int_a^b f(x) dx \int_x^b f(t) dt = \left(\int_a^b f(x) dx \right)^2$.
- 46. 设函数 $f(x) \in C^1[0,1]$, f(0) = 0, f(1) = 1. 证明:

$$\lim_{n \to +\infty} n \left(\int_0^1 f(x) dx - \frac{1}{n} \sum_{k=1}^n f\left(\frac{k}{n}\right) \right) = \frac{1}{2}.$$

47. 设函数 $f(x) \in C[0,1]$, 且 $I = \int_0^1 f(x) dx \neq 0$. 证明在 (0,1) 内存在不同的两点 x_1, x_2 , 使得

$$\frac{1}{f(x_1)} + \frac{1}{f(x_2)} = \frac{2}{I}.$$