Lineær algebra noter - Egenværdier og vektorer

Lukas Peter Jørgensen, 201206057, DA4

24. juni 2014

Indhold

1	Disposition		
2	Noter		
	2.1	Egenværdi og egenvektor	
	2.2	Egenrummet	
	2.3	Det karakteristiske polynomium	
	2.4	Geometrisk og Algebraisk multiplicitet	
	2.5	Similaritet	
	2.6	Theorem 6.1.1	
	2.7	Diagonaliserbar	
	2.8	Theorem 6.3.2	

Noter

 $\mathbf{2}$

2.1 Egenværdi og egenvektor

$$A \in Mat_{m,n}(\mathbb{F}), \lambda \in \mathbb{F}$$

 λ er en egenværdi (eller karakteristisk værdi) for matricen Ahvis den opfylder:

$$Ax = \lambda x$$

Hvor x egenvektoren ikke er nulvektoren 0 og kaldes egenvektoren tilhørende egenværdien λ .

En egenværdi har adskillige tilknyttede egenvektorer (man kan f.eks. blot gange en skalar på), men en egenvektor har altid kun én egenværdi.

Komplekse egenværdier har den egenskab at hvis $\lambda=a+bi$ er en egenværdi for A, vil den konjungerede også være en egenværdi for A.

2.2 Egenrummet

Ved omskrivning af definitionen for egenvektor får vi:

$$(A - \lambda I)x = 0$$

Løsningsrummet $N(A - \lambda I)$ er da egenrummet for matricen A. Egenrummet består af alle egenvektorer til en given egenværdi. Da $x \neq 0$ er løsningen til tidligere nævnt ligning alle de løsninger hvor $(A - \lambda I) = 0$.

2.3 Det karakteristiske polynomium

Egenværdierne for matricen A kan udregnes vha. determinanten for $A - \lambda I$:

$$det(A - \lambda I) = p(\lambda) = 0$$

Rødderne til det karakteristiske polynomium $p(\lambda)$ vil da være egenværdierne.

2.4 Geometrisk og Algebraisk multiplicitet

 $Geo(\lambda)$ er dimensionen af egenrummet $N(A - \lambda I)$. $Alg(\lambda)$ er antal gange en given egenværdi optræder.

$$Alg(\lambda) \ge Geo(\lambda)$$

Geometrisk og algebraisk multiplicitet er nyttigt ved diagonalisering. En matrix A er diagonaliserbar hvis og kun hvis $Geo(\lambda) = Alg(\lambda)$.

2.5 Similaritet

 $A,B\in\mathbb{F}^{n,n}$ Ber similær til Ahvis der eksisterer en ikke-singulær matrix S således at $B=S^-1AS.$

Similaritet betyder medfører at matricerne har samme rank, determinant, karakteristisk polynomium, geometrisk multiplicitet.

2.6 Theorem 6.1.1

Lad A og B være $n \times n$ matricer. Hvis A og B er similære, så har de to matricer samme karakteristiske polynomium og derved også samme egenværdier.

Lad $p_A(x)$, $p_B(x)$ være de karakteristiske polynomier for A og B. Hvis B er similær til A så eksisterer der en invertibel matrix S sådan at $B = S^{-1}AS$. Derved gælder der:

$$p_B(x) = det(B - \lambda I)$$

$$= det(S^{-1}AS - \lambda I)$$

$$= det(S^{-1})(A - \lambda I)det(S)$$

$$= p_A(x)$$

Egenværdierne af en matrix er rødderne af det karakteristiske polynomium, da de har samme polynomium har de samme egenværdier. Egenværdierne

2.7 Diagonaliserbar

 $A \in \mathbb{F}^{n,n}, \, A$ er diagonaliserbar hvis der findes en ikke- singulær matrix X således at:

$$X^-1AX = D$$

Hvor D er en diagonalmatrix bestående af A's egenværdier og X diagonaliserer A og har A's egenvektorer som søjlevektorer.

2.8 Theorem 6.3.2

Først antager vi at A har n lineært uafhængige egenvektorer (x_1, \ldots, x_n) med egenværdier $(\lambda_1, \ldots, \lambda_n)$

Lad så $X = [x_1, \dots, x_n]$. Det følger så heraf at $Ax_j = \lambda_j x_j$ er den j'te søjlevektor for AX, derved får vi:

$$AX = (Ax_1, \dots, Ax_n) = (\lambda_1 x_1, \dots, \lambda_n x_n) = (x_1, \dots, x_n) \begin{bmatrix} \lambda_1 & & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{bmatrix}$$
$$= XD$$

Siden X har n lineært uafhængige søjlevektorer, så følger det at X er invertibel hvorved der gælder:

$$D = X^{-1}XD = X^{-1}AX$$

Nu antager vi at A er diagonaliserbar. Og vil så vise at dette betyder at den har n lineært uafh. egenvek.

Da A er diagonaliserbar, eksisterer der en invertibel matrix X sådan at AX = XD. Hvis x_1, \ldots, x_n er søjlevektorer af X, så følger der:

$$Ax_j = \lambda_j x_j$$
, $(\lambda_j = d_{jj} \text{ (den jj'te indgang i } D))$

for ethvert j. Da er λ_j en egenværdi for A og søjlerne i X, x_j , er egenvektorer. Siden søjlevektorerne af X er lineært uafhængige, så følger det at A har n lineært uafh. egenvek.