November 18, 2020

Outline

Introduction to Survival Analysis

Thomas Hielscher (t.hielscher@dkfz.de)
Div. of Biostatistics

Kaplan Meier method and log-rank test

- Characteristics of survival data
- 2 Survival function
- 3 Comparison of survival curves
- 4 Using SigmaPlot
- **5** Other Topics

Survival endpoint

Outline

 Response of interest: time to event (failure time, survival time, event time)

Examples:

- Time from to start of therapy to death
- Time from surgery to tumor recurrence

State the event, start and end of the period

- Endpoint may not be observed Examples:
 - End of study before all patients had relevant outcome (incomplete follow-up)
 - Relocation (lost to follow-up)
 - Death from other cause (different outcome)
 - → Incomplete responses are (right-)censored
 - → Different methods for analysis and visualisation required

Types of (right-)censoring

- Fixed type I censoring: study ends after a pre-specified follow-up time for each subject (e.g. animal experiments)
- Random type I censoring: study ends at a pre-specified time point (e.g. cut-off date in clinical study)
- Type II censoring: study ends after pre-specified number of events are observed

Fundamental Principle: Mechanism of censoring is independent (non-informative) of the mechanism of failure

Examples for dependent censoring:

- death from other cause (competing risk)
- drop-out due to drug-toxicity

Example data

Outline

Data from Freireich et al., "The effect of 6-mercaptopurine on the duration of steroid-induced remissions in acute leukemia" Blood 21, 699-716, 1963.

patient	time	relapse
Α	6	yes
В	10	no
С	23	yes
D	25	no

Survival time is not calender time

Survival data

- T_i denotes survival time of subject i, i = 1,..., N
- C_i denotes censoring time of subject i
- The observed response is Y_i = min(T_i, C_i)
- δ_i denotes the event indicator: 1 if $T_i \leq C_i$, 0 if $T_i > C_i$

Risk set

Outline

Example data, treatment group only (n=21):

 n_t denotes number of patients at risk at time t, i.e. $Y_i \ge t$

time	patients at risk n_t	relapse <i>d</i>	censoring c
6	21	3	1
7	17	1	0
8	16	0	0
9	16	0	1
:			

Theoretical survival function

- T denotes the survival time, $T \ge 0$
- F(t): distribution function of the survival times T
- Survival function S(t) = Pr(T > t) = 1 F(t)

- S(t) gives the probability that a subject survives past time t
- S(t) is non-increasing
- S(0) = 1
- S(∞) = 0 (exception e.g. cure rate models)
- Only in theory smooth S(t), in practice time scale discrete (days, weeks...)

Estimation of the survival function

- parametric methods: assumptions on the distribution of T (e.g. Weibull, exponential, log-normal)
 - AFT regression models

- semi-parametric methods: assumption on relative effects over time
 - Cox PH model (see lecture next week)

- non-parametric methods: no assumption on distribution of T
 - Kaplan-Meier method
 - Log-rank test

Kaplan-Meier method (1)

 Probability to survive past t is estimated as proportion of patients being alive at t among patients at risk

• Concept of conditional probabilities: in order to survive timepoint t, you have to survive timepoint t-1

Kaplan-Meier method (2)

Idea of conditional probabilities:

 p_1 = probability of surviving the first day ($S(1) = p_1$)

 $p_2=$ probability of surviving the second day, given one has survived day 1 (conditional probability)

ightarrow (unconditional) probability of surviving day 2 is $S(2) = p_1 \times p_2$

Generalizes to:

$$S(t) = S(t-1) \times p_t = p_1 \times p_2 \times ... \times p_{t-1} \times p_t$$

Kaplan-Meier method (3)

Estimation of survival propability p_t :

• no failure, no censoring at timepoint t:

$$\hat{p_t} = \frac{n_t - 0}{n_t} = 1$$
, $n_{t+1} = n_t$
estimated survival probability $\hat{S}(t) = \hat{S}(t-1)$

• d failures at timepoint t, $d \ge 1$:

$$\hat{\rho}_t = \frac{n_t - d}{n_t} < 1, \, n_{t+1} = n_t - d$$

 $\hat{S}(t)$ drops since $\hat{S}(t) = \hat{S}(t-1) \times \hat{\rho_t}$, patients at risk decrease

• c censorings at timepoint t, $c \ge 1$:

$$\hat{p}_t = \frac{n_t - 0}{n_t} = 1, \, n_{t+1} = n_t - c$$

 $\hat{S}(t)$ remains constant, patients at risk decrease

Kaplan-Meier method (4)

Kaplan Meier estimator:

$$\hat{\mathcal{S}}(t) = \prod_t \hat{
ho_t} = \hat{
ho_1} imes \hat{
ho_2} imes \ldots imes \hat{
ho}_{t-1} imes \hat{
ho_t} = \prod_t rac{n_t - d}{n_t}$$

- Also called: product limit estimate
- Unbiased under non-informative censoring
- In absence of censoring, KM estimator reduces to binomial estimate
- Variance estimation (Greenwood's formula):

$$\hat{V}[\hat{S}(t)] = \hat{S}(t)^2 \sum_{t} \frac{d}{n_t(n_t - d)}$$

Example data

Kaplan-Meier Plot - Treatment group only (N=21)

t	risk	d	С	p̂ _t		$\hat{S}(t)$
6	21	3	1	$\frac{21-3}{21} =$	0.86	0.86
7	17	1	0	$\frac{17-1}{17} =$	0.94	0.81
9	16	0	1	$\frac{16-0}{16} =$	1.00	0.81
10	15	1	1	$\frac{15-1}{15} =$	0.93	0.75
11	13	0	1	$\frac{13-0}{13} =$	1.00	0.75
13	12	1	0	$\frac{12-1}{12} =$	0.92	0.69
16	11	1	0	$\frac{11-1}{11} =$	0.91	0.63
17	10	0	1	$\frac{10-0}{10} =$	1.00	0.63
19	9	0	1	$\frac{9-0}{9} =$	1.00	0.63
20	8	0	1	$\frac{8-0}{8} =$	1.00	0.63
22	7	1	0	$\frac{7-1}{7} =$	0.86	0.54
23	6	1	0	$\frac{6-1}{6} =$	0.83	0.45
25	5	0	1	$\frac{5-0}{5} =$	1.00	0.45
32	4	0	2	$\frac{4-0}{4} =$	1.00	0.45
34	2	0	1	$\frac{2-0}{2} =$	1.00	0.45
35	1	0	1	$\frac{1-0}{1} =$	1.00	0.45

Median survival time

- Timepoint where $\hat{S}(t) = 0.5$
- Not always observed/inaccurate due to few patients at risk
- Confidence interval

Survival rate

Survival probability at timepoint *t*:

Survival function

00000000000

- Use standard time points (e.g. 1 year, ...)
- Confidence interval

Median follow-up

Censoring distribution (KM)

- Switch event indicator: $1-\delta_i$ (Korn, 1986)
- Estimated censoring distribution
- Timepoint where $\hat{S}(t) = 0.5$

Mean survival time

- Generally: do not report simple mean survival time from $\hat{S}(t)$
 - area under the survival curve
 - not defined if last observation is censored, i.e., survival curve does not go to zero
 - groups not comparable if maximum observed time are different
- Restricted mean survival time (RMST):
 - average survival from time 0 to a specified time point t_{max}
 - t_{max} observed in all groups/curves
 - estimated as the area under the survival curve up to that point t_{max}
 - groups can only be compared for the same t_{max}

Example data

Outline

Kaplan-Meier Plot

log-rank test (1)

- Mantel-Haenszel/Mantel Cox test
- Non-parametric test
- Null hypothesis H₀: there is no difference between the populations in the probability of an event at any time point
- Idea: describe survival process with a series of time-dependent 2×2 contingency tables, one for each event time $t_{(i)}$
- Compare observed vs. expected number of events at each time point

log-rank test (2)

group	events at $t_{(j)}$	no event at $t_{(j)}$	at risk at $t_{(j)}$
Α	d_{Aj}	$n_{Aj}-d_{Aj}$	n_{Aj}
В	d_{Bj}	$n_{Bj}-d_{Bj}$	n_{Bj}
Totals	dj	$n_j - d_j$	nj

- One table for each event time $t_{(j)}$, j = 1, ..., m
- Under H_0 of no difference: expected number of events at $t_{(j)}$ in group A is $\hat{e}_{Aj} = \frac{d_j n_{Aj}}{n_j}$
- Test statistic: $Q = \frac{\left(\sum d_{Aj} \sum \hat{\mathbf{e}}_{Aj}\right)^2}{\sum \hat{V}(\hat{\mathbf{e}}_{Aj})}$
- Variance of \hat{e}_{Aj} is $\hat{V}(\hat{e}_{Aj}) = \frac{n_{Aj}n_{Bj}d_j(n_j-d_j)}{n_i^2(n_j-1)}$
- Q is asy. χ_1^2 distributed under H_0

Example data

j	$t_{(j)}$	n_{Aj}	d_{Aj}	n _{Bj}	d_{Bj}	\hat{e}_{Aj}	$\hat{V}(\hat{e}_{Aj})$
1	1	21	0	21	2	1.00	0.49
2	2	21	0	19	2	1.05	0.49
3	3	21	0	17	1	0.55	0.25
4	4	21	0	16	2	1.14	0.48
5	5	21	0	14	2	1.20	0.47
6	6	21	3	12	0	1.91	0.65
7	7	17	1	12	0	0.59	0.24
8	8	16	0	12	4	2.29	0.87
9	10	15	1	8	0	0.65	0.23
10	11	13	0	8	2	1.24	0.45
11	12	12	0	6	2	1.33	0.42
12	13	12	1	4	0	0.75	0.19
13	15	11	0	4	1	0.73	0.20
14	16	11	1	3	0	0.79	0.17
15	17	10	0	3	1	0.77	0.18
16	22	7	1	2	1	1.56	0.30
17	23	6	1	1	1	1.71	0.20
Total			9		21	19.25	6.26

t(j)=1			
group	events	no event	at risk
A	0	21	21
В	2	19	21
Totala	2	40	40

- $Q = (9 19.25)^2 / 6.26 = 16.79$
- p-value: $1 P(Q \ge 16.79 | H_0) < 0.001$

Properties/assumptions of log-rank test

- Independence of censoring required
- Can be generalized to more than two groups: global null hypothesis vs. trend test
- Not appropriated for crossing survival curves (see numerater of Q)
- Weights within Q can be defined to derive different tests
- Gives equal weights to all time points
- Optimal power in case of proportional hazards → next week
- Provides no effect size → Regression model

Gehan-Wilcoxon test

- Gehan-Breslow (SigmaPlot), generalized Wilcoxon
- Same class of tests as log-rank test
- Time points are weighted based on number at risk
- More weight on earlier events, detects differences early in time
- (Sometimes) more powerful if proportional hazard assumptions does not hold \rightarrow next week
- Equivalent to Wilcoxon rank sum test in case of no censoring

Stratified log-rank test

- Control for effect of additional categorical variable/confounder
- Split data into subgroups (strata)
- Calculate numerator/denominator of Q in each subgroup and average across subgroups
- Too small strata/subgroups affect power
- No estimation of effect of stratified variable (Regression model)
- Not implemented in SigmaPlot/GraphPad Prism

Log-rank test using SigmaPlot? (1)

Log-rank test using SigmaPlot? (2)

Log-rank test using SigmaPlot? (3)

Log-rank test using SigmaPlot? (4)

Time-dependent covariates - 'immortal bias'

Group assignment not known at start of time interval

- endpoint: time from therapy start to death covariates: response to treatment, transplantation, etc.
- If covariate is treated as if known in advance \rightarrow biased estimates
- E.g. response to treatment: responders must live long enough for response to be observed; there is no such requirement for nonresponders.

Solution:

- Landmark analysis
- Methods to account for time-dependent variables (Simon-Makuch, Cox regression)

Categorization of continuous predictors

Issues:

Outline

- loss of power in case there is no real dichotomy: split at median is like discarding a third of the data
- · choice of cutpoint
- generalization/validation of cutpoint

How to dichotomize?

- a priori known cutpoint
- distribution parameter (e.g. median): arbitrary
- optimal cutpoint: optimal discrimination w/r/t response, biased estimates/p-values due to type I error inflation

Power and Sample Size

- Number of events **not** number of subjects provides power: required events = $\frac{4 \cdot (z_{\alpha} + z_{\beta})^2}{(log(HazardRatio))^2}$, for exponentially distributed survival times
- More events can be observed with
 - more subjects
 - longer follow-up
 - · combined/early endpoints (PFS vs. OS)
 - · prognostically selected population

References

Outline

Clark, Bradburn, Love and Altman, 2003. Survival Analysis Part I: Basic concepts and first analyses. British Journal of Cancer 89, 232-238.

Bland and Altman, 2004. The logrank test. British Medical Journal, 328.

SigmaPlot Statistics User Guide (PDF Manuals)

How to get support

- The biostatistics division C060 provides statistical support for all scientific activities of the DKFZ from in vitro and animal studies to human subject.
- Request statistical support via email to biostatistics-consulting@dkfz.de

 Characteristics of survival data
 Survival function
 Comparison of survival curves
 Using SigmaPlot
 Other Topics

 00000
 000000
 000000
 0000
 00000●

Next week

- Hazard function
- Cox proportional hazard regression model
- Competing risk analysis

