RSNA Pneumonia Detection Challenge

TEAM24

隊員:姚淨云、林孟學、楊亞澍

Outline

- Introduction
- Related work
- Proposed approach
- Experimental results
- Conclusions

GitHub: https://github.com/love124356/RSNA-Pneumonia-Detection-Challenge

Introduction

- Pneumonia Detection detect lung opacities on the Chest X-ray images
- Top 10 causes of death in the United States
 Top 3 causes of death in Taiwan
- Hard to Detect
- Use many modern object detection neural network architechtures
- Use many machine learning techniques

Related work

- Detection
- Two Stage Method Faster R-CNN. Mask R-CNN
 - Choose a lot of proposals in the first stage, and detect the object from these proposals in the second stage.
 - higher accuracy
 - time comsuming
- One Stage Method YOLOv5, RetinaNet
 - faster inference speed
 - lower accuracy compare to two stage
- Comparison
 - One stage methods perform well in many real time applications, but is not suitable
 in this task which needs high accuracy.

Related work

- K-Fold Cross Validation
- Ensemble

https://medium.com/the-owl/k-fold-cross-validation-in-keras-3ec4a3a00538

Proposed approach

Faster R-CNN

The Faster R-CNN works as follows:

- The RPN generates region proposals.
- For all region proposals in the image, a fixed-length feature vector is extracted from each region using the ROI Pooling layer.
- The extracted feature vectors are then classified using the Fast R-CNN
- The class scores of the detected objects in addition to their bounding-boxes are returned.

$$L(\{p_i\}, \{t_i\}) = \frac{1}{N_{cls}} \sum_{i} L_{cls}(p_i, p_i^*) + \lambda \frac{1}{N_{reg}} \sum_{i} p_i^* L_{reg}(t_i, t_i^*).$$

Proposed approach

Faster R-CNN

ResNet-50 FPN

- Transform
- 2. Resnet-50
- FPN
- 4. RPN
- 5. ROI

Dataset

- From the NIH CXR14 dataset using their original labels which were derived from radiology reports
 - 26684 training images (only 6012 images contain 9555 positive instances)
 - 3000 testing images
- Lables:
 - Not Normal / No Lung Opacity
 - Lung Opacity (only this label have bounging box)
 - Normal

Evaluation metrics

- Intersection over Union (IoU) The measure is the degree of overlap between the two areas.
- By using IoU with a threshold to determine if the object is correctly detected

Evaluation metrics

Average Precision (AP) - The average precision over thresholds.

We also calculate false-negative if it indicates a ground truth box had no associated predicted box.

Mean Average Precision (mAP) - The mean of APs over classes.

• Only tuned the hyper-parameters of YOLOv5 and Faster R-CNN.

Table 1. Comparison with related work.

	backbone	mAP
One-stage methods		
YOLOv5[3]	CSPDarkNet	13.948
RetinaNet[4]	ResNet-50	11.173
Two-stage methods		
Mask R-CNN[2]	ResNet-50	11.647
Faster R-CNN[1]	ResNet-50-FPN	15.627

- Compare mAPs by using different YOLOv5 architectures
- Change a training and validation data

Table 2. Compare mAPs by using different architectures

Model	Hyper-parameters	mAP
YOLOv5m6	300 epochs, 32 batch size, 608 x 608 image size, 0.3 conf. threshold	11.891
YOLOv5s6	300 epochs, 32 batch size, 608 x 608 image size, 0.3 conf. threshold	12.261
YOLOv516	300 epochs, 32 batch size, 608 x 608 image size, 0.3 conf. threshold	12.109
YOLOv5l6	300 epochs, 32 batch size, 608 x 608 image size, 0.3 conf. threshold, other training and validation data	13.129

- Compare to different batch size, image size of Faster R-CNN
- Change a training and validation data

Table 3. Models with different hyper-parameters

Model	Hyper-parameters	mAP
Faster R-CNN	50 epochs, 8 batch size, 300 x 300 image size, 1e-3 lr, 0.8 conf. threshold	13.114
Faster R-CNN	50 epochs, 8 batch size, 512 x 512 image size, 1e-3 lr, 0.8 conf. threshold	12.633
Faster R-CNN	50 epochs, 4 batch size, 300 x 300 image size, 1e-3 lr, 0.8 conf. threshold	13.807
Faster R-CNN	100 epochs, 4 batch size, 300 x 300 image size, 1e-3 lr, 0.8 conf. threshold, other training and validation data	15.627

Faster R-CNN by using 5-fold cross validation and ensemble method

Table 4. Faster R-CNN using 5-fold cross validation and ensemble method

+ ensemble	16.336 (+0.709)
Fold 4	8.831
Fold 3	14.756
Fold 2	14.587
Fold 1	14.590
Fold 0	15.627
4	mAP

Conclusions

- Try many machine learning techniques to make result better:
 - data augmentation
 - k-fold cross-validation
 - ensemble method
- Get a result 16.336 mAP with Faster R-CNN and ensemble method

Thanks for listening

Q&A