

Martin Weisenhorn
3. April 2020

Lernübung – Umrechnung einer Parallel- in eine Serienschaltung

Aufgabe 1. (Herleitung von Umrechnungsformeln) Die Abb. 1 zeigt eine Serienschaltung mit der Impedanz \underline{Z}_s und eine Parallelschaltung mit derselben Impedanz \underline{Z}_p . Beide Schaltungen bestehen aus je einem Wirkwiderstand und einem Blindwiderstand. Der Wirkwiderstand der Parallelschaltung sei R_2 der Blindwiderstand sei X_2 . Wie gross sollen der Wirkwiderstand R_1 und der Blindwiderstand X_1 der Reihenschaltung gewählt werden, damit die Impedanz der Reihenschaltung tatsächlich gleich der Impedanz der Parallelschaltung ist, oder einfacher ausgedrückt, damit $\underline{Z}_s = \underline{Z}_p$?

Eine Antwort auf diese Frage setzt sich aus den Lösungen der folgenden Teilaufgaben zusammen.

Abbildung 1: Serien und Parallelschaltung.

- a) Schreiben Sie eine Formel für die Berechnung von \underline{Z}_s aus R_1 und X_1 hin.
- **b)** Schreiben Sie eine Formel für die Berechnung von \underline{Z}_p aus R_2 und X_2 hin.
- c) Lösen Sie die komplexe Gleichung $\underline{Z}_s = \underline{Z}_p$ nach R_1 und nach X_1 auf. Hinweis 1: Erweitern Sie den Ausdruck für \underline{Z}_p konjugiert komplex und bestimmen Sie dann den Realteil und den Imaginärteil. Hinweis 2: Eine komplexe Gleichung besteht aus zwei reellen Gleichungen, aus einer Gleichung für den Realteil und einer für den Imaginärteil.
- d) Konkret soll \underline{Z}_p durch die Parallelschaltung aus einer Induktivität $L_2 = 100.57 \,\mu\text{H}$ und einem Widerstand $R_2 = 2633 \,\Omega$ bestehen. Berechnen Sie R_1 und X_1 so, dass für eine Frequenz $f = 10 \,\text{MHz}$ gilt $\underline{Z}_s = \underline{Z}_p$.
- e) Wird X_1 durch eine Induktivität L_1 oder durch eine Kapazität C_2 realisiert? Begründen Sie Ihre Antwort und geben Sie den entsprechenden Bauteilwert an.

f) Warum gilt bei festen Bauteilwerten L_1 , L_2 , R_1 und R_2 die Gleichung $\underline{Z}_p = \underline{Z}_s$ nur für eine Frequenz? Zeichnen Sie die Impedanzen \underline{Z}_s und \underline{Z}_p für verschiedene Frequenzen von $100\,\mathrm{Hz}$ bis $100\,\mathrm{MHz}$ in dieselbe komplexe Zahlenebene ein. benutzen Sie unter anderem das folgende MATLAB-Skript und ergänzen Sie an Stelle der Fragezeichen.

```
R2=2633
L2 = 100.57 e - 6
f1 = 10^7
w1 = 2*pi*f1;
X2 = w1*L2;
R1 = ???
X1 = ???
L1 = X1/w1;
f=10.^(3:0.01:8);
w=2*pi*f;
Z_L2 = 1i*w*L2;
Zp_=R2*Z_L2./(R2+Z_L2);
Z_L1 = 1i*w*L1
Zs_=R1+Z_L1;
figure()
plot(real(Zs_),imag(Zs_),'b');
hold on;
axis equal
plot(real(Zp_),imag(Zp_),'r');
legend('Zs','Zp')
grid on
axis([0 4000 -2000 2000])
```

Lösung 1. [Herleitung von Umrechnungsformeln]

a)
$$\underline{Z}_s = R_1 + jX_1$$

$$\underline{Z}_p = \frac{R_2 \cdot jX_2}{R_2 + jX_2}$$

c)

$$\begin{split} \underline{Z}_s &= \underline{Z}_p \\ R_1 + jX_1 &= \frac{R_2 \cdot jX_2}{R_2 + jX_2} \\ &= \frac{R_2 \cdot jX_2}{R_2 + jX_2} \frac{R_2 - jX_2}{R_2 - jX_2} \\ &= \frac{R_2 \cdot jX_2 \cdot (R_2 - jX_2)}{R_2^2 + X_2^2} \\ &= \frac{R_2^2 jX_2 + R_2 X_2^2}{R_2^2 + X_2^2} \\ &= \frac{R_2 X_2^2}{R_2^2 + X_2^2} + j \frac{R_2^2 X_2}{R_2^2 + X_2^2} \end{split}$$

Diese komplexe Gleichung besitzt genau dieselben Lösungen wie die beiden reellen Gleichungen

$$R_1 = \frac{R_2 X_2^2}{R_2^2 + X_2^2}$$

und

$$X_1 = \frac{R_2^2 X_2}{R_2^2 + X_2^2}.$$

d)
$$jX_2 = j\omega L_2 = j2\pi f L_2 = 2\pi \cdot 10 \text{ MHz} \cdot 100, 51 \,\mu\text{H} = j \,6.3190 \,\text{k}\Omega$$

Der Blindwiderstand X_2 ist gleich dem Imaginärteil der Impedanz der Induktivität:

$$X_2 = 6.3190 \,\mathrm{k}\Omega$$

Der Wert für den Widerstand R_2 ist aus der Angabe bekannt:

$$R_2 = 2633 \,\Omega$$

Anwendung der hergeleiteten Formeln liefert

$$R_1 = \frac{R_2 X_2^2}{R_2^2 + X_2^2} = 2.2435 \,\mathrm{k}\Omega,$$

$$X_1 = \frac{R_2^2 \, X_2}{R_2^2 + X_2^2} = 934.8138 \, \Omega.$$

e) Um zu entscheiden ob die Impedanz X_1 durch eine Kapazität oder eine Induktivität realisiert werden kann suchen wir den qualitativen Unterschied zwischen dem Blindwiderstand X_C einer Kapazität und dem Blindwiderstand X_L einer Induktivität:

$$X_C = \operatorname{Im} \left\{ \frac{1}{j\omega C} \right\} = -\frac{1}{\omega C}$$
$$X_L = \operatorname{Im} \left\{ j\omega L \right\} = \omega L$$

Es fällt auf, dass der Blindwiderstand einer Induktivität grundsätzlich positiv, der Blindwiderstand einer Kapazität aber grundsätzlich negativ ist. Aus dieser Beobachtung folgt, dass der Blindwiderstand X_2 nur von einer Induktivität, nicht aber von einer Kapazität gebildet werden kann. Es gilt also

$$L_1 = X_1/\Omega = 934.8138 \Omega/(2\pi f) = 14.8784 \mu H.$$

f) Beachtet man zb. in der Gleichungen zur Berechnung von R_1 , dass X_2 von der Frequenz abhängt, so wird klar, dass auch R_1 von der Frequenz abhängt. Nun ändern sich Widerstände aber nicht von selbst mit der Frequenz, deshalb kann ein fester Wert für R_1 die obige Gleichung nur für eine bestimmte Frequenz erfüllen. Das folgende Matlab Skript zeigt eine Grafik in Abb. 2 welche die beiden Impedanzen vergleicht. Man sieht dass die Übereinstimmung $Z_s = Z_p$ nur für eine Frequenz gilt.

```
clear all
R2=2633
L2=100.57e-6
w1 = 2*pi*10^7;
X2 = w1*L2;
R1 = (R2*X2^2)/(R2^2+X2^2);
X1 = (R2^2 * X2) / (R2^2 + X2^2);
L1 = X1/w1;
f=10.^(3:0.01:8);
w=2*pi*f;
Z_L2 = 1i*w*L2;
Zp_=R2*Z_L2./(R2+Z_L2);
Z_L1 = 1i*w*L1
Zs_=R1+Z_L1;
figure()
plot(real(Zs_),imag(Zs_),'b');
hold on;
axis equal
plot(real(Zp_),imag(Zp_),'r');
legend('Zs','Zp')
grid on
axis([0 4000 -2000 2000])
```


Abbildung 2: Orstkurven der beiden Impedanzen \underline{Z}_s und \underline{Z}_p .