Question 1

Attributes

- eventname
- edate
- starttime
- duration
- URL
- description
- host
- panelistname
- panelistemail
- participantid
- participantname
- participantemail
- participantaddress
- ticketprice

Functional Dependencies

- edate starttime => duration URL description host
- participantid => participantname participantemail participantaddress ticketprice
- edate starttime panelistname => panelistemail

Relation checks

Keys

edate starttime partcipantid panelistname

BCNF

Not satisfied, because

 edate starttime => duration URL description host is not trival and edate starttime is not a superkey

3NF

Not satisfied, because

 edate starttime => duration URL description host is not trival, edate starttime is not a superkey, and duration, URL, description, host are not prime

arrtibutes

Question 2

Decomposition

Projection of functional dependencies

```
R1(A, B, C, F, G)
F1 = { AFG -> B, ABC -> F }
R2(A, B, C, D, E)
F2 = { AC -> D, AC -> E }
```

Union

```
Fp = F1 union F2 = { AFG -> B, ABC -> F, AC -> D, AC -> E }
F = { AC -> D , AC -> E, BE -> F, AFG -> B }
```

Check

- AC -> D is in Fp
- AC -> E is in Fp
- BE -> F is not in Fp
 - Compute with respect to Fp: BE+ = { B, E }, F is not compiled
- AFG -> B is in Fp

Fp is not equivalent to F, so this decompostion is not dependency preserving.

Question 3

Table

Note: Changes are bolded

Initial State

REL	Α	В	С	D	Е	F	G
R1	a	b	С	d	e1	f1	g1
R2	a	b	С	d2	е	f2	g
R3	аЗ	b	сЗ	d3	е	f	g3
R4	a	b4	c4	d4	е	f4	g

Apply AC -> BD

REL	Α	В	С	D	E	F	G
R1	a	b	С	d	e1	f1	g1
R2	a	b	С	d	е	f2	g
R3	аЗ	b	сЗ	d3	е	f	g3
R4	a	b4	c4	d4	е	f4	g

Apply BC -> E

REL	Α	В	С	D	Е	F	G
R1	a	b	С	d	е	f1	g1
R2	a	b	С	d	е	f2	g
R3	аЗ	b	сЗ	d3	е	f	g3
R4	a	b4	с4	d4	е	f4	g

Apply BE -> DF

REL	Α	В	С	D	Е	F	G
R1	a	b	С	d	е	f1	g1
R2	a	b	С	d	е	f	g
R3	аЗ	b	сЗ	d	е	f	g3
R4	а	b4	c4	d4	е	f4	g

Relation R2 has no subscript, so this decomposition is lossless.

Question 4

Section a

Keys

ABGHF

3NF

Not satisfied, because AD -> CE is not trival and AD is not superkey

Section b

• R1(A, D, C, E)

```
R2(B, E, F, G)
R3(A, G, C)
R4(A, B, G, H, F)
```

Section c

BCNF

```
• R1(A, D, C, E)
     • F1 = { AD -> CE, C -> D }
     Key: AD

    Not Satisfied, C -> D is not trival and C is not a super key

• R2(B, E, F, G)
     • F2 = { BEF -> G }
     Key: BEF

    Satisfied, because BEF -> G is not trival and BEF is a superkey

• R3(A, G, C)
     • F3 = { AG -> C }
     Key: AG

    Satisfied, because AG -> C is not trival and AG is a superkey

• R4(A, B, G, H, F)
     o F4 = {}
     Key: ABGHF

    Satisfied
```

Question 5

Splitting Rules

```
AC -> B
AC -> D
BC -> B
BC -> E
```

• ABC -> E

Remove Trival

```
AC -> BAC -> DBC -> EABC -> E
```

Removing X -> Y

```
    AC -> B
    Cannot remove
    For F', AC+ = { A, C, D }
```

```
■ For F, AC+ = { A, C, B, D, E }
```

- Not equivalent
- AC -> D
 - Cannot remove
 - For F', AC+ = { A, C, B, E }
 - For F, AC+ = { A, C, D, B, E }
 - Not equivalent
- BC -> E
 - Cannot remove
 - For F', BC+ = { B, C }
 - For F, BC+ = {B, C, E}
 - Not equivalent
- ABC -> E
 - Cannot remove
 - For F', ABC+ = { A, B, C, D }
 - For F, ABC+ = { A, B, C, D, E }
 - Not equivalent

Replace XZ -> Y with X -> Y

- AC -> B
 - Remove C, we have A -> B for F'
 - Cannot replace
 - For F', A+ = { A, B }
 - For F, A+ = { A }
 - Not equivalent
 - Remove A, we have C -> B
 - Cannot replace
 - For F', C+ = { C, B }
 - For F, C+ = { C }
 - Not rquivalent
- AC -> D
 - Remove A, we have C -> D for F'
 - Cannot replace
 - For F', C+ = { C, D }
 - For F, C+ = { C }
 - Not equivalent
 - Remove C, we have A -> D for F'
 - Cannot replace
 - For F', A+ = { A, D }
 - For F, A+ = { A }
 - Not equivalent
- BC -> E
 - Remove B, we have C -> E for F'
 - Cannot replace
 - For F', C+ = { C, E }
 - For F, C+ = { C }

- Not equivalent
- Remove C, we have B -> E for F'
 - Cannot replace
 - For F', B+ = { B, E }
 - For F, B+ = { B }
 - Not equivalent
- ABC -> E
 - Remove A, we have BC -> E for F'
 - Can replace
 - For F', BC+ = { B, C, E }
 - For F, BC+ = { B, C, E }
 - Equivalent/Same

So we have:

- AC -> B
- AC -> D
- BC -> E
- BC -> E

Combining Rule

Minimal Basis:

- AC -> B
- AC -> D
- BC -> E

Question 6

Find Violation

Keys

oname mid

Result

- cname -> df url email
 - violate
- cname mid -> mname
 - violate
- oname -> oposition
 - violate
- oname -> cname
 - violate

BCNF

Pick any violation and start decomposition

```
• oname -> cname
        oname+ = { oname, cname, df, url, email, oposition }
        • R1(oname, cname, df, url, email, oposition)
             ■ F1 = {cmame -> df url email, oname -> oposition, oname -> cname}
             Keys: oname
             cname -> df url email violates BCNF
        • R2(oname, mid, mname)
             ■ F2 = {}
             • Keys: oname mid mname

    Satisfied BCNF

Decompose on cname -> df url email, with R1(oname, cname, df, url, email, oposition)
   • cname -> df url email
        o cname+ = { cname, df, url, email }
        • R11(cname df url email)
             • F11 = { cname -> df url email }
             Key: cname

    Satisfied BCNF

        • R12(cname, oname, oposition)
             ■ F12 = { oname -> oposition, oname -> cname }
             Key: oname

    Satisified BCNF
```

Result

- · cname df url email
- · cname, oname, oposition
- oname, mid, mname