University of Hertfordshire Closed-Loop Feedback Control System for EXOhSPEC Development

Biswajit Jana¹, Thomas Wocial², Hugh Jones³, William Martin³

¹MSc Astrophysics, Department of Physics, Astronomy and Mathematics, University of Hertfordshire ²PhD Astrophysics, Department of Physics, Astronomy and Mathematics, University of Hertfordshire ³Centre for Astrophysics Research, School of Physics, Engineering & Computer Science

INTRODUCTION

- **EXOhSPEC,** the Exoplanet High-Resolution Spectrograph
- Focus on high-resolution spectrometry and precise radial velocity measurement
- Noteworthy features: bifurcated fiber for simultaneous telescope and Thorium Argon input
- Crucial for precise wavelength calibration
- IDS3010 Displacement Measuring Interferometer provides picometer-level displacement measurements. Integration of additional sensors: BME680 for pressure and humidity, PT104 for temperature
- Design prioritizes efficiency by minimizing optical components. Spectrograph achieves a resolution of ≥ 70,000
- Project targets environmental stability with a designed control system
- Utilizes off-the-shelf sensors in a feedback loop to calibrate the spectrograph
- Represents an innovative leap in stability optimization. Compact, low-cost, and efficient highresolution spectrograph.

METHODOLOGY

The key steps in the closed-loop feedback control system:

1. Initiation:

Begin the process, using the web interface, which will send commands to the system to start.

2. Data Acquisition:

- Source: Thorium Argon Lamp, Sun, or a Star.
- Measure displacement and environmental parameters using the Interferometer and BME680, respectively using Python.

Disturbance

Feedback Signal

Fig. 1. Schematic Block Diagram of the Spectrograph Control Feedback System

Manipulated

To Detector

3. Sensor Data Processing:

- Combine the Interferometer and BME680 data.
- Send integrated data to the Control Unit.

4. Spectrograph Calibration:

- Adjust Spectrograph settings based on integrated sensor data.
- Transmit calibration commands.

5. Spectral Data Reception:

Obtain spectral data.

6. Feedback Loop:

- The feedback loop runs faster than the spectrograph readout
- Needs calibration.
- Evaluate calibration success.
- If successful, repeat data acquisition.
- If not, adjust calibration and repeat the process.

with various light sources.

7. Conclusion:

Fig. 2. XYZ precision piezo nano-

positioning system with picometer

positioning resolution, Nano HS3M

End the process after desired iterations.

KEY MILESTONES

• Enhance interferometer configuration, refine calibration, and conduct extensive testing

EXPERIMENTAL SETUP

Fig. 3. Internal structure of the Modified EXOhSPEC along with IDS and BME680 integrated

Key Components of the Overall System:

resolution spectral analysis.

environmental compensation.

pressure accuracy.

accuracy

measurements.

• Spectrograph: Optical instrument for high-

IDS 3010 Displacement Sensor: Precision

interferometric sensor for picometer-level

BME680 with NODEMCU ESP8266: Real-time

monitoring of temperature, humidity,

pressure, and altitude. ±1.0 ° C temperature

accuracy, ±3% humidity accuracy, ±0.6 hPa

PT-104 Temperature Sensor: Peltier-based

sensor with 0.001°C resolution and 0.015°C

Overview of Spectrograph Operation:

- Light Source: Utilizes a Thorium Argon lamp as the primary light
- Fiber: Channels emitted light through a multimode
- **Collimator:** Collimates incoming light, directing it to Prism 1.
- **Prism 1:** Disperses the light spectrum onto the grating for wavelength orders.
- Grating: Diffract light in many Spectral orders.
- Collimator Lens: Focuses the dispersed light.
- **Prism 2:** Focuses the spectrum onto the CMOS detector.
- **CMOS Detector:** Captures the spectral characteristics of the incoming light.

Fig. 4. (a) IDS including Accessories, (b) Sensor head selection and alignment simplified with advanced mounting kits, (c) Optical items: glass target, plane mirror, and retroreflector

Fig. 8. Modified protective box designed to shield the system from environmental factors, primarily focusing on temperature control.

PRELIMINARY RESULTS

Spectrum of Thorium Argon Lamp (Image on left):

- Captured Spectral Data: Bright Lines indicate the Argon Emission Lines in the near-infrared.
- Time: The spectrum is with a 1-minute exposure, comprehensive analysis of the lamp's emission characteristics.

Position vs Time with Moving Average Smoothing

Slip introduced

Fig 10. Experiment 2(i). Slip Width Variation: Introduces a glass slip of thickness Environmental parameters variations over time

Fig. 11: Real-time Monitoring Web Interface for Spectrograph Functionality and Sensor Control.

- Remote Access: Efficient, Monitor spectrograph and control sensors from anywhere.
- **Instant Control:** Optimize system performance in real-time.
- **Enhanced Robustness:** Strengthen system resilience with quick, webbased adjustments.
 - Preliminary results illuminate the Thorium Argon Lamp's spectral characteristics, while Experiments reveal trends in IDS displacement, temperature, pressure, and humidity.

REFERENCES

- Jones et al., 2021, "A small actively controlled high-resolution spectrograph based on offthe-shelf components". Publications of the Astronomical Society of the Pacific, 133(1020).
- https://www.picotech.com/data-logger/pt-104/high-accuracy-temperature-daq
- https://www.attocube.com/application/files/7115/5360/4707/IDS3010_brochure.pdf
- https://www.bosch-sensortec.com/products/environmental-sensors/gas-sensors/bme680/
- https://components101.com/sites/default/files/component_datasheet/ESP8266-NodeMCU-Datasheet.pdf

Fig. 7: The system's outer box is positioned on a carbon fibre breadboard.