Bernard Alexandre Note: 6/20 (score total : 6/20)

+71/1/30+

QCM THLR 4

	Nom et prénom, lisibles : Identifiant (de haut en bas) :
	Boznoso 0
	Alexagrana
2/2	Q.1 Ne rien écrire sur les bords de la feuille, ni dans les éventuels cadres grisés « ». Noircir les cases plutôt que cocher. Renseigner les champs d'identité. Les questions marquées par « » peuvent avoir plusieurs réponses justes. Toutes les autres n'en ont qu'une; si plusieurs réponses sont valides, sélectionner la plus restrictive (par exemple s'il est demandé si 0 est <i>nul</i> , <i>non nul</i> , <i>positif</i> , ou <i>négatif</i> , cocher <i>nul</i>). Il n'est pas possible de corriger une erreur, mais vous pouvez utiliser un crayon. Les réponses justes créditent; les incorrectes pénalisent; les blanches et réponses multiples valent 0. [M] J'ai lu les instructions et mon sujet est complet: les 2 entêtes sont +71/1/xx+···+71/2/xx+.
	Q.2 Le langage $\{ \bigotimes^n \bigotimes^n \forall n \in \mathbb{N} \}$ est
)/2	☐ fini ☐ rationnel ☑ non reconnaissable par automate fini ☐ vide
	Q.3 Le langage $\{\bigotimes^{2n} \forall n \in \mathbb{N}\}$ est
)/2	☐ vide ☐ non reconnaissable par automate fini ☐ rationnel ☐ fini
	Q.4 Un automate fini qui a des transitions spontanées
)/2	igtimes n'est pas déterministe $igtharpoonup$ est déterministe $igtharpoonup$ n'accepte pas $arepsilon$ $igtharpoonup$ accepte $arepsilon$
2/2	 Q.5 A propos du lemme de pompage Si un langage ne le vérifie pas, alors il n'est pas forcement rationnel Si un langage le vérifie, alors il est rationnel Si un langage ne le vérifie pas, alors il n'est pas rationnel Q.6 Si L₁ ⊆ L ⊆ L₂, alors L est rationnel si :
)/2	\square L_2 est rationnel \square L_1 est rationnel \square L_1, L_2 sont rationnels \square L_1, L_2 sont rationnels et $L_2 \subseteq L_1$
	Q.7 Combien d'états au moins a un automate déterministe émondé qui accepte les mots sur $\Sigma = \{a, b\}$ dont la n -ième lettre avant la fin est un a (i.e., $(a+b)^*a(a+b)^{n-1}$):
)/2	$\frac{n(n+1)}{2}$ \boxtimes 2^n \square Il n'existe pas. \square $n+1$
	Q.8 Combien d'états au moins a un automate déterministe émondé qui accepte les mots sur $\Sigma = \{a, b, c, d\}$ dont la n -ième lettre avant la fin est un a (i.e., $(a+b+c+d)^*a(a+b+c+d)^{n-1}$):
)/2	$\square \frac{n(n+1)(n+2)(n+3)}{4}$ \square Il n'existe pas. $\square 4^n$ $\boxtimes 2^n$
	Q.9 Déterminiser cet automate : $\xrightarrow{a,b}$ $\xrightarrow{a,b}$ $\xrightarrow{a,b}$ $\xrightarrow{a,b}$ $\xrightarrow{a,b}$ $\xrightarrow{a,b}$ $\xrightarrow{a,b}$ $\xrightarrow{a,b}$

Q.10 Comment marche la minimisation de Brzozowski d'un automate A?

Fin de l'épreuve.