ESTRUCTURAS ALGEBRAICAS. GRUPO M3. CURSO 2019-2020. CARLOS ANDRADAS Y ANDONI DE ARRIBA.

Generalidades en anillos. Divisores de cero. Unidades. Subanillos.

1. Consideramos las matrices

$$I = \operatorname{Id} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \ A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \ B = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix} \ y \ C = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$$

de $\mathcal{M}_2(\mathbb{C})$. Definimos el anillo de los cuaternios reales

$$\mathbb{H} = \{aA + bB + cC + dI : a, b, c, d \in \mathbb{R}\} \subset \mathcal{M}_2(\mathbb{C}).$$

- (a) Demostrar que $x = aA + bB + cC + dI \in \mathbb{H}$ es nulo si, y sólo si, lo son a, b, c y d.
- (b) Demostrar las igualdades

$$A^{2} = B^{2} = C^{2} = -I, BC = -CB = A,$$

 $CA = -AC = B \text{ y } AB = -BA = C.$

- (c) Deducir que \mathbb{H} es un subanillo unitario de $\mathcal{M}_2(\mathbb{C})$.
- (d) Se define el conjugado de un cuaternio $x=aA+bB+cC+dI\in\mathbb{H}$ como $\bar{x}=-aA-bB-cC+dI\in\mathbb{H}$. Calcular $x\bar{x}$ y $\bar{x}x$. Deducir que \mathbb{H} es un anillo de división. Si definimos la $aplicación\ norma\ N:\mathbb{H}\longrightarrow\mathbb{R}$ por

$$N(aA + bB + cC + dI) := a^2 + b^2 + c^2 + d^2$$

demostrar que esta es multiplicativa¹.

(e) Sea I el anillo de los cuaternios enteros. A saber,

$$\mathbb{I} = \{aA + bB + cC + dI : a, b, c, d \in \mathbb{Z}\}.$$

Probar que este es subanillo de \mathbb{H} (luego, la restricción de N a \mathbb{I} está bien definida), y deducir que $x \in \mathbb{I}$ es unidad si, y sólo si, N(x) = 1.

2. Demostrar que

$$\mathbb{Z}\left[\sqrt{3}\right] = \left\{a + b\sqrt{3} : a, b \in \mathbb{Z}\right\}$$

es subanillo unitario de \mathbb{C} con infinitas unidades. ¿Pasa lo mismo con $\mathbb{Z}\left[\sqrt{-3}\right]$?

3. El anillo de los enteros de Gauss es

$$\mathbb{Z}[i] = \{a + ib : a, b \in \mathbb{Z}\},\$$

donde $i = \sqrt{-1}$. Demostrar que $\mathbb{Z}[i]$ es un subanillo unitario de \mathbb{C} sin divisores de cero. Encontrar sus unidades.

- 4. Un anillo unitario A se dice de Boole si para cada $a \in A$ se tiene que $a^2 = a$.
 - (a) Probar que A es conmutativo y que 2a = 0 para cada $a \in A$.
 - (b) Probar que todo elemento de A distinto de 0 y de 1 es un divisor de cero.
- 5. El centro de un anillo A se define por

$$Z(A) := \{ a \in A : ab = ba, \ \forall \ b \in A \}.$$

Demostrar que este es un subanillo conmutativo. Si A es unitario, entonces su centro contiene al elemento unidad. Deducir de todo esto que el centro de un anillo de división es un cuerpo.

¹Una aplicación $f: A \longrightarrow B$ entre anillos se dice multiplicativa si f(ab) = f(a) f(b) para todo $a, b \in A$.

- 6. Si A es dominio de integridad y existe $x \in A$ tal que $x^2 = 1$, probar que $x = \pm 1$.
- 7. Sea A un anillo unitario y $x \in A$ un elemento nilpotente². Demostrar que $1-x \in \mathcal{U}(A)$ es una unidad. Pista: Factorizar $1-x^n$.
- 8. Sea A un anillo conmutativo y unitario, $x \in \mathcal{U}(A)$ una unidad y $\mathcal{N}(A) = A \setminus \mathcal{U}(A)$.
 - (a) Probar que $\rho_x : \mathcal{N}(A) \to A$; $y \mapsto xy$ es inyectiva y que $\operatorname{Im}(\rho_x) \subseteq \mathcal{N}(A)$.
 - (b) Demostrar que ρ_x es biyectiva si $\mathcal{N}(A)$ es un conjunto finito.
 - (c) Probar que si A es un dominio infinito, entonces $\mathcal{N}(A) = \{0\}$ o $\mathcal{N}(A)$ es infinito.

Homomorfismos de anillos. Ideales. Anillos cociente. Teoremas de Isomorfía.

- 9. Probar que todo ideal primo $\mathfrak{p} \subseteq A$ de un anillo de Boole es maximal. Demostrar que A/\mathfrak{p} tiene dos elementos. Deducir que si A es un dominio de integridad entonces es isomorfo a \mathbb{Z}_2 .
- 10. (a) Sean n, m > 0 dos enteros positivos cualesquiera. Clasificar los homomorfismos de anillos unitarios en los siguientes casos:
 - (i) $f: \mathbb{Z}_n \to \mathbb{Z}$,
 - (ii) $f: \mathbb{Z} \to \mathbb{Z}_n$ y
 - (iii) $f: \mathbb{Z}_m \to \mathbb{Z}_n$.
 - (b) Clasificar los ideales de \mathbb{Z}_n para n > 1 entero. Pista: Ver primero para valores concretos.
- 11. (a) Probar que todo homomorfismo de anillos **unitario** $f: \mathbb{K} \longrightarrow A$ con dominio un cuerpo es inyectivo. ¿Pueden existir homomorfismos de anillos unitarios que vayan de \mathbb{Q} en \mathbb{Z} ?
 - (b) ¿Podemos sustituir que el homomorfismo sea unitario por **no nulo**? Hallar (y demostrar) bajo que condiciones son nociones equivalentes el ser no nulo y el ser unitario.
 - (c) Dar un ejemplo de homomorfismo entre anillos unitarios con dominio un cuerpo que no sea ni nulo, ni unitario. Pista: ¿En qué parte falla la prueba de (b)?
- 12. Sean \mathbb{K} un cuerpo que contiene a los números racionales y $f: \mathbb{Q} \to \mathbb{K}$ un homomorfismo de cuerpos. Demostrar que f(x) = x para cada $x \in \mathbb{Q}$. Deducir que el único endomorfismo del cuerpo \mathbb{R} es la identidad.
- 13. Sea A un anillo unitario, conmutativo y finito. Demostrar que todo elemento no nulo de A es divisor de cero o unidad. Deducir que si A es un dominio de integridad entonces es un cuerpo.
- 14. Demostrar que el homomorfismo $\pi_4: \mathbb{Z} \to \mathbb{Z}_4; n \mapsto n+4\mathbb{Z}$ transforma todos los cuadrados de enteros impares en el mismo elemento. Deducir que ningún elemento de la sucesión 11, 111, 1111, . . . es un cuadrado.
- 15. (a) Demostrar que

$$\mathbb{Q}[i] = \{a + ib : a, b \in \mathbb{Q}\}\$$

es un subcuerpo de \mathbb{C} isomorfo al cuerpo de fracciones de $\mathbb{Z}[i]$.

- (b) Probar que $S = \{(a-b) + i(a+b) : a, b \in \mathbb{Z}\}$ es un ideal en $\mathbb{Z}[i]$.
- 16. Sea $C^{\infty}(\mathbb{R})$ el anillo de funciones $f: \mathbb{R} \to \mathbb{R}$ infinito diferenciables. Demostrar que el homomorfismo evaluación $\operatorname{ev}_0: C^{\infty}(\mathbb{R}) \to \mathbb{R}; f \mapsto f(0)$ es sobreyectivo y su núcleo es un ideal maximal y principal.

²Un elemento $x \in A$ de un anillo se dice nilpotente si existe m > 0 entero tal que $x^m = 0$.