CPU 各模块及接口说明

喵喵喵喵喵?

December 9, 2017

Contents

1	C C	2
	.1 简介	2
	.2 接口定义	2
2	F/ID	3
	.1 简介	3
	.2 接口定义	3
3	D	4
	.1 简介	4
	.2 接口定义	4
4	D/EX	7
	.1 简介	7
	.2 接口定义	7
5	x	7
	.1 简介	7
	.2 接口定义	7
6	X/MEM	7
	.1 简介	7
	.2 接口定义	7
7		7
	.1 简介	7
	.2 接口定义	7
8	EM/WB	7
	.1 简介	7
	2 接口完义	7

9	REGISTERS																																						7
	9.1 简介																																						7
	9.2 接口定义	•		•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	7
10	HI_LO																																						8
	10.1简介																																						8
	10.2接口定义	•		•		•		•		•		•	•			•	•		•	•			•			•	•	•	•	•	•	•		•	•				8
11	PAUSE_CTRL																																						9
	11.1简介																																						9
	11.2接口定义	•		•		•		•		•		•	•			•	•		•	•	•		•			•	•	•	•	•	•	•		•	•				9
12	MIPS_CPU																																						10
	MIPS_CPU 12.1简介																																						10
	12.2接口定义	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•		•	10
Α	常数和宏定义																																						10
	A.1 INTEGER	类	型的	内常	含数																																		10

- 1 PC
- 1.1 简介
- 1.2 接口定义

方向	名称	类型	宽度	连接到	详细描述
in	rst	STD_LOGIC	1	MIPS_CPU	复位信号
in	clk	STD_LOGIC	1	MIPS_CPU	时钟信号
in	pause_i	STD_LOGIC_VECTOR	CTRL_PAUSE_LEN	PAUSE_CTRL	此 模 块 是 否暂停
in	branch_i	STD_LOGIC	1	ID	是否跳转
in	<pre>branch_target_address_i</pre>	STD_LOGIC_VECTOR	INST_ADDR_LEN	ID	如果跳转, 跳到什么 位置
out	en_o	STD_LOGIC	1	MIPS_CPU	是否读指 令
out	pc_o	STD_LOGIC_VECTOR	INST_ADDR_LEN	MIPS_CPU	下一条指令的位置

Table 1: PC 模块的接口

2 IF/ID

2.1 简介

2.2 接口定义

方向	名称	类型	宽度	连接到	详细描述
in	rst	STD_LOGIC	1	MIPS_CPU	复位信号
in	clk	STD_LOGIC	1	MIPS_CPU	时钟信号
in	pc_i	STD_LOGIC_VECTOR	INST_ADDR_LEN	指令地址	
in	inst_i	STD_LOGIC_VECTOR	INST_LEN	指令	
in	pause_i	STD_LOGIC_VECTOR	CTRL_PAUSE_LEN	是否暂停	
out	pc_o	STD_LOGIC_VECTOR	INST_ADDR_LEN	指令地址	
out	inst_o	STD_LOGIC_VECTOR	INST_LEN	指令	

Table 2: IF/ID 模块的接口

3 ID

3.1 简介

3.2 接口定义

Table 3: PC 的接口

方向 in in	名称 rst pc_i	类型 STD_LOGIC STD_LOGIC_VECTOR	宽度 1 INST_ADDR_LEN	连接到 MIPS_CPU IF/ID	详细描述 复位信号 指令地址 指令
in in	inst_i reg_rd_data_1_i	STD_LOGIC_VECTOR STD_LOGIC_VECTOR	INST_LEN REG_DATA_LEN	IF/ID REGISTERS	寄存器 1 读 出数据
in	reg_rd_data_2_i	STD_LOGIC_VECTOR	REG_DATA_LEN	REGISTERS	寄存器 2 读 出数据
in	ex_reg_wt_en_i	STD_LOGIC	1	EX	EX 模块是否 写寄存器
in	ex_reg_wt_addr_i	STD_LOGIC_VECTOR	REG_ADDR_LEN	EX	EX 模块写寄 存器地址
in	ex_reg_wt_data_i	STD_LOGIC_VECTOR	REG_DATA_LEN	EX	EX 模块写寄 存器数据
in	mem_reg_wt_en_i	STD_LOGIC	1	MEM	MEM 模块是否 写寄存器
in	mem_reg_wt_addr_i	STD_LOGIC_VECTOR	REG_ADDR_LEN	MEM	MEM 模块写寄 存器地址
in	mem_reg_wt_data_i	STD_LOGIC_VECTOR	REG_DATA_LEN	MEM	MEM 模块写寄 存器数据
in	is_in_delayslot_i	STD_LOGIC	1	ID/EX	当前指令是否 在延迟槽内
out	op_o	STD_LOGIC_VECTOR	OP_LEN	ID/EX	指令对应的操 作类型
out	funct_o	STD_LOGIC_VECTOR	FUNCT_LEN	ID/EX	指令对应的子 操作类型
out	reg_rd_en_1_o	STD_LOGIC	1	REGISTERS	寄存器 1 读 使能
out	reg_rd_en_2_o	STD_LOGIC	1	REGISTERS	寄存器 2 读使能
out	reg_rd_addr_1_o	STD_LOGIC_VECTOR	REG_ADDR_LEN	REGISTERS	寄存器 1 读 地址
out	reg_rd_addr_2_o	STD_LOGIC_VECTOR	REG_ADDR_LEN	REGISTERS	寄存器 2 读地址

接下页

方向	名称	类型	宽度	连接到	详细描述
out	operand_1_o	STD_LOGIC_VECTOR	DATA_LEN	ID/EX	指令操作数 1
out	operand_2_o	STD_LOGIC_VECTOR	DATA_LEN	ID/EX	指令操作数 2
out	<pre>extended_offset_o</pre>	STD_LOGIC_VECTOR	DATA_LEN	ID/EX	扩展后立即数
out	reg_wt_en_o	STD_LOGIC	1	ID/EX	寄存器写使能
out	reg_wt_addr_o	STD_LOGIC_VECTOR	REG_ADDR_LEN	ID/EX	寄存器写地址
out	pause_o	STD_LOGIC	1	PAUSE_CTRL	是否需要暂停
out	branch_o	STD_LOGIC	1	ID/EX	当前是否为分
					支跳转指令
out	branch_target_addr_o	STD_LOGIC_VECTOR	INST_ADDR_LEN	PC	跳转地址
out	is_in_delayslot_o	STD_LOGIC	1	ID/EX	当前指令是否
					在延迟槽内
out	<pre>next_inst_in_delayslot_o</pre>	STD_LOGIC	1	ID/EX	下一条指令是
					否在延迟槽内
out	link_addr_o	STD_LOGIC_VECTOR	INST_ADDR_LEN	ID/EX	跳转指令的返
					回地址

方向	名称	类型	宽度	连接到	详细描述
in	rst	STD_LOGIC	1	MIPS_CPU	复位信号
in	pc_i	STD_LOGIC_VECTOR	INST_ADDR_LEN	IF/ID	指令地址
in	inst_i	STD_LOGIC_VECTOR	INST_LEN	IF/ID	指令
in	reg_rd_data_1_i	STD_LOGIC_VECTOR	REG_DATA_LEN	REGISTERS	寄存器 1 读 出数据
in	reg_rd_data_2_i	STD_LOGIC_VECTOR	REG_DATA_LEN	REGISTERS	寄存器 2 读 出数据
in	ex_reg_wt_en_i	STD_LOGIC	1	EX	EX 模块是否 写寄存器
in	ex_reg_wt_addr_i	STD_LOGIC_VECTOR	REG_ADDR_LEN	EX	EX 模块写寄 存器地址
in	ex_reg_wt_data_i	STD_LOGIC_VECTOR	REG_DATA_LEN	EX	EX 模块写寄 存器数据
in	mem_reg_wt_en_i	STD_LOGIC	1	MEM	MEM 模块是否 写寄存器
in	mem_reg_wt_addr_i	STD_LOGIC_VECTOR	REG_ADDR_LEN	MEM	MEM 模块写寄 存器地址
in	mem_reg_wt_data_i	STD_LOGIC_VECTOR	REG_DATA_LEN	MEM	MEM 模块写寄 存器数据
in	is_in_delayslot_i	STD_LOGIC	1	ID/EX	当前指令是否 在延迟槽内
out	op_o	STD_LOGIC_VECTOR	OP_LEN	ID/EX	指令对应的操 作类型
out	funct_o	STD_LOGIC_VECTOR	FUNCT_LEN	ID/EX	指令对应的子 操作类型
out	reg_rd_en_1_o	STD_LOGIC	1	REGISTERS	寄存器 1 读 使能
out	reg_rd_en_2_o	STD_LOGIC	1	REGISTERS	寄存器 2 读 使能
out	reg_rd_addr_1_o	STD_LOGIC_VECTOR	REG_ADDR_LEN	REGISTERS	寄存器 1 读 地址
out	reg_rd_addr_2_o	STD_LOGIC_VECTOR	REG_ADDR_LEN	REGISTERS	寄存器 2 读地址
out	operand_1_o	STD_LOGIC_VECTOR	DATA_LEN	ID/EX	指令操作数 1
out	operand_2_o	STD_LOGIC_VECTOR	DATA_LEN	ID/EX	指令操作数 2
out	extended_offset_o	STD_LOGIC_VECTOR	DATA_LEN	ID/EX	扩展后立即数
out	reg_wt_en_o	STD_LOGIC	1	ID/EX	寄存器写使能
out	reg_wt_addr_o	STD_LOGIC_VECTOR	REG_ADDR_LEN	ID/EX	寄存器写地址
out	pause_o	STD_LOGIC	1	PAUSE_CTRL	是否需要暂停
out	branch_o	STD_LOGIC	1	ID/EX	当前是否为分 支跳转指令
out	branch_target_addr_o	STD_LOGIC_VECTOR	INST_ADDR_LEN	PC	跳转地址
out	is_in_delayslot_o	STD_LOGIC	1	ID/EX	当前指令是否 在延迟槽内
out	next_inst_in_delayslot_o	STD_LOGIC 7	1	ID/EX	下一条指令是 否在延迟槽内
out	link_addr_o	STD_LOGIC_VECTOR	INST_ADDR_LEN	ID/EX	跳转指令的返 回地址

- 4 ID/EX
- 4.1 简介
- 4.2 接口定义
- 5 EX
- 5.1 简介
- 5.2 接口定义
- 6 EX/MEM
- 6.1 简介
- 6.2 接口定义
- 7 MEM
- 7.1 简介
- 7.2 接口定义
- 8 MEM/WB
- 8.1 简介
- 8.2 接口定义
- 9 REGISTERS
- 9.1 简介
- 9.2 接口定义

方向	名称	类型	宽度	连接到	详细描述
in	rst	STD_LOGIC	1	MIPS_CPU	复位信号
in	clk	STD_LOGIC	1	MIPS_CPU	时钟信号
in	reg_rd_en_1_i	STD_LOGIC	1	ID	寄存器 1 读使能
in	reg_rd_en_2_i	STD_LOGIC	1	ID	寄存器 2 读使能
in	reg_rd_addr_1_i	STD_LOGIC_VECTOR	REG_ADDR_LEN	ID	寄存器 1 读地址
in	reg_rd_addr_2_i	STD_LOGIC_VECTOR	REG_ADDR_LEN	ID	寄存器 2 读地址
in	reg_wt_en_i	STD_LOGIC	1	MEM/WB	寄存器写使能
in	reg_wt_addr_i	STD_LOGIC_VECTOR	REG_ADDR_LEN	MEM/WB	寄存器写地址
in	reg_wt_data_i	STD_LOGIC_VECTOR	REG_DATA_LEN	MEM/WB	寄存器写数据
out	reg_rd_data_1_o	STD_LOGIC_VECTOR	REG_DATA_LEN	ID	寄存器 1 读出数据
out	reg_rd_data_2_o	STD_LOGIC_VECTOR	REG_DATA_LEN	ID	寄存器 2 读出数据

Table 5: PC 的接口

10 HI_LO

10.1 简介

10.2 接口定义

方向	名称	类型	宽度	连接到	详细描述
in	rst	STD_LOGIC	1	MIPS_CPU	复位信号
in	clk	STD_LOGIC	1	MIPS_CPU	时钟信号
in	en	STD_LOGIC	1	MEM/WB	使能
in	hi_i	STD_LOGIC_VECTOR	REG_DATA_LEN	MEM/WB	HI
in	lo_i	STD_LOGIC_VECTOR	REG_DATA_LEN	MEM/WB	LO
out	hi_o	STD_LOGIC_VECTOR	REG_DATA_LEN	EX	HI
out	lo_o	STD_LOGIC_VECTOR	REG_DATA_LEN	EX	LO

Table 6: PC 的接口

11 PAUSE_CTRL

11.1 简介

11.2 接口定义

方向	名称	类型	宽度	连接到	详细描述
in	rst	STD_LOGIC	1	MIPS_CPU	复位信号
in	id_pause_i	STD_LOGIC	1	ID	ID 模块是否 暂停
in	ex_pause_i	STD_LOGIC	1	EX	EX 模块是否 暂停
out	pause_o	STD_LOGIC_VECTOR	CTRL_PAUSE_LEN	PC, IF/ID, ID/EX, EX/MEM, MEM/WB	各模块是否 暂停

Table 7: PC 的接口

12 MIPS_CPU

12.1 简介

12.2 接口定义

A 常数和宏定义

A.1 INTEGER 类型的常数

INST_ADDR_LEN 32

INST_LEN 32

REG_ADDR_LEN 5

REG_DATA_LEN 32

DATA_LEN 32

CTRL_PAUSE_LEN 6

OP_LEN 6

FUNCT_LEN 6