Álgebra Linear – Matrizes e Determinantes

Definição de Matrizes

Uma matriz é uma tabela de números tal que A_{mxn} seja uma matriz com m linhas e n colunas. Os elementos da matriz são denotados como a_{ij} onde i é a linha do elemento e j é a coluna.

$$A_{3x4} = \begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \end{pmatrix}$$

Igualdade entre matrizes

Duas matrizes são iguais se todos seus elementos forem iguais.

Tipos de Matriz

Matriz Retangular

É a matriz na qual o número de linhas é diferente do de colunas, ou seja, m != n.

Matriz-Coluna

É a matriz que possui apenas uma coluna, ou seja, n = 1.

Matriz-Linha

É a matriz que possui apenas uma linha, ou seja, m = 1.

Matriz Quadrada

É a matriz na qual o número de linhas é igual ao número de colunas, ou seja, m = n.

Matriz Diagonal

É uma matriz quadrada onde todos os elementos fora da diagonal principal são 0.

Matriz Identidade

É uma matriz diagonal onde todos os elementos da diagonal principal são 1.

Matriz Triangular Superior

É uma matriz quadrada onde os elementos abaixo da diagonal principal são nulos.

Matriz Triangular Inferior

É uma matriz quadrada onde os elementos acima da diagonal principal são nulos.

Matriz Nula

É uma matriz onde todos os elementos são iguais a 0.

Matriz Transposta

Seja A uma atriz de ordem mxn, se trocarmos as linhas pelas colunas teremos a matriz transposta de A, denotada por A^{T} .

Matriz Simétrica

É uma matriz quadrada onde $A = A^{T}$.

Matriz Antissimétrica

É uma matriz quadrada onde $A^T = -A$. Ou seja, $a_{ij} = -a_{ij}$. Para que isso ocorra todos os elementos da diagonal principal devem ser zero.

Matriz Oposta

A oposta de uma matriz é ela mesma com os sinais de seus elementos invertidos.

Matriz Inversa

A inversa de uma matriz $A \in a$ matriz A^{-1} tal que $A^*A^{-1} = 1$ (matriz identidade)

Propriedades das Matrizes

Matriz Transposta	Matriz Inversa
$(A^T)^T = A$	$(B^{-1})^{-1} = B$
$(A+B)^T = A^T + B^T$	$(B^{-1})^T = (B^T)^{-1}$
$(k^*A)^T = k^*A^T$	$(A*B)^{-1} = B^{-1}*A^{-1}$
$(A^*B)^T = B^{T*}A^T$	
$det(A) = det(A^T)$	

Operações com Matrizes

Soma e Subtração

A soma e a subtração devem ser feitas apenas entre duas matrizes de mesma ordem e basta realizar a operação entre os elementos nas suas respectivas posições.

$$\begin{pmatrix} 1 & 4 & 2 & 1 \\ 3 & 4 & 5 & 3 \end{pmatrix} + \begin{pmatrix} -2 & 2 & 1 & 2 \\ 1 & -1 & 4 & -3 \end{pmatrix} = \begin{pmatrix} -1 & 6 & 3 & 3 \\ 4 & 3 & 9 & 0 \\ 2 & 4 & 15 & 11 \end{pmatrix}$$

$$\begin{pmatrix}
1 & 4 & 2 & 1 \\
3 & 4 & 5 & 3
\end{pmatrix} - \begin{pmatrix}
-2 & 2 & 1 & 2 \\
1 & -1 & 4 & -3
\end{pmatrix} = \begin{pmatrix}
3 & 2 & 1 & -1 \\
2 & 5 & 1 & 6 \\
0 & 0 & -3 & -1
\end{pmatrix}$$

Multiplicação por Escalar

O escalar é um número real, basta multiplicar todos os elementos da matriz por ele.

Multiplicação entre Matrizes

Sejam duas matrizes A e B, para ser possível multiplicá-las, o número de colunas que A possui deve ser o número de linhas que B possui, e a matriz resultante terá o número de linhas de A e o número de colunas de B.

$$A_{2x3}$$
 $B_{3x2} = C_{2x2}$

O elemento a ij da matriz resultante da multiplicação será o produto escalar da linha i da matriz A com a coluna j da matriz B.

Calculando o elemento a11:

Portanto:

$$\begin{pmatrix} 1 & 2 & 5 \\ 3 & 4 & 7 \end{pmatrix} \cdot \begin{pmatrix} 6 & 3 \\ 5 & 2 \\ 4 & 1 \end{pmatrix} = \begin{pmatrix} 36 & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$

Basta repetir esses mesmos passos para o resto dos elementos da matriz.

Comutatividade na Multiplicação entre Matrizes

A existência do produto A*B não implica a existência do produto B*A. Mesmo quando ambos A*B e B*A existem, geralmente os dois são diferentes. Por isso, o produto de matrizes não é comutativo. Existem dois casos onde a comutatividade é possível: quando a multiplicação é pela matriz identidade (elemento neutro da multiplicação) e quando é pela matriz inversa.

Operações Elementares

Através das operações elementares é possível achar sistemas lineares equivalentes, mas mais fáceis de serem resolvidos. São usadas em algumas formas de achar a matriz inversa e também para colocar uma matriz em sua forma escalonada.

1. Permutação

Trocar duas linhas de uma matriz.

2. Multiplicação

Multiplicar uma linha por um número real não nulo.

3. Soma

Somar uma linha com outra.

4. Soma com produto de outra linha

Somar uma linha com o resultado da multiplicação de outra por um número real.

$$\begin{pmatrix}
1 & 4 & 2 & 1 \\
3 & 4 & 5 & 3 \\
1 & 2 & 6 & 5
\end{pmatrix}
\xrightarrow{L1=L1+(L3*2)}
\begin{pmatrix}
3 & 8 & 14 & 11 \\
3 & 4 & 5 & 3 \\
1 & 2 & 6 & 5
\end{pmatrix}$$

Matriz Inversa

A inversa de uma matriz $A \in a$ matriz A^{-1} tal que a produto das duas resulta na matriz identidade. A matriz $A \in a$ só tem inversa se |A| = 0. Podemos encontrá-la de algumas formas diferentes.

Método das Variáveis

Usamos a definição da matriz inversa para gerar um sistema de equações que nos dê os valores dos elementos da matriz inversa.

$$\begin{pmatrix}
A & A^{-1} & I \\
5 & 10 \\
20 & 10
\end{pmatrix}
\cdot
\begin{pmatrix}
A & b \\
c & d
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix}$$

Fazendo a multiplicação das matrizes temos essas equações:

$$(5a + 10c) = 1$$
 $(20a + 10c) = 0$
 $(5b + 10d) = 0$ $(20b + 10d) = 1$

Resolvendo os sistemas:

$$(20a + 10c) - (5a+10c) = 0 - 1$$
 $5*(-1/15) + 10c = 1$ $(5b+10d) - (20b+10d) = 0 - 1$ $5/15 + 10d = 0$ $15a = -1$ $(-5/15) + 10c = 1$ $-15b = -1$ $10d = -5/15$ $a = -1/15$ $c = 2/15$

Portanto:
$$A^{-1}$$
 A^{-1} A^{-1}

Método das Operações Elementares

Nesse método escrevemos a matriz identidade de mesma ordem ao lado da matriz A da qual queremos achar a inversa e então aplicamos operações elementares até transformar a matriz A na matriz identidade, e então a matriz identidade terá se transformado na matriz inversa.

Determinantes

O determinante é um número real que está associado à matriz quadrada. Ele permite saber com antecedência se uma matriz possui ou não inversa. O determinante de A é denotado por [A]. O método usado para calcular o determinante depende da ordem da matriz.

Matrizes 1x1

O determinante é o único elemento da matriz.

Matrizes 2x2 (Regra de Sarrus)

O determinante é a multiplicação da diagonal principal subtraída da multiplicação da diagonal secundária.

$$\begin{array}{c|c}
A \\
\hline
5 & 10 \\
20 & 10
\end{array}$$

$$|A| = 5*10 - 10*20 \\
|A| = -150$$

Matrizes 3x3 (Regra de Sarrus)

Copiamos as duas primeiras colunas da matriz para o lado, fazemos a soma das multiplicações das diagonais principais e subtraímos as multiplicações das diagonais secundárias.

$$\begin{vmatrix} 1 & 4 & 2 & 1 & 4 \\ 3 & 4 & 5 & 3 & 4 \\ 4 & 2 & 6 & 7 & 2 \end{vmatrix}$$

$$|A| = (1*4*6) + (4*5*1) + (2*3*2) - (2*4*1) - (1*5*2) - (4*3*6)$$

$$|A| = 56 - 90$$

$$|A| = -34$$

Para matrizes de ordem superior a 3, é necessário utilizar outros métodos: o Teorema de Laplace ou a Regra de Chió.

Regra de Chió

A regra de Chió é um método de abaixamento de ordem da matriz, através dele conseguimos diminuir a ordem da matriz em uma unidade e então utilizar de outros métodos para obter o determinante.

O primeiro passo é obter um elemento igual a 1 na matriz, tornando-se mais prático caso ele seja o primeiro elemento, após isso podemos eliminar a linha e a coluna onde o 1 se encontra e então os elementos da matriz abaixada serão os que restaram, mas deles subtraídos o produto do elemento da respectiva linha que foi eliminado com o da respectiva coluna que foi eliminado.

Primeiro passo: obter um elemento igual a 1 (usando operações elementares)

$$\begin{pmatrix}
2 & 4 & 2 & 8 \\
6 & 4 & 6 & 2
\end{pmatrix}
\xrightarrow{A=A^*1/2}
\begin{pmatrix}
3 & 2 & 3 & 1 \\
3 & 2 & 3 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
2 & 2 & 6 & 8 \\
4 & 6 & 8 & 6
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & 1 & 4 \\
3 & 2 & 3 & 1 \\
1 & 1 & 3 & 4 \\
2 & 3 & 4 & 3
\end{pmatrix}$$

Segundo passo: eliminar a linha e coluna com o 1 escolhido.

Terceiro passo: subtrair os elementos restantes pelo produto dos elementos eliminados na sua linha e coluna. O primeiro elemento da matriz, por exemplo, será 2 - (2*3).

E agora, com a matriz de ordem 3 equivalente, podemos simplesmente usar o método que já conhecemos para obter o determinante.

Teorema de Laplace

O Teorema de Laplace é útil para cálcular o determinante de matrizes de ordem 4 em diante. Existem dois conceitos importantes para aplicar esse teorema: o menor complementar e o cofator.

Menor Complementar (Dij)

O menor complementar de um elemento a_{ij} de uma matriz A é o determinante da matriz que sobra quando eliminamos as colunas i e j da matriz A.

Ex:
$$A = \begin{pmatrix} 1 & 2 & 3 \\ -5 & 0 & 2 \\ 1 & 3 & 0 \end{pmatrix}, D_{22} = \begin{vmatrix} 1 & 2 & 3 \\ -5 & 0 & 2 \\ 1 & 3 & 0 \end{vmatrix} = \begin{vmatrix} 1 & 3 \\ 1 & 0 \end{vmatrix} = -3$$

Cofator (Cij)

O Cofator de um elemento a i é definido pela seguinte fórmula:

$$C_{ij} = (-1)^{i+j} * D_{ij}$$

Ex:
$$A = \begin{pmatrix} 1 & 2 & 3 \\ -5 & 0 & 2 \\ 1 & 3 & 0 \end{pmatrix}, C_{22} = (-1)^{2+2} * D_{22} = 1* D_{22} = -3$$

Aplicação do Teorema

Escolha uma fila (linha ou coluna) qualquer. O determinante será a soma entre cada elemento multiplicado pelo seu cofator. Quanto mais zeros houver na fila, mais fácil fica.

$$\begin{vmatrix} 4^*-1^* & \begin{vmatrix} 6 & 6 & 2 \\ 2 & 6 & 8 \\ 4 & 8 & 6 \end{vmatrix} + \begin{vmatrix} 2^*-1^* & \begin{vmatrix} 2 & 2 & 8 \\ 6 & 6 & 2 \\ 4 & 8 & 6 \end{vmatrix} + \begin{vmatrix} 6^*1^* & \begin{vmatrix} 2 & 2 & 8 \\ 6 & 6 & 2 \\ 2 & 6 & 8 \end{vmatrix}$$

$$= \begin{vmatrix} 4^*-1^*-64 & + & 2^*-1^*176 & + & 6^*1^*176 \\ = & \end{vmatrix}$$

Portanto: |A| = 960

Propriedades do Determinante

- 1. Se todos os elementos de uma linha ou coluna forem nulos, |A|=0.
- 2. Se uma linha de uma matriz for multiplicada por k, então o determinante fica multiplicado por k.
- 3. Se trocarmos a posição de duas linhas, o determinante troca de sinal.
- 4. O determinante de uma matriz que tem duas filas iguais é zero.
- 5. |A*B| = |A|*|B| (Teorema de Binet).

Teoremas

Teorema de Binet

Sendo A e B duas matrizes quadradas de mesma ordem, e A*B a matriz-produto, então temos que |A*B| = |A|*|B|. Ou seja, o determinante da multiplicação é igual a multiplicação dos determinantes).

Teorema de Jacobi

Se a uma determinada fila somarmos outra(s) fila(s) multiplicada(s) por um número (que pode, também, ser 1), o determinante não se altera. Ou seja, podemos fazer operações elementares com a matriz sem alterar seu determinante.

Triangularização

Dada uma matriz quadrada A, o processo consiste em aplicar operações elementares até que se obtenha uma matriz triangular (inferior ou superior), ao mesmo tempo efetuando as compensações necessárias com o determinante, de acordo com as propriedades 2 e 3 dos determinantes.

Assim no final será obtida uma equação que relaciona o determinante de A em sua forma triangular com o determinante de A em sua forma normal, assim podemos calcular o determinante da forma triangular (que pode ser mais fácil) e resolver a equação para obter o determinante original.

Matriz Escalonada

Podemos transformar uma matriz em sua forma escalonada através das operações elementares sobre as linhas. Uma matriz está em sua forma escalonada se segue as seguintes regras:

- 1.0 primeiro elemento não nulo de uma linha não nula é um.
- 2. Cada coluna que contem o primeiro elemento não nulo de alguma linha tem todos seus outros elementos iguais a zero.
- 3. Toda linha nula ocorre abaixo de todas as linhas não nulas.
- 4. O número de zeros precedendo o primeiro elemento não nulo de uma linha aumenta a cada linha, até que sobrem somente linhas nulas (se houver).