Lecture Worksheet 19

Task 1

Let X be a random variable on a probability space.

• Give a precise definition of $P(X \leq x)$ for $x \in \mathbb{R}$.

Consider a sample space S,

$$P(X \le x) = P(\{\omega \in S \mid X(\omega) \le x\}) = P(X^{-1}((-\infty, x]))$$

We can think of $P(X \leq x)$ as the disjoint union of the probabilities of the events where the random variable outputs a value less than x.

• What are the following expressions for $x_0 \in \mathbb{R}$:

$$1. \bigcap_{x \in \mathbb{R}} [X \le x]$$

We can rewrite $[X \leq x]$ as $[X(\omega) \leq x]$. Since $X : S \mapsto \mathbb{R}$, we are trying to find a number $X(\omega) \in \mathbb{R}$ such that $X(\omega) < x$ for all $x \in \mathbb{R}$. No such number should exist, so thus we have:

$$\bigcap_{x\in\mathbb{R}}[X\leq x]=\emptyset$$

$$2. \bigcup_{x \in \mathbb{R}} [X \le x]$$

Considering a sample space S, Here we are trying to find the set of all $X \in S$ such that $X \leq x$ for $x \in \mathbb{R}$. It turns out that the union is just the entire sample space itself since x runs through all of \mathbb{R} , we can find an x such that all the elements of the sample space is less than x.

$$\bigcup_{x\in\mathbb{R}}[X\leq x]=S$$

$$3. \bigcap_{x > x_0} [X \le x]$$

The index in the intersection runs through all the possible values of x such that $x > x_0$. The resulting set of outcomes contains elements that are all greater than x_0 , making x_0 a lower bound. Then we can just rewrite this set as the set of all outcomes that are less than x_0 .

$$\bigcap_{x>x_0} [X \le x] = [X \le x_0]$$

• What is the relation between $P(X \leq -\infty)$, $P(X \leq x_1)$, $P(X \leq x_2)$, and $P(X \leq \infty)$ when $x_1 \leq x_2 \in \mathbb{R}$? Can you identify any of these values independently of X?

We can first look at the extreme cases including ∞ and $-\infty$.

The probability $P(X \leq -\infty)$ comes out to be just 0 because no number exists that is smaller than $-\infty$.

The probability $P(X \leq \infty)$ comes out to be 1 because all finite numbers should be less than ∞ and we are given that $x_1, x_2 \in \mathbb{R}$.

Since $x_1 \leq x_2$, we also have $P(X \leq x_1) \leq P(X \leq x_2)$. This is because x_2 is larger than x_1 so the event of $X \leq x_2$ is larger compared to $X \leq x_1$

Without involving the random variable X, we can state the relation:

$$-\infty < x_1 \le x_2 \le \infty$$

• If a function $F_X : \mathbb{R} \to \mathbb{R}$ is defined by $F_X(x) = P(X \le x)$, what properties does it have?

The function F_X is generally increasing as we increase x in $X \leq x$, where $0 \leq F_X(x) \leq 1$. Consequently, $\lim_{x \to -\infty} F_X = 0$ and $\lim_{x \to \infty} F_X = 1$.

Task 2

• A discrete random variable is Poisson distributed with parameter $\lambda \in (0, \infty)$ iff

$$X(S) = \{x_1, x_2, ..., x_n\}$$
 and $p_X(i) = P(X = i) = e^{-\lambda} \frac{\lambda^i}{i!}$

• What is the role of the parameter λ ? How do the values of p_X depend on λ ? How do the values of p_X depend on the other variables?

The role of λ is to denote the number of occurrences. It determines the distribution of the data points.

Using the equation above, we can find the dependence relation of λ and p_X .

$$p_X(k+1) = e^{-\lambda} \frac{\lambda^{k+1}}{(k+1)!}$$
$$= e^{-\lambda} \frac{\lambda \cdot \lambda^k}{(k+1) \cdot k!}$$
$$= \frac{\lambda}{k+1} \cdot p_X(k)$$

From this we can see that p_X is increasing for $0 \le k \le \lambda$ and decreasing for $k \ge \lambda$

• Computed the expected value and the variance of a Poisson distributed random variable.

Using the general formula of expected value:

$$E[X] = \sum_i i \ p_X(i)$$

For a Poisson distributed random variable X, the expected value is given by:

$$\begin{split} E[X] &= \sum_{i=0}^{\infty} i \cdot e^{-\lambda} \frac{\lambda^{i}}{i!} \\ &= \lambda \cdot e^{-\lambda} \sum_{i=1}^{\infty} \frac{\lambda^{i-1}}{(i-1)!} \\ &= \lambda \cdot e^{-\lambda} \sum_{j=0}^{\infty} \frac{\lambda^{j}}{j!} \qquad \qquad using \ j = i-1 \\ &= \lambda \cdot e^{-\lambda} \cdot e^{\lambda} \qquad \qquad since \ \sum_{i=0}^{\infty} \frac{\lambda^{i}}{i!} = e^{\lambda} \\ &= \lambda \end{split}$$

For the variance, we first try to compute $E[X^2]$:

$$\begin{split} E[X^2] &= \sum_{i=0}^{\infty} i^2 \cdot e^{-\lambda} \frac{\lambda^i}{i!} \\ &= \lambda \cdot e^{-\lambda} \sum_{i=1}^{\infty} i \cdot \frac{\lambda^{i-1}}{(i-1)!} \\ &= \lambda \cdot e^{-\lambda} \sum_{j=0}^{\infty} (j+1) \frac{\lambda^j}{j!} \qquad using \ j = i-1 \\ &= \lambda \cdot e^{-\lambda} \sum_{j=0}^{\infty} \left[j \cdot \frac{\lambda^j}{j!} + \frac{\lambda^j}{j!} \right] \\ &= \lambda \cdot e^{-\lambda} \left[\lambda \sum_{j=1}^{\infty} \frac{\lambda^{j-1}}{(j-1)!} + \sum_{j=0}^{\infty} \frac{\lambda^j}{j!} \right] \\ &= \lambda \cdot e^{-\lambda} \left[\lambda \sum_{k=0}^{\infty} \frac{\lambda^k}{k!} + e^{\lambda} \right] \qquad using \ k = j-1 \\ &= \lambda \cdot e^{-\lambda} \left[\lambda \cdot e^{\lambda} + e^{\lambda} \right] \\ &= \lambda (\lambda + 1) \end{split}$$

Now the variance is given by:

$$Var(X) = E[X^{2}] - E[X]^{2}$$
$$= \lambda(\lambda + 1) - \lambda^{2}$$
$$= \lambda^{2} + \lambda - \lambda^{2}$$
$$= \lambda$$

It turns out that the expected value and the variance of a Poisson distributed random variable is represented both by the parameter λ .

Task 3

The number of people entering a gambling casino is Poisson distributed with a rate of 1 person every 2 minutes.

• What is the probability that no one enters between 12:00 and 12:05?

Let random variable X denote the number of people entering the casino.

If we take 1 person per 2 minutes, then we can reduce this ratio to half a person per minute. The reason why we would do this is so that we can multiply by 5 to account for the given 5-minute window. Then our Poisson parameter becomes $\lambda = 5 \cdot 1/2 = 5/2$

The probability is given by:

$$P(X=0) = e^{(-5/2)} \cdot \frac{\lambda^0}{0!} = e^{-5/2} \approx 8.21\%$$

• What is the probability that at least 4 people enter the casino during that time?

It is easier to compute the complement. The probability is given by:

$$P(X \ge 4) = 1 - P(X < 4)$$

$$= 1 - \left[P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) \right]$$

$$= 1 - \left[e^{-5/2} + e^{-5/2} \frac{(5/2)^1}{1!} + e^{-5/2} \frac{(5/2)^2}{2!} + e^{-5/2} \frac{(5/2)^3}{3!} \right]$$

$$\approx 24.2\%$$