Laboratorium 7 Pierwiastki równań nieliniowych

Krzysztof Solecki

22 Kwietnia 2023

1 Treści zadań

- 1. Napisz iteracje wg metody Newtona do rozwiązywania każdego z następujących równań nieliniowych:
 - (a) $x \cos(x) = 1$
 - (b) $x^3 5x 6 = 0$
 - (c) $e^{-x} = x^2 1$
- 2. (a) Pokaż, że iteracyjna metoda: $x_{k+1} = \frac{x_{k-1}f(x_k) x_kf(x_{k-1})}{f(x_k) f(x_{k-1})}$ matematycznie jest równoważna z metodą siecznych przy rozwiązywaniu skalarnego nieliniowego równania f (x) = 0.
 - (b) Jeśli zrealizujemy obliczenia w arytmetyce zmiennoprzecinkowej o skończonej precyzji, jakie zalety i wady ma wzór podany w podpunkcie (a), w porównaniu ze wzorem dla metody siecznych podanym poniżej? $x_{k+1} = \frac{x_{k-1}f(x_k) x_kf(x_{k-1})}{f(x_k) f(x_{k-1})}$
- 3. Zapisz iteracje Newtona do rozwiązywania następującego układu równań nieliniowych.
 - (a) $x_1^2 + x_1 x_2^3 = 9$
 - (b) $3x_1^2x_2 x_2^3 = 4$

2 Rozwiązania zadań

1. Wyniki zostały obliczone za pomocą programu napisanego w języku Python:

```
from math import e, cos, sin
# funkcja z pp. a
def f_a(x):
   return (1 + x ** 2 * \sin(x)) / (\cos(x) - x * \sin(x))
# funkcja z pp. b
def f_b(x):
   return (2 * x ** 3 + 6) / (3 * x ** 2 - 5)
# funkcja z pp. c
def f_c(x):
   return (e ** (-x) + 1) * (-x - 1) / (-e ** (-x) - 2 * x)
def newton_iteration(x0: float, n: int, f):
   x_k = x0
   for k in range(1, n + 1):
      x_k = f(x_k)
      print("k: ", k, "x_k: ", x_k)
print("-----")
newton_iteration(1, 20, f_b)
print("----- x^3-5x-6=0 -----")
newton_iteration(1, 20, f_a)
print("----- e^(-x)=x^2-1 -----")
newton_iteration(1, 20, f_c)
```

(a) Mamy:

$$x_{k+1} = x_k - \frac{x_k \cos(x_k) - 1}{\cos(x_k) - x_k \sin(x_k)} = \frac{1 + x_k^2 \sin(x_k)}{\cos(x_k) - x_k \sin(x_k)}$$

Niech $x_0 = 1$ (funkcja oraz jej dwie pochodne są ciągłe, x_0 jest blisko rozwiązania oraz $f'(x_0) \neq 0$. Wyniki przedstawia tabelka:

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
2 3.6166531913233118 3 -6.513734068609697 4 16.886893233297762 5 -17.244815735599488 6 17.336975975684517 7 -17.221304526132844 8 17.337374152314872 9 -17.221307141408733	k	\mathbf{x}_k
3 -6.513734068609697 4 16.886893233297762 5 -17.244815735599488 6 17.336975975684517 7 -17.221304526132844 8 17.337374152314872 9 -17.221307141408733	1	-6.114417313548893
4 16.886893233297762 5 -17.244815735599488 6 17.336975975684517 7 -17.221304526132844 8 17.337374152314872 9 -17.221307141408733	2	3.6166531913233118
5 -17.244815735599488 6 17.336975975684517 7 -17.221304526132844 8 17.337374152314872 9 -17.221307141408733	3	-6.513734068609697
6 17.336975975684517 7 -17.221304526132844 8 17.337374152314872 9 -17.221307141408733	4	16.886893233297762
7 -17.221304526132844 8 17.337374152314872 9 -17.221307141408733	5	-17.244815735599488
8 17.337374152314872 9 -17.221307141408733	6	17.336975975684517
9 -17.221307141408733	7	-17.221304526132844
	8	17.337374152314872
10 17.33737409942598	9	-17.221307141408733
	10	17.33737409942598

(b) Mamy:

$$x_{k+1} = x_k - \frac{x_k^3 - 5x_k - 6}{3x_k^2 - 5} = \frac{2x_k^3 + 6}{3x_k^2 - 5}$$

Niech $x_0 = 1$ (funkcja oraz jej dwie pochodne są ciągłe, x_0 jest blisko rozwiązania oraz $f'(x_0) \neq 0$. Wyniki przedstawia tabelka:

k	\mathbf{x}_k
1	-4.0
2	-2.8372093023255816
3	-2.0720209707579835
4	-1.4964181413556084
5	-0.40852227514846784
6	-1.303226219125557
7	16.52600182653632
8	11.09234954141944
9	7.512922382297259
10	5.1975195357565065
11	3.771749728508793
12	3.0074229336011444
13	2.728943551609753
14	2.689841309646591
15	2.689095592421677

(c) Mamy:

$$x_{k+1} = x_k - \frac{e^{-x_k} - x_k^2 + 1}{-e^{-x_k} - 2x_k} = \frac{(e^{-x_k} + 1)(-x_k - 1)}{-e^{-x_k} - 2x_k}$$

Niech $x_0 = 1$ (funkcja oraz jej dwie pochodne są ciągłe, x_0 jest blisko rozwiązania oraz $f'(x_0) \neq 0$. Wyniki przedstawia tabelka:

k	\mathbf{x}_k
1	1.1553624034969636
2	1.079412675839093
3	1.1150100253233204
4	1.0979756805310898
5	1.1060484690522463
6	1.1022048537258669
7	1.1040308532102534
8	1.103162459719219
9	1.1035752374605103
10	1.1033789833288639

Wniosek: Wartość wybranego przez nas x_0 (o ile nie jest w pobliżu ekstremum) nie ma zbytniego znaczenia, ponieważ już po kilku iteracjach kolejne wartości są bardzo zbliżone.

2. a) Pokażemy, że poniższy wzór jest równoważny z metodą siecznych dla rozwiązywania równań nieliniowych f(x)=0:

$$x_{k+1} = \frac{x_{k-1} \cdot f(x_k) - x_k \cdot f(x_{k-1})}{f(x_k) - f(x_{k-1})}$$

Przekształćmy najpierw wzór na metodę siecznych stosując proste algebraiczne przekształcenia:

$$x_{k+1} = x_k - \frac{x_k(f(x_{k-1}) - f(x_k))}{f(x_{k-1}) - f(x_k)} = \frac{x_k \cdot f(x_{k-1}) - x_k \cdot f(x_k) - x_k \cdot f(x_{k-1}) + x_k \cdot f(x_k)}{f(x_{k-1}) - f(x_k)} = \frac{x_k \cdot f(x_{k-1}) - x_{k-1} \cdot f(x_k)}{f(x_{k-1}) - f(x_k)} = \frac{x_k \cdot f(x_{k-1}) - x_{k-1} \cdot f(x_k)}{f(x_{k-1}) - f(x_k)} = \frac{x_k \cdot f(x_{k-1}) - x_{k-1} \cdot f(x_k)}{f(x_{k-1}) - f(x_k)} = \frac{x_k \cdot f(x_{k-1}) - x_{k-1} \cdot f(x_k)}{f(x_{k-1}) - f(x_k)} = \frac{x_k \cdot f(x_{k-1}) - x_k \cdot f(x_k)}{f(x_{k-1}) - f(x_k)} = \frac{x_k \cdot f(x_{k-1}) - x_k \cdot f(x_k)}{f(x_{k-1}) - f(x_k)} = \frac{x_k \cdot f(x_{k-1}) - x_k \cdot f(x_k)}{f(x_{k-1}) - f(x_k)} = \frac{x_k \cdot f(x_{k-1}) - x_k \cdot f(x_k)}{f(x_{k-1}) - f(x_k)} = \frac{x_k \cdot f(x_{k-1}) - x_k \cdot f(x_k)}{f(x_{k-1}) - f(x_k)} = \frac{x_k \cdot f(x_{k-1}) - x_k \cdot f(x_k)}{f(x_{k-1}) - f(x_k)} = \frac{x_k \cdot f(x_{k-1}) - x_k \cdot f(x_k)}{f(x_{k-1}) - f(x_k)} = \frac{x_k \cdot f(x_{k-1}) - x_k \cdot f(x_k)}{f(x_{k-1}) - f(x_k)} = \frac{x_k \cdot f(x_{k-1}) - x_k \cdot f(x_k)}{f(x_{k-1}) - f(x_k)} = \frac{x_k \cdot f(x_{k-1}) - x_k \cdot f(x_k)}{f(x_{k-1}) - f(x_k)} = \frac{x_k \cdot f(x_{k-1}) - x_k \cdot f(x_k)}{f(x_{k-1}) - f(x_k)} = \frac{x_k \cdot f(x_{k-1}) - x_k \cdot f(x_k)}{f(x_{k-1}) - f(x_k)} = \frac{x_k \cdot f(x_{k-1}) - x_k \cdot f(x_k)}{f(x_{k-1}) - f(x_k)} = \frac{x_k \cdot f(x_{k-1}) - x_k \cdot f(x_k)}{f(x_{k-1}) - f(x_k)} = \frac{x_k \cdot f(x_{k-1}) - x_k \cdot f(x_k)}{f(x_{k-1}) - f(x_k)} = \frac{x_k \cdot f(x_{k-1}) - x_k \cdot f(x_k)}{f(x_{k-1}) - f(x_k)} = \frac{x_k \cdot f(x_{k-1}) - x_k \cdot f(x_k)}{f(x_{k-1}) - f(x_k)} = \frac{x_k \cdot f(x_{k-1}) - x_k \cdot f(x_k)}{f(x_{k-1}) - f(x_k)} = \frac{x_k \cdot f(x_{k-1}) - x_k \cdot f(x_k)}{f(x_{k-1}) - f(x_k)} = \frac{x_k \cdot f(x_{k-1}) - x_k \cdot f(x_k)}{f(x_{k-1}) - x_k \cdot f(x_k)} = \frac{x_k \cdot f(x_{k-1}) - x_k \cdot f(x_k)}{f(x_{k-1}) - x_k \cdot f(x_k)} = \frac{x_k \cdot f(x_{k-1}) - x_k \cdot f(x_k)}{f(x_{k-1}) - x_k \cdot f(x_k)} = \frac{x_k \cdot f(x_k)}{f(x_k) - x_k} = \frac{x_k \cdot f(x_k)}{$$

Otrzymaliśmy właśnie wzór podany wyżej, zatem udowodniliśmy równoważność obu wzorów za pomocą kilku prostych przekształceń algebraicznych.

b)

1. Metoda Siecznych:

- (a) Wady:
 - i. Możliwość utraty precyzji dla małych różnic między x_{k-1} oraz x_k
- (b) Zalety:
 - i. Nie wymaga obliczenia pochodnej funkcji.

2. Metoda Newtona:

- (a) Wady:
 - i. Konieczność obliczenia pochodnej funkcji, co może być problematyczne dla skomplikowanych funkcji oraz czasochłonne.
- (b) Zalety:
 - i. Może być stabilniejsza, gdy funkcja jest dobrze uwarunkowana wokół pierwiastka i wymagana jest duża precyzja.

W przypadku obu metod w artymetyce zmiennoprzecinkowej o ograniczonej precyzji istnieje podatność na błędy numeryczne szczególnie dla funkcji z oszarami o dużych wartościach lub pochodnej bliskiej 0.

3. Zapiszmy zadany układ jako:

$$\begin{cases} x_1^2 + x_1 x_2^3 - 9 = 0\\ 3x_1^2 x_2 - x_2^3 - 4 = 0 \end{cases}$$
 (1)

Poniższy program w języku Python został napisany bazując na prezentacji. Na jego podstawie udało mi się wyliczyć x_1 oraz x_2 dla 10 iteracji.

```
def f1(x, y):
   return x**2+x*y**3-9
def f2(x, y):
   return 3*x**2*y-y**3-4
def f1x(x, y):
   return 2*x
def f1y(x, y):
   return 3*x*y**2
def f2x(x,y):
   return 6*x*y
def f2y(x, y):
   return 3*x**2-3*y**2
def jacobian(x, y):
   return f1x(x, y)*f2y(x, y)-f1y(x, y)*f2x(x, y)
def newton_iteration(x0 ,y0, n):
   x = x0
```

```
y = y0
for k in range(1, n + 1):
    delta_x = (-f1(x, y)*f2y(x, y)+f2(x, y)*f1y(x, y))/jacobian(x, y)
    delta_y = (-f2(x, y)*f1x(x, y)+f1(x, y)*f2x(x, y))/jacobian(x, y)
    x = x + delta_x
    y = y + delta_y
    print("k: ", k, "x: ", x, "y: ",y)
```

newton_iteration(1,1,10)

Wyniki przedstawiłem w tabelce:

k	\mathbf{x}_k	y_k
1	1.3333333333333333	3.111111111111111
2	1.2337931296549627	2.267473526878452
3	1.3087126323966336	1.8948717506437391
4	1.3351703679582776	1.775274872483528
5	1.336392549829994	1.7549825650430313
6	1.3363510477450014	1.7542202019069097
7	1.3363558696612006	1.754236985570715
8	1.3363553212049262	1.7542349943110938
9	1.336355383588176	1.7542352207806415
10	1.3363553764925082	1.7542351950209438

Wnioski: Widzimy, że już po kilku pierwszych iteracjach wyniki są do siebie bardzo zbliżone. Metoda ta, choć nie najprostsza w zrozumieniu, jest bardzo prosta w implementacji i daje naprawdę dobre rezultaty.

3 Bibliografia

- 1. Katarzyna Rycerz: Materiały wykładowe z przedmiotu Metody Obliczeniowe w Nauce i Technice
- 2. https://www.wolframalpha.com/
- 3. https://www.desmos.com/calculator?lang=pl
- $4. \ https://home.agh.edu.pl/\ funika/mownit/lab7/RF.pdf$