

CURVATURAS EN SUPERFICIES

Alan Reyes-Figueroa Geometría Diferencial

(AULA 21) 13.ABRIL.2023

Curvaturas en superficies

En el aula anterior se introdujo la aplicación normal de Gauss

$$N(\mathbf{p}) = \frac{\mathbf{x}_u(\mathbf{q}) \times \mathbf{x}_v(\mathbf{q})}{|\mathbf{x}_u(\mathbf{q}) \times \mathbf{x}_v(\mathbf{q})|}, \quad \text{con } \mathbf{q} = \mathbf{x}^{-1}(\mathbf{p}),$$

y la segunda forma fundamental

$$II_{\mathbf{p}}(\mathbf{v}) = -\langle DN(\mathbf{p}) \cdot \mathbf{v}, \mathbf{v} \rangle, \quad \mathbf{v} \in T_{\mathbf{p}}S.$$

Vimos que la segunda forma fundamental, de alguna manera codifica la información de la curvatura de la superficie S en el punto **p**:

Existe una base ortonormal $\{\mathbf{e_1}, \mathbf{e_2}\}\$ de $T_{\mathbf{p}}S$, en donde la segunda forma fundamental se escribe como

 $II_{\mathbf{p}} = \begin{pmatrix} -\kappa_1 & \mathsf{O} \\ \mathsf{O} & -\kappa_2 \end{pmatrix}$

donde κ_1 , κ_2 y $\{{\bf e}_1,{\bf e}_2\}$ son las curvaturas y direcciones principales en **p**.

Curvaturas en superficies

En particular, recordemos que toda forma cuadrática (o más bien, toda aplicación lineal $T: \mathbb{R}^2 \to \mathbb{R}^2$) tiene dos invariantes importantes: su determinante y su traza.

Definición

Sea $S \subseteq \mathbb{R}^3$ superficie regular, $\mathbf{p} \in S$. Sean κ_1 y κ_2 las curvaturas principales de S en \mathbf{p} . Definimos la **curvatura media** de S en \mathbf{p} como

$$H = \frac{1}{2}(\kappa_1 + \kappa_2) = -\frac{1}{2} \text{ tr } DN(\mathbf{p}).$$

Definimos la **curvatura de Gauss** de S en **p** como

$$K = \kappa_1 \kappa_2 = \det DN(\mathbf{p}).$$

Curvaturas en superficies

Obs!

• Las curvaturas H y K determinan completamente la información de la curvatura.

Esto es porque la traza y el determinante determinan automáticamente los autovalores de una matriz 2 \times 2: los autovalores λ_1 y λ_2 satisfacen

$$2H = \operatorname{tr} T = \lambda_1 + \lambda_2$$
, $K = \det T = \lambda_1 \lambda_2$.

En este caso, las curvaturas principales κ_1 y κ_2 son las raíces del polinomio

$$x^{2} - (\operatorname{tr} DN(\mathbf{p}))x + \det DN(\mathbf{p}) = x^{2} - 2Hx + K = 0.$$

Definición

Sea $S \subseteq \mathbb{R}^3$ una superficie regular. Un punto $\mathbf{p} \in S$ se llama

- elíptico, si K(p) > o;
- *hiperbólico*, *si K*(**p**) < 0;
- parabolico, si $K(\mathbf{p}) = 0$, pero $DN(\mathbf{p}) \neq 0$;
- planar, $si DN(\mathbf{p}) = 0$.

Definición

Un punto $\mathbf{p} \in S$ tal que $\kappa_1(\mathbf{p}) = \kappa_2(\mathbf{p})$ se llama un **punto umbílico**.

Obs!: Si todos los puntos de una superficie S son umbílicos, entonces S está contenida en un plano o una esfera.

hiperbólico

elíptico

parabólico

planar

Ejemplos:

- Todo punto de una esfera es elíptico.
- El origen de la superficie $x^2 y^2 = z$ es hiperbólico.
- Todo punto del cilindro $S^1 \times \mathbb{R}$ es parabólico.
- en la superficie $z = x^4 + y^4$, el origen es planar.

Ejercicio para pensar:

¿En el toro, cuáles puntos son elípticos? ¿Cuáles son hiperbólicos? ¿Hay puntos parabólicos? ¿Y planares?

Clasificación de la curvatura en puntos del toro \mathbb{T}^2 .

Definición

Sea $S \subseteq \mathbb{R}^3$ superficie regular, $\mathbf{p} \in S$. Una **dirección asintótica** de S en \mathbf{p} es una dirección $\mathbf{v} \in T_\mathbf{p} S$ para la cual la curvatura normal $\kappa(\mathbf{v}) = \mathbf{0}$.

Una **curva asintótica** de S es una curva regular conexa $\alpha(t) \subseteq S$, tal que para cada punto $\mathbf{p} = \alpha(t)$, el vector tangente $\alpha'(t)$ es una dirección asintótica.

Definición

Una **curva principal** de S es una curva regular conexa $\alpha(t) \subseteq S$, tal que para cada punto $\mathbf{p} = \alpha(t)$, el vector tangente $\alpha'(t)$ es una dirección principal.

Direcciones asintóticas en un punto hiperbólico de S.

Otros ejemplos de direcciones asintóticas y puntos parabólicos.

Definición

Sea $p \in S$. La **indicatriz de Dupin** de S en p es el conjunto de vectores v en T_pS tales que $II_p(v) = \pm 1$.

Tomemos $\mathbf{w} \in T_{\mathbf{p}}S$ $\mathbf{w} \neq \mathbf{0}$, y sea $\mathbf{v} = \frac{\mathbf{w}}{|\mathbf{w}|}$. Entonces, $\mathbf{w} = \rho \mathbf{v}$, donde $\mathbf{v} = \cos \varphi \mathbf{e}_1 + \sin \varphi \mathbf{e}_2$. Luego, la fórmula de Euler nos da

$$\pm 1 = II_{\mathbf{p}}(\mathbf{w}) = \rho^2 II_{\mathbf{p}}(\mathbf{v}) = \kappa_1 \rho^2 \cos^2 \varphi + \kappa_2 \rho^2 \sin^2 \varphi = \kappa_1 \xi^2 + \kappa_2 \zeta^2,$$

donde $\xi = \rho \cos \varphi$, $\zeta = \rho \sin \varphi$ y $\mathbf{W} = \xi \mathbf{e}_1 + \zeta \mathbf{e}_2$.

En el sistema coordenado (ξ,ζ) la indicatriz de Dupin se resume a

$$\kappa_1 \xi^2 + \kappa_2 \zeta^2 = \pm 1.$$

Importante!

Sabemos que localmente, toda superficie regular se comporta como la gráfica de alguna función $z = f(x, y) = g(\xi, \zeta)$.

En las coordenadas (ξ, ζ) , la indicatriz de Dupin nos da el comportamiento local de esta superfice, en una vecindad del punto $\mathbf{p} \in S$ como origen.

De aquí la idea de una tríada de comportamientos: elíptico, parabólico o hiperbólico.

Pregunta: ¿Pueden dar ejemplos de superficies con curvatura gaussiana K > 0, K = 0, K < 0?

¿Y de curvatura media H > o, H = o, H < o?

Algunas superficies con curvatura gaussiana: (a) K < o, (b) K = o, (c) K > o.

Pregunta: ¿Existen superficies de curvatura gaussiana K constante? ¿Y de curvatura media H constante?

La pseudo-esfera (o tractroide) tiene curvatura constante K = -1.

Una superficie de curvatura media constante ${\it H}<{\it o}$.

Ejemplos de superficies con curvatura gaussiana K = o.

Ejemplos de superficies con curvatura gaussiana K > o.

Ejemplos de superficies con curvatura gaussiana K < o.

Ejemplos de superficies con curvatura media constante H: (a) la esfera, (b) el cilindro, (c) el unduloide.

Coordenadas locales

Teorema

Sea $S \subset \mathbb{R}^3$ superficie regular orientable, y $\mathbf{x} : U \subseteq \mathbb{R}^2 \to V \cap S$ una parametrización, con mapa de Gauss $N(\mathbf{p}) : U \to S^2$.

- i) Para cada $\mathbf{p} \in U$, $DN(\mathbf{p}): T_{\mathbf{p}}S \to T_{\mathbf{p}}S$ es un isomorfismo lineal. El mapa L = -DN se llama el **mapa de Weingarten** u **operador de forma** de **x**.
- ii) L es independiente de la parametrización **x** (a menos de cambio de orientación del campo normal unitario N), y es un operador auto-adjunto con respecto a la primera forma fundamental I_p.

Coordenadas locales

Prueba:

(i) Se sigue simplemente de la relación $O = \frac{\partial}{\partial u_i} \langle N, N \rangle = 2 \langle \frac{\partial}{\partial u_i} N, N \rangle$. Por tanto, ambos vectores N_u , N_v son ortogonales a N. Que el mapa $DN(\mathbf{p})$ es un isomorfismo lineal se sigue del hecho que $D\mathbf{x}$ tiene rango máximo.

Para mostrar (ii), sea $\widetilde{\mathbf{x}} = \mathbf{x} \circ \varphi$, de modo que la normal correspondiente es $\widetilde{\mathbf{N}} = \pm \mathbf{N} \circ \varphi$ y

$$\widetilde{L} = -D\widetilde{N} \circ D\widetilde{\mathbf{x}}^{-1} = (\pm DN \circ D\varphi) \circ (D\varphi^{-1} \circ D\mathbf{x}^{-1}) = \pm DN \circ D\mathbf{x}^{-1} = \pm L.$$

La propiedad de que L es autoadjunta se ve más fácilmente en la base $\{\mathbf{x}_u, \mathbf{x}_v\}$, donde tenemos que $L\mathbf{x}_u = -N_u$ y $L\mathbf{x}_v = -N_v$:

$$\langle L \boldsymbol{x}_{u_i}, \boldsymbol{x}_{u_j} \rangle = - \langle N_{u_i}, \boldsymbol{x}_{u_j} \rangle = - \tfrac{\partial}{\partial u_i} \langle N, \boldsymbol{x}_{u_j} \rangle + \langle N, \boldsymbol{x}_{u_i u_j} \rangle.$$

Esta última expresión es simétrica en i y j.

Coordenadas locales

Definición

Sea $S \subset \mathbb{R}^3$ superficie regular orientable, y $\mathbf{x} : U \subseteq \mathbb{R}^2 \to V \cap S$ parametrización. Sea N el campo normal a \mathbf{x} y L el mapa de Weingarten.

La **tercera forma fundamental** de S en **p** se define como

$$\mathit{III}_p(\textbf{v}) = \mathit{I}_p(\mathit{DN}(\textbf{p}) \cdot \textbf{v}) = \langle \mathit{DN}(\textbf{p}) \cdot \textbf{v}, \mathit{DN}(\textbf{p}) \cdot \textbf{v} \rangle_p = \langle \mathit{D}^2\mathit{N}(\textbf{p}) \cdot \textbf{v}, \textbf{v} \rangle_p.$$

• $II_{\mathbf{p}}$ y $III_{\mathbf{p}}$ son formas bilineales en $T_{\mathbf{p}}S$, $\forall \mathbf{p} \in S$.

Proposición

Vale la siguiente relación entre las primeras tres formas fundamentales Ip, IIp, IIIp:

$$III_{\mathbf{p}} - \operatorname{tr}(L)II_{\mathbf{p}} + \operatorname{det}(L)I_{\mathbf{p}} = O.$$

