Assignmente Projectule xam Help

https://tutores.com

WeChat: Estutores

Adapted from "Types and Programming Languages" by Benjamin C. Pierce and Nick Moore's material.

Computation my Friends! Computation!

Assignment Project Exam Help can be understood by capturing their essential mechanisms as a small core calculus.

- The deltipse / the tornes com
 - ▶ Developed in the 1920s by Alonzo Church.
 - ► Reduces *all* computation to **function definition** and **application**.

The strength of A-Calculus comes from it's simplicity and its capacity for formal reasoning. CSUUTOTCS

λ -Calculus Syntax

Antyped: Acalculus is compris Project Exam Help

```
\langle t \rangle ::= \langle x \rangle
      \langle t \rangle \langle t \rangle \langle t \rangle / tutorcs.com
```

These terms are:

- variable Chat: cstutorcs
- application.

Kinds of Syntax

Assignment Project Exam Help

- ► The "surface syntax" used by programmers
- Abstract Syntax
 - Inentagree, sometimes a Diffected Acyclin Graph (DAG)
 The "internal representation" that's nicer for programs to compute with.

Concrete to Abstract:

- Nice-to-have but redundant constructs removed (aka desugaring)
- Missing information is added (type inference and elaboration)

AST

Abstract syntax is an excellent way of visualizing program's structure. I personal Respective Program of Program is an excellent way of visualizing program's structure. I personal Respective Program is an excellent way of visualizing program's structure. I personal Respective Program is an excellent way of visualizing program's structure. I personal Respective Program is an excellent way of visualizing program's structure. I personal Respective Program is an excellent way of visualizing program's structure. I personal Respective Program is an excellent way of visualizing program's structure. I personal Respective Program is an excellent way of visualizing program's structure. I personal Respective Program is a program is a program in the program is a personal Respective Program in the program in the program is a personal Respective Program in the program in the program in the program is a personal Respective Program in the program

• For example, under BEDMAS, the expression 1 + 2 * 3 would be the left diagram, not the right diagram:

https://tutorcs.com

BEDMAS trees are evaluated leaf-first, however λ expressions may be evaluated using a number of different strategies.

ASTs of λ -Calculus

A reduce grantant parenthese in our coronte syntax for ha Calculus p • Application will be left-associative. That is, s t u is interpretted as:

https://tutorcs.com
WeChat: cstutorcs

• i.e. (s t) u

Scope of λ Operator

The abstraction operator λ is taken to extend to the right as far as possible. For the following expression: Projecta Exam Help We would construct an AST:

https://tutores.com
WeChat: cstutores

Free vs Bound Variables

In predicate calculus, distinction between free and bound variables.

Assignment Project Exam Help

- x is buttps: /x/stenitloneigr.com
- y is not bound by a quantifier and is therefore free

WeChat: Cstutorcs

(2)

- The first occurance of x is **bound**.
- Both y and the second occurrance of x are **free**.

Only One Evaluation Rule

A hese ceing replace has substituting the obserted wrightnith the certification. In other words

https://tutorcs.com

- A λ expression which may be simplified is known as a **redex**, or reducible expression.
- reducible expression.

 Called Beta reduction 14kg Cestell TOTCS

(3)

Using All our Substitutions

Assignment Project Exam Help $[x \mapsto t_2] t_1$ stands for "the term obtained by the replacement of all free

 $[x \mapsto t_2]$ t_1 stands for "the term obtained by the replacement of all free occurances of x in t_1 by t_2 . Examples:

WeChat: CSTUTOTCS (5)

(4)

Our Test Expression

To examine strategies, we will use a running example expression:

Assignment Project Exam Help

• $\lambda x.x$ is effectively an **identity function**, so we write it as *id*.

https://tutores.com

The above expression has three redexes:

WeChat. Cstutorcs

 $id (id (\lambda z.id z))$ (9)

 $id (id (\lambda z.id z))$ (10)

(7)

(8)

Assignment Project Exam Help

Under Full Beta-Reduction, the redexes may be reduced in any order.

• not deterministic. // tutorcs.com

WeChat: cstutorcs

Assignment the left not, ect no Exeand price in there are no more redexes to evaluate.

https://tutoresideom

J. Carette (McMaster University)

Call By Name

Assing range that is Pole of the Expander Help evaluate anything under a lambda.

We Chat: cstutorcs In this case, $\lambda z.id$ z is considered a normal form.

ssignment Project Exam Help

- To avoid re-evaluation, expressions are kept as a graph that joins
- identical expressions.

 Further tipes expression is replaced by its value in the AST.
- thus only need to be evaluated once.
- is a reduction clarifical syntax graphs (rifler San syntax trees.

Call By Value

Most languages use cally value, where only the outermost redexes are reduced, and a redex is only reduced when the right-hand-side has already been reduced to a value.

• Here, as elsewhere, a value is a term in normal form. https://tutorcs.com

WeChat: (id (\(\lambda z\).id z))
id (\(\lambda z\).id z)
id (\(\lambda z\).id z)

Assignment Project Exam Help

Can we even do Booleans? (Want to reconstruct UAE).

$$fls = \lambda t. \lambda f. f \tag{12}$$

WeChat: cstutorcs

Bool as 2-argument functions?!?

This will make more sense once we consider if then else:

Assignment Project Exam Help

```
(\lambda \mathbf{11b} \mathbf{14c} \mathbf{15c} \mathbf{14c} \mathbf{15c} \mathbf{15
```

Assignment Project Exam Help

Extending the λ -Calculus vs UAE:

- UAE: add additional terms and evaluation rules.
- λ-Calculus: define terms in the language
- \blacktriangleright tru and fls are not terms, but **labels** for λ expressions that were already

WeChat: cstutorcs

Conservative Extension

Assignment Project Exam Help Consider two theories, T_1 and T_2 . We say that T_2 is a conservative **extension** of T_1 if:

- Every theorem of T_2 in the language of T_1 is already a theorem of T_2 .
- i.e. Booleans are a conservative extension of the λ -Calculus Why useful? All

properties When Calding temain supplementage extensions.

Assignmenta Project SExam Help

```
\begin{array}{c} \text{With input tru tru} \\ (\textbf{A.t. psis}) \text{ truthores. Comp b c fls) tru fls} \\ \rightarrow (\lambda c. \, \text{tru c fls}) \, \text{tru} \\ \rightarrow (\lambda c. \, \text{tru c fls}) \, \text{tru} \\ \rightarrow \text{tru tru fls} \\ \rightarrow \text{tru fls fls} \\ \rightarrow (\lambda t. \, \text{tru fls}) \, \text{trufls} \\ \rightarrow (\lambda t. \, \text{tru fls}) \, \text{tru} \\ \rightarrow (\lambda t. \, \text{tru fls}) \, \text{fls} \\ \rightarrow (\lambda t. \, \text{tru fls}) \, \text{fls} \\ \rightarrow \text{tru} \\ \rightarrow \text{fls} \\ \rightarrow \text{fls} \\ \rightarrow \end{array}
```

Boolean And II

Assignment Project Exam Help

Assignment Project Exam Help

 $\operatorname{snd} = \lambda p. \ p \operatorname{fls}$ https://tutorcs.com

- b is used to select between f and s
- fst and snd merely apply tru and fls respectively.
 Since tru selects the drtt argument Uttas Is Geos the first term in the pair.
- Likewise for fls

Let's code it in Haskell!

(17)

Church Numerals

Natural numbers are quite similar to Peano arithmetic: Assignment Project Exam Help

$$c_0 = \lambda s. \lambda z. z \tag{18}$$

https://thetaproperties.com
$$(19)$$

$$c_3 = \lambda s. \lambda z. \ s \ (s \ (s \ z)) \tag{21}$$

WeChat: cstutorcs

Church numerals take two arguments, a successor s and a zero term z representation.

Assignment Projecte Exam Help

- This is sometimes called a **pun** in computer science.
- The same thing occurs in lower level languages, where the interpretation of a structure of bits stronger the desire of the same thing occurs in lower level languages, where the interpretation of a structure of the same thing occurs in lower level languages, where the interpretation of a structure of the same thing occurs in lower level languages, where the interpretation of a structure of the same thing occurs in lower level languages, where the interpretation of a structure of the same thing occurs in lower level languages, where the interpretation of a structure of the same thing occurs in lower level languages, where the interpretation of a structure of the same thing occurs in lower level languages.
- In C, the bit arrangement 0x00000000 corresponds to:
 - ► Zero (Integer)
 - False (Boolean)
 - · "Wechat: Aestutorcs

This is not a good thing.

Assignment Project Exam Help

Successor of Two

Assignment Project Exam Help $\rightarrow (\lambda m.\lambda n.\lambda s.\lambda z. m s (n s z))c_2c_2$ $(\lambda n.\lambda \varsigma.\lambda z. c_2 \varsigma (n \varsigma z))c_2$ PSAZ AUTORÉS.COM \(\lambda s. \lambda z. \(s \text{ (\lambda s. \lambda z. \(s \text{ (\lambda s. \lambda z. \(s \text{ (s z)}\) \(s \text{ (\lambda s. \lambda z. \(s \text{ (s z)}\) \(s \text{ z)}\) $\lambda s.\lambda z. (\lambda z. s(sz)) ((\lambda s.\lambda z. s(sz)) sz)$ echat ((\s.\z.s(s.z)) s.z)) $\lambda s.\lambda z. (s (s (s (s z))))$ C₄

Times Have Changed

Adsign entitic Project Exam Help $times = \lambda m. \lambda n. m \text{ (plus } n\text{) } c_0$ (24)

https://tutores.com

$$\rightarrow (\lambda m.\lambda n. m (\text{plus } n) c_0) c_3 c_2$$
 $\rightarrow (\lambda n. c_3 (\text{plus } n) c_0) c_2$

Ween that: $s \in \text{CSUITORS}$
 $\rightarrow (\text{plus } c_2) ((\text{plus } c_2) ((\text{plus } c_2) c_0))$

Accesing in the semantic, and it violates our evaluation strategy.

http
$$\frac{\text{plus}(z)}{\text{Notations}(Sz)\text{QQMs}}(sz)$$
)

 $\rightarrow (\lambda n.\lambda s.\lambda z.(\lambda s.\lambda z.s(sz))s(nsz))$
 $\rightarrow (\lambda n.\lambda s.\lambda z.(\lambda z.s(sz))(nsz))$

We $\frac{(\lambda n.\lambda s.\lambda z.(s(sz))(nsz))}{\text{CStutorcs}}$

a lot of time though)

(It saves a lot of time though)

```
(plus c_2) ((plus c_2) ((plus c_2) c_0))
\rightarrow (\lambda n.\lambda s.\lambda z. (s (s (n s z)))) ((plus <math>c_2) ((plus c_2) c_0))
\rightarrow \lambda s.\lambda z. (s(s(((plus c_2)((plus c_2) c_0)) s z)))
     enment & Project)) Hexam) Help
     \lambda z. (s (s ((\lambda z. (s (s (((plus c_2) c_0) s z)))) z)))
     \lambda s.\lambda z. (s (s (s (s (((plus c_2) c_0) s z)))))
     \lambda s.\lambda z. (s (s (s (s (((\lambda \eta.\lambda s.\lambda z. (s (s (n s z)))) c_0) s z)))))
      \lambda s.\lambda z. (s (s (s (s ((\lambda z. (s (s (c<sub>0</sub> s z)))) z)))))
     \lambda s.\lambda z. (s (s (s (s (s (s (c<sub>0</sub> s z)))))))
      15\\z, (5(5(5(5(4(5((\lambda 5\lambda z) z))
      XXZ45454545(5(X2)2)
     \lambda s. \lambda z. (s (s (s (s (s (s z))))))
\rightarrow
```