ملخص درس الأعمدة

Aib_Kamel

مثال :

** دور الجسر الملحى: لإكمال الدائرة الكهربائية و تحقيق توصيل كهربائي بين المسريين دون التلامس بين الأفراد المؤكسدة و المرجعة و دون اختلاط المحلولين بحيث تتحرك الشوارد (حاملات الشحنة) لضمان التعادل الكهربائي .

** نحققه : بورقة ترشيح مبللة (مشبعة) بمحلول ملحى كنترات البوتاسيوم أو كلور البوتاسيوم مثلا

. $\Theta Zn_{(S)} / Zn_{(ay)}^{2+} / / Cu_{(ay)}^{2+} / Cu_{(S)} \oplus :$ by the standard of the stan

معادلات تفاعلات الأكسدة الإرجاع : يمكن كتابة المعادلات النصفية من رمز العمود .

 $Cu_{(ar)}^{2+} + 2e^{-} = Cu_{(s)}$ عند المسرى الموجب (المهبط) Cu (إرجاع) :

 $Zn_{(S)} = Zn_{(aq)}^{2+} + 2e^{-}$ عند المسرى السالب (المصعد) Zn (أكسدة) :

 $Cu_{(ar)}^{2+} + Zn_{(S)} = Cu_{(S)} + Zn_{(aq)}^{2+}$ معادلة التفاعل الإجمالية :

 $Q_{max} = Z \cdot x_{max} \cdot F$: Q_{max} الكهرباء ***

. عدد الإلكترونات المتبادلة : Z ، $F = 9.65 \times 10^4 \ C/mol$

. $Q_{max} = I \cdot \Delta t : \Delta t$ عمر العمود **

- مبدأ اشتغال العمود الكهربائي يتمثل في حدوث انتقال تلقائي للإلكترونات بين ثنائيتين (ox / red) موصولة في دارة كهربائية ، و الطاقة التي ينتجها تأتي من تحول الطاقة الكيميائية إلى طاقة كهربائية .

🔼 📵 Aib_Kamel

من أجل الإجابة على السؤالين التاليين : من أين تأتى الطاقة التي تعطيها

الأعمدة ؟ وكيف تشتغل ؟ قام فوج من التلاميذ بدراسة تجريبية لمبدأ

اشتغال عمود دانيال ، انطلاقا من الوسائل و المواد المبينة في اللائحة المقابلة .

1- أرسم شكلا تخطيطيا لعمود دانيال ، مدعما بالبيانات .

2- استخدم التلاميذ جهاز فولطمتر من أجل تحديد أقطاب العمود

. $U_{Cu} \succ U_{Zn}$ افتيين أن

أ- بين على المخطط السابق طريقة ربط جهاز الفولطمتر ، مع توضيح القطبين الموجب والسالب

ب- أكتب المخطط الإصطلاحي للعمود (رمز العمود) .

3- أكتب معادلة التفاعل أكسدة-إرجاع المنمذجة للتحول الحادث ،

Zn(عر) / Zn(s) و Cu(عر) / Cu(s) . ox / red مستعينا بالثنائيتين

4- أنجز الحصيلة الطاقوية للعمود .

لائحة الأدوات و المواد

Zn (s) : صفيحة زنك -

- صفيحة نحاس : Cu (s)

\[
\left(Zn_{(aq)}^{2+} + SO_4^{-2}_{(aq)}\right) : محلول - \]

 $\left(Cu_{(u_{\ell})}^{2+} + SO_{4-(u_{\ell})}^{-2}\right)$: -

- 2 بيشر سعته 100 mL

– جسر ملحی .

– أسلاك توصيل و مشابك .

- جهاز فولطمتر .

2-i أحسب قيمة كسر التفاعل $Q_{r,i}$ في الحالة الإبتدائية و بيّن جهة التطور التلقائي للجملة ، علما أن للمحلولين

. $K=4.6 imes 10^{36}$ نفس الحجم و التركيز المولى : $C=1.0\ mol\ /L$ ، و أن ثابت التوازن

. x بشدة تيار ثابتة I=0,76 ، بشدة تيار ثابتة I=0,76 ، أحسب التقدم $\Delta tpprox 2$ min

 $F = 9,65 \times 10^4 C \ / \ mol$. يتن مبدأ اشتغال العمود الكهربائي موضحا مصدر الطاقة التي ينتجها -6

 $Cu_{(S)}$

 $\left(Cu_{(u)}^{2+} + SO_{4-(u)}^{-2}\right)$

Aib_Kamel

 $U_{Cu}\succ U_{Zu}$ طريقة ربط جهاز الفولطمتر لدينا -1-2

ب- كتابة المخطط الإصطلاحي للعمود (رمز العمود) .

$$\Theta Zn_{(S)}/Zn_{(aq)}^{2+}//Cu_{(aq)}^{2+}/Cu_{(S)} \oplus$$

3- معادلة التفاعل أكسدة-إرجاع المنمذجة للتحول الحادث:

عند المسرى الموجب (المهبط) : Cu

$$Cu_{(aq)}^{2+} + 2e^{-} = Cu_{(S)}$$

عند المسرى السالب (المصعد)

$$Zn_{(S)} = Zn_{(\alpha q)}^{2+} + 2e^{-} : Zn$$
 $Cu_{(\alpha q)}^{2+} + Zn_{(S)} = Cu_{(S)} + Zn_{(\alpha q)}^{2+}$: عادلة التفاعل $-$

4- الحصيلة الطاقوية للعمود:

$$Q_n = 1$$
 $Q_n = \frac{\left[Cu^{2+}\right]_i}{\left[Ag^+\right]_i^2} = \frac{1}{1} : \text{true} : Q_{r,i} + -i-5$

نالاحظ أن $Q_{_{H}} = 1 \ (K \ (4,6 imes 10^{36})$ نالاحظ أن $Q_{_{H}} = 1 \ (K \ (4,6 imes 10^{36})$

 $x = \frac{I \cdot \Delta t}{Z \cdot F}$ و منه $Q = Z \cdot x \cdot F = I \cdot \Delta t$ الدينا : $x = \frac{I \cdot \Delta t}{Z \cdot F}$ و منه

$$x = 4,72 \times 10^{-4} \, mol$$
 : و منه $x = \frac{0,76 \times 2 \times 60}{2 \times 9,65 \times 10^4}$ محیث $Z = 2$

6- مبدأ اشتغال العمود الكهربائي يتمثل في حدوث انتقال تلقائي للإلكترونات بين ثنائيتين (ox / red) موصولة في دارة كهربائية ، و الطاقة التي ينتجها تأتي من تحول الطاقة الكيميائية إلى طاقة كهربائية .

 $\left(Zn_{(\omega_{\ell})}^{2+} + SO_{4-(\omega_{\ell})}^{-2}\right)$

pont salin

Aib_Kamel

يعطى مخطط عمود كهربائي كما في الشكل:

 Cu^{2+} = $10^{-1} mol / L$: where U is the sum of U in U is the sum of U in U

عند ربط مقياس الفولط بين قطبي العمود حيث يوصل قطب

COM(-) بصفيحة الألمنيوم يشير المقياس إلى القيمة

U = +1,6 V

- t=0 نربط هذا العمود بمحرك كهربائي و نغلق الدارة في اللحظة -1
 - حدد جهة التيار الكهربائي في الدارة .
- 2- ما هو دور الجسر الملحي أثناء اشتغال العمود ؟ اعط الرمز الإصطلاحي لهذا العمود .
- 3- أكتب المعادلتين النصفيتين للأكسدة و الإرجاع عند المسريين ثم معادلة التفاعل المنمذج للتحول الكيميائي في العمود أثناء اشتغاله .
- -4 أحسب كسر التفاعل الإبتدائي $Q_{\mu J}$ ثم حدد اتجاه تطور الجملة الكيميائية علما أن ثابت التوازن الموافق للتفاعل . $25^{0}C$ عند الدرجة $K = 1.9 \times 10^{37}$: السابق هو
 - . $I = 400 \; mA$ من بداية اشتغاله $I = 400 \; mA$ من بداية اشتغاله -5
 - أ- أحسب كمية الكهرباء التي ينتجها العمود خلال هذه المدة .
 - ب- أنجز جدول التقدم للتفاعل الحادث في العمود .
 - . t=30~min في اللحظة $Al_{(ar)}^{3+}$ و $Cu_{(ar)}^{2+}$ لكل من لكل من $Cu_{(ar)}^{2+}$
 - . 1 $F = 96500 \ C \cdot mol^{-1}$ یعطی : ثابت فارادی

🔀 📵 Aib_Kamel

توصيل كهربائي بين المسريين دون التلامس بين الأفراد المؤكسدة

و المرجعة و دون اختلاط المحلولين بحيث تتحرك الشوارد

(حاملات الشحنة) لضمان التعادل الكهربائي .

$$\ominus Al_{(S)} / Al_{(aq)}^{3+} / / Cu_{(aq)}^{2+} / Cu_{(S)} \oplus :$$
 الرمز الإصطلاحي – الرمز الإصطلاحي

3- المعادلتين النصفيتين للأكسدة و الإرجاع:

$$3 \times \left(Cu_{(aq)}^{2+} + 2 e^- = Cu_{(S)} \right)$$
 ونجاع أيد عملية إرجاع النحاس تحدث فيه عملية إرجاع الموجب : مسرى النحاس تحدث فيه عملية إرجاع

$$2 \times \left(Al_{(S)} = Al_{(aq)}^{3+} + 3 e^{-}\right)$$
 قطب السالب : مسرى الألمنيوم تحدث فيه عملية أكسدة

$$3Cu_{(aq)}^{2+} + 2Al_{(S)} = 2Al_{(aq)}^{3+} + 3Cu_{(S)}$$
 : illustrated : 1

$$Q_{ri} = 0,1$$
 $Q_{ri} = \frac{\left[Al^{3+}\right]_{i}^{2}}{\left[Cu^{2+}\right]_{i}^{3}} = \frac{\left(10^{-2}\right)^{2}}{\left(10^{-1}\right)^{3}} : Q_{r,i} + -4$

نلاحظ أن $Q_{n} = 0.1 \ (K(9 \times 10^{37}))$ فتطور الجملة يكون في الإتجاه المباشر.

$$Q = 720~C$$
 و منه $Q = I \cdot \Delta t = 400 \times 10^{-3} \times 30 \times 60$ و منه : 30 min خلال $Q = 720~C$

ب- جدول التقدم للتفاعل:

معادلة التفاعل	$3Cu_{(aq)}^{2+} + 2$	$Al_{(s)} =$	$= 2Al_{(\alpha q)}^{3+} + 3$	$Cu_{(S)}$
	كمية المـــادة بـ : mol			
الحالة الإبتدائية	5×10 ⁻³	بزيادة	5×10 ^{−4}	بزيادة
الحالة الإنتقالية	$5 \times 10^{-3} - 3x$	بزيادة	$5 \times 10^{-4} + 2x$	بزيادة
الحالة النهائية	$5 \times 10^{-3} - 3x_f$	بزيادة	$5 \times 10^{-4} + 2x_f$	بزيادة

 $Al_{(s)}$

Aib_Kamel

$$Z=6$$
 في اللحظة $t=30$ min في اللحظة $Al_{(aq)}^{3+}$ و $Cu_{(aq)}^{2+}$ عدد الإلكترونات المتبادلة

$$x = 1,24 \times 10^{-3} \, mol$$
 و منه $x = \frac{Q}{Z \cdot F} = \frac{720}{6 \times 96500}$ و منه $Q = Z \cdot x \cdot F$: لدينا

تعيين التراكيز عند هذه اللحظة : من جدول التقدم

$$[Al^{3+}] = 5,96 \times 10^{-2} \, mol \, / \, L$$
 $equiv [Al^{3+}] = \frac{5 \times 10^{-4} + 2x}{V} = \frac{5 \times 10^{-4} + 2 \times 1,24 \times 10^{-3}}{50 \times 10^{-3}} = \frac{5 \times 10^{-4} + 2 \times 1,24 \times 10^{-3}}{50 \times 10^{-3}} = \frac{5 \times 10^{-4} + 2 \times 1,24 \times 10^{-3}}{50 \times 10^{-3}} = \frac{5 \times 10^{-4} + 2 \times 1,24 \times 10^{-3}}{50 \times 10^{-3}} = \frac{5 \times 10^{-4} + 2 \times 1,24 \times 10^{-3}}{50 \times 10^{-3}} = \frac{5 \times 10^{-4} + 2 \times 1,24 \times 10^{-3}}{50 \times 10^{-3}} = \frac{5 \times 10^{-4} + 2 \times 1,24 \times 10^{-3}}{50 \times 10^{-3}} = \frac{5 \times 10^{-4} + 2 \times 1,24 \times 10^{-3}}{50 \times 10^{-3}} = \frac{5 \times 10^{-4} + 2 \times 1,24 \times 10^{-3}}{50 \times 10^{-3}} = \frac{5 \times 10^{-4} + 2 \times 1,24 \times 10^{-3}}{50 \times 10^{-3}} = \frac{5 \times 10^{-4} + 2 \times 1,24 \times 10^{-3}}{50 \times 10^{-3}} = \frac{5 \times 10^{-4} + 2 \times 1,24 \times 10^{-3}}{50 \times 10^{-3}} = \frac{5 \times 10^{-4} + 2 \times 1,24 \times 10^{-3}}{50 \times 10^{-3}} = \frac{5 \times 10^{-4} + 2 \times 1,24 \times 10^{-3}}{50 \times 10^{-3}} = \frac{5 \times 10^{-4} + 2 \times 1,24 \times 10^{-3}}{50 \times 10^{-3}} = \frac{5 \times 10^{-4} + 2 \times 1,24 \times 10^{-3}}{50 \times 10^{-3}} = \frac{5 \times 10^{-4} + 2 \times 1,24 \times 10^{-3}}{50 \times 10^{-3}} = \frac{5 \times 10^{-4} + 2 \times 1,24 \times 10^{-3}}{50 \times 10^{-3}} = \frac{5 \times 10^{-4} + 2 \times 1,24 \times 10^{-3}}{50 \times 10^{-3}} = \frac{5 \times 10^{-4} + 2 \times 1,24 \times 10^{-3}}{50 \times 10^{-3}} = \frac{5 \times 10^{-4} + 2 \times 1,24 \times 10^{-3}}{50 \times 10^{-3}} = \frac{5 \times 10^{-4} + 2 \times 1,24 \times 10^{-3}}{50 \times 10^{-3}} = \frac{5 \times 10^{-4} + 2 \times 1,24 \times 10^{-3}}{50 \times 10^{-3}} = \frac{5 \times 10^{-4} + 2 \times 1,24 \times 10^{-3}}{50 \times 10^{-3}} = \frac{5 \times 10^{-4} + 2 \times 1,24 \times 10^{-3}}{50 \times 10^{-3}} = \frac{5 \times 10^{-4} + 2 \times 1,24 \times 10^{-3}}{50 \times 10^{-3}} = \frac{5 \times 10^{-4} + 2 \times 1,24 \times 10^{-3}}{50 \times 10^{-3}} = \frac{5 \times 10^{-4} + 2 \times 1,24 \times 10^{-3}}{50 \times 10^{-3}} = \frac{5 \times 10^{-4} + 2 \times 1,24 \times 10^{-3}}{50 \times 10^{-3}} = \frac{5 \times 10^{-4} + 2 \times 1,24 \times 10^{-3}}{50 \times 10^{-3}} = \frac{5 \times 10^{-4} + 2 \times 1,24 \times 10^{-3}}{50 \times 10^{-3}} = \frac{5 \times 10^{-4} + 2 \times 1,24 \times 10^{-3}}{50 \times 10^{-3}} = \frac{5 \times 10^{-4} + 2 \times 1,24 \times 10^{-3}}{50 \times 10^{-3}} = \frac{5 \times 10^{-4} + 2 \times 1,24 \times 10^{-3}}{50 \times 10^{-3}} = \frac{5 \times 10^{-4} + 2 \times 1,24 \times 10^{-3}}{50 \times 10^{-3}} = \frac{5 \times 10^{-4} + 2 \times 1,24 \times 10^{-3}}{50 \times 10^{-3}} = \frac{5 \times 10^{-4} + 2 \times 1,24 \times 10^{-3}}{50 \times 10^{-3}} = \frac{5 \times 10^{-4} + 2 \times 1,24 \times 10^{-$

🔼 📵 Aib_Kamel

ينمذج التحول الكيميائي الذي يتحكم في تشغيل عمود بالتفاعل ذي المعادلة :

$$Al_{(S)} + 3Ag_{(aq)}^+ = Al_{(aq)}^{3+} + 3Ag_{(S)}$$

ينتج العمود عند اشتغاله تيارا كهربائيا شدته ثابتة $I=40\,$ mA خلال مدة زمنية $\Delta t=300\,$ min و يحدث عندها تناقص في التركيز المولى لشوارد ⁺ Ag

- 1- حدد قطبي العمود ؟ برر إجابتك .
- 2- مثل بالرسم هذا العمود مبينا عليه اتجاه التيار الكهربائي و اتجاه حركة الإلكترونات .
 - 3- أكتب المعادلتين النصفيتين عند المسريين.
 - 4- أحسب كمية الكهرباء التي ينتجها العمود خلال 300 min من التشغيل .
 - : $\Delta t = 300 \ min$ من الإشتغال $\Delta t = 300 \ min$ من الإشتغال -5
 - أ- عين التقدم x
 - . ب- أحسب النقصان $\left(\Delta m_{(AI)}\right)$ في كتلة مسرى الألمنيوم

$$1F = 96500 \ C$$
 ، $M_M = 27 \ g \ / \ mol$: يعطى

Aib_Kamel

1 قطيى العمود:

القطب الموجب: مسرى الفضة تحدث فيه ترسب الفضة (تناقص الشوارد 'Ag) .

القطب السالب: مسرى الألمنيوم تحدث فيه تأكل صفيحة الألمنيوم.

2- رسم العمود و تمثيل اتجاه التيار الكهربائي و اتجاه حركة الإلكترونات .

3- المعادلتين النصفيتين:

القطب الموجب: مسرى الفضة تحدث فيه عملية إرجاع

$$Ag_{(uq)}^+ + e^- = Ag_{(S)}$$

القطب السالب: مسرى الألمنيوم تحدث فيه عملية أكسدة

$$AI_{(S)} = AI_{(aq)}^{3+} + 3 e^{-}$$

: 300 min كمية الكهرباء خلال -4

$$Q=720$$
 C و منه $Q=I\cdot\Delta t=40\times10^{-3}\times300\times60$ لدينا

 $\Delta t = 300 \; min \;$ بالإستعانة بجدول تقدم التفاعل و بعد مدة زمنية

أ– عين التقدم x

جدول التقدم للتفاعل:

$$n_0(Al^{3+}) = 5 \times 10^{-4} \, mol$$
 فيكون $n_0(Al^{3+}) = [Al^{3+}]_0 \cdot V = 10^{-2} \times 50 \times 10^{-3}$

$$n_0(Cu^{2+}) = 5 \times 10^{-3} \, mol$$
 فيكون $n_0(Cu^{2+}) = [Cu^{2+}]_0 \cdot V = 10^{-1} \times 50 \times 10^{-3} \, mol$

Aib_Kamel

معادلة التفاعل	$Al_{(S)}$ +	$3Ag^{+}_{(aq)} =$	$= A I_{(aq)}^{3+}$	$+$ $3Ag_{(S)}$
	كمية المــــادة بــ : mol			
الحالة الإبتدائية	$n_0(Al)$	$n_0(Ag^+)$	$n_0 \left(Al^{3+}\right)$	$n_0(Ag)$
الحالة الإنتقالية	$n_0(Al)-x$	$n_0(Ag^+)-3x$	$n_0(Al^{3+})+x$	$n_0(Ag)+3x$
الحالة النهائية	$n_0(Al)-x_f$	$n_0(Ag^+)-3x_f$	$n_0(Al^{3+})+x_f$	$n_0(Ag) + 3x_f$

$$Z=3$$
 في اللحظة $t=30$ min في اللحظة $L^{3+}_{(aq)}$ و $Cu^{2+}_{(aq)}$ في اللحظة $Cu^{2+}_{(aq)}$ عدد الإلكترونات المتبادلة

$$x = 2,5 \times 10^{-3} \, mol$$
 و منه $x = \frac{Q}{Z \cdot F} = \frac{720}{3 \times 96500}$ و منه $Q = Z \cdot x \cdot F$: لدينا

:
$$-$$
 حساب النقصان $\Delta m_{(M)}$ في كتلة مسرى الألمنيوم

$$n(Al) = n_0(Al) - \Delta n(Al)$$
 أي $\Delta n(Al) = n_0(Al) - n(Al)$ لدينا $n(Al) = n_0(Al) - n(Al)$ أي $n(Al) = n_0(Al) - n(Al)$

$$\Delta m_{(Al)} = M \cdot x = 27 \times 2,5 \times 10^{-3}$$
 فيكون $\Delta n_{(Al)} = x = \frac{\Delta m_{(Al)}}{M}$: منجد $\Delta m_{(Al)} = x = \frac{\Delta m_{(Al)}}{M}$ نمجد : $\Delta m_{(Al)} = 67,5 \times 10^{-3}$ و منه : $\Delta m_{(Al)} = 67,5 \times 10^{-3}$ و منه :

التغال عمود كهربائي على مبدأ تحويل

جزء من الطاقة الناتجة عن تحولات كيميائية إلى طاقة كهربائية تستهلك عند الحاجة . ندرس في هذا الجزء دراسة مبسطة للعمود : فضة — نحاس .

معطيات:

- . $m_0(Cu) = 3,2$ g كتلة الجزء المغمور من صفيحة النحاس في الحالة الابتدائية
 - $M(Cu) = 64 \ g/mol$: الكتلة المولية للنحاس الكتلة
 - $1F = 96500 \ C / mol$: فاراداي –
- $K=2,15\times 10^{15}$ هو $Cu_{(S)}+2Ag_{(ag)}^+=Cu_{(ag)}^{2+}+2Ag_{(S)}^+:$ هو $Cu_{(S)}^{2+}+2Ag_{(S)}^+$ ننجز عمودا بغمر صفيحة من النحاس في كأس يحتوي على حجم V_1 من محلول مائى لكبريتات النحاس و صفيحة من الفضة في كأس آخر يحتوي على حجم V_2 من محلول مائي C_1 من محلول مائي C_2 على حجم C_3 من محلول مائي 7-لنترات الفضة $(Ag^{+}_{(aq)} + NO^{-}_{3(aq)})$ تركيزه المولي c_{2} نوصل المحلولين بجسر ملحي كما في الشكل

الشكل -7-الشكل

- . أكتب عبارة كسر التفاعل الابتدائي $Q_{r_{i}}$ ثم احسب قيمته -1
- 2- حدد معللا جوابك ، جهة التطور التلقائي للجملة الكيميائية خلال اشتغال العمود .
 - 3- مثل الرمز الاصطلاحي للعمود المدروس.
 - . I=5mA خلال اشتغاله ، يغذي العمود دارة خارجية بتيار كهربائي شدته -4
- $X_{
 m max}$ يعتمادا على جدول تقدم التفاعل الحاصل في العمود ، حدد قيمة التقدم الأعظمي -1-4
 - . استنتج Q_{max} كمية الكهرباء الأعظمية التي ينتجها العمود خلال اشتغاله -2-4
 - . المدة الزمنية القصوى الاشتغال العمود Δt_{max}

🔰 📵 Aib_Kamel

$$Q_{n} = 2,15 \times 10^{3}$$
 و منه $Q_{n} = \frac{\left[Cu^{2+}\right]_{i}}{\left[Ag^{+}\right]_{i}^{2}} = \frac{1,5}{\left(2,64 \times 10^{-2}\right)^{2}}$ لدينا : Q_{n} ق منه Q_{n} الدينا : Q_{n} ق منه Q_{n}

 $Q_n = 2.15 imes 10^3 \ (K(2.15 imes 10^{15}))$ فتطور الجملة يكون في الإتجاه المباشر.

3- الرمز الاصطلاحي للعمود: من المعادلات النصفية

$$Cu_{(s)} = Cu_{(au)}^{2+} + 2e^{-}$$

$$Ag_{(m)}^+ + e^- = Ag_{(s)}$$

$$Ag^{+}_{(aq)} + e^{-} = Ag_{(S)}$$
 : ([1]) Ag^{-} (|) Ag^{-} (|) Ag^{-} (|) Ag^{-} (|) Ag^{-}

$$\Theta Cu_{(s)}/Cu_{(s)}^{2+}$$

$$\Theta \ Cu_{(s)} \ / \ Cu_{(aq)}^{2+} \ / \ / \ Ag_{(aq)}^{+} \ / \ Ag_{(s)} \oplus :$$

: X_{max} قيمة التقدم الأعظمي -1-4

$$n_0(Cu^{2+}) = 0.15 \ mol$$

$$n_0(Cu^{2+}) = 0.15 \ mol$$
 : فيكون $n_0(Cu^{2+}) = c_1 \cdot V_1 = 1.5 \times 100 \times 10^{-3} ***$

$$n_0(Cu) = 5 \times 10^{-2} \, mol$$
 : فيكون $n_0(Cu) = \frac{m_0(Cu)}{M(Cu)} = \frac{3,2}{64}$

$$n_0(Ag^+) = 2,64 \times 10^{-3} mol$$

$$n_0(Ag^+) = 2,64 \times 10^{-3} \, mol$$
 : فيكون $n_0(Ag^+) = c_2 \cdot V_2 = 2,64 \times 10^{-2} \times 100 \times 10^{-3} \, er$

	Cu (s) +	$2Ag^{+}_{(aq)} = C$	$u_{(aq)}^{2+} + 2A$	g (s)
الحالة	كمية المـــادة : mol			
الإبتدائية	5×10 ⁻²	$2,64 \times 10^{-3}$	2×10 ⁻³	بزيادة
الإنتقالية	$5 \times 10^{-2} - x$	$2,64\times10^{-3}-2x$	$2 \times 10^{-3} + x$	بزيادة
النهائية	$5 \times 10^{-2} - x_f$	$2,64\times10^{-3}-2x_f$	$2 \times 10^{-3} + x_f$	بزيادة

$$Z=2$$
 إستنتاج $Q_{max}=Z\cdot x_{max}\cdot F$ الدينا $Q_{max}=Z\cdot x_{max}\cdot F$ إلى المتبادلة هي $Q_{max}=Z\cdot x_{max}\cdot F$ من جدول تقدم التفاعل باعتباره تاما ، من جدول التقدم $\{x_{max}=5\times 10^{-3}-2x_{max}=0\}$ أو $x_{max}=5\times 10^{-2}=1,32\times 10^{-3}\}$ فيكون : $\{x_{max}=5\times 10^{-2}\ e$ أو $x_{max}=\frac{2,64\times 10^{-3}}{2}=1,32\times 10^{-3}\}$ أو منه $x_{max}=1,32\times 10^{-3}$ أو منه $x_{max}=1,32\times 10^{-3}$

$$Q_{max} = 254,76 \ C$$
 : فيكون $Q_{max} = 2 \times 1,32 \times 10^{-3} \times 96500$

$$\Delta t = 50952 \ s$$
 فيكون $\Delta t_{max} = \frac{Q_{max}}{I} = \frac{254,76}{5 \times 10^{-3}}$ و هنه $Q_{max} = I \cdot \Delta t_{max}$ نيكون : $\Delta t_{max} = \Delta t_{max} = -3-4$ أي $\Delta t = 14 \ h$; 9 min أي

الشكل -7-

🔼 📵 Aib_Kamel

الجزء الثاني: دراسة العمود فضة-حديد

المعطيات:

 $Fe^{2+}(aq)/Fe(s)$ ، $Ag^+(aq)/Ag(s)$: هما الثنائيتان المشاركتان في التفاعل هما **

 $1F = 96500 \ C \cdot mol^{-1}$ ثابت فاراداي ***

ننجز العمود فضة-حديد باستعمال الأدوات والمواد لتالية :

 $\left(Ag^{+}(aq)+NO_{3}^{-}(aq)
ight)$ الفضة الفضة $V_{1}=100~mL$ من محلول مائي لتترات الفضة $V_{1}=100~m$ $.c_1$ تركيزه المولى

 $\left(Fe^{2+}\left(aq\right)+2Cl^{-}\left(aq\right)\right)$ بيشر يحتوي على نفس الحجم $V_{2}=V_{1}$ من محلول مائي لكلور الحديد الثنائي والحجم $V_{2}=V_{1}$. $c_2 = c_1$ تركيزه المولى

صفيحة من الفضة وصفيحة من الحديد .

– جسر ملحی .

نربط قطبي العمود بجهاز الفولطمتر كما هو موضح في الشكل-3 ، فيشير إلى توتر كهربائي قيمته

 $U_0 = -1,24 V$

1- ماذا تمثل القيمة التي يشير إليها جهاز الفولطمتر؟

2- أكتب الرمز الاصطلاحي للعمود المدروس .

3- أكتب المعادلتين النصفيتين الالكترونيتين للأكسدة

و الإرجاع الحادثتينعند المسريين ثم استنتج معادلة التفاعل

المنمذج للتحول الحادث أثناء إشتغال العمود .

4− يمثل الشكل-4 بيان تطور التركيز المولي [Ag+]

بدلالة الزمن 1 .

$$[Ag^+] = c_1 - \frac{I}{V_1 \cdot F} \cdot t$$
: نین ان -1-4

2-4- بالاستعانة بالبيان ، حدّد قيمة شدة التيار

الكهربائي 1 و كذا التركيز المولى الابتدائي لمحلول

. c₁ الفضة

الشكل 4. تطور [Ag+] بدلالة الزمن

Aib_Kamel

 1- يشير جهاز الفولطمتر إلى القوة المحركة . E = 1,24 V للمولد

2- الرمز الاصطلاحي للعمود:

- القطب الموجب هو مسرى الفضة لأن الـ Com

. $U_0 \prec 0$ إلى قيمة سالبة

 $\Theta \ Fe_{(s)} / Fe_{(aq)}^{2+} / / Ag_{(aq)}^{+} / Ag_{(s)} \oplus$

3- المعادلتين النصفيتين للأكسدة و الإرجاع و معادلة التفاعل :

 $Fe_{(S)} = Fe_{(aq)}^{2+} + 2e^{-}$: (اکسدة) (المصعد) السالب (المصعد) السالب (المصعد) السالب (المصعد)

 $2 \times \left(Ag_{(ag)}^{+} + e^{-} = Ag_{(S)}\right)$: (جاع) Ag (المهبط) عند المسرى الموجب (المهبط)

 $Fe_{(S)} + 2Ag_{(aq)}^+ = Fe_{(aq)}^{2+} + 2Ag_{(S)}$: المعادلة الإجمالية

 $[Ag^+] = c_1 - \frac{I}{V \cdot F} \cdot t$: البات أن : -1-4

	$Fe_{(S)}$ +	$2Ag^{+}_{(aq)} =$	$Fe_{(aq)}^{2+}$ +	$2Ag_{(s)}$
الحالة	كمية المـــادة : mol			
الإبتدائية	بزيادة	$c_1 \cdot V_1$	$c_2 \cdot V_2$	بزيادة
الإنتقالية	بزيادة	$c_1 \cdot V_1 - 2x$	$c_2 \cdot V_2 + x$	بزيادة
النهائية	بزيادة	$c_1 \cdot V_1 - 2x_f$	$c_2 \cdot V_2 + x_f$	بزيادة

$$[Ag^+] = \frac{c_1 \cdot V_1 - 2x}{V_1} = c_1 - \frac{2}{V_1} \cdot x$$
: and similarly are solutions

$$x = \frac{I}{2 \cdot F} \cdot t$$
 فيكون $Z = 2$ فيكون $q = Z \cdot x \cdot F = I \cdot t$ و لدينا

(1)......
$$\left[Ag^+\right] = c_1 - \frac{I}{V_1 \cdot F} \cdot t$$
 : $e^+ = c_1 - \frac{2}{V_1} \cdot \frac{I}{2 \cdot F} \cdot t$: $e^+ = c_1 - \frac{2}{V_1} \cdot \frac{I}{2 \cdot F} \cdot t$

🔼 📵 Aib_Kamel

2-4 قيمة 1 و قيمة ، 2−4

$$Ag^{+}$$
 = $b + a \cdot t$: المبدأ معادلته من الشكل

$$b = 0,2$$
 : بحيث

$$a = \frac{0,1-0,2}{(1000-0)\times 60} = -1,67\times 10^{-6} \, mol \cdot L^{-1} \cdot s^{-1}$$

(2)......
$$[Ag^+] = 0, 2-1, 67 \times 10^{-6} \cdot t$$
 : فيكون

$$c_1 = 0,2 \ mol/L$$
 : نجد (2) و (1) نجد بالمطابقة بين

الشكل 4. تطور ['Ag] بدلالة الزمن

$$I=10^{-4}\cdot V_1\cdot F=1,67\times 10^{-6}\times 0,1\times 96500$$
 و منه $\frac{I}{V_1\cdot F}=10^{-4}$ و منه $I=1,61\times 10^{-2}A$: فنجد أن :