Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського" Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

	Звіт
	з лабораторної роботи № 6 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації»
	«Дослідження лінійних алгоритмів»
	Варіант30
Виконав студент	IП-15 Розін Олексій Іванович (шифр, прізвище, ім'я, по батькові)
Перевірив	Вечерковська Анастасія Сергіївна
	(прізвище, ім'я, по батькові)

Лабораторна робота 6

Дослідження рекурсивних алгоритмів

Мета – дослідити особливості роботи рекурсивних алгоритмів та набути практичних навичок їх використання під час складання програмних специфікацій підпрограм.

Індивідуальне завдання

Варіант 30

Постановка задачі

Дано перший член і знаменник геометричної прогресії. Обчислити суму n перших членів прогресії та знайти n-й член прогресії.

Математична модель

Змінна	Тип	Ім'я	Призначення
Перший член	Дійсний	firstEl	Вхідні дані
прогресії			
Знаменник прогресії	Дійсний	denominator	Вхідні дані
Порядковий номер	Цілий	n	Вхідні дані
члена прогресії			
Сума п членів	Дійсний	sum	Результат
прогресії			
Значення п члена	Дійсний	nVal	Результат
прогресії			
Пошук суми п	Процедура	progressionSum	Проміжні дані
членів прогресії			
Пошук значення п	Процедура	findProgressionElement	Проміжні дані
члена прогресії			

Користувач задає значення firstEl, denominator та п. Перша рекурсивна функція progressionSum приймає 3 параметра: first, denom, n (first та denom дійсного типа, n - цілого). В тілі функції перевіряємо якщо $n \le 0$, то повертаємо 0 (return 0), інакше повертаємо first + progressionSum(first * denom, denom, n - 1). Друга рекурсивна функція findProgressionElement приймає такі ж параметри (first, denom, n). В тілі цієї функції перевіряємо, якщо $n \le 1$, то повертаємо перший аргумент first (return first), інакше повертаємо findProgressionElement(first, denom, n - 1) * denom. Ініціалізуємо змінну sum значенням, яке поверне визов функції progressionSum з параметрами (firstEl, denom, n). Ініціалізуємо змінну nVal значенням, яке поверне визов функції findProgressionElement з параметрами (firstEl, denom, n). Вивід sum та nVal.

Розв'язання

Програмні специфікації запишемо у псевдокоді та графічній формі у вигляді блок-схеми.

```
Крок 2. Введення firstEl, denominator, n.
       Крок 3. Інціалізация sum.
       Крок 4 Інціалізация nVal.
       Крок 5. Вивід sum, nVal.
Псевдокод – основна программа
Крок 1
початок
       введення firstEl, denominator, n
       ініціалізація sum
       інціалізация nVal
       вивід sum, nVal
кінець
Крок 2
початок
       введення firstEl, denominator, n
       sum = progressionSum(firstEl, denominator, n)
       інціалізация nVal
       вивід sum, nVal
кінець
Крок 3
початок
       введення firstEl, denominator, n
       sum = progressionSum(firstEl, denominator, n)
```

Крок 1. Визначимо основні дії.

```
nVal = findProgressionElement(firstEl, denominator, n)
      вивід sum, nVal
кінець
Крок 4
початок
      введення firstEl, denominator, n
      sum = progressionSum(firstEl, denominator, n)
      nVal = findProgressionElement(firstEl, denominator, n)
      вивід sum, nVal
кінець
Псевдокод – підпрограми
progressionSum(first, denom, n)
      якщо n <= 0
             то повернути 0
      все якщо
      повернути first + progressionSum(first * denom, denom, n - 1)
кінець
findProgressionElement(firstEl, denominator, n)
      якщо n <= 1
             то повернути first
      все якщо
      повернути findProgressionElement(first, denom, n - 1) * denom
кінець
Блоксхема – основна програма
```


Блоксхема — підпрограми

Код програми

```
🛂 lab6
                                                                        (Глобальная область)
            #include <iostream>
            using namespace std;
            double progressionSum(double first, double denom, int n);
            double findProgressionElement(double first, double denom, int n);
          □int main()
                setlocale(LC_ALL, "");
                double firstEl, denominator;
                int n;
                cout << "Введите первый член геометрической прогрессии: ";
                cin >> firstEl;
                cout << "Введите знаменатель прогрессии: ";
                cin >> denominator;
                cout << "Введите кол-во членов прогрессии: ";
                double sum = progressionSum(firstEl, denominator, n);
                double nVal = findProgressionElement(firstEl, denominator, n);
                cout << "Сумма " << n << " первых членов прогрессии: " << sum << endl;
                cout << n << "-ый член прогрессии: " << nVal << endl;
          □double progressionSum(double first, double denom, int n) {
                if (n <= 0) {
                    return 0;
                return first + progressionSum(first * denom, denom, n - 1);
           □double findProgressionElement(double first, double denom, int n) {
                    return first;
                return findProgressionElement(first, denom, n - 1) * denom;
```

```
Консоль отладки Microsoft Visual Studio

Введите первый член геометрической прогрессии: 5

Введите знаменатель прогрессии: 3

Введите кол-во членов прогрессии: 3

Сумма 3 первых членов прогрессии: 65

3-ый член прогрессии: 45
```

Випробування

Блок	Дія
	Початок
1	firstEl = 5; denominator = 3; $n = 3$
2	sum = progressionSum(firstEl, denominator,
	n)
2.1	Виклик progressionSum(firstEl,
	denominator, n)
2.2	n == 3
	$n \le 0$ == false

	return first + progressionSum(first * denom,
	denom, n - 1)
2.3	Виклик progressionSum(firstEl,
	denominator, n-1)
2.4	n == 2
	$n \le 0 = \text{false}$
	return first + progressionSum(first * denom,
	denom, n - 1)
2.5	Виклик progressionSum(firstEl,
	denominator, n-1)
2.6	n == 1
	$n \le 0 = false$
	return first + progressionSum(first * denom,
	denom, n - 1)
2.7	Виклик progressionSum(firstEl,
	denominator, n-1)
2.8	n == 0
	$n \le 0 = true$
	return 0
3	nVal = findProgressionElement(firstEl,
	denominator, n)
3.1	Виклик findProgressionElement(firstEl,
	denominator, n)
3.2	n == 3
	$n \le 1 = false$
	return findProgressionElement(first, denom, n
	- 1) * denom
3.3	Виклик findProgressionElement(firstEl,
	denominator, n-1)
3.4	n == 2
	$n \le 1 = false$
	return findProgressionElement(first, denom, n
	- 1) * denom
3.5	Виклик findProgressionElement(firstEl,
	denominator, n-1)
3.6	n == 1
	$n \le 1 = \text{true}$
	return first
4	sum = 65
·	nVal = 45
5	Вивід sum, nVal
	Кінець
	Кіпсць

Висновки

Ми дослідили особливості роботи рекурсивних алгоритмів та набули практичних навичок їх використання під час складання програмних специфікацій підпрограм. У цій лабораторній роботі за допомогою двух рекурсивних функцій ми обчислили суму перших п членів та значення п члена даної нам геометричної прогресії.