Lineaire Algebra en differentiaalvergelijkingen

College 8: Orthogonaal diagonaliseren.

J. Vermeer Les 8

Faculteit EWI

Orthogonaal diagonaliseren I

Definitie: A een reële $n \times n$ matrix. De matrix A heet orthogonaal diagonaliseerbaar als er een diagonalisering $A = PDP^{-1}$ bestaat met P een orthogonale matrix. Stelling: Stel dat de matrix A orthogonaal diagonaliseerbaar is. Dan is de matrix A symmetrisch!

Is de matrix
$$A=\left[\begin{array}{cc} 1 & 2 \\ 3 & 4 \end{array}\right]$$
 orthogonaal diagonaliseerbaar? En

de matrix
$$B = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$$
??

Is het toeval dat de matrix ${\cal B}$ orthogonaal diagonaliseerbaar is?

Les 8

2

Faculteit EWI

Orthogonaal diagonaliseren II

We gaan bewijzen dat iedere (reële) symmetrische matrix (reëel) orthogonaal diagonaliseerbaar is.

Stelling: Laat A een symmetrische matrix zijn. Dan geldt dat alle nulpunten van $p_A(\lambda)$ reëel zijn. (Dus alle eigenwaarden van A zijn reëel).

De volgende stelling bewijzen we niet.

Stelling: Laat A een symmetrische matrix zijn. Dan is A een reëel diagonaliseerbare matrix.

(Equivalent: $m.m.(\lambda) = a.m.(\lambda)$ voor iedere (noodzakelijk reële) eigenwaarde λ .)

Stelling: Laat A een symmetrische matrix zijn. Dan geldt dat eigenvectoren bij verschillende eigenwaarden orthogonaal zijn.

Les 8

Faculteit EWI

Orthogonaal diagonaliseren III

Uit bovenstaande stelling volgt dat symmetrische matrices orthogonaal diagonaliseerbaar zijn. We geven het bewijs als procedure.

Procedure: (Hoe een symmetrische matrix A orthogonaal te diagonaliseren.)

- 1. Bepaal de eigenwaarden van A (deze zijn alle reëel).
- 2. Bepaal voor iedere λ een basis voor de eigenruimte E_{λ} .
- 3. Gebruik nu Gram-Schmidt om voor iedere eigenruimte E_{λ} een orthonormale basis te bepalen.
- 4. Zet de basisvectoren in matrix Q. Dan: Q is vierkant (waarom?) en Q is een orthogonale matrix (waarom?).
- 5. Dan $A=QDQ^{-1}=QDQ^T$ is een orthogonale diagonalisering van A.

Voorbeeld van een orthogonale diagonalisering

Beschouw de matrix $A=\left[\begin{array}{ccc} 3 & 1 & 1 \\ 1 & 3 & 1 \\ 1 & 1 & 3 \end{array}\right]$. Bepaal een orthogonale

diagonalisering van A.

Opgave: Verzin een symmetrische 3×3 matrix A met vlak x + y - z = 0 als eigenruimte E_4 en met nog een eigenwaarde $\lambda = 6$.

§5.4 besproken tot en met VB 5.18 (tot halverwege blz. 416).

Rest van deze paragraaf wordt overgeslagen.

Faculteit EWI

Aanbevolen opgaven

College 3	behandeld	aanbevolen opgaven
	§5.4	§5.4: 1,7,15,17,19,21,23

Faculteit EWI