Package 'pcIRT'

October 14, 2022

Type Package
Title IRT Models for Polytomous and Continuous Item Responses
Version 0.2.4
Date 2019-07-08
Author Christine Hohensinn [cre,aut]
Maintainer Christine Hohensinn <research@christinehohensinn.at></research@christinehohensinn.at>
Depends R (>= 2.15)
Suggests roxygen2
LinkingTo Rcpp
Imports Rcpp, combinat, stats, graphics, grDevices, utils, methods
Description Estimates the multidimensional polytomous Rasch model (Rasch, 1961) with conditional maximum likelihood estimation.
License GPL-3
<pre>URL https://github.com/christinehohensinn/pcIRT</pre>
RoxygenNote 6.1.1
NeedsCompilation yes
Repository CRAN
Date/Publication 2019-07-15 19:40:10 UTC
R topics documented:
pcIRT-package
CRSM
dLRT
extraversion
gmc.CRSM
iccplot.CRSM
LRT.DRM
MPRM 12

2 pcIRT-package

pcIR	T-package			IR	T_{\cdot}	M	od	el.	s f	or	·P	ol	ytc	om	ıoı	us	ar	ıd	C	on	tir	ıu	ou	ıs 1	Ite	m	R	esp	poi	ns	es			
Index																																	2	22
	simMPRM		•				•	•	•		•				•	•		•				•	•			•				•			 . 2	20
	simDRM																																	
	simCRSM																																	
	reason.test																																	
	print.wt .																																 . 1	16
	person_par.																																	

Description

The multidimensional polytomous Rasch model (Rasch, 1961) can be estimated with pcIRT. It provides functions to set linear restrictions on the item category parameters of this models. With this functions it is possible to test whether item categories can be collapsed or set as linear dependent. Thus it is also possible to test whether the multidimensional model can be reduced to a unidimensional model that is whether item categories represent a unidimensional continuum. For this case the scoring parameter of the categories is estimated.

Details

Package: pcIRT Type: Package Version: 0.1

Date: 2013-11-13 License: GPL-3

Author(s)

Christine Hohensinn Maintainer: Christine Hohensinn <research@christinehohensinn.at>

References

Andersen, E. B. (1995). Polytomous Rasch models and their estimation. In G. H. Fischer and I. Molenaar (Eds.). Rasch Models - Foundations, Recent Developments, and Applications. Springer.

Fischer, G. H. (1974). Einfuehrung in die Theorie psychologischer Tests [Introduction to test theory]. Bern: Huber.

Hohensinn, C. (2018). pcIRT: An R Package for Polytomous and Continuous Rasch Models. Journal of Statistical Software, Code Snippets, 84(2), 1-14. doi:10.18637/jss.v084.c02

Mueller, H. (1987). A Rasch model for continuous ratings. Psychometrika, 52, 165-181.

Rasch, G. (1961). On general laws and the meaning of measurement in psychology, Proceedings Fourth Berekely Symposium on Mathematical Statistiscs and Probability 5, 321-333.

CRSM 3

See Also

MPRM CRSM

Examples

```
#simulate data set according to the multidimensional polytomous Rasch model (MPRM)
simdat <- simMPRM(rbind(matrix(c(-1.5,0.5,0.5,1,0.8,-0.3, 0.2,-1.2), ncol=4),0), 500)
#estimate MPRM item parameters
res_mprm <- MPRM(simdat$datmat)
summary(res_mprm)</pre>
```

CRSM

Estimation of continuous rating scale model (Mueller, 1987)

Description

Estimation of the rating scale model for continuous data by Mueller (1987).

Usage

```
CRSM(data, low, high, start, conv = 1e-04)
## S3 method for class 'CRSM'
print(x, ...)
## S3 method for class 'CRSM'
summary(object, ...)
```

Arguments

data	Data matrix or data frame; rows represent observations (persons), columns represent the items.
low	The minimum value of the response scale (on which the data are based).
high	The maximum value of the response scale (on which the data are based).
start	Starting values for parameter estimation. If missing, a vector of $\boldsymbol{0}$ is used as starting values.
conv	Convergence criterium for parameter estimation.
X	object of class CRSM
object	object of class CRSM

4 CRSM

Details

$$P_{vi}(a \le X \le b) = \frac{\int_a^b exp[x\mu + x(2c - x)\theta]dx}{\int_{c - \frac{d}{2}}^{c + \frac{d}{2}} exp[t\mu + t(2c - t)\theta]dt}$$

Parameters are estimated by a pairwise conditional likelihood estimation (a pseudo-likelihood approach, described in Mueller, 1999).

The parameters of the continuous rating scale model are estimated by a pairwise cml approach using Newton-Raphson iterations for optimizing.

Value

data	data matrix according to the input
data_p	data matrix with data transformed to a response interval between 0 and 1
itempar	estimated item parameters
itempar_se_low	estimated lower boundary for standard errors of estimated item parameters
itempar_se_up	estimated upper boundary for standard errors of estimated item parameters
itempar_se	estimated mean standard errors of estimated item parameters
disppar	estimated dispersion parameter
disppar_se_low	estimated lower boundary for standard errors of estimated dispersion parameter
disppar_se_up	estimated upper boundary for standard errors of estimated dispersion parameter
itempar_se	estimated mean standard errors of estimated item parameter
disp_est	estimated dispersion parameters for all item pairs
iterations	Number of Newton-Raphson iterations for each item pair
low	minimal data value entered in call
high	maximal data value entered in call

Author(s)

call

Christine Hohensinn

References

Mueller, H. (1987). A Rasch model for continuous ratings. Psychometrika, 52, 165-181.

call of the CRSM function

Mueller, H. (1999). Probabilistische Testmodelle fuer diskrete und kontinuierliche Ratingskalen. [Probabilistic models for discrete and continuous rating scales]. Bern: Huber.

dLRT 5

dLRT

Dimensionality test for the multidimensional polytomous Rasch model

Description

This function tests whether the multidimensional polytomous Rasch model can be reduced to a unidimensional polytomous model.

Usage

```
dLRT(MPRMobj)
## S3 method for class 'dLR'
print(x, ...)
## S3 method for class 'dLR'
summary(object, ...)
```

Arguments

MPRMobj	Object of class MPRM
х	object of class dLR
• • •	•••
object	object of class dLR

Details

For this test, a unidimensional model assuming the categories as linearly dependent is computed. Subsequently a Likelihood Ratio test is conducted.

Value

```
emp_Chi2 \chi^2 distributed value of the Likelihood Ratio test df degrees of freedom of the test statistic pval p value of the test statistic
```

Author(s)

Christine Hohensinn

References

Fischer, G. H. (1974). Einfuehrung in die Theorie psychologischer Tests [Introduction to test theory]. Bern: Huber.

6 DRM

See Also

MPRM LRT

Examples

DRM

Estimation of dichotomous logistic Rasch model (Rasch, 1960)

Description

This function estimates the dichotomous Rasch model by Rasch (1960).

Usage

```
DRM(data, desmat, start, control)
## S3 method for class 'DRM'
print(x, ...)
## S3 method for class 'DRM'
summary(object, ...)
```

Arguments

data	Data matrix or data frame; rows represent observations (persons), columns represent the items.
desmat	Design matrix; if missing, the design matrix for a dichotomous Rasch model will be created automatically.
start	starting values for parameter estimation. If missing, a vector of 0 is used as starting values.
control	list with control parameters for the estimation process e.g. the convergence criterion. For details please see the help pages to the R built-in function optim
x	object of class DRM
object	object of class DRM

DRM 7

Details

Parameters are estimated by CML.

Value

data matrix according to the input

design matrix either according to the input or according to the automatically

generated matrix

logLikelihood conditional log-likelihood

estpar estimated basic item parameters

estpar_se estimated standard errors for basic item parameters

itempar estimated item parameters

itempar_se estimated standard errors for item parameters

hessian Hessian matrix

convergence convergence of solution (see help files in optim)

fun_calls number of function calls (see help files in optim)

Author(s)

Christine Hohensinn

References

Fischer, G. H. (1974). Einfuehrung in die Theorie psychologischer Tests [Introduction to test theory]. Bern: Huber.

Rasch, G. (1960). Probabalistic models for some intelligence and attainment tests. Danmarks paedagogiske institut.

Examples

```
#estimate Rasch model parameters
data(reason)
res_drm <- DRM(reason.test[,1:11])
summary(res_drm)</pre>
```

8 gmc.CRSM

extraversion

Data set extraversion

Description

This object contains data from an extraversion scale . The data set consists of 8 items and 150 persons.

Format

A matrix with 8 variables and 150 observations.

Source

Study

gmc.CRSM

Graphical model check

Description

A graphical model check is performed for the multidimensional polytomous Rasch model or the continuous Rating Scale Model.

Usage

```
## $3 method for class 'CRSM'
gmc(object, splitcrit = "score", ...)
gmc(object, ...)
## $3 method for class 'aLR'
gmc(object, ...)
```

Arguments

object	Object of class aLR for graphical model check of the MPRM or object of class CRSM for graphical model check of the CRSM
splitcrit	Vector or the character vector "score" to define the split criterion. The default split criterion "score" splits the sample according to the median of the raw score. Vector can be numeric, factor or character. (see details)

...

iccplot.CRSM 9

Details

The graphical model check plots the item parameter estimates of two subsamples to check the homogeneity. This is according to the subsample split in Andersen's Likelihood Ratio test. For conducting the graphical model check of the MPRM, at first, a LRT has to be computed and the resulting object is the input for the gmc function.

For plotting a graphical model check for the CRSM, the model has to be estimated with CRSM and subsequently the resulting object is the input for the gmc function. For the CRSM a split criterion has to be input as vector.

Author(s)

Christine Hohensinn

References

Wright, B.D., and Stone, M.H. (1999). Measurement Essentials. Wilmington: Wide Range Inc.

See Also

LRT CRSM

iccplot.CRSM

Item Characteristic Curve

Description

The item characteristic curve is performed for the multidimensional polytomous Rasch model or the continuous Rating Scale Model.

Usage

```
## S3 method for class 'CRSM'
iccplot(object, items = "all", ...)
## S3 method for class 'DRM'
iccplot(object, items = "all", ...)
## S3 method for class 'MPRM'
iccplot(object, items = "all", ...)
iccplot(object, ...)
```

10 LRT.DRM

Arguments

object	Object of class CRSM for ICC of the CRSM or object of class MPRM for ICC plot of the MPRM or object of class DRM for ICC plot of the DRM
items	Character vector "all" to display ICC curves for all items. By entering a numeric vector, a subset of items can be chosen for which ICC plots are drawn.

Details

The item characteristic curve (ICC) plots the response probability depending on person and item parameter. For plotting the ICC, the object resulting from MPRM MPRM or CRSM CRSM or DRM DRM is the input for the iccplot function. The default argument items="all" displays ICC curves for all items in the object. With a numeric vector items, a subset of items can be selected for which ICC plots are displayed.

Author(s)

Christine Hohensinn

See Also

MPRM CRSM DRM

LRT.DRM Computes Andersen's Likelihood Ratio Test for the multidimensional polytomous Rasch model

Description

Andersen's Likelihood Ratio Test is a model test for Rasch models (based on CML estimation) and splits the data set into subsamples to test the person homogeneity

Usage

```
## S3 method for class 'DRM'
LRT(object, splitcrit = "score", ...)
## S3 method for class 'MPRM'
LRT(object, splitcrit = "score", ...)
LRT(object, ...)
## S3 method for class 'aLR'
print(x, ...)
## S3 method for class 'aLR'
summary(object, ...)
```

LRT.DRM

Arguments

object Object of class MPRM or DRM or aLR

splitcrit Vector or the character vector "score" to define the split criterion. The default

split criterion "score" splits the sample according to the median of the raw

score. Vector can be numeric, factor or character. (see details)

x Object of class aLR ... further arguments

Details

The default split criterion "score" computes the raw score of every person according to the category values in the data set. The sample is split by the median of this raw score.

Value

emp_Chi2 χ^2 distributed value of the Likelihood Ratio test

df degrees of freedom of the test statistic

pval p value of the test statistic

itempar estimated item parameters for each subsample

item_se estimated standard errors for the item parameters for each subsample

Author(s)

Christine Hohensinn

References

Andersen, E. B. (1973). A goodness of fit test for the Rasch model. Psychometrika, 38, 123-140. Fischer, G. H. (1974). Einfuehrung in die Theorie psychologischer Tests [Introduction to test theory]. Bern: Huber.

See Also

MPRM dLRT

Examples

12 MPRM

MPRM	Estimation of Multidimensional Polytomous Rasch model (Rasch, 1961)

Description

This function estimates the multidimensional polytomous Rasch model by Rasch (1961). The model estimates item category parameters β for each item and each category and takes each category of data as another dimension. The functions allows setting linear restrictions on item category parameters β .

Usage

```
MPRM(data, desmat, ldes, lp, start, control)
## S3 method for class 'MPRM'
print(x, ...)
## S3 method for class 'MPRM'
summary(object, ...)
```

Arguments

desmat Design matrix 1des a numeric vector of the same length as the number of item category paramet indicating which parameters are set linear dependent of which other parameters.	ep-
(see details)	
1p a numeric vector with length equal to the number of item parameters set lin dependent. The vector indicates the number of scoring parameters (see detail	
Starting values for parameter estimation. If missing, a vector of 0 is used starting values.	as
control list with control parameters for the estimation process e.g. the convergence of terion. For details please see the help pages to the R built-in function optim	ri-
x object of class MPRM	
object of class MPRM	

Details

Parameter estimations is done by CML method.

The parameters of the multidimensional polytomous Rasch model (Rasch, 1961) are estimated by CML estimation. For the CML estimation no assumption on the person parameter distribution is

MPRM 13

necessary. Furthermore linear restrictions can be set on the multidimensional polytomous Rasch model. Item category parameters can be set as being linear dependent to other item category parameters and the scoring parameter (as the multiple of the linear dependen parameters) is estimated. The restrictions are set by defining the arguments 1des and 1p. 1des is a numerical vector of the same length as item category parameters in the general MPRM. A 0 in this vector indicates that no restriction is set. Putting in another number sets the item category parameter according to the vector position as linear dependent to that item category parameter with the position of the number included. For example, if item category parameter of item 1 and category 2 (that is position 2 in the vector 1des) should be linear dependent to the item category parameter of item 1 and category 1 (that is position 1 in the vector 1des), than the number 1 has to be on the second element of vector 1des. With the vector 1p it is set, how many different scoring parameters have to be estimated and (if there are more than two) which of them should be equal. For example if 5 item category parameters are set linear dependent (by 1des) and according to the 1des vector the first, third and fourth have the same scoring parameters and the second and fifth have another scoring parameter, than 1p must be a vector 1p = c(1,2,1,1,2).

It is necessary that the design matrix is specified in accordance with the restrictions in 1des and 1p.

Value

data matrix according to the input design design matrix according to the input

logLikelihood conditional log-likelihood

estpar estimated basic item category parameters

estpar_se estimated standard errors for basic item category parameters

itempar estimated item category parameters

itempar_se estimated standard errors for item category parameters

linpar estimated scoring parameters

linpar_se estimated standard errors for scoring parameters

hessian Hessian matrix

convergence convergence of solution (see help files in optim)
fun_calls number of function calls (see help files in optim)

Author(s)

Christine Hohensinn

References

Andersen, E. B. (1974). Das mehrkategorielle logistische Testmodell [The polytomous logistic test model] In. W. F. Kempf (Ed.), Probabilistische Modelle in der Sozialpsychologie [Probabilistic model in social psychology]. Bern: Huber.

Fischer, G. H. (1974). Einfuehrung in die Theorie psychologischer Tests [Introduction to test theory]. Bern: Huber.

Rasch, G. (1961). On general laws and the meaning of measurement in psychology, Proceedings Fourth Berekely Symposium on Mathematical Statistiscs and Probability 5, 321-333.

14 person_par.CRSM

See Also

MPRM

Examples

```
#simulate data set according to the general MPRM
simdat <- simMPRM(rbind(matrix(c(-1.5,0.5,0.5,1,0.8,-0.3, 0.2,-1.2),
ncol=4),0),500)
#estimate the MPRM without any restrictions
res_mprm <- MPRM(simdat$datmat)</pre>
#estimate a MPRM with linear restrictions;
#for item 1 and 2 the second category is set linear dependent to the first
#category
ldes1 <- rep(0,length(res_mprm$itempar))</pre>
ldes1[c(2,5)] \leftarrow c(1,4)
lp1 < - rep(1,2)
#take the design matrix from the general MPRM and modify it according to the
#linear restriction
design1 <- res_mprm$design</pre>
design1[2,1] <- 1
design1[5,3] <- 1
design1[11,c(1,3)] < - -1
design1 \leftarrow design1[,-c(2,4)]
res_mprm2 <- MPRM(simdat$datmat, desmat=design1, ldes=ldes1, lp=lp1)</pre>
summary(res_mprm2)
```

person_par.CRSM

Estimation of person parameters

Description

This function performs the estimation of person parameters for the multidimensional polytomous Rasch model or the continuous Rating Scale model.

Usage

```
## $3 method for class 'CRSM'
person_par(object, ...)
## $3 method for class 'MPRM'
person_par(object, ..., set0 = FALSE)
person_par(object, ...)
```

person_par.CRSM 15

Arguments

object Object of class MPRM or CRSM

set0 if set0=TRUE for those raw scores patterns with 0 observations (except in the ref-

erence category) the person parameter value is set minimal. With this procedure it is possible to estimate at least the remaining person parameters of these raw score pattern. Note: only relevant for person parameter estimation of MPRM. The person parameters for each raw score vector are constrained to sum zero

Details

The estimation is performed by Maximum Likelihood Estimation. Thus, parameters for extreme scores are not calculated!

Value

ptable table showing for each (observed) raw score the corresponding estimated person

parameter and standard error

pparList for each person raw score, estimated person parameter and the standard error is

displayed

fun_calls number of function calls

call function call

Author(s)

Christine Hohensinn

References

Fischer, G. H. (1974). Einfuehrung in die Theorie psychologischer Tests [Introduction to test theory]. Bern: Huber.

Mueller, H. (1999). Probabilistische Testmodelle fuer diskrete und kontinuierliche Ratingskalen. [Probabilistic models for discrete and continuous rating scales]. Bern: Huber.

See Also

CRSM

16 print.wt

model	print.wt	Test for the scoring weights in the unidimensional polytomous Rasch model
-------	----------	---

Description

This functions tests the fit of fixed scoring parameters in a unidimensional polytomous Rasch model.

Usage

```
## $3 method for class 'wt'
print(x, ...)
## $3 method for class 'wt'
summary(object, ...)
weight_test(MPRMobj, score_param)
```

Arguments

X	object of class wt
	•••
object	object of class wt
MPRMobj	Object of class MPRM
score_param	Numerical vector with the scoring parameters that are tested

Details

If the unidimensional polytomous Rasch model fits the data, the weight test can be performed to test whether assumed scoring parameters are appropriate. An unconstrained unidimensional polytomous Rasch model is calculated including estimation of scoring parameters. Furthermore a constrained unidimensional polytomous Rasch model is estimated with fixed scoring parameters (according to the input). Subsequently a Likelihood Ratio test tests the fit of the fixed scoring parameters.

Value

```
emp_Chi2 \chi^2 distributed value of the Likelihood Ratio test df degrees of freedom of the test statistic pval p value of the test statistic unconstrLoglikelihood log-likelihood of the unconstrained model constrLoglikelihood log-likelihood of the constrained model unconstrNrPar number of estimated parameters in the unconstrained model
```

reason.test 17

```
constrNrPar number of estimated parameters in the constrained model unconstrItempar estimated item parameters of the unconstrained model constrItempar estimated item parameters of the constrained model unconstrScoreParameter estimated scoring parameters of the unconstrained model
```

Author(s)

Christine Hohensinn

References

Fischer, G. H. (1974). Einfuehrung in die Theorie psychologischer Tests [Introduction to test theory]. Bern: Huber.

See Also

MPRM dLRT

Examples

reason.test

Data set META reasoning test.

Description

This object contains data from the reasoning test 'META' by Gatternig and Kubinger (1994). The test includes 11 encoding tasks.

Format

A matrix with 22 variables and 380 observations. Variables 'I1' to 'I11' contain the responses to the eleven items, 'BT1' to 'BT11' the response times for each item in seconds.

18 simCRSM

Source

Study

References

Gatternig, J. and Kubinger, K. D. (1994). Erkennen von Metaregeln. Frankfurt: Swets.

|--|

Description

With this function data sets according to the Continous Rating Scale Model are simulated

Usage

```
simCRSM(itempar, disp, perspar, mid = 0.5, len = 1, seed = NULL)
```

Arguments

itempar a numerical vector with item parameters

disp a number setting the dispersion parameter for the item set

perspar a numerical vector with the person parameters

the midpoint of the response scale (on which the data set is generated)

the length of the response scale (on which the data set is generated)

seed a seed for the random number generated can optionally be set

Details

The midpoint and the length of the response scale define the interval of the data set generated. The default of the function generates data according to a response scale between 0 and 1 - that is midpoint 0.5 and length 1.

Value

datmat simulated data set

true_itempar the fixed item parameters according to the input
true_disppar the fixed dispersion parameter according to the input
true_perspar the fixed person parameters according to the input

Author(s)

Christine Hohensinn

simDRM 19

References

Mueller, H. (1987). A Rasch model for continuous ratings. Psychometrika, 52, 165-181.

See Also

simMPRM

simDRM

simulate data according to Rasch model

Description

With this function data sets according to the dichotomous Rasch model (DRM) are simulated

Usage

```
simDRM(itempar, persons = 500, seed = NULL)
```

Arguments

itempar a vector with item difficulty parameters
persons number of persons for the generated data set

seed a seed for the random number generated can optionally be set

Details

Data are generated with category values 0 and 1.

Person parameters are generated by a standard normal distribution.

Value

datmat simulated data set

true_perspar the fixed person parameters

Author(s)

Christine Hohensinn

References

Fischer, G. H. (1974). Einfuehrung in die Theorie psychologischer Tests [Introduction to test theory]. Bern: Huber.

See Also

simMPRMsimCRSM

20 simMPRM

Examples

```
#set item parameters
item_p <- c(-1.5,-0.3,0,0.3,1.5)
#number of persons
pn <- 500
#simulate data set
simdatD <- simDRM(item_p, pn)</pre>
```

simMPRM

simulate data according to MPRM

Description

With this function data sets according to the multidimensional polytomous Rasch model (MPRM) are simulated

Usage

```
simMPRM(itempar, persons = 500, seed = NULL)
```

Arguments

itempar a matrix with item category parameters; each row represents a category and each

column an item (see details)

persons an integer representing the number of persons (observations) of the data set (see

details)

seed a seed for the random number generated can optionally be set

Details

Data are generated with category values starting with 0. Thus the first row of the matrix containing the item parameters is matched to the category value 0 and so on. The last category is the reference category. Please note, that the item category parameters of the last category have to be 0 (due to parameter normalization)!

Person parameters are generated by a standard normal distribution.

Value

datmat simulated data set

true_itempar the fixed item parameters according to the input

true_perspar the fixed person parameters

simMPRM 21

Author(s)

Christine Hohensinn

References

Fischer, G. H. (1974). Einfuehrung in die Theorie psychologischer Tests [Introduction to test theory]. Bern: Huber.

Rasch, G. (1961). On general laws and the meaning of measurement in psychology, Proceedings Fourth Berekely Symposium on Mathematical Statistiscs and Probability 5, 321-333.

See Also

simCRSM

Examples

```
#set item parameters
item_p <- rbind(matrix(c(-1.5,0.5,0.5,1,0.8,-0.3, 0.2,-1.2), ncol=4),0)
#number of persons
pn <- 500
#simulate data set
simdatM <- simMPRM(item_p, pn)</pre>
```

Index

* Continuous pcIRT-package, 2	dLRT, 5, 11, 17 DRM, 6, 10
* IRT pcIRT-package, 2	extraversion, 8
* Item pcIRT-package, 2	gmc (gmc.CRSM), 8
* Model	gmc.CRSM, 8
pcIRT-package, 2 * Rasch	iccplot(iccplot.CRSM), 9 iccplot.CRSM, 9
pcIRT-package, 2 * Rating pcIRT-package, 2	LRT, 6, 9 LRT (LRT.DRM), 10 LRT.DRM, 10
* Response	ERT. DRM, TO
pcIRT-package, 2 * Scale	MPRM, 3, 6, 10, 11, 12, 14, 17
pcIRT-package, 2	optim, 7, 13
* Theory	
pcIRT-package, 2 * datasets	pcIRT (pcIRT-package), 2 pcIRT-package, 2
extraversion, 8 reason.test, 17	person_par (person_par.CRSM), 14 person_par.CRSM, 14 print.aLR (LRT.DRM), 10
* model pcIRT-package, 2	print.CRSM (CRSM), 3 print.dLR (dLRT), 5
* multidimensional pcIRT-package, 2	print.DRM (DRM), 6 print.MPRM (MPRM), 12
* package pcIRT-package, 2	print.wt, 16
* polytomous pcIRT-package, 2	reason.test, 17
* psychometrics pcIRT-package, 2 * scoring	simCRSM, 18, <i>19</i> , <i>21</i> simDRM, 19 simMPRM, <i>19</i> , 20
print.wt, 16	summary.aLR (LRT.DRM), 10
<pre>* test print.wt, 16 * weight print.wt, 16</pre>	summary.CRSM(CRSM), 3 summary.dLR(dLRT), 5 summary.DRM(DRM), 6 summary.MPRM(MPRM), 12 summary.wt(print.wt), 16
CRSM, 3, 3, 9, 10, 15	<pre>weight_test (print.wt), 16</pre>