1. Напряжение, ток и сопротивление.

Напряжение – работа по перемещению единичного заряда (либо разность потенциалов), (В). $U = \frac{A}{a} T \kappa$ – упорядоченное движение электрических зарядов (A). $I = \frac{q}{t}$ Закон Ома: сила тока прямопропорциональна напряжению и обратнопропорциональна сопротивлению. Параллельное

$$R_{_{^{9KG}}}=rac{R_{_{1}}*R_{_{2}}}{R_{_{1}}+R_{_{2}}}$$
, после-довательное соединение: $R_{_{9KG}}=R_{_{1}}+R_{_{2}}$.

Сопротивление – противодействие протеканию электрического тока (Ом). Проводимость – величина, обратнопропорциональная сопротивлению (См). 1-й закон Кирхгофа: алгебраическая сумма токов всех веток, принадлежащих узлу, равна нулю. 2-й закон Кирхгофа: алгебраическая сумма напряжений всех веток, которые создают контур, равна нулю. Мощность - работа, выполненная током по перемещению заряда в единицу времени (либо скорость поступления энергии), (Вт).

*Что такое напряжение, единицы измерения- это величина, которая численно равна работе, которую выполняет электрическое поле по перемещению единичного позитивного заряда с некоторой начальной точки поля в конечную. $U = \frac{A}{q_0}$. В СІ измеряется напряжение в Вольтах : 1 В = $\frac{1 \, \text{Джc}}{1 \, \text{Kr}}$. 1В – это разница потенциалов

между такими двумя точками, перенесение заряда в одну абсолютную электростатическую единицу заряда между которыми

происходит выполнение работы в 1 Дж.

*Что такое ток, единицы измерения- это направленный поток зараженных частиц. Электрический ток характеризируют силой тока - скалярной величиной, численно равной электрическому заряду, который проходит через поперечное сечение проводника за единицу времени: $I = \frac{dq}{dt}$. Измеряется в Амперах, определяется на основе электромагнитного взаимодействия двух параллельных прямолинейных проводников, по которым проходит постоянный

 $TOK. 1 A = \frac{1 K_T}{1 c}.$

*Закон Ома - открыт экспериментально, гласит: сила тока, протекающего по однородному проводнику, пропорциональна разности потенциалов на его концах (напряжению U): $I = \frac{U}{R}$

Закон Ома в дифференциальной форме имеет вид: $j=\frac{1}{\rho}E=\sigma E$,

где $\frac{1}{2}$ удельная электропроводимость среды.

*Параллельное и последовательное соединение компонентов-На практике приходиться использовать различные

При последовательном соединении сопротивлений их общее

$$R = R1 + R2 + R3 + \dots + Rn = \sum_{i=1}^{n} R_i$$

при последовательном соединении сопротивлении их оощее сопротивление равно сумме сопротивлений: $R=R1+R2+R3+\cdots+Rn=\sum_{i=1}^nR_i$. Общее сопротивление батареи сопротивлений соединенных параллельно определяют по формуле: $\frac{1}{R}=\frac{1}{R1}+\frac{1}{R2}+\frac{1}{R3}+\cdots+\frac{1}{Rn}=\sum_{i=1}^n\frac{1}{Ri}$ Поэтому, при параллельном соединении конденсаторов емкости их

$$\frac{1}{R} = \frac{1}{R1} + \frac{1}{R2} + \frac{1}{R3} + \dots + \frac{1}{Rn} = \sum_{i=1}^{n} \frac{1}{Ri}$$

суммируются, а при последовательном - суммируются величины, обратные до их емкостей.

*Сопротивление и проводимость. Сопротивление зависит от формы и размеров проводника, от его материала и температуры, а также- это следует помнить - от конфигурации (распределения) тока по проводнику.

В простейшем случае однородного цилиндрического проводника сопротивление $R = \rho \frac{l}{s}$, где l – длина проводника, -это удельное электрическое сопротивление, S – площадь его поперечного

Сопротивление измеряется в Омах. $10M = \begin{bmatrix} \frac{1B}{1A} \end{bmatrix}$.

Проводимость : $G = \frac{1}{R}$. Проводимость — это величина обратная сопротивлению. Измеряется в Сименсах. [G]=[См]

*Закон Кирхгофа. Расчет разветвленных цепей значительно упрощается, если пользоваться двумя законами Кирхгофа: Первый з-н (он относиться к узлам цепи, т.е. к точкам ее

разветвления): алгебраическая сумма токов, сходящихся в узле равна нулю. При этом токи, идущие к узлу, и токи, исходящие из узла, следует считать величинами различных знаков.

Второй з-н (он относиться к любому выделенному в разветвленной цепи замкнутому контуру) : алгебраическая сумма произведений сил токов в отдельных участках произвольного замкнутого контура на их сопротивления равна алгебраической сумме Э.Д.С.,

действующих в этом контуре: $\sum I_k R_k = \sum \xi_k$ *Мощность электрических цепей — В электрических цепях постоянного тока мощность P = UI, где U напряжение, І — сила тока. При переменном токе произведение мгновенных значений напряжения и и тока і представляет собой мгновенную мощность: p = ui, т. е. мощность в данный момент времени, которая является переменной величиной.

Активная мощность/Среднее за период Т значение мгновенной

 $P=rac{1}{T}\int\limits_0^T p(t)dt$ мощности называется активной мощностью: цепях однофазного синусоидального тока $P = UI \cos \phi$, где U и I – действующие значения напряжения и тока, ф — угол сдвига фаз между ними. Активная Э. м. характеризует скорость необратимого превращения электрической энергии в другие виды энергии (тепловую, световую и т. п.). Активная мошность может быть также выражена через силу тока, напряжение и активную составляющую сопротивления цепи \mathbf{r} или её проводимость \mathbf{g} по формуле $\mathbf{P} = \mathbf{I}\mathbf{2r}$ =V2g. В любой электрической цепи как синусоидального, так и несинусоидального тока активная мощность всей цепи равна сумме активных мощностей отдельных частей цепи. С полной мощностью \mathbf{S} активная связана соотношением $\mathbf{P} = \mathbf{S} \cos \phi$. Единица активной мощности — <u>ватт</u> (W, Bт). Для СВЧ электромагнитного сигнала, в линиях передачи, аналогом активной мощности является мощность, поглощаемая нагрузкой.

Реактивная мощность Реактивная мощность — величина, характеризующая нагрузки, создаваемые в электротехнических устройствах колебаниями энергии электромагнитного поля в цепи переменного тока, равна произведению действующих значений напряжения U и тока I, умноженному на синус угла сдвига фаз ϕ между ними: $\mathbf{Q} = \mathbf{U} \mathbf{I} \sin \boldsymbol{\varphi}$. Единица реактивной мощности — вольтампер реактивный (вар). Реактивная мощность связана с полной

мощностью ${f S}$ и активной мощностью ${f P}$ соотношением: $Q=\sqrt{S^2-P^2}$. Реактивная мощность в электрических сетях вызывает дополнительные активные потери (на покрытие которых расходуется энергия на электростанциях) и потери напряжения (ухудшающие условия регулирования напряжения). В некоторых электрических установках реактивная мощность может быть значительно больше активной. Это приводит к появлению больших реактивных токов и вызывает перегрузку источников тока. Для устранения перегрузок и повышения мощности коэффициента электрических установок осуществляется компенсация реактивной мощности. Для СВЧ электромагнитного сигнала, в линиях передачи, аналогом реактивной мощности является мощность, отраженная от нагрузки. Спасибо за информацию)

Полная мощность — величина, равная произведению действующих значений периодического электрического тока в цепи **I** и напряжения **U** на её зажимах: $S = U \times I$; связана с активной и реактивной мощностями соотношением: S = P + iQ, где Pактивная мощность, Q — реактивная мощность (при индуктивной нагрузке ${\bf Q} > {\bf 0}$, а при ёмкостной ${\bf Q} < {\bf 0}$). Единица полной электрической мощности — вольт-ампер (VA, BA).

2. Полевые транзисторы

ЭФФЕКТ ПОЛЯ

Эффектом поля называется изменение концентрации носителей заряда при поверхностном слое полупроводника при воздействии магнитного поля.

Сущность эффекта

Система «метал-диэлектрик-проводник» при подаче напряжения образуют конденсатор у которого одна из обкладок будет полупроводником. На этой обкладке будет наводится заряд такой же как и на металлической обкладке, однако он будет сосредоточен не на поверхности, а будет распространятся в глубь диэлектрика. Поле в диэлектрике — постоянно, а в полупроводнике — не спостоянно, из за того что заряд спадает с поверхности в глубь проводника.

В дырочном полупроводнике заряд обеспечен дырками которые притянуты к поверхности, а электронном полупроводнике — ионным донором от которого ушли электроны. В первом случае происходит обогащение полупроводника, а во втором — обеднение.

Поле в полупроводнике распределяется между диэлектриками и полупроводником. Оно возрастает при уменьшении ширины диэлектрика и может произойти пробой диэлектрика.

ПОЛЕВЫЕ ТРАНЗИСТОРЫ

Полевой транзистор — полупроводниковый прибор, усилительные свойства которого обусловлены потоком основных носителей, протекающим через проводящий канал, и управляемым электрическим полем.

Основным способом движения носителей заряда, образующих ток полевого транзистора, является их дрейф в электрическом поле. Проводящий слой, в котором создастся рабочий ток полевого транзистора, называют каналом. Полевой транзистор — полупроводниковый усилительный прибор которым управляет напряжение (электрическое поле, отсюда и название — полевой).

Металлический электрод, создающий эффект поля, называют затвором (3), два других электрода — истоком (И) и стоком (С). Различают три схемы включения полевого транзистора: с общим истоком (ОИ), с общим затвором (03) и общим стоком (ОС). Наибольшее распространение на практике нашла схема с ОИ.

Полевые транзисторы делятся на:

- -Транзисторы с управляющим р-п переходом
- -Транзисторы с изолированным затвором (МДПтранзисторы)
 - -МДП-транзисторы с индуцированным каналом
 - -МДП-транзисторы со встроенным каналом

Принцип работы полевого транзистора.

В полевом транзисторе с объемным каналом площадь поперечного сечения канала меняется за счет изменения площади

обедненного слоя обратно включенного p-n-перехода. На p-n-переход (затвор) —исток) подается обратное напряжение $U_{3и}$. При его уменьшении глубина d обедненного слоя (заштрихованная область на рис) возрастает, а токопроводящее сеченние канала сужается. При этом увеличивается сопротивление канала, а следовательно, снижается выходной ток I_c транзистора. Поскольку напряжение U_{3u} прикладывается к p-n-переходу в обратном направлении, ток I_s ничтожно мал и практически не зависит от управляющего напряжения.

Для полевых транзисторов входная характеристика (зависимость I_3 от $U_{3\text{И}}$ при фиксированном значении $U_{\text{C}\text{U}}$) не имеет практического применения и при расчетах используют только передаточные и выходные ВАХ. На рис. приведены выходные и передаточные характеристики полевого транзистора с управляющим p-n-переходом для схемы включения с ОИ. Эти характеристики имеют нелинейный характер, а, следовательно, полевой транзистор является управляемым нелинейным элементом цепи.

U_{3M}=0

U_{3M}=const

U_{3M}

U_{3M}= const

U_{3M}

U

При заданном напряжении U_{3H} и постепенном увеличении напряжения от тока, зависимость тока стока имеет сначала крутой подъём, а потом пологий и почти горизонтальный участок. Это связанно с перекрытием канала U_{CTOKA} за счет напряжения U_{C3} .

Пологий участок выходных характеристик называют областью насыщения. Математическое описание этого участка:

$$I_{\rm C} = I_{\rm C\; haw} (1 - \frac{U_{\rm sm}}{U_{\rm SM\; OTCE ^{\rm SKN}}})^2 \label{eq:ic}$$

Наклон выходной зарактеристики в области насыщения задается остаточным сопротивлением стока или его остаточной выходной проводимостью с общим истоком. Для расчетов схем часто используются значения крутизны в области насыщения, которые определяются по формуле:

$$S = \left| \frac{dI_C}{dU_{\rm 3H}} \right| = S_0 \left(1 - \frac{U_{\rm 3H}}{U_{\rm 3H \ OTCEЧКИ}} \right)$$
 $S_0 = \frac{dI_{C \ \rm Hac}}{U_{\rm 3H \ OTCEЧКИ}} - \
m yдельная \
m kрутизна$

В импульсных и ключевых режимах существенным параметром является проводимость канала:

При
$$U_{CH}=0$$
 $g_{CH}=\frac{1}{R_{CH}}=S$

Реальная структура МДП-транзистора с каналом и-типа показана на рис. Металлический затвор изолирован от полупроводниковой подложки слоем диэлектрика (отсюда эквивалентное название МДП-транзистора — полевой транзистор с изолированным затвором).

переходом

Основные параметры ПТ

Основными параметрами, характеризующими полевой транзистор как нелинейный элемент, являются: коэффициент усиления по напряжению

$$k_U = \mu = \Delta U_{\rm CH}/\Delta U_{\rm 3H}$$
 при $I_{\rm C} = {\rm const};$ крутизна (определяется по передаточной характеристике)

$$s = \Delta I_{\rm C}/\Delta U_{\rm 3H}$$
 при $U_{\rm CH} = {\rm const};$ дифференциальное выходное (внутреннее R,) сопротивление

 $r_{\text{вых}} = R_{l} = \Delta U_{\text{СИ}}/\Delta I_{\text{С}}$ при $U_{\text{3И}} = \text{const};$ дифференциальное сопротивление участка затвор — сток

$R_{\rm 3C} = \Delta U_{\rm 3C}/\Delta I_{\rm C}$.

Эквивалентные схемы полевых транзисторов.

На этих схемах принято, что вывод подложки электрически соединен с истоком. Такое включение наиболее часто используется при разработке схем на ПТ.

Отличительные особенности полевого транзистора.

Из принципа действия полевого транзистора вытекают две основные его особенности: в установившемся режиме работы входной ток полепит транзистора стремится к нулю (т. е. $r_{BX} \rightarrow \infty$), инерционность полевого транзистора в отличие от

биполярного обусловлена только процессами перезаряда его входной и выходной емкостей.

Принято считать, что в общем случае по быстродействию, усилению и частотным свойствам полевой транзистор, как правило, не имеет преимуществ перед биполярным транзистором.

Полевые транзисторы имеют преимущество перед биполярными транзисторами в большей температурной стабильности их характеристик.

Основными преимуществами полевого транзистора являются его большое входное сопротивление по постоянному току и высокая технологичность.

УГО

10 - полевой транзистор с управляющим *p-n*-переводом и л-каналом; 11 — полевой транзистор с управляющим p-n-пере ходом и p-каналом; 12 — МДП транзистор с встроенным п-каналом; 13 — полевой транзистор с встроенным p-наналом. 14- МДП транзистор с индуцированным n-каналом: 15 — МДП транзистор с индуцированным *p* каналом.