Арифметические операции с плавающей точкой

12

Обзор главы

В разделе	Вы найдете	на стр.
12.1	Обзор	12–2
12.2	Сложение вещественных чисел	12–3
12.3	Вычитание вещественных чисел	12–4
12.4	Умножение вещественных чисел	12–5
12.5	Деление вещественных чисел	12–6
12.6	Анализ битов слова состояния в операциях с плавающей точкой	12–7
12.7	Образование абсолютного значения числа с плавающей точкой	12–8
12.8	Образование квадрата числа с плавающей точкой	12–9
12.9	Образование квадратного корня из числа с плавающей точкой	12–10
12.10	Образование натурального логарифма числа с плавающей точкой	12–11
12.11	Образование экспоненциального значения числа с плавающей точкой	12–12
12.12	Образование тригонометрических функций углов в виде чисел с плавающей точкой	12–13

12.1 Обзор

Вы можете использовать арифметические операции с плавающей точкой для выполнения следующих математических операций, использующих два 32—битных числа с плавающей точкой в формате IEEE:

- сложение
- вычитание
- умножение
- деление

32-битные числа с плавающей точкой в формате IEEE принадлежат к типу данных, известному как REAL (вещественные). За более подробной информацией о формате чисел с плавающей точкой (вещественных) обращайтесь к Приложению С.

Используя арифметику с плавающей точкой, Вы можете выполнять следующие операции с **одним** 32-битным числом с плавающей точкой в формате IEEE:

- образование абсолютного значения (ABS) числа с плавающей точкой
- образование квадрата (SQR) или квадратного корня (SQRT) числа с плавающей точкой
- образование натурального логарифма (LN) числа с плавающей точкой
- образование экспоненциального значения числа с плавающей точкой(EXP) по основанию е (= 2.71828...)
- образование следующих тригонометрических функций угла, представленных в виде 32-битного числа с плавающей точкой:
 - образование синуса числа с плавающей точкой (SIN) и формирование арксинуса числа с плавающей точкой (ASIN)
 - образование косинуса числа с плавающей точкой (COS) и образование арккосинуса числа с плавающей точкой (ACOS)
 - образование тангенса числа с плавающей точкой (TAN) и образование котангенса числа с плавающей точкой (ATAN)

12.2 Сложение вещественных чисел

Описание

Состояние сигнала 1 на входе EN (деблокировка входа) активизирует команду Сложить вещественные числа. Команда складывает входы IN1 и IN2. Результат может быть считан на выходе OUT. Если какой-либо из входов или результат не является числом с плавающей точкой, биты OV и OS устанавливаются в 1, а ENO устанавливается в 0.

Блок FUP	Блок FUP Параметры Тип данных Область памят		Область памяти	Описание
ADD D	EN	BOOL	I, Q, M, D, L ,T, C	Деблокировка входа
ADD_R EN	IN1	REAL	I, Q, M, D, L или константа	Первое слагаемое
IN1 OUT	IN2	REAL	I, Q, M, D, L или константа	Второе слагаемое
IN2 ENO	OUT	REAL	I, Q, M, D, L	Результат сложения
	ENO	BOOL	I, Q, M, D, L	Деблокировка выхода

Рис. 12-1. Блок "Сложение вещественных чисел" и параметры

Рис. 12-2. Сложение вещественных чисел

12.3 Вычитание вещественных чисел

Описание

Состояние сигнала 1 на входе EN (деблокировка входа) активизирует команду *Вычесть* вещественные числа. Команда вычитает вход IN2 из IN1. Результат может быть считан на выходе OUT. Если какой-либо из входов или результат не является числом с плавающей точкой, биты OV и OS устанавливаются в 1, а ENO устанавливается в 0.

Блок FUP	Параметры	Тип данных	Область памяти	Описание	
CLID. D	EN	BOOL	I, Q, M, D, L ,T, C	Деблокировка входа	
SUB_R EN	IN1	REAL	I, Q, M, D, L или константа	Уменьшаемое	
IN1 OUT IN2 ENO	IN2	REAL	I, Q, M, D, L или константа	Вычитаемое	
INZ ENO	OUT	REAL	I, Q, M, D, L	Результат вычитания	
	ENO	BOOL	I, Q, M, D, L	Деблокировка выхода	

Рис. 12-3. Блок "Вычитание вещественных чисел" и параметры

Рис. 12-4. Вычитание вещественных чисел

12.4 Умножение вещественных чисел

Описание

Состояние сигнала 1 на входе EN (деблокировка входа) активизирует команду Умножить вещественные числа. Команда умножает вход IN1 на IN2. Результат может быть считан на выходе OUT. Если какой-либо из входов или результат не является числом с плавающей точкой, биты OV и OS устанавливаются в 1, а ENO устанавливается в 0.

Блок FUP	Параметры Тип данных Область памяти		Описание	
) dir D	EN	BOOL	I, Q, M, D, L ,T, C	Деблокировка входа
MUL_R EN	IN1	REAL	I, Q, M, D, L или константа	Первый сомножитель
IN1 OUT	IN2	REAL	I, Q, M, D, L или константа	Второй сомножитель
IN2 ENO	OUT	REAL	I, Q, M, D, L	Произведение
	ENO	BOOL	I, Q, M, D, L	Деблокировка выхода

Рис. 12-5. Блок "Умножение вещественных чисел" и параметры

Рис. 12-6. Умножение вещественных чисел

12.5 Деление вещественных чисел

Описание

Состояние сигнала 1 на входе EN (деблокировка входа) активизирует команду *Разделить вещественные числа.* Команда делит вход IN1 на IN2. Результат может быть считан на выходе OUT. Если какой-либо из входов или результат не является числом с плавающей точкой, биты OV и OS устанавливаются в 1, а ENO устанавливается в 0

Блок FUP	к FUP Параметры Тип данных Область памяти		Описание	
DH/ D	EN	BOOL	I, Q, M, D, L ,T, C	Деблокировка входа
DIV_R EN	IN1	REAL	I, Q, M, D, L или константа	Делимое
IN1 OUT IN2 ENO	IN2	REAL	I, Q, M, D, L или константа	Делитель
INZ ENO	OUT	REAL	I, Q, M, D, L	Частное от деления
	ENO	BOOL	I, Q, M, D, L	Деблокировка выхода

Рис. 12-7. Блок "Деление вещественных чисел" и параметры

Рис. 12-8. Деление вещественных чисел

12.6 Анализ битов слова состояния в операциях с плавающей точкой

Описание

Команды арифметики с плавающей точкой влияют на следующие биты слова состояния:

- CC1 и CC0
- OV
- OS

Тире (-) в таблице означает, что результат операции не влияет на этот бит.

Таблица 12–1. Состояние сигнала битов слова состояния для результатов операций с числами с плавающей точкой (результат в допустимом диапазоне)

Допустимый диапазон результата	Биты слова состояния			
Операция с числами с плавающей точкой (32 бита)	CC1	CC0	ov	os
+0, -0 (ноль)	0	0	0	-
-3.402823E+38 < результат < -1.175494E-38 (отрицательное число)	0	1	0	-
+1.175494E-38 < результат < 3.402823E+38 (положительное число)	1	0	0	-

Таблица 12–2. Состояние сигнала битов слова состояния для результатов операций с числами с плавающей точкой (результат за пределами допустимого диапазона)

Недопустимый диапазон для результата	Биты слова состояния			
Операция с числами с плавающей точкой (32 бита)	CC1	CC0	ov	os
-1.175494E-38 < результат < - 1.401298E-45 (отрицательное число) ниже минимума	0	0	1	1
+1.401298E-45 < результат < +1.175494E-38 (положительное число) ниже минимума	0	0	1	1
результат < -3.402823E+38 (отрицательное число) выше максимума	0	1	1	1
результат > 3.402823E+38 (положительное число) выше максимума	1	0	1	1
результат < -3.402823E+38 или результат > +3.402823E+38 не число с плавающей точкой	1	1	1	1

12.7 Образование абсолютного значения числа с плавающей точкой

Описание

С помощью команды Образовать абсолютное значение числа с плавающей точкой Вы можете найти абсолютную величину числа с плавающей точкой.

Блок FUP	Параметры	Тип данных	Область памяти	Описание
	EN	BOOL	I, Q, M, D, L ,T, C	Деблокировка входа
ABS EN OUT	IN	REAL	I, Q, M, D, L или константа	Число
IN ENO	OUT	REAL	I, Q, M, D, L	Абсолютное значение
	ENO	BOOL	I, Q, M, D, L	Деблокировка выхода

Рис. 12-9. Блок ABS и параметры

Рис. 12-10. Образование абсолютного значения числа с плавающей точкой

12.8 Образование квадрата (SQR) числа с плавающей точкой

Описание

Командой *Образовать квадрат числа с плавающей точкой* Вы можете возвести число с плавающей точкой в квадрат. Если вход IN или результат не является числом с плавающей точкой, то биты OV и OS устанавливаются в 1, а ENO устанавливается в 0.

Параметры

В таблице представлен блок SQR и описаны параметры.

Блок FUP	Параметры	Тип данных	Область памяти	Описание
	EN	BOOL	I, Q, M, D, L ,T, C	Деблокировка входа
SQR EN OUT	IN	REAL	I, Q, M, D, L или константа	Число
IN ENO	OUT	REAL	I, Q, M, D, L	Квадрат числа
	ENO	BOOL	I, Q, M, D, L	Деблокировка выхода

Рис. 12-11. Блок SQR и параметры

Рис. 12-12. Образование квадрата числа с плавающей точкой

12.9 Образование квадратного корня (SQRT) из числа с плавающей точкой

Описание

С помощью команды *Образовать квадратный корень из числа с плавающей точкой* Вы можете извлечь квадратный корень из числа с плавающей точкой. Команда возвращает положительный результат, если значение входного операнда больше 0. Если вход или результат не является числом с плавающей точкой, то биты OV и OS устанавливаются в 1, а ENO устанавливается в 0.

Параметры

В таблице представлен блок SQRT и описаны его параметры.

Блок FUP	Параметры	Тип данных	Область памяти	Описание
	EN	BOOL	I, Q, M, D, L ,T, C	Деблокировка входа
SQRT EN OUT	IN	REAL	I, Q, M, D, L или константа	Число
IN ENO	OUT	REAL	I, Q, M, D, L	Квадратный корень из числа
	ENO	BOOL	I, Q, M, D, L	Деблокировка выхола

Рис. 12-13. Блок SQRT и параметры

Рис. 12-14. Извлечение квадратного корня из числа с плавающей точкой

12.10 Образование натурального логарифма числа с плавающей точкой

Описание

С помощью команды *Образовать натуральный логарифм числа с плавающей точкой* Вы можете найти натуральный логарифм числа с плавающей точкой. Если вход или результат не является числом с плавающей точкой, то биты OV и OS устанавливаются в 1, а ENO устанавливается в 0.

Блок FUP	Параметры	Тип данных	Область памяти	Описание
	EN	BOOL	I, Q, M, D, L ,T, C	Деблокировка входа
EN OUT	IN	REAL	I, Q, M, D, L или константа	Число
IN ENO	OUT	REAL	I, Q, M, D, L	Натуральный логарифм числа
	ENO	BOOL	I, Q, M, D, L	Деблокировка выхода

Рис. 12-15. Блок LN и параметры

Рис. 12-16. Образование натурального логарифма числа с плавающей точкой

12.11 Образование экспоненциального значения числа с плавающей точкой

Описание

С помощью команды Сформировать экспоненциальное значение числа с плавающей точкой Вы можете найти экспоненциальное значение числа с плавающей точкой по основанию е (=2,71828...). Если вход или результат не является числом с плавающей точкой, то биты OV и OS устанавливаются в <math>1, а ENO устанавливается в 0.

Блок FUP	Параметры	Тип данных	Область памяти	Описание
	EN	BOOL	I, Q, M, D, L ,T, C	Деблокировка входа
EXP EN OUT	IN	REAL	I, Q, M, D, L или константа	Число
IN ENO	OUT	REAL	I, Q, M, D, L	Экспоненци- альное значе- ние числа
	ENO	BOOL	I, Q, M, D, L	Деблокировка выхода

Рис. 12-17. Блок ЕХР и параметры

Рис. 12-18. Образование экспоненциального значения числа с плавающей точкой

12.12 Образование тригонометрических функций углов в виде чисел с плавающей точкой

Описание

С помощью следующих команд Вы можете образовать тригонометрические функции углов, представленные в виде 32-битных чисел с плавающей точкой в формате IEEE.

Команда	Значение
SIN	Образует синус числа с плавающей точкой, представляющего угол, выраженный в радианах.
ASIN	Образует арксинус числа с плавающей точкой. Результат есть угол, выраженный в радианах. Значение находится в следующем диапазоне: $-\pi / 2 \le \text{арксинус} \le + \pi / 2, \text{где} \pi = 3,14$
COS	Образует косинус числа с плавающей точкой, представляющего угол, выраженный в радианах.
ACOS	Образует арккосинус числа с плавающей точкой. Результат есть угол, выраженный в радианах. Значение находится в следующем диапазоне: $0 \le \text{арккосинуc} \le + \pi$, где $\pi = 3.14$
TAN	Образует тангенс числа с плавающей точкой, представляющего угол, выраженный в радианах.
ATAN	Образует арктангенс числа с плавающей точкой. Результат есть угол, выраженный в радианах. Значение находится в следующем диапазоне: $-\pi / 2 \le \text{арктангенс} \le + \pi / 2, \text{где } \pi = 3.14$

Параметры

Следующие таблицы представляют блоки SIN, ASIN, COS, ACOS, TAN и ATAN и описывают их параметры.

Блок FUP	Параметры	Тип данных	Область памяти	Описание
	EN	BOOL	I, Q, M, D, L ,T, C	Деблокировка входа
EN OUT	IN	REAL	I, Q, M, D, L или константа	Число
IN ENO	OUT	REAL	I, Q, M, D, L	Синус числа
	ENO	BOOL	I, Q, M, D, L	Лебпокировка выхода

Рис.12-19. Блок SIN и параметры

Блок FUP	Параметры	Тип данных	Область памяти	Описание
	EN	BOOL	I, Q, M, D, L ,T, C	Деблокировка входа
ASIN EN OUT	IN	REAL	I, Q, M, D, L или константа	Число
IN ENO	OUT	REAL	I, Q, M, D, L	Арксинус числа
	ENO	BOOL	I, Q, M, D, L	Деблокировка выхода

Рис.12-20. Блок ASIN и параметры

Блок FUP	Параметры	Тип данных	Область памяти	Описание
	EN	BOOL	I, Q, M, D, L ,T, C	Деблокировка входа
COS EN OUT	IN	REAL	I, Q, M, D, L или константа	Число
IN ENO	OUT	REAL	I, Q, M, D, L	Косинус числа
	ENO	BOOL	I, Q, M, D, L	Деблокировка выхода

Рис.12-21. Блок COS и параметры

Блок FUP	Параметры	Тип данных	Область памяти	Описание
	EN	BOOL	I, Q, M, D, L ,T, C	Деблокировка входа
ACOS EN OUT	IN	REAL	I, Q, M, D, L или константа	Число
IN ENO	OUT	REAL	I, Q, M, D, L	Арккосинус числа
	ENO	BOOL	I, Q, M, D, L	Деблокировка выхода

Рис.12-22. Блок ACOS и параметры

Блок FUP	Параметры	Тип данных	Область памяти	Описание
	EN	BOOL	I, Q, M, D, L ,T, C	Деблокировка входа
TAN EN OUT	IN	REAL	I, Q, M, D, L или константа	Число
IN ENO	OUT	REAL	I, Q, M, D, L	Тангенс числа
	ENO	BOOL	I, Q, M, D, L	Деблокировка выхода

Рис.12-23. Блок TAN и параметры

Блок FUP	Параметры	Тип данных	Область памяти	Описание
	EN	BOOL	I, Q, M, D, L ,T, C	Деблокировка входа
ATAN EN OUT	IN	REAL	I, Q, M, D, L или константа	Число
IN ENO	OUT	REAL	I, Q, M, D, L	Арктангенс числа
	ENO	BOOL	I, Q, M, D, L	Деблокировка выхода

Рис.12-24. Блок ATAN и параметры

Рис. 12-25. Образование синуса числа с плавающей точкой