Worksheet 1 Solution

March 9, 2020

Question 1

- a) $A = \{2, 5\}$ $A^c = \{1, 3, 4, 6\}$
- b) $A^c = U \setminus A$
- c) $A^c \cap B^c = \{ x \mid x \in U, x \le 0 \text{ and } x \ge 4 \}$ $A^c \cap B^c = \{ x \mid x \in U, x < 1 \text{ and } x > 2 \}$ $(A \cap B)^c = \{ x \mid x \in U, x < 1 \text{ and } x > 2 \}$ $(A \cup B)^c = \{ x \mid x \in U, x \le 0 \text{ and } x \ge 4 \}$

Question 2

- a) $T_0 \to 0, 3, 6$
 - $T_1 \to 1, 4, 7$
 - $T_2 \rightarrow 2, 5, 8$
 - $T_3 \to 12, 18, 24$
- b) $\mathbb{Z}^+ = \{ T_0, T_1, T_2 \}$

 T_3 not included. A partition of a set must not have any common elements.

Question 3

- a) 000, 110, 001, 010, 011, 100, 101, 111
- b) $S_1 = \{aa, bb, cc, ab, ca, ba, ac, bc, cb\}$ $S_2 = \{a, b, c, aa, bb, cc, ab, ca, aaa, aba, aca, bab, bbb, bcb, cac, cbc, ccc...\}$ $S_1 \cap S_2 = \{aa, bb, cc\}$ $S_1 \setminus S_2 = \{ab, ca, ba, ac, bc, cb\}$
- c) $S_1 = (S_1 \cap S_2) \cup (S_1 \setminus S_2)$

Question 4

a)	x	$\lfloor x \rfloor$	$ \lceil x \rceil$
	$\frac{25}{4}$	6	7
	0.999	0	1
	-2.01	-3	-2

b) Domain: \mathbb{R}

Codomain: \mathbb{Z}

c) False. Consider the following example.

$$1 = \lfloor 0.75 + 0.25 \rfloor$$

$$0 = \lfloor 0.75 \rfloor + \lfloor 0.25 \rfloor$$