1 | Problem

Suppose $T \in \mathcal{L}(V)$. Prove that $T/(\operatorname{null} T)$ is injective if and only if $(\operatorname{null} T) \cap (\operatorname{range} T) = \{0\}$

2 | **Proof**

2.1 | Condition Manipulation

First, we will rewrite the problem as logical statements for easier manipulation.

2.1.1 | Left Condition

The left-hand side "T/(null T) is injective" is equivalent to:

$$\begin{split} (T/U \, (v+U) &= 0) \implies (v+U=0) \\ Tv+U &= \operatorname{null} T \implies v+U = \operatorname{null} T \\ Tv+(\operatorname{null} T) &= \operatorname{null} T \implies v+(\operatorname{null} T) = \operatorname{null} T \\ Tv &\in \operatorname{null} T \implies v \in \operatorname{null} T \\ T^2v &= 0 \implies Tv = 0 \end{split}$$

2.1.2 | Right Condition

We can also rewrite the right-hand condition for easier manipulation. The intersection of the null space and the range being 0 is the same as (assuming $w \neq 0$) "if $w \in \text{null } T$ then $w \notin \text{range } T$ " and "if $w \in \text{range } T$ then $w \notin \text{null } T$ ". Note that these are contrapositives of eachother, so we just need to work with the second statement.

Thus, assuming $w \neq 0$, these statements are equivalent:

$$\begin{split} (\exists v: Tv = w) &\implies & (Tw \neq 0) \\ T^2v \neq 0 & \forall v \notin \mathsf{null}\, T \\ v \notin \mathsf{null}\, T &\implies & T^2v \neq 0 \\ T^2v = 0 &\implies & v \in \mathsf{null}\, T \end{split}$$

Note that the last two statements imply the original (null T) \cap (range T) = $\{0\}$.