Университет ИТМО Физико-технический мегафакультет Физический факультет

Группа	P3207	К работе допущен	
Студент <u>Путин</u>	цев Д. Д.	Работа выполнена	25.03.2025
Преполаватель	Терешенко Г.В	Отчет принят	

Рабочий протокол и отчет по лабораторной работе №3.01

Изучение электростатического поля методом моделирования

Цель работы.

Построение сечений эквипотенциальных поверхностей и силовых линий электростатического поля на основе экспериментального моделирования распределения потенциала в слабопроводящей среде.

Задачи, решаемые при выполении работы:

- С помощью лабораторной установки получение системы эквипотенциальных поверхностей при наличии проводящего тела и без него.
- Изображение эквипотенциальных линий
- Изображение системы силовых линий поля с указанием направления
- Рассчитать величину напряженности в центре электролитической ванны и в окрестности одного из электродов.
- Нахождение области с минимальной и максимальной напряженностью
- Построение графика зависимости $\varphi = \varphi(x)$ для двух исследованных конфигураций поля для «горизонтали» Y = 10 см

Объект исследования — Модель плоского конденсатора

Метод экспериментального исследования.

Заполнить ванну не дистиллированной водой, чтобы она проводила электрический ток, зондом промерить разность потенциалов между одним из электродов и точками в ванной

Рабочие формулы и исходные данные.

Напряженность в центре электролитическрй ванны и окрестности одного из электродов:

$$E_{_{12_{cp}}}{\simeq}rac{arphi_{_{1}}{-}arphi_{_{2}}}{l_{_{12}}}$$

Поверхностная плотность электрического заряда на электродах:

$$\sigma' \simeq \varepsilon_0 \frac{\Delta \varphi}{\Delta l_n}$$

Абсолютная погрешность с учетом погрешности приборов: $\Delta x\!=\!\sqrt{(\Delta x_{cp})^2\!+\!(\frac{2}{3}\,\Delta_{\!\scriptscriptstyle ux})^2}$

$$\Delta x = \sqrt{(\Delta x_{cp})^2 + (\frac{2}{3} \Delta_{ux})^2}$$

Относительная погрешность:

$$\varepsilon_x = \frac{\Delta x}{x_{cD}} * 100 \%$$

Измерительные приборы

№ п/п	Наименование	Тип прибора	Деления	Погрешность прибора
1	Вольтметр	Электрический	0.01 B	0.01 B
2	Линейка	Измерительный	0.1 см	0.05 см

Схема установки.

Рисунок 1: Общий вид экспериментальной установки

Результаты прямых измерений и их обработки.

Напряженность в окрестности центра электролической ванны:

$$E_{12_{cp}} \simeq \frac{7.37 - 5.37}{0.036} = 55.5 \frac{B}{M}$$

Напряженность в окрестности электрода:

$$E_{12_{cp}} \simeq \frac{3.37 - 1.37}{0.05} = 40 \frac{B}{M}$$

Расчет результатов косвенных измерений

Вычислим поверхностную плостность электрического заряда на электродах
$$\sigma'_1 \simeq \varepsilon_0 \frac{\Delta \varphi}{\Delta l_n} = \frac{-8.85*10^{-12}*2}{0.036} = -4.92*10^{-10} \frac{Kn}{M}$$

$$\sigma'_2 \simeq \varepsilon_0 \frac{\Delta \varphi}{\Delta l_n} = \frac{-8.85*10^{-12}*2}{0.05} = -3.54*10^{-10} \frac{Kn}{M}$$

Самая большая напряженность электрического поля будет там, где силовые линии идут ближе всего друг к другу, а эквипотенциальные линии идут чаще всего. То есть она будет у внешней поверхности кольца, потому что именно там силовые линии скручиваются

$$E_{12_{max}} \simeq \frac{1}{0.005} = 200 \frac{B}{M}$$

Следовательно, самая маленькая напряженность будет там, где силовые линии максимально далеко друг от друга отдалены. Она совпадает со внутренней областью кольца, где напряженность равна 0.

3

Расчет погрешностей измерений

Посчитаем погрешность для напряженности в окрестности центра

$$\Delta E = \sqrt{(\Delta x_{cp})^2 + (\frac{2}{3}\Delta_{ux})^2} = \sqrt{(0.01)^2 + (\frac{2}{3}*55.5*0.01)^2} = 3.37\frac{B}{M}$$

Относительная погрешность для напряженности в окрестности центра:

$$\varepsilon_{E_1} = \frac{\Delta E_1}{E_{cp}} * 100\% = \frac{3.37}{55} * 100\% = 6.13\%$$

Посчитаем погрешность для напряженности в окрестности электрода

$$\Delta E = \sqrt{(\Delta x_{cp})^2 + (\frac{2}{3} \Delta_{ux})^2} = \sqrt{(0.01)^2 + (\frac{2}{3} * 40 * 0.01)^2} = 2.27 \frac{B}{M}$$

Относительная погрешность для напряженности в окрестности электрода:

$$\varepsilon_{E_1} = \frac{\Delta E_1}{E_{cp}} * 100\% = \frac{2.27}{40} * 100\% = 5.68\%$$

Графики

4

Окончательные результаты.

Напряженность поля в центре плоского конденсатора:

$$E_{12_{cp}} \simeq (55.5 \pm 3.37) \frac{B}{M}, \ \epsilon = 6.13\%$$

Напряженность поля рядом с электродом

$$E_{12_{cp}} \simeq (40 \pm 2.27) \frac{B}{M}, \ \epsilon = 5.68\%$$

Поверхностная плотность заряда

$$\sigma'_{1} \simeq -4.92*10^{-10} \frac{Kn}{M}, \ \sigma'_{2} \simeq -3.54*10^{-10} \frac{Kn}{M}$$

Максимальная напряженность поля:

$$E_{12_{max}} \simeq 200 \frac{B}{M}$$

Минимальная напряженность поля:

$$E_{12_{\min}} = 0 \frac{B}{M}$$

Выводы и анализ результатов работы.

В процессе выполнения лабораторной работы были построены эквипотенциальные поверхности и силовые линии электрического поля, образованного двумя электродами в электролитической ванне. Посчитаны значения поверхностой плотности заряда и напряженность электрического поля в разных местах

Также был построен график зависимости потенциала от координат для двух исследованных конфигураций поля. После построения, было замечено, что без проводящего тела график имеет линейный вид, а при наличии проводящего тела — кусочно-заданной функции, похожей на кубическую, кроме того, выяснилось, что максимальное значение напряженности поля при наличии проводящего кольца находится вблизи на той же горизонтали, что и его центр