

Applied AlphaEvolve

Next-Gen LLMs

Проект Летней школы AIRI 2025, Томск

Что такое AlphaEvolve?

AlphaEvolve

– это автономный агент, сочетающий возможности современных больших языковых моделей (LLM) с эволюционным поиском программ.

- Работает не по принципу «один запрос – один ответ», а как непрерывный цикл улучшений
- Превзошел алгоритм Штрассена
- Установил новый рекорд в задаче kissing number (упаковка сфер)
- Улучшил результат в задаче Эрдёша о перекрытии

Задачи проекта

Задачи

- → Изучить архитектуру и внутреннюю логику существующих реализаций AlphaEvolve.
- → Протестировать работу системы с различными LLM от проприетарных больших до открытых маломощных, оценить её устойчивость и адаптируемость. Ответить на вопрос применимости такого подхода для опенсорс решений.
- → Продумать возможные улучшения:
 - Концептуальные: улучшение стратегии мутаций, адаптация метрик к задаче
 - Визуальные: более наглядная визуализация процесса эволюции
 - Технические: расширение логирования, отслеживание траектории решений

Результаты проприетарных моделей в zero-shot режиме

Решается задача упаковки 26 кругов в единичный квадрат

Обзор решений

Сравнение реализаций AlphaEvolve

	OpenAlpha_Evolve	OpenEvolve	MetaEvolve
Мутации	~	~	~
Кроссинговер		~	~
Миграции	~	~	~
Баланс случайности	~		~
Multi-Island	✓	~	~
MAP-Elites		~	* *
Метрики		~	* *
Асинхронность	~	~	~
Удобность логирования	✓	~	
Масштабируемость			~

Сравнение реализаций AlphaEvolve

	Плюсы	Минусы
OpenAlpha_Evolve	На Поддержка Multi-IslandНа МодульностьУдобное логированиеАсинхронность	 Нет кроссинговера (только мутации и bug-fix) Слабая масштабируемость хранения Ограниченная метрика → ограниченная селекция
OpenEvolve	 + LLM-ансамбль + Поддержка Multi-Island MAP-Elites + Чистая архитектура + Асинхронность + Логирование по каждому острову 	- Нет случайных миграций, что ограничивает новые идеи - Слабая масштабируемость хранения
MetaEvolve	 На Поддержка Multi-Island MAP-Elites На Гибкая архитектура на основе DAG На Асинхронность на всех этапах На Поддержка Redis 	Много гиперпараметровНеудобное логирование

Результаты

Сравнение результатов исследуемых реализаций AlphaEvolve

Фреймворк	Модели	Вес модели	Метрика
OpenAlpha_ Evolve	Qwen2.5 7B	1.0	1.811
OpenEvolve	mistral-small mistral-medium	0.8 0.2	2.321
	mistral-medium mistral-large	0.8 0.2	2.412
	Qwen3 14B (thinking) Qwen2.5 Coder 14B	0.5 0.5	2.618
	deepseek-v3-0324 gemini-2.0-flash-exp	0.2 0.8	2.620
MetaEvolve	Qwen 2.5 Coder 32B devstral-small gemini-2.0-flash-exp qwen3-235b-a22b (thinking) deepseek-r1 (thinking) llama-3.3-70b	0.2 0.2 0.2 0.2 0.1 0.1	1.883

Фреймворк	Модели	Вес модели	Метрик а
MetaEvolve	Qwen3 14B (thinking) Qwen2.5 Coder 14B	0.8 0.2	1.407
	Qwen3 14B (thinking) Qwen2.5 Coder 14B	0.2 0.8	1.468
	mistral-small mistral-medium	0.5 0.5	1.621
	Qwen3 14B (thinking) Qwen2.5 Coder 14B	0.5 0.5	1.682
	mistral-medium mistral-large	0.5 0.5	1.889
	mistral-small mistral-medium	0.8 0.2	2.322
	mistral-medium mistral-large	0.8 0.2	2.533
	Qwen3 14B (thinking) Qwen2.5 Coder 14B	0.5 0.5	2.624

Сравнение лучших результатов исследуемых реализаций AlphaEvolve c zero-shot режимом

Фреймворк	Модели	Вес модели	Метрика
OpenEvolve	Qwen3 14B (thinking) Qwen2.5 Coder 14B	0.5 0.5	2.618
	deepseek-v3-0324 gemini-2.0-flash-exp	0.2 0.8	2.620
MetaEvolve	mistral-small mistral-medium	0.8 0.2	2.322
	mistral-medium mistral-large	0.8 0.2	2.533
	Qwen3 14B (thinking) Qwen2.5 Coder 14B	0.5 0.5	2.624

Модель	Метрика
DeepSeek R1	1.05
Gemini 2.5 Flash	1.18
Claude Sonnet 4	1.42
GPT o3	1.44
Gemini 2.5 Pro	1.46
Claude Sonnet 4 Thinking	1.95
GPT o3 Pro	2.03

Сравнение результатов с SOTA

Визуализация истории эволюции решений

Следующие шаги

Следующие шаги

- Анализ отслеживания инсайтов по древу эволюции
- Агент мета-анализа популяции и ее истории для адаптивного управления процессом эволюции с опциональным режимом HITL
- Улучшение эволюционного алгоритма
- Адаптация под другие практически ориентированные задачи
- Добавление других мультимодальных доменов для специфической задачи

Команда

Денис Саматов @SamatovDS

Дмитрий Редько @dmitry_redko

Елена Сухова @em_suhova

Ануза Азеева @a_vestal

Виктор Волков @Rotverschiebung

Петр Анохин @petrkanokhin

Владимир Махарев @sm1rk

Данил Сивцов @svt_danny