- Suppose on the contrary that S is linearly dependent.
- Thus, $\exists (\alpha, \beta, \frac{\gamma}{2} \in \mathbb{R}, \alpha\beta\gamma \neq 0) : \alpha \sin(x) + \beta \cos(x) + \frac{\gamma}{2} \sin(2x) = 0 \ \forall (x \in \mathbb{R}).$
- Hence, $\alpha \sin(x) + \beta \cos(x) + \gamma \sin(x) \cos(x) = 0$.
- Take $x = \frac{\pi}{2}$. Then by the equation above $\alpha = 0$, since $\sin(\frac{\pi}{2}) = 1$, $\cos(\frac{\pi}{2}) = 0$.
- ⁵ Take x = 0. Then again by the equation above $\beta = 0$, since $\sin(0) = 0$, $\cos(0) = 1$.
- Take now $x = \frac{\pi}{4}$. Since $\alpha = \beta = 0$ and $\cos(\frac{\pi}{4})\sin(\frac{\pi}{4}) = \frac{1}{2}$, then $\frac{\gamma}{2} = 0$.
- ⁷ Hence, $\alpha = \beta = \gamma = 0$, which is a contradiction.