Evaluación – Tema 1

Nombre y apellidos	PAUTA
Matrícula	
Profesor	

Pregunta	Alternativas			
1	a	Ф	c	d
2	a	P	c	d
3	a	b	©	d
4	a	P	c	d
5	a	P	c	d
6	a	P	c	d
7	a	b	©	d
8	a	b	©	d
9	a	P	c	d
10	(a)	b	c	d
11	a	b	c	d
12	a	b	c	@
13	a	b	c	d
14	a	Ф	c	d
15	(a)	b	c	d

Reservado para la corrección					
No relle	nar				
ı	ı				
В					
Μ					
NR					
Cal.					

- Marque sólo una alternativa, en caso contrario la pregunta no será evaluada.
- No intente adivinar. Por cada respuesta equivocada se descontará un tercio del valor de una respuesta correcta; es decir:

Calificación =
$$1 + \max \left\{ 0, \frac{6}{15} \left(\text{Buenas} - \frac{\text{Malas}}{3} \right) \right\}.$$

- Cualquier intento de copia será castigado.
- Duración de la prueba: 100 minutos.

Tema 1 2

1. Indique cuál es la norma euclideana de la matriz

$$\boldsymbol{D} = \begin{pmatrix} 18 & 0 & 0 & 0 \\ 0 & 5 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -21 \end{pmatrix}.$$

- (a) $\|\boldsymbol{D}\|_2 = 18;$
- (b) $\|\boldsymbol{D}\|_2 = 21;$
- (c) $\|\boldsymbol{D}\|_2 = -21;$
- (d) ninguna de las anteriores.

2. Indique el valor que MATLAB almacena en la variable a al ejecutar la sentencia

$$\Rightarrow$$
 a = 3.7527*10^(-1700);

- (a) a = 3.7527e-1700
- (b) a = 0
- (c) a = -3.7527e1700
- (d) ninguno de las anteriores.

3. Dados una matriz invertible $A \in \mathbb{R}^{1000 \times 1000}$ y un vector $b \in \mathbb{R}^{1000}$, indique cuál de las siguientes sentencias MATLAB calcula la solución del sistema Ax = b de manera más conveniente:

- (a) \gg x = inv(A)*b;
- (b) >> $x = A^{(-1)}*b$;
- $(c) \gg x = A b ;$
- $(d) \gg x = b/A$;

4. Considere el sistema lineal Ax = b, con A una matriz no singular. Sean L, U y P las matrices que entrega el comando MATLAB

$$[L,U,P] = lu(A);$$

Indique cuál de las siguientes sentencias Matlab calcula la solución \boldsymbol{x} del sistema:

- (a) $x = U \setminus (L \setminus b)$;
- (b) $x = U \setminus (L \setminus (P*b))$;
- (c) $x = U \setminus (P*(L \setminus b))$;
- (d) $x = P*(U\setminus(L\setminus b))$;

Tema 1 3

- 5. Indique cuál de las siguientes métodos es más conveniente para resolver un sistema de ecuaciones con matriz simétrica y definida positiva, 100000×100000 , con a lo más 5 entradas no nulas por fila pero sin estructura banda y cuyo número de condición es menor o igual que 4:
 - (a) método de Cholesky;
 - (b) método del gradiente conjugado;
 - (c) método de mínimos cuadrados;
 - (d) ninguno de esos métodos permite resolver ese sistema.
- 6. Sea

$$\mathbf{A} = \begin{pmatrix} 9 & \dots \\ \vdots & \ddots \end{pmatrix}$$

una matriz simétrica y definida positiva. Sea L la matriz triangular inferior que se obtiene mediante la factorización de Cholesky aplicada a esa matriz. Indique cuál de las siguientes es L:

(a)
$$\mathbf{L} = \begin{pmatrix} 9 & 0 \\ \vdots & \ddots \end{pmatrix}$$
 (b) $\mathbf{L} = \begin{pmatrix} 3 & 0 \\ \vdots & \ddots \end{pmatrix}$ (c) $\mathbf{L} = \begin{pmatrix} 1 & 0 \\ \vdots & \ddots \end{pmatrix}$

- (d) la factorización de Cholesky no se puede aplicar a esa matriz.
- 7. Considere las siguientes afirmaciones respecto a la solución de un sistema de ecuaciones cuya matriz es simétrica, definida positiva y banda, con ancho de banda 5.
 - 1 Puede aplicarse pcg y su velocidad de convergencia depende del número de condición de la matriz.
 - 2 Puede resolverse por Gauss-Seidel.
 - 3 Conviene resolverlo por Cholesky, ya que así se aprovecha la estructura banda de la matriz.

Indique cuál de las siguientes posibilidades es correcta:

- (a) (1) y (2) son verdaderas, pero (3) es falsa;
- (b) (1) y (3) son verdaderas, pero (2) es falsa;
- (c) son todas verdaderas;
- (d) ninguna de las anteriores.
- 8. Se debe resolver un sistema de ecuaciones cuya matriz tiene número de condición 10 y en el que el segundo miembro se determina mediante mediciones sujetas a errores inferiores al 1%. Indique cuál de las siguientes es la afirmación correcta más precisa:
 - (a) el error en la solución será inferior al 0.1%;
 - (b) el error en la solución será inferior al 1%;
 - (c) el error en la solución será inferior al 10%;
 - (d) ninguna de las anteriores es correcta.

9. Se desea ajustar, mediante mínimos cuadrados, la función

$$I(t) = \frac{5\alpha}{t^{\beta}}$$

a la tabla

t	2	6	10	18	24
I	24	12.5	8.5	7.6	6.3

La matriz A y los vectores x y b del sistema que permite encontrar los coeficientes α y β están dados por:

(a)
$$\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 1 & 6 \\ 1 & 10 \\ 1 & 18 \\ 1 & 24 \end{bmatrix}$$
; $\mathbf{x} = \begin{bmatrix} \alpha \\ \log \beta \end{bmatrix}$; $\mathbf{b} = \begin{bmatrix} 24 \\ 12.5 \\ 8.5 \\ 7.6 \\ 6.3 \end{bmatrix}$

(a)
$$\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 1 & 6 \\ 1 & 10 \\ 1 & 18 \\ 1 & 24 \end{bmatrix}; \quad \mathbf{x} = \begin{bmatrix} \alpha \\ \log \beta \end{bmatrix}; \quad \mathbf{b} = \begin{bmatrix} 24 \\ 12.5 \\ 8.5 \\ 7.6 \\ 6.3 \end{bmatrix}.$$

(b) $\mathbf{A} = \begin{bmatrix} 1 & -\log 2 \\ 1 & -\log 6 \\ 1 & -\log 10 \\ 1 & -\log 18 \\ 1 & -\log 24 \end{bmatrix}; \quad \mathbf{x} = \begin{bmatrix} \log \alpha \\ \beta \end{bmatrix}; \quad \mathbf{b} = \begin{bmatrix} \log 24 - \log 5 \\ \log 12.5 - \log 5 \\ \log 8.5 - \log 5 \\ \log 7.6 - \log 5 \\ \log 6.3 - \log 5 \end{bmatrix}.$

(c) $\mathbf{A} = \begin{bmatrix} 1 & -\log 2 \\ 1 & -\log 6 \\ 1 & -\log 10 \\ 1 & -\log 18 \\ 1 & -\log 24 \end{bmatrix}; \quad \mathbf{x} = \begin{bmatrix} \log \alpha \\ \beta \end{bmatrix}; \quad \mathbf{b} = \begin{bmatrix} \log 24 \\ \log 12.5 \\ \log 6.3 - \log 5 \end{bmatrix}.$

(c)
$$\mathbf{A} = \begin{bmatrix} 1 & -\log 2 \\ 1 & -\log 6 \\ 1 & -\log 10 \\ 1 & -\log 24 \end{bmatrix}$$
; $\mathbf{x} = \begin{bmatrix} \log \alpha \\ \beta \end{bmatrix}$; $\mathbf{b} = \begin{bmatrix} \log 24 \\ \log 12.5 \\ \log 8.5 \\ \log 7.6 \\ \log 6.3 \end{bmatrix}$.

- (d) ninguna de las anteriores
- 10. Se dispone de una factorización QR de la matriz $A \in \mathbb{R}^{m \times n}$, donde $Q \in \mathbb{R}^{m \times n}$ y $R \in \mathbb{R}^{n \times n}$. La solución del sistema Ax = b, en el sentido de los mínimos cuadrados, se obtiene resolviendo el siguiente sistema lineal:
 - (a) $Rx = Q^t b$;
 - (b) $\mathbf{Q}^t \mathbf{Q} \mathbf{x} = \mathbf{Q} \mathbf{b}$;
 - (c) $\mathbf{R}^t \mathbf{R} \mathbf{x} = \mathbf{Q} \mathbf{b}$;
 - (d) ninguna de las anteriores.
- 11. Se ajustó, usando mínimos cuadrados, el polinomio $p(x) = a_0 + a_1x + a_2x^2 + a_3x^3$ a los valores de la tabla

x	x_0	x_1	x_2	x_3	x_4
y	y_0	y_1	y_2	y_3	y_4

Se puede afirmar que:

- (a) $\sum_{i=0}^{4} [p(x_i) y_i]^2 \le \sum_{i=0}^{4} [x_i^3 y_i]^2$;
- (b) necesariamente $p(x_i) = y_i, i = 0, ..., 4$;
- (c) necesariamente $p(x_i) \neq y_i, \quad i = 0, \dots, 4;$
- (d) ninguna de las anteriores.

12. Indique cúal de los siguientes graficos representa el polinomio de interpolación asociado a los puntos marcados con un circulo negro:

- (d) ninguno de los anteriores.
- 13. Indique cuál es el polinomio de interpolación asociado a la tabla

$egin{array}{ c c c c c c c c c c c c c c c c c c c$
(a) $y_0 \frac{(x-x_1)}{(x_0-x_1)} \frac{(x-x_2)}{(x_0-x_2)} + y_1 \frac{(x-x_0)}{(x_1-x_0)} \frac{(x-x_2)}{(x_1-x_2)} + y_2 \frac{(x-x_0)}{(x_2-x_0)} \frac{(x-x_1)}{(x_2-x_1)}$
(b) $y_0 \frac{(x_0 - x_1)}{(x - x_1)} \frac{(x_0 - x_2)}{(x - x_2)} + y_1 \frac{(x_1 - x_0)}{(x - x_0)} \frac{(x_1 - x_2)}{(x - x_2)} + y_2 \frac{(x_2 - x_0)}{(x - x_0)} \frac{(x_2 - x_1)}{(x - x_1)}$
(c) $y_0 \frac{(x_0 - x_1)}{(x_0 - x_1)} \frac{(x - x_2)}{(x_0 - x_2)} + y_1 \frac{(x_1 - x_0)}{(x_1 - x_0)} \frac{(x - x_2)}{(x_1 - x_2)} + y_2 \frac{(x_2 - x_0)}{(x_2 - x_0)} \frac{(x - x_1)}{(x_2 - x_1)}$

- (d) ninguno de los anteriores.
- 14. El valor que se obtiene al calcular la integral $\int_0^1 x^2 dx$ utilizando la regla de Simpson es:
 - (a) $\frac{2}{3}$;
 - (b) $\frac{1}{3}$
 - (c) $\frac{1}{2}$
 - (d) ninguno de los anteriores.
- 15. Se aproxima el valor de la integral $I=\int_a^b f(x)\,dx$ usando el método de los trapecios con paso h=0.2, obteniéndose como resultado $I_1=\frac{2}{7}$. Para mejorar la aproximación se repite el cálculo usando el mismo método con un paso h=0.1, el resultado que se obtiene es igual a $I_2=\frac{1}{3}$. Se puede afirmar que el error de aproximar I por I_2 es cercano a:
 - (a) $\frac{1}{3}(\frac{1}{3} \frac{2}{7});$
 - (b) $\frac{1}{3} \frac{2}{7}$;
 - (c) $(0.2)^2$;
 - (d) ninguna de las anteriores.

Evaluación – Tema 2

Nombre y apellidos	PAUTA
Matrícula	
Profesor	

Pregunta	Alternativas			
1	a	b	©	d
2	(a)	b	c	d
3	a	b	©	d
4	a	P	c	d
5	(a)	b	c	d
6	a	b	©	d
7	a	(D)	c	d
8	a	b	©	d
9	a	b	©	d
10	(a)	b	c	d
11	a	(D)	c	d
12	a	(D)	c	d
13	a	b	c	@
14	a	b	©	d
15	(a)	b	c	d

Reservado para la corrección						
No relle	nar					
В						
Μ						
NR						
Cal.						

- Marque sólo una alternativa, en caso contrario la pregunta no será evaluada.
- No intente adivinar. Por cada respuesta equivocada se descontará un tercio del valor de una respuesta correcta; es decir:

Calificación =
$$1 + \max \left\{ 0, \frac{6}{15} \left(\text{Buenas} - \frac{\text{Malas}}{3} \right) \right\}.$$

- Cualquier intento de copia será castigado.
- Duración de la prueba: 100 minutos.

Tema 2 7

1. Considere el sistema lineal Ax = b, con A una matriz no singular. Sean L, U y P las matrices que entrega el comando MATLAB

$$[L,U,P] = lu(A);$$

Indique cuál de las siguientes sentencias Matlab calcula la solución x del sistema:

- (a) $x = P*(U\setminus(L\setminus b))$;
- (b) $x = U \setminus (L \setminus b)$;
- (c) $x = U \setminus (L \setminus (P*b))$;
- (d) $x = U \setminus (P*(L \setminus b))$;

2. Indique cuál es la norma euclideana de la matriz

$$\boldsymbol{D} = \begin{pmatrix} 18 & 0 & 0 & 0 \\ 0 & 5 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -21 \end{pmatrix}.$$

- (a) $\|\boldsymbol{D}\|_2 = 21;$
- (b) $\|\boldsymbol{D}\|_2 = 18$;
- (c) $\|\boldsymbol{D}\|_2 = -21$;
- (d) ninguna de las anteriores.

3. Indique el valor que MATLAB almacena en la variable a al ejecutar la sentencia

$$\Rightarrow$$
 a = 3.7527*10^(-1700);

- (a) a = -3.7527e1700
- (b) a = 3.7527e-1700
- (c) a = 0
- (d) ninguno de las anteriores.

4. Dados una matriz invertible $A \in \mathbb{R}^{1000 \times 1000}$ y un vector $b \in \mathbb{R}^{1000}$, indique cuál de las siguientes sentencias MATLAB calcula la solución del sistema Ax = b de manera más conveniente:

- (a) >> $x = A^{(-1)}*b$;
- (b) \gg x = A\b;
- $(c) \gg x = b/A$;
- $(d) \gg x = inv(A)*b$;

Tema 2 8

- 5. Se debe resolver un sistema de ecuaciones cuya matriz tiene número de condición 10 y en el que el segundo miembro se determina mediante mediciones sujetas a errores inferiores al 1% . Indique cuál de las siguientes es la afirmación correcta más precisa:
 - (a) el error en la solución será inferior al 10%;
 - (b) el error en la solución será inferior al 0.1%;
 - (c) el error en la solución será inferior al 1%;
 - (d) ninguna de las anteriores es correcta.
- 6. Indique cuál de las siguientes métodos es más conveniente para resolver un sistema de ecuaciones con matriz simétrica y definida positiva, 100000×100000 , con a lo más 5 entradas no nulas por fila pero sin estructura banda y cuyo número de condición es menor o igual que 4:
 - (a) método de Cholesky;
 - (b) método de mínimos cuadrados;
 - (c) método del gradiente conjugado;
 - (d) ninguno de esos métodos permite resolver ese sistema.

7. Sea

$$\mathbf{A} = \begin{pmatrix} 9 & \dots \\ \vdots & \ddots \end{pmatrix}$$

una matriz simétrica y definida positiva. Sea L la matriz triangular inferior que se obtiene mediante la factorización de Cholesky aplicada a esa matriz. Indique cuál de las siguientes es L:

$$(a) \quad \boldsymbol{L} = \begin{pmatrix} 9 & 0 \\ \vdots & \ddots \end{pmatrix}$$

$$(b) \quad \boldsymbol{L} = \begin{pmatrix} 3 & 0 \\ \vdots & \ddots \end{pmatrix}$$

$$(c) \quad \boldsymbol{L} = \begin{pmatrix} 1 & 0 \\ \vdots & \ddots \end{pmatrix}$$

- (d) la factorización de Cholesky no se puede aplicar a esa matriz.
- 8. Considere las siguientes afirmaciones respecto a la solución de un sistema de ecuaciones cuya matriz es simétrica, definida positiva y banda, con ancho de banda 5.
 - 1 Puede aplicarse pcg y su velocidad de convergencia depende del número de condición de la matriz.
 - 2 Puede resolverse por Gauss-Seidel.
 - 3 Conviene resolverlo por Cholesky, ya que así se aprovecha la estructura banda de la matriz.

Indique cuál de las siguientes posibilidades es correcta:

- (a) (1) y (3) son verdaderas, pero (2) es falsa;
- (b) (1) y (2) son verdaderas, pero (3) es falsa;
- (c) son todas verdaderas;
- (d) ninguna de las anteriores.

9. Se ajustó, usando mínimos cuadrados, el polinomio $p(x) = a_0 + a_1x + a_2x^2 + a_3x^3$ a los valores de la tabla

x	x_0	x_1	x_2	x_3	x_4
y	y_0	y_1	y_2	y_3	y_4

Se puede afirmar que:

- (a) necesariamente $p(x_i) = y_i, i = 0, ..., 4$;
- (b) necesariamente $p(x_i) \neq y_i, \quad i = 0, \dots, 4;$
- (c) $\sum_{i=0}^{4} [p(x_i) y_i]^2 \le \sum_{i=0}^{4} [x_i^3 y_i]^2$;
- (d) ninguna de las anteriores
- 10. Se desea ajustar, mediante mínimos cuadrados, la función

$$I(t) = \frac{5\alpha}{t^{\beta}}$$

a la tabla

t	2	6	10	18	24
I	24	12.5	8.5	7.6	6.3

La matriz A y los vectores x y b del sistema que permite encontrar los coeficientes α y β están dados por:

(a)
$$\mathbf{A} = \begin{bmatrix} 1 & -\log 2 \\ 1 & -\log 6 \\ 1 & -\log 18 \\ 1 & -\log 24 \end{bmatrix}; \quad \mathbf{x} = \begin{bmatrix} \log \alpha \\ \beta \end{bmatrix}; \quad \mathbf{b} = \begin{bmatrix} \log 24 - \log 5 \\ \log 12.5 - \log 5 \\ \log 8.5 - \log 5 \\ \log 7.6 - \log 5 \\ \log 6.3 - \log 5 \end{bmatrix}.$$

(b) $\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 1 & 6 \\ 1 & 10 \\ 1 & 18 \\ 1 & 24 \end{bmatrix}; \quad \mathbf{x} = \begin{bmatrix} \alpha \\ \log \beta \end{bmatrix}; \quad \mathbf{b} = \begin{bmatrix} 24 \\ 12.5 \\ 8.5 \\ 7.6 \\ 6.3 \end{bmatrix}.$

(c) $\mathbf{A} = \begin{bmatrix} 1 & -\log 2 \\ 1 & -\log 6 \\ 1 & -\log 18 \\ 1 & -\log 24 \end{bmatrix}; \quad \mathbf{x} = \begin{bmatrix} \log \alpha \\ \beta \end{bmatrix}; \quad \mathbf{b} = \begin{bmatrix} \log 24 \\ \log 12.5 \\ \log 8.5 \\ \log 6.3 \end{bmatrix}.$

(b)
$$\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 1 & 6 \\ 1 & 10 \\ 1 & 18 \\ 1 & 24 \end{bmatrix}; \quad \mathbf{x} = \begin{bmatrix} \alpha \\ \log \beta \end{bmatrix}; \quad \mathbf{b} = \begin{bmatrix} 24 \\ 12.5 \\ 8.5 \\ 7.6 \\ 6.3 \end{bmatrix}$$

(c)
$$\mathbf{A} = \begin{bmatrix} 1 & -\log 2 \\ 1 & -\log 6 \\ 1 & -\log 10 \\ 1 & -\log 18 \\ 1 & -\log 24 \end{bmatrix}; \quad \mathbf{x} = \begin{bmatrix} \log \alpha \\ \beta \end{bmatrix}; \quad \mathbf{b} = \begin{bmatrix} \log 24 \\ \log 12.5 \\ \log 8.5 \\ \log 7.6 \\ \log 6.3 \end{bmatrix}$$

- (d) ninguna de las anteriores
- 11. Se dispone de una factorización QR de la matriz $A \in \mathbb{R}^{m \times n}$, donde $Q \in \mathbb{R}^{m \times n}$ y $R \in \mathbb{R}^{n \times n}$. La solución del sistema Ax = b, en el sentido de los mínimos cuadrados, se obtiene resolviendo el siguiente sistema lineal:
 - (a) $\mathbf{R}^t \mathbf{R} \mathbf{x} = \mathbf{Q} \mathbf{b}$;
 - (b) $\mathbf{R} \, \mathbf{x} = \mathbf{Q}^t \mathbf{b}$:
 - (c) $Q^t Q x = Qb$;
 - (d) ninguna de las anteriores.

- 12. Se aproxima el valor de la integral $I = \int_a^b f(x) dx$ usando el método de los trapecios con paso h = 0.2, obteniéndose como resultado $I_1 = \frac{2}{7}$. Para mejorar la aproximación se repite el cálculo usando el mismo método con un paso h=0.1, el resultado que se obtiene es igual a $I_2=\frac{1}{3}$. Se puede afirmar que el error de aproximar I por I_2 es cercano a:
 - (a) $(0.2)^2$;
 - (b) $\frac{1}{3}(\frac{1}{3}-\frac{2}{7});$

 - (d) ninguna de las anteriores.
- 13. Indique cúal de los siguientes graficos representa el polinomio de interpolación asociado a los puntos marcados con un circulo negro:

- (d) ninguno de los anteriores.
- 14. Indique cuál es el polinomio de interpolación asociado a la tabla

x	x_0	x_1	x_2
y	y_0	y_1	y_2

(a)
$$y_0 \frac{(x_0 - x_1)}{(x - x_1)} \frac{(x_0 - x_2)}{(x - x_2)} + y_1 \frac{(x_1 - x_0)}{(x - x_0)} \frac{(x_1 - x_2)}{(x - x_2)} + y_2 \frac{(x_2 - x_0)}{(x - x_1)} \frac{(x_2 - x_1)}{(x - x_1)}$$

(b) $y_0 \frac{(x_0 - x_1)}{(x_0 - x_1)} \frac{(x - x_2)}{(x_0 - x_2)} + y_1 \frac{(x_1 - x_0)}{(x_1 - x_0)} \frac{(x - x_2)}{(x_1 - x_2)} + y_2 \frac{(x_2 - x_0)}{(x_2 - x_0)} \frac{(x - x_1)}{(x_2 - x_1)}$
(c) $y_0 \frac{(x - x_1)}{(x_0 - x_1)} \frac{(x - x_2)}{(x_0 - x_2)} + y_1 \frac{(x - x_0)}{(x_1 - x_0)} \frac{(x - x_2)}{(x_1 - x_2)} + y_2 \frac{(x - x_0)}{(x_2 - x_1)} \frac{(x - x_1)}{(x_2 - x_1)}$

(b)
$$y_0 \frac{(x_0 - x_1)}{(x_0 - x_1)} \frac{(x - x_2)}{(x_0 - x_2)} + y_1 \frac{(x_1 - x_0)}{(x_1 - x_0)} \frac{(x - x_2)}{(x_1 - x_2)} + y_2 \frac{(x_2 - x_0)}{(x_2 - x_0)} \frac{(x - x_1)}{(x_2 - x_1)}$$

(c)
$$y_0 \frac{(x-x_1)}{(x_0-x_1)} \frac{(x-x_2)}{(x_0-x_2)} + y_1 \frac{(x-x_0)}{(x_1-x_0)} \frac{(x-x_2)}{(x_1-x_2)} + y_2 \frac{(x-x_0)}{(x_2-x_0)} \frac{(x-x_1)}{(x_2-x_1)}$$

- (d) ninguno de los anteriores.
- 15. El valor que se obtiene al calcular la integral $\int_0^1 x^2 dx$ utilizando la regla de Simpson es:

 - (a) $\frac{1}{3}$; (b) $\frac{2}{3}$; (c) $\frac{1}{2}$;

 - (d) ninguno de los anteriores.

Evaluación – Tema 3

Nombre y apellidos	PAUTA
Matrícula	
Profesor	

Pregunta	Alternativas			
1	a	b	©	d
2	(a)	b	с	d
3	a	b	©	d
4	(a)	b	c	d
5	a	b	©	d
6	a	b	©	d
7	(a)	b	c	d
8	a	(b)	c	d
9	a	(b)	c	d
10	a	Ф	c	d
11	a	b	©	d
12	a	b	©	d
13	a	b	©	d
14	a	b	с	@
15	a	Ф	с	d

Reservado corrección	para	la
No rellen	ar	
В		
M		
NR		
Cal.		

- Marque sólo una alternativa, en caso contrario la pregunta no será evaluada.
- No intente adivinar. Por cada respuesta equivocada se descontará un tercio del valor de una respuesta correcta; es decir:

Calificación =
$$1 + \max \left\{ 0, \frac{6}{15} \left(\text{Buenas} - \frac{\text{Malas}}{3} \right) \right\}.$$

- Cualquier intento de copia será castigado.
- Duración de la prueba: 100 minutos.

Tema 3 12

- 1. Dados una matriz invertible $A \in \mathbb{R}^{1000 \times 1000}$ y un vector $b \in \mathbb{R}^{1000}$, indique cuál de las siguientes sentencias MATLAB calcula la solución del sistema Ax = b de manera más conveniente:
 - $(a) \gg x = inv(A)*b$;
 - (b) >> $x = A^{(-1)}*b$;
 - $(c) \gg x = A b ;$
 - $(d) \gg x = b/A$;
- 2. Considere el sistema lineal Ax = b, con A una matriz no singular. Sean L, U y P las matrices que entrega el comando MATLAB

$$[L,U,P] = lu(A);$$

Indique cuál de las siguientes sentencias MATLAB calcula la solución x del sistema:

- (a) $x = U \setminus (L \setminus (P*b))$;
- (b) $x = U \setminus (L \setminus b)$;
- (c) $x = U \setminus (P*(L \setminus b))$;
- (d) $x = P*(U\setminus(L\setminus b))$;
- 3. Indique cuál es la norma euclideana de la matriz

$$\boldsymbol{D} = \begin{pmatrix} 18 & 0 & 0 & 0 \\ 0 & 5 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -21 \end{pmatrix}.$$

- (a) $\|\boldsymbol{D}\|_2 = -21$;
- (b) $\|\boldsymbol{D}\|_2 = 18;$
- (c) $\|\boldsymbol{D}\|_2 = 21$;
- (d) ninguna de las anteriores.
- 4. Indique el valor que MATLAB almacena en la variable a al ejecutar la sentencia

$$\Rightarrow$$
 a = 3.7527*10^(-1700);

- (a) a = 0
- (b) a = 3.7527e-1700
- (c) a = -3.7527e1700
- (d) ninguno de las anteriores.

Tema 3 13

5. Considere las siguientes afirmaciones respecto a la solución de un sistema de ecuaciones cuya matriz es simétrica, definida positiva y banda, con ancho de banda 5.

- 1 Puede aplicarse pcg y su velocidad de convergencia depende del número de condición de la matriz.
- 2 Puede resolverse por Gauss-Seidel.
- 3 Conviene resolverlo por Cholesky, ya que así se aprovecha la estructura banda de la matriz.

Indique cuál de las siguientes posibilidades es correcta:

- (a) (1) y (2) son verdaderas, pero (3) es falsa;
- (b) (1) y (3) son verdaderas, pero (2) es falsa;
- (c) son todas verdaderas;
- (d) ninguna de las anteriores.

6. Se debe resolver un sistema de ecuaciones cuya matriz tiene número de condición 10 y en el que el segundo miembro se determina mediante mediciones sujetas a errores inferiores al 1%. Indique cuál de las siguientes es la afirmación correcta más precisa:

- (a) el error en la solución será inferior al 1%;
- (b) el error en la solución será inferior al 0.1%;
- (c) el error en la solución será inferior al 10%;
- (d) ninguna de las anteriores es correcta.

7. Indique cuál de las siguientes métodos es más conveniente para resolver un sistema de ecuaciones con matriz simétrica y definida positiva, 100000×100000 , con a lo más 5 entradas no nulas por fila pero sin estructura banda y cuyo número de condición es menor o igual que 4:

- (a) método del gradiente conjugado;
- (b) método de Cholesky;
- (c) método de mínimos cuadrados;
- (d) ninguno de esos métodos permite resolver ese sistema.
- 8. Sea

$$\mathbf{A} = \begin{pmatrix} 9 & \dots \\ \vdots & \ddots \end{pmatrix}$$

una matriz simétrica y definida positiva. Sea L la matriz triangular inferior que se obtiene mediante la factorización de Cholesky aplicada a esa matriz. Indique cuál de las siguientes es L:

(a)
$$\mathbf{L} = \begin{pmatrix} 9 & 0 \\ \vdots & \ddots \end{pmatrix}$$
 (b) $\mathbf{L} = \begin{pmatrix} 3 & 0 \\ \vdots & \ddots \end{pmatrix}$

$$(c) \quad \boldsymbol{L} = \begin{pmatrix} 1 & 0 \\ \vdots & \ddots \end{pmatrix}$$

(d) la factorización de Cholesky no se puede aplicar a esa matriz.

9. Se dispone de una factorización QR de la matriz $A \in \mathbb{R}^{m \times n}$, donde $Q \in \mathbb{R}^{m \times n}$ y $R \in \mathbb{R}^{n \times n}$. La solución del sistema Ax = b, en el sentido de los mínimos cuadrados, se obtiene resolviendo el siguiente sistema lineal:

- (a) $Q^t Q x = Qb$;
- (b) $Rx = Q^t b$;
- (c) $\mathbf{R}^t \mathbf{R} \mathbf{x} = \mathbf{Q} \mathbf{b}$:
- (d) ninguna de las anteriores.

10. Se ajustó, usando mínimos cuadrados, el polinomio $p(x) = a_0 + a_1x + a_2x^2 + a_3x^3$ a los valores de la tabla

	x	x_0	x_1	x_2	x_3	x_4
ĺ	y	y_0	y_1	y_2	y_3	y_4

Se puede afirmar que:

- (a) necesariamente $p(x_i) = y_i, i = 0, \dots, 4$;
- (b) $\sum_{i=0}^{4} [p(x_i) y_i]^2 \le \sum_{i=0}^{4} [x_i^3 y_i]^2$;
- (c) necesariamente $p(x_i) \neq y_i$, $i = 0, \dots, 4$;
- (d) ninguna de las anteriores.

11. Se desea ajustar, mediante mínimos cuadrados, la función

$$I(t) = \frac{5\alpha}{t^{\beta}}$$

a la tabla

t	2	6	10	18	24
I	24	12.5	8.5	7.6	6.3

La matriz A y los vectores x y b del sistema que permite encontrar los coeficientes α y β están dados por:

(a)
$$\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 1 & 6 \\ 1 & 10 \\ 1 & 18 \\ 1 & 24 \end{bmatrix}; \quad \mathbf{x} = \begin{bmatrix} \alpha \\ \log \beta \end{bmatrix}; \quad \mathbf{b} = \begin{bmatrix} 24 \\ 12.5 \\ 8.5 \\ 7.6 \\ 6.3 \end{bmatrix}.$$

(b)
$$\mathbf{A} = \begin{bmatrix} 1 & -\log 2 \\ 1 & -\log 6 \\ 1 & -\log 10 \\ 1 & -\log 18 \\ 1 & -\log 24 \end{bmatrix}; \quad \mathbf{x} = \begin{bmatrix} \log \alpha \\ \beta \end{bmatrix}; \quad \mathbf{b} = \begin{bmatrix} \log 24 \\ \log 12.5 \\ \log 8.5 \\ \log 7.6 \\ \log 6.3 \end{bmatrix}$$

(a)
$$\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 1 & 6 \\ 1 & 10 \\ 1 & 18 \\ 1 & 24 \end{bmatrix}; \quad \mathbf{x} = \begin{bmatrix} \alpha \\ \log \beta \end{bmatrix}; \quad \mathbf{b} = \begin{bmatrix} 24 \\ 12.5 \\ 8.5 \\ 7.6 \\ 6.3 \end{bmatrix}.$$

(b) $\mathbf{A} = \begin{bmatrix} 1 & -\log 2 \\ 1 & -\log 6 \\ 1 & -\log 10 \\ 1 & -\log 18 \\ 1 & -\log 24 \end{bmatrix}; \quad \mathbf{x} = \begin{bmatrix} \log \alpha \\ \beta \end{bmatrix}; \quad \mathbf{b} = \begin{bmatrix} \log 24 \\ \log 12.5 \\ \log 8.5 \\ \log 7.6 \\ \log 6.3 \end{bmatrix}.$

(c) $\mathbf{A} = \begin{bmatrix} 1 & -\log 2 \\ 1 & -\log 2 \\ 1 & -\log 6 \\ 1 & -\log 10 \\ 1 & -\log 18 \\ 1 & -\log 24 \end{bmatrix}; \quad \mathbf{x} = \begin{bmatrix} \log \alpha \\ \beta \end{bmatrix}; \quad \mathbf{b} = \begin{bmatrix} \log 24 - \log 5 \\ \log 12.5 - \log 5 \\ \log 6.3 - \log 5 \\ \log 8.5 - \log 5 \\ \log 7.6 - \log 5 \\ \log 6.3 - \log 5 \end{bmatrix}.$

(d) ninguna de las anteriores.

12. El valor que se obtiene al calcular la integral $\int_0^1 x^2 dx$ utilizando la regla de Simpson es:

- (a) $\frac{1}{2}$; (b) $\frac{2}{3}$; (c) $\frac{1}{3}$;
- (d) ninguno de los anteriores.

13. Se aproxima el valor de la integral $I=\int_a^b f(x)\,dx$ usando el método de los trapecios con paso h=0.2, obteniéndose como resultado $I_1=\frac{2}{7}$. Para mejorar la aproximación se repite el cálculo usando el mismo método con un paso h=0.1, el resultado que se obtiene es igual a $I_2=\frac{1}{3}$. Se puede afirmar que el error de aproximar ${\cal I}$ por ${\cal I}_2$ es cercano a:

- (a) $\frac{1}{3} \frac{2}{7}$;
- (b) $(0.2)^2$; (c) $\frac{1}{3}(\frac{1}{3} \frac{2}{7})$;
- (d) ninguna de las anteriores.

14. Indique cúal de los siguientes graficos representa el polinomio de interpolación asociado a los puntos marcados con un circulo negro:

(d) ninguno de los anteriores.

(d) ninguno de los anteriores.

15. Indique cuál es el polinomio de interpolación asociado a la tabla

		\boldsymbol{x}	x_0	x_1	x_2		
		y	y_0	y_1	y_2		
(a)	$y_0 \frac{(x_0 - x_1)}{(x - x_1)} \frac{(x_0 - x_2)}{(x - x_2)} + y_1 \frac{(x_1 - x_0)}{(x - x_0)}$	$\frac{1}{2} \frac{(x}{(x-x)^2)}$	1 - x	$\frac{(2)}{(2)}$ +	$y_2 \frac{(x_2)^2}{(x_2)^2}$	$(x_2 - x_0)$	$\frac{(x_2-x_1)}{(x_1-x_1)}$
	$y_0 \frac{(x-x_1)}{(x_0-x_1)} \frac{(x-x_2)}{(x_0-x_2)} + y_1 \frac{(x-x_0)}{(x_1-x_0)}$, ,		,	,		
(c)	$y_0 \frac{(x_0 - x_1)}{(x_0 - x_1)} \frac{(x - x_2)}{(x_0 - x_2)} + y_1 \frac{(x_1 - x_0)}{(x_1 - x_0)}$	$\frac{(x)}{(x)}$	$x-x_1$	<u>2)</u> +	$y_2 \frac{(x_2)^2}{(x_2)^2}$	$(x_2 - x_0)$	$\frac{(x-x_1)}{(x-x_1)}$
` /	$(x_0-x_1)(x_0-x_2)$ (x_1-x_0)) (x)	$_1-x$	$_2)$	$^{\circ}$ (a	$(x_2 - x_0)$	$(x_2 - x_1)$

Evaluación – Tema 4

Nombre y apellidos	PAUTA
Matrícula	
Profesor	

Pregunta	I	Altern	ativa	s
1	a	b	©	d
2	a	b	c	@
3	a	(D)	c	d
4	a	b	©	d
5	a	P	c	d
6	a	b	©	d
7	a	b	©	d
8	a	(b)	c	d
9	a	b	©	d
10	(a)	b	c	d
11	a	b	©	d
12	a	(b)	c	d
13	a	b	©	d
14	a	Ф	c	d
15	a	b	c	@

Reservado corrección	para	la
No rellen	ar	
В		
M		
NR		
Cal.		

- Marque sólo una alternativa, en caso contrario la pregunta no será evaluada.
- No intente adivinar. Por cada respuesta equivocada se descontará un tercio del valor de una respuesta correcta; es decir:

Calificación =
$$1 + \max \left\{ 0, \frac{6}{15} \left(\text{Buenas} - \frac{\text{Malas}}{3} \right) \right\}.$$

- Cualquier intento de copia será castigado.
- Duración de la prueba: 100 minutos.

Tema 4 17

1. Indique el valor que Matlab almacena en la variable a al ejecutar la sentencia

```
\Rightarrow a = 3.7527*10^(-1700);
```

- (a) a = 3.7527e 1700
- (b) a = -3.7527e1700
- (c) a = 0
- (d) ninguno de las anteriores.
- 2. Dados una matriz invertible $A \in \mathbb{R}^{1000 \times 1000}$ y un vector $b \in \mathbb{R}^{1000}$, indique cuál de las siguientes sentencias MATLAB calcula la solución del sistema Ax = b de manera más conveniente:
 - (a) \gg x = b/A;
 - (b) >> x = inv(A)*b;
 - $(c) >> x = A^{(-1)}*b$;
 - $(d) \gg x = A b ;$
- 3. Considere el sistema lineal Ax = b, con A una matriz no singular. Sean L, U y P las matrices que entrega el comando MATLAB

$$[L,U,P] = lu(A);$$

Indique cuál de las siguientes sentencias MATLAB calcula la solución \boldsymbol{x} del sistema:

- (a) $x = U \setminus (P*(L \setminus b))$;
- (b) $x = U \setminus (L \setminus (P*b))$;
- (c) $x = U \setminus (L \setminus b)$;
- (d) $x = P*(U\setminus(L\setminus b))$;
- 4. Indique cuál es la norma euclideana de la matriz

$$\boldsymbol{D} = \begin{pmatrix} 18 & 0 & 0 & 0 \\ 0 & 5 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -21 \end{pmatrix}.$$

- (a) $\|\boldsymbol{D}\|_2 = 18;$
- (b) $\|\boldsymbol{D}\|_2 = -21;$
- (c) $\|\boldsymbol{D}\|_2 = 21$;
- (d) ninguna de las anteriores.

5. Sea

$$\mathbf{A} = \begin{pmatrix} 9 & \dots \\ \vdots & \ddots \end{pmatrix}$$

una matriz simétrica y definida positiva. Sea L la matriz triangular inferior que se obtiene mediante la factorización de Cholesky aplicada a esa matriz. Indique cuál de las siguientes es L:

(a)
$$\mathbf{L} = \begin{pmatrix} 9 & 0 \\ \vdots & \ddots \end{pmatrix}$$

$$(b) \quad \boldsymbol{L} = \begin{pmatrix} 3 & 0 \\ \vdots & \ddots \end{pmatrix}$$

$$(c) \quad \boldsymbol{L} = \begin{pmatrix} 1 & 0 \\ \vdots & \ddots \end{pmatrix}$$

- (d) la factorización de Cholesky no se puede aplicar a esa matriz.
- 6. Considere las siguientes afirmaciones respecto a la solución de un sistema de ecuaciones cuya matriz es simétrica, definida positiva y banda, con ancho de banda 5.
 - 1 Puede aplicarse pcg y su velocidad de convergencia depende del número de condición de la matriz.
 - 2 Puede resolverse por Gauss-Seidel.
 - 3 Conviene resolverlo por Cholesky, ya que así se aprovecha la estructura banda de la matriz.

Indique cuál de las siguientes posibilidades es correcta:

- (a) (1) y (2) son verdaderas, pero (3) es falsa;
- (b) (1) y (3) son verdaderas, pero (2) es falsa;
- (c) son todas verdaderas;
- (d) ninguna de las anteriores.
- 7. Se debe resolver un sistema de ecuaciones cuya matriz tiene número de condición 10 y en el que el segundo miembro se determina mediante mediciones sujetas a errores inferiores al 1%. Indique cuál de las siguientes es la afirmación correcta más precisa:
 - (a) el error en la solución será inferior al 0.1%;
 - (b) el error en la solución será inferior al 1%;
 - (c) el error en la solución será inferior al 10%;
 - (d) ninguna de las anteriores es correcta.
- 8. Indique cuál de las siguientes métodos es más conveniente para resolver un sistema de ecuaciones con matriz simétrica y definida positiva, 100000×100000 , con a lo más 5 entradas no nulas por fila pero sin estructura banda y cuyo número de condición es menor o igual que 4:
 - (a) método de mínimos cuadrados;
 - (b) método del gradiente conjugado;
 - (c) método de Cholesky;
 - (d) ninguno de esos métodos permite resolver ese sistema.

9. Se desea ajustar, mediante mínimos cuadrados, la función

$$I(t) = \frac{5\alpha}{t^{\beta}}$$

a la tabla

t	2	6	10	18	24
I	24	12.5	8.5	7.6	6.3

La matriz A y los vectores x y b del sistema que permite encontrar los coeficientes α y β están dados por:

(a)
$$\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 1 & 6 \\ 1 & 10 \\ 1 & 18 \\ 1 & 24 \end{bmatrix}; \quad \mathbf{x} = \begin{bmatrix} \alpha \\ \log \beta \end{bmatrix}; \quad \mathbf{b} = \begin{bmatrix} 24 \\ 12.5 \\ 8.5 \\ 7.6 \\ 6.3 \end{bmatrix}$$

(b)
$$\mathbf{A} = \begin{bmatrix} 1 & -\log 2 \\ 1 & -\log 6 \\ 1 & -\log 10 \\ 1 & -\log 18 \\ 1 & -\log 24 \end{bmatrix}; \quad \mathbf{x} = \begin{bmatrix} \log \alpha \\ \beta \end{bmatrix}; \quad \mathbf{b} = \begin{bmatrix} \log 24 \\ \log 12.5 \\ \log 8.5 \\ \log 7.6 \\ \log 6.3 \end{bmatrix}$$

(a)
$$\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 1 & 6 \\ 1 & 10 \\ 1 & 18 \\ 1 & 24 \end{bmatrix}; \quad \mathbf{x} = \begin{bmatrix} \alpha \\ \log \beta \end{bmatrix}; \quad \mathbf{b} = \begin{bmatrix} 24 \\ 12.5 \\ 8.5 \\ 7.6 \\ 6.3 \end{bmatrix}.$$

(b) $\mathbf{A} = \begin{bmatrix} 1 & -\log 2 \\ 1 & -\log 6 \\ 1 & -\log 10 \\ 1 & -\log 18 \\ 1 & -\log 24 \end{bmatrix}; \quad \mathbf{x} = \begin{bmatrix} \log \alpha \\ \beta \end{bmatrix}; \quad \mathbf{b} = \begin{bmatrix} \log 24 \\ \log 12.5 \\ \log 8.5 \\ \log 7.6 \\ \log 6.3 \end{bmatrix}.$

(c) $\mathbf{A} = \begin{bmatrix} 1 & -\log 2 \\ 1 & -\log 2 \\ 1 & -\log 6 \\ 1 & -\log 10 \\ 1 & -\log 18 \\ 1 & -\log 24 \end{bmatrix}; \quad \mathbf{x} = \begin{bmatrix} \log \alpha \\ \beta \end{bmatrix}; \quad \mathbf{b} = \begin{bmatrix} \log 24 - \log 5 \\ \log 12.5 - \log 5 \\ \log 6.3 - \log 5 \\ \log 8.5 - \log 5 \\ \log 8.5 - \log 5 \\ \log 7.6 - \log 5 \\ \log 6.3 - \log 5 \end{bmatrix}.$

- (d) ninguna de las anteriores
- 10. Se dispone de una factorización QR de la matriz $A \in \mathbb{R}^{m \times n}$, donde $Q \in \mathbb{R}^{m \times n}$ y $R \in \mathbb{R}^{n \times n}$. La solución del sistema Ax = b, en el sentido de los mínimos cuadrados, se obtiene resolviendo el siguiente sistema lineal:
 - (a) $Rx = Q^t b$;
 - (b) $\mathbf{Q}^t \mathbf{Q} \mathbf{x} = \mathbf{Q} \mathbf{b}$;
 - (c) $\mathbf{R}^t \mathbf{R} \mathbf{x} = \mathbf{Q} \mathbf{b}$;
 - (d) ninguna de las anteriores.
- 11. Se ajustó, usando mínimos cuadrados, el polinomio $p(x) = a_0 + a_1x + a_2x^2 + a_3x^3$ a los valores de la tabla

x	x_0	x_1	x_2	x_3	x_4
y	y_0	y_1	y_2	y_3	y_4

Se puede afirmar que:

- (a) necesariamente $p(x_i) = y_i$, i = 0, ..., 4;
- (b) necesariamente $p(x_i) \neq y_i, \quad i = 0, \dots, 4;$
- (c) $\sum_{i=0}^{4} [p(x_i) y_i]^2 \le \sum_{i=0}^{4} [x_i^3 y_i]^2$;
- (d) ninguna de las anteriores.

12. Indique cuál es el polinomio de interpolación asociado a la tabla

\boldsymbol{x}	x_0	x_1	x_2
y	y_0	y_1	y_2

(a)
$$y_0 \frac{(x_0 - x_1)}{(x - x_1)} \frac{(x_0 - x_2)}{(x - x_2)} + y_1 \frac{(x_1 - x_0)}{(x - x_0)} \frac{(x_1 - x_2)}{(x - x_2)} + y_2 \frac{(x_2 - x_0)}{(x - x_0)} \frac{(x_2 - x_1)}{(x - x_1)}$$

(b) $y_0 \frac{(x - x_1)}{(x_0 - x_1)} \frac{(x - x_2)}{(x_0 - x_2)} + y_1 \frac{(x - x_0)}{(x_1 - x_0)} \frac{(x - x_2)}{(x_1 - x_2)} + y_2 \frac{(x - x_0)}{(x_2 - x_0)} \frac{(x - x_1)}{(x_2 - x_0)}$
(c) $y_0 \frac{(x_0 - x_1)}{(x_0 - x_1)} \frac{(x - x_2)}{(x_0 - x_2)} + y_1 \frac{(x_1 - x_0)}{(x_1 - x_0)} \frac{(x - x_2)}{(x_1 - x_2)} + y_2 \frac{(x_2 - x_0)}{(x_2 - x_1)} \frac{(x - x_1)}{(x_2 - x_1)}$

(b)
$$y_0 \frac{(x-x_1)}{(x_0-x_1)} \frac{(x-x_2)}{(x_0-x_2)} + y_1 \frac{(x-x_0)}{(x_1-x_0)} \frac{(x-x_2)}{(x_1-x_2)} + y_2 \frac{(x-x_0)}{(x_2-x_0)} \frac{(x-x_1)}{(x_2-x_1)}$$

(c)
$$y_0 \frac{(x_0 - x_1)}{(x_0 - x_1)} \frac{(x - x_2)}{(x_0 - x_2)} + y_1 \frac{(x_1 - x_0)}{(x_1 - x_0)} \frac{(x - x_2)}{(x_1 - x_2)} + y_2 \frac{(x_2 - x_0)}{(x_2 - x_0)} \frac{(x - x_1)}{(x_2 - x_1)}$$

- 13. El valor que se obtiene al calcular la integral $\int_0^1 x^2 dx$ utilizando la regla de Simpson es:
 - (a) $\frac{2}{3}$;

 - (c) $\frac{1}{3}$;
 - (d) ninguno de los anteriores.
- 14. Se aproxima el valor de la integral $I = \int_a^b f(x) dx$ usando el método de los trapecios con paso h = 0.2, obteniéndose como resultado $I_1 = \frac{2}{7}$. Para mejorar la aproximación se repite el cálculo usando el mismo método con un paso h=0.1, el resultado que se obtiene es igual a $I_2=\frac{1}{3}$. Se puede afirmar que el error de aproximar ${\cal I}$ por ${\cal I}_2$ es cercano a:
 - (a) $\frac{1}{3} \frac{2}{7}$;
 - (b) $\frac{1}{3}(\frac{1}{3}-\frac{2}{7});$
 - (c) $(0.2)^2$;
 - (d) ninguna de las anteriores.
- 15. Indique cúal de los siguientes graficos representa el polinomio de interpolación asociado a los puntos marcados con un circulo negro:

(d) ninguno de los anteriores.