## NCERT Discrete 10.5.2 -15

## EE23BTECH11057 - Shakunaveti Sai Sri Ram Varun

**Question:** For what value of n, are the nth terms of two A.Ps: 63, 65, 67,... and 3, 10, 17,... equal? **Solution**:

| ĺ | Parameter | Sub-question | Description                               | Value |
|---|-----------|--------------|-------------------------------------------|-------|
| ĺ | $x_i(0)$  | $x_1(0)$     | $1^{st}$ term of $1^{st}$ A.P.            | 63    |
|   |           | $x_{2}(0)$   | $1^{st}$ term of $2^{nd}$ A.P.            | 3     |
| ĺ | $d_i$     | $d_1$        | Common difference of 1 <sup>st</sup> A.P. | 2     |
|   |           | $d_2$        | Common difference of $2^{nd}$ A.P.        | 7     |

TABLE I PARAMETERS USED

$$X(z) = x(0)z(z-1)^{-1} + dz(z-1)^{-2} \forall |z| > 1$$
 (1)

1) For the 1st A.P.  $let x_1(n)$  be nth term: Finding  $x_1(n)$  for the 1st A.P:

$$x_1(0) + d_1 = 65 (2)$$

$$\implies x_1(n) = 63u(n) + 2n \cdot u(n) \tag{3}$$

To find  $X_1(z)$ :

$$\therefore X_1(z) = 63z (z - 1)^{-1} + 2z (z - 1)^{-2} \,\forall |z| > 1$$
(4)

2) For the 2nd A.P.  $let x_2(n)$  be nth term: Finding  $x_2(n)$  for the for the 1st A.P:

$$x_2(0) + d_2 = 10 (5)$$

$$\implies x_2(n) = 3u(n) + 7n \cdot u(n)$$
 (6)

To find  $X_2(z)$ :

$$\therefore X_2(z) = 3z(z-1)^{-1} + 7z(z-1)^{-2} \,\forall |z| > 1$$
(7)

3) given,  $x_1(n) = x_2(n)$ 

$$\therefore 63 + 2n = 7n + 3$$
 (8)

$$5n = 60 \tag{9}$$

$$\implies n = 12$$
 (10)



Fig. 1. Graphs of  $x_1(n)$  and  $x_2(n)$  and both are equal at n = 12