

GOSFORD HIGH SCHOOL

2020

Trial HSC Examination

Mathematics Extension 1

General Instructions

Total Marks - 70

All questions may be attempted

Section I (10 Marks)

Answer questions 1-10 on the Multiple Choice answer sheet provided.

Questions 1-10 are of equal values

Section II (60 Marks)

For Questions 11-14, start a new answer booklet for each question.

Questions 11-14 are of equal values

- Reading time -10 minutes
- Writing time 2 Hours
- · Writing using a black pen
- NESA approved calculators maybe used
- Leave your answers in the simplest exact form, unless otherwise stated
- Marks may be deducted for careless or badly arranged work
- All necessary working should be shown
- A Reference Sheet is provided

Collection

- Write your candidate number on each answer booklet and on your multiple choice answer sheet.
- Hand in the booklets in a single well-ordered pile.
- Hand in a booklet for each question in section II, even if it has not been attempted.
- If you use a second booklet for a question, place it inside the first.
- Write your candidate number on this question paper and hand it in with your answers.

Candidate Number	
------------------	--

Section I - Multiple Choice (10 marks)

Attempt Questions 1 – 10

Read each question and choose an answer A, B, C or D. Allow about 15 minutes for this section.

Use multiple- choice answer sheet for Question 1- 10

- 1. What is the value of $\sin 2x$ given that $\sin x = \frac{2\sqrt{3}}{4}$ and x is obtuse?
 - (A) $-\frac{\sqrt{3}}{4}$
 - (B) $-\frac{\sqrt{3}}{2}$
 - (C) $\frac{\sqrt{3}}{4}$
 - (D) $\frac{\sqrt{3}}{2}$
- 2. A ball is thrown from the origin θ with a velocity θ and an angle of elevation of θ , where $\theta \neq \frac{\pi}{2}$. What is the Cartesian equation of the flight path? Take $\theta = 10 \text{ ms}^{-1}$.

(A)
$$y = x \tan \theta - \frac{5x^2}{V^2} (1 + \tan^2 \theta)$$

(B)
$$y = x \tan \theta - \frac{10x^2}{V^2} (1 + \tan^2 \theta)$$

(C)
$$x = V\cos\theta t$$
 and $y = -5t^2 + V\sin\theta t$

(D)
$$x = V\cos\theta t$$
 and $y = -10t^2 + V\sin\theta t$

- 3. An examination consists of 30 multiple-choice questions, each question having five possible answers. A student guesses the answer to every question. Let X be the number of correct answers. What is E(X)?
 - (A) 5
 - (B) 6
 - (C) 9
 - (D) 15

4. An equilateral triangle of side 3 units is shown below. Vectors \underline{u} and \underline{v} are represented in the diagram.

What is the value of $u \cdot v$?

- (A)
- (B) $\frac{9}{\sqrt{2}}$
- (C) $\frac{9}{2}$
- (D) 9
- 5. If $y = \sin^{-1} \frac{a}{x}$ then $\frac{dy}{dx}$ equals:
 - $(A) \quad \frac{-a}{x^2\sqrt{x^2-a^2}}$
 - (B) $\frac{x}{\sqrt{x^2 a^2}}$
 - $(C) \quad \frac{-x}{\sqrt{x^2 a^2}}$
 - (D) $\frac{-a}{x\sqrt{x^2 a^2}}$
- 6. The equation $y = e^{ax}$ satisfies the differential equation $\frac{d^2y}{dx^2} + \frac{dy}{dx} 6y = 0$.

What are the possible values of a?

- (A) a = -2 or a = 3
- (B) a = -1 or a = 6
- (C) a = 2 or a = -3
- (D) a = 1 or a = -6
- 7. Which of the following is an expression for $\int \frac{x}{\sqrt{9-x^2}} dx$? Use the substitution $u=9-x^2$.
 - (A) $-\sqrt{9-x^2} + C$
 - (B) $-2\sqrt{9-x^2}+C$
 - (C) $\sqrt{9-x^2} + C$
 - (D) $2\sqrt{9-x^2} + C$

- 8. Let u = l + l and v = l l. What is the angle between the two vectors.
 - (A) $\frac{\pi}{2}$
 - (B) $\frac{\pi}{4}$
 - (C) n
 - (D) 2π
- 9. Which of the following expressions represents the area of the region bounded by the curve $y = \sin^3 x$ and the x-axis from $x = -\pi$ to $x = 2\pi$? Use the substitution $u = \cos x$.

(A)
$$-\int_{-\pi}^{2\pi} (1-u^2) du$$

(B)
$$-3\int_0^{\pi} (1-u^2)du$$

(C)
$$-\int_{-1}^{1} (1-u^2) du$$

(D)
$$3\int_{-1}^{1} (1-u^2)du$$

10. Emma made an error proving that $2^n + (-1)^{n+1}$ is divisible by 3 for all integers $n \ge 1$ using mathematical induction. The proof is shown below.

Step 1: To prove $2^n + (-1)^{n+1}$ is divisible by 3 (n is an integer)

To prove true for n = 1

$$2^{1} + (-1)^{1+1} = 2 + 1$$

= 3 × 1

Line 1

Result is true for n = 1

Step 2: Assume true for n = k

$$2^k + (-1)^{k+1} = 3m \text{ (m is an integer)}$$
 Line 2

Step 3: To prove true for n = k + 1

$$2^{k+1} + (-1)^{k+1+1} = 2(2^k) + (-1)^{k+2}$$
 Line 3
= $2[3m + (-1)^{k+1}] + (-1)^{k+2}$ Line 4
= $2 \times 3m + 2 \times (-1)^{k+2} + (-1)^{k+2}$
= $3[2m + (-1)^{k+2}]$

Which is a multiple of 3 since m and k are integers.

Step 4: True by induction

In which line did Emma make an error?

- (A) Line 1
- (B) Line 2
- (C) Line 3
- (D) Line 4

Section II (60 marks)

Attempt Questions 11 - 14. Allow about 1 hour and 45 minutes for this section

Questions 11 (15 marks) Use a SEPARATE writing booklet.

(a) Use the substitution $u = \cos x + 1$, find the exact value of the following integral:

$$\int_{0}^{\frac{\pi}{2}} e^{\cos x + 1} \sin x \, dx$$

(b) (i) Express $6\cos\theta + 8\sin\theta$ in the form $R\cos(\theta - \alpha)$, where R > 0, and $0 \le \alpha < 2\pi$.

Give α correct to 1 decimal place.

2

(ii) Hence calculate the maximum value of $\frac{4}{12 + 6\cos\theta + 8\sin\theta}$

(c) Use the unit circle and the vectors in the diagram to derive the expansion of $\cos(\alpha + \beta)$

A man throws a ball from a point O on the horizontal ground so that it lands on the ground at a point P distant 80 m from him. The ball reaches the highest point 20 m above the ground. Neglect the sizes of the man and the ball. Take $g = 10 \ m/s^2$

- (d) (i) Find the vertical and horizontal components of velocity of projection of the ball.
 - (ii) Find the velocity of projection of the ball.

(iii) Find the further distance from the other boy B who starts running at the speed of 5 m/s

to catch the ball at the point P simultaneously.

2

2

Questions 12 (15 marks) Use a SEPARATE writing booklet

- (a) The roots of $x^3 x^2 5x + 2 = 0$ are α, β, γ
- 1 Show that $\beta + \gamma = 1 - \alpha$ (i)
- Using part (i), and similar results, evaluate $\frac{\beta + \gamma}{\alpha} + \frac{\gamma + \alpha}{\beta} + \frac{\alpha + \beta}{\gamma}$ 2 (ii)
- (b) Use mathematical induction to prove that $15^n + 2^{3n} 2$ is a multiple of 7 for $n \ge 1$ 3
- (c) Points A, B have position vectors $\overrightarrow{OA} = 3i 2j$, $\overrightarrow{OB} = -i + j$
 - (i) Find the unit vector along \overline{AB} 1
 - (ii) Suppose P is a point on AB such that $\overrightarrow{OP} \perp \overrightarrow{AB}$, Find \overrightarrow{OP} 2
- (d) A particle is projected across horizontal ground from the origin O. Its initial velocity vector is 12i + 5j and its acceleration vector is 0i - 10j.

(i) the initial speed of the particle

Find:

- 1
- (ii) the angle of projection, correct to the nearest minute 1
- (iii) Beginning with its acceleration vector, derive the velocity at any time t in the form

$$\mathbf{v} = \dot{\mathbf{x}}\underline{i} + \dot{\mathbf{y}}\underline{j}$$

- (iv) Show that its cisplacement at time t is $\underline{r} = (12t)\underline{i} + (5t 5t^2)\underline{j}$ 1
- (v) Find the maximum height of the particle. 1

Questions 13 (15 marks) Use a SEPARATE writing booklet

(a)
$$f(x) = \sqrt{4 - \sqrt{x}}$$

- (i) Explain why the domain of f(x) is $0 \le x \le 16$
- (ii) Prove f(x) is a decreasing function and find its range.
- (iii) Since f(x) is monotonic, an inverse function exists. Find the domain and range of $f^{-1}(x)$. Hence find $f^{-1}(x)$.
- (b) (i) Given that $\frac{d}{dx}(\sin 2x 2x\cos 2x) = 4x\sin 2x$. The curve shown below is part of the function $y = x\sin 2x$. Write down the coordinates of the points A and B.
 - (ii) If the area bounded by the curve and the line AB is k times that of the area of the region bounded by the curve and the line OA. Determine the value of k.

(iii) Show that $\int_{0}^{\frac{\pi}{8}} x \sin 2x \, dx = \frac{\sqrt{2}}{32} (4 - \pi)$

Questions 13 (Continued)

- (c) On a roulette wheel, there are 18 red numbers, 18 black numbers, and 1 green number. A ball is dropped onto the spinning wheel and lands on one of the numbers randomly. Each result is independent. A gambler bets that the ball will land on any of the black numbers.
 - (i) Define the gambler's bet as a Bernoulli random variable X and give its mean and variance.
 - (ii) If the gambler makes the same bet five times, let the random variable Y be the number of times the gambler wins. Describe the distribution of Y, and give its mean and variance.
 - (iii) If the gambler makes the same bet five times, what is the probability he will win more times than he loses? Give your answer correct to three decimal places.

Questions 14 (15 marks) Use a SEPARATE writing booklet

- (a) Given that $t = \tan \frac{\theta}{2}$, then $\sin \theta = \frac{2t}{1+t^2}$ and $\cos \theta = \frac{1-t^2}{1+t^2}$ for any angle θ .

 (DO NOT PROVE THIS)
 - (i) Show that the equation $7\cos\theta + 4\sin\theta + 5 = 0$ can be written as $t^2 4t 6 = 0$
 - (ii) θ_1, θ_2 are the solutions of the equation $7\cos\theta + 4\sin\theta + 5 = 0$ for $(\theta_1 > 0, 0 < \theta_2 < 2\pi)$

Then without solving for
$$\theta$$
, show that $\cot \frac{\theta_1}{2} + \cot \frac{\theta_2}{2} = -\frac{2}{3}$

- (b) Show that, among any four integers, there are two integers whose difference is divisible by 3.
- (c) A tank contains 2500 litres of water and 25 Kg of dissolved salt. Fresh water enters the tank at a rate of 20 litres per minute. The solution is thoroughly mixed at all times and is drained from the tank at a rate of 15 litres per minute.
 - (i) Using y for the amount of salt in the tank in kilograms (as a function of time), and t for time in minutes, show that the concentrations of salt in the tank at time t can be given by $C = \frac{y}{2500 + 5t}$
 - (ii) Explain why the rate of change of salt in the tank can be given by y' = -15C
 - (iii) Find y, the amount of salt in the tank as a function of t.
- (d) Find the six solutions of the equation:

$$\sin\left(2\cos^{-1}\left(\cot\left(2\tan^{-1}x\right)\right)\right) = 0$$

Give your answers as simplified surds

Ext | Trial 2020 (CHS)

1. B 2. A 3. B 4. C 5. D 6. C 7. A 8. A 9. D 10. D

a) Se cosx +1 sin x dx

u=cosx+1

oloc = du -sinx x= 1 u= 1

22-0 4= 2

I = | e" . - du

= Je4 du

= (e u J2

(2) = e² - e

11) 12+6000+85100

= 12+10 (05(0 - 0.4)

max at 10605 (0-0.9) = -1

:. $max = \frac{4}{12-10} = \frac{4}{2}$ = 2

c) 605(d+p)= R. 9 |2||2|

d |P|=|q|=1

:. cos (2+B) = g. g

R = cosai + sinaj

2 = 658 i - sing i

. P. 9 = cosa cosp - sindsipp

:. 65 (d+B) = 65 x 65 B- sind sin B

b) i) 6 cosp + 8 sino = R 605(0-2)

:. RLOSZ=6 $R \sin d = 8$: $tand = \frac{4}{3} = 0.9$

R2 (512 1 + 1051)= 36+64

10 605 (0-0.9) (2)

di a at y=0 horiz $t(-5t+16ind) = 0 t \neq 0$ $t = \frac{1}{5}$ x =0 x= Ot+c at t=0 1 = V cos 2 = C $x = V\left(\frac{V \sin \lambda}{5}\right) \cos \lambda$ x = 1 605 2 :. 80 = V Sind 65 d x= Vt 605 2+C, at t=0 x=0 4 VSind=20 :. 80 = V 65 d. 20 : x= V+ 652 · VLOS d = 20 y=-9 y = - gt + cz at t=0 y = vsind=cz west a borize components y= -5t2+ vtsind + 13

at t=0 y=0= 13 of velocity = 20 m/s : y = -5t2+ vt sind ii) V/120 v2= 202+202 max height at dy =0 V = 2052 m/s :. -10t + VSIN 2=0 : t= VSInd iii) woing x=Vtcos x VLOS 2 = 20, x=80 $y = -8 \left(\frac{v^2 \sin^2 \alpha}{100} \right) + v \sin \alpha \left(\frac{v \sin \alpha}{10} \right)$: time of flight = $\frac{90}{20}$ t =45 $20 = -V^2 \sin^2 x + V^2 \sin^2 x$ 10 $5 | T | Dist = 5 \times 4$ = 20 m (2) N2512 = 400 as V, Sind 70 VSIA = 20/ or 100 m from non

$$Q12$$
a) $\chi^3 - \chi^2 - 5\chi + 2 = 0$

$$= \frac{2 2\beta}{2\beta \delta} - 3$$

$$= \begin{pmatrix} -5 \\ -2 \end{pmatrix} -3$$

① Prose
$$n=1$$

LH $6 = 15^{1} + 2^{3(1)} - 2$
 $= 15 + 8 - 2$
 $= 21$

② Assume true
$$n=1$$
, $k = 7$]

ie

 $15^{k} + 2^{3k} - 2 = 79$ gree int

 $15^{k} = 79 - 2^{3k} + 2$

(3) RTP
$$n=k+1$$

ie $15^{k+1} + 2^{3(k+1)} - 2 = 7M$
LHS m is the int
=15.15^k + 2^{3k} . $2^3 - 2$

c)
$$a = \begin{pmatrix} 3 \\ -2 \end{pmatrix} b = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

$$= \begin{pmatrix} -3 \\ 2 \end{pmatrix} + \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

$$= \begin{pmatrix} -4 \\ 3 \end{pmatrix}$$

$$= \begin{pmatrix} -4 \\ 3 \end{pmatrix}$$

$$= \begin{pmatrix} -4 \\ 5 \end{pmatrix}$$

$$= \begin{pmatrix} -4 \\ 3 \end{pmatrix} = 0$$

$$= \begin{pmatrix}$$

$$\frac{30 \times 4 \times 4}{120 \times 4} = 0$$

$$\frac{-12 \times 4}{9} = 0$$

$$\frac{3}{120 \times 4} = 0$$

$$\frac{25}{9} = 4 = 0$$

$$\frac{3}{25} =$$

$$x = 12t + c_2$$
 $y = -10t^2 + 5t + c_3$

$$x = 12t$$
 $y = -5t^2 + 5t$

$$y = -5(0.5)^{2} + 5(0.5)$$

$$= 1.25 \text{ m}$$

For 52: 270

For 14-52 : 4-5270

4 7 反

16 3 x (x70)

.. 0 \ x \ | 16

(I mark)

(ii)
$$f(x) = (4-x^{\frac{1}{2}})^{\frac{1}{2}}$$

 $f'(x) = \frac{1}{2}(4-x^{\frac{1}{2}})^{\frac{1}{2}} \cdot -\frac{1}{2}x^{-\frac{1}{2}}$
 $= -\frac{1}{4\sqrt{2}\sqrt{4-\sqrt{2}}}$

5× 30 ∀x 54-5x >0 4x

$$f'(n) = \frac{-1}{4(+)(+)}$$

... f(x) is a decreasing function Range can be found by evaluating

f(u) at endpoints

$$f(0) = 2$$

--- Range y € [0,2]

(2 marks)

(iii)
$$f(x)$$
 D: $x \in [0, 16]$
R: $y \in [0, 2]$
 $f'(x)$ D: $x \in [0, 2]$
R $y \in [0, 16]$
F: $y = \sqrt{4-12}$
 $f': x = \sqrt{4-12}$
 $x^2 = 4-5y$
 $x^2 = 4-x^2$
 $y = (4-x^2)^2$ for $(0 \le x \le 2)$

b) (i)
$$x \sin 2x = 0$$

 $x = 0$ or $\sin 2x = 0$
 $2x = 0, \pi, 2\pi, ...$
 $x = 0, \frac{\pi}{2}, \pi, ...$
 $\therefore A(\frac{\pi}{2}, 0)$
 $\Rightarrow B(\pi, 0)$
(I mark)

(ii)
$$A_{2} = kA_{1}$$

$$-\int_{1}^{\pi} x \sin 2x \, dx = k \int_{0}^{\pi} x \sin 2x \, dx$$

$$-\frac{1}{4} \left[\sin 2x - 2x \cos x \right]_{1}^{\pi} = k \int_{0}^{\pi} \sin 2x - 2x \cos x \int_{0}^{\pi}$$

$$3\pi = k \int_{1}^{\pi} (2 \cos x) \, dx$$

$$= k \int_{1}^{\pi} (2 \cos x) \, dx$$

$$= k \int_{1}^{\pi} (2 \cos x) \, dx$$

$$= k \int_{1}^{\pi} (2 \cos x) \, dx$$

(2 marks)

$$(iii)$$

$$= \begin{cases} \sqrt{8} \times \sin 2x \, dx \\ = \frac{1}{4} \left[\sin 2x - 2x \cos 2x \right] \\ = \frac{1}{4} \left[\sqrt{2} - \frac{1}{4} \times \sqrt{2} \right] \\ = \frac{1}{4} \left[\sqrt{2} \left(1 - \frac{1}{4} \right) \right] \\ = \sqrt{2} \left(4 - \frac{1}{4} \right) \\ = \sqrt{2} \left(4 - \frac{1}{4} \right)$$

(2 marks)

(c) (i) This is a Bernoull!

Handom variable with p = 18/37.

This may be written $X \sim Ber\left(\frac{18}{37}\right)$ or $X \sim Bin\left(\frac{19}{37}\right)$. $M = \frac{18}{37}$, $L^2 = \frac{19}{37} \times \frac{19}{37} = \frac{342}{1369}$.

(1 mark)

(ii) This is a binomial bondom

Variable with p = 18/37 and h = 5. This may be written

You Bin $\left(\frac{18}{37}, \frac{15}{5}\right)$ $M = 5 \times \frac{18}{37} = \frac{90}{37} \approx 2.43$ $\lambda^2 = 5 \times \frac{18}{37} \times \frac{19}{37} = \frac{1710}{1369} \approx 1.25$

(2 marks)

(iii) This is a binomial probability, and We are looking for P(W23), whore W is the number of Wins in five beds P(W23) = P(W=3) +P(W=4) +P(W=5) = (3) (37) (37) + (4) (37) (18

(2 marks)

2020 Trial Extension 1 Q14 Solutions

a) i)
$$\frac{7 \times \left(\frac{1-t^2}{1+t^2}\right) + 4 \times \left(\frac{2t}{1+t^2}\right) + 5 = 0}{\left(\frac{1+t^2}{1+t^2}\right)}$$

$$7(1-t^2) + 8t + 5(1+t^2) = 0$$

Since roots are
$$\theta$$
, and θ_2 , let $t_1 = \tan\left(\frac{\theta_1}{2}\right)$ and $t_2 = \tan\left(\frac{\theta_2}{2}\right)$
hence $\operatorname{Cof}\left(\frac{\theta_1}{2}\right) = \frac{1}{t_1}$ and $\operatorname{Cof}\left(\frac{\theta_2}{2}\right) = \frac{1}{t_2}$

and
$$t_1 \times t_2 = -6$$

So Cot
$$\left(\frac{\theta_1}{2}\right)$$
 + Cot $\left(\frac{\theta_2}{2}\right)$ = $\frac{1}{t_1}$ + $\frac{1}{t_2}$

$$=\frac{4}{-6}=\frac{-2}{3}$$
 as Reg.

b) Integers can go into 3 pigeon holes. When the integer is divided by 3

By Vigeonhole Principle at least 1 hox contains 2 integers.

It the 2 integers are in Box (2) where x = 0.12 then the integers can be written as 3M + x and 3N+2, where Mand N are integers.

```
c) i) Amount of liquid in the tank, at f minutes is
                      A= 2500+ 20t -15t
                         = 2500 +5t
      Concentration of Salt = Amount of Salt
                        Amount of Water
                      · C = 9
Rate of Change of Salt = Concentration of Salt per litre \times Amount of liquid

... y' = C \times (-15) leaving the tank.

= -15 C
  Hence \int \frac{1}{y} \cdot dy = -3 \int \frac{5}{2500+5t} \cdot dt
  So lu |y| = -3 lu | 2500+5t | + K
       In |y| + 3 In |2500+5+ | = K
            when t=0, y=25 So 25 = A : A = 25 \times 2500^3 (2500 + 5 \times 0)^3
                      Hence y = 25 \times 2500^3 (2500+5t)^3
```

```
d) let \alpha = tan^{-1}x then x = tan x
           Now Cot (2 tan-1x) = 1
              Cot 2d = Ton2x = 1-tand
                    \therefore \cot 2\alpha = \frac{1-x^2}{2\pi}
    Hence Sin (2 Cos (\frac{1-x^2}{2x}) = 0
     Let \beta = \cos^{-1}\left(\frac{1-x^2}{2x}\right) then \cos \beta = \frac{1-x^2}{2x} and \sin \beta = 0
       Now Sin 2 B = 2 Sin B Cos B
                                                      :. 3rd Side = \sqrt{(2x)^2 - (1-x^2)^2}
                                                     = \sqrt{4x^{2} - (1 - 2x^{2} + x^{4})}
= \sqrt{-2x^{4} + 6x^{2} - 1}
Hence \sin \beta = \sqrt{-2x^{4} + 6x^{2} - 1}
   So Sin d\beta = 2 \sin \beta \cos \beta = 2 \times \sqrt{-2c^{2} + 6x^{2} - 1} \times \frac{1 - x^{2}}{2x} = 0
  Which makes 1-x^2=0
                                         0R - 2C^{4} + 6x^{2} - 1 = 0
                                                     2c^{4}-6x^{2}+1=0
               :. 7c= + 1
                                                     2c^{4} - 62c + 9 = 8
                                                         (2c^2-3) = 8
                                                           x^2 = 3 + 2/2
                                                                 = 1 ± 2/2 + 2
                                                              = (1 \pm \sqrt{2})^2
                                                         \therefore x = \pm (1 \pm \sqrt{2})
       .. The six solutions are = 1 + 1+12, +1-12
```