4. Sequential Games with Incomplete Information

Sequential rationality with incomplete information (Dynamic Bayesian game)

Motivation

- Many situations of incomplete information cannot be represented as static or strategic form games.
- Instead, we need to consider extensive form games with an explicit order of moves—or dynamic games.
- In this case, as mentioned earlier in the lectures, we use information sets to represent what each player knows at each stage of the game.
- Since these are dynamic games, we will also need to strengthen our Bayesian Nash equilibria to include the notion of perfection—as in subgame perfection.
- The relevant notion of equilibrium will be Perfect Bayesian Equilibria, or Perfect Bayesian Nash Equilibria.

Introduction Complete information Incomplete information Static Games **Static Games** with Incomplete Information (Normal Form Games) Simultaneous (static game) Nash Equilibrium Bayesian Nash Equilibrium (NE) (BNE) **Dynamic Games Dynamic Games** with Perfect Information with Incomplete Information Sequential (dynamic game) Subgame-Perfect Equilibrium Bayesian Perfect Equilibrium (SPE) (BPE)

- We have defined a subgame perfect equilibrium to include the notion of perfection (sequential rationality) in dynamic games with complete information
- We need to strengthen our Bayesian Nash equilibria to include the notion of perfection—as
 in subgame perfection

Introduction Complete information Incomplete information **Static Games Static Games** (Normal Form Games) with Incomplete Information Simultaneous (static game) Nash Equilibrium Bayesian Nash Equilibrium (NE) (BNE) **Dynamic Games** with Perfect Information Subgame-Perfect Equilibrium Sequential (SPE) (dynamic game) **Dynamic Games Dynamic Games** with **Incomplete Information** with Imperfect Information Bayesian Perfect Equilibrium (BPE) Restriction on belief over off-policy

Sequential Equilibrium (SE)

Complete information Incomplete information Static Games **Dynamic Games** with Incomplete Information (Normal Form Games) Simultaneous (static game) Nash Equilibrium Bayesian Nash Equilibrium (NE) (BNE) Dynamic Games with Perfect Information Subgame-Perfect Equilibrium Sequential (SPE) (dynamic game) **Dynamic Games Dynamic Games** with **Incomplete Information** with Imperfect Information Bayesian Perfect Equilibrium (BPE) Restriction on belief over off-policy Sequential Equilibrium (SE)

- This chapter applies the idea of **sequential rationality** to dynamic games of incomplete information (Bayesian Games)
- In Bayesian Games, we have shown that some players will have information sets that correspond to the set of types that their opponents may have
 - Opponent players' types are resulted by Nature's choice
 - Belief concept was devised to capture uncertainties over the type of others

Dynamic games with **imperfect** information

Dynamic games with incomplete information

- This chapter applies the idea of **sequential rationality** to dynamic games of incomplete information (Bayesian Games)
- In Bayesian Games, we have shown that some players will have information sets that correspond to the set of types that their opponents may have
 - Opponent players' types are resulted by Nature's choice
 - Belief concept was devised to capture uncertainties over the type of others
- We will discuss two aspects in defining an equilibrium concept for Bayesian Game
 - 1. Sequentially rational with regard the belief set
 - 2. The consistency of the beliefs with respect to
 - ✓ the environment (Nature)
 - ✓ the strategies of all other players
- We want to focus attention on equilibrium play in which players play best-response actions both
 - On the equilibrium path
 - Off the equilibrium path (points in the game that are not reached)

Expressing Bayesian Dynamic Games

- In Bayesian games (static game with incomplete information), we have discussed three representations for the games:
 - Information sets
 - Extensive form game with imperfect information set with Nature
 - Epistemic types
- We will use "Extensive form game with imperfect information set with Nature" representation because
 - Easy to expand to sequential (dynamic) game setting
 - We can use the solution concepts for "Extensive form game with imperfect information"

Bayesian games represented by epistemic types

Definition (Dynamic Bayesian game)

A Bayesian game is a tuple (N, A, Θ, p, u) where:

- *N* is a set of agents
- A sequence of histories H^t at the t-th stage of the game, each history assigned to one of the players (or to Nature)
- $A = A_1 \times \cdots \times A_n$, where A_i is the set of actions available to player i;
- $\Theta = \Theta_1 \times \cdots \times \Theta_n$, where Θ_i is a set of types for each player $i : \theta_i \in \Theta_i$
- $p:\Theta\mapsto [0,1]$ is a common prior over types
- $I=(I_1,\ldots,I_n)$, where $I_i=(I_{i,1},\ldots,I_{i,k_i})$, is an information partition, which determine which of the histories assigned to a player are in the same information set
- $u = (u_1, ..., u_n)$, where $u_i : A \times \Theta_i \mapsto \mathbb{R}$ is the utility function of player i, which is type dependent, i.e.,
 - $u_i(s, \theta_i)$ is the utility function with a type $\theta_i \in \Theta_i$
 - $u_i(s,\theta)$ is the utility function with $\theta=(\theta_1,\dots,\theta_n)\in\Theta$
- The assumption is that all of the above is common knowledge among the players, and that each agent knows his own type

(A simple entry game)

Extensive form game Subgame-Perfect equilibrium

- Player 1: A potential entrant to an industry that has a monopolistic incumbent, player 2
 - Can decide to enter the market (Enter)
 - Can decide not to enter (Stay out)
- Player 2: If player 1 enters the market, player 2
 - Can Fight with player 1
 - Can Accommodate with player 1

(A simple entry game)

Extensive form game
Subgame-Perfect equilibrium

- **Player 1**: A potential entrant to an industry that has a monopolistic incumbent, player 2
 - Can decide to enter the market (Stay out)
 - Can decide not to enter (Enter)
- Player 2: If player 1 enters the market, player 2
 - Can Fight with player 1
 - Can Accommodate with player 1

	F	\boldsymbol{A}
0	0,2	0,2
E	-1,-1	1,1

Nash equilibria = $\{(O, F), (E, A)\}$ Subgame perfect equilibrium = (E, A)

- Now, consider "incomplete information"
- Imagine that the entrant may be one of two types
 - Competitive (C): have a technology that is as good as that of the incumbent
 - Weak (W): have a inferior technology
- A particular case of this story can be captured by the following sequence of events:
 - 1. Nature chooses the entrant's type, which can be weak (W) or competitive (C), so that $\theta_1 \in \{W, C\}$, and let $P\{\theta_1 = C\} = p$. The entrant knows his own type but the incumbent knows only the probability distribution over types (common prior)
 - 2. The entrant chooses between E and O as before, and the incumbent observes the entrant's choice
 - 3. After observing the action of the entrant, and it if the entrant enters, the incumbent can choose between A and F

Extensive form game
Subgame-Perfect equilibrium

Sequentially rationality

Bayesian game
Bayesian Nash equilibrium

Rationality based on belief

Dynamic Bayesian game Perfect Bayesian Nash equilibrium

Sequential rationality with consistent belief

- Let's convert the game into a normal form.
- Player 1 has four pure strategies
 - Two different types $\theta_1 \in \{W, C\}$
 - $s_1(\theta_1)$ is the action chosen by player 1 when the type is θ_1
 - For each type, two possible actions $s_1(\theta_1) \in \{0, E\}$:
 - Thus, a pure strategy $s_1 = (s_1(\theta_1 = C), s_1(\theta_1 = W)) \in S_1 = \{00, 0E, EO, EE\}$
- Player 2 has two pure strategies
 - Only 1 information set that follows entry
 - Two actions are available in that information set $s_2 \in S_2 = \{A, F\}$

- To convert the game into normal form, an expected payoff should be computed
- The expectation is over the randomizations caused by Nature (Ex Ante). For example,

$$E[u_1(s_1, s_2)] = E[u_1((OE), A)] = p \times 0 + (1 - p) \times (-1) = p - 1$$

$$E[u_2(s_1, s_2)] = E[u_2((OE), A)] = p \times 2 + (1 - p) \times 1 = p + 1$$

These are expected payoffs in this table, so finding NE in this table means finding Bayesian Nash Equilibrium.

- Pure strategy Bayesian Nash equilibria:
 - $\{(OO, F), (EO, A)\}$
- Which of these two equilibria survives as a subgame-perfect equilibrium in the expensive-form game?
 - Both BNE survives because there is **only a single subgame**, the game itself!

- First Bayesian Nash Equilibrium (00, F)
 - Player 2 threatens to fight, but if he finds himself in the information set that follows entry, he has a strict best response which is to accommodate
 - Thus the Bayesian Nash equilibrium (00, F) involves non-credible behavior of player 2 that is not sequentially rational

- Second Bayesian Nash Equilibrium (EO, A)
 - The Bayesian Nash equilibrium (EO, A) is a Perfect Bayesian Nash Equilibrium
 - Perfect Bayesian Nash Equilibrium requires more rigorous structure so that sequential rationality to be well defined
 - We will describes the requirements for Perfect Bayesian Nash Equilibrium

- In the previous game, we need to make statements about the sequential rationality of player 2 within each of his information sets even though the information set is not itself the first node of a proper subgame
- We need to be able to make statements like "in this information set player 2 is playing a best response, and therefore his behavior is sequentially rational."
- To describe a player's best response within his information set, we will have to ask what the player is playing a best response to
 - We must include beliefs in the analysis
- In conclusion, we need to consider the beliefs of player 2 in his information sets and then analyze his best response to these beliefs

Definition (On & Off the equilibrium)

Let $s^* = (s_1^*, ..., s_n^*)$ be a Bayesian Nash equilibrium profile of strategies in a game of incomplete information.

- We say that an information set is on the equilibrium path if given s^* and given the distribution of types, it is reached with positive probability.
- We say that an information set is off the equilibrium path if given s^* and the distribution of types, it is reached with zero probability

Player 1's information set (singleton) is always reached Player 2's information set is reached with probability p

Player 1's information set is always reached Player 2's information set is never reached

Definition (A system of beliefs μ)

A **system of beliefs** μ of an extensive-form game assigns a probability distribution over decision nodes to every information set. That is, for every information set I and every decision node $h \in I$, $\mu(h) \in [0,1]$ is the probability that player i who moves in information set I assigns to his being at h, where $\sum_{h \in I} \mu(h) = 1$ for every I

 μ_E : Player 2's belief that he is at the node corresponding to player 1 being competitive (C) and playing E

 $1 - \mu_E$: Player 2's belief that he is at the node corresponding to player 1 being Week (W) and playing E

Requirement 1 for Perfect Bayesian Nash Equilibrium

Every player will have a well-defined belief over where he is in each of his information sets. That is, the game will have a system of beliefs

Requirement 2 for Perfect Bayesian Nash Equilibrium

Let $s^* = (s_1^*, ..., s_n^*)$ be a Bayesian Nash equilibrium profile of strategies. We require that in all information sets beliefs that are on the equilibrium path be **consistent** with Bayles's rule.

- How should the beliefs in a system of beliefs be determined?
 - Recall that for Nash equilibrium, the beliefs of players about the strategies of their opponents to be correct
- In games of incomplete information, we require similar requirements. Two constrains will influence whether a player's beliefs are correct
 - Endogenous constraint on beliefs
 - Constrained by the behavior of the other players
 - Which are the variables that players can control
 - Exogenous constraint on beliefs
 - Constrained by the choice of Nature
 - Which is not something that the players control but rather part of the environment

Requirement 2 for Perfect Bayesian Nash Equilibrium

Let $s^* = (s_1^*, ..., s_n^*)$ be a Bayesian Nash equilibrium profile of strategies. We require that in all information sets beliefs that are on the equilibrium path be consistent with Bayles's rule.

given the suggested strategy

$$\mu_E = P(C|E) = \frac{P(C \cap E)}{P(E)} = \frac{P(C)P(E|C)}{P(C)P(E|C) + P(W)P(E|W)} = \frac{ps_C^E}{ps_C^E + (1-p)s_W^E}$$

The pure strategy EO is just a special case with $s_C^E=1$ and $s_W^E=0 \Rightarrow \mu_E=\frac{p\times 1}{p\times 1+(1-p)\times 0}=1$. This can be solved when these values are given.

Requirement 2 for Perfect Bayesian Nash Equilibrium

Let $s^* = (s_1^*, ..., s_n^*)$ be a Bayesian Nash equilibrium profile of strategies. We require that in all information sets beliefs that are on the equilibrium path be consistent with Bayles's rule.

Pure strategy case:

$$\mu_E = P(C|E) = \frac{P(C \cap E)}{P(E)} = \frac{P(C)P(E|C)}{P(C)P(E|C) + P(W)P(E|W)} = \frac{ps_C^E}{ps_C^E + (1-p)s_W^E}$$

The pure strategy EO is just a special case with $s_C^E=1$ and $s_W^E=0 \Rightarrow \mu_E=\frac{p\times 1}{p\times 1+(1-p)\times 0}=1$

Requirement 3 for Perfect Bayesian Nash Equilibrium

At information sets that are off the equilibrium path, any belief can be assigned to which Bayes' rule does not apply

$$\mu_{E} = P(C|E) = \frac{P(C \cap E)}{P(E)} = \frac{P(C)P(E|C)}{P(C)P(E|C) + P(W)P(E|W)} = \frac{ps_{C}^{E}}{ps_{C}^{E} + (1-p)s_{W}^{E}} = \frac{p \times 0}{p \times 0 + (1-p) \times 0}$$

• Bayes' rule does not apply because given the suggested strategy both the numerator and the denominator are zero \rightarrow Setting μ_E can be any number in the interval [0,1]

Requirement 4 for Perfect Bayesian Nash Equilibrium

Given their beliefs, players' strategies must be sequentially rational. That is, in every information set players will play a best response to their beliefs.

- Consider player i with beliefs over information sets derived from the beliefs system μ , given player i's opponents playing s_{-i} .
- Above requirement says that if I_i is an information set for player i, then it must be true the he is playing a strategy s_i that satisfies

$$E[u_i(s_i, s_{-i}, \theta_i) | I_i, \mu] \ge E[u_i(s_i', s_{-i}, \theta_i) | I_i, \mu]$$
 for all $s_i' \in S_i$

 \checkmark Where expectations are given over the beliefs of player i using μ

Definition (Perfect Bayesian (Nash) Equilibrium)

A Bayesian Nash equilibrium profile $s^* = (s_1^*, ..., s_n^*)$ together with a system of beliefs μ constitutes a perfect Bayesian equilibrium for an n —player game if they satisfy requirements 1-4

 This definition puts together our four requirements in a way that will guarantee sequentially rationality

- Because player 2's information set is off the equilibrium, we can arbitrarily assign probability distribution on the information set for player 2.
- It contradicts requirement 4: Playing F is not best response!

→We need to assign a belief that make the strategy of plyer 2 is rational

How to compute Perfect Bayesian (Nash) Equilibrium

- First find all the profiles of strategies in the Bayesian game that are Bayesian Nash equilibria
- Then, we can systemically check for each Bayesian Nash equilibrium to see whether we can find a system of beliefs so that together they constitute a perfect Bayesian equilibrium

Proposition (Perfect Bayesian (Nash) Equilibrium)

If a profile of (possibly mixed) strategies $s^*=(s_1^*,\dots,s_n^*)$ is a Bayesian Nash equilibrium of a Bayesian game Γ , and if s^* induces all the information sets to be reached with positive probability, the s^* , together with the belief system μ^* uniquely derived from s^* and the distribution of types, constitutes a perfect Bayesian equilibrium for Γ

 $s^* = ((EO), A)$ with $\mu_E = 1$ is PBNE because

- It is Bayesian Nash equilibrium
- All the information sets are reached with positive probability
- $\mu_E = 1$ is consistent with s^*

Sequential Equilibrium

Motivations:

- Perfect Bayesian equilibrium has become the most widely used solution concept for dynamic games with incomplete information
- There are, however, examples of games in which the perfect Bayesian equilibrium solution concept allows for equilibria that seem unreasonable
 - > The reason for this is that requirement 3 of the perfect Bayesian equilibrium concept places no restrictions on beliefs that are off the equilibrium path

Requirement 3 for Perfect Bayesian Nash Equilibrium

At information sets that are off the equilibrium path, any belief can be assigned to which Bayes' rule does not apply

Sequential Equilibrium

Examples:

• If player 1 plays *D* with a positive probability then by requirement 2, the beliefs of player 2 are completely determined by Bayes' rule

$$\mu(x_1) = P(T1|D) = \frac{P(T1 \cap D)}{P(D)} = \frac{P(T1)P(D|T1)}{P(T1)P(D|T1) + P(T2)P(D|T2)} = \frac{\frac{1}{2}s_{T_1}^D}{\frac{1}{2}s_{T_1}^D + \frac{1}{2}s_{T_2}^D} = \frac{1}{2}$$

$$(s_{T_1}^D = s_{T_2}^D)$$

- With these beliefs player 2 must play L
- If player 2 play L then player 1's best response is to play D
- Thus, a pair of strategies (D, L) together with the implied beliefs $\mu_2(x_1) = \mu_2(x_2) = 1/2$ is PBNE

Sequential Equilibrium

Examples:

- Note the pair of strategies (U, R) can also be supported as a perfect Bayesian equilibrium
- If player 1 play U, by requirements 2 and 3, beliefs are not restricted in player 2's information set
 - To make player 2's action to be best, we can assign player 2's belief, e.g., $\mu_D=\mu_2(x_1)>2/3$ (for requirement 4) : $u_2(R,\mu)\geq u_2(L,\mu) \rightarrow \mu_D=\mu_2(x_1)>2/3$
 - As a result, plying U for player 1 is also a best response
- We need a more strong equilibrium refinement to narrow down.
 - > Put restrictions on the sorts of beliefs that players can hold in information set that are off the equilibrium path

Sequential Equilibrium

Definition (Consistency)

A Profile strategies $s^* = (s_1^*, ..., s_n^*)$, together with a system of beliefs μ , is **consistent** if there exists a sequence of nondegenerate mixed strategies, $\{s^k\}_{k=1}^{\infty}$, and a sequence of beliefs that are derived from each s^k according to Bayes' rule, $\{\mu^k\}_{k=1}^{\infty}$, such that $\lim_{k\to\infty} (s^k, \mu^k) = (s^*, \mu^*)$

- The only consistent beliefs for player 2 are $\mu(x_1) = \mu(x_2) = \frac{1}{2}$
- the requirement that $\{s^k\}_{k=1}^{\infty}$ be a sequence of nondegenerate mixed strategies, which implies that each player is mixing among all his actions with positive probability.
- Then, every information set can reached with a positive probability, the beliefs $\mu(x_1)=1/2$ can be derived from Bayes' rule
- So, any sequence of the form required by consistency the limit of beliefs must be $\mu(x_1) = \mu(x_2) = \frac{1}{2}$

Sequential Equilibrium

Definition (Sequential equilibrium)

A Profile strategies $s^* = (s_1^*, ..., s_n^*)$, together with a system of beliefs μ^* , is a **sequential equilibrium** if (s^*, μ^*) is a **consistent** perfect Bayesian equilibrium

• Every sequential equilibrium is a perfect Bayesian equilibrium, but the revers is not ture.

Nature

$$\frac{1}{2}$$
 $\frac{1}{2}$
 $\frac{1}$
 $\frac{1}{2}$
 $\frac{1}{2}$
 $\frac{1}{2}$
 $\frac{1}{2}$
 $\frac{1}{2}$

PBNE but not SE

Signaling Game

Introduction

- In games of incomplete information, there is at least one player who is uninformed about the type of another player.
- In some instances, it will be beneficial for players to reveal their types to their opponents

 "I am strong and hence you should not waste time and energy fighting me

• Of course even a weak player would like to try to convince his opponent that he is strong

• There has to be some credible means, beyond such "cheap talk" through which the player can signal his type and make his opponent believe him.

Signaling game procedure

- Nature chooses a type for player 1 that player 2 does not know, but cares about (common values)
- Player 1 has a rich action set in the sense that there are at least as many actions as there are types, and each action imposes a different cost on each type
- Player 1 chooses an action first, and player 2 then responds after observing player 1's choice
- Given player 2's belief about player 1's strategy, player 2 updates his belief after observing player 1's choice. Player 2 then makes his choice as a best response to this updated beliefs.

Signaling game procedure

Two important classes of perfect Bayesian equilibria

Pooling equilibria

- All the types of player 1 chose the same action
- Reveals nothing to player 2
- Player 2's beliefs must be derived from Bayes' rule only in the information sets that are reached with positive probability.
- All other information sets are reached with probability zero, player 2 must have beliefs that support his own strategy
- The sequential rational strategy of player 2 given his beliefs is what keeps player 1 from deviating from his pooling strategy

Separating equilibria

- Each type of player 1 chooses a different action
- Reveals his type in equilibrium to player 2
- Player 2's beliefs are thus well defined by Bayes' rule in all the information sets that are reached with positive probability
- If there are more actions than types for player 1, the player 2 must have beliefs in the information sets that are not reached, which in turn must support the strategy of player 2 and player 2's strategy support the strategy of player 1.

- Nature choose player 1's skill (productivity at work)
 - $\theta_1 \in \Theta_1 = \{H, L\}$
 - $Pr\{\theta_1 = H\} = p > 0$
- After player 1 learns his type, he can choose whether to get an MBA degree (D) or be contend with his undergraduate degree (U)
 - $a_1 \in A_1 = \{D, U\}$
 - The cost for MBA are
 - $c_H = 2$ for high-skilled type
 - $c_L = 5$ for low-skilled type
- Player 2 is an employer, who can assign player 1 to one of two jobs
 - Manager (M)
 - Blue-color worker (*B*)
 - $a_2 \in A_2 = \{M, B\}$
 - The market wages for two jobs are
 - $w_M = 10$ for Manager
 - $w_B = 6$ for Blue-color worker

	М	В
Н	10	5
L	0	3

$$\mu_{U} = P(H|U) = \frac{P(H \cap U)}{P(U)} = \frac{P(H)P(U|H)}{P(H)P(U|H) + P(L)P(U|L)} = \frac{ps_{H}^{U}}{ps_{H}^{U} + (1-p)s_{L}^{U}}$$

- If $s_H^U = s_L^U = 1$, then beliefs are defined only for $I_{2,1}$ ($\mu_U = p$)
- We have freedom for μ_D because information set $I_{2,2}$ is not reached

$$\mu_{D} = P(H|D) = \frac{P(H \cap D)}{P(D)} = \frac{P(H)P(D|H)}{P(H)P(D|H) + P(L)P(D|L)} = \frac{p(1 - s_{H}^{U})}{p(1 - s_{H}^{U}) + (1 - p)(1 - s_{L}^{U})}$$

- If $s_H^U = s_L^U = 0$, then beliefs are defined only for $I_{2,1}$ ($\mu_D = p$)
- We have freedom for μ_U because information set $I_{2,1}$ is not reached

- Now, we are ready to proceed to find the perfect Bayesian equilibria in the Master's Game
- Each player has two information sets with two actions in each of these sets
 - $s_1 = a_1^H a_1^L \in A_1 = \{UU, UD, DU, DD\}$
 - where a_1^H is the action taken when Nature chooses H
 - where a_1^L is the action taken when Nature chooses L
 - $s_2 = a_2^U a_2^D \in A_2 = \{MM, MB, BM, BB\}$
 - where a_2^U is the action taken when player 1 takes U
 - where a_2^D is the action taken when player 1 takes D

• We can convert the game into the following normal form game (p = 1/4)

$$u_1(UD, MB) = \frac{1}{4}10 + \frac{3}{4}1 = 3.25$$
 $u_2(UD, MB) = \frac{1}{4}10 + \frac{3}{4}3 = 4.75$

	MM	MB	ВМ	BB
UU	10, 2.5	10, 2.5	6, 3.5	6, 3.5
UD	6.25, 2.5	3.25, 4.75	5.25, 1.25	2.25, 3.5
DU	9.5, 2.5	8.5, 1.25	6.5, 4.75	4.5, 3.5
DD	5.75, 2.5	1.75, 3.5	5.75, 2.5	1.75, 3.5

How to compute Perfect Bayesian (Nash) Equilibrium

- First find all the profiles of strategies in the Bayesian game that are Bayesian Nash equilibria
- Then, we can systemically check for each Bayesian Nash equilibrium to see whether we can find a system of beliefs so that together they constitute a perfect Bayesian equilibrium

Proposition (Perfect Bayesian (Nash) Equilibrium)

If a profile of (possibly mixed) strategies $s^*=(s_1^*,\dots,s_n^*)$ is a Bayesian Nash equilibrium of a Bayesian game Γ , and if s^* induces all the information sets to be reached with positive probability, the s^* , together with the belief system μ^* uniquely derived from s^* and the distribution of types, constitutes a perfect Bayesian equilibrium for Γ

 $s^* = ((EO), A)$ with $\mu_E = 1$ is PBNE because

- It is Bayesian Nash equilibrium
- All the information sets are reached with positive probability
- $\mu_E = 1$ is consistent with s^*

• We can convert the game into the following normal form game (p = 1/4)

There are two pure strategies Bayesian Nash equilibria

	MM	MB	ВМ	BB
UU	10, 2.5	10, 2.5	6, 3.5	6, 3.5
UD	6.25, 2.5	3.25, 4.75	5.25, 1.25	2.25, 3.5
DU	9.5, 2.5	8.5, 1.25	6.5, 4.75	4.5, 3.5
DD	5.75, 2.5	1.75, 3.5	5.75, 2.5	1.75, 3.5

(1,3)

- s = (DU, BM) is the perfect Bayesian equilibrium because
 - ✓ All of the information sets are reached with positive probabilities
 - ✓ The derived beliefs from (DU, BM) are $\mu_U = 0$ and $\mu_D = 1$

$$\mu_{U} = P(H|U) = \frac{P(H)P(U|H)}{P(H)P(U|H) + P(L)P(U|L)} = \frac{ps_{H}^{U}}{ps_{H}^{U} + (1-p)s_{L}^{U}} = \frac{\frac{1}{4} \times 0}{\frac{1}{4} \times 0 + \frac{3}{4} \times 1} = 0$$

$$\mu_{D} = P(H|D) = \frac{P(H)P(D|H)}{P(H)P(D|H) + P(L)P(D|L)} = \frac{p(1-s_{H}^{U})}{p(1-s_{H}^{U}) + (1-p)p(1-s_{L}^{U})} = \frac{\frac{1}{4} \times 1}{\frac{1}{4} \times 1 + \frac{3}{4} \times 0} = 1$$

✓ Each player are best responding to these beliefs as seen from the induced normal form game or the extensive form game (already satisfied because we start from Bayesian eq.)

	MM	MB	ВМ	BB
UU	10, 2.5	10, 2.5	6,3.5	6, 3.5
UD	6.25, 2.5	3.25, 4.75	5.25 1.25	2.25, 3.5
DU	- 9.5, 2.5- -	-8.5, 1.25→	6.5, 4.75	4.5, 3.5
DD	5.75, 2.5	1.75, 3.5	5.75, 2.5	1.75, 3.5

- What about s = (UU, BB)?
 - \checkmark Information set $I_{2,1}$ is reached with positive prob. Thus, unique beliefs are derived as

$$\mu_{U} = P(H|U) = \frac{P(H)P(U|H)}{P(H)P(U|H) + P(L)P(U|L)} = \frac{ps_{H}^{U}}{ps_{H}^{U} + (1-p)s_{L}^{U}} = \frac{\frac{1}{4} \times 1}{\frac{1}{4} \times 1 + \frac{3}{4} \times 1} = \frac{1}{4}$$

 \checkmark At the information set $I_{2,1}$, for player 2 to play B is the best response because

$$u_2(UU, M) = \frac{1}{4}10 + \frac{3}{4}0 < u_2(UU, B) = \frac{1}{4}5 + \frac{3}{4}3$$

 \checkmark Similarly, for player 1 to play UU is the best response because

$$u_1(UU, BB) = \frac{1}{4}6 + \frac{3}{4}6 > u_1(UD, BB), u_1(DU, BB)u_1, (DD, BB)$$

- What about s = (UU, BB)?
 - ✓ Information set $I_{2,2}$ is **not reached** with positive prob. Thus, no unique beliefs is made

$$\mu_D = P(H|D) = \frac{P(H)P(D|H)}{P(H)P(D|H) + P(L)P(D|L)} = \frac{p(1-s_H^U)}{p(1-s_H^U) + (1-p)p(1-s_L^U)} = \frac{\frac{1}{4} \times 0}{\frac{1}{4} \times 0 + \frac{3}{4} \times 0} = ?$$

- ✓ We need to check if there are beliefs μ_D that support for player 2 to play B as a best response for player 2 in this information set $I_{2,2}$.
 - when $u_2(s_1, B) = 5\mu_D + 3(1 \mu_D) \ge 10\mu_D + 0(1 \mu_D)$, playing B is Best res.
 - Thus, $\mu_D \in \left[0, \frac{3}{8}\right]$ is valid belief for supporting for player 2 to play B
- ✓ Therefore, s = (UU, BB) with $\mu_U = 1/4$ and $\mu_D \in \left[0, \frac{3}{8}\right]$ constitutes a **perfect Bayesian** equilibrium

Summary

- The first perfect Bayesian equilibrium with strategies (DU, BM)
 - Different types of player chose different actions, thus using their actions to reveal to player 2 their true types
 - This is a **separating** perfect Bayesian equilibrium
- The Second perfect Bayesian equilibrium with strategies (UU, BB)
 - Both types of player do the same thing, thus player 2 learns nothing from player 1's action
 - This is a pooling perfect Bayesian equilibrium