Basis and Dimension

COMP408 - Linear Algebra Dennis Wong

Basis

Let S be a subspace of R^n and let b_1, b_2, \ldots, b_s be vectors in S. The set $\{b_1, b_2, \ldots, b_s\}$ is a **basis** for S if

- 1. Span $\{b_1, b_2, \dots, b_s\} = S$.
- 2. b_1, b_2, \ldots, b_s are linearly independent.

Any vector in S can be written *uniquely* as a linear combination of the vectors in basis.

Basis

Example: The vector $e_1 = [1, 0]$ and $e_2 = [0, 1]$ are basis of R^2 .

Proof: (Span(e_1 , e_2) = R^2 ?) we let $x = [x_1, x_2]$ be an arbitrary vector in R^2 , we need to show that $x = a_1e_1 + a_2e_2$ for some scalar a_1 and a_2 .

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \alpha_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \alpha_2 \begin{bmatrix} 0 \\ 1 \end{bmatrix}.$$

We can let $a_1 = x_1$ and $a_2 = x_2$ and thus we have Span(e_1 , e_2) = R^2 .

(e_1 and e_2 linearly independent?) Neither vector is a linear combination of the other, so e_1 and e_2 are linearly independent.

Coordinate vector

Let S be a subspace of R^n , let $B = (b_1, b_2, ..., b_s)$ be an ordered basis for S, and let x be a vector in S. The **coordinate vector of** x **relative to B** is

$$[x]_{B} = [a_1, a_2, ..., a_s],$$

where $x = a_1b_1 + a_2b_2 + ... + a_sb_s$.

Coordinate vector

Example: Find the coordinate vector of x = [9, 8] relative to the basis (b_1, b_2) with $b_1 = [3, 1]$, $b_2 = [1, 2]$.

Solution: We need to write x as a linear combination of b_1 and b_2 :

$$\mathbf{x} = \alpha_1 \mathbf{b}_1 + \alpha_2 \mathbf{b}_2$$

$$\begin{bmatrix} 9 \\ 8 \end{bmatrix} = \alpha_1 \begin{bmatrix} 3 \\ 1 \end{bmatrix} + \alpha_2 \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 3\alpha_1 + \alpha_2 \\ \alpha_1 + 2\alpha_2 \end{bmatrix}.$$

$$\begin{bmatrix} 3 & 1 & 9 \\ 1 & 2 & 8 \end{bmatrix} - 3 \quad \sim \quad \begin{bmatrix} 3 & 1 & 9 \\ 0 & -5 & -15 \end{bmatrix} - \frac{1}{5}$$

$$\sim \quad \begin{bmatrix} 3 & 1 & 9 \\ 0 & 1 & 3 \end{bmatrix} - 1 \quad \rangle$$

$$\sim \quad \begin{bmatrix} 3 & 0 & 6 \\ 0 & 1 & 3 \end{bmatrix}^{\frac{1}{3}}$$

$$\sim \quad \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 3 \end{bmatrix}$$

Therefore, $x = 2b_1 + 3b_2$ so that $[x]_B = [2, 3]$.

Coordinate vector

Dimension

Let S be a subspace of R^n . If S has a basis consisting of s vectors, we say that S has **dimension** s and we write dim S = s.

Example: Find the dimension of $S = \text{Span}\{x_1, x_2\}$ where $x_1 = [1, 1, 0]$ and $x_2 = [0, 1, 1]$.

We can prove that x_1 and x_2 are linearly independent and also thus x_1 and x_2 are basis of S. Therefore the dimension of S is S.

Dimension

Let y_1, y_2, \ldots, y_s be vectors in R^n and let S be their span. If z_1, z_2, \ldots, z_t are vectors in S and t > s, then z_1, z_2, \ldots, z_t are linearly dependent.

If $\{b_1, b_2, \ldots, b_s\}$ and $\{c_1, c_2, \ldots, c_t\}$ are both bases for a subspace S of R^n , then s = t.

The subspace $\{0\}$ has the empty set \emptyset as basis and therefore dimension 0.