Clocks

- · crystal oscillators
 - only produces a single frequency
- phase-locked loops (PLL) produce clocks of different frequencies

Slow input clock (e.g., from crystal oscillator)

Phase-locked Loop

Fast output clock

Clock Domains

- · every system has multiple clocks
 - o different things run at different speeds
 - o each interface needs a different clock
- F446ZE has 4 PLLs
 - o check clock config tab in STMCube

Power VS Energy

- Energy = Power x Time
 - o instantaneous power
 - o power changes overtime

Static Power

- · power from transistor leakage
- even when gate voltage < threshold voltage, some current leaks through
- · constant and determined by the transistor's physical properties

Dynamic Power

power from switching (transistors turning on / off)

$$dynamic\ power = lpha \cdot (V_{dd})^2 \cdot C_L \cdot f$$

- f clock frequency
- V_{dd} Supply voltage
- ullet C_L total capacitance of circuit
- α switching factor

Switching factor a

- · a is percentage of the clock switching
 - \circ the clock's α is always 100% (1.0)
 - \circ if signal switches on every rising edge, lpha=0.5
- · accurate a needs circuit simulation
 - $\circ~$ common to use a nominal value of $\alpha=0.1$ or 10%

Capacitive Load

- · measure how 'big' circuit is
 - o larger circuit, more charge needed
- α and C_L are independent of code, determined by **hardware** itself

Frequency

- · has control over
- power increases proportional to frequency
 - Current = 244 μA per MHz (at max voltage)
- · equation includes alpha and CL

Voltage

- power increases exponentially with voltage
 - increase voltage to get higher frequency
 - \circ higher V allows higher I, which loads capacitance faster (higher f)
- If circuit running at max frequency for a given Vdd, increasing frequency can significantly increase power
 - needs a higher Vdd to support higher freq
 - o power increases due to both higher Vdd and higher freq

Voltage VS Frequency

- higher freq ≠ higher V
 - o not simple linear relationship
- voltage only determines maximum possible frequency F_max
 - o at a given voltage, you can run at a lower frequency than F_max

Illustrative table of frequencies supported at different voltages.

	100 MHz	150MHz	200 MHz	250MHz
1.0V	✓	×	×	×
1.2V	✓	✓	×	×
1.4V	✓	✓	✓	×
1.6V	✓	✓	✓	✓

A circuit runs at 100MHz @ 1.8V. You want to run this circuit at 250MHz, which requires a voltage of 3.3V. How much more dynamic power is consumed at 250MHz compared to 100MHz?

$$\begin{aligned} & \textit{dynamic power} = \alpha \cdot (V_{dd})^2 \cdot C_L \cdot f \\ \\ & \textit{dynamic power}_{100} = \alpha \cdot (1.8)^2 \cdot C_L \cdot 100 \textit{MHz} = (324 \times 10^6) \cdot \alpha C_L \\ \\ & \textit{dynamic power}_{250} = \alpha \cdot (3.3)^2 \cdot C_L \cdot 250 \textit{MHz} = (2722.5 \times 10^6) \cdot \alpha C_L \\ \\ & \textit{Increase} = \frac{\textit{dynamic power}_{250}}{\textit{dynamic power}_{100}} = \frac{2722.5}{324} = 8.4 \end{aligned}$$

Techniques to Reduce Power

- · controlling freq and voltage
 - o reduce freq
 - lower freq of blocks when not needed
 - lower CPU freq when inside a delay function
 - power gating
 - turn off power to parts of the chip
 - reduces static (leakage) power