b.	Explain about the basic concept of C++, create a program for the following cases	12	3	2	1
	(i) Control statement				
	(ii) Input / output statement				
	(iii) Looping statement				
30. a.	Derive the Schrodinger wave equation for particle in one dimensional box.	12	3	3	1
	(OR)				
b .	Write a short notes on the following	12	3	3	1
	(i) Kohn-Sham equation				
	(ii) Hohenberg-Kohn theorem				
31. a.	Briefly describe the following methods	12	3	4	1
	(i) Limitation of molecular dynamics				
	(ii) Verlet algorithm				
	(OR)				
b.	Explain the temperature variation effect in molecular dynamics. Highlight	12	3	4	1
	the benefits and demerits.				
32. a.	Write a brief notes on	12	3	5	1
	(i) Metropolis algorithm				
	(ii) Limitations of Monte-Carlo method				
	(OR)				
b.	Analyze in detail about the kinetic Monte-Carlo methods along with its	12	3	5	1
	advantages and disadvantages.				

* * * * *

	_	-	_	-	_	-	-			
Reg. No.										

B.Tech. DEGREE EXAMINATION, MAY 2023

Fourth Semester

18NTC108T – MODELING AND COMPUTATIONAL TOOLS

(For the candidates admitted during the academic year 2018-2019 to 2021-2022)

Note: (i) (ii)	Part - A should be answered in OMR shover to hall invigilator at the end of 40 th m Part - B & Part - C should be answered in	ieet w			d be	han	ded
Time: 3	hours		N	Iax. N	Iark	s: 10	00
	$PART - A (20 \times 1 = Answer ALL Q)$			Marks		со	
1.	If A is a square matrix, then inverse o (A) inv (A) (C) A^(-1)	(B)		1	1	1	3
2.	While defining an array ';' indicates (A) End of a column (C) Don't display the operation	` /	End of a row End of the array	1	2	1	3
3.	If P = [1 2 3] and Q = [4 5 6]. Then R (A) Error (C) R = [4 10 18]	(B)	R = [15 30 45] R = [32]	1	.2	1	1
4.	If X = [1 4 9]. Then Y = X^2 gives (A) Error (C) Y = [1 2 3]		$Y = [1 \ 16 \ 81]$ R = [42]	1	1	1	1
5.	Which of the following is not an arith (A) + (C) /	metic (B) (D)	*	1	1	2	1
6.	If A = [9] and B = [10]. Then A = = B (A) A = [10] (C) Logical 0	(B)	es A = [0] B = [9]	1	2	2	3
7.	 Which of the following statement is n (A) There can be multiple decision variables for a while loop (C) Break statement will not come 	(B)	A for loop can have multiple index		2	2	3
8.	out from the outer loop Consider the command: plot (x, y, 'g' (A) X axis label (C) Green color	(B)		1	1	2	3

9.		give a 3D plot? Plot (x, y, z) Grid (x, y, z)	1	2	3	3			19.	The net spin density is (A) The difference between up-spin (B) The sum between up-spin and and down-spin density (C) The average between up-spin (D) The multiplication of up-spin	1	1	5 3	
10.	Which operator can not be overloaded? (A) + (B)		_ 1	1	3	3			20	and down-spin density and down-spin density	1	1	5 3	ł
11.	(C) * (D) What is the output of the following code?	**	1	1	3	1			20.	In an approximation, only the valence electrons are explicitly considered, the effect of the core electrons beings integrated within an equivalent ionic potential. The method is known as			, ,	
		Error in the command Syntactical error						*		(A) The pseudo potential method (B) The Jellium model (C) All electron method (D) LMTO method				
12.	What is the output of the following code? ver Simulink		1	2	3	3				PART – B (5 × 4 = 20 Marks) Answer ANY FIVE Questions Max	arks l	BL (CO PC)
	(A) Shows the version of MATLAB (B)	Shows the version of MATLAB and the Simulink toolbox							21.	Explain what is MATLAB? Where MATLAB can be applicable?	4	3	1 1	
	(C) Shows the version of the (D) Simulink toolbox								22.	Write about MATLAB application program interface (API).	4	3	2 1	
13.	In density functional theory (DFT) the basic	e variable is	1	1	4	1	э		23.	What do you know about 3D-visulization elements in MATLAB?	4	3	3 1	
	• • • • • • • • • • • • • • • • • • • •	Spin density Atomic density							24.	Justify the short range and long range interaction in molecular dynamics.	4	3	4 3	J
14.	The electron, being much lighter than ion than ion due to this the	core, moves much faster in solid	1	2	4	3			25.	What is the difference between classical and quantum mechanics based on the applications area?	4	3	5 3	
	(A) Motion of electrons and ions (B) cannot be decoupled	Motion of electrons and ions cannot be coupled							26.	Comment on the concept of Born-oppenheimer approximation.	4	3	4 1	
	(C) Nuclei cannot be held fixed (D) with respect to the electron motion	_							27.	Justify the advantages and disadvantages of rejection sampling.		-	1 1	
15.	The ground-state energy and ground state the minimization of the	wave function are determined by	1	1	4	1				PART – C ($5 \times 12 = 60 \text{ Marks}$) Answer ALL Questions	arks i	SL C	CO PO	<i>?</i>
	(A) Energy functional (B) (C) Electrostatic potential (D)	Potential functional Exchange-correlation functional							28. a.	(i) Compute the Fibonacci series	12	3	1 1	
16.	DFT originates from the query (A) Can we arrive at a potential (B)	Can we arrive at a charge	1	1	4	1				(ii) Compute the perfect number(iii) Compute a program for loop and double loop				
	uniquely, given the charge density?	density uniquely, given the atomic density?							h	(OR) Explain in detail about the step by step procedure to solve ordinary	12	3	1 1	
	uniquely, given the atomic	density uniquely, given the								differential equation using MATLAB. Give its applications area.				
17.		In Chemistry in 1998	1	2	5	1			29. a.	Write a program and draw a flow chart for following (using MATLAB) (i) Using "if loop" find are you adult or not? (ii) Using "else if loop" find the category New-born 0-1, toddlers 1-5, kids 5-13, teenager 13-18 and adult 18+.	12	3	2 1	4
18.	(C) In Physics in 2002 (D) "The external potential $V_{\text{ext}}(r)$ is determ	In Chemistry in 2002 nined, within a trivial additive	1	1	5	1				(OR)				
	constant, by the electron density $\rho(r)$ ". This (A) Hohenberg-Kohn theorem I (B)									(OIL)		2		