## **Spacecraft and Aircraft Dynamics**

Matthew M. Peet Illinois Institute of Technology

Lecture 5: Hyperbolic Orbits

#### Introduction

In this Lecture, you will learn:

Hyperbolic orbits

- Hyperbolic Anomaly
- Kepler's Equation, Again.
- ullet How to find r and v

A Mission Design Example

Introduction to the Orbital Plane

#### Given t, find r and v

#### For elliptic orbits:

1. Given time, t, solve for Mean Anomaly

$$M(t) = nt$$

2. Given Mean Anomaly, solve for Eccentric Anomaly

$$M(t) = E - e\sin E$$

3. Given eccentric anomaly, solve for true anomaly

$$\tan\frac{f}{2} = \sqrt{\frac{1+e}{1-e}} \tan\frac{E}{2}$$

4. Given true anomaly, solve for r

$$r(t) = \frac{a(1 - e^2)}{1 + e\cos f(t)}$$

Does this work for Hyperbolic Orbits? Lets recall the angles.

## What are these Angles?

True Anomaly,  $f(\theta)$ 



- The angle the position vector,  $\vec{r}$  makes with the eccentricity vector,  $\vec{e}$ .
- The angle the position vector makes with periapse.

## What are these Angles?

Eccentric Anomaly,  ${\cal E}$ 



• Measured from center of ellipse to a auxiliary reference circle.

### What are these Angles?

Mean Anomaly

$$M(t) = 2\pi \frac{t}{T} = 2\pi \frac{A_{PFV}}{A_{Ellipse}}$$



• The fraction of area of the ellipse which has been swept out, in radians.

## Relationships between M, E, and f

 $M \ {\rm vs.} \ E$ 



# Relationships between M, E, and f

 $M \ {\rm vs.} \ f$ 



## Problems with Hyperbolic Orbits

- The orbit does not repeat (no period, T)
  - We can't use

$$T=2\pi\sqrt{\frac{\mu}{a^3}}$$

- $\blacktriangleright$  What is mean motion, n?
- No reference circle
  - ▶ Eccentric Anomaly is Undefined



Note: In our treatment of hyperbolae, we do **NOT** use the *Universal Variable* approach of Prussing/Conway and others.

### Solutions for Hyperbolic Orbits

Reference Hyperbola

#### We will not get into details!



defined using the reference hyperbola, tangent at perigee

$$x^2 - y^2 = 1$$

## Recall your Hyperbolic Trig.

Cosh and Sinh



Relate area of reference hyperbola to lengths.

Yet another branch of mathematics developed for solving orbits (Lambert).

## Hyperbolic Anomaly



- Hyperbolic Anomaly, H is a measure of Area.
- Hyperbolic Trig gives a relationship to true anomaly, which is

$$\tanh\left(\frac{H}{2}\right) = \sqrt{\frac{e-1}{e+1}} \tan\left(\frac{f}{2}\right)$$

Alternatively,

$$\tan\left(\frac{f}{2}\right) = \sqrt{\frac{e+1}{e-1}} \tanh\left(\frac{H}{2}\right)$$

## Hyperbolic Kepler's Equation

To solve for position, we redefine mean motion, n, and mean anomaly, M, to get

#### Definition 1 (Hyperbolic Kepler's Equation).

$$M = \sqrt{\frac{\mu}{-a^3}}t = e\sinh(H) - H$$

#### **Newton Iteration for Hyperbolic Anomaly:**

$$H_{k+1} = H_k + \frac{M - e \sinh(H_k) + H_k}{e \cosh(H_k) - 1}$$

with  $H_1 = M$ .

## Relationship between M and f for Hyperbolic Orbits



#### Example: Jupiter Flyby

#### CASSINI INTERPLANETARY TRAJECTORY



**Problem:** Suppose we want to make a flyby of Jupiter. The relative velocity at approach is  $v_{\infty}=10km/s$ . To achieve the proper turning angle, we need an eccentricity of e=1.07. Radiation limits our time within radius r=100,000km to 1 hour (radius of Jupiter is 71,000km). Will the spacecraft survive the flyby?

## Example: Jupiter Flyby

### **Example Continued**

**Solution:** First solve for a and p.  $\mu = 1.267E8$ .

 The total energy of the orbit is given by

$$E_{tot} = \frac{1}{2}v_{\infty}^2$$

The total energy is expressed as

$$E = -\frac{\mu}{2a} = \frac{1}{2}v_{\infty}^2$$

which yields

$$a = -\frac{\mu}{v_{\infty}^2} = -1.267E6$$

• The parameter is  $p = a(1 - e^2) = 1.8359E5$ 



### **Example Continued**



We need to find the time between  $r_1=100,000km$  and  $r_2=100,000km$ . Find f at each of these points.

• Start with the conic equation:

$$r(t) = \frac{p}{1 + e\cos f(t)}$$

• Solving for f,

$$f_{1,2} = \cos^{-1}\left(\frac{1}{e} - \frac{r}{ep}\right) = \pm 64.8 \deg$$

#### **Example Continued**

Given the true anomalies,  $f_{1,2}$ , we want to find the associated times,  $t_{1,2}$ .

- Only solve for  $t_2$ , get  $t_1$  by symmetry.
- First find Hyperbolic Anomaly,

$$H_2 = \tanh^{-1}\left(\sqrt{\frac{e-1}{e+1}}\tan\left(\frac{f_2}{2}\right)\right) = .1173$$

Now use Hyperbolic anomaly to find mean anomaly

$$M_2 = e \sinh(H_2) - H_2 = .0085$$

- ► This is the "easy" direction.
- No Newton iteration required.
- ullet  $t_2$  is now easy to find

$$t_2 = M_2 \sqrt{\frac{-a^3}{\mu}} = 1076.6$$

Finally, we conclude  $\Delta t = 2 * t_2 = 2153s = 35min$ .

So the spacecraft survives.

#### The Orbital Elements

So far, all orbits are parameterized by 3 parameters

- semimajor axis, a
- ullet eccentricity, e
- true anomaly, f



- a and e define the geometry of the orbit.
- f describes the position within the orbit (a proxy for time).

#### The Orbital Elements

**Note:** We have shown how to use a, e and f to find the scalars r and v.



Question: How do we find the vectors  $\vec{r}$  and  $\vec{v}$ ?

Answer: We have to determine how the orbit is oriented in space.

- Orientation is determined by vectors  $\vec{e}$  and  $\vec{h}$ .
- We need 3 new orbital elements
  - Orientation can be determined by 3 rotations.

#### Inclination, i



Angle the orbital plane makes with the reference plane.

## Right Ascension of Ascending Node, $\Omega$



Angle measured from reference direction in the reference plane to intersection with orbital plane.

## Argument of Periapse, $\omega$



Angle measured from reference plane to point of periapse.

#### Summary

This Lecture you have learned:

Hyperbolic orbits

- Hyperbolic Anomaly
- Kepler's Equation, Again.
- How to find r and v

A Mission Design Example

Introduction to the Orbital Plane

### Summary

#### **Properties of Keplerian Orbits**

| Quantity                                                       | Circle                                    | Ellipse                                                                                         | Parabola                                        | Hyperbola                                                                                           |
|----------------------------------------------------------------|-------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| Defining Parameters                                            | a = semimajor axis<br>= radius            | a = semimajor axis<br>b = semiminor axis                                                        | p = semi-latus rectum<br>q = perifocal distance | a = semi-transverse axis<br>a < 0<br>b = semi-conjugate axis                                        |
| Parametric Equation                                            | $x^2 + y^2 = a^2$                         | $x^2/a^2 + y^2/b^2 = 1$                                                                         | $x^2 = 4qy$                                     | $x^2/a^2 - y^2/b^2 = 1$                                                                             |
| Eccentricity, e                                                | e = 0                                     | $e = \sqrt{a^2 - b^2} / a  0 < a < 1$                                                           | e = 1                                           | $e = \sqrt{a^2 + b^2 / a^2}  e > 1$                                                                 |
| Perifocal Distance, q                                          | q = a                                     | q = a (1 - e)                                                                                   | q = p/2                                         | $q = a (1 - \theta)$                                                                                |
| Velocity, V, at distance, r, from Focus                        | $V^2 = \mu/r$                             | $V^2 = \mu (2/r - 1/a)$                                                                         | $V^2 = 2\mu/r$                                  | $V^2 = \mu(2/r - 1/a)$                                                                              |
| Total Energy Per Unit Mass, E                                  | $\varepsilon = -\mu/2a < 0$               | $\varepsilon = -\mu/2a < 0$                                                                     | E = 0                                           | $\varepsilon = -\mu/2a > 0$                                                                         |
| Mean Angular Motion, n                                         | $n = \sqrt{\mu / a^3}$                    | $n = \sqrt{\mu / a^3}$                                                                          | $n = \sqrt{\mu}$                                | $n = \sqrt{\mu / (-a)^3}$                                                                           |
| Period, P                                                      | $P = 2\pi / n$                            | $P = 2\pi / n$                                                                                  | P = ∞                                           | P = ∞                                                                                               |
| Anomaly                                                        | v = M = E                                 | Eccentric anomaly, E                                                                            | Parabolic anomaly, D                            | Hyperbolic anomaly, F                                                                               |
|                                                                |                                           | $\tan \frac{v}{2} = \left(\frac{1+\theta}{1-\theta}\right)^{1/2} \tan \left(\frac{E}{2}\right)$ | $\tan \frac{v}{2} = D/\sqrt{2q}$                | $\tan \frac{v}{2} = \left(\frac{\theta + 1}{\theta - 1}\right)^{1/2} \tanh\left(\frac{F}{2}\right)$ |
| Mean Anomaly, M                                                | $M = M_0 + nt$                            | $M = E - e \sin E$                                                                              | $M = qD + (D^3/6)$                              | $M = (\theta \sinh F) - F$                                                                          |
| Distance from Focus,<br>$r = q(1 + e)/(1 + e \cos v)$          | r= a                                      | r = a (1 - e cos E)                                                                             | $r = q + (D^2/2)$                               | r = a (1 - ecosh F)                                                                                 |
| $r dr / dt = r\dot{r}$                                         | 0                                         | $r\dot{r} = e\sqrt{a\mu} \sin E$                                                                | $r\dot{r} = \sqrt{\mu} D$                       | $r\dot{r} = e\sqrt{(-a)\mu} \sinh F$                                                                |
| Areal Velocity, $\frac{dA}{dt} = \frac{1}{2}r^2 \frac{dv}{dt}$ | $\frac{dA}{dt} = \frac{1}{2} \sqrt{a\mu}$ | $\frac{\mathrm{d}A}{\mathrm{d}t} = \frac{1}{2}\sqrt{a\mu\left(1-e^2\right)}$                    | $\frac{dA}{dt} = \sqrt{\frac{\mu q}{2}}$        | $\frac{\mathrm{d}A}{\mathrm{d}t} = \frac{1}{2} \sqrt{a\mu \left(1 - e^2\right)}$                    |

 $\mu$  = GM is the gravitational constant of the central body,  $\nu$  is the true anomaly, and M = n (t - T) is the mean anomaly, where t is the time of observation, T is the time of periocal passage, and n is the mean angular motion.