Sistemas de Ecuaciones Lineales

Prof. Brígida Molina

Matemáticas III Septiembre 2021

Contenido

- Motivación
- 2 Definición
- Forma Matricial del Sistema
- Operaciones Elementales
- Eliminación Gaussiana
- Sustitución hacia atrás
- Factorización LU
- Método de Doolitle
- Método de Crout

Sistemas de Ecuaciones Lineales (S.E.L.)

Definición

Un sistema de n ecuaciones lineales de n incógnitas $x_1, x_2, \ldots, x_n \in \Re$ es un conjunto de ecuaciones de la forma:

$$a_{11}x_1 + a_{12}x_2 + ... + a_{1n}x_n = b_1$$

 $a_{21}x_1 + a_{22}x_2 + ... + a_{2n}x_n = b_2$
 \vdots \vdots \vdots
 $a_{n1}x_1 + a_{n2}x_2 + ... + a_{nn}x_n = b_n$

donde los coeficientes a_{ij} , $1 \le i \le n$, $1 \le j \le n$ y los elementos b_i , $1 \le i \le n$ son números reales dados.

Forma Matricial del Sistema

El sistema anterior puede ser expresado en forma matricial como:

$$\underbrace{\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & & & & \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}}_{A} \underbrace{\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}}_{X} = \underbrace{\begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}}_{b},$$

donde A es llamada la matriz de coeficientes del sistema, x el vector de incógnitas y b el vector independiente.

Problema:

Dados una matriz A de $n \times n$ y un vector $b \in \mathbb{R}^n$, el problema es encontrar un vector $x \in \mathbb{R}^n$ tal que Ax = b.

Métodos directos

Métodos Iterativos

- Eliminación Gaussiana
- Factorización LU
- Factorización QR

- Métodos iterativos básicos: Jacobi, Gauss-Seidel, SOR
- Métodos de Krylov

Operaciones Elementales

Definición

Se denomina *operación elemental por filas* sobre una matriz *A* a alguna de las siguientes tres operaciones:

- 1) Intercambiar dos filas de la matriz $A: f_i \leftrightarrow f_j$,
- 2) Multiplicar una fila f_i por un escalar $\lambda \neq 0$: $f_i \rightarrow \lambda f_i$,
- 3) Sumar a una fila f_i un múltiplo de alguna otra fila: $f_i \rightarrow f_i + \lambda f_j$.

EJEMPLO 1

Dada la matriz $A = \begin{pmatrix} 3 & 1 & 5 \\ 4 & 2 & 7 \\ 1 & 6 & 2 \end{pmatrix}$, realice las siguientes operaciones

elementales: $f_1 \leftrightarrow f_3$, $f_3 \rightarrow f_3 + (-3)f_1$, $f_2 \rightarrow f_2 + (-4)f_1$ y finalmente escriba la matriz resultante.

$$A = \begin{pmatrix} 3 & 1 & 5 \\ 4 & 2 & 7 \\ 1 & 6 & 2 \end{pmatrix} \xrightarrow{f_1 \leftrightarrow f_3} \begin{pmatrix} 1 & 6 & 2 \\ 4 & 2 & 7 \\ 3 & 1 & 5 \end{pmatrix} \xrightarrow{f_3 \to f_3 + (-3)f_1} \begin{pmatrix} 1 & 6 & 2 \\ 4 & 2 & 7 \\ 0 & -17 & -1 \end{pmatrix}$$

$$\xrightarrow{f_2 \to f_2 + (-4)f_1} \begin{pmatrix} 1 & 6 & 2 \\ 0 & -22 & -1 \\ 0 & -17 & -1 \end{pmatrix}$$

(SEL) 7/32

Definición

Dados dos sistemas $Ax = \mathbf{b}$ y $Bx' = \mathbf{d}$ de n ecuaciones con n incógnitas. Se dice que los dos *sistemas* son *equivalentes* si tienen la misma solución.

Teorema

Si un sistema de ecuaciones lineales es obtenido de otro por una sucesión finita de operaciones elementales, entonces los dos sistemas son equivalentes.

Ejemplo

$$A\mathbf{x} = \mathbf{b}$$
 : $\begin{pmatrix} 2 & 1 \\ 4 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 4 \\ 6 \end{pmatrix}$, $x^* = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$

$$B\mathbf{x}^{'}=\mathbf{d}$$
 : $\begin{pmatrix} 2 & 1 \\ 10 & 4 \end{pmatrix}\begin{pmatrix} x_1^{'} \\ x_2^{'} \end{pmatrix}=\begin{pmatrix} 4 \\ 18 \end{pmatrix}$ $(f_2
ightarrow f_2 + 3f_1),$

$$B = EA = \begin{pmatrix} 1 & 0 \\ 3 & 1 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 4 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 10 & 4 \end{pmatrix},$$

$$\mathbf{d} = E\mathbf{b} = \begin{pmatrix} 1 & 0 \\ 3 & 1 \end{pmatrix} \begin{pmatrix} 4 \\ 6 \end{pmatrix} = \begin{pmatrix} 4 \\ 18 \end{pmatrix}.$$

(SEL) 9/32

Eliminación Gaussiana

Consideremos el sistema $A\mathbf{x} = \mathbf{b}$, donde A es una matriz de $n \times n$, $\mathbf{x}, \mathbf{b} \in R^n$ y supongamos que A es no singular, es decir, el sistema lineal tiene solución única.

Idea

La idea básica del proceso de eliminación Gaussiana es reducir el sistema $A\mathbf{x} = \mathbf{b}$ a un sistema equivalente triangular superior, el cual se resuelve fácilmente utilizando el método de sustitución hacia atrás que veremos más adelante.

ELIMINACIÓN GAUSSIANA SIN PIVOTEO

Para ilustrar el proceso consideremos primero un sistema pequeño:

$$\begin{cases} 6x_1 - 2x_2 + 2x_3 + 4x_4 &= 12, \\ 12x_1 - 8x_2 + 6x_3 + 10x_4 &= 34, \\ 3x_1 - 13x_2 + 9x_3 + 3x_4 &= 27, \\ -6x_1 + 4x_2 + x_3 - 18x_4 &= -38, \end{cases}$$

matricialmente,

$$\begin{pmatrix} 6 & -2 & 2 & 4 \\ 12 & -8 & 6 & 10 \\ 3 & -13 & 9 & 3 \\ -6 & 4 & 1 & -18 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 12 \\ 34 \\ 27 \\ -38 \end{pmatrix}.$$

$$\begin{pmatrix} 6 & -2 & 2 & 4 \\ 12 & -8 & 6 & 10 \\ 3 & -13 & 9 & 3 \\ -6 & 4 & 1 & -18 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 12 \\ 34 \\ 27 \\ -38 \end{pmatrix}$$

Primer paso:

El primer paso del método consiste en eliminar la incógnita x_1 desde la segunda ecuación hasta la última.

- Restar 2 veces la primera ecuación de la segunda: $f_2 \rightarrow f_2 2f_1$.
- ② Restar $\frac{1}{2}$ veces la primera ecuación de la tercera: $f_3 \rightarrow f_3 \frac{1}{2}f_1$.
- Sestar -1 veces la primera ecuación de la cuarta: $f_4 \rightarrow f_4 (-1)f_1$.

(SEL) 12/32

$$\begin{pmatrix}
6 & -2 & 2 & 4 & | & 12 \\
12 & -8 & 6 & 10 & | & 34 \\
3 & -13 & 9 & 3 & | & 27 \\
-6 & 4 & 1 & -18 & | & -38
\end{pmatrix}
\xrightarrow{f_2 \to f_2 - 2f_1}
\begin{pmatrix}
6 & -2 & 2 & 4 & | & 12 \\
0 & -4 & 2 & 2 & | & 10 \\
3 & -13 & 9 & 3 & | & 27 \\
-6 & 4 & 1 & -18 & | & -38
\end{pmatrix}$$

$$\xrightarrow{f_3 \to f_3 - \frac{1}{2}f_1} \begin{pmatrix}
6 & -2 & 2 & 4 & | & 12 \\
0 & -4 & 2 & 2 & | & 10 \\
0 & -12 & 8 & 1 & | & 21 \\
-6 & 4 & 1 & -18 & | & -38
\end{pmatrix}$$

$$\frac{f_4 \to f_4 - (-1)f_1}{\longrightarrow} \begin{pmatrix}
6 & -2 & 2 & 4 & | & 12 \\
0 & -4 & 2 & 2 & | & 10 \\
0 & -12 & 8 & 1 & | & 21 \\
0 & 2 & 3 & -14 & | & -26
\end{pmatrix}.$$

De esta manera se obtiene el sistema equivalente,

$$\begin{pmatrix} 6 & -2 & 2 & 4 \\ 0 & -4 & 2 & 2 \\ 0 & -12 & 8 & 1 \\ 0 & 2 & 31 & -14 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 12 \\ 10 \\ 21 \\ -26 \end{pmatrix}.$$

$$\begin{pmatrix} 6 & -2 & 2 & 4 \\ 0 & -4 & 2 & 2 \\ 0 & -12 & 8 & 1 \\ 0 & 2 & 31 & -14 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} r12 \\ 10 \\ 21 \\ -26 \end{pmatrix}.$$

Observaciones

- La primera fila se utiliza en el primer paso pero no se modifica y se denomina la fila pivote.
- Los números 2, $\frac{1}{2}$, -1, utilizados para realizar las combinaciones lineales, son llamados **multiplicadores**. $m_{21} = a_{21}/a_{11}$, $m_{31} = a_{31}/a_{11}$ y $m_{41} = a_{41}/a_{11}$
- El elemento $a_{11} = 6$, que se usó como divisor para formar cada uno de los multiplicadores, se llama **elemento pivote** $(a_{11} \neq 0)$.

4 D > 4 P > 4 B > 4 B > B 9 Q C

$$\begin{pmatrix} 6 & -2 & 2 & 4 \\ 0 & -4 & 2 & 2 \\ 0 & -12 & 8 & 1 \\ 0 & 2 & 31 & -14 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 12 \\ 10 \\ 21 \\ -26 \end{pmatrix}.$$

Segundo paso:

En el segundo paso ignoramos la primera ecuación y se trabaja con las restantes. Se elimina la incógnita x_2 desde la tercera ecuación hasta la última. En este caso el pivote es el elemento $a_{22}=-4$ y la fila pivote es la segunda.

- Restar 3 veces la segunda ecuación de la tercera: $f3 \rightarrow f_3 3f_2$.
- Restar $-\frac{1}{2}$ veces la segunda ecuación de la cuarta: $f_4 \rightarrow f_4 (-\frac{1}{2})f_2$.

□ ト 4 周 ト 4 章 ト 4 章 ト 章 9 Q Q

15/32

$$\begin{pmatrix}
6 & -2 & 2 & 4 & | & 12 \\
0 & -4 & 2 & 2 & | & 10 \\
0 & -12 & 8 & 1 & | & 21 \\
0 & 2 & 3 & -14 & | & -26
\end{pmatrix}
\xrightarrow{f_3 \to f_3 - 3f_2}
\begin{pmatrix}
6 & -2 & 2 & 4 & | & 12 \\
0 & -4 & 2 & 2 & | & 10 \\
0 & 0 & 2 & -5 & | & -9 \\
0 & 2 & 3 & -14 & | & -26
\end{pmatrix}$$

$$\xrightarrow{f_4 \to f_4 - (-\frac{1}{2})f_2}$$

$$\begin{pmatrix}
6 & -2 & 2 & 4 & | & 12 \\
0 & -4 & 2 & 2 & | & 10 \\
0 & 0 & 2 & -5 & | & -9 \\
0 & 0 & 4 & -13 & | & -21
\end{pmatrix}$$

De esta manera se obtiene el sistema equivalente,

$$\begin{pmatrix} 6 & -2 & 2 & 4 \\ 0 & -4 & 2 & 2 \\ 0 & 0 & 2 & -5 \\ 0 & 0 & 4 & -13 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 12 \\ 10 \\ -9 \\ -21 \end{pmatrix}.$$

Los multiplicadores en este paso son: $m_{32} = \frac{a_{32}}{a_{22}} = \frac{12}{4} = 3$, $m_{42} = \frac{a_{42}}{a_{22}} = -\frac{2}{4} = -\frac{1}{2}$.

◆□ > ◆□ > ◆ ■ > ◆ ■ → ● ● の Q ○

$$\begin{pmatrix} 6 & -2 & 2 & 4 \\ 0 & -4 & 2 & 2 \\ 0 & 0 & 2 & -5 \\ 0 & 0 & 4 & -13 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 12 \\ 10 \\ -9 \\ -21 \end{pmatrix}$$

En el último paso solo se requiere eliminar el elemento a_{43} . En este tercer paso el pivote es el elemento $a_{33}=2$; el multiplicador es $m_{43}=\frac{a_{43}}{a_{23}}=2$.

• Restar 2 veces la tercera ecuación de la cuarta: $f_4 \rightarrow f_4 - 2f_3$.

$$\begin{pmatrix} 6 & -2 & 2 & 4 & | & 12 \\ 0 & -4 & 2 & 2 & | & 10 \\ 0 & 0 & 2 & -5 & | & -9 \\ 0 & 0 & 4 & -13 & | & -21 \end{pmatrix} \xrightarrow{f_4 \to f_4 - 2f_3} \begin{pmatrix} 6 & -2 & 2 & 4 & | & 12 \\ 0 & -4 & 2 & 2 & | & 10 \\ 0 & 0 & 2 & -5 & | & -9 \\ 0 & 0 & 0 & -3 & | & -3 \end{pmatrix}$$

17/32

$$\begin{cases}
6x_1 - 2x_2 + 2x_3 + 4x_4 &= 12, \\
-4x_2 + 2x_3 + 2x_4 &= 10, \\
2x_3 - 5x_4 &= -9, \\
-3x_4 &= -3,
\end{cases}$$

o en forma matricial:

$$\begin{pmatrix} 6 & -2 & 2 & 4 \\ 0 & -4 & 2 & 2 \\ 0 & 0 & 2 & -5 \\ 0 & 0 & 0 & -3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 12 \\ 10 \\ -9 \\ -3 \end{pmatrix}.$$

El último sistema obtenido es un sistema equivalente al original pero tiene la característica que es un sistema triangular superior y hay un orden evidente para resolverlo. Se comienza con la última ecuación o fila y se resuelve para la incógnita x_n , y trabajando las ecuaciones hacia atrás se resuelve el sistema para x_{n-1}, \ldots, x_1 .

4 D > 4 P > 4 E > 4 E > E 9 Q P

Para este ejemplo, de la cuarta ecuación, $-3x_4 = -3$, obtenemos:

$$x_4 = \frac{-3}{-3} = 1.$$

Sustituímos este resultado en la tercera ecuación y resolvemos para x_3 :

$$2x_3 - 5(1) = -9 \Rightarrow x_3 = \frac{-9 + 5}{2} = \frac{-4}{2} = -2.$$

Ahora sustituímos x_3 y x_4 en la segunda ecuación,

$$x_2 = \frac{-2(-2) - 2(1) + 10}{-4} = \frac{12}{-4} = -3.$$

Finalmente obtenemos x_1 con la primera ecuación:

$$x_1 = \frac{12 + 2(-3) - 2(-2) - 4(1)}{6} = \frac{6}{6} = 1.$$

Por lo tanto la solución del problema dado es:

$$x = \begin{pmatrix} 1 \\ -3 \\ -2 \\ 1 \end{pmatrix}.$$

Este último proceso es llamado sustitución hacia atrás.

$$a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n = b_2$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$a_{n1}x_1 + a_{n2}x_2 + \ldots + a_{nn}x_n = b_n$$
(1)

Algoritmo de Eliminación Gaussiana (sin pivoteo)

Para
$$k=1,2,\ldots,n-1$$
 hacer
$$\text{Para } i=k+1,\ldots,n \quad \text{hacer}$$

$$m_{ik}=\frac{a_{ik}}{a_{kk}}, \qquad \quad \text{(asumiendo que } a_{kk}\neq 0 \text{)}$$

$$b_i=b_i-m_{ik}b_k,$$

$$\text{Para } j=k+1,\ldots,n \quad \text{hacer}$$

$$a_{ij}=a_{ij}-m_{ik}a_{kj}$$

(SEL) 21/32

Consideremos el sistema triangular superior:

$$\begin{pmatrix} u_{11} & u_{12} & \dots & u_{1,n-1} & u_{1n} \\ 0 & u_{22} & \dots & u_{2,n-1} & u_{2n} \\ 0 & 0 & \dots & u_{3,n-1} & u_{3n} \\ \vdots & & & & \vdots \\ 0 & 0 & \dots & u_{n-1,n-1} & u_{n-1,n} \\ 0 & 0 & \dots & 0 & u_{nn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_{n-1} \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \\ \vdots \\ b_{n-1} \\ b_n \end{pmatrix},$$

Algoritmo de Sustitución hacia Atrás

Calcular
$$x_n = \frac{b_n}{u_{nn}}$$
,

Para i = n - 1 hasta 1 hacer

$$x_i = \frac{1}{u_{ii}}(b_i - \sum_{j=i+1}^n u_{ij}x_j)$$

(SEL) 22/32

ELIMINACIÓN GAUSSIANA CON PIVOTEO

Similar a eliminación Gaussiana sin pivoteo salvo que en cada paso i del método, en lugar de escoger el elemento a_{ii} como pivote, se escoge entre todos los posibles candidatos, esto es, entre $a_{ii}, a_{i+1,i}, \ldots, a_{n,i}$ aquel que tiene módulo máximo.

Para ilustrar el proceso consideremos el sistema anterior:

$$\begin{cases} 6x_1 - 2x_2 + 2x_3 + 4x_4 &= 12, \\ 12x_1 - 8x_2 + 6x_3 + 10x_4 &= 34, \\ 3x_1 - 13x_2 + 9x_3 + 3x_4 &= 27, \\ -6x_1 + 4x_2 + x_3 - 18x_4 &= -38, \end{cases}$$

$$[A|b] = \begin{pmatrix} 6 & -2 & 2 & 4 & | & 12 \\ 12 & -8 & 6 & 10 & | & 34 \\ 3 & -13 & 9 & 3 & | & 27 \\ -6 & 4 & 1 & -18 & | & -38 \end{pmatrix} \xrightarrow{f_1 \leftrightarrow f_2}$$

< □ > < □ > < □ > < 亘 > < 亘 > □

$$\begin{pmatrix} 6 & -2 & 2 & 4 & | & 12 \\ 12 & -8 & 6 & 10 & | & 34 \\ 3 & -13 & 9 & 3 & | & 27 \\ -6 & 4 & 1 & -18 & | & -38 \end{pmatrix} \xrightarrow{f_1 \leftrightarrow f_2} \xrightarrow{} \begin{pmatrix} 12 & -8 & 6 & 10 & | & 34 \\ 6 & -2 & 2 & 4 & | & 12 \\ 3 & -13 & 9 & 3 & | & 27 \\ -6 & 4 & 1 & -18 & | & -38 \end{pmatrix} \xrightarrow{f_2 \to f_2 - \frac{1}{2}f_1, \ f_3 \to f_3 - \frac{1}{4}f_1} \xrightarrow{} \begin{pmatrix} 12 & -8 & 6 & 10 & | & 34 \\ 0 & 2 & -1 & -1 & | & -5 \\ 0 & -11 & 15/2 & 1/2 & | & 37/2 \\ 0 & 0 & 4 & -13 & | & -21 \end{pmatrix} \xrightarrow{f_2 \leftrightarrow f_3} \xrightarrow{f_3 \to f_3 - (-\frac{2}{11})f_2} \xrightarrow{} \begin{pmatrix} 12 & -8 & 6 & 10 & | & 34 \\ 0 & -11 & 15/2 & 1/2 & | & 37/2 \\ 0 & 2 & -1 & -1 & | & -5 \\ 0 & 0 & 4 & -13 & | & -21 \end{pmatrix} \xrightarrow{f_3 \to f_3 - (-\frac{2}{11})f_2} \xrightarrow{} \begin{pmatrix} f_3 \to f_3 - (-\frac{2}{11})f_2 & | & f_3 \to f_3 - (-\frac{2}{11})f_3 & | & f_3 \to f_3 & | & f_3 \to f_3 & | & f_3 \to f_$$

□ → 4周 → 4 = → 4 = → 9 への

$$\begin{pmatrix}
12 & -8 & 6 & 10 & | & 34 \\
0 & -11 & 15/2 & 1/2 & | & 37/2 \\
0 & 0 & 4/11 & -10/11 & | & -18/11 \\
0 & 0 & 4 & -13 & | & -21
\end{pmatrix}
\xrightarrow{f_3 \leftrightarrow f_4}$$

$$\begin{pmatrix}
12 & -8 & 6 & 10 & | & 34 \\
0 & -11 & 15/2 & 1/2 & | & 37/2 \\
0 & 0 & 4 & -13 & | & -21 \\
0 & 0 & 4/11 & -10/11 & | & -18/11
\end{pmatrix}
\xrightarrow{f_4 \to f_4 - \frac{1}{11}f_3}$$

$$\begin{pmatrix}
12 & -8 & 6 & 10 & | & 34 \\
0 & -11 & 15/2 & 1/2 & | & 37/2 \\
0 & 0 & 4 & -13 & | & -21 \\
0 & 0 & 0 & 3/11 & | & 3/11
\end{pmatrix}$$

De esta manera se obtiene el sistema equivalente,

$$\begin{pmatrix} 12 & -8 & 6 & 10 \\ 0 & -11 & 15/2 & 1/2 \\ 0 & 0 & 4 & -13 \\ 0 & 0 & 0 & 3/11 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 34 \\ 37/2 \\ -21 \\ 3/11 \end{pmatrix}.$$

Y resolviendo el sistema anterior con sustitución hacia atrás obtenemos la solución del problema:

$$x = \begin{pmatrix} 1 & -3 & -2 & 1 \end{pmatrix}^t.$$

EJEMPLO 2

Considere el siguiente sistema de ecuaciones:

$$\begin{cases} 0.0002x_1 + 1.471x_2 &= 1.473 \\ 0.2346x_1 - 1.317x_2 &= 1.029 \end{cases}$$

cuya solución exacta es $x_1 = 10$ y $x_2 = 1$. Resuelva el sistema anterior sin pivoteo y con pivoteo parcial utilizando 4 lugares decimales para el redondeo. Finalmente comente los resultados obtenidos.

Sin pivoteo

$$\begin{pmatrix}
0.0002 & 1.471 & | & 1.473 \\
0.2346 & -1.317 & | & 1.029
\end{pmatrix} \xrightarrow{f_2 \to f_2 - 1.173f_3}$$

$$\begin{pmatrix}
0.0002 & 1.471 & | & 1.473 \\
0 & -1.727 & | & -1.727
\end{pmatrix}$$

Al resolver el sistema triangular obtenemos:

$$X_2 = \frac{-1.727}{-1.727} = 1$$

 $X_1 = \frac{1.473 - 1.471(1)}{0.0002} = \frac{2}{0.0002} = 10000$

$$x = \begin{pmatrix} 10000 \\ 1 \end{pmatrix}$$

4□ > 4□ > 4 = > 4 = > = 9 < 0</p>

Con pivoteo parcial

$$\begin{pmatrix}
0.0002 & 1.471 & | & 1.473 \\
0.2346 & -1.317 & | & 1.029
\end{pmatrix}
\xrightarrow{f_1 \leftrightarrow f_2}$$

$$\begin{pmatrix}
0.2346 & -1.317 & | & 1.029 \\
0.0002 & 1.471 & | & 1.473
\end{pmatrix}
\xrightarrow{f_2 \to f_2 - 0.0008525f_1}$$

$$\begin{pmatrix}
0.2346 & -1.317 & | & 1.029 \\
0 & 1.472 & | & 1.472
\end{pmatrix}$$

Al resolver el sistema triangular obtenemos:

$$x_2 = \frac{1.472}{1.472} = 1$$

 $x_1 = \frac{1.029 - 1.317(1)}{0.2346} = \frac{2.346}{0.2346} = 10$

$$x = \begin{pmatrix} 10 \\ 1 \end{pmatrix}$$

Aplicación

Suponga que un equipo de tres paracaidistas está unido por una cuerda ligera mientras va en caída libre a una velocidad de 5 m/s. Calcule la tensión en cada sección de la cuerda y la aceleración del equipo, utilizando eliminación Gaussiana con pivoteo, dados los siguientes datos:

Paracaidista	Masa, kg	Coeficiente de arrastre, kg/s
1	70	10
2	60	14
3	40	17

Los diagramas de cuerpo libre para cada paracaidista se muestra en la figura. Sumando las fuerzas en la dirección vertical y utilizando la segunda ley de Newton se obtiene un sistema de ecuaciones lineales:

$$m_1g - T - c_1v = m_1a$$

 $m_2g + T - c_2v - R = m_2a$
 $m_3g - T - c_3v + R = m_3a$.

Este es un sistema de 3 ecuaciones y 3 incógnitas: a, T y R.

Sustituyendo los datos dados y tomando $g = 9.8 m/s^2$, nos queda el siguiente sistema de ecuaciones lineales:

$$\begin{pmatrix} 70 & 1 & 0 \\ 60 & -1 & 1 \\ 40 & 0 & -1 \end{pmatrix} \begin{pmatrix} a \\ T \\ R \end{pmatrix} = \begin{pmatrix} 636 \\ 518 \\ 307 \end{pmatrix}.$$