Markov 过程复习资料

白永乐 王胤雅

2024年6月20日

目录

1	基本	概念和	例子	2
	1.1	基本概	[念	2
		1.1.1	随机过程的定义	2
		1.1.2	轨道和修正	3
		1.1.3	有限维分布族	3
		1.1.4	左极右连实现	3
	1.2	随机游	动	6
		1.2.1	轨道的无界性	6
		1.2.2	首达时分布	6
	1.3	布朗运	动	8
		1.3.1	背景和定义	8
		1.3.2	布朗运动的构造	8
		1.3.3	布朗运动的性质	8
	1.4	普瓦松	过程	10
		1.4.1	跳跃间隔时间	10
		1.4.2	轨道重构	11
		1.4.3	长时间极限行为	11
		1.4.4	复合普瓦松过程	11
	1.5	普瓦松	随机测度	13
		1.5.1	定义和存在性	13
		1.5.2	积分与补偿的测度	14
		1.5.3	应用	15
2	再新	过程及	甘	20
4	交 初 2.1		程	
	۷.⊥	文列だ 2.1.1	定义和性质	
		2.1.1	更新方程	

	2.2	长程极限行为	22			
		2.2.1 基本更新定理	22			
		2.2.2 中心极限定理	22			
	2.3	更新过程的应用	24			
		2.3.1 随机游动的爬升时间	24			
		2.3.2 更新累积过程	24			
3	离散	时间马氏链	26			
	3.1	马氏性及其等价形式	26			
		3.1.1 简单马氏性	26			
		3.1.2 条件独立性	26			
	3.2	转移矩阵	28			
		3.2.1 有转移矩阵的马氏链	28			
		3.2.2 有限维分布的性质	29			
		3.2.3 强马氏性	29			
		3.2.4 随机游动的反射原理	29			
	3.3	状态的分类	33			
4	分支	过程及其应用	38			
	4.1	定义和基本构造	38			
		4.1.1 分支过程的定义	38			
5	dist	ribution	4 5			
6	important lemma					

1 基本概念和例子

1.1 基本概念

1.1.1 随机过程的定义

Definition 1. 设 I 是非空指标集, $(\Omega, \mathcal{F}, \mathbb{P})$ 是概率空间。若 $(X_{\alpha} : \alpha \in I)$ 是一组定义在 $(\Omega, \mathcal{F}, \mathbb{P})$ 上的随机变量(取值为 \mathbb{R}^d),则称 $(X_{\alpha} : \alpha \in I)$ 为一个随机过程。

Definition 2. 假设 $(X_{\alpha}: \alpha \in I)$ 和 $(Y_{\alpha}: \alpha \in J)$ 是两个随机过程。若对于任何有限序列 $(s_1, \dots, s_n) \subset I, (t_1, \dots, t_m) \subset J$,都有 $(X_{s_1}, \dots, X_{s_n}) \perp (Y_{t_1}, \dots, Y_{t_m})$,则称这两个随机过程独立。

1.1.2 轨道和修正

Definition 3. 设 $(X_{\alpha} : \alpha \in I)$ 为随机过程。固定 $\omega \in \Omega$,称 $t \mapsto X_t(\omega)$ 为 X 的一条轨道。

Definition 4. 称一个随机过程是(左连续//右连续//连续//连极右连//左连右极)的,若它的所有轨道都是(左连续//右连续//连续//连续//左极右连//左连右极的)。

Definition 5. 设 $(X_t:t\in I)$ 和 $(Y_t:t\in I)$ 是两个随机过程。若 $\forall t\in I$,有 $\mathbb{P}(X_t=Y_t)=1$,则称它们互为修正。若 $\mathbb{P}(\forall t\in I,X_t=Y_t)=1$,则称它们是无区别的。

Theorem 1. 设 $(X_t: t \ge 0)$ 和 $(Y_t: t \ge 0)$ 是两个右连续的随机过程,而 D 是 $(0, \infty)$ 的可数稠密子集。若 $\forall s \in D, \mathbb{P}(X_s = Y_s) = 1$,则有 $(X_t: t \ge 0)$ 和 $(Y_t: t \ge 0)$ 是无区别的。

1.1.3 有限维分布族

为了简化记号,我们用 S(I) 表示 I 的全体有序有限子集。即:

$$S(I) := \{(t_1, \dots, t_n) : n \ge 1, t_i \in I, \forall i = 1, \dots, n\}$$

用 E 表示 \mathbb{R}^d ,用 \mathcal{E} 表示博雷尔代数。

Definition 6. 设 I 是非空指标集。若对于每个 $J \in S(I)$,都对应一个 $(E^|J|, \mathcal{E}|J|)$ 上的概率测度 u_J ,则称 $(\mu_J: I \in S(I))$ 为 E 上的一个有限维分布族,其中每个 μ_J 称为一个有限维分布。设 $X = (X_t: t \in I)$ 是一个随机过程,用 μ_J^X 表示 $(X_{t_1}, \cdots, X_{t_n})$ 的分布。称 $\mathcal{D}_X := \{\mu_J^X: J \in S(I)\}$ 为 X 的有限维分布族,称 μ_J^X 为其中的一个有限维分布。

Definition 7. 给定 (E,\mathcal{E}) 上的有限维分布族 \mathcal{D} ,若存在随机过程 $X=(X_t:t\in I)$ 使得 $\mathcal{D}_X=\mathcal{D}$,则称X为 \mathcal{D} 的一个实现。若两个随机过程X,Y满足 $\mathcal{D}_X=\mathcal{D}_Y$,则称它们为等价的。两个等价的过程互称实现。显然,两个互为修正的随机过程一定等价,反过来却未必。

1.1.4 左极右连实现

Definition 8. 状态空间 $E=\mathbb{R}^d$ 上的随机过程有左极右连实现 \iff 它有左极右连修正。证明 见教材 p5

ROBEM 1 Assume $(\mathscr{F}_t : t \geq 0, t \in \mathbb{R})$ is a filtration. For $t \geq 0$ we let $\mathscr{F}_{t+} := \bigcap_{s>t} \mathscr{F}_s$. Prove that $\mathscr{F}_t \subset \mathscr{F}_{t+}$ and $(\mathscr{F}_{t+} : t \geq 0)$ is a filtration.

SPETION. To prove $\mathscr{F}_t \subset \mathscr{F}_{t+} = \bigcap_{s>t} \mathscr{F}_s$, we only need to prove $\forall s > t, \mathscr{F}_t \subset \mathscr{F}_s$. By the definition of filtration it's obvious. Now we will prove $(\mathscr{F}_{t+}:t\geq 0)$ is a filtration. Only need to prove $\forall t,s\in\mathbb{R} \land t\leq s,\mathscr{F}_{t+}\subset \mathscr{F}_{s+}$. By the definition of \mathscr{F}_{c+} we know that $\mathscr{F}_{t+}=\bigcap_{x>t} \mathscr{F}_x=\bigcap_{x>s} \mathscr{F}_x \cap \bigcap_{x:t\leq x\leq s} \mathscr{F}_x \subset \bigcap_{x>s} \mathscr{F}_x=\mathscr{F}_{s+}$. So $(\mathscr{F}_{t+}:t\geq 0)$ is a filtration.

ROBLEM 2 Assume $(X_t: t \geq 0, t \in \mathbb{R})$ is a stochastic process on probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Prove that $\forall s, t \geq 0, \varepsilon > 0, \{\rho(X_s, X_t) \geq \varepsilon\} \in \mathcal{F}$.

SOUTHON. Easily $\{\rho(X_s, X_t) \geq \varepsilon\} = \bigcup_{k=1}^{\infty} \{\rho(X_s, X_t) > \varepsilon - \frac{1}{k}\varepsilon\}$. So we only need to prove $\forall k \in \mathbb{N}^+, \{\rho(X_s, X_t) > \varepsilon(1 - \frac{1}{k})\} \in \mathscr{F}$. Take $\delta = \varepsilon(1 - \frac{1}{k})$, only need to prove $\forall \delta > 0, \{\rho(X_s, X_t) > \delta\} \in \mathscr{F}$.

 $\forall t \geq 0, X_t : \Omega \to E$ is measurable, where $E \subset \mathbb{R}^d$. So we can find a countable dense set in \mathbb{R}^d , write D. We will prove that $\{\rho(X_s, X_t) > \delta\} = \bigcup_{q \in D} \{\rho(X_s, q) - \rho(X_t, q) > \delta\}$. On one hand, easily $\rho(X_s, q) - \rho(X_t, q) > \delta \implies \rho(X_s, X_t) > \delta$ from triangle inequality. So we easily get $\{\rho(X_s, X_t) > \delta\} \supset \bigcup_{q \in D} \{\rho(X_s, q) - \rho(X_t, q) > \delta\}$. On the other hand, assume for certain $\omega \in \Omega$ we have $\rho(X_s(\omega), X_t(\omega)) > \delta$, we will prove $\exists q \in D, \rho(X_s(\omega), q) - \rho(X_t(\omega), q) > \delta$. For convenience, we omit (ω) from now on to the end of this paragraph. Since $\rho(X_s, X_t) > \delta$, we know $\gamma := \frac{\rho(X_s, X_t) - \delta}{2} > 0$. Since D is dense, we obtain $\exists q \in D, \rho(X_t, q) < \gamma$. So from triangle inequality we get $\rho(X_s, q) \geq \rho(X_s, X_t) - \rho(X_t, q) > 2\gamma + \delta - \gamma = \gamma + \delta$. So we get $\rho(X_s, q) - \rho(X_t, q) > \gamma + \delta - \gamma = \delta$. Finally, we get $\{\rho(X_s, X_t) > \delta\} = \bigcup_{q \in D} \{\rho(X_s, q) - \rho(X_t, q) > \delta\}$.

Noting $\bigcup_{q\in D} \{\rho(X_s,q) - \rho(X_t,q) > \delta\} = \bigcup_{q\in D} \bigcup_{p\in \mathbb{Q}^+} \{\rho(X_s,q) > \delta + p, \rho(X_t,q) < p\}$, and D, \mathbb{Q}^+ are countable, so we only need to check $\{\rho(X_s,q) > \delta + p, \rho(X_t,q) < p\} \in \mathscr{F}, \forall q \in D, p \in \mathbb{Q}^+$. Noting $\{\rho(X_s,q) > \delta + p, \rho(X_t,q) < p\} = \{\rho(X_s,q) > \delta + p\} \cap \{\rho(X_t,q) < p\}$, and X_s, X_t are measurable from Ω to E, we obtain $\{\rho(X_s,q) > \delta + p\}, \{\rho(X_t,q) < p\} \in \mathscr{F}$. So we proved $\{\rho(X_s,X_t) > \delta\} \in \mathscr{F}, \forall s,t \geq 0, \forall \delta > 0$.

Finally, we obtain
$$\{\rho(X_s, X_t) \geq \varepsilon\} \in \mathscr{F}, \forall s, t \geq 0, \varepsilon > 0.$$

ROBEM 3 Let $\mathscr{D}_X := \{\mu_J^X : J \in S(I)\}$ be the family of finite-dimentional distributions of a stochastic process $(X_t : t \geq 0, t \in \mathbb{R})$. $\forall (s_1, s_2) \in S(I)$ and $J = (t_1, \dots, t_n) \in S(I)$, write $K_1 := (s_1, s_2, t_1, \dots, t_n) \in S(I), K_2 := (s_2, s_1, t_1, \dots, t_n) \in S(I)$. Take $A_1, A_2 \in \mathscr{E}, B \in \mathscr{E}^n$, prove that

$$\mu_{K_1}^X(A_1 \times A_2 \times B) = \mu_{K_2}^X(A_2 \times A_1 \times B)$$

and

$$\mu^X_{K_1}(E\times E\times B)=\mu^X_{K_2}(E\times E\times B)=\mu^X_J(B)$$

SOLUTION. By the definition of finite-dimentional distributions we get

$$\mu_{K_1}^X(A_1 \times A_2 \times B) = \mathbb{P}((X_{s_1}, X_{s_2}, X_{t_1}, \cdots, X_{t_n}) \in A_1 \times A_2 \times B)$$
$$= \mathbb{P}(X_{s_1} \in A_1)\mathbb{P}(X_{s_2} \in A_2)\mathbb{P}((X_{t_1}, X_{t_2}, \cdots, X_{t_n}) \in B)$$

For the same reason, we obtain

$$\mu_{K_2}^X(A_2 \times A_1 \times B)$$

$$= \mathbb{P}((X_{s_2}, X_{s_1}, X_{t_1}, \cdots, X_{t_n}) \in A_2 \times A_1 \times B)$$

$$= \mathbb{P}(X_{s_2} \in A_2) \mathbb{P}(X_{s_1} \in A_1) \mathbb{P}((X_{t_1}, X_{t_2}, \cdots, X_{t_n}) \in B)$$

So we get

$$\mu_{K_1}^X(A_1 \times A_2 \times B) = \mu_{K_2}^X(A_2 \times A_1 \times B)$$

Also, let $A_1 = A_2 = E$, we get

$$\mu_{K_1}^X(E \times E \times B) = \mu_{K_2}^X(E \times E \times B)$$

$$= \mathbb{P}(X_{s_1} \in E)\mathbb{P}(X_{s_2} \in E)\mathbb{P}((X_{t_1}, \dots, X_{t_n}) \in B)$$

$$= \mathbb{P}((X_{t_1}, \dots, X_{t_n}) \in B)$$

By the definition of finite-dimentional distributions we get

$$\mu_J^X(B) = \mathbb{P}((X_{t_1}, \cdots, X_{t_n}) \in B)$$

So finally we get

$$\mu_{K_1}^X(E \times E \times B) = \mu_{K_2}^X(E \times E \times B) = \mu_J^X(B)$$

ROBEM 4 Assume $(\tau_k : k \in \mathbb{N}^+)$ is an i.i.d sequence of r.v. with exponential distribution with parameter $\alpha > 0$. Let $S_n := \sum_{k=1}^n \tau_k$. For $t \ge 0, t \in \mathbb{R}$, let:

$$N_t := \sum_{n=1}^{\infty} \mathbb{1}_{\{S_n \le t\}}, X_t := \sum_{n=1}^{\infty} \mathbb{1}_{\{S_n < t\}}$$

Prove that N and X are modifications of each other, but they are not indistinguishable.

SPERON. First we prove N and X are modifications of each other. Fix $t \in [0, \infty)$, we need to prove $\mathbb{P}(N_t = X_t) = 1$. Noting $N_t - X_t = \sum_{n=1}^{\infty} \mathbbm{1}_{S_n \le t} - \mathbbm{1}_{S_n < 1} = \sum_{n=1}^{\infty} \mathbbm{1}_{S_n = t}$, we get $\mathbb{P}(N_t = X_t) = \mathbb{P}(\sum_{n=1}^{\infty} \mathbbm{1}_{S_n = t}) = \mathbb{P}(\forall n \in \mathbb{N}^+, S_n \ne t)$. So we only need to prove $\mathbb{P}(S_n = t) = 0$, $\forall n \in \mathbb{N}^+$. Since $\tau_k, k \in \mathbb{N}^+$ are continuous-distributed, we know $S_n = \sum_{k=1}^n \tau_k$ is continuous-distributed, so $\mathbb{P}(S_n = t) = 0$. So we proved N and X are modifications of each other.

Next we will prove they are not indistinguishable. Only need to prove $\mathbb{P}(\forall t \in [0, \infty), X_t = N_t) = 0 \neq 1$. Since $N_t - X_t = \sum_{n=1}^{\infty} \mathbbm{1}_{S_n \leq t} - \mathbbm{1}_{S_n < 1} = \sum_{n=1}^{\infty} \mathbbm{1}_{S_n = t}$, we know $\forall t, N_t = X_t \iff \forall t, \forall n \in \mathbb{N}^+, S_n \neq t$. But S_n is ranged in $[0, \infty)$, so R.H.S is an impossible event. So we finally get $\mathbb{P}(\forall t \in [0, \infty), X_t = N_t) = 0$ and thus X and N are not indistinguishable.

ROBEM 5 Assume T is non-negetive r.v. with distribution function F continuous on \mathbb{R} . Let $X_t = \mathbb{1}_{\{T \le t\}}$. Prove that X is stochastically continuous.

SPERON. Only need to check $\forall t \geq 0, X_s \stackrel{\mathbb{P}}{\to} X_t, s \to t$. Take $\varepsilon > 0$, we need to prove $\lim_{s \to t} \mathbb{P}(\rho(X_s, X_t) > \varepsilon) = 0$. For $u > v \geq 0$, we have $X_u - X_v = \mathbb{1}_{v < T \leq u}$. So $\mathbb{P}(\rho(X_u - X_v) > \varepsilon) \leq \mathbb{P}(X_u \neq X_v) = \mathbb{P}(v < T \leq u) \leq \mathbb{P}(T \in [v, u])$. So we easily get $\lim_{s \to t_+} \mathbb{P}(\rho(X_s, X_t) > \varepsilon) \leq \lim_{s \to t_+} \mathbb{P}(T \in [t, s]) = 0$ and $\lim_{s \to t_-} \mathbb{P}(\rho(X_s, X_t) > \varepsilon) \leq \lim_{s \to t_-} \mathbb{P}(T \in [s, t]) = 0$. So $\lim_{s \to t_-} \mathbb{P}(\rho(X_s, X_t) > \varepsilon) = 0$.

ROBEM 6 Assume $I = \mathbb{Z}^+$, then the stochastic process $X = (X_0, X_1, \cdots)$ is a r.v. from Ω to E^{∞} . Define the distribution of X, μ_X , as follows:

$$\mu_X(A) = \mathbb{P}(X \in A), A \in \mathscr{E}^{\infty}$$

Then stochastic process X, Y are equivalent $\iff \mu_X = \mu_Y$.

SPETION. " \Longrightarrow ": Assume X,Y are equivalent, now we will prove $\mu_X = \mu_Y$. Let $\mathscr{A} := \{A \in \mathscr{P}(E^{\infty}) : \exists n \in \mathbb{N}^+, A = A_1 \times A_2 \times \cdots \times A_n \times E \times E \times \cdots \}$. Then we can get $\mu_X(A) = \mu_{(1,2,\dots,n)}^X(A_1 \times \cdots \times A_n)$. So for $A \in \mathscr{A}$ we know $\mu_X(A) = \mu_Y(A)$. By the definition of $\mathscr{E}^{\infty} = \sigma(\mathscr{A})$, and noting \mathscr{A} is a Semiset algebra, by the Measure extension theorem we get $\mu_X = \mu_Y$. " \Longleftrightarrow ": Assume $\mu_X = \mu_Y$, then easily $\mu_{(n,\dots,n)}^X(A_{n,1} \times \cdots \times A_{n,n}) = \mu_X(\prod_{k \in \mathbb{N}^+} B_k)$, where

" \Leftarrow ": Assume $\mu_X = \mu_Y$, then easily $\mu_{(s_1, \dots, s_n)}^X(A_{s_1} \times \dots \times A_{s_n}) = \mu_X(\prod_{k \in \mathbb{N}^+} B_k)$, where $B_k = A_{s_t}$ for $k = s_t$ and $B_k = E$ for $k \neq s_t, \forall t = 1, \dots, n$. So easily $\mu_J^X = \mu_J^Y, \forall J \subset I \land |J| < \infty$.

1.2 随机游动

Definition 9. 设 $\{\xi_n : n \ge 1\}$ 是独立同分布的 d 维随机变量列,而 X_0 是与之独立的一个 d 维随机变量。令 $X_n := X_0 + \sum_{k=1}^n \xi_k$ 。称 $(X_n : n \ge 0)$ 为 d 维随机游动,并称 $\{\xi_n : n \ge 1\}$ 为其步长列。

Definition 10. 若 X_0, ξ_1 均取值与 \mathbb{Z}^d ,则该随机游动状态空间可以取为 \mathbb{Z}^d 。特别地,若还有 $\mathbb{P}(|\xi_1|=1)=1$,则称其为简单随机游动。进一步地,若对于 \mathbb{Z}^d 中的任一单位向量 v,均有 $\mathbb{P}(\xi_1=v)=\frac{1}{2d}$,则称其为对称简单随机游动。

1.2.1 轨道的无界性

方便起见,考虑 \mathbb{Z} 上的简单随机游动 S_n ,设其步长列为 $\xi_n: n \geq 1$ 。设 $\mathbb{P}(\xi_n = 1) = p$, $\mathbb{P}(\xi_n = -1) = q$, 其中 $p, q \in (0, 1), p + q = 1$ 。

Theorem 2. $(S_n : n \ge 1)$ 的轨道是几乎必然无界的。即:

$$\mathbb{P}(\sup_{n>0}|S_n|=\infty)=1. \tag{1}$$

证明见教材 p9

1.2.2 首达时分布

Definition 11. $i \in \mathbb{P}_i(\cdot) = \mathbb{P}(\cdot \mid S_0 = i)_{\circ}$

Definition 12. 定义 $(S_n : n \ge 0)$ 到达 $x \in \mathbb{Z}$ 的首达时 $\tau_x := \inf\{n \ge 0 : S_n = x\}$ 。

Theorem 3. 当 $p = q = \frac{1}{2}$ 时,对于 $a < b, i \in [a, b], a, b, i \in \mathbb{Z}$,有

$$\mathbb{P}_i(\tau_b < \tau_a) = \frac{i - a}{b - a}, \mathbb{P}_i(\tau_a < \tau_b) = \frac{b - i}{b - a} \tag{2}$$

当 $p \neq q$ 时,有

$$\mathbb{P}_{i}(\tau_{b} < \tau_{a}) = \frac{1 - (\frac{q}{p})^{i-a}}{1 - (\frac{q}{p})^{b-a}}, \mathbb{P}_{i}(\tau_{a} < \tau_{b}) = \frac{(\frac{q}{p})^{i-a} - (\frac{q}{p})^{b-a}}{1 - (\frac{q}{p})^{b-a}}$$
(3)

证明见教材 p10

Theorem 4. 当 $p \ge q$, 对 $a \le i \le b \in \mathbb{Z}$, 有

$$\mathbb{P}_i(\tau_a < \infty) = (\frac{q}{p})^{i-a}, \mathbb{P}_i(\tau_b < \infty) = 1$$
(4)

当 $p \leq q$,有

$$\mathbb{P}_i(\tau_a < \infty) = 1, \mathbb{P}_i(\tau_b < \infty) = (\frac{p}{q})^{b-i} \tag{5}$$

证明见教材 p11

ROBEM 7 Prove that if $(X_n : n \ge 0)$ is a simple random walk, then so is $(-X_n : n \ge 0)$.

STHON. Let $\xi_n := X_n - X_{n-1}$ for $n \in \mathbb{N}^+$. Then Since $(X_n : n \in \mathbb{N})$ is simple random walk we have $X_0, \xi_1, \xi_2, \cdots$ are independent r.v. ranges in \mathbb{Z} , and $\xi_i, i = 1, 2 \cdots$ are i.i.d., and $\mathbb{P}(|\xi_i| = 1) = 1$. So we easily get $-X_0, -\xi_1, -\xi_2, \cdots$ are independent r.v. ranges in \mathbb{Z} , and $-\xi_i, i = 1, 2, \cdots$ are i.i.d., and $\mathbb{P}(|-\xi_i| = 1) = 1$. Since $-X_n = X_0 + \sum_{k=1}^n \xi_k$, by the definition of simple random walk we obtain $(-X_n : n \in \mathbb{N})$ is a simple random walk.

ROBEM 8 Let $(X_n : n \ge 0)$ be a d-dimentional random walk with $\mathbb{P}(|\xi_i| \ge 1) > 0$, prove that $\mathbb{P}(\sup_n |X_n| = \infty) = 1$.

SPTION. Let $t \in \mathbb{Z}^d$, $t \neq 0$ and $\mathbb{P}(\xi_i = t) > 0$. Since $\mathbb{P}(\sup_n |X_n| = \infty) = \inf_{k \in \mathbb{N}} \mathbb{P}(\sup_n |X_n| \geq k)$, we only need to prove $\mathbb{P}(\sup_n |X_n| \geq k) = 1$ for every $k \in \mathbb{N}$. Take $K > 3k, K \in \mathbb{N}$. Let $A_s := \{\xi_i = t : i = sK + 1, sK + 2, \cdots, sK + K - 1\}$. Then for $\omega \in A_s$, we have $|X_{sK+K} - X_{sK}| = |\sum_{u=1}^{K-1} t| = K|t| \geq K \geq 3k$. Then $\sup_n |X_n| \geq \max\{|X_{sK+K}|, |X_{sK}|\} \geq \frac{1}{2}|X_{sK+K} - X_{sK}| \geq k$. So we get $\forall s, A_s \subset \{\sup_n |X_n| \geq k\}$. Since ξ_i are independent, easily get $A_s, s = 1, 2, \cdots$ are independent. Noting $\mathbb{P}(A_s) = \mathbb{P}(\xi_i = t)^K > 0$, we get $\sum_{s \in \mathbb{N}} \mathbb{P}(A_s) = \infty$. So from BC-theorem we get $\mathbb{P}(A_s, i.o.) = 1$, thus $\mathbb{P}(\bigcup_{s \in \mathbb{N}} A_s) = 1$. Thus, $\mathbb{P}(\sup_n |X_n| \geq k) = 1$, for every $k \in \mathbb{N}$. Thus, $\mathbb{P}(\sup_n |X_n| = \infty) = \mathbb{P}(\bigcap_{k \in \mathbb{N}} \{\sup_n |X_n| \geq k\}) = 1$.

ROBEM 9 Let $(S_n : n \ge 0)$ be a symmetry simple random walk with $S_0 = 0$, for d = 2, prove that

$$\mathbb{P}(S_{2n} = 0) = \frac{1}{4^{2n}} \left(\frac{(2n)!}{(n!)^2}\right)^2$$

For d = 3, prove that

$$\mathbb{P}(S_{2n} = 0) = \frac{1}{2^{2n}} \frac{(2n)!}{(n!)^2} \sum_{i+j+k=n} \left(\frac{1}{3^n} \frac{n!}{i!j!k!} \right)^2$$

SOLITION. First we consider d=2. Write $\xi_i=S_i-S_{i-1}$. Then we know S_{2n} occur \iff the number of (1,0) and (-1,0) in $\{\xi_i:i=1,\cdots,2n\}$, and the number of (0,1) and (0,-1) in $\{\xi_i:i=1,\cdots,2n\}$. We assume there is k pairs of (1,0),(-1,0), then easily there is n-k pairs of (0,1),(0,-1). The probability is $\binom{2n}{k}\binom{2n-k}{n-k}\binom{2n-2k}{n-k}\frac{1}{4^{2n}}$. So the total probability is $\mathbb{P}(S_{2n}=1)$

$$0) = \sum_{k=0}^{n} {2n \choose k} {2n-k \choose k} \frac{1}{4^{2n}} = \sum_{k=0}^{n} \frac{(2n)!}{k!k!(n-k)!(n-k)!4^{2n}}. \text{ Noting that } \sum_{k=0}^{n} \frac{(n!)^2}{k!k!(n-k)!(n-k)!} = \sum_{k=0}^{n} {n \choose k} {n \choose n-k} = {2n \choose n} = \frac{(2n)!}{n!n!}, \text{ we finally get } \mathbb{P}(S_{2n} = 0) = \frac{1}{4^{2n}} \left(\frac{(2n)!}{n!n!}\right)^2.$$

Use the same method, consider d = 3, we have

$$\mathbb{P}(S_{2n} = 0) = \sum_{i \neq i \neq k = n} {2n \choose i} {2n - i \choose i} {2n - 2i \choose j} {2n - 2i - j \choose j} {2n - 2i - 2j - k \choose k} \frac{1}{6^{2n}}$$

So easily to get
$$\mathbb{P}(S_{2n} = 0) = \frac{1}{2^{2n}} \frac{(2n)!}{(n!)^2} \sum_{i+j+k=n} \left(\frac{1}{3^n} \frac{n!}{i!j!k!} \right)^2$$
.

ROBEM 10 Assume $(S_n : n \ge 0)$ is a symmetry simple random walk with $S_0 = i \in \mathbb{Z}$. Prove that $\forall a \in \mathbb{Z}$, let $\tau_a := \min\{n \in \mathbb{N} : S_n = a\}$, then $\mathbb{P}(\tau_a < \infty) = 1$.

SOUTON: Without loss of generality assume a < 0, i = 0. Take $N \in \mathbb{N}^+$. Consider $\tau := \min\{n \in \mathbb{N} : S_n = a \vee S_n = N\}$. From Problem 21 we can easily know $\mathbb{P}(\tau < \infty) = 1$ because $\{\sup_n |S_n| = \infty\} \subset \{\tau < \infty\}$, a.s. So we get $\{\tau_a = \tau\} \subset \{\tau_a < \infty\}$, a.s. Let $Y_n := S_{n \wedge \tau} := S_{\min\{n,\tau\}}$. Easily $(S_n : n \in \mathbb{N})$ is a martingale, and τ is a stopping time, so we get $(Y_n : n \in \mathbb{N})$ is a martingale, too. And easily $Y_n \in [a, N]$, so Y_n is bounded. So we get $\mathbb{E}(S_\tau) = \lim_{n \to \infty} \mathbb{E}(Y_n) = \mathbb{E}(Y_0) = 0$. Easily to know $\mathbb{E}(S_\tau) = \mathbb{P}(\tau = \tau_a)a + \mathbb{P}(\tau \neq \tau_a)N = 0$. And $\mathbb{P}(\tau = \tau_a) + \mathbb{P}(\tau \neq \tau_a) = 1$, so easily $\mathbb{P}(\tau = \tau_a) = \frac{N}{N-a}$. So $\mathbb{P}(\tau_a < \infty) \geq \frac{N}{N-a}$. Let $N \to \infty$, we get $\mathbb{P}(\tau_a < \infty) = 1$.

1.3 布朗运动

1.3.1 背景和定义

Definition 13. 假定 $\sigma^2 > 0$,具有连续轨道的实值过程 $(B_t : t \geq 0)$ 满足:

1.
$$\forall 0 \le s \le t, B_t - B_s \sim N(0, \sigma^2(t-s));$$

2.
$$\forall 0 \leq t_0 \leq \cdots \leq t_n$$
, $B_0, B_1 - B_0, \cdots, B_{t_n} - B_{t_{n-1}}$ 独立,

称 $(B_t:t\geq 0)$ 是以 σ^2 为参数的布朗运动。特别的, 当 $\sigma^2=1$, $(B_t:t\geq 0)$ 为标准布朗运动。

Definition 14. 有限维分布为正态分布的随机过程称为正态过程。

1.3.2 布朗运动的构造

Theorem 5. 布朗运动是有连续实现的。证明见教材 p13.

1.3.3 布朗运动的性质

Theorem 6. 从原点出发的零均值高斯过程 $(B_t:t\geq 0)$ 是标准布朗运动 $\iff \forall s,t\geq 0$, $\mathbb{E}(B_tB_s)=t\wedge s$ 。证明 p17.

Theorem 7. 布朗运动轨道几乎处处不可导。证明 p17-18.

9

Lemma 1. Assume $(B_t: t \geq 0)$ is a random process ranging in \mathbb{R} , $a \in \mathbb{R}^+$, and $\forall s, t: 0 \leq s \leq t, B_t - B_s \sim N(0, a(t-s))$. Assume B_t is continuous about t, a.s. Let $\mathcal{F}_t := \sigma(B_s: 0 \leq s \leq t)$. Then $(B_t: t \geq 0)$ is Brownian motion $\iff \forall 0 \leq s \leq t, B_t - B_s \perp \mathcal{F}_s$.

证明. " \Longrightarrow ": To prove $B_t - B_s \perp \mathcal{F}_s$, only need to prove for $t_1 < t_2 < \cdots < t_{n-1} = s < t = t_n$, we have $B_t - B_s \perp \sigma(B_{t_k}: k = 1, \cdots, n-1)$. Easily $B_t - B_s \perp \sigma(B_{t_{k+1}} - B_{t_k}, B_{t_1}: k = 1, \cdots, n-2) = \sigma(B_{t_k}: k = 1, \cdots, n-1)$, so $B_t - B_s \perp \mathcal{F}_s$.

"\(\iff \text{": For } t_1 < \cdots < t_n, \text{ we need to prove } B_{t_1}, B_{t_{k+1}} - B_{t_k} : 1 \leq k \leq n - 1 \text{ are independent.} Use MI to n. When n = 1 it's obvious. Assume we have proved it for certain $n \geq 1$, now consider n + 1. Since $B_{t_{k+1}} - B_{t_k} \in \mathcal{F}_{t_n}, k = 1, \cdots, n - 1$, we have $B_{t_{n+1}} - B_{t_n} \perp \sigma(B_{t_1}, B_{t_{k+1}} - B_{t_k} : k = 1, \cdots, n - 1)$. So $\mathbb{P}(B_{t_1} \in A_1, B_{t_{k+1}} - B_{t_k} \in A_{k+1}, k = 1, \cdots, n) = \mathbb{P}(B_{t_1} \in A_1, B_{t_{k+1}} - B_{t_k} \in A_{k+1}, k = 1, \cdots, n - 1)$ \(\mathbb{P}(B_{t_{n+1}} - B_{t_n} \in A_{n+1})\). By Induction assumption we get $\mathbb{P}(B_{t_1} \in A_1, B_{t_{k+1}} - B_{t_k} \in A_{k+1}, k = 1, \cdots, n) = \mathbb{P}(B_{t_1} \in A_1) \prod_{k=1}^n \mathbb{P}(B_{t_{k+1}} - B_{t_k} \in A_{k+1})$. So finally we get $B_{t_1}, B_{t_{k+1}} - B_{t_k} : 1 \leq k \leq n$ are independent.

ROBEM 11 Assume $(B_t: t \ge 0)$ is Brownian motion, prove that for r > 0, we have $(B_{t+r} - B_r: t \ge 0)$ is Brownian motion, too.

SOUTION. Assume $B_t - B_s \sim N(0, a(t-s)), a > 0$. Let $\mathcal{F}_t := \sigma(B_s : 0 \le s \le t)$ and $\mathcal{G}_t := \sigma(B_{r+s} - B_r : 0 \le s \le t)$. For $0 \le s \le t$, we have $B_{t+r} - B_r - (B_{s+r} - B_r) = B_{t+r} - B_{s+r} \sim N(0, a(t-s))$. And easily to know $B_{r+s} - B_r \in \mathcal{F}_{r+s}$, so $\mathcal{G}_t \subset \mathcal{F}_{t+r}, \forall t \ge 0$. Since $(B_t : t \ge 0)$ is Brownian motion, easily $\mathcal{F}_{s+r} \perp B_{t+r} - B_{s+r}$. Since $\mathcal{G}_t \subset \mathcal{F}_{t+r}$, we obtain $\mathcal{G}_t \perp B_{t+r} - B_{s+r} = B_{t+r} - B_r - (B_{s+r} - B_r)$. Easily since B_t is continuous we get $B_{t+r} - B_r$ is continuous. So $(B_{t+r} : t \ge 0)$ is Brownian motion.

ROBEM 12 Assume $(B_t:t\geq 0)$ is standard Brownian motion start at 0. Prove that $\forall c>0, (cB_{\frac{t}{2}}:t\geq 0)$ is standard Brownian motion start at 0, too.

SPERON. Since $B_0=0$ we get $cB_{\frac{0}{c^2}}=0$. Let $\mathcal{F}_t:=\sigma(B_s:0\leq s\leq t)$ and $\mathcal{G}_t:=\sigma(cB_{\frac{s}{c^2}}:0\leq s\leq t)$. Easily to know $\mathcal{G}_t=\mathcal{F}_{\frac{t}{c^2}}$. For $0\leq s\leq t$, we have $cB_{\frac{t}{c^2}}-cB_{\frac{s}{c^2}}=c(B_{\frac{t}{c^2}}-B_{\frac{s}{c^2}})\sim N(0,t-s)$, because $B_{\frac{t}{c^2}}-B_{\frac{s}{c^2}}\sim N(0,\frac{t-s}{c^2})$. And since $(B_t:t\geq 0)$ is Brownian motion, we get $B_{\frac{t}{c^2}}-B_{\frac{s}{c^2}}\perp \mathcal{F}_{\frac{s}{c^2}}=\mathcal{G}_s$. Easily since B_t is continuous we get $cB_{t^2_c}$ is continuous. So $(cB_{\frac{t}{c^2}}:t\geq 0)$ is standard Brownian motion starts at 0, too.

ROBEM 13 Assume $(X_t: t \ge 0)$ and $(Y_t: t \ge 0)$ are two independent standard Brownian motion, $a, b \in \mathbb{R}$ and $\sqrt{a^2 + b^2} > 0$. Prove that $(aX_t + bY_t: t \ge 0)$ is a Brownian motion with parameter $c^2 = a^2 + b^2$.

SOLITION. Let $\mathcal{F}_t := \sigma(X_s : 0 \le s \le t)$ and $\mathcal{G}_t := \sigma(Y_s : 0 \le s \le t)$. Let $\mathcal{H}_t := \sigma(aX_s + bY_s : 0 \le s \le t)$. Since $(X_t : t \ge 0), (Y_t : t \ge 0)$ are two independent Brownian motion, we know $\forall 0 \le s \le t, X_t - X_s \perp \mathcal{F}_s, \mathcal{G}_s; Y_t - Y_s \perp \mathcal{F}_s, \mathcal{G}_s$. So we get $aX_t + bY_t - aX_s - bY_s \perp \mathcal{F}_s, \mathcal{G}_s$, thus $aX_t + bY_t - aX_s - bY_s \perp \sigma(\mathcal{F}_s, \mathcal{G}_s)$ Easily $aX_s + bY_s \in \sigma(\mathcal{F}_s, \mathcal{G}_s)$, so $\mathcal{H}_t \subset \sigma(\mathcal{F}_t, \mathcal{G}_t, t), \forall t \ge 0$. So

 $aX_t + bY_t - aX_s - bY_s \perp \mathcal{H}_s$. And easily $a(X_t - X_s) \sim N(0, a^2(t-s)), b(Y_t - Y_s) \sin N(0, b^2(t-s)),$ and since $\mathcal{F}_t \perp \mathcal{G}_t$ we get $a(X_t - X_s) \perp b(Y_t - Y_s)$, so $aX_t + bY_t - aX_s - bY_s \sim N(0, (a^2 + b^2)(t-s)).$ Easily since X_t, Y_t is continuous we get $aX_t + bY_t$ is continuous. So $(aX_t + bY_t : t \geq 0)$ is a Brownian motion with parameter $a^2 + b^2 = c^2$.

ROBEM 14 Assume $(B_t:t\geq 0)$ is standard Brownian motion start at 0. Let $X_0=0$ and $X_t:=tB_{\frac{1}{2}}$. Given

$$\limsup_{t \to \infty} \frac{B_t}{\sqrt{2t \log \log t}} = 1$$

Prove that $(X_t : t \ge 0)$ is standard Brownian motion start at 0.

Second let $\mathcal{G}_t := \sigma(X_s: 0 \leq s \leq t)$, we need to check $X_t - X_s \perp \mathcal{G}_s, \forall 0 \leq s \leq t$. For s = 0 we get $\mathcal{G}_s = \{\emptyset, \Omega\}$, so it's obvious. Now assume s > 0. Then $\mathcal{G}_s = \sigma(B_{\frac{1}{r}}: 0 \leq r \leq s)$. Only need to prove for any finite set $I \subset [0, s]$, we have $X_t - X_s \perp \sigma(B_{\frac{1}{r}}: r \in I)$. Only need to check $\mathbb{E}(B_{\frac{1}{r}}(X_t - X_s)) = 0$ because they are all normal distributed random variable. Easily $\mathbb{E}(B_{\frac{1}{r}}X_t) = \mathbb{E}((B_{\frac{1}{r}} - B_{\frac{1}{t}})tB_{\frac{1}{t}}) + \mathbb{E}(tB_{\frac{1}{t}}^2) = 1$, and $\mathbb{E}(B_{\frac{1}{r}}X_s) = \mathbb{E}((B_{\frac{1}{r}} - B_{\frac{1}{s}})sB_{\frac{1}{s}}) + \mathbb{E}(sB_{\frac{1}{s}}^2) = 1$. So $\mathbb{E}(B_{\frac{1}{r}}(X_t - X_s)) = 0$.

Finally we need to check X_t is continuous a.s. Easily for $t \neq 0$ we know X_t is continuous at t. Only need to check X_t is continuous at 0 with probability 1. Easily to know $(-B_t: t \geq 0)$ is standard Brownian motion, too. So $\limsup_{t \to \infty} \frac{-B_t}{\sqrt{2t \log \log t}} = 1$. So $\limsup_{t \to 0+} |X_t| = \lim_{t \to \infty} |\frac{1}{t}B_t| \leq \limsup_{t \to \infty} \frac{\sqrt{2t \log \log t}}{t} = 0$. So $\lim_{t \to 0+} |X_t| = 0$. So X_t is continuous with probability 1.

1.4 普瓦松过程

Definition 15. $(N_t: t \ge 0)$ 是非负整数不降随机过程, $\alpha \ge 0$ 满足:

1.
$$\forall s,t\geq 0$$
, $N_{s+t}-N_s\sim P(\alpha t)$, Ep: $\mathbb{P}(N_{s+t}-N_s=k)=\frac{\alpha^kt^k}{k!}\mathrm{e}^{-\alpha t}$;

2.
$$\forall 0 \leq t_0 < \dots < t_n, N_0, N_{t_1} - N_{t_0}, \dots, N_{t_n} - N_{t_{n-1}}$$
相互独立。

称 $(N_t: t \geq 0)$ 是普瓦松过程,参数为 α 。

1.4.1 跳跃间隔时间

 $(N_t: t \ge 0)$ 以 α 为参数的普瓦松过程, $S_0 = 0, n \ge 1$, $S_n = \inf\{t \ge 0: N_t - N_0 \ge 0\}$, $\eta_n = S_n - S_{n-1}$ 。 S_n 是 $(N_t: t \ge 0)$ 第 n 次跳跃等待时间, η_n 第 n-1 次跳跃到第 n 次跳跃的间隔时间。

Theorem 8. $\{\eta_n: n \geq 1\}$ 独立同分布,服从 $Exp(\alpha)$ 。 $S_n, n \geq 1$,服从 $\Gamma(1, \alpha)$ 。 证明见 P19.

1.4.2 轨道重构

Theorem 9. $\{\eta_n : n \geq 1\}$ 独立同分布,服从 $Exp(\alpha), \gamma > 0$ 。 $S_0 = 0, S_n = \sum_{k=1}^n \eta_k$,则:

$$N_t = \sum_{n=1}^{\infty} \mathbb{1}_{S_n \le t} = \sup\{n \ge 0 : S_n \le t\}.$$

则随机过程 $(N_t: t \ge 0)$ 是以参数为 α 的普瓦松过程。

1.4.3 长时间极限行为

 $(N_t: t \geq 0)$ 以 α 为参数的普瓦松过程。

Theorem 10 (普瓦松过程的强大数定律). $\lim_{t\to\infty} \frac{N_t}{t} \stackrel{a.s.}{=} \alpha$ 见 p23.

Theorem 11 (普瓦松过程的中心极限定理). $\lim_{t\to\infty} \mathbb{P}(\frac{N_t-\alpha t}{\sqrt{\alpha t}} \leq x) = \frac{1}{\sqrt{2\pi}} \int_{\infty}^x e^{-\frac{y^2}{2}} dy$ 。见 p23.

Corollary 1. s, x > 0, $\lim_{\lambda \to \infty} e^{-\lambda s} \sum_{k \le \lambda x} \frac{(\lambda s)^k}{k!} = \mathbb{1}_{0 < s < t} + \frac{1}{2} \mathbb{1}_{\{s = x\}}$. \mathcal{R} p24.

Theorem 12 (拉普拉斯变换的反演公式). ξ 是非负随机变量, L 为其拉普拉斯变换, 则 $\forall x > 0$,

$$\lim_{\lambda \to \infty} \sum_{k < \lambda x} \frac{(-\lambda)^k}{k!} \frac{\mathrm{d}^k}{\mathrm{d}\lambda^k} L(\lambda) = \mathbb{P}(\xi < x) + \frac{1}{2} \mathbb{P}(\xi = x)$$

见 p24.

1.4.4 复合普瓦松过程

Definition 16. μ 是 \mathbb{R} 上 概率 $\mu(\{0\}) = 0$ 。 $(N_t : t \ge 0)$ 以 $\alpha \ge 0$ 为参数的零初值普瓦松过程, $\{\xi_n : n \ge 1\}$ 与 N_t 独立,具有相同分布 μ , X_0 与 (N_t) , $\{\xi_n\}$ 独立。令: $X_t = X_0 + \sum_{n=1}^{N_t} \xi_n$, $t \ge 0$,则 $(X_t : t \ge 0)$ 是以 α 为跳跃速度, μ 为跳跃分布的复合普瓦松过程。

Theorem 13 (复合普瓦松过程的性质). $(X_t:t\geq 0)$ 为如上定义的复合普瓦松过程,则复合普瓦松过程的性质如下:

1.
$$\forall s,t \geq 0, \theta \in \mathbb{R}$$
,
$$\mathbb{E}e^{i\theta(X_{s+t}-X_s)} = \exp(\alpha t \int_{\mathbb{R}} (e^{i\theta x} - 1)\mu(dx))$$
.

2. $\forall 0 \leq t_0 < \cdots < t_n, X_{t_0}, X_{t_1} - X_{t_0}, \cdots, X_{t_n} - X_{t_{n-1}}$ 相互独立。

Lemma 2. Assume $(N_t : t \ge 0)$ is a random process, and $\mathbb{P}(\forall t \in [0, \infty), \lim_{s \to t^+} N_s = N_t, \forall t \in (0, \infty), \lim_{s \to t^-} N_s \in \mathbb{R}) = 1$. Assume $\alpha > 0$, and $\forall t, s \ge 0$, we have $N_{t+s} - N_s \sim Possion(\alpha t)$. Then $(N_t : t \ge 0)$ is a Possion process $\iff \forall 0 \le s \le t, N_t - N_s \perp \mathcal{F}_s$, where $\mathcal{F}_s := \sigma(N_x : x \le s)$.

证明. " \Longrightarrow ": To prove $N_t - N_s \perp \mathcal{F}_s$, only need to prove for $t_1 < t_2 < \cdots < t_{n-1} = s < t = t_n$, we have $N_t - N_s \perp \sigma(N_{t_k}: k = 1, \cdots, n-1)$. Easily $N_t - N_s \perp \sigma(N_{t_{k+1}} - N_{t_k}, N_{t_1}: k = 1, \cdots, n-2) = \sigma(N_{t_k}: k = 1, \cdots, n-1)$, so $N_t - N_s \perp \mathcal{F}_s$.

" \Leftarrow ": For $t_1 < \cdots < t_n$, we need to prove $N_{t_1}, N_{t_{k+1}} - N_{t_k} : 1 \le k \le n-1$ are independent. Use MI to n. When n=1 it's obvious. Assume we have proved it for certain $n \ge 1$, now consider n+1. Since $N_{t_{k+1}} - N_{t_k} \in \mathcal{F}_{t_n}, k=1,\cdots,n-1$, we have $N_{t_{n+1}} - N_{t_n} \perp \sigma(N_{t_1}, N_{t_{k+1}} - N_{t_k} : k=1,\cdots,n-1)$. So $\mathbb{P}(N_{t_1} \in A_1, N_{t_{k+1}} - N_{t_k} \in A_{k+1}, k=1,\cdots,n) = \mathbb{P}(N_{t_1} \in A_1, N_{t_{k+1}} - N_{t_k} \in A_{k+1}, k=1,\cdots,n) = \mathbb{P}(N_{t_{n+1}} - N_{t_n} \in A_{n+1})$. By Induction assumption we get $\mathbb{P}(N_{t_1} \in A_1, N_{t_{k+1}} - N_{t_k} \in A_{k+1}, k=1,\cdots,n) = \mathbb{P}(N_{t_1} \in A_1) \prod_{k=1}^n \mathbb{P}(N_{t_{k+1}} - N_{t_k} \in A_{k+1})$. So finally we get $N_{t_1}, N_{t_{k+1}} - N_{t_k} : 1 \le k \le n$ are independent.

ROBEM 15 Assume $(N_t: t \geq 0)$ is a Possion process with parameter α . Let $P(t) := \mathbb{P}(2 \mid N_t), Q(t) := \mathbb{P}(2 \mid N_t)$. Prove that $P(t) = e^{-\alpha t} \sinh(\alpha t), Q(t) = e^{-\alpha t} \cosh(\alpha t)$.

SOUTION. Easily to get

$$P(t) = \sum_{k=0}^{\infty} \mathbb{P}(N_t = 2k+1) = \sum_{k=0}^{\infty} \frac{(\alpha t)^{2k-1}}{(2k+1)!} e^{-\alpha t}$$

Noting that $\sinh(\alpha t) = \frac{1}{2} \left(\sum_{k=0}^{\infty} \frac{(\alpha t)^n}{n!} - \sum_{k=0}^{\infty} \frac{(-\alpha t)^n}{n!} \right) = \sum_{k=0}^{\infty} \frac{(\alpha t)^{2k+1}}{(2k+1)!}$, we easily obtain $P(t) = e^{-\alpha t} \sinh(\alpha t)$. Noting P(t) + Q(t) = 1, we easily get $Q(t) = 1 - P(t) = e^{-\alpha t} \cosh(\alpha t)$.

ROBEM 16 Assume $(N_t: t \ge 0)$ is a Possion process with parameter α . Prove that $\lim_{t\to\infty} \frac{N_t}{t} = \alpha, a.s.$.

Lemma 3. Assume $(N_t : t \ge 0)$ is a Possion process with parameter α . Then $\mathbb{P}(\forall 0 \le s \le t, N_s \le N_t) = 1$.

证明. For $s, t \in \mathbb{Q} \land 0 \le s \le t$, we have $\mathbb{P}(N_s > N_t) = 0$ since $N_t - N_s \sim Possion(\alpha(t - s))$. So we get $\mathbb{P}(\exists s, t \in \mathbb{Q}, 0 \le s \le t, N_s > N_t) = 0$.

Now we will prove $\exists s, t \in \mathbb{R}, 0 \leq s \leq t, N_s > N_t \implies \exists a, b \in \mathbb{Q}, 0 \leq a \leq b, N_a > N_b$. Let $a_n = \frac{\lceil ns \rceil}{n}, b_n = \frac{\lceil nt \rceil}{n}$. Then $\lim a_n = s, \lim b_n = t$. Easily $a_n \geq s, b_n \geq t$. So since N is continuous we get $\lim N_{a_n} = N_s, \lim N_{b_n} = N_t$. Since $N_s > N_t$, we get $\exists n, N_{a_n} > N_{b_n}$. Let $a = a_n, b = b_n$ will work.

So
$$\mathbb{P}(\forall 0 \le s \le t, N_s \le N_t) = 1 - \mathbb{P}(\exists 0 \le s \le t, N_s > N_t) = 1 - \mathbb{P}(\exists s, t \in \mathbb{Q}, 0 \le s \le t, N_s > N_t) = 1 - 0 = 1.$$

SOUTHON. Consider $N_n: n \in \mathbb{N}$. Let $X_n:=N_n-N_{n-1}, n \geq 1$. Then easily $(X_n: n \in \mathbb{N}^+)$ is i.i.d sequence and $X_1 \sim Possion(\alpha)$. So from the strong law of large numbers we get $\lim_{n\to\infty} \frac{N_n}{n} = \alpha$. From Lemma 3 we get $\frac{\lfloor t \rfloor}{t} \frac{N_{\lfloor t \rfloor}}{\lfloor t \rfloor} \leq \frac{N_t}{t} \leq \frac{N_{\lfloor t \rfloor}}{\lceil t \rceil} \frac{\lceil t \rceil}{t}, \forall t \in \mathbb{R}, \text{ let } t \to \infty \text{ we get } \lfloor t \rfloor, \lceil t \rceil \to \infty, \text{ and } \lfloor t \rfloor \sim t \sim \lceil t \rceil$. So finally we get $\lim_{t\to\infty} \frac{N_t}{t} = \alpha$.

ROBEM 17 Assume $(N_t: t \ge 0)$ is a Possion process with parameter $\alpha > 0$. Prove that $\frac{N_t - \alpha t}{\sqrt{\alpha t}} \xrightarrow{d} N(0, 1)$.

SOUTION. Consider $N_n: n \in \mathbb{N}$. Let $X_n := N_n - N_{n-1}, n \geq 1$. Then easily $(X_n: n \in \mathbb{N}^+)$ is i.i.d sequence and $X_1 \sim Possion(\alpha)$. Easily $\mathbb{V}(X_n) = \alpha < \infty, \mathbb{E}(X_n) = \alpha$. So from the central limit theorem we get $\frac{N_n - \alpha n}{\sqrt{\alpha n}} \stackrel{d}{\to} N(0,1)$. Noting $\frac{N_t - \alpha t}{\sqrt{\alpha t}} = \frac{N_{\lfloor t \rfloor} - \alpha \lfloor t \rfloor}{\sqrt{\alpha \lfloor t \rfloor}} \frac{\sqrt{\lfloor t \rfloor}}{\sqrt{t}} + \frac{N_t - N_{\lfloor t \rfloor} - \alpha (t - \lfloor t \rfloor)}{\sqrt{\alpha t}}$. Let $t \to \infty$ we get $\lfloor t \rfloor, \to \infty$, and $\lfloor t \rfloor \sim t$. Noting $N_t - N_{\lfloor t \rfloor} \stackrel{d}{=} N_{t - \lfloor t \rfloor}$, and $t - \lfloor t \rfloor \leq 1$, we easily get $\frac{N_t - N_{\lfloor t \rfloor}}{\sqrt{\alpha t}} \stackrel{d}{\to} 0$. Easily $\frac{\alpha(t - \lfloor t \rfloor)}{\alpha t} \to 0$, so finally we get that $\frac{N_t - \alpha t}{\sqrt{\alpha t}} \stackrel{d}{\to} N(0,1)$

ROBEM 18 Assume $(X_t: t \ge 0), (Y_t: t \ge 0)$ are two independent Possion processes with parameter α, β respectively. Prove that $(X_t + Y_t: t \ge 0)$ is Possion process with parameter $\alpha + \beta$.

SOLION. Write $Z_t = X_t + Y_t$. First we prove $Z_{t+s} - Z_s \sim Possion((\alpha + \beta)t)$. Since $X_{t+s} - X_s \sim Possion(\alpha t), Y_{t+s} - Y_s \sim Possion(\beta t)$, and $X_{t+s} - X_s \perp Y_{s+t} - Y_s$, easily to get $Z_{t+s} - Z_s = X_{t+s} - X_s + Y_{s+t} - Y_s \sim Possion((\alpha + \beta)t)$.

Second we prove $\forall 0 \leq s \leq t, Z_t - Z_s \perp \mathcal{H}_s$, where $\mathcal{H}_s = \sigma(Z_x : 0 \leq x \leq s)$. Easily $Z_t - Z_s \in \sigma(X_t - X_s, Y_t - Y_s)$. Easily $X_t - X_s \perp \mathcal{F}_s := \sigma(X_x : 0 \leq x \leq s)$ since $(X_x : x \geq 0)$ is Possion process. Since $(X_x : x \geq 0) \perp (Y_x : x \geq 0)$, we get $X_t - X_s \perp \mathcal{G}_s := \sigma(Y_x : 0 \leq x \leq s)$. For the same reason we get $Y_t - Y_s \perp \mathcal{F}_s, \mathcal{G}_s$. So we get $Z_t - Z_s \perp \sigma(F_s, G_s) \supset \mathcal{H}_s$.

Finally, we prove that $\mathbb{P}(\forall t \in [0, \infty), \lim_{s \to t+} Z_s = Z_t, \forall t \in (0, \infty), \lim_{s \to t-} Z_s \in \mathbb{R}) = 1$ Since $Z_t = X_t + Y_t$, and $\mathbb{P}(\forall t \in [0, \infty), \lim_{s \to t+} Y_s = Y_t, \forall t \in (0, \infty), \lim_{s \to t-} Y_s \in \mathbb{R}) = 1$, $\mathbb{P}(\forall t \in [0, \infty), \lim_{s \to t+} X_s = X_t, \forall t \in (0, \infty), \lim_{s \to t-} X_s \in \mathbb{R}) = 1$, obvious we get the requirement.

All in all, $(X_t + Y_t : t \ge 0)$ is a Possion process with parameter $\alpha + \beta$.

ROBEM 19 Assume $(\xi_n : n \in \mathbb{N}^+)$ is a sequence of i.i.d. random variable ranging in \mathbb{Z}^d . Let $X_n = X_0 + \sum_{k=1}^n \xi_k$, and $X_0 \perp (\xi_n : n \in \mathbb{N}^+)$ ranging in \mathbb{Z}^d , too. Assume $(N_t : t \geq 0)$ is a Possion process with parameter $\alpha > 0$. Discuss $\frac{X_{N_t}}{t}$ when $t \to \infty$.

SOLITION. First we prove that $\lim_{t\to\infty} N_t = \infty, a.s.$. We have $\mathbb{P}(\sup_t N_t \ge n) \ge \mathbb{P}(N_t \ge n), \forall t, \forall n \in \mathbb{N}$. Easily $\lim_{t\to\infty} \mathbb{P}(N_t \ge n) = 1$, so $\mathbb{P}(\sup_t N_t \ge n) = 1$, $\forall n \in \mathbb{N}$. So $\mathbb{P}(\sup_t N_t = \infty) = 1$. Noting Lemma 3 we easily get $\mathbb{P}(\lim_{t\to\infty} N_t = \infty) = 1$.

Now we can decompose $\frac{X_{N_t}}{t}$ into $\frac{X_{N_t}}{N_t} \frac{N_t}{t}$. We have proved that $\frac{N_t}{t} \to \alpha, a.s.$ in Problem 21, so we only need to find $\frac{X_{N_t}}{N_t}$. Since $N_t \to \infty, a.s.$, we only need to find $\frac{X_n}{n}$ when $n \to \infty$.

If $\mathbb{E}(\xi_1)$ exists, then easily $\frac{X_n}{n} \to \mathbb{E}(\xi_1), a.s.$. Then we easily get $\frac{X_{N_t}}{t} \to \alpha \mathbb{E}(\xi_1), a.s.$.

1.5 普瓦松随机测度

1.5.1 定义和存在性

 (E,\mathcal{E}) 为可测空间, μ 为 (E,\mathcal{E}) 上的 σ 有限测度。

Definition 17. $\{X(B): B \in \mathcal{E}\}$ 为取非负整数值随机过程,满足:

1. $\forall B \in \mathcal{E} : \mu(B) < \infty$, $\mathbb{R}(X(B)) = \mu(B)$.

$$2. \ \forall \{B_n : n \geq 1\} \in \mathcal{E}$$
 两两不交,则 $X(\bigcup_{k=1}^{\infty} B_k) = \sum_{k=1}^{\infty} X(B_k)$ 。

称 $\{X(B): B \in \mathcal{E}\}$ 为以 μ 为强度的整数值随机测度。

Definition 18. $\{X(B): B \in \mathcal{E}\}$ 为整数值随机测度,满足:

1. $\forall B \in \mathcal{E} : \mu(B) < \infty$,则 $X(B) \sim P(\mu(B))$,即: $\mathbb{P}(X(B) = k) = \frac{\mu(B)^k}{k!} \mathrm{e}^{-\mu(B)}, k = 0, \cdots, n, \cdots$

 $2. \ \forall \{B_n : n \geq 1\} \in \mathcal{E}$ 两两不交,则 $\{X(B_k) : k \in \mathbb{N}^+\}$ 相互独立。

Theorem 14 (普瓦松随机测度的充要条件). $X \to (E, \mathcal{E})$ 上以 μ 为强度的整数值随机测度,则X 为普瓦松随机测度的充要条件是 $\forall n \in \mathbb{N}^+, \xi_k \in \mathbb{R}, B_k \in \mathcal{E}, k = 1, \dots, n, B_i \cap B_j = \emptyset, i \neq j$,当 $\mu(B_k) < \infty, k = 1, \dots, n$,则

$$\mathbb{E}\exp(\mathrm{i}\sum_{k=1}^{n}\theta_{k}X(B_{k})) = \exp(\sum_{k=1}^{n}(\mathrm{e}^{\mathrm{i}\theta_{k}}-1)\mu(B_{k}))$$

见 p28.

Theorem 15 (普瓦松随机测度的存在性). μ 为非零有限测度, $\eta \sim P(\mu(E))$, $\{\xi_k : k \in \mathbb{N}^+\}$ *i.i.d.* 服从 $\mu(E)^{-1}\mu$ 。 $\eta, \xi_1, \dots, \xi_n, \dots$ 相互独立。令 $X = \sum_{j=1}^{\eta} \delta_{\xi_j}$,则 X 为以 μ 为强度的普瓦松随机测度。见 p29.

Theorem 16. μ 为 σ 有限测度, $\{E_k: k \in \mathbb{N}^+\} \subset \mathcal{E}, \mu(E_k) < \infty, k \in \mathbb{N}^+, E = \bigcup_{k \in \mathbb{N}^+} E_k, E_i \cap E_j = \emptyset, i \neq j$ 。则存在 X_k 为 E_k 上的普瓦松随机测度强度为 $\mu_k := \mu|_{E_k}, k \in \mathbb{N}^+$ 。令 $X = \sum_{j=1}^{\infty} X_j$,则 X 为以 μ 为强度的普瓦松随机测度。见 p29.

1.5.2 积分与补偿的测度

Theorem 17 (普瓦松随机测度的充要条件 2). $X \to (E, \mathcal{E})$ 上以 μ 为强度的整数值随机测度,则 X 为普瓦松随机测度的充要条件是 $\forall f \in \mathbb{R}^{\mathbb{R}} : \mu(f) < \infty$,,则

$$\mathbb{E}\exp(\mathrm{i}X(f)) = \exp(\int_E (\mathrm{e}^{\mathrm{i}f(x)} - 1)\mu(dx))$$

见 p28.

1.5.3 应用

Theorem 18 (复合普瓦松过程构造). ν 为 \mathbb{R} 上非零有限测度。N(ds,dz) 为 $(0,\infty)\times\mathbb{R}$ 上以 $ds\nu(dz)$ 为强度的普瓦松随机测度,ds 为勒贝格测度, X_0 与 N(ds,dz) 独立,

$$X_t = X_0 + \iint_{(0,t] \times \mathbb{R}} zN(ds, dz), t \ge 0$$

则 $(X_t:t\geq 0)$ 具有跳跃速率 α 和跳跃分布 $\mu:=\nu(\mathbb{R})^{-1}\nu$ 的复合普瓦松过程。

Theorem 19 (复合普瓦松过程构造 2). μ 为 \mathbb{R} 上非零 σ 有限测度, $\mu(\{0\})=0$,q 为 \mathbb{R} 上非负博雷尔可测函数, $0<\beta:=\mu(q)<\infty$ 。N(ds,dz,du) 为 $(0,\infty)\times\mathbb{R}\times(0,\infty)$ 上以 $ds\mu(dz)du$ 为强度的普瓦松随机测度,ds 为勒贝格测度, X_0 与 N(ds,dz) 独立,

$$X_t = X_0 + \iiint_{(0,t] \times \mathbb{R} \times [0,q(z)]} zN(ds,dz,du), t \ge 0$$

则 $(X_t:t\geq 0)$ 具有跳跃速率 β 和跳跃分布 $\beta^{-1}q(z)\mu(dz)$ 的复合普瓦松过程。

ROBEM 20 Assume $(N_t: t \ge 0)$ is Possion process with parameter α , and $\{\xi_n: n \in \mathbb{N}^+\}$ is a sequence of i.i.d random variable. More over, assume $(N_t: t \ge 0) \perp \{\xi_n: n \in \mathbb{N}^+\}$. Let $X_t = \sum_{k=1}^{N_t} \xi_k$. Let t > 0, prove that:

- 1. $(N_{t+r} N_r : t \ge 0)$ is Possion process.
- 2. $\{\xi_{N_r+n}: n \in \mathbb{N}^+\}$ is also i.i.d sequence with the same distribution of $\{\xi_n: n \in \mathbb{N}^+\}$.
- 3. $(N_{t+r} N_r : t \ge 0) \perp (\xi_{N_r+k} : k \in \mathbb{N}^+)$.
- 4. For $0 = t_0 < t_1 < \cdots < t_n$, we have $(X_{t_1}, X_{t_{k+1}} X_{t_k} : k = 1, 2, \cdots, n-1)$ are independent.
- SOLITION. 1. Let $\mathcal{F}_t := \sigma(N_s : 0 \le s \le t)$ and $\mathcal{G}_t := \sigma(N_{r+s} N_r : 0 \le s \le t)$. For $0 \le s \le t$, we have $N_{t+r} N_r (N_{s+r} N_r) = N_{t+r} N_{s+r} \sim Possion(\alpha(t-s))$. And easily to know $N_{r+s} N_r \in \mathcal{F}_{r+s}$, so $\mathcal{G}_t \subset \mathcal{F}_{t+r}, \forall t \ge 0$. Since $(N_t : t \ge 0)$ is Possion process, easily $\mathcal{F}_{s+r} \perp N_{t+r} N_{s+r}$. Since $\mathcal{G}_t \subset \mathcal{F}_{t+r}$, we obtain $\mathcal{G}_t \perp N_{t+r} N_{s+r} = N_{t+r} N_r (N_{s+r} N_r)$. Easily since N_t is right-continuous we get $N_{t+r} N_r$ is right-continuous. For the same reason, we know $\forall s \in [0, \infty), \lim_{t \to s-} N_{t+r} N_r$ exists. So $(N_{t+r} : t \ge 0)$ is Possion process.
 - 2. Only need to prove that for $m \in \mathbb{N}^+$, the distribution of $(\xi_{N_r+k}: 1 \leq k \leq m)$ is same as

that of $(\xi_k : 1 \le k \le m)$. For $A_1, A_2, \dots, A_m \in \mathcal{B}$, we have:

$$\mathbb{P}(\xi_{N_r+k} \in A_k, 1 \le k \le m)$$

$$= \sum_{t=0}^{\infty} \mathbb{P}(\xi_{N_r+k} \in A_k, 1 \le k \le m, N_r = t)$$

$$= \sum_{t=0}^{\infty} \mathbb{P}(\xi_{t+k} \in A_k, 1 \le k \le m, N_r = t)$$

$$(N_r \perp (\xi_n : n \in \mathbb{N}^+)) = \sum_{t=0}^{\infty} \mathbb{P}(\xi_{t+k} \in A_k, 1 \le k \le m) \mathbb{P}(N_r = t)$$

$$= \sum_{t=0}^{\infty} \prod_{k=1}^{m} \mathbb{P}(\xi_{k+t} \in A_k) \mathbb{P}(N_r = t)$$

$$= \sum_{t=0}^{\infty} \prod_{k=1}^{m} \mu(A_k) \mathbb{P}(N_r = t)$$

$$= \prod_{k=1}^{m} \mu(A_k)$$
(6)

where μ is the distribution of ξ_1 . So we get for $m \in \mathbb{N}^+$, the distribution of $(\xi_{N_r+k} : 1 \le k \le m)$ is same as that of $(\xi_k : 1 \le k \le m)$.

- 3. We know that $\forall t \in \mathbb{N}^+, \xi_{N_r+t} \in \sigma(N_r, \xi_k : k \in \mathbb{N}^+)$. So $\sigma(\xi_{N_r+k} : k \in \mathbb{N}^+) \subset \sigma(N_r, \xi_k : k \in \mathbb{N}^+)$. Since $(N_t : t \geq 0)$ is Possion process, we get that $N_{t+r} N_r \perp N_r, \forall t \geq 0$. So $\sigma(N_{t+r} N_r : t \geq 0) \perp N_r$. Easily $\sigma(N_{t+r} N_r : t \geq 0) \perp \sigma(\xi_k : k \in \mathbb{N}^+)$, so finally we get that $\sigma(N_{t+r} N_r : t \geq 0) \perp \sigma(N_r, \xi_k : k \in \mathbb{N}^+) \supset \sigma(\xi_{N_r+k} : k \in \mathbb{N}^+)$.
- 4. $\forall 0 = t_0 < t_1 < \dots < t_n$, then $X_{t_1} = \sum_{i=1}^{N_{t_1}} \xi_i, X_{t_k} X_{t_{k-1}} = \sum_{i=1}^{N_{t_k} N_{t_{k-1}}} \xi_{N_{t_{k-1}} + i} \xi_i, k = 1$

$$2, \cdots, n, \text{ then } \forall \{A_k \in \mathscr{E} : k = 1, \cdots, n\},$$

$$\mathbb{P}(\bigcap_{k=1}^{n} \sum_{i=1}^{N_{t_k} - N_{t_{k-1}}} \xi_{i+N_{t_{k-1}}} \in A_k)$$

$$= \mathbb{P}(\bigcup_{0 \le u_1 \le \cdots \le u_n} \{\sum_{i=u_{k-1}+1}^{u_k} \xi_i \in A_k, N_{t_k} = u_k, k = 1, \cdots, n\})$$

$$= \sum_{0 \le u_1 \le \cdots \le u_n} \mathbb{P}(\sum_{i=u_{k-1}+1}^{u_k} \xi_i \in A_k, k = 1, \cdots, n | N_{t_k} = u_k, k = 1, \cdots, n\}) \mathbb{P}(N_{t_k} = u_k, k = 1, \cdots, n)$$

$$= \sum_{0 \le u_1 \le \cdots \le u_n} \mathbb{P}(\sum_{i=u_{k-1}+1}^{u_k} \xi_i \in A_k, k = 1, \cdots, n]) \mathbb{P}(N_{t_k} = u_k, k = 1, \cdots, n)$$

$$= \sum_{0 \le u_1 \le \cdots \le u_n} \mathbb{P}(\sum_{i=u_{k-1}+1}^{u_k} \xi_i \in A_k) \prod_{j=1}^{n} \mathbb{P}(N_{t_j} = u_j)$$

$$= \sum_{0 \le u_1 \le \cdots \le u_n} \prod_{k=1}^{n} \mathbb{P}(\sum_{i=1}^{u_k - u_{k-1}} \xi_{u_{k-1}+i} \in A_k) \prod_{j=1}^{n} \mathbb{P}(N_{t_j} - N_{t_{j-1}} = u_j - u_{j-1})$$

$$= \sum_{0 \le u_1 \le \cdots \le u_n} \prod_{k=1}^{n} \mathbb{P}(\sum_{i=1}^{u_k - u_{k-1}} \xi_{u_{k-1}+i} \in A_k) \mathbb{P}(N_{t_k} - N_{t_{k-1}} = u_k - u_{k-1})$$

$$= \sum_{u_1 - u_0 \in \mathbb{N}} \cdots \sum_{u_n - u_{n-1} \in \mathbb{N}} \mathbb{P}(\sum_{i=1}^{u_k - u_{k-1}} \xi_{u_{k-1}+i} \in A_k, N_{t_k} - N_{t_{k-1}} = u_k - u_{k-1})$$

$$= \prod_{k=1}^{n} \sum_{u_k - u_{k-1} \in \mathbb{N}} \mathbb{P}(\sum_{i=1}^{u_k - u_{k-1}} \xi_{u_{k-1}+i} \in A_k, N_{t_k} - N_{t_{k-1}} = u_k - u_{k-1})$$

$$= \prod_{k=1}^{n} \mathbb{P}(\sum_{i=1}^{N_{t_k} - N_{t_{k-1}}} \xi_{i+N_{t_{k-1}}} \in A_k)$$

$$(7)$$

ROBEM 21 Assume that X is Possion random measure on (E, \mathcal{E}) with intensity μ , which is a σ -finite measure. Assume $f: E \to \mathbb{R}$ is measurable and non-negative, prove that:

$$\mathbb{E}(e^{-X(f)}) = \exp\left\{-\int_{E} (1 - e^{-f(x)})\mu(dx)\right\}$$

SOUTON. Let $\mathcal{L} := \{g \in \mathcal{M}(E, [0, \infty)) : \mathbb{E}(\mathrm{e}^{-X(f)}) = \exp\left(-\int_E (1 - \mathrm{e}^{-f(x)})\mu(\mathrm{d}x)\right)\}$. First we prove that if g is simple measurable function from E to $[0, \infty)$, then $g \in \mathcal{L}$. Assume $g(x) = \sum_{k=1}^n a_k \mathbb{1}_{A_k}(x)$, where $A_k \in \mathcal{E}, a_k > 0, A_i \cap A_j = \emptyset$. Then $\mathbb{E}(\exp(-X(g))) = \mathbb{E}(\prod_{k=1}^n \exp(-a_k X(A_k))) = \prod_{k=1}^n \mathbb{E}(\exp(-a_k X(A_k)))$, since $X(A_k) : k = 1, \dots, n$ are independent. Easily to know

$$\mathbb{E}(\exp(-a_k X(A_k))) = \sum_{i=0}^{\infty} \mathbb{P}(X(A_k) = i) \exp(-a_k i) = \sum_{i=0}^{\infty} \frac{\exp(-\mu(A_k))\mu(A_k)^i}{i!} \exp(-a_k i)$$

Noting that

$$\exp(-\int_{E} (1 - \exp(-a_k \mathbb{1}_{A_k}(x))) \mu(\mathrm{d}x)) = \exp(\exp(-a_k) \mu(A_k) - \mu(A_k)) = \exp(-\mu(A_k)) \sum_{i=0}^{\infty} \frac{(\exp(-a_k) \mu(A_k))^i}{i!}$$

we get $\mathbb{E}(\exp(-a_k X(A_k))) = \exp(-\int_E (1-\exp(-a_k \mathbbm{1}_{A_k}(x)))\mu(\mathrm{d}x))$. Noting $\int_E (1-\exp(-g(x)))\mu(\mathrm{d}x) = \sum_{k=1}^n \int_E (1-\exp(-a_k \mathbbm{1}_{A_k}(x)))\mu(\mathrm{d}x)$, we get $\mathbb{E}(\exp(-X(g))) = \exp\left(-\int_E (1-\exp(-g(x)))\mu(\mathrm{d}x)\right)$.

Now for non-negative function f, consider f_n satisfy that $\forall n, f_n$ is simple, and $f_n \nearrow f$ and $f_n \ge 0$. Then easily to know $\mathbb{E}(\exp(-X(f))) = \lim_{n \to \infty} \mathbb{E}(\exp(-X(f_n))) = \lim_{n \to \infty} \exp(-\int_E (1 - \exp(-f_n(x))) \mu(\mathrm{d}x)) = \exp(-\int_E (1 - \exp(-f(x))) \mu(\mathrm{d}x))$.

ROBEM 22 Assume μ is finite measure on (E, \mathcal{E}) , and X is Possion random measure with intensity μ . Assume $\phi: (E, \mathcal{E}) \to (F, \mathcal{F})$ is measurable, prove that $X \circ \phi^{-1}$ is Possion random measure with intensity $\mu \circ \phi^{-1}$.

SPETICOV. Assume $B_k \in \mathcal{F}, \forall k \in \mathbb{N}$ and $\forall i \neq j, B_i \cap B_j = \emptyset$. Then $X \circ \phi^{-1}(\bigcup_{k \in \mathbb{N}} B_k) = X(\bigcup_{k \in \mathbb{N}} \phi^{-1}(B_k)) = \sum_{k \in \mathbb{N}} X(\phi^{-1}(B_k))$. Since X is possion random measure with intensity μ , and for $B_1, \dots, B_n \in \mathcal{F}$ and $B_i \cap B_j = \emptyset$, we have $\phi^{-1}(B_k)$ are disjoint set in (E, \mathcal{E}) , so $\mathbb{E}(\exp(i\sum_{k=1}^n \alpha_k X \circ \phi^{-1}(B_k))) = \exp(\sum_{k=1}^n (\exp(i\alpha_k) - 1)\mu \circ \phi^{-1}(B_k))$. So $X \circ \phi^{-1}$ is Possion random measure on (F, \mathcal{F}) with intensity $\mu \circ \phi^{-1}$.

ROBEM 23 Assume $\alpha \geq 0$, and μ is probability measure on \mathbb{R} with $\mu(\{0\}) = 0$. Let $N(\mathrm{d}s, \mathrm{d}z, \mathrm{d}u)$ is Possion random measure on $\mathbb{R}^+ \times \mathbb{R} \times \mathbb{R}^+$ with intensity $\mathrm{d}s\mu(\mathrm{d}z)\,\mathrm{d}u$. Let $Y_t = Y_0 + \int_0^t \int_{\mathbb{R}} \int_0^\alpha z N(\mathrm{d}s, \mathrm{d}z, \mathrm{d}u)$, where $Y_0 \perp N$. Prove that $(Y_t : t \geq 0)$ is compound Possion process with rate α and jumping distribution μ .

SOLUTION. We know that $\forall t \geq 0, \forall r: 0 \leq r \leq t, Y_r \in \sigma(N(B): B \subset [0,r] \times \mathbb{R} \times [0,\alpha])$. And $\forall w \geq t, \ Y_w - Y_t \in \sigma(N(B): B \subset (t,w] \times \mathbb{R} \times [0,\alpha])$. Easily $(t,w] \cap [0,r] = \emptyset$, so we get $Y_w - Y_t \perp (Y_r: 0 \leq r \leq t)$. Now we only need to check the distribution of $Y_t + w - Y_t$ for $t,w \geq 0$. Easily to know that:

$$\mathbb{E}\left(e^{i\theta(Y_{t+w}-Y_t)}\right) = \mathbb{E}\exp\left(\int_s^{s+t} \int_{\mathbb{R}} \int_0^\alpha i\theta z N(ds, du, dz)\right)$$

$$= \exp\left(t\alpha \int_{\mathbb{R}} (e^{i\theta z} - 1)\mu(dz)\right)$$

$$= \exp(-t\alpha) \sum_{k=0}^\infty \frac{1}{k!} (t\alpha \int_{\mathbb{R}} e^{i\theta z} \mu(dz))^k$$

$$= e^{-t\alpha} \sum_{k=0}^\infty \frac{(\alpha k)^k}{k!} \int_{\mathbb{R}} e^{i\theta z} \mu^{*k}(dz)$$

So we get the result.

ROBEM 24 Assume X is Possion random measure on (E,\mathcal{E}) with intensity μ , a finite measure. Assume f,g are non-negative measure function on E. Prove that:

- 1. $\mathbb{E}(X(f)e^{-X(g)}) = \mu(fe^{-g})\mathbb{E}(e^{-X(g)}).$
- 2. $\mathbb{E}(X(f)^2 e^{-X(g)}) = (\mu(f^2 e^{-g} + \mu(f e^{-g})'2))\mathbb{E}(e^{-X(g)}).$

SOUTION. 1. Let $h(\theta) := \mathbb{E}(e^{-X(\theta f + g)}) = \exp\left(-\int_{\mathbb{R}} (1 - e^{-\theta f(x) - g(x)} \mu(\mathrm{d}x))\right)$. Then

$$h'(\theta) = \mathbb{E}(X(f)e^{-X(\theta f + g)}) = \exp\left(-\int_E (1 - e^{-\theta f(x) - g(x)}\mu(\mathrm{d}x))\right) \cdot \int_E f(x)e^{-\theta f(x) - g(x)}\mu(\mathrm{d}x)$$

Since they are all non-negative, the differential is valid. Let $\theta = 0$, we get $\mathbb{E}(X(f)e^{-X(g)}) = \mu(fe^{-g})\mathbb{E}(e^{-X(g)})$.

2. Take h as above, easily to get $h''(\theta) = \mathbb{E}(X(f)^2) \mathrm{e}^{-X(g)} = \exp\left(-\int_E (1 - \mathrm{e}^{-\theta f(x) - g(x)} \mu(\mathrm{d}x))\right) \cdot \left(\int_E f(x) \mathrm{e}^{-\theta f(x) - g(x)} \mu(\mathrm{d}x)\right)^2 + \exp\left(-\int_E (1 - \mathrm{e}^{-\theta f(x) - g(x)} \mu(\mathrm{d}x))\right) \cdot \int_E f(x)^2 \mathrm{e}^{-\theta f(x) - g(x)} \mu(\mathrm{d}x).$ Let $\theta = 0$, then easily $\mathbb{E}(X(f)^2 \mathrm{e}^{-X(g)}) = (\mu(f^2 \mathrm{e}^{-g} + \mu(f\mathrm{e}^{-g})'2))\mathbb{E}(\mathrm{e}^{-X(g)}).$

2 更新过程及其应用

2.1 更新过程

2.1.1 定义和性质

Definition 19. 设 $\{\xi_n: n \geq 1\}$ 是非负独立同分布随机变量序列。设 F 是它们共同的的分布函数。假设 $F(0) = \mathbb{P}(\xi_n = 0) < 1$ 。则 $\mu := \mathbb{E}(\xi_n) > 0$ 。令 $S_n := \sum_{k=1}^n \xi_k$ 。由大数定律可得 $\lim_{n \to \infty} \frac{S_n}{n} = \mu$ 。令 $N(t) := \sum_{n=1}^\infty \mathbb{1}_{\{S_n \leq t\}} = \sup\{n \geq 0: S_n \leq t\}$ 。称 $(N(t): t \geq 0)$ 为更新问隔时间。

Theorem 20. 几乎必然有 $N(\infty) = \infty$ 。证明见教材 p74

2.1.2 更新方程

Definition 20. 称 $m(t) := \mathbb{E}(N(t))$ 为更新过程 $(N(t) : t \ge 0)$ 的更新函数。计算可得 $m(t) = \sum_{n=1}^{\infty} \mathbb{P}(N(t) \ge n) = \sum_{n=1}^{\infty} \mathbb{P}(S_n \le t) = \sum_{n=1}^{\infty} F^{*n}(t)$ 。

Theorem 21. 对于 $t \ge 0$ 有 $m(t) < \infty$ 。证明见教材 p76

Definition 21. 设 H 为 $[0,\infty)$ 上的右连续的有界变差函数,而 F 为 $[0,\infty)$ 上的概率分布函数。 称关于 K 的方程 $K(t) = H(t) + K * F(t), t \geq 0$ 为更新方程。更新方程的积分形式为 $K(t) = H(t) + \int_0^t K(t-x) \, \mathrm{d}F(x)$)。

Theorem 22. 更新方程存在唯一右连续有界变差函数解 K,且该解具有表达式 K(t) = H(t) + H*m(t)。证明见教材 p76

Theorem 23. 对于 $0 \le s \le t$,有 $\mathbb{P}(S_{N(t)} \le s) = 1 - F(t) + \int_0^s 1 - F(t-x) \, \mathrm{d}m(x)$ 。证明见教材 p77

Theorem 24 (瓦尔德恒等式). 设 $\{\xi_n : n \geq 1\}$ 为独立同分布的随机变量序列, \mathcal{F}_n 为其自然 σ-代数流。设 $\mathbb{E}(\xi_1)$ 存在。设 τ 为一个停时。则有 $\mathbb{E}(\sum_{k=1}^{\tau} \xi_k) = \mathbb{E}(\tau)\mathbb{E}(\xi_1)$ 。

Theorem 25. 对于 t,x>0,有 $\mathbb{P}(W(t)>x)=1-F(t+x)+\int_0^t 1-F(t+x-y)\,\mathrm{d}m(y)$,其中 $W(T):=S_{N(t)+1}-t$ 为待更新时间。证明见教材 p78

ROBEM 25 Assume $(N(t): t \geq 0)$ is a renewing process with renewing internal $\{\xi_n : n \geq 1\}$, $S_n = \sum_{k=1}^n \xi_k$, $N(t) := \sup\{n : S_n \leq t\}$, calculate $g(t) := \mathbb{E}(N(t)^2)$.

SPETION. Let $T_1 = \xi_1$, then $g(t) = \mathbb{E}(\mathbb{E}(N(t)^2 \mid T_1)) = \int_0^t \mathbb{E}(N(t)^2 \mid T_1 = x) dF(x)$. By the independence,

$$\mathbb{E}(N(t)^2 \mid T_1 = x) = \begin{cases} 0 & , x > t \\ \mathbb{E}((1 + N(t - x))^2) & , x \le t \end{cases}$$

That is
$$\mathbb{E}(N(t)^2 \mid T_1 = x) = \begin{cases} 0 & , x > t \\ 1 + 2m(t-x) + g(t-x) & , x \le t \end{cases}$$
. Therefore,

$$g(t) = F(t) + 2 \int_0^t m(t-x)dF(x) + \int_0^t g(t-x)dF(x)$$

So
$$g(t) = 2m(t) - F(t) + \int_0^t g(t-x)dF(x)$$
. Thus, $g(t) = 2m(t) - F(t) + (2m - F) * m(t)$, so $g(t) = m(t) + 2m * m(t)$.

ROBEM 26 Assume renewing internal time obey U(0,1). 0 < t < 1, calculate the distribution of $S_{N(t)}$ and $\mathbb{E}(S_{N(t)})$.

SOUTHOW. By calculating, $m(t) = e^t - 1, 0 < t < 1. \ \forall 0 \le s \le t < 1,$

$$\mathbb{P}(S_{N(t)} \le s) = 1 - t + \int_0^s (1 - t + x)e^x dx = 1 - (t - s)e^s$$

Therefore,

$$\mathbb{E}(S_{N(t)}) = \int_0^t s(1 - t + s)e^s ds = e^t - t - 1$$

ROBEM 27 Assume renewing internal time obey random variable X with distribution function F. Let $\gamma_t = S_{N(t)+1} - t$ be the rest lifetime at time t. Prove:

$$\mathbb{P}(\gamma_t > z) = 1 - F(t+z) + \int_0^t (1 - F(t+z-x)) dm(x)$$

SOUTION. Let $A_z(t) = \mathbb{P}(\gamma_t > z)$, then

$$\mathbb{P}(\gamma_t > z \mid \xi_1 = x) = \begin{cases} 1 & , x > t + z \\ 0 & , t < x \le t + z \\ A_z(t - x) & , 0 < x \le t \end{cases}$$

Then,

$$A_z(t) = \int_0^\infty \mathbb{P}(\gamma_t > z \mid \xi_1 = x) dF(x) = 1 - F(t+z) + \int_0^t A_z(t-z) dF(x)$$

Thus,

$$A_z(t) = 1 - F(t+z) + \int_0^\infty (1 - F(t+z-x))dm(x)$$

ROBEM 28 One kind of devices are replaced as they are worn out. Let the lifetime of the devices be sequences $\{\xi_n:n\geq 1\}$, and let $S_n=\sum_{k=1}^n \xi_k$, $N(t)=\sup\{n:S_n\leq t\}$. $L(t)=S_{N(t)+1}-S_{N(t)}$. Prove: $\mathbb{P}(L(t)>x)\geq \mathbb{P}(\xi_1>x)$.

2 更新过程及其应用 22

SULTION. When $t \leq x$, easy to get that $\mathbb{P}(L(t) > x) = \mathbb{P}(\xi_1 > x)$. Now we assume t > x.

$$\mathbb{P}(L(t) > x) = \sum_{k=0}^{\infty} \mathbb{P}\left(\xi_{k+1} > x, N(t) = k\right)
= \sum_{k=0}^{\infty} \mathbb{P}\left(\xi_{k+1} > x, S_k \le t, \xi_{k+1} > t - S_k\right)
= \sum_{k=1}^{\infty} \mathbb{P}\left(\xi_{k+1} > x, t - x < S_k \le t\right)
+ \sum_{k=0}^{\infty} \mathbb{P}\left(\xi_{k+1} > t - S_k, S_k \le t - x\right)
= \mathbb{P}\left(\xi_1 > x\right) \mathbb{E}[(N(t) - N(t - x))] + \mathbb{P}(N(t) = N(t - x))
= \mathbb{P}\left(\xi_1 > x\right) + \mathbb{P}\left(\xi_1 > x\right) \mathbb{E}[(N(t) - N(t - x)) - 1]
+ \mathbb{P}(N(t) = N(t - x))
= \mathbb{P}\left(\xi_1 > x\right) + \mathbb{P}\left(\xi_1 > x\right) \mathbb{E}\left[(N(t) - N(t - x) - 1)1_{\{N(t) > N(t - x)\}}\right]
- \mathbb{P}\left(\xi_1 > x\right) \mathbb{E}\left(1_{\{N(t) = N(t - x)\}}\right) + \mathbb{P}(N(t) = N(t - x))
\ge \mathbb{P}\left(\xi_1 > x\right).$$
(8)

ROBEM 29 Toss a coin until we get two successively head, call it a renew. We toss the coin k times, call the number of renews N(k). Find the distribution and expectation of interval time T

SOLTION. Let $p_n := \mathbb{P}(T=n)$. Then $p_1 = 0, p_2 = \frac{1}{4}$. Easy to find that $p_{n+2} = \frac{1}{2}p_{n+1} + \frac{1}{4}p_n$. The characteristic equation of this sequence is $x^2 = \frac{1}{2}x + \frac{1}{4}$. The roots are $x_1 = \frac{1+\sqrt{5}}{4}, x_2 = \frac{1-\sqrt{5}}{4}$. So $p_n = Ax_1^n + Bx_2^n$. By p_1, p_2 , easy to get that $p_n = \frac{1}{2\sqrt{5}}\left(x_1^{n-1} - x_2^{n-1}\right)$. So easily $\mathbb{E}(T) = \sum_{n=1}^{\infty} np_n = 6$.

2.2 长程极限行为

2.2.1 基本更新定理

Theorem 26. 几乎必然的有 $\lim_{t\to\infty} \frac{N(t)}{t} = \frac{1}{\mu}$ 。 证明见教材 p80

Theorem 27 (基本更新定理). 有 $\lim_{t\to\infty} \frac{m(t)}{t} = \frac{1}{\mu}$ 。证明见教材 p81

2.2.2 中心极限定理

Theorem 28 (中心极限定理). 假设 $\mathbb{D}(\xi_1) < \infty$, 记 $\mu = \mathbb{E}(\xi_1), \sigma^2 = \mathbb{D}(\xi_1)$ 。对于 $x \in \mathbb{R}$,有

$$\lim_{t \to \infty} \mathbb{P}\left(\frac{N(t) - \frac{t}{\mu}}{\sqrt{\frac{t\sigma^2}{\mu^3}}} \le x\right) = \Phi(x) \tag{9}$$

其中 $\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{y^2}{2}} dy$ 为正态分布的分布函数。证明见教材 p82

ROBEM 30 A radio is powered by one battery, the lifetime of the battery obey the distribution of exponential distribution with parameter $\lambda = \frac{1}{30}$. In long term, in which frequence should we change the battery?

SOLUTION. Easy to get that $\lim_{t\to\infty}\frac{m(t)}{t}=\frac{1}{\mathbb{E}(\xi_1)}=\frac{1}{30}$. So we change battery every 30 hours in average.

ROBEM 31 Consider a primitive renewing process with average renewing internal time μ . Assume every renewing time is recorded by probability p, and each record and each renew are independence. Let $N_r(t)$ be the times of renewing by recorded until time t. $\{N_r(t): t \geq 0\}$ is a renewing process or not? And calculate $\lim_{t\to\infty} \frac{N_r(t)}{t}$.

SOUTON. Assume $X_n: n \in \mathbb{N}$ are i.i.d r.v and $X_0 \sim Geo(p)$, and $(X_n: n \in \mathbb{N}) \perp (N(t): t \geq 0)$. Let $Y_n:=\sum_{k=1}^n X_n$, and $Y_0=0$. Let $\xi_r(n):=\sum_{k=Y_{n-1}+1}^{Y_n} \xi_k$. Then $\xi_r(n): n \in \mathbb{N}^+$ is update time of N_r . Since $(X_n: n \in \mathbb{N}) \perp (N(t): t \geq 0)$, we get that $(\xi_r(n): n \in \mathbb{N}^+)$ are i.i.d. And $\mathbb{E}(\xi_r(1))=\mathbb{E}(X_1)\mathbb{E}(\xi_1)=\frac{\mu}{p}$. So $\lim_{t\to\infty}\frac{N_r(t)}{t}=\frac{\mu}{p}$.

ROBEM 32 Assume $(U_n:n\in\mathbb{N}^+)$ are i.i.d r.v. and $U_1\sim U(0,1)$. Assume $X_{n,m}:n,m\in\mathbb{N}^+$ are r.v. and $X_{n,m}\mid U_n\sim B(U_n)$. And $(X_{n,m}\mid U_n:m\in\mathbb{N}^+)$ are i.i.d. Let $\xi_n:=\inf\{m\in\mathbb{N}^+:X_{n,m}=1\}$ be the n-th update time of N(t). Find $\lim_{t\to\infty}\frac{N(t)}{t}$.

SOUTHON. Easy to find that $\mathbb{E}(\xi_1) = \int_0^1 \mathbb{E}(\xi_1 \mid U_1 = x) \, \mathrm{d}x = \int_0^1 \frac{\mathrm{d}x}{x} = \infty$. So easy to find that $\lim_{t \to \infty} \frac{N(t)}{t} = \infty$.

ROBEM 33 Assume $(\xi_n : n \in \mathbb{N}^+)$ is i.i.d r.v. ranging in \mathbb{N} is update time of N(t). Let A_n be the event that at time n there is an update. Assume $a = \lim_{n \to \infty} \mathbb{P}(A_n)$ exists. Prove that $a = \frac{1}{\mathbb{E}(\xi_1)}$.

SOUTON. Since $N(n) = \sum_{k=1}^n \mathbbm{1}(A_k)$, we know that $\mathbb{E}(N(n)) = \sum_{k=1}^n \mathbb{P}(A_k)$. Noting that $\lim_{n \to \infty} \frac{N(n)}{n} = \frac{1}{\mathbb{E}(\xi_1)}$, we obtain that $\lim_{n \to \infty} \mathbb{E}(\frac{N(n)}{n}) = \frac{1}{\mathbb{E}(\xi_1)}$. So $\lim_{n \to \infty} \frac{\sum_{k=1}^n \mathbb{P}(A_k)}{n} = \frac{1}{\mathbb{E}(\xi_1)}$. By stolz, we can get that $\lim_{n \to \infty} \frac{\sum_{k=1}^n \mathbb{P}(A_k)}{n} = a$. So $a = \frac{1}{\mathbb{E}(\xi_1)}$.

ROBEM 34 Assume $N_1(t), N_2(t)$ are two independent updating process with update time distribution E(1), U(0,2). Find an estimate of $\mathbb{P}(N_1(100) + N_2(100) \ge 190)$.

SOLLOW. Easy to know the expectation and varience of the update time are $\mu_1 = 1, \sigma_1^2 = 1, \mu_2 = 1, \sigma_2^2 = \frac{1}{3}$. So by the central limit theorem of updating process we know that

$$\frac{N_1(100) - 100}{\sqrt{100}}, \frac{N_2(100) - 100}{\sqrt{\frac{100}{3}}} \sim N(0, 1)$$

So
$$\frac{N_1(100)+N_2(100)-200}{\sqrt{\frac{400}{3}}} \sim N(0,1)$$
. So $\mathbb{P}(N_1(100)+N_2(100)\geq 190) \approx \mathbb{P}(N(0,1)\geq -\frac{\sqrt{3}}{2})$.

24 更新过程及其应用

更新过程的应用 2.3

2.3.1随机游动的爬升时间

Definition 22. 设 $(\xi_n : n \ge 1)$ 是独立同分布的可积随机变量序列且满足 $\mathbb{E}(\xi_1) > 0$ 。令 $(W_n : n \ge 1)$ $n \ge 0$) 是以 $(\xi_n : n \ge 1)$ 为跳幅的随机游动,其中 $W_0 = 0$ 。易知 $W_n \to +\infty$ 。令 $S_0 = 0$,递归地 定义停时 S_n ,令 $S_n=\inf\{k\geq S_{n-1}:W_k>W_{S_{n-1}}\}$ 。 称每个 S_n 为 (W_n) 的爬升时间。

Theorem 29. 对于 $n \ge 1$,令 $\eta_n = S_n - S_{n-1}$ 。则 (η_n) 是独立同分布的非负随机变量序列。证 明见教材 p85

Theorem 30. 我们有 $\mathbb{P}(\forall n \geq 1, W_n > 0) = \frac{1}{\mathbb{E}(S_1)}$ 。 证明见教材 p86

2.3.2更新累积过程

Definition 23. 设 $((\xi_n, \eta_n): n \ge 1)$ 为独立同分布的二维随机变量序列,且 $\xi_n \ge 0$ 。令 N(t) 为 以 ξ_n 为更新间隔时间的更新过程。令 $A(t) = \sum_{n=1}^{N(t)} \eta_n$ 。称 $(A(t): t \geq 0)$ 为更新累积过程。

Theorem 31. 设 $0 < \mathbb{E}(\xi_1) < \infty, \mathbb{E}(|\eta_1|) < \infty$ 。则几乎必然有 $\lim_{t\to\infty} \frac{A(t)}{t} = \frac{\mathbb{E}(\eta_1)}{\mathbb{E}(\xi_1)}$ 。且有 $\lim_{t\to\infty} \frac{\mathbb{E}(A(t))}{t} = \frac{\mathbb{E}(\eta_1)}{\xi_1}$ 。证明见教材 p87

 \mathbb{R}^{OBEM} 35 Assume N(t) is updating process. X is the time interval distrabution of N(t). Assume $\mathbb{D}(X) < \infty$. Let $R(t) := S_{N(t)+1} - t$. Find:

$$\lim_{T \to \infty} \frac{1}{T} \int_0^T R(t) \, \mathrm{d}t$$

 $\begin{array}{l} \text{SOLTON} \ . \ \text{Easily} \ N(t) + 1 \geq T \geq N(t). \ \text{So} \ \int_0^T R(t) \, \mathrm{d}t \leq \sum_{i=1}^{N(T)+1} \int_{S_{i-1}}^{S_i} (S_i - t) \, \mathrm{d}t = \frac{1}{2} \sum_{i=1}^{N(t)+1} (S_i - t) \, \mathrm{d}t = \frac{1}{2} \sum_{i=1$

that

$$\lim_{T \to \infty} \frac{1}{T} \int_0^T R(t) dt = \frac{\mathbb{E}(X^2)}{2\mathbb{E}(X)^2}$$

ROBEM 36 Assume the number of people arriving the cinema is distributed as a Possion process with parameter λ . Assume the film begin at a fixed time $t \geq 0$. Let A(t) be the sum of waiting

time of all people arriving in (0, t], find $\mathbb{E}(A(t))$.

SPETICIVI. Let V_k be the arriving time of k-th people. Let N(t) be the number of people in (0, t]. Then $A(t) = \sum_{k=1}^{N(t)} (t - V_k)$. Let $\xi_k := V_k - V_{k-1}$. Then $\sum_{k=1}^{N(t)} V_k = \sum_{k=1}^{N(t)} (N(t) - k) \xi_k = \sum_{k=0}^{N(t)-1} k \xi_{N(t)-k}$. So $\mathbb{E}(A(t)) = t \mathbb{E}(N(t)) - \mathbb{E}(\sum_{k=0}^{N(t)-1} k \xi_{N(t)-k})$. Easy to get that $\mathbb{E}(\sum_{k=0}^{N(t)-1} k \xi_{N(t)-k} \mid N(t) = n) = \frac{nt}{2}$. So $\mathbb{E}(A(t) \mid N(t) = n) = nt - \frac{nt}{2} = \frac{nt}{2}$. So finally we have $\mathbb{E}(A(t)) = \mathbb{E}(\mathbb{E}(A(t) \mid N(t))) = \mathbb{E}(\frac{\bar{N(t)}t}{2}) = \frac{\lambda t^2}{2}.$

2 更新过程及其应用

ROBEM 37 Assume a machine has life distrabuted p. When machine is broken or has been used T years, we will change a new machine. The price of new machine is C_1 , and if the machine is broken, it would cause loss C_2 .

- 1. Give the long-time average fee of this machine.
- 2. Let $C_1=10, C_2=0.5,$ and $p(x)=\mathbbm{1}_{(0,10)}(x)\frac{1}{10}.$ Which T can let the fee be minimum.
- SOUTION. 1. Let ξ be the time when the machine will broken. Let $\gamma := \xi \wedge T$. Then the machine will be changed at γ . Obviously $\mathbb{E}(\gamma) = T\mathbb{P}(\xi > T) + \mathbb{E}(\xi\mathbb{1}(\xi \le T)) = T\int_T^\infty p(x)\,\mathrm{d}x + \int_0 Txp(x)\,\mathrm{d}x$. Let η be the fee of this machine, then we have $\eta = C_1\mathbb{1}(\xi > T) + (C_1 + C_2)\mathbb{1}(\xi \le T) = C_1 + C_2\mathbb{1}(\xi \le T)$. So $\mathbb{E}(\eta) = C_1 + C_2\int_0^T p(x)\,\mathrm{d}x$. So the long-time average fee is

$$g(T) = \frac{C_1 + C_2 \int_0 T p(x) dx}{T \int_T^\infty p(x) dx + \int_0^T x p(x) dx}$$

.

2. Easy to get that $g(T) = \frac{200+T}{20T-T^2}$ when $T \in (0,10)$. And $g'(T) = \frac{T^2+400T-4000}{(20T-T^2)^2}$. Let g'(T) = 0, then $T^2 + 400T - 4000 = 0$, then $T = 20\sqrt{110} - 200 \approx 9.76$. So T = 9.76 can make the fee get minimum.

3 离散时间马氏链

3.1 马氏性及其等价形式

3.1.1 简单马氏性

Definition 24. $X=(X_n:n\geq 1)$ 关于 σ -代数流 $(\mathcal{G}_n:n\geq 1)$ 是适应的,即 $\forall n,X_n$ 关于 \mathcal{G}_n 可测。令 $\mathcal{F}_n=\sigma(X_0,X_1,\cdots,X_n)$ 。称 $(\mathcal{F}_n:n\geq 1)$ 为 $(X_n:n\geq 1)$ 的自然 σ -代数流。

Definition 25. 称随机过程 X 关于其适应流 (\mathcal{G}_n) 具有马氏性或者称它是关于该流的马氏链,如果对于任意的 $n \geq 0, i, j \in E, G \in \mathcal{G}_n$,当 $\mathbb{P}(G \cap \{X_n = i\}) > 0$ 时有 $\mathbb{P}(X_{n+1} = j \mid G \cap \{X_n = i\}) = \mathbb{P}(X_{n+1} = j \mid X_n = i)$ 。该定义等价于 $\mathbb{P}(X_{n+1} = j \mid \mathcal{G}_n) = \mathbb{P}(X_{n+1} = j \mid X_n)$,证明见教材 p94

Theorem 32. 过程 X 对其自然流具有马氏性的充要条件是 $\forall n \geq 0, \{i_0, \cdots, i_n = i, i\} \subset E$,当 $\mathbb{P}(X_k = i_k : 0 \leq k \leq n) > 0$ 时有 $\mathbb{P}(X_{n+1} = j \mid X_k = i_k : 0 \leq k \leq n) = \mathbb{P}(X_{n+1} = j \mid X_n = i)$ 。证 明见教材 p95

Theorem 33. 设 X 关于流 \mathcal{G}_n 为马氏链,设 k > 0,设 $A \in \mathcal{G}_k$ 。令 $\mathbb{P}_A = \mathbb{P}(\cdot \mid A)$ 。则 $(X_{k+n} : n \geq 0)$ 关于流 $(\mathcal{G}_{k+n} : n \geq 0)$ 在 \mathbb{P}_A 下有马氏性。证明见教材 p95

3.1.2 条件独立性

Theorem 34. 过程 X 关于流 (\mathcal{G}_n) 具有马氏性的充要条件是 $\forall n \geq 0, k \geq 1, \{i, j_1, j_2, \cdots, j_k\} \subset E, G \in \mathcal{G}_n$,有 $\mathbb{P}(X_{n+1} = j_1, \cdots, X_{n+k} = j_k \mid G \cap \{X_n = i\}) = \mathbb{P}(X_{n+1} = j_1, \cdots, X_{n+k} = j_k \mid X_n = i)$ 。证明见教材 p97

Theorem 35. 记 $\mathcal{F}^{(n)} = \sigma(X_k : k \geq n)$ 。 则过程 X 关于流 (\mathcal{G}_n) 具有马氏性的充要条件是 $\forall n \geq 0, k \geq 1, i \in E, G \in \mathcal{G}_n, F \in \mathcal{F}^{(n)}$,有 $\mathbb{P}(F \mid G \cap \{X_n = i\}) = \mathbb{P}(F \mid X_n = i)$ 。证明见教材 p98。在相同条件下的另一个等价条件为 $\mathbb{P}(G \cap F \mid X_n = i) = \mathbb{P}(G \mid X_n = i)\mathbb{P}(F \mid X_n = i)$,证明见教材 p98。从而得出另一个等价条件:在 $\mathbb{P}(\cdot \mid X_n = i)$ 下 \mathcal{G}_n 和 $\mathcal{F}^{(n)}$ 独立。

 \mathbb{R}^{OBEM} 38 Assume $(\Omega, \mathcal{F}, \mathbb{P})$ is a probability space, and $C \in \mathcal{F}$ satisfy $\mathbb{P}(C) > 0$. Let $\mathbb{P}_C : \mathcal{F} \to \mathbb{R}$, $\mathbb{P}_C(X) = \frac{\mathbb{P}(C \cap X)}{\mathbb{P}(C)}$. Assume $A, B \in \mathcal{F}$, and $\mathbb{P}(B \cap C) > 0$, prove that $\mathbb{P}_C(A \mid B) = \mathbb{P}(A \mid B \cap C)$.

SOLION. Easily $\mathbb{P}_C(B) = \frac{\mathbb{P}(B \cap C)}{\mathbb{P}(C)} > 0$, so $\mathbb{P}_C(A \mid B)$ is well-defined. Easily to get that

$$\mathbb{P}_{C}(A \mid B) = \frac{\mathbb{P}_{C}(A \cap B)}{\mathbb{P}_{C}(B)} = \frac{\frac{\mathbb{P}(A \cap B \cap C)}{\mathbb{P}(C)}}{\frac{\mathbb{P}(B \cap C)}{\mathbb{P}(C)}} = \frac{\mathbb{P}(A \cap B \cap C)}{\mathbb{P}(B \cap C)} = \mathbb{P}(A \mid B \cap C)$$

ROBEM 39 Assume that $(X_n : n \ge 0)$ is 1-dimentional simple symetry random walk, prove that $(|X_n| : n \ge 0)$ is a Markov chain ranges in \mathbb{N} .

SPERON. Easy to know that $(X_n:n\geq 0)$ is a Markov chain in \mathbb{Z} . Let $\mathcal{F}_n:=\sigma(X_1,\cdots,X_n), \mathcal{G}_n:=\sigma(|X_1|,\cdots,|X_n|)$, then easily $\mathcal{G}_n\subset\mathcal{F}_n$. Then we get that $\mathbb{P}(|X_{n+1}|=i\mid\mathcal{F}_n)=\mathbb{P}(X_{n+1}=i\mid\mathcal{F}_n)+\mathbb{P}(X_{n+1}=-i\mid\mathcal{F}_n)=\mathbb{P}(X_{n+1}=i\mid X_n)+\mathbb{P}(X_{n+1}=-i\mid X_n)=\mathbb{P}(|X_{n+1}|=i\mid X_n)=\frac{1}{2}\mathbb{I}(|X_n-i|=1).$ Noting $i\geq 0$, we get that $|X_n-i|=1\iff ||X_n|-i|=1$, so $\mathbb{P}(|X_{n+1}|=i\mid\mathcal{F}_n)$ is measureable about $\sigma(|X_n|)$. Since $\sigma(|X_n|)\subset\mathcal{G}_n\subset\mathcal{F}_n$, so we finally get that $\mathbb{P}(|X_{n+1}|=i\mid\mathcal{G}_n)=\mathbb{P}(|X_{n+1}|=i\mid |X_n|).$ So $(|X_n|:n\geq 0)$ is a Markov chain.

ROBEM 40 Assume $(X_n : n \ge 0)$ is a Markov chain ranges in E. Assume $\phi : E \to F$ is injection. Prove that $(\phi(X_n) : n \ge 0)$ is a Markov chain ranges in $\phi(E)$.

SOLUTION. Without loss of generality assume $F = \phi(E)$, then ϕ is bijection. Now let $\mathcal{F}_n := \sigma(X_1, \dots, X_n)$. Since ϕ is bijection we easily get that $\sigma(X_n) = \sigma(\phi(X_n))$, so $\mathcal{F}_n = \sigma(\phi(X_1), \dots, \phi(X_n))$. Then $\mathbb{P}(\phi(X_{n+1} = i \mid \mathcal{F}_n)) = \mathbb{P}(X_{n+1} = \phi^{-1}(i) \mid \mathcal{F}_n) = \mathbb{P}(X_{n+1} = \phi^{-1}(i) \mid X_{n+1}) = \mathbb{P}(\phi(X_{n+1}) = i \mid \phi(X_n))$. So $(\phi(X_n) : n \geq 0)$ is Markov chain.

ROBEM 41 Assume $(X_n: n \geq 0), (Y_n: n \geq 0)$ are two independent Markov chains on E, F respectively. Prove that $((X_n, Y_n): n \geq 0)$ is Markov chain on $E \times F$.

SOLITION. Let $\mathcal{F}_n = \sigma(X_0, \dots, X_n)$ and $\mathcal{G}_n = \sigma(Y_0, \dots, Y_n)$, Let $\mathcal{H}_n = \sigma((X_0, Y_0), \dots, (X_n, Y_n))$. Then easily $\mathcal{H}_n = \sigma(\mathcal{F}_n, \mathcal{G}_n)$. Easy to get that

$$\begin{split} \mathbb{P}(X_{n+1} = i, Y_{n+1} = j \mid \mathcal{H}_n) = & \mathbb{E}(\mathbb{P}(X_{n+1} = i, Y_{n+1} = j \mid \mathcal{H}_n, X_{n+1}) \mid \mathcal{H}_n) \\ = & \mathbb{E}(\mathbb{1}_i(X_{n+1}) \mathbb{P}(Y_{n+1} = j \mid \mathcal{F}_n, \mathcal{G}_n, X_{n+1}) \mid \mathcal{H}_n) \\ (Y_{n+1} \perp \mathcal{F}_n, X_{n+1}) = & \mathbb{E}(\mathbb{1}_i(X_{n+1}) \mathbb{P}(Y_{n+1} = j \mid Y_n) \mid \mathcal{H}_n) \\ (Y_n \in \mathcal{H}_n) = & \mathbb{P}(Y_{n+1} = j \mid Y_n) \mathbb{P}(X_{n+1} = i \mid \mathcal{H}_n) \\ = & \mathbb{P}(Y_{n+1} = j \mid Y_n) \mathbb{P}(X_{n+1} = i \mid X_n) \end{split}$$

So $\mathbb{P}(X_{n+1} = i, Y_{n+1} = j \mid \mathcal{H}_n) \in \sigma(X_n, Y_n) \subset \mathcal{H}_n$. So $\mathbb{P}(X_{n+1} = i, Y_{n+1} = j \mid X_n, Y_n) = \mathbb{P}(X_{n+1} = i, Y_{n+1} = j \mid \mathcal{H}_n)$. So $((X_n, Y_n) : n \ge 0)$ is Markov chain.

ROBEM 42 Assume $(X_n : n \ge 0), (Y_n : n \ge 0)$ are two independent Markov chains on E, F respectively. Let $\mathcal{H}_n := \sigma((X_0, Y_0), \dots, (X_n, Y_n))$. Prove that $(X_n : n \ge 0)$ is Markov chain over $(\mathcal{H}_n : n \ge 0)$.

SOLUTION. Take \mathcal{F}_n , \mathcal{G}_n as above. Obviously $X_n \in \mathcal{F}_n \subset \mathcal{H}_n$. Easily $\mathbb{P}(X_{n+1} = i \mid \mathcal{H}_n) = \mathbb{P}(X_{n+1} = i \mid \mathcal{F}_n) = \mathbb{P}(X_{n+1} \mid X_n)$. So $(X_n : n \geq 0)$ is Markov chain over $(\mathcal{H}_n : n \geq 0)$.

POBEM 43 Let μ_0 be a probability distribution on N. For $n \geq 1$, let

$$\mu_n(0) = \mu_{n-1}^{*2}(0) + \mu_{n-1}^{*2}(1), \mu_n(j) = \mu_{n-1}^{*2}(j+1), \forall j \ge 1$$

Where $\mu^{*2} = \mu * \mu$. Let F_n be distribution function of μ_n . Let $F_{n-1}^{-1}(y) := \inf\{x \geq 0 : y \leq F_{n-1}(x)\}$ for $y \in [0,1]$. Assume $X_0 \sim \mu_0$, and $(U_n : n \geq 0)$ are i.i.d r.v. with distribution U(0,1). Let $X_{n+1} := \max\{0, X_n + F_n^{-1}(U_n) - 1\}$. Then $(X_n : n \geq 0)$ is Markov chain.

SOLTION. Let $\mathcal{F} := \sigma(X_0, \cdots, X_n)$. For i > 0, we have

$$\mathbb{P}(X_{n+1} = i \mid \mathcal{F}_n) = \mathbb{P}(X_n + F_n^{-1}(U_n) - 1 = i \mid \mathcal{F}_n)
= \sum_{k \in \mathbb{Z}} \mathbb{P}(X_n = k, F_n^{-1}(U_n) = i + 1 - k \mid \mathcal{F}_n)
= \sum_{k \in \mathbb{Z}} \mathbb{1}_k(X_n) \mathbb{P}(F_n^{-1}(U_n) = i + 1 - k)
= \sum_{k \in \mathbb{Z}} \mathbb{1}_k(X_n) \mathbb{P}(F_n^{-1}(U_n) = i + 1 - k \mid X_n)
= \sum_{k \in \mathbb{Z}} \mathbb{P}(X_n = k, F_n^{-1}(U_n) = i + 1 - k \mid X_n)
= \mathbb{P}(X_n + F_n^{-1}(U_n) - 1 = i \mid X_n) = \mathbb{P}(X_{n+1} = i \mid X_n)$$

For i = 0, we have

$$\mathbb{P}(X_{n+1} = 0 \mid \mathcal{F}_n) = \mathbb{P}(X_n + F_n^{-1}(U_n) - 1 \le 0 \mid \mathcal{F}_n)
= \sum_{k \in \mathbb{Z}} \mathbb{P}(X_n = k, F_n^{-1}(U_n) \le 1 - k \mid \mathcal{F}_n)
= \sum_{k \in \mathbb{Z}} \mathbb{1}_k(X_n) \mathbb{P}(F_n^{-1}(U_n) \le 1 - k)
= \sum_{k \in \mathbb{Z}} \mathbb{1}_k(X_n) \mathbb{P}(F_n^{-1}(U_n) \le 1 - k \mid X_n)
= \sum_{k \in \mathbb{Z}} \mathbb{P}(X_n = k, F_n^{-1}(U_n) \le 1 - k \mid X_n)
= \mathbb{P}(X_n + F_n^{-1}(U_n) - 1 < 0 \mid X_n) = \mathbb{P}(X_{n+1} = 0 \mid X_n)$$

So $(X_n : n \ge 0)$ is Markov chain.

3.2 转移矩阵

3.2.1 有转移矩阵的马氏链

Definition 26. 称 E 上的矩阵 $P = (p(i, j) : i, j \in E)$ 为一个转移矩阵,如果它有下面的性质:

- 1. $\forall i, j \in E, p(i, j) \geq 0$.
- 2. $\forall i \in E, \sum_{i \in E} p(i, j) = 1$.

记 $P^n = (p_n(i,j) : i, j \in E)$ 。 以后不区分 $p_n(i,j)$ 和 $p_{i,j}(n)$ 以及 $p_{i,j}(n)$ 。

Definition 27. 称 X 为有转移矩阵 P 的马氏链,如果 $\forall n \geq 0, i, j \in E, G \in \mathcal{G}_n$,有: $\mathbb{P}(X_{n+1} = j \mid G \cap \{X_n = i\}) = p(i, j)$ 。此性质称为有转移矩阵 P 的马氏性。易知它比马氏性更强。令 μ 为 X_0 的分布,称为 X 的初始分布。

3.2.2 有限维分布的性质

Theorem 36. X 为以 P 为转移矩阵的马氏链的充要条件为 $\forall n \geq 0, G \in \mathcal{G}_n, \{i, j_1, \dots, j_k\} \subset E$,有: $\mathbb{P}(H \mid G \cap \{X_n = i\}) = p(i, j_1)p(j_1, j_2) \cdots p(j_{k-1}, j_k)$,其中 $H = \{X_{n+1} = j_1, \dots, X_{n+k} = j_k\}$ 。证明见教材 p101

Theorem 37. 过程 X 相对其自然流是以 P 为转移矩阵, μ 为初始分布的马氏链的充要条件是 $\forall n \geq 0, \{i_0, \dots, i_n\} \subset E, \mathbb{P}(X_k = i_k : 0 \leq k \leq n) = \mu(i_0)p(i_0, i_1) \cdots p(i_{n-1}, i_n)$ 。证明见教材 p102

3.2.3 强马氏性

Definition 28. 设 $(\mathcal{G}_n: n \geq 0)$ 为离散时间流。设 τ 是取值为 $\mathbb{N} \cap \{+\infty\}$ 的随机变量。若 $\forall n \geq 0, \{\tau \leq n\} \in \mathcal{G}_n$,则称 τ 是关于 (\mathcal{G}_n) 的停时。记全体满足 $\forall n, A \cap \{\tau \leq n\} \in \mathcal{G}_n$ 的 A 组成的 σ -代数为 \mathcal{G}_{τ} 。

Theorem 38. 设 X 关于流 G 为以 P 为转移矩阵的马氏链,而 τ 是停时。则在概率空间 ($\Omega \cap \{\tau < \infty\}, \mathcal{F} \cap \{\tau < \infty\}, \mathbb{P}(\cdot \mid \tau < \infty)$) 下, ($X_{\tau+n} : n \geq 0$) 为以 P 为转移矩阵的马氏链。证明见教材 p104

3.2.4 随机游动的反射原理

ROBEM 44 Let $(X_n: n \geq 0) \perp (Y_n: n \geq 0)$ are Markov chain on E with Transition matrix $(p_{ij}: i, j \in E), (q_{ij}: i, j \in E)$ respectively. Prove: $\{(X_n, Y_n): n \geq 0\}$ are Markov chain on $E \times E$. And calculate the transition matrix of $(X_n, Y_n): n \geq 0$.

SOLTION .

$$\begin{split} &\mathbb{P}(X_0 = i_0, \cdots, X_{n+1} = i_{n+1}, Y_0 = j_0, \cdots, Y_{n+1} = j_{n+1}) \\ &= \mathbb{P}(X_0 = i_0, \cdots, X_{n+1} = i_{n+1}) \mathbb{P}(Y_0 = j_0, \cdots, Y_{n+1} = j_{n+1}) \\ &= \mathbb{P}(X_0 = i_0) \prod_{k=0}^n p_{i_k i_{k+1}} \mathbb{P}(Y_0 = j_0) \prod_{k=0}^n q_{j_k j_{k+1}} \\ &= \mathbb{P}((X_0, Y_0) = (i_0, j_0)) \prod_{k=0}^n p_{i_k i_{k+1}} q_{j_k j_{k+1}} \\ &= \mathbb{P}((X_0, Y_0) = (i_0, j_0)) \prod_{k=0}^n \mathbb{P}(X_k = i_k, X_{k+1} = i_{k+1}) \mathbb{P}(Y_k = j_k, Y_{k+1} = j_{k+1}) \\ &= \mathbb{P}((X_0, Y_0) = (i_0, j_0)) \prod_{k=0}^n \mathbb{P}((X_k, Y_k) = (i_k, j_k), (X_{k+1}, Y_{k+1}) = (i_{k+1}, j_{k+1})) \end{split}$$

So we get that $((X_n, Y_n) : n \in \mathbb{N})$ is Markov chain with transition matrix $r_{(i,j),(m,n)} = p_{im}q_{jn}$. \square

ROBEM 45 Let S_n be 1-dimensional simple random walk, $a \in \mathbb{Z}$. Let $\tau := \inf\{n \geq 0 : S_n = a\}$. Prove:

- 1. $(S_{\tau+n}: n \geq 0)$ is a one dimensional simple random walk.
- 2. $(S_{n \wedge \tau} : n \geq 0)$ is a Markov chain on \mathbb{Z} and give its Transition matrix.
- 3. $(S_{n \wedge \tau} : n \ge 0) \perp (S_{\tau+n} : n \ge 0)$.

SOUTION. 1.

$$\begin{split} &\mathbb{P}(S_{\tau} = i_0, S_{\tau+1} = i_1, \cdots, S_{\tau+n} = i_n \mid \tau < \infty) \\ &= \sum_{k \in \mathbb{N}} \mathbb{P}(\tau = k, S_{\tau} = i_0, S_{\tau+1} = i_1, \cdots, S_{\tau+n} = i_n \mid \tau < \infty) \\ &= \sum_{k \in \mathbb{N}} \mathbb{P}(\tau = k, S_k = i_0, S_{k+1} = i_1, \cdots, S_{k+n} = i_n \mid \tau < \infty) \\ &= \mathbb{1}(a = i_0) \sum_{k \in \mathbb{N}} \mathbb{P}(S_0 \neq a, \cdots, S_{k-1} \neq a, S_k = a, S_{k+1} = i_1, \cdots, S_{k+n} = i_n \mid \tau < \infty) \\ &= \frac{\mathbb{1}(a = i_0) \sum_{k \in \mathbb{N}} \mathbb{P}(S_0 \neq a, \cdots, S_{k-1} \neq a, S_k = a, S_{k+1} = i_1, \cdots, S_{k+n} = i_n)}{\mathbb{P}(\tau < \infty)} \\ &= \frac{\mathbb{1}(a = i_0)}{\mathbb{P}(\tau < \infty)} \sum_{k \in \mathbb{N}} \mathbb{P}(S_0 \neq a, \cdots, S_{k-1} \neq a, S_k = a, S_{k+1} = i_1, \cdots, S_{k+n} = i_n) \\ &= \frac{\mathbb{1}(a = i_0)}{\mathbb{P}(\tau < \infty)} \sum_{k \in \mathbb{N}} \mathbb{P}(S_{k+1} = i_1, \cdots, S_{k+n} = i_n \mid S_0 \neq a, \cdots, S_{k-1} \neq a, S_k = a) \\ &\times \mathbb{P}(S_0 \neq a, \cdots, S_{k-1} \neq a, S_k = a) \\ &= \frac{\mathbb{1}(a = i_0)}{\mathbb{P}(\tau < \infty)} \sum_{k \in \mathbb{N}} \mathbb{P}(S_{k+1} = i_1, \cdots, S_{k+n} = i_n \mid S_k = a) \mathbb{P}(\tau = k) \\ &= \frac{\mathbb{1}(a = i_0)}{\mathbb{P}(\tau < \infty)} \sum_{k \in \mathbb{N}} \prod_{l=0}^{n-1} p_{i_l i_{l+1}} \mathbb{P}(\tau = k) = \mathbb{1}(a = i_0) \prod_{l=0}^{n-1} p_{i_l i_{l+1}} \end{aligned}$$

Where $p_{ij}: i, j \in \mathbb{Z}$ is the transition matrix of $S_n: n \in \mathbb{N}$. So $(S_{\tau+n}: n \in \mathbb{N})$ is Markov chain with transition matrix same as S_n .

2.

$$\begin{split} & \mathbb{P}(S_{\tau \wedge 0} = i_0, S_{\tau \wedge 1} = i_1, \cdots, S_{\tau \wedge n} = i_n \mid \tau < \infty) \\ & = \sum_{k \in \mathbb{N}} \mathbb{P}(\tau = k, S_{\tau \wedge 0} = i_0, S_{\tau \wedge 1} = i_1, \cdots, S_{\tau \wedge n} = i_n \mid \tau < \infty) \\ & = \sum_{k \in \mathbb{N}} \mathbb{P}(\tau = k, S_{k \wedge 0} = i_0, S_{k \wedge 1} = i_1, \cdots, S_{k \wedge n} = i_n \mid \tau < \infty) \\ & = \sum_{k \geq n} \mathbb{P}(\tau = k, S_0 = i_0, \cdots, S_n = i_n \mid \tau < \infty) \\ & + \sum_{k < n} \mathbb{P}(\tau = k, S_0 = i_0, \cdots, S_{k-1} = i_{k-1}, S_k = i_k = i_{k+1} = \cdots = i_n \mid \tau < \infty) \\ & = \mathbb{1}(i_0, i_1, \cdots, i_n \neq a) \prod_{k = 0}^{n-1} p_{i_k i_{k+1}} + \sum_{k = 0}^{n-1} \mathbb{1}(i_0, \cdots, i_{k-1} \neq a, i_k = i_{k+1} = \cdots = i_n = a) \prod_{l = 0}^{k-1} p_{i_l i_{l+1}} \\ & = \prod_{k = 0}^{n-1} (\mathbb{1}(i_k = i_{k+1} = a) + \mathbb{1}(i_k \neq a) p_{i_k, i_{k+1}}) \end{split}$$

So $(S_{n \wedge \tau} : n \in \mathbb{N})$ is Markov chain with transition matrix $q_{i,j} = \mathbb{1}(i = j = a) + \mathbb{1}(i \neq a)p_{i,j}$.

3. By the corollary 3.2.11, we only need to proof τ is stopping time on $(\mathcal{F}_n : n \geq 0)$, Where $\mathcal{F}_n = \sigma(S_k : k \leq n)$. So we only need to prove $\forall n \in \mathbb{N}, \{\tau = n\} \in \mathcal{F}_n$. Since $\{\tau = n\} = \{\omega \in \omega : S_0, \dots, S_{n+1} \neq a, S_n = a\} = \bigcap_{0 \leq k \leq n} \{S_k \neq a\} \cap \{S_n = a\}, \text{ And } \{S_k \neq a\} \in \sigma(S_k), \forall 0 \leq k \leq n, \{S_n = a\} \in \sigma(S_n), \text{ Then } \{\tau = n\} \in \mathcal{F}_n.$

ROBEM 46 Let S_n be 1-dimensional symmetry simple random walk starting from zero. Prove: $(|S_n|: n \ge 0)$ is a Markov chain on \mathbb{Z}^+ and give its transition matrix.

SOUTION. Only need to solve problem 57.

ROBEM 47 Let S_n be 1-dimensional simple random walk starting from zero. Prove: $(|S_n| : n \ge 0)$ is a Markov chain on \mathbb{Z}^+ and give its transition matrix.

SOLITO. By the definition of $|S_n|$, we can easily get to know $\forall (i_0, \dots, i_n) \in \mathbb{Z}^+$, $\mathbb{P}(|S_k| = i_k, k = 0, \dots, n) > 0 \iff i_0 = 0, |i_k - i_{k-1}| = 1, k = 1, \dots, n$. Let $S_n = \sum_{k=1}^n \xi_k$, where $(\xi_n : n \ge)$ are i.i.d. r.v. and $\mathbb{P}(\xi_1 = 1) = p$, $\mathbb{P}(\xi_1 = -1) = q$. $A := \{(i_0, \dots, i_{n+1}) \in \mathbb{Z} : i_0 = 0, |i_k - i_{k-1}| = 1, k = 1, \dots, n+1\}$. $\forall (i_0, \dots, i_{n+1}) \in A$, let $r := \max\{k < n+1 : i_k = 0\}$. Then $i_r = 0, \forall k : n+1 > k \ge r+1, i_k \ge 1$.

- 1. $\forall (i_0, \dots, i_{n+1}) \notin A$, then $\mathbb{P}(|S_k| = i_k, k = 0, \dots, n) = 0$, Then we have no need to calculate $\mathbb{P}(|S_{n+1}| = i_{n+1} | |S_k| = i_k, k = 0, \dots, n)$.
- 2. If $(i_0, \dots, i_{n+1}) \in A \land r = n$, then $i_n = 0, i_{n+1} = 1$. Then $|S_n| = 0 \iff S_n = 0 \implies S_{n+1} = \pm 1 \iff |S_{n+1}| = 1$. So we get that $\mathbb{P}(|S_{n+1}| = i_{n+1}||S_k| = i_k, k = 1, \dots, n) = 1 = \mathbb{P}(|S_{n+1}| = i_{n+1}||S_n| = i_n)$.

3.
$$\forall (i_0, \dots, i_{n+1}) \in A, i_n \neq 0,$$

$$\mathbb{P}\Big(|S_k| = i_k, S_n = i_n, k = 0, \dots, n \Big| |S_k| = i_k, k = 0, \dots, r\Big)$$

$$= \mathbb{P}\Big(|S_k| = i_k, S_n = i_n, k = r + 1, \dots, n \Big| |S_k| = i_k, k = 0, \dots, r - 1, S_r = 0\Big)$$

$$= \mathbb{P}\Big(|S_k| = i_k, S_n = i_n, k = r + 1, \dots, n \Big| S_r = 0\Big)$$

$$= \mathbb{P}\Big(S_k = i_k, S_n = i_n, k = r + 1, \dots, n \Big| S_r = 0\Big)$$

$$= p^{\frac{n-r+i_n}{2}} q^{\frac{n-r-i_n}{2}}$$

In the same way, we can get

$$\mathbb{P}\Big(|S_k| = i_k, S_n = -i, k = 0, \dots, n\Big||S_k| = i_k, k = 0, \dots, r\Big) = p^{\frac{n-r-i_n}{2}} q^{\frac{n-r+i}{2}}$$

So

$$\begin{split} &\mathbb{P}\Big(S_n = i_n \Big| |S_k| = i_k, k = 0, \cdots, n\Big) \\ &= \frac{\mathbb{P}(S_n = i_n, |S_k| = i_k, k = 0, \cdots, n)}{\mathbb{P}(|S_k| = i_k, k = 0, \cdots, n)} \\ &= \frac{\mathbb{P}\Big(S_n = i_n, |S_k| = i_k, k = 0, \cdots, n\Big| |S_k| = i_k, k = 0, \cdots, r\Big) \mathbb{P}(|S_k| = i_k, k = 0, \cdots, r\Big)}{\mathbb{P}(|S_k| = i_k, k = 0, \cdots, n\Big)} \\ &= \frac{\mathbb{P}\Big(S_n = i_n, |S_k| = i_k, k = 0, \cdots, n\Big| |S_k| = i_k, k = 0, \cdots, r\Big)}{\mathbb{P}(|S_k| = i_k, k = 0, \cdots, n\Big)} \\ &= \frac{\mathbb{P}\Big(S_n = i_n, |S_k| = i_k, k = 0, \cdots, n\Big| |S_k| = i_k, k = 0, \cdots, r\Big)}{\mathbb{P}\Big(|S_k| = i_k, k = 0, \cdots, n\Big| |S_k| = i_k, k = 0, \cdots, r\Big)} \\ &= \frac{\mathbb{P}\Big(S_n = i_n, |S_k| = i_k, k = 0, \cdots, n\Big| |S_k| = i_k, k = 0, \cdots, r\Big)}{\mathbb{P}\Big(|S_k| = i_k, k = 0, \cdots, n\Big| |S_k| = i_k, k = 0, \cdots, r\Big)} \\ &= \frac{p^{n-r+\frac{i_n}{2}}q^{n-r-\frac{i_n}{2}}}{p^{n-r+\frac{i_n}{2}}q^{n-r-\frac{i_n}{2}}+p^{n-r-\frac{i_n}{2}}q^{n-r+\frac{i_n}{2}}} \\ &= p^{i_n}(p^{i_n} + q^{i_n})^{-1} \end{split}$$

In the same way, we can get

$$\mathbb{P}\Big(S_n = -i_n \Big| |S_k| = i_k, k = 0, \cdots, n\Big) = q^{i_n} (p^{i_n} + q^{i_n})^{-1}$$

Then

$$\begin{split} &\mathbb{P}\Big(|S_{n+1}|=i_{n+1}\Big|\big|S_k|=i_k, k=0,\cdots,n\Big) \\ &=\mathbb{P}\Big(|S_{n+1}|=i_{n+1}\mid S_n=i_n, |S_k|=i_k, k=0,\cdots,n)\mathbb{P}(S_n=i_n\Big|\big|S_k|=i_k, k=0,\cdots,n\Big) \\ &+\mathbb{P}\Big(|S_{n+1}|=i_{n+1}\mid S_n=-i_n, |S_k|=i_k, k=0,\cdots,n)\mathbb{P}(S_n=-i_n\Big|\big|S_k|=i_k, k=0,\cdots,n\Big) \\ &=\mathbb{P}\Big(S_{n+1}=i_{n+1}\Big|S_n=i_n\Big)\mathbb{P}\Big(S_n=i_n\Big|\big|S_k|=i_k, k=0,\cdots,n\Big) \\ &+\mathbb{P}\Big(S_{n+1}=-i_{n+1}\Big|S_n=-i_n\Big)\mathbb{P}\Big(S_n=-i_n\Big|\big|S_k|=i_k, k=0,\cdots,n\Big) \\ &+\mathbb{P}\Big(S_{n+1}=-i_{n+1}\Big|S_n=-i_n\Big)\mathbb{P}\Big(S_n=-i_n\Big|\big|S_k|=i_k, k=0,\cdots,n\Big) \\ &=\mathbb{1}(i_{n+1}=i_n+1)(p^{i_n+1}+q^{i_n+1})(p^{i_n}+q^{i_n})^{-1}+\mathbb{1}(i_{n+1}=i_n-1)(p^{i_n}q+pq^{i_n})(p^{i_n}+q^{i_n})^{-1} \\ \end{split}$$

Thus, $(|S_n|: n \ge 0)$ is Markov chain on \mathbb{Z}^+ , with transition matrix $r_{ij} = \mathbb{1}(0 \ne i = j - 1)(p^{i+1} + q^{i+1})(p^i + q^i)^{-1} + \mathbb{1}(0 \ne i = j + 1)(p^i q + pq^i)(p^i + q^i)^{-1} + \mathbb{1}(i = 0, j = 1)$. When $p = q = \frac{1}{2}$, we get $r_{ij} = \frac{1}{2}\mathbb{1}(i \ne 0, |j - i| = 1) + \mathbb{1}(i = 0, j = 1)$.

3.3 状态的分类

方便起见, 记 $\mathbb{P}_i = \mathbb{P}(\cdot \mid X_0 = i)$, 用 \mathbb{E}_i 表示对应的期望。.pr ROBEM 48 Assume $(X_n : n \geq 0)$ is an irreducible Markov chain on E. Prove that $(X_n : n \geq 0)$ is recurrent (or transient) $\iff \forall i \in E$,

$$\mathbb{P}\left(\bigcap_{n=1}^{\infty}\bigcup_{k=n}^{\infty}\{X_k=i\}\right) = 1(\text{ or }0).$$

SOLTON. Only need to prove " \Longrightarrow ".

First we assume $(X_n:n\in\mathbb{N})$ is recurrent, we should prove $\mathbb{P}(\bigcap_{n=1}^{\infty}\bigcup_{k=n}^{\infty}\{X_k=i\})=1$. Let $\tau_1=\inf\{n>0:X_n=i\}$, and for $n\in\mathbb{N}^+$, we let $\tau_{n+1}=\inf\{n>\tau_n:X_n=i\}$. Since i is recurrent and (X_n) is irreducible, we know that $\tau_1<\infty,a.s.$. Then $(X_{\tau_1+n}:n\in\mathbb{N})$ is a Markov chain with the same transition matrix as (X_n) . So we get that $\tau_2-\tau_1<\infty,a.s.$. So $\tau_2<\infty$, a.s.. Use MI, we can easily get that $\forall n\in\mathbb{N}^+,\tau_n<\infty,a.s.$. Easy to get that $\tau_{n+1}>\tau_n$ and $\tau_1>0$, so $\tau_n\geq n$. So $\tau_n<\infty$ \Longrightarrow $\exists k\geq n,X_k=i$. So $\forall n\in\mathbb{N},\mathbb{P}(\bigcup_{k=n}^\infty\{X_k=i\})=1$. Thus, $\mathbb{P}(\bigcap_{n=1}^\infty\bigcup_{k=n}^\infty\{X_k=i\})=1$.

Second we assume $(X_n:n\in\mathbb{N})$ is transient, we should prove that $\mathbb{P}\left(\bigcap_{n=1}^{\infty}\bigcup_{k=n}^{\infty}\{X_k=i\}\right)=0$. Write $A=\bigcap_{n=1}^{\infty}\bigcup_{k=n}^{\infty}\{X_k=i\}$. We define τ_n as above. Easy to know $\forall \omega\in A, \forall n\in\mathbb{N}^+, \tau_n<\infty$. And easy to know that $\tau_{n+1}-\tau_n\mid_{\tau_n<\infty}$ has the same distribution for every n. And since (X_n) is transient, we know (X_{τ_k+n}) is transient for every $k\in\mathbb{N}^+$. So we know $\mathbb{P}(\tau_{n+1}-\tau_n<\infty\mid\tau_n<\infty)<1$. Then $\mathbb{P}(A)=\mathbb{P}(\forall n,\tau_n<\infty)\leq\mathbb{P}(\forall n,\tau_{n+1}-\tau_n<\infty)\leq\prod_{n=1}^{\infty}\mathbb{P}(\tau_{n+1}-\tau_n<\infty\mid\tau_n<\infty)=\prod_{n=1}^{\infty}\mathbb{P}(\tau_{n+1}-\tau_n<\infty)=0$.

ROBEM 49 Assume $(X_n : n \ge 0)$ is Markov chain on E, where E is finite. Prove that $\exists x \in E, x$ is recurrent.

SOUTHON. Easily $\sum_{i\in E}\sum_{n=1}^{\infty}p_{ki}(n)=\sum_{n\in\mathbb{N}^+}\sum_{i\in E}p_{ki}(n)=\sum_{n\in\mathbb{N}^+}1=+\infty$. Since E is finite, we obtain that there is at least one i such that $\sum_{n\in\mathbb{N}^+}p_{ki}(n)=\infty$, then p_{ki}^* . Then i is recurrent. \square

ROBEM 50 Assume $(X_n: n \geq 0)$ is Markov chain on \mathbb{Z} . Prove it is transient $\iff \forall \mu_0$ is primitive distribution, $\lim_{n\to\infty} |X_n| \stackrel{\text{a.s.}}{=} \infty$.

SPERON. Only need to prove that $\forall k \in \mathbb{N}$, $\liminf_{n \to \infty} |X_n| > k$, a.s.. Consider the event $\liminf_{n \to \infty} |X_n| \le k$, it means $\forall n \in \mathbb{N}, \exists t \ge n, X_t \in [-k, k]$. So we only need to prove $\mathbb{P}\left(\bigcap_{n=1}^{\infty} \bigcup_{t=n}^{\infty} \{X_t \in [-k, k]\}\right) = 0$. It is sufficient to prove that $\mathbb{P}\left(\bigcup_{u \in [-k, k]} \bigcap_{n=1}^{\infty} \bigcup_{t=n}^{\infty} \{X_t = u\}\right) = 0$. Since (X_n) is transient, it has been proved that $\mathbb{P}\left(\bigcap_{n=1}^{\infty} \bigcup_{t=n}^{\infty} \{X_t = u\}\right) = 0$. So $\mathbb{P}\left(\bigcup_{u \in [-k, k]} \bigcap_{n=1}^{\infty} \bigcup_{t=n}^{\infty} \{X_t = u\}\right) = 0 \le \sum_{u \in [-k, k]} \mathbb{P}\left(\bigcap_{n=1}^{\infty} \bigcup_{t=n}^{\infty} \{X_t = u\}\right) = 0$.

ROBEM 51 Assume $\{a_i : i \geq 1\} \subset (0,1)$. Consider $E := \mathbb{N}$, P is a transition matrix on E, where $p_{ij} = a_i \mathbb{1}_{\{j=0\}} + (1-a_i) \mathbb{1}_{\{j=i+1\}}$. Prove:

- 1. P is irreducible.
- 2. P is recurrent $\iff \sum_i a_i = \infty$.
- 3. P is ergodic $\iff \sum_{k=1}^{\infty} \prod_{i=1}^{k-1} (1 a_i) < \infty$.
- SPETICN. 1. Easy to prove that $p_{i0}(1) > 0, \forall i \in \mathbb{N}$. And easily $p_{0i}(i) = \prod_{k=0}^{i-1} (1 a_k) > 0$. So P is irreducible.
 - 2. Since P is irreducible, we only need to consider $X_0=0$. Then $\{T_0>n\}\stackrel{\text{a.s.}}{=}\{X_k=k,k=0,\cdots,n\}$. Then $\mathbb{P}_0(T_0=\infty)=\mathbb{P}_0(\bigcap_n\{T_0>n\})=\lim_{n\to\infty}\mathbb{P}_0(X_k=k,k=0,\cdots,n)=\lim_{n\to\infty}\prod_{k=0}^{n-1}(1-a_k)=\prod_{k=0}^{\infty}(1-a_k)$. Then $\mathbb{P}_0(T_0=\infty)=0\iff\prod_{k=0}^{\infty}(1-a_k)=0\iff\sum_k a_k=\infty$.
 - 3. Since $\mathbb{E}_0(T_0) = \sum_{n \in E} \mathbb{P}_0(T_0 > n) = \sum_{n=0}^{\infty} \prod_{k=0}^{n-1} (1-a_k)$, then P is ergodic $\iff \mathbb{E}_0(T_0) < \infty$ $\iff \sum_{n=0}^{\infty} \prod_{k=0}^{n-1} (1-a_k) < \infty$.

ROBEM 52 Assume P is a transition matrix on E and P is irreducible, $j \in E$. Prove: P is recurrent $\iff 1$ is the minimum non-negative solution of

$$y_i = \sum_{k \neq j} p_{ik} y_k + p_{ij}, i \in E \setminus \{j\}$$

$$\tag{10}$$

SOLITION. " \Longrightarrow ": If P is recurrent, then the bounded solution of $z_i = \sum_{k \in E} p_{ik} z_k, i \in E \setminus \{j\}$ is constant. Easy to get that 1 is one of solution of Equation (??), now we will prove that 1 is the unique solution. Assume there is another solution, then $y_i - 1 = \sum_{k \neq j} p_{ik} (y_k - 1), \forall i \in E \setminus \{j\}$.

Then we let $z_j = 0$, $z_i = y_i - 1$, $\forall i \neq j$, we find a non-constant solution, contradiction! So 1 is the unique solution and thus minimum solution.

"\(\iff \text{": If } P \) is transient, then the bounded solution of $z_i = \sum_{k \in E} p_{ik} z_k, i \in E \setminus \{j\}$ has non-constant solution. Without loss of generality, we can assume $z_j = 0, \forall i \in E, |z_i| \leq 1, \exists i_0 \in E, z_{i_0} < 0$. Let $y_i = 1 + z_i, i \in E$, then $\{y_i : i \in E\}$ is the bounded solution of Equation (??). But $y_{i_0} < 1, y_i \geq 0, i \in E$. So 1 is not the minimum solution.

 $\mathbb{R}^{\text{OBEM}} \text{ 53 Let } \{a_k: k \geq 0\} \text{ satisfies } \sum_{k \geq 0} a_k = 1, a_k \geq 1, a_0 > 0, \ \mu := \sum_{k=1}^{\infty} k a_k > 1. \text{ Define } \{a_j, i = 0 \}$ $p_{ij} = \begin{cases} a_j, & i = 0 \\ a_{j-i+1}, & i \geq 1 \land j \geq i-1. \text{ Prove: } P \text{ is transient.} \\ 0, & \text{otherwise} \end{cases}$

SPETION. First, we prove that P is irreducible: Since $\sum_{k=1}^{\infty} k a_k > 1$, then $\exists m, a_m > 0$. And $\forall i \geq 1, \ p_{i-1,i} = a_0 > 0$. Then $\forall i, j$, if i < j, then $p_{ij}(j-i) = a_0^{j-i} > 0$. If $i \geq j$, let $t \equiv i-j \pmod{m}$, $1 \leq t \leq m$, then $p_{ij}(t+1) = a_0^t a_m > 0$.

Let $\xi_n: n \in \mathbb{N}$ is a sequence of i.i.d r.v with $\mathbb{P}(\xi_0 = i) = a_i$. Since P is irreducible, we only consider the chain begin at 0. Let $X_0 = 0$, $X_{n+1} = X_n + \xi_n - \mathbb{1}_{X_n > 0}$. Then easily X_n is the Markov chain begin at 0 with transition matrix P. And $X_n = \sum_{k=0}^{n-1} \xi_k - \sum_{k=0}^{n-1} \mathbb{1}_{X_n > 0} \ge \sum_{k=0}^{n-1} (\xi_k - 1)$. So we obtain $\lim \inf_{n \to \infty} \frac{X_n}{n} \ge \lim \inf_{n \to \infty} \frac{\sum_{k=0}^{n-1} \xi_k - 1}{n} = \mu - 1 > 0$. So $\lim \inf_{n \to \infty} X_n = \infty$, so 0 is transient.

ROBEM 54 Let $X = \{X(n) : n \geq 0\}$ be Markov chain defined on probability space $(\Omega, \mathscr{F}, \mathbb{P})$, with state space E and transition probability matrix $P = (p(i,j) : i,j \in E)$. Let $a,b \in E$, $\tau_0 = 0$, $\sigma_k = \inf\{n \geq \tau_{k-1} : X(n) = b\}, \tau_k = \inf\{n \geq \sigma_{k-1} : X(n) = a\}$. Prove: $\tau_n, \sigma_n, n \geq 1$ are all stopping time on $(\mathscr{F}_n : n \geq 0)$.

SOLITION. We use MI to prove it. Easily $\sigma_1 = \inf\{n \geq \tau_0 : X(n) = b\} = \inf\{n \geq 0 : X(n) = b\}$ is stopping time. Assume for certain $n \geq 1$, we have proved that σ_n, τ_{n-1} are stopping times, now we need to prove σ_{n+1}, τ_n are stopping times. Since σ_n is stopping time, we know $\forall k \leq m, \{k \geq \sigma_n\} \in \mathcal{F}_m$. And obviously $\forall k \leq m, \{X(k) = a\} \in \mathcal{F}_m$. So we obtain that $\{\sigma_n \leq m\} = \bigcup_{k=1}^m \{k \geq \sigma_n, X(k) = a\} \in \mathcal{F}_m$. So τ_n is stopping time. Since τ_n is stopping time, we know $\forall k \leq m, \{k \geq \tau_n\} \in \mathcal{F}_m$. And obviously $\forall k \leq m, \{X(k) = b\} \in \mathcal{F}_m$. So we obtain that $\{\tau_n \leq m\} = \bigcup_{k=1}^m \{k \geq \tau_n, X(k) = b\} \in \mathcal{F}_m$. So σ_{n+1} is stopping time. So we finally obtain that $\forall n \in \mathbb{N}^+, \sigma_n, \tau_n$ are stopping times.

ROBEM 55 Let $(X_n : n \ge 0)$ be a one-dimension simple random walk starting at 1. Let $e(n) = \{X_{n \wedge \tau_1} : n \ge 0\}$, where $\tau_1 = \inf\{n \ge 0 : X_n = 0\}$. Find the distribution of $\sup_{n > 0} e(n)$.

SOLUTION. Assume $\mathbb{P}(X_{n+1} - X_n = 1) = p$, $\mathbb{P}(X_{n+1} - X_n = -1) = q$, where p + q = 1. Let $E := \sup_{n \ge 0} e(n)$. Let $m \in \mathbb{N}^+$. Let $\sigma := \inf\{n \ge 0 : X_n = 0 \text{ or } X_n = m\}$. Then σ is a stopping time.

First we assume $p \neq q$. Let $Y_n := \left(\frac{q}{p}\right)^{X_n}$, then it's easy to check that Y_n is martingale. So we know that $Y_{n \wedge \sigma}$ is martingale, too. Easy to get that $\sigma < \infty, a.s.$, so $Y_{n \wedge \sigma} \stackrel{\text{a.s.}}{\to} Y_{\sigma}$. And $0 \leq Y_{n \wedge \sigma} \leq m$, so $\mathbb{E}(Y_{\sigma}) = \mathbb{E}(Y_{n \wedge \sigma}) = \mathbb{E}(Y_0)$. Noting that $\{X_{\sigma} = 0\} \stackrel{\text{a.s.}}{=} \{E < m\}$ and $\{X_{\sigma} = m\} \stackrel{\text{a.s.}}{=} \{E \geq m\}$, we get two equations:

$$\begin{cases} \mathbb{P}(E < m) + \mathbb{P}(E \ge m) = 1\\ \mathbb{P}(E < m) + \mathbb{P}(E \ge m) \left(\frac{q}{p}\right)^m = \frac{q}{p} \end{cases}.$$

Solve this equation, we get $\mathbb{P}(E \geq m) = \frac{\frac{q}{p}-1}{(\frac{q}{p})^m-1}$. Then $\mathbb{P}(E=m) = \frac{(\frac{p}{q})^m(\frac{p}{q}-1)}{((\frac{p}{q})^m-1)((\frac{p}{q})^{m+1}-1)}$. Further-

more, easily
$$\mathbb{P}(E = \infty) = \lim_{m \to \infty} \mathbb{P}(E \ge m) = \begin{cases} 0 & \frac{q}{p} > 1 \\ 1 - \frac{q}{p} & \frac{q}{p} < 1 \end{cases}$$
.

Second, we consider $p=q=\frac{1}{2}$. Then easily X_n is martingale. So we know that $X_{n\wedge\sigma}$ is martingale, too. Easy to get that $\sigma<\infty,a.s.$, so $X_{n\wedge\sigma}\stackrel{\text{a.s.}}{\to} X_{\sigma}$. And $0\leq X_{n\wedge\sigma}\leq m$, so $\mathbb{E}(X_{\sigma})=\mathbb{E}(X_{n\wedge\sigma})=\mathbb{E}(X_{0})$. Noting that $\{X_{\sigma}=0\}\stackrel{\text{a.s.}}{=} \{E< m\}$ and $\{X_{\sigma}=m\}\stackrel{\text{a.s.}}{=} \{E\geq m\}$, we get two equations:

$$\begin{cases} \mathbb{P}(E < m) + \mathbb{P}(E \ge m) = 1 \\ 0\mathbb{P}(E < m) + m\mathbb{P}(E \ge m) = 1 \end{cases}$$

Solve this equation, we get $\mathbb{P}(E \geq m) = \frac{1}{m}$. So $\mathbb{P}(E = m) = \frac{1}{m(m+1)}$, and easily $\mathbb{P}(E = \infty) = 0$.

BOBEM 56 Prove:

- 1. When $0 , the reflecting random walk with transition matrix <math>Q_+^a$ is recurrent.
- 2. When $0 < q \le p$, the reflecting random walk with transition matrix Q_{-}^{a} is recurrent.

SOLION. By symmetry, only need to prove 1. By shifting, without loss of generality we can assume a = 0. We consider the equation

$$y_0 = y_1, \forall i \ge 1, y_i = qy_{i-1} + py_{i+1}$$

Only need to prove its all bounded solution are all constant. Easy to get $y_{i+2} = \frac{1}{p}y_{i+1} - \frac{q}{p}y_i$. Consider the charasteristic equation of this sequence, $x^2 - \frac{x}{p} + \frac{q}{p} = 0$. We get $x_1 = 1, x_2 = \frac{q}{p} \ge 1$. If $x_2 > 1$, then $y_n = c_1 x_1^n + c_2 x_2^n$ is bounded $\iff c_2 = 0$, so $y_n = c_1 x_1^n = c_1$ is constant. Else, $x_2 = x_1 = 1$, then $y_n = (an + b)x_1^n = an + b$ is bounded $\iff a = 0$, so $y_n = b$ is constant. So the Markov chain is recurrent.

ROBEM 57 Prove colloary 4.4.3. i.e., let $\phi_0(n:n\in\mathbb{N}^+)$ be simple random walk begin at $\phi_0(0)\geq a+1$, let $\zeta_0:=\inf\{m:\phi_0(m)=a+1\}$, let $Y_n:n\in\mathbb{N}$ be reflecting simple random

walk on \mathbb{Z}^a_+ , starting at a+1, independent with ϕ_0 . Let $X_n:=\begin{cases} \phi_0(n) & n\leq \zeta_0\\ Y_{n-\zeta_0} & n\geq \zeta_0 \end{cases}$. Prove that $X_n:n\in\mathbb{N}$ is reflecting random walk on \mathbb{Z}^a_+ begin at $\phi_0(0)$.

SOLLYON. Now we consider $n \in \mathbb{N}^+$ and $i_0, i_1, i_2, \cdots, i_{n+1} \in \mathbb{Z}^a_+$.

1. If $\forall k : 1 \leq k \leq n, i_k \neq a+1$, then we have

$$\begin{split} & \mathbb{P}(X_0 = i_0, \cdots, X_{n+1} = i_{n+1}) \\ & = \mathbb{P}(\phi_0(0) = i_0, \cdots, \phi_0(n+1) = i_{n+1}) \\ & = \mathbb{P}(\phi_0(0) = i_0, \cdots, \phi_0(n) = i_n) \mathbb{P}(\phi_0(n+1) = i_{n+1} \mid \phi_0(n) = i_n) \\ & = \mathbb{P}(X_0 = i_0, \cdots, X_n = i_n) q_+^a(i_n, i_{n+1}) \end{split}$$

2. Else, we let $k := \inf\{m : 1 \le m \le n, i_m = a + 1\}$. Then we have

$$\mathbb{P}(X_0 = i_0, \dots, X_{n+1} = i_{n+1}) \\
= \mathbb{P}(\phi_0(0) = i_0, \dots, \phi_0(k) = i_k, Y_0 = a+1, Y_1 = i_{k+1}, \dots, Y_{n-k} = i_n, Y_{n-k+1} = i_{n+1}) \\
= \mathbb{P}(\phi_0(0) = i_0, \dots, \phi_0(k) = i_k) \mathbb{P}(Y_0 = a+1, Y_1 = i_{k+1}, \dots, Y_{n-k} = i_n, Y_{n-k+1} = i_{n+1}) \\
= \mathbb{P}(\phi_0(0) = i_0, \dots, \phi_0(k) = i_k) \mathbb{P}(Y_0 = a+1, Y_1 = i_{k+1}, \dots, Y_{n-k} = i_n) q_+^a(i_n, i_{n+1}) \\
= \mathbb{P}(X_0 = i_0, \dots, X_n = i_n) q_+^a(i_n, i_{n+1})$$

So we get $(X_n : n \ge 0)$ is reflecting simple random walk on \mathbb{Z}_+^a .

4 分支过程及其应用

4.1 定义和基本构造

4.1.1 分支过程的定义

₽°BEM 58

- 1. Assume $\{Y_1(n): n \geq 0\}, \{Y_2(n): n \geq 0\}$ are two independent migrating branch process with offspring distribution $(p(i): i \in \mathbb{N})$ and the migrating probability respectively are $(\gamma_1(i): i \in \mathbb{Z}_+), (\gamma_2(i): i \in \mathbb{N})$. Prove: $\{Y_1(n) + Y_2(n): n \geq 0\}$ is migrating branching process with offspring distribution $p(i): i \in \mathbb{N}$ and migrating probability $\gamma_1 * \gamma_2$.
- 2. Let $\{Y(n): n \in \mathbb{N}\}$ be migrating branch process with offspring distribution $p(j): j \in \mathbb{N}$ and the migrating distribution $\gamma(i): i \in \mathbb{N}$. $P_n^{\gamma} = (p_n^{\gamma}(i,j); i,j \in \mathbb{N})$ is the *n*-th transition matrix. Prove: $\forall i, n \geq 1$

$$\sum_{j=0}^{\infty} p_n^{\gamma}(i,j)z^j = g_n(z)^i \prod_{k=1}^n h(g_{k-1}(z)), |z| \le 1$$

where h is the generating function of $(\gamma(j):j\in\mathbb{N})$. g is the generating function of $(p(j):j\in\mathbb{N})$.

3. h, g are defined as above. Assume $m := g'(1-) < \infty, \mu := h'(1-) < \infty$. Prove: $\forall i, n \ge 1$,

$$\mathbb{P}(Y_n \mid Y_0 = i) = im^n + \mu \sum_{k=1}^n m^{k-1}$$

SOUTHON. 1. Since Y_1, Y_2 are independent Markov chain, we easily get $\mathbb{P}(Y_1(n+1) + Y_2(n+1) = i \mid \sigma(Y_1(j), Y_2(j) : 0 \leq j \leq n)) = \mathbb{P}(Y_1(n+1) + Y_2(n+1) = i \mid Y_1(n), Y_2(n))$. So to prove $Y_1 + Y_2$ is Markov chain, we only need to prove $\mathbb{P}(Y_1(n+1) + Y_2(n+1) = i \mid Y_1(n), Y_2(n))\mathbb{P}(Y_1(n+1) + Y_2(n+1) = i \mid Y_1(n) + Y_2(n))$.

$$\begin{split} & \mathbb{P}(Y_1(n+1) + Y_2(n+1) = i \mid Y_1(n) = j, Y_2(n) = k) \\ & = \sum_{x+y=i} \mathbb{P}(Y_1(n+1) = x \mid Y_1(n) = j) \mathbb{P}(Y_2(n+1) = y \mid Y_2(n) = k) \\ & = \sum_{x+y=i} p^{*j} * \gamma_1(x) p^{*k} * \gamma_2(y) \\ & = p^{*j} * \gamma_1 * p^{*k} * \gamma_2(i) \\ & = p^{*(j+k)} * \gamma_1 * \gamma_2(i) \end{split}$$

So $\mathbb{P}(Y_1(n+1) + Y_2(n+1) = i \mid Y_1(n), Y_2(n)) = p^{*(Y_1(n) + Y_2(n))} * (\gamma_1 * \gamma_2)(i) \in \sigma(Y_1(n) + Y_2(n)) \subset \sigma(Y_1(n), Y_2(n))$. So $Y_1 + Y_2$ is Markov chain. More over, we have obtained

 $\mathbb{P}(Y_1(n+1) + Y_2(n+1) = j \mid Y_1(n) + Y_2(n) = i) = p^{*i} * (\gamma_1 * \gamma_2)(j)$. So $\{Y_1(n) + Y_2(n) : n \geq 0\}$ is migrating branching process with offspring distribution $p(i) : i \in \mathbb{N}$ and migrating probability $\gamma_1 * \gamma_2$.

2. Use MI to prove it. Write $G_n(i,z) := \sum_{j=0}^{\infty} p_n^{\gamma}(i,j)z^j$. When n=0, we have $p_0^{\gamma}(i,j) = \delta_{ij}$, so $G_0(i,z) = z^i = g_0(z)^i$. When n=1, we have $p_1^{\gamma}(i,j) = p^{*i} * \gamma(j)$. So $G_1(i,z) = g(z)^i h(z)$. Assume for certain n we have proved that $G_n(i,z) = g_n(z)^i \prod_{k=1}^n h(g_{k-1}(z))$, Consider n+1. Easily $p_{n+1}^{\gamma}(i,j) = \sum_{k \in \mathbb{N}} p_n^{\gamma}(k,j) p(i,\cdot) * \gamma(k)$. So

$$G_{n+1}(i,z) = \sum_{j \in \mathbb{N}} \sum_{k \in \mathbb{N}} p_1^{\gamma}(i,k) p_n^{\gamma}(k,j) z^j$$

$$= \sum_{k \in \mathbb{N}} p_1^{\gamma}(i,k) G_n(k,z)$$

$$= \prod_{k=1}^n h(g_{k-1}(z)) \sum_{k \in \mathbb{N}} p_1^{\gamma}(i,k) g_n(z)^k$$

$$= \prod_{k=1}^n h(g_{k-1}(z)) G_1(i,g_n(z))$$

$$= g_{n+1}(z) \prod_{k=1}^{n+1} h(g_{k-1}(z))$$

3. Easily $\mathbb{P}(Y_n \mid Y_0 = i) = D_z G_n(i, z) \mid_{z \to 1^-}$. Noting g(1) = h(1) = 1, easy to get that $\mathbb{P}(Y_n \mid Y_0 = i) = im^n + \mu \sum_{k=1}^n m^{k-1}$.

POBEM 59 Assume $b \in (0,1), p \in (0,1)$. Let $\mu(0) = \frac{1-b-p}{1-p}, \mu(j) = bp^{j-1}, j \ge 1$. Prove:

1. $(\mu(j): j \in \mathbb{N})$ is probability distribution and

$$g(z) := \sum_{j=0}^{\infty} \mu(j)z^j = \frac{1-b-p}{1-p} + \frac{bz}{1-pz}.$$

2. Let $b = (1 - p)^2$. Then g'(1) = 1 and

$$g(z) = p + \frac{(1-p)^2 z}{1-pz} = \frac{p - (2p-1)z}{1-pz}.$$

Prove: $\forall n \geq 1$,

$$g_n(z) = \frac{np - ((n+1)p - 1)z}{1 + (n-1)p - nnz}.$$

SOLTION. 1. Easily $\sum_{j=1}^{\infty} \mu(j) = \frac{b}{1-p}$. So $\sum_{j=0}^{\infty} \mu(j) = 1$. Easily $\sum_{j=1}^{\infty} \mu(j)z^j = \frac{bz}{1-pz}$. So $g(z) = \mu(0) + \frac{bz}{1-pz} = \frac{1-b-p}{1-p} + \frac{bz}{1-pz}$.

2.
$$g_{n+1}(z) = g(g_n(z)) = \frac{p-(2p-1)g_n(z)}{1-pg_n(z)}$$
. So $g_{n+1}(z) - 1 = \frac{(g_n(z)-1)(1-p)}{1-pg_n(z)}$. Thus, we obtain $\frac{1}{g_{n+1}(z)-1} = \frac{1}{g_n(z)-1} - \frac{p}{1-p}$. So $\frac{1}{g_n(z)-1} = \frac{1}{z-1} - \frac{np}{1-p}$, and finally we get $g_n(z) = \frac{np-((n+1)p-1)z}{1+(n-1)p-npz}$.

ROBEM 60 Let $\{X(n): n \in \mathbb{N}\}$ be branch process with offspring distribution $p(j): j \in \mathbb{N}$. And g is the generating function. Let $m_2 := g'(1) + g''(1) < \infty$. Let $m = g'(1) < \infty$. $\forall k \geq 1$, $X_n^{(k)} = k^{-1}X_n$. Prove: $\forall \varepsilon > 0, i, n \geq 1$, $\mathbb{P}(|X_n^{(k)} - im^n| \geq \varepsilon \mid X_0^{(k)} = i) \to 0, k \to \infty$.

SOUTON. In fact, we don't need $m_2 < \infty$. We let $(Y(k,n): n \in \mathbb{N}), k \in \mathbb{N}$ are independent branch process with offspring distribution $p(j): j \in \mathbb{N}$ and Y(k,0) = i. Then $\sum_{j=1}^k Y(j,n)$ is branch process with offspring distribution $p(j): j \in \mathbb{N}$ and initial value ki. So $\sum_{j=1}^k Y(j,n) \stackrel{d}{=} X_n \mid X_0^{(k)} = i$. So $\mathbb{P}(|X_n^{(k)} - im^n| \ge \varepsilon \mid X_0^{(k)} = i) = \mathbb{P}(|\frac{\sum_{j=1}^k Y(j,n)}{k} - im^n| \ge \varepsilon)$. By LLN we obtain $\frac{1}{k} \sum_{j=1}^k Y(j,n) \stackrel{\text{a.s.}}{\to} im^n$. So finally we get $\lim_{k\to\infty} \mathbb{P}(|X_n^{(k)} - im^n| \ge \varepsilon \mid X_0^{(k)} = i) = \lim_{k\to\infty} \mathbb{P}(|\frac{\sum_{j=1}^k Y(j,n)}{k} - im^n| \ge \varepsilon) = 0$.

ROBEM 61 Let $\{X(n): n \in \mathbb{N}\}$ be branch process with offspring distribution $p(j): j \in \mathbb{N}$. And g is the generating function, where $m := g'(1) \in (1, \infty), m_2 := g'(1) + g''(1) < \infty$. Let $\sigma^2 := m_2 - m^2 = \mathbb{D}(X(1))$. It is well known that $\exists W, \lim_{n \to \infty} \frac{X_n}{m^n} = W$. Prove:

$$\lim_{n \to \infty} \mathbb{E}_1[(m^{-n}X_n - W)^2] = 0, \mathbb{D}_1(W) = \sigma^2 m^{-1}(m-1)^{-1}$$

SPEROV. For convenience we write \mathbb{E}, \mathbb{D} instead of $\mathbb{E}_1, \mathbb{D}_1$. Easy to get that $\mathbb{E}(m^{-2n}X_n^2) = \frac{\sigma^2(1-m^{-n})}{m^2-m} + 1$. So by Fatou theorem we get that $\mathbb{E}(W^2) \leq \lim_{n \to \infty} \mathbb{E}(m^{-2n}X_n^2) = \frac{\sigma^2}{m^2-m} + 1 < \infty$. And by Doob Stochastic Processes p317 theorem 3.4 we get that $\mathbb{E}(\max_{n \in \mathbb{N}} m^{-2n}X_n^2) < \infty$. Thus, $m^{-2n}X_n^2$ are integrable uniformly, and so do $(m^{-n}X_n - W)^2$. So by LCDT we can get $\lim_{n \to \infty} \mathbb{E}((m^{-n}X_n - W)^2) = 0$. Noting that

$$\mathbb{E}(m^{-2n}X_n^2 - W^2) = \mathbb{E}((m^{-n}X_n + W)(m^{-n}X_n - W)) \le \sqrt{\mathbb{E}((m^{-n}X_n + W)^2)\mathbb{E}((m^{-n}X_n - W)^2)} \to 0$$
, we get $\mathbb{E}(W^2) = \lim \mathbb{E}(m^{-2n}X_n^2) = \frac{\sigma^2}{m^2 - m} + 1$. And $\mathbb{E}(W) = \lim \mathbb{E}(m^{-n}X_n) = 1$. So $\mathbb{D}(W) = \mathbb{E}(W^2) - \mathbb{E}(W)^2 = \frac{\sigma^2}{m(m-1)}$.

ROBEM 62 Let $\{Y(n):n\in\mathbb{N}\}$ be branch process with offspring distribution $p(j):j\in\mathbb{N}$. And g is the generating function, where $m:=g'(1)\leq 1$. Prove $(p^{\gamma}(j):j\in\mathbb{N})$ is the steady-state vector of transition matrix P_n^{γ} , that is $\sum_{i=0}^{\infty}p^{\gamma}(i)p_n^{\gamma}(i,j)=p^{\gamma}(j), i\geq 0$.

STETION. Since $\lim_{m\to\infty} p_m^{\gamma}(i,j) = p^{\gamma}(j)$, and fix $k \in \mathbb{N}$, we have $\sum_{j=0}^{\infty} p_m^{\gamma}(k,i) p_n^{\gamma}(i,j) = p_{n+m}^{\gamma}(k,j)$, we only need to prove that $\lim_{m\to\infty} \sum_{i=0}^{\infty} (p_m^{\gamma}(k,i) - p^{\gamma}(i)) p_n^{\gamma}(i,j) = 0$. Since $\lim_{m\to\infty} p_m^{\gamma}(k,i) = p^{\gamma}(i)$ and $\sum_{i\in\mathbb{N}} p_m^{\gamma}(k,i) = 1$, we can easily get that $\sum_{i\in\mathbb{N}} p^{\gamma}(i) = 1$. For $\varepsilon > 0$, we let N large

enough such that $\sum_{k=N}^{\infty} p^{\gamma}(k) < \varepsilon$. Then we let M large enough such that $\forall i : 0 \le i < N, \forall m \ge M, |p_m^{\gamma}(k,i) - p^{\gamma}(k)| < \frac{\varepsilon}{N}$. Then

$$\begin{split} &\left|\sum_{i=0}^{\infty}(p_m^{\gamma}(k,i)-p^{\gamma}(i))p_n^{\gamma}(i,j)\right| \\ \leq &\sum_{i=0}^{\infty}|p_m^{\gamma}(k,i)-p^{\gamma}(i)|p_n^{\gamma}(i,j) \\ \leq &\sum_{i=0}^{N-1}|p_m^{\gamma}(k,i)-p^{\gamma}(i)|p_n^{\gamma}(i,j) + \sum_{i=N}^{\infty}(p_m^{\gamma}(k,i)+p^{\gamma}(i))p_n^{\gamma}(i,j) \\ \leq &\sum_{i=0}^{N-1}\frac{\varepsilon}{N} + \sum_{i=N}^{\infty}p_m^{\gamma}(k,i) + p^{\gamma}(i) \\ \leq &\varepsilon + \sum_{i=N}^{\infty}p^{\gamma}(i) + 1 - \sum_{i=1}^{N-1}p_m^{\gamma}(k,i) \\ \leq &\varepsilon + \varepsilon + 1 - \sum_{i=1}^{N-1}p^{\gamma}(i) + \sum_{i=1}^{N-1}|p_m^{\gamma}(k,i)-p^{\gamma}(i)| \\ \leq &4\varepsilon \end{split}$$

So finally we get $\lim_{m\to\infty}\sum_{i=0}^{\infty}(p_m^{\gamma}(k,i)-p^{\gamma}(i))p_n^{\gamma}(i,j)=0$. Thus, $\sum_{i=0}^{\infty}p^{\gamma}(i)p_n^{\gamma}(i,j)=p^{\gamma}(j), i\geq 0$

ROBEM 63 Let $\{Y(n): n \in \mathbb{N}\}$ be branch process with offspring distribution $p(j): j \in \mathbb{N}$ and migrating distribution γ . And g is the generating function, where $m := g'(1) \leq 1$. Discuss $\lim_{n \to \infty} \mathbb{E}(Y_n \mid Y_0 = i)$.

SOLUTION. Easy to get that $\mathbb{E}(Y_n \mid Y_0 = i) = im^n + \mu \sum_{k=1}^n m^{k-1}$. When m = 1, we know $\mathbb{E}(Y_n \mid Y_0 = i) \to \infty$. When m < 1, we know $\mathbb{E}(Y_n \mid Y_0 = i) \to \frac{\mu}{1-m}$.

ROBEM 64 Let $S = (S_n : n \ge 0)$ be the one-dimensional symmetry simple random walk with $S_0 = c \ge 0$. Let $k \ge 1$ and τ be the time of the k-th downcrossing 0. X_b is the times of $(S_{n \land \tau} : n \ge 0)$ downcrossing b. Prove:

- 1. $(X_b:b\geq c-1)$ is branch process. And offspring distribution is $Geo(\frac{1}{2})$
- 2. $(X_{-a}: a \ge 1)$ is branch process. And offspring distribution is $Geo(\frac{1}{2})$
- 3. $(X_b: 0 \le b \le c-1)$ is migrating branch process. And offspring distribution is $Geo(\frac{1}{2})$ And the migrating distribution is concentrating on 1.

SOLTION. For a random walk y, we let D(n,y) be the number of downcrossings of y of n.

- 1. Fix $b \geq c-1$. Let ϕ_0 be the journey from start point to b+1. Let e_n be n-th journey from b+1 to b. Let ε_n be n-th journey after ϕ_0 from b to b+1. Then we know that e_n, ε_n are independent. Easy to get that $D(e_n, b) = 1$ and $D(\varepsilon_n, b) = 0$, $D(\varepsilon_n, b+1=0)$. Easy to get that $D((S_{n \wedge \tau} : n \in \mathbb{N}), b+1) = \sum_{t=1}^{D((S_{n \wedge \tau} : n \in \mathbb{N}), b)} D(e_t, b+1)$. Noting that $\forall d : c-1 \leq d \leq b$, $D((S_{n \wedge \tau} : n \in \mathbb{N}), d) \in \sigma(\varepsilon_n : n \in \mathbb{N})$. We easily get that $D(e_t, b+1) \perp \sigma(\varepsilon_n : n \in \mathbb{N})$. So X_b is Markov process. And to prove it's branch process, we only need to prove that $D(e_t, b+1)$ are i.i.d. It has been proved that $D(e_t, b+1)$ are i.i.d and $Geo(\frac{1}{2})$. So the offspring distribution is $Geo(\frac{1}{2})$.
- 2. Fix $a \ge 1$. Let ϕ_0 be the journey from start point to -a. Let e_n be n-th journey from -a to -a 1, and ε_n be n-th journey from -a 1 to -a. Then easy to get that $X_{-a-1} = \sum_{t=1}^{X_{-a}} D(\varepsilon_t, -a 1)$. For the same reason we easily get that $D(\varepsilon_t, -a 1) \perp \sigma(e_n : n \in \mathbb{N})$. And by reflecting easy to get that $D(\varepsilon_t, -a 1) \sim Geo(\frac{1}{2})$, too. So $(X_{-a} : a \ge 1)$ is branch process and offspring distribution is $Geo(\frac{1}{2})$
- 3. Fix b < c-1. Let ϕ_0 be the journey from start point to b+1. Let e_n be the n-th journey from b+1 to b and ε_n be n-th journey from b to b+1. Then easy to prove that $X_{b+1} = D(\phi_0, b+1) + \sum_{t=1}^{X_b} D(e_n, b+1)$. Noting that $D(\phi_0, b+1) = 1$. So for the same reason, we get that $(X_b : 0 \le b \le c-1)$ is migrating branch process, with offspring distribution $Geo(\frac{1}{2})$ and migrating distribution δ_1 .

ROBEM 65 $c < b \in \mathbb{Z}_+$. Let $W = (W_n : n \ge 0)$ be the one-dimensional reflecting simple random walk with $W_0 = c \ge 0$ on $\mathbb{Z}^{0,b}$, whose transition matrix is $P^{0,b}$, where a = 0, p, q > 0, p + q = 1. Let $k \ge 1$ and τ be the time of the k-th downcrossing 0 of (W_n) . $0 \le a \le b$, X_a is the times of $(S_{n \land \tau} : n \ge 0)$ downcrossing a. Prove:

- 1. $(X_a:c-1\leq a\leq b-1)$ is branch process. And offspring distribution is Geo(p).
- 2. $(X_a: 0 \le a \le c-1)$ is migrating branch process. And offspring distribution is Geo(p). And the migrating distribution is concentrating on 1.

SOLITON. For a random walk y, we let D(n,y) be the number of downcrossings of y of n.

- 1. Fix a such that $c-1 \le a < b-1$. Let ϕ_0 be the journey from start point to a. Let e_n be the n-th journey from a to a+1, and ε_n be the n-th journey from a+1 to a. For reflecting simple random walk, we can also prove that e_n, ε_n are independent. Noting that $X_{a+1} = \sum_{t=1}^{X_a} D(\varepsilon_t, a+1)$, we easily get the conclusion.
- 2. Fix $a:0 \le a < c-1$. Let ϕ_0 be the journey from start point to a+1. Let e_n be the n-th journey from a+1 to a and ε_n be n-th journey from a to a+1. Then easy to prove

that $X_{a+1} = D(\phi_0, a+1) + \sum_{t=1}^{X_a} D(e_n, a+1)$. Noting that $D(\phi_0, a+1) = 1$. So for the same reason, we get that $(X_a : 0 \le a \le c-1)$ is migrating branch process, with offspring distribution $Geo(\frac{1}{2})$ and migrating distribution δ_1 .

ROBEM 66 Let $W = (W_n : n \ge 0)$ be the one-dimensional simple random walk with $W_0 = 0$, whose transition matrix P given by equation (4.4.3) on textbook, $0 . <math>X_a$ is the times of $(W_{n \land \tau} : n \ge 0)$ downcrossing a. $r = \frac{p}{a}$. Prove:

- 1. $\mathbb{P}(X_0 = i) = r^i(1 r), i \ge 0;$
- 2. $a \ge 0$, $\mathbb{P}(X_a = 0) = 1 r^{a+1}$, $\mathbb{P}(X_a = i) = r^{a+1}(1 r)$, $i \ge 1$.

SOUTION. 1. Since p < q, then $W_n \to -\infty, n \to \infty$. Let $\tau_0 = 0, \forall k \ge 1, \ \sigma_k = \inf\{n \ge \tau_{k-1} : W_n = 1\}, \tau_k = \inf\{n \ge \sigma_k : W_n = 0\}.$

- (a) If i=0, then $\{X_0=i\} \stackrel{\text{a.s.}}{=} \{\sigma_1=\infty\}$. Then $\mathbb{P}(X_0=i)=\mathbb{P}(\sigma_1=\infty)=r$.
- (b) If $i \geq 1$, then $\{X_0 = i\} \stackrel{\text{a.s.}}{=} \{\sigma_i < \infty, \sigma_{i+1} = \infty\}$. Since $\{\tau_i < \infty\} \subset \{\sigma_i \infty\}, \mathbb{P}(\sigma_i < \infty, \tau_i = \infty) = 0$, then by strong markov property,

$$\mathbb{P}(\sigma_{i+1} < \infty \mid \sigma_i < \infty) = \mathbb{P}(\sigma_{i+1} < \infty \mid \sigma_i < \infty, \tau_i < \infty)$$

$$= \mathbb{P}(\sigma_{i+1} < \infty \mid \tau_i < \infty)$$

$$= \mathbb{P}(\sigma_{i+1} < \infty \mid \tau_i < \infty, W_{\tau_i} = 0)$$

$$= \mathbb{P}(\sigma_1 < \infty) = r$$

Therefore,

$$\mathbb{P}(\sigma_{i+1} < \infty) = \mathbb{P}(\sigma_{i+1} < \infty \mid \sigma_i < \infty) \mathbb{P}(\sigma_i < \infty)$$

Then $\mathbb{P}(\sigma_i < \infty) = r^i$. Therefore, $\mathbb{P}(X_0 = i) = \mathbb{P}(\sigma_i < \infty, \sigma_{i+1} = \infty) = \mathbb{P}(\sigma_i < \infty)\mathbb{P}(\sigma_{i+1} = \infty \mid \sigma_i < \infty) = r^i(1-r)$.

2. Let $D_a = \inf(n \geq 0 : W_n = a)$, then $\mathbb{P}(D_a < \infty) = r^a$. By strong markov property, $(W_{D_a+n-a:n\geq 0})$ is a random walk starting from 0 under $\mathbb{P}(\cdot \mid D_a < \infty) = \mathbb{P}(\cdot \mid D_a < \infty, W_{D_a} = a)$. By the conclusion in 1, $\mathbb{P}(X_a = i \mid D_a < \infty) = r^i(1-r), i \geq 0$. Then

$$\mathbb{P}(X_a = 0) = \mathbb{P}(D_a = \infty) + \mathbb{P}(D_a < \infty, X_a = 0)$$

$$= 1 - r^a + \mathbb{P}(D_a < \infty)\mathbb{P}(X_a = 0 \mid D_a < \infty)$$

$$= 1 - r^a + r^a(1 - r) = 1 - r^{a+1}$$

 $\forall i \geq 1$,

$$\mathbb{P}(X_a = i) = \mathbb{P}(D_a < \infty, X_a = i)$$

$$= \mathbb{P}(D_a < \infty)\mathbb{P}(X_a = i \mid D_a < \infty)$$

$$= r^a r^i (1 - r) = r^{a+i} (1 - r)$$

ROBEM 67 Let $W=(W_n:n\geq 0)$ be the one-dimensional simple random walk with $W_0=0$, whose transition matrix P given by equation (4.4.3) on textbook, 0< p< q<1. X_a is the times of $(W_{n\wedge \tau}:n\geq 0)$ downcrossing a. $r=\frac{p}{q}$. Prove: if $a\leq -1$, then $X_a-1\sim G(1-r)$, i.e. $\mathbb{P}(X_a=i)=r^{i-1}(1-r), i\geq 1$.

SOLUTION. Let $\tau = \inf\{n \in \mathbb{N} : W_n = a\}$. Then $\tau < \infty, a.s.$, then W_n downcross a at τ . And $(W_{\tau+n}-a:n \in \mathbb{N})$ is simple random walk start at 0. So by 66 we easily get $X_a-1 \sim Geo(1-r)$. \square

5 DISTRIBUTION 45

5 distribution

name	symbol	range	distribution	mean	variance	generating	characteristic
Bernoulli	$B(1,p), 0$	{0,1}	$\mu(0) = 1 - p, \mu(1) = p$	p	p(1-p)	(1-p+pz)	$1 - p + pe^{it}$
Binomial	$B(n,p), 0$	$\mathbb{N}\cap [0,n]$	$\mu(k) = \binom{n}{k} p^k (1-p)^{n-k}$	np	np(1-p)	$(1-p+pz)^n$	$(1 - p + pe^{it})^n$
Geometric	$G(p), 0$	N+	$\mu(k) = (1 - p)^{k - 1} p$	$\frac{1}{p}$	$\frac{1-p}{p^2}$	fuck	$\frac{p e^{it}}{1 - (1 - p)e^{it}}$
Hypergeometric	$H(n, K, N)$ $N \in \mathbb{N}$	$[\max\{0, n+K-N\}, \\ \min\{n, K\}] \cap \mathbb{N}$	$\mu(k) = \frac{\binom{K}{k} \binom{N-k}{n-k}}{\binom{N}{n}}$	$n\frac{K}{N}$	$n \frac{K}{N} \frac{N-k}{N} \frac{N-n}{N-1}$	fuck	fuck
	$K \in [0, N] \cap \mathbb{N}$, ,,					
	$n \in [0, N] \cap \mathbb{N}$						
Poisson	$P(\lambda), \lambda > 0$	N	$\mu(k) = \frac{e^{-\lambda} \lambda^k}{k!}$	λ	λ	$e^{\lambda(z-1)}$	$e^{\lambda(e^{it}-1)}$
Uniform	U[a, b], a < b	[a,b]	$f(x) = \frac{1}{b-a}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	-	$\frac{e^{itb} - e^{ita}}{it(b-a)}$
			$F(x) = \frac{x-a}{b-a}$				
Exponential	$Exp(\lambda), \lambda > 0$	$[0,\infty)$	$f(x) = \lambda e^{\lambda x} \mathbb{1}_{\{x \ge 0\}}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$	-	$(1-\frac{\mathrm{i}t}{\lambda})^{-1}$
			$F(x) = (1 - e^{\lambda x}) \mathbb{1}_{\{x \ge 0\}}$				
Gamma	$\Gamma(\alpha,\beta), \alpha,\beta > 0$	$(0,\infty)$	$f(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\beta x} \mathbb{1}_{\{x > 0\}}$	$\frac{\alpha}{\beta}$	$\frac{\alpha}{\beta^2}$		$(1 - \frac{\mathrm{i}t}{\beta})^{-\alpha}$
Normal	$N(\mu, \sigma^2), \mu, \sigma \in \mathbb{R}$	R	$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$	μ	σ	-	$e^{\mu it - \frac{\sigma^2 t^2}{2}}$

6 important lemma

Lemma 4 (Borel-Cantelli). $(\Omega, \mathcal{F}, \mathbb{P})$ is a probability space. $\{A_n : n \in \mathbb{N}\} \subset \mathcal{F}$, then

- 1. if $\sum_{n\in\mathbb{N}} \mathbb{P}(A_n) < \infty$, then $\mathbb{P}(\bigcup_{k=0}^n \bigcap_{m=n}^\infty A_m) = 0$;
- 2. if $\{A_n : n \in \mathbb{N}\}$ are independent, $\sum_{n \in \mathbb{N}} \mathbb{P}(A_n) = \infty$, then $\mathbb{P}(\bigcup_{k=0}^n \bigcap_{m=n}^\infty A_m) = 1$.

标准布朗运动,8

Borel-Cantelli, 45

步长列,6

布朗运动,8

初始分布,28

待更新时间,20

等价, 3

对称简单随机游动,6

 \mathbb{E}_i , 33

反射原理,29

复合普瓦松过程构造,15

复合普瓦松过程,11

复合普瓦松过程的性质,11

 $\mathcal{G}_{ au},\,\mathbf{29}$

更新方程,20

更新过程,20

更新函数,20

更新间隔时间,20

更新累积过程,24

更新累积过程的大数定律,24

轨道, 3

基本更新定理,22

简单对称随机游动,29

简单随机游动,6

拉普拉斯变换的反演公式,11

连续, 3

马氏链, 26, 28

索引

马氏性, 26, 28

爬升时间,24

爬升时间的差,24

 \mathbb{P}_i , 6

普瓦松过程,10

普瓦松过程的强大数定律,11

普瓦松过程的中心极限定理,11

普瓦松随机测度,14

普瓦松随机测度的充要条件,14

普瓦松随机测度的充要条件,14

普瓦松随机测度的存在性,14

实现, 3

适应, 26

首达时,6

S(I), 3

随机过程,2

随机过程独立,2

随机游动,6

随机游动的反射原理,29

随机游动恒正的概率,24

跳幅, see 步长列 24

条件独立性,26

条件马氏性, 26

停时, 29

W(t), 20

瓦尔德恒等式,20

无区别,3

修正, 3

索引

右连续,3

有限维分布, **3**, 29

有限维分布族,3

整数值随机测度,14

正态过程,8

中心极限定理,22

转移矩阵, 28

自然流马氏性等价条件,26

自然 σ -代数流, **26**

左极右连, **3**, 3

左连续,3

左连右极,3