Санкт-Петербургский государственный университет Прикладная математика и информатика Вычислительная стохастика и статистические модели

3 курс (бак.) «Учебная практика 3 (научно-исследовательская работа)»

Задачи анализа временных рядов, теория метода «Анализ Сингулярного Спектра» SSA (Семестр 6)

Выполнил:

Яковлев Денис Михайлович

Научный руководитель:

к.ф.-м. н., доцент

В. В. Некруткин

Санкт-Петербургский государственный университет Прикладная математика и информатика Вычислительная стохастика и статистические модели

3 курс (бак.) «Учебная практика 3 (научно-исследовательская работа)»

Задачи анализа временных рядов, теория метода «Анализ Сингулярного Спектра» SSA (Семестр 6)

Выполнил:

Яковлев Денис Михайлович

Научный руководитель:

к.ф.-м. н., доцент

В. В. Некруткин

Оглавление

1.	Введен	ие	4
2.	Постан	овка задачи	4
	2.1.	Метод ACC	4
3.	Теорет	ические задачи	6
	3.1.	Задача №1	8
	3.2.	Задача №2	10
4.	Прилох	кение. Результаты вычислительных экспериментов	16
5.	Заключ	нение	18
Список	питор	атуры	10
VIII/ICOK		4TV DBI	1 0

1. Введение

Целью этой работы является решение теоретических и прикладных задач анализа временных рядов с применением знаний о методе SSA (Singular Spectrum Analysis), или "Анализ Сингулярного Спектра" (сокращенно, АСС). В ходе учебной практики будут изучены и продемонстрированы теоретическая часть метода АСС и её применение. Ознакомиться с методом АСС можно в [1], а в [2] описывается теоретическая часть метода АСС.

2. Постановка задачи

2.1. Метод АСС

Остановимся сначала на том варианте метода ACC, который обсуждается в настоящей работе, подробное описание этого метода можно найти в [1].

Рассматривается вещественный *сигнал* $H = (h_0, ..., h_n, ...)$, причем предполагается, что ряд H управляется линейной рекуррентной формулой (ЛРФ) порядка d

$$h_n = \sum_{k=1}^d a_k h_{n-k}, \quad n \geqslant d \tag{1}$$

с $a_d>0$, которая является минимальной в том смысле, что не существует ЛРФ меньшего порядка, управляющей рядом Н. Кроме того, вводится nomexa $\mathbf{E}=(e_0,\ldots,e_n,\ldots)$ и предполагается, что наблюдается ряд $\widetilde{\mathbf{H}}_N=\mathbf{H}_N+\delta\mathbf{E}_N$, где \mathbf{H}_N и \mathbf{E}_N — согласованные отрезки длины N сигнала и помехи, а δ является формальным параметром возмущения. Иначе говоря,

$$H_N = (h_0, \dots, h_{N-1}), \quad E_N = (e_0, \dots, e_{N-1}) \quad \text{if } \widetilde{H}_N = (h_0 + \delta e_0, \dots, h_{N-1} + \delta e_{N-1}).$$

Общая задача состоит в (приближенном) выделении сигнала H_N из суммы \widetilde{H}_N , причем предполагается, что известно только значение порядка d ЛРФ (1). В первую очередь нас будет интересовать оценка ряда H_N .

Краткое описание метода. Метод АСС в этом случае выглядит следующим образом.

1. Выбирается ∂ лина окна L < N и из ряда $\widetilde{\mathbf{H}}_N$ строится ганкелева траекторная матрица $\mathbf{H}(\delta)$ размерности $L \times K, K = N - L + 1,$ с элементами $\mathbf{H}(\delta) = (\widetilde{h}_{i+j-2}),$

 $0 \le i < L, 0 \le j < K$. При этом предполагается, что $\min(L, K) \ge d$, исходя из того, что ряд H управляется ЛРФ порядка d В [1] эта операция называется *вложением*. Если обозначить \mathbf{H} и \mathbf{E} ганкелевы матрицы, полученные из рядов \mathbf{H}_N и \mathbf{E}_N операцией вложения $\mathcal{T}_{L,N} = \mathcal{T}$ с той же длиной окна L, то, конечно, $\mathbf{H}(\delta) = \mathcal{T}(\mathbf{H}_N + \delta \mathbf{E}_N)$.

2. Для матрицы $\mathbf{H}(\delta)$ вычисляется сингулярное разложение и суммируются d главных (то есть соответствующих наибольшим сингулярным числам) элементарных матриц этого разложения. А именно, выбирается ортонормированная система собственных (левых сингулярных) векторов $\mathbf{H}(\delta)\mathbf{H}(\delta)^{\mathrm{T}} - \{U_i\}_{i=1}^L$ и собственных (правых сингулярных) векторов $\mathbf{H}(\delta)^{\mathrm{T}}\mathbf{H}(\delta) - \{V_i\}_{i=1}^K$, вычисляются собственные числа $\mathbf{H}(\delta)\mathbf{H}(\delta)^{\mathrm{T}} - \{\lambda_i\}_{i=1}^L$. Если расположить все собственные числа в неубывающем порядке и обозначить m — число ненулевых собственных чисел, то

$$\mathbf{H}(\delta) = \sum_{i=1}^{m} \sqrt{\lambda_i} U_i V_i^{\mathrm{T}},$$

где U_i , V_i соответствуют λ_i . Результат

$$\widetilde{\mathbf{H}}(\delta) = \sum_{i=1}^{d} \sqrt{\lambda_i} U_i V_i^{\mathrm{T}}.$$

этой операции, где m=d, так как образованная от ряда H матрица $\mathbf{H}(\delta)$ управляется ЛРФ порядка d, является наилучшим приближением матрицы $\mathbf{H}(\delta)$ с помощью матриц ранга d в норме Фробениуса, то есть

$$\arg\min_{\mathbf{A}\in\mathbb{R}^{L\times K},\,\mathrm{rank}\,\,\mathbf{A}\leqslant d}\|\mathbf{H}(\delta)-\mathbf{A}\|=\widetilde{\mathbf{H}}(\delta).$$

- 3. Ищется ганкелева матрица $\widehat{\mathbf{H}}(\delta)$, которая является ближайшей к $\widetilde{\mathbf{H}}(\delta)$ в той же норме Фробениуса. В явном виде это означает, что на каждой побочной диагонали i+j=const все элементы матрицы $\widetilde{\mathbf{H}}(\delta)$ заменяются их средним значением. Поэтому в [1] эта операция названа диагональным усреднением. Обозначая её \mathcal{S} получим, что $\widehat{\mathbf{H}}(\delta)=\mathcal{S}\widetilde{\mathbf{H}}(\delta)$.
- 4. Наконец, применяя к $\widehat{\mathbf{H}}(\delta)$ операцию, обратную к операции вложения, приходим к восстановленному ряду $\widetilde{\mathrm{H}}_N(\delta) = \mathcal{T}^{-1}(\widehat{\mathbf{H}}(\delta))$, который объявляется приближением к сигналу H_N .

3. Теоретические задачи

Постановка. Введём несколько объектов:

- **H**, **E** вещественнозначные ненулевые матрицы $\mathbb{R}^K \to \mathbb{R}^L$. Матрицу **H** будем называть *траекторной матрицей сигнала* **H**, а **E** *траекторной матрицей помехи* **H**. В условиях поставленной задачи рассматривается возмущённая матрица $\mathbf{H}(\delta)$ и *сигнальное подпространство*, образованное столбцами матрицы **H**;
- $\mathbf{A} = \mathbf{H}\mathbf{H}^{\mathrm{T}} -$ самосопряжённый неотрицательно определённый оператор $\mathbf{A} \colon \mathbb{R}^L \to \mathbb{R}^L$:
- $d={\rm rank}~{\bf H}<{\rm min}(L,K)$ ранг матрицы ${\bf H},$ образованной от ряда ${\bf H},$ управляемого ${\cal \Pi}{\rm P}\Phi$ порядка d;
- Σ набор собственных числа $\{\mu_n\}_{n=1}^L$ оператора **A**. Из свойств оператора **A**, $\Sigma \subset [0,+\infty);$
- $\mu_{min} = \min\{\mu \in \Sigma \mid \mu > 0\};$
- І тождественный оператор $\mathbb{R}^L \to \mathbb{R}^L$;
- \mathbf{P}_0 ортогональный проектор на собственное подпространство \mathbb{U}_0 , соответствующее нулевым собственным числам \mathbf{A} ;
- $\mathbf{P}_0^{\perp} = \mathbf{I} \mathbf{P}_0$ ортогональный проектор на \mathbb{U}_0^{\perp} , соответствующее ненулевым собственным числам;
- $\|\cdot\|_{\text{spec}} = \|\cdot\|$ спектральная норма.

Теперь введём матрицу с возмущением $\mathbf{H}(\delta) = \mathbf{H} + \delta \mathbf{E}$. Тогда возмущение оператора \mathbf{A} :

$$\mathbf{A}(\delta) = \mathbf{H}(\delta)\mathbf{H}(\delta)^{\mathrm{T}} = \mathbf{H}\mathbf{H}^{\mathrm{T}} + \delta(\mathbf{H}\mathbf{E}^{\mathrm{T}} + \mathbf{E}\mathbf{H}^{\mathrm{T}}) + \delta^{2}\mathbf{E}\mathbf{E}^{\mathrm{T}}.$$

Положим $\mathbf{A}^{(1)} = \mathbf{H}\mathbf{E}^{\mathrm{T}} + \mathbf{E}\mathbf{H}^{\mathrm{T}}, \ \mathbf{A}^{(2)} = \mathbf{E}\mathbf{E}^{\mathrm{T}}, \ \mathbf{B}(\delta) = \delta\mathbf{A}^{(1)} + \delta^2\mathbf{A}^{(2)}$. Заметим, что $\mathbf{A}^{(1)}$ и $\mathbf{A}^{(2)}$ — самосопряжённые операторы, а $\mathbf{A}(\delta)$ — самосопряжённый неотрицательный оператор для любых $\delta \in \mathbb{R}$. Положим $\mathbf{B}(\delta) = \delta\mathbf{A}^{(1)} + \delta^2\mathbf{A}^{(2)}$.

Определим \mathbf{S}_0 — матрица, псевдообратная к $\mathbf{H}\mathbf{H}^{\mathrm{T}}$. Положим $\mathbf{S}_0^{(0)} = -\mathbf{P}_0$ и $\mathbf{S}_0^{(k)} = \mathbf{S}_0^k$ для $k \geqslant 1$, $\left\|\mathbf{S}_0^{(k)}\right\| = 1/\mu_{min}^k$.

Далее — рассуждения из [2, раздел 5.3].

А именно, если обозначить $r_i(N) = \widetilde{h}_i(\delta) - h_i$ — остаток от разности между i-ми элементами рядов $\widetilde{\mathrm{H}}_N(\delta)$ и H_N , а $\mathbf{N}(\delta) = \mathbf{N}_N(\delta)$ — оператор с возмущением, то из того, что $\|\mathbf{C}\|_{\mathrm{max}} \leqslant \|\mathbf{C}\|$, получаем

$$\begin{aligned} \left\| \widetilde{\mathbf{H}}_{N}(\delta) - \mathbf{H}_{N} \right\|_{\max} &= \max_{0 \leq n < N} |\widetilde{h}_{n}(\delta) - h_{n}| = \max_{0 \leq n < N} |r_{i}(N)|, \\ \left\| \widetilde{\mathbf{H}}_{N}(\delta) - \mathbf{H}_{N} \right\|_{\max} &= \left\| \mathcal{S}(\mathbf{P}_{0}^{\perp}(\delta)\mathbf{H}(\delta)) - \mathbf{H} \right\|_{\max} = \left\| \mathcal{S}\Delta_{\delta}(\mathbf{H}) \right\|_{\max}, \end{aligned}$$

где \mathcal{S} — оператор диагонального усреднения (ганкелевизации), $\Delta_{\delta}(\mathbf{H}) = \mathbf{P}_{0}^{\perp}(\delta)\mathbf{H}(\delta) - \mathbf{P}_{0}^{\perp}\mathbf{H}$. Поскольку $\|\mathcal{S}\mathbf{A}\|_{\max} \leqslant \|\mathbf{A}\|_{\max}$ для любой конечномерной матрицы \mathbf{A} , то

$$\max_{0 \leqslant i < N} |r_{i}(N)| = \|\mathcal{S}\Delta_{\delta}(\mathbf{H})\|_{\max} \leqslant \|\Delta_{\delta}(\mathbf{H})\|_{\max} = \|\mathbf{P}_{0}^{\perp}(\delta)\mathbf{H}(\delta) - \mathbf{P}_{0}^{\perp}\mathbf{H}\|_{\max}
= \|(\mathbf{P}_{0}^{\perp}(\delta) - \mathbf{P}_{0}^{\perp} - \mathbf{N})\mathbf{H}(\delta) + \delta\mathbf{P}_{0}^{\perp}\mathbf{E} + \mathbf{N}\mathbf{H}(\delta)\|_{\max}
\leqslant \|(\mathbf{P}_{0}^{\perp}(\delta) - \mathbf{P}_{0}^{\perp} - \mathbf{N})\mathbf{H}(\delta)\|_{\max} + \|\mathbf{N}\mathbf{H}(\delta) + \delta\mathbf{P}_{0}^{\perp}\mathbf{E}\|_{\max}
\leqslant \|(\mathbf{P}_{0}^{\perp}(\delta) - \mathbf{P}_{0}^{\perp} - \mathbf{N})\mathbf{H}(\delta)\| + \|\mathbf{N}\mathbf{H}(\delta) + \delta\mathbf{P}_{0}^{\perp}\mathbf{E}\|_{\max} .$$
(2)

Общая задача состоит в том, чтобы подобрать такой оператор N, чтобы правая часть (2) стремилась к нулю.

Если первое слагаемое в правой части последнего неравенства стремится к нулю при $N \to \infty$, то остается исследовать второе слагаемое. Перед тем, как приступить к решению теоретических задач, введём следующие определения:

Определение 1.

$$\mathbf{W}_{p}(\delta) = (-1)^{p} \sum_{l_{1} + \dots + l_{p+1} = p, \, l_{j} \geqslant 0} \mathbf{W}_{p}(l_{1}, \dots, l_{p+1}), \tag{3}$$

a

$$\mathbf{W}_p(l_1,\ldots,l_{p+1}) = \mathbf{S}_0^{(l_1)} \mathbf{B}(\delta) \mathbf{S}_0^{(l_2)} \ldots \mathbf{S}_0^{(l_p)} \mathbf{B}(\delta) \mathbf{S}_0^{(l_{p+1})}.$$

Определение 2.

$$\mathbf{V}_{0}^{(n)} = \sum_{p=[n/2]}^{n} (-1)^{p} \sum_{\substack{s_{1}+\cdots+s_{p}=n,\,s_{i}=1,2\\l_{1}+\cdots+l_{p+1}=p,\,l_{j}\geqslant 0}} \mathbf{V}_{0}^{(n)}(\mathbf{s},\mathbf{l}),$$

$$s = (s_1, \dots, s_p), I = (l_1, \dots, l_{p+1}), u$$

$$\mathbf{V}_0^{(n)}(\mathsf{s},\mathsf{l}) = \mathbf{S}_0^{(l_1)}\mathbf{A}^{(s_1)}\mathbf{S}_0^{(l_2)}\dots\mathbf{A}^{(s_p)}\mathbf{S}_0^{(l_{p+1})}.$$

Теперь можно ввести теорему из [2]:

Теорема 1 (Теорема 2.1). Пусть $\delta_0 > 0$ и

$$\|\mathbf{B}(\delta)\| < \mu_{min}/2 \tag{4}$$

для всех $\delta \in (-\delta_0, \delta_0)$. Тогда для возмущённого проектора $\mathbf{P}_0^{\perp}(\delta)$ верно представление:

$$\mathbf{P}_0^{\perp}(\delta) = \mathbf{P}_0^{\perp} + \sum_{p=1}^{\infty} \mathbf{W}_p(\delta). \tag{5}$$

Более того,

$$\mathbf{P}_0^{\perp}(\delta) = \mathbf{P}_0^{\perp} + \sum_{n=1}^{\infty} \delta^n \mathbf{V}_0^{(n)}.$$
 (6)

Замечание 1. Ряды (5) и (6) сходятся в спектральной норме.

Введём

$$B(\delta) = |\delta| \|\mathbf{A}^{(1)}\| + \delta^2 \|\mathbf{A}^{(2)}\|.$$

Если $\delta_0 > 0$ и В $(\delta_0) = \mu_{min}/2$, то тогда неравенство (4) верно для любых δ таких, что $|\delta| < \delta_0$.

3.1. Задача №1

Формулировка. Оценить выражение сверху $\forall n \in \mathbb{N} : \left\| \mathbf{P}_0^{\perp}(\delta) - \mathbf{P}_0^{\perp} - \sum_{p=1}^n \mathbf{W}_p(\delta) \right\|.^1$ Воспользуемся вспомогательными теоремами и леммами из [2].

Теорема 2 (Теорема 2.3). Если $\delta_0 > 0$ и $\frac{\|\mathbf{B}(\delta)\|}{\mu_{min}} < \frac{1}{4}$ для всех $\delta \in (-\delta_0, \delta_0)$, то проектор $\mathbf{P}_0^{\perp}(\delta)$ существует и

$$\left\| \mathbf{P}_0^{\perp}(\delta) - \mathbf{P}_0^{\perp} \right\| \leqslant 4C \frac{\| \mathbf{S}_0 \mathbf{B}(\delta) \mathbf{P}_0 \|}{1 - 4 \| \mathbf{B}(\delta) \| / \mu_{min}}, \tag{7}$$

где $C = e^{1/6} / \sqrt{\pi} \approx 0.667.$

Лемма 1 (Лемма 6.1). Если $0 < \beta < 1/4, k \geqslant 0, mo \sum_{p=k}^{\infty} {2p \choose p} \beta^p \leqslant C \frac{(4\beta)^k}{1-4\beta}, C = e^{1/6}/\sqrt{\pi}.$

$$\|\mathbf{P}_0^{\perp}(\delta) - \mathbf{P}_0^{\perp} - \mathbf{W}_1(\delta)\| \to 0,$$

но это не выполняется для $\|(\mathbf{P}_0^{\perp}(\delta) - \mathbf{P}_0^{\perp} - \mathbf{W}_1(\delta))\mathbf{H}(\delta)\|$. Тогда можно попробовать взять $\mathbf{N} = \mathbf{W}_1(\delta) + \mathbf{W}_2(\delta)$, см. (9) и [3].

 $[\]overline{^1}$ Зачем это нужно? Если положить ${f N}={f W}_1(\delta),$ то может оказаться, что

Доказательство. Существование $\mathbf{P}_0^{\perp}(\delta)$ следует из Теоремы 1. Заметим, что в правой части (3) найдётся такой индекс j, что $l_j > 0$ и $l_{j-1} = 0$ или $l_{j+1} = 0$. Иначе $l_1 + l_2 + \cdots + l_{p+1} \geqslant p+1 \neq p$. Так как $\left\|\mathbf{S}_0^{(k)}\right\| = 1/\mu_{\min}^k$ для любого $k \geqslant 0$, то можем оценить каждый член правой части из (3).

$$\|\mathbf{W}_{p}(l_{1},\ldots,l_{i-1},0,l_{i+1},\ldots,l_{p+1})\| = \|\mathbf{S}_{0}^{(l_{1})}\mathbf{B}(\delta)\mathbf{S}_{0}^{(l_{2})}\ldots\mathbf{S}_{0}^{(l_{i-1})}\mathbf{S}_{0}\mathbf{B}(\delta)\mathbf{P}_{0}\ldots\mathbf{B}(\delta)\mathbf{S}_{0}^{(l_{p+1})}\|$$

$$\leq \|\mathbf{S}_{0}\mathbf{B}(\delta)\mathbf{P}_{0}\| \|\mathbf{B}(\delta)\|^{p-1} \frac{1}{\mu_{\min}^{p-1}} = \|\mathbf{S}_{0}\mathbf{B}(\delta)\mathbf{P}_{0}\| \left(\frac{\|\mathbf{B}(\delta)\|}{\mu_{\min}}\right)^{p-1}.$$

Учитывая, что $\forall i: 1 \leqslant i \leqslant p+1$ $l_i \geqslant 0$ и $l_1+l_2+\cdots+l_{p+1}=p$, то число векторов (l_1,l_2,\ldots,l_{p+1}) будет равняться $\binom{2p}{p}$. Таким образом оценим $\mathbf{W}_p(\delta)$:

$$\|\mathbf{W}_{p}(\delta)\| = \left\| (-1)^{p} \sum_{l_{1}+\dots+l_{p+1}=p, l_{j}\geq 0} \mathbf{W}_{p}(l_{1},\dots,l_{p+1}) \right\|$$

$$\leq {2p \choose p} \|\mathbf{W}_{p}(l_{1},\dots,l_{p+1})\| \leq {2p \choose p} \|\mathbf{S}_{0}\mathbf{B}(\delta)\mathbf{P}_{0}\| \left(\frac{\|\mathbf{B}(\delta)\|}{\mu_{\min}}\right)^{p-1}.$$

Оценим выражение в случае, когда n = 2:

$$\begin{split} & \left\| \mathbf{P}_0^{\perp}(\delta) - \mathbf{P}_0^{\perp} - \mathbf{W}_1(\delta) - \mathbf{W}_2(\delta) \right\| = \left\| \mathbf{P}_0^{\perp} + \sum_{p=1}^{\infty} \mathbf{W}_p(\delta) - \mathbf{P}_0^{\perp} - \mathbf{W}_1(\delta) - \mathbf{W}_2(\delta) \right\| \\ & = \left\| \sum_{p=3}^{\infty} \mathbf{W}_p(\delta) \right\| \leqslant \sum_{p=3}^{\infty} \| \mathbf{W}_p(\delta) \| \leqslant \| \mathbf{S}_0 \mathbf{B}(\delta) \mathbf{P}_0 \| \sum_{p=3}^{\infty} \binom{2p}{p} \left(\frac{\| \mathbf{B}(\delta) \|}{\mu_{\min}} \right)^{p-1}. \end{split}$$

Теперь, считая, что k = 2, $\beta = \left(\frac{\|\mathbf{B}(\delta)\|}{\mu_{\min}}\right)^{p-1} \leqslant \frac{1}{4}$, воспользуемся Леммой 1 и тем, что $\|\mathbf{S}_0\mathbf{B}(\delta)\mathbf{P}_0\| \leqslant \|\mathbf{S}_0\mathbf{B}(\delta)\| \leqslant \frac{\|\mathbf{B}(\delta)\|}{\mu_{\min}}$, и получим:

$$\|\mathbf{S}_{0}\mathbf{B}(\delta)\mathbf{P}_{0}\|\sum_{p=3}^{\infty} {2p \choose p} \left(\frac{\|\mathbf{B}(\delta)\|}{\mu_{\min}}\right)^{p-1} \leqslant 4^{3}C \left(\frac{\|\mathbf{B}(\delta)\|}{\mu_{\min}}\right)^{3} \frac{1}{1-4\|\mathbf{B}(\delta)\|/\mu_{\min}}.$$

Аналогично, можно выделить следующее:

Следствие 1.

$$\left\| \mathbf{P}_{0}^{\perp}(\delta) - \mathbf{P}_{0}^{\perp} - \sum_{p=1}^{n} \mathbf{W}_{p}(\delta) \right\| \leq 4^{n+1} C \left(\frac{\|\mathbf{B}(\delta)\|}{\mu_{min}} \right)^{n+1} \frac{1}{1 - 4 \|\mathbf{B}(\delta)\| / \mu_{min}}.$$
 (8)

Тогда можно применить результат из неравенства (8) для оценки первого слагаемого правой части из (2). Для этого можно ограничиться условиями из Теоремы 2:

$$\left\| \left(\mathbf{P}_0^{\perp}(\delta) - \mathbf{P}_0^{\perp} - \mathbf{W}_1(\delta) - \mathbf{W}_2(\delta) \right) \mathbf{H}(\delta) \right\| \leqslant 4^3 C \left(\frac{\|\mathbf{B}(\delta)\|}{\mu_{min}} \right)^3 \frac{\|\mathbf{H}(\delta)\|}{1 - 4 \|\mathbf{B}(\delta)\| / \mu_{min}}. \tag{9}$$

3.2. Задача №2

Постановка. Рассматриваем вещественный сигнал $H = (h_0, h_1, \dots, h_N, \dots),$ где

$$h_n = \theta_1 n + \theta_0,$$

линейный сигнал, $\theta_1 \neq 0$, а помехой является линейная комбинация гармоник

$$e_n = \sum_{l=1}^{r} \tau_l \cos(2\pi n\omega_l + \varphi_l),$$

где $\tau_l \neq 0, \omega_l \neq \omega_p$ при $l \neq p$ и $0 < \omega_l < 1/2$.

Из постановки общей задачи, хотим подобрать такой оператор \mathbf{N} , чтобы правая часть (2) стремилась к нулю и доказать, что метод SSA работает.

Обратимся к (2). При $N = W_1$ верна Теорема 2 из [3]:

Теорема 3. Рассмотрим при n = 0, 1, ..., N-1 линейный сигнал $h_n = \theta_1 n + \theta_0$, где $\theta_1 \neq 0$, и помеху, которая является линейной комбинацией гармоник

$$e_n = \sum_{l=1}^r \tau_l \cos(2\pi n\omega_l + \varphi_l),$$

где $\tau_l \neq 0, \omega_l \neq \omega_p$ при $l \neq p$ и $0 < \omega_l < 1/2$.

Положим $x_n = h_n + \delta e_n$, где δ — формальный параметр возмущения u, взяв N нечётное u L = (N+1)/2, применим κ ряду x_n , $n = 0, 1, \ldots, N-1$, метод ACC c восстановлением по первым 2-м компонентам.

Если обозначить $h_0(\delta), \ldots, h_{N-1}(\delta)$ результаты восстановления ряда $\{x_n\}_{n=0}^{N-1}$ с помощью метода ACC с описанными параметрами, а $r_n(N) = h_n(\delta) - h_n$ — остаток от разности между n-ми элементами восстановленного и линейного рядов длины N, то для любого $\delta \in \mathbb{R}$ при $N \to \infty$

$$\max_{0 \le n < N} |r_n(N)| = O(N^{-1}).$$

В случае, когда $\mathbf{N}=\mathbf{W}_1$, теорема (3) верна для случая L=K. Зададим вопрос: можно ли для этой теоремы рассматривать случай $\min(L,K) \underset{N\to\infty}{\longrightarrow} \infty$, или $L/N \underset{N\to\infty}{\longrightarrow} \alpha \in (0,1)$, и если это возможно, то для какого \mathbf{N} ? В качестве \mathbf{N} предлагается рассмотреть $\mathbf{W}_1+\mathbf{W}_2$.

Зачем это нужно? При $\mathbf{N} = \mathbf{W}_1$ для ошибки восстановления $r_i(N)$ метода SSA равномерно стремятся к нулю, когда накладывается "сильное" ограничение на "длину окна"

L=K. Если обобщить результат теоремы (3) на "слабое" ограничение $L/N \to \alpha \in (0,1)$, то для вычислительных задач в случае анализа линейного сигнала с гармоникой можно рассматривать траекторную матрицу $\mathbf{H}(\delta)$ ряда $\widetilde{H}_N=(h_1+\delta e_1,\ldots,h_n+\delta e_n)$ с произвольно заданной длиной окна L.

В связи с этим сформулируем задачу №2:

Формулировка. Обобщить результат [3] $c\ L = K\ do\ L/N \to \alpha \in (0,1)\ c$ помощью выбора $\mathbf{N} = \mathbf{W}_1 + \mathbf{W}_2$.

Доказательство. Тогда $K/N \to 1 - \alpha \in (0,1)$. Теперь рассматриваем неравенство

$$\max_{0 \leqslant i < N} |r_i(N)| \leqslant \left\| (\mathbf{P}_0^{\perp}(\delta) - \mathbf{P}_0^{\perp} - (\mathbf{W}_1 + \mathbf{W}_2)) \mathbf{H}(\delta) \right\| + \left\| (\mathbf{W}_1 + \mathbf{W}_2) \mathbf{H}(\delta) + \delta \mathbf{P}_0^{\perp} \mathbf{E} \right\|_{\max}.$$

Идея: показать, что слагаемые правой части оценки = $O(N^{-n})$, $n=1,2,\ldots$ Тогда будет верна асимптотическая сходимость $\max_{0\leqslant i< N} |r_i(N)| = O(N^{-1})$.

Для того, чтобы доказать асимптотическую сходимость, оценим слагаемые покомпонентно. Введём $\mu_{\max} = \|\mathbf{H}\|^2$ и воспользуемся соотношением между спектральной нормой $\|\mathbf{C}\|$ и равномерной нормой $\|\mathbf{C}\|_{\max}$:

$$\|\mathbf{C}\|_{\max} \leq \|\mathbf{C}\| \leq \sqrt{LK} \|\mathbf{C}\|_{\max}$$
.

Поскольку $LK \sim \alpha (1-\alpha) N^2 \sim C N^2$, то

$$\|\mathbf{E}\mathbf{E}^{\mathrm{T}}\| = \|\mathbf{E}\|^2 \sim C_{\cos}N^2, \mu_{\max} \sim C_{\max}N^4, \mu_{\min} \sim C_{\min}N^4.$$
 (10)

Применим леммы из [3]. Заметим, что доказательства из [3] рассматривают случай L=K, но могут быть обобщены до случая $L/N \to \alpha \in (0,1)$ аналогично. Для демонстрации этого приведём доказательства этих лемм:

Лемма 2. При $N \to \infty$ имеет место соотношение $\|\mathbf{H}\mathbf{E}^{\mathrm{T}}\|_{\mathrm{max}} = O(N)$.

Доказательство. При $1 \leqslant p \leqslant L$ и $1 \leqslant s \leqslant K$ запишем элемент матрицы \mathbf{HE}^{T} с индексом (p,s):

$$\mathbf{HE}^{T}[p, s] = \sum_{j=0}^{K-1} (p+j) \cos(2\pi (s+j)\omega + \varphi) =$$

$$= p \sum_{j=0}^{K-1} \cos(2\pi j\omega + \varphi_s) + \sum_{j=0}^{K-1} j \cos(2\pi j\omega + \varphi_s),$$

где $\varphi_s = 2\pi s\omega + \varphi$.

Так как для любой φ :

$$p\left|\sum_{j=0}^{K-1}\cos(2\pi j\omega + \varphi)\right| = p\left|\frac{\sin(\pi K\omega)}{\sin(\pi\omega)}\cos(\pi(K-1)\omega + \varphi)\right| \leqslant \frac{p}{\sin(\pi\omega)} = O(N)$$

и в обозначениях

$$B_K = \frac{1}{2\sin(\pi\omega)}\sin(\pi(2K-1)\omega + \varphi), \ E_K = \frac{\sin(\pi K\omega)}{2\sin^2(\pi\omega)}\sin(\pi K\omega + \varphi)$$

имеет место

$$\left| \sum_{j=0}^{K-1} j \cos(2\pi j\omega + \phi) \right| = |KB_K - E_K| \leqslant \frac{K}{2\sin(\pi\omega)} + \frac{1}{2\sin^2(\pi\omega)} = O(N).$$

Таким образом, каждый член матрицы \mathbf{HE}^{T} не превосходит O(N), или $\left\|\mathbf{HE}^{\mathrm{T}}\right\|_{\mathrm{max}} = O(N)$.

Лемма 3. При $N \to \infty$ имеет место соотношение $\|\mathbf{P}_0^{\perp}\mathbf{E}\|_{\max} = O(N^{-1})$.

Доказательство. Поскольку рассматривается ряд H, состоящий из элементов $h_n=\theta_1 n+\theta_0$, обозначим

$$P_L(0) = (1, 1, 1, \dots, 1)^{\mathrm{T}}, P_L(1) = (0, 1, \dots, (L-1))^{\mathrm{T}}$$

как базис линейного пространства $U_0^{\perp}.$ Тогда матрицу \mathbf{P}_0^{\perp} можно представить в виде:

$$\mathbf{P}_{0}^{\perp} = \gamma_{00}^{2} P_{L}(0) P_{L}^{\mathrm{T}}(0) + (\gamma_{11} P_{L}(1) - \gamma_{10} P_{L}(0)) (\gamma_{11} P_{L}^{\mathrm{T}}(1) - \gamma_{10} P_{L}^{\mathrm{T}}(0))
= (\gamma_{00}^{2} + \gamma_{10}^{2}) P_{L}(0) P_{L}^{\mathrm{T}}(0) + \gamma_{11}^{2} P_{L}(1) P_{L}^{\mathrm{T}}(1) - \gamma_{11} \gamma_{10} (P_{L}(1) P_{L}^{\mathrm{T}}(0) + P_{L}(0) P_{L}^{\mathrm{T}}(1)),$$
(11)

где $L \times L$ матрицы имеют вид

$$P_{L}(0)P_{L}^{\mathrm{T}}(0) = \begin{pmatrix} 1 & \dots & 1 \\ \vdots & \ddots & \vdots \\ 1 & \dots & 1 \end{pmatrix}, P_{L}(0)P_{L}^{\mathrm{T}}(1) = \begin{pmatrix} 0 & 1 & \dots & L-1 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 1 & \dots & L-1 \end{pmatrix},$$

$$P_{L}(1)P_{L}^{\mathrm{T}}(0) = \begin{pmatrix} 0 & \dots & 0 \\ 1 & \dots & 1 \\ \vdots & \ddots & \vdots \\ L-1 & \dots & L-1 \end{pmatrix}, P_{L}(1)P_{L}^{\mathrm{T}}(1) = \begin{pmatrix} 0 & 0 & \dots & 0 \\ 0 & 1 & \dots & L-1 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & L-1 & \dots & (L-1)^{2} \end{pmatrix}$$

И

$$\gamma_{11} = \sqrt{12}/\sqrt{L(L^2 - 1)}, \ \gamma_{10} = \sqrt{3(L - 1)}/\sqrt{L(L + 1)}, \ \gamma_{00} = 1/\sqrt{L}.$$

Умножая каждое слагаемое в правой части (11) на матрицу Е, где

$$\mathbf{E} = \begin{pmatrix} \cos(\varphi) & \dots & \cos(2\pi(j-1)\omega + \varphi) & \dots & \cos(2\pi(K-1)\omega + \varphi) \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ \cos(2\pi(i-1)\omega + \varphi) & \dots & \cos(2\pi(i+j-2)\omega + \varphi) & \dots & \cos(2\pi(K+i-1)\omega + \varphi) \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ \cos(2\pi(L-1)\omega + \varphi) & \dots & \cos(2\pi(L+j-1)\omega + \varphi) & \dots & \cos(2\pi(N-1)\omega + \varphi) \end{pmatrix}.$$

Аналогично Лемме 2, оцениваем каждый элемент матрицы $\mathbf{P}_0^{\perp}\mathbf{E}$ и получаем, что $\left\|\mathbf{P}_0^{\perp}\mathbf{E}\right\|_{\max} = O(N^{-1}).$

Лемма 4. При $N \to \infty$ имеет место соотношение $\|\mathbf{S}_0\mathbf{E}\| = O(N^{-4}).^2$

 \mathcal{A} оказательство. Рассмотрим сингулярное разложение матриц $\mathbf{H}\mathbf{H}^{\mathrm{T}},\ \mathbf{S}_{0},\ \mathbf{H}^{\mathrm{T}}\mathbf{H}$ и \mathbf{H} :

$$\mathbf{H}\mathbf{H}^{\mathrm{T}} = \mu_{\max} U_1 U_1^{\mathrm{T}} + \mu_{\min} U_2 U_2^{\mathrm{T}}, \ \mathbf{S}_0 = \mu_{\max}^{-1} U_1 U_1^{\mathrm{T}} + \mu_{\min}^{-1} U_2 U_2^{\mathrm{T}},$$

$$\mathbf{H}^{\mathrm{T}}\mathbf{H} = \mu_{\max} V_1 V_1^{\mathrm{T}} + \mu_{\min} V_2 V_2^{\mathrm{T}}, \ \mathbf{H} = \mu_{\max}^{1/2} U_1 V_1^{\mathrm{T}} + \mu_{\min}^{1/2} U_2 V_2^{\mathrm{T}},$$

а $\mathbf{P}_0^{\perp} = U_1 U_1^{\mathrm{T}} + U_2 U_2^{\mathrm{T}}$, где U_1, U_2 — ортонормированные собственные $L \times 1$ вектора матрицы $\mathbf{H}\mathbf{H}^{\mathrm{T}}$, а V_1, V_2 — ортонормированные собственные $K \times 1$ вектора матрицы $\mathbf{H}^{\mathrm{T}}\mathbf{H}$. Далее,

$$\mathbf{H}\mathbf{E}^{\mathrm{T}} = \mu_{\min}^{1/2} \left(rac{\mu_{\max}^{1/2}}{\mu_{\min}^{1/2}} U_1 V_1^{\mathrm{T}} \mathbf{E}^{\mathrm{T}} + U_2 V_2^{\mathrm{T}} \mathbf{E}^{\mathrm{T}}
ight),$$

и, поскольку $\mu_{\min} \sim C_{\min} N^2$, $\mu_{\max} \sim C_{\max} N^2$, $\mu_{\max}^{1/2}/\mu_{\min}^{1/2} \to c > 1$ и $\left\|\mathbf{H}\mathbf{E}^{\mathrm{T}}\right\|_{\max} = O(N)$, то отсюда следует, что

$$||cU_1V_1^{\mathrm{T}}\mathbf{E}^{\mathrm{T}} + U_2V_2^{\mathrm{T}}\mathbf{E}^{\mathrm{T}}||_{\max} = O(N^{-1}).$$

Так как $\|\mathbf{P}_0^{\perp}\mathbf{E}\|_{\max} = \|U_1U_1^{\mathrm{T}}\mathbf{E} + U_2U_2^{\mathrm{T}}\mathbf{E}\|_{\max} = O(N^{-1})$, то $\|U_iU_i^{\mathrm{T}}\mathbf{E}\|_{\max} = O(N^{-1})$ при i=1,2. Получим

$$\|\mathbf{S}_0 \mathbf{E}\|_{\max} = O(N^{-5}) \,\,\mathrm{i} \,\,\, \|\mathbf{S}_0 \mathbf{E}\| = O(N^{-4}).$$

 $[\]overline{\ ^{2}}$ Здесь, в [3] накладывалось условие на квадратичность матрицы: L=K.

Переформулируем предложения из [3] для рассматриваемого случая $L/N \to \alpha \in (0,1)$:

Предложение 1. Пусть $L/N \to \alpha \in (0,1)$. Тогда для любого δ

$$\left\| \left(\mathbf{P}_0^{\perp}(\delta) - \mathbf{P}_0^{\perp} - \mathbf{W}_1(\delta) - \mathbf{W}_2(\delta) \right) \mathbf{H}(\delta) \right\| = O(N^{-1}).$$

Доказательство. Оценим

$$\|\mathbf{H}\mathbf{E}^{\mathrm{T}}\| \le \|\mathbf{H}\| \|\mathbf{E}\| \sim C_{\cos}C_{\max}N^3 = O(N^3).$$

Согласно Лемме 2 и асимптотикам (10), существует такая постоянная C_1 , что

$$\|\mathbf{B}(\delta)\|/\mu_{\min} \leq \delta^2 \|\mathbf{E}\mathbf{E}^{\mathrm{T}}\|/\mu_{\min} + 2|\delta| \|\mathbf{H}\mathbf{E}^{\mathrm{T}}\|/\mu_{\min} \leq C_1(\delta^2 N^{-2} + |\delta| N^{-1}) = O(N^{-1}).$$

Поэтому для любого δ неравенство (9) выполняется при достаточно большом N и, следовательно, при $N \to \infty$

$$\begin{split} & \left\| \left(\mathbf{P}_0^{\perp}(\delta) - \mathbf{P}_0^{\perp} - \mathbf{W}_1(\delta) - \mathbf{W}_2(\delta) \right) \mathbf{H}(\delta) \right\| \leqslant \left\| \mathbf{P}_0^{\perp}(\delta) - \mathbf{P}_0^{\perp} - \mathbf{W}_1(\delta) - \mathbf{W}_2(\delta) \right\| \left\| \mathbf{H}(\delta) \right\| \\ & \leqslant C \left(\frac{\left\| \mathbf{B}(\delta) \right\|}{\mu_{min}} \right)^3 \frac{\left\| \mathbf{H}(\delta) \right\|}{1 - 4 \left\| \mathbf{B}(\delta) \right\| / \mu_{min}} \sim C \left(\frac{\left\| \mathbf{B}(\delta) \right\|}{\mu_{min}} \right)^3 \left\| \mathbf{H} \right\| = O(N^{-1}). \end{split}$$

Поскольку $\left\|\mathbf{P}_0^{\perp}\mathbf{E}\right\|_{\max} = O(N^{-1})$, то остаётся рассмотреть

$$\|(\mathbf{W}_1(\delta) + \mathbf{W}_2(\delta))\mathbf{H}(\delta)\|_{\max}$$
.

Если показать, что $\|(\mathbf{W}_1(\delta)+\mathbf{W}_2(\delta))\mathbf{H}(\delta)\|_{\max}=O(N^{-1}),$ то

$$\max_{0 \le n \le N} |r_n(N)| = O(N^{-1})$$

и Теорема 3 будет доказана в случае $L/N \to \alpha \in (0,1)$. Покажем это, сформулировав следующее предложение:

Предложение 2. B условиях Предложения $1 \| (\mathbf{W}_1(\delta) + \mathbf{W}_2(\delta)) \mathbf{H}(\delta) \|_{\max} = O(N^{-1})$

Доказательство. Распишем $\mathbf{W}_1(\delta), \mathbf{W}_2(\delta)$:

$$\mathbf{W}_1(\delta) = \delta \mathbf{V}_1^{(1)} + \delta^2 \mathbf{V}_1^{(2)},$$

где
$$\mathbf{V}_{1}^{(1)} = \mathbf{P}_{0}\mathbf{E}\mathbf{H}^{\mathrm{T}}\mathbf{S}_{0} + \mathbf{S}_{0}\mathbf{H}\mathbf{E}^{\mathrm{T}}\mathbf{P}_{0}, \mathbf{V}_{1}^{(2)} = \mathbf{P}_{0}\mathbf{E}\mathbf{E}^{\mathrm{T}}\mathbf{S}_{0} + \mathbf{S}_{0}\mathbf{E}\mathbf{E}^{\mathrm{T}}\mathbf{P}_{0}.$$

$$\mathbf{W}_{2}(\delta) = \sum_{\substack{l_{1}+l_{2}+l_{3}=2,l_{j}\geqslant 0\\s_{1},s_{2}=1,2}} \delta^{s_{1}+s_{2}}\mathbf{S}_{0}^{(l_{1})}\mathbf{A}^{(s_{1})}\mathbf{S}_{0}^{(l_{2})}\mathbf{A}^{(s_{2})}\mathbf{S}_{0}^{(l_{3})} = \delta^{2}\mathbf{V}_{2}^{(1)} + \delta^{3}\mathbf{V}_{2}^{(2)} + \delta^{4}\mathbf{V}_{2}^{(3)},$$

$$\mathbf{V}_{2}^{(1)} = \sum_{\substack{l_{1}+l_{2}+l_{3}=2,l_{j}\geqslant 0\\(s_{1},s_{2})=(1,2),(2,1)}} \mathbf{S}_{0}^{(l_{1})}\mathbf{A}^{(s_{1})}\mathbf{S}_{0}^{(l_{2})}\mathbf{A}^{(s_{2})}\mathbf{S}_{0}^{(l_{3})},$$

$$\mathbf{V}_{2}^{(2)} = \sum_{\substack{l_{1}+l_{2}+l_{3}=2,l_{j}\geqslant 0\\(s_{1},s_{2})=(1,2),(2,1)}} \mathbf{S}_{0}^{(l_{1})}\mathbf{A}^{(s_{1})}\mathbf{S}_{0}^{(l_{2})}\mathbf{A}^{(2)}\mathbf{S}_{0}^{(l_{3})}.$$

$$\mathbf{V}_{2}^{(3)} = \sum_{l_{1}+l_{2}+l_{3}=2,l_{j}\geqslant 0} \mathbf{S}_{0}^{(l_{1})}\mathbf{A}^{(2)}\mathbf{S}_{0}^{(l_{2})}\mathbf{A}^{(2)}\mathbf{S}_{0}^{(l_{3})}.$$

Таким образом, разбили $\mathbf{W}_2(\delta)$ на три части так, что элементы в $\mathbf{V}_2^{(1)}$ имеют вид $\mathbf{S}_0^{(l_1)}\mathbf{H}\mathbf{E}^{\mathrm{T}}\mathbf{S}_0^{(l_2)}\mathbf{E}\mathbf{H}^{\mathrm{T}}\mathbf{S}_0^{(l_3)}$, то есть, $\mathbf{H}\mathbf{E}^{\mathrm{T}},\mathbf{E}\mathbf{H}^{\mathrm{T}}$ входят в каждое слагаемое два раза, в каждое слагаемое из $\mathbf{V}_2^{(2)}$ часть $\mathbf{H}\mathbf{E}^{\mathrm{T}},\mathbf{E}\mathbf{H}^{\mathrm{T}},\mathbf{E}\mathbf{E}^{\mathrm{T}}$ входит один раз, а в каждое слагаемое из $\mathbf{V}_2^{(3)}$ часть $\mathbf{E}\mathbf{E}^{\mathrm{T}}$ входит два раза. Оценим полученные выражения. Аналогично доказательству в [3], найдём $\mathbf{V}_i^{(j)}, i=1,2,j=1,2,3$, для которых $\left\|\mathbf{V}_i^{(j)}\right\| = O(N^k), k=-3,-4,-5,\ldots$

$$\|\mathbf{V}_{1}^{(1)}\| \leq 2 \|\mathbf{S}_{0}\| \|\mathbf{H}\mathbf{E}^{T}\| = O(N^{-2}),$$

$$\|\mathbf{V}_{1}^{(2)}\| \leq 2 \|\mathbf{S}_{0}\mathbf{E}\| \|\mathbf{E}\| = O(N^{-3}),$$

$$\|\mathbf{V}_{2}^{(1)}\| \leq 24 \|\mathbf{S}_{0}\|^{2} \|\mathbf{H}\mathbf{E}^{T}\|^{2} = O(N^{-4}),$$

$$\|\mathbf{V}_{2}^{(2)}\| \leq 12 \|\mathbf{S}_{0}\mathbf{E}\|^{2} \|\mathbf{H}\mathbf{E}^{T}\| = O(N^{-6}),$$

$$\|\mathbf{V}_{2}^{(3)}\| \leq 6 \|\mathbf{S}_{0}\mathbf{E}\|^{2} \|\mathbf{E}\|^{2} = O(N^{-6}).$$

Следовательно, из всех слагаемых остаётся проверить только выражение $\mathbf{V}_1^{(1)}\mathbf{H}(\delta)$, поскольку $\left\| (\mathbf{W}_1(\delta) + \mathbf{W}_2(\delta) - \delta \mathbf{V}_1^{(1)})\mathbf{H}(\delta) \right\|_{\max} = O(N^{-1}) \to 0$ из полученных неравенств.

$$\mathbf{V}_1^{(1)}\mathbf{H}(\delta) = \mathbf{P}_0\mathbf{E}\mathbf{H}^{\mathrm{T}}\mathbf{S}_0\mathbf{H} + \delta(\mathbf{P}_0\mathbf{E}\mathbf{H}^{\mathrm{T}}\mathbf{S}_0\mathbf{E} + \mathbf{S}_0\mathbf{H}\mathbf{E}^{\mathrm{T}}\mathbf{P}_0\mathbf{E}).$$

Поскольку

$$\|\mathbf{P}_0 \mathbf{E} \mathbf{H}^{\mathrm{T}} \mathbf{S}_0 \mathbf{E} + \mathbf{S}_0 \mathbf{H} \mathbf{E}^{\mathrm{T}} \mathbf{P}_0 \mathbf{E}\| \leq 2 \|\mathbf{H} \mathbf{E}^{\mathrm{T}}\| \|\mathbf{E}\| \|\mathbf{S}_0\| = O(N^{-1}),$$

то остаётся разобраться с матрицей $\mathbf{P}_0\mathbf{E}\mathbf{H}^T\mathbf{S}_0\mathbf{H}$.

Так как $\mathbf{H}^{\mathrm{T}}\mathbf{S}_{0}\mathbf{H} = \mathbf{Q}_{0}^{\perp}$, где $\mathbf{Q}_{0}^{\perp} - K \times K$ матрица ортогонального проектирования на пространство строк матрицы \mathbf{H} , то будем рассматривать элементы матрицы

$$\mathbf{P}_0 = \mathbf{E} \mathbf{Q}_0^{\perp} - \mathbf{P}_0^{\perp} \mathbf{E} \mathbf{Q}_0^{\perp}.$$

Отсюда и из Леммы 2 [3] следует, что
$$\|\mathbf{E}\mathbf{Q}_0^{\perp}\|_{\max} = \|\mathbf{P}_0^{\perp}\mathbf{E}\|_{\max} = O(N^{-1})$$
. Аналогично, $\|\mathbf{P}_0^{\perp}\mathbf{E}\mathbf{Q}_0^{\perp}\|_{\max} = O(N^{-1})$.

В результате из полученных лемм и предложений результат Теоремы 3 из [3] обобщается на $L/N \to \alpha \in (0,1)$ с помощью выбора ${\bf N}={\bf W}_1+{\bf W}_2.$

4. Приложение. Результаты вычислительных экспериментов

Формулировка. На основе теоретического результата задачи №2 произлюстрировать результат для линейного сигнала $H_n = (h_1, h_2, \dots, h_n)$ с $h_k = k, \ n = 0, 1, \dots, N-1$ при $L \sim N/3$.

В качестве примера рассмотрим ряд Теперь проиллюстрируем результаты.

Максимальная ошибка восстановления ряда L ~ N/3

Рис. 1. Максимальные ошибки восстановления ряда в зависимости от длины ряда при $\widetilde{h}_n = n + 3\cos(\pi n/2 + \pi/8)$.

Рис. 2. Максимальные ошибки восстановления ряда, умноженные на N, в зависимости от длины ряда N для $x_n=n+3\cos(\pi n/2+\pi/8).$

Прокомментируем результаты вычислительного эксперимента: по рисунку 1 убедимся, что максимальные по модулю ошибки восстановления ряда стремятся к нулю с ростом N. Рисунок 2 демонстрирует, что после умножения ряда рисунка 1 на N максимальные по модулю ошибки восстановления ряда становятся ограниченными, что подтверждает результат обобщения Теоремы 3.

5. Заключение

В ходе проделанных работ были изучены теоретические свойства метода SSA, поставлена общая теоретическая задача, дана оценка $\left\|\mathbf{P}_0^{\perp}(\delta) - \mathbf{P}_0^{\perp} - \sum_{p=1}^n \mathbf{W}_p(\delta)\right\|$, а также обобщён случай асимптотической разделимости линейного сигнала с линейной комбинацией гармоник с L=K до $L/N \to \alpha \in (0,1)$, а также проделан вычислительный эксперимент, подтверждающий результаты обобщения Теоремы 3.

Список литературы

- 1. Golyandina, N., Nekrutkin, V. and Zhigljavsky, A. (2001). Analysis of Time Series Structure. SSA and Related Techniques. Champan & Hall/CRC, Boca Raton-London-New York-Washington D.C.
- 2. Nekrutkin, V. (2010). Perturbation expansions of signal subspaces for long signals. Statistics and Its Interface. **3**, 297–319.
- 3. *Н.Зенкова, В.Некруткин.* Об асимптотической разделимости линейных сигналов с гармониками методом анализа сингулярного спектра, Вестник СПбГУ. Математика. Механика. Астрономия. 2022. Т. 9 (67). Вып. 2.