Two Special Cases of Divergence

Allen Williams

November 27 2017

Problem. $\lim_{n\to\infty} n^2 = +\infty$

Proof. Recall that if for all M > 0 there exists a number N for which n > N implies $s_n > M$ then $\lim_{n \to \infty} s_n = +\infty$. Consider $s_n = n^2$. Fix M > 0 and let $N = \sqrt{M}$ then n > M means $n > \sqrt{M}$, so $n^2 > M$. So for all M > 0 there exists a number N for which n > N implies $n^2 > M$ meaning $\lim_{n \to \infty} n^2 = +\infty$.

Problem. Suppose there exists an N_0 such that $s_n \leq t_n$ for all $n > N_0$. If $\lim_{n \to \infty} s_n = +\infty$ then $\lim_{n \to \infty} t_n = +\infty$.

Proof. Since $\lim_{n\to\infty}=+\infty$, for all M>0 there exists a number N_1 such that $n>N_1$ implies $s_n>M$. further, there exists a number N_0 such that for $n>N_0$, $s_n\leq t_n$. Then for $n>\max\{N_0,N_1\}$ $t_n\geq s_n>M$ implying that $t_n>M$. So since there exists an N such that n>N implies $t_n>M$, $\lim_{n\to\infty}t_n=+\infty$.

Problem. If $\lim_{n\to\infty} s_n = +\infty$ and k < 0 then $\lim_{n\to\infty} ks_n = -\infty$.

Proof. Since $\lim_{n\to\infty} s_n = +\infty$, for all M>0 there exists an N such that n>N implies $s_n>-\frac{M}{k}$ (since k<0 and M>0, $-\frac{M}{k}>0$) Then $ks_n<-M$. Since M was arbitrary and positive, -M is arbitrary and negative. Call it M_1 . So for all $M_1<0$ there exists an N such that n>N implies $ks_n< M_1$ meaning $\lim_{n\to\infty} ks_n=-\infty$.

Problem. If $\lim_{n\to\infty} s_n = +\infty$ and $\inf\{t_n \mid n \in N\} > -\infty$, then $\lim_{n\to\infty} (s_n + t_n) = +\infty$.

Proof. Since $\inf\{t_n\mid n\in N\}>-\infty$ either $\inf\{t_n\mid n\in N\}\in R$ or $\inf\{t_n\mid n\in N\}=+\infty$. Since $\{t_n\mid n\in N\}$ contains at least one element, $\inf\{t_n\mid n\in N\}\in R$, let l denote this element. Since $\lim_{n\to\infty}s_n=+\infty$, for all M+|l|>0 there exists an N_1 such that $n>N_1$ implies $s_n>M+|l|$. Then for $n>N_1$, $s_n+t_n>M+|l|+l\geq M$, so $\lim_{n\to\infty}(s_n+t_n)=+\infty$. QED