

CAP5415 Computer Vision

Yogesh S Rawat

yogesh@ucf.edu

HEC-241

Course project

Questions?

Introduction to Neural Networks

Lecture 5

Agenda

- Feature engineering vs feature learning
- Neural network basics
- Non-linearity

9/12/2024 CAP5415 - Lecture 5

6

Introduction to Neural Networks

Lecture 5

Feature engineering vs feature learning

Where to go from edges?

Why is this hard?

You see this:

9/12/2024

Why is this hard?

You see this:

But the camera sees this:

194	210	201	212	199	213	215	195	178	158	182	209	
180	189	190	221	209	205	191	167	147	115	129	163	
114	126	140	188	176	165	152	140	170	106	78	88	
87	103	115	154	143	142	149	153	173	101	57	57	
102	112	106	131	122	138	152	147	128	84	58	66	
94	95	79	104	105	124	129	113	107	87	69	67	
68	71	69	98	89	92	98	95	89	88	76	67	
41	56	68	99	63	45	60	82	58	76	75	65	
20	43	69	75	56	41	51	73	55	70	63	44	
50	50	57	69	75	75	73	74	53	68	59	37	
72	59	53	66	84	92	84	74	57	72	63	42	
67	61	58	65	75	78	76	73	59	75	69	50	

Pixel-based representation

Pixel-based representation

Pixel-based representation

What we want

What we want

HoG

Coming up with features is often difficult, timeconsuming, and requires expert knowledge.

Today

Feature engineering -> Feature learning Expert knowledge

Data

Image classification - ImageNet

Images for each category of

WordNet

• 1000 classes

- 14M images
- 100K test

Dataset split

- Train classifier

- Measure error
- Tune model hyperparameters

Testing Images

- Secret labels
- Measure error

Random train/validate splits = cross validation

Slide credit: D. Hoiem and L. Lazebnik

Features

- Raw pixels
- Histograms
- Templates
- SIFT descriptors
 - GIST
 - ORB
 - HOG....

Slide credit: D. Hoiem and L. Lazebnik

Recognition task and supervision

What are all the possible supervision ('label') types to consider?

Contains a motorbike

Recognition task and supervision

• Images in the training set must be annotated with the "correct answer" that the model is expected to produce

Contains a motorbike

Spectrum of supervision

9/12/2024 CAP5415 - Lecture 5 Lazebnik 33

Slide credit: D. Hoiem and L. Lazebnik

The machine learning framework

 Apply a prediction function to a feature representation of the image to get the desired output:

9/12/2024 CAP5415 - Lecture 5 35Slide credit: L. Lazebnik

The machine learning framework

Training: Given a *training set* of labeled examples:

$$\{(\mathbf{x}_1, \mathbf{y}_1), ..., (\mathbf{x}_N, \mathbf{y}_N)\}$$

Estimate the prediction function f by minimizing the prediction error on the training set.

Testing: Apply f to an unseen test example x_u and output the predicted value $y_u = f(x_u)$ to classify x_u .

Questions?

Introduction to Neural Networks

Lecture 5

Neural network basics

Neurons in the Brain

Neurons in the Brain

- Brain is composed of **neurons**
- A neuron receives input from other neurons (generally thousands) from its synapses
- Inputs are approximately summed
- When the input exceeds a threshold the neuron sends an electrical spike that travels from the body, down the axon, to the next neuron(s)

Background in Neural Nets (NN)

- Neural Nets can be:
 - Biological Models
 - Artificial Models

- Desire to produce artificial systems
 - capable of sophisticated computations
 - similar to human brain!

Brain is a remarkable Computer

- 200 billion neurons, 32 trillion synapses
- Energy use: 25W
- Processing speed: 100 Hz
- Parallel, Distributed
- Fault Tolerant
- Learns: Yes
- Intelligent/Conscious: Usually

- 1 billion bytes RAM but trillions of bytes on disk
- Energy watt: 30-90W (CPU)
- Processing speed: 10⁹ Hz
- Serial, Centralized
- Generally not Fault Tolerant
- Learns: Some
- Intelligent/Conscious: Generally No

Computational Implementation of the Neural Activation Function

Computational Implementation of the Neural Activation Function

Neural Activation Function

Neural Activation Function

Neural Activation Function

Activation value (sum of individual inputs):

$$n_j = \sum_i x_i w_{ij}$$

Activation function (sigmoid / logistic):

$$y_j = \frac{1}{1 + e^{-n_j}}$$

Computational Implementation of the Neural Activation Function

Neural Networks

Basic building block for composition is a *perceptron* (Rosenblatt c.1960) Linear classifier – vector of weights w and a 'bias' b

$$ext{output} = egin{cases} 0 & ext{if } w \cdot x + b \leq 0 \ 1 & ext{if } w \cdot x + b > 0 \end{cases} \qquad \qquad w \cdot x \equiv \sum_{j} w_{j} x_{j},$$

Binary classifying an image

Each pixel of the image would be an input.

So, for a 28 x 28 image, we vectorize:

$$x = 1 \times 784$$

w is a vector of weights for each pixel, 784 x 1 b is a scalar bias per perceptron

Result =
$$xw + b$$
 -> $(1x784) x (784x1) + b = $(1x1)+b$$

Neural Networks - multiclass

Add more perceptrons

Multi-class classifying an image

Each pixel of the image would be an input.

So, for a 28 x 28 image, we vectorize.

$$x = 1 \times 784$$

W is a matrix of weights for each pixel/each perceptron $W = 784 \times 10$ (10-class classification)

b is a bias *per perceptron* (vector of biases); (1 x 10)

Result =
$$xW + b$$
 -> $(1x784) x (784 x 10) + b$ -> $(1 x 10) + (1 x 10) = output vector$

Bias convenience

Let's turn this operation into a multiplication only:

- Create a 'fake' feature with value 1 to represent the bias
- Add an extra weight that can vary

$$ext{output} = egin{cases} 0 & ext{if } w \cdot x & \leq 0 \ 1 & ext{if } w \cdot x & > 0 \end{cases} \qquad w \cdot x \equiv \sum_{j} w_{j} x_{j},$$

Composition

Attempt to represent complex functions as compositions of smaller functions.

Outputs from one perception are fed into inputs of another perceptron.

Composition

Sets of layers and the connections (weights) between them define the *network architecture*.

Composition

It's all just matrix multiplication!

Matrix store weights/parameters!

GPUs -> special hardware for fast/large matrix multiplication.

Questions?

Questions?

Introduction to Neural Networks

Lecture 5

Introduction to Neural Networks

Lecture 5

Non-linearity

Problem 1 with all linear functions

- We have formed chains of linear functions.
- We know that linear functions can be reduced
 - g = f(h(x))

Our composition of functions is really just a single function : (

Problem 1 with all linear functions

$$\mathbf{z}^{[1]} = \mathbf{W}^{[1]} \mathbf{x} + \mathbf{b}^{[1]}
\mathbf{z}^{[2]} = \mathbf{W}^{[2]} \mathbf{z}^{[1]} + \mathbf{b}^{[2]}
\mathbf{z}^{[2]} = \mathbf{W}^{[2]} \mathbf{z}^{[1]} + \mathbf{b}^{[2]}
= \mathbf{W}^{[2]} [\mathbf{W}^{[1]} \mathbf{x} + \mathbf{b}^{[1]}] + \mathbf{b}^{[2]}
= \mathbf{W}^{[2]} \mathbf{W}^{[1]} \mathbf{x} + \mathbf{W}^{[2]} \mathbf{b}^{[1]} + \mathbf{b}^{[2]}
= \mathbf{W} \mathbf{x} + \mathbf{b}
\hat{y} = \mathbf{z}^{[2]} = \mathbf{W} \mathbf{x} + \mathbf{b}$$

The output is always a linear function of the input!

9/12/2024

Problem 2 with all linear functions

Linear classifiers:

small change in input can cause large change in binary output

Activation function for a perceptron:
Heaviside function

Problem 2 with all linear functions

Linear classifiers:

small change in input can cause large change in binary output.

We want:

small change in any weight (or bias) causes a small change in the output

Let's introduce non-linearities

We're going to introduce non-linear functions to transform the features.

$$\sigma(w\cdot x+b)$$

$$\sigma(z) \equiv rac{1}{1+e^{-z}}.$$

9/12/2024

Activation Functions

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Activation Functions

9/12/2024

Activation Functions

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

tanh

tanh(x)

ReLU

 $\max(0, x)$

9/12/2024

Perceptron model

- Use is grounded in theory
 - Universal approximation theorem (Goodfellow 6.4.1)

 Can represent a NAND circuit, from which any binary function can be built by compositions of NANDs

• With enough parameters, it can approximate any function.

Mark 1 Perceptron c.1960

Wikipedia

20x20 pixel camera feed

Perceptron model

If a single-layer network can learn any function... ...given enough parameters...

...then why do we go deeper?

Intuitively, composition is efficient because it allows reuse.

Empirically, deep networks do a better job than shallow networks at learning such hierarchies of knowledge.

Multi-layer perceptron (MLP)

• ...is a 'fully connected' neural network with nonlinear activation functions.

• 'Feed-forward' neural network

Goals

• Build a classifier which is more powerful at representing complex functions *and* more suited to the learning problem.

- What does this mean?
 - 1. Assume that the *underlying data generating function* relies on a composition of factors.
 - 2. Learn a feature representation that is specific to the dataset.

MLP performance on MNIST

- MNIST
 - Dataset of handwritten digits
 - 60K training samples
 - 10K testing samples
- A 6-layer MLP [1]
- Number of neurons
 - 2500, 2000, 1500, 1000, 500, and 10
- Performance 99.65%

[1] Cireşan, Dan Claudiu, et al. "Deep, big, simple neural nets for handwritten digit recognition." *Neural computation* 22.12 (2010): 3207-3220.

Why we need CNN?

- Neural Network
 - Fully connected layers
- Input
 - Hand-crafted features
 - Pixel values
- Hand-crafted features
 - Limitations
- Image as input
 - Size of feature vector = HxWxC
 - For 256x256 RGB image
 - 196608 dimensions

Why we need CNN?

- CNN Special type of neural network
 - Operate with volume of data
 - Weight sharing in form of kernels

Source: http://cs231n.github.io

MLP still very useful

NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, ECCV 2020

Questions?

Sources for this lecture include materials from works by Abhijit Mahalanobis, James Tompkin, Sedat Ozer, and Ulas Bagci