In [2]: import numpy as np
 import pandas as pd
 import plotly
 import plotly.figure_factory as ff
 import plotly.graph_objs as go
 from sklearn.linear_model import SGDClassifier
 from sklearn.preprocessing import StandardScaler
 from plotly.offline import download_plotlyjs, init_notebook_mode, plot, iplot
 init_notebook_mode(connected=True)

```
In [3]: data = pd.read_csv('task_b.csv')
    data=data.iloc[:,1:]
```

In [4]: data.head()

Out[4]:

	f1	f2	f3	у
0	-195.871045	-14843.084171	5.532140	1.0
1	-1217.183964	-4068.124621	4.416082	1.0
2	9.138451	4413.412028	0.425317	0.0
3	363.824242	15474.760647	1.094119	0.0
4	-768.812047	-7963.932192	1.870536	0.0

```
In [5]: data.corr()['y']
```

Out[5]: f1 0.067172 f2 -0.017944 f3 0.839060 v 1.000000

Name: y, dtype: float64

In [6]: data.std()

Out[6]: f1 488.195035 f2 10403.417325 f3 2.926662 y 0.501255

dtype: float64

In [7]: X=data[['f1','f2','f3']].values
 Y=data['y'].values
 print(X.shape)
 print(Y.shape)

(200, 3) (200,)

What if our features are with different variance

- * As part of this task you will observe how linear models work in case of data having feautres with different variance
- * from the output of the above cells you can observe that var(F2)>>var(F1)>>Var(F3)

> Task1:

- 1. Apply Logistic regression(SGDClassifier with logloss) on 'data' and check the feature importance
 - 2. Apply SVM(SGDClassifier with hinge) on 'data' and check the feature importance

> Task2:

- 1. Apply Logistic regression(SGDClassifier with logloss) on 'data' after standard ization
- i.e standardization(data, column wise): (column-mean(column))/std(column) and check the feature importance
- 2. Apply SVM(SGDClassifier with hinge) on 'data' after standardization
 i.e standardization(data, column wise): (column-mean(column))/std(column) and
 check the feature importance

Make sure you write the observations for each task, why a particular feautre got more importance than others

Feature: 2, Score: 10367.64223

```
In [11]: feature_imp1=clfr1.coef_[0]
    for a,b in enumerate(feature_imp1):
        print('Feature: %0d, Score: %.5f' % (a,b))

Feature: 0, Score: -7107.37390
    Feature: 1, Score: 9364.07984
```

The variance is too high.

The feature 2 has the highest significance of all the three features.

Feature: 2, Score: 9088.73594

The effect of variance reduces once standardization is done.

F2>F3>F1

Task 2

```
In [12]: Std = StandardScaler().fit_transform(data[['f1','f2','f3']])
         ##https://towardsdatascience.com/preprocessing-with-sklearn-a-complete-and-comp
         rehensive-guide-670cb98fcfb9
In [13]: clfr_SS=SGDClassifier(loss='log',random_state=42)
         clfr_SS.fit(Std,Y)
Out[13]: SGDClassifier(loss='log', random_state=42)
In [14]: | clfr_SS1=SGDClassifier(loss='hinge', random_state=42)
         clfr_SS1.fit(Std,Y)
Out[14]: SGDClassifier(random_state=42)
In [15]: | feature_imp_SS=clfr_SS.coef_[0]
         for a, b in enumerate(feature_imp_SS):
              print('Feature: %0d, Score: %.5f' % (a,b))
         Feature: 0, Score: 2.30695
         Feature: 1, Score: 4.39403
         Feature: 2, Score: 11.53284
In [16]: | feature_imp_SS1=clfr_SS1.coef_[0]
         for a,b in enumerate(feature_imp_SS1):
              print('Feature: %0d, Score: %.5f' % (a,b))
         Feature: 0, Score: -1.96618
         Feature: 1, Score: 2.43060
         Feature: 2, Score: 13.54704
```

- 1. The feature 3 has the highest impact of all the three features after standardization.
- 2. The standardization reduces the effect of variance among the features
- 3.f3>f2>f1 this is the order of features importance according to their significance.