Human Skeleton model

and Color Image Segmentation by Thresholding

01204483 การประมวลผลสัญญาณภาพดิจิทัล

อาจารย์ที่ปรึกษาโครงงาน

ดร.นิตยา เมืองนาค

ผู้จัดทำ

นางสาว กนกวรรณ บัวภาคำ 6040200049

🔲 นายธรรมธัช ตันติปิธรรม 6040201983

นาย ธีระวัฒน์ ชรินทร์ 6040202203

นางสาวรัดดาพร อักษรทอง 6040204010

นายอนุชา ศรีลาแก้ว 6040205407

ที่มาและความสำคัญ

เนื่องจากในปัจจุบันนั้นมีการค้นคว้าและพัฒนาเทคโนโลยีต่างๆ เกี่ยวกับการวิเคราะห์ความเคลื่อนใหวของมนุษย์และการปฏิสัมพันธ์ ระหว่างมนุษย์กับคอมพิวเตอร์ (HCI) เพื่อนำมาประยุกต์ใช้ในการ อำนวยความสะดวกหรือตอบสนองความต้องการของมนุษย์ ซึ่งระบบ จับการเคลื่อนใหวที่มีวางจำหน่ายส่วนใหญ่ต้องการให้ผู้ใช้ใส่ ้ เครื่องหมาย แทนข้อต่อหรือส่วนต่างๆ ของร่างกาย และเทคโนโลยี พื้นฐานที่ใช้มักจะมีราคาแพงและอาจไม่ตรงวัตถุประสงค์สำหรับการ นำมาวิเคราะห์การเคลื่อนไหวของมนุษย์

จากการศึกษา เทคนิค Color Image Segmentation by Thresholding

จากการที่ได้ศึกษาเกี่ยวกับเทคนิคต่างๆ ในการปรับปรุงคุณภาพของภาพ ทางคณะผู้จัดทำ ได้เลือกเทคนิค Color Image Segmentation by Thresholding เพื่อศึกษาการแบ่งส่วนและตรวจจับของรูปภาพในการวิเคราะห์หารูปร่างและความ เป็นไปได้ของโครงสร้างร่างกายมนุษย์ โดยเริ่มจากเขียนโปรแกรมใน ภาษา Python ใช้ opency-python เข้ามาช่วยในการใช้งานโปรแกรม การทำงานของโปรแกรม จะมีการกำหนดลักษณะต่างๆของร่างกายมนุษย์โดยทั้งหมด 19 องค์ประกอบที่ไล่จากศรีษะ จนถึงเท้า และลักษณะท่าทางที่เป็นส่วนขยับของร่างกายเช่น คอ มือ แขน เป็นต้น

ทางคณะผู้จัดทำ ได้จัดทำขึ้นเพื่อ

- ไม่อศึกษาเกี่ยวกับ เทคนิค Color Image Segmentation by Thresholding
- เพื่อศึกษาการแบ่งส่วนและตรวจจับของรูปภาพ
- โปรแกรมสามารถวิเคราะห์หารูปร่างและความเป็นไปได้ของโครงสร้างร่างกายมนุษย์ได้

การได้มาซึ่งรูปภาพ

ภาพที่ใช้ในการทดสอบโปรแกรม คือ ภาพที่นำมาจากอินเตอร์เน็ต ซึ่งใช้ทั้งหมด 5 ภาพ และภาพที่ถ่ายเองอีก 1 ภาพ

การเตรียมภาพ

นำภาพที่ได้มาจากอินเตอร์เน็ต และภาพที่ถ่ายเอง มาปรับปรุงให้คุณสมบัติของ ภาพนั้นๆ เด่นขึ้น

ภาพต้นฉบับ

รูปที่ 2 ภาพที่ใช้ในการทดสอบจากอินเตอร์เน็ต

รูปที่ 3 ภาพที่ใช้ในการทดสอบจากอินเตอร์เน็ต

ภาพต้นฉบับ

รูปที่ 4 ภาพที่ใช้ในการทดสอบจากอินเตอร์เน็ต

รูปที่ 5 ภาพที่ใช้ในการทดสอบจากอินเตอร์เน็ต

ภาพต้นฉบับ

รูปที่ 6 ภาพที่ใช้ในการทดสอบจากอินเตอร์เน็ต

รู**ปที่ 7** ภาพที่ใช้ในการทดสอบจากการถ่ายเอง

วิธีการจัดทำ

การประมวลผลตามวัตถุประสงค์

โดยเริ่มแรก การทำงานโปรแกรมจะมีการตรวจจับรูปภาพเข้ามาทาง input เพื่อทำการ scan ว่ารูปภาพ ้ที่เข้ามาลักษณะอย่างไร (ซึ่งใช้ Ai ในการตรวจจับมันเร็วมาก) ้ถ้าหากการตรวจสอบผ่าน โปรแกรมก็จะเอาภาพ input ที่ได้มานำไปประมวลผลต่อและแสดงออกมาเป็น output ที่ detect 19 องค์ประกอบ ของร่างกายมนุษย์นั้น คือ skeleton แต่จะตรวจจับถูกต้องหรือไม่ จึงต้องใช้ฟังก์ชัน assert เข้ามาช่วยในการเทสว่าองค์ประกอบที่ ตรวจสอบ เข้ามานั้นถูกต้องและผิดพลาดน้อยที่สุดหลังจากผ่านการทดสอบจะเก็บค่า ไว้ที่ Point เพื่อรอคำสั่ง ้ค้นหาชิ้นส่วนของร่างกายนั้นก็คือลักษณะท่าทางของมนุษย์ว่า ณ รูปภาพนั้นกำลังทำท่าทางอะไรอยู่ และถ้าหาก ้มีความสอดคล้องกับตัวแปรที่กำหนดไว้ข้างต้นจะทำการเช็คค่าของ threshold ในท่าทางและลักษณะของร่างกาย มนุษย์ทั้งหมดแต่ละส่วนเพื่อค่าสูงสุดและต่ำสุดเพื่อทำการโยงหากัน ถ้าหากค่า threshold ที่ได้มีค่าสูงกว่าปกติ การทำ Skeleton นั้นก็จะไม่เกิดชึ้นเพราะเนื่องจากค่า threshold สูงเกินไป และหากทำการ threshold เรียบร้อย จะเข้ามาใน loop ของการค้นหาองค์ประกอบและลักษณะท่าทางที่มีความสัมพันธ์กัน และเกิดการเทสขึ้นอีกครั้ง จากนั้นเมื่อทำการเทสผ่านเสร็จสมบูรณ์ก็จะเก็บค่าไว้ที่ตัวแปรตัวถัดไปก็คือ idFrom และ idTo

หมายความว่า ai จะเริ่ม detect ว่าทั้งหมดของร่างกายมนุษย์ตรงใหนสัมพันธ์กันมั้งและเริ่มโยงเส้น Skeleton จากตรงนี้ ถึงตรงนั้น จากนั้นจะใช้คำสั่ง if เพื่อทำการตรวจสอบว่า จุดนี้ไปตรงนู้นและจุดนู้นมาตรงนี้ ถูกหรือไม่ จากนั้นเขียนหน้าต่างหรือที่เรียกว่า Figure แบบใน matlab เพื่อจะแสดง output ออกมาให้เห็นก็จะ กำหนดค่าต่างๆ จากนั้นก็จะแสดง Output ออกมา 2 รูปแบบ gray-scale นั้นก็คือ รูปแรกเป็นรูปปกติ รูปที่สองเป็น รูปที่ผ่านการตรวจสอบมาทุกวิธี

พลงจากผ่านกระบวนการใช้

เทคนิค Color Image Segmentation by Thresholding

Binary Image

Skeleton

Binary Image

Skeleton

การประเมินและวิเคราะห์ผล

output ออกมาให้เห็นก็จะกำหนดค่าต่างๆ จากนั้นก็จะแสดง Output ออกมา 2 รูป แบบ gray-scale นั้นก็คือ รูปแรกเป็นรูปปกติ รูปที่สองเป็นรูปที่ผ่าน การตรวจสอบมาทุกวิธี

ซึ่ง output ที่ได้ สามารถวิเคราะห์หารูปร่างและความเป็นไปได้ของ โครงสร้างร่างกายมนุษย์ได้ตรงตามที่คณะผู้จัดทำได้ศึกษามา

สรุปผลและข้อเสนอแนะ

🔳 สรุปผล

จากการศึกษาการแบ่งส่วนและตรวจจับของรูปภาพในการวิเคราะห์หารูปร่างและ ความเป็นไปได้ของโครงสร้างร่างกายมนุษย์ โดยเริ่มจากเขียนโปรแกรมใน ภาษา Python ใช้ opency-python เข้ามาช่วยในการใช้งานโปรแกรม การทำงานของโปรแกรม และการทดลอง ใช้โปรแกรม ผลที่ได้คือ ตรงตามวัตถุประสงค์ของผู้จัดทำ เนื่องจาก โปรแกรมที่ทางผู้จัดทำ ได้ทำขึ้นนั้น สามารถวิเคราะห์หารูปร่างและความเป็นไปได้ของโครงสร้างร่างกายมนุษย์ได้

สรุปผลและข้อเสนอแนะ

ข้อเสนอแนะ

เนื่องจาก เป็นการเรียกใช้การทำของ Image Segmentation โดยแบ่งหลักการให้ส่ง ข้อมูลเป็นรูปภาพที่มีร่างกายเป็นมนุษย์และใช้ opencv-python ในการตรวจจับเป็นภาพ Skeleton ขึ้นมา ยังมีปัญหาติดขัดอยู่ เนื่องจากเพิ่งได้ศึกษาการเขียน Opencv-python ส่วน ใหญ่จะใช้ Video Capture ในการตรวจจับวัตถุและแสดงออกมาในลักษณะร่างของ Skeleton

ควรใช้ Video Capture ในการตรวจจับวัตถุและแสดงออกมาในลักษณะร่างของ Skeleton จะสามารถวิเคราะห์หารูปร่างและความเป็นไปได้ของโครงสร้างร่างกายมนุษย์ได้ ดีกว่า

โค้ดแสดงการทำงานของโปรแกรม

Terminal	Help skeletonrgb.py - Project Image - Visual Studio Code
ai.py	
🕏 skele	etonrgb.py >
1	import cv2
2	import numpy as np
3	import argparse #เป็น module ที่กำหนด argument ที่จะเรียกใช้งานได้ทาง console
4	from skimage.morphology import skeletonize
5	import matplotlib.pyplot as plt
6	import cvlib as cv
7	from cvlib.object_detection import draw_bbox
8	parser = argparse.ArgumentParser() #ตัวกำหนดเรียกใช้ที่ console
9	parser.add_argument('input') #เพิ่มรูปภาพโดยใช้ argument สังที่ console
10	parser.add_argument('thr', default=0.2, type=float) #ปรับระดับค่า threshold
11	parser.add_argument('width', default=368, type=int) #กำหนดความกว้างของ figure
12	parser.add_argument('height', default=368, type=int) #กำหนดความสูงของ figure
13	im = cv2.imread("make.jpg", 0) # ภาพ .jpg ไว้เทส
14	args = parser.parse_args() #ตัวกำหนดเรียกใช้ argument ทั้งหมด
15	

```
#กำหนดส่วนลักษณะต่างๆของร่างกายมนษย์
17
     BODY_PARTS = { "Nose": 0, "Neck": 1, "RShoulder": 2, "RElbow": 3, "RWrist": 4,
18
                    "LShoulder": 5, "LElbow": 6, "LWrist": 7, "RHip": 8, "RKnee": 9,
                    "RAnkle": 10, "LHip": 11, "LKnee": 12, "LAnkle": 13, "REye": 14,
19
                    "LEye": 15, "REar": 16, "LEar": 17, "Background": 18 }
21
     #สาหนดท่าทางให้คล้องกับร่างกายมนษย์
22
23
     POSE PAIRS = [ ["Neck", "RShoulder"], ["Neck", "LShoulder"], ["RShoulder", "RElbow"],
                    ["RElbow", "RWrist"], ["LShoulder", "LElbow"], ["LElbow", "LWrist"],
25
                    ["Neck", "RHip"], ["RHip", "RKnee"], ["RKnee", "RAnkle"], ["Neck", "LHip"],
                    ["LHip", "LKnee"], ["LKnee", "LAnkle"], ["Neck", "Nose"], ["Nose", "REye"],
27
                    ["REye", "REar"], ["Nose", "LEye"], ["LEye", "LEar"] ]
29
     #แสดงหน้าต่าง gui
31
32
     inWidth = args.width
     inHeight = args.height
     #เรียกใช้ไฟล์ graph opt.pb
     net = cv2.dnn.readNetFromTensorflow("graph_opt.pb")
```

```
#ai ตรวจจับรูปภาพที่เข้ามาทาง input
cap = cv2.VideoCapture(args.input if args.input else 0)
#หลังจากตรวจจับและผ่านการตรวจสอบจะเข้า loop whille เพื่อทำไฟล์รูปภาพขึ้นมาให้ชื่อว่า frame ถ้าหากไม่ผ่านก็อาจจะ error หรือรอการตรวจสอบต่อไป
while cv2.waitKey(1) < 0:
    hasFrame, frame = cap.read()
    if not hasFrame:
        cv2.waitKey()
        break
    #แสดงรปร่างที่ได้ในหน้าต่าง gui
    frameWidth = frame.shape[1]
    frameHeight = frame.shape[0]
    #เป็น output ที่เรียกใช้ 19 องค์ประกอบของร่างกายมนุษย์
    net.setInput(cv2.dnn.blobFromImage(frame, 1.0, (inWidth, inHeight), (127.5, 127.5, 127.5), swapRB=True, crop=False))
    out = net.forward()
    out = out[:, :19, :, :]
    #assert เป็นฟังก์ชันที่ไว้เทสว่าองค์ประกอบร่างกายของมนษย์ตรงตาม output ที่เช็คเข้ามาไหม
    assert(len(BODY PARTS) == out.shape[1])
    #กำหนดตัวแปร points ขึ้นมาค่าว่างปล่าว
    points = []
```

```
#ศาสั่งวนซ้ำให้ค้นหาชื้นส่วนของร่างกายให้ตรงตามองค์ประกอบ 19 ส่วน
for i in range(len(BODY PARTS)):
    heatMap = out[0, i, :, :] #ตรวจสอบชั้นส่วนร่างกายที่มีความสอดคล้องกัน
    #กำหนดตัวแปรเช็คค่าสูงสุดและค่าต่ำสุดของ input
    _, conf, _, point = cv2.minMaxLoc(heatMap)
    x = (frameWidth * point[0]) / out.shape[3]
    y = (frameHeight * point[1]) / out.shape[2]
    #จุดที่มีการเช็คค่า ถ้าหากค่าของ threshold มีค่าที่สูงกว่าปกติ
    points.append((int(x), int(y)) if conf > args.thr else None)
#ศาสั่ง loop ที่จะด้นหาองค์ประกอบให้ครบสมบูรณ์ที่สุด
for pair in POSE PAIRS:
    partFrom = pair[0]
    partTo = pair[1]
    assert(partFrom in BODY PARTS)
    assert(partTo in BODY PARTS)
    #กำหนดตัวแปรเพิ่มเติม
    idFrom = BODY PARTS[partFrom]
    idTo = BODY_PARTS[partTo]
    #ใช้ศาสั่ง if เพื่อตรวจสอบข้อมูลของรูปภาพที่เข้ามาและเช็ดแต่ละเฟรม
```

```
if points[idFrom] and points[idTo]:
 84
                  cv2.line(frame, points[idFrom], points[idTo], (0, 255, 0), 3)
                  cv2.ellipse(frame, points[idFrom], (3, 3), 0, 0, 360, (0, 0, 255), cv2.FILLED)
                  cv2.ellipse(frame, points[idTo], (3, 3), 0, 0, 360, (0, 0, 255), cv2.FILLED)
 87
          #กำหนดค่าหน้าต่างของ figure แบบใน matlab,
          fig, axes = plt.subplots(1, 2, figsize=(8, 4), sharex=True, sharey=True)
          ax = axes.ravel()
          skeleton = skeletonize(frame)
          #แสดงรูปภาพที่ถูกประมวลผล
          ax[0].imshow(im)
          ax[0].set title('threshold')
          ax[0].axis('off')
          ax[1].imshow(frame, cmap=plt.cm.gray)
          ax[1].set_title('skeleton')
          ax[1].axis('off')
102
          #ตัวแปรที่พาเข้าใลบราลีที่จะทำการอ่านภาพจากหน่วยเก็บข้อมลทำการตรวจสอบวัตถบนภาพและแสดงออกมาเป็นกล่องข้อความ
          bbox, label, conf = cv.detect_common_objects(im)
104
          output image = draw bbox(frame, bbox, label, conf)
```


้โค้ดแสดงการทำงานของโปรแกรม

```
#ศานวณเวลาในการประมวลผลรูปภาพ
          t, _ = net.getPerfProfile()
          freq = cv2.getTickFrequency() / 1000
          cv2.putText(frame, '%.2fms' % (t / freq), (10, 20), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0))
110
          print('Success')
111
          cv2.imshow('Human Skeleton using OpenCV', frame) #ตัวแสดงทั้งกล้องและ gui
112
113
114
          fig.tight_layout()
          plt.imshow(output_image)
115
          plt.show()
116
```

จบการทำงาน

THANKS!

