Homework4

陈淇奥 21210160025

2021年10月23日

Exercise 1 (2.1.3). 对任意集合 X,Y,定义 $X\sim Y$ 当且仅当 |X|=|Y|。证明 \sim 是一个等价关系

证明. 对于任意集合 X,定义 $id:X\to X$ 为对任意 $x\in X$,id(x)=x,则 id 是一个双射,于是 $X\sim X$

对任意集合 X,Y,若 $X\sim Y$,则存在双射 $f:X\to Y$,因为双射的逆是双射,有双射 $f^{-1}:Y\to X$,于是 $Y\sim X$

对任意集合 X,Y,Z,若 $X \sim Y$ 与 $Y \sim Z$,则有双射 $f:X \rightarrow Y$ 与 $g:Y \rightarrow Z$,则 $g\circ f$ 是双射: 对任意 $z_1,z_2 \in Z$,如果 $g\circ f(z_1)=g\circ f(z_2)$,因为 g,f 是双射,于是 $f(z_1)=f(z_2)$, $z_1=z_2$;对于任意 $z\in Z$,都有 $f^{-1}\circ g^{-1}(z)\in X$ 使得 $gf(f^{-1}g^{-1}(z))=z$ 。因此 $X\sim Z$ 。

因此~是一个等价关系。□

Exercise 2 (2.1.8). 如果 X 是有穷的,则不存在 X 到它的真子集 $Y \subsetneq X$ 上的 双射。

证明. 对 X 的元素个数 n 做归纳。

若 n=0, 命题成立。

若 n = k 命题成立,当 n = k + 1 时,假设存在 X 到它的真子集 Y 的 双射 f,选择 $a \in X$ 与 $f(a) \in Y$,则 $Y \setminus \{f(a)\}$ 是 $X \setminus \{a\}$ 的真子集,且 $f \mid X \setminus \{a\}$ 是双射,这与归纳假设矛盾。

因此不存在 X 到它的真子集 $Y \subseteq X$ 上的双射。

Exercise 3 (2.1.16). 证明:如果 X 是无穷序数的集合,则 $|X| \leq |\sup X|$

证明. 因为 $\sup X = \inf\{a \in \mathbb{O} : \forall \beta \in X(\beta < \alpha)\}$,对任意 $\beta \in X$,都 有 $\beta \in \sup X$ 。于是定义 $f: X \to \sup X$ 为 $f(\beta) = \beta$ 。f 是单射,因此 $|X| \leq |\sup X|$

Exercise 4 (2.1.24). 对任意序数 λ , λ 是冯·诺伊曼基数当且仅当 $\lambda = Card(\lambda)$

证明. 若 λ 是冯·诺伊曼基数,则存在良序集 X 且 $\lambda = Card(X)$,即 $\lambda = \inf\{\alpha \in \mathbb{O} : |\alpha| = |X| = |\lambda|\}$,因此 $\lambda = Card(\lambda)$

 $\ddot{a} = Card(\lambda)$,因为 λ 是良序集,因此 λ 是冯·诺伊曼基数。

Exercise 5 (2.1.25). 每个自然数 n 都是冯·诺伊曼基数; ω 是冯·诺伊曼基数

证明. 对于自然数 n, m,若 m < n 则 |m| < |n|, 因此 $Card(n) = \inf\{m \in \mathbb{O}: |m| = |n|\} = n$, 因此 n 是冯·诺伊曼基数

 $Card(\omega) = \inf\{\lambda \in \mathbb{O} : |\lambda| = |\omega|\}$,因为 ω 是最小的极限序数,而对于所有 $n \in \omega$, $|n| < |n+1| \le |\omega|$ 。因此 $Card(\omega) = \omega$, ω 是冯·诺伊曼基数 \square