Paikallisuus hajautetuissa verkkoalgoritmeissa
Juhana Laurinharju
Tieteellinen kirjoittaminen Helsingin Yliopisto Tietojenkäsittelytieteen laitos
Helsinki, 5. helmikuuta 2013

Johdanto

Artikkelissa Locality in Distributed Graph Algorithms [2] Linial näyttää, ettei hajautettu algoritmi voi 3-värittää n solmun sykliä alle $\log^* n$ kierroksessa. Tämä alaraja on tiukka, sillä Colen ja Vishkinin [1] algoritmilla n-syklin voi 3-värittää $\log^* n$ kierroksessa.

Laskennan malli

Olkoon G=(V,E) suuntaamaton verkko. Verkon jokaisessa solmussa $v\in V$ on tietokone. Laskenta koostuu kommunikointikierroksista. Yhden kommunikaatiokierroksen aikana jokainen solmu voi:

- 1. suorittaa mielivaltaista laskentaa
- 2. lähettää viestin jokaiselle naapurilleen
- 3. vastaanottaa naapureiden lähettämät viestit

Lisäksi jokaiselle solmulle $v \in V$ on annettu yksikäsitteinen tunniste $\mathrm{ID}(v) \in \{1, \dots, |V|\}$

Verkon väritys

Verkko on väritetty, jos jokaiseen solmuun $v \in V$ on liitetty jokin väri ja kahdella vierekkäisellä solmulla ei koskaan ole samaa väriä. Tarkemmin, verkon G = (V, E) solmuväritys on kuvaus $c : V \to \{1, \ldots, k\}$ jollain luonnollisella luvulla $k \in \mathbb{N}$. Lisäksi vaaditaan, että jos verkossa on kaari solmusta v solmuun u, eli $vu \in E$, niin $c(v) \neq c(u)$.

Verkon voi värittää k:lla värillä jos löytyy yllä olevan ehdon täyttävä kuvaus $c:V \to \{1,\ldots,k\}$. Tällaista väritystä kutsutaan k-väritykseksi.

Sykli

Verkko on sykli, jos se on yhtenäinen ja sen jokaisella solmulla on tasan kaksi naapuria.

Syklin voi aina värittää kolmella värillä.

Iteroitu logaritmi log*

Iteroitu logaritmi log* kertoo kuinka monta kertaa luvusta täytyy ottaa logaritmi, kunnes lopputulos on korkeintaan yksi.

$$\log^* x = \begin{cases} 0 & \text{, jos } x \le 1\\ 1 + \log^* (\log x) & \text{, muutoin} \end{cases}$$

Esimerkiksi

$$\log^* 16 = \log^* 2^{2^2} = 1 + \log^* 2^2$$
$$= 2 + \log^* 2 = 3 + \log^* 1 = 3$$

ja

$$\log^* 65536 = \log^* 2^{2^{2^2}} = 1 + \log^* 16$$

= 4.

mistä voi huomata, että $\log^* n$ on arvoltaan pienempi kuin 5 kun $n < 2^{65536}$. Iteroitu logaritmi on siis äärimmäisen hitaasti kasvava funktio.

Linial näyttää, että hajautetun algoritmin tulee käyttää ainakin $\Omega(\log^* n)$ kierrosta syklin 3-värittämiseen. Tämä raja on myös asymptoottisesti tiukka, sillä Colen ja Vishkinin algoritmi värittää syklin kolmella värillä $O(\log^* n)$ kierroksessa.

1 Lähteet

[1] Cole, Richard ja Uzi Vishkin: Deterministic coin tossing with applications to optimal parallel list ranking. Information and Control, 70(1):32–53, 1986.

[2] Linial, Nathan: Locality in Distributed Graph Algorithms. SIAM Journal on Computing, 21(1):193–201, 1992.