S2 Aritmética Digital

Lenin G. Falconí

2024-04-28

Outline

Aritmética Digital

Unidad Aritmética Lógica (ALU)

- Está encargada de realizar las operaciones lógicas y aritméticas sobre los datos
- Está conformada de dispositivos electrónicos que permiten el almacenamiento de dígitos binarios y ejecutar operaciones Booleanas
- La ALU se interconecta por señales de control, utiliza 2 registros y emite flags

Representación de Números Enteros

- No se dispone de signos +/- para representar los números
- No se dispone de un punto decimal
- Un número entero queda representado por un conjunto de 0s y 1s
- Por tanto, un dígito ha de ser usado para representar el signo
- Una secuencia de n dígitos binarios se interpreta como un entero A sin signo

$$A = \sum_{i=0}^{n-1} 2^i a_i$$

Representación Signo - Magnitud I

- El bit más significativo de la izquierda (LMSB) se considera el signo
- ullet 0 o positivo
- $1 \rightarrow \mathsf{negativo}$
- Si la palabra tiene *n* dígitos:
 - El n simo bit es el signo
 - Los n-1 bits son la magnitud

$$A = \begin{cases} \sum_{i=0}^{n-2} 2^{i} a_{i} & \text{if } a_{n-1} = 0\\ -\sum_{i=0}^{n-2} 2^{i} a_{i} & \text{if } a_{n-1} = 1 \end{cases}$$

• El 0 tiene una representación doble como 0⁺ y 0⁻

Representación Signo - Magnitud II

$$+18 = 00010010$$

$$-18 = 10010010$$

Definition (Tarea)

Escribir una función en python que permita dado un número binario de 8 bits obtener su negativo usando el criterio de signo magnitud

Complemento a base disminuída r-1 l

Dado un número A en base r de n dígitos, el complemento a r-1 de A es:

$$(r^{n}-1)-A$$

- Caso Decimal r=10 y r-1=9. Para un número de n digítios se tiene: $(10^n-1)-A$. Donde $(10^n-1)=999\ldots 9\to n$ 9s Ejemplo: El compleneto a nueve de 546700 es 999999-546700=453299
- Caso Binario r=2 y r-1=1, entonces 1111...11-A. El resultado es la inversión del número Ejemplo: Sea A=1011000, el complemento a 1 es 1111111-1011000=0100111

Representación en Complemento a r

El complemento a r de un número A_r de n dígitos es el complemento a $r^n - A$ i.e.

$$r^n - A = (r^n - 1) - A + 1$$

• Caso Binario: Consiste en obtener el complemento a 1 o inversión del número binario y sumar 1

Sistema de Complemento a 2 I

- Utiliza el bit más significativo como signo
- Dispone de una sola representación para el 0
- Si se define un número de n bits como la secuencia $A = a_{n-1}a_{n-2} \dots a_2a_1a_0$, entonces el bit del signo es el dígito a_{n-1} y el número A en complemento a 2 se representa por:

$$A = -2^{n-1}a_{n-1} + \sum_{i=0}^{n-2} 2^i a_i$$

- El rango: -2^{n-1} hasta $2^{n-1} 1$
- Se obtiene de invertir cada bit the la cadena A y luego sumar 1
- Extensión de la longitud en bits: Si el numéro A de n dígitos se ha de representar en m dígitos, donde $m \ge n$ entonces, se añade las posiciones faltantes a la izquierda y se rellenan con el valor del bit del signo original.

9 / 12

Sistema de Complemento a 2 II

- Overflow: se produce cuando al sumar dos números A y B en complemento a 2, el resultado tiene signo opuesto.
- Resta: dados A y B y se desea obtener A B, entonces

$$A - B = A + (-B)$$

Conversión de binario a decimal en complemento a 2

Consiste en aplicar la ecuación de un número en complemento a 2:

\\$-2 ^ \\$	2Ĝ	2Ŝ	2 4	23	22	2Î	2Ô
1	0	0	0	0	0	1	1
-128	0	0	0	0	0	+2	+1

$$A = -2^{n-1}a_{n-1} + \sum_{i=0}^{n-2} 2^i a_i$$

$$A = 1000\,0011_2 = -128 + 2 + 1 = -125$$

Representaciones con Signo

- Los números negativos se representan por su complemento
- En un sistema de numeración binaria (e.g. ALU) se usa el complemento a 2
- Se asume que el 0 en la MSB es positivo

Por ejemplo -9 en una máquina de 8 bits puede representarse como:

Sistema	-9		
Magnitud Signo	10001001		
Complemento 1	11110110		
Complemento 2	11110111		