1

І-ТЕХшироко используется для оформления научной и технической литературы, статей. На вебсайтах при оформлении формул используется І-ТЕХ.
 Примеры сайтов − wikipedia, openedu.ru Также оформление формул в виде І-ТЕХимеется в GeoGebra

Документ в ТеХили I-ТеХпредставляет собой текстовый файл с расширением .tex, который можно открыть любым текстовым редактором. Если не обращать внимание на команды, то текст можно свободно читать. Документы можно оформлять в любой кодировке, однако стандартом сейчас является кодировка utf-8.

Минимальный документ выглядит так:

```
\documentclass{minimal}
\usepackage[utf8]{inputenc}
\usepackage[russian]{babel}
\begin{document}
Приведём выражение для $sin(\alpha + \beta)$ синуса суммы:

$$
sin(\alpha + \beta) = cos(\alpha) \cdot sin(\beta) + sin(\alpha)\cdot cos(\beta)
$$
```

Простейшие правила:

\end{document}

- любое количество пробелов, символов табуляций и единичный символ перевода строки считается за один пробел;
- абзацы отделяются друг от друга пустой строкой;
- в тексте могут встречаться команды, которые начинаются с символа \ backslash;
- команды могут снабжаться параметрами в фигурных скобках {}, и модификаторами [];
- для математических формул используется математическая мода. В тексте математическая мода выделяется с двух сторон знаком \$, выключенная математическая формула выделяется с обеих сторон удвоенными знаками \$\$;
- комментарий в строке начинается с символа %.
- дефис это один знак "-", для тире лучше использовать двойной знак "-" или тройной.

Нумерация формул задается внутри окружения equation:

```
\begin{equation}
\cos(\alpha + \beta) = cos(\alpha) \cdot \cos(\beta) - sin(\alpha)\cdot \sin(\beta)
\end{equation}
\label{equation.first_equation}
```

Выключенная формула с нумерацией выглядит так:

$$\cos(\alpha + \beta) = \cos(\alpha) \cdot \cos(\beta) - \sin(\alpha) \cdot \sin(\beta) \tag{1}$$

На формулу, и на любое окружение, отмеченное командой \label{umm} метки} можно сослаться в любом месте (1) командой \ref{umm метки}

На первой строке загружается класс документа **minimal**. В следующих строках загружаются стилевые файлы, необходимые для руссификации документа.

inputenc – для выбора кодировки текстового файла;

babel – пакет для локализаци.

Сам текст документа набирается внутри окружения document, которое начинается с команды $\mathbf{document}$ и заканчивается конструкцией $\mathbf{document}$.

Чтобы скомпилировать исходный текст и получить документ в формате pdf следует воспользоваться командой pdflatex и затем увидеть полученный результат командой evince:

```
pdflatex <ваш файл>.tex evince <ваш файл>.pdf
```

В OS Linux команда **pdflatex** доступна при установке программ из набора **texlive**, в OS windows распространенный набор **MikTeX**, в MacOS − MacTex. Можно также выбрать специализированный I⁴Т<u>E</u>X-редактор, например, Texmaker или TeXstudio.

Доступны онлайн-сервисы https://www.sharelatex.com и https://www.overleaf.com.

В математической моде нижние и верхние индексы задаются после символов _ и̂, которые действуют только на один последующий символ. Чтобы поместить несколько символов в индекс, нужно поместить их в фигурные скобки. Фигурные скобки ограничивают блок.

Выражение
$$A^{ij}_{bk}$$
 даст A^{ij}_{bk}

В случаях со знаками сумм, интегралов, пределов нужно поместить индексы непосредственно над и под знаками

$$\label{limits_{k=0}^{0}} $$ \left(\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} A_k \right) dk = 0 \right) dk = 0 $$$$

$$\int_{a}^{b} f(t) dt = \Phi(b) - \Phi(a) \stackrel{\text{def}}{=} \Phi(t) \Big|_{t=a}^{t=b}$$

Греческие буквы выглядят как $\setminus +$ английское название буквы:

α	\alpha			
β	\beta			
γ	\gamma	Γ	\Gamma	
δ	\delta	Δ	\Delta	
ζ	\zeta			
ξ	\xi			
ϕ	\phi			
φ	\varphi			
ω	\omega	Ω	\Omega	

Таблицы – не самое сильное место ІАТЕХ:

```
\begin{tabular}{|c|c|c|c|} \hline
1 & 2 & 3 & 4 \\
    \hline
5 & 6 & 7 & 8 \\
    \hline
```

\end{tabular}

1 2 3 4
5 6 7 8

Дать название таблице (1) и метку для ссылки можно в окружениии table

```
\begin{table}[ht]
  \centering
\begin{tabular}{|c|c|c|c|} \hline
  1 & 2 & 3 & 4 \\
  \hline
  5 & 6 & 7 & 8 \\
  \hline
\end{tabular}
\label{table.sample}
\caption{Пример таблицы}
\end{table}
```

1	2	3	4
5	6	7	8

Таблица 1: Пример таблицы

Можно оформить таблицу в книжном стиле. Для этого нужно добавить пакет $\ubel{local_def}$ \upper local_def booktabs \upper \upper local_def booktabs \upper local_def bookta

```
\begin{tabular}{p{6pt}|p{6pt}|p{0.2\linewidth}}
  \toprule
  &\multicolumn{2}{c}{test}\\
  \cmidrule{2-3}
  \rotatebox{90}{\rlap{\small πpax.}} &1&2\\
  \midrule
  4&5&6\\
  \bottomrule
  \end{tabular}
```

рак.			test
шЪ	1	2	
4	5	6	

Оформление систем и совокупностей уравнений и неравенств

\$\$
\left\{
\begin{array}{111}
 x^2 - y & \ge & 0 \\
 3x + 2y & \le & 3 \\
end{array}
\right.
\$\$

$$\begin{cases} x^2 - y & \ge & 0\\ 3x + 2y & \le & 3 \end{cases}$$

Таблица 2: Краткий список символов в математической моде

Tuesting 2. Tiputinin emicen emigerios s matematin tecnon mode							
relational		logic		set		miscellaneous	
symbol	command	symbol	command	symbol	command	symbol	command
=	\equiv	•	\bullet	\cap	\cap	1	\prime
\approx	\arrow	¬	\neg	U	$\setminus \mathrm{cup}$	∞	$\setminus infty$
\propto	\propto	\wedge, \wedge	\wedge,\land	\supset	$\setminus supset$	0	$\backslash \mathrm{circ}$
\simeq	$\setminus simset$	V, V	\vee,\lor	\subset	$\setminus subset$		α
\sim	\sim	\oplus	\oplus	Ø	\varnothing	Δ	\triangle
\neq	\neq	\Rightarrow	\Rightarrow	\in	$\setminus \text{in}$	\cong	\setminus cong
\geq	$\backslash geq$	\Leftrightarrow	\Leftrightarrow	∉	$\setminus \text{notin}$	土	pm
>>	\gg	3	\exists	∋	\ni	=	\mbox{mp}
«	\11	\forall	\forall		$\setminus \operatorname{cdot}$	×	\times

Представления дробей:

$$\rightarrow \frac{1}{1+n^2}$$

```
Подчеркивания: $$ \underbrace{ \frac{1}{1+n^2} } \to \frac{1}{1+n^2} \\ $$ $ элемент последовательности}
```

1.1 Шрифты

Paзмер: tiny, scriptsize, footnotesize, small,normalsize,large,Large,Large,Large,Huge $_{\rm tiny\; scriptsize}$ footnotesize small normalsize large Large large huge Huge

установка размера шрифта:

{\scriptsize scriptsize} {\footnotesize footnotesize} {\small small}

Таблица 3: Семейства шрифтов

семейство	команда	команда переключения	полученный результат
serif (roman) sans serif	$\begin{array}{l} \text{$\setminus$ textrm{Sample Text 0123}$} \\ \text{$\setminus$ textsf{Sample Text 0123}$} \end{array}$	\rmfamily \sffamily	Sample Text 0123 Sample Text 0123
$\begin{array}{c} \text{typewriter} \\ \text{(monospace)} \end{array}$	$\verb texttt{Sample Text 0123} $	\ttfamily	Sample Text 0123

Таблица 4: Стили шрифтов

стили	команда	переключение	альтернативное	полученный результат
medium	\textmd{Sample Text 0123}	\mdseries		Sample Text 0123
bold	$\text{textbf}\{\text{Sample Text 0123}\}\$	bfseries	\bf	Sample Text 0123
upright	\textup{Sample Text 0123}	\upshape		Sample Text 0123
italic	\textit{Sample Text 0123}	\itshape	\it	Sample Text 0123
slanted	$\text{Textsl}\{\text{Sample Text }0123\}$	\slshape	\sl	Sample Text 0123
small caps	\textsc{Sample Text 0123}	\scshape	\sc	Sample Text 0123

1.2 Практическая работа №1: перевод числа из одной системы координат в другую

 $77_{10} = 1001101_2$

Алгоритм перевода десятичного числа в двоичное следующий: Разделим исходное число на 2. Остаток от деления будет последним знаком в искомом двоичном числе. Целую часть (неполное частное) от деления снова поделим

на 2. Остаток от деления будет следующим знаком в искомом двоичном числе. Так будем продолжать до тех пор, пока деление возможно.

Можно воспользоваться делением "столбиком" и соберём остатки от деления в обратном порядке:

Предлагаемый отчет вывыглядит примерно так:

$$\lfloor \frac{77}{2} \rfloor = 38, \quad 77 \bmod 2 = 1;$$

$$\lfloor \frac{38}{2} \rfloor = 19, \quad 38 \bmod 2 = 0;$$

$$\lfloor \frac{19}{2} \rfloor = 9, \quad 19 \bmod 2 = 1;$$

$$\lfloor \frac{9}{2} \rfloor = 4, \quad 9 \bmod 2 = 1;$$

$$\lfloor \frac{4}{2} \rfloor = 2, \quad 4 \bmod 2 = 0;$$

$$\lfloor \frac{2}{2} \rfloor = 1, \quad 2 \bmod 2 = 0;$$

перевод из двоичной системы в десятичную:

$$1001101_2 = 1 \cdot 2^6 + 0 \cdot 2^5 + 0 \cdot 2^4 + 1 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0 = 77_{10}$$

1.3 Геометрические примитивы

Этот вектор начерчен с помощью следующего кода:

```
\begin{tikzpicture}
\draw[thin,->] (0,-0.5) -- (0,4) node[left] {${\scriptstyle Y}$};
\draw[thin,->] (-0.5,0) -- (5,0) node[below] {${\scriptstyle X}$};
% изобразим вектор
\newcommand{\D}{4.6}
\newcommand{\alfa}{30}
\draw[red,-latex] (0,0)--({\D*cos(\alfa)},{\D*sin{\alfa}}) node[above right] {$\vec{V}$};
\draw[thin,blue,dashed] ({\D*cos(\alfa)},{\D*sin{\alfa}})--({\D*cos(\alfa)},0) node[below] +\draw[thin,blue,dashed] ({\D*cos(\alfa)},{\D*sin(\alfa)})--(0,{\D*sin(\alfa)}) node[left] {$\draw[<->,violet] (2.5,0) arc (0:\alfa:2.5) node[midway, above right] {$\alpha$};
\end{tikzpicture}
```

Простое вычерчивание линии от точки с координатами (0,0) до точки с координатами (1,2), где первая координата x — положение точки по горизонтали, возможно с помощью команды:

```
draw (0,0) -- (1,2);
```

Команда должна заканчиваться точкой с запятой.

Относительные координаты можно задать следующим образом:

```
draw (0,0) ++-- (1,2);
```

Команду \draw можно подать один раз на несколько линий:

$$draw (0,0) -- (1,2) (1,1) -- (2,4);$$

или, если линии касаются, то среднюю точку можно написать один раз. Это называется путь (path).

 $draw (0,0) -- (1,2) -- (2,4) node[at start, above right] { f(<math>vec{x}$) };

/ Путь можно оснастить свойствами: цветом, толщиной: very thin, thin, thick, very thick, стилем линии: dashed, loosely dashed, dotted, началом и/или окончанием линии в виде стрелки ->, <->, =>, -latex.

Путь можно снабдить нодой с формулой внутри. Нода может быть сориентирована относительно точки пути: [at start], [midway], [at end], [below left], и далее может быть расположена различным образом относительно этой точки [at end, above right]

Координаты вектора в данном примере вычислялись с помощью параметров: длины вектора и угла, отсчитываемого против часовой стрелки от оси x. Параметры задаются с помощью \newcommand

 $\label{local_problem} $$\operatorname{D}_{4.6} \end{alfa}_{30}$

В тот момент, когда параметры используются, параметры отделяются фигурными скобками, пример: координаты точки ({\D*cos(\alfa)},\D*sin(\alfa)).

1.4 Практическая работа №3. Ковариантные и конравариантые координаты вектора в косоугольной системы координат

1.5 Геометрические примитивы (продолжение)

: объект массы т