

Robustness analysis of 3D convolutional neural network for human hand gesture recognition

Dang-Manh Truong¹, **Huong-Giang Doan**², Thanh-Hai Tran¹, Hai Vu¹ and Thi-Lan Le¹

Multimedia, Information, Communication & Applications UMI 2954

Hanoi University of Science and Technology
1 Dai Co Viet - Hanoi - Vietnam

Outline

- Context
- Related Works
- Proposed framework
- Experimental results
- Conclusion and Discussion

Context

Controlling devices in different view points

→ Very challenge to obtain a invariant dynamic hand gesture recognition of hands on multi-views:

- Complex background
- Non-robust with variable view-points
- Different, non-rigid and small hand shapes
- Require some constraints of datasets
- Current hand posture/gesture recognition approaches:
 - Hand-crafted feature extraction: preferred on small datasets with some specific characteristics
 - Deep learning methods: robust with large dataset

Related works

WxHxN

feature space 100x100xN =10000xN

Hand-crafted features extraction [HuongGiangDoan2017]:

Preferred on small datasets with some specific characteristics

$$Temporal \ \boldsymbol{T_1^{Tr}} = \left\{ \begin{pmatrix} \overline{x_1} \\ \overline{y_1} \\ Y_{1,1} \\ Y_{1,2} \\ Y_{1,3} \end{pmatrix}, \begin{pmatrix} \overline{x_2} \\ \overline{y_2} \\ Y_{2,1} \\ Y_{2,2} \\ Y_{2,3} \end{pmatrix}, \dots, \begin{pmatrix} \overline{x_N} \\ \overline{y_N} \\ Y_{N,1} \\ Y_{N,2} \\ Y_{N,3} \end{pmatrix} \right\}$$

$$200 \left[\begin{array}{c} \overline{x_1} \\ \overline{y_2} \\ \overline{y_2} \\ Y_{2,1} \\ \overline{y_2} \\ Y_{2,2} \\ \overline{y_2} \\ \overline{y_2}$$

200

MICA 2018

Related works

- C3D feature extraction [Tran2015]: 3D convolution kernels can exploit temporal pattern besides spatial information, while eliminating the need for secondary temporal modeling techniques
 - C3D net: uses 3D convolution

Input: a 16-frame clip, each frame of size 128x171

Related works

Two stream C3D [Khong2018]:

- C3D uses only RGB data
- Optical Flow or other stream could be additional information for recognition => two streams C3D (RGB+Optical Flow)
- Two stream C3D architecture:

Both [Tran2015] and [Khong2017] work only on human action recognition (UCF101, HMBD51)

... no evaluation of C3D to hand gestures under different viewpoints

nated

Proposed framework

MICA 2018

- (1) Would C3D, a deep architecture tested on general action recognition datasets, still be suitable for hand gesture recognition where hand has a relatively low spatial resolution and it is the only moving object in the scene?
- (2) The original C3D network has been trained and tested on human action datasets without considering the impact of viewpoints.

Hand segmentation

Pre-processing dynamic hand gesture

MICA 2018

(b)

8

Sampling method

Sampling method used by [Khong2017]

The proposed sampling method

Computing and stacking optical flow

- Manually spotting of gestures from stream
- Computing Optical Flow stream based on [1]
 - Optical flow: characterize movement of pixels between consecutive images

$$I_{\tau}(\mathbf{u}, \mathbf{v}, 2\mathbf{k} - 1) = \mathbf{d}_{\tau+k-1}^{x}(u, \mathbf{v})$$
 $I_{\tau}(\mathbf{u}, \mathbf{v}, 2\mathbf{k}) = \mathbf{d}_{\tau+k-1}^{y}(u, \mathbf{v})$

Two **consecutive** frames and two optical flows in **vertical** and **horizontal** dimensions

Stack Optical Flow as a 3D volume (d_{x,} d_y, 0)

Experimental results

Sub-dataset:

- RGB images from Kinect sensor (640x480)
- Data (5 subjects, 5 gestures on 5 Kinects) is separated following one-leave-out method:
 - ★ 4 subjects for training, 1 subject for testing

Implementation on:

- Mask R-CNN: Open source Github
- ◆ GPU GTX 1080Ti (Vram 12Gb)

Evaluations:

- Transfer learning on hand gesture dataset
- Different view points evaluation
- Late and Early fusion strategies

Dataset

Environment setup:

Five fixed Kinects

Indoor environment

Captured database:

- Showroom MICA Institute HUST
- The defined 12 hand gestures
- Each gesture implements in 3 5 times
- 20 people: 13 males, 8 females

05 gestures5 subjects5 views

Sub-Dataset

- 5 gestures
- 5 subjects
- 5 views

View\Gesture	G ₁	G ₂	G_3	G ₄	G_5
K1	26	22	33	26	23
K3	26	22	33	26	23
K5	26	22	33	26	23

Evaluation procedure

Leave-one-out cross validation and cross-view[Doan2017]

5 subjects (P1,..P5) 3 views (K1, K3, K5) 5 gestures

Cross-view:

- Train: View K_i, subjects {P1,..P5}/{P_i}
- Test: View K_k, subjects P_j

Leave-one-out:

- Train: View K_i, subjects {P1,..P5}/P_i}
- Test: View K_i, subjects P_i

Evaluation metric: $Accuracy = \frac{\sum corrects}{\sum total}$

Transfer learning on hand gesture dataset

Fine tuning on RGB stream

- Initialize RGB-C3D with C3D model pre-trained on Sport1M
- Fine tune
 - ★ Several layers of RGB-C3D using gesture dataset
 - ★ All layers of RGB-C3D using gesture dataset

Kinect 3

FCs only	All layers
64.10%	94.00%

Use fine-tuning of all layers of RGB-C3D for evaluation

Transfer learning on hand gesture dataset

Fine tuning two streams C3D

Fine tuning on RGB stream (all layers)

Different viewpoint & modalities

Train	RGB			Segn	nented	RGB	OF			
Test	K1	K3 K5		K1	K3	K3 K5		K1 K3		
K1	76.27	45.60	50.07	89.97	65.37	54.09	70.98	35.45	39.31	
K3	47.76	93.60	76.04	50.67	99.38	89.84	47.63	95.68	71.51	
K5	30.41	65.77	96.67	42.49	93.29	99.05	38.49	89.47	93.28	
Avr		64.68		76.01			64.64			

- Single view (K3, K5) is good results. K1 gives the worst result:
 - Hands are occluded
 - Or out of camera field of view
 - Movement of the hand is not discriminative
- Background has strong impact on classification result.
- Optical Flow gives competitive performance with RGB

Late and Early fusion performance

Train	OF	-RGB ea	arly	OF-RGB late				
Test	K1	1 K3		K1	K3	K5		
K1	75.67	55.30	47.53	74.10	52.07	45.61		
K3	47.72	94.43	81.12	51.59	94.36	80.07		
K5	36.70	68.17	100.0	41.55	70.83	100.0		
Avr		67.40		67.79				

Could use early or late fusion strategy

Sampling strategies

Train		rame or ran201	•		rando ected		16 key frames [Khong2017]			
Test	K1	K3	K5	K1	K3	K5	K1	K3	K5	
K1	76.27	45.60	50.07	75.59	56.60	41.97	71.15	51.79	33.61	
K3	47.76	93.60	76.04	48.78	95.34	77.45	47.98	95.34	78.79	
K5	30.41	65.77	96.67	36.15	56.25	97.33	38.31	61.51	96.67	
Avr		64.68		65.05			63.90			

Example results (1)

Investigation of the effects of complex background on recognition accuracy

Comparison with hand-segmented RGB frames

If there is a drastic increase in accuracy, we can conclude that the environment does have an effect on recognition accuracy

Use a separate phase to extract regions of interest before recognition

Example results(2)

Ground truth: DOWN Prediction: ON_OFF

This is because the hand is opened before it goes down.

Therefore C3D mistakes this with ON_OFF

Experimental results (3)

Input

Conv3 layer

It is hard to discriminate between ON_OFF, LEFT, and RIGHT in the Conv3 layer. This only happens in K1 view

Experimental results (4)

RGB

Optical flow

Input

Conv3 layer

Here in this example incorporating optical flow Information helps us better recognize the action in the conv3 layer 23

Conclusions and Discussions

Conclusions

- The performance of C3D remains stable under a small change of viewpoint (<= 45 degrees)
- Background has strong impact on classification performance (increased 11.32%)
- Incorporating Optical Flow (OF) channel in a two streams
 C3D gives improved results (increased 3.11%)

Future works

- Evaluate on remaining views (K2, K4)
- Comparison with existing method [Doan2017] (manifold based learning)
- Testing with automatic segmented hand regions.
- Adapting the C3D to be more robust to viewpoint change

THANKS FOR YOUR ATTENTION

Experimental results

Train	RGB		Segmented RGB		OF		OF-RGB early			OF-RGB Late					
Test	K1	K3	K5	K1	K3	K5	K1	K3	K5	K1	K3	K5	K1	K3	K5
K1	76.27	45.60	50.07	89.97	65.37	54.09	70.98	35.45	39.31	75.67	55.30	47.53	74.10	52.07	45.61
K3	47.76	93.60	76.04	50.67	99.38	89.84	47.63	95.68	71.51	47.72	94.43	81.12	51.59	94.36	80.07
K5	30.41	65.77	96.67	42.49	93.29	99.05	38.49	89.47	93.28	36.70	68.17	100.0	41.55	70.83	100.0
Avr	64.68		64.68 76.01		64.64		67.40			67.79					

- Single view (K3, K5) is good results. K1 gives the worst result:
 - Hands are occluded
 - Or out of camera field of view
 - Movement of the hand is not discriminative
- Background has strong impact on classification result.
- Optical Flow gives competitive performance with RGB
- Combined RGB and OF can boost performance

