organic compounds

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

2-Phenoxy-1,2,4-triazolo[1,5-a]quinazol-in-5(4*H*)-one

Rashad Al-Salahi, ^a Lolak Nabih, ^b Mohamed Al-Omar ^a and Seik Weng Ng^{c,d}*

^aDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, ^bDepartment of Chemistry, Institute of Pharmacy, University of Hamburg, Bundesstrasse 45, 20146 Hamburg, Germany, ^cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and ^dChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia

Correspondence e-mail: seikweng@um.edu.my

Received 10 May 2012; accepted 14 May 2012

Key indicators: single-crystal X-ray study; T = 294 K; mean $\sigma(C-C) = 0.002$ Å; R factor = 0.035; wR factor = 0.103; data-to-parameter ratio = 13.2.

The triazoloquinazole ring system in the title compound, $C_{15}H_{10}N_4O_2$ is approximately planar (r.m.s. deviation = 0.035 Å). The phenyl ring of the phenoxy substitutent is aligned at 59.3 (1)° with respect to this ring system. In the crystal, two molecules are linked about a center of inversion by a pair of $N-H\cdots O$ hydrogen bonds, generating a dimer.

Related literature

The synthesis was based on theat of a similar compound; see: Al-Salahi & Geffken (2011).

Experimental

Crystal data C₁₅H₁₀N₄O₂

 $M_r = 278.27$

Triclinic, $P\overline{1}$ $V = 619.66 (5) Å^3$ Z = 2 b = 8.4328 (4) Å Cu Kα radiation c = 13.4322 (7) Å $μ = 0.86 \text{ mm}^{-1}$ T = 294 K β = 86.623 (4)° $0.30 \times 0.30 \times 0.10 \text{ mm}$ γ = 89.284 (4)°

Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) $T_{\min} = 0.783, T_{\max} = 0.919$ 10219 measured reflections 2570 independent reflections 2408 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.021$

Refinement

 $\begin{array}{ll} R[F^2>2\sigma(F^2)]=0.035 & \text{H atoms treated by a mixture of} \\ wR(F^2)=0.103 & \text{independent and constrained} \\ S=1.03 & \text{refinement} \\ 2570 \text{ reflections} & \Delta\rho_{\max}=0.17 \text{ e Å}^{-3} \\ 194 \text{ parameters} & \Delta\rho_{\min}=-0.17 \text{ e Å}^{-3} \end{array}$

Table 1 Hydrogen-bond geometry (Å, °).

$D-H\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-\mathrm{H}\cdots A$	
$N1-H1\cdots O1^{i}$	0.88 (1)	1.90 (1)	2.775 (1)	174 (1)	
Symmetry code: (i) $-x + 2, -y + 1, -z + 1$.					

Data collection: *CrysAlis PRO* (Agilent, 2012); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis PRO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2010).

We thank the Research Center of the College of Pharmacy College and Deanship of Scientific Research of King Saud University, and the Ministry of Higher Education of Malaysia (grant No. UM.C/HIR/MOHE/SC/12) for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5917).

References

Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England. Al-Salahi, R. & Geffken, D. (2011). Synth. Commun. 41, 3512–3523. Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Acta Cryst. (2012). E68, o1808 [doi:10.1107/S1600536812021782]

2-Phenoxy-1,2,4-triazolo[1,5-a]quinazolin-5(4H)-one

Rashad Al-Salahi, Lolak Nabih, Mohamed Al-Omar and Seik Weng Ng

Comment

The procedure for the synthesis of 2-(methylsulfanyl)-[1,2,4]triazolo[1,5-a]quinazolin-5-one uses dimethyl N-cyanodithioimidocarbonate as one of the reactants (Al-Salahi & Geffken, 2011). The title phenoxy-substituted analog (Scheme I) is obtained with diphenyl N-cyanodithioimidocarbonate instead. The triazoloquinazole fused-ring system of $C_{15}H_{10}N_4O_2$ is planar. The phenyl ring of the phenoxy substitutent is aligned at 59.3 (1) $^{\circ}$ with respect to this ring system. Two molecules are linked about a center of inversion by N-H···O hydrogen bonds to generate a dimer (Table 1).

Experimental

Under ice-cold conditions, 2-hydrazinobenzoic acid (10 mmol, 1.52 g) was added to a solution of diphenyl *N*-cyano-dithioimidocarbonate (10 mmol, 2.38 g) in ethanol (20 ml). Triethylamine (30 mmol, 3.03 g) was added. The reaction mixture was stirred overnight at room temperature. Concentrated hydrochloric acid was added; the acidified mixture for heated for an hour. The mixture was poured into ice water; the solid that formed was collected and recrystallized from ethanol to give colorless crystals of 2-phenoxy-[1,2,4]triazolo[1,5-a]quinazolin-5-one. The procedure was based on that reported for 2-(methylsulfanyl)-[1,2,4]triazolo[1,5-a]quinazolin-5-one (Al-Salahi & Geffken, 2011).

Refinement

All H-atom were located in a difference Fourier map. Carbon-bound H-atoms were placed in calculated positions [C–H 0.93 Å, U_{iso} (H) 1.2 U_{eq} (C)] and were included in the refinement in the riding model approximation.

The amino H-atom was refined isotropically with a distance restraint of N-H 0.88±0.01 Å.

Computing details

Data collection: *CrysAlis PRO* (Agilent, 2012); cell refinement: *CrysAlis PRO* (Agilent, 2012); data reduction: *CrysAlis PRO* (Agilent, 2012); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2010).

Figure 1

Anitropic displacement ellipsoid plot (Barbour, 2001) of C₁₅H₁₀N₄O₂ at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

2-Phenoxy-1,2,4-triazolo[1,5-a]quinazolin-5(4H)-one

2	
$C_{15}H_{10}N_4O_2$	Z = 2
$M_r = 278.27$	F(000) = 288
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.491 {\rm Mg m}^{-3}$
Hall symbol: -P 1	Cu $K\alpha$ radiation, $\lambda = 1.54184$ Å
a = 5.6985 (2) Å	Cell parameters from 6342 reflections
b = 8.4328 (4) Å	$\theta = 5.5 - 76.8^{\circ}$
c = 13.4322 (7) Å	$\mu = 0.86 \; \text{mm}^{-1}$
$\alpha = 74.087 (4)^{\circ}$	T = 294 K
$\beta = 86.623 \ (4)^{\circ}$	Prism, colorless
$\gamma = 89.284 (4)^{\circ}$	$0.30 \times 0.30 \times 0.10 \text{ mm}$
$V = 619.66 (5) \text{ Å}^3$	

D

$V = 619.66 (5) \text{ Å}^3$	
Data collection	
Agilent SuperNova Dual diffractometer with an Atlas detector Radiation source: SuperNova (Cu) X-ray Source Mirror monochromator Detector resolution: 10.4041 pixels mm ⁻¹ ω scan Absorption correction: multi-scan	$T_{\text{min}} = 0.783$, $T_{\text{max}} = 0.919$ 10219 measured reflections 2570 independent reflections 2408 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.021$ $\theta_{\text{max}} = 77.0^{\circ}$, $\theta_{\text{min}} = 5.5^{\circ}$ $h = -7 \rightarrow 7$ $k = -10 \rightarrow 10$
(CrysAlis PRO; Agilent, 2012)	$l = -16 \rightarrow 16$

sup-2 Acta Cryst. (2012). E68, o1808

Refinement

Refinement on F^2

Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.035$

 $wR(F^2) = 0.103$

S = 1.03

2570 reflections

194 parameters

1 restraint

Primary atom site location: structure-invariant

direct methods

Secondary atom site location: difference Fourier

Hydrogen site location: inferred from

neighbouring sites

H atoms treated by a mixture of independent

and constrained refinement

 $w = 1/[\sigma^2(F_0^2) + (0.0596P)^2 + 0.101P]$

where $P = (F_0^2 + 2F_c^2)/3$

 $(\Delta/\sigma)_{\text{max}} = 0.001$

 $\Delta \rho_{\text{max}} = 0.17 \text{ e Å}^{-3}$

 $\Delta \rho_{\min} = -0.17 \text{ e Å}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	X	у	Z	$U_{ m iso}$ */ $U_{ m eq}$
01	0.99321 (13)	0.65595 (10)	0.38673 (6)	0.0434 (2)
O2	0.05541 (15)	0.63656 (11)	0.73718 (7)	0.0575 (3)
N1	0.72791 (14)	0.61117 (11)	0.52356 (7)	0.0368 (2)
H1	0.815(2)	0.5287 (14)	0.5565 (10)	0.052 (4)*
N2	0.39197 (14)	0.77669 (10)	0.51740 (7)	0.0357 (2)
N3	0.19077 (15)	0.78851 (11)	0.57764 (7)	0.0407 (2)
N4	0.42432 (15)	0.57551 (11)	0.66105 (7)	0.0392 (2)
C1	0.80686 (17)	0.69434 (12)	0.42497 (8)	0.0357 (2)
C2	0.65586 (18)	0.82833 (13)	0.36907 (8)	0.0371 (2)
C3	0.7175 (2)	0.91440 (15)	0.26696 (9)	0.0478 (3)
H3A	0.8541	0.8874	0.2340	0.057*
C4	0.5757 (2)	1.03986 (17)	0.21472 (10)	0.0559 (3)
H4	0.6164	1.0970	0.1463	0.067*
C5	0.3716 (2)	1.08128 (15)	0.26419 (10)	0.0509(3)
H5	0.2790	1.1674	0.2285	0.061*
C6	0.30459 (19)	0.99747 (14)	0.36443 (9)	0.0423 (3)
Н6	0.1673	1.0250	0.3967	0.051*
C7	0.44778 (18)	0.86996 (13)	0.41660 (8)	0.0354 (2)
C8	0.52273 (17)	0.64985 (12)	0.56919 (8)	0.0342 (2)
C9	0.22415 (18)	0.66579 (14)	0.66014 (8)	0.0400 (2)
C10	0.0660(2)	0.49527 (15)	0.82080 (9)	0.0453 (3)
C11	-0.1218(2)	0.38863 (17)	0.83833 (10)	0.0524 (3)
H11	-0.2437	0.4075	0.7934	0.063*
C12	-0.1261(3)	0.25285 (19)	0.92387 (11)	0.0621 (4)
H12	-0.2514	0.1790	0.9366	0.075*
C13	0.0546 (3)	0.22606 (19)	0.99069 (11)	0.0664 (4)
H13	0.0512	0.1346	1.0482	0.080*
C14	0.2391 (3)	0.3353 (2)	0.97164 (11)	0.0663 (4)
H14	0.3603	0.3175	1.0169	0.080*
C15	0.2473 (2)	0.47089 (19)	0.88648 (11)	0.0567 (3)
H15	0.3729	0.5445	0.8736	0.068*

Acta Cryst. (2012). E**68**, o1808

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	0.0337 (4)	0.0480(4)	0.0435 (4)	0.0121 (3)	0.0022(3)	-0.0057 (3)
O2	0.0464 (5)	0.0600 (5)	0.0506 (5)	0.0199 (4)	0.0148 (4)	0.0065 (4)
N1	0.0287 (4)	0.0391 (5)	0.0391 (5)	0.0091(3)	-0.0027(3)	-0.0053 (4)
N2	0.0288 (4)	0.0379 (5)	0.0377 (5)	0.0075(3)	-0.0014(3)	-0.0064(4)
N3	0.0319 (4)	0.0454 (5)	0.0410 (5)	0.0097 (4)	0.0023 (4)	-0.0066(4)
N4	0.0330(4)	0.0414 (5)	0.0391 (5)	0.0073(3)	0.0000 (4)	-0.0048(4)
C1	0.0299 (5)	0.0376 (5)	0.0387 (5)	0.0045 (4)	-0.0023(4)	-0.0091 (4)
C2	0.0323 (5)	0.0376 (5)	0.0395 (5)	0.0055 (4)	-0.0028(4)	-0.0076(4)
C3	0.0434 (6)	0.0502(6)	0.0433 (6)	0.0114 (5)	0.0036 (5)	-0.0038(5)
C4	0.0558 (7)	0.0581 (7)	0.0420(6)	0.0153 (6)	0.0037 (5)	0.0044 (5)
C5	0.0482 (7)	0.0486 (6)	0.0481 (7)	0.0159 (5)	-0.0059(5)	0.0000 (5)
C6	0.0356 (5)	0.0414 (6)	0.0461 (6)	0.0098 (4)	-0.0036(4)	-0.0058(5)
C7	0.0313 (5)	0.0357 (5)	0.0379 (5)	0.0035 (4)	-0.0036(4)	-0.0077(4)
C8	0.0280 (5)	0.0360 (5)	0.0377 (5)	0.0052 (4)	-0.0042(4)	-0.0085(4)
C9	0.0322 (5)	0.0442 (6)	0.0401 (5)	0.0066 (4)	0.0025 (4)	-0.0069(4)
C10	0.0416 (6)	0.0515 (6)	0.0373 (6)	0.0114 (5)	0.0062 (4)	-0.0053(5)
C11	0.0428 (6)	0.0679 (8)	0.0431 (6)	0.0044 (5)	0.0020 (5)	-0.0104 (6)
C12	0.0593 (8)	0.0625 (8)	0.0578 (8)	-0.0047(6)	0.0123 (6)	-0.0082 (6)
C13	0.0724 (9)	0.0666 (9)	0.0466 (7)	0.0142 (7)	0.0078 (6)	0.0043 (6)
C14	0.0580(8)	0.0876 (11)	0.0464 (7)	0.0160(7)	-0.0100(6)	-0.0061 (7)
C15	0.0468 (7)	0.0675 (8)	0.0525 (7)	0.0017 (6)	-0.0024 (5)	-0.0112 (6)

Geometric parameters (Å, °)

O1—C1	1.2307 (12)	C4—C5	1.3938 (17)
O2—C9	1.3435 (13)	C4—H4	0.9300
O2—C10	1.3990 (14)	C5—C6	1.3721 (17)
N1—C8	1.3656 (13)	C5—H5	0.9300
N1—C1	1.3699 (13)	C6—C7	1.3947 (14)
N1—H1	0.878 (9)	C6—H6	0.9300
N2—C8	1.3477 (12)	C10—C15	1.3753 (18)
N2—N3	1.3824 (12)	C10—C11	1.3738 (18)
N2—C7	1.3874 (14)	C11—C12	1.3813 (19)
N3—C9	1.3139 (14)	C11—H11	0.9300
N4—C8	1.3164 (14)	C12—C13	1.382 (2)
N4—C9	1.3622 (13)	C12—H12	0.9300
C1—C2	1.4722 (14)	C13—C14	1.372 (2)
C2—C3	1.3910 (16)	C13—H13	0.9300
C2—C7	1.4000 (14)	C14—C15	1.377 (2)
C3—C4	1.3794 (17)	C14—H14	0.9300
C3—H3A	0.9300	C15—H15	0.9300
C9—O2—C10	119.95 (9)	N2—C7—C6	122.26 (10)
C8—N1—C1	122.69 (8)	N2—C7—C2	116.34 (9)
C8—N1—H1	120.6 (9)	C6—C7—C2	121.40 (10)
C1—N1—H1	116.7 (9)	N4—C8—N2	111.92 (9)
C8—N2—N3	109.16 (8)	N4—C8—N1	128.29 (9)

C8—N2—C7	123.88 (9)	N2—C8—N1	119.77 (9)
N3—N2—C7	126.79 (8)	N3—C9—O2	117.36 (9)
C9—N3—N2	100.32 (8)	N3—C9—N4	118.04 (9)
C8—N4—C9	100.54 (8)	O2—C9—N4	124.59 (10)
O1—C1—N1	120.70 (9)	C15—C10—C11	121.75 (12)
O1—C1—C2	123.08 (10)	C15—C10—O2	121.40 (12)
N1—C1—C2	116.22 (9)	C11—C10—O2	116.68 (11)
C3—C2—C7	118.94 (10)	C10—C11—C12	118.73 (12)
C3—C2—C1	120.02 (10)	C10—C11—H11	120.6
C7—C2—C1	121.04 (10)	C12—C11—H11	120.6
C4—C3—C2	119.93 (11)	C11—C12—C13	120.38 (14)
C4—C3—H3A	120.0	C11—C12—H12	119.8
C2—C3—H3A	120.0	C13—C12—H12	119.8
C3—C4—C5	120.17 (12)	C14—C13—C12	119.61 (13)
C3—C4—C3 C3—C4—H4	119.9	C14—C13—C12 C14—C13—H13	120.2
C5—C4—H4			120.2
	119.9	C12—C13—H13	
C6—C5—C4	121.30 (11)	C13—C14—C15	120.89 (13)
C6—C5—H5	119.4	C13—C14—H14	119.6
C4—C5—H5	119.4	C15—C14—H14	119.6
C5—C6—C7	118.26 (11)	C10—C15—C14	118.62 (13)
C5—C6—H6	120.9	C10—C15—H15	120.7
C7—C6—H6	120.9	C14—C15—H15	120.7
C8—N2—N3—C9	0.14 (11)	C9—N4—C8—N1	-177.91 (10)
C7—N2—N3—C9	175.59 (10)	N3—N2—C8—N4	-0.50(12)
C8—N1—C1—O1	179.78 (9)	C7—N2—C8—N4	-176.12(9)
C8—N1—C1—C2	-0.77(15)	N3—N2—C8—N1	178.16 (8)
O1—C1—C2—C3	2.27 (17)	C7—N2—C8—N1	2.54 (16)
N1—C1—C2—C3	-177.17 (10)	C1—N1—C8—N4	177.01 (10)
O1—C1—C2—C7	-178.59(10)	C1—N1—C8—N2	-1.40(15)
N1—C1—C2—C7	1.98 (15)	N2—N3—C9—O2	-178.60(10)
C7—C2—C3—C4	0.81 (19)	N2—N3—C9—N4	0.27 (13)
C1—C2—C3—C4	179.98 (12)	C10—O2—C9—N3	171.70 (11)
C2—C3—C4—C5	0.4 (2)	C10—O2—C9—N4	-7.09 (18)
C3—C4—C5—C6	-1.2 (2)	C8—N4—C9—N3	-0.55 (13)
C4—C5—C6—C7	0.7 (2)	C8—N4—C9—O2	178.22 (11)
C8—N2—C7—C6	178.15 (10)	C9—O2—C10—C15	63.17 (17)
N3—N2—C7—C6	3.32 (17)	C9—O2—C10—C11	-121.42 (12)
C8—N2—C7—C2	-1.29 (15)	C15—C10—C11—C12	-0.6 (2)
	` '		-0.0 (2) -175.96 (11)
N3—N2—C7—C2	-176.12 (9)	O2—C10—C11—C12	
C5—C6—C7—N2	-178.86 (10)	C10—C11—C12—C13	0.5 (2)
C5—C6—C7—C2	0.55 (17)	C11—C12—C13—C14	0.0 (2)
C3—C2—C7—N2	178.15 (9)	C12—C13—C14—C15	-0.3 (2)
C1—C2—C7—N2	-1.00 (15)	C11—C10—C15—C14	0.2 (2)
C3—C2—C7—C6	-1.29 (17)	O2—C10—C15—C14	175.40 (12)
C1—C2—C7—C6	179.55 (10)	C13—C14—C15—C10	0.2 (2)
C9—N4—C8—N2	0.60 (12)		

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	<i>D</i> —H	$H\cdots A$	D··· A	D— H ··· A
N1—H1···O1 ⁱ	0.88 (1)	1.90(1)	2.775 (1)	174 (1)

Symmetry code: (i) -x+2, -y+1, -z+1.