Microbiome workshop – data generation and processing

September 2024

Microbiome science - from sample to data

Microbiome science - from sample to data

16S rRNA gene amplicon sequencing

shotgun metagenomics

16S rRNA gene amplicon sequencing

shotgun metagenomics

16S rRNA gene amplicon sequencing

shotgun metagenomics

16S rRNA gene amplicon sequencing

shotgun metagenomics

Full genome information +++

More data +/-

More expensive --

Bias towards high abundant taxa -

Johnson et al. 2019

16S rRNA gene amplicon sequencing

16S rRNA gene: conserved and variable regions

PCR target

Molecular clock = taxon information

Full genome information +++

More data +/-

More expensive --

Bias towards high abundant taxa -

Johnson et al. 2019

What we have: The FastQ format

What we have: The FastQ format

What we want:

https://compgenomr.github.io/book/fasta-and-fastq-formats.html

What we have: The FastQ format

What we want:

How we get there:

https://compgenomr.github.io/book/fasta-and-fastq-formats.html

16S data workflow with

Version: 2024.5 ▼

Table of Contents

- Getting started
- What is QIIME 2?
- Core concepts
- Installing QIIME 2
- Jupyter Book Tutorials
- Tutorials
- Interfaces
- Plugins
- Semantic types
- Community
- Data resources
- Supplementary resources
- User Glossary
- Citing QIIME 2

Quick search

Go

QIIME 2 user documentation

This site is the official user documentation for QIIME™ 2, including installation instructions, tutorials, and other important information. Visit http://qiime.org for information on QIIME™ 1.

Getting started

Check out the getting started guide to begin using QIIME 2.

Table of contents

- · Getting started
- What is QIIME 2?
- Core concepts
 - Data files: QIIME 2 artifacts
 - Data files: visualizations
 - Semantic types
 - Plugins
 - Methods and visualizers
 - Next steps
- Installing QIIME 2
 - Natively installing QIIME 2
 - Installing QIIME 2 using a Virtual Machine
 - Recommendations
 - QIIME 2 2024.5 distributions
- Jupyter Book Tutorials
- Tutorials
 - Overview of QIIME 2 Plugin Workflows
 - QIIME 2 for Experienced Microbiome Researchers

16S data workflow with

Tutorials

- Overview of QIIME 2 Plugin Workflows
- QIIME 2 for Experienced Microbiome Researchers
- "Moving Pictures" tutorial
- "Moving Pictures" tutorial Multiple Interface Edition
- Fecal microbiota transplant (FMT) study: an exercise
- "Atacama soil microbiome" tutorial
- Parkinson's Mouse Tutorial
- Importing data
- Exporting data
- Metadata in QIIME 2
- Filtering data
- Training feature classifiers with q2-feature-classifier
- Evaluating and controlling data quality with q2-quality-control
- Predicting sample metadata values with q2-sample-classifier
- Performing longitudinal and paired sample comparisons with q2-longitudinal
- Identifying and filtering chimeric feature sequences with q2-vsearch
- Alternative methods of read-joining in QIIME 2
- Clustering sequences into OTUs using q2-vsearch
- Utilities in QIIME 2
- Phylogenetic inference with q2-phylogeny

16S data workflow with

Step 1: QC and trimming

Step 1: QC and trimming

Step 1: QC and trimming

Step 1: QC and trimming

Step 2: Error correction

Step 1: QC and trimming

Step 2: Error correction

Step 3: Inference of Amplicon Sequence Variants (ASVs)

Abundance Table

	ASV1	ASV2	ASV3	ASV4
S1	5	10	3	7
S2	5	0	3	0
S3	0	0	4	3

ASV sequences:

>ASV1

>ASV2

ACGCTGGCGGTATGCCTAACACATGCAAGTCGAACGAGGTAGC...

>ASV3

ACGCTAGCGGCAGGCTTAACACATGCAAGTCGAGGGGTAACAG...

>ASV4

Abundance Table

	ASV1	ASV2	ASV3	ASV4
S1	5	10	3	7
S2	5	0	3	0
S3	0	0	4	3

Kingdom Animalia Phylum Chordata Class Mammalia Order Carnivora Family Canidae Genus Vulpes Vulpes vulpes Red fox (Vulpes vulpes)

What is a taxonomy?

ASV sequences:

>ASV1

>ASV2

ACGCTGGCGGTATGCCTAACACATGCAAGTCGAACGAGGTAGC...

>ASV3

ACGCTAGCGGCAGGCTTAACACATGCAAGTCGAGGGGTAACAG...

>ASV4

Abundance Table

	ASV1	ASV2	ASV3	ASV4
S1	5	10	3	7
S2	5	0	3	0
S3	0	0	4	3

ASV sequences:

>ASV1

>ASV2

ACGCTGGCGGTATGCCTAACACATGCAAGTCGAACGAGGTAGC...

>ASV3

ACGCTAGCGGCAGGCTTAACACATGCAAGTCGAGGGGTAACAG...

>ASV4

ACGCTAGCGGCAGGCTTAACACATGCAAGTCGAGGGGTAGTCA...

What is a taxonomy?

Same can be done for microorganisms:

Abundance Table

	ASV1	ASV2	ASV3	ASV4
S1	5	10	3	7
S2	5	0	3	0
S3	0	0	4	3

>ASV1

>ASV2

ACGCTGGCGGTATGCCTAACACATGCAAGTCGAACGAGGTAGC...

>ASV3

ACGCTAGCGGCAGGCTTAACACATGCAAGTCGAGGGGTAACAG...

>ASV4

Abundance Table

	ASV1	ASV2	ASV3	ASV4
S1	5	10	3	7
S2	5	0	3	0
S3	0	0	4	3

Database search

(Naïve Bayesian Classifier)

ASV sequences:

>ASV1

>ASV2

ACGCTGGCGGTATGCCTAACACATGCAAGTCGAACGAGGTAGC...

>ASV3

ACGCTAGCGGCAGGCTTAACACATGCAAGTCGAGGGGTAACAG...

>ASV4

Abundance Table

	ASV1	ASV2	ASV3	ASV4
S1	5	10	3	7
S2	5	0	3	0
S3	0	0	4	3

Database search (Naïve Bayesian Classifier)

ASV sequences:

>ASV1

>ASV2

ACGCTGGCGGTATGCCTAACACATGCAAGTCGAACGAGGTAGC...

>ASV3

ACGCTAGCGGCAGGCTTAACACATGCAAGTCGAGGGGTAACAG...

>ASV4

	Domain	Phylum	Class	Order	Family	Genus
ASV1	Bacteria	Bacillota_C	Negativicutes	Veillonellales	Dialisteraceae	Dialister
ASV2	Bacteria	Bacteroidota	Bacteroidia	Bacteroidales	Bacteroidaceae	Bacteroides
ASV3	Bacteria	Pseudomonadota	Gammaproteo bacteria	Enterobacterales	Enterbacteriaceae	
ASV4	Bacteria	Bacteroidota	Bacteroidia	Bacteroidales	Bacteroidaceae	Prevotella

Microbiome science - from sample to data

Microbiome science - from sample to data to analysis

