(十三) 群论: 群的基本概念 (What are Groups?)

魏恒峰

hfwei@nju.edu.cn

2021年06月03日

A group (G,*) is a set G together with a binary operation * such that the following four group axioms are satisfied:

A group (G, *) is a set G together with a binary operation * such that the following four group axioms are satisfied:

Closure (封闭):

$$\forall a,b \in G.\ a*b \in G$$

A group (G, *) is a set G together with a binary operation * such that the following four group axioms are satisfied:

Closure (封闭):

$$\forall a, b \in G. \ a * b \in G$$

Associativity (结合律):

$$\forall a, b, c \in G. \ (a*b)*c = a*(b*c)$$

A group (G, *) is a set G together with a binary operation * such that the following four group axioms are satisfied:

Closure (封闭):

$$\forall a, b \in G. \ a * b \in G$$

Associativity (结合律):

$$\forall a,b,c \in G. \; (a*b)*c = a*(b*c)$$

Identity (单位元):

$$\exists e \in G. \ \forall a \in G. \ e * a = a * e = a$$

A group (G, *) is a set G together with a binary operation * such that the following four group axioms are satisfied:

Closure (封闭):

$$\forall a, b \in G. \ a * b \in G$$

Associativity (结合律):

$$\forall a,b,c \in G. \ (a*b)*c = a*(b*c)$$

Identity (单位元):

$$\exists e \in G. \ \forall a \in G. \ e * a = a * e = a$$

Inverse (\not i \vec{x}): Let e be the identity of G.

$$\forall a \in G. \ \exists b \in G. \ a * b = b * a = e$$

The inverse of a is denoted a^{-1} .

Definition (Commutative Group (交换群); Abelian Group (阿贝尔群))

Let (G, *) be a group. If * is commutative,

$$\forall a, b \in G. \ a * b = b * a,$$

then (G, *) is a commutative group.

$$(\mathbb{Z},+)$$

$$(\mathbb{Z},+)$$

$$(\mathbb{Q}\setminus\{0\},\times)$$

$$(\mathbb{Z},+)$$

$$(\mathbb{Q}\setminus\{0\},\times)$$

$$(1, -1, \mathbf{i}, -\mathbf{i})$$

Group of n-th Roots of Unity (n 次单位根群)

$$U_n = \{ z \in \mathbb{C} \mid z^n = 1 \}$$
$$= \{ \cos \frac{2k\pi}{n} + \mathbf{i} \sin \frac{2k\pi}{n} \mid k = 0, 1, \dots, n - 1 \}$$

Group of n-th Roots of Unity (n 次单位根群)

$$U_n = \{ z \in \mathbb{C} \mid z^n = 1 \}$$
$$= \{ \cos \frac{2k\pi}{n} + \mathbf{i} \sin \frac{2k\pi}{n} \mid k = 0, 1, \dots, n - 1 \}$$

Quaternion Group (四元数群)

$$(1, i, j, k, -1, -i, -j, -k)$$

×	е	ē	i	ī	j	j	k	k
е	е	e	i	ī	j	j	k	k
e	e	е	ī	i	j	j	k	k
i	i	ī	e	е	k	k	j	j
ī	ī	i	е	e	k	k	j	j
j	j	j	k	k	e	е	i	ī
j	j	j	k	k	е	e	ī	i
k	k	k	j	j	ī	i	e	е
k	k	k	j	j	i	ī	е	e

Cayley Table

$$i^2 = j^2 = k^2 = 1$$
 $ij = k, ji = -k, jk = i, kj = -i, ki = j, ik = -j$

Let G be a group.

(1) The identity is unique.

- (1) The identity is unique.
- (2) The inverse of each element is unique.

- (1) The identity is unique.
- (2) The inverse of each element is unique.
- (3) $\forall a \in G. (a^{-1})^{-1} = a.$

- (1) The identity is unique.
- (2) The inverse of each element is unique.
- (3) $\forall a \in G. (a^{-1})^{-1} = a.$
- (4) $\forall a, b \in G. (ab)^{-1} = b^{-1}a^{-1}.$

- (1) The identity is unique.
- (2) The inverse of each element is unique.
- (3) $\forall a \in G. (a^{-1})^{-1} = a.$
- (4) $\forall a, b \in G. (ab)^{-1} = b^{-1}a^{-1}.$
- (5) $\forall a, b, c \in G$. $(ab = ac \implies b = c) \land (ba = ca \implies b = c)$.

- (1) The identity is unique.
- (2) The inverse of each element is unique.
- (3) $\forall a \in G. (a^{-1})^{-1} = a.$
- (4) $\forall a, b \in G. (ab)^{-1} = b^{-1}a^{-1}.$
- (5) $\forall a, b, c \in G$. $(ab = ac \implies b = c) \land (ba = ca \implies b = c)$.
- (6) $\forall a, b \in G. \exists ! x \in G. ax = b \land ya = b.$

Additive Group of Integers Modulo m (模 m 剩余类加群)

$$(\mathbb{Z}_m = \{0, 1, \dots, m-1\}, +_m)$$

Additive Group of Integers Modulo m (模 m 剩余类加群)

$$(\mathbb{Z}_m = \{0, 1, \dots, m-1\}, +_m)$$

$$(\mathbb{Z}_6 = \{0, 1, 2, 3, 4, 5\}, \times_6)$$

$$U(m) = \{ a \in \mathbb{Z}_m \mid (a, m) = 1 \}$$

$$U(m) = \{ a \in \mathbb{Z}_m \mid (a, m) = 1 \}$$

$$(a,b) = d \implies \exists u, v \in \mathbb{Z}. \ au + bv = d$$

$$U(m) = \{ a \in \mathbb{Z}_m \mid (a, m) = 1 \}$$

$$(a,b) = d \implies \exists u, v \in \mathbb{Z}. \ au + bv = d$$

$$(a,m) = 1 \implies \exists u, v \in \mathbb{Z}. \ au + mv = 1$$

$$U(m) = \{ a \in \mathbb{Z}_m \mid (a, m) = 1 \}$$

$$(a,b) = d \implies \exists u, v \in \mathbb{Z}. \ au + bv = d$$

$$(a,m) = 1 \implies \exists u, v \in \mathbb{Z}. \ au + mv = 1$$

$$a^{-1} = u$$

$$U(m) = \{ a \in \mathbb{Z}_m \mid (a, m) = 1 \}$$

$$(a,b) = d \implies \exists u, v \in \mathbb{Z}. \ au + bv = d$$

$$(a,m) = 1 \implies \exists u, v \in \mathbb{Z}. \ au + mv = 1$$

$$a^{-1} = u$$

$$(u,m)=1$$

$$U(m) = \{ a \in \mathbb{Z}_m \mid (a, m) = 1 \}$$

$$(a,b) = d \implies \exists u, v \in \mathbb{Z}. \ au + bv = d$$

$$(a,m) = 1 \implies \exists u, v \in \mathbb{Z}. \ au + mv = 1$$

$$a^{-1} = u$$

$$(u,m) = 1$$
 $ua = au = au + mv = 1 \mod m$

When p is a prime,

$$\mathbb{Z}_p^* \triangleq U(p) = \{1, 2, \dots, p-1\}$$

$$U(m) = \{ a \in \mathbb{Z}_m \mid (a, m) = 1 \}$$

$$U(m) = \{ a \in \mathbb{Z}_m \mid (a, m) = 1 \}$$

$$\big|U(m)\big|=\varphi(m)$$

$$U(m) = \{ a \in \mathbb{Z}_m \mid (a, m) = 1 \}$$

$$|U(m)| = \varphi(m)$$

Definition (Euler's Totient Function (1763))

$$\varphi(m) = n \prod_{p|n \ \land \ \text{pis a prime}} \left(1 - \frac{1}{p}\right)$$

$$U(m) = \{ a \in \mathbb{Z}_m \mid (a, m) = 1 \}$$

$$|U(m)| = \varphi(m)$$

Definition (Euler's Totient Function (1763))

$$\varphi(m) = n \prod_{p|n \ \land \ \text{pis a prime}} \left(1 - \frac{1}{p}\right)$$

$$\varphi(20) = 20(1 - \frac{1}{2})(1 - \frac{1}{5}) = 8$$

$$U(m) = \{ a \in \mathbb{Z}_m \mid (a, m) = 1 \}$$

$$|U(m)| = \varphi(m)$$

Definition (Euler's Totient Function (1763))

$$\varphi(m) = n \prod_{p|n \ \land \ \text{pis a prime}} \left(1 - \frac{1}{p}\right)$$

$$\varphi(20) = 20(1 - \frac{1}{2})(1 - \frac{1}{5}) = 8$$

$$U(20) = \{1, 3, 7, 9, 11, 13, 17, 19\}$$

Let G be an abelian group of order n.

$$\forall a \in G. \ a^n = e.$$

Let G be an abelian group of order n.

$$\forall a \in G. \ a^n = e.$$

$$G = \{a_1, a_2, \dots, a_n\}$$

$$\forall a \in G. \ a^n = e.$$

$$G = \{a_1, a_2, \dots, a_n\}$$

$$aG \triangleq \{aa_1, aa_2, \dots, aa_n\} = G$$

$$\forall a \in G. \ a^n = e.$$

$$G = \{a_1, a_2, \dots, a_n\}$$

$$aG \triangleq \{aa_1, aa_2, \dots, aa_n\} = G$$

$$\prod_{i=1}^{n} (aa_i) = a_1 \dots a_n$$

$$\forall a \in G. \ a^n = e.$$

$$G = \{a_1, a_2, \dots, a_n\}$$

$$aG \triangleq \{aa_1, aa_2, \dots, aa_n\} = G$$

$$\prod_{i=1}^{n} (aa_i) = a_1 \dots a_n$$

$$a^n a_1 \dots a_n = a_1 \dots a_n$$

$$\forall a \in G. \ a^n = e.$$

$$G = \{a_1, a_2, \dots, a_n\}$$

$$aG \triangleq \{aa_1, aa_2, \dots, aa_n\} = G$$

$$\prod_{i=1}^{n} (aa_i) = a_1 \dots a_n$$

$$a^n a_1 \dots a_n = a_1 \dots a_n \implies a^n = e$$

Let $m \in \mathbb{Z}^+$ and $a \in \mathbb{Z}$. If (a, m) = 1, then

$$a^{\varphi(m)} \equiv 1 \mod m$$

Let
$$m \in \mathbb{Z}^+$$
 and $a \in \mathbb{Z}$. If $(a, m) = 1$, then

$$a^{\varphi(m)} \equiv 1 \mod m$$

 $7^{222} \mod 10$

Let
$$m \in \mathbb{Z}^+$$
 and $a \in \mathbb{Z}$. If $(a, m) = 1$, then

$$a^{\varphi(m)} \equiv 1 \mod m$$

$$7^{222} \mod 10$$

$$(7,10) = 1$$
 $\varphi(10) = 4$

Let $m \in \mathbb{Z}^+$ and $a \in \mathbb{Z}$. If (a, m) = 1, then

$$a^{\varphi(m)} \equiv 1 \mod m$$

$$7^{222} \mod 10$$

$$(7,10) = 1$$
 $\varphi(10) = 4$

$$7^4 \equiv 1 \mod 10$$

Let $m \in \mathbb{Z}^+$ and $a \in \mathbb{Z}$. If (a, m) = 1, then

$$a^{\varphi(m)} \equiv 1 \mod m$$

 7^{222} $\mod 10$

$$(7,10) = 1$$
 $\varphi(10) = 4$

$$7^4 \equiv 1 \mod 10$$

$$7^{222} \equiv 7^{4 \times 55 + 2} \equiv 7^2 \equiv 9 \mod 10$$

Let
$$m \in \mathbb{Z}^+$$
 and $a \in \mathbb{Z}$. If $(a, m) = 1$, then

$$a^{\varphi(m)} \equiv 1 \mod m$$

Let
$$m \in \mathbb{Z}^+$$
 and $a \in \mathbb{Z}$. If $(a, m) = 1$, then

$$a^{\varphi(m)} \equiv 1 \mod m$$

$$U_m = \{ a \in \mathbb{Z}_m \mid (a, m) = 1 \}$$

Let
$$m \in \mathbb{Z}^+$$
 and $a \in \mathbb{Z}$. If $(a, m) = 1$, then

$$a^{\varphi(m)} \equiv 1 \mod m$$

$$U_m = \{ a \in \mathbb{Z}_m \mid (a, m) = 1 \}$$

$$(a,m)=1 \implies a \in U_m$$

Let
$$m \in \mathbb{Z}^+$$
 and $a \in \mathbb{Z}$. If $(a, m) = 1$, then

$$a^{\varphi(m)} \equiv 1 \mod m$$

$$U_m = \{ a \in \mathbb{Z}_m \mid (a, m) = 1 \}$$
$$(a, m) = 1 \implies a \in U_m$$
$$a^{\varphi(m)} \equiv 1 \mod m$$

Theorem (Fermat's Little Theorem (1640))

Let p be a prime. Then for any $a \in \mathbb{Z}^+$,

$$a^{p-1} \equiv 1 \mod p$$

Theorem (Fermat's Little Theorem (1640))

Let p be a prime. Then for any $a \in \mathbb{Z}^+$,

$$a^{p-1} \equiv 1 \mod p$$

$$\varphi(p) = p - 1$$

permutation

Definition (Subgroup (子群))

Let (G, *) be a group and $\emptyset \neq H \subseteq G$.

If (H, *) is a group, then we call H a subgroup of G, denoted $H \leq G$.

18/39

Definition (Subgroup (子群))

Let (G, *) be a group and $\emptyset \neq H \subseteq G$.

If (H, *) is a group, then we call H a subgroup of G, denoted $H \leq G$.

 $H = G, H = \{e\}$ are two trivial (平凡) subgroups.

Definition (Subgroup (子群))

Let (G,*) be a group and $\emptyset \neq H \subseteq G$.

If (H, *) is a group, then we call H a subgroup of G, denoted $H \leq G$.

 $H = G, H = \{e\}$ are two trivial (平凡) subgroups.

If $H \subset G$, then H is a proper subgroup (真子群).

$$(H = \{mz \mid z \in \mathbb{Z}\}, +) \le (\mathbb{Z}, +)$$

$$(H = \{ mz \mid z \in \mathbb{Z} \}, +) \le (\mathbb{Z}, +)$$

$$H = \{1,2,4\} \leq G = \mathbb{Z}_7^* = \{1,2,3,4,5,6\}$$

Suppose that $H \leq G$.

(1) The identity of H is the same with that of G.

$$e_H = e_G$$

(2) The inversion of a in H is the same with that in G.

$$\forall a \in H. \ a_H^{-1} = a_G^{-1}$$

Let G be a group and $\emptyset \neq H \subseteq G$. $H \leq G$ iff

 $\forall a, b \in H. \ ab^{-1} \in H.$

Let G be a group and $\emptyset \neq H \subseteq G$. $H \leq G$ iff

$$\forall a, b \in H. \ ab^{-1} \in H.$$

$$e = aa^{-1} \in H$$

Let G be a group and $\emptyset \neq H \subseteq G$. $H \leq G$ iff

$$\forall a, b \in H. \ ab^{-1} \in H.$$

$$e = aa^{-1} \in H$$

$$a^{-1} = ea^{-1} \in H$$

Let G be a group and $\emptyset \neq H \subseteq G$. $H \leq G$ iff

$$\forall a, b \in H. \ ab^{-1} \in H.$$

$$e = aa^{-1} \in H$$

$$a^{-1} = ea^{-1} \in H$$

$$ab = a(b^{-1})^{-1} \in H$$

$$H_1 \cap H_2 \leq G$$
.

$$H_1 \cap H_2 \leq G$$
.

$$H_1 = 2\mathbb{Z} \le \mathbb{Z}$$
 $H_2 = 3\mathbb{Z} \le \mathbb{Z}$

$$H_1 \cap H_2 \leq G$$
.

$$H_1 = 2\mathbb{Z} \le \mathbb{Z}$$
 $H_2 = 3\mathbb{Z} \le \mathbb{Z}$

$$H_1 \cap H_2 = 6\mathbb{Z} \leq \mathbb{Z}$$

$$H_1 \cap H_2 \leq G$$
.

$$H_1 = 2\mathbb{Z} \le \mathbb{Z}$$
 $H_2 = 3\mathbb{Z} \le \mathbb{Z}$

$$H_1 \cap H_2 = 6\mathbb{Z} \leq \mathbb{Z}$$

$$H_1 \cup H_2$$
?

Center (中心)

Let G be a group. Let

$$C(G) \triangleq \{g \in G \mid gx = xg, \forall x \in G\}.$$

Then $C(G) \leq G$.

Definition (Isomorphism (同构))

Let (G,\cdot) and (G',*) be two groups. Let ϕ be a bijection such that

$$\forall a, b \in G. \ \phi(a \cdot b) = \phi(a) * \phi(b).$$

Then ϕ is an isomorphism from G to G'.

Definition (Isomorphism (同构))

Let (G,\cdot) and (G',*) be two groups. Let ϕ be a bijection such that

$$\forall a, b \in G. \ \phi(a \cdot b) = \phi(a) * \phi(b).$$

Then ϕ is an isomorphism from G to G'.

G and G' are isomorphic

$$\phi:G\cong G'$$

$$(\mathbb{R},+)\cong (\mathbb{R}^+,*)$$

$$(\mathbb{R},+)\cong (\mathbb{R}^+,*)$$

$$\phi(x) = e^x$$

Suppose that $\phi: G \cong G'$. Let e and e' are identities of G and G', respectively.

- (1) $\phi(e) = e'$
- (2) $\phi(a^{-1}) = (\phi(a))^{-1}$
- (3) $\phi^{-1}: G' \cong G$

Klein Four-group (四元群; $K_4; V$)

*	е	a	b	C
е	е	a	b	С
a	a	е	С	b
b	b	С	е	а
C	С	b	a	е

$$a^2 = b^2 = c^2 = (ab)^2 = e$$

$$ab = c = ba \quad ac = b = ca \quad bc = a = cb$$

Klein Four-group (四元群; K_4 ; V)

*	е	а	b	C
е	е	a	b	С
а	а	е	С	b
b	b	С	е	а
C	С	b	а	е

$$a^2 = b^2 = c^2 = (ab)^2 = e$$

$$ab = c = ba \quad ac = b = ca \quad bc = a = cb$$

$$U(8) = \{1, 3, 5, 7\}$$

permutation?

Definition (Order of Elements (元素的阶))

Let G be a group, e be the identity of G.

The order of e is the smallest positive integer r such that $a^r = e$.

ord
$$a = r$$

Definition (Order of Elements (元素的阶))

Let G be a group, e be the identity of G.

The order of e is the smallest positive integer r such that $a^r = e$.

ord
$$a = r$$

If such r does not exist, then ord $a = \infty$.

$$\mathbb{Z}_6 = \{0, 1, 2, 3, 4, 5\}$$

$$\mathbb{Z}_6 = \{0, 1, 2, 3, 4, 5\}$$

$$\mathbb{Z}_5^* = \{1, 2, 3, 4\}$$

$$\mathbb{Z}_6 = \{0, 1, 2, 3, 4, 5\}$$

$$\mathbb{Z}_5^* = \{1, 2, 3, 4\}$$

$$(\mathbb{Z}, +)$$

Let G be a group and e be the identity of G.

$$((ord \ a = n) \land (\exists m \in \mathbb{Z}. \ a^m = e)) \implies n \mid m.$$

Let G be a group and e be the identity of G.

$$((ord \ a = n) \land (\exists m \in \mathbb{Z}. \ a^m = e)) \implies n \mid m.$$

$$m = nq + r \qquad (0 \le r < n)$$

Let G be a group and e be the identity of G.

$$((ord \ a = n) \land (\exists m \in \mathbb{Z}. \ a^m = e)) \implies n \mid m.$$

$$m = nq + r \qquad (0 \le r < n)$$
 If $r > 0$,
$$a^r = a^{m-nq} = a^m \cdot (a^n)^{-q} = e \cdot e = e$$

Let G be a group and e be the identity of G.

$$((ord \ a = n) \land (\exists m \in \mathbb{Z}. \ a^m = e)) \implies n \mid m.$$

$$m = nq + r \qquad (0 \le r < n)$$
 If $r > 0$,
$$a^r = a^{m-nq} = a^m \cdot (a^n)^{-q} = e \cdot e = e$$

ord $a \neq n$

Definition (Cyclic Group (循环群))

Let G be a group. If

$$\exists a \in G. \ G = \langle a \rangle \triangleq \{a^0 = e, a, a^2, a^3, \dots\},\$$

then G is a cyclic group.

Definition (Cyclic Group (循环群))

Let G be a group. If

$$\exists a \in G. \ G = \langle a \rangle \triangleq \{a^0 = e, a, a^2, a^3, \dots\},\$$

then G is a cyclic group.

If $G = \langle a \rangle$, then a is a generator (生成元) of G.

$$(\mathbb{Z},+) = \langle 1 \rangle = \langle -1 \rangle$$

$$(\mathbb{Z},+) = \langle 1 \rangle = \langle -1 \rangle$$

 $(\mathbb{Z}_n,+)$ is a finite cyclic group of order n

33 / 39

$$(\mathbb{Z}, +) = \langle 1 \rangle = \langle -1 \rangle$$

 $(\mathbb{Z}_n,+)$ is a finite cyclic group of order n

$$(\mathbb{Z}_m,+)=\langle 1\rangle$$

33 / 39

$$\mathbb{Z}_5^* = \{1, 2, 3, 4\}$$

$$\mathbb{Z}_5^* = \{1, 2, 3, 4\}$$

$$\mathbb{Z}_5^* = \langle 2 \rangle = \langle 3 \rangle$$

(1) Let
$$G = \{e, a, a^{-1}, a^2, a^{-2}, \dots\}$$
 be an infinite cyclic group.

$$\forall k, l \in \mathbb{Z}. (a^k = a^l \to k = l).$$

(1) Let $G = \{e, a, a^{-1}, a^2, a^{-2}, \dots\}$ be an infinite cyclic group.

$$\forall k, l \in \mathbb{Z}. \ (a^k = a^l \to k = l).$$

(2) Let $G = \{e, a, a^2, \dots, a^{n-1}\}$ be a finite cyclic group of order n.

$$\forall k, l \in \mathbb{Z}. (a^k = a^l \leftrightarrow n \mid (k - l)).$$

Theorem (Structure Theorem of Cyclic Groups (循环群结构定理))

- (1) If $G = \langle a \rangle$ is an infinite cyclic group, then $G \cong (\mathbb{Z}, +)$.
- (2) If $G = \langle a \rangle$ is an finite cyclic group of order n, then $G \cong (\mathbb{Z}_n, +)$.

Theorem (Structure Theorem of Cyclic Groups (循环群结构定理))

- (1) If $G = \langle a \rangle$ is an infinite cyclic group, then $G \cong (\mathbb{Z}, +)$.
- (2) If $G = \langle a \rangle$ is an finite cyclic group of order n, then $G \cong (\mathbb{Z}_n, +)$.

$$\phi: \mathbb{Z} \to G$$
$$k \mapsto a^k, \quad \forall k \in \mathbb{Z}$$

Theorem (Structure Theorem of Cyclic Groups (循环群结构定理))

- (1) If $G = \langle a \rangle$ is an infinite cyclic group, then $G \cong (\mathbb{Z}, +)$.
- (2) If $G = \langle a \rangle$ is an finite cyclic group of order n, then $G \cong (\mathbb{Z}_n, +)$.

$$\phi: \mathbb{Z} \to G$$
$$k \mapsto a^k, \quad \forall k \in \mathbb{Z}$$

$$\phi: \mathbb{Z}_n \to G$$
$$k \mapsto a^k, \quad \forall k \in \mathbb{Z}_n$$

Let $G = \langle a \rangle$ be a cyclic group.

(1) If $|G| = \infty$, then a and a^{-1} are the only generators of G;

- (1) If $|G| = \infty$, then a and a^{-1} are the only generators of G;
- (2) If |G| = n, then a^r is a generator of G iff (r, n) = 1.

- (1) If $|G| = \infty$, then a and a^{-1} are the only generators of G;
- (2) If |G| = n, then a^r is a generator of G iff (r, n) = 1.

- (1) If $|G| = \infty$, then a and a^{-1} are the only generators of G;
- (2) If |G| = n, then a^r is a generator of G iff (r, n) = 1.

ord
$$a^r = \frac{n}{(n,r)}$$

$$(\mathbb{Z}_{12},+)$$

Generators: 1, 5, 7, 11

Theorem (Subgroups of Cyclic Groups)

Every subgroup of a cyclic group is cyclic.

Thank You!

Office 302

Mailbox: H016

hfwei@nju.edu.cn