Практика по алгоритмам

Татьяна Белова, Евгений Кравченко, Виктор Крыштапович, Александр Мишунин, Даниил Орешников *

Осень, 2023

Содержание

1	Аси	имптотика	2
	1.1	Практика	2
	1.2	Ломашнее задание	5

 $^{^*}$ Составители сборника не всегда являются авторами задач. Авторы не указаны в учебных целях.

1 Асимптотика

1.1 Практика

Напомним определения:

$$ightharpoonup f(n) \in \mathcal{O}(q(n)) \equiv \exists N, c > 0 : \forall n \geqslant N : f(n) \leqslant c \cdot q(n)$$

$$ightharpoonup f(n) \in \Omega(q(n)) \equiv \exists N, c > 0 : \forall n \geqslant N : c \cdot q(n) \leqslant f(n)$$

$$\triangleright f(n) \in \Theta(g(n)) \equiv \exists N, c_1 > 0, c_2 > 0 : \forall n \geqslant N : c_1 \cdot g(n) \leqslant f(n) \leqslant c_2 \cdot g(n)$$

$$f(n) \in o(g(n)) \equiv \forall c > 0 : \exists N : \forall n \geqslant N : f(n) < c \cdot g(n)$$

$$f(n) \in \omega(g(n)) \equiv \forall c > 0 : \exists N : \forall n \geqslant N : c \cdot g(n) < f(n)$$

Все функции здесь $\mathbb{N} \to \mathbb{N}$ или $\mathbb{N} \to \mathbb{R}_{>0}$ (далее будет ясно из контекста, какой класс функций используется). В дальнейшем, когда речь идет о принадлежности функций вышеопределенным множествам, мы будем использовать знак '=' вместо ' \in ', т.к. в литературе обычно используются именно такие обозначения.

1. Докажите, что:

(a)
$$f(n) = \Omega(g(n)) \Leftrightarrow g(n) = \mathcal{O}(f(n))$$

(b)
$$f(n) = \omega(g(n)) \Leftrightarrow g(n) = o(f(n))$$

(c)
$$f(n) = \Theta(g(n)) \Leftrightarrow f(n) = \mathcal{O}(g(n)) \land f(n) = \Omega(g(n))$$

2. Контекст имеет значение

Правда ли, что $f(n) = \mathcal{O}(f(n)^2)$?

3. Несколько аргументов

Придумайте определение для $f(n,m) = \mathcal{O}(g(n,m))$.

4. Асимметрия

- (a) Правда ли, что $\min(f(n), g(n)) = \Theta(f(n) + g(n))$?
- (b) Правда ли, что $\max(f(n), g(n)) = \Theta(f(n) + g(n))$?

5. Классы

Определим отношение " \sim ". Будем говорить, что $f \sim g$, если $f = \Theta(g)$. Покажите, что ' \sim ' – отношение эквивалентности, т.е. оно

- \triangleright Рефлексивное: $\forall f: f \sim f$,
- \triangleright Симметричное: $\forall f, g: f \sim g \Leftrightarrow g \sim f$,
- ightharpoonup Транзитивное: $\forall f,g,h:(f\sim g)\land (g\sim h)\Rightarrow f\sim h.$

6. Порядки

Определим отношение ' \leq '. Будем говорить, что $f \leq g$, если $f = \mathcal{O}(g)$.

- (а) Правда ли, что ≤ отношение предпорядка (рефлексивное и транзитивное)?
- (b) Правда ли, что ≤ отношение частичного порядка (+ антисимметричность)?
- (c) Правда ли, что \preceq отношение частичного порядка на классах эквивалентности по \sim ?
- 7. Правда ли, что если y(n) монотонная неограниченная функция, и $f(n) = \mathcal{O}(g(n))$, то $f(y(n)) = \mathcal{O}(g(y(n)))$?
- 8. Правда ли, что если $f_1(n) = \mathcal{O}(f_2(n))$ и $g_1(n) = \mathcal{O}(g_2(n))$, то $f_1 + g_1 = \mathcal{O}(f_2 + g_2)$?

9. Рекурренты

- (a) Решите рекурренту $T(n) = T(n/3) + \log_2 n$
- (b) Докажите, что если $T(n) = \log n \cdot T\left(\frac{n}{\log n}\right) + n$, то $T(n) = \mathcal{O}(n\log n)$

```
10. Считайте, что функции здесь \mathbb{N} \to \mathbb{N} и что \forall n: f(n) > 1 \land g(n) > 1.
```

```
(a) f(n) = \Omega(f(n/2))?
```

(b)
$$f(n) = \mathcal{O}(g(n)) \Rightarrow \log f(n) = \mathcal{O}(\log g(n))$$
?

(c)
$$f(n) = \mathcal{O}(g(n)) \Rightarrow 2^{f(n)} = \mathcal{O}(2^{g(n)})$$
?

(d)
$$f(n) = o(g(n)) \Rightarrow \log f(n) = o(\log g(n))$$
?

(e)
$$f(n) = o(g(n)) \Rightarrow 2^{f(n)} = o(2^{g(n)})$$
?

(f)
$$\sum_{k=1}^{n} \frac{1}{k} = \Omega(\log n)$$
?

11. Оцените время работы следующих программ:

```
(a) for (a = 1; a < n; a++) for (b = 0; b < n; b += 1)
```

```
(b) for (a = 1; a < n; a++)
for (b = 0; b < n; b += a)
```

(c) Найти такие $a, b, c \in \mathbb{N} : abc = n, a + b + c = \min$. Решение:

```
for (a = 1; a <= n; ++a)
for (b = 1; a * b <= n; ++b)
c = n / a / b, ...;
```

(d) Еще одно решение (c):

```
for (a = 1; a * a * a <= n; ++a)
for (b = 1; b * b <= n; ++b)
c = n / a / b, ...;
```

(е) И еще одно решение (с):

```
for (a = 1; a * a * a <= n; ++a)
for (b = a; a * b * b <= n; ++b)
c = n / a / b, ...;
```

(f) Дополнительный вопрос: что делает этот код?

```
a = 1, b = n;
while (a < b) {
   while (x[a] < M && a <= b) a++;
   while (x[b] > M && a <= b) b--;
   if (a <= b) swap(x[a++], x[b--]);
}</pre>
```

(g) Дополнительный вопрос: а если бы вместо 2 было бы 1?

```
while (a >= 2)
a = sqrt(a);
```

(h) Решето Эратосфена (пользуемся, что: $p_n \approx n \ln n$)

```
for (p = 2; p < n; p++)
  if (min_divisor[p] == 0) // is prime
   for (x = p + p; x < n; x += p)
    if (min_divisor[x] == 0)
        min_divisor[x] = p;</pre>
```

Дополнительные задачи

12. Дан массив целых чисел от 1 до n длины n+1, который нельзя модифицировать. Используя $\mathcal{O}(\log n)$ битов дополнительной памяти, найдите в массиве пару одинаковых чисел за $\mathcal{O}(n)$.

- 13. Дана последовательность $\sigma = \langle a_1, a_2, \cdots, a_m \rangle$, где каждый $a_i \in [n] = \{1, 2, \cdots, n\}$. Обозначим частоту появления элемента x через $f_{\sigma}[x] = |\{i \mid a_i = x\}|$. Известно, что $\exists x : f_{\sigma}[x] = 1$ и для всех остальных значений $y \neq x, f_{\sigma}[y] \equiv 0 \mod 2$. Требуется найти x за один проход по последовательности, используя $\mathcal{O}(\log n + \log m)$ бит памяти.
- 14. Дана последовательность $\sigma = \langle a_1, a_2, \cdots, a_m \rangle$, где каждый $a_i \in [n]$. Требуется проверить, правда ли, что $\exists x : f_{\sigma}[x] > \frac{m}{2}$, и если такой x есть, то найти его за один проход по последовательности. Докажите, что любое решение потребует $\Omega(m \cdot (\log n \log m + 1))$ бит памяти.
- 15. Разрешим сделать два прохода по последовательности. Решите прошлую задачу за $\mathcal{O}(\log n + \log m)$ бит памяти.

1.2 Домашнее задание

1. Эквивалентны ли следующие факты?

- 2. Дайте ответ для двух случаев $\mathbb{N} \to \mathbb{N}$ и $\mathbb{N} \to \mathbb{R}_{>0}$:
 - (a) Если в определении \mathcal{O} опустить условие про N (т.е. оставить просто $\forall n$), будет ли полученное определение эквивалентно исходному?
 - (b) Тот же вопрос про o.
- 3. Продолжим отношение ' \leq ' на функциях до отношения на классах эквивалентности по отношению эквивалентности ' \sim ', введённому на практике. Правда ли, что получится отношение линейного порядка (то есть $\forall f, g: (f \leq g) \lor (g \leq f)$)?
- 4. Докажите, или приведите контрпример:

(a)
$$g(n) = o(f(n)) \Rightarrow f(n) + g(n) = \Theta(f(n))$$

(b)
$$f(n) = \mathcal{O}(g(n)) \Leftrightarrow f(n) = o(g(n)) \vee f(n) = \Theta(g(n))$$

- 5. Решите рекурренту $T(n) = 3T(\sqrt{n}) + \log_2 n$ (найдите точную оценку асимптотики и докажите). Здесь можно считать, что $T(n\leqslant 1)=1$.
- 6. Заполните табличку и поясните (особенно строчки 4 и 7):

A	B	0	0	Θ	ω	Ω
n	n^2	+	+	_	_	_
$ \begin{vmatrix} \log^k n \\ n^k \end{vmatrix} $	n^{ϵ}					
n^k	c^n					
\sqrt{n}	$n^{\sin n}$					
	$2^{n/2}$					
$n^{\log m}$	$m^{\log n}$					
$\log(n!)$	$\log(n^n)$					

Здесь все буквы, кроме n, – положительные константы.

Дополнительные задачи

7. Считайте здесь, что функции здесь $\mathbb{N} \to \mathbb{N}$ и что $\forall n : f(n) > 1 \land g(n) > 1$.

(a)
$$f(n) = \mathcal{O}(g(n)) \Rightarrow \log f(n) = \mathcal{O}(\log g(n))$$
?

(b)
$$f(n) = \mathcal{O}(g(n)) \Rightarrow 2^{f(n)} = \mathcal{O}(2^{g(n)})$$
?

8. Упорядочьте функции по скорости роста и обозначьте неравенства между соседями. Укажите, в каких неравенствах f = o(g), а в каких $f = \Theta(g)$

5

Примечание: $\log^*(n) = \left\{ \begin{array}{ll} 0 & \text{если } n \leq 1; \\ 1 + \log^*(\log n) & \text{иначе.} \end{array} \right.$