On donne : ||g|| = 10 N.kg-1.

On considère une tige AB homogène de masse $m_1 = 500$ g, de centre de gravité G, mobile autour d'un axe fixe (Δ) passant par son extrémité A et qui lui est perpendiculaire.

La tige AB est maintenue en équilibre dans une position faisant un angle α = 30° avec l'horizontale à l'aide d'un fil (f) inextensible fixé à son extrémité B et passant à travers la gorge d'une poulie de masse négligeable, de rayon r et mobile autour d'un axe (Δ ') passant par son centre de gravité et qui lui est perpendiculaire.

Le fil (f) retient par sa deuxième extrémité un solide (S) de masse m2 comme le montre la figure 2

- 1"/ Représenter toutes les forces qui s'exercent respectivement sur la tige AB, sur la poulie et sur le solide (S).
- 2"/a) Ecrire la condition d'équilibre de rotation de la tige AB.

 - c) Ecrire la condition d'équilibre de translation de la tige AB.
 - d) Déduire la valeur de la réaction R de son axe de rotation (Δ).
- 3"/ a) Montrer que la valeur de la tension TB est égale à celle de la tension Tc du fil au point C.
 - b) Ecrire la condition d'équilibre de translation de la poulie.
 - c) Déduire que la valeur de la réaction R

 1 de l'axe de rotation (Δ') de la poulie peut s'écrire

$$||\vec{R}_1|| = \frac{m_1 \cdot ||\vec{g}||}{\sqrt{2} \cdot \tan \alpha}$$
. La calculer.

4"/ Déterminer la masse m2 du solide (S).

Correction

2°/a) Ecrire la condition d'équilibre de rotation de la tige AB.

Rép: Théorème des moments: $MA_{A} + MTB/A + MR/A = 0$. MR/A = 0 car la direction de R coupe l'axe de rotation (A) en A.

b) Déduire la valeur de la tension Te du fil au point B.

 $\frac{\mathbf{Rep}: \mathcal{M}p_{fA} + \mathcal{M}\mathbf{TB}_{fA} = 0 \Leftrightarrow +\mathbf{m}_1||\mathbf{\tilde{g}}||\mathbf{AJ} - ||\mathbf{\tilde{T}}\mathbf{\tilde{e}}||.\mathbf{AK} = 0 \text{ avec } \mathbf{AJ} = \frac{\mathbf{AB}}{2}.\cos\alpha \text{ et } \mathbf{AK} = \mathbf{AB}.\sin\alpha.$

$$\Leftrightarrow ||\vec{T}_B||$$
, $AB.\sin\alpha = m_1||\vec{g}|| \frac{AB}{2}.\cos\alpha \Leftrightarrow ||\vec{T}_B|| = \frac{m_1||\vec{g}||}{2.\tan\alpha}$

AN :
$$||\tilde{T}_B|| = \frac{0.5.10}{2.tan30} = \frac{5\sqrt{3}}{2} = 4.33 \text{ N}.$$

c) Ecrire la condition d'équilibre de translation de la tige AB.

Rép : Condition d'équilibre de translation de la tige AB : $\vec{P} + \vec{T}_B + \vec{R} = \vec{0}$

d) Déduire la valeur de la réaction R de son axe de rotation (Δ).

Rép : Valeur de la réaction R :

$$||\hat{R}|| = \sqrt{(m_1 - ||\hat{g}||)^2 + ||\hat{T}_B||^2}$$
.

AN:
$$||\vec{R}|| = \sqrt{(0.5.10)^2 + (4.33)^2} = \frac{5\sqrt{7}}{2} = 6.61 \text{ N}.$$

3°/a) Montrer que la valeur de la tension T

est égale à celle de la tension T

c du fil au point C.

Rep:

Comme le fil est inextensible :
$$\begin{cases} ||\vec{T}'_{s}|| = ||\vec{T}_{s}|| \\ ||\vec{T}'_{c}|| = ||\vec{T}_{c}|| \end{cases}$$

Théorème des moments appliqué à la poulie : "##BIA + .##DIA + .#RIIA = 0.

 $\mathcal{M}_{RT/\Lambda} = 0$ car la direction de R_1 coupe l'axe de rotation (Δ ') en O.

Conclusion : (1) et (2) donnent : ||Te|| = ||Tc||

Ecrire la condition d'équilibre de translation de la poulie.

Rép : Condition d'équilibre de translation de la poulle : T'a + T'c + R1 = 0.

Déduire que la valeur de la réaction \vec{R}_1 de l'axe de rotation (Δ') de la poulle peut s'écrire $\|\vec{R}_1\| = \frac{m_1 \cdot \|\vec{g}\|}{\sqrt{2} \cdot \tan \alpha}$. La calculer.

Pythagore:
$$||\vec{R}|| = \sqrt{||\vec{T}_{e}||^{2} + ||\vec{T}_{c}||^{2}}$$

Or
$$||T'n|| = ||T'c|| = ||Tn||$$

$$\Rightarrow ||\vec{R}_1|| = \sqrt{2||\vec{T}_n||^2} = ||\vec{T}_n||\sqrt{2}$$

Or d'après la question 2°/b) ||Ta|| = m,||d||

$$\Rightarrow ||\vec{R}_1|| = \frac{m_1||\vec{g}||}{2 \cdot \tan \alpha} \sqrt{2} = \frac{m_1||\vec{g}||}{\sqrt{2} \cdot \tan \alpha}$$

AN:
$$||\vec{R}_1|| = \frac{0.5.10}{\sqrt{2}.\tan 30} = \frac{5.\sqrt{6}}{2} = 6.12 \text{ N}.$$

Rép : Masse m2 du solide (S) :

Condition d'équilibre de translation : Ps + Tc = 0 ⇔

$$+||T_{C}|| - ||P_{S}|| = 0 \Leftrightarrow ||P_{S}|| = ||T_{C}|| \Leftrightarrow m_{2}||g|| = ||T_{B}|| \Leftrightarrow m_{2} = \frac{||T_{B}||}{||G||}$$

AN:
$$m_2 = \frac{4,33}{10} = 0,433 \text{ kg} = 433 \text{ g}.$$

