Úvod

Atomické formuly a štruktúry

1. prednáška Logika pre informatikov a Úvod do matematickej logiky

<u>Ján Kľuka</u>, Ján Mazák, Jozef Šiška

Letný semester 2023/2024

Univerzita Komenského v Bratislave Fakulta matematiky, fyziky a informatiky

Obsah 1. prednášky

Úvod

O logike

O kurzoch LPI a UdML

Atomické formuly a štruktúry

Syntax atomických formúl

Štruktúry

Sémantika atomických formúl

Zhrnutie

Úvod

Úvod

O logike

Čo je logika

Logika je vedná disciplína, ktorá študuje usudzovanie.

Správne, racionálne usudzovanie je základom vedy a inžinierstva.

Vyžaduje rozoznať

- správne úsudky z predpokladaných princípov a pozorovania
- od chybných úvah a špekulácií.

Správnosť úsudkov, zdá sa, nie je iba vec konvencie a dohody.

Logika skúma, aké sú zákonitosti správneho usudzovania a prečo sú zákonitosťami.

Ako logika študuje usudzovanie

Logika má dva hlavné predmety záujmu:

```
Jazyk zápis pozorovaní, definície pojmov, formulovanie teórií
```

Syntax pravidlá zápisu tvrdení Sémantika význam tvrdení

Usudzovanie (inferencia)

odvodzovanie nových logických dôsledkov

z doterajších poznatkov.

Aký má vzťah s jazykom, štruktúrou tvrdení?

Jazyk, poznatky a teórie

Jazyk slúži na formulovanie tvrdení, ktoré vyjadrujú poznatky o svete (princípy jeho fungovania aj pozorované fakty).

Súboru poznatkov, ktoré považujeme za pravdivé, hovoríme teória.

Príklad 0.1 (Party time!)

Máme troch nových známych — Kim, Jima a Sarah.

Organizujeme párty a P0: chceme na ňu pozvať niekoho z nich.

Od spoločných kamarátov sme sa ale dozvedeli o ich požiadavkách:

- P1: Sarah nepôjde na párty, ak pôjde Kim.
- P2: Jim pôjde na párty, len ak pôjde Kim.
- P3: Sarah nepôjde bez Jima.

Jedna z otázok, ktoré si o teórii o party môžeme položiť, je: "Môžu noví známi prísť na párty tak, aby boli všetky podmienky splnené? Ak áno, v akých zostavách?"

Priamočiaro (aj keď prácne) to zistíme tak, že:

- 1. vymenujeme všetky možné stavy sveta (účasti nových známych),
- 2. zistíme, v ktorých sú všetky podmienky splnené.

K	J	S	P0	P1	P2	Р3	PO: Niekto z Kim, Jima, Sarah
n	n	n					príde na párty.
n	n	р					P1: Sarah nepôjde na párty,
n	р	n					ak pôjde Kim.
n	р	р					
р	n	n					P2: Jim pôjde na párty,
р	n	р					len ak pôjde Kim.
р	р	n					P3: Sarah nepôjde bez Jima.
р	р	р					

Jedna z otázok, ktoré si o teórii o party môžeme položiť, je: "Môžu noví známi prísť na párty tak, aby boli všetky podmienky splnené? Ak áno, v akých zostavách?"

Priamočiaro (aj keď prácne) to zistíme tak, že:

- 1. vymenujeme všetky možné stavy sveta (účasti nových známych),
- 2. zistíme, v ktorých sú všetky podmienky splnené.

Κ	J	S	P0	P1	P2	Р3	P0: Niekto z Kim, Jima, Sarah
n	n	n	n				príde na párty.
n	n	р	р	р	р	n	P1: Sarah nepôjde na párty,
n	р	n	р	р	n		ak pôjde Kim.
n	р	р	р	р	n		. ,
р	n	n	р	p	p	p	P2: Jim pôjde na párty,
р	n	р					len ak pôjde Kim.
р	р	n					P3: Sarah nepôjde bez Jima.
р	р	р					

Jedna z otázok, ktoré si o teórii o party môžeme položiť, je: "Môžu noví známi prísť na párty tak, aby boli všetky podmienky splnené? Ak áno, v akých zostavách?"

Priamočiaro (aj keď prácne) to zistíme tak, že:

- 1. vymenujeme všetky možné stavy sveta (účasti nových známych),
- 2. zistíme, v ktorých sú všetky podmienky splnené.

K	J	S	P0	P1	P2	Р3	PO: Niekto z Kim, Jima, Sarah
n	n	n	n				príde na párty.
n	n	р	р	р	р	n	P1: Sarah nepôjde na párty,
n	р	n	р	р	n		ak pôjde Kim.
n	р	р	р	р	n		
р	n	n	р	p	p	p	P2: Jim pôjde na párty,
р	n	р	р	n			len ak pôjde Kim.
р	р	n	р	p	p	p	P3: Sarah nepôjde bez Jima.
n	n	n	n	n			

Teória rozdeľuje možné stavy sveta (interpretácie) na:

```
    ⊨ stavy, v ktorých je pravdivá – modely teórie,
    ⊭ stavy, v ktorých je nepravdivá.
```

Tvrdenie aj teória môžu mať viacero modelov, ale aj žiaden.

```
Príklad 0.2

Modelmi teória PO P1 P2 P3 sú dve
```

Modelmi teórie P0, P1, P2, P3 sú dve situácie: keď Kim príde na párty a ostatní noví známi nie, a keď Kim a Jim prídu na párty a Sarah nie.

K	J	S	P0	P1	P2	P3	
n	n	n	n				[⊬] P0, P1, P2, P3
n	n	р	р	р	р	n	¥ P0, P1, P2, P3
n	р	n	р	р	n		
n	р	р	р	р	n		
p	n	n	р	p	p	p	⊧ P0, P1, P2, P3
p	n	р	р	n			¥ P0, P1, P2, P3
p	р	n	р	p	p	p	F P0, P1, P2, P3
р	р	р	р	n			

Logické dôsledky

Často je zaujímavá iná otázka o teórii — musí byť nejaké tvrdenie pravdivé vždy, keď je pravdivá teória?

V našom príklade:

Kto musí a kto nesmie prísť na párty, aby boli podmienky PO, ..., P3 splnené?

K	J	S	P0	P1	P2	Р3	
n	n	n	n				⊭ P0, P1, P2, P3
n	n	р	р	р	р	n	⊭ P0, P1, P2, P3
n	р	n	р	р	n		⊭ P0, P1, P2, P3
n	р	р	р	р	n		⊭ P0, P1, P2, P3
p	n	n	p	p	p	p	⊧ P0, P1, P2, P3
р	n	р	р	n			⊭ P0, P1, P2, P3
р	р	n	р	p	p	p	⊧ P0, P1, P2, P3
р	р	р	р	n			⊭ P0, P1, P2, P3

Logické dôsledky

Logickými dôsledkami teórie sú tvrdenia,

ktoré sú pravdivé vo všetkých modeloch teórie.

Príklad 0.3

Logickými dôsledkami teórie PO, P1, P2, P3 sú napríklad:

- Kim príde na párty.
- Sarah nepríde na párty.

Logických dôsledkov je nekonečne veľa, môžu nimi byť ľubovoľne zložité tvrdenia:

- Na party príde Kim alebo Jim.
- Ak príde Sarah, tak príde aj Jim.
- Ak príde Jim, tak nepríde Sarah.

:

Logické usudzovanie

Preskúmať všetky stavy sveta je často nepraktické až nemožné.

Logické dôsledky ale môžeme odvodzovať usudzovaním (inferovať).

Pri odvodení vychádzame z *premís* (predpokladov) a postupnosťou správnych úsudkov dospievame k *záverom*.

Príklad 0.4

Vieme, že ak na párty pôjde Kim, tak nepôjde Sarah (P1), a že ak pôjde Jim, tak pôjde Kim (P2).

- 1. Predpokladajme, že na párty pôjde Jim.
- 2. Podľa 1. a P2 pôjde aj Kim.
- 3. Podľa 2. a P1 nepôjde Sarah.

Teda podľa uvedenej úvahy:

Ak na párty pôjde Jim, tak nepôjde Sarah.

PO: Niekto z Kim, Jima, Sarah príde na párty.

P1: Sarah nepôjde na párty, ak pôjde Kim.

P2: Jim pôjde na párty, len ak pôjde Kim.

P3: Sarah nepôjde bez Jima.

Dedukcia

Úsudok je správny (*korektný*) vtedy, keď vždy, keď sú pravdivé jeho premisy, je pravdivý aj jeho záver.

Ak sú všetky úsudky v odvodení správne, záver je logickým dôsledkom premís a odvodenie je jeho dôkazom z premís.

Dedukcia je usudzovanie, pri ktorom sa používajú iba správne úsudky.

Logika študuje dedukciu, ale aj niektoré nededuktívne úsudky, ktoré sú vo všeobecnosti nesprávne, ale sú správne v *špeciálnych* prípadoch alebo sú *užitočné*:

- indukcia zovšeobecnenie;
- abdukcia odvodzovanie možných príčin z následkov;
- usudzovanie na základe analógie (podobnosti).

Kontrapríklady

Ak úsudok nie je správny, existuje *kontrapríklad* — stav sveta, v ktorom sú <u>predpoklady pravdivé</u>, ale <u>záver je nepravdivý</u>.

Príklad 0.5

Nesprávny úsudok:

Ak platia tvrdenia teórie o party, na party príde Jim.

Kontrapríklad:

Stav, kedy príde Kim, nepríde Jim, nepríde Sarah.

Teória je pravdivá, výrok "na party príde Jim" nie je pravdivý.

K	J	S	
n	n	n	⊭ P0, P1, P2, P3
n	n	р	⊭ P0, P1, P2, P3
n	р	n	¥ P0, P1, P2, P3
n	р	р	¥ P0, P1, P2, P3
р	n	n	F P0, P1, P2, P3
р	n	р	¥ P0, P1, P2, P3
р	р	n	F P0, P1, P2, P3
р	р	р	⊭ P0, P1, P2, P3

Matematická logika

Matematická logika

- modeluje jazyk, jeho sémantiku a usudzovanie ako matematické objekty (množiny, postuposti, zobrazenia, stromy);
- rieši logické problémy matematickými metódami.

Rozvinula sa koncom 19. a v prvej polovici 20. storočia hlavne vďaka Hilbertovmu programu — snahe vybudovať základy matematiky bez sporov a paradoxov, mechanizovať overovanie dôkazov alebo priamo hľadanie matematických viet.

Matematická logika a informatika

Informatika sa vyvinula z matematickej logiky (J. von Neumann, A. Turing, A. Church, ...)

Väčšina programovacích jazykov obsahuje logické prvky:

• all(x > m for x in arr),

fragmenty niektorých sú priamo preložiteľné na logické formuly:

• SELECT t1.x, t2.y FROM t1 INNER JOIN t2 ON t1.z = t2.z WHERE t1.z > 25,

niektoré (Prolog) sú podmnožinou logických jazykov.

Metódami logiky sa dá presne špecifikovať, čo má program robiť, popísať, čo robí, a dokázať, že robí to, čo bolo špecifikované.

Matematická logika a informatika

Veľa otázok v logike je algoritmických:

- Možno usudzovanie pre danú triedu jazykov automatizovať?
- Dá sa nájsť dôkaz pre tvrdenia s takouto štruktúrou dostatočne rýchlym algoritmom?

Výpočtová logika hľadá algoritmické riešenia problémov pre rôzne triedy logických jazykov. Aplikovateľné na iné ťažké problémy (grafové, plánovacie, vysvetľovanie, ...) vyjadriteľné v príslušnej triede.

Logika umožňuje hľadať všeobecné odpovede.

 Ak možno vlastnosť grafu popísať prvorádovou formulou s najviac dvomi kvantifikátormi a zároveň ..., existuje pomerne rýchly algoritmus, ktorý rozhodne, či daný graf túto vlastnosť má.

Automatizované dokazovače: napr. v r. 1996 počítač dokázal Robbins Conjecture, ktorá odolávala ľudskej snahe 60 rokov.

Formálne jazyky a formalizácia

Matematická logika nepracuje s prirodzeným jazykom, ale s jeho zjednodušenými modelmi — formálnymi jazykmi.

- Presne definovaná, zjednodušená syntax a sémantika.
- Obchádzajú problémy prirodzeného jazyka:
 viacznačnosť slov, nejednoznačné syntaktické vzťahy, zložitá syntaktickú analýzu, výminky, obraty s ustáleným významom, ...
- Niekoľko formálnych jazykov už poznáte: aritmetika, jazyky fyzikálnych a chemických vzorcov, programovacie jazyky, ...

Problémy z iných oblastí opísané v prirodzenom jazyku musíme najprv sformalizovať, a potom naň môžeme použiť aparát mat. logiky.

Formalizácia vyžaduje cvik — trocha veda, trocha umenie.

Formalizácia poznatkov

S formalizáciou ste sa už stretli – napríklad pri riešení slovných úloh:

Karol je trikrát starší ako Mária.

Koľko rokov majú Karol a Mária?

Súčet Karolovho a Máriinho veku je 12 rokov.

 $k = 3 \cdot m$ k + m = 12

Stretli ste sa už aj s formálnym jazykom výrokovej logiky.

Príklad 0.6

Sformalizujme náš párty príklad:

PO: Niekto z trojice Kim, Jim, Sarah pôjde na párty.

P1: Sarah nepôjde na párty, ak pôjde Kim.

P2: Jim pôjde na párty, len ak pôjde Kim.

P3: Sarah nepôjde bez Jima.

Formalizácia poznatkov

S formalizáciou ste sa už stretli — napríklad pri riešení slovných úloh:

Karol je trikrát starší ako Mária.

Koľko rokov majú Karol a Mária?

Súčet Karolovho a Máriinho veku je 12 rokov. \Rightarrow $k = 3 \cdot m$

Stretli ste sa už aj s formálnym jazykom výrokovej logiky.

Príklad 0.6

Sformalizujme náš párty príklad:

P0: Niekto z trojice Kim, Jim, Sarah pôjde na párty. $p(K) \lor p(J) \lor p(S)$

D1. Soroh popâjdo po párty, ak pâjdo Vim

P1: Sarah nepôjde na párty, ak pôjde Kim. $p(K) \rightarrow \neg p(S)$ P2: Jim pôjde na párty, len ak pôjde Kim. $p(J) \rightarrow \neg p(K)$

P3: Sarah nepôjde bez Jima. $\neg p(J) \rightarrow \neg p(S)$

Všimnite si, koľko vetných konštrukcií v slovenčine zodpovedá jednej formálnej spojke \rightarrow .

Logika prvého rádu

Jazyk logiky prvého rádu (FOL) je jeden zo základných formálnych jazykov, ktorým sa logika zaoberá.

Do dnešnej podoby sa vyvinul koncom 19. a v prvej polovici 20. storočia — G. Frege, G. Peano, C. S. Peirce.

Výrokové spojky + kvantifikátory ∀ a ∃.

Dá sa v ňom vyjadriť veľa zaujímavých tvrdení, bežne sa používa v matematike.

$$\forall \varepsilon > 0 \; \exists \delta > 0 \ldots$$

Kalkuly — formalizácia usudzovania

Pre mnohé logické jazyky sú známe kalkuly – množiny usudzovacích pravidiel, ktoré sú

```
korektné – odvodzujú iba logické dôsledky,úplné – umožňujú odvodiť všetky logické dôsledky.
```

Kalkuly sú bežné v matematike

- kalkul elementárnej aritmetiky: na počítanie s číslami, zlomkami,
- kalkul lineárnej algebry: riešenie lineárnych rovníc,
- kalkul matematickej analýzy: derivovanie, integrovanie, riešenie diferenciálnych rovníc
 :

Sú korektné, ale nie vždy úplné.

Poznáte už aj jeden logický kalkul — ekvivalentné úpravy.

Schéma riešenia problémov pomocou logiky

Úvod

O kurzoch LPI a UdML

Prístup k logike na tomto predmete

Stredoškolský prístup príliš neoddeľuje jazyk výrokov od jeho významu a vlastne ani jednu stránku nedefinuje jasne.

Prevedieme vás základmi matematickej a výpočtovej logiky pre (postupne čoraz zložitejšie) fragmenty jazykov logiky prvého rádu.

Teoretická časť:

- Matematické definície logických pojmov (výrok, model, logický dôsledok, dôkaz, ...)
- Dôkazy ich vlastností

Praktická časť

- Dátové štruktúry na reprezentáciu logických objektov
- Algoritmické riešenie logických problémov
- Formalizácia rôznych problémov v logických jazykoch a ich riešenie nástrojmi na riešenie logických problémov

Organizácia kurzu – rozvrh, kontakty, pravidlá

Organizácia — rozvrh, kontakty a pravidlá absolvovania — je popísaná na oficiálnych webových stránkach predmetov:

1-AIN-412 https://dai.fmph.uniba.sk/w/Course:Logic_for_CS

1-INF-210 http://www.dcs.fmph.uniba.sk/~mazak/vyucba/udml/

Atomické formuly a štruktúry

Jazyky logiky prvého rádu

Logika prvého rádu je trieda (rodina) formálnych jazykov.

Zdieľajú:

- časti abecedy logické symboly (spojky, kvantifikátory)
- pravidlá tvorby formúl (slov)

Líšia sa v mimologických symboloch — časť abecedy, pomocou ktorej sa tvoria najjednoduchšie — atomické formuly (atómy).

Atomické formuly a výroky v prirodzenom jazyku

Atomické formuly logiky prvého rádu zodpovedajú pozitívnym jednoduchým vetám o vlastnostiach, stavoch, vzťahoch a rovnosti jednotlivých pomenovaných objektov.

Príklady 1.1

- Milo beží.
- Jarka vidí Mila.
- Milo beží, ale Jarka ho nevidí.
- Jarka vidí všetkých.
- ② Jarka dala Milovi Bobyho v piatok.

- Jarka nie je doma.
- Niekto je doma.
- Súčet 2 a 2 je 3.
- Prezidentkou SR je Zuzana

Čaputová.

Atomické formuly sa skladajú z indivíduových konštánt a predikátových symbolov.

Atomické formuly a výroky v prirodzenom jazyku

Atomické formuly logiky prvého rádu zodpovedajú pozitívnym jednoduchým vetám o vlastnostiach, stavoch, vzťahoch a rovnosti jednotlivých pomenovaných objektov.

Príklady 1.1

- Milo beží.
- Jarka vidí Mila.
- 😢 Milo beží, ale Jarka ho nevidí.
- Jarka vidí všetkých.
- Jarka dala Milovi Bobyho v piatok.

- 😆 Jarka nie je doma.
- 😢 Niekto je doma.
- Súčet 2 a 2 je 3.
- Prezidentkou SR je Zuzana Čaputová.

Atomické formuly sa skladajú z indivíduových konštánt a predikátových symbolov.

Indivíduové konštanty

Indivíduové konštanty sú symboly jazyka logiky prvého rádu, ktoré pomenúvajú jednotlivé, pevne zvolené objekty.

Zodpovedajú *približne* vlastným menám, jednoznačným pomenovaniam, niekedy zámenám; konštantám v matematike a programovacích jazykoch.

Príklady 1.2

Jarka, 2, Zuzana_Čaputová, sobota, π , ...

Indivíduová konštanta:

- vždy pomenúva skutočný, existujúci objekt (na rozdiel od vlastného mena Yeti);
- nikdy nepomenúva viac objektov (na rozdiel od vlastného mena Jarka).

Objekt z domény, ktorú chceme prvorádovým jazykom opísať,

- môže byť pomenovaný aj viacerými indivíduovými konštantami (napr. Prezidentka_SR a Zuzana_Čaputová);
- nemusí mať žiadne meno.

Predikátové symboly a arita

Predikátové symboly sú symboly jazyka logiky prvého rádu, ktoré označujú vlastnosti alebo vzťahy.

Zodpovedajú

- prísudkom v slovenských vetách,
- množinám alebo reláciám v matematike,
- identifikátorom funkcií s boolovskou návratovou hodnotou.

Predikátový symbol má pevne určený počet argumentov — aritu.

Vždy musí mať práve toľko argumentov, aká je jeho arita.

Úloha argumentu v predikáte je daná jeho poradím (podobne ako pozičné argumenty funkcií/metód v prog. jazykoch).

Dohoda 1.3

Aritu budeme niekedy písať ako horný index symbolu.

Napríklad beží¹, vidí², dal⁴, <².

Zamýšľaný význam predikátových symbolov

Unárny predikátový symbol (teda s aritou 1) zvyčajne označuje vlastnosť, druh, rolu, stav.

```
Príklady 1.4 \operatorname{pes}(x) \quad x \text{ je pes} \operatorname{\check{cierne}}(x) \quad x \text{ je \check{cierne}} \operatorname{be\check{z}i}(x) \quad x \text{ be\check{z}i}
```

Binárny, ternárny, ... predikátový symbol (s aritou 2, 3, ...) zvyčajne označuje vzťah svojich argumentov.

Kategorickosť významu predikátových symbolov

V bežnom jazyku často nie je celkom jasné, či objekt má alebo nemá nejakú vlastnosť — kedy je niekto *mladý*?

Predikátové symboly predstavujú *kategorické* vlastnosti/vzťahy — pre každý objekt sa dá **jednoznačne rozhodnúť**, či má alebo nemá túto vlastnosť/vzťah s iným objektom či inými objektmi.

Význam predikátového symbolu preto často zodpovedá rovnakému slovenskému predikátu iba približne.

Príklad 1.6

Predikát ${\tt mlad}{\tt s}{\tt i}^2$ môže označovať vzťah "x je mladší ako y" presne.

Predikát $mladý^1$ zodpovedá vlastnosti "x je mladý" iba približne.

Nekategorickými vlastnosťami sa zaoberajú fuzzy logiky.

Predikáty v nich zachytávajú význam týchto vlastností presnejšie.

Atomické formuly

Atomické formuly majú tvar

$$predik \'at(argument_1, argument_2, \dots, argument_k),$$

alebo

$$argument_1 \doteq argument_2$$
,

pričom k je arita $predik \acute{a}t$ u,

a $argument_1, ..., argument_k$ sú (nateraz) indivíduové konštanty.

Atomická formula zodpovedá (jednoduchému) výroku v slovenčine, t.j. tvrdeniu, ktorého pravdivostná hodnota (pravda alebo nepravda) sa dá iednoznačne určiť.

lebo predikát označuje kategorickú vlastnosť/vzťah

a indivíduové konštanty jednoznačne označujú objekty.

Formalizácia jednoduchých výrokov

Formalizácia je preklad výrokov z prirodzeného jazyka do formálneho logického jazyka.

Nie je to jednoznačný proces.

V spojení s návrhom vlastného jazyka (konštánt a predikátov) je typicky iteratívna.

- Postupne zisťujeme, aké predikáty a konštanty potrebujeme, upravujeme predchádzajúce formalizácie.
- Zanedbávame nepodstatné detaily.
- Doterajší jazyk sa snažíme využiť čo najlepšie.

Príklad 1.7

 A_1 : Jarka dala Milovi Bobyho.

Príklad 1.7

 A_1 : Jarka dala Milovi Bobyho.

 A_2 : Evka dostala Bobyho od Mila.

Príklad 1.7

 A_1 : Jarka dala Milovi Bobyho.

 A_2 : Evka dostala Bobyho od Mila.

A₃: Evka dala Jarke Cilku.

Príklad 1.7

 A_1 : Jarka dala Milovi Bobyho.

 A_2 : Evka dostala Bobyho od Mila.

 A_3 : Evka dala Jarke Cilku.

 A_4 : Boby je pes.

Príklad 1.7

```
A_1: Jarka dala Milovi Bobyho.
```

```
→ d(Jarka) dalBobyho(Jarka,Milo) dal(Jarka,Milo,Boby)
```

 A_2 : Evka dostala Bobyho od Mila.

→ dalBobyho(Milo, Evka) dal(Milo, Evka, Boby)

 A_3 : Evka dala Jarke Cilku.

→ dalCilku(Evka, Jarka) dal(Evka, Jarka, Cilka)

 A_4 : Boby je pes.

→ pes(Boby)

Minimalizujeme počet predikátov, uprednostňujeme flexibilnejšie, viacúčelovejšie (da 1^3 pred da $1Bobyho^2$ a da $1Ci1ku^2$).

Dosiahneme

- expresívnejší jazyk (vyjadrí viac menším počtom prostriedkov),
- zrejmejšie logické vzťahy výrokov.

Podobné normalizácii databázových schém.

Atomické formuly a štruktúry

•

Syntax atomických formúl

Presné definície

Cieľom logiky je uvažovať o jazyku, výrokoch, vyplývaní, dôkazoch.

Výpočtová logika sa snaží automaticky riešiť konkrétne problémy vyjadrené v logických jazykoch.

Spoľahlivé a overiteľné úvahy a výpočty vyžadujú presnú dohodu na tom, o čom hovoríme — definíciu logických pojmov (jazyk, výrok, pravdivosť, ...).

Pojmy (napr. atomická formula) môžeme zadefinovať napríklad

- matematicky ako množiny, n-tice, relácie, funkcie, postupnosti, ...;
- informaticky tým, že ich naprogramujeme,
 napr. zadefinujeme triedu AtomickaFormula v Pythone.

Matematický jazyk je univerzálnejší ako programovací — abstraktnejší, menej nie až tak podstatných detailov.

Syntax atomických formúl logiky prvého rádu

Najprv sa musíme dohodnúť na tom, aká je syntax atomických formúl logiky prvého rádu:

- z čoho sa skladajú,
- čím vlastne sú,
- akú majú štruktúru.

Symboly jazyka atomických formúl logiky prvého rádu Z čoho sa skladajú atomické formuly?

Symboly jazyka atomických formúl logiky prvého rádu

Z čoho sa skladajú atomické formuly?

Definícia 1.8

Symbolmi jazyka $\mathcal L$ atomických formúl logiky prvého rádu sú mimologické, logické a pomocné symboly, pričom:

Mimologickými symbolmi sú

- indivíduové konštanty z nejakej neprázdnej spočítateľnej množiny $\mathcal{C}_{\mathcal{L}}$
- a $\operatorname{predik\'atov\'e}$ symboly z nejakej spočítateľnej množiny $\mathcal{P}_{\mathcal{L}}.$

Jediným *logickým symbolom* je ≐ (symbol rovnosti).

Pomocnými symbolmi sú (,) a , (ľavá, pravá zátvorka a čiarka).

Množiny $\mathcal{C}_{\mathcal{L}}$ a $\mathcal{P}_{\mathcal{L}}$ sú disjunktné.

Pomocné symboly sa nevyskytujú v symboloch z $\mathcal{C}_{\mathcal{L}}$ ani $\mathcal{P}_{\mathcal{L}}$. Každému symbolu $P \in \mathcal{P}_{\mathcal{L}}$ je priradená $\operatorname{arita} \operatorname{ar}_{\mathcal{L}}(P) \in \mathbb{N}^+$.

Abeceda jazyka atomických formúl logiky prvého rádu

Na Úvode do teoretickej informatiky/Formálnych jazykoch a automatoch by ste povedali, že *abecedou* jazyka $\mathcal L$ atomických formúl logiky prvého rádu je $\Sigma_{\mathcal L} = \mathcal C_{\mathcal L} \cup \mathcal P_{\mathcal L} \cup \{ \dot= ,$ (,), ,}.

V logike sa väčšinou pojem *abeceda* nepoužíva, pretože potrebujeme rozlišovať rôzne druhy symbolov.

Namiesto abeceda jazyka $\mathcal L$ hovoríme množina všetkých symbolov jazyka $\mathcal L$ alebo len symboly jazyka $\mathcal L$.

Na zápise množiny $\Sigma_{\mathcal{L}}$ však ľahko vidíme, čím sa rôzne jazyky atomických formúl logiky prvého rádu od seba líšia a čo majú spoločné.

Príklady symbolov jazykov atomických formúl logiky prvého rádu

Príklad 1.9

Príklad o deťoch a zvieratkách sme sformalizovali v jazyku $\mathcal{L}_{\text{dz}},$ v ktorom

$$\mathcal{C}_{\mathcal{L}_{dz}} = \{ ext{Boby}, ext{Cilka}, ext{Evka}, ext{Jarka}, ext{Milo} \},$$

$$\mathcal{P}_{\mathcal{L}_{dz}} = \{ ext{dal}, ext{pes} \}, \quad ext{ar}_{\mathcal{L}_{dz}}(ext{dal}) = 3, \quad ext{ar}_{\mathcal{L}_{dz}}(ext{pes}) = 1.$$

Príklad 1.10

Príklad o návštevníkoch party by sme mohli sformalizovať v jazyku $\mathcal{L}_{\text{party}}$, kde

Označenia symbolov

Keď budeme hovoriť o ľubovoľnom jazyku \mathcal{L} , často budeme potrebovať nejak označiť niektoré jeho konštanty alebo predikáty, aj keď nebudeme vedieť, aké konkrétne symboly to sú.

Na označenie symbolov použijeme *meta premenné*: premenné v (matematickej) slovenčine, pomocou ktorých budeme hovoriť o (po grécky *meta*) týchto symboloch.

Dohoda 1.11

Indivíduové konštanty budeme spravidla označovať meta premennými a,b,c,d s prípadnými dolnými indexmi.

Predikátové symboly budeme spravidla označovať meta premennými P, Q, R s prípadnými dolnými indexmi.

Atomické formuly jazyka

Čo sú atomické formuly?

Atomické formuly jazyka

Čo sú atomické formuly?

Definícia 1.12

Nech $\mathcal L$ je jazyk atomických formúl logiky prvého rádu.

Rovnostný atóm jazyka $\mathcal L$ je každá postupnosť symbolov $c_1 \doteq c_2$, kde c_1 a c_2 sú indivíduové konštanty z $\mathcal C_{\mathcal L}$.

Predikátový atóm jazyka \mathcal{L} je každá postupnosť symbolov $P(c_1, \ldots, c_n)$, kde P je predikátový symbol z $\mathcal{P}_{\mathcal{L}}$ s aritou n a c_1, \ldots, c_n sú indivíduové konštanty z $\mathcal{C}_{\mathcal{L}}$.

Atomickými formulami (skrátene **atómami**) jazyka $\mathcal L$ súhrnne nazývame všetky rovnostné a predikátové atómy jazyka $\mathcal L$.

Množinu všetkých atómov jazyka $\mathcal L$ označujeme $\mathcal A_{\mathcal L}.$

Slová jazyka atomických formúl logiky prvého rádu

Na UTI/FoJa by ste povedali, že jazyk $\mathcal L$ atomických formúl logiky prvého rádu nad abecedou $\Sigma_{\mathcal L}=\mathcal C_{\mathcal L}\cup\mathcal P_{\mathcal L}\cup\{\doteq,\textbf{(,)},\textbf{,}\}$ je množina slov

$$\begin{split} \{\, c_1 &\doteq c_2 \mid c_1 \in \mathcal{C}_{\mathcal{L}}, c_2 \in \mathcal{C}_{\mathcal{L}} \,\} \\ &\quad \cup \{\, P(c_1, \dots, c_n) \mid P \in \mathcal{P}_{\mathcal{L}}, \operatorname{ar}_{\mathcal{L}}(P) = n, c_1 \in \mathcal{C}_{\mathcal{L}}, \dots, c_n \in \mathcal{C}_{\mathcal{L}} \,\}. \end{split}$$

V logike sa jazyk takto nedefinuje, pretože potrebujeme rozlišovať *rôzne druhy slov*.

Príklady atómov jazyka

Príklad 1.13

 $\label{eq:V_dz} \textit{V} \; \textit{jazyku} \; \mathcal{L}_{\textit{dz}}, \textit{kde} \; \mathcal{C}_{\mathcal{L}_{\textit{dz}}} = \{ \textit{Boby}, \textit{Cilka}, \textit{Evka}, \textit{Jarka}, \textit{Milo} \},$

 $\mathcal{P}_{\mathcal{L}_{dz}} = \{ \text{dal}, \text{pes} \}, \, \text{ar}_{\mathcal{L}_{dz}}(\text{dal}) = 3, \, \text{ar}_{\mathcal{L}_{dz}}(\text{pes}) = 1,$ sú okrem iných rovnostné atómy:

Boby = Boby Cilka = Boby

Evka = Jarka Boby = Cilka

.....

a predikátové atómy:

pes(Cilka) dal(Cilka, Milo, Boby) dal(Jarka, Evka, Milo).

Atómy ako triedy

Atomické formuly a štruktúry

Štruktúry

Vyhodnotenie atomickej formuly

Ako zistíme, či je atomická formula pes(Boby) pravdivá v nejakej situácii (napríklad u babky Evky, Jarky a Mila na dedine)?

Pozrieme sa na túto situáciu a zistíme:

- 1. aký objekt b pomenúva konštanta Boby;
- 2. akú vlastnosť p označuje predikát pes;
- 3. či objekt b má vlastnosť p.

Vyhodnotenie atomickej formuly

Ako môžeme tento postup matematicky alebo informaticky modelovať?

Potrebujeme:

- matematický/informatický model situácie (stavu vybranej časti sveta),
- postup na jeho použitie pri vyhodnocovaní pravdivosti formúl.

Ako môžeme matematicky popísať nejakú situáciu tak, aby sme pomocou tohto popisu mohli vyhodnocovať atomické formuly v nejakom jazyku logiky prvého rádu \mathcal{L} ?

Potrebujeme vedieť:

• ktoré objekty sú v popisovanej situácii prítomné,

- ktoré objekty sú v popisovanej situácii prítomné,
- množina všetkých týchto objektov doména;

- ktoré objekty sú v popisovanej situácii prítomné,
- množina všetkých týchto objektov doména;
- jednoznačné priradenie významu všetkým indivíduovým konštantám a predikátom z jazyka $\mathcal L$

- ktoré objekty sú v popisovanej situácii prítomné,
- množina všetkých týchto objektov doména;
- jednoznačné priradenie významu všetkým indivíduovým konštantám a predikátom z jazyka $\mathcal L$
- interpretačná funkcia;

- ktoré objekty sú v popisovanej situácii prítomné,
- množina všetkých týchto objektov doména;
- jednoznačné priradenie významu všetkým indivíduovým konštantám a predikátom z jazyka $\mathcal L$
- interpretačná funkcia;
- pre každú indivíduovú konštantu c z jazyka £, ktorý objekt z domény konštanta c pomenúva,

- ktoré objekty sú v popisovanej situácii prítomné,
- množina všetkých týchto objektov doména;
- jednoznačné priradenie významu všetkým indivíduovým konštantám a predikátom z jazyka $\mathcal L$
- ▶ interpretačná funkcia;
- pre každú indivíduovú konštantu c z jazyka £, ktorý objekt z domény konštanta c pomenúva,
- pre každý unárny predikát P z jazyka £,
 ktoré objekty z domény majú vlastnosť označenú predikátom P,

- ktoré objekty sú v popisovanej situácii prítomné,
- množina všetkých týchto objektov doména;
- jednoznačné priradenie významu všetkým indivíduovým konštantám a predikátom z jazyka $\mathcal L$
- ▶ interpretačná funkcia;
- pre každú indivíduovú konštantu c z jazyka £, ktorý objekt z domény konštanta c pomenúva,
- pre každý unárny predikát P z jazyka \mathcal{L} , ktoré objekty z domény majú vlastnosť označenú predikátom P,
- tvoria podmnožinu domény;

- ktoré objekty sú v popisovanej situácii prítomné,
- množina všetkých týchto objektov doména;
- jednoznačné priradenie významu všetkým indivíduovým konštantám a predikátom z jazyka $\mathcal L$
- ▶ interpretačná funkcia;
- pre každú indivíduovú konštantu c z jazyka £, ktorý objekt z domény konštanta c pomenúva,
- pre každý unárny predikát P z jazyka £,
 ktoré objekty z domény majú vlastnosť označenú predikátom P,
- tvoria podmnožinu domény;
- pre každý n-árny predikát R z jazyka £, n > 1,
 ktoré n-tice objektov z domény sú vo vzťahu ozn. pred. R,

- ktoré objekty sú v popisovanej situácii prítomné,
- množina všetkých týchto objektov doména;
- jednoznačné priradenie významu všetkým indivíduovým konštantám a predikátom z jazyka £
- ▶ interpretačná funkcia;
- pre každú indivíduovú konštantu c z jazyka £, ktorý objekt z domény konštanta c pomenúva,
- pre každý unárny predikát P z jazyka £,
 ktoré objekty z domény majú vlastnosť označenú predikátom P,
- tvoria podmnožinu domény;
- pre každý n-árny predikát R z jazyka £, n > 1,
 ktoré n-tice objektov z domény sú vo vzťahu ozn. pred. R,
- ightharpoonup tvoria n-árnu reláciu na doméne.

Štruktúra pre jazyk

Definícia 1.14

Nech $\mathcal L$ je jazyk atomických formúl logiky prvého rádu. <u>Štruktúrou</u> pre jazyk $\mathcal L$ (niekedy *interpretáciou* jazyka $\mathcal L$) nazývame dvojicu $\mathcal M=(D,i)$, kde

D je ľubovoľná neprázdna množina nazývaná doména štruktúry \mathcal{M} ;

- i je zobrazenie, nazývané <code>interpretačná funkcia</code> štruktúry \mathcal{M} , ktoré
 - každej indivíduovej konštante c jazyka \mathcal{L} priraďuje prvok $i(c) \in D$;
 - každému predikátovému symbolu P jazyka \mathcal{L} s aritou n priraďuje množinu $i(P) \subseteq D^n$.

Dohoda 1.15

Štruktúry označujeme veľkými písanými písmenami $\mathcal{M}, \mathcal{N}, \dots$

Príklad štruktúry

Príklad 1.16
$$\mathcal{M} = (D, i), \quad D = \left\{ \mathbf{\dot{\uparrow}}, \mathbf{\dot{\circlearrowleft}}, \mathbf{\dot{\uparrow}}, \mathbf{\dot{\uparrow}}, \mathbf{\dot{\uparrow}}, \mathbf{\dot{\uparrow}}, \mathbf{\dot{\uparrow}}, \mathbf{\dot{\uparrow}}, \mathbf{\dot{\uparrow}} \right\}$$

$$i(\text{Boby}) = \mathbf{\dot{\uparrow}} \qquad i(\text{Cilka}) = \mathbf{\dot{\uparrow}} \qquad i(\text{Milo}) = \mathbf{\dot{\uparrow}} \qquad i(\text{pes}) = \left\{ \mathbf{\dot{\uparrow}}, \mathbf{\dot{\circlearrowleft}}, \mathbf{\dot{\uparrow}} \right\}$$

$$i(\text{dal}) = \left\{ (\mathbf{\dot{\uparrow}}, \mathbf{\dot{\circlearrowleft}}, \mathbf{\dot{\uparrow}}), (\mathbf{\dot{\diamondsuit}}, \mathbf{\dot{\uparrow}}, \mathbf{\dot{\downarrow}}) \right\}$$

Štruktúra ako informatický objekt

Štruktúru sme definovali pomocou matematických objektov.

Aký informatický objekt sa podobá na štruktúru?

Štruktúra ako informatický objekt

Štruktúru sme definovali pomocou matematických objektov.

Aký informatický objekt sa podobá na štruktúru?

Databáza:

Predikátové symboly jazyka \sim veľmi zjednodušená schéma DB (arita \sim počet stĺpcov)

Interpretácia predikátových symbolov \sim konkrétne tabuľky s dátami

$i(pes^1)$
1
J, J,

i(dal³)		
1	2	3
¥	*	'n
ŧ	Å	Ħ
*	Å	F

Štruktúry – upozornenia

Štruktúr pre daný jazyk je nekonečne veľa.

Doména štruktúry

- nesúvisí so zamýšľaným významom interpretovaného jazyka;
- môže mať ľubovoľné prvky:
- môže byť nekonečná.

Interpretácia symbolov konštánt:

- každei konštante je priradený objekt domény:
- nie každý objekt domény musí byť priradený nejakej konštante;
- rôznym konštantám môže byť priradený rovnaký objekt.

Interpretácie predikátových symbolov môžu byť nekonečné.

Príklad 1.17 (Štruktúra s nekonečnou doménou)

```
 \mathcal{M} = (\mathbb{N}, i) \quad i(\texttt{pes}) = \{2n \mid n \in \mathbb{N}\} \quad i(\texttt{dal}) = \{(n, m, n + m) \mid n, m \in \mathbb{N}\}   i(\texttt{Boby}) = 0 \quad i(\texttt{Cilka}) = 1 \quad i(\texttt{Evka}) = 3 \quad i(\texttt{Jarka}) = 5 \quad i(\texttt{Milo}) = 0
```

Atomické formuly a štruktúry

Sémantika atomických formúl

Pravdivosť atomickej formuly v štruktúre

Ako zistíme, či je atomická formula pravdivá v štruktúre?

Definícia 1.18

Nech $\mathcal{M}=(D,i)$ je štruktúra pre jazyk \mathcal{L} atomických formúl jazyka logiky prvého rádu.

Rovnostný atóm $c_1 \doteq c_2$ jazyka $\mathcal L$ je *pravdivý* v *štruktúre* $\mathcal M$ vtedy a len vtedy, keď $i(c_1) = i(c_2)$.

Predikátový atóm $P(c_1,\ldots,c_n)$ jazyka $\mathcal L$ je **pravdivý v štruktúre** $\mathcal M$ vtedy a len vtedy, keď $(i(c_1),\ldots,i(c_n))\in i(P)$.

Vzťah atóm A je pravdivý v štruktúre $\mathcal M$ skrátene zapisujeme $\mathcal M \models A$. Hovoríme aj, že $\mathcal M$ je $\frac{m}{n}$ odelom A.

Vzťah atóm A nie je pravdivý v štruktúre $\mathcal M$ zapisujeme $\mathcal M \not\models A$. Hovoríme aj, že A je nepravdivý v $\mathcal M$ a $\mathcal M$ nie je modelom A. Príklad 1.19 (Určenie pravdivosti atómov v štruktúre)

$$\mathcal{M} = (D, i), \quad D = \left\{ \mathbf{\mathring{q}}, \mathbf{\mathring{q}} \right\}$$

$$i(\text{Boby}) = \mathbf{\mathring{q}} \qquad i(\text{Cilka}) = \mathbf{\mathring{q}} \qquad i(\text{Milo}) = \mathbf{\mathring{q}}$$

$$i(\text{Evka}) = \mathbf{\mathring{q}} \qquad i(\text{Milo}) = \mathbf{\mathring{q}}$$

$$i(\text{pes}) = \{ \mathbf{A}, \mathbf{A} \}$$

$$i(\text{dal}) = \{ (\mathbf{A}, \mathbf{A}, \mathbf{A}), (\mathbf{A}, \mathbf{A}, \mathbf{A}), (\mathbf{A}, \mathbf{A}, \mathbf{A}) \}$$

Atóm pes(Boby)

Atóm dal(Evka, Jarka, Cilka)

Atóm Cilka ≐ Bobv

 $\mathcal{M} \models c_1 \doteq c_2 \text{ vtt}$

 $\mathcal{M} \models P(c_1, \dots, c_n) \text{ vtt}$ $(i(c_1), \dots, i(c_n)) \in i(P)$

 $i(c_1) = i(c_2)$

Príklad 1.19 (Určenie pravdivosti atómov v štruktúre)

$$\mathcal{M} = (D, i), \quad D = \left\{ \stackrel{\bullet}{\bullet}, \stackrel{\bullet}{\circ}, \stackrel{\bullet}{\bullet}, \stackrel{\bullet}{\bullet}, \stackrel{\bullet}{\bullet}, \stackrel{\bullet}{\bullet}, \stackrel{\bullet}{\bullet} \right\}$$
 $i(\text{Boby}) = \stackrel{\bullet}{\bullet} \qquad i(\text{Cilka}) = \stackrel{\bullet}{\bullet} \qquad i(\text{Milo}) = \stackrel{\bullet}{\bullet}$

$$i(pes) = \{ \mathbf{m}, \mathbf{m} \}$$

$$i(dal) = \{ (\mathbf{m}, \mathbf{s}, \mathbf{m}), (\mathbf{m}, \mathbf{m}), (\mathbf{s}, \mathbf{m}, \mathbf{m}) \}$$

Atóm pes(Boby) je pravdivý v štruktúre \mathcal{M} , t.j., $\mathcal{M} \models \text{pes(Boby)}$,

lebo objekt
$$i(Boby) = \mathbf{H}$$
 je prvkom množiny $\{\mathbf{H}, \mathbf{H}\}$
Atóm dal(Evka, Jarka, Cilka) je pravdivý v \mathcal{M} .

lebo $i(Cilka) = \mathbb{K} \neq \mathbb{K} = i(Boby).$

t.j., $\mathcal{M} \models dal(Evka, Jarka, Cilka)$, lebo $(i(\text{Evka}), i(\text{Jarka}), i(\text{Cilka})) = \left(\underbrace{*}, \overset{\blacktriangle}{\blacktriangle}, \underbrace{*} \right) \in i(\text{dal}).$

lebo objekt i(Boby) = r je prvkom množiny $\{r = i(pes).$ Atóm dal(Evka, Jarka, Cilka) je pravdivý v \mathcal{M} ,

Atóm Cilka \doteq Boby nie je pravdivý v \mathcal{M} , t.j., $\mathcal{M} \not\models$ Cilka \doteq Boby,

 $\mathcal{M} \models c_1 \doteq c_2 \text{ vtt}$ $i(c_1) = i(c_2)$

 $\mathcal{M} \models P(c_1, \dots, c_n) \text{ vtt}$

 $(i(c_1), \dots, i(c_n)) \in i(P)$

Atomické formuly a štruktúry

Zhrnutie

Zhrnutie

- Logika prvého rádu je rodina formálnych jazykov.
- Každý jazyk logiky prvého rádu je daný neprázdnou množinou indivíduových konštánt a množinou predikátových symbolov.
- Atomické formuly sú základnými výrazmi prvorádového jazyka.
 - Postupnosti symbolov $P(c_1, \dots, c_n)$ (predikátové) a $c_1 \doteq c_2$ (rovnostné).
 - Zodpovedajú pozitívnym jednoduchým výrokom o vlastnostiach, stavoch, vzťahoch, rovnosti jednotlivých pomenovaných objektov.
- Význam jazyku dáva štruktúra matematický opis stavu sveta
 - Skladá sa z neprázdnej domény a z interpretačnej funkcie.
 - Konštanty interpretuje ako prvky domény.
 - Predikáty interpretuje ako podmnožiny domény/relácie na doméne.
- Pravdivosť atómu určíme interpretovaním argumentov
 a zistením, či je výsledná n-tica objektov prvkom interpretácie
 predikátu, resp. pri rovnostnom atóme, či sa objekty rovnajú.