

Solar Degradation and Lifetime Extension (SDLE)

Accelerated Degradation in Advanced Photovoltaic Cells:

A Data-Driven Approach to Enhancing Solar Cell Longevity and Efficiency

Marina Kamperai¹, Salma Bhar¹, Shahib Uddin Prokhor¹, Mirra Rasmussen¹, Diego Zubieta¹, Chien-Hsuan Chen², Hein Htet Aung¹

Nicholas Moser-Mancewicz³, Cecile Molto², Mariana Bertoni³, Kristopher O. Davis², Laura S. Bruckman¹, Ina T. Martin¹

¹Case Western Reserve University, ²University of Central Florida, ³Arizona State University

1. INTRODUCTION

Silicon Heterojunction (SHJ) cells

- High Efficiency & Low Degradation
- Improved Temperature Performance

Passivated Emitter Rear Cells (PERC)

- Enhanced Efficiency
- Compatibility with Existing Technologies

SHJ a-Si:H/c-Si SHJ Ag front contact a-Si:H(i) a-Si:H(i) a-Si:H(n+)

Passivated Emitter Rear Totally-diffused (PERT) cells

- Bifacial Design Capability
- Enhanced Rear Side Utilization

Study Goal: Examining the degradation in different solar cell technologies through accelerating aging, to provide insight into improving their durability and advancing the broader adoption of solar energy

2. EXPERIMENT DESIGN

Environmental Stressors:

Feedback from academia and industry

High concern

- 1. UV light
- 2. UV light and heat
- 3. Temperature cycles
- 4. Heat and humidity 5.(Acetic acid)
- **Low Concern**
- 1. Sodium (Na)
- 2. Broadband Light
- 3. Heat
- 4. Cold (w/o. humidity)

Accelerated Aging Test:

UV Exposure	Cyclic Exposure	Damp Heat (DH) Exposure	Acetic Acid
Irradiance : 1.55 W/m^2	4 hrs dark, 8 hrs at 1.55 W/m^2	Rel. Humidity = 85%	Solution: 5 vol.%
Temperature : 50°C	ature : 50°C Temperature : 50°C Tem		Total Hrs of Exposure : 3

- 30 SHJ cells in exposure
- → 30 PERT cells in exposure
- → 30 PERC cells in exposure

Exposure

UV

				-
				7
1 cm	1 cm	Sec.	1 cm	

SHJ

PERT

PERC

Aging Steps (hours)				
200 , <mark>400</mark> , 800, <mark>1</mark> 2	<mark>200</mark> , 1600			

0, 200, <mark>400, 800</mark>, 1200, 1600 Cyclic UV 0, 100, 200, <mark>400</mark>, 800, <mark>1000</mark> DH

0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, Acetic Acid 1.75, **2**

Characterization Methods:

Current - Voltage Characterization (I-V):

Efficiency Assessment

Performance Diagnosis

Suns Voltage Open Circuit (Suns-V_{OC}):

Performance Under Realistic Conditions **Quality Control**

External Quantum Efficiency (EQE):

Identification of Degradation Mechanism

Quantitative Assessment

3. RESULTS & DISCUSSION

Results:

The research is currently on a data gathering phase.

Preliminary Results:

Cell Baselining: Voc (V), Isc (A), Efficiency (%) & Fill Factor (%) Vs Cell Technology Type graphs are shown below:

PERC Devices : Illuminated I-V Characteristics

DH, UV alone:

Stable/small changes

Cyclic:

Significant loss

Dominated by FF, then Isc → contact resistivity

4. CONCLUSION

- Cyclic exposure appears so far to have the most substantial degradation impact on the cells.
- PERC has a greater response to cyclic exposure than SHJ.

Future plan

- Finish accelerated aging of UV, Cyclic UV, Damp heat, acetic acid on cells and start accelerated aging on film samples
- Cross-correlate cell performance and materials degradation
 - Focus on changes of interfaces
- Finalize rapid screen methods prioritize degradation mechanism

5. REFERENCES

- . Honsberg, Christiana; Bowden, Stuart. "PVCDROM." PVEducation,
- https://www.pveducation.org/PVCDROM (accessed December 7, 2023)
- 2. N. Iqbal et al. Impact of acetic acid exposure on metal contact degradation of different crystalline silicon solar cell technologies, Solar Energy Materials and Solar Cells, 250, 2023.
 - A. Sinha et al. UV-induced degradation of high-efficiency silicon PV modules with different cell architectures, Progress in Photovoltaics, 31, 2022

This work is supported by the Department of Energy (DOE) DE-EE-0010250. Additional student summer research stipends were provided by the CWRU SOURCE Office. Experimental work was performed in the CWRU MORE Center, SCSAM, & the SDLE Research Center.