Certified Algorithms for Combinatorial Optimization Problems

Martin Sokolov

Utrecht University

June 15, 2025

Outline

- Problem Overview
- 2 Approximation Schemes
- 3 Fixed-Parameter Tractability of FVS-BCL
- 4 Certified Algorithms
- Conclusion

Feedback Vertex Set (FVS)

FVS with Bounded Cycle Length (FVS-BCL)

EPTAS via Baker's Technique

BFS Layered Tree Structure

Idea: Break graph into layers via BFS.

- Nodes grouped by distance from root.
- Overlap grouped by distance from root mod \(\ell \)
- Subgraphs $G_{0,0}, G_{0,1}, G_{0,2}, \dots$

Baker's Technique for Unweighted FVS-4CL

Algorithm Baker's technique for the unweighted FVS-4CL

Require: Planar graph G = (V, E), parameter $\ell \leftarrow \frac{1}{\epsilon}$ **Ensure:** $(1 + \epsilon)$ -approximation for FVS-4CL

- 1: Perform BFS from some arbitrary vertex r
- 2: *S* ← ∅
 - i: shift; j: slice
- 3: **for** each i = 0 to $\ell 1$ **do**
- 4: Let $G_{i,j}$ be the subgraph induced on vertices at levels $j \cdot \ell + i$ through $(j+1) \cdot \ell + i + 1$ for all $j \geq 0$.
- 5: Let $S_{i,j}$ be the minimum unweighted FVS-4CL of $G_{i,j}$ using Algorithm ?? as a subroutine (weights are all ones).
- 6: Let $S_i = \bigcup_i S_{i,j}$
- 7: $S \leftarrow S \cup \{\tilde{S}_i\}$
- 8: end for
- 9: **return** S_{i*} from S with minimum cardinality

BFS Layered Tree Structure

Idea: Break graph into layers via BFS.

- Nodes grouped by distance from root.
- Overlap grouped by distance from root mod \(\ell \)
- Subgraphs $G_{0,0}, G_{0,1}, G_{0,2}, \dots$

Bounds on the Optimum Solution (Unweighted Case)

Lemma (Bound on the Optimum Solution in Subgraphs)

Let $S_{i,j}$ be the minimum unweighted feedback vertex set (FVS-4CL) for subgraph $G_{i,j}$, computed using Algorithm 1, and let $F \equiv OPT$ be the optimum solution for the full graph G.

Define $F_{i,j} := F \cap V(G_{i,j})$, i.e., the restriction of the global solution F to the subgraph $G_{i,j}$.

Then:

$$|S_{i,j}| \leq |F_{i,j}|$$

Result (Optimum solution bound for the whole graph)

Let S_i be the union of optimal solutions defined on Line 6 of Algorithm 1 for some shift i. Let $F \equiv OPT$ be the optimum solution in G and let $F_{i,j} = G_{i,j} \cap F$. For those sets it holds that:

$$|S_i| \leq \sum_j |S_{i,j}| \leq \sum_j |F_{i,j}|$$

Bounds on the Optimum Solution (Unweighted Case)

Lemma (Bound for the vertices on the boundaries (Unweighted Case))

Let $F_i = F \cap \{vertices \ at \ levels \ i \ mod \ \ell\}$. The sets F_i are disjoint and $\bigcup_i F_i = F$. We claim that:

$$\exists q \in \{0, 1, \dots, \ell - 1\} : |F_q| + |F_{q+1}| \le \frac{2}{\ell} \cdot |F|.$$

Lemma (Bound for the cardinality of the intersection sets)

Let $F \equiv OPT$ be the optimal solution and $F_{i,j} = F \cap G_{i,j}$ be the intersection sets with the subgraphs. Then we have:

$$\sum_{i} |F_{i^*,j}| \leq |F| + \frac{2}{\ell} \cdot |F|$$

for some specific integer i*.

$$|S_{i^*}| \leq \sum_j |S_{i^*,j}| \leq \sum_j |F_{i^*,j}| \leq |F| + \frac{2}{\ell} \cdot |F| = (1 + \frac{2}{\ell}) \cdot |F|$$

Weighted Bounds for FVS-BCL Problems

Weighted FVS-4CL:

$$w(S_{i^*}) \leq \sum_j w(S_{i^*,j}) \leq \sum_j w(F_{i^*,j}) \leq w(F) + \frac{2}{\ell} \cdot w(F) = \left(1 + \frac{2}{\ell}\right) \cdot w(F)$$

Weighted FVS-BCL (break cycles of length ρ):

$$w(S_{i^*}) \leq \sum_{j} w(S_{i^*,j}) \leq \sum_{j} w(F_{i^*,j}) \leq \left(1 + \frac{\lfloor \rho/2 \rfloor}{\ell}\right) \cdot w(F)$$

FPT via Dynamic Programming on Tree Decompositions

Algorithm Design for FVS-4CL

- **3** Solution: For the FVS-4CL problem, a solution for graph G is a set F such that G-F contains no 4-cycles.
- **② Partial Solution:** For subgraph $G_i = (V_i, E_i)$, a partial solution F_i is a subset $F_i \subseteq V_i$, a restriction of a full solution.
- **3** Extension of Partial Solution: A solution F extends F_i if $F \cap V_i = F_i$.
- **1** Characteristic of a Partial Solution: For X_i , vertices are partitioned as:
 - $I \subseteq X_i$: vertices in the partial solution.
 - $\mathcal{F} \subseteq X_i \times X_i$: pairs (v, u) with a common neighbour $w \in V_i \setminus X_i$ not in F_i .

$$ch(G_i,F_i) = \big(I,\{(v,u) \in X_i \times X_i : \exists w \in V_i \setminus X_i,(v,w),(u,w) \in E_i, w \notin F_i\}\big)$$

The valuation table $c[i, I, \mathcal{F}] \in \mathbb{N} \cup \{\infty\}$ gives the minimum weight of partial solution F_i :

$$c[i, I, \mathcal{F}] = \min\{w(W) : W \text{ is a FVS-4CL of } G_i \land W \cap X_i = I\}$$

§ Full Set of Characteristics: For node X_i , valuations exist for all

$$I \in \{0,1\}^{|X_i|}$$
 and $\mathcal{F} \in \{0,1\}^{|X_i imes X_i|}$

There are at most $2^{(tw+1)} \cdot 2^{(tw+1)} = 2^{\mathcal{O}(tw^2)}$ entries.

DP Transitions over Tree Decomposition Nodes

Leaf Node: $X_i = \emptyset$

$$c[i,\emptyset,\emptyset]=0$$

Introduce Node: Let $X_i = X_j \cup \{v\}$

$$\begin{split} c[i,I \cup \{v\},\mathcal{F}] &= w(v) + c[j,I,\mathcal{F}] \\ c[i,I,\mathcal{F}] &= \begin{cases} \infty & \text{if } \exists u,w \notin I: (u,w) \in \mathcal{F}, \ (v,u),(v,w) \in E_i \\ c[j,I,\mathcal{F}] & \text{otherwise} \end{cases} \end{split}$$

Forget Node: Let $X_i = X_j \setminus \{v\}$

$$c[i, I, \mathcal{F}] = \min \begin{pmatrix} c[j, I \cup \{v\}, \mathcal{F}], \\ c[j, I, \mathcal{F} \cup \{(u, w) : (v, u), (v, w) \in E_i\}] \end{pmatrix}$$

Join Node: Let $X_i = X_{j_1} = X_{j_2}$

$$c[i, I, \mathcal{F}] = \min_{\mathcal{F}_1 \cup \mathcal{F}_2 = \mathcal{F}} (c[j_1, I, \mathcal{F}_1] + c[j_2, I, \mathcal{F}_2] - w(I))$$

Infeasible if $\exists u, w \notin I : (u, w) \in \mathcal{F}_1 \cap \mathcal{F}_2 \Rightarrow c[i, I, \mathcal{F}] = \infty$

(□) (□) (□) (□)

Rhombus Graph and Tree Decomposition

Nice Tree Decomposition of the graph G with a width of 2.

Rhombus Graph and Tree Decomposition

<i>a</i> :	_
{}	(0)
Root	(9)
{ }	
Forget d	(8)
({d}	
Forget c	(7)
{c,d}	$\overline{}$
Forget b	(6)
{{b,c,d}}	$\overline{}$
Introduce c	(5)
{b,d}	$\overline{}$
	(4)
Forget a	(4))
$\{a,b,d\}$	
Introduce d	(3)
({a,b}	
Introduce b	(2)
({a}	
Introduce a	(1)
	=
13	(0)
Leaf	(0)

i	1	\mathcal{F}	Value
0	Ø	### ### ##############################	0
1	a Ø	Ø	1
1	Ø	Ø	0 1 0 4 1 3 0 6 4 3 5 1 3 2 0 6 5 4 3
2	$\{a,b\}$	Ø	4
2	{a}	Ø	1
2	{b}	Ø	3
2	{a, b} {a} {b} ∅	Ø	0
3	$\{a, b, d\}$	Ø	6
3	$\{a,b\}$	Ø	4
3	$\{a,d\}$	Ø	3
3	$\{b,d\}$	Ø	5
3	`{a}´	Ø	1
3	{ <i>b</i> }	Ø	3
3	{d}	Ø	2
3	{a, b, d} {a, b} {a, d} {b, d} {b} {d}	Ø	0
4	{b, d}	Ø	6
4	{b, d} {b, d} {b}	{ <i>b</i> , <i>d</i> }	5
4	$\{b\}$	ÒØ	4
i 0 1 1 2 2 2 2 3 4 <td>{b, d} {b} {b}</td> <td>{<i>b</i>, <i>d</i>}</td> <td>3</td>	{b, d} {b} {b}	{ <i>b</i> , <i>d</i> }	3

_			
i	1	\mathcal{F}	Value
4	{ <i>d</i> }	Ø	3
4	{d}	{b, d}	2
4	`Ø´	l Ø ´	1 1
4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	{ d } ∅ ∅	{b,d} ∅ {b,d}	3 2 1 0 10 9 6 5 8 7 4 3 7 6 3 2 5 4 1
5	$\{b, c, d\}$	Ø	10
5	$\{b,c,d\}$	$\{b,d\}$	9
5	{b, d}	` Ø ´	6
5	$\{b,d\}$ $\{b,d\}$	$\{b,d\}$	5
5	$\{b,c\}$	l Ø í	8
5	{b, c} {b, c} {b, c} {b} {c, d} {c, d}	$\{b,d\}$	7
5	$\{b\}$	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	4
5	\ \{b\}	$\{b,d\}$	3
5	$\{c,d\}$		7
5	{c,d} {c,d} {d}	$\{b, d\}$	6
5	{d} {d}		3
5		$\{b,d\}$	2
5	{c}		5
5	{c} ∅ ∅	$\{b,d\}$	4
5	\	` Ø ´	1 1
5	(A	{b, q}	$1 \sim 1$

Rhombus Graph and Tree Decomposition

{} Root	(9)
{} Forget d	(8)
{d}	\neg
Forget c	(7)
{c,d}	
Forget b	(6)
{b,c,d}	
Introduce c	(5)
{b,d}	
Forget a	(4)
${a,b,d}$	\neg
Introduce d	(3)
{a,b}	
Introduce b	(2)
{a}	\neg
Introduce a	(1)
{ }	
Leaf	(0)

i	1	$ \mathcal{F} $	Value
6	$\{c,d\}$	Ø	10
6	$\{c,d\}$	Ø	9
6	$\{d\}$	Ø	6
6	{d}	Ø	5
6	{d} {c} {c} ∅	Ø	8
6	{c}	Ø	7
6	Ø	Ø	4
6	Ø	Ø	3
6	$\{c,d\}$	Ø	7
6	$\{c,d\}$	Ø	6
6	$\{d\}$	Ø	3
6	{ <i>d</i> }	Ø	2
6	{c}	Ø	5
6	{c}	$ \emptyset $	4
666666666666666666666666666666666666666	{c} ∅ ∅		$egin{array}{c} 10 \ 9 \ 6 \ 5 \ 8 \ 7 \ 4 \ 3 \ 7 \ 6 \ 3 \ 2 \ 5 \ 4 \ 1 \ \infty \ \end{array}$
6	Ø	Ø	∞

i	1	${\cal F}$	Value
6	$\{c,d\}$	Ø	6
6	$\{d\}$	Ø	2 4
6	{c}	Ø	4
6	(Ø	Ø	1
7	{ <i>d</i> }	Ø	2
7	\Ø´	Ø	1
8	Ø	Ø	1
9	Ø	Ø	1

MSOL Formulation

Certified Algorithms

- Perturbation resilience
- m-Stitching and Π -m-Stitching
- Certified Algorithms

Definition: *m*-stitching

Definition (*m*-stitching)

Assume $m \ge 0$ is an integer, J is an induced subgraph of G, and $S_1, S_2 \subseteq V(G)$. Then we define the m-stitch of S_2 onto S_1 along J as the set:

$$S_3 := (S_1 \setminus J) \cup (S_2 \cap N_G^m[J]).$$

Illustration of 2-stitching

Figure: Vertex set S_1

Figure: Vertex set S_2

Figure: J and $N_G^2[J]$

Figure: Remove J from S_1

Figure: Add $S_2 \cap N_G^2[J]$

Figure: Final set S_3

Meta-Theorem for Minor-Closed Graph Classes

Definition

Let \mathcal{G} be a minor-closed graph class whose local treewidth is bounded by $g(r) = \lambda \cdot r$, for fixed $\lambda \in \mathbb{R}$ and $r \in \mathbb{N}$.

Let Π be a vertex-minimization problem such that:

- Π is guessable.
- Π is m-stitchable.
- **3** There exists an algorithm A_{Π} that solves Π -m-stitching in time $f(t) \cdot |V(G)|^{\mathcal{O}(1)}$, where $t = \operatorname{tw}(G[N_G^m(J)])$ and f is computable.

Then, for each $\epsilon>0$, there exists a $(1+\epsilon)$ -certified algorithm for Π running in time $f(\lambda\cdot m/\epsilon)\cdot |V(G)|^{\mathcal{O}(1)}$ on any input $(G,w:V(G)\to\mathbb{N})$, with $G\in\mathcal{G}$ and polynomially-bounded weights.

Guessable Problems

Definition (Guessable)

A problem Π is *guessable* if there is an algorithm that outputs a feasible solution with no requirement for optimality in polynomial time.

In the case of FVS-BCL:

This set is $F \leftarrow V$ for a graph G = (V, E).

Lemma: FVS-BCL is 2-stitchable

Lemma (FVS-BCL is 2-stitchable)

Let (G, w) be any instance of the FVS-4CL problem, let $J \subseteq V(G)$ be a subset of the vertices in the graph, and let S_1 and S_2 be any two feasible solutions to the problem in G. Then the set

$$S_3:=(S_1\setminus J)\cup (S_2\cap N_G^2[J])$$

is a feasible solution to the problem.

Stitch-FVS-4CL Algorithm

Algorithm Stitch-FVS-4CL

Require: Vertex-weighted planar graph $(G, w : V(G) \to \mathbb{N})$, a feasible solution S_1 on G, and a vertex set $J \subseteq V(G)$

Ensure: Feasible solution S' on G, such that for all feasible solutions S^* , $w(S') \le w(S^* \oplus_{G \in I}^2 S_1)$

1:
$$H \leftarrow G[N_G^2[J] \setminus (S_1 \setminus J)]$$

- 2: Let S_2 be the output of algorithm A on input (H, w)
- 3: **if** $w(S_2 \oplus_{G,J}^2 S_1) < w(S_1)$ **then**
- 4: **return** $S_2 \oplus_{G,J}^2 S_1$
- 5: **else**
- 6: **return** S_1
- 7: end if

Case-distinction proof

Figure: Sets $J \subseteq N_G^1[J] \subseteq N_G^2[J]$; Solution S_1 in blue

Figure: $\forall v \in \{v_1, v_2, v_3, v_4\}$, such that $v \in S_1$, it holds that $v \notin J$

Case-distinction proof

Figure: $\exists v \in \{v_1, v_2, v_3, v_4\}$, such that $v \in S_1$: $v \in J$

Figure: $\forall v \in \{v_1, v_2, v_3, v_4\}$, such that $v \in S_1$: $v \in J$

Meta-Theorem for Minor-Closed Graph Classes

Definition

Let \mathcal{G} be a minor-closed graph class whose local treewidth is bounded by $g(r) = \lambda \cdot r$, for fixed $\lambda \in \mathbb{R}$ and $r \in \mathbb{N}$.

Let Π be a vertex-minimization problem such that:

- **①** Π is guessable.
- Π is m-stitchable.
- **3** There exists an algorithm A_{Π} that solves Π -m-stitching in time $f(t) \cdot |V(G)|^{\mathcal{O}(1)}$, where $t = \operatorname{tw}(G[N_G^m(J)])$ and f is computable.

Then, for each $\epsilon>0$, there exists a $(1+\epsilon)$ -certified algorithm for Π running in time $f(\lambda\cdot m/\epsilon)\cdot |V(G)|^{\mathcal{O}(1)}$ on any input $(G,w:V(G)\to\mathbb{N})$, with $G\in\mathcal{G}$ and polynomially-bounded weights.

Summary of Contributions

Future Work

Thank you!

Questions?