Problem 1 (12.1). 1. Let R be a ring and M and R-module. Prove that r0 = 0 for $r \in R$. If R has the identity 1, then (-1)x = -x for $x \in M$.

- 2. Let R be a ring and M, N, L be R-modules. Prove:
 - (a) $hom_R(M, N)$ is an abelian group under addition

$$(\phi + \psi)(m) = \phi(m) + \psi(m)$$

If R is commutative, hom(M, N) is an R-module with the R-action given by

$$(r\phi)(m) = r\phi(m)$$

- (b) If $\phi \in \text{hom}_R(M, N)$ and $\psi \in \text{hom}_R(N, L)$, then $\psi \circ \phi \in \text{hom}_R(M, L)$.
- (c) $hom_R(M, M)$ is a ring with identity with composition as multiplication.
- 3. Prove that $hom_{\mathbb{Z}}(\mathbb{Z}_n, \mathbb{Z}_m) \cong \mathbb{Z}_d$ where $d = \gcd(m, n)$.

Proof.

Problem 2 (12.2). Let A, B be submodules of an R-module M. Prove that A + B and $A \cap B$ are submodules of M. Moreover, the equality

$$A \cap (B+C) = B + (A \cap C)$$

holds for all R-submodules C if $B \subseteq A$.

Proof.

Problem 3 (12.4). Let M be an R-module.

- 1. For any submodules N_1, \ldots, N_n of M, their sum $N_1 + \cdots + N_n$ is the smallest submodule of M which contains $N_1 \cup \cdots \cup N_n$.
- 2. For any subset A of M, RA is the smallest submodule of M which contains A.

Proof.

Problem 4 (12.5). Show that \mathbb{Z}_{p^e} , regarded as a \mathbb{Z} -module is not a direct sum of any two non-zero submodules, where p is a prime and e > 0. Does it hold for \mathbb{Z} ? Does it hold for \mathbb{Z}_{12} ?

 \square

Problem 5 (12.7). Let R be a PID and p a prime in R.

1. If M is a finitely generated p-primary R-module, then M/pM is an R/(p)-module with the R-action given by (12.6). Moreover, show that the mapping ϕ defined in (12.7) is a R/(p)-module map.

2. Let $\phi: M_1 \to M_2$ be an isomorphism finitely generated p-primary R-modules. Prove that $\phi|_{pM_1}: pM_1 \to pM_2$ is an isomorphism of R-module. Show that the map $\bar{\phi}: M_1/pM_1 \to M_2/pM_2$ defined by

$$\bar{\phi}(m+pM_1) = \phi(m) + pM_2$$

is an isomorphism of R/(p)-vector spaces.

 \square

Problem 6 (12.8). 1. Find the Smith normal form of the integer matrix

$$\left[\begin{array}{ccc} 2 & 1 & 3 \\ 1 & -1 & 3 \end{array}\right]$$

2. Determine the invariant factor decomposition of \mathbb{Z}^3/K where K is generated by $f_1(2,1,-3)$ and $f_2=(1,-1,2)$.

Proof.

Problem 7 (12.9). 1. Find a basic for the submodule K of $\mathbb{Q}[x]^3$ generated by

$$f_1 = (2x - 1, x, x^2 + 3), \quad f_2 = (x, x, x^2), \quad f_3 = (x + 1, 2x, 2x^2 - 3)$$

2. Find the invariant factors and elementary divisors of the $\mathbb{Q}[x]$ -module $\mathbb{Q}[x]^3/K$.

 \square

Problem 8 (12.11). Let F be a field and V an n-dimensional vector space over F with an ordered basis \mathcal{B} .

1. Let T be a linear operator on V. For any ordered basis \mathcal{B}' of V, the matrices $[T]_{\mathcal{B}}$ and $[T]_{\mathcal{B}'}$ are similar over F. Conversely, if $A \in M_n(F)$ is similar to $[T]_{\mathcal{B}}$ over F, there exists a basis \mathcal{B}' such that $[T]_{\mathcal{B}'} = A$.

Proof.

Problem 9 (12.13). Find the rational canonical form of the matrix

$$A = \begin{bmatrix} -1 & -2 & 6 \\ -1 & 0 & 3 \\ -1 & -1 & 4 \end{bmatrix} \in M_3(\mathbb{Q})$$

Consider $A \in M_3(\mathbb{C})$ and find the Jordan canonical form of A.

Proof.