

## Sistema Distribuído de Planejamento Multiagente

Alexandre Mendonça Fava, Paulo Victor de Aguiar

alexandre.fava@hotmail.com
pavaguiar@gmail.com

Professor: Cláudio César de Sá Departamento de Ciência da Computação Centro de Ciências e Tecnológias Universidade do Estado de Santa Catarina

12 de Maio de 2017

Ale & PV 12 de Maio de 2017 OSIM001 - 2017/1 1 / 16



#### Sumário

Introdução

Definição de Agente

Visão Geral do DOMAPS

Planejamento Multiagente

Experimentos

Conclusão

Ale & PV 12 de Maio de 2017 OSIM001 - 2017/1 2



### Introdução

- As comunidades de "planejamento automatizado" e dos "agentes autônomos", estão tentando solucionar os problemas entre o planejamento e a execução de uma determinada tarefa;
- Em [Cardoso] esse problema foi solucionado usando um framework de desenvolvimento de sistemas multiagentes, que funciona de maneira descentralizada nos estágios de execução;

Ale & PV 12 de Maio de 2017 OSIM001 - 2017/1 3 / 16



### Introdução

- Características principais do (DOMAPS):
- Distributed Online Multi-Agent Planning System;
- 2 Um formalismo para a representação de domínios descentralizados e problemas no planejamento multiagente;
- 3 Um protocolo para alocação de tarefas;
- 4 Planejamento individual utilizando o SHOP2;
- Uso de leis sociais para coordenar os agentes durante a execução;

Ale & PV 12 de Maio de 2017 OSIM001 - 2017/1 4 / 1



# Definição de Agente

- Um agente é uma entidade com a capacidade ver e perceber o que acontece em seu ambiente através de sensores e realizar acões no mesmo ambiente através de atuadores.
- A ideia pode ser expressada pela figura 1. Um agente humano possui os olhos e as orelhas como sensores e os braços e pernas; Já um agente robótico possui câmeras como sensores e diversos tipos de motores como atuadores; [Russell et al. 2003]

12 de Maio de 2017 OSIM001 - 2017/1



# Definição de Agente



Figura: Um agente interage com o ambiente através de sensores e atuadores.

Ale & PV 12 de Maio de 2017 OSIM001 - 2017/1 6 / 16



# Definição de Agente

Tabela: Exemplos de Agentes

| Agente               | Ambiente                | Sensores   | Atuadores              | Medida de<br>Desempenho               |
|----------------------|-------------------------|------------|------------------------|---------------------------------------|
| Motorista<br>de Taxi | Transito e<br>semaforos | GPS        | Controlar a<br>direção | Caminhos com o<br>menor tempo e custo |
| Jogador              | Tabuleiro               | Desenho do | Mover                  | Tempo minimo                          |
| de Damas             | e peças                 | tabuleiro  | a peça                 | para a vitoria                        |
| Imagens de           | A imagem e o            | Camera     | Descrever a            | Qualidade da                          |
| Satelite             | que é composta          | e GPS      | imagem gerada          | foto tirada                           |

Ale & PV 12 de Maio de 2017 OSIM001 - 2017/1 7 / 16



#### Visão Geral do DOMAPS

- A visão geral do DOMAPS é mostrada na figura 2. Agentes múltiplos (a1, a2, ..., an) interagem com um ambiente para obter informações e realizar suas ações;
- Esses agentes fazem parte de uma organização, adotando papéis e seguindo normas e recebendo missões relacionadas a seus papéis, ao mesmo tempo em que perseguem os objetivos da organização;

12 de Maio de 2017 OSIM001 - 2017/1



#### Visão Geral do DOMAPS



Figura: Visão Geral do DOMAPS.

Ale & PV 12 de Maio de 2017 OSIM001 - 2017/1 9 / 16



## Planejamento Multiagente

- Refinamento de objetivos globais: decomposição do objetivo global em subobjetivos;
- Atribuição de tarefas: utilização de protocolos para a atribuição de tarefas;
- 3 Coordenação antes do planejamento: mecanismos de coordenação que evitem conflitos durante a fase de planejamento individual;
- Planejamento individual: algoritmos de planejamento que buscam soluções;
- Coordenação após planejamento: mecanismos de coordenação que corrigem conflitos durante a fase de planejamento individual;
- 6 Execução do planejamento: os agentes que participaram do processo de planejamento agora o executam;

Ale & PV 12 de Maio de 2017 OSIM001 - 2017/1 10 / 16



# Sistema distribuído de planejamento Multiagente

- O sistema do Cardoso pode ser usado em três diferences cenários, se baseando em três tipos de agentes:
- Os Planejadores: planejar um conjunto de objetivos, sem informações anteriores;
- Os Re-Planejadores: planejar um objetivo específico, seja porque o plano conhecido falhou, ou porque o agente detectou uma mudança no ambiente que poderia potencialmente levar a uma solução melhor;
- Os Re-Planejadores de tudo: eliminar todas os as tarefas planejadas e iniciar um novo processo de planejamento para as tarefas que foram descartados, usando informações atualizadas sobre o meio ambiente;

Ale & PV 12 de Maio de 2017 OSIM001 - 2017/1 11 / 16



## Experimentos

- Uma equipe de robôs autônomos e heterogêneos são enviados para monitorar a atividade de inundação em uma região com várias áreas de risco, conforme ilustrado na figura 3;
- O número de metas é igual ao números de agentes, com a expectativa que cada agente consiga executar com êxito sua tarefa. Os dados obtidos são mostrados na figura 4;

Ale & PV 12 de Maio de 2017 OSIM001 - 2017/1 12 / 16



## Experimentos



Figura: Regiões de alagamento.

Ale & PV 12 de Maio de 2017 OSIM001 - 2017/1 13 / 16



### Experimentos

|                       | I     | SHOP2 |       |       |
|-----------------------|-------|-------|-------|-------|
|                       | usv1  | usv2  | ugv1  | SHOFZ |
| floods 4<br>pl. time  | 0.001 | 0.001 | 0.001 | 0.004 |
| exp.                  | 8     | 8     | 15    | 65    |
| inf.                  | 13    | 13    | 21    | 186   |
| floods 8<br>pl. time  | 0.001 | 0.001 | 0.002 | 0.011 |
| exp.                  | 15    | 15    | 29    | 129   |
| inf.                  | 21    | 21    | 37    | 360   |
| floods 16<br>pl. time | 0.002 | 0.002 | 0.004 | 0.033 |
| exp.                  | 29    | 29    | 57    | 257   |
| inf.                  | 37    | 37    | 69    | 708   |
| floods 32<br>pl. time | 0.003 | 0.003 | 0.005 | 0.095 |
| exp.                  | 57    | 57    | 113   | 513   |
| inf.                  | 69    | 69    | 133   | 1404  |

Figura: Dados do experimento.

Ale & PV 12 de Maio de 2017 OSIM001 - 2017/1 14 / 16



#### Conclusão

 Foi apresentado o trabalho do Cardoso, onde as experiências iniciais com o DOMAPS apresentaram resultados positivos suficientes para buscar soluções para as limitações e para fornecer melhorias para um sistema geral;

Ale & PV 12 de Maio de 2017 OSIM001 - 2017/1 15 / 16



#### Referências I

CARDOSO, R. C. A distributed online multi-agent planning system (dissertation abstract). In: *The 26th International Conference on Automated Planning and Scheduling*. [S.l.: s.n.]. p. 28.

RUSSELL, S. J. et al. *Artificial intelligence: a modern approach*. [S.I.]: Prentice hall Upper Saddle River, 2003.

Ale & PV 12 de Maio de 2017 OSIM001 - 2017/1 16 / 16