#9
First note that $2 \cos(k\pi) ke^{-k} = 2 (-1)^k ke^{-k}$ k=1

Now $\underset{k=1}{\overset{\infty}{\geq}} | (-1)^k |_{k=1} = \underset{k=1}{\overset{\infty}{\geq}} |_{k=1}$

Ratio Test: $\lim_{k \to +\infty} \frac{k+1}{e^{k+1}} \cdot \frac{e^k}{k} = \lim_{k \to +\infty} \left(\frac{k+1}{k} \right) \cdot \frac{1}{e} = 1 \cdot \frac{1}{e} < 1$

So $\underset{k=1}{\overset{\infty}{\sum}}$ ke^{-k} converges by the Ratio Test.

[Alternatively, use the Integral Test:

See Convergence Tests homework #11.]

So $\underset{k=1}{\overset{ix}{\sum}}$ cos(kT) ke^{-lc} converges absolutely.