Math 3010 Midterm 1 "Cheat Sheet" Lincoln Sand

TABLE 2.1 Representation of a number system used by the Greeks as early as the sixth century BCE.

Letter	Value	Letter	Value	Letter	Value
α	1	ι	10	ρ	100
β	2	K	20	σ	200
γ	3	λ	30	τ	300
δ	4	μ	40	υ	400
ϵ	5	ν	50	φ	500
ς	6	Š.	60	X	600
ζ	7	0	70	ψ	700
η	8	π	80	ω	800
θ	9	φ	90	72	900

- Historical Data:
- * Thales: 625 547 BC; Miletus; Advocated the deductive method. First man to have theorem named after him.
- * Pythagoras: 580 497 BC; Croton; Explained musical harmony in terms of whole number ratios. Found some lengths are irrational.
- * Zeno: 490 425 BC; Elia; Pupil of Parmenides. Proposed paradoxes involving infinity.
- * Eudoxus: 400 347 BC; Cnidus; Devoloped theories of proportion and exhaustion.
- * Aristotle: 384 322 BC; Athens; Advocated use of definitions/axioms/proofs in math and syllogism logic.
- * Diophantus: 210 260 AD; Alexandria; Devloped algebraic notation and studied equations with integer unknowns.
- * Archimedes: 287 212 BC; Syracuse; Discovered theorems using mechanical intuition with proofs.
- * Euclid: 330 270 BC; Alexandria; His books set the standard for math rigor until 19th century.
- * Plato: 427 346 BC; Athens; Theorems require sound definitions and proofs. The line and circle are pure.
- * Hippocractes: 460 300 BC; Chios; Sophist philosopher, criticized fuzzy thinking. Squared the lune.
- * Parmenides: 515 440 BC; Elia; Sophist, founded a school, "Whatever is is, and whatever is not cannot be".
- * Chrysippus: 280 226 BC; Athens; Stoic philosopher, developed modern norations of evaluation of compound logic statements.
 - Delian problems: Square the circle; Double the cube; Trisect an angle.
 - Sum of geometric series:

$$S = \frac{a(1 - r^n)}{1 - r}$$

If, |r| < 1, then it converges to:

$$S = \frac{a}{1 - r}$$

- Euclidean GCD algorithm/diophantine example: Find $x, y \in \mathbb{Z}$ such that gcd(198, 168) = 198x + 168y.

$$198 = 1 \cdot 168 + 30; 168 = 5 \cdot 30 + 18; 30 = 1 \cdot 18 + 12;$$
$$18 = 1 \cdot 12 + 6; 12 = 2 \cdot 6 + 0$$

So, gcd(198, 168) = 6.

$$6 = 18 - 12 = 18 - (30 - 18) = 2 \cdot 18 - 30 = 2 \cdot (168 - 5 \cdot 30) - 30$$
$$= 2 \cdot 168 - 11 \cdot 30 = 2 \cdot 168 - 11 \cdot (198 - 168) = 13 \cdot 168 - 11 \cdot 198$$

So, x = -11, y = 13.

- Five platonic solids:

Triangles: Three at a vertex, four at a vertex, five at a vertex.

Squares: Three at a vertex.

Pentagons: Three at a vertex.

Higher polygons: Can't form a vertex because interior angle is too large.

- Pell's equation:

$$x^2 - Ny^2 = 1, N \in \mathbb{Z}, N > 0$$

- 1) Find continued fraction for \sqrt{N}
- 2) Approximate the expansion as the convergent $\frac{h_i}{a_i}$
- 3) (x,y) corresponds to a (h_i,q_i)
- 4) Check for fundamental solution. (x_1, y_1) is the smallest non-trivial solution and is called the fundamental solution.

$$x_{k+1} = x_1 x_k + N y_1 y_k$$
$$y_{k+1} = x_1 y_k + y_1 x_k$$

for $k \geq 1$.

- Example of method of false position:

We want to solve $x + \frac{x}{4} = 15$

Guess x = 4.

$$x + \frac{4}{4} = 5$$

 $x + \frac{4}{4} = 5$ This is off by 3, so guess $4 \cdot 3 = 12$.

$$12 + \frac{12}{4} = 15.$$

- Babylonian "divide and average" algorithm:
- 1) Start with initial guess x_0
- 2) Iterative step:

$$x_{n+1} = \frac{1}{2} \left(x_n + \frac{N}{x_n} \right)$$

3) Repeat the iterative step to desired accuracy.