Homework1 Simple ALU

修改部分爲 NOP 指令,統一爲 result 及 overflow 清爲 0

一 作業說明

設計一個具有下表運算功能的 ALU 電路:

opcode	執行功能	
3'd0	NOP,不需執行運算,result=4'd0,	
	overflow=1'd0	
3'd1	AND,in1 & in2,overflow=1'd0	
3'd2	OR,in1 in2,overflow=1'd0	
3'd3	XOR,in1^in2,overflow=1'd0	
3'd4	ADD,in1+in2	
3'd5	SUB,in1-in2	
3'd6	邏輯左移,overflow=1'd0	
3'd7	邏輯右移,overflow=1'd0	

附註:

-此ALU 的輸入與輸出皆視爲有號數(使用2的補數)。

-此題溢位(overflow)指的是超出result 所能表示範圍,例如:

opcode = 3'd4, in1 = 4'b0001,in2 = 4'b0111, result = 4'b1000

結果應該為 1+7=8,但是因為有號數的關係,已超出可表示範

圍,所以結果變爲(-8),因此overflow = 1'b1。

指令舉例:

-opcode = 3'd1, in1 = 4'b0111, in2 = 4'b0010, in1 & in2, result = 4'b0010,

overflow=1'd0

-opcode=3'd2,in1=4'b0111,in2=4'b0010,in1|in2,result=4'b0111,

overflow=1'd0

-opcode=3'd3,in1=4'b0111,in2=4'b0010,in1^in2,result=4'b0101,

overflow=1'd0

- opcode=3'd4,in1=4'b0101,in2=4'b0010,in1+in2,result=4'b0111,

overflow=1'd0

-opcode=3'd5,in1=4'b0111,in2=4'b0010,in1-in2,result=4'b0101,

overflow=1'd0

-opcode=3'd6, in1=4'b0111,in2=4'b0010,對in1邏輯左移in2個位元,亦

即4'b0111<<2,result=4'b1100,overflow=1'd0

-opcode=3'd7,in1=4'b0110,in2=4'b0001,對 in1 邏輯右移 in2 個位元,

亦即 4'b0110>>1,result=4'b0011,overflow=1'd0

-邏輯左/右移時,in2 範圍只測 4'b0000~4'b0111

二 輸入輸出介面

訊號名稱	輸入/輸出	位元寬度	說明
opcode	input	3	ALU 功能選擇線
in1	input	4	ALU 輸入 1
in2	input	4	ALU 輸入 2
overflow	output	1	ALU 溢位訊號線
result	output	4	ALU 運算結果

三 硬體電路區塊

四 注意事項

- (1)此題爲組合電路,請特別注意是否有 latch
- (2)輸入、輸出皆視爲有號數
- (3)請附上Flow Summary (Processing-> Compilation Report) 於報告中
- (4)於 Post-sim 時,可調整"t_simple_alu.v"內之`define COMB_DELAY
- 10,請將可測試通過的最小值記錄於報告

五 作業繳交方式

(1)請將作業上傳到HW1 資料夾,並且壓縮成以下格式:

#HW?_學號_名字_版本.zip

附註:

第一版爲HW1_學號_名字_001.zip

若有更改則爲HW1_學號_名字_002.zip,以此類推

FTP 設定將於之後公告於課程網頁

(2)請將繳交檔案分成三個資料夾,如下表分別爲說明文件、Pre_Sim

與Post_Sim

目錄名稱	檔案名稱	
Pre_sim	simple_alu.v, t_simple_alu.v	
Post_sim	simple_alu.v, simple_alu_v.sdo, t_simple_alu.v	
說明文件	HW1_學號_名字_版本.doc	
	附註:	
	請於報告內說明設計概念、技巧、使用面積、	
	電路操作速度…	

(3)爲避免網路擁塞影響作業繳交,請盡早上傳作業

六 評分方式

- (1)作業DEMO 的時間公佈在網頁
- (2)評分比例: Pre-Sim (70%)、Post-Sim (30%)
- (3)遲交或上傳檔案有病毒者一律以0分計算
- (4)抄襲他人作業者一律以0分計算

七 Q&A

有任何問題請 mail 給助教(p76984720@mail.ncku.edu.tw)

八部分測試資料圖

(1)模擬時可在波形檔裡觀看overflow_exp、result_exp、err_cnt 以方便除錯,或是由輸出訊息得知錯誤,如下圖


```
\# Error: opcode = 001 in1 = 1001 in2 = 1000 overflow = 0 result = 0001 overflow_exp = 0 result_exp = 1000 \# Error: opcode = 001 in1 = 1001 in2 = 1001 overflow = 0 result = 0001 overflow_exp = 0 result_exp = 1001 \# Error: opcode = 001 in1 = 1001 in2 = 1010 overflow = 0 result = 0001 overflow_exp = 0 result_exp = 1000
```

(2)若模擬結果都正確,則會顯示"ALU check successfully"訊息如下圖

----- ALU check successfully ------