Actividad de Inducción para la Unidad 1 Ejercicios de repaso sobre Probabilidad I

- 1. Sea $(\Omega, \mathfrak{F}, \mathbb{P})$ un espacio de probabilidad que representa a un fenómeno o experimento aleatorio. Demuestra que la medida de probabilidad \mathbb{P} cumple las siguientes propiedades, dados E_1 y E_2 subconjuntos de Ω que representan eventos:
 - a) $\mathbb{P}(\Omega \setminus E_1) = 1 \mathbb{P}(E_1)$.
 - b) $\mathbb{P}(\emptyset) = 0$.
 - c) $\mathbb{P}(E_1 \setminus E_2) = \mathbb{P}(E_1) \mathbb{P}(E_1 \cap E_2)$.
 - d) Si $E_1 \subseteq E_2$ entonces $\mathbb{P}(E_1) \leq \mathbb{P}(E_2)$.
 - e) $\mathbb{P}(E_1 \cup E_2) = \mathbb{P}(E_1) + \mathbb{P}(E_2) \mathbb{P}(E_1 \cap E_2)$.
 - f) $\max\{\mathbb{P}(E_1) + \mathbb{P}(E_2) 1, 0\} \le \mathbb{P}(E_1 \cap E_2) \le \min\{\mathbb{P}(E_1), \mathbb{P}(E_2)\}$
- 2. Sea $(\Omega, \mathfrak{F}, \mathbb{P})$ un espacio de probabilidad, y sean E_1, \ldots, E_n subconjuntos de Ω que representan eventos conjuntamente independientes. Demuestra que los eventos representados por los subconjuntos A_1, \ldots, A_n donde cada $A_j \in \{E_j, \Omega \setminus E_j\}$ también son conjuntamente independientes.
- 3. Sea X una variable aleatoria definida sobre un espacio de probabilidad $(\Omega, \mathfrak{F}, \mathbb{P})$, y se define la función $P_X : \mathbb{R} \to [0, 1]$ como:

$$P_X(B) := \mathbb{P}(X^{(-1)}(B)).$$

Demuestra que P_X cumple con la definición de $medida\ de\ probabilidad$.

- 4. Demuestra que los intervalos $]a,b], [a,b],]a,b[, [a,b[, \{a\},]-\infty,b[,]a,\infty[$ y $[a,\infty[$ pueden obtenerse mediante una cantidad numerable de operaciones de conjuntos utilizando solo intervalos del tipo $]-\infty,x].$
- 5. Sea F_X una función de distribución de probabilidades de una variable aleatoria X. Demuestra que F_X cumple las siguientes propiedades:
 - a) F_X es una función monótona creciente, esto es que si $x_1 < x_2$ entonces $F_X(x_1) \le F_X(x_2)$.
 - b) F_X es continua por la derecha, es decir que $\lim_{\delta \to 0+} F_X(x+\delta) = F_X(x)$.
 - c) $F_X(+\infty) \equiv \lim_{x \to +\infty} F_X(x) = 1$.
 - d) $F_X(-\infty) \equiv \lim_{x \to -\infty} F_X(x) = 0$.
 - e) $\mathbb{P}(a < X \le b) = F_X(b) F_X(a)$.
 - f) $\mathbb{P}(X < a) = F_X(a-) \equiv \lim_{x \to a-} F_X(x)$.
 - g) $\mathbb{P}(a \le X \le b) = F_X(b) F_X(a-)$.
 - h) $\mathbb{P}(X > b) = 1 F_X(b)$.
 - i) $\mathbb{P}(X \ge b) = 1 F_X(b-)$.
 - j) $\mathbb{P}(a < X < b) = F_X(b-) F_X(a)$.
 - k) $\mathbb{P}(a \le X < b) = F_X(b-) F_X(a-)$.
 - 1) $\mathbb{P}(X = x) = F_X(x) F_X(x-)$.
- 6. Sean F_1 y F_2 dos funciones de distribución de probabilidades cualesquiera. Si para cualquier número real $0 \le \alpha \le 1$ se define una función $F : \mathbb{R} \to [0,1]$ como la combinación lineal convexa de F_1 y F_2 , esto es:

$$F(x) := (1 - \alpha)F_1(x) + \alpha F_2(x),$$

demuestra que entonces F cumple las propiedades de una función de distribución de probabilidades como en el ejercicio anterior.