

Messtechnik

Prof. Dr. Martin Jogwich – Elektro- und Medientechnik

Vorlesungsinhalte: Messtechnik

- 1. Einleitung
- 2. Grundlagen
- 3. Messung elektrischer Größen
- 4. Komponenten
- 5. Messung nicht-elektrischer Größen

1. Einleitung: Vorlesungsinhalte

- 1.1 Organisatorisches
- 1.2 Literaturhinweise
- 1.3 Physikalische Größen, Einheiten und Vorsätze

1. Einleitung: 1.2 Literatur zur Vorlesung: 1.2.1 Bücherauswahl

Autor	Titel	Verlag
WJ. Becker, K. W. Bonfig, K. Höing	Handbuch Elektrische Messtechnik	Hüthig Verlag
K. Bergmann	Elektrische Messtechnik	Vieweg + Teubner
R. Felderhoff, U. Freyer	Elektrische und elektronische Messtechnik	Hanser Verlag
G. Heyne	Elektronische Messtechnik	Oldenbourg Verlag
R. Lerch	Elektrische Messtechnik	Springer Verlag
Th. Mühl	Einführung in die elektrische Messtechnik	Vieweg + Teubner
J. Niebuhr, G. Lindner	Physikalische Messtechnik mit Sensoren	Oldenbourg Verlag
R. Parthier	Messtechnik	Vieweg + Teubner
W. Pfeiffer	Elektrische Messtechnik	VDE Verlag
E. Schrüfer	Elektrische Messtechnik	Hanser Verlag
N. Weichert, M. Wülker	Messtechnik und Messdatenerfassung	Oldenbourg Verlag

1.2 Literatur zur Vorlesung:

1.2.2 Normen (IEC 60617, Auszug)

ф	Ideale Stromquelle	V	Voltmeter
ф	Ideale Spannungsquelle	Alsing	Amperemeter (für Blindstrom)
\Diamond	Spannungswandler, allg.	4	Veränderbarer Widerstand
4	Diode		Induktivität

1.3 Physikalische Größen, Einheiten u. Vorsätze: 1.3.1 Basisgrößen

Größe	Formel- zeichen	Basis- einheit	Abk. d. Einheit	Definition der Basiseinheit
Zeit	t	Sekunde	S	Vielfaches der Periodendauer eines atomaren Übergangs
Masse	m	Kilogramm	kg	Masse eines Eichkörpers
Länge	I	Meter	m	Streckenlänge, die Licht in def. Zeit zurücklegt
Temperatur	Т	Kelvin	K	Bruchteil der Wasser- temperatur am Tripelpunkt
Stromstärke	I	Ampere	Α	Stromstärke, die zwischen 2 Leitern def. Kraft erzeugt
Lichtstärke	I_{L}	Candela	cd	Lichtstärke einer Strahlungsquelle mit def. Frequenz und Strahlstärke
Stoffmenge	n	Mol	mol	Stoffmenge wie Atomanzahl in def. Masse vom ¹² C

1.3 Physikalische Größen, Einheiten u. Vorsätze: 1.3.2 Vorsätze > 1

Faktor	Vorsatz	Vorsatz- zeichen	Beispiele
10 ¹	Deka	da	
10 ²	Hekto	h	Durchschnittlicher jährlicher Bierkonsum pro Kopf in Bayern = 1,554 hl
10 ³	Kilo	k	Gesamtlänge der deutschen Autobahn = 12700 km
10 ⁶	Mega	M	Nettoleistung Isar II = 1410 MW
10 ⁹	Giga	G	durchschnittliche Energie eines Blitzes = 1,5 GJ
10 ¹²	Tera	Т	Abstand Sonne – Saturn = 1,4 Tm
10 ¹⁵	Peta	Р	Jährlicher Primärenergieverbrauch in Bayern = 1978 PJ
10 ¹⁸	Exa	Е	Jährlicher Primärenergieverbrauch in Deutschland = 13,842 EJ

1.3 Physikalische Größen, Einheiten u. Vorsätze: 1.3.3 Vorsätze < 1

Faktor	Vorsatz	Vorsatz- zeichen	Beispiele
10 ⁻¹	Dezi	d	Maximal zugelassene Breite und Tiefe von Fußballtorpfosten = 1,2 dm
10 ⁻²	Centi	С	Durchmesser der 1-€-Münze = 2,325 cm
10 ⁻³	Milli	m	Dicke der 1-€-Münze = 2,33 mm
10 ⁻⁶	Mikro	μ	Größe von Bakterien ~ μm
10 ⁻⁹	Nano	n	typische Größe von organischen Molekülen = 20 nm
10 ⁻¹²	Piko	р	Kapazität von Kondensatoren ~ pF
10 ⁻¹⁵	Femto	f	Pulsdauer von Hochleistungslaser = 100 fs
10 ⁻¹⁸	Atto	a	Dauer ultrakurzer Lichtpulse = 650 as

1.3 Physikalische Größen, Einheiten u. Vorsätze: 1.3.4 Abgeleitete Größen (Elektromagnetismus/ Auswahl)

Größe	Formel- zeichen	Kohärente Einheiten	Basis- Einheiten	Bemerkungen
Ladung	q, Q	С	A·s	q: Ladung eines Ladungsträgers,Q: Gesamtladung
Spannung	u, U	$V = \frac{W}{A}$	$\frac{\text{kg} \cdot \text{m}^2}{\text{s}^3 \cdot \text{A}}$	u: t-abh. Spannung u(t);U: Spannungswert
(Ohmscher) Widerstand	R	$\Omega = \frac{V}{A}$	$\frac{kg \cdot m^2}{s^3 \cdot A^2}$	
Arbeit, Energie	W	$J = V \cdot A \cdot s = W \cdot s$	$\frac{\text{kg} \cdot \text{m}^2}{\text{s}^2}$	1 eV = 1,6022 ₹10 ⁻¹⁹ J
Leistung	Р	$W = V \cdot A = \frac{J}{s}$	$\frac{\text{kg} \cdot \text{m}^2}{\text{s}^3}$	
Elektrische Feldstärke	E	$\frac{N}{C} = \frac{V}{m}$	$\frac{kg}{A \cdot s^3}$ $A^2 \cdot s^4$	
Kapazität	С	$F = \frac{C}{V}$	$\frac{A^2 \cdot s^4}{m^2 \cdot kg}$	
Magnetische Feldstärke	В	$T = \frac{N \cdot s}{C \cdot m} = \frac{V \cdot s}{m^2}$	$\frac{kg}{A \cdot s^2}$	$1 G = 10^{-4} T$
Magnetischer Fluss	Φ	$Wb = V \cdot s = T \cdot m^2$	$\frac{kg \cdot m^2}{A \cdot s^4}$	
Induktivität	L	$H = \frac{V \cdot s}{A} = \frac{Wb}{A}$	$\frac{kg \cdot m^2}{A^2 \cdot s^4}$	

1.3 Physikalische Größen, Einheiten u. Vorsätze: 1.3.5 Griechische Buchstaben

Name	Buch- staben	Verwendung
Alpha	Α,α	Winkel, Winkelbeschleunigung
Beta	Β,β	Winkel
Gamma	Γ, γ	Winkel, Wichte
Delta	Δ , δ	Winkel
Epsilon	Ε,ε	Influenzkonstante, Dehnung
Zeta	Z,ζ	Widerstandsbeiwert
Eta	Η,η	Wirkungsgrad
Theta	Θ, θ	Winkel
Jota	Ι,ι	
Карра	Κ,κ	Adiabatenexponent
Lambda	Λ,λ	Wellenlänge
Му	Μ, μ	Induktionskonstante

Name	Buch- staben	Verwendung
Ny	Ν,ν	Frequenz
Xi	Ξ,ξ	Schall- auslenkung
Omikron	О, о	
Pi	Π , π	
Rho	Ρ, ρ	Dichte
Sigma	Σ,σ	Stefan- Boltzmann- Konstante
Tau	Τ, τ	Zeit
Ypsilon	Υ,υ	
Phi	Φ, φ	Winkel
Chi	Χ, χ	Suszeptibilität
Psi	Ψ,ψ	
Omega	Ω , ω	Kreisfrequenz

2. Grundlagen: Vorlesungsinhalte

- 2.1 Elektrotechnische Grundlagen
- 2.2 Grundstruktur von Messeinrichtungen
- 2.3 Genauigkeitskriterien
- 2.4 Übertragungsverhalten von Messgliedern

2.1 Elektrotechnische Grundlagen: 2.1.1 Wiederholung (Auswahl)

Knotensatz (1. Kirchhoffsches Gesetz, Gesetz von der Stromsumme):

$$\sum_{i=1}^n I_i = 0$$

Maschensatz (2. Kirchhoffsches Gesetz, Gesetz von der Spannungssumme):

$$\sum_{i=1}^n U_i = 0$$

• Überlagerungsverfahren (Superpositionsverfahren)

2.1 Elektrotechnische Grundlagen: 2.1.1 Wiederholung (Überlagerungsverfahren)

Überlagerungssatz / Anwendungsbeispiel

a) Schaltung, b) Teilschaltung 1, c) Teilschaltung 2

(aus: H. Frohne et al: Moeller Grundlagen der Elektrotechnik)

2.2 Grundstruktur von Messeinrichtungen: 2.2.1 Definitionen

Messen: experimenteller Vorgang, durch den ein spezieller Wert einer physikalischen Größe als Vielfaches einer Einheit oder eines Bezugswertes ermittelt wird [DIN 1319]

Messgröße: physikalische Größe, deren Wert durch eine Messung ermittelt werden soll [VDI/VDE 2600]

Messwert: gemessener spezieller **Wert einer Messgröße**, Angabe als Produkt aus Zahlenwert und Einheit [DIN 1319]

Messergebnis: ein aus mehreren Messwerten einer physikalischen Größe (oder aus Messwerten für verschiedene Größen) nach einer festgelegten Beziehung **ermittelter Wert** (oder Werteverlauf) [VDI/VDE 2600]

Messprinzip: charakteristische **physikalische Erscheinung**, die bei der Messung benutzt wird [DIN 1319]

Messverfahren (-methode): spezielle **Art der Anwendung** eines Messprinzips [VDI/VDE 2600]

Messgerät: liefert oder verkörpert Messwerte (bzw. Verknüpfung von Messwerten) [DIN 1319]

Messeinrichtung: **Messgerät** (oder mehrere zusammenhängende Messgeräte) mit zusätzlichen Einrichtungen, z.B. Hilfsgeräten [DIN 1319]

Messsignale: **Darstellung von Messgrößen** im Signalflussweg einer Messeinrichtung durch **zugeordnete physikalische Größen** (gleicher oder anderer Art) [VDI/VDE 2600]

2.2 Grundstruktur von Messeinrichtungen: 2.2.2 Hierarchie der Mess- und Prüfmittel

© DKD, PTB

2.2 Grundstruktur von Messeinrichtungen: 2.2.3 Normale

physikalische Größe	Primärnormal	typische Genauigkeit	Referenznormal	typische Genauigkeit
Spannung	Weston- Normalelement (U = 1,0186V)	$\frac{\Delta U}{U} = \pm 5 \cdot 10^{-6}$	Dioden-Transistor- Referenzspannungs- quelle	$\frac{\Delta U}{U} = \pm \cdot 10^{-5}$
Widerstand	Manganinwiderstand (hermetisch abge- schlossen, R = 1Ω)	$\frac{\Delta R}{R} \ge \pm 10^{-7}$	Manganinwiderstän- de im Bereich von 1Ω1MΩ oder Widerstandsdekaden	$\frac{\Delta R}{R} \ge \pm 10^{-5}$
Kapazitāt	Berechenbarer Kon- densator aus vier Stäben genauer Länge C = 10pF oder 1pF	$\frac{\Delta C}{C} \ge \pm 10^{-7}$	Glas- oder Glimmer- kondensator C = 100pF1nF	$\frac{\Delta C}{C} \ge \pm 10^{-5}$
Induktivität	Lange dünne Luftspu- le L = 110mH	$\frac{\Delta L}{L} \ge \pm 10^{-6}$	Zylinderspulen, Eisenkernspulen L = 0,1mH10H	$\frac{\Delta L}{L} \ge \pm 10^{-4}$
Zeit	"Atomuhr", Cäsium- resonator mit nachfol- gender Pulsgewinnung und Frequenzteiler auf 1s	$\frac{\Delta t}{t} \ge \pm 10^{-13}!$	Normfrequenzsender DCF77, sendet auf 77,5 kHz BCD- kodierte Zeitinfor- mation	$\frac{\Delta t}{t} \ge \pm 10^{-13}$
Frequenz	"Atomuhr", Cāsium- resonator	$\frac{\Delta f}{f} \ge \pm 10^{-13}$	Quarzoszillator (temperaturstabili- siert)	$\frac{\Delta f}{f} \ge \pm 10^{-10}$

Primär- und Referenznormale

(aus: R. Parthier: Messtechnik)

2.2 Grundstruktur von Messeinrichtungen: 2.2.4 Messmethoden (1)

Ausschlagmethode

(aus: R. Parthier: Messtechnik)

Differenzmethode

Messgröße m. konstante Vergleichsmasse $m_{\rm V}$

(aus: R. Parthier: Messtechnik)

2.2 Grundstruktur von Messeinrichtungen: 2.2.4 Messmethoden (2)

Kompensationsmethode

Messgröße m. variable Vergleichsmasse m_V (aus: R. Parthier: Messtechnik)

Signalfluss bei der Kompensationsmethode

(aus: R. Lerch: Elektrische Messtechnik)

2.2 Grundstruktur von Messeinrichtungen: 2.2.5 Struktur nach VDI/VDI 2600

2.2 Grundstruktur von Messeinrichtungen: 2.2.6 Aufnehmer (Struktur)

2.2 Grundstruktur von Messeinrichtungen 2.2.6 Aufnehmer (Beispiel)

2.2 Grundstruktur von Messeinrichtungen 2.2.6 Aufnehmer (Typen)

2. Grundlagen: 2.2 Grundstruktur von Messeinrichtungen 2.2.7 Anpasser

2.2 Grundstruktur von Messeinrichtungen: 2.2.8 Ausgeber

2.3 Genauigkeitskriterien einer Messung

ISAS: aus "Statistische Bewertung von Analyseverfahren und –ergebnissen"

2.3 Genauigkeitskriterien einer Messung 2.3.1 Kriterium Richtigkeit

Formel- zeichen	Größe	Formeln
X _w	wahrer Wert [true value], richtiger Wert x_r , auch: W	
Х	gemessener Wert [measured value], Messwert, Anzeigewert (auch: A , x_f)	
\overline{x}	gemessener (arithmetischer) Mittelwert (Durchschnitt) aus n Einzelmessungen [mean value]	$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$
и	Messunsicherheit, -fehler [measuring error]	$u=u_{Z}+u_{S}$
Uz	zufällige (statistische) Abweichung	$u_{z} = \frac{t \cdot s}{\sqrt{n}}$
Us	systematische konstante Abweichung [systematic error], abs. systemat. Fehler, abs. Messfehler, abs. Abweichung, abs. auch: <i>e</i>	$u_{\rm S} = \Delta x = x_{\rm f} - x_{\rm W}$
f	relative Abweichung, relativer Fehler (auch: f)	$f = \frac{\Delta X}{X_{W}} \approx \frac{\Delta X}{X}$
	berichtigter Mittelwert, beste "Schätzung des Wertes"	$\overline{x}_{E} = \overline{x} + k$
k	Korrektion	$k = -u_{S}$
\mathcal{E}	relative Messunsicherheit, -abweichung [measuring error]	$\varepsilon = \frac{u}{\overline{x}_{E}}$

2.3 Genauigkeitskriterien einer Messung: 2.3.2 Kriterium Präzision

Formel- zeichen	Größe	Formeln
Xi	Wert der i-ten Messung (v. n Einzelmessg .) einer Stichprobe / Messreihe	
\bar{x}	gemessener (arithmetischer, empirischer) Mittelwert (Durchschnitt, [mean value]) aus Stichprobe mit Umfang n aus Grundgesamtheit (mit ∞ vielen Werten)	$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$
μ	Schätzwert des Erwartungswerts des Mittelwerts, Schwerpunkt der Verteilungsdichtefunktion $h(x)$	$\overline{X} \xrightarrow{n \to \infty} \mu$
s ²	Empirische Varianz, Varianz der Stichprobe	$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$
σ^2	Schätzwert des Parameters der Verteilungsdichtefunktion $h(x)$, Varianz	$s^2 \xrightarrow[n \to \infty]{} \sigma^2$
S	empirische Standardabweichung, empirische Streuung, Streuungsmaß, Streuung der Stichprobe [scattering of observation]	$s = \sqrt{s^2}$
σ	Schätzwert der Standardabweichung [standard deviation] der Grundgesamtheit, mittl. quadrat. Fehler	$s \xrightarrow[n \to \infty]{} \sigma$
V	empirischer Variationskoeffizient [coefficient of variation]	$V = \frac{S}{\left \overline{X}\right }$
S _{ges}	empirische Standardabweichung der Mittelwerte	$s_{\text{ges}} = \frac{\sqrt{s^2}}{\sqrt{n}}$

2.3 Genauigkeitskriterien einer Messung: 2.3.3 Toleranzklassen (Beispiel Druckmessgeräte)

Toleranz- klasse	Verkehrs- fehlergrenze	Eich- fehlergrenze
Klasse 0,1	± 0,1 %	± 0,08 %
Klasse 0,2	± 0,2 %	± 0,16 %
Klasse 0,3	± 0,3 %	± 0,25 %
Klasse 0,6	± 0,6 %	± 0,5 %
Klasse 1,0	± 1,0 %	± 0,8 %
Klasse 1,6	± 1,6 %	± 1,3 %
Klasse 2,5	± 2,5 %	± 2 %
Klasse 4,0	± 4,0 %	± 3 %

2.3 Genauigkeitskriterien einer Messung: 2.3.4 Statische Kenngrößen (Begriffe)

Spezialfall: <u>lineare Kennlinie</u>

$$X_{\rm a}(X_{\rm e}) = X_{\rm a0} + \frac{\Delta X_{\rm a0}}{\Delta X_{\rm e}} \cdot (X_{\rm e} - X_{\rm e0})$$

Übertragungsfaktor
$$k = \frac{\Delta X_a}{\Delta X_e}$$

Empfindlichkeit
$$E = \frac{dx_a}{dx_a}$$

Spezialfall: lineare Kennlinie

Empfindlichkeit
$$E = \frac{\Delta X_a}{\Delta X_e}$$

2.3 Genauigkeitskriterien einer Messung: 2.3.4 Statische Kenngrößen (Festpunkt-, Grenzpunkteinstellung)

2.3 Genauigkeitskriterien einer Messung: 2.3.4 Statische Kenngrößen (Anfangspunkt-, Nullpunkteinstellung)

2.3 Genauigkeitskriterien einer Messung: 2.3.4 Statische Kenngrößen (Kleinstwert-, Toleranzbandeinstellung)

2.3 Genauigkeitskriterien einer Messung: 2.3.4 Statische Kenngrößen (Nichtlinearität, Beispiel)

Nichtlinearität einer piezoresistiven Druckmesszelle

(Analog Microelectronics)

2.3 Genauigkeitskriterien einer Messung: 2.3.5 Dynamische Kenngrößen (Zeitverhalten, Beispiel)

Zeitverhalten von Widerstandsthermometern

(Messbedingungen in Wasser: $v_{\rm w} = 0.4$ m/s ± 0.05 m/s; $\theta_{\rm W} = 25$ °C) (aus ABB: Praxis der industriellen Temperaturmessung)

3. Messung elektrischer Größen: Vorlesungsinhalte

- 3.1 Messung von Stromstärke und Spannung
- 3.2 Messung von Wirkwiderständen
- 3.3 Messung von Blindwiderständen

3. Messung elektrischer Größen: 3.1 Messung von Stromstärke und Spannung: Vorlesungsinhalte

- 3.1.1 Gleichstrom- und Gleichspannungsmessung
- **3.1.1.1 Gleichstrommessung**
- 3.1.1.2
- 3.2 Messung von Wirkwiderständen
- 3.3 Messung von Blindwiderständen

3.1 Messung von Stromstärke und Spannung:

3.1.1 Gleichstrom- und Gleichspannungsmessung

Prinzip eines Drehspulmessgeräts

(aus: W. Pfeiffer: Elektrische Messtechnik)

- 1: Permanentmagnet
- 2:Weicheisenkern
- 3: Polschuhe
- 4: Drehspule
- 5: Spiralfeder, Stromzuführung
- 6: Nullpunkteinstellung
- 7: Äquilibrierarm

(aus: J. Niebuhr, G. Lindner: Physikalische Messtechnik mit Sensoren)

3.1 Messung von Stromstärke und Spannung:

3.1.1 Gleichstrom- und Gleichspannungsmessung

$U_L \downarrow \bigcup_{2}^{R_i} R_b \qquad R_M \swarrow \downarrow U_M$

Gleichspannungsmessung (aus: E. Schrüfer: Elektrische Messtechnik)

3.1 Messung von Stromstärke und Spannung:

3.1.2 Wechselstrom- und Wechselspannungsmessung (1)

3.1 Messung von Stromstärke und Spannung:

3.1.2 Wechselstrom- und Wechselspannungsmessung (2)

Spitzenwert-Gleichrichtungs-Schaltung

(aus: R. Lerch: Elektrische Messtechnik)

Spitzenwert-Gleichrichtung (Spannungs- und Stromverlauf)

3.1 Messung von Stromstärke und Spannung:

3.1.2 Wechselstrom- und Wechselspannungsmessung (3)

Spitzenwertmessung mit Delon-Schaltung

(aus: R. Lerch: Elektrische Messtechnik)

Spitzenwertmessung mit Villard-Schaltung

3.1 Messung von Stromstärke und Spannung:

3.1.2 Wechselstrom- und Wechselspannungsmessung (4)

Doppelweg-Gleichrichtung mit Graetz-Schaltung

a: Schaltung, b: Spannungsverlauf

3.1 Messung von Stromstärke und Spannung:

3.1.2 Wechselstrom- und Wechselspannungsmessung (Messwandler 1)

Idealer Transformator

(aus: R. Lerch: Elektrische Messtechnik)

Ersatzschaltbild eines realen Transformators

(aus: W. Pfeiffer: Elektrische Messtechnik)

3.1 Messung von Stromstärke und Spannung:

3.1.2 Wechselstrom- und Wechselspannungsmessung (Messwandler 2)

Vereinfachtes Ersatzschaltbild eines Spannungswandlers

(aus: W. Pfeiffer: Elektrische Messtechnik)

(aus: W. Pfeiffer: Elektrische Messtechnik)

3.1 Messung von Stromstärke und Spannung:

3.1.2 Wechselstrom- und Wechselspannungsmessung (Messwandler 3)

Stromwandlerschaltung

(aus: W. Pfeiffer: Elektrische Messtechnik)

Strommesszange

a: prinzipielle Anordnung,b: Querschnittsgeometrie

(aus: R. Lerch: Elektrische Messtechnik)

b)

Kernquer-

schnittsfläche AK

3.1 Messung von Stromstärke und Spannung:

3.1.2 Wechselstrom- und Wechselspannungsmessung (Messwandler 4)

Ersatzschaltbild einer Strommesszange (sekundärseitig)

(aus: R. Lerch: Elektrische Messtechnik)

Transferimpedanz einer Strommesszange

3.1 Messung von Stromstärke und Spannung:

3.1.2 Wechselstrom- und Wechselspannungsmessung (Messwandler 5)

(aus: R. Lerch: Elektrische Messtechnik)

Prinzip eines Hallelements

(aus: E. Hering, R. Martin, M. Stohrer: Physik für Ingenieure)

3. Messung elektrischer Größen: 3.2 Messung von Wirkwiderständen: Vorlesungsinhalte

- 3.2.1 Wirkwiderstandsbestimmung mit Spannungsmessung
- 3.2.2 Wirkwiderstandsbestimmung mit gleichzeitiger Spannungs- und Strommessung
- 3.2.3 Wirkwiderstandsbestimmung durch Vergleich mit Referenzwiderstand
- 3.2.4 Wirkwiderstandsbestimmung mit Gleichspannungsbrückenschaltungen
- 3.2.5 Wirkwiderstandsbestimmung mit Gleichstrombrückenschaltungen

3.2 Messung von Wirkwiderständen:

- 3.2.4 Messung mit Gleichspannungsbrückenschaltungen:
- 3.2.4.1 Spannungsgespeiste Abgleich-Widerstandsmessbrücke

Prinzip einer Gleichspannungsbrückenschaltung

Schleifdrahtmessbrücke mit manuellem Abgleich (a) bzw. automatischem Abgleich (b)

(E. Schrüfer: Elektrische Messtechnik)

3.2 Messung von Wirkwiderständen:

- 3.2.4 Messung mit Gleichspannungsbrückenschaltungen:
- 3.2.4.2 Spannungsgespeiste Ausschlags-Widerstandsmessbrücke

Kennlinie einer Gleichspannungsbrückenschaltung

(E. Schrüfer: Elektrische Messtechnik)

3. Messung elektrischer Größen: 3.3 Messung von Blindwiderständen: Vorlesungsinhalte

- 3.3.1 Komplexe Darstellung von Blindwiderständen
- 3.3.2 Ersatzschaltungen verlustbehafteter Blindwiderstände (Reihenschaltung)
- 3.3.3 Ersatzschaltungen verlustbehafteter Blindwiderstände (Parallelschaltung)
- 3.3.4 Blindwiderstandsbestimmung durch Wechselstrom- und Wechselspannungsmessungen
- 3.3.5 Blindwiderstandsbestimmung durch Vergleich mit Referenzelement
- 3.3.6 Blindwiderstandsbestimmung durch Resonanzverfahren
- 3.3.7 Blindwiderstandsbestimmung durch Dreispannungsmessmethode
- 3.3.8 Blindwiderstandsbestimmung mit Wechselspannungsbrückenschaltungen

3.3 Messung von Blindwiderständen:

3.3.2 Ersatzschaltungen verlustbehafteter Wirkwiderstände

Ersatzschaltung	Zeigerdiagramm	$tan \delta$
$ \begin{array}{c c} \underline{U} \\ \underline{U_L} \\ \underline{U_R} \\ \underline{U_R} \end{array} $	U_L U_R U_L	$\frac{U_R}{U_L}$ $\frac{R_r}{\omega L}$
$ \begin{array}{c c} \underline{\underline{U}} \\ \underline{\underline{U}_{C}} \\ \underline{\underline{U}_{R}} \\ \underline{\underline{U}_{R}} \end{array} $	U_C U_R U_R	$\frac{U_R}{U_C}$ $R_r \omega C$
$ \begin{array}{c c} \underline{\underline{U}} \\ \underline{\underline{I_L}} & \underline{L} \end{array} $ $ \underline{\underline{I_R}} & \underline{R_P} $	I_L δI I_R	$\frac{I_R}{I_L}$ $\frac{\omega L}{R_p}$
$ \begin{array}{c c} \underline{\underline{U}} \\ \underline{\underline{I_C}} \\ \underline{\underline{I_R}} \\ R_p \end{array} $	\underline{I}_C δ \underline{I} φ \underline{U}	$\frac{I_R}{I_C}$ $\frac{1}{R_p \omega C}$

Reihen- und Parallel-Ersatzschaltungen verlustbehafteter Wirkwiderstände

(E. Schrüfer: Elektrische Messtechnik)

3.3 Messung von Blindwiderständen:

3.3.7 Drei-Spannungsmesser-Methode

Messaufbau und Zeigerdiagramm

- 3.3 Messung von Blindwiderständen:
 - 3.3.8 Blindwiderstandsbestimmung mit Wechselstrombrückenschaltungen

Prinzip einer Wechselspannungsbrückenschaltung

- 3. Messung elektrischer Größen:
 - 3.3 Messung von Blindwiderständen:
 - 3.3.8 Blindwiderstandsbestimmung mit Wechselstrombrückenschaltungen /
- 3.3.8.1 Abgleich-Widerstandsmessbrücken

Halbautomatisch abgleichbare Wien-Brücke