Mécanique quantique pour mathématiciens

👤 | Alba Grassi - 13M071

Heures (Hebdo)	4
Cours	2
Exercices	2
Pratique	0
Total	56

Langue	français
Semestre	Printemps
Mode d'évaluation	Examen écrit
Session	Juillet
Format de l'enseignment	Cours, exercices

Cursus	Туре	ECTS
Baccalauréat universitaire en mathématique	N/A	6
Baccalauréat universitaire en mathématiques	N/A	5

Objectifs

Ce cours est une introduction en mécanique quantique destinée aux étudiante-s en mathématiques.

Description

- o. Rappel de physique classique.
- 1. Rappel dalgèbre linéaire.
- 2. Mécanique quantique en dimension finie : a Axiomes et structure, partie I : états, observables, linterprétation probabiliste, principe dincertitude de Heisenberg. b Exemple dun système quantique : le spin 1/2. c Axiomes et structure, partie II: lévolution quantique, léquation de Schrödinger, symétries et lois de conservation.
- 3. Mécanique quantique en dimension infinie : a Axiomes et structure : un aperçu. b Rappel : espaces de Hilbert. c Opérateurs sur les espaces de Hilbert. d Spectre et Mesure
- 4. Loscillateur harmonique.
- 5. Particule libre et paquet dondes.
- 6. Barrière de potentiel.
- 7. Evidences expérimentales.

Divers

Commentaires

Sur le nouveau P.E, lintitulé est Physique pour mathématiciens