Jecture 22

plan: 1) Finish matroid union
2) Elliproid

Ellipsoid Algorithm

•			
•			
•			

Consequences

Given convex set PER,

Deparation (SEP):

Given y E R', decide

optimization (OPT)
Given rector CERM, find

Examples

Linear programming.

Ø

· Matroid polytope:

Thm

However,

· OPT for P

· natroid intersection polytope:

· Amazin Result:

Theorem (Grötschel, forary, Achrigier '81)

Proof ilea:

· Actually,

MEM! Thm (GLS '88):

Actually.

Proof: not covered.

OPT vs. feasibility

· First we solve simpler problem.

PEAS:

• OPT reduces to FEAS: binary search:

· Given a-priori bound

· Optimizes

· for LP,

(finally!) The algorithm

· Solves FEAS in time

· Σ_R dependence not a big deal: (& actually necessary).

Algorithm idea: . Set E=

· White not done:

> Check Diff 80, returen Delse, En {x: ctx < cte} D Lot E

.)

0 Set

Runtine:

· Volume femma:

4

· As

Issus: