Exercise Sheet: Relations

- 1. Let \mathbb{Z} be the set of all integers. Describe the set $\mathbb{Z} \times \mathbb{Z}$.
- 2. Let |A| = m and |B| = n. How many relations exist from A to B?
- 3. Is

$$f(x) = \frac{x}{x+1}$$

invertible?

4. For which real numbers a is the function

$$f(x) = ax, \ x \in \mathbb{R}$$

invertible? Determine the inverse function.

5. Let R_m be a relation of the integers \mathbb{Z} defined by:

$$(x,y) \in R_m \Leftrightarrow m|(x-y)$$

Interpretation: $(x, y) \in R_m$ if and only if x and y have the same remainder when divided by m.

We denote this by:

$$x \equiv y \mod m$$

i.e. x is congruent with y modulo m.

Example: We have $1 \equiv 11 \mod 10$, since both 1 and 11 have the remainder 1 when divided by 10.

Your task: Investigate if R_5 is reflexive, symmetric, antisymmetric and transitive!

- 6. Is the equality relation, i.e. =, an equivalence relation?
- 7. Is the relation > an equivalence relation?
- 8. Is the relation \geq an equivalence relation?
- 9. Let

 $A = \{$ all positive integers divisible by 2 and not exceeding 30 $\}$.

- (a) Find |A|
- (b) Let

 $B = \{$ all positive integers divisible by 6 and not exceeding 30 $\}$.

 $C = \{$ all positive integers divisible by 8 and not exceeding 30 $\}$.

Find $B \cup C$, $B \cap C$, and binary string representations for B, C, $B \cup C$, $B \cap C$, \bar{B} .

- 10. Given A the set of all webpages. Let $R = \{(a,b) \in A \times A : \text{ there is at least 1 common link on we}\}$ Investigate following properties of R
 - (a) reflexive
 - (b) symmetric
 - (c) transitive
 - (d) antisymmetric
 - (e) equivalent
 - (f) partial order
- 11. Given $A = \{1, 2\}$. Let

$$R = \{(B, C) \in 2^A \times 2^A : B \subseteq C\}.$$

- (a) Find matrix representation M_R for R and |R|.
- (b) Investigate reflexive (symmetric, antisymmetric, transitive) properties of R.
- 12. Given a set $A = \{a, b, c\}$ and a relation R with matrix representation

$$M_R = 1 \quad 1 \quad 0$$

$$M_R = 1 \quad 1 \quad 0$$

- (a) Find R^{-1} and its matrix representation
- (b) Find \bar{R} and its matrix representation
- (c) Find R^2 and its matrix representation
- (d) Find $R \cup S$, $R \circ S$ and $S \circ R$ where

$$S = \{(a, b), (b, b), (b, c), (c, a), (c, b), (c, c)\}.$$

13. Given matrix representations of relations

$$M_{R_1} = egin{matrix} 1 & 1 & 1 & & & \\ 0 & 1 & 1, & M_{R_2} & = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

Determine whether R_1 and R_2 are equivalence relations or not.

- 14. Let R be the relation on the set of all cities in the world such that (a,b) in R if there is a direct non-stop airline flight from a to b. When is (a,b) in
 - (a) R^2
 - (b) R^{3}
 - (c) R^{-1}
- 15. Let R be the relation $\{(a,b): a \neq b\}$ on the set of integers. What is the reflexive closure of R?
- 16. Let R be the relation $\{(a,b): a \text{ divides } b\}$ on the set of integers. What is the symmetric closure of R?
- 17. Let R be the relation on the set of all students containing the ordered pair (a,b) if a and b are in at least one common class and $a \neq b$. When (a,b) in
 - (a) R^2
 - (b) R^{3}
 - (c) R^*
- 18. Given the matrix representation of the relation R on $\{a, b, c, d\}$ as following

$$M = \begin{pmatrix} 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Find the transitive closure of R using naive and Warshall's algorithms.

- 19. Given the relation $R = \{(1,2), (2,1), (2,3), (3,4), (4,1)\}$ on $\{1,2,3,4\}$. Find
 - (a) Reflexive closure of R
 - (b) Symmetric closure of R
 - (c) Transitive closure of R using naive algorithm and Warshall's algorithm
 - (d) Reflexive transitive closure of R
 - (e) Equivalent closure of R.
- 20. Given the relation $R = \{(1,2), (1,4), (3,3), (4,1)\}$ on $\{1,2,3,4\}$. Find
 - (a) reflexive and transitive closure of R
 - (b) symmetric and transitive closure of R

- (c) equivalent closure of R.
- 21. Given the relation R on the set of all bit strings such that $(s,t) \in R$ if and only if s and t contain the same number of 1s.
 - (a) Prove that R is an equivalence class.
 - (b) List all bit strings of length 4 equivalent to 01001.
 - (c) How many bit strings of length n with exactly 2 occurrences of 1s are there?
- 22. Let R be the relation on the set ordered pairs of positive integers such that $((a,b),(c,d)) \in R$ if and only if ad = bc. Show that R is an equivalence relation.