Homework# 1

 $\mathbf{Q1}$

We would like to find out a, b, θ such that

$$\left(\begin{array}{cc} a & 0 \\ 0 & a \end{array}\right) \left(\begin{array}{cc} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{array}\right) \left(\begin{array}{cc} 1 & b \\ 0 & 1 \end{array}\right) = \left(\begin{array}{cc} 1 & 1 \\ 1 & 3 \end{array}\right)$$

Solving this we get $a = \sqrt{2}, b = 2, \theta = 45^{\circ}$.

Q2. Show that a line at infinity l_{∞} remains a line at infinity under the projectivity H if and only if H is an affinity.

Proof. Let H is an affinity. Let \mathbf{l}_{∞} be a line at infinity and \mathbf{l}'_{∞} be the transformed line. Then, using line transformation,

$$\mathbf{l}'_{\infty} = H_A^{-T} \mathbf{l}_{\infty}$$

$$= \begin{bmatrix} A^{-T} & 0 \\ -\mathbf{t}^{\mathbf{T}} A^{-T} & 1 \end{bmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

$$= \mathbf{l}_{\infty}$$

Thus, line at infinity remains line at infinity under the affine transformation. Now, in order to prove the converse, we require that a point at infinity, say $\mathbf{x} = (1,0,0)^T$, be mapped to a point at infinity. This requires that $h_{31} = 0$ and $h_{32} = 0$, so the transformation is an affinity.

Q4. Given a projective transformation that takes points $\mathbf{x} \to \mathbf{x}'$ via $\mathbf{x}' = H\mathbf{x}$, prove that $Cross(\mathbf{x_1}', \mathbf{x_2}', \mathbf{x_3}', \mathbf{x_4}') = Cross(\mathbf{x_1}, \mathbf{x_2}, \mathbf{x_3}, \mathbf{x_4})$ i.e., the cross ratio is a projective invariant.

Proof.

$$Cross(x'_{1}, x'_{2}, x'_{3}, x'_{4}) = \frac{|x'_{1}x'_{3}|.|x'_{2}x'_{4}|}{|x'_{1}x'_{4}|.|x'_{2}x'_{3}|}$$

$$= \frac{|Hx_{1}Hx_{3}|.|Hx_{2}Hx_{4}|}{|Hx_{1}Hx_{3}|.|Hx_{2}Hx_{4}|}$$

$$= \frac{det(H)|x_{1}x_{3}|.det(H)|x_{2}x_{4}|}{det(H)|x_{1}x_{4}|.det(H)|x_{2}x_{3}|}$$

$$= cross(x_{1}, x_{2}, x_{3}, x_{4})$$

Q5. Prove that an image line **l** defines a plane through the camera center with normal direction $\mathbf{n} = K^t \mathbf{l}$ measured in the camera's Euclidean coordinate frame.

Proof. Points \mathbf{x} on the line \mathbf{l} back-project to directions $\mathbf{d} = K^{-1}\mathbf{x}$ which are orthogonal to the plane normal \mathbf{n} , and thus satisfy $\mathbf{d}^T\mathbf{n} = \mathbf{x}^TK^{-T}\mathbf{n} = 0$. Since points on \mathbf{l} satisfy $x^T\mathbf{l} = 0$, it follows that $\mathbf{l} = K^{-T}\mathbf{n}$, and hence $\mathbf{n} = K^T\mathbf{l}$.

Q6. In DLT, if ||Ah|| is minimized subject to the constraint $h_9 = H_{33} = 1$, then show that the result is invariant to scaling but not translation of coordinates.

Proof. Recall in 2D homography, in the system of linear equations only two are linearly independent ([1], pp. 89). Hence we get the following

$$\begin{bmatrix} 0 & 0 & 0 & -x_i w_i' & -y_i w_i' & -w_i w_i' & x_i y_i' & y_i y_i' \\ x_i w_i' & y_i w_i' & w_i w_i' & 0 & 0 & 0 & x_i x_i' & y_i x_i' \end{bmatrix} \tilde{\mathbf{h}} = \begin{pmatrix} -w_i y_i' \\ w_i x_i' \end{pmatrix}$$
(1)

Where, $\tilde{\mathbf{h}}$ is an 8-vector consisting of the first 8 components of \mathbf{h} . Now, let after scaling by s the new coordinates be $(\bar{x_i}, \bar{y_i}, \bar{w_i}) = s(x_i, y_i, w_i)$. So, the above equation becomes:

$$s \begin{bmatrix} 0 & 0 & 0 & -x_i w_i' & -y_i w_i' & -w_i w_i' & x_i y_i' & y_i y_i' \\ x_i w_i' & y_i w_i' & w_i w_i' & 0 & 0 & 0 & x_i x_i' & y_i x_i' \end{bmatrix} \tilde{\mathbf{h}} = s \begin{pmatrix} -w_i y_i' \\ w_i x_i' \end{pmatrix}$$

which is same as Eq.1.

Now, let after translation, let the new coordinates be $(\bar{x_i}, \bar{y_i}, \bar{w_i}) = (x_i + t_i, y_i + u_i, w_i + v_i)$. By substituting in Eq. 1, it's easy to see that

$$\begin{pmatrix} -w_i y_i' \\ w_i x_i' \end{pmatrix} \neq \begin{pmatrix} -\bar{w}_i y_i' \\ \bar{w}_i x_i' \end{pmatrix}$$

References

[1] Richard Hartley and Andrew Zisserman. Multiple view geometry in computer vision. Cambridge university press, 2003.