Secondo esonero - 07 Giugno 2013 -

Traccia 1. [Punti: 1.a: 2; 1.b: 2; 1.c:2]

Sia dato il sistema

$$\begin{cases} x+y+z=3, \\ 2x-y=2. \end{cases}$$

- (1.a) Determinarne l'insieme delle soluzioni.
- (1.b) Indicare una ulteriore equazione che, aggiunta nel sistema, non ne modifichi l'insieme delle soluzioni.
- (1.c) Indicare una ulteriore equazione che, aggiunta nel sistema, lo renda incompatibile.

Traccia 2. [Punti: 2.a: 3; 2.b: 3; 2.c: 3; 2.d: 3]

Siano dati i seguenti vettori di \mathbb{R}^4 :

$$v_1 = \begin{pmatrix} -2 \\ 0 \\ 1 \\ 2 \end{pmatrix}, \quad v_2 = \begin{pmatrix} -1 \\ -1 \\ 2 \\ -2 \end{pmatrix}, \quad v_3 = \begin{pmatrix} 2 \\ 2 \\ -2 \\ -2 \end{pmatrix}, \quad b = \begin{pmatrix} \alpha+2 \\ \alpha+1 \\ 3 \\ 2\alpha \end{pmatrix},$$

dove α è un parametro reale. Sia $V = \text{span}(v_1, v_2, v_3)$ il sottospazio di \mathbb{R}^4 generato dai vettori v_i , i = 1, 2, 3. Risolvere i seguenti quesiti.

- (2.a) Determinare gli eventuali valori del parametro α tali che $b \in V$.
- (2.b) Determinare gli eventuali valori del parametro α tali che $b \in V^{\perp}$.
- (2.c) Determinare gli eventuali valori del parametro α tali che b dipenda linearmente da v_1 e v_2 .
- (2.d) Si consideri il problema dei minimi quadrati associato al sistema lineare Ax = b, essendo $A = [v_1, v_2, v_3]$ e se ne denoti con x^* la sua soluzione. Determinare i valori di α tali che:
 - $-x^*=0$:
 - il residuo $r^* \equiv b Ax^*$ sia nullo.

Per rispondere al quesito (2.d) non è necessario risolvere esplicitamente il problema dei minimi quadrati. In tal caso, aggiungere le motivazioni.

¹Tratta da una traccia della prova scritta del concorso a cattedra in Matematica per la scuola secondaria superiore (anno 2012).

²Cioè, v_1, v_2, b siano vettori linearmente dipendenti.

Traccia 3. [Punti: 3.a: 1; 3.b: 1; 3.c: 1; parte restante: 4]

Sia V uno spazio vettoriale reale. Riportare le seguenti definizioni:

- (3.a) sistema di generatori di V;
- (3.b) base di V.
- (3.c) dimensione di V.

Siano $v_1, v_2, \ldots, v_n \in V$. Dimostrare l'equivalenza delle seguenti proposizioni:

- (a) v_1, v_2, \ldots, v_n costituiscono una base di V;
- (b) $\forall x \in V, \exists | \alpha_1, \alpha_2, \dots, \alpha_n \in \mathbb{R} \text{ t.c. } x = \sum_{i=1}^n \alpha_i v_i$

Traccia 4. (Scilab) [Punti 7]

Scrivere una funzione Scilab che implementi l'algoritmo di eliminazione di Gauss che effettui scambi di righe solo nel caso si incontri un elemento pivotale nullo. La funzione dovrà avere:

- INPUT: una matrice quadrata A e un vettore colonna b;
- OUTPUT: Una matrice triangolare superiore U e un vettore colonna c tali che il sistema Ux = c sia equivalente al sistema Ax = b.

Secondo esonero - 13 Gennaio 2014 -

Traccia 1. [Punti: 1.a: 3; 1.b: 3; 1.c: 3; 1.d: 3]

Siano dati i seguenti vettori di \mathbb{R}^5 :

$$v_1 = \begin{pmatrix} -1 \\ 2 \\ -1 \\ 2 \\ 3 \end{pmatrix}, \quad v_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \\ 1 \end{pmatrix}, \quad v_3 = \begin{pmatrix} -2 \\ 2 \\ -2 \\ 1 \\ 3 \end{pmatrix}, \quad b = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix},$$

Risolvere i seguenti quesiti.

- (1.a) Dire se i vettori v_1, v_2, v_3 sono linearmente indipendenti o dipendenti.
- (1.b) Posto $A = [v_1, v_2, v_3]$, dire, motivando la risposta, se il problema dei minimi quadrati Ax = b ammette un'unica soluzione x^* e, in tal caso, determinarla.
- (1.c) Posto V = Im(A), scomporre il vettore b nella somma di due vettori: $b = b_1 + b_2$, con $b_1 \in V$ e $b_2 \in V^{\perp}$.
- (1.d) Il vettore b_1 ottenuto al punto precedente, appartiene a span $\{v_1, v_2\}$, span $\{v_1, v_3\}$, span $\{v_2, v_3\}$, o a nessuno dei precedenti? Motivare la risposta.

Traccia 2. [Punti: 6] Sia S un sottospazio di \mathbb{R}^n . Definire S^{\perp} , il sottospazio ortogonale di S e descrivere un metodo per calcolarne una base, aiutandosi con un esempio concreto in cui vengono discussi i vari passaggi.

Traccia 3. [Punti: 3.a: 2; 3.b: 2; 3.c: 2]

(3.a) Si scriva il polinomio p(x) che interpola la funzione $f(x) = e^x$ nei nodi

$$x_0 = -1, \quad x_1 = 0, \quad x_2 = 1.$$

- (3.b) Si determini una maggiorazione dell'errore $\max_{-1 \le x \le 1} |f(x) p(x)|$.
- (3.c) Utilizzando i risultati ottenuti nei punti precedenti, determinare il polinomio q(x) che interpola la funzione $g(x) = e^x + x^2 1$ negli stessi nodi x_0, x_1 e x_2 e la relativa maggiorazione dell' errore. Motivare tutte le risposte.

Traccia 4. (Scilab) [Punti 6]

Scrivere una funzione Scilab che implementi il metodo delle potenze con tecnica di normalizzazione. La funzione dovrà avere:

- INPUT: una matrice quadrata A, una precisione tol e un numero massimo di iterate consentite itmax:
- OUTPUT: l'autovalore dominante lam e il corrispondente autovettore x.

Qual è l'utilità principale di considerare un numero massimo di iterazioni?

Secondo esonero - 13 Gennaio 2015 -

Traccia 1. [Punti: 1.a: 3; 1.b: 3; 1.c: 3; 1.d: 3]

Siano dati i seguenti vettori di \mathbb{R}^3 :

$$v_1 = \begin{pmatrix} -1 \\ 1 \\ -1 \end{pmatrix}, \quad v_2 = \begin{pmatrix} -3 \\ 3 \\ -3 \end{pmatrix}, \quad v_3 = \begin{pmatrix} 2 \\ 1 \\ 5 \end{pmatrix}, \quad v_4 = \begin{pmatrix} -3 \\ 0 \\ -6 \end{pmatrix},$$

Risolvere i seguenti quesiti.

- (1.a) Determinare numero s di vettori linearmente indipendenti, tra quelli sopra elencati. Più in particolare, estrarre un sottoinsieme di s vettori linearmente indipendenti dall'insieme $\{v_1, v_2, v_3, v_4\}$.
- (1.b) Posto $A = [v_1, v_2, v_3, v_4]$, sfruttando il risultato del punto precedente, determinare una base del sottospazio V = Im(A).
- (1.c) Determinare una base di V^{\perp} .
- (1.d) Scomporre il vettore $b = [0, 6, 0]^{\top}$ come somma $b = b_1 + b_2$, con $b_1 \in V$ e $b_2 \in V^{\perp}$.

Traccia 2. [Punti: 6] Definire le matrici elementari di Gauss e discuterne le principali proprietà.

Traccia 3. [Punti: 3.a: 2; 3.b: 2; 3.c: 2]

(3.a) Si determini il polinomio p(x) di secondo grado che interpola la funzione $f(x) = x^4 - 1$ nei nodi

$$x_0 = -1, \quad x_1 = 0, \quad x_2 = 1.$$

- (3.b) Si determini una maggiorazione dell'errore $\max_{-1 \le x \le 1} |f(x) p(x)|$.
- (3.c) Utilizzando i risultati ottenuti nei punti precedenti, determinare il polinomio q(x) che interpola la funzione $g(x) = e^x + x^2 1$ negli stessi nodi x_0, x_1 e x_2 e la relativa maggiorazione dell' errore. Motivare tutte le risposte.

Traccia 4. (Scilab) [Punti 6]

Scrivere una funzione Scilab che implementi l'algoritmo di Gauss con tecnica del massimo pivot parziale. La funzione dovrà avere:

- INPUT: una matrice quadrata A (matrice dei coefficienti), un vettore b (vettore dei termini noti);
- OUTPUT: La soluzione x del sistema lineare Ax = b.

Secondo esonero - 8 Giugno 2012 -

Traccia 1. [Punteggio: 1.a:3; 1.b:3; 1.c:3; 1.d:3]

Si consideri la matrice

$$C = \left(\begin{array}{rrrr} 1 & -3 & -1 & 1 \\ 3 & -9 & -1 & -4 \\ -2 & 6 & 4 & 0 \end{array}\right).$$

Risolvere i seguenti quesiti.

(1.a) Ridurre a scalini la matrice C e determinarne il rango.

(1.b) Per k = 1, 2, 3, 4, si denoti con b_k la k-esima colonna di C e con A_k la matrice quadrata di dimensione 3 ottenuta da C eliminandone la colonna b_k.
Sfruttando il risultato del punto precedente, dedurre i valori dell'indice k in corrispondenza dei quali il sistema lineare A_kx = b_k risulta compatibile.
Le soluzioni dei sistemi compatibili sono linearmente dipendenti o indipendenti?
(OSSERVAZIONE. Per rispondere non occorre calcolare esplicitamente le soluzioni).

- (1.c) Sia $b = [1, 1, 1, 1]^T$. Determinare la soluzione del problema dei minimi quadrati definito dal sistema sovradimensionato $C^T x = b$.
- (1.d) Sfruttando il risultato ottenuto al punto precedente, decomporre il vettore b nella somma di due vettori b_1 e b_2 , con $b_1 \in \text{Im}(C^T)$ e $b_2 \in (\text{Im}(C^T))^{\perp}$. (SUGGERIMENTO. Poiché b_1 è combinazione lineare delle colonne di C^T , il sistema $C^Tx = b_1$ ammetterà unica soluzione. Premoltiplicare ambo i membri del sistema per C e osservare che $C*b_1 = C*b$ (spiegare il perché). A questo punto è possibile procedere sfruttando quanto fatto al punto precedente.

Traccia 2. [Punteggio. 2.a:4; 2.b:4] Si consideri la funzione

$$f(x) = x \arctan(x) - \frac{1}{2}\log(1+x^2).$$

- (2.a) Determinare il polinomio $p_1(x)$ che interpola f(x) nei nodi $x_0 = 0$ e $x_1 = 1$.
- (2.b) Determinare una maggiorazione dell'errore $|R(x)| = |f(x) p_1(x)|$ nell'intervallo [0, 1].

Traccia 3. [Punteggio: 6]

Descrivere il metodo delle potenze per l'approssimazione dell'autovalore e dell'autovettore dominante di una matrice.

Traccia 4. [Punteggio: 6]

Scrivere una function Scilab (Matlab) che abbia in input

- A, matrice quadrata che ammette autovalore dominante,
- tol, precisione richiesta,

e in output

- lambda, approssimazione dell'autovalore dominante ottenuta mediante il metodo delle potenze.

Indicando con σ_k la successione definita dal metodo delle potenze, si usi il seguente criterio di arresto

$$|\sigma_k - \sigma_{k-1}| < tol.$$

Secondo esonero - 16 Giugno 2011 -

Traccia 1. [Punteggio: 7]

Si consideri il sistema lineare

$$\begin{cases}
-x_1 - x_2 &= -1 \\
3x_1 + \alpha x_2 + 2x_3 - x_4 &= -2 \\
x_1 + x_2 + 3x_3 + (2 - \alpha)x_4 &= 2
\end{cases}$$

dove α è un parametro reale. Dire per quali valori di α il sistema risulta compatibile e, in questo caso, determinarne l'insieme delle soluzioni.

Traccia 2. [Punteggio: 7] Definire la somma diretta di due spazi vettoriali V e W e dimostrare la seguente equivalenza:

- (a) $\mathbb{R}^n = V \oplus W$
- (b) $\forall \mathbf{x} \in \mathbb{R}^n$, $\exists |\mathbf{v} \in V, \exists |\mathbf{w} \in W \ t.c. \ \mathbf{x} = \mathbf{v} + \mathbf{w}$

Infine dimostrare che, se V è un qualsiasi sottospazio di \mathbb{R}^n , allora $\mathbb{R}^n = V \oplus V^{\perp}$.

Traccia 3. [Punteggio: 10]

Si considerino la matrice A e il vettore \mathbf{x} così definiti

$$A \begin{pmatrix} 1 & -2 & 1 \\ -1 & 2 & 1 \\ 1 & -2 & 1 \\ -1 & 2 & 1 \\ 1 & -2 & 1 \end{pmatrix}, \qquad \mathbf{x} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}.$$

Con riferimento alla traccia precedente, determinare i vettori $\mathbf{v} \in \text{Im}(A)$ e $\mathbf{w} \in \text{Im}(A)^{\perp}$ tali che $\mathbf{x} = \mathbf{v} + \mathbf{w}$.

Traccia 4. [Punteggio: 8]

Scrivere una function Scilab (Matlab) che abbia in input due vettori della stessa lunghezza x (vettore delle ascisse), y (vettore delle ordinate), e infine uno scalare z, e in output il valore che il polinomio interpolante i punti (x_i, y_i) assume in z. A tal fine, è possibile fare uso della base delle potenze o di quella di Lagrange.