Лабораторная работа № 8

Отображение простейших фигур в порт просмотра. В мировой системе координат (МСК) задана фигура (Рисунок 1).

Координаты вершин:	x_i	Уi
A	$-2 \cdot n$	$-4 \cdot n$
В	$-3 \cdot n$	0
С	0	$4 \cdot n$
D	3·n	0
Е	$2 \cdot n$	$-4 \cdot n$
F	$-2 \cdot n$	0
G	$2 \cdot n$	0

n — номер студента по списку в журнале преподавателя

Рисунок 1 – Фигура в мировой системе координат

Необходимо:

- 1. Отобразить фигуру в мировой системе координат.
- 2. Повернуть фигуру на 180 градусов относительно вершины С с использованием матрицы аффинных преобразований.
- 3. Отобразить полученную фигуру в прямоугольной области D^w окна Windows с координатами:

$$D^{w} = D^{w}(x_{L}^{w}, y_{L}^{w}, x_{H}^{w}, y_{H}^{w}) = D^{w}(100, 200, 400, 500),$$

где (x_L^w, y_L^w) – координаты левого верхнего угла области D^w , (x_H^w, y_H^w) – координаты правого нижнего угла области D^w .

Прямоугольную область в мировых координатах $D = D(x_L, y_H, x_H, y_L)$, где (x_L, y_H) – координаты левого верхнего угла области D, (x_H, y_L) – координаты правого нижнего угла области D, необходимую для формирования матрицы пересчета координат из мировых в оконные, определить по габаритам фигуры ABCDE путем вычислений, т.е. положить $(x_L, y_H) = (x_{\min}, y_{\max})$, $(x_H, y_L) = (x_{\max}, y_{\min})$.

Реализация:

Координаты вершин в МСК:

$$Xa := -2$$
 $Xb := -3$ $Xc := 0$ $Xd := 3$ $Xe := 2$ $Xf := -2$ $Xg := 2$ $Ya := -4$ $Yb := 0$ $Yc := 4$ $Yd := 0$ $Ye := -4$ $Yf := 0$ $Yg := 0$

$$Ya := -4$$
 $Yb := 0$ $Yc := 4$ $Yd := 0$ $Ye := -4$ $Yf := 0$ $Yg := 0$

$$Xl_W = 100$$
 $Yl_W = 200$ - левый верхний угол области отображения в ОСК

$$\underset{\longleftarrow}{T}(dx,dy) := \begin{pmatrix} 1 & 0 & -dx \\ 0 & 1 & -dy \\ 0 & 0 & 1 \end{pmatrix} \qquad \underset{\longleftarrow}{R}(\varphi) := \begin{pmatrix} \cos(\varphi) & \sin(\varphi) & 0 \\ -\sin(\varphi) & \cos(\varphi) & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad \varphi := 180$$

$$\omega := 1$$

$$\Phi_{\mathrm{rad}} \coloneqq \pi \cdot \frac{\Phi}{180}$$
 KD := $\begin{pmatrix} \mathrm{Xb} \ \ \mathrm{Xc} \ \ \mathrm{Xd} \ \ \mathrm{Xb} \ \ \mathrm{Xf} \ \ \mathrm{Xa} \ \ \mathrm{Xe} \ \ \mathrm{Xg} \\ \mathrm{Yb} \ \ \mathrm{Yc} \ \ \mathrm{Yd} \ \ \mathrm{Yb} \ \ \mathrm{Yf} \ \ \mathrm{Ya} \ \ \mathrm{Ye} \ \ \mathrm{Yg} \\ \omega \ \ \omega \end{pmatrix}$ // координаты домика

Построим исходное изображение в МСК

$$\mathbf{XKD} \coloneqq \left(\mathbf{KD}^T\right)^{\left\langle 0\right\rangle}$$
 - вектор с координатами х-ов $\mathbf{YKD} \coloneqq \left(\mathbf{KD}^T\right)^{\left\langle 1\right\rangle}$ - вектор с координатами у-ов

$$YKD := \left(KD^T\right)^{\langle I \rangle}$$
 - вектор с координатами у-ов

Поворачиваем:

$$KDp \coloneqq T(-Xc, -Yc) \cdot R(\varphi_rad) \cdot T(Xc, Yc) \cdot KD$$

Изображение после поворота в МСК:

$$\mathrm{XKDp} \coloneqq \left(\mathrm{KDp}^T\right)^{\left\langle 0\right\rangle} \qquad \mathrm{YKDp} \coloneqq \left(\mathrm{KDp}^T\right)^{\left\langle 1\right\rangle}$$

Вычисляем параметры, необходимые для формирования матрицы пересчета

$$XI := min(XKDp) = -3$$

$$Yh := max(YKDp) = 12$$

- область отображения в МСК

$$Xh := max(XKDp) = 3$$
 $Yl := min(YKDp) = 4$

$$Y1 := min(YKDp) = 4$$

$$dXw := Xhw - Xlw = 300$$

- ширина области отображения в ОСК

$$dX := Xh - Xl = 6$$

- ширина области отображения в МСК

$$dYw := Yhw - Ylw = 300$$

dYw := Yhw - Ylw = 300 - высота области отображения в ОСК

$$dY := Yh - Yl = 8$$

- высота области отображения в МСК

$$Kx := \frac{dXw}{dX} = 50$$

$$Kx := \frac{dXw}{dX} = 50$$
 $Ky := \frac{dYw}{dY} = 37.5$

$$Tsw := egin{pmatrix} Kx & 0 & Xlw - Kx \cdot Xl \\ 0 & -Ky & Yhw + Ky \cdot Yl \\ 0 & 0 & \omega \end{pmatrix}$$
 - матрица пересчета из МСК в ОСК

Вычисляем координаты в ОСК

$$OKD := Tsw \cdot KDp$$

