DEEP LEARNING

CONVOLUTIONAL NEURAL NETWORKS

Natalia Safiejko | Wojciech Grabias

METHODOLOGY

- Each model was trained three times for every hyperparameter value
- Aggregated results using mean and standard deviation
- Random seed for all aspects involving randomness

ARCHITECTURES

- Resnet18
- DenseNet121
- EfficientNet
- Custom Architecture- feature extraction made of three convolutional blocks and the classifier layers

HYPERPARAMETERS

TRAINING PROCESS

Learning Rate

Optimizer

REGULARIZATION

Weight

Decay

Dropout

DATA AUGMENTATION

Horizontal Flip

Color Jitter

Random Crop

Rotation

Cutout

AutoAugment

INITIAL RESULTS

Architecture	Accuracy	Recall	Precision	F1 Score	Loss
Resnet18	0.6775 ± 0.0015	0.6775 ± 0.0015	0.6763 ± 0.0010	0.6752 ± 0.0017	0.9602 ± 0.0293
DenseNet121	0.7197 ± 0.0004	0.7194 ± 0.0004	$0.7198 {\pm} 0.0002$	$0.7181 {\pm} 0.0010$	$0.8725 {\pm} 0.0111$
EfficientNet	$0.7262 {\pm} 0.0011$	0.7262 ± 0.0009	$0.7258 {\pm} 0.0011$	$0.7249 {\pm} 0.0010$	$0.8138 {\pm} 0.0232$
Custom	0.7329 ± 0.0026	0.7329 ± 0.0026	$0.7380 {\pm} 0.0013$	$0.7335 {\pm} 0.0023$	$0.8443 {\pm} 0.0425$

OVERFITTING

INITIAL RESULTS

DATA AUGMENTATION

Basic

Architecture	Horizontal flip	Rotation	Random crop	Color jitter
Resnet18	0.6970 ± 0.0030	$0.6905{\pm}0.0015$	$0.6848{\pm}0.0028$	0.6690 ± 0.0025
DenseNet121	$0.6548{\pm}0.0312$	0.7222 ± 0.0026	$0.7197{\pm}0.0043$	0.7151 ± 0.0033
EfficientNet	$0.7374{\pm}0.0121$	$0.7284{\pm}0.0008$	$0.7222 {\pm} 0.0039$	0.1711 ± 0.0427
Custom	$0.7565{\pm}0.0022$	0.7405 ± 0.0013	$0.7361 {\pm} 0.0015$	0.6114 ± 0.0019

DATA AUGMENTATION

Advanced

Architecture	AutoAugment	Cutout
Resnet18	0.6771 ± 0.0013	0.6827 ± 0.0055
DenseNet121	$0.6858 {\pm} 0.0118$	$0.7226 {\pm} 0.0022$
EfficientNet	$0.7160{\pm}0.0025$	0.7252 ± 0.0001
Custom	$0.7261 {\pm} 0.0051$	$0.7368 {\pm} 0.0021$

DATA AUGMENTATION

TRAINING PROCESS

Learning Rate

TRAINING PROCESS

Optimizer

REGULARIZATION

Weight Decay

Architecture	$\mathbf{wd} = 0.0001$	$\mathbf{wd} = 0.0002$	$\mathbf{wd} = 0.00005$
Resnet18	0.6730 ± 0.0020	0.6673 ± 0.0034	0.6753 ± 0.0028
DenseNet121	0.6667 ± 0.0016	0.6604 ± 0.0026	$0.6656 {\pm} 0.0052$
EfficientNet	$0.7210{\pm}0.0018$	$0.7148 {\pm} 0.0020$	$0.7230 {\pm} 0.0011$
Custom	$0.7290 {\pm} 0.0031$	0.7300 ± 0.0081	0.7301 ± 0.0010

Dropout

k	Accuracy	Precision
0.1	$0.7356 {\pm} 0.0022$	0.7409 ± 0.0031
0.2	$0.7935 {\pm} 0.0114$	0.8003 ± 0.0132
0.3	$0.7411 {\pm} 0.0314$	$0.7322 {\pm} 0.0401$
0.4	$0.7031 {\pm} 0.0218$	0.6909 ± 0.0146

MIXTURE OF EXPERTS

- 1. Vehicles recognition Expert
- 2. Animal recognition Expert
- 3. The best permorming architecture from the previous experiments

Loss: 0.6208, Accuracy: 0.8034, F1 Score: 0.8036, Precision: 0.8040, Recall: 0.8034

FEWSHOT: ARCHITECTURE

FEWSHOT: RESULTS

Few-shot architecture

p	Accuracy	Recall	Precision	F1 Score
0.001	$0.2095{\pm}0.0015$	$0.2095{\pm}0.0015$	0.2119 ± 0.0010	0.2080 ± 0.0017
0.002	$0.2503 {\pm} 0.0004$	$0.2503 {\pm} 0.0004$	$0.2537 {\pm} 0.0002$	0.2457 ± 0.0010
0.005	$0.2890 {\pm} 0.0011$	$0.2890 {\pm} 0.0009$	$0.2766{\pm}0.0011$	$0.2755 {\pm} 0.0010$
0.01	$0.3283 {\pm} 0.0026$	$0.3283 {\pm} 0.0026$	$0.3108 {\pm} 0.0013$	0.3093 ± 0.0023
0.02	$0.3388 {\pm} 0.0026$	$0.3387 {\pm} 0.0026$	$0.3271 {\pm} 0.0013$	0.3210 ± 0.0023
0.05	$0.3407 {\pm} 0.0026$	$0.3407{\pm}0.0026$	$0.3204{\pm}0.0013$	0.3123 ± 0.0023
0.1	$0.3505{\pm}0.0026$	$0.3505{\pm}0.0026$	$0.3350 {\pm} 0.0013$	0.3274 ± 0.0023

Regular

p	Accuracy
0.001	0.1123 ± 0.0083
0.002	0.1610 ± 0.0281
0.005	0.1833 ± 0.0255
0.01	0.2020 ± 0.0162
0.02	0.3191 ± 0.0204
0.05	0.3960 ± 0.0151
0.1	0.4894 ± 0.0116

THANK YOU