

Confidence Interval Analysis

ChatGPT said:

The correct answer is "True" for the problem in the picture for the following reasons:

1. Uniform Distribution on $[0,\theta]$

• The problem states that the X_i s have a uniform distribution on the interval $[0, \theta]$. In a uniform distribution, every value between 0 and θ is equally likely, and the mean of this distribution is $\frac{\theta}{2}$.

2. Sample Mean as an Estimator

• The mean of a uniform distribution on $[0,\theta]$ is $\frac{\theta}{2}$. Given the sample mean \bar{X} , you can estimate θ using $\hat{\theta}=2\bar{X}$. This makes $2\bar{X}$ a reasonable point estimate for the true value of θ .

3. Sample Variance is Known

• The problem mentions that the sample variance was computed and retained. Even though the original data is lost, the sample mean and variance are sufficient statistics for constructing a confidence interval in this context.

4. Confidence Interval for the Mean

• A confidence interval can still be constructed using the sample mean \bar{X} and the fact that the sample comes from a uniform distribution. The key is that the mean of the distribution is $\frac{\theta}{2}$, and with $\hat{\theta}=2\bar{X}$, you can establish a confidence interval around $\frac{\hat{\theta}}{2}=\bar{X}$.

5. Uniform Distribution Properties

• In a uniform distribution, the variance $\mathrm{Var}(X)$ can be related to the range θ as $\mathrm{Var}(X) = \frac{\theta^2}{12}$. Knowing the sample variance allows for further refinement of the estimate of θ , if needed, although in this context, the sample mean \bar{X} alone is sufficient for estimating θ and constructing the interval.

6. Sufficient Statistics

• In statistical theory, sufficient statistics (like the sample mean in this case) contain all the information needed about a parameter (here, θ) that can be gleaned from the sample. Therefore, even though the original data is lost, the sample mean provides all the necessary information to estimate θ and construct the confidence interval.

Summary

Given the uniform distribution on $[0,\theta]$, the retained sample mean is a sufficient statistic for estimating the population mean. Despite losing the original data, you can use the sample mean to

construct a 95% confidence interval for the mean of the X_i s, making the statement "True." The key reasons are the properties of the uniform distribution, the sufficiency of the sample mean, and the relationship between the sample mean and the parameter θ .