## **Dataset Description**

We have 2 datasets in this project.

### Dataset 1

This dataset contains 12 Clinical Attributes and 22 Histopathological Attributes. The names and id numbers of the patients were recently removed from the database. In the dataset constructed for this domain, the family history feature has the value 1 if any of these diseases has been observed in the family, and 0 otherwise. The age feature simply represents the age of the patient. Every other feature (clinical and histopathological) was given a degree in the range of 0 to 3. Here, 0 indicates that the feature was not present, 3 indicates the largest amount possible, and 1, 2 indicate the relative intermediate values.

### Dataset 2

The dataset comprised a retrospective convenience sample across all images of Fitzpatrick I-VI but was also designed to allow direct comparison between Fitzpatrick I-II and Fitzpatrick V-VI by matching diagnostic category, age within 10 years, gender, and date of photograph within 3 years. The images included in the DDI dataset were retrospectively selected from reviewing pathology reports in Stanford Clinics from 2010-2020. There are 656 images representing 570 unique patients. Each image label was expertly curated: skin tone was labeled based on in-person evaluation at the clinic visit cross-referenced against demographic photos and review of the clinical images by two board certified dermatologists.

### **Problem**

To build a model to classify the patients data into different categories based on the 34 attributes. We want to analyse the dataset we considered for this. There are some clinical attributes and histopathological attributes which are recorded from the patients. There are some missing values in the dataset, and the values are very sensitive i.e there are many diseases that gives the same symptoms diagnosis gives the same result. This database contains 34 attributes. 33 of which are linear valued and one of them is nominal

### Research Problem

- 1. Can we predict the skin disorder by only using the clinical attributes(data)? What is the influence or contribution of histopathological attributes on the output?
- 2. Can we identify the the type of skin disorder using a image provided? Can we predict the other parameters like skin tone and severity of the disease.

3. Is there any possiblity of finetuning the model using both the image and attributes from the dataset 1 to make better predictions of the skin disorder.

## Data cleaning

1. There are 8 missing values in the dataset 1, they are all in the 'Age' attribute. The dataset contains limited number of examples and each value is important for the analysis. So we cannot afford to lose the data and drop any rows. So to fill the data we are using regression models to predict the missing values.

We are creating a deep copy of the dataframe and removed the rows where there are missing values. We trained the model with the new dataframe and obtained the results by feeding the known data in the original dataframe to find the age. 2. For the dataset 2, the data is not in the correct structure for a model to be trained. So, the main idea is to split the data into the different directories that are marked by their respective labels. There are some missing values in the other output variables which were handled by filling them with mean values.

## **Exploratory Data Analysis**

#### Dataset 1

Dataset 1 contains 365 rows and 35 attributes.

This is a multivariant data set.

34 attributes of the dataset are linear(int64) and 'Age' attribute is nominal(Object). Correlation between the columns was also found (Pleasa refer to dataset1.py) for the results.









## Dataset 2

As mentioned in the ML/Stats section Resnet performed best with an accuracy of 85%. Below are the plots of model performance. The metrics considered are the accuracy and loss.

# ResNet Performance







# References

https://towardsdatascience.com/how-to-handle-missing-data-8646b18db0d4 https://www.datacamp.com/blog/classification-machine-learning https://www.geeksforgeeks.org/convolutional-neural-network-cnn-in-machine-learning/