0.1 H18 数学 A

 $\boxed{1}$ $(1)\dim V = k \leq n-1$ として V の直交補空間 V^{\perp} をとると, $V \oplus V^{\perp} = \mathbb{R}^n$ より $\dim V^{\perp} = n-k \geq 1$ である。 $0 \neq (a_1,\ldots,a_n)^{\top} \in V^{\perp}$ をとると, $F(x_1,\ldots,x_n)$ は $(a_1,\ldots,a_n)^{\top}$ と (x_1,\ldots,x_n) の内積だから V 上で F は 0.

(2)V と b で生成されるベクトル空間を V' とおけば $\dim V' \leq n-1$ であり, $V_b \subset V'$ である.(1) より V' 上 で 0 となる F が存在し,F は V_b 上 0 である.

2

(1) 点 (x,y) の属す同値類を [(x,y)] と表す. x=y=0 なら (x,y) の同値類は $\{(0,0)\}$ である. $x=0,y\neq 0$ のとき $(0,y)\sim (0,ty)$ $(t\in\mathbb{R}\setminus\{0\})$ である. $y=0,x\neq 0$ のとき $(x,0)\sim (tx,0)$ $(t\in\mathbb{R}\setminus\{0\})$ である. $x\neq 0\neq y$ のとき $(x,y)\sim (x',y')\Leftrightarrow xy=x'y'$ である. したがって同値類は右のようになる. (異なる色は異なる同値類)

 $x \neq 0 \neq y$ なる (x,y) が含まれる同値類は g(x,y) = xy の逆像 $g^{-1}(xy)$ であるから閉集合. また $\{(0,0)\}$ も閉集合である. $[(0,y \neq 0)]$ は (0,0) が集積点であるが同値類に含まれないから閉集合ではない. 同様に $[(0 \neq x,0)]$ も閉集合ではない.

(2)(0,0) を含む R^2 の開集合 $\pi^{-1}(U)$ に対してある $\varepsilon_U>0$ が存在して $B((0,0),\varepsilon_U)\subset\pi^{-1}(U)$ となる. したがって $(x,0)\in\pi^{-1}(U)$ $(x\neq 0)$ である. すなわち $[(0\neq x,0)]\in U$

である. したがって $[(0 \neq x, 0)]$ と [(0, 0)] を分離する開集合は存在しないからハウスドルフでない.

 $(3)i \leq j$ のとき同値類 [(1,1)] 上で $x^iy^j = y^{j-i}$ となるから定数となるには i=j が必要. 逆に $f(x,y) = \sum a_i(xy)^i$ とするとこれは全ての同値類の上で定数である.

(4)D=[(x,y)] $(x \neq 0 \neq y)$ のとき, $D \neq D'=[(x',y')]$ に対して $xy \neq x'y'$ である.したがって $h(x,y)=xy\in E$ に対して $h(D)\neq h(D')$ となる.したがって (*) を満たす D,D' は共に [(0,0)],[(0,1)],[(1,0)] の何れか. $f(x,y)=\sum a_i(xy)^i$ について $f([(0,0)])=a_0,f([(0,1)])=a_0,f([(1,0)])=a_0$ であるから求める対は ([(0,0)],[(0,1)]),([(0,0)],[(1,0)]),([(0,1)],[(1,0)]) 及びこれらの順序を入れ替えたものである.

$$\boxed{3} \ A = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$$
 であるから $Ax + b = \begin{pmatrix} -x + y + b \\ x - y + c \end{pmatrix}$ である. よって $\langle Ax + b, x \rangle = -(x - y)^2 + bx + cy$ である.

x+y=s, x-y=t と変数変換すると $\langle Ax+b, x \rangle = -t^2 + b \frac{s+t}{2} + c \frac{s-t}{2}$ で,ヤコビアンは -1/2 である. よって

$$\begin{split} I &= \int_{-\infty}^{\infty} \int_{0}^{\infty} \exp\left(-t^2 + b\frac{s+t}{2} + c\frac{s-t}{2}\right) \frac{1}{2} ds dt \\ &= \frac{1}{2} \int_{-\infty}^{\infty} \exp\left(-(t - \frac{b-c}{4})^2 + (\frac{b-c}{4})^2\right) dt \int_{0}^{\infty} \exp\left(\frac{b+c}{2}s\right) ds \end{split}$$

である. $\int_{-\infty}^{\infty} \exp\left(-(t-\tfrac{b-c}{4})^2+(\tfrac{b-c}{4})^2\right)dt$ は有限である. また b+c<0 なら $\int_{0}^{\infty} \exp\left(\tfrac{b+c}{2}s\right)ds$ も有限であり, $b+c\geq 0$ なら発散する.

 $\boxed{4}$ f(z) の 0 におけるローラン級数は 0 が極であることから正の整数 k を用いて $\sum_{n=-k}^{\infty}a_nz^n$ とかける. $z^kf(z)$ は |z|<2 で正則であり $\lim_{z\to 0}z^kf(z)=a_{-k}\neq 0$ である. したがってある $\delta>0$ が存在して $|z|<\delta$ で

1

 $|z^k f(z)| > |a_{-k}|/2$ である. したがって

$$\iint_{\varepsilon < |z| < \delta} \frac{|a_{-k}|}{2|z|^k} dx dy \leq \iint_{\varepsilon < |z| < \delta} |f(z)| dx dy < \infty$$

である. $(x,y)=(r\cos\theta,r\sin\theta)$ と極座標変換すると $\int_{\varepsilon}^{\delta}\int_{0}^{2\pi}\frac{|a_{-k}|}{2r^{k}}rdrd\theta=|a_{-k}|\pi\int_{\varepsilon}^{\delta}|r^{1-k}|dr<\infty$ である. $1-k\leq -1$ なら発散するから k<2 である. よって k=1 より一位の極.