直流电源特性 实验报告

姓名:涂婳 学号: PB22020603 班级: 22级物理学院4班 日期: 2023年5月25日

实验背景

直流电 (Direct Current, 简称 DC) 是指方向和时间不作周期性变化的电流, 但电流大小可能不固定, 可以有一定的波动, 主要应用于各种电子仪器、电解、电镀、直流电力拖动等方面。

1.实验目的

掌握直流电源特性的测量方法,了解负载对电源输出特性的影响,掌握非线性内阻电源开路电压和短路电流的测量方法。

- $1.\pi$ 型全波整流电路负载功率和纹波系数的测量
- 2.实验结果探究分析

2.实验仪器

信号发生器、数字电压表 (直流电压档、交流电压档)、检流计、电阻箱、滑线变阻器、微安表、电源、电池、面包板、整流二极管 4 个、电容、电阻、导线若干

3.实验原理

滤波

基本原理: 电容电压不可突变

整流后的直流电仍有脉动,为减少波动,需加滤波器,此处使用电容滤波, π 型RC滤波。

电容滤波

利用电容充电和放电来使脉动的直流电变成平稳的直流电。

RC电路的时间常数T=RC,其中R为回路中的电阻,C为电容值。

图 6.2.1-4 全波整流电容滤波器

图 1 电容滤波电路示意图

如图4所示, t_0 时刻接通电源后,电容未充电,电压较小, U_c 在 t_1 时刻达峰值 $\sqrt{2}U_c$ 此后 U_i 正常以正弦规律下降直到 t_2 时刻,电容电压超过交流电压,极管D不再导电,电容开始放电, U_c 缓慢下降,直至下一个周期。

 t_3 之后,电压 U_i 上升到和 U_c 相等时,二极管D又开始导通,电容充电,直到 t_4 。之后重复前述过程,形成了周期性的电容器充电放电过程。

在这个过程中,二极管D只在 t_3 到 t_4 段导通并向电容器充电,可以被看成是一个反电动势(类似蓄电池)。

图 6.2.1-5 全波整流电容滤波电路的输出波形

图 2 电容滤波波形示意图

效果:输出波形趋于平滑。

π 型RC滤波

为在电容滤波的基础上进一步减少脉动,可利用多级滤波,再加一级RC滤波电路,这种电路称π型RC滤波电路。

图 3 pi型RC滤波电路示意图

效果:输出电压更平滑,但输出电压平均值减少。

图 4 pi型RC滤波电路连接图

纹波系数

直流稳压电源一般是由交流电源经过整流滤波稳压等环节而形成的,这就不可避免地在直流稳定量中多少带有一些交流成分,这种叠加在直流稳定量上的交流分量就称之为纹波。一般可以用交流成分的有效值来表示 纹波绝对强度的大小。

指负载上交流电压的有效值与直流电压之比,是表征直流电源品质的一个重要参数。与整流滤波电路品质,外电路负载有关。

纹波系数
$$K_u=rac{$$
交流电压有效值 $}{$ 直流电压

4.实验步骤与注意事项

实验步骤

- 1.用万用表检查二极管的连通性
- 2.将信号发生器调节至Up-p为10V, 频率为500Hz
- 3.连结π型滤波回路,将第二个电阻替换成电阻箱
- 4.使电阻箱电阻在20-2000欧姆间变化,测量VDC和ADC

测量过程注意事项

根据功率及纹波系数与负载大小的关系曲线,负载较小时,研究对象变化较快,图像细节较多,故在负载较小时需多取几组数据

搭建电路注意事项

- 1, 横排五个点位等电势, 注意以分析电路等势关系为基础搭建电路
- 2,避免线路排布过于拥挤,适当使用长导线,充分利用面包板空间
- 3, 搭建完成后, 依图示对照电路是否能够严格按照各路径导通

4,因测量器件较多,应确保各仪器链接完善后再读取数据5,对于二极管,需首先利用数字电压表的二极管模式检查导通方向,"OPEN"即导通,注意电学仪器红进黑出

5.思考题:

1、 简述单大电容和小电容 π 型滤波的优劣。

单大电容:

优点: 更适用于负载阻值较小,交流电频率更低的实验情况。根据实验结果可知,使用单大电容滤波,在负载阻值较小时,负载的直流电压更大,输出效率更高,纹波系数更低,滤波效果更好。

缺点: 在相同负载的情况下, 纹波系数相比小电容π型滤波更大, 滤波效果较低。

小电容 π 型滤波:

优点:更适用于负载阻值较大,交流电频率更高的实验情况。根据实验结果可知,使用小电容 π 型滤波,在负载阻值较大时,纹波系数更低,滤波效果更好。

缺点:滤波产生的直流电压相比单大电容更小,输出效率偏低,对电压的损耗较大。

5.数据记录

π 型RC整流滤波

$1\mu F$ 电容情况

负载阻值R/欧姆	直流电压成分VDC/V	交流电压成分ADC/V	功率P/mW	纹波系数K/%
20	0.535	0.237	0.0143	44.2
100	0.855	0.215	0.0182	25.1
200	1.17	0.201	0.0228	17.1
300	1.35	0.187	0.0227	13.8
400	1.49	0.179	0.0222	12.0
500	1.98	0.175	0.0196	8.83
600	2.26	0.141	0.0170	6.23
800	2.44	0.119	0.0148	4.87
1000	2.57	0.10	0.0132	4.00
1200	2.66	0.0917	0.0117	3.44
1400	2.82	0.0731	0.00994	2.59
1600	2.93	0.0628	0.00858	2.14
1900	2.99	0.0547	0.00745	1.82

负载阻值R/欧姆	直流电压成分VDC/V	交流电压成分ADC/V	功率P/mW	纹波系数K/%
2000	3.06	0.0478	0.0066	1.56

表1: 1\muF电容滤波 直流电压 交流电压 功率 纹波系数 原始数据表

10 μF 电容情况

负载阻值R/欧姆	直流电压成分VDC/V	交流电压成分ADC/V	功率P/mW	纹波系数K/%
20	0.017	0.00821	0.0000144	48.2
100	0.13	0.00777	0.000169	5.97
200	0.25	0.0075	0.000312	3.00
300	0.49	0.00748	0.00800	1.52
400	0.67	0.00714	0.00112	1.06
500	0.82	0.00684	0.00134	0.834
600	0.98	0.00652	0.00160	0.665
800	1.21	0.00601	0.00183	0.496
1000	1.43	0.00557	0.00204	0.389
1200	1.66	0.00507	0.00229	0.305
1400	1.81	0.00476	0.00234	0.262
1600	1.93	0.00449	0.00232	0.232
1900	2.08	0.00417	0.00227	0.200
2000	2.13	0.00407	0.00226	0.191

表2: 10\muF电容滤波 直流电压 交流电压 功率 纹波系数 原始数据表

分析与讨论

1.作图处理

1 μF 电容情况

图 5 输出功率随负载变化曲线

图 6 纹波系数随负载变化曲线

 $10\mu F$ 电容情况

图 7 输出功率随负载变化曲线

图 8 纹波系数随负载变化曲线

2.结果分析

输出功率:

无论小电容还是大电容,输出功率随电阻变化都有先增大后减小的趋势。对于 $1\mu F$ 电容电路,输出功率达到最大时,负载阻值约为1510欧姆,而对于 $10\mu F$ 电容电路,输出功率达到最大时,负载阻值约为160欧姆。故小电容电路对应最大功率的负载阻值更大。

另外, 小电容电路对应的直流电压值更大, 整体输出功率更大。

纹波系数:

纹波系数均随负载电阻增大而降低, 且在负载电阻较小时, 斜率明显较大