SUBSTITUTE SEQUENCE LISTING

<110>	Yasukazu, NAKAKITA Youichi, TSUCHIYA						
<120>	METHOD OF DETECTING AND IDENTIFYING GRAM-NEGATIVE OBLIGATIVE ANAEROBIC BACTERIUM						
<130>	294863US0PCT						
	10/589,493 2006-08-15						
	PCT/JP05/02335 2005-02-16						
	JP 2004-040376 2004-02-17						
<160>	8						
<170>	PatentIn version 3.3						
<210><211><211><212><213>							
<222>	Source (1)(1395) SBC8034 Strain						
<222>	misc_feature (98)(98) n represents any base						
<400>	1 gcga actggtgagt aacgcgtatc caacctggcc gtaagcagag aataggcttc	60					
cgaaag	aaag attaatgctc tatgtagtca cccgaagnca tcggaaggtg accaaagatc	120					
cgtcgc	ttac ggatggggat gcgtctgatt aggcagttgg cggggcaaag gcccaccaaa	180					
ccgacg	atca gtagggttct gagaggaagg tcccccacat tggaactgag acacggtcca	240					
aactcc	tacg ggaggcagca gtgaggaata ttggtcaatg ggcgagagcc tgaaccagcc	300					
aagtag	cgtg caggacgacg gccctatggg ttgtaaactg cttttgaagg ggaataaagt	360					
gagcga	cgtg tcgttcattg caagtaccct tggaataagg accggctaat tccgtgccag	420					
cagccg	cggt aatacggaag gtccgggcgt tatccggatt tattgggttt aaagggagcg	480					
taggcc	gctc tttaagcgtg ttgtgaaatg caggtgccca acatctgcac tgcagcgcga	540					

actggagagc	ttgagggcgc	acgacgcagg	cggaatttgt	ggtgtagcgg	tgaaatgcat	600
agatatcacg	aagaaccccg	attgcgaagg	cagcttgcgg	gagcgcacct	gacgctgaag	660
ctcgaaagtg	caggtatcaa	acaggattag	ataccctggt	agtctgcacg	gtaaacgatg	720
gatgcccgtt	ctgcggcctt	cgggccgcgg	gaccaagtga	aagcattaag	catcccacct	780
ggggagtacg	ccggcaacgg	tgaaactcaa	aggaattgac	gggggcccgc	acaagcggag	840
gaacatgtgg	tttaattcga	tgatacgcga	ggaaccttac	ccgggcttga	attgcagact	900
gaggtgccgg	agacggcacc	gtccttcggg	aagtctgtga	aggtgctgca	tggttgtcgt	960
cagctcgtgc	cgtgaggtgt	cggctcaagt	gccataacga	gcgcaacccc	tgtctcccgt	1020
tgccatcagg	ttcaagctgg	gcacaccgga	gagactgccg	ccgtaaggtg	tgaggaaggt	1080
ggggatgacg	tcaaatcagc	acggccttac	gtccggggct	acacacgtgt	tacaatggcc	1140
ggtacagagc	gaaggcgtcc	cgcaaggtcc	gccgaagcgc	caaagccggc	cccagtacgg	1200
actggggtct	gcaacccgac	cccacgaagc	tggattcgct	agtaatcgcg	catcagccat	1260
gacgcggtga	atacgttccc	gggccttgta	cacaccgccc	gtcaagccat	gaaagccggg	1320
agtgcctgaa	gtccgtgacc	gcaaggatcg	gcctagggca	aaatcggtaa	ttggggtgaa	1380
gtcgtaaaaa	gggta					1395

<210> 2 <211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Primer

<400> 2

ggaaggtgac caaagatccg 20

<210> 3

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Primer

<400> 3

ttgcaatgaa cgacacgtcg ct

22

<210> 4

```
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<220>
<221> modified_base
<222> (1)..(1)
<223> LC Red 640 Dye Labelled
<220>
<221> modified_base
<222> (21)..(21)
<223> Phosphorylated
<400> 4
                                                                    21
gccccgccaa ctgcctaatc a
<210> 5
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<220>
<221> modified base
<222> (22)..(22)
<223> FITC Dye Labelled
<400> 5
ctgatcgtcg gcttggtggg cc
                                                                     22
<210> 6
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Primer
<400> 6
ggctttctaa cagggtaccg
                                                                     20
<210> 7
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
```

```
<220>
<221> modified_base
<222> (1)..(1)
<223> LC Red 705 Dye Labelled
<220>
<221> modified_base
<222> (22)..(22)
<223> Phosphorylated
<400> 7
accgtcacca accagctaat ca
                                                                    22
<210> 8
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Universal Synthetic Oligonucleotide Primer for 16S rRNA gene
<400> 8
tggagagttt gatcctggct c
                                                                    21
```