draft-cui-nmrg-llm-net-00 IETF 122 NMRG

A Framework for LLM-Assisted Network Management with Human-in-the-Loop

Yong Cui, Mingzhe Xing, Lei Zhang

Tsinghua University, Beijing Zhongguancun Laboratory

Mar, 2025

Outline

- > Motivation
- > Framework Overview
- ➤ Data Model
- > Security Consideration
- > Future Work

Motivation

- ➤ Challenges in Traditional Network Management
 - Complex and dynamic network environment
 - Diverse intents and demands
 - Rapid evolution and iteration
 - Learning curve on vendor-specific devices

Autonomous Levels	L0: Manual Operation & Maintenance	L1: Assisted Operation & Maintenance	L2: Partial Autonomous Networks	L3: Conditional Autonomous Networks	L4: High Autonomous Networks	L5: Full Autonomous Networks
Execution	Р	P/S	S	S	S	S
Awareness	Р	P/S	P/S	S	S	S
Analysis	Р	Р	P/S	P/S	S	S
Decision	Р	Р	Р	P/S	S	S
Intent/ Experience	Р	Р	Р	Р	P/S	S
Applicability	N/A	Select scenarios All scenarios				
	Р	People (manual) S Sy	stem (autonomou	ıs)	

Table 1-1 Levels of Autonomous Networks

- ➤ Vision: Autonomous Network Management [TM-IG1230]
 - ✓ Zero-X: zero wait, zero touch, and zero trouble
 - ✓ Self-X: self-configuration, self-healing, self-optimizing and self-evolving

Revolutionizing NM with LLM

- > Opportunity: Large Language Models
 - Multi-modal data understanding
 - > Logical reasoning
 - Generalization

Parameter Learning Output Dataset Model <u>₩</u> Input **Model Parameters** Capability

Machine Learning

Domain dataset

Parameter Learning Model 🖒 **Prompt Engineering** Classify the text into neutral, negative or positive. Text: I think the food was okay **Prompts** LLM

Configuration

Network

Increasing Attention

Institution	Research Paper	Conference
CUHK-Shenzhen	NetLLM: Adapting Large Language Models for Networking	SIGCOMM 24
ByteDance	NetAssistant: Dialogue Based Network Diagnosis in Data Center Networks	NSDI 24
NUS	Large Language Model guided Protocol Fuzzing	NDSS 24
BUPT	Following the Compass: LLM-Empowered Intent Translation with Manual Guidance	ICNP 24
Northeastern University	ConfigTrans: Network Configuration Translation Based on Large Language Models and Constraint Solving	ICNP 24
KTH Royal Institute of Technology	NetConfEval: Can LLMs Facilitate Network Configuration?	CoNEXT 24
Microsoft & UIUC	Automatic Root Cause Analysis via Large Language Models for Cloud Incidents	EuroSys 24

Human Still "in the Loop"

Consensus in NMRG Charter:

- There will be intermediate levels where the **human users remain "in the loop"** and are **progressively assisted and replaced** by more and more intelligent mechanisms
- ➤ Interfaces between humans and a self-driving system are important and required to allow bidirectional communications
- > LLM-Assisted Network Management Framework with Human-in-the-Loop
 - The **framework** components that build the intelligent autonomous system
 - > The workflow of autonomous decision and "Human in the Loop"
 - The **interface** of human operator and LLM-assisted system

Framework Overview

Key Components:

- ➤ Enhanced telemetry module improves the semantics of raw telemetry data
- ➤ LLM-decision module specifies a task instance to generate configurations
- ➤ Human operator audits the configuration passed by the validation and access control modules

Enhanced Telemetry Module

- ➤ Telemetry data retrieved via NETCONF, e.g., in XML format, lacks field descriptions and structured metadata
 - > Pretrained LLMs lack this contextual knowledge, and can lead to misinterpretation and

Solution: Inject device specifications, YANG model description or tree structure into raw data

Enhanced Telemetry Module

Original Network Management System

NetConf Client

erroneous reasoning

```
<?xml version="1.0" encoding="utf-8"?>
<data xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<ifm xmlns="urn:huawei:yang:huawei-ifm">
  <interfaces>
   <interface>
    <name>10GE1/0/1</name>
    <index>4</index>
    <class>main-interface</class>
    <type>10GE</type>
    <position>0/0/0</position>
    <number>1/0/1</number>
    <admin-status>up</admin-status>
    link-protocol>ethernet</link-protocol>
    <statistic-enable>true</statistic-enable>
    <mtu>1500</mtu>
    <spread-mtu-flag>false</spread-mtu-flag>
    <vrf-name>_public_</vrf-name>
    <dynamic>
     <oper-status>up</oper-status>
     <physical-status>up</physical-status>
     link-status>up</link-status>
     <mtu>1500</mtu>
     <bandwidth>100000000
     <ipv4-status>up</ipv4-status>
     <ipv6-status>down</ipv6-status>
     <is-control-flap-damp>false</is-control-flap-damp>
     <mac-address>00e0-fc12-3456</mac-address>
     -protocol-up-time>2019-05-25T02:33:46Z
     <is-offline>false</is-offline>
```

```
container auto-recovery-times {
 description
  "List of automatic recovery time configuration."
 list auto-recovery-time {
  key "error-down-type";
  description
  "Configure automatic recovery time.";
  leaf error-down-type {
   type error-down-type;
    description
     "Cause of the error-down event.";
  leaf time-value {
   type uint32 {
    range "30..86400";
   units "s";
   mandatory true;
    description
     "Delay for the status transition from down to up."
```

LLM Decision Module

- ➤ Retrieve-Augmented Generation (RAG) Module
 - Data Source: device documentation, expert knowledge, and YANG model schemas
 - Knowledge Compensate: retrieve relevant knowledge by text or vector similarity

LLM Decision Module

- Task Instance Management
 - ➤ Operator specifies a task, e.g., traffic analysis, traffic optimization, or attack mitigation
 - Task instance management module creates a task instance
 - Foundation Model Selection (e.g., GPT-4, LLaMA, and DeepSeek)
 - Prompt Selection (define the task description, and input and output formats)
 - Fine-Tune Weight Selection (adaptation weights trained on private datasets)

LLM Decision Module

- ➤ Access Control Module
 - > RFC8341: Network Configuration Access Control Model
 - User and Group
 - Each task instance should be registered as a specific user
 - A group consists of zero or more members, and a task instance can belong to multiple groups
 - Access Operation Types
 - reate, read, update, delete, and execute
 - > Action Types
 - > permit or deny
 - ➤ Rule List

Simplified abstraction of RFC8341

Operator Audit Module

• LLM-Assisted NM System → Human Operator

- ☐ Generated Network Configuration
- ☐ Confidence Score
- ☐ Error Message

Human Operator → LLM-Assisted NM System

- ✓ Result Verification
- ✓ Compliance Check
- ✓ Security Verification
- ✓ Suggestions and Corrections

- Audit Timestamp of the audit action
- LLM Task Instance ID
- □ Operator decisions (approval, rejection, modification,
 - or pending)
- ☐ Final executed command

Data Models

• LLM-Assisted NM System → Human Operator

```
module: llm-response-module
+--rw llm-response
+--rw config? string
+--rw confidence? uint64
+--rw error-reason? enumeration
```

```
module 11m-response-module {
  namespace "urn:ietf:params:xml:ns:yang:ietf-nmrg-llmn4et";
  prefix llmresponse;
  container llm-response {
    leaf config {
      type string;
    leaf confidence {
      type uint64;
    leaf error-reason {
      type enumeration {
        enum unsupported-task;
        enum unsupported-vendor;
```

Data Models

Human Operator → LLM-Assisted NM System

```
module: human-audit-module
  +--rw human-audit
     +--rw task-id?
                          string
     +--rw generated-config?
                                string
     +--rw confidence?
                                int64
     +--rw human-actions
                                  string
        +--rw operator?
        +--rw action?
                                  enumeration
        +--rw modified-config?
                                  string
        +--rw timestamp?
                                  yang:date-and-time
```

```
module human-audit-module {
  namespace "urn:ietf:params:xml:ns:yang:ietf-nmrg-llmn4et";
  prefix llmaudit;
  import ietf-yang-types { prefix yang; }
  container human-audit {
    leaf task-id {
      type string;
    leaf generated-config {
      type string;
    leaf confidence {
      type int64;
    container human-actions {
      leaf operator {
        type string;
      leaf action {
        type enumeration {
          enum approve;
          enum modify;
          enum reject;
      leaf modified-config {
        type string;
      leaf timestamp {
        type yang:date-and-time;
```

Future Work

> Security Considerations

- Model Hallucination: LLMs may produce malformed or invalid configurations
- Training Data Poisoning: LLMs trained on malicious or biased data could exhibit unintended behavior or introduce security vulnerabilities

> Future Work

- > Define the task instance management interface
- > Detail the audit process of human operator
- ➤ Integrate the Intent Based Network (IBN) into the audit interface

draft-cui-nmrg-llm-net-00 IETF 122 NMRG

Thanks! We welcome collaborators!

Q&A

Mingzhe Xing xingmz@zgclab.edu.cn