Anomaly detection with Neural Networks

Zaytsev Alexey, Lab head, Skoltech

12 May 2020

Anomaly detection problem statement

The problem is to find anomalous objects given training data

Normal data

Image Type	No Cat	Cat not on approach	Cat on approach	Cat with prey	
Count of Images	6,542	9,504	6,689	260	
Example					

Anomaly

Racoon	
1	

Problem examples

- Fraud detection
- Failure detection for an airplane
- Intrusion detection in cybersecurity
- Earthquake prediction

Typical challenges:

- Requires problem-specific knowledge
- New problem new approach
- Hard to identify something we don't see
- Bunch of various problem statements

https://arxiv.org/pdf/1901.03407.pdf

Taxonomy with respect to available data

- Sequential data
- Non-sequential data

- Supervised
- Unsupervised
- Semi-supervised

Taxonomy with respect to problem statement

 Novelty detection – unseen objects from our distribution

Anomaly detection – objects from

another distribution

Taxonomy with respect to problem statement

- Supervised
- Unsupervised
- Semi-supervised

https://arxiv.org/pdf/1901.03407.pdf

Anomaly type

Point

Collective or group

Point Anomaly	→ 1	\$1,127.80	Monaco Café	FOOD	1:14 pm	May-22
		\$28.00	Wine Bistro	WINE	2:14 pm	May-22
	٦ .	\$75.00	Mobil Mart	MISC	2:14 pm	Jun-14
		\$75.00	Mobil Mart	MISC	2:05 pm	Jun-14
		\$75.00	Mobil Mart	MISC	2:06 pm	Jun-15
	7 /	\$75.00	Mobil Mart	MISC	11:49 pm	Jun-15
Collective Anomaly	•	\$31.00	Acton shop	WINE	6:14 pm	May-28
, concourse randinar,		\$128.00	Crossroads	FOOD	8:39 pm	May-29
	1/	\$75.00	Mobil Mart	MISC	11:14 am	Jun-16
	J	\$75.00	Mobil Mart	MISC	11:49 am	Jun-16

Contextual or conditional

(a) Temperature data Hayes and Capretz [2015].

(b) System logs Du et al. [2017].

https://arxiv.org/pdf/1901.03407.pdf

Change point detection

Real world change point: fluid pressure

Fluid pressure in a hydrodynamic system for a numerical model based on Boltzmann method

Real world change point: S&P500 index

Dynamic of S&P500 stock exchange index for 7 years

Real world change point: internet data

Web-site visits

Real world change point: drilling data

Nuclear-magnetic response during the drilling of a well

Figure 2: The top plot is a 1100-datum subset of nuclear magnetic response during the drilling of a well. The data are plotted in light gray, with the predictive mean (solid dark line) and predictive 1- σ error bars (dotted lines) overlaid. The bottom plot shows the posterior probability of the current run $P(r_t | \mathbf{x}_{1:t})$ at each time step, using a logarithmic color scale. Darker pixels indicate higher probability.

Can you identify anomalies?

Let's try!

https://speakerdeck.com/skibish/a-note-about-anomalies-article

Focus today: unsupervised anomaly detection

Image Type	No Cat	Cat not on approach	Cat on approach	Cat with prey
Count of Images	6,542	9,504	6,689	260
Example				

General approach

General approach-1

- A sample $D = \{\mathbf{x}_i\}_{i=1}^n$ is given, each $\mathbf{x} \in \mathbb{R}^d$.
- Construct models

$$\hat{x}_1 = f_1(x_2, x_3, \dots, x_d),$$

$$\dots$$

$$\hat{x}_d = f_d(x_1, x_2, \dots, x_{d-1}).$$

• We have d anomaly scores for $\mathbf{x} = \{x_1, x_2, \dots, x_d\}$:

$$s_i(\mathbf{x}) = |\hat{x}_i - x_i|, i = \overline{1, d}.$$

General approach-2 is more general

- A sample $D = \{\mathbf{x}_i\}_{i=1}^n$ is given, each $\mathbf{x} \in \mathbb{R}^d$.
- Construct encoder and decoder model

$$\mathbf{z}_i = e(\mathbf{x}_i),$$

 $\mathbf{x}_i \approx \hat{\mathbf{x}}_i = d(\mathbf{z}_i) = d(e(\mathbf{x}_i)).$

• We have an anomaly score $s(\mathbf{x})$ for any \mathbf{x} :

$$s(\mathbf{x}) = \|\hat{\mathbf{x}}_i - \mathbf{x}_i\|.$$

E.g. PCA, autoencoder

Autoencoder

Train such that features can be used to reconstruct original data

Reconstructed input data

Representation

Input data

Reconstructed data

Encoder: 4-layer conv **Decoder**: 4-layer upconv

Taxonomy of autoencoders

Just autoencoder Sometimes we need just nonlinear PCA The latent space may not be continuous or allow easy interpolation.

Variational autoencoder If you want precise control over your latent representations and what you would like them to represent, then choose VAE. Sometimes, precise modeling can capture better representations

Adversarial autoencoder

AF

VAE

https://towardsdatascience.com/intuitivelyunderstanding-variational-autoencoders-1bfe67eb5daf

Variational autoencoder

Variational autoencoder: formulas

We can do better with Adversarial autoencoder

Adversarial autoencoder

Adversarial autoencoder: formulas

$$\mathcal{L} = \mathbb{E}_x \left[\underbrace{\mathbb{E}_{q(z|x)}[-\log p(x|z)]}_{\text{Reconstruction Error}} + \mathbb{E}_x \left[\underbrace{\mathrm{KL}(q(z|x)||p(z))]}_{\text{KL Regularizer}} \right]$$

GANs

Generator network: try to fool the discriminator by generating real-looking images **Discriminator network**: try to distinguish between real and fake images

Train jointly in minimax game

Discriminator outputs likelihood in (0,1) of real image

Minimax objective function:

$$\min_{\theta_g} \max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log (1 - D_{\theta_d}(G_{\theta_g}(z))) \right]$$
Discriminator output for generated fake data G(z)

- Discriminator (θ_d) wants to maximize objective such that D(x) is close to 1 (real) and D(G(z)) is close to 0 (fake)
- Generator (θ_g) wants to minimize objective such that D(G(z)) is close to 1 (discriminator is fooled into thinking generated G(z) is real)

More general approach to anomaly detection

- Construct anomaly score a(x) using data
- Signal about anomaly if anomaly score is greater than some threshold t
- Threshold selection is a separate problem, as we have only positive examples

Adversarial autoencoders help

The model is trained using images of penguins

- If we use noisy inputs and pass them to our network R, we get enhanced images as the output
- If we use outlier input instead, the output of R is distorted

D is discriminator score

M. Sabokrou et al. *Adversarially Learned One-Class Classifier for Novelty Detection*, CVPR, 2018

Overall architecture has a generator and a discriminator

Internal architectures

Autoencoder generator

Discriminator gives anomaly score

Loss function

Full loss function:

$$\mathcal{L} = \mathcal{L}_{\mathcal{R}+\mathcal{D}} + \lambda \mathcal{L}_{\mathcal{R}}$$

Loss function for difference between the initial object and reconstruction (can be log loss instead)

$$\mathcal{L}_{\mathcal{R}} = \|X - X'\|^2$$

Loss function similar to VAF & GAN

$$\min_{\mathcal{R}} \max_{\mathcal{D}} \left(\mathbb{E}_{X \sim p_t} [\log(\mathcal{D}(X))] + \mathbb{E}_{\tilde{X} \sim p_t + \mathcal{N}_{\sigma}} [\log(1 - \mathcal{D}(\mathcal{R}(\tilde{X})))] \right)$$

Usage of the model

Anomaly score with state-of-the-art performance:

$$OCC_1(X) = \begin{cases} Target Class & if \mathcal{D}(X) > \tau, \\ Novelty (Outlier) & otherwise, \end{cases}$$

Anomaly score that utilizes encoder-decoder

$$OCC_2(X) = \begin{cases} Target Class & if \mathcal{D}(\mathcal{R}(X)) > \tau, \\ Novelty (Outlier) & otherwise. \end{cases}$$

Model quality

	CoP [32]	REAPER [22]	OutlierPursuit [50]	LRR [24]	DPCP [45]	R-graph [52]	Ours $\mathcal{D}(X)$	Ours $\mathcal{D}(\mathcal{R}(X))$
AUC	0.905	0.816	0.837	0.907	0.783	0.948	0.932	0.942
F_1	0.880	0.808	0.823	0.893	0.785	0.914	0.916	0.928
AUC	0.676	0.796	0.788	0.479	0.798	0.929	0.930	0.938
F_1	0.718	0.784	0.779	0.671	0.777	0.880	0.902	0.913
AUC	0.487	0.657	0.629	0.337	0.676	0.913	0.913	0.923
F_1	0.672	0.716	0.711	0.667	0.715	0.858	0.890	0.905

Adversarial autoencoders help

- Construct anomaly score a(x) using data
- Signal about anomaly if anomaly score is greater than some threshold t

Many Discriminators help

Figure 1. Limitations of in-class representation based novelty detection. Top: Input images; Middle: Output of an auto-encoder network trained on digit 8. Bottom: Output produced by OC-GAN, the proposed method. Even though auto-encoder network is trained only on digits of 8, it provides good reconstruction for digits from classes 1,5,6 and 9. In contrast, OCGAN forces the latent representation of any example to reconstruct a digit 8. As a result, all out-of-class examples produce high Mean Squared Error (MSE). The intensity of red color in the bottom two rows is proportional to the MSE.

Table 1. Mean One-class novelty detection using Protocol 1.

	MNIST	COIL	fMNIST
ALOCC DR [22]	0.88	0.809	0.753
ALOCC D [22]	0.82	0.686	0.601
DCAE [23]	0.899	0.949	0.908
GPND [18]	0.932	0.968	0.901
OCGAN	0.977	0.995	0.924

Figure 5. Illustration of OCGAN architecture: the network consists of four sub-networks: an auto-encoder, two discriminators and a classifier.

Factors to consider when choosing an anomaly detector

- Few parameters
 - parameter-free the best
 - easy to tune; not too sensitive to parameter setting
- Fast runtime: can scale up to large datasets and high dimensional datasets
- Low space complexity
- Known behaviours under different data properties
- Can deal with different types of anomalies
- Its ability to deal with high dimensional problems
- Understand the nature of anomalies and the best match algorithm

Take-home messages

- Anomaly detection is a challenging problem
- Often problem-specific knowledge helps

- Common approaches are Autoencoderbased and Isolation forest
- There are some time-series specific approaches: the problem is close to the change detection problem

