维数理论

Kevin

2022

这份笔记大部分内容来自于 [1] [2],参考了 [3]. 首先我们介绍分次环和分次模的概念.

Definition 1 我们称环 R 是分次环,如果存在加法子群 $R_n, n \ge 0$ 使得 $R = \bigoplus_{n \ge 0} R_n$ 并且 $R_m R_n \subset R_{m+n}$ 对所有 m, n 成立. 可以验证如果 R 是分次环,则 $1 \in R_0$,从而 R_0 是 R 的子环. 类似地,我们称 R-模 M 是分次 R-模,如果存在 加法子群 $M_n, n \in \mathbb{Z}$ 使得 $M = \bigoplus M_i$ 并且 $R_m M_n \subset M_{m+n}$ 对任意 m, n 成立.

此时每个 M_n 被称为齐次分支,如果 $x \in M_n$,则称 x 为 n 次齐次元. 分次模 M 中每个元素都可写为 $x = \sum x_i, x_i \in M_i$,这里 x_i 就称为 x 的 i 次齐次项. 显然,每个 M_n 都有 R_0 -模结构. 假设 M,N 都是分次 R-模,如果 $f:M \to N$ 是 R-模同态且满足 $f(M_n) \subset N_n$ 对所有 n 成立,则称 f 为分次 R-模同态.

Definition 2 假设 M 是分次 R-模,其子模 $N \subset M$ 被称为齐次子模,如果 N 可以由齐次元生成.

Proposition 3 假设 M 是分次 R-模, 子模 $N \subset M$ 则如下三个条件等价:

- 1. N 是齐次子模
- 2. 对 $x \in M$, 如果 $x \in N$, 则 x 的每一个齐次项都属于 N.
- 3. $N = \bigoplus (N \cap M_i)$

因此如果 N 是 M 的齐次子模,令 $N_i = M_i \cap N$,则 $M/N = \bigoplus M_i/N_i$ 仍是一个分次 R-模. 由 Prop.3 的 2. 和 3. 分别可知一族齐次子模的和与交仍然是齐次子模. 以下是 Noether 分次环的刻画.

Proposition 4 一个分次环 $R = \bigoplus_{n \geq 0} R_n$ 是 Noether 环当且仅当 R_0 是 Noether 环且 R 是有限生成 R_0 -代数.

证明:如果 R_0 是 Noether 环且 R 是有限生成 R_0 -代数,则由 Hilbert 基定理可知

R 是 Noether 环. 反之,注意 $R_{n\geq 1}=\bigoplus_{n\geq 1}R_n$ 是 R 的理想,故有 $R_0\cong R/R_{n\geq 1}$. 故 R 是 Noether 环表明 R_0 也是 Noether 环. 因为 $R_{n\geq 1}$ 是 R 的理想,所以 $R_{n\geq 1}$ 是有限生成的,不妨设其生成元为 x_1,x_2,\cdots,x_s . 我们令 $R'\subset R$ 是在 R_0 上由 x_1,x_2,\cdots,x_s 生成的子环. 仅要证 $R_n\subset R'$ 对所有 n 成立即可. 注意因为 $R_{n\geq 1}$ 是 R 本身作为分次 R-模的齐次子模,所以可以假设生成元 x_1,x_2,\cdots,x_s 全为齐次元 且其次数为 k_1,k_2,\cdots,k_s . 下面用归纳法来证明,首先 n=0 时显然成立,令 n>0 且 $y\in R_n\subset R_{n\geq 1}$,故 y 可写为 $y=\sum_{i=1}^s a_ix_i$,这里 $a_i\in R_{n-k_i}$. 由于每一个 k_i 都大于 0,故归纳假设表明每一个 a_i 都是系数在 R_0 中的关于 x_1,x_2,\cdots,x_s 的多项式. 故 $y\in R'$. 因此 $R_n\subset R'$ 对所有 n 成立.

Lemma 5 令 $R = \bigoplus_{n \geq 0} R_n$ 为一个 Noether 分次环. 如果 M 是有限生成分次 R-模,则对任意 n, M_n 作为 R_0 -模都是有限生成的.

证明: 因为 $R = \bigoplus_{n \geq 0} R_n$ 为一个 Noether 分次环,所以 R 是有限生成 R_0 代数,设 其生成元为齐次元 x_1, x_2, \cdots, x_s . 注意 M 由有限多个齐次元 $m_j (1 \leq i \leq t)$ 生成,令 m_j 的次数为 r_j . 每个 M_n 中的元素都可以写为 $\sum_{j=1} f_j(x) m_j$,其中 $f_j(x) \in A$ 是 $n-r_j$ 次的齐次元. 这表明 M_n 由 $g_j(x) m_j$ 生成,其中 $g_j(x)$ 是次数为 $n-r_j$ 的关于 x_i 的单项式,即 M_n 是有限生成的 R_0 -模.

由上述引理立马可以看出,如果 R_0 是 Artin 环,则 M_n 作为有限生成 R_0 -模,其 $l(M_n) < \infty$. 这是因为 Artin 环同时也是 Noether 环,故其上的有限生成模既是 Artin 模也是 Noether 模,即同时满足升链和降链条件,故模的长度有限. 在 R_0 是 Artin 环的条件下,我们因此获得了一个序列 $\{l(M_n): n \geq 0\}$.

Definition 6 令 $R = \bigoplus_{n\geq 0} R_n$ 为一个 Noether 分次环且 M 是有限生成分次 R-模, R_0 是 Artin 环. 称函数 $n\mapsto l(M_n)$ 为 Hilbert 函数. 称其生成函数

$$P(M,t) = \sum_{n=0}^{\infty} l(M_n)t^n \in \mathbb{Z}[[t]]$$

为 Hilbert 系数.

Theorem 7 令 $R = \bigoplus_{n \geq 0} R_n$ 为一个 Noether 分次环且 R_0 是 Artin 环,M 是有限生成分次 R-模. 假设 $R = R_0[x_1, \cdots, x_r]$, x_i 为 d_i 次的齐次元. 则 P(M,t) 是关于 t 的有理函数:

$$P(M,t) = \frac{f(t)}{\prod_{i=1}^{r} (1 - t^{d_i})}$$

其中 f(t) 是整系数的多项式.

证明: 对 r 用归纳法. 当 r=0 时, 有 $R=R_0$, 故当 n 充分大时, $M_n=0$. 此时 P(M,t) 是多项式. 当 r>0, 时, x_r 作用在 M 上定义了一个 R_0 -线性映射 $M_n\to M_{n+d_r}$, 有如下正合列:

$$0 \longrightarrow K_n \longrightarrow M_n \xrightarrow{x_r} M_{n+d_r} \longrightarrow L_{n+d_r} \longrightarrow 0$$

其中 $K_n=\ker(x_r), L_{n+d_r}=M_{n+d_r}/x_rM_n$. 令 $K=\bigoplus K_n, L=\bigoplus L_n$. 则 K 是 M 的子模,且 $L=M/x_rM$,故 K 和 L 都是有限生成 R-模. 并且 $x_rK=x_rL=0$ 表明 K,L 可以视为 R/x_rR -模,故我们可以用 P(K,t),P(L,t) 的归纳假设. 由上述正合序列和 l 是加性函数,有

$$l(K_n) - l(M_n) + l(M_{n+d_r}) - l(L_{n+d_r}) = 0$$

在上式两边乘 t^{n+d_r} 并对 n 求和得到

$$t^{d_r}P(K,t) - t^{d_r}P(M,t) + P(M,t) - P(L,t) = g(t), g(t) \in \mathbb{Z}[t]$$

整理即可得到 P(M,t).

在上述定理中,如果 $d_1 = d_2 = \cdots = d_r = 1$,R 作为 R_0 -代数由 1 次齐次元生成,此时 $P(M,t) = \frac{f(t)}{(1-t)^r}$,如果 f(t) 本身有因子 1-t,则我们约去因子 1-t得到如下形式

$$P(M,t) = \frac{f(t)}{(1-t)^d}, d \ge 0$$

且若 d > 0 则 $f(1) \neq 0$. 我们把此时的 d 记为 d(M). 注意到下述幂级数展开

$$\frac{1}{(1-t)^d} = \sum_{n=0}^{\infty} \binom{d+n-1}{d-1} t^n$$

如果 $f(t) = a_0 + a_1 t + \cdots + a_s t^s$, 则我们就得到

$$l(M_n) = a_0 \begin{pmatrix} d+n-1 \\ d-1 \end{pmatrix} + a_1 \begin{pmatrix} d+n-2 \\ d-1 \end{pmatrix} + \cdots + a_s \begin{pmatrix} d+n-s-1 \\ d-1 \end{pmatrix}$$

注意上式右边可以写为关于 n 的 d-1 次有理系数多项式,记为 $\varphi(n)$,其首项系数为 $\frac{f(1)}{(d-1)!}$. 于是我们得到如下推论:

Corollary 8 如果 Theorem 7 中的 $d_1=d_2=\cdots=d_r=1$, 且 d=d(M) 为上述所定义,则存在一个 d-1 次有理系数多项式 $\varphi_M(x)$ 使得当 $n\geq s+1-d$ 时 $l(M_n)=\varphi_M(n)$,这里 s 为 $P(M,t)(1-t)^d$ 的次数. 我们称 $\varphi_M(x)$ 为 M 的 Hilbert 多项式.

Definition 9 令 A 为环, \mathfrak{a} 为 A 的理想. 定义 \mathfrak{a} 的相伴分次环 $\operatorname{gr}_{\mathfrak{a}}(A) := \bigoplus_{n \geq 0} \operatorname{gr}_n(A) = \bigoplus_{n \geq 0} \mathfrak{a}^n/\mathfrak{a}^{n+1}$. 对于相伴分次环,定义乘积 $(x+\mathfrak{a}^{n+1})(y+\mathfrak{a}^{m+1}) = xy+\mathfrak{a}^{n+m+1}$, $x \in \mathfrak{a}^{n+1}$, $y \in \mathfrak{a}^{m+1}$, 易看出 $\operatorname{gr}(A)$ 在该乘积下具有分次环结构. 类似的,对于 A-模 M, 我们可以定义一个分次 $\operatorname{gr}_{\mathfrak{a}}(A)$ -模 $\operatorname{gr}_{\mathfrak{a}}(M) := \bigoplus_{n \geq 0} \mathfrak{a}^n M/\mathfrak{a}^{n+1} M$.

我们假设 A 是一个 Noether 半局部环,m 为其 Jacobson 根,如果 I 为 A 中理想使得存在 v>0 有 $\mathfrak{m}^v \subset I \subset \mathfrak{m}$,称 I 为定义理想,意为定义了 \mathfrak{m} -进拓扑的理想,此时 I-进拓扑和 \mathfrak{m} -进拓扑重合. 注意 $\operatorname{gr}_{\mathfrak{a}}(A)_0 = A/I$ 为 Artin 环,这是因为如果 \mathfrak{p} 是一个包含 I 的素理想,由 $\mathfrak{m}^v \subset \mathfrak{p}$ 可得到 $(\prod_{i=1}^n \mathfrak{m}_i)^v \subset \mathfrak{p}$,故至少存在一个 i 使得 $\mathfrak{m}_i = \mathfrak{p}$,即 \mathfrak{p} 是极大理想,故 A/I 是 0 维 Noether 环,即 Artin 环.

Definition 10 A 是一个 Noether 半局部环,m 为其 Jacobson 根,I 为 A 中理 想使得存在 v>0 有 $\mathfrak{m}^v\subset I\subset\mathfrak{m}$,M 为有限生成 A-模,则 $\mathrm{gr}_{\mathfrak{a}}(M)$ 是一个有限 生成分次 $\mathrm{gr}_{\mathfrak{a}}(A)$ -模. 故将 Theorem 7 和其推论应用在 $\mathrm{gr}_{\mathfrak{a}}(M)$ 上,定义

$$\chi_M^I(n) = l(M/I^{n+1}M) = \sum_{i=0}^n l(I^n M/I^{n+1}M)$$

并记 $\chi_M^m(n)$ 为 $\chi_M(n)$, 称其为模 M 的 Hilbert-Samuel 函数.

利用公式
$$\binom{m}{n} = \binom{m-1}{n-1} + \binom{m-1}{n}$$
 和之前推论可得
$$\chi_M^I(n) = a_0 \binom{d+n}{d} + a_1 \binom{d+n-1}{d} + \dots + a_s \binom{d+n-s}{d}$$

这里 $a_i \in \mathbb{Z}$,当 $n \geq s$ 时这是一个关于 n 的 d 次多项式. 这里的 d 被 M 决定,不依赖于 I 的选取,因为假设 I,J 都是定义理想,则存在 a,b 使得 $I^a \subset J,J^b \subset I$,故 因 $l(M/I^{an}M) \geq l(M/J^{n}M)$ 和 $l(M/J^{bn}M) \geq l(M/I^{n}M)$ 有

$$\chi_M^I(bn+b-1) \ge \chi_M^I(n)$$
 , $\chi_M^I(an+a-1) \ge \chi_M^I(n)$

这表明两个多项式的次数相同. 我们将 d=d(M) 为模 M 的某种维数,当 M 为局部环 A 时, $\chi_A^{\mathbf{m}}(k)=l(A/\mathfrak{m}^{k+1})$. 几何上来看,将这里的 A 视为某个概型上某点处的局部环,则环 A/\mathfrak{m}^{k+1} 为这点处的"k-阶无穷小邻域"的坐标环,此时的Hilbert-Samuel 函数的次数即是其维数关于 k 的增长性,这种增长性刻画了概型在这一点处的局部维数.

Theorem 11 A 是一个 Noether 半局部环并且

$$0 \longrightarrow M' \longrightarrow M \longrightarrow M'' \longrightarrow 0$$

是一个有限生成 A-模的正合列. 则 $d(M)=\max(d(M'),d(M''))$. 如果 I 是 A 的定义理想,则 $\chi_M^I-\chi_{M''}^I$ 与 $\chi_{M'}^I$ 有同样的首项系数.

Definition 12 A 是一个 Noether 半局部环, M 是有限生成 A-模, 定义

$$\delta(M) = \min \{ n : l(M/x_1M + \dots + x_nM) < \infty, x_i \in \mathfrak{m} \}$$

当 $l(M) < \infty$ 时, $\delta(M) = 0$. 如果 I 是任意定义理想,则 $l(M/IM) < \infty$,故 $\delta(M)$ 会小于等于 I 的生成元. 特别的,当 A 是局部环,且 M = A 时, $l(A/I) < \infty$ 表明 I 是 m-准素理想,此时 $\delta(M)$ 就是 m-准素理想的生成元的最小值. 接下来我们证明维数基本定理.

Definition 13 设 R 为环, p 为一素理想, 定义 p 的高度和深度为:

$$ht(\mathfrak{p}) := \{r : \exists \text{ chain of primes } \mathfrak{p}_0 \subseteq \mathfrak{p}_1 \subseteq \cdots \subseteq \mathfrak{p}_r = \mathfrak{p}\}$$

$$depth(\mathfrak{p}) := \{r : \exists \text{ chain of primes } \mathfrak{p} = \mathfrak{p}_0 \subsetneq \mathfrak{p}_1 \subsetneq \cdots \subsetneq \mathfrak{p}_r \}$$

由定义有 $ht(\mathfrak{p}) = \dim R_{\mathfrak{p}}$, $depth(\mathfrak{p}) = \dim R/\mathfrak{p}$ 和 $ht(\mathfrak{p}) + depth(\mathfrak{p}) \ge \dim A$ 成立.

Theorem 14 A 是一个 Noether 半局部环, M 是有限生成 A-模, 则

$$\dim M = d(M) = \delta(M)$$

其中 dim $M = \dim (A/Ann_A(M))$ 为 M 的 Krull 维数.

证明: 我们分三步来证明 dim $M \ge \delta(M) \ge d(M) \ge \dim M$.

Step 1: $d(M) \ge \dim M$. 先假设 M = A, 如果 d(A) = 0, 则对充分大的 d, 有 $\mathfrak{m}^d = \mathfrak{m}^{d+1}$, 故有 Nakayama 引理可知 $\mathfrak{m} = 0$, 故 dim A = 0. 如果 d(A) > 0, 我们用归纳法来证明,假设 $\mathfrak{p}_0 \subsetneq \mathfrak{p}_1 \subsetneq \cdots \subsetneq \mathfrak{p}_n$ 为 A 的一个严格素理想升链,取 $x \in \mathfrak{p}_1 \setminus \mathfrak{p}_0$,考虑如下商环 $B = A/(\mathfrak{p}_0 + xA)$,B 满足如下的正合列:

$$0 \longrightarrow A/\mathfrak{p}_0 \stackrel{x}{\longrightarrow} A/\mathfrak{p}_0 \longrightarrow B \longrightarrow 0$$

利用定理 11 可知 $d(B) < d(A/\mathfrak{p}_0) \le d(A)$,由归纳假设有 $\dim B \le d(B) \le d(A) - 1$. 因为取商后 $\mathfrak{p}_0 \subsetneq \mathfrak{p}_1 \subsetneq \cdots \subsetneq \mathfrak{p}_n$ 仍是 B 中的素理想升链,故 $\dim B \ge n = \dim A - 1$,因此 $\dim A \le d(A)$,这就证明了 M = A 的情况. 对于一般情况,利用 Noether 环上有限生成模的滤过分解,存在子模 $0 = M_0 \subsetneq M_1 \subsetneq \cdots \subsetneq M_s = M$ 使得 $M_{i+1}/M_i \cong A/\mathfrak{p}_i$,这给出了 A-模的短正合列:

$$0 \longrightarrow M_i \longrightarrow M_{i+1} \longrightarrow A/\mathfrak{p}_i \longrightarrow 0$$

易看出 $d(M) = \max \{d(A/\mathfrak{p}_i)\} \ge \max \{\dim(A/\mathfrak{p}_i)\} = \dim M$. 这也表明了 dim M 的有限性.

Step 2: $\delta(M) \ge d(M)$. 同样的用归纳法,如果 $\delta(M) = 0$,则 M 是有限长的,故 $\chi_M(n)$ 是有界的,因此 d(M) = 0. 现在假设 $\delta(M) = s > 0$,取 $x_1, x_2 \cdots, x_s \in \mathfrak{m}$ 使得 $l(M/x_1M + x_2M + \cdots + x_sM) < \infty$,并且令 $M_i = M/x_1M + x_2M + \cdots + x_sM$,

则显然 $\delta(M_i) = \delta(M) - i$. 另一方面,

$$\begin{split} l(M/\mathfrak{m}^n M_1) &= l(M/x_1 M + \mathfrak{m}^n M) \\ &= l(M/\mathfrak{m}^n M) - l(x_1 M/x_1 M \cap \mathfrak{m}^n M) \\ &= l(M/\mathfrak{m}^n M) - l(M/(\mathfrak{m}^n M : x_1)) \\ &> l(M/\mathfrak{m}^n M) - l(M/\mathfrak{m}^{n-1} M) \end{split}$$

最后一个不等式是因为 $(\mathfrak{m}^n M: x_1) \subset \mathfrak{m}^{n-1} M$. 所以 $d(M_1) \geq d(M) - 1$,重复就可以得到 $d(M_s) \geq d(M) - s$,但因为 $\delta(M_s) = 0$ 故 $d(M_s) = 0$,所以 $d(M) \geq s$. Step 3: dim $M \geq \delta(M)$,对 dim M 做归纳,当 dim M = 0 时, $A/\operatorname{ann}(x) \neq 0$ 维 Noether 环,即是 Artin 环. 此时 $l(M) < \infty$ 因此 $\delta(M) = 0$. 对于 dim M > 0,可以找到素理想 \mathfrak{p}_i , $1 \leq i \leq t$ 使得 \mathfrak{p}_i 是 ann(x) 的极素理想并且 depth $\mathfrak{p}_i = \operatorname{dim} M$. 故 \mathfrak{p}_i 不是极大理想,此时我们可以取 $x_1 \in \mathfrak{m}$ 使得 $x_1 \notin \mathfrak{p}_i$ 对任意 i 成立. 令 $M_1 = M/x_1 M$,则有 dim $M_1 < \operatorname{dim} M$,所以 $\delta(M) - 1 \leq \delta(M_1) \leq \operatorname{dim} M = 1$. 因此 $\delta(M) \leq \operatorname{dim} M$.

由维数基本定理可以得到一些推论.

Corollary 15 设 A 是 Noether 局部环,则 dim A 是有限的.

Corollary 16 A 是一个 Noether 环, $I=(a_1,\cdots,a_r)$ 为一个由 r 个元素生成的理想,若 p 是 I 的一个极小素理想,则 $ht(p) \leq r$. 因此 A 中真理想的高度总是有限的.

证明; 理想 $IA_{\mathfrak{p}} \subset A_{\mathfrak{p}}$ 是属于极大理想的准素理想,故 ht $\mathfrak{p} = \dim \mathfrak{p} = \delta(A_{\mathfrak{p}}) \leq r$ 成立.

此推论的一个特殊情况是如下的 Krull 主理想定理.

Corollary 17 A 是一个 Noether 环, $x \in A$ 既不是零因子也不是单位元,则 (x) 的任何极小素理想的高度为 1.

证明:由推论 17,可知 $ht(p) \le 1$.如果 ht(p) = 0,则 p 是属于 0 的素理想,故 p 的所有元素都是零因子.矛盾.

Corollary 18 设 A 是 Noether 环,则 dim $A \le \dim_k(\mathfrak{m}/\mathfrak{m}^2)$.

证明:如果 $x_i \in \mathfrak{m}, 1 \leq i \leq s$ 在 $\mathfrak{m}/\mathfrak{m}^2$ 中的像构成了 k 上线性空间 $\mathfrak{m}/\mathfrak{m}^2$ 的一组基,则这些 x_i 生成了 \mathfrak{m} .因此由推论 16 可知 dim $A = \operatorname{ht}(\mathfrak{m}) \leq s$.

接下来我们定义正则局部环,在代数几何中这个概念刻画了代数簇上点的非奇异性. 如果 (A, \mathfrak{m}) 是一个 r 维的 Noether 局部环,由维数定理存在一个可以由 r 个元素生成的 \mathfrak{m} -准素理想. 假设 $a_1, a_2 \cdots , a_r \in \mathfrak{m}$ 生成了一个 \mathfrak{m} -准素理想,则

把这 r 个元素称为 A 的参数系. 如果 M 是有限生成 A-模且 dim M = s,存在 $y_1, y_2, \cdots, y_s \in \mathfrak{m}$ 使得 $l(M/(y_1, y_2, \cdots, y_s)M) < \infty$,则 $\{y_1, y_2, \cdots, y_s\}$ 被称为 M 的参数系.

Theorem 19 设 (A,\mathfrak{m}) 是 d 维的 Noether 局部环, \mathfrak{m} 为其极大理想, $k=A/\mathfrak{m}$, 如下条件等价:

- 1. $\dim_k(\mathfrak{m}/\mathfrak{m}^2) = d$
- $2. \ \mathbf{m}$ 可以被 d 个元素生成. 此时这 d 个元素构成的参数系也被称为 A 的正则 参数系.

若 A 满足以上条件,则称其为正则局部环.

证明: Nakayama 引理.

Example 20 有如下一些例子:

- 1. 由 Nakayama 引理可知, A 是 0 维正则局部环等价于 A 是域,
- 2. 任何域上 n 个变量的多项式环关于极大理想的局部化都是 n 维的正则局部 环.
- 3. k 为域, 环 $A = k[x]/(x^2)$ 不是正则局部环, 因为 A 只有唯一素理想 $\mathfrak{m} = (x)/(x^2)$, 故其 Krull 维数为 0, 但是 $\mathfrak{m}^2 = 0$, 故 $\mathfrak{m}/\mathfrak{m}^2$ 的维数至少为 1.

由下述引理可知正则局部环一定是整环.

Lemma 21 A 为环, \mathfrak{a} 为 A 中理想使得 $\bigcap_n \mathfrak{a}^n = 0$. 假设其相伴分次环 $\operatorname{gr}_{\mathfrak{a}}(A)$ 是整环,则 A 是整环.

证明: 令 $x,y \in A$ 是的非零元,则 $\bigcap_n \mathfrak{a}^n = 0$ 表明存在 r,s 使得 $x \in \mathfrak{a}^r,x \notin \mathfrak{a}^{r+1},y \in \mathfrak{a}^s,y \notin \mathfrak{a}^{s+1}$. 令 $\overline{x},\overline{y}$ 为 x,y 在 $\operatorname{gr}_r(A),\operatorname{gr}_s(A)$ 中的像. 则 $\overline{x} \neq 0,\overline{y} \neq 0$,因此 $\overline{xy} \neq 0$,这说明 $xy \neq 0$.

因为对于 1 维的 Noether 局部整环 A, A 是离散赋值环等价于 $\dim_k(\mathfrak{m}/\mathfrak{m}^2)=1$. 故上述引理表明 1 维的正则局部环就是离散赋值环.

参考文献

- [1] Hideyuki Matsumura, Commutative Ring Theory, Cambridge Studies in Advanced Mathematics 8, Cambridge University Press, Cambridge 1986
- [2] M. F. Atiyah, I. G. Macdonald, Introduction to Commutative Algebra, Addison Wesley, Reading, Massachusetts 1969

 $[3]\,$ David Eisenbud, Commutative Algebra with a View Toward Algebraic Geometry, Springer-Verlag, New York 1995