Sèrie0 Travaux dirigés d'outils mathématiques pour la mécanique du point

Exercice 1

Dans un repère orthonormé R (o, x, y, z), on donne les trois points suivants : A(-1, -2, 1), B(-3, 1, 4) et C(-1, 2, -3).

- 1. donner l'expression des vecteurs \overrightarrow{OA} , \overrightarrow{OB} et \overrightarrow{OC} .
- 2. Déterminer les expressions de $\overrightarrow{OA} \wedge \overrightarrow{OB}$, $\|\overrightarrow{OA} \wedge \overrightarrow{OB}\|$ et \overrightarrow{OC} . $(\overrightarrow{OA} \wedge \overrightarrow{OB})$.

Exercice 2

On donne les vecteurs suivants :

$$\overrightarrow{r}_1 = 2\overrightarrow{i} + 3\overrightarrow{j} - \overrightarrow{k}, \overrightarrow{r}_2 = 3\overrightarrow{i} - 2\overrightarrow{j} + 2\overrightarrow{k}, \overrightarrow{r}_3 = 4\overrightarrow{i} - 3\overrightarrow{j} - 3\overrightarrow{k}$$

- 1. Calculer leurs modules.
- 2. Calculer les composantes et les modules des vecteurs : $\overrightarrow{A} = \overrightarrow{r}_1 + \overrightarrow{r}_2 + \overrightarrow{r}_3$, $\overrightarrow{B} = \overrightarrow{r}_1 + \overrightarrow{r}_2 \overrightarrow{r}_3$
- 3. Déterminer le vecteur unitaire \overrightarrow{u} porté par le vecteur $\overrightarrow{C} = \overrightarrow{r}_1 + 2\overrightarrow{r}_2$
- 4. Calculer les produit scalaire et vectoriel des vecteurs \overrightarrow{r}_1 et \overrightarrow{r}_2
- 5. Calculer les produits \overrightarrow{C} . $(\overrightarrow{A} \wedge \overrightarrow{B})$ et $\overrightarrow{C} \wedge (\overrightarrow{A} \wedge \overrightarrow{B})$.

Exercice 3

On donne trois vecteurs $\overrightarrow{A}(3,2\sqrt{2},\sqrt{3})$, $\overrightarrow{B}(2,\sqrt{3},\sqrt{2})$ et $\overrightarrow{C}(1,2,2)$.

- 1. Calculer les normes $\|\overrightarrow{A}\|$, $\|\overrightarrow{B}\|$ et $\|\overrightarrow{C}\|$. En déduire les vecteurs unitaires \overrightarrow{u}_A , \overrightarrow{u}_B et \overrightarrow{u}_C des directions, respectivement, de \overrightarrow{A} , \overrightarrow{B} et \overrightarrow{C} .
- 2. Calculer $cos(\overrightarrow{u}_A, \overrightarrow{u}_B)$, $cos(\overrightarrow{u}_B, \overrightarrow{u}_C)$, $cos(\overrightarrow{u}_C, \overrightarrow{u}_A)$ sachant que les angles sont compris entre 0 et π .
- 3. Calculer les composantes des vecteurs $\overrightarrow{e}_1 = \overrightarrow{u}_B \wedge \overrightarrow{u}_C$, $\overrightarrow{e}_2 = \overrightarrow{u}_C \wedge \overrightarrow{u}_A$ et $\overrightarrow{e}_3 = \overrightarrow{u}_A \wedge \overrightarrow{u}_B$.
- 4. En déduire $sin\left(\overrightarrow{u}_A, \overrightarrow{u}_B\right)$, $sin\left(\overrightarrow{u}_B, \overrightarrow{u}_C\right)$, $sin\left(\overrightarrow{u}_C, \overrightarrow{u}_A\right)$. Vérifier ces résultats en utilisant la question 2.
- 5. Montrer que \overrightarrow{e}_1 , \overrightarrow{e}_2 , \overrightarrow{e}_3 peuvent constituer une base Cette base est-elle orthogonale, normée ?

Exercice 4

Un point matériel M se déplace sur une ellipse d'équation en coordonnées cartésiennes $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, voir figure ci-dessous. La direction de \overrightarrow{OM} par rapport à l'axe ox est repéré par l'angle φ . L'équation horaire du mouvement de M peut se mettre sous la forme $x(t) = x_0 cos(\omega t + \phi)$ et $y(t) = y_0 sin(\omega t + \psi)$, où l'on suppose que ω est une constante. A l'instant t = 0, M se trouvait en M_0 .

Figure 1: Mouvement elliptique

- 1. Déterminer x_0 , ϕ et ψ . En déduire y_0 .
- 2. Déterminer les composantes, et ce dans la base cartésienne, de la vitesse $\begin{pmatrix} \bullet, \bullet \\ x, y \end{pmatrix}$ et de l'accélération $\begin{pmatrix} \bullet \bullet \\ x, y \end{pmatrix}$.
- 3. Montrer que l'accélération peut se mettre sous la forme $\overrightarrow{\gamma}=-k\overrightarrow{OM}$ où k est à déterminer.