Aggregatable Subvector Commitments for Stateless Cryptocurrencies

Alin Tomescu¹

@alinush407

Justin Drake² @drakefjustin Ittai Ahraham¹

@ittaia

Dankrad Feist²

@dankrad

Vitalik Buterin²

@VitalikButerin

Dmitry Khovratovich²

@Khovr

¹VMware Research, ²Ethereum Foundation

September 14th, 2020

Miners rely on state to validate transactions and blocks.

Miners rely on state to validate transactions and blocks.

Miners rely on state to validate transactions and blocks.

Miners rely on state to validate transactions and blocks.

Validation state can be very large:

Miners rely on state to validate transactions and blocks.

Validation state can be very large:

· Hundreds of GBs in Ethereum

Miners rely on state to validate transactions and blocks.

Validation state can be very large:

- · Hundreds of GBs in Ethereum
- · GBs in Bitcoin

Miners rely on state to validate transactions and blocks.

Validation state can be very large:

- · Hundreds of GBs in Ethereum
- · GBs in Bitcoin

This poses scalability challenges:

Miners rely on state to validate transactions and blocks.

Validation state can be very large:

- · Hundreds of GBs in Ethereum
- · GBs in Bitcoin

This poses scalability challenges:

Consensus via sharding

Miners rely on state to validate transactions and blocks.

Validation state can be very large:

- · Hundreds of GBs in Ethereum
- · GBs in Bitcoin

This poses scalability challenges:

- · Consensus via sharding
- Barrier to entry for P2P nodes

Miners rely on state to validate transactions and blocks.

Validation state can be very large:

- · Hundreds of GBs in Ethereum
- · GBs in Bitcoin

This poses scalability challenges:

- Consensus via sharding
- · Barrier to entry for P2P nodes
- · DoS attacks

- Updatable proofs and digest after change (j, δ_j)

- Updatable proofs and digest after change (j, δ_i)
 - Only require a static $\operatorname{update} \operatorname{key} \operatorname{upk}_j$

- Updatable proofs and digest after change (j, δ_i)

 - Only require a static **update key** upk_j Some schemes require dynamic **update hints**, e.g., the proof π_j

- Updatable proofs and digest after change (j, δ_i)
 - Only require a static $\mathbf{update}\ \mathbf{key}\ upk_{j}$
 - Some schemes require dynamic \mathbf{update} hints, e.g., the proof π_j
 - Problematic: User i must include not just π_i in the TXN, but also π_j

- Updatable proofs and digest after change (j, δ_i)
 - Only require a static update key upk;
 - Some schemes require dynamic **update** hints, e.g., the proof π_j
 - Problematic: User i must include not just π_i in the TXN, but also π_j
- Aggregate many proofs $(\pi_i)_{i \in I}$ into one small **subvector proof** π_I

- Updatable proofs and digest after change (j, δ_i)
 - Only require a static update key upk;
 - Some schemes require dynamic **update** hints, e.g., the proof π_j
 - Problematic: User i must include not just π_i in the TXN, but also π_j
- Aggregate many proofs $(\pi_i)_{i \in I}$ into one small **subvector proof** π_I
- Pre-compute all n proofs fast!

- Updatable proofs and digest after change (j, δ_i)
 - Only require a static update key upk;
 - Some schemes require dynamic update hints, e.g., the proof π_i
 - Problematic: User i must include not just π_i in the TXN, but also π_j
- Aggregate many proofs $(\pi_i)_{i \in I}$ into one small **subvector proof** π_I
- Pre-compute all n proofs fast!
 - Useful for proof-serving nodes.

- Updatable proofs and digest after change (j, δ_i)
 - Only require a static update key upk;
 - Some schemes require dynamic update hints, e.g., the proof π_i
 - Problematic: User i must include not just π_i in the TXN, but also π_j
- Aggregate many proofs $(\pi_i)_{i \in I}$ into one small subvector proof π_I
- Pre-compute all *n* proofs fast!
 - Useful for proof-serving nodes.
- Concrete efficiency!

Table 1: Asymptotic comparison to previous (aS)VCs. n is the size of the vector \vec{v} .

(aS)VC scheme	Public	Proof	Update	Digest	Aggr. b	Prove
(as)vc scrieme	parameters	size	key size	update	proofs	all

Table 1: Asymptotic comparison to previous (aS)VCs. n is the size of the vector \vec{v} .

(aS)VC scheme	Public	Proof	Update	Digest	Aggr. <i>b</i>	Prove
	parameters	size	key size	update	proofs	all
Merkle trees [Mer88]	1	log n	×	×	×	n

Table 1: Asymptotic comparison to previous (aS)VCs. n is the size of the vector \vec{v} .

(aS)VC scheme	Public parameters	Proof size	Update key size	Digest update	Aggr. <i>b</i> proofs	Prove all
Merkle trees [Mer88]	1	log n	×	×	×	n
CDHK [CDHK15]	n	1	n	V	×	n ²
CPZ [CPZ18]	n	logn	log n	V	×	n log n
TCZ [TCZ ⁺ 20, Tom20]	n	logn	log n	V	×	n log n
Pointproofs [GRWZ20]	n	1	n	~	$b_{\mathbb{G}}$	n ²

Table 1: Asymptotic comparison to previous (aS)VCs. n is the size of the vector \vec{v} .

(aS)VC scheme	Public parameters	Proof size	Update key size	Digest update	Aggr. <i>b</i> proofs	Prove all
Merkle trees [Mer88]	1	log n	×	×	×	n
CDHK [CDHK15]	n	1	n	V	×	n ²
CPZ [CPZ18]	n	log n	log n	V	×	n log n
TCZ [TCZ ⁺ 20,Tom20]	n	log n	log n	~	×	n log n
Pointproofs [GRWZ20]	n	1	n	~	$b_{\mathbb{G}}$	n ²
BBF [BBF19]	1	1 _{G2}	×	×	b log n _{G2}	n log n _{G2}
CFG ₁ [CFG ⁺ 20]	1	1 _{G?}	×	×	$b \log b \log n_{G_{?}}$	$n \log^2 n_{G_?}$

Table 1: Asymptotic comparison to previous (aS)VCs. n is the size of the vector \vec{v} .

(aS)VC scheme	Public parameters	Proof size	Update key size	Digest update	Aggr. <i>b</i> proofs	Prove all
Merkle trees [Mer88]	1	log n	×	×	×	n
CDHK [CDHK15]	n	1	n	V	×	n ²
CPZ [CPZ18]	n	log n	log n	V	×	n log n
TCZ [TCZ ⁺ 20,Tom20]	n	log n	log n	V	×	n log n
Pointproofs [GRWZ20]	n	1	n	~	$b_{\mathbb{G}}$	n ²
BBF [BBF19]	1	16,	×	×	b log n _{G2}	n log n _G
CFG ₁ [CFG ⁺ 20]	1	1 _{G2}	×	×	$b \log b \log n_{G_2}$	$n \log^2 n_{G_2}$
CFG ₂ [CF13,LM19,CFG ⁺ 20]	1	1 _{G?}	1 _{G?}	V	$b \log^2 b_{G_?}$	n log² n _{G?}

Table 1: Asymptotic comparison to previous (aS)VCs. n is the size of the vector \vec{v} .

(aS)VC scheme	Public parameters	Proof size	Update key size	Digest update	Aggr. <i>b</i> proofs	Prove all
Merkle trees [Mer88]	1	log n	×	×	×	n
CDHK [CDHK15]	n	1	n	V	×	n ²
CPZ [CPZ18]	n	log n	log n	V	×	n log n
TCZ [TCZ ⁺ 20,Tom20]	n	log n	log n	~	×	n log n
Pointproofs [GRWZ20]	n	1	n	~	$b_{\mathbb{G}}$	n ²
BBF [BBF19]	1	16,	×	×	b log n _{G2}	n log n _{G2}
CFG ₁ [CFG ⁺ 20]	1	1 _{6,}	×	×	$b \log b \log n_{G}$	n log² n🔓
CFG ₂ [CF13,LM19,CFG ⁺ 20]	1	1 _{G?}	1 _{G?}	•	$b \log^2 b_{G_?}$	$n \log^2 n_{G_?}$
Our aSVC	n	1	1	v	$b \lg^2 b_{\mathbb{F}} + b_{\mathbb{G}}$	n log n

Unlike schemes based on hidden-order groups [CF13, LM19, BBF19, CFG+20], we have:

Unlike schemes based on hidden-order groups [CF13, LM19, BBF19, CFG+20], we have:

Trusted setup

Unlike schemes based on hidden-order groups [CF13, LM19, BBF19, CFG+20], we have:

- Trusted setup
- No incremental aggregation & no dis-aggregation [CFG⁺20]

Unlike schemes based on hidden-order groups [CF13, LM19, BBF19, CFG⁺20], we have:

- Trusted setup
- No incremental aggregation & no dis-aggregation [CFG⁺20]
- No space-time trade-off for proof pre-computation [BBF19, CFG⁺20]

Background

Fix *n*-SDH public parameters $\left(g^{\tau^i}\right)_{0 \le i \le n}$ such that trapdoor $\tau \in \mathbb{F}_p$ is unknown.

Fix *n*-SDH public parameters $\left(g^{\tau^i}\right)_{0 \le i \le n}$ such that trapdoor $\tau \in \mathbb{F}_p$ is unknown.

Committing: Given $\phi \in \mathbb{F}_p[X]$

Fix *n*-SDH public parameters $(g^{\tau^i})_{0 \le i \le n}$ such that trapdoor $\tau \in \mathbb{F}_p$ is unknown.

Committing: Given
$$\phi \in \mathbb{F}_p[X]$$
, where $\phi(X) = \sum_{i=0}^n \phi_i X^i = \langle \phi_0, \phi_1, \dots, \phi_n \rangle$

Fix *n*-SDH public parameters $\left(g^{\tau^i}\right)_{0 \le i \le n}$ such that trapdoor $\tau \in \mathbb{F}_p$ is unknown.

Committing: Given $\phi \in \mathbb{F}_p[X]$, where $\phi(X) = \sum_{i=0}^n \phi_i X^i = \langle \phi_0, \phi_1, \dots, \phi_n \rangle$ of degree $\leq n$:

Fix *n*-SDH public parameters $(g^{\tau^i})_{0 \le i \le n}$ such that trapdoor $\tau \in \mathbb{F}_p$ is unknown.

Committing: Given
$$\phi \in \mathbb{F}_p[X]$$
, where $\phi(X) = \sum_{i=0}^n \phi_i X^i = \langle \phi_0, \phi_1, ..., \phi_n \rangle$ of degree $\leq n$:

$$c\left(\phi\right) = g^{\phi(\tau)} \tag{1}$$

(2)

Fix *n*-SDH public parameters $\left(g^{\tau^i}\right)_{0 \le i \le n}$ such that trapdoor $\tau \in \mathbb{F}_p$ is unknown.

Committing: Given $\phi \in \mathbb{F}_p[X]$, where $\phi(X) = \sum_{i=0}^n \phi_i X^i = \langle \phi_0, \phi_1, ..., \phi_n \rangle$ of degree $\leq n$:

$$c\left(\phi\right) = g^{\phi(\tau)} \tag{1}$$

$$= (g^{\tau^n})^{\phi_n} (g^{\tau^{n-1}})^{\phi_{n-1}} \dots (g^{\tau})^{\phi_1} (g)^{\phi_0}$$
 (2)

Fix *n*-SDH public parameters $\left(g^{\tau^i}\right)_{0 \le i \le n}$ such that trapdoor $\tau \in \mathbb{F}_p$ is unknown.

Committing: Given $\phi \in \mathbb{F}_p[X]$, where $\phi(X) = \sum_{i=0}^n \phi_i X^i = \langle \phi_0, \phi_1, ..., \phi_n \rangle$ of degree $\leq n$:

$$c\left(\phi\right) = g^{\phi(\tau)} \tag{1}$$

$$= (g^{\tau^n})^{\phi_n} (g^{\tau^{n-1}})^{\phi_{n-1}} \dots (g^{\tau})^{\phi_1} (g)^{\phi_0}$$
 (2)

Homomorphism: For all field elements a, b and polynomials $\phi(X), \psi(X)$, we have:

Fix *n*-SDH public parameters $\left(g^{\tau^i}\right)_{0 \le i \le n}$ such that trapdoor $\tau \in \mathbb{F}_p$ is unknown.

Committing: Given $\phi \in \mathbb{F}_p[X]$, where $\phi(X) = \sum_{i=0}^n \phi_i X^i = \langle \phi_0, \phi_1, \dots, \phi_n \rangle$ of degree $\leq n$:

$$c\left(\phi\right) = g^{\phi(\tau)} \tag{1}$$

$$= (g^{\tau^n})^{\phi_n} (g^{\tau^{n-1}})^{\phi_{n-1}} \dots (g^{\tau})^{\phi_1} (g)^{\phi_0}$$
 (2)

Homomorphism: For all field elements a, b and polynomials $\phi(X), \psi(X)$, we have:

$$c\left(a\cdot\phi+b\cdot\psi\right)=g^{a\cdot\phi(\tau)+b\cdot\psi(\tau)}\tag{3}$$

- (4)
- (5)

Fix *n*-SDH public parameters $\left(g^{\tau^i}\right)_{0 \le i \le n}$ such that trapdoor $\tau \in \mathbb{F}_p$ is unknown.

Committing: Given $\phi \in \mathbb{F}_p[X]$, where $\phi(X) = \sum_{i=0}^n \phi_i X^i = \langle \phi_0, \phi_1, \dots, \phi_n \rangle$ of degree $\leq n$:

$$c\left(\phi\right) = g^{\phi(\tau)} \tag{1}$$

$$= (g^{\tau^n})^{\phi_n} (g^{\tau^{n-1}})^{\phi_{n-1}} \dots (g^{\tau})^{\phi_1} (g)^{\phi_0}$$
 (2)

Homomorphism: For all field elements a, b and polynomials $\phi(X), \psi(X)$, we have:

$$c\left(a\cdot\phi+b\cdot\psi\right)=g^{a\cdot\phi(\tau)+b\cdot\psi(\tau)}\tag{3}$$

$$= \left(g^{\phi(\tau)}\right)^a \left(g^{\psi(\tau)}\right)^b \tag{4}$$

(5)

Fix *n*-SDH public parameters $\left(g^{\tau^i}\right)_{0 \le i \le n}$ such that trapdoor $\tau \in \mathbb{F}_p$ is unknown.

Committing: Given $\phi \in \mathbb{F}_p[X]$, where $\phi(X) = \sum_{i=0}^n \phi_i X^i = \langle \phi_0, \phi_1, \dots, \phi_n \rangle$ of degree $\leq n$:

$$c\left(\phi\right) = g^{\phi(\tau)} \tag{1}$$

$$= (g^{\tau^n})^{\phi_n} (g^{\tau^{n-1}})^{\phi_{n-1}} \dots (g^{\tau})^{\phi_1} (g)^{\phi_0}$$
 (2)

Homomorphism: For all field elements a, b and polynomials $\phi(X), \psi(X)$, we have:

$$c\left(a\cdot\phi+b\cdot\psi\right)=g^{a\cdot\phi(\tau)+b\cdot\psi(\tau)}\tag{3}$$

$$= \left(g^{\phi(\tau)}\right)^a \left(g^{\psi(\tau)}\right)^b \tag{4}$$

$$=c(\phi)^ac(\psi)^b \tag{5}$$

Represent vector \vec{v} with a polynomial ϕ s.t. $\phi(i) = v_i$:

Represent vector \vec{v} with a polynomial ϕ s.t. $\phi(i) = v_i$:

$$\phi(X) = \sum_{i=0}^{n-1} v_i \cdot L_i(X) \tag{6}$$

(7)

Represent vector \vec{v} with a polynomial ϕ s.t. $\phi(i) = v_i$:

$$\phi(X) = \sum_{i=0}^{n-1} v_i \cdot L_i(X)$$
 (6)

$$L_{i}(X) = \prod_{\substack{j \in [0,n) \\ j \neq i}} \frac{X - j}{i - j} \tag{7}$$

Represent vector \vec{v} with a polynomial ϕ s.t. $\phi(i) = v_i$:

$$\phi(X) = \sum_{i=0}^{n-1} v_i \cdot L_i(X) \tag{6}$$

$$L_{i}(X) = \prod_{\substack{j \in [0,n) \\ j \neq i}} \frac{X - j}{i - j} \tag{7}$$

Applying the KZG homomorphism to Equation (6):

Represent vector \vec{v} with a polynomial ϕ s.t. $\phi(i) = v_i$:

$$\phi(X) = \sum_{i=0}^{n-1} v_i \cdot L_i(X) \tag{6}$$

$$L_{i}(X) = \prod_{\substack{j \in [0,n) \\ j \neq i}} \frac{X - j}{i - j} \tag{7}$$

Applying the KZG homomorphism to Equation (6):

$$c\left(\phi\right) = \prod_{i=0}^{n-1} c\left(L_i\right)^{\nu_i} \tag{8}$$

Represent vector \vec{v} with a polynomial ϕ s.t. $\phi(i) = v_i$:

$$\phi(X) = \sum_{i=0}^{n-1} v_i \cdot L_i(X) \tag{6}$$

$$L_{i}(X) = \prod_{\substack{j \in [0,n) \\ j \neq i}} \frac{X - j}{i - j} \tag{7}$$

Applying the KZG homomorphism to Equation (6):

$$c\left(\phi\right) = \prod_{i=0}^{n-1} c\left(L_i\right)^{\nu_i} \tag{8}$$

Note: Public parameters include commitments $c(L_i)$.

Represent vector \vec{v} with a polynomial ϕ s.t. $\phi(i) = v_i$:

$$\phi(X) = \sum_{i=0}^{n-1} v_i \cdot L_i(X) \tag{6}$$

$$L_{i}(X) = \prod_{\substack{j \in [0,n) \\ j \neq i}} \frac{X - j}{i - j} \tag{7}$$

Applying the KZG homomorphism to Equation (6):

$$c\left(\phi\right) = \prod_{i=0}^{n-1} c\left(L_i\right)^{\nu_i} \tag{8}$$

Note: Public parameters include commitments $c(L_i)$. Can derive from g^{τ^i} 's.

Assume v_i changed to $v_i + \delta_i$.

Assume v_i changed to $v_i + \delta_i$. Old polynomial was:

$$\phi(X) = \sum_{i=0}^{n-1} v_i \cdot L_i(X) \tag{9}$$

Assume v_i changed to $v_i + \delta_i$. Old polynomial was:

$$\phi(X) = \sum_{i=0}^{n-1} v_i \cdot L_i(X) \tag{9}$$

Updated polynomial will be:

$$\phi'(X) = \phi(X) + \delta_i L_i(X) \tag{10}$$

Assume v_i changed to $v_i + \delta_i$. Old polynomial was:

$$\phi(X) = \sum_{i=0}^{n-1} v_i \cdot L_i(X) \tag{9}$$

Updated polynomial will be:

$$\phi'(X) = \phi(X) + \delta_i L_i(X) \tag{10}$$

Updated commitment will be:

$$c(\phi') = c(\phi) \cdot c(L_i)^{\delta_i}$$
(11)

Assume v_i changed to $v_i + \delta_i$. Old polynomial was:

$$\phi(X) = \sum_{i=0}^{n-1} v_i \cdot L_i(X) \tag{9}$$

Updated polynomial will be:

$$\phi'(X) = \phi(X) + \delta_i L_i(X) \tag{10}$$

Updated commitment will be:

$$c(\phi') = c(\phi) \cdot c(L_i)^{\delta_i}$$
(11)

Thus, for our purposes, each upk_i will include $c(L_i)$.

A proof π_i for v_i must convince that $\phi(i) = v_i$

A proof π_i for v_i must convince that $\phi(i) = v_i \Leftrightarrow \phi \mod (X - i) = v_i$.

A proof π_i for v_i must convince that $\phi(i) = v_i \Leftrightarrow \phi \mod (X - i) = v_i$.

$$q_i(X) = \frac{\phi(X) - v_i}{X - i} \tag{12}$$

(13)

A proof π_i for v_i must convince that $\phi(i) = v_i \Leftrightarrow \phi \mod (X - i) = v_i$.

$$q_i(X) = \frac{\phi(X) - v_i}{X - i} \tag{12}$$

$$\pi_i = c\left(q_i\right) = g^{q_i(\tau)} \tag{13}$$

A proof π_i for v_i must convince that $\phi(i) = v_i \Leftrightarrow \phi \mod (X - i) = v_i$.

$$q_i(X) = \frac{\phi(X) - v_i}{X - i} \tag{12}$$

$$\pi_i = c\left(q_i\right) = g^{q_i(\tau)} \tag{13}$$

To verify, use pairings:

Proof π_i **for** v_i **Refresher**

A proof π_i for v_i must convince that $\phi(i) = v_i \Leftrightarrow \phi \mod (X - i) = v_i$.

$$q_i(X) = \frac{\phi(X) - v_i}{X - i} \tag{12}$$

$$\pi_i = c\left(q_i\right) = g^{q_i(\tau)} \tag{13}$$

To verify, use pairings:

$$e(c(\phi)/g^{v_i},g) = e(\pi_i,g^{\mathsf{T}}/g^i) \Leftrightarrow \tag{14}$$

(15)

Proof π_i **for** v_i **Refresher**

A proof π_i for v_i must convince that $\phi(i) = v_i \Leftrightarrow \phi \mod (X - i) = v_i$.

$$q_i(X) = \frac{\phi(X) - v_i}{X - i} \tag{12}$$

$$\pi_i = c\left(q_i\right) = g^{q_i(\tau)} \tag{13}$$

To verify, use pairings:

$$e(c(\phi)/g^{v_i},g) = e(\pi_i,g^{\mathsf{T}}/g^i) \Leftrightarrow \tag{14}$$

$$\phi(\tau) - v_i = q_i(\tau)(\tau - i) \tag{15}$$

Outline

Background

Our Techniques

Updating Proofs

Aggregating Proofs into Subvector Proofs

Conclusion

We know $\pi'_i = c(q'_i)$, where:

We know $\pi'_i = c(q'_i)$, where:

$$q_i'(X) = \frac{\phi'(X) - (v_i + \delta_i)}{X - i}$$
 (16)

(17)

(18)

(19)

We know $\pi'_i = c(q'_i)$, where:

$$q'_{i}(X) = \frac{\phi'(X) - (v_{i} + \delta_{i})}{X - i}$$
(16)

$$=\frac{\left(\phi(X)+\delta_{i}L_{i}(X)\right)-v_{i}-\delta_{i}}{X-i}$$
(17)

(18)

(19)

We know $\pi'_i = c(q'_i)$, where:

$$q'_{i}(X) = \frac{\phi'(X) - (v_{i} + \delta_{i})}{X - i}$$

$$= \frac{(\phi(X) + \delta_{i}L_{i}(X)) - v_{i} - \delta_{i}}{X - i}$$

$$= \frac{\phi(X) - v_{i}}{X - i} - \frac{\delta_{i}(L_{i}(X) - 1)}{X - i}$$
(18)

(19)

We know $\pi'_i = c(q'_i)$, where:

$$q_{i}'(X) = \frac{\phi'(X) - (v_{i} + \delta_{i})}{X - i}$$
 (16)

$$=\frac{\left(\phi(X)+\delta_{i}L_{i}(X)\right)-v_{i}-\delta_{i}}{X-i}\tag{17}$$

$$= \frac{\phi(X) - v_i}{X - i} - \frac{\delta_i(L_i(X) - 1)}{X - i}$$
 (18)

$$q_i'(X) = q_i(X) + \delta_i \left(\frac{L_i(X) - 1}{X - i} \right)$$
(19)

We know $\pi'_i = c(q'_i)$, where:

$$q_{i}'(X) = \frac{\phi'(X) - (v_{i} + \delta_{i})}{X - i}$$
(16)

$$=\frac{\left(\phi(X)+\delta_{i}L_{i}(X)\right)-v_{i}-\delta_{i}}{X-i}\tag{17}$$

$$= \frac{\phi(X) - v_i}{X - i} - \frac{\delta_i(L_i(X) - 1)}{X - i}$$
 (18)

$$q_i'(X) = q_i(X) + \delta_i \left(\frac{L_i(X) - 1}{X - i} \right)$$
 (19)

Applying KZG homomorphism, it follows that:

We know $\pi'_i = c(q'_i)$, where:

$$q_{i}'(X) = \frac{\phi'(X) - (v_{i} + \delta_{i})}{X - i}$$
(16)

$$=\frac{\left(\phi(X)+\delta_{i}L_{i}(X)\right)-v_{i}-\delta_{i}}{X-i}\tag{17}$$

$$= \frac{\phi(X) - v_i}{X - i} - \frac{\delta_i(L_i(X) - 1)}{X - i}$$
 (18)

$$q_i'(X) = q_i(X) + \delta_i \left(\frac{L_i(X) - 1}{X - i} \right)$$
(19)

Applying KZG homomorphism, it follows that:

$$\pi_i' = c\left(q_i'\right) = c\left(q_i\right) \cdot c\left(\frac{L_i(X) - 1}{X - i}\right)^{\delta_i} \tag{20}$$

We know $\pi'_i = c(q'_i)$, where:

$$q_i'(X) = \frac{\phi'(X) - (v_i + \delta_i)}{X - i}$$

$$= \frac{\left(\phi(X) + \delta_i L_i(X)\right) - v_i - \delta_i}{X - i}$$
(16)

$$= \frac{(X - i)^{2} - (X - i)^{2}}{X - i}$$

$$= \frac{\phi(X) - v_{i}}{Y - i} - \frac{\delta_{i}(L_{i}(X) - 1)}{Y - i}$$
(18)

$$q_i'(X) = q_i(X) + \delta_i \left(\frac{L_i(X) - 1}{X - i} \right)$$
(19)

Applying KZG homomorphism, it follows that:

$$\pi_i' = c\left(q_i'\right) = c\left(q_i\right) \cdot c\left(\frac{L_i(X) - 1}{X - i}\right)^{\delta_i} \tag{20}$$

Thus, each upk_i must include $c\left(\frac{L_i(X)-1}{X-i}\right)$.

We know $\pi'_i = c(q'_i)$, where:

$$q'_{i}(X) = \frac{\phi'(X) - (v_{i} + \delta_{i})}{X - i}$$
(16)

$$=\frac{\left(\phi(X)+\delta_{i}L_{i}(X)\right)-v_{i}-\delta_{i}}{X-i}\tag{17}$$

$$= \frac{\phi(X) - v_i}{X - i} - \frac{\delta_i(L_i(X) - 1)}{X - i}$$
 (18)

$$q_i'(X) = q_i(X) + \delta_i \left(\frac{L_i(X) - 1}{X - i} \right)$$
(19)

Applying KZG homomorphism, it follows that:

$$\pi_i' = c\left(q_i'\right) = c\left(q_i\right) \cdot c\left(\frac{L_i(X) - 1}{X - i}\right)^{\delta_i} \tag{20}$$

Thus, each upk_i must include $c\left(\frac{L_i(X)-1}{X-i}\right)$. Can derive these from g^{T^i} 's!

Once again, we know $\pi'_i = c(q'_i)$, where:

Once again, we know $\pi'_i = c(q'_i)$, where:

$$q_i'(X) = \frac{\phi'(X) - v_i}{X - i}$$
 (21)

Once again, we know $\pi'_i = c(q'_i)$, where:

$$q_{i}'(X) = \frac{\phi'(X) - v_{i}}{X - i}$$
 (21)

$$q_i'(X) = \frac{\phi'(X) - v_i}{X - i}$$

$$= \frac{\left(\phi(X) + \delta_j L_j(X)\right) - v_i}{X - i}$$
(21)

(23)

(24)

Once again, we know $\pi'_i = c(q'_i)$, where:

$$q_i'(X) = \frac{\phi'(X) - v_i}{X - i} \tag{21}$$

$$= \frac{\left(\phi(X) + \delta_j L_j(X)\right) - v_i}{X - i} \tag{22}$$

$$= \frac{\phi(X) - v_i}{X - i} - \frac{\delta_j L_j(X)}{X - i}$$
 (23)

(24)

Once again, we know $\pi'_i = c(q'_i)$, where:

$$q_i'(X) = \frac{\phi'(X) - v_i}{X - i}$$
 (21)

$$=\frac{\left(\phi(X)+\delta_{j}L_{j}(X)\right)-v_{i}}{X-i}\tag{22}$$

$$= \frac{\phi(X) - v_i}{X - i} - \frac{\delta_j L_j(X)}{X - i}$$
 (23)

$$q_i'(X) = q_i(X) + \delta_j \left(\frac{L_j(X)}{X - i} \right)$$
 (24)

Once again, we know $\pi'_i = c(q'_i)$, where:

$$q_i'(X) = \frac{\phi'(X) - v_i}{X - i}$$
 (21)

$$=\frac{\left(\phi(X)+\delta_{j}L_{j}(X)\right)-v_{i}}{X-i}\tag{22}$$

$$= \frac{\phi(X) - v_i}{X - i} - \frac{\delta_j L_j(X)}{X - i}$$
 (23)

$$q_i'(X) = q_i(X) + \delta_j \left(\frac{L_j(X)}{X - i} \right)$$
 (24)

Applying KZG homomorphism, it follows that:

Once again, we know $\pi'_i = c(q'_i)$, where:

$$q_i'(X) = \frac{\phi'(X) - v_i}{X - i}$$
 (21)

$$=\frac{\left(\phi(X)+\delta_{j}L_{j}(X)\right)-v_{i}}{X-i}\tag{22}$$

$$= \frac{\phi(X) - v_i}{X - i} - \frac{\delta_j L_j(X)}{X - i}$$
 (23)

$$q_i'(X) = q_i(X) + \delta_j \left(\frac{L_j(X)}{X - i} \right)$$
 (24)

Applying KZG homomorphism, it follows that:

$$\pi'_{i} = c\left(q'_{i}\right) = c\left(q_{i}\right) \cdot c\left(\frac{L_{j}(X)}{X - i}\right)^{\delta_{j}} \tag{25}$$

Once again, we know $\pi'_i = c(q'_i)$, where:

$$q_i'(X) = \frac{\phi'(X) - v_i}{X - i}$$
 (21)

$$=\frac{\left(\phi(X)+\delta_{j}L_{j}(X)\right)-v_{i}}{X-i}\tag{22}$$

$$= \frac{\phi(X) - v_i}{X - i} - \frac{\delta_j L_j(X)}{X - i}$$
 (23)

$$q_i'(X) = q_i(X) + \delta_j \left(\frac{L_j(X)}{X - i} \right)$$
 (24)

Applying KZG homomorphism, it follows that:

$$\pi_i' = c\left(q_i'\right) = c\left(q_i\right) \cdot c\left(\frac{L_j(X)}{X - i}\right)^{\delta_j} \tag{25}$$

Problem: To update any π_i after a change to j, need $c\left(\frac{L_j(X)}{X-i}\right)$, $\forall i \neq j$

Once again, we know $\pi'_i = c(q'_i)$, where:

$$q_i'(X) = \frac{\phi'(X) - v_i}{X - i}$$
 (21)

$$=\frac{\left(\phi(X)+\delta_{j}L_{j}(X)\right)-v_{i}}{X-i}\tag{22}$$

$$= \frac{\phi(X) - v_i}{X - i} - \frac{\delta_j L_j(X)}{X - i}$$
 (23)

$$q_i'(X) = q_i(X) + \delta_j \left(\frac{L_j(X)}{X - i} \right)$$
 (24)

Applying KZG homomorphism, it follows that:

$$\pi'_{i} = c\left(q'_{i}\right) = c\left(q_{i}\right) \cdot c\left(\frac{L_{j}(X)}{X - i}\right)^{\delta_{j}} \tag{25}$$

Problem: To update any π_i after a change to j, need $c\left(\frac{L_j(X)}{X-i}\right)$, $\forall i \neq j \Rightarrow O(n)$ -sized upk_j .

Once again, we know $\pi'_i = c(q'_i)$, where:

$$q_i'(X) = \frac{\phi'(X) - v_i}{X - i}$$

$$= \frac{\left(\phi(X) + \delta_j L_j(X)\right) - v_i}{X - i}$$

$$= \frac{\phi(X) - v_i}{X - i} - \frac{\delta_j L_j(X)}{X - i}$$
(22)

$$q'_i(X) = q_i(X) + \delta_j\left(\frac{L_j(X)}{X - i}\right)$$

Applying KZG homomorphism, it follows that:

$$\pi_i' = c\left(q_i'\right) = c\left(q_i\right) \cdot c\left(\frac{L_j(X)}{X - i}\right)^{\delta_j} \tag{25}$$

Problem: To update any π_i after a change to j, need $c\left(\frac{L_j(X)}{X-i}\right)$, $\forall i \neq j \Rightarrow O(n)$ -sized upk_j . **Solution:** Compute $c\left(\frac{L_j(X)}{X-i}\right)$ in O(1) time from information in upk_i and upk_j .

24

(24)

Let
$$A(X) = \prod_{i \in [0,n)} (X - i)$$
.

Let $A(X) = \prod_{i \in [0,n)} (X - i)$. Then:

$$\frac{L_{j}(X)}{X-i} = \frac{1}{A'(j)} \cdot \frac{A(X)}{(X-j)(X-i)}$$
 (26)

Next, use partial fraction decomposition to rewrite:

Let $A(X) = \prod_{i \in [0, n)} (X - i)$. Then:

$$\frac{L_j(X)}{X - i} = \frac{1}{A'(j)} \cdot \frac{A(X)}{(X - j)(X - i)}$$
 (26)

Next, use partial fraction decomposition to rewrite:

$$\frac{A(X)}{(X-i)(X-j)} = \frac{1}{i-j} \cdot \frac{A(X)}{X-i} + \frac{1}{j-i} \cdot \frac{A(X)}{X-j}$$
 (27)

Let $A(X) = \prod_{i \in [0, n)} (X - i)$. Then:

$$\frac{L_j(X)}{X - i} = \frac{1}{A'(i)} \cdot \frac{A(X)}{(X - i)(X - i)} \tag{26}$$

Next, use partial fraction decomposition to rewrite:

$$\frac{A(X)}{(X-i)(X-j)} = \frac{1}{i-j} \cdot \frac{A(X)}{X-i} + \frac{1}{j-i} \cdot \frac{A(X)}{X-j}$$
 (27)

Now, replacing Equation (27) into Equation (26):

$$\frac{L_j(X)}{X-i} = \frac{1}{A'(j)} \cdot \left(\frac{1}{i-j} \cdot \frac{A(X)}{X-i} + \frac{1}{j-i} \cdot \frac{A(X)}{X-j}\right) \tag{28}$$

Let $A(X) = \prod_{i \in [0, n)} (X - i)$. Then:

$$\frac{L_j(X)}{X - i} = \frac{1}{A'(i)} \cdot \frac{A(X)}{(X - i)(X - i)} \tag{26}$$

Next, use partial fraction decomposition to rewrite:

$$\frac{A(X)}{(X-i)(X-j)} = \frac{1}{i-j} \cdot \frac{A(X)}{X-i} + \frac{1}{j-i} \cdot \frac{A(X)}{X-j}$$
 (27)

Now, replacing Equation (27) into Equation (26):

$$\frac{L_j(X)}{X-i} = \frac{1}{A'(j)} \cdot \left(\frac{1}{i-j} \cdot \frac{A(X)}{X-i} + \frac{1}{j-i} \cdot \frac{A(X)}{X-j}\right) \tag{28}$$

As a result:

Let $A(X) = \prod_{i \in [0,n)} (X - i)$. Then:

$$\frac{L_j(X)}{X - i} = \frac{1}{A'(i)} \cdot \frac{A(X)}{(X - i)(X - i)} \tag{26}$$

Next, use partial fraction decomposition to rewrite:

$$\frac{A(X)}{(X-i)(X-j)} = \frac{1}{i-j} \cdot \frac{A(X)}{X-i} + \frac{1}{j-i} \cdot \frac{A(X)}{X-j}$$
 (27)

Now, replacing Equation (27) into Equation (26):

$$\frac{L_j(X)}{X-i} = \frac{1}{A'(j)} \cdot \left(\frac{1}{i-j} \cdot \frac{A(X)}{X-i} + \frac{1}{j-i} \cdot \frac{A(X)}{X-j}\right)$$

As a result:

$$C\left(\frac{L_j(X)}{X-i}\right) = \left(C\left(\frac{A(X)}{X-i}\right)^{\frac{1}{i-j}} \cdot C\left(\frac{A(X)}{X-j}\right)^{\frac{1}{j-i}}\right)^{\frac{1}{A'(j)}}$$
(29)

(28)

Let $A(X) = \prod_{i \in [0,n)} (X - i)$. Then:

$$\frac{L_j(X)}{X-i} = \frac{1}{A'(j)} \cdot \frac{A(X)}{(X-j)(X-i)}$$

Next, use partial fraction decomposition to rewrite:

$$\frac{A(X)}{(X-i)(X-j)} = \frac{1}{i-j} \cdot \frac{A(X)}{X-i} + \frac{1}{j-i} \cdot \frac{A(X)}{X-j}$$
on (27) into Equation (26):

Now, replacing Equation (27) into Equation (26):

$$\frac{L_j(X)}{X-i} = \frac{1}{A'(j)} \cdot \left(\frac{1}{i-j} \cdot \frac{A(X)}{X-i} + \frac{1}{j-i} \cdot \frac{A(X)}{X-j} \right)$$

As a result:

$$c\left(\frac{L_{j}(X)}{X-i}\right) = \left(c\left(\frac{A(X)}{X-i}\right)^{\frac{1}{i-j}} \cdot c\left(\frac{A(X)}{X-i}\right)^{\frac{1}{j-i}}\right)^{\frac{1}{A'(j)}}$$

Thus, each upk_i must include $c\left(\frac{A(X)}{Y-i}\right)$ and A'(i).

(26)

(27)

(28)

(29)

Let $A(X) = \prod_{i \in [0,n)} (X - i)$. Then:

$$\frac{L_j(X)}{X-i} = \frac{1}{A'(j)} \cdot \frac{A(X)}{(X-j)(X-i)}$$

Next, use **partial fraction decomposition** to rewrite:

$$\frac{A(X)}{(X-i)(X-i)} = \frac{1}{i-i} \cdot \frac{A(X)}{X-i} + \frac{1}{i-i} \cdot \frac{A(X)}{X-i}$$

Now, replacing Equation (27) into Equation (26):

$$\frac{L_j(X)}{X-i} = \frac{1}{A'(j)} \cdot \left(\frac{1}{i-j} \cdot \frac{A(X)}{X-i} + \frac{1}{j-i} \cdot \frac{A(X)}{X-j}\right)$$

As a result:

$$C\left(\frac{L_j(X)}{X-i}\right) = \left(C\left(\frac{A(X)}{X-i}\right)^{\frac{1}{i-j}} \cdot C\left(\frac{A(X)}{X-i}\right)^{\frac{1}{j-i}}\right)^{\frac{1}{A'(j)}}$$

 $C\left(\frac{X \times i}{X - i}\right) = \left(C\left(\frac{X \times i}{X - i}\right)^{\frac{1}{i - j}} \cdot C\left(\frac{X \times i}{X - j}\right)^{\frac{1}{j - i}}\right)^{\frac{1}{A \times i}}$

Thus, each upk_i must include $c\left(\frac{A(X)}{X-i}\right)$ and A'(i). Can derive from g^{T^i} 's!

(26)

(27)

(28)

Outline

Background

Our Techniques

Updating Proofs

Aggregating Proofs into Subvector Proofs

Conclusion

Aggregating Proofs

Given many $(\pi_i)_{i\in I}$, can aggregate into succinct **subvector proof** π_I .

Given many $(\pi_i)_{i\in I}$, can aggregate into succinct **subvector proof** π_I . **High-level ideas**, thanks to Drake and Buterin:

Given many $(\pi_i)_{i \in I}$, can aggregate into succinct **subvector proof** π_I . **High-level ideas**, thanks to Drake and Buterin:

• Each π_i is a commitment to quotient q_i of division $\frac{\phi(X)}{X-i}$

Given many $(\pi_i)_{i\in I}$, can aggregate into succinct **subvector proof** π_I .

- Each π_i is a commitment to quotient q_i of division $\frac{\phi(X)}{X-i}$
- π_l is a commitment to quotient q_l of division $\frac{\phi(X)}{\prod_{i \in l}(X-i)}$ (see [KZG10])

Given many $(\pi_i)_{i\in I}$, can aggregate into succinct **subvector proof** π_I .

- Each π_i is a commitment to quotient q_i of division $\frac{\phi(X)}{X-i}$
- π_I is a commitment to quotient q_I of division $\frac{\phi(X)}{\prod_{i \in I}(X-i)}$ (see [KZG10])
- Compute c_i 's such that $\frac{1}{\prod_{i \in I} (X-i)} = \sum_{i \in I} c_i \frac{1}{X-i}$

Given many $(\pi_i)_{i\in I}$, can aggregate into succinct **subvector proof** π_I .

- Each π_i is a commitment to quotient q_i of division $\frac{\phi(X)}{X-i}$
- π_I is a commitment to quotient q_I of division $\frac{\phi(X)}{\prod_{i \in I}(X-i)}$ (see [KZG10])
- Compute c_i 's such that $\frac{1}{\prod_{i \in I} (X-i)} = \sum_{i \in I} c_i \frac{1}{X-i}$
- Then, $q_i(X) = \sum_{i \in I} c_i \cdot q_i(X)$

Given many $(\pi_i)_{i\in I}$, can aggregate into succinct **subvector proof** π_I .

- Each π_i is a commitment to quotient q_i of division $\frac{\phi(X)}{X-i}$
- π_I is a commitment to quotient q_I of division $\frac{\phi(X)}{\prod_{i \in I}(X-i)}$ (see [KZG10])
- Compute c_i 's such that $\frac{1}{\prod_{i \in I} (X-i)} = \sum_{i \in I} c_i \frac{1}{X-i}$
- Then, $q_i(X) = \sum_{i \in I} c_i \cdot q_i(X)$
- Thus, $\pi_I = \prod_{i \in I} \pi_i^{c_i}$

Conclusion

Main contribution: Concretely-efficient aSVC from KZG polynomial commitments

Main contribution: Concretely-efficient aSVC from KZG polynomial commitments

• Constant-sized, aggregatable and updatable proofs

Main contribution: Concretely-efficient aSVC from KZG polynomial commitments

- Constant-sized, aggregatable and updatable proofs
- Constant-sized update keys

Main contribution: Concretely-efficient aSVC from KZG polynomial commitments

- Constant-sized, aggregatable and updatable proofs
- Constant-sized update keys
- Quasilinear-time proof pre-computation, via Feist-Khovratovich (FK) technique [FK20]

Main contribution: Concretely-efficient aSVC from KZG polynomial commitments

- Constant-sized, aggregatable and updatable proofs
- Constant-sized update keys
- Quasilinear-time proof pre-computation, via Feist-Khovratovich (FK) technique [FK20]

Main contribution: Concretely-efficient aSVC from KZG polynomial commitments

- Constant-sized, aggregatable and updatable proofs
- Constant-sized update keys
- Quasilinear-time proof pre-computation, via Feist-Khovratovich (FK) technique [FK20]

Other contributions (not in this talk):

• New security definition for KZG batch proofs, proven secure under n-SBDH

Main contribution: Concretely-efficient aSVC from KZG polynomial commitments

- Constant-sized, aggregatable and updatable proofs
- · Constant-sized update keys
- Quasilinear-time proof pre-computation, via Feist-Khovratovich (FK) technique [FK20]

- New security definition for KZG batch proofs, proven secure under n-SBDH
- Derive all upk_i 's from g^{τ^i} 's fast

Main contribution: Concretely-efficient aSVC from KZG polynomial commitments

- Constant-sized, aggregatable and updatable proofs
- · Constant-sized update keys
- Quasilinear-time proof pre-computation, via Feist-Khovratovich (FK) technique [FK20]

- New security definition for KZG batch proofs, proven secure under n-SBDH
- Derive all upk_i 's from g^{τ^i} 's fast
 - Keeps trusted setup simple

Main contribution: Concretely-efficient aSVC from KZG polynomial commitments

- Constant-sized, aggregatable and updatable proofs
- · Constant-sized update keys
- Quasilinear-time proof pre-computation, via Feist-Khovratovich (FK) technique [FK20]

- New security definition for KZG batch proofs, proven secure under n-SBDH
- Derive all upk_i 's from g^{τ^i} 's fast
 - · Keeps trusted setup simple
 - Keeps public parameters updatable

Main contribution: Concretely-efficient aSVC from KZG polynomial commitments

- Constant-sized, aggregatable and updatable proofs
- · Constant-sized update keys
- Quasilinear-time proof pre-computation, via Feist-Khovratovich (FK) technique [FK20]

- New security definition for KZG batch proofs, proven secure under n-SBDH
- Derive all upk_i 's from g^{τ^i} 's fast
 - · Keeps trusted setup simple
 - · Keeps public parameters updatable
- Subtleties of VC-based stateless cryptocurrencies

Main contribution: Concretely-efficient aSVC from KZG polynomial commitments

- Constant-sized, aggregatable and updatable proofs
- · Constant-sized update keys
- Quasilinear-time proof pre-computation, via Feist-Khovratovich (FK) technique [FK20]

- New security definition for KZG batch proofs, proven secure under n-SBDH
- Derive all upk_i 's from g^{τ^i} 's fast
 - · Keeps trusted setup simple
 - · Keeps public parameters updatable
- Subtleties of VC-based stateless cryptocurrencies
 - Keeping track of transaction counters

Main contribution: Concretely-efficient aSVC from KZG polynomial commitments

- Constant-sized, aggregatable and updatable proofs
- Constant-sized update keys
- Quasilinear-time proof pre-computation, via Feist-Khovratovich (FK) technique [FK20]

- New security definition for KZG batch proofs, proven secure under n-SBDH
- Derive all upk_i 's from g^{τ^i} 's fast
 - · Keeps trusted setup simple
 - · Keeps public parameters updatable
- · Subtleties of VC-based stateless cryptocurrencies
 - Keeping track of transaction counters
 - Verifiable update keys

Main contribution: Concretely-efficient aSVC from KZG polynomial commitments

- Constant-sized, aggregatable and updatable proofs
- · Constant-sized update keys
- Quasilinear-time proof pre-computation, via Feist-Khovratovich (FK) technique [FK20]

- New security definition for KZG batch proofs, proven secure under n-SBDH
- Derive all upk_i 's from g^{τ^i} 's fast
 - · Keeps trusted setup simple
 - Keeps public parameters updatable
- Subtleties of VC-based stateless cryptocurrencies
 - Keeping track of transaction counters
 - Verifiable update keys
 - · DoS attacks on new user registration

Thank you!

Paper is too long? Read our blogpost!

https://alinush.github.io/2020/05/06/aggregatable-subvector-commitments-for-stateless-cryptocurrencies.html

Outline

Roots of Unity Benefits

Decomposition of 1/((X-i)(X-j))

Decomposition of $1/A_I(X)$

Requirements of VC Scheme

Our scheme actually uses $\phi(\omega_i) = v_i$, where ω is a primitive nth root of unity.

Our scheme actually uses $\phi(\omega_i) = v_i$, where ω is a primitive nth root of unity. This has several advantages:

• Can pre-compute all n proofs in $O(n \log n)$ time via FK technique [FK20].

- Can pre-compute all n proofs in $O(n \log n)$ time via FK technique [FK20].
- Our public parameters can be efficiently derived from "powers-of-tau" g^{τ^i} 's:

- Can pre-compute all n proofs in $O(n \log n)$ time via FK technique [FK20].
- Our public parameters can be efficiently derived from "powers-of-tau" g^{τ^i} 's:
 - $c(L_i)$'s via an inverse FFT [Vir17]

- Can pre-compute all n proofs in $O(n \log n)$ time via FK technique [FK20].
- Our public parameters can be efficiently derived from "powers-of-tau" g^{τ^i} 's:
 - $c(L_i)$'s via an inverse FFT [Vir17]
 - $c\left(\frac{A(X)}{(X-i)}\right)$'s via the Feist-Khovratovich (FK) technique [FK20]

- Can pre-compute all n proofs in $O(n \log n)$ time via FK technique [FK20].
- Our public parameters can be efficiently derived from "powers-of-tau" g^{τ^i} 's:
 - $c(L_i)$'s via an inverse FFT [Vir17]
 - $c(\frac{A(X)}{(X-I)})$'s via the Feist-Khovratovich (FK) technique [FK20]
 - $c\left(\frac{L_i(X)-1}{X-i}\right)$'s via our new, FK-like, technique (see [TAB+20, Sec 3.4.5])

- Can pre-compute all n proofs in $O(n \log n)$ time via FK technique [FK20].
- Our public parameters can be efficiently derived from "powers-of-tau" g^{τ^i} 's:
 - $c(L_i)$'s via an inverse FFT [Vir17]
 - $c(\frac{A(X)}{(X-I)})$'s via the Feist-Khovratovich (FK) technique [FK20]
 - $c\left(\frac{L_i(X)-1}{X-i}\right)$'s via our new, FK-like, technique (see [TAB+20, Sec 3.4.5])
- Since $g^{\tau'}$'s are updatable and rest are derivable from them, our public parameters are *updatable*.

- Can pre-compute all n proofs in $O(n \log n)$ time via FK technique [FK20].
- Our public parameters can be efficiently derived from "powers-of-tau" g^{τ^i} 's:
 - $c(L_i)$'s via an inverse FFT [Vir17]
 - $c(\frac{A(X)}{(X-I)})$'s via the Feist-Khovratovich (FK) technique [FK20]
 - $c\left(\frac{L_i(X)-1}{X-i}\right)$'s via our new, FK-like, technique (see [TAB+20, Sec 3.4.5])
- Since $g^{\tau'}$'s are updatable and rest are derivable from them, our public parameters are *updatable*.
- Can remove A'(i) from upk_i.

Outline

Roots of Unity Benefits

Decomposition of 1/((X-i)(X-j))

Decomposition of $1/A_I(X)$

Requirements of VC Scheme

Decomposition of A(X)/((X-i)(X-j))

Note that:

$$\frac{1}{i-j} \cdot \frac{A(X)}{X-i} + \frac{1}{j-i} \cdot \frac{A(X)}{X-j} = \frac{1}{i-j} \cdot \frac{A(X)(X-j)}{(X-i)(X-j)} + \frac{1}{j-i} \cdot \frac{A(X)(X-i)}{(X-j)(X-i)}$$

$$= \frac{\frac{1}{i-j}A(X)(X-j) - \frac{1}{i-j}A(X)(X-i)}{(X-i)(X-j)}$$

$$= \frac{\frac{1}{i-j}A(X)[(X-j) - (X-i)]}{(X-i)(X-j)}$$

$$= \frac{\frac{1}{i-j}A(X)(-j+i)}{(X-i)(X-j)}$$

$$= \frac{A(X)}{(X-i)(X-j)}$$
(30)

Outline

Roots of Unity Benefits

Decomposition of 1/((X-i)(X-j))

Decomposition of $1/A_I(X)$

Requirements of VC Scheme

Partial Fraction Decomposition From Lagrange Interpolation

It is well-known that Lagrange coefficients can be rewritten as [BT04, vzGG13]:

$$L_{i}(X) = \prod_{i \in I, i \neq i} \frac{X - j}{i - j} = \frac{A_{i}(X)}{A_{i}'(i)(X - i)}, \text{ where } A_{i}(X) = \prod_{i \in I} (X - i)$$
(35)

Here, $A'_{i}(X)$ is the derivative of $A_{i}(X)$ and has the (non-obvious) property that $A'_{i}(i) = \prod_{j \in l, j \neq i} (i - j)$. Next, consider the Lagrange interpolation of $\phi(X) = 1$:

$$\phi(X) = \sum_{i=1}^{n} v_i L_i(X) \Leftrightarrow$$
 (36)

$$1 = A_i(X) \sum_{i=1}^{n} \frac{V_i}{A_i'(i)(X-i)} \Leftrightarrow$$
 (37)

$$\frac{1}{A_i(X)} = \sum_{i=1}^{n} \frac{1}{A_i'(i)(X-i)} \Leftrightarrow$$
 (38)

$$\frac{1}{A_i(X)} = \sum_{i \in I} \frac{1}{A_i'(i)} \cdot \frac{1}{(X - i)} \Rightarrow \tag{39}$$

$$c_i = \frac{1}{A_i'(i)} \tag{40}$$

Outline

Roots of Unity Benefits

Decomposition of 1/((X-i)(X-j))Decomposition of $1/A_i(X)$

Let $\vec{v} = [v_0, v_1, \dots, v_{n-1}]$ be a vector of size n.

• $vrk, prk, (upk_i)_{i \in [0,n)}, \pi^*, d^* \leftarrow VC.KeyGen(1^{\lambda}, n)$

- $vrk, prk, (upk_i)_{i \in [0,n)}, \pi^*, d^* \leftarrow VC.KeyGen(1^{\lambda}, n)$
 - vrk is a small global verification key

- $vrk, prk, (upk_i)_{i \in [0,n)}, \pi^*, d^* \leftarrow VC.KeyGen(1^{\lambda}, n)$
 - vrk is a small global verification key
 - prk is an O(n)-sized proving key

- $vrk, prk, (upk_i)_{i \in [0,n)}, \pi^*, d^* \leftarrow VC.KeyGen(1^{\lambda}, n)$
 - vrk is a small global verification key
 - prk is an O(n)-sized proving key
 - $\cdot upk_i$ is a small user-specific update key

- $vrk, prk, (upk_i)_{i \in [0,n)}, \pi^*, d^* \leftarrow VC.KeyGen(1^{\lambda}, n)$
 - vrk is a small global verification key
 - prk is an O(n)-sized proving key
 - upk_i is a small user-specific update key
 - π^* is a small proof w.r.t. d^* that v_i is 0, for any position i

- $vrk, prk, (upk_i)_{i \in [0,n)}, \pi^*, d^* \leftarrow VC.KeyGen(1^{\lambda}, n)$
 - vrk is a small global verification key
 - prk is an O(n)-sized proving key
 - upk_i is a small user-specific update key
 - π^* is a small proof w.r.t. d^* that v_i is 0, for any position i
- $d = VC.Commit(prk, (v_i)_{i \in [0, n-1)})$

- $vrk, prk, (upk_i)_{i \in [0,n)}, \pi^*, d^* \leftarrow VC.KeyGen(1^{\lambda}, n)$
 - vrk is a small global verification key
 - prk is an O(n)-sized proving key
 - upk_i is a small user-specific update key
 - π^* is a small proof w.r.t. d^* that v_i is 0, for any position i
- $d = VC.Commit(prk, (v_i)_{i \in [0, n-1)})$
- $d' = VC.UpdDig(d, \delta_i, i, upk_i)$

- $vrk, prk, (upk_i)_{i \in [0,n)}, \pi^*, d^* \leftarrow VC.KeyGen(1^{\lambda}, n)$
 - vrk is a small global verification key
 - prk is an O(n)-sized proving key
 - upk_i is a small user-specific update key
 - π^* is a small proof w.r.t. d^* that v_i is 0, for any position i
- $d = VC.Commit(prk, (v_i)_{i \in [0, n-1)})$
- $d' = VC.UpdDig(d, \delta_i, i, upk_i)$
- $\pi'_i = VC.UpdProof(\pi_i, \delta_j, j, upk_i, upk_j)$

- $vrk, prk, (upk_i)_{i \in [0,n)}, \pi^*, d^* \leftarrow VC.KeyGen(1^{\lambda}, n)$
 - vrk is a small global verification key
 - prk is an O(n)-sized proving key
 - upk_i is a small user-specific update key
 - π^* is a small proof w.r.t. d^* that v_i is 0, for any position i
- $d = VC.Commit(prk, (v_i)_{i \in [0, n-1)})$
- $d' = VC.UpdDig(d, \delta_i, i, upk_i)$
- $\pi'_i = VC.UpdProof(\pi_i, \delta_j, j, upk_i, upk_j)$
- $\pi_i = VC.AggregateProofs(I, (\pi_i)_{i \in I})$

```
Let \vec{v} = [v_0, v_1, \dots, v_{n-1}] be a vector of size n.
```

- $vrk, prk, (upk_i)_{i \in [0,n)}, \pi^*, d^* \leftarrow VC.KeyGen(1^{\lambda}, n)$
 - vrk is a small global verification key
 - prk is an O(n)-sized proving key
 - upk_i is a small user-specific update key
 - π^* is a small proof w.r.t. d^* that v_i is 0, for any position i
- $d = VC.Commit(prk, (v_i)_{i \in [0, n-1)})$
- $d' = VC.UpdDig(d, \delta_i, i, upk_i)$
- $\pi'_i = VC.UpdProof(\pi_i, \delta_i, j, upk_i, upk_i)$
- $\pi_i = VC.AggregateProofs(I, (\pi_i)_{i \in I})$
- $\bullet \ \{T,F\} \leftarrow VC.VerifyPos(vrk,d,(v_i)_{i \in I},I,\textcolor{red}{\pi_I})$

```
Let \vec{v} = [v_0, v_1, \dots, v_{n-1}] be a vector of size n.
```

- $vrk, prk, (upk_i)_{i \in [0,n)}, \pi^*, d^* \leftarrow VC.KeyGen(1^{\lambda}, n)$
 - vrk is a small global verification key
 - prk is an O(n)-sized proving key
 - upk_i is a small user-specific update key
 - π^* is a small proof w.r.t. d^* that v_i is 0, for any position i
- $d = VC.Commit(prk, (v_i)_{i \in [0, n-1)})$
- $d' = VC.UpdDig(d, \delta_i, i, upk_i)$
- $\pi'_i = VC.UpdProof(\pi_i, \delta_j, j, upk_i, upk_j)$
- $\pi_i = VC.AggregateProofs(I, (\pi_i)_{i \in I})$
- $\{T, F\} \leftarrow VC.VerifyPos(vrk, d, (v_i)_{i \in I}, I, \pi_I)$
- $(\pi_i)_{i \in [0,n)} \leftarrow VC.ProveAll(prk, \vec{v})$

```
Let \vec{v} = [v_0, v_1, \dots, v_{n-1}] be a vector of size n.
```

- $vrk, prk, (upk_i)_{i \in [0,n)}, \pi^*, d^* \leftarrow VC.KeyGen(1^{\lambda}, n)$
 - vrk is a small global verification key
 - prk is an O(n)-sized proving key
 - upk_i is a small user-specific update key
 - π^* is a small proof w.r.t. d^* that v_i is 0, for any position i
- $d = VC.Commit(prk, (v_i)_{i \in [0, n-1)})$
- $d' = VC.UpdDig(d, \delta_i, i, upk_i)$
- $\pi'_i = VC.UpdProof(\pi_i, \delta_j, j, upk_i, upk_j)$
- $\pi_i = VC.AggregateProofs(I, (\pi_i)_{i \in I})$
- $\{T, F\} \leftarrow VC.VerifyPos(vrk, d, (v_i)_{i \in I}, I, \pi_I)$
- $(\pi_i)_{i \in [0,n)} \leftarrow VC.ProveAll(prk, \vec{v})$

References i

Dan Boneh, Benedikt Bünz, and Ben Fisch.

Batching Techniques for Accumulators with Applications to IOPs and Stateless Blockchains.

In CRYPTO'19, 2019.

J. Berrut and L. Trefethen.

Barycentric Lagrange Interpolation.

SIAM Review, 46(3):501-517, 2004.

Vitalik Buterin.

The stateless client concept.

ethresear.ch, 2017.

https://ethresear.ch/t/the-stateless-client-concept/172.

References ii

Vitalik Buterin.

Using polynomial commitments to replace state roots.

```
https://ethresear.ch/t/
using-polynomial-commitments-to-replace-state-roots/7095,2020.
```


Jan Camenisch, Maria Dubovitskaya, Kristiyan Haralambiev, and Markulf Kohlweiss. Composable and Modular Anonymous Credentials: Definitions and Practical Constructions.

In ASIACRYPT'15, 2015.

Dario Catalano and Dario Fiore.

Vector Commitments and Their Applications.

In PKC'13, 2013.

References iii

Matteo Campanelli, Dario Fiore, Nicola Greco, Dimitris Kolonelos, and Luca Nizzardo.

Vector Commitment Techniques and Applications to Verifiable Decentralized

Storage, 2020.

https://eprint.iacr.org/2020/149.

Alexander Chepurnoy, Charalampos Papamanthou, and Yupeng Zhang. Edrax: A Cryptocurrency with Stateless Transaction Validation, 2018. https://eprint.iacr.org/2018/968.

Dankrad Feist and Dmitry Khovratovich.

Fast amortized Kate proofs, 2020.

https://github.com/khovratovich/Kate.

References iv

- Sergey Gorbunov, Leonid Reyzin, Hoeteck Wee, and Zhenfei Zhang.
 Pointproofs: Aggregating Proofs for Multiple Vector Commitments, 2020.
 https://eprint.iacr.org/2020/419.
- Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg.

 Constant-Size Commitments to Polynomials and Their Applications.
 In ASIACRYPT'10, 2010.
- Russell W. F. Lai and Giulio Malavolta. **Subvector Commitments with Application to Succinct Arguments.**In CRYPTO'19, 2019.

References v

A Digital Signature Based on a Conventional Encryption Function.

In Carl Pomerance, editor, *CRYPTO '87*, pages 369–378, Berlin, Heidelberg, 1988. Springer Berlin Heidelberg.

Andrew Miller.

Storing UTXOs in a balanced Merkle tree (zero-trust nodes with O(1)-storage). BitcoinTalk Forums, 2012.

https://bitcointalk.org/index.php?topic=101734.msg1117428.

Leonid Reyzin, Dmitry Meshkov, Alexander Chepurnoy, and Sasha Ivanov. Improving Authenticated Dynamic Dictionaries, with Applications to Cryptocurrencies.

In FC'17, 2017.

References vi

Alin Tomescu, Ittai Abraham, Vitalik Buterin, Justin Drake, Dankrad Feist, and Dmitry Khovratovich

Aggregatable Subvector Commitments for Stateless Cryptocurrencies, 2020. https://eprint.iacr.org/2020/527.

Alin Tomescu, Robert Chen, Yiming Zheng, Ittai Abraham, Benny Pinkas, Guy Golan Gueta, and Srinivas Devadas.

Towards Scalable Threshold Cryptosystems.

In IEEE S&P'20. May 2020.

Peter Todd.

Making utxo set growth irrelevant with low-latency delayed txo commitments. 2016.

https://petertodd.org/2016/delaved-txo-commitments.

References vii

How to Keep a Secret and Share a Public Key (Using Polynomial Commitments). PhD thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2020.

Madars Virza.

On Deploying Succinct Zero-Knowledge Proofs.

PhD thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2017.

🔋 Joachim von zur Gathen and Jurgen Gerhard.

Fast polynomial evaluation and interpolation.

In *Modern Computer Algebra*, chapter 10, pages 295–310. Cambridge University Press, 3rd edition, 2013.