- 1. $\exists x = \begin{pmatrix} \mathbf{2} & -\mathbf{1} \\ -\mathbf{1} & \mathbf{3} \end{pmatrix}, X = \begin{pmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{pmatrix}, \quad \forall \mathbf{1} X^T A X = \underbrace{\qquad 2x_1^2 + 3x_2^2 2x_1x_2}_{=} :$
- 2. 设向量 $\alpha_1 = (0,1,1), \alpha_2 = (0,t,2)$ 线性相关,则 $t = _-2_-$;
- 3. 设A 是秩为 1 的 3 阶矩阵,则齐次线性方程组AX=0 的基础解系含_1__个解;
- 5. 已知 2 是矩阵 A 的一个特征值,则 |2E-A|= ___0___。
- 1. 已知 2 阶方阵 A 的行列式 |A| = -1, 则 |-2A| = -2.
- 4. 设 2 是 $_{A}$ 的一个特征值为,则 $_{2A}$ 必有一个特征值为_____4_;
- 1. 已知方阵 A 满足 $AA^T = E$,则 $A^{-1} = A^T$ _;
- 2. 设向量组 $\alpha_1 = (1,2), \alpha_2 = (2a,3), \beta = (2,1)$ 满足 $\beta = \frac{1}{4}\alpha_1 + \frac{1}{6}\alpha_2$, 则 $\alpha = -9/4$ __;
- 3. 设 3 是矩阵 A 的特征值,则 $|3E A| = _0$;
- 4. 己知二次型 $f(x_1,x_2,x_3) = -2x_1x_3 + x_1x_3 + 4x_2x_3$,则它的矩阵为 -
- 1. 已知矩阵 $A_{3_{vm}}, B_{6v2}, C_{2_{vm}}, D_{3v3}$ 满足ABC = D,则 $m = _6_$, $n = _3_$;
- 2. 设 ξ 是非齐次线性方程组Ax=b的一个特解, η_1,η_2 是导出组Ax=0的一个基础解系,则方程组Ax=b的通解为— $k1\eta1+k2\eta2+\xi$ ——;
- 3. 设 3 阶方阵 ${m A}$ 的特征值为 1, –2, 3, 则 $|{m A}|$ = __-6__;
- $\begin{bmatrix} 1 & & & & \\ & A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}, B = \begin{pmatrix} 1 & -1 \\ -1 & 0 \\ 0 & 1 \end{pmatrix}, \quad \forall MAB^T = -\begin{pmatrix} -1 & -1 & 2 \\ -1 & -3 & 4 \end{pmatrix}$
- 2. 设 $m{\xi}$ 是非齐次线性方程组 $Ax=m{b}$ 的一个特解, $m{\eta}_{m{i},m{\eta}_{m{i}}}$ 是导出组 $Ax=m{0}$ 的一个基础解系,则方程组 $Ax=m{b}$ 的通解为 $-m{k}1m{\eta}1+m{k}2m{\eta}2+m{\xi}$ 二:
- 的特征值为 __a1 a2 ...an__; a₂ _____
- 1. 设A与B是两个同阶可逆矩阵,则(AB = BA);
- 2. 设 A 是 1×2 矩阵, B 是 2 阶方阵, C 是 2×1 矩阵, 则 (ABC 是 1 阶方阵)
- 3. 已知向量组 $\alpha_1, \alpha_2, \alpha_3$ 满足 $\alpha_3 = k_1\alpha_1 + k_2\alpha_2$,则($\alpha_1, \alpha_2, \alpha_3$ 线性相关)
- 5. 设A是一个方阵,则(由|A|=0可得0是A的一个特征值);
- 1. 设A是一个n阶方阵,且 |A|=1,则(|-A|=-1)
- 3. 设向量组 α_1, α_2 线性无关, $\alpha_1, \alpha_2, \alpha_3$ 线性相关,则下述结论不正确的是($\alpha_1, \alpha_2, \alpha_3$ 只有一个极大无关组)
- 4. 设 λ_0 是矩阵 A 的一个特征值, α_0 是 A 对应 λ_0 的一个特征向量,则下述说法不正确的是($\lambda_0 \neq 0$);
- 5. 设 $\boldsymbol{\xi}_{0}$ 是非齐次线性方程组 $\boldsymbol{AX}=\boldsymbol{b}$ 的一个特解, $\boldsymbol{\eta}_{1},\boldsymbol{\eta}_{2}$ 是导出组 $\boldsymbol{AX}=\boldsymbol{0}$ 的一个基础解系,则下述说法不正确的是($\boldsymbol{AX}=\boldsymbol{b}$ 的通解为 $\boldsymbol{\xi}_{0}+\boldsymbol{k}_{1}\boldsymbol{\eta}_{1}+\boldsymbol{k}_{2}\boldsymbol{\eta}_{2}$);
- 1. 设A,B是两个同阶方阵,则(|AB|=|A||B|)
- 2. 设 η_1, η_2 是 5 元齐次线性方程组 Ax = 0的一个基础解系,则必有 (矩阵 A 的秩=3);
- 3. $\vartheta_{\alpha_1,\alpha_2}$ 是向量组 $\alpha_1,\alpha_2,\alpha_3,\alpha_4,\alpha_5$ 的一个极大无关组,则下述结论不正确的是($\alpha_1,\alpha_2,\alpha_3,\alpha_4,\alpha_5$ 的秩为3)
- 4. 设 λ 是矩阵 A 的一个特征值, α 是对应的特征向量,则下述说法不正确的是($-\alpha$ 是-A 的特征向量);

- 1. 设A 是任意方阵,且|A|=0,则有($|A^T|=0$)
- 2. 设向量 $\boldsymbol{\alpha}_{4}$ 可由 $\boldsymbol{\alpha}_{1}$, $\boldsymbol{\alpha}_{2}$, $\boldsymbol{\alpha}_{3}$ 线性表出,则有($\boldsymbol{\alpha}_{1}$, $\boldsymbol{\alpha}_{3}$, $\boldsymbol{\alpha}_{4}$ 线性相关)
- 3. 设 \boldsymbol{A} 与 \boldsymbol{B} 都是 \boldsymbol{n} 阶方阵,则有($(\boldsymbol{A}+\boldsymbol{B})^2=\boldsymbol{A}^2+\boldsymbol{A}\boldsymbol{B}+\boldsymbol{B}\boldsymbol{A}+\boldsymbol{B}^2$);
- 4. 设A 是 3 阶满秩方阵,则下述说法正确的是 ($\mathbf{r}(A) = 3$);
- 1. 设A是方阵,则下述结论不正确的是(|kA|=k|A|);
- 2. 设A是 1×3 矩阵,B是 3×2 矩阵,则下述计算有意义的是 (AB)
- 3. 已知向量组 $\alpha_1, \alpha_2, \alpha_3$ 线性相关,则($\alpha_1, \alpha_2, \alpha_3$ 中至少有一个向量可由其余线性表出)
- 4. 设 α , β 是矩阵 A 属于同一个特征值的两个特征向量,则下述说法不正确的是($\alpha^T \beta$ 也是 A 的特征向量);
- 三. 计算题 (每小题 10 分, 共 50 分)
- 1. 计算行列式

2. 求解下列线性方程组

$$\begin{cases} x_1 - 5x_2 + 2x_3 = -3 \\ -3x_1 + x_2 - 4x_3 = 2 \\ 5x_1 + 3x_2 + 6x_3 = -1 \end{cases}$$

用导出组的基础解系表示通解。

- 答: 令 A 为方程组 X₁-5X₂+2X₃=-3
 - B 为方程组-3X1+X2-4X3=2
 - C 为方程组 5X1+3X2+6X3=-1

3. 解矩阵方程
$$X \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} = \begin{pmatrix} -1 & 2 & 0 \\ 0 & 2 & -1 \end{pmatrix}$$

$$X = \begin{vmatrix} -1 & 2 & 0 \\ 0 & 2 & -1 \end{vmatrix} \begin{vmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{vmatrix} = \begin{vmatrix} 1.5 & -1.5 & 0.5 \\ 0.5 & -1.5 & 1.5 \end{vmatrix}$$

4. 已知矩阵 $A = \begin{pmatrix} -1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & -2 \end{pmatrix}$, 求A 的特征值和特征向量。

$$A = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 0 & -2 \end{bmatrix}$$

答:
$$|\lambda E - A| = 0$$

特征值:
$$\lambda_1 = -2$$
 $\lambda_2 = -1$ $\lambda_3 = 0$

对应的特征向量:

$$\lambda_1 = -2$$

$$\begin{vmatrix}
0.7071 \\
-0.7.71 \\
0
\end{vmatrix}$$

$$\lambda_2 = -1$$

$$\begin{vmatrix} 0 \\ 0 \\ 1 \end{vmatrix}$$

$$\lambda_3 = 0$$

$$\begin{vmatrix}
0.7071 \\
0.7.71 \\
0
\end{vmatrix}$$

答:
$$\begin{vmatrix} 1 & 1 & 1 \\ -1 & 0 & 1 \\ 1 & 1 & 0 \end{vmatrix} + \begin{vmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 0 \end{vmatrix} - \begin{vmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{vmatrix}$$
$$= -3$$

3. 已知矩阵
$$X$$
 满足 $\begin{pmatrix} 2 & 3 \\ -3 & -5 \end{pmatrix}$ $X = \begin{pmatrix} 1 & 0 & 2 \\ -1 & 2 & 1 \end{pmatrix}$, 求 X .

答:
$$X = \begin{vmatrix} 2 & 3 \\ -3 & -5 \end{vmatrix}^{-1} \begin{vmatrix} 1 & 0 & 2 \\ -1 & 2 & 1 \end{vmatrix} = \begin{vmatrix} 2 & 6 & 13 \\ -1 & -4 & -8 \end{vmatrix}$$

4. 已知矩阵
$$A = \begin{pmatrix} 2 & 0 & 3 \\ 0 & 2 & 6 \\ 0 & 0 & -1 \end{pmatrix}, \;\; 求 \, A \; \text{的特征值和特征向量};$$

答: 特征值

$$\begin{vmatrix} \lambda E - A \end{vmatrix} = 0$$

$$\lambda - 2\lambda - 1$$

$$\lambda_{12}=2\lambda_3=-1$$

特征向量

$$\lambda_{12} = 2 \quad k1 \begin{vmatrix} 1 \\ 0 \\ 0 \end{vmatrix} + k2 \begin{vmatrix} 0 \\ 1 \\ 0 \end{vmatrix}$$

$$\lambda_3 = -1$$
 k3 $\begin{vmatrix} -0.4082 \\ -0.8165 \\ 0.4.82 \end{vmatrix}$

答:
$$\begin{vmatrix} 1 & 2 & 2 \\ 2 & 2 & 2 \\ 2 & 2 & 2 \end{vmatrix} - \begin{vmatrix} 1 & 2 & 2 \\ 1 & 2 & 2 \\ 2 & 2 & 2 \end{vmatrix} + \begin{vmatrix} 1 & 1 & 2 \\ 1 & 2 & 2 \\ 2 & 2 & 2 \end{vmatrix} - 2 \begin{vmatrix} 1 & 1 & 2 \\ 1 & 2 & 2 \\ 2 & 2 & 2 \end{vmatrix} = 2$$

2. 求解下列线性方程组

$$\begin{cases} x_1 + x_2 + 3x_3 - x_4 = 1\\ x_1 + 2x_2 + 2x_3 + 2x_4 = 2\\ -x_1 + x_2 + x_3 + x_4 = 1\\ 3x_2 + 3x_3 + 3x_4 = 3 \end{cases}$$

要求用导出组的基础解系表示通解。

答:
$$A = \begin{pmatrix} 1 & 1 & 3 & -1 \\ 1 & 2 & 2 & 2 \\ -1 & 1 & 1 & 1 \\ 0 & 3 & 3 & 3 \end{pmatrix}$$
3. 已知矩阵 X 满足 $\begin{pmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 10 \end{pmatrix} X = \begin{pmatrix} 1 & 4 \\ 5 & 2 \\ 3 & 6 \end{pmatrix}$, 求 X .

答: $\begin{pmatrix} 1 & 4 & 7 \\ 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 10 \end{pmatrix} X = \begin{pmatrix} 1 & 4 \\ 5 & 2 \\ 3 & 6 \end{pmatrix}$

3. 已知矩阵
$$X$$
 满足 $\begin{pmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 10 \end{pmatrix} X = \begin{pmatrix} 1 & 4 \\ 5 & 2 \\ 3 & 6 \end{pmatrix}$, 求 X

答:
$$X = \begin{vmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 10 \end{vmatrix} \begin{vmatrix} 1 & 4 \\ 5 & 2 \\ 3 & 6 & 6 \end{vmatrix} = \begin{vmatrix} -1 & 2 \\ 11 & -10 \\ -6 & 6 \end{vmatrix}$$

4. 已知矩阵
$$A = \begin{pmatrix} 2 & 0 & 0 \\ 2 & 2 & 0 \\ 2 & 2 & 1 \end{pmatrix}, \;\; 求 \, A \; 的特征值和特征向量;$$

答:特征值:

$$\begin{vmatrix} \lambda E - A \end{vmatrix} = 0$$
$$\lambda_{12} = 2\lambda_3 = 1$$

特征向量:

$$\lambda_{12} = 2 \quad \text{k1} \begin{vmatrix} 0 \\ 0.4472 \\ 0.8944 \end{vmatrix} + \text{k2} \begin{vmatrix} 0 \\ -0.4472 \\ -0.8944 \end{vmatrix}$$

$$\lambda_{3} = 1 \quad \text{k3} \begin{vmatrix} 0 \\ 0 \\ 1 \end{vmatrix}$$

1. 计算行列式

答:
$$\begin{vmatrix} 1 & 0 & 0 & 2 & 0 \\ 0 & 1 & 2 & 0 & 0 \\ 0 & 2 & 1 & 0 & 0 \\ 2 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{vmatrix}$$
 $\begin{vmatrix} 1 & 0 & 0 & 2 & 0 \\ 0 & 1 & 2 & 0 & 0 \\ 0 & 2 & 1 & 0 & 0 \\ 2 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{vmatrix}$ $= -27$

3. 己知矩阵A,B,X满足方程AX=B,其中

$$A = \begin{pmatrix} 1 & -1 & -1 \\ -1 & 1 & 0 \\ -1 & 0 & 2 \end{pmatrix}, \qquad B = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$

求 X 。

答:
$$X = \begin{vmatrix} 1 & -1 & -1 \\ -1 & 1 & 0 \\ -1 & 0 & 2 \end{vmatrix} \begin{vmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{vmatrix} = \begin{vmatrix} -3 & -2 & -3 \\ -3 & -1 & -3 \\ -1 & -1 & -1 \end{vmatrix}$$

4. 己知矩阵
$$A = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{pmatrix}$$
 ,求 $\frac{1}{2}A$ 的全部特征值和特征向量

答:特征值:

$$\left| \lambda E - A / 2 \right| = 0$$
$$\lambda_{12} = 0.5 \lambda_3 = -0.5$$

特征向量:

$$\lambda_{12} = 0.5 \quad \text{k1} \begin{vmatrix} 0.7071 \\ 0 \\ 0.7071 \end{vmatrix} + \text{k2} \begin{vmatrix} -0.7071 \\ 0 \\ -0.7071 \end{vmatrix}$$

$$\lambda_{3} = -0.5 \quad \text{k3} \begin{vmatrix} 0 \\ 0.7071 \\ 0.7071 \end{vmatrix}$$
3. 解矩阵方程
$$\begin{pmatrix} 0 & -1 & 2 \\ 0 & 2 & -5 \\ 1 & -3 & -7 \end{pmatrix} X = \begin{pmatrix} -1 & 2 \\ 2 & -1 \\ -1 & 2 \end{pmatrix}$$

答:
$$X = \begin{vmatrix} 0 & -1 & 2 \\ 0 & 2 & -5 \\ 1 & -3 & 7 \end{vmatrix} \begin{vmatrix} -1 & 2 \\ 2 & -1 \\ -1 & 2 \end{vmatrix} = \begin{vmatrix} 2 & -43 \\ 1 & -8 \\ 0 & -3 \end{vmatrix}$$

4. 已知矩阵
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 3 & 1 \\ 0 & 0 & 3 \end{pmatrix}, \;\; \mathop{\mathbb{R}}_A \; \text{的特征值和特征向量}.$$

答:特征值

$$\left|\lambda E - A\right| = 0$$

$$\lambda_{12} = 3\lambda_3 = 1$$

特征向量

$$\lambda_{12} = 3 \quad \text{k1} \begin{vmatrix} 0.4472 \\ 0.8944 \\ 0 \end{vmatrix} + \text{k2} \begin{vmatrix} -0.4472 \\ -0.8944 \\ 0 \end{vmatrix}$$

$$\lambda_{3} = 1 \quad \text{k3} \begin{vmatrix} 1 \\ 0 \\ 0 \end{vmatrix}$$