# Number Theory

Coding Club

Mohammed Alshamsi 2021004826

mo.alshamsi@aurak.ac.ae

American University of Ras Al Khaimah

September 23, 2024



#### Introduction

- ▶ Group Theory? Study of groups (abstract algebraic structures)
- ► Format? You'll see the following:
  - ▶ Mathematical definitions with examples
  - ► Applications to Rubik's cubes
- ▶ Why Math? You'll learn new ways of reasoning, which will enable you to make more sophisticated software.
- ► These Slides? See our GitHub repository.
- ▶ Coding Background? Check GitHub or find a guide online. (We won't need it in this presentation.)

Any questions?



#### Outline

- 1 Review of Sets
  - Set Basics
  - Functions
- 2 Groups
  - Group Definition
  - **■** Examples
  - Some Properties of Groups
- 3 Extended Example: Integers modulo 12
  - Subgroups
  - Generating Sets
- 4 Cosets
  - Properties of Cosets
- The Rubik's Cube Group
- 6 The Rubik's Cube Group
  - Singmaster Notation
  - Thistlethwaite's Algorithm



#### Review of Sets

### Example (Familiar Sets)

$$\{0,1,2,3,\ldots\} = \mathbb{N} \qquad \{\ldots,-2,-1,0,1,2,\ldots\} = \mathbb{Z}$$
 
$$\left\{\frac{p}{q}:p,q\in\mathbb{Z}\right\} = \mathbb{Q}$$

#### Definition

Union:  $A \cup B$ , all elements that are in A or B

Intersection:  $A \cap B$ , all elements that are in A and B

Subtraction: A - B, all elements in A that are not in B

**Subset:**  $B \subseteq A$ , all elements of B are in A.



#### **Functions**

### Definition (Function)

 $f: X \to Y$ , rule that assigns to each element of X exactly one element of Y. This is denoted f(x)

### Definition (Operation)

 $*: X \times X \to X$ , assigns to each pair of elements x, y from X an element of X. This is denoted x \* y



# Groups

### Definition (Group)

Set G and an operation  $*: G \times G \rightarrow G$ , where:

- $\blacksquare$  \* is associative; (a\*b)\*c = a\*(b\*c)
- There is  $e \in G$  such that e \* a = a \* e = a for all  $a \in G$
- For each  $a \in G$  there is  $a^{-1}$  such that  $a^{-1} * a = a * a^{-1} = e$

### Example ( $\mathbb{Z}$ under addition)

- 1 Addition is associative; (a + b) + c = a + (b + c)
- 2 Identity element is 0
- 3 Every element's inverse is its negative
- $\mathbb{Z}$  is a group under addition!



# Group Example

### Example (Integers modulo 12)

$$\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11\}$$

Operation: Clock arithmetic.  $8+9=5 \pmod{12}$ , for example.

- Associativity? Yes.
- 2 Identity?
- 3 Inverses?

It's a group.



# Groups

#### Theorem (Group Properties)

- ▶ Identity is unique
- ▶ Cancellation law:  $ab = ac \implies b = c$ , and  $ba = ca \implies b = c$
- ► Exactly one inverse per element
- ▶ Inverse of ab is  $b^{-1}a^{-1}$



### Extended Example: Integers modulo 12

### Definition (Subgroup)

A subgroup of H is a subset of the group set of G that is also a group under the same operation.

### Example (Subgroups of $\mathbb{Z}_{12}$ )

 $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11\}$  and  $\{0\}$ 

### Basic Properties of Subgroups

### Theorem (Basic Properties of Subgroups)

- ▶ A subgroup H of a group G always contains the identity.
- $\blacktriangleright$  The inverse of any element  $h \in H$  is unchanged, and is also a part of H.



### Extended Example: Integers modulo 12

### Definition (Generating Set)

Given a group G and a subset S of its group set.

The set of all possible combinations (under G's operation) of the elements of S and their inverses, forms a subgroup of G.

S is the generating set of the subgroup, and the subgroup is denoted  $\langle S \rangle$ .

### Example (Generators in $\mathbb{Z}_{12}$ )

1 generates:  $\mathbb{Z}_{12}$ . 4 generates:

2 generates:  $\{0, 2, 4, 6, 8, 10\}$ . 6 generates:

3 generates: What is  $\langle 5 \rangle$ ?



#### Cosets

### Definition (Coset)

For each element g of G, there exists a *(right) coset* of H in G, defined as follows:

$$Hg = \{hg : h \in H\}$$

### Example (Right Cosets in $\mathbb{Z}_{12}$ )

 $\{1,3,5,7,9,11\}$  is a coset of  $\langle 2 \rangle$ . We can denote it by  $\langle 2 \rangle + 1$ ,  $\langle 2 \rangle + 3$ , et cetera. (They're all the same coset!)

Cosets of  $\langle 3 \rangle$  are  $\langle 3 \rangle + 1$  and  $\langle 3 \rangle + 2$ .

Cosets of  $\langle 4 \rangle$  are:

Cosets of  $\langle 6 \rangle$  are:



# Properties of Cosets

### Theorem (Properties of Cosets)

- ▶  $Hg_1$  and  $Hg_2$ , for any  $g_1$  and  $g_2$ , are either the same coset or are completely disjoint.
- ▶ All cosets of H, including H itself (He), are the same size.
- ▶ The union of all cosets of H produces the group set of G.
- ▶ (Lagrange's Theorem) The number of cosets, (G : H), is equal to  $\frac{|G|}{|H|}$ .



# The Rubik's Cube Group







### The Rubik's Cube

#### Here's a Rubik's Cube:







# The Rubik's Cube Group

The cube is generated by the following set of rotations:



Number Theory

# Singmaster Notation



# Thistlethwaite's Algorithm

