2.2.2 化简公式

1.合并公式
$$AB + A\overline{B} = A(B + \overline{B}) = A$$

 $(A + B)(A + \overline{B})$
 $= A + AB + A\overline{B} + B\overline{B}$
 $= A(1 + B + \overline{B})$
 $= A$

如果两个与项(或项)分别包含互补的两个因子,而其他因子相同,那么这两个与项(或项)为相邻项,可以合并为一项,消去其中互补变量。

2.吸收公式

$$A + AB = A \cdot 1 + A \cdot B = A(1+B)$$

 $A(A+B) = A \cdot A + A \cdot B = A \cdot 1 + A \cdot B = A(1+B)$

两个与项相加,如果一个与项AB中的部分因子A恰好是另一个与项A的全部,则该与项AB多余。

西安电子科技大学国家级精品课程数字电路与系统设计

$$A + \overline{AB} = A + B$$

$$A + B = A + \overline{ABB} = (A + \overline{A})(A + B)$$

$$= AA + \overline{A}A + AB + \overline{A}B$$

$$= A + AB + \overline{A}B = A \cdot 1 + AB + \overline{A}B$$

$$= A(1 + B) + \overline{A}B$$

AB = A(A+B)

两个与项相加,如果一个与项A取反后 \overline{A} 恰好是另一个与项中的部分因子,则该部分因子 \overline{A} 可以消除。

西安电子科技大学国家级精品课程数字电路与系统设计

$AB + \overline{A}C + BC = AB + \overline{A}C$

如果两个乘积项中的部分因子互补 (如AB项和AC项中A和A),而这两 个乘积项中的其余因子(如B和C)都 是第三个乘积项中的部分因子,则这 个第三项是多余的,可以消去。

推论: $AB + \overline{AC} + BCD = AB + \overline{AC}$ 同样的方法,请试证明一下这个推论?

那么下面的等式呢?

$$(A+B)(\overline{A}+C)(B+C) = (A+B)(\overline{A}+C)$$

		XIDIAN UNIVERSITY
名称	公式 1	公式 2
0-1	A+1=1	$A \cdot 0 = 0$
自等	A+0=A	$A \cdot 1 = A$
重叠	A+A=A	AA = A
互补	$A+\overline{A}=1$	$A\overline{A} = 0$
交换	A+B=B+A	AB = BA
结合	(A+B)+C=A+(B+C)	(AB)C = A(BC)
分配	A+BC=(A+B)(A+C)	A(B+C) = AB + AC
反演	$\overline{A+B} = \overline{AB}$	$\overline{AB} = \overline{A} + \overline{B}$
合并	AB + AB = A	$(A+B)(A+\overline{B}) = A$
吸收1	A+AB=A	$A(\overline{A}+B) = AB$
吸收 2	$A + \overline{AB} = A + B$	$A(\overline{A}+B) = AB$
吸收3	$AB + \overline{AC} + BC = AB + \overline{AC}$	$(A+B)(\overline{A}+C)(B+C) = (A+B)(\overline{A}+C)$
还原	= $A = A$	

西安电子科技大学国家级精品课程数字电路与系统设计