# This Page Is Inserted by IFW Operations and is not a part of the Official Record

# **BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

# IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

BUNDESREPUBLIK
DEUTSCHLAND

® Patentschrift

<sub>(1)</sub> DE 24 33 704 C 3

⑤ Int. Cl. <sup>3</sup>: **C 09 D 5/08** 



DEUTSCHES PATENTAMT Aktenzeichen:Anmeldetag:

Offenlegungstag:

Bekanntmachungstag:

Veröffentlichungstag:

Patentschrift weicht von Auslegeschrift ab

P 24 33 704.0-43

12. 7.74

30. 1.75

19. 4.79

21. 5.81

① Unionspriorităt: ② ③ ③ 13.07.73 US 379138

Patentinhaber:

Amchem Products, Inc.,(n.d.Ges.d. Staates Delaware), Ambler, Pa.,  $U\hat{s}$ 

**4** Vertreter:

Lederer, F., Dipl.-Chem. Dr.; Meyer-Roxlau, R., Dipl.-Ing., Pat.-Anw., 8000 München

@ Erfinder:

Faigen, Harry Laurence, Philadelphia, Pa., US

😘 Entgegenhaltungen:

| DE-OS | 21 59 925 |
|-------|-----------|
| DE-OS | 18 03 878 |
| AT    | 1 79 942  |
| AT    | 2 05 307  |
| FR    | 12 80 977 |
| FR    | 12 30 653 |
| US    | 36 82 713 |
| US    | 36 82 713 |
| US    | 35 19 495 |
| US    | 33 32 794 |
| US    | 30 53 691 |
| บร    | 30 79 358 |
| US    | 30 53 691 |
| US    | 27 58 102 |

Werwendung von Zirkonverbindungen und Polyacrylsäure enthaltenden wäßrigen Dispersionen zur Behandlung von Metallflächen

article timeles excited to the 100 to 100 in

#### Patentanspruch:

Verwendung einer 0,1 bis 3,5 g/l Ammoniumzirkoncarbonat oder Ammoniumfluorozirkonat, berechnet als ZrO2, 0,1 bis 5,0 g/l Polyacryssäure, deren Alkali- oder Ammoniumsalze oder Polyacrylsäureester enthaltenden wäßrigen Dispersion zur Behandlung von gegebenenfalls einen Phosphat- oder Chromatumwandlungsüberzug tragenden Oberflä- 10 chen von Eisen oder Eisenlegierungen, Zinn oder verzinnten Werkstücken, Zink oder verzinkten Werkstücken, Aluminium oder Legierungen der genannten Metalle, in denen sie vorherrschend sind.

Zum Verbessern der Korrosionsbeständigkeitseigenschaften und der Bindungsqualitäten von Überzügen auf 20 Metalloberflächen ist es allgemein üblich, einen Umwandlungsüberzug, insbesondere einen Phosphatoder Chromat-Umwandlungsüberzug auf der Metalloberfläche zu bilden. Es ist ferner allgemein üblich, anschließend die überzogene Metalloberfläche zu 25 behandeln, um die Güteeigenschaften des bereits

aufgebrachten Überzugs zu verbessern.

Ein schwerwiegender Nachteil bei der Mehrzahl der bekannten Behandlungen besteht in der Toxizität, die den Substanzen, wie sechswertigen Chromverbindungen, Phosphaten und Fluoriden, eigen ist, welche in den Behandlungsmitteln verwendet werden und in den daraus resultierenden Ablaugen vorliegen. Eine andere Schwierigkeit tritt bei den Chrom enthaltenden Behandlungsmitteln auf, indem bestimmte Anstrich-, 35 Lack- oder Überzugssysteme abplatzen, leicht abziehbar sind oder Blasen bilden, wenn sie auf Metalloberflächen aufgebracht sind, die damit behandelt worden sind. Dies trifft besonders dann zu, wenn Werkstücke mit komplizierten Formen behandelt werden sollen, wobei 40 sich Rückstände von Chromsalzen in bestimmten Bereichen, wie Spalten, Hohlräumen und Fugen ansammeln.

Aufgabe vorliegender Erfindung war es daher, neue Behandlungsmittel zur Verfügung zu stellen, die die Korrosionsbeständigkeit und die Bindungseigenschaften des letzten Lack- oder Sikkativanstrichs auf den zu behandelnden Metalloberflächen verstärken und die dennoch nicht so toxisch wie die bekannten Mittel sind.

Diese Aufgabe wird erfindungsgemäß gelöst durch die Verwendung einer 0,1 bis 3,5 g/l Ammoniumzirkoncarbonat oder Ammoniumfluorozirkonat, berechnet als ZrO2, 0,1 bis 5,0 g/l Polyacrylsäure, deren Alkali- oder Ammoniumsalze oder Polyacrylsäureester enthaltenden wäßrigen Dispersion zur Behandlung von gegeberenfalls einen Phosphat- oder Chromatumwandlungsüberzug tragenden Oberflächen von Eisen oder Eisenlegierungen, Zinn oder verzinnten Werkstücken, Zink oder verzinkten Werkstücken, Aluminium oder Legierungen der genannten Metalle, in denen sie vorherrschend sind.

Aus dem Stand der Technik sind Mittel bekannt, welche polymere Materialien enthalten, die durch Anwesenheit von Zirkoniumverbindungen unlöslich gemacht werden. Die extrem niedrigen Konzentrationen dieser Materialien, wie sie erfindungsgemäß verwendet werden, werden jedoch in keiner Weise nahegelegt. Erfindungsgemäß wird ein p. ktisch nicht feststellbarer Überzug auf der Oberfläche ausgebildet,

dessen Anwesenheit nur durch die ausgezeichnete Korrosionsbeständigkeit und die ausgezeichneten Überzugseigenschaften der behandelten Oberfläche

Die US-Patentschrift 33 32 794 offenbart die Verwendung von carboxylgruppenfreien, polymeren Zusammensetzungen zum Beschichten und Streichen von verschiedenen nichtmetallischen Grundmaterialien, insbesondere Papier, Textilien und dergleichen unter Ausbildung von makroskopischen Überzügen.

Die US-Patentschrift 27 58 102 beschreibt zwar die Verwendung von Polyacrylsäure als organischem Polymerisat, jedoch ebenfalls zur Ausbildung von makroskopischen Filmen, die in einigen Fällen sogar pigmentiert sein können, und zu deren Herstellung hohe Konzentrationen an Polymerisat und Zirkoniumverbindung eingesetzt werden, insbesondere zum Beschichten von Papier, Pappe oder Holz.

Die US-Patentschrift 30 79 358 betrifft zwar Zusammensetzungen, welche Polyacrylsäurederivate und Zirkoniumverbindungen enthalten, diese Zusammensetzungen sind jedoch Anstrichmittel, in denen die Zirkoniumverbindung als Vernetzungsmittel für das Polymerisat dient, so daß eine dickere Beschichtung

gebildet wird.

Die US-Patentschrift 35 19 495 zeigt zwar die Verwendung von Polyacrylsäure als Bestandteil von Chrom, jedoch kein Zirkonium enthaltenden Metallbehandlungslösungen, jedoch ergeben sich hieraus keine Anzeichen dafür, daß die speziellen erfindungsgemäß verwendeten Mittel solche ausgezeichneten Ergebnisse im Hinblick auf die Korrosionsbeständigkeit und die Hafteigenschaften für Anstrichmittel ergeben könnten.

In der DE-OS 21 59 925 wird die Nachbehandlung von zuvor phosphatisierten Metalloberflächen mit einer wäßrigen Lösung einer Zirkoniumverbindung mit einer Konzentration von wenigstens 0,05 g/l (berechnet als ZrO<sub>2</sub>) offenbart. Die Zugabe von irgendwelchen polymeren Materialien wird jedoch nicht nahegelegt.

Gemäß der FR-PS 12 80 977 wird zuerst die Bildung des Chromatüberzuges durchgeführt, während in einer zweiten Stufe die bereits vorbeschichtete Oberfläche mit einer Polyvinylacetal und Phosphorsäure oder ein saures Phosphat in einem flüchtigen, organischen Lösungsmittel enthaltenden Lösung behandelt wird. Diese Nachbenandlung ist daher von derjenigen gemäß

der Erfindung vollständig verschieden.

Gemäß der US-Patentschrift 36 82 713 wird ein Überzug auf Aluminium, Zink und Eisen aufgebracht, wobei eine Lösung verwendet wird, die ein komplexes Fluorid des Zirkoniums in einer Konzentration von 0,1 bis 15 g/l (berechnet als Metall) wie auch freie Fluoridionen sowie ein Oxidationsmittel enthält. Gegenüber der Erfindung weist diese vorbekannte Arbeitsweise jedoch mehrere Unterschiede auf. Erfindungsgemäß werden Alkalimetall- und Ammoniumfluozirkonate sowie Ammoniumzirkoniumcarbonat verwendet, während gemäß der US-PS komplexe Fluoride eingesetzt werden. Darüber hinaus sind bei der vorbekannten Arbeitsweise freie Fluoridionen einerseits und ein Oxidationsmittel andererseits erforderlich, während dies erfindungsgemäß nicht der Fall ist.

Der Unterschied der Arbeitsweisen zeigt sich auch darin, daß vollkommen verschiedene Überzüge erhalten

werden.

In der DE-OS 1803878 wird die Behandlung eines Metalls mit einer Lösung beschrieben, welche ein Molybdat und ein wassertösliches, organisches Polyme

res enthält. Diese vorbekannten Lösungen sind zwar ebenfalls frei von sechswertigem Chrom, und erfindungsgemäß werden ebenfalls wasserlösliche Polymere verwendet, jedoch kann aus dieser Vorveröffentlichung nicht auf die Verwendung der speziellen wasserlösliche Polymere und Zirkoniumverbindungen enthaltenden Lösungen geschlossen werden.

Die erfindungsgemäßen Mittei können entweder zur Bildung eines »Umwandlungs«-Überzugs auf einem blanken Metall oder als eine Spüllösung für eine 10 anschließende Behandlung einer Metalloberfläche verwendet werden, die bereits zuvor einen z. B. Chromatoder Phosphat-Umwandlungsüberzug erhalten hat.

Der hier verwendete Ausdruck Dispersion erstreckt allerdings unter der Voraussetzung, daß darin die Zirkoniumverbindung tatsächlich gelöst vorliegt.

STATES THE SECOND STATES OF TH

Die Menge der polymeren Substanz beträgt vorzugs-Gewichtsteil weise 1,0 bis 2,0 Gewichtsteile je Zirkoniumverbindung, berechnet als ZrO2

Der pH-Wert der Mittel nach der Erfindung kann über einen weiten Bereich schwanken. Die besten Ergebnisse werden im allgemeinen erhalten, wenn der Arbeits-pH-Bereich der Mittel bei 6 bis 8 liegt.

Die erfindungsgemäß verwendeten Dispersionen 25 können zweckmäßigerweise in einfacher Weise durch Zugabe der Bestandteile zu Wasser hergestellt werden. Um irgendwelche Nachteile im Hinblick auf die Stabilität für eine lange Zeitdauer zu vermeiden, sollte ein wäßriges Konzentrat hergestellt werden, das dann 30 dem Wasser unmittelbar zugesetzt wird, um ein wäßriges gebrauchssertiges Mittel zu erhalten. Man hat beobachtet, daß unter gewissen Umständen, wenn ein wäßriges Konzentrat zur Bildung des wäßrigen Mittels hergesteilt wird, eine Hydrolyse und ein Aussalzen 35 sowohl der Zirkoniumverbindung als auch des Polymerisats eintreten.

In der Mehrzahl der Fälle sind die Zirkoniumverbindung und die polymere Substanz miteinander verträglich: sie verbleiben gleichmäßig über die gesamte 40 wäßrige Phase des Mittels verteilt. Gelegentlich ist es jedoch erwünscht, das Mittel zu rühren, um eine gleichmäßige Dispersion während des Betriebs aufrecht zu erhalten. Vorzugsweise wird die polymere Substanz bereits vor der Zugabe der Zirkoniumverbindung in 45 Lösung oder in der wäßrigen Phase dispergiert. Diese Maßnahme gewährleistet das Vermeiden einer Hydrolyse oder eines Ausfällens der Zirkoniumverbindung in dem hergestellten wäßrigen Bad.

Die Berührungszeit, d. h. die Dauer der Behandlung so der Metalloberfläche mit dem Mittel, braucht nur lange genug zu sein, um ein vollständiges Benetzen der Oberfläche zu gewährleisten, was allerdings auch 30 Minuten dauern kann. Gewöhnlich sind jedoch Berührungszeiten der Größenordnung von 1 Sekunde bis 1 55 Minute ausreichend, und einer der Hauptvorteile bei vorliegender Erfindung besteht darin, daß man einen ausreichenden Schutzüberzug auf der Metalloberfläche bei Anwendung einer Berührungszeit von nur 1 Sekunde erhält.

Das Verfahren vorliegender Erfindung kann am besten bei einer Temperatur von 15 bis 50°C durchgeführt werden. Allerdings bevorzugt man, das Verfahren bei einer Temperatur von 21 bis 37,5°C zu betreiben. Im allgemeinen erfordert eine geringe 65 Änderung bei der Temperatur keine wesentliche Veränderung der Behandlungszeit, der Konzentrationsparameter oder der pH-Einstellung.

Im Verlauf der Arbeitsweise der Bäder tritt eine Erschöpfung an den Bestandteilen bei den Mitteln in etwa dem gleichen Ausmaß auf. Diese Verluste müssen ersetzt werden, indem das Bad innerhalb seiner optimalen Betriebsgrenzen gehalten wird. Das Beschichtungsbad wird innerhalb der vorgeschriebenen Grenzen durch angemessene Zugaben der Bestandteile in den gleichen Anteilen aufrecht erhalten, in denen diese Bestandteile in den Betriebsbädern vorliegen.

Das Beschichtungsverfahren kann durch Anwendung beliebiger Kontaktierungstechniken durchgeführt werden, wie sie auf diesem Gebiet bekannt sind. Das Kontaktieren kann durch Sprüh-, Tauch- oder Fließüberzugstechniken bewirkt werden. Vorzugsweise wersich auf Lösungen, Emulsionen, Sole und Suspensionen, 15 den die Mittel jedoch durch übliche Sprühverfahren auf

das Metall aufgebracht.

Im Anschluß an die Behandlung nach dem Verfahren vorliegender Erfindung kann die Metalloberfläche gegebenenfalls einer Trockenoperation unterworfen werden. Der bevorzugte Temperaturbereich für ein derartiges Trocknen liegt bei 15 bis 265°C, wobei natürlich die Länge der Trockenstufe von der

angewendeten Temperatur abhängt.

Sofern ein Trocknen durchgeführt wird, kann ein letzter Aufstrich eines Trockenmittels, z. B. ein Lack, auf die Oberfläche aufgebracht werden, wodurch die Haftfähigkeit in beträchtlichem Maße verbessert wird. Ein derart beschichtetes Metall ist dann in außerordentlichem Maße gegen einen korrodierenden Angriff beständig, z.B. gegen eine Flüssigkeit oder ein Lebensmittel, das in einem aus dem Metall gebildeten Behälter angeordnet ist. Ein besonderer Vorteil bei vorliegender Erfindung besteht darin, daß nach Beendigung des Kontaktierens mit dem wäßrigen Mittel das Metall gegen einen korrodierenden Angriff sogar dann beständig ist, wenn es vor den Aufbringen des letzten Aufstrichs des Trockenmittels infolge Stillstands des Verarbeitungsverfahrens längere Zeit der Luft ausgesetzt ist.

Die erfindungsgemäßen Mittel können auf eine blanke Metalloberfläche aufgebracht werden, die keinen zuvor aufgebrachten Überzug aufweist. Es ist überraschend, daß die Obersläche ihr ursprüngliches Aussehen beibehält, daß zudem ein Überzug erzeugt wird, der die Haftfestigkeit eines anschließend aufgebrachten letzten Anstrichs eines Trockenmittels oder eines hygienischen Lacks, wie ein Überzug auf Acrylsäurebasis, verbessert, und daß die Oberfläche eine verbesserte Korrosionsbeständigkeit wiedergibt. Ein nach der hier beschriebenen Weise erzeugter Überzug ist per se außerordentlich vorteilhaft, da er tatsächlich die Korrosionsbeständigkeitseigenschaften bei der Metalloberfläche erhöht. Sollte ein Trockenmittelendaufstrich auf die behandelte Oberfläche aufgebracht werden, wird eine unerwartete verbesserte Haftfestigkeit des aufgebrachten Trockenmittelendaufstrichs erhalten.

Sofern das erfindungsgemäße Verfahren auf eine blanke Metalloberfläche angewendet wird, wird dies vorzugsweise dann durchgeführt, nachdem die Metalloberfläche erst gereinigt worden ist. Die Reinigungsstuse kann nach üblichen Verfahren durchgeführt werden; z. B. kann ein übliches saures oder alkalisches Reinigungsmittel angewendet werden, dem ein Spülen mit Wasser folgt. Wenn die Oberfläche stark verschmutzt ist, kann in der Reinigungsstufe ein Reinigungsmittelzusatz verwendet werden.

Auf die nach dem Verfahren vorliegender Erfindung

zu behandelnden Metalloberfläche kann selbstverständlich bereits vorher ein Umwandlungsüberzug aufgebracht worden sein, insbesondere ein Chromatüberzug und/oder ein Phosphatüberzug. Der Ausdruck »Chromatüberzug« bedeutet einen Überzug, der aus einem wäßrigen Bad mit einem Gehalt an sechswertigem Chrom, dreiwertigem Chrom und/oder deren Salzen sowie zusätzlichen Bestandteilen, wie Phosphorsäure und Fluoriden, erzeugt worden ist. Der Ausdruck »Phosphatüberzug« bezeichnet einen Überzug, der aus einer wäßrigen Lösung mit einem Gehalt an Phosphorsäure und deren Salzen sowie zusätzlichen Bestandteilen, wie Fluoriden, Molybdaten, Cidoraten, Nitriten und zahlreichen organischen Beschleunigern, erzeugt worden ist.

Die nachstehende Rezeptur 1 ist ein Beispiel für ein geeignetes trockenes Chromatbeschichtungsmittel, das zu Wasser unter Bildung einer Chromatbeschichtungslösung zugegeben werden kann, die zur Behandlung von Metalloberflächen vor deren Behandlung mit den 20 erfindungsgemäßen Mitteln angewendet werden kann:

| Rezeptur I                                       | Gewichtsprozent                     |
|--------------------------------------------------|-------------------------------------|
| Chromsäure Kaliumfluorozirkonat Natriumbifluorid | 33 bis 37<br>15 bis 16<br>45 bis 49 |

Die nachstehende Rezeptur 2 ist ein Beispiel für eine geeignete konzentrierte Chromat-Phosphat-Überzugslösung, die auf die gewünschte Stärke mit einer wäßrigen Fluorwasserstofflösung verdünnt und zur Behandlung von Aluminiumoberflächen unter Bildung eines Chromat-Phosphat-Überzugs darauf vor der Behandlung mit den erfindungsgemäßen Mitteln verwendet werden kann:

| Rezeptur 2                  | Gewichtsprozent |
|-----------------------------|-----------------|
| Chromsäure                  | 57 bis 60       |
| Phosphorsäure (75prozentig) | 15 bis 16       |
| Wasser                      | 24 bis 26       |

Die nachstehende Rezeptur 3 ist ein Beispiel für eine geeignete konzentrierte Phosphat-Überzugslösung, die auf die gewünschte Stärke verdünnt und zur Behandlung von Metalloberflächen vor dem In-Berührungbringen mit den erfindungsgemäßen Mitteln angewendet werden kann:

| Rezeptur 3                  | Gewichtsprozent |
|-----------------------------|-----------------|
| Phosphorsäure (75prozentig) | 2 bis 4         |
| Ammoniumhydroxid (26° Bé)   | 1 bis 2         |
| Ammoniumbifluorid           | 0,1 bis 0,8     |
| Ammoniummolybdat            | 0,1 bis 0,3     |
| Wasser                      | 93 bis 96       |

Ein überraschendes Merkmal hat man erfindungsgemäß beobachtet, wenn das wäßrige Mittel im Anschluß an eine Behandlung mit der Überzugslösung der vorbeschriebenen Rezeptur 3 angewendet wird. Ein 65 Überzug, der durch Anwendung einer derartigen Überzugslösung auf Alunaniumoberflächen aufgebracht worden ist, neigt dazu, sich zu verfärben, z. B. wenn er

siedendem Wasser ausgesetzt ist. Wenn die Überzüge dieses Typs auf Aluminiumbehältnisse aufgebracht und dann Pasteurisierungsbedingungen oder Pasteurisierungsverfahren unterworfen werden, wie Tauchen in siedendes Wasser bei 120°C und I kg/cm², tritt eine unerwünschte Verfärbung auf. Wenn jedoch das Mittel vorliegender Erfindung auf eine bereits einen Phosphatumwandlungsüberzug der aus einer Lösung der Rezeptur 3 gebildeten Art aufweisende Aluminiumoberfläche aufgebracht wird, kann eine derartige Verfärbung, wenn die Oberfläche den vorgenannten Temperatur- und Druckbedingungen ausgesetzt wird, vermieden werden.

Die Erfindung erstreckt sich natürlich auch auf Metallgegenstände, insbesondere in Form eines Behälters, wenn immer er nach dem Verfahren vorliegender Erindung einen Überzug erhalten hat.

Die nachstehenden Beispiele und Vergleichsversuche dienen lediglich zur Veranschaulichung und geben Einzelheiten der Mittel und der Verfahren nach vorliegender Erfindung an. Bei allen Beispielen wird das Verfahren bei Raumtemperatur und einer Kontaktierungszeit von annähernd 15 Sekunden durchgeführt.

Bei den Beispielen werden bestimmte, nachstehend erläuterte Vergleichsversuche an typischen Probekörpern durchgeführt.

#### Rückseitenschlagversuch

Der Rückseitenschlagversuch wird zur Bestimmung der Haftfestigkeitseigenschaften eines auf die überzogene Oberfläche aufgebrachten organischen oder Trokkenmittelüberzugs durchgeführt. Dieser Versuch wird für gewöhnlich bei der Prüfung von Anstrichen angewendet. Nachdem die Probekörper mit einem geeigneten Anstrichmittel versehen worden sind, wird bei diesem Versuch die Oberfläche der Probe mit der angestrichenen Seite nach unten gelegt.

Dann wird auf die anstrichfreie Seite eine Kugel von 1.25 cm Durchmesser mit meiner zu 28 cm x kg gemessenen Kraft fallengelassen und dadurch die Probekörperobersläche desormiert. Der Austressbereich wird anschließend dem später beschriebenen Klebestreisenversuch unterworsen.

Der Rückseitenschlagversuch kann auch, nachdem die Oberfläche dem nachstehend beschriebenen Tauchversuch unterworfen worden ist, durchgeführt werden.

# Tauchversuch

Ausgewählte Probekörper werden dem Tauchversuch unterworfen. Dabei werden die Körper 30 Minuten entweder in entsalztes Wasser oder in eine Lösung von 82°C getaucht, die aus entsalztem Wasser mit einem Gehalt von 1 Volumprozent eines flüssigen Reinigungsmittels besteht. Danach werden die Probekörper aus der Lösung genommen und gespült, dann trockengewischt und dem nachstehend beschriebenen Kreuzschraffierungsversuch unterworfen.

# Kreuzschraffierungsversuch

Ein Teil der Muster wird mit dem Kreuzschraffierungswerkzeug beschrieben, das 11 Schneidmesser im jeweiligen Abstand von 1 mm aufweist. Auf diese Weise erhält man 100 Quadrate mit je 1 mm Seitenlänge auf der angestrichenen Oberfläche. Dies wird dadurch erreicht, daß man die Schreibvorrichtung einmal über den zu untersuchenden Bereich und danach ein zweites Mal im rechten Winkel dazu führt. Der kreuzschraffierte

PARTY NAMED IN COLUMN

Bereich wird dann dem nachstehend erläuterten Klebstreifenversuch unterworfen.

#### Klebstreifenversuch

Bei diesem Versuch wird ein Klebstreifen luftblasenfrei und knitterfrei fest auf den betreffenden Teil der Oberfläche aufgebracht. Der Streifen wird 1 Minute auf der Oberfläche belassen und dann entgegen der Aufkleberichtung rasch von der Oberfläche des 10 Probekörpers abgerissen.

#### **Naturversuch**

Wird der Klebstreisenversuch auf einem Bereich durchgeführt, der weder dem Rückseitenschlagversuch noch dem Kreuzschrafsierungsversuch unterworsen worden ist, wird dies hier als »Naturversuch« bezeichnet.

# Hochtemperatur/Druckversuch

Probekörper werden in mit Glas ausgekleidete Druckgefäße eingebracht. Dann wird ein kohlensäurehaltiges Getränk hineingegossen. Die Gefäße werden verschlossen und einmal 5 Stunden und ein anderes Mal 24 Stunden auf 82°C erwärmt. Alle Probekörper sind zuvor gewogen worden und werden auch hinterher gewogen. Es werden die durchschnittlichen Gewichtsverluste in nig je 929 cm² der Prüfkörper vermerkt, bezogen auf den beobachteten Gewichtsverlust bei den beiden Gruppen von Blechen.

#### Raumtemperatur-Gewichtsverlust

Beim Raumtemperatur-Gewichtsverlust werden die Prüfkörper nach dem Wiegen bei Raumtemperatur in 35 mit Glas ausgekleideten Gefäßen angeordnet. Dann mird ein kohlensäurehaltiges Getränk hineingegossen. Die jeweiligen Gruppen der Prüfkörper werden 1, 2, 3, 4, 5 bzw. 7 Tage darin belassen. Am Ende der Versuchsdauer werden die Probekörper gründlich 40 gespült, getrocknet und wieder gewogen.

Nach jedem Versuch werden die Probekörper abgeschätzt und bewertet, wobei im nachstehend erläuterte Bewertungssystem Anwendung findet.

Die Prüfkörper werden hinsichtlich des Anstrichverlustes oder von Anstrichfehlern unter Heranziehung einer Bewertungsskala von 0 bis 10 subjektiv bewertet. Bei dieser Skala bedeutet 0 einen vollständigen Verlust des Anstrichs und der Wert 10 keinerlei Anstrichverlust. Die quantitative Bestimmung wird in den Bereichen bei den Prüfkörpern durchgeführt, die dem Rückseiten-

schlagversuch, dem Kreuzschraffierungsversuch und dem Naturversuch unterworfen worden sind.

#### Beispiel 1

# Herstellung eines Behandlungsmittels

30 ml einer wäßrigen Lösung einer Polyacrylsäure werden zu 3 Liter Wasser gegeben. Dann werden 60 ml einer im Handel erhältlichen Lösung von Ammoniumzirkoniumcarbonat zugegeben, wobei diese Lösung einen pH-Wert von etwa 8,5 hat und 9 Gewichtsprozent Zirkonium, berechnet als ZrO<sub>2</sub>, enthält. Die erhaltene Lösung mit meinem Gehalt an Animonium-zirkoniumcarbonat und Polyacrylsäure weist etwa 2 g/Liter Zirkonium, berechnet als ZrO<sub>2</sub>, und etwa 2,75 g/Liter Polyacrylsäure auf. Die Lösung hat einen pH von 7.2.

#### Beispiel 2

#### Mit Chromat/Phosphat beschichtetes Aluminium

Bei diesem Beispiel wird etwa 9 cm breites Aluminiumbandmaterial verwendet, das zu 15,24 cm langen Probeblechen verarbeitet worden ist.

Ein Satz Bleche wird 15 Minuten bei 70°C mit einem alkalischen Reinigungsmittel gereinigt, mit Wasser gespült, dann einem üblichen Desoxydierungsverfahren und anschließend einem Chromatierungs-/Phosphatierungsverfahren unter Verwendung einer Lösung nach der vorgenannten Rezeptur 2 zur Herstellung eines Umwandlungsüberzugs auf der Oberfläche unterworfen, wobei der Chromat/Phosphat-Überzug 5 bis 7 mg je 929 cm² beträgt.

Die Versuchsbleche werden dann 15 Sekunden bei Raumtemperatur in eine wäßrige Lösung getaucht, die Polyacrylsäure und Ammonium-zirkoniumcarbonat enthält, wobei die Polyacrylsäurekonzentration 2,7 g/Liter und die Zirkoniumkonzentration 1,8 g/Liter beträgt. Der pH-Wert der wäßrigen Lösung beträgt etwa 7,2. Dann läßt man die Versuchsbleche an der Luft trocknen.

Während ein erster Satz Kontrollbleche lediglich gereinigt und desoxydiert wird, wird ein zweiter Satz Kontrollbleche lediglich gereinigt, desoxydiert und mit der vorgenannten Chromat/Phosphat-Lösung in Berührung gebracht. Alle Versuchsbleche werden dann den verschiedenen, zuvor beschriebenen Versuchsverfahren unterworfen.

Bei allen Blechen werden die Gewichtsverlustversuche bei hohen Temperaturen und Druck sowie bei Raumtemperaturen durchgeführt. Die Ergebnisse sind in Jer nachstehenden Tabelle Langegeben.

Tabelle I

| Behandlung                                                                                                        | Durchschmittlicher Gewichtsverlust (rag/929 cm²) |                           |       |           |           |          |      |      |
|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|---------------------------|-------|-----------|-----------|----------|------|------|
|                                                                                                                   |                                                  | temperatur-/<br>c-Versuch | Raumi | temperati | ar-Versuc | h (Tage) |      | ÷    |
|                                                                                                                   | 5                                                | 24                        | 1     | 2         | 3         | 4        |      | 7    |
| Kontrollbleche: gereinigt und deoxidiert                                                                          | 9,4                                              | 16.2                      | 20,9  | 32,4      | 36,4      | 36,4     | 36,4 | 36,0 |
| Kontrollhiecher erschaften und beschichtet mit erschaft deoxidiert und beschichtet mit erschaft der eine Phosphat | 4,0                                              | 7,6                       | 6,5   | 19,4      | 26.3      | 30,3     | 33,0 | 34,9 |

| Fortsetzung  Durchschnittlich                                                                                                                                                         |                                       |     |     | sverlust ( | mg/929 c | :m²) |     |     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----|-----|------------|----------|------|-----|-----|
| Behandlung                                                                                                                                                                            | Hochtemperatur-/ Druck-Versuch (Std.) |     |     |            |          |      |     |     |
|                                                                                                                                                                                       | 5                                     | 24  | 1   | 2          | 3        | 4    | . 5 |     |
| Versuchsbleche: gereinigt, deoxidiert, beschichtet mit Chromat/Phosphat und behandelt mit einem wäßrigen Mittel mit einem Gehalt an Poly- acrylsäure und Ammonium-zirkonium- carbonat | 1,1                                   | 1,1 | 0,7 | 2,2        | 5,8      | 6,1  | 7,2 | 7,2 |

Aus den Ergebnissen der Tabelle 1 ist ersichtlich, daß die in die erfindungsgemäßen Mittel getauchten Versuchsbleche einen überraschenden und unerwarteten Schutz gegenüber den Kontrollblechen hinsichtlich des Gewichtsverlustes aufweisen, wenn alle Probekörper dem korrodierenden Einfluß eines kohlensäurehaltigen Getränks ausgesetzt sind.

#### Beispiel 3

# Überziehen von blankem Aluminium

Bei diesem Beispiel werden 7,62 cm breite Probestükke aus Aluminiumdosenmaterial verwendet, die in 15,24 cm lange Bleche geschnitten und 1 Minute bei 76,5°C in einem sauren Reinigungsmittel gereinigt 40 worden sind.

#### Erste Kontrolle

Vier Sätze von Kontrollblechen werden in vier verschiedene Zirkoniumacetat-Bäder getaucht, wobei 3: die Bäder Zirkoniumkonzentrationen von 0,5, 1,0, 1,5 und 2,0 g/Liter, berechnet als ZrO<sub>2</sub>, aufweisen.

### Zweite Kontrolle

Vier Sätze von Kontrollblechen werden in verschiedene Ammonium-zirkonium-carbonat-Lösungen mit Zirkoniumkonzentrationen von 0,5. 1,0, 1,5 und 2,0 g/Liter, berechnet als ZrO<sub>2</sub>, getaucht.

#### Versuchsbleche

Die Versuchsbleche werden mit verschiedenen wäßriger. Lösungen mit einem Gehalt an Ammoniumzirkonium-carbonat und Polyacrylsäure behandelt. Vier Sätze der Versuchsbleche werden für vier wäßrige Mittel mit Zirkoniumkonzentrationen von 0,5, 1,0, 1,5 und 2,0 g/Liter und Polyacrylsäurekonzentrationen von 0,7, 1,4, 2,1 und 2,8 g/Liter verwendet.

Alle Probekörper werden dann mit einem weißen Anstrichstoff auf Acrylbasis angestrichen und dem Reinigungs-Tauch-Versuch unterworfen. Im Anschluß daran werden die Bleche dem Rückseitenschlagversuch, dem Kreuzschraffierungsversuch und dem Naturversuch unterworfen. Die Ergebnisse sind in der Tabelle II angegeben.

| Tabelle II<br>Behandlung                 |                                  | Rückseiten-<br>schlagversuch | K reuzschraffie-<br>rungsversuch | Natur-<br>versuch |
|------------------------------------------|----------------------------------|------------------------------|----------------------------------|-------------------|
| Zirkoniumacetat-Lös                      | ung                              |                              |                                  |                   |
| Zr-Konzentration (al                     | s ZrO <sub>2</sub> )             |                              | _                                |                   |
| 0,5 g/Liter                              |                                  | 0 -                          | 0                                | 0                 |
| 1.0 g/Liter                              |                                  | 0                            | 2                                | 0                 |
| 1,5 g/Liter                              |                                  | 0                            | 0                                | 0                 |
| 2,0 g/Liter                              |                                  | 0                            | . 0                              | 0                 |
| Ammonium-zirkonii                        | ım-carbonat-Lösung               |                              |                                  |                   |
| Zr-Konzentration (al                     | s ZrO <sub>2</sub> )             |                              |                                  | 0                 |
| 0,5 g/Liter                              | ř.                               | 2                            | 1                                | 0                 |
| 1,0 g/Liter                              | •                                | 5                            | 0                                | 10                |
| 1,5 g/Liter                              |                                  | 5                            | 4                                | 10                |
| 2,0 g/Liter                              |                                  | 5                            | 6                                | 10                |
| Ammonium-zirkonii<br>+ Polyacrylsäure    | um-carbonat                      |                              |                                  | ٠                 |
| Zr-Konzentration (als ZrO <sub>2</sub> ) | Polyacrylsäure-<br>Konzentration |                              |                                  |                   |
| 0,5 g/Liter                              | 0.7 g/Liter                      | 7                            | 9,5                              | 10                |
| 1.0 g/Liter                              | 1, i g/Liter                     | 8                            | 9,5                              | 10                |
| 1,5 g/Liter                              | 2,1 g/Liter                      | 9                            | 9,0                              | 10                |
| 2,0 g/Liter                              | 2,8 g/Liter                      | 7                            | 10,0                             | 10                |

Man beobachtet, daß die Mittel mit Ammonium-zirkoniumcarbonat und Polyacrylsäure bei den Versuchen hervorragende Ergebnisse im Vergleich zu den Kontrollproben geben.

# Beispiel 4

# Überziehen von blankem Aluminium

Das Verfahren des Beispiels 3 wird wiederholt, jedoch mit der Ausnahme, daß die anschließend verwendete Farbe ein Lack auf Vinylbasis ist. Alle Bleche werden 10 se sind in der nachstchenden Tabelle III aufgeführt. dann dem Reinigungs-Tauch-Versuch und danach dem

Rückseitenschlagversuch, dem Kreuzschraffierungsversuch und dem Naturversuch unterworfen. Die Ergebnis-

Tabelle III

| <u> </u>                                 |                                   |                              |                                  |                   |  |  |  |
|------------------------------------------|-----------------------------------|------------------------------|----------------------------------|-------------------|--|--|--|
| Behandlung                               |                                   | Rückseiten-<br>schlagversuch | K reuzschraffie-<br>rungsversuch | Natur-<br>versuch |  |  |  |
| Zirkoniumacei::1-Lös                     | sung                              |                              |                                  |                   |  |  |  |
| Zr-Konzentration (al                     | s ZrO <sub>2</sub> )              |                              |                                  |                   |  |  |  |
| 0,5 g/Liter                              |                                   | 10                           | 6                                | 10                |  |  |  |
| 1,0 g/Liter                              |                                   | 10                           | . 1                              | 10                |  |  |  |
| 1,5 g/Liter                              |                                   | 10                           | 1                                | 7.                |  |  |  |
| 2,0 g/Liter                              |                                   | 10                           | 0                                | 0                 |  |  |  |
| Ammonium-zirkoni                         | um-carbonat-Lösung                |                              |                                  | :                 |  |  |  |
| Zr-Konzentration (a                      | ls ZrO <sub>2</sub> )             |                              |                                  |                   |  |  |  |
| 0,5 g/Liter                              |                                   | 10                           | . 8                              | 10                |  |  |  |
| 1,0 g/Liter                              |                                   | 10                           | 4                                | 10                |  |  |  |
| 1,5 g/Liter                              |                                   | 10                           | 4                                | 10                |  |  |  |
| 2,0 g/Liter                              |                                   | 10                           | 4                                | 10                |  |  |  |
| Ammonium-zirkoni<br>+ Folyacrylsäure     | um-carbonat                       |                              |                                  |                   |  |  |  |
| Zr-Konzentration (als ZrO <sub>2</sub> ) | Polyacrylsäure-<br>K onzentration |                              |                                  |                   |  |  |  |
| 0,5 g/Liter                              | 0,7 g/Liter                       | 10                           | 2                                | 10                |  |  |  |
| 1,0 g/Liter                              | 1,4 g/Liter                       | 10                           | 6                                | 10                |  |  |  |
| 1,5 g/Liter                              | 2,1 g/Liter                       | 10                           | 9,8                              | 10                |  |  |  |
| 2,0 g/Liter                              | 2,8 g/Liter                       | 10                           | 10                               | 10                |  |  |  |

# Beispiel 5

# Überziehen von blankem Aluminium

mit der Ausnahme, daß die Versuchsbleche 30 Minuten bei 82°C einem Tauchversuch in entsalztem Wasser anstelle des Reinigungs-Tauch-Versuchs unterworfen

Das Verfahren des Beispiels 3 wird wiederholt, jedoch 50 werden, bevor sie dem Rückseitenschlagversuch, dem Kreuzschraffierungsversuch und dem Naturversuch unterzogen werden. Die Ergebnisse sind in der Tabelle 1V angegeben.

Tabelle IV

| Behandlung                               | Rückseiten-<br>schlagversuch | K reuzschraftie-<br>rungsversuch | Natur-<br>versuch |  |
|------------------------------------------|------------------------------|----------------------------------|-------------------|--|
| Zirkoniumacctat-I.ösung                  |                              |                                  |                   |  |
| Zr-Konzentration (als ZrO <sub>2</sub> ) |                              |                                  |                   |  |
| 0,5 g/Liter                              | 7                            | 8                                | 8                 |  |
| 1,0 g/Liter                              | 3                            | 0                                | 0                 |  |
| 1,5 g/Liter                              | 5                            | 1                                | 0                 |  |
| 2,0 g/Liter                              | 5                            | 0 .                              | 0                 |  |

#### Fortsetzung

| Behandlung                               |                                  | Rückseiten-<br>schlagversuch | Kreuzschraffie-<br>rungsversuch | Natur-<br>versuch |
|------------------------------------------|----------------------------------|------------------------------|---------------------------------|-------------------|
| Ammonium-zirkoniu                        | ım-carbonat-Lösung               |                              |                                 |                   |
| Zr-Konzentration (al                     | s ZrO <sub>2</sub> )             |                              |                                 |                   |
| 05 g/Liter                               |                                  | 9,5                          | 9,9                             | 10                |
| 1,0 g/Liter                              |                                  | 9,0                          | 8.0                             | 8                 |
| 1,5 g/Liter                              |                                  | 7,0                          | 10,0                            | 10                |
| 2,0 g/Liter                              |                                  | 6,0                          | 10,0                            | 10                |
| Ammonium-zirkoniu<br>+ Polyacrylsäure    | um-carbonat                      |                              |                                 |                   |
| Zr-Konzentration (als ZrO <sub>2</sub> ) | Polyacryisäure-<br>Konzentration |                              |                                 |                   |
| C,5 g/Liter                              | 0,7 g/Liter                      | 9,9                          | 10                              | 10                |
| 1.0 g/Liter                              | 1,4 g/Liter                      | 9,9                          | 10                              | 10                |
| 1.5 g/Liter                              | 2,1 g/Liter                      | 8,5                          | 10                              | 10                |
| 2.0 g/Liter                              | 2,8 g/Liter                      | 8.5                          | 10                              | 10                |

# Beispiel 6

# Beschichten von phosphatiertem Aluminium

Bei diesem Beispiel werden 7,62 × 15,24 cm große Bleche aus Aluminiumbüchsenmaterial verwendet. Die Probekörper werden 15 Minuten bei 71°C in ein alkalisches Reinigungsmittel getaucht, dann gespült und deoxidiert und denach einem Phosphatierungsverfahren unterworfen, so daß ein Phosphat-Umwandlungsüberzug auf der Oberfläche entsteht. Als Phosphatierungslösung wird eine Lösung entsprechend der vorgenannten Rezeptur 3 bei den Prüfkörpern angewendet.

Nach dem Aufbringen des Phosphatüberzugs werden 40 zwei Sätze der Versuchsbleche mit zwei verschiedenen wäßrigen Mitteln behandelt, die Ammonium-zirkoniumcarbonat und Polyacrylsäure enthalten, wobei die

Zirkoniumkonzentrationen einma! 1.0 g/Liter und zum anderen 2.0 g/Liter und die Polyacrylsäure-Konzentration einmal 1.4 g/Liter und zum anderen 2.8 g/Liter betragen.

Ein Satz Kontrollbleche wird lediglich gereinigt, gespült, deoxidiert und phosphatiert.

Ein zweiter Satz Kontrollbleche wird in ähnlicher Weise behandelt, dech wird ein Teil mit einer 0.3 g/Liter enthaltenden Zirkoniumacetatlösung und der andere Teil mit einer 0.9 g/Liter enthaltenden Zirkoniumacetatlösung behandelt.

Alle Bleche werden dann mit einem weißen Anstrichmittel auf Acrylbasis angestrichen, einem Reinigungs-Tauch-Versuch unterworfen und danach dem Rückseitenschlagversuch, dem Kreuzschraffierungsversuch und dem Naturversuch unterzogen. Die Ergebnisse sind in der Tabelle Vangegeben.

Tabelle V

| Behandlurg                                                 |                                  | Rückseiten-<br>schlagversuch | Kreuzschraffie-<br>rungsversuch | Natur-<br>versuch |
|------------------------------------------------------------|----------------------------------|------------------------------|---------------------------------|-------------------|
| Phosphat-Überzug (                                         | Kontrolle)                       | 0                            | 0                               | O                 |
| Phosphat-Überzug +<br>Lösung (Kontrolle)                   | - Zirkoniumacetat-               |                              |                                 |                   |
| Zr-Konzentration (a                                        | ls ZrO2)                         |                              |                                 |                   |
| 0,3 g/Liter                                                |                                  | 0                            | 0                               | 0                 |
| 0,9 g/Liter                                                |                                  | 0 .                          | 0                               | 0                 |
| Phosphat-Überzug<br>Ammonium-zirkoni<br>und Polyacrylsäure | umcarbonat                       |                              |                                 |                   |
| Zr-Konzentration (als ZrO <sub>2</sub> )                   | Polyacrylsäure-<br>Konzentiation |                              |                                 |                   |
| 1.0 g/Liter                                                | 1,4 g/Liter                      | 10,0                         | 8                               | 10                |
| 2,0 g/Liter                                                | 2,8 g/Liter                      | 9.5                          | 6                               | iti               |

# Beispiel 7

# Überziehen von blankem Aluminium

Bei diesem Beispiel werden 7.62 x 15.24 cm große 5 Versichsbleche aus Aluminium verwendet. Die Bleche werden 1 Minute bei 82°C in einer sauren Reinigungslösung gereinigt. Dann werden die Bleche in einzelne Gruppen unterteilt, von denen jeweils eine einer Sprühbehandlung mit einer der nachstehenden wäßrigen Lösungen unterworfen wird:

(a) Polyacrylsäure.

(b) Ammonium-zirkoniumcarbonat,

(c) Ammonium-fluorozirkonat.

(d) wäßriges Mittel mit einem Gehalt an Polyacrylsäu15
re und Ammonium-zirkoniumcarbonat und

(e) wäßriges Mittel mit einem Gehalt an Polyacrylsäure und Ammonium-fluorozirkonat.

Die Konzentrationen der einzelnen Bestandteile in den betreffenden Mitteln sind in der nachstehenden Tabelle VI angegeben.

Die Bleche werden dann bei Raumtemperatur getrocknet und die getrockneten Bleche mit einem Außenanstrichmittel auf Acrylbasis behandelt. Ein zusätzlicher Satz von Kontrollblechen wird lediglich gereinigt und angestrichen.

Danach werden alle Bleche einem Reinigungs-Tauch-Versuch und im Anschluß daran dem Rückseitenschlagversuch. dem Kreuzschraffierungsversuch und dem Naturversuch unterworfen. Alle Ergebnisse sind in Tabelle VI angegeben.

Tabelle VI

| Behandlung                                     | Rückseiten-<br>schlagversuch | K reuzschraffie-<br>rungsversuch | Natur-<br>versuch |
|------------------------------------------------|------------------------------|----------------------------------|-------------------|
| Lösung (a)                                     |                              |                                  |                   |
| 1) 0,7 g/l Polyacrylsäure                      |                              | 9,5                              | 9.5               |
| 2) 2,1 g/l Polyacrylsäure                      | 9,5                          | 1,0                              | 7,0               |
| Lösung (b)                                     |                              |                                  | 10.0              |
| 1) 0,5 g/l Zirkonium (als ZrO <sub>2</sub> )   | 8,0                          | 10,0                             | 10,0              |
| 2) 1.5 g/l Zirkonium (als ZrO <sub>2</sub> )   | 5,0                          | 9.0                              | 10,0              |
| Lösung (c)                                     |                              | •                                |                   |
| 1) 0.5 g/l Zirkonium (als ZrO <sub>2</sub> )   | 0,8                          | 0                                | 7.0               |
| 2) 1.5 g/l Zirkonium (als ZrO <sub>2</sub> )   | 6,0                          | 10,0                             | 10.0              |
| 1 ösung (d)                                    |                              |                                  |                   |
| <ol> <li>0,7 g/l Polyacryisäure und</li> </ol> |                              |                                  |                   |
| 0.5 g/l Zirkonium (als ZrO <sub>2</sub> )      | 10,0                         | 10.0                             | 10,0              |
| 2) 2,1 g/l Polyacrylsäure und                  |                              |                                  |                   |
| 1.5 g/l Zirkonium (als ZrO <sub>2</sub> )      | 10,0                         | 10,0                             | 0,01              |
| Lösung (e)                                     |                              |                                  |                   |
| 1) 0,7 g/l Polyacrylsäure und                  |                              |                                  | ***               |
| 0.5 g/l Zirkonium (als ZrO <sub>2</sub> )      | 10,0                         | 10,0                             | 10,0              |
| 2) 2,1 g/l Polyacrylsäure und                  |                              |                                  | 10.5              |
| 1,5 g/l Zirkonium (als ZrO <sub>2</sub> )      | 9,8                          | 10,0                             | 10,0              |
| Kontrolle                                      |                              |                                  |                   |
| gereinigt und angestrichen                     | 4,0                          | 0                                | 0                 |

#### Beispiel 8

# Beschichten von phosphatiertem Aluminium

Bei diesem Verfahren werden 7,62 × 10,16 cm große Versuchsbleche aus Aluminium eingesetzt. Die Bleche werden 1 Minute bei 82°C mit einer alkalischen Reinigungslösung gereinigt und mit Wasser gespült. Zu Gruppen zusammengestellte Bieche werden verschie-

denen Phosphatierungsverlahren unterworfen, wobei ein Phosphatumwandlungsüberzug auf ihren Oberflächen erzeugt wird. Es werden folgende Phosphatierungslösungen auf die oruppen von Blechen zur Einwirkung gebracht:

130 221 (130

| Versuchs-<br>ansatz | Phosphorsäure<br>75prozentig<br>g/i | Ammonium-<br>bifluorid<br>g/l | Natrium-<br>molybdat<br>g/l |
|---------------------|-------------------------------------|-------------------------------|-----------------------------|
| <del></del>         |                                     |                               | 0,1                         |
| а                   | 9,8                                 | 1,14                          |                             |
| b                   | 1,2                                 | 0,29                          | 0,1                         |
|                     | 3,5                                 | 0,57                          | 0,1                         |
| c <sub>.</sub>      |                                     | 0,86                          | 0,1                         |
| d                   | 7,0                                 |                               | 0,1                         |
| c                   | 1,2                                 | 0,29                          |                             |
| ř.                  | 3,5                                 | 0,29                          | 0,1                         |

Nach dem Beschichten jeder Gruppe dieser Bleche mit den vorgenannten besonderen Phosphatierungslösungen, werden die Versuchsbleche jeder Gruppe mit einem wäßrigen Mittel in Berührung gebracht, das 1.8 g/l Ammonium-zirkoniumcarbonat, berechnet als ZrO<sub>2</sub>, und 2,73 g. Polyacrylsäure enthält. Ein zweiter Satz jeder Gruppe von beschichteten Blechen wird mit 20

entsalztem Wasser gespült und anschließend keiner weiteren Behandlung unterworfen. Jeder Satz Bleche wird danach mit einem weißen Außenanstrichmittel auf Acrylbasis angestrichen. Die gestrichenen Bleche werden dann den nachstehenden Versuchen unterworfen:

Versuchskombination 1:

Wassertauchversuch und danach Kreuzschraffierungsversuch;

Versuchskombination II:

Reinigungstauchversuch und danach Kreuzschraffierungsversuch.

In der nachstehenden Tabelle VII sind die Ergebnisse dieser Versuche aufgeführt. Die Proben werden hinsichtlich ihres Farbstoffverlustes qualitativ bewertet. Dabei bedeutet »kein« keinen Farbstoffverlust, »etwas« einen geringen oder mäßigen Farbstoffverlust und »stark« einen starken oder vollständigen Farbstoffverlust.

Tabelle VII

|                     | Zirkonium + Polyacrylsäure |                          | Kontrolle (entsalztes Wasser) |                          |
|---------------------|----------------------------|--------------------------|-------------------------------|--------------------------|
| Versuchs-<br>ansatz | Versuchs-<br>kombination   | Versuchs-<br>kombination | Versuchs-<br>kombination<br>I | Versuchs-<br>kombination |
|                     | kein                       | ctwas                    | stark                         | stark                    |
| ii                  |                            | kein                     | kein                          | stark                    |
| b .                 | kein                       | kein                     | stark                         | stark                    |
| c                   | kein                       |                          |                               | stark                    |
| d                   | kein                       | kein                     | kein                          |                          |
| e                   | kein                       | kein                     | kein                          | ctwas                    |
| f                   | kein                       | stark                    | stark                         | stark                    |

# Beispiel 9

# Beschichten von blankem verzinnten Stahi

Bei dies im Verfahren werden 5.1 x 10.2 cm große verzinnte Stahlbleche verwendet. Die Bleche werden 1 Minute bei 77°C mit einer alkalischen Reinigungslösung gereinigt und gespült. Zwei Sätze Bleche werden dann mit zwei verschiedenen wäßrigen Mitteln behandelt, die erstens Ammonium-zirkoniumcarbonat in Konzentrationen von 0.5 bz. 1.5 g/l und zeites Polyacrylsäure in Konzentrationen von 0,7 bzw. 2.1 g/l enthalten. Danach werden die Bleche 1 Minute bei 205°C getrocknet. Ein

dritter Satz Bleche wird lediglich gereinigt, gespült und getrocknet.

Danach werden alle Bleche mit einer weißen Anstrichfarbe auf Aerylbasis gestrichen und dann dem Reinigungs-Tauch-Versuch und anschließend dem Kreuzschraffierungsversuch und dem Naturversuch unterworfen. Die Ergebnisse sind in Tabelle VIII angegeben.

Tabelle VIII

| Behandlung                                     |                                  | Kreuz-<br>schraf-    | Natur-<br>versuch |
|------------------------------------------------|----------------------------------|----------------------|-------------------|
|                                                |                                  | fierungs-<br>versuch |                   |
| Kontrolle<br>Ammonium-zir<br>carbonat und Pe   | konium-<br>olyacrylsäure         | 0                    | 0                 |
| Zirkonium-<br>Konzentration                    | Polyacrylsäure-<br>konzentration |                      |                   |
| (als ZrO <sub>2</sub> )<br>(),5 g/l<br>1,5 g/l | 0,7 g/l<br>2,1 g/l               | 10<br>10             | 9                 |

# Beispiel 10

#### Beschichten von blankem Aluminium

Bei diesem Beispiel werden 7,62 × 15,24 cm große Versuchsbleche aus Aluminium verwendet.

Die Bleche werden 1 Minute bei 82°C mit einem sauren Reinigungsmittel gereinigt und gespült.

Einige Bleche werden 15 Sekunden bei Raumtemperatur in verschiedene wäßrige Mittel getaucht, die 2,0 g/l Ammonium-zirkoniumcarbonat, berechnet als ZrO<sub>2</sub>, in und 2,0 g/l eines der in der nachstehenden Tabelle IX aufgezählten Polymerisate enthalten. Andere Versuchsbleche werden 15 Sekunden bei Raumtemperatur in einen zweiten Satz von Mittein getaucht, die 1,0 g/l Ammonium-zirkoniumcarbonat, berechnet als ZrO<sub>2</sub>, 15 und 1,0 g/l eines der in der nachstehenden Tabelle X aufgeführten Polymerisate enthalten, während der Kontrollsatz lediglich gereinigt wird.

Alle Bleche werden dann 1 Minute bei 205°C getrocknet, mit meinem weißen Anstrichmittel auf Acrylbasis angestrichen und dann dem Wassertauchversuch und anschließend dem Rückseitenschlagversuch, dem Kreuzschraffierungsversuch und dem Naturversuch unterworfen. Die Ergebnisse sind aus den Tabelle IX und X ersichtlich.

#### Tabelle IX

THE RESIDENCE OF THE PROPERTY OF THE PROPERTY

| 2 g/l Ammonium-<br>zirkoniumcarbonat<br>+ 2,0 g/l Polymerisat | Rück-<br>seiten-<br>schlag-<br>versuch | K reuz-<br>schraf-<br>fierungs-<br>versuch | Natur-<br>ver-<br>such |
|---------------------------------------------------------------|----------------------------------------|--------------------------------------------|------------------------|
| Kontrolle                                                     | 0                                      | U                                          | O                      |
| Polyacrylsäure                                                | 10                                     | 10                                         | 10                     |
| Polyacrylsäure                                                | 9                                      | 2                                          | 6                      |
| Ammonium-polyacrylat                                          | 4                                      | 10                                         | 10                     |
| Tabelle X                                                     |                                        |                                            |                        |
| 1 g/l Ammonum-zirko-<br>niumcarbonat + 1 g/l Poly-<br>merisat | Rück-<br>seiten-<br>schlag-<br>versuch | K reuz-<br>schraf-<br>fierungs-<br>versuch | Natur-<br>ver-<br>such |
| Kontrolle                                                     | 0                                      | 0                                          | 0                      |
| Polyacrylsäure                                                | 10                                     | 10                                         | 10                     |

#### Beispiel II

## Beschichten von blankem Stahl

Bei diesem Beispiel werden 5,1 × 10,2 cm große Stahlbleche verwendet, die 1 Minute bei 77°C mit einem alkalischen Reinigungsmittel gereinigt und dann gespült werden. Die Versuchsbleche werden mit meinem wäßrigen Mittel behandelt, das 1,0 g/l Ammonium-zirkoniumcarbonat, berechnet als ZrO<sub>2</sub>, und 1,0 g/l Polyacrylsäure enthält, und danach 1 Minute bei 205° C getrocknet. Ein Satz Kontrollbleche wird nur gereinigt urd getrocknet. Alle Bleche werden anschließend mit einem weißen Anstrichmittel auf Acrylbasis gestrichen und dann zuerst dem Reinigungs-Tauch-Versuch und sodann dem Kreuzschraffierungsversuch und dem Naturversuch unterworfen. Die Ergebnisse sind in Tabelle XI angegeben.

Tabelle XI

| Behandlung                             | Kreuzschraf-<br>fierungs-<br>versuch | Natur-<br>ver-<br>such |
|----------------------------------------|--------------------------------------|------------------------|
| Ammonium-zirkonium-                    | 9,0                                  | 9,5                    |
| carbonat + Polyacrylsäure<br>Kontrolle | 0                                    | 0                      |

# Beispiel 12

#### Beschichten von blankem Zink

Bei diesem Beispiel werden 5,1 × 10,2 cm große verzinkte Stahlbleche verwendet, die 1 Minute bei 77°C mit einem alkalischen Reinigungsmittei gereinigt und dann gespült werden. Die Versuchsbleche werden mit einem wäßrigen Mittel behandelt, das 1,0 g/l Ammonium-zirkoniumcarbonat, berechnet als ZrO<sub>2</sub>, und 1,0 g/l Polyacrylsäure enthält, und danach 1 Minute bei 205°C getrocknet. Ein Satz Kontrollbleche wird nur mit dem alkalischen Reinigungsmittel gereinigt, gespült und getrocknet. Alle Bleche werden anschließend mit einem weißen Anstrichmittel auf Acrylbasis gestrichen und dann zuerst dem Reinigungs-Tauch-Versuch und sodann dem Kreuzschraffierungsversuch und dem Naturversuch unterworfen. Die Ergebnisse sind in der Tabelle XII angegeben.

#### 45 Tabelle XII

|   | Behandlung                                       | Kreuzschraf-<br>fierungs-<br>versuch | Natur-<br>ver-<br>such |
|---|--------------------------------------------------|--------------------------------------|------------------------|
| ) | Ammonium-zirkonium-<br>carbonat + Polyacrylsäure | 10                                   | 10                     |
|   | Kontrolle                                        | 2                                    | -4                     |