EEE Final Lecture

DC Circuit

Circuit analysis: Node analysis

- 1. Identify all nodes.
- 2. Let ground reference node.
- 3. Label non-reference nodes.
- 4. Write a KCL equation for each node using Ohm's Law. (sum the currents leaving the node and set equal to zero)
- 5. Solve those equations for voltages.

Note: Reference node এবং non-reference node এর মাঝখানে যদি কোন voltage source থাকে, তবে সেই voltage source এর voltage-ই হবে non-reference node এর voltage।

Circuit analysis: Mesh analysis

- 1. Identify the meshes/loops.
- 2. Assign a current variable to each loop, using a consistent direction. (clockwise or counterclockwise)
- 3. Write a KVL equations for each loop using Ohm's Law
- 4. Solve those equations for loop currents.
- 5. Solve for other element currents and voltages you want using Ohm'sLaw.

Note: যদি কোন লুপে একটা মাত্র current source থাকে, তবে সেটিই হবে ঐ লুপের loop current হবে।

Circuit theorem: Superposition

- 1. Open current sources and short voltage sources.
- 2. Find the output (voltage or current) due to that active source using nodal or mesh analysis.
- 3. Repeat step 1 & 2 for each of the other independent sources.
- 4. Find the total contribution by adding algebraically all the contributions due to the independent sources.

Circuit theorem: Thevenin

- 1. Open Current Sources, Short Voltage Sources and Open Load Resistor.
- 2. Calculate the open circuit resistance. This is the Thevenin resistance (R_{TH}).
- 3. Calculate the open circuit voltage. This is the Thevenin Voltage (V_{TH}).
- 4. Now, redraw the circuit with measured V_{TH} and R_{TH} . This is the equivalent Thevenin circuit.
- 5. Now find the total current flowing through load resistor by using the Ohm's Law: $I_T = \frac{V_{TH}}{(R_{TH} + R_L)}$.

Circuit theorem: Norton

- 1. Short the load resistor.
- 2. Calculate the short circuit current. This is the Norton Current (I_N) .
- 3. Open Current Sources, Short Voltage Sources and Open Load Resistor.
- 4. Calculate the open circuit resistance. This is the Norton resistance (R_N) .
- 5. Now, redraw the circuit with measured I_N and R_N . This is the equivalent Norton circuit.
- 6. Now find the Load current flowing through load resistor by using Current divider rule.

2

Tips: Use Thevenin theorem to calculate V_{TH} and R_{TH} . Then $I_N = \frac{V_{TH}}{R_{TH}}$

AC Circuit

Class-1: Complex numbers

Exercise: 14.15-14.26 | Page: 600

Rectangular : $a \pm jb$

Trigonometrical : $E(\cos\theta \pm \sin\theta)$

Exponential : $E \cdot e^{j\theta}$

Polar : $E \angle \pm \theta$

 $E = \sqrt{a^2 + b^2}$

 $a = E \cos \theta$

 $\theta = \tan^{-1} \frac{b}{a}$

 $b = E \sin \theta$

ullet Use Rectangular form for $\ : \ + \ , -$

• Use Polar form for $: \times, \div$

Class-2: Sinusoidal Expression

Exercise: 14.2-14.7 | Page: 584

Pure Resistive

Pure Inductive

Pure Capacitive

$$v = V_m \sin \omega t$$

$$i = I_m \sin \omega t$$

$$I_m = \frac{V_m}{R}$$

$$v = V_m \sin \omega t$$

$$i = I_m \sin{(\omega t - 90^\circ)}$$

$$I_m = \frac{V_m}{X_L} = \frac{V_m}{\omega L}$$

$$i = I_m \sin{(\omega t + 90^\circ)}$$

 $v = V_m \sin \omega t$

$$I_m = \frac{V_m}{X_C} = \frac{V_m}{\frac{1}{\omega C}}$$

Class-3: Impedance

Exercise: 16.1, 16.2, 16.3

Impedance (z): The ratio of the phasor voltage (V) to the phasor current (I) in ohms.

- In pure resistive circuit, volatge (v) and current (i) stay in phase.
- In pure inductive circuit, voltage (v) leads the current (i) by 90°.
- In pure capacitive circuit, current (i) leads the voltage (v) by 90°.

Element	Impedance in Rectangular form	Impedance in Polar form
(Resistor) R	$Z_R = R$	$Z_R \angle 0^\circ$
(Inductor) L	$Z_L = j X_L = j\omega L$	$Z_L \angle 90^\circ$
(Capacitor) C	$Z_C = -j X_C = -j \frac{1}{\omega C}$	$Z_C \angle - 90^\circ$

Class-4: Power Factor

P.f is a measure of how effectively electrical equipment converts electric power into useful power.

1. Pf is the ratio of active power to the total power.

$$P.f = \frac{\text{Active power}}{\text{Total power}} = \frac{P}{S} = \frac{P}{P+Q}$$

2. The cosine angle between the current and the voltage is called pf.

Pf =
$$\cos \theta$$

P = VI $\cos \theta$ (watt)
Q = VI $\sin \theta$ (VAR)

Magnetic Circuit

Class-1: Formulas

Flux density:

$$B = \frac{\Phi}{A}$$
 $\Phi = \text{Flux (Wb)}$
 $A = \text{Area (m}^2)$

Permeability:

$$\mu = \frac{B}{H}$$
 $B = \text{flux density (T)}$
 $H = \text{magnetizing force (At/m)}$

Realtive Permeability:

$$\mu_r = \frac{\mu}{\mu_o} \mid \mu_o = 4\pi \times 10^7 \text{ (Wb/A.m)}$$

$$NI = Hl$$

Where,
$$H =$$
 magnetizing force (At/m)
 $B =$ flux density (T)
 $I =$ current (A)
 $l =$ length (m)

- ★ 1 mitre = 39.37 inch
- ⋆ l = total length

E.g:
$$l_{ab} = l_{cd} = 0.5$$
 in and $l_{bc} = 4$ in

$$\therefore l = 0.5 + 4 + 0.5 = 5$$
 in $= \frac{5}{39.37}$ m