Chapter 2. Unconventional Fixed-Radix Number Systems

§2.1. Negative-Radix Number Systems

If we allow the radix to be a negative number, $r = -\beta, \beta \ge 2$, then we have a negative-radix number system, where a given value X can be represented as $X = (x_{n-1}, \dots, x_0)_{-\beta}$, and its value can be given by

$$X = \sum_{i=0}^{n-1} x_i (-\beta)^i$$

where the weight is given by

$$(-\beta)^i = \begin{cases} \beta^i & \text{if } i \text{ is even} \\ -\beta^i & \text{if } i \text{ is odd.} \end{cases}$$

§2.1.1. Negative decimal number system

Example 1 Let $\beta = 10$, then we have nega-decimal system.

$$(182)_{-10} = 1 \times (-10)^2 + 8 \times (-10)^1 + 2 \times (-10)^0 = 22.$$

$$(123)_{-10} = 1 \times (-10)^2 + 2 \times (-10)^1 + 3 \times (-10)^0 = 83$$

For an integer in nega-decimal system of length three, $X = (x_2, x_1, x_0)_{-10}$, the maximal representable value is

$$\max\{(x_2, x_1, x_0)_{-10}\} = (909)_{-10} = 909,$$

and the minimal representable value is

$$\min\{(x_2, x_1, x_0)_{-10}\} = (090)_{-10} = -90.$$

So, the representation range for this number system is [-90, 909].

- Representation of negative numbers with negative-radix systems are efficient. (No sign is needed to represent a signed number.)
- The sign of the number is decided by the first nonzero digit.
- The arithmetic operations with negative-radix representation are slightly more complex.

Arithmetic operations

Example 2 Let $A = (182)_{-10}$ and $B = (123)_{-10}$ be two numbers in nega-decimal system. Then we have the following

$$A + B = (182)_{-10} + (123)_{-10} = (105)_{-10}.$$

$$A - B = (182)_{-10} - (123)_{-10} = (079)_{-10} = (79)_{-10}.$$

What about changing A to $(192)_{-10}$, and then performing A - B?

Conversion between decimal and nega-decimal systems

Example 3 Let $A = (1824)_{-10}$, $B = (1824)_{10}$ and $C = (43.6875)_{10}$ be three numbers in either nega-decimal or decimal system.

(1). Convert A into decimal number system:

$$A = (1824)_{-10} = -1020_{10} + 804_{10} = -216_{10}.$$

(2). Convert B into nega-decimal number system (Method 1).

$$B = (1824)_{10}$$

$$= 10000_{10} - 8176_{10}$$

$$= 10000_{10} - 9000_{10} + 824_{10}$$

$$= 10000_{10} - 9000_{10} + 900_{10} - 76_{10}$$

$$= 10000_{10} - 9000_{10} + 900_{10} - 80_{10} + 4_{10}$$

$$= (19984)_{-10}.$$

(3). Convert C into nega-decimal number system (Method 2)

Integer: Decimal-to-Nega-decimal						
Dividing-by-(-10)	Quotient	Remainder (keep it non-negative)				
44/(-10)	-4	$4 = x_0$				
-4/(-10) = (-10+4)/(-10)	1	$6 = x_1$				
1/(-10)	0	$1 = x_2$				

Fraction: Decimal-to-Nega-decimal					
Multiplying-by-(-10)	Fiplying-by- (-10) Fractional part (keep it within the range)				
$-0.3125 \times (-10)$	-0.875	$4 = x_{-1}$			
$-0.875 \times (-10)$	-0.25	$9 = x_{-2}$			
$-0.25 \times (-10)$	-0.5	$3 = x_{-3}$			
$-0.5 \times (-10)$	0	$5 = x_{-4}$			

In the second table the range is referred to an interval that a fractional number in nega-decimal form can represent. For nega-decimal system, the range is given by [-10/11, +1/11] = [-0.909, +0.091].

§2.1.2. Negative binary number system

Example 4 Let $X = (x_4x_3x_2x_1x_0)_{-2}$ be a nega-binary number system with n = 5 digits. Its range can be given as $[X_{Min}, X_{Max}]$ and

$$X_{Max} = 10101_{-2} = 16 + 4 + 1 = 21_{10},$$
 and $X_{Min} = 01010_{-2} = -8 - 4 = -12_{10}.$

Its arithmetic operations and conversions are similar to those for nega-decimal system discussed in the last section. Conversion from nega-binary to binary is simple and can be realized with a binary subtraction operation.

On the other hand, for a given binary number, conversion to nega-binary representation can be realized with steps similar to those shown in Part (3) in Example 3. The range for a fractional number in nega-binary system can also be obtained as [-0.667, +0.333], which can be shown as follows: Let F be a fractional number in nega-binary system. Then

$$\begin{cases} F_{\text{max}}^{-} = -(2^{-1} + 2^{-3} + 2^{-5} + 2^{-7} + \cdots) = -0.667_{10} \\ F_{\text{max}}^{+} = (2^{-2} + 2^{-4} + 2^{-6} + 2^{-8} + \cdots) = 0.333_{10} \end{cases}$$

§2.2. A General Class of Fixed-Radix Number Systems

Each n-digit number system is characterized by a positive radix β , and a vector Λ of length n, $\Lambda = (\lambda_{n-1}, \lambda_{n-2}, \dots, \lambda_0)$ where $\lambda_i \in \{-1, 1\}$. Such a system can be identified by $< n, \beta, \Lambda >$. Then the value of number

$$X = (x_{n-1}, \dots, x_0)$$

in the system $< n, \beta, \Lambda >$ can be decided by

$$X = \sum_{i=0}^{n-1} \lambda_i x_i \beta^i.$$

The use of λ_i allows us to select between positive and negative weights. For example,

- $\lambda_i = 1$ for every *i*: positive-radix system
- $\lambda_i = (-1)^i$ for every *i*: negative-radix system
- $\lambda_{n-1} = -1$, and $\lambda_i = 1$ for $i = 0, 1, \dots, n-2$: radix-complement system.

§2.3. Signed-Digit (SD) Number Systems

For a radix-r number system, the digit set is by default defined as $\{0, 1, \ldots, r-1\}$. If this digit set is extended to including some signed digits, say, $\{-(r-1), -(r-2), \ldots, -1, 0, 1, \ldots, r-1\}$, then we have a radix-r signed-digit number system.

Let $\overline{x} = -x$, then the digit set for the radix-r signed-digit number system is given by

$$\{\overline{r-1},\overline{r-2},\ldots,\overline{1},0,1,\ldots,r-2,r-1\}.$$

Example 5 For r=10, the allowed digits are $\{\overline{9},\ldots,\overline{1},0,1,\ldots,9\}$, and when n=2, $\overline{9}$ $\overline{9} \le X \le 99$, which includes 199 numbers. However with two digits x_1 and x_2 each having 19 possibilities there are $19^2=361$ representations. So the number system is redundant. Some numbers can have more than one representation. For example, $(1)=(\overline{1}\ \overline{9})=1, (0\ \overline{1})=(\overline{1}\ 9)=-1$. Out of the 361 representations, 361-199=162 are redundant and thus there is 162/199=81% redundancy.

To reduce the amount of redundancy, we can choose digit set as

$$x_i \in \{\overline{a}, \overline{a-1}, \dots, \overline{1}, 0, 1, \dots, a-1, a\}, \text{ with } \left\lceil \frac{r-1}{2} \right\rceil \le a \le r-1.$$

At least r different digits are needed to represent a number in a radix-r number system. With $\overline{a} \le x_i \le a$ we have 2a + 1 digits.

$$2a+1 \ge r \implies a \ge \left\lceil \frac{r-1}{2} \right\rceil.$$

One advantage of performing addition/subtraction using SD representations is that the carry propagation chains can be eliminated. For the following operation:

$$(x_{n-1},\ldots,x_0)\pm(y_{n-1}\ldots,y_0)=(s_{n-1}\ldots,s_0),$$

we want to break the carry chains by having s_i depend only on the four operand digits x_i, y_i, x_{i-1} and y_{i-1} .

Algorithm 1 *Perform radix-r signed-digit number addition*

$$(x_{n-1},\ldots,x_0)+(y_{n-1},\ldots,y_0)=(s_{n-1},\ldots,s_0), \text{ where } x_i,y_i,s_i\in\{\overline{a},\ldots,a\},$$

without generating carry chains.

Step 1. Compute an interim sum u_i and a carry digit c_i : $u_i = x_i + y_i - rc_i$, where

$$c_{i} = \begin{cases} \frac{1}{1} & \text{if } (x_{i} + y_{i}) \geqslant a \\ 0 & \text{if } |x_{i} + y_{i}| < a \end{cases}$$

Step 2. Calculate the final sum digit: $s_i = u_i + c_{i-1}$.

Example 6 Let r=10 and a=6. The digit set is $x_i \in \{\overline{6}, \dots, \overline{1}, 0, 1, 6\}$. Then we have $u_i=x_i+y_i-10c_i$ and

$$c_{i} = \begin{cases} \frac{1}{1} & \text{if } (x_{i} + y_{i}) \ge 6\\ 1 & \text{if } (x_{i} + y_{i}) \le \overline{6}\\ 0 & \text{if } |x_{i} + y_{i}| < 6 \end{cases}$$

Lets take as an example the following addition of two decimal numbers 4536 + 1466.

In the table, the symbol " \leftarrow " denotes that a carry digit is generated. Now we want to use Algorithm 1 to perform the addition so that the carry chain can be eliminated, which is shown as follows.

In the following we are going to show that Algorithm 1 can also be used for converting a conventional representation into the SD representation.

Example 7 Convert the decimal number 27956 into a decimal SD representation with a = 6.

Convert the SD representation back into the conventional decimal representation:

$$3\ \overline{2}\ \overline{1}\ 6\ \overline{4} = 30060 - 2104 = 27956.$$

To guarantee the carry chains are broken, one has to make sure $s_i = u_i + c_{i-1} \le a$. So $|u_i| \le a - 1$ since $|c_{i-1}| \le 1$.

Let us check with the extreme cases for u_i so that we can find the condition for a which makes Algorithm 1 work properly. The largest value that $x_i + y_i$ can assume is 2a. When $x_i + y_i = 2a$ we have $c_i = 1$ and $u_i = 2a - r$. Since $a \le r - 1$, it follows $u_i = 2a - r \le a - 1$ or $a \le r - 1$, which is obvious.

When $x_i + y_i = a$ we have $c_i = 1$ and $u_i = a - r < 0$. Then from $|u_i| = r - a \le a - 1$, it follows $a \ge \left\lceil \frac{r+1}{2} \right\rceil$.

So we conclude that the condition for choosing a radix-r SD number system to break carry chains using Algorithm 1 is

$$\left\lceil \frac{r+1}{2} \right\rceil \le a \le r-1.$$

For decimal SD number system, the above condition is $a \ge 6$.

§2.4. Binary SD Number System

When r=2 and a=1, the digit set is given by $\{\overline{1},0,1\}$. Since the condition $\left\lceil \frac{r+1}{2} \right\rceil = 2 \le a$ can not be satisfied, there is no guarantee that a new carry will not be generated using Algorithm 1.

Rewrite Algorithm 1 for the binary case:

Step 1. Compute an interim sum u_i and a carry digit c_i : $u_i = x_i + y_i - 2c_i$, where

$$c_{i} = \begin{cases} \frac{1}{1} & \text{if } (x_{i} + y_{i}) \geqslant 1, \\ \frac{1}{1} & \text{if } (x_{i} + y_{i}) \leqslant \overline{1}, \\ 0 & \text{if } |x_{i} + y_{i}| = 0. \end{cases}$$

Step 2. Calculate the final sum digit: $s_i = u_i + c_{i-1}$.

The above two steps are equivalent to the following table.

$x_i y_i$	00	01	$0\overline{1}$	11	$\overline{1}\overline{1}$	$1\overline{1}$
c_i	0	1	1	1	1	0
u_i	0	$\overline{1}$	1	0	0	0

Table 1: Binary case for Algorithm 1.

In the following example we show that using Table 1 does not guarantee that a new carry will not be generated.

Example 8 Perform -9 + 29.

When i=3, $u_3=c_2=\overline{1}$ so there is a new carry $c_3=\overline{1}$ is generated. Another possible place where a new carry may be generated is $u_4=c_3=1$.

There are two scenarios that a new carry will be generated with Table 1:

Case 1: $c_{i-1} = u_i = 1$

Case 2: $c_{i-1} = u_i = \overline{1}$.

For Case 1, when $c_{i-1}=1$ from Table 1 we have $x_{i-1}y_{i-1}=11$ or 01. When $u_i=1$ from Table 1 we have $x_iy_i=0$ $\overline{1}$ and $c_i=\overline{1}$. In this case, when $x_{i-1}y_{i-1}=11$ or 01 we make the following changes:

$$\left\{ \begin{array}{ll} u_i & = & \underline{1} \\ c_i & = & \overline{1} \end{array} \right. \Longrightarrow \left\{ \begin{array}{ll} u_i & = & \overline{1} \\ c_i & = & 0 \end{array} \right.$$

For Case 2, when $c_{i-1}=\overline{1}$ from Table 1 we have $x_{i-1}y_{i-1}=\overline{1}$ $\overline{1}$ or 0 $\overline{1}$. When $u_i=\overline{1}$ from Table 1 we have $x_iy_i=01$ and $c_i=1$. In this case, when $x_{i-1}y_{i-1}=\overline{1}$ $\overline{1}$ or 0 $\overline{1}$ we make the following changes:

$$\left\{ \begin{array}{ll} u_i & = & \overline{1} \\ c_i & = & 1 \end{array} \right. \Longrightarrow \left\{ \begin{array}{ll} u_i & = & 1 \\ c_i & = & 0 \end{array} \right.$$

After incorporating the above changes into Table 1, we have the following Table 2.

x_iy_i	00	01	01	0 1	$0\overline{1}$	11	$\overline{1}$ $\overline{1}$
$x_{i-1}y_{i-1}$	_	neither	at least	neither	at least	_	_
		is $\overline{1}$	one is $\overline{1}$	is $\overline{1}$	one is $\overline{1}$		
c_i	0	1	0	0	$\overline{1}$	1	1
u_i	0	$\overline{1}$	1	$\overline{1}$	1	0	0

Table 2: Modified Addition Algorithm for Binary SD Representations.

Example 9 Repeating Example 8 using the algorithm shown in Table 2.

Clearly, there is no carry generated.