000

Analyse II: Intégration

Pr. L. EZZAKI

Ecole Supérieure de l'Education et de Formation Université Ibn Zohr - Agadir

23 mars 2020

Chapitre III : Equations différentielles

Défintion 1

Soit $n \in \mathbb{N}^*$, on appelle équation différentielle d'ordre n et d'inconnue y toute relation de la forme

$$y^{(n)}(x) = f(x; y(x); y'(x); ...; y(n-1)(x))$$
 (1)

avec les conditions initiales

$$y(x_0) = y_0, \ y'(x_0) = y_1, \dots y^{(n-1)}(x_0) = y_{n-1}$$
 (2)

où f est une fonction définie sur une partie de \mathbb{R}^{n+1} , $(x_0; y_0; ...; y_{n-1})$ est vecteur fixé dans \mathbb{R}^{n+1} et l'inconnue est une fonction y de classe C^n définie sur un intervalle ouvert de \mathbb{R} contenant x_0 .

Défintion 2

On appelle solution d'une équation différentielle toute fonction y de classe C^n définie sur un intervalle ouvert contenant x_0 et vérifiant l'équation (1) ainsi que les conditions initiales (2).

La solution est dite maximale si l'intervalle ouvert est maximal.

Example 1:

y' = y + x avec y(0) = 0 est une équation différentielle du premier ordre. Ici, nous avons bien entendu

$$f(x;y(x))=y(x)+x$$

On peut vérifier que toute fonction de la forme $y(x) = Ke^x - x - 1$, avec K constante arbitraire, est une solution de l'équation et que $y(x) = e^x - x - 1$ est une solution qui vérifie la condition initiale y(0) = 0. Il s'agit de la solution maximale qui vérifie la condition initiale donnée car elle est définie sur \mathbb{R} .

Pr. EZZAKI Analyse II: Intégration

Equations à variables séparables

Définition 4

Une équation différentielle du premier ordre

$$y'(x) = f(x; y(x)) \tag{3}$$

est dite à variables séparables si elle peut être ramenée à la forme suivante

$$g(y(x))y'(x) = h(x)$$
(4)

où g et h sont deux fonctions définies sur un intervalle ouvert et continues.

Exemple 2:

L'équation $y'(x) = x^2y(x) + x^2$ avec y(0) = 1 est à variables séparables. En effet, on peut la ramener à la forme

$$\frac{y'(x)}{y(x)+1}=x^2$$

par suite, en passant aux primitives, on a

$$\ln|y+1| = \frac{1}{3}x^3 + K$$

ce qui conduit à

$$y(x) = K_1 e^{\frac{1}{3}x^3} - 1$$

K étant une constante arbitraire non nulle. La condition initiale y(0) = 1entraine $K_1 = 2$.

Exemple 3:

L'équation (x^2+1) $y'(x)=y^2-1$ est à variables séparables. On a $\frac{y'}{y^2-1}=\frac{1}{x^2+1}$ $\frac{y}{2(y-1)}-\frac{y}{2(y+1)}=\frac{1}{x+1}$

En intégrant, les deux membres, et après simplification, on trouve

$$\ln\left|\frac{y-1}{y+1}\right| = 2\operatorname{Arctan}(x) + K$$

et il sera possible d'exprimer y en fonction de x.

Equations différentielles du premier ordre

Equations différentielles linéaires du premier ordre

Définition 5

On appelle équation différentielle linéaire du premier ordre toute équation différentielle de la forme

$$y'(x) = a(x)y(x) + b(x)$$
 (5)

où a et b sont deux fonctions supposées définies et continues sur un intervalle ouvert donné de \mathbb{R} . L'équation y'(x) = a(x)y(x) est dite équation homogène associée ou équation sans second membre. Elle sera souvent notée "ssm".

Théorème 6

Soit y_0 une solution particulière de l'équation avec second membre, alors y est solution de l'équation avec second membre si et seulement si $(y-y_0)$ est solution de l'équation sans second membre.

Preuve:

On a d'une part, y_0 vérifie

$$y_0'(x) = a(x)y_0(x) + b(x)$$

d'autre part, si y est une solution quelconque de l'équation avec second membre, y vérifie

$$y'(x) = a(x)y(x) + b(x)$$

ceci équivaut en soustrayant membre à membre les deux équations à

$$(y - y_0)(x) = a(x)[(y - y_0)(x)]$$

Ce qui prouve le théorème.

Equations différentielles du premier ordre

Remarque : En pratique, pour résoudre l'équation avec second membre, il suffit d'ajouter une solution particulière de l'équation avec second membre à la solution générale de l'équation sans second membre.

Méthode de la variation de la constante

Pour avoir une solution particulière de l'équation avec second membre, la méthode de la variation de la constante est d'une grande utilité. A partir de la solution générale de l'équation ssm

$$y(x) = Ke^{\int a(x)dx}$$

la méthode consiste à considérer K comme une fonction de x et à remplacer dans l'équation avec second membre. On aura

$$y'(x) = K'(x)e^{\int a(x)dx} + a(x)K(x)e^{\int a(x)dx}$$

Méthode de la variation de la constante

Pour avoir une solution particulière de l'équation avec second membre, la méthode de la variation de la constante est d'une grande utilité.

A partir de la solution générale de l'équation ssm

$$y(x) = Ke^{\int a(x)dx}$$

la méthode consiste à considérer K comme une fonction de x et à remplacer dans l'équation avec second membre. On aura

$$y'(x) = K'(x)e^{\int a(x)dx} + a(x)K(x)e^{\int a(x)dx}$$

En reportant dans l'équation avec second membre, on obtient

$$K'(x) = b(x)e^{-\int a(x)dx}$$

Par suite, on a $K(x) = \int b(x)e^{-\int a(x)dx}dx$ et il suffit de trouver une seule fonction K pour déduire une solution particulière de l'équation avec second membre.

Exemple 4:

Considérons l'équation différentielle $xy'(x) = -y(x) + x^2$ avec la condition initiale y(0) = 0. On peut noter que, dans la forme donnée, l'équation différentielle n'impose pas la condition $x \neq 0$. Pour la résoudre, on peut noter que c'est une équation differentielle linéaire du premier ordre dont l'équation ssm associée à variables séparables

$$\frac{y'(x)}{y(x)} = -\frac{1}{x}$$

Exemple 4:

Considérons l'équation différentielle $xy'(x) = -y(x) + x^2$ avec la condition initiale y(0) = 0. On peut noter que, dans la forme donnée, l'équation différentielle n'impose pas la condition $x \neq 0$. Pour la résoudre, on peut noter que c'est une équation differentielle linéaire du premier ordre dont l'équation ssm associée à variables séparables

$$\frac{y'(x)}{y(x)} = -\frac{1}{x}$$

Cette forme suppose $x_0 \neq 0$ et $y_0 \neq 0$, et la résolution donne les solutions $y(x) = K\frac{1}{x}$, K étant une constante qui dépend des conditions initiales. La solution de l'équation complète est

$$y(x) = K\frac{1}{x} + \frac{1}{3}x^2$$

Cette solution est définie sur \mathbb{R}_+^* ou \mathbb{R}_-^* selon la condition initiale.

Equations homogènes du premier ordre

Ce sont les équations du type

$$y'(x) = f(\frac{y(x)}{x}) \tag{6}$$

Pour résoudre ce genre d'équations, le changement de variable $y(x) = x\alpha(x)$, où α est une fonction à déterminer, permet de transformer l'équation initiale en une équation du premier ordre à variables séparables.

Exemple

$$x^{2}y'(x) = y^{2}(x) + xy(x) + x^{2}$$

est une équation homogène. En effet, elle peut être ramenée à la forme

$$y'(x) = \frac{y^2(x)}{x^2} + \frac{y(x)}{x} + 1$$

dans ce cas, f est la fonction vérifiant $f(t) = t^2 + t + 1, \forall x \in \mathbb{R}$. Après simplication, le changement de variable précédent permet d'obtenir

$$\alpha'(x)x + \alpha(x) = \alpha^2(x) + \alpha(x) + 1$$
 c'est à dire $\frac{\alpha'(x)}{\alpha^2(x) + 1} = \frac{1}{x}$

D'où $\alpha(x) = \tan(\ln|x| + K)$, et par suite, $y(x) = x \tan(\ln|x| + K)$

Equations de Bernoulli

Ce sont les équations différentielles du premier ordre de la forme

$$y'(x) + a(x)y(x) + b(x)y^{n}(x) = 0$$
, avec $n \ge 2$

où a et b sont des fonctions définies sur un intervalle ouvert de $\mathbb R$ et supposées continues. La méthode de résolution consiste à diviser par y^n ce qui conduit, modulo un changement de variable, à une équation différentielle linéaire du premier ordre. En effet, on

$$\frac{y'(x)}{y^n(x)} + \frac{a(x)}{y^{n-1}(x)} + b(x) = 0$$

Si on pose $z(x) = \frac{1}{y^{n-1}(x)}$, on a

$$\frac{1}{1-n}z'(x) + a(x)z(x) + b(x) = 0$$

Exemple

 $y'(x) + x^2y(x) + x^5y^2(x) = 0$ avec y(0) = 1 est de Bernoulli. On pose donc $z(x) = \frac{1}{v(x)}$ et on obtient l'équation

$$-z'(x) + x^2 z(x) + x^5 = 0$$

La résolution de l'équation ssm donne $z(x) = Ke^{x^3/3}$, et la variation de la constante donne $K'(x) = x^5 e^{-x^3/3}$.

A l'aide d'une intégration par parties, on obtient

$$K(x) = (-x^3 - 3) e^{-x^3/3}$$
, par suite $z(x) = Ke^{x^3/3} - x^3 - 3$, et finalement $y(x) = \frac{1}{Ke^{x^3/3} - x^3 - 3}$, ou la constante K est à déterminer selon la condition initiale. Dans notre cas, on a

$$y(x) = \frac{1}{4e^{x^3/3} - x^3 - 3}$$

Equation de Riccati

Ce sont les équations différentielles du premier ordre de la forme

$$y'(x) = a(x)y^{2}(x) + b(x)y(x) + c(x)$$

où a,b et c sont des fonctions définies sur un intervalle ouvert de $\mathbb R$ et supposées continues. Quand on connait une solution particulière y_0 de cette équation, on fait le changement de variable $z=y-y_0$ L'intérêt est que nous obtenons une équation qui est de Bernoulli en z

$$z'(x) = a(x)z^{2}(x) + (2a(x)y_{0}(x) + b(x))z(x)$$

Equations différentielles linéaires du second ordre à coefficients constants

Ce sont les équations différentielles linéaires de la forme

$$y''(x) + ay'(x) + by(x) = c(x)$$
, avec $n \ge 2$

où a et b sont deux constantes réelles et c une fonction supposée continue sur un intervalle ouvert de \mathbb{R} . c'est le second membre de l'équation.

Pr. EZZAKI ________ESEFA

Comme pour les équations différentielles linéaires du premier ordre, on a le résultat suivant :

Théorème

Soit y_0 une solution particulière de l'équation avec second membre, alors y est solution de l'équation avec second membre si et seulement si $(y-y_0)$ est solution de l'équation sans second membre.

Comme pour les équations différentielles linéaires du premier ordre, on a le résultat suivant :

Théorème

Soit y_0 une solution particulière de l'équation avec second membre, alors y est solution de l'équation avec second membre si et seulement si $(y-y_0)$ est solution de l'équation sans second membre.

Remarque:

En pratique, pour résoudre l'équation avec second membre, il suffit d'ajouter une solution particulière de l'équation avec second membre à la solution générale de l'équation sans second membre.

Pr. EZZAKI Analyse II: Intégration Pour résoudre l'équation l'équation ssm, on a besoin de définir l'équation caractéristique.

Définition

L'équation caractéristique associée à l'équation différentielle linéaire du second ordre est $r^2 + ar + b = 0$

Le théorème suivant permet de donner un algorithme de résolution.

Théorème

On pose $\Delta = a^2 - 4b$

• Si $\Delta > 0$ et si λ_1 et λ_2 sont les deux racines réelles distinctes de l'équation caractéristique alors la solution générale de l'équation ssm est donnée par $y(x) = K_1 e^{\lambda_1 x} + K_2 e^{\lambda_2 x}$, K_1 et K_2 étant deux constantes réelles.

Le théorème suivant permet de donner un algorithme de résolution.

Théorème

On pose $\Delta = a^2 - 4b$

- Si $\Delta > 0$ et si λ_1 et λ_2 sont les deux racines réelles distinctes de l'équation caractéristique alors la solution générale de l'équation ssm est donnée par $y(x) = K_1 e^{\lambda_1 x} + K_2 e^{\lambda_2 x}$, K_1 et K_2 étant deux constantes réelles.
- Si $\Delta=0$ et si λ_0 est la racine double de l'équation caractéristique, alors la solution générale de l'équation ssm est donnée par $y(x)=(K_1x+K_2)\,e^{\lambda_0x},\,K_1$ et K_2 étant deux constantes réelles.

Le théorème suivant permet de donner un algorithme de résolution.

Théorème

On pose $\Delta = a^2 - 4b$

- Si $\Delta > 0$ et si λ_1 et λ_2 sont les deux racines réelles distinctes de l'équation caractéristique alors la solution générale de l'équation ssm est donnée par $y(x) = K_1 e^{\lambda_1 x} + K_2 e^{\lambda_2 x}$, K_1 et K_2 étant deux constantes réelles.
- Si $\Delta=0$ et si λ_0 est la racine double de l'équation caractéristique, alors la solution générale de l'équation ssm est donnée par $y(x)=(K_1x+K_2)\,e^{\lambda_0x},\,K_1$ et K_2 étant deux constantes réelles.
- Si $\Delta < 0$ et si $\alpha + i\beta, \alpha i\beta$ sont les deux racines complexes conjuguées, alors la solution générale de l'équation ssm est donnée par $y(x) = (K_1 \cos(\beta x) + K_2 \sin(\beta x)) e^{\alpha x} K_1$ et K_2 étant deux constantes réelles.