1t12ba

Un compilateur de formules LTL en automate de Büchi généralisés

Emile ROLLEY Thomas MORIN

Université de Bordeaux

12 mai 2022

Automates de Büchi sur les transitions

Automates de Büchi sur les transitions

Même définition que pour un automate de Büchi généralisé :

$$\mathcal{A} = (S, \rightarrow, S_0, F_1, ..., F_l)$$
 avec $\forall i \in \{1, ..., l\}, F_i \subseteq \rightarrow$

Automates de Büchi sur les transitions

Même définition que pour un automate de Büchi généralisé :

$$\mathcal{A} = (S,
ightarrow, S_0, F_1, ..., F_l) \quad ext{avec} \quad orall i \in \{1, ..., l\}, \ F_i \subseteq
ightarrow$$

Figure 1: Exemple d'automate reconnaissant la formule LTL $\mathsf{GF}p$, avec en pointillé, les transitions appartenant à l'unique condition d'acceptation.

Intuition

Diviser la formule de départ φ en sous-formules plus simple (dites *réduites*) et ajouter une condition d'acceptation pour chaque sous-formule de la forme $\alpha U\beta$.

Intuition

Diviser la formule de départ φ en sous-formules plus simple (dites *réduites*) et ajouter une condition d'acceptation pour chaque sous-formule de la forme $\alpha U\beta$.

Étapes

- 1. Mise en forme normale négative de φ .
- **2**. $S_0 = \{ \varphi \}$.
- 3. Pour chaque état Y dans S :
 - ▶ Calculer un graphe orienté temporaire G_Y .
 - Ajouter dans A les transitions et les nouveaux états correspondants grâce à G_Y .

Définition (*NNF*)

Une formule est en **forme normale négative** (*NNF*) si elle est constituée uniquement des sous-formules suivantes :

- $ightharpoonup \perp, p \text{ et } \neg p \text{ avec } p \in \mathsf{AP}$
- \blacktriangleright X α et $\alpha \circledast \beta$ avec $\circledast \in \{\mathsf{U}, \mathsf{R}, \lor, \land\}$

Définition (*NNF*)

Une formule est en **forme normale négative** (*NNF*) si elle est constituée uniquement des sous-formules suivantes :

- $ightharpoonup \perp, p \text{ et } \neg p \text{ avec } p \in \mathsf{AP}$
- ▶ $X\alpha$ et $\alpha \circledast \beta$ avec $\circledast \in \{U, R, \lor, \land\}$

Définition (ensemble réduit)

Un ensemble de formules Z est **réduit** si :

- ▶ toutes les formules de Z sont **réduites**, c'est-à-dire, de la forme p, $\neg p$ ou $X\alpha$ avec $p \in AP$
- ▶ $\bot \notin Z$, et $\{p, \neg p\} \nsubseteq Z$ pour tout $p \in AP$.

Calcul de \mathcal{G}_Y

Soit $Y = Z \cup \{\alpha\}$ où α n'est pas réduite et si possible maximale (càd. n'est sous-formule d'aucune autre formule non réduite de Y). Les arêtes à partir de Y sont :

- ▶ Si $\alpha = \alpha_1 \vee \alpha_2$, $Y \rightarrow Z \cup \{\alpha_1\}$ et $Y \rightarrow Z \cup \{\alpha_2\}$.
- $Si \alpha = \alpha_1 \wedge \alpha_2, Y \to Z \cup \{\alpha_1, \alpha_2\}$
- ▶ Si $\alpha = \alpha_1 R \alpha_2$, $Y \to Z \cup \{\alpha_1, \alpha_2\}$ et $Y \to Z \cup \{X\alpha, \alpha_2\}$.
- $\blacktriangleright \ \ \text{Si} \ \alpha = \alpha_1 \ \mathsf{U} \ \alpha_2, \ \mathsf{Y} \to \mathsf{Z} \cup \{\alpha_2\} \ \mathsf{et} \ \mathsf{Y} \to^{\alpha} \mathsf{Z} \cup \{\mathsf{X}\alpha, \alpha_1\}.$

Calcul de \mathcal{G}_Y

Soit Y = Z \cup { α } où α n'est pas réduite et si possible maximale (càd. n'est sous-formule d'aucune autre formule non réduite de Y). Les arêtes à partir de Y sont :

- ▶ Si $\alpha = \alpha_1 \vee \alpha_2$, $Y \rightarrow Z \cup \{\alpha_1\}$ et $Y \rightarrow Z \cup \{\alpha_2\}$.
- $\blacktriangleright \text{ Si } \alpha = \alpha_1 \wedge \alpha_2, Y \to Z \cup \{\alpha_1, \alpha_2\}$
- ▶ Si $\alpha = \alpha_1 R \alpha_2$, $Y \to Z \cup \{\alpha_1, \alpha_2\}$ et $Y \to Z \cup \{X\alpha, \alpha_2\}$.
- ▶ Si $\alpha = \alpha_1 \cup \alpha_2$, $Y \rightarrow Z \cup \{\alpha_2\}$ et $Y \rightarrow^{\alpha} Z \cup \{X\alpha, \alpha_1\}$.

Cette construction est appliquée récursivement jusqu'à ce que toutes les feuilles du graphe soient réduites.

Calcul des transitions à partir de Y

Finalement, une fois G_Y calculé, sont ajoutées dans A:

- ▶ les transitions suivantes $\{Y \rightarrow^{\Sigma_Z} \text{next}(Z) \mid Z \in \text{Red}(Y)\}$
- ▶ pour chaque sous-formule $\alpha = \alpha_1 \cup \alpha_2$, les conditions d'acceptations $F_{\alpha} = \{Y \rightarrow^{\Sigma_Z} \operatorname{next}(Z) \mid Y \in S, Z \in \operatorname{Red}_{\alpha}(Y)\}$

Calcul des transitions à partir de Y

Finalement, une fois G_Y calculé, sont ajoutées dans A:

- ▶ les transitions suivantes $\{Y \rightarrow^{\Sigma_Z} next(Z) \mid Z \in Red(Y)\}$
- pour chaque sous-formule $\alpha=\alpha_1$ U α_2 , les conditions d'acceptations $F_\alpha=\{Y\to^{\Sigma_Z} \operatorname{next}(Z)\mid Y\in S,\ Z\in\operatorname{Red}_\alpha(Y)\}$ Avec,

$$\begin{split} \operatorname{Red}(Y) &= \{ Z \ \operatorname{r\'eduit} \mid Y \to^* Z \} \\ \operatorname{Red}_{\alpha}(Y) &= \{ Z \ \operatorname{r\'eduit} \mid Y \to^{* \setminus \alpha} Z \} \\ \operatorname{next}(Z) &= \{ \alpha \mid \mathsf{X} \alpha \in Z \} \\ \Sigma_Z &= \bigcap_{p \in Z} \Sigma_p \cap \bigcap_{\neg p \in Z} \Sigma_{\neg p} \end{split}$$

Algorithme classique

On commence par calculer la clôture de la formule : $cl(\varphi) = \{p \cup q : \neg(p \cup q) : X(p \cup q) : \neg(X(p \cup q)) : p : \neg p : q : \neg q\}; cl(\varphi)$ est constitué de 8 formules (4 formules et leurs négations).

Un exemple $\operatorname{\operatorname{\it compar\'e}}$ pour $\varphi=p\ U\ q$

On calcule ainsi les états consistants suivants :

Un exemple $\operatorname{\operatorname{\it compar\'e}}$ pour $\varphi=p\ U\ q$

On a ainsi l'automate suivant :

A peine sale ...

Algorithme Malin

On commence par mettre l'état initial : c'est la formule actuelle :

On construit ensuite le graphe temporaire pour l'état à considérer :

On ajoute ainsi les vrais états du graphe, en vert, à partir des états réduits accessibles :

On a un autre état à considérer, l'état vide. Comme il est réduit et qu'il ne contient pas d'état, il boucle sur lui même :

On retire les états temporaires. Comme il y a un Until, il faut ajouter un ensemble de transitions d'acceptations, en bleu et pointillé :

Comme d'habitude, on commence par placer l'état initial, qui est φ :

La deuxième étape est toujours la même, faire le graphe temporaire pour cet état accessible :

La troisième étape consiste en créer les nouveaux états accessibles de l'automates à partir des états réduits du graphe temporaire :

On a de nouveaux états accessibles, il faut les considérer un par un. Comme l'état $\{q\}$ est déjà réduit, il ne crée aucun état intermédiaire, et permet d'accéder à un nouvel état :

On considère maintenant l'état $\{FXq\}$, qui crée un nouveau graphe intermédiaire :

... et ainsi les nouvelles transitions suivantes :

Il reste enfin le dernier état, vide. Il est réduit, on boucle :

On a terminé. On retire les états temporaires :

On a deux formules Until. On ajoute donc deux ensembles d'états acceptants :

Figure 2: Exemple d'exécution pour la formule $\varphi=p$ U $\mathsf{FX}q$

Principales caractéristiques :

- Est implémenté en OCaml.
- Le parseur utilise ocamllex et menhir.
- ► Une soixantaine de test unitaires sont effectués avec alcotest et exécutés en intégration continue avec GitHub.
- ➤ Ne calcule pas le graphe intermédiaire mais directement l'ensemble des feuilles réduites.

En particulier, la fonction val red : state -> red_states retourne un record de type :

```
type red_states =
   { all : StateSet.t
   ; marked_by : StateSet.t FormulaMap.t
   }
```

Où all représente l'ensemble des états réduits accessible en utilisant aucune arête marquée et marked_by est une map avec comme clé les formules de la forme $\alpha = \alpha_1 \cup \alpha_2$ et en valeur l'ensemble des états réduits accessible en utilisant uniquement des arêtes marquées par α .

En particulier, la fonction val red : state -> red_states retourne un record de type :

```
type red_states =
   { all : StateSet.t
   ; marked_by : StateSet.t FormulaMap.t
   }
```

Où all représente l'ensemble des états réduits accessible en utilisant aucune arête marquée et marked_by est une map avec comme clé les formules de la forme $\alpha = \alpha_1 \cup \alpha_2$ et en valeur l'ensemble des états réduits accessible en utilisant uniquement des arêtes marquées par α .

Donc finalement:

$$\begin{aligned} \operatorname{Red}(Y) &= \mathtt{all} \cup \bigcup_{\alpha \in \mathtt{marked_by}.\mathtt{keys}} \mathtt{marked_by}[\alpha] \\ \operatorname{Red}_{\alpha}(Y) &= \operatorname{Red}(Y) \setminus \mathtt{marked_by}[\alpha] \end{aligned}$$

Principales caractéristiques :

- Est implémenté en OCaml.
- Le parseur utilise ocamllex et menhir.
- ► Une soixantaine de test unitaires sont effectués avec alcotest et exécutés en intégration continue avec GitHub.
- ➤ Ne calcule pas le graphe intermédiaire mais directement l'ensemble des feuilles réduites.
- L'automate est défini comme un graphe orienté et utilise ocamlgraph pour l'implémentation.

```
module TransBuchi : sig
  include
    Graph.Sig.I
      with type V.t =
        [ `Init of state
         `Normal of state
       and type E.label =
        [ `Normal of FormulaSet.t
        | `Acceptant of Ltl.formula list * FormulaSet.t
end
```