

Kruskals Algorithm

Minimum Spanning Trees (MST), Kruskal, Prim & Disjoint Sets — Exam Notes

What is Kruskal's algorithm used for?

Task: Build a Minimum Spanning Tree (MST) of a connected, weighted, undirected graph — i.e., connect all vertices with V-1 edges, no cycles, minimum total weight. lecture13_kruskals

Kruskal's process (high level)

- 1. Sort all edges by increasing weight.
- 2. Start with a **forest** of single-vertex trees (each vertex alone).
- Scan edges in order; add an edge iff it connects two different trees (doesn't form a cycle).
- 4. Stop when you've added **V-1** edges → that set is an MST. lecture13_kruskals

Correctness (simple English):

At the moment Kruskal considers an edge that connects two components, that edge is the **lightest** across the "cut" separating those components; by the **cut property**, it's safe (belongs to some MST). Replacing any heavier cross-cut edge in a supposed MST with this lighter one can only improve or match the weight, so Kruskal never makes a bad choice.

lecture13_kruskals

Prim's algorithm — what, how, why, performance

What: Another MST algorithm that grows a single tree instead of a forest.

How (binary heap version):

- Start from any vertex with an empty tree.
- Maintain a priority queue (min-key) of cut edges that connect the current tree to outside vertices.
- Repeatedly extract the minimum-weight eligible edge and add that new vertex and its edges to the queue.
- When all vertices are added → MST, lecture13_kruskals

Why correct (plain English):

At each step, Prim picks the **lightest edge leaving the current tree**. By the **cut property** (the tree vs. the rest is a cut), that lightest leaving edge is always safe to add; thus every step preserves optimality until the whole graph is spanned.

Performance (binary heap / PQ):

- Using a binary heap: O(|V| log |V| + |E| log |V|). (Insert/update |E| edges; |V| extractions.) lecture13_kruskals
- (For context you can remember: an adjacency-matrix + no-heap variant is O(V²), but the heap version above is what you'll usually cite.)

Kruskal — performance & space

- With efficient DSU: sort edges O(E log E); each find/union is ~amortized
 O(α(V)) → dominated by sorting ⇒ O(E log E) overall. Space O(V + E).
 lecture13_kruskals
- Naïve implementation (why it's bad):
 - Store a leader[vertex] array and, on union, scan all vertices to relabel (O(V) per successful union).
 - o With \sim V−1 unions this costs $O(V^2)$; plus sorting $O(E \log E) \rightarrow O(V^2 + E \log E)$ overall. Space still O(V + E). lecture13_kruskals

Fixing the naïve approach: Disjoint Sets (Union-Find)

The operations & what we want

- find(x): returns the representative (leader) of x's set → lets us test "same component?".
- union(x, y): merges the two sets containing x and y.

Kruskal needs these operations to be very fast. lecture13_kruskals

Forest representation (parent pointers)

- Maintain a forest where each set is a tree; every node stores a parent; roots are leaders (parent = self).
- union(A,B): make the root of one tree point to the root of the other → O(1)
 pointer change.
- find(x): walk parent pointers to the root → O(height) of the tree (can be O(N) in the worst case if trees get tall). lecture13_kruskals

Union by height (a.k.a. union by rank) — why this gives log V

Idea: Keep trees **shallow** by always attaching the **shorter** tree under the **taller** tree.

- A tree's height increases by 1 only when you merge two trees of equal height.
- Induction/doubling argument: the minimum number of nodes in a tree of height h is 2^h (because to get height h you had to combine two height h-1 trees, each with at least 2^h(h-1) nodes).
- Therefore with n total nodes, the height can be at most [log₂ n].
- That makes find worst-case O(log V) (and union is one or two finds plus a constant). lecture13_kruskals

Path compression — how it speeds things up

Mechanism: After you do find(x) and discover the root r, rewrite every node on the path from x to r so its parent points directly to r.

• This **flattens** the tree along that path.

- A single find might still take up to O(log V), but it makes **future finds** on those nodes **O(1)** until another union changes the structure.
- Combining union by rank (height) + path compression yields a structure where any sequence of m operations on n elements costs O(m · α(n)), where α is the inverse Ackermann function (grows slower than log*; ≤ 4 for all practical n). In practice this is near-constant time per op. lecture13_kruskals

Why "amortized" and not worst-case per op?

A costly find happens rarely and **pays for itself** by flattening paths, so the average over many ops becomes tiny. The formal proof (CLRS §19.4) is beyond scope, but the slides give the result and intuition. lecture13 kruskals

Bottom line for Kruskal with DSU

Sort edges O(E log E); each of the E find/union ops is ~O(α(V)) amortized ⇒ total O(E log E). This is the standard bound you quote. lecture13_kruskals

Proof ideas you can write fast in an exam

Kruskal (cut property, plain English)

When Kruskal picks an edge connecting two components, it's the cheapest
edge across that cut; any MST must use some crossing edge, and if it used a
heavier one, swapping in Kruskal's lighter edge would not hurt and can
improve. Thus every chosen edge is safe, and after V-1 such choices we have
an MST. lecture13_kruskals

Prim (same cut property)

 The current tree vs. the rest defines a cut. The lightest outgoing edge is safe by the cut property; adding it preserves optimality until all vertices are included. (Prim recap and complexity on slides.) lecture13_kruskals

Pseudocode sketches (what data structures are doing) Kruskal (with DSU):

```
sort edges by weight
make-set(v) for all vertices v
mst_weight = 0
for (u,v,w) in edges:
   if find(u) != find(v): # different components?
      mst_weight += w
      union(u, v)
return mst_weight
```

- Data structures: array/list of edges; DSU with parent[], rank[], path compression in find.
- Flow: sort → scan → conditionally union. lecture13_kruskals

Prim (binary heap):

```
pick any start vertex s

dist[v] = +∞ for all v; dist[s] = 0

push (0, s) into min-heap

while heap not empty:

(key,u) = extract-min()

if u already in tree: continue

add u to tree; add key to total

for each edge (u,v,w):

if v not in tree and w < dist[v]:

dist[v] = w

push (w, v) into heap
```

- Data structures: adjacency list; min-heap keyed by best edge weight to connect each outside vertex.
- Flow: grow one tree, always add the cheapest connecting edge. lecture13_kruskals

Naïve vs. optimized — time & space summary

Algorithm / DS	Time	Space	Notes
Kruskal (naïve "leader relabel" union)	O(V ² + E log E)	O(V+E)	Union relabels whole set each time (O(V)). lecture13_kruskals
Kruskal + DSU (rank + path compression)	O(E log E) overall (sorting dominates)	O(V+E)	Each find/union amortized O(α(V)) . lecture13_kruskals
Prim (binary heap)	**O(V	log

Quick "why" bullets for DSU complexities (write these if asked "explain why"):

- Union by height/rank ⇒ O(log V) find (worst-case): Height increases only when merging equal-height trees; minimal size doubles each increase ⇒ height ≤ log₂ n. lecture13_kruskals
- Path compression \Rightarrow amortized near-O(1): Each expensive find flattens its path; future find s are cheap. Over m operations the total time is O(m α (n)), with $\alpha \le 4$ in practice. lecture13_kruskals