3. String Resonance

PURPOSE AND BACKGROUND

THEORY AND EXPERIMENT

Figure 1: Vibrations of a string. The wavelengths of the standing wave resonance modes are $\lambda_N=2L/N$ and the frequencies are $f_N=v/\lambda_N=Nv/2L=Nf_1$, where N is the harmonic number, v the velocity of the wave along the string, and f_1 the fundamental frequency.

Table 1. Linear Mass Density of Guitar Strings

rable 1. Elifedi Mass Belistry of Guitai Stilligs				
String diameter	Linear Mass Density			
	μ (g/m)			
0.010in (0.254mm)	0.39 g/m			
0.014in (0.356mm)	0.78 g/m			
0.017in (0.432mm)	1.12 g/m			
0.020in (0.508mm)	1.50 g/m			
0.022in (0.559mm)	1.84 g/m			

Figure 2: PASCO Sonometer Model WA-9611 for studying vibrating strings. The string is excited with a Driver Coil and the vibrational modes are analyzed with a Detector Coil. The sine wave generator activates the Driver Coil. The vibrating string induces a voltage in the Detector Coil. The latter is connected to the Mac computer. The "Oscilloscope Tool" in the Electroacoustics Toolbox is used to observe the signal.

Figure 3: Sonometer string excited with a driver coil placed near one of the two bridges and harmonics recorded with an electromagnetic detector coil.

Figure 4: Sound spectrum form the G3 open string of a violin. Top figure: Spectrum from bowed string. Bottom figure: Spectrum from plucked string. Note that the bowed string has more pronounced higher harmonics resulting in a richer sound.

Table 2: Standing waves on a string

	Calculated	Observed	Location of	Location	Number	Number
	f	f	Detector	of Driver	of Nodes	of
			Coil	Coil		Antinodes
Fundamental						
1 st Overtone						
2 nd Overtone						
3 rd Overtone						