

Al

THE MACHINE LEARNING PARADIGM

Dennis A. N. Gookyi

The Machine Learning Paradigm

- Explicit coding
 - Defining rules that determine behavior of a program
 - Everything is pre-calculated and pre-determined by the programmer
 - Scenarios are limited by program complexity

- Remove brick
- Change dy direction
- Speed dx

The traditional programming paradigm

- The traditional programming paradigm
 - Consider activity detection


```
if(speed<4){
    status=WALKING;
}</pre>
```



```
if(speed<4){
    status=WALKING;
} else {
    status=RUNNING;
}</pre>
```



```
if(speed<4){
    status=WALKING;
} else if(speed<12){
    status=RUNNING;
} else {
    status=BIKING;
}</pre>
```


// ???

The machine learning paradigm

- The machine learning paradigm
 - Activity detection with machine learning

Label = WALKING

Label = RUNNING

Label = BIKING

1111111111010011101 00111110101111110101 01011101010101011110 1010101010100111110

Label = GOLFING

- The machine learning paradigm
 - Activity detection with machine learning

Label = WALKING

Label = RUNNING

Label = BIKING

1111111111010011101 00111110101111110101 0101110101010101011110 1010101010100111110

Label = GOLFING

The machine learning paradigm

The machine learning paradigm

- Loss
 - A way to measure your accuracy

$$X = \{ -1, 0, 1, 2, 3, 4 \}$$

$$Y = \{?, ?, ?, ?, ?, ?\}$$

- Loss
 - A way to measure your accuracy

$$X = \{ -1, 0, 1, 2, 3, 4 \}$$

$$Y = \{ -3, -1, 1, 3, 5, 7 \}$$

- Loss
 - A way to measure your accuracy

$$X = \{ -1, 0, 1, 2, 3, 4 \}$$

- Loss
 - A way to measure your accuracy

$$Y = p*X + b$$

Loss

□ A way to measure your accuracy

$$X = \{ -1, 0, 1, 2, 3, 4 \}$$

 $Y = \{ -3, -1, 1, 3, 5, 7 \}$

$$Y = p*X + b$$

- Loss
 - A way to measure your accuracy

- Loss
 - □ A way to measure your accuracy

Make a guess! ("parameters' initialization")

$$Y = 3X - 1$$

$$X = \{-1, 0, 1, 2, 3, 4\}$$

 $Y = \{-4, -1, 2, 5, 8, 11\}$

- Loss
 - A way to measure your accuracy

How good is the guess?

$$Y = 3X - 1$$

$$X = \{ -1, 0, 1, 2, 3, 4 \}$$

 $My Y = \{ -4, -1, 2, 5, 8, 11 \}$
 $Real Y = \{ -3, -1, 1, 3, 5, 7 \}$

- Loss
 - A way to measure your accuracy

- Loss
 - A way to measure your accuracy

- Loss
 - A way to measure your accuracy

- Loss
 - A way to measure your accuracy

- Loss
 - □ A way to measure your accuracy

We have a problem!

- Loss
 - A way to measure your accuracy

What if we square² them?

- Loss
 - A way to measure your accuracy

Calculate de mean error:

$$= (1 + 1 + 4 + 9 + 16) / 6$$

= 5.17

Loss

A way to measure your accuracy

$$Y = 2X - 2$$

$$X = \{ -1, 0, 1, 2, 3, 4 \}$$

My Y = $\{ -4, -2, 0, 2, 4, 6 \}$

Real Y = $\{ -3, -1, 1, 3, 5, 7 \}$

Diff² = $\{ 1, 1, 1, 1, 1, 1 \}$

- Loss
 - A way to measure your accuracy

Get the same difference, repeat the same process.

$$= (1 + 1 + 1 + 1 + 1 + 1) / 6$$

= 1.00

- Loss
 - A way to measure your accuracy

$$Y = 2X - 1$$

$$X = \{-1, 0, 1, 2, 3, 4\}$$

My Y = $\{-3, -1, 1, 3, 5, 7\}$

Real Y = $\{-3, -1, 1, 3, 5, 7\}$

Diff² = $\{0, 0, 0, 0, 0, 0, 0\}$

- Loss
 - A way to measure your accuracy

$$X = \{-1, 0, 1, 2, 3, 4\}$$

My Y = $\{-3, -1, 1, 3, 5, 7\}$

Real Y = $\{-3, -1, 1, 3, 5, 7\}$

Diff² = $\{0, 0, 0, 0, 0, 0, 0\}$

- Loss
 - A way to measure your accuracy

$$X = \{-1, 0, 1, 2, 3, 4\}$$
 $My Y = \{-3, -1, 1, 3, 5, 7\}$
 $Real Y = \{-3, -1, 1, 3, 5, 7\}$
 $MSE = \{0, 0, 0, 0, 0, 0, 0\} / 6$

$$ext{MSE} = rac{1}{n} \sum_{i=1}^n (Y_i - \hat{Y}_i)^2$$

- Loss
 - A way to measure your accuracy

Exploring Loss and Cost Function

Code Time!

Minimizing loss

It is important to choose the correct Learning Rate (size of the step)

If the Learning Rate is too small it may take a long time to reach the minimum

If the Learning Rate is too large we may never reach the minimum

The machine learning paradigm

The machine learning paradigm

