Secretary Problems with Convex Cost

Siddharth Barman, Shuchi Chawla, David Malec, Seeun Umboh {sid, shuchi, dmalec, seeun}@cs.wisc.edu

Problem Definition

$$\max_{A \subset U} \sum_{e \in A} v(e) - c \left(\sum_{e \in A} s(e) \right)$$

- v: value function, s: size function; c: convex cost function
- $\ensuremath{\mathcal{F}}$ is a known feasibility constraint; v and s are adversarial
- Elements arrive one by one in random order
- · Algorithm is online

Challenge: Objective function can take negative values; breaks all previous techniques

Example

Applications

Resource allocation problems:

- Wireless access point accepting connection requests
- Cloud computing services accepting jobs
- Sponsored search auctions accepting bids for ad slots

Extension – Multi-Dimensional Costs

- ℓ cost functions c_1,\ldots,c_ℓ ; ℓ sizes s_1,\ldots,s_ℓ

$$\max_{A \subset U} \sum_{e \in A} v(e) \ - \ \sum_{i=1}^{\ell} c_i \left(\sum_{e \in A} s_i(e) \right)$$

 $A \in \mathcal{F}$

Results - Competitive Ratios

Single-Dimensional Cost

Unconstrained

• Matroid/knapsack constraints $O(\alpha)$ *

Multi-Dimensional Cost

• Unconstrained $O(\ell) \in {\it Tight to within a constant factor}$ • Matroid/knapsack constraints $O(\alpha\ell^5)*$

Extends work on submodular matroid secretary

[Gupta et al. 10, Bateni et al. 10]

* $\boldsymbol{\alpha}$ is the competitive ratio for the corresponding matroid/knapsack secretary problem

Unconstrained Setting

Constrained Setting – Matroids

