2.2 Fixed-Point Iteration

Burden, Richard L.; Faires, J. Douglas (1985). "2.2 Fixed-Point Iteration". Numerical Analysis (3rd ed.). PWS Publishers. ISBN 0-87150-857-5...

Definition 2.2. The number p is a **fixed point** for a given function g(x) if g(p) = p.

Geometric interpretation of fixed point.

- Consider the graph of function g(x), and the graph of equation y = x.
- ➤ If they intersect, what are the coordinates of the intersection point?

Example 2.2.1.

Determine the fixed points of the function $g(x) = x^2 - 2$.

Connection between fixed-point problem and root-finding problem

1. Given a root-finding problem, i.e., to solve f(x) = 0. Suppose a root is p, so that f(p) = 0.

There are many ways to define g(x) with fixed-point at p.

For example,
$$g(x) = x - f(x)$$
, $g(x) = x + 3f(x)$,

• • •

2. If g(x) has a fixed-point at p, then f(x) defined by f(x) = x - g(x) has a zero at p.

Sufficient conditions for existence and uniqueness of a fix point

Theorem 2.3. Existence and Uniqueness Theorem

- a. If $g \in C[a, b]$ and $g(x) \in [a, b]$ for all $x \in [a, b]$, then g has at least one **fixed-point** in [a, b]
- b. If, in addition, g'(x) exists on (a, b) and a positive constant k < 1 exists with

$$|g'(x)| \le k$$
, for all $x \in (a, b)$,

then there is exactly one fixed-point in [a, b].

Note:

- 1. $g \in C[a,b] \rightarrow g$ is continuous in [a,b]
- 2. $g(x) \in [a, b] \rightarrow \text{range of } g \text{ is in } [a, b]$

Example 2. Show $g(x) = \frac{x^2 - 1}{3}$ has a unique fixed point on [-1, 1].

Example 3. Show that **Theorem 2.3** does not ensure a unique fixed point of $g(x) = 3^{-x}$ on the interval [0, 1], even through a unique fixed point on this interval does exist.

Solution: $g'(x) = -3^{-x} \ln(3)$.

g'(x) < 0 on [0,1]. So g is strictly decreasing on [0,1].

$$g(1) = \frac{1}{3} \le g(x) \le g(0) = 1$$
, for $0 \le x \le 1$.

Part a of **Theorem 2.3** ensures there is at least one fixed point.

Since $|g'(0.01)| = |-3^{-0.01} \ln(3)| \approx 1.0866$, $|g'(x)| \le 1$ on (0,1).

Since Part b of **Theorem 2.3** is **NOT satisfied**, **Theorem 2.3** can not determine uniqueness.

Graphs of 3^{-x} and y = x:

Fixed-Point Iteration Algorithm

- Choose an initial approximation p_0 , generate sequence $\{p_n\}_{n=0}^{\infty}$ by $p_n=g(p_{n-1})$.
- If the sequence converges to p, then

$$p = \lim_{n \to \infty} p_n = \lim_{n \to \infty} g(p_{n-1}) = g\left(\lim_{n \to \infty} p_{n-1}\right) = g(p)$$

A Fixed-Point Problem

Determine the fixed point of the function $g(x) = \cos(x)$ for $x \in [-0.1, 1.8]$.

Remark: See also the Matlab code.

The Algorithm


```
INPUT
            p0; tolerance TOL; maximum number of iteration N0.
OUTPUT solution p or message of failure
           Set i = 1.
STEP1
                                                            // init. counter
           While i ≤ N0 do Steps 3-6
STEP2
           STEP3 Set \mathbf{p} = g(\mathbf{p0}).
                       If |\mathbf{p}-\mathbf{p}\mathbf{0}| < \mathbf{TOL} then
           STEP4
                          OUTPUT(p);
                                                    // successfully found the solution
                          STOP.
           STEP5 Set i = i + 1.
           STEP6
                       Set p0 = p.
                                                    // update p0
           OUTPUT("The method failed after N0 iterations");
STEP7
            STOP.
```

Convergence

Fixed-Point Theorem 2.4

Let $g \in C[a,b]$ be such that $g(x) \in [a,b]$, for all $x \in [a,b]$. Suppose, in addition, that g' exists on (a,b) and that a constant 0 < k < 1 exists with

$$|g'(x)| \le k$$
, for all $x \in (a, b)$

Then, for any number p_0 in [a,b], the sequence defined by

$$p_n = g(p_{n-1})$$

converges to the unique fixed point p in [a, b].

Corollary 2.5

If g satisfies the above hypotheses, then bounds for the error involved using p_n to approximating p are given by

$$|p_n - p| \le k^n \max\{p_0 - a, b - p_0\}$$

$$|p_n - p| \le \frac{k^n}{1 - k} |p_1 - p_0|$$

Illustration Equation $x^3 + 4x^2 - 10 = 0$ has a unique root in [1,2]. Use algebraic manipulation to obtain fixed-point iteration function g to solve this root-finding problem.