МИНИСТЕРСТВО РАДИОТЕХНИЧЕСКОЙ ЛРОМЫШЛЕННОСТИ СССР

ТРУДЫ

НАУЧНО-ИССЛЕДОВАТЕЛЬСКОГО ИНСТИТУТА

Выпуск 5 (34)

1956

Approved For Release 2010/04/07 : CIA-RDP80T00246A045700380001-3

МИНИСТЕРСТВО РАДИОТЕХНИЧЕСКОЙ ПРОМЫШЛЕННОСТИ СССР

ТРУДЫ

НАУЧНО-ИССЛЕДОВАТЕЛЬСКОГО ИНСТИТУТА

Выпусн 5 (34)

Ответственный редактор *Н. Д. ДЕВЯТКОВ* Зам. ответственного редактора *В. С. ЛУКОШКОВ*

РЕДАКЦИОННАЯ КОЛЛЕГИЯ:

Астрин В. А., Афанасьев В. А., Герус В. Л., Дурасов Б. А., Кашников Н. Г., Коваленко В. Ф., Метлин Г. А., Оленин Д. Д., Пастухов А. П., Петренко З. Г., Роговин И. Е., Рукман Г. И., Струтинский Н. И., Федосеев А. П., Царев Б. М., Черепнин Н. В., Шахов К. П.

Сдано в набор 6/VIII 1956 г.

Подписано к печати 27/IX 1956 г.

Объем 4,5 п. л.

07772

Бесплатно Заказ 817

Тираж 500 экз.

Инж. *С*.

À

О ДИСПЕРСИИ МНОГОСТУПЕНЧАТЫХ ЦЕПОЧЕК ЧЕТЫРЕХПОЛЮСНИКОВ

Цепочка, составленная из периодически повторяющихся групп по Q -четырехполюсников, называется Q -ступенчатой цепочкой четырехполюсников. Выведено уравнение дисперсии для четырех видов Q -ступенчатой цепочки четырехполюсников.

1. ВЫВОД УРАВНЕНИЯ ДИСПЕРСИИ.

Рассмотрим полубесконечную цепочку четырехполюсников, которую можно разбить на периодически повторяющиеся группы из Q- четырехполюсников. Такая цепочка называется Q- ступенчатой [6].

В литературе [2, 4, 5] рассматриваются лишь двухступенчатые и трехступенчатые цепочки. В качестве трехступенчатой

цепочки разобран только частный случай, когда каждый четырехполюсник периода можно представить в виде двух отрезков волноводов, между которыми включено некоторое сопротивление \mathbf{Z}_i , причем четырехполюсники периода могут

Рис. 1. Четырехполюсник, составленный из двух отрезков волновода, между которыми включено некоторое сопротивление Z_i^\prime .

отличаться лишь этими сопротивлениями (рис. 1).

1*

100/

Здесь мы рассмотрим Q- ступенчатые цепочки, причем ограничимся выводом уравнения дисперсии для четырех видов Q- ступенчатых цепочек, изображенных на рис. 2-5.

В первом из них (рис. 2) каждый период состоит из Π -образных четырехполюсников, отличающихся сопротивлениями Z_i ; во втором (рис. 3) — из T-образных четырехполюсников, отличающихся проводимостями Y_i . В третьем виде цепочки (рис. 4) каждый период состоит из одинаковых симметричных четырехполюсников с характеристическим сопротивлением Z_i и фазовой постоянной $\frac{0}{2}$, между которыми

Рис. 2. Q– ступенчатая цепочка Π -образных четырехполюсников, отличающихся сопротивлениями Z_i

Рис. 3. Q-ступенчатая цепочка Т-образных четырехполюсников, отличающихся проводимостями Y_i

Рис. 4. Цепочка из четырехполюсников с последовательным включением сопротивлений $Z_{i,\cdot}'$

Рис. 5. Цепочка из четырехполюсников с параллельным включением проводимостей Y_{ℓ}'

включены последовательно различные сопротивления Z'_{i} . В четвертой цепочке (рис. 5) каждый период состоит из таких же четырехполюсников, между которыми включены параллельно различные проводимости Y'_{i} .

Напряжения и токи для каждого четырехполюсника можно связать равенством [1]:

Матрица -

$$||a|| = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}$$
 (2)

называется матрицей передачи четырехполюсника.

Выведем уравнение дисперсии для первой цепочки. Каждый ее период состоит из Q-симметричных Π -образных четырехполюсников. Матрица передачи каждого такого четырехполюсника [1] имеет вид:

$$||a_i|| = \begin{vmatrix} 1 + YZ_i & Z_i \\ Y(2 + YZ_i) & 1 + YZ_i \end{vmatrix}$$
 (3)

 $^{^{\Lambda}}$ Вводя обозначение $\cos arphi_i = 1 + YZ_i$, получаем:

$$||a_i|| = \begin{vmatrix} \cos \varphi_i & \frac{1}{Y} (\cos \varphi_i - 1) \\ Y (\cos \varphi_i + 1) & \cos \varphi_i \end{vmatrix}$$
 (4)

ИЛИ

$$||a_i|| = \left| \begin{vmatrix} 0 - \frac{1}{Y} \\ Y & 0 \end{vmatrix} + \cos \varphi_i \right| \left| \begin{vmatrix} 1 & -\frac{1}{Y} \\ Y & 1 \end{vmatrix} \right|. \tag{4'}$$

Обозначим

$$||a_i|| = ||b|| + ||c_i||,$$
 (5)

где

$$||b|| = \begin{vmatrix} 0 - \frac{1}{Y} \\ Y & 0 \end{vmatrix},$$

$$||c_i|| = \cos \varphi_i \begin{vmatrix} 1 & \frac{1}{Y} \\ Y & 1 \end{vmatrix}.$$

$$(6)$$

Для вывода уравнения дисперсии выясним некоторые свойства матриц $\parallel b \parallel$ и $\parallel c_i \parallel$.

- 1. Коммутативность произведения матриц $\|c_i\|$ и $\|c_k\|$. Это свойство очевидно, так как коэффициенты $\cos \varphi_i$ и $\cos \varphi_k$ скалярны и выносятся за знак произведения. Сама же матрица от индекса не зависит.
 - 2. Произведение п матриц

$$||c|| = ||c_0|| ||c_1|| \dots ||c_{n-1}|| =$$

$$= 2^{n-1} \cos \varphi_0 \cos \varphi_1 \dots \cos \varphi_{n-1} \begin{vmatrix} 1 & \frac{1}{Y} \\ Y & 1 \end{vmatrix}$$
(7)

доказывается методом индукции.

3. Степени матрицы $\parallel b \parallel$:

$$||b||^{4k+1} = -||b||^{4k+3} = ||b||$$
 $k = 0, 1, ..., n, ...,$ (8)

$$||b||^{4k} = -||b||^{4k+2} = ||I|| \qquad k = 0, 1, ..., n, ...$$
 (9)

доказываются непосредственным умножением. Здесь [I] — единичная матрица.

4. Произведение

$$||c_i|| ||b||^{2l+1}||c_k|| = 0$$
 (10)

доказывается непосредственным умножением с использованием формулы (8). Здесь l — любое целое число.

Из формулы (10) ясно, что если в каком-либо произведении большого числа матриц имеется сомножитель вида

$$||c_i|| ||b||^{2l+1} ||c_k||,$$

то все произведение равно нулю.

5. Произведения:

$$||c|| ||b|| = 2^{n-1} \cos \varphi_0 \dots \cos \varphi_{n-1} \left\| \frac{1 - \frac{1}{Y}}{Y - 1} \right\|, \tag{11}$$

$$||b|| ||c|| = 2^{n-1} \cos \varphi_0 \dots \cos \varphi_{n-1} \left\| \frac{-1 - \frac{1}{Y}}{Y} \right\|_{Y}, \tag{12}$$

$$||b|| ||c|| ||b|| = 2^{n-1} \cos \varphi_0 \dots \cos \varphi_{n-1} \begin{vmatrix} -1 & \frac{1}{Y} \\ Y & -1 \end{vmatrix}$$
 (13)

доказываются непосредственным умножением. Здесь ||b|| н ||c|| определяются равенствами (6) и (7) соответственно.

Найдем матрицу передачи $\|a^{(Q)}\|$ цепочки из Q - четырехполюсников (рис. 2), когда значения Z_i различны. Перемножая Q матриц (5), получаем

$$||a^{(Q)}|| = (||b|| + ||c_0||) \dots (||b|| + ||c_{Q-1}||).$$
(14)

Найдя $||a^{(Q)}||$, получим теперь уравнение дисперсии [3]:

$$\cos Q \varphi = \frac{a_{11}^{(Q)} + a_{22}^{(Q)}}{2}, \tag{15}$$

которое справедливо для любого обратимого четырехполюсника и, в частности, для Q-ступенчатой цепочки четырехполюсников. Здесь $Q\varphi$ — сдвиг фазы на периоде цепочки. Выразим правую часть (15) через элементы матриц $\|a_i\|$, а именно через величины $\cos \varphi_i$.

Если раскрыть скобки в (14) для $||a^{(Q)}||$, то получим сумму всевозможных произведений ||b|| и $||c_i||$. Элементы $a_{11}^{(Q)}$ и $a_{22}^{(Q)}$ матрицы $||a^{(Q)}||$ представляют собой сумму соответ-

ствующих элементов матриц, являющихся этими всевозможными произведениями. Нетрудно видеть, что все слагаемые с нечетным числом сомножителей $\|b\|$ либо равны нулю, согласно (8) или (10), либо входят в $a_{11}^{(Q)}$ и $a_{22}^{(Q)}$ с разными знаками, согласно (11) или (12), имея одинаковую величину. Это приводит к тому, что в уравнении дисперсии (15) отсутствуют слагаемые, соответствующие нечетному числу сомножителей $\|b\|$. Так как в (14) множители $\cos \varphi_i$ имеются только в матрицах $\|c_i\|$, то слагаемые в правой части уравнения дисперсии имеют число сомножителей $\cos \varphi_i$, равное Q-2l, где l— целое число ($0 \leqslant l \leqslant \frac{Q}{2}$).

Слагаемые (14) с числом сомножителей $\|b\|$, равным 4k+2, имеют при диагональных элементах знак минус (свойства 3 и 5), если только они отличны от нуля. Последнее справедливо лишь в случае, если матрицы $\|b\|$ входят в произведения в четной степени и, кроме этого, сумма степеней при $\|b\|$ в крайних сомножителях, согласно (13), четна. Например:

$$\begin{split} &\|c_0\| \ \|c_1\| \ \|b\|^2 \ \|c_4\| \ \|c_5\| \ \|c_6\| \neq 0 \\ &\|b\| \ \|c_1\| \ \|b\|^2 \ \|c_4\| \ \|c_5\| \ \|b\| \neq 0 \\ &\|b\| \ \|c_1\| \ \|c_2\| \ \|c_3\| \ \|c_4\| \ \|c_5\| \ \|b\| \neq 0, \end{split}$$

но:

$$||c_0|| ||b|| ||c_2|| ||b|| ||c_4|| ||c_5|| ||c_6|| = 0.$$

Члены с числом сомножителей $\|b\|$, равным 4k, имеют при диагональных элементах знак плюс (свойство 3).

Используя формулу (7), можем записать теперь уравнение дисперсии (15) для Q - ступенчатой цепочки четырехполюсников через величины $\cos \varphi_i$:

$$\cos Q \varphi = 2^{Q-1} \prod_{i=0}^{Q-1} \cos \varphi_i - 2^{Q-3} \sum_{k=0}^{Q-1} \prod_{i=0}^{Q-1} \frac{\cos \varphi_i}{\cos \varphi_k \cos \varphi_{k+1}} +$$

$$+ 2^{Q-5} \sum_{l=0}^{k-2} \sum_{k=2}^{Q-1} \prod_{i=0}^{Q-1} \frac{\cos \varphi_l}{\cos \varphi_l \cos \varphi_{k+1} \cos \varphi_k \cos \varphi_{k+1}} -$$

$$- 2^{Q-7} \sum_{m=0}^{l-2} \sum_{l=2}^{k-2} \sum_{k=4}^{Q-1} \prod_{i=0}^{Q-1} \frac{\cos \varphi_i}{\cos \varphi_m \cos \varphi_{m+1} \cos \varphi_l \cos \varphi_{l+1} \cos \varphi_k \cos \varphi_{k+1}}$$

$$- 2^{Q-7} \sum_{m=0}^{l-2} \sum_{k=2}^{k-2} \sum_{k=4}^{Q-1} \prod_{i=0}^{Q-1} \frac{\cos \varphi_m \cos \varphi_{m+1} \cos \varphi_l \cos \varphi_l \cos \varphi_{k+1}}{\cos \varphi_l \cos \varphi_l \cos \varphi_{k+1} \cos \varphi_k \cos \varphi_{k+1}}$$

$$- 2^{Q-7} \sum_{m=0}^{l-2} \sum_{k=2}^{k-2} \sum_{k=4}^{Q-1} \prod_{i=0}^{Q-1} \frac{\cos \varphi_m \cos \varphi_{m+1} \cos \varphi_l \cos \varphi_l \cos \varphi_{k+1}}{\cos \varphi_l \cos \varphi_l \cos \varphi_l \cos \varphi_l \cos \varphi_l \cos \varphi_l}$$

$$- 2^{Q-7} \sum_{m=0}^{l-2} \sum_{k=2}^{l-2} \sum_{k=4}^{Q-1} \prod_{i=0}^{Q-1} \frac{\cos \varphi_m \cos \varphi_m \cos \varphi_l}{\cos \varphi_m \cos \varphi_l \cos \varphi_l \cos \varphi_l \cos \varphi_l} \cos \varphi_l \cos \varphi_l \cos \varphi_l} \cos \varphi_l \cos \varphi_l \cos \varphi_l \cos \varphi_l \cos \varphi_l} \cos \varphi_l \cos \varphi_l \cos \varphi_l \cos \varphi_l \cos \varphi_l} \cos \varphi_l \cos \varphi_l \cos \varphi_l \cos \varphi_l} \cos \varphi_l$$

Approved For Release 2010/04/07: CIA-RDP80T00246A045700380001-3

Таким образом выведено уравнение дисперсии для Q-ступенчатой цепочки четырехполюсников, изображенной на рис. 2. Слагаемое нулевой степени относительно $\cos \varphi_i$, если оно существует, равно \pm 1, согласно (9).

В частных случаях для Q=2, 3, 4 и 5 из формулы (18) получаем следующие выражения:

для
$$Q \! = \! 2$$

$$\cos 2\varphi = \cos \varphi_0 \cos \varphi_1 - 1 \tag{17a}$$

(это выражение совпадает с приведенным в [5]);

для
$$Q = 3$$

$$\cos 3\varphi = 4\cos \varphi_0 \cos \varphi_1 \cos \varphi_2 - \cos \varphi_0 - \cos \varphi_1 - \cos \varphi_2; \qquad (176)$$

для
$$Q = 4$$

 $\cos 4\varphi = 8\cos \varphi_0 \cos \varphi_1 \cos \varphi_2 \cos \varphi_3 - 2\cos \varphi_2 \cos \varphi_3 -$

$$-2\cos\varphi_3\cos\varphi_4 - 2\cos\varphi_4\cos\varphi_0 - 2\cos\varphi_0\cos\varphi_1 - (17B)$$

 $-2\cos\varphi_1\cos\varphi_2+1$;

для
$$Q = 5$$

$$\cos 5\varphi = 16\cos\varphi_0\cos\varphi_1\cos\varphi_2\cos\varphi_3\cos\varphi_4 -$$

$$-4\cos\varphi_2\cos\varphi_3\cos\varphi_4-4\cos\varphi_3\cos\varphi_4\cos\varphi_0-$$

$$-4\cos\varphi_1\cos\varphi_0\cos\varphi_1 - 4\cos\varphi_0\cos\varphi_1\cos\varphi_2 - (17\Gamma)$$

$$-4\cos\varphi_1\cos\varphi_2\cos\varphi_3+\cos\varphi_0+\cos\varphi_1+$$

$$+\cos\varphi_2 + \cos\varphi_3 + \cos\varphi_4$$
.

Нетрудно показать, что для второй цепочки (рис. 3) уравнение дисперсии имеет тот же вид (16) с той лишь разницей, что в первом случае

$$\cos \varphi_i = 1 + Z_i Y, \tag{18a}$$

а во втором

$$\cos \varphi_i = 1 + ZY_i \ . \tag{186}$$

В самом деле, каждый период второй цепочки составлен из Т-образных ячеек. Матрица передачи такой ячейки имеет вид:

$$||a_i|| = \begin{vmatrix} 1 + Y_i Z & Z(2 + Y_i Z) \\ Y_i & 1 + Y_i Z \end{vmatrix}.$$
 (19)

Учитывая (18б), нетрудно записать матрицу $\|a_i\|$ в таком виде:

$$||a_i|| = \cos \varphi_i \begin{vmatrix} 1 & Z \\ \frac{1}{Z} & 1 \end{vmatrix} + \begin{vmatrix} 0 & Z \\ -\frac{1}{Z} & 0 \end{vmatrix}. \tag{20}$$

Обозначим

$$||d_i|| = \cos \varphi_i \begin{vmatrix} 1 & Z \\ \frac{1}{Z} & 1 \end{vmatrix} ||H|| = \begin{vmatrix} 0 & Z \\ -\frac{1}{Z} & 0 \end{vmatrix}$$
 (21)

и заметим, что матрица $\|d_i\|$ обладает всеми свойствами матрицы $\|c_i\|$, записанной выше, а $\|f\|$ — свойствами матрицы $\|b\|$. Отсюда следует, что уравнение дисперсии для цепочки, изображенной на рис. 3, имеет тот же вид (16), что и для цепочки, изображенной на рис. 2.

Покажем, что для Q-ступенчатых цепочек четырехполюсников, изображенных на рис 4 и 5, уравнение дисперсии также имеет вид (16). В самом деле, заменяя каждую пару соседних симметричных четырехполюсников одним T-образным, как показано на рис. 6, нетрудно свести цепочку, изображенную на рис. 4, к цепочке, приведенной на рис. 2.

Рис. 6. Эквивалентность исходного четырехполюсника Т-образному.

Рис. 7. Эквивалентность исходного четырехполюсника Π -образному.

Поступая аналогичным образом (рис. 7), можно свести цепочку, изображенную на рис. 5, к цепочке четырехполюсников, показанной на рис. 3.

Выражения для $\cos \varphi_i$, соответствующие двум последним цепочкам, имеют вид [4, 7]:

$$\cos \varphi_i = \cos \theta - \frac{Z_I'}{2 Z_1} \sin \theta \tag{22}$$

И

$$\cos \varphi_i = \cos \theta - \frac{Z_1 Y_i'}{2} \sin \theta. \tag{23}$$

Таким образом, выведено уравнение дисперсии (16) для четырех видов Q-ступенчатых цепочек четырехполюсников. Примеры применения полученного уравнения для исследования замедляющих систем будут даны в последующих работах.

ЛИТЕРАТУРА

- 1. Зелях Э. В., Основы общей теории линейных электрических схем, АН СССР, М., 1951.
- 2. Мандельштамм Л. И., Собрание сочинений, т. IV, изд. АН СССР, 1955.
- 3. Силин Р. А., О характеристических параметрах четырехполюсника (в печати).
- 4. Lines A.W., Nicoll G. R., Woodward A. M., Some Properties of Waveguides with Periodic Structure, P. I. E. E., vol. 97, N 48, pp. 263—276, July 1950.
- 5. Milman S., Nordsieck A., The Rising Sun Magnetron, J. Appl. Phys., Febr. 1948.
 - 6. Листов В. Н., Электрические фильтры, ГИЗ, М.—Л., 1927.
- 7. Магнетроны сантиметрового диапазона, ч. І., изд. «Советское радио», 1950.

Статья поступила в редакцию 21 февраля 1956 г.

Канд. техн. наук ФЕДОСЕЕВ А. П.

ПРЕДЕЛЬНО-ВОЛНОВОДНЫЕ РЕЗОНАНСНЫЕ СИСТЕМЫ И ПРЕДЕЛЬНО-ВОЛНОВОДНЫЕ С.В.Ч. ГЕНЕРАТОРЫ

Рассматриваются условия для получения максимальных мощностей от с.в.ч. генераторов. Делается вывод о необходимости применения для очень мощных генераторов резонансных систем типа предельных волноводов сложного сечения, имеющих большие размеры по отношению к длине волны колебаний. Однако их применение весьма затруднено из-за наложения резонансов различных видов и искажения поля вследствие усложнения спектра в неблагоприятном направлении при увеличении размеров системы.

Указывается на возможность получения желаемого спектра путем введения равномерно распределенных связей меж-

ду элементами системы.

Далее указывается, что получение резонансной системы с хорошим спектром недостаточно для построения удовлетворительно работающего автогенератора из-за конкуренции видов колебаний. Это затруднение может быть преодолено введением распределенной связи резонансной системы с полезной нагрузкой, рассчитанной на подавление конкурирующих видов колебаний. С.в.ч. генераторам, имеющим предельно-волноводные резонансные системы с распределенными внутренними связями и с распределенными связями с полезной нагрузкой, дано название предельно-волноводных с.в.ч. генераторов.

По мере развития радиолокационной техники вопросы генерирования более коротких волн и больших мощностей становятся все актуальнее. Оба эти вопроса имеют одну общую сторону — их решение существенно зависит от решения задачи увеличения размеров резонансной системы по отношению к длине волны.

Этой задаче уделялось много внимания различными исследователями и, в частности, группой Варнек во Франции.

Действительно, переход от малых, по сравнению с длиной волны, резонаторов с сосредоточенными постоянными к полым контурам, имеющим большие размеры, дал возможность не только спуститься к более коротким волнам, но и получить большую мощность на более длинных волнах.

Долговечность и надежность прибора, в основном, зависят от отношения его размеров к мощности, и поэтому при увеличении мощности всегда желательно увеличение размеров.

Рассмотрим это обстоятельство несколько более подробно. От любого электронного генератора нельзя получить больше энергии, чем может переносить его электронный луч или поток. Полезную мощность, переносимую электронным потоком, в конечном итоге можно представить следующим выражением:

$$P_{\mathfrak{g}} = \eta_{\mathfrak{g}} \, j \, S U_{\mathfrak{T}} \, n, \tag{1}$$

где

 $\eta_{
m e}$ — электронный к.п.д.,

j — плотность тока в исходном элетронном луче,

S — полезное сечение электронного луча,

 $U_{\rm T}$ — напряжение торможения электронного луча в единичном промежутке взаимодействия (имеется в виду, что $U_{\rm T}$ всегда меньше ускоряющего напряжения),

n — полное число промежутков взаимодействия, равное числу пространственных полупериодов высокочастотного поля, укладывающихся в системе в направлении движения электронного потока.

Так как напряжение торможения пропорционально $jSZ_{\rm cB}$, где $Z_{\rm cB}$ — сопротивление связи контура генератора с электронным потоком, отнесенное к единичному промежутку взаимодействия, то

$$P_{\theta} = \eta_{\theta} (jS)^2 Z_{CB} n. \tag{2}$$

Очевидно, мощность электронного генератора может быть получена тем больше, чем больше величина членов, входящих в произведение (2).

Если выбрать тип генератора, дающий максимальный электронный к.п.д. (например, магнетрон, карцинотрон, триод), и использовать максимальную плотность тока в луче, допустимую с точки зрения получения заданной нам долговечности прибора, то в нашем распоряжении останется три конструктивных величины: $S, Z_{\rm ch}$ и n.

Величина $Z_{\rm cs}$ пропорциональна произведению $Q_{\rm H}$ ρ , где $Q_{\rm H}$ — нагруженная добротность контура генератора и ρ — его волновое сопротивление в направлении электронного луча, отнесенное к единичному промежутку взаимодействия. Величина волнового сопротивления тесно связана в конечном счете с количеством металла и пустоты в контуре: чем большее волновое сопротивление требуется, тем меньше металла содержится в контуре, а следовательно, и меньше тепловая нагрузка, которую контур может выдержать. В связи с этим

увеличение $Z_{\rm cB}$ за счет увеличения волнового сопротивления контура, например на один порядок, представляет собой очень трудную задачу. В то же время нагруженная добротность контура может отличаться от единицы на два и более порядка. Это обстоятельство приводит к мысли, что для получения возможно больших мощностей или возможно более коротких волн следует предпочесть резонансную систему нерезонансной, так как в нерезонансной системе нагруженная добротность равна единице.

Оставшиеся две величины (S й n) определяют размеры пространства взаимодействия и, следовательно, контура или резонансной системы.

На рис. 1 представлены возможные формы полезного сечения электронного потока (полезным сечением является такое, в котором высокочастотное поле контура достаточно интенсивно). Направление движения электронов перпендикулярно плоскости рисунка.

Рис. 1. Формы сечений электронных потоков.

По мере удаления от резонансной системы высокочастотное поле очень быстро спадает практически до нуля. • Можно считать, что область достаточно интенсивного не распространяется значительно больше, чем на 0,1 ѝ от резо-Следованатора. тельно, как это от-

мечено на рис. 1, размер пучка в направлении глубины резонансной системы едва ли может быть существенно больше 0,1 λ . Это значит, что при применении круглого пучка (рис. 1,a) трудно ожидать получения максимальной мощности. Таким образом, стремление получить максимальную мощность приводит к применению полых цилиндрических электронных пучков большого диаметра или пучков в виде широкой ленты. Соответственно, требуется резонансная система с большими размерами как вдоль электронного пучка (большое n), так и поперек.

До настоящего времени размеры пространства взаимодействия практически применяющихся резонансных систем мощных генераторов ограничивались величиной около 0.5λ в направлении поперек пучка, а вдоль пучка, большей частью, — небольшим числом промежутков взаимодействия (n). Это и обусловливало существенное ограничение мощности.

Следует познакомиться с главными причинами этого ограничения. Рассмотрим резонансную систему типа «гребенка» с размерами N (число канавок) и L (длина канавок), представленную на рис. 2.

Если в определенном диапазоне частот на эту воздействует гребенку электромагнитная волна, то на некоторых дискретных частотах в гребенке устанавливается зонансный колебательный процесс, характеризующийся стоячей волной с целым числом полупериодов электрического поля как вдоль, так и поперек канавок. При этом длина стоячей волны вдоль канавок будет больше дли-

Рис. 2. Простейшая резонансная гребенка.

ны волны в свободном пространстве, а поперек канавок — меньше. Это значит, что распространение электромагнитной волны вдоль канавок характеризуется ускорением (фазовая скорость больше скорости света), а поперек канавок — замедлением (фазовая скорость меньше скорости света).

Другой особенностью гребенки в интересующем нас диапазоне частот будет отсутствие электрической составляющей электромагнитного поля вдоль канавок для всех резонансных состояний. Таким образом, мы можем эти резонансные состояния обозначить через TE_{mn} , где TE означает поперечную электрическую волну вдоль канавок, m — число полупериодов поля вдоль канавок и n — число полупериодов поля поперек канавок. Следует отметить, что для любого n существует бесконечное число резонансных состояний с m от нуля до

бесконечности. Все эти состояния связаны с состоянием TE_{on} известным выражением:

$$\frac{\lambda}{\sqrt{1 - \left(\frac{\lambda}{\lambda_{\text{TE}_{0n}}}\right)^2}} = \frac{2L}{m}, \tag{3}$$

где λ — длина волны в свободном пространстве для резонанса типа TE_{mn} , где $n=\mathrm{const}$,

 $\lambda_{\text{TE}_{0n}}$ — длина волны в свободном пространстве для резонанса типа TE_{0n} ,

. L — длина гребенки вдоль канавок,

m — число полупериодов электрического поля вдоль канавок.

Все резонансные состояния типа TE_{0n} с различным n укладываются на дисперсионную кривую гребенки в поперечном направлении.

Таким образом, все резонансные состояния в интересующем нас диапазоне частот могут быть представлены, как на рис. 3. При этом тангенс угла наклона прямой, проведенной из начала координат в точку, соответствующую данному резонансу, пропорционален фазовой скорости электромагнитной волны поперек гребенки для данного резонанса.

Рис. 3. Спектр резонансных частот простейней гребенки $tg\theta \equiv v_{\Phi}$.

Главные условия, необходимые для применения такой гребенки в качестве резонансной системы мощного генератора, можно сформулировать следующим образом:

1. Число полупериодов поля вдоль канавок должно быть по возможности равно нулю или небольшому количеству единиц. В первом случае мы получаем однородное

электрическое высокочастотное поле на всем протяжении поперечного сечения электронного луча, т. е. условия, наиболее благоприятные для получения максимальной мощности. При

этом гребенка работает на частотах, близких к частоте отсечки, т. е. представляет собой предельный волновод.

- 2. Фазовая скорость электромагнитной волны поперек гребенки или вдоль электронного луча для данного резонанса должна быть равна скорости этого луча или находиться с ней в кратных соотношениях и достаточно отличаться от фазовых скоростей для любых других резонансов.
- 3. На данный резонанс не должны накладываться (на той же или близкой частоте) другие резонансы. Это является условием получения правильной формы поля поперек гребенки, необходимой для максимальной отдачи мощности электронным потоком.
- 4. Желательно, чтобы n=N, так как это даєт максимальное количество промежутков взаимодействия в системе.

Таким образом, желательно использовать резонанс типа TE_{0N} или, по крайней мере, резонансы, находящиеся в правом нижнем углу поля резонансов (см. рис. 3)

Вернемся к вопросу увеличения размеров гребенки. Если увеличивать размеры L и N, то никаких скачкообразных изменений в поведении гребенки наблюдаться не будет. Число вертикальных линий и число точек на граничной кривой будет увеличиваться в соответствии с увеличиваться в соответствии с увеличиваться в соответствии с увеличением L, и они все больше будут «прижиматься» к граничной кривой (m=0). Таким образом, характер спектра резонансных частот будет сохраняться, но густота расположения резонансов будет все увеличиваться.

Как следует из рис. 3, такая гребенка даже при небольших размерах не удовлетворяет требованиям для ее применения: на желаемый резонанс типа $TE_{\,0N}$ накладываются еще другие резонансы, искажая рабочее поле.

Таким образом, увеличение размеров резонансной системы ограничивается не каким-либо их отношением к длине волны в свободном пространстве, а лишь усложнением спектра резонансных частот в неблагоприятном для нас направлении. Следовательно, решение задачи использования резонансных систем больших размеров заключается, в первую очередь, в применении таких средств, которые изменили бы спектр резонансных частот в желаемом для нас направлении. Известно, что таким средством является введение магнитных связей между канавками гребенки. Однако не всякая магнитная связь является в данном случае пригодной. Особенно для резонансов ТЕ от очень важно, чтобы эта связь была бы достаточно

равномерно распределена вдоль гребенки. В противном случае мы не получим однородного поля по всей длине канавки.

Равномерное распределение магнитных связей между канавками по их длине дает возможность получить необходимое изменение спектра резонансных частот и неискаженное поле особенно интересующего нас резонанса $TE_{\,0N}$. Примерный вид такого спектра показан на рис. 4.

Рис. 4. Спектр резонансных частот гребенки с распределенными связями.

В связи с этим представляется целесообразным выделить из всего многообразия резонансных систем класс резонансных гребенок, отличающихся следующими свойствами:

- 1. Размеры в двух направлениях существенно больше половины длины волны колебаний.
- 2. Достаточно сильная и равномерно распределенная магнитная

связь между канавками гребенки, дающая возможность получить спектр и форму электрического поля, приемлемые для использования резонансов типа TE_{0N} или близких к ним. Так как использование резонансов типа TE_{0N} означает работу на частотах, близких к критическим, то целесообразно такие резонансные системы называть резонансными гребенками предельно-волноводного типа.

Легко видеть, что возможно свертывание гребенок в цилиндр без существенного изменения формы поля в пространстве взаимодействия. При этом появятся вырожденные резонансы, которые будут утрачивать вырождение при любой асимметрии.

Получение резонансной системы больших размеров, но с приемлемым спектром является трудной задачей. Однако решение только этой задачи еще недостаточно для применения резонансной системы в самовозбуждающемся генераторе.

С увеличением размеров резонансной системы различия в форме высокочастотного поля, в частоте и в фазовой скорости для ряда резонансов становятся слишком малыми, по срав-

пению с интересующим нас резонансом, чтобы обеспечить стабильную работу генератора на заданном виде. В связи с этим требуется средство для подавления конкурирующих видов колебаний. Можно предположить, что вероятность возбуждения конкурирующего вида тем больше, чем больше величина

$$\frac{Q_{\text{HK}}}{Q_{\text{H}} \Delta v_{\Phi} \Delta f}, \tag{4}$$

где $Q_{\rm HK}$ — нагруженная добротность конкурирующего вида, $Q_{\rm H}$ — нагруженная добротность основного вида,

 Δv_{ϕ} — разница фазовых скоростей основного и конкурирующего видов,

 Δf — разница резонансных частот основного и конкурирующего видов.

Если при конструировании резонансной системы мы получили определенные Δv_{Φ} и Δf , то задача подавления конкурирующих видов может быть сведена к получению соответствующего отношения $\frac{Q_{\text{нк}}}{Q_{\text{пк}}}$.

Обычно применяется единичный элемент связи резонансной системы с полезной нагрузкой. При этом практически невозможно получить нужные отношения добротностей. Это затруднение можно преодолеть путем введения распределен ной связи с полезной нагрузкой, под которым мы понимаем введение определенного количества элементов связи, расположенных в соответствии с эпюрами стоячих волн основного и конкурирующего видов так, чтобы получить необходимые соотношения нагруженных добротностей.

Вышеизложенное дает возможность строить пригодные для самовозбуждающихся генераторов резонансные системы с размерами, в несколько раз превышающими длину волны колебаний. Генераторы с такими резонансными системами по конструкции и свойствам существенно отличаются от обычных. Поэтому им дано название — предельно-волноводные генераторы. Этим названием обозначаются генераторы, в которых используются:

1) резонансные гребенки предельно-волноводного типа больших размеров сравнительно с длиной волны колебаний,

2) система распределенной связи с полезной нагрузкой для подавления конкурирующих видов колебаний.

Статья поступила в редакцию 16 января 1956 г.

2*

Инж. АВНЕРС Я. Х.

УСТАНОВКА ДЛЯ ИСПЫТАНИЯ ПРИЕМНО-УСИЛИТЕЛЬНЫХ ЛАМП НА УДАР при ускорении до 2000 g

Изложен новый метод измерения ускорения при меха-

ническом ударе.

Приведено описание установки для испытания приемно-усилительных ламп на воздействие механических ударов. Установка создает ускорение до $2\,000\,g$ при длительности удара около 1 мсек. Испытание может производиться с подачей напряжений на электроды лампы. Установка оснащена устройством для наблюдения формы кривой ускорения, а также устройством для наблюдения междуэлектродных замыканий в процессе удара.

Описанию новой установки предшествует краткий обзор известных установок для испытания приемно усилительных

ламп на механический удар.

1. ВВЕДЕНИЕ

Испытание приемно-усилительных ламп на воздействие одиночных механических ударов при ускорении в несколько сот g стало применяться сравнительно широко только в период второй мировой войны. Введение такого испытания было вызвано необходимостью создания приемно-усилительных намп, сохраняющих работоспособность в условиях воздействия механических ударных нагрузок.

Воздействию сотрясений ударного характера подвергаются приемно-усилительные лампы, применяемые и в промышленных условиях. В связи с этим устойчивость против механических ударов стала важным качеством приемно-усилительных ламп, и, естественно, появилась необходимость введения соответствующего испытания для определения запаса прочности ламп при воздействии механических ударных нагрузок. Кроме того, для производства приемно-усилительных ламп полезно знать предельные ускорения с точки зрения их постоянства, что способствует контролю устойчивости технологического процесса изготовления приемно-усилительных ламп. Под предельными ускорениями понимаются такие величины ускоре-

ний, при которых достигается предел прочности деталей или механических связей между ними.

Испытание на воздействие механических ударных нагрузок является специфическим видом испытания. Сопоставление результатов воздействия на механическую систему, например, вибрационных нагрузок, постоянного ускорения и т. п. с результатами воздействия одиночных механических ударов приводит к выводу, что практически невозможно выбрать какоелибо иное испытание, эквивалентное воздействию одиночных механических ударных нагрузок.

Так, например, в случае вязких материалов последствия одиночных ударов суммируются и могут привести к необратимой, явно видимой деформации, как это показано на рис. 1.

Воздействие вибрацион ных нагрузок может привести к усталостным изменениям структуры материала без явно видимой деформации. Таким образом, результаты воздействия такого рода вибрационных нагрузок могут остаться незамеченными почти до полной потери прочности материала.

В частности, следует отметить, что воздействие бы-

Рис. 1. Пример деформации при ударе.

метить, что воздействие об стро затухающих вибрационных нагрузок, как это делается в описываемой далее установке конструкции Ленинградского политехнического института [1], также не является эквивалентным одиночному механическому удару.

При механических ударах, имеющих форму затухающих вибрационных нагрузок, эффект накопления последствий механических ударов (в виде деформаций) может быть значительно слабее, чем при одиночных ударных импульсах, либо может совсем не наблюдаться. Кроме того, при такой форме кривой ускорения испытательная установка обладает крайне нежелательной частотной избирательностью.

Существующие в настоящее время установки, предназначенные для испытания приемно-усилительных ламп на воздействие механических ударных нагрузок, обладают такими существенными недостатками, как, например, неудобством измерения ускорений, неудобством проведения самих испытаний.

Описываемая установка представляет собой усовершенствованное устройство для испытания ламп на воздействие механического удара при ускорениях до нескольких тысяч g.

2. ОБЗОР КОНСТРУКЦИЙ ИСПЫТАТЕЛЬНЫХ УСТАНОВОК

Рассмотрим кратко принцип действия и конструкцию нескольких типичных установок для испытания приемно-усилительных ламп на воздействие механических ударных нагрузок.

Пневматическая установка фирмы «Телефункен»

Установка фирмы «Телефункен» [2] для испытания приемно-усилительных ламп на воздействие механических ударных нагрузок представляет собой пневматическую пушку (рис. 2).

Рис. 2. Схема испытательной установки фирмы «Телефункен»: I — цилиндр, 2 — поршень, 3 — щель, 4 — резсрвуар с сжатым воздухом, 5 — вентиль, 6 — защелка, 7 — измеритель давления.

Установка приводится в действие сжатым воздухом. Испытываемая лампа помещается внутри поршня 2. После открытия вентиля 5 поршень с возрастающей скоростью начинает перемещаться под давлением воздуха. Пройдя участок I, поршень сжимает воздух, заключенный в пространстве II. В это же время через щели 3 происходит выхлоп сжатого воздуха из пространства I.

Торможение поршня в пространстве II происходит весьми резко и представляет собой собственно удар.

Пиковое значение ускорения поршня определяется пиковым значением давления воздуха в пространстве II, сечением поршня и его массой.

Форма кривой, изображающей зависимость ускорения от времени, показана на рис. 3. По данным фирмы «Телефункен»,

Рис. 3. Форма кривой, изображающей зависимость ускорения от времени (установка фирмы «Телефункен»).

с помощью этой установки можно получать ускорения от сотен до нескольких десятков тысяч g .

Однако установка сложна, громоздка и очень неудобна в эксплуатации, что и является ее недостатком.

Установка копрового типа

Американская установка [3] состоит из платформы I (рис. 4), скользящей по вертикальным направляющим, и

тяжелого основания — наковальни 2. Испытываемый объект крепится на платформе. Удар получается в результате свободного падения платформы на наковальню. При этом соударение происходит между шлифованными металлическими поверхностями S_1 и S_2 . В момент удара возбуждаются колебания платформы, которые воздействуют на испытываемый объект одновременно с основным импульсом ударного ускорения. Кривая, изображающая зависимость ускорения от времени, имеет в этом случае форму,

Рис. 4. Схема вертикальной испытательной установки американского образца: I — платформа, 2 — наковальня, S_1 и S_2 — направляющие поверхности.

показанную на рис. 5,a. Если же до удара нанести на одну из поверхностей S_1 или S_2 каплю масла, то колебания

платформы не возникают (рис. 5, δ). Установка копрового типа создает ускорение в пределах нескольких сот g, что в ряде случаев бывает недостаточно при испытании приемно-усилительных ламп.

Рис. 5. Форма кривой, изображающей зависимость ускорения от времени (установка американского образца).

Маятниковая испытательная установка

Эта американская установка [4] (рис. 6) состоит из снаряда 1, скользящего между поверхностями S_1 и S_2 , маятника 3, выполняющего роль молота, и промежуточной колодки 2. Испытываемая лампа помещается внутри снаряда либо на нем. Величина ускорения задается углом отклонения маягника.

Рис. 6. Схема маятниковой испытательной установки американского образца: I — снаряд, 2 — промежуточная колодка, 3 — маятник, S_1 и S_2 — направляющие поверхности.

Установка этого типа предназначена для получения ускорений до $500\ g$.

Существенным недостатком этой установки является сложность измерения ускорения. Измерение ускорения производится косвенно, двукратным дифференцированием кривой движения снаряда, полученной путем фотозаписи.

Установка маятникового типа НИИ МРТП

Установка, описанная в [5], состоит из двух маятников, подвешенных на общей оси (рис. 7). На одном из них подвешен снаряд I, а на втором — молот 2. Между маятниками расположен тяжелый барьер 3.

Рис. 7. Схема маятниковсй испытательной установки НИИ МРТП: 1— снаряд, 2— молот, 3— барьер, 4— резиновая прокладка, 5— кварцевый акселерометр.

Часть снаряда проходит через отверстие в барьере и выступает из него на отрезок Δ . На поверхности молота имеется резиновая прокладка 4. Удар производится за счет кинетической энергии падающего молота. Величина ускорения зависит от угла отклонения молота и от упругости резиновой прокладки.

Размер Δ можно подобрать так, чтобы в процессе удара соприкосновение молота с барьером наступало в момент пикового значения ускорения снаряда. В этом случае кривая, изображающая зависимость ускорения от времени, будет иметь форму, показанную на рис. 8, a. Характерной особенностью такой кривой является крутой спад импульса ускорения.

Рис. 8. Форма кривой, изображающей зависимость ускорения от времени (установка НИИ МРТП).

При такой форме кривой, изображающей зависимость ускорения от времени, возможно одновременно получить большой импульс силы, определяемый площадью, ограниченной кривой и осью времени, и значительные амплитуды высокочастотных компонент в спектре. Наличие последних определяется крутым спадом кривой. При колоколообразной форме кривой, изображающей зависимость ускорения от времени, увеличение импульса силы приводит к снижению амплитуд высокочастотных компонент [5].

При значениях Δ , больших некоторого Δ_1 , кривая зависимости ускорения от времени будет иметь форму, показанную на рнс. 8,6, так как удар полностью заканчивается до соприкосновения прокладки 4 с барьером 3 (рис. 7).

Измерение ускорения производится с помощью кварцевого акселерометра 5, помещенного на снаряде I. Установка не позволяет получать ускорения более 500~g.

Установка торсионного типа Ленинградского политехнического института

Установка [1] (рис. 9) состоит из стержня 1, на конце которого закреплен рычаг 2. Испытываемая лампа A закрепляется на конце рычага. Удар производится путем внезапного освобождения предварительно закрученного стержня 1. Измерение ускорения производится с помощью тензометрического акселерометра, помещенного на конце рычага 2.

Время Время

Рис. 9. Схема торсионной испыгательной установки конструкции Ленинградского политехнического института: 1— стержень, 2— рычаг.

Рис. 10. Форма кривой, изображающей зависимость ускорения от времени (торсионная установка).

Форма кривой зависимости ускорения от времени представляет собой затухающие колебания (рис. 10).

Недостатки установки при такой форме зависимости ускорения от времени указаны ранее (см. «Введение»). Установка этого типа создает ускорение до $600\,g$.

3. НОВАЯ ИСПЫТАТЕЛЬНАЯ УСТАНОВКА

Как было показано, рассмотренные выше типы установок для испытания приемно-усилительных ламп на воздействие механических ударов обладают рядом существенных недостатков.

Для устранения этих недостатков описываемая установка должна была удовлетворять следующим требованиям:

- а) измерение и наблюдение кривой ускорения производить с помощью кварцевого акселерометра;
- б) устранить трудности в применении кварцевого акселерометра, вытекающие из необходимости поддержания гальванической связи между акселерометром, находящимся на снаряде, в котором заключена испытываемая лампа, и аппаратурой для измерения ускорения и наблюдения формы кривой ускорения:
- в) повысить долговечность акселерометра путем облегчения условий эксплуатации;
 - г) обеспечить хорошую повторяемость удара;
- д) проводить испытания с подачей напряжения на электроды ламп;
- е) в процессе удара контролировать короткие замыкания между электродами ламп;
 - ж) получить ускорение при механическом ударе до $2\,000\,g$.

Трудности в применении кварцевого акселерометра связаны с тем, что снаряд, в котором находится испытываемая лампа, проходит сравнительно длинный путь, выражающийся в метрах, и достигает скорости порядка 10 м/сек.

В этих условиях обеспечение гальванической связи между кварцевым акселерометром и измерительной аппаратурой затрудняется тем, что необходимо применять кабель, не создающий электрических помех [1, 2] при воздействии на него механического удара, изгибающих усилий и т. п. Это значит, что изоляция такого кабеля не должна обладать пьезоэлектрическими свойствами, а его емкость не должна колебаться при механических воздействиях.

Кабель в целом и его изоляция должны обладать значительной механической прочностью, а сопротивление изоляции должно быть порядка $10^{12}\ om$.

Особая конструкция кабеля, описанная в [5], обеспечивает хорошую его работу при ускорениях до 700g. Однако рассчитывать на успешное применение кабеля в новой установке, создающей ускорения $2\,000\,g$, не представлялось возможным.

Указанные обстоятельства привели к созданию конструкции установки, отличной от известных нам отечественных и зарубежных образцов.

Принципиальная схема установки

Принципиальная схема установки приведена на рис. 11. На схеме показаны следующие основные элементы:

- 1 металлический полый цилиндр, называемый снарядом, внутри которого помещается испытываемая лампа,
- 2 металлическое цилиндрическое тело, называемое наковальней, покоящееся на мягкой пружине,
 - 3 резиновая пластина,
 - 4 кварцевый акселерометр.

Рис. 11. Схема новой испытательной установки копрового типа конструкции НИИ МРТП: 1— снаряд, 2— наковальня, 3— резиновый диск, 4— кварцевый акселерометр, 5— воздушная подушка, 6— выход для воздуха, 7— кожух, 8— пружина.

Принцип действия установки основан на внезапном торможении снаряда, который свободно падает на наковальню. Масса наковальни на порядок больше массы снаряда. Соударение обеих масс происходит через резиновый диск, используемый в качестве упругого элемента.

Метод измерения ускорения

Метод измерения ускорения основан на использовании связи между ускорениями двух соударяющихся тел для случая классического удара.

При соударении свободно падающего снаряда, масса которого равна m, с наковальней, масса которой равна M, существует зависимость

$$a_m = a_M \frac{M}{m} \,, \tag{1}$$

где a_m и a_M — мгновенные значения ускорений масс m и M. Измерив максимальное значение ускорения a_M наковальни с массой M и предварительно установив соотношение $\frac{M}{m}$, можно с помощью (1) вычислить максимальное значение ускорения в процессе удара свободно падающего снаряда.

Подавая на вертикальные пластины электронного осциллографа электрический сигнал, вырабатываемый кварцевым акселерометром 4 (рис. 11), помещенным на наковальне, получим на экране (в определенном масштабе) изображение кривой зависимости ускорения снаряда и наковальни от времени.

Отношение масштабов кривой ускорения для снаряда и наковальни обратно пропорционально отношению их масс.

Описанный метод измерения справедлив только для случая, когда в процессе удара не возбуждаются колебания масс m и M в направлении силы удара.

В описываемой установке возникновение колебаний снаряда и наковальни (в пределах их масс) устранено наличием резиновой прокладки между массами m и M, так как резонансная частота колебательной системы, состоящей из масс m и M и упругости самой прокладки, оказывается значительно ниже резонансных частот колебаний отдельно взятых масс m и M. Отсутствие колебаний этих масс проверено путем осциллографирования кривых ускорений.

Оценка погрешности измерения ускорения

При определении ускорения снаряда a_m по формуле (1) не учитываются погрешности, обусловленные наличием реакции пружины δ и сопротивления воздуха в воздушной подушке δ (рис. 11). Ориентировочная оценка этих погрешностей, приведенная далее, показывает, что эти погрешности невелики.

Погрешность, обусловленная силой реакции пружины

В описываемой установке масса М равна 10 кг, а масса m-1 кг. Упругость пружины выбрана так, что под тяжестью массы M ее сжатие равно 40 мм.

Найдем погрешности измерения ускорения при ударе, когда максимум ускорения равен 2000 g, а длительность импульса равна 1 мсек.

Принимая $a_m = 2000 g$, получаем согласно (1)

$$a_m = 2000 g \cdot \frac{1}{10} = 200 g.$$

Принимая форму импульса ускорения прямоугольной, найдем путь S, пройденный наковальней за время удара, по формуле

$$S = \frac{a_M \cdot t^2}{2} ,$$

откуда

$$S \cong \frac{2000 \cdot 10 \ \text{m/ce} \kappa^2 \cdot \frac{1}{10} (0{,}001 \ \text{ce} \kappa^2)}{2} \cong 0{,}001 \ \text{m}.$$

В действительности же путь, пройденный большой массой за время удара, будет еще меньше, так как реальный импульс силы имеет форму, близкую к синусоидальной.

Сила реакции пружины равна

$$P = kS$$

k — коэффициент упругости, S — величина деформации пружины.

В процессе удара сила реакции не превышает значения $P = 10 \ \kappa z \frac{1}{40} = 0.25 \ \kappa z$. Поскольку сила инерционной реакции массы M во время удара не превышает 2 000 κz , то погрешность є, вносимая реакцией пружины, не превысит значение

$$\varepsilon = 100 \cdot \frac{0.25}{2.000} = 0.0125 \%$$

Погрешность, обусловленная сопротивлением воздушной подушки

Как было показано, во время удара наковальня смещается приблизительно на 1 мм и сжимает воздух, заключенный между наковальней и кожухом 7 (рис. 11), который образует воздушную подушку 5. Назначение воздушной подушки

ключается в демпфировании колебаний наковальни после окончания процесса удара. Высота воздушной подушки ориентировочно равна 100 мм. При сжатии подушки на 1 мм давление воздуха увеличивается не более чем на 1%, т.е. 0,01 кг/см. При площади поперечного сечения наковальни, равной 200 см², создается тормозящее усилие около 2 кг, что представляет собой по отношению к инерционной реакции наковальни 2, равной 2000 кг, всего лишь 0,1%.

 W_3 оценки погрешностей видно, что ускорение a_m испытываемой лампы, помещаемой внутри снаряда, можно определить с достаточной точностью, умножив ускорение наковальни a_M на соотношение $\frac{M}{m}$, т. е. $a_m = a_M \frac{M}{m}$. Экспериментальная проверка ускорений, полученных

Экспериментальная проверка ускорений, полученных описанным методом, показала, что истинные ускорения, измеренные с помощью малогабаритного акселерометра, помещенного внутри снаряда 1 (вместо испытываемой лампы), отличаются менее чем на 5%*.

Описание конструкции установки

Кинематическая схема установки показана на рис. 12. Основными элементами установки являются:

- 1. Клеть 1, которая свободно скользит по вертикальной направляющей колонке 2. Перемещение клети ограничено сверху кольцом 3, а снизу кольцом 4, имеющими резиновые буферы 5 и 6. Каждое из колец может быть закреплено на нужной высоте.
- 2. Снаряд, в котором помещают испытываемую лампу. Хвостовик снаряда может перемещаться во втулке, связанной с клетью. Втулка короче хвостовика, что создает возможность взаимного перемещения снаряда относительно клети. На хвостовике предусмотрены кольцевидные резиновые буферы 7 и 8.
- 3. Наковальня, представляющая собой цилиндр с хвостовиком. Она покоится на мягкой пружине 17, находящейся внутри цилиндрического корпуса 18.
- 4. Цепь Галля 14, поднимающая снаряд на требуемую высоту.
- Кварцевый акселерометр, закрепленный на хвостовике наковальни.

^{*} Гальваническая связь с датчиком осуществлялась с помощью двух медных шин, натянутых параллельно пути падающего снаряда.

3 Труды НИИ

Рис. 13. Общий вид новой установки.

.34

Approved For Release 2010/04/07 : CIA-RDP80T00246A045700380001-3

Общий вид установки показан на рис. 13.

Рабочий цикл установки происходит следующим образом. Перед ударом клеть находится в наивысшем положении, опираясь зубцом 15 о зубец 16. Свободное падение клети начинается после нажатия кнопки, которая замыкает цепь питания электромагнита, втягивающего зубец 16. Движение клети вниз заканчивается ударом о резиновый буфер δ . Расстояние d_1 и d_2 подобраны с таким расчетом, чтобы удару клети о буфер δ предшествовал удар снаряда о наковальню (через резиновую прокладку) и чтобы обратное движение клети началось позже обратного движения снаряда, но раньше, чем снаряд, двигаясь после удара вверх, пройдет путь Δ. Затем клеть поднимается вверх, отбрасывая зубом 15 зуб 9. Ограничительное кольцо 10 устанавливается на таком уровне, чтобы зуб 15 поднявшейся клети оказался выше зуба 9 на несколько сантиметров. Опускаясь, клеть опирается на зуб 9 (зуб 9 и зуб 16 сконструированы в виде защелок, откидывающихся только в одну сторону), после чего дальнейшее опускание клети вместе со снарядом происходит замедленно вследствие действия подвешенного на блоке противовеса 11. На этом заканчивается процесс удара. Подготовка к следующему удару производится путем включения привода цепи Галля.

К началу движения цепи связанный с ней рычаг 13 переходит из положения I в положение II, подхватывает клеть за выступ 12, поднимая ее до ограничительного кольца 3, затем выходит из сцепления с клетью, которая после этого опирается зубом 15 на зуб 16. Клеть остается в этом положении до начала следующего удара. При втягивании с помощью электромагнита зуба 16 втягивается также и зуб 9. Возврат зуба 9 происходит автоматически перед началом обратного движения снаряда после удара. Управление установкой — электрическое, осуществляемое с помощью двух кнопок: «подъем» и «удар», которые включают соответствующие электромагниты.

Конструктивной особенностью установки является то, что снаряд, содержащий испытываемую лампу, ударяется о наковальню, а клеть ударяется о буфер 6. При такой конструкции клеть испытывает сравнительно небольшое ускорение ($200\ g$), в то время как ускорение снаряда при ударе достигает больших значений ($2\ 000\ g$). Разделение ударов вызвано тем, что при прочих равных условиях тело, обладающее меньшей массой, испытывает при ударе большее ускорение. Отделение массы m от клети позволяет уменьшить высоту установки.

Целью разделения снаряда и клети является также облегчение условий работы резиновой прокладки за счет уменьшения силы ($m \cdot a_m$), действующей на резину при ударе.

Расчет установки

Кривую зависимости ускорения от времени можно рассматривать в первом приближении как синусоидальную. Поэтому длительность процесса удара можно рассматривать как полупериод колебательной системы, состоящей из массы m, массы M и упругого элемента, коэффициент упругости которого равен k.

Расчет длительности удара

Длительность удара можно определить на основании известной формулы резонансной частоты колебательной системы, состоящей из двух масс, связанных упругостью и колеблющихся в противофазе:

$$\omega = \sqrt{\frac{k(M+m)}{mM}},$$

где

$$\mathbf{\omega} = 2\pi f = \frac{2\pi}{T} \cdot$$

Здесь

T — период колебания.

Длительность удара $t=\frac{T}{2}$, определяемая как ширина импульса силы у его основания, может быть выражена в первом приближении в виде

$$t = \frac{\pi}{\sqrt{\frac{k(M+m)}{mM}}}$$

Расчет ускорения и высоты падения

В момент наибольшей деформации упругого элемента скорости v_1 масс m и M равны и выражаются формулой

$$v_1 = \frac{mv}{m+M}$$
,

где v — начальная скорость массы m, определяемая высотой падения (начальная скорость массы M равна нулю).

36

В этот момент кинетическая энергия обеих масс равна:

$$\left(\frac{M+m}{2}\right)\left(\frac{m\ v}{m+M}\right)^2 = \frac{m}{2}\left(v\sqrt{\frac{m}{m+M}}\right)^2.$$

Энергия, запасенная в упругом элементе в момент наибольшего ускорения, т. е. в момент наибольшей деформации, может быть выражена следующим соотношением:

$$\frac{mv^2}{2} - \frac{m}{2} \left(v \sqrt{\frac{m}{m+M}} \right)^2 = \frac{m}{2} \left(v \sqrt{\frac{M}{M+m}} \right)^2$$

и должна быть равна $\frac{k\Delta^2}{2}$,

где k — коэффициент упругости,

 Δ — изменение длины упругого элемента.

Из равенств:

$$\frac{m}{2} \left(v \sqrt{\frac{M}{m+M}} \right)^2 = \frac{k\Delta^2}{2}$$

$$a_m = \frac{k\Delta}{m},$$

И

где $a_{\it m}$ — максимальное значение ускорения массы $m_{\it m}$ получаем

$$a_m = v \sqrt{\frac{M}{m+M}} \cdot \sqrt{\frac{k}{m}}.$$

Высота падения h определяется по формуле

$$h = \frac{v^2}{2g}$$

4. УСТРОЙСТВО ДЛЯ НАБЛЮДЕНИЯ МЕЖДУЭЛЕКТРОДНЫХ ЗАМЫКАНИЙ В ЛАМПАХ ПРИ ИСПЫТАНИИ НА МЕХАНИЧЕСКИЙ УДАР

Для наблюдения междуэлектродных замыканий в лампах в процессе механического удара испытательная установка имеет специальное устройство. Это устройство позволяет с помощью одного электроннолучевого осциллографа контролировать наличие коротких замыканий в четырех междуэлектродных промежутках. Лампы испытываются при подаче нор-

мального напряжения накала, но при большом отрицательном напряжении на первой сетке (у диодов отрицательное напряжение подается на анод), т. е. в отсутствии анодного тока. Схема устройства (для тетрода) показана на рис. 14.

Рис. 14. Схема устройства для наблюдения междуэлектродных замыканий: 1, 2, 3, 4, — междуэлектродные промежутки. Стрелки указывают направление тока при пробоях в соответствующих междуэлектродных промежутках 1, 2, 3 и 4.

Устройство состоит из трех источников постоянного напряжения — 300, 300, 150 в — и двух сопротивлений — R_1 и R_2 . Напряжение на управляющей сетке относительно катода равно —150 в.

Напряжение накала подается от аккумулятора. Контактные клеммы A_1 и A_2 соединяются с входными клеммамч (горизонтального и вертикального отклонения) электроннолучевого осциллографа.

При отсутствии сигнала луч падает на середину экрана. В зависимости от того, в каком из 4 междуэлектродных промежутков происходит замыкание, луч откленяется вправо, влево, вверх или вниз.

5. ВЫВОДЫ

Опыт эксплуатации описанной установки для испытания приемно-усилительных ламп на воздействие ударных нагрузок показал, что установка надежна в работе, обладает хорошей воспроизводимостью условий испытания и устойчивостью градуировки в течение нескольких месяцев. Простота и удобство принятого метода измерения ускорения позволяют с достаточ-

но высокой точностью контролировать ускорение во время удара

Установка может быть использована на предприятиях вакуумной и радиотехнической промышленности*.

ЛИТЕРАТУРА

- 1. Баргер, Кандидатская диссертация, Ленинградский политехнический институт, 1951.
 - 2. Отчет фирмы «Телефункен», RÖE, № 53.
- 3. Charles E. Crede, Schoc Testing of Airborne Eguipment, Tele—Tech, July—Aug. 1951.
 - 4. Stubner F. W., Bell System Technical Journal, № 5, Sept. 1953.
 - 5. Авнерс Я. Х., Технический отчет НИИ МРТП, № 55—464, 1950.

Статья поступила в редакцию 10 декабря 1955 г.

^{*} Установка рекомендована измерительной секцией Научно-технического совета НИИ МРТП для нормализации.

Инж. БРАВИНСКИЙ В. Г., канд. техн. наук САЛЬНИКОВ П. И.

МЕТОДЫ ИЗМЕРЕНИЯ ТЕРМИЧЕСКОГО КОЭФФИЦИЕНТА ЛИНЕЙНОГО РАСШИРЕНИЯ ЭЛЕКТРОВАКУУМНЫХ МАТЕРИАЛОВ

Статья является обзором методов измерения термического коэффициента линейного расширения материалов, применяемых в электровакуумной промышленности.

1. ВВЕДЕНИЕ

В производстве электронных приборов широко применяются спаи различных материалов. К этим спаям предъявляются требования надежной работы в различных температурных условиях при различной механической нагрузке. Поэтому коэффициент термического расширения является важнейшим параметром электровакуумных материалов.

Коэффициенты термического расширения двух спаиваемых материалов должны быть близкими в широком температурном интервале. В противном случае в спаях возникают большие механические напряжения, которые могут приводить к выходу изделия из строя.

В связи с этим возникает необходимость повседневного контроля коэффициента термического расширения таких материалов, как стекло, керамика, различные металлы и сплавы. В зависимости от чистоты исходных материалов и технологии изготовления коэффициент линейного расширения а у этих материалов изменяется в широких пределах.

В настоящее время нет хороших промышленных образцов приборов для контроля коэффициента термического расширения материалов, которые бы полностью удовлетворяли современным требованиям электровакуумной промышленности.

На сегодняшний день существует большое количество самых разнообразных методов измерения коэффициентов линейного расширения, а также сконструировано довольно много лабораторных приборов. Однако многие из них не описаны в литературе и поэтому мало известны работникам электровакуумной промышленности, вследствие чего не находят должного применения.

40

В настоящей статье делается попытка обобщения отдельных данных, касающихся измерения тепловых характеристик твердых тел. По мнению авторов, это должно помочь инженерам и технологам при конструировании и изготовлении электровакуумных приборов.

2. АБСОЛЮТНЫЙ СПОСОБ ИЗМЕРЕНИЯ ТЕРМИЧЕСКОГО КОЭФФИЦИЕНТА ЛИНЕЙНОГО РАСШИРЕНИЯ

Все существующие методы определения термического коэффициента линейного расширения по способу измерения можно разбить на два вида: абсолютные и дифференциальные. Дифференциальный способ измерений часто называют также относительным или разностным.

При абсолютном способе измерения изменение длины испытуемого образца, происходящее благодаря изменению температуры, фиксируется непосредственно в результате эксперимента. Определив искомую величину $\pm \Delta l$, по формуле

$$\alpha = \frac{\frac{\Lambda^l}{A}}{l_0 (t_2 - t_1)},$$

где l_0 — начальная длина образца,

 t_2 и t_1 — соответственно конечная и начальная температура, A — коэффициент увеличения прибора,

рассчитывают α — термический коэффициент расширения образца.

При этом способе измерения вопросам создания равномерного теплового поля, в котором находится образец, а также измерению температуры и размеров испытуемого объекта нужно уделить особое внимание, так как все ошибки, как это видно из формулы, непосредственно влияют на определяемую величину а.

Абсолютным способом пользуются при измерениях термического коэффициента расширения методами стрелочного индикатора, оптического рычага, компараторным, интерференционным и рядом других, на которых мы и остановимся. Ниже рассмотрены только методы измерений термического коэффициента линейного расширения на основе абсолютного способа.

Метод стрелочного индикатора

Метод стрелочного индикатора получил распространение в

работах отечественных и особенно зарубежных исследователей [1-3].

Схема индикаторной установки, осуществленной по этому методу, дана на рис. 1.

Рис. 1. Стрелочный индикаторный дилатометр:

1 — центрирующая шайба, 2 — кварцевый стержень (толкатель), 3 — кожух печи, 4 — крышка, 5 — воронка для залнвки жидкого воздуха, 6 — кварцевая трубка, 7 — стальная втулка, 8 — индикатор, 9 — термопара, 10 — трубка для присоединения к насосу, 11 — обмотка, 12 — труба, 13 — медный цилиндр, 14 — кварцевая пробка.

Установка состоит из печи с вакуумной изоляцией, пространства для наполнения жидким воздухом с целью обеспечения работы в широком интервале температур, включая и отрицательные температуры; нагревательного элемента; медного цилиндра, способствующего равномерному нагреву рабочего пространства; кварцевой трубки, в которой находится испытуемый образец.

Испытуемый образец, расширяясь, давит на кварцевый стержень, который заранее плотно прижат к стрелочному индикатору. Цена деления стрелочного индикатора определяет возможности метода. Обычно применяются индикаторы с ценой деления 0,0025 или 0,01 мм. Температура регистрируется потенциометрическим способом хромель-алюмелевой либо другой однотипной термопарой.

Метод позволяет вести исследования в широком диапазоне температур — от -180 до $+1000^{\circ}$ С [4] — с предельной достижимой точностью 2%.

Однако следует отметить, что установка довольно капризна, и многим исследователям не удавалось получить указанной точности, а иногда

даже и кривых охлаждения. К недостаткам этого метода нужно также отнести большие размеры образца (около

100 мм) и то, что образец находится под действием сжимающей пружины; последнее весьма нежелательно при исследовании стекла.

Другие установки со стрелочным индикатором принципиально не отличаются от вышеописанной. В качестве примера дилатометра со стрелочным индикатором можно также привести универсальную установку Московского института стали, гредложенную Н. Н. Сиротой [5].

Этот прибор позволяет изучать превращения, происходящие в стали при ее нагревании, одновременно по дилатометрическому, магнитному и электрическому методам. Дилатометрический метод осуществляется сравнительно просто, но дает небольшую точность измерения.

Кварцевый стержень, упирающийся верхним концом в штифт индикатора, прижат к испытуемому образцу, который находится в трубке из плавленого кварца.

По показаниям индикатора можно в процессе опыта следить за изменением длины образца.

Компараторный метод

Принципиальная схема компараторного метода может быть представлена следующим образом.

По краям образца, находящегося в печи со смотровыми окнами, висят две тугоплавкие нити с малым коэффициентом термического расширения, положение которых фиксируется двумя длиннофокусными оптическими приборами с окулярными микрометрами. Температура печи для нагревания исследуемого объекта в интервалах между измеряемыми точками может повышаться сравнительно быстро (в большинстве других методов требуется вести нагрев со скоростью, не пре вышающей 1—3 град/мин). Затем образец выдерживается в течение определенного времени при данной температуре, после чего при помощи микроскопов производится измерение приращения длины. Предельная достижимая точность метода 0,1% [4].

Следует указать, что чем меньше «посредников» (особенно механических) между исследуемым образцом и индикатором изменения его длины, тем выше точность измерений.

В качестве прибора, основанного на данном методе, можно указать на прибор, сконструированный ГИКИ, предназначенный для измерения расширения керамических образцов в

интервале температур от 20 до 1 300°С. Схема этого прибора приведена на рис. 2.

Рис. 2. Дилатометр, сконструированный ГИКИ: I — горизонтальная электропечь, 2 — сквозные отверстия, 3 — смотровые трубы, 4 — кольца с винтами, 5 — корундовые трубы, 6 — испытуемый образец в виде стержня с заостренными концами.

Образец, выполненный в виде стержня с двумя заостренными концами, помещается на подставке из высокоогнеупорного материала точно в центре горизонтальной электронагревательной печи с двумя смотровыми окнами. Против окон установлены две смотровые трубы, снабженные винтовыми окулярными микрометрами и наводящими нитями; оси труб совпадают с центровыми линиями отверстий. Для облегчения наводки труб на образец с противоположной стороны печи против смотровых отверстий устанавливают рефлектор.

В начале опыта нити смотровых труб наводят на изображение образца, производят отсчет их положения, а затем такую же наводку повторяют

при различных температурах. Температуру образца измеряют при помощи платино-платинородиевой термопары, расположенной точно на середине образца.

Нагрев рекомендуют вести [27] со скоростью 3—4° С в минуту. Замеры делают не реже чем один раз в 2—3 мин. В критических точках замеры ведут непрерывно. За истинный показатель расширения принимают среднее из двух параллельных определений.

Кроме своего основного назначения, компараторный метод может найти применение для изучения изменения габаритов различных деталей электровакуумных приборов в рабочем режиме и после определенного срока службы.

Интерференционный метод

Идея интерференционного метода заключается в том, что в результате термического расширения образца происходит

сдвиг интерференционной картины (поверхность, отражающая лучи, непосредственно связана с образцом) и появляется возможность измерять расширение испытуемого объекта непосредственно в длинах волн рабочего света. В связи с тем, что считать число изменений интерференционной картины утомительно, было предложено работать в двух- трехцветном свете. В этом случае достаточно зафиксировать интерференционную картину дважды. Точность измерений при использовании метода оказывается довольно высокой и равной примерно половине длины волны рабочего света.

Метод позволяет определять термические коэффициенты расширения в кристаллах вдоль различных кристаллографических осей.

Однако, ввиду сложности настройки и подготовки объекта, интерференционные методы широкого распространения не получили, несмотря на то, что они позволяют выполнять исследования образцов весьма малых размеров ($d \le 10 \ \text{мм}$), причем образцы в процессе измерения не подвергаются действию сжимающей пружины [2, 11].

В последние годы был предложен новый вариант микроинтерференционного метода [6], использующий микроинтерферометр системы Линника (прибор для оценки чистоты обработки поверхности) для измерения расширения твердых тел при нагревании.

Микроинтерферометр Линника ИЗК-50 представляет собой специальную интерференционную насадку, смонтированную на тубусе штатива биологического микроскопа. Приставка к микроинтерферометру разработана В. Пресновым [6]; она весьма несложна и может быть изготовлена в условиях завода.

Измерение расширения твердых тел при нагревании (рис. 3) ведется по изменению интерференционной картины, которая создается в поле зрения окуляра благодаря интерференции двух пучков отраженного света. Отражение происходит от неподвижного плоского зеркала (один пучок) и от полированной поверхности кварцевого толкателя (второй пучок), опирающегося на испытуемый образец.

Сейчас еще трудно дать окончательную оценку метода. Однако возможности непрерывного контроля расширения в

широком температурном диапазоне и повторения измерения в любой сомнительной точке при высокой точности (цена деле-

Рис. 3. Оптическая схема микроинтерферометра:

1 — источник света,

2 — разделяющий кубик,

3 — боковое зеркало,

4 — объектив, 5 — окуляр,

6 — анализатор, 7 — призма, 8 — поверхность толкателя.

ния равна 0,25 мкн), небольшом деформирующем действин прижимающей пружины и простоте расчета говорят в пользу данного метода, хотя остаются неудобства, свойственные всем интерференционным методам.

Близким к интерференционным методам является метод, предложенный известным русским кристаллографом Федоровым. На испытуемый образец наносится дифракционная решетка, и вся картина просматривается в отраженном либо проходящем (в случае прозрачных образцов) свете. При расширении объекта изменяется постоянная решетки, что и вызывает сдвиг дифракционной картины.

Таким образом, удлинение образца измеряется также в длинах волн рабочего света.

Метод оптического рычага

Метод оптического рычага является одним из наиболее распространенных методов и находит применение в приборах, допускающих как абсолютные, так и дифференциальные измерения. Ниже мы остановимся только на приборах, допускающих абсолютные измерения.

Принципиальная схема этого метода проста. Лучи источника света, пройдя через оптическую систему, падают на зеркальце параллельным пучком. Отражаясь от зеркала, свет попадает на экран либо в объектив измерительного прибора. Так как зеркальце связано с исследуемым объектом, то при нагревании и расширении последнего оно перемещается, что приводит к движению точки на экране или в поле зрения измерительного прибора.

Один из оптических дилатометров, осуществленных по методу оптического рычага, изображен на рис. 4 [6]. Он предназначен для определения коэффициентов термического расширения обоих «партнеров» спая металла со стеклом или керамикой.

Основной частью прибора является кварцевая трубка, находящаяся на опорном кольце и не соприкасающаяся более ни с какими деталями. Дно трубки, на которое опирается образец, в подобных дилатометрах является «нулем отсчета» и поэтому, на наш взгляд, сначала его следует изготавливать отдельно в виде кварцевого штабика с отполированной торцевой плоскостью, а затем уже впаивать в трубку.

Для проведения измерений образец снабжается съемным зеркалом из нержавеющей стали, не дающей помутнения зеркальной поверхности при температуре до 500—600° С.

В верхней части печи расположены две герметически закрытые стеклянными глазками латунные трубки, пропускающие на зеркало измерительного микроскопа луч, падающий от осветителя и отраженный от образца. Сама печь, в том числе и нагревательная трубка, подвешивается строго вертикально. В рабочем пространстве может быть создана нейтральная атмосфера.

К недостаткам данного прибора прежде всего следует отнести большие размеры испытуемого образца (длина 253 мм) при необходимости создания равномерного теплового поля. Последнее, впрочем, сравнительно легко достигается без применения каскадного нагрева при соотношении длины образца и печи примерно 1:5 [8].

Большим достоинством описанного дилатометра является отсутствие в нем различных прижимающих устройств, что особенно важно для измерений при температурах, близких к температурам размягчения данного материала (например, при исследованиях стекла).

В этом направлении уже велись работы [9]. Был создан ряд моделей [10], из которых значительный интерес представляет так называемый дилатометр для образцов малых размеров, созданный Стрелковым, Косоуровым и Самойловым [12]. Этот прибор, по чувствительности близкий к интерференционному (в данном дилатометре она достигает величины $2 \cdot 10^{-5}$ мм), допускает исследование образцов произвольной формы и малых размеров (например, кубик или брызга высотой 2—3 мм) и сводит к минимуму давление на образец (вес детали, опирающейся на исследуемый объект, равен 15 г).

Этот прибор, изображенный на рис. 5 и 6, представляет собой кварцевый дилатометр, причем удлинение образца отличается от истинного на величину теплового расширения кварца. В связи с этим при исследовании в интервале температур от нуля до $1\,000^{\circ}$ С полученные результаты нуждаются в поправке, составляющей $5.5-6.10^{-7}$ град $^{-1}$.

Рис. 5. Дилатометр для образцов малых размеров (установочная часть). 1 — образец, 2 — кварцевый столик, 3 — кварцевая трубка, 4 — фланец, 5 — кварцевая серьга, 6 — кварцевый стерженек, 7 — магнитный столик.

Рис. 6. Схема дилатометра для образцов малых размеров: 1 — кварцевый стерженек, 2 — стальное ярмо, 3 — магнитный столик, 4 — ролик, 5 — зеркальце.

На образец, установленный на кварцевом столике, сверху навешивается серьга из плавленого кварца, заканчивающаяся книзу тонким кварцевым стерженьком, передающим измерителю изменение длины образца. В последнем стальное полированное ярмо, прикрепленное к стерженьку, притягивается магнитным столиком и зажимает таким образом помещенный между ними ролик с насаженным на него зеркальцем. При

4 Труды НИИ

перемещении толкателя (стерженька) ролик катится без скольжения, которое затруднено большой величиной трения; последнее делает измеряющую систему мало чувствительной к толчкам и вибрациям.

За поворотом зеркальца наблюдают в автоколлимационную трубку с длиннофокусным объективом (фокусное расстояние примерно равно 0,5 \emph{m}) при помощи окуляра AM9-2, снабженного винтовым окулярным микрометром. Предельная чувствительность его составляет $2\cdot 10^{-5}~\emph{mm}$ на один градус поворота.

Измеритель удлинений вместе с кварцевой трубкой, несущей столик для образца, крепится к металлическому диску и герметически закрывается металлическим кожухом с отверстием, в которое пропускается кварцевая трубка, и с окошком из стекла, находящимся против зеркальца измерителя.

Печь надевается на «кварцевый палец» сверху, по направляющим. Открыт только нижний конец ее, так что в полости печи образуется застойный мешок горячего газа. Для выравнивания температурного поля обмотка печи секционирована.

Помещение образца сверху весьма выгодно, так как устраияет образование конвекционных потоков от нагреваемой зоны в прибор.

На рис. 7 приведены результаты испытаний серебряной брызги высотой 2,16 мм. Следует отметить, что они хорошо (от 1 до 4%) совпадают во всем температурном интервале с данными Эйкена и Данноля [14], полученными также дилатометрическим способом.

Рис. 7. Зависимость термического коэффициента линейного расширения серебра от температуры. Треугольники, точки и квадраты — обозначения различных серий измерений,

Описываемый дилатометр был несколько переконструирован Стрелковым П. Г. и Косоуровым Г. И. для проведения на

нем дифференциальных измерений, которые можно вести при непрерывно изменяющейся температуре со значительно. меньшей погрешностью. Прибор, предназначенный для разностных измерений (рис. 8), отличается тем, что столик рассчитан на помещение двух образцов; соответственно в приборе есть две серьги с передающими удлинение толкателями, на каждом из которых надето по ярму измерителя. Измеритель дифференциального прибора имеет два ролика: один из них зажат между полюсами магнитного столика и первым ярмом, другой между первым и вторым ярмом. Зеркальце первого ролика регистрирует абсолютное изменение длины одного из образцов, зеркальце второго — только разность удлинений образцов. Наблюдение ведется через две автоколлимационные трубы.

В остальном устройство разностного дилатометра подобно абсолютному.

Результаты испытаний, полученные дифференциальным способом на образцах кристаллического кварца, представлены на рис. 9. Кварцевые кубики имели вы-

Рис. 8. Дилатометр для образцов малых размеров (вариант для разностных измерений): 1 — образцы, 2 — серыги, 3 — толкатели (стерженьки), 4 — ярмо, 5 — ролики.

соту 2,95 мм. Обращает на себя внимание также (как и на рис. 7) очень незначительный разброс точек, что говорит высокой точности прибора.

Таким образом, вышеописанный дилатометр является, на наш взгляд, одним из наилучших приборов лабораторного типа.

В 1950 г. группой сотрудников под руководством академика Гудцова Н. Т. был разработан, изготовлен и пущен в эксплуатацию новый автоматический дилатометр с регулируемым коэффициентом умножения записи [15]. Под коэффициентом

умножения (или увеличения) понимается отношение величин линейного расширения образца, фиксируемого на дилатограмме, к абсолютной величине линейного расширения образца.

Рис. 9. Относительные удлинения кристаллического кварца: 1— в направлении, перпендикулярном оси, 2— в направлении, параллельном оси.

Данный прибор представляет собою кварцевый дилатометр с оптической записью. Движение образца (при его тепловом расширении), находящегося в кварцевой трубке, посредством механической системы передается зеркальцу. При этом световой луч, отражаясь от зеркальца и проходя через прорезь кассеты, попадает на фотобумагу, укрепленную на барабане.

Прибор допускает регулирование увеличения в пределах от 200 до 800, что позволяет производить запись линейного расширения образцов в любом, наиболее интересном, узком диапазоне температур (например, 100—300° С) с повышенной точностью, так как незначительное расширение образца, происходящее при заданных температурах, регистрируется на ленте шириной 240 мм, обычно используемой для записн расширения во всем рабочем интервале температур: от комнатной до 1 200°С. Плавная регулировка коэффициента умножения осуществляется с помощью несложного устройства.

Дилатометр имеет программный регулятор температуры. На рис. 10 приведена принципиальная схема размещения отдельных узлов терморегулятора, расположенных внутри корпуса потенциометра

На вал электромотора 1, регулирующего скорость нагрева, посажен диск 2 с пальцем 3. Последний входит в зацепление с

52

шестерней 4, вращающей червячный вал 7 потенциометра через редуктор 5 и сменные шестерни 6. При вращении вала перемещается ограничитель — стрелка 8 потенциометра, ре-

Рис. 10. Схема терморегулятора: 1 — электромотор, 2 — диск, 3 — палец, 4 — шестерня, 5 — редуктор, 6 — сменные шестерни, 7 — червячный вал, 8 — стрелка — ограничитель потенциометра, 9 — рычаг, 10 — муфта, 11 — шестерня, 12 — электромстор.

гулирующего температуру. В зависимости от положения стрелки 8 устанавливается температура нагрева образца, находящегося в печи. Равномерное перемещение стрелки обеспечивает нарастание температуры в печи с постоянной скоростью. При помощи рычага 9 муфта 10 вместе с шестерней 4 может быть перемещена в левое положение. При этом шестерня 4 входит в зацепление с шестерней 11, насаженной на вал мотора Уоррена 12, и отсоединяется от диска 2. Электромотор 12 приводит во вращение вал 7 в обратную сторону и обеспечивает автоматическое регулирование скорости охлаждения печи. В зависимости от передаточного числа сменных шестерен 6 может быть осуществлена различная скорость нагрева и охлаждения образца (в пределах от 1 до 5 град/мин). Программное регулирование позволяет сопоставлять экспериментальные данные и значительно упрощает обработку дилатограмм.

Практика показала, что в зависимости от скорости нагрева кривая нагревания может несколько видоизменяться, что приводит к получению неповторимых значений коэффициентов

термического расширения для одного и того же образца. Следовательно, постоянство скорости нагрева важно обеспечить, во-первых, для одного образца во всем исследуемом температурном интервале и, во-вторых, для всей серии исследуемых образцов, чтобы впоследствии можно было дать сравнительную оценку.

Для исследовательских работ и для общего контроля электровакуумных материалов, когда необходимо проводить измерения с особой точностью, следует рекомендовать скорость нагрева, примерно равную $1 \ zpa\partial/muh$. Для сплавов железа с никелем или хромом указанная скорость может быть меньше $1 \ zpa\partial/muh$, так как скорости твердофазных реакций, протекающих в данных сплавах, в отдельных температурных точках и интервалах меньше $1 \ zpa\partial/muh$.

Ряд приборов со световой записью кривых расширения и сжатия при нагревании и охлаждении основан на соединении двухзеркального гальванометра с дилатометрической головкой. На получающейся дилатограмме кривая является функцией угла поворота двух зеркал: первого, зависящего от расширения образца, дающего обычно перемещение точки в вертикальном направлении, и второго, зависящего от разности температур печи и холодного спая дифференциальной термопары, дающего перемещение точки в горизонтальном направлении. Иногда горизонтальное перемещение точки (температура) фиксируется дилатометрическим пирометром: эталон с известным коэффициентом термического расширения, нагреваясь вместе с образцом в одной печи, при удлинении оказывает давление на призму полного внутреннего отражения, которая в таких конструкциях заменяет собой двухзеркальную систему с поворотной призмой.

На рис. 11 изображен действующий по такой схеме дилатометр фирмы Лейтц. Следует указать, что приборы этого типа в основном используются как дифференциальные [16—18]. На этих приборах мы подробно остановимся дальше.

В заключение данного раздела рассмотрим дилатометр для определения термического коэффициента линейного расшире-

ния стеклянных нитей. Прибор сконструирован Соломиным Н. В. [19].

Рис. 11. Схема оптического дилатометра: 1 — источник света, 2 — сегмент с диафрагмами, 3 — диафрагма, 4 — установка световой точки, 5 и 6 — передача изменений длины эталона и образца, 7 — призма полнего внутреннего отражения, 8 — экран, 9 — фокусировка.

Этот прибор (рис. 12) состоит из станины I, к которой прикреплена термокамера, с находящейся в ней испытуемой нитью 2.

Рис. 12. Дилатометр для стеклянных нитей системы Н. В. Соломина: 1 — станина, 2 — испытуемая нить, 3 — термометры, 4 — микроскоп, 5 — шкала, 6 — трубки для нагревающей жидкости, 7 — груз.

Нагретая жидкость (вода или масло) подается и отводится по патрубкам 6. Контроль температуры выполняется с с помощью термометров 3. При нагревании нити от комнатной температуры до заданной она удлиняется, и связанная с ней шкала 5 перемещается под действием груза 7. При помощи микроскопа 4 фиксируется удлинение с точностью до 0,5%. Недостатком прибора является невысокий верхний предел рабочей температуры (100—120°С).

3. ПРОИЗВОДСТВЕННЫЕ ПРИБОРЫ

Остановимся на двух типах дилатометров, применяющихся на заводах металлопромышленности. Эти приборы не обладают высокой точностью.

Технический дилатометр с механической записью [20] фиксирует температуру испытуемого образца при помощи дилатометрического пирометра.

В кварцевую трубку 1 (рис. 13) заложен испытуемый образец 2 и эталон 3.

Рис. 13. Схема технического дилатометра: 1 — кварцевая трубка, 2 — испытуемый образец, 3 — эталон из пироса, 4 — кварцевые стержни, 5 — рычаги, 6 — рычаги самописца, 7 — перья, 8 — барабан.

С целью создания одинаковых температурных условий для эталона и испытуемого образца в последнем во всю его длику просверливается отверстие, куда и вставляется эталон из пироса (сплав, содержащий 82% никеля, 7% хрома, 5% вольфрама, 3% железа и 3% марганца). При нагревании пирос испытывает магнитное превращение только при температуре 200° С, которое сопровождается таким незначительным объемным изменением, что не может оказать влияьия на точность измерения температуры. При температурах свыше 200° С пирос немагнитен и не претерпевает никаких превращений. Расширение его практически обратимо и не изменяется от долгого употребления.

В качестве эталонов также используются хронин (сплав из хрома, никеля и железа) и некоторые другие материалы.

Изменение длины эталона и испытуемого образца (рис. 13) при помощи кварцевых стержней 4 передается на систему рычагов 5, которые приводят в движение рычаги самописца 6. В этих рычагах находятся перья 7, рисующие кривые на бумаге, укрепленной на вращающемся барабане 8.

Один из рычагов 6, соединенный с эталоном, рисует кривую изменения длины последнего, по которой и судят о температурах. Следует отметить, что так как эталон находится внутри испытуемого образца, то на данной кривой превращения последнего отразятся в виде перегибов и площадок.

Другой рычаг 6, соединенный с образцом, рисует кривую изменения его длины. Перегибы и переломы этой кривой указывают на фазовые превращения в испытуемом образце. Таким образом, в описанном дилатометре контроль превращений можно вести по двум кривым.

Данный прибор может найти большое применение дли контроля электровакуумных материалов. Приготовление образцов из металла и керамики не представляет труда, а в качестве стеклянных образцов можно взять толстостенные трубки с внутренним диаметром, близким к размерам эталона. При этом нужно учитывать, что пирос имеет коэффициент термического расширения порядка $150 \cdot 10^{-7} \, \text{град}^{-1}$. Возможен и такой вариант, при котором испытуемый образец будет помещаться в пиросный эталон, изготовленный в виде цилиндра, просверленного по оси. В этом случае эталон будет служить не только показателем температуры, но и способствовать равномерному нагреву образца, что, как показывает практика, весьма важно, но что не всегда может хорошо ссуществляться в тех приборах, где эталон и образец нагреваются в различных кварцевых трубках.

Такая комбинация, на наш взгляд, может быть особенно полезной при исследовании керамических и стеклянных образцов, а также при решении вопроса об увеличении скоростей нагрева.

Удобным для работы в заводских условиях является упроіценный, так называемый производственный дилатометр (рис. 14). В вертикальной печи находится образец произволь-

Рис. 14. Производственный дилатометр: I — электрическая печь, поддерживаемая стойкой, 2 — стойка, 3 — подставка, 4 — образец, 5 — кварцевый стержень, 6 — рычаг, 7 — нить, 8 — блок, 9 — пружинка, 10 — контактный молоток, 11 — пирометр, 12 — сигнальные лампочки, I, II — контакты.

ной формы, соприкасающийся с кварцевым стержнем 5. Этот стержень своим верхним концом упирается в рычаг 6, который посредством нити 7, перекинутой через блок 8, соединен с пружиной 9. К блоку 8 неподвижно прикреплен контактный молоточек 10. При соприкосновении молоточка с контактом І горит электрическая лампочка, при соприкосновении же с контактом II звонит электрический звонок.

Расширение образца при нагревании, передающееся через кварцевый стержень, в итоге дает замыкание цепи электрической лампочки. Пройдя критическую точку, образец начинает охлаждаться, что в итоге дает замыкание цепи электрического звонка. После окончания превращения образец вновь расширяется, и

снова зажигается электрическая лампочка. При охлаждении контакты I и II предварительно переключаются, и о наступлении превращения опять сигнализирует звонок. Регистрирующая часть данного дилатометра изображена на рис. 15.

Часто над рычагом *1* устанавливают индикатор, показывающий изменение длины испытуемого образца при нагреве

и охлаждении. Помимо этого, имеется еще приспособление, позволяющее с соответствующим коэффициентом умножения графически записывать кривую расширения образца в зависимости от времени или, точнее, кривую разности расширения

образца и кварца, что совершенно неизбежно в любом кварцевом дилатометре. Этот дилатометр дает менее точные результаты, нежели описанный ранее, но имеет те преимущества, что работа на нем может производиться почти без всякого наблюдения и что для испытания могут быть применены образцы различной формы. Последнее предоставляет большие возможности и во многих случаях позволяет выпол-

Рис. 15. Регистрирующая часть производственного дилатометра: 1 — рычаг, 2 — нить, 3 — блок, 4 — бронзовая нить, 5 — перо, 6 — часовой механизм, 7 — индикатор.

нять измерения с готовыми изделиями. Следует отметить преимущественное применение этого прибора для определения критических точек сплавов и начала интервала размягчения стекла.

В кварцевых дилатометрах, в которых часто проводится работа со стеклом, следовало бы ввести такую систему сигнализаций, что создало бы определенные удобства в работе.

4. ДРУГИЕ ПРИБОРЫ И МЕТОДЫ

Наряду с упомянутыми методами, следует отметить емкостный (или конденсаторный) метод измерения коэффициен-

тов термического расширения.

Идея метода заключается в следующем. Испытуемый образец, который может быть весьма мал, что следует отнести к преимуществам метода, входит в конструкцию конденсатора. При нагревании и расширении образца изменяется емкость конденсатора, что и регистрируется соответствующей электрической схемой. Этот принцип измерения коэффициентов термического расширения используется в универсальной термомагнитной установке на переменном токе, разработанной Сиротой Н. Н. [22]. Данный прибор позволяет осуществить одновременное измерение изменений длины образца, его элек-

тросопротивления, магнитной проницаемости, а также дает возможность вести непрерывное наблюдение за изменением полной пегли гистерезиса при нагреве, охлаждении и изотермической выдержке.

Отличительной особенностью данной установки является применение для дилатометра емкостного датчика и полная автоматизация записи всех процессов.

Испытуемый образец помещается в кварцевой трубке, упираясь одним концом в ее дно, а другим — в кварцевый стержень, передающий изменение длины образца на индикатор и на конденсаторный датчик, чувствительность которого обеспечивает измерение изменений длины образца.

Внутри кварцевого стержня проходят провода термопары, подключенные к гальванометру, с помощью которого записывается изменение температуры образца во времени.

Пластины конденсаторного датчика соединены с измерителем емкости, работающим на частотах $600 \div 6\,000\,$ гц.

Для фотозаписи в настоящее время используется пирометр Курнакова Н. С. новой конструкции — автоматический самопишущий потенциометр типа СП6 [12]. Ввиду сложности данный метод получил пока весьма малое распространение.

Метод жидкостного микрометра отличается высокой точностью, но вместе с тем является сложным. Индикатор (жидкостный микрометр) имеет коэффициент увеличения 2 · 10³ [4].

Представляет интерес дилатометр, сделанный на базе вертикального оптиметра. Вся установка (рис. 16) является соединением вертикального оптиметра типа ИКВ с обычным кварцевым дилатометром [13]. В данной установке привлекают простота приспособления для дилатометрических измерений (рис. 17) и высокая чувствительность оптиметра, что позволяет при определении критических точек отмечать начало превращения не менее точно, чем на обычных дифференциальных дилатометрах. Как видно из рис. 17, приспособление состоит из корпуса I, прижимного винта 2, окна 3, резьбовой втулки 4, кварцевой трубки 5 длиной около 150 мм и шириной 5 мм и кварцевого стержня 6. В трубке помещается образец 7 длиной $10 \div 20$ мм.

Трубка с образцом находится в печи, напряжение на обмотке которой можно регулировать с помощью трансформа-

тора либо последовательно включенного реостата. Температура фиксируется с помощью термопары.

Рис. 16. Общий вид дилатометра на базе вертикального оптиметра.

Рис. 17. Приспособление для дилатометрических измерений на оптиметре: 1— корпус, 2— прижимной винт, 3— окно, 4— резьбовая втулка, 5— кварцевая трубка, 6— кварцевый стержень, 7— образец.

Проделанные на этом приборе измерения с образцами из углеродистой стали дали неплохое совпадение ($\pm 3\%$) с имеющимися литературными данными. Достоинством данной конструкции следует считать малую длину образца, что бывает в ряде случаев очень ценно, тем более, что создание равномерного температурного поля может быть осуществлено весьма просто.

Высокой чувствительностью отличается электрический дилатометр [24], у которого коэффициент умножения может быть доведен примерно до 10^4 раз. На рис. 18 изображено схема-

тическое устройство данного прибора. Расширение образца l вызывает движение рычага b с флажком b, изготовленным из материала, обладающего большой теплопроводностью. Флажок b, отдаляясь от одних витков b и приближаясь к другим

Рис. 18. Схема электрического дилатометра: 1 — испытуемый образец, 2 — кварцевая трубка, 3 — кварцевый стержень, 4 — дно цилиндра, 5 — рычаг, 6 — флажок, 7 и 8 — витки мостика Уитстона, 9 — аккумуляторная батарея, 10 и 11 — зеркальные гальванометры.

виткам 8 мостика Уитстона, нарушает в нем электрическое равновесие и создает неодинаковые условия охлаждения для четырех нагретых проходящим от аккумуляторной батареи током никелевых проволочек, из которых состоит данный мостик. При нарушении равновесия зеркальце гальванометра 10 начинает отклоняться. Зеркальный гальванометр 11, соединенный с термопарой, горячий спай которой находится в образце, записывает изменение температуры, отбрасывая луч на зеркальце гальванометра 10. Таким образом, на экране будет записываться кривая в координатных осях расширение — температура.

Образцы для данного прибора изготавливались в виде цилиндров длиной 15 *мм* и диаметром 5 *мм*.

Еще более чувствительным является фотоэлектрический дилатометр [25], который можно применить для изучения превращений при нагревании до 5° в минуту, охлаждении до 0.5° в минуту, а также для изучения изотермических превращений.

Индикаторная часть дилатометра показана на рис. 19.

Свет от источника 1, пройдя через собирательные линзы 2, попадает на первую решетку 3, держатель которой 7 упирается в испытуемый образец 8. Расстояние между штрихами решетки равно 0,4 мм. Пройдя линзу 6, лучи попадают на вторую решетку 4 и затем на фотоэлемент 5. Перед началом

опыта решетку 3 устанавливают таким образом, чтобы свет, прошедший через нее, задерживался решеткой 4, расстояние между штрихами которой равно константе увеличенного изображения решетки 3.

При нагревании и удлинении образца решетка 3 поднимется, пропуская свет на фотоэлемент, по току которого и судят об удлинении исследуемого объекта.

Для изучения изотермических превращений Кантором [26] был предложен следующий дилатометр. Прибор имеет автоматическую регистрацию изменения длины образца во времени; на нем можно также вести определения при быстром изменении температуры.

Рис. 19. Смеха фотоэлектрического дилатометра:
1 — источник света, 2 — собира-

1 — источник света, 2 — собирательные линзы, 3 — первая решетка, 4 — вторая решетка, 5 — фотоэлемент, — 6 проекционная линза, 7 — подставка решетки (толкатель), 8 — испытуемый образец.

Для определения коэффициента термического расширения керамики в интервале температур от 20 до 600°С в МХТИ им. Менделеева сконструирован кварцевый дилатометр по принципу конструкции Соломина Н. В. [27].

Этот прибор (рис. 20) состоит из кварцевой трубки с запаянным концом, к которому стальной пружиной через квар-

цевый стержень прижимается образец.

Удлинение стержня, возникающее при расширении испытуемого образца при нагревании (или под давлением пружины при сжатии образца), измеряется с помощью микроскопа, снабженного окулярной микрометрической шкалой. Отсчеты производятся посредством указателя, представляющего собой рамочку с волоском, расположенным перпендикулярно к оси испытуемого образца. Рамочка укреплена на кнарцевом стержне. Кварцевая трубка с образцом находится в печи, в которую для равномерного нагрева вставлен медный цилиндр. Температура измеряется термопарой с гальванометром. Нагрев ведут со скоростью 3—4° в минуту и замеры производят не реже чем через 2—3°, а в критических точках — непрерывно.

Данный дилатометр позволяет вести работу с любыми твердыми образцами. Точность метода зависит от оптики и точности регистрации температуры; то и другое при данной

конструкции в прецизионных исследованиях может быть выполнено с большой точностью. К недостаткам прибора следует отнести наличие прижимающего устройства.

Рис. 20. Схема кварцевого дилатометра: a — полная схема установки, b — вид сверху на главные детали прибора. b — горизонтальная электрическая печь, b — кварцевая трубка с запаянным концом, b — зажим, b — стол микроскопа, b — испытуемый образец, b — упругая стальная пружина, b — кварцевый стержень, b — металлический колпачок, b — микроскоп с окулярной микрометрической шкалой, b — легкая металлическая рамочка, b — гальванометр.

5. ЗАКЛЮЧЕНИЕ

Описанные в статье приборы позволяют выполнять измерения коэффициента термического расширения электровакуумных материалов в широких температурных интервалах, при различных скоростях нагрева, с различной чувствительностью и точностью.

По нашему мнению, именно в абсолютном способе следует искать решения задачи об экспрессных методах измерения термических коэффициентов расширения электровакуумных материалов с достаточной для них точностью, которая лежит в пределах $\pm 2 - 3 \cdot 10^{-7}$ град $^{-1}$.

64

Однако нужно сразу же сказать, что наличие особенностей на кривой нагревания (размягчения у стекла, превращения у стали, ковара и т. д.) вносит соответствующие ограничения в применение экспрессных методов. Как уже указывалось, очень желательным является наличие сигнализации о начале превращения.

Точные приборы, основанные на абсолютном способе измерения, необходимы, на наш взгляд, в каждой лаборатории, независимо от того, каким способом ведутся испытания или исследования. Анализ существующих методов и установок для измерения коэффициентов линейного расширения материалов подтверждает настоятельную целесообразность организации промышленного выпуска дилатометрических приборов на основе разработки оптимальной конструкции стандартного дилатометра.

ЛИТЕРАТУРА

- 1. Фридман Я. Б., Дилатометрический метод исследования металлов и сплавов, Труды ВИАМ, 1934.
- 2. Оленин Д. Д., Методы испытания фернико и феррохрома на заводе Радиотрон RCA в Гаррисоне, Отчет № 5809, 1938.
- 3. Загорулько Н. Г. и Баранова Н. А., Измерение термического расширения молибдена и молибденовых стекол, Отчет завода МРТП, г. Ленинград, № ОЛ-1741, 1940.
- 4. Гиндунерт П., Сондер В., Методы измерения термического расширения, Национальное бюро стандартов, США, Вашингтон, 1949.
- 5. Минкевич Н. А., Сирота Н. Н., Федорова О. П., Применение методов комплексного физического анализа к изучению процесса отпуска закаленной стали ЭЕХЗ, Сборник Московского института стали, т. XIII, 1939.
- 6. Преснов В. А., Физические основы спая (спай стекла с металлом), Томский Государственный университет и НИИ МРТП, 1952.
- 7. Преснов В. А. и Брыснев Е., Спай стекла с металлом, Томский Государственный университет и НИИ МРТП, 1951.
- 8. Бор з дыка А., Элемент нагрева в методике горячих механических испытаний, «Заводская лаборатория», № 5, 1935.
 - 9. Bollenrath, Zeitschrift für Metallkunde, & 7, 1953.
 - 10. Стрелков П. Г., ЖЭТФ, № 7, стр. 519, 1937.
- 11. Вальтер А. К., Гачковский В. Ф., Стрелков П. Г., ЖЭТФ, № 7, стр. 526, 1937.

5 Труды НИИ

- 12. Стрелков П. Г., Косоуров Г. И., Самойлов Б. Н., Известия АН СССР, серия физическая, т. XVII, № 3, 1953.
 - 13. Стрелков П. Г., ЖТФ, № 5, стр. 1502, 1935.
 - 14 Eucken A., Dannöhl W., ZS. f. Elektroch, 40, 1934.
- 15. Лозинский М. Г. и Городецкий А. Б., «Заводская **л**аборатория», т. XVII, № 8, 1951.
 - .16. Esser, Oberhoffer, Stahl und Eisen, 1926.
 - 17. Esser, Esterbrock, Archiv f. Eisenhüttenwesen, 1930.
 - 18. Шевенер, Дилатометрический анализ, Париж, Дипод, 1929.
- 19. Китайгородский И. И., Технология стекла, Промстройиздат, 1951.
- 20. Одинг И. А., Современные методы испытания металлов, Металлургиздат, 1934.
- 21. Rosenhein, Journal of Justitute of Metals, & 2, 1948.
- 22. Қантор М. М., Методы изучения превращений в стали, Машгиз, 1950.
- 23. Гайворонский А. А. и Попов К. В., «Заводская лаборатория», № 8, 1953.
 - 24. Vofer und Rose, Mitt. K. W. Just. für Eisenforschung, № 5, 1938
 - 25. Lange, Mitt. K. W. Jnst. für Eisenforschung, № 5, 1938.
 - 26. Қантор М. М., «Заводская лаборатория», № 4, 1935.
- 27. Дудеров Н. Г., Практикум по технологии керамики и огнеупоров, Промстройиздат, 1953.

Статья поступила в редакцию 8 марта 1955 г.

Инж. ВОЛКОВА В. К.

РАЗРАБОТКА ВОЛЬФРАМО-БАРИЕВОГО ТЕРМОКАТОДА ДЛЯ ПРИЕМНЫХ ТРУБОК

(Доклад, прочитанный на конференции по капиллярным вольфрамо-бариевым катодам, состоявшейся в НИИ МРТП 29—30 марта 1955 года).

С целью повышения долговечности приемных трубок, в частности высоковольтных трубок, в лаборатории НИИ разрабатывается вольфрамо-бариевый термокатод, применяемый в электронных прожекторах приемных трубок.

Условия работы термокатода в указанных трубках тяжелые. Поэтому в проекционной приемной трубке типа 23/IK4Б оксидный катод не работает и нескольких часов, а катод из торированного вольфрама работает около 40 ч. В трубках типа 18/IK6Б оксидный катод работает около 1 000 ч.

Не уступая по своим эмиссионным свойствам оксидному катоду, вольфрамо-бариевый термокатод должен обеспечить соответствующую крутизну модуляционной характеристики при заданной конструкции прожектора и обладать стойкостью к ионной бомбардировке, так как анодное напряжение в трубках достигает 60—75 кв. Мощность накала термокатода не должна превышать 6 вт. С поверхности катода не должно испаряться значительное количество бария или какого-либо другого металла во избежание нарушения необходимой изоляции между электродами и предотвращения появления холодной эмиссии с электродов.

Было разработано и испытано несколько конструкций катодов торцевого типа с малой рабочей поверхностью. Наиболее удачной оказалась конструкция катода, представленная на рис. 1.

Катод состоит из молибденового колпачка и молибденовой гильзы. Колпачок и гильза штампуются из молибденовой ленты толщиной 0,1 мм. В колпачок запрессовывается вольфрамовый порошок марки ВЧ, предварительно восстановленный в водороде и смешанный с небольшим количеством связующего вещества.

54

Для лучшего сцепления колпачка с вольфрамовой губкой, которая образуется в результате запрессовки порошка и его

Рис. 1. Конструкция вольфрамо - бариевого катода: 1 — молибденовый кол-пачок, 2 — вольфрамовая губка, 3 — таблетка углекислого бария, 4 — молибденовая гиль-

спекания при высокой температуре. внутренняя поверхность колпачка предварительно также покрывается тонким слоем вольфрамового порошка. Он припекается к колпачку при высокой температуре. Вольфрамовая губка прессуется при давлении $4\,000\ \kappa e/c M^2$. Температура спекания губки в водородней печи примерно равна 1 300° С. Температура водородной печи поднимается медленно, в течение 2,5 ч. Этим предотвращается образование трещин по линии соприкосновения молибдена с запрессовкой. Такой режим изготовления вольфрамовой губки обеспечивает ее пористость, равную 20-30%. При большей пористости наблюдается сильное испарение бария. В этом случае трудно осуществить надежную изоляцию между электродами и катодом. Сейчас исследуются катоды с вольфрамовыми губками, имеющими пористость меньше 20%.

Активным веществом катода является спрессованная под давлением около $2\,000~\kappa e/cm^2$ таблетка углекислого бария, который предварительно смешивается с небольшим количеством связующего вещества.

Использование спрессованной таблетки, на наш взгляд, предпочтительнее простой засыпки карбоната бария, так как в первом случае испарение бария и окиси бария происходит значительно медленнее. Вес таблетки карбоната бария приблизительно равен 3 мг.

Обработка катода на откачном посту заключается в обезгаживании керна катода и таблетки карбоната бария, а также в активировании катода. Во время обезгаживания катода при температуре примерно 1 100°С происходит разложение карбоната до окиси. При этом вакуум в системе должен быть не хуже 10—5 мм рт. ст. Процесс обезгаживания регулируется в соответствии с изменением вакуума. При последующем активировании катода металлический барий, который выделяется

в результате реакции восстановления окиси бария, диффундирует через поры вольфрамовой губки и располагается на ее поверхности моноатомным слоем. Этот процесс происходит при температуре 1 250—1 300°С. Вакуум в системе при этом должен быть не хуже 5-10 -6 мм рт. ст. Процесс активирования также регулируется в соответствии с вакуумом.

При обработке вольфрамо-бариевого термокатода на откачном посту выделяется значительное количество газа, который частично может адсорбироваться холодными электродами прожектора.

Конструкция прожектора приемных трубок не позволяет в достаточной степени прогреть диафрагму первого электрода (модулятора) токами высокой частоты. Поэтому дополнительное обезгаживание диафрагмы производится нагреванием ее электронной бомбардировкой, что накладывает свой отпечаток на ход активирования катода в трубках.

Через 2-3 мин после того, как температура катода доведена до $1~250^{\circ}$ С, на модулятор подаются постепенно нарастающие по амплитуде импульсы напряжения (длительность импульса $3~ce\kappa$, длительность паузы между импульсами $7~ce\kappa$). Амплитуда импульсов изменяется через 10~s от +~10~d0 до +~100~s. При этом происходит дополнительное активирование катода и обезгаживание диафрагмы модулятора, на которой рассеивается мощность до 10-12~st.

После отпайки трубок с поста производится тренировка термокатода с отбором анодного тока, которая заключается в 5-минутном прогреве катода при повышенной температуре (приблизительно 1 150°C) и тренировке катода с отбором анодного тока. Рабочая температура катода равна 1 000—1 050° C.

Катоды выбранной конструкции испытывались в экспериментальных диодах (конструкция их тождественна катодным системам прожекторов приемных трубок) и в нескольких типах приемных трубок.

В первом случае испытание проводилось с постоянным от-

бором тока порядка 0.5~a/cм². Средняя долговечность таких катодов исчислялась 1~500~u.

Лампы выходили из строя, как правило, из-за перегорания подогревателей. Из 30 диодов, поставленных на испытание на срок службы, 12 проработали около 900 и и были сняты с испытания из-за перегорания подогревателей, 18 диодов проработали около 1500 и без существенных изменений параметров и также были сняты с испытания из-за перегорания подогревателей.

На рис. 2 показана зависимость тока катода от напряжения анода, на рис. 3 — зависимость тока катода от времени

Рис. 2. Зависимость тока катода от напряжения анода для 4 экземпляров диодов.

испытания на долговечность при небольшом положительном напряжении анода $(+10 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \)$.

В импульсном режиме при частоте $50 \ eu$ и длительности импульса порядка $20 \ mkcek$ примерно в таких же диодах с катода удавалось снимать ток порядка $50 \ a/cm^2$. Измерений с большим отбором тока не производилось.

Испытание вольфрамобариевых термокатодов в реальных условиях эксплуатации проводилось в высоковольтных трубках типа 23ЛК4Б и 18ЛК6Б. В трубках типа 23ЛК4Б катоды испытывались в течение 200—250 и при рабочем напряжении анода 60 кв и токе луча 300 мка.

Эмиссионная способность катода при заданных конструкции и взаимном расположении электродов характеризуется крутизней модуляционной характеристики. Поэтому при испытании катодов в трубках на долговечность периодически снимались модуляционные характеристики (ток луча как функция управляющего напряжения).

На рис. 4 показаны кривые, изображающие зависимости управляющего напряжения от времени при токе луча

1 000 мка. Исследование зависимости эмиссии катода от положительного напряжения на модуляторе в процессе и в конце

Рис. 3. Зависимость тока катода от времени испытания на долговечность для 4 экземпляров диодов.

испытания одной из трубок показало, что параметры катода во время испытания не ухудшаются.

В приемных трубках типа 18ЛК6Б вольфрамобариевые катоды испытывались на долговечность при рабочем напряжении анода 15 кв и токе луча 100 мка. Катоды в таких трубках работали 2000 ч без существенных изменений параметров. На рис. 5 представлено изменение уп-

Рис. 4. Зависимость управляющего напряжения от времени испытания на долговечность для 2 экземпляров трубок типа 23ЛК4Б. Ток луча равен 1 000 мка.

равляющего напряжения при токе луча 130 мка в одной из

трубок во время испытания на долговечность, а на рис. 6 — изменение модуляционных характеристик этой трубки, полученных на различных стадиях испытания.

Рис. 5. Зависимость управляющего напряжения трубки типа 18 Л K 6B (№ 460) от времени испытания на долговечность. Ток луча равен 130 *мка*.

Из экспериментальных данных следует, что разработанный катод отвечает всем вышеперечисленным требованиям.

Рис. 6. Изменение модуляционной характеристики трубки типа 18ЛК6Б (№ 460) во время испытания на долговечность: 1 — при 0 u, 2 — при 493 u, 3 — при 1032 u, 4 — при 1520 u, 5 — при 1950 u.

Преимущество использования вольфрамо-бариевого термокатода в высоковольтных приемных трубках очевидно. Однако наряду с явными преимуществами в отношении долговечности разработанный вольфрамо-бариевый термокатод имеет и существенные недостатки, которые, на наш взгляд, заключаются в следующем:

- а) длительная обработка катода на откачном посту;
- б) недостаточный срок службы подогревателей;
- в) большая, по сравнению с оксидным катодом, мощность накала, что мешает использовать данный катод в передающих телевизионных трубках, в которых мощность накала катода ограничена;

г) значительное испарение бария с поверхности катода

во время работы.

При разработке вольфрамо-бариевых термокатодов в первую очередь следует обратить внимание на снижение мощности накала до приемлемых величин при сохранении всех прочих преимуществ вольфрамо-бариевого катода. Это позволит с успехом применить новый катод в передающих телевизионных трубках.

Кроме того, необходимо организовать промышленное производство тонких молибденовых трубок небольших диаметров, которые необходимы для изготовления катодов данного типа.

СССР МРТП Всесоюзный научно-исследовательский институт

TEXHUKA [[]]

выпуски — 20—22

LOCSHEPLONSVYL

Approved For Release 2010/04/07 : CIA-RDP80T00246A045700380001-3

министерство радиотехнической промышленности ссср ВСЕСОЮЗНЫЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ

ТЕХНИКА ТЕЛЕВИДЕНИЯ

ВЫПУСКИ 20-22

ГОСУДАРСТВЕННОЕ ЭНЕРГЕТИЧЕСКОЕ ИЗДАТЕЛЬСТВО МОСКВА 1957 ЛЕНИНГРАД

РЕДАКЦИОННАЯ КОЛЛЕГИЯ

И. П. Захаров (отв. редактор), И. А. Алексеев, канд. техн. наук Н. С. Беляев, канд. техн. наук И. Л. Валик, Г. С. Вильдгрубе, А. В. Воронов, И. К. Гуревич, В. Б. Иванов, В. М. Лемни-Македон, В. П. Мандражи, канд. физ.-мат. наук Γ . А. Морозов (зам. отв. редактора), З. М. Петрова, канд. техн. наук С. П. Пивоваров, В. И. Сардыко

Инженеры Е. И. ЖИТНИКОВ, В. Г. СЕМЕНОВ, В. И. АНЦИФЕРОВ

СПОСОБЫ ПЕРЕДАЧИ ЦВЕТОВОЙ ИНФОРМАЦИИ В СОВМЕСТИМОЙ СИСТЕМЕ ЦВЕТНОГО ТЕЛЕВИДЕНИЯ

В статье обсуждаются некоторые способы передачи цветовой информации в одновременной совместимой системе цветного телевидения применительно к телевизионному стандарту СССР для черно-белого телевидения. Показано, что телевизионный стандарт СССР позволяет упростить американскую систему цветного телевидения NTSC при одновременном улучшении качества передаваемого цветного телевизионного изображения.

Введение

В настоящее время наиболее перспективной системой цветного телевидения является система, совместимая с черно-белым телевидением.

Под совместимой системой цветного телевидения понимается такая система, которая дает возможность на обычные приемники черно-белого телевидения принимать цветную телевизионную передачу, а на приемники цветного телевидения—чернобелую телевизионную передачу. При этом в обоих случаях изображение воспроизводится в черно-белых градациях яркости.

Осуществление совместимой системы цветного телевидения возможно в том случае, если основные параметры цветной телевизионной системы будут соответствовать параметрам системы черно-белого телевидения или отличаться от них настолько незначительно, чтобы не вносить схемных и конструктивных изменений в приемники, находящиеся в эксплуатации.

К таким параметрам относятся:

- 1. Номиналы несущих частот передатчиков изображения и звукового сопровождения.
 - 2. Частоты разверток по горизонтали и по вертикали.
 - Форма полного синхронизирующего сигнала.
 Полярность модуляции сигнала изображения.
- 5. Виды модуляции сигналов изображения и звукового сопровождения.

В настоящее время стандартизована только американская система цветного телевидения NTSC [Л. 1, 2]. Однако система цветного телевидения NTSC имеет ряд недостатков, основным из которых является сложность осуществления передачи и приема цветного телевизионного изображения.

В статье поставлена задача обсудить некоторые способы передачи цветовой информации в совместимой системе цветного телевидения, дать анализ недостатков американской системы NTSC и показать возможность устранения некоторых недостатков при рациональном использовании телевизионного стандарта СССР.

1. Требования к каналам связи в совместимой системе цветного телевидения

Для воспроизведения цветного телевизионного изображения требуется передать три линейно независимые информации, вследствие чего необходимо иметь три независимых канала связи.

Изображение в системе цветного телевидения, как известно, можно передавать тремя сигналами: сигналом, несущим информацию яркости, — яркостным сигналом, аналогичным тому, который используется в черно-белом телевидении, и двумя дополнительными сигналами, определяющими цветность передаваемого изображения (насыщенность и цветовой тон) [Л. 3].

Отсюда вытекает, что для передачи цветного телевизионного изображения необходимо иметь яркостный канал и два цветовых канала связи.

Все многообразие способов передачи цветовой информации в одновременной системе цветного телевидения может быть разделено на два вида:

1. Передача цветовой информации в спектре яркостного сигнала (совмещенные спектры).

2. Передача цветовой информации вне спектра яркостного сигнала (разнесенные спектры).

Рассмотрим некоторые способы передачи цветовой инфор-

мации в спектре яркостного сигнала.

Яркостный сигнал в системе NTSC передается в пределах стандартной полосы черно-белого канала методом амплитудной модуляции несущей радиопередатчика изображения и может приниматься на приемники черно-белого телевидения.

Дополнительная цветовая информация передается методом амплитудной модуляции двух поднесущих, находящихся в квадратуре и расположенных в спектре яркостного сигнала. Модуляция осуществляется двумя цветовыми сигналами. В качестве таких сигналов могут быть выбраны, например, разностные сигналы E_{R-Y} и E_{B-Y} . Однако по причинам, указанным ниже (см. параграф 2), в системе NTSC выбраны раз-

ностные сигналы E_Q (желто-зелено-пурпурный) и E_I (сине-зелено-оранжевый).

В данной системе используется балансная модуляция поднесущих, при которой передаются только боковые полосы частот. При сложении модулированных сигналов поднесущая частота получается модулированной как по фазе, так и по амплитуде. Мгновенное значение амплитуды поднесущей приблизительно пропорционально насыщенности цвета, а фаза под-

несущей пропорциональна цветовому тону изображения.

Векторная диаграмма, показы-вающая относительное положение

Рис. 1. Векторная диаграмма, показывающая относительные фазовые углы синхронизирующей посылки и цветовых разностных сигналов

1-опорная фаза синхропосылки; 2- цветовой сигнал

Рис. 2. Частотные характеристики яркостного и цветовых каналов радиопередатчика в системе NTSC

1-яркостный канал; 2-канал I; 3-канал Q

векторов цветоразностных сигналов и суммарного вектора сигнала цветности, приведена на рис. 1.

Поднесущая частота в системе NTSC выбрана равной примерно 3,58 мггц. Такой выбор поднесущей ограничивает верхнюю полосу частот цветовых составляющих сигнала, вследствие чего передача их осуществляется с частичным подавлением боковой полосы частот.

Яркостный сигнал (E_{γ}) и цветовые разностные сигналы $(E_{Q}$ и $E_{I})$ в системе NTSC выражаются через первичные цвета R, G, B следующими уравнениями:

$$E_{\gamma} = 0.3E_R + 0.59E_G + 0.11E_B; \tag{1}$$

$$E_Q = 0.21E_R - 0.52E_G + 0.31E_B;$$
 (2)

$$E_I = 0.6E_B - 0.28E_G - 0.32E_B.$$
 (3)

Цветовые сигналы, обеспечивающие "окраску" изображения при приеме на приемники цветного телевидения, могут передаваться с более узкой полосой частот, чем яркостный

сигнал. В системе NTSC полоса частот яркостного канала равна 4,2 мггц и ограничивается разносом несущих передатчиков изображения и звукового сопровождения (4,5 мгги).

Полоса частот канала І составляет примерно 1,2 мггц, а канала Q-0,6 мггц. Эксперименты в области физиологии цветного зрения показали, что при такой ширине полосы частот цветовых каналов можно получить удовлетворительное цветное телевизионное изображение.

Идеализированная частотная характеристика яркостного и цветовых каналов передатчика системы NTSC приведена на рис. 2.

Для телевизионного стандарта, принятого в СССР, ширина полосы пропускания цветовых каналов І и Q должна быть

больше 1,2 мгги и 0,6 мгги соответственно.

Между параметрами разложения и требуемой шириной полосы пропускания канала существует связь, на основании которой нетрудно установить ширину полосы пропускания цветового канала для одного стандарта, если известно требование к полосе для канала другого стандарта при условии сохранения той же цветовой четкости.

Определим, сколько времени т потребуется для передачи вертикальной цветовой полосы шириной δ₁, рассматриваемой под предельно малым углом а1, под которым уже начинает различаться цветность этой полосы. Если скорость движения луча v_0 , то

$$\tau = \frac{\delta_1}{v_0} \; ; \tag{4}$$

$$\delta_1 \approx \alpha_1 L;$$
 (5)

$$v_0 = \frac{ph}{t_{cmp} (1-a)}, \qquad (6)$$

где

L—расстояние рассматривания;

p—формат кадра;

h—высота кадра;

 t_{cmp} — период строчной частоты; (1-a)—коэффициент потери времени на обратный ход строчной развертки.

Подставив уравнения (5) и (6) в уравнение (4), получим

$$\tau = \frac{L}{h} \frac{t_{cmp} (1-a)}{p} \alpha_1. \tag{7}$$

Величина $\frac{L}{h}$ определяется из условия неразличимости строчной структуры растра. Если предельный угол, под которым

исчезает линейчатая структура, равен α_2 , а расстояние между центрами строк $-\delta_2$, то

$$\delta_2 \approx L\alpha_2;$$
 (8)

$$\delta_2 = \frac{h}{z(1-b)},\tag{9}$$

где

z—номинальное число строк разложения, (1-b)—коэффициент потери строк, приходящихся на обратный ход.

Сравнивая уравнения (8) и (9), имеем

$$\frac{L}{h} = \frac{1}{\alpha_2 z \, (1-b)} \, \cdot \tag{10}$$

Подставляя уравнение (10) в уравнение (7), получим

$$\tau = \frac{\alpha_1}{\alpha_2} \frac{(1-a) t_{cmp}}{p (1-b) z}.$$
 (11)

По формуле (11) можно определить длительность предельно узкой полосы, которая подлежит передаче в цветах. Величина τ позволяет установить требование к полосе пропускания цветового канала. Необходимо, чтобы время нарастания переходной характеристики канала было бы одного порядка с временем, необходимым для передачи предельно узкой вертикальной полосы. Между полосой пропускания и временем нарастания переходной характеристики существует обратно пропорциональная зависимость. Можно установить требование к полосе пропускания цветового канала (f_1) в одном стандарте, если известна требуемая полоса в другом (f_2) . Очевидно, что

$$\frac{f_1}{f_2} = \frac{\tau_2}{\tau_1},\tag{12}$$

где τ_1 и τ_2 —время передачи предельно узкой цветовой полосы в первом и втором стандартах соответственно.

Подставляя в уравнение (12) значения τ_1 и τ_2 для различных стандартов, получим

$$f_1=kf_2$$

где k—коэффициент пересчета из одного стандарта в другой, равный

$$k = \frac{p_1 (1 - a_2) (1 - b_1) t_{cmp_2} z_1}{p_2 (1 - a_1) (1 - b_2) t_{cmp_1} z_2}.$$
 (13)

Коэффициент пересчета из стандарта США в стандарт СССР равен k=1,18.

Поскольку для американского стандарта ширина полосы частот канала I принята равной примерно $f_2\!=\!1,2$ мггц, а канала Q $f_2'\!=\!0,6$ мггц, то для стандарта разложения, принятого в СССР, требуемая ширина полосы для канала I будет порядка $f_1\!=\!1,\!42$ мггц, а для канала Q $f_1'\!=\!0,\!72$ мггц.

Телевизионный стандарт СССР, предусматривающий разнос между несущими передатчиков изображения и звукового со-

Рис. 3. Частотные характеристики яркостного и цветовых каналов радиопередатчика и приемника по системе NTSC, пересчитанной для телевизионного стандарта СССР — присотный канал; 2—канал I; 3—канал Q

провождения в 6,5 мггц, позволяет получить полосу частот яркостного канала равной примерно 6 мггц.

Если принять способ передачи цветовой информации, используемый в системе NTSC, для стандарта черно-белого телевидения СССР, то, в соответствии с полученными ранее значениями ширины полос для каналов I и Q, получим идеализированные частотные характеристики яркостного и цветовых каналов, представленные на рис. 3.

При передаче цветовой информации в спектре яркостного сигнала используется метод перемежения спектров. Возможность перемежения спектров яркостного и цветовых сигналов обусловлена тем, что основная часть энергии яркостного сигнала расположена в полосе частот не непрерывно, а дискретно, и сосредоточена около строчной частоты и ее гармоник. Если цветовую поднесущую выбрать нечетной гармоникой половины строчной частоты, то спектр цветового сигнала будет распо-

лагаться в свободных промежутках спектра яркостного сигнала и, при наличии необходимых средств разделения на приемной стороне, может быть выделен из спектра яркостного сигнала.

При этом помеха, возникающая в яркостном канале от цветового сигнала, оказывается в противофазе в двух смежных кадрах и, вследствие инерционности зрительного восприятия, будет взаимно скомпенсирована. Однако компенсация получается неполной, поэтому при выборе величины поднесущей, расположенной в спектре яркостного сигнала, следует иметь в виду, что помеха просматривается на приемниках черно-белого телевидения в виде паразитного сигнала (сетки).

Приближенное значение поднесущей частоты в применении к телевизионному стандарту СССР может быть получено как разность между граничной частотой яркостного канала $(f_{\it ip})$ и шириной полосы (f_1) канала Q.

Полагая $f_{zp}=6$ мггц и $f_1^{'}=0.72$ мггц, получим значение поднесущей частоты $f_n=5.28$ мггц. Получающаяся при этом помеха (сетка) на приемниках черно-белого телевидения при приеме цветного изображения будет иметь более мелкую структуру, чем в системе NTSC. Действительно, если потребовать, чтобы угловой размер элемента "сетки" в горизонтальном направлении был равным для разных стандартов, то коэффициент пересчета значения поднесущей частоты будет равен коэффициенту пересчета для ширины полос каналов I и Q (формула 13). В этом случае (k=1,18) значение поднесущей частоты для телевизионного стандарта СССР должно быть равно 4,2 мггц.

Передачу цветовой информации в спектре яркостного сигнала можно осуществить также на двух разнесенных поднесущих частотах. Для упрощения схемы приемника и сокращения полосы частот, занимаемой цветовыми сигналами, целесообразно передавать поднесущую частоту и одну боковую полосу частот. В этом случае цветовые разностные сигналы могут быть выделены более простыми средствами, чем в случае модуляции поднесущих, находящихся в квадратуре.

Идеализированные частотные характеристики цветовых и яркостного каналов для передачи сигналов E_{γ} , E_{Q} и E_{I} изображены на рис. 4.

Первая поднесущая частота может быть взята нечетной гармоникой половины строчной частоты. Эта поднесущая будет частично компенсироваться благодаря инерционности зрительного восприятия так же, как частично компенсируются боковые изстоты преторой информации в системе NTSC.

вые частоты цветовой информации в системе NTSC.

Для того чтобы разностная частота, получающаяся в результате биения двух поднесущих, была тоже нечетной гармоникой половины строчной частоты, вторая поднесущая выбирается гармоникой строчной частоты.

Для уменьшения перемещения точечной структуры и муара в первой поднесущей может быть введен скачок фазы 90°, а во второй поднесущей—скачок фазы 180° (в обоих случаях попеременно в начале каждого поля) [Л. 5].

Следовательно, первая поднесущая должна передаваться в виде

$$\cos\left[2\pi\left(n+\frac{1}{2}\right)f_{cmp}t\pm\frac{\pi}{4}\right],\tag{14}$$

Рис. 4. Частотные характеристики яркостного и цветовых каналов с двумя поднесущими
1—яркостный канал; 2—канал I; 3—канал Q

а вторая поднесущая в виде

$$\cos\left[2\pi m f_{cmp} t \pm \frac{\pi}{2}\right],\tag{15}$$

где m и n—целые числа,

 f_{cmp} —строчная частота.

Разностная частота может быть выражена как

$$\cos\left[2\pi\left(m-n+\frac{1}{2}\right)f_{cmp}t\pm\frac{\pi}{2}\right] \tag{16}$$

и будет следовать на изображении со сдвигом в 90 и 180°.

Передача цветовой информации методом разнесенных поднесущих позволяет упростить конструкцию приемников цветного телевидения, так как отпадает необходимость в дополнительных синхронизирующих посылках и сложных цепях синхронизации поднесущих.

Существенными недостатками данного метода следует считать:

1. Сужение яркостного канала, а следовательно, и потеря четкости цветного телевизионного изображения в черно-белых деталях по сравнению с системой NTSC.

2. Увеличение перекрестных помех за счет:

а) большей энергии в сигнале цветовой информации ввиду наличия поднесущих;

б) неполной компенсации разностных составляющих сигна-

лов.

3. Укрупнение структуры паразитных цветовых сигналов. Рассмотренные способы передачи цветовой информации в спектре яркостного сигнала позволяют получить полностью совместимую систему цветного телевидения.

Однако передача цветовой информации внутри спектра ярко-

стного сигнала имеет и существенные недостатки:

1. На экранах приемников черно-белого телевидения появ-

ляется паразитный цветовой сигнал.

2. Снижается четкость телевизионного изображения по яркостному каналу. Снижение четкости объясняется тем, что в яркостном канале приемников подавляется участок частот, расположенных около цветовой поднесущей. Это делается с целью устранения ослабления насыщенности цветов, имеющего место при одновременном появлении цветовой информации на катодах и сетках трубки цветного телевидения.

3. Появляются перекрестные искажения.

4. Требуется жесткая синхронизация поднесущей с часто-

той строк.

Рассмотрим теперь варианты передачи цветовой информации, расположенной вне полосы частот яркостного канала. В данном случае цветовая информация может быть передана как на поднесущих частотах, так и на отдельных несущих.

При передаче цветовой информации на поднесущих можно применить как квадратурную модуляцию поднесущих, так и модуляцию двух разнесенных поднесущих. При передаче цветовой информации на вынесенных поднесущих появляется необходимость расширения полосы пропускания радиопередатчика. Расширение полосы пропускания приводит, во-первых, к уменьшению мощности излучения радиопередатчика и, во-вторых, к невозможности использования существующих радиопередатчиков черно-белого телевидения для цветного телевизионного вещания. Метод передачи цветовой информации на вынесенных поднесущих может найти применение в некоторых специальных случаях, например в ретрансляционных линиях и радиолиниях передвижных телевизионных станций.

Передачу цветовой информации в случае разнесенных спектров рациональнее вести по отдельной линии связи. Два цветовых сигнала могут быть переданы на одной несущей частоте. Для сокращения занимаемой полосы частот возможно вести передачу с подавленной боковой полосой частот. Один цветовой сигнал может передаваться методом амплитудной модуляции несущей, а второй сигнал-методом поднесущей частоты,

также с подавленной боковой полосой частот.

Частотные характеристики радиоканала для передачи цветовой информации на отдельной несущей за пределами полосы пропускания яркостного канала изображены на рис. 5. В данном случае, для передачи цветного изображения, полоса частот расширяется примерно на 4 мггц. Полосу частот, занимаемую цветовой информацией (рис. 5), можно дополнительно сократить, применяя метод частичного перемежения спектров.

При передаче цветовой информации за пределами полосы пропускания яркостного канала исключаются недостатки, присущие первому способу передачи цветовой информации, а именно:

Рис. 5. Частотные характеристики яркостного и цветовых каналов радиопередатчиков с разнесенными спектрами I—яркостный канал; 2—канал I; 3—канал Q

- а) исключается паразитный цветовой сигнал в приемниках черно-белого телевидения;
- б) повышается четкость цветного телевизионного изображения в черно-белых деталях;
 - в) уменьшаются перекрестные искажения;
- г) снижаются требования к фазовой характеристике яркостного канала в области верхних частот.

Недостатком передачи цветовой информации за пределами яркостного канала является необходимость расширения полосы частот черно-белого канала для передачи цветного телевизионного изображения. В этом случае не обеспечивается полная совместимость цветной телевизионной системы с черно-белой, так как полный цветной телевизионный сигнал не укладывается в стандартную полосу черно-белого телевидения. Однако в некоторых случаях данный способ передачи может найти применение, так как он позволяет улучшить качество цветного телевизионного изображения при приеме на приемники цветного телевидения и качество черно-белого изображения при приеме цветного изображения на приемники черно-белого телевидения.

2. Искажения, возникающие при передаче цветовой информации в системе цветного телевидения NTSC

Поднесущая частота в системе NTSC выбрана равной примерно 3,58 мггц, при этом цветовая информация передается с частичным подавлением верхней боковой полосы частот.

Рис. 6. Синфазные и квадратурные составляющие при передаче с одной боковой полосой частот

Как известно, модуляция с частичным подавлением боковой полосы частот приводит к появлению квадратурных составляющих сигнала [J.~6,7,8]. На рис. 6 показаны частотная характеристика цветового канала I и ее синфазная и квадратурная составляющие, а также соответствующие векторные диаграммы. На рис. 6,a показано соотношение между цветовой поднесусущей $E_0\cos\omega t$, которая может быть подавлена, и нижней боковой полосой $E_L\cos\left(\omega-\omega_L\right)t$: фаза поднесущей канала I принята в качестве опорной фазы. На рис. $6, \delta$ показаны синфазные составляющие сигнала $\left(E_I \text{ и } E_I'\right)$, которые дают амплитудную модуляцию поднесущей $\cos\omega t$ и при восстановлении подне-

сущей частоты на приемном конце образуют полезный световой сигнал E_I . На рис. 6,8 показаны квадратурные составляющие E_Q и F_Q' , симметрично расположенные относительно второй поднесущей, которая сдвинута на 90° по отношению к опорной поднесущей. После детектирования составляющая E_Q дает паразитную амплитудную модуляцию поднесущей $\sin \omega t$ канала Q. Если предположить, что полоса канала Q такая же, как и канала Q, то квадратурные составляющие канала Q вызовут перекрестную модуляцию канала Q, т. е. в данном случае будут иметь место квадратурные перекрестные искажения между сигналами E_Q и E_I .

Кроме квадратурных искажений, как это видно из рис. 6, δ , будут иметь место частотные искажения сигналов канала I.

 ${
m B}$ системе NTSC квадратурные перекрестные искажения ослабляются в необходимой мере за счет сокращения полосы частот канала Q перед модуляцией цветовой поднесущей в передатчике. Сигнал E_Q передается симметричными боковыми полосами, имеющими граничную частоту примерно 600 кгц.

Сигнал E_I , перед модуляцией поднесущей, ограничивается примерно до 1,2 мгги. Так как верхняя и нижняя полосы частот сигнала E_Q симметричны, то квадратурные составляющие в сигнале отсутствуют и в канале I не обнаруживается сигнала E_Q . Сигнал E_I передается с частично подавленной верхней боковой полосой частот, в результате чего, как это было показано выше, в канале Q будет создаваться сигнал квадратурных перекрестных искажений. Этот сигнал находится в диапазоне частот от 0,6 до 1,2 мгги.

Применяя после детектора канала Q низкочастотный фильтр с частотой среза 0,6 мгги, можно уменьшить перекрестные квадратурные искажения до заданной величины. Уменьшение полосы частот канала Q приводит к тому, что воспроизведение средних по величине деталей цветного изображения будет осуществляться двумя цветами, так как при исключении сигнала E_Q треугольник цветов на цветовом графике вырождается в прямую линию.

Экспериментальные работы, проведенные при выборе системы NTSC, показали, что оптимальными цветами являются оранжевый и сине-зеленый.

Следовательно, цветовая ось на цветовом графике для узкополосного канала должна быть расположена по направлению $33-213^\circ$, а для широкополосного цветового сигнала, находящегося в квадратуре,—вдоль оси $123-303^\circ$. Для достижения оптимальной передачи цветности средних по величине деталей изображения векторы составляющих $E_{\rm Q}$ и $E_{\rm I}$ должны быть повернуты относительно векторов $E_{\rm R}$ — $E_{\rm Y}$ и $E_{\rm B}$ — $E_{\rm Y}$ на угол 33° .

В этом случае уравнение полного сигнала цветного изображения будет иметь вид:

Рис. 7. Векторная диаграмма цветового сигнала E_I на выходе балансного модулятора (а); векторная диаграмма цветового сигнала E_Q на выходе балансного модулятора (б) I—опорная фаза синхропосылки; 2—полавленная поднесущая; E_Q , E_I —верхние боковые полосы; E_Q , E_I' —нижние боковые полосы

Рис. 8. Векторная диаграмма, поясняющая работу синхронного детектора канала I (a); векторная диаграмма, поясняющая работу синхронного детектора канала Q (б)

1-опорная фаза синхропосылки; 2-восстановленная поднесущая

Векторная диаграмма цветовых сигналов на выходе балансных модуляторов в передатчике изображена на рис. 7. За опорную фазу принята фаза поднесущей $\sin(\omega t + 180^\circ)$. Сигнал, несущий цветовую информацию, передается через высокочастотный канал и после детектирования поступает на два синхронных детектора.

Векторные диаграммы, поясняющие работу синхронных детекторов каналов Q и I, изображены на рис. 8. Синхронный детектор канала I (рис. 8, α) детектирует цветовую составляющую E_I ; при этом составляющая E_Q , находящаяся в квадратуре, исключается, так как она не создает амплитудной моду-

Рис. 9. Синфазные и квадратурные составляющие, образующиеся при прохождении цветового сигнала через фильтр, имеющий характеристику с наклонной частью

ляции поднесущей частоты. Синхронный детектор канала Q (рис. 8, δ) детектирует составляющую E_Q и исключает составляющую E_I . Для того чтобы исключить частотное искажение, образующееся при передаче с подавленной боковой полосой в канале I, необходимо в приемнике иметь фильтр, обладающий характеристикой с линейной наклонной частью. Поднесущая частота должна располагаться на наклонной части характеристики, где пропускание на 6 $d\sigma$ ниже максимума.

По характеристике такого фильтра видно, что синфазная составляющая (рис. 9, 6) действительно передается без искажения во всем диапазоне частот. Однако квадратурная составляющая, образующаяся за счет наклонной части характеристики (рис. 9, 2), непосредственно проявляется в канале Q и создает квадратурные перекрестные искажения, которые нельзя исключить фильтром нижних частот, так как они находятся в диапазоне до 0, 6 мгги. Таким образом, при попытке исключить частотные искажения в канале I выбором специальной формы характеристики канала I в приемнике, появляются дополнительные квадратурные перекрестные искажения в канале Q.

Проведенное рассмотрение искажений в системе NTSC по-казывает, что для уменьшения перекрестных квадратурных искажений необходимо полосу частот одного из цветовых сигналов сократить примерно в два раза. Сокращение полосы частот одного из цветовых сигналов приводит к тому, что средние по величине детали цветного изображения будут воспроизводиться двумя цветами. Для перехода к оптимальной оранжево-сине-зеленой двухцветке необходимо перейти от разностных сигналов E_R — E_Y и E_B — E_Y к разностным сигналам E_Q и E_I . Переход к сигналам E_Q и E_I в свою очередь усложняет как передающую, так и приемную аппаратуру, что является одним из недостатков американской системы цветного телевидения.

3. Использование возможностей телевизионного стандарта СССР для передачи цветовой информации внутри спектра яркостного сигнала

Телевизионный стандарт СССР предусматривает разнос между несущими радиопередатчиков изображения и звукового сопровождения в 6,5 мггц. Можно показать, что данный разнос несущих обеспечивает ширину полосы частот канала изображения с запасом примерно на 1 мггц. Поэтому имеется возможность передать цветное телевизионное изображение с более высоким качеством, чем это позволяет система NTSC.

Для того чтобы увеличить разрешающую способность цветного телевизионного изображения в черно-белых деталях, а также обеспечить более мелкую точечную структуру растра при приеме на приемники черно-белого телевидения, значение поднесущей частоты должно быть выбрано по возможности высоким. Выбор более высокого значения номинала поднесущей важен также потому, что при этом спектр цветовой информации будет перемежаться со спектром яркостного сигнала в диапазоне малой энергии яркостного сигнала. Однако близкое расположение поднесущей частоты к верхней границе полосы пропускания телевизионного канала приводит к необходимости передачи цветовой информации с частичным подавлением верхней

² Телевидение, вып. 20—22

боковой полосы частот. Кроме того, в этом случае цветовая информация будет передаваться в области наибольших фазовых искажений телевизионного канала.

Передача цветовой информации с частичным подавлением верхней боковой полосы частот приводит, как это было отмечено в предыдущем параграфе, к появлению квадратурных перекрестных искажений и частотных искажений цветовых сигналов, а также к передаче средних по величине деталей изображения двумя цветами. Кроме того, расположение поднесущей частоты вблизи границы полосы пропускания приводит к фазовым искажениям в цветовом канале, которые могут вызвать искажения цветопередачи, а также дополнительные перекрестные искажения яркостного и цветовых сигналов. Для уменьшения этого эффекта на передающей стороне вводят фазочастотные предыскажения, однако, ввиду ожидающегося наличия разброса фазочастотных характеристик у отдельных экземпляров приемников, эта коррекция не может быть полной.

Для уменьшения искажений цветовых сигналов поднесущую частоту целесообразно расположить так, чтобы передавать обе

боковые полосы частот цветовой информации.

При передаче цветовых сигналов с обеими боковыми полосами частот средние по величине детали цветного изображения будут передаваться тремя основными цветами. При этом будут отсутствовать квадратурные перекрестные искажения и частотные искажения цветовых сигналов, т. е. улучшается качество передаваемого цветного изображения. Кроме того, вследствие равенства полос цветовых сигналов цветовые окантовки обусловленные переходными процессами, становятся менее заметными.

Как было показано в первом параграфе, для хорошего воспроизведения цветов применительно к телевизионному стандарту Советского Союза достаточна полоса частот порядка 1.42 мггц.

Частота поднесущей может быть определена как разность между граничной частотой полосы пропускания телевизионного канала и шириной боковой полосы цветового сигнала. Полагая граничную частоту телевизионного канала равной 6 мггц, получим частоту цветовой поднесущей примерно 4,6 мггц.

Для того чтобы осуществить перемежение спектров яркостного и цветового сигналов, а также ослабить помеху на приемниках черно-белого телевидения, номинал цветовой поднесущей должен быть нечетной гармоникой половины строчной частоты.

Поднесущая частота может быть выбрана, например, как 585-я гармоника половины строчной частоты, т. е. равной 4570312,5 гц. При этом получение номинала половины строчной частоты обеспечивается делением несущей с кратностью 13, 9 и 5.

Идеализированные характеристики передатчика и приемника

совместимой системы цветного телевидения для телевизионного стандарта СССР приведены на рис. 10. Выбранная величина поднесущей частоты обеспечивает более мелкую структуру помехи (сетки) при приеме цветного телевизионного изображения на приемники черно-белого телевидения, более высокую разрешающую способность цветного телевизионного изображения в черно-белых деталях, чем система цветного телевидения NTSC.

Помехи в телевизионном канале, которые могут возникнуть в результате биения между частотой разноса несущих видео-

Рис. 10. Частотные характеристики яркостного и цветовых каналов передатчика и приемника, которые могут быть приняты для стандарта цветного телевидения СССР I—яркостный канал; 2—каналы R—Y и B—Y

сигнала и звукового сопровождения и цветовой поднесущей, будут также нечетными гармониками половины строчной частоты, так как величина разноса, равная 6,5 мггц, является четной гармоникой (416-я гармоника) строчной частоты. Поэтому нет необходимости изменять параметры строчной и кадровой частоты в телевизионном стандарте СССР для системы цветного телевидения, как это было сделано в телевизионном стандарте США.

При передаче цветовой информации с симметричными боковыми полосами частот нет необходимости осуществлять колориметрические преобразования разностных сигналов $E_{\mathcal{R}}-E_{\mathcal{Y}}$ и $E_{\mathcal{B}}-E_{\mathcal{Y}}$ в разностные сигналы $E_{\mathcal{Q}}$ и $E_{\mathcal{I}}$.

2*

Уравнение полного сигнала цветного изображения будет иметь вид

$$E_m = E_Y + \left[\alpha \left(E_R - E_Y\right) \sin \omega t + \beta \left(E_B - E_Y\right) \cos \omega t\right], \quad (18)$$

где а и β-постоянные коэффициенты.

Векторные диаграммы цветовых сигналов на выходе балансных модуляторов в передатчике изображены на рис. 11.

Если применить балансную модуляцию, то поднесущие частоты будут подавлены и будут передаваться только боковые

Рис. 11. Векторная диаграмма цветового сигнала $E_B - E_Y$ на выходе балансного модулятора (a); векторная диаграмма цветового сигнала $E_R - E_Y$ на выходе балансного модулятора (б)

1—подавленная поднесущая; E_R — E_Y , E_B — E_Y —верхние боковые полосы; $(E_R$ — $E_Y)'$, $(E_B$ — $E_Y)'$ —нижние боковые полосы

полосы частот, которые на рисунке изображены сплошными линиями.

Векторные диаграммы, поясняющие работу синхронных детекторов в приемнике, показаны на рис. 12. Поднесущая частота в приемнике должна быть восстановлена и синхронизирована с опорной частотой передатчика подобно тому, как это сделано в системе NTSC.

Первый синхронный детектор (рис. 12,a) детектирует разностный сигнал E_B-E_Y ; при этом составляющая E_R-E_Y исключается, так как она не создает амплитудной модуляции поднесущей частоты $\sin \omega t$. Второй синхронный детектор (рис. $12, \delta$) детектирует второй разностный сигнал E_R-E_Y и, соответственно, исключает сигнал E_B-E_Y . При помощи простого матричного преобразования из разностных сигналов E_B-E_Y и E_R-E_Y можно получить сигнал E_G-E_Y . Разностные сигналы и яркостный сигнал могут подаваться затем на управ-

ляющие электроды цветной приемной трубки и использоваться для воспроизведения цветного телевизионного изображения.

При передаче цветовых сигналов с равными симметричными боковыми полосами, кроме улучшения качества передаваемого цветного телевизионного изображения, упрощаются также аппаратура передающей части, приемник цветного телевидения и методика их настройки.

В передающей части происходят следующие упрощения:

1. Исключается цепь задержки 147°, которая необходима в системе NTSC для получения оптимального двухцветного воспроизведения средних деталей изображения.

Рис. 12. Векторная диаграмма, поясняющая работу синхронного детектора канала B-Y (a); векторная диаграмма, поясняющая работу синхронного детектора канала R-Y (б) I—восстановленная поднесущая

- 2. Исключается цепь задержки в канале I, применяемая $^{\wp}$ для временного выравнивания цветовых сигналов E_I и $E_{\mathcal{Q}}$.
- 3. Фильтры нижних частот для ограничения разностных цветовых сигналов $E_R E_Y$ и $E_B E_Y$, включенные на входе балансных модуляторов, будут иметь одинаковую граничную частоту, что упрощает их изготовление и настройку.
- 4. Исключается дополнительное матричное преобразование разностных сигналов в сигналы E_I и E_Q .

Наиболее существенные упрощения происходят в приемнике цветного телевидения:

1. Значительно упрощаются матричные преобразования сигналов E_Y , E_I и E_Q в сигналы E_R , E_G , E_B : декодированные на высоком уровне сигналы E_R — E_Y , E_B — E_Y и полученный на матрице сигнал E_G — E_Y непосредственно подаются на соответствующие электроды приемной трубки, где и происходит преобразование разностных сигналов в сигналы E_R , E_G , E_B . При этом не требуется фазоинверсных каскадов для получения сиг-

налов E_I и E_Q положительной и отрицательной полярности, не требуется дополнительного усиления сигналов E_R , E_G и E_B и не требуются цепи восстановления постоянной составляющей, так как возможна гальваническая связь декодирующих каскадов с трубкой. Все цепи декодирования в приемнике, использующем разностные сигналы, могут быть выполнены на пентоде и трех триодах, а в приемнике, использующем сигналы E_I и E_O ,—на трех пентодах, девяти триодах и трех диодах.

- 2. Цветовые каналы R-Y и B-Y выполняются полностью идентичными с одинаковыми фильтрами нижних частот на выходе демодуляторов, что упрощает их настройку, так как при этом не требуется введения задержки в канале I для временного выравнивания сигналов E_I и E_Q . Кроме того, не требуется подъема частотной характеристики в канале I в диапазоне частот от 0,6 до 1,2 мггц, необходимого для компенсации частотных искажений, вызванных подавлением верхней боковой полосы частот.
- 3. Упрощается настройка цепей синхронизации цвета, так как в этом случае не требуется дополнительного фазового сдвига на 33° опорной частоты поднесущей для декодирования сигналов E_I и E_O .

Рассмотрение возможностей передачи цветовой информации в спектре яркостного сигнала в системе телевизионного стандарта СССР показывает, что цветовую информацию можно передавать с симметричными боковыми полосами.

Этот способ передачи цветовой информации дает более мелкую структуру помехи (сетки) при приеме цветного изображения на приемники черно-белого телевидения, более высокую разрешающую способность в черно-белых деталях, чем в системе NTSC. Кроме того, как было отмечено выше, улучшается качество цветного телевизионного изображения и упрощается изготовление и настройка передающей аппаратуры и приемников цветного телевидения.

Заключение

В совместимой системе цветного телевидения цветовая информация может передаваться как в спектре яркостного сигнала, так и за его пределами.

Способы передачи цветовой информации в спектре яркостного сигнала позволяют осуществить полную совместимость цветной телевизионной системы с черно-белой без расширения канала черно-белого телевидения.

Телевизионный стандарт СССР позволяет передавать цветовую информацию в спектре яркостного сигнала с симметричными боковыми полосами. В этом случае нет необходимости преобразовывать разностные сигналы $E_{\it B} - E_{\it Y}$ и $E_{\it R} - E_{\it Y}$ в

сигналы E_Q и E_I , что в свою очередь (по сравнению с системой цветного телевидения NTSC) приводит к улучшению качества передаваемого цветного телевизионного изображения и одновременному упрощению передающей аппаратуры, приемников цветного телевидения, а также их настройки.

ЛИТЕРАТУРА

1. D. G. Fink, What design engineer need to know about the NTSC color television standards, "Electronics", December, 1953.

- 2. NTSC signal specifications, "Proc. IRE", January, 1954, vol. 42. 3. П. В. Шмаков, Основы цветного и объемного телевидения, "Сов. радио", 1954.

 4. A. V. Bedford, Mixed highs in color television, "Proc. IRE", Sep-
- tember, 1950, vol. 38.

5. Jahrestagung der fernsehtechnische Gesellschaft in Hamburg von 5 bis 9 September 1955, "Nachrichtentechnik", 1955, H. 11, 6. Е. Г. Момот, Принцип избирательного детектирования, 1948. 7. С. Гольдман, Гармонический анализ, модуляция и шумы, Изд. иностр. литературы, 1951.

8. W. F. Bailey, C. J. Hirsch, Quadrature crosstalk in NTSC color television, "Proc. IRE", January, 1954, vol. 42.

Статья поступила 24/XII 1955 г.

Канд. техн. наук Н. Н. КРАСИЛЬНИКОВ

ВЛИЯНИЕ 7-КОРРЕКЦИИ НА ФЛЮКТУАЦИОННЫЕ ШУМЫ ТЕЛЕВИЗИОННОГО КАНАЛА

В статье показано, что в большинстве практических случаев можно не считаться с изменениями, происходящими в спектре шума и в его законе распределения при прохождении сигнала и шума через контрастор. Действие контрастора сводится в основном к изменению отношения сигнал/шум и к изменению закона распределения телевизионного сигнала в динамическом диапазоне.

Известно, что телевизионный канал является устройством, включающим в себя узлы, обладающие нелинейными амплитудными (световыми) характеристиками.

К таким узлам можно отнести:

- а) ряд типов передающих телевизионных трубок,
- б) контрасторы,

в) приемные телевизионные трубки.

Общим для амплитудных (световых) характеристик этих узлов является то, что все они подчиняются степенному закону.

$$egin{aligned} U_{{\scriptscriptstyle \theta u}x} = & f\left(U_{{\scriptscriptstyle \theta x}}\right) = & \beta U_{{\scriptscriptstyle \theta x}}^{\intercal} & \text{при } U_{{\scriptscriptstyle \theta x}} \geqslant 0, \ U_{{\scriptscriptstyle \theta u}x} = & f\left(U_{{\scriptscriptstyle \theta x}}\right) = & 0 & \text{при } U_{{\scriptscriptstyle \theta x}} < 0, \end{aligned}$$

 U_{sux} — напряжение на выходе нелинейного устройства, U_{sx} — напряжение на входе нелинейного устройства, β —коэффициент пропорциональности,

ү-показатель степени (величина, равная обычно от 0.5

Наличие нелинейных амплитудных (световых) характеристик в телевизионном канале приводит к изменению:

- а) спектральной функции флюктуационной помехи $F(\omega)$,
- б) градационной характеристики телевизионного сигнала,
- в) закона распределения вероятности флюктуационной помехи,
 - г) отношения $\frac{\text{сигнал}}{\text{шум}}$.*

Цель настоящей работы—установить пределы, в которых изменяются указанные параметры, а также закономерности этих изменений, поскольку они определяют уровень и структуру помехи, которую видит наблюдатель на экране телевизионного приемника [Л. 7]. В работе использован корреляционный метод, широко применяемый в настоящее время при решении задач подобного рода.

Вычисление кривых проведено инженером К. К. Реутовой.

Спектральная функция

Пусть к входным зажимам контрастора приложено напряжение U_{sx} , являющееся суммой напряжения сигнала $U_{c\,sx}$ и напряжения флюктуационного шума $U_{u\,sx}$. Будем считать, что спектральная функция флюктуационного шума на входных зажимах контрастора $F_{sx}(\omega)$ известна. Очевидно, что на выходе контрастора спектральная функция шума $F_{sux}(\omega)$ будет отлична от $F_{sx}(\omega)$, поскольку она претерпела нелинейное преобразование.

Найдем $F_{{\scriptscriptstyle \it Bb,x}}(\omega)$, для чего напишем выражение для функции корреляции напряжения $U_{{\scriptscriptstyle \it Bb,x}}$ на выходе контрастора:

$$\overline{U_{s\omega x}U_{s\omega x}} = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(U_{sx}) f(U_{sx}) \times \frac{\exp\left\{-\frac{U_{usx}^2 + U_{usx}^2 - 2U_{usx}U_{usx}U_{usx}}{2z^2(1 - R^2)}\right\}}{2\pi\sigma^2 \sqrt{1 - R^2}} \times \frac{dU_{usx}dU_{usx}dU_{usx}}{(2)}$$

^{*} Эти параметры необходимо знать хотя бы для вычисления уровня видимой помехи.

гле

 σ —эффективное значение шума на входе контрастора, R—коэффициент корреляции шума на входе контрастора.

Будем считать, что величина сигнала не меняется ($U_{c\;sx}=$ = const), т. е. мы наблюдаем помеху на равномерно освещенном фоне. Тогда

$$\overline{U_{s\omega x}U_{s\omega x}} = \int_{-U_{c}}^{\infty} \int_{\theta x}^{\infty} \beta^{2} U_{\theta x}^{\gamma} U_{\theta x}^{\gamma} \times \frac{1}{2\pi^{2}} \left\{ -\frac{U_{u \theta x}^{2} + U_{u \theta x}^{2} - 2U_{u \theta x}U_{u \theta x}}{2\pi^{2} (1 - R^{2})} \right\} \times \frac{\exp\left\{ -\frac{U_{u \theta x}^{2} + U_{u \theta x}^{2} - 2U_{u \theta x}U_{u \theta x}}{2\pi^{2} \sqrt{1 - R^{2}}} \right\}}{2\pi^{2} \sqrt{1 - R^{2}}} \times dU_{u \theta x} dU_{u \theta x} . \tag{3}$$

Для того чтобы взять интеграл выражения (3), разложим подынтегральную функцию в ряд по степеням R и проинтегрируем почленно получившееся выражение.

Можно показать, что имеет место следующее равенство [Л. 1, стр. 350]:

$$\frac{1}{2\pi \sqrt{1-R^2}} \exp\left\{-\frac{x^2+y^2-2xyR}{2(1-R^2)}\right\} = \frac{1}{2\pi} \sum_{n=1}^{\infty} \frac{R^n \frac{d^n e^{-\frac{x^2}{2}}}{dx^n} \frac{d^n e^{-\frac{y^2}{2}}}{dy^n}}{\frac{d^n e^{-\frac{y^2}{2}}}{dy^n}}.$$
(4)

Вводя в уравнение (3) обозначения

$$\frac{U_{c \theta x}}{\sigma} = \psi, \quad \frac{U_{u \theta x}}{\sigma} = x_1, \quad \frac{U_{u \theta x} \tau}{\sigma} = x_2 \tag{5}$$

и учитывая уравнение (4), напишем выражение для функции корреляции на выходе контрастора:

$$\overline{U_{\theta \omega x} U_{\theta \omega x}}_{\tau} = \frac{\beta^2 \sigma^{2\gamma}}{2\pi} \sum_{n=0}^{\infty} \frac{R^n}{n!} \int_{-\psi}^{\infty} (x_1 + \psi)^{\gamma} \frac{d^n e^{-\frac{x_1^2}{2}}}{dx_1^n} dx_1 \times .$$

$$\times \int_{-\psi}^{\infty} (x_2 + \psi)^{\gamma} \frac{d^n e^{-\frac{x_2^2}{2}}}{dx_2^n} dx_2, \qquad (6)$$

или

$$\overline{U_{s\omega x}U_{s\omega x}} = \beta^2 \sigma^{2\gamma} \left(C_0^2 + C_1^2 R + C_2^2 R^2 + C_3^2 R^3 + \ldots + C_n^2 R^n \right), \quad (7)$$

где

$$C_n = \frac{1}{V^{\frac{1}{2\pi n!}}} \int_{-\phi}^{\infty} (x + \phi)^{\gamma} \frac{d^n e^{-\frac{x^2}{2}}}{dx^n} dx.$$
 (8)

Анализируя равенство (7), можно сделать следующие выводы:

1. Первое слагаемое полученного разложения характеризует собой регулярный компонент и от времени не зависит, т. к. $U_{c,ar} = \text{const.}$ а следовательно, и $\psi = \text{const.}$

 $U_{c, s, x} = \text{const}$, а следовательно, и $\psi = \text{const}$. 2. Второе слагаемое является функцией коэффициента корреляции R и представляет компонент флюктуационного шума, спектр которого совпадает со спектром шума на входе контрастора.

3. Остальные слагаемые представляют собой компоненты флюктуационного шума, спектр которых отличен от спектра шума на входе контрастора.

Найдем долю энергии флюктуационного шума на выходе контрастора, спектр которого совпадает со спектром флюктуаций на входе контрастора

$$b = \frac{\beta^2 \sigma^{2\gamma} C_1^2 R(0)}{\sigma_{g_{BLX}}^2} = \frac{\beta^2 \sigma^{2\gamma} C_1^2}{\sigma_{g_{BLX}}^2}, \tag{9}$$

где $\sigma_{sыx}$ —среднеквадратичное (эффективное) значение переменной составляющей флюктуаций на выходе контрастора.

Выражение для $\sigma_{s\omega x}^2$ может быть найдено либо путем суммирования всех членов, кроме первого, выражения (7), либо путем вычисления первого (M_1) и второго (M_2) начальных моментов и вычисления, исходя из известных M_1 и M_2 , второго центрального момента m_2 , или, что то же самое, $\sigma_{s\omega x}^2$ по известной формуле

$$\sigma_{\theta ux}^{2} = m_{2} = M_{2} - M_{1}^{2} \,. \tag{10}$$

Последний способ оказывается практически более удобным. Выражения для M_1 и M_2 могут быть найдены следующим образом:

$$M_{1} = \frac{\beta \sigma^{\mathsf{T}}}{V 2\pi} \int_{-\phi}^{\infty} (x + \phi)^{\mathsf{T}} e^{-\frac{x^{\mathsf{T}}}{2}} dx; \tag{11}$$

$$M_{2} = \frac{\beta^{2} \sigma^{2\gamma}}{V \frac{1}{2\pi}} \int_{-\psi}^{\infty} (x + \psi)^{2\gamma} e^{-\frac{x^{2}}{2}} dx.$$
 (12)

Подставляя в выражение (9) значение $\sigma_{s_{NX}}^2$, найденное из уравнений (8), (10), (11) и (12), получим

$$b = \frac{\left[\int_{-\psi}^{\infty} (x + \psi)^{\gamma} \frac{d^{n} e^{-\frac{x^{2}}{2}}}{dx^{n}} dx\right]^{2}}{\sqrt{2\pi} \int_{-\psi}^{\infty} (x + \psi)^{2\gamma} e^{-\frac{x^{2}}{2}} dx - \left[\int_{-\psi}^{\infty} (x + \psi)^{\gamma} e^{-\frac{\xi x^{2}}{2}} dx\right]^{2}}.$$
 (13)

Интегралы, входящие в выражение (13), легко берутся при целых значениях γ ; в случае дробного γ значения интегралов могут быть вычислены одним из методов численного интегрирования [Л. 2].

На рис. 1 и 2 представлена зависимость b от ψ для ряда значений γ . Из графиков видно, что с ростом ψ , которое является отношением сигнала к шуму, b растет и стремится к единице при $\psi \to \infty$.

При $\psi \gg 2$ и $0.5 \leqslant \gamma \leqslant 2.0$ b > 0.85, т. е. более 85% энергии флюктуационного шума приходится на компонент, спектральная функция которого совпадает со спектральной функцией шума на входе контрастора $F_{ex}(\omega)$.

На основании изложенного можно сделать следующий вывод: при $0.5 \leqslant \gamma \leqslant 2.0$ и $\psi \gg 2$ спектр флюктуационного шума на выходе контрастора мало отличается от спектра флюктуационного шума на входе контрастора. Другими словами, при указанных условиях контрастор не изменяет формы спектря шумов, а следовательно, и наивероятнейшей длительност выбросов шума.

2. Амплитудная (световая) характеристика

Отметим, что нелинейная амплитудная характеристика системы не вносит искажений в сигнал принимаемого изображения в том случае, если она подчиняется степенному закону (1). Указанное, однако, справедливо лишь при отсутствии флюктуационного шума [Л. 3]. Наличие шума приводит к тому, что яркость каждого элемента изображения определяется в среднем суммой величины сигнала и "постоянной составляющей шума", которая появляется при их нелинейном преобразовании; при этом яркость пропорциональна первому начальному моменту M_1 .

Первый начальный момент M_1 является функцией отношения сигнала к шуму ψ . В том случае, когда $\psi \to \infty$,

$$M_1 = \beta U_c^{\gamma}$$
.

Когда же $\psi \neq \infty$, величина M_1 может быть найдена из уравнения (11).

На рис. З представлены две серии амплитудных характеристик контрастора в координатах $\frac{M_1}{M_{1, make}}$ и $\frac{U_{c, \theta x}}{U_{c, \theta x, make}}$ для различ-

Рис. 3. Амплитудные характеристики контрастора 1) $\gamma=2; \psi_{MaKc}\rightarrow\infty; 2)$ $\gamma=2; \psi_{MaKc}=5; 3)$ $\gamma=1,5; \psi_{MaKc}\rightarrow\infty; 4)$ $\gamma=1,5; \psi_{MaKc}=5; 5)$ $\gamma=1,0; \psi_{MaKc}\rightarrow\infty; 6)$ $\gamma=1,0; \psi_{MaKc}\rightarrow\infty; 7)$ $\gamma=0,75; \psi_{MaKc}\rightarrow\infty; 8)$ $\gamma=0,75; \psi_{MaKc}\rightarrow\infty; 9)$ $\gamma=0,5; \psi_{MaKc}\rightarrow\infty; 10)$ $\gamma=0,5; \psi_{MaKc}\rightarrow\infty; 10)$

ных значений γ . Первая серия характеристик относится к случаю $\psi \to \infty$, вторая— $\psi_{\textit{макс}} = 5$. Из графика видно, что вторая серия характеристик начинает заметно отличаться от первой при

$$\frac{U_{c \text{ bx}}}{U_{c \text{ bx makc}}} \leqslant 0.4 \div 0.6.$$

Другими словами, искажения амплитудной (световой) характеристики, вызванные флюктуационной помехой, начинают проявляться лишь при $\psi \leqslant 2 \div 3$.

3. Закон распределения

Известно, что прохождение флюктуационного шума через устройство с нелинейной амплитудной характеристикой (контрастор) приводит к изменению его закона распределения. Так, например, если на вход контрастора подать одновременно сигнал и шум, распределенный по нормальному закону, то на выходе закон распределения шума будет отличен от нормального. Однако неверно было бы считать, что в телевизионной системе на этом ограничивается преобразование закона распределения по вероятностям.

Флюктуационный шум в дальнейшем преобразуется при прохождении таких звеньев телевизионного тракта, как усилители с ограниченной полосой пропускания, приемная телевизионная трубка с апертурой конечных размеров и люминофором экрана, время послесвечения которого конечно, и т. д. При этом закон распределения его изменяется в направлении своей нормализации, что является следствием центральной предельной теоремы теории вероятности. Найти в явном виде закон распределения флюктуационного шума, приведенного к последнему звену телевизионной системы, с тем чтобы судить о его нормализации, —задача математически трудная, поэтому в дальнейшем о характере его нормализации мы будем судить по величине коэффициента асимметрии.

Коэффициент асимметрии может быть определен как

$$k = \frac{m_3}{\frac{3}{m_2^2}},\tag{14}$$

где m_2 и m_3 —второй и третий центральные моменты одномерного закона распределения.

При приближении закона распределения флюктуаций к нормальному k стремится к нулю.

На рис. 4 приведена зависимость коэффициента асимметрии на выходе контрастора от отношения $\frac{\text{сигнал}}{\text{шум}}$ на его входе для ряда значений γ . Из рисунка видно, что с увеличением отношения сигнала к шуму ϕ величина коэффициента асимметрии k убывает. Это указывает на то, что с ростом ϕ закон распределения стремится к нормальному.*

^{*} Интересно отметить, что кривая 4, соответствующая $\gamma = 0.5$, с ростом ϕ меняет свой знак. Получается это потому, что при малых значениях ψ шум ограничивается снизу, а при больших—сверху.

На рис. 5 приведено семейство кривых распределения флюктуационного шума на выходе контрастора для различных отношений сигнала к шуму на его входе, рассчитанных для случая $\gamma=2$. Для каждой кривой распределения указан соответствую-

Рис. 4. Зависимость k от ψ на выходе контрастора I) $\gamma = 2,0; 2$) $\gamma = 1,5; 3$) $\gamma = 1,0; 4$) $\gamma = 0,5$

щий ей коэффициент асимметрии. Здесь же для сравнения приведена кривая распределения 4, соответствующая нормальному закону.

Рис. 5. Кривые распределения флюктуационного шума на выходе контрастора

1) ү=2; ψ =10; k=0,3; 2) ү=2; ψ =5; k=0,6; 3) ү=2; ψ =3; k=0,99; 4) кривая нормального распределения флюктуационного шума

Выше указывалось, что при прохождении шумов через дальнейшие звенья тракта происходит нормализация закона распределения. Можно показать, что основными причинами нормализации закона распределения являются:

а) усреднение шума за счет конечного размера апертуры луча приемной телевизионной трубки,

- б) усреднение шума за счет конечного времени послесвечения люминофора и инерционности зрительного восприятия. Рассмотрим влияние этих причин отдельно.
- а) Влияние конечной апертуры луча приемной телевизионной трубки на нормализацию закона распределения

Для наглядного решения задачи заменим реальную приемную телевизионную трубку идеальной с линейной световой характеристикой и бесконечно малой апертурой луча (рис. 6). Нелинейность световой характеристики реальной трубки отнесем к некоторому контрастору, который будем считать включенным непосредственно перед трубкой, а искажения, вноси-

Рис. 6. Эквивалентная блок-схема реальной приемной телевизионной трубки

мые апертурой, учтем, включив между контрастором и идеальной трубкой фильтр нижних частот с коэффициентом передачи

 $\left(\frac{\omega}{\Omega}\right)^2$, где Ω —приведенная частота апертуры приемной телевизионной трубки [Л. 5].

Заметим, что, вообще говоря, нелинейную инерционную систему не всегда можно разделять на нелинейную безынерционную и линейную инерционную, включенные последовательно. В данном частном случае это оказалось возможно сделать потому, что участок трубки, в котором происходят инерционные процессы (экран), не оказывает влияния на участок трубки, где протекают нелинейные процессы (электронный прожектор).

Таким образом, исследование влияния апертуры на нормализацию закона распределения сведется к исследованию влияния фильтра нижних частот.

Для того чтобы определить, насколько близок закон распределения флюктуационного шума к нормальному на выходе фильтра, необходимо найти его коэффициент асимметрии k_1 .

Коэффициент асимметрии на выходе фильтра может быть

найден двумя путями:

а) определяется одномерный закон распределения на выходе фильтра, зная который можно найти центральные второй и третий моменты распределения путем интегрирования [Л. 1, стр. 88];

б) из известных одномерного и двумерного законов распределения на входе контрастора определяются одномерная и двумерная функции корреляции $B_1(au_1);\ B_2(au_1;\ au_2)$ на входе фильтра, исходя из равенства

$$B_{n}(\tau_{1}, \tau_{2}, \ldots, \tau_{n}) =$$

$$= \int_{-\infty}^{+\infty} \ldots \int_{-\infty}^{+\infty} f(x_{1} + \psi) f(x_{2} + \psi) \ldots f(x_{n+1} + \psi) W_{n+1}(x_{1}, x_{2}, \ldots, x_{n+1}; \tau_{1}, \ldots, \tau_{n}) dx_{1} dx_{2} \ldots dx_{n+1}, \qquad (15)$$

где
$$B_n(\tau_1, \tau_2, \ldots, \tau_n)$$
— функция корреляции n —мерная; W_{n+1} —закон распределения $n+1$ —мерный; $f(x+\psi)$ —амплитудная характеристика контрастора [см. уравнение (1)].

Зная одномерную и двумерную функции корреляции на входе фильтра B_1 (τ_1) и B_2 $(\tau_1; \tau_2)$, находим соответствующие имодномерный и двумерный спектры $F_1\left(\omega_1\right)$ и $F_2\left(\omega_1;\omega_2\right)$, исходя из равенства

$$F_{n}(\omega_{1}, \ldots, \omega_{n}) =$$

$$= \frac{1}{(\pi)^{n}} \int_{-\infty}^{+\infty} \ldots \int_{-\infty}^{+\infty} B_{n}(\tau_{1}, \ldots, \tau_{n}) e^{-j(\omega_{1}\tau_{1} + \cdots + \omega_{n}\tau_{n})} \times$$

$$\times d\tau_{1} \ldots d\tau_{n}. \tag{16}$$

Зная коэффициент передачи фильтра A (ω), определяем одномерный и двумерный спектры на выходе фильтра $\Phi_1\left(\omega_1
ight)$

Далее из известных Φ_1 (ω_1) и Φ_2 (ω_1 ; ω_2) находим первый. второй и третий начальные моменты распределения на выходе фильтра, исходя из равенства

$$M_{n+1} = \int_{-\infty}^{+\infty} \dots \int_{-\infty}^{+\infty} \Phi_n(\omega_1, \dots, \omega_n) d\omega_1 \dots d\omega_n.$$
 (17)

Используя известные соотношения

$$m_2 = M_2 - M_1^2$$
, $m_3 = M_3 - 3M_2M_1 + 2M_1^3$, (18)

находим второй и третий центральные моменты распределения на выходе фильтра $(m_2$ и $m_3)$, которые, будучи подставлены в уравнение (14), дадут значение коэффициента асимметрии. Несмотря на кажущуюся сложность, второй путь, предложенный Б. Р. Левиным и С. А. Смирновым в работе "К вопросу о нормализации случайного процесса при прохождении через узко-

Телевидение, вып. 20-22

полосную систему" (1954 г.), с точки зрения вычислений значительно проще первого, вследствие чего им целесообразно воспользоваться [Л. 4],

При вычислении коэффициента асимметрии k на выходе фильтра нижних частот было сделано допущение, заключающееся в следующем. Амплитудная характеристика контрастора, приведенная в начале статьи [уравнение (1)], была заменена

$$U_{\theta \omega x} = \beta U_{\theta x}^{\gamma}, * \tag{19}$$

что привело при $\psi \geqslant 2$ к незначительной ошибке в определении k в сторону завышения.

Рис. 7. Зависимость k от ψ на выходе фильтра 1—кривая соответствует случаю, когда спектральная функция шума описывается уравнением (21); 2—кривая соответствует случаю, когда спектральная функция шума описывается уравнением (22); 3—кривая соответствует значению $\gamma=2$

В найденном выражении для k были опущены малые слагаемые, что завысило на несколько единиц процентов конечный результат. При этом окончательное выражение приняло следующий вид:

$$k \approx \frac{3}{\psi} \sqrt{\frac{1}{\sigma^2} \int_0^{\omega MaKc} F(\omega) e^{-2\left(\frac{\omega}{\Omega}\right)^2} d\omega}, \tag{20}$$

Заметим, что полученное приближенное значение k вполне пригодно для оценки закона распределения флюктуационного шума, так как приближение сделано в сторону завышения.

На рис. 7 приведены графики зависимости коэффициента асимметрии k на выходе фильтра нижних частот (кривые 1;2) от отношения $\frac{\text{сигнал}}{\text{шум}}$ для двух случаев.

^{*} При любых значениях $U_{\theta x}$.

В первом случае (кривая 1) взята спектральная функция шума, соответствующая спектру шума камеры с трубкой типа суперортикон

 $F'(\omega) = \frac{\sigma^2}{\omega_{MAKC}}.$ (21)

Во втором случае (кривая 2) F'' (ω) соответствует шуму камеры, в которой применена трубка с разверткой лучом быстрых электронов и простая противошумовая коррекция на входе усилителя,

$$F''(\omega) = \frac{\sigma^2 \left(1 + \frac{R_{uu}}{R} + R_{uu} R \omega^2 C^2 \right)}{\omega_{\text{MAKC}} \left(1 + \frac{R_{uu}}{R} + \frac{C^2 R_{uu} R \omega^2_{\text{MAKC}}}{3} \right)}, \tag{22}$$

где

3*

 R_{u} —шумовое сопротивление первой лампы усилителя (в нашем случае R_{u} =200 ом);

R—входное сопротивление усилителя (в нашем случае $R=10^5~om$);

C—входная емкость усилителя (в нашем случае $C=2\cdot 10^{-11}\phi$).

Остальные параметры телевизионной системы, определяющие k в уравнении (20), следующие:

$$\omega_{\text{Makc}} = 2\pi \cdot 5 \cdot 10^6 \text{ pad/cek}; \quad \Omega = 2\pi \cdot 4, 5 \cdot 10^6 \text{ pad/cek}.$$

Кривая 3 соответствует коэффициенту асимметрии на выходе контрастора (на входе фильтра нижних частот) для случая $\gamma = 2$.

Сравнивая кривые 1 и 3, можно сделать вывод, что величина коэффициента асимметрии при прохождении шума через фильтр заметно уменьшается, т. е. закон распределения шумов заметно приближается к нормальному.

б) Влияние усреднения шума за счет конечного времени послесвечения люминофора и инерционности зрительного восприятия

Конечное время послесвечения люминофора приемной телевизионной трубки и инерционность зрительного восприятия приводит к суммированию флюктуационного шума теоретически в течение бесконечного ряда кадров, т. е.

$$\sigma_{\scriptscriptstyle \Sigma}^2 = \sum_{n=1}^{\infty} \sigma_n^2, \tag{23}$$

35

где $\sigma_{\!\scriptscriptstyle \Sigma}$ —эффективное значение суммарного шума,

 σ_n —эффективное значение шума, накопленного n-ым кадром.

Величина с увеличением п убывает.

Найти закон распределения суммарного шума, если известен закон распределения отдельных слагаемых, можно следующим образом. Во-первых, необходимо найти одномерные характеристические функции $\theta_n(\eta)$ всех слагаемых

$$\theta_n(\eta) = \int_{-\infty}^{+\infty} W(\sigma_n) e^{j\eta_i x_n} dx_n.$$
 (24)

Зная $\theta_n(\eta)$, можно найти одномерную характеристическую функцию суммарного шума $\theta(\eta)$ путем перемножения всех $\theta_n(\eta)$

$$\theta\left(\eta\right) = \prod_{n=1}^{\infty} \theta_n\left(\eta\right). \tag{25}$$

Производя обратное преобразование Фурье, найдем закон распределения суммарного шума

$$\mathbf{W}(\sigma_{\mathbf{s}}) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \mathbf{\theta}(\eta) e^{-j\eta x} d\eta. \tag{26}$$

Несмотря на кажущуюся простоту, этот способ связан с большими трудностями вычислительного характера, поэтому мы ограничимся вычислением коэффициента асимметрии k_z , соответствующего суммарному закону распределения $W(\sigma_z)$.

Для вычисления $k_{\scriptscriptstyle \Sigma}$ необходимо знать второй и третий центральные моменты, соответствующие суммарному шуму $m_{\scriptscriptstyle 2\Sigma} = \sigma_{\scriptscriptstyle \Sigma}^2$ и $m_{\scriptscriptstyle 2\Sigma}$.

Если принять, что флюктуационный шум не содержит постоянной составляющей, $m_{2\Sigma}$ и $m_{3\Sigma}$ могут быть найдены посредством известных уравнений

$$m_{22} = \left\{\frac{-\partial^{2}\theta(\eta)}{\partial \eta^{2}}\right\}_{\eta=0} = \left\{\frac{\partial^{2}\left[\Pi_{n=1}^{\infty}\theta_{n}(\eta)\right]}{\partial \eta^{2}}\right\}_{\eta=0} = \left\{-\sum_{n=1}^{\infty}\frac{\partial^{2}\theta_{n}(\eta)}{\partial \eta^{2}}\right\}_{\eta=0} +$$

+ (члены, содержащие в качестве множителя $\left\{\frac{\partial \theta_n(\eta)}{\partial \eta}\right\}_{\eta=0}$). (27)

Но

$$\left\{\frac{\partial \theta_n(\eta)}{\partial \eta}\right\}_{\eta=0} = jm_1,\tag{28}$$

где m_1 —первый момент распределения, имеющий смысл постоянной составляющей и по условию равный нулю. Отсюда

$$m_{2\Sigma} = \left\{ -\sum_{n=1}^{\infty} \frac{\partial^2 \theta_n(\eta)}{\partial \eta^2} \right\}_{\eta=0}.$$
 (29)

.36

Если учесть, что $\left\{ \frac{-\partial^2 \theta_n(\eta)}{\partial \eta^2} \right\}_{n=0} = m_{2n}, \tag{30}$

где m_{2n} —второй центральный момент распределения n-го слагаемого шума [Л. 1, стр. 100],

то окончательное выражение для m_{22} примет вид

$$m_{25} = \sum_{n=1}^{\infty} m_{2n}.$$
 (31)

Поступая аналогичным образом, найдем выражение для третьего центрального момента распределения суммарного шума

$$m_{32} = \left\{-j^{3} \frac{\partial^{3}\theta\left(\eta\right)}{\partial\eta^{3}}\right\}_{\eta=0} = \left\{j\sum_{n=1}^{\infty} \frac{\partial^{3}\theta_{n}\left(\eta\right)}{\partial\eta^{3}}\right\}_{\eta=0} +$$
 (члены, содержащие в

качестве множителя
$$\left\{\frac{\partial \theta_n\left(\eta\right)}{\partial \eta}\right\}_{\eta=0}$$
. (32)

Отсюда

$$m_{3\Sigma} = \sum_{n=1}^{\infty} m_{3n},$$
 (33)

где m_{8n} —третий центральный момент распределения n-го слагаемого шума.

Делая подстановку $m_{2\Sigma}$ и $m_{3\Sigma}$ в уравнение (14), найдем

$$k_{\Sigma} = \frac{\sum_{n=1}^{\infty} m_{3n}}{\left(\sum_{n=1}^{\infty} m_{2n}\right)^{3/2}} . \tag{34}$$

Решая уравнение (14) относительно m_3 , найдем

$$m_3 = k m_2^{3/2},$$
 (35)

а так как суммарный шум является суммой из слагаемых на выходе фильтра, припишем индекс n значениям m_{3n} и m_{2n} :

$$m_{3n} = k \, m_{2n}^{3/2} \,. \tag{36}$$

Делая подстановку (36) в (34), найдем

$$k_{2} = \frac{\sum_{n=1}^{\infty} m_{2n}^{3/2} k}{\left(\sum_{n=1}^{\infty} m_{2n}\right)^{3/2}} = k \frac{\sum_{n=1}^{\infty} m_{2n}^{3/2}}{\left(\sum_{n=1}^{\infty} m_{2n}\right)^{3/2}}.$$
 (37)

В качестве примера рассмотрим случай, когда наблюдение шума ведется на экране приемной телевизионной трубки, время послесвечения люминофора которой пренебрежимо мало. В этом случае усреднение шума происходит только за счет инерционности зрительного восприятия. Учитывая, что затухание впечатления яркости в глазу происходит в соответствии с показательным законом, напишем выражение для m_{2n} :

Рис. 8. Зависимость k_{Σ} от ψ

I—кривая соответствует случаю, когда спектральная функция шума описывается уравнением (21); 2—кривая соответствует случаю, когда спектральная функция шума описывается уравнением (22); 3—кривая соответствует значению k на выходе контрастора (см. рис. 4, кривая I)

Здесь введены следующие обозначения: $m_{2\,(1)}$ — слагаемое шума от первого кадра (n=1),

T— период следования кадров,

у — постоянная времени глаза, равная 0,06 сек. [Л. 6].

Делая подстановку (38) в (37), после несложных преобразований найдем

$$k_{y} = k \frac{\left(1 - e^{-\frac{2T}{y}}\right)^{3/2}}{1 - e^{-\frac{3T}{y}}}.$$
 (39)

Полагая $T\!=\!0.04$ сек. ($T\!=\!0.04$ сек. соответствует частоте следования кадров 25 гц), найдем

$$k_{v} = k \cdot 0.74$$
.

На рис. 8 приведены зависимости $k_{\scriptscriptstyle \Sigma}$ от отношения сигнала к шуму ψ . Кривая 1 соответствует спектральному распределению (21), кривая 2-спектральному распределению (22), кривая $oldsymbol{3}$ представляет зависимость коэффициента на выходе контрастора от отношения сигнала к шуму ф.

Сравнивая кривые I и 3, видим, что после преобразований шума, рассмотренных нами, коэффициент асимметрии значительно уменьшился (так, например, при $\psi = 5$ k уменьшился

с 0,6 до 0,32).

Обращаясь к рис. 5, находим, что кривая распределения, соответствующая k=0,3, практически идентична с кривой нор-

мального распределения.

Таким образом, даже в худшем случае, при $\gamma = 2$ и $\psi = 5$, можно считать, что закон распределения наблюдаемого шума совпадает с нормальным. В приведенных рассмотрениях не учитывались послесвечение люминофора, расфокусировка луча приемной телевизионной трубки при больших выбросах шума и ряд других второстепенных факторов, при учете которых получится еще большая нормализация закона распределения. Поэтому не будет большой ошибки, если считать, что закон распределения будет нормальным уже при ψ≫3.

4. Отношение сигнал шум

Определим отношение $\frac{\text{сигнал}}{\text{шум}}$ на выходе контрастора как отношение величины, пропорциональной яркости фона, на котором наблюдается шум (т. е. $U_{c\,sx} = {\rm const}$), к величине, пропорциональной среднеквадратичному значению флюктуаций яркости:

$$\psi_{\theta\omega x} = \frac{m_1}{\sqrt{m_2}} \,. \tag{40}$$

На рис. 9 представлена зависимость $\psi_{\text{вых}}$ от ψ для различ-

ных значений т, вычисленная по формуле (40).

В ряде случаев точное вычисление m_1 и m_2 бывает затруднительно, поэтому вычислим приближенное выражение для $\psi_{s\omega x}$. Считая, что ψ достаточно велико, найдем значение $\sigma_{s\omega x}$ (или, что то же самое, $\sqrt{m_2}$) как произведение σ на дифференциальный коэффициент усиления K_y , зависящий от $U_{c \ sx}$,

$$\sigma_{s\omega x} = \sigma K_y. \tag{41}$$

Величина $K_{oldsymbol{y}}$ может быть найдена как

$$K_{y} = \frac{\partial U_{\theta \omega x}}{\partial U_{\theta x}} = \gamma \beta U_{\theta x}^{\gamma - 1} \tag{42}$$

[см. уравнение (1)].

Полагая
$$U_{sx} = U_{c \ sx}$$
 и учитывая (41), получим
$$\sigma_{sux} = \sigma \beta \gamma U_{c \ sx}^{\gamma - 1}. \tag{43}$$

Выражение для $\psi_{s\omega x}$ при этом найдется как

$$\psi_{\theta \omega x} = \frac{U_{c \theta \omega x}}{\sigma_{\theta \omega x}} = \frac{\beta U_{c \theta x}^{\gamma}}{\sigma \beta \gamma U_{c \theta x}^{\gamma - 1}} = \frac{1}{\gamma} \psi. \tag{44}$$

Обращаясь к рис. 9, видим, что найденное соотношение достаточно точно соблюдается уже при значениях $\psi \geqslant 2$. Другими словами, контрастор изменяет отношение сигнала к шуму в γ раз.

* *

На основании изложенного сделаем следующие выводы:

1. Контрастор практически не изменяет вида спектральной функции шумов, т. е. коэффициент корреляции шумов не изменяется при прохождении шума и сигнала через контрастор

при $\psi \gg 2$. 2. Шум при прохождении контрастора не вызывает заметного искажения амплитудной (световой) характеристики при $\psi \gg 2 \div 3$.

3. Контрастор, вообще говоря, изменяет закон распределения шума, однако наличие в телевизионном канале апертуры приемной электроннолучевой трубки, явления накопления на экране люминофора и т. д. приводит к нормализации закона распределения шума. В результате указанных явлений наблюдатель видит на экране телевизионного приемника шум, распределенный практически по нормальному закону при $\psi \gg 3$.

4. Контрастор изменяет отношение сигнала к шуму в у раз.

ЛИТЕРАТУРА

1. В. И. Бунимович, Флюктуационные процессы в радиоприемных устройствах, "Советское радио", 1951.
2. И. Н. Бронштейн, К. А. Семендяев, Справочник по мате-

матике, Гостехиздат, 1954.

- 3. А. М. Халфин, Влияние флюктуационных помех на интервал яркости (контрастности) телевизионных изображений. "Радиотехника", 1952,
- 4. Б. Р. Левин, С. А. Смирнов, К вопросу о нормализации случайного процесса при прохождении через узкополосную систему, "Вестник НИИ", 1954, № 1 (46).

5. Я. А. Рыфтин, Разрешающая сила телевизнонных систем, ЖТФ,

1947, т. XVII, вып. 4. 6. А. В. Луизов, Вычисление воспринимаемой яркости, Доклады АН СССР, 1948, т. XIII, № 1, стр. 29. 7. Н. Н. Красильников, О влиянии апертурных характеристик телевизионных трубок на выбор эквивалентных коэффициентов отношения сигнала к шуму, "Техника телевидения", 1955, вып. 7 (13).

Статья поступила 20/VIII 1955 г.

Канд. техн. наук Б. В. КРУССЕР инж. И. К. МАЛАХОВ

ОСНОВНЫЕ СВОЙСТВА ПЕРЕДАЮЩИХ ТЕЛЕВИЗИОННЫХ ТРУБОК С ФОТОПРОВОДЯЩИМИ МИШЕНЯМИ

В обзоре рассмотрены основные рабочие характеристики трубок с фотопроводящими мишенями — видиконов и кондуктронов, приведены данные о чувствительности, разрешающей способности, инерционности и другие параметры этих трубок. Обсуждены факторы, определяющие эти параметры, и возможность их дальнейшего улучшения.

Введение

Эксплуатационные образцы передающих трубок с фотопроводящими мишенями появились в 1950—1951 гг. и за короткий срок, прошедший с тех пор, вытеснили во многих телевизионных устройствах трубки других типов. Этому, несомненно, способствовал многолетний труд ученых ряда стран по подбору подходящих фотопроводников и режимов работы приборов, незаслуженно скупо освещенный в литературе [Л. 1, 2].

О большой перспективности трубок с фотопроводящими мишенями говорит хотя бы тот факт, что за последние 2—3 года их выпуск освоен во всех странах, где ведется разработка передающих телевизионных приборов—в СССР (ЛИ18), США (видиконы RCA 6198 и 6326), Англии (статиконы 931А и 932), Франции (кондуктроны), Германии (резистроны), Голландии.

Как известно, квантовый выход у светочувствительных поверхностей с внутренним фотоэффектом значительно выше, чем у поверхностей с внешним фотоэффектом. Поэтому применение фотопроводников важно прежде всего с точки зрения увеличения чувствительности передающих телевизионных трубок без дальнейшего усложнения их устройства. Не меньшее значение имеет возможность получения чувствительности у фотоповерхностей этого рода практически в любом участке спектра видимого света и за его пределами, что должно обеспечить расширение области применения передающих трубок.

Известно, что в трубках с фотопроводящими мишенями для коммутации могут быть использованы как быстрые, так и медленные электроны. В обоих случаях между коллектором и мишенью существует ускоряющее поле, необходимое для предотвращения возврата медленных вторичных электронов на мишень и связанных с этим паразитных явлений. Параметры трубок, работающих в режимах $\sigma < 1$ и $\sigma > 1$, не имеют существенных отличий.

Вместе с тем, по механизму образования сигнала следует разграничивать трубки с мишенями из низкоомных фотопроводников и трубки с высокоомными мишенями, имея в виду, что только в трубках второй группы (которые мы в дальнейшем будем называть видиконами) реализуется принцип накопления.

Различие в механизме работы мишени обусловливает и значительное различие эксплуатационных параметров трубок этих двух групп.

1. Видиконы

Общим у всех известных в настоящее время трубок с высокоомными мишенями является использование для фокусировки электронного считывающего пучка магнитного поля длинной катушки. Это определяет одинаковую по существу конструкцию всех приборов этой группы—резистронов, американских видиконов, статиконов и трубок ЛИ18, —которая показана схематически на рис. 1. Необходимо отметить лишь следующие различия, встречающиеся у отдельных трубок:

а) в трубках ЛИ18 отсутствует сетка перед мишенью; этот электрод, который в остальных трубках обеспечивает перпендикулярность подхода к мишени пучка медленных электронов,

оказывается в трубке ЛИ18 не обязательным ввиду использо-

вания быстрых электронов;

б) разделение фокусирующего электрода на два независимых цилиндра у резистронов и видикона 6326; этим обеспечивается возможность улучшения фокусировки пучка в углах мишени за счет подачи на ближайший к мишени цилиндр дополнительного напряжения (параболообразного напряжения строчной и кадровой частоты) [Л. 3].

Рис. 1. Устройство видикона I—колба; 2—накал; 3—катод; 4—управляющий электрод; 5—анод; 6—фокусирующий цилиндр; 7—фотопроводящая мишень; 8—сигнальная пластина; 9—мелкоструктурная сетка

Габариты всех названных трубок одинаковы и характеризуются следующими цифрами:

Диаметр колбы									25 мм
Общая ллина.									150 мм
Рабочий размер	Ć	þo	то	сл	ОЯ				9×12 мм

Простая конструкция (в частности, отсутствие узла умножителя и секции переноса изображения) и малые габариты определили относительную простоту изготовления видиконов и управления ими при эксплуатации. Достаточно указать, что видиконы имеют пять (максимум шесть) электродов, не считая нити накала, против четырнадцати у трубки с двусторонней мишенью. При настройке перед передачей оказывается возможным устанавливать оптимальный рабочий режим, регулируя лишь величину тока пучка, его фокусировку, а также напряжение на сигнальной пластине (последнее существенно влияет на чувствительность и инерционность трубки). Число органов управления, используемых в ходе передач, может быть при необходимости сокращено до двух [Л. 5]. Для сравнения напомним, что в камерах с другими трубками приходится иметь 4—6 ручек управления трубкой.

В работе видикона важную роль играют параметры его

мишени, особенно самого фотослоя.

Во всех известных трубках слой фотопроводника в виде тонкой пленки, толщиной не более 10 мк, наносится на полупрозрачную сигнальную пластину, расположенную непосред-

ственно на стекле колбы. Вследствие столь малой толщины и большой диэлектрической постоянной материала (не менее 6-10) мишень имеет большую емкость. Величина этой емкости в расчете на один элемент столь велика ($C_{\rm M} \approx 10^{-13} {\rm ps}$), что заряд, накопленный за время кадра, неполностью нейтрализуется электронным пучком за время одной коммутации, и, следовательно, имеет место инерционность. Увеличение же толщины фотослоя, необходимое для уменьшения $C_{\rm M}$ и тем самым инерционности. ограничено (даже если не считать технологических трудностей).

Свет полностью поглощается в тонком слое фотопроводника (у сигнальной пластины), и при увеличении толщины мишени получается сильное понижение чувствительности за счет появления балластного сопротивления, не зависящего от освещенности. В связи с этим в качестве мишеней желательно использовать фотопроводники, имеющие малое поглощение.

Удельное сопротивление ρ материала мишени должно иметь величину $10^{11}-10^{18}$ ом \cdot см. Для получения таких значений ρ был проведен специальный подбор фотопроводящих материалов и разработана технология изготовления их в тонких слоях. Характерно, что именно влиянию технологии на значение ρ приписывают разброс характеристик, наблюдающийся у отдельных образцов однотипных трубок [Л. 3, 6]. К этому следует добавить, что на свойства мишени влияет еще и материал сигнальной пластины; в качестве последнего рекомендуют использовать окись олова или окись индия [Л. 3].

Основными материалами для мишеней служат в настоящее время трехсернистая сурьма Sb_2S_8 и аморфный селен Se [Л. 3]. Кроме того, известен положительный опыт использования PbO, ZnS и CdS [Л. 6]. Применение различных фотопроводящих материалов диктуется в первую очередь желанием получить трубки с различными спектральными характеристиками ε (λ) (рис. 2).

Поскольку фотопроводники с весьма различными ε(λ) известны и исследованы, то имеются реальные перспективы создания видиконов, чувствительных к инфракрасным, а также к ультрафиолетовым лучам. Уже в настоящее время известны видиконы, пригодные для регистрации рентгеновского излучения [Л. 9].

Свойства материалов мишени весьма существенно отражаются не только на форме спектральной характеристики, но и на таких основных параметрах трубки, как чувствительность и инерционность. Это наглядно показывает сравнение аморфного селена и $\mathrm{Sb}_2\mathrm{S}_3$ (по остальным материалам опубликованы, к сожалению, лишь отрывочные данные, которые трудно использовать для сопоставления).

Трехсернистая сурьма позволяет получать трубки со спектральными характеристиками, наиболее близкими к кривой видности (см. кривую 2 рис. 2), т. е. обеспечивает наилучшее вос-

произведение цветных объектов. Слои из этого материала менее чувствительны, чем слои из Se той же толщины, и требуют больших рабочих напряжений на сигнальной пластине (рис. 3) [Л. 3].

Такое сравнение, однако, недостаточно полно, потому что для снижения инерционности можно изготавливать селеновые

Рис. 2. Спектральные характеристики видикона 1) Se; 2) Sb₂S₃

Рис. 3. Световые характеристики видиконов с мишенями равной толщины 1) Se; 2) Sb₂S₈

Рис. 4. Световые характеристики видиконов с мишенями из Se (кривая 1) и $\mathrm{Sb}_2\mathrm{S}_3$ (кривая 2)

Рис. 5. Характеристики инерционности затухания сигнала видиконов

1) Se; 2) Sb₂S₃

мишени более толстыми, чем из других материалов (10 $m\kappa$ против 2—3 $m\kappa$ [Л. 7]).

При этом более чувствительными оказываются уже трубки с мишенями из Sb_2S_3 (рис. 4).

Обратная картина наблюдается в отношении инерционности. При равных толщинах инерционность меньше у мишеней из $\mathrm{Sb}_2\mathrm{S}_3$ и, наоборот, при предельных для каждого типа толщинах селеновые мишени, имеющие толщину порядка 10 $m\kappa$, обнаруживают инерционность в 5—6 раз меньшую, чем сернистосурьмяные, где толщина всего 2—3 $m\kappa$ (рис. 5) [Л. 7].

Как видно из приведенных на рис. З и 4 световых характеристик трубок с мишенями из разных материалов, наиболее близка к требованиям правильного воспроизведения полутонов в системах черно-белого телевидения характеристика видикона с сернисто-сурьмяной мишенью; в этом случае $\gamma = 0.75$, тогда как при использовании селена $\gamma = 0.9$. Это различие следует отнести за счет разной формы световых характеристик двух названных материалов. Известно, что для селена эта зависимость фототока от освещенности при малых величинах последней близка к линейной, а у $\mathrm{Sb_2S_3}$ имеет место степенная зависимость с показателем $\mathrm{0.5}$ [Л. 6, 8].

Поскольку известны также трубки, у которых ү световой характеристики имели значения от 0,6 до 1,0, есть все основания обобщить последний вывод и говорить о возможности варьирования формы световой характеристики у рассматриваемых трубок путем подбора для них фотопроводящих материалов с различными световыми характеристиками. Это весьма ценное свойство выгодно отличает видиконы от всех других ныне известных трубок.

Заканчивая этим описание свойств мишеней, сделаем два общих замечания.

Первое из них относится к толщине фотопроводящего слоя. Вызванная уменьшением толщины от центра к краям неоднородность темнового сопротивления и чувствительности в пределах рабочей площади обусловливает неравномерность фона. Чтобы избежать ухудшения качества изображения, приходится ограничивать величину рабочего напряжения на сигнальной пластине, что в свою очередь приводит к занижению чувствительности приборов [Л. 4].

Второй недостаток существующих мишеней—изменения чувствительности и темнового тока, наблюдающиеся при облучении фотослоя электронным пучком. Эти изменения ограничивают срок службы трубок, а также требуют особой осторожности в процессе эксплуатации. Оказывается, что необходимо не только гарантировать запирание пучка на случай прекращения развертки (что делается для предотвращения прожигания мишеней и в других трубках), но и строго соблюдать правильное положение растра и его размеры на мишени. В случае увеличения размаха напряжения развертки или смещения растра старые его границы будут видны на изображении. Такое выжигание особенно заметно, если электроны считывающего пучка имеют большую энергию, т. е. если трубка работает при больших напряжениях, подаваемых на сигнальную пластину.

Следует заметить, что непрерывно ведутся работы по усовершенствованию мишеней видиконов, подбору новых фотослоев и устраняются отмеченные выше недостатки. Особый интерес в этой связи представляют попытки закономерного изменения параметров мишеней путем подбора относительной

доли отдельных компонентов, входящих в состав соединений, из которых изготовляются фотослои. Возможности изменения подобным путем фоточувствительности и темнового сопротивления проиллюстрированы рис. 6 на примере соединения ZnSe—CdSe [Л. 6].

Подробное рассмотрение параметров мишеней было продиктовано решающим влиянием их на работу и характеристики трубки в целом, а также существенными отличиями фотопроводящих мишеней от мишеней других трубок. В решении остальных узлов (прожектора, системы фокусировки), наоборот, нет радикальных отличий от других приборов с разверт-

кой пучком медленных электронов, и поэтому параметры этих узлов в данной статье не рассматриваются.

Перейдем к рассмотрению основных характеристик видиконов

Чувствительность видиконов различных марок может быть легко оценена на основании их световых характеристик, так как у каждого из них принято считать минимальным рабочий сигнал величиной 0,1—0,2 мка.

Выше, при обсуждении данных о разбросе чувствитель-

Рис. 6. Зависимость параметров мишеней из ZnSe—CdSe от содержания компонентов

1—чувствительность; 2—удельное темновое сопротивление

ности в связи с применением различных материалов и слоев различной толщины, уже приводились (см. рис. 3 и 4) световые характеристики видиконов, выпускаемых большими сериями. На основании этих характеристик реальная чувствительность существующих трубок может быть оценена как $E_{\phi \, \text{мин}} = 3 \div 7 \, \text{лк}$ (исключение представляют значительно менее чувствительные трубки RCA 6326).

Следует подчеркнуть, что эти цифры относятся лишь к случаю передачи изображений неподвижных объектов. При передаче изображений движущихся объектов наличие инерционности приводит, как это будет показано ниже, к необходимости повышать рабочие освещенности, нередко весьма значительно.

Если не принимать во внимание инерционность, то следует считать, что возможность эксплуатации трубок при меньших освещенностях за счет использования сигналов меньше 0,1 мка лимитируется только флюктуационными помехами, вносимыми входным каскадом видеоусилителя (чем видиконы отличаются от иконоскопов, где важно учитывать еще и уровень сигналов, черного пятна"). В связи с этим в последнее время за рубежом были проведены работы по снижению величины этих

помех. Специально для камер с видиконами были разработаны так называемые "каскодные" схемы входных каскадов, в которых уровень флюктуационных помех значительно меньше, чем в обычных схемах [Л. 5, 10]. К сожалению, данных о величине непосредственного выигрыша в чувствительности пока

не опубликовано.

Оценивая перспективы улучшения чувствительности самих трубок, следует отметить влияние на величину сигнала тока пучка I_n и напряжения на сигнальной пластине U_{cn} . В существующих трубках рабочие значения I_n и U_{cn} серьезно ограничивают эту величину и, следовательно, чувствительность. Так, величина I_n составляет обычно 1-2 мка. При увеличении I_n можно было бы получить рост сигнала, но при больших плотностях тока в пучке начинается расфокусировка и падает четкость передаваемых изображений. Жесткие ограничения накладываются и на величину U_{cn} , точнее, на разность потенциалов между сигнальной пластиной и катодом (режим медленных электронов) или коллектором (режим быстрых электронов). Эти ограничения обусловлены недопустимой неравномерностью фона, появляющейся при больших U_{cn} вследствие быстрого роста темнового тока. Как правило, при эксплуатации трубок U_{cn} не превышает 25—40 в. Вместе с тем, из рис. 7, где приведена типичная кривая зависимости $E_{\phi} = f(U_{cn})$, видно, что рабочая освещенность E_{ω} изменяется обратно пропорционально кубу U_{cn} [Л. 4].

Суммируя приведенные данные, можно утверждать, что, во-первых, по чувствительности существующие видиконы уступают только трубкам с двусторонней мишенью и, во-вторых, имеются реальные перспективы дальнейшего улучшения трубок по этому параметру. На основании световых характеристик можно заключить, что все видиконы позволяют получать высокое предельное отношение сигнал/помеха ψ_{nped} . Благодаря повышенной емкости с мишеней этих трубок удается снимать сигналы величиной $0.3-0.5~m\kappa a$ (рис. 3 и 4), и за этот счет $\psi_{nped} > 100:1.$ К этому следует добавить, что помехи, влияющие на изображение, -- высокочастотные, и на приемном экране проявляются как мелкие точки. С учетом особенностей восприятия таких помех глазом, ψ_{nped} оценивают как 300:1 [Л. 10]. Все это позволяет считать, что "шумовые" параметры видико-

нов значительно лучше, чем у других трубок.

Несколько иное положение имеет место в отношении раз-

решающей способности видиконов.

Материалы ряда авторов [Л. 4, 7] позволяют считать разрешающую способность видиконов равной 400-600 линиям в центре и 300—450 линиям на краях. Большая цифра при этом относится к трубкам с разверткой быстрыми электронами—ЛИ18.

Что касается разрешающей способности на краях, то в трубках последних выпусков, имеющих два анода, она обычно значительно повышается применением так называемой "динамической фокусировки", о которой уже упоминалось в начале данной статьи. Этим приемом достигается выравнивание четкости в центре и на краях изображения.

Апертурные характеристики, приведенные на рис. 8 [Л. 4, 7], дают представление о контрастности мелких деталей. Хотя даже в лучших видиконах она невелика (кривая I рис. 8), это не считается серьезным дефектом. Контрастность мелких деталей может быть увеличена в значительной степени применением апертурной коррекции. Такая возможность объясняется

200 400 600 400 600 4ucno cmpox

Рис. 7. Зависимость рабочей освещенности от напряжения на сигнальной пластине

Рис. 8. Апертурные характеристики видиконов
1—видикон 6198; 3—видикон 6ольших размеров; 4—видикон 6326 (с учетом коррекции в усилителе)

высоким отношением сигнал/помеха. Двух-трехкратное увеличение помех, сопровождающее подъем усиления на высоких частотах, необходимый для полного выравнивания контрастности мелких деталей (в пределах 350 линий), оказывается незаметным на изображении и не ухудшает его качества [Л. 4]. В случае применения апертурной коррекции четкость изображений, передаваемых видиконом, следует оценивать уже на основании кривой 4 рис. 8.

Переходя к факторам, ограничивающим разрешающую способность видиконов, отметим в качестве главного считывающий пучок. По условиям чувствительности и инерционности необходимо обеспечить столь большой ток в пучке (до 1-2~мкa), что размеры его сечения не могут быть сделаны достаточно малыми для того, чтобы получить высокое разрешение на мишенях $9 \times 12~\text{мм}$ (особенно в режиме $\sigma < 1$). Характерно, что в качестве основной (если не единственной) меры повышения разрешающей способности трубок рассматриваемого типа называют обычно увеличение размеров мишени. При этом можно сослаться на опытные образцы трубок с колбой диаметром 50~мм; их разрешающая способность (800~линий [Л. 11]) уже

сравнима с разрешающей способностью других современных трубок.

Все приведенные выше материалы о разрешающей способности видиконов могут быть применены лишь для оценки четкости передачи неподвижных объектов. Четкость же передачи движущихся объектов значительно ниже вследствие инерционности, присущей большинству видиконов. Инерционность проявляется в появлении "следа" за движущимися предметами; это приводит к понижению контрастности и, как следствие,

Рис. 9. Влияние скорости движения объекта на ослабление сигнала [Л. 3] 1-резистрон; 2-видикон; 3-лучший экспериментальный резистрон

к потере четкости в деталях. Имеются две основные причины инерционности:

- 1. Коммутационные явления—чисто "электротехнические" трудности быстрого выравнивания потенциалов на мишенях большой емкости, например при изменениях ее освещенности.
- 2. Фотоэлектрические явления, приводящие к отставанию изменений фотопроводимости от изменений освещенности.

Особенностями коммутационных явлений объяс-

няется прежде всего зависимость величины инерционности от толщины мишени, тока пучка и напряжения на сигнальной пластине. С другой стороны, не учитывая фотоэлектрических явлений в фотослое (инерционность изменений проводимости), невозможно удовлетворительно объяснить зависимость инерционности от освещенности мишени и—главное—от технологии нанесения фотослоя, факт влияния которой твердо установлен [Л. 3, 6].

Инерционность современных трубок составляет 0,2—0,5 сек. (в качестве критерия принято считать время спадания сигнала в е раз). Инерционность нарастания сигнала при увеличении освещенности несколько меньше этой величины. Представление о степени ослабления сигнала от движущихся объектов при такой инерционности дают кривые рис. 9. Пользуясь этими кривыми, а также апертурной характеристикой трубки (рис. 8), можно подсчитать, что ослабление сигнала на 15% приводит к потере четкости примерно на 100 линий.

Для снижения инерционности стремятся работать при малых напряжениях на сигнальной пластине, так как экспериментально было установлено [Л. 4], что изменением U_{cn} можно также изменять величину остаточных сигналов и, следовательно, инерционности (рис. 10). Такое снижение U_{cn} требует

увеличения освещенности для поддержания постоянства сигнала, а последнее в свою очередь снижает инерционность (рис. 11) [Л. 7]. На этом основании принято относить инерционность к числу факторов, лимитирующих чувствительность видиконов.

Весьма сильно снизить инерционность удается, если пожертвовать чувствительностью.

Такая возможность была в последнее время использована при создании видикона для передачи кинофильмов. В частности, выпущенная для этой цели специальная трубка—американский

видикон 6326 [Л. 4]—работает при освещенностях фотослоя порядка 2000 $\lambda \kappa$ (!), зато она полностью безынерционна.

Рис. 10. Влияние напряжения на сигнальной пластине на величину остаточных сигналов видикона [Л. 4]

Рис. 11. Влияние освещенности на скорость затухания сигнала (мишень из $\mathrm{Sb}_2\mathrm{S}_3$) $E_1=1; E_2=16E_1;$ $E_3=60E_1$

Вследствие инерционности видиконы долгое время не могли применяться для целей телевизионного вещания. В то же время малые габариты, простота управления и небольшая величина потребляемой мощности позволили создать действительно портативные и надежно работающие камеры, применяемые в промышленности и для научных исследований. Именно появление видиконов позволило приступить к созданию, например, такой аппаратуры, как аппаратура для передач в естественных и исскуственных ультрафиолетовых "цветах" для исследований в медицине и биологии.

С другой стороны, устранение инерционности сразу открыло и другие области эксплуатации видиконов. Очень удачным оказался опыт применения трубок 6326 для передач кинофильмов. Здесь особенно благоприятно сказалась равномерность фона и полное отсутствие паразитных сигналов, а также неискаженное воспроизведение полутонов. К этому следует добавить наличие в видеосигнале "эталонного уровня черного" и воспроизведение средней составляющей освещенности [Л. 3, 4].

Трубка 6326 была успешно применена и в системах цветного телевидения. Имеются, в частности, данные о работе ее

в кинокамерах одновременных систем цветного телевидения, в каждой из которых использованы три трубки.

Особый интерес привлекает появившееся в самое последнее время сообщение [Л. 12] о создании однолучевого видикона, позволяющего получать на входе три сигнала в основных цветах. Эта трубка призвана заменить три трубки в камерах

одновременных систем цветного телевидения.

Описания подобной трубки и ее характеристик пока не имеется. Известно лишь, что для разделения цветов перед фотопроводящей мишенью установлен растровый светофильтр, полоски которого расположены перпендикулярно строкам. На каждый элемент приходится три полоски светофильтра, общее число полосок—900. Разделение выходного сигнала на три компонента достигнуто применением трехсекционной линейчатой сигнальной пластины.

Можно предполагать, что подобная трубка серьезно упростит решение задачи о передающей стороне одновременных

систем цветного телевидения.

Видиконы нашли применение не только в телевидении, но и в радиолокации. В радиолокационных установках они работают в качестве "запоминающих" (записывающих) трубок. В этом случае используется возможность многократного считывания сигнала с высокоомной фотопроводящей мишени, иначе говоря—инерционность. Описание особенностей подобного "радиолокационного" режима работы и связанных с ним дополнительных требований к видикону выходит за рамки настоящей работы. Ограничимся лишь указанием, что разработаны специальные модели "запоминающих" статиконов.

2. Кондуктрон

Выделение трубок с низкоомными мишенями в отдельную группу преследует цель подчеркнуть особый механизм образования сигнала в подобных приборах. На низкоомных мишенях не образуется потенциального рельефа в обычном смысле этого термина, отсутствует накопление зарядов и сигнал создается главным образом токами проводимости, возникающими при коммутации различно освещенных элементов. Все это существенно отличает трубки с низкоомными мишенями от видиконов и дает основание отнести первые к категории приборов мгновенного действия.

Использование низкоомных мишеней, т. е. мишеней, у которых удельное сопротивление материала меньше или равно 10^7-10^8 ом.см, связано с поисками путей снижения инерционности. Основание для получения малой инерционности дает принципиальное отсутствие в данном случае электрической инерционности установления потенциалов при изменениях освещенности. Единственной причиной инерционности остается

фотоэлектрическая инерционность изменений проводимости фотослоя, которая, однако, у ряда веществ может быть доведена до приемлемо малых величин. В частности, экспериментально было показано, что на мишенях из Cu_2O можно получать полностью безынерционные изображения [Л. 2].

Приборы мгновенного действия обладают, как известно, малой чувствительностью. Однако специальное рассмотрение их работы показало [Л. 4], что при использовании низкоомных фотопроводящих мишеней имеются возможности отсутствие накопления в известной мере скомпенсировать повышением

Рис. 12. Устройство кондуктрона 1—отклоняющая система; 2—управляющий электрод; 3—катод; 4, 5, 6—фокусирующие электроды; 7—фотопроводящая мишень; 8—сигнальная пластина

эффективности процесса коммутации. К числу этих возможностей в первую очередь должны быть отнесены следующие:

- а) снижение электронного сопротивления вакуумного промежутка зарядному току при коммутации;
- б) подбор темнового сопротивления мишени в строгом соответствии с сопротивлением вакуумного промежутка;
 - в) уменьшение емкости мишени.

Удовлетворение указанных требований может быть достигнуто выбором тока пучка, режима коммутации, конструкции прибора.

Об эксплуатационных возможностях трубок с низкоомными мишенями можно в известной степени судить на основании характеристик кондуктрона—единственной трубки этого рода,

разрабатываемой в послевоенные годы [Л. 14].

Устройство этой трубки показано на рис. 12. Несмотря на большой диаметр колбы, габарит кондуктрона (длина 200 мм, диаметр колбы 50 мм) примерно равен габариту видикона, установленного в магнитную систему. В то же время в конструкции трубки имеется ряд особенностей, не встречающихся в других передающих приборах и обусловленных стремлением увеличить эффективность процесса коммутации. Так, сигнальная пластина кондуктрона выполнена не в виде сплошного

токопроводящего слоя, а представляет собой сетку с весьма большим шагом. Хотя авторы разработки объясняют эту особенность лишь стремлением увеличить прозрачность и уменьшить потери света [Л. 13], нам кажется, что не меньшее значение в использованной ими конструкции имеет и снижение емкости фотослоя (в расчете на один элемент разложения).

Фокусировка пучка медленных электронов в кондуктроне осуществляется электростатическим способом. Это не только усложняет конструкцию прибора (появляется несколько дополнительных электродов), но и серьезно ограничивает полезную площадь фотослоя (она имеет диагональ 14 мм при диаметре окна 50 мм). Авторы совершенно не объясняют, чем вызван отказ от фокусировки магнитным полем длинной катушки. Можно, однако, предполагать, что это сделано с целью снижения сопротивления зарядного вакуумного промежутка.

Абсолютная величина тока коммутирующего пучка доходит в кондуктроне до $5-10~m\kappa a$. И наконец, толщина мишени, изготовляемой из сульфида кадмия, составляет $5-10~m\kappa$. Но полного согласования сопротивлений вакуумного промежутка и слоя получить пока не удалось, и по этой причине практическая чувствительность образцов кондуктронов много меньше расчетной [Л. 13, 14].

Для получения изображений с помощью кондуктронов освещенность объектов должна составлять несколько сотен люксов. Характерно, что увеличение освещенности не дает улучшения качества изображения, так как кривая световой характеристики имеет максимум (сигнал в максимуме составляет примерно 0,2 мка). Оценивая перспективы повышения чувствительности, авторы [Л. 13] считают, что согласование сопротивлений позволит снизить рабочую освещенность объекта до 10 лк.

Несмотря на безынерционность процесса коммутации, кондуктроны инерционны, хотя и в меньшей степени, чем видиконы. Инерционность затухания сигнала лежит в пределах 0,1—0,3 сек. и существенно зависит от рабочей освещенности. Это объясняется инерционностью фотопроводимости слоев CdS, из которых выполнены мишени.

Весьма острыми оказываются для кондуктрона вопросы срока службы. Слои CdS быстро теряют свои свойства при электронной бомбардировке. Лишь используя для коммутации самые медленные электроны (энергия электронов пучка составляет в рабочем режиме 4-8 элв), можно избежать быстрого понижения темнового сопротивления, которое в первую очередь ограничивает долговечность трубки.

Исполнение сигнальной пластины в виде сетки (точнее, решетки) с большим шагом ограничивает разрешающую способность кондуктронов; она составляет всего 200 линий.

В целом можно считать, что на стадии лабораторной разработки кондуктрона удалось успешно решить основную за-

дачу—получить чувствительность приборов с низкоомными фотопроводящими мишенями, сравнимую с чувствительностью современных трубок с накоплением зарядов. Ближайшее будущее должно показать, насколько серьезны трудности получения разрешающей способности, удовлетворяющей требованиям стандартов. В случае успешного решения и современных этой задачи кондуктрон составит серьезную конкуренцию другим трубкам с фотопроводящими мишенями.

Заключение

. Трубки с фотопроводящими мишенями находятся в эксплуатации сравнительно недавно, и делать общую оценку их эксплуатационных качеств еще рано. Правда, важнейшим достоинством следует безоговорочно признать их малые габариты и простоту в управлении. Именно этим объясняется тот факт, что в настоящее время видиконы являются основными трубками, используемыми в различного рода малогабаритной аппаратуре. Положительные результаты дало применение этих трубок для телекинопередач, в том числе и в системах цветного телевидения. В то же время инерционность серьезно ограничивает возможность их использования для передач слабоосвещенных и быстродвижущихся объектов. Дальнейшее расширение области применения зависит прежде всего от успехов в деле снижения инерционности, являющейся пока основным недостатком трубок с фотопроводящими мишенями.

ЛИТЕРАТУРА

- 1. H. Miller, J. Strange, "Pros. Phys. Soc.", 1938, vol. 50,
- pp. 374 382. 2. R. Theile, "Telefunkenröhre", 1933, Lief. 13, SS. 109 126. 3. W. Heimann, "Arch. der electr. Übertragung", 1955, Bd. 9, № 1,
 - 4. R. Neuhauser, "JSMPTE", 1954, vol. 62, № 2
- 5. H. Kazanowski, "Proc. of the Nat. Electr. Conference", 1953, vol. IX, p. 391.
- 6. S. Forque, P. Goodrich, A. Cope, "RCA Rev.", 1951, vol. 12,
- $\stackrel{\text{N}_{\tiny 2}}{}$ 3, pp. 335 43. 7. B. Vine, R. Janes, W. Veith, "RCA Rev.", 1952, vol. 13, № 1, pp. 3-10.
- 8. P. K. Weimer, A. D. Cope, "RCA Rev.", 1951, vol. 12, № 3, pp. 314-334.
- 9. L. Heijne, P. Shagen, N. Briuining, "Philip's techn. Rundschau", 9. L. Herjine, P. Shagen, N. Diffuriting, "Finings technic Randschau", 1954, Bd. 16, SS. 43—45.
 10. O. Schade, "JSMPTE", vol. 61, № 2, pp. 97—164.
 11. Herbst, "JSMPTE", 1951, vol. 56, № 4.
 12. "Proc. IRE", 1955, vol. 43, № 3, p. 370.
 13. B. Bartels, M. Munsch, "Le Vide", 1953, № 44, pp. 1320—1325.

 - 14. W. Veith, "Le Vide", 1950, № 30, pp. 887-895.

Статья поступила 20/1 1956 г.

Инженер И. Г. МЕЛКОВА

К ВОПРОСУ О РАСЧЕТЕ КОЭФФИЦИЕНТА НАПРАВЛЕННОГО ДЕЙСТВИЯ АНТЕНН

В статье определяется КНД антени с весьма различной шириной диаграмм направленности в главных плоскостях. Для расчета принята аппроксимация реальных пространственных диаграмм направленности трехосным эллипсоидом. На основании сопоставления результатов показана возможность приближенного определения КНД таких антенн сведением трехосного эллипсоида к эквивалентному по объему эллипсоиду вращения.

I

В работе Saxton'а [Л. 1] дается достаточно точный способ определения КНД антенны, но он и другие авторы [Л. 2, 3] ограничиваются рассмотрением антенн, имеющих одинаковые или мало отличающиеся по ширине симметричные диаграммы направленности в главных плоскостях. Для этого случая вполне удовлетворительной является аппроксимация реальной пространственной диаграммы поверхностью вращения (эллипсоид вращения, поверхность вращения кривой $e^{-h\varphi^2}$ вокруг направления наибольшего излучения).

Представляет интерес другая группа диаграмм направленности,—диаграмм, заметно отличающихся по ширине, но симметричных в главных плоскостях. Иногда бездоказательно распространяют на этот случай аппроксимацию реальной диаграммы эллипсоидом вращения. Небезынтересно поэтому сравнить результаты расчетов КНД антенны, полученные при аппроксимации двухосным и трехосным эллипсоидом.

II ·

Допустим, что диаграмма не имеет лепестков или, при их наличии, подавляющая часть энергии излучается в основном лепестке диаграммы. Наличие заметных лепестков требует отдельного учета каждого лепестка и понижает точность определения КНД антенны. Точное значение КНД мы могли бы легко получить, зная вид пространственной диаграммы направленности антенны, но обычно эта функция очень сложна и неинтегрируема.

Поэтому, не занимаясь вопросом о точности аппроксимации такого типа, допустим, что исходную экспериментально полученную диаграмму направленности антенны можно заменить трехосным эллипсоидом с осями a, b, c. Величины a, b, c определим из условия равенства объемов эллипсоида и реальной диаграммы. Сравним излучение исследуемой антенны с излучением полуволнового вибратора при той же подводимой мощности. Для определения КНД необходимо найти поток мощ-

ности на расстоянии $oldsymbol{D}$ от антенны, расположенной в начале

координат.

Для упрощения расчетов выберем координатную систему так (рис. 1), чтобы ось \overrightarrow{OZ} совпала с направлением главного излучения. Углы при этом отсчитываются следующим образом: угол φ —в плоскости \overrightarrow{XOY} от \overrightarrow{OX} к \overrightarrow{OY} , угол ϑ —в плоскости, проходящей через ось \overrightarrow{OZ} и радиус-вектор текущей точки сферы, от \overrightarrow{OZ} к плоскости \overrightarrow{XOY} . Через элемент поверхности сферы радиуса D проходит поток мощ-

$$dP = \frac{E^2}{240\pi} D^2 \sin \vartheta d\vartheta d\varphi,$$

где $E=E_0f(\vartheta,\ \varphi)$ и E_0 — напряженность поля на расстоянии D от вибратора, а функция $f(\vartheta,\ \varphi)$ описывает форму диаграммы направленности антенны,

Мощность излучения в полусфере радиуса D

Рис. 1

$$P = \frac{D^2}{240\pi} \int_0^{2\pi} d\varphi \int_0^{\pi} E^2 \sin \vartheta \, d\vartheta = \frac{D^2 E_0}{240} J.$$

Через J здесь обозначен интеграл

$$J = \frac{1}{\pi} \int_{0}^{2\pi} d\varphi \int_{0}^{\pi} f^{2}(\vartheta, \varphi) \sin \vartheta d\vartheta.$$

Исходя из выражений для мощности излучения полуволнового вибратора и рассматриваемой антенны

$$P_{\frac{\lambda}{2}} = \frac{D^2 E_{01}^2}{60 \cdot 1,64}$$

И

$$P_{ucc.n} = \frac{D^2 E_0^2}{240} J = \frac{D^2 E_{01}^2}{240 G_{\frac{\lambda}{2}}} J$$

(ибо $E_0^2 G_{\frac{\lambda}{2}} = E_{01}^2$), при равенстве подводимых мощностей и без учета потерь имеем выражение для КНД антенны по отношению к полуволновому вибратору:

$$G_{\frac{\lambda}{2}} = \frac{2,44}{J}$$
.

Ш

Для класса диаграмм, аппроксимируемых трехосным эллипсоидом, вид функции $f(\vartheta, \varphi)$ можно найти, написав уравнение эллипсоида в сферической системе координат и вычислив радиус-вектор его текущей точки (рис. 2):

Здесь $\Phi_1 = \frac{a}{b}$ и $\Phi_2 = \frac{a}{c}$ — отношения осей эллипсоида, где a —

ось эллипсоида в направлении наибольшего излучения.

Мощность излучения антенны на расстоянии D от источника определится следующим выражением:

$$P = \frac{4a^2D^2}{240\pi} \int_{0}^{\frac{\pi}{2}} \cos^2 \vartheta \sin \vartheta d\vartheta \int_{0}^{\frac{\pi}{2}} \frac{d\varphi}{\left(\Phi_1^2 \cos^2 \varphi \sin^2 \vartheta + \Phi_2^2 \sin^2 \vartheta \sin^2 \varphi + \cos^2 \vartheta\right)^2}$$

или

$$P = rac{4a^2D^2}{240} J$$
 и $G_{rac{\lambda}{2}} = rac{2,44}{J}$.

Этот результат более общий, чем результат, полученный в $[\Pi.\ 1]$, и становится таким же при условии $\Phi_1 = \Phi_2$ после интегрирования по φ :

$$P = \frac{D^2 a^2}{120} \int_0^{\frac{\pi}{2}} \frac{\cos^2 \theta \sin \theta d\theta}{(\Phi^2 \sin^2 \theta + \cos^2 \theta)^2}.$$

IV

Основная трудность определения КНД антенны с диаграммой направленности, не являющейся телом вращения, заключена в вычислении интеграла J. После интегрирования по φ и замены переменной ($x = \cos \vartheta$) интеграл принимает вид:

$$J = \frac{1}{V\left(1 - \Phi_{1}^{2}\right)^{3}\left(1 - \Phi_{2}^{2}\right)^{3}} \left\{ (2 - \Phi_{1}^{2} - \Phi_{2}^{2}) \int_{0}^{1} \frac{dx}{V\left(m_{1}^{2} + x^{2}\right)\left(n_{1}^{2} + x^{2}\right)} - \left(1 - \Phi_{1}^{2}\right) \int_{0}^{1} \frac{dx}{V\left(m_{1}^{2} + x^{2}\right)\left(n_{1}^{2} + x^{2}\right)^{3}} - m_{1}^{2}\left(1 - \Phi_{2}^{2}\right) \times \left\{ \int_{0}^{1} \frac{dx}{V\left(m_{1}^{2} + x^{2}\right)^{3}\left(n_{1}^{2} + x^{2}\right)} \right\},$$
The

где

$$m_1^2 = \frac{\Phi_1^2}{1 - \Phi_1^2}, \quad n_1^2 = \frac{\Phi_2^2}{1 - \Phi_2^2}$$

и для определенности принято, что $\Phi_1 > \Phi_2$, т. е. b < c.

Практически могут представиться следующие три случая соотношения между осями эллипсоида:

1) .
$$\Phi_1 > \Phi_2 > 1$$
, τ . e. $a > c > b$

(антенна имеет направленное излучение); при этом

$$m_1^2 = -m^2 < 0;$$

 $n_1^2 = -n^2 < 0,$

где m^2 и n^2 —сугубо положительные величины.

Тогда интеграл J преобразуется:

$$J = \frac{1}{(\Phi_1^2 - 1)^{\frac{3}{2}} (\Phi_2^2 - 1)^{\frac{3}{2}}} \left\{ (\Phi_1^2 - 1) n^2 \int_0^1 \frac{dx}{\sqrt{(m^2 - x^2)(n^2 - x^2)^3}} + (\Phi_2^2 - 1) m^2 \int_0^1 \frac{dx}{\sqrt{(m^2 - x^2)^3 (n^2 - x^2)}} - \frac{\Phi_1^2 + \Phi_2^2 - 2}{n} F\left(\frac{m}{n}, \arcsin\frac{1}{m}\right) \right\},$$

где $F(k,\varphi)$ —эллиптический интеграл I рода.

2)
$$\Phi_1 > 1 > \Phi_2$$
; r. e. $c > a > b$

(диаграмма направленности представляет собой сплюснутый в направлении главного излучения эллипсоид); при этом

$$m_1^2 = -m^2 < 0;$$

 $n_1^2 = n^2 > 0.$

В этом случае

$$J = \frac{1}{\sqrt{(\Phi_1^2 - 1)^3 (1 - \Phi_2^2)^3}} \left\{ \frac{\Phi_1^2 + \Phi_2^2 - 2}{\sqrt{m^2 + n^2}} F\left(\frac{m}{\sqrt{m^2 + n^2}}; \arcsin\frac{1}{m} \times \frac{1}{m} \times \frac{1}{\sqrt{m^2 + n^2}} \right) - \frac{\Phi_1^2 - 1}{\sqrt{m^2 + n^2}} F\left(\frac{m}{\sqrt{m^2 + n^2}}; \arcsin\frac{1}{m} \sqrt{\frac{m^2 + n^2}{1 + n^2}} \right) - \frac{1}{\sqrt{m^2 + n^2}} \left\{ \frac{dx}{\sqrt{(m^2 - x^2)^3 (n^2 + x^2)}} \right\},$$

где $E(k, \varphi)$ —эллиптический интеграл II рода.

3)
$$1 > \Phi_1^2 > \Phi_2^2$$
, τ . e. $c > b > a$

(этот случай не представляет интереса, так как описывает очень широкие диаграммы направленности).

Интегралы вида

$$\int_{0}^{1} \frac{dx}{\sqrt{(m^{2}-x^{2})(n^{2}-x^{2})^{3}}} \quad \text{M} \quad \int_{0}^{1} \frac{dx}{\sqrt{(m^{2}-x^{2})^{3}(n^{2}+x^{2})}}$$

путем преобразований сводятся к сумме эллиптических интегралов I и II рода. Их значения в зависимости от параметров m и n представлены на графиках (рис. 3, 4, 5, 6).

VΙ

Расчет КНД по полученным формулам был проделан для частных случаев антенн с шириной диаграммы в сечениях от 10 до 120°, т. е. для первых двух случаев. Точность результатов целиком определяется точностью аппроксимации эллипсоидом.

По заданным сечениям диаграммы направленности в главных плоскостях из условия равенства площадей были найдены отношения полуосей аппроксимирующего эллипсоида. Результаты

вычислений КНД представлены на графике рис. 7 в виде кривых равного КНД в зависимости от α и β —ширины диаграммы по семидесятипроцентному спаду напряженности поля. Для

Таблица 1

β	10	20	30	40	50	60	70	80	90	100	110	120	130
10		7	0,5	0,5	1,0	5	10	12	15	16	16	13	20
20			9	8	1	5	3	0	6	4	10	13	20
30				16	1	2	6	10	6	9	7,	9	13
40 .					2	4	0	3	3	5	3	7	14
50						4	1,5	3	4	3	1	4	9
- 60							7	2	0	1	1	2	5

63.

употребления более удобен график, представленный на рис. 8.

На рис. 9 в таком же виде приведены результаты вычисления КНД для диаграмм одинаковой ширины в главных плоскостях.

Ширина диаграмм равна среднему геометрическому ширины трехосного эллипсоида, т. е. трехосный эллипсоид

Рис. 9

эквивалентен по объему эллипсоиду вращения. Расхождение результатов, полученных этим методом и точным методом интегрирования, как и следовало ожидать, возрастает при увеличении разности ширины диаграмм в двух взаимно перпендикулярных сечениях, но не превышает 20% (табл. 1). Для быстрого и грубого определения КНД можно поэтому воспользоваться следующим приемом: необходимо определить отношения полуосей Φ_1 и Φ_2 аппроксимирующих эллипсов для обеих главных плоскостей, взять их среднее геометрическое

5 Телевидение, вып. 20—22

значение $\Phi = \sqrt{\Phi_1 \Phi_2}$ и по формуле Saxton'а вычислить КНД антенны:

$$G_{\frac{\lambda}{2}} = \begin{cases} 2,44 & \frac{\Phi^{2}-1}{1-\frac{1}{2\Phi\sqrt{\Phi^{2}-1}} \ln \frac{\Phi+\sqrt{\Phi^{2}-1}}{\Phi-\sqrt{\Phi^{2}-1}}} & \text{при } \Phi > 1; \\ 1-\frac{1}{2\Phi\sqrt{\Phi^{2}-1}} \ln \frac{\Phi+\sqrt{\Phi^{2}-1}}{\Phi-\sqrt{\Phi^{2}-1}} & \text{при } \Phi < 1. \\ 2,44 & \frac{1-\Phi^{2}}{\Phi\sqrt{1-\Phi^{2}}} & \text{при } \Phi < 1. \end{cases}$$

Более близкое (табл. 2) к интегральному значению (расхождение не больше 16%) дает среднее квадратичное из двух

Таблица 2

β	10	20	30	40	50	60	70	80	90	100	110	120	130
10	į		3	0	6	1	2	0	16	14	13	5	5
20			5	6	0,5	3	1,5	1	0,5	2	8.	10	11
30				10	2	4	8	5	6	12	13	4	7
40					6	1	1,5	1	3	4	3	4	3
50						2	5	3	2	5	7	5	1
60 -							5	0	4				

величин КНД $G_{\mathit{мин}}$ и $G_{\mathit{макc}}$, полученных по формуле Saxton'а для более широкого и менее широкого сечения диаграммы:

$$G = \sqrt{G_{MUN}G_{MAKC}}$$
,

где

$$G_{\text{MUH}} = G\left(\Phi_{\text{MUH}}\right)$$

$$G_{Ma\kappa c} = G(\Phi_{Ma\kappa c}).$$

Экспериментальная проверка справедливости подобных приближений не была проведена, но расхождение имеющихся опытных данных с приближенно вычисленными позволяет надеяться на их применимость.

ЛИТЕРАТУРА

- 1. G. L. Saxton, "Wireless Eng—r", April, 1948, vol. XXV, p. 110. 2. A. Starnecki, "Wireless Eng—r", August, 1948, vol. XXV, p. 198. 3. G. Justiany, "Alta Frequenza", 1952, vol. 21, п 4—5, pp. 204—214. 4. Е. Янке, Ф. Эмде, Таблицы функций с формулами и кривыми, ГИТТЛ, 1949.

Статья поступила 1/Х 1955 г.

Канд. техн. наук доцент С. П. ПИВОВАРОВ

К ТЕОРИИ СТАБИЛИЗАТОРА НАПРЯЖЕНИЯ С РАЗНЕСЕННЫМИ ОБМОТКАМИ

Статья посвящена аналитическому исследованию наиболее распространенного стабилизатора напряжения с первичной и вторичной обмотками, размещенными на разных стержнях. Получены аналитические зависимости для расчета, оптимальные параметры и режимы эквивалентной схемы стабилизатора, являющейся частным случаем общей схемы замещения феррорезонансных стабилизаторов.

В статье рассматриваются феррорезонансные стабилизаторы напряжения, у которых первичная и вторичная обмотки разме-

Рис. 1. Принципиальные схемы стабилизаторов: а-стабилизатор с магнитным шунтом; б-стабилизатор без шунта

щены на разных стержнях, имеющих неодинаковое сечение. Возникающие при работе стабилизатора магнитные потоки рассеяния эквивалентны по своему действию сопротивлению, включенному в обычных схемах стабилизаторов последовательно с трансформатором. Наличие магнитного шунта рядом с первичной обмоткой (рис. 1, а) увеличивает поток рассеяния и придает стабилизатору ряд ценных качеств.

Обе эти схемы являются наиболее распространенными и им посвящено наибольшее количество работ. В большинстве опубликованных материалов описаны готовые стабилизаторы и приведены конструктивные и электрические характеристики. Эмпирические формулы, рекомендуемые рядом авторов для выбора

5*

параметров стабилизаторов, фактически пригодны только для описываемого образца. Линеаризация характеристик элементов схем, замена действительных значений токов и напряжений фиктивными токами и напряжениями привела некоторых авторов к графическим и аналитическим методам расчета и схемам замещения, которые неполностью отражают истинную картину явлений, происходящих в феррорезонансных стабилизаторах

В статье, на основе приближенного решения нелинейного дифференциального уравнения, получены зависимости для определения токов и напряжений в схеме стабилизатора, а также дается его эквивалентная схема.

1. Вывод аналитических зависимостей для магнитных потоков. токов и напряжений в стабилизаторе

Исходными уравнениями для схемы рис. 1 будут:

$$w_1 10^{-8} \frac{d\Phi_1}{dt} = U; (1)$$

$$w_3 10^{-8} \frac{d\Phi_3}{dt} - w_k \frac{d\Phi_1}{dt} 10^{-8} = i_3 R_3;$$
 (2)

$$w_2 10^{-8} \frac{d\Phi_3}{dt} = \frac{1}{C} \int i_2 \, dt; \tag{3}$$

$$\Phi_1 = \Phi_1' + \Phi_2; \tag{4}$$

$$\Phi_2 = \Phi_3 + \Phi_3', \tag{5}$$

где

 Φ_1 , Φ_2 и Φ_8 —потоки в стержнях и ярмах; $\Phi_1^{'}$ и $\Phi_3^{'}$ —потоки рассеяния первичной и вторичной

цепей; w_1 , w_2 , w_3 и w_κ —витки обмоток; R_3 и C—нагрузочное сопротивление и емкость во вторичной цепи стабилизатора;

 i_2 , i_3 —токи вторичной обмотки.

Токи обмоток и создаваемые ими индукции связаны между собой аналитической зависимостью

$$\frac{\sum i\omega}{I} = \gamma_1 B + \gamma_2' B^{\alpha}. \tag{6}$$

Магнитная цепь стабилизатора состоит из четырех отрезков различных длин и сечений. Участок abcd имеет большее сечение по сравнению с участком аd, и магнитная цепь для него может считаться ненасыщенной.

Кроме того, приходится учитывать, что м. д. с., идущая на создание потоков рассеяния, будет определяться не только ампервитками, имеющимися на данном стержне, но и величиной м. д. с., затрачиваемой на создание полного потока. В обычных трансформаторах считается, что потоки рассеяния пропорциональны токам обмоток.

С учетом сделанных замечаний можно написать, что

$$i_1 w_1 - i_2 w_2 - i_3 w_3 + i_3 w_{\alpha} = \gamma_1' \Phi_1 + \gamma_1'' \Phi_2 + \gamma_1''' \Phi_3 + \gamma_2 \Phi_3^{\alpha};$$
 (7)

$$i_1 w_1 + i_3 w_{\kappa} - \gamma_1' \Phi_1 = \frac{\Phi_1'}{\lambda_1 0.4\pi};$$
 (8)

$$i_2 w_2 + i_3 w_3 + \gamma_1^{'''} \Phi_3 + \gamma_2 \Phi_3^{\alpha} = \frac{\Phi_3^{'}}{\lambda_2 0, 4\pi},$$
 (9)

где

$$\gamma'_{1} = \gamma_{1} \frac{l_{1}}{s_{1}};$$

$$\gamma''_{1} = \gamma_{1} \frac{l_{2}}{s_{2}};$$

$$\gamma'''_{1} = \gamma_{1} \frac{l_{3}}{s_{3}};$$

$$\gamma_{2} = \gamma'_{2} \frac{l_{3}}{s_{3}^{\alpha}};$$

 l_1 , l_2 , l_3 —длины участков ab, cd и ad: λ_1 и λ_2 —проводимости в воздухе для потоков $\Phi_1^{'}$ и $\Phi_3^{'}$.

Из уравнений (4) и (5) находим

$$\Phi_1 = \Phi_1' + \Phi_3 + \Phi_3'. \tag{10}$$

Подставив в выражения (10) и (5) потоки из уравнений (8) и (9), получим:

$$\Phi_{1} = 0.4\pi\lambda_{1} i_{1}w_{1} + 0.4\pi\lambda_{1} i_{3}w_{\kappa} - \gamma_{1}'\Phi_{1}0.4\pi\lambda_{1} + \Phi_{3} + 0.4\pi\lambda_{2} i_{2}w_{2} + 0.4\pi\lambda_{2} i_{3}w_{3} + 0.4\pi\lambda_{2} \gamma_{1}'''\Phi_{3} + 0.4\pi\lambda_{2} \gamma_{2}\Phi_{3}^{\alpha};$$
(11)

$$\Phi_2 = \Phi_3 + 0.4\pi\lambda_2 i_2 w_2 + 0.4\pi\lambda_2 i_3 w_3 + 0.4\pi\lambda_2 \gamma_1^{"'} \Phi_3 + 0.4\pi\lambda_2 \gamma_2 \Phi_3^{\alpha}.$$
 (12)

Найдем из уравнения (7) ампервитки первичной обмотки, заменим поток Φ_2 выражением (12) и подставим полученное выражение в (11):

$$i_{1}w_{1} = i_{2}w_{2} \left[1 + \gamma_{1}^{"}\lambda_{2}0,4\pi \right] + i_{3}w_{3} \left[1 - \frac{w_{K}}{w_{3}} + \gamma_{1}^{"}\lambda_{2}0,4\pi \right] + \Phi_{1}\gamma_{1}^{'} + \Phi_{3} \left[\gamma_{1}^{"} + \gamma_{1}^{"}\lambda_{2}0,4\pi\gamma_{1}^{"'} + \gamma_{1}^{"'} \right] + \gamma_{2} \left[1 + \gamma_{1}^{"}\lambda_{1}0,4\pi \right] \Phi_{3}^{\alpha}; (13)$$

$$\Phi_{1} = D_{1}w_{2}i_{2} + D_{1}w_{3}i_{3} + D_{3}\Phi_{3} + D_{1}\gamma_{2}\Phi_{3}^{\alpha}, (14)$$

где

$$\begin{split} D_1 \! = \! 0.4\pi \left[\lambda_1 + \lambda_2 + 0.4\pi \lambda_1 \lambda_2 \gamma_1'' \right]; \\ D_3 \! = \! 0.4\pi \left[\lambda_1 \gamma_1'' + \lambda_1 \gamma_1'' 0.4\pi \lambda_2 \gamma_1''' + \gamma_1''' \lambda_1 + \lambda_2 \gamma_1''' \right] \! + 1. \end{split}$$

Из уравнений (2) и (3) находим .

$$i_2 = C w_2 10^{-8} \frac{d^2 \Phi_3}{dt^2} \,; \tag{15}$$

$$\dot{t}_3 = \frac{w_3 10^{-8}}{R_3} \frac{d\Phi_3}{dt} - \frac{w_{\kappa} 10^{-8}}{R_3} \frac{d\Phi_1}{dt} \,. \tag{16}$$

Подставив токи i_2 и i_3 в уравнение (14), получим дифференциальное уравнение для потоков Φ_1 и Φ_3 :

$$\Phi_{1} = D_{1}Cw_{2}^{2}10^{-8}\frac{d^{2}\Phi_{3}}{dt^{2}} + D_{1}\frac{w_{3}^{2}10^{-8}}{R_{3}}\frac{d\Phi_{3}}{dt} - D_{1}\frac{w_{\kappa}w_{3}}{R_{3}}10^{-8}\frac{d\Phi_{3}}{dt} + D_{3}\Phi_{3} + D_{1}\gamma_{2}\Phi_{3}^{\alpha}.$$
 (17)

Будем искать решение уравнения (17) для потока $\Phi_{\mathbf{8}}$ в виде ряда, состоящего только из основной и третьей гармоник. Электродвижущая сила от потока $\Phi_{\mathbf{1}}$ уравновешивает напряжение сети и, следовательно, поток $\Phi_{\mathbf{1}}$ будет изменяться по гармоническому закону:

$$\Phi_1 = \Phi_{m1} \cos \omega t. \tag{18}$$

Аналогично можем написать для мгновенного значения потока 3-го стержня

$$\Phi_{3} = \Phi_{m3} \cos(\omega t + \alpha_{3}) + \Phi_{m33} \cos(3\omega t + \alpha_{33}). \tag{19}$$

Здесь:

 $\Phi_{\it m3}$ —амплитудное значение потока 1-й гармоники 3-го стержня;

 Φ_{m33} — амплитудное значение потока 3-й гармоники 3-го стержня.

Далее

$$i_{2} = -Cw_{2} 10^{-8} \omega^{2} \Phi_{m3} \cos(\omega t + \alpha_{8}) - Cw_{2} 10^{-8} \cdot 9\omega^{2} \Phi_{m38} \cos(3\omega t + \alpha_{83}),$$
 (20)

$$i_{3} = -\frac{w_{3}}{R_{3}} 10^{-8} \omega \Phi_{m3} \sin(\omega t + \alpha_{3}) - \frac{w_{3}}{R_{3}} 10^{-8} 3\omega \Phi_{m33} \times \\ \times \cos(3\omega t + \alpha_{33}) + \frac{w_{\kappa}}{R_{3}} 10^{-8} \omega \Phi_{m1} \sin \omega t.$$
 (21)

Подставив (18), (19), (20), (21) в дифференциальное уравнение (17) и решая его, после ряда преобразований и вычислений получаем следующие алгебраические уравнения для потоков Φ_{m1} и Φ_{m3} :

$$\Phi_{m1} = \frac{\Phi_{m8} \sqrt{\left[D_8 - D_1 w_2^2 C \cdot 10^{-8} \omega^2 + \eta_2 (9\omega^2 C D_1 w_2^2 \cdot 10^{-8} - D_3)\right]^2 + \cdots + \left[\frac{w_3 w_k D_1}{R_3} \omega \cdot 10^{-8}\right]^2}$$

$$+ \frac{ + w_3^2 D_1^{-1} 10^{-8} \omega}{R_3} + \frac{R_3}{1 + \left[\frac{w_3 w_\kappa D_1}{R_3} \omega 10^{-8} \right]^2}; \tag{22}$$

$$\Phi_{m3} = \eta_1 \sqrt{\frac{9\omega^2 D_1 w_2^2 C \cdot 10^{-8} - D_3}{D_1 \gamma_2}} ; \qquad (23)$$

$$a = \frac{\frac{3\omega w_3^2 D_1}{R_3} \cdot 10^{-8}}{9 \omega^2 D_1 w_2^2 C \cdot 10^{-8} - D_3}.$$
 (24)

Входящие в формулы (22) и (23) коэффициенты η_1 и η_2 находятся по кривым 1, 2 (рис. 2) для

$$9\omega^2 D_1 w_2^2 C 10^{-8} - D_3 > 0 (25)$$

и по кривым 3, 4 при

$$9\omega^2 D_1 w_2^2 C 10^{-3} - D_3 < 0. (26)$$

Для последнего условия в формулах (22) и (23) у выражений под корнем и у коэффициента η_2 нужно поставить знаки минус.

Ход решения уравнений следующий. По параметрам схемы и по формуле (24) находится коэффициент a; затем, задавшись

Рис. 2. Кривые для определения коэффициентов η_1 и η_2

коэффициентом η_1 , находят коэффициент η_2 и отношение третьей гармоники потока к основной. По формулам (22) и (23) подсчитывают потоки Φ_{m1} , Φ_{m8} , и из отношения $\frac{\Phi_{m33}}{\Phi_{m3}}$ определяют Φ_{m33} .

Плоская форма напряжения на выходе получается при выполнении условия (25), а заостренная—при параметрах, удовлетворяющих соотношению (26).

По найденным потокам определяются токи, напряжения и , потоки Φ_2 и Φ_1' .

Угол сдвига по фазе потоков Φ_{m1} и Φ_{m3} .

$$tg \,\alpha_3 = \frac{\frac{w_3^2 D_1 \omega \, 10^{-8}}{R_3}}{D_3 - D_1 w_2^2 C \, 10^{-8} \, \omega^2 + \eta_2 \left(9 \omega^2 C D_1 w_2^2 \, 10^{-8} - D_3\right)} \,. \tag{27}$$

Напряжение сети

$$u = w_1 10^{-8} \omega \Phi_{m1} \sin \omega t = -U \sqrt{2} \sin \omega t. \tag{28}$$

Напряжение на конденсаторе

$$u_2 = -w_2 10^{-8} \omega \Phi_{m3} \sin(\omega t + \alpha_8) - w_2 3\omega 10^{-8} \Phi_{m38} \times \sin(3\omega t + \alpha_{38}).$$
(29)

Напряжение на нагрузке

$$u_3 = U_{m31} \sin(\omega t - \varphi) + U_{m33} \sin 3\omega t,$$
 (30)

где

$$U_{m31} = V \underbrace{\left[-\Phi_{m3}w_{3}\omega \, 10^{-8}\cos\alpha_{3} + w_{\kappa}\omega \, 10^{-8}\Phi_{m1} \right]^{2} + \cdots}_{+ \left[\Phi_{m3}w_{3} \, 10^{-8}\sin\alpha_{3} \right]^{2};}$$

$$u_{m33} = -w_{3} \, 10^{-8}3\omega\Phi_{m33};$$

$$tg \, \varphi = -\frac{\Phi_{m3}w_{3} \, 10^{-8}\sin\alpha_{3}}{-\Phi_{m33}w_{3}\omega \, 10^{-8}\cos\alpha_{3} + w_{\kappa} \, 10^{-8}\Phi_{m1}}.$$

Первичный ток стабилизатора

$$\begin{split} \dot{i}_{1} &= \frac{\textit{w}_{2}}{\textit{w}_{1}} \left[1 + \textit{\gamma}_{1}^{"} \lambda_{2} \, 0,4\pi \right] \, \dot{i}_{2} + \frac{\textit{w}_{3}}{\textit{w}_{1}} \left[1 - \frac{\textit{w}_{\kappa}}{\textit{w}_{2}} + \textit{\gamma}_{1}^{"} \lambda_{2} \, 0,4\,\pi \right] \, \dot{i}_{3} + \Phi_{1} \, \frac{\textit{\gamma}_{1}^{'}}{\textit{w}_{1}} \, + \\ &+ \left[\textit{\gamma}_{1}^{"} + \textit{\gamma}_{1}^{"} \lambda_{2} \, 0,4\,\pi \, \textit{\gamma}_{1}^{""} + \textit{\gamma}_{1}^{""} \right] \frac{\Phi_{3}}{\textit{w}_{1}} + \textit{\gamma}_{2} \left[1 + \textit{\gamma}_{1}^{"} \lambda_{2} \, 0,4\,\pi \right] \frac{\Phi_{3}^{"}}{\textit{w}_{1}} \, . \end{split}$$

73:

После подстановки в эту формулу значений токов и потоков получим

$$\begin{split} I_{m11} &= \sqrt{\left[M_{1}\Phi_{m1} + M_{2}\Phi_{m8} + \frac{M_{3}}{\gamma_{2}}\eta_{1}\frac{9\omega^{2}D_{1}w_{2}^{2}C\cdot10^{-8}-D_{3}}{D_{1}}\right]^{2}} + \\ &\qquad \qquad + [M_{6}\Phi_{m1} + M_{4}\Phi_{m8}]^{2}; \\ J_{m38} &= \Phi_{m33}\sqrt{\left[M_{6} + \frac{M_{3}}{\gamma_{2}}\frac{9\omega^{2}D_{1}w_{2}^{2}C\cdot\gamma^{2}\cdot10^{-8}-D_{3}}{D_{1}}\right]^{2}} + \\ &\qquad \qquad + \left[M_{7} + \frac{M_{3}}{\gamma_{2}}\frac{3\omega w_{3}^{2}\cdot10^{-8}}{R_{3}}\right]^{2}; \\ I_{1} &= \frac{1}{V^{2}}\sqrt{I_{m11}^{2} + I_{m33}^{2}}; \\ I_{1} &= \frac{1}{V^{2}}\sqrt{I_{m11}^{2} + I_{m33}^{2}}; \\ M_{1} &= -\frac{w_{3}}{w_{1}}\left[1 - \frac{w_{K}}{w_{3}} + \gamma_{1}^{*}\lambda_{2}0, 4\pi\right]\frac{w_{K}}{R_{3}}\cdot10^{-8}\omega\sin\alpha_{3} + \frac{\gamma_{1}}{w_{1}}\cos\alpha_{3}; \\ M_{2} &= -\frac{w_{2}}{w_{1}}\left[1 + \gamma_{1}^{*}\lambda_{2}0, 4\pi\right]Cw_{2}\omega^{2}\cdot10^{-8} + \frac{1}{w_{1}}\left[\gamma_{1}^{*} + \gamma_{1}^{*}\lambda_{2}0, 4\pi\gamma_{1}^{**} + \gamma_{1}^{**}\right]; \\ M_{3} &= \frac{\gamma_{2}}{w_{1}}\left[1 + \gamma_{1}^{*}\lambda_{2}0, 4\pi\right]; \\ M_{4} &= -\frac{w_{3}}{w_{1}}\left[1 - \frac{w_{K}}{w_{3}} + \gamma_{1}^{*}\lambda_{2}0, 4\pi\right]\frac{w_{3}}{R_{3}}\cdot10^{-8}\omega\cos\alpha_{3} + \frac{\gamma_{1}}{w_{1}}\sin\alpha_{3}; \\ M_{5} &= \frac{w_{3}}{w_{1}}\left[1 - \frac{w_{K}}{w_{3}} + \gamma_{1}^{*}\lambda_{2}0, 4\pi\right]\frac{w_{K}}{R_{3}}\cdot10^{-8}\omega\cos\alpha_{3} + \frac{\gamma_{1}}{w_{1}}\sin\alpha_{3}; \\ M_{6} &= -\frac{w_{2}}{w_{1}}\left[1 + \gamma_{1}^{*}\lambda_{2}0, 4\pi\right]Cw_{2}\cdot10^{-8}9\omega^{2} + \frac{1}{w_{1}}\left[\gamma_{1}^{*} + \gamma_{1}^{*}\lambda_{2}0, 4\pi\gamma_{1}^{**} + \gamma_{1}^{**}\right]; \\ M_{7} &= -\frac{w_{3}}{w_{1}}\left[1 - \frac{w_{K}}{w_{3}} + \gamma_{1}^{*}\lambda_{2}0, 4\pi\right]\frac{w_{3}}{R_{3}}\cdot10^{-8}\cdot3\omega. \end{split}$$

Амплитуда основной гармоники потока Φ_{m2}

$$\Phi_{m2} = \Phi_{m8} \sqrt{\left[M_{2}' + \frac{M_{3}'}{\gamma_{2}} \eta_{2} \frac{9\omega^{2} D_{1} w_{2}^{2} C 10^{-8} - D_{3}}{D_{1}} \right]^{2} + \left[\lambda_{1} 0.4 \pi \frac{w_{3}^{2}}{R_{3}} \omega 10^{-8} \right]^{2}}.$$
(32)

Амплитуда третьей гармоники потока Φ_{m2}

$$\Phi_{m23} = \Phi_{m33} \left[1 + 0.4\pi \lambda_2 \gamma_1'' - \frac{\lambda_2 0.4\pi D_3}{D_1} \right]. \tag{33}$$

Амплитуда основной гармоники потока $\Phi_{m1}^{'}$

$$\Phi_{m1}' = \sqrt{\left[\Phi_{m1}\cos\alpha_{m3} - M_2'\Phi_{m3} + \frac{M_3'}{\gamma_2}\eta_2\Phi_{m3} \frac{9\omega^2D_1w_2^2C\omega^210^{-8} - D_3}{D_1}\right]^2 + \left[\Phi_{m1}\sin\alpha_3 + \frac{\lambda_20.4\pi w_3^2\omega10^{-8}}{R_3}\right]^2}.$$
 (34)

Амплитуда третьей гармоники потока $\Phi_{m_1}^{'}$ в предположении, что падение напряжения для токов третьей гармоники в питающей сети равно нулю, определяется равенством

$$\Phi'_{m_{18}} = -\Phi_{m_{28}}. (35)$$

Здесь обозначено:

$$M_{2}' = -\lambda_{2}0.4\pi w_{2}^{2}C\omega^{2}10^{-8} + 1^{0} + \lambda_{2}0.4\pi \gamma_{1}^{"'};$$

 $M_{3}' = \gamma_{2}\lambda_{2}0.4\pi.$

Выражения (31)—(34) значительно упрощаются, если принять $\gamma_1'=0$, $\gamma_1''=0$, $\gamma_1'''=0$.

В потоке рассеяния Φ_{m_1} основная гармоника меньше, чем в потоке стержня s_1 . Третья гармоника в этом же потоке рассеяния примерно в $\frac{\lambda_1}{\lambda_1 + \lambda_2}$ раз меньше, чем в стержне s_3 .

При наличии магнитного шунта,—если использовать поток рассеяния для получения компенсационного напряжения,—напряжения третьих гармоник обмоток шунта и стержня s_3 складываются, и форма напряжения будет более искажена, чем при расположении компенсационной обмотки на стержне s_1 .

2. Схема замещения стабилизатора для основной гармоники

Для основной гармоники потока Φ_{m3} формула (22) имеет следующий вид:

$$\Phi_{m1} = \Phi_{m3} \frac{\sqrt{\left[D_3 - D_1 w_2^2 C \omega^2 10^{-8} + D_1 \left(\frac{\alpha - 1}{2}\right) \frac{1}{2^{\alpha - 1}} \gamma_2 \Phi_{m3}^{\alpha - 1}\right]^2}}{\sqrt{1 + \left[\frac{w_3 w_k D_1 \omega 10^{-8}}{R_3}\right]^2}} +$$

$$+\frac{\left[\frac{\omega_{3}^{2}D_{1}\omega10^{-8}}{R_{3}}\right]^{2}}{\sqrt{1+\left[\frac{\omega_{3}\omega_{k}D_{1}\omega10^{-8}}{R_{3}}\right]^{2}}}.$$
(36)

Поскольку

$$\frac{w_3 w_k}{R_3} D_1 \omega 10^{-8} \approx 0;$$

$$D_1 \approx 0.4\pi \left[\lambda_1 + \lambda_2\right];$$

$$D_3 \approx 1$$
;

$$\Phi_{m1} = \sqrt{2} U w_1 \omega 10^{-8},$$

то вместо (36) можно написать

$$U^{2} = \left\lceil \frac{\Phi_{m3} w_{1} \omega 10^{-8}}{\sqrt{2}} - \frac{\Phi_{m3} w_{1} 10^{-8} \omega 10^{-8}}{\sqrt{2} \frac{w_{1}^{2}}{w_{2}^{2}} \frac{1}{C \omega}} 0, 4\pi \left(\lambda_{1} + \lambda_{2}\right) w_{1}^{2} + \right.$$

$$+0.4\pi \left(\lambda_{1}+\lambda_{2}\right) \omega 10^{-8} w_{1}^{2} \frac{\Phi_{m_{3}}^{\alpha} \gamma_{2}}{\sqrt{2} w_{1}} \cdot \left(\frac{\alpha-1}{2}\right) \frac{1}{2^{\alpha-1}} + \left[\frac{0.4\pi \left(\lambda_{1}+\lambda_{2}\right)}{R_{3}} \omega 10^{-8} \frac{\Phi_{m_{3}} \omega 10^{-8} w_{1}}{\sqrt{2}} \frac{w_{1}^{2}}{w_{2}^{2}} w_{3}^{2}\right]^{2}.$$

$$(37)$$

Обозначим:

$$\frac{\Phi_{m_3}w_{_3}10^{-8}\omega}{\sqrt{2}}\cdot \frac{w_{_1}}{w_{_3}}=U_{_{3n}}-$$
 приведенное к первичной обмотке напряжение на нагрузке;

$$\frac{1}{C^{(i)}} \frac{w_1^2}{w_2^2} = X_{2n}, \ R_3 \frac{w_1^2}{w_3^2} = R_{3n}$$
 — приведенные к первичной обмотке реактивное и активное сопротивления;

 $0.4\pi \left(\lambda_1 + \lambda_2 \right) \omega w_1^2 10^{-8} = X_1$ —индуктивное сопротивление (сопротивление корот-

кого замыкания);

$$\frac{\Phi_{m3}^{\alpha}\gamma_{2}\left(\frac{\alpha-1}{2}\right)\frac{1}{2^{\alpha-1}}}{\sqrt{2}w_{1}}=I_{0}$$

— реактивный ток намагничивания.

Рис. **3.** Эквивалентная схема стабилизатора

Следовательно,

$$U = \sqrt{\left[U_{3n} + \left(-\frac{U_{3n}}{X_{2n}} + I_0\right)X_1\right]^2 + \left[\frac{U_{3n}}{R_{3n}}X_1\right]^2} \ . \tag{38}$$

Напряжение сети уравновешивается э. д. с. от потока Φ_{m3} и падением напряжения в сопротивлении X_1 от реактивных и активного токов. Этому режиму соответствует схема замещения стабилизатора, приведенная на рис. 3.

Таким образом исследуемый стабилизатор приводится к общей эквивалентной схеме феррорезонансных стабилизаторов напряжений, режимы которой разобраны автором ранее [см. , Техника телевидения", 1955, вып. 10 (16)].

3. Форма напряжения на выходе стабилизатора

Формула (30) определяет амплитуды и фазу первой и третьей гармоник напряжения на выходе. Для эффективного значения напряжения не существенна фаза напряжения основной гармоники по отношению к третьей. При использовании стабилизатора для питания выпрямительных устройств величина пульсации и изменение напряжения при колебаниях нагрузки во многом определяются формой подаваемого на вентиль напряжения. Чем ближе напряжение к прямоугольной форме, тем коэффициент сглаживания фильтра должен быть меньше.

Как известно, для получения формы напряжения, близкой к прямоугольной, третья гармоника должна составлять примерно 30%, а угол ф при этом должен быть близок к нулю.

Отношение напряжения третьей гармоники к напряжению основной, согласно уравнению (30), будет

$$\frac{U_{m33}}{U_{m3}} = \frac{3\frac{\Phi_{m33}}{\Phi_{m3}}}{\sqrt{1 - 2\cos\alpha_3 \frac{w_k}{w_3} \frac{\Phi_{m1}}{\Phi_{m3}} + \left(\frac{w_k}{w_3} \frac{\Phi_{m1}}{\Phi_{m3}}\right)^2}}.$$
(39)

Из последнего выражения следует:

1. С увеличением нагрузки процентное содержание напряжения третьей гармоники в кривой выходного напряжения уменьшается и кривая напряжения приближается к синусоиде.

2. Компенсационное напряжение увеличивает третью гармо-

нику в выходном напряжении.

3. Для получения формы кривой напряжения, приближающейся к прямоугольнику, отношение $\frac{\Phi_{m^{33}}}{\Phi_{m^3}} \approx 0,1$ и должно выполняться условие (25).

4. Определение проводимостей для потоков рассеяния

Поток рассеяния в феррорезонансном стабилизаторе с разнесенными обмотками является важным фактором, определяющим его работу. Если в обычных трансформаторах рассеяние влияет на изменение вторичного напряжения, обусловливает добавочные потери в меди, является одним из существенных условий для параллельной работы и определяет силу тока короткого замыкания, то в стабилизаторе поток рассеяния, кроме того, определяет коэффициент стабилизации, величину допустимой полезной нагрузки, искажение формы кривой напряжения, соя ф и конструкцию самого стабилизатора.

Как известно, точный математический расчет проводимости для магнитного потока в воздухе практически не возможен, и в связи с этим такие расчеты производятся введением ряда

упрощений относительно путей потока.

Для обычных трансформаторов существуют пригодные для инженерных расчетов формулы подсчета индуктивности рассеяния, полученные на основе замены действительных обмоток прямолинейными бесконечно длинными проводниками и стержней сердечников неограниченными плоскостями с магнитной проницаемостью, равной бесконечности. Такие допущения, как показали многочисленные эксперименты, не ведут к значительным погрешностям.

Расчет потоков рассеяния для стабилизаторов является более сложной задачей из-за того, что первичная и вторичная обмотки размещены на разных стержнях, сами стержни имеют неодинаковую конфигурацию и работают при разных значениях индукции.

Для определения индуктивности рассеяния трансформаторов с обмотками, расположенными на разных стержнях, рекомендуют формулы академик В. П. Никитин [Л.1], профессор Ю. П. Петрунькин [Л.2], профессор Г. Н. Петров [Л.3], В. К. Лебедев и М. Н. Сидоренко [Л.4], Цыганек и Брунн [Л.5].

При выводе формулы индуктивности рассеяния академик Никитин и профессор Петрунькин предполагают плоскопараллельный характер магнитного поля в воздухе. Поэтому формула достаточно точно количественно характеризует поле между двумя концентрическими обмотками. Но для трансформатора с разделенными обмотками это допущение непригодно, так как поле внутри окна сердечника совершенно не похоже на поле с внешней стороны сердечника.

Профессор Петров считает возможным применить расчетные

формулы трансформатора с дисковыми обмотками.

Лебедев и Сидоренко усовершенствовали метод профессора Петрова, дав схему замещения трансформаторов с разделенными обмотками, при которой оба ярма находятся в одинаковых магнитных условиях. Но они не учитывают при этом асимметрии магнитного поля относительно ярма.

Более точные зависимости дает расчет по формуле Цыганека и Брунна, которые учитывают криволинейный характер

магнитного поля в воздухе.

Мельников [Л. 6] подверг экспериментальной проверке формулы указанных авторов и пришел к выводу, что формулы Лебедева и Цыганека равноценны и дают результат, близкий к опытным данным.

Проводимости для потоков рассеяния могут быть оценены сравнительно просто, если условно разделить поток рассеяния на три части: поток в окне сердечника между верхним и нижним ярмами магнитопровода, и два потока рассеяния обмоток, проходящие по стержню, внутри катушки и вне ее по всему периметру. В схеме стабилизатора с магнитным шунтом к этим потокам будет добавляться еще поток, идущий по магнитному шунту, и поток, замыкающийся через окно шунта.

Таким образом, проводимость потоков рассеяния будет состоять из следующих величин:

$$\lambda_{1} = \lambda_{1}' + \lambda_{n} + \lambda_{n}' + \lambda_{1}'';$$

$$\lambda_{2} = \lambda_{2}' + \lambda_{n},$$
(40)

гле

 λ_1' —проводимость для потоков рассеяния, проходящих по стержню и всему периметру первичной катушки;

 λ_{n} —проводимость для потоков рассеяния в окне сердечника между ярмами;

 λ_2' —проводимость для потоков рассеяния, проходящих по стержню и всему периметру вторичной катушки;

 $\lambda_1^{''}$ —проводимость для потока шунта;

 $\lambda_{_{\mathit{H}}}^{'}$ —проводимость для потока в окне шунта.

Указанные проводимости могут быть найдены по известным формулам [Л. 7, 8] или широко распространенными в электроаппаратостроении методами суммирования проводимостей между соответствующими поверхностями магнитной системы.

5. Результаты экспериментальной проверки

Проверка расчетных данных проводилась на феррорезонансных стабилизаторах мощностью в 100 ва и 1000 ва. Параметры стабилизаторов сведены в таблицу.

Рис. 4. Опытные и расчетные кривые напряжений для стабилизатора мощностью 100 ва I—напряжение на конденсаторе; 2—напряжение на выходе стабилизатора; кружками обозначены опытные данные

Кривая намагничивания материала магнитопровода аппроксимировалась выражением

$$\frac{i\omega}{l} = 0.25 \cdot 10^{-3}B + 0.8 \cdot 10^{-36}B^{9}.$$
 (41)

:80

Рис. 5. Опытные и расчетные кривые напряжений и токов для стабилизатора мощностью 1000~sa. 1—напряжение на конденсаторе; 2—напряжение на выходе стабилизатора при $R_3 = \infty$ и $R_3 = 120~om$; 3—ток конденсатора (сплошными линиями обозначены расчетные данные, пунктирными —опытные)

Опытные и расчетные кривые (рис. 4, 5) расходятся в пределах технической точности.

6 Телевидение, вып. 20-22

ЛИТЕРАТУРА

1. В. П. Никитин, Электрические машины и трансформаторы для дуговой сварки, т. І, ОНТИ, 1937.

2. Ю. П. Петрунькин, Электрические генераторы и трансформаторы для дуговой сварки, ОНТИ, 1940.

3. Г. Н. Петров, Трансформаторы, ОНТИ, 1934.
4. В. К. Лебедев и М. Н. Сидоренко, Расчет индуктивностей рассеивания сварочных трансформаторов с ярмовым магнитным рассеянием, "Автоматическая сварка", АН УССР, 1950, № 2.
5. Сідапек, Вгипп, Der Strenblindwiderstand des Transformators mit getrennter primärer und sekundärer Wicklung, Praha, 1938.
6. В. В. Мельников Месперование сваронного трансформатора с коме

6. В. В. Мельников, Исследование сварочного трансформатора с комбинированными обмотками, УПИ, диссертация, Свердловск, 1951.
7. Рихтер, Электрические машины, т. 3, ОНТИ, 1935.
8. Г. Н. Петров, К расчету расседния технол

Н. Петров, К расчету рассеяния трансформаторов, "Электричество", 1935, № 15.

Статья поступила 23/XII 1955 г.

Инж. Ю. Н. СОРОКО

ПРИМЕНЕНИЕ ТЕОРИИ ПОДОБИЯ К РАСЧЕТУ ФЕРРОРЕЗОНАНСНОГО СТАБИЛИЗАТОРА С ПОСЛЕДОВАТЕЛЬНОЙ ЕМКОСТЬЮ

В статье на основе теории подобия и моделирования дается методика расчета феррорезонансного стабилизатора с последовательной емкостью.

Процессы, происходящие в феррорезонансных стабилизаторах, основаны на насыщении стали и могут быть описаны только нелинейными дифференциальными уравнениями вида

$$\frac{d^2y}{dx^2} + (A_1 + A_2y^{\alpha - 1}) \frac{dy}{dx} + A_3y^{\alpha} = A_4 \cos kx. \tag{1}$$

Методов нахождения общего интеграла уравнений типа (1) математика пока не дает, а существующие приближенные ме-

тоды решения достаточно сложны и трудоемки.

Применение теории подобия, совместно с проведением эксперимента на модели, позволяет путем простого пересчета определить необходимые параметры элементов схемы стабилизатора и ее характеристики. Следует отметить, что с точки зрения практических расчетов нет необходимости в точном подобии всех процессов, происходящих в модели и в оригинале. Достаточно, чтобы подобными или приближенно подобными: были основные процессы.

Найдем условия подобия для схемы феррорезонансного

стабилизатора с последовательной емкостью (рис. 1).

Пренебрегая индуктивностями рассеяния L_1 и L_2 (стабилизаторы такого типа изготовляются обычно мощностью до 100 вт

и имеют трансформатор малых габаритов), можно привести сопротивления нагрузки к первичной обмотке и получить схему, изображенную на рис. 2.

Рассмотрим два стабилизатора с различными параметрами, приведенными к эквивалентной схеме. Один из них мы назовем моделью, другой — оригиналом.

Процессы, происходящие в схеме модели, описываются системой уравнений:

1)
$$\sqrt{2}U_{M}\sin\omega t = \frac{1}{C_{M}}\int_{0}^{\infty}i_{1,M}dt + i_{1,M}R_{1,M} + i_{2,M}S_{M}10^{-8}\frac{dB_{M}}{dt};$$
2) $w_{1,M}S_{M}10^{-8}\frac{dB_{M}}{dt} = i_{3,M}R_{M};$
3) $i_{1,M} = i_{2,M} + i_{3,M};$
4) $i_{2,M} = \frac{l_{M}k_{M}B_{M}^{\alpha}}{w_{1,M}},$
The $R_{M} = \frac{\frac{w_{1}^{2}}{w_{2}^{2}}(R_{M} + R_{2})R_{M}}{R_{M} + \frac{w_{1}^{2}}{w_{2}^{2}}(R_{M} + R_{2})}.$

净

 R_1 , R_2 —сопротивления обмоток; R_n —сопротивление нагрузки; R_n —сопротивление, эквивалентное потерям в стали; w_1 , w_2 —витки обмоток; S_n —сечение стали трансформатора; I_n —средняя длина магнитного пути; B_n —индукция. Кривая намагничивания стали сердечника задана уравнечием $H = kB^{\alpha}$ (другие виды аппроксимации кривой намагничизания будут рассмотрены ниже).

Для схемы оригинала можно написать такую же систему уравнений:

Процессы, происходящие в схемах модели и оригинала, можно считать подобными, если в одинаковые моменты времени зависимые переменные одной схемы пропорциональны соответствующим переменным другой, т. е.

$$\frac{i_{1 \ op}}{i_{1 \ M}} = m_{i1};$$
 $\frac{i_{2 \ op}}{i_{2 \ M}} = m_{i2};$
 $\frac{B_{op}}{B_{M}} = m_{B} \text{ M.T. } A.,$

где m_{i1} , m_{i2} , m_B и т. д.—безразмерные величины, называемые коэффициентами подобия.

Условия (4) будут иметь место только при выполнении определенных соотношений между параметрами схем и коэффициентами подобия. Для нахождения этих условий воспользуемся системами уравнений (2), (3) и (4). Введем в систему уравнений оригинала новые переменные i_1 , i_2 , B и т. д., связанные со старыми соотношениями

$$i_{1} = \frac{i_{1 \, op}}{m_{i_{1}}};$$

$$i_{2} = \frac{i_{2 \, op}}{m_{i_{2}}};$$

$$B = \frac{B_{op}}{m_{B}}.$$
(5)

Тогда (3) можно записать

1)
$$\sqrt{2} U_{op} \sin \omega t = \frac{m_{i1}}{C_{op}} \int i_1 dt + m_{i1} i_1 R_{1op} + w_{1op} S_{op} \times$$

$$\times 10^{-8} m_B \frac{dB}{dt};$$
(6)

2)
$$w_{1op}S_{op}10^{-8}m_{B}\frac{dB}{dt} = m_{i3}i_{3}R_{op};$$
3)
$$m_{i1}i_{1} = m_{i2}i_{2} + m_{i3}i_{3};$$
4)
$$m_{i2}i_{2} = \frac{l_{op}k_{op}m_{B}^{2}B^{\alpha}}{w_{3op}} .$$
(6)

Рассмотрим системы уравнений (2) и (6). Если коэффициент при переменной в каждом члене уравнения одной системы будет равен коэффициенту при переменной соответствующего члена уравнения в другой системе, то системы (2) и (6) будут тождественны, а следовательно, и переменные одной системы равны переменным другой, т. е. $i_{1\,M}=i_1$, $i_{2\,M}=i_2$ и т. д. Переходя к старым переменным [используя (5)], получим

$$rac{i_{1\,op}}{i_{1\,M}} = m_{i1};$$
 $rac{i_{2\,op}}{i_{2\,M}} = m_{i2};$ $rac{B_{op}}{B_{M}} = m_{B}$ и т. д.,

что свидетельствует о подобии систем (2) и (3) в этом случае. Таким образом, условия подобия определяются из равенства выражений при переменных в уравнениях систем. Число равенств равно, очевидно, числу членов в системе уравнений, отличных от единицы или от какого-либо другого безразмерного числа. Нас интересуют наиболее общие условия подобия, накладывающие как можно меньше ограничений на выбор параметров и коэффициентов подобия. Поэтому, прежде чем приравнивать выражения при переменных, мы приведем выражения (2) и (6) к безразмерному виду, разделив почленно каждое уравнение на какой-нибудь из его членов. Последнее позволит уменьшить число равенств, определяющих подобие, на величину, равную количеству уравнений.

Приведенная к безразмерному виду система уравнений для схемы модели будет

1)
$$\frac{\sqrt{2}U_{M}\sin \omega t}{\frac{1}{C_{M}}\int i_{1M}dt} = 1 + \frac{i_{1M}R_{1M}}{\frac{1}{C_{M}}\int i_{1M}dt} + \frac{w_{1M}S_{M}10^{-8}}{\frac{1}{C_{M}}\int i_{1M}dt} \cdot \frac{dB_{M}}{dt};$$
2)
$$\frac{w_{1M}S_{M}10^{-8}}{i_{3M}R_{M}} \cdot \frac{dB_{M}}{dt} = 1;$$
3)
$$\frac{i_{1M}}{i_{2M}} = 1 + \frac{i_{3M}}{i_{2M}};$$
4)
$$1 = \frac{l_{M}k_{M}B_{M}^{\alpha}}{w_{1M}i_{2M}}.$$
(7)

Для схемы оригинала

$$\frac{\sqrt{2} U_{op} \sin \omega t}{\frac{w_{i1}}{C_{op}} \int i_1 dt} = 1 + \frac{m_{i1} R_{1 op}}{\frac{m_{i1}}{C_{op}} \int i_1 dt} + \frac{w_{1 op} S_{op} 10^{-8} m_B}{\frac{m_{i1}}{C_{op}} \int i_1 dt} \frac{dB}{dt};$$

$$\frac{w_{1 op} S_{op} 10^{-8} m_B}{m_{i3} i_3 R_{op}} \cdot \frac{dB}{dt} = 1 \text{ и т. д.}$$
(8)

· Приравнивая почленно выражения при переменных в системах уравнений (7) и (8), получим семь равенств, позволяющих определить условия подобия и величины коэффициентов подобия. После ряда преобразований они запишутся следующим образом.

Условия подобия схем:

1)
$$R_{M}C_{M} = R_{op}C_{op};$$
2)
$$\frac{w_{M}^{n+1}S_{M}^{n}C_{M}}{U_{M}^{n-1}l_{M}k_{M}} = \frac{w_{op}^{n+1}S_{op}^{n}C_{op}}{U_{op}^{n-1}l_{op}k_{op}};$$
3)
$$R_{1M}C_{M} = R_{1op}C_{op}.$$
(9)

Коэффициенты подобия:

1)
$$m_{i1} = m_{i2} = m_{i3} = \frac{U_{op}C_{op}}{U_{M}C_{M}};$$
2)
$$m_{B} = \frac{w_{1,M}S_{M}U_{op}}{w_{1,op}S_{op}U_{M}}.$$
(10)

У подобных систем одинакова форма кривых соответствующих переменных, поэтому коэффициенты подобия одинаковы для мгновенных и эффективных значений.

Для расчета полезно ввести коэффициент подобия по величине стабилизированного напряжения

$$m_U = \frac{U_{cm op}}{U_{cm u}}$$
,

где U_{cm} —э. д. с. в первичной обмотке трансформатора.

Заменяя $U_{\it cm}$ через $i_{\it 3}R$, преобразуя и используя (9-1) и (10-1), получим

$$m_U = \frac{U_{op}}{U_u} \tag{11}$$

У подобных систем коэффициент стабилизации и сов φ одинаковы. Используя (11), получим

$$K_{op} = \frac{\frac{dU_{op}}{U_{op}}}{\frac{dU_{cm op}}{U_{cm op}}} = K_{M}.$$

Используя (9-1) и (10-1), получим

$$\cos \varphi_{op} = \frac{i_{1op}^2 R_{1op} + i_{3op}^2 R_{op}}{U_{op} i_{1op}} = \cos \varphi_{,u}.$$

Перейдем к методике расчета стабилизатора.

Пусть каким-нибудь путем получены характеристики стабилизатора, аналогичные приведенным на рис. 3, 4, 5. Кроме того, нам известны все его параметры. Назовем этот стабилизатор моделью.

Пусть нам надо рассчитать стабилизатор с величиной стабилизированного напряжения U_{cm} , сопротивлением нагрузки R_{κ} ,

Рис. 5 1) R = 19300 o.m; 2) R = 7550 o.m; 3) R = 4500 o.m; 4) R = 3500 o.m; 5) R = 3150 o.m

коэффициентом стабилизации К при колебании сетевого напряжения от

 $U_{\it мин}$ до $U_{\it макс}$. Выберем из характеристик модели (рис. 3) одну, удовлетворяющую заданному значению коэффициента стабилизации. Задачей расчета будет определение элементов схемы стабилизатора, подобного модели с выбранной нами характеристикой.

Для этого:

1) определяем по выбранной кривой величину

сетевого напряжения, соответствующего скачку выходного напряжения; $U_{\text{мин}}$ берем немного больше этой величины; 2) определяем необходимую нам величину коэффициент

подобия напряжений как

$$m_U = \frac{U_{MUHOP}}{U_{MUHM}};$$

- 3) определяем значение сетевого напряжения модели, соот ветствующее номиналу сети оригинала $U_{N_M} = \frac{U_{Nop}}{m_U}$;
- 4) определяем э. д. с. первичной обмотки трансформатор при номинальном напряжении сети

$$U_{cm_1op} = m_U U_{cm_1,u},$$

где $U_{cm,n}$ взято из характеристики модели при U_{Nn} ;

5) приводим сопротивление нагрузки R_{nop} к первичной обмотке

 $R_{op} = \frac{U_{cm,op}^2}{U_{cm,op}^2} R_{\kappa op};$

6) для получения подобия параметры схемы оригинала должны удовлетворять условиям подобия (9-1) и (9-2). Условие подобия (9-3) не сказывается в заметной степени на стационарных процессах схемы из-за малого удельного веса падения напряжения на сопротивлении первичной обмотки по сравнению с другими падениями. Поэтому точно удовлетворять условию (9-3) нет необходимости. Приближенно оно выполняется автоматически, так как чем больше мощность стабилизатора, тем меньше обычно сопротивление первичной обмотки, а емкость больше.

По условию подобия (9-1) определяем емкость стабилиза-

тора

$$C_{op} = C_{M} \frac{R_{M}}{R_{op}} ;$$

7) определяем параметры выражения, аппроксимирующего кривую намагничивания. Необходимо, чтобы методика снятня кривой была одинакова в модели и оригинале. Степени, в которых находится индукция, и число членов в аппроксимирующих выражениях должны быть одинаковы для модели и ори-

В дальнейшем расчетные формулы несколько видоизменяются в зависимости от вида аппроксимации кривой намагничи-

Разберем три случая.

1. Кривая намагничивания аппроксимируется выражением

$$H=kB^{\alpha}$$

Тогда условия подобия (9) и (10) справедливы; используя их, получим

 $S_{op} = \frac{S_{M} l_{M} k_{M}}{C_{M}} \frac{C_{op} m_{U}^{\gamma}}{l_{op} k_{op} m_{B}^{\gamma+1}};$ (11):

$$w_{1op} = w_{1,u} S_{M} \frac{m_{U}}{S_{op} m_{B}}.$$
 (12)

Задаваясь типоразмером пластины магнитопровода, а следовательно, l_{op} , определяем S_{op} и w_{1op} . В выражениях (11) и (12) $m_{\scriptscriptstyle R}$ определяем как

 $m_B = \frac{B_{op}}{B_{u}}$.

Величину B_{op} в стабилизаторах обычно берут порядка $1.4 \div 1.8 \frac{e \delta}{M^2}$.

Первичный ток определяется путем пересчета соответствующей характеристики рис. 4 по равенству (10-1), затем выбирается провод и рассчитывается размещение первичной обмотки в окне. Обычно она занимает около $^2/_{\it 3}$ последнего.

Вторичные витки определяются как

$$w_{2 op} = \frac{w_{1 op} U_{cm_2 op}}{U_{cm_1 op}}.$$

В случае, если обмотки не размещаются в окне, то либо увеличивают $m_{\scriptscriptstyle B}$, либо переходят на другой типоразмер пластин с большей длиной магнитного пути l_{op} .

После проведения расчета целесообразно повторить его

с учетом R_n , R_1 и R_2 .

2. Кривая намагничивания задана двучленом вида

$$H=aB+bB^{\alpha}$$
.

Условия подобия будут следующими:

1)
$$R_{M}C_{M} = R_{op}C_{op};$$
2)
$$\frac{w_{1,M}^{2}S_{M}C_{M}}{l_{M}a_{M}} = \frac{w_{1}^{2}o_{p}S_{op}C_{op}}{l_{op}a_{op}};$$
3)
$$\frac{w_{1,M}^{a+1}S_{M}^{a}C_{M}}{U_{M}^{a-1}l_{M}b_{M}} = \frac{w_{1}^{a+1}S_{op}C_{op}}{U_{op}^{a-1}l_{op}b_{op}};$$
4)
$$C_{M}R_{1,M} = C_{op}R_{1,op}.$$
(13)

Коэффициенты подобия выражаются по-прежнему уравнениями (10). Несколько преобразуя (13) с учетом (10), можно показать, что подобие будет только при вполне определенном соотношении между индукциями в модели и в оригинале:

$$m_B = \sqrt[\alpha-1]{\frac{\overline{b_{\scriptscriptstyle M}}a_{op}}{b_{op}a_{\scriptscriptstyle M}}}. (14)$$

Расчет трансформатора в этом случае следующий. По (14) определяем m_B . Задаваясь типоразмером пластины магнитопровода, определяем S_{op} и $w_{1 op}$:

$$S_{op} = \frac{S_{M} l_{M_{-M}} a_{M}}{C_{M}} \frac{C_{op} m_{U}^{2}}{a_{op} l_{op} m_{B}^{2}};$$

$$w_{1 op} = \frac{w_{1 M} C_{M}}{l_{M} a_{M}} \frac{l_{op} a_{op} m_{B}}{C_{op} m_{U}}.$$
(15)

Ток и вторичные витки определяются так же, как и в перзом случае.

3. Кривая намагничивания аппроксимируется полиномом з числом членов больше двух:

$$H=aB+bB^3+dB^5+\ldots+gB^7+\ldots$$

Сюда же относится случай, когда кривая намагничивания задана в виде графика, не аппроксимирующегося одночленной или двучленной параболой. Коэффициенты и условия подобия находим так же, как и в первом случае. Коэффициенты подобия выражаются по-прежнему уравнениями (10). Условия подобия будут следующими:

Число условий подобия равно числу членов в аппроксими-

Анализ критериев подобия показывает, что они удовлетвояются только при совпадении индукций и тождественности ривых намагничивания в модели и в оригинале. Таким обраом, в данном случае моделирование возможно только при ыполнении условий $m_B=1$ и $a_{_{M}}=a_{_{op}}$; $b_{_{M}}=b_{_{op}}$ и т. д. Преобазуя (16) и (10) с учетом сказанного, получим для расчета рансформатора следующие формулы:

$$S_{op} = \frac{S_{M} l_{M}}{C_{M}} \frac{C_{op} m_{U}^{2}}{l_{op}};$$

$$w_{1 op} = \frac{w_{1 M} C_{M}}{l_{M}} \frac{l_{op}}{C_{op} m_{U}}.$$
(17)

Ток и вторичные витки определяются как и в первом случае. В заключение приведем экспериментальные данные проверки тредложенной методики расчета. Был рассчитан феррорезонансный стабилизатор на 12,5 вт, питающийся от сети напряжением $127 \ s_{-25\%}^{+10\%}$ частотой 50 гц, со стабильностью выходного напряжения от + 1,5 до -4% и минимальной величиной сетевого напряжения, при которой нагруженный стабилизатор должен входить в область резонанса 90 в.

В качестве модели использовался стабилизатор, имеющий характеристики, представленные на рис. 3, 4, 5. Элементы схемы имели следующие величины: $C_{_{M}}=1,46\cdot 10^{-6}~\phi$; $R_{_{1,M}}=31,2~o_{_{M}}$; $R_{_{2,M}}=118,6~o_{_{M}}$; $R_{_{n,M}}\approx 38\,000~o_{_{M}}$; $w_{_{1,M}}=w_{_{2,M}}=1600~$ вит-ков. Магнитопровод выполнен из стали 342~толщиной 0,35~мм $(S_{M}=7,64 \text{ cM}^{2}; l_{M}=17,05 \text{ cM})$. Кривая намагничивания представ-

лена на рис. 6.

Заданным требованиям по стабильности удовлетворяет характеристика модели при нагрузке $R_{\rm H,M} = 4500$ ом (см. рис. 3), что соответствует отдаваемой мощности 32,5 вт.

В результате расчета стабилизатора, подобного модели с выбранной характеристикой, были получены следующие значения параметров схемы: $C_{op} = 3.6 \cdot 10^{-6} \text{ g/s}; \ w_{1\ op} = w_{2\ op} = 1300 \ \text{вит-ков}; \ R_{n\ op} = 2150\ om; \ S_{op} = 3.5\ cm^2; \ l_{op} = 17,05\ cm.$ После изготовления определены: $R_{1\ op} = 24\ om; R_{2\ op} = 95\ om; R_n \approx 11000\ om.$ Кривая намагничивания аппроксимировалась выражением $H = 0.041 R^5$ $=0,041B^{5}$.

На рис. 7 приведены экспериментальные характеристики стабилизатора-оригинала и расчетные, полученные путем пересчета соответствующих характеристик модели.

ЛИТЕРАТУРА

1. В. А. Веников, Применение теории подобия и физического моделирования в электротехнике, Госэнергоиздат, 1949.
2. С. П. Пивоваров, К расчету электромагнитного стабилизатора напряжения, "Вестник электропромышленности", 1950, № 11.

Статья поступила 12/Х 1955 г.

ТЕХНИКА ТЕЛЕВИДЕНИЯ, выпуск 21

Инж. В. С. ЗВЕРЛИН

О ВХОДНОМ РЕАКТИВНОМ СОПРОТИВЛЕНИИ НЕОДНОРОДНЫХ ЛИНИЙ С РАСПРЕДЕЛЕННЫМИ ПОСТОЯННЫМИ

В статье сравнивается входное реактивное сопротивление неоднородных линий, состоящих из двух отрезков различной длины с различными волновыми сопротивлениями, с входным сопротивлением короткозамкнутого отрезка однородной линии, имеющего длину, равную сумме длин этих отрезков.

Сравнение произведено графически с помощью диаграммы изображающих векторов. Показапо, что принятый метод анализа может быть использован и в более сложных случаях.

При конструировании различных диапазонных радиотехнических устройств (контуров, фидерных систем и пр.) возникает необходимость определения зависимости входного реактивного сопротивления отдельных элементов от их электрической длины. Аналитические расчеты являются зачастую громоздкими. Использование круговых диаграмм различных видов удобно для решения поставленной задачи, если заданы или выбраны волновые сопротивления и длина отрезков линий. При выборе параметров необходимо использовать такие методы анализа, которые позволили бы изучить общие зависимости, прежде чем производить количественные расчеты. Это можно сделать в ряде случаев с помощью изложенного ниже метода изображающих векторов, если ограничиваться анализом систем, состоящих из короткозамкнутых и разомкнутых отрезков линий без потерь (рис. 1, a-2).

В случае, показанном на рис. 1,а, входное сопротивление, нормированное относительно волнового сопротивления первого отрезка, равно

$$z_{e,v} = \frac{z_{e,v}}{W_1} = \frac{\operatorname{tg} m l_1 + \frac{W_2}{W_1} \operatorname{tg} m l_2}{1 - \frac{W_2}{W_1} \operatorname{tg} m l_1 \operatorname{tg} m l_2}.$$
 (1)

Это выражение путем элементарных тригонометрических преобразований может быть приведено к виду

$$z_{\theta x} = \frac{\sin m \cdot (l_1 + l_2) + \frac{W_1 - W_2}{W_1 + W_2} \sin m \cdot (l_1 - l_2)}{\cos m \cdot (l_1 + l_2) + \frac{W_1 - W_2}{W_1 + W_2} \cos m \cdot (l_1 - l_2)}.$$
 (1a)

Рис. 1

l

Для случаев, соответствующих рис. 1, δ , δ и ϵ , в итоге аналогичных выкладок соответственно получаем:

$$z_{sx} = \frac{Z_{sx}}{W_1 + W_2} = \frac{\sin m (l_1 + l_2) + \frac{W_1 - W_2}{W_1 + W_2} \sin m (l_1 - l_2)}{\cos m (l_1 + l_2) + \cos m (l_1 - l_2)}; \quad (16)$$

$$z_{\theta x} = \frac{z_{\theta x}}{\frac{W_1 W_2}{W_1 + W_2}} = \frac{\cos \left[\pi - m \left(l_1 + l_2\right)\right] + \cos m \left(l_1 - l_2\right)}{\sin \left[\pi - m \left(l_1 + l_2\right)\right] + \frac{W_1 - W_2}{W_1 + W_2} \sin m \left(l_1 - l_2\right)}; \quad (1B)$$

$$z_{ex} = \frac{Z_{ex}}{W_1 + W_2} = \frac{\sin m (l_1 + l_2) + \frac{W_2 - W_1}{W_1 + W_2} \sin [\pi - m (l_1 - l_2)]}{\cos m (l_1 + l_2) + \cos [\pi - m (l_1 - l_2)]} . \quad (1r)$$

Нормированное входное сопротивление является функцией суммы двух векторов \bar{k} и \bar{p} (рис. 2):

$$z_{ex} = \text{tg arg}\left[\overline{k} + \overline{p}\right],$$
 (2a)

для схем рис. 1,a, δ и \imath и случая, соответствующего рис. 1,a,

$$z_{ax} = \operatorname{ctg} \operatorname{arg} \left[\overline{k} + \overline{p} \right].$$
 (26)

Модуль и аргумент каждого из векторов определяется, исходя из выражений (1a)-(1r). Например, при каскадном соединении разомкнутого и короткозамкнутого отрезков имеем

$$|\overline{k}| = 1; |\overline{p}| = \frac{W_1 - W_2}{W_1 + W_2}; \text{ arg } \overline{k} = m(l_1 + l_2); \text{ arg } \overline{p} = m(l_1 - l_2)$$

при $W_1 > W_2$

$$\arg \overline{p} = \pi - m (l_1 - l_2)$$

при $W_1 < W_2$.

Если изображающий вектор задается составляющими виде

$$\frac{W_1-W_2}{W_2+W_1}\sin m\left(l_1-l_2\right)$$

ı

$$\cos m (l_1 - l_2),$$

его годографом является эллипс. Тогда при расчетах удобно представить его в виде суммы двух векторов—правого и ле вого вращения $(\overline{p}_n$ и $\overline{p}_s)$. Модуль одного из них будет равен

 $\frac{W_1}{W_1-W_2}$, второго $\frac{W_2}{W_1+W_2}$, а аргумент и направление вращения необходимо определить, исходя из условий решаемой задачи.

При построении векторных диаграмм изображающих векторов также можно использовать следующее соотношение, определяющее угол отставания (или опережения) ү

$$\sin \gamma = \frac{|\overline{p}|}{|\overline{k} + \overline{p}|} \sin 2m l_2, \tag{3}$$

которое получается, если учитывать, что угол между векторами \overline{k} и \overline{p} равен либо $2ml_2$, либо $2ml_2-\pi$.

Исходя из векторной диаграммы (рис. 2), разберем случай каскадного включения (рис. 1,a).

Будем сравнивать входное сопротивление составной линии со входным сопротивлением однородной линии с волновым сопротивлением W_1 и длиной l_1+l_2 . Последняя величина после нормирования будет равна

$$z_{\text{ex }o} = \operatorname{tg} m \left(l_1 + l_2 \right) = \operatorname{tg} \operatorname{arg} \overline{k}. \tag{4}$$

Если постоянная распространения $m=\frac{2\pi}{\lambda}$ (либо длина отрезков l_1 или l_2) изменяется, векторы \vec{k} и \vec{p} будут вращаться.

Вектор \overline{k} будет вращаться всегда против часовой стрелки; вектор \overline{p} будет, в зависимости от знака разности l_1-l_2 , вращаться либо против часовой стрелки, либо по часовой стрелке (при отрицательном аргументе). При $W_1>W_2$ вектор $\overline{k}+\overline{p}$ вначале будет отставать от вектора \overline{k} и входное реактивное сопротивление в первом квадранте будет изменяться более медленно, чем у "эталонной" однородной линии длиной l_1+l_2 . При $W_1< W_2$ реактивное сопротивление, наоборот, будет изменяться в первом квадранте быстрее, чем у "эталонной" линии.

При построении графиков $z_{g,x} = f\left[m\left(l_1 + l_2\right)\right]$ необходимо построить годограф изображающего вектора $\overline{k} + \overline{p}$. Точки пересечения годографа с горизонтальной и вертикальной осями определяют электрическую длину неоднородной линии при последовательном и параллельном резонансе.

На рис. 3,a приведен годограф изображающего вектора $\overline{k}+\overline{p}$ при $|\overline{p}|=0.5,\ l_1=l_2$ и $W_1>W_2,\ a$ на рис. $3,\delta-$ при $W_1>W_2.$

В соответствии с данными рис. 3 на рис. 4 приведены кривые $z_{ax} = f\left[m\left(l_1 + l_2\right)\right]$ в диапазоне частот для однородной линии и для составной линии при каскадном соединении отрезков.

⁷ Телевидение, вып. 20—22

Из рис. З и 4 следует, что при $l_1 = l_2$ происходит сдвиг точек параллельного резонанса, а точки последовательного резонанса не сдвигаются.

Если $l_1 \neq l_2$, годограф изображающего вектора $\overline{k} + \overline{p}$ будет представлять более сложную кривую. Эта кривая будет замкнутой, если при изменении длины волны вектор \overline{k} опишет

Рис. 4

дугу, равную $2N\pi$, а вектор p—дугу, равную $2M\pi$ (где M н N—целые числа):

 $\frac{l_1+l_2}{l_1-l_2}=\frac{N}{M}.$

В качестве примера на рис. 5 приведена векторная диаграмма, а на рис. 6-графики изменения входного сопротивле-

ния для случая
$$\frac{W_1 + W_2}{W_1 - W_2} =$$

$$= 2 \quad \text{if } \frac{l_2 + l_1}{l_1 - l_2} = 2.$$

Подобные линии целесообразно использовать в контурах приемников и гетеродинов.

рассмотрим, Кратко как меняется входное сопротивление при изменении длины отрезковлинии.

Можно выделить нехарактерные которые случаи:

 l_1) изменение l_1 таким образом, что всегда $l_1 > l_2$;

2) изменение l_2 таким образом, что всегда $l_2 > l_1$;

3) переход от $l_1 > l_2$ (или $l_1 > l_2$) через точку $l_1 = l_2$; 4) изменение l_1 и l_2 при соблюдении условия $l_1 + l_2 = \text{const}$; 5) изменение l_1 и l_2 при соблюдении условия $l_1 - l_2 = \text{const}$. В первом случае изображающий вектор будет при измене-

Если $l_1 + l_2 = \mathrm{const}$, то вектор k будет неподвижным, и входное сопротивление будет меняться вокруг величины z_{sx} о (см. рис. 2); при $l_1 - l_2 = \text{const}$ вектор p перемещается параллельно самому себе. Конструктивно подобные элементы трудно осуществимы.

В рассматриваемых случаях можно использовать выражение (3), которое удобно привести к следующему виду:

$$\sin \gamma = \frac{\sin 2ml_2}{\sqrt{1 + \left(\frac{W_1 + W_2}{W_1 - W_2}\right)^2 + 2\frac{W_1 + W_2}{W_1 - W_2}\cos 2ml_2}}.$$
 (5)

- 99

При $ml_2 = {
m const}$ угол γ является постоянной величиной, а график входного сопротивления представляет собой тангенсоиду, сдвинутую по оси абсцисс на угол γ .

Методика построения векторных диаграмм при последовательном и параллельном включении отрезков линий является аналогичной. Следует указать, что входное сопротивление в этих случаях также можно нормализовать либо относительно W_1 ,

либо относительно W_2 . Например, если нормализовать выражение (26) относительно W_1 , получим:

$$z_{\theta x} = \frac{Z_{\theta x}}{W_1} = \frac{\frac{W_1 + W_2}{W_1} \sin m (l_1 + l_2) + \frac{W_1 - W_2}{W_1} \sin m (l_1 - l_2)}{\cos m (l_1 + l_2) + \cos m (l_1 - l_2)}.$$
 (6)

Векторы \overline{k} и \overline{p} в этом случае можно разложить на составляющие правого и левого вращения.

Метод изображающих векторов может быть использован и при большом количестве отрезков линии. Например, для короткозамкнутой линии из трех отрезков различной длины с различным волновым сопротивлением получаем (отсчет W_i и l производится от входных зажимов):

$$z_{nx} = \frac{z_{nx}}{W_1} = \frac{tg \, ml_1 - \frac{W_3}{W_1} tg \, ml_1 tg \, ml_2 tg \, ml_3 + \frac{W_2}{W_1} tg \, ml_2 + \frac{W_3}{W_1} tg \, ml_3}{1 - \frac{W_3}{W_2} tg \, ml_2 tg \, ml_3 - \frac{W_2}{W_1} tg \, ml_1 tg \, ml_2 - \frac{W_3}{W_1} tg \, ml_1 tg \, ml_3} = \frac{\left(1 + \frac{W_3}{W_2}\right) \sin m \, (l_1 + l_2 + l_3) + \left(1 - \frac{W_3}{W_2}\right) \sin m \, (l_1 + l_2 - l_3) + \left(1 + \frac{W_3}{W_2}\right) \cos m \, (l_1 + l_2 + l_3) + \left(1 - \frac{W_3}{W_2}\right) \cos m \, (l_1 + l_2 - l_3) + \left(1 - \frac{W_3}{W_2}\right) \sin m \, (l_1 - l_2 + l_3) + \left(1 + \frac{W_3}{W_2}\right) \cos m \, (l_1 - l_2 - l_3) - \left(1 - \frac{W_3}{W_2}\right) \cos m \, (l_1 - l_2 + l_3) + \left(1 + \frac{W_3}{W_2}\right) \cos m \, (l_1 - l_2 - l_3) + \left(1 - \frac{W_2 + W_3}{W_1}\right) \sin m \, (l_1 + l_2 + l_3) - \left(\frac{W_2 - W_3}{W_1}\right) \sin m \, (l_1 + l_2 - l_3) + \left(\frac{W_2 - W_3}{W_1}\right) \cos m \, (l_1 + l_2 + l_3) + \left(\frac{W_2 - W_3}{W_1}\right) \cos m \, (l_1 + l_2 - l_3) - \left(\frac{W_2 - W_3}{W_1}\right) \sin m \, (l_1 - l_2 + l_3) + \left(\frac{W_2 + W_3}{W_1}\right) \sin m \, (l_1 - l_2 - l_3) - \left(\frac{W_2 - W_3}{W_1}\right) \cos m \, (l_1 - l_2 + l_3) - \left(\frac{W_2 + W_3}{W_1}\right) \sin m \, (l_1 - l_2 - l_3) - \left(\frac{W_2 - W_3}{W_1}\right) \cos m \, (l_1 - l_2 + l_3) - \left(\frac{W_2 + W_3}{W_1}\right) \cos m \, (l_1 - l_2 - l_3) - \left(\frac{W_2 - W_3}{W_1}\right) \cos m \, (l_1 - l_2 + l_3) - \left(\frac{W_2 + W_3}{W_1}\right) \cos m \, (l_1 - l_2 - l_3) - \left(\frac{W_2 - W_3}{W_1}\right) \cos m \, (l_1 - l_2 - l_3) - \left(\frac{W_2 - W_3}{W_1}\right) \cos m \, (l_1 - l_2 - l_3) - \left(\frac{W_2 - W_3}{W_1}\right) \cos m \, (l_1 - l_2 - l_3) - \left(\frac{W_2 - W_3}{W_1}\right) \cos m \, (l_1 - l_2 - l_3) - \left(\frac{W_2 - W_3}{W_1}\right) \cos m \, (l_1 - l_2 - l_3) - \left(\frac{W_2 - W_3}{W_1}\right) \cos m \, (l_1 - l_2 - l_3) - \left(\frac{W_2 - W_3}{W_1}\right) \cos m \, (l_1 - l_2 - l_3) - \left(\frac{W_2 - W_3}{W_1}\right) \cos m \, (l_1 - l_2 - l_3) - \left(\frac{W_2 - W_3}{W_1}\right) \cos m \, (l_1 - l_2 - l_3) - \left(\frac{W_2 - W_3}{W_1}\right) \cos m \, (l_1 - l_2 - l_3) - \left(\frac{W_2 - W_3}{W_1}\right) \cos m \, (l_1 - l_2 - l_3) - \left(\frac{W_2 - W_3}{W_1}\right) \cos m \, (l_1 - l_2 - l_3) - \left(\frac{W_2 - W_3}{W_1}\right) \cos m \, (l_1 - l_2 - l_3) - \left(\frac{W_2 - W_3}{W_1}\right) \cos m \, (l_1 - l_2 - l_3) - \left(\frac{W_2 - W_3}{W_1}\right) \cos m \, (l_1 - l_2 - l_3) - \left(\frac{W_2 - W_3}{W_1}\right) \cos m \, (l_1 - l_2 - l_3) - \left(\frac{W_2 - W_3}{W_1}\right) \cos m \, (l_1 - l_2 - l_3) - \left(\frac{W_2 - W_3}{W_1}\right) \cos m \, (l_1 - l_2 -$$

Графическое изображение этого соотношения возможно помощью четырех векторов правого и четырех векторов леого вращения.

Для случая последовательного включения трех короткозамк-

$$z_{sx} = \frac{Z_{sx}}{W_1 + W_2 + W_3} =$$

$$= \frac{\sin m (l_1 + l_2 + l_3) + \frac{W_1 + W_2 - W_3}{W_1 + W_2 + W_3} \sin m (l_1 + l_2 - l_3) +}{\cos m (l_1 + l_2 + l_3) + \cos m (l_1 + l_2 - l_3) +}$$

$$+ \frac{W_1 - W_2 - W_3}{W_1 + W_2 + W_3} \sin m (l_1 - l_2 + l_3) +}{\cos m (l_1 - l_2 + l_3) +}$$

$$+ \frac{W_1 - W_2 - W_3}{W_1 + W_2 + W_3} \sin m (l_1 - l_2 - l_3)$$

$$+ \cos m (l_1 - l_2 - l_3) \qquad (8)$$

Это выражение может быть представлено на векторной заграмме с помощью четырех векторов правого вращения и векторов левого вращения.

Данный метод анализа удобно использовать при расчете таких элементов, как бесконтактные замыкатели контуров, емкостные вращающиеся сочленения, дроссельные волноводные фланцы и т. п. Например, анализ диапазонных свойств S-образного бесконтактного замыкателя (рис. 7, a) сводится к исследованию комбинации отрезков линий, схема которых приведена на рис. 7, 6.

Рис. 7

Входные сопротивления справа от точек a-a и b-b мало от личаются от входного сопротивления отрезка линии с волновым сопротивлением W и длиной l_2 , так как:

a) $W_1 \ll W$ и $W_2 \ll W$;

б) длины отрезков с волновыми сопротивлениями W_1 и W с одной стороны, и W, с другой, равны, а знаки реактивны сопротивлений—противоположны. Поэтому приходим к экви валентной схеме рис. 7, s, свойства которой разобраны выш

ЛИТЕРАТУРА

1. Техника сверхвысоких частот, под ред. Т. Р. Брахмана, т. II, "Совє ское радио", 1953.

2. В. М. Агафонов, Каскадное соединение двух отрезков длини линии, "Техника телевидения", 1955, вып. 8 (14).

Статья поступила 1/IV 1956 г.

Инж. В. М. ЗУСМАНОВИЧ

КОЛОРИМЕТРИЧЕСКИЕ ПРИНЦИПЫ РАСЧЕТА СОВМЕСТИМОЙ СИСТЕМЫ ЦВЕТНОГО ТЕЛЕВИДЕНИЯ

В статье приведен цветовой расчет системы цветного телевидения, даны основные положения, определяющие цветовые характеристики системы. Рассмотрены различные возможные варианты датчиков одновременных сигналов и соответствующие им уравнения пересчетных схем. Приведен анализ разностных величин, полученных в результате преобразования основных колориметрических уравнений, выбраны основные оси для дальнейших преобразований, показана рациональность перехода к новым осям и определены соответствующие уравнения для пересчетных схем. Определены уравнения обратных пересчетных схем в приемнике. Приведена блок-схема совместимой системы цветного телевидения.

Введение

Вследствие трехмерности цвета для воспроизведения цветного изображения принципиально требуется втрое больше информаций, чем для воспроизведения черно-белого изображения. На основании этого положения в Советском Союзе была разработана и выполнена система цветного телевидения с последовательной передачей цветов по полям. Эта система, обеспечивая достаточно высокое качество цветного телевизионного изображения, требовала тройной по ширине полосы частот.

В настоящее время, благодаря ряду работ, проведенных в области исследования цветового зрения, оказалось возможным при выборе и расчете параметров новой системы цветного телевидения учесть ряд особенностей цветового зрения, как, например, изменение законов восприятия цветов при уменьшении размеров наблюдаемого объекта и др. Учет этих особенностей дает возможность уменьшить количество необходимой информации об объекте, что в свою очередь позволяет уменьшить ширину полосы частот канала связи.

Условие обеспечения совместимости обязывает иметь в эфире сигнал, который мог бы быть принят непосредственно на черно-белые приемники, и при этом полученное черно-белое изображение должно являться психологически точной репро-

дукцией цветного объекта.

Идеальным сигналом для психологически точного воспроизведения изображения цветного объекта в черно-белых (яркостных) градациях является сигнал, пропорциональный колориметрическому параметру Y, так как по оси Y в международной системе цветовых координат откладываются величины, пропорциональные яркости (количественной характеристике) цвета.

Любой цвет на экране приемного устройства образуется как некоторая сумма основных цветов, т. е. к устройству, воспроизводящему цвет, должны подводиться сигналы, соотношение которых определяло бы воспроизводимый цвет в си-

стеме координат RGB, где R, G и B—основные цвета приемного устройства.

С другой стороны, вследствие условий, изложенных выше, в канале связи необходимо иметь сигнал, пропорциональный колориметрическому параметру Y, т. е. в канале связи цвет должен быть выражен сигналами, соотношение которых должно быть равно соотношению основных цветов в какой-то системе координат, одной из осей которой является ось Y.

Следовательно, в канале связи должны быть устройства, позволяющие пересчитывать координаты любого цвета из одной системы отсчета в другую, а это может быть практически осуществлено только в такой системе, где все три сигнала, определяющие цвет, имеются в канале связи одновременно.

I. Выбор цветовых параметров приемной стороны

В качестве устройства, преобразующего электрические сигналы в цветное изображение, в одновременной системе цветного телевидения может служить либо трехлучевая мозаичная трубка, либо три приемные трубки с цветными люминофорами и с системой оптического совмещения изображений.

Таким образом, основные цвета приемного устройства определяются спектральными характеристиками выбранных люминофоров. Следовательно, нужно выбрать три люминофора, которые обеспечили бы воспроизведение необходимого количества цветов при достаточной яркости изображения. При этом следует иметь в виду, что очень насыщенные цвета в природе практически встречаются чрезвычайно редко. Такая триада может быть образована, например, люминофорами: ZnSAg (синий), $Zn_2SiO_4 \cdot Mn$ (зеленый) и Zn_3 (PO_4)2 (красный). Эти люминофоры имеют достаточно узкие спектральные характеристики при значительной световой отдаче [Л. 22].

В дальнейшем основные цвета приемного устройства будем обозначать: синий—B, зеленый—G и красный—R.

Для выбранной триады люминофоров трехцветные коэффициенты основных цветов в системе MKO будут:

$$R(x_R=0.670, y_R=0.330);$$

 $G(x_G=0.210, y_G=0.710);$
 $B(x_B=0.140, y_B=0.80).$

Существенную роль при выборе параметров приемного устройства играет выбор белого цвета, который должен получаться при равных сигналах во всех трех цветах. Подбором соотношения яркостей (светоотдач) люминофоров можно в общем случае получить любой цвет смеси. Однако при расчете

системы должен быть выбран один определенный белый цвет который в дальнейшем будет принят как стандартный.

Так как в обычных условиях цвет поверхностей оценивается при освещении их рассеянным дневным светом, то оценку цветопередачи принято проводить применительно к стандартному источнику дневного света C.

Однако наблюдение цветного телевизионного изображения проводится обычно в условиях помещения в вечернее время В этих условиях цвет ахроматических поверхностей оказывается очень близким к цвету свечения источника \boldsymbol{B} .

Рис. 2

А так как желательно, чтобы белый цвет в цветном телс визионном изображении соответствовал бы цвету ахроматических поверхностей, находящихся в поле зрения наблюдатель то и в качестве стандартного белого цвета в телевизионно изображении в дальнейших расчетах нами был принят цве свечения источника В.

Как было указано выше, стандартный белый цвет долже получаться при равных сигналах во всех трех каналах, т. е. пр $E_R = E_G = E_B$. Зная координаты основных цветов приемног устройства R, G и B, можно подсчитать, в каком яркостно соотношении необходимо сложить эти цвета для того, чтоб получить цвет B. (В дальнейшем, чтобы не путать цвет белого с синим цветом B, будем белый стандартный цвет обозначат буквой W.) Расчет этот может быть произведен графическ $[\Lambda, 4]$ (рис. 1). В результате расчета получено требуемое сс отношение яркостей W = 0.08B + 0.59G + 0.33R, т. е. белы цвет может быть получен при соотношении яркостей основны цветов:

$$Y_R: Y_Q: Y_R = 0.242:1.75:1.00.$$

Исходя из заданного соотношения яркостей люминофоров $Y_B:Y_G:Y_R$, можно рассчитать относительные высоты максимумов их характеристик. В результате такого расчета получены требуемые характеристики излучения люминофоров по спектру при равном возбуждении. Эти характеристики, приведенные на рис. 2, и положены в основу дальнейшего цветового расчета системы.

II. Выбор цветовых характеристик передающей стороны

Расчет требуемых цветовых характеристик передающей стороны может быть произведен, исходя из различных положений.

1. Характеристики передающей стороны должны обеспечивать физиологически точное воспроизведение цветов объекта на экране приемного устройства с основными цветами R, G, B [Л. 8].

В основу расчета кладется условие, что

$$\begin{cases}
 X_2 = kX_1, \\
 Y_2 = kY_1, \\
 Z_2 = kZ_1,
 \end{cases}
 \tag{1}$$

где индексом $_1$ обозначаются величины, определяющие цвет объекта, а индексом $_2$ —цвет изображения.

Подставляя в (1) значения координат цвета объекта и изображения, получим n систем уравнений типа

$$k'\varphi_{R_{\lambda i}} = \bar{x}_{\lambda i} (Y_{G}Z_{B} - Y_{B}Z_{G}) + \bar{y}_{\lambda i} (X_{B}Z_{G} - X_{G}Z_{B}) + + \bar{z}_{\lambda i} (X_{G}Y_{B} - X_{B}Y_{G});$$

$$k'\varphi_{G_{\lambda i}} = \bar{x}_{\lambda i} (Y_{B}Z_{R} - Y_{R}Z_{B}) + \bar{y}_{\lambda i} (X_{R}Z_{B} - X_{B}Z_{R}) + + \bar{z}_{\lambda i} (X_{B}Y_{R} - X_{R}Y_{B});$$

$$k'\varphi_{B_{\lambda i}} = \bar{x}_{\lambda i} (Y_{R}Z_{G} - Y_{G}Z_{R}) + \bar{y}_{\lambda i} (X_{G}Z_{R} - X_{R}Z_{G}) + + \bar{z}_{\lambda i} (X_{R}Y_{G} - X_{G}Y_{R}),$$
(2)

 $i=1, 2, 3, \ldots, n$, причем n-число дискретных участков спектра;

 $\varphi_{R}(\lambda), \ \varphi_{G}(\lambda)$ и $\varphi_{B}(\lambda)$ —спектральные характеристики передающей стороны;

 $\overline{x}(\lambda), \overline{y}(\lambda)$ и $\overline{z}(\lambda)$ —кривые удельных компонентов излучения с длиною волны λ ;

$$X_R$$
, Y_R , Z_R , X_G , Y_G , Z_G , X_B , Y_B и Z_B — координаты основных и цветов приемного устройства; k' — коэффициент пропорциональности.

Для основных цветов приемной стороны, принятых в 1-м параграфе, имеем:

$$R(X_R=1.93; Y_R=1.00; Z_R=0.001);$$

 $G(X_G=0.50; Y_G=1.75; Z_G=0.20);$
 $B(X_B=0.42; Y_B=0.24; Z_B=2.19).$

Рис. 3

Тогда

где $i=1, 2, 3, \ldots, n$.

Рассчитанные таким образом спектральные характеристики преобразования, или, иными словами, спектральные характери108

стики передающей стороны (рис. 3), должны быть получены путем специального подбора спектральных характеристик фо-

токатодов, светоделительных зеркал и светофильтров.

Однако характеристики передающей стороны, рассчитанные таким способом, имеют серьезный недостаток. Поскольку в качестве основных цветов приемного устройства могут быть выбраны лишь цвета реально существующие, т. е. расположенные внутри поля цветов, охватываемого линией спектральных цветов на графике MKO, то часть поля цветов оказывается вне треугольника, построенного на основных цветах.

Таким образом, получаются области, для воспроизведения которых потребовались бы отрицательные количества основных цветов. В рассматриваемом случае наличие областей невоспроизводимых цветов даст отрицательные ветви в кривых $\varphi_R(\lambda)$, $\varphi_G(\lambda)$ и $\varphi_B(\lambda)$. Реально воспроизвести отрицательные ветви в спектральных характеристиках невозможно. Поэтому при подборе всех указанных элементов приходится просто пренебрегать отрицательными участками кривых, что безусловно вносит определенные искажения цветопередачи. При попытках компенсировать срезание отрицательных ветвей кривых соответственным изменением положительных ветвей искажения цветов в изображении все же остаются.

2. Характеристики передающей стороны должны в точности соответствовать кривым удельных компонентов $x(\lambda)$, $y(\lambda)$, $z(\lambda)$) [Л. 9]. Кривые $x(\lambda)$, $y(\lambda)$ и $z(\lambda)$ не имеют отрицательных ветвей (рис. 4) и могут быть реально воспроизведены. Такие кривые могут быть применены в качестве характеристик передающей стороны, исходя из тех соображений, что они линейно связаны с кривыми $\varphi_R(\lambda)$, $\varphi_G(\lambda)$ и $\varphi_B(\lambda)$ [см. (3)]. Следовательно, в случае одновременного существования в канале связи (от какого-то цвета) трех сигналов, пропорциональных величинам X, Y и Z, эти сигналы могут быть при помощи пересчетных схем преобразованы в сигналы, пропорциональные величинам R, G и G, которые характеризуют воспроизведение передаваемого цвета на приемной стороне.

Можно показать, что связь между величинами R, G, B и X, Y, Z для любого цвета выражается уравнениями:

$$R = p'_{1}X + (1 - fp'_{1} - gq'_{1})Y + q'_{1}Z;$$

$$G = p'_{2}X + (1 - fp'_{2} - gq'_{2})Y + q'_{2}Z;$$

$$B = p'_{3}X + (1 - fp'_{3} - gq'_{3})Y + q'_{3}Z,$$
(4)

где p_1' и q_1' —функции плоскостных координат основных цветов приемного устройства $(x_R, y_R, x_G, y_G, x_B, y_B)$, f и g—коэффициенты, зависящие от выбора равносигнального белого цвета.

Если подсчитать значения коэффициентов p_1' , q_1' , f и q и подставить их в выражения (4), то получим уравнения для пересчетных схем:

$$R = 1,712 X - 0,474 Y - 0,260 Z;$$

$$G = -0,993 X + 2,010 Y - 0,030 Z;$$

$$B = 0,081 X - 0,167 Y + 1,280 Z.$$
(5)

Однако, хотя кривые $\overline{x}(\lambda)$, $\overline{y}(\lambda)$, $\overline{z}(\lambda)$ и не имеют отрицательных ветвей, практическое их воспроизведение в качестве

Рис. 4

характеристик передающей стороны очень затруднено наличием второго максимума у кривой $\overline{x}(\lambda)$.

3. Характеристики передающей стороны должны быть линейно связаны с кривыми удельных компонентов, не должны иметь отрицательных ветвей и должны иметь форму, удобную для практического воспроизведения.

В качестве таких характеристик могут быть приняты "новые" кривые удельных компонентов $\overline{x}_{\mu}(\lambda), \overline{y}_{\mu}(\lambda), \overline{z}_{\mu}(\lambda)$. Последняя система предложена сотрудниками ВНИСИ т.т. Шкловером Д. А. и Иоффе Р. С. при разработке ими фотоэлектрического колориметра [Л. 27].

Новые кривые удельных компонентов находятся подбором, ак чтобы кривая $\overline{x}_{\mu}(\lambda)$ не имела второго максимума. Масштабы сривых выбираются таким образом, чтобы площади, ограниченные ими, были равны (как и в системе XYZ). Тогда

$$\overline{x}_{\kappa}(\lambda) = 0.833\overline{x}(\lambda) + 0.333\overline{y}(\lambda) - 0.167\overline{z}(\lambda);$$

$$\overline{y}_{\kappa}(\lambda) = \overline{y}(\lambda);$$

$$\overline{z}_{\mu}(\lambda) = \overline{z}(\lambda).$$

Кривые $\overline{x}_{\kappa}(\lambda)$, $\overline{y}_{\kappa}(\lambda)$ и $\overline{z}_{\kappa}(\lambda)$ приведены на рис. 5.

Рис. 5

[Связь между системами координат $X_{\mu}Y_{\nu}Z_{\mu}$ и RGB можно пределить, подставив в уравнения (5) значения X, Y, Z, вызаженные через X_{μ} , Y_{μ} и Z_{μ} . Можно показать, что

$$X = 0.833 X_{\kappa};$$

 $Y = 0.333 X_{\kappa} + Y_{\kappa};$
 $Z = -0.167 X_{\kappa} + Z_{\kappa}.$

огда:

$$R = 1,311 X_{\mu} - 0,474 Y_{\mu} - 0,260 Z_{\mu};$$

$$G = -0,153 X_{\mu} + 2,010 Y_{\mu} - 0,030 Z_{\mu};$$

$$B = -0,203 X_{\mu} - 0,167 Y_{\mu} + 1,280 Z_{\mu}.$$
(6)

Таким образом, если выполнить характеристики передаю щей стороны системы соответствующими кривым $\overline{x}_{\kappa}(\lambda)$, $\overline{y}_{\mu}(\lambda)$ $\overline{z}_{\kappa}(\lambda)$, то пересчет сигналов, полученных при передаче любого цвета, в сигналы, которые нужно подвести к приемному устрой ству для синтеза того же цвета, должен производиться согла сно уравнениям (6).

4. Анализатором цвета является передающее устройство телевизионной системы со сменой цветов по полям. В этом

случае характеристики передающей стороны должны оставатьс такими же, какими они были выбраны при расчете, исходяще из параметров приемного устройства с механической смено цветов. Это требование возникает из необходимости сохранени возможности контроля изображения, получаемого в системе с сменой цветов по полям. Затем при помощи специальног устройства три сигнала, существующие в канале связи, после довательно должны быть перезаписаны в три одновременны сигнала, причем соотношение между ними не должно быт нарушено.

Полученные таким образом сигналы оказываются соответствующими основным цветам приемного устройства со смено цветов по полям. Назовем эти цвета буквами K(x=0,710, y=0,290), 3(x=0,232, y=0,616) и C(x=0,136, y=0,090).

Для того чтобы обеспечить правильное воспроизведени цветов на приемном устройстве с основными цветами R, G, ℓ

сигналы, пропорциональные величинам K, S, C, должны быть соответствующим образом пересчитаны.

Графически (рис. 6) можно рассчитать яркостные соотношения, в которых надо взять цвета K, S и C для получения в качестве смесей цветов R, G, B и W:

$$R = -0.005 C + 0.215 3 + 0.790 K;$$

$$G = -0.015 C + 1.045 3 - 0.030 K;$$

$$B = 1.100 C - 0.145 3 + 0.045 K;$$

$$W = 0.079 C + 0.669 3 + 0.252 K.$$
(7)

Однако для определения уравнений пересчета необходимо иметь не яркостные, а энергетические соотношения, т. е. соотношения сигналов. Определить энергетические соотношения цветов K, S и C можно, исходя из следующих соображений: система цветов KSC (в установке цветного телевидения со сменой цветов по полям), так же как и система цветов RGB, сбалансирована относительно цвета W. Иными словами, цвет W получается при равных сигналах, т. е. энергетическое соотношение цветов K, S и C для цвета W можно записать

$$E_K^W: E_3^W: E_C^W = 1:1:1.$$

Зная энергетическое и яркостное соотношения цветов для одного цвета смеси (например, W) и яркостное соотношение этих же цветов для другого цвета смеси (например, R), можно определить для последнего соотношение энергетическое:

$$E_C^R: E_3^R: E_K^R = \frac{C_R E_C^W}{C_W}: \frac{3_R E_3^W}{3_W}: \frac{K_R E_K^W}{K_W}.$$

Тогда для цвета R из уравнений (7) получим

$$C_R: \mathcal{S}_R: K_R = -0.023:1:3.680;$$

$$E_C^R: E_S^R: E_K^R = \frac{-0.023}{0.118}:1:\frac{3.680}{0.377} = -0.198:1:9.780.$$

Аналогично находим

$$C_{G}: \mathcal{S}_{G}: K_{G} = -0.014:1:(-0.029);$$

 $E_{C}^{G}: E_{3}^{G}: E_{K}^{G} = -0.122:1:(-0.077);$

и, наконец,

$$C_B: \mathcal{B}_B: K_B = 7,590: (-1): 0,310;$$

 $E_C^B: E_3^B: E_K^B = 64,3: (-1): 0,823.$

Телевидение, вып. 20—22

Найденные энергетические соотношения можно переписать в виде

$$E_{R} = -0.019E_{C} + 0.094E_{3} + 0.925E_{K};$$

$$E_{G} = -0.152E_{C} + 1.247E_{3} - 0.095E_{K};$$

$$E_{B} = 1.003E_{C} - 0.016E_{3} + 0.013E_{K}.$$
(8)

Последние выражения (8) и будут являться уравнениями пересчета сигналов из системы с основными цветами K, G, G в систему с основными цветами G, G, G.

В этом случае искажения цветов за счет срезания отрицательных ветвей характеристик передающей стороны остаются и, кроме того, несколько уменьшается количество цветов, которые могут быть воспроизведены на приемном устройстве.

III. Датчики одновременных сигналов

В качестве датчиков одновременных сигналов, в зависимости от назначения аппаратуры, могут служить:

1) телевизионная камера с тремя передающими трубками— для студийных передач;

2) телекинопроектор с бегущим лучом—для кинопередач;

3) аппаратура телевизионной системы со сменой цветов по полям совместно с устройством перезаписи—для передач обоих типов;

4) испытательный генератор, дающий стандартные сигналы и служащий для проверки точности работы всей установки.

Для первых двух типов датчиков в качестве характеристик передающей стороны можно принять "новые" кривые удельных компонентов $x_n(\lambda)$, $y_n(\lambda)$ и $z_n(\lambda)$ (см. рис. 5). О преимуществе таких характеристик было сказано выше. Приняв определенные характеристики передающей стороны, можно рассчитать требуемые спектральные характеристики отдельных элементов: светофильтров, фотокатодов и т. д. При этом, вследствие различия спектрального состава излучения осветителей, характеристики светофильтров для студийной камеры и для телекинопроектора даже при одинаковых характеристиках фотокатодов оказываются различными.

Студийная камера с тремя передающими трубками

Схема светоделения приведена на рис. 7. На этой схеме O—объектив камеры, s_1 и s_2 —зеркала, производящие светоделение (могут быть использованы либо полупрозрачные зеркала, либо интерференционные светоделители); s_3 и s_4 —непрозрачные зеркала; Φ_1 , Φ_2 , Φ_3 —светофильтры; Φ_3 , Φ_4 —передающие телевизионные трубки.

Зеркала 3_8 и 3_4 служат для изменения направления световых пучков, их спектральные характеристики должны быть нейтральными, т. е. $\rho_{38}(\lambda) = \rho_3 = \mathrm{const}$ и $\rho_{34}(\lambda) = \rho_4 = \mathrm{const}$. Если предположить, что светоделение производится полупрозрачными нейтральными зеркалами, то $\tau_{31}(\lambda) = \tau_1 = \mathrm{const}$, $\rho_{31}(\lambda) = \rho_1 = \mathrm{const}$, $\tau_{32}(\lambda) = \tau_2 = \mathrm{const}$ и $\rho_{32}(\lambda) = \rho_2 = \mathrm{const}$.

Для рассматриваемого случая получается n систем уравений типа

$$\tau_{\phi^{1}\lambda_{i}} \varepsilon_{1\lambda i} = K_{1} \overline{x}_{\kappa_{\lambda i}};
\tau_{\phi^{2}\lambda_{i}} \varepsilon_{2\lambda i} = K_{2} \overline{y}_{\kappa_{\lambda i}};
\tau_{\phi^{3}\lambda_{i}} \varepsilon_{3\lambda i} = K_{3} \overline{z}_{\kappa_{\lambda i}};$$
(9)

(e

$$K_1 = \frac{k_1}{k' \tau_1 \rho_2 \rho_3};$$

$$K_2 = \frac{k_1}{k''\tau_1\tau_2} \; ;$$

$$K_3 = \frac{k_1}{k''' \rho_1 \rho_4};$$

$$i = 1, 2, 3, \dots, n$$
.

В уравнениях (9) принято:

 $\tau = \tau(\lambda)$ и $\rho = \rho(\lambda)$ —коэффициенты пропускания и коэффициенты отражения зеркал 3_1 , 3_2 , 3_8 , 3_4 и светофильтров;

 $\varepsilon = \varepsilon (\lambda)$ —спектральная чувствительность фотокатолов:

 k_1 , k', k'', k'''—коэффициенты пропорциональности.

Задаваясь спектральными характеристиками фотокатодов (реальных), можно рассчитывать требуемые характеристики светофильтров.

Отношение коэффициентов K_1 , K_2 и K_3 определяет при за данных величинах чувствительности фотокатодов относительные масштабы кривых $\tau_{\phi}(\lambda)$. Однако в одновременной систем нет необходимости выдерживать точное соотношение высом максимумов спектральных характеристик светофильтров, то как в этом случае неправильное соотношение фототоком может быть исправлено путем дополнительной установки не тральных светофильтров.

Требуемые спектральные характеристики светофильтров достудийной телевизионной камеры с тремя передающими тру ками с висмутовыми фотокатодами при применении полупро рачных зеркал приведены на рис. 8. Масштаб любой из кр вых может быть изменен умножением всех ее ординат на п стоянный множитель.

Однако рассмотренный случай светоделения является эне гетически невыгодным вследствие больших потерь лучист энергии.

Гораздо более выгодным является вариант светоделител ного устройства с интерференционными светоделителями [Л. 2 В этом случае при расчете необходимо определить требуем спектральные характеристики светоделительных зеркал.

Чтобы получить максимальный выигрыш от применения светоделительных зеркал, желательно обойтись без светофильтров. Тогда уравнения (9) можно переписать следующим образом:

$$\begin{split} \tau_{_{31}_{\lambda i}} \rho_{_{32}_{\lambda i}} & \epsilon_{_{1}\lambda i} = K_{_{1}}^{'} \overline{X}_{_{H_{\lambda i}}}; \\ \tau_{_{31}_{\lambda i}} \tau_{_{32}_{\lambda i}} & \epsilon_{_{2}\lambda i} = K_{_{2}}^{'} \overline{y}_{_{H_{\lambda i}}}; \\ \rho_{_{31}_{\lambda i}} & \epsilon_{_{3\lambda i}} = K_{_{3}}^{'} \overline{z}_{_{H_{\lambda i}}}; \\ i &= 1, 2, 3, \dots, n; \\ K_{_{1}}^{'} &= \frac{k_{_{1}}}{k'' \tau_{_{\mathcal{O}^{1}}} \rho_{_{3}}}; \\ K_{_{2}}^{'} &= \frac{k_{_{1}}}{k''' \tau_{_{\mathcal{O}^{2}}}}; \\ K_{_{3}}^{'} &= \frac{k_{_{1}}}{k''' \tau_{_{\mathcal{O}^{3}}} \rho_{_{4}}}. \end{split}$$

где

Если пренебречь поглощением лучистой энергии светоделиельными зеркалами (в реальных зеркалах коэффициент поглоцения составляет примерно 1%), то коэффициент пропускания каждого зеркала может быть выражен через коэффициент тражения, т. е.

$$\tau_{31}(\lambda) = 1 - \rho_{31}(\lambda);$$

$$\tau_{32}(\lambda) = 1 - \rho_{32}(\lambda).$$

Тогда последние уравнения примут вид:

$$\begin{pmatrix}
(1 - \rho_{\mathfrak{s}1_{\lambda i}}) \rho_{\mathfrak{s}2_{\lambda i}} \varepsilon_{1\lambda i} = K_{1}' \overline{X}_{n_{\lambda i}}; \\
(1 - \rho_{\mathfrak{s}1_{\lambda i}}) (1 - \rho_{\mathfrak{s}2_{\lambda i}}) \varepsilon_{2\lambda i} = K_{2}' \overline{y}_{n_{\lambda i}}; \\
\rho_{\mathfrak{s}1_{\lambda i}} \varepsilon_{3\lambda i} = K_{3}' \overline{z}_{n_{\lambda i}}.
\end{pmatrix} (10)$$

Если задаться спектральной чувствительностью передающих рубок, то получаем для каждой длины волны λ систему из рех уравнений с двумя неизвестными ($\rho_{31\lambda i}$ и $\rho_{32\lambda i}$). Для обетечения совместности уравнений (10) необходимо ввести в дин из каналов корректирующий светофильтр. Однако при гом имеется возможность варьировать спектральные характейстики отдельных элементов светоделительного устройства ак, например, можно из первых двух уравнений определить ребуемые кривые $\rho_{31}(\lambda)$ и $\rho_{32}(\lambda)$. Тогда для обеспечения правильного светоделения потребуется корректирующий светофильтр Φ_3 ,

значение ординат спектральной характеристики которого может быть определено из выражения

$$\tau_{\phi^{3\lambda i}} = \frac{K_3^* \bar{z}_{\mu \lambda i}}{\rho_{31\lambda i} \epsilon_{3\lambda i}},$$

где

$$K_3^{''}=\frac{k_1}{k'''\rho_4}.$$

Аналогичным способом можно определить требуемые спектральные характеристики корректирующих светофильтров Φ_2 или Φ_1 , если значения $\rho_{31}(\lambda)$ и $\rho_{32}(\lambda)$ найти из первого и третьего или второго и третьего уравнений соответственно. Следовательно, при применении студийной телевизионной

Следовательно, при применении студийной телевизионной камеры с тремя передающими трубками (если задаться реальными спектральными характеристиками фотокатодов) мы обязательно, хотя бы в одном из трех световых каналов, должны иметь корректирующий светофильтр.

Телекинопроектор с бегущим лучом

Схема светоделения приведена на рис. 9. На схеме обозначено: \mathcal{J} —проекционная электроннолучевая трубка; $\Phi \mathcal{J} \mathcal{Y}_{1}$,

 $\phi \partial Y_2$ и $\phi \partial Y_3$ —фотоэлектрические умножители; остальные обс значения те же, что и на рис. 7.

При выводе расчетных формул для этого случая следує учесть, что передаваемый кинокадр освещается светом экран

проекционной трубки, имеющим спектральную характеристику, выражающуюся кривой $P_{\scriptscriptstyle A}(\lambda)$. В то же время известно, что оптимальное воспроизведение цветов в кинофильме обеспечивается при установке в кинопроекторе источника света с цветовой температурой порядка $5000^{\circ}\,\mathrm{K}$.

Таким образом, при расчете характеристик светофильтров необходимо изменить эти характеристики так, чтобы скорректировать установку источника света с неоптимальным спектральным составом излучения.

Спектральные характеристики зеркал 3_8 и 3_4 должны быть нейтральными, т. е. $\rho_{33}(\lambda) = \rho_3 = \mathrm{const}$ и $\rho_{34}(\lambda) = \rho_4 = \mathrm{const}$. Зеркала 3_1 и 3_2 могут быть как полупрозрачными [тогда $\rho_{31}(\lambda) = \rho_1 = \mathrm{const}$; $\tau_{31}(\lambda) = \tau_1 = \mathrm{const}$; $\rho_{32}(\lambda) = \rho_2 = \mathrm{const}$; $\tau_{32}(\lambda) = \tau_2 = \mathrm{const}$], так и светоделительными. Так как при конструировании теледиапроектора и особенно телекинопроектора с бегущим лучом вопрос световой чувствительности имеет решающее значение, то совершенно очевидно, что при расчете светоделительного устройства следует ориентироваться на применение в качестве зеркал 3_1 и 3_2 интерференционных светоделителей. Необходимо отметить, что при этом зеркала 3_1 и 3_2 должны быть помещены в параллельном пучке лучей, так как спектральные характеристики интерференционных светоделителей сильно зависят от угла падения световых лучей.

При применении светоделительных зеркал желательно обойтись без корректирующих светофильтров, т. е. должно быть

$$\tau_{\phi 1}(\lambda) = \tau_{\phi 2}(\lambda) = \tau_{\phi 3}(\lambda) = 1.$$

Если учесть, что для интерференционных светоделителей можно принять

$$\tau_{s1} = 1 - \rho_{s1}$$
 и $\tau_{s2} = 1 - \rho_{s2}$,

то получим п систем уравнений типа

$$\frac{P_{A\lambda l}}{P_{5000\lambda l}} (1 - \rho_{31\lambda l}) \rho_{32\lambda l} \varepsilon_{1\lambda l} = K_{1}^{"'} \overline{x}_{\kappa_{\lambda l}},$$

$$\frac{P_{A\lambda l}}{P_{5000\lambda l}} (1 - \rho_{31\lambda l}) (1 - \rho_{32\lambda l}) \varepsilon_{2\lambda l} = K_{2}^{"'} \overline{y}_{\kappa_{\lambda l}},$$

$$\frac{P_{A\lambda l}}{P_{5000\lambda l}} \rho_{31\lambda l} \varepsilon_{3\lambda l} = K_{3}^{"'} \overline{z}_{\kappa_{\lambda l}},$$
(11)

где

$$i = 1, 2, 3, ..., n;$$
 $K_1''' = \frac{k_1}{k' \rho_{33}};$
 $K_2'''' = \frac{k_1}{k''};$
 $K_3''' = \frac{k_1}{k''' \rho_{24}};$

 $P_{5000} = P_{5000}(\lambda)$ —спектральное распределение энергии излучения абсолютно черного тела при температуре 5000° K;

 $P_{A} = P_{A}(\lambda)$ —спектральное распределение энергии излучения люминофора.

Рис. 10

В системе уравнений (11) известными являются характеристики $\bar{x}_{\kappa}(\lambda)$, $\bar{y}_{\kappa}(\lambda)$, $\bar{z}_{\kappa}(\lambda)$ и $P_{5000}(\lambda)$. Если задаться реальными спектральными характеристиками фотокатодов, то остается оп-

ределить величины $\rho_{31}(\lambda)$, $\rho_{32}(\lambda)$ и $P_{a}(\lambda)$, т. е. имеем в этом случае для каждого значения λ_{i} систему из трех уравнений с тремя неизвестными. Такие системы уравнений решаются однозначно, и, следовательно, в этом случае в результате расчета мы получаем спектральные характеристики отдельных эле-

чентов, обеспечивающие оптимальный с энергетической точки рения вариант светоделения. Если при расчете положить, что рЭУ имеют висмуто-цезиевые фотокатоды, то излучение лючинофора $P_{_{A}}(\lambda)$ должно иметь распределение по спектру, соотетствующее кривой рис. 10, а коэффициенты отражения свеоделительных зеркал—кривым рис. 11. При любом отступлении неальных характеристик от расчетных потребуется введение сорректирующих светофильтров, что безусловно вызовет уменьшение чувствительности датчика.

IV. Яркостный и разностные сигналы

Для того чтобы обеспечить условие совместимости, в канале вязи необходимо иметь сигнал, соответствующий яркости востроизводимого цвета. Такой сигнал должен существовать одногременно с двумя другими, в совокупности с ними полностью пределять цвет и в то же время являться независимым от их, так как, будучи принят на приемные устройства чернобелого телевидения, он должен обеспечить изображение цветного объекта в яркостных градациях.

Таким образом, в канале связи из трех сигналов, опредеияющих цвет, один должен быть пропорционален яркости и не зависеть от цветности, а два других—характеризовать цветность.

С другой стороны, цвет на видеоконтрольном устройстве цветного телевидения воспроизводится за счет суммирования каких-то количествах основных цветов. Поэтому сигналы, подводимые к приемному устройству, должны быть пропорциональны величинам R, G и B.

Следовательно, в телевизионном тракте должны иметься специальные пересчетные схемы, осуществляющие бвязь между

обеими триадами колориметрических параметров.

Для определения уравнений пересчета необходимо произвести преобразование основных колориметрических уравнений [Л. 1,2,3]. В результате может быть получена система гравнений, определяющая любой цвет (X, Y, Z) в системе соординат, построенной на основных цветах R-Y, B-Y и Y. Эти уравнения имеют вид:

$$\begin{array}{c}
R - Y = 1,712 (X - 0.99Y) - 0.260 (Z - 0.85Y); \\
B - Y = 0.082 (X - 0.99Y) + 1.280 (Z - 0.85Y); \\
Y = 0.334R + 0.585G + 0.081B.
\end{array}$$
(12)

Сигнал, пропорциональный величине Y для любого цвета, определит яркость этого цвета. Следовательно, от точности получения в пересчетных схемах и передачи в канале связи чркостного сигнала зависит правильность воспроизведения потутонов в изображении.

Яркостный сигнал в соответствии с уравнениями (12) опре деляется выражением:

$$E_r = 0.334E_R + 0.585E_G + 0.081E_B. (13)$$

Так как цвет определяется триадой сигналов, пропорцио нальных величинам Y, R-Y и B-Y, то для каждого переда ваемого цвета эти три сигнала должны находиться в строго определенном соотношении, т. е. при изменении, например

величины E_{γ} , пропорционально должны измениться величины E_R-E_{γ} и E_B-E_{γ} . Поэтому в дальнейшем можно рассматривать величины разностных сигналов, отнесенных к единице яркости, или, что то же, отношения $\frac{R-\gamma}{\gamma}$ и $\frac{B-\gamma}{\gamma}$.

Так как величины $\frac{R-Y}{Y}$ и $\frac{B-Y}{Y}$ являются параметрами, определяющими цветность воспроизводимого цвета (яркость его определяется целиком яркостным сигналом), то в плоскости цветового графика MKO (x, y) можно нанести координатную сетку в координатах $\frac{R-Y}{Y}$ и $\frac{B-Y}{Y}$ (рис. 12), позволяющую для каждого цвета с координатами x, y определить его координаты в системе $\frac{R-Y}{Y}$ и $\frac{B-Y}{Y}$. Из рис. 12 следует, что если инфор-

мация о цветности воспроизводимого цвета передается сигналами, пропорциональными колориметрическим параметрам R-Y и B-Y, то в случае, когда сигнал, пропорциональный величине R-Y, равен нулю, на экране приемного устройства будут (в зависимости от величины второго сигнала) воспроизводиться цвета, лежащие в плоскости цветового графика на прямой, проходящей через точки с координатами x=0,130; y=0 и x=0,348; y=0,352.

Если же отсутствует сигнал, пропорциональный B-Y, т. е. B-Y=0, то воспроизводимые цвета будут лежать на прямой, проходящей через точки x=1,070; y=0 и x=0,348;

y = 0.352.

В случае присутствия в канале связи обоих сигналов может быть воспроизведен любой цвет, лежащий в пределах тре-

угольника RGB.

Если мы хотим в телевизионном канале связи передать одновременно две информации (R-Y) и B-Y) на одной несущей частоте, то сделать это можно посредством квадратурной модуляции несущей. В этом случае можно представить себе сигналы, пропорциональные величинам R-Y и B-Y, как два взаимно перпендикулярных вектора, определить их геометрическую сумму и считать, что цветовая несущая по амплитуде модулируется величиной результирующего вектора, а по фазеуглом этого же вектора относительно любого постоянного, выбранного заранее направления.

Можно пересечь цветовое тело плоскостью, в которой параллельные прямые $\frac{R-Y}{Y} = \text{const}$ окажутся перпендикулярными

параллельным прямым $\frac{B-Y}{Y}$ = const. В такой плоскости начало

координат окажется в точке равносигнального цвета $W \left| \frac{R-Y}{Y} \right|$

=0 и $\frac{B-Y}{Y}=0$ и каждый цвет может быть выражен как результирующий вектор, построенный на соответствующих векторах $\frac{R-Y}{Y}$ и $\frac{B-Y}{Y}$. Если принять за основное направление, относительно которого будут в дальнейшем определяться все углы, направление, например, совпадающее с направлением вектора $\frac{B-Y}{Y}$ (при $\frac{R-Y}{Y}=0$), то любой цвет в такой плоскости

Y (Y) мсжет быть определен длиной и углом (относительно оси $\frac{B-Y}{Y}$)

результирующего вектора.

Так как определение цвета в выбранной нами плоскости соответствует передаче в канале связи на одной несущей ча-

соответствует передаче в канале связи на одной несущей частоте сигналов, пропорциональных величинам R-Y и B-Y (при квадратурной модуляции), назовем длину вектора цвета

амплитудой, а угол, образуемый им с осью $\frac{B-Y}{Y}$, —фазой ре-

зультирующего вектора.

Воспользовавшись графиком рис. 12, можно определить для любого цвета амплитуду, отнесенную к единице яркости, и фазу результирующего вектора. Амплитуда определится как

$$A = \sqrt{\left(\frac{R-Y}{Y}\right)^2 + \left(\frac{B-Y}{Y}\right)^2},$$

а фаза

$$\Theta^{\circ} = \operatorname{arctg} \frac{R - Y}{B - Y}$$
.

Затем в плоскости цветового графика MKO(x, y) можно построить линии A = const и $\Theta = \text{const}$ (рис. 13).

Из рис. 13 видно, что линии $\Theta = \mathrm{const}$ оказываются прямыми, проходящими через точку W, т. е. каждое значение фазы соответствует определенному цветовому тону. Линии $A = \mathrm{const}$ представляют собой замкнутые кривые, причем большие значения амплитуды соответствуют большей чистоте цвета.

Из рис. 13 следует, что равные изменения фазы и амплитуды результирующего вектора соответствуют различным по величине перемещениям в плоскости цветового графика точки воспроизводимого цвета.

При построении системы очень желательным является условие, чтобы равные изменения амплитуды и фазы, вызываемые помехами и искажениями в схемах, соответствовали бы визуально равным изменениям цвета (выражающимся одинаковым числом цветовых порогов) во всех областях цветового графика.

Известно, что величины перемещений в разных областях цветового графика, соответствующие одному порогу цветоразличения, различны. В качестве критерия одинакового различия между равными по яркости цветами могут быть приняты равные круги в плоскости равноконтрастного графика. Если такие одинаковые круги равноконтрастной плоскости спроектировать в плоскость цветового графика MKO, то получится семейство эллипсов (рис. 14), ориентированных определенным образом.

При сравнении рис. 13 и 14 видно, что ориентация эллип-

сов на обоих рисунках совершенно различна, т. е. одинаковые изменения амплитуды и фазы результирующего вектора вызывают совершенно различные, с точки зрения зрительного восприятия, изменения цвета в различных областях цветового графика. Следовательно, для решения поставленной выше задачи необходимо изменить ориентацию эллипсов амплитуды и относительную густоту линий фазы результирующего вектора. Сделать это можно, подбирая относительные величины единичных векторов в направлении осей $\frac{R-Y}{Y}$ и $\frac{B-Y}{Y}$.

Произвольное изменение величины векторов, ориентированных в различных направлениях в цветовом пространстве, является преобразованием вполне законным, так как соотношение длины отрезков имеет смысл (с точки зрения цветового пространства) только для одного направления и не имеет смысла для разных направлений. В результате расчета оптимальными относительными величинами единичных векторов оказались величины

$$\frac{R-Y}{Y} \quad \text{if} \quad \frac{1}{2.7} \cdot \frac{B-Y}{Y}.$$

В этом случае распределение линий относительной амплитуды и фазы результирующего вектора оказывается соответствующим рис. 15. При сопоставлении рис. 15 и рис. 14 видно, что визуально равным изменениям цвета соответствуют приблизительно одинаковые изменения амплитуды и фазы результирующего вектора.

Таким образом, если в качестве единичных векторов принять векторы, пропорциональные величинам $\frac{R-Y}{Y}$ и $\frac{1}{2,7} \cdot \frac{B-Y}{Y}$, и передавать в канале связи сигналы, соответствующие этим величинам, при помощи квадратурной модуляции поднесущей, то воспроизводимый цвет определится как результирующий вектор, фаза которого определяет цветовой тон, а амплитуда соответствует чистоте воспроизводимого цвета. При этом равные отклонения амплитуды или фазы вызовут приблизительно визуально одинаковые искажения воспроизводимого цвета в любой области цветового графика.

В этом случае в канале связи должно существовать одновременно три сигнала. Сигнал, пропорциональный величине Y,

пределяет яркость объекта и может быть отдельно принят на риемники черно-белого телевидения, а два разностных синала, пропорциональные величинам R-Y и $\frac{B-Y}{2,7}$ при заданом У, определяют цветовой тон и чистоту воспроизводимого вета.

V. Выбор основных осей

При построении совместимой системы цветного телевидения гирина полосы частот задана стандартом на черно-белое телеизионное вещание. Выбор цветовой поднесущей частоты в осовном определяется требованием невидности ее на изображеии. В этих условиях для передачи цветовой информации стается значительно более узкая полоса частот, при которой ветными могут быть переданы только крупные детали объеков. Поэтому приходится искать возможность как-то "раскраить" мелкие детали, а самые мелкие детали передавать и эспроизводить только черно-белыми.

У ряда авторов [Л. 13, 16, 6] имеются указания на то, что еловеческий глаз обладает трехцветным зрительным восприячем только при наблюдении окрашенных деталей достаточно эльших угловых размеров. При уменьшении же размера расматриваемой детали трехкомпонентный зрительный аппарат ак бы превращается сначала в двухкомпонентный, и, наконец, ри рассматривании очень мелких деталей глаз воспринимает

же только яркостные контрасты.

Таким образом, цветовой график МКО, справедливый в слуне трехкомпонентного зрительного аппарата, т. е. при раслатривании достаточно крупных деталей, при уменьшении глового размера рассматриваемой детали превращается внаале в прямую линию, а затем вырождается в точку.

В тех же работах имеются указания на то, что основными зетами, в случае двухцветного зрительного восприятия, явнотся оранжевый и голубой. При этом цветовой график преращается в прямую линию, проходящую через цвета голубой :=0,068; y=0,203), белый (x=0,348; y=0,352) и оранжевый y=0.545; y=0.455) (puc. 16).

Если выбрать в качестве исходных векторов для передачи зетовых информаций в канале связи вместо величин, пропорнональных R-Y и $\frac{B-Y}{2,7}$, пару ортогональных векторов, один

 $_{ ext{:}}$ которых будет иметь направление, обозначенное через I на іс. 16 (направление, совпадающее с направлением двухцветки, которой говорилось выше), то можно передавать сигналы, опорциональные величине вектора Q (перпендикулярного ктору І), в полосе частот более узкой, чем полоса, преднааченная для передачи сигналов, пропорциональных вектору І.

В этом случае при передаче детали цветного изображения,

имеющей размер меньше заданного (определяемого полосс частот для сигнала Q), ее цвет на изображении будет опред ляться только величиной сигнала I и, следовательно, в плоск сти цветового графика может быть представлен точкой, леж щей на прямой 1.

Если при разработке совместимой системы цветного тел видения желательно иметь возможно более узкие (пусть г

равные) полосы частот для каждого из сигналов, то, учитыв положения, приведенные выше, можно сделать вывод, ч оптимальной парой цветовых сигналов будут сигналы \widetilde{I} и из которых сигнал Q может быть передан без заметного г зуального ухудшения цветовоспроизведения в полосе част более узкой, чем сигнал І.

Кроме того, исходя из вышеизложенного, можно сделя вывод, что полоса частот, в которой должен передаваться с нал I, может быть выбрана уже, чем основная полоса, в н

торой передается яркостный сигнал У.

В этом случае желательно в канале связи иметь три с нала, пропорциональные Y, I и Q, причем сигналы I и Q долж являться линейными функциями величин R-Y и $\frac{B-Y}{2.7}$.

Найти аналитические выражения для сигналов I и Q через R-Y и $\frac{B-Y}{2,7}$ не представляет труда, если это преобразование производить в плоскости, где вектор R-Y перпендикулярен вектору $\frac{B-Y}{2,7}$ и вектор I перпендикулярен вектору Q.

Начала всех этих векторов находятся в одной точке (белый цвет W). Таким образом, результирующий вектор, полученный как геометрическая сумма векторов R-Y и $\frac{B-Y}{2,7}$, должен быть разложен на другую пару ортогональных векторов

I и Q, повернутую под определенным углом к первой паре. Направление оси I в плоскости цветового графика определено точками цветов, через которые проходит выбранная двухцветка (рис. 16). Нанеся ось I на цветовой график с линиями амплитуды и фазы результирующего вектора (см. рис. 15), можно определить угол между осями I и R-Y. Этот угол составляет $\varphi=124^\circ-90^\circ=34^\circ$. Ось Q перпендикулярна оси I. Следовательно, ось Q составляет с осью $\frac{B-Y}{2,7}$ также угол

 $\phi = 34^\circ$ (в системе NTSC угол принят равным 33°). Легко можно показать, что в этом случае

$$Q = (R - Y) \sin 34^{\circ} + \frac{B - Y}{2.7} \cos 34^{\circ};$$
$$I = (R - Y) \cos 34^{\circ} - \frac{B - Y}{2.7} \sin 34^{\circ}.$$

Подставляя значения $\sin 34^{\circ} = 0,559$ и $\cos 34^{\circ} = 0,829$, получим

$$Q=0.559 (R-Y) + 0.307 (B-Y); I=0.829 (R-Y)-0.207 (B-Y).$$
 (14)

Выше было показано, что, несмотря на различные типы датчиков сигналов, после соответствующих пересчетов в канале связи образуются сигналы, пропорциональные величинам R, G и B. Эти сигналы могут быть пересчитаны в сигналы, соответствующие величинам I, Q, Y. Уравнения пересчета определяются путем подстановки в выражения (14) значения Y из равенств (12). В результате подстановки получим:

$$I=0,621R-0,364G-0,257B; Q=0,269R-0,507G+0,238B; Y=0,334R+0,585G+0,081B.$$
 (15)

Эта система уравнений должна быть задана на вторичные пересчетные схемы в канале связи, если мы хотим передавать все три сигнала полосами частот разной ширины. Самая широ-

кая полоса должна быть обеспечена в канале, в котором передается сигнал Y, а самая узкая—для сигнала Q. Если же имеется возможность передавать сигналы, несущие информации о цветности, в равных полосах частот, то нет необходимости переходить к осям I и Q. Полный сигнал может быть образован из сигналов, пропорциональных величинам Y, R-Y и $\frac{B-Y}{2,7}$, и на изображении все детали больше определенного размера (определяемого шириной полос, принятых для передачи цветовых информаций) будут воспроизводиться цветными (смесью трех основных цветов), а детали меньше определенного размера—черно-белыми.

VI. Определение уравнений пересчетных схем для приемных устройств

Для того чтобы на экране приемного устройства правильно воспроизвести цвет, к электродам трех трубок (или одной трехлучевой) должны быть подведены сигналы E_R , E_G и E_B , находящиеся в определенном соотношении. Полный сигнал, принимаемый приемником, состоит из яркостной составляющей E_Y и цветовой несущей, модулированной разностными сигналами. Сигнал E_Y может быть принят непосредственно на приемники черно-белого телевидения.

Цветовая несущая, амплитуда которой пропорциональна длине, а фаза—направлению результирующего вектора цвета, попадает в приемниках цветного телевидения на демодулятор, куда одновременно заводятся колебания опорной частоты с заданной фазой. Фаза колебаний опорной частоты выбирается сдвинутой на 180° относительно нулевой фазы (на цветовом графике нулевая фаза совпадает с направлением оси B-Y). Если в приемнике будет осуществлен поворот опорной фазы (или фазы результирующего вектора) на 34° , после демодулятора будут восстановлены сигналы E_I и E_Q .

Эти сигналы, совместно с сигналом E_{γ} , должны быть поданы на пересчетную схему. Уравнения для пересчетных схем в этом случае можно определить, воспользовавшись равенствами (14):

$$E_Q = 0.559 (E_R - E_Y) + 0.307 (E_B - E_Y);$$

 $E_I = 0.829 (E_R - E_Y) - 0.207 (E_B - E_Y).$

Учитывая, что Y=0.334R+0.585G+0.081B, находим:

$$E_{R} = E_{Y} + 0.559E_{Q} + 0.829E_{I};$$

$$E_{G} = E_{Y} - 0.629E_{Q} - 0.265E_{I};$$

$$E_{B} = E_{Y} + 2.24E_{Q} - 1.51E_{I}.$$
(16)

Сигналы E_{R} , E_{G} и E_{B} могут быть поданы непосредственно на

управляющие электроды приемных трубок.

Однако вопрос воспроизведения изображения на экране приемного устройства может быть решен и несколько иначе. Можно воспользоваться тем, что фаза опорной частоты сдвинута на 180° относительно нулевой фазы (ось B-Y). Тогда на выходе демодулятора получаются непосредственно разностные сигналы E_R-E_Y и E_B-E_Y , пропорциональные величинам R-Y и B-Y. Следует отметить, что вследствие выбора различных масштабов эдиничных векторов R-Y и B-Y коэффициенты усиления демодуляторов E_R-E_Y и E_B-E_Y должны быть соответственно разными.

Сигнал $E_G - E_Y$ может быть легко получен в самом приемном устройстве, так как векторы R - Y, B - Y и G - Y преднатавляют собой систему векторов, сбалансированных относительно точки W.

Из условия баланса цветов вытекает равенство (для системы с основными цветами R, G и B и равносигнальным цветом W):

$$G-Y=-0.571 (R-Y)-0.138 (B-Y).$$
 (17)

Гигналы E_R-E_V и E_B-E_V так же, как и образованный в примнике согласно уравнению (17) сигнал E_G-F_V , могут быть оданы на управляющие электроды трех приемных трубок, краны которых покрыты соответствующими цветными люминоюрами. На катоды всех трубок в этом случае должен быть одан сигнал E_V . В результате люминофоры будут возбужаться сигналами E_R , E_G и E_B , что и требуется для правилього воспроизведения цветов.

VII. Коррекция нелинейности характеристики передачи системы цветного телевидения

Все приведенные выше расчеты и преобразования произвоились исходя из того, что характеристики передачи всей сисемы и отдельных узлов ее принимались линейными. Однако действительности это не так. Если характеристику передачи нала и можно получить достаточно линейной, то передаюие и приемные трубки имеют резко выраженные нелинейные эрактеристики, по форме приближающиеся к степенной функни. Модуляционные характеристики приемных трубок достаэчно точно аппроксимируются параболой со степенью 2,4—2,8, характеристики передающих—параболой со степенью меньше цинцы. В случае передачи кинофильма методом бегущего ча модуляционная характеристика датчика близка к единице.

Для того чтобы качество воспроизведения цветов было одинаковым вне зависимости от типа датчика сигналов (в тех датчиках, где используются передающие трубки), должны быть применены специальные корректоры нелинейных искажений. Эти корректоры должны иметь характеристику передачи, выражающуюся также степенной функцией, причем степень параболы характеристики корректора должна быть обратна степени параболы, которой выражается характеристика свет-сигнал передающей трубки. Таким образом, соотношение сигналов, полученных от передающей стороны, после корректора нелинейности оказывается равным соотношению колориметрических параметров, задаваемых светоделительным устройством. Эти сигналы можно преобразовать согласно приведенным выше уравнениям, причем точность преобразований будет зависеть только от точности технического выполнения пересчетных схем, идентичности каналов и т. д. Однако эти сигналы, вследствие нелинейности модуляционных характеристик приемных трубок, не обеспечат требуемого соотношения яркостей основных цветов в изображении. Можно скомпенсировать эти искажения, установив перед приемной трубкой корректор нелинейных искажений.

Введение блока коррекции нелинейности непосредственно перед приемной трубкой усложняет и, следовательно, удорожает приемник. Поэтому желательно осуществить предварительную коррекцию нелинейности модуляционной характеристики приемной трубки на передающей стороне.

Однако, в связи с необходимостью уменьшения количества передаваемой информации и обеспечения возможности совме стимости систем цветного и черно-белого телевидения, на вы ходе передающей стороны должны быть сигналы, пропорцио нальные колориметрическим параметрам Y, I и Q. (Выше было показано, что сигналы E_Y , E_I и E_Q представляют собой ли нейные комбинации сигналов E_R , E_Q и E_B .)

Очевидно, что нельзя вводить предварительную коррекции нелинейности в участке схемы, где существуют сигналы, ко торые затем должны подвергаться необратимому линейном пересчету. Поэтому единственно правильным решением этог вопроса является получение на каком-то участке схемы сигна дов E_R , E_G и E_B , введение на этом участке предварительно коррекции нелинейности модуляционных характеристик прием ных трубок, а затем уже производство всех необходимых пересчетов. В этом случае пересчетам будут подвергаться н сигналы E_B , E_G и E_B , а сигналы

$$E_{R}' = (E_{R})_{\lambda}^{\frac{1}{\gamma}}; E_{G}' = (E_{G})^{\frac{1}{\gamma}}; E_{B}' = (E_{B})^{\frac{1}{\gamma}},$$

где γ —степень параболы, которой аппроксимируется модуляционная характеристика приемной трубки. Сигналы E_γ , E_I и E_Q будут образовываться, таким образом, из предварительно скорректированных сигналов, и, в результате обратного пересчета в пересчетных схемах приемника, на управляющие электроды приемных трубок будут поданы сигналы E_R' , E_G' и E_B' .

VIII. Блок-схема совместимой системы цветного телевидения

На основании вышеизложенного можно составить принципиальную блок-схему передающей части совместимой системы цветного телевидения (рис. 17).

Цветовые характеристики светоделительных устройств стуцийной камеры и теледиапроектора с бегущим лучом выбраны гаким образом, чтобы обеспечить на выходе сигналы E_{X_H} , E_{Y_H} , E_{Z_R} . Для компенсации искажений, вносимых за счет негинейности характеристик свет — сигнал передающих трубок тудийной камеры, служат корректоры γ_1 . В пересчетных схемах Π_1 и Π_2 сигналы E_{X_H} , E_{Y_H} и E_{Z_H} преобразуются в сигналы Ξ_R , E_G и E_B .

Если в качестве датчика сигналов используется передающая ппаратура системы цветного телевидения со сменой цветов по голям совместно с устройством перезаписи, то получаемые игналы E_R , E_3 и E_C преобразуются в сигналы E_R , E_G и E_B пересчетных схемах Π_3 .

Таким образом, в канал связи, независимо от типа датчика, поступают сигналы E_R , E_G и E_B .

Эти сигналы поступают на предварительный корректор неинейности модуляционных характеристик приемных трубок (γ). Іосле корректора сигналы $E_R^{'}$, $E_G^{'}$ и $E_B^{'}$ в пересчетных схемах реобразуются в сигналы $E_Y^{'}$, $E_I^{'}$ и $E_Q^{'}$ в соответствии с уравениями

$$E'_{\gamma} = 0.334E'_{R} + 0.585E'_{G} + 0.081E'_{B};$$

$$E_{I} = 0.621E'_{R} - 0.364E'_{G} - 0.257E'_{B};$$

$$E_{Q} = 0.269E'_{R} - 0.507E'_{G} + 0.238E'_{B}.$$
(18)

Сигналы E_I и E_Q поступают на специальные фильтры, ограчивающие полосу частот каждого из сигналов до опредеэнной величины (полоса частот для сигнала Q меньше, чем из сигнала I), и затем на модулятор, где модулируют две звинутые на 90° одинаковые поднесущие частоты (квадратурия модуляция). После модулятора цветовая поднесущая сме-

шивается с яркостным сигналом и на выходе смесителя получается полный сигнал. Следует отметить, что фаза опорной частоты должна совпадать с фазой вектора (B-Y), т. е. отставать от фазы вектора I на 56° .

Варианты блок-схемы приемного устройства приведены на рис. 18 и 19. По схеме рис. 18 видно, что сигнал E_{y} , выде-

ленный из полного, и восстановленные в демодуляторе сигналы E_I и E_Q поступают на пересчетную схему Π_5 , где пересчитываются в сигналы $E_R^{'}$, $E_G^{'}$ и $E_B^{'}$. Эти сигналы подаются на управляющие электроды трех приемных (или трехлучевой) трубок.

Во втором варианте блок-схемы приемного устройства рис. 19) после демодулятора получаем сигналы $E_R^{'}-E_Y^{'}$ и $\frac{1}{\sqrt{2}}\left[E_B^{'}-E_Y^{'}\right]$. Усиление в ветвях демодулятора должно быть различным, с тем чтобы получить сигналы $E_R^{'}-E_Y^{'}$ и $E_B^{'}-E_Y^{'}$. Сигнал $E_G^{'}-E_Y^{'}$ может быть получен, исходя из условия бананса цветов относительно цвета W, т. е.

$$E'_{G}-E'_{Y}=-0.571 \left(E'_{R}-E'_{Y}\right)-0.138\left(E'_{B}-E'_{Y}\right).$$

Все три разностных сигнала поступают на управляющие электроды соответствующих приемных трубок. На катоды трубок подается сигнал $E_{y}^{'}$. Следовательно, люминофоры приемных трубок возбуждаются сигналами

$$\begin{aligned}
& \left(E_{B}^{'} - E_{Y}^{'} + E_{Y}^{'}\right)^{\mathsf{T}} = E_{B}; \\
& \left(E_{G}^{'} - E_{Y}^{'} + E_{Y}^{'}\right)^{\mathsf{T}} = E_{G}; \\
& \left(E_{R}^{'} - E_{Y}^{'} + E_{Y}^{'}\right)^{\mathsf{T}} = E_{R}.
\end{aligned} \tag{19}$$

Таким образом, с точки зрения качества воспроизведения цветов обе блок-схемы равноценны, хотя с точки зрения простоты приемного устройства преимущество следует отдать второй (рис. 19).

Заключение

Следует отметить, что в данной работе не приведен анализ искажений яркостного сигнала, принимаемого на приемники черно-белого телевидения, вследствие введения предварительной коррекции нелинейности модуляционных характеристик передающих трубок. Не рассмотрен еще ряд вопросов, связанных с введением предварительной коррекции.

Кроме того, в настоящее время можно предполагать, что цветное телевизионное изображение, полностью отвечающее условию физиологически точного воспроизведения цветов, не является оптимальным с точки зрения зрительного восприятия, т. е. характеристика передачи системы для получения оптимального изображения не должна быть линейной.

Поэтому в дальнейшем необходимо, наряду с широкой постановкой экспериментальных работ, провести теоретический анализ системы с учетом введения предварительной коррекции и с учетом нелинейной характеристики передачи.

Автор выражает признательность А. М. Халфину г Д. А. Шкловеру за ряд критических замечаний, высказанных ими при подготовке рукописи к печати, и благодари: инж. Р. Е. Брунову за помощь при проведении некоторых расчетов.

ЛИТЕРАТУРА

1. F. J. Bingley, Колориметрия в цветном телевидении, "Proc. IRE" 1953, vol. 41, № 7, pp. 838—851.
2. F. J. Bingley, Колориметрия в цветном телевидении, "Proc. IRE"

2. Г. J. Бін g i e y, полориметрия в цветном телевидении, "Proc. IRE" 1954, vol. 42, № 1, pp. 48—51.

3. F. J. Він g i e y, Колориметрия в цветном телевидении, "Proc. IRE" 1954, vol. 42, № 1, pp. 51—57.

4. F. J. Bingley, Применение проективной геометрии к теории смешения цветов, "Proc. IRE", 1948, vol. 36, № 6, р. 709.

5. R. M. Bowie, A. E. Martin, Спектральное распределение мощности люминофоров электроннолучевых трубок, "Ргос. IRE", 1948, vol. 36, № 8, pp. 1023—1029.

6. G. H. В го w n, Выбор осей и ширины полос для цветовых сигналов в системе цветного телевидения NTSC, "Ргос. IRE", 1954, vol. 42, № 1,

pp. 58-59.

7. G. H. В го w п, Математическое выражение сигналов цветного теле-

видения NTSC, "Proc. IRE", 1954, vol. 42, № 1, pp. 66—71. 8. М. Э. Гос, С. Б. Гуревич, Передача и искажения цветов в телевизионной системе со сменой цветов по полям, "Техника телевидения", 1954, вып. 10, стр. 3—38.

- 1904, вып. 10, стр. 3—30.

 9. М. М. Гуревич, Цвет и его измерение, АН СССР, 1950.

 10. D. W. Ерstein, Колориметрический анализ системы цветного телевидения RCA, "RCA Rev." 1953, vol. XIV, № 2, pp. 227—258.

 11. D. G. Fink, "Proc. IRE", 1954, vol. 42, № 1, pp. 43—45.

 12. G. L. Fredendall, W. C. Morrisson, Влияние характеристик

- 12. С. L. ггесепса11, W. С. Моггізson, Блияние характеристик радиопередатчика на сигналы цветного телевидения системы NTSC, "Proc. IRE", 1954, vol. 42, № 1, pp. 95—105.

 13. Н. Hartridge, Визуальное восприятие мелких деталей. "Phil. Trans. Roy. Soc", London, 1947, Ser. B, vol. 232, № 592, pp. 519—671.

 14. С. Ј. Нігsch, W. F. Bailey, B. D. Loughlin, Принципы совместимой системы цветного телевидения NTSC, "Electronics", Febr. 1952, vol. 25, pp. 88—95 vol. 25, pp. 88-95.
- 15. Р. W. Howells, Понятие о первичных цветах передающей стороны в цветном телевидении, "Proc. IRE", 1954, vol. 42, № 1, pp. 134—138.

 16. А. V. Loughren, Психо-физические и электрические основы цветного гелевидения, "Proc. IRE", 1954, vol. 42, № 1, pp. 9—11.

 17. D. L. Mac Adam, Геометрические места постоянного цветового года, и другости определения в постоянного дветового года, и другости определения в постоянного дветового года и другости.

гона и яркости, определенные при различных цветах фона, "J. Opt. Soc. Amer.", 1950, vol. 40, pp. 589—595.

18. D. L. Mac Adam, Качество цветного воспроизведения, 7 "Ргос. 18. D. L. Mac Adam, Качество цветного воспроизведения, 7 "Ргос. 18. Ст. 1951 год. 1951 год. 1951 год. 1952 год. 1952 год. 1955 год. 19

- IRE", 1951, vol. 39, № 5, pp. 468—485.

 19. D. L. Mac Adam, Воспроизведение цветов внешних сцен, "Ргос. IRE", 1954, vol. 42, № 1, pp. 166—174.

 20. С. О. Майзель, Е. С. Ратнер, Цветовые расчеты и измере-
- ния, Госэнергоиздат, 1941. 21. R. C. Moore, J. F. Fischer, J. B. Chatter, Измерение и реулировка цветовых характеристик генератора сигнала цветного телевидения сегущим пятном, "Proc. IRE", 1953, vol. 41, № 6, pp. 730—733.

22. И. А. Алексеев, Приемные трубки для цветного телевидения, Техника телевидения", 1954, вып. 4 (10).

- 23. J. G. Reddeck, Узкополосная передача цветовых сигналов в ситеме NTSC, "Proc. IRE", 1954, vol. 42, № 1, pp. 20, 21.
 24. L. T. Sachtleben, D. J. Parker, G. L. Allke, E. Konstein,
- 24. L. T. Sachtleben, D. J. Parker, G. L. Allke, E. Konstein, Эптическая система для камеры цветного телевидения с имеджортиконом, RCA Rev.", March 1952, vol. XIII, № 1, pp. 27—33.
 25. М. Widdop, Обзор работ по светоделительным зеркалам и их хазактеристикам, "JSMPTE", 1953, vol. 60, № 4, pp. 357—366.
 26. W. T. Wintring ham, Цветное телевидение и колориметрия, "Ргос. RE", 1951, vol. 39, № 10, pp. 1135—1172.
 27. Д. А. Шкловер, Р. С. Иоффе, Универсальный фотоэлектрический колориметр ВЭИ, "Известия ОТН АН СССР", 1951, № 5.
 28. Д. А. Шкловер, К вопросу о равноконтрастной колориметрической системе, IV совещание по физиологической оптике, Тезисы докладов,

кой системе, IV совещание по физиологической оптике, Тезисы докладов, AH CCCP, 1955.

Статья поступила 4/III — 4/V 1956 г.

Инженеры В. М. ЗУСМАНОВИЧ и Р. Я. БРУНОВ г

ОПРЕДЕЛЕНИЕ РАЗМАХА СИГНАЛА ПРИ КВАДРАТУРНОЙ МОДУЛЯЦИИ ПОДНЕСУЩЕЙ В СИСТЕМЕ ЦВЕТНОГО ТЕЛЕВИДЕНИЯ

В статье дан анализ возможности воспроизведения различных цветог при использовании в совместимой системе цветного телевидения радиопере датчиков, применяющихся в черно-белом телевизионном вещании.

Для того чтобы воспроизвести на экране приемного устройства цветное изображение удовлетворительного качества, способ передачи цветовых информаций по эфиру должен обеспечить минимальные искажения передаваемых цветов.

При телевизионном вещании яркость и цветность отдельных объектов передаваемых сцен могут быть самыми различными Предположим, что на объекте создана равномерная освещенность. Так как при падении лучистой энергии, излучаемой каким-то источником, на окрашенную поверхность, в отражении получается ослабленное излучение с другим цветом, то относительные яркости отдельных элементов объекта определятся коэффициентами яркости.

Если считать, что источник испускает все длины волн видимого спектра и объекты могут иметь любые формы кривых отражения, то очевидно цветности объектов будут любыми При этом количества цветов будут различны и за меру количества цвета естественно принять в рассматриваемом случає интегральный коэффициент яркости, определяющий яркость отраженного пучка.

Как известно, один и тот же цвет может быть получен бесконечно большим числом спектральных составов. Если положить, что какой-то цвет F с координатами x, у получен при освещении поверхности, имеющей спектральный коэффициент яркости $r(\lambda)$, источником света с спектральным распределением энергии $P(\lambda)$, то общий коэффициент яркости этой поверхности будет

$$r = \frac{\int_{400}^{750} \overline{y}(\lambda) r(\lambda) P(\lambda) d\lambda}{\int_{400}^{750} \overline{y}(\lambda) P(\lambda) d\lambda},$$
(1)

где \overline{y} —удельный компонент, совпадающий с кривой видности $v(\lambda)$.

Однако полученное значение r не является максимально возможным для цвета F(x, y), так как можно представить себе поверхность с кривой спектрального распределения яркости $r_1(\lambda)$, все ординаты которой пропорционально увеличены относительно ординат кривой $r(\lambda)$ [если значение $r_{\text{макс}}(\lambda) < 1$].

Можно показать, что максимальным коэффициентом яркости при данной цветности отраженного излучения будет обладать так называемая оптимальная поверхность, т. е. поверхность, поглощающая полностью одну часть спектра и отражающая

полностью другую часть.

Безусловно, такие оптимальные поверхности реально не существуют, однако проведение дальнейшего анализа не основании рассмотрения цветов оптимальных излучений представляет интерес, так как предъявляет более жесткие требования к системе передачи. Если способ передачи цветовой информации по эфиру позволит передавать с минимальными искажениями цвета оптимальных поверхностей, то тем самым будет обеспечено воспроизведение на изображении цветов всех возможных передаваемых сцен (при равной освещенности объектов).

Если рассматривать оптимальные поверхности, то спектральные характеристики их яркости определятся длиной волн λ_1 и λ_2 , при которых кривая r (λ) имеет скачки от нуля к единице (λ_1) и от единицы к нулю (λ_2) . На участке спектра между λ_1 и λ_2 должно быть $r(\lambda) = 1 = \text{const.}$ На протяжении всей остальной части видимого спектра $r(\lambda)=0$ (кроме участка λ_1 λ_2). При этих условиях, т. е. для оптимальных поверхностей, координаты цвета отраженного излучения и его общий коэффициент яркости могут быть определены следующим образом:

$$X_{opt} = \int_{\lambda_{1}}^{\lambda_{2}} \overline{x}(\lambda) P(\lambda) d(\lambda);$$

$$Y_{opt} = \int_{\lambda_{1}}^{\lambda_{2}} \overline{y}(\lambda) P(\lambda) d\lambda;$$

$$Z_{opt} = \int_{\lambda_{1}}^{\lambda_{2}} \overline{z}(\lambda) P(\lambda) d\lambda,$$

$$r_{opt} = \int_{\lambda_{1}}^{\lambda_{2}} \overline{z}(\lambda) P(\lambda) d\lambda,$$

$$(2)$$

$$Z_{opt} = \int_{\lambda_{1}}^{\lambda_{2}} \overline{z}(\lambda) P(\lambda) d\lambda,$$

$$r_{opt} = \int_{\lambda_{1}}^{\lambda_{2}} \overline{y}(\lambda) P(\lambda) d\lambda,$$

$$(3)$$

$$r_{opt} = \frac{\int_{\lambda_t}^{\lambda_2} \overline{y}(\lambda) P(\lambda) d\lambda}{\int_{400}^{750} \overline{y}(\lambda) P(\lambda) d\lambda},$$
(3)

где \overline{x} (λ), \overline{y} (λ) и \overline{z} (λ) — удельные компоненты излучения с длиной волны λ.

Принимая спектральное распределение лучистой энергии источника $P(\lambda)$ соответствующим распределению энергии в спектре излучения абсолютно черного тела при температуре 4800°К (источник B) и полагая различные значения λ_1 и λ_2 , по формулам (2) и (3) можно определить коэффициенты яркости, соответствующие различным цветностям оптимальных излучений.

Воспользовавшись полученными результатами, можно построить кривые цветностей оптимальных излучений, т. е. геометрические места точек на цветовом графике MKO, соответствующих постоянным значениям коэффициентов яркости (рис. 1).

Если в телевизионной студии на объекте передачи создана равномерная освещенность, причем спектральный состав излучения соответствует распределению энергии в спектре источника B (x=0,348; y=0,352), то соотношения коэффициентов яркости отдельных элементов объекта определят относительные количества отраженного от них света. Следовательно, кривые, приведенные на рис. 1, по существу представляют со-

бой максимально возможные относительные яркости (Y=const) различных цветов при равномерном освещении объекта светом источника B, причем яркость белого принята за единицу.

•В рассматриваемом варианте совместимой системы цветного гелевидения полный сигнал может быть записан, как

$$M = Y \pm A \cos(\omega t + \theta^{\circ}), \tag{4}$$

де Y—яркостный сигнал, A—амплитуда модулированной цветовой поднесущей.

По расчетам авторов, сигнал модулированной цветовой поднесущей определяется уравнением

$$A\cos(\omega t + \theta) = 1.71 [0.315 (Z - 0.85Y) \sin(\omega t - 29^{\circ}) + (X - 0.99Y) \sin(\omega t + 89^{\circ})],$$

$$A = 1.71 \sqrt{[0.315 (Z - 0.85Y)]^{2} + (X - 0.99Y)^{2}}.$$
(5)

Воспользовавшись рис. 1, можно для ряда точек цветового графика (x, y) определить значения величин $(X-0,99\ Y)$ и $(Z-0,85\ Y)$ и построить в плоскости цветового графика семейства кривых $(X-0,99\ Y)=$ const (puc. 2) и $(Z-0,85\ Y)=$ const (puc. 3). Далее для любого цвета (x, y) можно из уравнения (5)

егко определить величину A, получая из графиков рис. 2 и значения $(X-0.99\ Y)$ и $(Z-0.85\ Y)$.

В результате такого расчета может быть построено в плокости цветового графика семейство кривых $A = {
m const}$ (рис. 4)

Так как полный сигнал в системе выражается уравнением (4), интересно построить семейства кривых $M_1 = Y + A = \text{const}$ и $_2 = Y - A = \text{const}$. Такие кривые могут быть построены, если спользоваться графиками рис. 1 и рис. 4.

спользоваться графиками рис. 1 и рис. 4. Семейство кривых $M_1 = {\rm const}$ приведено на рис. 5, а $_2 = {\rm const}$ —на рис. 6.

 $_{2}$ =const—на рис. 0. Из рассмотрения последних двух графиков следует, что ибольшее значение M_{1} =1,30 получается при передаче цвета

желтого оптимального излучения \mathcal{H} с координатами x=0,340 y=0,580 (рис. 5) и наименьшее значение $M_2=-0,25$ соответ ствует цвету синего оптимального излучения C (x=0,150 y=0,110).

Если принять за единицу сигнал при передаче белого цвета I то, следовательно, чтобы обеспечить правильную передачу воспроизведение на экране приемного устройства цветов \mathcal{H} и соответствующие сигналы должны в одном случае быть на 30° выше уровня "белого", а в другом—на 25% ниже урови "черного". Это можно изобразить графически (рис. 7).

Рассматривая рис. 7, можно сделать вывод, что при равно освещенности объектов самым критическим с точки зрен

правильной цветопередачи является цвет желтого оптимального излучения.

Для передачи этого цвета без искажений необходимо соответственно уменьшить коэффициент модуляции при передаче

елого так, чтобы при передаче максимально яркого желтого оля амплитуда несущей частоты не снижалась ниже допутимой.

Однако следует отметить, что в действительности оптимальме поверхности не существуют, а коэффициент яркости люра реальной поверхности r будет всегда ниже, чем r_{opt} . Поому представляется вполне возможным (при условии при-

близительно равной освещенности передаваемой сцены) в системе цветного телевидения использовать радиопередатчики, применяющиеся при стандартном черно-белом телевизионном вещании.

Авторы признательны А. М. Халфину за ценные указания сделанные им в процессе подготовки рукописи к печати.

ЛИТЕРАТУРА

F. J. Bingley, Колориметрия в цветном телевидении, "Ргос. IRE", 195 vol. 41, № 7, pp. 838—851.
 М. М. Гуревич, Цвет и его измерение, АН СССР, 1950.

Статья поступила 4/III-4/V 1956 г.

Инж. Н. П. ТРИФОНО

ТЕРМОЭЛЕКТРИЧЕСКИЙ ВАТТМЕТР БОЛЬШОЙ мощности дециметрового диапазона

В статье описана конструкция и изложен принцип действия термоэле трических ваттметров. Приведен метод градуировки и дана оценка погрег ности измерения.

До последнего времени для измерения больших мощносте в дециметровом диапазоне применялись диодные вольтметр и измерители малых мощностей (термисторные мосты с дел телями с. в. ч.).

Измерение мощностей диодными вольтметрами сопряжено со значительными трудностями и дает малую точность измерения. Трудности применения диодных вольтметров заключаются прежде всего в том, что ими производится измерение "пиковых" значений напряжения (следовательно, для измерения модулированных колебаний или колебаний искаженной формы диодные вольтметры применять невозможно).

На точность измерений диодными вольтметрами влияет ряд следующих факторов:

- 1) величина коэффициента стоячей волны,
- 2) влияние собственных параметров диода,
- 3) время пролета электронов,
- 4) величина измеряемого напряжения,
- 5) погрешность индикаторного прибора,
- 6) погрешность градуировки по постоянному и переменному току высокой частоты.

Предел по частоте ограничивается собственной резонансной длиной волны диода. Величина погрешности измерения напряжения при удачной конструкции и хорошем согласовании ($K \le 1,1$) может быть порядка 8-10%, а погрешность при измерении мощности—15-20%. Приведенные выше соображения подсказывают, что применение диодных вольтметров для измерения мощности в дециметровом диапазоне ограничено и не обеспечивает требуемой точности измерений.

Измерители малых мощностей дециметрового диапазона гермисторные мосты с делителями с. в. ч. - могут применяться и для измерения большой мощности. Однако основным недостатком термисторных мостов является сильная зависимость гочности измерения от влияния колебаний температуры окрукающей среды. Применяемая компенсация температурных влияний работает удовлетворительно в ограниченных пределах температур (от + 10 до + 30° C). Следовательно, в сложных климатинеских условиях приборы этого типа работать не могут. Кроме гого, элементы прибора, предназначенные для температурной сомпенсации, несколько усложняют общую схему и конструкцию прибора. В настоящее время термисторные мосты являются наиболее точными приборами для измерения малых мощностей . в. ч., и отдельные образцы могут обеспечить измерение : погрешностью, не превышающей 10%. Применение совместно термисторными мостиками делителей с. в. ч. для измерения ольших мощностей увеличит погрешность измерения до 15%, ак как градуировка делителей внесет дополнительную неточость.

Описываемый ниже термоэлектрический ваттметр разработан а принципе преобразования энергии с. в. ч. в тепловую. Измение мощности производится по тепловому эффекту с помощью атареи дифференциальных термопар.

Принципиальная схема термоэлектрического ваттметра типа ТЭВ-1 приведена на рис. 1. Здесь обозначено:

1-специальное нагрузочное сопротивление, в котором выде-

ляется измеряемая мощность;

2—эквивалент нагрузочного сопротивления, предназначенный для градуировки прибора;

3-теплоизоляционная перегородка;

4-батарея дифференциальных термопар;

5-внешний тепловой экран-кожух прибора;

Рис. 1

6-индикатор термотока;

7-индикатор тока низкой частоты;

8-потенциометр.

При повышении температуры на нагрузочном сопротивлении дециметрового диапазона в цепи термопар возникает термотого определенного направления, пропорциональный количеству термопар и величине разности температур на нагрузочном сопротивлении и на его эквиваленте.

При превышении температуры эквивалента над температурог нагрузочного сопротивления с. в. ч. в цепи термопар появится ток обратного направления. При установке равного количеств одинаковых термопар на нагрузочном сопротивлении и его эквиваленте величина и направление термотока будут пропор циональны количеству установленных термопар и разности тем ператур на их поверхностях. Величина и направление термотока отмечаются индикатором, включенным в цепь термопар

Энергия с. в. ч., выделившаяся в нагрузочном сопротивлении, и энергия электрического тока низкой частоты, выделиг

шаяся в эквиваленте, расходуются на повышение температуры нагрузочного сопротивления или его эквивалента и на теплоотдачу окружающей среде. Через определенное время после включения прибора наступит тепловое равновесие между подводимой энергией с. в. ч. и тепловой энергией, отдаваемой нагрузочным сопротивлением окружающей среде. При тепловом равновесии температура нагрузочного сопротивления становится постоянной, и величина ее будет определяться мощностью, подводимой к нагрузочному сопротивлению. Следовательно, температура нагрузочного сопротивления и подводимая к нему мощность с. в. ч. будут пропорциональны величине термотока в цепи батареи дифференциальных термопар. Приведенные выше соображения по аналогии могут быть отнесены и к эквиваленту при подведении к нему энергии тока низкой частоты.

Таким образом, величина мощности с. в. ч. может быть определена по величине мощности тока низкой частоты, выделившейся в эквиваленте, при условии отсутствия тока в цепи термопар, равного количества термопар, их идентичности и равенства поверхностей охлаждения нагрузочного сопротивления

и эквивалента.

Измерение мощности с. в. ч. по методу баланса температур нагрузочного сопротивления и его эквивалента, вследствие значительной тепловой инерции, требует длительного времени. Для сокращения времени необходимо произвести градуировку прибора, сняв кривую зависимости показаний прибора, включенного в цепь термопар, от величины мощности тока низкой настоты, подводимой к эквиваленту, и пользоваться этой завишмостью при измерении мощности с. в. ч., подводимой к нагрузке.

Описанный измеритель мощности типа ТЭВ-1 обладает недотатком, при котором градуировка прибора основывается на полной идентичности эквивалента с нагрузочным сопротивлением по величине поверхности охлаждения, по условиям охлаждения, по одинаковому тепловому контакту термопар с поверхостью эквивалента и нагрузочного сопротивления. Как бы ни ыла совершенна конструкция, полной идентичности достичь рудно, а поэтому возможна некоторая погрешность в градуновке и измерении.

По этим соображениям при разработке второго образца змерителя мощности типа ТЭВ-2 эквивалент нагрузки был странен, термопары противоположных полярностей помещены а специальной планке (расположенной в месте, где поддержизется температура окружающей среды) и защищены от теплоого воздействия нагрузочного сопротивления и случайных оздушных потоков окружающей среды.

Градуировка индикаторного прибора, включенного в цепь врмопар и показывающего величину выделившейся мощности, роизводилась следующим образом. В зазор между внешним

149.

и внутренним проводниками нагрузочного сопротивления (на время градуировки) вводилась спираль, которая нагревалась током низкой частоты. Строилась кривая зависимости

$$I_{mn} = \varphi(P_{nu}).$$

В этом случае устраняются все случайные неточности градуировки, вызываемые неидентичностью конструкции нагрузочного сопротивления и эквивалента, так как сопротивление само является эквивалентом во время градуировки.

Рис. 2

Количество выделившегося тепла в нагрузочном сопротив лении, по закону Джоуля-Ленца, $Q{=}0.86I^2R{=}0.86\frac{E^2}{R}\left[\kappa\kappa\alpha n/uac\right],$

$$Q = 0.86I^{2}R = 0.86 \frac{E^{2}}{R} \left[\kappa \kappa a n / uac \right], \tag{1}$$

где 0.86-тепловой эквивалент одного ватт-часа $[\kappa\kappa\alpha n/вm$ -ч]При стационарном тепловом состоянии

$$Q = 0.86I^{2}R = \alpha F(t_{w} - t_{f}); \qquad (2)$$

здесь:

α-коэффициент теплоотдачи,

F—площадь охлаждения,

 $(t_w - t_{\scriptscriptstyle f})$ — разность температур нагрузочного сопротивлени и окружающей среды, определяемая величино термотока (по индикаторному прибору).

Из уравнения (2) следует, что измеряемая мощность

$$P = \frac{\alpha F \left(t_w - t_f\right)}{0.86} \left[\theta m\right]. \tag{3}$$

При таком способе длительность измерения остается значительной. Для сокращения времени измерения можно произвести градуировку прибора с отсчетом показаний индикатора термо-

ока через определенное время после включения градуируеого прибора, например через интервалы 5, 10, 20, 30 мин. Іадо только иметь в виду, что чем больше время прогрева, ем точнее отсчет. На рис. 2 приведены экспериментальные ривые нарастания температуры на нагрузочном сопротивлении ЭВ-2 при различных величинах выделяющейся мощности.

На рис. З приведена зависимость выделяющейся мощности г величины термотока в цепи термопар через 5, 10, 20, 30 мин. эсле включения прибора. Эта градуировка, построенная по ривым, приведенным на рис. 2, позволяет значительно сокраять время измерения.

Возможная погрешность измерения при помощи ТЭВ-2 будет

азываться следующими причинами:

1. Погрешностью индикатора термотока (приблизительно 1%).

2. Погрешностью ваттметра низкой частоты (0,5%).

3. Температура нагрева нагрузочного сопротивления будел асимптотически приближаться к своему пределу. Практически при градуировке ограничиваются временем нагрева, равным четырехкратной постоянной времени т, при этом погрешность составит около 1,5%.

4. При градуировке и измерении может быть погрешность. вызываемая случайными причинами, которую приближенис

можно оценить порядка 1%.

5. При нагревании нагрузочного сопротивления токами низ кой частоты распределение температуры вдоль него будет рав

Рис. 4

номерным. При нагревании токами с. в. ч. температура нагрева может быть неравномерной. В этом случае коэффициент тепло отдачи а в уравнениях (1) и (2) будет несколько отличаться от α при градуировке, что может внести также погрешность Величину этой погрешности определить точно невозможно, но приближенно ее можно принять равной около 1%.

Отсутствие эталонных измерителей мощности для децимет рового диапазона не позволяет точно определить общую по грешность описанного измерителя мощности. Однако, исход из анализа факторов, вызывающих погрешность измерения и сопоставления результатов измерения, полученных при по мощи измерителей мощности других типов, можно предполо жить, что максимальная общая погрешность измерения буде иметь величины:

для ТЭВ-1 $\dots \pm 5-7\%$; для ТЭВ-2 $\dots \pm 5\%$.

Предел измерения мощности с. в. ч. ваттметрами данного типа зависит от размера нагрузочного сопротивления и экви валента и от способа их охлаждения. (Прибор подобного тип был разработан автором и на сантиметровый диапазон для мош ностей в среднем до 70 вт.)

На рис. 4 показан общий вид термоэлектрического ваттметра ТЭВ-1, а на рис. 5—общий вид ТЭВ-2. В табл. 1 приведены данные макетов термоэлектрических ваттметров ТЭВ-1 и ТЭВ-2.

Термоэлектрические ваттметры позволяют измерять среднее значение подводимой к ним мощности дециметрового диапазона в непрерывном, импульсном и модулированном режимах колебаний. При измерении приборы не требуют источника питания (он необходим только при градуировке). Термоэлектрические ваттметры удобны для градуировки измерителей проходящей мощности, могут также работать в полевых условиях. Диффе-

Рис. 5

ренциальная батарея термопар состоит из 17 термопар (нихром медь), равномерно установленных по длине нагрузочного сопротивления.

Таблица 1

Параметр	ТЭВ-1	ТЭВ-2
Величина измеряемой мощности	$5-100~ вт$ $\sim 75~ ом$ $20-50~ см$ $\pm 5-7\%$ не более 1,3 $\tau \approx 3.5~$ мин. $180 \times 180 \times 500~$ мм $10~$ кг	$10-250$ вт ~ 75 ом $20-75$ см ± 5 % не более 1,3 $\tau=10$ мин. $170\times 200\times 550$ мм 9 кг

Основным элементом измерителей мощности являются нагрузочные сопротивления с. в. ч., представляющие собой отрезок коаксиальной линии с нанесенным слоем поглощающего материала на внутренней поверхности внешнего проводника. Размеры нагрузочного сопротивления и проводимость активного материала должны быть рассчитаны на полное поглощение подводимой мощности дециметрового диапазона и иметь хорошее согласование с линией передачи в достаточно широком диапазоне. Основные размеры нагрузочного сопротивления и эквивалента приведены в табл. 2.

Таблица 2

Наименование величин	TЭB-1		ТЭВ-2
	Нагрузочное сопротивление	Эквивалент	Нагрузочное сопротивление
Длина Диаметр Толщина поглощающего слоя Проводимость поглощающего слоя	370 мм 60 » 2 » 37,5 мо/м	370 мм 60 » —	550 мм 90 » 8 »

Более подробное описание нагрузочного сопротивления дано в сборнике "Техника телевидения", вып. 18, стр. 47.

ЛИТЕРАТУРА

1. Техника измерений на сантиметровых волнах, Перевод с англ. под ред. Г. А. Ремез, "Советское радио", 1949.
2. М. А. Михеев, Основы теплопередачи, Гостехиздат, 1949.

3. Г. М. Кондратьев, Регулярный тепловой режим, ГИТТЛ, 1954.

Статья поступила 1/XI 1955 г.

Инж. Л. Я. ЯМПОЛЬСКИЙ

АВТОМАТИЧЕСКАЯ РЕГУЛИРОВКА УСИЛЕНИЯ В ТЕЛЕВИЗИОННЫХ ПРИЕМНИКАХ

В статье рассмотрены условия работы и требования, предъявляемые к системам АРУ телевизионных приемников, проведены классификация телевизионных систем АРУ и анализ работы типичных схем АРУ.

Введение

Как известно, применение автоматической регулировки усиления (АРУ) в любом приемнике обеспечивает приблизительно одинаковое напряжение сигнала на выходе приемника при изменении сигнала на его входе, а также устраняет нелинейные искажения, возникающие в элементах приемника. АРУ в телеви-

зионных приемниках выполняет более ответственные функции, чем в радиовещательных приемниках, так как благодаря применению АРУ достигается как постоянство контраста изображения при изменении сигнала на входе приемника, так и устойчивая работа схем предварительного снижения помех (канал синхронизации), а также улучшаются условия работы амплитудного селектора, отделяющего сигналы синхронизации от полного гелевизионного сигнала. При правильно сконструированной системе АРУ ручная регулировка контрастности используется весьма редко, что существенно упрощает эксплуатацию телевизионного приемника.

Начало применения АРУ в телевизионных приемниках относится к 30-ым годам. В настоящее время АРУ используется лочти во всех телевизионных приемниках. В последние годы (1948—55 гг.) появилось большое количество различных схем АРУ. Однако до сих пор не проводились их классификация

и анализ работы.

АРУ применяется прежде всего при "дальнем телевизионном приеме", при котором сравнительно малы напряженность толя полезного сигнала и отношение сигнал/помеха в месте триема. Кроме того, изменение напряженности поля полезного сигнала может быть весьма значительным. При "ближнем телезизионном приеме" также могут происходить изменения уровня сигнала на входе приемника.

Основными причинами непостоянства уровня входного сиг-

нала при телевизионном приеме являются:* а) замирания (медленные и быстрые),

б) изменение пространственного взаимоположения передаю-

цей и приемной антенн.

Медленные замирания являются результатом измевения условий распространения электромагнитных волн между передатчиком и приемником. Природа подобных замираний эпределяется рефракцией проводящих волноводных каналов. Рефракция изменяется в зависимости от температуры и влажгости воздуха и поэтому различна на разных высотах. Частота солебаний уровня входного сигнала за счет подобных замираний составляет от нескольких колебаний в минуту до нескольсих миллионных долей колебаний в секунду, а глубина изметений уровня сигнала при этом может достигать 20 дб [Л. 6]. laиболее сильно медленные замирания проявляются при "дальіем телевизионном приеме".

Быстрые замирания являются результатом интерференции прямого сигнала от передатчика и сигнала с переменной мплитудой и фазой, отраженного от движущегося объекта, гапример, от самолета. При изменении положения самолета

^{*} Имеются в виду вещательное телевидение и навигационные телевизинные установки.

в пространстве изменяется разность хода путей прямого и отраженного сигналов, что приводит к изменению уровня сигнала на входе приемника. Частота подобных замираний может изменяться от 1 до 30 в секунду, а амплитуда более значительна, чем при медленных замираниях, и достигает 40 дб [Л. 6, 7, 8]. Амплитуда замираний зависит от высоты полета самолета, а частота их зависит от того, находится самолет между передающей и приемной антеннами или сзади приемной антенны. Кроме того, эти замирания являются функциями курса самолета, его скорости, длины волны полезного сигнала и высот антенн приемника и передатчика. Быстрые замирания могут привести к полному искажению телевизионного приема.

Изменение пространственного взаимоположения передающей и приемной антенн связано с маневрированием самолета или с качкой и маневрированием корабля [Л. 4, 5]. При этом могут происходить значительные колебания уровня сигнала на входе приемника вплоть до значений, лежащих ниже чувствительности приемника. Изменение уровня входного сигнала происходит также при изменении рас-

стояния между передатчиком и приемником.

1. Требования, предъявляемые к телевизионным системам АРУ

В отличие от систем АРУ, применяемых в радиовещательных приемных устройствах, к телевизионным системам АРУ предъявляется специфическое требование независимости регулирующего напряжения при изменении средней составляющей передаваемого сигнала. От выполнения этого требования зависит правильное воспроизведение средней яркости принимаемого изображения.

Наличие в телевизионном сигнале фиксированного уровня "черного", не несущего полезной амплитудной модуляции. позволяет осуществить системы АРУ, реагирующие лишь на

изменение уровня сигнала на входе приемника.

Специфическими особенностями телевизионных систем АРУ являются возможность "подавления" принимаемого изображения при недостаточно помехоустойчивой системе АРУ и тесная взаимосвязь ее работы с работой схемы помехоустойчивого селектора канала синхронизации.*

Недостаточно помехоустойчивая система АРУ может значительно снизить помехоустойчивость телевизионного приемника в целом даже при воздействии сравнительно редких импульсных помех (усиление приемника будет зависеть от уровня помех

на его входе).

^{*} Как известно [Л. 14], помехоустойчивый селектор канала синхронизации состоит из собственно амплитудного селектора и схемы предварительного снижения уровня помех.

При достаточно помехоустойчивой системе синхронизации импульсные помехи относительно мало влияют на визуальное восприятие принимаемого изображения, но могут полностью "подавить" изображение при недостаточно помехоустойчивой "системе АРУ. Поэтому систему АРУ следует в первую очередь защитить от воздействия помех импульсного характера. Взаимосвязь системы АРУ и схемы помехоустойчивого селектора заключается в том, что от эффективности работы и помехоустойнивости системы АРУ зависит устойчивость работы схем предварительного снижения уровня помех и амплитудного селектора канала синхронизации, а при устойчивой работе и достаточной помехозащищенности канала синхронизации может быть обеспечена надежность работы и помехоустойчивость системы АРУ.

Кроме отмеченного выше специфического требования, к системе телевизионной АРУ предъявляются такие же требования, как к любой системе АРУ. К этим общим требованиям отно-

1) система АРУ должна быть устойчива во всем диапазоне зозможных изменений уровня сигнала на входе приемника;

2) система АРУ должна обладать высокой степенью регугировки, при которой обеспечивается достаточное постоянство гровня выходного сигнала во всем диапазоне изменений сигнала на входе приемника;

3) время установления переходных процессов в системе \РУ должно быть минимальным, а характер переходного про-

цесса — апериодическим;

4) система АРУ должна быть достаточно быстродействуюцей, т. е. должна успевать "следить" за изменениями входного игнала во всем диапазоне возможных частот, поддерживая ри этом высокое постоянство сигнала на выходе приемника; 5) система АРУ должна обладать высокой помехоустойчиюстью.

Рассмотрим все эти требования.

Специфическое требование независимости регулиующего напряжения системы АРУ от содержания изображения бусловливается следующим. Как известно, размах телевизионого сигнала на выходе передатчика поддерживается неизменным широких пределах изменения освещенности передаваемого бъекта.* Следовательно, изменения фиксированного уровня игнала на входе приемника происходят не вследствие изменеия средней составляющей телевизионного сигнала, а в резульате замираний и изменения пространственного взаимоположеия передающей и приемной антенн. Поэтому система АРУ

^{*} Обычно в телевизионном передатчике осуществляется фиксация уровня терного", а постоянство уровня "белого" (при любой освещенности переда-темого объекта) обеспечивается за счет работы схемы APУ передающего тройства.

в телевизионном приемнике должна реагировать лишь на изменения фиксированного уровня (уровня "черного"), пропор-

циональные изменениям размаха входного сигнала.

Зависимость регулирующего напряжения АРУ от средней составляющей приводит к неправильному воспроизведению средней яркости и, в конечном счете, к контрастным искажениям принимаемого изображения.

Общие требования:

Требование устойчивости (первое требова: ние) определяет физическую осуществимость системы АРУ Система АРУ является системой регулирования с отрицательной обратной связью. Однако в отличие от подобных систем авторегулирования коэффициент усиления системы АРУ зависи: от уровня входного сигнала. Отсюда и вытекает требования устойчивости системы АРУ во всем диапазоне возможных изменений уровня входного сигнала. Различают статическук и динамическую устойчивость. Статическая устойчивость опре деляется при подаче на вход приемника немодулированног несущей, уровень которой соответствует максимальной величини принимаемого сигнала. Динамическая устойчивость оцени вается по отсутствию возбуждения системы АРУ при подачо на вход приемника модулированной несущей. Модуляция може быть синусоидальной или прямоугольной формы. Из всех зна чений коэффициента и частоты модуляции, встречающихся реальных условиях эксплуатации данного приемника, выбы раются максимальные значения.

Второе требование определяет статические свойсте системы АРУ и предъявляется в виде задания допустимог изменения выходного сигнала при определенном диапазоне изме

нений сигнала на входе приемника.*

Следует отметить, что исходными пунктами для задани амплитудной характеристики системы APУ должны быть: допустимое использование характеристик ламп приемника (в остренности последних каскадов УПЧ) и допустимые контрастны искажения воспроизводимого изображения. К сожалению, дсих пор не существует каких-либо норм допустимых контрастных искажений телевизионного изображения. Поэтому амплитудная характеристика системы APУ может быть задана лишприближенно.

Третье и четвертое требования отражают динамику процесса регулирования соответственно при резком и на прерывном изменении сигнала на входе приемника.

Как уже отмечалось выше, резкое изменение уровня вхо, ного сигнала характерно для случая эксплуатации навигацио:

^{*} Как известно, под степенью регулировки в данной точке регулировс ной характеристики системы АРУ понимается отношение относительно изменения уровня входного сигнала к относительному изменению уров выходного сигнала.

ных телевизионных систем, а к числу непрерывных изменений уровня входного сигнала могут быть отнесены замирания.

Пятое требование (требование высокой помехоустой-

чивости) очень важно.

В случае вещательного телевидения преобладают помехи

импульсного характера.

В случае навигационных телевизионных устройств, работающих в дециметровом и сантиметровом диапазонах волн, наиболее характерными являются флюктуационные помехи. Импульсные помехи также имеют место в виде случайных помех от радиолокационных станций и установок многоканальной связи, работающих в этих же диапазонах волн.

Следует также учитывать влияние импульсных помех от

различных устройств, расположенных вблизи приемника.

2. Классификация телевизионных систем АРУ

Телевизионные системы АРУ, как и системы АРУ любых радиоприемников, делятся на простые (системы без задержки), системы с задержкой, системы с задержкой и усилением.

Простые телевизионные системы APУ почти не применяются.

В каждой системе АРУ (как в радиоприемниках, так и в гелевизионных приемниках) регулировка может осуществляться тибо "назад" (регулировкой охватывается часть каскадов УВЧ и упч), либо "назад" и "вперед" (регулировкой охватывается те только часть высокочастотных каскадов, но и часть каскадов зидеоусилителя).

Регулировка только "вперед" не делается из-за возможности

терегрузки высокочастотных каскадов [Л. 12].

Однако указанная классификация совершенно не отражает пецифику работы телевизионных систем АРУ (см. параграф 1 настоящей статьи) и поэтому неприемлема.

Классификация телевизионных систем АРУ может быть про-

ізведена по двум характерным признакам:

а) по роду работы,

б) по способу и степени помехозащищенности.

Все телевизионные системы АРУ можно разделить по роду работы на три основных класса (рис. 1):

1. Импульсные системы АРУ

2. Непрерывные системы АРУ.

3. Комбинированные системы АРУ.

Отличие импульсных систем АРУ от непрерывных состоит : том, что при изменении уровня сигнала на входе приемника егулирующее напряжение в импульсных системах АРУ соотетственно изменяется лишь во время прихода гасящих (или инхронизирующих) сигналов, оставаясь неизменным в интералах между ними, в то время как в непрерывных системах

регулирующее напряжение непрерывно следит за изменениями сигнала на входе приемника.

Комбинированные системы АРУ используют как первый, так и второй принцип работы.

Рис. 1

Импульсные системы АРУ можно подразделить на следующие:

- а) системы с пиковым детектором, б) системы с временной селекцией,
- в) системы с амплитудным селектором.

В первых системах АРУ (рис. 2) на пиковый детектор подается либо телевизионный сигнал с выхода УПЧ, либо видео

Рис. 2

сигнал с нагрузки видеоде тектора или с одного из каскадов видеоусилителя. Напряжение на нагрузке пикового детектора опреде ляется максимальным уров нем видеосигнала в моменть прохождения синхронизи рующих (или гасящих) им пульсов. Напряжение кадро

вой частоты отфильтровывается с помощью фильтра нижни:

Во вторых системах АРУ временная селекция (рис. 3) осу ществляется за счет использования специальных стробирующи: импульсов, следующих с частотой повторения строк и подавае мых на "запертый" усилитель петли АРУ, на который посту

^{*} В этом случае связь от видеодетектора до пикового детектора должн осуществляться по постоянному току.

пает также видеосигнал. "Запертый" усилитель открывается лишь при одновременном приходе стробирующих и синхронизирующих (или гасящих) импульсов. Импульсы на выходе

Рис. 3

Рис. 4

запертого" усилителя пропорциональны полному размаху ви-

Система АРУ с амплитудным селектором изображена на ис. 4. В цепи сетки амплитудного селектора канала синхрони-

ации имеется неуправляемая хема фиксации, работающая о уровню вершин синхроимульсов. За счет работы этой хемы на управляющей сетке ампы амплитудного селектора бразуется отрицательное наряжение, пропорциональное азмаху видеосигнала. Оно гфильтровывается вплоть до

астот изменения средней составляющей и используется в каестве регулирующего напряжения.

Таким образом, в отличие от первых двух импульсных истем АРУ, регулирующее напряжение в данной схеме завиит от содержания изображения.

Непрерывные системы АРУ могут быть разделены на следующие:

а) простые системы,

б) системы с усилителем постоянного тока.

В простых системах (рис. 5 и 6) видеосигнал с детектора подается на фильтр, с выхода которого снимается регулирую-

щее напряжение. Простые системы APV могут быть без задержки (рис. 5) и с задержкой (рис. 6). В последнем случае обычно используется специальный детектор APV. Для непрерывных систем характерна резкая зависимость регулирующего

Рис. 8

напряжения от содержания изображения. Кроме того, они обладают весьма плохой амплитудной характеристикой.

В системах АРУ с усилителем постоянного тока (УПТ) телевизионный сигнал подается с детектора АРУ на УПТ, в анодной цепи которого включен фильтр (рис. 7). При определенном режиме УПТ может быть достигнута меньшая зависимость регулирующего напряжения от содержания изображения посравнению с простой непрерывной системой АРУ.

Принцип действия комбинированной системы APУ (рис. 8 и 9) состоит в следующем: на нагрузке видеодетектора и в цепи управляющей сетки амплитудного селектора получаются противофазные видеосигналы a и b одинакового размаха. В сеточной цепи амплитудного селектора осуществляется фиксация по уровню вершин синхроимпульсов. При этом образуется отрицательное напряжение U_2 средней составляющей телевизионного сигнала. Оно выделяется с помощью фильтра Φ_2 и складывается с отрицательным напряжением U_1 противофазного видеосигнала, имеющегося на нагрузке видеодетектора. Сложение осуществляется в цепи фильтра Φ_1 .

В результате сложения на выходе фильтра Φ_1 возникает отрицательное регулирующее напряжение, равное полному размаху видеосигнала. Любое изменение средней составляющей U_1 будет при сложении U_1+U_2 компенсироваться за счет противофазного и равного по абсолютной величине изменения средней составляющей U_2 (см., например, штрих-пунктирные линии на рис. 9).

Таким образом, регулирующее напряжение в данной системе не будет зависеть от содержания изображения.

3. Импульсные системы АРУ

А. Системы АРУ с пиковым детектором

Принципиальная схема дана на рис. 10, где обозначено: D—диод пикового детектора; R_1 и C_1 —сопротивление нагрузки и емкость пикового детектора; R_2C_2 —параметры фильтра. Обычно выбирают $R_2C_2\gg R_1C_1$, что несколько улучшает помехоустойчивость системы APУ [Л. 9]. С помощью делителя R_3R_4 устанавливается необходимое напряжение задержки.

Достоинствами систем APУ с пиковым детектором являются простота и независимость регулирующего напряжения от содержания изображения. Однако эти системы обладают недо-

статками—сравнительно слабой помехозащищенностью и относительно большой инерционностью (особенно при отрицательных скачках уровня входного сигнала). При уменьшении инерционности начинают все больше подавляться кадровые синхроимпульсы на выходе приемника. Это происходит потому, что при наличии кадровых синхроимпульсов через диод D протекает значительно больший ток, чем при строчных синхроимпульсах, и быстродействующая система АРУ будет реагировать на кадровый синхроимпульс, как на более сильный сигнал.

Если в телевизионном сигнале имеются только строчные синхроимпульсы, то система АРУ с пиковым детектором может

быть выполнена достаточно быстродействующей. При использовании такой системы должно быть обеспечено предварительное снижение уровня помех, например за счет амплитудного ограничения.

Б. Системы АРУ с временной селекцией

Временная селекция является одним из способов уменьшения влияния импульсных помех на систему АРУ.

Системы APУ с временной селекцией часто называют манипулированными, или стробированными, или "ключевыми", системами с "закрытым входом". На рис. 11 изображена типичная схема APУ с временной селекцией [Л. 13].

С выхода первого каскада видеоусилителя (\mathcal{J}_1) телевизионный сигнал подводится через сопротивление R к управляющей сетке "запертого" усилителя (\mathcal{J}_2) . Лампа \mathcal{J}_2 закрыта за счет соответствующей разности потенциалов между управляющей сеткой и катодом. На анод лампы \mathcal{J}_2 поступают со строчного трансформатора стробирующие импульсы, располагающиеся во времени внутри строчных синхроимпульсов. Лампа \mathcal{J}_2 открывается лишь при одновременном приходе видеосигнала на управляющую сетку и стробирующих импульсов на анод. Регули-

рующее напряжение на УПЧ снимается с сопротивлений R_2 и R_3 , а для УВЧ—с сопротивления R_3 . Диод \mathcal{J}_3 обеспечивает

задержку АРУ для УВЧ.

При отсутствии сигнала анод диода \mathcal{J}_3 находится под небольшим положительным потенциалом, подаваемым через сопротивление R_4 (десятки мегомов). При возрастании сигнала на входе приемника до определенной величины отрицательное регулирующее напряжение на сопротивлении R_3 становится равным (по

Рис. 11

збсолютной величине) указанному положительному потенциалу. При дальнейшем возрастании входного сигнала начинает уветичиваться смещение на сетках ламп регулируемых каскадов УВЧ. Подобная система АРУ используется в некоторых ангийских телевизионных приемниках [Л. 10].

тийских телевизионных приемниках [Л. 10]. Применяется также система APУ, реагирующая скорее на ослабление сигнала, чем на его увеличение [Л. 9]. Такая система APУ медленно реагирует на помеху и быстро освобождается от ее влияния. На рис. 12 изображена подобная система APУ: \mathcal{N}_1 —видеодетектор, \mathcal{N}_2 —видеоусилитель, \mathcal{N}_3 —, запертый "силитель, \mathcal{N}_4 —ограничитель, \mathcal{N}_5 —усилитель. От детектора до запертого" усилителя имеется связь по постоянному току.

На управляющую сетку лампы \mathcal{J}_3 поступает видеосигнал озитивной полярности, а на катод—стробирующие импульсы трицательной полярности, снимаемые с одной из обмоток

выходного трансформатора строчной развертки. Временное положение стробирующих импульсов показано на рис. 13.

Сильный сигнал неполностью запирает лампу \mathcal{J}_3 , а слабый сигнал увеличивает ток через лампу \mathcal{J}_3 (во время прихода стробирующих импульсов). Импульсы с анода лампы \mathcal{J}_3 поступают на ограничитель \mathcal{J}_4 и далее сглаживаются фильтром $R_{\phi^1}C_{\phi^1}R_{\phi^2}C_{\phi^2}$. Лампа \mathcal{J}_5 является усилителем-инвертором.

Схема обладает хорошей помехоустойчивостью по отношению к наиболее вероятным импульсным помехам, идущим в направлении синхроимпульсов. Такие помехи просто запирают лампу \mathcal{J}_3 или вызывают лишь небольшие импульсы положи-

тельной полярности в ее анодной цепи, не пропускаемые диодом \mathcal{J}_4 .

Регулировкой уровня "черного" осуществляется его установка около уровня ограничения помех.

При помощи регулятора контрастности изменяется смещение на управляющей сетке лампы \mathcal{J}_2 , что приводит к соответствующему изменению размаха сигнала (за

Рис. 13

счет действия APУ) на нагрузке детектора \mathcal{J}_1 , а следовательно, на аноде лампы \mathcal{J}_2 и на модуляторе приемной трубки.

Имеются системы АРУ с временной селекцией, одинаково быстро реагирующие на увеличение и уменьшение уровня сиг-

нала на входе приемника [Л. 9].

Следует отметить, что стробирующие импульсы в системе APУ с временной селекцией могут быть получены не от строчного трансформатора, а путем дифференцирования строчных гинхроимпульсов, снимаемых с выхода амплитудного селектора [Л. 11]. Однако для надежной работы такой системы APУ гребуется высокая помехоустойчивость амплитудного селектора санала синхронизации.

Очень важно правильно осуществить связь системы APУ с эмплитудным селектором канала синхронизации и схемой предварительного снижения помех [Л. 15]. Увеличение стабильности работы системы APУ повышает стабильность работы этих схем— наоборот.

В одной из систем АРУ с временной селекцией применен зесьма интересный способ снижения помех на входе амплитудного селектора [Л. 12]. На рис. 14 изображена соответствующая блок-схема этой системы АРУ.

Видеосигнал негативной полярности подается с выхода вицеоусилителя на специальный ограничитель помех (связь по постоянному току). Ограничение помех, идущих в направлении

синхроимпульсов, производится на уровне нижней отсечки характеристики лампы-ограничителя, так как при любой величине сигнала на входе приемника уровень вершин синхроимпульсов располагается вблизи нижней отсечки характеристики лампы.

Такая своеобразная "привязка" уровня вершин синхроимпульсов к уровню нижней отсечки характеристики лампы осуществляется путем изменения разности потенциалов сетка—катол лампы-ограничителя пропорционально уровню сигнала на входе приемника.

Напряжение на управляющую сетку лампы-ограничителя снимается с сопротивления, включенного в общую цепь регу-

лируемых каскадов УПЧ. При уменьшении (увеличении) сигнал на входе приемника уменьшается (увеличивается) смещени на управляющих сетках ламп регулируемых каскадов УПЧ При этом увеличивается (уменьшается) падение напряжени на сопротивлении в общей анодной цепи регулируемых каска дов, и на управляющую сетку лампы-ограничителя подаетс меньшее (большее) положительное напряжение. Катод лампы ограничителя находится под постоянным положительным потенциалом. Таким образом, при изменении сигнала на входе прием ника соответственно изменяется разность потенциалов сетка - катод лампы-ограничителя.

Сигнал на выходе ограничителя остается пропорциональны уровню сигнала на входе приемника, что позволяет подат сигнал с выхода ограничителя на систему АРУ. Сигнал с выхода ограничителя подается также на амплитудный селекто канала синхронизации.

Хорошая помехоустойчивость амплитудного селектора и системы АРУ обеспечивается как для сильных сигналов, так и дл сигналов, меньших по амплитуде, чем порог срабатывания вышеописанных систем АРУ.

В данной системе APУ осуществлена регулировка не только "назад", но и "вперед". Регулировка "вперед" достигается путем изменения экранного напряжения лампы видеоусилителя аналогично изменению смещения лампы ограничителя помех. Это одновременно улучшает отношение сигнал/помеха на выходе приемника (рис. 15) при малых уровнях сигнала на его входе (на чертеже прямая *1*—характеристика при большом

уровне сигналов на входе приемника, 2—при малом уровне сигна-

лов).

Если бы при уменьшении уровня сигнала на входе приемника экранное напряжение лампы видеоусилителя осталось неизменным, то, как видно из рис. 15, резко ухудшилось бы отношение сигнал/помеха для сигналов на выходе видеоусилителя. При соответствующем уменьшении экранного напряжения можно свести это ухудшение к минимуму.

Выше были рассмотрены основные типы схем АРУ с временной селекцией, использующиеся в на-

стоящее время.

Достоинствами систем APУ с временной селекцией при установившемся режиме синхронизации являются:

- а) хорошая помехоустойчивость по отношению к помехам импульсного характера;
- б) независимость регулирующего напряжения от наличия в видеосигнале кадровых синхроимпульсов

(в случае расположения стробирующих импульсов внутри строчных синхроимпульсов), что позволяет увеличить быстродействие системы АРУ;

в) независимость регулирующего напряжения от средней

составляющей телевизионного сигнала.

Применение систем APУ с временной селекцией широко рекламируется иностранной технической литературой, особенно ямериканской [Л. 9, 10, 11, 12]. Однако американские фирмы в 1953 и 1954 гг. применили такие системы APУ лишь в 17 моделях (из 48) телевизионных приемников. В остальных приемниках применялись простые непрерывные системы APУ. На немецкой радиовыставке 1955 г. из 44 шасси, выпущенных 30 фирмами, лишь 13 шасси (9 фирм) имели системы APУ временной селекцией.

Такой осторожный подход к выпуску систем АРУ с временной селекцией не является случайностью и, очевидно, связан с недостатками, присущими подобным системам АРУ.

К числу таких недостатков относятся:

1. Необходимость получения весьма узких (1—1,5 мксек) стробирующих импульсов размахом несколько сот вольт, точнс сфазированных относительно синхроимпульсов строчной частоты.

Практически необходимо располагать стробирующие импульсы внутри выравнивающих импульсов. В противном случае может произойти известное подавление полукадровых синхро-

импульсов на выходе приемника.

2. При наличии быстрых замираний сигнала на входе приемника, происходящих вследствие интерференции прямого сигнала с сигналом, отраженным от пролетающего самолета, стробирующий импульс может попасть на сигнал предыдущей строки отраженного сигнала, что нарушит правильное воспроизведение средней составляющей (за счет действия системы АРУ). Указан ное обстоятельство ограничивает площадь эффективной работь системы АРУ [Л. 6, 7].

3. Нормальная работа системы АРУ с временной селекцие возможна лишь при установившемся режиме синхронизации Однако сам процесс установления синхронизма зависит от нор мальной работы системы АРУ, при которой обеспечивается правильное действие схемы предварительного снижения уровня импульсных помех (такая схема включается перед амплитудным селектором канала синхронизации) и улучшаются условия ра боты амплитудного селектора канала синхронизации, что осо бенно важно при быстрых замираниях сигнала на входе прием ника.

В процессе установления синхронизма стробирующие им пульсы могут располагаться на сигналах изображения и, сле довательно, регулирующее напряжение системы АРУ буде значительно меняться в зависимости от мгновенных значени телевизионного сигнала. Диапазон изменений регулирующег напряжения будет в общем случае больше, чем у обычно непрерывной системы АРУ, где регулирующее напряжени зависит не от мгновенных значений видеосигнала, а от ег средней составляющей. В результате таких изменений регули рующего напряжения схема предварительного снижения уровн помех будет неправильно работать, подавляя сигналы синхро низации на входе амплитудного селектора. Это может привест к значительному затягиванию процесса установления синхро низма и неустойчивой синхронизации развертывающих ус: ройств.

Если телевизионный сигнал приходит на вход приемник в условиях уже действующих частых импульсных помех, т во время установления синхронизма регулирующее напряжени

АРУ может оказаться зависящим от помех, что приведет к тому ке самому эффекту, как и в случае нестационарного режима зинхронизации.

В. Система АРУ с амплитудным селектором

Система АРУ с амплитудным селектором изображена на рис. 16, где лампа \mathcal{J}_1 —амплитудный селектор канала синхроіизации. В цепи управляющей сетки лампы $\dot{\mathcal{J}}_1$ осуществляется

риксация уровня вершин синхроимпульсов. Регулирующее напряжение снимается с выхода фильтра $R_{\phi}C_{\phi}$.

Увеличение помехозащищенности обеспечивается за счет схемы предварительного снижения уровня

помех [Л. 15].

Непрерывна

амплитудным

селектором

Регулирующее напряжение резко зависит от изменения средней сотавляющей телевизионногосигнала, но в отличие от непрерывной системы АРУ выходной сигнал уменьпается при переходе от "черного" толя к "белому"

В сравнит зедены прим

жений, возн непрерывной селектором:

ны примеры	ой таолице при-	лип гипп Рис. 16 пы АРУ с амплитудным
Система АРУ	Переход	Контрастные искажения
прерывная	От «белого» поля к «черному»	Темно-серые детали стано- вятся черными
	От «черного» поля к «белому»	Светло-серые детали стано- вятся белыми
	От «белого» поля к «черному»	Темно-серые детали стано- вятся серыми

Uper

Видеосценал с саземы

компенсации помех

Светло-серые детали стано-

вятся серыми

Как видно из таблицы, в случае непрерывной системы АРУ диапазон контрастности как бы растягивается, а в случае системы АРУ с амплитудным селектором-сжимается.

От «черного» поля к

«белому»

Обычно зритель лишен возможности сравнивать передаває мое изображение с принимаемым и поэтому может не заметит даже значительных контрастных искажений и искажений средней яркости. Это вовсе не означает, что могут быть допущентакие искажения, так как с точки зрения хорошего качеств воспроизведения принимаемое изображение должно соответст вовать передаваемому.

4. Непрерывные и комбинированные системы АРУ

. Непрерывные системы АРУ

На рис. 17 изображена непрерывная простая система APУ Телевизионный сигнал с выхода УПЧ поступает через конден сатор C_1 на диод D детектора APУ. На схеме: R_{μ} и C_{μ} —на грузка детектора APУ; R_{ϕ} и C_{ϕ} —параметры фильтра; $R_1R_2R_8$ —

делитель напряжения для создания необходимой задержки Регулирующее напряжение снимается с выхода фильтра.

На рис. 18 изображен один из вариантов непрерывной си стемы APУ с усилителем постоянного тока. Телевизионны сигнал с выхода УПЧ подается через конденсатор C_1 на диод I детектора APУ. Нагрузка детектора APУ состоит из сопротивления R_n и емкости C_n . Сопротивление R_1 служит в качеств развязки.

С детектора напряжение видеосигнала подается на управляющую сетку лампы \mathcal{N}_1 усилителя постоянного тока (УПТ) в анодной цепи которого включен фильтр $R_{\phi}C_{\phi}$. Регулирующее напряжение снимается с выхода фильтра. УПТ работае в режиме микротоков. Задержка обеспечивается за счет вы бора соответствующего режима лампы \mathcal{N}_1 .

К числу достоинств непрерывных систем АРУ можно отнеи простоту схем и хорошую помехозащищенность по отноению к случайным, редким импульсным помехам.

Недостатками непрерывных систем АРУ являются:

- 1) резкая зависимость регулирующего напряжения от средий составляющей телевизионного сигнала;
 - 2) сравнительно большая инерционность;
- 3) недостаточная помехоустойчивость по отношению к пеюдическим импульсным помехам.
- Большая инерционность связана с необходимостью отфильовывания всех переменных составляющих видеосигнала вплоть частот средней составляющей. Благодаря большой инерцион-

ти непрерывная система APУ не будет успевать следить быстрыми замираниями сигнала на входе приемника. Периодические импульсные помехи могут зарядить емкость ютра C_{ϕ} и тем самым в известной мере "подавить" принимое изображение на экране приемной трубки. После прещения действия таких помех регулирующее напряжение внительно медленно возвращается к нормальному значению едствие большой постоянной времени фильтра $R_{\phi}C_{\phi}$.

Комбинированные системы АРУ

На рис. 19 изображена комбинированная система АРУ. Приндействия такой системы был описан выше.

На схеме: D_1 —видеодетектор; \mathcal{J}_2 —амплитудный селектор гла синхронизации; D_3 —диод задержки; $R_{\scriptscriptstyle R}C_{\scriptscriptstyle R}$ —нагрузка вицетектора; $R_{\scriptscriptstyle \phi}C_{\scriptscriptstyle \phi}$ —фильтр APV; R_1R_2 —делитель напряже- R_2C —фильтр; R_4 —потенциометр регулировки контрастии.

соэффициент деления $n = \frac{R_2}{R_1 + R_2} = K$ (коэффициент усилетракта от нагрузки видеодетектора до сетки амплитудного ктора), поэтому размах видеосигнала в точке M равен аху видеосигнала на нагрузке видеодетектора.

В сеточной цепи амплитудного селектора осуществляетс фиксация по уровню вершин синхроимпульсов, за счет чего точке M образуется отрицательное напряжение U_2 средне составляющей (см. рис. 9). Видеосигнал отфильтровываетс фильтром R_2C , а напряжение U_2 добавляется к напряжению L видеосигнала на нагрузке видеодетектора. Таким образом, н выходе фильтра $R_{\phi}C_{\phi}$ возникает регулирующее напряжение пропорциональное полному размаху телевизионного сигнала не зависящее от его средней составляющей.

Рис. 19

Помехоустойчивость комбинированной системы АРУ не привышает помехоустойчивости непрерывной системы АРУ. Друг недостатком системы, изображенной на рис. 19, является глая степень регулировки.

5. О работе систем АРУ при позитивной модуляции телевизионного сигнала

Учитывая быстрое развитие техники передач телевизионг программ на большие расстояния, целесообразно рассмотр работу АРУ при позитивной модуляции телевизионного гнала.

В этом случае при изменении уровня сигнала на входе п емника будут происходить сравнительно малые абсолюті

зменения уровня "черного", а уровень вершин синхроимпульов будет оставаться неизменным. Поэтому при использовании мпульсных систем APУ с временной селекцией стробируюцие импульсы необходимо располагать на площадках гасящих мпульсов, а амплитуду стробирующих импульсов придется езко увеличить с целью получения достаточно хорошей амлитудной характеристики системы APУ.

Импульсные системы АРУ с пиковым детектором очевидно е могут быть применены ввиду неизменности уровня вершин

нхроимпульсов. Не могут быть применены и комбинированпе системы АРУ, так как напряжение средней составляющей деосигнала, полученное в цепи управляющей сетки амплидного селектора, будет равно напряжению средней составнющей видеосигнала на нагрузке видеодетектора.

Можно применить импульсные системы APУ с амплитудным лектором и непрерывные системы APУ. Однако, вследствие зкой зависимости регулирующего напряжения этих систем от менения средней составляющей телевизионного сигнала, бут неправильно воспроизводиться средняя яркость принимаето изображения.

При позитивной модуляции телевизионного сигнала может ть рекомендована система APУ, изображенная на рис. 20 [Л. 3], в обозначено: D—видеодетектор; \mathcal{I}_1 —видеоусилитель; \mathcal{I}_2' —од схемы фиксации по "белому"; \mathcal{I}_2'' —диод пикового детектора, \mathcal{I}_3 —диод задержки; $R_{\scriptscriptstyle R}C_{\scriptscriptstyle R}$ —нагрузка пикового детектора, $C_{\scriptscriptstyle C}$ —фильтр.

Видеосигнал позитивной полярности поступает с анодной нагрузки R_a лампы \mathcal{J}_1 видеоусилителя на схему фиксации по самой "белой" точке (емкость C, диод \mathcal{J}_2') и на катод диоде \mathcal{J}_2'' пикового детектора. Регулирующее напряжение APУ снимается с выхода фильтра $R_\phi C_\phi$. Оно пропорционально полному размаху телевизионного сигнала и при наличии в нем "белого" не зависит от средней составляющей.

Компенсация начального отрицательного регулирующего напряжения производится за счет введения компенсирующего

положительного напряжения U_{κ} .

Для нормальной работы схемы необходима связь по постоянному току между видеодетектором и лампой \mathcal{J}_1 видео усилителя. Кроме того, целесообразно применить отдельный детектор APУ (диод D) и усилитель APУ (лампа \mathcal{J}_1), что позволит получить больший сигнал на выходе усилителя APУ и осуществить ручную регулировку контрастности в видео усилителе канала изображения.

Схема требует предварительного снижения уровня помех которое может быть осуществлено в последнем каскадо

УПЧ [Л. 16].

Заключение

На основании проведенного качественного анализа работитипичных телевизионных систем АРУ можно сделать следующие выводы:

1. При позитивной и негативной модуляции телевизионног сигнала имеются различные условия для осуществления авто

матической регулировки усиления приемника.

2. При позитивной модуляции телевизионного сигнала су щественно усложняется задача построения эффективных си стем АРУ. Из известных систем АРУ может быть рекомендо вана система, использующая принцип выпрямления с удвоение напряжения (см. рис. 20) при условии предварительного сик жения уровня помех.

3. При негативной модуляции телевизионного сигнала наи лучшими из имеющихся систем APУ являются APУ с временой селекцией и комбинированная система APУ. Однако даж лучшие системы APУ не свободны от ряда существенных не

лостатков.

4. Необходимо улучшить качественные показатели имек щихся систем АРУ и разработать новые более рациональны системы АРУ телевизионных приемников.

ЛИТЕРАТУРА

1. В. И. Сифоров, Радиоприемные устройства, Воениздат, 1954. 2. Г. К. Серапин, АРУ в радиоприемниках, Госиздат по техницсвязи, 1938.

3. О. Б. Лурье, Усилители видеочастоты, "Советское радио", 1955. 4. "Вопросы радиолокационной техники", 1954, № 3. 5. "Вопросы радиолокационной техники", 1955, № 4. 6. А. Н. Соорег, Television interference by aircraft, "Wireless World", April, 1949.

7. Mc Millan, Some devices for reducing the effects of fading and interference, "J. Telev. Soc.", 1949, vol. 5, № 41.

8. G. T. Glack, Television fading, "Electronic Engineering", November, 1946.

- ber, 1946.

 9. K. R. Wendt and A. C. Schroeder, Automatic gain controls for television receivers, "RCA Review", 1948, № 3.

 10. Milton S. Kiver, Keyed A. G. C. Systems, "Radio and Telev. News", September, 1953, vol. 50, № 3, pp. 48—50.

 11. S. E. Gent and D. J. S. Westwood, New vision A. G. C. System, "Wireless World", 1955, vol. 61, № 11.

 12. E. A. Keizer and M. G. Kroger, A level-setting syne and automatic gain control system for television receivers, "RCA Rev.", 1953, № 3.

 13. Die automatische Verstärkerungsregelung in Fernsehempfänger, "Funk—Fechnik", 1953, № 23.

 14. Fernseher zur Funkausstellung 1955, "Radio Mentor", 1955, № 9.

 15. Schutzschaltungen gegen Störimpulse in Fernsehempfänger, "Funk—Fechnik", 1954, № 14.
- ſechnik", 1954, № 14.

16. Компенсатор помех, "Радио", 1956, № 3.

Статья поступила 12/IV 1956 г.

Инж. И.Ф. КУЗАЕВ

МЕТОДИКА ПРЕДВАРИТЕЛЬНОЙ ЮСТИРОВКИ ОБЪЕКТИВА ЗЛ-1, ПРИМЕНЯЕМОГО В ПРОЕКЦИОННОМ ТЕЛЕВИЗИОННОМ ПРИЕМНИКЕ С ЭКРАНОМ 3×4 м

В статье описаны операции по предварительной юстировке проекционного зеркально-линзового объектива, применяемого в телевизионном приемнике с экраном 3×4 м.

Первый отечественный телевизионный проекционный приемник с экраном 3×4 м был сдан в эксплуатацию в 1954 г. 1 г. Москве в кинотеатре "Эрмитаж". Для увеличения принимаемого изображения с люминофорного экрана трубки в этой установке применен зеркально-линзовый проекционный объек тив с несферической коррекционной пластиной. Ранее бы описан способ изготовления несферических пластин [Л. 1], но несмотря на обширную литературу по использованию таки объективов в телевидении, вопрос о методике их юстировки освещен недостаточно. В настоящей статье сделана попытк восполнить этот пробел и описаны операции, применявшиес при юстировке объективов подобного типа и поэтом представляют интерес для практиков.

1. Краткое описание устройства объектива

Принимаемое телевизионное изображение у трубки 23ЛК4 имеет размеры 135×180 мм и при размере зрительного экран

 3×4 м увеличивается в $\gamma = 22,2$ раза.

Световой диаметр главного сферического зеркала раве 750 мм, что при радиусе кривизны R=738 мм дает для осе вой точки геометрическую светосилу $\ddot{O}\approx 1:0,8$. Фокуснс расстояние объектива f=369 мм, а световой диаметр асферической коррекционной пластинки 475 мм. В центре коррекционной пластинки было высверлено отверстие диаметро 142 мм для трубки с катушками. Центральная зона сферического зеркала диаметром 250 мм была зачернена для снижени

асветки дна трубки. Плоская сторона асферической коррекционной пластинки (ближняя к сферическому зеркалу) была далена от вершины зеркала на 738 мм. Дно приемной трубки въляется концентрическим мениском, имеющим толщину d=6 мм и радиусы кривизны $R_1=362$ мм и $R_2=368$ мм. В контруктивных разработках оправы объектива совместно с автором принимали участие конструкторы В. И. Каркалев, С. А. Алексеев, Н. Н. Черепанов, а узла держателя трубки—контруктор А. И. Филимонов.

Рис. 1. Крепление зеркала в оправе
1-сферическое зеркало; 2-оправа зеркала; 3-коромысло; 4-шарнир; 5 и 5'винты с шаровым упором; 6-прижимные колодин; 7-упорные тарелки; 8-треугольное коромысло

Конструктивно объектив может быть разделен на следуюцие самостоятельные узлы:

- 1) узел сферического зеркала, состоящий из самого зеркала оправы для него;
- 2) корпус объектива;
- 3) узел корректирующей линзы;
- 4) держатель трубки;
- 5) механизм подъема объектива и опорная плата.

Сферическое зеркало *I* крепится (рис. 1) в чугунной ажурой оправе 2 шестью боковыми колодками, расположенными периферии оправы, и покоится на девяти тарелочных опотх *T*. Тарелочные опоры соединены по три штуки треугольми коромыслами *8*, которые в свою очередь шарнирно язаны с оправой зеркала. Каждая тарелка покоится на кормысле в шаровой шарнирной пяте *5*, а коромысло аналогичми шарниром *5* соединено с оправой. Регулировочными винми можно сместить каждое коромысло вместе с сидящими нем тарелками на нужную величину и этим достичь правльной установки зеркала в оправе в осевом направлении.

Боковые колодки укреплены на коромыслах З попарно ша ровыми такими же шарнирами 5 с винтовой нарезкой. Этими винтами-шарнирами можно отрегулировать положение зеркала относительно оправы и добиться желаемой его установки Со стороны рабочей поверхности сферическое зеркало кре-

Рис. 2. Корпус объектива с опорной платой

1-корпус объектива; 2-отверстие для сферического зеркала с оправой; 3-отверстие для корректирующей линзы с оправой; 4-опорная плата; 5-домкрат; 6-дверца

пится в оправе тремя планками опирающимися на фаску зеркала

Корпус объектива 1 имее форму полой усеченной пирамидь и сварен из листовой стали (рис 2). К обоим основаниям этоі пирамиды приварены соосны стальные кольца 2 и 3. В боль шем отверстии корпуса устанав ливается оправа зеркала и кре пится тремя винтами. К наружно поверхности корпуса со стороні меньшего отверстия крепитс тремя колодками оправа коррек тирующей линзы. По двум боко вым граням корпуса сделаны от кидные дверцы 6, служащие дл И установки трубк замены 23ЛК4Б. Внутренняя поверхност корпуса обшивается свинцом (за

щита от рентгеновского излучения трубки) и окрашиваетс матовой черной краской. Дверцы имеют блокировку, выклк чающую высокое напряжение при их открывании.

Рис. 3. Узел линзы 1-корректирующая линза; 2-оправа линзы; 3-прижим

Узел корректирующей линзы (рис. 3) состоит из кольце образной оправы 2 и трех планок 3 для крепления линза Корректирующая линза 1 вместе с оправой 2 крепится трем колодками к переднему срезу корпуса. Совмещение оси линз с осью отверстия корпуса достигается при помощи трех винто

Держатель трубки (рис. 4) является наиболее сложным улом в объективе, так как выполняет несколько функци а именно:

а) перемещает трубку вдоль оси объектива;

б) перемещает трубку в вертикальной плоскости перпендикулярно к оси объектива;

в) перемещает трубку в горизонтальном направлении пертендикулярно к оси объектива;

г) поворачивает трубку вокруг оси, проходящей через дентр кривизны сферического зеркала;

д) поворачивает трубку вокруг оси колонки 2 трубкодержа-

еля 1.

Совокупность этих переиещений дает возможность регулировать в известных пределах положение люмиюфорного экрана приемной рубки относительно сферитеского зеркала и обеспеить резкое изображение на рительном экране.

Механизм подъема объктива 5 (см. рис. 2) предтавляет собой домкрат, дин из концов которого іарнирно прикреплен к корусу 1 объектива, а второй—

опорной плате 4. Переидным рычагом можно изенять угол между осью бъектива и плоскостью

порной платы.

Корпус объектива связан опорной платой шарнирным рединением, обеспечиваюим две точки опоры. ретья точка опоры корпуса іходится в месте его социнения с верхним концом

Рис. 4. Держатель трубки

1-патрубок; 2-колонка; 3-люлька; 4-ось патрубка; 5-винт осевых (фокусировочных) смещений трубки; 6-винт боковых смещений; 7-винт вертикальных смещений; 8-коробка суппортов; 9-винт наклона трубки

эмкрата. Опорная плата имеет форму плоской опрокинутой робки из листовой стали и крепится винтами к фундаменту їй к полу зрительного зала. При помощи винтов может быть зуществлен небольшой разворот объектива относительно эриэльного экрана в горизонтальной плоскости.

2. Юстировочные операции

Целью юстировки объектива является установление всех о деталей на таких взаимных расстояниях, при которых обътив наилучшим образом выполняет свои функции в конкретіх условиях эксплуатации. Поскольку объектив ЗЛ-1 специьно рассчитан и изготовлен для телевизионной проекции с 22,2-кратным увеличением, то практически юстировка сводится к установке, выверке и закреплению оптических и механических деталей на расстояниях, указанных на чертежах, и к компенсации неточностей, накопившихся в деталях при их

изготовлении по заданным допускам.

Первой юстировочной операцией является совмещение оси патрубка держателя 1 (см. рис. 4) трубки с осью обоих отверстий корпуса, служащих для установки в них сферического зеркала и корректирующей линзы. С этой целью все суппорты (5, 6, 7 и 9) трубкодержателя устанавливаются в средние положения, а на обоих отверстиях корпуса натягиваются нитяные перекрестия, фиксирующие его ось. По обоим кон цам патрубка трубкодержателя натягиваются такие же нитя ные перекрестия. На продолжении прямой, соединяющей перекрестия в отверстиях корпуса, на стене (или неподвижны) предметах) комнаты наносится какая-либо заметная метк: (точка, крестик).

После этого держатель трубки вносится внутрь корпус через боковые дверцы и устанавливается временно так, чтобы перекрестия в патрубке совместились с прямой, соединяюще: перекрестие большого отверстия корпуса (перекрестие в ма лом отверстии нарушается патрубком) и метку на стене. Затег производится разметка отверстий под соединительные болть скрепляющие трубкодержатель с корпусом, и держатель трубк извлекается из корпуса. После сверления отверстий держател вносится вторично внутрь корпуса и крепится окончательно.

Вращая винт 5 (см. рис. 4) продольного перемещения суг порта трубкодержателя, смещаем патрубок вдоль оси объен тива и убеждаемся, что при этом не нарушается ранее уста новленное совмещение перекрестий. При правильной установк трубкодержателя такое совмещение должно сохраняться н всей длине хода суппорта. Если этого совмещения нет имеется некоторое смещение оси патрубка от оси корпуса, то освободив винты, соединяющие трубкодержатель с корпусог и вставляя подкладки, добиваемся полного устранения замече: ного отклонения осей, после чего закрепляем окончателы трубкодержатель болтами.

Второй операцией является совмещение центра кривизн сферического зеркала с осью объектива (линия, соединяюща перекрестие большого отверстия корпуса с двумя перекр стиями в патрубке и меткой на стене). Для этого, не сним ранее установленных перекрестий на патрубке трубкодерж теля, снимаем перекрестие с большого отверстия корпуса устанавливаем туда зеркало в оправе. Если смотреть через с верстие патрубка в сторону сферического зеркала, то увиди четыре перекрестия, из них два-реальные, а два являются изображениями. Если эти перекрестия не лежат на одной пр мой, то центр кривизны зеркала не лежит на оси систем

Для совмещения перекрестий разворачиваем зеркало вместе с оправой относительно корпуса при помощи винтов. Совпадение перекрестий даст нам полное совмещение центра кривизны сферического зеркала с осью объектива.

Третьей операцией является совмещение центра кривизны сферического зеркала с плоскостью асферической линзы. Для этого на плоскую сторону линзы приклеиваем нитяное перекрестие, после чего крепим линзу вместе с оправой к корпусу

со стороны меньшего отверстия.

Как правило, это перекрестие не будет совмещено с его изображением. Сначала боковыми перемещениями линзы добиваемся, чтобы перекрестия легли на одну линию с перекрестиями патрубка; это дает совмещение оси линзы с осью патрубка. Затем одновременным вращением болтов смещаем зеркало вперед (или назад) до совпадения изображения перекрестия с самим перекрестием. При этом следует наблюдать за тем, чтобы перекрестия на патрубке оставались совмещенными с их изображениями. После этого линза и зеркало крепятся окончательно к корпусу объектива.

Перечисленными тремя операциями предварительная юстировка объектива заканчивается. Остается правильно установить объектив относительно зрительного экрана. Для этого объектив устанавливается от центра экрана на расстоянии 8,1 м так, чтобы центр асферической линзы оказался на одина-

ковом расстоянии от нижних углов экрана.

Затем через открытую боковую дверцу с помощью плокого зеркала, внесенного внутрь корпуса под углом 45° к оси
объектива, определяем правильность совмещения обоих перекрестий на патрубке трубкодержателя с перекрестием на зригельном экране. Перекрестие на зрительном экране делается
три помощи ниток или шпагата, протянутых из противоположных углов экрана. Производя соответствующие развороты
корпуса всего объектива в горизонтальной плоскости и
тользуясь домкратом для перемещений в вертикальной плокости, добиваемся совмещения указанных трех перекрестий.
Выполнение этого условия и даст нам правильное взаимное
засположение проекционного объектива относительно зрительного экрана.

Однако зрительный экран в телевидении должен иметь таую характеристику направленности, которая охватывала бы олько места размещения зрителей, т. е. обладать некоторым оэффициентом усиления. Для лучшего использования направенных свойств экрана его приходится наклонять в сторону рителей. По этой причине, а также из-за малого увеличения зображения, которое возможно в телевидении, зрительный кран образует с осью объектива угол, несколько отличный т 90°. Поэтому, если вложить имитатор с испытательной аблицей в патрубок юстированного описанным способом объек-

тива, то получить резкого изображения по всему экрану невозможно.

Чтобы получить резкое изображение по всему зрительному экрану, необходимо винтом 9 (см. рис. 4) наклонить патрубок с имитатором так, чтобы верхний край кадра приблизился к асферической линзе, а нижний край удалился, и одновременно винтом 5 перемещать трубку по оси. Для определения степени одинаковой резкости спроектированного изображения на всех частях экрана используется селеновый фотоэлемент с гальванометром.

Фотоэлемент прикрывается щелевой диафрагмой такой ширины, чтобы в ней уменьшалось изображение какой-либо детали рисунка таблицы. Детали выбираются такие, которые имеются в четырех углах и в центре испытательной таблицы. Измеряя освещенность изображения этой детали в углах и в центре экрана и освещенность смежных участков, мы определим контраст изображения в разных участках экрана. Зная контраст проектируемой испытательной таблицы из предварительных измерений, мы можем судить о степени достигнутой равномерной резкости изображения на экране. Этим же фотоэлементом мы можем измерить неравномерность освещения экрана, обусловленную виньетированием объектива.

3. Имитирующая трубка

Имитирующая трубка давно зарекомендовала себя кан полезное устройство в работе с проекционными телевизионными объективами. Поскольку нигде описания такого устрой ства не встречалось, то считаем полезным кратко описать ими таторы, применявшиеся в нашей практике.

Применение имитирующей трубки при разработке проек ционных телевизионных приемных устройств вызвано следую

щими причинами:

1. Разработку проекционного объектива часто приходитс: вести параллельно с разработкой приемной трубки, совместно с которой будет работать объектив. Поэтому при эксперимен тах с макетами объектива, как правило, нет возможности поль зоваться реальной приемной трубкой.

2. Для работы приемной трубки в условиях, близких к ре альным, необходимо наличие всех блоков телевизионного при емника, а этого обычно нет, поскольку схема приемника раз

рабатывается также параллельно с объективом.

3. Даже в случае наличия трубки и всей радиотехническо части приемника их эксплуатация при опытах с макетам объективов требует значительного времени от эксперимента тора-оптика и отвлекает его внимание.

Перечисленные соображения побудили давно отказаться о использования реальных телевизионных приемных трубо

в опытах с разрабатываемыми проекционными объективами и

применять имитаторы.

Имитирующая трубка должна быть оптическим и геометрическим эквивалентом реальной приемной трубки, поскольку она должна возможно полнее воспроизвести условия, в кото-

рых будет работать проекционное устройство.

Требование оптической эквивалентности имитатора заключается в том, что кадр имитатора должен быть самоизлучателем света, весьма близким по характеру к возбужденному люминофору. В имитирующей трубке было применено молочное стекло, поскольку оно по характеру излучения весьма

Рис. 5. Имитирующая трубка I—корпус имитатора; 2—прозрачное дно, аналогичное дну реальной приемной трубки; 3—молочное стекло; 4—лампа накаливания; 5—маска для ограничения кадра

близко люминофорному экрану. Кроме того, в реальной приемюй трубке люминофор нанесен на внутренней поверхности выпуклого дна, поэтому такой же конструктивный элемент был введен и в имитатор. Вследствие этого конструктивное формление имитатора приняло вид, показанный на рис. 5.

При испытаниях макета разрабатываемого проекционного риемника имитатор вставляется вместо реальной трубки в объектив. Кадр имитатора проектируется на зрительный экран. Сли предметом экспериментального исследования является ворос о разрешающей способности проекционного объектива, о в имитатор вкладывается между деталями 2 и 3 (рис. 5) и проектируется на экран прозрачная штриховая мира с соответтвующим числом линий на 1 мм. По числу линий, разрешаеных данным объективом, можно судить о его пригодности для нешения поставленной задачи.

Для определения к. п. д. проекционного объектива предарительно измеряют яркость кадра имитатора и вычисляют злучаемый им световой поток. Сопоставляя этот световой оток с потоком, падающим на зрительный экран, легко выислить к. п. д. проекционного объектива. Вопрос о создании роекционных объективов в телевидении с возможно большим

ж. п. д. имеет очень важное значение. Поэтому материалы измерений, проведенных с имитатором, оказываются весьма ценными при выборе объективов с наибольшим к. п. д.

ЛИТЕРАТУРА

- 1. И. Ф. Кузаев, Новый метод изготовления несферических поверх ностей высших порядков для коррекции оптических систем, "Техника телевидения", 1954, вып. 2 (8).

Статья поступила 1/1X 1955 г.

Канд. техн. наук К. В. МИХАЛКОВ инж. С. И. ЗЕЛЕНСКИЙ

ХАРАКТЕРИСТИКИ ПЕРЕДАЧИ КОНТРАСТА ТЕЛЕВИЗИОННЫМИ СИСТЕМАМИ

В статье рассмотрен метод анализа характеристик передачи контрастателевизионными системами. Выведены общие выражения для характеристик передачи контраста и для числа градаций яркости, воспроизводимы телевизионной системой.

Введение

Вопрос о распределении светотеней в телевизионном изо бражении имеет существенное значение как для телевизион ного вещания, так и для специальных применений телевидения Об этом свидетельствует большое число специальных работ опубликованных в Советском Союзе и за границей. Для теле визионного вещания наибольший интерес представляет знани того, насколько точно воспроизводятся градации яркости пере даваемой сцены и какое количество градаций может быт передано. Поэтому качество телевизионного изображения, на ряду с другими параметрами, характеризуют максимально раз личимым числом градаций в изображении ступенчатого фото метрического клина, представляющего шкалу с равномерны изменением плотности ступеней по диапазону.

Необходимо отметить, что данные о числе передаваемых гра даций яркости достаточны только при условии одноцветност сюжета передачи или при условии, что спектральная характе ристика передающей трубки соответствует кривой видност глаза. Отклонение от этих условий может вызвать контраст ные искажения, не связанные с характеристикой передач системы. Вопрос этот, однако, заслуживает отдельного рассмо трения и в настоящей работе не исследуется. Здесь прини мается, что выбор спектральной характеристики системы сде лан таким образом, что для заданного сюжета передачи кон

трастные искажения, обусловленные спектральными свойствами,

отсутствуют.

Однако и в этом случае не всегда удобно характеризовать качество передачи числом передаваемых (воспроизводимых) градаций. В аппаратуре промышленного телевидения иногда требуются нелинейные характеристики передачи, вводимые для увеличения эффективности работы. В этом случае уже не имеет смысла говорить о правильной передаче градаций. Многие задачи, решаемые с помощью телевидения, требуют ответа на вопросы: как воспроизводятся детали различного контраста, какой характеристикой должна обладать система, чтобы сделать возможным наблюдение объекта, хотя бы и с искажением распределения светотеней, и т. д.

Очевидно, что наиболее удобной характеристикой, позволяющей судить о возможностях системы, будет являться характеристика, связывающая контраст на входе (контраст оригинала) и контраст на выходе (контраст изображения) системы, которую мы будем называть характеристикой передачи контраста. Знание этой характеристики позволяет непосредственно судить о возможности наблюдения заданного объекта при условии, что размеры проекции его на чувствительном элементе системы достаточно велики, чтобы не учитывать апертурный эффект системы. В то же время от характеристики передачи контраста всегда можно перейти к характеристике качества изображения по числу передаваемых градаций.

1. Метод анализа характеристик передачи контраста телевизионных систем

Допустим, что характеристика передачи системы или ее элемента* аппроксимируется степенной функцией

$$u_2 = M u_1^{\gamma}, \tag{1}$$

где

 u_2 —сигнал на выходе системы (элемента);

 u_1 —сигнал на входе системы (элемента);

M—коэффициент преобразования;

ү—коэффициент контрастности, или "гамма", системы (элемента).

Пусть, далее, контраст (световой или электрический) на входе равен

$$K_{1} = \frac{u_{1 \text{ Makc}} - u_{1 \text{ Muh}}}{u_{1 \text{ Makc}}}.$$
 (2)

^{*} Под характеристикой передачи системы или элемента будем подразумевать связь между установившимися значениями сигнала на входе и выходе системы (элемента).

Соответственно контраст на выходе

$$K_2 = \frac{u_{2 \text{ MAKC}} - u_{2 \text{ MUH}}}{u_{2 \text{ MAKC}}}.$$
 (3)

Используя эти зависимости, получим связь между контрастами на входе и выходе системы (элемента), т. е. характеристику передачи контраста

$$K_2 = 1 - (1 - K_1)^{\gamma}$$
. (4)

При условии $K_1 < 1$, что всегда справедливо, выражение (4) может быть представлено бесконечным сходящимся рядом

$$K_2 = \gamma K_1 - \frac{\gamma (\gamma - 1)}{2!} K_1^2 + \frac{\gamma (\gamma - 1) (\gamma - 2)}{3!} K_1^3 - \dots$$
 (5)

Пренебрегая членами второго и более высоких порядков, получим известную зависимость

$$K_2 = \gamma K_1. \tag{6}$$

На основании формулы (6) обычно полагают, что при характеристике передачи, аппроксимирующейся степенной функцией, имеет место правильная передача светотеней.

Рассмотрим, на чем основано такое представление. Как уже отмечалось, о контрастных искажениях принято судить по передаче полей ступенчатого фотометрического клина, который имеет постоянный контраст между соседними полями, обычно небольшой по величине.

небольшой по величине. Контрасты на выходе системы— K_2 , вычисленные по формулам (5) или (6), будут различаться по величине в зависимости от значений K_1 и γ , но при постоянном K_1 будут величинами постоянными. Так, например, если градационный клин имеет 10 ступеней (причем контраст K_1 между соседними ступенями сохраняется постоянным и равным 0,1), то при $\gamma=2$ согласно (6) контраст $K_2=0,2$, а согласно (5) $K_2=0,19$. Результат, полученный по формуле (6), менее точен, но качественный характер его не отличается от результата, полученный по формуле (7).

Результат, полученный по формуле (6), менее точен, но качественный характер его не отличается от результата, полученного по формуле (5). Его можно сформулировать следующим образом: при степенной характеристике передачи системы (элемента) равным контрастам на входе системы соответствуют равные (в одинаковой степени измененные), контрасты на выходе системы.

Одинаковое изменение контраста при степенной характеристике передачи имеет место *только в этом единственном* случае (когда сравниваемые контрасты равны).

Представить себе такой случай передачи, когда контрасть хотя бы подавляющей части элементов передаваемого изображения были равны между собой, довольно трудно. Гораздо

чаще встречаются случаи передачи сцен, содержащих самое разнообразное сочетание контрастов. Очевидно, суждение о степени контрастных искажений по передаче ступенчатого фотометрического клина с равномерным изменением плотности ступеней не является полным. Необосновано в общем случае и мнение о том, что при степенной характеристике передачи имеет место правильное распределение светотеней, правильная передача контрастов.

На рис. 1 показаны характеристики передачи контраста для систем, обладающих степенными характеристиками передачи,

причем показатель ү изменяется от 0,1 до 10.

Для нескольких значений γ на рис. 2 показана связь между контрастом на входе системы K_1 и величиной $p=\frac{K_2}{K_1}$, которую

можно назвать степенью изменения контраста.

Как видно из этих рисунков и как следует из формулы (5), оворить о правильной передаче контрастов при условии, что в передаваемом сюжете контрасты могут изменяться от 0 до 1, можно только для случая $\gamma=1$. Таким образом, можно заключить, что правильная передача светотеней в общем случае имеет место только при условии линейной характеристики передачи вида $u_2=Mu_1$.

Анализ зависимости (5) показывает, кроме того, следующее: 1. При малых значениях входного контраста K_1 с определенным приближением можно считать справедливой зависилость (6). Практический интерес этот случай имеет, когда теленизионная передача производится при большой посторонней одсветке, снижающей контраст на фотокатоде системы.

2. По мере увеличения K_1 равенство (6) становится все более несправедливым. В пределе, когда $K_1 \rightarrow 1$, эта зависимость теряет смысл, значение контраста на выходе системы оказывается равным γ . Единичный контраст может иметь место, если одно из сравниваемых полей имеет бесконечно большую или нулевую яркость. И в том и в другом случае система, обладающая неограниченной по диапазону характеристикой передачи, должна обеспечивать контраст навыходе, также равный единице *. Формула (6) для $K_1 = 1$ неверна, как, впрочем, неверна при этом значении K_1 и формула (5) вследствие того, что разложение (5) представляет собой расходящийся ряд. Как следует непосредственно из (4), при $K_1 = 1$ $K_2 = 1$. Таким образом, с помощью выражения (4) в график передачи контраста может быть включено и конечное значение K_1 , равное единице.

3. В общем случае, при степенной характеристике передачи системы, контрасты, которые содержит оригинал, в изображении будут изменены не одинаково. При $\gamma > 1$ имеет место увеличение контрастов, тем большее, чем больше γ и меньше K_1 ; при $\gamma < 1$ контрасты на выходе уменьшатся, причем имеет место аналогичная зависимость от K_1 и обратная от γ (см. рис. 2).

Наконец, следует отметить, что с известным приближением характеристики передачи контрастов могут аппроксимироваться тремя или даже двумя отрезками прямых. Это существенно для случаев, когда диапазон изменения контрастов ограничен с той или иной стороны. Например, при телевизионном вос произведении чертежей в сюжете передачи отсутствуют, как правило, малые контрасты, при наличии большой посторонней засветки сюжет передачи не содержит больших контрастов.

Изложенное показывает недостаточность принятой оценки качества изображения по числу передаваемых градаций и подтверждает необходимость анализа характеристик передачи контраста. Характеристики передачи, аппроксимируемые степенными функциями, позволяют без искажений передать града ционный клин с постоянным изменением контраста между отдельными ступенями клина, но вносят существенные искажения в распределение светотеней при передаче оригиналов, со держащих контрасты, значительно отличающиеся друг от друга

2. Общее выражение характеристики передачи контрастов телевизионными системами

Практически у системы может изменяться в значительных пределах, и характеристику передачи системы не всегда можно аппроксимировать степенной функцией. Всегда можно, однако

^{*} Конечно, контраст на выходе реальной системы может быть и н равен 1. Это вызывается тем, что реальная характеристика передачи имее ограниченный диапазон, например, за счет ограничения максимальной яркс сти свечения приемной трубки или наличия посторонней засветки.

разбить характеристику передачи на участки, внутри которых акая аппроксимация справедлива; для каждого из этих участов может быть принято постоянное значение у. При такой ппроксимации характеристики передачи в пределе можно грийти к понятию "гамма в точке". "Гамма в точке" характеризует наклон характеристики передачи, построенной в логарифмическом масштабе, в бесконечно малом интервале в окрестности этой точки

$$\dot{\gamma} = \frac{d (\ln u_2)}{d (\ln u_1)}. \tag{7}$$

Іереходя к линейной системе координат, получим

$$\gamma = \frac{u_1}{u_2} \frac{du_2}{du_1}. \tag{8}$$

Ірактически "гамма в точке" может быть вычислена по хаактеристикам передачи методом приближенного дифференциования по конечным приращениям.

С помощью этого метода можно построить изменение γ хаактеристики передачи по световому диапазону. На рис. З приедены характеристики передачи трубки типа супериконоскоп видикон. Там же показаны и характеристики изменения γ

о световому диапазону.

Представление о "гамме в точке" не является новым. В частости о таком способе оценки характеристики передачи упо-

инается в статье [Л. 2].

Необходимо обратить внимание на то, что оценка характеистики передачи с помощью понятия "гамма в точке", весьма добная в смысле наглядности и используемая в ряде работ м., напр., [Л. 3]), является недостаточной.

Представляя связь между сигналами на входе и выходе истемы (или элемента) для каждой точки ее характеристики эредачи в виде степенной зависимости вида (1), необходимочесть, что помимо изменения у изменяется в каждой точке коэффициент М, который можно, по аналогии, назвать "усинием в точке". Для графического представления изменения эффициента усиления (точнее, коэффициента преобразованя) по световому диапазону может быть использована завимость:

$$\dot{M} = e^{\ln \frac{u_2}{u_1^{\dagger}}}.$$
 (9)

Графический метод определения величин M и γ по светому диапазону показан на рис. 4, а на рис. 3 приведены крине изменения M по световому диапазону. Любопытно отметить, о изменения γ и M по световому диапазону для рассмотрених характеристик имеют противоположный характер. Этим

объясняется возможность подбора аппроксимирующей степенной функции для сравнительно больших световых диапазонов несмотря на значительные изменения γ (см., например, [Л. 3])

Последнее обстоятельство облегчает возможность применения зависимостей, полученных в предыдущем параграфе, для

анализа характеристик передачи контраста и в случае, когда заметно меняется по диапазону.

Имеет смысл, однако, рассмотреть общий случай, когд характеристика передачи не может быть аппроксимирована в рабочем участке степенной функцией. Это необходимо, в част ности, для анализа работы и выбора нужной характеристик передачи контрасторов.

Исходя из указанной выше необходимости учета изменения по световому диапазону как γ , так и M, была получена общая зависимость, связывающая контрасты на входе и выходе системы (элемента), вывод которой приводится ниже.

Представим характеристику передачи в виде функциональной зависимости $B_2 = f(B_1)$

і положим, что для каждой точки характеристики передачи выполняется условие

$$B_2 = M(B_i) \cdot B_i^{\Upsilon(B_i)}$$
,

олагая, таким образом, что как γ , так и M изменяются по ветовому диапазону.

Рассмотрим сюжет, представляющий собой участки различой яркости, расположенные на фоне, яркость которого обоначим B_0 . Величины γ и M, соответствующие B_0 , обозначим ерез γ_0 и M_0 . Тогда для точки B_0 можно написать

$$B_{20} = M_0 B_0^{\gamma_0}$$
.

Для некоторого участка поля оригинала, яркость которого авна $B\!=\!B_0\!+\!\Delta B,$

, начениями *М* и у обозначим

$$M = M_0 + \Delta M;$$

$$\gamma = \gamma_0 + \Delta \gamma$$

Телевидение, вып. 20-22

Тогда для точки $B = B_0 + \Delta B$ получим яркость в поле изображения

$$B_2 = B_{20} + \Delta B_2 = (M_0 + \Delta M) (B_0 + \Delta B)^{\tau_0 + \Delta \tau}$$

Выражение для контраста на выходе примет вид

$$K_2 = 1 - \frac{B_{20}}{B_2} = 1 - \frac{M_0 B^{-\Delta \gamma}}{M_0 + \Delta M} \left(\frac{B_0}{B}\right)^{\gamma_0}$$
 (10)

А так как

$$\frac{B_0}{B} = 1 - K_1, \tag{11}$$

то

$$K_2 = 1 - \frac{M_0 B^{-\Delta \gamma}}{M_0 + \Delta M} (1 - K_1)^{\gamma_0}. \tag{12}$$

Это выражение, представляющее связь между контрастом на входе и выходе системы, может быть использовано для расчета. Однако оно не может быть применено в случае аналитического представления приведенных выше функциональных зависимостей,

Учтем, что

$$\gamma = \frac{d \left[\ln f(B) \right]}{d \left[\ln B \right]} = \frac{f'(B)}{f(B)} B;$$

$$M = \frac{f(B)}{B^{\gamma}};$$

$$\Delta M = M - M_0;$$

$$\Delta \gamma = \gamma - \gamma_0.$$

Теперь равенство (12) может быть записано в виде

$$K_2 = 1 - \frac{M_0 B^{\gamma_0}}{f(B)} (1 - K_1)^{\gamma_0}.$$
 (13)

Полученная зависимость позволяет рассчитать контраст на выходе системы по заданному контрасту и яркости на ее вход для любого вида функции f(B) при условии, если известни значения коэффициентов γ_0 и M_0 . Последние определяются за висимостями

$$\gamma_0 = B_0 \frac{f'(B_0)}{f(B_0)}; \qquad (14)$$

$$M_0 = \frac{f(B_0)}{B_0^{r_0}} \,. \tag{15}$$

Легко показать, что в случае, когда $\gamma = \gamma_0 = \text{const}$, $M = M_0 = \text{const}$ и f(B) имеет вид степенной функции $f(B) = M_0 B^{\gamma_0}$, формула (13) вырождается в зависимость (4). Последняя является, таким образом, частным случаем выражения (13), справедливым при степенной аппроксимации характеристик передачи.

В ряде случаев может оказаться удобной для вычислений следующая форма математического выражения связи между контрастами на выходе и на входе системы:

$$K_2 = 1 - \frac{M_0}{f(B)} e^{\gamma_0 \ln B (1 - K_1)}. \tag{16}$$

Рассмотрим пример расчета характеристики передачи контаста по заданной характеристике $B_2 = f(B)$.

Пусть характеристика передачи имеет вид

$$f(B) = 1 - e^{-B}. (17)$$

Кривая $f(B) = 1 - e^{-B}$ показана на рис. 5. Вид ее близок световой характеристике трубок с разверткой пучком быстых электронов (типа иконоскоп, супериконоскоп). На том же рафике показаны кривые, характеризующие изменение γ по зетовому диапазону.

Подставляя в (13) выражение для f(B) из (17) и учитывая висимость (11) и (15), получим необходимое для расчета хаактеристики передачи контраста выражение

$$K_2 = 1 - \frac{1 - e^{-B_0}}{1 - e^{\frac{B_0}{1 - K_1}}}$$
.

Результаты расчета представлены графиком рис. 6, где характеристики передачи контраста показаны в виде функции от B_0 , изменение которого соответствует изменению освещенности передаваемого сюжета.

В отличие от характеристик передачи контраста, показанных на рис. 1 для условия аппроксимации степенной функцией, единичному исходному контрасту K_1 в рассматриваемом случае соответствует контраст на выходе $K_2 < 1$. Это объясняется тем, что экспоненциальная функция $F(B) = a - e^{-B}$ при $B \to \infty$ асимптотически приближается к предельному значению a, в то время

как степенная функция не имеет насыщения.

Отметим в связи с этим, что при рассмотрении характеристик передачи контраста в общем виде аппроксимация характеристики передачи функцией вида $F(B) = a - e^{-B}$ более близка к реальной характеристике передачи, чем аппроксимация степенной функцией. В последнем случае характеристика передачи контраста будет не правильно отражать передачу высоких значений ис ходного контраста.

Возвращаясь к графику рис. 6, соответствующему

характеристике передачи $f(B)=1-e^{-B}$, отметим, что при малы: B_0 характеристика передачи контраста близка к линейной, за ис ключением высоких значений K_1 . По мере увеличения B_0 пере дача контраста ухудшается *. Изменение контраста на выход для нескольких значений исходного контраста в зависимост от B_0 показано на рис. 7. Проведя на рис. 7 уровни, соответ ствующие порогам контрастной чувствительности глаза при на блюдении телевизионного изображения **, получим критери возможности наблюдения изображения детали, контраст кото рой задан, в зависимости от освещенности передаваемого сю жета.

^{*} Отметим, что это ухудшение передачи контраста получено при по стоянной характеристике передачи системы. В реальном случае это явления может быть усилено за счет изменения формы характеристики передачи изменением уровня освещенности чувствительного элемента системы.

^{**} Порог контрастной чувствительности глаза при наблюдении детале размер проекции которых составляет величину порядка 4—5 элементо можно принять равным 8—10%. Для более крупных деталей он может бы снижен до 5%, для более мелких соответственно увеличен.

Располагая графиками рис. 6 и 7, построенными согласно приведенным выше зависимостям, можно таким образом определить целесообразность применения системы с заданной характеристикой передачи и выбрать оптимальный световой режим с точки зрения передачи контрастов. Эти построения не позволяют, однако, определить нужное изменение характеристики передачи, необходимое и достаточное для передачи заданного контраста. Решение последней задачи, заключающееся в определении характеристики передачи системы по заданной характеристике передачи контрастов, имеет существенный интерес,

так как позволяет определить форму, которую должна иметь характеристика передачи системы для решения конкретной задачи.

Решая (13) относительно f(B), получим

$$f(B) = \frac{M_0 B^{\gamma_0} (1 - K_1)^{\gamma_0}}{1 - K_2}.$$
 (18)

Заменяя $K_2 = \varphi(K_1)$ и учитывая равенство (11), найдем

$$f(B) = \frac{M_0 B_0^{\gamma_0}}{1 - \varphi(K_1)}.$$

Значению $K_1 = 0$ соответствует значение

$$f(B_0) = \frac{M_0 B_0^{\gamma_0}}{1 - \varphi(0)}.$$

Найдя отсюда $M_{_0}B_{_0}^{7_0}$ и подставив в (18), получим окончательно

$$f(B) = \frac{f(B_0) [1 - \varphi(0)]}{1 - \varphi(K_1)}.$$
 (19)

В нормированном $f(B_0)$ виде искомое выражение для характеристики передачи примет вид

$$\frac{f(B)}{f(B_0)} = \frac{1 - \varphi(0)}{1 - \varphi(K_1)}. \quad (20)$$

Приведем пример расчета характеристики передачи системы для заданной характеристики передачи контраста.

Зададим характеристику передачи контраста следующей зависимостью

$$\varphi(K_1) = 0.7 [(K_1 - 1)^3 + 1],$$
(21)

графически представленной на рис. 8.

Используя формулу (20), найдем

$$\frac{f(B)}{f(B_0)} = \frac{1}{1 - 0.7 \left[1 - \left(\frac{B}{B_0}\right)^3\right]}.$$
(22)

 $y = \frac{1}{1 - Q7[1 - (\frac{1}{2})^3]}$ $y = \frac{1}{1 - Q7[1 - (\frac{1}{2})^3]}$ $x = \frac{1}{2}$ Puc. 9

Переходя к относительным координатам и обозначая

$$y = \frac{f(B)}{f(B_0)} \quad \text{if} \quad x = \frac{B}{B_0},$$

получим искомую зависимость

$$y = \frac{1}{1 - 0.7 \left(1 - \frac{1}{x^3}\right)},$$

$$1 \le x \le \infty.$$

Графически **э**та зависимость представлена на рис. 9. 198

Следует отметить, что соотношение (22) позволит получить семейство характеристик передачи, удовлетворяющих характеристике передачи контраста вида (21) при различных значе-

ниях яркости фона объекта.

Располагая характеристикой передачи системы, полученной в зависимости от заданной характеристики передачи контрастов, можно рассмотреть ряд частных задач, а именно: определение необходимой характеристики передачи контрастора, определение необходимого изменения характеристики передачи в зависимости от изменения яркости фона (в частности, при наличии посторонней засветки) и т. д.

3. Расчет числа градаций яркости, воспроизводимых телевизионной системой

Рассмотрим, как при помощи характеристики передачи контраста может быть установлена связь между числом различимых градаций и интервалом контрастов передаваемой сцены.

Число градаций связано, как известно [Л. 1], с интервалом

яркости телевизионного изображения соотношением

$$m=1+\frac{\ln\frac{B_{MAKC}}{B_{MUH}}}{\ln(1+\xi_0)}$$
, (23)

или, переходя к контрасту,

$$m=1-\frac{\ln{(1-K_2)}}{\ln{(1+\xi_0)}},$$
 (24)

де m-число различимых градаций в изображении; $B_{{\scriptscriptstyle MAKC}}-$ максимальное значение яркости изображения;

 $B_{M\mu n}^{\mu n}$ —минимальное значение яркости изображения;

 ξ_0 — порог контрастной чувствительности глаза при наблюдении телевизионного изображения.

Необходимо отметить, что зависимость (24) в общем слуае не определяет числа воспроизводимых градаций, если под оспроизведением градаций подразумевать возможность наблюения на изображении градаций, содержащихся в оригинале. то положение легко поясняется рис. 10, на котором в логаифмическом масштабе показаны две характеристики передачи, дна из которых линейна.

Если в первом случае, когда характеристика передачи лиейна, зависимость (24) действительно позволяет рассчитать исло воспроизводимых градаций по интервалу контрастов на ыходе системы и по порогу контрастной чувствительности истемы, то во втором случае результат вычисления не будет оответствовать действительности. Часть градаций, менее светых, не будет воспроизведена; при одном и том же сюжете

передачи и интервале контрастов на выходе системы число воспроизведенных градаций во втором случае будет меньше, чем в первом.

Очевидно, для того чтобы с достоверностью судить о числе градаций, необходимо учитывать форму характеристики передачи и интервал яркости и контрастов передаваемого оригинала.

Рис. 10

В случае, если характеристика передачи аппроксимируетс степенной функцией, получим, подставляя в (24) значение K из (4):

$$m = 1 - \gamma \frac{\ln(1 - K_1)}{\ln(1 + \xi_0)}. \tag{25}$$

Для значений $\xi_0 \gg 0.05$, что справедливо для крупных детале и средней яркости экрана [Л. 1], формула (25) может быт упрощена

$$m = 1 - \gamma \frac{\ln (1 - K_1)}{\xi_0}$$
 (26)

Ошибка в вычислении при этом не превышает $1^{0}/_{0}$.

Формулы (25) и (26) дают возможность, таким образом вычислить число различимых градаций m изображения по из вестному интервалу контрастов оригинала и гамме характеристики передачи системы.

Очевидно, что, помимо приведенной зависимости межд числом различимых градаций и интервалом контрастов ориги нала, представляет интерес связь между числом градаций, со держащихся в оригинале, и числом градаций, наблюдаемь

на изображении. Эта связь в общем виде—для произвольной характеристики передачи системы— устанавливается ниже.

ГІодставив в (24) выражение для K_2 из (13), получим

$$m = 1 - \frac{\ln\left[\frac{M_0 B^{\gamma_0}}{f(B)} (1 - K_1)^{\gamma_0}\right]}{\ln(1 + \xi_0)}.$$
 (27)

Нетрудно показать, что в случае степенной зависимости между сигналами на входе и на выходе системы (элемента) выражение (27) может быть представлено в виде

$$m=1-\gamma_0 \frac{\ln (1-K_1)}{\ln (1+\xi_0)}$$
.

Последняя зависимость совпадает с выведенным ранее выражением (25). Очевидно, что более удобно судить о возможностях аппаратуры в отношении передачи градаций, если сравнить число градаций m изображения с числом градаций, которые может содержать оригинал, имеющий интервал яркостей, который характеризуется контрастом K_1 .

Число градаций, которые глаз может различить в оригинале, обозначим через n. Это число может быть определено

с помощью зависимости

$$n=1-\frac{\ln(1-K_1)}{\ln(1+\xi_0')},$$

рде ξ_0' —порог контрастной чувствительности глаза при наблюдении оригинала.

Проведя несложные преобразования и используя достаточно точные равенства

$$\ln (1+\xi_0) = \xi_0;$$

$$\ln (1+\xi_0') = \xi_0',$$

получим из (27)

$$m = 1 - \frac{\ln \frac{M_0 B^{\gamma_0}}{f(B)} + \gamma_0 (1-n) \xi_0'}{\xi_0}.$$
 (28)

Анализ выражения (28) показывает, что число градаций, передаваемых системой, связано с числом градаций, содержащихся в объекте передачи, линейной зависимостью. Наклон прямой, характеризующей связь между числом градаций оригинала и изображения, определяется как формой характеристики передачи f(B), так и численными значениями контрастной чувствительности зрения при наблюдении объекта передачи и его телевизионного изображения. Сказанное легко

201.

можно объяснить физически. Для иллюстрации хода зависимости m = F(n) рассмотрим частный случай, когда характеристик ϵ передачи телевизионной системы аппроксимируется степенной функцией с показателем степени уо. При этом уравнение (28) примет вид

$$m=1-\gamma_0 \frac{\xi_0'}{\xi_0} (1-n)$$
 (29)

Полагая в нем для однозначности $\xi_0' = \xi_0$, получим

$$m=1-\gamma_0(1-n)$$
. (30)

Графически эта зависимость представлена на рис. 11. Из формулы (30) и рис. 11 видно, число градаций изображения равно числу градаций оригинала только при $\gamma_0 = 1$. Если $\gamma_0 > 1$, то число градаций, различаемых в изображении, может быть больше числа градаций, различаемых в оригинале. Если $\gamma_0 < 1$, то число градаций, различаемых в

изображении, оказывается меньше числа градаций, различае-

мых в оригинале.

Из формулы (29) следует также, что уменьшение числа различимых градаций, вызванное увеличением порога контрастной чувствительности глаза при наблюдении телевизионного изображения (вследствие размытости границ и т. д.), может быть компенсировано увеличением ү характеристики передачи.

Заключение

1. Принятый в настоящее время способ оценки качества передачи светотеней телевизионной системой по числу воспроизводимых градаций не пригоден для систем, имеющих существенную нелинейность характеристики передачи.

2. При расчете числа градаций яркости, воспроизводимых телевизионной системой, необходимо учитывать ее характеристику передачи. Характеристики передачи, аппроксимируемые степенными функциями, вносят существенные контрастные искажения, степень которых увеличивается с увеличением интервала контрастов, содержащихся в оригинале воспроизводимого изображения. Формула (27) позволяет провести расчет числа воспроизводимых градаций для любого вида аппроксимации характеристики передачи.

3. Более общей характеристикой является характеристика передачи контраста, связывающая контраст на входе (контраст сюжета передачи) и контраст на выходе системы (контраст изображения).

Характеристика передачи контраста может быть рассчитана для любого вида аппроксимации характеристики передачи

системы.

4. Для заданной характеристики передачи контраста может быть найдена необходимая характеристика передачи системы. Сравнение ее с реальной характеристикой передачи системы позволит определить характеристику нелинейного элемента — контраста, введение которого обеспечит передачу рассматриваемых объектов с заданными контрастами.

ЛИТЕРАТУРА

1. А. М. Халфин, Основы телевизионной техники, "Советское радно", 1955.

2. O. Schade, JSMPTE, 1951, vol. 56, № 2, pp. 137-177.

3. П. Лазарева, Контрастные искажения передающих телевизионных грубок с двусторонней мишенью, Инженерная записка, ОНТИ, 1954.

Статья поступила 21/V 1956 г.

Инж. А. П. НЕФЕДЬЕВ

СПОСОБ ИЗМЕРЕНИЯ СПЕКТРА ШУМОВ, ГЕНЕРИРУЕМЫХ ПЕРЕДАЮЩИМИ ТЕЛЕВИЗИОННЫМИ ТРУБКАМИ С ДВУСТОРОННЕЙ МИШЕНЬЮ

Статья посвящена вопросу измерения функции спектральной плотности пумов, генерируемых трубками с двусторонней мишенью. Рассмотрены факторы, осложняющие эксперимент, предложен способ измерения искомой зункции в диапазоне 1—7 мегц стандартным прибором ИП-12. Приведены измерений. Рекомендовано применение рассматриваемого способа иля измерения отношения сигнал/шум передающих трубок.

Основной фактор, ограничивающий реальную чувствительюсть трубок с двусторонней мишенью—это высокий уровень обственных шумов, что является следствием принципиальных

собенностей их работы.

Вопросу об отношении сигнал/шум для рассматриваемых рубок посвящен ряд серьезных работ [Л. 1—4]. Однако ословное внимание этих авторов направлено на теоретический нализ помехоустойчивости трубки в целом, а вопросы, свяанные с физикой преобразования шумов в отдельных узлах рубки, оказались опущенными. В упомянутых работах совершенно не рассматривается измерение шумов, генерируемых рубкой, и лишь в работе [Л. 1] кратко освещен способ измения одной из величин, характеризующих шум трубки, именно—среднеквадратичного значения.

Следует отметить, что измерение каждого из трех параметров (среднеквадратичного значения, функции спектральной плотности и закона распределения), характеризующих величину и "качество" исследуемого шума в реальных рабочих условиях, сопряжено со значительными затруднениями. Дело в том, что исследуемый шум при работе трубки в телевизионной установке "засорен" короткими импульсами строчной и кадровой частоты. Они вызываются, во-первых, наводками на входные цепи предварительного усилителя, цепи питания трубки в коммутирующий пучок во время резких перепадов развертывающих токов и, во-вторых, запирающими импульсами, которые подаются на мишень трубки.

Кроме импульсов, создаваемых во время обратных ходог коммутирующего пучка, трубка создает мешающие токи (таг называемые неравномерности фона) и во время прямого хода

Амплитуда рассмотренных выше токов значительно превы шает величину шумов трубки и зависит как от режима работь трубки, так и от свойств отдельного образца.

Из изложенного ясно, что задача измерения того или иного параметра шума тесно связана с задачей выделения его из це лого комплекса посторонних, но однотипных величин.

В упомянутой выше работе [Л. 1] задача выделения шумо

перед измерением решена далеко не полностью.

Измерение среднеквадратичного значения производитс: сравнением с шумами эталонного генератора шумов, которы включается на вход предварительного усилителя вместо трубки В качестве оконечного индикаторного прибора применена тер мопара.

Такой способ может учитывать лишь ошибки, вызванны наводками на входную цепь предварительного усилителя, не может учесть мешающего действия "неравномерностей фона и наводок на коммутирующий пучок и на цепи питани трубки.

В качестве эталонного источника шумов автор применяе шумовой диод, шумы которого имеют равномерную функцип спектральной плотности и нормальный закон распределения

Сравнение шумов трубки с шумами диода, служащее дл измерения среднеквадратичного значения шумов трубки, справедливо лишь в том случае, если одинаковы "качества" измеряемого и эталонного шумов, т. е. идентичны их функци спектральной плотности и законы распределения.

Однако в рассматриваемых работах не делается даже по пытки доказать идентичность шумов трубки и диода. Автор не известно ни одной работы, где исследовались бы эти пара

метры шумов трубок с двусторонней мишенью.

Знание функции спектральной плотности и закона распре деления шумов необходимо, кроме того, для выбора критери оценки помехоустойчивости телевизионного изображения в це

лом, для сравнения помехоустойчивости изображений, генерируемых различными видами трубок, и для выработки норм на отношение сигнал/шум как для телевизионного канала в целом, так и для различных типов передающих трубок.

В Институте была проведена работа по определению функции спектральной плотности шумов, генерируемых трубкой с двусторонней мишенью. При этом стояла задача отделения непрерывной функции спектральной плотности шумов, которая может быть или равномерной, или монотонно возрастающей, или убывающей, от линейчатого спектра мешающих импульсов

и неравномерности фона.

При частоте повторения мешающих импульсов около 15 кгц и ширине полосы пропускания измерительного прибора приблизительно 10 кги (полоса пропускания выпускаемых промышленностью измерителей) невозможно количественно разделить спектры шумов и мешающих импульсов до тех пор, пока мощность шумов не станет значительно больше мощности соответствующих гармонических составляющих импульсов помехи. Весьма приблизительно можно оценить область частот, где выполняется это условие и возможно непосредственное измерение спектра шумов.

Эффективное значение напряжения шумов трубки с точностью, достаточной для оценочного расчета, можно представить

рормулой

$$\overline{U}_{u} = \sqrt{\frac{2e \Delta f i_{A} \frac{\sigma}{\sigma - 1}}{\sigma - 1}} R_{n} K_{y}, \qquad (1)$$

 $\overline{U}_{\it u}$ —эффективное значение напряжения шумов;

e—заряд электрона;

 Δf —полоса пропускания системы; i_{A} —ток луча трубки;

ő—среднее значение коэффициента вторичной эмиссии каскадов умножителя;

 R_{μ} —сопротивление нагрузки; $K_{\nu} = \sigma^n$ —коэффициент усиления умножителя.

Полагая $R_{\mu} = 20$ ком; $i_{\mu} = 10^{-8}a$; $\Delta f = 10$ кги; $\sigma = 4$; $K_{\nu} = 3000$, олучим

$$\overline{U}_{u} = \sqrt{2 \cdot 1, 6 \cdot 10^{-19} \cdot 10^{4} \cdot \frac{4}{3} \cdot 3000 \cdot 2 \cdot 10^{4} = 410 \text{ MKB}}.$$

Разложение прямоугольного импульса в ряд Фурье имеет ИД

$$f(t) = \frac{\overline{a}_0}{2} \sum_{n=1}^{\infty} \left(a_n \cos \frac{2\pi nt}{T} + b_n \sin \frac{2\pi nt}{T} \right), \tag{2}$$

где

$$\overline{a}_n = \frac{2}{T} \int_0^{\tau} f(t) \cos \frac{2\pi nt}{T} dt;$$

$$b_n = \frac{2}{T} \int_0^{\tau} f(t) \sin \frac{2\pi nt}{T} dt.$$

Если начало отсчета выбрано в центре импульса, то импульс определяется четной функцией, и выражение (2) принимает вид

$$f(t) = A \frac{\tau}{T} + 2A \frac{1}{\pi} \sin \frac{\pi \tau}{T} \cos \frac{2\pi t}{T} + \frac{2A}{2\pi} \sin \frac{2\pi \tau}{T} \cos \frac{4\pi t}{T} + \dots, (3)$$

$$F = \frac{1}{T}$$
 — основная частота процесса; f —частота рассматриваемой гармоники; A —амплитуда импульса,

При наличии неполной частотной селекции для надежного измерения функции спектральной мощности необходимо хотя бы равенство мощности шумов в измеряемом узком диапазоне частот с максимальными значениями амплитуд спектра помехи на данных частотах. Найдем границу диапазона, в котором выполняется это условие:

$$a_n = \frac{2A}{n\pi} = \bar{U}_{ui}; \tag{4}$$

$$n = \frac{2A}{\pi \overline{U}_{u}} = \frac{2A}{\pi \overline{U}_{u}}; \qquad (5)$$

$$f_{zp} = nF = \frac{10AF}{\pi \overline{U}_{u}}. \qquad (6)$$

$$f_{2p} = nF = \frac{10AF}{\pi \bar{U}_{m}} \,. \tag{6}$$

При A = 0,1 в и F = 15 кг ψ

$$f_{zp} = \frac{0.1 \cdot 2 \cdot 15 \cdot 10^3}{3.14 \cdot 410 \cdot 10^{-6}} = 4 \cdot 10^6 \text{ zu}.$$

Учитывая, что в действительности мы имеем дело не с прямоугольным импульсом, а с импульсом со сглаженными фрон тами, в области высших частот от 2-3 мггц возможны обычные измерения спектра стандартными анализаторами.

Измерение спектра шумов в области частот меньше 2 мгги можно провести, если воспользоваться следующим обстоятель ством. Из формулы (3) следует, что огибающая амплитуд ли нейчатого спектра убывает не монотонно, а совершает коле бания, последовательно проходя через ряд максимумов и мн нимумов, и в определенных точках пересекает ось часто (рис. 1).

При заданной частоте следования импульсов частоты точек пересечений фиксированы и определяются формулой

$$F_{o\kappa} = k \frac{1}{\tau} \,, \tag{7}$$

 $F_{o\kappa}$ — частота k-го пересечения; τ —длительность импульса; $k=1,\ 2,\ 3,\ 4,\ \ldots,\ n.$

е. огибающая амплитуд принимает нулевые значения через іждые 100 кги шкалы частот. Очевидно, что вблизи этих эчек амплитуды гармоник помехи малы, и, таким образом, области низших частот имеются участки, где возможно измение эффективного значения шумов стандартными приборами.

Приведенные выше рассуждения были проверены эксперинтально. В качестве анализатора спектра был использован меритель помех ИП-12М. Полоса пропускания прибора—8 кги уровне 0,7. Измерения проводились на лабораторной испытельной установке с прогрессивным разложением. Измериль помех был включен на выходе предварительного усилиля с равномерной частотной характеристикой в диапазоне от 1 6,5 мгги.

Вначале был снят спектр импульсов помехи, происхождее которых обусловлено наводками на входные цепи усилиля (трубка заперта). Результаты измерения представлены на с. 2. Как видно из рисунка, спектр импульсов помехи имеет нейчатый характер, и огибающая амплитуд гармонических

составляющих затухает немонотонно, принимая нулевые значения через каждые $100~\kappa$ ги шкалы частот.

Сравнивая величину амплитуд гармоник с предполагаемой величиной шумов, отметим, что, начиная с частоты 2 мггц, величина шумов значительно превышает величину помехи, и в этом диапазоне можно полностью пренебречь ошибкой, вносимой спектром помехи. В области низших частот возможно с достаточной степенью точности измерить величину шумов лишь на дискретных участках, где амплитуда огибающей принимает значения, близкие к нулевым.

Для того чтобы учесть влияние запирающих импульсов и наводок через цепи питания, были измерены амплитуды мешающих импульсов при запертом и открытом пучке. Оказалось, что открывание пучка увеличивает амплитуду помехи в 2—3 раза. Очевидно, что пропорционально увеличатся и амплитуды гармоник мешающих импульсов. Такое увеличение существенно не изменит границы рабочей области частот, и сделанные ранее заключения сохраняют свою силу.

Нами была измерена суммарная функция спектральной плотности шумов и помехи (рис. 3). Из рисунка видно, что ошибки, вносимые спектром "помехи", становятся малы уже начиная с частоты приблизительно 2 мггц, и, следовательно, ими можно полностью пренебречь на более высоких частотах. В области от 1 до 2 мггц с помощью стандартного измерителя возможно измерение мощности шумов лишь на дискретных частотах вблизи минимумов огибающей спектра помехи.

Следует заметить, что предварительные измерения по определению рабочих областей частот необходимо проводить для каждой конкретной измерительной установки, так как величина и форма импульсов помехи определяются отчасти схемой и конструкцией установки.

210

The Bolle West With the Company of t

Изложенным способом были проведены измерения функции спектральной плотности шумов коммутирующего пучка у ряда стандартных образцов трубок с двусторонней мишенью. Результаты измерений для двух экземпляров трубок представлены на рис. 4, из которого следует, что с достаточной точностью функцию спектральной плотности шумов коммутирующего пучка трубок с двусторонней мишенью можно считать равномерной во всей области частот телевизионного сигнала.

На рис. 5 приведена функция спектральной плотности шума одной из трубок, измеренная в различных условиях. Кривая I представляет функцию, снятую в рабочих условиях приведен-

ным выше способом. Кривая 2—та же функция, определенная измерителем помех при выключенных развертывающих устройствах передающей трубки и видеоконтрольного устройства. Близкое совпадение кривых говорит о малой мешающей роли неравномерностей фона, т. е. о достаточной точности применявшегося способа измерений.

Вторым источником шумов в исследуемой трубке следует считать фотоэлектронный ток, флюктуации которого усиливаются при вторичноэлектронном усилении на мишени и усредняются в процессах накопления и считывания.

Можно предположить, что функция спектральной плотности этой шумовой составляющей имеет затухающий характер, обусловленный теми же факторами, которые вызывают спад апертурной характеристики трубки. Измерения показывают, что доля шумов фототока в суммарных шумах, генерируемых стандартными образцами трубок, весьма мала при рабочих освещенностях. Объяснить это можно прежде всего малыми значениями коэффициента модуляции коммутирующего пучка. Поскольку шумы фототока малы по отношенйю к шумам коммутирующего пучка, суммарный спектр шумов трубки остается равномерным и при освещенном фотокатоде.

14:

Проведенное исследование функций спектральной плотности шумов и мешающих токов, генерируемых трубками с двусторонней мишенью, позволяет применить изложенный выше способ для измерения среднеквадратичного значения шумов с целью определения отношения сигнал/шум испытуемых

трубок.

Действительно, при известном спектре шумов достаточно измерить абсолютную величину среднеквадратичного значения шумов в узком диапазоне частот, где мешающее действие "помехи" неразличимо. Результат измерения, умноженный на корень квадратный из отношения эквивалентной полосы частот телевизионного сигнала к эквивалентной полосе пропускания измерителя, дает полный уровень шумов, генерируемых трубкой. Подобные измерения удобно проводить на выходе предварительного усилителя при условии достаточной стабильности его коэффициента усиления или наличия устройства для его проверки и установки перед измерением.

Для измерения функции спектральной плотности шумов, генерируемых трубкой с двусторонней мишенью, можно применять стандартные узкополосные измерители ИП-12, ИП-15. На частотах больше 2 мггц возможно измерение мощности шумов практически на любой частоте. На частотах меньше 2 мггц измерение возможно лишь в дискретных участках шкалы частот, положение которых задается частотой повторения строк. Указанная методика может быть применена для измерения спектра шумов, генерируемых любой трубкой, а также для измерения среднеквадратичного значения шумов в полном диапазоне частот, что позволяет вычислить отношение сигнал/ шум трубок с двусторонней мишенью.

Измерение функции спектральной плотности шумов трубок с двусторонней мишенью указанной методикой показывает, что в области частот от 1 до 7 мгги функция спектральной плотности как шумов коммутирующего пучка, так и суммарных шумов пучка и фототока может считаться равномерной с точ-

ностью 10-15%.

ЛИТЕРАТУРА

- 1. L. Bedford, "J. Brit. Inst. Radio Eng—rs", 1954, vol. 10, № 10, p. 464.
- 2. Н. Н. Красильников, "Техника телевидения", 1955, вып. 9 (15). 3. И. К. Малахов, "Труды НИИ", 1952, вып. 9. 4. В. В. Однолько, И. Н. Денисенко, "Труды НИИ", 1949,

Статья поступила 1/VI 1956 г.

Инж. Г. И. ОЛИФЕРЕНКО

ДИНАМИЧЕСКИЕ ХАРАКТЕРИСТИКИ АВТОГЕНЕРАТОРА ПИЛООБРАЗНОГО ТОКА НА КРИСТАЛЛОТРИОЛЕ

В статье приведена принципиальная схема автогенератора и его дифференциальное уравнение. Изложен способ построения динамических характеристик автогенератора по статическим характеристикам триода.

В настоящее время в генераторах телевизионных разверток, наряду с электронными лампами, применяются кристаллотриоды.

В ряде схем разверток, разработанных на кристаллотриодах, в выходном каскаде работает автогенератор пилообразного тока.

Предлагаемая статья посвящена анализу динамических характеристик автогенератора.

Дифференциальное уравнение автогенератора

Принципиальная схема автогенератора пилообразного тока изображена на рис. 1. Автогенератор состоит из кристаллотриода (K), трансформатора (T), отклоняющей системы (C), источ-

Рис. 1. Принципиальная схема автогенератора пилообразного тока на кристаллотриоде

Рис. 2. Эквивалентная схема кристаллотриода: a—без учета емкости коллекторного перехода C_{κ} ; δ —с учетом емкости коллекторного перехода C_{κ}

ников питания $(E_{\kappa}, E_{\mathfrak{g}})$. Эквивалентная схема триода приведена на рис. 2. В ней малая инерционность учтена емкостью коллекторного перехода C_{κ} [Л. 1, 2], значительно превышающей

213 . •

для мощных кристаллотриодов все остальные мало инерционные параметры схемы. Поведение автогенератора с учетом эквивалентной схемы триода в пределах небольших участков вольт-амперных характеристик описывается следующей системой нелинейных дифференциальных уравнений:

$$L_{1}p\left(i_{L1} + \frac{M_{12}}{L_{1}}i_{L2} + \frac{M_{13}}{L_{1}}i_{L3}\right) + u_{\kappa} - E_{\kappa} = 0;$$

$$M_{12}p\left(i_{L1} + \frac{L_{2}}{M_{12}}i_{L2} + \frac{M_{23}}{M_{12}}i_{L3}\right) + u_{s} - E_{s} = 0;$$

$$M_{13}p\left(i_{L1} + \frac{M_{23}}{M_{13}}i_{L2} + \frac{L_{3}}{M_{13}}i_{L3}\right) + L_{c}pi_{L3} = 0;$$

$$di_{L1} = di'_{\kappa} = \frac{z_{11}du_{\kappa} - z_{21}du_{s}}{z_{11}z_{22} - z_{12}z_{21}};$$

$$di_{L2} = di_{s} = \frac{-z_{12}du_{\kappa} + z_{22}du_{s}}{z_{11}z_{22} - z_{12}z_{21}},$$

$$(1)$$

гле

$$z_{11} = \left(\frac{\partial u_{s}}{\partial i_{s}}\right) i_{\kappa}' = r_{s} + r_{0} = r_{11};$$

$$z_{12} = \left(\frac{\partial u_{s}}{\partial i_{\kappa}'}\right) i_{s} = r_{0} = r_{12};$$

$$z_{22} = \left(\frac{\partial u_{\kappa}}{\partial i_{\kappa}'}\right) i_{s} = \frac{r_{\kappa}}{1 + pC_{\kappa}r_{\kappa}} + r_{0} =$$

$$= \frac{(r_{\kappa} + r_{0}) + r_{0}pC_{\kappa}r_{\kappa}}{1 + pC_{\kappa}r_{\kappa}} = \frac{r_{22} + r_{0}pC_{\kappa}r_{\kappa}}{1 + pC_{\kappa}r_{\kappa}};$$

$$z_{21} = \left(\frac{\partial u_{\kappa}}{\partial i_{s}}\right) i_{\kappa}' = \frac{r_{m}}{1 + pC_{\kappa}r_{\kappa}} + r_{0} =$$

$$= \frac{(r_{m} + r_{0}) + r_{0}pC_{\kappa}r_{\kappa}}{1 + pC_{\kappa}r_{\kappa}} = \frac{r_{21} + r_{0}pC_{\kappa}r_{\kappa}}{1 + pC_{\kappa}r_{\kappa}};$$

 \dot{p} —оператор дифференцирования.

При допущении, что коэффициенты связи между обмоткам трансформатора равны единице, т. е.

$$k_{12} = \frac{M_{12}}{VL_1L_2} = 1$$
, $k_{13} = \frac{M_{13}}{VL_1L_3} = 1$, $k_{23} = \frac{M_{23}}{VL_2L_3} = 1$,

система уравнений (1) может быть приведена к следующему виду:

виду:
$$p \frac{L_1}{L_3} \frac{L_c}{1 + \frac{L_c}{L_8}} \left[\frac{d}{du_\kappa} \left(i_{L1} + \frac{1}{n_{12}} i_{L2} \right) \right] u_\kappa + u_\kappa - E_\kappa = 0,$$

$$\frac{d}{du_\kappa} \left(i_{L1} + \frac{1}{n_{12}} i_{L2} \right) = \frac{1}{z} = f(u_\kappa);$$

$$\frac{1}{z} = \left[\frac{r_{11} - \frac{r_{21}}{n_{12}}}{r_{12}r_{22} - r_{12}r_{21}} - \frac{\frac{r_{12}}{n_{12}} - \frac{r_{22}}{n_{12}^2}}{r_{11}r_{22} - r_{12}r_{21}} + \frac{pC_\kappa r_\kappa \left(r_{11} - \frac{2r_0}{n_{12}} + \frac{r_0}{n_{12}^2} \right)}{r_{11}r_{22} - r_{12}r_{21}} \right] :$$

$$: \left[1 + \frac{pC_\kappa r_\kappa r_\sigma r_\sigma}{r_{11}r_{22} - r_{12}r_{21}} \right];$$

$$\frac{1}{n_{12}} \left(u_\kappa - E_\kappa \right) + E_s - u_s = 0,$$

где

$$n_{12}=\frac{du_{\kappa}}{du_{9}}=\sqrt{\frac{L_{1}}{L_{2}}}.$$

Введем следующие обозначения:

$$i_L = i_{L1} + \frac{1}{n_{12}} i_{L2}, \ i_N = i_\kappa + \frac{1}{n_{12}} i_s,$$

$$\frac{di_{N}}{du_{\kappa}} = \frac{1}{\rho_{0}} = \frac{r_{11} - \frac{r_{21}}{n_{12}}}{r_{11}r_{22} - r_{12}r_{21}} - \frac{\frac{r_{12}}{n_{12}} - \frac{r_{22}}{n_{12}^{2}}}{r_{11}r_{22} - r_{12}r_{21}}, \qquad (2a)$$

$$C_0 = C_{\kappa} \frac{r_{\kappa} \left(r_{11} - \frac{2r_0}{n_{12}} + \frac{r_0}{n_{12}^2} \right)}{r_{11}r_{22} - r_{12}r_{21}}, \tag{26}$$

$$L = \frac{L_1}{L_3} \frac{L_c}{1 + \frac{L_c}{L_3}} \,. \tag{2b}$$

После несложных преобразований системы уравнений (2) элучим следующее уравнение автогенератора

$$p^{2}LC_{0}u_{\kappa}+pL\left(\frac{1}{\rho_{0}}+\frac{C_{\kappa}r_{\kappa}r_{\sigma}r_{0}}{(r_{11}r_{22}-r_{12}r_{21})L_{1}}\right)u_{\kappa}+u_{\kappa}-E_{\kappa}=0.$$
 (3)

Учитывая, что в схеме всегда имеет место соотношение

$$\frac{1}{\rho_0} \gg \frac{C_{\kappa} r_{\kappa} r_{\sigma} r_0}{(r_{11} r_{22} - r_{12} r_{21}) L_1},$$

поведение автогенератора пилообразного тока на кристалло триоде описывается уравнением

$$p^{2}LC_{0}u_{\kappa} + pL\frac{1}{\rho_{0}}u_{\kappa} + u_{\kappa} - E_{\kappa} = 0.$$
 (4)

Структура этого дифференциального уравнения идентичн структуре уравнения, описывающего процессы в схеме ге

Рис. 3. Эквивалентная схема автогенератора пилообразного тока

нератора с нелинейным двух полюсником (рис. 3). Следова тельно, эта схема являетс эквивалентной схемой выше описанного генератора [Л. 3]

Инерционные элементы схє мы определяются уравнениям (26) и (2в).

Роль нелинейного двухпо люсника в эквивалентной схем выполняет кристаллотриод, которого напряжения эмиттер и коллектора жестко связан трансформаторной связью.

Ток нелинейного двухполи сника равен току намагничив

ния $i_N = i_\kappa + \frac{1}{n_{12}} i_s$, крутизна которого определяется уравнием (2a) и может быть найдена из динамических характ ристик автогенератора, метод построения которых изложениже.

Построение динамических характеристик автогенератора

Динамические характеристики автогенератора, представлящие зависимости

$$i_{\theta} = i_{\theta}(u_{\kappa}), \qquad ($$

$$\frac{1}{n_{12}} i_{\theta} = \frac{1}{n_{12}} i_{\theta}(u_{\kappa}), \qquad ($$

$$i_{\kappa} = i_{\kappa}(u_{\kappa}), \qquad ($$

$$i_{N} = i_{N}(u_{\kappa}), \qquad ($$

могут быть построены по приведенным на рис. 4 статическ: характеристикам триода, снятым для прямого и обратного вкл чения:

$$u_{\mathfrak{g}} = u_{\mathfrak{g}}(i_{\mathfrak{g}}, i_{\kappa}),$$

$$u_{\kappa} = u_{\kappa}(i_{\mathfrak{g}}, i_{\kappa}).$$
(1)

Из семейств характеристик триода и уравнения, связываюцего напряжения на коллекторе и на эмиттере

$$\frac{1}{n_{12}}(u_{\kappa}-E_{\kappa})+E_{s}-u_{s}=0, \qquad (11)$$

. Рис. 5. Статические характеристики триода типа ПЗА $u_g = u_g (u_K, i_g); u_g = u_g (u_K, i_K)$

можно определить токи коллектора и эмиттера, через которые выражен ток намагничивания, и по параметрам триода определить крутизну $\frac{1}{\rho_0}$.

Для построения характеристик генератора можно рекоменцовать следующий метод. В системе координат u_9 , u_κ наноэтся статические характеристики триода при постоянных тосах эмиттера, снятые во II и III—1 областях работы триода, и наносятся характеристики при постоянных токах коллектора, снятые в третьей области обратного включения триода—III $_{\rm обр}$,

как показано на рис. 5 и 8, σ . Отдельные характеристики три ода, которые могут быть использованы при построении харак теристик генератора в III-1, III-2 и III_{06p} областях, приведени на рис. 6.

В данном семействе характеристик можно нанести линик называемую в дальнейшем линией связи, которая характери зует зависимость напряжений на эмиттере и коллекторе, пред ставленную уравнением (11).

Рис. 6. Характеристики кристаллотриода типа ПЗА 1) $u_{\theta}=\dot{u}_{\theta}$ (i_{θ} , $u_{\kappa}=0$); 2) $u_{\theta}=u_{\theta}$ (i_{θ} , u_{κ}); 3) $u_{\theta}=u_{\theta}$ (u_{κ} , i_{θ} , i_{θ} , $i_{\kappa}=0$); 4) $u_{\theta}=u_{\theta}$ (u_{κ} , i_{κ} , $i_{\theta}=0$)

По точкам пересечения линии связи со статическими ха рактеристиками триода строятся характеристики генератора (5) при работе триода во II и III—1 областях и характеристик (7) при работе триода в третьей области обратного включения—III_{обр}.

По точкам характеристики (5), построенным в II и III—1 об ластях работы триода, и статическим характеристикам (10 строится характеристика (7). Аналогично строятся характеристики (5), (6) в III_{обр} области работы триода по характеристике (7) и статическим характеристикам (10).

Характеристики генератора в III-2 области работы триод можно построить по двум точкам, лежащим на границе об ластей $III_{\text{обр}}$ с III-2 и III-2 с III-1.

Рис. 7. Динамические характеристики автогенератора при $n_{12}{=}10$, $E_{\kappa}{=}-3.5$ в, $E_{\mathfrak{g}}{=}0$ 1) $i_{\mathfrak{g}}{=}i_{\mathfrak{g}}\left(u_{\kappa}\right)$; 2) $\frac{1}{n_{12}}i_{\mathfrak{g}}-\frac{1}{n_{12}}i_{\mathfrak{g}}\left(u_{\kappa}\right)$; 3) $i_{\kappa}{=}i_{\kappa}\left(u_{\kappa}\right)$; 4) $i_{N}{=}i_{N}\left(u_{\kappa}\right)$

Рис. 8. Статические характеристики кристаллотриода типа П2А: а) $u_{\kappa} = u_{\kappa} (i_{\kappa}, i_{\vartheta});$ б) $u_{\vartheta} = u_{\vartheta} (u_{\kappa}, i_{\vartheta})$

Рис. 9. Динамические характеристики автогенератора при $n_{12}{=}10$, $E_{\kappa}{=}-4.5$ в, $E_{\vartheta}{=}0$ 1) $i_{\vartheta}{=}i_{\vartheta}\left(u_{\kappa}\right)$; 2) $\frac{1}{n_{12}}i_{\vartheta}{=}\frac{1}{n_{12}}i_{\vartheta}\left(u_{\kappa}\right)$; 3) $i_{\kappa}{=}i_{\kappa}\left(u_{\kappa}\right)$; 4) $i_{N}{=}i_{N}\left(i_{\kappa}\right)$

1)
$$i_9 = i_9 (u_K)$$
; 2) $\frac{1}{n_{12}} i_9 = \frac{1}{n_{12}} i_9 (u_K)$; 3) $i_K = i_K (u_K)$; 4) $i_N = i_N (i_K)$

Рис. 10. Статические характеристики кристаллотриода типа "точка" $u_3 = u_s (u_\kappa, i_s); \quad u_s = u_s (u_\kappa, i_\kappa)$

Рис. 11. Динамические характеристики автогенератора
$$a$$
—при $n_{12}=2,\;E_{\kappa}=-2,$ 5 e , $E_{g}=0$

$$1) \frac{1}{n_{12}} i_{\theta} = \frac{1}{n_{12}} i_{\theta} (u_{K}); \quad 2) i_{K} = i_{K} (u_{K});$$

I)
$$\frac{1}{n_{12}}i_9 = \frac{1}{n_{12}}i_9 (u_K); 2) i_K = i_K (u_K);$$
3) $i_{N=1}i_N (u_K)$
6—npu $n_{12} = 2, E_K^* = -3 e,$
 $E_9 = 0.$

1)
$$\frac{1}{n_{12}}i_9 = \frac{1}{n_{12}}i_9(u_K);$$
 2) $i_K = i_K(u_K);$

$$\begin{array}{c} I) \; \frac{1}{n_{12}} \; i_{\vartheta} = \frac{1}{n_{12}} \; i_{\vartheta}'(u_K); \;\; 2) \;\; i_K = i_K \; (u_K); \\ 3) \;\; i_N = i_N \; (u_K) \\ 6 - \text{при} \;\; n_{12} = 5, \;\; E_K = -7 \; e, \\ E_{\vartheta} = 0 \end{array}$$

$$s$$
—при $n_{12} = 5$, $E_{\kappa} = -7 s$, $E_{\rho} = 0$

$$\begin{split} L_{\beta} &= 0 \\ 1) \frac{1}{n_{12}} i_{\beta} = \frac{1}{n_{12}} i_{\beta} \left(u_{K} \right); \ 2) i_{K} = i_{K} \left(u_{K} \right); \\ 3) i_{N} = i_{N} \left(u_{K} \right) \\ e - \text{при } n_{12} &= 10, E_{K} = -10 \text{ s,} \\ E_{\beta} &= 0 \\ 1) i_{\beta} = i_{\beta} \left(u_{K} \right); \ 2) \frac{1}{n_{12}} i_{\beta} = \frac{1}{n_{12}} i_{\beta} \left(u_{K} \right); \\ 3) i_{K} = i_{K} \left(u_{K} \right); \ 4) i_{N} = i_{N} \left(u_{K} \right) \end{split}$$

$$e$$
—при $n_{12} = 10$, $E_{\kappa} = -10$ e , $E_{\kappa} = 0$

1)
$$i_{\beta} = i_{\beta} (u_{K}); 2) \frac{1}{n_{12}} i_{\beta} = \frac{1}{n_{12}} i_{\beta} (u_{K});$$
3) $i_{\beta} = i_{\beta} (u_{\beta}); A i_{\beta} = i_{\beta} (u_{K});$

При построении характеристики (5) в I области работы триода можно считать

$$i_{\mathfrak{g}}=i_{\mathfrak{g}}(u_{\kappa})=i_{\mathfrak{g}}\left(\frac{u_{\kappa}-E_{\kappa}}{n_{12}}+E_{\mathfrak{g}},\ i_{\kappa}=0\right),$$

где

$$E_{\mathfrak{s}}+\frac{u_{\kappa}-E_{\kappa}}{n_{12}}=u_{\mathfrak{s}}.$$

Характеристика (7) в І области работы триода может быть принята совпадающей с характеристикой семейства (10):

$$i_{\kappa} = i_{\kappa} (u_{\kappa}, i_{\vartheta} = 0).$$

Характеристика тока намагничивания (8) может быть легко построена по имеющимся характеристикам (6), (7).

Примеры построения динамических характеристик

Для иллюстрации вышеизложенного метода построения на рис. 7 приведены характеристики автогенератора, построенные по статическим характеристикам триода, изображенным на рис. 4 и 5.

Динамические характеристики автогенератора, построенные по статическим характеристикам триода, изображенным на рис. 8, приведены на рис. 9.

При построении принята кусочно-линейная аппроксимация семейств характеристик триода $u_{\mathfrak{g}} = u_{\mathfrak{g}}$ (u_{κ} , $i_{\mathfrak{g}}$) и характеристик

автогенератора.

С целью иллюстрации зависимости крутизны характеристики тока намагничивания от соотношения между коэффициентом трансформации n_{12} и параметрами триода, на рис. 11 представлены характеристики автогенератора при различных режимах, построенные по статическим характеристикам триода, изображенным на рис. 10.

Выводы

В результате анализа построенных динамических характе ристик автогенератора можно сделать следующие выводы.

Для получения максимального тока намагничивания и со гласования напряжений на эмиттере и коллекторе коэффициен трансформации n_{12} должен быть больше единицы:

$$n_{12} > 1.$$
 (12)

Триоды, имеющие высокую крутизну

$$S_{\mathfrak{s}} = \frac{1}{\left(\frac{\partial u_{\mathfrak{s}}}{\partial i_{\mathfrak{s}}}\right)_{u_{K}}},\tag{13}$$

го соответствует малому сопротивлению r_{s} , обеспечивают автогенераторе, при прочих равных условиях, больший ток инттера.

Максимальные токи эмиттера и коллектора имеют место триоде при коллекторном напряжении, отличном от нуля. При заданном напряжении на эмиттере в триоде имеет место

При заданном напряжении на эмиттере в триоде имеет место екоторое максимальное значение тока эмиттера, которое можно азвать экстремальным. Коэффициент усиления по току

$$\alpha_{\kappa} = \left(\frac{\partial i_{\kappa}}{\partial i_{\vartheta}}\right)_{u_{\kappa}} \tag{14}$$

области экстремального тока меньше, чем при напряжении коллекторе, равном нулю.

Для получения максимального тока намагничивания треуется, чтобы коэффициент усиления по току в области экстреального тока был близок к значению при нулевом коллективом напряжении, а коэффициент усиления по току на границе горой области

$$\alpha_{\kappa} = \left(\frac{\partial i_{\kappa}}{\partial i_{k}}\right)_{nc} \approx 1. \tag{15}$$

Для построения характеристик автогенератора в третьей ласти работы триода достаточно иметь следующие характестики: при токе эмиттера, равном нулю; при токе коллектора, равном нулю; при экстремальном токе эмиттера и при глевом коллекторном напряжении. Некоторые из этих характеристик для триодов типа Π 3A изображены на рис. 6, для изобра типа Π 4 изображены в семействе характеристик $= u_9 (u_\kappa, i_9)$ на рис. 8.

Триоды, имеющие малое сопротивление коллекторного пехода в третьей области работы триода, обеспечивают при ом высокую крутизну характеристики тока намагничивания, о позволяет получить пилообразные колебания с малым кофициентом нелинейных искажений.

При построении характеристики тока намагничивания в I и обр областях работы триода можно считать ее совпадающей статической характеристикой семейства (10)

$$u_{\kappa} = u_{\kappa} (i_{\kappa}, i_{\sigma} = 0). \tag{16}$$

Триоды, имеющие высокое сопротивление коллекторного рехода в первой области работы триода, обеспечивают при ом минимальную крутизну тока намагничивания, что повывет эффективность схемы вследствие малых потерь энергии триоде в течение обратного хода пилообразных колебаний. Автор считает своим долгом выразить благодарность док-

Автор считает своим долгом выразить благодарность докру техн. наук С. А. Дробову за помощь при подготовке териала к печати.

⁵ Телевидение, вып. 20-22

ЛИТЕРАТУРА

1. Р. Уолесс, У. Питенполь, Свойства и применение схем с кр сталлическими триодами типа n-p-n, "Вопросы радиолокационной те ники". 1952. № 1 (7).

ники", 1952, № 1 (7).
2. Чоу, Суран, Анализ переходных процессов в усилителях на пл скостных полупроводниковых триодах, "Вопросы радиолокационной техникі 1955. № 4 (28).

3. С. Й. Катаев, Генераторы импульсов телевизионной разверти Госэнергоиздат, 1951.

Статья поступила 15/VI 1956 г.

Канд. физ.-мат. наук И. И. ЦУККЕРМА

О РАЗРЕШАЮЩЕЙ СПОСОБНОСТИ СУПЕРОРТИКОНА:

В статье рассмотрены некоторые факторы, влияющие на разрешающ способность передающей телевизионной трубки типа суперортикон. Суп ственно уточнены расчеты хроматической аберрации, сделанные в работ де Воре [Л. 2] и Вендта [Л. 5], количественно оценено влияние этой аберации на разрешающую способность суперортикона. Учтено различие меж зарядным рельефом" и "потенциальным рельефом". Сделан расчет потен ального рельефа для нескольких интересных случаев распределения заря Отмечено сравнительно быстрое уменьшение глубины потенциального регефа на мишени по мере уменьшения емкости, приходящейся на элеме изображения.

Указаны некоторые пути повышения разрешающей способности суперстикона. Рассмотрены также возможности улучшения передачи мелких.

талей при электроннооптическом масштабировании.

Введение

Разрешающую способность выпускаемых сейчас суперс тиконов нельзя считать вполне соответствующей известным стадартам телевизионного разложения с их высокими требогниями к четкости. Если оценивать разрешающую способнос суперортикона визуально по различимости вертикальных лин телевизионного изображения испытательной таблицы, то ввеличина может заметно превосходить 600 линий.** Однако котрастность передачи мелких деталей относительно мала. Тигвая частотная характеристика суперортикона представлена рис. 1 [Л. 1].

Факторы, ограничивающие разрешающую способность с перортикона, могут быть условно разделены на технологи ские и физические. Первые определяются несовершенсте технологии изготовления трубки. Среди них надо указать частности, на "поверхностную" проводимость пленки мише.

пропускания телевизионного канала.

^{*} Доложено на XI Ленинградской научно-технической конференции Об ства радиотехники и электросвязи им. А. С. Попова 24 апреля 1956 г. ** В случае, если соответствующим образом расширена полоса час

неточность сборки и юстировки электродов и магнитной сиемы, на влияние структуры сетки мишени.

Другая группа факторов, которая только и будет в дальйшем рассматриваться, связана с явлениями, принципиально исущими суперортикону. Это—электроннооптические аберции секции изображения, или, как ее иногда называют, секи переноса, влияние полей рассеяния отклоняющей системы формирование электронного изображения, зависимость отнотельной глубины потенциального рельефа от емкости, при-

дящейся на элемент изоажения, растекание задов вследствие конеч- 10 й проводимости пленки наконец, распределение этности тока по сечению итывающего пятна и его 0,5 фективный диаметр. Разрешающая способть суперортикона и можности ее повышеи исследованы недоточно. В [Л. 2] в катве основных причин жения разрешающей

суперорти-

собности

Рис. 1. Частотная характеристика американского "коммерческого" суперортикона {Л. 1}

а указаны хроматичея аберрация секции изображения и растекание зарядов по пени

Несколько разрозненных сведений, относящихся к разрешаю і способности суперортикона, имеется, например, в статьях 3, 4].

При анализе разрешающей способности передающих трубок го не учитывалась зависимость относительной глубины поциального рельефа от емкости, приходящейся на элемент ражения. Так, например, в статье Рыфтина [Л. 8] утвержся, что разрешающая способность "идеальной" передаютрубки, где отсутствуют аберрации секции изображения, зделяется только распределением тока в считывающем пятне о эффективным диаметром. Вряд ли целесообразно стреся к теоретическому расчету сигнала изображения мелких лей (как это сделано в [Л. 8]), учитывая неопределенность эторых необходимых для этого исходных параметров.

1. Аберрации секции электронного изображения

лектростатическое и магнитное поля секции изображения рортикона не могут считаться однородными, однако они нительно близки к однородным (рис. 2). Это проявляется

227.

и в малом (порядка нескольких градусов) повороте электрон ного изображения на мишени относительно оптического изображения на фотокатоде, и в том, что увеличение электрон нооптической системы секции изображения близко к единиц (0,8—0,85). Можно поэтому ожидать, что аберрации, присущие аксиальносимметричным системам, в этом случае будут сравнительно малы. Исключение составляет хроматическая ошибка

V(z)

связанная с разбросом начальных скоростей фотоэлектронов по величине и направлению (т. е. собственно хроматическая аберрация и сферическая аберрация), поскольку среднее значение начальной скорости фотоэлектронов

Рис. 2. Магнитное и электростатическое поля секции электронного изображения: a) напряженность магнитного поля на оси z; b0 потенциал электрического поля на оси z

Плоскость фотокатода z = 0, плоскость мишени $z = z_1$

в суперортиконе всего на порядок меньше конечной скорос у мишени.

Хроматическая аберрация секции изображения суперор кона была рассчитана в работе де Воре [Л. 2]. Магн: ное и электрическое поля были приняты однородными, р пределение начальных скоростей по направлениям—подчиня щимся косинусоидальному закону, а распределение по начальн энергиям—параболическому закону (рис. 3). При этом эментарный ток dI электронов, начальная энергия котор лежит в интервале (ε , $\varepsilon + d\varepsilon$), а углы вылета—в интерва (θ , $\theta + d\theta$), выражается равенством

$$dI = k_1 \frac{\varepsilon}{\varepsilon_0} \left(1 - \frac{\varepsilon}{2\varepsilon_0} \right) d\left(\frac{\varepsilon}{\varepsilon_0} \right) d\left(\cos 2\theta \right) df,$$

^{*} Здесь и повсюду далее энергия электрона выражена в единицах пряжения, так что в действительности энергия электрона равна ес.

где ϵ_0 —наиболее вероятная энергия,

 k_1 —коэффициент пропорциональности,

df—элемент площади фотокатода.

В [Л. 5] сделан расчет хроматической аберрации электроннооптического преобразователя с однородными полями в предположении, что распределение фотоэлектронов по начальным энергиям аппроксимируется функцией Максвелла на отрезке от нуля до максимальной энергии (рис. 4). В этом случае

$$dI = k_2 \frac{\varepsilon}{\varepsilon_0} e^{-\frac{\varepsilon}{\varepsilon_0}} d\left(\frac{\varepsilon}{\varepsilon_0}\right) d(\cos 2\theta) df.$$
 (2)

Рис. 3. "Параболический" закон распределения фотоэлектронов по начальным энергиям Наибольшая начальная энергия $\epsilon_m = 2\epsilon_0$

Рис. 4. "Максвелловский" закон распределения фотоэлектронов по начальным энергиям Наибольшая начальная энергия $\varepsilon_m = 4\varepsilon_0$

В обоих случаях было рассчитано распределение плотности тока в электронном изображении для плоскости, где создается гауссово изображение электронами с бесконечно малой начальной энергией в → 0, хотя в действительности четкость полученного таким образом изображения не может быть оптимальной. Во всяком случае, разрешающая способность будет выше, если фокусировать в плоскости мишени параксиальные пучки электронов не с бесконечно малой начальной энергией, а с наиболее вероятной энергией ϵ_0 (рис. 5).

Чтобы оценить, насколько существенно может сказаться выбор начальной энергии электронов пучка, фокусируемого на мишени, определим, на какую величину $\Delta V_{\phi M}$ надо изменить напряжение между фотокатодом и мишенью $V_{\phi M}$ для перехода от фокусировки в заданной плоскости мишени $z=z_1$ параксиального пучка электронов с бесконечно малой начальной энергией г → 0 к фокусировке в той же плоскости параксиального пучка электронов с начальной энергией в. Из формулы для положения плоскости фокусировки параксиального пучка

э́лектронов в однородных электрическом и магнитном полях*

$$z_1 = \pi \sqrt{\frac{2m}{e}} \frac{\sqrt{V_{\phi,u} + \varepsilon} + \sqrt{\varepsilon}}{H}$$
 (3)

(e-заряд, m-масса электрона, H-напряженность магнитного поля) получается

$$\Delta V_{\phi_M} \approx -2 \sqrt{V_{\phi_M}^{(0)}} \varepsilon, \tag{4}$$

где $V_{\phi_{M}}^{(0)}$ —значение $V_{\phi_{M}}$, соответствующее фокусировке электронов с бесконечно малой начальной энергией. Если, напри-

Рис. 5. К выбору плоскости фокусировки электронов при расчете хроматической аберрации

1—плоскость фокусировки параксиального пучка с "бесконечно малой" начальной энергией с от 2—плоскость фокусировки параксиальных пучков с наиболее вероятной энергией с

мер, $\varepsilon=1$ в, $V_{\phi_M}^{(0)}=300$ в, то $\Delta V_{\phi_M}^*\approx-35$ в. Такое существенное различие связано с тем, что однородное магнитное поле оказывает наибольшее собирательное действие на пучок вначале, когда скорость электронов относительно мала.

Таким образом, расчеты хроматической аберрации, сделанные в [Л. 2; 5], должны давать заведомо заниженные значения для разрешающей способности. Более точный расчет хроматической аберрации преобразователя с однородными полями был выполнен Бонштедтом, Дмитриевой и автором [Л. 6]. В [Л. 6] принято, что в плоскости мишени фокусируются пучки "наиболее вероятных" фотоэлектронов, т. е. параксиальные пучки фотоэлектронов, начальная энергия которых соответствует максимуму кривой распределения по энергиям. Разрешающая способность секции изображения определяется по перепаду плотности тока в электронном изображении оптической миры, состоящей из системы черных и белых полосок равной ширины в Этот перепад удобно характеризовать "коэффициентом модуляции"

$$m_j^{\prime} = \frac{I_{MAKC} - I_{MUH}}{I_{MAKC}}, \qquad (5)$$

* См., например, [Л. 16].

где $j_{макс}$ и $j_{мин}$ —максимальное и минимальное значения плотности тока в плоскости электронного изображения миры (рис. 6).

На рис. 7 представлена зависимость m_i от безразмерного па-

 $HV_{V_{\phi M}}$ раметра $\alpha\delta$, где $\alpha =$ выражено в эрстедах, $V_{\phi M}$ и ε_0- в вольтах, $\delta-$ в сантиметрах, для "параболического" случаев "максвелловского" распределения по начальным энергиям. На том же рисунке показаны результаты расчета $m_j(\alpha\delta)$ по [Л. 2] и по [Л. 5]. Сравнение между собой кривых, соответствующих одинаковому распределению по начальным энергиям, показывает, что работы [Л. 2] и [Л. 5] действительно дают заметно заниженные значения "коэффициента модуляции" m_i , особенно при малых значениях αδ. Это видно на

Рис. 6. Плотность тока в электронном изображении оптической миры на мишени

На верхнем графике показано распределение освещенности на фотокатоде

следующем примере. Для миры, соответствующей отметке "600" испытательной таблицы, $\delta \approx 3.3 \cdot 10^{-3}$ см. Приняв H = 55 э,

Рис. 7. "Коэффициент модуляции" плотности тока в электронном изображении оптической миры при учете хроматической аберрации

І-случай "параболического" распределения (новый расчет);
 2-случай "максвелловского" распределения (новый расчет);
 3-случай "параболического" распределения (по расчету в [Л. 2]);
 4-случай "максвелловского" распределения (по расчету в [Л. 5])

 $V_{\phi_M} = 300 \ s$, $\varepsilon_0 = 0.7 \ s$, при "максвелловском" распределении получим $\alpha \delta \approx 0.21$. Значение m_j , рассчитанное по Вендту (рис. 7, кривая 4), было бы около 0.04. Это—столь малая величина,

что при учете других факторов, снижающих разрешающую способность телевизионной системы, воспроизведение таких деталей изображения было бы практически невозможно. Новый расчет [Л. 6] дает более правдоподобную величину $m_i \approx 0.3$

(рис. 7, кривая 2)*.

Хотя влияние хроматической аберрации на разрешающую способность суперортикона не так велико, как предполагал де Воре [Л. 2], допустивший указанное упрощение при расчете этой аберрации, однако с этим влиянием приходится считаться, особенно при дальнейшем повышении требований к четкости телевизионного изображения. Так, например, при передаче оптической миры, соответствующей отметке "1000" испытательной таблицы, и при указанных в предыдущем примере значениях $H,\ V_{\phi_M},\ \varepsilon_0$ значение m_j получается на порядок ниже, чем для крупных деталей.

Влияние хроматической аберрации на разрешающую способность суперортикона непосредственно обнаруживается при сравнении изображений в условиях освещения объекта передачи светом с различным спектральным содержанием (при неизменном фототоке). Существенная зависимость m_j от ε_0 очевидна из рис. 7, поскольку а пропорционально $\frac{1}{\varepsilon_0}$. Разрешающая способность суперортикона при замене красного фильтра на синий и подстройке оптической системы и трубки падает (по визуальной оценке) иногда на сто и более линий. Если же необходимое изменение напряжения $V_{\phi,n}$, вследствие различия ε_0 , при переходе от фильтра к фильтру не может быть произведено—например, при передаче цветных объектов с быстро изменяющимся спектральным содержанием, —падение разрешающей способности будет еще заметнее.

Уменьшить хроматическую аберрацию секции изображен можно путем увеличения α при увеличении $H\sqrt{V_{\phi_M}}$. Простое увеличение тока через фокусирующую катушку при соответствующем увеличении всех напряжений, а также размаха пилообразного тока через отклоняющие катушки, дает выигрыш в разрешающей способности. Однако такой способ не всегда удобен, так как приходится увеличивать мощность генератора разверток. Предпочтительнее увеличивать магнитное поле только в секции изображения, главным образом вблизи фотокатода. Средние значения $H\sqrt{V_{\phi_M}}$ при этом возрастают. Требуемое изменение магнитного поля в секции изображения может быть

достигнуто секционированием намотки фокусирующей катушки, так чтобы плотность ампервитков увеличивалась вблизи фото-

^{*} В действительности, при настройке камеры режим секции переноса всегда подбирается опытным путем так, что коэффициент модуляции m становится максимальным.

катода, а также установкой на торце катушки магнитопровода в форме диафрагмы с отверстием для световых лучей. При этом возрастает увеличение электроннооптической системы, а следовательно, при заданных размерах оптического изображения увеличивается и рабочая поверхность мишени, что, как будет показано далее (см. параграф 2), способствует увеличению разрешающей способности системы мишени. Если таким путем удается превратить магнитное поле секции изображения практически в однородное, то уменьшаются и другие аберрации, в частности, астигматизм и кривизна поля, а следовательно,

улучшается фокусировка на краях изображения.

Существенным фактором, ограничивающим разрешающую способность суперортикона, может явиться влияние переменных полей рассеяния отклоняющих катушек на поток фотоэлектронов. Это приводит к периодическим небольшим отклонениям электронного изображения от своего среднего положения на мишени за время накопления, к своего рода "размыванию" изображения. Среднее значение поля рассеяния неэкранированных строчных катушек на оси трубки в секции изображения всего на два порядка меньше максимального значения в центре отклоняющей системы. При отсутствии экранировки электронное изображение в плоскости мишени могло бы смещаться на цва—три элемента стандартного разложения. Статический железный экран отклоняющей системы и "динамическое" экранирующее действие металлических цилиндров в секции изображения уменьшают поля рассеяния.

Влияние полей рассеяния на разрешающую способность екции изображения демонстрируется следующим простым опыом. В области секции изображения устанавливают дополниельные отклоняющие катушки, в которые подаются регулиучемые по размаху "пилообразные" импульсы тока от генераора разверток. Положение дополнительных катушек подбирают аким образом, чтобы одна пара могла отклонять электронное зображение в направлении строчной, а другая—в направлении садровой развертки. При увеличении размаха тока в "строчных дополнительных катушках наблюдается уменьшение разешающей способности по вертикальному клину, а при увелитении размаха тока в "кадровых"-по горизонтальному. Стетень падения разрешающей способности за счет поля ополнительных катушек зависит от направления тока в них. сли это направление таково, что поле дополнительных катулек складывается с полем рассеяния основных отклоняющих атущек, то заметное снижение разрешающей способности роисходит при меньших значениях размаха тока в дополниельных катушках, чем в случае, если поле дополнительных атушек вычитается из поля рассеяния основных. Следует отетить, что даже в первом случае потеря различимости мелих деталей испытательной таблицы, соответствующих от-

метке "600", т. е. принятому стандарту разложения, происходит лишь при некотором конечном значении размаха тока в дополнительных катушках. Однако при повышении требований к четкости телевизионного изображения влияние полей рассеяния отклоняющих катушек на разрешающую способность может

стать существенным.

Для дальнейшего уменьшения влияния полей рассеяния может быть применена дополнительная экранировка [Л. 4, 7]. Отклонение в поле рассеяния отклоняющей системы может быть компенсировано за счет отклонения в поле дополнительных катушек в области секции изображения. Подобное устройство упоминается в статье [Л. 3]. Наконец, увеличение средней скорости движения электронов в секции изображения также уменьшает влияние полей рассеяния. В этом смысле могут быть полезны те меры, которые способствуют уменьшению хроматической аберрации.

2. Потенциальный рельеф на мишени

Задаваясь вопросом, в какой мере мишень ограничивает разрешающую способность суперортикона, следует прежде всего сравнить размеры мишени и эффективное поперечное сечение считывающего пучка. Иногда соотношение между этими величинами может существенно определять разрешающую спо-

собность передающей трубки [Л. 8].

Однако в случае обычного суперортикона это соотношениє может, по-видимому, считаться удовлетворительным даже при некотором повышении требований к четкости телевизионного Размеры считывающего пятна суперортикона оценены, например, в статье [Л. 9]. Объектом, который ото бражается на мишени в виде считывающего пятна, служи: здесь отверстие в апертурной диафрагме прожектора. Диамет этого отверстия — порядка $3.5 \cdot 10^{-3}$ см. Увеличение фокуси рующей системы секции считывания—около 0,6. Параксиаль ное изображение отверстия имеет на мишени поперечник поряд ка $2\cdot 10^{-3}$ cm, что примерно в тысячу раз меньше высоты ра стра. Это находится в соответствии с экспериментальными дан ными, приведенными в статье [Л. 2], где разрешающая способ ность секции считывания оценивается величиной, по крайне: мере, не ниже 1000 линий.*

^{*} Разрешающая способность секции считывания на краях растра може несколько снижаться из-за аберраций системы отклонения, а также из за нарушения условий ортогонального падения пучка на мишень. Установк перед мищенью в секции считывания выравнивающей сетки способствует пс вышению разрешающей способности на краях.

Более важно для учета влияния мишени на разрешающую способность суперортикона рассчитать при заданном распределении зарядов глубину потенциального рельефа, перепад потенциала мишени между "светлыми" и "темными" участками электронного изображения. Этот перепад потенциала влияет на сигнал изображения, поскольку часть электронного пучка, возвращающаяся на первый динод, промодулирована потентивленым рельефом ми-

циальны м рельефом мишени.

Распределение потенциала удобно характеризовать "коэффициентом модуляции"

$$m_{\psi} = \frac{\varphi_{Makc} - \varphi_{Muh}}{\varphi_{Makc}},$$
 (6)

где $\phi_{\text{макс}}$ — наибольшее значение потенциала (например, соответствующее светлому участку оптической миры), а $\phi_{\text{мин}}$ — наименьшее. За нуль принят

Рис. 8. К расчету потенциала на поверхности мишени g-g-плоскость сетки; i-i-плоскость "отраженных" зарядов, m-m-плоскость мишени

потенциал большого "неосвещенного" участка мишени.

Вид потенциального рельефа, созданного каким-либо распределением заряда на мишени, нельзя отождествлять с электронным изображением *. Даже в случае, когда между различными участками мишени существует резкий перепад плотности заряда, изменение потенциала между этими участками будет описываться непрерывной плавной кривой.

Пусть плотность заряда на мишени q(x) изменяется только вдоль оси x (например, при проектировании оптической миры), состоящей из черных и белых полос. Тогда потенциал на поверхности мишени $\varphi(x)$ будет описываться формулой, которая получается из известной формулы для логарифмического потенциала заряженной нити, если произвести интегрирование по поверхности мишени и по поверхности, где расположены отраженные заряды

$$\varphi(x) = 2 \int_{0}^{\infty} q(\xi) \ln \frac{\sqrt{(x-\xi)^2 + 4d^2}}{|\xi - x|} d\xi,$$
 (7)

где d—расстояние между пленкой и сеткой (рис. 8).

^{*} Указанием на важность учета связи между распределением зарядов на мишени суперортикона и потенциальным рельефом при анализе работы этой трубки автор обязан В. Л. Герусу, рассмотревшему перепад потенциала на прямолинейной границе "освещенного" и "неосвещенного" участков, также изменение потенциалов при считывании соседней строки.

Если распределение зарядов на мишени идеально соответствовало бы изображению оптической миры, т. е. равномерно заряженные полоски ширины δ чередовались с незаряженными полосками такой же ширины, то

$$\boldsymbol{m}_{\varphi} = \frac{\left[2f\left(\frac{\delta}{2d}\right) - f\left(\frac{3\delta}{2d}\right)\right] + \left[2f\left(\frac{5\delta}{2d}\right) - f\left(\frac{3\delta}{2d}\right) - f\left(\frac{7\delta}{2d}\right)\right] + \dots}{f\left(\frac{\delta}{2d}\right) + \left|f\left(\frac{5\delta}{2d}\right) - f\left(\frac{3\delta}{2d}\right)\right| + \left|f\left(\frac{9\delta}{2d}\right) - f\left(\frac{7\delta}{2d}\right)\right| + \dots}$$
(8)

где
$$f(\xi) = \frac{1}{2\pi} \int_{0}^{\xi} \ln \frac{\sqrt{\xi^2 + 4}}{\xi} d\xi = \frac{1}{2\pi} \left[\frac{\xi}{2} \ln \left(1 + \frac{4}{\xi^2} \right) + 2 \operatorname{arc} \operatorname{tg} \frac{\xi}{2} \right].$$

Рис. 9. "Коэффициент модуляции" потенциального рельефа для случая "идеального" электронного изобра-

Вид характеристики $m_{\varphi}\left(\frac{\delta}{d}\right)$ показан на рис. 9. Для величин δ , сравнимых с размером элемента разложения (когда отношение $\frac{\delta}{d}$ близко к единице), величина m_{φ} оказывается порядка нескольких десятых. В реальном случае "коэффициент модуляции" распределения зарядов m_{φ} существенно меньше единицы и значения m_{φ} будут еще ниже.

Пусть, например, плотность заряда на поверхности мишени является периодической функцией координат

$$\sigma(x, y) = 1 - \frac{m_{\sigma}}{2} + \frac{m_{\sigma}}{2} \cos \frac{\pi}{a} x \cos \frac{\pi}{b} y.$$
 (9)

 m_{σ} имеет здесь смысл "коэффициента модуляции" распределения заряда:

$$m_{\sigma} = \frac{\sigma_{MAKC} - \sigma_{MUH}}{\sigma_{MAKC}}.$$
 (10)

Период изменения по координате x составляет 2a, по координате y равен 2b. В частном случае, когда $b \to \infty$,

$$\frac{\sigma(x)}{\sigma(0)} = 1 - \frac{m_{\sigma}}{2} + \frac{m_{\sigma}}{2} \cos \frac{\pi}{2} x,$$
 (11)

что соответствует основной гармонике разложения в ряд Фурье распределения плотности заряда в изображении оптической миры с шириной полосок a.

Если b=a, распределение заряда (9) соответствует двум первым членам разложения в двойной ряд Фурье двоякопериодического распределения плотности заряда в изображении "шахматного поля".

Потенциал в какой-либо точке мишени (x_0, y_0) вычис-ляется с помощью принципа отражения

$$\varphi(x_0, y_0) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left[\frac{1}{\sqrt{(x - x_0)^2 + (y - y_0)^2}} - \frac{1}{\sqrt{(x - x_0)^2 + (y - y_0)^2 + 4d^2}} \right] \sigma(x, y) \, dx \, dy.$$
 (12)

Для расчета m_{φ} надо определить $\varphi_{\text{макс}} = \varphi (0,0)$ и $\varphi_{\text{мин}} = \varphi (a,0)$, подставляя в (12) значения $\sigma(x,y)$ из (9) и производя интегрирование. При интегрировании можно использовать известные из теории бесселевых функций [Л. 10] формулы

$$\int_{-\infty}^{\infty} \frac{\cos \alpha y \, dy}{\sqrt{x^2 + y^2}} = 2K_0(\alpha x); \quad \int_{-\infty}^{\infty} K_0\left(\beta \sqrt{t^2 + \omega^2}\right) \cos \gamma t \, dt = \frac{\pi e^{-\omega \sqrt{\gamma^2 + \beta^2}}}{\sqrt{\gamma^2 + \beta^2}}.$$

В результате получаем

$$\varphi_{Makc} = 4\pi d \left(1 - \frac{m_{\sigma}}{2} \right) + \frac{m_{\sigma}ab}{V a^2 + b^2} \left(1 - e^{-2\pi d} \frac{V \overline{a^2 + b^2}}{ab} \right);$$
(13)

$$\varphi_{MUH} = 4\pi d \left(1 - \frac{m_o}{2} \right) - \frac{m_o ab}{V a^2 + b^2} \left(1 - e^{-2\pi d} \frac{V a^2 + b^2}{ab} \right). \tag{14}$$

; частном случае "шахматного поля" (b=a)

$$\varphi_{MAKC}^{(III)} = 4\pi d \left(1 - \frac{m_{\sigma}}{2} \right) + \frac{m_{\sigma}a}{\sqrt{2}} \left(1 - e^{-\frac{2\sqrt{2}\pi d}{a}} \right); \tag{15}$$

$$\varphi_{MUH}^{(u)} = 4\pi d \left(1 - \frac{m_{\sigma}}{2} \right) - \frac{m_{\sigma}a}{\sqrt{2}} \left(1 - e^{-\frac{2\sqrt{2\pi}d}{a}} \right). \tag{16}$$

частном случае составленной из полосок оптической миры $\rightarrow \infty$

$$\varphi_{Ma\kappa c}^{(M)} = 4\pi d \left(1 - \frac{m_{\sigma}}{2} \right) + m_{\sigma} a \left(1 - e^{-\frac{2\pi d}{a}} \right); \tag{17}$$

$$\varphi_{MUH}^{(M)} = 4\pi d \left(1 - \frac{m_{\sigma}}{2} \right) - m_{\sigma} a \left(1 - e^{-\frac{2\pi d}{a}} \right). \tag{18}$$

Если $a \ll 2\pi d$ (мелкие детали), получатся следующие приближенные выражения для "коэффициентов модуляции" $m_{\varphi}^{(\mathrm{m})}$ и $m_{\varphi}^{(\mathrm{m})}$ потенциального рельефа "шахматного поля" и оптической миры, состоящей из полосок,

$$m_{\varphi}^{(\mathrm{m})} \approx \frac{m_{\circ}a}{2\sqrt{2}\pi d\left(1-\frac{m_{\circ}}{2}\right)};$$
 (19)

$$m_{\varphi}^{(M)} \approx \frac{m_{\sigma}a}{2\pi d\left(1 - \frac{m_{\sigma}}{2}\right)}$$
 (20)

Из (19) и (20) следует, что

$$\frac{m_{\varphi}^{(\mathrm{III})}}{m_{\varphi}^{(\mathrm{M})}} \approx \frac{1}{\sqrt{2}}.$$
 (21)

Так, для оптической миры с шириной полосок, соответствующих отметке "600" испытательной таблицы, $m_{\varphi}^{(\mathrm{M})}$ будет иметь такой же порядок, как при том же значении m_{φ} величина $m_{\varphi}^{(\mathrm{III})}$ для "шахматного поля" со стороной квадратов в $\sqrt{2}$ разбольшей, т. е. соответствующих примерно отметке "400" испытательной таблицы. Надо учесть, что вследствие аберраций секции изображения величина m_{φ} для "шахматного поля" со стороной квадрата a будет меньше, чем для миры, составленной из полосок такой же ширины. Можно ожидать, что значение разрешающей способности трубки, определенное по испытательной таблице типа "шахматного поля", окажется за метно меньше, чем то, которое определено по мире, состоя щей из полосок. Это действительно наблюдается на опыте.

Итак, потенциал того или иного элемента мишени сущест венно определяется не только зарядом этого элемента, но зарядами, находящимися на соседних участках. С другой стороны, электронный луч, изменяя заряд на том или ином элементе мишени, изменяет потенциал не только этого элемента но и потенциал соседних участков. Чем меньше отношение $\frac{a}{d}$

т. е. отношение размера элемента к расстоянию между сетко и пленкой, тем меньше "глубина модуляции" потенциальног рельефа и тем меньше сигнал изображения соответствующимелких деталей.*

^{*} Однако надо иметь в виду, что зависимость сигнала от глубины г тенциального рельефа существенно нелинейна. Прямую связь между крив ми для m_{φ} и частотной характеристикой секции считывания установить удается.

Отсюда следует, что эффективной мерой повышения разрешающей способности суперортикона является увеличение рабочей поверхности мишени. Следует подчеркнуть, что это полезно делать не столько для увеличения отношения высоты кадра h к эффективному поперечнику $2r_e$ считывающего пятна суперортикона, как иногда полагают [Л. 8], сколько для увеличения отношения $\frac{a}{d}$, а следовательно, для увеличения относительной глубины потенциального рельефа, для уменьшения влияния заряда того или иного элемента на потенциал соседнего элемента и для уменьшения растекания заряда.

Рис. 10. Частотная характеристика суперортикона с увеличенной мишенью [Л. 1]

Увеличение $\frac{a}{d}$ за счет дальнейшего уменьшения расстояния между сеткой и пленкой ограничено. При малых значениях начинает заметно сказываться структура сетки и не получается желаемого увеличения емкости накопительного элемента.

Возрастание сигнала изображения с мелких деталей, т. е. повышение разрешающей способности суперортикона при увеничении размеров мишени, наблюдалось на опыте. В частности, при увеличении диаметра рабочей поверхности мишени да треть по сравнению с обычно используемой сигнал изображения полосок оптической миры, соответствующих отметке "600" спытательной таблицы, возрастал в два—три раза. Известно акже, что в сообщениях о большом студийном суперортиконе, иаметр мишени которого примерно в $\sqrt{3}$ раз больше, чем обычного суперортикона, указывается на заметно увеличивнуюся разрешающую способность трубки. На рис. 10 показана астотная характеристика трубки такого типа [Л. 1].

При расчете потенциального рельефа распределение заряда читалось заданным, неизменным во времени. В действитель-

ности заряд каждого элемента мишени не остается постоянным в течение периода кадра. Изменение относительной глубины потенциального рельефа в ходе накопления и растекания заряда было рассчитано в статье [Л.2]. Зависимость "коэффициента модуляции" потенциального рельефа от безразмерного параметра, включающего время, протекшее с начала накопления, емкость системы сетка—пленка C, приходящуюся на единицу поверхности мишени, "продольное сопротивление" пленки R на единицу поверхности* и ширину полосок δ электронного изображения оптической миры, показана на рис. 11.

Рис. 11. "Коэффициент модуляции" потенциального рельефа при учете растекания заряда (по данным статьи [Л. 2])

Значения р могут изменяться в пределах от 1011 до 10¹² ом см (см., например, [Л. 11]). Величина Rтрудно поддается определению, вследствие различия между удельным сопротивлением полупроводникового стекла, из которого сделана пленка, и тонкой пленки, подвергшейся температурной обработке при изготовлении. Кроме того, неопределенным образом изменяется "поверхностное" сопротивление в зависимости от

условий технологической обработки поверхности в процессе изготовления фотокатода. В частности, избыток цезия на поверхности пленки может существенно увеличить ее проводимость и даже привести к значительной потере разрешающей способности.

В качестве примера рассмотрим практически возможный случай, когда $\rho = 2 \cdot 10^{11}$ см, C = 0.15 см $^{-1}$, $d_0 = 5 \cdot 10^{-4}$ см, t = 0.04 сек., $\delta = 3.3 \cdot 10^{-3}$ см. Значение m_{φ} будет при этом порядка 0,3.

Для повышения разрешающей способности за счет уменьшения растекания заряда нужно прежде всего не допускать уменьшения удельного сопротивления пленки более, чем это необходимо для обеспечения разрядки мишени, а также, по возможности, уменьшать избыточную поверхностную проводи мость пленки. Увеличение рабочей поверхности мишени в этом смысле, как уже указывалось, также полезно.

^{*} Если нет дополнительной "поверхностной" проводимости пленки, т $R=rac{
ho}{d_0}$, где ho — удельное сопротивление, d_0 — толщина пленки.

3. Электроннооптическое масштабирование в суперортиконе и передача мелких деталей

Разрешающая способность телевизионной системы ограничена не только разрешающей способностью передающей трубки, но и разрешающей способностью приемной трубки и полосой частот канала связи. Поэтому для значительного повышения различимости мелких деталей объекта приходится увеличивать масштаб телевизионного изображения. Это может быть сделано не только перемещением камеры ("наезд"), не только оптическими средствами (смена объектива, применение вариафокальных объективов [Л. 12]), но и электронноптическим методом, за счет изменения увели-

чения секции изображения.*
Электроннооптический метод в изменения масштаба телевизион-

ного изображения, называемый в иногда электроннооптическим масштабированием, был применен в супериконоскопе [Л. 13, 14].

Для осуществления электроннооптического масштабирования в суперортиконе требуется соз-

Рис. 12. Схема фокусировки в магнитной электроннооптической системе без поворота изображения

дать магнитную электроннооптическую систему с переменным увеличением и без поворота электронного изображения относительно оптического изображения на фотокатоде. Принципы построения и расчета такой системы даны в статье [Л. 15].

Для изменения увеличения без поворота изображения достаточно перераспределять электрическое и магнитное поля так, чтобы основные траектории (для которых плоскость фотокатода служит нормальной плоскостью) оставались бы по возможности ближе к силовым линиям магнитного поля. Основные траектории при этом идут так, как если бы магнитное поле отсутствовало, а действовало только электрическое поле. Рольмагнитного поля в этом случае сводится к фокусировке элементарных пучков на соответствующих основных траекториях (рис. 12).

При переходе от меньших увеличений к большим следует изменять электрическое поле и магнитное поле так, чтобы основные траектории и силовые линии магнитного поля шли от фотокатода к мишени все более расходящимся пучком. Этого можно добиться, увеличивая потенциал на ускоряющем электроде и, соответственно, напряженность магнитного поля у фотокатода (последнюю—с помощью дополнительной ка-

^{*} Известен также метод "сжатия растра" передающей трубки, но ему присущи некоторые принципиальные недостатки: "выгорание", или "утомление", мишени, быстрое падение сигнала по мере сжатия растра, снижение разрешающей способности при значительном сжатии растра.

тушки, установленной на торце фокусирующей катушки). Так как может потребоваться значительное локальное усиление магнитного поля у фокатода (в то же время существенное изменение магнитного поля у мишени недопустимо), поле рассеяния торцовой катушки должно быть, по возможности, меньше. С этой целью дополнительную торцовую катушку снабжают магнитопроводом, а внутренний диаметр ее уменьшают до необходимой величины, чтобы пропустить световой поток на фотокатод (рис. 13).

На практике постоянство ориентации изображения может быть получено с достаточной точностью и в том случае, когда

Рис. 13. Схема электроннооптической системы масштабирования І-фотокатод; 2-цилиндр мишени; 3-ускоряющий электрод, 4-фокусирующая катушка, 5-магнитопровод, 6-дополнительная катушка, 7-фокусирующий электрод

Рис. 14. Схема фокусировки второго изображения Пунктиром показана плоскость промежуточного изображения

силовые линии не совпадают с основными траекториями, хотя и близки к ним. При этом кручение траектории, возможное на одном участке, может быть компенсировано противоположным по знаку кручением на другом участке. Надо также иметь в виду, что при номинальных условиях работы трубки изображение на мишени может быть все же повернуто на несколько градусов относительно оптического изображения на фотокатоде, так что и при больших увеличениях угол поворота должен сохраняться неизменным, чтобы не происходил поворот телевизионного изображения.

Однако для создания высококачественной системы масштабирования следует стремиться к обеспечению совпадения основных траекторий и силовых магнитных линий, так как при этом можно ожидать уменьшения аберраций. Особенно важно добиться совпадения в области вблизи фотокатода, где скорости электронов относительно невелики.

Практически необходимые токи и напряжения находятся из опыта методом последовательных приближений, причем масштаб задается током через торцовую секцию, поворот исправляется в основном подбором потенциала на ускоряющем электроде, фокусировка изображения—подбором напряжения между фотокатодом и мишенью. Кроме того, приходится вслед-

ствие некоторого влияния поля рассеяния торцовой катушки на считывающий пучок изменять потенциал на фокусирующем

электроде.

Если требуется дискретное удвоение масштаба, предпочтительнее переходить на фокусировку второго изображения (рис. 14), так как при этом напряжение между фотокатодом и мишенью остается близким к номинальному. Необходимые изменения тока торцовой катушки, потенциала фотокатода, ускоряющего и фокусирующего электродов относительно мишени

Рис. 15. Характер изменения тока через торцовую катушку I_T , потенциалов на фотокатоде V_{ϕ_M} , ускоряющем электроде V_{y_M} и фокусирующем электроде V_{ϕ} относительно мишени в зависимости от масштаба М

Рис. 16. Изменение сигнала изображения мелких деталей в зависимости от масштаба

Верхняя кривая показывает изменение верхния кривая показывает по масшта-сигнала от крупных деталей при масшта-бировании. Числа при других кривых по-казывают, какой отметке испытательной таблицы они соответствуют (число линий)

осуществляются путем одного переключения. Для плавного изменения масштаба эти же электрические параметры должны изменяться по кривым, вид которых зависит от конструкции системы масштабирования и положения катушек относительно трубки. Характер этих кривых для одного частного случая показан на рис. 15.

Случай M=1 соответствует номинальному изображению. Пунктиром показаны ориентировочные допуски на значения соответствующих параметров, необходимые, чтобы разрешающая способность не снижалась более чем на 100 линий по сравне-

нию с оптимальной.

При изменении увеличения системы переноса фототок, приходящийся на элемент изображения, падает пропорционально используемой площади фотокатода. Однако вследствие сильно выраженной нелинейности характеристики свет-сигнал супер-

ортикона падение сигнала при масштабировании относительно мало. При рабочей освещенности на фотокатоде и увеличении масштаба в два раза сигнал от крупных объектов обычно падает на 20—30%. В то же время сигнал от мелких деталей изображения заметно растет с увеличением масштаба (рис. 16).

Таким образом, при изменении угла зрения камеры методом электроннооптического масштабирования удается существенно увеличить различимость мелких деталей объекта. Следует отметить возможность уменьшения хроматической аберрации секции изображения при масштабировании, а также уменьше-

Рис. 17. Схема удлиненной секции изображения 1-фотокатод; 2-мишень; 3-ускоряющий электрод; 4фокусирующая катушка; 5-дополнительная катушка; 6-магнитопровод; 7-фокусирующий электрод

ние влияния поля рассеяния отклоняющей системы вследствие

увеличения напряженности полей.

Попытки получить в обычном суперортиконе изменение масштаба изображения в более широких пределах, чем в 2—2,5 раза, затруднены тем обстоятельством, что поле рассеяния торцовой катушки приобретает заметную величину в области мишени. Это приводит к сжатию растра передающей трубки и к нарушению условий ортогонального падения считывающего пучка. Кроме того, возрастает кривизна поля. Дальнейшее увеличение масштаба может быть получено за счет удлинения секции изображения. На рис. 17 схематически показана такая секция изображения, позволившая изменять масштаб в отношении 5:1 без поворота изображения.

Заключение

Относительное значение того или иного фактора, ограничивающего разрешающую способность суперортикона, не только может изменяться от одной модификации этой передающей трубки к другой, но и быть совершенно различным для раз-

ных экземпляров одинаковой конструкции. Однако целесообразно выделить некоторые факторы, существенно влияющие

на различимость мелких деталей.

Так, весьма важно учитывать различие между "зарядным рельефом" и потенциальным рельефом, быстрое уменьшение глубины потенциального рельефа на мишени при уменьшении емкости, приходящейся на элемент изображения. Эта емкость, наряду с проводимостью пленки, определяет и "растекание" заряда, также приводящее к снижению потенциального рельефа. Большое значение имеют ошибки изображения в секции переноса, в особенности хроматическая аберрация и "размытие" электронного изображения вследствие влияния полей рассеяния отклоняющей системы. Хотя значения хроматической аберрации, полученные в статьях [Л. 2] и [Л. 5], оказываются, как подтверждает более точный расчет, сильно завышенными, все же эта аберрация остается одним из заметных факторов, определяющих разрешающую способность суперортикона.

Эффективным методом повышения разрешающей способности суперортикона является увеличение рабочей поверхности мишени при прежнем размере оптического изображения на фотокатоде. При этом возрастает емкость, приходящаяся на элемент изображения на мишени, и, следовательно, становится "глубже" потенциальный рельеф при заданном распределении зарядов, а также уменьшается влияние растекания зарядов. Тоскольку увеличение электроннооптической системы переноса цолжно быть при этом больше, чем в обычном суперортиконе, іапряженность магнитного поля в области фотокатода должна быть увеличена, например, с помощью секционирования налотки и введения дополнительного магнитопровода. Возрастет реднее значение напряженности магнитного и электрического: юлей, вследствие чего одновременно уменьшится хроматичекая аберрация и влияние полей рассеяния отклоняющей ситемы. Некоторый выигрыш в разрешающей способности может ыть получен уже при сравнительно небольшом изменении абочей поверхности мишени, -- например, если от прежнего величения секции переноса (0,8-0,85) перейти к единичному величению, создав практически однородные поля в секции ереноса. Возможности улучшения разрешающей способности з счет уменьшения полей рассеяния отклоняющей системы, так же за счет обеспечения ортогональности считывающего учка к мишени должны быть рассмотрены отдельно.

Существенное, в широких пределах, улучшение передачи елких деталей при заданной полосе частот канала связи ожет быть достигнуто за счет уменьшения угла зрения телезионной камеры электроннооптическим методом. Для этого кция изображения суперортикона должна быть превращена электроннооптическую систему с переменным увеличением и з поворота изображения.

В заключение автор выражает признательность Л. Д. Аксеновой, В. П. Ахремцеву, Г. Г. Гончаровой и М. Г. Марковичу, проводившим измерения, Н. В. Дунаевской и С. А. Цукановой, изготовившим и исследовавшим экспериментальные трубки, а также Б. Э. Бонштедту и А. А. Мостовскому заполезные советы и обсуждение результатов.

ЛИТЕРАТУРА

- 1. O. Shade, "JSMPTE", 1953, vol. 61, № 2, p. 97.
 2. H. de Vore, "Proc. IRE", 1948, vol. 36, № 3, p. 335.
 3. R. Kell, G. Sziklai, "RCA Rev.", 1946, vol. 7, p. 67.
 4. R. B. Janes, R. E. Johnson, R. S. Moore, "RCA Rev.", 1949, part, VI, vol. 10, № 2, pp. 191—223.
- 5. G. Wendt, "Ann. radioélectricité", 1955, vol. 10, № 39, р. 74. 6. Б. Э. Бонштедт, Т. Г. Дмитриева, И.И.Цуккерман, ЖТФ,
- 1956, т. 26, стр. 1968.
 7. А. Reisz, "Tele—Tech", 1952.
 8. Я. А. Рыфтин, ЖТФ, 1955, т. 25, вып. 12.
 9. А. Г. Лапук, И. И. Цуккерман, "Техника телевидения", 1955,
- вып. 8 (14), стр. 18.

 10. Г. Ватсон, Бесселевы функции, Изд. иностр. литературы.

 11. V. K. Zworykin, G. A. Morton, Television, New York, 1953.

 12. R. Bretz, Technics of Television Production, New York, 1953.

 13. H. Bruining, J. Francken, "Philips Techn. Rev.", 1953, vol. 14, p. 327.
- 14. Л. Д. Аксенова, И. И. Цуккерман, "Техника телевидения"
- 1955, вып. 6 (12), стр. 3. 15. И. И. Цуккерман, ЖТФ, 1955, т. 25, вып. 5, стр. 950. 16. Б. Э. Бонштедт, Н. В. Дунаевская, "Техника телевидения" 1956, вып. 19, стр. 3.

Статья поступила 4/V 1956 г.

СОДЕРЖАНИЕ

20	ТЕХНИКА ТЕЛЕВИДЕНИЯ, вып. 20
CUCTEME HEATHORO	Е.И.Житников, В.Г.Семенов, В.И.Анциф собы передачи цветовой информации в совместимой систе
на фиоктуацион-	гелевидения
нями	ные шумы телевизионного канала Б. В. Круссер, И. К. Малахов. Основные свойст щих телевизионных трубок с фотопроводящими мишенями И.Г. Мелкова. К вопросу о расчете коэффициент
	ного деиствия антени
расчету ферроре-	сенными обмотками
	ТЕХНИКА ТЕЛЕВИДЕНИЯ, вып. 21
	В. С. Зверлин. О входном реактивном сопротивлодных линий с распределенными постоянными. В. М. Зусманович. Колориметрические принципы
103 Ределение размаха Системе иветного	В. М. Зусманович и Р. Я. Брунова. Определе сигнала при квадратурной модуляции полнесущей в сист
138	телевидения Н. П. Трифонов. Термоэлектрический ваттметр бо пости дециметрового диапазона Л. Я. Ямпольский. Автоматическая регулировка у
вка усиления в те- 	л. я. ямпольский. Автоматическая регулировка у евизионных приемниках
. 22	ТЕХНИКА ТЕЛЕВИДЕНИЯ, вып. 22
траном 3 × 4 м 178 актеристики пере- 	И. Ф. Кузаев. Методика предварительной юстировы Л-1, применяемого в проекционном приемнике с экраном К. В. Михалков, С. И. Зеленский. Характери ачи контраста телевизионными системами. А. П. Нефедьев. Способ измерения спектра шумо ых передающими телевизионными трубками с двустороны Г. И. Олиференко. Динамические характеристики ора пилообразного тока на кристаллотриоле
сти суперортикона 226	И. И. Цуккерман. О разрешающей способности су

Редакционная коллегия просит читателей присылать свои отзывы, замечания и пожелания по материалам, публикуемым в сборнике "Техника телевидения".

Укажите Вашу фамилию, место работы. должность.

Отзывы направлять по адресу: Ленинград, Д-41, Марсово поле, 1. Л. О. Госэнергоиздата

министерство радиотехнической промышленности ссср всесоюзный научно-исследовательский институт

"ТЕХНИКА ТЕЛЕВИДЕНИЯ", вып. 20—22

Редактор *Н. Д. Харитонов* Технический редактор *А. А. Забродина*

Сдано в произв. 8/XII 1956 г. Бум. л. 7,75. Уч.-изд. л. 15. Подп. к печати 26/II 1957 г. 60×92¹/₁₆.

М 13117. Тираж 1000. Печ. л. 15, Заказ 241

Типография № 2 Управления культуры Ленгорисполкома, Ленинград, Социалистическая,

Approved For Release 2010/04/07 : CIA-RDP80T00246A045700380001-3 всесоюзный научно-исследовательский институт TEXHUKA выпуск 24

ТАДЕНОТЧАНЕЭОТ

Approved For Release 2010/04/07: CIA-RDP80T00246A045700380001-3

МИНИСТЕРСТВО РАДИОТЕХНИЧЕСКОЙ ПРОМЫШЛЕННОСТИ СССР ВСЕСОЮЗНЫЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ

ТЕХНИКА ТЕЛЕВИДЕНИЯ

НАУЧНО-ТЕХНИЧЕСКИЙ СБОРНИК

ВЫПУСК 24

 ГОСУДАРСТВЕННОЕ ЭНЕРГЕТИЧЕСКОЕ ИЗДАТЕЛЬСТВО

 Москва
 1957
 Ленинград

Approved For Release 2010/04/07: CIA-RDP80T00246A045700380001-3

РЕДАКЦИОННАЯ КОЛЛЕГИЯ:

И. П. Захаров (отв. редактор), И. А. Алексеев, канд. техн. наук Н. С. Беляев, канд. техн. наук И. Л. Валик, Г. С. Вильдгрубе, А. В. Воронов, И. К. Гуревич, В. Б. Иванов, В. М. Лемни-Македон, В. П. Мандражи, канд. физ.-мат. наук Г. А. Морозов (зам. отв. редактора), З. М. Петрова, канд. техн. наук С. П. Пивоваров, В. И. Сардыко

Инэк. А. П. Ангафоров

О ТРЕХПОТЕНЦИАЛЬНОМ РЕЖИМЕ РАБОТЫ ПРИЕМНЫХ ТРУБОК ТИПА «ХРОМАТРОН» 1

В статье рассмотрены пределы применения двухпотенциального режима работы трубок типа «хроматрон» и определен оптимальный трехпотенциальный режим, при котором непостоянство шагов следов электроиного пучка на различных участках экрана минимально. Исследована возможность регулирования шага следов пучка подбором потенциального режима с учетом условий фокусировки.

1. Пределы применения двухпотенциального режима

В предыдущей статье [Л. 1] были исследованы условия разделения цветов в трубке типа «хроматрон» при двухпотенциальном режиме, т. е. когда потенциал оболочки трубки U_c равен эффективному потенциалу фокусирующей сетки U_{go} . В этом случае имеет место непостоянство шага следов электронного пучка в различных участках экрана. Рассмотрим, какие ограничения может накладывать двухпотенциальный режим на конструкцию трубки, если экран состоит из параллельных штриховых элементов с постоянным шагом τ .

Предположим, что проволочки фокусирующей сетки расположены вертикально и отношение потенциалов экрана и фокусирующей сетки равно $\frac{U_a}{U_{\rm go}}=4$, т. е. соответствует условию фокусировки пучка в центре экрана.

Тогда на основании выражения (4) из [Л. 1] ординаты следов электронного пучка на экране можно выразить соотношениями:

а) для пучка, отклоненного на угол α (в перпендикулярном относительно проволочек сетки направлении),

$$y(\alpha, 0) = R \operatorname{tg} \alpha + \frac{2d_{ga} \operatorname{tg} \alpha}{\sqrt{4 + 3 \operatorname{tg}^2 \alpha + 1}};$$
 (1)

¹ По материалам доклада на научной сессии НТО им. А. С. Попова. Москва, 10 мая 1956 г.

б) для пучка, отклоненного одновременно как на угол а; так и на угол β (в параллельном относительно проволочек сетки направлении),

$$y(\alpha, \beta) = R tg \alpha + \frac{2d_{ga} tg \alpha}{\sqrt{4 + 3(tg^2\alpha + tg^2\beta) + 1}}$$
 (2)

В формулах (1) и (2) приняты обозначения:

R — расстояние от центра отклонения электронного пучка до плоскости фокусирующей сетки;

 $d_{\it ga}$ — расстояние между фокусирующей сеткой и экраном.

Учитывая, что при стандартном формате кадра $\operatorname{tg}\beta = \frac{3}{4}\operatorname{tg}\alpha$, формулу (2) можно переписать иначе:

$$y(\alpha, \beta) = R \operatorname{tg} \alpha + \frac{2d_{\operatorname{ga}} \operatorname{tg} \alpha}{\sqrt{4 + 4\frac{11}{16} \operatorname{tg}^2 \alpha + 1}}.$$
 (2a)

Наилучшая линейная аппроксимация к функциям (1) и (2a) в форме

$$\bar{y} = Rx (1 + d_{ga}b_2),$$
 (3)

где $x = \operatorname{tg} \alpha$ будет определяться условием

$$\Delta_{\textit{Makc}} = \Delta_1 (x_1) = -\Delta_2 (x_2). \tag{4}$$

Здесь $\Delta_1(x)$ —разность между $y(\alpha, 0)$ и \overline{y} ; $\Delta_2(x)$ —разность между $y(\alpha, \beta)$ и \overline{y} ; x_1 —значение аргумента x, при котором $\Delta_1(x)$ достигает первого максимума;

 x_2 —значение аргумента $x = \operatorname{tg} \alpha$, соответствующее заданному максимальному углу отклонения (рис. 1).

Учитывая условие (4), неизвестный коэффициент b_2 можно определить из формулы

$$b_2 = \frac{2}{3} \left[\frac{1}{\sqrt{4 + \frac{3}{4} x_2^2 + 1}} + \frac{2}{\sqrt{4 + 4 \frac{11}{16} x_2^2 + 1}} \right]. \tag{5}$$

Зная b_2 , можно определить оптимальный шаг одноцветных элементов штрихового экрана

$$\tau_{onm} = a \left(1 + \frac{d_{ga}}{R} b_2 \right), \tag{6}$$

где а — шаг фокусирующей сетки.

Аналогичным образом можно определить b_2 при горизонтальном расположении проволочек фокусирующей сетки, когда $tg \alpha : tg \beta = 3 : 4$, т. е.

$$b_2 = \frac{2}{3} \left[\frac{1}{\sqrt{4 + \frac{3}{4} x_2^2 + 1}} + \frac{2}{\sqrt{4 + 8 \frac{1}{2} x_2^2 + 1}} \right]. \tag{7}$$

Для сравнения вертикальной и горизонтальной ориентации проволочек фокусирующей сетки при одинаковых углах отклонения по диагонали γ найдем максимальное уклонение | `макс|

Рис. 1

аппроксимирующей прямой от аппроксимируемых функций. При этом учитывается, что при вертикальной ориентации проволочек сетки

$$\operatorname{tg} \gamma : \operatorname{tg} \beta : \operatorname{tg} \alpha = 5 : 3 : 4,$$

а при горизонтальной

$$tg \gamma : tg \beta : tg \alpha = 5 : 4 : 3.$$

В результате получим при вертикальном расположении проволочек фокусирующей сетки

$$|\Delta_{Marc\ 6}| = \frac{8}{15} d_{ga} \operatorname{tg} \gamma \left[\frac{1}{\sqrt{4 + 0.48 \operatorname{tg}^2 \gamma} + 1} - \frac{1}{\sqrt{4 + 3 \operatorname{tg}^2 \gamma} + 1} \right].$$
 (8)

При $0.5 \le \lg \gamma \le 1$ формулу (8) можно аппроксимировать простым соотношением

$$|\Delta_{\text{макс } s}| \approx \frac{\operatorname{tg}^3 \gamma}{30}$$
. (8a)

При горизонтальном расположении проволочек получим

$$|\Delta_{\text{Make 2}}| = \frac{6}{15} d_{\text{ga}} \operatorname{tg} \gamma \left[\frac{1}{\sqrt{4 + 0.27 \operatorname{tg}^2 \gamma} + 1} - \frac{1}{\sqrt{4 + 3 \operatorname{tg}^2 \gamma} + 1} \right]$$
(9)

И

$$|\Delta_{\textit{Makc } \textit{c}}| \approx \frac{\lg^3 \gamma}{36}$$
. (9a)

Условия разделения цветов требуют, чтобы это максимальное уклонение не превышало во всяком случае половины ширины штрихового элемента экрана, т. е.

$$|\Delta_{\text{Marc}}| \leq \frac{B}{2} \approx \frac{a}{6} \,, \tag{10}$$

так как обычно $B \approx \frac{a}{3}$. Отсюда можно найти условие, ограничивающее параметр $\frac{d_{ga}}{a}$:

$$\frac{d_{ga}}{a} \leq \frac{1}{\left[\frac{\Delta_{Ma\kappa c}}{d_{ga}}\right]}.$$
 (11)

В табл. 1 приведены значения $b_2, \frac{\Delta_{макс}}{d_{ga}}$ и предельные значения $\frac{d_{ga}}{a}$, соответствующие различным углам отклонения γ по диагонали, для горизонтального и вертикального расположения проволочек фокусирующей сетки. Применение больших углов отклонения требует ограничения параметра $\frac{d_{ga}}{a}$.

					1	иолица 1
tgγ	b ₂		$\frac{\Delta_{ma\kappa c}}{d_{ga}}$		$\frac{d_{ga}}{a}$	
	верт.	гор.	верт.	гор.	верт.	rop.
0,50 0,55 0,60 0,65 0,70 0,75 0,80 0,85 0,90	0,639 0,634 0,629 0,623 0,618 0,611 0,606 0,599 0,593 0,586	0,640 0,635 0,631 0,625 0,620 0,613 0,609 0,601 0,595	0,0041 0,0054 0,0067 0,0073 0,0101 0,0122 0,0141 0,0168 0,0192	0,0034 0,0044 0,0055 0,0069 0,0080 0,0100 0,0116 0,0139 0,0158	40,6 30,8 24,8 22,8 16,5 13,6 11,8 9,9 8,6	49,0 37,8 30,2 24,1 20,8 16,6 14,3 13,7

При этом следует иметь в виду, что увеличение параметра $\frac{d_{ga}}{a}$ позволяет в однолучевой трубке с бипотенциальной сеткой уменьшить величину цветоменяющей разности потенциалов, а в трехлучевой трубке с унипотенциальной сеткой — уменьшить угол схождения электронных пучков.

0,0251

0,0208

2. Определение оптимального трехпотенциального режима

Рассмотрим прохождение электронного луча через экранный узел, состоящий из дополнительной сетки, фокусирующей сетки и экрана, в трехпотенциальном режиме, т. е. когда потенциалы всех трех вышеупомянутых электродов неодинаковы и равны, соответственно, U_c , U_{g0} и U_a . Электронный луч, первоначально отклоненный на угол α_1 в плоскости XOY (проходящей через ось трубки перпендикулярно проволочкам фокусирующей сетки), пересечет плоскости электродов экранного узла в точках, ординаты которых (y_c, y_g, y_a) зависят от геометрических (R_1, d_{cg}, d_{ga}) и электрических (U_c, U_{g0}, U_a) параметров (рис. 2).

Полагая, что в зоне, расположенной между центром отклонения C_1 и плоскостью дополнительной сетки, электрическое поле отсутствует, в зоне d_{cg} действует однородное тормозящее поле, а в зоне d_{ga} — однородное ускоряющее поле, найдем вышеупомянутые ординаты:

8,0

$$y_c = (R_1 - d_{cg}) \text{ tg } \alpha_1;$$
 (12a)

$$y_{\mathrm{g}} = y_{c} + \Delta y_{c\mathrm{g}} = (R_{1} - d_{c\mathrm{g}}) \, \mathrm{tg} \, \alpha_{1} +$$

$$+ \frac{2 d_{cg} \lg \alpha_{1}}{\sqrt{\frac{U_{g_{0}}}{U_{c}} + \lg^{2} \alpha_{1} \left(\frac{U_{g_{0}}}{U_{c}} - 1\right) + 1}};$$
 (126)

$$y_a = y_g + \Delta y_{ga} = y_g + \frac{2 dg_a \operatorname{tg} a_2}{\sqrt{\frac{U_a}{U_{go}} + \operatorname{tg}^2 a_2 \left(\frac{U_a}{U_{go}} - 1\right) + 1}}$$
 (12B)

Проведя через точки пересечения луча с плоскостями фокусирующей сетки и экрана прямую и продолжая ее до пересе-

чения с осью трубки OX, получим точку C_3 — кажущийся центр отклонения. Расстояние между C_3 и фокусирующей сеткой будет

$$R_3 = \frac{y_{\rm g}}{\Delta y_{\rm g}a} d_{\rm g}a. \tag{13}$$

Выражая $\Delta y_{\mathbf{g}a}$ через $\operatorname{tg} \alpha_1$, используя закон синусов

$$\frac{\sin \alpha_1}{\sin \alpha_2} = \sqrt{\frac{U_{g_0}}{U_c}} \tag{14}$$

и воспользовавшись (12) и (13), получим окончательно

$$R_{3} = 0.5 \left[R_{1} - d_{cg} + \frac{2 d_{cg}}{\sqrt{\frac{U_{g_{0}}}{U_{c}} + \iota g^{2} \alpha_{1} \left(\frac{U_{g_{0}}}{U_{c}} - 1\right) + 1}} \right] \times \left[\sqrt{\frac{U_{g_{0}}}{U_{c}} + \iota g^{2} \alpha_{1} \left(\frac{U_{g_{0}}}{U_{c}} - 1\right)} + \sqrt{\frac{U_{a}}{U_{c}} + \iota g^{2} \alpha_{1} \left(\frac{U_{a}}{U_{c}} - 1\right)} \right]. \quad (15)$$

Таким образом, положение кажущегося центра отклонения зависит не только от геометрических и электрических параметров, но также и от угла отклонения. Это означает, что при постоянном шаге фокусирующей сетки шаг следов электронного пучка не будет постоянным. Например, если при увеличении угла отклонения увеличивается R_3 , то шаг следов электронного пучка будет постепенно уменьшаться от центра экрана к краю, что, в частности, имеет место при двухпотенциальном режиме, когда $U_c = U_{\rm g0}$. Постоянный шаг следов электронного пучка на экране будет соблюдаться только тогда, когда положение кажущегося центра отклонения не будет зависеть от угла отклонения. Из (15) следует, что при малых углах отклонения положение кажущегося центра можно считать постоянным.

$$\overline{R}_{3} = 0.5 \left(R_{1} - d_{cg} + \frac{2d_{cg}}{\sqrt{\frac{\overline{U}_{g0}}{U_{c}} + 1}} \right) \left(\sqrt{\frac{\overline{U}_{g0}}{U_{c}}} + \sqrt{\frac{\overline{U}_{a}}{U_{c}}} \right). (16)$$

При увеличении угла отклонения положение точки C_3 начинает все более удаляться от того значения, которое определяется формулой (16).

Оптимальным режимом с точки зрения уменьшения непостоянства шага будет такой режим, при котором разность значений формул (15) и (16) была бы минимальна. Практически $R_1\gg d_{\rm cg}$, и тогда формулу (15) можно переписать в более простом виде

$$R_3 \approx 0.5 R_1 [\sqrt{M + tg^2 \alpha_1 (M - 1)} + \sqrt{N + tg^2 \alpha_1 (N - 1)}],$$
 (17)

где обозначено:

$$M = \frac{U_{g0}}{U_c}$$
, $N = \frac{U_a}{U_c}$.

Разложив (17) в виде ряда по $tg^2\alpha_1$ и сохраняя только два первых члена, получим

$$R_{3} = \overline{R}_{3} + \Delta R_{3} \approx 0.5 R_{1} (\sqrt{M} + \sqrt{N}) + 0.25 R_{1} \times \left(\frac{M-1}{\sqrt{M}} + \frac{N-1}{\sqrt{N}}\right) \operatorname{tg}^{2} \alpha_{1}.$$
(18)

Второй член обращается в нуль при $M=\frac{1}{N}$, т. е.

$$U_c = \sqrt{U_a U_{g0}}, \tag{19}$$

чем и определяется оптимальный режим при наличии дополнительной сетки, близко расположенной к экрану.

Исследуем теперь прохождение через экранный узел электронного луча, отклоненного одновременно в двух направлениях. Рассмотрим три электронные траектории на рис. 3, где I — электронный луч, отклоненный на угол α_1 в плоскости

XOY; 2 — проекция на плоскость XOY траектории луча, отклоненного одновременно на угол α_1 (в направлении OY) и на угол β (в направлении OZ, т. е. вдоль проволочек фокусирующей сетки); 3 — электронный луч, отклоненный в плоскости XOY на угол α'_1 так, что ордината точки пересечения его с плоскостью фокусирующей сетки такая же, как и у траектории 2.

Разность ординат δ траекторий 3 и 2 в плоскости экрана и определяет степень искривления следа электронного пучка. При $\delta > 0$ имеем «бочкообразную» дисторсию растрового изображения фокусирующей сетки; при $\delta < 0$ — «подушкообразную». Таким образом, для количественной оценки искривления следа электронного пучка на экране надо найти

$$\delta = \Delta y_3 - \Delta y_2, \tag{20}$$

где Δy_3 и Δy_2 — разности ординат точек пересечения плоскости фокусирующей сетки и экрана для траекторий $\mathcal 3$ и $\mathcal 2$. Учитывая, что

$$\Delta y_1 \approx \Delta y_3,$$
 (21)

можно принять

$$\delta \approx \Delta y_1 - \Delta y_2. \tag{22}$$

Учитывая, что $tg^2\gamma=tg^2\,\alpha_1+tg^2\,\beta$, и используя формулу (4) из [Л. 1], получим окончательно

$$\delta = 2d_{ga} \operatorname{tg} \alpha_{1} \left[\frac{1}{\sqrt{M + \operatorname{tg}^{2} \alpha_{1} (M - 1)} + \sqrt{N + \operatorname{tg}^{2} \alpha_{1} (N - 1)}} - \frac{1}{\sqrt{M + \operatorname{tg}^{2} \gamma (M - 1)} + \sqrt{N + \operatorname{tg}^{2} \gamma (N - 1)}} \right]. \tag{23}$$

Если воспользоваться формулой приближенного извлечения корня, то из (23) получим условие, при котором $\delta = 0$, а именно:

$$M=\frac{1}{N}$$
,

т. е.

$$U_c = \sqrt{U_a U_{g_0}}. (19)$$

Совпадение оптимальных режимов, при которых обеспечивается, в одном случае, минимальное непостоянство шага следов пучка на экране в плоскости ХОУ и, в другом случае, минимальная дисторсия растрового изображения фокусирующей сетки, не является случайным. Действительно, оба этих явления происходят из-за одной причины — зависимости положения кажущегося центра отклонения от угла отклонения. В оптимальном режиме, определяемом (19), колебания кажущегося центра отклонения, определяемого (16), минимальны.

3: Условия фокусировки

Действие фокусирующего поля цилиндрической линзы, образованной между соседними проволочками фокусирующей сетки, можно в первом приближении свести к действию единичного импульса, направленного в сторону оси линзы перпендикулярно вектору полной скорости электрона в плоскости сетки. Величина этого импульса пропорциональна удалению

электрона $\Delta y_{\rm g}$ от центра линзы и разности градиентов потенциала однородных полей, расположенных по обе стороны от фокусирующей сетки (рис. 4):

$$\Delta v_n = \frac{e}{m} \left[\left(\frac{\partial U}{\partial x} \right)_R - \left(\frac{\partial U}{\partial x} \right)_L \right] \frac{\Delta y_g}{v_0} , \qquad (24)$$

 $V^{rac{e}{1-m}U_{
m go}}$ — мгновенная полная скорость электрона в плоскости сетки;

$$\left(\frac{\partial U}{\partial x}\right)_{R} = \frac{U_{a} - U_{g0}}{d_{ga}}; \quad \left(\frac{\partial U}{\partial x}\right)_{L} = \frac{U_{g0} - U_{c}}{d_{cg}}.$$

Вертикальная и горизонтальная составляющие импульса Δv_n будут равны

$$\Delta v_y = -\Delta v_n \cos \alpha_2;
\Delta v_x = \Delta v_n \sin \alpha_2.$$
(25)

Вызванное импульсом Δv_n смещение электронного луча в плоскости экрана будет

$$\Delta y_a = \Delta v_g \ t_{ga} + v_{y0} \ dt_{ga}, \tag{26}$$

где t_{ga} — время пролета зоны сетка — экран. Определяя составляющие (26) методами, аналогичными [Л. 2], и учитывая, что

$$\frac{p}{\Delta y_{g}} = 1 - \frac{\Delta y_{a}}{\Delta y_{g}}, \tag{27}$$

получим окончательно

$$\frac{p}{\Delta y_{g}} = 1 + \left[1 + \frac{\frac{U_{c}}{U_{g0}} - 1}{\frac{U_{a}}{U_{g0}} - 1} \frac{d_{ga}}{d_{cg}} \right] \left[2\cos^{2}\alpha_{2} - 1 + \frac{\sin^{2}\alpha_{2}\cos^{2}\alpha_{2}}{\sqrt{\frac{U_{a}}{U_{g0}} - \sin^{2}\alpha_{2}}} - \cos^{2}\alpha_{2} \sqrt{\frac{U_{a}}{U_{g0}} - \sin^{2}\alpha_{2}} \right].$$
(28)

Формула (28), выражающая условия фокусировки пучка параллельных лучей, входящих в цилиндрическую линзу под углом к оси, является более общей, чем выведенные аналогичным путем формулы в [Л. 2] и [Л. 3], так как она позволяет оценить размер пятна также и в трехпотенциальном режиме.

При перпендикулярном прохождении пучка электронов через экранный узел ($\alpha_2 = 0$) из (28) можно получить как частный случай

$$\frac{p}{\Delta y_{g}} = 1 + \left[1 + \frac{\frac{U_{c}}{U_{g_{0}}} - 1}{\frac{U_{a}}{U_{g_{0}}} - 1} \frac{d_{g_{a}}}{d_{cg}}\right] \left[1 - \sqrt{\frac{U_{a}}{U_{g_{0}}}}\right]. \tag{29}$$

 $\{cm. [Л. 4], ф-ла (19)\}.$

Полагая в (29) p=0, получим соотношение потенциалов электродов, соответствующее условию фокусировки параксиального пучка электронов в цилиндрической линзе:

$$\sqrt{\frac{U_a}{U_{g0}}} = \frac{1}{2} + \sqrt{\frac{9}{4} - \frac{d_{ga}}{d_{cg}} \left(\frac{U_c}{U_{g_0}} - 1\right)}.$$
 (30)

На рис. 5 показан график функции (30) при различных значениях параметра $\frac{dga}{dcr}$.

Если
$$\frac{dga}{dcg} \rightarrow 0$$
, то $\sqrt{\frac{\overline{U_a}}{U_{g0}}} \rightarrow 2$.

Таким образом, при отсутствии дополнительной сетки изменение потенциала оболочки колбы U_c в широких пределах не вызывает существенной дефокусировки пучка, если $U_{g0}=\frac{1}{4}U_a$. На рис. 5 приведены также данные экспериментов на двух трубках, одна из которых имеет дополнительную сетку, в другой эта сетка отсутствует.

На рис. 6 даны кривые, выражающие в соответствии с (28) дефокусировку пучка при отклонении от центра экрана к краю

Рис. 5

при двух значениях параметра $\frac{U_a}{U_{g0}}=3$ и $\frac{U_a}{U_{g0}}=4$. Из рис. 6 видно, что относительная дефокусировка пятна при отклонении весьма незначительна.

4. Зависимость шага следов пучка от потенциального режима

Предположим, что параметры трубки (угол отклонения и выбраны таким образом, что непостоянством шага в различных участках экрана можно пренебречь даже в двухпотенциальном режиме. При таких условиях основной интерес представляет зависимость шага следов пучка в центральной зоне экрана (h) от потенциального режима, т. е. возможность компенсации отклонений от номинального шага проволочек фокусирующей сетки (a) или шага элементов экрана (τ) . Шаг следов пучка в центральной зоне экрана определяется формулой

$$h = a \left(1 + \frac{d_{ga}}{\overline{R}_3} \right). \tag{31}$$

Подставляя в (31) значение \overline{R}_3 из (16) и учитывая условия фокусировки (30), получим

$$h = a \left[1 + \frac{4 \frac{d_{ga}}{R_1} z}{\left(1 + \frac{d_{cg}}{R_1} \frac{z - 1}{z + 1} \right) \left(3 + \sqrt{9 - 4 \frac{d_{ga}}{d_{cg}} (z^2 - 1)} \right)} \right], \quad (32)$$

где
$$z = \sqrt{\frac{\overline{U_c}}{U_{g0}}}$$
.

Из (32) следует, что, меняя соотношение потенциалов электродов трубки, можно изменять шаг следов электронного пучка на экране, не нарушая условий фокусировки пучка.

На рис. 7 графически изображена функция (32) при различных значениях параметра d_{cg} . Из рисунка видно, что приращение шага h примерно пропорционально приращению $z = \sqrt{rac{U_c}{U_{
m g0}}}$. Изменение шага h посредством изменения z будет тем эффективнее, чем ближе к экрану расположена дополнительная сетка.

Пределы регулирования шага подбором потенциалов определяются допустимыми пределами изменения отношения потенциалов $\frac{U_c}{U_{{
m g}0}}$, а именно:

$$1 < \frac{U_c}{U_{g0}} < \frac{1}{\sin^2 \gamma_{Marc}}, \tag{33}$$

где $\gamma_{\mathit{макс}}$ — максимальный угол отклонения по диагонали. Действительно, при $\frac{U_c}{U_{g0}} < 1$ на экране появляется сильная паразитная засветка вторичными электронами; при $\frac{U_c}{U_{g0}} > \frac{1}{\sin^2 \gamma_{\mathit{макс}}}$ происходит отражение электронного пучка

в тормозящем поле между дополнительной и фокусирующей сетками.

Из рис. 7 также видно, что при наличии близко расположенной к экрану дополнительной сетки $(d_{ga} = 8 \ \text{м.м.})$ изменение z в пределах от 1 до 1,4 дает возможность регулировать шаг следа пучка в пределах одного процента шага фокусирующей сетки.

Заключение

Пределы применения двухпотенциального режима в трубках типа «хроматрон», имеющих штриховой экран с постоянным шагом одноцветных элементов, определяются непостоянством шага следов электронного пучка на различных участках экрана.

Это ограничивает общий угол отклонения ү и параметр ..

При переходе к трехпотенциальному режиму непостоянство шага следов пучка на экране уменьшается, достигая минимума при $U_c = V \overline{U_a U_{g0}}$.

Изменяя потенциалы электродов, можно, не нарушая условий фокусировки, регулировать шаг следов пучка на экране в пределах около одного процента шага фокусирующей сетки при наличии дополнительной сетки, близко расположенной к экрану.

ЛИТЕРАТУРА

1. А. П. Ангафоров. Исследование разделения цветов в однолучевой приемной трубке типа «хроматрон». «Техника телевидения», 1956, вып. 18, стр. 3—29.

2. J. Lafferty. Beam deflection color television picture tubes. "Proc. IRE", 1954, vol. 42, No 10, pp. 1478—1495.

3. С. Р. Сагрепter, С. W. Helstrom, А. Е. Anderson. An analisis of focusing and deflection in the post-deflection-focus color kinescope. "IRE Trans.", ED, 1955, vol. 2, No 4, pp. 1—7.

4. М. Е. Amdursky, R. G. Pohe, C. S. Szegho. A new high efficiently parallax mask color tube. "Proc. IRE", 1955, vol. 43, No 8, pp. 936—943.

Статья поступила 25/1Х 1956 г.

² Техника телевидения, 24.

Кандидаты техн. наук Л. А. АТАДЖАНОВ и К. К. ДЕРКАЧ

ПРЕОБРАЗОВАНИЕ СООТНОШЕНИЯ ЯРКОСТЕЙ СЮЖЕТА В ВИДЕОСИГНАЛ ПЕРЕДАЮЩИМИ ТЕЛЕВИЗИОННЫМИ ТРУБКАМИ

В статье описан способ построения специальных испытательных таблиц, методика снятия световых характеристик передающих трубок для сюжетов с малой контрастностью, приведены результаты измерений.

Введение

Одной из основных характеристик телевизионных систем является их способность правильно воспроизводить соотношения яркостей передаваемого сюжета.

Подобные характеристики достаточно глубоко изучены в фотографии [Л. 1] и в фототелеграфии [Л. 2]. Исследованию указанных характеристик телевизионных систем посвящен также ряд работ [Л. 3, 4, 5 и др.]. Однако из-за сложности физических процессов в передающих трубках эти характеристики телевизионных систем изучены еще недостаточно. Необходимость изучения их очевидна из следующих соображений:

- 1. Передаваемые сюжеты могут содержать участки с самыми различными значениями яркостей, а следовательно, и огромное число полутонов. Различным может быть и соотношение площадей ярких и темных участков. Поэтому изучение возможностей передачи и воспроизведения различных сюжетов телевизионными средствами является важным как для художественного вещания, так и для других целей.
- 2. В ряде случаев могут передаваться сюжеты, имеющие низкую контрастность, поэтому представляет значительный интерес определение зависимости выходного сигнала с трубки от контрастности сюжета. Это необходимо для правильного проектирования видеоусилителей.
- 3. Настройка телевизионных приемников и других телевизионных установок по градационным ступеням испытательных

таблиц, контрастность которых существенно превышает 50: 1 на полутоновом клине, вызывает затруднения, так как в таком случае часть полутонов таблицы может не воспроизводиться передающими трубками. Поэтому важно установить интервал яркостей испытательных таблиц, в котором должны размещаться все градационные ступени.

4. Важно также знать, как изменяется чувствительность трубок при передаче сцен с различной контрастностью.

Чтобы правильно подойти к решению поставленных вопросов, необходимо провести большую экспериментально-теоретическую работу. Наиболее серьезной частью ее должно явиться исследование передающих трубок. Этому и посвящена настоящая статья.

1. Испытательные таблицы

Для выяснения особенностей работы передающих трубок при передаче сюжетов с различной контрастностью можно ограничиться набором простых испытательных таблиц, по-

Рис. 1

строенных по следующему принципу: светлый квадрат на темном фоне (рис. 1, a) и темный квадрат на светлом фоне (рис. $1, \delta$).

Для изготовления испытательных диапозитивов (рис. 1, a) можно воспользоваться отрезками кинопленки с равномерной заданной плотностью по всему полю. В центре диапозитива пуансоном выбивается квадратное отверстие, размеры которого выбраны исходя из удобства измерения сигнала с передающей трубки, а также при условии отсутствия апертурных искажений. Очевидно, что часть диапозитива, в которой проделано отверстие, имеет прозрачность $\rho=1$. Прозрачность остальной части диапозитива (фона) ρ_2 будет определяться оптической плотностью исходного материала. Другие диапозитивы (рис. $1, \delta$) могут быть изготовлены из отрезков тех же кинопленок, закрепленных между двумя прозрачными стеклами.

Применяя пленки с различной оптической плотностью, можно получить набор тех и других испытательных диапозитивов с контрастностью $Q=\frac{\rho_1}{\rho_2}$, изменяющейся в очень широких пределах—от единицы и, практически, до бесконечности (например, при использовании непрозрачной пленки или черной фотобумаги).

Располагая таким набором фотометрированных испытательных диапозитивов, можно в лабораторных условиях имитировать любой одиночный объект (или группу объектов с одинаковой яркостью) на заданном фоне.

2. Световые характеристики

Световая характеристика — зависимость размаха сигнала от освещенности на фотокатоде — является важнейшей характеристикой передающей трубки. Обычно световые характеристики снимаются на специальных телевизионных установках при проектировании на фотокатод испытательной таблицы 0249, контрастность которой очень велика и часто достигает значения 200 и более.

Однако такой метод снятия световых характеристик дает неполное представление о возможностях передающей трубки, особенно при воспроизведении малоконтрастных сюжетов. Воспользовавшись вышеописанными испытательными диапозитивами, можно снять семейство статических световых характеристик трубки при проектировании на фотокатод сюжетов с различной контрастностью.

Семейство световых храктеристик трубки типа супериконоскоп, снятых экспериментально, приведено на рис. 2. Как и следовало ожидать, с увеличением контрастности диапозитива выходной сигнал с трубки растет сначала быстро, а затем все медленнее. Насыщение световых характеристик при пониженных контрастностях диапозитивов наступает при меньших освещенностях.

На рис. З приведена зависимость выходного сигнала трубки супериконоскоп от контрастности изображения на фотокатоде при постоянных освещенностях светлого поля. Здесь особенно хорошо видно, что рост выходного сигнала резко замедляется при контрастности оптического изображения на фоточувствительной поверхности больше 25—30. Это объясняется тем, что при таких значениях контрастности освещенность в темных участках изображения становится настолько мала, что не вызывает заметного повышения потенциала (заряда) мишени. Это обстоятельство необходимо учитывать при построении

испытательных таблиц, особенно градационных полей, контрастность которых не должна превышать значения $Q=25\div30$.

Приняв прозрачность диапозитивной таблицы в светлом $\rho_{\textit{макс}} = 0.75$, легко определить прозрачность в темном:

$$\rho_{\text{мин}} = \frac{\rho_{\text{макс}}}{Q} = \frac{0.75}{25} = 0.03.$$

Аналогичные выводы распространяются и на натурные испытательные таблицы, контрастность которых может быть выражена отношением коэффициентов отражения на светлом (r_1) и темном (r_2) .

С уменьшением контрастности насыщение световых характеристик происходит при меньших освещенностях. Практиче-

ского значения этот эффект не имеет, однако надо отметить, что при правильной установке освещенности на фотокатоде трубки по сюжету с высокой контрастностью освещенность может не регулироваться и оставаться неизменной при передаче сюжета с пониженной контрастностью.

Таким образом, оптимальная освещенность фотокатода не зависит от контрастности передаваемой сцены и остается практически постоянной при передаче любого сюжета.

Зависимость сигнала от контрастности таблицы, представленная на рис. 3, показывает, что при контрастности сцены ниже 25 величина сигнала при той же освещенности падает примерно линейно. Контрастность большинства передаваемых сцен обычно лежит в пределах 6—10. Выходной сигнал трубки

при этом будет меньше номинальной величины в соответствующее число раз. Это обстоятельство дает право утверждать, что видеоусилители телевизионных камер должны рассчитываться

с учетом уменьшения выходного сигнала с трубки, указанного в паспорте, в 4—5 раз, а в некоторых специальных случаях на более слабые сигналы. Рассматривая семейство световых

Puc. 4

1) Q = 100; 2) Q = 83; 3) Q = 33,4; 4) Q = 11,1; 5) Q = 6,65; 6) Q = 2,28

характеристик трубок типа суперортикон (рис. 4), снятых при проектировании на фотокатод таблиц с различной контрастностью, а также зависимости выходного сигнала трубки от контрастности таблицы при номинальной освещенности изображения на фотокатоде (рис. 5), можно провести аналогичные рассуждения и для этих трубок.

Для проверки и настройки градационных характеристик телевизионных устройств на испытательных таблицах поме-

щают ступенчатый полутоновый клин убывающей яркости. Изменение яркости на полутоновой части обычно подчиняется логарифмическому закону, однако перепады яркости на сосед-

них ступенях полутоновых полей у различных экземпляров таблиц меняются в больших пределах.

Исходя из вышеизложенных рассуждений, касающихся максимальной контрастности испытательных таблиц, при сохранении общепринятого количества полутонов в испытательной таблице (m=10) можно легко определить относительное приращение прозрачности ступеней яркости диапозитива или коэффициент отражения K_0 натурной таблицы. Полагая $K_0 = \frac{r_1 - r_2}{r_1}$, где r_1 и r_2 — коэффициенты отражения соседних ступеней

клина, причем $r_1>r_2$, и делая несложные преобразования, можно найти выражения для числа полутонов (m) при заданном отношении $\frac{r_{_{MAKC}}}{r_{_{MUH}}}$.

Приводим полный вывод формулы для числа полутонов m, так как аналогичные выражения, даваемые в литературе, не точны:

$$\begin{split} \frac{r_1-r_2}{r_1} &= K_0; \quad r_2 = r_1 \, (1-K_0); \\ r_3 &= r_2 \, (1-K_0) = r_1 \, (1-K_0)^2; \\ r_m &= r_1 \, (1-K_0)^{m-1}; \end{split}$$

при заданном числе т

$$r_{\text{мин}} = r_{\text{макс}} (1 - K_0)^{m-1};$$

$$\lg \frac{r_{\text{мин}}}{r_{\text{макс}}} = (m-1) \lg (1 - K_0);$$

$$m=1+\frac{\lg\frac{r_{MUN}}{r_{Makc}}}{\lg\left(1-K_0\right)}.$$

Если, например, m=10, а $\frac{r_{\text{макс}}}{r_{\text{мин}}}=25$, то определенное по приведенной формуле $K_0 = 0.3$.

Выводы

Приведенные выше характеристики, а также проведенный анализ с учетом того, что одним из основных элементов телевизионной системы, ограничивающим неискаженную передачу соотношения яркостей передаваемых объектов, является передающая трубка, позволяют сделать следующие выводы:

- 1. Телевизионные передающие трубки способны передавать без существенных искажений ограниченное соотношение яркостей, интервал которых на передаваемом сюжете ограничивается значением $Q=25 \div 30$. Очевидно, что передача сюжета с повышенной контрастностью будет сопровождаться большими искажениями.
- 2. При проектировании телевизионных камерных усилителей нужно учитывать возможности передачи сюжетов с пониженной контрастностью. Размах выходного сигнала трубки в этих условиях может оказаться в несколько раз ниже номинального.
- 3. Наиболее оптимальными полутоновыми таблицами следует признать ступенчатые клинья, максимальный контраст которых лежит в пределах 25-30.
- 4. Оптимальная освещенность фотокатода при передаче разнообразных по контрастности сюжетов практически остается неизменной.

ЛИТЕРАТУРА

1. В. А. Яштолд-Говорко. Руководство по фотографии. Гос-

киноиздат, 1951. 2. Е. Л. Орловский, Б. Ф. Федорцев. Курс фототелегра-

ции). Кандидатская диссертация, ЛЭИС, 1950.

5. А. М. Халфин. Основы телевизионной техники. «Советское радио», 1955.

Статья поступила 4/VII 1956 г.

Канд. техн. наук Н. Н. КРАСИЛЬНИКОВ

АНАЛИЗ СХЕМ ТЕЛЕВИЗИОННЫХ ПРЕДВАРИТЕЛЬНЫХ УСИЛИТЕЛЕЙ С УЧЕТОМ СТРУКТУРЫ ФЛУКТУАЦИОННОГО ШУМА

В статье рассмотрен ряд схем предварительных усилителей с учетом структуры создаваемого ими шума. На основании проведенных исследований показано, что путем усовершенствований только схемы усилителя невозможно заметно снизить уровень видимого шума передающей телевизионной камеры. Для уменьшения уровня видимого шума необходимо, наряду с усовершенствованием схемы усилителя, спижать шум передающей трубки и увеличивать ее нагрузочное сопротивление.

Введение

В настоящее время из литературы известно описание целого ряда схем предварительных усилителей, предназначенных для усиления слабых видеосигналов, которые получаются на выходе передающих телевизионных трубок, не имеющих вторичноэлектронных умножителей. Основной задачей этих усилителей является усиление видеосигнала с возможно меньшим уровнем флуктуационных шумов.

Целью настоящей работы является исследование наиболее распространенных схем предварительных усилителей с точки зрения их помехоустойчивости.

Остановимся прежде всего на классификации имеющихся схем. Наиболее удобно классифицировать схемы по виду спектральной функции шумов F (ω) на их выходе, а именно:

- а) схемы без коррекции входа (представляют лишь исторический интерес);
 - б) схемы с простой противошумовой коррекцией;
 - в) схемы со сложной противошумовой коррекцией.

Такая классификация наиболее удобна с точки зрения исследования особенностей работы различных типов схем предварительных усилителей, однако при ней на первый взгляд

схема с каскодным входом и схема с катодным повторителем на входе остаются вне классификации.

В действительности, как будет видно ниже, каскодный вход и вход на катодном повторителе не являются самостоятельными типами усилителей и применяются в сочетании с той или иной схемой, выделенной в классификации.

В соответствии с изложенным, целесообразно рассмотреть каскодный и катодный входы отдельно, с тем чтобы при исследовании того или иного вида схемы коррекции оценить возможности, которые вытекают из их применения.

В соответствии с существующим в настоящее время представлением о работе передающей телевизионной трубки считается, что ее внутреннее сопротивление R_i (выходное сопротивление) много больше возможных нагрузочных сопротивлений R.

1. Особенности каскада, выполненного по каскодной схеме

Принципиальная схема каскодного входа представлена на рис. 1 и включает в себя два триодных каскада [Л. 4]. Первый каскад (\mathcal{J}_1) работает по схеме с общим катодом, нагрузкой

для него является второй каскад (\mathcal{J}_2) , выполненный по схеме с общей сеткой.

Нагрузкой второго каскада является омическое сопротивление R_a , которое может быть в целях коррекции усиления по высоким частотам соединено с корректирующей индуктивностью.

Оба каскада (\mathcal{J}_1 и \mathcal{J}_2) могут быть выполнены на однотипных лампах.

При исследовании каскодной схемы будем интересоваться следующими величинами, характеризующими ее работу:

а) коэффициентом усиления K_{ν} ;

б) входной емкостью первого каскада;

в) сопротивлением шумов (приведенных ко входу усилителя) R_{uv} , которое учитывает шумы, возникающие в рассматриваемых двух каскадах.

Переходя к определению коэффициента усиления, составим эквивалентную схему каскодного усилителя. На эквивалентной

Рис. 2

схеме (рис. 2) лампы \mathcal{J}_1 и \mathcal{J}_2 представлены как генераторы напряжений с э. д. с. μ_1 U_{g_1} ; μ_2 U_{g_2} и внутренними сопротивлениями R_{l_1} ; R_{l_2} , где μ_1 и μ_2 — статические коэффициенты усиления ламп \mathcal{J}_1 и \mathcal{J}_2 ; U_{g_1} и U_{g_2} — напряжения сигнала между сеткой и катодом для первой и второй лами.

Для того чтобы найти напряжение сигнала на выходе каскодного усилителя $(U_{\theta\omega x})$, необходимо определить ток сигнала I, протекающий в анодной цепи ламп \mathcal{J}_1 и \mathcal{J}_2 . В соответствии с законом Ома

$$I = \frac{\mu_1 Ug_1 + \mu_2 Ug_2}{Ri_1 + Ri_2 + R}, \tag{1}$$

110

$$U_{g_2} = \mu_1 U_{g_1} - I R_{i_1}, \qquad (2)$$

откуда

$$I = \frac{\mu_1 (1 + \mu_2) U_{g_1}}{R_{i_1} (1 + \mu_2) + R_{i_2} + R_{i_2}}.$$
 (3)

Учитывая, что

$$U_{sux} = IR_a \tag{4}$$

и коэффициент усиления схемы

$$K_{\mathbf{y}} = \frac{U_{\theta b L x}}{U_{g_1}},\tag{5}$$

найдем

$$K_{y} = \frac{\mu_{1} (1 + \mu_{2}) R_{a}}{R_{i_{1}} (1 + \mu_{2}) + R_{i_{2}} + R_{a}}.$$
 (6)

В том случае, если лампы \mathcal{J}_1 и \mathcal{J}_2 идентичны, выражение для K_y преобразуется к следующему виду

$$K_{y} = \frac{\mu (1 + \mu) R_{a}}{R_{i} \left[2 + \mu + \frac{R_{a}}{R_{i}} \right]}.$$
 (7)

Если учесть, что обычно

$$\mu \gg 2 + \frac{R_a}{R_L}$$

и что $\frac{\mu}{R_i} = S$ — статическая крутизна лампы, будем иметь окончательно

$$K_{v} = S R_{a}. \tag{8}$$

Обратим внимание на то, что выражение для коэффициента усиления каскодной схемы, включающей две идентичных лампы, получилось такое же, как для однокаскадного усилителя, собранного на пентоде.

Найдем величину входной емкости C лампы \mathcal{J}_1 каскодной схемы усилителя.

Как известно, входная емкость лампы усилителя, у которого первый каскад собран по схеме с заземленным катодом, равна

$$C = C_{\sigma\kappa} + C_{\sigma\sigma} (1 + K_{v1}), \tag{9}$$

где $C_{g\kappa}$ — емкость между сеткой и катодом лампы \mathcal{J}_1 (см. рис. 1);

 C_{ag} — емкость между сеткой и анодом лампы ${\cal J}_1;$ ${\cal K}_{y_1}$ — коэффициент усиления первой лампы, равный

$$K_{y1} = \frac{U_{g_2}}{U_{g_1}} \,. \tag{10}$$

Составляя уравнения Кирхгофа, решая их и учитывая (10), найдем

$$K_{y1} = \mu_1 \frac{R_{i_1} + R_a}{R_{i_1} (1 + \mu_2) + R_{i_2} + R_a}.$$
 (11)

Если лампы \mathcal{J}_1 и \mathcal{J}_2 идентичны, то

$$K_{y1} = \frac{1 + \frac{R_a}{R_i}}{\frac{R_a}{\mu R_i} + \frac{2}{\mu} + 1} . \tag{12}$$

Принимая во внимание, что $\frac{R_a}{\mu R_i} \le 1$ и $\frac{2}{\mu} \le 1$, получим окончательно

$$K_{y1} \approx 1 + \frac{R_a}{R_i}. \tag{13}$$

Отсюда для емкости входа лампы \mathcal{J}_1 будем иметь

$$C = C_{g\kappa} + C_{ag} \left(2 + \frac{R_a}{R_i} \right). \tag{14}$$

Подставляя цифры, легко убедиться, что входная емкость у каскодного усилителя меньше, чем у обычного на триодах, но больше, чем у обычного на пентодах; физически это получается потому, что коэффициент усиления 1-й лампы близок к единице.

Рис. 3

Найдем сопротивление шумов $R_{\iota\iota\iota}$, приведенных к входу усилителя; при этом будем считать, что шумы создаются анодным током первой и второй лампы, а также сопротивлением нагрузки R_a .

Составим эквивалентную схему каскодного усилителя с уче-

том источников шума (рис. 3), в которую включим:

а) генератор напряжения, учитывающий шум анодного тока первой лампы J_1 с э. д. с., эффективное значение которой равно $\mu_1\sigma_1$:

$$\sigma_1^2 = \frac{2k}{\pi} T R_{\omega_1} \omega_{Makc}, \qquad (15)$$

где k — постоянная Больцмана, равная $1,37 \cdot 10^{-23} \ \partial \mathcal{H}/\mathcal{L}$ рад;

т — температура шумящего сопротивления, равная 300° К;

«макс — верхняя граница частот полосы пропускания усилителя;

 R_{u_1} — сопротивление шумов первой лампы \mathcal{J}_1 в омах;

б) генератор напряжения, учитывающий шум анодного тока второй лампы \mathcal{J}_2 с э. д. с., эффективное значение которой равно $\mu_2\sigma_2$:

$$\sigma_2^2 = \frac{2k}{\tau} T R_{uu_2} \omega_{Ma\kappa c}, \tag{16}$$

где R_{uv2} — сопротивление шумов второй лампы \mathcal{I}_2 в омах;

в) генератор напряжения, учитывающий шум, создаваемый сопротивлением нагрузки,

$$\sigma_3^2 = \frac{2k}{\pi} T R_a \omega_{Makc}. \tag{17}$$

Обратим внимание на то, что в схеме (см. рис. 3) протекают токи шумов с эффективным значением I_{w_1} ; I_{w_2} ; I_{w_3} (создаваемые э. д. с. $\mu_1 \sigma_1$; $\mu_2 \sigma_2$; σ_3), которые нужно суммировать по квадратичному закону, поскольку они являются независимыми случайными величинами.

Для удобства вычислений целесообразно определить отдельно I_{w1} ; I_{w2} ; I_{w3} (причем при вычислении одного из токов другие токи и соответствующие им э. д. с. можно принять равными нулю), а затем, суммируя по квадратичному закону, найти результирующий ток шумов

$$I^{2}_{u} = I^{2}_{u1} + I^{2}_{u2} + I^{2}_{u3}. (18)$$

Составляя уравнения Кирхгофа для схемы, приведенной на рис. 3, и решая их подобно тому, как мы это делали выше, найдем

$$I_{u1} = \frac{\mu_1(1 + \mu_2)\sigma_1}{Ri_1(1 + \mu_2) + Ri_2 + R_a};$$
(19)

$$I_{u2} = \frac{\mu_2 \sigma_2}{R_{i_1} (1 + \mu_2) + R_{i_2} + R_a} ; \qquad (20)$$

$$I_{u3} = \frac{\sigma_3}{R_{i_1} (1 + \mu_2) + R_{i_2} + R_a}.$$
 (21)

Делая подстановку (19), (20), (21) в (18), найдем выражение для квадрата эффективного значения результирующего тока шума

$$I_{u}^{2} = \frac{\mu_{1}^{2} (1 + \mu_{2})^{2} \sigma_{1}^{2} + \mu_{2}^{2} \sigma_{2}^{2} + \sigma_{3}^{2}}{[R_{l1} (1 + \mu_{2}) + R_{l2} + R_{a}]^{2}}.$$
 (22)

Подставим в уравнение (22) значения σ_1^2 , σ_2^2 , σ_3^2 , найденные из уравнений (15), (16) и (17):

$$I_{u}^{2} = \frac{4kT\Delta f\left[\mu_{1}^{2}\left(1+\mu_{2}\right)^{2}R_{u1} + \mu_{2}^{2}R_{u2} + R_{a}\right]}{\left[R_{i1}\left(1+\mu_{2}\right) + R_{i2} + R_{a}\right]^{2}}.$$
 (23)

Умножая I_m^2 на R_a^2 , найдем эффективное напряжение шума на выходе усилителя:

$$\sigma_{s\omega x}^{2} = \frac{2kT \,\omega_{Ma\kappa c} \left[\mu_{1}^{2} \left(1 + \mu_{2}\right)^{2} R_{\omega 1} + \mu_{2}^{2} R_{\omega 2} + R_{a}\right] R_{a}^{2}}{\pi \left[R_{i1} \left(1 + \mu_{2}\right) + R_{i2} + R_{a}\right]^{2}}.$$
 (24)

Для того чтобы найти квадрат эффективного значения напряжения шумов σ_{gx}^2 , приведенных ко входу усилителя, нужно σ_{gx}^2 разделить на квадрат коэффициента усиления K_y^2 первых двух каскадов усилителя; при этом будем иметь

$$\sigma_{gx}^2 = \frac{2k}{\pi} T R_{ui} \omega_{Makc}, \tag{25}$$

где

$$R_{uu} = R_{uu1} + R_{uu2} \frac{\mu_2^2}{\mu_1^2 (1 + \mu_2)^2} + R_a \frac{1}{\mu_1^2 (1 + \mu_2)^2}$$
 (26)

есть сопротивление шумов, приведенных ко входу усилителя. Учитывая, что $\mu_1\gg 1$; $\mu_2\gg 1$, а R_{m1} ; R_{m2} ; R_a примерно одного порядка, получим

$$R_{u} \approx R_{u_1},$$
 (27)

т. е. уровень шумов, создаваемых анодным током ламп и сопротивлением нагрузки усилителя, собранного по каскодной схеме, практически такой же, как и в обычном триодном каскаде с заземленным катодом, тогда как коэффициент усиления всего каскада (двухлампового) и входная емкость такие же, как у пентода.

2. Особенности схемы с «катодным» входом

Принципиальная схема усилителя с входом на катодном повторителе представлена на рис. 4 и включает в себя два каскада [Л. 3]. Первый каскад (\mathcal{J}_1) собран по схеме катодного повторителя (на триоде или пентоде), второй каскад собран на триоде по схеме с заземленным катодом.

Вход усилителя соединен экранированным проводом с передающей телевизионной трубкой, причем экран соединен одним концом с сопротивлением R_{κ} , другим — с кольцевым электродом, расположенным около мишени. Коллектор передающей трубки заземлен. При таком соединении экрана входная емкость усилителя будет равна

Рис. 4

$$C = C_{MK} + C_{ag} + (C_{M9} + C_M + C_{gK})(1 - K_y), \qquad (28)$$

где $C_{\scriptscriptstyle MK}$ — емкость между мишенью передающей трубки и коллектором;

 $\mathcal{C}_{\scriptscriptstyle M9}$ — емкость между мишенью передающей трубки и кольцевым электродом;

 $C_{\rm M}$ — монтажная емкость; $K_{
m y}$ — коэффициент усиления катодного повторителя, рав-

ный
$$\frac{1}{1+\frac{1}{S_1R_\kappa}}$$
;

 S_1 — крутизна лампы \mathcal{J}_1 .

Если учесть, что K_y близок к единице (например $K_y=0.9$), легко видеть, что C в этом случае будет меньше, чем в усилителе с обычным входом и даже чем в усилителе с каскодным

входом. В усилителе с обычным входом $C = C_{M\kappa} + C_{M\theta} + C_M + C_{g\kappa} + C_{ag} (1 + K_y),$ (29) где K_y — составляет несколько единиц. В усилителе с каскодным входом

$$C = C_{MK} + C_{M9} + C_M + C_{gK} + C_{ag} \left(2 + \frac{R_a}{R_t} \right).$$
 (30)

Таким образом, преимущество схемы с «катодным» входом заключается в значительном снижении входной емкости С усилителя.

Найдем сопротивление шумов R_{uu} , приведенных к входу усилителя; при этом будем считать, что шумы создаются анодными токами первой и второй ламп, а также сопротивлением нагрузки первой лампы (см. рис. 4).

Рис. 5

Обращаясь к эквивалентной схеме катодного повторителя (см. рис. 5), составляя уравнения Кирхгофа и проводя вычисления, аналогичные вычислениям предыдущего параграфа, найдем:

$$R_{ut} = \frac{\left[1 + \frac{1}{S_1 R_{\kappa}}\right]^2 \left\{R_{ut} + R_{ut2} \left[1 + \frac{1}{S_1 R_{\kappa}} + \frac{1}{\mu_1}\right]^2 + \frac{\left(R_{i1} + 2R_{\kappa}\right)^2}{\mu_1^2 R_{\kappa}}\right\}}{\left[1 + \frac{1}{S_1 R_{\kappa}} + \frac{1}{\mu_1}\right]^2}, \quad (31)$$

где μ_1 — статический коэффициент усиления первой лампы; R_{m_2} — сопротивление шумов второй лампы.

Учитывая, что $\frac{1}{\mu_1} \ll 1$ и что последний член, стоящий в фигурных скобках выражения (31), обычно мал по сравнению с двумя первыми, в чем легко убедиться, подставив конкретные числа, можно написать

$$R_{m} = R_{m_{1}} + \frac{R_{m_{2}}}{K_{y}^{2}}.$$
 (32)

Если учесть влияние «емкостного делителя» в сеточной цепи катодного повторителя, составленного из емкостей сетка — катод и сетка — земля, то результирующее сопротивление R_m окажется еще больше, что и подтверждается экспериментом [Л. 8].

З Техника телевидения, 24

Таким образом, R_{uu} усилителя с катодным входом больше, чем R_{u_1} (сопротивление шумов обычного усилителя), что является недостатком.

3. Критерий «шумового качества» передающей камеры

Переходя к исследованию предварительных усилителей с учетом структуры создаваемого ими шума, следует остановиться на выборе подходящего критерия «шумового качества» S_0 камеры.

Так как качество передающей камеры тем выше, чем больше отношение сигнала к шуму на ее выходе ($\psi_{\textit{макс}}$) при одном и том же токе сигнала $i_{\textit{с}}$ макс на входе, то S_0 должно быть пропорционально $\frac{\psi_{\textit{макс}}}{i_{\textit{с макс}}}$. С другой стороны, чем «мельче» шум, тем он менее заметен

на изображении, а следовательно, S_0 должно быть пропорционально $\frac{\tau_g}{\tau_{uu}}$. Здесь τ_g — длительность одного элемента разложения изображения, равная $\frac{\pi}{\omega_{\textit{макc}}}$; $\tau_{\textit{u}}$ — наивероятнейшая длительность шумового выброса, равная $\frac{\pi}{\omega_l}$; ω_l — средняя частота спектра шумов.

Практически критерий «шумового качества» S₀ камеры удобно выбрать следующим образом:

$$S_0 = \frac{\psi_{MAKC}}{i_{c MAKC}} \cdot \frac{\omega_1}{\omega_{MAKC}} \sqrt{\frac{2 k T}{\pi}}^*.$$
 (33)

Наличие множителя $\sqrt{\frac{2kT}{\pi}}$ позволяет несколько упростить вычисления.

Так как

$$\psi_{\text{макс}} = \frac{U_{c \text{ макс}}}{\sigma},$$

 $U_{c\,\,{\scriptscriptstyle MAKC}}$ — значение сигнала на выходе усилителя при пегде редаче наиболее яркой точки изображения; среднеквадратичное напряжение шума на вы-ходе усилителя при передаче наиболее яркой

точки изображения,

TO

$$S_0 = \frac{U_{c \text{ MAKC}}}{i_{c \text{ MAKC}}} \cdot \frac{\omega_1}{\omega_{\text{MAKC}} \sigma} \sqrt{\frac{2 k T}{\pi}}.$$
 (34)

 $[^]st$ Указанный выбор критерня $S_{
m o}$ можно обосновать более строго, исходя из положений общей теории связи.

Далее будет видно, что \hat{S}_0 является функцией параметров предварительного усилителя, уровня шумов передающей трубки и «частотной характеристики» приемной телевизионной трубки.

4. Предварительный усилитель без противошумовой коррекции

Для того чтобы определить S_0 , необходимо знать функцию спектральной плотности шума $F(\omega)$ на выходе предварительного усилителя и его коэффициент передачи (изменения в структуре шума, создаваемые приемной телевизионной труб-

кой вследствие конечных размеров апертуры, можно учесть, выбрав надлежащим образом коэффициент передачи усилителя).

Рассмотрим следующие два случая: а) апертура приемной телевизионной трубки не вносит искажений; б) апертура приемной телевизионной трубки вносит искажения.

а) Апертура приемной телевизионной трубки , не вносит искажений

Найдем функцию спектральной плотности шума $F(\omega)$ на выходе предварительного усилителя, для чего обратимся к рис. 6.

Как известно, модуль сопротивления $|z(\omega)|$ входной цепи усилителя определяется равенством

$$|z(\omega)| = \frac{R}{\sqrt{1 + R^2 C^2 \omega^2}}, \qquad (35)$$

причем величина \hat{R} выбирается таким образом, чтобы на частоте $\omega = \omega_{\text{макс}}$ соблюдалось неравенство

$$\frac{|z(\omega_{MAKC})|}{|z(0)|} \ge 0.9. \tag{35a}$$

Для того чтобы сохранить частотную характеристику предварительного усилителя равномерной в пределах $0 \div \omega_{\text{макс}}$, в одном из каскадов производится коррекция, при этом коэффициент усиления усилителя $K(\omega)$ выбирается из условия

$$|z(\omega)| \cdot |K(\omega)| = |\kappa| = \text{const},$$
 (36)

где $|\kappa|$ — коэффициент пропорциональности между напряжением U_c на выходных зажимах усилителя и током сигнала i_c с передающей трубки $\left(\kappa = \frac{U_c}{i_c}\right)$.

Решая (35) и (36), найдем

$$|K(\omega)| = \frac{|K|}{R} \sqrt{1 + R^2 C^2 \omega^2}.$$
 (37)

Учитывая равномерность спектра флуктуаций анодного тока первой лампы предварительного усилителя, найдем среднее значение квадрата напряжения шума $\sigma_{_{\mathcal{A}}}^2$ на выходе усилителя, обусловленного флуктуациями анодного тока:

$$\sigma_A^2 = \int_0^{\omega_{MAKC}} \frac{2 k T |\kappa|^2 R_{u_1}}{\pi R^2} (1 + R^2 C^2 \omega^2) d\omega.$$
 (38)

Средний квадрат напряжения шума σ_R^2 обязанный своим происхождением активной составляющей сопротивления R входной цепи, на выходе усилителя найдется как

$$\sigma_R^2 = \int_0^{\omega_{MaKC}} \frac{2kT}{\pi} Re\left[z\left(\omega\right)\right] |K\left(\omega\right)|^2 d\omega, \tag{39}$$

где $Re\left[z\left(\omega\right)\right]=rac{R}{1+R^{2}C^{2}\omega^{2}}-$ активная составляющая импеданса z.

На основании изложенного выше найдем

$$\sigma^2 = \int_0^{\omega_{MAKC}} F(\omega) d\omega, \tag{40}$$

где

$$F(\omega) = \frac{2kT |\kappa|^2}{\pi R} \left(1 + \frac{R_{uu}}{R} + R_{uu}RC^2\omega^2 \right). \tag{41}$$

Полученное выражение справедливо лишь в том случае, если сама передающая трубка не вносит шумов (если же вносит, то в него войдет еще член, учитывающий шум трубки).

в него войдет еще член, учитывающий шум трубки). Удобно характеризовать уровень шумов трубки $\overline{t_u^2}$ некоторым эквивалентным током диода i_{∂} , который, протекая в режиме температурного ограничения, создает шум

$$\overline{i_u^2} = \frac{ei_\partial \omega_{MAKC}}{\pi} \,, \tag{42}$$

где e — заряд электрона (e = 1,6 · 10⁻¹⁹ κ), т. е. характеризовать подобно тому, как принято шум усилительной лампы характеризовать некоторым шумовым сопротивлением $R_{u}[\Pi$. 5].

Принимая во внимание вышеизложенное, функция спектральной плотности шума $F(\omega)$ на выходе предварительного усилителя с учетом шума трубки может быть представлена в следующем виде

$$F(\omega) \frac{2kT |\kappa|^2}{\pi R} \left(\frac{Rei_o}{2kT} + 1 + \frac{R_{uu1}}{R} + R_{uu1} RC^2 \omega^2 \right). \tag{43}$$

Отметим, что характерной особенностью $F(\omega)$, в случае, когда применен усилитель без противошумовой коррекции, является равномерное распределение во всей полосе видеочастот.

Переходя к вычислению S_0 («шумового качества» камеры), найдем σ и ω_1 :

$$\sigma = \sqrt{\int_{0}^{\overline{\omega} \, Ma\kappa c} F(\omega) \, d\omega} = \sqrt{\frac{2kT \, |\kappa|^2}{\pi}} \sqrt{\Gamma}, \qquad (44)$$

где

$$\Upsilon = \frac{1}{R} \left[\left(\frac{Rei_{\partial}}{2kT} + 1 + \frac{R_{\omega 1}}{R} \right) \omega_{Makc} + \frac{R_{\omega 1}RC^2\omega^3_{Makc}}{3} \right]; \quad (45)$$

$$\omega_1 = \frac{1}{\sigma^2} \int_0^{\omega_{MAKC}} \omega F(\omega) \ d\omega = \frac{O}{\Upsilon}, \tag{46}$$

где

$$0 = \frac{1}{R} \left[\left(\frac{Rei_{\partial}}{2kT} + 1 + \frac{R_{u1}}{R} \right) \frac{\omega^{2}_{MaKC}}{2} + \frac{R_{u1}RC^{2}\omega^{4}_{MaKC}}{4} \right]. \tag{47}$$

Подставляя найденные значения σ и ω_1 в уравнение (34) и учитывая, что $\frac{U_{c,makc}}{i_{c,makc}} = |\kappa|$, получим

$$S_0 = \frac{O}{Y^{3/2} \omega_{\text{mark}}}.$$
 (48)

Рассмотрим пример № 1.

Вычислим «шумовое качество» S_0 камеры при условии, что первый каскад предварительного усилителя выполнен на лампе 6Н15П и в камере применена трубка супериконоскоп.

В этом случае
$$R_{\rm M}=200~o$$
м; $C_{ag}=1$,4 \cdot 10^{-12} ф; $C_{g\kappa}=2$ \cdot 10^{-12} ф; $S_{\rm I}=6,5$ ма/в; $C_{{\rm M}\kappa}=3,6$ \cdot 10^{-12} ф; $C_{{\rm M}\theta}=7,3$ \cdot 10^{-12} ф; $\omega_{{\rm M}\alpha\kappa c}=2\pi$ \cdot 5 \cdot 10^6 pa $\partial/ce\kappa$; примем $C_{{\rm M}}=6$ \cdot 10^{-12} ф; $R=620~o$ м; $K_{{\rm V}}=4$.

Будем считать, что шум передающей трубки эквивалентен шуму, создаваемому током диода $i_{\partial}=10^{-6}a$ в режиме темпера-

турного ограничения [Л. 6]. Вычисляя, получим

$$\dot{S}_0 = 1,89 \cdot 10^{-3} \frac{o M^{1|2}}{zepu^{1|2}}$$
; при этом $\frac{\omega_1}{\omega_{Makc}} = 0,495$.

Заметим, что применение в этом случае более совершенной схемы входа (например, каскодной или катодной) не дает заметного увеличения «шумового качества» камеры S_0 .

б) Апертура приемной телевизионной трубки вносит искажения

В общем случае, когда приемная телевизионная трубка вносит линейные искажения, обусловленные конечным размером апертуры, изменения, вызываемые ими в структуре шума, можно учесть, если коэффициент передачи κ усилителя умножить на $e^{-\left(\frac{\omega}{2}\right)^2},$

где $e^{-\left(\frac{\omega}{2}\right)^2}$ — множитель, учитывающий линейные искажения, вносимые апертурой приемной телевизионной трубки,

 Ω — так называемая приведенная частота апертуры (частота, на которой происходит завал апертурной характеристики в e раз),

Спектральная функция шума при этом может быть найдена как

$$F(\omega) = \frac{2 k T |\kappa|^2}{\pi R} \left(\frac{R e i_{\partial}}{2 k T} + 1 + \frac{R_{\omega 1}}{R} + R_{\omega 1} R C^2 \omega^2 \right) e^{-2\left(\frac{\omega}{2}\right)^2}. (49)$$

Значения σ и ω_1 вычисляются по тем же формулам, что и раньше, при этом Υ и O вычисляются следующим образом

$$\Upsilon = \frac{1}{R} \left\{ \left(\frac{Re \ i\partial}{2 \ k \ T} + 1 + \frac{R_{\omega 1}}{R} \right) \frac{\Omega}{2} \sqrt{\frac{\pi}{2}} \Phi \left(2 \frac{\omega_{MAKC}}{\Omega} \right) + \frac{R_{\omega 1} R C^{2} \Omega^{3}}{8} \left[\sqrt{\frac{\pi}{2}} \Phi \left(2 \frac{\omega_{MAKC}}{\Omega} \right) - 2 \frac{\omega_{MAKC}}{\Omega} e^{-2\left(\frac{\omega_{MAKC}}{\Omega}\right)^{2}} \right] \right\}, (50)$$

$$O = \frac{1}{R} \left\{ \frac{\Omega}{4} \left(\frac{Re \ i\partial}{2 \ k \ T} + 1 + \frac{R_{\omega 1}}{R} \right) \left(1 - e^{-2\left(\frac{\omega_{MAKC}}{\Omega}\right)^{2}} \right) + \frac{R_{\omega 1} R C_{1}^{2} \Omega^{4}}{8} \left[1 - e^{-2\left(\frac{\omega_{MAKC}}{\Omega}\right)^{2}} \left(1 + 2\left(\frac{\omega_{MAKC}}{\Omega}\right)^{2} \right) \right] \right\}. (51)$$

Как и раньше,

$$S_0 = \frac{0}{\Upsilon^{3|2}} \frac{0}{\omega_{MAKC}}.$$

Рассмотрим пример № 2.

Пусть параметры передающей телевизионной камеры будут те же, что и в предыдущем примере, но приемная телевизионная трубка вносит искажения

$$\Omega = 2\pi \cdot 5 \cdot 10^6 \ pad/ce\kappa.$$

Найдем S_0 с учетом изменений в структуре шума, получающихся за счет конечных размеров апертуры приемной телевизионной трубки.

Вычисляя, получим:

$$S_0 = 1.82 \cdot 10^{-3}; \quad \frac{\omega_1}{\omega_{Ma\kappa c}} = 0.364.$$

Несмотря на то, что уровень шума по сравнению с предыдущим случаем уменьшился ($\mathfrak q$ пропорционально $\sqrt{\mathfrak T}$, а $\mathfrak T$ уменьшилось), S_0 выросло незначительно. Произошло это потому, что $\frac{\omega_1}{\omega_{\mathcal{M} \mathcal{K} \mathcal{K}}}$ также уменьшилось, шум стал более крупнозернистым, а следовательно, и более заметным.

5. Предварительный усилитель с простой противошумовой коррекцией

Переходя к исследованию предварительного усилителя с простой противошумовой коррекцией, обратим внимание на то, что разница между ним и усилителем без противошумовой коррекции формально состоит в различной величине нагрузочного сопротивления R [Л. 1]. В случае усилителя с простой противошумовой коррекцией величина R выбирается возможно большей (практически сотни тысяч омов), завал же частотной характеристики, который при этом получается, корректируется в одном из последующих каскадов усилителя.

Увеличение сопротивления R, как известно, приводит к снижению шумов на выходе усилителя, а также к снижению влияния шума первой лампы, поскольку рост Rприводит к росту входного сигнала.

Ввиду того, что принципиальная схема усилителя с простой противошумовой коррекцией совпадает со схемой некорректированного усилителя, уравнения, выведенные выше для $F(\omega)$; Γ ; O; S_0 , остаются в силе, тем не менее боль-

шие количественные изменения R приводят к существенным качественным изменениям, на которых мы и остановимся.

Во-первых, спектральная функция шума $F\left(\omega\right)$ на выходе предварительного усилителя с простой противошумовой коррекцией будет иметь резко выраженный подъем в области высоких частот (рис. 7). Наличие подъема $F\left(\omega\right)$ в области высоких частот приводит к тому, что $\frac{\omega_1}{\omega_{\mathit{макс}}}$ растет, т. е. шум становится более мелкоструктурным и, следовательно, менее заметным. Таким образом, увеличение S_0 , которое при этом на-

блюдается, обусловлено, с одной стороны, уменьшением σ (рост $\psi_{\mathit{макc}}$), а с другой, — увеличением $\frac{\omega_1}{\omega_{\mathit{макc}}}$.

Рассмотрим пример № 3.

Вычислим «шумовое качество» S_0 камеры для случая, когда все параметры предварительного усилителя те же, что в примере \mathbb{N}_2 1, но $R=10^5$ ом (емкость монтажа C_M , а следовательно, и входная емкость взяты преднамеренно несколько заниженными).

Проводя вычисления, получим

$$S_0 = 1.34 \cdot 10^{-2} \frac{o M^{1/2}}{c u^{1/2}},$$

при этом $\frac{\omega_1}{\omega_{MAKC}} = 0,64$ (ср. с примером № 1).

Таким образом, S_0 в рассматриваемом примере получается в 7,1 раза больше, чем для случая некорректированного усилителя. Обратим внимание на то, что σ оказывается меньше всего в 5,45 раза, остальная доля выигрыша обусловлена ростом $\frac{\omega_1}{\omega_{Makc}}$. Аналогичный результат получится и при учете изменений, вносимых апертурой приемной телевизионной трубки.

На рис. 7 приведены кривые спектральной функции $F(\omega)$ на выходе предварительного усилителя с простой противошумовой коррекцией. Кривая I представляет собой спектральную функцию $F(\omega)$, соответствующую параметрам передающей телевизионной камеры, приведенным в примере № 3. Если вход усилителя с простой противошумовой коррекцией выполнить по схеме с катодным повторителем, то $F(\omega)$ будет иметь вид, представленный кривой 2 ($R_{\kappa} = 2000$ ом). На этом же рисунке видна доля шумов в $F(\omega)$, обусловленная сопротивлением R и передающей трубкой.

На рис. 8 приведены кривые спектральных функций $F\left(\omega\right)$ для усилителя с простой противошумовой коррекцией, в которых учтены изменения, вносимые апертурой приемной телевизионной трубки ($\Omega=2\pi\cdot5\cdot10^6\frac{pad}{ce\kappa}$). Кривая I соответствует случаю, когда вход усилителя выполнен по обычной схеме. Кривая 2 соответствует случаю, когда вход усилителя выполнен по схеме с катодным повторителем ($R_{\kappa}=2000\ om$).

Из рассмотренных кривых приходим к выводу, что применение катодного повторителя позволяет чрезвычайно сильно уменьшить долю шума на выходе усилителя, обусловленную дробовым эффектом первой лампы [уменьшение произведения

 $R_{\it m}C^2$ приводит к уменьшению компонентов шума лампы; см. уравнение (43)].

На рис. 9 приведено семейство зависимостей S_0 от $R_{\omega}C^2$ для следующих случаев: 1) $i_{\partial} = 0$; 2) $i_{\partial} = 0.5 \cdot 10^{-6}a$; 3) $i_{\partial} = 10^{-6}a$; 4) $i_{\partial} = 1.5 \cdot 10^{-6}a$ (прочие данные те же, что в примере № 3).

Рис. 8

На рис. 10 приведено аналогичное семейство зависимостей для тех же данных усилителя, причем здесь учтены изменения в структуре шума, вызываемые апертурой приемной телевизионной трубки $\left(\Omega=2\pi~5~\cdot~10^6\frac{pa\partial}{cg\kappa}\right)$.

Рис. 9

Приведенные зависимости представляют особый интерес, так как позволяют оценить возможности, вытекающие из применения более совершенных схем входа (каскодной или катодной). Учитывая, что использование упомянутых схем входа

приводит к уменьшению произведения $R_{uc}C^2$, т. е. в конечном итоге — к уменьшению компонентов шума лампы [см. уравнение (53)], заметим, что даже значительное уменьшение $R_{uc}C^2$ при наличии шумов трубки не даст существенного выигрыша в S_0 . Так, например, при замене обычного входа на катодный с $R_{\kappa} = 2000$ ом (если учесть апертуру трубки), S_0 вырастёт примерно на 5%. Применение каскодного входа дает еще меньший прирост S_0 . Объясняется это тем, что, убирая шум лампы, мы тем самым убираем «высокочастотную» помеху, т. е.

«укрупняем» шум и делаем его более заметным. Если бы удалось ликвидировать шум, создаваемый передающей трубкой, который ориентировочно характеризуем эквивалентным $i_{\partial}=10^{-6}a$, то при схеме с обычным входом получилось бы увеличение S_0 примерно на 45%, поскольку шум трубки равномерно распределен по всему диапазону частот (шум со спектром, равномерно распределенным по всему диапазону частот, образует более крупную и, следовательно, более заметную помеху, чем шум со спектром, сосредоточенным в области высоких частот).

На рис. 11 представлена зависимость S_0 от R для различных передающих телевизионных камер (в приведенных кривых учтено влияние «частотной характеристики» приемной трубки). Кривая I соответствует камере, в которой применены усилитель с обычным входом и передающая трубка супериконоскоп: $R_mC^2=12.8 \cdot 10^{-20}~om\cdot \cancel{\phi}^2;~i_{\partial}=10^{-6}a$. Кривая 2 соответствует камере, в которой применены усилитель с катодным входом и передающая трубка супериконоскоп: $R_mC^2=2.16 \cdot 10^{-20}~om\cdot \cancel{\phi}^2;~i_{\partial}=10^{-6}a$. Кривая 3 соответствует камере, в которой применены усилитель с каскодным

входом и трубка типа видикон: $R_{\it ll}C^2=5,9\cdot 10^{-20}~o{\it M}\cdot{\it G}\!\!\!/^2$; $i_{\it \partial}=0,5\cdot 10^{-6}a$ (взято ориентировочно). Кривая 4 соответствует камере, в которой применены усилитель с каскодным входом и гипотетическая нешумящая трубка: $R_{\it ll}C^2=5,9\cdot 10^{-20}~o{\it M}\cdot{\it G}\!\!\!/^2$; $i_{\it \partial}=0$.

Рассмотрение кривых приводит к мысли, что увеличение входного сопротивления R предварительного усилителя выше сотни тысяч ом не может дать существенного увеличения S_0 . Практика целиком подтверждает сделанный вывод. Действительно, ни увеличение R сверх 10^5 ом, ни применение более совершенной схемы входа (например, схемы с катодным повторителем) не даст существенного выигрыша в уровне шумов камеры.

Таким образом, на основании проведенных исследований можно сделать следующий вывод. Применение более совер-

¹ Это еще лишний раз подтверждает то, что шумами передающей трубки, в случае применения высокочувствительных современных усилителей, пренебрегать нельзя,

шенных схем входа может дать существенное увеличение «шумового качества» S_0 камеры,— что эквивалентно увеличению ψ_{Make} — в том случае, когда одновременно с этим применяется малошумящая передающая трубка и усилитель имеет большое входное сопротивление R.

6. Предварительный усилитель, выполненный по схеме сложной противошумовой коррекции

На рис. 12 представлена схема предварительного усилителя со сложной противошумовой коррекцией [Л. 2].

Определим функцию спектральной плотности шума $F(\omega)$ на выходе предварительного усилителя, для чего найдем коэф-

фициент передачи входной цепи $K_{sx}(\omega)$ и коэффициент усиления усилителя $K(\omega)$. Коэффициент передачи входной цепи K_{sx} (ω) есть не что иное как отношение напряжения сигнала на сетке лампы $\mathcal{J}_1(U_{c\ sx})$ к току сигнала i_c с трубки:

$$K_{sx}\left(\omega\right) = \frac{U_{c\ sx}}{i_{c}}.\tag{52}$$

- Составляя уравнение Кирхгофа для входной цепи (рис. 13), будем иметь

$$U_{c \, s x} = i_4 R; \quad i_2 = i_3 + i_4; \quad i_c = i_2 + i_1; U_1 = \frac{i_1}{j \omega C_1}; \quad U_{c \, s x} = \frac{i_3}{j \, \omega C_2}; U_{c \, s x} = U_1 - j \omega \cdot L i_2 - i_2 r.$$
 (53)

Решая их, найдем

$$|K_{\theta x}(\omega)| = \frac{R}{V (1 - \omega^2 L C_{1} - \omega^2 C_{1} C_{2} r R)^2 + (\omega C_{1} r - \omega^3 C_{1} C_{2} R L + \omega C_{2} R + \omega C_{1} R)^2}. (54)$$

Для того чтобы получить на выходе усилителя видеосигнал без искажений, коэффициент усиления усилителя $K(\omega)$ должен удовлетворять требованию

$$|K(\omega)| \cdot |K_{ex}(\omega)| = \kappa = \text{const}$$
 (55)

во всей полосе видеочастот (т. е. линейные искажения, возникающие во входной цепи усилителя, далее корректируются в самом усилителе).

Решая (54) и (55), найдем

$$|K(\omega)| = \frac{|K|}{R} \gamma_{(1-\omega^2 L C_1 - \omega^2 C_1 C_2 r R)^2 + (\omega C_1 r - \omega^3 C_1 C_2 R L + \omega C_2 R + \omega C_1 R)^2}. (56)$$

Теперь, когда известен $|K(\omega)|$ можно перейти к непосредственному определению функции спектральной плотности шума $F(\omega)$ на выходе предварительного усилителя:

$$F(\omega) = F_{sx}(\omega) |K(\omega)|^2, \tag{57}$$

где F_{ax} (ω) — функция спектральной плотности шумов, приведенных к сетке первой лампы усилителя (\mathcal{J}_1) .

В случае отсутствия шумов передающей телевизионной трубки

$$F_{ax}(\omega) = F_R(\omega) + F_A(\omega), \qquad (58)$$

где $F_R(\omega)$ — компонент функции спектральной плотности шума, приведенного к сетке \mathcal{J}_1 , который обусловлен активной составляющей сопротивления нагрузки между сеткой \mathcal{J}_1 и ее катодом;

 $F_{\scriptscriptstyle A}(\omega)$ — компонент функции спектральной плотности шума, приведенного к сетке \mathcal{J}_1 , который обусловлен дробовым эффектом анодного тока лампы \mathcal{J}_1 .

Как известно,

$$F_{R}(\omega) = \frac{2kT}{\pi} Re(z_{1});$$

$$F_{A}(\omega) = \frac{2kT}{\pi} R_{uu},$$
(59)

где $Re\left(z_{1}\right)$ — активная составляющая сопротивления нагрузки между сеткой и катодом лампы J_{1} . Легко показать, что

$$Re(z_1) = \frac{R[1 - \omega^2(2LC_1 - C_1^2Rr - C_1^2r^2) + \omega^4 C_1^2L_2]}{(1 - \omega^2LC_1 - \omega^2C_1C_2Rr)^2 + (\omega C_1r - \omega^3C_1C_2LR + \omega C_2R + \omega C_1R)^2},$$
 (60)

а $R_{\it uu}$ — сопротивление шума первой лампы усилителя.

Решая совместно уравнения (56), (57), (58), (59) и (60), найдем после несложных преобразований функцию спектральной плотности шумов на выходе предварительного усилителя со сложной противошумовой коррекцией:

$$F(\omega) = \frac{2kT|\kappa|^2}{\pi} \frac{1}{R} \{ a_0 + a_2 \omega^2 + a_4 \omega^4 + a_6 \omega^6 \}, \tag{61}$$

где

$$a_0 = 1 + \frac{R_{uu}}{R}; \ a_2 = C_1^2 R r + C_1^2 r^2 - 2LC_1 + \frac{R_{uu}}{R} \times \times [C_1^2 (r^2 + 2Rr) + R^2 (C_1 + C_2)^2 - 2LC_1]; \tag{62}$$

$$a_4 = C_1^2 L^2 + \frac{R_{uu}}{R} \left[(LC_1 + C_1 C_2 rR)^2 - 2C_1 C_2 RL \left(C_1 r + C_2 R + C_1 R \right) \right];$$

$$a_6 = R_{uu} C_1^2 C_2^2 R L^2.$$

В том случае, если передающая телевизионная трубка сама шумит, ее шумы, как и ранее, можно характеризовать некоторым эквивалентным шумом диода, создаваемым током i_{∂} в режиме температурного ограничения. Уравнение (61) остается при этом в силе, однако, вместо $a_0=1+\frac{R_{ut}}{R}$, в него следует

подставить
$$a_0 = 1 + \frac{e i_\partial R}{2kT} + \frac{R_{uu}}{R}$$
 .

Если «частотная характеристика» приемной телевизионной трубки вносит линейные искажения в телевизионный сигнал,

необходимо учитывать изменения, которые при этом получаются в структуре шума.

Функция спектральной плотности шума с учетом этих изменений может быть представлена как

$$F(\omega) = \frac{2kT|\kappa|^2}{\pi} \frac{1}{R} \{ a_0 + a_2 \omega^2 + a_4 \omega^4 + a_6 \omega^6 \} e^{-2\left(\frac{\omega}{\Omega}\right)^2}.$$
 (63)

На рис. 14 представлено семейство функций спектральной плотности шума $F(\omega)$, соответствующих различным значениям i_{∂} при следующих параметрах передающей телевизионной камеры:

$$\begin{split} &C_1 = 11 \cdot 10^{-12} \, \text{G}; \quad C_2 = 14, 4 \cdot 10^{-12} \, \text{G}; \quad R_{u} = 200 \, \text{om}; \\ &R = 10^5 \, \text{om}; \quad r = 0; \quad \omega_{\text{make}} = 2 \, \pi \, \, 5 \cdot 10^6 \, \, \text{eu}; \quad L = 2, 26 \cdot 10^{-4} \, \, \text{eh}, \end{split}$$

что соответствует настройке входного контура в соответствии с рекомендациями Г. В. Брауде [Л. 2].

При проектировании предварительного усилителя со сложной противошумовой коррекцией, как правило, инженер может

распоряжаться лишь выбором R и L по своему усмотрению, остальные же величины оказываются так или иначе заданными. Поэтому представляет наибольший интерес исследование зависимости параметра «шумового качества» S_0 передающей камеры от этих величин (так как это позволит найти их оптимальные значения).

В данном случае, как и выше, S_0 определяется из уравнения

$$S_0 = \frac{0}{ \chi^{3/2}} \frac{0}{\omega_{\text{make}}} \; . \label{eq:S0}$$

Однако Т и О здесь выражаются иначе. Если изменения в структуре шума за счет апертуры приемной трубки не учитываются, то

$$\Upsilon = \frac{1}{R} \left\{ a_0 \, \omega_{\text{Make}} + \frac{a_2 \, \omega^3_{\text{Make}}}{3} + \frac{a_4 \, \omega^5_{\text{Make}}}{5} + \frac{a_6 \, \omega^7_{\text{Make}}}{7} \right\}; \quad (64)$$

$$O = \frac{1}{R} \left\{ \frac{a_0 \,\omega^2_{MAKC}}{2} + \frac{a_2 \,\omega^4_{MAKC}}{4} + \frac{a_4 \,\omega^6_{MAKC}}{6} + \frac{a_6 \,\omega^8_{MAKC}}{8} \right\}. \quad (65)$$

В том, случае, если учитываются изменения в структуре шума за счет влияния «частотной характеристики» приемной телевизионной трубки, ї и О принимают следующие значения:

$$\Upsilon = \frac{1}{R} \left\{ \frac{a_0 \Omega}{2} \sqrt{\frac{\pi}{2}} \Phi \left(2 \frac{\omega_{MAKC}}{\Omega} + a_2 \Omega^3 \left[\frac{1}{8} \sqrt{\frac{\pi}{2}} \Phi \left(2 \frac{\omega_{MAKC}}{\Omega} \right) - \frac{1}{4} \left(\frac{\omega_{MAKC}}{\Omega} \right) e^{-2\left(\frac{\omega_{MAKC}}{\Omega}\right)^2} \right] + a_4 \Omega^5 \left[\frac{3}{32} \sqrt{\frac{\pi}{2}} \Phi \left(2 \frac{\omega_{MAKC}}{\Omega} \right) - \frac{1}{4} \left(\frac{\omega_{MAKC}}{\Omega} \right)^3 + \frac{3}{16} \left(\frac{\omega_{MAKC}}{\Omega} \right) \right] + a_6 \Omega^7 \left[\frac{15}{128} \sqrt{\frac{\pi}{2}} \Phi \left(2 \frac{\omega_{MAKC}}{\Omega} \right) - \frac{1}{4} \left(\frac{\omega_{MAKC}}{\Omega} \right)^3 + \frac{3}{16} \left(\frac{\omega_{MAKC}}{\Omega} \right) \right] + a_6 \Omega^7 \left[\frac{15}{128} \sqrt{\frac{\pi}{2}} \Phi \left(2 \frac{\omega_{MAKC}}{\Omega} \right) - \frac{1}{4} \left(\frac{\omega_{MAKC}}{\Omega} \right)^3 + \frac{5}{16} \left(\frac{\omega_{MAKC}}{\Omega} \right)^3 + \frac{15}{64} \left(\frac{\omega_{MAKC}}{\Omega} \right) \right) \right] \right\}; (66)$$

$$Q = \frac{1}{R} \left\{ \frac{a_0 \Omega^2}{4} \left[1 - e^{-2\left(\frac{\omega_{MAKC}}{\Omega} \right)^2} \right] + \frac{a_2 \Omega^4}{8} \left[1 - e^{-2\left(\frac{\omega_{MAKC}}{\Omega} \right)^2} \right] \times \left(1 + 2 \left(\frac{\omega_{MAKC}}{\Omega} \right)^2 \right) \right] + \frac{a_4 \Omega^6}{16} \left[2 - e^{-2\left(\frac{\omega_{MAKC}}{\Omega} \right)^2} \left(2 + 4 \left(\frac{\omega_{MAKC}}{\Omega} \right)^2 + 4 \left(\frac{\omega_{MAKC}}{\Omega} \right)^4 \right) \right] + \frac{a_6 \Omega^8}{32} \left[6 - e^{-2\left(\frac{\omega_{MAKC}}{\Omega} \right)^2} \left(6 + 12 \left(\frac{\omega_{MAKC}}{\Omega} \right)^2 + 12 \left(\frac{\omega_{MAKC}}{\Omega} \right)^4 + 8 \left(\frac{\omega_{MAKC}}{\Omega} \right)^6 \right) \right] \right\}.$$

Зависимость S_0 от L представлена на рис. 15; значения остальных параметров передающей камеры те же, что и ранее; при этом считается, что приемная трубка искажений не вносит.

На рис. 16 представлена зависимость S_0 от L, в которой учтено влияние апертуры приемной телевизионной трубки на структуру наблюдаемого шума (остальные параметры те же, значения i_{∂} для кривых I-6 относятся также к рис. 15, 17, 18 и 19).

410

Рис. 16

1) $i_{\partial} = 0$ 2) $i_{\partial} = 0.5 \cdot 10^{-6} a$

3) $i_0 = 10^{-6} a$

4) $i_{\partial} = 1.5 \cdot 10^{-6} a$

5) $i_{\partial} = 2 \cdot 10^{-6} a$

6) $i_{\partial} = 2.5 \cdot 10^{-6} a$

Из рис. 15 и 16 видно, что минимальное значение S_0 соответствует величине L, отличной от той, которую следовало бы принять в данном случае, если следовать рекомендации Γ . В. Брауде $^+$ ($L=2,26\cdot 10^{-6}$ гн).

574

656.10 EH

 $^{^1}$ Г. В. Брауде находит оптимальное значение L, исходя из минимального уровня шума $^\sigma$ на выходе камеры, не учитывая его структуры (спектра). Мы нашли оптимальное значение L, соответствующее максимуму S_0 , т. е. минимальной видимой помехе. Естественно, что это не является противоречием.

На рис. 17 приведены зависимости эффективного напряжения шума σ на выходе передающей камеры (точнее $\frac{\sigma}{\sqrt{\frac{2\kappa T|\kappa|^3}{L}}} =$

 $=\sqrt{\Upsilon}$) при тех же параметрах камеры без учета изменений в структуре шума, вносимых апертурой приемной трубки.

Рассматривая рисунки, видим, что условие максимума S_0 не совпадает с условием минимума σ .

Рис. 18

На рис. 18 и 19 представлены зависимости S_0 от L при $R=10^6$ ом без учета и с учетом влияния апертуры приемной

трубки (прочие параметры камеры те же, что и ранее). Здесь, как и в предыдущих кривых, наблюдается резко выраженный максимум S_0 . Следует обратить внимание на тот факт, что, применяя большее значение R, можно получить существенный выигрыш в «шумовом качестве» S_0 только при условии отсут-

ствия шумов передающей трубки ($i_{\partial}=0$). Если же шумы передающей трубки имеют место и значительны, то увеличение R не позволит получить значительного увеличения \mathcal{S}_0 .

Не дает большого выигрыша в «шумовом качестве» в этом случае и применение схемы со сложной противошумовой коррекцией по сравнению со схемой с простой противошумовой коррекцией. Так, например, замена схемы усилителя с простой противошумовой коррекцией на усилитель со сложной противошумовой коррекцией при принятых ранее параметрах камеры ($i_{\partial}=10^{-6}~a$) приводит к росту S_0 примерно на 30%, тогда как при отсутствии шумов передающей трубки S_0 выросло бы на 60% (замена $R=10^5~om$ на $R=10^6~om$ в этом случае еще увеличила бы S_0).

Заключение

На основании проведенного анализа можно сделать следующие выводы:

1. Применение схемы сложной противошумовой коррекции предварительного усилителя может дать существенный выигрыш в S_0 (что эквивалентно выигрышу в $\psi_{\textit{макс}}$) при условии, что шумы передающей телевизионной трубки малы.

\52 ·

2. Увеличение R от 10^5 до 10^6 ом целесообразно лишь при условии, что шумы передающей телевизионной трубки малы.

3. С целью повышения «шумового качества» S_0 камеры (т. е. снижения уровня видимой помехи) необходимо работать над снижением уровня шума передающей телевизионной трубки.

В заключение проведем сравнение данных эксперимента, относящегося к исследованию предварительного усилителя со сложной противошумовой коррекцией и приведенного в диссертации И. Л. Валика [Л. 7], с расчетными данными, вытекающими из нашей работы.

И. Л. Валиком экспериментальным путем было найдено, что оптимальная частота настройки входной цепи предварительного усилителя со сложной противошумовой коррекцией равна примерно $\omega_{\rho} = \frac{\omega_{Makc}}{1,82}$. Выигрыш по видимому уровню помехи (в сравнении со схемой усилителя, в котором применена простая противошумовая коррекция) равен примерно 1,6. Снижение σ на выходе усилителя равно также 1,6. Так как в эксперименте шумы передающей трубки и шумы R не учитываются, мы должны в расчетах принять $i_{\theta} = 0$ и R настолько большим, чтобы его шумами можно было пренебречь (например, $R = 10^6$ ом).

Характеризуя апертуру приемной телевизионной трубки

$$\Omega = 2\pi 5 \cdot 10^6 \ pad/ce\kappa$$

что довольно близко к действительности, и приняв $R_{m}C^{2} = R_{1}8 \cdot 10^{-20} \ om \cdot \phi^{2}$, найдем:

1) оптимальная частота настройки входной цепи усилителя (см. рис. 21)

$$\omega_p = \frac{\omega_{Makc}}{1,89}$$
; *

2) выигрыш по видимому уровню помехи (или S_0) равен 1,8;

3) снижение • на выходе усилителя равно 1,24.

Как видно из примера, расхождение между экспериментальными данными и расчетными относительно невелико и объясняется скорее всего тем, что при расчете мы задались величинами Ω ; C_1 ; C_2 ориентировочно.

$$\omega_p = \frac{\omega_{makc}}{1.4}$$
.

^{*} Минимум о, как показал Г. В. Брауде [Л. 2], наблюдается при

ЛИТЕРАТУРА

- 1. Г. В. Брауде. О возможности устранения шумов в ламповых усилителях. ИЭСТ, 1936, № 11.
 2. Г. В. Брауде. Способ сложной противошумовой коррекции. ИЭСТ, 1941, № 6.
 3. С. И. Катаев. Основы телевидения. Связынздат, 1940.
 4. Саѕсоde amplifier. JSMPTE, August 1953, vol. 63, No 2.
 5. В. И. Сифоров. Радноприемные устройства. ЛКВВИА, 1947.
 6. Д. Д. Аксенов. Исследование шумов иконоскопа. Кандидатская диссертация, ЛИАП, 1941.
 7. И. Л. Валик. Исследование предварительного усилителя передающей телевизионной системы. Кандидатская диссертация, ЛИАП, 1953.
 8. Г. В. Брауде. О применении отрицательной обратной связи во входной цепи телевизионного усилителя. ИЭСТ, 1941, № 6.

во входной цепи телевизионного усилителя. ИЭСТ, 1941, № 6. 9. Н. Красильников. О влиянии апертурных характеристик телевизионных трубок на выбор эквивалентных коэффициентов отношения сигнала к шуму. «Техника телевидения», 1955, вып. 7 (13).

Статья поступила 23/IV 1956 г.

Инж. M. A. MATREEB

ОДНОЛАМПОВЫЙ ГЕНЕРАТОР РЕЛАКСАЦИОННЫХ КОЛЕБАНИЙ НА ПЕНТОДЕ

В статье рассмотрена работа однолампового автогенератора релаксационных колебаний типа «фантастрон» на пентоде.

Выведены аналитические выражения для определения периода колебаний генератора и длительности исходных импульсов.

Рекомендован инженерный расчет автогенератора.

Введение

На рис. 1, а показана схема автогенератора релаксационных колебаний. Эта схема является одной из разновидностей схемы автогенератора, называемого «фантастроном». Схема генерирует колебания с частотой повторения от единиц дс

сотен килогерц. Форма генерируемых колебаний в катоде близка к прямоугольной, форма колебаний в аноде является пилообразной.

На рис. 1, б показана эквивалентная схема такого генератора на пентоде. Эквивалентная схема представляет собой не

что иное, как мультивибратор с катодной связью, широко известной в импульсной технике.

Анод и противодинатронная сетка пентода выполняют функции левого триода. Экранная сетка и управляющая сетка пентода выполняют функции правого триода. Катодами левого и правого триодов является катод пентода.

Связь левого триода с правым триодом осуществляется через конденсатор C, а связь правого триода с левым триодом осуществляется путем подачи на сетку левого триода напряжения

$$U_k = R_k \ (i_a + i_{g_2}). \tag{1}$$

Необходимо заметить, что на сетку левого триода подается как положительная связь, пропорциональная $i_{g_2} R_k$, так и отрицательная обратная связь, пропорциональная $i_a R_k$.

Так как в аноде пентода включается большое сопротивление R_u , а на противодинатронную сетку подается отрицательное напряжение — U_k , то всегда сохраняется неравенство $i_u < i_{g_2}$.

Условием самовозбуждения мультивибратора является

$$k_1 k_2 > 1, \tag{2}$$

где k_1 — коэффициент усиления первого каскада (см. рис. 1, δ), k_2 — коэффициент усиления второго каскада.

Крутизна по третьей сетке для ламп 6Ж2П и 6Ж2Б равна 0,5—0,8 ма/в. При нагрузке $R_a > 20$ ком коэффициент усиления первого каскада $k_4 > 1$. Как видно из рис. 1, б, второй каскад представляет собой катодный повторитель; если $R_k > 200$ ом, то $k_2 \approx 1$.

Таким образом, условие самовозбуждения выполняется. Однако если $R_k < 200$ ом, то коэффициент $k_2 \ll 1$ и схема не возбуждается.

1. Работа генератора

Осциллограммы релаксационного генератора на пентоде, показанные на рис. 2, мало отличаются от осциллограмм обычного мультивибратора. Основное отличие заключается в форме анодного напряжения (рис. 2, z и ∂). Скачок напряжения в аноде генератора ΔU_a мал по отношению к полному размаху анодного напряжения; в мультивибраторах скачок напряжения в аноде составляет основную часть анодного напряжения.

На рис. 2, z приведена осциллограмма напряжения на аноде относительно земли (— E_a), на рис. 2, ∂ — осциллограмма на-

пряжения на аноде относительно катода. Принято называть время, в течение которого напряжение на аноде возрастает,

Рис. 2

временем обратного хода (t_{ofp}) , а время, в течение которого напряжение на аноде падает, — временем прямого хода (t_{np}) .

При рассмотрении рамультивибратора прибегают к эквивалентным схемам с ключами. Такая эквивалентная схема для генератора на пентоде показана на рис. 3. В правом положении ключа K конденсатор C заряжается от источника E_a через сопротивления R_a , R_{ig_1k} , R_k (обратный ход). Когда ключ находится в левом положении, конденсатор C разряжается через R_g , R_{iak} — внутреннее сопротивление пентода — и сопротивление R_k .

Так как внутреннее сопротивление участка экранная сетка — катод зависит от напряжения на первой сетке относительно катода, то сопротивление этого участка во время прямого и обратного хода будет иметь различную, величину (R'_{ig2k} и R''_{ig2k}).

а) Обратный ход

Обратный ход начинается после включения источника анодного напряжения. Можно считать, что конденсатор C до включения источника E_a

был полностью разряжен. При включении источника питания E_a в первый момент сопротивление конденсатора C равно

нулю. Для определения напряжения на аноде и управляющей сетке во время включения источника анодного напряжения обратимся к рис. 4, где для упрощения исключена цепь экранного тока. Когда сопротивление емкости равно нулю, то управ-

ляющая сетка оказывается замкнутой накоротко с анодом (рис. 4, δ). Напряжение на аноде равно напряжению на управляющей сетке:

$$U_{ak} = U_{g1k} = E_a \frac{\frac{R_{ig1k} r_{iak}}{R_{ig1k} + r_{iak}}}{\frac{R_a R_g}{R_a + R_g} + \frac{R_{ig1k} r_{iak}}{R_{ig1k} + r_{iak}} + R_k},$$
 (3)

где r_{iak} — сопротивление лампы постоянному току; R_{ig1k} — сопротивление участка сетка — катод. Так как

$$\frac{R_a R_g}{R_a + R_g} \gg \frac{R_{ig1k} r_{iak}}{R_{ig1k} + r_{iak}} + R_k,$$

то напряжение на аноде и управляющей сетке в момент включения делится пропорционально сопротивлениям (рис. 4, 6)

$$U_{g1k} \approx \frac{E_a}{R_a} R_{ig1k} + \frac{E_a}{R_g} R_{ig1k}. \tag{4}$$

Положительное напряжение на управляющей сетке вызовет больщой катодный ток (в основном за счет экранного тока).

Катодный ток создает падение напряжения на катодном сопротивлении; это напряжение, приложенное к третьей сетке, а также низкое анодное напряжение являются теми условиями, при которых лампа запирается по анодному току.

Рис. 4

После скачка напряжения (после запирания лампы по анолному току) начнется заряд конденсатора C через R_a , R_{ig1k} (внутрениее сопротивление участка первая сетка — катод) и R_k

(рис. 5). Ток заряда емкости выразится следующим уравнением.

$$i_{3ap} - \frac{E_a - (U_{a Muh} + \Delta U_{a'})}{R_a + R_{ig1k} + R_k} e^{-\frac{t}{(R_a + R_{ig1k} + R_k)C}}.$$
 (5)

Величина $U_{a_{\it Muh}}$ является тем уровнем, относительно которого происходит заряд и разряд емкости за период колебания. Так как

$$R_{ig1k} + R_k \ll R_a$$

TO

$$i_{zap} \approx \frac{E_a - (U_{a \, \text{\tiny MUR}} + \Delta U_a')}{R_a} e^{-\frac{t}{Ra^C}}, \tag{6}$$

где

$$\Delta U_a' = U_{g1k} + U_k.$$

Напряжение на управляющей сетке определяется

$$U_{g1k} = R_{ig1k}(i_{gap} + i_1), (7)$$

где

$$i_1 = \frac{E_a - U_k}{R_o + R_{io1k} + R_k} .$$

Так как

$$R_{g} \gg R_{ig1k} + R_{k}$$

И

$$E_a\gg U_k$$
,

TO

$$i_1 \approx \frac{E_a}{R_g};$$

следовательно,

$$U_{g1k} \approx R_{ig1k} \left(\frac{E_a}{R_g} + \frac{E_a - U_{a \text{ Mun}} - \Delta U_{a'}}{R_a} e^{-\frac{t}{R_a C}} \right). \tag{8}$$

Максимальное напряжение на сетке равно (рис. $2, \beta$)

$$U_{g_{1}k_{MAKC}} = R_{ig_{1}k} \left(\frac{E_a}{R_g} + \frac{E_a - U_{a_{MUK}} - \Delta U_a'}{R_a} \right). \tag{9}$$

Для определения напряжения на управляющей сетке нужно знать величину $U_{a\,_{\it мин}}.$

Минимальное, или так называемое остаточное, напряжение на аноде $U_{a, \text{мин}}$ определяется из статических характеристик пентода. Имея статические характеристики пентода (рис. 6), проводим линию критического режима. (При малых напряжениях

на аноде и больших напряжениях на управляющей сетке все характеристики сливаются в одну линию.) Таким образом, линия критического режима определяет, для каждого данного значения напряжения источника анодного питания и каждого данного значения сопротивления анодной нагрузки R_a , мак-

симальное значение анодного тока $i_{a \ \text{макс}}$ и минимальное значение напряжения на аноде $U_{a \ \text{мин}}$.

Зная напряжения на управляющей сетке, определяем катодный ток

$$i_k = i_{g_2} + i_{g_1}$$
 при $i_a = 0$; $i_k = S \ U_{g_1}$, где $S = \frac{d \ i_k}{d \ U_{g_1}}$. (10)

Зная величину катодного тока, определяем величину напряжения на катоде (рис. 2, a)

$$U_k = i_k R_k. (11)$$

Напряжение на емкости возрастает по закону

$$U_c = (E_a - U_{a \text{ Muh}} - \Delta U_a') (1 - e^{-\frac{t}{R_a C}}). \tag{12}$$

Напряжение между анодом и катодом равно

$$U_{ak} = U_c + U_{g1k} + U_{a \, \text{mun}}. \tag{13}$$

Положительным напряжением на управляющей сетке можно пренебречь, так как это величина порядка 1-26 и $U_{g1k} \ll U_c$:

$$U_{ak} = (E_a - U_{a \text{ MUH}} - \Delta U_a') (1 - e^{-\frac{t}{R_a C}}) + U_{a \text{ MUH}}.$$
 (14)

Напряжение на аноде растет, лампа заперта по анодному току отрицательным напряжением на третьей сетке; когда анодное напряжение достигает $U_{a, \mathit{макe}}$, возникает анодный ток. Момент возникновения анодного тока поясняется рис. 7. На этом рисунке приведены характеристики анодного тока при

Рис. 7

различных напряжениях на третьей сетке и форма напряжения на аноде. Напряжение, приложенное к третьей сетке, равно напряжению на катоде.

Ранее полученное напряжение на катоде позволяет определить $U_{a,\text{макс}}$ по статическим характеристикам (рис. 7). Напряжение на 3-й сетке равно напряжению на катоде, взятому с обратным знаком:

$$-U_k = -U_{g3}. (15)$$

Подставив полученные выражения в формулу (14), определяем время обратного хода

$$t_{n6p} = R_a C \ln \frac{E_a - (U_{a Mun} + \Delta U_a')}{E_a - (U_{a Makc} + \Delta U_a')}. \tag{16}$$

Таким образом, имея статические характеристики пентода по третьей сетке, можно определить, во-первых, амплитуду пилообразного напряжения, во-вторых, длительность обратного хода.

Если напряжение на третьей сетке меньше $U_{\rm g3~\it muh}$, то при данном E_a лампа по анодному току открыться не может (когда $U_{\rm g2}={\rm const}$ и $U_{\rm g1}={\rm const}$). Этот режим называется ждущим режимом.

б) Прямой ход

Когда напряжение на аноде достигнет во время обратного хода $U_{a\, {\rm макc}}$, лампа открывается по анодному току. Потекший анодный ток создает падение напряжения на анодной нагрузке и напряжение на аноде уменьшится. Так как напряжение на емкости скачком возрасти не может, уменьшение напряжения на аноде передается на управляющую сетку, уменьшение напряжения на управляющей сетке ведет к уменьшению катодного тока (экранного тока), уменьшение катодного тока ведет к уменьшению отрицательного напряжения на третьей сетке. Таким образом, в процесс включается обратная связь, которая опрокидывает схему. В обычных мультивибраторах этот процесс заканчивается запиранием одной из ламп, в генераторах на пентоде — анодное напряжение скачком падает на небольшую величину ΔU_a . Величину скачка ΔU_a и равную ей $\Delta U_{g\,lk}$ можно найти из характеристик пентода.

Рассмотрим ждущий режим , когда во время обратного хода напряжение на ансде равно напряжению источника анодного напряжения E_a . Предположим, что внешний синхронизирующий импульс (отрицательный на управляющую сетку, или положительный на третью сетку) вывел схему из устойчивого состоя-

Рассмотрим лавинообразный процесс переброса, растянутый во времени.

В конце обратного хода напряжение на управляющей сетке было равно U'_{g1} (рис. 8, точка A). Будем считать, что анодный ток определяется величинами E_a , U_{g1k} и сопротивлением R_a ($U_{g2} = {\rm const}$; $R_a \gg R_k$). Как только лампа откроется по анодному току, анодный ток начнет возрастать по нагрузочной характеристике от $i_a = 0$ (см. рис. 8). Возрастание анодного тока повлечет за собой уменьшение анодного напряжения. Так как этот процесс происходит мгновенно (емкость C мгновенно перезарядиться не может), то уменьшение анодного напряжения передается через емкость C на управляющую сетку. Рабочая точка с характеристики U'_{g1} перемещается вниз (из точки A к точке A'), при этом выполняется равенство A A0 A1 A2 A3 A4, анодный ток возрастает от A4 A5 A'6, анодный ток возрастает от A6 A'7, анодный ток возрастает от A7 A8 A'9, анодный ток возрастает от A9 A'9 досерьный на управляющей

сетке. Когда рабочая точка достигает характеристики — $U_{g_1 \ мин}$, напряжение на управляющей сетке начинает управлять анодным током. Равенство $dU_a = dU_{g_1}$ в этом случае не будет выполняться, быстрый процесс роста анодного тока прекратится.

Таким, образом, анодный ток во время скачка возрасти больше чем на i_a' не может. Скачки напряжения на аноде и на управляющей сетке определяются графически из рис. 8 и

не требуют пояснения. Все сказанное о ждущем режиме справедливо и для автоколебательного режима. Отличие лишь в том, что анодный ток появляется тогда, когда анодное напряжение достигает напряжения отпирания по третьей сетке [т. е. величины $U_{a\ make}$ (рис. 7)].

После скачкообразного процесса начинается процесс ли-

нейного разряда конденсатора C через пентод.

Для определения тока разряда конденсатора обратимся к рис. 9. Как видно из рис. 9, ток разряда конденсатора является составной частью анодного тока

$$i_a = i_{R_a} + i_{pasp}. (17)$$

При условии $R_{
m g}\gg R_a$ можно написать

$$i_a \approx i_{R_a}.$$
 (18)

 ${
m Ho}$ ток разряда конденсатора, создавая падение напряжения на R_{g} , определяет напряжение на управляющей сетке.

Таким образом, изменение тока разряда конденсатора управляет катодным и анодным током. Если можно пренебречь током разряда конденсатора при определении анодного тока,

то для определения смещения на управляющей сетке нужно знать величину и характер изменения тока разряда конденсатора.

Во время обратного хода ток через сопротивление $R_{\rm g}$ был равен (см. рис. 5)

$$i_1 = \frac{E_n - U_k}{R_g + R_{ig1k} + R_k}.$$
 (19)

Этот ток создавал падение напряжения на R_{ig1k} и определял напряжение смещения на управляющей сетке к концу обрат-

Рис. 9

ного хода. Как только появится анодный ток, ток через сопротивление $R_{\rm g}$ будет полностью равен току разряда конденсатора и будет определяться

$$i_{pasp} = \frac{E_a - U_k - U_a + U_c}{R_{lak} + R_k + R_g} e^{-\frac{t}{(R_{lak} + R_k + R_g)C}}.$$
 (20)

Максимальный ток разряда (во время скачка)

$$i_{pasp \, Make} = \frac{E_a - U_k - U_a + U_c}{r_{iak} + R_k + R_g}. \tag{21}$$

В конце обратного хода напряжение на емкости было равно напряжению на аноде. После скачка напряжения напряжение на аноде упало на величину $\Delta\,U_a$, напряжение на конденсаторе осталось, прежним

$$U_{a \text{ Make}} - U_a = \Delta U_a. \tag{22}$$

Лампа открылась по анодному току при напряжении на управляющей сетке $U_{\rm gl} \geq 0$:

$$r_{lak} + R_k \ll R_g. \tag{23}$$

Окончательно получаем величину максимального тока разряда конденсатора

$$i_{pagp,Make} \approx \frac{E + \Delta U_a - U_k}{R_g}$$
 (24)

65

. 5 Техника телевидения, 24

Этот ток разряда, протекая через сопротивление $R_{\rm g}$, создает падение напряжения, которое определяет напряжение на управляющей сетке:

$$U_{g1 \text{ MUH}} = E - R_g i_{pa3p \text{ MaKc}} - U_k = -\Delta U_a;$$

$$U_{g1} = E - R_g i_{pa3p} - U_k. \tag{25}$$

Таким образом, напряжение на управляющей сетке за счет тока разряда конденсатора становится отрицательным. Конденсатор C разряжается через $R_{\rm g}$, $R_{\it lak}$, $R_{\it k}$ (рис. 9).

Ток разряда емкости, уменьшаясь, увеличивает потенциал управляющей сетки, вызывая увеличение анодного тока и падение анодного напряжения. Как только напряжение на управляющей сетке достигнет $U_{g1} = U_{g1}^{\ \prime\prime}$ (рис. 8), анодное напряжение достигнет $U_{a\ \text{мин}}$, ток разряда прекратится.

Таким образом, можно определить, на какую величину изменился ток разряда конденсатора:

$$U_{g1 \text{ Muh}} = E_a - R_g i_{pa3p \text{ Make}} - U_k; \tag{26}$$

$$U_{g1}^{\prime\prime} = E_a - R_g i_{pa3p \, \text{\tiny MUH}} - U_k^{\prime}; \qquad (27)$$

$$\Delta i_{pasp} = i_{pasp \ Makc} - i_{pasp \ Muh} = \frac{(\Delta U_a - U_{g'}') - (U_k - U_{k}')}{R_g}.$$
 (28)

Если величина E_a много больше величины ΔU_a , то ток разряда конденсатора во время прямого хода изменится очень незначительно, а следовательно, изменение потенциала на конденсаторе будет происходить по линейному закону:

$$\frac{i_{pa_3p}}{c} = \frac{dU_c}{dt} = \text{const} = \frac{U_c}{t}; \tag{29}$$

$$U_c = \frac{t}{R_{\sigma}C} \left(E_a + \Delta U_a - U_k \right). \tag{30}$$

Напряжение на аноде будет изменяться по следующему закону

$$U_a \approx U_{a \text{ Make}} - \frac{t}{R_g c} (E_a + \Delta U_a - U_k). \tag{31}$$

Время прямого хода будет определяться

$$t_{npsm} = R_{g}C \frac{U_{a \text{ Makc}} - U_{a \text{ Muh}}}{E_{a} + \Delta U_{a} - U_{b}}.$$
 (32)

Учитывая, что $E_a \gg \Delta U_a - U_k$, можно переписать формулу для определения прямого хода

$$t_{np} \approx R_g C \frac{U_{a \text{ MAKC}} - U_{a \text{ MUH}}}{E_a}.$$
 (33)

Увеличение напряжения на управляющей сетке вызывает увеличение аподного тока и падение анодного напряжения. Во время прямого хода напряжение на катоде возрастает от десятых долей вольта до одного вольта. Влиянием изменения потенциала на третьей сетке можно пренебречь, так как при напряжении $U_{\rm g3} \approx 0$ крутизна анодного тока по третьей сетке очень небольшая. Отрицательной обратной связью при $R_a \gg R_k$ также можно пренебречь.

Из рис. 8 видно, что при изменении напряжения на управляющей сетке от характеристик $U_{g1\ мин}$ до U_{g1} " (от точки A до точки B) напряжение на первой сетке управляет анодным током. Как только напряжение на управляющей сетке достигнет характеристик U_{g1} ", напряжение на аноде достигнет $U_{a\ мин}$. После этого падение напряжения на аноде прекратится, прекратится и ток разряда емкости

$$\frac{dU_c}{dt}=0; \quad i_{pa_{3p}}=0.$$

Прекращение тока разряда через $R_{\rm g}$ определяет возможность возрастания потенциала первой сетки до +E.

Однако как только потенциал первой сетки станет больше нуля, потечет сеточный ток, и сопротивление участка сетка — катод станет очень малым. Напряжение E_a разделится между сопротивлением R_g и $(R_{ig1k}+R_k)$:

$$U_{g1k} = \frac{E_u}{R_g + R_k + R_{ig1k}} R_{ig1k}. \tag{34}$$

Это напряжение, приложенное к первой сетке, вызовет большой катодный ток, который создаст падение напряжения на катодном сопротивлении. Напряжение на катодном сопротивлении, приложенное с обратным знаком к третьей сетке, запрет лампу.

2. Влияние изменения напряжений на длительность выходных импульсов

Для рассмотрения влияния питающих напряжений на длительность выходных импульсов обратимся к формулам (32), (16) и (8) и рис. 10:

$$t_{npnm} = R_g C \frac{U_{a \text{ Mark}} - U_{a \text{ Mull}}}{E_g + \Delta U_a - U_k}; \tag{32}$$

$$\tilde{t}_{o\delta\rho} = R_a C \ln \frac{\tilde{E}_a - (U_{a \text{ Mun}} + \Delta U_a')}{\tilde{E}_a - (U_{a \text{ Marc}} + \Delta U_a')}; \qquad (16)$$

$$U_{g1k} = R_{ig1k} \left(\frac{E_g}{R_g} + \frac{E_a - U_{a \text{ MUH}} - \Delta U_{a'}}{R_a} e^{-\frac{t}{RaC}} \right).$$
 (8)

Изменение напряжения на экранной сетке в большой степени сказывается на величине катодного тока. Изменение $U_{\rm g2}$ ведет к изменению величины $U_{\it k},~U_{\it a\, {\it Makc}}$ и $U_{\it a\, {\it Muh}}.$ При изменении $U_{\rm g2}$ изменится как прямой,

Рис. 10

нии $U_{\rm g2}$ изменится как прямой, так и обратный ход. На рис. 11 показан график зависимости частоты собственных колебаний генератора от напряжений на второй сетке при постоянных E_a и $E_{\rm g}$. Изменение анодного напряжения ведет к изменению скорости заряда конденсатора (обратный ход), а также к изменению величины $U_{\rm g}$ мин.

менению величины $U_{a \ \text{мин}}$. Изменение величины E_{g} ведет к линейному изменению скорости потенциала конденсатора во время прямого хода. На рис. 12 показан график за-

висимости частоты собственных колебаний генератора от напряжения E_g для лампы 6Ж2П при постоянных E_a и $U_{\rm g2}$.

Рис. 11

Ранее было показано, что при условии, когда $E_{\rm g}\gg \Delta U_a$ скорость изменения потенциала конденсатора имеет постоянию величину. Если это условие не выполняется, разряд кон-

денсатора будет происходить по экспоненте. На рис. 13 показано, как величина $E_{\rm g}$ влияет на линейность изменения напряжения на аноде. Так как величины $U_{a\,{\it мик}}$ и $U_{a\,{\it макc}}$ почти не

зависят от величины $E_{\rm g}$, то линейность напряжения на аноде будет тем лучше, чем больше $E_{\rm g}$.

На рис. 14, a приведена схема генератора с сопротивлением $R_{\rm g}$, подключенным к катоду ($E_{\rm g}=0$). Ее эквивалентная схема (рис. 14, δ) похожа на схему мультивибратора с катодной связью, широко известную в импульсной технике.

3. Инженерный расчет автогенератора на пентоде

а) Выбор лампы

Пентоды, у которых имеется вывод третьей сетки, практически могут применяться для автогенератора. Для получения импульсов с малой скважностью ($\alpha \le 5$), нужно выбирать пентоды с большой мощностью по экранной сетке (6)Ж1Б, 6)Ж2Б, 6)Ж2П).

б) Расчет длительности обратного хода

Для расчета длительности обратного хода нужно иметь характеристики $i_a = \varphi\left(U_a\right)$ при различных U_{g_3} (рис. 7). Задавшись напряжением на катоде $-U_k = -U'_{g_3}$, из статических характеристик (рис. 7) можно сразу определить $U_{a \, \textit{макс}}$.

После того, как определили U_k и $U_{a \ макc}$, обратимся к ранее выведенной формуле для определения времени обратного хода

$$t_{o\delta\rho} = R_a C \ln \frac{E_a - (U_a \text{ мин} + \Delta U_a')}{E_a - (U_a \text{ мак}c + \Delta U_a')}. \tag{16}$$

Как видно из формулы, по заданной длительности обратного хода необходимо выбрать R_a и C. Величину R_a на частотах выше 20 000 εu следует брать менее 100 000 εu , а на частотах ниже 20 000 εu — увеличивать до нескольких мегомов. Выбрав величину R_a , по характеристике определяем $U_{a \, \text{мин}}$. Подставив величины R_a и $U_{a \, \text{мин}}$ в формулу (16), подсчитываем величину емкости C:

$$\Delta U_a' = \Delta U_{g_1k} + U_k \approx U_k; \tag{35}$$

$$C = \frac{\tau_{o\delta p}}{R_a} \ln \frac{E_a - (U_{a \text{ Marc}} + U_k)}{E_a - (U_{a \text{ Muh}} + U_k)}.$$
 (36)

Таким образом, все величины, необходимые для определения времени обратного хода, найдены,

По заданной величине $U_{\mathbf{k}}$ нужно определить катодный ток, подбирая R_k ,

$$i_{\mathbf{k}} = \frac{U_{\mathbf{k}}}{R_{\mathbf{k}}}$$
.

Величину $R_{\mathbf{k}}$ нужно выбирать как можно меньше, чтобы во время прямого хода $U_k \to 0$.

Так как катодный ток $\it i_k$ во время обратного хода определяется экранным током ($i_a = 0$), то для определения требуе-

мой величины i_k во время обратного хода нужно выбрать напряжение на экранной сетке по статическим характеристикам экранного тока $i_{{f g}2} = {f \phi} \, (U_{{f g}2})$ при различных $U_{{f g}1}$. Такие характеристики показаны на рис. 15.

Напряжение на управляющей сетке определяется из формулы

$$U_{g_1} = R_{ig_1k} \left(\frac{E_g}{R_g} + \frac{E_a - U_{a \text{ MUH}} - U_k}{R_a} e^{-\frac{t_{o6p}}{R_a C}} \right), \quad (37)$$

где R_{ig_1k} — внутреннее сопротивление участка сетка — катод. Первый член в скобках $\left(\frac{E_{\mathbf{g}}}{R_{\mathbf{g}}}\right)$ всегда меньше второго и им можно пренебречь. Тогда

$$U_{g_1k} = R_{ig_1k} \left(\frac{E_a - U_a Mun - U_k}{R_a} e^{-\frac{t_0 \sigma_p}{R_a C}} \right). \tag{38}$$

Найдя напряжение на управляющей сетке и зная величину тока экранной сетки, определяем из рис. 15 напряжение на экрапной сетке. Напряжение на экранной сетке можно поддерживать или при помощи отдельного источника питания, или за счет деления анодного напряжения, или включением гасящего сопротивления в экранную сетку и шунтированием его емкостью. Если необходимо получить отрицательный импульс, в экранную сетку включается нагрузка.

Для определения размаха импульса на экранной сетке, строим нагрузочную характеристику экранного тока. Величину тока определяем по данной характеристике. Размах импульсов на экранной сетке при этом будет

$$U_{ggm} = R_{gg} (i'_{gg} - i''_{gg}), \tag{39}$$

где $i_{g2}^{\prime\prime}$ — экранный ток во время прямого хода; i_{g2}^{\prime} — экранный ток во время обратного хода.

в) Расчет длительности прямого хода

Для определения длительности прямого хода необходимо подобрать величины $E_{\rm g}$ и $R_{\rm g}$. Если $E_{\rm g} \gg \Delta \, U_a$, то

$$t_{npsm} = R_g C \frac{U_{a \ ma\kappa c} - U_{a \ muh}}{E_g} . \tag{40}$$

Величина $R_{\rm g}$ не должна быть меньше 0,5 *мгом*, она определяется допустимой мощностью рассеяния по управляющей сетке.

Для определения тока катода во время прямого хода нужно построить семейство характеристик пентода $i_a = \varphi$ (U_a) и $i_{g2} = \varphi$ (U_a) при $U_{g3} = 0$.

Напряжение на катоде при малых R_k во время прямого хода не превышает 1 в. Построенные характеристики при $U_{\bf g}{}^3=0$ будут создавать при расчете небольшую погрешность. (Включение больших катодных сопротивлений будет увеличивать $U_{a\,{\scriptscriptstyle MuH}}$, что необходимо учитывать при расчете.)

Заключение

Генератор на пентоде может применяться как генератор задержанных импульсов, как генератор формирования импульсов определенной длительности и как делитель частоты следования импульсов.

В литературе не встречается подробного описания работы генератора на пентоде в режиме автоколебаний. Предлагаемый инженерный расчет помогает правильно выбрать пара-

метры схемы и определить область применения такого генератора

Генератор на пентоде экономичнее мультивибратора на двух триодах. В мультивибраторах триоды поочередно полностью открыты $(U_{\rm g_1}\!\geq\!0)$; за период мультивибратор потребляет ток одного триода при напряжении на управляющей сетке $U_{\rm g_1}\!\geq\!0$.

В описанном генераторе обычно используется импульс во время обратного хода, когда анодный ток равен нулю. Из этого можно заключить, что чем больше скважность требуемого импульса, тем меньше мощность, потребляемая генератором.

К преимуществам такого генератора относится также снижение вдвое числа ламп в схемах, в которых применяются сверхминиатюрные лампы (серия «дробь»).

Описанный генератор был использован в качестве делителя частоты повторения импульсов и обеспечил широкую область сохранения постоянства кратности деления. Результаты проверки показали следующее:

- 1. Минимальная область изменения частоты задающего генератора, при которой делитель сохранял коэффициент деления 1:5, равна 22—50 кгц.
- 2. Эта область синхронизации сохранялась при изменении анодного напряжения от 60 до 150 s и при изменении напряжения накала на $\pm 10\%$.

Статья поступила 12/X1 1956 г.

Инж. В. С. ПОЛОНИК

АППАРАТУРА ПРОМЫШЛЕННОГО ТЕЛЕВИДЕНИЯ

В статье дано техническое описание первых образцов промышленных телевизпонных установок отечественного производства, а также намечены пути усовершенствования этих установок.

За последние несколько лет телевидение начинает с успехом применяться для промышленных целей. В настоящее время ряд ведущих радиотехнических фирм за границей — «Ар Си Эй», «Фарнсворт электроник» (США); «Пай», «Марконис Уайрлесс телеграф» (Англия); «Томсон-Хаустон» (Франция); «Грюндиг» (Зап. Германия); «Магнети Марелли» (Италия) и другие [Л. 1] — выпускает большое количество телевизионных установок, используемых в самых разнообразных областях промышленности, на транспорте, в медицине и т. д.

Все эти установки можно классифицировать по следующим группам:

- 1) системы со сложной аппаратурой на передающей стороне;
 - 2) системы со сложной аппаратурой на приемной стороне;
- 3) системы с одинаковой по сложности аппаратурой на передающей и приемной сторонах.

Дать сейчас анализ целесообразности той или иной системы затруднительно. Однако, рассматривая современные промышленные телевизионные установки, можно заметить определенную тенденцию в разработке аппаратуры, связанную с применением замкнутой системы со сложной приемной стороной. Наиболее распространенной установкой промышленного телевидения является установка, состоящая из простейшей камеры (содержащей от 2 до 5 ламп) с ручным управлением фокусировкой и диафрагмированием, блока управления и обычного телевизора в качестве контрольного устройства.

Разработанные в настоящее время в СССР промышленные телевизионные установки построены по принципу замкнутых систем со сложной приемной стороной.

В 1957 году наша промышленность должна освоить производственный выпуск установок промышленного телевидения и будет начато широкое внедрение их в различные отрасли народного хозяйства, что позволит окончательно определить рациональность того или иного типа аппаратуры.

1. Промышленные телевизионные установки

Описываемые первые образцы аппаратуры промышленного телевидения являются достаточно универсальными и могут уже сейчас применяться в разнообразных областях нашей промышленности.

Промышленные телевизионные установки (ПТУ) подразделяются на установки с передающей трубкой типа видикон (ПТУ-0, ПТУ-1 и ПТУ-2) и с передающей трубкой типа суперортикон (ПТУ-3).

Основные технические параметры всех ПТУ приведены в табл. 1.

ПТУ-0 представляет собой простейшую установку промышленного телевидения, состоящую из портативной передающей камеры и видеоприемного устройства, собранного на основе типовых блоков серийного телевизора «Рубин». Простота установки ПТУ-0 определяет ее невысокую стоимость, удобство эксплуатации и целесообразность применения. Вследствие этого можно ожидать, что установка ПТУ-0 найдет самое широкое распространение в различных областях техники.

Установка ПТУ-1 обеспечивает более высокую четкость и большее удаление камеры от блока управления, чем ПТУ-0. Кроме того, в установке ПТУ-1 может одновременно работать несколько контрольных телевизоров, имеется стабилизация тока фокусировки, автоматическая регулировка видеосигнала и т. п.

Таким образом, установка ПТУ-1 представляет собой более универсальное устройство, удовлетворяющее более широким требованиям, чем ПТУ-0, и благодаря этому можно ожидать ее разнообразного применения в ряде простых и сложных случаев.

Установка ПТУ-2 отличается от ПТУ-1 наличием оптической головки, при помощи которой осуществляется дистанционное управление фокусировкой изображения и диафрагмированием объектива. Такая головка может быть привинчена к камере ПТУ-1.

Фокусировка обеспечивает резкое изображение при расстоянии между предметом и камерой от 1 — 1,5 м и до бесконечности для всех объективов, а диафрагмирование позволяет снижать освещенности фотосопротивления примерно в 100 раз.

Наличие дистанционного управления еще более повышает

Таблица 1 ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ПАРАМЕТРЫ ПЕРВЫХ ПРОМЫШЛЕННЫХ ТЕЛЕВИЗИОННЫХ УСТАНОВОК

№ пп	О Наименование параметра	ПТУ-0	ПТУ-1 и ПТУ-2	ПТУ-3	
1 2	Тип применяемой трубки	Видикон	Видикон	Суперортикон	
.2	Необходимая освещенность объекта (лк)	500	500	50	
3	Допустимая скорость передвижения проекции объекта в плоскости светочувствитель-	300	300	30	
	ного слоя трубки (мм/сек).	3	. 3	Возможна передача быстродвигающихся	
4	Способ разложения изображения	Прогрессивный на 300 строк	Чересстрочны	объектов Чересстрочный на 625 строк	
.5	Четкость изображения (в ли- ниях):	•			
	а) по горизонтали	400 · 300	450 450	600 600	
-6	б) по вертикали	5 5	5	6	
7	Формат кадра	4:3	4:3	1:1	
8	Геометрические искажения (%)	3	3	3_	
9	Нелинейность разверток (%)	15	15	15	
10	Напряжение питания и частота питающей сети	110, 127 и 220 в при 50 гц	220 s100/ ₀	при 49—51 ги	
11	Синхронизация разверток с ча- стотой питающей сети	Есть	Есть	Есть	
12	Потребляемая мощность (вт)	150	550 (ПТУ-1) 600 (ПТУ-2)	1200	

13	Частота, на которой производится передача сигнала на контрольную точку	Видеочастота	Видеочастота и 49,75 <i>мггц</i> ¹	Видеочастота
14	Расстояние в метрах: а) от камеры до блока управ- ления	150	500	300
	б) от блока управления до контрольной точки	_	500	200
15	Применяемые объективы	Типа «Юпитер»:	Ю-12, Ю-8, Ю-9, Ю-11	
16	Наличие дистанционного управления оптикой	Нет	ПТУ-1 нет	Есть
17	Климатический режим работы		ПТУ-2 есть	
	камер	При температуре с	от—20° до +40° С и относ до 95º/ ₀ при + 20° С	ительной влажности
18	Количество блоков в канале .	2	4	. 7
19	Количество ламп в камере .	5	5	15
20	Количество ламп в пульте управления	9	47	92
21	Размер камеры (мм)	· 130 × 190 × 230	$\begin{array}{c} \Pi T \text{Y-1 } 130 \times 190 \times 230 \\ \Pi T \text{Y-2 } 130 \times 230 \times 340 \end{array}$	$280 \times 330 \times 630$
22	Вес камеры (кг)	4,5	ПТУ-1 4,5 ПТУ-2 7,8	40
23	Размер блока управления (м)	$0.4 \times 0.42 \times 0.47$	$0.31 \times 0.31 \times 0.5$	$0.9 \times 1.0 \times 1.3$
24 -	Наличие автоматической регу- лировки видеосигнала	Нет	Есть	Нет
				•

¹ При соответствующих переделках схемы может быть выбран любой другой вещательный канал.

универсальность аппаратуры. Однако, в связи с его сложностью и небольшим количеством запросов на дистанционное управление оптикой, особенно фокусировкой, установка ПТУ-2 получит, по-видимому, меньшее распространение по сравнению с ПТУ-0 и ПТУ-1.

Общим недостатком описанных ПТУ является сравнительно низкая чувствительность используемого в установках видикона (освещенность объекта должна быть не менее $500~n\kappa$), присущая ему инерционность изображения, а также «грязный» фон. Однако в ближайшее время можно ожидать улучшения этих параметров видикона.

Необходимо отметить, что во всех ПТУ на видиконе исполь-

зуется почти аналогичная камера.

Установка ПТУ-3 отличается от ПТУ-1 и ПТУ-2 в основном тем, что в ней применена передающая трубка суперортикон. Это позволяет резко снизить минимально необходимую освещенность объекта (с 500 до 50 лк) и снимает вопрос об инерционности передаваемого изображения. Кроме того, суперортикон обеспечивает четкость изображения в 600 линий.

Камера установки ПТУ-3 имеет дистанционное управление оптикой.

Ниже приводится описание первых промышленных телевизионных установок.

Установка ПТУ-0

Блок-схема установки ПТУ-0 представлена на рис. 1.

Видеосигнал, полученный в передающей трубке, усиливается предварительным усилителем до 0,2 в (по размаху) и

торого производится контроль наблюдаемых процессов.
Пилообразные токи, необходимые для разверт-

по коаксиальному кабелю длиной до 150 м подается

на вход видеоприемного устройства, на экране ко-

ки луча видикона по строкам и по кадрам, полу-

чаются путем последовательного включения соответствующих катушек систем отклонения видикона и приемной трубки. Необходимость в синхронизации здесь, очевидно, отпадает. Для синхронизации кадровой развертки с сетью питания на сетку блокинг-генератора этой развертки подается напряжение накала ламп.

Гасящие сигналы передающей трубки по строкам формируются непосредственно в камере из поступающих в нее пилообразных токов путем дифференцирования, усиления напряжения при помощи трансформатора и ограничения полученных импульсов на нужном уровне (размах их равен примерно 60 в). Гасящие сигналы передающей трубки по кадрам формируются в видеоприемном устройстве при помощи лампы и подаются в камеру по кабелю. Оба гасящих сигнала поступают на модулятор видикона.

Интересно отметить, что благодаря идентичности пилообразных токов в системах отклонения видикона и приемной трубки искажения изображения, обусловленные нелинейностью развертки, должны принципиально отсутствовать. На практике, тем не менее, имеет место искажение изображения, которое связано с применением переходных трансформаторов, цепей формирования гасящих импульсов, магнитной центровки растра и т. п.

Перемещение (центровка) растра в камере производится с помощью магнитных колец, изготовленных из алькоси.

Питающее напряжение поступает в камеру от видеоприемного устройства по многожильному экранированному кабелю. Управление камерой производится при помощи трех ручек, находящихся на видеоприемном устройстве (регулируется напряжение на модуляторе, напряжение на сигнальной пластине и ток фокусировки).

Видеоприемное устройство собрано на основе двух типовых блоков телевизора «Рубин»: блока разверток и блока усиления и питания с использованием двух ламп в качестве видеоусилителей. Отклоняющая система использована от того же телевизора. Управление передающей камерой сосредоточено в отдельном небольшом отсеке.

Передающая и приемная стороны соединены микротелефонной связью, выполненной по системе местной батареи.

Внешний вид установки ПТУ-0 приведен на рис. 2.

Передающая камера собрана на шасси с передней и задней стенками. На передней стенке размещен фланец, в который может ввинчиваться любой из четырех объективов типа «Юпитер» (Ю-12, Ю-8, Ю-9, Ю-11).

На задней стенке шасси размещаются все разъемы и телефонное штеккерное гнездо. В нижней центральной части шасси смонтирован блок, состоящий из передающей трубки видикон и фокусирующе-отклоняющей системы.

В верхней боковой части камеры размещен предварительный усилитель. С противоположной стороны смонтирован

трансформатор накала тороидального типа, а также ряд других мелких элементов камеры.

На шасси сверху надевается металлический кожух, укрепляемый на камере с помощью четырех накидных замков. На верхней крышке кожуха размещен видоискатель прицельного типа.

Крепление камеры к опоре производится с помощью болтов. Видеоприемное устройство собрано в металлическом ящике,

Рис. 2

на передней стенке которого укреплены приемная трубка, ручки управления режимом видикона и приемной трубки, выключатель и сигнальная лампочка. Блоки в видеоприемном устройстве расположены так же, как и в телевизоре «Рубин», благодаря чему удается использовать максимальное число стандартных деталей телевизора.

Установка ПТУ-1

Видеосигнал, аналогичный сигналу, получаемому в камере установки ПТУ-0, подается по коаксиальному кабелю в блок управления (рис. 3). В блоке управления видеосигнал усили-

вается, в него замешиваются гасящие сигналы приемной трубки и сигнал синхронизации приемника. После этого полный телевизионный сигнал размахом 1,0 в положительной полярности подается на вход генератора УКВ, имеющего несущую частоту 49,75 мггц (1-й канал телевизионного вещания). При соответствующих переделках может быть выбран любой другой канал.

Рис. 3

В дальнейшем радиосигнал подается на телевизоры, расположенные непосредственно на пульте управления и на контрольном пункте. При желании контроль изображения может производиться также по видеочастоте.

В видеоусилитель блока управления введен автоматический регулятор усиления, поддерживающий выходной сигнал неизменным при изменении входного сигнала в 8—10 раз. Этот регулятор окажется совершенно необходимым в многокамерных диспетчерских телевизионных установках, в которых при коммутации камер могут иметь место большие скачки величины видеосигнала от камеры к камере.

Блок разверток вынесен из камеры и помещен в блок управления. В камере остаются отклоняющие катушки, на которые из блока управления подаются импульсные напряжения, обеспечивающие протекание по катушкам пилообразных токов.

Основная трудность при вынесении блока разверток из камеры заключается в передаче достаточно мощных импульсных напряжений строчной частоты на большие расстояния без искажений. Для решения поставленной задачи использован контур равного сопротивления (рис. 4), при помощи которого удается получить необходимое согласование на конце кабеля, несущего импульсное напряжение частоты строк. Для получения согласования нужно выдержать следующие условия [Л. 2]:

$$R_1 = R_2 = \hat{R}_0 = z; \ z = \sqrt{\frac{L}{C}}; \ L = R_0 T \sqrt{\frac{n(1-n)}{3}},$$

rде R_1 , R_2 — сопротивления в параллельных ветвях;

z — волновое сопротивление кабеля;

L — индуктивность отклоняющей катушки;

C — емкость контура;

T — период строчной частоты;

n — длительность прямого хода строчной развертки в долях периода T.

Применение контура равного сопротивления позволило удалить блок развертки от камеры на 500 м, и,по-видимому, возможно увеличить это расстояние свыше 1000 м.

1

Передача кадровых отклоняющих импульсов на большое расстояние не вызывает особых затруднений.

Цепь формирования гасящих импульсов передающей трубки в установке ПТУ-1 аналогична цепи формирования в камере установки ПТУ-0.

Синхрогенератор установки обеспечивает чересстрочное разложение изображения на 625 строк при 25 кадрах в секунду. Деление частоты и формирование импульсов производится при помощи искусственных длинных линий, что дает высокую стабильность работы синхрогенератора.

Форма сигнала синхронизации приемника упрощена (рис. 5). Отсутствие выравнивающих импульсов компенсируется уменьшением вдвое (до 4%) ширины строчных синхроимпульсов, благодаря чему форма фронта кадрового синхроимпульса сохраняется аналогичной для четного и нечетного полей.

Отсутствие кадровых врезок, как показал эксперимент, не сказалось сколько-нибудь заметным образом на устойчивости строчной развертки.

Для того чтобы обеспечить правильное взаимное расположение импульсов во времени при больших расстояниях между камерой и блоком управления, в синхрогенераторе введены

ступенчатые задержки импульсов, поступающих на местные цепи (гасящие сигналы приемной трубки и сигналы синхронизации приемника). Эти задержки рассчитаны на расстояния 300, 500, 750 и 1000 м. Цепи задержек выполнены на искусственных длинных линиях.

Питание камеры и блока управления производится от выпрямителя с электронной стабилизацией. Синхрогенератор питается от собственного нестабилизированного выпрямителя.

Управление камерой производится с передней панели блока управления, где, кроме трех ручек управления режимом работы видикона, находится еще ручка управления видеоусилителем.

В установке применена телефонная связь, аналогичная

связи в установке ПТУ-0.

Внешний вид ПТУ-1 приведен на рис. 6 (камера от установки ПТУ-2). Передающая камера ПТУ-1 остается конструктивно такой же, как и камера установки ПТУ-0.

Пульт управления установки состоит из блока управления, из синхрогенератора и контрольного телевизора, размещенных рядом.

Блок управления содержит в себе видеоусилитель, развертки, генератор УКВ, блок питания с электронной стабилизацией и панель управления режимом видикона и всей установкой.

Все эти узлы являются самостоятельными конструкциями. Первые три включаются в схему при помощи многоконтактных и коаксиальных разъемов. Узел питания соединяется со схемой путем пайки необходимых контактов на планке.

Синхрогенератор имеет базовую конструкцию, аналогичную конструкции блока управления. В верхней части блока находится панель с лампами, которая может откидываться вверх, чем обеспечивается доступ к коробкам с искусственными длинными линиями, размещенными в два этажа внизу.

В задней части блока расположен узёл питания.

Разъемы для межблочных соединений камеры, блока управления и синхрогенератора выведены на передние стенки блоков, что обеспечивает удобный доступ при ремонте.

Рис. 61

Установка ПТУ-2

Установка ПТУ-2 отличается, как уже указывалось, от установки ПТУ-1 наличием оптической головки, позволяющей дистанционно управлять оптической фокусировкой изображения и диафрагмированием объективов в камере.

Внешний вид камер установок ПТУ-1 и ПТУ-2 для сравне-

ния приведен на рис. 7.

Дистанционное управление оптической головкой осуществляется при помощи четырех кнопок, находящихся на блоке управления. Нажимом кнопок включается, через систему коммутирующих реле, двигатель постоянного тока, который помещается совместно с реле в оптической головке. При вращении двигатель поворачивает в ту или другую сторону одно из колец объектива при помощи надетых на них специальных тубу-

сов. В зависимости от того, с каким тубусом двигатель находится в зацеплении (при помощи электромагнитной муфты),

Рис. 7

происходит оптическое фокусирование изображения или диафрагмирование объектива. Смена объективов производится совместно с тубусами.

Установка ПТУ-3

Видеосигнал, полученный в передающей трубке, усиливается предварительным усилителем до напряжения размахом 0,3 в положительной полярности и подается по камерному кабелю ТКПК-24 через блок соединений в блок канала (рис. 8). Здесь на видеосигнал накладываются гасящие импульсы приемной трубки, после чего сигнал размахом 1 в подается на местное и выносное видеоконтрольные устройства.

Блок разверток помещается в камере. Синхронизация импульсов осуществляется ведущими импульсами строк и кадров. В камере также находится каскад, который формирует гасящие импульсы передающей трубки из ведущих импульсов строк и кадров.

Полученные гасящие импульсы заводятся на сетку мишени суперортикона. Синхронизирующие импульсы вырабатываются синхрогенератором, подобным синхрогенератору установок ПТУ-1 и ПТУ-2. Однако синхрогенератор ПТУ-3 не вырабатывает сигнала синхронизации приемников. Поэтому на видеоконтрольные устройства для синхронизации заводятся отдельно импульсы строк и кадров,

Управление камерой осуществляется с передней панели блока регулировок, где расположены все необходимые ручки. Питание камеры, блока канала и блока регулировок про- изводится от блока питания с электронной стабилизацией на-

Рис. 8

пряжения. Подача питания в камеру производится по кабелю ТКПК-24. Синхрогенератор и видеоконтрольные устройства питаются от своих выпрямителей.

Интересной особенностью установки ПТУ-3 является подача видеосигнала и ведущих импульсов строк по одному коаксиаль-

ному кабелю (рис. 9). Специальные импульсы строк длительностью в 1 мксек размахом до 10 в положительной полярности подаются с формирующего каскада \mathcal{J}_4 на катод входной лампы \mathcal{J}_2 видеоусилителя блока канала, запирая ее на время длительности импульса. Поскольку катод входной лампы видеоусилителя и катод выходной лампы \mathcal{J}_1 предварительного усилителя камеры соединены между собой кабелем, то эти

Рис. 10

импульсы одновременно запирают выходную лампу \mathcal{J}_1 предварительного усилителя. С катода лампы \mathcal{J}_1 строчные импульсы поступают на вход каскада \mathcal{J}_3 для синхронизации строчной развертки. При прекращении этих импульсов каскады \mathcal{J}_1 и \mathcal{J}_2 отпираются, и схема прохождения видеосигнала восстанавливается.

Оптическая головка камеры ПТУ-3 позволяет, как уже указывалось, производить дистанционную смену двух объективов, фокусировку изображения и диафрагмирование объективов. Принципиально оптическая головка построена так же, как и головка установки ПТУ-2.

Внешний вид установки ПТУ-3 приведен на рис. 10.

Передающая камера собрана на фигурном шасси, в центре которого вдоль оси размещены узлы передающей трубки, формирования гасящих сигналов, узел высокого напряжения и трансформатор накала. По бокам на невыпадающих винтах крепятся узлы разверток и предварительного усилителя. подключаемые в схему с помощью многоконтактных разъемов.

Блок канала, видеоконтрольное устройство и синхрогенератор имеют одинаковую базовую конструкцию, аналогичную блоку управления и синхрогенератору установки ПТУ-1. Блок питания и блок управления размещены в меньших упаковках. Все блоки смонтированы на пульте управления.

2. Новые направления разработок в области промышленного телевидения

Безусловно, что описанные промышленные телевизионные установки не являются совершенными. В дальнейшем предполагается их модернизация с целью упрощения и удешевления аппаратуры, повышения надежности в работе и улучшения ряда других эксплуатационных качеств. Ниже приводятся некоторые соображения, которые могут быть положены в основу модернизации.

Упрощение передающей камеры

Значительное улучшение аппаратуры может быть достигнуто снижением числа ламп. Особенно это относится к передающей телевизионной камере, которая обычно размещается в отдаленных и труднодоступных, а иногда опасных местах.

Предполагается вынести блок разверток из камеры установки ПТУ-3, благодаря чему камера уменьшится в размерах и станет более надежной в эксплуатации.

Во всех камерах число ламп в предварительных усилителях возможно снизить до 2—3 шт., а цепи коррекции входа перенести в пульт управления. В камере на суперортиконе смесь гасящих импульсов будет получена безламповым способом (как у камер на видиконе).

Чтобы получить возможность автоматически регулировать видеосигнал в зависимости от величины освещенности, необходимо использовать фотосопротивления, включаемые в цепи

нагрузки трубки и подачи напряжения на сигнальную пластину. Благодаря этому в большинстве случаев можно будет обойтись без дистанционного управления диафрагмой.

Применение печатных отклоняющих систем и полупроводниковых приборов будет способствовать дальнейшему снижению размеров и веса камер.

Наконец, желательно унифицировать оптическую головку для всех видов камер.

Обеспечение работы камеры на больших расстояниях

Как известно, при передаче в камеру на большие расстояния импульсных напряжений для строчной развертки получается значительный временной сдвиг между поступившим в блок управления видеосигналом и импульсами, накладываемыми в блоке управления (гасящими импульсами приемной трубки и сигналом синхронизации приемника).

Этот дефект устраняется, как уже указывалось, путем задержки формирования гасящего сигнала приемной трубки и сигнала синхронизации приемника. Однако эта задержка производится в настоящее время при помощи искусственных длинных линий, которые при наличии больших задержек получаются весьма громоздкими. В дальнейшем возможно использовать для этой цели новый метод. В видеосигнал в камере замешиваются строчные импульсы, которые при поступлении в пульт управления будут запускать в синхрогенераторе цепп формирования гасящих импульсов и сигнала синхронизации приемника. Таким образом, необходимая задержка будет получена автоматически без применения каких-либо вспомогательных цепей. Подобная схема особенно будет полезна в диспетчерских многокамерных установках, где необходимо беспрерывное переключение камер, находящихся на различных расстояниях от пульта управления.

Переход на питание от выпрямителей без электронной стабилизации

Питание современной телевизионной аппаратуры производится обычно от выпрямителей, имеющих электронную стабилизацию напряжения. Присущее этим выпрямителям очень низкое внутреннее сопротивление, измеряемое долями ома, облегчает борьбу с возможными паразитными связями по питанию.

Однако эти выпрямители имеют весьма низкий к.п.д. (всего 40—50%), в результате чего приходится применять

громоздкие трансформаторы и фильтры. Кроме того, значительно увеличивается количество ламп в выпрямителе.

Ряд экспериментов, проведенных для выяснения возможности работы без стабилизации, дал удовлетворительные результаты. Например, установка ПТУ-0 работает от обычного выпрямителя телевизора.

Как известно, с целью предотвращения паразитных связей через выпрямитель применяют в фильтрах большие емкости и увеличивают развязки в отдельных каскадах аппаратуры. Например, выпрямитель канала промышленного телевидения фирмы «Пай» содержит емкости в фильтре величиной 350 мкф. Блоки, которые потребляют выпрямленное напряжение (видеоусилители, блок разверток, синхрогенератор), развязываются по отдельности.

В связи с началом выпуска у нас электролитических конденсаторов большой емкости (150—800 $m\kappa\phi$) на рабочее напряжение 300 θ создание выпрямителей без электронной стабилизации является вполне реальным.

Повышение отношения сигнала к флуктуационным помехам

Серьезным препятствием самому широкому внедрению в народное хозяйство простой аппаратуры промышленного телевидения (на видиконе) является необходимость сравнительно большой освещенности на объектах. При снижении флуктуационных помех входной части предварительного усилителя в 3—4 раза чувствительность аппаратуры на существующем видиконе может быть значительно повышена — удовлетворительное изображение будет получаться при освещенности на объекте порядка 100—200 лк.

Чтобы снизить уровень флуктуационных помех, предполагается применить или новые лампы с высоким значением крутизны характеристик, или ввести так называемые каскодные схемы. Каскодным называется двухламповый усилитель, в котором первый каскад собран по схеме с заземленным катодом, а второй — с заземленной сеткой. Каскодные схемы получают сейчас широкое распространение. Такие телевизионные фирмы, как «Ар Си Эй», «Пай», «Грюндиг» и др., повсеместно применяют их в качестве входной части предварительных усилителей. Основным достоинством каскодных схем является достаточное усиление, получаемое при пониженном уровне флуктуационных помех, а также уменьшение вдвое необходимого количества анодных фильтров, так как каскады соединяются последовательно (попарно).

Можно ожидать, что при комбинации указанных методов удастся получить необходимое повышение отношения сигнала к помехам.

Диспетчерские установки

Одним из основных требований, которым должны удовлетворять диспетчерские телевизионные установки (ДТУ), является обеспечение возможности быстрой коммутации нескольких камер на одно приемное устройство. С этой целью предполагается создать специальные коммутаторы и блоки коммутации, с помощью которых можно будет производить необходимые переключения.

Для диспетчерских установок также большое значение может иметь работа в так называемом дежурном режиме, при котором анодные напряжения подаются только на время включения установки, а накальное напряжение (не более 60% по величине) подается постоянно. Поскольку время работы установки во включенном состоянии составляет небольшую часты всего времени работы в дежурном режиме, то, по некоторым данным, срок служб передающих трубок, в частности суперортикона, возрастает в 5—10 раз.

Общая модернизация аппаратуры

Кроме указанных выше усовершенствований в аппаратуре, возможен еще целый ряд изменений различного характера. Все промышленные телевизионные установки (в том числе и ПТУ-0) могут быть снабжены универсальной оптической головкой. В установке ПТУ-0 при замешивании в видеосигнал синхроимпульсов будет обеспечена последующая передача сигналов от видеоприемного устройства на радиочастоте, в результате чего появится возможность одновременной передачи изображения нескольким удаленным потребителям.

В установках ПТУ-1 и ПТУ-2 вполне возможна замена ламп кристаллическими приборами, в частности в синхрогенераторе. Благодаря этому управление всей установкой будет сосредоточено в одной упаковке, срок службы возрастет, а потребление энергии уменьшится.

Установка ПТУ-3 должна быть максимально унифицирована по отношению к другим ПТУ. Синхрогенератор, блок управления, генератор УКВ, блок питания можно сделать об-

щими для всех ПТУ.

Разработанные первые установки ПТУ по многим параметрам стоят на уровне современных образцов промышленных установок зарубежных фирм. В результате намеченной модер-

низации отечественная аппаратура промышленного телевидения станет более простой, дешевой и совершенной.

ЛИТЕРАТУРА

- 1. Состояние телевизионной техники за рубежом. Институт научной пнформации АН СССР, М., 1955.
 2. R. C. Webb. A note on the desing of constant resistance cathode ray deflection circuits. "RCA Review", September 1952, vol. XIII, No 3, pp. 335—343.

Статья поступила 17/XII 1956 г.

СОДЕРЖАНИЕ

	Стр.
А. П. Ангафоров. О трехпотенциальном режиме работы приемных трубок типа «хроматрон» .	3
Л. А. Атаджанов, К. Қ. Деркач. Преобра- зование соотношения яркостей сюжета в видеосигнал передающими телевизионными трубками.	18
Н. Н. Красильников. Анализ схем телевизионных предварительных усилителей с учетом структуры флуктуационного шума	25
М. А. Матвеев. Одноламповый генератор релак- сационных колебаний на пентоде	55
В. С. Полоник. Аппаратура промышленного телевидения	74

Редакционная коллегия просит читателей присылать свои отзывы, замечания и пожелания по материалам, публикуемым в сборнике '«Техника телевидения».

Укажите Вашу фамилию, место работы, должность. Отзывы направлять по адресу: Ленинград, Д-41, Марсово поле, 1, Л. О. Госэнергоиздата, ответственному редактору сборника «Техника телевидения» И. П. Захарову.

министерство радиотехнической промышленности ссср всесоюзный научно-исследовательский институт "ТЕХНИКА ТЕЛЕВИДЕНИЯ", вып. 24

 Редактор Н. Д. Харитонов

 Технический редактор А. А. Забродина
 Корректор Н. М. Дружинина

 м 13771
 Типография НИИ
 Заказ № 552

Министёрство радиотёхнической промышленности ссёр ВСЕСОЮЗНЫЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ

ТЕХНИКА ТЕЛЕВИДЕНИЯ

(НАУЧНО-ТЕХНИЧЕСКИЙ СБОРНИК)

ВЫПУСК 23

ГОСУДАРСТВЕННОЕ ЭНЕРГЕТИЧЕСКОЕ ИЗДАТЕЛЬСТВО

Москва

1957

Ленинград

РЕДАКЦИОННАЯ КОЛЛЕГИЯ

И. П. Захаров (отв. редактор), И. А. Алексеев, канд. техн. наук Н. С. Беляев, канд. техн. наук И. Л. Валик, Г. С. Вильдгрубе, А. В. Воронов, И. К. Гуревич, В. Б. Иванов, В. М. Лемни-Македон, В. П. Мандражи, канд. физ.-мат. наук Г. А. Морозов (зам. отв. редактора), З. М. Петрова, канд. техн. наук С. П. Пивоваров, В. И. Сардыко

«ТЕХНИКА ТЕЛЕВИДЕНИЯ», ВЫП. 23

Редактор Н. Д. Харитонов

 Технический редактор А. А. Забродина
 Корректор Н. М. Дружинина

 13580
 Типография НИИ
 Заказ 327

Канд. техн. наук А. Д. АРТЫМ

ПРИМЕНЕНИЕ ЧАСТОТНОЙ И ФАЗОВОЙ МОДУЛЯЦИИ ДЛЯ ПЕРЕДАЧИ ТЕЛЕВИЗИОННОГО СИГНАЛА ИЗОБРАЖЕНИЯ

В статье рассмотрены принципы осуществления частотной модуляции стабилизованной кварцем несущей частоты телевизионным сигналом изображения. Показано, что целесообразно применять фазовую или частотнофазовую модуляцию с относительно невысоким индексом модуляции. По сложности осуществления этот метод приблизительно соответствует амплитудной модуляции, но обеспечивает значительно большую помехозащищенность.

Введение

В силу известных преимуществ (высокая помехозащищенность, малые нелинейные искажения и т. п.) частотная модуляция получает все большее распространение, особенно в диапазоне у. к. в., где можно использовать относительно широкую полосу частот, необходимую для реализации высокой помехозащищенности. В частности, диапазон частот $f=50 \div 100$ меги широко используется для высококачественного радиовещания. При этом девиация частоты Δf обычно принимается равной 50 или 75 кги, т. е. относительная девиация частоты составляет $\frac{\Delta f}{f}=(0.5\div 1.5)\cdot 10^{-3}$, а диапазон модулирующих частот — от $F_{\text{мин}}=30$ ги до $F_{\text{макс}}=15\,000$ ги, т. е. $\frac{F_{\text{макс}}}{F_{\text{мин}}}$ 500. Трудности осуществления частотной модуляции возрастают с увеличением $\frac{\Delta f}{f}$ и $\frac{F_{\text{макс}}}{F_{\text{мин}}}$. Для телевизионного сигнала изображения эти величины в десятки или сотни раз больше, чем для звукового.

Основные положения работы доложены на конференции по обмену опытом эксплуатации телевизионных центров и техники телевизионного вещания, организованной Правлением Ленинградского, Украинского и Латвийского отделений научно-технического общества радиотехники и электросвязи им. А. С. Попова в феврале 1956 г. в Ленинграде.

Это обстоятельство делает методы частотной модуляции, разработанные для радиовещания, практически непригодными для телевидения.

В настоящей работе делаются попытки разрешить указанные трудности.

1. Методы осуществления широкополосной частотной модуляции

Частотная модуляция, как известно [Л. 1], может быть осуществлена либо путем непосредственного воздействия на частоту автогенератора, например с помощью реактивных ламп, либо путем модуляции фазы в каскадах, следующих за задающим автогенератором. В первом случае нестабильность параметров автогенератора и особенно модуляционного устройства приводит к уходу средней частоты модуляции. Для обеспечения ее высокой стабильности в данном случае необходима автоподстройка частоты, сложность которой возрастает с увеличением ширины полосы частот модуляции. Наличие такой автоподстройки существенно усложняет и ухудшает надежность работы системы.

Применение фазовой модуляции для получения частотной модуляции позволяет использовать стабильный (кварцевый) задающий генератор, что обеспечивает должную устойчивость средней частоты модуляции, при этом отпадает необходимость в автоподстройке. При использовании эффективных методов фазовой модуляции система в целом получается более простой и надежной в работе, чем в случае непосредственной частотной модуляции. По этой причине основное внимание в дальнейшем уделено методам фазовой модуляции.

Трудности осуществления частотной модуляции при помощифазовой (как и трудности осуществления автоподстройки при непосредственной частотной модуляции) возрастают с увеличением ширины полосы частот модуляции.

Фазовые модуляторы обеспечивают, как правило, относительно малый индекс модуляции (один или несколько радиан), и для его повышения применяется умножение частоты (и соответственно при этом умножается индекс модуляции). Естественно, что рабочая частота фазового модулятора должна быть выбрана пониженной в соответствующее число раз.

Требуемый от фазового модулятора максимальный индекс модуляции определяется относительной девиацией частоты $\frac{\Delta f}{f}$ и относительной шириной полосы модулирующих частот $\frac{F_{\text{макс}}}{F_{\text{мин}}}$.

Действительно, практически приемлемая минимальная величина несущей частоты $f_{\it мин} = f_0$ должна быть в $\beta = 5 \div 10$ раз больше наивысшей модулирующей частоты $F_{\it макс}$, т. е.

$$f_0 = \beta F_{Ma\kappa c} = (5 - 10) F_{Ma\kappa c}. \tag{1}$$

Заданная относительная девиация частоты на выходе передатчика $\frac{\Delta f}{f}$ на исходной частоте f_0 имеет то же самое значение, поскольку $\frac{\Delta f}{f}$ при умножении частоты не изменяется, отсюда

$$\Delta f_0 = \frac{\Delta f}{f} f_0 = \frac{\Delta f}{f} \beta_{Make}. \tag{2}$$

Максимальный индекс модуляции $\varphi_{\textit{макс}}$ для минимальной модулирующей частоты $F_{\textit{мин}}$ равен

$$\varphi_{\text{MAKC}} = \frac{\Delta f_0}{F_{\text{Muh}}} = \beta \frac{F_{\text{MAKC}}}{F_{\text{Muh}}} \frac{\Delta f}{f}. \tag{3}$$

Таким образом, максимальный индекс модуляции, требуемый от фазового модулятора, пропорционален заданной на выходе передатчика относительной дивиации частоты $\frac{\Delta f}{f}$ и относительной ширине полосы модулирующих частот $\frac{F_{\textit{макс}}}{F_{\textit{мин}}}$.

Например, для высококачественных радиовещательных передатчиков, как уже было указано, $\frac{\Delta f}{f}=(0.5\div 1.5) \ 10^{-3}$, а $\frac{F_{\text{макс}}}{F_{\text{мин}}}=500$, следовательно, согласно (3)

$$\varphi_{\text{макc}} = (5 \div 10) 500 \times \times (0.5 \div 1.5) 10^{-3} = 1.25 \div 7.5 \ paduah = 70 \div 430^{\circ}.$$

Простейшие методы фазовой модуляции обеспечивают обычно индекс модуляции в пределах одного радиана, поэтому для указанных передатчиков были разработаны специальные методы повышения индекса модуляции, использующие преобразователи частоты [Л. 2, 3], нелинейную амплитудную модуляцию [Л. 4, 5] или специальные электровакуумные приборы, как, например, фазитрон [Л. 6, 7]. В некоторых случаях увеличение индекса модуляции достигалось просто путем последовательного, «каскадного», включения нескольких простейших фазовых модуляторов [Л. 8, 9].

Для телевизионного сигнала величина $\varphi_{макс}$, определяемая из (3), составит тысячи радиан, и все указанные выше методы повышения индекса модуляции становятся практически непри-

емлемыми, поскольку они позволяют лишь довести индекс модуляции до нескольких радиан ценой существенного усложнения схемы фазового модулятора в сравнении с его простейшим типом

Ниже описан метод, позволяющий разрешить эту трудность.

2. Метод разделения спектра модулирующих частот [Л. 10]

Любой заданный большой индекс модуляции на выходе передатчика принципиально может быть получен путем выбора достаточно низкой исходной несущей частоты фазового модулятора f_0 и последующим ее умножением. Однако необходимое, с этой точки зрения, понижение несущей частоты f_0 ограничено вследствие того, что согласно выражению (1) эта частота связана с максимальной модулирующей частотой и лимитируется ею. Если все же выбрать столь низкую несущую частоту f_0 фазового модулятора, то наивысшая модулирующая частота не может уже быть принята равной $F_{\text{маке}}$, а будет ограничена некоторой величиной F_1 .

Если основываться на применении простейшего фазового модулятора, т. е. принять $\varphi_{\textit{макс}} = 0.5 \div 1$ paduan, то, при заданной относительной девиации частоты $\frac{\Delta f}{f}$, относительная полоса модулирующих частот согласно выражению (3) будет ограничена величиной

$$n = \frac{F_1}{F_{\text{MUH}}} = \frac{\varphi_{\text{MAKC}}}{\beta} \quad \frac{f}{f\Delta} = \frac{(0.5 \div 1)}{(5 \div 10)} \quad \frac{f}{\Delta f} \approx 0.1 \quad \frac{f}{\Delta f} \,. \tag{4}$$

Поскольку индекс модуляции уменьшается с увеличением модулирующей частоты, то частоте F_1 соответствует индекс в n раз меньше, чем частоте $F_{\mathit{мин}}$. Естественно, что если несущую частоту умножить в n раз, то индекс модуляции для F_1 станет равным индексу модуляции для $F_{\mathit{мин}}$ на прежней несущей. Однако, повысив в n раз несущую, можно увеличить в n раз максимальную модулирующую частоту, т. е. при помощи второго фазового модулятора, работающего на повышенной несущей, можно осуществить фазовую модуляцию в относительной полосе частот

$$n = \frac{F_2}{F_1} \approx 0.1 \frac{f}{\Delta f}.$$

Следовательно, введение одного добавочного простейшего фазового модулятора расширяет полосу модулирующих частот в n раз. Практически величина n измеряется обычно десятками, поэтому эффективность такого метода весьма велика.

Если частота $F_2 = nF_1 = n^2 F_{\text{мин}}$ все же меньше заданной частоты $F_{\text{макс}}$, то следует после еще одного умножения несущей частоты в n раз вновь ввести простейший фазовый модулятор, и т. д. Скелетная схема такого метода модуляции приведена на рис. 1.

При наличии m простейших фазовых модуляторов таким способом можно осуществить частотную модуляцию в полосе частот

$$\frac{F_{\text{Marc}}}{F_{\text{Muh}}} = n^m \approx \left(0, 1 \frac{f}{\Delta f}\right)^m. \tag{5}$$

Для оценки эффективности описываемого способа сравним его с другими способами.

Пусть, например $\frac{\Delta f}{f} = 10^{-3}$ (что приблизительно соответствует радиовещательной частотной модуляции), а самая низкая частота модуляции $F_{\text{мин}} = 50$ гц, тогда один простейший модулятор (m=1) согласно (3) обеспечит модуляцию в полосе частот

$$\frac{F_{\text{MARC}}}{F_{\text{MUH}}} = 0.1 \frac{f}{\Delta f} = \frac{0.1}{10^{-3}} = 100,$$

т. е

$$F_{\text{Marc}} = 100 F_{\text{Mur}} = 100 \cdot 50 = 5000 \text{ zy.}$$

При этом согласно (1) исходная несущая частота, на которой работает фазовый модулятор, должна быть выбрана равной

$$f_0 = (5 \div 10) \ F_{\text{макс}} = 40 \ кгц.$$

Если после умножения несущей частоты f_0 в n=0,1 $\frac{f}{\Delta f}=100$ раз, т. е. на частоте 4 мегц, ввести еще один простейший фазовый модулятор, то можно осуществить модуляцию частотами от 5 до $5\cdot 100=500$ кец, т. е. общая относительная полоса частот составит $\frac{500}{50}$ кец $\frac{500}{24}$ $\frac{600}{50}$ кец $\frac{100}{50}$, что соответствует формуле (5) [при n=100 и m=2].

Таким образом, для получения частотномодулированных колебаний в полосе частот от 50 гц до 500 кгц при выходной частоте 4 мггц в данном случае, кроме задающего (кварцевого) генератора, требуется два простейших фазовых модулятора и примерно 100-кратный умножитель частоты (6—7 каскадов удвоения частоты или 4—5 каскадов утроения и т. п.).

¹ Такие модуляторы, как показано ниже, удобно осуществить на одном или нескольких кристаллических диодах, применяя лампу (триод) лишь в качестве усилителя,

В целом для осуществления такого модуляционного устройства требуется 5—10 ламп.

При использовании обычных методов, т. е. без разделения спектра модулирующих частот, для обеспечения фазовой модуляции в той же полосе частот (от 50 гц до 500 кгц) исходная несущая должна быть выбрана согласно (1) равной 4 мггц. При этом, как следует из изложенного выше, модуляция в полосе частот от 5 кгц до 500 кгц может быть осуществлена с помощью простейшего фазового модулятора, т. е. на самой низкой частоте, равной 5 кгц, индекс модуляции составит 0,5—1 радиан. Для обеспечения модуляции на частоте 50 гц потребуется индекс модуляции в 100 раз больший, т. е. равный 50—100 радиан. При каскадном соединении простейших модуляторов [Л. 8, 9] потребуется 50—100 каскадов модуляции, вместо которых может быть взято 10—20 фазитронов [Л. 6, 7], и т. п.

Таким образом, в данном случае метод разделения спектра модулирующих частот дает упрощение схемы в несколько раз. Более того, учитывая сложность сопряжения ряда простых модуляторов, возрастающую с увеличением их числа, следует считать, что в данном случае метод разделения спектра модулирующих частот является единственным, который практически приемлем. Если полоса частот шире, чем в нашем примере (50 гц — 500 кгц), то преимущества описываемого метода становятся еще более значительными.

3. Согласование фазовых модуляторов

Определим условия, при которых амплитудно-частотная характеристика модуляционного устройства (см. рис. 1) равномерна, т. е. напряжение на выходе частотного дискриминатора, включенного после последнего фазового модулятора, не зависит от частоты модулирующего напряжения в заданной полосе от $F_{\textit{мин}}$ до $F_{\textit{макс}}$.

Для простоты выкладок предположим, что все фазовые модуляторы идентичны, т. е. имеют равную крутизну преобразования модулирующего напряжения в фазу колебаний напряжения высокой частоты S, выраженную в радианах на вольт. Кроме того, будем считать, что постоянные времени интегрирующих цепочек выбраны, как обычно, в соответствии с минимальными модулирующими частотами полос, в которых они работают, т. е.

$$F_{Man} R_1 C_1 = F_1 R_2 C_2 = \ldots = F_{k-1} R_k C_k = a,$$
 (6)

причем $a\gg 1$, так что коэффициенты передачи цепочек можно считать равными

$$K_{u_{1}} = \frac{1}{1 + j 2 \pi F R_{1} C_{1}} = \frac{1}{1 + j 2 \pi a \frac{F}{F_{MUM}}} \approx \frac{F_{MUM}}{j 2 \pi a F};$$

$$K_{u_{2}} \approx \frac{F_{1}}{j 2 \pi a F};$$

$$K_{u_{3}} \approx \frac{F_{2}}{j 2 \pi a F}.$$
(7)

Пусть входное модулирующее напряжение синусоидально, т. е. $e_{sx}=A\sin \Omega t$, или, в комплексной форме, $E_{sx}=A\,e^{j\,\Omega\,t}==A\,e^{j\,\Omega\,\pi\,F\,t}$, где амплитуда A постоянна. Напряжение на

Рис. 1

входе первого фазового модулятора, после прохождения E_{sx} через полосовой фильтр с комплексным коэффициентом передачи K_1 (j $\mathfrak D$) и интегрирующую цепочку R_1 C_1 , равно

$$E_{1} = E_{\theta x} K_{1} (j \Omega) K_{u_{1}} = A e^{j2\pi F t} K_{1} (j \Omega) \frac{F_{MUH}}{j 2\pi a F}.$$
 (8)

Фазовый модулятор преобразует это напряжение в изменение фазы высокой частоты, равное

$$\varphi_1(t) = SE_1 = SAK_1(j\Omega) \frac{F_{MUH}}{a} e^{j2\pi Ft}. \tag{9}$$

Этому изменению фазы соответствует изменение частоты

$$\Delta \omega_{1}(t) = \frac{d \varphi_{1}(t)}{dt} = S A K_{1} (j \Omega) \frac{F_{Muh}}{a} e^{j2 \pi F t}.$$
 (10)

В дальнейшем частота колебаний ω_1 , а следовательно, и ее изменение $\Delta\,\omega_1\,(t)$ умножаются в $n_1\,n_2\ldots\,n_{k-1}$ раз, поэтому напряжение на выходе частотного дискриминатора равно

$$U_{18MX} = \sigma \Delta w_1(t) n_1 n_2 \dots n_{k-1} = S \sigma A K_1(j\Omega) \frac{F_{MUR}}{a} e^{j2\pi Ft} n_1 n_2 \dots n_{k-1} (11)$$

где δ — крутизна характеристики частотного дискриминатора. Для второго фазового модулятора нетрудно получить аналогично

$$U_{28MX} = S \circ AK_2(j\Omega) \frac{F_1}{a} e^{j2\pi Ft} n_2 n_3 \dots n_{k-1}.$$
 (11a)

Для последнего фазового модулятора

$$U_{k \text{ sux}} = S \circ AK_u (j \Omega) \frac{F_{n-1}}{a} e^{j2\pi Ft} . \tag{116}$$

Как было отмечено выше, самые низкие модулирующие частоты фазовых модуляторов находятся в отношении, равном коэффициенту умножения частоты умножителя, включенного между этими фазовыми модуляторами, т. е.

$$F_{MUH} = \frac{F_1}{n_1} = \frac{F_2}{n_1 n_2} = \dots = \frac{F_{n-1}}{n_1 n_2 \dots n_{n-1}}.$$
 (12)

Учитывая это соотношение, для полного выходного напряжения частотного дискриминатора на основании выражений (11) можно записать

$$U_{\theta \omega x} = U_{1\theta \omega x} + U_{2\theta \omega x} + \dots + U_{n \theta \omega x} = S \circ A \frac{F_{n-1}}{a} e^{j_{2\pi} Ft} \left[K_{1}(j\Omega) + K_{2}(j\Omega) + \dots + K_{k}(j\Omega) \right].$$
(13)

Комплексный коэффициент передачи системы от входа модулирующего напряжения к выходу частотного дискриминатора равен

$$K(j\Omega) = \frac{U_{\theta blx}}{E_{\theta x}} = \frac{U_{\theta blx}}{Ae^{j2\pi Ft}} = S \circ \frac{F_{n-1}}{a} \left[K_1(j\Omega) + K_2(j\Omega) + \dots + K_k(j\Omega) \right].$$
(14)

 $^{^1}$ Умножители частоты представляют собой обычно резонансные каскады высокой частоты, эквивалентные для огибающей соответствующим низкочастотным каскадам [Л. 11]. Будем считать, что изменения амплитудно- и фазочастотных характеристик огибающих учтены в формулах (11) в множителях K_1 (j Ω), K_2 (j Ω) и т. д,

Таким образом, равномерность частотной характеристики модуляционного устройства достигается в том случае, когда сумма комплексных коэффициентов передачи полосовых фильтров постоянна в заданной полосе частот.

К низкочастотному и высокочастотному срезам этих полосовых фильтров не предъявляется жестких требований. В частности, ослабление низких частот необходимо лишь для того, чтобы напряжение на входе фазового модулятора с понижением частоты модулирующего напряжения не могло превысить величины, соответствующей максимальной девиации фазы,

которую способен обеспечить модулятор. В противном случае возникает эффект ограничения модулирующего напряжения, приводящий к появлению нелинейных искажений. Такое ослабление низких частот может быть достигнуто соответствующим выбором параметров интегрирующих цепочек. Обычно для этого достаточно выбрать в формуле (6) величину a равной $\frac{1}{2\pi}$.

Ослабление высоких модулирующих частот необходимо постольку, поскольку модуляция частотами, значительно превышающими максимальную частоту $F_{\textit{макс}}$, определяемую выражением (1), приводит к появлению нелинейных искажений, увеличивающихся с повышением частоты модуляции. При выборе величины $\beta \geq 10~s~(1)$ малые нелинейные искажения обеспечиваются практически при ослаблении высоких частот, даваемом цепочкой интегрирующего типа. Рис. 1 в этом случае принимает вид, показанный на рис. 2.

Если выбрать постоянные времени таких RC цепочек из условий

 $F_1 R_1' C_1' = F_2 C_2' R_2' = \dots = F_k R_k' C_k' = \frac{1}{2\pi}$ (15)

и одновременно положить $a=\frac{1}{2\pi}$, то нетрудно видеть, что амплитудно-частотная характеристика модуляционного устройства $K(j|\Omega)$ получается равномерной с высокой степенью точности.

Действительно, если в формулах для коэффициентов передачи интегрирующих цепочек (7) не пренебрегать единицей в знаменателе, то при $a=\frac{1}{2\pi}$, вместо приближенной формулы (14), получим точную формулу

$$K(j\Omega) = S \sigma 2\pi F_{n-1} \left[K_1(j\Omega) \frac{j \frac{F}{F_{MUH}}}{1 + j \frac{F}{F_{MUH}}} + K_2(j\Omega) \frac{j \frac{F}{F_1}}{1 + j \frac{F}{F_1}} + K_2(j\Omega) \frac{j \frac{F}{F_1}}{1 + j \frac{F}{F_{k-1}}} \right].$$

$$(16)$$

В этой формуле величины $K_m(j\,\Omega)$ в соответствии с (15) следует принять равными

$$K_1(j\Omega) = \frac{1}{1 + j 2\pi F R_1' C_1'} = \frac{1}{1 + j \frac{F}{F}};$$
 (16a)

$$K_2(j\Omega) = \frac{1}{1 + j 2\pi F R_2' C_2'} = \frac{1}{1 + j \frac{F}{F_2}};$$
 (166)

и т. д., после чего (16) принимает вид

$$K(j\Omega) = S \circ 2\pi F_{k-1} \left[\frac{j\frac{F}{F_{MUR}}}{1+j\frac{F}{F_{MUR}}} \frac{1}{1+j\frac{F}{F_{1}}} + \frac{j\frac{F}{F_{1}}}{1+j\frac{F}{F_{2}}} \frac{1}{1+j\frac{F}{F_{2}}} + \dots \frac{j\frac{F}{F_{k-1}}}{1+j\frac{F}{F_{k-1}}} \frac{1}{1+j\frac{F}{F_{k}}} \right]. \quad (17)$$

Поскольку согласно (12) частоты F_{mun} , F_1 , F_2 и т. д. сильно отличаются друг от друга, так что $F_m = n_m F_{m-1}$, где n_m —большие коэффициенты умножения порядка нескольких десятков, то

для любой частоты F можно получить достаточно точное значение $K(f\Omega)$, удерживая в квадратных скобках формулы (17) одно или два слагаемых. Так, например если $F_{\textit{мин}} \ll F \ll F_1$, то всеми слагаемыми можно пренебречь, за исключением первого, которое можно считать равным единице; подобно этому, при $F_1 \ll F \ll F_2$ лишь второе слагаемое дает единицу, а остальные — нуль, и т. д. В некоторых областях два смежных слагаемых могут иметь примерно равные значения и следует учитывать их оба. Однако они в сумме также дают единицу. Например, в том случае, когда первое и второе слагаемые — одного порядка, имеет место неравенство $F_{\textit{мин}} \ll F \ll F_2$ и тогда эти слагаемые принимают вид

$$\frac{\frac{F}{F_{\text{MUR}}}}{1+j\frac{F}{F_{\text{BUR}}}} \frac{1}{1+j\frac{F}{F_1}} \approx \frac{1}{1+j\frac{F}{F_1}} \text{ M} \frac{j\frac{F}{F_1}}{1+j\frac{F}{F_1}} \frac{1}{1+j\frac{F}{F_2}} \approx \frac{i\frac{F}{F_1}}{1+j\frac{F}{F_1}}.$$

Очевидно, что сумма их равна единице.

Таким образом, формула (17) для любой частоты F, отвечающей неравенству $F_{\textit{мин}} \ll F \ll F_{\textit{h}} = F_{\textit{макс}}$ может быть заменена формулой

$$K(j\Omega) = S \circ 2 \pi F_{k-1}. \tag{18}$$

Лишь на краях рабочих диапазонов, где $F \approx F_{\text{мик}} \ll F_1$ или $F \approx F_{\text{макс}} \gg F_{\kappa-1}$, выражение в квадратных скобках в формуле (17) отличается от единицы, и эта формула принимает вид

$$K(j\Omega) = S \circ 2\pi F_{k-1} \frac{j\frac{F}{F_{\text{mun}}}}{1 + j\frac{F}{F_{\text{mun}}}}$$
(19)

ДЛЯ

$$F \approx F_{MUH} \ll F_1$$

И

$$K(j\Omega) S \sigma 2\pi F_{k-1} \frac{1}{1+j\frac{F}{F_n}} = S \sigma 2\pi F_{k-1} \frac{1}{1+j\frac{F}{F_{Make}}}$$
 (20)

для $F \approx F_{\text{макс}} \gg F_{n-1}$.

Частотные искажения, выражаемые формулами (19) и (20), не являются специфическими для метода разделения спектра модулирующих частот. Такие же искажения имеют место и при обычной фазовой модуляции, т. е. в том случае, когда спектр модулирующих частот не разделен. Это видно, в част-

ности, из формулы (17), если в ней принять число полос k=1, т. е. $F_{\text{макс}} = F_k = F_1$, и сохранить, соответственно, одно слагаемое в квадратной скобке. Для этого случая формулы (18), (19) и (20), очевидно, также остаются в силе.

Таким образом, в отношении амплитудо- и фазочастотной характеристики для модулирующего сигнала (при надлежащем подборе параметров интегрирующих цепочек) метод разделения спектра модулирующих частот эквивалентен обычному методу фазовой модуляции.

Схема рис. 2 может быть упрощена, если учесть, что обычно умножители частоты, включенные после фазовых модуляторов, представляют собой каскады, у которых в качестве анодных нагрузок использованы резонансные контуры. Каждый из таких контуров ослабляет боковые частоты модулированного колебания так же, как ослабляет, их интегрирующая цепочка с постоянной времени $\tau = R'C'$, равной постоянной времени контура $\tau = \frac{2L_\kappa}{r_k} = 2R_\kappa \, C_k^*$. Между двумя смежными фазовыми

модуляторами (рис. 1 и 2) может быть включено несколько каскадов умножения частоты, несущая частота которых возрастает по мере ее умножения. Первый каскад умножения, работающий на самой низкой несущей частоте, обладает, очевидно, при прочих равных условиях и наиболее узкой полосой пропускания, т. е. наибольшей постоянной времени контура.

Полосы пропускания остальных каскадов умножения частоты возрастают в соответствии с умножением частоты, и определяющей является полоса пропускания первого каскада умножения частоты. Если принять постоянную времени контура этого каскада равной постоянной времени R'C' соответствующей интегрирующей цепочки, выбранной согласно равенству (15), то надобность в этой цепочке отпадает, поскольку ее функции будет выполнять контур. Добротность этого контура нетрудно определить по величине β , заданной условием (1).

Так, например, для первого фазового модулятора интегрирующая цепочка $R_1'C_1'$, как видно из формулы (16а), на максимальной для этого модулятора частоте F_1 должна давать ослабление в $\sqrt{2}$ раз. Контур дает такое ослабление боковых частот, соответствующих модулирующей частоте F_1 , в том слу-

^{*} Этот эффект, как известно [Л. 12], справедлив для амплитудной модуляции. В данном случае важен случай фазовой модуляции с индексом, который значительно меньше единицы. Спектр такой фазовой модуляции отличается от спектра амплитудной — практически лишь поворотом фазы несущей частоты на 90°; поэтому для такой фазовой модуляции упомянутый эффект также справедлив.

чае, когда его полоса пропускания равна $\delta f = 2F_1$. Если коэффициент умножения для первого каскада умножения частоты, содержащего этот контур, равен n, то несущая частота, на которой работает каскад, равна $f = f_0 n$. Добротность контура соответственно определится как отношение несущей частоты к полосе пропускания.

Учитывая (1), имеем

$$Q = \frac{f}{\sigma f} = \frac{f_0 n}{2 F_1} = \frac{n}{2} \frac{f_0}{F_1} = \frac{\beta_n}{2}.$$
 (21)

В этом случае схема включения фазового модулятора принимает вид, показанный на рис. 3. Наличие анодного контура первого умножителя частоты с добротностью $Q=\frac{\beta_n}{2}$ делает

излишней интегрирующую цепочку $R_1'C_1'$ (см. рис. 2). Последующие каскады умножения частоты работают на более высоких несущих частотах, имеют соответственно более широкую полосу пропускания и вызывают незначительные частотные искажения модулирующего напряжения в рабочей полосе частот данного фазового модулятора. В значительной мере эти искажения могут быть компенсированы введением емкости C_1'' (пунктир на рис. 3), если подобрать постоянную времени R_1C_1'' равной постоянной времени контура второго умножителя частоты или несколько больше этой постоянной (с учетом влияния последующих умножителей частоты).

Таким образом, согласование фазовых модуляторов достигается без введения специальных, сколько-нибудь сложных корректирующих цепей.

4. Применение фазовой модуляции

Основным преимуществом частотной модуляции в сравнении с амплитудой является ее высокая помехозащищенность, повышающаяся с увеличением индекса модуляции. При частотной модуляции, когда девиация частоты Δf для всех модулирующих частот F принимается одна и та же, индекс модуляции $\varphi = \frac{\Delta f}{F}$ уменьшается с увеличением F. Вследствие этого влияние помехи пропорционально ее частоте. При равномерном

распределении помех в рабочем диапазоне частот спектральная плотность напряжения помехи $U_m = f(F)$ на выходе частотного детектора имеет вид наклонной прямой (прямая 1 на рис. 4). По эффективному значению напряжения шумов выигрыш помехозащищенности при частотной модуляции, как известно [Л. 13], равен

$$q_{um} = \frac{\sqrt{3} \Delta f}{F_{makc}}.$$
 (22)

При фазовой модуляции выигрыш равен индексу модуляции, не зависящему от модулирующей частоты, т. е.

$$q_{\phi M} = \varphi = \frac{\Delta f}{F_{Ma\kappa c}}.$$
 (23)

Таким образом, частотная модуляция при одних и тех же Δf и $F_{\mathit{макc}}$ обеспечивает в $\sqrt{3}$ большую помехозащищенность, чем фазовая. Однако практически это различие значительно меньше. Это объясняется тем, что, поскольку наиболее высокие частоты спектра телевизионного (и звукового) сигнала выражены слабо, допустимо и практически целесообразно при частотной модуляции на передающей стороне осуществить подъем высоких модулирующих частот («примфазис») путем введения дифференцирующей цепочки. На приемной стороне вводится соответственно интегрирующая цепочка, вследствие

чего влияние помех на высоких частотах ослабляется (кривая 2 на рис. 4).

Благодаря подъему высоких частот на передающей стороне индекс модуляции перестает падать с увеличением частоты и частотная модуляция превращается в фазовую. При передаче телевизионного сигнала подъем высоких частот допустим в значительной части его спектра (от частоты F_{cp} до частоты $F_{макс}$ на рис. 2), поэтому упомянутый выше выигрыш в $\sqrt{3}$ раз, даваемый частотной модуляцией, имеет место лишь в части спектра частот (в области от 0 до F_{cp} на рис. 2), и общий выигрыш значительно меньше $\sqrt{3}$, т. е. практически не имеет существенного значения.

В то же время применение фазовой модуляции дает весьма существенное упрощение схемы модуляции. Действительно, при фазовой модуляции индекс модуляции, не зависящий от частоты F, может быть принят равным индексу модуляции на некоторой средней частоте F_{cp} , соответствующей началу подъема высоких частот при частотной модуляции, т. е. границе перехода ее в фазовую (рис. 4). Таким образом, индекс, требуемый при фазовой модуляции, равен

$$\varphi_{\phi} = \frac{\Delta f}{F_{cp}} \,. \tag{24}$$

Если частота F_{cp} значительно меньше $F_{макc}$, то она может быть все же значительно больше $F_{мин}$, и максимальный индекс модуляции при частотной модуляции, равный

$$\varphi_{\textit{Makc}} = \frac{\Delta f}{F_{\textit{Mun}}}, \qquad (25)$$

может оказаться во много раз больше, чем φ_{ϕ} . Соответственно потребуется значительно более сложный фазовый модулятор. Так, например, если $F_{\text{макс}} = 6$ мггц, а $F_{\text{сp}} = 0.5$ $F_{\text{макс}} = 3$ мггц,

Так, например, если $F_{\text{макс}} = 6$ мггц, а $F_{\text{ср}} = 0.5$ $F_{\text{макс}} = 3$ мггц, то по эффективному значению напряжения помех фазовая и частотная модуляции обеспечат, практически, одинаковую помехозащищенность. В то же время, если $F_{\text{мин}} = 50$ гц, то согласно формулам (24) и (25) при частотной модуляции потребуется обеспечить получение индекса модуляции в $\frac{3}{50} \frac{\text{мигц}}{\text{гц}} = 60\,000$ раз больше, чем при фазовой. Соответственно потребуется более сложное модуляционное устройство.

Это заставляет обратить большее внимание на вопрос использования фазовой модуляции для передачи телевизионного сигнала.

¹ Это замечание относится к эффективному значению напряжения помех. Если наиболее опасна низкочастотная помеха, то частотная модуляция может дать значительно больший эффект, чем фазовая.

² Техника телевидения, в. 23

К педостаткам, связанным с применением фазовой модуляции, можно отнести неудобства, возникающие при приеме модулированных колебаний. Для детектирования таких колебаний при больших индексах модуляции ($\phi \gg 1$) единственным, практически приемлемым является частотный детектор. При применении такого детектора напряжение на его выходе, как и напряжение шумов (кривая 1 на рис. 4) уменьшается по мере уменьшения модулирующей частоты F.

В приведенном выше примере для частоты $F_{\text{мин}}$ при фазовой модуляции требовался индекс в 60 000 раз меньше, чем при частотной. Соответственно напряжение на выходе частотного детектора на частоте $F_{\text{мин}}$ при фазовой модуляции будет ослаблено в 60 000 раз по сравнению с частотной модуляцией. Коррекция этого ослабления легко достигается введением простейшей корректирующей цепи, однако необходимость дополнительного усиления низких частот в 60 000 раз представляет

некоторое неудобство.

В заключение данного параграфа заметим, что возможен также компромиссный вариант, представляющий собой комбинацию частотной и фазовой модуляции. В этом варианте лишь на наиболее низких частотах индекс модуляции не зависит от частоты, т. е. имеет место фазовая модуляция. На более высоких частотах индекс модуляции уменьшается с увеличением частоты и сохраняется пеизменной девиация частоты, т. е. имеет место частотная модуляция. Наиболее высокие частоты, как и при обычной частотной модуляции, могут быть подчеркнуты (введением «примфазиса»), т. е. на этих частотах вновь будет иметь место фазовая модуляция.

5. Методы осуществления фазовой модуляции

В описанном выше методе разделения спектра модулирующих частот (рис. 1, 2, 3) важным, с практической точки зрения, является выбор наиболее приемлемых схем фазовых модуляторов, от которых зависит качество модуляции и сложность схемы. С этих точек зрения целесообразными представляются фазовые модуляторы на диодах (кристаллических детекторах). Преимуществом таких модуляторов является малая зависимость качества модуляции от разброса параметров диодов в том случае, когда их прямое сопротивление много меньше, а обратное — много больше сопротивления нагрузки, что обычно всегда можно обеспечить.

Кроме того, ценой увеличения числа диодов, без существенных усложнений схемы, нетрудно добиться значительного повышения индекса модуляции (порядка $90-120^{\circ}$ на диод) [Л. 5], что значительно эффективнее других схем модуляторов,

описанных в литературе [Л. 2, 3, 8, 9 и др.]. Далеко не полное освещение вопросов о таком применении диодов и о получении больших индексов фазовой модуляции содержится лишь в одной работе [Л. 4]. В силу этих соображений целесообразно развить эти вопросы.

Широко известен [Л. 14, 15 и др.] метод преобразования амплитудной модуляции в фазовую. В одном варианте этого метода два напряжения несущей частоты, сдвинутые по фазе на 90° и имеющие в начальный момент величины SA_0 и SB_0 (рис. 5), противотактно модулируются на амплитуде, благо-

даря чему результирующий вектор SO поворачивается на угол φ , переходя в положение OO' или OO'' [Л. 16]. В другом варианте вектор напряжения несущей частоты (SO на рис. 5) складывается с модуляционным вектором (OO' или OO''), полученным с помощью фазовращателя и балансного модулятора. Основным недостатком этих методов является их относительная сложность (требуется несколько ламп) и ограниченный максимальный индекс модуляции ($+45^\circ$).

Некоторое упрощение может быть достигнуто, если вектор несущей частоты SA (рис. 6) складывать с вектором AO, сдвинутым по фазе относительно SA на угол α и модулируемым по амплитуде относительно средней величины AO. Изменение величины вектора AO (например, до величины AO' или AO'') вызывает соответствующий поворот результирующего вектора SO по фазе. Таким образом, в данном случае требуется лишь один амплитудный модулятор, в качестве которого может быть использован, в частности, кристаллический диод. Выбирая угол α больше 135°, можно обеспечить фазовую модуляцию в пределах более $\pm 45°$.

Наиболее приемлемые с практической точки зрения схемы фазового модулятора приведены на рис. 7 и 8.

В схеме рис. 7, а немодулируемое напряжение (вектор SA на рис. 6) через емкость C_2 непосредственно подается на нагрузочный контур LC, а модулируемое (вектор AO на рис. 6) претерпевает фазовый сдвиг в цепочке C_1 , C_g , R_g порядка 45° и фазовый сдвиг на 180° в лампе. Параметры C_2 , C_2 , C_g , R_g и др. выбираются так, чтобы суммарный фазовый сдвиг (угол а на рис. 6) был порядка 135° . Влияние проходной емкости C_{ag} (рис. 7, a) до некоторой степени может быть компенсировано изменением поворота фазы в цепочке C_1 , C_g , R_g , однако на весьма высоких несущих частотах все же целесообразно применить пентод с малой емкостью C_{ag} или триод с заземленной сеткой (рис. 7, δ).

Для модуляции удобно также использовать диод (рис. 8), угол отсечки тока через который, т. е. модуляция тока высокой частоты, изменяется путем изменения напряжения на аноде диода с помощью лампы, работающей в этом случае в классе «А». Сопротивление R_2 , с помощью которого создается запирающее напряжение на диоде, выбирается таким, чтобы в режиме несущей частоты ток первой гармоники через диод составлял половину максимального, имеющего место при отпертом полностью диоде. В отличие от схем рис. 7, схема рис. 8 обеспечивает полную развязку анодной и катодной цепей лампы.

Увеличивая в схеме рис. 8 число диодов, подключаемых к фазовращающим цепочкам, можно соответственно увеличить девиацию фазы. Принцип получения больших девиаций фазы рассмотрим, на примере схемы, использующей четырехфазное напряжение высокой частоты (рис. 9).

Фазовращатель R_{ϕ_1} , C_{ϕ_1} , R_{ϕ_2} , C_{ϕ_2} позволяет, как известно, получить четырехфазное напряжение (рис. 10,a). Напряжения, запирающие диоды, подобраны с помощью сопротивлений R_1 — R_5 так, что по мере повышения напряжения на катоде

лампы последовательно отпираются диоды от D_1 до D_5 . При малом постоянном напряжении на катоде лампы все диоды заперты и ток высокой частоты, попадающий в катодную цепь лишь через два сопротивления 2R, характеризуется вектором OP_1 (рис. 10, 6).

С повышением напряжения на катоде постепенно отпирается диод D_1 и в катодной цепи появляется новый ток высокой частоты, характеризуемый вектором OC'. Вектор OC', складываясь с вектором OP_1 , дает результирующий вектор OP_2 со сдвигом фазы, равным φ (рис. $10, \mathfrak{s}$). В тот момент, когдадиод D_1 отопрется полностью, результирующий вектор будет в положении OP_3 , симметричном начальному положению OP_1 относительно вектора OB.

При дальнейшем повышении напряжения на катоде лампы отпирается диод D_2 и аналогичным образом фазовый сдвиг увеличивается еще на 90° и т. д. Каждый диод позволяет увеличить фазовый сдвиг на 90°, так что схема рис. 9 позволяет получить девиацию фазы 450° ($\pm 225^{\circ}$).

 $^{^1}$ Заметим, что фазитрон [Л. 6, 7], представляющий собой весьма сложный вакуумный прибор, требующий также питания многофазным напряжением высокой частоты, позволяет обеспечить фазовый сдвиг лишь около $\pm 180^\circ$.

В режиме отсутствия модуляции начальное смещение катода лампы должно быть выбрано, очевидно, так, чтобы диоды D_1 , D_2 были отперты диоды D_4 , D_5 — заперты а диод

 D_3 — отперт наполовину.²

При проектировании схемы рис. 9 следует иметь в виду следующее. Для того чтобы сопротивления R в процессе модуляции не изменяли существенно параметров фазовращателя и токи в цепях диодов не влияли друг на друга, эти сопротивления желательно выбирать значительно большими, чем R_{ϕ_1} и R_{ϕ_2} . С другой стороны, входное сопротивление лампы, равное примерно величине, обратной ее крутизне, желательно иметь значительно меньше, чем R.

Можно провести аналогичное рассмотрение для схемы, использующей трехфазное напряжение (т. е. когда вместо четырех векторов на рис. 10, а взято три вектора со сдвигом фаз 120°). В этом случае каждый диод будет увеличивать девиацию фазы не на 90°, а на 120°, но модуляция будет с пескелько большими нелинейными искажениями. Наоборот, пятифазная система обеспечит меньшие нелинейные искажения, но девиация фазы на диод уменьшится до 72°, и т. п.

6. Примеры проектирования схем для радиопередачи телевизионного сигнала с помощью частотной и фазовой модуляции

Для выбора вида модуляции (частотной или фазовой) следует учесть, что, как уже было показано в параграфе 5, фазовая и частотная модуляции в практических условиях по отношению к эффективному значению напряжения помех обеспечивает примерно одинаковую помехоустойчивость, хотя при частотной модуляции значительно слабее выражены помехи наиболее низких частот, на которых индекс модуляции полезного сигнала весьма велик.

Тем не менее, согласно формуле (23), выбирая достаточно большой индекс модуляции (φ), можно обеспечить необходимый выигрыш помехоустойчивости в сравнении с амплитудной модуляцией (q_{ϕ_M}).

Для практики существенно то, что при частотной модуляции возбудитель передатчика значительно сложнее, чем при фазовой, в то время как приемное устройство при фазовой мо-

 $^{^2}$ C точки зрения уменьшения нелинейных искажений при модуляции, целесообразно выбрать запирающие напряжения на диодах так, чтобы рабочие участки диодов частично перекрывались, т. е. например диод D_2 начинал бы отпираться несколько раньше, чем окончательно отопрется диод D_1 .

дуляции несколько сложнее, так как требуется дополнительное усиление видеосигнала после частотного дискриминатора.

Из этого следует, что фазовая модуляция наиболее приемлема в тех случаях, когда передатчик должен быть простым и

портативным, а приемник можно несколько усложнить.

Частотная модуляция рациональна лишь тогда, когда схему модуляции в передатчике допустимо значительно усложнить, несколько упростив приемник, что может быть целесообразно в тех случаях, если к приемнику предьявляются весьма жесткие требования по габаритам или если один передатчик обслуживает много приемников, которые должны быть портативны и просты.

Можно предполагать, что в большинстве случаев фазовая модуляция более приемлема с экономической точки зрения.

Для иллюстрации сказанного рассмотрим применение обоих видов модуляции в конкретном случае.

. В качестве исходных данных для проектирования примем следующее:

а) несущая частота на выходе передатчика f=400 меги; 6) полоса пропускания передатчика и приемника $\Delta f_n=24$ меги;

в) спектр модулирующих частот от $F_{\text{мин}} = 50$ ги до $F_{\text{макс}} = 6$ мгги.

Кроме того, будем считать, что наиболее высокочастотные компоненты модулирующего сигнала выражены слабее остальных, а поэтому на наивысшей частоте модуляции уровень их не превышает уровня, соответствующего 50%-ной глубине модуляции.

Рассмотрим вначале, как более простой, вариант схемы с фазовой модуляцией.

Исходную несущую частоту f_0 в соответствии с (1) целесообразно принять порядка $10F_{\textit{макс}}$. Удобно принять $f_0 = \frac{f}{6} = \frac{400}{6} = 66,6$ (6) мгги, с тем чтобы, применяя один каскад удвоения и один каскад утроения частоты модулированных колебаний, довести затем несущую частоту до нужного значения (400 мгги).

Наиболее приемлемой схемой модулятора, позволяющей использовать триод в качестве модуляторной лампы, является схема рис. 7. Связь анодной и катодной цепей этой лампы с предыдущим каскадом удобно осуществить так, как указано

При модуляции звуковым сигналом, обладающим аналогичным свойством, этим пользуются для повышения помехоустойчивости путем искусственного подъема верхних частот при модуляции («примфазиса») с соответствующим ослаблением этих частот на приемной стороне («деэмфазисом»).

на рис. 11. Фазовый сдвиг между напряжениями, подаваемыми в катодную и анодную цепи, целесообразно выбрать равным 150° (угол α на рис. 6). При этом можно получить девиацию фазы (ϕ), как это видно из рис. 6, в пределах ± 60 °, т. е. порядка одного радиана. Получение более значительных девиаций фазы связано с большим нарастанием нелинейных искажений, поскольку зависимость фазового сдвига ϕ от модулирующего напряжения (вектор AO на рис. 6) становится резко

нелинейной. Кроме того, существенно уменьшается выходное напряжение при отсутствии модуляции (вектор SO на рис. 6). Автотрансформаторная связь с катодной цепью \mathcal{J}_2 , показанная на рис. 11, обеспечивает сдвиг фаз в 180°. Для получения требуемого фазового сдвига в 150° необходимо, чтобы разность фазовых сдвигов в цепочках $C_\kappa\,R_\kappa$ и $C_a\,Z_{\alpha\,2}$ (где $Z_{\alpha\,2}$ —эквивалентное сопротивление контура L_2C_2) составляла бы 30°. Обычно напряжение U_1 на контуре L_1C_1 значительно больше напряжения U_2 на контуре L_2C_2 . В этом случае сопротивление емкости C_2 на несущей частоте значительно меньше эквивалентного сопротивления контура L_2C_2 , которое при этом активно и равно $R_{\alpha,2}$. Фазовый сдвиг в цепи $C_a\,R_{\alpha,2}$ в этом случае близок к 90°, следовательно, фазовый сдвиг в цепи $C_\kappa\,R_\kappa$ должен быть порядка 60°, т. е. на несущей частоте $\frac{1}{\omega \, C_{\kappa}} = 2 \, R_{\kappa}',$ где R_{κ}' — сопротивление R_{κ} , шунтированное входным сопротивлением лампы. Поскольку последнее при модуляции изменяется, то, чтобы избежать влияния этого изменения, целесообразно выбрать R_{κ} достаточно малым, практически — несколько десятков омов.

Поскольку исходная несущая частота f_0 (66,6 мегц) должна быть умножена в 6 раз для получения выходной частоты f (400 мегц), то и максимальный индекс модуляции на частоте f возрастет в 6 раз, т. е. станет равным 6 радиан для всех модулирующих частот F (прямая ka на рис. 12). Такому индексу модуляции соответствует девиация частоты $\Delta f = \varphi F$, линейно возрастающая с увеличением F и достигающая 36 мегц при F = 6 мегц (прямая oa на рис. 12).

Максимально допустимая девиация частоты ограничена половиной ширины полосы пропускания передатчика и приемника, т. е. в данном случае она должна быть не более $\Delta f = \frac{\Delta f_n}{2} = \frac{24 \text{ мггц}}{2} = 12 \text{ мггц}$. При таком ограничении (кривая oc) максимально допустимый индекс модуляции ϕ с увеличением модулирующей частоты F должен монотонно уменьшаться до 2 на частоте 6 мггц (кривая kc). Как оговорено в исходных данных для проектирования, на частотах, близких к $F_{\text{макс}} = 6$ мггц, возможная глубина модуляции не превышает 50% максимальной. Поэтому с помощью корректирующих цепей у характеристики $\phi = \phi(F)$ может быть осуществлен спад на частоте $F_{\text{макс}} = 6$ мггц не до величины $\phi = 2$, а до $\phi = 4$, т. е. характеристика должна иметь «завал» примерно на $3 \text{ } \partial 6$ на частоте F = 6 мггц (кривая kb на рис. 12). Это может быть достигнуто путем введения в сеточную цепь модуляторной лампы цепочки RC (см. рис. 11).

Наличие емкости C величиной в несколько десятков пикофарад желательно также с точки зрения устойчивой работы этой лампы как усилителя высокой частоты с заземленной сеткой. В качестве сопротивления R может быть, очевидно, использовано выходное сопротивление предшествующей цепи модулирующего сигнала. Скелетная схема передатчика в целом приведена на рис. 13. Учитывая, что фазовый модулятор

Рис. 13

(рис. 11) весьма прост, эта схема не сложнее, чем соответ ствующая схема с амплитудной модуляцией. В то же время в соответствии с кривой kb (рис. 12) фазовая модуляция при равных мощностях несущей частоты обеспечивает в 4—6 раз большую помехоустойчивость.

Если учесть, что при фазовой модуляции мощность на выходе передатчика может быть сделана в 4 раза больше средней мощности при амплитудной сеточной модуляции, то выигрыш помехоустойчивости составит от 16 до 24.

Прием сигналов может быть осуществлен с помощью соответствующего приемника с частотным дискриминатором. При этом амплитуда напряжения на выходе дискриминатора будег изменяться в зависимости от частоты сигнала в соответствии с изменением Δf (кривая ob на рис. 12). Если бы зависимость $\Delta f = f(F)$ определялась прямой oa, то для получения равномерной характеристики достаточно было бы после частотного дискриминатора включить интегрирующую цепочку (рис. 14). Постоянная времени ее R'C' должна быть выбрана так, чтобы на самой низкой частоте модуляции $F_{мин} = 50$ $ext{cm}$ выполнялось

¹ Схема рис. 11 может быть использована для амилитудной модуляции, если устранить емкость C_a . При определенных условиях амилитудномодулированные колебания могут быть усилены в умножителях частоты. Таким образом, рис. 13 представляет собой схему передатчика либо с амилитудной, либо с фазовой модуляцией в зависимости от того, включена или не включена емкость C_a в схеме модулятора (рис. 11).

Approved For Release 2010/04/07: CIA-RDP80T00246A045700380001-3

неравенство $\frac{1}{2\pi F_{\text{мин}} \ C' \ R'} \ll 1$ (практически обычно достаточно принять $\frac{1}{2\pi F_{\text{мин}} \ C' \ R'} = 2 \div 3$).

Истинная характеристика (кривая ob) в сравнении с идеальной (кривая oa) на верхних частотах ослаблена из-за введения цепочки RC (см. рис. 11 и 13). Поэтому в приемном устройстве должна быть предусмотрена соответствующая об-

ратная коррекция. Такая коррекция достигается введением емкости C'' (рис. 14), дающей с сопротивлением R' постоянную времени R'C'', равную постоянной времени RC (рис. 11 и 13). Поскольку постоянная времени R'C' рассчитана на частоту $F_{\text{мин}} = 50$ г μ , а постоянная времени RC'' - на частоту около 5 мгг μ , отношение емкостей равно $\frac{C'}{C''} = \frac{5}{50} \frac{\text{мгг} \mu}{\text{50}} = 10^5$.

На частоте $F_{\text{макс}} = 6$ мегц девиация частоты максимальна и напряжение на выходе частотного лискриминатора может практически достигать 2-4 в. На этой частоте коэффициент передачи цепочки (рис. 14) практически определяется делителем C''C', т. е. равен 10^{-5} , и напряжение на выходе частотного дискриминатора на этой частоте иможет составлять (2-4) 10^{-5} в = 20-40 мкв.

При столь малом входном уровне видеоусилителя от него требуется значительный коэффициент усиления и могут иметь значение внутренние шумы входного каскада. В значительной степени этот недостаток можно устранить, осуществив интегрирование сигнала в анодной цепи входного усилителя. В этом случае весь сигнал с частотного дискриминатора подается на сетку входного каскада видеоусилителя и собственные шумы лампы практически не имеют значения.

Постоянная времени R'C' в случае схемы рис. 15 рассчитывается, как и в случае схемы рис. 14, на частоту $F_{\text{мин}} = 50 \, \text{гц}$,

¹ Очевидно, так же и на остальных модулирующих частотах, так как при наличии цепочки (рис. 14) амплитудно-частотная характеристика равномерна,

а R''C' — на $F\approx 5$ магц. Емкость C' в этом случае может быть выбрана равной нескольким тысячам пикофарад, сопротивление R' — нескольким сотням килоомов, и каскад может давать весьма большой коэффициент усиления на частоте $F_{\text{мин}}$, измеряющийся десятками или сотнями. Соответственно уровень сигнала на входе следующего каскада видеоусилителя будет измеряться милливольтами.

Дальнейшее усовершенствование усилителя состоит в том, что постоянная времени *R"C'* выбирается из расчета на некоторую среднюю (между 50 гц и 5 мггц) частоту, и, благодаря возникающему избыточному коэффициенту усиления на высоких частотах, появляется возможность сделать следующий каскад узкополосным, с большим коэффициентом усиления:

Практическая схема подобного двухкаскадного усилителя на пентодах, позволяющая получить на наиболее низких частотах коэффициент усиления более 100 на каскад, приведена на рис. 16¹. Введение такого усилителя позволяет частотную

^{. 1} Очевидно, что возможно также применение триодов, однако число каскадов в этом случае должно быть увеличено до трех—четырех.

характеристику модулирующего напряжения, имеющую вид кривой *ob* (рис. 12), выровнять почти на уровне, близком к максимальному, т. е. на таком уровне, какой имела эта характеристика, если бы применялась не фазовая, а частотная модуляция. Таким образом, усложнение приемного устройства, связанное с применением фазовой модуляции вместо частотной, заключается во введении дополнительного усилителя вида, показанного на рис. 16.

В отличие от варианта с фазовой модуляцией, при непосредственной частотной модуляции возбудитель ч. м. колебаний получается весьма сложным. Поскольку максимальная девиация частоты на выходе передатчика $\Delta f_{\text{макс}}=12$ мггц, а минимальная модулирующая частота $F_{\text{мин}}=50$ гц, то максимальный индекс модуляции составляет

$$\varphi_{MAKC} = \frac{\Delta f_{MAKC}}{F_{MUK}} = \frac{12 \cdot 10^6}{50} = 2.4 \cdot 10^5 \ paduah. \tag{26}$$

Столь большой индекс модуляции может быть получен путем умножения модулированной исходной несущей частоты, которая должна быть выбрана соответственно пониженной. На относительно низких несущих частотах (до 1 мггц) хорошие результаты дает схема фазового модулятора, приведенная на рис. 91. Каждый диод в этой схеме обеспечивает девиацию фазы, равную 90°; оптимальное число диодов в ней — порядка десяти, поскольку при сокращении числа диодов, например до пяти, потребуется введение дополнительного удвоения частоты (для удвоения девиации фазы). При этом сократится полоса модулирующих частот для этого модулятора. Увеличение же числа диодов до 20, дающее экономию на один удвоитель частоты, приводит к существенному усложнению модулятора и его регулировки. Модулятор, включающий 10 диодов, дает девиацию фазы $\varphi_{Makc} = +450^{\circ} \ (+2.5 \pi \ paduah)$. Поэтому согласно формуле (4) следующий аналогичный фазовый модулятор должен быть включен после умножения частоты в число раз не большее, чем

$$n_1 = \frac{\varphi_{\text{макс}}}{\beta} \cdot \frac{f}{\Delta f} = \frac{2.5 \,\pi}{10} \cdot \frac{400 \,\text{мггц}}{12 \,\text{мггц}} \approx 27. \tag{27}$$

На более высоких несущих частотах (до 10 мггц) схема рис. 9 также может быть применена, однако использование в ней более 4 диодов связано с техническими трудностями.

 $^{^1}$ При оптимальном выборе сопротивлений $R_1 - R_5$ в этой схеме коэффициент нелинейных искажений при разных глубинах модуляции не превышает 5-7% (при измерении его с выхода частотного дискриминатора).

Наконец, схемы рис. 7, δ и рис. 11, позволяющие получить индекс модуляции порядка $\pm 1 paduah$, могут быть применены на самых высоких частотах. Для этих схем соответствующий коэффициент умножения от модулятора до модулятора равен

$$n_2 = \frac{\varphi_{\text{Marc}}}{\beta} \cdot \frac{f}{\Delta f} = \frac{1}{10} \cdot \frac{400}{12} \approx 3. \tag{28}$$

Поскольку n_1 и n_2 кратны трем, в качестве умножителей частоты, стоящих между фазовыми модуляторами (рис. 1—3), целесообразно применить утроители частоты. По соображениям, приведенным при обосновании варианта с фазовой модуляцией (рис. 13), несущую частоту последнего фазового модулятора удобно выбрать равной $\frac{400}{6} = 66,67$ мегц, т. е. после модулятора применить умножение частоты в 6 раз. Следовательно, общий коэффициент умножения частоты будет иметь вид

$$N = 2 \cdot 3^m. \tag{29}$$

Поскольку максимальный индекс модуляции на выходе передатчика (26) равен $\varphi_{\text{макс}} = 2,4 \cdot 10^5 \ paduah$, а фазовый модулятор, работающий на исходной (самой низкой) несущей частоте, может дать индекс модуляции, равный $2,5\pi$ радиан, минимальное значение

$$N_{\text{мин}} = \frac{2.4 \cdot 10^5}{2.5 \, \pi} \approx 3 \cdot 10^4.$$

При m=9 в формуле (29) получаем достаточное значение N=39~366. Отсюда для исходной несущей частоты имеем:

$$f_0 = \frac{f}{N} = \frac{400 \text{ меги}}{39366} \approx 10,161 \text{ кги}.$$

Максимальный индекс модуляции на этой частоте

$$\varphi_{0\text{макe}} = \frac{\Delta f_0}{F_{\text{мин}}} = \frac{1}{F_{\text{мин}}} = \frac{\Delta f}{f} f_0 = \frac{1}{50 \text{ гц}} \frac{12 \text{ мггц}}{400 \text{мггц}} 10161 \text{ гц} \approx 6,1 \text{ радиан},$$

т. е. первый фазовый модулятор должен содержать 8 диодов, обеспечивающих девиацию фазы $2\pi = 6,28$ радиан.

После умножения частоты в 27 раз (рис. 17), т. е. на частоте $f_1 \approx 274~\kappa z \mu$, должен быть введен второй фазовый модулятор типа, показанного на рис. 9. Девиация фазы для него согласно формуле (27) должна составлять 2,5 π , т. е. этот

модулятор должен содержать 10 диодов. После умножения выходной частоты этого модулятора может быть применен аналогичный фазовый модулятор, но с малым числом диодов. Принимая число диодов равным четырем, получим максимальную девиацию фазы, равную π , т. е. в 2,5 раза меньше, чем требуемая по формуле (27), поэтому может быть применен коэффициент умножения, равный 9 (вместо 27) и несущая частота для данного модулятора составляет

$$f_2 = 274 \cdot 9$$
 кг $u = 2,466$ мгг u .

В дальнейшем должны быть применены еще три модулятора по схеме, показанной на рис. 7, δ (или рис. 11), перед каждым из которых согласно формуле (28) должен быть предусмотрен утроитель частоты.

Рис. 17

В целом схема имеет вид, показанный на рис. 17. К числу недостатков следует отнести ее сложность (согласно рис. 17 общее число каскадов не менее восемнадцати) и необходимость выбора низкой исходной несущей частоты. Последнее приводит как к затруднениям со стабилизацией частоты (необходимо применять низкочастотный кварц на 10 кгц или более высокочастотный кварцевый генератор с делителем частоты), так и к опасности появления дополнительных напряжений помех, обусловленных прохождением низкочастотных несущих на выход передатчика. Для предотвращения этого

контуры соответствующих умножителей частоты должны обладать, наряду с необходимой полосой пропускания, достаточными фильтрующими свойствами. В связи с этим может возникнуть необходимость применить двухконтурные анодные нагрузки, «шунты» и «пробки», настроенные на вредные компоненты.

Как компромиссный вариант между фазовой (рис. 13) и частотной (рис. 17) модуляцией может быть применена схема с двумя-тремя фазовыми модуляторами, работающими на наиболее высоких частотах. Такому варианту практически не свойственны перечисленные выше недостатки и усложнения.

Рис. 18

Так, например, если ограничиться двумя простейшими модуляторами типа, как на рис. 7, б (или 11), то схема принимает вид, показанный на рис. 18. В сущности она представляет собой несколько оконечных каскадов схемы рис. 17 с заменой предшествующих каскадов кварцевым генератором. В схеме рис. 17 эти каскады обеспечивали частотную модуляцию в полосе частот от 0,667 до 6 мггц. Для самой низкой модулирующей частоты 0,667 мггц на несущей частоте 22,4 мггц индекс модуляций максимален и составляет 1 радиан. После умножения частоты на выходе передатчика индекс модуляции увеличивается до 18. Соответственно помехоустойчивость раднопередачи для помехи этой частоты (0,667 мггц) в 18 раз выше, чем при амплитудной модуляции. С понижением модулирующей частоты по схеме рис. 18 индекс модуляции остается неизменным, а по схеме рис. 17 индекс модуляции и помехоустойчивость относительно помехи соответствующей частоты возрастают, достигая согласно (26) на самой низкой частоте $F_{mun} = 50$ ги величины в $2.4 \cdot 10^5$ раз больше, чем при амплитудной модуляции.

Однако столь высокую помехоустойчивость для низкочастотных компонентов шума следует считать излишней. Выигрыш помехоустойчивости для этих компонентов шума в 18 раз, даваемый схемой, показанной на рис. 18, следует, по-

³³

видимому, считать достаточным. В большей части спектра (от 667 кгц до 7 мггц) обе схемы (рис. 17 и рис. 18) обеспечивают одинаковую (частотную) модуляцию и лишь в 11% полосы частот (от 50 гц до 667 кгц) помехоустойчивость первой схемы выше, чем второй. Учитывая это, получим практически одинаковую помехоустойчивость для обеих схем по отношению к эффективному значению помехи по всему спектру (50 гц — 6 мггц). Это позволяет считать, что практически в большинстве случаев более целесообразны простые схемы, показанные на рис. 18 и 13, чем схема, показанная на рис. 17.

Заключение

Резюмируя результаты рассмотрения методов частотной модуляции, проведенного в данной работе, можно отметить следующее.

- 1. Для осуществления частотной модуляции телевизионным сигналом изображения возможно применять фазовую модуляцию, допускающую непосредственную кварцевую стабилизацию несущей (средней) частоты. Единственным практически приемлемым в этом случае является метод разделения спектра модулирующих частот [Л. 10]. Тем не менее возбудитель частотномодулированных колебаний (рис. 17) получается относительно сложным.
- 2. Весьма простыми средствами может быть осуществлена фазовая или частотно-фазовая модуляция с максимальным индексом модуляции (для низких модулирующих частот) порядка 6—18. Возбудители с такой модуляцией (рис. 13 и рис. 18) по сложности эквивалентны возбудителям с амплитудной модуляцией, однако помехозащищенность радиопередачи по эффективному напряжению шумов практически такая же, как и при частотной модуляции, т. е. в несколько раз выше, чем при амплитудной, а по низкочастотным компонентам шумов в число раз, равное максимальному индексу модуляции (6—18). Приемное устройство в данном случае усложняется приблизительно на 2 реостатных каскада усиления на пентодах или на 3—4 каскада на триодах.
- 3. Поскольку по помехозащищенности частотная и частотнофазовая модуляция практически эквивалентны, но в первом случае существенно усложнено передающее устройство, а во втором — лишь незначительно приемное, следует считать, что в большинстве случаев профессиональной телевизионной связи наиболее целесообразно применять частотно-фазовую модуляцию (рис. 13 и рис. 16). Применение частотной модуляции (рис. 17) может иметь практический смысл лишь в тех слу-

Approved For Release 2010/04/07: CIA-RDP80T00246A045700380001-3

чаях, когда один передатчик работает на большое количество приемников, требования к стоимости или портативности которых весьма велики, так что введение в них двух-трех реостатных каскадов усиления недопустимо.

ЛИТЕРАТУРА

- 1. И. С. Гоноровский. Частотная модуляция и ее применение, Связьиздат, 1948.
- 2. P. B. Laeser, 50-kw F-M Transmitter, "Electronics", 1945, vol. 14, № 4. 3. F. A. Gunther, REL F-M Broadcast transmitters, "FM and Television", 1946, vol. 6, № 3, pp. 44—51.

 4. А. Д. Артым. Новый метод фазовой модуляции, «Радиотехника», 1955, т. 10, № 1.

 5. А. Д. Артым. Способ фазовой модуляции. Заявка № 14-0311 A1936-4184 от 11 ноября 1952 г.

 6. Н. К. Bradford, Wide-Angle phase modulator, "Electronics", 1947 vol. 20, № 2, pp. 100—103.

 7. F. M. Bailcy, H. P. Thomas, Phasitron F-M transmitter, "Electronics", 1946, vol. 19, № 10, pp. 108—112.

 8. Кросби. Многократная фазовая модуляция. Патент США 2. P. B. Laeser, 50-kw F-M Transmitter, "Electronics", 1945, vol. 14, № 4.

- - 8. Кросби. Многократная фазовая модуляция, Патент США
- № 12.104.318.
- 9. С. В. Персон. Схема частотной модуляции, Приоритетная справка № 13-4-86, МПСС.
 10. А. Д. Артым. Способ осуществления фазовой модуляции в широкой полосе модулирующих частот, заявка № А-11082 от 29 июля 1955 г.
- 11. С. И. Евтянов. Об эквивалентности усилителей высокой и низ-
- кой частоты, «Радиотехника», 1948, № 4.
 12. Боде. Теория цепей и проектирование усилителей с обратной связью. Гоги ноиздат, 1948.
- В. И. Сифоров. Радиоприемные устройства, Воениздат, 1951 г.
 З. И. Модель, И. Х. Невяжский. Курс радиопередатчиков,
- Связьиздат, 1940. 15. С. В. Персон. Схема радиовещательных передатчиков с частот-
- ной модуляцией, «Советское радио», 1951. 16. Г. А. Зейтленок и Е. И. Каменский. Способ фазовой модуляции. Приоритетная справка, 1932.

Статья поступила 12/VI 1956 г.

Канд. техн. наук Н. Н. ГЛЕЗИН

МЕТОД ОПРЕДЕЛЕНИЯ НЕЛИНЕЙНОСТИ РАЗВЕРТКИ ПЕРЕДАЮЩИХ ТЕЛЕВИЗИОННЫХ СИСТЕМ

В статье рассмотрен метод определения нелинейности развертки передающих телевизионных систем, позволяющий измерить коэффициент нелинейности с точностью до долей процента. Метод основан на сравнении длительностей импульсов, полученных в результате проектирования оптической решетки на фотокатод или мозаику передающей трубки.

В последнее время проявляется большое стремление применить телевизионную технику в области точных измерений. Естественно, что для точных измерений передающая часть телевизионной системы должна обладать весьма качественной разверткой, линейность которой должна быть выполнена с большой степенью точности. Однако создать качественную развертку при отсутствии метода, позволяющего с достаточной точностью оценить ее, невозможно.

Как известно, существующие в настоящее время методы определения нелинейности развертки телевизионных передающих систем весьма грубы. Практически точность в лучшем случае не превосходит 10—15%. Ниже приведен метод, позволяющий определить нелинейность развертки передающей системы с точностью до десятых долей процента. Сущность метода заключается в следующем.

На фотокатод или мозаику передающей телевизионной трубки проектируется изображение решетки, состоящей из темных и светлых полос равной ширины. Ширина полос должна соответствовать приведенной ниже расчетной величине. Понятно, что видеосигнал будет иметь вид прямоугольных импульсов, частота которых соответствует частоте следования полос решетки. Длительности же этих импульсов, несмотря на строгое равенство полос, окажутся различными в силу неравномерной скорости движения коммутирующего электронного пучка.

Пусть каждой темной полосе решетки соответствует на выходе усилителя импульс прямоугольной формы отрицательной полярности. Если запирать этими импульсами каскад, содержащий зарядную цепь, то на выходе его появятся импульсы пилообразной формы, амплитуда которых будет соответствовать длительности запирающих импульсов (рис. 1).

Кривая, огибающая пилообразные импульсы, явится характеристикой нелинейности развертки передающей системы.

На рис. 2 показана принципиальная схема, примененная для измерения коэффициента нелинейности развертки.

На вход катодного повторителя \mathcal{J}_1 подается видеосигналимпульсы прямоугольной формы отрицательной полярности. Амплитуда сигнала должна быть не менее 20 θ . Во избежа-

ние ограничения на сетку катодного повторителя подается положительное напряжение порядка 30-40 в. Каскады \mathcal{J}_2 и \mathcal{J}_3 формируют пилообразное напряжение с высокой степенью линейности. Хотя в данном случае жестких требований к линейности не предъявляется, применение этой схемы выгодно и в том отношении, что она обеспечивает значительную амплитуду.

Пилообразное напряжение (рис. 1, δ), снимаемое с катода \mathcal{J}_3 , подается через ограничитель ДГ-Ц4 на катодный детектор \mathcal{J}_4 . Продетектированные колебания передаются на усилительный каскад \mathcal{J}_5 , подключаемый к вертикально-отклоняющим пластинам осциллоскопа. К клеммам внешней синхронизации осциллоскопа должны подключаться либо строчные, либо кадровые синхронизирующие импульсы в зависимости от того, исследуется нелинейность строчной или кадровой развертки. При этом переключатель \mathcal{I} должен занять одно из двух соответственных положений. Для получения четкой картины на экрапе осциллоскопа следует подать внешний подсвечивающий импульс, длительность которого не превышает времени развертки 20—30 строк.

При определении нелинейности кадровой развертки передающей системы строчная развертка должна быть выключена, а изображаемая решетка — повернута на 90°. В подавляющем большинстве случаев (для точных измерительных целей) жесткие требования предъявляются только к строчной развертке, поэтому в дальнейшем будем касаться только ее.

Поскольку для точных измерений важно, чтобы скорость движения электронного пучка была достаточно постоянной во всех точках прямого хода, поэтому следует коэффициент нелинейности развертки определить как отношение разности скоростей перемещения коммутирующего электронного пучка в данной и средней точках прямого хода к скорости перемещения в середине прямого хода:

$$K_n = \frac{V_n - V_o}{V_o} = \frac{\Delta V_n}{V_o} .$$

Для точного определения коэффициента нелинейности необходимо точно измерить стрелку погиба ΔV_n огибающей кривой (рис. 3); большой точности определения абсолютного значения V_0 не требуется. Для повышения точности отсчета размах амплитуды ΔV_n может быть увеличен посредством усиления. Усиленный сигнал $\Delta V_n' = \Gamma \Delta V_n$, где Γ — коэффициент

Approved For Release 2010/04/07: CIA-RDP80T00246A045700380001-3

усиления для данного прибора — величина постоянная. Поэтому

$$K_n' = \frac{\Delta V_n'}{\Gamma V_0}$$
.

 V_0 определяется подключением пластин осциллоскопа к катоду \mathcal{J}_8 , а Δ V_n' измеряется посредством их подключения к аноду выходной лампы \mathcal{J}_5 .

Точность измерения определяется минимальной стрелкой чогиба $\Delta V_{\it M}$, которую наблюдатель может легко заметить на экране осциллоскопа. Так как $\Delta V'_{\it M} = \Delta V_{\it M}$, то $\frac{K_{\it M}}{K'_{\it M}} = \Gamma$. Сле-

довательно, точность измерения можно было бы сколько угодно повысить, увеличив коэффициент усиления Γ . Однако существует ряд факторов, ограничивающих эту возможность.

Во-первых, точность определения нелинейности зависит от точности изготовления решетки. Так, например, если желательно определить коэффициент нелинейности, равный 0,1%, то равенство полос решетки должно быть выдержано с такой же точностью.

Во-вторых, для получения качественной огибающей кривой частота следования полос решетки должна быть высокой, т. е. полосы должны быть весьма узкими. Но выбор ширины полос ограничен следующим обстоятельством.

Поскольку данный метод основан на принципе сравнения длительности прямоугольных импульсов, изображающих решетку, а точность измерения длительности τ равпа, как известно, 1/20 времени установления фронта τ_{ϕ^2} (физически это означает, что лампа, формирующая пилообразное напряжение, может запираться или открываться раньше или позже на время $\Delta \tau = \tau_{\phi}/20$), то

$$\frac{\Delta V}{V} = \frac{\Delta \tau}{\tau} \leq K.$$

Отсюда следует, что

$$\tau \ge \frac{\Delta \tau}{K} = \frac{\Delta \tau_{\phi}}{20 K}$$

Так қақ

$$\tau_{\phi} = \frac{0.35}{f} \,,$$

где f— полоса пропускания видеоусилителя, то $\tau \geq \frac{0.35}{20~Kf} \approx \frac{0.02}{Kf} \, .$

$$\tau \ge \frac{0.35}{20 \, Kf} \approx \frac{0.02}{Kf}$$

С другой стороны, $\tau = \frac{X}{V}$ где X — ширина полосы решетки, V — средняя скорость перемещения электронного пучка. Отсюда

$$X \ge \frac{0.02 \ V}{Kf}$$
.

Из этого выражения следует, что если желательно измерить коэффициент нелинейности с заданным значением К, то ширина полосы решетки не может быть выбрана произвольно: она не должна быть меньше некоторой величины, определяемой разрешающей способностью $\frac{f}{V}$ телевизионной системы.

Рассчитаем, для примера, ширину полос решетки, проектируемой на фотокатод трубки типа ЛИ17, считая оптическое

увеличение проектирующей системы равным единице. Так как $f=6.5\cdot 10^6$ ец, а $V=5\cdot 10^5$ мм/сек, то разрешающая способность этой трубки $\frac{f}{V}=12$ штрихов/мм. Приняв K=0,001, получим $X \ge \frac{0,02}{0,001 \cdot 12} = 1,6$ мм. Так как $K = \frac{\Delta V}{V} = \frac{\Delta X}{X}$, то допуск на равенство полос ре-

шетки $\Delta X = KX = 1.6$ мк.

Как известно, оптические решетки изготавливаются гораздо точнее. Поэтому требования, предъявляемые к точности определения нелинейности вплоть до 0,1%, могут быть вполне удовлетворены. Практически такой большой точности не требуется, так как для точных измерений обычно пользуются длиннофокусными оптическими системами, значительно увеличивающими изображение объекта. Однако применение слишком больших увеличений не всегда возможно, кроме того, оно неизбежно приводит к большой потере светосилы. Поэтому оптимальное значение коэффициента нелинейности развертки передающей части телевизионной системы, в случае применения ее в качестве точного измерительного инструмента, может находиться в пределах 0,5-1%. Ширина полос при этом может составлять 0,1-0,2 мм, что облегчает условия детектирования.

На рис. 4 приведены кривые, характеризующие нелинейность развертки передающей системы с трубкой типа ЛИ17. По оси абсцисс отложено время пробега электронного пучка вдоль строки, по оси ординат — скорость его перемещения

Approved For Release 2010/04/07: CIA-RDP80T00246A045700380001-3

в условных единицах. Измерения производились с помощью решетки, ширина полос которой составляла $0.5~\text{мм} \pm 7 - 10~\text{мк}$.

Сплошная кривая характеризует нелинейность строчной развертки, настроенной обычным визуальным способом. Пунктирная кривая представляет характеристику нелинейности развертки той же системы, настроенной с помощью вышеопи-

санной схемы. Достигнутая при этом нелинейность не превышает 1,5-2% в соответствии с точностью изготовления примененной решетки.

Поэтому можно утверждать, что достигнутая точность не является пределом.

Данный метод позволяет также определить искажения, вносимые внешними полями и электронным переносом изображения. Для этого следует изменить направление развертки передающей системы на 180°. Разность отсчетов, полученных в результате изменения направления развертки, покажет величину вносимых искажений.

Предварительные опыты показали, что искажения, вносимые электронным переносом изображения, в трубке типа ЛИ17 не велики.

Автор выражает глубокую благодарность Сидорову Александру Дмитриевичу за помощь, оказанную в коррекции нелинейности развертки передающей системы.

Статья поступила 22/VI 1956 г.

Approved For Release 2010/04/07: CIA-RDP80T00246A045700380001-3

Инж. Н. В. ДУНАЕВСКАЯ, канд. физ.-мат. наук И. И. ЦУККЕРМАН

О ПЕРЕРАСПРЕДЕЛЕНИИ ВТОРИЧНЫХ ЭЛЕКТРОНОВ НА МИШЕНИ ОРТИКОНА С ПЕРЕНОСОМ ИЗОБРАЖЕНИЯ

Для исследования перераспределения «медленных» вторичных электронов на мишени ортикона с переносом изображения введена дополнитсльная сетка, с помощью которой можно изменять тормозящее поле у мишени и тем самым регулировать ширину области разлета вторичных электронов. Показано, как влияет перераспределение на форму сигнала, световые характеристики, контраст изображения, эффект «темного окаймления».

Введение

Как известно, часть вторичных электронов, эмиттированных сеткой и пленкой мишени ортикона с переносом изображения в ходе накопления заряда, возвращается на пленку. Большинство возвращающихся электронов имеет малые энергии. На тех участках, куда попадают эти электроны, потенциал пленки понижается. С этим связано существенное влияние перераспределяющихся «медленных» вторичных электронов на работу ортикона с переносом изображения при высоких уровнях освещенности. Именно благодаря перераспределению удается различать градации яркости при освещенностях, соответствующих области насыщения световой характеристики передающей трубки; вместе с тем, перераспределение вызывает характерный для ортикона с переносом изображения эффект «темного окаймления» [Л. 1, 2].

Для более полного понимания этих явлений интересно попытаться регулировать перераспределение не только путем изменения освещенности, но и путем изменения ширины области перераспределения, и наблюдать, как скажется последнее на передаче градаций яркости, на сигнале и эффекте «темного окаймления».

1. Изменение ширины области перераспределения

Расстояния разлета вторичных электронов, определяющие ширину области перераспределения, могут быть легко рассчитаны при следующих упрощающих предположениях. Магнитное и электрическое поля в той области вблизи мишени, где происходит перераспределение, приняты однородными; потенциал пленки при достаточно высоких уровнях освещенности близок к потенциалу сетки [Л. 2], и, следовательно, электроннооптическим действием сетки мишени можно пренебречь; расстояние между сеткой мишени и пленкой мало по сравнению со средней длиной пути вторичных электронов. При этих условиях расстояние r в плоскости мишени между точкой вылета вторичного электрона и точкой его возвращения будет

- фальным направлением вылета и нормалью к поверхности мишени;
- u_0 начальная энергия электрона, выраженная в единицах потенциала;
- H напряженность магнитного поля;
- E напряженность тормозящего электрического поля у мишени.

Входящие в формулу (1) величины u_0 и α заданы распределением вторичных электронов по начальным энергиям и паправлениям. Изменять напряженность магнитного поля H в сколько-нибудь широких пределах не желательно, так как при этом пришлось бы соответственно изменять напряжения на электродах трубки и размах тока в отклоняющей системе, а локальные изменения магнитного поля вблизи мишени привели бы к недопустимому искажению условий ортогональности падения считывающего пучка на мишень.

Более целесообразно для изменения разлета вторичных электронов изменять напряженность электрического поля *Е*. Для этого в секцию переноса была введена дополнительная сетка с увеличенной прозрачностью, установленная параллельно сетке мишени. Сетка имела изолированный вывод. Для создания тормозящего поля на сетку подавали отрицательный

потенциал относительно мишени. Секция переноса экспериментальной трубки показана на рис. 1, где 1 — фотокатод, 2 — ускоряющий электрод, 3 — мишень, 4 — дополнительная сетка.

Из формулы (1) следует, что, пока величина напряженности E остается малой сравнительно с γ , область разлета электронов имеет ширину порядка A и практически не зависит от напряженности электрического поля, так как $\left| \sin \frac{\gamma}{E} \right|$ для обычно встречающихся пределов изменения u_0 и α многократно пробегает все значения от 0 до 1. Однако с возрастанием E, когда уже $\frac{\gamma}{E} < \frac{\pi}{2}$, величина $\left| \sin \frac{\gamma}{E} \right|$ начинает монотонно убывать 1 .

В обычном ортиконе с переносом изображения напряженность магнитного поля в центральной части мишени имеет

 $H\approx 60$ э, напряженность тормозящего электрического поля $E_0\approx 40$ в/см. Для случая, когда $30^\circ<\alpha<60^\circ$, а начальные энергии имеют величину порядка нескольких электрон-вольт, средний радиус разлета будет порядка 1-2 мм, что составляет примерно 5-10% относительно высоты кадра на мишени. Ширина наблюдаемого темного окаймления действительно имеет ту же величину

относительно размеров кадра. При указанном значении E ширина области перераспределения еще близка к A и лишь при увеличении E в несколько раз может быть достигнуто заметное сужение этой области.

2. Влияние перераспределения на сигнал

Влияние перераспределения медленных вторичных электронов на сигнал ортикона с переносом изображения наглядно обнаруживается при передаче светлой полосы на сером фоне. Осциллограмма сигнала, снятая при потенциале дополнитель-

 $^{^1}$ При малых значениях E вторичный электрон успевает до возвращения на мишень описать в магнитном пеле несколько витков спирали, радиус которой определяется только его начальной скоростью и напряженностью магнитного поля, но не зависит от E, в то время как при достаточно больших значениях E тормозящее поле возвращает электрон на мишень прежде, чем он успеет сделать хоть один виток, и тем раньше, чем больше E.

ной сетки, равном потенциалу мишени, показана на рис. 2, а. «Провалы» слева и справа от импульса светлой полосы соот-

ветствуют темному окаймлению, которое наблюдается при этом на изображении. При создании между дополнительной сеткой и мишенью тормозящего электрического поля, напряженность которого заметно превосходит обычное значение E_0 , этот эффект выражен значительно слабее, ширина темного окаймления уменьшается (рис. 2, 6). Наконец, если напряженность тормозящего поля

в несколько раз превосходит E_0 , восстанавливается правильная форма импульса светлой полосы, а темное окаймление практически исчезает (рис. 2, θ).

Световые характеристики, снятые по обычной методике при различных значениях напряженности тормозящего электрического поля *E*, показаны на рис. 3. Сигнал заметно падает.

с увеличением E, передача градаций яркости ухудшается. Если в обычных условиях на экране приемного устройства различались все градации, имевшиеся в оптическом изображении испытательной таблицы 0249, то при увеличении напряженности тормозящего поля в пять раз по сравнению с обычным значением E_0 на экране удавалось различить не более 3—4 градаций. Характерно, что при увеличении тормозящего поля

сперва пропадала различимость более светлых ступеней градационной шкалы, которые в обычном режиме передаются при большой освещенности благодаря перераспределению.

На рис. 4, a показана осциллограмма сигнала, полученного при передаче границы между широкими полосами, светлой и темной, причем напряжение между дополнительной сеткой

и мишенью не подавалось. «Про вал» справа от границы соответствует избытку медленных вторичных электронов, попадающих с соседнего «освещенного» участка, а подъем слева — уменьшенной интенсивности облучения медленными электронами участка, расположенного по соседству с темной полосой.

При значительном увеличении тормозящего поля явления, связанные с перераспределением, перестают наблюдаться, и осциллограмма принимает правильную ступенчатую форму (рис. $4, \delta$).

Если бы сигнал передающей трубки определяли по обычной методике, по перепаду между наиболее светлым и наиболее темным, то в первом случае (рис. 4, a) была бы измерена большая величина, чем во втором (рис. 4, 6). Однако в действительности увеличение сигнала в первом случае лишь кажущееся и относится только к сравнительно узкой области, где происходит перераспределение. Контраст, измеряемый между широкими темными и светлыми участками, будет меньше, чем между узкой темной полосой и светлым фоном, на котором находится эта полоса. Испытательная таблица 0249 и ей подобные, характеризующиеся тем, что темные объекты (линии, полоски, градационные шкалы) расположены на светлом фоне и по ширине не превосходят области перераспределения, не позволяют правильно судить об истинных световых характеристиках и передаче градаций яркости у ортикона с переносом изображения.

Передача градаций яркости при сюжетах, где не может существенно проявиться перераспределение, будет значительно хуже, чем при передаче испытательной таблицы 0249, где градационная шкала расположена на светлом фоне. Если расположить ту же градационную шкалу на темном фоне, закрыв, например, испытательную таблицу маской с узкой щелью, через которую проектируется градационная шкала, то число передаваемых полутонов резко уменьшается (до 2—3). В по-

следнем случае приходится, кроме того, заметно повышать потенциал сетки для получения оптимального по контрасту изображения.

Заключение

Изменяя с помощью дополнительной сетки напряженность тормозящего электрического поля у мишени ортикона с переносом изображения, удается практически полностью устранить перераспределение медленных вторичных электронов и, вместе с тем, эффект темного окаймления. Однако одновременно заметно падает контрастность телевизионного изображения и резко ухудшается передача градаций яркости при высоких уровнях освещенности.

То обстоятельство, что источником медленных электронов, облучающих мишень, служат светлые участки на самой мишени и что расстояния разлета этих электронов сравнительно не велики, ограничивает возможность восстановления градаций яркости, а также приводит к появлению темного окаймления. Известно, что в передающих трубках с разверткой пучком быстрых электронов (иконоскоп, иконоскоп с переносом изображения) медленные электроны, необходимые для приведения потенциала мишени к исходному, испускались самой мишеныю, но этот недостаток удалось устранить, облучая мишень медленными электронами от постороннего источника (см., например, [Л. 3]). Возможно, что было бы целесообразно ввести дополнительный источник медленных электронов в секции переноса ортикона с переносом изображения 1 при одновременном «подавлении» электронов перераспределения.

` Авторы выражают благодарность С. А. Цукановой за помощь в изготовлении экспериментальной трубки и Т. К. Аускулат за помощь при измерениях.

ЛИТЕРАТУРА

Статья поступила 18/VII 1956 г.

¹На эту возможность указал авторам А. А. Мостовский.

^{1.} A. Rose, P. K. Weimer, H. B. Law. "Proc. IRE", 1946, vol. 34, №, VII, p. 424.

^{2.} R. B. Janes, A. A. Rotow. "RCA Rev"., 1950, vol. IX, № 3, р. 364, 3. И. К. Малахов, Б. В. Круссер. «Техника телевидения», 1955, вып. 10 (16), стр. 14.

Инженеры В. Л. ДУНЬЕ и И. С. ХЕВРУНИН

К ВОПРОСУ О ПРОХОЖДЕНИИ ПРЯМОУГОЛЬНОГО РАДИОИМПУЛЬСА ЧЕРЕЗ РАССТРОЕННУЮ КОЛЕБАТЕЛЬНУЮ СИСТЕМУ С РЕЗОНАНСНОЙ КРИВОЙ КОЛОКОЛЬНОЙ ФОРМЫ

В статье рассмотрены вопросы, связанные с прохождением прямоугольного радноимпульса через расстроенную колебательную систему. Принята аппроксимация резонансной характеристики системы кривой Гаусса. Получена формула для расчета огибающей выходного напряжения в зависимости от времени при определенной добротности системы и заданной величине расстройки. Кратко приведены сравнительные результаты теоретических и экспериментальных исследований.

Работа различных средств радиосвязи в импульсном режиме в настоящее время находит большое применение. Наиболее распространены те средства радиосвязи, в которых используются импульсы с формой, близкой к прямоугольной.

Обычно в эфире имеется значительное количество импульсных сигналов, излучаемых одновременно работающими радиопередающими устройствами, несущие частоты которых во многих случаях могут быть довольно близкими. В связи с этим практика настоятельно требует создания способов расчета реальной разрешающей способности и помехозащищенности

радиоприемных устройств.

Решение этой задачи сводится к определению реакции радиоприемного устройства (резонансная система) на воздействующий прямоугольный радиоимпульс, несущая частота которого отлична от частоты настройки радиоприемника. Для удобства исследований допускаем аппроксимацию резонансной характеристики системы кривой колокольной формы, т. е. кривой вида e^{-ax^2} . Такая аппроксимация оправдана тем, что резонансные характеристики многокаскадных усилителей промежуточной частоты близки к колокольной форме (особенно для многокаскадных усилителей с настроенными в резонанс одиночными контурами). Далее, в результате исследования

условия Боде можно показать, что система с формой полосы пропускания, близкой к кривой колокольной формы, имеет достаточно линейную фазовую характеристику (см. [Л. 2]); это дает возможность в дальнейшем оперировать только частот-

ной характеристикой.

В соответствии с изложенным настоящую задачу можно сформулировать следующим образом: определить величину изменения во времени огибающей напряжения на выходе колебательной системы с резонансной кривой колокольной формы при воздействии на нее прямоугольного радиоимпульса, несущая частота которого не совпадает с резонансной частотой системы. При этом требуется найти зависимость выходного напряжения от величины расстройки между несущей частотой радиоимпульса и резонансной частотой системы.

Насколько нам известно, подобная задача не имела до на-

стоящего времени аналитического решения.

Резонансная кривая колокольной формы колебательной системы может быть записана

$$K(\omega) = e^{-\frac{(\omega - \omega_0)^2}{4\beta}},\tag{1}$$

где $K(\omega)$ — отношение амплитуды выходного напряжения к амплитуде входного;

ω — угловая частота входного напряжения;

 ω_0 — резонансная угловая частота системы; β — параметр, определяющий полосу пропускания частот системы.

Параметр вычисляется по формуле

$$\beta = \frac{\Delta \omega_0^2}{16 \ln d},\tag{2}$$

где d — уровень отсчета ширины полосы пропускания;

 $\Delta\omega_0$ — ширина полосы пропускания на уровне d.

Амплитуду прямоугольного радиоимпульса представляют обычно в виде разности двух сдвинутых по времени прерывных

В этом случае радиоимпульс может быть записан следую-

$$F(t) = \frac{E_m}{2\pi} \left[\int_{-\infty}^{\infty} \frac{\sin(\omega - \omega_1)t}{\omega - \omega_1} d\omega - \int_{-\infty}^{\infty} \frac{\sin(\omega - \omega_1)(t - \tau)}{\omega - \omega_1} d\omega \right], \quad (3)$$

где т — длительность импульса.

Полагая реальную ширину полосы пропускания резонансной системы малой по сравнению с ее несущей частотой и при-

4 Техника телевидения, в, 23

меняя законы прохождения радиоимпульсов через колебательные системы [Л. 1], получим выражение для амплитуды огибающей радиоимпульса на выходе системы

$$U_{\beta\omega x}(t) = \frac{E_m}{2\pi} \left[\int_{-\infty}^{\infty} e^{-\frac{(\omega - \omega_0)^2}{4\beta}} \frac{\sin(\omega - \omega_1)t}{\omega - \omega_1} d\omega - \int_{-\infty}^{\infty} e^{-\frac{(\omega - \omega_0)^2}{4\beta}} \frac{\sin(\omega - \omega_1)(t - \tau)}{\omega - \omega_1} d\omega \right]. \tag{4}$$

Произведем в интегралах (4) замену переменной интегрирования, предварительно введя следующие обозначения:

$$\frac{\omega-\omega_0}{\omega_0} = 2$$
—относительная текущая частота;

 $\frac{\omega_1-\omega_0}{\omega_0}=c$ —относительная расстройка (расстройка между несущей частотой радиоимпульса и резонансной частотой системы в относительных единицах);

 $\omega_0 t \! = \! t'$ — относительное текущее время;

 $\omega_0 \tau = \tau'$ — относительная длительность импульса;

$$\frac{\omega_0^2}{4\beta} = a$$
—параметр, пропорциональный квадрату добротности системы.

Такие относительные параметры весьма удобны для практических расчетов.

В соответствии с принятыми обозначениями выражение (4) может быть записано:

$$U_{s\omega x}(t') = \frac{E_m}{2\pi} \left[\int_{-\infty}^{\infty} e^{-a(\Omega + c)^2} \frac{\sin \Omega t'}{\Omega} d\Omega - \int_{-\infty}^{\infty} e^{-a(\Omega + c)^2} \frac{\sin \Omega (t' - \tau')}{\Omega} d\Omega \right].$$
 (5)

Интегралы (5) не берутся в элементарных функциях, а непосредственное их табулирование по параметрам связано с большими вычислениями. Однако, как мы увидим ниже, эти интегралы удается представить в виде рядов по функциям Крампа и их производным, для которых имеются соответствующие таблицы. Таким образом, задача может быть решена путем приближенного суммирования рядов.

Рассмотрим один из интегралов (5)1

$$U(a, c, t') = \frac{1}{2} \int_{-\infty}^{\infty} e^{-a(\Omega + c)^2} \frac{\sin \Omega t'}{\Omega} d\Omega.$$
 (6)

Запишем (6) в виде суммы двух интегралов

$$U(a, c, t') = \frac{1}{2} \left[\int_{-\infty}^{0} e^{-a(\Omega + c)^{2}} \frac{\sin \Omega t'}{\Omega} d\Omega + \int_{0}^{\infty} e^{-a(\Omega + c)^{2}} \frac{\sin \Omega t'}{\Omega} d\Omega \right].$$
 (7)

Первый из интегралов (7) можно представить следующим образом

$$\int_{-\infty}^{0} e^{-a(\Omega+c)^{2}} \frac{\sin \Omega t'}{\Omega} d\Omega = \int_{0}^{\infty} e^{-a(\Omega-c)^{2}} \frac{\sin \Omega t'}{\Omega} d\Omega.$$
 (8)

Подставим (8) в (7) и вынесем общий множитель за знак интеграла

$$U(a, c, t') = \frac{1}{2} e^{-ac^2} \int_{0}^{\infty} e^{-a\Omega^2} \left[e^{-2ac\Omega} + e^{2ac\Omega} \right] \frac{\sin\Omega t'}{\Omega} d\Omega. \quad (9)$$

Разложим выражение в квадратных скобках в ряд Тейлора

$$e^{-2 ac \Omega} + e^{2 ac \Omega} = \sum_{n=0}^{\infty} (-1)^{2n} \frac{(2 ac \Omega)^n}{n!} + \sum_{n=0}^{\infty} \frac{(2 ac \Omega)^n}{n!} =$$

$$= 2 \sum_{n=0}^{\infty} \frac{(2 ac \Omega)^{2n}}{(2n)!}.$$
(10)

Подставим это выражение в (9) и почленно проинтегрируем

$$U(a,c,t') = e^{-ac^2} \sum_{n=0}^{\infty} \frac{(2ac)^{2n}}{(2n)!} \int_{0}^{\infty} e^{-a\Omega^2} \Omega^{2n-1} \sin \Omega t' d\Omega.$$
 (11)

¹ Мы рассмотрим только один из интегралов (огибающую напряжения переднего фронта импульса). Огибающая выходного импульса может быть определена как разность двух сдвинутых по времени огибающих напряжения переднего фронта.

Рассмотрим интеграл в выражении (11), обозначив его через I_{2n} ,

$$I_{2n} = \int_{0}^{\infty} e^{-a \Omega^{2}} \Omega^{2n-1} \sin \Omega t' d\Omega.$$
 (12)

Положив в (12) n = 0, получим ¹

$$I_0 = \int_0^\infty e^{-a \Omega^2} \frac{\sin \Omega t'}{\Omega} d\Omega = \frac{\pi}{2} \Phi\left(\frac{t'}{2\sqrt{a}}\right), \quad (12a)$$

где $\Phi\left(\frac{t'}{2\sqrt{a}}\right)$ — табулированная функция Крампа, определяемая выражением

$$\Phi (x) = \frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-x^{2}} dx.$$

Нетрудно убедиться в том, что интеграл (12) может быть представлен в виде

$$I_{2n} = (-1)^n \frac{\partial^{2n} I_0}{\partial t'^{2n}} = (-1)^n \frac{\pi}{2} \frac{1}{(2\sqrt{a})^{2n}} \Phi^{(2n)} \left(\frac{t'}{2\sqrt{a}}\right). \quad (13)$$

Здесь $\Phi^{(2n)}\left(\frac{t'}{2\sqrt[3]{a}}\right) - 2n$ - я производная функции Крампа.

В соответствии с этим интеграл (11) будет

$$U(a, c, t') = \frac{\pi}{2} e^{-ac^2} \sum_{n=0}^{\infty} (-1)^n \frac{a^n c^{2n}}{(2n)!} \Phi^{(2n)} \left(\frac{t'}{2\sqrt{a}}\right). \quad (14)$$

Выражение (14) следует рассматривать как общее решение настоящей задачи. Из (14), как частный случай, может быть получено решение задачи, предложенное Сифоровым В. И. [Л. 1], о прохождении прямоугольного импульса через настроенную систему с резонансной кривой колокольной формы. Для этого достаточно лишь принять c=0.

Формула (14) дает возможность определить зависимость огибающей амплитуд переднего фронта выходного радиоимпульса от времени для заданных параметров системы (с и а).

¹ Интеграл (12) может быть взят, например, методом дифференцирования по параметру.

Практический интерес представляют результаты рассчетов по этой формуле для величин a, соответствующих наиболее распространенным УПЧ.

Основная трудность подобных расчетов заключается в вычислении производных высокого порядка для функции Крампа, Правда, существуют таблицы указанных производных, однако порядок производных не превышает 20, что явно недостаточно, особенно при относительно больших расстройках и высокой добротности. Например, для определения $U = U\left(a, c, t'\right)$ при a = 2050 и c = 0,067 необходимо вычислить производные до 40-го порядка. Производные порядка выше 20-го могут быть вычислены по реккурентной формуле.

Рис. 1

На рис. 1—3 приведены графики функции $U=U\left(a,\,c,\,t'\right)$, рассчитанные по формуле (14) для величин $a=200;\,800;\,2050.$ Эти графики могут найти применение для ряда инженерных расчетов, связанных с разрешающей способностью по частоте и с помехозащищенностью радиоприемных устройств.

Авторы предполагают в последующем значительно увеличить количество расчетных графиков с тем, чтобы предоставить более широкие возможности для практических расчетов.

Некоторые результаты расчетов были проверены экспериментально.

В качестве резонансной системы был использован специально разработанный шестикаскадный усилитель промежуточной частоты ($\Delta f_{0,7} = 56 \ \kappa \epsilon \mu$; $f_{nq} = 1,5 \ \omega \epsilon \mu$; a = 2050) с оди-

ночными контурами, настроенными в резонанс. Резонансная характеристика этого усилителя приведена на рис. 4. Для сравнения на этом же рисунке приведен график соответствующей кривой колокольной формы (при a=2050).

На усилитель подавались прямоугольные радиоимпульсы, длительность которых выбиралась значительно большей, чем время установления процесса. По изображению сигнала на осциллоскопе определялась величина выходного напряжения (максимального выброса) в зависимости от разности частот настройки усилителя и несущей радиоимпульса.

На рис. 5 приведена экспериментально полученная зависимость ослабления сигнала (в децибеллах) от величины рас-

стройки (c) и соответствующая ей расчетная кривая. Как видно из этих графиков, имеет место достаточное совпадение (порядка 25%) теоретических и экспериментальных результатов. Кроме того, изображения выходных сигналов, сфотографированные с экрана осциллоскопа, подтверждают качественные результаты расчетов (рис. 6). Расхождение в количественных результатах следует, по-видимому, отнести за счет некоторого отличия формы частотной характеристики усилителя от кривой Гаусса (см. рис. 4).

Как видно из представленных кривых, с увеличением расстройки c при заданной добротности системы a наблюдаются следующие явления:

- а) падает величина напряжения установившегося режима;
- б) появляется выброс, величина которого возрастает по сравнению с величиной напряжения установившегося режима;
- в) с некоторых значений расстройки (c) огибающая выходного напряжения $[\phi y$ нкция U = U (a, c, t')] начинает осциллировать,

Аналогичные явления наблюдаются в случае увеличения добротности системы (a) при фиксированном и отличном от нуля значении расстройки (c).

Рис. 5

Q01 Q02

Q03 Q04 Q05 Q06 Q07

В настоящее время проводится исследование аналогичной задачи для системы, резонансная характеристика которой имеет плоскую вершину и сопряженные с ней спады, описываемые кривой Гаусса. Ожидается, что полученное решение еще более приблизит теоретические результаты к практическим.

более приблизит теоретические результаты к практическим. В заключение авторы считают своим долгом выразить благодарность инженерам Л. М. Хмылко и О. В. Недзвецкому за помощь в теоретических и экспериментальных исследованиях.

ЛИТЕРАТУРА

1. В. И. Сифоров. Радиоприемники сверхвысоких частот, Воениздат, 1955.
2. А. Van Well. Phase-linear television reseivers. "Philips Res. Rep." 1955, vol. 10, № 4, pp. 288-298.
3. Г. Боде. Теория цепей и проектирование усилителей с обратной связью. БИЛЛ 1948.

3. 1. В б.д.е. Теория ценей и проектирование усилителей с обратной связью, ГИИЛ, 1948.
4. В. И. Смирнов. Курс высшей математики, том II и III, ч. 2, Гостехиздат, 1948—1949.
5. И. М. Рыжик. Таблицы интегралов, сумм, рядов и произведений, Гостехиздат, 1948.

6. Tables of the error function and of its first twenty derivatives. By the staff of the Computation laboratory, Cambridge, Mass., 1952.

Статья поступила 25/VII 1956 г.

Инженеры Э. К. САРАДЖИШВИЛИ, П. Н. ЗАБОТКИН

ТОЧНЫЙ СПОСОБ ИЗМЕРЕНИЯ НЕЛИНЕЙНОСТЕЙ РАЗВЕРТОК ЭЛЕКТРОННОЛУЧЕВЫХ ТРУБОК

В статье описан объективный способ измерения нелинейностей разверток электроннолучевых трубок, позволяющий определять нелинейности порядка 1% и менее.

Введение

При разработке и эксплуатации специальных телевизионных устройств, а также радиолокационных установок, специальных измерительных осциллографов и других приборов, имеющих прецизионные развертки, бывает необходимо достаточно точно и объективно измерить нелинейности разверток электроннолучевых трубок. Однако все существующие для этого способы часто не обеспечивают необходимой точности измерения. Так, например, простейшие способы дают возможность измерить нелинейности порядка 10-15% с точностью $\pm 3\%$, а более точные (оптические, с антипараллаксными устройствами) — 7% с точностью $\pm 2\%$, причем погрешность эта определяется, в основном, субъективностью измерения.

Целью настоящей статьи является описание объективного и более точного способа измерения нелинейностей разверток электроннолучевых трубок, который мог бы быть полезен в указанных выше случаях.

1. Существующие способы измерения нелинейностей разверток электроннолучевых трубок и критерии их оценки

Измерение нелинейностей разверток обычно производят следующим образом. Луч модулируют синхронными с разверткой П-образными или кратковременными импульсами, и каким-либо, способом измеряют на экране трубки расстояние между соседними светящимися модуляционными лициями или

5**8** ,

точками, находя при этом максимальное и минимальное значения этих расстояний (рис. 1). Частоту модулирующих импульсов выбирают такой, чтобы на экране трубки образовалось от 10 до 20 модуляционных линий или точек.

Оценку нелинейности разверток обычно производят по так называемым критериям нелинейности. Одним из наиболее рас-

пространенных критериев для оценки нелинейностей разверток телевизионных растров является критерий, по которому нелинейность оценивается как максимальное относительное изменение расстояний между модуляционными светящимися полосками к их среднему значению:

$$D = 2\frac{a-b}{a+b} 100 \left[{}^{0}/_{0} \right] , \qquad (1)$$

где *а* и *b* — максимальное и минимальное расстояния между светящимися модуляционными полосками.

Исходя из определения коэффициента нелинейности развертки в данной точке растра, был предложен другой критерий [Л. 1], по которому нелинейность оценивается как максимальное относительное изменение расстояний между модуляционными светящимися полосками к их неискаженному или среднеарифметическому значению. Этот критерий показывает максимальное относительное изменение масштаба изображения:

$$L = \frac{a-b}{d} 100 \ [^{0}/_{0}], \tag{2}$$

где a и b — те же значения, что и в (1);

 $d = \frac{s}{n}$ — неискаженное или среднеарифметическое значение ширины всех модуляционных полос;

s — размер строки или кадра (длина развертки);

n — соответствующее количество модуляционных полос.

Оценку нелинейности по критерию (2) следует считать, повидимому, более правильной. Однако практически оценка нелинейности по критериям (2) и (1) дает одинаковые результаты, особенно при измерении малых нелинейностей. Кроме того, при оценке нелинейности по критерию (1) производят

всего два замера $(a \ u \ b)$, в то время как при оценке нелинейности по критерию (2) необходимо произвести замеры $a \ u \ b$ и определить d. Таким образом, с практической точки зрения оценка нелинейности по критерию (1) является более удобной.

2. Объективный способ измерения нелинейности разверток электроннолучевых трубок

Отрезки a и b на рис. 1 соответствуют максимальному и минимальному путям луча на экране трубки, проходимым за одно и то же время, равное периоду модулирующих импульсов.

Очевидно, что для определения нелинейности разверток можно измерять не отрезки пути, проходимые лучом за одинаковое время, а отрезки времени, за которые луч проходит одинаковые отрезки пути. Оценка нелинейности при этом может производиться по критерию, аналогичному (1), т. е.

$$D' = 2 \frac{t_1 - t_2}{t_1 + t_2} 100 \ [^0/_0], \tag{3}$$

где t_1 и t_2 — максимальное и минимальное время, за которое луч проходит одинаковые отрезки пути на различных участках экрана трубки.

Для измерения времени, за которое луч проходит одинаковые отрезки пути, на планшайбу трубки I (рис. 2) наклады-

вают специальный датчик, который состоит из антипараллаксной непрозрачной оправки 2, имеющей две узкие параллельные щели 3, и фотоэлемента 4. Немодулированный электронный луч 5, нелинейность отклонения которого необходимо измерить, при движении слева направо последовательно проходит через точки S_1 и S_2 люминофора 6 и производит засветку

фотоэлемента, в цепи которого возникают два последовательных импульса, синхронных с частотой повторения отклоняющего напряжения (рис. 3). Фаза этих импульсов зависит от положения датчика на экране трубки.

Таким образом, измерение нелинейности сводится к измерению времени между парными импульсами на различных

участках линии развертки на экране трубки и вычислению по формуле (3). Это измерение может производиться электронным способом и, следовательно, с большей точностью, чем измерение отрезков между светящимися модуляционными полосками.

Для уничтожения боковой засветки фотоэлемента и получения узких импульсов с крутыми фронтами необходимо оправку датчика выбирать толще, чем стекло планшайбы, а щели в ней делать максимально узкие (равные или уже апертуры луча). Расстояние между щелями выбирают примерно равным 1/20—1/10 от длины линии развертки на экране трубки.

Датчик на экран трубки устанавливается так, что разворачиваемый луч пересекает щели под прямым углом или близким

к нему. Кроме того, перемещать датчик по экрану трубки следует таким образом, чтобы этот угол сохранялся постоянным. С этой целью датчик устанавливают на направляющий полоз, который может крепиться к обрамлению трубки.

Следует отметить, что благодаря послесвечению люминофора импульсы на выходе датчика будут иметь несколько иной вид, чем они изображены на рис. 3.

При прохождении луча под первой щелью в цепи фотоэлемента возникнет фронт первого импульса (рис. 4). Затем происходит плавный спад импульса, обусловленный послесвечением экрана, а затем уже от уровня плавного спада возникает

фронт второго импульса, соответствующий прохождению луча под второй щелью. Эти импульсы могут быть продифференцированы и сформированы для улучшения крутизны фронтов.

Время между возникновением первого и второго импульсов может быть измерено, например, при помощи осциллографа,

a)
t

6)

8)

8)

Рис. 5

имеющего калибрационные метки времени. Переходя к отсчету времени по числу меток, формула (3) примет вид:

$$D' = 2 \frac{n_1 - n_2}{n_1 + n_2} 100 \ [^0/_0], \quad (4)$$

где n_1 и n_2 — числа меток времени, соответствующих времени t_1 и t_2 .

Чем меньшую нелинейность необходимо измерить и чем большая точность требуется, тем большее количество калибрационных меток времени необходимо иметь между парными импульсами. Так, например, для измерения нелинейности порядка 1% между парными импульсами необходимо иметь около 100 калибрационных меток времени. Подсчет такого количества калибрационных меток может быть произведен, например, на осциллографе при применении спиральной развертки. Принцип построения такой развертки поясняется рис. 5, где: а) парные импульсы напряжения с датчика после цепей формирования; б) импульс напряжения, сформиро-

ванный из парных импульсов датчика; в) синусоидальное затухающее напряжение; г) косинусоидальное затухающее напряжение; д) калибрационные импульсы времени.

При подаче синусоидального и косинусоидального напряжений соответственно на горизонтальные и вертикальные пластины, а меток времени— на модулятор трубки осциллографа, на экране получим осциллограмму, показанную на рис. 6.

На осциллограмме метки времени расположены радиально, так как их частота кратна частоте спиральной развертки. Это

приводит к тому, что в одном полном обороте спирали содержится целое количество меток времени. Нарушение радиального расположения меток, вследствие нестабильности частот, может быть легко обнаружено визуально. Практически частота меток может быть подстроена перед измерением. Учитывая, что процесс измерения длится не более нескольких минут, к стабильности частоты генераторов отклоняющих (рис. 5, θ и θ) и калибрующего (рис. 5, θ) напряжений не предъявляется высоких требований.

Полное число меток времени будет равно числу меток в одном витке спирали, умноженному на число полных витков, плюс метки в неоконченном витке. Практически при измерении

малых нелинейностей подсчет меток времени необходимо производить лишь в одном неполном витке, так как число полных витков остается постоянным. При использовании осциллографа с трубкой 5", средняя длина витка равна 200 мм, что позволит подсчитать 50—100 меток времени.

Подсчет меток времени может быть проведен и растровым методом. Этот метод заключается в получении на экране осциллографа растра, вертикальное отклонение которого создается из импульсов напряжения, изображенного на рис. 5, б, а горизонтальное отклонение — из импульсов, частота повторения которых равна частоте синусоидального напряжения, используемого при спиральной развертке. Число строк в растре зависит от длительности импульса, показанного на рис. 5, б.

Подключив к модулятору электроннолучевой трубки осциллографа импульсы меток времени, получим осциллограмму, показанную на рис. 7. Каждая строка такого растра заменит виток спирали в предыдущем методе. Следует отметить, что использование растрового метода удобно, если время обрат-

ного хода горизонтальной развертки не превышает периода меток времени. Подсчитав число меток в полной строке растра, число полных строк и число меток в неоконченной строке, определяют полное число меток времени.

Для подсчета меток времени могут быть использованы счетчики импульсов. Однако использование счетчиков импульсов возможно, если счет импульсов меток времени будет производиться лишь в одном периоде развертки. С этой целью электронный луч, нелинейность отклонения которого измеряют, отпирают на время одного периода. Полученный схемой одиночный пакет импульсов, изображенный на рис. 5, ∂ , посылают на счетчик импульсов, который и фиксирует количество меток времени.

Из приведенных выше способов подсчета числа меток времени наиболее удобны способ спиральной развертки и растровый. Подсчет числа меток времени с помощью счетчиков импульсов, хотя и является наиболее заманчивым, имеет ограничения ввиду отсутствия практических схем для счета импульсов высоких частот (порядка 1 мггц).

При больших скоростях разверток получению двух четких импульсов датчика мешает послесвечение люминофора. На рис. 4 показаны импульсы, полученные при одноразовой развертке с учетом послесвечения люминофора. Если за период развертки свечение люминофора не успеет достаточно спасть, то при повторном прохождении луча под щелями по той же линии развертки размахи импульсов, снимаемых с датчика, будут значительно меньше. Для исключения этого явления необходимо периодически отпирать луч, нелинейность отклонения которого измеряется на один период развертки, а измерение производить на осциллографе с послесвечением. Период отпирания луча определяется временем послесвечения трубки испытуемого устройства.

Измерение нелинейностей разверток телевизионного растра производится поочередно для кадровой и строчной разверток.

При измерении нелинейности отклонения строчной развертки приемных телевизионных трубок целесообразно применять устройство для высвечивания одной строки. При этом нелинейность строчной развертки может быть измерена на любом участке растра, выделяя ту или иную строку по кадру и соответствующим образом перемещая датчик.

При измерении нелинейности отклонения кадровой развертки строчную развертку необходимо выключить, чтобы луч пересекал щели датчика под прямым углом или близким к нему. В противном случае строки будут ложиться параллельно щелям датчика, а это значительно увеличит боковую

засветку фотоэлемента и может вызвать в его цепи появление парных или многократных импульсов от каждой щели. Кроме того, движение луча по вертикальной линии (при наличии строчной развертки) оказывается дискретным, что ограничит точность измерения. Для измерения нелинейности на разных участках растра необходимо ввести центровку луча по горизонтали. Последнее необходимо вследствие возможных погрешностей измерения за счет неоднородности (несимметричности) отклоняющего поля и разброса радиуса кривизны экрана трубки.

Описанным выше способом может быть измерена нелинейность разверток и передающих телевизионных трубок при использовании специальных испытательных таблиц (например,

шахматного поля).

Определение нелинейности строчной развертки может быть произведено измерением длительности видеосигнала на выделенной строке от одинаковых по величине объектов на разных

участках растра вдоль строки.

Импульсы видеосигнала, длительность которых подлежит измерению на разных участках строки, будут эквивалентны импульсам, изображенным на рис. 5, б. На различных участках строки они будут иметь разную длительность, соответствующую скорости развертки передающей трубки на данном участке строки. Последнее дает возможность определять нелинейность любым из вышеописанных методов.

Нелинейность кадровой развертки может быть определена путем подсчета количества строк, в которых содержится видеосигнал от одинаковых по величине объектов на разных участках растра вдоль кадра, т. е. в этом случае в качестве меток времени используется строчная частота.

ЛИТЕРАТУРА

1. В. Д. Арюпин, Э. В. Васильев, А. В. Воронов, И. И. Цуккерман. Об изменении искажений растра телевизионных приемников. «Техника телевидения», 1951, вып. 4, стр. 3.

Статья поступила 2/VII 1956 г.

^{. 5} Техника телевидения, в. 23

СОДЕРЖАНИЕ

	Стре
А. Д. Артым. Применение частотной и фазовой модуляции для передачи телевизионного сигнала изображения	. 3
Н. Н. Глезин. Метод определения нелинейности развертки телевизионных передающих систем	36 -
Н. В. Дунаевская, И. И. Цуккерман. О перераспределении вторичных электронов на мишени ортикона с переносом изображения	42
В. Л. Дунье, И. С. Хеврунин. К вопросу о прохождении прямоугольного радноимпульса через расстроенную колебательную систему с резонансной кривой колокольной формы	48
Э. К. Сараджишвили, П. Н. Заботкин. Точный способ измерения нелинейности разверток элек-	40
троныолучевых трубок /	58 -

Редакционная коллегия просит читателей присылать свои отзывы, замечания и пожелания по материалам, публикуемым в сборнике "Техника телевидения". Укажите Вашу фамилию, место работы, должность

Отзывы направлять по адрёсу: Ленинград, Д-41, Марсово поле, 1, Л. О. Госэнергоиздата.

Б

АКАДЕМИЯ НАУК ТАДЖИКСКОЙ ССР

БЮЛЛЕТЕНЬ

СТАЛИНАБАДСКОЙ АСТРОНОМИЧЕСКОЙ ОБСЕРВАТОРИИ

№ 20:

АКАДЕМИЯИ ФАНХОИ РСС ТОЧИКИСТОН

БЮЛЛЕТЕНИ

обсерваторияи астрономияи сталинобод № 20 АКАДЕМИЯ НАУК ТАДЖИКСКОЙ ССР

БЮЛЛЕТЕНЬ

СТАЛИНАБАДСКОЙ АСТРОНО МИЧЕСКОЙ ОБСЕРВА ТОРИИ

 N_{2} 20

. ИЗДАТЕЛЬСТВО АКАДЕМИИ НАУК ТАДЖИКСКОЙ ССР СТАЛИНАБАД 1957

Н. М. ШАХОВСКОЙ "

ИССЛЕДОВАНИЕ СПЕКТРОВ И ЗВЁЗДНЫХ ВЕЛИЧИН В ОБЛАСТИ ПОЯСА ОРИОНА.

1. ВВЕДЕНИЕ

1. В 1944—54 г. г. проф. П. П. Паренаго [1] подробно исследовал звёзды в области площадью 9 кв. градусов вокруг известной туманности Ориона. Им был получен ряд весьма интересных результатов, в числе которых мы отметим следующие:

1) Звёзды в этой области образуют пространственную группировку на расстоянии 400 пс с явно выраженной концентрацией к нескольким

центрам (в том числе и к самой туманности).

2) Диаграмма спектр — абсолютная величина для членов этого скопления имеет совершенно особенный характер: присутствует большое количество звёзд главной последовательности спектральных классов 0—А5 и размытое облако звёзд—субгигантов спектральных классов G-K и абсолютных величин $+2^m$ и слабее.

3) Имеется большое количество очень характерных переменных звёзд типа туманности Ориона (Т Тельца, RW Aur) показывающих

сильнейшую концентрацию к центру туманности.

В связи с этим, в распределении всех звёзд указанной области по спектрам и звёздным величинам наблюдаются значительные аномалии: избыток звёзд спектральных классов B и A, и, в меньшей степени, G и K, и избыток звёзд 8-9 и 13-15 видимых величин.

2. Имеются веские основания считать, что изученное П. П. Паренаго скопление является частью более протяженной группировки (ассоциации), звёзды которой проектируются на соседние части неба и в том числе на область Пояса Ориона.

В пользу этого предположения для области Пояса говорят следую-

щие данные:

1) Повышенная общая плотность звёзд в этом районе.

2) Наличие там ненормально большого числа горячих звёзд

3) Наличие нескольких переменных звёзд типа туманности Ориона и диффузных туманностей (NGC № 1193 вокруг в Orionis, NGC № 1227, известная темная туманность "Конская голова" и др.). Проведённое Π . Π . Паренаго исследование B звёзд во всём созвездии Ориона [1, стр. 285], а также предварительное исследование всей ассоциации Ориона [2], подтверждают существование ассоциации, распространяющейся на Пояс Ориона.

3. В 1955 г. П. П. Паренаго разработал план комплексного изучения избранных областей Млечного Пути и в том числе области ассоциации Ориона [3]. Этот план был принят к выполнению І Пленумом Комиссии по звёздной астрономии Астрономического Совета АН СССР. В работе по его выполнению принимает участие ряд советских обсерваторий.

В связи с этим представляется целесообразным опубликование нашей работы, выполненной в 1953 г. на кафедре звёздной астрономии МГУ под руководством проф. П. П. Паренаго и являющейся предварительным исследованием области Пояса Ориона с целью выявления пространственной группировки звёзд в этой области и исследования характера её населения.

2. МАТЕРИАЛ.

1. В настоящей работе исследуются спектры и звёздные величины звёзд в области Пояса Ориона (δ , ϵ , η Orionis). Примерные границы области на 1900 год— $0^{\circ}.0-2^{\circ},5$ между $5^{\rm h}$ $24^{\rm m}$ и $5^{\rm h}$ $31^{\rm m}$ и $0^{\circ}.0-3^{\circ}.8$ между $5^{\rm h}$ $31^{\rm m}$ и $5^{\rm h}$ $38^{\rm m}$ (см. рис. 1). Площадь области около 10 кв градусов.

2. Спектры ярких звёзд брались из НО [4], более слабых—из

HDE [5].

Кроме того спектры звёзд слабее 9° классифицировались по пластинке, снятой с объективной призмой на 40 см астрографе Крымской Астрофизической обсерватории 13 декабря 1950 г. На этой пластинке в фокусе получается участок спектра от 3900 \mathring{A} до 4500 \mathring{A} с дисперсией у H \mathring{o} в 225 \mathring{A}/MM . Предельная величина уверенно классифицируемых звёзд в нашей области, расположенной на краю пластинки, около $11^{m}.5$.

В качестве пособия при спектральной классификации использовался Иеркский атлас звёздных спектров [6]. Учитывались также критерии, данные Высотским [7]. Если полу-

ченная таким образом оценка спектрального типа расходилась с приводимой в HDE, то из этих оценок бралось среднее, причём оценке HDE придавался вес примерно вдвое больший, чем моей. Были определены также спектры нескольких звёзд, не содержащихся в HDE.

Для 17 ярких B—звёзд спектр брался из различных литературных источников, собранных в карточном каталоге П. П. Паренаго (см. также табл. 176 в [1]). Оттуда же взяты и фотоэлектрические избытки цвета этих звёзд, приведённые к интернациональной системе показателей цвета.

В результате в исследуемой области оказалось 470 звёзд с известным спектром, начиная от самых ярких звезд до звёзд 12—12,5 величины (включая в это число звёзды с неуверенно определенным спектром). При этом можно считать, что известны спектры почти всех звёзд ярче 11 величины.

3. Звёздные величины звёзд с известными спектрами определялись на компораторе системы акад. В. Г. Фесенкова путём сравнения изображений звёзд на московской пластинке (пластинка серии T 1143 от марта 2.256 1946 г.) со звёздообразными точками разных размеров,

нанесённых фотографическим путём на шкалку, помещенную в фо-кальной плоскости микроскопа.

Калибровочная кривая для перевода полученных отсчетов в звёздные величины строилась по отсчетам звёзд в SA 97 (5^h 52^m; 0°.0).

Указанным образом определялись звёздные величины звёзд 6—12.5 величин.

28 ярких (ярче 9 величины) звёзд имели визуальные фотометрические величины, приведённые в [8]. Эти величины были редуцированы на международную фотографическую шкалу (по известным спектральным классам) и послужили для определения поправки к шкале измеренных мною величин. Эта поправка оказалась постоянной и равной—0^т.54. Вероятная причина её—фотометрическая ошибка поля астрографа, которая не исследовалась.

Точность отдельных оценок, выведенная из многократных незави-

симых измерений звёзд стандарта, получилась порядка 0 д. 2.

При дальнейшей обработке для звёзд, имеющих как измеренные, так и редуцированные визуальные величины, всюду брались последние. Они же брались и для тех звезд (ярче $6^{\rm m}$), измерить величины которых было невозможно из-за отсутствия звёзд соответствующей яркости в стандарте. Редуцированные фотовизуальные величины взяты и для B—звёзд списка Π . Π . Паренаго.

4. Результаты всех измерений приведены в таблице 1. В 1-ом столбце её даётся порядковый номер звезды.

Во 2-ом столбце— \mathbb{N}_{2} звезды в HD или HDE. Номера HD подчеркнуты.

B 3-ем столбце—спектральный класс как среднее между определением HD, HDE и моим, если таковое имелось.

В 4-ом столбце содержится фотографическая звёздная величина. Подчеркнуты звёздные величины, заимствованные из *HRP* [8] или списка Паренаго и приведенные к международной фотографической шкале.

5-й столбец—примечание, где даётся отождествление ярких и переменных звёзд, приближенные координаты (на 1855 год) для звёзд, не содержащихся в HDE и избытки цвета для звёзд списка Π . Π . Π ренаго.

Двоеточие всюду означает неуверенные оценки.

Таблица 1.

									14074444 1.
№ п./п.	№ HD, HDE	Спектр	$m_{ m pg}$	Примечание	№ п./п.	№ HD, HDE	Спектр	$m_{ m pg}$	Примечание
1	37742	09,5 lb	1 ^m ,47	$CE = +0^{m}.07$	11	37525	<i>B</i> 7	8,26 .	
2	37743	B2	3, 67	ç Ori	12	294297	G0	10,10	
3	37468	09,5 V	3,2	$CE = +0^{\text{m}}.07$	13	298	G 0	11,66	
4	37479	B2	6,1	σ Ori	14	299	F2	11,46	•
5	294271	B8	7m, 66		15	300	G5	10,30	•
6	272	A 0	7, 54		16	37633	B 9	8,65	
7	37564	A1 .	8, 46		17	37545	B9	8,58	
8	37699	<i>B</i> 4	8, 68	$CE = +0^{\text{m}}.07$	18	294278	К2	10,88	
9	37686	<i>B</i> 9	8, 88		19	273	A3	10,71	
10	37744	B ₂ V	5, 74	$CE = +0^{\text{m}}.01$	20	279	A5	10,71	
1		1	1	1		,		•	

№ п./п.	№ HD, HDE	Спектр	m_{pg}	Примечание	№ п./п.	№ HD, HDE	Спектр	$m_{ m pg}$	Примечание
21	294277	K2	10 ^m ,78		60	294246	F7	10 ¹¹¹ ,88	
22	276	G0	10 ,71		61	245	F8	11 ,00	
23	275	<i>A</i> 0	9, 16		62	244	F6 ·	10 ,51	1
24	1	G0	11 ,46		63		G0	10 ,30	
25	_	G0:	11 ,91	ыет в <i>HDE</i> 5 ^h 32 ^m .0—3 ^o .13	64	242	K0	9 ,98	:
26	280	<i>K</i> 5	11 ,00		65	24	<i>A</i> 0	11 ,78	
27	281	A0	10 ,30		66	22	G	11 ,91	
28	307	F8	10 ,88		67	37207	K0	9 ,16	
29	308		11 ,56		68	37333	A1 .	8 ,26	
30	309		10 ,78		69	294269	G0	10 ,88	
31	311		11 ,00		70	268	F 9	10 ,51	
32	310		10 ,49		71	290773	F5	11 ,46	
33	37642		7 ,86		72	37524	B 9	8 ,68	
34	37594		5 ,96		73	37641	B 9	7 ,33	
35	37409		8 ,88		74		F	11 ,23	Нет в <i>HDE</i> 5 ^h 32 ^m .9-2.°15
36	37687		7 ,06		75	37805	45	8 ,06	0 02 .5 2. 10
37	37807		7 ,06		76	37903		7 ,68	CE=+034
38	37919		8 ,88				i	·	. 02 10 191
39	37887		7 ,66		77	38085		8 ,55	
	294312		10. ,88			294270		10 ,78	
41	313		11 ,66		79	302	1	11 ,91	
42	37985		9 ,28		80 81	303 37662		11 ,00 8 ,46	
- 1	294339		10 ,10		1				
44	37904		6 ,47	' !	82	37661		8 ,88	1
45	37927	39	8 ,06		- 1	290815		9 ,69	
46	37886 B	39	8 ,68		84	814		10 ,78	
47 2	294306	7 8	11 ,00		85 86	813 812	i	11 ,00 10 ,10	
48	305 A		9 ,90		87	811		10 ,10	
49	304 E		9,69			37577		9 ,16	. •
50	301 A		10 ,88		-	37389		8 ,48	
1-	37806 A		8 ,06		-	37344	1	9 ,26	
	37398		9 ,69		_		ŀ		
1	94282 G		-10 ,10		91	37149		8 ,26	
54	284 K		10 ,88]-	37272	1	8 ,34	
55	253 A		9 ,28		-	37285		9 ,16	,
56	254 K		11, 00			290770	1	9 ,28	
57 58	249 F	- 1	10 ,71	ļ	95	771		10 ,51	
59	283 A 247 G	- 1	11 ,23 10 ,10		96	772 i		9 ,98	;
03	441	'	10 ,10	·]	97	37295	9	8 ,46 .	

<u>.</u>	N.G.			,	l _E	№	d.	Ţ		1
№ п./п.	№ HD, HDE	Спектр	$m_{ m pg}$	Примечание	№ п./п.	HD, HDE	Спектр	m_1	pg	Примечание
98	37173	 B8	8 ^{tn} ,06		137	290760	К6	10 ^t	11,88	· · ·
1	290687	A0	9 ,36		138			11	,56	
100	688	A5	9 ,28		139	767	 K 0	10	,88	
101	689	B8	9 ,48		140	766	A0	10	,78	
101	37141	<i>A</i> 1	8 ,46		141	769	F8	11	,46	<u>'</u>
	294226	F 8	12 ,4		142	765	B 9	9	, 0 8	
į	227	K	11 ,91		143	764	<i>A</i> 6	9	,98	
104 105	229	A6	11 ,06	•	144	37321	B3V	6	,76	$CE = +0^{\text{m}}.12$
105	230	A5	12 ,4		145	37397	B3V	6	,34	$CE = +0^{\text{m}}.05$
107	37090	F4	7 ,86	,	146	290749	B8	10	,88	
- 1	37038	A8	8 ,12		147	763	G0	10	,88	•
108	290704	F6	11 ,23	•	148	750	A3	9	,69	
ì	686	A5	11 ,00		149	753	F 8	11	,23	·
110	691	A0	10 ,51		150	751	F5	11	,23:	,
111 112	37113	B9	8 ,34		151	756	F 9	11	,42	
1	37684	. B8	9 ,36	·	152	755	F3	40	,88	
113		F8	11 ,91		153	37443	G0	8	,46	
	290683 685	го К0	10 ,78		154	290754	A3	10	,88	
115	38099	K2	7 ,73		155	•		10	,51	
116			6 ,65	$CE = +0^{\text{m}}.09$	156	741	<i>K</i> 2	11	,91	
117	37776	B3.	7 ,66	02 133	157	742		11	,56	
118	37674	B8			158	740	1	12	,06:	l
119	37660	A2	7 ,78		159	739	ľ	11	,46	
120	290810	G0	10 ,10		160	738		11	,06	Нет в <i>HDE</i>
121	809	G0	10 ,71		161	_	G0:	12	,4::	5h33m.0-0°.51
122	768	A7	10 ,88		162	37652	F4:	8	,06	
123	37607	A0	9 ,28	•		290798		10	,78	
.124	37845	A0	8 ,88		164	799		10	,78	
125	37789	A1	9 ,16		165	37825		9	,28	
ľ	37756	B3	4 ,50	$CE = +0^{\text{m}}.02$		290744			,23	
- 1	290807	G5	11 ,56		167	745		10	,71	-
127	808	F7	10 ,88		168			11	,66	
129	805	G5	9 ,98		169			9	,16	
130	806	F3	10 ,30					7	,66	
131	758	<i>A</i> 0	11 ,06	, <i>'</i>	170	37332		l		;
132	757	G0	10 ,22		171	37302		9	,28	
133	759	G0	11 ,00	·		290747		10	,22	
134	37491	КО	9 ,06		173	748		10	,10	
		<i>F</i> 1	9 ,98		174	752		11	,06	
	290762	F9	10 ,88		175			8	,26	1 100 4 .
130	290702	19	10 '60'		176	37112	B 9	8	,26	100 mm and 3 mm

		·											
№ n./n.	№ HD, HDE	Спектр	n	n _{pg}	Примечание	No 17),	Спектр		$m_{ m pg}$	Пр	имечание
177	290662	B 9)m,98		21	6 360	54 B	3V	-61	n,57	CF	$=+0^{m}.11$
178	l .	A2	1	71,		21		(- 1	7			=+0 .11
179	37187	B 9	8			!		15 B	- 1		,78		
180	37076	<i>B</i> 9	7	,66	Двойная	21		$\frac{32}{G}$		7	,89		•
181	37128		1		$\varepsilon Ori CE = +0^{m}.12$	¬I	9 2906	1		11	,56		
182	37128	!	: 8		10 .12	122	1	17 G		10	,51		
- 1	290675		1	•		22	1	$\frac{1}{36}B$	ſ	9	,48		,
184	290675 665		9	,		22		7 G	Į.	l 1 l 0	,23 ,71		
185	664		10 10			223 224		8 F(1	1	,56	1.	,
186	672		9	,30 ,69		228		5 B9	- 1	9	,28		
187	673		9	,98		226		0 F8		.0	,10		
188	674		9	,98		227	1	- F			,48		
189	677		9	,98		ŀ	29064	-			,36		*
190	678		10	,69		229	į.	9 F0			,88		
191	675		11	,00		230	1	0 A3	l.		,22		
192	680	G0	11	,23		231	ĺ	G	1		,06		
193	681	F5	. 9	,90		232	1	A3	1.		,78		
194	676	F6	10	,22		233		1	ŗ		,44		
195	37075	40	9	,09			29060	-1	- 1		79		,
196	36955	41	9	,48		235	i	A2	10		71		
197	36695 E	32V	4	,94		236	l	A2	- 1		98		
-		-			On among	237	i	A3	10		88		
198	36684 E	39	8	,55	1	238		A_1	(48		
199	36779 E	33V	5	,74	J	239	36591	1	V 4	ł,	7 9	CE=	+0m.08
200	36628 E	38		,06		240	36646	B_3	(3,	04 }	0.5	
-	36590 E	i		,08	j	1	290609	1	8		— } 88: j	CE =	+0 ^m .08
	36669 B	1.		,55	1	- 1	290608	١.	8		88	,	
1-	90588 K	1			•	243	604	1	11		46		
204	582 A	- 1		,51 ,30	2	244	606	G9	9	١, ,	28		
- 1	36605 B		7		2	245	607	<i>F</i> 5	11	,(66		
	00580 A				2	246	605	A0:	9	,	36		
207	581G			.88	[2	247	36781	B 9	. 8	,4	<u> 17</u>		
208	578 B	i		88	. 2	248	36863	<i>A</i> 1	9	,6	59		
209	576 G			51	2	249	290682	<i>F</i> 5	10	,]	10		
210	577 G	- 1		90	.	250	694		10	,]	10		
211	579 F			51	2	251	695		11	,2	23		
212	583 A7	ĺ		71		252	693	B 8	10	,2	22		
213	584 G	- 1		00	` 2	53	697	G0	10	•	51	,	
- 1	6760 <i>B</i> 8		7, ,(1.	2	54	692	G4		,7	í		
	5525 B8	ł		55	2	55	36811	<i>B</i> 9	6	,0	90		
		. [ې بو	1	1	.			į		. [•

				· · · · · · · · · · · · · · · · · · ·					
№ п./п.	№ HD, HDE	Спектр	$m_{ m pg}$	Примечание	№ п./п.	№ HD, HDE	Спектр	$m_{ m pg}$	Примечание
256	36980	A0	8m,68		297	290520	G0	117,06	
	290703		11 ,06		298	518	A3	9 ,69	
258		G0.	11 ,00		299	521	A4	9 ,69	
259			10 ,10		300	523	G8	9 ,08	· '
260	1		10 ,78		301	524	G5	10 ,02	
261	700		11 ,66	·	302	-	<i>G</i> 5	10 ,51	Нет в <i>HDE</i>
262			8 ,46						5h22m1,—1°.40
263			9 ,28	·	303	525	i i	9 ,69	
	290598		9 ,48		304		A0	10 ,78	
265		1	9 ,36		305 306		A3	9 ,90	
266	1	1	11 ,91		307	529	1	11 ,66	
267		Į.	11 ,42		308		i :	10 ,78	
268	1	1	11 ,56		309	t	F0.	11 ,06	
269	i	<i>A</i> 0	11 ,91		310		1	11 ,00 9 ,36	
270		КО	11 ,06		311	!	1	9 ,36 11 ,56	. ,
271		E .	11 ,00		312	Į.	1	10 ,22	
272		<i>B</i> 9	11 ,66	·	313	1)	10 ,22	
273		A2	. 11 ,00		314	1	1	11 ,00	
274	589	G0	10 ,78		315	1	1	11 ,46	
278	585	A8	10 ,78		316	1		11 ,69	
276	587	F9	10 ,88	5	317	1		10 ,22	
277	586	G4	10 ,71	.} -	318	540	1	8 ,68	
278	36444	B9	8 ,55		319	36057	A0	8 ,73	
279	290510	A7	11 ,23		320	36219	B7	7 ,67	
280	511	F6	9 ,98		32		-1	l —	
28	509	F1	10 ,51		325		-	1	
28	508	F4	. 10 ,71		ł		-	9 ,26	•
28	1	A5	11 ,66		32	3 29061		11 ;00	
28	4 514	F8	10 ,22	-	32		1	9 ,90	
28		B9	9 ,16		32	1	1	10 ,78	
28	1	8B9	9 ,90	1	32			10 ,10	
28		F2	10 ,10		32	ì	1	10 ,88	1
28		2F	11 ,42	i	32	l l	1	9 ,16	
28	i	6 A2	11 ,00	1	33	1		11 ,66	
29	1	4 A5	10 ,22		ı		-	8 ,46	L
29	1	F6	9 ,90	l .	33		-1	7 ,78	1
29		-	9 ,28	1	ı	2 29061		11 ,56	
29	3615	cA2	6 ,84		ı	3639	-!	7 ,86	1
29	4 3616	7 K5	6 ,33	CJ Ori (cnst)	33	4 29054	2 G5	10 ,10	
29	5 29051	7 <i>B</i> 9	8 ,55	-	33			9 ,90	1
29	1	9 <i>A</i> 9	9 ,98	i e	33	6 55	0 A5	9 ,36	

		<u> </u>		· · · · · · · · · · · · · · · · · · ·		,			
№ п./п.	№ HD, HDE	Спектр	m _{pg}	Примечание	№ п./п.	№ HD, HDE	Спектр	$m_{ m pg}$	Примечание
337	290543	A 5	11 ^m ,66		377	290785	G 0	9m,79	•
338	546	<i>F</i> 3	9,36		378	784	F8	10 ,78	
339	547	<i>A</i> 3	9 ,98		379	783	G_5	11 ,06	
340	545	Αi	10 ,71	ŀ	380	786	F5	11 ,46	
341	549	A2	10 ,30	Отождествл.	381	788	M0	11 ,00	
				неуверен.	382	736	<i>A</i> 5	9 ,90	
342	548	F8	12 ,4::		383	737	K0	11 ,56	•
343	36394	A0	7 ,78	-	384	735	К7	11 ,74	•
344	36118	A0	8 ,34		385	727	F 5	10 ,22	•
345	36075	<i>B</i> 9	8 ,06		386	723	Α	11 ,91	•
346	290618	F 9	10 ,22		387	726	F5	10 ,30	
347	619	F 0	11 ',06		388	724	F8	10 ,88	
348	698	G 8	10 ,10		389	728	G5	. 11 ,00	
349		G5	11 ,46		390	37427	<i>B</i> 9	7 ,86	
350	• 846	F8	. 11 ,00		391	290729	F0	11 ,56	
351	804	<i>G</i> 0	11 ,66		392	37371	B9	8 ,26	,
352	803	G 5	10 ,88		393	37370	B9	7 ,46	
353	802	A7	11 ,56		394		A0	8 ,26	
354	801	F5	12 ,4::		l	¦			
355	843	F8	11 ,00		395	37294	A0	7 ,86	
356	842	<i>A</i> 1	10 ,30	GG Ori Tun EA	396	J	A 0	8 ,26	`
357	841	G 9	11,42			290725	<i>B</i> 9	9 ,36	
358	37914	A2	9 ,16		398	1 1	K0	9 ,90	
359	290794	G0	11 ,42		399	1	<i>A</i> 3	10 ;78	
	290795	GŠ	-10 ,88		400		, A0	9 ,36	
361	796	К7	10 ,71	. ,	401	733	B5	10 ,22	
362	797	<i>K</i> 2	11 ,42		402		<i>K</i> 0	.10 ,78	
363	833	К	11 ,56		403		A0	7 ,86	
364	834	F 8	- 11. ,23		404	290640	A^2	10 ,78	
365	832	F 0	11 ,46		405	000	F 5	11 ,23	
366	800	F8	11. ,23		406		G0	11 ,42	
367	38050	КО	9. ,47		407		F8	11 ,06	•
368	38049	<i>K</i> 5	9 ,86		408	1	F0	10 ,10	
369		1	8 ,17	•	409		B 9	9 ,08	
		ł			410	ł	A5	10 ,88	
	290793 792	ı	10 ,71 10 ,78		411		<i>B</i> 9	8 -,34	
371 372		l	10 ,78		412	37111	A0	8 ,55	
373		1	10 ,88		413	290658	F2	9 ,69	
374	1		11 ,56		414	659	B 9	. 10 ,71	
375		1	10 ,22		415	654	A2	9 ,98	
376	1	ł	11 ,23		416	653	G 0	10 ,88	
,	'09	***	,20		417	638	F5	10 ,78	

		•					·		
№ п./п.	№ HD, HDE	Спектр	$m_{ m pg}$	Примечание		№ HD, HDE	Спектр	$m_{ m pg}$	Примечание
418	636	<i>A</i> 5	9 ^m ,18		445	36558	К5	8m,03	
419	637	G	11 ,56	•	446	36443	G5	9 ,31	0 105 100 10
420	37037	<i>B</i> 9	8 ,10		447	36486	09 11	1 ,66	orice=+0m.10 var; mun EA
421	36840	G_5	7 ,34		448	36485	B3	6 ,16	July Williams
422	36898	B5	6 ,68	$CE = +0^{m}.09$	449	36502	<i>B</i> 9	8 ,34	
423	36935	B8	7 ,46		450	36313	<i>B</i> 9	7 ,66	
424	290643	<i>F</i> 5	10 ,88		451 2	290575	F5	11 ,66	·
425	652	A 5	9 ,98		452	492	A0	8 ,88	
426	36841	<i>B</i> 9	8 ,26		453	493	<i>A</i> 1	9 ,69	
427	290644	G0	9 ,16		454	501	G_5	10 ,30	
428	645	G5	11 ,00		455	500	A2	11 ,06	·
429	36683	K0	9 ,09		456	499	G 0	11 ,42	
430	290574	<i>B</i> 8	10 ,78		457	502	A5	11 ,56	
431	573	F 6	10 ,10		458	503	G0	11 ,06	
432	572	F0	10 ,22		459	498	K	11 ,66	
433	36694	A0	8 ,55		460	497	A2	9 ,28	
434	36778	B 9	8- ,88.		461	495	K0 F9	9 ,36 9 ,48	,
43	36726	<i>A</i> 0	8 ,55		462 463	494 491	A0	9 ,48	
43	6 36709	A0	8 ,02		464		ļ	9 ,28	
43	7 290570	B9	11 ,46		465		1		
- 43	ł	İ	11 ,56		466			10 ,88	
. 43	9 569	B8	11 ,23		467	496	G0	11 ,06	
44	0 568	мо	9 ,98		468	36312	B8	7 ,94	
44	1 567	G0	10 ,30		469	36139	A0	6 ,84	
44	2 564	B5	11 ,00		470	36117	/ A0	6 ,82	
44	i	1 .	11 ,46	1					
44	14 566	6 A	11 ,06	5	•				
	1	1	1		•	•			

3. ИССЛЕДОВАНИЕ СКОПЛЕНИЯ ЗВЁЗД В ПОЯСЕ ОРИОНА

1. Данные таблицы 1 графически изображены на рис. 2. По осям этого графика отложены спектральные типы (абсциссы) и видимые фотографические величины звёзд.

При рассмотрении этой диаграммы следует учитывать, что мы имеем дело с комбинацией звёзд скопления со звёдами фона. Разделение их оказалось весьма затруднительным и применить к данному

случаю методы, разработанные П. П. Паренаго для туманности Ориона [1] невозможно, т. к. в исследуемой области звёзды скопления не обнаруживают никаких заметных центров сгущения.

Рис. 2

Однако на рис. 2 всё-таки можно видеть аномальную концентрацию звёзд спектральных типов B3-A0 8-9 звёздных величин, и звёзд F8-G0 10-11 величин.

Можно также заметить следы главной последовательности, заметные от ВЗ до АЗ. Это говорит о том, что значительная часть звёзд в области Пояса Ориона расположена приблизительно на одном расстоянии от нас, причём диаграмма спектр—абсолютная величина этой группировки сходна с аналогичной диаграммой для скопления в области туманности Ориона. Далее будут приведены другие данные, подтверждающие это предположение.

2. Рис. 2 даёт возможность оценить расстояние до намечающегося скопления. Заметная на нём главная последовательность наилучшим образом совмещается со стандартной при модуле расстояния, равном $8^{m}.7$ (видимом, не исправленном за поглощение). Допустимая ошибка этого значения модуля $\pm 0^{m}.2$.

Величину модуля расстояния можно определить и несколько иначе. Рассмотрим распределение звёзд по звёздным величинам отдельно для спектральных типов B9 и A0, приведённое в таблице 2 и изображенное на рис. 3.

Таблица 2.

Пределы <i>п</i> : _{рg}	Число звёзд <i>В</i> 9	Число звёзд <i>А</i> 0	Пределы $m_{ m pg}$	Число звёзд <i>В</i> 9	Число звёзд <i>А</i> 0
6 ^m ,0—6 ^m ,5	0	0	9 ^m ,5—10 ^m ,0	2	3
6 ,5—7 ,0	1	2	10 ,0—10 ,5	0	1
7 ,0-7 ,5	2	0	0, 11—5, 10	3	5
7 ,5—8 ,0	8	4	5, 11 – 0, 11	3	2
8 ,0-8 ,5	15	5	11 ,5—12 ,0	1	1
8 ,5—9 ,0	11	7 .	12 ,0 - 12 ,5	0	0
9 ,0-9 ,5	9	10	•		

Сравнивая абсциссы максимумов этих распределений, равные $8^{\rm m}.3$ и $9^{\rm m}.2$ соответственно, с максимумами функций светимости— $M_{\rm pg}=-0^{\rm m}.2$ для B9 и $M_{\rm pg}=+0^{\rm m}.3$ для A0—можно получить значения модуля расстояния $8^{\rm m}.5$ и $8^{\rm m}.9$ соответственно.

Одновременно эти распределения убедительно показывают, что большинство звёзд этих спектральных классов находится примерно на одном и том же расстоянии от нас, так как иначе невозможно объяснить первый максимум на кривых распределения.

В результате среднее значение видимого модуля расстояния получается равным $8^{\rm m}.7$ с вероятной ошибкой около $0^{\rm m}.15$.

Среднее поглощение света в нашей области можно определить из известных данных о фотоэлектрических избытках цвета B—звёзд в изучаемой области. Таких звёзд, взятых из таблицы 176 в [1] имеется 17. У всех звёзд, за исключением HD 37903, избытки малы. Средний избыток составляет $+0^m$.090. Принимая $\gamma=5.0$ получаем среднее фото-

графическое поглощение в нашей области равным $0^{\rm m}.45$, а исправленное значение модуля— $8^{\rm m}.25$, чему соответствует расстояние в 445 ± 30 пар сек. Интересно сравнить это значение модуля со значением, полученным П. Паренаго по ярким B—звёздам нашей области (область T

у Паренаго), равным 8т.38.

3. Проведена статистика звёзд по спектральным классам и звёздным величинам. Результаты её сравнивались с нормальными данными для той же самой галактической широты (15°). Соответствующие числа даются в таблице 3. В каждой клетке её в числителе стоит число звёзд исследуемой области, попадающих в указанные пределы по своим звёздным величинам и спектральным классам. В знаменателе—аналогичное число для нормального звёздного поля на галактической широте 15°. Последние получены как средние из 6 Каптейновских площадок (SA 3, 10, 43, 75, 86, 21) по данным BSD [9], рассчитанным на 10 квадратных градусов. Данные BSD брались только до 11т-5, т. к. более слабые звёзды в нашу статистику почти не вошли.

Клетки с особенно большим избытком звёзд в Орионе выде-

лены.

Таблица 3.

\ <u></u>	1						-,				иоли	- Jul 0.
Пределы спектра		B5 ~	- A0 -	- A5 -	- F0 -	- F5 -	- G0 -	- G 5-	- K0 -	- K5-		
Пределы mpg	B5	<i>B</i> 9	A4	A9	F4	FS	G^{4}	G 9	K4	K9	М	Σ
0 ^m .0— 8 ^m .5	16	31	19	4	3	2	1	2	3	2	0	83
	0.7	2.7	3.3	0.7	0.8	1.6	0.4	1.8	0.2	0.0	0.1	12
8 .5 9 .0	0	14	10	_0	. 0	2	0	0	1	0	0	27
	0.0	1.8	1.9	0.9	0.7	0.8	0.6	1.9	0.7	0.4	0.0	11
9 .0 9 .5	0	13	20.	_ 5	_1	5	1	4	5	0	1	55
	0.1	1.6	3.8	0.9	1.8	2.4	1.4	3.2	0.9	0.2	0.1	18
9 .5—10 .0	0	3.	. 15	_ 5	_ 3	5	3	2	3	1	1	41
	0.1	1.2	4.0	1.9	1.6	3.1	1.7	3.1	2.0	0.8	0.2	22
10 .0—10 .5	1	2	7	_2	.9	10	8	7	0	0	0	46
	0.0	1.4	8.3	2.7	4.3	5.1	4.6	6.3	2.0	0.7	0.3	40
10 .5—11 .0	0	5	18	8	8	14	18	4	7	4	0	86
	0.0	1.1	7.4	3.1	4.8	10.8	8.1	11	4.6	1.3	0.2	49
11 .0—11 .5	1	5	6	4	6	20	15	6	5	1	1	74
	0.0	0.2	7.6	5.4	5.2	17	16	13	7.2	2.1	0.5	83
11 .5—12 .0	1	1	2 .	6	1	13	6	3	3	1	0	37
12 .0—12 .5	0	0	0	1	0	3	1	0	0	0	0	5
							i					
Σ	19:	74	97	35	31	74	53	28	27	9	3	450
	0.9	10	36	16	19	41	33	40	18	5.5	1.4	225

Из распределения выделенных клеток ясно виден значительный избыток звёзд спектральных классов B-A 8-9 величин и заметный избыток F-G звёзд 10-11 величин (что также менее отчетливо

заметно и на рис. 2). Это даёт еще одно подтверждение наличия в области Пояса. Ориона скопления звёзд с тем же характером населения, что и в туманности Ориона.

Сравнение распределения всех звёзд нашей области и нормальном поле по спектральным типам изображено на рис, 4. По оси абсцисс на нём отложены спектральные классы, а по оси ординат—логарифмы отношения числа звёзд с данным спектром в нашей области к нормальному для данной галактической широты. Здесь также явно виден значительный избыток горячих звёзд и несколько меньший избыток звёзд типа M.

Распределение всех исследуемых звёзд по звёздным величинам сравнивалось с данными Сирса и Ван-Райна [10], для галактической широты 15°, рассчитанными на 10 кв. градусов.

Соответствующие числовые данные приведены в таблице 4, во втором столбце которой даётся A(m) по Сирсу, а в третьем столбце A(m) в Орионе.

Таблица 4.

Пределы $m_{ m pg}$	А (m) Сирс	A (m) Ori	Пределы <i>т</i> _{рg}	A (m) Cupc	A (m) Ori
4m.0—4m.5	0.08	0	8m.5— 9m.0	9.0	25
4 .5—5 .0	0.13	3	9 .0— 9 .5	14.6	55
5 .0—5 .5	0.22	0	9 .5—10 .0	23.7	42
5 .5—6 .0	0.38	3	10 .0—10 .5	38.1	46
60-6.5	0.63	6	10 .5—11 .0	61	86
6 .5—7 .0	1.15	6	11 .0—11 .5	96	75
7 .0—7 .5	1.73	8	11 .5—12 .0	152	43
7 .5—8 .0	2.85	26	12 .0—12 .5	241	5,
8 .0 — 8 .5	4. 6	38			

Эти числа иллюстрируют рис. 5, где различными значками изображены lgA(m) по Сирсу и lgA(m) в нашей области. Здесь снова заметен сходящий на нет у 11 величины избыток звёзд в Орионе с максимумом у 8 величины. Уменьшение числа звёзд после 11 величины объясняется, безусловно, неполной исчерпанностью этих звёзд.

Из всей проделанной статистики следует также, что область пояса Ориона богаче нормальной всеми звёздами вообще.

4. Никаких существенных особенностей в видимом распределении звёзд в рассматриваемой области не наблюдается. Звёзды скопления, очевидно, распределены более или менее равномерно на достаточно большой площади. Границы этой ассоциации остаются пока неясными.

Однако, при внимательном рассмотрении фотографий этой области можно заметить нечто вроде кольца звёзд примерно 8 величины, диаметром около 1°, окружающего в Ориона.

4. ВЫВОДЫ.

Из рассмотрения спектров и звёздных величин звёзд в области Пояса Ориона достаточно определенно следует существование в этой области пространственной группировки звёзд, находящейся от нас на расстоянии около 450 парсек и имеющей примерно тот же характер населения (верхняя часть главной последовательности—до А5—и субгиганты), что и исследованное П. П. Паренаго скопление звёзд вокруг туманности Ориона.

Оба упомянутые скопления являются, очевидно, частями ещё более

обширной звёздной асс оциации Ориона.

В заключение считаю своим долгом выразить глубокую благодарность проф. П. П. Паренаго за ценные советы и исключительно внимательное отношение к настоящей работе.

ЛИТЕРАТУРА.

- 1. П. П. Паренаго Тр. ГАИШ, т. 25, 1954
- 2. П. П. Паренаго АЖ 33, № 3, 444, 1956
- 3. П. П. Паренаго АЖ, 33, № 5, 749, 1956
- 4. A. J. Cannon, Harv. Ann., 92, 1918
- 5. A. J. Cannon, Harv. Ann., 112, 1950
- 6. Morgan, Keenan and Kelleman. An Atlas of Stellar Spektra, Yerks, 1943.
- 7. A. N. Vysotsky, Ap. J. 93, 425, 1941
- 8. O. C. Wendell, Harv. Ann., 50, 54, 1908
- 9. A. Schwassman, P. J. van Rhijn, Spektral-Durchmusterung der 115 nordlichen. Kaptejn' schen Eichfelder. Bergedorf, P. I, 1935; P. II, 1938; P. III, 1947; P. IV, 1951
- 10. F. H. Sears, P. J. van Rhijn, MtW Contr, № 301, 1925.

А. М. БАХАРЕВ и О. В. ДОБРОВОЛЬСКИЙ

ДРЕЙФ МЕТЕОРНЫХ СЛЕДОВ НАД ТАДЖИКИСТАНОМ

Наблюдения метеорных следов проводились во время базисных наблюдений телескопических метеоров на базисе Обсерватория—Ботанический сад, а также во время специально выделенных для наблюдения следов периодов, преимущественно во время действия метеорных потоков.

Часть наблюдений была обработана и опубликована ранее [4, 5]. В настоящей статье даются результаты обработки остальных наблю-

дений, в т. ч. наиболее интересных — базисных метеоров.

Время пролёта метеора регистрировалось с точностью до 1 минуты. Первоначальное положение следа наносилось на карты малого атласа Михайлова. Скорость дрейфа определялась путём засекания секундомером времени прохождения следом поля зрения инструмента (или определённой доли поля зрения для слабых следов).

Измерялся также позиционный угол дерейфа γ , определяемый как угол между направлением на надир и направлением видимого смещения следа. Позиционный угол отсчитывался от 0° до 360° по направ-

лению движения часовой стрелки.

Для ряда следов были сделаны также зарисовки их формы. Все следы за исключением № 11, были видны как светящиеся полоски, сперва прямолинейные и более или менее искривлённые в конце наблюдений. Некоторые из них оставляли отдельные яркие сгустки, державшиеся иногда по нескольку минут после исчезновения полоски. След № 11 представлял собой очень яркую быстро расширяющуюся трубку с весьма большой (до 50°) первоначальной длиной. Трубчатое строение следа было весьма хорошо заметно в течение всего времени наблюдения следа.

По мнению авторов, трубчатые следы следует объяснять как эффект совместного появления пылевого и газового следов. Пылевой след, проектируясь на светящийся ионизационный след, создает впечатления трубки. Эта точка зрения находит своё подкрепление в характере видимого расширения трубчатых следов. Тёмная внутренняя зона увеличивает свой диаметр одновременно с увеличением размеров светлых внешних очертаний следа. Такое расширение внутреннего диаметра трубок было отмечено особенно отчётливо на следе № 11, а также на трубчатых следах, наблюдавшихся в Сталинабаде ранее [см. 1].

Возможно, что пылевая составляющая имеется во всех метеорных

следах, но при малом её количестве остаётся незамеченной.

,18

Была также отмечена продолжительность свечения следов в се-

кундах.

Обработка наблюдений велась по следующим формулам [2]. Зная высоту следа над поверхностью Земли H, зенитное расстояние z азимут A и угловую скорость ω в радианах за секунду последовательно находим:

1) расстояние до следа по горизонтали $\triangle = H \lg z$

2) скорость дрейфа $v = \omega H$ sec $z \sqrt{\sin^2 \gamma + \cos^2 \gamma \sec^2 z}$

3) азимут дрейфа $a = A - \alpha$

(в [2] ошибочно указано: $a = A + \alpha$)

$$tg \alpha = tg \gamma \cos z;$$

азимут а указывает направление, куда дрейфует след.

4) проекцию скорости дрейфа на небесную сферу

$$v_m = \omega H \sec z$$
.

Высота следов была принята постоянной и равной 82 км. В действительности, как отмечает Цесевич [3], высота следа может и не оставаться неизменной и получаемые со стандартной высотой значения скорости могут отличаться от истинных. Поэтому такой метод дает только порядок величины скорости дрейфа и его направления.

Некоторым оправданием для такой процедуры, помимо незнания истинной величины

компоненты скорости, является то обстоятельство, что вертикальные перемещения в среднем повидимому равны нулю. Это следует из статистики позиционных углов, средняя численность которых в двух верхних квадрантах и в двух нижних квадрантах с большой степенью точности одинакова.

— —

В таблице 1 приводятся результаты обработки наблюдений. Все

необходимые пояснения даны в заголовках колонок.

Метеоры №№ 7 и 8 являются в действительности одним и тем же метеором, наблюдённым одновременно обоими наблюдателями с концов базиса Обсерватория—Ботсад длины b=4,2 км. В этом случае \mathbf{z} компонента скорости дрейфа может быть определена по разности позиционных углов следа $\Delta \gamma$ пропорциональной скорости изменения параллакса π .

Имеем:
$$\pi \approx \sin \pi = \frac{b \sin \beta \cos z}{H} = \frac{b \sin \beta}{R}$$

где R = H sec z—расстояние до следа

и $\cos \beta = \sin \alpha \cos \Delta A$

где Δ A—разность азимутов базиса и следа.

Отсюда:
$$\frac{d\pi}{dt} = -\frac{b \sin \beta}{R^2} \frac{dR}{dt}$$
.

и, следовательно, радиальная скорость следа v_{r} , т. е. скорость вдоль луча зрения, равна:

$$v_r = \frac{dR}{dt} = -\frac{R^2}{b \sin \beta} \quad \frac{d \pi}{dt}$$

С другой стороны,

$$\frac{d\pi}{dt} = \frac{\omega}{\sin P} \Delta \gamma$$

где P-угол, образуемый направлением параллактического смещения

и видимым направлением дрейфа, а $\Delta \gamma$ —разность позиционных углов, положительная, когда π возрастает со временем и отрицательная, когда π убывает.

Окончательно

$$v_r = -\frac{b \sin P \sin \beta}{\omega P^2} \Delta \gamma$$

Метод определения направления параллактического смещения описан нами ранее [см. 4].

В данном случае след появился почти точно в азимуте базиса, а γ близко к 270°. Поэтому sin $\beta{\simeq}1$, sin $P{\approx}1$

$$v_r \approx -\frac{\omega R^2}{b} \Delta \gamma$$

Подставляя численные значения $b=4,2.10^3$ метров, $\Delta\gamma=-8^\circ=-0,14$ радиана и принимая для наблюдателя на Обсерватории $\omega=92\frac{\text{мин. дуги}}{\text{мин. времени}}=4,5.10^{-4}\frac{\text{радиана}}{\text{сек}}$, и $R=2,62.10^5$ метров, получим: $v_r=1,0.10^3\frac{\text{метр}}{\text{сек}}$

Если отождествим участок следа, регистрировавшийся наблюдателем на Обсерватории, с точкой B следа, наблюдавшейся из Ботсада, и примем соответственно для точки B $\omega=94\frac{\text{мин. дуги}}{\text{мин. врем.}}=4,6.10^{-4}\frac{\text{радиан}}{\text{сек}}$, и $R=2,56.10^{5}$ метров, то получим то же значение

$$v_r = 1.0.10^3 \frac{\text{метр}}{\text{сек.}}$$

Знак + указывает, что след удаляется от наблюдателя. Составляющие скорости в картинной плоскости наблюдателя будут:

горизонтальная составляющая
$$v_x = \omega R \sin \gamma$$

$$\begin{cases} -112 \frac{\text{метр}}{\text{сек.}} & \text{Обсерватория} \\ -116 & \text{"} & \text{Ботсад} \end{cases}$$
 перпендикулярная к ней нормальная со-
$$\begin{cases} -36 \frac{\text{метр}}{\text{сек.}} & \text{Обсерватория} \\ \text{ставляющая} & V_t = \omega R \cos \gamma \end{cases}$$

Наконец, поворотом осей координат около оси v_x на угол z, можем перейти к более привычным координатам с вертикальной осью z и горизонтальными x и y осями (см. рис. 1).

Полная скорость:

$$v_o = \sqrt{v_x^2 + v_y^2 + v_t^2} = \sqrt{v_x^2 + v_y^2 + v_z^2} = 10^3 \frac{\text{MeTp.}}{\text{CeV}}$$

Итак, если измеренное значение $\Delta \gamma$ верно, то след дрейфовал вверх со скоростью порядка 300 метров в сек., одновременно смещаясь вправо и удаляясь от наблюдателя. Полная скорость v_o была больше, чем вычисленная в предположении постоянной высоты следа.

Однако, ввиду малости базиса b это определение следует считать неуверенным: $\Delta \gamma$ лежит в пределах возможных случайных отступлений, как это следует из [6]. Отсюда видно, насколько важно было бы увеличить базис для наблюдений следов. Указанный расчёт следует рассматривать только в качестве примера, могущего иметь методическое значение если базис будет увеличен в несколько раз.

В таблицу 1 не вошли те из метеорных следов, для которых не была зарегистрирована скорость дрейфа. Из них особого упоминания заслуживает след в ночь с 18 на 19 августа 1952 г., т. к. имеются базисные фотографии метеора, давшего этот след, что позволяет оценить высоту появления следа.

Первоначальное положение следа—почти точно от Пегаса (вертикально); виден невооруженным глазом 15 сек; позиционный угол дрейфа около 90° (наблюдатель — К. Саидов). Как показывают результаты обработки фотографий, выполненные под руководством Л. А. Катасёва, след образовался в диапазоне высот от 80 до 85 км.

Переходим к обсуждению данных таблицы 1.

11

۶

Нетрудно показать, что односторонние определения v, приводимые в таблице, дают верхний предел истинной скорости v_o ; проекция же скорости на небесную сферу v_m даёт нижний предел истинной скорости. Таким образом, истинная скорость лежит между v и v_m . Как видим, пределы возможных вариаций v_o малы при малых z и весьма сильно возрастают при больших z. В частности, для следа N 10 — имеющего $z = 81^\circ$, возможные пределы вариации v_o особенно велики и он вообще исключен из дальнейшего рассмотрения.

Сказанное относится к условию, когда средняя высота всех следов одинакова и равна 82 км. Неодинаковая средняя высота различных метеоров вносит дополнительную погрешность, которая однако в среднем равна нулю.

Приводимые ниже рис. 2 и 3 дают распределение дрейфа следов по азимуту и скорости на основании таблицы 1.

Рис. 2

Распределение скоростей по румбам—роза ветров—имеет характерную форму и в общем соответствует получаемым другими наблюдателями. Особо следует отметить постоянство численных значений скорости воздушных течений.

Сравнение кривой b рис. 2 с распределением скоростей дрейфа за 1934-38 г.г. [2] (кривая a рис. 2) показывает удивительную устойчивость распределения скоростей стратосферных течений над Таджикистаном: обе кривые почти точно повторяют друг друга. Правда, оба сравниваемые интервала случайно падают на годы с большим средним числом Вольфа: среднегодовое число Вольфа за 1934-38 г.г. в международной цюрихской системе—70, а за 1950-52 г.г.—около 100 и для окончательного суждения об устойчивости распределения было бы хорошо произвести соответствующие наблюдения при малых числах Вольфа. Однако, мало вероятно чтобы относительные числа Вольфа дали особенно большой эффект.

Было бы весьма желательно составить сводные данные по дрейфу метеорных следов над Средней Азией, использовав для этого все наблюдения следов, проводившиеся в Ашхабаде и Сталинабаде в порядке совместной работы ААЛ и САО.

ЛИТЕРАТУРА:

- 1. О. В. Добровольский, Дрейф метеорных следов над Таджикистаном. Фонды Сталинабадской АО.
- 2. В. В. Федынский, Ночные светящиеся следы метеоров. Труды САО т. II, стр. 5, 1941
- 3. В. П. Цесевич, Что и как наблюдать на небе. ГИТТЛ 1950.
- 4. О. В. Добровольский и А. М. Бахарев, Дрейф метеорных следов над Таджикистаном. Сообщения ТФАН № 1, 1947.
- 5. А. М. Бахарев, Персеиды в 1950 году. Циркуляр САО № 87—88, стр. 4—6, 1950.
- 6. А. М. Бахарев и О. В. Добровольский, Высоты и радианты телескопических метеоров в 1947—48 г.г., Бюллетень САО № 3, стр. 17—29, 1952.

											Таблица 1.
по порядку	Дата (мировое время)	ление 1 с пу	направ- на след инкта одения	Продолжительность свечения в секундах	Видимое смещение следа в мин. дуги за минуту вре- мени	Направление смещения	Линейная скорость дрейфа в м/сек.	Азимут дрейфа	Расстояние до следа по горизонтали в км.	Проекция скорости дрейфа на небесную сферу в м/сек.	Наблюдатель
Nº Nº	•	Азимут	Высота	Про	Видил в мин мени	Har	Лип	Азі	Рас	Пр	· · · · · · · · · · · · · · · · · · ·
1	1949. IX. 21 ^d 16 ^h 41 ^m	309°.7	40°.6	15	56	190°	52	123°	96	34	Бахарев
2	1950. IV.20 22 45	203 .9	3.8	92	103	88	701	142	1240	620	Бахарев
3	V.15 16 12	154 .4	12 .4	135	47	230	270	320	374	87 •	Бахарев
4	IX. 8 18 12	357 .6	. 16 .4	271.5	23	· 75	43	311	275	. 32	Бахарев
5	1951.VIII. 1 22 01A	190 .2	37 .2	108	58	40	54	163	108	38	Бахарев
.	В	194 .9	37 .3	100	63	100	42	31	108	41	Бахарев
6	VIII. 4 21 03	94 .5	57 .9	40	157	100	87	193	. 52	74	Добровольский
7	VIII. 6 18 05	199 .6	18.3	80	92	252	161	64	249	117	Добровольский
8	VIII. 6 18 07A	199.0	18 .6	109.5	94	260	131	318	243	116	Бахарев
١	В	202 .4	20 .5	134	115	260	144	319	219	130	Бахарев
9	VIII. 7 18 25	224 .9	49 .4	35	91	15	62	236	70	47	Добровольский
10	VIII.11 21 38	204 .9	8.8	45	93	15	1550	203	533	242	Бахарев
11	1952.VIII.11 ^d 16 ^h 59 ^m	105°.7	49°.0	90	90	145°	58	224°	71	47	Добровольский

Буквы А и В означают две различные точки одного и того же следа.

Approved For Release 2010/04/07: CIA-RDP80T00246A045700380001-3

В. И. ИВАНИКОВ

ВЫБОР ОБЪЕКТИВНОЙ ПРИЗМЫ ДЛЯ СПЕКТРОФОТОМЕТРИИ МЕТЕОРОВ

Задачей настоящей работы является расчёт объективных призм для нового метеорного патруля САО, снабженного камерами с полем зрения $40 \times 51^\circ$ и объективами "Уран-9" ($\frac{D}{F} = \frac{1}{2.5}~F = 25~{\rm cm}$).

Для уверенной обработки спектра метеора линейная дисперсия $600-700 \mathring{A}/\text{мм}$ [1] недостаточна. Однако, чрезмерное увеличение дисперсии также невыгодно потому, что будет фотографироваться мало спектров метеоров. Наиболее приемлемой можно считать дисперсию в среднем около $300\ \mathring{A}/\text{мм}$.

Необходимо, чтобы призма имела наименьшие потери на отражение и поглощение при минимальном размере, обусловленном большей простотой изготовления и хорошем качестве передачи изображения.

Для определения участка спектра, который можно сфотографировать на панхроматической плёнке высшей чувствительности, мы рассчитали кривую актиничности света звёзд спектральных классов BO и G5 на основе материалов работы [2]. На рисунке 1 по оси ординат в относительных единицах отложены произведения спектральной интенсивности излучения звёзд j, спектральной чувствительности плёнки S, коэффициента пропускания объектива T и коэффициента прозрачности атмосферы P; по оси абсцисс отложены соответствующие значения длин волн λ .

Из рисунка 1 видно, что из возможного излучения метеора мы можем сфотографировать участок спектра в пределах $370-670~m_{\rm P}$. Поэтому для достижения средней дисперсии $300~{\mathring A}/{\rm MM}$ необходимо, чтобы длина спектра l, т. е. произведение разности отклонений краевых лучей к основанию призмы на фокусное расстояние объектива, была около $10~{\rm MM}$. Отклонение луча ϵ при его выходе из призмы под углом наименьшего отклонения можно найти по формуле

$$\sin \varepsilon = 2n \sin \frac{A}{2} \cos A \sqrt{1 - n^2 \sin^2 \frac{A}{2}} + 2n^2 \sin^2 \frac{A}{2} \sin A - \sin A$$

где A — преломляющий угол призмы;

. 24

n — показатель преломления для монохромятического луча. Результаты расчёта длины спектра в мм между $\lambda = 365~m$ µ и $\lambda = 656.3~m$ µ для призм из различных сортов стекла [3] приведены в таблице 1.

					•					14024	411
Марка	стекла	ТК 4	БФ 7	БФ 8	тк 1	тк з	тк 2	тк 9	БФ: 17	тк 11	БФ 13
$A = \left\{ \right.$	60° 45° 30° 25°	8.6	8.6	10.9	10.9	11.0	11.2	13.7	16.3	16.6 11,0	16.9 11.0
Марка	стекла	ЛФ 5	БФ 12	Ф 1	Ф 4	Τ Φ 1	ТФ 2	ТФ 3	ТФ 7	ТФ 4	ТФ 5
A	60° 45° 30° 25°	7 0	20 8	21.6 12.2 6.5	23.1 12.9 7.5	26.5 15.9 9.2	30.0 16.1 9.2	39.0 15.7 11.0	42.7 20.8 11.7 7.5	44.6 21.5 12.2 9.7	48.6 22.5 12.6 10
	1 42	į	١.	i .	1	1	•	•	'		

Видим, что основному требованию удовлетворяют призмы из стекла БФ 8, ТК 1, ТК 2, ТК 3 при угле преломления $A=60^\circ$; из стекла ТК 11, БФ 13, ЛФ 5 при $A=45^\circ$; из стекла ТФ 1, ТФ 2, ТФ 3 при $A=30^\circ$ и, наконец, из стекла ТФ 4, ТФ 5 при $A=25^\circ$. Из этих возможных призм мы должны выбрать ту, которая обладает наименьшими потерями света на отражение и поглощение, зависящими от размеров призмы.

Размеры призмы определяются обратным ходом лучей от краев поля камеры через грани призмы. Поглощение в призме p рассчитано для пучка, идущего под углом наименьшего отклонения по средней линии главного сечения призмы. Потери света при отражении от граней, зависящие от длины волны света, вещества призмы и угла падения, рассчитывались по формуле Френеля:

$$k = \frac{1}{2} \left\{ \frac{\sin^2(i_1 - i_2)}{\sin^2(i_1 + i_2)} + \frac{\operatorname{tg}^2(i_1 - i_2)}{\operatorname{tg}^2(i_1 + i_2)} \right\},\,$$

Таблица 2

Марка		A =	= 60°	.A := 45°			
стекла	БФ 8	TK 1	, тк з	ТК 2	TK 11	-Ф 1	БФ 12
i ₁ (λ=365)	53°,861	55°,578	53°,736	52°,986	40°,308	39°,375	39°,694
$2 k_1$	15.80	17.90	15.84	15.00	13.84	12.6	13.0
k_2	37.0	43.4	37.3	34.8	15.5	14.0	14.4
k_2	5.6	6.4	5.2	ž. i	6.3	5.6	5.8
k	29.2	33.8	29.1	27.6	17.8	16.1	16 6
p		44		,		10	
g .		463				60	

М а рка		$A = 30^{\circ}$	$A = 25^{\circ}$		
Марка стекла i₁ (λ=365) 2 k₁ k₂ k₃ p g	ТФ 1	ТФ 2	ТФ 3	ТФ 4	ТФ 5
	26°,105	26°,608	27°,536	23°,128	2 °,38 °,38 °
$2 k_1$	12.74	13.90	15.0	11.0	16.1
${m k}_2$	8.6	9.2	10.0	9.5	9.7
k_3	6.9	6.0	7.6	6.3	7.0
k	14.1	14.5	6.3	15.9	. 6.4
p		5			4
g		12		,	· 8.5

где k — отношение интенсивностей отраженного и падающего лучей; $i_1,\ i_2$ — углы падения и преломления луча.

Зависимость отражения от длины волны выражена слабо, разли-

чие для краевых лучей около 1%.

Для лучей, идущих в призме под углом наименьшего отклонения i_1 , потери k_1 на каждой грани призмы будут одинаковыми вследствие симметричного хода луча. Для лучей падающих на грань призмы под наибольшим углом падения (i_1+25°) , потери k_2 на первой грани призмы будут отличаться от потерь k_3 на второй грани. Средние по-

тери k будут характеризовать качество призмы по отражению света. Результаты расчёта потерь света на отражение k и поглощение p, выраженные в процентах, и вес призм g в кг на основе исходных данных [3] приведены в таблице 2.

Из таблицы 2 следует, что наиболее выгодными являются призмы с преломляющими углами $25-30^\circ$ из тяжелого флинта, т. к. потери света на отражение и поглощение, а также вес этих призм наименьшие. Сообразуясь с возможностями изготовления, мы заказали призмы с прямым углом при основании, диаметром 25 см и значением преломляющего угла $A=25^\circ$, стекло $T\Phi$ 5 3 категории E класса [3].

Сделаем приближенное относительное сопоставление эффективностей камер с призмами и без них.

Пусть спектр непрерывный. Если длина спектра 10 мм, то для получения непрерывного спектра необходимо, чтобы яркость объекта была в 200 раз $\left(\frac{10}{0.05}\right)$ больше по сравнению с точечным объектом не-

разложенным в спектр. Кроме того, потери света в призме составят 20% (таблица 2); если же призма будет просветлена, то коэффициент отражения снизится в 3-4 раза [6] и общие потери составят 8%. В результате можно будет фотографировать непрерывные спектры объектов на 5-6 звёздных величин более ярких $\left(-2.5\ \lg\ 200\cdot\frac{108}{100}\right)$ по сравнению с объектами неразложенными в спектр.

Спектр метеора линейчатый, поэтому световая энергия будет сосредоточена в линиях спектра. Ширина монохроматической линии будет зависеть от погрешностей инструмента. Разрешающая способность объектива "Уран-9" в центре поля не менее 22 линий на мм, т. 'е. можно считать аберрационное пятно рассеяния равным 0.05 мм. Ширина монохроматической линии спектра несколько больше ширины следа метеора не разложенного в спектр, что обуславливается дополнительными ошибками, вносимыми призмой. Допустим, что объектив изображает точку кружком с поперечником 0.05 мм, фотоплёнка же расширяет это изображение еще на 0.015. мм, так что в результате ширину следа метеора можно принять равной 0.065 мм. Вследствие различия в показателях преломления обыкновенного и необыкновенного лучей, призма третьей категории раздваивает монохроматическую линию на 0.014 мм, что в сумме с погрешностями объектива и фотопленки составит 0.079 мм. Отсюда следует, что разрешающая способность инструмента с призмой 3-й категории будет в среднем около $24\ A$, а с призмой 1-й категории она была бы равна $19\ A$.

Если бы световая энергия была сосредоточена в n линиях спектра, то для того, чтобы сфотографировать такой спектр, необходим метеор на $\Delta m = -2.5 \text{ lg} \, \frac{0.079}{0.065} \, n$ звёздных величин более яркий, чем метеор неразложенный в спектр. Например, при n=10, $\Delta m = -2.7$ зв. вел. Однако это число завышено, т. к. не все возможные линии спектра метеора могут оставить следы на фотоплёнке вследствие их малой интенсивности.

Тем не менее яркость метеора, дающего спектр по сравнению с яркостью метеора неразложенного в спектр, должна лежать в пределах рассчитанных для линейчатого и непрерывного спектров и зависит кроме того от спектрального пропускания стекла призмы не учитывавшегося нами.

Сопоставим относительную эффективность камер с объективами "Уран-9" и "Индустар-7" $\left(\frac{D}{F}=\frac{1}{3.5}\right.$ F=10,5 см) применявшихся ранее для фотографирования метеоров. Диаметр аберрационного пятна рассеяния объектива "Индустар 7" также приблизительно равен 0.05 мм [4]. Освещенность изображения точки на фотослое в центре оптического поля у объектива "Уран-9" будет в $\frac{D_1^2}{D_2^2}=11,1$ раз больше, чем у объектива "Индустар-7". Объектив "Уран-9" состоит из пяти, а "Индустар-7" из четырёх линз. Согласно [5] яркость выходящего пучка у объектива "Уран-9" составит 0.56, а у объектива "Индустар-7" 0,65 [6] от падающего.

Однако линзы объектива "Уран-9" просветлены, что снижает коэффициет отражения на каждой поверхности в среднем до 1.5% [6] и яркость выходящего пучка будет около 0.75 от падающего. Отсюда яркость выходящего пучка у объектива "Уран-9" будет в $\frac{0.75}{0.65}$ раз больше, чем у объектива "Индустар-7". Фокусное расстояние объектива "Уран-9" больше, чем у "Индустар-7"; за счёт уменьшения выдержки метеора объектив "Уран-9" теряет в яркости в $\frac{25}{10.5}$ раза.

Итак, с объективом "Уран-9" можно фотографировать метеоры на +2.5 lg $\left(\frac{100\cdot0.75\cdot10.5}{9\cdot0.65\cdot25}\right)=+1.8$ зв. вел. более слабые, чем с объективом "Индустар-7".*

Если число метеоров с уменьшением их блеска на 1 звёздную величину увеличивается в 2.5 раза [7], то, вообще говоря, с объективом "Уран-9" можно будет фотографировать в 4-5 раз больше слабых метеоров, чем с объективом "Индустар-7".

ЛИТЕРАТУРА

- 1. A. M. Бахарев, Тр. САО т. III, вып. 1 стр. 73, 1950.
- 2. В. И. Иваников, Изв. отд. естеств. наук АН Таджикской ССР вып. 14. стр. 53, 1956.
 - 3. ГОСТ 3514-51. Стекло оптическое.
 - 4. В. И. Иваников, Бюллетень САО № 16, стр. 3, 1956.
- 5. А. И. Тудоровский, Теория оптических приборов т. II, стр. 87, АН СССР, M-Л 1952.
 - 6. Оптика в военном деле т. 1, стр. 126, 301, АН СССР, М—Л, 1945.
 - 7. Ф. Ватсон, Между планетами, стр. 123, М-Л, 1947.

^{*} В последнее время автором экспериментально было найдено, что предельцая звездная величина метеора, при угловой скорости 22°/сек, фотографируемая объективом, "Уран-9" на панхроматической пленке высшей чувствительности равна 0.7. зв. вел.

м. з. маркович

К ВОПРОСУ О ПОВЕРХНОСТНОЙ ТЕМПЕРАТУРЕ ВРАЩАЮЩЕГОСЯ ЯДРА КОМЕТЫ

В работах О. В. Добровольского [1] и [2] рассматривалась температура поверхностного слоя ядра кометы при постоянных и переменных термических коэффициентах без учёта потерь на лучеиспускание. В настоящей статье делается попытка определить тепловой режим поверхностного слоя с учётом лучеиспускания по закону Сте-

фана-Больцмана.

Согласно так называемой "ледяной" модели, предложенной Уипплом, основная масса ядра кометы состоит из льдов CH_4 , NH_3 , CO_2 , H_2O и т. д. с примесями многочисленных твёрдых тугоплавких частиц. При возгонке льдов, вкрапленные в них твердые частицы, оседают на поверхность ядра, образуя плохо проводящий тепло слой пыли, предохраняющий ядро от слишком быстрого испарения. Уиппл [3], рассматривая этот поверхностный слой как рыхлый, плохо сцементированный агрегат, приходит к выводу, что перенос солнечной энергии от поверхности ядра к ледяному основанию осуществляется преимуще-

ственно путём радиации.

Однако это утверждение кажется нам недостаточно обоснованным. В: Ф. Чудновский [4], рассматривающий передачу тепла излучением в дисперсных средах, показывает, что роль теплообмена излучением в воздушных прослойках возрастает и становится существенной лишь при увеличении размеров частиц и расстояний между ними и при достаточно высокой температуре. Большие расстояния между частицами поверхностного слоя мало вероятны, так как в этом случае поток солнечной энергии будет непосредственно падать на ледяную поверхность, что приведёт к слишком интенсивному испарению ядра. Кроме того, при размере частиц до 0.03 см, принимаемом Уипплом, роль теплообмена излучением, как следует из таблицы, приведённой в [4], вообще незначительна. Неизвестно также какую роль в общем процессе теплопроводности играет газ, испаряющийся с ледяной поверхности ядра. Количество выделяющегося газа может быть значительным, так как замерэшие газы при малом объёме имеют весьма высокую концентрацию. Вопрос о соотношении различных механизмов теплопроводности, имеющих место в наружном слое ядра, может служить предметом специального исследования.

Ограничимся случаем, когда в поверхностном слое ядра, состоящем из дисперсного материала, осуществляется обычная теплопроводность твёрдого тела, причём коэффициент теплопроводности K и теп-

лоёмкость C—постоянны. Будем считать, что ось вращения ядра перпендикулярна к плоскости орбиты и рассматривать точки, лежащие на экваторе ядра.

Воспользуемся уравнением теплопроводности в форме

$$\frac{\partial^{\theta}}{\partial t} = K \frac{\partial^{2} \theta}{\partial x^{2}}$$
 (1)

где $K = \frac{K}{\rho c}$

 ϑ —температура в градусах C

x—расстояние от поверхности ядра,

р-плотность поверхностного слоя,

c—удельная теплоёмкость поверхностного слоя. Поток солнечной радиации определяется формулой

$$q = \begin{cases} \frac{q_o}{r^2} \sin \omega \ t \text{ при } 0 \leqslant \omega \ t \leqslant \pi \\ 0 \text{ при } \pi < \omega \ t \leqslant 2\pi \end{cases}$$
 (2)

Здесь q_{\circ} —солнечная постоянная

r —расстояние от Солнца в a. e.

 ω —угловая скорость вращения ядра. Разлагая функцию (2) в ряд Фурье, получим

$$q = \frac{a_o}{r_2} \left[\frac{1}{\pi} + \frac{1}{2} \sin \omega t - \frac{2}{\pi} \left(\frac{\cos 2 \omega t}{1 \cdot 3} + \frac{\cos 4 \omega t}{3 \cdot 5} + \frac{\cos 6 \omega t}{5 \cdot 7} + \cdots \right) \right] (2')$$

Обозначим через α_k —поглощательную способность поверхности ядра кометы по отношению к солнечному излучению, через α_k^1 —поглощательную способность поверхности по отношению к излучению ядра кометы.

Единица поверхности ядра за едицицу времени поглощает количество тепла

$$Q_i = \alpha_k \cdot q \tag{3}$$

На некоторой глубине x=L, примерно соответствующей толщине поверхностного слоя ядра, температура будет постоянной и равна температуре возгонки льдов ядра $(\vartheta \ \emph{в})$. По этой причине существует приток тепла к поверхости из недр ядра, равный в единицу времени

$$Q_p = K \frac{\partial \vartheta (x, t)}{\partial x} \tag{4}$$

В то же время поверхность излучает количество тепла

$$E = \alpha_h^1 \circ T_0^4 \tag{5}$$

На поверхности устанавливаетя абсолютная температура T_{\circ} , при которой приход и расход тепла равны между собой.

$$Q_i + Q_p = E \tag{6}$$

или

$$\alpha_{k} q + K \left(\frac{\partial \theta}{\partial x}\right)_{x=0} = \alpha_{k}^{1} \circ T^{\circ 4}$$

$$T_{\circ} = 273 + \theta_{\circ}$$
(61)

Так как величины α_k и α_k^1 неизвестны, то их обычно считают равными друг другу:

$$\alpha_k = \alpha_k^1 = \alpha \tag{8}$$

Согласно Миланковичу [5] задача может быть решена в конечной форме, если правая часть равенства (6') линейна по отношению к ϑ_o . Это имеет место, если колебания ϑ_o незначительны по сравнению со средней абсолютной температурой поверхности $\overline{T_o}$. Условие $\Delta\vartheta_{omax} \ll \overline{T_o}$ выполняется при достаточно быстром вращении ядра (период 2-3 часа) и при не слишком близких расстояниях от Солнца. Например, при коэффициентах теплопроводности порядка 10^{-6} и 10^{-6} это расстояние во всяком случае превосходит 1 а. е.

Тогда

$$T_{\circ} = \overline{T_{\circ}} + \Delta \vartheta_{\circ}$$

$$\circ T_{\circ}^{4} = \overline{\sigma} \overline{T_{\circ}}^{4} \left(1 + \frac{\Delta \vartheta_{\circ}}{T_{\circ}} \right)^{4}$$

$$(9)$$

Разлагая это выражение по биному Ньютона и отбрасывая малое число $\frac{\Delta \vartheta_{\gamma}}{T_{0}}$ в степенях выше первой, получим

$$\sigma T_o^4 = \sigma \overline{T}_o^4 \left(1 + 4 \frac{\vartheta_o - \overline{\vartheta}_o}{\overline{T}_o} \right) = \sigma \left(\overline{T}_o^4 - 4 \overline{T}_o^3 \overline{\vartheta}_o \right) + 4 \sigma \overline{T}_o^3 \vartheta_o$$
 (10)

где

И

$$\Delta \vartheta_{\circ} = \vartheta_{\circ} - \overline{\vartheta}_{\circ}$$

Введём обзначения

$$a_{1} = \frac{q_{\circ}}{r^{2}} \frac{1}{\pi}$$

$$a_{1} = \frac{1}{2} \frac{q_{\circ}}{r^{2}}$$

$$b_{1} = \frac{q_{\circ}}{r^{2}} \frac{2}{\pi} \cdot \frac{1}{1 \cdot 3}$$

$$b_{2} = \frac{q_{\circ}}{r^{2}} \frac{\pi}{2} \cdot \frac{1}{3 \cdot 5}$$

$$b_{3} = \frac{q_{\circ}}{r^{2}} \cdot \frac{2}{\pi} \cdot \frac{1}{5 \cdot 7}$$

$$(11)$$

$$4 \circ \overline{T_{\circ}}^{3} = h \qquad \frac{a_{\circ}}{h} - w = A_{\circ} \\
\frac{\overline{T_{\circ}}}{4} - \overline{\vartheta_{\circ}} = w \qquad \frac{a_{1}}{h} = A_{1} \\
\frac{K}{a h} = R \qquad \frac{b_{1}}{h} = B_{1} \\
\frac{b_{2}}{h} = B_{2} \\
\frac{b_{3}}{h} = B_{3}$$
(12)

Вставляя (8), (10), (11) и (12) в (6'), получим

$$A_{\circ} + A_{1} \sin \omega t - B_{1} \cos 2 \omega t - B_{2} \cos 4 \omega t - B_{3} \cos 6 \omega t - \dots =$$

$$= \vartheta_{\circ} - R \left(\frac{\partial \vartheta}{\partial x} \right)_{x=0}$$

$$(13)$$

Будем последовательно рассматривать решения уравнения (1) ϑ_1 , ϑ_2 , ϑ_3 , ϑ_4 , . . . , удовлетворяющие соответственно условиям:

$$A_{\circ} + A_{1} \sin \omega t = \vartheta_{10} - R \left(\frac{\partial \vartheta_{1}}{\partial x}\right)_{x=0}$$
 (14)

$$-B_1 \cos 2 \omega t = \theta_{20} - R \left(\frac{\partial \theta_2}{\partial x} \right)_{x=0}$$
 (15)

$$-B_2 \cos 4 \omega t = \theta_{30} - R \left(\frac{\partial \theta_3}{\partial x} \right)_{x=0}$$
 (16)

$$-B_3 \cos 6 \omega t = \theta_{40} - R \left(\frac{\partial \theta_4}{\partial x} \right)_{x=0}$$
 (17)

Очевидно, что сумма этих решений

$$\theta = \theta_1 + \theta_2 + \theta_3 + \dots$$

будет одновременно удовлетворять уравнению (1) и условию (13). Выражение

$$\vartheta_1(x, t) = C_1^{(1)} + C_2^{(1)}x + e^{P_1x} [C_3^{(1)}\cos(N_1 t + P_1 x) + C_4^{(1)}\sin(N_1 t + P_1 x)],$$
где $P_1 = \pm \sqrt{\frac{N_1}{2 - b}}$

удовлетворяет уравнению (1).

Подставим его в (14) и потребуем, чтобы полученное равенство удовлетворялось тождественно.

Тогда получим $N_1 = \omega$ и

$$C_{1}^{(1)} - RC_{2}^{(1)} = A_{\circ}$$

$$C_{4}^{(1)} - RP_{1}(C_{4}^{(1)} - C_{3}^{(1)}) = A_{1}$$

$$C_{3}^{(1)} - RP_{1}(C_{3}^{(1)} + C_{4}^{(1)}) = 0$$
(18)

Подставим затем выражение

$$artheta_2 (x,\,t) = \! C_1^{\,(2)} + C_2^{\,(2)} x + e^{P_2\,x} [C_3^{\,(2)} \cos{(N_2\,t + P_2\,x)} + C_4^{\,(2)} \sin{(N_2\,t + P_2x)}],$$
 где $P_2 = \pm \sqrt{rac{N_2}{2 \cdot h}}$

в (15) и приравняем коэффициенты при $\cos N\,t$ и $\sin N\,t;$ при этом получим $N_2=2\omega$ и

$$C_{1}^{(2)} - R C_{2}^{(2)} = 0
 C_{4}^{(2)} - R P_{2} (C_{4}^{(2)} - C_{3}^{(2)}) = 0
 C_{3}^{(2)} - R P_{2} (C_{3}^{(2)} + C_{4}^{(2)}) = -B_{1}$$
(19)

Аналогично получаем и остальные решения $\vartheta_3,\ \vartheta_4\dots$ и т. д. Величины $C_1^{(i)}$ и $C_2^{(i)}$ $(i\geqslant 2)$ можно положить равными нулю.

Обозначив затем

$$C_1^{(1)} = C_1, C_2^{(1)} = C_2, C_4^{(1)} = D_1 \cos \varepsilon_1, C_3^{(1)} = -D_1 \sin \varepsilon_1, C_3^{(i)} = D_{i \text{ с}} \cos \varepsilon_i, C_4^{i} = D_i \sin \varepsilon_i \ (i \geqslant 2)$$
 получим решение уравнения (1) в виде:

$$\vartheta(x,t) = C_1 + C_2 x + e^{P_1 x} D_1 \sin(N_1 t + P_1 x - \varepsilon_1) + e_{P_2 x} D_2 \cos(N_2 t + P_2 x - \varepsilon_2) + \dots$$

$$D_{i} = \sqrt{\left(C_{3}^{(i)}\right)^{2} + \left(C_{4}^{(i)}\right)^{2}}; \text{ tg } \epsilon_{1} = -\frac{C_{3}^{(1)}}{C_{4}^{(1)}}; \text{ tg } \epsilon_{i} = \frac{C_{4}^{(i)}}{C_{3}^{(i)}} (i \geq 2).$$

 $C_3^{(i)}$ и $C_4^{(i)}$ определяются из систем уравнений типа (18) и (19). В выражениях для P_i перед корнем надо выбрать знак минус, так как в противном случае решение будет неограниченным. Подстановка ϑ_2 , ϑ_3 , ϑ_4 и т. д. в (15), (16) и (17) показывает, что коэффициенты D_2 , D_3 , D_4 ,... должны быть взяты со знаком минус.

Очевидно, что среднее значение температуры за полный период

вращения ядра кометы равно

$$\overline{\vartheta}(x) = C_1 + C_2 x \tag{20}$$

Отсюда видно, что C_1 представляет собою среднюю за период вращения поверхностную температуру, а C_2 —средний градиент температуры

 $C_1 = \overline{\vartheta}_0, \quad C_2 = g_k$

Из равенств (10), (12) и первого уравнения (18) получаем после ряда преобразований:

$$\alpha \circ (273 + \overline{\vartheta}_{o})^{4} = \alpha a_{o} + Kg_{h}$$
 (22)

Отсюда видно, что $\overline{\vartheta}_{\circ}$ есть та средняя температура, которая соответствует среднему облучению $q = a_0$.

Окончательно имеем

$$\vartheta(x,t) = \overline{\vartheta}_{\circ} + g_{k} x + D_{1} exp(-\sqrt{\frac{\omega}{2 k}} x) \sin (\omega t - \sqrt{\frac{\omega}{2 k}} x - \varepsilon_{1}) - D_{2} exp(-\sqrt{\frac{\omega}{k}} x) \cos (2\omega t - \sqrt{\frac{\omega}{k}} x - \varepsilon_{2}) - D_{3} exp(-\sqrt{\frac{2 \omega}{k}} x) \cos (4 \omega t - \sqrt{\frac{2 \omega}{k}} x - \varepsilon_{3}) - D_{4} exp(-\sqrt{\frac{3 \omega}{k}} x) \cos (6 \omega t - \sqrt{\frac{3 \omega}{k}} x - \varepsilon_{4}) - \ldots (23)$$
 Температура поверхности ядра равна
$$\vartheta (0, t) = \overline{\vartheta}_{\circ} + D_{1} \sin (\omega t - \varepsilon_{1}) - D_{2} \cos (2 \omega t - \varepsilon_{2}) - D_{3} \cos (3 \omega t - \varepsilon_{3}) - D_{4} \cos (4 \omega t - \varepsilon_{4}) - \ldots (24)$$

Как уже отмечалось выше, на некоторой глубине x=L температура постоянна и равна ϑs . Это означает, что на этой глубине амплитуда первого периодического члена в выражении (23) делается настолько малой (амплитуды следующих членов будут еще меньше), что температуру здесь практически можно считать неизменной.

Примем для поверхностного слоя ядра следующие данные:

$$\rho = 0.8 \frac{\Gamma}{\text{cm}^3}, c = 0.2 \frac{\text{кал}}{\Gamma \text{ град}}, K = 3 \cdot 10^{-4} \frac{\text{кал}}{\text{см сек град}}$$

Можно с достаточной уверенностью считать, что на глубине L; где температура постоянна, амплитуда первого периодического члена в выражении (23) примерно в 100 раз меньше по сравнению со значением этой амплитуды на поверхности при x=0.

имеем
$$\frac{D_{1}}{D_{1}exp(-\sqrt{\frac{\omega}{2k}}L)} = 100$$

$$L = 2\sqrt{\frac{2k}{\omega}} \ln 10 = 6.512\sqrt{\frac{k}{\omega}}$$
(25)

• Поскольку $D_{\scriptscriptstyle 1}$, зависящее от $\overline{\mathsf{T}}_{\scriptscriptstyle \circ}$, сокращается, (25) имеет место

независимо от условия $\Delta \vartheta_{\circ \max} \ll T_{\circ}$. Формула (25), применённая для поверхностного слоя Луны, даёт результат, хорошо согласующийся с наблюдениями собственного радиоизлучения Луны. Известно, что радиоизлучение Луны с длиной волны 3 см, исходящее из глубины в 30-40 см, является одинаковым и для освещённой и для неосвещённой частей Луны, что свидетельствует о постоянстве температуры на этой глубине. Полагая $K{=}8\cdot 10^{-6}$ (теплопроводность лунной поверхности примерно в тысячу раз меньше теплопроводности гранита), $\rho = 0.7 \frac{\Gamma}{\text{см}^3}$, $\omega = 2.564.10^-$ 6получим L = 30.77 см.

Зависимость L в см от периода вращения ядра P и коэффициента теплопроводности К иллюстрируется таблицей 1.

			. Табл. 1
Р в сутках			
	1 .	1/8	1/12
К в кал сек град		ļ !	
3.10—4	33, 7	11, 91	9, 73
3.10 5	10,65	7, 60	3, 07
3.10 ⁶	3,37	1,191	0, 973

Если мы зададимся температурой ледяного основания в, которая, как отмечает Уиппл (3), должна быть около 200° K, то из системы уравнений

$$\frac{\vartheta s = \overline{\vartheta}_{\circ} + g_{k} L}{\alpha \, a_{\circ} + K g_{k} = \alpha \, \sigma \, (273 + \overline{\vartheta}_{\circ})^{4}} \quad (26)$$

 $\vartheta s = \overline{\vartheta}_{\circ} + g_{k} L$ $\alpha a_{\circ} + K g_{k} = \alpha \sigma (273 + \overline{\vartheta}_{\circ})^{s}$ (26) можно определить среднюю поверхностную температуру ядра и гра-

Первое уравнение этой системы мы получили, подставляя x = Lв (23) и отбрасывая периодические члены, амплитуды которых при x=L настолько малы, что ими можно пренебречь.

Значения $\overline{\vartheta}_{o}$ в градусах C при r=1 a.e., $q_{o}=0.03\frac{\kappa a\pi}{c M^{2} ce\kappa}$, $\alpha=1$, $\vartheta s=$ $=-100^{\circ}~C$ для различных K и P даны в таблице 2.

•			Гаол. 2
Р в сутках			
	1	1/8	1/12
K в кал см сек град	•		
3.10-4	+ 9	_ 3	- 17
3.10 ⁵ 3.10 ⁶	+ 14	+ 10	+ 8
3.10 -6	+ 15	+ 14	+ 13

Полученные значения представляют собой верхний предел для средней поверхностной температуры ядра.

При r=1 а.е., P=1, $K=3.10^{-6}$ для $\vartheta s=-100^\circ$ C получаем $\vartheta_\circ=15^\circ$ C, $g_k=-34,12$ $\frac{\text{град}}{\text{см}}$;и для $\vartheta s=-200^\circ$ C, $\overline{\vartheta}_\circ=14^\circ$ C и $g_k=-67,65$ $\frac{\text{град}}{\text{см}}$. Отсюда видно, что изменение температуры ледяного основания при малом K (порядка 10^{-6}) почти не сказывается на средней поверхностной температуре ядра. При величине коэффициента теплопроводности порядка 10^{-4} температура ледяного основания уже существенным образом влияет на среднюю поверхностную температуру. Например, при $K=6.10^{-4}$ и $\vartheta s=-200^\circ$ C $\overline{\vartheta}^\circ=-51^\circ$ C, а для $\vartheta s=-100^\circ$ C $\overline{\vartheta}_\circ=-13^\circ C$.

В таблице 3 даны численные значения коэффициентов D и начальных фаз ε в формулах (23) и (24) при $\vartheta s = -100^{\circ}$ C, $P = ^{1}/_{12}$ суток, r = 1 а.е. $K = 3.10^{-4} \frac{\mathrm{Kar}}{\mathrm{CM. CeK. rpag}}$. На рис. 1 приводится ход изменения поверхностной температуры в зависимости от фазового угла ω t при тех же данных.

Максимум температуры в нашем примере наступает при ω $t \approx 120^{\circ}$ Запаздывание максимума поверхностной температуры по отношению к максимуму солнечной радиации в основном характеризуется

величиной є1. Зависимость этой величины от коэффициента теплопроводности K и угловой скорости вращения ядра ω даётся формулой

$$\varepsilon_1 = \operatorname{arc} \operatorname{tg} \frac{\sqrt{K \omega \rho c}}{4 \sqrt{2} \sigma T_o^3 + \sqrt{K \omega \rho c}}$$
 (27),

где \overline{T}_{\circ} —средняя абсолютная поверхностная температура, определяемая из системы уравнений (26).

Для сравнения приведём кривые изменения средней абсолютной температуры поверхности ядра при различных механизмах отвода тепла в функции расстояния от Солнца r (рис. 2).

Кривые I, II, III, полученные из системы уравнений (26), соответствуют значениям коэффициента теплопроводности поверхностного слоя ядра $K=3.10^{-4}$, 3.10^{-5} , 3.10^{-6} cgs, причём всюду принято $\omega = 8,4.10^{-4}$ (период $^{1}/_{12}$ суток) $\rho = 0.8$, $\hat{c} = 0.2$, $\vartheta s = -100^{\circ} C$.

Как видно из рис. 2, поверхность ядра с плохо проводящим тепло поверхностным слоем (К порядка 10^{-6}) сильнее нагревается при приближении к Солнцу и быстрее охлаждается при удалении от Солнца, чем поверхность ядра, поверхностный слой которого имеет более высокую теплопроводность (K порядка 10^-

В заключение автор выражает благодарность О. В. Добровольскому за ценные советы и указания, которые были им сделаны во время выполнения этой работы.

ЛИТЕРАТУРА

^{1.} О. В. Добровольский. К теории кометных форм ч. II. Бюллетень САО № 7, 1953. 2. О. В. Добровольский К вопросу о тепловом режиме поверхностного слоя ядра кометы. Бюллетень САО № 15, 1956.

^{3.} F. L. Whipple. A Comet Model I. Ap. J. 111, 375, 1950. 4. А. Ф. Чудновский. Теплообмен в дисперсных средах, 1954. 5. М. Миланкович. Математическая климатология и астрономическая теория колебаний климата, 1939 г.

содержание

· · · · · · · · · · · · · · · · · · ·	ımp.
Н. М. Шаховской: Исследование спектров и звёздных величин в области пояса Ориона.	
А. М. Бахарев и О.В. Добровольский. Дрейф метеорных следов над Таджикистаном	18
В. И. Иваников. Выбор объективной призмы для спектрофотометрии метеоров	25
М. З. Маркович. К вопросу о поверхностной температуре вра- щающегося ядра кометы	

тапо на Печатается по постановлению за верей на предакционно-издательского совета предакционно-издательског

УСЛОТО ПОПИС Академии наук Таджикской ССР_{и в нев}ет в не

नवर्ष्यकेववर्ष्याच्यात् । स्वतः । सन्द्रः । स्वतः । स्वतः । स्वतः । सन्दर्भावः । स्वतः ।

Редколлегия: А. В. СОЛОВЬЁВ (отв. редактор), Л. А. КАТАСЁВ, О. В. ДОБРОВОЛЬСКИЙ, П. Б. БАБАДЖАНОВ,

А. М. БАХАРЕВ (отв. секретарь редколлегии).

Техн. редактор Π . Фродов.

Корректор Л. Полисская.

техн. редактор 11. Фродос.

Подписано к печати 12/ІІІ-1957 г.

2,7 уч. изд. л.

КЛ 00672. Поди Формат бум. 70×1081/16.

Заказ № 1442

Тираж 600.

БЕСПЛАТНО.

Сталинабад, Полиграфкомбинат

АКАДЕМИЯ НАУК ТАДЖИКСКОЙ ССР

БЮЛЛЕТЕНЬ

СТАЛИНАБАДСКОЙ АСТРОНОМИЧЕСКОЙ ОБСЕРВАТОРИИ

№ 21

АКАДЕМИЯИ ФАНХОИ РСС ТОЧИКИСТОН

БЮЛЛЕТЕНИ

ОБСЕРВАТОРИЯИ АСТРОНОМИЯИ СТАЛИНОБОД № 21

БЮЛЛЕТЕНЬ

СТАЛИНАБАДСКОЙ АСТРОНОМИЧЕСКОЙ ОБСЕРВАТОРИИ

№ 21

ОГЛАВЛЕНИЕ

			Стр						
В	ве	дение	`3						
		Глава I. Определение блеска метеоров путём привязки их следов к суточным следам звёзд.							
§	1.	Наблюдательный материал. Методика измерений	8						
		 Способ определения блеска метеоров путём привязки следов к суточным следам звёзд на негативе 							
§	3.	Об оценке результатов определения звёздных величин метеоров 1952 г., полученных на САО	13						
		Глава II. Установка "искусственные метеоры".							
9999	1. 2. 3. 4.	Вводные замечания Описание новой установки Исследование и эталонирование установки Достоинства новой установки	15 15 20 23						
	Гл	ава III. Использование установки "искусственные метеоры" для фотометрии метеоров.	÷						
§	1.	Влияние свечения ночного неба на скрытое изображение	0.5						
§	2.	следа метеора на негативе							
§	3.	собом							
8	4.	ственных метеоров	28						
		негативе	31						
3	٥.	метеоров к суточным и точечным следам звёзд на негативе							
		Глава 4. Ошибки фотографической фотометрии метеоров.							
Ş	1.	Ошибки фотографического процесса	36						
		кой поля	37						
		Ошибки, обусловленные различием в фокусировках изображений	39						
§	4.	Ошибки определения блеска метеоров с помощью установки "искусственные метеоры"	40						
§	5.	Оценка ошибок при использовании среднего коэффициента прозрачности	41						
§	6.	Ошибки определения блеска метеоров	43						
3	1.	ском нового метеорного патруля САО	44						
		Заключение	45 46						

Печатается по постановлению редакционно-издательского совета Академии наук Таджикской ССР

Редколлегия: А. В. Соловьёв (отв. редактор), П. Б. Бабаджанов, О. В. Добровольский, Л. А. Катасёв, А. М. Бахарев (отв. секретарь)

Техн. редактор П. М. Фролов.

Корректор Л. Д. Полисская.

КЛ 00738. Подписано к печати 26/111-1958 г. 4,11 уч. изд. л., печ. 3 Формат бум. 70×108 . Заказ № 1443. Тираж 600. БЕСПЛАТНО.

Сталинабад, Полиграфкомбинат.

В. И. ИВАНИКОВ

О МЕТОДАХ ФОТОГРАФИЧЕСКОЙ ФОТОМЕТРИМ МЕТЕОРОВ

ВВЕДЕНИЕ

Определение блеска метеоров представляет интерес как для выяснения природы, космической роли и оценки масс метеорных частиц, так и для получения некоторых параметров состояния верхних слоёв атмосферы. В настоящее время основными являются два метода определения звёздных величин метеоров: визуальный и фотографический. Первый способ, при очевидной простоте и доступности, имеет существенный недостаток, заключающийся в том, что неизвестно, получаем ли мы среднее максимальное или какое-либо иное значение блеска метеоров [1]. Фотографический же метод позволяет проследить изменение блеска при движении метеора в атмосфере Земли и достаточно надежно определить его интегральное значение.

В задачу нашей работы входит анализ имеющихся способов фотографической фотометрии общего свечения метеоров, т. е. свечения обусловленного как интенсивным испарением метеора, так и ионизованными атомами испарившегося вещества. Отделить одно свечение

от другого чрезвычайно трудно.

Дело в том, что изображения метеоров на негативе рисуются аберрационными пятнами изображения точки [2]. Снимки Сталинабадской астрономической обсерватории показывают, что в зависимости от интенсивности свечения, распределения энергии в аберрационном пятне изображения точки, рассеивающей способности фотослоя и от направления движения пятна могут образоваться "расшеплённые" следы и следы со "слабым свечением" окружающим основной канал метеора, которое можно принять за свечение ионизованного газа после пролёта метеора [3]. Истинное свечение ионизованного газа можно обнаружить только в перерывах следа метеора, когда объектив был полностью закрыт лопастью обтюратора.

Основы фотографической фотометрии метеоров были заложены работой Н. Н. Сытинской [4]. В её распоряжении имелось 11 снимков метеоров, полученных И. И. Сикорой в 1906—1909 г. г. на Ташкентской астрономической обсерватории неподвижными камерами без обтюратора. Вследствие этого Н. Н. Сытинская не могла точно определить скорости метеоров. Опытным путём она показала [4], что при промерах почернения следов метеоров на объективных микрофотометрах наилучшие результаты даёт комбинированный метод плотности и

ширины, заключающийся в том, что щель микрофотометра выбирается несколько шире наиболее широкого участка следа метеора. Методика

измерений состояла в следующем.

Через щель пропускался след метеора и велась запись отсчётов микрофотометра. Затем при таких же условиях пропускались суточные следы звёзд, выбранные таким образом, чтобы отсчёты микрофотометра от наиболее интенсивных следов превосходили наибольший отсчёт от следа метеора. Фотометрировавшийся участок следа звезды находился от центра пластинки на таком же расстоянии, что и соответствующий ему по интенсивности участок следа метеора—для исключения ошибки поля. Звёзды сравнения выписывались из каталога Дрепера (Н. Д.). Фотографические величины звёзд со склонением δ приводились к экватору прибавлением поправки+2,5 Ig Cos δ [4]*).

Затем строилась характеристическая кривая. По оси ординат откладывались величины звёзд, приведённые к экватору, а по оси абсцисс—
отсчёты микрофотометра в логарифмической шкале. По отсчётам микрофотометра от следа метеора, из характеристической кривой, находилась
эффективная т. е. неисправленная за разность скоростей движения
по фотослою изображений метеора и звёзд, величина метеора. На
основе закона взаимозаместимости для одинаковых отсчётов микрофотометра от следов звёзд и метеора вносилась поправка к эффективной звёздной величине метеора по формуле:

$$m_{\scriptscriptstyle M}=m_{\scriptscriptstyle X}-2.5\,{\rm lg}rac{{
m V}_{\scriptscriptstyle M}}{{
m v}_{\scriptscriptstyle X}}$$
 , где

ты -- звёздная величина метеора,

т, -эффективная звёздная величина метеора,

 $V_{\rm M}$ и $V_{\rm x}$ — линейные скорости передвижения по фотослою изобра-

жений метеора и экваториальных звёзд.

Не имея непосредственных исследований фотоэмульсии, на которой был получен наблюдательный материал, Н. Н. Сытинская на основе имевшихся данных пришла к выводу о справедливости применённого ею закона взаимозаместимости при привязке следов метеоров к суточным следам звёзд.

Блеск четырнадцати метеоров определили Милман и Гоффлейт [5]. На негативах с суточными следами звёзд следы метеоров обрабатывались по методу Н. Н. Сытинской [4], с тем отличием, что вычитался фон негатива. Если фотографирование производилось движущимися за суточным движением неба камерами, то привязка следов метеоров делалась к точечным изображениям звёзд. О равенстве экспозиций судили по равенству почернений в центре изображения звезды и следа метеора. На том же сорте эмульсии авторами [5] был поставлен опыт на предмет обнаружения отклонения от закона взаимозаместимости для выдержек звёзд в 90 мин (применявшаяся на практике продолжительность экспозиции), суточных следов звёзд и для следов звёзд, полученных при скорости движений их изображений по фотослою в 60 раз большей, чем скорость суточного движения звёзд. Оказалось, что взаимозаместимость выполняется. Однако это заключение для того же сорта эмульсии не подтвердилось последующими работами [6, 7].

Уиппл [6] обработал 6 метеоров путём привязки их следов к точечным изображениям звёзд. Для учёта отклонений от закона взаимозаместимости он использовал данные лабораторных исследований эмуль-

сии, произведенные Джонсом.

^{*)} В статье [4] на стр. 185 допущена опечатка: знак у поправки отрицательный. В действительности же использовался положительный. Это следует из таблицы 2 на стр. 183 той же работы.

Яккия [7] профотометрировал 37 метеоров. На негативах с точечными изображениями звёзд следы метеоров привязывались к суточным следам звёзд, полученных теми же камерами и на том же сорте пластинок, но после наблюдений. Так как привязка следов метеоров производилась к участкам следов звёзд, расположенных в центре поля, то к блеску метеоров вносилась поправка за ошибку поля, изученную по суточным следам звёзд. Внесены поправки за ослабление светового потока звёзд обтюратором и за невыполнение закона взаимозаместимости на основе материала, сообщенного Уиплом.

Около 170 метеоров было обработано Яккия и др. [8] визуальным сравнением следов метеоров с близлежащими суточными следами звёзд на негативе. Учитывалось ослабление светового потока от звёзд обтюратором, поправка за несоблюдение закона взаимозаместимости не вносилась. Приведение звёзд производилось не к экватору, а к скло-

нению центра пластинки.

Л. А. Катасёвым [9] был определён блеск 11 метеоров по методу Сытинской. Приведение звёзд к экватору производилось по формуле Δ m = -2.5 lg Cos δ , что ошибочно, а поправка к эффективной звёздной величине метеора вычислялась по формуле Δ m = -2.5 P lg $\frac{\rm W_M}{\rm W_X}$, где значение показателя Шварцшильда P= 0,9 выбрано произвольно, а $\rm W_M$ и $\rm W_X$ —угловые скорости метеора и экваториальных звёзд (вместо их линейных скоростей, что менее точно).

В последние годы появился ряд работ, посвящённых способу привязки следов метеоров к следам искусственных метеоров. Принципиальное достоинство этого способа состоит в том. что в этом случае использование закона взаимозаместимости не вызывает сомнения. На необходимость создания установки для впечатывания следов искусственных метеоров указывалось Н. Н. Сытинской [4] еще в 1935 году, однако первая работа по этому вопросу появилась в 1950 году [10].

Основные особенности установки и способа Аставина-Разумина [10] заключаются в следующем. Поток света от точечного источника известной интенсивности, пройдя через объектив, падает на вращающееся зеркало, отразившись от последнего, он оставляет след на фотоэмульсии. При вращении зеркала изображение источника света (искусственной звезды) двигалось по фотоэмульсии и служило искусственным метеором. Используя установку, автор обработал 1 след метеора.

Установка и методика Аставина-Разумина не лишены ряда существенных недостатков. Главнейшими из них являются:

1. Включение в установку вращающегося зеркала между объективом и фотопластинкой весьма неудачно. В зависимости от угла поворота зеркала характер изображения претерпевает изменения, что отчётливо видно на приводимом автором рисунке. Кроме того, введение

зеркала делает необходимым изучение его качества и отражательной способности, зависящей от угла падения пучка света.

2. Ошибка в определении скорости вращения зеркала увеличивается вдвое при определении скорости движения искусственного метеора.

- 3. Ошибка поля объектива определена по площадным, неподвижным изображениям экрана и ошибочно применять её к изображениям метеоров: точечных, размытых, движущихся.
- 4. В качестве эталона сравнения использована Полярная звезда, которая, как известно, является переменной.
- 5. Не учитывалась поправка, обусловленная различием в линейных скоростях передвижения по фотоэмульсии изображений естественного

и искусственного метеоров, что легко можно было сделать, зная закон взаимозаместимости. В сущности, проверке этого закона и посвящена работа этого же автора [11].

Д. Л. Аставин-Разумин [11] поставил своей задачей изучение изменения блеска метеора в зависимости от его угловой скорости.

Опыт автора заключался в следующем.

Перед неподвижным точечным источником света вокруг своей оси с различными угловыми скоростями вращалась фотокамера и на фотослой впечатывались следы искусственных метеоров. Эта установка хорошо отображает действительную картину движения по фотослою изображений реальных метеоров. Именно о такой установке говорилось Н. Н. Сытинской [4]. Судя по результатам [11], закон взаимозаместимости для метеоров выполняется. Это и следовало ожидать. Заключение же автора о том, что на каждый градус угловой скорости метеора "ослабление" составляет 0.07 зв. вел. может быть применено только для исследованного интервала угловых скоростей от 5 до 30°/сек.

В 1952 году нами была сконструирована такого же типа установка: камера вращалась от пружины патефона и на негативе впечатывались следы искусственных метеоров. Получить следы нужной интенсивности (при угловой скорости соответствующей метеорам) от планет и звёзд через прижатый к фотослою ступенчатый ослабитель не удалось. Поэтому была создана искусственная звезда. Конкретного применения эта установка не получила, поскольку нами был создан лучший тип установки [2] (усовершенствованный его вариант описан

позже).

Вопросу конструирования установки для впечатывания фотометрических стандартов искусственных метеоров посвящена также работа Линка и Неужила [12]. Повидимому работы Аставина-Разумина [10, 11] им неизвестны, т. к. на них нет ссылок. В предлагаемом ими проекте установки свет от лампы накаливания проходит через шесть отверстий, перед которыми установлены нейтральные ослабители, так что в результате будет получено шесть метеоров с градацией блеска в 5 зв. вел. Далее световой поток, пройдя через объектив коллиматора, попадает в фотокамеры (5 штук), установленные на вращающейся площадке, которые и впечатывают фотометрическую шкалу. Установка нескольких камер, вероятно, вызвана тем, что камеры для фотографирования метеоров разного типа.

Основными достоинствами проекта этой установки является то, что при одном значении угловой скорости вращения фотокамеры предпринимается попытка получить шкалу интенсивности следов искусственных метеоров и имеется идея автоматизации работы установки.

В 1955 году вышла из печати работа Аставина-Разумина [13] с описанием новой установки для впечатывания следов искусственных метеоров.

Установка состоит из деревянного ящика, внутри которого размещены лампочки. В окно ящика вставлены матовое и молочное стекла. Перед этим, как считалось, равномерно освещённым окном вращается непрозрачный экран с высверленными в нём по радиусу отверстиями. Фотографирование отверстий вращающегося экрана дает шкалу угловых скоростей искусственных метеоров, блеск которых при неподвижном экране был получен путём привязки к звёздам неба. Для впечатывания шкалы интенсивностей включалась дополнительная более мощная лампа, а к окну прижимался ступенчатый фотографический ослабитель. По одному из следов этой шкалы строилась характеристическая кривая, где блеск был выражен в относительных единицах.

Нуль-пункт характеристической кривой определялся путем привязки к ней одного из следов шкалы угловых скоростей искусственных метеоров. После чего определялся блеск метеора.

Аставиным-Разуминым [13] был обработан 1 след метеора, к сожалению, не совсем точно, т. к. угловая скорость метеора была известна приближенно и не учитывалась ошибка поля. Имело место также различие между скоростями передвижения по фотослою изображений образовавших следы: истинного метеора, искусственного метеора шкалы угловых скоростей и искусственного метеора шкалы интенсивностей. Поэтому необходимо было бы внести соответствующие поправки в блеск метеора на основе закона взаимозаместимости. Безусловным успехом Аставина-Разумина является то, что установка за два оборота экрана даёт возможность получить и шкалу интенсивности и шкалу угловых скоростей метеора от 5 до 20°/сек.

Наше исследование установки [13], совместно с Аставиным-Разу-

миным выявило следующие недостатки:

1. Светящееся окно, как показали фотографические и фотоэлектрические исследования, оказалось неравномерной яркости и различие достигало 0.5 зв. вел. Включение дополнительной сравнительно мощной лампы у окна делало распределение яркости еще более неровным, что приводило к искажению характеристической кривой.

2. Фотографический клин, сделанный из отдельных полос, несовершенен вследствие фотографических эффектов проявления, неоднородности фотослоя и т. д. Кроме того, измеренные пропускания клина на микрофотометре, служащие для расчёта поглощения света полосами, при построении характеристической кривой не соответствуют действительности вследствие наличия эффекта Калье.

3. Нам кажется излишней также шкала угловых скоростей. Достаточно следов искусственных метеоров, с различной угловой скоростью, полученных через ослабитель.

Вышеприведённый анализ известных нам работ показывает, что в принципе существует три метода стандартизации снимков метеоров:

- 1. Привязка следов метеоров к точечным изображениям звёзд.
- 2. Использование суточных следов звёзд в качестве стандарта.
- 3. Метод впечатывания следов искусственных метеоров.

Каждый из этих методов не подвергался критическому анализу и иногда применялся без учёта конкретных условий получения наблюдательного материала. В настоящее время назрел вопрос о критическом разборе существующих методов, выборе, обосновании и разработке метода, дающего наилучшие результаты.

Метод привязки следов метеоров к суточным следам звёзд получил наибольшее распространение; им пользуются и в настоящее время. Поэтому следовало бы проанализировать и разработать именно этот метод применительно к конкретным условиям получения наблюдательного материала и сравнить результаты, доставляемые этим методом, с результатами метода впечатывания следов искусственных метеоров, свободного от поправки за иевзаимозаместимость.

ГЛАВА 1.

ОПРЕДЕЛЕНИЕ БЛЕСКА МЕТЕОРОВ ПУТЁМ ПРИВЯЗКИ ИХ СЛЕДОВ К СУТОЧНЫМ СЛЕДАМ ЗВЁЗД

§ 1. Наблюдательный материал. Методика измерений.

Опишем наблюдательный материал, который был получен нами на патруле Сталинабадской астрономической обсерватории (САО) в 1953—55 г.г. и лёг в основу фотометрии метеоров. Подробное описание патруля САО дано Л. А. Катасёвым [14]. Основное изменение, внесённое в патруль со времени опубликования этой работы состоит в том, что корреспондирующий агрегат "В" в настоящее время имеет параллактическую установку. Поэтому звёзды на плёнке его камер выходят в виде точек, как и на агрегате "Р". В последние годы фотографирование метеоров производилось на панхроматической кинонегативной или аэрофотосъёмочной плёнке высшей чувствительности [15] с экспозицией в один час. Часть негативов 1953 г., полученная с объективом "Зонар", не обрабатывалась, ввиду большой плотности фона окружающего метеор. Кроме того были исключены фотографии болидов, из-за невозможности их фотометрирования.

В процессе обработки этого наблюдательного материала решалась поставленная нами задача разработки и анализа методов фотографической фотометрии метеоров. Часть полученных результатов уже опубликована [2, 15, 16, 17, 18]. В этой главе мы будем говорить о наблюдательном материале, который обрабатывался способом привязки следов метеоров к суточным следам звёзд на негативе. Фотометрировались следы метеоров, полученные на плёнках неподвижного агрегата "А", перед камерами которого вращался обтюратор. Промер следов звёзд и метеоров на негативах производился на фотоэлектрическом микрофотометре МФ—2 № 530071, принадлежащем САО. Плёнка зажималась между двумя стёклами. Во избежание существенных ошибок измерений, в процессе работы производился непрерывный контроль фокусировки негатива. Отфокусировать его по всему полю перед началом измерений не удалось по причинам:

а) изменения толщины каждого стекла [19],

б) изменения толщины плёнки и от неплотного её прилегания к стеклам.

Высота щели микрофотометра была равна наибольшей ширине следа [18], а поток через негатив выбирался таким, чтобы отсчёты микрофотометра по возможности не превышали значения 130 [19]. В подавляющем большинстве случаев след метеора при каждом снимаемом отсчёте $M\Phi-2$ передвигался вдоль щели микрофотометра через 0.2 мм при 21^{x} увеличении негатива и длине щели, равной 4 мм.

Approved For Release 2010/04/07 : CIA-RDP80T00246A045700380001-3

			,									Таб	лица 1
№ № п/п.	Номер метеора	1	2	3	4	5	6	7	. 8	. 9	10	11	12
1	Дата наблюдения (мировое время)	14.VII	15.VII	20.VII	11.VIII	11.VII I	11.VIII	11.VIII	12.VIII	12.VIII	12.VIII	12.VIII	12.VI <u>I</u> I
2	Момент пролёта (мировое время)	1953 19 ^h 59 ^m	1953 18 ^h 48 ^m	1953 - 20 ^h 21 ^m	1953 18 ^h 03 ^m	1953 19 ^h 41 ^m	1953 21 ^h 03 ^m	1953 22 ^h 43 ^m	1953 18 ^h 07 ^m	1953 19 ^h 53 ^m	1953 20 ^h 34 ^m	1953 22 ^h 07 ^m	1953 22 ^h 08 ^m
3	Максимальный отсчёт МФ—2	130	140	80	116	110	140	. 77	130	100	100	110	72
4	Максимальный отсчёт МФ—2 минус фон	25	. 28	15	. 36	43	85	. 22	48	27	44	10	15
5	Радиант а	3°18′ 49°10′	357°43′ 41°34′	343°02′ 42°23′	43°50′ 63°11′	45°41′ 57°54′	43°53′ 58°44′	43°06′ 56°53′	49 57′ 55°01′	50°05′ 58°25′	48°30′ 58°31′	47 26′ 58°26′	48°08′ 58°34′
		,			ŕ				٠				
№Ne n/n.	Номер метеора	- 13	14	15	16	17	.18	19	20 .	21	22	23	24
1	Дата наблюдения (мировое время)	13.VIII	13.VIII	16.1X	8.VIII	31.V III	5.X	21.X	28.X	2.XI	22.IV	12.VIII	16. X
2	Момент пролёта (мировое время)	1953 19 ^h 13 ^m	1953 19 ^h 23 ^m	1953 17 ^h 47 ^m	1954 21 ^h 52 ^m	1954 19 ^h 16 ^m	1954 22 ^h 49 ^m	1954 16 ^h 17 ^m	1954 14 ^h 17 ^m	1954 18 ^h 58 ^m	1955 20 ^h 15 ^m	1955 18 ^h 25 ^m	. 1955 15 ^h 26 ^m
3	Максимальный отсчёт МФ—2	125	80	42	45	170	90	90	116	127	120	98	53
4	Максимальный отсчёт МФ—2 минус фон	8	66	. 18	13	133	24	20	22	23	79	35	9
5	Радиант о	49°29′ 38°39′	48°39′ 58°50′	6°47′ 1°26′	341°36′ -3°39′	296°01′ 18°20′	131°26′ 78°05′	16°27′ 8°50′	49°28′ 13°00′	52°03′ 14°22′	257°10′ 32°17′	53°03′ 58°00	4 34' 12°44'

Approved For Release 2010/04/07: CIA-RDP80T00246A045700380001-3

				, , ,						Tac	блица 2
№№ п/п.	Номер метеора	25	26	27	28	29	30	-31	32	33	34
1	Дата наблюдения (мировое время)	5.VII 1953	6.VII 1953	18.VII 1953	11.VIII 1953	12.VIII .1953	8.VI 1954	8.VIII 1954	11.VIII 1954	20.VIII 1954	28.VIII 1954
2	Момент пролёта (мировое время)	17 ^h 59 ^m	17 ^h 11 ^m	21 ^h 51 ^m	22 ^h 50 ^m	22h38m	21 ^h 8 ^m	21 ^h 50 ^m	22 ^h 26 ^m	16 ^h 46 ^m	22h50m
3	Максимальный отсчёт МФ-2	110	143	. 105	30	83	158	46.	122	64	110
4	Максимальный отсчёт МФ—2 минус фон	34	67	35	. 7	. 23	149	. 13	53	17	19
5	Направление измерения	отδ>к δ<	отд>кд<	отб>кб<	отб < к б >	отб>кб<	отδ>кδ<	отд>к д<	отб>кб<	отδ>кδ<	отδ<кδ>
6	Число фотометрированных отрезков	7	. 4	3	3	2	8	3	4	7	3
NºNº		···			<u> </u>		1	1		Į.	1
лоло п/п.	Номер метеора		35	36	37	38	39	40	41	42	43
1	Дата наблюдения (мировое время)	• • • • •	6.X 1954	14.VI 1955	12.VIII 1955	12.VIII 1955	16.X 1955	19.X 1955	. 19.X 1955	19.X 1955	19.XI 1955
2	Момент пролёта (мировое время)		20 ^h 21 ^m	18 ^h 5 ^m	17 ^h 23 ^m	19 ^h 51 ^m	15 ^h 30 ^m	21 ^h 53 ^m	22 ^h 19 ^m	22 ^h 20 ^m	22 ^h 05 ^m
3	Максимальный отсчёт М Φ — 2		130	105	92	140	104	113	150	89	112
4	Максимальный отсчёт МФ-2 минус	фон	34	76	19	107	52	72	50	25	22
5	Направление измерения		отδ>кδ<	отб>кб<	отδ < к δ >	отб > к б <	отб>к б <	отδ < к δ >	отб<кб>	отд<кд>	отд>кд<
6	Число фотометрированных отрезков		4	9	4	9	12	2	7	3	3

Необходимые сведения о метеорах, блеск которых приведён к расстоянию 100 км, представлены в таблице 1. Результаты определения орбит некоторых метеоров таблицы 1 уже опубликованы [20, 21].

Данные о метеорах, расстояние до которых по тем или иным причинам не определено, приведены в таблице 2, где специально указывается направление измерения и число фотометрировавшихся отрезков следа метеора с тем, чтобы впоследствии можно было однозначно отождествить профотометрированные участки следа метеора на негативе. Не корреспондирующие метеоры представляют интерес для статистического изучения процесса свечения при движении метеорного вещества в атмосфере Земли.

§ 2. Способ определения блеска метеоров путём привязки их следов к суточным следам звёзд на негативе

Изложим совокупность отдельных этапов разработанного нами варианта-способа определения звёздных величин метеоров путём привязки их следов на фотоплёнке к суточным следам звёзд, то-есть способа предложенного Н. Н. Сытинской. Отдельные этапы нашего метода заключались в следующем:

- 1. На негативе со следом метеора выбирались подходящие по интенсивности следы звёзд с таким расчетом, чтобы охватить интенсивность отдельных участков следа метеора. Для большей определённости и удобства в нахождении их зенитных расстояний, отмечались участки на следах звёзд, которые образовались в момент пролёта метеора. След метеора, а затем выбранные участки следов звёзд промерялись на микрофотометре МФ—2.
- 2. Экваториальные координаты выбранных звёзд находились из каталога PD, а спектральные классы из каталога RHP. Удобство пользования этими каталогами состоит в том, что они содержат звёзды до 6,5 зв. вел., т. е. те звёзды, которые в состоянии оставить суточные следы на фотоплёнке.
- 3. Зенитные расстояния звёзд находились с помощью специальных таблиц, составленных для САО. Поправка за приведение звёздных величин звёзд к зениту находилась по формуле

$$\triangle M = -2.5 (Mz - 1)$$
 lg P , где

P—коэффициент прозрачности атмосферы, Mz—воздушная масса. Специально коэффициент прозрачности во время наблюдений на САО не определялся, поэтому использовалось его среднее значение P=0.76 [15].

4. Учёт ошибки поля (приведение к центру) производился на основе экспериментальных исследований [16], результаты которых представлены в таблице 3, где \triangle m—ошибка поля, выраженная в звёздных величинах, l—расстояние от центра поля в мм.

											Tt	<i>іблиц</i>	a 3.
ı	10	12, 5	15, 0	17, 5	20, 0	22, 5	25, 0	27, 5	30, 0	32, 5	35, 0	37, 5	40, 0
△ m	0,02	0,02	0,07	0,11	0,15	0,19	0,24	0,30	0,35	0,40	0,47	0,50	0,55

5. Поправка приведения блеска звёзд к экватору и центру поля объектива находилась по формуле:

$$\triangle m = -2.5 \lg \frac{\cos \sigma}{\cos \delta}$$
, где

угловое расстояние звезды от центра поля

б — склонение звезды.

6. Переход от визуальной системы величин звёзд к системе спектральной чувствительности фотоплёнки производился с помощью "панхроматических" показателей цвета, которые для звёзд типа F0-F5 и F8-K5 равны 0.20 и 0.35 зв. вел. соответственно [10].

7. Эффект обтюратора учитывался введением поправки 0.45

зв. вел. [16].

8. Поправки, указанные в пунктах 3, 4, 5, 6, 7, суммировались и прибавлялись к каталожной величине звезды.

9. Затем строилась характеристическая кривая. По оси ординат откладывались отсчёты микрофотометра в логарифмической шкале, а по оси абсцисс—соответствующий им блёск звёзд.

10. С отсчётами микрофотометра от следа метеора входили в характеристическую кривую и находили звёздные величины метеора

(эффективные).

11. Из эффективных звёздных величин метеора вычитались поправки за атмосферное поглощение и ошибку поля вдоль следа метеора.

12. На основе закона взаимозаместимости вычислялась поправка за различие линейных скоростей движения изображений метеора (v_m) и экваториальных звёзд в центре поля объектива (v_o) по формуле:

$$\triangle \ m = -2.5 \ \lg \frac{v_{\scriptscriptstyle M}}{v_{\scriptscriptstyle 0}} = -\ 2.5 \ \lg \ 526.3 \ \frac{L}{nT} \ ; \ v_{\scriptscriptstyle 0} = 0.0076 \frac{{}_{\rm MM}}{{}_{\rm CEK}} \ ; \ f = 10.5 \ {}_{\rm CM}.$$

Скорость $v_{\rm m}$ находилась из непосредственных измерений следа метеора на негативе. Пусть L общая длина следа метеора, состоящего из n участков (отрезок следа + перерыв). Линейная скорость передвижения изображения метеора по фотослою будет равна $\frac{4L}{nT}$. Период T обращения четырехлопастного обтюратора патруля САО находился по измерениям ленты хронографа.

13. Поправка за невыполнение закона взаимозаместимости (1.8 зв. вел.), совместно с поправкой обусловленной влиянием фона неба на след метеора, вносилась на основе результатов, которые будут изло-

жены в главе III.

14 Для метеоров с известной высотой (Н) абсолютная звёздная величина вычислялась по формуле

$$M=m-5$$
 lg $\frac{H}{\cos z}+10$, где

z — зенитное расстояние метеоров.

Вышеизложенная методика была разработана нами в процессе обработки наблюдательного материала САО, а затем применена к определению звёздных величин 43 метеоров, таблиц 1, 2. Ввиду того, что часть из этих метеоров обработана также способом привязки к следам искусственных метеоров, мы сочли более целесообразным фотометрические кривые блеска всех обработанных нами метеоров привести совместно в главе III.

§ 3. Об оценке результатов определения звёздных величин метеоров 1952 г., полученных на САО

В настоящем параграфе мы сопоставим наш вариант способа Н. Н. Сытинской с тем вариантом, который применялся ранее на САО, и оценим результаты определения блеска метеоров, производившиеся

Л. А. Катасёвым в 1952 году.

Фотометрическая обработка следов метеоров, полученных в 1952 г. на той же фотоплёнке, что и использованная нами, велась способом Н. Н. Сытинской [4] с тем отличием, что вычитался фон негатива при измерениях на микрофотометре. Для удобства мы будем сопоставлять отдельные этапы фотометрической обработки и будем находить средние отклонения, которые при этом возникнут, считая, что

наш вариант способа Н. Н. Сытинской правилен.

Для построения характеристической кривой по суточным следам звёзд использовались фотографические величины звёзд из каталога HD. При этом выбирались звёзды спектральных классов B0-G5. Наибольший показатель цвета, использованный Л. А. Катасёвым, равен +0.78 [9, 22], в то время, как у [16] для звёзд G5 поправка к визуальным величинам равна +0.35. Отсюда следует, что наибольшее отклонение, обусловленное различием в использованных показателях цвета, составляет—0.43 зв. вел. Учитывая, что для фотометрии использовались звёзды различных спектральных классов, можно считать, что в среднем различие могло составить около—0.2 зв. вел.

Фотометрическая ошибка поля не учитывалась. Как это следует из таблицы 3, отклонение от истинного результата в среднем могло

быть около +0.2 зв. вел.

Дифференциальное поглощение не учитывалось, можно допустить, что ощибка при этом в среднем не превышает +0.1 звёздной величины.

Предполагалось, что справедлив закон взаимозаместимости; ошибка в данном случае равна +1.8 зв. вел. (гл. III). Ошибка обусловленная

влиянием фона неба (гл. III) в среднем +0.2 зв. вел.

Суммируя таким образом найденные поправки, мы приходим к заключению, что, в общем, ошибочность результатов фотометрической обработки следов метеоров 1952 года около +2 звёздных величин. Однако, эта суммарная поправка уменьшается в связи с тем, что при приведедении звёзд к экватору применялась формула $\triangle m = -2.5$ Ig Cos δ [9], которая при изменении склонения δ от 0 до 75° даёт ошибочный результат от 0 до—3 зв. вел.

Необходимо иметь в виду, что чувствительность фотоматериала со временем падает, а следовательно поправка за невзаимозаместимость меняется. Сопоставляя исследования одного и того же фотоматериала в 1952 г. с исследованиями 1954 года мы нашли, что коэффициент контрастности фотоматериала для выдержек метеоров снизился с 2,1

до 1,3, чувствительность упала с 360 до 220 $\left(S = \frac{1}{H_{DB+0.2}}\right)$, а вуаль повысилась с 0.24 до 0.4.

Процедура "исправления" блеска метеора, описанная нами, не может быть распространена на все типы фотоэмульсии, на которых был получен материал до 1952 г., ибо свойства фотослоёв могут сильно различаться и поправка за невыполнение взаимозаместимости может переменить знак [2].

В связи с вводимыми поправками, уточняющими блеск метеоров, интересно знать, насколько эти поправки изменяют определяемые массу

метеора и плотность верхних слоёв атмосферы. Согласно физической теории метеоров, масса метеорного тела (M) пропорциональна первой степени его суммарной интенсивности J, а определяемая плотность атмосферы—степени $^{1}/_{3}$.

Пусть M_{1} , M_{2} , ρ_{1} , ρ_{2} , определённые и исправленные массы метеора и плотности атмосферы соответственно.

Тогда будем иметь:

$$\lg \frac{M_1}{M_2} = \frac{m_1 - m_2}{-2.5} = \frac{\triangle m}{2.5}$$
; $\lg \frac{\rho_1}{\rho_2} = \frac{1}{3} \left(\frac{m_1 - m_2}{-2.5} \right) = \frac{\triangle m}{7.5}$, где $\triangle m - \text{по-}$

правка к найденной звёздной величине метеора при \triangle m=2,0 зв. вел.

$$\frac{M_1}{M_2} = 6.4; \frac{\rho_1}{\rho_2} = 1.8.$$

Таким образом, если блеск метеора был завышен на 2 зв. вел., то вычисленные массы метеоров и плотности атмосферы больше истинных в 6.4 и в 1.8 раза соответственно.

глава II. УСТАНОВКА "ИСКУССТВЕННЫЕ МЕТЕОРЫ".

§ 1. Вводные замечания.

Основной недостаток способа привязки следов метеоров к суточным следам звёзд на негативе состоит в том, что необходимо вносить поправку за отклонение от применяемого закона взаимозаместимости. В работе [2] указывается на необходимость конструирования специальных установок для определения этой поправки. Найдено [2], что такая поправка действительно существует порядка 1 звездной величины, однако, она не постоянна, зависит от условий проявления снимков метеоров, интенсивности следа метеора и обнаружено также влияние на неё фона неба. Вследствие этого, для надёжного определения блеска метеора необходимо исключить применение этой поправки путём фотометрической привязки следов метеоров к следам искусственных метеоров на том же негативе. Поэтому нужно иметь постоянно действующую установку "искусственные метеоры".

Опыт работы с установкой [2] выявил следующие недостатки её

конструкции:

1. Следы искусственных метеоров были недостаточно интенсивны, а добавление новых ламп ограничивалось мощностью трансформатора.

- 2. Охлаждение фотометрического ящика с помощью вентилятора было недостаточным.
- 3. Неудобной оказалась конструкция вращения диска с отверстиями, путём ременной передачи мотор-диск.
- 4. Покраска внутренней поверхности фотометрического ящика с течением времени портится, поэтому меняется отражательная способность его стенок.

Изложенные недостатки были терпимы при небольшой продолжительности работы установки, достаточной для решения задач, которые были перед ней поставлены. При конструировании же новой, постоянно действующей установки эти недостатки были исключены.

§ 2. Описание новой установки.

Общий вид сконструированной нами новой установки представлен на рис. 1. Основную часть установки представляет фотометрический ящик, высота которого 40 см. Схематический вид его сверху представлен на рис. 2, размеры даны в см.

Задняя и боковые стенки ящика—двойные и образуют резервуар, который заполнен эмульсолом (специальный разбавленный водой раствор, не подвергающий коррозии железо). Фотометрический ящик

Рис 1. Общий вид установки "Искусственные метеоры".

I—корпус фотометрического ящика; 2—ламым накаливания; 3—фотометрический ослабитель с полосками для создания вспышек; 4—диск; 5—отверстия в диске (искусственные метеоры); 6—контактыый прерыватель для подсчета числа оборотов диска; 7—фрикционная передача от мотора для вращения диска; 8—вентилятор; 9—разрез боковой стенки с охлаждающей жидкостью.

имеет водомерное стекло и краны для заполнения и спуска охлаждающей жидкости. Внутренние стенки фотометрического ящика сделаны из белой жести, хорошо отражающей свет. Радиус кривизны задней стенки подобран таким образом, чтобы отраженные от стенок лучи ламп накаливания более или менее равномерно освещали установленное напротив матовое стекло (окно), за которым находится фотометрический ослабитель. Около задней стенки в три ряда расположены кинопроекционные лампы. Общая мощность электрической энергии, потребляемой лампами, составляет около 8 квт. Необходимое напряжение для питания одной кинопроекционной лампы составляет 30 в, так что для возможности питания их от городской электросети напряжением в 220 в необходимо было соединить 7 ламп последова-

тельно, а каждый такой ряд параллельно. Электрическая схема питания установки представлена на рис. 3. Во всех опытах мы, во избежание быстрого износа ламп, подавали напряжение 200 вольт вместо 210; 20 вольт падало на реостате, которым обеспечивалось постоянство режима питания ламп.

Основная энергия теплового излучения ламп шла на нагревание охлаждающей жидкости в стенках ящика. Однако, этого было недостаточно: Наш опыт [2] показал, что если не подвергать воздушному охлаждению колбы ламп и не обдувать матовое стекло и фотографический ослабитель, то они лопаются. Поэтому снизу в фотометрический ящик вентилятором нагнетается воздух, который обтекает лампы

Рис. 2. Фотометрический ящик (вид сверху).

1—Матовое стекло; 2—фотометрический ослабитель; 3—лампы накаливания.

и матовое стекло с фотографическим ослабителем, унося с собой тепло наружу.

Охлаждению фотографического ослабителя способствует также вращающийся перед ним алюминиевый круглый диск толщиной в 2 мм,

Рис. З. Электрическая схема установки "Искусственные метеоры".

1—Лампы накаливания; 2—вольтметр; 3—амперметр; 4—батарея аккумуляторов; 5—выключатель: 6—магнитный пускатель; 7—электромотор хронографа; 8—электромотор диска; 9—кулачок прерывателя; 10—реостат малый (тонкая регулировка); 11—реостат основной (грубая регулировка); 12—индукционная катушна хронографа; 13—перо хронографа; 14—контактный маятник часов; 15—тумблер двойной; 16—электромотор вентилятора; 17—рубильник; 18—"глазки".

По радиусу диска на расстоянии 5, 13.5, 21.5, 28.5 см высверлены отверстия диаметром около 1 мм. Проходя перед ослабителем, эти отверстия и являются "искусственными метеорами" с различными угловыми скоростями и меняющейся интенсивностью, так как почернение самого ослабителя непрерывно меняется. Диск вращается от электромотора с помощью фрикционной передачи рассчитанной таким образом,

чтобы он совершал один оборот приблизительно в 1 сек.

Фотометрический ящик с диском и прочими деталями прочно крепятся на специальной раме из угловой стали. В целях уничтожения рассеянного света фотометрического ящика рама крепления общита фанерой и изнутри покрашена черной краской. Для необходимого доступа к фотометрическому ящику и другим частям установки имеется дверь со стороны вращающегося диска. В двери вырезано заэкранированное окно, напротив фотографического ослабителя, так что при действии установки видны только "искусственные метеоры", т. е. отверстия в диске в момент прохождения перед непрерывным фотографическим ослабителем.

"Искусственные метеоры" фотографируются через солнечный светофильтр кратности 10 [2] с расстояния 360,5 см фотокамерой с объективом "Индустар—7". Таким образом, впечатывается на негатив фотометрическая шкала сравнения ("стандарты"). Остановимся на конструктивных деталях установки.

Выбор кинопроекционных ламп (30 в 400 вт) объясняется тем, что они имеют небольшую стеклянную колбу и отличаются большим коэффициентом световой отдачи, вследствие сравнительно большой цветовой температуры накала.

Контроль электрического питания установки осуществляется с помощью реостата, астатического вольтметра класса точности 0.5 и амперметра класса точности 1,0. Установка потребляет ток 36а. Для поддержания постоянного напряжения мы сделали мощный ползунковый реостат с грубой и тонкой регулировкой. Переменный ток сети подводится к общей схеме через двухполюсный рубильник, а включение ламп накаливания через реостат осуществляется посредством магнитного пускателя.

Скорость вращения диска определяется с помощью хронографа, одно перо которого делает на ленте проколы от контактов диска через один оборот, а другое через одну секунду от часов службы времени САО, посредством замыкания электрической цепи маятником через ртутный контакт. Ось вращения диска приходится на середину нижней стороны ослабителя. Радиус диска равен 37 см. Диск, кроме основного назначения, экранирует рассеянный свет от фотометрического ящика.

Фотографический ослабитель предназначен для создания непрерывно меняющейся освещенности движущихся отверстий диска. Поскольку движение отверстий круговое, то и почернение ослабителя также должно меняться по кругу, т. е. ослабитель должен состоять из ряда полос почернения различного радиуса кривизны, соответствующих радиусам окружностей, описываемых отверстиями диска. Для изготовления такого ослабителя был сконструирован специальный станок, на котором укреплялся патефонный электромотор с регулятором скорости вращения оси мотора. На оси мотора закреплялась шторка, которая при вращении открывала фотослой пластинки. Пластинка была закрыта картоном такого же формата (30 × 30 см²). Этот картон был разрезан на составные части такой же формы, какой должны быть полосы почернения.

После того, как была установлена скорость вращения мотора, с фотопластинки под шторкой снимался нужный участок картона, включался электромотор и производилось экспонирование соответствующей полосы ослабителя. Затем экспонированный участок ослабителя закрывался, производилась засветка другой полосы ослабителя и т. д. На эмульсии полученного ослабителя вырезаны полоски различной ширины. Отверстия диска при прохождении перед этими полосками создает вспышки на следе "искусственного метеора". Эти вспышки, кроме основного назначения (фотометрия вспышек метеора) облегчают промер на микрофотометре следов искусственных метеоров, а именно,

Рис. 4

около вспышек делается поворот негатива так, чтобы измеряемый участок следа искусственного метеора был расположен по направлению щели микрофотометра.

Управление работой установки осуществляется с одного пульта. Выход из строя какой-нибудь лампы накаливания, а следовательно и прекращение горения всех семи ламп в этом ряду, обнаруживается "глазками" по одному на каждый из трёх рядов. При этом наблюдается также падение на 1/3 показания амперметра. Снимок установки со стороны пульта управления представлен на рис. 4.

Порядок работы установки. Включением двухполюсного рубильника к установке подводится электрическое напряжение переменного тока городской электросети. Включается вентилятор, затем магнитным пускателем подаётся напряжение на электролампы и мотор,

приводящий в движение диск. С помощью реостата производится грубая и тонкая регулировка напряжения на лампах. За это время диск набирает обороты и по истечении 20—30 сек включается одновременно электромотор хронографа и цепь постоянного тока от батареи аккумуляторов. Через 35—40 секунд после включения установки открывается объектив фотокамеры и фотографируются отверстия диска во время их прохождения перед фотографическим ослабителем. Так впечатывается один стандарт. Затем установка постепенно выключается: сначала лампы накаливания, затем хронограф и, если впечатывание стандартов больше не предполагается, выключается вентилятор и напряжение городской сети.

Рис. 5. График изменения блеска первого искусственного метеора.

§ 3. Исследование и эталонирование установки.

Исследование относительного изменения блеска искусственного метеора в процессе движения отверстия над непрерывным фотографическим ослабителем производилось с помощью фотоэлемента с гальванометром, как описано в работе [2]. Относительная интенсивность вспышек, несмотря на некоторые трудности, была определена с точностью ± 0.07 зв. вел., что вполне приемлемо. Кривые относительного изменения блеска искусственных метеоров представлены на рисунках 5, 6, 7, 8. По оси ординат отложены относительные звёздные величины, а по оси абсцисс условные отсчёты диска—пронумерованные на краю диска метки через 1 см.

При эталонировании нашего прибора мы поступили следующим образом.

На объектив вплотную надевалась диафрагма с высверленными по радиусу тремя отверстиями диаметром около 1 мм, которые тщательно промерялись на измерительном микроскопе "УИМ—21". Через эту диафрагму производилось фотографирование отверстий диска при отсчёте 45, (нуль—пункт) в течение 50 сек. На ту же плёнку метеорным патрулём САО фотографировалась область неба при той же выдержке. Затем вновь впечатывались искусственные звёзды при по-

Рис. 6. График изменения блеска второго искусственного метеора.

вернутой камере около оптической оси (во избежание наложения изображений искусственных звёзд) и повернутой на 90° относительно объектива диафрагме. Такая же процедура производилась со второй плёнкой с тем отличием, что фотографировалась другая область неба, а при впечатывании искусственных звёзд диафрагма вновь каждый раз поворачивалась на 90°. Оба снимка проявлялись, а затем промерялись на микрофотометре МФ—2 при одинаковых условиях.

При построении характеристической кривой по изображениям звёзд неба использовался каталог PD, учитывалось дифференциальное поглощение, хотя зенитные расстояния звёзд не превышали 20° , вносились поправки за ошибку поля и цвет звёзд так как описано нами в 1 главе. Очевидно влияние фона и неодинаковость пропускания объектива в различных его участках в наших условиях опыта исключены. При привязке к характеристической кривой с отсчётами микрофотометра от искусственных звёзд, мы тщательно анализировали соответствующий её участок и принимали во внимание только те звёзды, у которых всевозможные поправки были наименьшими.

После учёта поправки за диафрагмирование объектива по формуле \triangle m = -2.5 lg $\frac{S_{\circ}}{S}$, где

S_o-площадь объектива

S — суммарная площадь отверстий диафрагмы.

Получены следующие значения нуль—пунктов (отсчёт 45) искусственных метеоров в порядке возрастания расстояния отверстий от оси вращения диска.

 $1. - 0.65 \pm 0.20$

 $2. - 0.99 \pm 0.008$

 $3. - 1.38 \pm 0.15$

 $4. - 1.41 \pm 0.18$

Полученные значения нуль-пунктов, т. е. величин искусственных метеоров при прохождении 45 отсчёта диска мимо указателя, необ-

Рис. 7. График изменения блеска третьего искусственного метеора. 🧓

ходимо внести в соответствующие кривые изменения блеска искусственных метеоров в процессе движения отверстий над ослабителем (рис. 5, 6, 7, 8).

Определив нуль-пункт, мы знаем истинную зв. величину искусственного метеора в любой точке над ослабителем, а, следовательно, нам известна звёздная величина в каждой точке следа искусственного

метеора на негативе. Следует сказать, что с установкой возможна фотометрия метеоров от—0.5 до—5 или—6 звёздной величины.

§ 4. Достоинства новой установки.

Поскольку метеоры имеют различные угловые скорости и меняют свой блеск на протяжении пути в широких пределах, необходимо чтобы и установка давала то же самое при таком же характере изображений.

Вопрос о том, что представляет собой метеор, точку или протяженный объект, по крайней мере для целей фотометрии до настоя-

Рис. 8. График изменения блеска четвертого искусственного метеора.

щего времени нельзя считать выясненным. Снимки метеоров Сталинабадской астрономической обсерватории говорят о точечности этих объектов, хотя имеются 2—3 фотографии протяженных следов болидов, однако, об их действительной протяженности трудно судить ввиду явного наличия эффекта рассеяния за пределы их геометрического изображения. Мы будем считать метеор движущейся точкой. "Искусственные метеоры", как шкала сравнения, так же должны быть точечными. Диаметры движущихся отверстий в диске около 1 мм. Если при расчётах пользоваться законами геометрической идеальной оптики, то окажется, что на фотослое это изображение отверстия будет иметь поперечник около 0.03 мм. Рассмотрение изображений искусственных метеоров показывает сходство их изображений с изображениями истин-

ных метеоров, а это одно из главных требований предъявляемых к установке.

Расчёт угловых скоростей искусственных метеоров производится по формуле

$$\omega_{M} = \omega_{o} \frac{r}{\rho}$$
, где

 ω_{\circ} —угловая скорость вращения диска

r — расстояние отверстия от оси вращения

р - расстояние фотокамеры до диска

В нашем случае ρ =360 см ω_{o} =1 об/сек, поэтому ω_{m} = r^{o} /сек или ω_{m} =5, 13.5, 21.5, 28.5°/сек, т. е. за один оборот диска мы получаем реальный интервал угловых скоростей метеоров, так что в этом отношении достоинство установки не вызывает сомнений.

За тот же один оборот диска получается шкала интенсивностей в пределах 5—6 звёздных величин в результате прохождения отверстий над поверхностью переменной яркости (ослабителем). Каждый искусственный метеор, имея некоторую постоянную угловую скорость, непрерывно меняет свой блеск. Кроме того, на следе метеора созданы "вспышки", которые позволяют фотометрировать вспышки реальных метеоров, что представляет большой интерес в отношении выяснения природы вспышек.

Таким образом, за один оборот диска мы получаем нужную нам шкалу угловых скоростей и интенсивностей на сравнительно небольшом участке негатива (1 см×1 см.) В этом отношении установка удовлетворяет требованиям фотографической фотометрии метеоров.

Имея такого рода установку, можно легко получить предельную звёздную величину метеора, фотографируемого тем или иным объективом, т. е. сравнить эффективность объективов и выбрать наиболее подходящий для целей фотографирования метеоров. Такого рода результаты будут представлять большую ценность, чем относительное сопоставление эффективности объективов теоретическим путём [23].

Установка позволит наиболее точно определить блеск метеора. Используя эти результаты, можно подвергнуть проверке значение коэффициента пропорциональности $\tau_{\rm o}$ в уравнении свечения физической теории метеоров. Действительно, из уравнений физической теории метеоров вытекает следующая зависимость между интенсивностью свечения метеора j и коэффициентом $\tau_{\rm c}$

$$J{=}k\, au_{\circ}\,
ho^3\,v^{10}\left(rac{ ext{dv}}{ ext{dt}}
ight)^{-2}$$
 , где

k—изве ${f c}$ тный коэффициент пропорциональности

р -- плотность атмосферы

dv — торможение метеора в атмосфере Земли.

С помощью установки можно будет определить предельную экспозицию при фотографировании метеоров. Согласно предварительным результатам, применяющуюся экспозицию в 1 час при фотографировании метеоров на CAO следует сократить до 25 мин.

Решение этих важных задач является делом дальнейших исследований.

ГЛАВА ІІІ.

ИСПОЛЬЗОВАНИЕ УСТАНОВКИ "ИСКУССТВЕННЫЕ МЕТЕОРЫ" ДЛЯ ФОТОМЕТРИИ МЕТЕОРОВ

. § 1. Влияние свечения ночного неба на скрытое изображение следа метеора на негативе.

При фотографировании метеоров наряду с кратковременным действием света от метеора на фотоэмульсию в течение всей экспозиции действует свечение ночного неба, которое создаёт так называемый фон негатива.

Вопрос о влиянии фона неба на скрытое изображение следов звёзд рассмотрен нами в работах [2, 16]. Независимо от момента образования участка суточного следа звезды в течение 1 часовой экспозиции свечение ночного неба ослабляет его интенсивность, и это ослабление равноценно как бы уменьшению блеска звезды на 0.5 зв. вел. Засветка свечением неба, без предварительной подсветки фотослоя, усилила изображения метеоров [2]. Была поставлена задача более детального исследования действия свечения ночного неба на скрытое изображение метеора в зависимости от промежутка времени, протекшего от начала экспозиции. Решение этой задачи проведено с помощью установки "искусственные метеоры".

На двух одинаковых плёнках эмульсии № 3006 чувствительностью $S_{0.85} = 1000$, которые применялись для фотографирования метеоров, впечатывались стандарты через определённые промежутки времени от начала экспозиции. Так на первой плёнке был вначале впечатан стандарт, затем фотографировалась область неба 10 минут, после чего вновь впечатывался стандарт, и еще 10 минут фотографировался фон и так далее. В результате, от начала экспозиции до конца (1 час) стандарты на первой плёнке впечатывались через 0, 10, 20, 40, 50, 60 мин.; а на второй плёнке через 0, 15, 32, 46, 58, 60 мин. На четырёх плёнках той же эмульсии также были впечатаны стандарты, но засветка небом не производилась. Все плёнки проявлялись, а затем промерялись на микрофотометре при одинаковых условиях. Стандарты были впечатаны в центре поля объектива путём соответствующего перемещения плёнки в кассете, при неизменном положении камеры. Поэтому ошибка поля не учитывалась.

Для построения характеристических кривых выбирались участки между двумя вспышками третьего следа. На рис. 9 для примера по-казано смещение характеристических кривых второй плёнки относительно нулевой (по 4 плёнкам без фона). По оси ординат отложены отсчёты микрофотометра (фон вычитался), а по оси абсцисс звёздные

величины по отношению к нуль-пункту (45 отсчёт диска). Из рисунка

9 видно, что в зависимости от момента впечатывания стандарта наблюдается различное усиление следов, и, кроме того, это усиление зависит от отсчёта микрофотометра; кривые смещаются не параллельно друг другу, а с изменением наклона.

Мы нашли среднее смещение характеристических кривых относительно кривой без фона. Результаты таких средних отклонений кривых обеих плёнок от кривой без фона приведены на рис. 10.

Из рисунка 10 видно, что усиление следа наибольшее при пролёте метеора через 20 мин. после начала экспозиции, ослабление следа наблюдается за 5 мин. до конца экспозиции.

Полученные нами результаты не подтверждают соображения о том, что предварительная подсветка даёт усиление следа метеора вследст-

вие преодоления порога инерции фотоэмульсии [24]. Именно при фотографировании кратковременных явлений, каким и является метеор, усиление даёт последующая более слабая и более длительная засветка, производящая достройку субцентров проявления, образовавшихся при кратковременной выдержке [25]. Между прочим, тот факт, что след метеора, образовавшийся в начале одночасовой экспозиции усиливается на 0.25 зв. величин, следует также и из результатов проведённых нами

ранее опытов, изложенных в работе [2].

Перейдём к вопросу практического учёта влияния свечения неба на скрытые изображения следов метеоров. Рассмотрим реальный случай, когда в момент впечатывания фотометрической шкалы сравнения (искусственные метеоры) не совпадает с моментом пролёта метеора. Другими словами, пусть шкала сравнения и след метеора имеют различное усиление, обусловленное фоном неба.

Представим себе три характеристические кривые, из которых первая соответствует фотометрической шкале сравнения, вторая—следу метеора и третья—шкале сравнения, не подверженной влиянию фона неба. Смещения первой и второй кривой относительно третьей соответствуют звёздным величинам $\triangle m'_1$ и $\triangle m'_2$. При привязке следа

метеора к следу искусственного метеора мы, в сущности, делаем переход от одной характеристической кривой к другой, то-есть для равных интенсивностей сравниваемых следов имеет место равенство

$$m_2 = m_1 + (\triangle m'_1 - \triangle m'_2).$$

Следовательно, чтобы найти истинный блеск метеора m_2 , необхоходимо к звёздной величине метеора m_1 , найденной из характеристической кривой построенной по следу искусственного метеора, внести поправку

$$\triangle m = m_2 - m_1 = \triangle m'_1 - \triangle m'_2$$

Таким образом, из поправки, обусловленной влиянием фона неба на след искусственного метеора, необходимо вычесть поправку за влия-

ние фона неба на след истинного метеора.

Если привязка следа метеора производится к фотометрическим стандартам, впечатанным на плёнку, не подверженную засветке небом, или к суточным следам звёзд, то найденная по графику рис. 10 поправка берётся с обратным знаком.

§ 2. Методика обработки наблюдательного материала новым способом

Опишем новый способ, который был разработан нами при обработке наблюдательного материала. Отдельные этапы этого способа заключаются в следующем.

1. Определяется линейная скорость передвижения изображения

метеора по фотослою плёнки А с помощью формулы

$$V_{\rm A}=\frac{4{
m L}}{{
m nT}}$$
, где

L общая длина метеора, состоящая из n частей (отрезок + перерыв), а T период вращения 4-х лопастного обтюратора. Полученная линейная скорость на плёнке A будет отличаться от линейной скорости передвижения изображения того же метеора на других плёнках, вследствие различия в фокусных расстояниях, обусловленного различием в угловых расстояниях σ метеоров от центра пластинки. Это различие учитывается по формуле

$$V = V_{\rm A} \frac{\cos \sigma_{\rm A}}{\cos \sigma}$$

2. По ленте хронографа определяется угловая скорость вращения диска $w_{\rm o}$ и находятся линейные скорости передвижения изображений искусственных метеоров по фотослою, используя формулу

$$v = w_{\circ} f \frac{r}{\rho}$$
, где

f—фокусное расстояние объектива на расстоянии ρ камеры от установки,

r-расстояние отверстия от оси вращения диска.

3. Для фотометрии выбирается след искусственного метеора, линейная скорость передвижения изображения которого по фотослою ближе всего подходит к линейной скорости передвижения изображения истинного метеора.

Approved For Release 2010/04/07: CIA-RDP80T00246A045700380001-3

4. Фотометрируется след истинного метеора, а затем выбранный

участок следа искусственного метеора.

5. По следу искусственного метеора строится характеристическая кривая, в которую входят с отсчётами микрофотометра от следа истинного метеора и находят его звёздную величину, не исправленную за различие линейных скоростей передвижения изображений по фотослою.

6. На основе закона взаимозаместимости вносится поправка за различие линейных скоростей передвижения изображений по фотослою

по формуле

$$\Delta m_{
m v} \!=\! +2.5 \lg rac{v_{
m u}}{v_{
m l}}$$
 , где

 $v_{\mathfrak{u}}$ и $v_{\mathfrak{l}}$ скорости передвижения изображений искусственного и естественного метеоров.

7. Вносится поправка за ошибку поля естественного метеора (табл. 3), поправка вычитается.

8. Приведение к зениту блеска метеора производится по формуле

$$\triangle M_z = 0.28 \ (1 - M_z)$$
, где

 M_z — воздушная масса, соответствующая зенитному расстоянию ₹ участка следа метеора.

Коэффициент прозрачности атмосферы равен 0.76 [15].

9. По графику рис. 10 находится поправка за влияние фона.

10. Все поправки (6, 7, 8, 9) прибавляются к звёздной величине метеора, найденной из характеристической кривой.

11. Для метеоров c известными высотами H приведения блеска mк 100 км производится по формуле

$$M=m-5$$
 lg $\frac{\mathrm{H}}{\mathrm{Cos}\,z}+10$, где

M—абсолютная звёздная величина метеора. Результаты определения блеска метеоров новым способом будут приведены в следующем параграфе.

§ 3. Сопоставление результатов, полученных методами привязки следов метеоров к суточным следам звёзд и к следам искусственных метеоров.

В предыдущем параграфе мы изложили общую схему привязки следов метеоров к следам искусственных метеоров. Обработка следов метеоров по этой схеме значительно проще, чем схема привязки следов метеоров к суточным следам звёзд, изложенная в § 2 гл. 1. В общем на обработку 1 следа метеора по этой новой схеме уходит приблизительно в 2 раза меньше времени, чем на обработку одного метеора по способу привязки его следа к суточным следам звёзд. Тем не менее, простота или продолжительность обработки не могут служить обоснованием того или иного способа. Наибольшая точность фотометрического результата должна явиться основным критерием для оценки методики фотографической фотометрии метеоров.

Одним из возможных способов проверки рассматриваемых нами методов фотометрии метеоров является сопоставление, а затем анализ результатов обработки одних и тех же следов метеоров этими методами.

Для решения этой задачи в нашем распоряжении имелись восемь снимков метеоров, результаты обработки которых по схеме, изложенной в предыдущем параграфе, т. е. новым способом фотометрии, сопоставлены с результатами обработки по методу Н. Н. Сытинской, изложенному в § 2, гл. 1 (без внесения поправки за невыполнение закона взаимозаместимости, определение которой входит в задачу настоящего параграфа).

На рис. 11 представлен позитивный отпечаток одного из негативов со следом метеора (№ 38) и следами искусственных метеоров,

впечатанных на плёнке агрегата "А".

Рис. 11

На рисунках 12 и 13 приводятся фотометрические кривые метеоров, следы которых обработаны указанными двумя методами.

Фотометрические кривые, полученные привязкой следов метеоров к суточным следам звёзд, обозначены римской цифрой I, а к следам искусственных метеоров цифрой II, Видим, что расхождение в резуль-

татах фотометрической обработки одних и тех же следов метеоров двумя методами колеблется от 0.3 до 2.5 зв. вел., причём, метод привязки к суточным следам метеоров даёт систематически завышенные результаты в определении блеска по сравнению с методом привязки к следам искусственных метеоров.

При сопоставлении результатов, получаемых рассматриваемыми двумя методами, безразлично, будем ли мы измерять интенсивность метеора неизвестного нам блеска и обрабатывать его двумя способами, или же, на основе равенства интенсивностей следов двух фотометрических шкал, сопоставлять известные нам количества освещения. Отсюда

следует, что для проверки полученных нами результатов сопоставления двух методов достаточно к каталожным величинам звёзд внести необходимые поправки и в том числе поправку за различие в скоростях передвижения изображений экваториальных звёзд и искусственного метеора по фотослою; сравнить полученный таким образом результат с результатом обработки этих же следов звёзд путём привязки к следу искусственного метеора, считая при этом, что скорости передвижения изображений звёзд и искусственных метеоров по фотослою равны между собой.

Мы использовали материал, полученный в период фотографирования метеоров потока Персеид (стандарты были впечатаны до начала экспозиции). На негативах выбирались от одного до трёх следов звёзд, характер изображения которых был по возможности одинаковым со следами искусственных метеоров. В основном это были следы в центре поля. Искомое расхождение результатов, доставляемых двумя методами представляется таким рядом цифр (влияние фона неба учтено): 2.16, 1.80, 2.03, 2.12, 2.19, 2.59, 3.23, 2.07, 2.14, 1.85, 1.79, 1.62, 1.77, 2.98, 1.98, 1.17, 1.70, 1.87, 0.92, 1.92, 1.54, 1.39, 1.62, 1.48, 1.86.

Видим, что вновь поправка за отклонение от взаимозаместимости в широких пределах колеблется около двух звёздных величин. Средняя величина поправки, с учётом предыдущих результатов (всего 33 значения), оказалась равной 1.8 ± 0.7 зв. вел.

Некоторые причины, обуславливающие непостоянство поправки за отклонение от закона взаимозаместимости при привязке следов метеоров к суточным следам звёзд, будут выяснены несколько позже.

§ 4. Результаты фотометрической обработки следов метеоров на негативе.

Приведём результаты фотометрической обработки следов метеоров на негативе в виде графиков. Часть фотометрических кривых уже приведена нами на рис. 12 и 13 предыдущего параграфа, где для дальнейших исследований следует пользоваться фотометрическими кривыми под римской цифрой II, так как они получены более точным методом привязки следов метеоров к следам искусственных метеоров.

На рис. 14, 14а, 15, 15а, 16, 16а, приведены фотометрические кривые, обработлиные способом, изложенным в параграфе 2 гл. І. Кривые

изменения блеска метеоров потока Персеид представлены нами отдельно на рис. 14, 14а, где по оси абсцисс отложены высоты метеоров, а по оси ординат их абсолютные звёздные величины, причём, во избежание наложения одних графиков на другие, шкалы звёздных величин относительно смещены. Вообще говоря, намечается разделение блеска метеоров этого потока на три группы. К первой группе можно

отнести все метеоры, блеск которых изменяется от—2 до—4,5 звёздных величин. Причём, для них характерны вспышки. Ко второй группе можно отнести метеоры N_0N_0 9, 10, 11, 13, блеск которых меняется от—1,5 до—2,5 зв. вел, и, наконец, к третьей группе отнесём метео-

ры №№ 4, 7, 12 с изменением блеска от 0.5 до—1.0 зв. вел. Однако, такое деление носит условный характер и нужно думать, что с накоп-

лением материала эта условная граница постепенно сотрется. Не следует придавать также особое значение тому факту, что высоты по-

явления метеоров потока Персеид различны, и там, где имеется погасание одного метеора имеет место возгорание другого. Дело в том, что для некоторых метеоров недостаточно точно определены высоты; в большинстве же случаев высоты возгорания лежат в пределах

110—105 км. На рис. 15, 15а приведены кривые изменения абсолютных звёздных величин метеоров, не отождествлённые с потоками. След метеора № 15 очень слаб, фотометрировать его было почти невозможно, поэтому, вероятно, и получена такая аномальная кривая блеска (измерения для определения его высот проводились с лупой). Блеск метеоров, для которых высоты небыли известны, или их определение вызывало сомнение представлены в виде графиков на рис. 16, 16а.

Из рассмотрения рисунков следует, что какая-либо ярко выраженная закономерность изменения блеска метеоров отсутствует, кривые имеют самые разнообразные формы, вспышки метеоров в большинстве случаев наблюдаются в конце пути.

§ 5. Общие критические замечания о методе привязки следов метеоров к суточным и точечным следам звёзд на негативе.

Опишем общие недостатки метода привязки следов метеоров к суточным следам звёзд на негативе.

Наши общие замечания заключаются в следующем. Очень много времени отнимает процесс отождествления суточных следов звёзд со звёздами неба и выписывание их величин, координат и спектральных классов из каталогов. При этом выпадают из обработки следы звёзд, образованные двойными и переменными звёздами, имеющими одинаковые или близкие склонения, вследствие наложения их суточных следов, суточные следы явно отличные по характеру изображения от следа метеора, ибо в большинстве случаев направление следов не совпадает. Поэтому не редко для построения характеристической кривой явно нехватает следов звёзд нужной интенсивности, а потому не всегда фотометрируется весь след метеора и особенно вспышки. Не исключены также ощибки при отождествлении звёзд.

Изменение в условиях проявления различно сказывается на следах звёзд и метеоров. При увеличении продолжительности проявления чувствительность фотослоя к изображениям метеоров резко возрастает, в то время как к изображениям звёзд она остаётся почти неизменной [2]. Это значит, что нужен строгий контроль условий проявления для того, чтобы однажды определённая поправка за невыполнение закона взаимозаместимости при привязке следов метеоров к суточным следам звёзд оставалась неизменной. Вследствие влияния фона неба эта поправка существенно изменяется. При вычитании фона неба интенсивность суточных следов звёзд над фоном уменьшается в то время, как интенсивность следов метеоров (в зависимости от продолжительности действия фона неба до и после момента образования скрытого изображения следа) может как увеличиваться так и уменьшаться. Кроме того, сама поправка, как в случае действия фона неба, так и без него зависит от уровня почернения или интенсивности следа.

Как следует из работы А. П. Картужанского и П. В. Мейкляра [26], чувствительность фотослоя зависит от температуры. В реальных условиях фотографирования метеоров, при увеличении температуры, чувствительность фотослоя к метеору возрастает, а к звёздам убывает. Это значит, что с увеличением температуры, при которой экспонируется слой, поправка за отклонение от закона взаимозаместимости при привязке следов метеоров к суточным следам звёзд увеличивается. Факторы, влияющие на почернение фотослоя (условия проявления, температура, засветка небом и т. д.), по разному сказываются на скрытых изображениях следов звёзд и метеоров; закономерности, их образования различны.

Различие в выдержках является принципиальным недостатком метода привязки следов метеоров к суточным следам звёзд, ибо, наряду с изучением свойств фотослоя при выдержке, с которой образуются следы метеоров, нужно изучать также его свойства при выдержке, с которой получаются следы звёзд, причём действие нежелательных, но реально существующих факторов, влияющих на интенсивность следов звёзд и метеоров, учитывается, а не исключается. Это значительно осложняет методику обработки следов метеоров и практически точный учёт этих факторов невозможен. Методика фотографической фотометрии должна разрабатываться в направлении исключения влияния нежелательных факторов, а не их учёта.

Способ привязки следов метеоров к суточным следам звёзд, предполагает наличие установки, которая бы позволила учесть реально существующие отклонения от закона взаимозаместимости. Если учесть, что эта поправка является функцией стольких же переменных, что и почернение фотослоя, то её нужно будет определять каждый раз для каждого метеора. Отсюда следует, что проще сразу делать привязки следов метеоров к следам искусственных метеоров.

Вышесказанные критические замечания в еще большей степени приложимы и к способу привязки следов метеоров к точечным изображениям звёзд на негативе [5, 6]. Этот способ не выдерживает критики еще и потому, что производится фотометрическая привязка движущихся объектов (метеор) к неподвижным (звёзды). Почернение в центре изображения предельной звезды [5] меняется, в зависимости от неизвестного нам распределения световой энергии в аберрационном пятне рассеяния, форма которого существенно меняется от центра поля объектива к краям, так что вообще становится неясным, что же мы в действительности фотометрически сравниваем.

ГЛАВА IV. ОШИБКИ ФОТОГРАФИЧЕСКОЙ ФОТОМЕТРИИ МЕТЕОРОВ

Определение ошибки конечного результата фотометрической обработки следов метеоров на негативе является наиболее важным, трудным и менее всего разработанным вопросом. Основная трудность состоит в том, что определяемый блеск метеора, как было выяснено нами ранее, является функцией многочисленных, не зависящих друг от друга и к тому же непостоянных факторов. Ошибка конечного результата будет зависеть от качества используемого метода фотометрии метеоров от того, насколько полно и как учитываются действующие факторы.

В литературе [4, 8] имеются указания на некоторые источники ошибок, но в большинстве случаев отсутствует их реальное опре-

деление.

§ 1. Ошибки фотографического процесса.

Известно, что кристаллы галоидного серебра в фотоэмульсии различны по форме, размерам, встречаются в виде комков и распределены неравномерно. При проявлении изображения они превращаются в клубок серебрянных нитей (зерна) [27], размеры которых превосходят исходные кристаллы; происходит проявление части соседних кристаллов, не подвергшихся действию света. Проявленное изображение представляет собой крайне неоднородную среду, плотность почернения которой меняется от точки к точке, что вносит некоторую случайную ошибку в конечный фотометрический результат. Плотности почернения плёнок опыта работы [18] охватывают плотности почернения фона снимков метеоров. Следовательно можно считать, что ошибка, с которой определяется фон неба, около $4^0/_0$.

При промерах на микрофотометре следов метеоров фон неба вычитался, поэтому ошибка определения интенсивности следа метеора будет не меньше чем $\frac{n_{\phi}\cdot 4}{100}$. Эту ошибку можно выразить в звёздных величинах по характеристической кривой метеора. Ошибка фотографического процесса определяет случайные "зубцы" фотометрической кривой метеора, явившиеся результатом неоднородности "исключен-

ного фона" неба.

В таблице 4 приведены значения ошибок определения блеска фотометрировавшихся нами метеоров (1, 2), полученные по начальному \triangle_{κ} и конечному \triangle_{κ} участкам характеристической кривой, использованных для фотометрии метеоров.

36.

	,									Табли	ца 4.
№ мет.	1	2	3	4	5	6	7	8	9	10	11
$\triangle_{H}\pm$	0.48	0.30	0.22	0.18	0.58	0.06	0.14	0.12	0.10	0.10	0.40
$\triangle_{\kappa}\pm$	0.36	0.28	0.12	0.10	0.20	0.04	0.08	0.12	0.10	0.06	0.40
№ мет.	12	13	14	15	16	17	18	19	20	21	22
$\triangle_{H}\pm$	0.20	0.32	0.04	0.16	0.12	0.12	0.26	0.18	0.38	0.30	0.14
Δ κ± .	0.14	0.24	0.01	0.08	0.03	0.02	0.10	0.10	0.16	0.14	0.02
№ мет.	23	24	25	26	27	28	29	30	31	32	33
Δ _H ±	0.18	0.14	0.16	0.10	0.26	0.15	0.20	0.04	0.28	0.10	0.30
$\triangle_{\kappa}\pm$	0.08	0.10	0.08	0.05	0.10	0.08	0.10	0.01	0.12	0.05	0.10
№ мет.	34	35	36	3	7	38	39	40	41	42	.43
$\triangle_{\kappa} \pm$	0.46	0.42	0.0	8 0.	18	0.06	0.10	0.10	0.24	0.26	0.16
$\triangle_{\kappa}\mp$	0.22	0.10	0.0	2 0.	12	0.04	0.04	0.04	0.05	0.12	0.12

Видим, что $\triangle_{\rm H} > \triangle_{\rm K}$. Это объясняется большим наклоном начального участка характеристической кривой по сравнению с участком соответствующим наибольшей интенсивности следа метеора.

§ 2. Возможные различия между учитываемой и истинной ошибкой поля.

Нами указывалось [16], что ошибка поля зависит от угла между следом метеора и радиусом, проведённым от центра оптического поля к измеряемому участку следа. Такая зависимость обусловлена тем, что изображение точки на негативе представляется разнообразными аберрационными фигурами неправильной формы [2]. Вследствие этого не исключена возможность зависимости ошибки поля от интенсивности следа метеора и его фокусировки.

Выбор суточных следов звёзд на таком же расстоянии от оптического центра, что и изображение метеора [4] не исключает ошибки поля, потому что направление их движения может быть не симметрично относительно центра. Пропускание же всего суточного следа звезды [9] также не исключает ошибку.

Различие в ошибках поля обнаруживается при промерах следов искусственных метеоров, впечатанных на негатив по диагонали кадра камеры, как показано на рис. 17. Промерялись третьи следы между первой и второй вспышками от начала. Характеристические кривые представлены на рис. 18. Они имеют различный наклон и меняют свою форму.

На рис. 19 представлены ошибки поля относительно первого стандарта, (цифра 1), впечатанного в центре поля; отсчёт микрофотометра $n-n_{\phi}=30$. Поправки зависят не только от расстояния, но и от места расположения метеора на негативе и его ориентировки. В рассмотренном случае "разброс" ошибки поля достигает 0.2-0.3 зв. вел. Най-

Approved For Release 2010/04/07: CIA-RDP80T00246A045700380001-3

денная ранее ошибка поля [16] соответствует действительности, так как лежит в пределах этого разброса.

Нужно иметь в виду, что изучение ошибки поля [16] проводилось по следу проходящему через центр вдоль большой стороны кадра, а не по диагонали.

Из вышеизложенного следует, что наибольшее расхождение между учтённой [16] и истинной ошибками поля составляет около ± 0.2 зв. вел.

§ 3. Ошибки, обусловленные различием в фокусировках изображений.

Фотоснимки метеоров на САО часто получаются не в фокусе. Это объясняется как трудностью фокусировки светосильных объективов [28], так и рядом других причин: перекосом кассеты в камере, короблением плёнки в кассете и т. д. Мы поставили своей задачей выяснить возможные фотометрические ощибки, обусловленные различием в фокусировке следа метеора и шкалы сравнения.

Путем передвижения плёнки в кассете, в центре оптического поля объектива впечатывались искусственные метеоры при различной фоку-

сировке, встречающейся на практике. На рис. 20 представлены характеристические кривые этих следов.

Видим, что наибольшие ошибки за различие в фокусировках шкалы сравнения и следа метеора могут быть около 0.6-0.7 зв. вел.

Различия в качестве изображения и фокусировки являются основными причинами расхождения фотометрических кривых одного и того же метеора, полученного разными камерами. На рис. 21 для примера приводятся фотометрические кривые метеора № 23 (табл. 1), полученного на плёнке агрегатов "А" и "В". Фотометрическая привязка про-

изводилась к впечатанным на те же плёнки фотометрическим стандартам. Как видим, различие в блеске составляет около 0.5—1.0 зв. вел. Не исключена возможность того, что в данном случае играет роль

также и зависимость свечения метеора от направления [4], поскольку метеор был снят с двух удаленных пунктов.

§ 4. Ошибки определения блеска метеоров с помощью установки "искусственные метеоры".

Об ошибках определения блеска метеоров с помощью установки "искусственные метеоры" можно судить по результатам привязки одного и того же. следа метеора к различным следам искусственных метеоров.

На рис. 22 приведены фотометрические кривые метеоров, полученные путём привязки к различным следам искусственных метеоров одного и того же фотометрического стандарта.

Цифры указывают номер следа в стандарте.

Расхождение в фотометрических кривых можно объяснить ошибками определения нуль-пунктов искусственных метеоров, ошибками фотографического процесса, несоответствием фотометрировавшихся участков следов их блеску из кривых рис. 5, 6, 7, 8, ошибками при определении относительного изменения блеска искусственного метеора в процессе движения отверстий над ослабителем, ошибками измерений, невыполнением закона взаимозаместимости и т. п. Из рис. 22 следует, что в конечном счёте вышеперечисленные возможные ошибки составляют около 0.1 зв. вел.

§ 5. Оценка ошибок при использовании среднего коэффициента прозрачности.

При учёте атмосферного поглощения света звёзд и метеора нами использовался средний коэффициент прозрачности P=0.76 [15].

Оценим ошибки, которые могли иметь место при различии среднего и истинного коэффициентов прозрачности. В реальных условиях получения наблюдательного материала его значение вряд ли изменяется в более широких пределах, чем от 0.65 до 0.85.

Оценим максимальную ошибку обусловленную несовпадением среднего $P{=}0.76$ с возможным истинным. Пусть зенитное расстояние метеора 20° —суточных следов ввёзд 60° . Поправки равны:

при
$$P=0.65$$
 $\triangle m=0.45$ $P=0.76$ $\triangle m=0.28$ $P=0.85$ $\triangle m=0.17$.

В крайнем случае, ошибка учёта атмосферного поглощения находится в пределах от +0.17 до-0.11 зв. вел. На практике же указанный интервал ошибок значительно сужается ввиду того, что фотометрируются участки следов звёзд и метеоров с различными зенитными расстояниями. В сущности мы имеем какое-то осредненное ослабление

для суточных следов звёзд, сказывающееся на характеристической кривой и почти такое же ослабление метеора.

Надо полагать, что приведённые выше ошибки учёта дифференциального поглощения света звёзд и метеоров земной атмосферой, вследствие применения среднего коэффициента прозрачности, лежат в пределах ошибок определения каталожных величин звёзд. Так например, в каталоге PD, которым мы пользовались как наиболее точным, блеск звезды № 630 определяется таким рядом значений: 5.71, 5.45, 5.53, 5.58, а звезды № 11006-7.21, 7.44, т. е. имеем интервал ошибок 0.2-0.3 зв. величин. Таким образом, при учёте дифференциального поглощения вплоть до зенитных расстояний равных 60° можно пользоваться средним коэффициентом прозрачности.

Рассмотрим случай привязки метеоров к следам искусственных метеоров.

Эталонирование установки производилось путём привязки к звёздам, зенитное расстояние которых не превышало 20° . Пусть коэффициент прозрачности атмосферы при эталонировании установки был равен P_1 , при получении снимка метеоров— P_2 , а при обработке следа метеора нами использовался коэффициент P_3 =0.76, Делая привязку следа метеора к следу искусственного метеора считаем, что ослабление звёзд сравнения при эталонировании установки такое же, как и у метеора. Однако, в действительности, метеор был ослаблен на величину m_2 = $-2.5~M_2~lg~P_2$, а блеск искусственных метеоров на m_1 = $-2.5~lg~P_1$ т. к. $z\simeq 0$. Поправка, которую следовало бы внести в блеск метеора, полученный из характеристической кривой, равна m_1 — m_2 .

Поскольку коэффициенты прозрачности P_1 и P_2 нам не были известны, мы использовали средний коэффициент прозрачности P_3 и вносили в блеск метеора поправку $m_3 = +2.5~M_2~{\rm lg}~P_3$. Несоответствие поправок m_1-m_2 и m_3 и будет составлять ошибку конченого результата $\triangle m = m_1-m_2-m_3$.

Оценим максимальную ошибку за атмосферное поглощение ($z=60^{\circ}$). При

$$P_1 = 0.65$$
 $P_2 = 0.85$ $P_3 = 0.76$ $\triangle m = +0.71$ $P_1 = 0.85$ $P_2 = 0.65$ $P_3 = 0.76$ $\triangle m = -0.12$.

Видим, что в рассматриваемом случае, ошибка определения блеска метеора находится в пределах от -0.1 до +0.7 зв. вел.

В наших рассуждениях допускалось, что спектральный состав излучения сравниваемых объектов одинаков. Однако, для фотометрировавшихся нами метеоров он не известен и мы не могли внести соответствующие поправки за цвет метеора. По имеющимся малочисленным данным [29, 30] показатели цвета метеоров меняются от +0.8 до -1.4, т. е. по цвету они охватывают не только все звёзды спектральных классов G-0 (колор-индексы которых меняются от +0.8 до -0.5 [22]), но могут быть и синими, причём цвет одного и того же метеора меняется [30]. Отсюда следует, что приведённые выше ошибки, обусловленные использованием среднего коэффициента прозрачности, лежат в пределах изменения показателя цвета метеора.

Коэффициент прозрачности зависит от спектрального состава излучения, проходящего атмосферу Земли. Для примера приведём таблицу такой зависимости для звёзд, заимствованную из работы [15].

Таблица 5.

	M										
Сп. кл.	0—1	1—2	2—3	3—4	4-5	5—6					
<i>B</i> 0	0.76	0.76	0.77	0.78	0.79	0.79					
A 0	0.77	0.78	0.78	0.79	0.80	0:80					
F0 ·	0.78	0.79	0.80	0.80	0.81	0.81					
G0	0.80	0.80	0.81	0.82	0.82	0.82					
<i>K</i> 0	0.82	0.82	0.83	0.83	0.83	0.83					
<i>M</i> 0	0.83	0.84	0.84	0.84	0.84	0.84					

Если учесть, что коэффициент прозрачности атмосферы уменьшается при переходе от красного излучения к синему то, как следует из таблицы 5, принятый нами интервал его изменения 0.65—0.85 для метеоров получает реальную основу.

§ 6. Ошибки определения блеска метеоров.

Подведём итоги изучения всевозможных ошибок, влияющих на конечный фотометрический результат.

1. При привязке следов метеоров к суточным следам звёзд блеск последних мы приводили к экватору и считали, что взаимозаместимость выполняется для околополюсных и экваториальных звёзд. Между тем, их выдержки различаются. Если примем, что поперечник аберрационного пятна рассеяния d=0.05 мм, то выдержка t для околополюсной звезды (δ =80°) составит t= $\frac{d}{v}$ =40 сек., где v— линейная скорость передвижения изображения звезды по фотослою.

Для экваториальной звезды будем иметь t=6 сек. Свойства фотоматериалов работы [25] и использованных нами примерно одинаковые [2]. Из характеристических кривых рис. 7 работы [25] следует, что ошибка за невыполнение взаимозаместимости для суточных следов звёзд может составить около+0.5 зв. вел.

- 2. С увеличением продолжительности проявления чувствительность фотослоя к суточным следам звёзд остается почти неизменной, в то время, как к следам метеоров она может повыситься в два [2] или три раза (рис. 6 работы [25]). Это равноценно дополнительному увеличению поправки за невыполнение закона взаимозаместимости 0.45 зв. вел. на 0.7—1.2. зв. вел.
- 3. Ошибки при учёте дифференциального поглощения порядка ошибок определения блеска звёзд в использованном каталоге PD и составляют около 0.2 зв. вел. При привязке следов метеоров к следам искусственных метеоров эта ошибка может изменяться от-0.1 до+0.7 зв. вел.
- 4. Несоответствие истинной и учитываемой ошибок поля могло привести к ошибкам в+0.2, +0.3 зв. вел.
- 5. Ошибки определения скорости передвижения изображений истинного, а также искусственного метеоров по фотослою составляют сотые доли звёздной величины.
- 6. Различие в фокусировках изображений метеора и шкалы сравнения могли достигнуть +0.6 зв. вел.
- 7. Ошибка учёта влияния фона составляет сотые доли звёздной величины.

- 8. Случайные ошибки фотографического процесса (табл. 4) могут достигать ± 0.5 зв. вел.
- 9. Ошибки, допущенные при исследовании установки, не превышают +0.1 зв. вел., а при эталонировании— ± 0.2 зв. вел.
- 10. Показатели цвета метеоров могут изменяться от +0.8 до-1.0зв. вел.
- 11. Судя по интенсивности перерывов следа метеора на негативе, дополнительное свечение, создаваемое ионизованным газом после пролёта метеора, вряд ли увеличивает определяемый блеск метеора больше чем на 0.1—0.2 зв. вел.

Перечисленными факторами вполне объясняется различие и непостоянство в результатах определения блеска метеоров двумя способами.

§ 7. Задачи методики фотографической фотометрии метеоров в связи с пуском нового метеорного патруля САО.

Методика фотографической фотометрии метеоров зависит от условий получения наблюдательного материала. В настоящее время на САО работает новый метеорный патруль, фотографирование метеоров производится аэрофотосъёмочными камерами с объективом "Уран-9" ($\frac{F}{D}$ = 2.5 $F{=}25~{\rm cm}$). Вместо трёх ранее работавших агрегатов действуют два, причём, оба подвижные.

Неподвижный третий агрегат отсутствует, так как момент пролёта метеора будет определяться с помощью обтюратора специальной конструкции. Фотометрический метод привязки следов метеоров к суточным следам звёзд даёт менее точные результаты, чем метод привязки к следам искусственных метеоров, на что неоднократно указывалось

В целях получения точных фотометрических кривых способом привязки следов метеоров к следам искусственных метеоров, необходимо выполнить следующее.

1. Впечатывать стандарты на плёнки камер корреспондирующего агрегата "В", т. к. у него отсутствует обтюратор, а потому отпадает необходимость в поправке за эффект обтюратора. Кроме того, будет фотометрироваться след метеора полностью, ибо перерывы отсутствуют.

В 1956 г. на девятиметровую плёнку каждой камеры впечатывалось по 10 стандартов. Проявление плёнки ведётся в проявочном приборе $AM\Pi\Pi-4$ м.

2. Необходимо тщательно изучить ошибку поля камер.

3. Ошибку за атмосферное поглощение можно исключить эталонированием установки во время наблюдений, причём привязку достаточно делать к звёздам с зенитными расстояниями около 0°, 40°, 70°.

4. Влияние ошибок фотографического процесса можно уменьшить

выбором соответствующей методики измерений [18].

5. Поправку за цвет, в частности, можно будет определить при

получении фотографии призменного спектра [23] того же метеора. 6. Необходимо будет дополнительно изучить эффект эволюции скрытого изображения [31]. Ранее промежуток времени от впечатывания стандартов до получения снимка метеора на патруле с камерами "Турист" не превышал 1—2 суток. На новом же патруле этот промежуток может длиться около месяца, пока не будет проэкспонирована вся 9 или 35 метровая плёнка.

ЗАКЛЮЧЕНИЕ

Главный результат наших исследований можно формулировать так: методика фотографической фотометрии, основанная на принципе сравнения фотографических эффектов, полученных при выдержках, для которых не имеет места закон взаимозаместимости, сложна и не может дать надёжных результатов.

Следы метеоров необходимо привязывать к следам искусственных метеоров, причём, с известной точностью должно выполняться равенство линейных скоростей передвижения их изображений по фотослою.

Основная задача дальнейших исследований заключается в получении достаточного количества фотографий спектров метеоров на предмет их фотометрических исследований.

* *

Считаю своим долгом выразить благодарность сотрудникам Сталинабадской астрономической обсерватории, а особенно участникам семинара по метеорам, принявшим активное участие в обсуждении полученных мною результатов и сделавших ряд ценных замечаний.

ЛИТЕРАТУРА:

1. Б. Ю. Левин, Физическая теория метеоров и метеорное вещество в солнечной системе, стр. 8, АН СССР, М. 1956.

2. В. И. Иваников, Определение поправки за невыполнение закона взаимозаместимости при привязке следов метеоров к суточным следам звёзд. Бюл. САО № 16, стр. 3, 1956.

3. *В. В. Федынский*, Метеоры. М. 1956.

4. Н. Н. Сытинская, Опыт фотографической фотометрии метеоров А. Ж. XII, 2 стр. 174, 1935.

5. P. M. Millman and D. Hoffleit, A study of meteor photographs taken trough a rotating shutter H. C. O. Annals, vol, 105, № 31, p. 613, 1937.
6 F. L. Wipple, Pohtogrhic meteor studies, Harvard Reprint 152, p. 499, 1938.
7. L. G. Jacchia, Meteor photometry, H. C. O. Technical report № 3, Reprint ser II, № 31, 1949.

8. L. G. Jacchia Z. Kopal and P. Millman A photographic study of the Draconid meteor shower of 1946. Aph. j. vol. 11, No. 1 p. 104, 1950.

9. Л. А. Катасёв, Фотографическое определение масс метеоров А. Ж. XXIX, 6,

стр. 689, 1952

10. Д. Л. Аставин-Разумин, Определение интенсивности свечения метеоров фотографическим методом. Бюллетень ВАГО № 9 (16) стр. 3, 1950.

11. Д. Л. Аставин-Разумин, Ослабление фотографического изображения метеора в зависимости от его угловой скорости. Бюллетень ВАГО № 10 (17), стр. 42, 1951. 12. Ф. Линк и Л. Неужил, Приспособление для фотометрического эталониро-

- вания фотографий метеоров. Бюллетень астрономических институтов Чехословакии № 4, 1953.
- 13. Д. Л. Аставин-Разумин, Установка для фотометрии метеоров. Бюллетень ВАГО № 16 (23), стр. 15, 1955.
 14. Л. А. Катасёв, Определение орбит метеоров по фотографиям Сталинабадской

астрономической обсерватории. Труды САО, т. III, вып. 1, стр. 5. 1950.
15. В. И. Иваников; Об учёте атмосферного поглощения при фотографировании небесных объектов на панхроматических фотослоях. Изв. отд. естественных наук АН

Таджик. ССР, вып. 14, стр. 53, 1956. 16. В. И. Иваников, К вопросу построения характеристической кривой при фотометрической привязке следов метеоров к суточным следам звёзд. Бюллетень САО

№ 15, стр. 14, 1956. 17. В. И. Иваников, О подборе проявителей для фотографических снимков ме-

теоров. Бюллетень САО № 14, стр. 12, 1955. 18. В. И. Иваников, Зависимость отсчётов объективного микрофотометра от ширины щели и величины фона неба. Ошибки фотографического процесса. Бюлле-

ширины щели и величины фона неба. Ошибки фотографического процесса. Бюллетень САО № 15, стр. 20, 1956.

19. А. В. Марков, Теория микрофотометра и точность и правильность промера астрограмм. Изв. Г. А. О. т. XVIII, З, № 144, стр. 45, 1950.

20. Л. А. Катасёв, А. К. Соснова, Результаты фотографических наблюдений метеоров в 1953 г. на Сталинабадской обсерватории. Бюллетень САО № 15, стр. 10, 1956.

21. Л. А. Катасёв, А. К. Соснова, П. Б. Бабаджанов, Результаты фотографических наблюдений метеоров в 1954—1955 г. г. на Сталинабадской астрономической обсерватории. Бюллетень САО № 19, стр. 30, 1957.

22. П. П. Паренаго, Шкалы и каталоги звёздных величин. Усп. астроном. наук т. IV. стр. 257 1948

т. IV, стр. 257, 1948.

23. В. И. Иваников, Выбор объективной призмы для спектрофотометрии метеоров. Бюллетень САО № 20, 1957.

24. Н. И. Гришин, Опыт фотографирования метеоров в Ашхабадской метеорной 24. П. И. Гришин, Опыт фотографирования метеоров в Ашхаоадскои метеорнои экспедиции МОВАГО (1948 г.). Бюллетень ВАГО № 81 (15), стр. 14, АН СССР, 1950. 25. А. Л. Картужанский, Нарушение фотохимического закона взаимозаместимости для фотографических слоёв. УФН т. 51, вып. 2, стр. 161—164, 1953. 26. А. Л. Картужанский и П. Б. Мейкляр, Свойства фотографического слоя при различных температурах. ЖЭТФ т. 21, вып. 6, стр. 693, 1951.

27. Г. П. Фаерман, Как происходит проявление. Природа № 3, стр. 15, 1949. 28. Д. Д. Максутов, Астрономическая оптика. Стр. 81. М—Л, 1946. 29. Н. Н. Сытинская, Показатель цвета одного метеора. АЖ, XVI, 3, стр. 59, 1939.

30. P. Millman The color index of meteors. The Astranomicali j. vol, 56, № 1190,

31. И. И. Брейдо, Эволюция скрытого фотографического изображения у современных фотографических материалов. Изв. ГАО т. XX, вып. 2, № 155, стр. 141, Л, 1956.