(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 18. August 2005 (18.08.2005)

PCT

(10) Internationale Veröffentlichungsnummer WO 2005/075585 A1

- (51) Internationale Patentklassifikation⁷: C09D 161/02, 161/14, C09J 161/02, 161/14, C09D 4/06, C09J 4/06, C08J 3/28, C08L 61/14, C08G 16/04
- (21) Internationales Aktenzeichen: PCT/EP2004/053316
- (22) Internationales Anmeldedatum:

7. Dezember 2004 (07.12.2004)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität:

10 2004 005 208.5 3. Februar 2004 (03.02.2004) DE

- (71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): DEGUSSA AG [DE/DE]; Bennigsenplatz 1, 40474 Düsseldorf (DE). GLÖCKNER, Patrick [DE/DE]; Jahnstrasse 40, 40885 Ratingen (DE).
- (72) Erfinder; und
- (75) Erfinder/Anmelder (nur für US): MINDACH, Lutz [DE/DE]; Am Alten Sportplatz 17 c, 45770 Marl (DE). DENKINGER, Peter [DE/DE]; Grauten Ihl 7, 48301 Nottuln (DE).
- (74) Gemeinsamer Vertreter: DEGUSSA AG; Intellectual Property Management, Patente-Marken Bau 1042 PB 15, 45764 Marl (DE).

- (81) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare nationale Schutzrechtsart): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare regionale Schutzrechtsart): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

mit internationalem Recherchenbericht

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

(54) Title: UTILIZATION OF RADIOHARDENABLE RESINS BASED ON HYDROGENATED KETONE AND PHENOL ALDEHYDE RESINS

- $(\mathbf{54})$ Bezeichnung: VERWENDUNG STRAHLENHÄRTBARER HARZE AUF BASIS HYDRIERTER KETON- UND PHENOLALDEHYDHARZE
- ALDEHYDHARZE

 (57) Abstract: The invention relates to the utilization of radiohardenable resins based on carbonyl hydrogenated ketone aldehyde and core hydrogenated phenol aldehyde resins.
 - (57) Zusammenfassung: Die Erfindung betrifft die Verwendung strahlenhärtbarer Harze auf Basis carbonylhydrierter Keton-Aldehyd- und kernhydrierter Phenol-Aldehydharze.

Verwendung strahlenhärtbarer Harze auf Basis hydrierter Keton- und Phenol-**Aldehydharze**

Die Erfindung betrifft die Verwendung strahlenhärtbarer Harze auf Basis carbonylhydrierter Keton-Aldehyd- und kernhydrierter Phenol-Aldehydharze.

Strahlenhärtbare Beschichtungsstoffe haben innerhalb der letzten Jahre zunehmend an Bedeutung gewonnen, da u. a. der Gehalt an flüchtigen organischen Verbindungen (VOC) dieser Systeme gering ist.

10

20

Die filmbildenden Komponenten sind im Beschichtungsstoff relativ niedermolekular und deshalb niedrigviskos, so dass auf hohe Anteile organischer Lösemittel verzichtet werden kann. Dauerhafte Beschichtungen werden erhalten, indem nach Applikation polymeres z.B. hochmolekulares, Netzwerk durch Beschichtungsstoffes ein Elektronenstrahlen oder UV-Licht initiierte Vernetzungsreaktionen gebildet wird.

15

Hartharze wie z.B. Keton-Aldehydharze werden in Beschichtungsstoffen z.B. als Additivharze eingesetzt, um bestimmte Eigenschaften wie Antrocknungsgeschwindigkeit, Glanz, Härte oder Kratzfestigkeit zu verbessern. Wegen ihres relativ geringen Molekulargewichtes besitzen übliche Keton-Aldehydharze eine geringe Schmelz- und Lösungsviskosität und dienen daher in Beschichtungsstoffen u. a. als filmbildende Funktionsfüllstoffe.

Üblicherweise verfügen Keton-Aldehydharze über Hydroxygruppen und können daher nur mit z. B. Polyisocyanaten oder Aminharzen vernetzt werden. Diese Vernetzungsreaktionen 25 werden üblicherweise thermisch eingeleitet bzw. beschleunigt.

Für strahlungsinitiierte Vernetzungsreaktionen nach kationischen und/oder radikalischen Reaktionsmechanismen sind die Keton-Aldehydharze nicht geeignet.

30

strahlenhärtbaren Keton-Aldehydharze üblicherweise in Daher werden die Beschichtungsstoff-Systemen z. B. als filmbildende, passive, d. h. nicht vernetzende

2

Zusatzkomponente eingesetzt. Derartige Beschichtungen besitzen oft wegen der unvernetzten Anteile eine geringe Widerstandsfähigkeit gegenüber z.B. Benzin, Chemikalien oder Lösemitteln.

- 5 DE 23 45 624, EP 736 074, DE 28 47 796, DD 24 0318, DE 24 38 724, JP 09143396 beschreiben die Verwendung von Keton-Aldehyd- und Ketonharzen, z. B. Cyclohexanon-Formaldehydharzen in strahlenhärtbaren Systemen. Strahleninduzierte Vernetzungsreaktionen dieser Harze sind nicht beschrieben.
- 10 EP 0 902 065 beschreibt die Verwendung von nicht strahlungshärtbaren Harzen aus Harnstoff(derivaten), Ketonen oder Aldehyden als Zusatzkomponente im Gemisch mit strahlungshärtbaren Harzen.
 - DE 24 38 712 beschreibt strahlungshärtende Druckfarben aus filmbildenden Harzen, Ketonund Keton-Formaldehydharzen sowie polymerisierbaren Komponenten wie polyfunktionellen
 Acrylatestern mehrwertiger Alkohole. Dem Fachmann ist offensichtlich, dass eine
 strahleninduzierte Vernetzungsreaktion der modifizierten Keton-Aldehyd- und Ketonharze
 nur durch die Verwendung von ungesättigten Fettsäuren eintreten kann. Es ist jedoch bekannt,
 dass Harze mit einem hohen Ölgehalt z. B. zu unerwünschten Vergilbungen neigen und
 deshalb in qualitativ hochwertigen Beschichtungen nur eingeschränkt eingesetzt werden
 können.

US 4,070,500 beschreibt die Verwendung nicht-strahlungshärtbarer Keton-Formaldehyd-Harze als filmbildende Komponente in strahlungshärtbaren Tinten.

25

30

15

20

Die Umwandlung der Carbonylgruppen in sekundäre Alkohole durch Hydrierung von Keton-Aldehydharzen wird seit langem praktiziert (DE-PS 8 70 022, DE 32 41 735). Ein typisches und bekanntes Produkt ist Kunstharz SK der Degussa AG. Ebenfalls bekannt sind Harze auf Phenolharzbasis, deren aromatische Einheiten durch Hydrierung in cycloaliphatische Gruppen umgewandelt wurden, wobei ein Teil der Hydroxygruppen erhalten bleibt. Die Verwendung carbonyl- und kernhydrierter Keton-Aldehydharze auf Basis von Ketonen, die aromatische Gruppen enthalten, ist ebenfalls möglich. Ein solches Harz wird in DE 33 34 631 beschrieben.

3

Die OH-Zahl derartiger Produkte ist mit über 200 mg KOH/g sehr hoch.

Aufgabe der vorliegenden Erfindung war es, strahlenhärtbare Harze zur Verwendung in Beschichtungsstoffen, Klebstoffen, Druckfarben und Tinten, Polituren, Lasuren, Pigmentpasten und Masterbatches, Spachtelmassen, Dicht- und Dämmstoffe und/oder Kosmetikartikel zu finden, die dauerhafte und widerstandsfähige Beschichtungen, Dichtungen und Verklebungen ergeben, nach Vernetzung unlöslich sind sowie eine hohe Härte und Abriebfestigkeit, eine geringe Vergilbungsneigung durch UV- bzw. thermische Belastung und einen hohen Glanz und eine hohe Verseifungsstabilität besitzen.

10

15

20

25

30

Überraschender Weise konnte diese Aufgabe gelöst werden, indem carbonylhydrierte Keton-Aldehydharze und/oder kernhydrierte Phenolharze mit ethylenisch ungesättigten Gruppierungen als Hauptkomponente, Basiskomponente oder Zusatzkomponente in strahlungshärtenden Beschichtungsstoffen, Klebstoffen, Druckfarben und Tinten, Polituren, Lasuren, Pigmentpasten und Masterbatches, Spachtelmassen, Dicht- und Dämmstoffen und/oder Kosmetikartikeln verwendet wurden.

Es hat sich gezeigt, dass die Verwendung der erfindungsgemäßen, strahlenhärtbaren Harze auf Basis carbonylhydrierter Keton-Aldehyd- und kernhydrierter Phenol-Aldehydharze als Hauptkomponente, Basiskomponente oder Zusatzkomponente in strahlungshärtenden Beschichtungsstoffen, Klebstoffen, Druckfarben und Tinten, Polituren, Lasuren, Pigmentpasten und Masterbatches, Spachtelmassen, Kosmetikartikeln und / oder Dicht- und Dämmstoffen eine Absenkung der Viskosität bewirkt, so dass auf niedermolekulare Bestandteile – insbesondere flüchtige, organische Lösemittel, die gegebenenfalls auch über reaktive Gruppen verfügen können (sog. Reaktivverdünner) – weitestgehend verzichtet werden kann, was aus umweltrelevanten und toxikologischen Gründen wünschenswert ist.

strahlenhärtbaren Harze auf Basis erfindungsgemäßen, Verwendung der Die kernhydrierter Phenol-Aldehydharze Keton-Aldehydund carbonylhydrierter Basiskomponente oder Zusatzkomponente in strahlungshärtenden Hauptkomponente, Druckfarben und Tinten. Polituren, Beschichtungsstoffen, Klebstoffen, Pigmentpasten und Masterbatches, Spachtelmassen, Kosmetikartikeln und / oder Dicht- und WO 2005/075585

4

PCT/EP2004/053316

Dämmstoffen bewirkt einen höheren Glanz und eine höhere Härte sowie Abriebfestigkeit, eine verbesserte Chemikalien- und Lösemittelbeständigkeit bei sehr hoher Verseifungsstabilität und geringer Vergilbungsneigung.

Außerdem wird die Haftung auf Substraten wie z. B. Metallen, Kunststoffen, Holz, Papier und Glas sowie mineralischen Untergründen verbessert, wodurch der Schutz dieser Substrate erhöht wird, z. B. durch Erhöhung der Korrosionsbeständigkeit. Auch wird die Zwischenschichthaftung erhöht, so dass die Haftung weiterer applizierter Schichten erhöht wird.

10

15

20

25

30

Die Pigmentbenetzung wird ebenso wie die Stabilisierung der Pigmente verbessert. Es ist möglich, gleiche Farborte und Farbstärken mit einer geringeren Menge Pigment zu erreichen, werden die erfindungsgemäßen Produkte verwendet. Dies ist nicht zuletzt aus wirtschaftlichen Gründen besonders interessant, da sowohl hochpreisige Pigmente als auch additive Benetzungs- und Stabilisierungsmittel mindestens reduziert werden können.

Besonders bevorzugt ist die Verwendung der strahlenhärtbaren Harze als Hauptkomponente, Basiskomponente oder Zusatzkomponente in strahlungshärtenden Spachtelmassen, Primern, Füllern, Basis-, Deck- und Klarlacken, insbesondere auf Metallen, Kunststoffen, Holz, Papier, Textilien und Glas sowie mineralischen Untergründen.

Neben den strahlenhärtbaren Harzen können weitere Oligomere und/oder Polymere, ausgewählt aus der Gruppe der Polyurethane, Polyester, Polyacrylate, Polyolefine, Naturharze, Epoxidharze, Silikonöle und –harze, Aminharze, fluorhaltigen Polymere und ihre Derivate allein oder in Kombination enthalten sein. In Abhängigkeit der gewünschten Eigenschaften und der Art der Anwendung kann die Menge der weiteren Oligomere und/oder Polymere zwischen 98 und 5 % betragen.

Außerdem können die strahlenhärtbaren Harze auch Hilfs- und Zusatzstoffe, ausgewählt aus Inhibitoren, organischen Lösemitteln, die ggf. ungesättigte Gruppierungen enthalten, grenzflächenaktiven Substanzen, Sauerstoff- und/oder Radikalfängern, Katalysatoren, Lichtschutzmitteln, Farbaufhellern, Photoinitiatoren, Photosensibilisatoren,

Thixotropiermitteln, Hautverhinderungsmitteln, Entschäumern, Farbstoffen, Pigmenten, Füllstoffen und Mattierungsmittel, enthalten. Die Menge variiert stark von Einsatzgebiet und Art des Hilfs- und Zusatzstoffes.

- 5 Gegenstand der Erfindung ist die Verwendung strahlenhärtbarer Harze, im Wesentlichen enthaltend
 - A) mindestens ein carbonylhydriertes Keton-Aldehydharz, und/oder
 - B) mindestens ein kernhydriertes Phenol-Aldehydharz,
- 10 und

- C) mindestens eine Verbindung, welche mindestens eine ethylenisch ungesättigte Gruppierung mit gleichzeitig mindestens einer gegenüber A) und/oder B) reaktive Gruppierung aufweist,
- als Hauptkomponente, Basiskomponente oder Zusatzkomponente in strahlungshärtenden Beschichtungsstoffen, Klebstoffen, Druckfarben und Tinten, Polituren, Lasuren, Pigmentpasten und Masterbatches, Spachtelmassen, Dicht- und Dämmstoffen und/oder Kosmetikartikeln.
- 20 Gegenstand ist auch die Verwendung strahlenhärtbarer Harze, erhalten durch polymeranaloge Umsetzung von
 - A) mindestens einem carbonylhydrierten Keton-Aldehydharz, und/oder
 - B) mindestens einem kernhydrierten Phenol-Aldehydharz,
- 25 mit
 - C) mindestens einer Verbindung, welche mindestens eine ethylenisch ungesättigte Gruppierung und gleichzeitig mindestens eine gegenüber A) und B) reaktive Gruppierung aufweist,
- als Hauptkomponente, Basiskomponente oder Zusatzkomponente in strahlungshärtenden
 Beschichtungsstoffen, Klebstoffen, Druckfarben und Tinten, Polituren, Lasuren,
 Pigmentpasten und Masterbatches, Spachtelmassen, Dicht- und Dämmstoffen und/oder
 Kosmetikartikeln.

6

Im Folgenden werden die erfindungsgemäßen, strahlenhärtbaren Harze auf Basis kernhydrierter Phenol-Aldehydharze näher und Keton-Aldehydcarbonylhydrierter beschrieben.

Als Ketone zur Herstellung der carbonylhydrierten Keton-Aldehydharze (Komponente A) eignen sich alle Ketone, insbesondere Aceton, Acetophenon, Methylethylketon, tert.-Pentanon-3. Methylisobutylketon, Cyclopentanon, Butylmethylketon, Heptanon-2, Cyclododecanon, Mischungen aus 2,2,4- und 2,4,4-Trimethylcyclopentanon, Cycloheptanon und Cyclooctanon, Cyclohexanon und alle alkylsubstituierten Cyclohexanone mit einem oder mehreren Alkylresten, die insgesamt 1 bis 8 Kohlenwasserstoffatome aufweisen, einzeln oder Beispiele in Mischung. Als alkylsubstituierter Cyclohexanone können 4-tert.-2-tert.-Butylcyclohexanon, 2-sek.-Butylcyclohexanon, 4-tert.-Amylcyclohexanon, 2-Methylcyclohexanon und 3,3,5-Trimethylcyclohexanon genannt Butylcyclohexanon, werden.

15

25

30

Im Allgemeinen können aber alle in der Literatur für Ketonharzsynthesen als geeignet genannten Ketone, in der Regel alle C-H-aciden Ketone, eingesetzt werden. Bevorzugt werden carbonylhydrierte Keton-Aldehydharze auf Basis der Ketone Acetophenon, Cyclohexanon, 4-tert.-Butylcyclohexanon, 3,3,5-Trimethylcyclohexanon und Heptanon allein oder in Mischung.

<u>.</u>

20

Als Aldehyd-Komponente der carbonylhydrierten Keton-Aldehydharze (Komponente A) eignen sich prinzipiell unverzeigte oder verzweigte Aldehyde, wie z. B. Formaldehyd, Acetaldehyd. n-Butyraldehyd und/oder iso-Butyraldehyd, Valerianaldehyd sowie Dodecanal. Im Allgemeinen können alle in der Literatur für Ketonharzsynthesen als geeignet genannten Aldehyde eingesetzt werden. Bevorzugt wird jedoch Formaldehyd allein oder in Mischungen verwendet.

Das benötigte Formaldehyd wird üblicherweise als ca. 20 bis 40 Gew.-%ige wässrige oder alkoholische (z. B. Methanol oder Butanol) Lösung eingesetzt. Andere Einsatzformen des Formaldehyds wie z. B. auch die Verwendung von para-Formaldehyd oder Trioxan sind ebenfalls möglich. Aromatische Aldehyde, wie z. B. Benzaldehyd, können in Mischung mit

10

15

20

25

Formaldehyd ebenfalls enthalten sein.

Besonders bevorzugt werden als Ausgangsverbindungen für die Komponente A) carbonylhydrierte Harze aus Acetophenon, Cyclohexanon, 4-tert.-Butylcyclohexanon, 3,3,5-Trimethylcyclohexanon sowie Heptanon allein oder in Mischung und Formaldehyd eingesetzt.

Die Harze aus Keton und Aldehyd werden in Gegenwart eines Katalysators mit Wasserstoff bei Drücken von bis zu 300 bar hydriert. Dabei wird die Carbonylgruppe des Keton-Aldehydharzes in eine sekundäre Hydroxygruppe umgewandelt. Je nach Reaktionsbedingungen kann ein Teil der Hydroxygruppen abgespalten werden, so dass Methylengruppen resultieren. Zur Veranschaulichung dient folgendes Schema:

$$[H]$$

$$[Katalysator]$$

$$[H]$$

$$R$$

$$OH$$

$$R$$

$$n = k + m$$

Als Komponente B) werden kernhydrierte Phenol-Aldehydharze des Novolaktyps unter Verwendung von Aldehyden wie z.B. Formaldehyd, Butyraldehyd oder Benzaldehyd bevorzugt Formaldehyd, eingesetzt. Im untergeordneten Maße können nicht hydrierte Novolake verwendet werden, die dann aber geringere Lichtechtheiten besitzen.

Besonders geeignet als Komponenete B) sind kernhydrierte Harze auf Basis alkylsubstituierter Phenole. Im Allgemeinen können alle in der Literatur für Phenolharzsynthesen als geeignet genannten Phenole eingesetzt werden.

Als Beispiel für geeignete Phenole seien Phenol, 2- und 4-tert.-Butylphenol, 4-Amylphenol, Nonylphenol, 2-, und 4-tert.-Octylphenol, Dodecylphenol, Kresol, Xylenole sowie Bisphenole genannt. Sie können allein oder in Mischung verwendet werden.

Ganz besonders bevorzugt werden kernhydrierte, alkylsubstituierte Phenol-Formaldehydharze des Novolaktyps eingesetzt. Bevorzugte Phenolharze sind Umsetzungsprodukte aus Formaldehyd und 2- und 4-tert.-Butylphenol, 4-Amylphenol, Nonylphenol, 2-, und 4-tert.-Octylphenol sowie Dodecylphenol.

5

Die Hydrierung der Novolake erfolgt in Gegenwart eines geeigneten Katalysators mit Wasserstoff. Dabei wird durch die Wahl des Katalysators der aromatische Ring in einen cycloaliphatischen umgewandelt. Durch geeignete Wahl der Parameter bleibt die Hydroxygruppe erhalten.

10

15

20

25

Zur Veranschaulichung dient folgendes Schema:

$$[H]$$

$$n = k+1+m$$

$$[H]$$

$$m = k+1+m$$

5 B 10

Durch die Wahl der Hydrierbedingungen können auch die Hydroxygruppen hydriert werden, so dass cycloaliphatische Ringe entstehen. Die kernhydrierten Harze besitzen OH-Zahlen von 50 bis 450 mg KOH/g, bevorzugt 100 bis 350 mg KOH/g, besonders bevorzugt von 150 bis 300 mg KOH/g. Der Anteil an aromatischen Gruppen liegt unter 50 Gew.-%, bevorzugt unter 30 Gew.-%, besonders bevorzugt unter 10 Gew.-%.

Die der Erfindung zugrundeliegenden strahlenhärtbaren Harze werden durch polymeranaloge

Umsetzung der carbonylhydrierten Keton-Aldehydharze und/oder der kernhydrierten Phenolharze in der Schmelze oder in Lösung eines geeigneten Lösemittels mit der Komponente C) erhalten. Geeignet als Komponente C) sind Maleinsäureanhydrid, (Meth)acrylsäurederivaten wie z.B. (Meth)acryloylchlorid, Glycidyl(meth)acrylat, (Meth)acrylsäure und/oder deren niedermolekularen Alkylestern und/oder Anhydriden allein oder in Mischung. Darüber hinaus lassen sich strahlenhärtbare Harze erhalten durch Umsetzung der carbonylhydrierten Keton-Aldehydharze und kernhydrierten Phenolharze mit

15

20

25

30

Isocyanaten, die über eine ethylenisch ungesättigte Gruppierung verfügen, wie z.B. (Meth)acryloylisocyanat, α, α -Dimethyl-3-isopropenylbenzylisocyanat, (Meth)acrylalkylisocyanat mit Alkylspacern, die über ein bis 12, bevorzugt 2 bis 8, besonders bevorzugt 2 bis 6 Kohlenstoffatome verfügen, wie z. B. Methacrylethylisocyanat, Methacrylbutylisocyanat. Außerdem haben sich Umsetzungsprodukte aus Hydroxyalkyl(meth)acrylaten, deren Alkylspacer über ein bis 12, bevorzugt 2 bis 8, besonders bevorzugt 2 bis 6 Kohlenstoffatome verfügen, und Diisocyanaten wie z. B. Cyclohexandiisocyanat, Methylcyclohexandiisocyanat, Methyldiethylcyclohexan-Ethylcyclohexandiisocyanat, Propylcyclohexandiisocyanat, Bis(isocyanatophenyl)methan, Phenylendiisocyanat, Toluylendiisocyanat, diisocyanat, Hexandiisocyanat, wie Propandiisocyanat, Butandiisocyanat, Pentandiisocyanat, (HDI) oder 1,5-Diisocyanato-2-methylpentan (MPDI), Hexamethylendiisocyanat Nonandiisocyanat, wie 1,6-Diisocyanato-2,4,4-Heptandiisocyanat, Octandiisocyanat, trimethylhexan oder 1,6-Diisocyanato-2,2,4-trimethylhexan (TMDI), Nonantriisocyanat, wie 4-Isocyanatomethyl-1,8-octandiisocyanat (TIN), Dekandi- und triisocyanat, Undekandi- und triisocyanat, Dodecandiund -triisocyanate, Isophorondiisocyanat (IPDI), Bis(isocyanatomethylcyclohexyl)methan $(H_{12}MDI)$, Isocyanatomethylmethylcyclohexyl-2,5(2,6)-Bis(isocyanato-methyl)bicyclo[2.2.1]heptan (NBDI), 1,3isocvanat. Bis(isocyanatomethyl)cyclohexan (1,3-H₆-XDI) oder 1,4-Bis(isocyanatomethyl)cyclohexan (1.4-H₆-XDI) allein oder in Mischung als vorteilhaft erwiesen. Als Beispiele seien die Umsetzungsprodukte im molaren Verhältnis von 1:1 von Hydroxyethylacrylat und/oder Hydroxyethylmethacrylat mit Isophorondiisocyanat und/oder H₁₂MDI und/oder HDI genannt.

Eine andere bevorzugte Klasse von Polyisocyanaten sind die durch Trimerisierung, Allophanatisierung, Biuretisierung und/oder Urethanisierung der einfachen Diisocyanate hergestellten Verbindungen mit mehr als zwei Isocyanatgruppen pro Molekül, beispielsweise die Umsetzungsprodukte dieser einfachen Diisocyanate, wie beispielsweise IPDI, HDI und/oder HMDI mit mehrwertigen Alkoholen (z. B. Glycerin, Trimethylolpropan, Pentaerythrit) bzw. mehrwertigen Polyaminen oder die Triisocyanurate, die durch Trimerisierung der einfachen Diisocyanate, wie beispielsweise IPDI, HDI und HMDI, erhältlich sind.

Gegebenenfalls kann ein geeigneter Katalysator zur Herstellung der erfindungsgemäßen

WO 2005/075585

10

PCT/EP2004/053316

Harze eingesetzt werden. Geeignet sind alle in der Literatur bekannten Verbindungen, die eine OH-NCO-Reaktion beschleunigen, wie z.B. Diazabicyclooctan (DABCO) oder Dibutylzinndilaurat (DBTL).

Je nach Verhältnis der Edukte zueinander werden Harze erhalten, die gering bis hoch funktionell sind. Durch die Wahl der Edukte ist auch die Einstellung der späteren Härte des vernetzten Films möglich. Wird z. B. ein Hartharz wie das hydrierte Acetophenon-Formaldehydharz mit α,α-Dimethyl-3-isopropenylbenzylisocyanat umgesetzt, werden Produkte höherer Härte erhalten als durch die Verwendung von (Meth)acrylethylisocyanat und/oder Hydroxyethylacrylat-Isophorondiisocyanat-Addukten; die Flexibilität ist allerdings dann geringer. Auch hat sich gezeigt, dass die Reaktivität von sterisch wenig gehinderten ethylenisch ungesättigten Verbindungen – wie z. B. von Hydroxyethylacrylat – gegenüber der durch UV-Licht induzierten Vernetzungsreaktion höher ist als bei solchen, die sterisch gehindert sind wie z. B. α,α-Dimethyl-3-isopropenylbenzylisocyanat.

15

20

25

Es ist auch möglich, einen Teil der carbonylhydrierten Keton-Aldehydharze A) und / oder kernhydrierten Phenol-Aldehydharze B) durch weitere hydroxyfunktionelle Polymere wie z. B. hydroxyfunktionelle Polyether, Polyester und / oder Polyacrylate zu ersetzen. Dabei können direkt Mischungen dieser Polymere mit den Komponenten A) und / oder B) polymeranalog mit Komponente C) umgesetzt werden. Es hat sich gezeigt, dass zunächst auch Addukte von A) und / oder B) mit z. B. hydroxyfunktionellen Polyethern, Polyestern und / oder Polyacrylaten unter Verwendung der genannten Di- und / oder Triisocyanate hergestellt werden können, die dann erst mit Komponente C) polymeranalog umgesetzt werden. Im Gegensatz zu den "reinen" carbonylhydrierten Keton-Aldehydharzen A) und / oder kernhydrierten Phenol-Aldehydharz B) können hierdurch Eigenschaften, wie z. B. Flexibilität, Härte noch besser eingestellt werden. Die weiteren hydroxyfunktionellen Polymere besitzen in der Regel Molekulargewichte Mn zwischen 200 und 10 000 g/mol, bevorzugt zwischen 300 und 5 000 g/mol.

Die Herstellung der erfindungszugrundeliegenden Harze erfolgt in der Schmelze oder in Lösung eines geeigneten, organischen Lösemittels des carbonylhydrierten Keton-Aldehydharzes und/oder kernhydrierten Phenol-Aldehydharzes.

11

Das organische Lösemittel kann dabei ggf. ebenfalls über ungesättigte Gruppierungen verfügen und wirkt dann direkt als Reaktivverdünner in der späteren Anwendung.

Hierzu wird in einer bevorzugten Ausführungsform I

zu der Lösung oder Schmelze des carbonylhydrierten Keton-Aldehydharzes A) und/oder kernhydrierten Phenol-Aldehydharzes B) die Verbindung, welche zum einen mindestens eine ethylenisch ungesättigte Gruppierung und gleichzeitig mindestens eine gegenüber A) und B) reaktive Gruppierung aufweist, ggf. in Anwesenheit eines geeigneten Katalysators zugegeben.

Je nach Reaktivität der Komponente C) wird die Temperatur der Umsetzung gewählt. Bei Verwendung von Isocyanaten als Komponente C) haben sich Temperaturen zwischen 30 und 150 °C, bevorzugt zwischen 50 und 140 °C bewährt.

Das gegebenenfalls enthaltene Lösemittel kann falls gewünscht nach beendeter Reaktion abgetrennt werden, wobei dann in der Regel ein Pulver des erfindungsgemäßen Produktes erhalten wird.

Es hat sich als vorteilhaft erwiesen, 1 mol des carbonylhydrierten Keton-Aldehydharzes und/oder kernhydrierten Phenol-Aldehydharzes — bezogen auf M_n — mit 0,5 bis 15 mol, bevorzugt 1 bis 10 mol, besonders 2 bis 8 mol der ungesättigten Verbindung (Komponente C) zur Reaktion zu bringen.

In einer bevorzugten Ausführungsform II

15

20

25

30

wird zu der Lösung oder Schmelze des carbonylhydrierten Keton-Aldehydharzes A) und/oder kernhydrierten Phenol-Aldehydharzes B) und dem hydroxyfunktionellen Polymer, wie z. B. Polyether, Polyester und / oder Polyacrylat die Verbindung, welche mindestens eine ethylenisch ungesättigte Gruppierung und gleichzeitig mindestens eine gegenüber A) und B) und dem zusätzlichen Polymer reaktive Gruppierung aufweist, ggf. in Anwesenheit eines geeigneten Katalysators zugegeben.

Je nach Reaktivität der Komponente C) wird die Temperatur der Umsetzung gewählt. Bei Verwendung von Isocyanaten als Komponente C) haben sich Temperaturen zwischen 30 und

150 °C, bevorzugt zwischen 50 und 140 °C bewährt.

Das ggf. enthaltene Lösemittel kann falls gewünscht nach beendeter Reaktion abgetrennt werden, wobei dann in der Regel ein Pulver des erfindungsgemäßen Produktes erhalten wird.

Es hat sich als vorteilhaft erwiesen, 1 mol der Komponente A) und / oder Komponente B) und / oder zusätzlicher Polymere – bezogen auf M_n – mit 0,5 bis 15 mol, bevorzugt 1 bis 10 mol, besonders 2 bis 8 mol der ungesättigten Verbindung (Komponente C) zur Reaktion zu bringen.

10 In einer bevorzugten Ausführungsform III

15

25

wird zu der Lösung oder Schmelze des carbonylhydrierten Keton-Aldehydharzes A) und/oder kernhydrierten Phenol-Aldehydharzes B) und dem hydroxyfunktionellen Polymer, wie z. B. Polyether, Polyester und / oder Polyacrylat ein di- und / oder trifunktionelles Isocyanat gegeben und ein hydroxyfunktionelles Präaddukt hergestellt. Erst dann wird die Verbindung, welche mindestens eine ethylenisch ungesättigte Gruppierung und gleichzeitig mindestens eine gegenüber A) und B) und dem zusätzlichen Polymer reaktive Gruppierung aufweist, ggf. in Anwesenheit eines geeigneten Katalysators zugegeben.

Je nach Reaktivität der Komponente C) wird die Temperatur der Umsetzung gewählt. Bei Verwendung von Isocyanaten als Komponente C) haben sich Temperaturen zwischen 30 und 150 °C, bevorzugt zwischen 50 und 140 °C bewährt.

Das ggf. enthaltene Lösemittel kann falls gewünscht nach beendeter Reaktion abgetrennt werden, wobei dann in der Regel ein Pulver des erfindungsgemäßen Produktes erhalten wird.

Es hat sich als vorteilhaft erwiesen, 1 mol der Komponente A) und / oder Komponente B) und / oder zusätzlicher Polymere – bezogen auf M_n – mit 0,5 bis 15 mol, bevorzugt 1 bis 10 mol, besonders 2 bis 8 mol der ungesättigten Verbindung (Komponente C) zur Reaktion zu bringen.

30 In Gegenwart geeigneter Photoinitiatoren, ggf. in Anwesenheit geeigneter Photosensibilisatoren lassen sich diese Harze durch Bestrahlung in polymere, unlösliche Netzwerke überführen, die, je nach Gehalt ethylenisch ungesättigter Gruppen, Elastomere bis

13

Duroplaste ergeben.

Die folgenden Beispiele sollen die gemachte Erfindung weiter erläutern aber nicht ihren Anwendungsbereich beschränken:

5

15

20

Beispiel 1 (UV 17):

Die Synthese erfolgt, indem 1 mol Kunstharz SK (Degussa AG; hydriertes Harz aus Acetophenon und Formaldehyd OHZ = 240 mg KOH/g (Acetanhydridmethode), Mn ~ 1000 g/mol) mit 1,5 mol eines Umsetzungsproduktes aus IPDI und Hydroxyethylacrylat im Verhältnis 1:1 in Anwesenheit von 0,2 % (auf Harz) 2,6-Bis(tert-butyl)-4-methylphenol (Ralox BHT, Degussa AG) und 0,1 % Dibutylzinndilaurat (auf Harz, 65%ig in Methoxypropylacetat) in einem Dreihalskolben mit Rührer, Rückflusskühler und Thermofühler in Stickstoffatmosphäre solange bei 80 °C zur Reaktion gebracht werden, bis eine NCO-Zahl von kleiner 0,1 erreicht ist. Es wird eine helle, klare Lösung mit einer dynamischen Viskosität von 51,56 Pa·s erhalten.

Beispiel 2 (UV 19):

1 mol Kunstharz SK (Degussa AG; OHZ = 240 mg KOH/g (Acetanhydridmethode), Mn ~ 1000 g/mol) und 4 mol eines Umsetzungsproduktes aus IPDI und Hydroxyethylacrylat im Verhältnis 1:1 werden in Anwesenheit von 0,2 % (auf Harz) 2,6-Bis(tert-butyl)-4-methylphenol (Degussa AG) sowie 0,1 % Dibutylzinndilaurat (auf Harz, 65%ig in Methoxypropylacetat) in einem Dreihalskolben mit Rührer, Rückflusskühler und Thermofühler in Stickstoffatmosphäre bis zu einer NCO-Zahl unter 0,1 bei 80 °C zur Reaktion gebracht. Die erhaltene Lösung mit einer dynamischen Viskosität von 26,2 Pa·s ist hell und klar.

25

Anwendungsbeispiele

Als Basisharz (UV 20) diente ein Addukt aus Trimethylolpropan, IPDI, Terathane 650 sowie Hydroxyethylacrylat, 70%ig gelöst in MOP-Acetat, Viskosität 23 °C = 19,2 Pas.

30

Zum Vergleich wurden außerdem das physikalisch zugemischte, nicht vernetzende Kunstharz SK untersucht.

14

Viskositäten der unterschiedlichen Systeme 50% ig in MOP-Acetat ohne Photoinitiator

Nummer	Mischungsverhältnis	dyn. Viskosität
	Feststoff	23°C
Reinsysteme		
481	A-UV 20	775 mPas
478	A-UV 17	430 mPas
480	A-UV 19	370 mPas
Mischungen		
494	A-UV 20 : Kunstharz SK= 95 : 5	760 mPas
495	A-UV 20 : Kunstharz SK= 90 : 10	750 mPas
482	A-UV 20 : A-UV 17 = 95 : 5	740 mPas
483	A-UV 20 : A-UV 17 = 90 : 10	720 mPas
484	A-UV 20 : A-UV 17 = 80 : 20	670 mPas
488	A-UV 20 : A-UV 19 = 95 : 5	750 mPas
489	A-UV 20 : A-UV 19 = 90 : 10	710 mPas
490	A-UV 20 : A-UV 19 = 80 : 20	650 mPas

Mit zunehmendem Anteil der erfindungsgemäßen Produkte sinkt die dynamische Viskosität der Formulierungen.

16.

Zusammenfassung der ermittelten Lackdaten

O.Z. 6300-WO

Die Mischungen wurden mit Darocure 1173 versehen (Menge s. Tab.) und mit einem Rakel auf Metallbleche aufgezogen. Die Systeme sind lösemittelhaltig; deshalb wurde im Umluftofen 30 min bei 80 °C vorgetrocknet. Dann wurden die Filme mittels UV-Licht (Quecksilber-Mitteldruck-Lampe, 70 W / optischer Filter 350 nm) ausgehärtet (Zeitangabe in Tab.).

ack-Nr.	Lack-Nr. Harz Misch.	1173	nfA.	UV-						Lackdaten	Jafen		
	а.Н	[% a.H.]	[%]	Härtung Mini-Cure	S	GS/ Tesa	HB	ET	HIK	KS	Peugeot Test	MEK -	Verlauf
481	A-UV 20 Standard	1,50	50,4	.9	u.n	n.m. zu weich, klebt leicht	klebt 1	eicht			163	153.1	minimal unruhige OB
				2 x 6"	31-39	2B /5B	n.m.	n.m.	38	>80 dir	0	>150++	
				3 x 6"	30-39	1B /5B	n.m.	n.m.	53	>80 dir >80 rev	+/0	>150 ++	
481 B	A-UV 20	3,00	50,7	9	n.m k	n.m klebt leicht			46				minimal unruhige ob
				2 x 6"	28-36	SB	71	10	48	08<	0	>150++	0
				3 x 6"	30-38	SB	29	6×	45	08<	0	>150++	
478	A-UV 17	1,50	50,4	9	32-38	5B	n.m.	<0,5	192	<10	‡	39	leicht unruhige OB
				2 x 6"	32-42	4-5B / 5B	n.m.	<0,5	201	<10	‡	64	
				3 x 6"	33-47	4-5B / 5B	111	<0,5	203	<10	‡	140	
480	A-UV 19	1,50	50,4	9	35-38	4-5B / 5B	n.m.	<0,5	194	<10	‡	120	leicht unruhige OB
Ī				2 x 6"	35-38	4-5B / 5B	143	<0,5	202	<10	‡	>150++	5
				3 x 6"	34-39	4-5B / 5B	143	<0,5	200	<10	‡	>150++	
494	A-UV 20 95 Kunsth. SK 5	1,50	50,4	3 x 6"	28-33	28-33 0-1B / 5B	71	5,6 9</td <td>48</td> <td>08<</td> <td>+/0</td> <td>>150 0</td> <td>minimal unruhige OB</td>	48	08<	+/0	>150 0	minimal unruhige OB
495	A-UV 20 90 Kunsth. SK 10	1,50	50,4	3 x 6"	30-38	0B / 5B	7.1	6/>9	59	08<	+/0	>150 (135) ++	>150 (135) ++ minimal unruhige OB

1173: Darocur 1173

O.Z. 6300-WO

Durch physikalische Zumischung der nicht substituierten Harze werden bereits Härte, Haftung, Peugeot- und MEK-Test verbessert. Mechanische Eigenschaften, wie durch Impacttest und Erichsentiefung ermittelbar, werden jedoch verschlechtert.

Harz	1173	nfA.	UV.						Lookydoton	1040		
)			_		•	Lacku	aren		
	[% a.H.]	[%]	Härtung Mini-Cure	SD µ	GS / Tesa	HB	ET	HK	KS	Peugeot Test	MEK-Test	Verlauf
A-UV 20 95 A-UV 17 5	1,50	50,4	3 x 6"	30-37	0-1B / 5B	71	6	78	08<	‡	>150 0/+	leicht unruhige OB
A-UV 20 90 A-UV 17 10	1,50	50,4	3 x 6"	30-33	0B / 5B	77	10	101	08<	‡	>150 +/++	minimal unruhige OR
			3 x 6"	31-33	Folic	vor l	Messun	g der	Werte	Folie vor Messung der Werte vom Glas entfernt	entfernt	
A-UV 20 80 A-UV 17 20	1,50	50,4	3 x 6"	30-36	0-1B / 5B	91	8,5/9 146 >80	146	08<	‡	>150 +/++	ok
			3 x 6"	31-32	Folie	vor l	Jessan	g der	Werte	Folie vor Messung der Werte vom Glas entfernt	entfernt	
A-UV 20 95 A-UV 19 5	1,50	50,4	3 x 6"	31-38	0-1B / 5B	71	10	99	08<	+/0	>150++	minimal
A-UV 20 90 A-UV 19 10	1,50	50,4	3 x 6"	28-38	0B / 5B	77	5,6	84	08<	+/0	>150++	minimal minimal
			3 x 6"	29-37	0-1B/ 5B	83	9 >9.5	75	08<	0	>150(121)++	am ambe OD
A-UV 20 80 A-UV 19 20	1,50	50,4	3 x 6"	32-38	1-2B / 5B	91	7,5/7 147 >80	147	08<	#	>150-/	minimal unruhioe OB
						1						un uningo on

1173: Darocur 1173

O.Z. 6300-WO

Durch chemische Vernetzung der erfindungsgemäßen Produkte mit dem Klarlack werden die Härte und die Haftung erhöht. Die die bei den rein physikalischen Zumischungen verschlechtert wurden, werden ebenfalls verbessert, was sich in guten Werten bei Impacttest und Superbenzinbeständigkeit (Peugeot-Test) und die Lösemittelbeständigkeit (MEK-Test) werden ebenfalls verbessert. Mechanische Eigenschaften, Erichsentiefung ausdrückt. 2

Yellowness-Index

Die Untersuchungen erfolgten am freien Film. Die Mischungen wurden mit Darocure 1173 versehen, auf Glas aufgezogen, 30 min bei 80 °C getrocknet und dreimal 6 s bestrahlt. Der Yi-Nullwert des Untergrundes liegt bei 0,08. 10

Lack-Nr.	Harze	Kunstharz-Gehalt	SD		Yi-V	Yi-Werte	
	FS	[% a.H.]	n.	Ausgang	Ausgang 1h 120°C 1h 160°C 1h 200°C	1h 160°C	1h 200°C
		Abmischung mit reinen Kunstharzen	einen K	unstharze	u		
481	A-UV 20	ı	31-32	0,4	0,4	1,7	50,4 24-27μ
494	A-UV 20 95 Kunsth. SK 5	5,0	31-34	0,2	0,3	2,7	40,4
495	A-UV 20 90 Kunsth. SK 10	10,0	31-34	6,3	0,4	1,7	36,3
		Abmischung mit Kunstharz A - Addukt	unstharz	A - Addu	kt		
482	A-UV 20 95 A-UV 17 5	3,0	30-32	0,2	0,4	1,2	44,6 25-28μ
483	A-UV 20 90 A-UV 17 10	5,9	31-33	5,0	5,0	2	38 27-31μ
484	A-UV 20 80	11,8	31-32	0,2	0,5	2,5	28,6

O.Z. 6300-WO

Lack-Nr.	Harze	Kunstharz-Gehalt SD	SD		V-iY	Yi-Werte	
	FS	[% a.H.]	=.	Ausgang	1h 120°C	и Ausgang 1h 120°C 1h 160°C 1h 200°C	1h 200°C
	A-UV 17 20						
001	A-UV 20 95	-	0			1.6	40.4
400	A-UV 19 5	1,8	30-32	2,0	0,3	28-31 µ	27-30µ
400	A-UV 20 90					•	42.2
407	A-UV 19 10	3,5	30-32	0,2	0,3	2,5	26-29µ
700	A-UV 20 80	t					33.5
430	A-UV 19 20	0,7	30-32	0,2	0,3	2,2	28-3011

B = Doppelte Darocure 1173 Menge (siehe Lackdaten)

Die Vergilbungsneigung wird im Vergleich zum Standardsystem insbesondere bei Exposition hoher Temperaturen verbessert.

Abkürzungen

2

DBTL: Dibutylzinndilaurat

ET: Erichsentiefung

HB: Buchholzhärte

HK: Pendelhärte nach König

IPDI: Isophorondiisocyanat

10

KS: Kugelschlag

MEK-Test: Beständigkeit gegenüber Butanon

MOP-Acetat: Methoxypropylacetat

nfA.: nicht flüchtige Bestandteile

15 Peugeot-Test: Superbenzinbeständigkeit

SD: Schichtstärke

Patentansprüche:

- 1. Verwendung strahlenhärtbarer Harze, im Wesentlichen enthaltend
 - A) mindestens ein carbonylhydriertes Keton-Aldehydharz
- 5 und/oder
 - B) mindestens ein kernhydriertes Phenol-Aldehydharz und
 - C) mindestens eine Verbindung, welche mindestens eine ethylenisch ungesättigte Gruppierung mit gleichzeitig mindestens eine gegenüber A) und/oder B) reaktive Gruppierung aufweist,
 - als Hauptkomponente, Basiskomponente oder Zusatzkomponente in strahlungshärtenden Beschichtungsstoffen, Klebstoffen, Druckfarben und Tinten, Polituren, Lasuren, Pigmentpasten und Masterbatches, Spachtelmassen, Dicht- und Dämmstoffen und/oder Kosmetikartikeln.

15

25

30

- 2. Verwendung strahlenhärtbarer Harze, erhalten durch polymeranaloge Umsetzung von
 - A) mindestens einem carbonylhydrierten Keton-Aldehydharz und/oder
 - B) mindestens einem kernhydrierten Phenol-Aldehydharz
- 20 mit
 - C) mindestens einer Verbindung, welche mindestens eine ethylenisch ungesättigte Gruppierung und gleichzeitig mindestens eine gegenüber A) und B) reaktive Gruppierung aufweist,
 - als Hauptkomponente, Basiskomponente oder Zusatzkomponente in strahlungshärtenden Beschichtungsstoffen, Klebstoffen, Druckfarben und Tinten, Polituren, Lasuren, Pigmentpasten und Masterbatches, Spachtelmassen, Dicht- und Dämmstoffen und/oder Kosmetikartikeln.
 - 3. Verwendung strahlenhärtbarer Harze nach Anspruch 1 oder 2, erhalten durch polymeranaloge Umsetzung von
 - A) mindestens einem carbonylhydrierten Keton-Aldehydharz und/oder

5

10

15

- B) mindestens einem kernhydrierten Phenol-Aldehydharz mit
- C) mindestens einer Verbindung, welche mindestens eine ethylenisch ungesättigte Gruppierung und gleichzeitig mindestens eine gegenüber A) und B) reaktive Gruppierung aufweist, und mindestens einem weiteren hydroxyfunktionalisierten Polymer.
- 4. Verwendung strahlenhärtbarer Harze nach Anspruch 3, dadurch gekennzeichnet, dass als weitere hydroxyfunktionelle Polymere Polyether, Polyester und/oder Polyacrylat eingesetzt werden.
- 5. Verwendung strahlenhärtbarer Harze nach Anspruch 3 oder 4, wobei Mischungen der weiteren Polymere mit den Keton-Aldehydharzen A) und/oder Phenol-Aldehydharzen B) polymeranalog mit Komponente C) umgesetzt werden.
- 6. Verwendung strahlenhärtbarer Harze nach Anspruch 3 bis 5, wobei zunächst Addukte aus den Keton-Aldehydharzen A) und/oder Phenol-Aldehydharzen B) mit den weiteren Polymeren unter Verwendung geeigneter Di-und/oder Triisocyanaten hergestellt werden, die erst dann mit Komponente C) polymeranalog umgesetzt werden.
- 7. Verwendung strahlenhärtbarer Harze nach mindestens einem der vorhergehenden Ansprüche,
- dadurch gekennzeichnet,dass C-H-acide Ketone in der Komponente A) eingesetzt werden.
 - Verwendung strahlenhärtbarer Harze nach mindestens einem der vorherigen Ansprüche, dadurch gekennzeichnet,
- dass in den carbonylhydrierten Keton-Aldehydharzen der Komponente A), Ketone ausgewählt aus Aceton, Acetophenon, Methylethylketon, Heptanon-2, Pentanon-3, Methylisobutylketon, tert.-Butylmethylketon, Cyclopentanon, Cyclododecanon,

Mischungen aus 2,2,4- und 2,4,4-Trimethylcyclopentanon, Cycloheptanon, Cyclohexanon als Ausgangsbindungen allein oder in Mischungen eingesetzt werden.

 Verwendung strahlenhärtbarer Harze nach mindestens einem der vorherigen Ansprüche, dadurch gekennzeichnet,

dass in den carbonylhydrierten Keton-Aldehydharzen der Komponente A) alkylsubstituierte Cyclohexanone mit einem oder mehreren Alkylresten, die insgesamt 1 bis 8 Kohlenwasserstoffatome aufweisen, einzeln oder in Mischung eingesetzt werden.

10

15

10. Verwendung strahlenhärtbarer Harze nach Anspruch 9.

dadurch gekennzeichnet,

dass in den carbonylhydrierten Keton-Aldehydharzen der Komponente A) 4-tert.-Amylcyclohexanon, 2-sek.-Butylcyclohexanon, 2-tert.-Butylcyclohexanon, 4-tert.-Butylcyclohexanon, 2-Methylcyclohexanon und 3,3,5-Trimethylcyclohexanon eingesetzt werden.

- 11. Verwendung strahlenhärtbarer Harze nach mindestens einem der vorherigen Ansprüche, dadurch gekennzeichnet,
- dass in den carbonylhydrierten Keton-Aldehydharzen der Komponente A) Acetophenon, Cyclohexanon, 4-tert.-Butylcyclohexanon, 3,3,5-Trimethylcyclohexanon und Heptanon allein oder in Mischung in der Komponente A) eingesetzt werden.
- 12. Verwendung strahlenhärtbarer Harze nach mindestens einem der vorherigen Ansprüche,
 dadurch gekennzeichnet,

dass als Aldehyd-Komponente der carbonylhydrierten Keton-Aldehydharze in Komponente A) Formaldehyd, Acetaldehyd, n-Butyraldehyd und/oder iso-Butyraldehyd, Valerianaldehyd, Dodecanal allein oder in Mischungen eingesetzt werden.

30 13. Verwendung strahlenhärtbarer Harze nach Anspruch 12, dadurch gekennzeichnet, dass als Aldehyd-Komponente der carbonylhydrierten Keton-Aldehydharze in Komponente A) Formaldehyd und / oder para-Formaldehyd und / oder Trioxan eingesetzt werden.

- 14. Verwendung strahlenhärtbarer Harze nach Anspruch 1, 2 oder 3,
- 5 dadurch gekennzeichnet,

dass Hydrierungsprodukte der Harze aus Acetophenon, Cyclohexanon, 4-tert.-Butylcyclohexanon, 3,3,5-Trimethylcyclohexanon, Heptanon allein oder in Mischung und Formaldehyd als Komponente A) eingesetzt werden.

- 15. Verwendung strahlenhärtbarer Harze nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass in den kernhydrierten Phenol-Aldehydharzen (Komponente B) die Aldehyde Formaldehyd, Butyraldehyd und/oder Benzaldehyd eingesetzt werden.
- 15 16. Verwendung strahlenhärtbarer Harze nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass nicht hydrierte Phenol-Aldehydharze im untergeordneten Maße eingesetzt werden.
- 17. Verwendung strahlenhärtbarer Harze nach mindestens einem der vorherigen Ansprüche,
 20 dadurch gekennzeichnet,
 dass in Komponente B) kernhydrierte Harze auf Basis alkylsubstituierter Phenole eingesetzt werden.
- Verwendung strahlenhärtbarer Harze nach Anspruch 17,
 dadurch gekennzeichnet,
 dass 4-tert.-Butylphenol, 4-Amylphenol, Nonylphenol, tert.-Octylphenol, Dodecylphenol,
 Kresol, Xylenole sowie Bisphenole allein oder in Mischungen eingesetzt werden.
- 30 19. Verwendung strahlenhärtbarer Harze nach mindestens einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass als Komponente C) Maleinsäure eingesetzt wird.

- 20. Verwendung strahlenhärtbarer Harze nach mindestens einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass als Komponente C) (Meth)acrylsäure und/oder Derivate eingesetzt werden.
- 5 21. Verwendung strahlenhärtbarer Harze nach Anspruch 20, dadurch gekennzeichnet, dass als Komponente C) (Meth)acryloylchlorid, Glycidyl(meth)acrylat, (Meth)acrylsäure und/oder deren niedermolekulare Alkylester und/oder Anhydriden allein oder in Mischung eingesetzt werden.
- 22. Verwendung strahlenhärtbarer Harze nach mindestens einem der vorherigen Ansprüche, dadurch gekennzeichnet,
 dass als Komponente C) Isocyanate, die über eine ethylenisch ungesättigte Gruppierung verfügen, bevorzugt (Meth)acryloylisocyanat, α,α-Dimethyl-3-isopropenylbenzylisocyanat, (Meth)acrylalkylisocyanat mit Alkylspacern, die über 1 bis 12, bevorzugt 2 bis 8, besonders bevorzugt 2 bis 6 Kohlenstoffatome verfügen, bevorzugt Methacrylethylisocyanat, Methacrylbutylisocyanat, eingesetzt werden.
- Verwendung strahlenhärtbarer Harze nach mindestens einem der vorherigen Ansprüche,
 dadurch gekennzeichnet,
 dass als Komponente C) Umsetzungsprodukte aus Hydroxyalkyl(meth)acrylaten, deren
 Alkylspacer über 1 bis 12, bevorzugt 2 bis 8, besonders bevorzugt 2 bis 6
 Kohlenstoffatome verfügen, mit Diisocyanate eingesetzt werden.
- 24. Verwendung strahlenhärtbarer Harze nach Anspruch 23,
 dadurch gekennzeichnet,
 dass Diisocyanate ausgewählt aus Cyclohexandiisocyanat, Methylcyclohexandiisocyanat,
 Ethylcyclohexandiisocyanat, Propylcyclohexandiisocyanat, Methyldiethylcyclohexandiisocyanat,
 Phenylendiisocyanat, Toluylendiisocyanat,
 Bis(isocyanatophenyl)methan, Propandiisocyanat, Butandiisocyanat, Pentandiisocyanat,
 Hexandiisocyanat, z. B. wie Hexamethylendiisocyanat (HDI) oder 1,5-Diisocyanato-2-methylpentan (MPDI), Heptandiisocyanat, Octandiisocyanat, 1,6-Diisocyanato-2,4,4-

24

trimethylhexan, 1,6-Diisocyanato-2,2,4-trimethylhexan (TMDI), 4-Isocyanatomethyl-1,8-octandiisocyanat (TIN), Dekandi- und -triisocyanat, Undekandi- und -triisocyanat, Dodecandi- und -triisocyanate, Isophorondiisocyanat (IPDI), Bis(isocyanatomethylcyclohexyl)methan (H₁₂MDI), Isocyanatomethylmethylcyclohexylisocyanat, 2,5(2,6)-Bis(isocyanatomethyl)bicyclo[2.2.1]heptan (NBDI), 1,3-Bis(isocyanatomethyl)cyclohexan (1,3-H₆-XDI), 1,4-Bis(isocyanatomethyl)cyclohexan (1,4-H₆-XDI) allein oder in Mischungen, eingesetzt werden.

- 25. Verwendung strahlenhärtbarer Harze nach Anspruch 24,
- 10 dadurch gekennzeichnet,
 - dass Polyisocyanate hergestellt durch Trimerisierung, Allophanatisierung, Biuretisierung und/oder Urethanisierung einfacher Diisocyanate eingesetzt werden.
 - Verwendung strahlenhärtbarer Harze nach einem der vorherigen Ansprüche, dadurch gekennzeichnet,
 - dass als Komponente C) die Umsetzungsprodukte im molaren Verhältnis von 1:1 von Hydroxyethylacrylat und/oder Hydroxyethylmethacrylat mit Isophorondiisocyanat und/oder H₁₂MDI und/oder HDI eingesetzt werden.
- 20 27. Verwendung strahlenhärtbarer Harze nach mindestens einem der vorherigen Ansprüche, dadurch gekennzeichnet,

dass 1 mol des carbonylhydrierten Keton-Aldehydharzes und/oder kernhydrierten Phenol-Aldehydharzes – bezogen auf M_n – und 0,5 bis 15 mol, bevorzugt 1 bis 10 mol, besonders 2 bis 8 mol der ungesättigten Verbindung eingesetzt werden.

25

30

15

5

28. Verwendung strahlenhärtbarer Harze nach mindestens einem der vorherigen Ansprüche als Hauptkomponente, Basiskomponente oder Zusatzkomponente in strahlungshärtenden Beschichtungsstoffen wie Primern, Füllern, Basis-, Deck- und Klarlacken sowie in strahlungshärtenden Klebstoffen, Druckfarben und Tinten, Polituren, Lasuren, Pigmentpasten und Masterbatches, Spachtelmassen, Kosmetikartikeln und / oder Dichtund Dämmstoffen.

25

- 29. Verwendung strahlenhärtbarer Harze nach mindestens einem der vorherigen Ansprüche für Metalle, Kunststoffe, Holz, Papier, Textilien und Glas sowie mineralische Untergründe.
- 5 30. Verwendung strahlenhärtbarer Harze nach mindestens einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass weitere Oligomere und / oder Polymere enthalten sind.
 - 31. Verwendung strahlenhärtbarer Harze nach Anspruch 30,
- 10 dadurch gekennzeichnet,

dass weitere Oligomere und/oder Polymere ausgewählt aus der Gruppe der Polyurethane, Polyester, Polyacrylate, Polyolefine, Naturharze, Epoxidharze, Silikonöle und –harze, Aminharze, fluorhaltigen Polymere und ihre Derivate allein oder in Kombination enthalten sind.

15

25

- 32. Verwendung strahlenhärtbarer Harze nach mindestens einem der vorherigen Ansprüche, dadurch gekennzeichnet,
 - dass Hilfs- und Zusatzstoffe enthalten sind.
- 20 33. Verwendung strahlenhärtbarer Harze nach Anspruch 32,

dadurch gekennzeichnet,

dass Hilfs- und Zusatzstoffe, ausgewählt aus Inhibitoren, organischen Lösemitteln, die ggf. ungesättigte Gruppierungen enthalten, grenzflächenaktiven Substanzen, Sauerstoff- und / oder Radikalfängern, Katalysatoren, Lichtschutzmitteln, Farbaufhellern, Photoinitiatoren, Photosensibilisatoren, Thixotropiermitteln, Hautverhinderungsmitteln, Entschäumern, Farbstoffen, Pigmenten, Füllstoffen und/oder Mattierungsmittel, enthalten sind.

INT NATIONAL SEARCH REPORT

nal Application No PCT/EP2004/053316

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 C09D161/02 C09D161/14 C09J161/02 C09J161/14 C09D4/06 C08L61/14 C09J4/06 C08J3/28 C08G16/04

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal

C. DOCUM	ENTS CONSIDERED TO BE RELEVANT	
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	EP 0 111 686 A (CHEMISCHE WERKE HULS AG; HULS AKTIENGESELLSCHAFT) 27 June 1984 (1984-06-27) page 1, lines 1-7 page 2, lines 1-14 page 4, lines 1-17 page 5, lines 22-29; claims; examples	1-33
Y	WO 99/55785 A (HERBERTS GMBH & CO. KG; FLOSBACH, CARMEN; LOEFFLER, HELMUT; MAAG, KARI) 4 November 1999 (1999-11-04) page 1, lines 6-8 page 3, line 3 - page 5, line 30 page 12, lines 16-26 page 15, line 14 - page 16, line 25; claims; examples	1-33

X Further documents are listed in the continuation of box C.	Patent family members are listed in annex.
Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filling date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filling date but later than the priority date claimed	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvicus to a person skilled in the art. "&" document member of the same patent family
Date of the actual completion of the international search 8 April 2005	Date of mailing of the international search report 18/04/2005
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Authorized officer Otegui Rebollo, J

INT NATIONAL SEARCH REPORT

International Application No
PCT/EP2004/053316

		FC1/E1/2004/03/3316
	ation) DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Category °	Granon of document, with indication, where appropriate, or the relevant passages	nelevant to claim No.
Y	EP 0 133 451 A (CHEMISCHE WERKE HULS AG; HULS AKTIENGESELLSCHAFT) 27 February 1985 (1985-02-27) page 1, lines 1-4 page 2, lines 10-36 page 3, lines 9-28; claim 9; examples	1–33
Υ	WO 03/061849 A (BASF COATINGS AG; BAUMGART, HUBERT; MEISENBURG, UWE) 31 July 2003 (2003-07-31) page 1, lines 8-18 page 5, line 11 - page 7, line 5 page 8, line 9 - page 9, line 6 page 15, line 24 - page 16, line 9 page 25, line 14 - page 27, line 3 page 34, line 8 - page 36, line 12; claims; examples	1-33
E	EP 1 508 582 A (DEGUSSA AG) 23 February 2005 (2005-02-23) paragraphs '0001! - '0003!, '0016! - '0049!; claims; examples	1-33

INTIMNATIONAL SEARCH REPORT

Information on patent family members

Internation No PCT/EP2004/053316

				00-17-033310
Patent document cited in search report	Publication date		Patent family member(s)	Publication date
EP 0111686	27-06-1984	DE AT DE EP ES JP JP JP US	3334631 A1 25990 T 3370343 D1 0111686 A1 8406081 A1 1907108 C 6025241 B 59113013 A 4542194 A	17-05-1984 15-04-1987 23-04-1987 27-06-1984 16-10-1984 24-02-1995 06-04-1994 29-06-1984 17-09-1985
WO 9955785 /	04-11-1999	DE AT DE DK WO EP ES US	19818735 A1 259401 T 59908501 D1 991727 T3 9955785 A1 0991727 A1 2212553 T3 6332291 B1	28-10-1999 15-02-2004 18-03-2004 08-03-2004 04-11-1999 12-04-2000 16-07-2004 25-12-2001
EP 0133451 /	27-02-1985	DE AT DE DK EP JP US ZA	3324287 A1 22904 T 3460973 D1 133184 A 0133451 A1 60036518 A 4731434 A 8405153 A	17-01-1985 15-11-1986 20-11-1986 07-01-1985 27-02-1985 25-02-1985 15-03-1988 27-03-1988
WO 03061849 A	31-07-2003	DE WO EP	10202565 A1 03061849 A1 1469951 A1	07-08-2003 31-07-2003 27-10-2004
EP 1508582 A	23-02-2005	DE CA EP	10338560 A1 2478230 A1 1508582 A1	17-03-2005 22-02-2005 23-02-2005

INTERNATIONAL RECHERCHENBERICHT

nales Aktenzeichen

PCT/EP2004/053316 a. Klassifizierung des anmeldungsgegenstandes IPK 7 C09D161/02 C09D161/14 C09J161/02 C09J161/14 C09D4/06 C09J4/06 C08J3/28 C08L61/14 C08G16/04 Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK B. RECHERCHIERTE GEBIETE Recherchierter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole) C09J IPK 7 CO9D C08J C08L C08G Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe) EPO-Internal C. ALS WESENTLICH ANGESEHENE UNTERLAGEN Kategorie® Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile Betr. Anspruch Nr. Υ EP 0 111 686 A (CHEMISCHE WERKE HULS AG: 1 - 33HULS AKTIENGESELLSCHAFT) 27. Juni 1984 (1984-06-27) Seite 1, Zeilen 1-7 Seite 2, Zeilen 1-14 Seite 4, Zeilen 1-17 Seite 5, Zeilen 22-29; Ansprüche; Beispiele Y WO 99/55785 A (HERBERTS GMBH & CO. KG; 1 - 33FLOSBACH, CARMEN; LOEFFLER, HELMUT; MAAG. KARI) 4. November 1999 (1999-11-04) Seite 1, Zeilen 6-8 Seite 3, Zeile 3 - Seite 5, Zeile 30 Seite 12, Zeilen 16-26 Seite 15, Zeile 14 - Seite 16, Zeile 25; Ansprüche; Beispiele -/--Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen Siehe Anhang Patentfamilie Besondere Kategorien von angegebenen Veröffentlichungen "T" Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht koliidiert, sondern nur zum Verständnis des der "A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist Erfindung zugrundellegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist "E" älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft er-scheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt) Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist "O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist "&" Veröffentlichung, die Mitglied derselben Patentfamilie ist Datum des Abschlusses der internationalen Recherche Absendedatum des internationalen Recherchenberichts 8. April 2005 18/04/2005 Name und Postanschrift der Internationalen Recherchenbehörde Bevollmächtigter Bediensteter Europäisches Patentamt, P.B. 5818 Patentlaan 2 Tel. (+31–70) 340–2040, Tx. 31 651 epo nl, Fax: (+31–70) 340–3016 Otegui Rebollo, J

INTERNATIONAL RECHERCHENBERICHT

ı	
	Internationales Aktenzeichen
	PCT/EP2004/053316

		/EP2004/053316
	zung) ALS WESENTLICH ANGESEHENE UNTERLAGEN	
Kategorie°	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Te	Betr. Anspruch Nr.
Υ	EP 0 133 451 A (CHEMISCHE WERKE HULS AG; HULS AKTIENGESELLSCHAFT) 27. Februar 1985 (1985-02-27) Seite 1, Zeilen 1-4 Seite 2, Zeilen 10-36 Seite 3, Zeilen 9-28; Anspruch 9; Beispiele	1-33
Y	WO 03/061849 A (BASF COATINGS AG; BAUMGART, HUBERT; MEISENBURG, UWE) 31. Juli 2003 (2003-07-31) Seite 1, Zeilen 8-18 Seite 5, Zeile 11 - Seite 7, Zeile 5 Seite 8, Zeile 9 - Seite 9, Zeile 6 Seite 15, Zeile 24 - Seite 16, Zeile 9 Seite 25, Zeile 14 - Seite 27, Zeile 3 Seite 34, Zeile 8 - Seite 36, Zeile 12; Ansprüche; Beispiele	1-33
	EP 1 508 582 A (DEGUSSA AG) 23. Februar 2005 (2005-02-23) Absätze '0001! - '0003!, '0016! - '0049!; Ansprüche; Beispiele	1-33

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internationales Akterizeichen
PCT/EP2004/053316

				<u></u>	2004/033310
Im Recherchenbericht ngeführtes Patentdokument		Datum der Veröffentlichung	Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
EP 0111686	A	27-06-1984	DE AT DE EP ES JP JP JP	3334631 A1 25990 T 3370343 D1 0111686 A1 8406081 A1 1907108 C 6025241 B 59113013 A 4542194 A	17-05-1984 15-04-1987 23-04-1987 27-06-1984 16-10-1984 24-02-1995 06-04-1994 29-06-1984 17-09-1985
WO 9955785	Α	04-11-1999	DE AT DE DK WO EP ES US	19818735 A1 259401 T 59908501 D1 991727 T3 9955785 A1 0991727 A1 2212553 T3 6332291 B1	28-10-1999 15-02-2004 18-03-2004 08-03-2004 04-11-1999 12-04-2000 16-07-2004 25-12-2001
EP 0133451	A	27-02-1985	DE AT DE DK EP JP US ZA	3324287 A1 22904 T 3460973 D1 133184 A 0133451 A1 60036518 A 4731434 A 8405153 A	17-01-1985 15-11-1986 20-11-1986 07-01-1985 27-02-1985 25-02-1985 15-03-1988 27-03-1985
WO 03061849	Α	31-07-2003	DE WO EP	10202565 A1 03061849 A1 1469951 A1	07-08-2003 31-07-2003 27-10-2004
EP 1508582	Α	23-02-2005	DE CA EP	10338560 A1 2478230 A1 1508582 A1	17-03-2005 22-02-2005 23-02-2005