Tutorial 9: MA1E01

The Indefinite Integral and Area Under a Curve

- 1. Evaluate the following indefinite integrals:
 - (a) $\int x^{17} dx$
 - (b) $\int \sqrt[3]{x^2} dx$

 - (c) $\int \frac{1}{x^{5/6}} dx$ (d) $\int \frac{10 y + 4\sqrt{y}}{y^{3/4}} dx$
 - (e) $\int (x^3 \sin x) \, dx$
- 2. Solve the second-order initial-value problem by integrating both sides of the equation twice,
 - $\frac{d^2y}{dx^2} = x + \cos x, \quad y(0) = 1, \ y'(0) = 2.$
- 3. Evaluate the following indefinite integrals by an appropriate substitution:
 - (a) $\int (3x-7)^{11} dx$

 - (b) $\int x^3 \sqrt{5 + x^4} dx$ (c) $\int \frac{\sin(1/x)}{3x^2} dx$
 - (d) $\int \sin^3 2\theta \, d\theta$
 - (e) $\int \sin^n(a+bx)\cos(a+bx)dx$ for n a positive integer and $b \neq 0$.
- 4. Express the following sums in closed form:

 - (b) $\sum_{k=1}^{n} (3-2k)^2$ (c) $\sum_{k=1}^{n} \left(\frac{5}{n} \frac{2k}{n}\right)$

5. From class, the definition of the area under a non-negative curve y=f(x) over [a,b] where the interval is divided into n equal sub-intervals of width $\Delta x=(b-a)/n$ is

$$A = \lim_{n \to \infty} \sum_{k=1}^{n} f(x_k^*) \Delta x$$

where x_k^* can be any point in the interval $[x_{k-1}, x_k]$.

- (a) Taking x_k^* to be the right endpoints of the sub-intervals, find the area under the curve $y=x^2$ over the interval [-1,2].
- (b) Taking x_k^* to be the left endpoints of the subintervals, show that the area under $y=x^3$ over the interval [0,b] is $b^4/4$.

a+(h-1)elx milest

0=0

(K-1) DX

