Synthèse d'images

TD1

Contenu du module

Déroulement

- 4 TDs
- 20h de TPs

Contenu

- Introduction à la synthèse d'images
 Images en 3D type jeux vidéo, cinéma, etc.
 - Introduction des concepts généraux
 - Introduction aux problématiques propres à la 3D
 - Introduction à la mise en œuvre (implémentation)

Evaluation

Évaluation du module

- 3 Comptes rendus de TPs
 - Le premier portera sur les 4 premières séances
 (3 semaines, 8h)
 - Le second sur les 6h suivantes (avant le 4e TD)
 - Le dernier en fin de module
 - Note finale : moyenne des 3 CRs

Évaluation du module

- Un compte rendu consiste en :
 - Le code qui sera remis via la plateforme GitLab https://git.unistra.fr/
 - Un rapport rédigé au format MarkDown sur Git
 - Ce qui est attendu sera précisé en TP (variable en fonction de l'encadrant de TP)

Évaluation du module

- En ce qui concerne le code les outils seront présentés dans le premier TP
 - Pensez donc à vérifier le packaging de votre travail
 - Le code devrait être opérationnel out-of-the-box
 - cf. Cours sur la qualité : satisfaction du client

Introduction

C'est quoi la synthèse d'images

Définition

- générer des images à l'aide de l'ordinateur
- images créées à partir de données 3D

C'est quoi la synthèse d'images

- Définition
- Concrètement : les domaines d'utilisation
 - Omniprésent dans la vie quotidienne
 - Secteur économique actif et diversifié

Contenu du module

- Introduction à la programmation 3D RT
 - Présentation des concepts
 - Contraintes temps réel
- Mise en pratique (TPs) WebGL (three.js)
 - Javascript, langage interprété pas de compilation

Rendu

Rendu (Rendering)

 Definition : Processus de génération d'une image 2D à partir d'une scène 3D

La caméra

- Anglicisme pour définir le point de vue de l'observateur
 - Position de l'observateur
 - Emplacement de l'appareil photo
 - Ou de la caméra vidéo
- Caractéristiques physiques
 - Lentilles, FOV, distorsion, aberrations chromatiques

- Technique actuelle utilisées dans les GPUs
 - Projection des segments et triangles sur le plan de l'image

• Technique actuelle utilisées dans les GPUs

- Projection des segments et triangles sur le plan de l'image

Projection

- Pour chaque objet
- Projection des sommets dans le plan image (espace ecran)

Technique actuelle utilisées dans les GPUs

- Projection des segments et triangles sur le plan de l'image

- Technique actuelle utilisées dans les GPUs
 - Projection des segments et triangles sur le plan de l'image

Rasterisation

- Discrétisation du plan image
- Remplissage des polygones
- ► Tracé de droites
- Production de Fragments

Illustration pour un triangle

Discrétisation par pixels

Avantages et inconvénients

- Simple à comprendre, donc à implémenter, en software ET en hardware
- Plus facilement parallélisable :
 - l'architecture des GPUs actuels en est la conséquence
- Algorithme moins gourmand en puissance de calcul que le lancer de rayons (raytracing, cf. annexe), mais plus limité
 - Utilisation « d'astuces » pour émuler certains phénomènes
 - Réflexions
 - Illumination indirecte
 - •

Scène

Notion de scène

- Description « virtuelle » du monde à représenter
 - À la manière d'une mise en scène cinématographique

Contenu d'une scène

- Objets
 - Décors
 - Personnages
- Sources de lumière
- Observateur (caméra)

Notion de scène

- Description « virtuelle » du monde à représenter
 - À la manière d'une mise en scène cinématographique
 - Il faut pouvoir placer les différents éléments dans la scène
 - Repérage et coordonnées

Système de coordonnées

- Monde réel = \mathbb{R}^3 + t
- Repère en coordonnées cartésiennes
- C'est un espace vectoriel
 - On peut utiliser les outils mathématiques de calcul vectoriel (cf. M12, M4x)
 - C'est un repère orienté

Objets 3D

- Forme (Shape/Mesh) :
 - Éléments de géométrie
 - Équation implicite
 - Maillages
 - Données relevées
- Aspect (Shading):
 - Couleurs
 - Textures
 - Fonctions de réflectance

Application pratique: Présentation

API 3D

- APIs:
 - OpenGL, Direct3D (MS), Metal (Apple), Vulkan (Khronos)
- Khronos Group
 - Consortium de spécification d'API
 - Open*(GL, GLES, CL, ...), WebGL

Moteurs 3D

- Apportent les outils de productivité audessus des APIs bas-niveau
- Concentration du marché :
 - Niveau d'expertise élevé requis
 - Middleware (Unreal Engine, Unity 3D, ...)
- Three.js
 - Middleware javascript

Three.js

- Simple d'accès
 - Pas besoin d'apprendre à utiliser un IDE
- Pas de compilation
 - Javascript interprété
- Fonctionne dans tous les navigateurs modernes

Application pratique : Environnement de travail

Outils

- Programmation Javascript
 - Éditeur de texte
- Navigateur supportant Javascript et WebGL
 - Chrome, Firefox
 - Utilisez un débogueur

Éditeur de texte

- Utilisez un éditeur de texte avancé :
 - Coloration syntaxique de plusieurs langages
 - (html, css, JS)
 - Augmentez votre productivité en apprenant les raccourcis clavier
 - Si c'est un IDE c'est encore mieux!

Débogueur

- Outil indispensable pour tout développeur qui se respecte :
 - Fini le « printf debugging »
 - Il existe des outils pour voir le contenu des variables en mémoire
 - On arrête le massacre, et on travaille professionnellement et efficacement

Débogueur : Firefox

- Tools Web Developer Debugger (Ctrl+Shift+S)
- Des extensions existent également
- Documentation :
 - Prenez le temps de la lire :
 https://developer.mozilla.org/fr/docs/Outils/D %C3%A9boqueur

Débogueur : Chrome

- Chrome menu Tools > Developer Tools
- Ou Plus d'outils Outils de développement
- Ctrl+Shift+I
- Documentation :
 - https://developer.chrome.com/devtools
 - https://developer.chrome.com/devtools/docs/javascript-debugging

Débogueur : Chrome

Débogueur : Chrome

Débogueur : les grands principes

- Vérifier le contenu des variables, de la mémoire
- Suivre l'exécution pas à pas et la pile d'appel
- Comprendre les problèmes et les résoudre
 - On arrête de corriger les bugs au « pif » !

Application pratique Méthodologie

- Le faux problème : la compétence technique
 - Comment réaliser le TP
 - Avec un éditeur de texte
 - Du Javascript
 - Des outils
- Solutions :
 - Documentation
 - Recherche internet
 - Questions aux camarades ou au prof

- Le vrai problème : la méthode
 - Comment arriver au bout du TP
 - Identifier les sous-étapes
 - Les accomplir une par une
 - Revérifier le bien fondé des étapes définies après chaque réalisation
- Solutions:
 - Analyse
 - Réflexion
 - Prototypage
 - Essais

- Créativité et technicité
 - la créativité est dans la conception de la solution
 - On doit imaginer comment arriver au but, et toutes les étapes pour s'y rendre
 - Les limites techniques limitent la créativité
 - Implémenter consiste juste à matérialiser cette réflexion préalable grâce à la technique

- Cheminement de la pensée
 - Identifier les étapes
 - Subdiviser les étapes jusqu'à atteindre des étapes dont on voit clairement le début et la fin
 - Une partie des étapes peut ne pas être complètement définie sans empêcher de commencer à travailler
 - Cela permet déjà d'aller dans la bonne direction
 - Étape = micro-commit !

Application pratique Gestion de versions avec Git

UNIVERSITÉ DE STRASBOURG

Gestion de versions

- Conserver un historique du code et des modifications apportées
- Permettre de revenir en arrière sur des versions antérieures
- Permettre de partager le code entre plusieurs développeurs

Gestion de versions

- Repository
- Version de travail (Update/Checkout)
- Commit
- Partage (Push/Pull)

Git

- TortoiseGit (Windows)
- Gitk + git gui (Linux)
- SourceTree (win/mac)

Gitlab

- https://git.unistra.fr/
- Serveur pour partager vos travaux via git

Annexe : Réalité Virtuelle

La perception du volume

- 2 façons principales d'appréhender le monde en relief :
 - 2 images légèrement différentes (2 yeux)
 - Perception physiologique du relief
 - Jeu d'ombre et de lumière : connaissance acquise par l'expérience, le vécu
 - Illusion d'optique possible

Anaglyphe

(source : wikipedia)

Stéréogramme

(source : wikipedia)

Rendu stéréo

- Moniteur 3D (passif ou actif), Cinéma
 - Générer une image légèrement différente pour chaque œil
- Casque VR
 - Idem + déformation pour compenser la lentille et le champ de vision

SBS

(source : assassin's creed 4 Black Flag)

VR

(source : reddit - samsung Gear VR demo screenshot)

Annexe: Lancer de rayons

Lancer de rayons (raytracing)

Essentiellement utilisé pour le rendu offline

Rastérisation vs Lancer de rayons

Lancer de rayons

- Proche du modèle physique (transport des photons)
- Algorithme générique, c'est le modèle de simulation physique qui change
- Concept simple à appréhender

Rastérisation

- Nécessite moins de puissance de calcul
- Plus facilement parallélisable
- Architecture des GPUs adaptée

