PII-108

"TRUNCATED SIGMOID E_{max} MODELS": A REPARAMETERIZATION OF THE SIGMOID E_{max} MODEL FOR USE WITH TRUNCATED PK/PD DATA. WJ Bachman PhD and WR Gillespie PhD, GloboMax LLC, Hanover, MD.

The parameters of the sigmoid E_{max} model are poorly estimated when the range of PK/PD data available is limited to <0.95 E_{max} [Dutta et al. J Pharm Sci 85:232 (1996)]. The following reparameterized form of the sigmoid E_{max} model has improved parameter estimation properties:

$$E = E_0 + \frac{(\beta^{\gamma} + 1)(E^* - E_0)C^{\gamma}}{C^{*\gamma} + \beta^{\gamma}C^{\gamma}}$$

where E is the effect measure and C is a measure of drug exposure (e.g., concentration or dose). The parameter E^* is the estimated effect resulting from C^* , γ is the usual "sigmoidicity" parameter, and E_0 is the baseline effect. β is a measure of the degree to which the function deviates from linearity in C^γ . One approach to applying this parameterization is to fix C^* (or E^*) at a value and estimate the remaining parameters E_0 . E^* (or E^*), E^* , and E^* 0 by nonlinear regression. The properties of this approach are evaluated by application to simulated PK/PD data that is truncated at various fractions of $E_{\rm max}$. When E^* 0 (or E^* 1) is chosen within the range of the observed data, then the parameters E^* 0 (or E^* 1) and E^* 1 are more precisely and accurately estimated than E^* 2 and E^* 3 and E^* 3 and E^* 4 from the standard parameterization.