Spring 2022 Class Project

Numerical Methods / Numerical Analysis

MATLAB Implementation

Instructor: Shahzad Ahmad Total Marks: 20

Akif Ejaz - BSCE19042

1. Problem Statement:

Implement Newton-Raphson method using MATLAB to compute the drag coefficient c needed for a parachutist of mass $m = First Two Digits of Your Registration Number <math>\div 2 kg$ to have a velocity of Second Last Digit of Your Registration Number $\div 40 m/s$ after free falling for time $t = Last Digit of your Registration Number <math>\div 5 secs$. *Note:* The acceleration due to gravity is 9.81 m/s².

The drag coefficient is given by

$$f(c) = \frac{gm}{c} \left(1 - e^{-(c/m)t} \right) - v$$

a. Formulate an iterative formula for the Newton-Raphson method

Using the given equation for estimating c as:

$$f(c) = \frac{gm}{c} \left(1 - e^{-(c/m)t} \right) - v$$

Now, we have to find out 'f(c) = 0'. We will be using the NR method for this problem. The MATLAB code for this is given below:

```
%m = First Two Digits of Your Registration Number ÷ 2
m = 19/2;
v = 4 + 40; % Second Last Digit of Your Registration Number + 40 m/s t = 2 + 5; % time t = Last Digit of Your Registration Number + 5 secs
gravity = 9.8;
%Setting x as symbolic variable that representing c
syms x;
% Input Section
%v(t) = q*m/c * (1- exp(-(c/m)*t)); % original equation of v
y = gravity*m/x *(1 - exp(-(x/m)*t)) - v; % equation for estimating c
a = 3; %a = input('Enter initial guess: ');
e = 0.0001; %e = input('Tolerable error: ');
N = 100;
              %N = input('Enter maximum number of steps: ');
funct = [];
error = [];
% Initializing step counter
```

```
step = 1;
% Finding derivate of given function
g = diff(y,x);
% Finding Functional Value
fa = eval(subs(v,x,a));
while abs(fa) > e
   fa = eval(subs(y,x,a));
    qa = eval(subs(q,x,a));
    if qa == 0
        disp('ERROR: Division by zero.');
        break;
    b = a - fa/ga;
    fprintf('step num=%d\t\tApproximated value=%f\t\tFunction Value When
f(a) = %f \ n', step, a, fa);
   a = b;
    if step>N
        disp('ERROR: Not convergent ! TRY CHANGE THE INITIAL GUESS a ');
        break;
    end
funct(step) = a;
                         % saving the value of step in a vector
error(step) = ((1.31-a)/1.31)*100; % vector for error at every iteration
step = step + 1;
end
fprintf('Approximated Value for f(c) is f^n', a);
% true value plot
x axis = 0:1:step-2;
tem = 1.31;
const = @(x axis)(tem).*x axis.^(0);
plot(x axis, const(x axis),'--','linewidth',2); hold on;
% calculated numerically
x axis = 0:1:step-2; % axis for plot
plot(x axis, funct, 'linewidth', 2);
xlabel("Step n"); ylabel("Approx. value of func");
title("Plot of True Value & Approximated Values Over Steps");
legend('true value', 'approx value');
```

b. Choose an appropriate initial guess to start iterations in order to achieve convergence. If the solution diverges re-choose the initial guess.

For my case roll no: 19042, trying out the initial guess which is greater then 0 and less than 10 gives me the approximated value without divergence with limited steps.

let's say for initial guess 3 I get as:

MATLAB Output:

```
Step num=1 Approximated value=3.000000 Function Value When f(a)=-16.369252 step num=2 Approximated value=0.557951 Function Value When f(a)=12.247651 step num=3 Approximated value=1.192319 Function Value When f(a)=1.648620 step num=4 Approximated value=1.306914 Function Value When f(a)=0.041976 step num=5 Approximated value=1.309987 Function Value When f(a)=0.000029 Approximated Value for f(c) is 1.309989

### Figure 1: Output of the code with initial guess '3'
```

Approximated Value for f(c) is = **1.309989.** I'm getting the value within 5 iterations.

c. Calculate the approximated error after every iteration and tabulate your results.

The approximated error is computed as:

$$Et = \frac{true \ value - approximated \ value}{true \ value} \times 100\%$$

Iteration (step)	True Value	Approximated	Et %
1	1.31	3.0	57.408318
2	1.31	0.557951	8.9833145
3	1.31	1.192319	0.2355850
4	1.31	1.306914	0.0010293
5	1.31	1.309987	0.0008672

MATLAB Code for Error Calculation:

```
%% Error Plot

x_axis = 0:1:step-2;  % axis for plot
plot(x_axis,error,'linewidth',2);
title("Error from NR Method for f(c) ");
xlabel("Step n"); ylabel("Error");
```

MATLAB Output:

d. The ending criteria of the numerical computation is such that the consecutive calculations have a precision of 1e-4 (For Even Registration Number) and 1e-5 (For Odd Registration Number).

```
With even roll num (19042) I have chosen 0.0001 error for ending the loop. as line no 14 in my code above (part a)

MATLAB CODE:

e = 0.0001; %e = input('Tolerable error: ');
```

e. Plot the computed drag coefficient values with respect to the number of iterations to show convergence.

With the initial guess as 3 the plot for drag coefficient values with respect to the number of iterations is as follow:

f. Validate the computed value.

So, in order to validate I just using the traditional method. With different values trying to plot the equation as given for calculation drag cofficient and identifying where the f(c) is equal to 0.

The Given equation is:

$$f(c) = \frac{gm}{c} \left(1 - e^{-(c/m)t} \right) - v$$

Input this equation with all the values substituting, in graphing calculator we get:

Figure 4: Plot for the given equation f(c)

We can see that function has value 0 at around **1.31**. From our NR method we get value around **1.309989.** We can clearly see that our value matches with the true value. Hence, (with some error) we are sure that this calculation is correct.