Лекция 3. Итеративные сортировки

Горденко Мария Константиновна

Задача сортировки

• Сортировка — это упорядочивание набора однотипных данных по возрастанию или убыванию.

Критерии оценки алгоритмов сортировки

- Время сортировки
- Требуемая память
- Устойчивость

Сортировка выбором (Selection sort)

- Сортировка выбором является одним из простейших алдоритмов у ч сортировки
- Может быть как устойчивой, так и не устойчивой
- Шаги алгоритма:
 - находим минимальное значение в текущей части массива;
 - производим обмен этого значения со значением на первой неотсортированной позиции;
 - далее сортируем хвост массива, исключив из рассмотрения уже отсортированные элементы

Сортировка выбором (Selection sort)

Сортировка выбором (Selection sort)

- Асимптотическая сложность $O(n^2)$
- Время работы в худшем и среднем случае $O(n^2)$
- Дополнительная память O(1)

Устойчивость

• Устойчива или нет?

Пример

Двухсторонняя сортировка выбором (Double selection sort)

• За один проход выбираем и минимум, и максимум

for
$$i=3...$$
 $\frac{n}{2}$

for $j=i...$ $h-i$

max

min

ewap

ewap

https://habr.com/ru/post/422085/

Бинго-сортировка (Bingo sort)

01:23

Цикличная сортировка (Cycle sort)

Сортировка вставками (Insertion sort)

• Сортировка вставками — алгоритм сортировки, в котором элементы входной последовательности просматриваются по одному, и каждый новый поступивший элемент размещается в


```
1. for j = 2 to A.length do
      key = A[j]
4.
      while (i > 0) and A[i] > key) do
5.
           A[i + 1] = A[i]
6.
      end while
      A[i+1] = key
9. end for
```

		1	2	3	4	
•		1	2	3	4	
7	2	1	2	3	14	key= 2
1.2	3	1	2	3	, 4	key=3
j=	4	1	2	2	5 4	key: 4

N-1 -> O (N)

Сортировка вставками (Insertion sort)

- Время работы в худшем и среднем случае $O(n^2)$
- Время работы в лучшем случае O(n)
- Дополнительная память O(1)
- Устойчивость?

```
3 4 3 1 3
1 3 3 3 4 3 4
```

```
1. for j = 2 to A.length do
2.    key = A[j]
3.    i = j - 1
4.    while (i > 0 and A[i] > key) do
5.         A[i + 1] = A[i]
6.         i = i - 1
7.    end while
8.    A[i+1] = key
9. end for
```

Еще пример

Сортировка бинарными вставками

- Мы можем использовать бинарный поиск, чтобы уменьшить количество сравнений в обычной сортировке вставкой. Бинарная сортировка вставок использует бинарный поиск, чтобы найти правильное место для вставки выбранного элемента на каждой итерации.
- При обычной сортировке вставкой в худшем случае требуется O(n) сравнений (на n-й итерации). Мы можем уменьшить его до $O(\log n)$, используя бинарный поиск .

Сортировка бинарными вставками

- Асимптотическая сложность $O(n^2)$
- Время работы в худшем и среднем случае $O(n^2)$
- Время работы в лучшем случае O(n)
- Дополнительная память O(1)

```
1. function insertionSort(a):
    For i = 1 to n = 1
      k = binSearch(a, a[i], 0, j)
     for m = j downto k
        swap(a[m], a[m+1])
```

Сортировка вставками. Достоинства и недостатки

- эффективен на небольших наборах данных, на наборах данных до десятков элементов может оказаться лучшим;
- эффективен на наборах данных, которые уже частично отсортированы;
- это устойчивый алгоритм сортировки (не меняет порядок элементов, которые уже отсортированы);
- может сортировать список по мере его получения;
- не требует доп.памяти
- **Минусом** же является высокая сложность алгоритма: $O(n^2)$.

Сортировка пузырьком (bubble sort)

• Алгоритм состоит из повторяющихся проходов по сортируемому массиву. За каждый проход элементы последовательно сравниваются попарно и, если порядок в паре неверный, выполняется обмен элементов. Проходы по массиву повторяются N-1 раз или до тех пор, пока на очередном проходе не окажется, что обмены больше не нужны, что означает — массив отсортирован. При каждом проходе алгоритма по внутреннему циклу, очередной наибольший элемент массива ставится на своё место в конце массива рядом с предыдущим «наибольшим элементом», а наименьший элемент перемещается на одну позицию к началу массива («всплывает» до нужной позиции как пузырёк в воде, отсюда и название алгоритма).

Сортировка пузырьком (bubble sort)

Сортировка пузырьком

- Асимптотическая сложность $O(n^2)$
- Время работы в худшем и среднем случае $O(n^2)$
- Дополнительная память O(1)

```
    function bubbleSort(a):
    for i = 0 to n - 2
    for j = 0 to n - i - 2
    if a[j] > a[j + 1]
    swap(a[j], a[j + 1])
```


Пример

	i	j		1	2	3	4	5	6	
	1	1		4	5	9	1	3	6	
		2		4	5	9	1	3	6	
		3	обмен	4	5	9	1	3	6	
		4	обмен	4	5	1	9	3	6	
		5	обмен	4	5	1	3	9 _	6	
ſ	2	1		4	5	1	3	6	9	
		2	обмен	4	5	1	3	6	9	
		3	обмен	4	1	5	3	1-6	9	
		4		4	1	3	5	6	9	
_	3	1	обмен	4	1	3	5	6	9	_
		2	обмен	1	4	3	-5	6	9	5
		3		1	3	4	5	6	9	$\ $
	4	1		1	3	4	5	6	9	
		2		1	3	4	5	6	9	
	5	1		1	3	4	5	6	9	

Оптимизация (условие Айверсона 1)

• Если после выполнения внутреннего цикла не произошло ни одного обмена, то массив уже отсортирован, и продолжать что-то

делать бессмысленно.

Оптимизация (условие Айверсона 1)

- Асимптотическая сложность $O(n^2)$
- Время работы в худшем и среднем случае $O(n^2)$
- Время работы в лучшем случае O(n)
- Дополнительная память O(1)

```
1. function bubbleSort(a):
4. while t
t = false
6. for j = 0 to n - i
       if a[j] > a[j + 1]
         swap(a[j], a[j + 1])
```

Оптимизация (условие Айверсона 2)

- Запоминаем, в какой позиции t был последний обмен на предыдущей итерации внешнего цикла.
- Это верхняя граница просмотра массива Bound на следующей итерации
- Если t = 0 после выполнения внутреннего цикла, значит, обменов не было, алгоритм заканчивает работу.
- Основная идея **уменьшаем количество проходов внутреннего цикла**

Модификации

- Сортировка чет-нечет
- Сортировка расческой
- Сортировка перемешиванием (шейкерная сортировка)

	Устойчив ость	Онлайн	Лучший случай	Средний случай	Худший случай	Доп. память
Сортировка выбором	нет	нет	$O(n^2)$	$O(n^2)$	$O(n^2)$	0(1)
Сортировка вставками	да	да	O(n)	$O(n^2)$	$O(n^2)$	0(1)
Сортировка бин. вставками	да	да	O(n)	$O(n^2)$	$O(n^2)$	0(1)
Сортировка пузырьком	да	нет	$O(n^2)$	$O(n^2)$	$O(n^2)$	0(1)
Сортировка пузырьком с условием Айверсона 1	да	нет	O(n)	$O(n^2)$	$O(n^2)$	0(1)

$$O(Q \cdot n) \rightarrow O(n^2)$$

$$h = 10^9$$

$$Q \approx h = 10^9$$

sum [6] = a(0) + a(1) + a(2) 4. a(1)

Префиксные суммы

Префиксными суммами массива $[a_0, a_1, a_2, ..., a_{n-1}]$ называется массив $[s_0, s_1, s_2, ..., s_n]$, определенный следующим образом:

$$\begin{cases} s_0 = 0 \\ s_1 = a_0 \\ s_2 = a_0 + a_1 \\ s_3 = a_0 + a_1 + a_2 \\ \dots \\ s_n = a_0 + a_1 + a_2 + \dots + a_{n-1} \end{cases}$$

Обратите внимание, что в такой индексации

- s_k равен сумме первых k массива a, не включая a_k ,
- длина *s* на единицу больше длины *a*,
- s_0 всегда равен нулю.

```
    int *s = new int[n + 1];
    s[0] = 0;
    for (int i = 0; i < n; ++i)</li>
    s[i + 1] = s[i] + a[i];
    delete[] s;
```

Задача

Задача. Дан массив целых чисел, и приходят запросы вида «найти сумму на полуинтервале с позиции I до позиции I». Нужно отвечать на запросы за O(1).

Задача

Произведем предварительный подсчет перед ответами на запросы: массив префиксных сумм для исходного массива. Тогда в случае, если бы во всех запросах левая граница s_l была бы равна нулю, то ответом на запрос была бы стандартная префиксная сумма s_r , однако как поступить, если эта граница не равна нулю?

В префиксной сумме s_r содержатся все нужные нам элементы, однако присутствуют и лишние, а именно a_0, a_1, \dots, a_{r-1} . Заметим, что такая сумма будет равна посчитанной префиксной сумме s_l .

Таким образом, выполняется тождество:

$$a_l + a_{l+1} + \dots + a_{r-1} = s_r - s_l$$

Для ответа на запрос поиска суммы на произвольном полуинтервале необходимо вычесть друг из друга две известные префиксные суммы.

	6	3	5	8	4
()	5	9	14	22 26

Другие операции

- побитовое исключающее «или», также известное как хог и обозначаемое \bigoplus ,
- сложение по модулю,
- умножение и умножение по модулю (обратное деление).

$$Q(N)$$
 $Q(l,r)$
 $E(N)$
rpayligenue?

$$[2-6]: \frac{48}{2} = 24 \longrightarrow 0$$

$$[6-8]: \frac{6}{7} = 6$$

Префиксные суммы в матрицах

Задача. Необходимо отвечать на запросы вида «найти сумму в прямоугольнике (x_1, y_1, x_2, y_2) ».

Разложим его на следующие запросы на «префиксах»:

```
\begin{cases} sum(x_1, y_1, x_2, y_2) = sum(0,0, x_2, y_2) - \\ sum(0,0, x_1 - 1, y_2) - sum(0,0, x_2, y_1 - 1) + \\ sum(0,0, x_1 - 1, y_1 - 1) \\ pref[0][0] = a[0][0] \\ pref[0][i] = pref[0][i - 1] + a[0][i] \\ pref[i][0] = pref[i - 1][0] + a[i][0] \\ pref[i][j] = pref[i - 1][j] + pref[i][j - 1] - \\ pref[i - 1][j - 1] + a[i][j] \end{cases}
```


• Задача. Эффективно вычислять количество нулей в отрезке массива.

• Задача. Эффективно вычислять произведение на отрезке массива.

Два указателя

• Два указателя — это простой и эффективный метод, который обычно используется для поиска пар в отсортированном массиве.

• Задача. Найти количество пар элементов a и b в отсортированном массиве, такие что b-a>K.

- Наивное решение: бинарный поиск. Будем считать, что массив уже отсортирован. Для каждого элемента a найдем первый справа элемент b, который входит в ответ в паре с a. Нетрудно заметить, что все элементы, большие b, также входят в ответ. Итоговая сложность: $O(N*\log N)$.
- А можно ли быстрее? Да, давайте рассматривать **два указателя** два индекса *first* и *second*. Будем перебирать *first* слева направо и поддерживать для каждого *first* такой первый элемент *second* справа от него, что a[second] a[first] > K. Тогда в пару к a = [first] подходят ровно n second элементов массива, начиная с *second*.

```
1. int second = 0;
2. int ans = 0;
3. for (int first = 0; first < n; ++first) {
4.  while (second != n && a[second] - a[first] <= r)
5.    ++second;
6.  ans += n - second;
7. }</pre>
```