Repeated measures ANOVA

Introduction: Backgrounds

- Repeated measurements?
 - Measurements were repeated to same subject or unit
 - Types of the repeated factor : time, treatment etc
- Purpose of analysis of repeated measurements
 - Comparison the mean response of the case group with that of the control group
- Repeated measures ANOVA

Types of repeated measures design

Treatment by subjects design

- 예 : 연령에 따른 IQ 의 변화

조사	나이						
조사 대상	12	13	14	15			
1							
•••							
n							

Repeated Measure on two factor

- 예 : 단어 난이도 및 기억 기간에 대한 실험(측정자료 : 기억항목 점수)

조사	기억 기간(반복요인2)						
대상	Short	-term	Long	-term			
	난이도(빈	본복요인1)	난이도(반복요인1)				
	Easy	Difficult	Easy	Difficult			
1							
n							

- Two-factors Mixed design(Repeated measures on one factor)
 - 예 : 어휘 난이도에 따른 반복 학습 효과 실험 (측정 자료 : 기억 문항 수)

A SLOLLI	.01 ⊏	반복 학습 횟수 (반복요인)					
어휘의 난	이노	Trial 1	Trial 2	Trial 3			
	1						
Low	•••						
	10						
	11						
Medium	•••						
	20						
	21						
High	•••						
	30						

- Three-factors Mixed design(Repeated measures on two factors)
 - 예 : Pursuit rotor apparatus data(측정 자료 : 60초 동안 원을 도는 횟수)

처리 요인			운동 방향 (반복 요인 1)						
			Cloc	kwise			Counterclockwise		
		C U	· 동횟수(반복요인	<u>l</u> 2)	C T	운동횟수(반복요인2)		
		trial1	trial2	trial3	trial4	trial1	trial2	trial3	trial4
60초 운동	1								
/60초 휴식	•••								
/0055 77	10								
60초 운동 /10초 휴식	11								
	•••								
/10== -	20								

Properties of Repeated data

- Carry-over effect(이월효과)
 - 한 처리의 효과가 미처 사라지기 전에 다음 처리를 수행하는 경우, 기존 처리의 영향이 다음 처리에 반영되어 나타나는 효과
 - → 처리 시행 간격을 충분히 크게 하거나 이월효과를 측정하는 축차계획법과 같은 실험계획을 이용
- Latent effect(잠재효과)
 - 어떤 처리를 할 때 나타나지 않았던 효과가 다음 처리를 수행할 때 나타나거나 시행 처리 전후의 효과가 복합적으로 나타나는 효과 ➡→ 분석 불가능, 실험 설계 시 최소화하는 설계 필요
- Learning effect(학습효과)
 - 처리나 실험을 반복함으로써 실험 대상이 실험에 적응해 나타나는 효과 → 아무 처리를 안 하는 대조군을 구성하여 같은 내용의 실험으로 학습효과를 측정하는 설계가 바람직

One repeated factor

• data type: i treatments, j subjects, k times

	1	time					
treatment	subject	1	2		K		
1	1	ÿ ₁₁₁ 	ÿ ₁₁₂ 		y_{11K}		
1	n_1	y_{1q_11}	y_{1a_12}		ÿ ₁₉₁ K		
2	1	y ₂₁₁ 	y ₂₁₂ 		$y_{21K} \dots$		
	n_2	y ₂₄₂ 1	y ₂₄₂ 2		y _{2qzK}		
т	1	y_{I11}	ў _{Г12} 		y _{Γ1K}		
1	n_I	$y_{I_{\mathcal{R}_{\mathbf{I}}}}$	y _{InP}		y _{Inp} K		

Repeated measures ANOVA model

$$y_{ijk} = \mu + \alpha_i + \beta_{ij} + \gamma_k + (\alpha \gamma)_{ik} + \varepsilon_{ijk}$$
where $\varepsilon_{ijk} \sim^{iid} N(0, \sigma^2)$, $i = 1, \dots, I : j = 1, \dots, n_i : k = 1, \dots, K$

- $-\alpha_i$: the effect of *i*-th treatment
- $-\beta_{ij}$: the effect of j-th subject within i-th trt
- $-\gamma_k$: the effect of k-th time
- $-(\alpha \gamma)_{ik}$: the interaction effect between i-th treatment and k-th time

• Assumptions: sphericity or compound symmetry

- sphericity(구형성) : 개체들이 일정한 시점마다 측정되기에 반복측정치 사이에 상관관계 존재 가능

- 복합대칭성(compound symmetry) : 모든 상관계수 동일하

다는 가정하는 성질

$$Cov (\varepsilon)_{K \times K} = \sigma^{2} \begin{bmatrix} 1 & \rho & \cdots & \rho \\ \rho & 1 & \cdots & \rho \\ \vdots & \vdots & \ddots & \vdots \\ \rho & \rho & \cdots & 1 \end{bmatrix}$$

- 복합대칭성은 반복측정 자료를 일변량으로 분석하기 위한 조건
 - 측정 간격이 일정하지 않으면 가정을 만족하지 못할 가능성이 높으며, 가정을 만족하지 않으면 다변량 방법으로 분석

- Test of sphericity
 - "시점간 상관관계가 모두 동일하다"는 가설 검정
 - 처리들을 대비(contrast) 또는 직교다항(orthogonal ploynomials)을 만족하도록 변환시킨 후 대비행렬 또는 직교다항행렬의 오차항에 대한 검정으로 확인
 - SAS에서는 처리간의 대비 방법에 따라 결과 값이 다르지만 구형성 검정 결과에 영향은 없음
 - 실제 자료에서는 구형성을 만족하는 경우가 드물기 때문에 다변량 분석방법으로 구형성 조건을 검정하여 조건을 만족할 때만 일변량 방법으로 분석 수행

- interesting test of repeated measures ANOVA
 - test of treatment effect :

the difference of treatment effect = 0

Or H_0 : all α_i are equal

– test of time effect :

the difference of time effect = 0

Or H_0 : all γ_k are equal

– test of interaction effect :

 H_0 : no interactio n between tr eatment and time

ANOVA table : univariate

Source	Df	SS	MS	F
Trt Subject(trt) Time	Dftr=I-1 Dfs(tr)=N-I Dftm=K-1	SStr SSb SStm	MStr MSb MStm	F1 F2
Trt*time	Df(tr*tm)=(I-1)(K-1)	SStr*tm	MStr*tm	F3
Error	DfE=(N-I)(K-1)	SSE	MSE -	
total	NK-1	SST		

where
$$N = \sum_{i=1}^{I} n_i$$

$$SST = SStr + SSb + SStm + SStr $\times tm + SSE$$$

-
$$MS(l) = \frac{SS(l)}{df(l)}$$
, $l = tr, b, tm, tr \times tm, E$

decomposition of Sum of squares

$$-SST = \sum_{k=1}^{K} \sum_{i=1}^{I} \sum_{j=1}^{n_{i}} (y_{ijk} - \overline{y}_{...})^{2}$$

$$SStr = K \sum_{i=1}^{I} n_{i} (\overline{y}_{i..} - \overline{y}_{...})^{2}$$

$$SSb = K \sum_{i=1}^{I} \sum_{j=1}^{n_{i}} (\overline{y}_{ij.} - \overline{y}_{i...})^{2}$$

$$SStm = N \sum_{k=1}^{K} (\overline{y}_{..k} - \overline{y}_{...})^{2}$$

$$SStr \times tm = \sum_{k=1}^{K} \sum_{i=1}^{I} n_{i} (\overline{y}_{i.k} - \overline{y}_{i..} - \overline{y}_{i..} + \overline{y}_{...})^{2}$$

$$SSE = \sum_{k=1}^{K} \sum_{i=1}^{I} \sum_{j=1}^{n_{i}} (y_{ijk} - \overline{y}_{ij.} - \overline{y}_{i.k} + \overline{y}_{i...})^{2}$$

test statistic of test of the effects

- test for the effect of treatment
$$F_1 = \frac{MStr}{MSb} \sim F(I-1, N-I)$$

- test for the effect of time

$$F_2 = \frac{MStm}{MSE} \sim F(K-1, (N-I)(K-1))$$

- test for the interactio n effect between t reatment and time

$$F_3 = \frac{MStr \times tm}{MSE} \sim F((I-1)(K-1), (N-I)(K-1))$$

EXAMPLE: Depressor

- data of hypotensive agents with the hypotensive patient
 - Treatments : current(C) and new(N)
 - Time: 3 times(0, 4 and 8 week) after treatment
 - interesting variable : blood pressure

	current (C)						
id	time0	time4	time8				
1	95	88	88				
2	100	95	90				
3	98	90	91				
4	114	98	98				
5	110	81	86				
••••	••••	••••	••••				
30	103	87	90				
31	110	99	101				
32	110	95	100				

	new (N)						
id	time0	time4	time8				
1	100	85	90				
2	105	90	90				
3	98	100	100				
4	105	92	105				
5	108	93	89				
••••	•••••	••••	•••••				
30	100	90	94				
31	96	91	93				
32	100	80	80				
33	109	91	97				
34	101	100	109				

- Analysis of repeated measures in SAS
 - proc ANOVA: units of all treatments are the same
 - proc Catmod : character-valued factor
 - proc Genmod : the iterative fitting used in GEEs
 - proc GLM : general method
 - proc Mixed : mixed model

cf: Case of uncorrelation between time and Y

```
SUBJ GROUP TIME Y
                 15
                 19
                 25
   1 1 21
1 2 18
1 3 17
 1 2 1 14
1 2 2 12
1 2 3 16
                 11
                 20
 10
                 14
 10 3
                  18
                  16
 10
```

```
proc GLM data=ex1;
 class group subj time;
 model y=group subj(group) time group*time;
 test h=group e=subj(group);
run;
      측정자료가 시간과 독립
      이 아니라면 시간별 자료
       를 하나의 변수로 입력
```

SAS program : proc GLM

```
proc GLM;
  class trt;
  model week0 week4 week8=trt/nouni SS3;
  repeated week 3 (0 4 8) contrast(3)/summary printe;
run;
```

- Model의 종속변수 : 반복측정 자료의 변수명 입력
- Model options :
 - nouni=no univariate : 시간에 대한 처리별 분산분석 미출력
 - SS3=type 3 of sum of square
- Repeated : 반복 요인명, 반복횟수(자료값)
 - Contrast: contrasts between levels of the factor and a reference level
 - Profile : contrasts between adjacent levels of the factor
 - Polynomial: orthogonal polynomial contrasts(1차/2차/3차 곡선의 추세)
- Repeated options :
 - Summary : contrast 결과 출력
 - PrintE : 오차항의 구형성 검정 결과 출력(within-subject factors)
 - NoM=no multivariate : 다변량 방법 결과 생략 / NoU etc

SAS output : proc GLM

```
The GLM Procedure
             Repeated Measures Analysis of Variance
              Repeated Measures Level Information
            Dependent Variable week0 week4 week8
                  Level of week 0 4
Partial Correlation Coefficients from the Error SSCP Matrix / Prob > |r|
                DF = 64 week0 week4 week8
                week0 1.000000 0.223615 0.319750
                                  0.0734 0.0094
                week4 0.223615 1.000000 0.792995
                          0.0734
                                           <.0001
                week8 0.3197500.7929951.000000
                          0.0094 < .0001
```

- 시점간 부분상관행렬
 - 결과 : 시점간 상관관계가 동일하지 않음을 의미

test of Sphericity

Sphericity Tests

Variables DF Criterion Chi-Square Pr > ChiSq Transformed Variates 2 0.8178931 12.664488 0.0018 Orthogonal Components 2 0.7447394 18.567418 <.0001

- 구형성 검정: Mauchly's criterion~근사 카이제곱검정
 - Transformed variates : 프로그램에서 지정한 기준시점을 기준으로 한 contrast(3)에 대한 오차항의 공분산 행렬의 구형성 검정을 의미
 - 두 시점간 분석하는 profile 사용 시 transformed variates
 는 두 시점간 대비에 대한 구형성 검정 수행
 - Orthogonal Components : 직교인 경우 이용

[결과] 구형성 검정 결과 : 모든 시점간 상관관계가 동일하다는 가설을 기각하므로 반복요인이 시점에 대한 오차항이 구형성 가정을 만족하지 않으므로 다변량 방법으로 분석함을 의미

- Multivariate analysis of repeated data
 - test of no time effect

```
MANOVA Test Criteria and Exact F Statistics for the Hypothesis of no week Effect
                 H = Type III SSCP Matrix for week
                 E = Error SSCP Matrix
                        S=1 M=0 N=30.5
Statistic
                        Value
                                       F Value
                                                  Num DF
                                                           Den DF
Wilks' Lambda
                     0.32043428 66.80
                                                           63
                                                                     <.0001
Pillai's Trace
                                                           63
                    0.67956572 66.80
                                                                     <.0001
Hotelling-Lawley Trace 2.12076470 66.80
                                                           63
                                                                     <.0001
Roy's Greatest Root 2.12076470
                                       66.80
                                                           63
                                                                     < .000^{\circ}
```

- 반복요인(시점) 효과에 대한 다변량 분석 결과
 - Wilk's lambda 등 4가지 결과 제공

[결과] 반복요인(방문시점) 효과에 대한 다변량 분석 결과 효과가 동일하다는 가설을 기각(p-value<0.0001) 하므로 시점별 혈압의 차이가 있음을 의미

test of no interaction(time X trt) effect

MANOVA Test Criteria and Exact F Statistics for the Hypothesis of no week*trt Ef fect H = Type III SSCP Matrix for week*trt F = Frror SSCP Matrix S=1 M=0 N=30.5Statistic F Value Num DF Den DF Value Wilks' Lambda 0.90499394 3.31 2 63 0.09500606 3.31 63 Pillai's Trace 63 Hotelling-Lawley Trace 0.10497977 3.31 0.0431 Roy's Greatest Root 0.10497977 3.31 63 0.0431

- 처리와 시점의 교호작용에 대한 다변량 분석 결과
 - Wilk's lambda 등 4가지 결과 제공

[결과] 처리와 방문시점 사이의 교호작용에 대한 다변량 분석 결과, 효과가 동일하다는 가설을 유의수준 5%에 서 기각(p-value<0.0431)하므로 처치방법별 방문시점에 따라 혈압의 차이가 있음을 의미

test of no treatment effect

Frror

Repeated Measures Analysis of Variance Tests of Hypotheses for Between Subjects Effects								
Source	DF	Type III SS	Mean Square	F Value	Pr > F			
trt	1	159,295919	159.295919	1.47	0.2295			

- 처리(처치) 효과에 대한 다변량 분석 결과

64 6926.911152 108.232987

• Repeated measures ANOVA 결과

[결과] 처리(처치) 효과에 대한 반복 측정 분산분석을 수행한 결과, 처리 효과가 동일하다는 가설을 기각(p-value<0.2295)할 수 없으므로 처치방법별 혈압의 차이가 없음을 의미

Univariate test for within-subject effects

Repeated Measures Analysis of Variance
Univariate Tests of Hypotheses for Within Subject Effects
Adj Pr > F

Source DF Type III SS Mean Square F Value Pr > F G - G H - F
week 2 5975.520053 2987.760027 102.15 <.0001 <.0001 <.0001
week*trt 2 251.237225 125.618613 4.29 0.0157 0.0235 0.0221
Error(week) 128 3743.995098 29.249962
Greenhouse-Geisser Epsilon 0.7966
Huynh-Feldt Epsilon 0.8265

- 반복요인(week)에 대한 주효과 및 교호작용효과에 대한 일 변량 분석
 - 반복요인이 오차항의 구형성 조건이 만족하지 않을 때 수행하는 분석
 - 구형성 불만족 시 자유도를 보정한 일변량 분석 가능
 - 반복측정 분산-공분산 함수 G-G $_{\varepsilon}$ 보정항 : 분산분석의 자유도에 $_{\varepsilon}$ 을 곱해 자유도를 수정한 방법
 - H-H 보정방법 제공 : G-G를 수정한 방법

– Univariate test for within-subject effects(계속)

Repeated Measures Analysis of Variance
Univariate Tests of Hypotheses for Within Subject Effects
Adj Pr > F

Source DF Type III SS Mean Square F Value Pr > F G - G - H - F

week 2 5975.520053 2987.760027 102.15 <.0001 <.0001 <.0001

week*trt 2 251.237225 125.618613 4.29 0.0157 0.0235 0.0221

Error(week) 128 3743.995098 29.249962

Greenhouse-Geisser Epsilon 0.7966

Huynh-Feldt Epsilon 0.8265

- 구형성 검정에서 귀무가설 기각 시 다변량방법 및 보정 -일변량 분석 가능
- 일반적으로 다변량 방법으로 분석하는 것이 바람직

[결과] 개체내 반복요인(week)에 대한 주효과 및 교호작용효과에 대한 수정전(○) 및 보정후(○) 검정 결과, 반복요인에 의한 효과의 차이가 없다는 가설을 기각하므로 반복요인에 의한 주효과 및 교호작용효과는 차이가 존재

• 시점간 처치 차이 분석 (대비) : 3시점 기준

```
Repeated Measures Analysis of Variance
             Analysis of Variance of Contrast Variables
week_N represents the contrast between the nth level of week and the 3rd
    Contrast Variable: week_1
                           Mean Square F Value Pr > F
    Source DF Type III SS
    Mean 1 7743.098262 7743.098262
                                       115.68
                                                <.0001
    trt 1 446.128565 446.128565
                                               (0.0121)
                                         6.66
    Error 64 4283.992647 66.937385
    Contrast Variable: week_2
                           Mean Square F Value Pr > F
    Source DF Type III SS
    Mean 1 148.363636 148.363636
                                         4.99
                                                0.0290
                                               (0.4594)
    trt 1 16.484848 16.484848
                                         0.55
    Error
           64 1904.000000
                            29.750000
```

3시점(8주후)의 혈압 기준으로 1시점 및 2시점 혈압의 차이를 처치방법에 따라 유의한 가를 분석하는 대비(contrast)로 살펴본 결과, 1시점과 3시점은 차이가 유의하지만 2시점과 3시점은 유의하지 않은 것으로 나타남

EXAMPLE 2: Electrocardio-gram

- **Data**: 교재 p.p. 146-147
 - 심부전증 환자 남녀 12명, 약의 농도(2,3,4mg), 8주간 측정자료

```
data
  1 1 2.68 2.76 2.50 2.30 2.14 2.40 2.33 2.20 3.41 3.48 3.41 3.49 3.33 3.20 3.07 3.15 2.36 2.36 2.28 2.35 2.31 2.62 2.120 2.42
  2 1 3.95 3.36 2.93 2.53 3.04 3.37 3.14 2.62 3.92 4.02 4.04 3.64 3.29 3.10 2.70 2.69 3.03 3.02 3.19 2.98 3.01 2.75 2.700 2.84
  3 1 2.28 2.34 2.29 2.43 2.06 2.18 2.28 2.29 2.52 2.44 2.27 2.23 2.01 2.26 2.34 2.44 1.99 1.62 1.65 1.68 1.65 1.85 1.960
  4 1 4.08 3.87 3.79 3.30 3.80 3.24 2.98 2.91 4.43 4.30 4.08 4.01 3.62 3.23 2.46 2.97 3.24 3.37 3.54 3.31 2.81 3.58 3.760 3.05
  5 1 4.09 3.90 3.54 3.35 3.15 3.23 3.46 3.27 4.55 4.58 4.44 4.04 4.33 3.87 3.75 3.81 3.35 3.92 3.69 3.97 3.94 3.63 2.920
  6 1 3.79 3.97 3.78 3.69 3.31 2.83 2.72 3.00 4.25 4.37 4.10 4.20 3.84 3.43 3.79 3.74 3.04 3.28 3.17 2.99 3.31 3.21 2.980
  7 1 3.82 3.44 3.46 3.02 2.98 3.10 2.79 2.88 3.00 2.80 2.59 2.42 1.61 1.83 1.21 1.50 2.46 3.22 2.65 3.02 2.25 1.50 2.370
  8 1 3.67 3.47 3.19 2.19 2.85 2.68 2.60 2.73 4.60 3.98 4.06 3.93 3.61 2.91 2.07 2.67 2.85 2.81 2.96 2.69 2.18 1.91 2.210
  9 1 4.12 3.71 3.57 3.49 3.64 3.38 2.28 3.72 4.37 4.06 3.68 3.64 3.17 3.37 3.20 3.25 3.45 3.48 3.80 3.60 2.83 3.17 3.220
  10 1 2.77 2.77 2.75 2.75 2.71 2.75 2.52 2.60 2.83 2.79 2.82 2.79 2.80 2.76 2.64 2.69 2.56 2.52 2.67 2.60 2.68 2.64 2.650 2.61
 11 1 3.77 3.73 3.67 3.56 3.59 3.35 3.32 3.18 4.06 3.68 3.59 3.27 2.60 2.72 2.22 2.68 2.19 2.44 2.41 2.55 2.93 3.08 3.110
 12 1 2.00 1.91 1.88 2.09 2.08 1.98 1.70 1.40 2.82 1.90 2.57 2.30 1.67 1.90 2.07 1.76 2.14 1.92 1.75 1.58 1.51 1.94 1.840
  13 2 2.36 3.42 3.28 3.30 3.31 2.99 3.01 3.08 3.18 3.13 3.11 2.97 3.06 3.27 3.24 3.33 2.57 3.08 2.62 2.91 2.71 2.39 2.420 2.73
 14 2 4.31 4.02 3.38 3.31 3.46 3.49 3.38 3.35 4.39 4.63 4.19 4.00 4.01 3.66 3.47 3.22 2.90 2.80 3.17 2.39 3.01 3.33 2.750
 15 2 3.88 3.92 3.71 3.59 3.57 3.48 3.42 3.63 3.90 3.98 4.09 4.03 4.07 3.56 3.83 3.75 3.02 3.21 3.17 3.13 3.38 3.25 3.290 3.35
  16 2 1.97 1.90 1.45 1.45 1.24 1.24 1.17 1.27 2.31 2.19 2.21 2.09 1.75 1.72 1.80 1.36 1.35 1.15 1.24 1.32 0.95 1.24 1.040
 17 2 2.91 2.99 2.87 2.88 2.84 2.67 2.69 2.77 3.19 3.18 3.15 3.14 3.08 2.96 2.97 2.85 2.61 2.59 2.77 2.73 2.70 2.72 2.710
  18 2 3.59 3.54 3.17 2.92 3.48 3.05 3.27 2.96 3.54 3.45 3.25 3.01 3.07 2.65 2.47 2.55 2.91 2.89 3.01 2.74 2.71 2.86 2.950
 19 2 2.88 3.06 2.75 2.71 2.83 2.58 2.68 2.42 2.99 3.02 3.02 2.94 2.69 2.66 2.68 2.70 2.78 2.89 2.77 2.77 2.69 2.65 2.840
 20 2 4.04 3.94 3.84 3.99 3.90 3.89 3.89 2.98 4.37 4.20 4.17 4.19 4.07 3.86 3.89 3.81 3.77 3.78 3.90 3.80 3.78 3.700 3.61
 21 2 3.38 3.42 3.28 2.94 2.96 3.12 2.98 2.99 3.26 3.39 3.27 3.20 3.32 3.09 3.25 3.15 3.06 2.95 3.07 3.10 2.67 2.68 2.940
 22 2 4.49 4.35 4.38 4.36 3.77 4.23 3.83 3.89 4.72 4.97 4.99 4.96 4.95 4.82 4.56 4.49 2.87 3.08 3.02 2.14 3.67 3.84 3.555 3.75
```

23 2 4.17 4.30 4.16 4.07 3.87 3.87 3.85 3.82 4.27 4.50 4.34 4.00 4.11 3.93 3.68 3.77 3.98 3.77 3.65 3.81 3.77 3.89 3.630 3.74 24 2 3.73 3.51 3.16 3.26 3.07 2.77 2.92 3.00 4.10 3.85 4.27 4.01 3.78 3.14 3.94 3.69 3.04 3.00 3.24 3.37 2.69 2.89 2.890 2.76

Profile plots

4.00

3.50

3.00

2.50

2.00

4.00

남성

hr1 hr2 hr3 hr4 hr5 hr6 hr7 hr8

→trt2 -trt3 -trt4

SAS program

```
data repeat_ex2;
 input gender trt2_hr1-trt2_hr8 trt3_hr1-trt3_hr8 trt4_hr1-trt4_hr8;
 datalines;
  2.68 2.76
            2.5
                    2.3
                              2.14
                                      2.4
                                             2.33
                                                     2.2
               3.48
                      3.41
                              3.49
                                             3.2
                                                     3.07
       3.41
                                      3.33
           2.36
                      2.36
                              2.28
                                             2.31
                                                     2.62
       3.15
                                      2.35
       2.12
               2.42
(중략)
2 3.73 3.51
               3.16
                                                     3
                      3.26
                              3.07
                                      2.77
                                             2.92
                                             3.14
               3.85
                   4.27
                              4.01
                                      3.78
                                                     3.94
       4.1
       3.69
                      3
                                             2.69
                                                     2.89
               3.04
                              3.24
                                      3.37
       2.89
               2.76
proc GLM;
 class gender;
 model trt2_hr1--trt4_hr8=gender/nouni SS3;
 repeated trt 3(2 3 4), hr 8/printe;
run;
```

처리내 시점별 편상관계수

The GLM Procedure Repeated Measures Analysis of Variance

	Repeated Measures Level Information											
Dependent	Variable	trt2_hr1	trt2_hr2	trt2_hr3	trt2_hr4 tr	t2_hr5 tr	t2_hr6 trt2	_hr7 trt2_	hr8 trt3_h	r1 trt3_hr	2 trt3_hr3	trt3_hr4
Leve	l of trt	2	2	2	2	2	2	2	2	3	3 3	3
Lev	el of hr	1	2	3	4	5	6	7	8	1	2 3	4
Dependent	Variable	trt3_hr5	trt3_hr6	trt3_hr7	trt3_hr8 tr	t4_hr1 tr	t4_hr2 trt4	_hr3 trt4_	hr4 trt4_h	r5 trt4_hr	6 trt4_hr7	trt4_hr8
Leve	l of trt	3	3	3	3	4	4	4	4	4	4 4	4
Lev	el of hr	5	6	7	8	1	2	3	4	5	6 7	. 8
		P	artial Cor	relation (Coefficient	в from th	e Error SSC	P Matrix /	Prob > r			
DF = 22	trt2_hr1	trt2_hr2	trt2_hr3	trt2_hr4	trt2_hr5	trt2_hr6	trt2_hr7	trt2_hr8	trt3_hr1	trt3_hr2	trt3_hr3	trt3_hr4
trt2_hr1	1.000000	0.929421	0.873348	0.762993	0.842940	0.869867	0.800786	0.835448	0.882892	0.899625	0.848232	0.819715
		<.0001	<.0001	<.0001	<.0001	<.0001	<.0001	<.0001	<.0001	<.0001	<.0001	<.0001
trt2_hr2	0.929421	1.000000	0.971296	0.878017	0.925331	0.904538	0.872174	0.919216	0.882268	0.916945	0.852176	0.839986
	<.0001		<.0001	<.0001	<.0001	<.0001	<.0001	<.0001	<.0001	<.0001	<.0001	<.0001
trt2_hr3	0.873348	0.971296	1.000000	0.934471	0.939312	0.923607	0.870569	0.926031	0.813971	0.839608	0.786452	0.790091
	<.0001	<.0001		<.0001	<.0001	<.0001	<.0001	<.0001	<.0001	<.0001	<.0001	<.0001
trt2_hr4	0.762993	0.878017	0.934471	1.000000	0.895026	0.883693	0.821562	0.879000	0.716988	0.750220	0.711626	0.721825
	<.0001	<.0001	<.0001		<.0001	<.0001	<.0001	<.0001	0.0001	<.0001	0.0001	0.0001
trt2_hr5	0.842940	0.925331	0.939312	0.895026	1.000000	0.921939	0.858270	0.881327	0.793231	0.781615	0.733260	0.719182
	<.0001	<.0001	<.0001	<.0001		<.0001	<.0001	<.0001	<.0001	<.0001	<.0001	0.0001
trt2_hr6	0.869867	0.904538	0.923607	0.883693	0.921939	1.000000	0.920921	0.889886	0.770692	0.806007	0.764638	0.745127
	<.0001	<.0001	<.0001	<.0001	<.0001		<.0001	<.0001	<.0001	<.0001	<.0001	<.0001

(생략)

+ 처리내 시점별 편상관계수를 보면, 시점별 상관관계가 높음을 알 수 있어 처리내 시점간 관련이 있음을 예상할 수 있음.

처리(trt)에 대한 분석

The GLM Procedure Repeated Measures Analysis of Variance

E = Error SSCD Matrix

trt_N represents the contrast between the nth level of trt and the last

trt_2 48.16 trt_i 109.37 trt_1 trt_2 48 16 229.58

Partial Correlation Coefficients from the Error SSCP Matrix of the Variables Defined by the Specified Transformation / Prob > |r| DF = 22trt 1

1.000000

0.303921

trt_1

trt_2

trt_2

0.1586

0.303921

1.000000

처리의 오차항에 대한 형성 조건은 채택되어 조 건 만족(일변량분석 적절)

0.1586Sphericity Tests Mauch|v's

Variables Criterion Chi-Square Pr > ChiSq Transformed Variates 0.7934783 4.8579101 0.0881 2 Orthogonal Components 0.8085484 4.4628097 0.1074

MANOVA Test Criteria and Exact F Statistics for the Hypothesis of no trt Effect H = Type III SSCP Matrix for trt

E = Error SSCP Matrix

N=9.5 Statistic F Value Num DF Den DF Value Pr > FWilks' Lambda 25.59 <.0001 0.29096213 21 Pillai's Trace 0.70903787 25.59 21 <.0001 25.59 21 Hotelling-Lawley Trace 2.43687333 < .0001 Roy's Greatest Root 2.43687333 25.59 21 <.0001

MANOVA Test Criteria and Exact F Statistics for the Hypothesis of no trt*gender Effect H = Type III SSCP Matrix for trt*gender E = Error SSCP Matrix

	S=1 M=0	N=9.5		
Statistio	Value	F Value	Num DF	Den DF Pr > F
Wilks' Lambda	0.98343067	0.18	2	21 0.8391
Pillai's Trace	0.01656933	0.18	2	21 0.8391
Hotelling-Lawley Trace	0.01684850	0.18	2	21 0.8391
Roy's Greatest Root	0.01684850	0.18	2	21 0.8391

• 처리에 따른 심전도의 차이 는 유의함

성별에 처리의 심전도 차이는 유 의하지 않음

+ 처리에 대한 구형성 조건은 만족(일변량 분석이 적절), 다변량분석 결과를 보 면, 처리(약의 농도)에 따른 심전도 차이는 유의하지만 성별을 고려한 처리의 심전도 차이는 유의하지 않은 것으로 나타남

측정시점(hr)에 대한 분석

The GLM Procedure Repeated Measures Analysis of Variance

E = Error SSCP Matrix

	hr_l	N represents th	e contrast betw	een the nth lev	vel of hr and th	ne last		
	hr_1	hr_2	hr_3	hr_4	hr_5	hr_6	hr_7	
hr_1	23.02653	16.00877	15.65405	10.30923	8.08277	4.50683	3.20186	
hr_2	16.00877	15.11312	12.42321	8.40605	7.38975	2.45447	1.27360	
hr_3	15.65405	12.42321	12.04986	8.16188	6.76027	2.66803	2.17013	
hr_4	10.30923	8.40605	8.16188	8.40037	3.96793	0.77288	2.63843	
hr_5	8.08277	7.38975	6.76027	3.96793	6.64377	3.28252	2.34795	
hr_6	4.50683	2.45447	2.66803	0.77288	3.28252	5.23138	2.55112	
hr_7	3.20186	1.27360	2.17013	2.63843	2.34795	2.55112	4.89347	
Partial Correlation	on Coefficients						formation / Prob	> r
DF = 22	hr_1	hr_2	hr_3	hr_4	hr_5	hr_6	hr_7	
hr_1	1.000000	0.858157	0.939770	0.741247	0.653489	0.410628	0.301633	
		<.0001	<.0001	<.0001	0.0007	0.0516	0.1619	
hr_2	0.858157	1.000000	0.920589	0.746046	0.737472	0.276040	0.148097	
	<.0001		<.0001	<.0001	<.0001	0.2023	0.5001	
hr_3	0.939770	0.920589	1.000000	0.811242	0.755554	0.336040	0.282609	
	<.0001	<.0001		<.0001	<.0001	0.1169	0.1914	
hr_4	0.741247	0.746046	0.811242	1.000000	0.531139	0.116589	0.411516	
	<.0001	<.0001	<.0001		0.0091	0.5963	0.0511	
hr_5	0.653489	0.737472	0.755554	0.531139	1.000000	0.556790	0.411787	
	0.0007	<.0001	<.0001	0.0091		0.0058	0.0509	
hr_6	0.410628	0.276040	0.336040	0.116589	0.556790	1.000000	0.504213	
	0.0516	0.2023	0.1169	0.5963	0.0058		0.0142	
hr_7	0.301633	0.148097	0.282609	0.411516	0.411787	0.504213	1.000000	
	0.1619	0.5001	0.1914	0.0511	0.0509	0.0142		

측정시점(hr)에 대한 분석

• 처리의 오차항에 대한 구형성 조건은 기각되어 구형성 조건을 만족 안 함

+ 측정시점에 대한 구형성 조건은 만족하지 않아 다변량 분석으로 분석한 결과를 보면, 처리(약의 농도)에 따른 심전도 차이는 유의하지만 성별을 고려한 처리의 심전도 차이는 유의하지 않은 것으로 나타남

처리 및 측정시점(hr)의 교호작용에 대한 분석

Frror		

		trt_N represents t	the contrast between	the nth level	of trt and the las	at	
		hr_N represents	the contrast between	the nth level	of hr and the last	t	
	trt_1*hr_1	trt_1*hr_2	trt_1*hr_3	trt_1*hr_4	trt_1∗hr_5	trt_1*hr_6	trt_1*hr_7
trt_1*hr_1	6.9023833	4.2976250	3.4178000	4.7925167	1.6007833	1.5553667	2.5779542
trt_1*hr_2	4.2976250	4.4214583	3.6491833	5.4075083	1.9091083	0.6410333	2.4661875
trt_1*hr_3	3.4178000	3.6491833	5.2747333	6.4049333	1.7293333	1.5655333	2.6328750
trt_1*hr_4	4.7925167	5.4075083	6.4049333	10.4709167	2.3941500	1.1763667	2.7450958
trt_1*hr_5	1.6007833	1.9091083	1.7293333	2.3941500	4.1831167	1.5246000	0.4693792
trt_1*hr_6	1.5553667	0.6410333	1.5655333	1.1763667	1.5246000	3.4268667	2.2536833
trt_1*hr_7	2.5779542	2.4661875	2.6328750	2.7450958	0.4693792	2.2536833	5.4014146

(생략)

Partial Correlation	Coefficients	from the Error	SSCP Matrix of	the Variables Defi	ned by the Speci	fied Transformat	ion / Prob > [r
DF = 22	trt_1*hr_1	trt_1*hr_2	trt_1*hr_3	trt_1*hr_4	trt_1*hr_5	trt_1*hr_6	trt_1*hr_7
trt_1*hr_1	1.000000	0.777940	0.566431	0.563731	0.297909	0.319805	0.422204
		<.0001	0.0048	0.0051	0.1674	0.1369	0.0448
trt_1*hr_2	0.777940	1.000000	0.755636	0.794735	0.443913	0.164683	0.504649
	<.0001		<.0001	<.0001	0.0338	0.4527	0.0141
trt_1*hr_3	0.566431	0.755636	1.000000	0.861831	0.368153	0.368225	0.493260
	0.0048	<.0001		<.0001	0.0839	0.0838	0.0168
trt_1*hr_4	0.563731	0.794735	0.861831	1.000000	0.361750	0.196382	0.365016
	0.0051	<.0001	<.0001		0.0899	0.3691	0.0868
trt_1*hr_5	0.297909	0.443913	0.368153	0.361750	1.000000	0.402677	0.098746
	0.1674	0.0338	0.0839	0.0899		0.0568	0.6540
trt_1*hr_6	0.319805	0.164683	0.368225	0.196382	0.402677	1.000000	0.523830
	0.1369	0.4527	0.0838	0.3691	0.0568		0.0103
trt_1*hr_7	0.422204	0.504649	0.493260	0.365016	0.098746	0.523830	1.000000
	0.0448	0.0141	0.0168	0.0868	0.6540	0.0103	

처리 및 측정시점(hr)에 대한 분석

• 처리의 오차항에 대한 구형성 조건은 기각되어 구형성 조건을 만족 안 함

Sphericity Tests

Variables	DF	Mauchly's Criterion	Chi-Square	Pr > ChiSq
Transformed Variates	104	1.1372E-9	353.05222	<.0001
Orthogonal Components	104	4.3119E-6	211.78523	<.0001

MANOVA Test Criteria and Exact F Statistics for the Hypothesis of no trt*hr Effect
H = Type III SSCP Matrix for trt*hr
E = Error SSCP Matrix

N=3.5

Statistic	Value	F Value	Num DF	Den DF	Pr > F
Wilks' Lambda	0.13545253	4.10	14	9	0.0195
Pillai's Trace	0.86454747	4.10	14	9	0.0195
Hotelling-Lawley T	race 6.38266023	4.10	14		0.0195
Roy's Greatest Roo	t 6.38266023	4.10	14	9	0.0195

MANOVA Test Criteria and Exact F Statistics for the Hypothesis of no trt*hr*gender Effect
H = Type III SSCP Matrix for trt*hr*gender
E = Error SSCP Matrix

S=1 M=6 N=3.5

Statistic	Value	F Value	Num DF	Den DF	Pr > F
Wilks' Lambda	0.32000638	1.37	14	9	0.3249
Pillai's Trace	0.67999362	1.37	14	9	0.3249
Hotelling-Lawley Trace	2.12493769	1.37	14	9	0.3249
Roy's Greatest Root	2.12493769	1.37	14	9	0.3249

• 처리와 시점 의 교호작용 에 따른 심전 도의 차이는 유의함

> 처리, 시점 및 성별의 교 호작용은 유 의하지 않음

+ 처리 및 측정시점의 교호작용에 대한 분석을 보면 구형성 조건은 만족하지 않아 다변량 분석으로 분석하게 되며, 처리와 시점의 교호작용은 유의하지만 처리, 시점 및 성별을 고려한 차이는 유의하지 않은 것으로 나타남

성별(다변량분석) 및 반복요인에 대한 일변량 분석 결과

• 성별에 따른 심전도의 차이는 유의하지 않음

Tests of Hypotheses for Between Subjects Effects Type III SS F Value Pr > F Mean Square 10.1933865 10.1933865 0.3147 gende 211.8207218 9 6282146 Error Repeated Measures Analysis of Variance Univariate Tests of Hypotheses for Within Subject Effects Adj Pr > F DF Type III SS Mean Square F Value Pr > FH - FSource 26.44558238 13.22279119 <.0001 24.01 <.0001 <.0001 trt 0.12683286 trt*gender 0.25366571 0.23 0.7953 0.75680.7824Error(trt) 24.23301233 0.55075028 0.8393 구형성 조건 만족 Greenhouse-Geisser Epsilon

Repeated Measures Analysis of Variance

Adj Pr > FDF F Value Pr > FG - GH - FType III SS Mean Square Source 7 16.73938537 2.39134077 31.86 <.0001 <.0001 <.0001 2.08991940 0.29855991 3.98 0.0005 0.0180 0.0125 hr *aende 11.56025252 0.07506657 Error(hr) 154

Huvnh-Feldt Epsilon

Greenhouse-Geisser Epsilon 0.3488 Huynh-Feldt Epsilon 0.4135 • 구형성 조건 만족 안함

Adi Pr > F Mean Square H - FSource DF Type III SS F Value Pr > FG - G 0.44187462 <.0001 <.0001 14 6.18624470 7.21 <.0001 14 1.23681693 0.08834407 1.44 0.13220.2065 0.1789trt*hr*gender 18.86632795 0.06125431 rror(trt* 308

> Greenhouse-Geisser Epsilon Huynh-Feldt Epsilon

0.4084

0.9420

- 구형성 조건 만족 안함
- 처리 분석 : 구형성 만족, 일변량 분석 적절, 처리 유의, 처리와 성별의 교호작용 유의 안 함
- 측정시점 분석 : 구형성 만족 안 함, 다변량 분석 적절, 시점와 성별의 교호작용 유의(상이함)
- 처리 및 시점의 교호작용 분석 : 구형성 만족 안 함, 다변량 분석 적절,

처리, 시점 및 성별의 3인자 교호작용 유의 안 함