# Lecture 22: t-tests

#### Issue: Wald tests with small n

The Wald test for a population mean  $\mu$  relies on

$$Z_n = \frac{\sqrt{n}(\overline{X}_n - \mu)}{s} \approx N(0, 1)$$

- $Z_n \stackrel{d}{\to} N(0,1)$  as  $n \to \infty$
- But for small  $n, Z_n$  is not normal, even if  $X_1, \ldots, X_n \overset{iid}{\sim} N(\mu, \sigma^2)$

What is the exact distribution of  $\frac{\sqrt{n}(X_n-\mu)}{s}$ ?

#### t-tests

If  $X_1, \ldots, X_n \stackrel{iid}{\sim} N(\mu, \sigma^2)$ , then

$$\frac{\sqrt{n}(\overline{X}_n - \mu)}{s} \sim t_{n-1}$$

## Class activity

Type I error rate with Normal distribution:



## **Class activity**

Wald test vs. *t*-test:



## Philosophical question

- Position 1: We should always use a Wald test to test hypotheses about a population mean
- Position 2: We should always use a t-test to test hypotheses about a population mean

With which position do you agree?

#### t distribution

If  $X_1, \ldots, X_n \stackrel{iid}{\sim} N(\mu, \sigma^2)$ , then

$$\frac{\sqrt{n}(\overline{X}_n - \mu)}{s} \sim t_{n-1}$$

**Definition:** Let  $Z \sim N(0, 1)$  and  $V \sim \chi_d^2$  be independent. Then

$$T = \frac{Z}{\sqrt{V/d}} \sim t_d$$

## t-distribution



#### Cochran's theorem

Let  $Z_1, \ldots, Z_n \stackrel{iid}{\sim} N(0, 1)$ , and let  $Z = [Z_1, \ldots, Z_n]^T$ . Let  $A_1, \ldots, A_k \in \mathbb{R}^{n \times n}$  be symmetric matrices such that  $Z^T Z = \sum_{i=1}^k Z^T A_i Z$ , and let  $r_i = rank(A_i)$ . Then the

following are equivalent:

- $r_1 + \cdots + r_k = n$
- The  $Z^T A_i Z$  are independent
- Each  $Z^T A_i Z \sim \chi_{r_i}^2$

## **Application to t-tests**