

$$A = \ell w$$

$$A = 1/2bh$$

$$a^2 + b^2 = c^2$$

Special Right Triangles

 $V = \ell w h$

$$V = \pi r^2 h$$

$$V = \frac{4}{3}\pi r^3$$

$$V = \frac{1}{3}\pi r^2 h$$

$$V = \frac{1}{3} \ell wh$$

Exponents/Roots/Logs

$$2^{-2} = \frac{1}{4}$$
 $2^{-1} = \frac{1}{2}$ $2^{0} = \frac{1}{1}$ $2^{1} = \frac{2}{1}$ $2^{2} = \frac{4}{1}$ $\sqrt{a} \times \sqrt{b} = \sqrt{ab}$

$$a = \sqrt[d]{b^c} \Rightarrow a = b^{c/d} \Rightarrow \sqrt[c]{d}a = b \Rightarrow \sqrt[c]{a^d} = b$$

$$i^0 = 1$$
 $i^1 = i$ $i^2 = -1$ $i^3 = -i$

$$\frac{x^a}{\frac{a}{a^b}} = x^{a-b} \qquad \qquad \mathbf{x}^a \times x^b = x^{a+b}$$

$$(x^a)^b = x^{ab} \qquad \qquad \ln(a)^r = r\ln(a)$$

$$\ln(a) - \ln(b) = \ln\left(\frac{a}{b}\right)$$
 $\ln(a) + \ln(b) = \ln(ab)$

$$ln(x) = log_e(x)$$
 $log_a b = c \Rightarrow a^c = b$

$$\log_x(x) = 1 \qquad \qquad \log_b(x) = \frac{\log_a(x)}{\log_a(b)}$$

Statistics

Mean - average

Median - middle value in a sorted list

Mode - most frequent

Range - difference between smallest and largest

Fundamental counting principle - multiply odds together to find the chances of two occurrences happening at once. Eg: the odds getting two heads is $\frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$.

Box and whisker plot

Linear Equations

Standard form: Ax+By=C

Slope-Intercept form: y=mx+b

Point-slope form: $y-y_1 = m(x - x_1)$

Midpoint formula: $M = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$

Distance formula: $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$

Matrices

determinants
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \Rightarrow ad - bc$$

Trigonometry

Basic properties of triangles

$$\sin(\theta) = \frac{a}{c}$$
 $\cos(\theta) = \frac{b}{c}$ $\tan(\theta) = \frac{a}{b}$

Common values of trig functions

θ	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π
$\sin \theta$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0
$\cos \theta$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1
$\tan \theta$	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	∞	0

Law of sines

$$\frac{\sin(A)}{a} = \frac{\sin(B)}{b} = \frac{\sin(C)}{c}$$

Law of cosines

$$a^2 = b^2 + c^2 - 2bc\cos(A)$$

Simplifying trig functions

$$\sin(a+b) = \sin(a)\cos(b) + \cos(a)\sin(b)$$

$$\cos(a+b) = \cos(a)\cos(b) - \sin(a)\sin(b)$$

$$\sin(a-b) = \sin(a)\cos(b) - \cos(a)\sin(b)$$

$$\cos(a-b) = \cos(a)\cos(b) + \sin(a)\sin(b)$$

Trig functions with the unit circle

$$\sin(\theta) = \frac{y}{r}$$
 $\cos(\theta) = \frac{x}{r}$ $\tan(\theta) = \frac{y}{x}$
 $\csc(\theta) = \frac{r}{y}$ $\sec(\theta) = \frac{r}{x}$ $\cot(\theta) = \frac{x}{y}$
 $x^2 + y^2 = r^2$

Reciprocal Identities

$$\cot \theta = \frac{1}{\tan \theta}$$
 $\sec \theta = \frac{1}{\cos \theta}$ $\csc \theta = \frac{1}{\sin \theta}$

Quotient Identities

$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$
 $\cot \theta = \frac{\cos \theta}{\sin \theta}$

Pythagorean Identities

$$\sin^2 \theta + \cos^2 \theta = 1$$
 $\tan^2 \theta + 1 = \sec^2 \theta$ $1 + \cot^2 \theta = \csc^2 \theta$

Double Angle Formulas

$$\sin(2\theta) = 2\sin\theta\cos\theta$$
 $\cos(2\theta) = \cos^2\theta - \sin^2\theta$
 $\cos(2\theta) = 1 - 2\sin^2\theta$ $\cos(2\theta) = 2\cos^2\theta - 1$

Heron's Formula

$$\sqrt{s \cdot (s-a)(s-b)(s-c)}$$
$$s = \frac{a+b+c}{2}$$

Calculating a triangle's area

$$area = \frac{1}{2}ab\sin(C^{\circ})$$

Sector Arc Length

$$s = r\theta$$
 where θ is in radians

Sector Area

$$A = \frac{1}{2}\theta r^2$$

Calculus

Power Rule

$$\frac{d}{dx}[ax^n] = (n \times a)x^{n-1}$$

$$\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] = \frac{g(x)f'(x) - f(x)g'(x)}{g(x) \times g(x)}$$

Quotient Rule

Product Rule

$$\frac{d}{dx}[f(x)g(x)] = f(x)g'(x) + f'(x)g(x) \qquad \qquad \frac{d}{dx}[f(g(x))] = f'(g(x)) \times g'(x)$$

Chain Rule

$$\frac{d}{dx}[f(g(x))] = f'(g(x)) \times g'(x)$$

Exponential Rule

$$\frac{d}{dx}[x^{a+b}] = x^{a+b} \times \ln(x)(a+b)'$$

Log Rule

$$\frac{d}{dx}[log_a x] = \frac{1}{x \times ln(a)} \times (x)'$$

Basic Derivatives

$$\frac{d}{dx}(\sin x) = \cos x \qquad \frac{d}{dx}(-\sin x) = -\cos x \qquad \frac{d}{dx}(\cos x) = -\sin x \qquad \frac{d}{dx}(-\cos x) = \sin x$$

$$\frac{d}{dx}(\tan x) = \sec^2 x \qquad \frac{d}{dx}(\cot x) = -\csc^2 x \qquad \frac{d}{dx}(\sec x) = \sec x \tan x \qquad \frac{d}{dx}(\csc x) = -\csc x \cot x$$

$$\frac{d}{dx}(\sin^{-1}\frac{u}{a}) = \frac{1}{\sqrt{a^2 - u^2}}\frac{du}{dx} \qquad \frac{d}{dx}(\ln u) = \frac{1}{u}\frac{du}{dx} \qquad \frac{d}{dx}(e^u) = e^u\frac{du}{dx} \qquad \frac{d}{dx}(a^{u(x)}) = a^{u(x)}\ln a\frac{du}{dx}$$

Position, velocity and acceleration

Position

unit $\Rightarrow x(t)$

 $_{\text{ex.}}$ meters \Rightarrow x(t)

Velocitu

 $\frac{\mathit{unit}}{\mathit{time}} \Rightarrow x'(t)$

 $_{\mathrm{ex.}} \frac{\mathit{meters}}{\mathit{second}} \Rightarrow v(t)$

Acceleration

 $\frac{unit}{time^2} \Rightarrow x''(t)$

 $\frac{meters}{second^2} \Rightarrow a(t)$

Rolle's Theorem

If f(x) is continuous on [a, b], differentiable on (a, b) and f(a) = f(b) = 0, then there exists a value for c on the interval (a, b) such that f'(c) = 0.

Intermediate Value Theorem

If f(x) is continuous on [a, b]and c falls between f(a) and f(b), then there is at least one value of x in which f(x) = con the interval (a, b).

Mean Value Theorem

If f(x) is continuous on [a, b], differentiable on (a, b) and a < c < b, then there exists a value for c such that $f'(c) = \frac{f(b) - f(a)}{b - a}$

Extreme Value Theorem

If f(x) is continuous on [a, b], then there exists both a minimum and a maximum on the interval [a, b].

Rewriting Riemann Sums

$$\lim_{n \to \infty} \sum_{k=1}^{n} f(x_k) \Delta x = \int_{a}^{b} f(x) dx$$

Trapezoidal Sums

$$\int_{a}^{b} f(x)dx \approx \frac{1}{2} \frac{b-a}{n} [y_0 + 2y_1 + 2y_2...2y_{n-1} + 2y_{n-1} + y_n]$$

Right Riemann Sums

$$\frac{b-a}{n}[f(x_1) + f(x_2)...f(x_n)]$$

Left Riemann Sums

$$\frac{b-a}{n}[f(x_0)+f(x_1)...f(x_{n-1})]$$

Midpoint Riemann Sums $\frac{b-a}{n}[f(x_{1/2})+f(x_{3/2})...f(x_{n-1/2})]$

l'Hopital's Rule

If
$$\frac{f(a)}{g(b)} = \frac{0}{0}$$
 or $\frac{\infty}{\infty}$, then $\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$

Moebius strip

f(x)	+	-	+m	-m	rel min	rel max
f'(x)			+	-	+m	-m
f''(x)					+	-

Constants

 $\pi \approx 3.14159$

 $e \approx 2.71828$

 $\gamma \approx 0.57721$

 $\phi = \frac{1+\sqrt{5}}{2} \approx 1.61803$ $\hat{\phi} = \frac{1-\sqrt{5}}{2} \approx -.61803$

Waves

Sine and cosine

$$y = A\sin(Bx + C) + D$$

period: $\frac{2\pi}{B}$

amplitude: |A|

domain: $(-\infty, \infty)$ range: [D-|A|, D+|A|]

phase shift: Bx + C = 0, solve for x

horizontal line of rest: D

Cosecant and secant

$$y = A\csc(Bx + C) + D$$

period: $\frac{2\pi}{B}$ $amplitude:\ none$

domain: $\csc \neq 0$ range: $(-\infty, D - |A|] \cup [D + |A|, \infty)$

phase shift: Bx + C = 0, solve for x

horizontal line of rest: D

Parabolas

Standard form: $ax^2 + bx + c = 0$ Vertex form: $y = a(x - h)^2 + k$

Discriminant: From standard form, $b^2 - 4ac$ No real solutions when discriminant < 0One real solution when discriminant = 0Two real solutions when discriminant > 0

The negative sign causes an x-axis reflection.

The 4 causes a vertical scaling by a factor of

horizontal translation left

a vertical translation down 2 units

Quadratic Formula:
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Units of Measurement

1	
meter, m	kilogram, kg
second, s	ampere, A
kelvin, K	mole, mol
mole, mol	hertz, Hz
newton, N	pascal, Pa
joule, J	watt, W
coulomb, C	volt, V
ohm, Ω	henry, H
farad, F	tesla, T

Unit Prefixes

Prefix	Symbol	Factor
giga	G	10^{9}
mega	M	10^{6}
kilo	k	10^{3}
centi	c	10^{-2}
milli	m	10^{-3}
micro	μ	10^{-6}
nano	n	10^{-9}
pico	p	10^{-12}

Pascal's Triangle

1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1 1 7 21 35 35 21 7 1 1 8 28 56 70 56 28 8 1 1 9 36 84 126 126 84 36 9 1 1 10 45 120 210 252 210 120 41 10 1 1 11 55 165 330 462 462 330 165 55 11 1 1 12 66 220 495 792 924 792 495 220 66 12 1