White-Box Cryptography

Junwei Wang

CryptoExperts

Outline

- 1 Introduction
- 2 Chow et al.'s Design
- 3 Generic Attacks
- 4 WhibOx Contest

Introduction

- Resistant against key extraction from pure software cryptographic implementations [CEJv002]
- Everything in academic is broken
- No provably secure construction (for standard ciphers)
- Applications: DRM and mobile payment

rapid growth of market

home-made solutions
(security through obscurity!)

Outline

- 1 Introduction
- 2 Chow et al.'s Design
- 3 Generic Attacks
- 4 WhibOx Contest

Seminal White-Box Design [CEJv002] (Sketch)

Seminal White-Box Design [CEJv002] (Sketch)

AES Round Operation

AES Round Operation

Look-Up Table Implementation

Look-Up Table Implementation

Protecting a LUT

- 4-bit non-linear bijection
- 8-bit invertible linear trans.

Merging

4×protected T-Boxes

Merging

4×protected T-Boxes

 $24 \times XOR$ tables

Merging

 $4 \times$ protected T-Boxes $24 \times$ XOR tables

Outline

- 1 Introduction
- 2 Chow et al.'s Design
- 3 Generic Attacks
- 4 WhibOx Contest

Differential Computation Analysis (DCA)

- DPA techniques in white-box context [BHMT16]
- Instead of power traces, using computation traces usually consisting of runtime memory information

DCA Techniques

DCA Explanation

Very likely to be linearly correlated [BBMT18]

Implying nibble encodings are insufficient in white-box context.

Differential Fault Attack (DFA)

- Modify a state byte between last two MixColumns
 - ► How: statically / dynamically
 - ► Expecting certain differential patterns (thanks to ShiftRow)
 - ▶ Very few faulty executions are required to recover a column of key bytes
- Many other fault injection techniques

The WhibOx Contest

An ECRYPT White-Box Cryptography Competition

WhibOx Contest

- Goal: confront designers and attackers in the secret design paradigm
- Designers: invited to submit AES-128 implementations in C
 - ▶ with secret chosen key
 - ▶ source code ≤ 50MB
 - ▶ compiled binary ≤ 20MB
 - ► RAM consumption ≤ 20MB
 - ▶ execution time < 1 second
- Breakers: invited to recover the hidden keys
- Not required to disclose their identity & underlying techniques

WhibOx Contest

- The competition lasted for about 4 months.
- Results:
 - ▶ 94 submissions were **all broken** by 877 individual breaks
 - ightharpoonup most (86%) of them were alive for < 1 day
- Scoreboard (top 5): ranked by surviving time

id	designer	first breaker	score	#days	#breaks
777	cryptolux	team_cryptoexperts	406	28	1
815	grothendieck	cryptolux	78	12	1
753	sebastien-riou	cryptolux	66	11	3
877	chaes	You!	55	10	2
845	team4	cryptolux	36	8	2

Example 2 Example 2 Example 3 Example 3 Example 3 Example 4 Example 4 Example 5 Example 6 Example 7 Example 6 Example 6 Example 7 Examp

🎉 team_cryptoexperts: Goubin, Paillier, Rivain, Wang

Conclusion

- White-box cryptography against key extraction is important to security of pure software
 - ► Academia: everything is broken
 - ► Industry: security through obscurity
- Chow et al.'s implementation
 - Was broken by structural analyses many times
 - ▶ Still play an important role in the subsequent designs
- DCA and DFA are automatic and generic
 - ▶ Not required to know the underlying techniques
- Previous WhibOx contest was quite successful, and new edition comes back in next February!

But wait!

White-Box Technology by CRYPTOEXPERTS "

Our technology

- enjoys both performance and security
- can be deployed anywhere
 - smartphones, desktops, wearable devices
- covers standard cryptographic algorithms:
 - ▶ block cipherts (AES, 3DES, SM4, ...)
 - message authentication code (ISO 9797 3DES MAC, AES CMAC, HMAC, ...)
 - ▶ signature schemes (RSA, ECDSA, SM2, ...)
- supports specific algorithms on demand
- We can customize WBC-friendly cryptographic algorithm if allowed

Deployment Options

- WebAPI maintained by CryptoExperts
- Embedded into an HSM
 - ▶ PCI Express plug-in cards
 - ► LAN appliance for immediate use in your data centers
- 100% compatible
- upgradable over time
- Performance, technical support may vary

Static WBC

Dynamic WBC

Security Assurance

- Not vulnerable to DCA. DFA and structural attacks
- Preventing reproducibility of any analysis by customizing the WBC engine for each application
- Obtaining best performance-security trade-off by a fine-tuning of different parameters depending on your constraints
- Each delivered instance of WBC engine goes through a security evaluation performed by an accredited ITSEF security lab.
- We also provide security upgrades against new discovered attacks.

Thank you!

