النهايات و الإتصال

	محتوى الدرس	
2	الإتصال في نقطة – الإتصال على مجال	1
2	1.1 الإِتُّصال في نقطة	
2	2.1 الإتصال عَلَى اليمين وعلى اليسار	
3	3.1 الأنصال على مجال . أ	
4	العمليات على الدوال المتصلة	2
4	صورة مجال بدالة متصلة	3
4	1.3 صورة مجال ۲۰۰۰،۰۰۰،۰۰۰،۰۰۰،۰۰۰،۰۰۰،۰۰۰،۰۰۰،۰۰۰،۰۰	
5	2.3 مبرهنة القيم الوسطية	
6	3.3 حالة دالة متصلة و رتيبة قطعا و	
6	1.3.3 صورة محال بدالة متصاة و دينة قطعا و و و و و و و و و و و و و و و و و و و	
6	2.3.3 مبرهنة القيم الوسطية بالنسبة لدالة متصلة و رتيبة قطعاً	
7	الدالة العكسية لدالة	4
7	1.4 تعريف الدالة العكسية	
8	2.4 خاصيات الدالة العكسية	
8	n الجذور من آلرتبة n	5
9	1.5 دالة الجذر من الرتبة n	
9	محمليات على على الجذور من الرتبة n ، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ،	
9	3.5 القوة الجذرية لعدد حقيقي موجب	

1. الإتصال في نقطة - الإتصال على مجال

1.1. الإتصال في نقطة

نشاط 1

تعریف: نسمي دالة الجزء الصحیح، الدالة التي تربط كل عنصر x من \mathbb{R} بالعدد الصحیح النسبي الوحید n الذي يحقق $n \leq x < n+1$ وزرمن لها بالرمن E(x) أو E(x)

- 1. أحسب [2,3] و [-1] و [3] و [2,3]
- $h(x)=x^2+1$ و g(x)=x-[x] و f(x)=[x] بما يلي: f(x)=[x] منابع المبيانية و لتكن f(x)=[x] و لتكن f(x)=[x] منابع المبيانية و لتكن f(x)=[x]
 - (C_h) و (C_g) و (C_f) معالم محتلفة (C_f)
 - (C_g) و (C_g) و (C_g) بدون تقطع (دون رفع القلم) (C_g) هل يمكنك رسم المنحنيات (C_g)
 - f عند g و g عند g عند g عند g عند g عند g

تعریف

لتكن f دالة عددية معرفة على مجال مفتوح I و a عنصر من I نقول إن الدالة f متصلة في النقطة a إذا كان f الدالة f

تمرين 1

$$f(x) = rac{x^3 - 1}{x - 1}$$
 متصلة في 1. $f(1) = 3$

2.1. الإتصال على اليمين وعلى اليسار

نشاط 2

$$\left\{\begin{array}{ll} f(x)=x^2+1 & x\geq 0\\ f(x)=\frac{1}{x-1} & x<0 \end{array}\right. :$$
لتكن f الدالة المعرفة على $\mathbb R$ بما يلي:

- $\lim_{\substack{x \to 0 \\ x > 0}} f(x) = f(0)$:أن: 1
- د. هل الدالة f متصلة على اليسار في f ؟
 - ? 0 في متصلة في 0 ?

تعريف

• لتكن f دالة عددية معرفة على مجال على شكل a;a+lpha[حيث lpha>0. نقول إن الدالة f متصلة على اليمين في النقطة a إذا كان lpha.....

• لتكن f دالة عددية معرفة على مجال على شكل [a-lpha;a] حيث lpha>0 نقول إن الدالة f متصلة على اليسار في النقطة a إذا كان

خاصية

لتكن f دالة عددية معرفة على مجال مفتوح I و a عنصر من I. تكون f متصلة في النقطة a إذا كانت f كانت متصلة في النقطة g أذا كانت f

تمرين 2

.0 متصلة في
$$\begin{cases} f(x)=-x & x\leq 0 \\ f(x)=x^2 & x>0 \end{cases}$$
 متصلة في 1

$$\begin{cases} f(x)=\frac{\sqrt{1+\sin(x)}-1}{x} & x<0\\ f(x)=\sqrt{1+x}-\frac{1}{2} & x\geq0 \end{cases}$$
 يلي: $x<0$ يل

.2 عدد قيمة كل من a و a بحيث تكون الدالة a a b متصلة في a .3 a .3 a .3 a .3 a .3 a .3

3.1. الإتصال على مجال

تعريف

a..... نقول إن f دالة متصلة على مجال [a;b] إذا كانت f دالة متصلة على مجال

خاصية

- الدوال الحدودية و الدوال \cos و \sin متصلة على \mathbb{R} .
- الدوال الجذرية و الدوال اللاجذرية متصلة على كل مجال ضمن مجموعة تعريفها.
 - الدالة tan متصلة على كل مجال ضمن مجموعة تعريفها.

تمرين 3

أدرس إتصال الدالة f على المجال I في كل حالة من الحالات التالية:

$$I = \left[\frac{\pi}{3}; \pi\right]$$
 و $f(x) = \sin(x)$ (ب) $I = \left[-5; 2\right]$ و $f(x) = 3x^3 - x^2 + 1$

-3-

$$I = [0; 7[\ g \ f(x) = \sqrt{x} \ (a)$$
 $I =] - 2; +\infty[\ g \ f(x) = \frac{3x - 1}{x^2 + x + 1} \ (ح)$

2. العمليات على الدوال المتصلة

خاصیات

لتكن f و g دالتين عدديتين و I مجالا ضمن $\mathbb R$ و k عددا حقيقيا.

- ادا كانت f و g متصلتين على I فإن f imes g و f imes g و أذا كانت f و متصلة على f
- إذا كانت f و g متصلتين على I و g لا تنعدم على I فإن g و التين متصلتين على I
 - و إذا كانت f متصلة على مجال I و g متصلة على f(I) فإن $g \circ f$ دالة متصلة على f

ملاحظة

a النقطة a و a متصلة في النقطة a متصلة في النقطة a متصلة في النقطة a متصلة في النقطة a

3. صورة مجال بدالة متصلة

نشاط 3

k نعتبر المنحنيات (C_g) و (C_g) و الممثلة على التوالي للدوال (C_g) و (C_g) و (C_g) و ليكن (C_g) عنصرا من (-2;3]

- f الدوال f و g و h متصلة على f الدوال f
 - f أعط جدول تغيرات كل من f و g و f ?
- g و g و ألنسبة للدوال g و g و g .
- h(x) = k ، g(x) = k ، f(x) = k التالية: k عدد حلول المعادلات التالية: 4.

1.3. صورة مجال

خاصية

صورة مجال بدالة متصلة هي مجال.

أمثلة

في النشاط السابق لدينا:

 $h\left(\left[-1;2\right]\right)$

ملاحظة

 $f\left([a;b]
ight)=[\min_{x\in[a;b]}f(x);\max_{x\in[a;b]}f(x)]$ فإن [a;b] فإن [a;b] فإن أدا كانت f دالة متصلة على

تمرين 4

أدرس اتصال الدالة f على المجال I في كل حالة من الحالات التالية:

$$I =]0, \pi]$$
 و $f(x) = x \sin(x)$ (ب) $f(x) = x \sin(x)$ (اب) $f(x) = \frac{1}{x} + \sqrt{x}$ (۱) $I =]0, +\infty[$ و $f(x) = \frac{1}{x} + \sqrt{x}$ (۱) $I =]1; +\infty[$ و $f(x) = \frac{3}{3-x}$ (ح)

تمرين 5

حدد مجموعة تعریف الدالة f و ادرس اتصالها علی هذه المجموعة في کل حالة من الحالات التالية: $f(x) = \frac{2x+4}{|1-x|} \ (\mathbf{z}) \qquad \qquad f(x) = \frac{x^4-2}{x^2-5x+3} \ (\mathbf{y}) \qquad \qquad f(x) = 6x^2+8x+1 \ (\mathbf{l})$ $f(x) = \cos(4x^2+3x-1) \ (\mathbf{e}) \qquad \qquad f(x) = \frac{x+1}{\sqrt{3-x}} \ (\mathbf{e}) \qquad \qquad f(x) = \sqrt{3x^2-2x}+2 \ (\mathbf{e})$

2.3. مبرهنة القيم الوسطية

مبرهنة

لتكن f دالة متصلة على مجال I و a و b عنصرين من f. لكل f محصور بين f و f يوجد على الأقل عنصر f محصور بين f و f يوجد على الأقل عنصر f

التأويل المبياني

لكل عدد حقيقي k محصور بين f(a) و f(b)، المستقيم f(a) ذو المعادلة g=k يقطع منحنى الدالة g على الأقل في نقطة.

ملاحظة

f([a;b]) و f(a;b] و a < b حيث a < b و f(a) و f(a) و f(a) و f(a) فإن a < b فإن a < b حيث b < c و c < b الدينا: c < c و c < c و c < c الدينا: c < c

نتيجة

إذا كانت f متصلة على مجال a;b[و $a;b(a) \times f(b) < 0$ فإن المعادلة a;b[تقبل على الأقل حلا في المجال a;b[.

تمرین 6

بين أن المعادلة
$$(E)$$
 تقبل حلا على الأقل في المجال $I = [-3,0]$ و $(E): -\frac{1}{3}x^3 - 2x^2 - 10 = 5$ (ب) $I = [0,1]$ و $(E): x^3 - 4x + 1 = 0$ (ا) $I = [1,2]$ و $(E): x^3 - 4x + 1 = 0$ (ح) $I = [-2,3]$ و $(E): x^2 - 2x - 2 = 0$ (ح)

3.3. حالة دالة متصلة و رتيبة قطعا

1.3.3. صورة مجال بدالة متصلة و رتيبة قطعا

$$f([a;b]) = [f(b); f(a)] \qquad f([a;b]) = [f(a); f(b)]$$

$$f([a;b]) = \begin{bmatrix} f(b); \lim_{\substack{x \to a \\ x > a}} f(x) \end{bmatrix} \qquad f([a;b]) = \begin{bmatrix} f(a); f(b) \end{bmatrix}$$

$$f([a;b]) = \begin{bmatrix} \lim_{\substack{x \to a \\ x > a}} f(x); f(b) \end{bmatrix}$$

$$f([a;b]) = \begin{bmatrix} \lim_{\substack{x \to b \\ x < b}} f(x); f(a) \end{bmatrix} \qquad f([a;b]) = \begin{bmatrix} f(a); \lim_{\substack{x \to b \\ x < b}} f(x) \end{bmatrix}$$

$$f([a;b]) = \begin{bmatrix} \lim_{\substack{x \to b \\ x < b}} f(x); \lim_{\substack{x \to b \\ x < b}} f(x) \end{bmatrix}$$

$$f([a;b]) = \begin{bmatrix} \lim_{\substack{x \to a \\ x > a}} f(x); \lim_{\substack{x \to b \\ x < b}} f(x) \end{bmatrix}$$

2.3.3. مبرهنة القيم الوسطية بالنسبة لدالة متصلة و رتيبة قطعا

نتيجة

c إذا كانت f متصلة و رتيبة قطعا على مجال [a;b] فإنه لكل عدد k محصور بين f(b) و f(c)=k يوجد عدد وحيد من المجال f(c)=k بحيث f(c)=k

تمرين 7

بين أن المعادلة (E) تقبل حلا وحيدا في المجال $I = \left[0, \frac{\pi}{2}\right]$ و $(E): \cos(x) - x = 0$ (ب) $I = \left[0, 1\right]$ و $(E): x^3 + 4x = 1$ (ا) $I = \left[1, 2\right]$ و $(E): x^3 - \frac{1}{x} - 7 = 0$ (ح)

التفرع الثنائي

f(x) = 0 على مجال المعادلة على الثنائي من تحديد قيمة تقريبية لحل المعادلة وf(x) = 0 على مجال

$$a=m$$
 نعید العملیة من أجل

$$\left\{ egin{array}{c} f \\ \hline b \\ \hline \end{array}
ight\} \longrightarrow m = rac{a+b}{2}$$
 حساب $m=a+b$ حساب $f(a) \times f(m) > 0$ کان $f(a) \times f(m) < 0$ کان $b=m$ نضع $b=m$ نضع

b=m نعيد العملية من أجل

تمرين 8

- -1,1[بين أن المعادلة $x^3=-x-1$ تقبل حلا وحيدا lpha في المجال .1
- $0.5\cdot 10^{-1}$ سعته lpha باستعمال طريقة التفرع الثنائي، أعط تأطيرا للعدد lpha سعته $3.5\cdot 10^{-1}$

4. الدالة العكسية لدالة

1.4. تعريف الدالة العكسية

خاصية

f(x)=y أذا كانت f(x)=y تقبل حلا وحيدا في المجال f(x)=y أذا كانت أدا تقبل حلا وحيدا في المجال أ

نشاط 4

 $f(x)=x^2-2x$: يلي المجرفة على المجال المحرفة على المجال المحرفة على المجال المحرفة على المجال المحرفة على المح

- 1. بين أن الدالة f متصلة وتزايدية قطعا على I
 - f بالدالة J مورة J بالدالة f
- $f(y)=x\Longleftrightarrow y=1+\sqrt{1+x}$:نيکن x عنصرا من y و y عنصرا من y عنصرا من x

تعریف

لتكن f دالة عددية متصلة ورتيبة قطعا على مجال I، و ليكن J صورة المجال I بالدالة f. الدالة التي تربط كل عنصر x من f بالعنصر الوحيد f من f من f من f بالعنصر الوحيد f من f من f بالرمن f^{-1} .

نتائج

لتكن f دالة عددية متصلة ورتيبة قطعًا على مجال I و f^{-1} دالتها العكسية، لدينًا:

$$\forall x \in I : (f^{-1} \circ f)(x) = x \qquad \forall x \in f(I) : (f \circ f^{-1})(x) = x$$

$$\begin{cases} f(y) = x \\ y \in I \end{cases} \iff \begin{cases} f^{-1}(x) = y \\ x \in f(I) \end{cases}$$

2.4. خاصيات الدالة العكسية

خاصیات

لتكن f دالة عددية متصلة ورتيبة قطعًا على مجال I و f^{-1} دالتها العكسية، لدينًا:

- f(I) متصلة على المجال f^{-1}
- f رتيبة قطعا على الججال f(I) و لها نفس رتابة f^{-1}
- منحنى الدالة f^{-1} هو مماثل منحنى الدالة f بالنسبة للمستقيم الذي معادلته y=x في معلم متعامد ممنظم.

تمرين 9

 $f(x)=(x-3)^2-1$ يلي: $f(x)=(x-3)^2-1$ لتكن $f(x)=(x-3)^2-1$ الدالة العددية المعرفة على المجال

- بين أن الدالة f تقبل دالة عكسية معرفة على مجال J ينبغى تحديده.
 - J من x لكل $f^{-1}(x)$ من .2
- $(C_{f^{-1}})$ و (C_f) مثل في المستوى المنسوب إلى معلم متعامد ممنظم كل من المنسوب المنسوب والم

n الجذور من الرتبة n

نشاط 5

 $f(x)=x^3$: يلي يلي: $[0;+\infty[$ على الدالة المعرفة على الدالة المعرفة على

- .1 بين أن f تقبل دالة عكسية معرفة على مجال J ينبغي تحديده.
- $f^{-1}(0,125)$ و $f^{-1}(27)$ و $f^{-1}(8)$ و $f^{-1}(1)$ و $f^{-1}(0)$

n دالة الجذر من الرتبة n

ليكن n عددا صحيحا طبيعيا غير منعدم.

الدالة $x\mapsto x^n$ متصلة و تزايدية قطعا على المجال $f:x\mapsto x^n$

إذن f تقبل دالة عكسية.

تعریف

الدالة العكسية للدالة f معرفة على $0;+\infty[$ و تسمى دالة الجدر من الرتبة n و نرمز لهل بالرمز $0;+\infty[$ لدينا: $\begin{cases} x^n=y\\ x\in[0;+\infty[\end{cases} \iff \begin{cases} \sqrt[n]{y}=x\\ y\in[0;+\infty[\end{cases} \end{cases}$

خاصيات

- $\lim_{x \to +\infty} \sqrt[n]{x} = +\infty$ الدالة $\sqrt[n]{x}$ متصلة و تزايدية قطعًا على $|\infty| + \infty$ و لدينًا:
- y=x في معلم متعامد ممنظم، منحنى الدالة $\sqrt[n]{y}$ هو مماثل منحنى الدالة $x\mapsto x^n$ بالنسبة للمستقيم ذي المعادلة $\sqrt[n]{y}$

نتائج

 $\forall a \in \mathbb{R}^+ : \sqrt[q]{a} = \sqrt{a} \bullet \qquad \forall a \in \mathbb{R}^+ : \sqrt[q]{a^n} = \sqrt[q]{a^a} = a \bullet \forall a \in \mathbb{R}^+, \forall b \in \mathbb{R}^+ : \sqrt[q]{a} < \sqrt[q]{b} \Longleftrightarrow a < b \bullet \qquad \forall a \in \mathbb{R}^+, \forall b \in \mathbb{R}^+ : \sqrt[q]{a} = \sqrt[q]{b} \Longleftrightarrow a = b \bullet$

n العمليات على على الجذور من الرتبة n

خاصیات

 $\mathbb{R}+$ لیکن n و m عنصرین من \mathbb{R}^* و a و b عنصرین من

 $\frac{1}{\sqrt[n]{b}} = \sqrt[n]{\frac{1}{b}}$ و $\sqrt[n]{\frac{\sqrt{a}}{\sqrt[n]{b}}} = \sqrt[n]{\frac{a}{b}}$ فإن $b \neq 0$ فإن $b \neq 0$ فإن $\sqrt[n]{a} = \sqrt[n]{ab}$ و $\sqrt[n]{ab} = \sqrt[n]{ab}$ و $\sqrt[n]{ab} = \sqrt[n]{ab}$ و $\sqrt[n]{ab} = \sqrt[n]{ab}$ و $\sqrt[n]{ab} = \sqrt[n]{ab}$

تمرين 10

 $\sqrt{\frac{\sqrt[4]{4}}{\sqrt{3}}}$ (حسب بدون استعمال الآلة الحاسبة ما يلي: $\sqrt{\frac{\sqrt[4]{4}}{\sqrt{3}}}$ (ح) $\sqrt[3]{\sqrt[3]{16}}$ (و) $\sqrt[10]{25}$ (ع) $\sqrt[3]{25}$ (ح) $\sqrt[4]{625}$ (خ) $\sqrt[3]{625}$ (ح) $\sqrt[3]{0001}$ (ا)

3.5. القوة الجذرية لعدد حقيقي موجب

تعريف

ليكن a عددا حقيقيا موجبا قطعا و r عددا جذريا غير منعدم . $r=rac{n}{m}$ حيث $a^r=rac{m}{m}$ حيث $a^r=rac{m}{m}$ العدد الذي نرمز له بالرمز a^r المعرف بما يلي $a^r=rac{m}{m}$ حيث $a^r=rac{m}{m}$

 $m\in\mathbb{N}^*$ و $n\in\mathbb{Z}$

ملاحظات

- $r=rac{n}{m}=rac{n'}{m'}\Longleftrightarrow a^r=\sqrt[m]{a^n}=\sqrt[m']{a^{n'}}$ العدد $a^r=\sqrt[m]{a^n}=\sqrt[m]{a^{n'}}$ العدد $a^r=\sqrt[m]{a^n}=\sqrt[m]{a^n}=\sqrt[m]{a^n}$
 - $\forall (r, r') \in \mathbb{Q}, \forall a \in \mathbb{R}^+ : a^r = a^{r'} \iff r = r'$
 - $\sqrt{a} = a^{\frac{1}{2}}$, $\sqrt[m]{a} = a^{\frac{1}{m}}$.

خاصيات

تمدد الخاصيات المتعلقة بالقوى الصحيحة النسبية إلى القوى الجذرية. لكل عددين جذريين r و r و لكل عددين حقيين a و b موجبين، لدينا:

$$a^{-r} = \frac{1}{a^r} \bullet$$
$$\frac{a^r}{b^r} = \left(\frac{a}{b}\right)^r \bullet$$

$$(a^r)^{r'} = a^{r \times r'} \bullet$$

$$a^r \times b^r = (a \times b)^r \bullet$$

$$a^r \times a^{r'} = a^{r+r'} \bullet$$

$$\frac{a^r}{a^{r'}} = a^{r-r'} \bullet$$

تمرين 11

- 1. اكتب على شكل جذور مايلي: $3^{-\frac{5}{6}}$ (و) $7^{-\frac{1}{3}}$ (ه) $4^{-\frac{1}{2}}$ (د) $36^{\frac{3}{2}}$ (ب) $5^{\frac{1}{2}}$ (ا) $5^{\frac{1}{2}}$ (ا) $5^{\frac{1}{2}}$ (ا) $-\frac{2}{\sqrt[3]{2}}$ (و) $-\frac{1}{\sqrt[5]{6}}$ (ه) $-\sqrt[4]{2^8}$ (ب) $-\sqrt[4]{2^8}$ (ب) $-\sqrt[4]{2^8}$ (ب) $\sqrt[3]{3^2}$ (ا) $-\frac{2}{\sqrt[3]{2}}$ (9) $-\frac{1}{\sqrt[5]{6}}$ (8)