Question 1

Here are the rules of the grammar:

- (1) L \rightarrow Ra
- (2) | Qba
- (3) $R \rightarrow aba$
- (4) | caba
- (5) | Rbc
- (6) $Q \rightarrow bbc$
- (7) | bc

Here we can see that rule 5 has a left recursion. So, it is not suitable for top down predictive parsing such as LL1 grammars. So first, we need to eliminate left recursion.

R → abaR' | cabaR'

 $R' \rightarrow bcR' \mid \epsilon$

Then we need to perform left factoring on Rule 6-7.

 $Q \rightarrow bX$

 $X \rightarrow bc \mid c$

Hence the new set of grammar will be the following and its first and follow sets.

Rules	First Sets	Follow Sets	
(1) L → Ra	a, c	\$	
(2) Qba	b	\$	
(3) R → abaR'	a	a	
(4) cabaR'	С	a	
(5) $R' \rightarrow bcR'$	b	a	
(6) R' $\rightarrow \epsilon$	ϵ	a	
$(7) Q \rightarrow bX$	b	b	
$(8) X \rightarrow bc$	b	b	
(9) c	С	b	

So, here is the LL1 parsing table

	a	b	С	\$
L	1	2	1	
R	3		4	
R'	6	5		
Q		7		
X		8	9	

Hence, there is no multiple entries in a single cell referring to the fact that, we can determine which production needs to be chosen based on next input. So, the grammar is LL1 compliant.

Question 2

- (1) $A \rightarrow Ba$
- (2) B \rightarrow dab
- (3) | Cb
- (4) $C \rightarrow cB$
- $(5) \rightarrow Ac$

From this grammar, we can see that, $A \rightarrow Ba \text{ or, } A \rightarrow Cba \text{ or, } A \rightarrow Acba$

Hence, this grammar contains left recursion.

As it contains left recursion, it is not a LL1 grammar. However, we can also prove it from another perspective.

The *first* set of rule 4 is c

The *first* set of rule 5 is c, d

Hence, we can see $First(Rule 4) \cap First(Rule 5) \neq \emptyset$. Thus, it is not a LL1 grammar.

So, we need to remove left recursion first.

 $A \rightarrow Ba \text{ or } A \rightarrow daba \mid Cba \text{ or } A \rightarrow daba \mid cBba \mid Acba$

can be transformed to

A → dabaA' | cBbaA'

 $A' \rightarrow cbaA' \mid \epsilon$

So, the final set of grammar will be,

- (1) $A \rightarrow dabaA' \mid cBbaA'$
- (2) A' \rightarrow cbaA' | ϵ
- (3) B \rightarrow dab | Cb
- (4) $C \rightarrow cB \mid Ac$

Question 3

The preliminary intuition for this grammar is very simple. Apart from 0, all binary numbers divisible by 4 ends with 000 or 100. The leading bits can form any binary number.

So, the number is: 0 or *Any Binary Number* having 000 or 100 in the end. The regular expression is:

```
([0|1])^+(000|100) | 0 | 00 | 000 | 100
```

Hence, the grammar is given below. Non-terminals are highlighted with <>.

```
<GOAL> → 0 | <BINARY-NUMBER>000 | <BINARY-NUMBER>100
<BINARY-NUMBER> → <BIT> | \epsilon
<BIT> → <BIT> <BIT> → 0 | 1
```