UNB - CÁLCULO DE PROBABILIDADE I

Prof^a Daniele

LISTA DE EXERCÍCIOS 10

- 1. Sejam X e Y v.a.'s independentes tais que $X \sim Gama(\alpha_1, \lambda)$ e $Y \sim Gama(\alpha_2, \lambda)$. Considere $Z = \frac{Y}{X}$.
 - a) Determine para quais valores de α_1 e α_2 teremos EZ finita e calcule EZ neste caso.
 - b) Determine para quais valores de α_1 e α_2 teremos EZ^2 finita e calcule VarZ neste caso.
- 2. Seja $X \sim \chi^2(n)$ (ou seja, $X \sim Gama(n/2, 1/2)$). Calcule a esperança de $Y = \sqrt{X}$.
- 3. Sejam U_1 e U_2 v.a.'s i.i.d. com distribuição comum $Exp(\lambda)$ e seja $Y = max\{U_1, U_2\}$. Obtenha a esperança e a variância de Y.
- 4. Seja $X = sen\Theta$, em que $\Theta \sim U\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. Determine $EX \in VarX$.
- 5. Seja $X \sim N(0, \sigma^2)$. Determine a esperança e a variância das seguintes v.a.'s: a) |X| b) X^2
- 6. Sejam X e Y v.a.'s com densidade conjunta

$$f_{X,Y}(x,y) = \frac{\sqrt{15}}{4\pi} \exp\left\{-\frac{(x^2 - xy + 4y^2)}{2}\right\}, \ (x,y) \in \mathbb{R}^2.$$

Determine o coeficiente de correlação entre X e Y.

- 7. Sejam X e Y v.a.'s independentes tais que $X \sim N(\mu, \sigma^2)$ e $Y \sim Gama(\alpha, \lambda)$. Obtenha a esperança e a variância de Z = XY.
- 8. Sejam X e Y v.a.'s tais que EX = EY = 0, VarX = VarY = 1 e $\rho(X,Y) = \rho$. Mostre que: $X \rho Y$ e Y são não-correlacionadas, $E(X \rho Y) = 0$ e $Var(X \rho Y) = 1 \rho^2$.
- 9. Seja $X \sim U(a, b)$. Obtenha $M_X(t)$, função geradora de momentos de X.
- 10. Use a função geradora de momentos para obter a esperança e a variância de X, nos seguintes casos: a) $X \sim B(n, p)$ b) $X \sim Poisson(\lambda)$
- 11. Use a função geradora de momentos para obter os momentos de todas as ordens de *X*, nos seguintes casos:

a)
$$X \sim N(0, \sigma^2)$$
 b) X tem densidade $f_X(x) = \frac{1}{2}e^{-|x|}, x \in \mathbb{R}$

- 12. Sejam $X_1, X_2, ..., X_n$ v.a.'s independentes. Use a função geradora de momentos para obter a distribuição de $S_n = X_1 + X_2 + \cdots + X_n$, nos seguintes casos:
 - a) $X_i \sim Gama(\alpha_i, \lambda)$ b) $X_i \sim Exp(\lambda)$ c) $X_i \sim B(n_i, p)$ d) $X_i \sim Poisson(\lambda_i)$ para i = 1, ..., n.

- 13. Sejam $X_1, X_2, ..., X_n$ v.a.'s i.i.d. tendo média μ e variância σ^2 e seja $\bar{X} = S_n/n$, onde $S_n = \sum_{i=1}^n X_i$. (Se $X_1, ..., X_n$ têm f.d. comum F, dizemos que $X_1, ..., X_n$ é uma *amostra aleatória* de tamanho n da v.a. X, cuja f.d. é F, e \bar{X} é chamada *média amostral*.)
 - a) Mostre que: $E\bar{X} = \mu$ e $Var\bar{X} = \sigma^2/n$
 - b) Qual o tamanho da amostra que devemos considerar de tal forma que $P\left(|\bar{X} \mu| \le \frac{\sigma}{10}\right) \ge 0.95$?
- 14. Da experiência passado, um professor sabe que a pontuação de um estudante no seu exame final é uma v.a. com média 75.
 - a) Dê um limite superior para a probabilidade de que a pontuação do estudante excederá 85.
 - b) Se, além disso, o professor também saiba que a variância da pontuação do estudante é 25, o que pode ser dito sobre a probabilidade de que o estudante terá uma pontuação entre 65 e 85?
- 15. Um corredor procura controlar seus passos em uma corrida de 100 metros. De sua experiência, ele sabe que o tamanho de seu passo na corrida é uma v.a. com média 0,97 metro e desvio-padrão 0,1 metro. Determine a probabilidade de que 100 passos difiram de 100 metros por não mais de 5 metros.

Exercício	Resposta
1	a) $\alpha_1 > 1$, $\alpha_2 > 0$, $EZ = \frac{\alpha_2}{\alpha_1 - 1}$ b) $\alpha_1 > 2$, $VarZ = \frac{\alpha_2(\alpha_1 + \alpha_2 - 1)}{(\alpha_1 - 1)^2(\alpha_1 - 2)}$
2	$\sqrt{2} rac{\Gamma\left(rac{n+1}{2} ight)}{\Gamma\left(rac{n}{2} ight)}$
3	$EY = \frac{3}{2\lambda}; \ VarY = \frac{5}{4\lambda^2}$
4	$EY = 0; \ VarX = \frac{1}{2}$
5	a) $E X = \sigma \sqrt{\frac{2}{\pi}}$; $Var X = \sigma^2 \left(1 - \frac{2}{\pi}\right)$ b) $EX^2 = \sigma^2$, $VarX^2 = 2\sigma^4$
6	$ \rho = \frac{1}{4} $
7	$EZ = \frac{\mu\alpha}{\lambda}; \ VarZ = \frac{\alpha(\sigma^2\alpha + \sigma^2 + \mu^2)}{\lambda^2}$
9	$M_X(t) = \begin{cases} \frac{e^{bt} - e^{at}}{(b-a)t}, & t \neq 0\\ 1, & t = 0 \end{cases}$
10	a) $EX = np$, $VarX = np(1-p)$ b) $EX = VarX = \lambda$
11	a) $EX^m = \begin{cases} 0 & \text{se } m \text{ impar} \\ \frac{m! \sigma^m}{2^{m/2} \left(\frac{m}{2}\right)!} & \text{se } m \text{ par} \end{cases}$ b) $EX^m = \begin{cases} 0 & \text{se } m \text{ impar} \\ m! & \text{se } m \text{ par} \end{cases}$
12	a) $Gama(\sum_{i=1}^{n} \alpha_i, \lambda)$ b) $Gama(n, \lambda)$ c) $B(\sum_{i=1}^{n} n_i, p)$ d) $Poisson(\sum_{i=1}^{n} \lambda_i)$
13	b) $n \ge 2000$
14	a) $P(X > 85) \le \frac{75}{85}$ b) $P(65 \le X \le 85) \ge \frac{75}{100}$
15	0,9773