11 Publication number:

0 360 246 B1

(12)

EUROPEAN PATENT SPECIFICATION

- 49 Date of publication of patent specification: 30.03.94 (51) Int. Cl.⁵: C07D 303/40, A61K 31/335
- (21) Application number: 89117389.0
- 2 Date of filing: 20.09.89

- 3-Oxiranyl benzoic acids and derivatives thereof.
- Priority: 21.09.88 US 247218
- Date of publication of application: 28.03.90 BulletIn 90/13
- Publication of the grant of the patent: 30.03.94 Bulletin 94/13
- Designated Contracting States:
 AT BE CH DE ES FR GB GR IT LI LU NL SE
- (56) References cited:

EP-A- 0 134 111

EP-A- 0 201 823

US-A- 4 537 723

PROSTAGLANDINS; LEUKOTRIENES AND MEDICINE, vol. 23, 1986, pages 167-171; J. EVANS et al.: "Neutrophil LTA 4 hydrolases and keukotriene B4 Receptors: effexts of leukotriene epoxides and their enzymatic products", page 169, table i

DRUGS OF THE FUTURE, vol. 12, no. 5, 1987, pages 453-474; J. W. GILLARD et al. "The leukotrienes: prospects for therapy against a unique family of pathophysiological mediators"

- 73 Proprietor: G.D. Searle & Co. P.O. Box 5110 Chicago Illinois 60680(US)
- 2 Inventor: Djuric, Steven Wakefield 1023 Huber Lane Glenview, IL 60025(US) Inventor: Penning, Thomas Dale 9670 Dee Road Des Plaines, IL 60016(US)
- Representative: Beil, Hans Chr., Dr. et al BEIL, WOLFF & BEIL, Rechtsanwälte, Postfach 80 01 40 D-65901 Frankfurt (DE)

360 246 B

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid (Art. 99(1) European patent convention).

Description

BACKGROUND OF THE INVENTION

(a) Field of the Invention

The present invention relates to 3-oxiranyl benzoic acids and derivatives thereof and their pharmaceutically acceptable salts. Compounds of the present invention are useful in treating inflammatory conditions in mammals such as psoriasis, Crohn's disease, ulcerative colitis, arthritis, gout and the like. Compounds of the present invention are inhibitors of epoxide hydrolases, specifically leukotriene A₄ (LTA₄) hydrolase which catalyzes the biochemical transformation of LTA₄ into leukotriene B₄ (LTB₄) which is a potent proinflammatory agent.

(b) Prior Art

15

LTB₄ has been implicated as an important mediator of inflammation due to its potent proinflammatory properties. In neutrophils, LTB₄ production from the unstable allylic epoxide LTA₄ (Formula I) is catalyzed by a cytosolic enzyme LTA₄ hydrolase.

20

25

LTB₄ (Formula II) is an arachidonic acid metabolite which is produced by the 5-lipoxygenase pathway. Pharmacologically, LTB₄ is an important mediator of inflammation in mammals. As a mediator of inflammation, LTB₄ is known to induce chemotaxis, chemokinesis, aggregation, and degranulation of leukocytes in vitro, and to induce accumulation of polymorphonuclear leukocytes, and increase vascular permeability and edema formation in vivo.

35

40

30

45

Particularly high levels of LTB4 are detected in lesions in inflammatory diseases such as rheumatoid or spondylarthritis, gout, psoriasis, ulcerative colitis, Crohn's disease, and some respiratory diseases.

Accordingly, it is an object of this invention to produce compounds for use as pharmaceutical agents which will inhibit LTB₄ activity in mammals by inhibiting LTA₄ hydrolase and preventing the formation of LTB₄.

U. K. Patent Applications GB 2177401 A and GB 2144422 A and their European counterpart EP-134111-A generically disclose compounds of the formula

in which R₁ is an alkenyl or alkynyl group optionally substituted with an optionally substituted phenyl group and containing from 5 to 30 carbon atoms and, R³, R⁴, and R⁵ are each selected from hydrogen, carboxyl C₂₋₅ alkoxycarbonyl, C₁₋₄ alkyl, C₁₋₄ alkoxy, hydroxyl, optionally protected tetrazolyl, halo, trifluoromethyl, nitrile, nitro, and -CONR¹⁰₂ where each R¹⁰ is hydrogen or C₁₋₄ alkyl. These compounds are intermediates useful for preparing pharmaceutical compounds of the formula

in which n is 0, 1 or 2, R^1 is hydrocarbyl group optionally substituted with optionally substituted phenyl group containing from 5 to 30 carbon atoms, R^2 is optionally substituted phenyl or C_{1-10} alkyl optionally substituted by one or more substituents selected from optionally protected hydroxyl, optionally protected carboxyl, nitrile, optionally protected tetrazolyl, $-COR^6$ where R^6 is C_{1-4} alkyl, C_{1-4} alkoxy, an optionally protected amino acid residue or $-NR_2$ where each R^7 is hydrogen or C_{1-4} alkyl, and $-NHR^8$ where R^8 is hydrogen, a protecting group, an optionally protected amino acid residue, C_{1-4} alkyl or $-COR^9$ where R^9 is C_{1-4} alkyl or C_{1-4} alkoxy, and R^3 , R^4 and R^5 are each selected from hydrogen, carboxyl, C_{2-5} alkoxycarbonyl, C_{1-4} alkyl, C_{1-4} alkoxy, hydroxyl, optionally protected tetrazoyl, halo, trifluoromethyl, nitrile, nitro and $-CONR^{10}$ where each R^{10} is hydrogen or C_{1-4} alkyl; and salts thereof. These compounds in unprotected form, are disclosed to be pharmacologically active in tests which demonstrate their antagonist effect on leukotriene receptors and indicate their use in the treatment of allergic disorders.

J. Evans, et al., PROSTAGLANDINS, LEUKOTRIENES AND MEDICINE, 23: 167-171 (1986) discloses compounds which inhibit rat and human neutrophil LTA₄ hydrolases; however, these compounds are structurally different from compounds of the present invention.

The pharmacology of the biologically active leukotrienes is generally discussed in J. CLIN. INVEST. <u>73</u>: 889-897 (1984).

SUMMARY OF THE INVENTION

5

15

20

35

40

45

50

The present invention relates to compounds of the formula

or a pharmaceutically acceptable salt thereof wherein R is alkyl of 12 carbon atoms, alkenyl of 12 carbon atoms having from 1 to 4 -CH = CH- groups when the carbon adjacent to R is saturated and from 1 to 2 -CH = CH- groups when the carbon adjacent to R is unsaturated, and R¹ is hydrogen, lower alkyl or a pharmaceutically acceptable cation.

DETAILED DESCRIPTION OF THE INVENTION

This invention encompasses compounds of Formula III as previously described. A preferred embodiment of the present invention encompasses compounds of the formula

5

10

wherein R is alkyl of 12 carbon atoms, or alkenyl of 12 carbon atoms having from 1 to 3 -CH = CH- groups when the carbon adjacent to R is saturated and from 1 to 2 -CH = CH-groups when the carbon adjacent to R is unsaturated; R¹ is hydrogen or alkyl of from 1 to 4 carbon atoms; or a pharmaceutically acceptable salt thereof.

Included in the present invention are compounds of the formula

20

25

wherein R is alkyl of 12 carbon atoms or alkenyl of 12 carbon atoms having from 1 to 2 -CH = CH- groups; R¹ is hydrogen or alkyl of from 1 to 4 carbon atoms; or a pharmaceutically acceptable salt thereof.

The present invention also includes compounds of the formula

30

wherein R is alkenyl of 12 carbons having from 1 to 3 -CH = CH- groups; R¹ is hydrogen or alkyl of from 1 to 4 carbon atoms; and the pharmaceutically acceptable salts thereof.

The compounds encompassed by the present invention are not limited to any particular stereochemical configuration. Both cis and trans isomers are within the scope of the invention.

The present invention includes pharmaceutical compositions for the treatment of inflammatory conditions in mammals such as psoriasis, Crohn's disease, ulcerative colitis, arthritis, gout, and the like comprising a pharmaceutically acceptable carrier and a leukotriene A₄ (LTA₄) hydrolase inhibitor of the formula

50

55

wherein R is alkyl of 12 carbon atoms, alkenyl of 12 carbon atoms having from 1 to 4 -CH = CH- groups, R' is hydrogen or lower alkyl; or a pharmaceutically acceptable salt thereof.

EP 0 360 246 B1

The term "lower alkyl" as used to describe R_1 means straight or branched chain alkyls having 1-6 carbon atoms.

The term "pharmaceutically acceptable cations" as used to describe R¹ refers to cations such as ammonium, sodium, potassium, lithium, calcium, magnesium, ferrous, zinc, copper, manganous, aluminum, ferric, manganic, tetraalkyl-ammonium, and the like.

The term "pharmaceutically acceptable salts" refers to those base derived salts of any compound herein having a carboxylic acid function.

The base derived salts can be derived from pharmaceutically acceptable non-toxic inorganic or organic bases. Among the inorganic bases employed to produce said pharmaceutically acceptable salts are the hydroxide bases of the "pharmaceutically acceptable cations" disclosed above.

Among the organic bases employed to produce said pharmaceutically acceptable salts are the pharmaceutically acceptable non-toxic bases of primary, secondary, and tertiary amines. Especially preferred non-toxic bases are isopropylamine, diethylamine, ethanolamine, dicyclohexylamine, choline, and caffeine. All the pharmaceutically acceptable non-toxic addition salts are prepared by conventional processes well known to those of ordinary skill in the art.

The present invention encompasses pharmaceutical compositions containing an effective therapeutic amount of a compound of Formula III along with a pharmaceutically acceptable carrier.

The invention also includes a method of treating inflammatory conditions in animals by administering an anti-inflammatory effective amount of a compound of Formula III or Formula IV.

The compounds described herein may be prepared by any available procedure. The compounds of this invention are generally prepared according to the reaction schemes set out in Schemes A to F.

25

20

30

35

40

45

50

Scheme_A

55

SCHEME_C

Lion Lithium salt

SCHEME D

20

30

45

35 SCREME F

Scheme A shows two methods of making compounds of the present invention. In the first, an alkyl 3-(bromomethyl) benzoate is reacted with tetrahydrothiophene to form a sulfonium salt which is added to the appropriate aldehyde (V) under phase transfer conditions (OH⁻,benzyltriethylammonium chloride) to give the product (VI) which can optionally be saponified using an appropriate base to give the desired salt (VII).

Alternately, the compounds may be prepared by formation of the appropriate unsaturated sulfonium salt followed by addition of the sulfonium salt to alkyl 3-formylbenzoate under phase transfer conditions (OH⁻,Et₃BnNCl) to give the product (IX), optionally followed by saponification to the desired salt (VII).

٠:,

Scheme B shows another method of preparing compounds of the invention in which alkyl 3-formylbenzoate is refluxed with (triphenylphosphoranylidene)acetaldehyde to form alkyl 3-(3-oxo-1E-propenyl)-benzoate which is then oxidized to give the alkyl 3-(3-formyloxiranyl)benzoate (X). Coupling of (X) with the appropriate diethyl phosphonate (XI) in the presence of sodium hexamethyldisilazide(NaHMDS) gives the product (XII) which may optionally be saponified to give the desired salt.

In Scheme C alkyl 3-(bromomethyl)benzoate is reacted with tetrahydrothiophene to form a sulfonium salt which is then added to 1-(tert-butyldimethylsilyloxy)-4-butanone (XIII) to give alkyl 3-[3-(1-tert-butyl-

dimethylsilyloxypropyl)oxiranyl]benzoate (XIV). Reaction with tetrabutyl ammonium fluoride gives the alcohol which is oxidized with chromium (VI) oxide in the presence of pyridine to give alkyl 3-[3-(1-propanal)-oxiranyl]benzoate (XV). Reaction of this compound with (triphenylphosphoranylidene acetaldehyde gives alkyl 3-[3-(5-oxo-3E-pentenyl) oxiranyl]benzoate (XVI) which is reacted with 1-(triphenylphosphoranylidene)-3Z-nonene in the presence of hexamethylphosphoramide to give the product (XVII) which may optionally be saponified with an appropriate base to give the desired salt.

Schemes D and E illustrate the preparation of intermediates used to prepare the final products.

Scheme D shows a method of preparing an aldehyde which may be used in Scheme A. 1-Methoxy-1E-buten-3-yne is reacted with tributylstannane in the presence of catylytic 2,2'-azobisisobutyronitrile (AIBN) to give tributyl(4-methoxy-1E,3E-butadienyl)stannane which is then reacted with butyllithium followed by coupling with an appropriate aldehyde (XVIII). The alcohol formed is reacted with toluene sulfonic acid (TSOH) to give the desired aldehyde (V).

Scheme E illustrates the preparation of the diethyl phosphonates. An appropriate alcohol (XIX) is reacted with carbon tetrabromide and triphenylphosphine followed by reaction with triethyl phosphite to give the diethyl phosphonate (XI).

Scheme F shows the preparation of a tert-butyldimethylsilyloxy alkanone. An appropriate diol such as 1,4-butanediol (XX) is reacted with tert-butyldimethylsilyl chloride and the product is oxidized to the aldehyde (XIII) with pyridinium dichromate (PDC).

Compounds of the present invention are useful by reason of their valuable biological properties. They are inhibitors of LTA₄ hydrolase the enzyme which catalyzes the conversion of LTA₄ to LTB₄ which has been implicated as an important mediator of inflammation due to its potent proinflammatory properties.

Leukotrienes are a class of compounds released by various cell types including neutrophils (PMN) Gillard, J. et al., <u>Drugs of the Future</u>, <u>12</u>:453-474 (1987). Leukotriene biosynthesis is initiated by a lipoxygenase reaction with arachidonic acid to produce 5S-HPETE, which in turn is dehydrated to form leukotriene-A₄ (LTA₄). LTA₄ is the substrate for a cytosolic enzyme, LTA₄ hydrolase which produces LTB₄, a compound with potent pro-inflammatory properties. LTA₄ hydrolase inhibition with subsequently reduced LTB₄ production may provide a mechanism for preventing or reducing inflammatory responses.

The activity of the compounds of the present invention was determined using the following tests.

30 A23187-Induced LTB₄ Production in Human Promyelocytic Leukemia HL-60 Cells.

Materials: Calcium ionophore A23187 was obtained from Calbiochem (La Jolla, CA). Trans-stilbene oxide was obtained from Sigma (St. Louis, MO). Hanks' balanced salt solution (HBSS) (10X concentrate), 1 M Hepes, and Dulbecco's modified Eagle medium were obtained from GIBCO Laboratories (Grand Island, NY). Fetal bovine serum was obtained from HyClone Laboratories (Logan, UT). The LTB4 and PGE2 radioimmunoassay antibodies were purchased from Amersham International plc (Amersham, UK) and NEN Research Products (N. Billerica, MA), respectively. Reagents for assay of lactate dehydrogenase (LDH) activity were purchased from Beckman (Carlsbad, CA).

Preparation of HL-60 Cells: HL-60 cells were cultured in Dulbecco's modified Eagle medium (supplemented with 20% fetal bovine serum, 20 mM Hepes, 100 U/ml penicillin and 100 mcg/ml streptomycin) and maintained at 37° C in a humidified atmosphere of 5% CO₂ in air. Cells from exponentially growing cultures were seeded at 3 x 10⁵ cells/ml and induced to differentiate into granulocytes with 0.8% (v/v) N,N-dimethylformamide for 4 days (1,2). Prior to assay, differentiated HL-60 cells were washed once with Hanks' balanced salt solution containing 0.35 mg/ml sodium bicarbonate and 10 mM Hepes, pH 7.3 (HBSS) and resuspended in HBSS at a concentration of 3 x 10⁵ cells/ml. HL-60 cell viability was >95% as assessed by trypan blue exclusion.

HL-60 Cell Assay: DMSO or test compounds as 100X concentrates in DMSO were added in duplicate to 1.0 ml HL-60 cell suspensions (3 x 10⁵ cells) and preincubated at 37° C for 10 minutes in a shaking water bath. After an additional 5 minute incubation with calcium ionophore A23187 (10 mcl @ 5 x 10⁻⁴ M in DMSO), the cells were pelleted at 12,800 x g for 15 seconds and the supernatant removed and stored at -20° C for quantification of LTB₄ or PGE₂ via radioimmunoassay and LDH activity.

Statistical Methods: LTB₄ and PGE₂ data were expressed as percent inhibition of A23187-stimulated controls. For IC₅₀ determinations, the 4 parameter logistic model was used where y is the percent inhibition response and x is the log₁₀ concentration of the inhibitor:

$$y = \frac{y_x - y_0}{1 + [x/a]^b}$$

Nonlinear regression was performed using the SAS (3) procedure NLIN to obtain least squares estimates of the four parameters in the above equation: y_x (maximum), Y_0 (minimum), a (log₁₀ IC₅₀) and b (slope factor). Increases in mean LDH levels for A23187-stimulated cells in the presence of test compound were tested for significance using a one-tailed two sample Student's t-test.

References:

5

15

20

25

30

45

- 1. Fontana, J.A., D.A. Colbert, and A.B. Deisseroth. Identification of a Population of Bipotent Stem Cells in the HL60 Human Promyelocytic Leukemia Cell Line. Proc. Nat. Acad. Sci. U.S.A. 78:3863-3866, 1981.
- 2. Agins, A.P., A.B. Hollmann, K.C. Agarwal and M.C. wiemann. Detection of a Novel Cyclooxygenase Metabolite Produced by Human Promyelocytic Leukemia (HL-60) Cells. <u>Biochem. Biophys. Res. Comm.</u> 126:143-149, 1985.
- 3. SAS User's Guide: Statistics, Version 5 Edition, SAS Institute Inc., Cary, NC, 1985.

Leukotriene -A4 Hydrolase Inhibition

Materials

Leukotriene-A₄-methyl ester and leukotriene-A₃ were purchased from Biomol (Cambridge). Transstilbene oxide, EDTA, phenylmethyl sulphonyl fluoride were purchased from Sigma (St. Louis). Eagles Basil Media was purchased from GIBCO (Grand Island). LTB₄ radioimmunoassay kit was purchased from Amersham (Arlington Heights, IL) (#Trk. 840).

Methods

Methods were modified from those reported by Evans et al., Biochem. Biophys, Acta, 840:43-50 (1985).

5 Rat Neutrophil Isolation

Male Sprague Dawley (CD1) rats (250-400 gm bodyweight) were given oyster glycogen, 1 mg/ml in 0.9% NaCl, by intraperitoneal injection. The animals were sacrificed after 8-20 hours and the peritoneal cavity washed with 10 ml Eagles Basil Medium (pH 7.4, 25 mM HEPES, without glutamine). The collected peritoneal lavage fluid was centrifuged at 150xG, 15 minutes at 4° C to isolate the neutrophils. The supernatant was removed and the cell pellet was resuspended in 20 cc 10 mM sodium phosphate buffer, pH 7.0 with 2 mM Na-EDTA and 1 mM phenylmethyl sulphonyl fluoride (PMSF).

Leukotriene-A4 Hydrolase Isolation

The cell suspensions, which were 90-95% neutrophils as determined by cytometry, were homogenized by a polytron at 4° C with three 30 second bursts with cooling on ice in between. The homogenate was centrifuged at 100,000xG for 60 minutes, and the supernatant containing cytosolic LTA₄ hydrolase was obtained.

LTA₄ Methyl Ester Deesterification

LTA₄, the substrate for LTA₄ hydrolase, is supplied as the stable methyl ester that must be hydrolized to the active form. LTA₄-methyl ester (5000ng) was dried under a stream of super-dry Argon (Matheson) to which was added a 1ml methanol: 10M NaOH (9.8:0.2 v/v). The mixture was stirred 3 hours at 4° C and used immediately.

LTA, Hydrolase Enzyme Assay

Supernatant containing LTA₄ hydrolase, 0.5 ml, was added to 0.5 ml Tris-acetate buffer, pH 7.8, containing 1 mg/ml fatty-acid free BSA. The mixture was incubated 3 minutes at 37° C with 0.1 ml containing different enzyme inhibitor and test compound concentrations in DMSO. LTA₄, 25 ng in 20 µl methanol, was added and incubation with shaking continued at 37° C for one minute. The reaction was quenched with 2 ml ice-cold ethanol. The quenched mixture was immediately frozen at -76° C. LTB₄ levels were determined by radioimmunoassay (RIA) with a validated commercial kit. Various concentrations of potential enzyme inhibitors were evaluated for inhibition of LTB₄ production using a standardized amount of enzyme and substrate. The amount of inhibitor necessary to reduce LTB₄ production by fifty percent was calculated as the IC₅₀ value for each inhibitor. IC₅₀ values were determined by least square linear regression analysis from the average ± SEM for 4 experiments.

Results for certain compounds of the present invention are given in Table 1.

15

TABLE 1

20				LTA ₄ Hydrolase Enzyme Assay		HL-60 Cell Assay		_
	Exampl	e No.	IC ₅₀	% Inhibit:	ion IC50	10-6M	Inhib;	i <u>tion</u> 10 ⁻⁴ M
25	22			20			ı	79
	1,Li ⁺	salt		40	2.8	26	96	94
30	4,Li ⁺	salt	80	58	0.16	77	89	88
	7,Li ⁺	salt	2	85	15	I	61	(80 at 5x10 ⁻⁵ M)
35	1					~-		I
	4						т	29 -

' I = inactive at that concentration

The invention will appear more fully from the Examples which follow. These Examples are given by way of illustration only and are not to be construed as limiting the invention either in spirit or in scope, as many modifications both in materials and methods will be apparent from this disclosure to those skilled in the art. In these examples, temperatures are given in degrees celcius (°C.) and quantities of materials in grams and milliliters unless otherwise noted.

50

5

10

25

30

35

40

Methyl 3-[3-(1E-tetradecenyl)oxiranyl]benzoate

Methyl 3-(bromomethyl)benzoate (0.69g, 3.0 mmol) was dissolved in 5 ml of 7% aqueous methanol. Tetrahydrothiophene (0.52 ml, 6.0 mmol) was added, and the mixture was stirred at room temperature (RT) for 1 hr. The solvents were removed and the residue was washed with hexane and dried. The crude sulfonium salt was suspended in 15 ml methylene chloride with benzyltriethylammonium chloride (0.075 g) and 2-pentadecenal (0.6 g, 2.67 mmol) at 0 °C. Cooled 10 N sodium hydroxide (6 ml) was added. The mixture was stirred at 0 °C for 5 min. and at RT for 20 min. The product was flash chromatographed on silica gel using 100:1 hexane/ethyl acetate and 50:1 hexane/ethyl acetate as eluent. The product was recrystallized from hexane to give white crystals; melting point 43-44 °C.

Analysis calculated for $C_{24}H_{36}O_{3}$.			
Calc.:	C, 77.38;	H, 9.74.	
Found:	C, 77.31;	H, 9.96.	

The lithium salt of the title compound was prepared by stirring 10 mg of the ester prepared above in 1 mL methanol/0.2 mL tetrahydrofuran (THF) with .05 mL of 1N aq. LiOH at room temp for 24 hr. Concentration yielded the crude lithium salt.

EXAMPLE 2

3-[3-(1E-tetradecenyl)oxiranyl]benzoic acid

The ester prepared in Example I (0.075 g, 0.02 mmol) was stirred in 5 mI of methanol/0.55 mI tetrahydrofuran (THF). Aqueous lithium hydroxide (0.3 mI of 1N) was added and the mixture stirred at RT for 54 hrs. After 6 hr., another 0.2 ml of 1N lithium hydroxide was added. The reaction mixture was poured into ether/water (pH 6), and the ether layer was washed with water and saturated sodium chloride, dried over sodium sulfate and concentrated to give the product.

55

1-bromo-2E,4E,pentadecadiene

5

10

1,4E-pentadecadien-3-ol (0.45 g, 2.0 mmol) was stirred in 10 ml of ether at -40 °C and phosphorous tribromide (0.2 ml, 2.1 mmol) was added dropwise. The mixture was slowly warmed to 0 °C and stirred for 15 min. at 0 °C. The reaction mixture was poured into ice water, and the ether layer was washed with dilute sodium bicarbonate and saturated sodium chloride then dried over magnesium sulfate and concentrated. The crude product was chromatographed by flash chromatography on a column deactivated with methyl alcohol then acetone then ethyl acetate then hexane with 5% triethylamine to give the pure product.

EXAMPLE 4

20 Methyl 3-[3-(1E,3E-tetradecadienyl)oxiranyl]benzoate

25

The product of Example 3 (0.40 g, 1.39 mmol) which was approximately 70% pure was stirred in 4.0 ml of 7% aqueous methanol with 0.25 ml (2.8 mmol) of tetrahydrothiophene at RT for 1 hr. The solvents were removed, and the residue was washed with pentane and dried. The crude salt was dissolved in 5.0 ml of methylene chloride along with 0.02 g of benzyltriethylammonium chloride and 0.80 g (0.487 mmol) of methyl 3-formylbenzoate, and the mixture was cooled to -15 °C. To this reaction mixture 2.0 ml of cooled 8N potassium hydroxide was added, and the mixture was stirred at 0 °C for 15 min. The pure product (35 mg) was precipitated from pentane, m.p. 53-54.5 °C.

40

Analysis calculated for C ₂₄ H ₃₄ O ₃ .		
Calc.:	C, 77.80;	H, 9.25.
Found:	C, 77.16;	H, 9.28.

The lithium salt of the title compound was prepared by the same procedure used in Example 1.

EXAMPLE 5

TributyI(4-methoxy-1E,3E-butadienyI)stannane

50

55

1-Methoxy-1E-buten-3-yne (100 ml) was purified as described in <u>J. Org. Chem.</u> 1983, p. 2114, to provide approximately 25 g of colorless liquid boiling at 58-61 °C/at approximately 85 mm pressure. The purified alkyne (5.4 g, 65.8 mmol) and tributylstannane (17.7 ml, 65.8 mmol) were heated at about 90 °C with

catalytic 2,2'-azobisisobutyronitrile for 14 hrs. The mixture was distilled at 145-150 °C/0.6 mm pressure to provide 19.8 g (0.053 mol), 80%, of a light yellow liquid. (literature b.p. 120-130 °C/0.3 mm pressure) NMR analysis indicated the presence of at least 3 geometric isomers.

EXAMPLE 6

10

15

25

2E,4E,6E-pentadecatrienal

To 3.0 g (8.04 mmol) of the product of Example 5 in 30 ml tetrahydrofuran (THF) at -78 $^{\circ}$ C was added dropwise 5.1 ml of 1.6 M butyl lithium (8.16 mmol). The reaction mixture was stirred at -78 $^{\circ}$ C for 1 hr. and then 1.25 g (7.43 mmol) of 2E-undecenal in 5 ml THF was added, and the mixture was stirred at -78 $^{\circ}$ C for 3 hrs. The reaction was quenched with aqueous sodium bicarbonate and the organic layer washed with saturated sodium chloride, dried over sodium sulfate, and concentrated. The crude alcohol was stirred in 35 mol of 5% aqueous THF with 5 mol % 4-methylbenzenesulfonic acid $^{\circ}$ H $_2$ O for 1 hr. at RT. The mixture was poured into water and the organic layer was washed with water and saturated sodium chloride, dried over sodium sulfate and concentrated to a yellow oil. Flash chromatography with hexane, followed by 20:1 hexane/ethyl acetate gave the product as a light yellow oil, all trans.

EXAMPLE 7

Methyl 3-[3-(1E,3E,5E-tetradecatrienyl)oxiranyl]benzoate

Methyl 3-(bromomethyl)benzoate (0.46 g, 2.0 mmol) was stirred in 5 ml 7% aqueous methanol with 0.35 ml (4.0 mmol) tetrahydrothiophene at RT for 1 hr. The solvent were removed, and the residue was washed with pentane and dried. The crude salt was stirred in 10 ml of methylene chloride with 0.05 g of benzyltriethylammonium chloride and 0.40 g (1.81 mmol) of the product of Example 6 and cooled to -15°C. Cooled 8N potassium hydroxide (4.0 ml) was added, and the mixture was stirred at 0°C for 15 min. The mixture was poured into ether/water and the ether layer was washed 3X with water and 1X with saturated sodium chloride then dried over sodium sulfate and concentrated to yield a light yellow solid as the product. The crude product was crystallized from pentane/ether to provide the pure product as white crystals, m.p. 75-76.5°C.

	Analysis	C ₂₄ H ₃₂ O ₃ .	
$\cdot \lceil$	Calc.:	C, 78.22;	H, 8.75.
ı	Found:	C, 77.93;	H, 8.88.

The lithium salt of the title compound was prepared using the procedure described in Example 1.

55

Methyl 3-(3-oxo-1E-propenyl)benzoate

5

10

соосн3

15

Methyl 3-formylbenzoate (0.65 g, 3.96 mmol) and (triphenylphosphoranylidene) acetaldehyde (1.33 g, 4.36 mmol) were refluxed in 30 ml of benzene for 17 hrs. The reaction mixture was cooled and concentrated. Flash chromatography on silica gel using 15:1 then 6:1 hexane/ethyl acetate as eluent gave the trans enal product as a white solid, m.p. 71-75° C.

20

Analysis calculated for C ₁₁ H ₁₀ O ₃ .		
Calc.:	C, 69.46;	H, 5.30.
Found:	C, 69.22;	H, 5.29.

25

30

35

EXAMPLE 9

Methyl 3-formylbenzoate

CHO

40

Methyl 3-formylbenzoic acid (3.0 g, 20 mmol) was stirred in 100 ml of ether at 0 °C. An ethereal diazomethane solution was added until the yellow color persisted. The solution was then concentrated. The crude product was precipitated from ether/pentane to yield 2.98 g (18.15 mmol) of the product as a white solid.

50

45

Methyl 3-(3-formyloxiranyl)benzoate

15

20

25

10

(a) Methyl 3-(3-oxo-1E-propenyl)benzoate (0.57 g, 3.0 mmol) and 4.43 M 1,1-dimethylethylhydroperoxide (0.9 ml, 4.0 mmol) in isooctane were stirred in 3.0 ml of dimethylsulfoxide (DMSO) at RT. 1N tetrabutylammonium fluoride in THF was added in 6 portions sat 10 minute intervals, and the mixture was stirred for 45 min. after the last portion was added. The reaction mixture was diluted with water and extracted with ethyl acetate. The ethyl acetate extract was washed with water and brine, dried over sodium sulfate, and concentrated. Flash chromatography using 10:1 followed 3:1 hexane/ethyl acetate provided 0.030 g of the trans epoxide and 0.42 g of trans/cis epoxides (7:1 mixture).

(b) Methyl 3-(3-oxo-1E-propenyl)benzoate (0.67 g, 3.52 mmol) and 10 ml of methanol was added dropwise to 0.58 ml of 70% 1,1-dimethylethylhydroperoxide (4.2 mmol) in 5 ml of methanol. The pH was maintained at pH 8.0-8.5 throughout with 1N sodium hydroxide. The mixture was stirred at about 35°C for 1.5 hrs. The reaction mixture was poured into ether/water and the ether layer was washed 3X with water and 1X with brine, dried over sodium sulfate, and concentrated. Flash chromatography using 10:1 followed by 2:1 hexane/ethyl acetate provided the product, methyl trans-3-(3-formyloxiranyl)benzoate as the pure trans epoxide.

30

Analysis calculated for C ₁₁ H ₁₀ O ₄ .			
Calc.:	C, 63.52;	H, 4.94.	
Found:	C, 63.56;	H, 4.97.	

35

EXAMPLE 11

Diethyl 2E,4Z-tridecadienylphosphonate

50

45

To 0.78 g (4.0 mmol) of 2E,4Z-tridecadien-1-ol, 1.6 g (4.8 mmol) carbon tetrabromide, and 0.40 g (4.8 mmol) sodium bicarbonate in 20 ml of methylene chloride at 0° C was added 1.36 g (5.2 mmol) of triphenylphosphine in portions, and the mixture was stirred at 0° C for 1 hr. Triethylphosphite (1.16 ml, 6.8 mmol) was added and the mixture was stirred in the dark at RT for five days. The reaction mixture was concentrated, dissolved in ether, and filtered to remove the triphenylphosphine oxide byproduct. Flash chromatography on silica gel using 5:1 followed by 3:1 hexane/ethyl acetate as eluent gave the product.

Methyl 3-[3-(1E,3E,5Z-tetradecatrienyl)oxiranyl]benzoate

5

10

To 0.05 g (0.158 mmol) of the product prepared in Example 11 in 2 ml THF at -78 °C was added 0.17 mL (0.17 mmol) of 1M sodium hexamethyldisilazide in THF. The mixture was stirred at -78 °C for 5 min and 0.033 g (0.158 mmol) of the product prepared in Example 10 in 1 mL THF was added. The reaction mixture was stirred at -78 °C for 1.5 hr., at 0 °C for 1.0 hr., and at RT for 20 hr. The mixture was diluted with ether and quenched with water. The ether layer was washed with brine, dried over sodium sulfate, and concentrated to give a yellow oil. The product was flash chromatographed on a deactivated silica gel column and eluted with 25:1:1 hexane/ethyl acetate/triethylamine to provide a mixture of methyl 3-[3-(1E,3E,5Z-tetradecatrienyl)oxiranyl]benzoate and methyl 3-(1E,3E,5Z-tetradecatrienyl)benzoate and a relatively pure methyl 3-[3-(1E,3E,5Z-tetradecatrienyl)oxiranyl]benzoate. The mixture was separated by chromatography on silica gel deactivated with ethyl acetate using hexane (2.5% triethylamine)followed by 50:1:1 hexane/ethyl acetate/triethylamine to give the product.

The lithium salt of the title compound was prepared by the procedure used in Example 1.

25

EXAMPLE 13

Diethyl 2E,4Z,7Z-tridecatrienylphosphonate

30

35

2E,4Z,7Z-tridecatrien-1-ol (0.39g, 2.0 mmol), carbon tetrabromide (0.80 g, 2.4 mmol), and sodium bicarbonate (0.20 g, 2.4 mmol) were stirred in 10 ml of methylene chloride at 0° C. Triphenylphosphine (0.6 g, 2.6 mmol) was added in portions, and after one hour at 0° C, triethylphosphite (0.58 g, 3,4 mmol) was added. The reaction mixture was stirred at RT for 3-1/2 days. The reaction mixture was concentrated and flash chromatographed using 5:1 followed by 3:1 hexane/ethyl acetate to provide the product.

EXAMPLE 14

45

1-(tert-Butyldimethylsilyloxy)-4-butanol

50

tBuMe₂SiO = tert-butyldimethylsilyloxy

1,4-Butanediol (9.0 g, 100 mmol), tert-butyldimethylsilyl chloride (15.1 g, 100 mmol), and imidazole (13.6 g, 200 mmol) were stirred in 100 ml of dimethylformamide (DMF) at room temperature for 21 hrs. The reaction mixture was poured into ether/water and the ether layer was washed twice with water and once with saturated sodium chloride, dried over sodium sulfate, and concentrated. Flash chromatography on silica gel

with 20:1 then 2:1 hexane/ethyl acetate as eluent gave the product.

EXAMPLE 15

10

25

40

45

50

5 1-(tert-butyldimethylsilyloxy)-4-butanone

The product of Example 15 (8.0 g 39 mmol) was stirred in 150 ml of methylene chloride with pyridinium dichromate (22 g, 58 mmol) and about 3 g of Celite® filter agent at RT for 6 hrs. The mixture was filtered through silica and concentrated by rotary evaporation. Flash chromatography on silica gel using 100:1 then 20:1 hexane/ethyl acetate gave the product.

EXAMPLE 16

Methyl trans-3-[3-(1-tert-butyldimethylsilyloxypropyl)oxiranyl]benzoate

Methyl 3-(bromomethyl)benzoate (0.92 g 4.0 mmol) was stirred in 7.0 ml of 7% aqueous methanol. Tetrahydrothiophene (0.71 ml, 8.0 mmol) was added, and the reaction mixture was stirred at RT for 1 hr. The solvents were removed, and the residue was washed with pentane and dried. The crude salt was stirred in 15.0 ml of methylene chloride with 0.10 g of benzyltriethylammonium chloride and the product of Example 16 (0.70 g, 3.46 mmol) and the mixture was cooled to 0 ° C. Cooled 8N potassium hydroxide (10.0 ml) was added, and the reaction mixture was warmed to RT and stirred for 30 min. The reaction mixture was poured into ether/water, and the ether layer was washed with water and saturated sodium chloride, dried over sodium sulfate and concentrated. Flash chromatography on silica gel with 50:1 then 35:1 hexane/ethyl acetate as eluent gave the product as the trans isomer (0.54 g), the cis isomer (0.02 g) and a mixture of the two (0.56 g).

Analysis (mixture) calculated for C ₁₅ H ₃₀ SiO ₄ .		
Calc.:	C, 65.10;	Н, 8.63.
Found:	C, 65.10;	Н, 8.90.

Methyl trans-3-[3-(1-hydroxypropyl)oxiranyl]benzoate

5

10

The product of Example 17 (0.60 g, 1.71 mmol) was stirred in 25 ml of THF with 5 drops of acetic acid. To this was added 3.4 ml of 1N tetrabutylammonium fluoride in THF and the reaction mixture was stirred at RT for 18 hr. then poured into ether/water. The ether layer was washed with water and saturated sodium chloride, dried over sodium sulfate, and concentrated. Flash chromatography on silica gel using 5:1 then 1:1 hexane/ethyl acetate as eluent gave the product as a colorless gum.

20

Analysis: Calculated for C ₁₃ H ₁₆ O ₄ .			
Calc.:	C, 66.09;	H, 6.83.	
Found:	C, 65.77;	H, 6.98.	

EXAMPLE 18

Methyl trans-3-[3-(1-propanal)oxiranyl]benzoate

30

35

Chromium (VI) oxide (0.20 g, 2.0 mmol) was added to pyridine (0.32 ml, 3.8 mmol) in 15 ml of methylene chloride, and the reaction mixture was stirred at RT for 15 min. Celite® filter agent (0.5 g) and the product from Example 18 in 5.0 ml of methylene chloride were added, and the mixture was stirred at RT for 1.5 hrs. then filtered through silica gel and concentrated. Flash chromatography on silica gel with 5:1 then 2:1 hexane/ethyl acetate provided the product.

45

Analysis: Calculated for C ₁₃ H ₁₄ O ₄ .		
Calc.:	C, 66.66;	H, 6.02.
Found:	C, 66.34;	H, 6.11.

50

5

10

20

Methyl trans-3-[3-(5-oxo-3E-pentenyl)oxiranyl]benzoate

H COOCH3

The product of Example 19 (0.13 g, 0.55 mmol) was refluxed in 5.0 ml of benzene with (triphenyl-5 phosphoranylidene) acetaldehyde (0.184 g, 0.605 mmol) for 23 hrs. The reaction mixture was cooled, diluted with hexane, filtered, and concentrated. Flash chromatography on silica gel with 10:1 then 2:1 hexane/ethyl acetate provided the product.

Analysis calculated for $C_{15}H_{16}O_4$.		
Calc.:	C, 69.22;	H, 6.20.
Found:	C, 69.20,	H, 6.50.

EXAMPLE 20

Methyl 3-[3-(3-E,5Z,8E-tetradecatrienyl)-oxiranyl]benzoate

1-(triphenylphosphoranylidene)-3Z-nonene (0.139 g, 0.36 mmol) was stirred in 10.0 ml of THF and cooled to -78° C. One equivalent of butyllithium was added, and the orange solution was stirred at -78° C for 20 min. Hexamethylphosphoramide(0.68 ml, 3.9 mmol) was added followed by the product of Example 20 (0.085 g, 0.327 mmol) in 3.0 ml of THF. The reaction mixture was stirred at -78° C for 15 min. then quenched with saturated ammonium chloride. The organic layer was washed three times with water and once with brine, dried over sodium sulfate, and concentrated to provide the crude product. Flash chromatography of the crude product on silica gel using 100:1 then 20:1 hexane/ethyl acetate as eluent gave the product. Analysis calculated for C₂₄ H₃₂O₃.

Calc.:	C, 78.22;	H, 8.75.
Found:	C, 78.25;	Н, 8.97.

*. F. z

The lithium salt was prepared by the procedure used in Example 1.

Methyl 3-(3-tetradecyloxiranyl)benzoate

10

5

Methyl 3-(bromomethyl)benzoate (0.92 g, 4.0 mmol) was dissolved in 5.0 ml of 7% aqueous methanol. Tetrahydrothiophene (0.70 ml, 8.0 mmol) was added, and the mixture was stirred at room temperature for 1 hr. The solvent was removed, the residue was washed with hexane, and the crude salt was dried under vacuum. The crude salt was suspended in 25 ml of methylene chloride with benzyltriethylammonium chloride (0.10 g) and 1-pentadecanal (0.85 g, 3.75 mmol) at 0 °C. To the suspension was added 8.0 ml of 10 N sodium hydroxide at 0 °C. The reaction mixture was stirred at 0 °C for 5 min. and at room temperature for 20 min. then poured into ether/water. The ether layer was washed with water and saturated sodium chloride, dried over sodium sulfate, and concentrated. The crude white solid was flash chromatographed on silica gel using 100:1 then 50:1 hexane/ethyl acetate as eluent to give 0.73 g of product which was mostly trans and 0.33 g of a mixture.

The trans product (0.73 g) was dissolved in 5 ml of warm hexane. Cooling at 0 °C gave the product as a precipitate of white powder, m.p. 44-45 °C.

The lithium salt of the product was prepared as described in Example 1.

Claims for the following Contracting States: AT, BE, FR, GB, DE, IT, LU, NL, SE, CH

30

A compound of the formula

35

40

or a pharmaceutically acceptable salt thereof wherein R is alkyl of 12 carbon atoms, alkenyl of 12 carbon atoms having from 1 to 4 -CH = CH- groups when the carbon adjacent to R is saturated and from 1 to 2 -CH = CH- groups when the carbon adjacent to R is unsaturated, and R1 is hydrogen, lower alkyl, or a pharmaceutically acceptable cation.

2. A compound according to Claim 1 of the formula

50

55

or a pharmaceutically acceptable salt thereof wherein R is alkyl of 12 carbon atoms, alkenyl of 12 carbon atoms having from 1 to 3 -CH = CH- groups when the carbon adjacent to R is saturated and from 1 to 2 -CH = CH- groups when the carbon adjacent to R is unsaturated; and R1 is hydrogen, lower alkyl, or a pharmaceutically acceptable cation.

3. A compound according to Claim 2 of the formula

- wherein R is alkyl of 12 carbon atoms; or alkenyl of 12 carbon atoms having from 1 to 3 -CH = CH-groups when the carbon adjacent to R is saturated and from 1 to 2 -CH = CH-groups when the carbon adjacent to R is unsaturated; R¹ is hydrogen or alkyl of from 1 to 4 carbon atoms; or a pharmaceutically acceptable salt thereof.
- 15 4. A compound according to Claim 2 of the formula

- wherein R is alkyl of 12 carbon atoms or alkenyl of 12 carbon atoms having from 1 to 2 -CH = CH-groups; R¹ is hydrogen or alkyl of from 1 to 4 carbon atoms; or a pharmaceutically acceptable salt thereof.
 - 5. A compound according to Claim 2 of the formula

wherein R is alkenyl of 12 carbons having from 1 to 3 -CH = CH- groups; R¹ is hydrogen or alkyl of from 1 to 4 carbon atoms; or a pharmaceutically acceptable salt thereof.

- 6. A compound according to Claim 3 which is 3-[3-(1E-tetradecenyl)oxiranyl]benzoic acid, lithium salt.
- 7. A compound according to Claim 3 which is methyl 3-[3-(1E,3E-tetradecadienyl)-oxiranyl]benzoate.
- 45 8. A compound according to Claim 3 which is 3-[3-(1E,3E-tetradecadienyl)oxiranyl]benzoic acid, lithium salt.
 - 9. A compound according to Claim 3 which is methyl 3-(3-tetradecyloxiranyl)benzoate.
- 50 10. A compound according to Claim 3 which is 3-(3-tetradecyloxiranyl)benzoate, lithium salt.
 - 11. A pharmaceutical composition for the treatment of inflammatory diseases comprising a therapeutically effective amount of a compound of the formula

55

20

30

5

20

25

- or a pharmaceutically acceptable salt thereof wherein R is alkyl of 12 carbon atoms, alkenyl of 12 carbon atoms having from 1 to 4 -CH = CH- groups when the carbon adjacent to R is saturated and from 1 to 2 -CH = CH- groups when the carbon adjacent to R is unsaturated;

 R¹ is hydrogen or lower alkyl; and a pharmaceutically acceptable carrier.
- 12. A pharmaceutical composition according to Claim 11 for the treatment of inflammatory disease comprising a therapeutically effective amount of the compound of Claim 2 and a pharmaceutically acceptable carrier.
 - 13. A pharmaceutical composition according to Claim 11 for the treatment of inflammatory disease comprising a therapeutically effective amount of the compound of Claim 3 and a pharmaceutically acceptable carrier.
 - 14. A pharmaceutical composition according to Claim 11 for the treatment of inflammatory disease comprising a therapeutically effective amount of the compound of Claim 4 and a pharmaceutically acceptable carrier.
 - 15. A pharmaceutical composition according to Claim 11 for the treatment of inflammatory disease comprising a therapeutically effective amount of the compound of Claim 5 and a pharmaceutically acceptable carrier.
- 30 16. A pharmaceutical composition according to Claim 11 for the treatment of inflammatory disease comprising a therapeutically effective amount of the compound of Claim 6 and a pharmaceutically acceptable carrier.
- 17. A pharmaceutical composition according to Claim 11 for the treatment of inflammatory disease comprising a therapeutically effective amount of the compound of Claim 7 and a pharmaceutically acceptable carrier.
- 18. A pharmaceutical composition according to Claim 11 for the treatment of inflammatory disease comprising a therapeutically effective amount of the compound of Claim 8 and a pharmaceutically acceptable carrier.
 - 19. A pharmaceutical composition according to Claim 11 for the treatment of inflammatory disease comprising a therapeutically effective amount of the compound of Claim 9 and a pharmaceutically acceptable carrier.
 - 20. A pharmaceutical composition according to Claim 11 for the treatment of inflammatory disease comprising a therapeutically effective amount of the compound of Claim 10 and a pharmaceutically acceptable carrier.
- 50 21. Use of a compound of the formula according to Claim 1 for preparing a medicament for treating inflammatory diseases.
 - 22. Use according to Claim 21 wherein said compound is the compound of Claim 2.
- 55 23. Use according to Claim 21 wherein said compound is the compound of Claim 3.
 - 24. Use according to Claim 21 wherein said compound is the compound of Claim 4.

EP 0 360 246 B1

- 25. Use according to Claim 21 wherein said compound is the compound of Claim 5.
- 26. Use according to Claim 21 wherein said compound is the compound of Claim 6.
- 27. Use according to Claim 21 wherein said compound is the compound of Claim 7.
 - 28. Use according to Claim 21 wherein said compound is the compound of Claim 8.
 - 29. Use according to Claim 21 wherein said compound is the compound of Claim 9.
 - 30. Use according to Claim 21 wherein said compound is the compound of Claim 10.

Claims for the following Contracting State: ES

10

20

25

30

35

40

45

50

55

1. A process for preparing a compound of the formula

or a pharmaceutically acceptable salt thereof wherein R is alkyl of 12 carbon atoms, alkenyl of 12 carbon atoms having from 1 to 4 -CH=CH- groups when the carbon adjacent to R is saturated and from 1 to 2 -CH=CH-groups when the carbon adjacent to R is unsaturated; and R¹ is hydrogen, lower alkyl, or a pharmaceutically acceptable cation, characterized in that

A. an alkyl 3-(bromomethyl)-benzoate of the formula

with R¹ being lower alkyl, is transformed into its sulfonium salt and subsequently being reacted with an appropriate aldehyde of the general formula

B. an appropriate unsaturated sulfonium salt of an aliphatic halide of the formula

is reacted with an alkyl-3-formylbenzoate of the formula

5

10

with R1 as defined just above,

or

C. an oxiranylbenzoate of the formula

15

with R1 as defined just above, is coupled with an appropriate diethylphosphonate of the formula

20

25

to give the desired final compounds,

or

D. an aldehyde compound of the formula

35

30

40

with R1 as defined just above, is coupled with 1-triphenylphosphoranylidene-3Z-nonene

45

thus yielding the desired final compounds which may optionally be saponified to give the respective salts thereof.

2. A process according to Claim 1 wherein the compound prepared is of the formula

50

55

or a pharmaceutically acceptable salt thereof wherein R is alkyl of 12 carbon atoms, alkenyl of 12

carbon atoms having from 1 to 3 -CH = CH- groups when the carbon adjacent to R is saturated and from 1 to 2 -CH = CH- groups when the carbon adjacent to R is unsaturated; and R¹ is hydrogen, lower alkyl, or a pharmaceutically acceptable cation.

3. A process according to Claim 2 wherein the compound prepared is of the formula

10

25

40

- wherein R is alkyl of 12 carbon atoms; or alkenyl of 12 carbon atoms having from 1 to 3.-CH = CH-groups when the carbon adjacent to R is saturated and from 1 to 2.-CH = CH-groups when the carbon adjacent to R is unsaturated; R¹ is hydrogen or alkyl of from 1 to 4 carbon atoms; or a pharmaceutically acceptable salt thereof.
- 20 4. A process according to Claim 2 wherein the compound prepared is of the formula

- wherein R is alkyl of 12 carbon atoms or alkenyl of 12 carbon atoms having from 1 to 2 -CH = CHgroups; R¹ is hydrogen or alkyl of from 1 to 4 carbon atoms; or a pharmaceutically acceptable salt thereof.
 - 5. A process according to Claim 2 wherein the compound prepared is of the formula

- wherein R is alkenyl of 12 carbons having from 1 to 3 -CH = CH- groups; R¹ is hydrogen or alkyl of from 1 to 4 carbon atoms; or a pharmaceutically acceptable salt thereof.
- 6. A process according to Claim 3 wherein the compound prepared is 3-[3-(1E-tetradecenyl)oxiranyl]benzoic acid, lithium salt.
 - 7. A process according to Claim 3 wherein the compound prepared is methyl 3-[3-(1E,3E-tetradecadienyl)oxiranyl]benzoate.
- 50 8. A process according to Claim 3 wherein the compound prepared is 3-[3-(1E,3E-tetradecadienyl)-oxiranyl]benzoic acid, lithium salt.
 - 9. A process according to Claim 3 wherein the compound prepared is methyl 3-(3-tetradecyloxiranyl)-benzoate.
 - 10. A process according to Claim 3 wherein the compound prepared is 3-(3-tetradecyloxiranyl)benzoate, lithium salt.

11. Use of a compound of the formula

5

15

25

35

40

55

R coort

or a pharmaceutically acceptable salt thereof, wherein R is alkyl of 12 carbon atoms, alkenyl of 12 carbon atoms having from 1 to 4 -CH = CH- groups,

when the carbon adjacent to R is saturated and from 1 to 2 -CH = CH- groups when the carbon adjacent to R is unsaturated; R¹ is hydrogen or lower alkyl for preparing a medicament for treating inflammatory diseases.

12. Use according to Claim 11 wherein said compound is a compound of Claim 2.

13. Use according to Claim 11 wherein said compound is the compound of Claim 3.

o 14. Use according to Claim 11 wherein said compound is the compound of Claim 4.

15. Use according to Claim 11 wherein said compound is the compound of Claim 5.

16. Use according to Claim 11 wherein said compound is the compound of Claim 6.

17. Use according to Claim 11 wherein said compound is the compound of Claim 7.

18. Use according to Claim 11 wherein said compound is the compound of Claim 8.

19. Use according to Claim 11 wherein said compound is the compound of Claim 9.

20. Use according to Claim 11 wherein said compound is the compound of Claim 10.

Claims for the following Contracting State: GR

1. A compound of the formula

or a pharmaceutically acceptable salt thereof wherein R is alkyl of 12 carbon atoms, alkenyl of 12 carbon atoms having from 1 to 4 -CH=CH- groups when the carbon adjacent to R is saturated and from 1 to 2 -CH=CH- groups when the carbon adjacent to R is unsaturated, and R¹ is hydrogen, lower alkyl, or a pharmaceutically acceptable cation.

50 2. A compound according to Claim 1 of the formula

R ____COOR¹

or a pharmaceutically acceptable salt thereof wherein R is alkyl of 12 carbon atoms, alkenyl of 12 carbon atoms having from 1 to 3 -CH = CH- groups when the carbon adjacent to R is saturated and from 1 to 2 -CH = CH- groups when the carbon adjacent to R is unsaturated; and R¹ is hydrogen, lower alkyl, or a pharmaceutically acceptable cation.

3. A compound according to Claim 2 of the formula

wherein R is alkyl of 12 carbon atoms; or alkenyl of 12 carbon atoms having from 1 to 3 -CH = CH-groups when the carbon adjacent to R is saturated and from 1 to 2 -CH = CH- groups when the carbon adjacent to R is unsaturated; R¹ is hydrogen or alkyl of from 1 to 4 carbon atoms; or a pharmaceutically acceptable salt thereof.

20 4. A compound according to Claim 2 of the formula

wherein R is alkyl of 12 carbon atoms or alkenyl of 12 carbon atoms having from 1 to 2 -CH = CH-groups; R¹ is hydrogen or alkyl of from 1 to 4 carbon atoms; or a pharmaceutically acceptable salt thereof.

5. A compound according to Claim 2 of the formula

wherein R is alkenyl of 12 carbons having from 1 to 3 -CH = CH- groups; R¹ is hydrogen or alkyl of from 1 to 4 carbon atoms; or a pharmaceutically acceptable salt thereof.

- 45 6. A compound according to Claim 3 which is 3-[3-(1E-tetradecenyl)oxiranyl]benzoic acid, lithium salt.
 - 7. A compound according to Claim 3 which is methyl 3-[3-(1E,3E-tetradecadienyl)-oxiranyl]benzoate.
- 8. A compound according to Claim 3 which is 3-[3-(1E,3E-tetradecadienyl)oxiranyl]benzoic acid, lithium salt.
 - 9. A compound according to Claim 3 which is methyl 3-(3-tetradecyloxiranyl)benzoate.
 - 10. A compound according to Claim 3 which is 3-(3-tetradecyloxiranyl)benzoate, lithium salt.

55

5

10

25

30

35

11. Use of a compound of the formula

5

10

15

25

R ____coor¹

or a pharmaceutically acceptable salt thereof, wherein R is alkyl of 12 carbon atoms, alkenyl of 12 carbon atoms having from 1 to 4 -CH = CH- groups,

when the carbon adjacent to R is saturated and from 1 to 2 -CH = CH- groups when the carbon adjacent to R is unsaturated; R¹ is hydrogen or lower alkyl for preparing a medicament for treating inflammatory diseases.

12. Use according to Claim 11 wherein said compound is a compound of Claim 2.

13. Use according to Claim 11 wherein said compound is the compound of Claim 3.

14. Use according to Claim 11 wherein said compound is the compound of Claim 4.

15. Use according to Claim 11 wherein said compound is the compound of Claim 5.

16. Use according to Claim 11 wherein said compound is the compound of Claim 6.

17. Use according to Claim 11 wherein said compound is the compound of Claim 7.

18. Use according to Claim 11 wherein said compound is the compound of Claim 8.

19. Use according to Claim 11 wherein said compound is the compound of Claim 9.

20. Use according to Claim 11 wherein said compound is the compound of Claim 10.

Patentansprüche

5 Patentansprüche für folgende Vertragsstaaten : AT, BE, FR, GB, DE, IT, LU, NL, SE, CH

1. Eine Verbindung der Formel

40 R COOR'

oder ein pharmazeutisch verträgliches Salz davon, worin R Alkyl mit 12 Kohlenstoffatomen, Alkenyl mit 12 Kohlenstoffatomen, das 1 bis 4 -CH = CH-Gruppen aufweist, wenn das dem R benachbarte Kohlenstoffatom gesättigt ist, und 1 bis 2 -CH = CH-Gruppen, wenn das dem R benachbarte Kohlenstoffatom ungesättigt ist, und

R¹ Wasserstoff, Niederalkyl oder ein pharmazeutisch verträgliches Kation bedeutet.

55

45

2. Eine Verbindung nach Anspruch 1 der Formel

oder ein pharmazeutisch verträgliches Salz davon, worin R Alkyl mit 12 Kohlenstoffatomen, Alkenyl mit 12 Kohlenstoffatomen, das 1 bis 3 -CH = CH-Gruppen aufweist, wenn das dem R benachbarte Kohlenstoffatom gesättigt ist, und 1 bis 2 -CH = CH-Gruppen, wenn das dem R benachbarte Kohlenstoffatom ungesättigt ist, und R¹ Wasserstoff, Niederalkyl oder ein pharmazeutisch verträgliches Kation bedeutet.

3. Eine Verbindung nach Anspruch 2 der Formel

15

35

40

50

worin R Aklyl mit 12 Kohlenstoffatomen oder Alkenyl mit 12 Kohlenstoffatomen bedeutet, das 1 bis 3
-CH = CH-Gruppen aufweist, wenn das dem R benachbarte Kohlenstoffatom gesättigt ist, und 1 bis 2
-CH = CH-Gruppen, wenn das dem R benachbarte Kohlenstoffatom ungesättigt ist; R¹ Wasserstoff oder Alkyl mit 1 bis 4 Kohlenstoffatomen bedeutet, oder ein pharmazeutisch verträgliches Salz davon.

o 4. Eine Verbindung nach Anspruch 2 der Formel

worin R Alkyl mit 12 Kohlenstoffatomen oder Alkenyl mit 12 Kohlenstoffatomen ist, das 1 bis 2-CH = CH-Gruppen aufweist; R¹ Wasserstoff oder Alkyl mit 1 bis 4 Kohlenstoffatomen bedeutet, oder ein pharmazeutisch verträgliches Salz davon.

5. Eine Verbindung nach Anspruch 2 der Formel

worin R Alkenyl mit 12 Kohlenstoffatomen bedeutet, das 1 bis 3 -CH = CH-Gruppen aufweist; R¹ Wasserstoff oder Alkyl mit 1 bis 4 Kohlenstoffatomen bedeutet, oder ein pharmazeutisch verträgliches Salz davon.

- 55 6. Eine Verbindung nach Anspruch 3, die 3-[3-(1E-Tetradecenyl)oxiranyl]benzoesäure-Lithiumsalz ist.
 - 7. Eine Verbindung nach Anspruch 3, die Methyl-3-[3-(1E,3E-tetradecadienyl)oxiranyl]benzoat ist.

- 8. Eine Verbindung nach Anspruch 3, die 3-[3-(1E,3E-Tetradecadienyl)oxiranyl]benzoesäure-Lithiumsalz ist.
- 9. Eine Verbindung nach Anspruch 3, die Methyl-3-(3-tetradecyloxiranyl)benzoat ist.

5

10

15

20

25

30

45

- 10. Eine Verbindung nach Anspruch 3, die 3-(3-Tetradecyloxiranyl)benzoat-Lithiumsalz ist.
- 11. Eine pharmazeutische Zusammensetzung zur Behandlung von entzündlichen Erkrankungen, enthaltend eine therapeutisch wirksame Menge einer Verbindung der Formel

- oder ein pharmazeutisch verträgliches Salz davon, worin R Alkyl mit 12 Kohlenstoffatomen, Alkenyl mit 12 Kohlenstoffatomen bedeutet, das 1 bis 4 -CH = CH-Gruppen aufweist, wenn das dem R benachbarte Kohlenstoffatom gesättigt ist, und 1 bis 2 -CH = CH-Gruppen, wenn das dem R benachbarte Kohlenstoffatom ungesättigt ist; R¹ Wasserstoff oder Niederalkyl bedeutet, und einen pharmazeutisch verträglichen Träger.
- 12. Eine pharmazeutische Zusammensetzung nach Anspruch 11 zur Behandlung von entzündlichen Erkrankungen, enthaltend eine therapeutisch wirksame Menge der Verbindung des Anspruchs 2 und einen pharmazeutisch verträglichen Träger.
- 13. Eine pharmazeutische Zusammensetzung nach Anspruch 11 zur Behandlung von entzündlichen Erkrankungen, enthaltend eine therapeutisch wirksame Menge der Verbindung des Anspruchs 3 und einen pharmazeutisch verträglichen Träger.
- 14. Eine pharmazeutische Zusammensetzung nach Anspruch 11 zur Behandlung von entzündlichen Erkrankungen, enthaltend eine therapeutisch wirksame Menge der Verbindung des Anspruchs 4 und einen pharmazeutisch verträglichen Träger.
- 15. Eine pharmazeutische Zusammensetzung nach Anspruch 11 zur Behandlung von entzündlichen Erkrankungen, enthaltend eine therapeutisch wirksame Menge der Verbindung des Anspruchs 5 und einen pharmazeutisch verträglichen Träger.
- 16. Eine pharmazeutische Zusammensetzung nach Anspruch 11 zur Behandlung von entzündlichen Erkrankungen, enthaltend eine therapeutisch wirksame Menge der Verbindung des Anspruchs 6 und einen pharmazeutisch verträglichen Träger.
 - 17. Eine pharmazeutische Zusammensetzung nach Anspruch 11 zur Behandlung von entzündlichen Erkrankungen, enthaltend eine therapeutisch wirksame Menge der Verbindung des Anspruchs 7 und einen pharmazeutisch verträglichen Träger.
 - 18. Eine pharmazeutische Zusammensetzung nach Anspruch 11 zur Behandlung von entzündlichen Erkrankungen, enthaltend eine therapeutisch wirksame Menge der Verbindung des Anspruchs 8 und einen pharmazeutisch verträglichen Träger.
 - 19. Eine pharmazeutische Zusammensetzung nach Anspruch 11 zur Behandlung von entzündlichen Erkrankungen, enthaltend eine therapeutisch wirksame Menge der Verbindung des Anspruchs 9 und einen pharmazeutisch verträglichen Träger.
- 20. Eine pharmazeutische Zusammensetzung nach Anspruch 11 zur Behandlung von entzündlichen Erkrankungen, enthaltend eine therapeutisch wirksame Menge der Verbindung des Anspruchs 10 und einen pharmazeutisch verträglichen Träger.

- 21. Verwendung einer Verbindung der Formel gemäß Anspruch 1 zur Herstellung eines Medikamentes zur Behandlung entzündlicher Erkrankungen.
- 22. Verwendung nach Anspruch 21, worin diese Verbindung die Verbindung des Anspruchs 2 ist.
- 23. Verwendung nach Anspruch 21, worin diese Verbindung die Verbindung des Anspruchs 3 ist.
- 24. Verwendung nach Anspruch 21, worin diese Verbindung die Verbindung des Anspruchs 4 ist.
- 25. Verwendung nach Anspruch 21, worin diese Verbindung die Verbindung des Anspruchs 5 ist.
 - 26. Verwendung nach Anspruch 21, worin diese Verbindung die Verbindung des Anspruchs 6 ist.
 - 27. Verwendung nach Anspruch 21, worin diese Verbindung die Verbindung des Anspruchs 7 ist.
 - 28. Verwendung nach Anspruch 21, worin diese Verbindung die Verbindung des Anspruchs 8 ist.
 - 29. Verwendung nach Anspruch 21, worin diese Verbindung die Verbindung des Anspruchs 9 ist.
- 30. Verwendung nach Anspruch 21, worin diese Verbindung die Verbindung des Anspruchs 10 ist.

Patentansprüche für folgenden Vertragsstaat : ES

1. Ein Verfahren zur Herstellung einer Verbindung der Formel

oder eines pharmazeutisch verträglichen Salzes davon, worin R Alkyl mit 12 Kohlenstoffatomen, Alkenyl mit 12 Kohlenstoffatomen bedeutet, das 1 bis 4 -CH = CH-Gruppen aufweist, wenn das dem R benachbarte Kohlenstoffatom gesättigt ist, und 1 bis 2 -CH = CH-Gruppen, wenn das dem R benachbarte Kohlenstoffatom ungesättigt ist, und

R¹ Wasserstoff, Niederalkyl oder ein pharmazeutisch verträgliches Kation bedeutet, dadurch gekennzeichnet, daß man

A. ein Alkyl-3(brommethyl)-benzoat der Formel

worin R¹ Niederalkyl ist, in sein Sulfoniumsalz umwandelt und anschließend mit einem geeigneten Aldehyd der allgemeinen Formel

55

15

25

30

35

40

45

umsetzt oder

5

10

15

20

25

30

35

40

45

50

55

B. ein geeignetes ungesättigtes Sulfoniumsalz eines aliphatischen Halogenids der Formel

mit einem Alkyl-3-formylbenzoat der Formel

worin R¹ vorstehende Bedeutung hat, umsetzt oder C. ein Oxiranylbenzoat der Formel

worin R1 vorstehende Bedeutung hat, mit einem geeigneten Diethylphosphonat der Formel

aneinanderkuppelt, unter Bildung des gewünschten Endproduktes, oder D. eine Aldehydverbindung der Formel

worin R¹ vorstehende Bedeutung hat, mit 1-Triphenylphosphoranyliden-3Z-nonen

kuppelt, unter Bildung der gewünschten Endprodukte, die gegebenenfalls verseift werden können unter Bildung der entsprechenden Salze davon.

2. Ein Verfahren nach Anspruch 1, worin die hergestellte Verbindung die Formel

5

10

15

25

30

35

45

50

55

aufweist, oder ein pharmazeutisch verträgliches Salz davon, worin R Alkyl mit 12 Kohlenstoffatomen, Alkenyl mit 12 Kohlenstoffatomen, das 1 bis 3 -CH = CH-Gruppen aufweist, wenn das dem R benachbarte Kohlenstoffatom gesättigt ist, und 1 bis 2 -CH = CH-Gruppen, wenn das dem R benachbarte Kohlenstoffatom ungesättigt ist, und R¹ Wasserstoff, Niederalkyl oer ein pharmazeutisch verträgliches Kation bedeuten.

3. Ein Verfahren nach Anspruch 2, worin die hergestellte Verbindung die Formel

aufweist, worin R Aklyl mit 12 Kohlenstoffatomen oder Alkenyl mit 12 Kohlenstoffatomen bedeutet, das 1 bis 3 -CH = CH-Gruppen aufweist, wenn das dem R benachbarte Kohlenstoffatom gesättigt ist, und 1 bis 2 -CH = CH-Gruppen, wenn das dem R benachbarte Kohlenstoffatom ungesättigt ist; R¹ Wasserstoff oder Alkyl mit 1 bis 4 Kohlenstoffatomen bedeutet, oder ein pharmazeutisch verträgliches Salz davon.

4. Ein Verfahren nach Anspruch 2, worin die hergestellte Verbindung die Formel

aufweist, worin R Alkyl mit 12 Kohlenstoffatomen oder Alkenyl mit 12 Kohlenstoffatomen ist, das 1 bis 2-CH = CH-Gruppen aufweist; R¹ Wasserstoff oder Alkyl mit 1 bis 4 Kohlenstoffatomen bedeutet, oder ein pharmazeutisch verträgliches Salz davon.

5. Ein Verfahren nach Anspruch 2, worin die hergestellte Verbindung die Formel

aufweist, worin R Alkenyl mit 12 Kohlenstoffatomen bedeutet, das 1 bis 3 -CH = CH-Gruppen aufweist; R¹ Wasserstoff oder Alkyl mit 1 bis 4 Kohlenstoffatomen bedeutet, oder ein pharmazeutisch verträgliches Salz davon.

 Ein Verfahren nach Anspruch 3, worin die hergestellte Verbindung 3-[3-(1E-Tetradecenyl)oxiranyl]benzoesäure-Lithiumsalz ist.

- 7. Ein Verfahren nach Anspruch 3, worin die hergestellte Verbindung Methyl-3-[3-(1E,3E-tetradecadienyl)-oxiranyl]benzoat ist.
- 8. Ein Verfahren nach Anspruch 3, worin die hergestellte Verbindung 3-[3-(1E,3E-Tetradecadienyl)-oxiranyl]benzoesäure-Lithiumsalz ist.
 - 9. Ein Verfahren nach Anspruch 3, worin die hergestellte Verbindung Methyl-3-(3-tetradecyloxiranyl)benzoat ist.
- 10. Ein Verfahren nach Anspruch 3, worin die hergestellte Verbindung 3-(3-Tetradecyloxiranyl)benzoat-Lithiumsalz ist.
 - 11. Verwendung einer Verbindung der Formel

5

20

25

30

40

50

55

15 R

oder eines pharmazeutisch verträglichen Salzes davon, worin R Alkyl mit 12 Kohlenstoffatomen, Alkenyl mit 12 Kohlenstoffatomen bedeutet, das 1 bis 4-CH=CH-Gruppen aufweist, wenn das dem R benachbarte Kohlenstoffatom gesättigt ist, und von 1 bis 2 -CH=CH-Gruppen, wenn das dem R benachbarte Kohlenstoffatom ungesättigt ist;

COORI

R¹ Wasserstoff oder Niederalkyl bedeutet, zur Herstellung eines Medikamentes zur Behandlung von entzündlichen Erkrankungen.

- 12. Verwendung nach Anspruch 11, worin diese Verbindung die Verbindung des Anspruchs 2 ist.
- 13. Verwendung nach Anspruch 11, worin diese Verbindung die Verbindung des Anspruchs 3 ist.
- 14. Verwendung nach Anspruch 11, worin diese Verbindung die Verbindung des Anspruchs 4 ist.
- 55 15. Verwendung nach Anspruch 11, worin diese Verbindung die Verbindung des Anspruchs 5 ist.
 - 16. Verwendung nach Anspruch 11, worin diese Verbindung die Verbindung des Anspruchs 6 ist.
 - 17. Verwendung nach Anspruch 11, worin diese Verbindung die Verbindung des Anspruchs 7 ist.
 - 18. Verwendung nach Anspruch 11, worin diese Verbindung die Verbindung des Anspruchs 8 ist.
 - 19. Verwendung nach Anspruch 11, worin diese Verbindung die Verbindung des Anspruchs 9 ist.
- 20. Verwendung nach Anspruch 11, worin diese Verbindung die Verbindung des Anspruchs 10 ist.

Patentansprüche für folgenden Vertragsstaat : GR

1. Eine Verbindung der Formel.

oder ein pharmazeutisch verträgliches Salz davon, worin R Alkyl mit 12 Kohlenstoffatomen, Alkenyl mit

12 Kohlenstoffatomen, das 1 bis 4 -CH = CH-Gruppen aufweist, wenn das dem R benachbarte Kohlenstoffatom gesättigt ist, und 1 bis 2 -CH = CH-Gruppen, wenn das dem R benachbarte Kohlenstoffatom ungesättigt ist, und

R¹ Wasserstoff, Niederalkyl oder ein pharmazeutisch verträgliches Kation bedeuten.

2. Eine Verbindung nach Anspruch 1 der Formel

5

10

20

25

40

50

55

- oder ein pharmazeutisch verträgliches Salz davon, worin R Alkyl mit 12 Kohlenstoffatomen, Alkenyl mit 12 Kohlenstoffatomen, das 1 bis 3 -CH=CH-Gruppen aufweist, wenn das dem R benachbarte Kohlenstoffatom gesättigt ist, und 1 bis 2 -CH=CH-Gruppen, wenn das dem R benachbarte Kohlenstoffatom ungesättigt ist, und R¹ Wasserstoff, Niederalkyl oder ein pharmazeutisch verträgliches Kation bedeuten.
 - 3. Eine Verbindung nach Anspruch 2 der Formel

- worin R Aklyl mit 12 Kohlenstoffatomen oder Alkenyl mit 12 Kohlenstoffatomen bedeutet, das 1 bis 3
 -CH = CH-Gruppen aufweist, wenn das dem R benachbarte Kohlenstoffatom gesättigt ist, und 1 bis 2
 -CH = CH-Gruppen, wenn das dem R benachbarte Kohlenstoffatom ungesättigt ist; R¹ Wasserstoff oder Alkyl mit 1 bis 4 Kohlenstoffatomen bedeutet, oder ein pharmazeutisch verträgliches Salz davon.
- 5 4. Eine Verbindung nach Anspruch 2 der Formel

- worin R Alkyl mit 12 Kohlenstoffatomen oder Alkenyl mit 12 Kohlenstoffatomen ist, das 1 bis 2-CH = CH-Gruppen aufweist; R¹ Wasserstoff oder Alkyl mit 1 bis 4 Kohlenstoffatomen bedeutet, oder ein pharmazeutisch verträgliches Salz davon.
 - 5. Eine Verbindung nach Anspruch 2 der Formel

worin R Alkenyl mit 12 Kohlenstoffatomen bedeutet, das 1 bis 3 -CH = CH-Gruppen aufweist; R¹ Wasserstoff oder Alkyl mit 1 bis 4 Kohlenstoffatomen bedeutet, oder ein pharmazeutisch verträgliches

EP 0 360 246 B1

Salz davon.

- 6. Eine Verbindung nach Anspruch 3, die 3-[3-(1E-Tetradecenyl)oxiranyl]benzoesäure-Lithiumsalz ist.
- Eine Verbindung nach Anspruch 3, die Methyl-3-[3-(1E,3E-tetradecadienyl)oxiranyl]benzoat ist.
 - 8. Eine Verbindung nach Anspruch 3, die 3-[3-(1E,3E-Tetradecadienyl)oxiranyl]benzoesäure-Lithiumsalz ist.
- 10 9. Eine Verbindung nach Anspruch 3, die Methyl-3-(3-tetradecyloxiranyl)benzoat ist.
 - 10. Eine Verbindung nach Anspruch 3, die 3-(3-Tetradecyloxiranyl)benzoat-Lithiumsalz ist.
 - 11. Verwendung einer Verbindung der Formel

15

20

25

oder eines pharmazeutisch verträglichen Salzes davon, worin R Alkyl mit 12 Kohlenstoffatomen, Alkenyl mit 12 Kohlenstoffatomen bedeutet, das 1 bis 4-CH=CH-Gruppen aufweist, wenn das dem R benachbarte Kohlenstoffatom gesättigt ist, und von 1 bis 2 -CH=CH-Gruppen, wenn das dem R benachbarte Kohlenstoffatom ungesättigt ist;

R¹ Wasserstoff oder Niederalkyl bedeutet, zur Herstellung eines Medikamentes zur Behandlung von entzündlichen Erkrankungen.

- 30 12. Verwendung nach Anspruch 11, worin diese Verbindung die Verbindung des Anspruchs 2 ist.
 - 13. Verwendung nach Anspruch 11, worin diese Verbindung die Verbindung des Anspruchs 3 ist.
 - 14. Verwendung nach Anspruch 11, worin diese Verbindung die Verbindung des Anspruchs 4 ist.

35

- 15. Verwendung nach Anspruch 11, worin diese Verbindung die Verbindung des Anspruchs 5 ist.
- 16. Verwendung nach Anspruch 11, worin diese Verbindung die Verbindung des Anspruchs 6 ist.
- 40 17. Verwendung nach Anspruch 11, worin diese Verbindung die Verbindung des Anspruchs 7 ist.
 - 18. Verwendung nach Anspruch 11, worin diese Verbindung die Verbindung des Anspruchs 8 ist.
 - 19. Verwendung nach Anspruch 11, worin diese Verbindung die Verbindung des Anspruchs 9 ist.

45

20. Verwendung nach Anspruch 11, worin diese Verbindung die Verbindung des Anspruchs 10 ist.

50

Revendications

5

10

15

20

25

35

40

Revendications pour les Etats contractants sulvants : AT, BE, FR, GB, DE, IT, LU, NL, SE, CH.

1. Un composé de formule :

R ____COOR

ou un sel pharmaceutiquement acceptable dudit composé, formule dans laquelle R est un groupe alkyle de 12 atomes de carbone, alcényle de 12 atomes de carbone ayant de 1 à 4 groupes -CH = CH-lorsque l'atome de carbone adjacent à R est saturé et de 1 à 2 groupes -CH = CH-lorsque l'atome de carbone adjacent à R est insaturé,

et R¹ est un atome d'hydrogène, un groupe alkyle inférieur ou un cation pharmaceutiquement acceptable.

2. Un composé selon la revendication 1 de formule :

ou un sel pharmaceutiquement acceptable dudit composé, formule dans laquelle R est un groupe alkyle de 12 atomes de carbone, alcényle de 12 atomes de carbone ayant de 1 à 3 groupes -CH = CH-lorsque l'atome de carbone adjacent à R est saturé et de 1 à 2 groupes -CH = CH-lorsque l'atome de carbone adjacent à R est insaturé;

et R¹ est un atome d'hydrogène, un groupe alkyle inférieur ou un cation pharmaceutiquement acceptable.

3. Un composé selon la revendication 2, de formule :

dans laquelle R est un groupe alkyle de 12 atomes de carbone ; ou un groupe alcényle de 12 atomes de carbone ayant de 1 à 3 groupes -CH=CH- lorsque l'atome de carbone adjacent à R est saturé et de 1 à 2 groupes -CH=CH- lorsque l'atome de carbone adjacent à R est insaturé ; R¹ est un atome d'hydrogène ou un groupe alkyle de 1 à 4 atomes de carbone ; ou un sel pharmaceutiquement acceptable dudit composé.

55

4. Un composé selon la revendication 2, de formule :

5

10

30

40

50

55

dans laquelle R est un groupe alkyle de 12 atomes de carbone ou alcényle de 12 atomes de carbone ayant de 1 à 2 groupes -CH = CH-; R¹ est un atome d'hydrogène ou un groupe alkyle de 1 à 4 atomes de carbone; ou un sel pharmaceutiquement acceptable dudit composé.

15 5. Un composé selon la revendication 2, de formule :

dans laquelle R est un groupe alcényle de 12 atomes de carbone ayant de 1 à 3 groupes -CH = CH-;
R¹ est un atome d'hydrogène ou un groupe alkyle de 1 à 4 atomes de carbone ; ou un sel pharmaceutiquement acceptable dudit composé.

- 6. Un composé selon la revendication 3, qui est le sel de lithium de l'acide 3-[3-(1E-tétradécényl)-oxirannyl]benzoïque.
- 7. Un composé selon la revendication 3, qui est le 3-[3-(1E,3E-tétradécadiényl)-oxirannyl]benzoate de méthyle.
- 8. Un composé selon la revendication 3, qui est le sel de lithium de l'acide 3-[3-(1E,3E-tétradécadiényl)-oxirannyl]benzoïque.
 - 9. Un composé selon la revendication 3, qui est le 3-(3-tétradécyloxirannyl)benzoate de méthyle.
 - 10. Un composé selon la revendication 3, qui est le sel 3-(3-tétradécyloxirannyl)benzoate de lithium.
 - 11. Une composition pharmaceutique pour le traitement des maladies inflammatoires comprenant une quantité thérapeutique efficace d'un composé de formule :

ou d'un sel pharmaceutiquement acceptable dudit composé, formule dans laquelle R est un groupe alkyle de 12 atomes de carbone, alcényle de 12 atomes de carbone ayant de 1 à 4 groupes -CH = CH-lorsque l'atome de carbone adjacent à R est saturé et de 1 à 2 groupes -CH = CH-lorsque l'atome de carbone adjacent à R est insaturé ;

R¹ est un atome d'hydrogène ou un groupe alkyle inférieur ; et un support pharmaceutiquement acceptable.

EP 0 360 246 B1

- 12. Une composition pharmaceutique selon la revendication 11, pour le traitement d'une maladie inflammatoire comprenant une quantité thérapeutiquement efficace du composé de la revendication 2 et un support pharmaceutiquement acceptable.
- 13. Une composition pharmaceutique selon la revendication 11, pour le traitement d'une maladie inflammatoire comprenant une quantité thérapeutiquement efficace du composé selon la revendication 3 et un support pharmaceutiquement acceptable.
- 14. Une composition pharmaceutique selon la revendication 11, pour le traitement d'une maladie inflammatoire comprenant une quantité thérapeutiquement efficace du composé selon la revendication 4 et un support pharmaceutique acceptable.
 - 15. Une composition pharmaceutique selon la revendication 11, pour le traitement d'une maladie inflammatoire comprenant une quantité thérapeutique efficace du composé selon la revendication 5 et un support pharmaceutiquement acceptable.

15

20

45

55

- 16. Une composition pharmaceutique selon la revendication 11, pour le traitement d'une maladie inflammatoire comprenant une quantité thérapeutique efficace du composé selon la revendication 6 et un support pharmaceutiquement acceptable.
- 17. Une composition pharmaceutique selon la revendication 11, pour le traitement d'une maladie inflammatoire comprenant une quantité thérapeutique efficace du composé selon la revendication 7 et un support pharmaceutiquement acceptable.
- 18. Une composition pharmaceutique selon la revendication 11, pour le traitement d'une maladie inflammatoire comprenant une quantité thérapeutique efficace du composé selon la revendication 8 et un support pharmaceutiquement acceptable.
- 19. Une composition pharmaceutique selon la revendication 11, pour le traitement d'une maladie inflammatoire comprenant une quantité thérapeutique efficace du composé selon la revendication 9 et un support pharmaceutiquement acceptable.
 - 20. Une composition pharmaceutique selon la revendication 11, pour le traitement d'une maladie inflammatoire comprenant une quantité thérapeutique efficace du composé selon la revendication 10 et un support pharmaceutiquement acceptable.
 - 21. Utilisation d'un composé de formule selon la revendication 1, pour la préparation d'un médicament pour le traitement des maladies inflammatoires.
- 40 22. Utilisation selon la revendication 21 selon laquelle ledit composé est le composé de la revendication 2.
 - 23. Utilisation selon la revendication 21 selon laquelle ledit composé est le composé de la revendication 3.
 - 24. Utilisation selon la revendication 21 selon laquelle ledit composé est le composé de la revendication 4.
 - 25. Utilisation selon la revendication 21 selon laquelle ledit composé est le composé de la revendication 5.
 - 26. Utilisation selon la revendication 21 selon laquelle ledit composé est le composé de la revendication 6.
- 27. Utilisation selon la revendication 21 selon laquelle ledit composé est le composé de la revendication 7.
 - 28. Utilisation selon la revendication 21 selon laquelle ledit composé est le composé de la revendication 8.
 - 29. Utilisation selon la revendication 21 selon laquelle ledit composé est le composé de la revendication 9.
 - 30. Utilisation selon la revendication 21 selon laquelle ledit composé est le composé de la revendication 10.

Revendications pour l'Etat contractant sulvant : ES

1. Un procédé de préparation d'un composé de formule :

10

15

5

ou d'un sel pharmaceutiquement acceptable dudit composé, formule dans laquelle R est un groupe alkyle de 12 atomes de carbone, alcényle de 12 atomes de carbone ayant de 1 à 4 groupes -CH = CH-lorsque l'atome de carbone adjacent à R est saturé et de 1 à 2 groupes -CH = CH-lorsque l'atome de carbone adjacent à R est insaturé ;

et R¹ est un atome d'hydrogène, un groupe alkyle inférieur ou un cation pharmaceutiquement acceptable,

caractérisé en ce que :

A. un 3-(bromométhyl)benzoate d'alkyle de formule :

20

25

dans laquelle R¹ est un groupe alkyle inférieur, est transformé en son sel de sulfonium et subséquemment mis à réagir avec un aldhéyde approprié de formule générale :

35

30

ou bien

B. un sel de sulfonium insaturé approprié d'un halogénure aliphatique de formule :

45

40

est mis à réagir avec un 3-formylbenzoate d'alkyle de formule :

50

55

dans laquelle R1 est comme défini précédemment, ou bien

C. un oxirannylbenzoate de formule :

R CCO, R

dans laquelle R¹ est comme défini précédemment, est couplé avec un phosphonate de diéthyle approprié de formule :

) (OEE);

pour donner les composés finaux désirés, ou bien D. un composé aldéhyde de formule :

25 R Co₁ R Co₂ R C

dans laquelle R¹ est comme défini précédemment, est couplé avec le 1-triphénylphosphoranylidène-3Z-nonène :

pour donner les composés finaux désirés qui peuvent éventuellement être saponifiés pour donner les sels respectifs.

40 2. Un procédé selon la revendication 1, selon laquelle le composé préparé est de formule :

R _____coon¹

ou un sel pharmaceutiquement acceptable, formule dans laquelle R est un groupe alkyle de 12 atomes de carbone, alcényle de 12 atomes de carbone ayant de 1 à 3 groupes -CH = CH- lorsque l'atome de carbone adjacent à R est saturé et de 1 à 2 groupes -CH = CH- lorsque l'atome de carbone adjacent à R est insaturé ;

et R¹ est un atome d'hydrogène, un groupe alkyle inférieur ou un cation pharmaceutiquement acceptable.

55

45

50

5

15

3. Un procédé selon la revendication 2, selon laquelle le composé préparé est de formule :

5

15

30

35

45

dans laquelle R est un groupe alkyle de 12 atomes de carbone ; ou alcényle de 12 atomes de carbone ayant de 1 à 3 groupes -CH=CH- lorsque l'atome de carbone adjacent à R est saturé et de 1 à 2 groupes -CH=CH- lorsque l'atome de carbone adjacent à R est insaturé ; R¹ est un atome d'hydrogène ou un groupe alkyle de 1 à 4 atomes de carbone ; ou un sel pharmaceutiquement acceptable dudit composé.

4. Un procédé selon la revendication 2, selon laquelle le composé préparé est de formule :

dans laquelle R est un groupe alkyle de 12 atomes de carbone ou alcényle de 12 atomes de carbone ayant de 1 à 2 groupes -CH = CH-; R¹ est un atome d'hydrogène ou un groupe alkyle de 1 à 4 atomes de carbone; ou un sel pharmaceutiquement acceptable dudit composé.

5. Un procédé selon la revendication 2, selon laquelle le composé préparé est de formule :

dans laquelle R est un groupe alcényle de 12 atomes de carbone ayant de 1 à 3 groupes -CH = CH-;
R¹ est un atome d'hydrogène ou un groupe alkyle de 1 à 4 atomes de carbone ; ou un sel pharmaceutiquement acceptable dudit composé.

- 6. Un procédé selon la revendication 3, selon laquelle le composé préparé est le sel de lithium de l'acide 3-[3-(1E-tétradécényl)oxirannyl]benzoïque.
- 7. Un procédé selon la revendication 3, selon laquelle le composé préparé est le 3-[3-(1E,3E-tétradécadié-nyl)-oxirannyl]benzoate de méthyle.
- 8. Un procédé selon la revendication 3, selon laquelle le composé préparé est le sel de lithium de l'acide 3-[3-(1E,3E-tétradécadiényl)-oxirannyl]benzoïque.
 - 9. Un procédé selon la revendication 3, selon laquelle le composé préparé est le 3-(3-tétradécyloxirannyl)benzoate de méthyle.
- 10. Un procédé selon la revendication 3, selon laquelle le composé préparé est le sel 3-(3-tétradécyloxirannyl)benzoate de lithium.

11. Utilisation d'un composé de formule :

5

10

15

25

40

45

50

ou d'un sel pharmaceutiquement acceptable dudit composé, formule dans laquelle R est un groupe alkyle de 12 atomes de carbone ou alcényle de 12 atomes de carbone ayant de 1 à 4 groupes -CH = CH-, lorsque l'atome de carbone adjacent à R est saturé et de 1 à 2 groupes -CH = CH- lorsque l'atome de carbone adjacent à R est insaturé ;

R¹ est un atome d'hydrogène ou un groupe alkyle inférieure pour la préparation d'un médicament pour le traitement des maladies inflammatoires.

- 12. Utilisation selon la revendication 11, selon laquelle ledit composé est un composé de la revendication 2.
- 20 13. Utilisation selon la revendication 11, selon laquelle ledit composé est le composé de la revendication 3.
 - 14. Utilisation selon la revendication 11, selon laquelle ledit composé est le composé de la revendication 4.
 - 15. Utilisation selon la revendication 11, selon laquelle ledit composé est le composé de la revendication 5.
 - 16. Utilisation selon la revendication 11, selon laquelle ledit composé est le composé de la revendication 6.
 - 17. Utilisation selon la revendication 11, selon laquelle ledit composé est le composé de la revendication 7.
- 30 18. Utilisation selon la revendication 11, selon laquelle ledit composé est le composé de la revendication 8.
 - 19. Utilisation selon la revendication 11, selon laquelle ledit composé est le composé de la revendication 9.
- Utilisation selon la revendication 11, selon laquelle ledit composé est le composé de la revendication
 10.

Revendications pour l'Etat contractant suivant : GR

1. Un composé de formule :

F COOR!

ou un sel pharmaceutiquement acceptable dudit composé, formule dans laquelle R est un groupe alkyle de 12 atomes de carbone, alcényle de 12 atomes de carbone ayant de 1 à 4 groupes -CH = CH-lorsque l'atome de carbone adjacent à R est saturé et de 1 à 2 groupes -CH = CH-lorsque l'atome de carbone adjacent à R est insaturé,

et R¹ est un atome d'hydrogène, un groupe alkyle inférieur ou un cation pharmaceutiquement acceptable.

2. Un composé selon la revendication 1 de formule :

10

5

ou un sel pharmaceutiquement acceptable dudit composé, formule dans laquelle R est un groupe alkyle de 12 atomes de carbone, alcényle de 12 atomes de carbone ayant de 1 à 3 groupes -CH = CH-lorsque l'atome de carbone adjacent à R est saturé et de 1 à 2 groupes -CH = CH-lorsque l'atome de carbone adjacent à R est insaturé;

et R¹ est un atome d'hydrogène, un groupe alkyle inférieur ou un cation pharmaceutiquement acceptable.

3. Un composé selon la revendication 2, de formule :

25

30

dans laquelle R est un groupe alkyle de 12 atomes de carbone ; ou un groupe alcényle de 12 atomes de carbone ayant de 1 à 3 groupes -CH = CH- lorsque l'atome de carbone adjacent à R est saturé et de 1 à 2 groupes -CH = CH- lorsque l'atome de carbone adjacent à R est insaturé ; R¹ est un atome d'hydrogène ou un groupe alkyle de 1 à 4 atomes de carbone ; ou un sel pharmaceutiquement acceptable dudit composé.

4. Un composé selon la revendication 2, de formule :

40

dans laquelle R est un groupe alkyle de 12 atomes de carbone ou alcényle de 12 atomes de carbone ayant de 1 à 2 groupes -CH = CH-; R¹ est un atome d'hydrogène ou un groupe alkyle de 1 à 4 atomes de carbone; ou un sel pharmaceutiquement acceptable dudit composé.

45 5. Un composé selon la revendication 2, de formule :

55

50

dans laquelle R est un groupe alcényle de 12 atomes de carbone ayant de 1 à 3 groupes -CH = CH-; R¹ est un atome d'hydrogène ou un groupe alkyle de 1 à 4 atomes de carbone; ou un sel pharmaceutiquement acceptable dudit composé.

EP 0 360 246 B1

- Un composé selon la revendication 3, qui est le sel de lithium de l'acide 3-[3-(1E-tétradécényl)oxirannyl]benzoïque.
- 7. Un composé selon la revendication 3, qui est le 3-[3-(1E,3E-tétradécadiényl)-oxirannyl]benzoate de méthyle.
 - 8. Un composé selon la revendication 3, qui est le sel de lithium de l'acide 3-[3-(1E,3E-tétradécadiényl)-oxirannyl]benzoïque.
- 9. Un composé selon la revendication 3, qui est le 3-(3-tétradécyloxirannyl)benzoate de méthyle.
 - 10. Un composé selon la revendication 3, qui est le sel 3-(3-tétradécyloxirannyl)benzoate de lithium.
 - 11. Utilisation d'un composé de formule :

15

20

25

30

40

ou d'un sel pharmaceutiquement acceptable dudit composé, formule dans laquelle R est un groupe alkyle de 12 atomes de carbone, ou alcényle de 12 atomes de carbone ayant de 1 à 4 groupes -CH = CH-, lorsque l'atome de carbone adjacent à R est saturé et de 1 à 2 groupes -CH = CH- lorsque l'atome de carbone adjacent à R est insaturé;

R¹ est un atome d'hydrogène ou un groupe alkyle inférieur pour la préparation d'un médicament pour le traitement des maladies inflammatoires.

- 12. Utilisation selon la revendication 11, selon laquelle le composé est un composé de la revendication 2.
- 13. Utilisation selon la revendication 11, selon laquelle ledit composé est le composé de la revendication 3.
- 14. Utilisation selon la revendication 11, selon laquelle ledit composé est le composé de la revendication 4.
- 5 15. Utilisation selon la revendication 11, selon laquelle ledit composé est le composé de la revendication 5.
 - 16. Utilisation selon la revendication 11, selon laquelle ledit composé est le composé de la revendication 6.
 - 17. Utilisation selon la revendication 11, selon laquelle ledit composé est le composé de la revendication 7.
 - 18. Utilisation selon la revendication 11, selon laquelle ledit composé est le composé de la revendication 8.
 - 19. Utilisation selon la revendication 11, selon laquelle ledit composé est le composé de la revendication 9.
- 20. Utilisation selon la revendication 11, selon laquelle ledit composé est le composé de la revendication 10.

50

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

☐ LINES OR MARKS ON ORIGINAL DOCUMENT

☐ OTHER: _____

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY