Online Lecture # 05 - FM Demodulation in the Presence of Noise

W(t): the white noise at the $R\pi$ input [it has infinite BW and power] n(t): the filtered noise around the carrier f_c in a the bandwidth of $W=2f_m$ $n_1(t)$: the demodulated noise.

Limiter: keeps a constant amplitude of the received noisy FM signal.

LPF: removes the noise outside the message BW.

S_N(f)
No/2
S_n(f)
No
2
S_n(

the phasor diagram representation of alt) is given by:

Assuming that the noise is quite small compared to the FM signal $x(t) \simeq A_c \cdot \cos \left(2\pi f_c t + O(t) \right)$

 $\sin \left(\Theta(t) - \varphi(t) \right) = \frac{\Gamma(t)}{A_{\mathbf{c}}} \cdot \sin \left(\varphi(t) - \varphi(t) \right) \simeq \Theta(t) - \varphi(t)$ using 1st oroler Taylor series approximation

$$O(t) = \frac{1}{2\pi} \frac{d\Theta(t)}{dt} = \frac{1}{2\pi} \frac{d\Theta(t)}{dt}$$