Normalisation by Evaluation for Dependent Types

Ambrus Kaposi Eötvös Loránd University, Budapest, Hungary (joint work with Thorsten Altenkirch of Nottingham)

> TYPES, Нови Сад 25 May 2016

Introduction

- ► Goal:
 - Prove normalisation for a type theory with dependent types
 - Using the metalanguage of type theory itself
- Structure of the talk:
 - Representing type theory in type theory
 - Specifying normalisation
 - NBE for simple types
 - NBE for dependent types

Representing type theory in type theory

Representing type theory in type theory

Simple type theory in idealised Agda

```
data Ty : Set where
   \iota : Ty
   \Rightarrow : Ty \rightarrow Ty \rightarrow Ty
data Con : Set where
                : Con
                : Con \rightarrow Ty \rightarrow Con
data Var : Con \rightarrow Ty \rightarrow Set where
                : Var (Γ, A) A
   zero
                : Var \Gamma A \rightarrow Var (\Gamma, B) A
   suc
data Tm : Con \rightarrow Ty \rightarrow Set where
                : Var \Gamma A \rightarrow Tm \Gamma A
   var
   lam
                : Tm (\Gamma, A) B \rightarrow Tm \Gamma (A \Rightarrow B)
                : \mathsf{Tm}\,\Gamma(\mathsf{A}\Rightarrow\mathsf{B})\to\mathsf{Tm}\,\Gamma\,\mathsf{A}\to\mathsf{Tm}\,\Gamma\,\mathsf{B}
   app
```

Simple type theory in idealised Agda

```
data Ty : Set where
   \iota : Ty
   \Rightarrow : Ty \rightarrow Ty \rightarrow Ty
data Con : Set where
               Con No preterms!
data Var : Con \rightarrow Ty \rightarrow Set where
               : Var (Γ, A) A
   zero
               : Var \Gamma A \rightarrow Var (\Gamma, B) A
   suc
data Tm : Con \rightarrow Ty \rightarrow Set where
               : Var \Gamma A \rightarrow Tm \Gamma A
   var
   lam
               : Tm (\Gamma, A) B \rightarrow Tm \Gamma (A \Rightarrow B)
               : \mathsf{Tm}\,\Gamma(\mathsf{A}\Rightarrow\mathsf{B})\to\mathsf{Tm}\,\Gamma\,\mathsf{A}\to\mathsf{Tm}\,\Gamma\,\mathsf{B}
   app
```

A typed syntax of dependent types (i)

Types depend on contexts.

⇒ We need induction induction.

data Con: Set

 $\textbf{data} \; \mathsf{Ty} \quad : \; \mathsf{Con} \; \to \; \mathsf{Set}$

A typed syntax of dependent types (ii)

- Types depend on contexts.
 - \Rightarrow We need induction induction.
- Substitutions are mentioned in the application rule:

$$\mathsf{app} : \mathsf{Tm}\,\Gamma\,(\mathsf{\Pi}\,A\,B) \to (a : \mathsf{Tm}\,\Gamma\,A) \to \mathsf{Tm}\,\Gamma\,(B[a])$$

 \Rightarrow We define an explicit substitution calculus.

```
\begin{array}{lll} \textbf{data} \; \mathsf{Con} \; : \; \mathsf{Set} \\ \textbf{data} \; \mathsf{Ty} \; : \; \mathsf{Con} \; \to \; \mathsf{Set} \\ \textbf{data} \; \mathsf{Tms} \; : \; \mathsf{Con} \; \to \; \mathsf{Con} \; \to \; \mathsf{Set} \\ \textbf{data} \; \mathsf{Tm} \; : \; (\Gamma : \; \mathsf{Con}) \; \to \; \mathsf{Ty} \; \Gamma \; \to \; \mathsf{Set} \\ \_[\_] \; : \; \mathsf{Ty} \; \Gamma \; \to \; \mathsf{Tms} \; \Delta \; \Gamma \; \to \; \mathsf{Ty} \; \Delta \\ \dots \end{array}
```

A typed syntax of dependent types (iii)

- Types depend on contexts.
 - \Rightarrow We need induction induction.
- Substitutions are mentioned in the application rule:
 - \Rightarrow We define an explicit substitution calculus.
- ► The following conversion rule for terms:

$$\frac{\Gamma \vdash A \sim B \qquad \Gamma \vdash t : A}{\Gamma \vdash t : B}$$

- \Rightarrow Conversion (the relation including β , η) needs to be defined mutually with the syntax.
 - ▶ We need to add 4 new members to the inductive inductive definition: ~ for contexts, types, substitutions and terms.

Representing conversion

- Lots of boilerplate:
 - lacktriangleright The \sim relations are equivalence relations
 - Coercion rules
 - Congruence rules
 - We need to work with setoids
- The identity type _≡_ is an equivalence relation with coercion and congruence laws.
- ► Higher inductive types are an idea from homotopy type theory: constructors for equalities.
- ▶ We add the conversion rules as constructors: e.g. β : lam (app t u) $\equiv t[u]$.

QIITs

We formalise the syntax of type theory as a quotient inductive inductive type (QIIT).

- ▶ A QIT is a HIT which is a set
- QITs are not the same as quotient types

Using the syntax

- ▶ One defines functions from a QIIT using its eliminator.
- ► The arguments of the non-dependent eliminator form a model of type theory, equivalent to Categories with Families.

```
record Model : Set where  \begin{array}{ll} \textbf{field } \mathsf{Con}^\mathsf{M} & : \; \mathsf{Set} \\ & \mathsf{Ty}^\mathsf{M} & : \; \mathsf{Con}^\mathsf{M} \to \mathsf{Set} \\ & \mathsf{Tm}^\mathsf{M} & : \; (\Gamma : \; \mathsf{Con}^\mathsf{M}) \to \mathsf{Ty}^\mathsf{M} \; \Gamma \to \mathsf{Set} \\ & \mathsf{lam}^\mathsf{M} & : \; \mathsf{Tm}^\mathsf{M} \; (\Gamma , ^\mathsf{M} \; \mathsf{A}) \; \mathsf{B}^\mathsf{M} \to \mathsf{Tm}^\mathsf{M} \; \Gamma \; (\Pi^\mathsf{M} \; \mathsf{A} \; \mathsf{B}) \\ & \beta^\mathsf{M} & : \; \mathsf{app}^\mathsf{M} \; (\mathsf{lam}^\mathsf{M} \; \mathsf{t}) \; \mathsf{a} \; \equiv \; \mathsf{t} \; [\; \mathsf{a} \;]^\mathsf{M} \\ & \dots \end{array}
```

▶ The eliminator says that the syntax is the initial model.

Specifying normalisation

Specifying normalisation

Specifying normalisation

Neutral terms and normal forms (typed!):

$$n := x \mid n v$$
 Ne Γ A
 $v := n \mid \lambda x . v$ Nf Γ A

Normalisation is an isomorphism:

completeness
$$\bigcirc$$
 norm $\downarrow \frac{\mathsf{Tm}\,\Gamma A}{\mathsf{Nf}\,\Gamma A} \uparrow \ulcorner \neg \urcorner \cap \mathsf{stability}$

Soundness is given by congruence of equality:

$$t \equiv t' \rightarrow \mathsf{norm}\ t \equiv \mathsf{norm}\ t'$$

Normalisation by Evaluation (NBE)

- ► First formulation (Berger and Schwichtenberg, 1991)
- ► Simply typed case (Altenkirch, Hofmann, Streicher 1995)
- Dependent types using untyped realizers (Abel, Coquand, Dybjer, 2007)

NBE for simple types

- Presheaf models are proof-relevant versions of Kripke models.
- ► They are parameterised over a category, here we choose REN: objects are contexts, morphisms are lists of variables.

- ▶ Presheaf models are proof-relevant versions of Kripke models.
- ▶ They are parameterised over a category, here we choose REN: objects are contexts, morphisms are lists of variables.
- ▶ A context Γ is interpreted as a presheaf $\llbracket \Gamma \rrbracket$: REN^{op} \rightarrow Set.
 - ▶ Given another context Δ we have $\llbracket \Gamma \rrbracket_{\Delta}$: Set.
 - ▶ Given a renaming $\Delta \xrightarrow{\beta} \Theta$, there is a $\llbracket \Gamma \rrbracket_{\Theta} \xrightarrow{\llbracket \Gamma \rrbracket_{\Delta}} \llbracket \Gamma \rrbracket_{\Delta}$.

- Presheaf models are proof-relevant versions of Kripke models.
- ▶ They are parameterised over a category, here we choose REN: objects are contexts, morphisms are lists of variables.
- ▶ A context Γ is interpreted as a presheaf $\llbracket \Gamma \rrbracket$: REN^{op} \rightarrow Set.
 - Given another context Δ we have $\llbracket \Gamma \rrbracket_{\Lambda}$: Set.
 - ▶ Given a renaming $\Delta \xrightarrow{\beta} \Theta$, there is a $\llbracket \Gamma \rrbracket_{\Theta} \xrightarrow{\llbracket \Gamma \rrbracket_{\Delta}} \llbracket \Gamma \rrbracket_{\Delta}$.
- ▶ Types are presheaves too: $\llbracket A \rrbracket$: REN^{op} → Set
 - $\blacksquare \iota \rrbracket_{\Delta} := \mathsf{Nf} \, \Delta \, \iota$

- Presheaf models are proof-relevant versions of Kripke models.
- ▶ They are parameterised over a category, here we choose REN: objects are contexts, morphisms are lists of variables.
- ▶ A context Γ is interpreted as a presheaf $\llbracket \Gamma \rrbracket$: REN^{op} \rightarrow Set.
 - Given another context Δ we have $\llbracket \Gamma \rrbracket_{\Lambda}$: Set.
 - ▶ Given a renaming $\Delta \xrightarrow{\beta} \Theta$, there is a $\llbracket \Gamma \rrbracket_{\Theta} \xrightarrow{\llbracket \Gamma \rrbracket_{\Delta}} \llbracket \Gamma \rrbracket_{\Delta}$.
- ▶ Types are presheaves too: $\llbracket A \rrbracket$: REN^{op} → Set
 - $\blacksquare \iota \rrbracket_{\Delta} := \mathsf{Nf} \, \Delta \, \iota$

The quote function is a natural transformation.

$$quote_A : \llbracket A \rrbracket \xrightarrow{\cdot} Nf - A$$

At a given context we have:

$$quote_{A\Gamma}: [\![A]\!]_{\Gamma} \rightarrow Nf\Gamma A$$

It is defined mutually with unquote:

$$\mathsf{unquote}_A : \mathsf{Ne} - A \xrightarrow{\cdot} \llbracket A \rrbracket$$

Quote and unquote

$$Ne - A \xrightarrow{unquote A}$$

$$\llbracket A \rrbracket \longrightarrow \mathsf{Nf} - A$$

With completeness

 R_A is a presheaf logical relation between the syntax and the presheaf model. It is equality at the base type.

NBE for dependent types

Defining quote, first try

$$Nes - \Gamma \xrightarrow{\quad unquote_{\Gamma} \quad }$$

$$[\![\Gamma]\!] \qquad \xrightarrow{\qquad \qquad quote_{\Gamma}} \mathsf{Nfs} - \Gamma$$

Defining quote, first try

$$Nes - \Gamma \xrightarrow{unquote_{\Gamma}}$$

$$[\![\Gamma]\!] \qquad \xrightarrow{\quad quote_{\Gamma} \quad } \mathsf{Nfs} - \Gamma$$

When we try to define this quote for function space, we need the equation $quote_A \circ unquote_A \equiv id$.

Defining quote, first try

$$Nes - \Gamma \xrightarrow{unquote_{\Gamma}}$$

$$[\![\Gamma]\!] \qquad \xrightarrow{\quad quote_{\Gamma} \quad } \mathsf{Nfs} - \Gamma$$

When we try to define this quote for function space, we need the equation $quote_A \circ unquote_A \equiv id$.

Let's define quote and its completeness mutually!

Defining quote, second try

Defining quote, second try

For unquote at the function space we need to define a semantic function which works for every input, not necessarily related by the relation. But quote needs ones which are related!

Defining quote, third try

Use a proof-relevant logical predicate. At the base type it says that there exists a normal form which is equal to the term. Instance of categorical glueing.

Extra slides

Extra slides

The presheaf model and quote

For dependent types, types are interpreted as families of presheaves.

 $\llbracket \Gamma \rrbracket$: REN \rightarrow Set

 $\llbracket \Gamma \vdash A \rrbracket : (\Delta : \mathsf{REN}) \to \llbracket \Gamma \rrbracket_{\Delta} \to \mathsf{Set}$

The presheaf model and quote

For dependent types, types are interpreted as families of presheaves.

$$\llbracket \Gamma
rbracket : \mathsf{REN} o \mathsf{Set}$$

 $\llbracket \Gamma \vdash A
rbracket : (\Delta : \mathsf{REN}) o \llbracket \Gamma
rbracket_\Delta o \mathsf{Set}$

Quote for contexts is the same, but for types it is more subtle:

$$\begin{array}{ll} \mathsf{quote}_{\Gamma} & : \llbracket \Gamma \rrbracket \overset{.}{\to} \mathsf{Tms} - \Gamma \\ \mathsf{quote}_{\Gamma \vdash A} : (\alpha : \llbracket \Gamma \rrbracket_{\Delta}) \to \llbracket A \rrbracket_{\Delta} \, \alpha \to \mathsf{Nf} \, \Delta \, \big(A[\mathsf{quote}_{\Gamma \ldotp \Delta} \, \alpha] \big) \end{array}$$

The quote function is a natural transformation.

$$quote_A : [A] \rightarrow Nf - A$$

For the base type it is the identity.

$$quote_{\iota} v := v$$

$$\begin{split} \mathsf{quote}_{A \to B \, \Delta} \left(f : \forall \Theta . (\beta : \Theta \to \Delta) \to \llbracket A \rrbracket_\Theta \to \llbracket B \rrbracket_\Theta \right) : \mathsf{Nf} \, \Delta \, (A \to B) \\ := \mathsf{lam} \, \Big(\\ & \uparrow \, \mathsf{Nf} \, (\Delta, A) \, B \end{split}$$

The quote function is a natural transformation.

$$quote_A : [A] \rightarrow Nf - A$$

For the base type it is the identity.

quote,
$$v := v$$

$$\begin{split} \mathsf{quote}_{A \to B \, \Delta} \left(f : \forall \Theta . (\beta : \Theta \to \Delta) \to \llbracket A \rrbracket_\Theta \to \llbracket B \rrbracket_\Theta \right) : \mathsf{Nf} \, \Delta \, (A \to B) \\ := \mathsf{lam} \left(\mathsf{quote}_{B, (\Delta, A)} \left(\begin{matrix} \\ \uparrow & \llbracket B \rrbracket_{\Delta \, \Delta} \end{matrix} \right) \right) \end{split}$$

The quote function is a natural transformation.

$$quote_A : [A] \rightarrow Nf - A$$

For the base type it is the identity.

quote,
$$v := v$$

$$\begin{split} \operatorname{\mathsf{quote}}_{A \to B \, \Delta} \left(f : \forall \Theta . (\beta : \Theta \to \Delta) \to \llbracket A \rrbracket_{\Theta} \to \llbracket B \rrbracket_{\Theta} \right) : \operatorname{\mathsf{Nf}} \Delta \left(A \to B \right) \\ := \operatorname{\mathsf{lam}} \left(\operatorname{\mathsf{quote}}_{B, (\Delta, A)} \left(f_{\Delta, A} \right) \right) \end{split}$$

$$\uparrow \Delta, A \rightarrow \Delta$$

The quote function is a natural transformation.

$$quote_{\Delta}: [\![A]\!] \stackrel{\cdot}{\rightarrow} Nf - A$$

For the base type it is the identity.

quote,
$$v := v$$

$$\mathsf{quote}_{A o B \,\Delta} \left(f : \forall \Theta . (\beta : \Theta o \Delta) o \llbracket A
rbracket_\Theta o \llbracket B
rbracket_\Theta
ight) : \mathsf{Nf} \,\Delta \, (A o B)$$
 $:= \mathsf{lam} \left(\mathsf{quote}_{B,(\Delta,A)} \left(f_{\Delta,A} \quad \mathsf{wk} \quad \left(\begin{array}{cc} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & &$

The quote function is a natural transformation.

$$quote_{\Delta}: [A] \rightarrow Nf - A$$

For the base type it is the identity.

quote,
$$v := v$$

For function types:

$$\mathsf{quote}_{A \to B \, \Delta} \, \big(f : \forall \Theta . (\beta : \Theta \to \Delta) \to \llbracket A \rrbracket_{\Theta} \to \llbracket B \rrbracket_{\Theta} \big) : \mathsf{Nf} \, \Delta \, (A \to B)$$

$$:= \mathsf{lam} \left(\mathsf{quote}_{B,(\Delta,A)} \left(f_{\Delta,A} \quad \mathsf{wk} \right) \right)$$
 (

$$\uparrow \llbracket A \rrbracket_{\Delta,A}$$

We need to unquote neutral terms: $unquote_A : Ne - A \rightarrow [\![A]\!].$

The quote function is a natural transformation.

$$quote_A : [A] \rightarrow Nf - A$$

For the base type it is the identity.

$$quote_{\iota} v := v$$

For function types:

$$\mathsf{quote}_{A \to B \, \Delta} \, \big(f : \forall \Theta . (\beta : \Theta \to \Delta) \to \llbracket A \rrbracket_\Theta \to \llbracket B \rrbracket_\Theta \big) : \mathsf{Nf} \, \Delta \, (A \to B)$$

$$:= \mathsf{lam} \left(\mathsf{quote}_{B, (\Delta, A)} \left(f_{\Delta, A} \quad \mathsf{wk} \quad \left(\mathsf{unquote}_{A(\Delta, A)} \mathsf{zero} \right) \right) \right)$$

We need to unquote neutral terms: $unquote_A : Ne - A \rightarrow \llbracket A \rrbracket$.