1. GAIKO ARIKETAK

1. Ariketa: Kalkula itzazu honako zenbaki konplexu hauen modulua eta argumentua:

a)
$$\left(1+\sqrt{3}i\right)^2$$

Sol.:
$$4_{2\pi/3}$$

b)
$$\frac{1+i}{1-i}$$

Sol.:
$$1_{\pi/2}$$

$$c) \frac{1+\sqrt{3}i}{1-\sqrt{3}i}$$

Sol.:
$$1_{2\pi/3}$$

2. Ariketa: Adierazi honako zenbaki konplexuak era binomikoan:

a)
$$(1+i)^3$$

Sol.:
$$-2 + 2i$$

b)
$$i^5 + i^{16}$$

Sol.:
$$1+i$$

c)
$$1-i^{200}$$

d)
$$(1-i)^{200}$$

e)
$$\frac{8}{\left(1-i\right)^5}$$

Sol.:
$$-1 - i$$

f)
$$\frac{e^{1+\frac{3\pi}{4}i} \cdot e^{2+\frac{\pi}{3}i}}{e^{3+\frac{4\pi}{3}i}}$$

Sol.
$$\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i$$

$$g) \frac{1+i}{1-2i}$$

Sol.
$$\frac{-1}{5} + \frac{3}{5}i$$

3. Ariketa: Adierazi honako zenbaki konplexua hau era polarrean eta trigonometrikoan:

h)
$$\frac{(1-\sqrt{3}i)^3}{(2+2i)^7}$$

Sol.
$$2^{-15/2}_{-11\pi/4}$$
; $2^{-15/2} \left[\cos \left(\frac{-11\pi}{4} \right) + i \sin \left(\frac{-11\pi}{4} \right) \right]$

4. Ariketa: Adierazi honako zenbaki konplexuak era trigonometrikoan:

a)
$$-1 - \sqrt{3}i$$

Sol.:
$$2\left(\cos\frac{4\pi}{3} + i\sin\frac{4\pi}{3}\right)$$

Sol.:
$$2\left(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}\right)$$

5. Ariketa: Kalkulatu $z = \log_{1-i} (2 + 2i)$ zenbakiaren balio nagusia.

Sol.
$$\frac{6\ln 2 + i\pi}{2\ln 2 - i\pi}$$

6. Ariketa: Kalkulatu hurrengo zenbaki konplexu hauek:

a)
$$\log_i (1+i)$$

Sol.
$$\frac{2\ln 2 + i\left(\pi + 8k_1\pi\right)}{2i\left(\pi + 4k_2\pi\right)}$$

b)
$$\ln\left(1+\sqrt{3}i\right)$$

Sol.
$$\ln 2 + i \left(\frac{\pi}{3} + 2k\pi \right)$$

c)
$$(1+i)^{-i}$$

Sol.
$$e^{-\frac{\ln 2}{2}i + \left(\frac{\pi}{4} + 2k\pi\right)}$$

d)
$$i^{i-1}$$

Sol.
$$e^{-(1+i)\left(\frac{\pi}{2}+2k\pi\right)}$$

7. Ariketa: Kalkulatu hurrengo zenbaki konplexu hauek eta emaitza era binomikoan adierazi:

a)
$$\frac{(1+i)^9}{1+i^9}$$

b)
$$(2i)^{42} (1-i)^{-78}$$

c)
$$\sqrt{\frac{1}{3-4i}}$$

Sol.
$$\pm \frac{1}{5}(2+i)$$

8. Ariketa: Ebatzi honako ekuazio hauek:

a)
$$z^2 - 2z + 2 = 0$$

Sol.
$$1 \pm i$$

b)
$$z^2 + (3-2i)z - 1 - 3i = 0$$
 Sol. $i, -3+i$

Sol.
$$i, -3 + i$$

c)
$$(z-2)^5 = 4$$

Sol.
$$2 + \left(\sqrt[5]{4}\right)_{\frac{2k\pi}{5}}$$
 $k = 0, 1, 2, 3, 4$

d)
$$z^3 + (5-3i)z^2 - 15iz = 0$$

Sol.
$$0, -5, 3i$$

9. Ariketa: Lortu $|z| = \left| \frac{1}{z} \right| = |1 - z|$ betetzen duen z zenbaki konplexua.

Sol.
$$z_1 = \frac{1}{2} + \frac{\sqrt{3}}{2}i$$
; $z_2 = \frac{1}{2} - \frac{\sqrt{3}}{2}i$

10. Ariketa: Deskribatu hurrengo baldintzak betetzen dituzten z ($z \in \mathbb{C}$) puntuen leku geometrikoak:

a)
$$|z-1| \le 4$$

Sol.
$$C(1,0)$$
 zentroko eta $r=4$ erradioko zirkunferentzia

b)
$$|z| \le 1$$

Sol.
$$C(0,0)$$
 zentroko eta $r=1$ erradioko zirkunferentzia

c)
$$|z-1| < |z-i|$$

Sol.
$$x > y$$
 planoa

11 . Ariketa: Kalkulatu $x, y \in \mathbb{R}$ honako ekuazio honetan:

$$\frac{1+i}{1-i} = xe^{iy}$$

Sol.
$$\begin{cases} x = 1 \\ y = \pi/2 + 2n\pi \end{cases} \begin{cases} x = -1 \\ y = \pi/2 + (2n+1)\pi \end{cases}$$

<u>12. Ariketa:</u> Izan bitez z_1 eta z_2 ($z_1, z_2 \in \mathbb{C}$) $z^2 - 8zi - (19 - 4i) = 0$ ekuazioaren erroak. Lortu $z_3 \in \mathbb{C}$, z_1, z_2 eta z_3 zenbaki konplexuen afixuek triangelu angeluzuzen isoszele bat osatzeko, baldin eta angelu zuzenaren erpinak parte irudikari handiena duen erroaren afixua izan behar badu.

Sol.
$$z_3 = 9i$$
; $z_3 = -4 + i$

13. Ariketa: Adierazi $\cos(3\alpha)$, $\sin \alpha$ eta $\cos \alpha$ -ren funtzio modian

Sol.
$$\cos(3\alpha) = \cos^3 \alpha - 3\cos \alpha \sin^2 \alpha$$

14. Ariketa: Aurkitu $\theta \in \mathbb{C}$, non tan $\theta = 2i$ (Euler-en formula erabili)

Sol.
$$\theta = \frac{\ln(3)}{2}i + \pi\left(\frac{1}{2} + k\right)$$

Bibliografia:

- "Análisis Matemático" T.M. Apostol- Editorial Reverte S.A.
- "Analisi Matematikoa" Kudeaketaren eta Informazio Sistemen Informatikaren Ingeniaritzako Graduko Apunteak. Clara Baquerizo, Izaskun Basterrechea, Emilia Martín.
- "Cálculo" Teoría y Ejercicios. Jose Luis Carro Calvo, Inmaculada Lecubarri Alonso, Ernesto Martinez Sagarzazu
- "Cálculo" Problemas de examen. Jose Luis Carro Calvo, Inmaculada Lecubarri Alonso.
- "Apuntes de Cálculo Infinitesimal" EUITI Bilbao, José Llena