1	1. (Currently amended) An apparatus comprising:
2	at least one processor;
3	a memory coupled to the at least one processor;
4	a first compilation unit residing in the memory, the first compilation unit
5	comprising a plurality of object oriented classes that are part of an object oriented
6	program, wherein the object oriented program is defined by the combination of the first
7	compilation unit and at least one other compilation unit; and
8	a compiler residing in the memory and executed by the at least one processor in a
9	partial compilation environment, the compiler allocating at least one object in the first
10	compilation unit to an invocation stack frame for a method in the first compilation unit
11	that allocates the at least one object, wherein the compiler comprises:
12	an escape analysis mechanism that operates on the first compilation unit
13	prior to a second compilation unit and that marks each instruction in the first
14	compilation unit that allocates a new object as one of global escape, no escape,
15	and arg escape based on information available from classes visible in the first
16	compilation unit but not visible in the uncompiled second compilation unit; and
17	an object allocation mechanism that allocates at least one object that is
18	created by an instruction marked as no escape by the escape analysis mechanism
19	to an invocation stack frame for a method that allocates the object.

2. (Cancelled)

1

- 3. (Original) The apparatus of claim 2 wherein the escape analysis mechanism marks
 each instruction in the first compilation unit that allocates a new object as one of global
- 3 escape, no escape, and arg escape based on information available from classes visible in
- 4 the first compilation unit and from classes that are outside the first compilation unit that
- 5 are visible in a specified classpath.

1	4. (Currently amended) An apparatus comprising:
2	at least one processor;
3	a memory coupled to the at least one processor;
4	a first compilation unit residing in the memory, the first compilation unit
5	comprising a plurality of object oriented classes that are part of an object oriented
6	program, wherein the object oriented program is defined by the combination of the first
7	compilation unit and at least one other compilation unit; and
8	a compiler residing in the memory and executed by the at least one processor in a
9	partial compilation environment, the compiler allocating at least one object in the first
10	compilation unit to an invocation stack frame for a method in the first compilation unit
11	that allocates the at least one object [The apparatus of claim 1]
12	wherein the compiler comprises:
. 13	a code generator that creates two versions of code for a selected object method, a
14	first version using stack allocation of objects and a second version using heap allocation
15	of objects; and
16	a run time code selector that selects one of the first and second versions to execute
17	at run time based on a determination of whether classes seen at run time match expected
18	classes within predetermined limits.

1	5. (Currently amended) An apparatus comprising:
2	at least one processor;
3	a memory coupled to the at least one processor;
4	a first compilation unit residing in the memory, the first compilation unit
5	comprising a plurality of object oriented classes that are part of an object oriented
6	program, wherein the object oriented program is defined by the combination of the first
7	compilation unit and at least one other compilation unit; and
8	a compiler residing in the memory and executed by the at least one processor in a
9	partial compilation environment, the compiler comprising:
10	an escape analysis mechanism that operates on the first compilation unit
11	prior to a second compilation unit and that marks each instruction in the first
12	compilation unit that allocates a new object as one of global escape, no escape,
13	and arg escape based on information available from classes visible in the first
14	compilation unit but not visible in the uncompiled second compilation unit and
15	from classes that are outside the first compilation unit that are visible in a
16	specified classpath;
17	an object allocation mechanism that allocates at least one object that is
18	created by an instruction marked as no escape by the escape analysis mechanism
19	to an invocation stack frame for a method that allocates the object;
20	a code generator that creates two versions of code for a selected object
21	method, a first version using stack allocation of objects and a second version
22	using heap allocation of objects; and
23	a run time code selector that selects one of the first and second versions to
24	execute at run time based on a determination of whether classes seen at run time
25	match expected classes within predetermined limits.

1	6. (Currently amended) A method for allocating objects to memory in an object oriented
2	program that comprises a first compilation unit and [at least one other] a second
3	compilation unit, the method comprising the steps of:
4	(A) compiling the first compilation unit;
5	(B) during the compiling of the first compilation unit and before the compilation
6	of the second compilation unit, [allocating at least one object that is created by an
7	instruction in the first compilation unit to an invocation stack frame for a method that
8	allocates the at least one object] marking each instruction that allocates a new object as
9	one of global escape, no escape, and arg escape based on information available from
10	classes in the first compilation unit and from classes that are outside the first compilation
11	unit that are visible in a specified classpath; and
12	allocating at least one object that is created by an instruction marked as no escape
13	by the escape analysis mechanism to an invocation stack frame for a method that allocates
14	the at least one object.
1	7. (Cancelled)
1	8. (Original) The method of claim 6 wherein step (B) comprises the steps of:
2	creating two versions of code for a selected object method, a first version using
3	stack allocation of objects and a second version using heap allocation of objects; and
4	selecting at run time one of the first and second versions to execute at run time
5	based on a determination of whether classes seen at run time match expected classes
6	within predetermined limits

* . .

9. (Original) In an object oriented computer program that comprises a first compilation 1 unit and at least one other compilation unit, a method for allocating objects in the first 2 3 compilation unit to memory, the method comprising the steps of: marking each instruction that allocates a new object as one of global escape, no 4 5 escape, and arg escape based on information available from classes in the first 6 compilation unit and from classes that are outside the first compilation unit that are 7 visible in a specified classpath; creating two versions of code for a selected object method, a first version using 8 9 stack allocation of objects and a second version using heap allocation of objects; and 10 selecting at run time one of the first and second versions to execute at run time 11 based on a determination of whether classes seen at run time match expected classes 12 within predetermined limits.

1	10. (Currently amended) A program product comprising:
2	a compiler that compiles in a partial compilation environment a first compilation
3	unit comprising a plurality of object oriented classes that are part of an object oriented
4	program, wherein the object oriented program is defined by the combination of the first
5	compilation unit and at least one other compilation unit, the compiler allocating at least
6	one object in the first compilation unit to an invocation stack frame for a method in the
7	first compilation unit that allocates the at least one object;
8	wherein the compiler comprises:
9	an escape analysis mechanism that operates on the first compilation unit
10	prior to a second compilation unit and that marks each instruction in the first
11	compilation unit that allocates a new object as one of global escape, no escape,
12	and arg escape based on information available from classes visible in the first
13	compilation unit; and
14	an object allocation mechanism that allocates at least one object that is
15	created by an instruction marked as no escape by the escape analysis mechanism
16	to an invocation stack frame for a method that allocates the object;
17	wherein the escape analysis mechanism marks each instruction in the first
18	compilation unit that allocates a new object as one of global escape, no escape,
19	and arg escape based on information available from classes visible in the first
20	compilation unit but not visible in the uncompiled second compilation unit and from
21	classes that are outside the first compilation unit that are visible in a specified
22	classpath; and
23	signal bearing media bearing the compiler.
1	11. (Original) The program product of claim 10 wherein the signal bearing media
2	comprises recordable media.
1	12. (Original) The program product of claim 10 wherein the signal bearing media
2	comprises transmission media.

- 1 13. (Cancelled)
- 1 14. (Cancelled)
- 1 15. (Original) The program product of claim 10 wherein the compiler comprises:
- a code generator that creates two versions of code for a selected object method, a
- 3 first version using stack allocation of objects and a second version using heap allocation
- 4 of objects; and
- 5 a run time code selector that selects one of the first and second versions to execute
- 6 at run time based on a determination of whether classes seen at run time match expected
- 7 classes within predetermined limits.

1	16. (Original) A program product comprising:
2	(A) a compiler that compiles a first compilation unit comprising a plurality of
3	object oriented classes that are part of an object oriented program, wherein the object
4	oriented program is defined by the combination of the first compilation unit and at least
5	one other compilation unit, the compiler comprising:
6	(A1) an escape analysis mechanism that marks each instruction that
7	allocates a new object as one of global escape, no escape, and arg escape based on
8	information available from classes in the first compilation unit and from classes
9	that are outside the first compilation unit that are visible in a specified classpath;
10	(A2) an object allocation mechanism that allocates at least one object that
11	is created by an instruction marked as no escape by the escape analysis
12	mechanism to an invocation stack frame for a method that allocates the object;
13	(A3) a code generator that creates two versions of code for a selected
14	object method, a first version using stack allocation of objects and a second
15	version using heap allocation of objects; and
16	(A4) a run time code selector that selects one of the first and second
17	versions to execute at run time based on a determination of whether classes seen
18	at run time match expected classes within predetermined limits; and
19	(B) signal bearing media bearing the compiler.

- 17. (Original) The program product of claim 16 wherein said signal bearing media
 comprises recordable media.
- 1 18. (Original) The program product of claim 16 wherein said signal bearing media 2 comprises transmission media.