MATH 311

Chapter 7

SECTION 7.1: LINEAR TRANSFORMATIONS

Contents

Linear Transformations	6
Properties	4

Created by: Pierre-Olivier Parisé Spring 2024

LINEAR TRANSFORMATIONS

Given an $m \times n$ matrix A, we introduced the transformation $T_A : \mathbb{R}^n \to \mathbb{R}^m$ defined by

$$T_A(\mathbf{x}) = A\mathbf{x} \quad (\mathbf{x} \in \mathbb{R}^n).$$

From the properties of matrix multiplication, we have

(T1)
$$T_A(\mathbf{x} + \mathbf{y}) = A(\mathbf{x} + \mathbf{y}) = A\mathbf{x} + A\mathbf{y} = T_A(\mathbf{x}) + T_A(\mathbf{y}).$$

(T2)
$$T_A(a\mathbf{x}) = A(a\mathbf{x}) = a(A\mathbf{x}) = aT_A(\mathbf{x}).$$

The transformations satisfying (T1) and (T2) are very special and play an important role in linear algebra.

DEFINITION 1. Let V and W be two vector spaces. A transformation $T:V\to W$ is called a **linear transformation** if it satisfies the following two conditions for any vectors $\mathbf{v_1}$ and $\mathbf{v_2}$ in V and any scalars a:

(T1)
$$T(\mathbf{v_1} + \mathbf{v_2}) = T(\mathbf{v_1}) + T(\mathbf{v_2}).$$

(T2)
$$T(a\mathbf{v_1}) = aT(\mathbf{v_1}).$$

Notations:

- ① The **identity transformation** is the transformation 1_V : $V \to V$ given by $1_V(\mathbf{v}) = \mathbf{v}$, for any $\mathbf{v} \in V$.
- ② The **zero transformation** is the transformation $0: V \to W$ given by $0(\mathbf{v}) = \mathbf{0}$, for any $\mathbf{v} \in V$.

EXAMPLE 1. Show that the following transformation is a linear transformation.

$$D: \mathbf{P}_n \to \mathbf{P_{n-1}}, \qquad D(p(x)) = p'(x).$$

SOLUTION.

PROPERTIES

EXAMPLE 2. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation such that

$$T\begin{bmatrix}1\\1\end{bmatrix} = \begin{bmatrix}2\\-3\end{bmatrix}$$
 and $T\begin{bmatrix}1\\-2\end{bmatrix} = \begin{bmatrix}5\\1\end{bmatrix}$.

Find $T\begin{bmatrix} 4\\3 \end{bmatrix}$.

SOLUTION.

THEOREM 1. If $T: V \to W$ is a linear transformation and $\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_k} \in V$ and $v_1, v_2, \dots, v_k \in \mathbb{R}$, then

$$T(v_1\mathbf{v_1}+v_2\mathbf{v_2}+\cdots+v_k\mathbf{v_k})=v_1T(\mathbf{v_1})+v_2T(\mathbf{v_2})+\cdots+v_kT(\mathbf{v_k}).$$

EXAMPLE 3. Find the expression of the linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^3$ such that

$$T\begin{bmatrix}1\\2\end{bmatrix} = \begin{bmatrix}1\\0\\1\end{bmatrix}, \text{ and } T\begin{bmatrix}-1\\0\end{bmatrix} = \begin{bmatrix}0\\1\\1\end{bmatrix}.$$

SOLUTION.

THEOREM 2. Let

- \bigcirc V and W be vector spaces
- \bigcirc $\{\mathbf{e_1}, \mathbf{e_2}, \dots, \mathbf{e_n}\}$ be a basis for V.
- 3 $\mathbf{w_1}$, $\mathbf{w_2}$, ..., $\mathbf{w_n}$ be vectors in W

Then there exists a unique linear transformation $T: V \to W$ satisfying $T(\mathbf{e_i}) = \mathbf{w_i}$, for any i = 1, 2, ..., n. In particular, the action of T on a given $\mathbf{v} = v_1 \mathbf{e_1} + v_2 \mathbf{e_2} + \cdots + v_n \mathbf{v_n}$ is

$$T(\mathbf{v}) = v_1 \mathbf{w_1} + v_2 \mathbf{w_2} + \dots + v_n \mathbf{w_n}.$$