

Why dynamic route? (1)

- > Static route is ok only when
 - Network is small
 - There is a single connection point to other network
 - No redundant route

Why dynamic route? (2)

> Dynamic Routing

- Routers update their routing table with the information of adjacent routers
- Dynamic routing need a routing protocol for such communication
- Advantage:
 - They can react and adapt to changing network condition

Routing Protocol

- Used to change the routing table according to various routing information
 - Specify detail of communication between routers
 - Specify information changed in each communication,
 - Network reachability
 - Network state
 - Metric
- > Metric
 - A measure of how good a particular route
 - Hop count, bandwidth, delay, load, reliability, ...
- Each routing protocol may use different metric and exchange different information

Autonomous System

- > Autonomous System (AS)
 - Internet is organized in to a collection of autonomous system
 - An AS is a collection of networks with same routing policy
 - Single routing protocol
 - Normally administered by a single entity
 - > Corporation or university campus
 - All depend on how you want to manage routing

Category of Routing Protocols – by AS

- > AS-AS communication
 - Communications between routers in different AS
 - Interdomain routing protocols
 - Exterior gateway protocols (EGP)
 - Ex:
 - BGP (Border Gateway Protocol)
- > Inside AS communication
 - Communication between routers in the same AS
 - Intradomain routing protocols
 - Interior gateway protocols (IGP)
 - **Ex**:
 - RIP (Routing Information Protocol)
 - IGRP (Interior Gateway Routing Protocol)
 - OSPF (Open Shortest Path First Protocol)

Category of Routing Protocols – by information changed (1)

- > Distance-Vector Protocol
 - Message contains a vector of distances, which is the cost to other network
 - Each router updates its routing table based on these messages received from neighbors
 - Protocols:
 - RIP
 - IGRP
 - BGP

路由表			路由表			路由表				
w	\downarrow	0		X	\leftarrow	0		Y	\	0
x	\rightarrow	0		Y	\rightarrow	0		Z	\rightarrow	0
Y	\rightarrow	1		Z	→	1		X	←	1
Z	\rightarrow	2		w	←	1		w	→	2

Category of Routing Protocols – by information changed (2)

- > Link-State Protocol
 - Broadcast their link state to neighbors and build a complete network map at each router using Dijkstra algorithm
 - Protocols:
 - OSPF

Difference between Distance-Vector and Link-State

> Update

Distance-Vector: updates neighbor (propagate new info.)

Link-State: update all nodes

> Convergence:

Distance-Vector: Propagation delay cause slow convergence

Link-State: Fast convergence

> Complexity:

Distance-Vector: simpleLink-State: complex

> Information update sequence

Routing Protocols

RIP IGP, DV

IGRP IGP, DV

OSPF IGP, LS

BGP EGP

RIP -**Routing Information Protocol**

RIP (1)

- > Category
 - Interior routing protocol
 - Distance-vector routing protocol
 - Using "hop-count" as the cost metric
- > Example of how RIP advertisements work

Destination network	Next router	Number of hops to destination	Destination network	Next router	Number of hops to destination	Destination network	Next router	Number of hops to destination
1	A	2	30	C	4	1	A	2
20	В	2	1		1	20	В	2
30	В	7	10		1	30	A	5

Routing table in router before Receiving advertisement

Advertisement from other router A

Routing table after receiving advertisement

RIP (2)

> Another example

RIP Message Format

- > RIP message is carried in UDP datagram
 - Command: 1 for request and 2 for reply
 - Version: 1 or 2 (RIP-2)

RIP Operation

- routed RIP routing daemon
 - Operated in UDP port 520
- > Operation
 - Initialization
 - Probe each interface
 - send a request packet out each interface, asking for other router's complete routing table
 - Request received
 - Send the entire routing table to the requestor
 - Response received
 - Add, modify, delete to update routing table
 - Regular routing updates
 - Router sends out their routing table to every neighbor every 30 minutes
 - Triggered updates
 - Whenever a route entry's metric change, send out those changed part routing table

Problems of RIP

- > Issues
 - 15 hop-count limits
 - Take long time to stabilize after the failure of a router or link
 - No CIDR
- > RIP-2
 - EGP support
 - AS number
 - CIDR support

IGRP (1)

- > Similar to RIP
 - Interior routing protocol
 - Distance-vector routing protocol
- Difference between RIP
 - Complex cost metric other than hop count
 - delay time, bandwidth, load, reliability
 - The formula

$$(\frac{bandwith_weight}{bandwith*(1-load)} + \frac{delay_weight}{delay})*reliability$$

- Use TCP to communicate routing information
- Cisco System's proprietary routing protocol

IGRP (2)

- > Advantage over RIP
 - Control over metrics
- > Disadvantage
 - Still classful and has propagation delay

OSPF – Open Shortest Path First

OSPF (1)

- > Category
 - Interior routing protocol
 - Link-State protocol
- > Each interface is associated with a cost
 - Generally assigned manually
 - The sum of all costs along a path is the metric for that path
- > Neighbor information is broadcast to all routers
 - Each router will construct a map of network topology
 - Each router run Dijkstra algorithm to construct the shortest path tree to each routers

OSPF -Dijkstra Algorithm

- > Single Source Shortest Path Problem
 - Dijkstra algorithm use "greedy" strategy
 - **Ex**:

OSPF -

Routing table update example (1)

OSPF -

Routing table update example (2)

OSPF – summary

> Advantage

- Fast convergence
- CIDR support
- Multiple routing table entries for single destination, each for one type-of-service
 - Load balancing when cost are equal among several routes
- > Disadvantage
 - Large computation

BGP – Border Gateway Protocol

BGP

- Exterior routing protocol
 - Now BGP-4
 - Exchange network reachability information with other BGP systems
- > Routing information exchange
 - Message:
 - Full path of autonomous systems that traffic must transit to reach destination
 - Can maintain multiple route for a single destination
 - Exchange method
 - Using TCP
 - Initial: entire routing table
 - Subsequent update: only sent when necessary
 - Advertise only optimal path
- > Route selection
 - Shortest AS path

BGP

Operation example

- > How BGP work
 - The whole Internet is a graph of autonomous systems
 - $-X \rightarrow Z$
 - Original: $X \rightarrow A \rightarrow B \rightarrow C \rightarrow Z$
 - X advertise this best path to his neighbor W
 - $W \rightarrow Z$
 - W \rightarrow X \rightarrow A \rightarrow B \rightarrow C \rightarrow Z

Routing Protocols Comparison

	RIP	IGRP	OSPF	BGP4
DV or LS	DV	DV	LS	Path Vec
TCP/UDP & Port	U - 520	IP - 9	T - 89	T - 179
Classless	No	No	Yes	Yes
Updates	Per.	Per.	Both	Trig.
Load Balance	No	Yes	Yes	No
Internal / External	Int.	Int.	Int.	Ext.
Metric	Hop Count	Load Errors Delay Bdwth	Sum of Int. Cost	Short. AS Path

routed

- > Routing daemon
 - Speak RIP (v1 and v2)
 - Supplied with most every version of UNIX
 - Two modes
 - Server mode (-s) & Quiet mode (-q)
 - Both listen for broadcast, but server will distribute their information
 - routed will add its discovered routes to kernel's routing table
 - Support configuration file /etc/gateways
 - Provide static information for initial routing table

```
net Nname[/mask] gateway Gname metric value <passive | active | extern>
host Hname gateway Gname metric value <passive | active | extern>
```

gated (1)

- > Development
 - Originally coordinated by Cornell University
 - Turn over to the Merit GateD Consortium in 1992
 - Free for academic users with license agreement
- > Supported routing protocols
 - Both interior and exterior, including
 - RIP (v1, v2), OSPF, BGP, IS-IS, EGP
 - It can share routes among different protocols
- > Configuration file
 - /etc/gated.conf
- > Runtime manipulation command
 - gdc

gated (2)

- > % gdc "command"
 - interface
 - Force gated to re-check the list of active NICs
 - reconfig
 - Force gated to re-read gated.conf
 - checkconf
 - Parse and check syntax of gated.conf
 - toggletrace {all|normal|policy|route|general}
 - Start or stop logging
 - stop | start | restart

gated (3)

- > /etc/gated.conf
 - Statements separated by semicolons
- > Class of statements:
 - Option
 - Network interface definition
 - Configuration of individual protocols
 - Static routes