

Temporal Reasoning in Videos using Convolutional Gated Recurrent Units

Debidatta Dwibedi, Pierre Sermanet, Jonathan Tompson

{debidatta, sermanet, tompson} @ google.com

Problem Setting

Action Recognition in Videos

Kinetics

UCF101

It is possible to predict action in video from single frame

Human-object Interaction videos

Opening

Transfer from left to middle

Transfer from middle to left

Closing

Action in video is ambiguous if only one frame is considered

Research Questions

- 1) Are all action recognition problems equivalent?
- 2) Will there be one architecture for all action recognition tasks?
- 3) What is encoded in the hidden state of the recurrent units?

Action Recognition Problems

Our Solution: RNNs for Action Recognition

Recurrent Units = LSTM, GRU, ConvLSTM, ConvGRU

Quantitative Results

Kinetics

Method	Accuracy@1	Accuracy @ 5	
Spatio-temporal Averaging	71.5	89.5	
GRU	70.6	88.4	
ConvGRU	70.0	88.1	
I3D	71.6	90.2	

Recurrent Units do not provide performance boosts when problem is not sequential

Human-object Interaction videos

Method	Accuracy@1	Accuracy @ 5
Spatio-temporal Averaging	20.5	48.2
GRU	35.4	63.3
I3D (Kinetics pre-trained)	39.9	67.8
ConvGRU	43.7	71.4
ConvGRU (Large)	45.9	74.5

Recurrent Units are effective for temporal reasoning tasks

Qualitative Results

Action-conditioned nearest neighbours give us interesting insights into what is encoded in the hidden states of the recurrent units.

Folding a napkin Making a bed

Left video: State changes as video proceeds aligning similar frames Right video: State is fixed even as the video proceeds, ignoring unnecessary frames

Nearest neighbours in hidden states encode meaningful state transitions