Department of Computer Science, NTNU

TDT4295 COMPUTER DESIGN PROJECT

PCB Layout

Asbjørn Djupdal

2022-09-09

From Idea to PCB

The road from...

- ...a rough idea of your system
- ...to a finished circuit board

Todays Lecture

Workflow

EFM32

Artix FPGA

Power Supply

Final Tips

Typical Workflow

- 1. Decide on functionality
- 2. Decide on the main components
- 3. Draw schematics
- **4.** Draw the PCB layout

Typical Workflow

- 1. Decide on functionality
- 2. Decide on the main components
- 3. Draw schematics
- **4.** Draw the PCB layout

Functionality

Typical Workflow

- 1. Decide on functionality
- 2. Decide on the main components
- 3. Draw schematics
- **4.** Draw the PCB layout

- Identify the important ones first
 - Microcontroller
 - EFM32GG
 - ► I/O requirements?
 - Available: EFM32GG990F1024-BGA112
 - ► FPGA
 - Xilinx Artix 7
 - Available: XC7A100T
 - Other important components
- These components affect the detailed PCB design
 - Power supply
 - Support (smaller) components

Choose components that are easy to use:

- Some components require complex support circuits and / or complicated PCB layout
- Some components can be difficult to drive from software
 - Are there drivers available you can use?
- Make sure that your components are compatible with each other
 - Voltage levels: Try to keep to 3.3V for all signals on the PCB
 - ► Communication standards (SPI/I2C/...)
- Read and understand the datasheets

Choose components that are easy to solder:

- ▶ The same component is often available in different packages
- Easy to solder by hand:
 - ▶ QFP
 - ► SOIC / *SOP etc
 - SOT
- Require solder oven:
 - BGA
 - QFN
- Choose a large pitch (distance between pins)
 - Preferably 0.5mm or more (1mm for BGA)
- Resistors / capacitors etc:
 - Follow the datasheets
 - ▶ If not specified, choose 0805 or 1206 as standard
 - Avoid smaller than 0603

Choose components you can get:

- Check availability on our main suppliers
 - no.farnell.com
 - digikey.no
- You do not have time to wait for months for components
- Send us your shopping lists as soon as possible
 - You don't have to order everything at once
 - Order enough for at least 3 boards

Typical Workflow

- 1. Decide on functionality
- 2. Decide on the main components
- 3. Draw schematics
- **4.** Draw the PCB layout

Schematics

- KiCAD
- Drawing of your system
 - Specifies how components are connected
 - ▶ Does *not* show anything about physical placement, trace width etc.
- This is the most important part of the PCB design
- The schematic netlist can then be transferred to the PCB tool

Schematics

- Follow the examples in the datasheets
 - Almost all components have an example that can be modified to your needs
- Use hierarchical boxes / schematics
 - Microcontroller
 - FPGA
 - Power supply
 - **...**
- Run ERC (Electrical Rules Checker) before transferring netlist to the PCB tool

Symbols

- Symbols represent a PCB component in the schematic tool
- KiCAD has symbols for many components
- You probably have to make some
 - Make sure the pin numbering is correct

Decoupling Capacitors

- Most chips need one or more decoupling capacitors
- Keeps supply voltage (VCC) constant
- Placed close to the VCC pins (on the PCB, in the schematic it does not matter)
- Copy the datasheet!

Design for Testing and Bugfixing

- Add test points for connecting measurement equipment
 - But not on fast signals
- Route some spare GPIO pins out on pin headers
 - Flexibility for expansion / backup solutions
 - Both from FPGA and the microcontroller
- Add redundancy
 - Want HDMI output? Add VGA also
 - Want SPI bus between FPGA and MCU? Add some extra wires
 - ▶ ..

Connect Schematic Symbol to Footprint

- Each symbol must be assigned a footprint
- The physical drawing of the component
 - Soldering pads
 - Mounting holes
 - Text printed on the PCB
- KiCAD has most standard footprints
- ▶ If you have to draw your own:
 - Be accurate
 - Do not mirror the pins
 - Follow the datasheets
 - Print your footprint on paper and check

Typical Workflow

- 1. Decide on functionality
- 2. Decide on the main components
- 3. Draw schematics
- 4. Draw the PCB layout

PCB Layout

- ► KiCAD
- Physical layout of the PCB
- Place components
- Routing: Draw the metal traces between component pins
- Uses the netlist from the schematic to make sure everything is correctly connected

PCB: Setup - Number of Layers

A PCB has several layers with copper traces

- ► Use 4–8 layers
- One internal ground layer
- At least one internal VCC layer
- At least two signal layers (top and bottom)
- Number of layers:
 - Few layers: Cheap
 - Many layers: Easyer to route
 - FPGA is difficult to route with only 4 layers

(allaboutcircuits.com)

PCB: Setup - Design Rules

The rules you have to follow to make your PCB possible to produce

- ▶ KiCAD lets you specify the rules, and then enforces you to follow them
- ► Get information from the factory (https://www.elprint.no/kapabilitet) or use the following:
 - Clearance: 0,125 mm
 - Track width: 0,125 mm
 - ▶ Via dia: 0,6 mm
 - Via is a connection between one layer to another
 - Via drill: 0,3 mm
- ► Tighter design rules can also be fabricated, but remember that small is expensive.

PCB: Placement of Components

You are now ready to start laying out the PCB

- Place all components manually
- ► Then draw the edges of your board
 - Don't make the board too small
- ► Think about placement and rotation
 - Important for how easy routing is later
 - Do not place components too close to other components
 - Difficult routing and difficult soldering
- Group your components according to your schematics
- Follow any recommendations from the dataseheets

PCB: Routing

- I recommend manual routing
 - Autorouter does not produce a good result
- Don't use mimimum trace width, unless necessary
 - Use one standard width for signal traces, another thicker width for power traces
- ▶ Don't use "buried" or "blind" vias. Only normal through-hole vias
- Don't put a via in a solder pad

PCB: Signal Integrity

- Wire traces on the PCB are not perfect
 - Act as transmission lines at high frequencies
 - Has an impedance
 - May interfere with close-by traces
- Some designs need a specific impedance and/or length matching
 - DDR memory
 - ► RF circuits
 - Advice: Avoid if you can
 - If not, read up on it and discuss with me
- ▶ Differential pairs (e.g. USB) should be routed correctly
 - Use KiCAD differential pair router
- Keep high speed lines short
 - Place crystals and oscillators close to the chips they feed
- ▶ Don't route sensitive signals through connectors or via pin headers

PCB: Analog and Digital

- For minimum amount of noise: Separate analog part of PCB from digital part
- Put the analog part towards an edge of the PCB
 - Not between power supply and digital part
- Normal to have separate VCC for the analog circuits (see EFM32 AN0002 for an example on isolating the analog VCC)
- Big and complex topic
 - Don't speed too much time thinking about it
 - Audio will work anyways (possibly with worse sound quality), even if you ignore all analog advices

PCB: Finalization

- ► Fill all planes
 - Gnd and VCC layers are "planes"
 - Check that your vias have not damaged any of your power planes
- Run DRC (Design Rules Checker)
- Print to paper and check that:
 - Components fit physically
 - ► There is enough space for the soldering iron

EFM32GG

- Easy to use
- Power supply: 3.3V
- Clock: Can use an internal oscillator, or external crystal
 - Recommend 48MHz external crystal
- Exist in many variants (parts): Choose the part with the properties you need
 - I/O
 - Flash
- Remember to include the debug connector
- Relevant documents for PCB:
 - SiLabs EFM32 AN0002 (Hardware Design Considerations)
- Prefer package QFP64

EFM32GG – Availability

- Many parts are difficult to get these days
- Available in our lab: EFM32GG990F1024-BGA112
 - ► ARM Cortex M3
 - ► Flash: 1024kB
 - RAM: 128kB
 - USB support
 - ADC: 8 channels, 12 bit
 - DAC: 2 channels, 12 bit
 - ► SPI: 3
 - ► 12C: 2
 - GPIO: 87
 - 112 pin BGA package
 - **>** ..

EFM32GG

Xilinx Artix 7 FPGA

- Complex chip
- Needs a lot of support circuits on the PCB
 - Complex power supply
 - Lots of decoupling capacitors
 - Need a flash chip for the configuration
 - JTAG connector
- Preferably choose the FTG256 package
 - Available in the lab: Artix 100T (FTG256)

Artix 7 - Relevant Documents

- ▶ UG483: 7 Series FPGAs PCB Design Guide
 - Information about decoupling capacitors
- ➤ XAPP586: Using SPI Flash with 7 Series FPGAs
 - How to connect the Flash chip and JTAG connector
- UG908: Vivado Design Suite User Guide
 - Appendix C has a list of supported Flash chips
- Other documents:
 - UG470: 7 Series FPGAs Configuration
 - More about JTAG and configuration
 - XAPP427: Implementation and Solder Reflow Guidelines for Pb-Free Packages
 - Soldering of Xilinx BGA chips

Artix 7 - Decoupling Capacitors

- Needs lots of decoupling capacitors
- Sizes, number and max distance to chip is specified in UG483
 - One possibility is to place these on the bottom of the PCB

Artix 7 - Flash

- ► FPGA needs a separate Flash chip for its configuration
- Choose one which is compatible:
 - Choose from appendix C in UG908
- Copy schematic from XAPP586

Artix 7 – JTAG and Reset

- Connect as in XAPP586
- Add 10k pullup resistor on TMS and TCK to avoid problems when JTAG cable is disconnected
 - A pullup resistor is a resistor connected to VCC. Makes sure the line is high if nothing else drives it low

Artix 7

Norwegian University of Science and Technology

Power Supply

- MCU needs 1 voltage: 3.3V
- FPGA needs 3 voltages: 1.0V, 1.8V, 3.3V
 - Must be switched on in the correct sequence
- Switching converter (buck converter) or linear?
 - Switching is more efficient
 - Linear is easier to use

Power Supply Schematics

Power Supply Advice

- Power supply is complex, and critical
- Incorrect voltages damages the rest of your components
- Have a backup plan
 - Use jumpers to connect the voltages to the rest of the board
 - Allows you to disconnect a faulty power supply and add a lab supply

TPS54294 Layout

Final Tips

- Start with schematics for the power supply, FPGA and MCU
 - Adapt schematics from this lecture to your needs
- Then add other chips and components to your schematics
 - Read the datasheet for info about decoupling and usage
 - Add the support components as you go
- ▶ When using git: *Don't merge your KiCAD files*
 - One person per schematic file
- Check these slides regularly

Delivery

Send me the complete design by the end of the month

- Complete functionality
- Passes all tests

