$Extreme_SeaState_Contour_v1$

QuickSheet

Sandia National Laboratories

Aubrey Eckert-Gallup

July 29, 2015

Contents

1	Installation and Running	2
2	Required toolboxes, functions, and scripts	3
3	User Options	4
4	Key Calculation Sections	5
5	Output	6

1 Installation and Running

The following list details the installation and running instructions for the Extreme_SeaState_Contour_v1 code:

- 1. Unzip the file Extreme_SeaState_Contour_v1.zip in a separate folder.
- 2. Open Extreme_SeaState_Contour_v1.m in MATLAB.
- 3. Prepare a MATLAB .mat file with a timeseries of wave height and period for the code to use. See requirements for this dataset on line 27 in the main code file.
- 4. Adjust the .mat filename and other user options in the code as described in Section 3.
- 5. Run the code using the 'Run' button.

2 Required toolboxes, functions, and scripts

The following list details the MATLAB toolboxes, functions, and scripts that are required for running the Extreme_SeaState_Contour_v1:

- Curve Fitting Toolbox (MATLAB Toolbox)
- Statistics Toolbox (MATLAB Toolbox)
- princomp_rotation (Function)
- dataorg (Function)
- Comp2_bins (Function)
- sigma_fits (Function)
- mu_fits (Function)
- iform (Function)
- princomp_inv (Function)
- steepness (Function)
- dispersion_solver_NR_method (Function)
- density_calc (Function)
- Extreme_SeaState_Plots (Script)

3 User Options

User options are found on the following lines in the Extreme_SeaState_Contour_v1 code:

- Line 131: Change version number to reflect version written in code name.
- Line 132: Change run date to the current date.
- Line 134: Copy dataset name into brackets. Dataset must be in .mat format and must include three vectors of input values: DateNum, H_s and T_e or T_p .
- Line 135: Change water depth for related dataset.
- Line 137: Choose the bin size that will be used to create bins of Component 2 values based on corresponding sorted Component 1 values. This value should be greater than 100 to ensure that each bin contains enough values to create an appropriate distribution fit (default value: 250).
- Line 138: Choose the number of steps that will be used to discretize the circle in the normal space in order to complete the inverse FORM calculation (default value: 1000).
- Line 140: Choose the sea state duration corresponding to the data in hours (default value: 1 hour).
- Line 141: Choose the return period of interest in years (default value: 100 years). This entry can be a scalar or a row vector.
- Line 143 (Optional): Enter estimate of breaking steepness; comment this line to skip this step.

4 Key Calculation Sections

The following list details the code's key calculation sections and the lines at which they occur.

- Line 125: Calculation setup and user options.
- Line 148: Removing NaN data, assigning T label depending on input $(T_e \text{ or } T_p)$.
- Line 172: Principal component application.
- Line 183: Data organization and processing.
- Line 192: Fitting Component 1 distribution for whole data set.
- Line 213: Splitting Component 2 into bins of size 'size_bins' according to sorted Component 1 values.
- Line 226: Fitting each bin of Component 2 with a normal distribution.
- Line 251: Fitting mu and sigma as functions of mean Component 1 value for each bin.
- Line 267: Performing the inverse FORM calculation.
- Line 280: Return to original orientation.
- Line 293: Calculation of steepness curve (if input provided by user).
- Line 325: Creation of density plots.
- Line 344: Plotting and saving results.

5 Output

The final output of the Extreme_SeaState_Contour_v1 code includes the items detailed below:

- 1. A file named after the concatenation of the dataset name, code version and run date is created. In this file, the following information is saved in a data structure named ExtremeSeaState_results:
 - Hs: Significant wave height observations with NaN data removed.
 - T: Peak period or energy period observations with NaN data removed.
 - DateNum: Vector of timestamps for each measurement in the input.
 - Rank_Comp1_Comp2: Matrix with the rank (based on Component 1 value), Component 1, and corresponding Component 2 and DateNum measurements.
 - Comp1_ecdf: CDF of Component 1 data.
 - Comp1_pd: Probability distribution object containing the fitted Component 1 CDF.
 - Comp1_freq: Matrix in which each column corresponds to a single bin and contains the values of Component 1 in each bin.
 - Comp2_freq: Matrix in which each column corresponds to a single bin and contains the values of Component 2 in each bin.
 - Comp2_bins_pds: Structure containing the probability distribution objects created by fitting the CDFs for Component 2 for each bin.
 - histnum1: Vector with number of values in each bin.
 - edges1: Vector with the index of the edges of each bin of size_bin up to the last bin.
 - Comp1_mean: Vector of mean values of Component 1 for each bin.
 - mu_vals: Mean of Component 2 for each bin based on fitted distribution.
 - **sigma_vals**: Standard deviation of Component 2 for each bin based on fitted distribution.
 - mu_fit: Fitted value of mu calculated at each mean value of Component 1 for each bin.
 - **sigma_fit**: Fitted value of sigma calculated at each mean value of Component 1 for each bin.
 - mu_param: Parameters of the function used to fit mu as a function of the mean value of Component 1 for each bin.
 - **sigma_param**: Parameters of the function used to fit sigma as a function of the mean value of Component 1 for each bin.
 - Comp1_R: Calculated Component 1 values along the contour boundary.

- Comp2_R: Calculated Component 2 values along the contour boundary.
- Hs_R: Calculated H_s values along the contour boundary following return to original input orientation.
- Hs_R_2: Values of H_s along the contour boundary and along the wave breaking steepness curve at values where the H_s value is greater than the breaking steepness.
- **T**_**R**: Calculated T values along the contour boundary following return to original input orientation.
- SteepH: Wave height values calculated along the wave breaking curve.
- depth: Water depth at buoy under analysis.
- coeff: Principal component coefficients.
- **shift**: Shift applied to Component 2 to ensure that there aren't any negative values.
- **Time_r**: Return period(s) chosen by the user to calculate environmental contour(s).
- 2. A folder named after the concatenation of the dataset name, code version and run date is created. In it, the following 13 figures are saved:
 - Figure 1: Plotting the Component 1 distribution fit with original CDF.
 - **Figure 2**: Plotting the Component 1 distribution fit with original CDF zoomed in to the top of the distribution.
 - Figure 3: Plotting the Component 1 distribution fit with original CDF zoomed in to the bottom of the distribution.
 - Figure 4: Plotting the Component 2 CDF for each bin.
 - Figure 5: Plotting the Component 2 CDF for each bin with distribution fitting for five selected bins.
 - **Figure 6**: Display mu and sigma fits.
 - Figure 7: Plot the Component1 and Component 2 data and corresponding extreme event boundary.
 - Figure 8: Plot the H_s and T data and corresponding contour boundary.
 - Figure 9: Plot steepness curve with extreme sea state contour.
 - Figure 10: Plot data and contour with steepness included in contour.
 - Figure 11: Plot of data density with extreme sea state contour.
 - Figure 12: Plot of data density.
 - Figure 13: Plot of data density with extreme sea state contour and steepness curve.