

Assignment # 03

Course Name	Discrete Structures (SE103T)		
Course Instructor	Mr. Abdul Basit		
Semester	Spring 2024		
Teaching Assistant	Harmain Asghar		

Student Name	
Student Roll No	

CLOs	Descriptions
1	Analyze mathematical arguments using propositional logic and rules of inference.
2	Apply set operations build sequences and compute summations.
3	Solve various computing problem using combinatorics, graphs and trees.

Marks Distribution						
Q1/15 CLO-2	Q2/14 CLO-2	Q3/10 CLO-2	Q4/22 CLO-2	Q5/14 CLO-2	Q6/25 CLO-2	Total/100

Instructions:

- 1. This assignment will access your CLO-2 as per OBE.
- 2. Assignment will be accepted in both form hand written and soft form (both are mandatory).
- 3. All questions are required to be solved to get full marks.
- 4. You need to print the first page of the assignment and attach it on the front of your submission.
- 5. Solution of questions should be neat and precise otherwise will be marked direct zero.
- 6. In case of plagiarism, both parties will get zero marks in two assignments.
- 7. Consult the textbook for reference and help. Do not copy any content from the book without referring to it.

Question: 01 [8+7]

- 1. List the members of these sets.
 - a. $\{x \mid x \text{ is a real number such that } x2 = 1\}$
 - b. $\{x \mid x \text{ is a positive integer less than } 12\}$
 - c. $\{x \mid x \text{ is the square of an integer and } x < 100\}$
 - d. $\{x \mid x \text{ is an integer such that } x^2 = 2\}$
- 2. Use a Venn diagram to illustrate the subset of odd integers in the set of all positive integers not exceeding 10.

Question: 02 [6+8]

- 1. If $A=\{10,11,12,13\}$ and $B=\{13,14,15\}$ then $AUB=\{10,11,12,13,14,15\}$, draw Venna Diagram.
- 2. What is The Cartesian product of A and B, If we take two sets $A=\{a,b\}$ and $B=\{1,2\}$.

Question: 03 [10]

Suppose that A is the set of sophomores at your school and B is the set of students in discrete mathematics at your school. Express each of these sets in terms of A and B.

- a) the set of sophomores taking discrete mathematics in your school.
- b) the set of sophomores at your school who are not taking discrete mathematics.
- c) the set of students at your school who either are sophomores or are taking discrete mathematics.
- d) the set of students at your school who either are not sophomores or are not taking discrete mathematics.

Question: 04 [8+7+7]

- 1. Draw the Venn diagrams for each of these combinations of the sets A, B, and C.
 - a) $A \cap (B \cup C)$
 - b) $A \cap B \cap C$
 - c) (A B) U (A C) U (B C)
 - 2. Suppose that the universal set is $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$. Express each of these sets with bit strings where the ith bit in the string is 1 if i is in the set and 0 otherwise. a) $\{3, 4, 5\}$
 - b) {1, 3, 6, 10}
 - c) $\{2, 3, 4, 7, 8, 9\}$
 - 3. What subsets of a finite universal set do these bit strings represent?
 - a) the string with all zeros.
 - b) the string with all ones.

Question: 05 [2+2+2+2+2+2+2]

Determine whether these statements are true or false.

- a) $\emptyset \in \{\emptyset\}$
- b) $\emptyset \in \{\emptyset, \{\emptyset\}\}$
- c) $\{\emptyset\} \in \{\emptyset\}$
- d) $\{\emptyset\} \in \{\{\emptyset\}\}\$
- e) $\{\emptyset\} \subset \{\emptyset, \{\emptyset\}\}$
- f) $\{\{\emptyset\}\}\subset\{\emptyset,\{\emptyset\}\}$
- g) $\{\{\emptyset\}\} \subset \{\{\emptyset\}, \{\emptyset\}\}\}$

Question: 06 [8+8+9]

- 1. Determine whether f is a function from Z to R if
 - a) $f(n) = \pm n$.
 - b) f (n) = $\sqrt{n^2 + 1}$.
 - c) $f(n) = 1/(n^2 4)$.
- 2. Determine whether each of these functions from {a, b, c, d} to itself is one-to-one.
 - a) f(a) = b, f(b) = a, f(c) = c, f(d) = d.
 - b) f(a) = b, f(b) = b, f(c) = d, f(d) = c.
 - c) f(a) = d, f(b) = b, f(c) = c, f(d) = d.
- **3.** Find $f \circ g$ and $g \circ f$, where $f(x) = x^2 + 1$ and g(x) = x + 2, are functions from R to R.