Exercice 1: (9.5 pts)

Soit la matrice:

$$A_{\alpha} = \begin{pmatrix} 6 & 2 & \alpha^2 - 7\alpha \\ 2 & 3 & \alpha - 7 \\ 0 & 0 & \alpha \end{pmatrix} \in M_3(\mathbb{R}).$$

1- Discuter, suivant le paramètre α , la diagonalisation de A_{α} .

On calcule le polynôme caractéristique de A_{α} , on trouve : $P_{A_{\alpha}}(X) = (2 - X)(7 - X)(\alpha - X)$. (0.75 pt)

Cas 1 : Si $\alpha \neq 2$ et $\alpha \neq 7$, alors A_{α} est diagonalisable car dans ce cas A_{α} admet **trois** valeurs propres **simples**. (0.25 pt)

Cas 2 : Si $\alpha = 7$, A_7 admet une valeur propre double, et il suffit donc de calculer le rang de $A_7 - 7I$. On a :

$$A_7 - 7I = \begin{pmatrix} -1 & 2 & 0 \\ 2 & -4 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
, d'où : $rg(A_7 - 7I) = 1$ ainsi A_7 et diagonalisable. (1 pt)

Cas 3 : Si $\alpha = 2$, A_2 admet une valeur propre double, et il suffit donc de calculer le rang de $A_2 - 2I$. On a :

$$A_2 - 2I = \begin{pmatrix} 4 & 2 & -10 \\ 2 & 1 & -5 \\ 0 & 0 & 0 \end{pmatrix}$$
, d'où : $rg(A_2 - 2I) = 1$ ainsi A_2 et diagonalisable. **(0.75 pt)**

Conclusion : A_{α} est diagonalisable pour tout $\alpha \in \mathbb{R}$.

2- On pose : $\alpha = 2$.

 \mathbf{a} / Vérifier que A_2 est diagonalisable.

D'après la question 1, A_2 est diagonalisable. (0.25 pt)

b/ Trouver une matrice P telle que $P^{-1}.A_2.P$ soit diagonale.

Il suffit de déterminer les vecteurs propres associés aux valeurs propres de A_2 . Pour cela, on commence par supposer que $A_2 = M_C(f)$ où $f \in End(\mathbb{R}^3)$ et $C = (e_1, e_2, e_3)$ la base canonique de \mathbb{R}^3 . On échelonne alors les matrices $A_2 - 2I$ et $A_2 - 7I$, on trouve :

$$E_2 = \langle v_1 = (-1, 2, 0), (0, 5, 1) \rangle$$
 (0.5 pt) et $E_7 = \langle v_3 = (2, 1, 0) \rangle$ (0.5 pt)

où E_2 et E_7 désignent, respectivement, les sous-espaces propres de f associés aux valeurs propres 2 et 7. Ainsi :

$$P = \begin{pmatrix} -1 & 0 & 2 \\ 2 & 5 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$
 (0.5 pt) et $P^{-1}.A_2.P = A_2' = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 7 \end{pmatrix}.$

c/ En déduire la matrice A_2^n où $n \in \mathbb{N}^*$.

On a : $A_2 = P.A_2'.P^{-1}$, d'où : $A_2^n = P.A_2'^n.P^{-1}$ et après calcul on trouve :

$$P^{-1} = \begin{pmatrix} -\frac{1}{5} & \frac{2}{5} & -2\\ 0 & 0 & 1\\ \frac{2}{5} & \frac{1}{5} & -1 \end{pmatrix}$$
 (1.5 pt) et $A_2^n = \begin{pmatrix} \frac{1}{5}2^n + \frac{4}{5}7^n & \frac{2}{5}7^n - \frac{2}{5}2^n & 2 \times 2^n - 2 \times 7^n\\ \frac{2}{5}7^n - \frac{2}{5}2^n & \frac{4}{5}2^n + \frac{1}{5}7^n & 2^n - 7^n\\ 0 & 0 & 2^n \end{pmatrix}$ **(1 pt)**.

Pour le calcul de P^{-1} , ou pourra exprimer les e_i en fonction des v_i .

d/ Exprimer, en utilisant le théorème de Cayley Hamilton, A_2^n comme polynôme de degré inférieur ou égal à 2 en A_2 , pour tout $n \in \mathbb{N}^*$ et $n \geq 3$.

Eu utilisant le théorème de Cayley Hamilton, on a :

$$P_{A_2}(A_2) = 0$$
 où $P_{A_2}(X) = -X^3 + 11X^2 - 32X + 28$.

D'autre part, la division euclidienne de X^n par $P_{A_2}(X)$ donne un couple unique (Q, R) de polynômes tel que :

$$X^n = P_{A_2}(X)Q + R \text{ et } d^{\circ}R \leq 2.$$

Ainsi:

$$A_2^n = P_{A_2}(A_2) Q(A_2) + R(A_2) = R(A_2)$$

Si on écrit : $R(X) = aX^2 + bX + c$, où $a, b, c \in \mathbb{R}$ alors :

$$A_2^n = R(A_2) = aA_2^2 + bA_2 + cI_3$$
. (1 pt) CQFD

e/ Montrer que calculer A_2^n revient à résoudre un système linéaire carré que l'on déterminera. (Il n'est pas demandé de résoudre le système obtenu).

Pour calculer A_2^n , il faudra déterminer les valeurs de a,b et c. Pour cela, on utilisera la relation :

$$X^{n} = P_{A_{2}}(X) Q + R = P_{A_{2}}(X) Q + aX^{2} + bX + c$$

en remplaçant par les valeurs propres de A_2 , et dans ce cas il faudra utiliser le fait que la valeur propre 2 est une racine double de $P_{A_2}(X)$, donc racine de $P_{A_2}(X)$ et de sa dérivée $P'_{A_2}(X)$. On obtient alors le système suivant :

$$\begin{cases} 7^n = a7^2 + b7 + c \\ 2^n = a2^2 + b2 + c \\ n2^{n-1} = a4 + b \end{cases}$$

La dernière équation a été obtenue en dérivant $X^{n} = P_{A_{2}}(X)Q + aX^{2} + bX + c$, ainsi :

$$nX^{n-1} = P'_{A_2}(X) Q + P'_{A_2}(X) Q' + 2aX + b$$

puis on remplace par la valeur propre 2.

Enfin le système voulu est :

$$\begin{cases}
7^n = 49a + 7b + c \\
2^n = 4a + 2b + c \\
n2^{n-1} = 4a + b
\end{cases}$$
(1.5 pt)

Exercice 2:(6.5 pts)

Soit, dans \mathbb{R} , le système linéaire suivant :

$$\begin{cases} x + \alpha y + \alpha^2 z = 1 \\ x + \alpha y + \alpha \beta z = \alpha \\ \beta x + \alpha^2 y + \alpha^2 \beta z = \alpha^2 \beta \end{cases}$$
 $(S_{\alpha,\beta})$

où α et β sont des paramètres réels .

1- Calculer le déterminant de la matrice du système $(S_{\alpha,\beta})$.

Il faut calculer:

$$\begin{vmatrix} 1 & \alpha & \alpha^2 \\ 1 & \alpha & \alpha\beta \\ \beta & \alpha^2 & \alpha^2\beta \end{vmatrix} = \alpha^2 \begin{vmatrix} 1 & 1 & \alpha \\ 1 & 1 & \beta \\ \beta & \alpha & \alpha\beta \end{vmatrix} = \alpha^4 - 2\alpha^3\beta + \alpha^2\beta^2 = \alpha^2(\alpha - \beta)^2.$$
 (1 pt)

2- Pour quelles valeurs de α et β le système $(S_{\alpha,\beta})$ est de Cramer. Dans ce cas, résoudre $(S_{\alpha,\beta})$.

 $(S_{\alpha,\beta})$ est de Cramer si $\alpha \neq 0$ et $\alpha \neq \beta$ (0.5 pt). Dans ce cas :

$$x = \frac{\begin{vmatrix} 1 & \alpha & \alpha^{2} \\ \alpha & \alpha & \alpha\beta \\ \alpha^{2}\beta & \alpha^{2} & \alpha^{2}\beta \end{vmatrix}}{\alpha^{2}(\alpha - \beta)^{2}} = \frac{-\alpha^{5}\beta + \alpha^{5} + \alpha^{4}\beta^{2} - \alpha^{4}\beta}{\alpha^{2}(\alpha - \beta)^{2}} = \frac{-\alpha^{4}(\beta - 1)(\alpha - \beta)}{\alpha^{2}(\alpha - \beta)^{2}} = \frac{\alpha^{2}(1 - \beta)}{\alpha - \beta}.$$
(1 pt)

$$y = \frac{\begin{vmatrix} 1 & 1 & \alpha^2 \\ 1 & \alpha & \alpha\beta \\ \beta & \alpha^2\beta & \alpha^2\beta \end{vmatrix}}{\alpha^2 (\alpha - \beta)^2} = \frac{\alpha^4\beta - \alpha^3\beta^2 - \alpha^2\beta + \alpha\beta^2}{\alpha^2 (\alpha - \beta)^2} = \frac{\alpha\beta (\alpha - 1)(\alpha + 1)(\alpha - \beta)}{\alpha^2 (\alpha - \beta)^2} = \frac{\beta (\alpha^2 - 1)}{\alpha (\alpha - \beta)}.$$
(1 pt)

$$z = \frac{\begin{vmatrix} 1 & \alpha & 1 \\ 1 & \alpha & \alpha \\ \beta & \alpha^2 & \alpha^2 \beta \end{vmatrix}}{\alpha^2 (\alpha - \beta)^2} = \frac{\alpha^2 - \alpha^3 - \alpha\beta + \alpha^2 \beta}{\alpha^2 (\alpha - \beta)^2} = \frac{-\alpha (\alpha - 1) (\alpha - \beta)}{\alpha^2 (\alpha - \beta)^2} = \frac{1 - \alpha}{\alpha (\alpha - \beta)}.$$
(1 pt)

Enfin la solution unique du système est :

$$(x, y, z) = \left(\frac{\alpha^2 (1 - \beta)}{\alpha - \beta}, \frac{\beta (\alpha^2 - 1)}{\alpha (\alpha - \beta)}, \frac{1 - \alpha}{\alpha (\alpha - \beta)}\right).$$

3- Résoudre $(S_{\alpha,\beta})$ dans le cas où il n'est pas de Cramer.

cas 1 : $\alpha = 0$, on obtient en remplaçant dans le système x = 0 et x = 1, ce qui est impossible (Pour tout β). (0.5 pt)

cas 2 : $\alpha = \beta$, (bien sur avec $\alpha \neq 0$), on obtient le système suivant :

$$\begin{cases} x + \alpha y + \alpha^2 z = 1 \\ x + \alpha y + \alpha^2 z = \alpha \\ \alpha x + \alpha^2 y + \alpha^3 z = \alpha^3 \end{cases}$$
 (S_{\alpha})

Si $\alpha \neq 1$, le système n'admet pas de solutions (les équations (1) et (2) sont contradictoires). (0.5 pt)

Si $\alpha = 1$, le système est équivalent à l'équation : x + y + z = 1, il y a donc une infinité de solutions, (0.5 pt) et dans ce cas l'ensemble des solutions est :

$$\{(x, y, 1 - -x - y), \text{ avec } x, y \in \mathbb{R}\}.(0.5 \text{ pt})$$

Exercice 3: (4 pts)

Soit une matrice $M \in M_3(\mathbb{R})$ de polynôme caractéristique :

$$P_M(X) = -X^3 + X^2 - X + 1.$$

1- Déterminer : Tr(M), det(M), rg(M). Justifier. On a :

$$Tr(M) = 1, \det(M) = 1 \neq 0 \text{ donc } rg(M) = 3.(0.25 \text{ pt}) + (0.25 \text{ pt}) + (0.5 \text{ pt})$$

2- Dire pourquoi M est inversible, puis donner l'expression de M^{-1} en fonction de M. Comme det $(M) \neq 0$ donc M est inversible (0.25 pt), et pour exprimer M^{-1} en fonction de M il suffit d'utiliser le théorème de Cayley Hamilton. Ainsi :

$$P_M(M) = -M^3 + M^2 - M + I = 0$$

D'où:

$$M^{-1} = M^2 - M + I$$
. (0.75 pt)

3- Est ce que M est diagonalisable ?. Justifier.

Il suffit de remarquer que

$$P_M(X) = -(X-1)(X^2+1),$$

donc M n'admet trois valeurs propres dans \mathbb{R} , par conséquent M n'est pasdiagonalisable. (1 pt)

4- Est ce que M est diagonalisable si on considère $M \in M_3(\mathbb{C})$?. Justifier. Dans $\mathbb{C}[X]$:

$$P_M(X) = -(X-1)(X-i)(X+i),$$

i.e. $P_M(X)$ possède trois valeurs propres simples, donc M est diagonalisable si on considère $M \in M_3(\mathbb{C})$. (1 pt)