Polyol gels, and the use thereof in casting processes

(18)

Patent number:

DE3103500

Publication date:

1982-08-12

Inventor:

SCHAEPEL DIETMAR DR (DE)

Applicant:

BAYER AG (DE)

Classification:

- international:

C08L75/04; C08G18/40; A61K6/10

- european:

A01N25/10, A23L1/22B4, A61K8/87, A61L9/04G, B01J13/00D, B27K3/14, C08G18/08, C08L75/04,

C11D17/00B6

Application number: DE19813103500 19810203 Priority number(s): DE19813103500 19810203

Abstract of DE3103500

Gels comprising

1) 15-62% by weight of a high-molecular-weight matrix of covalently crosslinked polyurethane and 2) 85-38% by weight of a liquid dispersion medium which is strongly bonded in the matrix by secondary valence forces and which comprises one or more polyhydroxyl compounds having a molecular weight of between 1000 and 12000, where the dispersion medium contains essentially no hydroxyl compounds having a molecular weight of below 800.

Data supplied from the esp@cenet database - Worldwide

® BUNDESREPUBLIK ® Offenlegungsschraft ₀₀ DE 3103500 A1

C 08 G 18/40 A 61 K 6/10

DEUTSCHES PATENTAMT Aktenzeichen:

Anmeldetag:

Offenlegungstag:

P 31 03 500.0 3. 2.81 12. 8.82

(f) Anmelder:

Bayer AG, 5090 Leverkusen, DE

(7) Érfinder:

Schāpel, Dietmar, Dr., 5000 Köln, DE

Polyolgele und deren Verwendung in Abformverfahren

Gele, bestehend aus

1) 15-62 Gew.% einer hochmolekularen Matrix aus kovalent vernetztem Polyurethan und

2) 85-38 Gew.% eines in der Matrix durch Nebenvalenzkräfte fest gebundenen, flüssigen Dispersionsmittels aus einer oder mehreren Polyhydroxylverbindungen mit einem Molekulargewicht zwischen 1000 und 12000, wobei das Dispersionsmittel im wesentlichen keine Hydroxylverbindungen mit einem (31 03 500) Molekulargewicht unter 800 enthält.

Patentansprüche

5

20

- (1) Gele, bestehend aus
 - (1) 15 62 Gew.-%, bezogen auf die Summe aus (1) und (2), einer hochmolekularen Matrix und
 - (2) 85 38 Gew.-%, bezogen auf die Summe aus (1) und (2), eines in der Matrix durch Nebenvalenzkräfte fest gebundenen flüssigen Dispersionsmittels, sowie gegebenenfalls
- 10 (3) 0 100 Gew.-%, bezogen auf die Summe aus (1)
 und (2), an Füll- und/oder Zusatzstoffen,
 sowie gegebenenfalls Katalysatoren für die
 Isocyanat-Polyadditionsreaktion,

dadurch gekennzeichnet, daß

- 15 a) die hochmolekulare Matrix ein kovalent vernetztes Polyurethan ist und
 - b) das flüssige Dispersionsmittel aus einer oder mehreren Polyhydroxylverbindungen mit einem Molekulargewicht zwischen 1000 und 12 000 und einer OH-Zahl zwischen 20 und 112 besteht, wobei das Dispersionsmittel im wesentlichen keine Hydroxylverbindungen mit einem Molekulargewicht unter 800 enthält.

- 2) Gele nach Anspruch 1, dadurch gekennzeichnet, daß sie aus 20 57 Gew.-% der hochmolekularen Matrix und 80 43 Gew.-% des flüssigen Dispersionsmittels bestehen.
- 5 3) Gele nach Anspruch 1, dadurch gekennzeichnet, daß sie aus 25 - 47 Gew.% der hochmolekularen Matrix und 75 - 53 Gew.% des flüssigen Dispersionsmittels bestehen.
- 4) Gele nach Anspruch 1, dadurch gekennzeichnet,

 daß die hochmolekulare Matrix ein Umsetzungsprodukt aus einem oder mehreren Polyisocyanaten
 und einer oder mehreren Polyhydroxylverbindungen
 mit einem Molekulargewicht zwischen 1000 und 12 000
 und einer OH-Zahl zwischen 20 und 112 ist, wobei

 das Produkt aus NCO-Funktionalität der Polyisocyanate und OH-Funktionalität der Polyhydroxylverbindungen mindestens 5,2 beträgt.
- 5) Gele nach Anspruch 1, dadurch gekennzeichnet,
 daß das Molekulargewicht der Polyhydroxylverbindungen zwischen 1700 und 6000 und ihre
 OH-Zahl zwischen 28 und 84 liegt und das Produkt
 der Funktionalitäten mindestens 6,2 beträgt.
- 6) Gele nach Anspruch 1, dadurch gekennzeichnet,
 daß das flüssige Dispersionsmittel eine oder
 mehrere Polyhydroxylverbindungen mit einem
 Molekulargewicht von 1700 6000 und einer OHZahl von 28 84 ist.

- 7) Verwendung von Gelen nach Anspruch 1 bis 6 als Abformmaterialien und Eingußmassen.
- 8) Verfahren zum Abformen von Gegenständen durch Umgießen des abzuformenden Körpers mit einer gelbildenden Masse und Entnahme des Formkörpers nach der Gelbildung, dadurch gekennzeichnet, daß man den Körper mit einer Mischung aus
 - a) einem oder mehreren Polyisocyanaten,
- b) einer oder mehreren Polyhydroxylverbindungen

 mit einem Molekulargewicht zwischen 1000 und

 12 000, und einer OH-Zahl zwischen 20 und 112,
 - c) gegebenenfalls Katalysatoren für die Reaktion zwischen Isocyanat- und Hydroxylgruppen sowie gegebenenfalls
- d) aus der Polyurethanchemie an sich bekannten Füll- und Zusatzstoffen

umgießt, wobei diese Mischung im wesentlichen frei ist an Hydroxylverbindungen mit einem Molekulargewicht unter 800, die Isocyanat-kennzahl zwischen 15 und 60 liegt und das Produkt der Funktionalität der polyurethan-bildenden Komponenten mindestens 5,2 beträgt, die Mischung gelieren läßt und entformt.

5

9) Verfahren nach Anspruch 8, dadurch gekennzeichnet, daß die gelbildende Masse in mehreren Schichten mit gegebenenfalls unterschiedlicher Zusammensetzung aufgetragen wird.

3103500

BAYER AKTIENGESELLSCHAFT

5090 Leverkusen, Bayerwerk

Zentralbereich Patente, Marken und Lizenzen Sft/Kü-c

1 % Feb. 14:

Polyolgele und deren Verwendung in Abformverfahren

Die vorliegende Erfindung betrifft neuartige Gele, bestehend aus einer Polyurethanmatrix und höhermolekularen Polyolen als Dispersionsmittel. Die Gele können direkt durch Umsetzung von Di- und/oder Polyisocyanaten mit einer überschüssigen Menge an höhermolekularen Polyolen erhalten werden und z.B. als Abformmassen Verwendung finden.

Gele auf wäßriger Basis werden seit Jahren in vielen technischen Bereichen verwendet (siehe z.B. R.L.

- 10 Whistler, Industrial Gums, Academic Press, Inc., New York, 1973 und DE-AS 2 347 299). Eine besonders interessante Eigenschaft der Gele besteht darin, daß sie eine hohe Abformgenauigkeit aufweisen. Dies wird dazu genutzt, um Formkörper zu doublieren.
- Dabei wird der abzuformende Körper mit der gelbildenden Masse umgossen. Nach der Gelbildung wird der Form-körper entnommen. Man erhält eine Gelform, deren Hohlraum dem Volumen des Formkörpers entspricht. Als Doubliermasse wird z.B. im Dentalbereich ein Agar-Agar-
- 20 Gel verwendet. Solche Massen weisen jedoch eine Reihe von Nachteilen auf:

- a) Die Gelierung dauert lange und muß unter bestimmten Verfahrensbedingungen erfolgen,
- b) die Elastizität des Gels ist für die Entformung von dünnen Stegen und Hinterschnitten nicht hoch genug und
 - c) die Dimensionsstabilität ist nicht befriedigend; bei offener Lagerung der Gelform tritt bereits nach sehr kurzer Zeit infolge der Wasserverdunstung eine Veränderung der Proportionen ein.
- Weiterhin sind wasserfreie Abformmassen, z.B. auf Silikonbasis, bekannt. Sie werden hergestellt, indem man ein Vorpolymerisat mit einer geringen Menge an Vernetzungsmittel vermischt. Das abzuformende Modell wird mit dieser Reaktionsmischung umgossen und nach der Aushärtung der Mischung entnommen. Man erhält eine Form mit einem Hohlraum, in der dann Abgüsse des Modells hergestellt werden können. Wasserfreie Abformmassen besitzen jedoch folgende Nachteile:
- a) Zu hohe Viskosität für die Abformung sehr feiner
 Vertiefungen und Hinterschnitte in der Oberfläche des Modells und
 - b) zu lange Reaktionszeiten; bei der Verkürzung der Reaktionszeit durch Erhöhung des Vernetzungsmittanteils erfolgt eine zu starke Schrumpfung der Form.

25

Es wurden nun neuartige Gele auf Basis von Polyolen gefunden, die eine hohe Abformgenauigkeit aufweisen, ohne mit den genannten Nachteilen behaftet zu sein. Die Gele werden erhalten, indem man ein oder mehrere höherfunktionelle, höhermolekulare Polyole in Gegenwart von Katalysatoren und gegebenenfalls Füll- und Zusatzstoffen mit einer solchen Menge an organischen Di- und/oder Polyisocyanaten umsetzt, daß eine Isocyanatkennzahl von etwa 15 - 60 resultiert. Unter "Isocyanatkennzahl" soll im folgenden das Äquivalenzverhältnis (NCO/OH) x 100 verstanden werden.

Wie gefunden wurde, entstehen nur dann erfindungsgemäße, elastische Gele, die aus einer kovalent

vernetzten Polyurethanmatrix und einem oder mehreren
darin fest (d.h. ohne die Gefahr eines störenden
Ausschwitzens) gebundenen Polyolen aufgebaut sind,
wenn die miteinander reagierenden Isocyanat- bzw.
Polyolkomponenten eine gewisse Mindestfunktionalität

aufweisen und wenn das bzw. die Polyole im wesentlichen
frei von Anteilen mit einer OH-Zahl von mehr als 112 bzw.
einem Molekulargewicht unterhalb von 800, vorzugsweise
unterhalb von 1000 sind.

Gegenstand der vorliegenden Erfindung sind somit
25 Gele, bestehend aus

(1) 15 - 62 Gew.%, bevorzugt 20 - 57 Gew.%, besonders bevorzugt 25 - 47 Gew.%, bezogen auf die Summe aus (1) und (2), einer hochmolekularen Matrix und

Le A 20 739

- (2) 85 38 Gew.%, bevorzugt 80 43 Gew.%, besonders bevorzugt 75 53 Gew.%, bezogen auf die Summe aus
 (1) und (2), eines in der Matrix durch Nebenvalenzkräfte fest gebundenen flüssigen Dispersionsmittels, sowie gegebenenfalls
 - (3) 0 100 Gew.-%, bezogen auf die Summe aus (1) und (2), an Füll- und/oder Zusatzstoffen, sowie gegebenenfalls Katalysatoren für die polyurethanbildende Reaktion,

welche dadurch gekennzeichnet sind, daß

- 10 a) die hochmolekulare Matrix ein kovalent vernetztes Polyurethan ist und
 - b) das flüssige Dispersionmittel aus einer oder mehreren Polyhydroxylverbindungen mit einem Molekulargewicht zwischen 1000 und 12000, vorzugsweise zwischen
- 1700 und 6000, und einer OH-Zahl zwischen 20
 und 112, vorzugsweise zwischen 28 und 84, besonders
 bevorzugt zwischen 30 und 56 besteht, wobei das Dispersionsmittel im wesentlichen keine Hydroxylverbindungen mit einem Molekulargewicht unter 800
 enthält:

Die erfindungsgemäßen Gele können, wie schon erwähnt, überraschenderweise durch direkte Umsetzung von Polyisocyanaten mit den genannten höhermolekularen Polyhydroxylverbindungen in einem Isocyanatkennzahlbereich von ca. 15 bis 60, vorzugsweise 20 bis 55, besonders bevorzugt 25 bis 45, hergestellt werden, sofern die polyurethanbildenden Komponenten (Isocyanat und Hydroxylverbindungen) zusammen polyfunktionell sind.

Andernfalls entstehen keine Gele sondern die aus der Polyurethanchemie an sich bekannten flüssigen OH-Präpolymere.

Im allgemeinen müssen die polyurethanbildenden Komponenten umso höherfunktionell sein, je niedriger die
Isocyanatkennzahl liegt, wobei das eingesetzte Polyol
primäre und/oder sekundäre OH-Gruppen aufweisen kann.
Im Falle der Verwendung von Gemischen von Polyolen mit
primären und sekundären OH-Gruppen ist zu beachten, daß
die primären Polyhydroxylverbindungen bevorzugt mit der
Isocyanatkomponente reagieren, so daß unter "Funktionalität der Polyolkomponente" dann im wesentlichen die
OH-Funktionalität des primären Polyols zu verstehen ist.
Zur Berechnung der Isocyanatkennzahl soll im Sinne
der vorliegenden Erfindung jedoch jeweils die
Gesamtmenge der Polyolkomponente herangezogen werden.

Bei der Herstellung der Polyurethanmatrix soll das Produkt aus Isocyanat-Funktionalität und wie oben beschrieben zu berechnender Polyol-Funktionalität min-20 destens 5,2, vorzugsweise mindestens 6,2, insbesondere mindestens 8, besonders bevorzugt mindestens 10 betragen.

Der genannte Minimalwert von 5,2 wird im erfindungsgemäß obersten Kennzahlbereich (ca. 60) erreicht, wenn
25 man als Polyolkomponente ein Gemisch aus etwa äquivalenten Mengen an primärer und sekundärer Hydroxylverbindung einsetzt, so daß der Anteil an Polyol-

komponenten mit primären OH-Gruppen praktisch quantitativ abreagiert.

Im Falle einer Isocyanatkennzahl von 50 und rein primärer oder sekundärer Polyolkomponente sollte das Produkt der Funktionalitäten mindestens 6,2, vorzugsweise 8 betragen; im Falle einer Isocyanatkennzahl von 30 und rein primärer oder sekundärer Polyolkomponente mindestens 9, vorzugsweise mindestens 10. Näheres ist in dieser Hinsicht den Ausführungsbeispielen zu entnehmen.

Gegenstand der vorliegenden Erfindung ist somit auch ein Verfahren zum Abformen von Gegenständen durch Umgießen des abzuformenden Körpers mit einer gelbildenden Masse und Entnahme des Formkörpers nach der Gelbildung, welches dadurch gekennzeichnet ist, daß man den Körper mit einer Mischung aus

- a) einem oder mehreren Di- und/oder Polyisocyanaten,
- b) einer oder mehreren Polyhydroxylverbindungen mit einem Molekulargewicht zwischen 1000 und 12 000, vorzugsweise zwischen 1700 und 6000, und einer OH-Zahl zwischen 20 und 112, vorzugsweise zwischen 28 und 84, besonders bevorzugt zwischen 30 und 56,
- c) gegebenenfalls Katalysatoren für die Reaktion
 zwischen Isocyanat- und Hydroxylgruppen sowie gegebenenfalls

Le A 20 739

5

 d) aus der Polyurethanchemie an sich bekannten Füllund Zusatzstoffen

umgießt, wobei diese Mischung im wesentlichen frei ist an Hydroxylverbindungen mit einem Molekularge-wicht unter 1000, die Isocyanatkennzahl zwischen 15 und 60 liegt und das Produkt der Funktionalitäten der polyurethanbildenden Komponenten mindestens 5,2, vorzugsweise 6,2, insbesondere 8, besonders bevorzugt 10, beträgt.

Die Konsistenz der erfindungsgemäßen Gele kann zwischen einem gelee- oder gallerteartigen und einem hartelastischen Zustand liegen. Dieser breite Bereich wird, wie in den Ausführungsbeispielen erläutert ist, bei Variation der Isocyanatkennzahl und der Funktionalität der Ausgangskomponenten überstrichen.

Es ist.besonders überraschend, daß die erfindungsgemäßen Gele außerordentlich stabil sind. Auch nach längerer Lagerung tritt keine wesentliche Phasentrennung ein. Das Dispersionsmittel Polyol ist also sehr fest im Gel gebunden. Durch geeignete Auswahl der Mischungspartner können Gele erhalten werden, bei denen eine Abgabe des Dispersionsmittels auch bei Temperaturen von 50 - 100°C nicht erfolgt. Infolge der Unlöslichkeit im DMF kann man davon ausgehen, daß die Polymerketten in den erfindungsgemäßen Gelen mindestens teilweise kovalent vernetzt sind, während der restliche Teil der Polymerketten über Neben-

5

20

valenzkräfte und mechanische Verschlaufungen gebunden ist.

Das bzw. die Polyole erfüllen, wie erläutert, neben ihrer Funktion als Aufbaukomponente für die Polyurethanmatrix zusätzlich noch die Rolle des Dispersionsmittels. Bei den erfindungsgemäß zu verwendenden höhermolekularen Polyolen handelt es sich vorzugsweise um die in der Polyurethanchemie an sich bekannten Polyhydroxypolyester, -polyether, -polythioether, polyacetale, -polycarbonate oder -polyesteramide des oben angegebenen Molekulargewichtsbereiches und OH-Zahlbereiches.

Die in Frage kommenden Hydroxylgruppen aufweisenden Polyester sind z.B. Umsetzungsprodukte von mehrwertigen, vorzugsweise zweiwertigen und gegebenenfalls zusätz-15 lich dreiwertigen Alkoholen mit mehrwertigen, vorzugsweise zweiwertigen, Carbonsäuren. Anstelle der freien Polycarbonsäuren können auch die entsprechenden Polycarbonsäureanhydride oder entsprechende Polycarbonsäureester von niedrigen Alkoholen oder deren Gemische 20 zur Herstellung der Polyester verwendet werden. Die Polycarbonsäuren können aliphatischer, cycloaliphatischer, aromatischer und/oder heterocyclischer Natur sein und gegebenenfalls, z.B. durch Halogenatome, substituiert und/oder ungesättigt sein. 25

Als Beispiele für solche Carbonsäuren und deren Derivate seien genannt:

Bernsteinsäure, Adipinsäure, Korksäure, Azelainsäure, Sebacinsäure, Phthalsäure, Isophthalsäure, Trimellitsäure, Phthalsäureanhydrid, Tetrahydrophthalsäureanhydrid, Hexahydrophthalsäureanhydrid, Tetrachlorphthalsäureanhydrid, Endomethylentetrahydrophthalsäureanhydrid, Glutarsäureanhydrid, Maleinsäure, Maleinsäureanhydrid, Fumarsäure, dimerisierte und trimerisierte ungesättigte Fettsäuren, gegebenenfalls in Mischung mit monomeren ungesättigten Fettsäuren, wie Ölsäure; Terephthalsäuredimethylester und Terephthalsäure-bisglykolester. Als mehrwertige Alkohole kommen z.B. Äthylenglykol, Propylenglykol-(1,2) und -(1,3), Butylenglykol-15 (1,4) und -(2,3), Hexandiol-(1,6), Octandiol-(1,8),

15 (1,4) und -(2,3), Hexandiol-(1,6), Octandiol-(1,8),
Neopentylglykol, 1,4-Bis-hydroxymethylcyclohexan,
2-Methyl-1,3-propandiol,Glycerin, Trimethylolpropan,
Hexantriol-(1,2,6), Butantriol-(1,2,4), Trimethyloläthan, Pentaerythrit, Chinit, Mannit und Sorbit, Formit,

20 Methylglykosid, ferner Diäthylenglykol, Triäthylenglykol, Tetraäthylenglykol und höhere Polyäthylenglykole, Dipropylenglykol und höhere Polypropylenglykole sowie Dibutylenglykol und höhere Polybutylenglykole in Frage. Die Polyester können anteilig endständige Carboxyl-

25 gruppen aufweisen. Auch Polyester aus Lactonen, z.B. ξ -Caprolacton, oder aus Hydroxycarbonsäuren, z.B. ω -Hydroxycapronsäure, sind einsetzbar.

- 15=14.

Auch die erfindungsgemäß in Frage kommenden, mindestens zwei, in der Regel zwei bis acht, vorzugsweise zwei bis drei, Hydroxylgruppen aufweisenden Polyäther sind solche der an sich bekannten Art und werden z.B. durch Polymerisation von Epoxiden wie Athylenoxid, Propylenoxid, Butylenoxid, Tetrahydrofuran, Styroloxid oder Epichlorhydrin mit sich selbst, z.B. in Gegenwart von Lewis-Katalysatoren wie BF3, oder durch Anlagerung dieser Epoxide, vorzugsweise von Äthylenoxid und 10 Propylenoxid, gegebenenfalls im Gemisch oder nacheinander, an Startkomponenten mit reaktionsfähigen Wasserstoffatomen wie Wasser, Alkohole, Ammoniak oder Amine, z.B. Athylenglykol, Propylenglykol-(1,3) oder -(1,2), Trimethylolpropan, Glycerin, 15 Sorbit, 4,4'-Dihydroxy-diphenylpropan, Anilin, Äthanolamin oder Äthylendiamin hergestellt. Auch Sucrosepolyäther, wie sie z.B. in den DE-Auslegeschriften 1 176 358 und 1 064 938 beschrieben werden, sowie auf Formit oder Formose gestartete Polyäther 20 (DE-Offenlegungsschriften 2 639 083 bzw. 2 737 951), kommen erfindungsgemäß in Frage. Vielfach sind solche Polyäther bevorzugt, die überwiegend (bis zu 90 Gew.-%, bezogen auf alle vorhandenen OH-Gruppen im Polyäther) primäre OH-Gruppen aufweisen. Auch OH-Gruppen auf-25 weisende Polybutadiene sind erfindungsgemäß geeignet.

Unter den Polythioäthern seien insbesondere die Kondensationsprodukte von Thiodiglykol mit sich selbst und/oder mit anderen Glykolen, Dicarbonsäuren,

- 15-

Formaldehyd, Aminocarbonsäuren oder Aminoalkoholen angeführt. Je nach den Co-Komponenten handelt es sich bei den Produkten z.B. um Polythiomischäther, Polythioätherester oder Polythioätheresteramide.

- Als Polyacetale kommen z.B. die aus Glykolen, wie Diäthylenglykol, Triäthylenglykol, 4,4'-Dioxäthoxy-diphenyldimethylmethan, Hexandiol und Formaldehyd herstellbaren Verbindungen in Frage. Auch durch Polymerisation cyclischer Acetale wie z.B. Trioxan (DE-Offenlegungsschrift 1 694 128) lassen sich erfindungsgemäß geeignete Polyacetale herstellen.
 - Als Hydroxylgruppen aufweisende Polycarbonate kommen solche der an sich bekannten Art in Betracht, die z.B. durch Umsetzung von Diolen wie Propandiol-(1,3),
- 15 Butandiol-(1,4) und/oder Hexandiol-(1,6), Diäthylen-glykol, Triäthylenglykol, Tetraäthylenglykol oder Thiodiglykol mit Diarylcarbonaten, z.B. Diphenyl-carbonat, oder Phosgen hergestellt werden können (DE-Auslegeschriften 1 694 080, 1 915 908 und
- 20 2 221 751; DE-Offenlegungsschrift 2 605 024).

Zu den Polyesteramiden und Polyamiden zählen z.B. die aus mehrwertigen gesättigten oder ungesättigten Carbonsäuren bzw. deren Anhydriden und mehrwertigen gesättigten oder ungesättigten Aminoalkoholen,

25 Diaminen, Polyaminen und deren Mischungen gewonnenen, vorwiegend linearen Kondensate. Auch bereits Urethan- oder Harnstoffgruppen enthaltende Polyhydroxylverbindungen sowie gegebenenfalls modifizierte natürliche Polyole sind verwendbar.

Erfindungsgemäß können gegebenenfalls auch Polyhydroxylverbindungen eingesetzt werden, in welchen 5 hochmolekulare Polyaddukte bzw. Polykondensate oder Polymerisate in feindisperser oder gelöster Form enthalten sind. Derartige Polyhydroxylverbindungen werden z.B. erhalten, wenn man Polyadditionsreaktionen (z.B. Umsetzungen zwischen Polyisocyanaten und amino-10 funktionellen Verbindungen) bzw. Polykondensationsreaktionen (z.B. zwischen Formaldehyd und Phenolen und/oder Aminen) in situ in den oben genannten, Hydroxylgruppen aufweisenden Verbindungen ablaufen läßt. Derartige Verfahren sind beispielsweise in 15 den DE-Auslegeschriften 1 168 075 und 1 260 142, sowie den DE-Offenlegungsschriften 2 324 134, 2 423 984, 2 512 385, 2 513 815, 2 550 796, 2 550 797, 2 550 833, 2 550 862, 2 633 293 und 2 639 254 beschrieben. Es ist aber auch möglich, gemäß US-Patent-20 schrift 3 869 413 bzw. DE-Offenlegungsschrift 2 550 860 eine fertige wäßrige Polymerdispersion mit einer Polyhydroxylverbindung zu vermischen und anschließend aus dem Gemisch das Wasser zu entfernen.

Auch durch Vinylpolymerisate modifizierte Polyhydroxylverbindungen, wie sie z.B. durch Polymerisation von Styrol und Acrylnitril in Gegenwart von Polyäthern (US-Patentschriften 3 383 351, 3 304 273, 3 523 093, 3 110 695; DE-Auslegeschrift 1 152 536) oder Poly-

- 12--17-

carbonatpolyolen (DE-Patentschrift 1 769 795; US-Patentschrift 3 637 909) erhalten werden, sind für das erfindungsgemäße Verfahren geeignet. Bei Verwendung von Polyätherpolyolen, welche gemäß den DE-Offenlegungsschriften 2 442 101, 2 644 922 und 2 646 141 durch Pfropfpolymerisation mit Vinylphosphonsäureestern sowie gegebenenfalls (Meth)acrylnitril, (Meth)acrylamid oder OH-funktionellen (Meth)acrylsäureestern modifiziert wurden, erhält man Gele von besonderer 10 Flammwidrigkeit.

Vertreter der genannten erfindungsgemäß zu verwendenden Verbindungen sind z.B. in High Polymers, Vol. XVI, "Polyurethanes, Chemistry and Technology", verfaßt von Saunders-Frisch, Interscience Publishers, New York, London, Band I, 1962, Seiten 32-42 und Seiten 44-54 und Band II, 1964, Seiten 5-6 und 198-199, sowie im Kunststoff-Handbuch, Band VII, Vieweg-Höchtlen, Carl-Hanser-Verlag, München, 1966, z.B. auf den Seiten 45-71, beschrieben. Selbstverständlich können Mischungen der obengenannten Verbindungen, z.B. Mischung von Polyäthern und Polyestern, eingesetzt werden.

Bevorzugt werden erfindungsgemäß die in der Polyurethan-Chemie an sich bekannten Polyhydroxypolyether der
genannten Art mit 2 - 6, besonders bevorzugt 2 - 3,

Bydroxylgruppen pro Molekül als höhermolekulares
Polyol eingesetzt. Besonders bevorzugt sind dabei,
gegebenenfalls als Abmischkomponente mit anderen
Polyethern, solche, die zumindest endständig Ethylen-

- 14=18-

oxideinheiten und damit primäre Hydroxylgruppen aufweisen. Der Anteil an Ethylenoxidsequenzen im Polyether beträgt dabei vorzugsweise mindestens 15 Gew.%, besonders bevorzugt mindestens 20 Gew.%.

Die höhermolekularen Polyole sind so zu wählen bzw. miteinander abzumischen, daß das in den erfindungsgemäßen Gelen enthaltene Dispersionsmittel bei Raumtemperatur flüssig ist.

Für die Herstellung der erfindungsgemäßen Gele werden ferner aliphatische, cycloaliphatische, araliphatische, aromatische und heterocyclische Polyisocyanate eingesetzt, wie sie z.B. von W. Siefken in Justus Liebigs Annalen der Chemie, 562, Seiten 75 bis 136, beschrieben werden, beispielsweise solche der Formel

Q (NCO)

in der
n = 2-4, vorzugsweise 2,
und

Q einen aliphatischen Kohlenwasserstoffrest mit
2-18, vorzugsweise 6-10 C-Atomen,
einen cycloaliphatischen Kohlenwasserstoffrest
mit 4-15, vorzugsweise 5-10 C-Atomen,
einen aromatischen Kohlenwasserstoffrest mit

6-15, vorzugsweise 6-13 C-Atomen, oder einen araliphatischen Kohlenwasserstoffrest mit 8-15, vorzugsweise 8 - 13 C-Atomen,

bedeuten, z.B. Athylen-diisocyanat, 1,4-Tetramethylen-diisocyanat, 1,6-Hexamethylendiisocyanat, 1,12-

Dodecandiisocyanat, Cyclobutan-1,3-diisocyanat, Cyclohexan-1,3- und -1,4-diisocyanat sowie beliebige Gemische dieser Isomeren, 1-Isocyanato-3,3,5-tri-

Le A 20 739

25

- 18-19-

methyl-5-isocyanatomethyl-cyclohexan (DE-Auslegeschritt 1 202 785, US-Patentschrift 3 401 190), 2,4- und 2,6- Hexahydrotoluylendiisocyanat sowie beliebige Gemische dieser Isomeren, Hexahydro-1,3- und/oder -1,4-phenylen-diisocyanat, Perhydro-2,4'- und/oder -4,4'-diphenyl-methan-diisocyanat, 1,3- und 1,4-Phenylendiisocyanat, 2,4- und 2,6-Toluylendiisocyanat sowie beliebige Gemische dieser Isomeren, Diphenylmethan-2,4'-und/oder -4,4'-diisocyanat, Naphthylen-1,5-diisocyanat.

- Ferner kommen beispielsweise erfindungsgemäß in Frage: Triphenylmethan-4,4",4"-triisocyanat, Polyphenyl-polymethylen-polyisocyanate, wie sie durch Anilin-Formaldehyd-Kondensation und anschließende Phosgenierung erhalten und z.B. in den GB-Patentschriften 874 430 und 848 671 beschrieben werden, m- und p-Isocyanatophenylsulfonyl-isocyanate gemäß der US-Patentschrift 3 454 606, perchlorierte Aryl-polyisocyanate, wie sie z.B. in der DE-Auslegeschrift 1 157 601 (US-Patentschrift 3 277 138) beschrieben werden, Carbodiimidgruppen aufweisende Polyisocyanate, wie sie in der DE-Patentschrift 1 092 007 (US-Patent-
- 20 wie sie in der DE-Patentschrift 1 092 007 (US-Patentschrift 3 152 162) sowie in den DE-Offenlegungsschriften 2 504 400, 2 537 685 und 2 552 350 beschrieben werden, Norbornan-Diisocyanate gemäß US-Patentschrift 3 492 330, Allophanatgruppen aufweisende Polyisocyanate, wie sie
- 25 z.B. in der GB-Patentschrift 994 890, der BE-Patentschrift 761 626 und der NL-Patentanmeldung 7 102 524 beschrieben werden, Isocyanuratgruppen aufweisende Polyisocyanate, wie sie z.B. in der US-Patentschrift 3 001 973, in den DE-Patentschriften 1 022 789, 1 222 067 und

1 027 394 sowie in den DE-Offenlegungsschriften 1 929 034 und 2 004 048 beschrieben werden, Urethangruppen aufweisende Polyisocyanate, wie sie z.B. in der BE-Patentschrift 752 261 oder in den US-Patentschriften 3 394 164 und

- 3 644 457 beschrieben werden, acylierte Harnstoffgruppen aufweisende Polyisocyanate gemäß der DE-Patentschrift 1 230 778, Biuretgruppen aufweisende Polyisocyanate, wie sie z.B. in den US-Patentschriften 3 124 605, 3 201 372 und 3 124 605 sowie in der GB-Patentschrift 889 050
- 10 beschrieben werden, durch Telomerisationsreaktionen hergestellte Polyisocyanate, wie sie z.B. in der US-Patentschrift 3 654 106 beschrieben werden, Estergruppen aufweisende Polyisocyanate, wie sie z.B. in den GB-Patentschriften 965 474 und 1 072 956, in der US-Patentschrift
- 15 3.567 763 und in der DE-Patentschrift 1 231 688 genannt werden, Umsetzungsprodukte der obengenannten Isocyanate mit Acetalen gemäß der DE-Patentschrift 1 072 385 und polymere Fettsäureester enthaltende Polyisocyanate gemäß der US-Patentschrift 3 455 883.
- 20 Es ist auch möglich, die bei der technischen Isocyanatherstellung anfallenden, Isocyanatgruppen aufweisenden Destillationsrückstände, gegebenenfalls gelöst in einem oder mehreren der vorgenannten Polyisocyanate, einzusetzen. Ferner ist es möglich, beliebige Mischungen der 25 vorgenannten Polyisocyanate zu verwenden.

Alle obengenannten Di- bzw. Polyisocyanate können selbstverständlich auch als Gemische eingesetzt werden. Bevorzugte Diisocyanate sind z.B. Toluylendiisocyanate und Diphenylmethandiisocyanate; bevorzugte Polyisocyanate sind z.B. biuretisiertes oder trimerisiertes 1,6-Hexamethylen-diisocyanat sowie rohe Diphenylmethan-diisocyanat-Typen.

Der Gehalt an Di- und/oder Polyisocyanaten in den gelbildenden Mischungen beträgt ca. 1 - 20 Gewichtsprozent, vorzugsweise 2 - 15 Gewichtsprozent, bezogen auf das Gesamtgewicht der Mischung.

Bei den in den erfindungsgemäßen Gelen enthaltenen 10 Katalysatoren für die Reaktion zwischen Hydroxyl- und Isocyanatgruppen handelt es sich vorzugsweise um solche der in der Polyurethan-Chemie an sich bekannten Art, z.B. tertiare Amine, wie Triethylamin, Tributylamin, N-Methyl-morpholin, N-Ethyl-morpholin, N-15 Cocomorpholin, N,N,N',N'-Tetramethyl-ethylendiamin, 1,4-Diaza-bicyclo-(2,2,2)-octan, N-Methyl-N'-dimethylaminoethyl-piperazin, N,N-Dimethylbenzylamin, Bis-(N,N-diethylaminoethyl)-adipat, N,N-Diethylbenzylamin, Pentamethyldiethylentriamin, N,N-Dimethyl-20 cyclohexylamin, N,N,N',N'-Tetramethyl-1,3-butandiamin, N,N-Dimethyl-ß-phenylethylamin, 1,2-Dimethylimidazol oder 2-Methylimidazol. Als Katalysatoren kommen auch an sich bekannte Mannichbasen aus sekundaren Aminen, wie Dimethylamin und Aldehyden, 25 vorzugsweise Formaldehyd, oder Ketonen wie Aceton, Methylethylketon oder Cyclohexanon und Phenolen, wie Phenol, Nonylphenol oder Bisphenol in Frage.

-22.

Als Katalysatoren kommen ferner Silaamine mit Kohlenstoff-Silizium-Bindungen, wie sie z.B. in der deutschen Patentschrift 1 229 290 (entsprechend der US- Patentschrift 3 620 984) beschrieben sind, in Frage, z.B. 2,2,4-Trimethyl-2-silamorpholin und 1,3-Diethylaminomethyl-tetramethyl-disiloxan.

Erfindungsgemäß können auch organische Metallverbindungen, insbesondere organische Zinnverbindungen,
als Katalysatoren verwendet werden. Als organische
Zinnverbindungen kommen vorzugsweise Zinn(II)-salze
von Carbonsäuren wie Zinn(II)-acetat, Zinn(II)-octoat,
Zinn(II)-ethylhexoat und Zinn(II)-laurat und die
Zinn(IV)-Verbindungen, z.B. Dibutylzinnoxid, Dibutylzinndichlorid, Dibutylzinndiacetat, Dibutylzinnlaurat,
Dibutylzinnmaleat oder Dioctylzinnacetat in Betracht.

Selbstverständlich können alle obengenannten Katalysatoren als Gemische eingesetzt werden.

Weitere Vertreter von erfindungsgemäß zu verwendenden Katalysatoren sowie Einzelheiten über die Wirkungsweise der Katalysatoren sind im Kunststoff-Handbuch, Band VII, herausgegeben von Vieweg und Höchtlen, Carl-Hanser-Verlag, München 1966, z.B. auf den Seiten 96 bis 102 beschrieben.

Die Katalysatoren werden vorzugsweise in einer Menge zwischen 0,1 und 10 Gewichtsprozent, bezogen auf das Gesamtgewicht des Gels, eingesetzt.

5

10

15

- 23 -

Als in den erfindungsgemäßen Gelen gegebenenfalls enthaltene Füll- und Zusatzstoffe sind die in der Polyurethan-Chemie an sich bekannten Stoffe zu verstehen, wie z.B. Füllstoffe und Kurzfasern auf anorganischer oder organischer Basis, Metallpulver, färbende Agentien wie Farbstoffe und Farbpigmente, wasserbindende Mittel, oberflächenaktive Substanzen, Flammschutzmittel oder flüssige Streckmittel wie Substanzen mit einem Siedepunkt von über 150°C.

Als organische Füllstoffe seien beispielsweise Schwerspat, Kreide, Gips, Kieserit, Soda, Titandioxid, Ceroxid,
Quarzsand, Kaolin, Ruß und Mikroglaskugeln genannt.
Von den organischen Füllstoffen können z.B. Pulver
auf Basis von Polystyrol, Polyvinylchlorid, HarnstoffFormaldehyd und Polyhydrazodicarbonamid (z.B. aus
Hydrazin und Toluylendiisocyanat) eingesetzt werden.

Als Kurzfasern kommen z.B. Glasfasern von 0,1 - 1 mm Länge oder Fasern organischer Herkunft, wie z.B. Polyester- oder Polyamidfasern, infrage. Metallpulver, wie z.B. Eisen- oder Kupferpulver, können ebenfalls bei der Gelbildung mitverwendet werden. Um den erfindungsgemäßen Gelen die gewünschte Färbung zu verleihen, können die bei der Einfärbung von Polyurethanen an sich bekannten Farbstoffe oder Farb-

- 20 24.

pigmente auf organischer oder anorganischer Basis verwendet werden, wie z.B. Eisenoxid- oder Chromoxidpigmente, Pigmente auf Phthalocyanin- oder Monoazo-Basis. Das bevorzugte wasserbindende Mittel sind Zeolithe. Als oberflächenaktive Substanzen seien z.B. Cellulosepulver, Aktivkohle, Kieselsäurepräparate und Chrysotil-Asbest genannt.

Als Flammschutzmittel können z.B. Natrium-polymétaphosphate zugesetzt werden. Als flüssige Streckmittel können beispielsweise alkyl-, alkoxy- oder 10 halogen-substituierte aromatische Verbindungen wie Dodecylbenzol, m-Dipropoxybenzol oder o-Dichlorbenzol, halogenierte aliphatische Verbindungen wie chlorierte Paraffine, organische Carbonate wie Propylencarbonat, Carbonsaureester wie Dioctyl-15 phthalat oder Dodecylsulfonsäureester oder organische Phosphorverbindungen wie Tricresylphosphat verwendet werden. Weiterhin können als flüssige Streckmittel auch höhermolekulare Polyole eingesetzt werden, deren Hydroxylgruppen veräthert, verestert oder urethani-20 siert sind.

Der Gehalt an Füllstoffen und Streckmitteln in den erfindungsgemäßen Gelen kann bis zu 50 Gew.-%, bezogen auf das Gesamtgewicht des Gels, betragen.

Die Herstellung der erfindungsgemäßen Gele kann auf verschiedene Weise erfolgen.

Man kann nach dem one-shot- oder dem Prepolymer-Verfahren arbeiten. Beim one-shot-Verfahren werden alle Komponenten, d.h. Polyole, Di- und/oder Poly-

-25-

isocyanate, Katalysator und gegebenenfalls Füll- und Zusatzstoffe auf einmal zusammengegeben und intensiv miteinander vermischt.

Beim Präpolymer-Verfahren sind zwei Arbeitsweisen

möglich. Entweder stellt man zunächst ein IsocyanatPräpolymer her, indem man einen entsprechenden Anteil
der Polyolmenge mit der gesamten, für die Gelbildung
vorgesehenen Isocyanatmenge umsetzt, und fügt dann
dem erhaltenen Präpolymer die restliche Menge an
Polyol sowie gegebenenfalls Füll- und Zusatzstoffen
zu und mischt intensiv. Oder man setzt die gesamte,
für die Gelbildung vorgesehene Menge an Polyol
mit einem Teil der Isocyanatmenge zu einem HydroxylPrepolymer um und mischt anschließend die restliche
Menge an Isocyanat zu.

Eine erfindungsgemäß besonders vorteilhafte Arbeitsweise ist eine Variante aus dem one-shot-Verfahren
und dem Hydroxyl-Präpolymer-Verfahren. Hierbei werden
das Polyol bzw. Polyolgemisch, gegebenenfalls die
Füll- und Zusatzstoffe, der Katalysator und zwei verschiedene Diisocyanate in einem Schuß zusammengegeben
und intensiv vermischt, wobei ein Diisocyanat aromatischer und ein Diisocyanat aliphatischer Natur
ist. Man kann davon ausgehen, daß durch die stark
unterschiedliche Reaktivität der beiden Diisocyanate
zunächst ein Hydroxylpräpolymer entsteht, das sodann
innerhalb von Minuten mit dem anderen Diisocyanat
unter Gelbildung reagiert. Es werden Gele mit besonders hoher Zähigkeit erhalten.

20

Bei diesen Verfahrensweisen kann die Förderung, Dosierung und Mischung der Einzelkomponenten oder Komponentengemische mit den für den Fachmann in der Polyurethan-Chemie an sich bekannten Vorrichtungen erfolgen.

Für den Fachmann besonders überraschend ist es, daß auch bei relativ niedrigen Isocyanatkennzahlen (z.B. 30) und einer Polyolkomponente mit einheitlich reaktiven OH-Gruppen (so daß keine selektive Reaktion eines Teils der Polyolkomponente mit dem Polyisocyanat zu erwarten ist) Gele mit einer hochmolekularen, vernetzten, in DMF unlöslichen Matrix und nicht bloß durch Urethangruppen modifizierte flüssige Polyole (OH-Präpolymere) erhalten werden.

Die Anwendung der Gele geschieht nach den in der 15 Abform- bzw. Doubliertechnik üblichen Methoden. Hierbei kann das gelfähige Gemisch, bevor es durch die Gelbildung erstarrt, gegossen oder auch gesprüht werden. Das Gel kann auch durch die verschiedenartigsten Materialien auf Basis natürlicher oder 20 synthetischer Rohstoffe, wie z.B. Vliese, Gewirke, Gestricke, Gewebe, Schaumfolien, Plutten oder Matten, verstärkt werden, wobei die Materialien im Inneren des Gels oder als äußere Schicht auf das Gel angebracht werden können. Die Gelmasse kann auch in Schichten 25 nacheinander auf das abzuformende Modell aufgebracht werden. Hierbei wird auf das Modell zur genauen Abformung zunächst eine kompakte Gelschicht aufgetragen.

Sodann kann als zweite Schicht z.B. mit Luft stark angereicherte gelfähige Masse aufgebracht werden, die zu einem Schaumgel führt und dadurch das Gewicht der Gelformen verringert. Als zweite Schicht kann andererseits auch ein füllstoffhaltiges Gel zur Verstärkung der herzustellenden Gelform aufgetragen werden.

Die erfindungsgemäßen Gele eignen sich zur genauen Abformung von Modellen aus den unterschiedlichsten Materialien, wie z.B. aus Gips, Holz, Beton, Stahl, Kunststoffen wie Epoxiden oder Polyurethanen, Stein, Keramik oder Metallen wie Kupfer und Eisen.

Ein wesentlicher Vorteil der erfindungsgemäßen PolyolGele gegenüber bekannten wasserfreien Abformmassen,
wie z.B. Massen auf Silikonbasis, liegt in der
niedrigeren Viskosität der gelbildenden Mischung. Dadurch werden auch sehr feine Vertiefungen in der
Modelloberfläche abgeformt. Ein weiterer Vorteil der
neuen Gele ist, daß sie kürzere Reaktionszeit aufweisen und somit eine schnellere Entformung des abzuformenden Modells ermöglichen. Die Herstellung einer
einen Hohlraum enthaltenden Form erfordert somit
weniger Zeitaufwand.

Die erfindungsgemäßen Polyol-Gele unterscheiden sich durch ihre höhere Elastizität vorteilhaft von wäßrigen Gelen, wie z.B. Agar-Agar-Gel. Dadurch wird auch die Abformung von dünnen Stegen und Hinterschnitten einwandfrei ermöglicht; ein Einreißen der Gelform beim Ent-

5

10

fernen des abzuformenden Modells tritt nicht auf.

Ein weiterer Vorteil der erfindungsgemäßen Gele gegenüber Gelen auf Wasserbasis liegt in der Dimensionsstabilität bei offener Lagerung.

Die erfindungsgemäßen Polyolgele können weiterhin als Eingußmassen für medizinische und biologische Präparate, wie zum Beispiel Käfer, Schmetterlinge, innere Organe und Gewebeproben, verwendet werden. Die bisher hierfür eingesetzten Kunstharze z.B. auf Basis von Epoxidharzen weisen verschiedene Nachteile auf, insbesondere zu hohe 10 Wärmeentwicklung und zu hoher Schrumpf; andererseits zeigen Naturstoffgele, wie Gelatine, eine unzureichende Langzeitkonsistenz, d.h., nach Monaten kann bereits ein Zerfall der Gele erfolgen.

Die erfindungsgemäßen Gele zeichnen sich für diese 15 Anwendung insbesondere dadurch aus, daß sie klardurchsichtig und nicht vergilbend sind und über Monate und Jahre die Gelkonsistenz erhalten bleibt.

Die folgenden Beispiele erläutern die vorliegende Erfindung. 20

Mengenangaben sind als Gewichtsprozente bzw. Gewichtsteile zu verstehen, sofern nichts anderes angegeben ist. '

In den Beispielen wurden die folgenden Polyisocyanate bzw. Polyole eingesetzt: 25

Le A 20 739

Polyisocyanat 1:

1,6-Hexamethylendiisocyanat

Polyisocyanat 2:

5

15

25

Handelsübliches biuretisiertes 1,6-Hexamethylen-diisocyanat mit einer mittleren NCO-Funktionalität von 3,6, einem NCO-Gehalt von 21 % und einem mittleren Molekulargewicht (Zahlenmittel) von ca. 700 (Desmodur N der Bayer AG).

Polyisocyanat 3:

10 Isomerengemisch aus 80 % 2,4- und 20 % 2,6-Toluylendiisocyanat.

Polyisocyanat 4:

Durch Präpolymerisierung mit Tripropylenglykol verflüssigtes 4,4'-Diisocyanatodiphenylmethan; mittlere NCO-Funktionalität: 2,05; NCO-Gehalt: 23 %

Polyisocyanat 5:

Präpolymer aus 159 Teilen Polyisocyanat 3 und 2000 Teilen des Polyethers 9 (siehe die untenstehende Tabelle).

20 NCO-Gehalt: 3,9 %.

Die in den Beispielen verwendeten Polyether-Polyole sind in der nachfolgenden Tabelle zusammengestellt. TMP steht in der Tabelle für Trimethylolpropan; PG für 1,2-Propylenglykol; Gly für Glycerin und PE für Pentaerythrit.

- 28<u>-</u>30.

	Polyol	Propylenoxid	Ethylenoxid %	Starter- molekül	OH- Zahl	OH- Funktionalität
	1	80	20	IMP	36	3
	2	100	-	, PG	56	2
5	3	· 45	55	IMP	56	3
_	4	100	—	TMP	56	3
	5	90	10	IMP	56	3
	6	85	15	TMP	56	3
•	7	83	17	TMP	34	. 3
10	8	100	-	Sorbit	46	6
	9	40	60	Gly	28	3
	10	100	-	'IMP/PG (84:16)	46	2,75
	11	100	••-	PE	45	4
	12	50 ·	50	PG	56	2
15	13	80	20	PG	28	2
	14	82	18	TMP	35	3
	15	73	27	Sorbit	30	6

Polyol 16 ist ein teilverzweigter Polyester aus Adipinsäure, Diethylenglykol und TMP. Mittleres Molekulargewicht: ca. 2000; mittlere OH-Funktionalität: 2,3.

5

- a) Herstellung des Gels
 100 Teile Polyether 1 und 5 Teile Polyisocyanat 2,
 sowie 1,5 Teile Dibutylzinndilaurat werden innerhalb
 von 1 Minute intensiv vermischt. Nach 10 Minuten
 erhält man ein trübes, elastisches Gel, das an
 seiner Oberfläche klebfrei ist.
- b) Herstellung der Hohlform aus Gel

 Das nach a) erhältliche gelfähige Gemisch kann

 innerhalb einer Zeit von 1-5 Minuten, gerechnet

 ab dem Vermischungsbeginn, zum Umgießen von z.B.

 einem Formteil aus Gips verwendet werden. Nach

 15 Minuten, gerechnet ab dem Vermischungsbeginn,

 kann das Gipsmodell entnommen werden. Man erhält

 eine Gelform mit einem Hohlraum, dessen Volumen

 und Konturen denjenigen des entnommenen Gipsmodells
 entsprechen.

Beispiel 2

- a) Herstellung des Gels
- 20 10 Teile Polyether 1
 - 40 Teile Polyether 2,
 - 50 Teile Polyether 3,
 - 1,5 Teile Dibutylzinndilaurat und
 - 6 Teile Polyisocyanat 2
- werden innerhalb von 1 Minute intensiv vermischt.

 Nach 15 Minuten bildet sich ein klares, elastisches
 Gel, dessen Oberfläche klebfrei ist.

- 28-32-

b) Herstellung der Hohlform aus Gel
Das nach a) erhältliche gelfähige Gemisch kann
zum Abformen eines Formteils z.B. aus Epoxid
verwendet werden. Nach ca. 20 Minuten kann das
umgossene Epoxidmodell aus der Gelform entnommen
werden. Die Gelform weist einen Hohlraum auf, der
in den Konturen identisch mit denjenigen des
Epoxidmodells ist.

Beispiel 3

5

- 10 Analog zu Beispiel 2 werden ein Gel bzw. eine Hohlform hergestellt aus
 - 10 Teilen Polyether 4,
 - 50 Teilen Polyether 5,
 - 40 Teilen Polyether 6 und
- 1,5 Teilen Dibutylzinndilaurat und 6 Teilen Polyisocyanat 2.

Beispiel 4

- 3.500 Teile Polyether 3,
 - 700 Teile Polyether 7 und
- 20 2.800 Teile Polyether 2

 werden bei einer Temperatur von 22°C mittels eines

 Labormischers mit Rührscheibe zu einer klaren Lösung

 verrührt. Zu dieser Lösung werden
 - 301 Teile Polyisocyanat 2
- 25 unter Rühren zugegeben und gut verteilt. Zu der nun trüben Lösung werden
 - 105 Teile Dibutylzinndilaurat zugegeben und die Mischung 3 Minuten intensiv vermischt.

Die weißlich trübe Lösung wird in eine vorbereitete, quadratische Umhüllung aus Polyurethanfolie der Folienstärke 0,2 mm mit einer Kantenlänge von 45 cm gegossen und die Folienhülle luftdicht verschweißt. Das so vorgefertigte Gel-Polster wird auf eine ebene Unterlage gelegt und zur Gelreaktion sich selbst überlassen, wodurch das Gel-Polster seine mechanische Endfestigkeit erreicht und vollbelastet werden kann. Es ist ein weicher, formbeständiger, unter Druck deformierbarer Körper. Wird die deformierende Kraft aufgehoben, geht das Gel-Polster in seinen Ausgangszustand zurück.

Beispiel 5

5

10

15

20

25

3.500 Teile Polyether 3,

700 Teile Polyether 7,

2.800 Teile Polyether 2 und

35 Teile Dibutylzinndilaurat

werden in einem Rührkessel bei 22°C homogen gemischt. Die Mischung wird mittels einer Zahnradpumpe einem statischen Mischer zugeführt. Aus einem getrennten Vorratsbehälter werden diesem Mischer mittels einer weiteren Zahnradpumpe gleichzeitig

273 Teile Polyisocyanat 2 so zugeführt, daß zu jeder Zeit das Mischungsverhältnis der beiden Komponenten gleich ist und dem Verhältnis der Gesamtmengen entspricht.

Die aus dem statischen Mischer ausfließende weißliche trübe Lösung wird in eine quadratische Umhüllung gegossen und daraus, wie in Beispiel 4 beschrieben, ein Gel-Polster in Form eines Kissens hergestellt.

5

10

15.

20

1.000 Teile Polyether 1,

50 Teile Polyisocyanat 2 und

15 Teile Dibutylzinndilaurat

werden mit Hilfe eines Laborrührers mit Rührscheibe bei Raumtemperatur innerhalb von 1 Minute intensiv vermischt. Nach 10 Minuten erhält man ein trübes, elastisches, formstabiles Gel, das sich unter dem Einfluß einer darauf wirkenden Kraft leicht deformieren läßt und nach Aufheben der deformierenden Kraft seinen Ausgangszustand wieder einnimmt.

Beispiel 7

1.000 Teile Polyether 8,

25 Teile Polyisocyanat 3 und

30 Teile Dibutylzinndilaurat

werden mit Hilfe eines Laborrührers mit einer Rührscheibe bei Raumtemperatur innerhalb von 1 Minute intensiv vermischt. Man erhält ein weiches, elastisches, formstabiles Gel, das sich unter dem Einfluß einer darauf wirkenden Kraft leicht deformieren läßt und nach Aufheben der deformierenden Kraft seinen Ausgangszustand wieder einnimmt.

Beispiel 8

1.000 Teile Polyether 8,

45 Teile Polyisocyanat 4 und

30 Teile Dibutylzinndilaurat

werden mit Hilfe eines Laborrührers gemäß Beispiel 7 umgesetzt. Man erhält ein weiches, elastisches, formstabiles Gel, das sich unter dem Einfluß einer darauf wirkenden Kraft leicht deformieren läßt und nach Aufheben der deformierenden Kraft seinen Ausgangszustand wieder einnimmt.

Beispiel 9

5

10

15

20

1.000 Teile Polyether 9, werden mit

50 Teilen Polyisocyanat 4 und

30 Teilen Dibutylzinndilaurat

analog Beispiel 7 zu einem weichen, elastischen, formstabilen Gel, das sich unter dem Einfluß einer darauf wirkenden Kraft leicht verformen läßt und nach Aufheben der deformierenden Kraft seinen Ausgangszustand wieder einnimmt, umgesetzt.

Beispiel 10

Das Beispiel zeigt die erfindungsgemäße Mitverwendung von Weichmachungsmitteln.

490 Teile Polyether 3,

480 Teile Dibutyladipat,

30 Teile Polyisocyanat 2 und

15 Teile Dibutylzinndilaurat

werden gemäß Beispiel 7 zu einem weichen, elastischen,
formstabilen Gel umgesetzt, das sich unter dem
Einfluß einer darauf wirkenden Kraft leicht deformieren
läßt und nach Aufheben der deformierenden Kraft seinen
Ausgangszustand wieder einnimmt.

5

10

15

Das Beispiel zeigt ebenfalls die erfindungsgemäße Mitverwendung von Weichmachungsmitteln.

508 Teile Polyether 3,

450 Teile eines Alkylsulfonsäureesters von Phenol,

27 Teile Polyisocyanat 2 und

15 Teile Dibutylzinndilaurat

werden gemäß Beispiel 7 zu einem weichen, elastischen, formstabilen Gel umgesetzt, das sich unter dem Einfluß einer darauf wirkenden Kraft leicht deformieren läßt und nach Aufheben der deformierenden Kraft seinen Ausgangszustand wieder einnimmt.

Beispiel 12

484 Teile Polyether 3,

450 Teile Alkylsulfonsäureester von Phenol,

51 Teile Polyisocyanat 4 und

15 Teile Dibutylzinndilaurat

werden gemäß Beispiel 7 zu einem weichen, elastischen, formstabilen Gel umgesetzt, das sich unter dem Einfluß einer darauf wirkenden Kraft leicht deformieren läßt und nach Aufheben der deformierenden Kraft seinen Ausgangszustand wieder einnimmt.

Beispiel 13

Analog zu Beispiel 1 werden unter Variation der OHbzw. NCO-Funktionalität der Ausgangskomponenten Gele

- 37-37 -

hergestellt, wobei die Isocyanat-Kennzahl jeweils 50 betrug. Die Eigenschaften der so erhaltenen Gele sind in der nachfolgenden Tabelle zusammengestellt; "flüssig" bedeutet, daß infolge zu niedriger Funktionalität noch keine Gelstruktur ausgebildet wurde.

Als Isocyanatkomponente wurden Polyisocyanat 1, Polyisocyanat 2 bzw. Gemische daraus mit der angegebenen mittleren NCO-Funktionalität verwendet; die Polyolkomponente bestand aus den Polyolen 2, 10 bzw. 11 bzw. 1:1-Gemischen von 2 und 10 bzw. 10 und 11.

	Funktionalität	1				İ	
	NCO	/ОН	2	2,3	2,75	3,25	. 4
	2					flüssig	sehr weich
	2,1					sehr weich	weich
15	2,2	•			flüssig	weich	hart
,,,	2,3				sehr weich	weich	
	2,4				sehr weich	·	
	2,6			flüssig	weich	1	
	2,8			sehr weich			
20	3,1			.weich			
	3,6		flüssig	hart	,	· .	

Beispiel 14

5

10

Analog zu Beispiel 13 wurde die Abhängigkeit der Gelkonsistenz von der Funktionalität für die Isocyanat-Kennzahl 30 untersucht. Als Hydroxylkomponente wurden die Polyole 10, 11, 8 bzw. ein 1:1-Gemisch aus 11 und 8 verwendet.

	Funktionali	tät on	2,75	4	4,8	· 6
		•			·	flüssig
	2		1		flüssig	sehr weich
_	2,1			·	flüssig	weich
5	· 2,15				sehr weich	weich-hart
	2,2			1	1	į
	2,3			1	sehr weich	hart
	2,4			flüssig	weich	hart
	-			sehr weich	weich	hart
	2,8	•		1	"	
10	3,6		sehr weich	weich	1 ·	I

In Analogie zu Beispiel 13 wurde die Abhängigkeit der Gelkonsistenz von Isocyanatkennzahl und NCO-Funktionalität untersucht. Als Polyolkomponente wurde ein 1:1-Gemisch der Polyole 2 und 12 eingesetzt, als Isocyanatkomponente Gemische der Polyisocyanate 1 und 2 mit der angegebenen mittleren NCO-Funktionalität.

	Funktionalität NCO Kennzahl	2,6 [.]	2,8	3,0	3,2
20	55 '	sehr weich	•		
	52,5	flüssig			
	50	flüssig	weich		
	47,5	flüssig	sehr weich	weich	hart

Le A 20 739

Abhängigkeit der Gelkonsistenz von der NCO-Funktionalität bei konstanter Isocyanatkennzahl (50) und OH-Funktionalität (3).

5 Versuch 1:

Polyolkomponente: Polyol 6

Isocyanatkomponente:Gemische aus Poly-

isocyanaten 1 und 2

Versuch 2:

Polyolkomponente:

Polyol 4/Polyol 6 (1:1)

Isocyanatkomponente:wie Versuch 1

10	NCO-Funktionalität	Versuch 1	Versuch 2
	2	flüssig	flüssig
	2,1	flüssig	sehr weich - weich
	2,2	sehr weich	weich .
	2,3	weich	weich - hart
15	2,4	weich - hart	hart
	2,6	hart	hart
	2,8	hart.	sehr hart

Beispiel 17

Abhängigkeit der Gelkonsistenz vom Mischungsverhältnis 20 Polyether mit primären Hydroxylgruppen/Polyether mit sekundären Hydroxylgruppen.

Isocyanatkennzahl: 35

Isocyanatkomponente:Polyisocyanat 2

Die Gele werden analog zu Beispiel 1 hergestellt.

	Versuch	Polyol 6 (%)	Polyol 4 (%)	Gelkonsistenz
	1 .	0	100	sehr weich
	2	5 ·	95	weich
	3	. 15	85	weich-hart
5.	4	25	75	hart
	5	35	65	sehr hart
	6	45	55	hart
	7	75	25	hart
	8	100	0	weich-hart

15

Für Versuch 5 von Beispiel 17 wurde untersucht, wieviel des (praktisch nicht mitreagierenden) Polyols 4 bei sonst gleicher Rezeptur dem Reaktionsansatz zugesetzt werden kann, so daß noch ein Gel erhalten wird. Wie die nachfolgende Tabelle zeigt, liegt die Grenze der Gelbildung für die gewählten Ausgangskomponenten etwa bei einer Zusammensetzung, die (theoretisch berechnet) 28 % Polyurethanmatrix und 72 % freiem Polyol entspricht.

20	Rezeptur (Teile)				•	
	Polyol 6	35	35	35	35	35
	Polyol 4	65	100	105	120	150
	Polyisocy- anat 2	7	7	7	7	7.
25	Dibutylzinn- dilaurat	3	3	3	4	5
	% Polyurethan- matrix	38	29	28	25	21
30		sehr har tes Gel	- sehr wei- ches Gel	sehr wei- ches Gel	Gelteil- chen in Flüssig- keit	flüssig

Le A 20 739

Beispiel 18 wurde wiederholt für Versuch 7 aus Beispiel 17. Die Grenze der Gelbildung lag hier bei ca. 27 % Polyurethanmatrix.

					i	
5	Rezeptur (Teile)					
	Polyol 6	75	75	75	75	75
	Polyol 4	25	65	75 .	90 -	100
10	Polyisocya- nat 2	7	7	. 7	7 .	7
•	Dibutylzinn- dilaurat	. 3	4,5	4,5	5	5 ·
	% Polyuretha	in- 38	28	26 ·	24	22
15	Konsistenz	hartes Gel	sehr wei- ches Gel	ches Gel, teilweise	chen in	1
		•				

Beispiel 20

Für die Polyisocyanate 2, 3 und 4 wurde untersucht, welche Isocyanatkennzahl mindestens eingehalten werden muß, um bei der Reaktion mit verschiedenen Polyolen nach der Arbeitsweise von Beispiel 1 ein Gel zu erhalten. Die gefundenen Grenzwerte der Isocyanatkennzahl sind in der nachfolgenden Tabelle zusammengestellt.

•	Polyisocyanat Nr.			
	Polyol Nr.	2	4	3
	8	20	30 .	32
5 .	15	18	35'	37
	11 .	30	45	47
	3	25	55	60
	9 ·	25	55	65
	10 .	32	65	70
10	12	40	-	-
	13 .	50	-	-
	16	20	50	5,2

In Analogie zu den Beispielen 1 und 2 wurden mit den in 15 der nachstehenden Tabelle angegebenen Rezepturen Gele und Abformmassen hergestellt. Der verwendete Weichmacher war Dibutyladipat; der Katalysator Dibutylzinndilaurat.

Rezeptur (Teile)								
Polyol 14	100	10	80					1
Polyol.3		20		100	100	50,5	100	50,5
Polyol 2		40						•
Polyol 16			20			Ļ		
We1chmacher						գ. Ն	7	
Kaolin	·						01/01	
o-Dichlorbenzol								4
Katalvsator	1,5	1,5	1,5	1,5	1,5	1,5	7,5	1,5
Polytsocyanat 2	S	5,5	7,3	7		ю	9	en
Polyisocyanat 5					50			
Polyisocyanat 4				9				
•					-			

Le A 20 739