CLAIMS

1. A compound of formula (I):

wherein:

5

30

Ring A is selected from aryl or heteroaryl;

R¹ is selected from halo, nitro, cyano, hydroxy, amino, carboxy, carbamoyl, mercapto, sulphamoyl, C₁₋₆alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₁₋₆alkoxy, C₁₋₆alkanoyl, C₁₋₆alkanoyloxy, 10 N-(C₁₋₆alkyl)amino, N,N-(C₁₋₆alkyl)₂amino, C₁₋₆alkanoylamino, N-(C₁₋₆alkyl)carbamoyl, N,N-(C₁₋₆alkyl)₂carbamoyl, C₁₋₆alkylS(O)_a wherein a is 0 to 2, C₁₋₆alkoxycarbonyl, N-(C₁₋₆alkyl)sulphamoyl, N,N-(C₁₋₆alkyl)₂sulphamoyl, C₁₋₆alkylsulphonylamino, carbocyclyl, heterocyclyl, carbocyclylC₀₋₆alkylene-Y- and heterocyclylC₀₋₆alkylene-Y-; or two R¹ on adjacent carbons may form an oxyC₁₋₄alkoxy group or a C₃₋₅alkylene group; wherein R¹ may be optionally substituted on carbon by one or more groups selected from R⁷; and wherein if said heterocyclyl contains an -NH- moiety that nitrogen may be optionally substituted by a group selected from R⁸:

n is 0-3; wherein the values of R¹ may be the same or different;

R², R³, R⁴ and R⁵ are independently selected from hydrogen, hydroxy, amino, cyano, C₁₋₄alkyl, C₁₋₄alkoxy, N-(C₁₋₄alkyl)amino, N,N-(C₁₋₄alkyl)₂amino, C₁₋₄alkylS(O)_a wherein a is 0 to 2, C₁₋₄alkoxycarbonyl, C₁₋₄alkoxycarbonylamino, C₁₋₄alkanoyloxy, carbocyclyl, heterocyclyl, carbocyclylC₁₋₄alkyl and heterocyclylC₁₋₄alkyl; or R² and R³ together form oxo or a spiro attached heterocyclyl; wherein R², R³, R⁴ and R⁵ may be independently optionally substituted on carbon by one or more groups selected from R⁹; and wherein if said heterocyclyl contains an -NH- moiety that nitrogen may be optionally substituted by a group selected from R¹⁰;

X and Z are independently selected from -CR¹¹R¹²-, -S(O)_a-, -O-, -NR¹³-, -C(O)-, -C(O)NR¹⁴-, -NR¹⁵C(O)-, -OC(O)-, -C(O)O-, -SO₂NR¹⁶- or -NR¹⁶SO₂-; wherein a is 0 to 2; r is 1 or 2; q is 0 or 1;

p is 0 or 1;
s is 0 or 1;

group selected from R¹⁹;

Ring B is carbocyclyl or heterocyclyl; wherein if said heterocyclyl contains an -NH-moiety that nitrogen may be optionally substituted by a group selected from R¹⁷;

- R⁶ is a substituent on carbon and is selected from halo, nitro, cyano, hydroxy, amino, carboxy, carbamoyl, mercapto, sulphamoyl, trifluoromethyl, trifluoromethoxy, C₁₋₄alkyl, C₂₋₄alkenyl, C₂₋₄alkynyl, C₁₋₄alkoxy, C₁₋₄alkanoyl, C₁₋₄alkanoyloxy, N-(C₁₋₄alkyl)amino, N,N-(C₁₋₄alkyl)₂amino, C₁₋₄alkanoylamino, N-(C₁₋₄alkyl)carbamoyl, N,N-(C₁₋₄alkyl)₂carbamoyl, C₁₋₄alkylS(O)_a wherein a is 0 to 2, C₁₋₄alkoxycarbonyl,
- N-(C₁₋₄alkyl)sulphamoyl, N,N-(C₁₋₄alkyl)₂sulphamoyl, C₁₋₄alkylsulphonylamino, carbocyclyl, heterocyclyl, carbocyclylC₀₋₄alkylene-Y- and heterocyclylC₀₋₄alkylene-Y-; wherein R⁶ may be optionally substituted on carbon by one or more groups selected from R¹⁸; and wherein if said heterocyclyl contains an -NH- moiety that nitrogen may be optionally substituted by a

m is 0-3; wherein the values of R^6 may be the same or different; Y is $-S(O)_a$ -, -O-, $-NR^{20}$ -, -C(O)-, $-C(O)NR^{21}$ -, $-NR^{22}C(O)$ - or $-SO_2NR^{23}$ -; wherein a is 0 to 2;

R⁷, R⁹ and R¹⁸ are independently selected from halo, nitro, cyano, hydroxy, amino, carboxy, carbamoyl, mercapto, sulphamoyl, trifluoromethyl, trifluoromethoxy, C₁₋₄alkyl, C₂₋₄alkenyl, C₂₋₄alkynyl, C₁₋₄alkoxy, C₁₋₄alkanoyl, C₁₋₄alkanoyloxy, N-(C₁₋₄alkyl)amino, N,N-(C₁₋₄alkyl)₂amino, C₁₋₄alkanoylamino, N-(C₁₋₄alkyl)carbamoyl, N,N-(C₁₋₄alkyl)₂carbamoyl, C₁₋₄alkylS(O)_a wherein a is 0 to 2, C₁₋₄alkoxycarbonyl, N-(C₁₋₄alkyl)sulphamoyl, N,N-(C₁₋₄alkyl)₂sulphamoyl, C₁₋₄alkylsulphonylamino, carbocyclyl and heterocyclyl; wherein R⁷, R⁹ and R¹⁸ may be independently optionally substituted on carbon by one or more R²⁶;

R¹¹ and R¹² are independently selected from hydrogen, hydroxy, amino, cyano, C₁₋₄alkyl, C₁₋₄alkoxy, N-(C₁₋₄alkyl)amino, N,N-(C₁₋₄alkyl)₂amino, carbocyclyl, heterocyclyl carbocyclylC₁₋₄alkyl, heterocyclylC₁₋₄alkyl; wherein R¹¹ and R¹² may be independently optionally substituted on carbon by one or more groups selected from R²⁴; and wherein if said heterocyclyl contains an -NH- moiety that nitrogen may be optionally substituted by a group selected from R²⁵;

R²⁴ is selected from halo, nitro, cyano, hydroxy, amino, carboxy, carbamoyl, mercapto, sulphamoyl, trifluoromethyl, trifluoromethoxy, C₁₋₄alkyl, C₂₋₄alkenyl, C₂₋₄alkynyl,

 C_{1-4} alkoxy, C_{1-4} alkanoyl, C_{1-4} alkanoyloxy, $N-(C_{1-4}$ alkyl)amino, $N-(C_{1-4}$ alkyl)2amino, $N-(C_{1-4}$ alkyl)2carbamoyl, $N-(C_{1-4}$ alkyl)2carbamoyl, $N-(C_{1-4}$ alkyl)2carbamoyl, $N-(C_{1-4}$ alkyl)3carbamoyl, $N-(C_{1-4}$ alky

- R⁸, R¹⁰, R¹⁷, R¹⁹ and R²⁵ are independently selected from C₁₋₄alkyl, C₁₋₄alkanoyl, C₁₋₄alkylsulphonyl, C₁₋₄alkoxycarbonyl, carbamoyl, N-(C₁₋₄alkyl)carbamoyl, N,N-(C₁₋₄alkyl)carbamoyl, benzyl, benzyloxycarbonyl, benzoyl, carbocyclyl, heterocyclyl and phenylsulphonyl; wherein R⁸, R¹⁰, R¹⁷, R¹⁹ and R²⁵ may be independently optionally substituted on carbon by one or more R²⁷;
- 10 R^{13} , R^{14} , R^{15} , R^{16} , R^{20} , R^{21} , R^{22} and R^{23} are independently selected from hydrogen, phenyl, C_{1-4} alkylsulphonyl and C_{1-4} alkyl;

R²⁶ and R²⁷ are independently selected from selected from halo, nitro, cyano, hydroxy, trifluoromethoxy, trifluoromethyl, amino, carboxy, carbamoyl, mercapto, sulphamoyl, methyl, ethyl, methoxy, ethoxy, acetyl, acetoxy, methylamino, ethylamino, dimethylamino, diethylamino, *N*-methyl-*N*-ethylamino, acetylamino, *N*-methylcarbamoyl, *N*-ethylcarbamoyl, *N*, acetylamino, *N*-methyl-*N*-ethylcarbamoyl, methylthio, ethylthio, methylsulphinyl, ethylsulphinyl, mesyl, ethylsulphonyl, methoxycarbonyl, ethoxycarbonyl, *N*-methylsulphamoyl, *N*-ethylsulphamoyl, *N*, dimethylsulphamoyl, *N*, dimethylsulphamoyl, *N*, acetylsulphamoyl, *N*, dimethylsulphamoyl, *N*, acetylsulphamoyl, *N*, acetylsulphamoyl, *N*, acetylsulphamoyl, *N*, acetylsulphamoyl, *N*, acetylsulphamoyl, *N*, acetylsulphamoyl, acety

- or a pharmaceutically acceptable salt thereof; in the manufacture of a medicament for use in the inhibition of 11βHSD1; with the proviso that said compound is not (1-methyl-1-pyrid-3-ylethyl)-(pyrid-3-yl)-ketone.
- 2. The use of a compound, or a pharmaceutically acceptable salt thereof, as claimed in claim 1 wherein Ring A is selected from phenyl, naphthyl, thienyl, furyl, thiazolyl, pyridyl, imidazolyl, benzothiazolyl or benzothienyl.
 - 3. The use of a compound, or a pharmaceutically acceptable salt thereof, as claimed in either claim 1 or claim 2 wherein R^1 is selected from halo, cyano, hydroxy, C_{1-6} alkyl,
- 30 C₁₋₆alkoxy, N,N-(C₁₋₆alkyl)₂amino, C₁₋₆alkylsulphonylamino, carbocyclyl and heterocyclylC₀₋₆alkylene-Y-; or two R¹ on adjacent carbons may form an oxyC₁₋₄alkoxy group; wherein R¹ may be optionally substituted on carbon by one or more groups selected from R⁷:

Y is $-S(O)_{a}$ -, or-O-; wherein a is 0 to 2; and R^{7} is halo.

4. The use of a compound, or a pharmaceutically acceptable salt thereof, as claimed in any one of claims 1-3 wherein R², R³, R⁴ and R⁵ are independently selected from hydrogen, hydroxy, C₁₋₄alkyl, C₁₋₄alkoxy, N-(C₁₋₄alkyl)amino, carbocyclyl, carbocyclylC₁₋₄alkyl and heterocyclylC₁₋₄alkyl; wherein R², R³, R⁴ and R⁵ may be independently optionally substituted on carbon by one or more groups selected from R⁹; wherein

R⁹ is selected from halo, cyano, C₁₋₄alkyl and N,N-(C₁₋₄alkyl)₂amino.

10

5. The use of a compound, or a pharmaceutically acceptable salt thereof, as claimed in any one of claims 1-6 wherein X is $-S(O)_a$ -, -O-, $-NR^{13}$ -, $-NR^{15}C(O)$ -, $-SO_2NR^{16}$ - or $-NR^{16}SO_2$ -; wherein a is 0 or 2; and

 R^{13} , R^{15} and R^{16} are independently selected from hydrogen, phenyl, C_{1-4} alkylsulphonyl and C_{1-4} alkyl.

The use of a compound, or a pharmaceutically acceptable salt thereof, as claimed in any one of claims 1-5 wherein Ring B is phenyl, thienyl, furyl, thiazolyl, piperidinyl, piperazinyl, pyrrolidinyl, 1,3-dihydroisoindolyl, morpholinyl, naphthyl, cyclohexyl, pyridyl, imidazolyl, 1,2,4-triazolyl, 1,3-benzodioxolyl, thiomorpholinyl, pyrimidinyl, pyrazinyl, pyridazinyl, benzimidazolyl or pyrimidinyl; wherein if Ring B contains an -NH- moiety, that nitrogen may be optionally substituted by a group selected from R¹⁷;

 R^{17} is C_{1-4} alkyl or benzyl; wherein R^{17} may be optionally substituted on carbon by one or more R^{27} ; wherein

 R^{27} is methoxy.

7. The use of a compound, or a pharmaceutically acceptable salt thereof, as claimed in any one of claims 1-6 wherein R⁶ is a substituent on carbon and is selected from halo, hydroxy, nitro, cyano, carbamoyl, C₁₋₄alkyl, C₁₋₄alkoxy, C₁₋₄alkanoyl, N,N-(C₁₋₄alkyl)₂amino, C₁₋₄alkanoylamino, N-(C₁₋₄alkyl)carbamoyl, N,N-(C₁₋₄alkyl)₂carbamoyl, C₁₋₄alkylS(O)_a wherein a is 0 or 2, C₁₋₄alkoxycarbonyl, N,N-(C₁₋₄alkyl)₂sulphamoyl, carbocyclyl,

heterocyclyl and carbocyclyl C_{0-4} alkylene-Y-; wherein R^6 may be optionally substituted on

carbon by one or more groups selected from R^{18} ; and wherein if said heterocyclyl contains an -NH- moiety that nitrogen may be optionally substituted by a group selected from R^{19} ;

Y is -C(O) or $-C(O)NR^{21}$ -;

R¹⁸ is selected from halo, cyano, hydroxy, C₁₋₄alkoxy and heterocyclyl;

5 R¹⁹ is heterocyclyl; and

R²¹ is hydrogen.

8. The use of a compound of formula (I) (as depicted in claim 1) wherein:

Ring A is selected from phenyl, naphthyl, thienyl, furyl, thiazolyl, pyridyl, imidazolyl, 10 benzothiazolyl or benzothienyl;

R1 is selected from halo, cyano, hydroxy, C1-6alkyl, C1-6alkoxy,

N.N-(C₁₋₆alkyl)₂amino, C₁₋₆alkylsulphonylamino, carbocyclyl and

heterocyclyl C_{0-6} alkylene-Y-; or two R^1 on adjacent carbons may form an $oxyC_{1-4}$ alkoxy group; wherein R^1 may be optionally substituted on carbon by one or more groups selected

15 from \mathbb{R}^7 ;

Y is -S(O)_a-, or-O-; wherein a is 0 to 2; and

R⁷ is halo.

n is 0-3; wherein the values of R¹ may be the same or different;

r is 1 or 2;

20 s is 0;

R², R³, R⁴ and R⁵ are independently selected from hydrogen, hydroxy, C₁₋₄alkyl, C₁₋₄alkoxy, N-(C₁₋₄alkyl)amino, carbocyclyl, carbocyclylC₁₋₄alkyl and heterocyclylC₁₋₄alkyl; wherein R², R³, R⁴ and R⁵ may be independently optionally substituted on carbon by one or more groups selected from R⁹; wherein

25 R⁹ is selected from halo, cyano, C₁₋₄alkyl and N,N-(C₁₋₄alkyl)₂amino.

X is $-S(O)_{a^{-}}$, $-O_{-}$, $-NR^{13}$ -, $-NR^{15}C(O)$ -, $-SO_{2}NR^{16}$ - or $-NR^{16}SO_{2}$ -; wherein a is 0 or 2;

 R^{13} , R^{15} and R^{16} are independently selected from hydrogen, phenyl, C_{1-4} alkylsulphonyl and C_{1-4} alkyl;

30 q is 0 or 1;

and

p is 0 or 1;

Ring B is phenyl, thienyl, furyl, thiazolyl, piperidinyl, piperazinyl, pyrrolidinyl, 1,3-dihydroisoindolyl, morpholinyl, naphthyl, cyclohexyl, pyridyl, imidazolyl, 1,2,4-triazolyl,

1,3-benzodioxolyl, thiomorpholinyl, pyrimidinyl, pyrazinyl, pyridazinyl, benzimidazolyl or pyrimidinyl; wherein if Ring B contains an -NH- moiety, that nitrogen may be optionally substituted by a group selected from R¹⁷;

 R^{17} is C_{1-4} alkyl or benzyl; wherein R^{17} may be optionally substituted on carbon by one 5 or more R^{27} ; wherein

R²⁷ is methoxy;

R⁶ is a substituent on carbon and is selected from halo, hydroxy, nitro, cyano, carbamoyl, C₁₋₄alkyl, C₁₋₄alkoxy, C₁₋₄alkanoyl, N,N-(C₁₋₄alkyl)₂amino, C₁₋₄alkanoylamino, N-(C₁₋₄alkyl)carbamoyl, N,N-(C₁₋₄alkyl)₂carbamoyl, C₁₋₄alkylS(O)_a wherein a is 0 or 2,

10 C₁₋₄alkoxycarbonyl, N,N-(C₁₋₄alkyl)₂sulphamoyl, carbocyclyl, heterocyclyl and carbocyclylC₀₋₄alkylene-Y-; wherein R⁶ may be optionally substituted on carbon by one or more groups selected from R¹⁸; and wherein if said heterocyclyl contains an -NH- moiety that nitrogen may be optionally substituted by a group selected from R¹⁹;

Y is -C(O) or $-C(O)NR^{21}$ -;

15 R¹⁸ is selected from halo, cyano, hydroxy, C₁₋₄alkoxy and heterocyclyl;

R¹⁹ is heterocyclyl; and

R²¹ is hydrogen;

m is 0-3; wherein the values of R⁶ may be the same or different; or a pharmaceutically acceptable salt thereof;

- 20 in the manufacture of a medicament for use in the inhibition of 11βHSD1; with the proviso that said compound is not (1-methyl-1-pyrid-3-ylethyl)-(pyrid-3-yl)-ketone.
 - 9. A compound of formula (I) (as depicted in claim 1) selected from:

[2-(4-chlorophenyl)-1-(pyrid-3-yl)ethyl]-(4-chlorophenyl)-ketone;

25 [2-(4-chlorophenyl)-1-(pyrazin-2-yl)ethyl]-(pyridin-3-yl)-ketone;

(α-methylamino-4-chlorobenzyl)-(4-chlorophenyl)-ketone;

(benzothiazol-2-yl)-(pyrrolidin-1-ylsulphonylmethyl)-ketone;

(thiazol-2-yl)-(pyrrolidin-1-ylsulphonylmethyl)-ketone;

[1-(morpholinosulphonyl)-1-methylethyl]-(4-fluorophenyl)-ketone;

30 (4-fluorophenyl)-[N-(cyclohexyl)-N-(isopropyl)sulphamoylmethyl]-ketone;

(4-fluorophenyl)-[N-(pyrid-2-yl)-N-(methyl)sulphamoylmethyl]-ketone;

(4-methylphenylsulphonylmethyl)-(4-cyanophenyl)-ketone;

(4-ethoxyphenoxymethyl)-(4-chlorophenyl)-ketone;

(4-chlorophenyl)-[3-(2,6-difluorobenzoylamino) propyl)]-ketone; and (4-chlorophenyl)-[3-(4-methoxyphenylsulphonylamino)propyl)]-ketone; or a pharmaceutically acceptable salt thereof.

5 10. The use of a compound of formula (I) (as depicted in claim 1) selected from: (α-methyl-α-hydroxy-4-chlorobenzyl)-(4-chlorophenyl)-ketone; (morpholinosulphonylmethyl)-(4-fluorophenyl)-ketone; (N-methyl-4-methylanilinosulphonylmethyl)-(4-chlorophenyl)-ketone; and (N-methyl-4-chloroanilinomethyl)-(4-chlorophenyl)-ketone;
10 or a pharmaceutically acceptable salt thereof;

in the manufacture of a medicament for use in the inhibition of 11 BHSD1.

11. A compound of formula (Ij):

$$(R^{1})_{n}$$

$$(R^{2})_{n}$$

$$(R^{6})_{m}$$

$$(Ij)$$

wherein:

15

R¹ is selected from halo, nitro, cyano, hydroxy, amino, carboxy, carbamoyl, mercapto, sulphamoyl, C₁₋₆alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₁₋₆alkoxy, C₁₋₆alkanoyl, C₁₋₆alkanoyloxy, N-(C₁₋₆alkyl)amino, N,N-(C₁₋₆alkyl)₂amino, C₁₋₆alkanoylamino, N-(C₁₋₆alkyl)carbamoyl, 20 N,N-(C₁₋₆alkyl)₂carbamoyl, C₁₋₆alkylS(O)_a wherein a is 0 to 2, C₁₋₆alkoxycarbonyl, N-(C₁₋₆alkyl)₂sulphamoyl, C₁₋₆alkylsulphonylamino, carbocyclyl, heterocyclyl, carbocyclylC₀₋₆alkylene-Y- and heterocyclylC₀₋₆alkylene-Y-; or two R¹ on adjacent carbons may form an oxyC₁₋₄alkoxy group or a C₃₋₅alkylene group; wherein R¹ may be optionally substituted on carbon by one or more groups selected from R⁷; and wherein if said heterocyclyl contains an -NH- moiety that nitrogen may be optionally substituted by a group selected from R⁸;

n is 0-3; wherein the values of R¹ may be the same or different;

R² and R³ are independently selected from hydrogen, hydroxy, amino, cyano, C₁₋₄alkyl, C₁₋₄alkoxy, N-(C₁₋₄alkyl)amino, N,N-(C₁₋₄alkyl)₂amino, C₁₋₄alkylS(O)_a wherein a is 0 to 2, C₁₋₄alkoxycarbonyl, C₁₋₄alkoxycarbonylamino, C₁₋₄alkanoyloxy, carbocyclyl,

heterocyclyl, carbocyclylC₁₋₄alkyl and heterocyclylC₁₋₄alkyl; or R² and R³ together form oxo or a spiro attached heterocyclyl; wherein R² and R³ may be independently optionally substituted on carbon by one or more groups selected from R⁹; and wherein if said heterocyclyl contains an -NH- moiety that nitrogen may be optionally substituted by a group selected from R¹⁰:

Ring B is a heterocyclyl linked to the sulphonyl of formula (Ij) via a nitrogen atom; wherein if said heterocyclyl contains an -NH- moiety that nitrogen may be optionally substituted by a group selected from R^{17} ;

R⁶ is a substituent on carbon and is selected from halo, nitro, cyano, hydroxy, amino, carboxy, carbamoyl, mercapto, sulphamoyl, trifluoromethyl, trifluoromethoxy, C₁₋₄alkyl, C₂₋₄alkenyl, C₂₋₄alkynyl, C₁₋₄alkoxy, C₁₋₄alkanoyl, C₁₋₄alkanoyloxy, N-(C₁₋₄alkyl)amino, N,N-(C₁₋₄alkyl)₂amino, C₁₋₄alkanoylamino, N-(C₁₋₄alkyl)carbamoyl, N,N-(C₁₋₄alkyl)₂carbamoyl, C₁₋₄alkylS(O)_a wherein a is 0 to 2, C₁₋₄alkoxycarbonyl, N-(C₁₋₄alkyl)₂sulphamoyl, C₁₋₄alkylsulphonylamino, carbocyclyl, heterocyclyl, carbocyclylC₀₋₄alkylene-Y- and heterocyclylC₀₋₄alkylene-Y-; wherein R⁶ may be optionally substituted on carbon by one or more groups selected from R¹⁸; and wherein if said heterocyclyl contains an -NH- moiety that nitrogen may be optionally substituted by a group selected from R¹⁹;

m is 0-3; wherein the values of R^6 may be the same or different; Y is $-S(O)_a$ -, -O-, $-NR^{20}$ -, -C(O)-, $-C(O)NR^{21}$ -, $-NR^{22}C(O)$ - or $-SO_2NR^{23}$ -; wherein a is 0 to 2;

R⁷, R⁹ and R¹⁸ are independently selected from halo, nitro, cyano, hydroxy, amino, carboxy, carbamoyl, mercapto, sulphamoyl, trifluoromethyl, trifluoromethoxy, C₁₋₄alkyl, C₂₋₄alkenyl, C₂₋₄alkynyl, C₁₋₄alkoxy, C₁₋₄alkanoyl, C₁₋₄alkanoyloxy, N-(C₁₋₄alkyl)amino, N-(C₁₋₄alkyl)₂amino, C₁₋₄alkanoylamino, N-(C₁₋₄alkyl)carbamoyl, N,N-(C₁₋₄alkyl)₂carbamoyl, C₁₋₄alkylS(O)_a wherein a is 0 to 2, C₁₋₄alkoxycarbonyl, N-(C₁₋₄alkyl)sulphamoyl, N,N-(C₁₋₄alkyl)₂sulphamoyl, C₁₋₄alkylsulphonylamino, carbocyclyl and heterocyclyl; wherein R⁷, R⁹ and R¹⁸ may be independently optionally substituted on carbon by one or more R²⁶;

20

R⁸, R¹⁰, R¹⁷ and R¹⁹ are independently selected from C₁₋₄alkyl, C₁₋₄alkanoyl, C₁₋₄alkylsulphonyl, C₁₋₄alkoxycarbonyl, carbamoyl, N-(C₁₋₄alkyl)carbamoyl, N-(C₁₋₄alkyl)carbamoyl, benzyl, benzyloxycarbonyl, benzoyl, carbocyclyl, heterocyclyl and

WO 2004/011410 PCT/GB2003/003171

- 141 -

phenylsulphonyl; wherein R⁸, R¹⁰, R¹⁷ and R¹⁹ may be independently optionally substituted on carbon by one or more R²⁷;

 R^{20} , R^{21} , R^{22} and R^{23} are independently selected from hydrogen, phenyl, C_{1-4} alkylsulphonyl and C_{1-4} alkyl;

- R²⁶ and R²⁷ are independently selected from selected from halo, nitro, cyano, hydroxy, trifluoromethoxy, trifluoromethyl, amino, carboxy, carbamoyl, mercapto, sulphamoyl, methyl, ethyl, methoxy, ethoxy, acetyl, acetoxy, methylamino, ethylamino, dimethylamino, diethylamino, *N*-methyl-*N*-ethylamino, acetylamino, *N*-methylcarbamoyl, *N*-ethylcarbamoyl, *N*-methylcarbamoyl, *N*-methylcarbamoyl, methylthio, ethylthio, methylsulphinyl, ethylsulphinyl, mesyl, ethylsulphonyl, methoxycarbonyl, ethoxycarbonyl, *N*-methylsulphamoyl, *N*-ethylsulphamoyl, *N*, *N*-dimethylsulphamoyl, *N*, *N*-diethylsulphamoyl or *N*-methyl-*N*-ethylsulphamoyl; or a pharmaceutically acceptable salt thereof; with the proviso that said compound is not
- (phenyl)-[α-(pyrrolidin-1-ylsulphonyl)benzyl]-ketone;
 (phenyl)-[α-(morpholinosulphonyl)benzyl]-ketone;
 (4-carbamoylphenyl)-[4-(5-chloropyridin-2-yloxy)piperidin-1-ylsulphonylmethyl]-ketone;
 (4-carbamoylphenyl)-[4-(4-fluorophenyl)piperidin-1-ylsulphonylmethyl]-ketone;
 (4-fluorophenyl)-[4-(5-chloropyridin-2-yloxy)piperidin-1-ylsulphonylmethyl]-ketone;

20 (phenyl)-[4-(5-chloropyridin-2-yloxy)piperidin-1-ylsulphonylmethyl]-ketone;

(4-chlorophenyl)-(piperazin-1-ylsulphonylmethyl)-ketone;
(4-chlorophenyl)-[4-(t-butoxycarbonyl)piperazin-1-ylsulphonylmethyl]-ketone;
(4-hydroxyphenyl)-(morpholinosulphonylmethyl)-ketone; or
(phenyl)-(1,2,3,4-tetrahydroisoquinolin-2-ylsulphonylmethyl)-ketone; and with the proviso
that when R² and R³ are hydrogen, m is 0 and Ring B is 4-methylpiperazin-1-yl, then (R¹)n is not hydrogen, 4-fluoro, 4-nitro, 3,4-dimethoxy, 4-methoxy, 4-t-butyl, 4-trifluoromethyl or 4-chloro; and with the proviso that when R² and R³ are hydrogen, m is 0 and Ring B is morpholino then (R¹)n is not hydrogen, 4-dimethylamino, 4-nitro, 4-methoxy, 4-t-butyl,

4-trifluoromethyl, 4-fluoro or 4-chloro.

12. A compound of formula (Ik):

$$(R^{1})_{n} \xrightarrow{H} O O O B \\ R^{2} R^{3} R^{16}$$

$$(Ik)$$

wherein:

15

R¹ is selected from halo, nitro, cyano, hydroxy, amino, carboxy, carbamoyl, mercapto, sulphamoyl, C₁₋₆alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₁₋₆alkoxy, C₁₋₆alkanoyl, C₁₋₆alkanoyloxy, N-(C₁₋₆alkyl)amino, N,N-(C₁₋₆alkyl)₂amino, C₁₋₆alkanoylamino, N-(C₁₋₆alkyl)carbamoyl, N,N-(C₁₋₆alkyl)₂carbamoyl, C₁₋₆alkylS(O)_a wherein a is 0 to 2, C₁₋₆alkoxycarbonyl, N-(C₁₋₆alkyl)sulphamoyl, N,N-(C₁₋₆alkyl)₂sulphamoyl, C₁₋₆alkylsulphonylamino, carbocyclyl, heterocyclyl, carbocyclylC₀₋₆alkylene-Y- and heterocyclylC₀₋₆alkylene-Y-; or two R¹ on adjacent carbons may form an oxyC₁₋₄alkoxy group or a C₃₋₅alkylene group; wherein R¹ may be optionally substituted on carbon by one or more groups selected from R⁷; and wherein if said heterocyclyl contains an -NH- moiety that nitrogen may be optionally substituted by a group selected from R⁸;

n is 0-3; wherein the values of R¹ may be the same or different;

R² and R³ are independently selected from hydrogen, hydroxy, amino, cyano, C₁₋₄alkyl, C₁₋₄alkoxy, N-(C₁₋₄alkyl)amino, N,N-(C₁₋₄alkyl)₂amino, C₁₋₄alkylS(O)_a wherein a is 0 to 2, C₁₋₄alkoxycarbonyl, C₁₋₄alkoxycarbonylamino, C₁₋₄alkanoyloxy, carbocyclyl, heterocyclyl, carbocyclylC₁₋₄alkyl and heterocyclylC₁₋₄alkyl; or R² and R³ together form oxo or a spiro attached heterocyclyl; wherein R² and R³ may be independently optionally substituted on carbon by one or more groups selected from R⁹; and wherein if said heterocyclyl contains an -NH- moiety that nitrogen may be optionally substituted by a group selected from R¹⁰:

Ring B is carbocyclyl or heterocyclyl; wherein if said heterocyclyl contains an -NH-25 moiety that nitrogen may be optionally substituted by a group selected from R¹⁷;

R⁶ is a substituent on carbon and is selected from halo, nitro, cyano, hydroxy, amino, carboxy, carbamoyl, mercapto, sulphamoyl, trifluoromethyl, trifluoromethoxy, C₁₋₄alkyl, C₂₋₄alkenyl, C₂₋₄alkynyl, C₁₋₄alkoxy, C₁₋₄alkanoyl, C₁₋₄alkanoyloxy, N-(C₁₋₄alkyl)amino, N-(C₁₋₄alkyl)2amino, C₁₋₄alkanoylamino, N-(C₁₋₄alkyl)carbamoyl,

30 N,N-(C₁₋₄alkyl)₂carbamoyl, C₁₋₄alkylS(O)_a wherein a is 0 to 2, C₁₋₄alkoxycarbonyl,

N-(C₁₋₄alkyl)sulphamoyl, N,N-(C₁₋₄alkyl)₂sulphamoyl, C₁₋₄alkylsulphonylamino, carbocyclyl, heterocyclyl, carbocyclylC₀₋₄alkylene-Y- and heterocyclylC₀₋₄alkylene-Y-; wherein R⁶ may be optionally substituted on carbon by one or more groups selected from R¹⁸; and wherein if said heterocyclyl contains an -NH- moiety that nitrogen may be optionally substituted by a group selected from R¹⁹:

m is 0-3; wherein the values of R^6 may be the same or different; Y is -S(O)_a-, -O-, -NR²⁰-, -C(O)-, -C(O)NR²¹-, -NR²²C(O)- or -SO₂NR²³-; wherein a is 0 to 2;

R⁷, R⁹ and R¹⁸ are independently selected from halo, nitro, cyano, hydroxy, amino, carboxy, carbamoyl, mercapto, sulphamoyl, trifluoromethyl, trifluoromethoxy, C₁₋₄alkyl, C₂₋₄alkenyl, C₂₋₄alkynyl, C₁₋₄alkoxy, C₁₋₄alkanoyl, C₁₋₄alkanoyloxy, N-(C₁₋₄alkyl)amino, N,N-(C₁₋₄alkyl)₂amino, C₁₋₄alkanoylamino, N-(C₁₋₄alkyl)carbamoyl, N,N-(C₁₋₄alkyl)₂carbamoyl, C₁₋₄alkylS(O)_a wherein a is 0 to 2, C₁₋₄alkoxycarbonyl, N-(C₁₋₄alkyl)sulphamoyl, N,N-(C₁₋₄alkyl)₂sulphamoyl, C₁₋₄alkylsulphonylamino, carbocyclyl and heterocyclyl; wherein R⁷, R⁹ and R¹⁸ may be independently optionally substituted on carbon by one or more R²⁶;

R⁸, R¹⁰, R¹⁷ and R¹⁹ are independently selected from C₁₋₄alkyl, C₁₋₄alkanoyl, C₁₋₄alkylsulphonyl, C₁₋₄alkoxycarbonyl, carbamoyl, N-(C₁₋₄alkyl)carbamoyl, N,N-(C₁₋₄alkyl)carbamoyl, benzyl, benzyloxycarbonyl, benzoyl, carbocyclyl, heterocyclyl and phenylsulphonyl; wherein R⁸, R¹⁰, R¹⁷ and R¹⁹ may be independently optionally substituted on carbon by one or more R²⁷:

 R^{16} , R^{20} , R^{21} , R^{22} and R^{23} are independently selected from hydrogen, phenyl, C_{1-4} alkylsulphonyl and C_{1-4} alkyl;

R²⁶ and R²⁷ are independently selected from selected from halo, nitro, cyano, hydroxy, trifluoromethoxy, trifluoromethyl, amino, carboxy, carbamoyl, mercapto, sulphamoyl, methyl, ethyl, methoxy, ethoxy, acetyl, acetoxy, methylamino, ethylamino, dimethylamino, diethylamino, *N*-methyl-*N*-ethylamino, acetylamino, *N*-methylcarbamoyl, *N*-ethylcarbamoyl, *N*-odimethylcarbamoyl, *N*-diethylcarbamoyl, *N*-methyl-*N*-ethylcarbamoyl, methylthio, ethylthio, methylsulphinyl, ethylsulphinyl, mesyl, ethylsulphonyl, methoxycarbonyl, ethoxycarbonyl, *N*-methylsulphamoyl, *N*-odimethylsulphamoyl, *N*-odimethylsulphamoyl, *N*-odimethylsulphamoyl, *N*, *N*-diethylsulphamoyl or *N*-methyl-*N*-ethylsulphamoyl; or a pharmaceutically acceptable salt thereof;

with the proviso that said compound is not

(phenyl)-(5-methylpyrazol-3-ylaminosulphonylmethyl)-ketone;

(phenyl)-[(2-methyl-6-methoxy-2,3-dihydrobenzofuran-4-yl)aminosulphonylmethyl]-ketone;

(phenyl)-(1-phenyl-3-methylpyrazol-5-ylaminosulphonylmethyl)-ketone;

- 5 (phenyl)-[1-(cyclohexyl-N-methylaminosulphonyl)ethyl]-ketone;
 - (phenyl)-[1-(phenyl-N-methylaminosulphonyl)ethyl]-ketone;
 - (phenyl)-(cyclohexylaminosulphonylmethyl)-ketone;
 - (phenyl)-[(2-phenyl-4-acetyl-5-methylimidazol-3-yl]-N-methylaminosulphonylmethyl]-keton
 - e; (phenyl)-[(2-phenyl-4-acetyl-5-methylimidazol-3-yl]aminosulphonylmethyl]-ketone;
- 10 (phenyl)-(2,4,5,6,7,8-hexahydrocycloheptapyrazol-3-ylaminosulphonylmethyl]-ketone;
 - (phenyl)-(4,5,6,7-tetrahydro-2H-indazol-3-ylaminosulphonylmethyl]-ketone;
 - (phenyl)-[(4-phenyl-5-methylpyrazol-3-yl)aminosulphonylmethyl]-ketone;
 - (phenyl)-[3-(1-carboxymethyl-3-methyl-4-oxo-1,2,3,4-tetrahydrophthalazin-2-yl)anilinosulph onylmethyl]-ketone;
- 15 (phenyl)-{3-[1-(methoxycarbonylmethyl)-3-methyl-4-oxo-1,2,3,4-tetrahydrophthalazin-2-yl]a nilinosulphonylmethyl}-ketone; (phenyl)-(4-methylanilinosulphonylmethyl)-ketone;
 - (phenyl)-(2-benzoyl-4-chloroanilinosulphonylmethyl)-ketone;
 - (phenyl)-(2,3-dimethylanilinosulphonylmethyl)-ketone;
 - (phenyl)-(3,4-dimethylanilinosulphonylmethyl)-ketone;
- 20 (phenyl)-(3-methylanilinosulphonylmethyl)-ketone;
 - (phenyl)-(3-methoxyanilinosulphonylmethyl)-ketone;
 - (phenyl)-(anilinosulphonylmethyl)-ketone; (phenyl)-(2-acetylanilinosulphonylmethyl)-ketone; or (phenyl)- $[\alpha$ -(N-ethylanilinosulphonyl)benzyl]-ketone.
- 25 13. A pharmaceutical composition which comprises a compound of formula (I), (Ij) or (Ik), or a pharmaceutically acceptable salt thereof, as claimed in any one of claims 9, 11 or 12, in association with a pharmaceutically-acceptable diluent or carrier.
- 14. A compound of the formula (I), (Ij) or (Ik), or a pharmaceutically acceptable salt thereof, as claimed in any one of claims 9, 11 or 12, for use in a method of prophylactic or therapeutic treatment of a warm-blooded animal, such as man.

- 15. A compound of the formula (I), (Ij) or (Ik), or a pharmaceutically acceptable salt thereof, as claimed in any one of claims 9, 11 or 12, for use as a medicament.
- 16. The use of a compound of the formula (I), (Ij) or (Ik), or a pharmaceutically
 5 acceptable salt thereof, as claimed in any one of claims 9, 11 or 12, in the manufacture of a medicament for use in the production of an 11βHSD1 inhibitory effect in a warm-blooded animal, such as man.
- 17. The use of a compound as claimed in any one of claims 1-8, 10 or 16 wherein
 10 production of, or producing an, 11βHSD1 inhibitory effect refers to the treatment of metabolic syndrome.
- 18. The use of a compound as claimed in any one of claims 1-8, 10 or 16 wherein production of, or producing an, 11βHSD1 inhibitory effect refers to the treatment of diabetes,
 15 obesity, hyperlipidaemia, hyperglycaemia, hyperinsulinemia or hypertension, particularly diabetes and obesity.
- 19. The use of a compound as claimed in any one of claims 1-8, 10 or 16 wherein production of, or producing an, 11βHSD1 inhibitory effect refers to the treatment of
 20 glaucoma, osteoporosis, tuberculosis, dementia, cognitive disorders or depression.
- 20. A method for producing an 11βHSD1 inhibitory effect in a warm-blooded animal, such as man, in need of such treatment which comprises administering to said animal an effective amount of a compound of formula (I), as claimed in any one of claims 1-10, or a
 25 compound of formula (Ik) as claimed in claim 11, or a compound of formula (Ij) as claimed in claim 12, or a pharmaceutically acceptable salt thereof.