Introdução a Programação Linear

Prof. Dr. João Ferreira Netto

Introdução

- Após a etapa de modelagem matemática, surge a necessidade de encontrar respostas (soluções) para o modelo matemático construído.
- Em se tratando de um modelo com função objetivo e restrições lineares, além de variáveis reais não-negativas, teremos um modelo referente a um Problema de Programação Linear (PPL).
- É necessário um **método de solução** do modelo matemático.

Sistemática de Resolução de Problemas de Pesquisa Operacional

Introdução

- Apesar da diversidade de modelos, quanto à função objetivo (minimizar ou maximizar) e quanto às restrições (igualdade e desigualdades), bem como quanto às variáveis, iremos trabalhar com uma forma padrão, para o qual o algoritmo de solução poderá ser aplicado:
 - ▶ Função objetivo: minimização
 - **Restrições**: igualdade
 - Variáveis: não-negativas
 - 2º membro: não-negativo (critério de viabilidade)

Forma Padrão do Problema de Programação Linear

$$\mathbf{c} = \begin{bmatrix} c_1 & c_2 & \dots & c_n \end{bmatrix}$$
 Vetor linha

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{bmatrix} \quad \mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ \dots \\ b_m \end{bmatrix} \quad \mathbf{A} = \begin{bmatrix} a_{ij} \end{bmatrix} \quad \mathbf{Matriz} \ m \times n \ (n \ge m)$$

Vetores colunas

Soluções Viáveis & Solução Ótima

$$F = \{\mathbf{x} \in R^n : \mathbf{A}\mathbf{x} = \mathbf{b}, \mathbf{x} \ge 0\}$$

 $F = \{ \mathbf{x} \in \mathbb{R}^n : \mathbf{A}\mathbf{x} = \mathbf{b}, \mathbf{x} \ge 0 \}$ Conjunto de soluções viáveis do problema de programação linear ("feasible set")

será solução ótima do problema de programação linear na forma padrão se $\mathbf{x}^* \in F$ e se, para qualquer

 $x \in F \Rightarrow cx \geq cx^*$ (minimização) Le menor valur possivel dentro do Cori, de soluções

Equivalência - Restrições de desigualdade

Uma restrição do tipo:

$$a_{i1}x_1 + a_{i2}x_2 + \dots + a_{in}x_n \le b_i$$

é equivalente às restrições:

$$\begin{cases} a_{i1}x_1 + a_{i2}x_2 + \dots + a_{in}x_n + s_i = b_i \\ s_i \ge 0 \quad Variável \ residual \ ou \ de \ folga \end{cases}$$

Analogamente, uma restrição do tipo:

$$a_{i1}x_1 + a_{i2}x_2 + \dots + a_{in}x_n \ge b_i$$

é equivalente às restrições:

$$\begin{cases} a_{i1}x_1 + a_{i2}x_2 + \dots + a_{in}x_n - s_i = b_i \\ s_i \ge 0 \quad Variável \ residual \ ou \ de \ excesso \end{cases}$$

Equivalência - Restrições de desigualdade

• É interessante notar que:

$$a_{i1}x_1 + a_{i2}x_2 + \cdots + a_{in}x_n = b_i$$

é equivalente às restrições:

$$\begin{cases} a_{i1}x_1 + a_{i2}x_2 + \dots + a_{in}x_n \le b_i \\ a_{i1}x_1 + a_{i2}x_2 + \dots + a_{in}x_n \ge b_i \end{cases}$$

Equivalência - Função Objetivo Maximização

Seja:

Seja x* solução ótima do problema P2. Então:

$$-\mathbf{c}\mathbf{x}^* \leq (\mathbf{c}\mathbf{x})$$
 para qualquer $\mathbf{x} \in F$.

Logo: cx* ≥ cx e x * é solução ótima de P1.

Equivalência - Variáveis irrestritas em sinal

- Se uma variável de decisão x_i for irrestrita em sinal, então ela pode ser substituída pelo par de variáveis x_i^+ e x_i^-
- ...tal que: $x_{i} = x_{i}^{+} - x_{i}^{-}$ $x_{i}^{+} \ge 0, x_{i}^{-} \ge 0$ $x_{i}^{+} \ge 0, x_{i}^{-} \ge 0$ $x_{i}^{+} \ge 0, x_{i}^{-} \ge 0$ $x_{i}^{+} \ge 0, x_{i}^{-} \ge 0$

Colocar na forma padrão o seguinte PPL:

$$\max z = -4x_{1} + 6x_{2} + 6x_{3} \qquad \min w = +4x_{1}^{+} - 4x_{1}^{-} - 6x_{2} - 6x_{3}$$

$$\begin{cases}
4x_{1} + \frac{5}{6}x_{2} - 3x_{3} \ge -29 \\
-2x_{1} + 4x_{2} + 3x_{3} \ge 13
\end{cases} \qquad \begin{cases}
-4x_{1}^{+} + 4x_{1}^{-} - \frac{5}{6}x_{2} + 3x_{3} - x_{4} = 29 \\
-2x_{1}^{+} + 2x_{1}^{-} + 4x_{2} + 3x_{3} - x_{5} = 13
\end{cases}$$

$$+\frac{7}{2}x_{1} + 7x_{2} + 6x_{3} \le 18$$

$$x_{2}, x_{3} \ge 0$$

$$x_{1}^{+}, x_{1}^{-}, x_{2}, \dots, x_{6} \ge 0$$

$$x_{1}^{+}, x_{1}^{-}, x_{2}, \dots, x_{6} \ge 0$$

Forma Padrão de um Problema de Programação Linear

Ma

Resolvendo um PPL

- Considere um problema de programação linear com variáveis em equações independentes.
- As seguintes possibilidades poderão acontecer: n = m, n < m, n > m.
- O caso de interesse em programação linear é quando n > m.
- Será desenvolvido um procedimento em o sistema será resolvido para m variáveis dependentes, em função de n-m variáveis independentes.

$$X_1, X_2, X_3, X_4, X_5, X_6, X_7$$

$$= \frac{X_1(X_6, X_7)}{X_2(X_6, X_7)}$$

$$\vdots$$

$$X_2(X_6, X_7)$$

$$\vdots$$

$$X_3(X_6, X_7)$$

Resolvendo um PPL

Quantas formas há de escolher (n-m) variáveis independentes dentre (n) variáveis?

$$\binom{n}{n-m} = \binom{n}{m}$$

Exemplo: n = 100; m = 40 $\binom{100}{40} = 1,4.10^{28}$

Resolver o sistema abaixo para x_3 , x_4 e x_5 em função de x_1 e x_2 , aplicando o método de eliminação de Gauss Jordan.

de Gauss Jordan.

$$\min z = -4x_1 + 6x_2 + 6x_3 - 4x_4 + \frac{9}{2}x_5$$

$$(X_1, X_2) \qquad 4x_1 + \frac{5}{6}x_2 + 3x_3 + 2x_4 + 4x_5 = 29$$

$$X_4 (X_1, X_2) \qquad -2x_1 + \frac{23}{6}x_2 + 3x_3 - 2x_4 + 4x_5 = 11$$

$$X_5 (X_1, X_2) \qquad -\frac{7}{2}x_1 + 7x_2 + 6x_3 - 4x_4 + 6x_5 = 18$$

$$-\frac{7}{2}x_1 + 7x_2 + 6x_3 - 4x_4 + 6x_5 = 18$$
$$x_1, \dots, x_5 \ge 0$$

Método de Eliminação de Gauss-Jordan

- A regra geral para eliminação de uma dada variável x_i é:
- 1. Sendo \underline{i} a linha em que a variável x_j será mantida com coeficiente 1, definir a_{ij} como elemento pivô e para $s \neq j$:

$$a'_{is} = a_{is} / a_{ij}; b'_{i} = b_{i} / a_{ij}$$

- 2. Para as demais linhas $r \neq i$:
 - a) Para a coluna $j: q'_{rj} = 0$
 - b) Para as demais colunas $j \neq s$

$$\int a'_{rs} = a_{rs} - \frac{a_{is}a_{r}}{a_{ij}}$$

$$b'_{r} = b_{r} - \frac{b_{i}a_{rj}}{a_{ii}}$$

• O elemento pivô será o coeficiente de x_3 na 1ª linha. Esta variável será eliminada do sistema, aparecendo com valor 0 nas demais linhas.

		\mathcal{X}_1	x_2	x_3	\mathcal{X}_4	x_5	$-z_0$
	-z	-4	6	6	-4	9/2	0
-	\mathcal{X}_3	4	5/6		2) 4	29
	\mathcal{X}_4	-2	23/6	3	-2	4	11
	X_5	-7/2	7	6	-4	6	18

• O elemento pivô será o coeficiente de x_4 na 2^a linha. Esta variável será eliminada do sistema, aparecendo com valor 0 nas demais linhas.

	(x_1)	X_2	x_3	\mathcal{X}_4	\mathcal{X}_{5}	$-z_0$
-z	-12	13/3	0	-8	-7/2	-58
x_3	4/3	5/18		2/3	4/3	29/3
X_4	-6	3	0	<u>4</u>	0	-18
x_5	-23/2	16/3	0	-8	-2	$\left -40 \right $

• O elemento pivô será o coeficiente de x_5 na 3^a linha. Esta variável será eliminada do sistema, aparecendo com valor 0 nas demais linhas.

	x_1	x_2	\bar{x}_3	X_4	x_5	$-z_0$
-z	0	-5/3	, 0	0 ' -	-7/2	-22
x_3	1/3	7/9 -3/4	1	0 ,	4/3	20/3
X_4	3/2	-3/4	0	1 ,	0	9/2
X_5	1/2	-2/3	0	0 \	$\overline{-2}$	-4

• Após a aplicação de Gauss-Jordan, o sistema resultante está resolvido em função de x_1 e x_2 .

	x_1	\mathcal{X}_2	X_3	X_4	X_5	$-z_0$
-z	-7/8	-1/2	0	0	0	-15
x_3	2/3	1/3	1	0	0	4
X_4	3/2	-3/4	0	1	0	9/2
X_5	-1/4	1/3	0	0	1	2

Exemplo (todas as possibilidades de fixar 2 variáveis em 0)

			7/0					
	x1	x2	х3	x4	x 5	sol viável?	fo	_
	9,6	13,2	(-6,8)	0	0	não	0	X
	2,1818	7,6364		6,9546	0	sim	9,2727	
-	(4,5)	3	0	0	2,125	sim	9,5625	
	(-8)	0	9,3333	16,5	0	não	22	X
	3	0	2	0	2,75	sim	12,375	
	6	0	0	-4,5	3,5	não	9,75	X
	0	6	2	9	0	sim	12	` `
	0	-6	6	0	4	não	18	X
	0	12	0	13,5	-2	não	9	X
→	0	0	4	4,5	2	sim	15	

Com a aplicação de Gauss-Jordan, o sistema resultante gerou uma forma canônica, em que as variáveis dependentes aparecem com coeficiente 1 em sua respectiva linha e 0 nas demais; a função objetivo é escrita apenas em função das variáveis independentes.

$$\min z = 15 \quad -7/8x_1 \quad -1/2x_2
\frac{2}{3}x_1 \quad +\frac{1}{3}x_2 \quad +x_3 \quad = 4
\frac{3}{2}x_1 \quad -\frac{3}{4}x_2 \quad +x_4 \quad = 9/2
-\frac{1}{4}x_1 \quad +\frac{1}{3}x_2 \quad +x_5 \quad = 2$$

 $X_1,\ldots,X_5\geq 0$

Neste caso, foi obtida a seguinte solução:

$$\begin{cases} x_3 = 4 - 2/3x_1 - 1/3x_2 \\ x_4 = 9/2 - 3/2x_1 + 3/4x_2 \\ x_5 = 2 + 1/4x_1 - 1/3x_2 \\ z = 15 - 7/8x_1 - 1/2x_2 \end{cases}$$

Particularmente, fazendo $x_1=x_2=0$ (variáveis não básicas), teremos $x_3=4$, $x_4=9/2$ e $x_5=2$ (variáveis básicas).

Exercício

Colocar o seguinte PPL em sua forma canônica

Min F =
$$8 \times 1 + 4 \times 2 - 5 \times 3$$

s.a.
 $2 \times 1 + 3 \times 2 - 4 \times 3 \le 25$
 $3 \times 1 - 2 \times 2 + 5 \times 3 \ge 12$
 $-x1 + 2 \times 2 + 2 \times 3 = 10$

Representação Geométrica

Vamos fazer uma representação geométrica deste problema no plano das variáveis independentes.

$$\frac{2}{3}x_{1} + \frac{1}{3}x_{2} + 2 = 4 \Rightarrow \frac{2}{3}x_{1} + \frac{1}{3}x_{2} \le 4$$

$$\frac{3}{2}x_{1} - \frac{3}{4}x_{2} + 2 = \frac{9}{2} \Rightarrow \frac{3}{2}x_{1} - \frac{3}{4}x_{2} \le \frac{9}{2}$$

$$-\frac{1}{4}x_{1} + \frac{1}{3}x_{2} + 2 \Rightarrow -\frac{1}{4}x_{1} + \frac{1}{3}x_{2} \le 2$$

$$x_{1} \ge 0; x_{2} \ge 0$$

Exercício (Winston)

- A Woodcarving, Inc. de Giapetto fabrica dois tipos de brinquedos de madeira: soldados e trens. Um soldado é vendido por US\$ 27 e usa US\$ 10 em matérias-primas.
- Cada soldado fabricado aumenta os custos variáveis de mão-deobra e custos indiretos de Giapetto em US\$ 14.
- Um trem é vendido por US\$ 21 e usa US\$ 9 em matérias-primas. Cada trem construído aumenta os custos variáveis de mão-de-obra e custos indiretos da Giapetto em US\$ 10.
- A fabricação de soldados e trens de madeira requer dois tipos de mão de obra qualificada: carpintaria e acabamento. Um soldado exige 2 horas de trabalho de acabamento e 1 hora de trabalho de carpintaria. Um trem requer 1 hora de acabamento e 1 hora de trabalho de carpintaria. A cada semana, a Giapetto pode obter toda a matéria-prima necessária, mas apenas 100 horas de acabamento e 80 horas de carpintaria. A demanda por trens é ilimitada, mas no máximo 40 soldados são comprados a cada semana. Giapetto quer maximizar o lucro semanal (custos de receita).
- Formule um modelo matemático da situação de Giapetto que possa ser usado para maximizar o lucro semanal de Giapetto.

Exercício

Utilização dos

	setores (hora	as/unidade)	Disponibilidade
	Soldado	Trem	semanal
ACABAMENTO	2	1	100 horas
CARPINTARIA	1	1	80 horas

Exercício

1. Variáveis de decisão

s = quantidade de soldados produzidos por semana

t = quantidade de trens produzidos por semana

2. Função objetivo

Maximizar o lucro semanal do sr. Giapetto

$$\max z = (27-10-14)s + (21-10-9)t = 3s + 2t$$

3. Restrições

3.1. Disponibilidade da mão de obra

ACABAMENTO: $2s + t \le 100$

CARPINTARIA: $s + t \le 80$

3.2. Demanda máxima por soldados

3.3. Não negatividade $s, t \ge 0$

Resolver o sistema abaixo para x_3 , x_4 e x_5 em função de x_1 e x_2 , aplicando o método de eliminação de Gauss Jordan.

The Gauss Jordan.

Minz =
$$-4x_1 + 6x_2 + 6x_3 - 4x_4 + \frac{9}{2}x_5$$

$$\begin{array}{ll}
\text{Minz} = -4x_1 + 6x_2 + 6x_3 - 4x_4 + \frac{9}{2}x_5 \\
\text{Max} = -4x_1 + 6x_2 + 6x_3 - 4x_4 + \frac{9}{2}x_5
\end{array}$$

$$\begin{array}{ll}
\text{Minz} = -4x_1 + 6x_2 + 6x_3 - 4x_4 + 4x_5 = 29
\end{array}$$

$$\begin{array}{ll}
\text{Max} = -4x_1 + 6x_2 + 6x_3 - 4x_4 + 4x_5 = 29
\end{array}$$

$$\begin{array}{ll}
\text{Max} = -4x_1 + 6x_2 + 6x_3 - 4x_4 + 4x_5 = 11
\end{array}$$

$$\begin{array}{ll}
\text{Max} = -4x_1 + 6x_2 + 6x_3 - 4x_4 + 6x_5 = 18
\end{array}$$

 $x_1,\ldots,x_5\geq 0$

Com a aplicação de Gauss-Jordan, o sistema resultante gerou uma forma canônica, em que as variáveis dependentes aparecem com coeficiente 1 em sua respectiva linha e 0 nas demais; a função objetivo é escrita apenas em função das variáveis independentes.

$$\min z = 15 \quad -7/8x_1 \quad -1/2x_2
\frac{2}{3}x_1 \quad +\frac{1}{3}x_2 \quad +x_3 \quad = 4
\frac{3}{2}x_1 \quad -\frac{3}{4}x_2 \quad +x_4 \quad = 9/2
-\frac{1}{4}x_1 \quad +\frac{1}{3}x_2 \quad +x_5 \quad = 2$$

 $X_1,\ldots,X_5\geq 0$

Neste caso, foi obtida a seguinte solução:

$$\begin{cases}
 x_3 = 4 + 2/3x_1 - 1/3x_2 \\
 x_4 = 9/2 - 3/2x_1 + 3/4x_2 \\
 x_5 = 2 + 1/4x_1 - 1/3x_2 \\
 z = 15 - 7/8x_1 - 1/2x_2$$

Particularmente, fazendo $x_1=x_2=0$ (variáveis não básicas), teremos $x_3=4$, $x_4=9/2$ e $x_5=2$ (variáveis básicas).

$$-\frac{7}{8}x_1 - \frac{1}{2}x_2$$

Representação Geométrica

Vamos fazer uma representação geométrica deste problema no plano das variáveis independentes.

$$\frac{2}{3}x_{1} + \frac{1}{3}x_{2} + \frac{1}{3}x_{2} = 4 \Rightarrow \frac{2}{3}x_{1} + \frac{1}{3}x_{2} \le 4$$

$$\frac{3}{2}x_{1} - \frac{3}{4}x_{2} + \frac{1}{3}x_{2} = \frac{9}{2} \Rightarrow \frac{3}{2}x_{1} - \frac{3}{4}x_{2} \le \frac{9}{2}$$

$$-\frac{1}{4}x_{1} + \frac{1}{3}x_{2} + \frac{1}{3}x_{2} = 2 \Rightarrow -\frac{1}{4}x_{1} + \frac{1}{3}x_{2} \le 2$$

$$x_{1} \ge 0; x_{2} \ge 0$$

$$x_{3} \times 4 \times 5 = 70$$

Representação Geométrica

Representação Geométrica

Soluções Viáveis

	x1	x2	x3	x4	x5	Z
Α	0	0	4	9/2	2	15
В	3	0	2	0	11/4	99/8
С	9/2	3	0	0	51/24	153/16
D	24/11	84/11	0	153/22	0	102/11
E	0	6	2	9	0	12

Soluções Inviáveis

	x1	x2	х3	x4	x5	Z	
F	0	((-6)	6	0	4	18	7
G	6		Q	-9/2	7/2	39/4	Ý
Н	48/5	66/5	-99/10		0	0	'
I	Q	12	0	27/2	-2	9	
J	8-	0	28/3	33/2	ď	22	

Representação Geométrica $\mathbf{x_2}$ Neste exemplo, cada vértice possui *n-m* **E1** variáveis nulas, correspondende a uma forma canônica **b**E1 distinta. \mathbf{X}_{1} x1 $\mathbf{x2}$ **x3 x4 x5** Z **E1** 8/7 40/21 81/4 20/21 **E2** 2/5 26/15 8/3 12 16/5 E

Representação Geométrica

Voltando à forma canônica inicial...

- Será que a solução indicada por esta forma canônica é ótima?
- Pela análise da função objetivo, se x_1 assumir um valor positivo, a função z irá variar a uma taxa de 7/8. O mesmo vale para x_2 , cuja função irá variar a uma taxa de -1/2.

$$z = 15 - 7 / 8x_1 - 1/2x_2$$

Vamos escolher reescrever a forma canônica em função de x_1 (a variável com a taxa mais negativa), introduzindo-a na base. Para isso, vamos verificar o impacto que isto gera nas demais variáveis da base.

Sendo um pressuposto que todas as variáveis sejam não-negativas, vamos verificar o máximo valor que x_1 poderá assumir sem tornar nenhuma variável negativa.

negativa.

$$x_3 = 4 - 2/3x_1$$
 $\Rightarrow x_1 = \frac{4}{2/3} = 6$ $\Rightarrow x_1 = \frac{4}{2/3} = 6$ $\Rightarrow x_2 = 9/2 - 3/2x_1$ $\Rightarrow x_1 = \frac{9/2}{3/2} = 3$ $\Rightarrow x_2 = \frac{9/2}{2} = 3$ $\Rightarrow x_3 = 2 + 1/4x_1$ $\Rightarrow x_1 \text{ não zera } x_2 = 2 + 1/4 x_1$

• O máximo valor que x_1 pode assumir é 3, quando x_4 passa a valer 0. Desta forma, uma nova forma canônica será escrita para x_3 , x_2 e x_5 em função de x_2 e x_4 (x_4 deixará de ser variável básica, dando lugar a x_1).

1^a Solução Básica

$$x_1 = 0; x_2 = 0; x_3 = 4; x_4 = 9/2; x_5 = 2; z = 15$$

	x_1	\mathcal{X}_2	x_3	X_4	X_5	$-z_0$				
-z	-7/8	-1/2	0	0	0	-15				
x_3	2/3	1/3	1	0	0	4				
$\left \overbrace{x_4} \right $	3/2 -1/4	-3/4	0	1	0	9/2	1	-1	0 2	
x_5	-1/4	1/3	0	0	1	2		12		•

O3

▶ O elemento *pivot* será o coeficiente de x_1 na 2^a linha (linha da variável que irá sair). Esta variável será eliminada do sistema, aparecendo com valor 0 nas demais linhas.

2^a Solução Básica

$$x_1 = 3$$
; $x_2 = 0$; $x_3 = 2$; $x_4 = 0$; $x_5 = 11/4$; $z = 99/8$

	x_1	*2	X_3	\mathcal{X}_4	X_5	$-z_0$
-z	0 1	-15/16	0	7/12	0	-99/8
x_3	0	2/3	1	-4/9	0	2
x_1	1	-1/2	0	2/3	0	3
x_5	0	5/24	0	1/6	1	11/4

A solução não é ótima pois o coeficiente de x_2 na função objetivo é negativo, indicando que há possibilidade de melhoria.

• O elemento *pivot* será o coeficiente de x_2 na 1ª linha (linha da variável que irá sair). Esta variável será eliminada do sistema, aparecendo com valor 0 nas demais linhas.

	X_1	x_2	X_3	\mathcal{X}_4	X_5	$-z_0$
-z		-15/16			0	-99/8
x_3	0	2/3	1	-4/9	0	2
x_1	1	-1/2	0	2/3	0	3
x_5	0	5/24	0	1/6	1	11/4

3^a Solução Básica

$$x_1 = 9/2; x_2 = 3; x_3 = 0; x_4 = 0; x_5 = 51/24; z = 153/16$$

	X_1	\mathcal{X}_2	x_3	X_4	X_5	$-z_0$
-z	0	0	45/32	-1/24	0	-153/16
x_2	0	1	3/2	-2/3	0	3
x_1	1	0	3/4	1/3	0	9/2
x_5	0	0	-5/16	11/36	1	51/24

A solução não é ótima pois o coeficiente de x_4 na função objetivo é negativo, indicando que há possibilidade de melhoria.

• O elemento *pivot* será o coeficiente de x_5 na 3^a linha (linha da variável que irá sair). Esta variável será eliminada do sistema, aparecendo com valor 0 nas demais linhas.

	X_1	\mathcal{X}_2	x_3	\mathcal{X}_4	X_5	$-z_0$
						-153/16
x_2	0	1	3/2	-2/3	0	3
x_1	1	0	3/4	1/3	0	9/2
x_5	0	0	-5/16	11/36	1	51/24

4^a Solução Básica

$$x_1 = 24/11; x_2 = 84/11; x_3 = 0; x_4 = 153/22; x_5 = 0; z = 102/11$$

	X_1	\mathcal{X}_2	x_3	\mathcal{X}_4	x_5	$-z_0$
-z	0	0	30/22	0	3/22	-102/11
x_2	0	1	9/11	0	24/11	84/11
x_1	1	0	12/11	0	-12/11	24/11
X_4	0	0	-45/44	1	36/11	153/22

A solução é ótima pois o coeficiente das variáveis não-básicas na função objetivo são positivas.

Resumo...

- Os pontos candidatos a solução ótima são os pontos extremos do espaço de solução (vértices).
- Cada vértice pode ser representado por uma forma canônica (há situações em que mais de uma forma canônica representará o mesmo vértice).
- No exemplo introdutório: i) Quantidade de vértices: $\binom{n}{n-m} = \binom{5}{2} = 10$; ii) Em cada vértice tem-se exatamente (n-m=2) variáveis iguais a zero; iii) Dentre o número total de vértices, foi constatado que 5 vértices são viáveis e 5 inviáveis.

Algoritmo Ingênuo

- Uma possível forma de encontrar a solução ótima de um PPL pode ser por meio de um procedimento ingênuo com a seguinte estrutura:
- 1. Enumerar (gerar) todos os vértices.
- 2. Verificar se a base associada a cada vértice é viável e comparar o valor da função objetivo com os demais vértices examinados, para identificar o vértice ótimo.
- Este procedimento obrigatoriamente terá que gerar todos os vértices (mesmo os inviáveis), e somente será capaz de achar a solução ótima no final da análise de todos eles. Isto viabiliza a solução apenas de problemas de pequeno porte.

Resolvendo um PPL Determinação da Solução Inicial

PPL – Forma Padrão Escolha de uma base viável

Método de Gauss-Jordan

PPL – Forma Canônica