Automated Water Resources Analysis Using United States Geological Survey (USGS) Data in Chesapeake Bay Watershed

5 August, 2020

Ruoyu Zhang, Yibo Wang, Hyunglok Kim, Keyu Chen & Yusheng Jiang

Introduction

- Stream water is the major freshwater sources for human activities
- 2. Due to climate change:
 - The spatial distribution of stream water may change
 - We will experience more frequent hydrologic hazards (i.e., flood and drought)

Before we predict the future, we need to understand how water behaved in the past

Questions to Address

- 1. What is the best way to quickly download the discharge data?
- 2. Besides discharge data, what other data can we get for each gage?
- 3. How does the monthly and yearly trends match at gages in the Chesapeake Bay Watershed?
- 4. Are there clusters of the spatial patterns of the trends in our study area?

Program Design

Daily Streamflow Conditions

Honday, August 03, 2020 21:30ET

NH
VT
MA
RI
CT
NJ
DE
MD
DC
PR-VI

Attributes

id: required input parameter USGS Gage ID, string

vars_info: variables information, dictionary

geo info: gage location info, dictionary

Methods

getVarsMetaData():

save variable names, start/end dates to vars info, return a pandas dataframe

getGeoMetaData():

save gage's county, state, and coordinates to geo info, return a dictionary

Attributes

ismetric: optional input parameter if save data in metric unit, Boolean, default True

data: time-series of daily discharge data, pandas DataFrame

autoDates: optional input parameter if use the metadata period, Boolean, default True

startdate: optional input parameter start date to download data, str, 'YYYY-MM-DD'

enddate: optional input parameter end date to download data, str. 'YYYY-MM-DD'

Methods

getDailyDischarge(drop=True):

download data, drop no data value (<0) by default, return a pandas dataframe

getStatistics():

get min, median, max, mean, and std of the data, return a dictionary

getUnit():

return the unit of discharge cubic feet/second or cubic meter/second

plotTimeSeries(savefig=path):

plot discharge time-series, can save to a path (optional)

findLargestEvents(top x):

return a dataframe with largest X events in history ($top \ x = X$)

trendTest(time scale, least records, target alpha, plot):

perform Mann-Kendall test on data to detect trend within the define time <u>time_scale</u>: "M" (monthly) or "Y" (yearly) to detect trend at define scale <u>least_records</u>: least months or years to perform the test, number <u>target_alpha</u>: significant level of the trend, 0.05 by default <u>plot</u>: if plot the resampled data with the trend line. Boolean, False by default

Unit test

Output (

All 11 tests passed!

```
USGS Gage 02024752 has following variables:
    Discharge(Mean) from 2005-10-01 to 2020-08-01

Setting new dates from 2005-10-01 to 2020-08-01

Summary of flow from 2005-10-01 to 2020-08-01

Min: 13.677037095414589

Median: 56.633693976871996

Max: 1458.317619904454

Mean: 107.0119775066119

Standard Deviation: 136.498088589308

.

Ran 1 test in 2.301s

OK
```

Obtain Trend Data

We looped through all USGS gages within the Chesapeake Bay watershed

All data obtained are saved into a Pandas DataFrame

	GageID	Start Data	End Data	Min	Median	Max	Mean	slope (M)	p-value (M)	slope (Y)	p-value (Y)	County	CountyID	State	Coordinate
0	1656120	1996- 10-01	2000- 01-18	0.46	49.0	5720.0	170.910846	NaN	NaN	NaN	NaN	Prince	51153	VA	(38.64150829, -77.5124873)
1	1654000	1947- 10-01	2020- 07-31	0.00	12.0	3600.0	29.781916	0.007347	0.000253	0.111807	0.005671	Fairfax	51059	VA	(38.81289066, -77.2283158)
2	2032000	1943- 08-05	1946- 09-29	0.00	4.6	1340.0	18.271615	NaN	NaN	NaN	NaN	Albemarle	51003	VA	(38.13485668, -78.7358548)
3	1669000	1951- 10-01	2020- 07-31	0.00	22.0	1540.0	31.552949	-0.001507	0.142754	0.020466	0.183291	Essex	51057	VA	(37.8770819, -76.900521)
4	2039500	1926- 04-01	2020- 07-31	0.07	162.0	28000.0	284.408989	-0.020130	0.036976	-0.090548	0.197380	Cumberland	51049	VA	(37.3070965, -78.388607)

Trend analysis: Mann-Kendall Test

Figure. Time series of the discharge at 02024752 USGS site, James River at Blue Ridge Parkway near Big Island, VA, with trend line

- If a gage shows significant monthly/yearly trends, the program draws the trend line (red) automatically
- Each gage's statistics can be stored and presented (next slide)

Results

- Overall, 25.5 % of stations show a significant increasing trend and 6.7 % of stations show a significant decreasing trend
- NOVA and Richmond decreasing trend clustering
- Central and Northern PA increasing trend clustering
- Most gages show no trend

How we accelerate the work process

Conclusion

- 1) We developed a Python program to download the USGS daily data automatically through web-scrape. The program also acquire metadata the gage.
- 2) Overall, 67.8% of stations do not show significant trend, however, 25.5% and 6.7% of stations show a significant increasing and decreasing trend, respectively.
- 3) The map shows that North Virginia and Richmond have clustering of significant decreasing trend
- 4) Future applications
 - Downloading 15-min discharge data
 - Supplying data for flash flood forecasting [Machine learning]
 - Extending analysis to the entire United States