PHOTOGRAMMETRIC TASKS FOR +Z VERTICAL ADDED HEAD MASS EXPERIMENTS

GPA Associates P.O.Box 1200 New Orleans, LA 70148

Final Technical Report

Naval Biodynamics Laboratory P.O. Box 29407 New Orleans, La 70189-0407

Approved for public release; distribution is unlimited.

Prepared for

Naval Medical Research and Development Command Bethesda, MD 20889-5044

19960215 066

DTIC QUALITY INSPECTED 1

FILE COPY

Photogrammetric Tasks For +Z Vertical Added Head Mass Experiments

GPA Associates

Geodetic/Photogrammetric Analysis Associates
WW UNO Box 1200
New Orleans, LA 70148-1200
(504) 286-1200

Contract Number: N00205-91-M-G011

Photogrammetric Tasks For +Z Vertical Added Head Mass Experiments

The location and orientation of the head and body anatomic coordinate systems are essential for the analysis of acceleration data to determine forces and torques on the test subjects (Human research volunteers or HRVs). A new method was proposed to analyze the x-rays using very powerful photogrammetric techniques and to utilize the new Altek digitizing tablet.

The GIANT preprocessing program PREP was rewritten to accommodate input from the tablet. Two scripts were made for each of the two sets of x-rays.

Head Anatomic Coordinate System

Four x-rays were taken of each HRV, the two normal (A/P & Lateral) and two more but with the HRV rotated outward about 45°. In addition, two x-rays were made of the calibration prism for object space control. The new x-rays at 45° provided additional data to guarantee an over-determined solution for the photogrammetric system (GIANT) to process. Additional bb's were placed on the subjects in various places to improve the solutions (reduce the size of the error ellipsoids). The necessary characteristics for the added bb's were that they were immobile during the series of x-rays and that they tended to cover the field of view of the x-ray.

The six x-rays were separately digitized according to a fixed script (see appendix 1) within the program ALTHEAD, which created a 6-photo IMG.DAT file for GIANT. Only four of the six were different. The calibration x-ray images after pre-processing were merged with those of the corresponding normal (not rotated) A/P & lateral x-rays.

A full sample GIANT output is given in appendix 6 for one of the HRVs and the anthropometry output for all the HRVs is in appendix 4. Combined with neck data to be discussed, appendix 3 has the complete results in EZFlow format.

Typical errors in the determination of the essential anatomic points was approximately 1mm, about the limit one might expect consistent with the limitation of the geometry, the size of the bb's and other measurement errors.

Body Anatomic Coordinate System

The body anatomic system defied efforts to establish the same rigor. Prior efforts had none of the vertebral points on more than one x-ray. Their locations in space required some manipulation and assumptions relating their locations to external bb's and to the x-ray focal point(!). Photogrammetric techniques require two points for a minimum and preferably three or more.

Lateral x-rays are obscured by the large mass through which they must pass. Locating an object requires two or more non-collinear determinations. Therefore, a stereo pair was taken in the A/P direction. The superior corner remained invisible-washed out. Rotating the HRV about 25° resulted in the stereo pair being readable but not by everybody. Some experience seems if not essential at least helpful.

A new script (appendix 2) was written into PREP and called ALTBODY for the digitization of the body x-rays. The processed images were fed into GIANT. The error ellipsoids showed peak uncertainties in the direction of the x-ray tube of about 12cm(!). The stereo angle was definitely too narrow. Increasing the angle between the photos makes it even harder to bring the two stereo images together. The alternative was to use another stereo pair with the HRV rotated in the other direction. Each pair yielded the same 12cm error separately but together the error dropped to about 4-5mm.

A sample GIANT output for the body system is given in appendix 7, whereas the full anthropometric output portion for all the HRVs is in appendix 5 and is combined with the head data in EZFlow format in appendix 3.

The body results (errors) still lag behind the head data for several reasons:

The internal points are still difficult to see and identify. What one sees as the spinous process and some other points when the body is rotated in one direction is not quite what one sees for the opposite rotation-perhaps a point slightly shifted around the curve.

The sternum bb moves as the HRV breathes. Shoulder bb's are determined by posture as are the bb's on the neck. Usually these are close enough for each stereo pair, but not always. Often rotating the HRV changes the posture moves these through large distances:

IneckB (0.0648, -0.0068, 0.1775) vs. (0.0641, 0.0016, 0.1791) m IneckT (0.0535, 0.0343, 0.1886) vs. (0.0580, 0.0458, 0.1766) m

RECOMMENDATIONS

It was recommended that a lucite posing chair be constructed into which the HRV would be strapped in a manner similar to the actual sled runs. If it could be rotated and translated instead of moving the HRV relative to the chair, much of the errors obtained might be reduced. Such a chair is now under construction.

X-Ray Anthropometry Digitizing Script

FIDUCIALS	CALIBRATION PRISM	HRV HEAD
1	'c3' or 'c5'	'lam'
2	'c13'	'ram'
3	'c4' or 'c8'	'lon'
4	'c11'	'ron'
5	'c10'	'ltp'
6	¹c9	'rtp'
7	'c2' or 'c6'	'ctp'
8	'c12'	'chin'
9	'c1' or 'c7'	'ltúskF'
10	'cv1'	'ltuskM'
9	'cv2'	'ltuskR'
	'cv3'	'rtuskF'
	'cv4'	'rtuskM'
4	'cv5'	'rtuskR'
	'cv6'	'capLfF'
I.	'cv7'	'capLfR'
•	'cv8'	'capRtF'
	'cv9'	'capRtR'
	'cv10'	'capCEN'
• .	(These are followed)	or let non-gove fo

(These are followed by 1st non-zero fiducial)

1 2 3 4	5 6	7 8 9 10	c1	(5) 1 (6)	13 10 12	5 4(8) 9 1(7) 10
 1 	 	3 	* - - -	1 2 3		 > >

ALTEK DIGITIZER 4-BUTTON KEY CONTROL MEANINGS: #2:RED=ERROR-BACKUP

#4:BLUE=???

#1:YELLOW=MISSING

#3:GREEN=FIDUCIAL or DATA POINT

#1:YELLOW=MISSING

X-Ray Anthropometry Digitizing Script FIDUCIALS Locations of Fiducials Order of digitization 1 10 2 8 9 3 5 6 8 1 9 2 3 10 HRV BODY Approximate locations on x-rays 'origin' 'lf rib' rneckT lneckT 'rt rib' 'top_spin' 'bot spin' 'spine bb' rtp ctp ltp 'sternum' 'lf_shold' lneckB rneckB 'rt shold' rt rib lf rib spine bb 'ltp' top spin 'rtp' bot spin 'ctp' origin 'lneckT' 'lneckB' 'rneckT' 'rneckB' rt shold lf shold sternum (These are followed by 1st non-zero fiducial) ALTEK DIGITIZER 4-BUTTON KEY CONTROL MEANINGS: #2:RED=ERROR-BACKUP

#3:GREEN=FIDUCIAL or DATA POINT

#4:BLUE=???

ANTHROPOMETRY OUTPUT IN FORM FOR EZ-FLOW

H00222	MAR 91	HEAD DATA
15.0758	0.4458 -	-1.5789
-0.564306	-0.021160	-0.825294
-0.065657	0.997655	0.019315
0.822950	0.065086	-0.564373
H00222	MAR 91	NECK DATA
-18.4226	1.4523	7.8292
0.998378	-0.053356	-0.019868
0.051853	0.996219	-0.069711
0.023513	0.068568	0.997369

H00226	MAR 91	HEAD DATA
15.3533	-0.0296 -	-1.6299
-0.558896	-0.013702	-0.829124
0.007833	0.999732	-0.021802
0.829201	-0.018680	-0.558639
H00226	MAR 91	NECK DATA
-15.2009	-0.9364	9.0198
0.975366	0.119443	-0.185460
-0.133935	0.988679	-0.067643
0.175280	0.090816	0.980321

H00227	MAR 91	NECK DATA
-19.8392	-2.7613	3.6425
0.977128	0.197335	0.079248
-0.193544	0.979657	-0.053037
-0.088102	0.036485	0.995443

```
H00235
               MAR 91
                              HEAD DATA
 15.7940
              0.6722
                       -0.2051
 -0.463656
              -0.040465
                          -0.885091
 -0.054751
               0.998356
                          -0.016962
  0.884322
               0.040595
                           -0.465109
H00235
               MAR 91
                              NECK DATA
-17.7137
              1.1679
                         6.9586
  0.993792
              -0.076149
                           -0.081107
  0.069104
               0.993862
                           -0.086388
               0.080247
  0.087187
                            0.992955
```

H00236	MAR 91	HEAD DATA
14.7014	-0.2727 -	-0.7149
-0.544915	0.031293	-0.837907
0.030031	0.999391	0.017794
0.837953	-0.015467	-0.545523
H00236	MAR 91	NECK DATA
-17.8482	0.1340	6.5006
0.998851	-0.004147	-0.047748
0.004553	0.999954	0.008396
0.047711	-0.008603	0.998824

H00237	MAR 91	HEAD DATA
16.2832	-0.6640	0.0369
-0.413590	0.038658	-0.909642
0.057022	0.998237	0.016497
0.908676	-0.045047	-0.415065
H00237	MAR 91	NECK DATA
-17.6617	-0.3212	3.8235
0.990601	0.045063	0.129149
-0.041518	0.998687	-0.030017
-0.130332	0.024373	0.991171

```
H00240
               MAR 91
                              HEAD DATA
 14.5408
             -0.1803
                        -1.0551
 -0.563149
               0.014527
                           -0.826228
  0.013597
               0.999873
                            0.008313
  0.826244
              -0.006553
                           -0.563275
H00240
               MAR 91
                              NECK DATA
-18.9848
             -0.1718
                         2.0138
  0.982062
              -0.037795
                            0.184733
  0.028403
               0.998178
                            0.053227
 -0.186408
              -0.047025
                            0.981346
H00241
               MAR 91
                              HEAD DATA
 15.8038
             -0.4359
                         0.0998
 -0.454264
              -0.006159
                           -0.890846
                           -0.036787
  0.058616
               0.997603
  0.888936
              -0.068928
                           -0.452814
H00241
               MAR 91
                              NECK DATA
-18.1043
             -0.5658
                         5.8621
  0.997620
               0.068826
                            0.004151
 -0.068312
               0.994760
                           -0.076067
               0.075602
                            0.997094
 -0.009364
H00242
                              HEAD DATA
               MAR 91
 15.4861
             -0.1765
                        -0.6569
                           -0.836807
 -0.546887
              -0.025832
  0.024138
                           -0.046603
               0.998622
  0.836858
              -0.045686
                           -0.545510
                              NECK DATA
H00242
               MAR 91
-17.9545
                         4.2884
             -2.4086
```

0.117710

0.993039

-0.004211

0.985006

-0.117294

-0.126510

0.126123

0.991956

-0.010743

```
H00243
               MAR 91
                              HEAD DATA
 14.6950
             -0.1635
                        -0.6194
 -0.540610
              -0.018653
                           -0.841067
  0.016261
               0.999336
                           -0.032615
  0.841116
              -0.031308
                           -0.539947
H00243
               MAR 91
                              NECK DATA
-17.1260
              1.0928
                         4.3546
  0.993706
              -0.057820
                            0.095949
  0.056713
               0.998289
                            0.014230
 -0.096607
                            0.995285
              -0.008698
H00245
                              HEAD DATA
               MAR 91
 15.2708
             -0.4895
                        -1.3856
 -0.588311
               0.010802
                           -0.808563
  0.036007
               0.999269
                           -0.012850
  0.807833
              -0.036674
                           -0.588270
H00245
               MAR 91
                              NECK DATA
-19.5921
             -0.1332
                         3.3402
  0.985944
              -0.020871
                            0.165767
  0.016782
               0.999520
                            0.026030
              -0.022882
 -0.166231
                            0.985821
H00246
               MAR 91
                              HEAD DATA
 15.4854
             -0.1917
                        -2.4835
                           -0.797293
 -0.602996
               0.026833
  0.028161
               0.999527
                            0.012342
  0.797247
              -0.015010
                           -0.603467
               MAR 91
                              NECK DATA
H00246
-17.5506
              0.0605
                         5.9785
                           -0.023598
  0.999634
              -0.013221
               0.999882
  0.013033
                           -0.008112
  0.023702
               0.007801
                            0.999689
                              NECK DATA
H00247
               MAR 91
                         3.1673
-17.6736
              0.3493
               0.015629
                            0.205009
  0.978635
  0.000959
               0.996749
                           -0.080565
 -0.205602
               0.079040
                            0.975439
```

HEAD ANTHROPOMETRY OUTPUT

HRV # 0222

T-PLATE ORIGIN WITH RESPECT TO HEAD ANATOMICAL ORIGIN

X = 15.0758cm Y = 0.4458cm Z = -1.5789cm

T-PLATE ORIENTATION WITH RESPECT TO HEAD ANATOMICAL SYSTEM

-0.564306 -0.021160 -0.825294

-0.065657 0.997655 0.019315

0.822950 0.065086 -0.564373

HRV # 0226

T-PLATE ORIGIN WITH RESPECT TO HEAD ANATOMICAL ORIGIN

X = 15.3533cm Y = -0.0296cm Z = -1.6299cm

T-PLATE ORIENTATION WITH RESPECT TO HEAD ANATOMICAL SYSTEM

-0.558896 -0.013702 -0.829124

0.007833 0.999732 -0.021802

0.829201 -0.018680 -0.558639

HRV # 0235

T-PLATE ORIGIN WITH RESPECT TO HEAD ANATOMICAL ORIGIN

X = 15.7940cm Y = 0.6722cm Z = -0.2051cm

T-PLATE ORIENTATION WITH RESPECT TO HEAD ANATOMICAL SYSTEM

-0.463656 -0.040465 -0.885091

-0.054751 0.998356 -0.016962

0.884322 0.040595 -0.465109

T-PLATE ORIGIN WITH RESPECT TO HEAD ANATOMICAL ORIGIN

X = 14.7014cm Y = -0.2727cm Z = -0.7149cm

T-PLATE ORIENTATION WITH RESPECT TO HEAD ANATOMICAL SYSTEM

-0.544915 0.031293 -0.837907

0.030031 0.999391 0.017794

0.837953 -0.015467 -0.545523

HRV # 0237

T-PLATE ORIGIN WITH RESPECT TO HEAD ANATOMICAL ORIGIN

X = 16.2832cm Y = -0.6640cm Z = 0.0369cm

T-PLATE ORIENTATION WITH RESPECT TO HEAD ANATOMICAL SYSTEM

-0.413590 0.038658 -0.909642

0.057022 0.998237 0.016497

0.908676 -0.045047 -0.415065

HRV # 0240

T-PLATE ORIGIN WITH RESPECT TO HEAD ANATOMICAL ORIGIN

X = 14.5408cm Y = -0.1803cm Z = -1.0551cm

T-PLATE ORIENTATION WITH RESPECT TO HEAD ANATOMICAL SYSTEM

-0.563149 0.014527 -0.826228

0.013597 0.999873 0.008313

0.826244 -0.006553 -0.563275

T-PLATE ORIGIN WITH RESPECT TO HEAD ANATOMICAL ORIGIN

X = 15.8038cm Y = -0.4359cm Z = 0.0998cm

T-PLATE ORIENTATION WITH RESPECT TO HEAD ANATOMICAL SYSTEM

-0.454264 -0.006159 -0.890846

0.058616 0.997603 -0.036787

0.888936 -0.068928 -0.452814

HRV # 0242

T-PLATE ORIGIN WITH RESPECT TO HEAD ANATOMICAL ORIGIN

X = 15.4861cm Y = -0.1765cm Z = -0.6569cm

T-PLATE ORIENTATION WITH RESPECT TO HEAD ANATOMICAL SYSTEM

-0.546887 -0.025832 -0.836807

0.024138 0.998622 -0.046603

0.836858 -0.045686 -0.545510

HRV # 0243

T-PLATE ORIGIN WITH RESPECT TO HEAD ANATOMICAL ORIGIN

X = 14.6950 cm Y = -0.1635 cm Z = -0.6194 cm

T-PLATE ORIENTATION WITH RESPECT TO HEAD ANATOMICAL SYSTEM

-0.540610 -0.018653 -0.841067

0.016261 0.999336 -0.032615

0.841116 -0.031308 -0.539947

T-PLATE ORIGIN WITH RESPECT TO HEAD ANATOMICAL ORIGIN

X = 15.2708cm Y = -0.4895cm Z = -1.3856cm

T-PLATE ORIENTATION WITH RESPECT TO HEAD ANATOMICAL SYSTEM

-0.588311 0.010802 -0.808563

0.036007 0.999269 -0.012850

0.807833 -0.036674 -0.588270

HRV # 0246

T-PLATE ORIGIN WITH RESPECT TO HEAD ANATOMICAL ORIGIN

X = 15.4854cm Y = -0.1917cm Z = -2.4835cm

T-PLATE ORIENTATION WITH RESPECT TO HEAD ANATOMICAL SYSTEM

-0.602996 0.026833 -0.797293

0.028161 0.999527 0.012342

0.797247 -0.015010 -0.603467

T-1 ANTHROPOMETRY OUTPUT

HRV # 0222

T-PLATE ORIGIN WITH RESPECT TO BODY ANATOMICAL ORIGIN

X= -18.4226cm Y= 1.4523cm Z= 7.8292cm

T-PLATE ORIENTATION WITH RESPECT TO BODY ANATOMICAL SYSTEM

0.998378 -0.053356 -0.019868

0.051853 0.996219 -0.069711

0.023513 0.068568 0.997369

HRV # 0226

T-PLATE ORIGIN WITH RESPECT TO BODY ANATOMICAL ORIGIN

X = -15.2009cm Y = -0.9364cm Z = 9.0198cm

T-PLATE ORIENTATION WITH RESPECT TO BODY ANATOMICAL SYSTEM

0.975366 0.119443 -0.185460

-0.133935 0.988679 -0.067643

0.175280 0.090816 0.980321

HRV # 0227

T-PLATE ORIGIN WITH RESPECT TO BODY ANATOMICAL ORIGIN

X = -19.8392cm Y = -2.7613cm Z = 3.6425cm

T-PLATE ORIENTATION WITH RESPECT TO BODY ANATOMICAL SYSTEM

0.977128 0.197335 0.079248

-0.193544 0.979657 -0.053037

-0.088102 0.036485 0.995443

T-PLATE ORIGIN WITH RESPECT TO BODY ANATOMICAL ORIGIN

X = -17.7137cm Y = 1.1679cm Z = 6.9586cm

T-PLATE ORIENTATION WITH RESPECT TO BODY ANATOMICAL SYSTEM

0.993792 -0.076149 -0.081107

0.069104 0.993862 -0.086388

0.087187 0.080247 0.992955

HRV # 0236

T-PLATE ORIGIN WITH RESPECT TO BODY ANATOMICAL ORIGIN

X = -17.8482cm Y = 0.1340cm Z = 6.5006cm

T-PLATE ORIENTATION WITH RESPECT TO BODY ANATOMICAL SYSTEM

0.998851 -0.004147 -0.047748

0.004553 0.999954 0.008396

0.047711 -0.008603 0.998824

HRV # 0237

T-PLATE ORIGIN WITH RESPECT TO BODY ANATOMICAL ORIGIN

X = -17.6617cm Y = -0.3212cm Z = 3.8235cm

T-PLATE ORIENTATION WITH RESPECT TO BODY ANATOMICAL SYSTEM

0.990601 0.045063 0.129149

-0.130332 0.024373 0.991171

T-PLATE ORIGIN WITH RESPECT TO BODY ANATOMICAL ORIGIN

X = -18.9848cm Y = -0.1718cm Z = 2.0138cm

T-PLATE ORIENTATION WITH RESPECT TO BODY ANATOMICAL SYSTEM

0.982062 -0.037795 0.184733

0.028403 0.998178 0.053227

-0.186408 -0.047025 0.981346

HRV # 0241

T-PLATE ORIGIN WITH RESPECT TO BODY ANATOMICAL ORIGIN

X = -18.1043cm Y = -0.5658cm Z = 5.8621cm

T-PLATE ORIENTATION WITH RESPECT TO BODY ANATOMICAL SYSTEM

0.997620 0.068826 0.004151

-0.068312 0.994760 -0.076067

-0.009364 0.075602 0.997094

HRV # 0242

T-PLATE ORIGIN WITH RESPECT TO BODY ANATOMICAL ORIGIN

X = -17.9545cm Y = -2.4086cm Z = 4.2884cm

T-PLATE ORIENTATION WITH RESPECT TO BODY ANATOMICAL SYSTEM

0.985006 0.117710 0.126123

-0.117294 0.993039 -0.010743

-0.126510 -0.004211 0.991956

T-PLATE ORIGIN WITH RESPECT TO BODY ANATOMICAL ORIGIN

X = -17.1260cm Y = 1.0928cm Z = 4.3546cm

T-PLATE ORIENTATION WITH RESPECT TO BODY ANATOMICAL SYSTEM

0.993706 -0.057820 0.095949

0.056713 0.998289 0.014230

-0.096607 -0.008698 0.995285

HRV # 0245

T-PLATE ORIGIN WITH RESPECT TO BODY ANATOMICAL ORIGIN

X = -19.5921cm Y = -0.1332cm Z = 3.3402cm

T-PLATE ORIENTATION WITH RESPECT TO BODY ANATOMICAL SYSTEM

0.985944 -0.020871 0.165767

0.016782 0.999520 0.026030

-0.166231 -0.022882 0.985821

HRV # 0246

T-PLATE ORIGIN WITH RESPECT TO BODY ANATOMICAL ORIGIN

X = -17.5506cm Y = 0.0605cm Z = 5.9785cm

T-PLATE ORIENTATION WITH RESPECT TO BODY ANATOMICAL SYSTEM

0.999634 -0.013221 -0.023598

0.013033 0.999882 -0.008112

0.023702 0.007801 0.999689

T-PLATE ORIGIN WITH RESPECT TO BODY ANATOMICAL ORIGIN

X = -17.6736cm Y = 0.3493cm Z = 3.1673cm

T-PLATE ORIENTATION WITH RESPECT TO BODY ANATOMICAL SYSTEM

 $0.978635 \quad 0.015629 \quad 0.205009$

0.000959 0.996749 -0.080565

-0.205602 0.079040 0.975439

Object Space Reference System is Rectangular
Rotation angles are Photo-to-Object
Complete Triangulation process is requested
Error Propagation is requested
[Eigenvector/Eigenvalue output]
Unit Variance will be based on constrained camera parameters
All Image Residuals will be listed
Triangulated Object Coordinates will not be saved
Adjusted Camera Station Parameters will be saved

This Document Contains Missing Page/s That Are Unavailable In The Original Document

ram

ron

chin

ltuskM

capLfF

capRtF

capCEN

-65.5934

-49.0790

-9.0220

87.6002

-1.7931

-81.3890

180.5513

rtp -124.5797

rtuskM -142.9886

64.4032

38.9765

-8.7193

15.8420

140.5863

139.6819

169.2767

4.3056

104.0877

1

FRAME A/Pprism

PRINCIPAL DISTANCE =-1820.0000 mm Std. Dev. of X = 0.7500 mm Std. Dev. of Y = 0.7500 mm

CAMERA STATION PARAMETERS

POSIT	I O N	Std. Dev.		TUDE co Object)	Std	. Dev.
Y = 0.2	180 m 070 m 040 m	0.1000 m 0.1000 m 0.1000 m	PHI = -2!	1.33 34.799 5 59 9.182 1 19 26.942	20 01 00	0.0000 0.0000 0.0000
	Pi	TATE COORDIN	ATES in millir	neters		
ID	X	Y	ID	X	Y	
c3 c4 c10 c2 c1 cv2 cv4 cv6 cv8	-108.7733 104.6934 -17.2353 -114.5128 99.6819 -72.3288 55.5835 -132.3124 -16.4941 118.9474		c9 c12		154.7530	

lon

ltp

ctp

rtuskF -123.7788

rtuskR -161.7258

capRtR -88.1473

ltuskF

capLfR

36.7835

92.0672

-20.6030

147.5698

96.9226

103.5615

117.8744

42.1026

12.8076

20.2354

11.5104

89.9548

94.4914

PAGE 2 NBDL H-P UNIX GIANT (11/90) : HRV # 0246 FRAME A/Phrv45 same PAGE 3 NBDL H-P UNIX GIANT (11/90) : HRV # 0246 FRAME LAThrv45 same 4 PAGE NBDL H-P UNIX GIANT (11/90) : HRV # 0246 FRAME LATprism same PAGE 5 NBDL H-P UNIX GIANT (11/90) : HRV # 0246 ERROR WARNINGS PASS POINTS APPEARING ON 1 PHOTO cv2 cv6 cv7 cv1 rtuskR

Ident	Position	(meters)	Err	or Ellipso	oid>	Length (m)
	X =	0.0001	-6.178E-02 -	-8.899E-02	+9.941E-01	0.0003
ctp	*0* Y =	-0.0001	-6.918E-01 -	-7.141E-01	-1.069E-01	0.0003
	z =	0.0000	+7.194E-01 -	-6.943E-01	-1.744E-02	0.0003
	x =	0.0888	-2.519E-01 -			0.0003
ltp	$*0* \bar{\Lambda} =$	0.0001	-3.698E-01 -			0.0003
	Z =	0.0635	+8.943E-01 -	-4.037E-01	+1.930E-01	0.0003
	X =	-0.0890	+1.242E-01 -			0.0003
rtp	*0* Y =	0.0001	-5.344E-02 -			0.0003
-	Z =	0.0635	-9.908E-01 +	+3.571E-02	+1.304E-01	0.0003
	x =	-0.0011	-4.186E-02 -			0.0029
Origin	Y =	-0.0671	-9.977E-01 -			0.0019
	Z =	0.1666	+5.284E-02 -	-9.983E-01	-2.611E-02	0.0015
	X =	0.0365	-9.863E-02 -	-4.723E-02	+9.940E-01	0.0026
${ t Rib_Lf}$	Y =	-0.0510	-9.891E-01 -			0.0017
	Z =	0.1560	+1.097E-01 -	-9.933E-01	-3.631E-02	0.0013
	X =	-0.0379	+3.763E-03 -	-4.485E-02	+9.990E-01	0.0027
Rib_Rt	Y =	-0.0573	+1.000E+00 +	+4.085E-03	-3.583E-03	0.0018
	z =	0.1564	+3.920E-03 -	-9.990E-01	-4.486E-02	0.0014
	X =	0.0648	-6.518E-01 -			0.0165
lneckB	Y =	-0.0068	-6.900E-01 -			0.0022
	Z =	0.1775	+3.147E-01 -	-9.446E-01	+9.275E-02	0.0016
	x =	0.0535	-6.434E-01 -			0.0168
lneckT	Y =	0.0343	-6.500E-01 -			0.0022
	Z =	0.1886	+4.044E-01 -	-9.088E-01	+1.026E-01	0.0017
	X =	-0.0718	-5.371E-01 -	-1.373E-01	+8.323E-01	0.0157
rneckB	Y =	-0.0267	-8.168E-01 -			0.0027
	z =	0.2090	+2.107E-01 -	-9.772E-01	-2.522E-02	0.0019
	X =	-0.0797	-5.296E-01 -			0.0167
rneckT	Y =	0.0239	-7.478E-01 -			0.0028
	Z =	0.2196	+4.004E-01 -	-9.162E-01	+1.426E-02	0.0020
	x =	0.0641	+4.438E-01 -	-2.899E-02	+8.956E-01	0.0169
${\tt lneckBx}$	Y =	0.0016	+8.915E-01 -	-8.697E-02	-4.446E-01	0.0023
	Z =	0.1791	+9.078E-02 +	+9.958E-01	-1.275E-02	0.0017
–	x =	0.0580	+4.498E-01 -			0.0181
lneckTx	Y =	0.0458	+8.476E-01 -			0.0023
	Z =	0.1766	+2.815E-01 +	+9.586E-01	-4.301E-02	0.0017
	X =	-0.0741	+5.965E-01 +			0.0170
rneckBx	Y =	-0.0227	-7.968E-01 +	-1.253E-01	+5.911E-01	0.0024
	z =	0.1886	-9.669E-02 -	-9.921E-01	+8.003E-02	0.0018

Ident	Position	(meters)	Error Ellipsoid> Length (m)
sternum	X =	-0.0014	-6.136E-01 -3.879E-03 +7.896E-01 0.0151
	Y =	-0.1094	-7.893E-01 +2.828E-02 -6.133E-01 0.0030
	Z =	0.2047	-1.995E-02 -9.996E-01 -2.041E-02 0.0020
SpineBot	X =	-0.0008	-3.278E-02 -5.340E-02 +9.980E-01 0.0020
	Y =	-0.0564	-9.985E-01 -4.283E-02 -3.509E-02 0.0012
	Z =	0.1042	-4.462E-02 +9.977E-01 +5.192E-02 0.0010
SpineTop	X =	-0.0012	-3.556E-02 -5.649E-02 +9.978E-01 0.0020
	Y =	-0.0525	-9.982E-01 -4.609E-02 -3.819E-02 0.0012
	Z =	0.1062	-4.815E-02 +9.973E-01 +5.475E-02 0.0010
lf_shold	X =	0.1449	-6.292E-01 -4.279E-02 +7.760E-01 0.0280
	Y =	-0.0749	-7.771E-01 +1.914E-02 -6.290E-01 0.0015
	Z =	0.0366	+1.206E-02 -9.989E-01 -4.530E-02 0.0015
rt_shold	X =	-0.1069	-4.242E-01 -6.200E-02 +9.034E-01 0.0169
	Y =	-0.0697	-6.487E-01 +7.169E-01 -2.554E-01 0.0014
	Z =	0.0706	+6.318E-01 +6.944E-01 +3.443E-01 0.0012
rt_sholx	X =	-0.1233	+5.634E-01 +6.231E-02 +8.238E-01 0.0260
	Y =	-0.0712	-8.257E-01 +7.290E-03 +5.641E-01 0.0015
	Z =	0.0660	+2.914E-02 -9.980E-01 +5.555E-02 0.0014
spine_bb	X =	0.0010	-3.510E-02 -5.788E-02 +9.977E-01 0.0019
	Y =	-0.0523	-9.981E-01 -4.848E-02 -3.793E-02 0.0012
	Z =	0.0971	-5.056E-02 +9.971E-01 +5.607E-02 0.0009
sternumx	X =	0.0092	+5.207E-01 +1.234E-01 +8.448E-01 0.0161
	Y =	-0.1026	-8.346E-01 -1.345E-01 +5.341E-01 0.0030
	Z =	0.2146	+1.796E-01 -9.832E-01 +3.296E-02 0.0020
SUMMA	ARY S	TATIS	TICS FOR OBJECT POINTS

RMS For Standard Deviations

Count =	18	X =	0.0088 meters
Count =	18	Y =	0.0023 meters
Count =	18	z =	0.0127 meters

CORRECTIONS APPLIED TO OBJECT CONTROL

	x =	0.0001	m		X	=	-0.0001	m
ctp	Y =	-0.0001	m	ltp	Y	=	0.0001	m
	z =	0.0000	m		\mathbf{z}	=	0.0000	m

$$X = 0.0001 \text{ m}$$
 $X = 0.0001 \text{ m}$ ltp $Y = 0.0001 \text{ m}$ rtp $Y = 0.0001 \text{ m}$ $Z = 0.0000 \text{ m}$

		Components		3	RMS =	0.0001	meters
Υ	Number of	Components	=	3	RMS =	0.0001	meters
7	Number of	Components		3	DMC -	0 0000	motoma

ANTHROPOMETRY OUTPUT

T-PLATE ORIGIN WITH RESPECT TO BODY ANATOMICAL ORIGIN

X = -17.6736cm Y = 0.3493cm Z = 3.1673cm

T-PLATE ORIENTATION WITH RESPECT TO BODY ANATOMICAL SYSTEM

0.978635 0.015629 0.205009 0.000959 0.996749 -0.080565 -0.205602 0.079040 0.975439 0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

A/Pprism

LAThrv45

LATprism

6

0.000000

0.00001

0.000002

	C A M E	R A S T	ATIONS	CORRE	C T I O N	S
-	P	osiri	O N	A	ттгти	D E
	X	Y	Z	Omega	Phi	Kappa
			Iterat	ion 1		
A/Phrv45	0.0155	-0.0176	-0.0301 m.	-0.023089	-0.024483	-0.014991
A/Pprism	0.0088	-0.0082	-0.0048 m.	-0.005967	-0.006340	-0.002185
LAThrv45	0.0108	-0.0074	0.0066 m.	-0.016710	-0.015496	0.010755
LATprism	0.0027	-0.0020	0.0061 m.	-0.016757	-0.009864	0.015373
	•					
	Provis	sional Weig	shted Sum of S	Squares = 25	57.913	
	Provis	sional Weig	ghted Sum of S Iterat	- T.	57.913	
A/Phrv45	Provis	sional Weig 0.0003		- - -		-0.000625
A/Phrv45 A/Pprism	-0.0005		Iterat	ion 2 -0.000537		-0.000625 0.000019
	-0.0005 0.0000	0.0003	Iterat -0.0003 m.	-0.000537 0.000030	0.000120 -0.000018	0.000019
A/Pprism	-0.0005 0.0000 0.0001	0.0003 0.0001	Iterat -0.0003 m. -0.0001 m.	-0.000537 0.000030 0.000268	0.000120	0.000019 -0.000209
A/Pprism LAThrv45	-0.0005 0.0000 0.0001 0.0001	0.0003 0.0001 0.0000 0.0000	Iterat -0.0003 m0.0001 m0.0002 m.	-0.000537 0.000030 0.000268 0.000529	0.000120 -0.000018 -0.000085	0.000019 -0.000209
A/Pprism LAThrv45	-0.0005 0.0000 0.0001 0.0001	0.0003 0.0001 0.0000 0.0000	Iterat -0.0003 m0.0001 m0.0002 m. 0.0000 m.	-0.000537 0.000030 0.000268 0.000529	0.000120 -0.000018 -0.000085 -0.000044	0.000019 -0.000209

Provisional Weighted Sum of Squares = 105.258

0.0000 m.

0.0000 m.

0.0000 m.

0.000000

-0.00001

-0.000003

0.000001

0.00001

0.00001

TRIANGULATED IMAGE POINTS RESIDUALS (in micrometers)

•	•	'	TH MICEON	ecersy
lam	A/Phrv45 -699 648	774	-320	
ram	A/Phrv45 -214 10	-131	364	
lon	-20	A/Phrv45 -16 -119	32	
ron	A/Pprism 319 -299	-331	A/Phrv45 60 -261	289
rtp	1161	A/Pprism -647 -101	526	
ctp	A/Phrv45 -402 -153	310	46	
chin	A/Pprism 220 537	- 176	- 99	LATprism -36 -155
ltuskF	A/Pprism -225 108	LAThrv45 -136 213	335	LATprism 247 600
capLfF	A/Phrv45 -19 444	A/Pprism -279 429	242	LATprism -188 -370
capLfR	A/Pprism -736 -77	A/Phrv45 732 512		LATprism 451 -431
capRtF	A/Pprism 230 -993	A/Phrv45 -145 -365	LAThrv45 173 -55	LATprism -150 1017
capRtR	A/Pprism 2 -832	LAThrv45 461 -85		LATprism -430 439
capCEN	A/Pprism -65 -121	LAThrv45 359 111	A/Phrv45 -210 -211	LATprism -409 124

TRIANGULATED IMAGE POINTS RESIDUALS (in micrometers)

c3 *0* A/Pprism -536 -122

c13 *0* LATprism A/Pprism 588 -222 733 384

C4 *0* A/Pprism 284 93

c11 *0* A/Pprism -566 347

c10 *0* A/Pprism LATprism -206 -230 332 -218

C9 *0* LATprism A/Pprism 467 503 95 -143

c2 *0* A/Pprism 347 44

c12 *0* LATprism A/Pprism -567 -79 -1790 189

c1 *0* A/Pprism 107 -366

cv3 LATprism A/Pprism 13 51 205 -248

cv4 LATprism A/Pprism -28 -97 -473 505

cv5 LATprism A/Pprism -47 -145 -856 810

cv8 LATprism A/Pprism 110 250 -950 1158

a posteriori Variance of Unit Weight =

0.795

TRIANGULATED CAMERA STATIONS (Photo to Object)

Ident	Position	Error Ellipsoid	-> Length
A/Phrv45		-0.3187 +0.0866 +0.9439 -0.1760 -0.9839 +0.0308 -0.9314 +0.1563 -0.3288	> 0.0059 m.
	Attitude: Phi =-	14 00 40.6501 66 05 36.2063 Std Dev: 07 07 17.5617	00 23 27.3083 00 14 51.3858 00 21 33.5212
	Y = 0.1988 m.	-0.7479 -0.0299 +0.6631 -0.0792 +0.9959 -0.0444 +0.6590 +0.0858 +0.7472	> 0.0029 m.
i	Omega = Attitude: Phi =- Kappa =-	01 13 10.2479 26 21 0.4450 Std Dev: 01 26 53.6600	00 07 31.5754 00 07 36.5272 00 06 36.3141
LAThrv45	Y = 0.1896 m.	+0.8412 +0.0527 +0.5382 +0.3811 +0.6483 -0.6592 -0.3836 +0.7596 +0.5252	> 0.0019 m.
	Attitude: Phi =	06 14 47.5086 25 03 18.3900 Std Dev: 06 32 24.3338	00 12 20.4255
	Y = 0.1410 m.	+0.3665 -0.0303 +0.9299 -0.1973 -0.9793 +0.0458 -0.9093 +0.2002 +0.3648	> 0.0013 m.
	Attitude: Phi =	00 06 0.5142 65 14 31.8184 Std Dev: 00 31 25.9699	00 13 58.9638 00 08 44.4022 00 13 1.5323

SUMMARY STATISTICS FOR CAMERA STATION

RMS For Standard Deviations

Ident	Position	(meters)	Error Ellipsoid>	Length (m)
c1	X =	-0.0470	+3.908E-01 +8.589E-02 +9.164E-01	0.0004
	0 Y =	0.0510	-8.998E-01 +2.456E-01 +3.607E-01	0.0004
	Z =	0.0194	-1.941E-01 -9.656E-01 +1.733E-01	0.0004
c 2	X =	-0.2348	+4.958E-01 +8.520E-02 +8.643E-01	0.0004
	0 Y =	0.0508	-8.663E-01 +1.180E-01 +4.853E-01	0.0004
	Z =	0.0973	-6.065E-02 -9.893E-01 +1.323E-01	0.0004
c 3	X =	-0.2345	+4.973E-01 -3.184E-02 +8.670E-01	0.0004
	0 Y =	0.2541	+8.371E-01 +2.803E-01 -4.699E-01	0.0004
	Z =	0.0971	-2.280E-01 +9.594E-01 +1.660E-01	0.0004
С4	X =	-0.0470	+3.921E-01 -3.210E-02 +9.194E-01	0.0004
	0 Y =	0.2540	+9.032E-01 +2.033E-01 -3.781E-01	0.0004
	Z =	0.0195	-1.748E-01 +9.786E-01 +1.087E-01	0.0004
c 5	X =	0.0233	-8.476E-01 -1.417E-01 +5.113E-01	0.0004
	0 Y =	0.2545	-5.302E-01 +1.869E-01 -8.270E-01	0.0004
	Z =	0.0568	+2.161E-02 -9.721E-01 -2.335E-01	0.0004
C6	X =	0.0193	-8.434E-01 +1.133E-01 +5.251E-01	0.0004
	0 Y =	0.0502	+5.314E-01 +3.201E-01 +7.844E-01	0.0004
	Z =	0.0469	-7.923E-02 +9.406E-01 -3.302E-01	0.0004
c 7	X =	0.0973	-9.496E-01 +1.143E-01 +2.919E-01	0.0004
	0 Y =	0.0502	+2.845E-01 -7.672E-02 +9.556E-01	0.0004
	Z =	0.2353	+1.316E-01 +9.905E-01 +4.034E-02	0.0004
с8	X =	0.0972	-9.461E-01 -1.426E-01 +2.908E-01	0.0004
	0 Y =	0.2542	-2.908E-01 -2.141E-02 -9.565E-01	0.0004
	Z =	0.2350	+1.427E-01 -9.895E-01 -2.122E-02	0.0004
с9	X =	0.0502	-9.868E-01 -1.842E-02 +1.610E-01	0.0002
	0 Y =	0.1524	+1.602E-01 +3.867E-02 +9.863E-01	0.0002
	Z =	0.2541	-2.440E-02 +9.991E-01 -3.520E-02	0.0002
c10	X =	-0.0825	-9.755E-01 -2.033E-02 +2.190E-01	0.0002
	0 Y =	0.1524	-2.187E-01 -1.825E-02 -9.756E-01	0.0002
	Z =	0.1991	-2.383E-02 +9.996E-01 -1.335E-02	0.0002
c11	X =	-0.2151	+5.007E-01 +2.762E-02 +8.652E-01	0.0002
	O Y =	0.1524	-7.539E-01 -4.772E-01 +4.515E-01	0.0002
	Z =	0.1441	+4.253E-01 -8.784E-01 -2.181E-01	0.0002
c 12	X = *O* Y = Z =	-0.0824 0.0511 0.1992	+9.436E-01 -1.660E-01 -2.865E-01 -3.129E-01 -1.642E-01 -9.355E-01 -1.083E-01 -9.724E-01 +2.069E-01	0.0002 0.0002 0.0002
c13 .	X =	-0.0825	+9.440E-01 +1.971E-01 -2.645E-01	0.0002
	0 Y =	0.2538	+2.935E-01 -1.360E-01 +9.462E-01	0.0002
	Z =	0.1990	-1.506E-01 +9.709E-01 +1.862E-01	0.0002

Ident	Position	(meters)	Er	ror Ellipso	oid>	Length (m)
ctp	X = Y = Z =	-0.0383 0.2450 0.2958	-9.889E-01 -9.945E-02 +1.102E-01	+7.538E-02	-9.922E-01	0.0006 0.0005 0.0004
cv3	X = Y = Z =	-0.0819 0.2855 0.1960	-8.920E-01 -4.147E-01 +1.802E-01		-9.041E-01	0.0007 0.0006 0.0005
cv4	X = Y = Z =	-0.0044 0.2856 0.2261	+9.669E-01 +2.011E-01 -1.572E-01	-1.375E-01	+9.699E-01	0.0007 0.0006 0.0005
cv5	X = Y = Z =	0.0723 0.2851 0.2587	+9.891E-01 -4.477E-02 -1.404E-01	-1.213E-01	+9.916E-01	0.0007 0.0007 0.0005
cv8	X = Y = Z =	-0.0795 0.0202 0.1962	-8.893E-01 +4.384E-01 +1.303E-01		+8.877E-01	0.0007 0.0006 0.0005
cv9	X = Y = Z =	-0.0031 0.0196 0.2273	+9.651E-01 -2.377E-01 -1.097E-01	-1.792E-01	-9.547E-01	0.0007 0.0006 0.0005
lam	X = Y = Z =	-0.0279 0.2021 0.1319	-6.088E-01 -7.880E-01 +9.151E-02	-4.903E-02	-6.137E-01	0.0005 0.0005 0.0004
lon	X = Y = Z =	-0.0283 0.2371 0.2091	-8.993E-01 -4.224E-01 +1.135E-01	+4.123E-02	-9.055E-01	0.0005 0.0005 0.0004
ltp	X = Y = Z =	0.0438 0.1866 0.2551	-9.374E-02 +9.952E-01 -2.776E-02	+2.917E-02	+9.332E-02	0.0009 0.0006 0.0005
ram	X = Y = Z =	-0.1448 0.2021 0.1736	-4.739E-02 -9.928E-01 -1.096E-01	-1.068E-01	-5.354E-02	0.0005 0.0005 0.0004
ron	X = Y = Z =	-0.0958 0.2356 0.2355	+9.898E-01 +6.467E-02 -1.271E-01	-1.131E-01	+9.915E-01	0.0005 0.0005 0.0004
rtp	X = Y = Z =	-0.1256 0.1799 0.3103	+9.717E-01 +2.216E-01 -8.116E-02	+1.177E-01	-9.680E-01	0.0007 0.0005 0.0004
chin	X = Y = Z =	-0.0464 0.1430 0.2539	-9.928E-01 -1.184E-01 -1.959E-02	-6.899E-02	-9.906E-01	0.0005 0.0005 0.0004

Ident	Position	(meters)	E	rror Ellips	oid>	Length (m)
cv10	X = Y = Z =	0.0732 0.0193 0.2593	+8.988E-03	-1.003E-01 +1.751E-01 +9.794E-01	+9.845E-01	0.0007 0.0007 0.0005
capCEN	X = Y = Z =	-0.0647 0.2922 0.2118	-4.661E-01	+2.523E-01 +1.147E-01 -9.608E-01	-8.772E-01	0.0005 0.0005 0.0004
capLfF	X = Y = Z =	-0.0139 0.2721 0.1377	-7.341E-01	-2.250E-01 +1.872E-02 -9.742E-01	-6.788E-01	0.0006 0.0005 0.0004
capLfR	X = Y = Z =	-0.0218 0.2283 0.0971	-8.811E-01	-1.289E-01 -5.569E-02 -9.901E-01	-4.696E-01	0.0006 0.0005 0.0004
capRtF	X = Y = Z =	-0.1503 0.2671 0.1950	+9.786E-01	+1.739E-01 +2.058E-01 -9.630E-01	-7.092E-03	0.0006 0.0005 0.0004
capRtR	X = Y = Z =	-0.1743 0.2281 0.1627	-9.862E-01	-1.033E-01 -1.603E-01 +9.817E-01	-4.150E-02	0.0006 0.0005 0.0004
ltuskF	X = Y = Z =	0.0366 0.1613 0.1157	+7.929E-01	-6.847E-04 +7.251E-02 +9.974E-01	+6.050E-01	0.0006 0.0005 0.0004
ltuskM	X = Y = Z =	0.0492 0.1530 0.0662	+9.132E-01	+1.209E-02 +2.323E-02 +9.997E-01	+4.068E-01	0.0008 0.0006 0.0005
ltuskR	X = Y = Z =	0.0619 0.1442 0.0156	+6.786E-01	+1.433E-02 +2.666E-02 +9.995E-01	+7.341E-01	0.0021 0.0007 0.0006
rtuskF	X = Y = Z =	-0.1806 0.1626 0.2120	-9.974E-01	+3.157E-02 -3.479E-02 +9.989E-01	-6.264E-02	0.0006 0.0005 0.0004
rtuskM	X = Y = Z =	-0.2192 0.1573 0.1810	-5.538E-01	-1.915E-02 -2.772E-02 +9.994E-01	-8.322E-01	0.0007 0.0006 0.0005

NBDL H-P UNIX GIANT (11/90) : HRV # 0246

PAGE 14

SUMMARY STATISTICS FOR OBJECT POINTS

RMS For Standard Deviations

Count = 24

0.0007 meters

Count = 24

X = Y = Y

0.0004 meters

Count = 24

z =

0.0007 meters

CORR	E C]	гои	s	A P P L I E	D T	оовјес	T CONTROL
-			X =	0.0000	m	X =	0.0001 m
		c10	Y =	0.0000	m	c11 Y =	0.0000 m
			z =	0.0000	m	z =	0.0000 m
			X =	-0.0001	m	X =	0.0001 m
		c1	Y =	0.0002		c12 Y =	0.0003 m
		-	$\bar{z} =$	0.0000		z =	0.0001 m
			X =	-0.0001	m	X =	0.0000 m
		c2	Y =	0.0000		c13 Y =	-0.0002 m
		OZ	$\bar{z} =$	0.0001		Z =	-0.0001 m
			X =	0.0002	m	X =	-0.0001 m
-		с3	Y =	0.0001		c4 $Y =$	0.0000 m
	-		$\bar{z} =$	-0.0001		z =	0.0001 m
	,		x =	-0.0004	m	x =	-0.0001 m
	i	с5	Y =	0.0005		c6 Y =	-0.0006 m
	ı		z =	-0.0005		z =	0.0000 m
			X =	0.0001	m	x =	0.0000 m
		c 7	Y =	-0.0006		c 8 Y =	0.0002 m
			z =	0.0006		z =	0.0003 m
			x =	-0.0001	m		
		c 9	Y =	0.0000	m		
			z =	0.0000	m		
				Components :		RMS =	0.0002 meters
				Components		RMS =	0.0003 meters
	Z	Numb	er of	Components	= 13	RMS =	0.0003 meters

ANTHROPOMETRY OUTPUT

T-PLATE ORIGIN WITH RESPECT TO HEAD ANATOMICAL ORIGIN

X = 15.4854cm Y = -0.1917cm Z = -2.4835cm

T-PLATE ORIENTATION WITH RESPECT TO HEAD ANATOMICAL SYSTEM

Object Space Reference System is Rectangular
Rotation angles are Photo-to-Object
Complete Triangulation process is requested
Error Propagation is requested
[Eigenvector/Eigenvalue output]
Unit Variance will be based on constrained camera parameters
All Image Residuals will be listed
Triangulated Object Coordinates will not be saved
Adjusted Camera Station Parameters will be saved

NBDL H-P UNIX GIANT (11/90) : HRV # 0247

FRAME LfEyLfSh

PRINCIPAL DISTANCE = -889.0000 mm Std. Dev. of X = 1.0000 mm Std. Dev. of Y = 1.0000 mm

CAMERA STATION PARAMETERS

POSITION	Std. Dev.	ATTITUDE (Photo to Object)	Std. Dev.
X = -0.4540 m $Y = -0.1010 m$ $Z = 0.6980 m$	0.0400 m	OMEGA = - 09 28 11.6650 PHI = 33 37 5.3610 KAPPA = 05 34 55.8970	02 00 0.0000
E	דו אייד רייט איי	ES in millimeters	
ID X	Y Y	ID X	Y :
Origin 99.123 Rib_Rt 50.873 SpineBot 50.766 sternum 136.084 rt_shold -76.536 rtp -68.674 lneckT 152.759 rneckT 44.893	26 -30.6428 04 -39.4013 49 -91.5953 08 -64.5011 17 17.8384 98 87.4338	SpineTop 51.3787 spine_bb 47.0025	
NBDL H-P UNIX GIANT (1 HRV # 0247	•	RtEyLfSh same	PAGE 2
NBDL H-P UNIX GIANT (1 HRV # 0247	11/90) : FRAME L	fEyRtSh same	PAGE 3
NBDL H-P UNIX GIANT (1 HRV # 0247	.1/90) : FRAME R	tEyRtSh same	PAGE 4
NBDL H-P UNIX GIANT (1 HRV # 0247	.1/90) :	·	PAGE 5

ERROR WARNINGS

PASS POINTS APPEARING ON 1 PHOTO

rneckTx lf_sholx

6

CAMERA STATIONS CORRECTIONS

	P	оѕіті	O N		A	ттіти	D E
	X	Y	Z		Omega	Phi	Kappa
			T4	-ar	ation 1		
LfEyLfSh	0.0025	-0.0151	0.0139			-0.016773	0.019630
RtEyLfSh	0.0007	-0.0157	0.0119			-0.010306	
LfEyRtsh	0.0093	-0.0140	-0.0131			-0.015926	
RtEyRtSh	-0.0021	-0.0128	-0.0118			-0.005633	
<u> </u>	Provis	sional Weig	ghted Sum	of	Squares = 1	40.584	
T STORT SOL	0 0000	0 0000			ation 2		
LfEyLfSh	0.0002	-0.0003	-0.0002				-0.000341
RtEyLfSh LfEyRtSh	0.0002	-0.0004	-0.0004			-0.000210	
RtEyRtSh	-0.0001	0.0000	-0.0006			-0.000113	
i. Kreakrou	0.0002	0.0001	-0.0004	m.	-0.000347	-0.000020	-0.000283
	Provis	sional Weid	hted Sum	of	Squares = 1	11.744	
					•		
I			It	era	ation 3		
LfEyLfSh	0.0000	0.0000	0.0000			-0.000025	
RtEyLfSh	0.0000	0.0000	0.0000			-0.000023	
LfEyRtSh	0.0000	0.0000	0.0000			-0.000031	
RtEyRtSh	0.0000	0.0000	0.0000	m.	0.000004	-0.000013	-0.000018
	Provis	sional Weig	ghted Sum	of	Squares = 1	00.229	
							•
T FEST FOR	0 0000	0.0000			ation 4		
LfEyLfSh RtEyLfSh	0.0000 0.0000	0.0000	0.0000		0.000000	· · · · · · · · · · · · · · · · · · ·	0.000000
LfEyRtSh	0.0000	0.0000	0.0000		-0.000001		0.000000
- RtEyRtSh	0.0000	0.0000	0.0000		-0.000001		0.000000
- KCBYKCBH	0.0000	0.0000	0.0000	ın .	0.00000	0.000001	-0.000001

Provisional Weighted Sum of Squares = 100.227

TRIANGULATED IMAGE POINTS RESIDUALS (in micrometers)

			(:	in micromo	eters)	_
Origin		LfEyLfSh -1009	688		RtEyRtSh 477	
		1029	1111	-584	-1678	
Rib_Lf		LfEyLfSh -102	RtEyLfSh			
		106	133 - 890	622 1165	-675 -430	
Rib_Rt		RtEyLfSh	LfEyLfSh	LfEyRtSh	RtEyRtSh	
		- 3046	1078 - 2489	3335	2759	
SpineTop	· .	RtEyLfSh	LfEyRtSh	LfEyLfSh	RtEyRtSh	_====
	·	1026	-209 -532	-111 100	344 -625	
SpineBot	:	LfEyLfSh				
	ŀ	53 800		-230 -825		
spine_bb		LfEyLfSh	RtEvLfSh	LfEvRtSh	RtEvRtSh	
_		104	- 511		88	
		1104		- 978		
sternum		LfEyLfSh 75	RtEyLfSh -60			
		- 435	446			
lf_shold		LfEyLfSh				
		- 86 487	69 - 498			
rt_shold		RtEyLfSh				
		- 8 60	10 - 59			
Itn	*O*	LfEyLfSh		I fFvD+ch	D+FvD+ch	
TCP		384	447	129	324	
-		674	-1175	-103	-273	
rtp	*0*	LfEyLfSh		RtEyLfSh		
-		- 90	824	-149	647	
•		282	-1477	1351	-1405	
ctp	*0*	LfEyRtSh				
-		-740	-348	-10	-1339	
		2404	-1 329	- 1069	1972	
- lneckT		LfEyLfSh	-			
		193	- 156			
		- 973	992		•	

TRIANGULATED IMAGE POINTS RESIDUALS (in micrometers)

lneckB RtEyLfSh LfEyLfSh -72 482 -472 LfEyLfSh RtEyLfSh rneckT -142 114 701 **-713** rneckB LfEyLfSh RtEyLfSh -94 76 491 -501 sternumx LfEyRtSh RtEyRtSh 91 -111 -709 706 rt_sholx RtEyRtSh LfEyRtSh -169 141 1088 -1094

lneckTx LfEyRtSh RtEyRtSh 89 -105 -690 687

lneckBx LfEyRtSh RtEyRtSh
60 -72
-470 469

rneckBx LfEyRtSh RtEyRtSh
-77 91
598 -594

Weighted Sum of Squares (Camera) = 3.9 Weighted Sum of Squares (Object) = 0.9 Weighted Sum of Squares (Plates) = 94.4

Weighted Sum of Squares (Total) = 99.2 Degrees of Freedom.... = 66

a posteriori Variance of Unit Weight = 1.502

TRIANGULATED CAMERA STATIONS (Photo to Object)

Ident	Position	Err	or Ellipsoid	> L	ength
LfEyLfSh	X = -0.455 Y = -0.116 Z = 0.715	55 m0.0	197 +0.0111 +0 871 +0.9958 +0 035 +0.0908 -0	.0281>	0.0078 m.
	Attitude: Ph:		9 59.4595 8 28.0867 Std 1 13.8430	Dev: 00 45	42.3820 45.4494 41.2801
RtEyLfSh	X = -0.394 Y = -0.113 Z = 0.762	.0 m0.1	162 +0.0662 +0 183 +0.9930 -0 483 +0.0982 -0	.0055>	0.0082 m.
	Attitude: Ph	ega =- 08 4 = 34 3 ppa = 04 2	5 42.5924 0 19.8861 Std 3 53.1196	Dev: 00 45	24.2431 45.8510 33.6183
LfEyRtSh	Y = -0.023	.0 m0.1	552 +0.0448 +0 390 -0.9884 -0 425 +0.1454 -0	.0620>	0.0090 m.
	Attitude: Phi	. = - 30 5	2 21.6863 7 48.5047 Std 7 40.0242	Dev: 00 50	9.0630 40.5485 29.6971
RtEyRtSh	Y = -0.013	7 m0.1	521 +0.0166 +0 410 -0.9873 -0 218 +0.1582 -0	.0737>	0.0088 m.
	Attitude: Phi		8 -5.6923 9 51.1623 Std 5 37.0526	Dev: 00 50	40.5535 52.2784 37.5112

SUMMARY STATISTICS FOR CAMERA STATION

RMS For Standard Deviations

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204 Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave Blan	k) 2. REPORT DATE December 1991	3. REPORT TYPE AND DATES COVERED Technical Report	
4. TITLE AND SUBTITLE			FUNDING NUMBERS
Photogrammetric Tasks for +Z Vertical Added Head Mass Experiments			0205-91-M-G011
6. AUTHOR(S)			
GPA Associates			
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)			PERFORMING ORGANIZATION REPORT NUMBER
Naval Biodynamics Laboratory P. O. Box 29407 New Orleans, LA 70189-0407			BDL-93R005
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) Naval Medical Research and Development Command National Naval Medical Center Building 1, Tower 12 Bethesda, MD 20889-5044			. SPONSORING/MONITORING AGENCY REPORT NUMBER
11. SUPPLEMENTARY NOTES			
·			
12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DI			b. DISTRIBUTION CODE
Approved for public release; distribution is unlimited.			
13. ABSTRACT (Maximum 200 words)			
This publication provides documentation on the evaluation of the present X-ray Anthropometry System of the Naval Biodynamics Laboratory. Analysis, exposition, enhancement and documentation of the x-ray digitization and 3-D reconstruction algorithms, development of error analysis code for incorporation into digitization and reconstruction algorithms.			
14. SUBJECT TERMS X-Ray Anthropometry, PREP and GIANT, Camera Calibration, and Vector Constraints.			15. NUMBER OF PAGES 105
			16. PRICE CODE
17. SECURITY CLASSIFICATION OF REPORT Unclassified	18. SECURITY CLASSIFICATION OF THIS PAGE Unclassified	19. SECURITY CLASSIFICA OF ABSTRACT Unclassified	ATION 20. LIMITATION OF ABSTRACT