Math 531 Homework 4

Theo Koss

February 2021

1 Section 3.1

- Problem 2: For each binary operation * defined on a set below, determine whether or not * gives a group structure on the set. If it is not a group, say which axioms fail to hold.
 - (a) Define * on \mathbb{Z} by a*b=ab. This is not a group. It fails to have inverses for every elements except -1 and 1.
 - (b) Define * on \mathbb{Z} by $a*b = \max\{a,b\}$. This operation fails to have an identity.
 - (c) * on \mathbb{Z} , a*b=a-b. This is not a group. It fails to be associative.
 - (d) * on \mathbb{Z} , a * b = |ab|. This is not a group. It fails to have inverses.
 - (e) * on \mathbb{R}^+ , a*b=ab. This is a group, Identity: 1. Inverses: $\forall a \in \mathbb{R}^+, a \cdot \frac{1}{a} = e$, and $\frac{1}{a}$ is of course in \mathbb{R}^+ .
 - (f) * on \mathbb{Q} , a * b = ab. This is a group, Identity: 1. $\forall a \in \mathbb{Q}, a \cdot \frac{1}{a} = e$, and $\frac{1}{a}$ is again in \mathbb{Q} .
- Problem 3: Let (G, \cdot) be a group. Define a new bin. op. * on G by the formula $a*b=b\cdot a$, for all $a,b\in G$.
 - (a) Show that (G, *) is a group.

Proof. Without loss of generality, assume \cdot is defined by $a \cdot b = a + b$, for some $a, b \in G$, and where + denotes traditional addition. Then * is defined as $a * b = b \cdot a = b + a$. This is clearly a group. QED

- (b) $(G, *) = (G, \cdot)$ iff (G, \cdot) is an abelian group.
- Problem 11: Show that the set of all 2×2 matrices over \mathbb{R} of the form $\begin{bmatrix} m & b \\ 0 & 1 \end{bmatrix}$ with $m \neq 0$ forms a group under matrix multiplication.

Proof. For notation's sake, call this set G. To prove this is a group, we N2S three things,

- i There exists an identity element. Naturally, the identity element is $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, this is of course in the set, as $1, 0 \in \mathbb{R}$.
- ii There exists inverses for each element in \mathbb{R} . The inverse for each matrix $A \in G$ is $A^{-1} = \frac{1}{m} \begin{bmatrix} 1 & -b \\ 0 & m \end{bmatrix} = \begin{bmatrix} \frac{1}{m} & -\frac{b}{m} \\ 0 & 1 \end{bmatrix} \in G$. Therefore, each element has an inverse.
- iii The group operation is associative. Here we check: $\forall A, B, C \in G$, (AB)C = A(BC).

$$(AB) = \begin{bmatrix} m_a & b_a \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} m_b & b_b \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} m_a m_b & m_a b_b + b_a \\ 0 & 1 \end{bmatrix}.$$

$$(AB)C = \begin{bmatrix} m_a m_b & m_a b_b + b_a \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} m_c & b_c \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} m_a m_b m_c & m_a m_b b_c + m_a b_b + b_a \\ 0 & 1 \end{bmatrix}.$$

$$A(BC) = \begin{bmatrix} m_a & b_a \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} m_b m_c & m_b b_c + b_b \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} m_a m_b m_c & m_a m_b b_c + m_a b_b + b_a \\ 0 & 1 \end{bmatrix}$$

$$= (AB)C. \text{ Therefore it is associative.}$$

QED

• Problem 24: Let G be a group. Prove that G is abelian if and only if $(ab)^{-1} = a^{-1}b^{-1}, \forall a, b \in G$.

Proof. Using these definitions,

$$ab = ((ab)^{-1})^{-1} = (a^{-1}b^{-1})^{-1} = (b^{-1})^{-1}(a^{-1})^{-1} = ba$$

Therefore, if $(ab)^{-1} = a^{-1}b^{-1}$, then G must be abelian.

For the other direction, if G is abelian, then ab = ba. So we N2S that $(ab)^{-1} = a^{-1}b^{-1}$ follows from this. Indeed it does:

$$(ab)^{-1} = b^{-1}a^{-1} = a^{-1}b^{-1}$$
 Since G is abelian

As required. QED

2 Section 3.2

- Problem 1:
 - (a) $\begin{bmatrix} 1 & -1 \\ 1 & 0 \end{bmatrix}$ Has order 6, because $\begin{bmatrix} 1 & -1 \\ 1 & 0 \end{bmatrix}^6 = I$.
 - (b) $\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}^4 = I, \text{ order } 4.$
 - (c) $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}^n = \begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix}$, therefore this element has infinite order.
 - (d) $\begin{bmatrix} -1 & 1 \\ 0 & 1 \end{bmatrix}^2 = I$, order 2.
- Problem 3: Prove that the set of all rational numbers of the form $\frac{m}{n}$ where $m, n \in \mathbb{Z}$ and n is square-free, is a subgroup of Q under addition.

Proof.

Theorem 1 (Subgroup Test). Let G be a group and let H be a nonempty subset of G. If for all $a, b \in H$, $ab^{-1} \in H$, then $H \leq G$.

Proof of 1 here.

Using 1, we N2S $\forall a, b \in H, ab^{-1} \in H$. In this case, that looks like

$$ab^{-1} = \frac{m_a}{n_a} - \frac{m_b}{n_b} \in H$$

This is of course true, because one of two things can happen, either

- (i) n_a and n_b will share a divisor, in this case, the lcm of the two is that shared (prime, and therefore squarefree) factor.
- (ii) n_a and n_b will be relatively prime, in this case, their product will be squarefree, so the denominator will be squarefree, as required.

QED

• Problem 7: Give an example of 3 permutations $\alpha, \beta, \gamma \neq e \in S_4$. Such that $\alpha\beta = \beta\alpha$ and $\beta\gamma = \gamma\beta$, but $\alpha \neq \gamma$. Let $\beta = (23), \alpha = (1342), \gamma = (14)$, of course, since β and γ are disjoint, they commute. $\alpha\beta = (1342)(23) = (12)(34) = (23)(1342) = \beta\alpha$ as required. • Problem 12: Let $\sigma \in S_n$, and suppose σ is written as a product of disjoint cycles. Show that σ is even iff the number of cycles of even length is even. And show σ is odd iff number of cycles of even length is odd.*Ask in class*

Proof. QED