

Virtual Memory: Concepts

Assignment Project Exam Help

15-213/18-213/14-513/15-513/18-613:

Introduction to Compute System wooder.com

17th Lecture, October 27, 2020

Informal Survey Summary

- 40% of Students Responded to the Survey
 - Thank you!
- Over 35% feit the labe were the Strongest feature

 - Another 25% think the lectures contribute https://powcoder.com
 And 10% feel they learn significantly from the written assignments

- Around 20% of students note the pace is too fast
 - Therefore, many feel that recorded lectures support their learning
- Chat is a great avenue for asking questions
 - Can also be distracting

Informal Survey Summary (cont)

- Many students feel welcomed and included
 - Teaching Assistants and professors who care
- TA OH are an inisoment partois starting Help
 - Keeping to 10 minutes and understanding expectations https://powcoder.com
 - Expect a separate Piazza post

- The instructors are happy to discuss the feedback further in their office hours
 - Many other valuable points and suggestions

Hmmm, How Does This Work?!

Solution: Virtual Memory (today and next lecture)

Today

	Address spaces	CSAPP	9.1-9.2
	VM as a tool for caching	CSAPP	9.3
	VM as a tool for memory management Assignment Project Exam Help VM as a tool for memory protection	CSAPP	9.4
	VM as a tool for memory protection	CSAPP	9.5
	Address translatatps://powcoder.com	CSAPP	9.6
Add WeChat powcoder			

A System Using Physical Addressing

 Used in "simple" systems like embedded microcontrollers in devices like cars, elevators, and digital picture frames

A System Using Virtual Addressing

- Used in all modern servers, laptops, and smart phones
- One of the great ideas in computer science

Address Spaces

■ Linear address space: Ordered set of contiguous non-negative integer addresses:

$$\{0, 1, 2, 3 \dots \}$$

Assignment Project Exam Help

Virtual address space: Set of N = 2ⁿ virtual addresses

■ Physical address spaced & twf & Chatphysicat odtresses

Why Virtual Memory (VM)?

- Uses main memory efficiently
 - Use DRAM as a cache for parts of a virtual address space
- Simplifies memory management Exam Help
 - Each process gets the same uniform linear address space

https://powcoder.com

- Isolates address spaces
 - One process can't Ardelf event hart of the Wiscons burry
 - User program cannot access privileged kernel information and code

Today

- Address spaces
- VM as a tool for caching
- VM as a tool for memory management
 Assignment Project Exam Help
 VM as a tool for memory protection
- Address translations://powcoder.com

VM as a Tool for Caching

- Conceptually, virtual memory is an array of N contiguous bytes stored on disk.
- The contents of the array on disk are cached in *physical* memory (DRANGE Exam Help
 - These cache blocks are called pages (size is P = 2^p bytes) https://powcoder.com

DRAM Cache Organization

- DRAM cache organization driven by the enormous miss penalty
 - DRAM is about 10x slower than SRAM
 - Disk is about 10,000x slower than DRAM
 - Time to loa Assignment Project I Externology cles)
 - CPU can do a lot of computation during that time https://powcoder.com
- Consequences
 - Large page (block) Kizel two eath AKBpowcoder
 - Linux "huge pages" are 2 MB (default) to 1 GB
 - Fully associative
 - Any VP can be placed in any PP
 - Requires a "large" mapping function different from cache memories
 - Highly sophisticated, expensive replacement algorithms
 - Too complicated and open-ended to be implemented in hardware
 - Write-back rather than write-through

Enabling Data Structure: Page Table

- A page table is an array of page table entries (PTEs) that maps virtual pages to physical pages.
 - Per-process kernel data structure in DRAM

Page Hit

Page hit: reference to VM word that is in physical memory (DRAM cache hit)

Page Fault

 Page fault: reference to VM word that is not in physical memory (DRAM cache miss)

Triggering a Page Fault

User writes to memory location

```
80483b7: c7 05 10 9d 04 08 0d movl $0xd,0x8049d10
```

- That portion (page) of user's memory is currently or signment Project Exam Helpin ()
- MMU triggers page fault exception
 - (More details in later letters://powcoder.com
 - Raise privilege level to supervisor mode
 - Causes procedure canto of twife Cabatul powisoder

```
Exception: page fault handler
```

Page miss causes page fault (an exception)

- Page miss causes page fault (an exception)
- Page fault handler selects a victim to be evicted (here VP 4)

- Page miss causes page fault (an exception)
- Page fault handler selects a victim to be evicted (here VP 4)

- Page miss causes page fault (an exception)
- Page fault handler selects a victim to be evicted (here VP 4)
- Offending instruction is restarted: page hit!

Completing page fault

- Page fault handler executes return from interrupt (iret) instruction
 - Like **ret** instruction, but also restores privilege level
 - Return to instruction that caused fault
 - But, this tim Alesian mentu Project Exam Help

```
c7 05 10 9d 04 08 0d
80483b7:
                                              $0xd,0x8049d10
                                      movl
```


Allocating Pages

Allocating a new page (VP 5) of virtual memory.

Locality to the Rescue Again!

- Virtual memory seems terribly inefficient, but it works because of locality.
- At any point in time, programs tend to access a set of active virtual pages called the working set Xam Help
 - Programs with better temporal locality will have smaller working sets https://powcoder.com
- If (working set size main memory size) der
 - Good performance for one process (after cold misses)
- If (working set size > main memory size)
 - Thrashing: Performance meltdown where pages are swapped (copied) in and out continuously
 - If multiple processes run at the same time, thrashing occurs if their total working set size > main memory size

Today

- Address spaces
- VM as a tool for caching
- VM as a tool for memory management
 Assignment Project Exam Help
 VM as a tool for memory protection
- Address translations://powcoder.com

VM as a Tool for Memory Management

- Key idea: each process has its own virtual address space
 - It can view memory as a simple linear array
 - Mapping function scatters addresses through physical memory
 - Well-chosensing pring near Projecte Esseith Help

VM as a Tool for Memory Management

- Simplifying memory allocation
 - Each virtual page can be mapped to any physical page
 - A virtual page can be stored in different physical pages at different times
- Sharing code and data among processes

 Assignment Project Exam Help

 Map virtual pages to the same physical page (here: PP 6)

%rsp

(stack

pointer)

Simplifying Linking and Loading

Linking

Loading

Each program has similar virtual address space

Code, data, and heap always start Project Exam Help at the same addresses.

https://powcoder.comared libraries

Add WeChat powcoder

- execve allocates virtual pages for .text and .data sections & creates PTEs marked as invalid
- The .text and .data sections are copied, page by page, on demand by the virtual memory system

 0×400000

Memory invisible to **Kernel virtual memory** user code User stack

(created at runtime)

Run-time heap (created by malloc)

Read/write segment (.data, .bss)

Read-only segment (.init,.text,.rodata)

Unused

Loaded from the executable file

brk

0

Today

- Address spaces
- VM as a tool for caching
- VM as a tool for memory management
 Assignment Project Exam Help
 VM as a tool for memory protection
- Address translations://powcoder.com

VM as a Tool for Memory Protection

- Extend PTEs with permission bits
- MMU checks these bits on each access

Quiz Time! Assignment Project Exam Help

https://powcoder.com

Check out: Add WeChat powcoder

https://canvas.cmu.edu/courses/17808

Today

- Address spaces
- VM as a tool for caching
- VM as a tool for memory management
 Assignment Project Exam Help
 VM as a tool for memory protection
- Address translationps://powcoder.com

VM Address Translation

- Virtual Address Space
 - *V* = {0, 1, ..., N−1}
- Physical Address Space
 - $P = \{0, 1, ..., Assignment Project Exam Help \}$
- Address Translationps://powcoder.com
 - MAP: $V \rightarrow P \cup \{\emptyset\}$
 - For virtual addre Add WeChat powcoder
 - MAP(a) = a' if data at virtual address a is at physical address a' in P
 - MAP(a) = Øif data at virtual address a is not in physical memory
 - Either invalid or stored on disk

Summary of Address Translation Symbols

Basic Parameters

- N = 2ⁿ: Number of addresses in virtual address space
- M = 2^m: Number of addresses in physical address space
- P = 2^p : Pagessignment Project Exam Help
- Components of the virtual address (VA) https://powcoder.com
 - VPO: Virtual page offset
 - VPN: Virtual pagenden WeChat powcoder
- Components of the physical address (PA)
 - PPO: Physical page offset (same as VPO)
 - PPN: Physical page number

Address Translation With a Page Table

Address Translation: Page Hit

- 1) Processor sends virtual address to MMU
- 2-3) MMU fetches PTE from page table in memory
- 4) MMU sends physical address to cache/memory
- 5) Cache/memory sends data word to processor

Address Translation: Page Fault

- 1) Processor sends virtual address to MMU
- 2-3) MMU fetches PTE from page table in memory
- 4) Valid bit is zero, so MMU triggers page fault exception
- 5) Handler identifies victim (and, if dirty, pages it out to disk)
- 6) Handler pages in new page and updates PTE in memory
- 7) Handler returns to original process, restarting faulting instruction

Integrating VM and Cache

VA: virtual address, PA: physical address, PTE: page table entry, PTEA = PTE address

Speeding up Translation with a TLB

- Page table entries (PTEs) are cached in L1 like any other memory word
 - PTEs may be evicted by other data references

 Assignment Project Exam Help

 PTE hit still requires a small L1 delay
- Solution: Translation Locker Buffer (TLB)
 - Small set-associative hardware cache in MMU

 Add WeChat powcoder

 Maps virtual page numbers to physical page numbers

 - Contains complete page table entries for small number of pages

Summary of Address Translation Symbols

Basic Parameters

- $N = 2^n$: Number of addresses in virtual address space
- **M** = **2**^m: Number of addresses in physical address space
- P = 2^p : Pagessignment Project Exam Help
- Components of the virtual address (VA) https://powcoder.com
 - **TLBI**: TLB index
 - **TLBT**: TLB tag Add WeChat powcoder
 - **VPO**: Virtual page offset
 - **VPN**: Virtual page number

Components of the physical address (PA)

- **PPO**: Physical page offset (same as VPO)
- **PPN:** Physical page number

Accessing the TLB

MMU uses the VPN portion of the virtual address to access the TLB:

TLB Hit

A TLB hit eliminates a cache/memory access

TLB Miss

A TLB miss incurs an additional cache/memory access (the PTE)

Fortunately, TLB misses are rare. Why?

Level 2

Tables

Multi-Level Page Tables

- Suppose:
 - 4KB (2¹²) page size, 48-bit address space, 8-byte PTE
- Assignment Project Exam Help Level 1 Problem:
 - Would need a 512 GB page table!

 https://powcoder.com

 2⁴⁸ * 2⁻¹² * 2³ = 2³⁹ bytes

- Common solution: Multi-level page table
- **Example: 2-level page table**
 - Level 1 table: each PTE points to a page table (always memory resident)
 - Level 2 table: each PTE points to a page (paged in and out like any other data)

A Two-Level Page Table Hierarchy

Translating with a k-level Page Table

Summary

Programmer's view of virtual memory

- Each process has its own private linear address space
- Cannot be corrupted by other processes

■ System view Spigntum Help

- Uses memory efficiently by caching virtual memory pages https://powcoder.com
 - Efficient only because of locality
- Simplifies memoty the tage of the property of the simplifies memory to be a simplified memory to be a simplif
- Simplifies protection by providing a convenient interpositioning point to check permissions

Implemented via combination of hardware & software

- MMU, TLB, exception handling mechanisms part of hardware
- Page fault handlers, TLB management performed in software