UE: Statistiques pour l'Informatique

Correction de la Feuille de TD 9

Pour la table des fractiles des lois de Student, on se reportera à la feuille de TD 8, pour celles des lois du χ^2 , on la trouvera en fin de TD (au verso).

Exercice 9.1 On suppose que la température moyenne au mois d'août à Paris suit une loi normale de moyenne μ et d'écart-type σ inconnus. Durant neuf années consécutives autour de 2000 on a mesuré les valeurs

- 1. Déterminer l'intervalle de confiance (bilatéral) de risque $\alpha = 0,01$ pour la moyenne μ .
- 2. Refaire le calcul en approximant la loi de Student par une loi normale. L'approximation par une loi normale est-elle justifiée?
- 3. Donner un intervalle de confiance bilatéral de risque $\alpha=0,01$ pour l'écart type σ .

Réponse. 1. L'intervalle vu en cours est donné par

$$I = \left[\overline{x} - \frac{s(x)}{\sqrt{n}}t(n-1)_{\alpha/2}, \overline{x} + \frac{s(x)}{\sqrt{n}}t(n-1)_{\alpha/2}\right]$$

avec le fractile de la loi de Student à n-1=8 degrés de libertés, déterminé par $F_{T_{n-1}}(t(n-1)_{\alpha/2})=1-\frac{\alpha}{2}$.

Ici, on veut $\alpha = 0,01$, donc on lit sur la table de Student $t(8)_{0.005} = 3.355$.

On calcule sur l'échantillon la moyenne empirique :

$$\overline{x} = \frac{22 + 19 + 21 + 23 + 20 + 22 + 24 + 18 + 20}{9} = 21$$

et la variance empirique non-biaisée :

$$s(x)^{2} = \frac{1^{2} + 2^{2} + 0^{2} + 2^{2} + 1^{2} + 1^{2} + 3^{2} + 3^{2} + 1^{2}}{8} = 3.75$$

On obtient l'intervalle de confiance de niveau de confiance 99% pour la moyenne :

$$I = \left[21 - \frac{\sqrt{3.75}}{\sqrt{9}}3.355, 21 + \frac{\sqrt{3.75}}{\sqrt{9}}3.355\right] = [18.834, 23.166]$$

2. L'approximation normale correspond à remplacer $t(n-1)_{\alpha/2}$ par le fractile pour la loi normale $z_{\alpha/2}$ tel que $F_{\mathcal{N}(0,1)}(t(n-1)_{\alpha/2}) = 1 - \frac{\alpha}{2}$.

On le trouve sur la feuille de TD 8 (ligne $n=+\infty$ des tables de Student) : $z_{0.005}=2.576$, et on obtiendrai l'intervalle :

$$\left[21 - \frac{\sqrt{3.75}}{\sqrt{9}}2.576, 21 + \frac{\sqrt{3.75}}{\sqrt{9}}2.576\right] = [19.337, 22.663]$$

L'intervalle est significativement plus étroit, cela ne semble pas une approximation raisonnable pour n=8. Formulé différemment, $z_{0.005} \simeq T(8)_{0.165}$ ce qui revient à avoir un intervalle de confiance à 3.3%, au lieu d'un intervalle à 1%, là encore c'est une différence significative. Par ailleurs l'approximation par une loi normale n'est pas justifiée (pas en dessous de n=30 selon le cours, voire n=100).

Exercice 9.2 On veut étudier la proportion p de gens qui boivent du thé chaque jour. On prend donc un échantillon de taille n = 100. Soit N le nombre de personnes dans l'échantillon qui boivent du thé chaque jour.

- 1. Quelle est la loi de N? Quelle est la moyenne de N? Quelle est la variance de N?
- 2. Par quelle loi peut-on approcher la loi de N? En déduire une approximation de la loi de F = N/n.
- 3. On observe une proportion f = 0.1 de gens qui boivent du thé chaque jour. Donner l'intervalle de confiance (bilatéral) pour p, de niveau de confiance 1α pour $1 \alpha = 90\%, 95\%, 99\%$.
- 4. Même question si on n'a pu interroger que n=25 personnes et f=0.2.

Réponse. 1. On peut supposer que la consommation de thé par chaque personne est une variable $\mathcal{B}(1,p)$, donc le nombre N est une somme de n=100 de ces variables indépendantes. N est donc de loi $\mathcal{B}(100,p)$. On a par le cours E(N)=100p,V(N)=100p(1-p).

- 2. Par le TCL, on peut approcher N par une loi normale de même espérance et même variance, c'est à dire une loi $\mathcal{N}(100p, 100p(1-p))$. F = N/n est encore une loi normale déterminée par son espérance E(N/n) = 100p/100 = p et variance $V(N/n) = V(N)/n^2 = \frac{p(1-p)}{100}$. Donc, F = N/n est approximativement de loi $\mathcal{N}(p, \frac{p(1-p)}{100})$.
- 3. Comme $n \ge 100$, on applique l'intervalle de confiance asymptotique vu en cours, avec les notations de l'exercice : $\overline{x} = f$ pour le vecteur x de variable de modèle $\mathcal{B}(1,p)$, au niveau de confiance 1α , il s'agit de l'intervalle :

$$I_{1-\alpha} = \left[f - \frac{z_{\alpha/2}\sqrt{f(1-f)}}{\sqrt{n}}, f + \frac{z_{\alpha/2}\sqrt{f(1-f)}}{\sqrt{n}} \right]$$

En prenant les fractiles des lois normales $z_{\alpha/2}$ pour $\alpha=0.1,0.05,0.01$, on a $z_{0.05}=1.645,z_{0.025}=1.96,z_{0.005}=2.576$ et on trouve l'intervalle de confiance $1-\alpha$ demandés :

$$I_{0.9} = \left[0.1 - \frac{1.645\sqrt{0.1 * 0.9}}{10}, .1 + \frac{1.645\sqrt{0.1 * 0.9}}{10}\right] = [0.0506, 0.1494]$$

$$I_{0.95} = \left[0.1 - \frac{1.96\sqrt{0.1 * 0.9}}{10}, .1 + \frac{1.96\sqrt{0.1 * 0.9}}{10}\right] = [0.0412, 0.1588]$$

$$I_{0.99} = \left[0.1 - \frac{2.576\sqrt{0.1 * 0.9}}{10}, .1 + \frac{2.576\sqrt{0.1 * 0.9}}{10}\right] = [0.0227, 0.1773]$$

4. Pur n = 25, on ne peut pas appliquer un intervalle asymptotique, on applique le seul intervalle vu en cours, l'intervalle de Tchebychev (tronqué à [0,1]:

$$J_{1-\alpha} = \left[f - \frac{1}{\sqrt{4n\alpha}}, f + \frac{1}{\sqrt{4n\alpha}} \right] \cap [0, 1].$$

On obtient:

$$J_{0.9} = \left[0.2 - \frac{1}{10 * \sqrt{.1}}, .2 + \frac{1}{10 * \sqrt{.1}}\right] \cap [0, 1] = [0, 0.52]$$

$$J_{0.95} = \left[0.2 - \frac{1}{10 * \sqrt{.05}}, .2 + -\frac{1}{10 * \sqrt{.05}}\right] \cap [0, 1] = [0, 0.65]$$

$$J_{0.99} = \left[0.2 - \frac{1}{10 * \sqrt{.01}}, .2 + \frac{1}{10 * \sqrt{.01}}\right] \cap [0, 1] = [0, 1]$$

On voit que les intervalles non asymptotiques sont bien moins bons (et dans le dernier cas on a aucune information!). On peut faire bien mieux en python avec l'intervalle de st.binomtest

Exercice 9.3 Vous envisagez l'hypothèse que la moyenne μ du minimum de température annuelle t à Lyon est strictement plus basse que -6.5. Vous avez pris un échantillon de taille n=40, correspondant aux 40 dernières années, et vous mesurez un écart type empirique s=2.2.

- 1. Quel estimateur prenez vous pour tester votre hypothèse? Formulez l'hypothèse nulle H_0 et l'hypothèse alternative H_1 .
- 2. Après évaluation de l'échantillon, quel est le critère de rejet de l'hypothèse nulle si le niveau α du test souhaité est de 10%?
- 3. Vous avez trouvé -7.1 comme moyenne de l'échantillon. Est-ce que vous rejeter l'hypothèse nulle? Quelle est la p-valeur du test? Conclure sur la significativité du résultat du test?
- **Réponse.** 1. Selon la formulation, on peut dire qu'on utilise la moyenne empirique \bar{t} comme estimateur. L'hypothèse nulle sera $H_0: \mu = -6.5$ (l'hypothèse la plus simple en dehors de H_1) et l'hypothèse alternative sera celle qu'on veut tester : $H_1: \mu < -6.5$ (Plus précisément, en utilisant le test de Student du cours, on va utiliser la fonction $\frac{\bar{t}-(-6.5)}{s(t)/\sqrt{n}}$ comme statistique du test, qui sous l'hypothèse de normalité et H_0 est de loi de Student. C'est la raison de son apparition dans le calcul de la p-valeur. Comme on voit cette statistique n'est pas un estimateur, une meilleur question serait de demander la statistique utilisée, plutôt que l'estimateur utilisée, on va aussi utilisée s(t) dans cette formule, qui est un estimateur de la variance).
 - 2. D'après le cours, pour une hypothèse alternative à gauche, la région de rejet du test de Student est de la forme :

$$\bar{t} < -6, 5 - \frac{s(t)}{\sqrt{n}}t(n-1)_{\alpha}$$

Ici, cela donne $t(39)_{.1} = 1.304$ et donc la région de rejet est :

$$\bar{t} < -6, 5 - \frac{2.2}{\sqrt{40}} \cdot 1.304 = -6.954$$

3. Si on a $\bar{t}=-7.1<-6.954$ donc, comme -7.1 est dans la zone de rejet, on rejette l'hypothèse nulle. On conclut donc qu'au niveau $\alpha=.1$, la moyenne empirique observée de l'échantillon corrobore l'hypothèse alternative $\mu<-6.5$.

Pour le test de Student, la p-valeur est

$$p_c(t) = F_{T_{n-1}}(\frac{\overline{t} - (-6.5)}{s(t)/\sqrt{n}}) = F_{T_{n-1}}(\frac{-7.1 + 6.5}{2.2/\sqrt{40}}) = F_{T_{n-1}}(-1.724879) = 1 - F_{T_{39}}(1.724879) \in [0.04, 0.05]$$

d'après la table de Student. (En fait R calcule $F_{T_{n-1}}(-1.724879) = 0.046$). Conclusion : Il y a une forte présomption pour l'hypothèse alternative (elle serait aussi soutenu avec un test de niveau 5%, mais elle n'est pas très forte, car elle est dans la plage 1%-5%).

Exercice 9.4 Je lance 100 fois une pièce de monnaie et je tombe 43 fois sur FACE. Est-ce que la pièce est truquée?

- 1. Avec un test pour la proportion (moyenne pour la loi de Bernoulli) tester l'hypothèse que la proportion des FACE soit différente de 1/2. Rejetez-vous l'hypothèse avec un niveau de confiance de 95%?
- 2. Déterminer la p-valeur du test.

Réponse. 1. L'hypothèse nulle est $H_0: p = 1/2$ (la pièce est équilibré). On prend pour hypothèse alternative $H_1: p \neq 1/2$. Selon le cours, on rejettera l'hypothèse nulle de pièce équilibrée si on a la condition :

$$\left| \overline{X} - \frac{1}{2} \right| > \frac{\sqrt{1/2(1 - 1/2)}}{\sqrt{n}} z_{\alpha/2}$$

Ici, pour un risque $\alpha = 5\%$, le fractile de la loi normale est bien connue $z_{0.025} = 1,96$.

On obtient la condition de rejet

$$\left| \overline{X} - \frac{1}{2} \right| > \frac{1}{20} 1.96 = 0.098.$$

Or $\left| \overline{X} - \frac{1}{2} \right| = .5 - .43 = 0.07 \le 0.098$ donc on ne peut pas rejeter l'hypothèse que la pièce soit équilibré sur la base de l'expérience (au niveau de risque 5%).

2. On a pas calculée en cours cette p-valeur, donc on revient à la définition, c'est le α minimum pour lequel on rejeterai H_0 . Il faut que l'on atteigne exactement la condition limite $z_{\alpha/2} = \frac{\left|\overline{X} - \frac{1}{2}\right|}{\frac{\sqrt{1/2(1-1/2)}}{\sqrt{n}}} = \frac{0.07}{1/20} = 1.4$, Or $F_{\mathcal{N}(0,1)}(z_{\alpha/2}) = 1 - \alpha/2$. Donc on trouve

$$p_c = 2(1 - F_{\mathcal{N}(0,1)}(1.4))$$

On trouve la valeur dans la table du TD6 : $F_{\mathcal{N}(0,1)}(1.4) = 0.9192$ soit $p_c = 2(1 - F_{\mathcal{N}(0,1)}(1.4)) = 0.161$

C'est une valeur $p_c > .1$, donc il n'y a vraiment aucune présomption contre l'hypothèse d'une pièce équilibrée.

Exercice 9.5 Il est d'usage de commercialiser un nouveau médicament seulement si on est confiant à un niveau de 95% qu'il est plus efficace que l'ancien. Avec le médicament A, la durée moyenne de disparition de la douleur était 30 min. On a administré le médicament B à 12 malades et relevé les durées de disparition de la douleur suivantes :

Avec un test pour la moyenne μ de la loi normale $\mathcal{N}(\mu, \sigma^2)$, sans qu'on connaisse l'écart type σ , tester l'hypothèse que la durée de disparition de la douleur avec le médicament B est plus courte que celle de médicament A. Lancez-vous la commercialisation?

Réponse. On applique un test de Student pour tester l'hypothèse nulle d'égalité à la moyenne connue $H_0: \mu = 30$ contre l'hypothèse alternative d'amélioration $H_1: \mu < 30$.

Il faut calculer la moyenne empirique

$$\overline{x} = \frac{25 + 28 + 20 + 32 + 17 + 24 + 41 + 28 + 25 + 30 + 27 + 24}{12} = 26.75$$

et l'écart-type empirique :

$$s(x)^{2} = \frac{1}{n-1} \sum_{k=1}^{n} (x_{k} - \overline{x})^{2}$$

$$= \frac{2 \cdot (25 - \overline{x})^{2} + 2 \cdot (28 - \overline{x})^{2} + (20 - \overline{x})^{2} + (32 - \overline{x})^{2} + (17 - \overline{x})^{2} + 2 \cdot (24 - \overline{x})^{2} + (41 - \overline{x})^{2} + (30 - \overline{x})^{2} + (27 - \overline{x})^{2}}{11}$$

$$= \frac{2 \cdot (1.75)^{2} + 2 \cdot (1.25)^{2} + (6.75)^{2} + (5.25)^{2} + (9.75)^{2} + 2 \cdot (2.75)^{2} + (14.25)^{2} + (3.25)^{2} + (.25)^{2}}{11} = 36.93182$$

La condition de rejet de l'hypothèse nulle est

$$\overline{x} < 30 - \frac{s(x)}{\sqrt{n}}t(n-1)_{\alpha}$$

Au niveau $\alpha = .05$, on trouve dans la table $t(11)_{.05} = 1.796$, cela donne la condition de rejet :

$$\overline{x} < 30 - \sqrt{\frac{36.93182}{12}} 1.796 = 26.849$$

Ici, on a bien 26.75 < 26.849, donc on rejette l'hypothèse ne non-amélioration au niveau de confiance 5%. Selon le critère suggéré par l'exercice, il semble raisonnable de commercialiser le médicament. En complément, on peut calculer la p-valeur

$$p_c = F_{T_{11}}\left(\frac{\overline{x} - 30}{\sqrt{\frac{36.93182}{12}}}\right) = F_{T_{11}}\left(-1.8526\right) = 1 - F_{T_{11}}\left(1.8526\right) \in [0.04, 0.05].$$

On rejette donc l'hypothèse de non-amélioration avec une forte présomption (mais pas une trés forte présomption).

Loi de Khi-deux

Le tableau donne x tel que P(K > x) = p

р	0,999	0,995	0,99	0,98	0,95	0,9	0,8	0,2	0,1	0,05	0,02	0,01	0,005	0,001
ddl														
1	0,0000	0,0000	0,0002	0,0006	0,0039	0,0158	0,0642	1,6424	2,7055	3,8415	5,4119	6,6349	7,8794	10,8276
2	0,0020	0,0100	0,0201	0,0404	0,1026	0,2107	0,4463	3,2189	4,6052	5,9915	7,8240	9,2103	10,5966	13,8155
3	0,0243	0,0717	0,1148	0,1848	0,3518	0,5844	1,0052	4,6416	6,2514	7,8147	9,8374	11,3449	12,8382	16,2662
4	0,0908	0,2070	0,2971	0,4294	0,7107	1,0636	1,6488	5,9886	7,7794	9,4877	11,6678	13,2767	14,8603	18,4668
5	0,2102	0,4117	0,5543	0,7519	1,1455	1,6103	2,3425	7,2893	9,2364	11,0705	13,3882	15,0863	16,7496	20,5150
6	0,3811	0,6757	0,8721	1,1344	1,6354	2,2041	3,0701	8,5581	10,6446	12,5916	15,0332	16,8119	18,5476	22,4577
7	0,5985	0,9893	1,2390	1,5643	2,1673	2,8331	3,8223	9,8032	12,0170	14,0671	16,6224	18,4753	20,2777	24,3219
8	0,8571	1,3444	1,6465	2,0325	2,7326	3,4895	4,5936		13,3616	15,5073	18,1682	20,0902	21,9550	26,1245
9	1,1519	1,7349	2,0879	2,5324	3,3251	4,1682	5,3801	12,2421	14,6837	16,9190	19,6790	21,6660	23,5894	27,8772
10	1,4787	2,1559	2,5582	3,0591	3,9403	4,8652	6,1791	13,4420		18,3070	21,1608	23,2093	25,1882	29,5883
11	1,8339	2,6032	3,0535	3,6087	4,5748	5,5778	6,9887	14,6314		19,6751	22,6179	24,7250	26,7568	31,2641
12	2,2142	3,0738	3,5706	4,1783	5,2260	6,3038	7,8073	15,8120	18,5493	21,0261	24,0540	26,2170	28,2995	32,9095
13	2,6172	3,5650	4,1069	4,7654	5,8919	7,0415	8,6339	,	,	22,3620	25,4715	27,6882	29,8195	34,5282
14	3,0407	4,0747	4,6604	5,3682	6,5706	7,7895	9,4673	18,1508	21,0641	23,6848	26,8728	29,1412	31,3193	36,1233
15	3,4827	4,6009	5,2293	5,9849	7,2609	8,5468	10,3070	19,3107	22,3071	24,9958	28,2595	30,5779	32,8013	37,6973
16	3,9416	5,1422	5,8122	6,6142	7,9616	9,3122	11,1521	20,4651	23,5418	26,2962	29,6332	31,9999	34,2672	39,2524
17	4,4161	5,6972	6,4078	7,2550	8,6718	10,0852	12,0023	21,6146		27,5871	30,9950	33,4087	35,7185	40,7902
18	4,9048	6,2648	7,0149	7,9062	9,3905	10,8649	12,8570	,	25,9894	28,8693	32,3462	34,8053	37,1565	42,3124
19	5,4068	6,8440	7,6327	8,5670	10,1170	11,6509	13,7158	23,9004	27,2036	30,1435	33,6874	36,1909	38,5823	43,8202
20	5,9210	7,4338	8,2604	9,2367	10,8508	12,4426	14,5784	25,0375	28,4120	31,4104	35,0196	37,5662	39,9968	45,3147
21	6,4467	8,0337	8,8972	9,9146	11,5913	13,2396	15,4446		29,6151	32,6706	36,3434	38,9322	41,4011	46,7970
22	6,9830	8,6427	9,5425	10,6000	12,3380	14,0415	16,3140		30,8133	33,9244	37,6595	40,2894	42,7957	48,2679
23	7,5292	9,2604	10,1957	11,2926	13,0905	14,8480	17,1865	28,4288	32,0069	35,1725	38,9683	41,6384	44,1813	49,7282
24	8,0849	9,8862	10,8564	11,9918	13,8484	15,6587	18,0618	29,5533		36,4150	40,2704	42,9798	45,5585	51,1786
25	8,6493	10,5197	11,5240	12,6973	14,6114		18,9398	30,6752	34,3816	37,6525	41,5661	44,3141	46,9279	52,6197
26	9,2221	11,1602	12,1981	13,4086	15,3792	17,2919	19,8202	31,7946		38,8851	42,8558	45,6417	48,2899	54,0520
27	9,8028	11,8076	12,8785	14,1254	16,1514	18,1139	20,7030	32,9117	36,7412	40,1133	44,1400	46,9629	49,6449	55,4760
28	10,3909	12,4613	13,5647	14,8475	16,9279	18,9392	21,5880		,	41,3371	45,4188	48,2782	50,9934	56,8923
29	10,9861	13,1211	14,2565	15,5745	17,7084	19,7677	22,4751	35,1394	39,0875	42,5570	46,6927	49,5879	52,3356	58,3012
30	11,5880	13,7867	14,9535	16,3062	18,4927	20,5992	23,3641	36,2502	40,2560	43,7730	47,9618	50,8922	53,6720	59,7031
40 50	17,9164	20,7065	22,1643 29,7067	23,8376	26,5093 34,7643	29,0505	32,3450 41,4492	47,2685 58,1638	51,8051 63,1671	55,7585	60,4361 72,6133	63,6907 76,1539	66,7660 79,4900	73,4020 86,6608
60	24,6739 31,7383	27,9907 35,5345	37,4849	31,6639 39,6994	43,1880	37,6886 46,4589	50,6406	68,9721	74,3970	67,5048 79,0819	84,5799	88,3794	91,9517	99,6072
70	39,0364	43,2752	45,4417	47,8934	51,7393	55,3289	59,8978	79,7146		90,5312	96,3875	100,4252	104,2149	112,3169
80	46.5199	51.1719	53.5401	56,2128	60,3915	64,2778	69,2069			101.8795	108,0693	112,3288	116,3211	124.8392
90	54,1552	59,1963	61,7541	64,6347	69,1260	73,2911	78,5584		107,5650	113,1453	119,6485	124,1163	128,2989	137,2084
100	61,9179	67,3276	70,0649	73,1422	77,9295	82,3581		111,6667	,	,	131,1417	135,8067	140,1695	149,4493
120	77,7551	83.8516		90,3667		100,6236		132,8063		146,5674	153,9182	158,9502	163,6482	173,6174
140	93,9256	100,6548	, , , , , , , , , , , , , , , , , , , ,	107,8149		119,0293				168,6130	176,4709	181,8403	186,8468	197,4508
160			121,3456							190,5165	198,8464	204,5301	209,8239	221,0190
180	127.0111	,	138,8204			156,1526		195,7434		212,3039	221,0772	227,0561	232,6198	244,3705
200		,	156,4320							233.9943	243.1869	249,4451	255,2642	267,5405
250			200,9386							287,8815	298,0388	304,9396	311,3462	324,8324
300			245,9725						331,7885	341,3951	352,4246	359,9064	366,8444	381,4252
400			337,1553							447,6325	460,2108	468,7245	476,6064	493,1318
500			429,3875					526,4014		553,1268	567,0698	576,4928	585,2066	603,4460
600			522,3651							658,0936	673.2703	683,5156	692,9816	712,7712
700			615,9075							762,6607	778,9721	789,9735	800,1314	821,3468
800			709,8969							866,9114	884,2789	895,9843	906,7862	929,3289
900	,		804,2517	,	,	,	,		,	, , , , , , , , , , , , , , , , , , , ,	,		1013,0364	,
300	77,3030	737,7730	004,2317	013,0207	031,3702	040,0740	004,1123	333,4307	334,7013	370,3030	303,2031	1001,0290	1013,0304	1030,0200

 $Source\ \mathtt{http://www.math.univ-metz.fr/\tilde{}}bonneau/STAT0607/table_khi2_complete.pdf$