Energy Harvesting

Author: Miha Čančula Advisor: doc. dr. Dušan Ponikvar

Faculty of Mathematics and Physics University of Ljubljana

January 4, 2012

Energy Harvesting

Definition

- Self-powered devices
- Small amount of power from the immediate environment
- Grid independence

Use-cases

- Wireless sensors
 - Intelligent buildings
 - ▶ Fire detection
 - Pollution monitoring
- Consumer electronics

Wireless sensor networks

Important characteristics

Electric

- Source resistance
- ▶ Open-circuit voltage V_{oc}
- Short-circuit current I_{sc}
- ► I(V) curve and power curve

Physical

- Efficiency
- Size and weight
- Cost

Photovoltaic cells

- ► Most used today
- ▶ Produce the most power
- ► Variable output

Theory

Photovoltaic effect

- Photon excites electron, creates electron-hole pair
- Electron moves to n-doped side

Characteristics

- ► Efficiency ~ 30%
- ▶ Low V_{oc} ⇒ connected in series
- Close to ideal current source

Thermoelectric generators

Operation

- Electricity from tempareture gradient
- ► Cheap, simple and reliable
- Also used as coolers

Heat sources

- ▶ Waste heat from machines
- Buildings
- ▶ Body heat

Theory

Seebeck effect

- ▶ Thermocouples
- Directed diffusion of charge carriers
- Reversible
- Strongest in semiconductors

Characteristics

- $ightharpoonup V_{oc}$ and R grow linearly with number of couples
- ► Linear *I*(*V*) curve
- ▶ Heat engines limited by Carnot efficiency $\eta = \Delta T / T_{max}$.

Piezoelectric generators

Operation

- Converts mechanical stress to electricity
- ► Harvest energy of vibration

Vibration sources

- Machines
- Human movement
- Buttons in remote controls

Theory

- Crystalline materials
- Asymmetric unit cells
- Coupled Hooke's law and dielectric response

$$S = sT + d^tE$$

 $D = dT + \varepsilon E$

- ▶ Piezoelectric matrix *d* is generally sparse
- Reversible

Characteristics

- lacksquare Low power output $\sim 1 \mathrm{mW}$
- ► High voltage V_{oc}
- Constant power curve

Voltage convertes

- Switched-mode
- ► Step-up or step-down
- Store energy in an inductor
- Switch frequency $\sim 1 \text{MHz}$
- Voltage gain depends only on duty cycle
- ► Efficiency over 90%
- Dynamically adjustable

Step-down (buck) converter

Step-up (boost) converter

Energy storage

Storage elements

- Batteries
- Electric double-layer capacitors

Chargers

- Prevent overcharging and over-discharging
- Limit input and output current

Building automation

- Wireless sensors and switches, grid-powered central nodes
- Various energy sources
- Standards: EnOcean, ZigBee

Phone chargers

- Extend battery life
- Photovoltaic cells
- ▶ \$30 for phone charger, \$500 for laptop charger

Conclusion

Uses

- Wireless sensors
- Batteryless electronics
- Remote locations

Benefits

- ► Low maintenance
- Grid independence
- Convenience

Conversion methods

- ► Photovoltaic cells
- Thermoelectric generators
- Piezoelectrics

Power management

- DC-DC converter
- Storage element and charger
- Batteries or ultracapacitors