Lecture 4

Part 2 Probability and Distributions

ECON2843 1/28

Let's start from something about gambling...

ECON2843 2 / 28

A casino offer you a game of chance: a fair coin is tossed at every stage.

- ► The initial stake begins at \$2 and is *doubled* every time tails appears.
- ► The first time heads appears, the game ends and the player wins whatever is the current stake.
- ▶ Thus the player wins \$2 if heads appears on the first toss, \$4 if tails appears on the first toss and heads on the second, \$8 if tails appears on the first two tosses and heads on the third, and so on.

Question: How much are you willing to pay for playing this game?

ECON2843 3 / 28

St. Petersburg paradox

Your expected return for playing this game:

Expected Return =
$$2 \times \frac{1}{2} + 4 \times \frac{1}{4} + 8 \times \frac{1}{8} + \cdots$$

= $2 \times \frac{1}{2} + 2^2 \times \frac{1}{2^2} + 2^3 \times \frac{1}{2^3} + \cdots$
= $\sum_{n=1}^{\infty} 2^n \cdot \frac{1}{2^n} = \sum_{n=1}^{\infty} 1 = \infty$

Question: Are you willing to pay an infinite number for this game? Let me ask you again, how much are you willing to pay?

Random Experiment

▶ A random experiment is a process that results in one of several possible outcomes, none of which can be predicted with certainty.

For example:

- ▶ Rolling a conventional die. Possible outcomes are 1, 2, 3, 4, 5 or 6.
- Flipping a coin. Possible outcomes are heads or tails.
- \triangleright Outcomes are denoted by O_i .

ECON2843 5 / 28

Sample Space

➤ The sample space of a random experiment is a list of all the possible outcomes and is denoted by

$$S = \{O_1, O_2, O_3, \cdots\}$$

For example, when flipping a coin, $S = \{H, T\}$

- ➤ The outcomes in a sample space must be both mutually exclusive and exhaustive.
 - Mutually exclusive: No two outcomes can both occur at the same time on any single trial of the experiment.
 - Exhaustive: The sample space must include all possible outcomes that can occur.

- 4 ロ ト 4 昼 ト 4 夏 ト 4 夏 ト 9 Q (C)

ECON2843 6 / 28

Probabilities of Outcomes

- ▶ The probability of an outcome occurring on a single trial is written as $P(O_i)$.
- Probabilities associated with the outcomes in a sample space must satisfy two important requirements:
 - ▶ $0 \le P(O_i) \le 1$ for all i.

ECON2843 7 / 28

Classical Approach

The *classical approach* is based on the assumption that the outcomes of an experiment are equally likely to happen.

- Suppose we roll a fair six-sided dice.
- ▶ What is the probability of rolling a 5?
- ► The sample space is $S = \{1, 2, 3, 4, 5, 6\}$.
- Assuming all six outcomes are equally likely, the probability of rolling a 5 is $P(5) = \frac{1}{6}$.
- ▶ Note that in more complicated experiments, we often need to use mathematical rules to count the total number of outcomes.

4□▶ 4□▶ 4 Ē▶ 4 Ē▶ Ē 90

ECON2843 8 / 28

Relative Frequency Approach

The relative frequency approach defines probability as the long-run relative frequency with which an outcomes occurs.

► Suppose we roll a loaded six-sided dice. For example:

9/28

Relative Frequency Approach

The *relative frequency approach* defines probability as the long-run relative frequency with which an outcomes occurs.

- ► Suppose we roll a loaded six-sided dice.
- ▶ What is the probability of rolling a 5?
- ▶ We can't assume equally likely outcomes.
- ▶ But suppose we know that in the past 1000 rolls, a 5 came up 190 times.
- ▶ Based on this past history, we assign the probability of rolling a 5 to be the long-run relative frequency, i.e., $\frac{19}{100} = 0.19$.

ECON2843 10 / 28

Subjective Approach

The *subjective approach* is based on personal judgment, accumulation of knowledge, and experience.

- Suppose we roll a loaded six-sided dice.
- ▶ What is the probability of rolling a 5?
- ▶ We can't assume equally likely outcomes.
- Suppose I have no historical data on the die.
- ➤ So, based on what I read about loaded dice on Wikipedia and also based on how this particular die feels in my hand (weight distribution, size, etc.), I decide that the probability of rolling a 5 is 0.2.

ECON2843 11 / 28

Events

- ▶ A simple event is an individual outcome from the sample space.
- An event is a collection of one or more simple events (or outcomes).

For example, when rolling a die, let A denote the event that an odd number comes up. Then $A = \{1, 3, 5\}$.

4□ > 4□ > 4 = > 4 = > = 900

ECON2843 12 / 28

Probability of an Event

► The probability of an event is equal to the sum of the probabilities of the simple events that make up the event:

$$P(A) = P(1) + P(3) + P(5) = \frac{1}{6} + \frac{1}{6} + \frac{1}{6} = \frac{1}{2}$$

▶ If we assume all simple events have equal probability, we can also determine the probability of an event by counting the number of simple events that make up the event:

$$P(A) = \frac{\text{number of simple events in } A}{\text{number of simple events in } S} = \frac{3}{6} = \frac{1}{2}$$

ECON2843 13 / 28

Combining Events

- ► There are some important ways in which events cane combined that we will encounter repeatedly throughout this course.
- ► Suppose we have two events, A and B.
 - For example, suppose we roll a conventional die and let $A = \{1, 3, 5\}$ denote the event of rolling an odd number and let $B = \{3, 4\}$ denote the event of rolling either a 3 or a 4.

ECON2843 14 / 28

Venn Diagrams

▶ We can use Venn diagrams to visually describe the events.

ECON2843 15 / 28

Intersection

- ▶ The **intersection** of A and B, denoted by $A \cap B$, is the event that happens when both A and B occur.
 - ▶ For example, $A \cap B = \{3\}$.

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

ECON2843 16 / 28

Union

- ▶ The **union** of A and B, denoted by $A \cup B$, is the event that happens when either A and B occur.
 - ▶ For example, $A \cup B = \{1, 3, 4, 5\}$.

◆□▶◆□▶◆壹▶◆壹▶ 壹 める◆

ECON2843 17 / 28

Complement

- ▶ The **complement** of A, denoted A^C , is the event that happens when A does not occur.
 - For example, $A^C = \{2, 4, 6\}.$

4□ > 4□ > 4 = > 4 = > = 90

ECON2843 18 / 28

Intersection and Union

- ▶ Both intersection and union are commutative operators.
- ▶ That is, for any events *A* and *B*, the following are true:

$$A \cap B = B \cap A$$

and

$$A \cup B = B \cup A$$

▶ The order of the events does not matter.

ECON2843 19 / 28

Important Facts

 \triangleright For the sample space S,

$$P(S) = 1$$

 \triangleright For any event A,

$$0 \le P(A) \le 1$$

▶ If A and B are mutually exclusive (i.e., $A \cap B = \emptyset$), then

$$P(A \cap B) = 0$$

ECON2843 20 / 28

Joint Probability

- A joint probability is the probability of the intersection of two or more events.
 - ▶ For example, $P(A \cap B)$ or $P(A \cap B \cap C)$.
- Suppose we are investigating the relationship between how well a mutual fund performs and where the fund manager earned their MBA

ECON2843 21 / 28

Joint Probability

Let's define the following events:

- Let event A_1 be the event that the fund manager graduated from a program ranked in the top 10.
- Let A_2 be the event that the fund manager graduated from a program ranked between 10 and 20.
- ▶ Let A_3 be the event that the fund manager graduated from a program ranked 20 or below.
- ▶ Let B_1 be the event that the fund outperforms the market.
- ▶ Let B_2 be the event that the fund does not outperform the market.

ECON2843 22 / 28

Joint Probability Table

	B_1 : Fund outperforms	B_2 : Fund doesn't outperform	Totals
A_1 : Rank ≤ 10	0.06	0.16	
A_2 : 10 < Rank < 20	0.05	0.13	
A_3 : Rank ≥ 20	0.06	0.54	
Totals			1

$$P(A_1 \cap B_1) = 0.06$$
 $P(A_1 \cap B_2) = 0.16$
 $P(A_2 \cap B_1) = 0.05$ $P(A_2 \cap B_2) = 0.13$
 $P(A_3 \cap B_1) = 0.06$ $P(A_3 \cap B_2) = 0.54$

23 / 28

- ▶ A marginal probability is the unconditional probability of an event, irrespective of all other events.
- Given a properly specified joint probability table, marginal probabilities are calculated by adding across the rows of the table, or adding down the columns of the table.
- ► They are so called because they are calculated in the margins of the table.

ECON2843 24 / 28

	B_1 : Fund outperforms	B_2 : Fund doesn't outperform	Totals
A_1 : Rank ≤ 10	0.06	0.16	0.22
A_2 : 10 < Rank < 20	0.05	0.13	0.18
A_3 : Rank ≥ 20	0.06	0.54	0.60
Totals	0.17	0.83	1

For example:

$$P(A_1) = P(A_1 \cap B_1) + P(A_1 \cap B_2)$$

= 0.06 + 0.16
= 0.22

ECON2843 25 / 28

- ▶ Why can we find $P(A_1)$ by adding across the first row of the table, and similarly for $P(A_2)$ and $P(A_3)$?
- ▶ Recall that B_2 was the complement of B_1 , i.e., $B_2 = B_1^C$.
- So another way of writing what we did when calculating the marginal probability of A_1 is:

$$P(A_1) = P(A_1 \cap B_1) + P(A_1 \cap B_1^{C})$$

ECON2843 26 / 28

- ► The previous statement is always true because of two important properties regarding an event and its complement:
 - ▶ $B_1 \cap B_1^C = \emptyset$, i.e., an event and its complement are mutually exclusive (they can't both occur at the same time).
 - ▶ $B_1 \cup B_1^C = S$, i,e., the union of an event and its complement is the entire sample space.

ECON2843 27 / 28

ECON2843 28 / 28