PS7_Solutions

February 27, 2019

0.0.1 Problem Set 7 Keertana V. Chidambaram

In [1]: import pandas as pd

Problem 1

```
import numpy as np
       from sklearn.model_selection import train_test_split, LeaveOneOut, KFold, cross_val_sc
       from sklearn.linear_model import LogisticRegression
       from sklearn.metrics import classification_report, mean_squared_error
       from sklearn.metrics import confusion_matrix
        import matplotlib.pyplot as plt
       from matplotlib.ticker import MultipleLocator
        import statsmodels.api as sm
        import scipy.interpolate as si
In [2]: data = pd.read_csv('data/strongdrink.txt')
In [3]: data.head()
Out [3]:
          cultivar
                     alco malic
                                   ash
                                         alk magn tot_phen flav nonfl_phen \
                 1 14.23
                            1.71 2.43 15.6
                                                127
                                                        2.80 3.06
                                                                          0.28
       1
                 1 13.20
                           1.78 2.14 11.2
                                               100
                                                        2.65 2.76
                                                                          0.26
       2
                 1 13.16
                            2.36 2.67 18.6
                                                        2.80 3.24
                                                                          0.30
                                                101
       3
                 1 14.37
                                                        3.85 3.49
                            1.95 2.50 16.8
                                                113
                                                                          0.24
       4
                 1 13.24
                            2.59 2.87 21.0
                                                        2.80 2.69
                                                                          0.39
                                               118
                               hue OD280rat proline
          proanth color_int
       0
             2.29
                        5.64 1.04
                                        3.92
                                                 1065
       1
             1.28
                        4.38 1.05
                                        3.40
                                                 1050
       2
             2.81
                        5.68 1.03
                                        3.17
                                                 1185
        3
             2.18
                        7.80 0.86
                                        3.45
                                                 1480
             1.82
                        4.32 1.04
                                        2.93
                                                  735
In [4]: #Solution 1.a.
       y = data['cultivar']
       x_vars = ['alco', 'malic', 'tot_phen', 'color_int']
       X = data[x_vars]
       X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_sta
```

```
In [5]: LogReg = LogisticRegression(solver='newton-cg',multi_class='multinomial').fit(X_train,
        index = pd.DataFrame(['beta0', 'beta1', 'beta2', 'beta3', 'beta4'])
        j1 = pd.DataFrame([LogReg.intercept_[0]] + list(LogReg.coef_[0]))
        j2 = pd.DataFrame([LogReg.intercept_[1]] + list(LogReg.coef_[1]))
        result = pd.concat([index, j1, j2], axis=1)
        result.columns = ['coefficient','j = 1','j = 2']
        result
Out[5]:
          coefficient
                            j = 1
                                       j = 2
        0
                beta0 -24.010989 22.802446
        1
                beta1
                        1.700403 -1.468044
        2
                beta2 -0.265605 -0.333053
                beta3
                        1.223894
                                    0.664012
        3
                beta4
                        0.022756 -0.922712
In [6]: y_pred=LogReg.predict(X_test)
        target_names = ['j=1', 'j=2', 'j=3']
        print(classification_report(y_test, y_pred, target_names=target_names))
              precision
                           recall f1-score
                                               support
         j=1
                   0.87
                              1.00
                                        0.93
                                                     13
         j=2
                   1.00
                             0.90
                                        0.95
                                                    21
         j=3
                   1.00
                             1.00
                                        1.00
                                                    10
  micro avg
                   0.95
                             0.95
                                        0.95
                                                    44
  macro avg
                   0.96
                             0.97
                                        0.96
                                                    44
weighted avg
                                        0.96
                   0.96
                              0.95
                                                     44
In [7]: error_rates = pd.DataFrame([1 - 0.87, 0, 0])
        error_rates.index = target_names
        error_rates.columns = ['error rate']
        error_rates
Out[7]:
             error rate
                   0.13
        j=1
        j=2
                   0.00
        j=3
                   0.00
  j=2,3 are the categories with the lowest error rates. But j=3 has the best f1 score. So j=3 has best
prediction according to this model.
In [8]: data['cultivar'].value_counts()
Out[8]: 2
             71
        1
             59
             46
```

Name: cultivar, dtype: int64

j=2 has the most number of observations but it is not the best predicted group in this model.

```
In [9]: print('Test set MSE = ', mean_squared_error(y_test, y_pred))
Test set MSE = 0.045454545454545456
In [10]: #Solution 1.b.
In [11]: Xvars = X.values
         yvars = y.values
         N_loo = Xvars.shape[0]
         loo = LeaveOneOut()
         loo.get_n_splits(Xvars)
         MSE_vec = np.zeros(N_loo)
         y_pred = np.zeros(N_loo)
         for train_index, test_index in loo.split(Xvars):
             X_train, X_test = Xvars[train_index], Xvars[test_index]
             y_train, y_test = yvars[train_index], yvars[test_index]
             LogReg = LogisticRegression(solver='newton-cg',multi_class='multinomial').fit(X_t;
             y_pred[test_index] = LogReg.predict(X_test)
             MSE_vec[test_index] = y_test != y_pred[test_index]
         MSE_loo = MSE_vec.mean()
         print('test estimate MSE loocv=', MSE_loo)
test estimate MSE loocv= 0.07954545454545454
In [12]: print(classification_report(yvars, y_pred))
              precision
                           recall f1-score
                                              support
                   0.90
                             0.93
                                       0.92
                                                   59
           1
           2
                   0.91
                             0.90
                                       0.91
                                                   71
           3
                   0.96
                             0.93
                                       0.95
                                                   46
                   0.92
                             0.92
                                       0.92
                                                  176
  micro avg
  macro avg
                   0.92
                             0.92
                                       0.92
                                                  176
weighted avg
                             0.92
                                       0.92
                   0.92
                                                  176
```

In [13]: error_rates = pd.DataFrame([1 - 0.90, 1 - 0.91, 1 - 0.96])

error_rates.index = target_names
error_rates.columns = ['error_rate']

error_rates

```
Out[13]:
              error rate
         j=1
                    0.10
         j=2
                    0.09
                    0.04
         j=3
  Clearly, the error rates for all 3 categories have increased as compared to part a.
In [14]: #Solution 1.c.
In [15]: Xvars = X.values
         yvars = y.values
         k = 4
         kf = KFold(n_splits=4, shuffle=True, random_state=10)
         kf.get_n_splits(Xvars)
         MSE_vec_kf = np.zeros(k)
         y_pred = np.zeros(len(yvars))
         k_{ind} = int(0)
         for train_index, test_index in kf.split(Xvars):
             X_train, X_test = Xvars[train_index], Xvars[test_index]
             y_train, y_test = yvars[train_index], yvars[test_index]
             LogReg = LogisticRegression(solver='newton-cg',multi_class='multinomial').fit(X_t:
             y_pred[test_index] = LogReg.predict(X_test)
             err = y_pred[test_index] != y_test
             MSE_vec_kf[k_ind] = err.mean()
             k_ind += 1
         MSE_kf = MSE_vec_kf.mean()
         print('test estimate MSE k-fold (k=4) =', MSE_kf)
test estimate MSE k-fold (k=4) = 0.09090909090909091
In [16]: print(classification_report(yvars, y_pred))
              precision
                           recall f1-score
                                               support
                   0.87
                              0.93
                                        0.90
                                                    59
           1
```

0.89

0.95

0.91

0.91

0.91

71

46

176

176

176

2

3

micro avg

macro avg

weighted avg

0.91

0.96

0.91

0.91

0.91

0.87

0.93

0.91

0.91

0.91

The error rates are the same for j = 2,3 but it has increased for j=1.

Problem 2

```
In [18]: data = pd.read_csv('data/CoolIndex.txt', names = ['age', 'coolness'])
In [19]: data.head()
Out[19]:
                 coolness
            age
        0 11.0 10.981602
        1 11.0 11.364925
        2 11.0 10.190227
        3 11.0 9.903725
        4 11.0 8.997918
In [20]: #Solution 2.a.
        X = data['age']
        y = data['coolness']
        plt.scatter(X, y)
        plt.xlabel('Age')
        plt.ylabel('Coolness Index')
        plt.title('Coolness trends with age')
        plt.show()
```



```
In [21]: #Solution 2.b.
In [22]: data['bin1'] = 1
         data['bin1'] = data['bin1'].where((data.age >= 11) & (data.age < 22), 0)</pre>
         data['bin2'] = 1
         data['bin2'] = data['bin2'].where((data.age >= 22) & (data.age < 40), 0)
         data['bin3'] = 1
         data['bin3'] = data['bin3'].where((data.age >= 40) & (data.age < 59), 0)</pre>
         data['bin4'] = 1
         data['bin4'] = data['bin4'].where((data.age >= 59) & (data.age < 77), 0)
         data['bin5'] = 1
         data['bin5'] = data['bin5'].where((data.age >= 77) & (data.age <= 95), 0)
In [23]: xvars = ['bin1', 'bin2', 'bin3', 'bin4', 'bin5']
         X = data[xvars]
         y = data['coolness']
         result = sm.OLS(y, X).fit()
In [24]: X = data['age']
         y = data['coolness']
         plt.scatter(X, y, label='Scatterplot')
         plt.plot(X, result.predict(), color = 'm', label = "Step function", linewidth=3.0)
         plt.xlabel('Age')
         plt.ylabel('Coolness Index')
```

plt.title('Coolness trends with age')
plt.legend()
plt.show()

In [25]: result.summary()

Out[25]: <class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results

Dep. Variable:	coolness	R-squared:	0.429
Model:	OLS	Adj. R-squared:	0.427
Method:	Least Squares	F-statistic:	178.7
Date:	Wed, 27 Feb 2019	Prob (F-statistic):	3.73e-114
Time:	01:28:08	Log-Likelihood:	-3214.5
No. Observations:	956	AIC:	6439.
Df Residuals:	951	BIC:	6463.
Df Model:	4		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
bin1	20.1025	0.562	35.746	0.000	18.999	21.206
bin2	34.4758	0.431	80.006	0.000	33.630	35.321

bin3	37.6351	0.424	88.814	0.000	36.804	38.467
bin4	35.2254	0.485	72.560	0.000	34.273	36.178
bin5	27.2964	0.936	29.175	0.000	25.460	29.132
========		========			========	=======
Omnibus:		80.1	lO2 Durbir	n-Watson:		1.236
Prob(Omnibu	ıs):	0.0	000 Jarque	e-Bera (JB):		101.718
Skew:		0.7	714 Prob(JB):		8.17e-23
Kurtosis:		3.7	719 Cond.	No.		2.21

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly spec """

Coefficients for bin 1 to 5 correspond to the estimated value for beta 1 to 5 respectively. A 73 year old belongs in bin 4, thus predicted value = 35.2254, alternatively we can also show:

```
In [26]: result.predict([0, 0, 0, 1, 0])
Out[26]: array([35.22540004])
In [27]: #Solution 2.c.
In [28]: data2 = data.groupby('age').mean()
         data2['age'] = data2.index
         knots = [22, 40, 59, 77]
         spl_lin_cool = si.LSQUnivariateSpline(np.array(data2['age']), np.array(data2['coolnes
In [29]: X = data['age']
         y = data['coolness']
         X2 = data2['age']
         plt.scatter(X, y, label='Scatterplot')
         plt.plot(X, result.predict(), color = 'm', label = "Step function", linewidth=3.0)
         plt.plot(X2, spl_lin_cool(X2), color = 'y', label = "Step function", linewidth=3.0)
         plt.xlabel('Age')
         plt.ylabel('Coolness Index')
         plt.title('Coolness trends with age')
         plt.legend()
         plt.show()
```


Predicted coolness of a 73 year-old:

```
In [30]: spl_lin_cool(73)
Out[30]: array(32.86784862)
In [31]: #Solution 2.d.
In [32]: data2 = data.groupby('age').mean()
         data2['age'] = data2.index
         knots = [22, 40, 59, 77]
         spl_cub_cool = si.LSQUnivariateSpline(np.array(data2['age']), np.array(data2['coolnes
In [33]: X = data['age']
         y = data['coolness']
        X2 = data2['age']
         plt.scatter(X, y, label='Scatterplot')
         plt.plot(X, result.predict(), color = 'm', label = "Step function", linewidth=3.0)
         plt.plot(X2, spl_lin_cool(X2), color = 'y', label = "Step function", linewidth=3.0)
         plt.plot(X2, spl_cub_cool(X2), color = 'r', label = "Step function", linewidth=3.0)
         plt.xlabel('Age')
         plt.ylabel('Coolness Index')
         plt.title('Coolness trends with age')
         plt.legend()
         plt.show()
```


Predicted coolness of a 73 year-old:

In [34]: spl_cub_cool(73)

Out[34]: array(32.64230107)

In []: