

Features

- Wide 5V to 40V Input Voltage Range
- Positive or Negative Output Voltage Programming with a Single Feedback Pin
- Current Mode Control Provides Excellent Transient Response
- 1.25V reference adjustable version
- Fixed 220KHz Switching Frequency
- Maximum 5A Switching Current
- SW PIN Built in Over Voltage Protection
- Excellent line and load regulation
- EN PIN TTL shutdown capability
- Internal Optimize Power MOSFET
- High efficiency up to 94%
- Built in Frequency Compensation
- Built in Soft-Start Function
- Built in Thermal Shutdown Function
- Built in Current Limit Function
- Available in TO263-5L package

Applications

- EPC / Notebook Car Adapter
- Automotive and Industrial Boost / Buck-Boost / Inverting Converters
- Portable Electronic Equipment

General Description

The XL6019 regulator is a wide input range, current mode, DC/DC converter which is capable of generating either positive or negative output voltages. It can be configured as either a boost, flyback, SEPIC or inverting converter. The XL6019 built in N-channel power MOSFET and fixed frequency oscillator, current-mode architecture results in stable operation over a wide range of supply and output voltages.

The XL6019 regulator is special design for portable electronic equipment applications.

TO263-5L

Figure 1. Package Type of XL6019

Pin Configurations

Figure 2. Pin Configuration of XL6019 (Top View)

Table 1 Pin Description

Pin Number	Pin Name	Description		
1	GND	Ground Pin.		
2	EN	Enable Pin. Drive EN pin low to turn off the device, drive it		
	EIV	high to turn it on. Floating is default high.		
3	SW	Power Switch Output Pin (SW).		
		Supply Voltage Input Pin. XL6019 operates from a 5V to 40V		
4	VIN	DC voltage. Bypass Vin to GND with a suitably large		
		capacitor to eliminate noise on the input.		
		Feedback Pin (FB). Through an external resistor divider		
5	FB	network, FB senses the output voltage and regulates it. The		
		feedback threshold voltage is 1.25V.		

Function Block

Figure 3. Function Block Diagram of XL6019

Typical Application Circuit

Figure 4. XL6019 Typical Application Circuit (Boost Converter)

Ordering Information

Order Information	Marking ID	Package Type	Packing Type Supplied As
XL6019E1	XL6019E1	TO263-5L	800 Units on Tape & Reel

XLSEMI Pb-free products, as designated with "E1" suffix in the par number, are RoHS compliant.

Absolute Maximum Ratings (Note1)

Parameter	Symbol	Value	Unit	
Input Voltage	Vin	-0.3 to 45	V	
Feedback Pin Voltage	V_{FB}	-0.3 to Vin	V	
EN Pin Voltage	V_{EN}	-0.3 to Vin	V	
Output Switch Pin Voltage	V_{Output}	-0.3 to 60	V	
Power Dissipation	P_{D}	Internally limited	mW	
Thermal Resistance (TO263-5L)	D	30	°C/W	
(Junction to Ambient, No Heatsink, Free Air)	R_{JA}	30	C/ W	
Maximum Junction Temperature	$T_{\rm J}$	-40 to 150	°C	
Operating Junction Temperature	$T_{\rm J}$	-40 to 125	°C	
Storage Temperature	T_{STG}	-65 to 150	°C	
Lead Temperature (Soldering, 10 sec)	T_{LEAD}	260	°C	
ESD (HBM)		>2000	V	

Note1: Stresses greater than those listed under Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operation is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

XL6019 Electrical Characteristics

 $T_a = 25$;unless otherwise specified.

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
System parameters test circuit figure4						
VFB	Feedback	Vin = 12V to20V, Vout=24V	1.231	1.25	1.269	V
	Voltage	Iload=0.1A to 1A	1.231			
ŋ	Efficiency	Vin=12V ,Vout=24V		93	-	%
		Iout=1A	_			

Electrical Characteristics (DC Parameters)

Vin = 12V, GND=0V, Vin & GND parallel connect a 100uf/50V capacitor; Iout=0.5A, T_a = 25; the others floating unless otherwise specified.

Parameters	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Input operation voltage	Vin		5		40	V
Shutdown Supply Current	I_{STBY}	$V_{EN}=0V$		70	100	uA
Quiescent Supply Current	I_q	$V_{EN} = 2V,$ $V_{FB} = V_{in}$		2.5	5	mA
Oscillator Frequency	Fosc		176	220	264	KHz
SW OVP	$V_{\rm SW}$	$V_{FB} = 0V$		60		V
Switch Current Limit	I_L	$V_{FB} = 0V$		5		A
Output Power NMOS	Rdson	Vin=12V, I _{SW} =5A		110	120	mohm
EN Pin Threshold	V_{EN}	High (Regulator ON)		1.4		V
EN FIII THIESHOID		Low (Regulator OFF)		0.8		V
EN Pin Input Leakage	I_{H}	$V_{EN} = 2V (ON)$		3	10	uA
Current	I_{L}	$V_{EN} = 0V (OFF)$		3	10	uA
Max. Duty Cycle	D_{MAX}	$V_{\mathrm{FB}}=0V$		90		%

Typical System Application (Recommend output current safe work range)

Figure 5. Max output current (VOUT=12V)

Figure 6. Max output current (VOUT=24V)

Figure 7. Max output current (VOUT=36V)

Figure8.Max output current(VOUT=48V)

Typical System Application(VIN=12V,VOUT=24V)

Figure 9. XL6019 Typical System Application (VIN=12V, VOUT=24V)

Figure 10. XL6019 System Efficiency Curve (VIN=12V, VOUT=24V)

Typical System Application(VIN=5V,VOUT=12V)

Figure 11. XL6019 Typical System Application (VIN=5V, VOUT=12V)

Figure 12. XL6019 System Efficiency Curve (VIN=5V, VOUT=12V)

Typical System Application(VIN=10~32V,VOUT=36V)

Figure 13. XL6019 Typical System Application (VIN=10~32V, VOUT=36V)

Figure 14. XL6019 System Efficiency Curve (VIN=10~32V, VOUT=36V)

Typical System Application(VIN=20~40V,VOUT=48V)

Figure 15. XL6019 Typical System Application (VIN=20~40V, VOUT=48V)

Figure 16. XL6019 System Efficiency Curve (VIN=20~40V, VOUT=48V)

Typical System Application(VIN=10~30V,VOUT=12V)

Figure 17. XL6019 Typical System Application (VIN=10~30V, VOUT=12V)

Typical System Application(VIN= $10\sim30V$,VOUT= $\pm12V$)

Figure 18. XL6019 Typical System Application (VIN=10~30V, VOUT= ± 12V)

Package Information TO263-5L

Symbol	Dimensions In Millimeters		Dimensions In Inches		
	Min	Max	Min	Max	
A	4.440	4.650	0.175	0.183	
В	0.710	0.970	0.028	0.038	
С	0.360	0.640	0.014	0.025	
C2	1.255	1.285	0.049	0.051	
D	8.390	8.890	0.330	0.350	
Е	9.960	10.360	0.392	0.408	
e	1.550	1.850	0.061	0.073	
F	6.360	7.360	0.250	0.290	
L	13.950	14.750	0.549	0.581	
L2	1.120	1.420	0.044	0.056	

Important Notice

XLSEMI reserve the right to make modifications, enhancements, improvements, corrections or other changes without notice at any time. XLSEMI does not assume any liability arising out of the application or use of any product described herein; neither does it convey any license under its patent rights, nor the rights of others. XLSEMI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using XLSEMI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards. XLSEMI warrants performance of its products to the specifications applicable at the time of sale, in accordance with the warranty in XLSEMI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent XLSEMI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

For the latest product information, go to www.xlsemi.com.