LIS 561 Homework Assignment 5: Propositional Logic

Jialu Wang (jwang282)

Exercise 2.6 Write in propositional logic:

- I will only go to school if I get a cookie now.
- John and Mary are running.
- A foreign national is entitled to social security if he has legal employment or if he has had such less than three years ago, unless he is currently also employed abroad.
- a) p = I will go to school.

q = I get a cookie now.

 $\mathbf{p} \rightarrow \mathbf{q}$

b) p = John is running.

q = Marry is running.

 $\mathbf{p} \wedge \mathbf{q}$

- c) p = A foreign national is entitled to social security.
 - q = A foreign national has legal employment.
 - r = A foreign national has had legal employment less than three years ago.
 - s = A foreign national is currently also employed abroad.

$$((q \lor r) \land \neg s) \rightarrow p$$

Exercise 2.7 Which of the following are formulas in propositional logic:

- $p \rightarrow \neg q$
- $\bullet \neg \neg \land q \lor p$
- \bullet $p \neg q$
- a) yes
- b) no
- c) no

Exercise 2.11 Construct truth tables for the following formulas:

- $(p \to q) \lor (q \to p)$,
- $((p \lor \neg q) \land r) \leftrightarrow (\neg (p \land r) \lor q).$

р	q	(р	\rightarrow	q)	V	(q	\rightarrow	p)
0	0	0	1	0	1	0	1	0
0	1	0	1	1	1	1	0	0
1	0	1	0	0	1	0	1	1
1	1	1	1	1	1	1	1	1

р	q	r	((p	V	\neg	q)	Λ	r)	\leftrightarrow	(¬	(p	Λ	r)	V	q)
0	0	0	0	1	1	0	0	0	0	1	0	0	0	1	0
0	0	1	0	1	1	0	1	1	1	1	0	0	1	1	0
0	1	0	0	0	0	1	0	0	0	1	0	0	0	1	1
0	1	1	0	0	0	1	0	1	0	1	0	0	1	1	1
1	0	0	1	1	1	0	0	0	0	1	1	0	0	1	0
1	0	1	1	1	1	0	1	1	0	0	1	1	1	0	0
1	1	0	1	1	0	1	0	0	0	1	1	0	0	1	1
1	1	1	1	1	0	1	1	1	1	0	1	1	1	1	1

Exercise 2.22 Which of the following pairs are *logically equivalent*? Confirm your answer using truth tables:

(1)
$$\varphi \to \psi$$
 and $\psi \to \varphi$

(2)
$$\varphi \to \psi$$
 and $\neg \psi \to \neg \varphi$

(3)
$$\neg(\varphi \to \psi)$$
 and $\varphi \lor \neg \psi$

(4)
$$\neg(\varphi \to \psi)$$
 and $\varphi \land \neg \psi$

(5)
$$\neg(\varphi \leftrightarrow \psi)$$
 and $\neg\varphi \leftrightarrow \neg\psi$

(6)
$$\neg(\varphi \leftrightarrow \psi)$$
 and $\neg\varphi \leftrightarrow \psi$

(7)
$$(\varphi \wedge \psi) \leftrightarrow (\varphi \vee \psi)$$
 and $\varphi \leftrightarrow \psi$

1) Not equivalent.

φ	ψ	φ	\rightarrow	ψ	ψ	\rightarrow	φ
0	0	0	1	0	0	1	0
0	1	0	1	1	1	0	0
1	0	1	0	0	0	1	1
1	1	1	1	1	1	1	1

2) Equivalent.

φ	ψ	φ	\rightarrow	ψ	Γ	ψ	\rightarrow	7	φ
0	0	0	1	0	1	0	1	1	0
0	1	0	1	1	0	1	1	1	0
1	0	1	0	0	1	0	0	0	1
1	1	1	1	1	0	1	1	0	1

3) Not equivalent.

φ	ψ	コ	(φ	\rightarrow	ψ)	φ	V	\neg	ψ
0	0	0	0	1	0	0	1	1	0
0	1	0	0	1	1	0	0	0	1
1	0	1	1	0	0	1	1	1	0
1	1	0	1	1	1	1	1	0	1

4) Equivalent.

φ	ψ	¬	(φ	\rightarrow	ψ)	φ	Λ	¬	ψ
			0						
0	1	0	0	1	1	0	0	0	1
1	0	1	1	0	0	1	1	1	0
1	1	0	1	1	1	1	0	0	1

5) Not equivalent.

φ	ψ	_	(φ	\leftrightarrow	ψ)	Γ	φ	\leftrightarrow	_	ψ
0	0	0	0	1	0	1	0	1	1	0
0	1	1	0	0	1	1	0	0	0	1
1	0	1	1	0	0	0	1	0	1	0
1	1	0	1	1	1	0	1	1	0	1

6) Equivalent.

 φ	ψ	Г	(φ	\leftrightarrow	ψ)	\neg	φ	\leftrightarrow	ψ
0	0	0	0	1	0	1	0	0	0
0	1	1	0	0	1	1	0	1	1
1	0	1	1	0	0	0	1	1	0
1	1	0	1	1	1	0	1	0	1

7) Equivalent.

φ	ψ	(φ	٨	ψ)	\leftrightarrow	(φ	V	Ψ)	φ	\leftrightarrow	Ψ
0	0	0	0	0	1	0	0	0	0	1	0
0	1	0	0	1	0	0	1	1	0	0	1
1	0	1	0	0	0	1	1	0	1	0	0
1	1	1	1	1	1	1	1	1	1	1	1