area, volume, common height & base

School of Science and Technology, Singapore Mathematics Department

Mr Jo's notes

SCHOOL OF SCIENCE AND TECHNOLOGY, SINGAPORE

Secondary 2 - Congruence and Similarity Notes

Name:	()	Class: S2-0

Unit Enduring Understanding

- 1. **Diagrams** of figures help us to visualise their congruence or similarity.
- 2. Two figures are congruent if and only if their sides and angles remain **invariant** under translation, rotation and reflection.
- 3. Two similar figures have corresponding sides that are **proportional**.

Unit Essential Questions

- 1. How do diagrams facilitate problem solving?
- 2. How do properties of congruent figures remain invariant under transformations?
- 3. How does proportionality undergird the concept of similarity?

Unit Key words:

Ratio, proportion, corresponding, scale, enlargement, reduction, similarity, and congruency

Knowledge & Skills (from O Level Syllabus)

G2. Congruence and similarity

- 2.1. congruent figures
- 2.2. similar figures
- 2.3. properties of similar triangles and polygons:
 - corresponding angles are equal
 - corresponding sides are proportional
- 2.4. enlargement and reduction of a plane figure
- 2.5. scale drawings
- 2.6. solving simple problems involving congruence and similarity
- 2.7. determining whether two triangles are:
 - congruent
 - similar
- 2.8. ratio of areas of similar plane figures
- 2.9. ratio of volumes of similar solids

Teaching To The Big Idea ...

	8							
Lesson sequence in the unit								
Student	Dimensions (Please tick the appropriate boxes)							
Learning	FUNCTIONS	INVARIANCE	NOTATIONS	DIAGRAMS	MEASURES	EQUIVALENC	PROPORTIONALITY	MODELS
Outcomes	_	_		_		E	_	
	F	I	N	D	M	Е	Р	M
Congruent Figures, Tests for		.1		.1				
Congruent Triangles		V		٧				
Similarity, Enlargement and								
Reduction of Plane				$\sqrt{}$			$\sqrt{}$	
Figure, Tests for				,			,	
Similar Triangles								
Ratios and Volumes of Similar							$\sqrt{}$	
Figures				•			v v	

Recap: Properties of Angles

	Property	Abbreviation	Diagram (example)
1	Angles that are adjacent on a straight line add up to 180°.	angles on a straight line	
	Note: supplementary angles refer to 2 angles only.		$\frac{x}{x} = 180^{\circ}$ $\alpha + b + c = 180^{\circ}$
2	Complementary Angles (Angles that are adjacent on a right angle. Complementary angles add up to 90°)	complementary angles	$x + y = 90^{\circ}$
3	Angles in a triangle add up to 180°	angle sum of triangle/ sum of angles in a triangle	$\underline{a} + b + c = 180^{\circ}$
4	Angles at a point add up to 360°	angles at a point	el 45 c c c c c c c c c c c c c c c c c c
5	Vertically opposite angles are equal	vertically opposite angles	x = y
6	Alternate angles are equal (Look out for "Z" pattern)	alternate angles, AB parallel to CD	A x & & & & & & & & & & & & & & & & & &

8	Corresponding angles are equal (Look out for "F" pattern)	corresponding angles, AB parallel to CD	A X B (Fin any direction)
	Interior angles of parallel lines add up to 180°. (Look out for "C" pattern)	interior angles, AB parallel to CD	$ \begin{array}{c c} A & x \\ C & x+y = 180^{\circ} \end{array} $
9	Angles in a quadrilateral add up to 360°	angle sum of quadrilateral/ sum of angles in a quadrilateral	$\underbrace{\mathbf{d}}_{\mathbf{a}} + \mathbf{b} + \mathbf{c} + \mathbf{d} = 360^{\circ}$
1 0	Exterior angles of a triangle add up to the sum of two opposite interior angles	exterior angle of triangle = sum of 2 interior opposite angles	x = a + b
1 1	In an isosceles triangle, the base angles are equal.	base angles of isosceles triangle	X = A
1 2	Sum of angles in an isosceles triangle add up to 180°	angle sum of isosceles triangle/ sum of angles in an isosceles triangle	$\frac{180^{\circ} - z}{2}$ Angle $x = \frac{120^{\circ} - z}{2}$

1 3	In an equilateral triangle, all the angles are equal (60°)	angles of equilateral triangle	x = y = z = 60°
1 4	Sum of interior angles of an <i>n</i> -sided polygon $= (n-2) \times 180^{\circ}$ Sum of exterior angles of an <i>n</i> -sided polygon = 360°		8 2

12. Areas of Similar Figures

Consider a square A of side 2 cm. Notice what happens to the area when you double and treble its sides.

Α

Area = 4 cm²

В

Area = 16 cm^2

Area = 36 cm^2

Ratio of the sides of squares A and B = $\frac{2}{4}$

Ratio of the areas of squares A and B = $\frac{4}{16}$

$$\frac{4}{16} = \left(\frac{2}{4}\right)^2$$

Ratio of the sides of squares A and C = $\frac{2}{6}$

Ratio of the areas of squares A and C = $\frac{4}{36}$

$$\frac{4}{36} = \left(\frac{2}{6}\right)^2$$

Ratio of the areas of A and B = $(Ratio of their sides)^2$

Ratio of the areas of A and C = $(Ratio of their sides)^2$

When two figures are **similar**, the ratio of their areas is equal to the **Square**

of the

Corresponding sides

ratio of any two

of the two figures.

If A_1 and A_2 denote the areas of **similar figures**, and l_1 and l_2 denote their corresponding lengths, we have

dimensions

 l_1 by w_1

dimensions

 l_2 by w_2

 $\frac{A_1}{A_2} = \frac{l_1 \times l_1}{l_2 \times l_2} = \left(\frac{l_1}{l_2}\right)$

How to test that 2 **circles** are similar? If they are similar what would be the ratio of their surface area?

13. Volumes of Similar Figures

Use the same concept to derive the relationship between Volumes of similar figures.

Consider a solid A with side 2 cm. Notice what happens to the volume when you double and treble its sides

Volume = 64 cm³

Ratio of the sides of A and B = $\frac{2}{4}$

Ratio of the volumes of A and B = $\frac{8}{64}$

$$\frac{8}{64} = \left(\frac{2}{4}\right)^3$$

Volume = 216 cm³

Ratio of the sides of A and C = $\frac{2}{6}$

Ratio of the volumes of A and C = $\frac{8}{216}$

$$\frac{8}{216} = \left(\frac{2}{6}\right)^3$$

Ratio of the volumes of A and B = (Ratio of their sides)³

Ratio of the volumes of A and C = (Ratio of their sides)

When two figures are similar, the ratio of their volumes is equal to the

cube

of the ratio

of any two **Corresponding sides** of the two figures.

If V_1 and V_2 denote the volumes of **similar figures**, and l_1 and l_2 denote their corresponding lengths, we have

dimensions l_1 by w_1 by h_1

dimensions l_2 by w_2 by h_2

$$\frac{V_1}{V_2} = \frac{l_1 \times w_1 \times h_1}{l_2 \times w_2 \times h_2}$$
since
$$\frac{l_1}{l_2} = \frac{w_1}{w_2} = \frac{h_1}{h_2}$$
then
$$\frac{V_1}{V_2} = \frac{l_1 \times l_1 \times l_1}{l_2 \times l_2 \times l_2} = \left(\frac{l_1}{l_2}\right)^2$$

How to test that 2 **hemispheres** are similar?

If they are similar what would be the ratio of their (i) surface area and (ii) volume

Note:

Question:

Mass = density x volume

If 2 boxes of different sizes are made up of the same materials, what could you

Summary: Areas and Volumes of Similar Figures

For two geometrically similar solids,

$$\frac{length_1}{length_2} = \frac{height_1}{height_2}$$

$$\frac{area_1}{area_2} = \left(\frac{length_1}{length_2}\right)^2 = \left(\frac{height_1}{height_2}\right)^2$$

$$\frac{volume_1}{volume_2} = \left(\frac{length_1}{length_2}\right)^3 = \left(\frac{height_1}{height_2}\right)^3$$

 $\frac{mass_1}{mass_2} = \frac{volume_1}{volume_2} = \left(\frac{length_1}{length_2}\right)^3 = \left(\frac{height_1}{height_2}\right)^3, \text{ if the two solids have same density.}$

How to remember: Hint:

What is the unit for lengths? what is the unit for areas? what is the unit for volumes?

The diagram shows two geometrically similar containers A and B. The base areas of

the containers A and B are 16 cm^2 and 25 cm^2 respectively.

- 1. what information provided?
- 2. what key words used?
- (a) Find the ratio of the heights of container A and container B.
- 3. any assumptions made?
- (b) Containers A and B are filled with flour. The mass of flour in container B is 7.5 kg. Find the mass of flour in container A.

$$\frac{h_A}{h_B} = \sqrt{\frac{16}{25}}$$

What is the concept?

$$\frac{h_A}{h_B} = \frac{4}{5}$$

Height of container A: Height of container B = 4:5

$$\frac{m_A}{m_B} = \left(\frac{4}{5}\right)^3$$

$$\frac{m_A}{7.5} = \frac{64}{125}$$

$$m_A = \frac{64}{125} \times 7.5$$

$$m_A = 3.84$$

mass of flour in container A is 3.84 kg

Find the unknown area A_2 given that the shapes are similar.

Example 12

Find the unknown volume V the following pairs of similar objects.

Example 13

Two similar cones of the same material have base diameters 24 cm and 16 cm respectively. The volume of the larger cone is 378 cm³ and the mass of the smaller cone 928 g. Calculate (a) the volume of the smaller cone,

(b) the mass of the larger cone.

A cylinder K has a volume of 200 cm³. Calculate the volume of

- (a) a cylinder similar to K but with radius twice that of K,
- (b) a cylinder with height twice that of K and radius one quarter that of K.

Example 15

A right circular cone is divided into 2 portions, L and M, by a plane parallel to the base as shown in the diagram. The height of each portion is k units. Find the ratio of the volume of L to the volume of M.

HINT
$$\frac{Volume\ L}{Volume\ L+M} = \left(\begin{array}{c} \frac{k}{2k} \end{array}\right)^3$$

14. Finding Areas of Triangles Using Ratios

(I) Similar Triangles

Consider two similar triangles $\triangle BCE$ and $\triangle BDA$.

$$\frac{\text{Area of } \Delta BCE}{\text{Area of } \Delta BDA} = \left(\frac{b_1}{b_2}\right)^2$$

OR

$$\frac{\text{Area of } \Delta BCE}{\text{Area of } \Delta BDA} = \left(\frac{h_1}{h_2}\right)^2$$

Example

In the diagram, AED and BEC are straight lines. It is given

2

that *CD* is parallel to *AB* and $CD = \overline{{}^{3}}AB$.

Find the ratio
$$\frac{area\ of\ \Delta ABE}{area\ of\ \Delta DCE}$$
 .

Given

$$\frac{CD}{AB} = \frac{2}{3}$$

Solution:

(II) Triangles Sharing Same Height/ Base

Ratios of Areas of Triangles with Common Heights

Ratios of Triangles with Common Base

Consider $\triangle ABC$, $\triangle ACD$, $\triangle ADE$, $\triangle ABD$, $\triangle ACE$ and $\triangle ABE$ with common height, h.

$$\frac{\text{Area of } \triangle ACD}{\text{Area of } \triangle ADE} = \frac{\frac{1}{2} \times b_2 \times h}{\frac{1}{2} \times b_3 \times h} = \frac{b_2}{b_3}$$

$$\frac{\text{Area of } \Delta ABC}{\text{Area of } \Delta ACE} = \frac{\frac{1}{2} \times b_1 \times h}{\frac{1}{2} \times (b_2 + b_3) \times h} = \frac{b_1}{b_2 + b_3}$$

Consider $\triangle PQR$ and $\triangle SQR$ with common base, b.

$$\frac{\text{Area of } \Delta PQR}{\text{Area of } \Delta SQR} = \frac{\frac{1}{2} \times h_1 \times b}{\frac{1}{2} \times h_2 \times b} = \frac{h_1}{h_2}$$

Key concept:

The triangles have a COMMON (1) Height or (2) Base.

Example

In the diagram, OAB is a triangle. C is a point on AB such

that
$$AC = \frac{2}{5}AB$$
.
Find the ratio $\frac{area\ of\ \Delta OAC}{area\ of\ \Delta OBC}$.

Solution:

In the diagram, ABC, AFD and CDE are straight lines and BF is parallel to CD.

- (a) Show that triangle ABF and triangle ACD are similar.
- (b) Given that $CD = \frac{1}{3}CE$ and

$$BC = \frac{1}{2}AB$$
area of $\triangle ABF$

- (i) area of $\triangle ACD$, area of $\triangle ABF$
- (ii) area of $\triangle ADE$.