QI F = (P+Q+R)(P+Q)(Q+R)Taleing complement of above expre F= (P+Q+R)(P+Q)(Q+R) Applying De-Morgan's law: F = (P+Q+R)+(P+Q)+(Q+R) F= P.Q.R + PQ + QR _____ option D F = Q (PR+P) +QR = Q[(P+P)(P+R)]+QR = Q C P+F)+QR = PQ+QR+QR $= P\overline{Q} + (\overline{Q} + Q)\overline{R}$ = PQ+R - option B = (P+R)(Q+R) _____ Option C Q2] (P+Q)(R+S) 4NS=4 PaR $\gamma_{0} \times = \overline{\gamma} \times + \gamma_{X} = (\overline{\gamma})(\overline{\gamma}) = \overline{\gamma} \times + \overline{\gamma}_{X} = \overline{\gamma}_{X$

D3]
$$\wedge A) \Rightarrow \times \oplus \Upsilon = \times \overline{\Upsilon} + \overline{X} \Upsilon = (\times \overline{\Upsilon})(\overline{X} \Upsilon) = \times \Upsilon + \overline{X} \overline{\Upsilon} = \times \odot$$
 $(X) \Rightarrow \times \oplus \Upsilon = \overline{X} \Upsilon + \overline{X} \Upsilon = (\times \overline{\Upsilon})(\overline{X} \Upsilon) = \times \Upsilon + \overline{X} \overline{\Upsilon} = \times \odot$
 $(X) \Rightarrow \times \oplus \Upsilon = \overline{X} \Upsilon + \overline{X} \Upsilon = \times \oplus \Upsilon$
 $(X) \Rightarrow \times \oplus \Upsilon = \overline{X} \Upsilon + \overline{X} \Upsilon = \times \oplus \Upsilon$
 $(X) \Rightarrow \times \oplus \Upsilon = \overline{X} \Upsilon + \overline{X} \Upsilon = \times \oplus \Upsilon$
 $(X) \Rightarrow \times \oplus \Upsilon = \overline{X} \Upsilon + \overline{X} \Upsilon = \times \oplus \Upsilon$
 $(X) \Rightarrow \times \oplus \Upsilon = \overline{X} \Upsilon + \overline{X} \Upsilon = \times \oplus \Upsilon$
 $(X) \Rightarrow \times \oplus \Upsilon = \overline{X} \Upsilon + \overline{X} \Upsilon = \times \oplus \Upsilon$
 $(X) \Rightarrow \times \oplus \Upsilon = \overline{X} \Upsilon + \overline{X} \Upsilon = \times \oplus \Upsilon$
 $(X) \Rightarrow \times \oplus \Upsilon = \overline{X} \Upsilon + \overline{X} \Upsilon = \times \oplus \Upsilon$
 $(X) \Rightarrow \times \oplus \Upsilon = \overline{X} \Upsilon + \overline{X} \Upsilon = \times \oplus \Upsilon$
 $(X) \Rightarrow \times \oplus \Upsilon = \overline{X} \Upsilon + \overline{X} \Upsilon = \times \oplus \Upsilon$
 $(X) \Rightarrow \times \oplus \Upsilon = \overline{X} \Upsilon + \overline{X} \Upsilon = \times \oplus \Upsilon$
 $(X) \Rightarrow \times \oplus \Upsilon = \overline{X} \Upsilon + \overline{X} \Upsilon =$

1. Overflow Condition

- · Arithmetic operations have a potential to run into a condition known as overflow.
- Overflow occurs with respect to the size of the data type that must accommodate the result.
- Overflow indicates that the result was too large or too small to fit in the original data type.
- · When two signed 2's complement numbers are added, overflow is detected if:
 - 1. both operands are positive and the result is negative, or -
 - 2. both operands are negative and the result is positive.
- · When two unsigned numbers are added, overflow occurs if
 - o there is a carry out of the leftmost bit.

option C is correct

Q5) As per arrangement of MX, c:USB

	B	A	С	
χο	0	0	0	1 → Due to A', 1 → Due to A'c'
XΙ	O	0	1	1 -> One to A'
χ2	G	1	0	0
Xg	0	1	1	1 - One to AB'C
\times 4	- 1	0	0	1 -) Due to A', 1-) Due to A'c'
28	-	0	-	1 -> Due to A1
XC	1	1	O	0
X7	1	1	1	D

00111011= Fx3x4x2x2x1x0x

