This Looks Like That: Deep Learning for Interpretable Image Recognition

NeurIPS 2019

Chuanbin Liu

- □盲人摸象
 - 其触牙者即言象形如芦 菔根
 - ⊙ 其触鼻者言象如杵,
 - 其触腹者言象如甕
 - •, , ,
- □指出典型样
 - prototype
- □ This looks like that

- □作者介绍
- □研究背景
- □当前方法
- □本文方法
- □实验效果
- □ 总结&反思

□作者介绍

- □研究背景
- □当前方法
- □本文方法
- 口实验效果
- □ 总结&反思

- Chaofan Chen
 - Duke University
 - interpretable machine learning
 - NeurIPS2019+NeruIPS2018 Challenge 1st
- Cynthia Rudin
 - Duke University
 - Professor, associate director SAMSI
 - interpretable machine learning
 - Stop Explaining Black Box Machine Learning for High Stakes Decisions and Use Interpretable Models Instead

- □作者介绍
- □研究背景
- □当前方法
- □本文方法
- 口实验效果
- □ 总结&反思

□深度学习黑盒现象

- 对于深度学习,推理结果为相关而非因果。而且准确度越高的模型(比如深度神经网络),其推理结果越没法解释。
- AAAI 2020 Tutorial --- Explainable AI

Black-box AI creates business risk for Industry

Black-box AI creates confusion and doubt

How to Explain? Accuracy vs. Explainability

Learning

- Challenges:
 - Supervised
 - · Unsupervised learning
- Approach:
 - · Representation Learning
 - · Stochastic selection
- Output:
 - Correlation
 - No causation

Why Explainability: Debug (Mis-)Predictions

Why did the network label this image as "clog"?

Why Explainability: Improve ML Model

Generalization error

Generalization error + human experience

Credit: Samek, Binder, Tutorial on Interpretable ML, MICCAI'18

Why Explainability: Verify the ML Model / System

Wrong decisions can be costly and dangerous

"Autonomous car crashes, because it wrongly recognizes ..."

"Al medical diagnosis system misclassifies patient's disease ..."

Credit: Samek, Binder, Tutorial on Interpretable ML, MICCAl'18

Why Explainability: Learn New Insights

"It's not a human move. I've never seen a human play this move." (Fan Hui)

Old promise: "Learn about the human brain."

- The carpal and the proximal pha- langes are extracted for female
- The proximal phalanges of the index finger, middle finger and ring finger are usually separately extracted for male.

Why Explainability: Laws against Discrimination

- □作者介绍
- □研究背景
- □当前方法
- □本文方法
- 口实验效果
- □ 总结&反思

□隐藏层可视化

- DeepDream
 - https://github.com/go ogle/deepdream
- Building_blocks
 - https://distill.pub/201 8/building-blocks/

□语义生产

Western Grebe

Description: This is a large bird with a white neck and a black back in the water.

Class Definition: The Western Grebe is a waterbird with a yellow pointy beak, white neck and belly, and black back.

Explanation: This is a Western Grebe because this bird has a long white neck, pointy yellow beak and red eye.

Laysan Albatross

Description: This is a large flying bird with black wings and a white belly.

Class Definition: The Laysan Albatross is a large seabird with a hooked yellow beak, black back and white belly.

Visual Explanation: This is a Laysan Albatross because this bird has a large wingspan, hooked yellow beak, and white belly.

Laysan Albatross Description: This is a large bird with a white neck and a black back in the water.

Class Definition: The Laysan Albatross is a large seabird with a hooked yellow beak, black back and white belly.

Visual Explanation: This is a Laysan Albatross because this bird has a hooked yellow beak white neck and black back.

□注意力机制

- □作者介绍
- □研究背景
- □当前方法
- □本文方法
- 口实验效果
- □ 总结&反思

- □ 卷积网络 f: 输入图像的大小为 224*224, 通过卷积网络输出的大小为 HWD(e.g H=W=7) 这一部分也就是常见的特征提取作用。
- □ 原型层g_p(prototype layer):网络学习了m 个原型P:这些原型P以卷积层的特征图为输入,经过m 组的卷积网络得到不同 patch 的原型激活值,该原型激活图的大小在本文中为 h=w=1。计算pj 和 z 之间的 L2 距离,并将这个距离转换为相似度分数。
- □ 全连接层 h: 经过前面的提取特征并聚类到原型得到相似度分数后, m 个相似度分数通过 层 h, 得到最终的输出单元, 经过 softmax 之后得到预测概率, 分类图片结果。

- □ 每个类别预先选取10个训练集图片作为 prototype
- □ 经特征提取,学习输入影像特征图和 prototype的特征向量
- □ 相互计算特征图每个patch特征向量与 prptotype特征向量L2距离
- L2距离转换为相似度分数 $g_{\mathbf{p}_{j}}(\mathbf{z}) = \max_{\tilde{\mathbf{z}} \in \text{patches}(\mathbf{z})} \log \left((\|\tilde{\mathbf{z}} \mathbf{p}_{j}\|_{2}^{2} + 1) / (\|\tilde{\mathbf{z}} \mathbf{p}_{j}\|_{2}^{2} + \epsilon) \right)$
- □ 可视化
 - 上采样至原图大小
 - 提取95%阈值的bbox, 可视化
- □ M个相似度分数经全连接+softmax得到分类 结果

Stochastic gradient descent (SGD)

$$\min_{\mathbf{P},w_{\mathrm{conv}}} \frac{1}{n} \sum_{i=1}^{n} \mathrm{CrsEnt}(h \circ g_{\mathbf{P}} \circ f(\mathbf{x_i}), \mathbf{y_i}) + \lambda_1 \mathrm{Clst} + \lambda_2 \mathrm{Sep}, \quad \text{where Clst and Sep are defined by}$$

$$\operatorname{Clst} = \frac{1}{n} \sum_{i=1}^{n} \min_{j: \mathbf{p}_{j} \in \mathbf{P}_{y_{i}}} \min_{\mathbf{z} \in \operatorname{patches}(f(\mathbf{x}_{i}))} \|\mathbf{z} - \mathbf{p}_{j}\|_{2}^{2}; \operatorname{Sep} = -\frac{1}{n} \sum_{i=1}^{n} \min_{j: \mathbf{p}_{j} \notin \mathbf{P}_{y_{i}}} \min_{\mathbf{z} \in \operatorname{patches}(f(\mathbf{x}_{i}))} \|\mathbf{z} - \mathbf{p}_{j}\|_{2}^{2}.$$

- The cross entropy loss (CrsEnt)
 - penalizes misclassification on the training data.
- The minimization of the cluster cost (Clst)
 - encourages each training image to have some latent patch that is close to at least one prototype of its own class
- The minimization of the separation cost (Sep)
 - encourages every latent patch of a training image to stay away from prototypes not of its own class.

Prototype visualization

 smallest rectangular patch at least as large as the 95th-percentile of all activation values in that same map

Figure 8: How to visualize a prototype.

- □作者介绍
- □研究背景
- □当前方法
- 口本文方法
- □实验效果
- □ 总结&反思

Table 1: Top: Accuracy comparison on cropped bird images of CUB-200-2011 Bottom: Comparison of our model with other deep models

Base	ProtoPNet	Baseline	Base	ProtoPNet	Baseline
VGG16	76.1 ± 0.2	74.6 ± 0.2	VGG19	78.0 ± 0.2	75.1 ± 0.4
Res34	79.2 ± 0.1	82.3 ± 0.3	Res152	78.0 ± 0.3	81.5 ± 0.4
Dense121	80.2 ± 0.2	80.5 ± 0.1	Dense161	80.1 ± 0.3	82.2 ± 0.2

Interpretability	Model: accuracy				
None	B-CNN [26]: 85.1 (bb), 84.1 (full)				
Object-level attn.	CAM [53]: 70.5 (bb), 63.0 (full)				
	Part R-CNN[50]: 76.4 (bb+anno.); PS-CNN [16]: 76.2 (bb+anno.);				
	PN-CNN [3]: 85.4 (bb+anno.); DeepLAC [25]: 80.3 (anno.);				
Part-level	SPDA-CNN [49]: 85.1 (bb+anno.); PA-CNN [20]: 82.8 (bb);				
attention	MG-CNN[45]: 83.0 (bb), 81.7 (full); ST-CNN[17]: 84.1 (full);				
attention	2-level attn. [46]: 77.9 (full); FCAN [27]: 82.0 (full);				
	Neural const. [36]: 81.0 (full); MA-CNN [52]: 86.5 (full);				
	RA-CNN [8]: 85.3 (full)				
Part-level attn. +	ProtoPNet (ours): 80.8 (full, VGG19+Dense121+Dense161-based)				
prototypical cases	84.8 (bb, VGG19+ResNet34+DenseNet121-based)				

Table 1: Accuracy comparison on Stanford Cars

Baseline architecture	Accuracy of ProtoPNet	Accuracy of baseline
VGG19	87.4 ± 0.3	85.9 ± 0.2
ResNet34	86.1 ± 0.1	85.4 ± 0.1
DenseNet121	86.8 ± 0.1	89.7 ± 0.1

- □作者介绍
- □研究背景
- □当前方法
- □本文方法
- 口实验效果
- □ 总结&反思

Inspiration

- ⊙可解释模型
- ⊙ 对传统CNN亲和
- ⊙可拓展性
 - MICCAI 2020
- □ To improve
 - L2 distance -> better metric
 - Pre-defined prototype
 - bbox anno.
 - Less diversity in selected image patch

Thanks for your listening

