```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split

# We are reading our data
df = pd.read_csv('/content/India Air Quality Data (2).csv')
```

First 5 rows of our data
df.head(10)

	stn_code	sampling_date	state	location	agency	type	so2	no2	rspm	!
0	150.0	February - M021990	Andhra Pradesh	Hyderabad	NaN	Residential, Rural and other Areas	4.8	17.4	NaN	N
1	151.0	February - M021990	Andhra Pradesh	Hyderabad	NaN	Industrial Area	3.1	7.0	NaN	N
2	152.0	February - M021990	Andhra Pradesh	Hyderabad	NaN	Residential, Rural and other Areas	6.2	28.5	NaN	N
3	150.0	March - M031990	Andhra Pradesh	Hyderabad	NaN	Residential, Rural and other Areas	6.3	14.7	NaN	N
4	151.0	March - M031990	Andhra Pradesh	Hyderabad	NaN	Industrial Area	4.7	7.5	NaN	N
5	152.0	March - M031990	Andhra Pradesh	Hyderabad	NaN	Residential, Rural and other Areas	6.4	25.7	NaN	N
6	150.0	April - M041990	Andhra Pradesh	Hyderabad	NaN	Residential, Rural and other Areas	5.4	17.1	NaN	N
7	151.0	April - M041990	Andhra Pradesh	Hyderabad	NaN	Industrial Area	4.7	8.7	NaN	N
8	152.0	April - M041990	Andhra Pradash	Hyderabad	NaN	Residential, Rural and	4.2	23.0	NaN	N
4										•

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 21513 entries, 0 to 21512
Data columns (total 13 columns):

Data	corumns (cocar is corumns):						
#	Column	Non-Null Count	Dtype				
0	stn_code	12441 non-null	float64				
1	sampling_date	21513 non-null	object				
2	state	21513 non-null	object				
3	location	21513 non-null	object				
4	agency	12015 non-null	object				
5	type	20902 non-null	object				
6	so2	20976 non-null	float64				
7	no2	21112 non-null	float64				
8	rspm	20372 non-null	float64				
9	spm	11789 non-null	float64				
10	location_monitoring_station	20476 non-null	object				
11	pm2_5	0 non-null	float64				
12	date	21512 non-null	object				
dt flast(4/6) shinst(7)							

dtypes: float64(6), object(7)

memory usage: 2.1+ MB

df.describe()

	stn_code		so2	no2	rspm	spm	pm2_5	1
	count	12441.000000	20976.000000	21112.000000	20372.000000	11789.000000	0.0	
		100 000005	7 170001	00 000007	70 100000	000 000070		
sns.li plt.xi plt.yi	ineplot label(' label(' itle('P ticks(r	so2')	so2', y='spm')					


```
plt.figure(figsize=(8, 6))
sns.histplot(data=df, x='so2', bins=20, kde=True)
plt.xlabel('so2')
plt.ylabel('Count')
plt.title('Distribution of so2 Levels')
plt.show()
```



```
plt.figure(figsize=(8, 6))
sns.boxplot(data=df, x='state', y='no2')
plt.xlabel('State')
plt.ylabel('no2')
plt.title('Distribution of no2 across Cities')
plt.xticks(rotation=45)
plt.show()
```



```
plt.figure(figsize=(10, 8))
corr_matrix = df[[ 'no2', 'so2', 'rspm', 'spm']].corr()
sns.heatmap(corr_matrix, annot=True, cmap='coolwarm')
plt.title('Correlation Matrix of Air Quality Parameters')
plt.show()
```

