July 4th

I. Given $F(\vec{x}, y)$ in \mathbb{R}^{n+1} it is C' sps $F(\vec{a}, b) = 0$ sps $\exists y \in (\vec{a}, b) \neq 0$ $\forall \vec{x}$ in $|\vec{x} - \vec{a}| < r$. $\exists ! y : t. |y - b| < r$, and $F(\vec{x}, y) = 0$. denote $y \in (\vec{x}, y)$

If $\partial_y f(\overline{a}, b) = 0$

- (1) $f(x,y) = x^2 + y^2 1 = 0$ not exists
- (2) $f(x,y) = y^2 x^4 = 0$ around (0,0). $y = \pm \chi^2$. exists not unique.

3 exists unique but not diff

$$f(x,y) = y^3 - x^2 = 0$$

P120 #3
Can the equation on $(x^2+y^2+2z^2)^{1/2}$ —cosz=0be solved uniquely for y in terms of $x \in z$ near (o,1,0)?
For z interms of $x \in y$.

 $F_{2}(0,1,0) = \frac{1}{2} (x^{2} + y^{2} + 2z^{2})^{-\frac{1}{2}} \cdot 2y = 1 \neq 0 |_{(0,1,0)}$ $F_{2}(0,1,0) = \frac{1}{2} (x^{2} + y^{2} + 2z^{2})^{-\frac{1}{2}} + \sin z = 0$

#5
Sps F(x,y) is a ('func s.t. F(0 D)=0
What conditions on Fwill guarantee that the equation F(F(x,y),y) can
be solved for y as a C'func of x near (0,0)

G(x,y) = F(F(x,y),y) = 0note G(0,0) = F(0,0) = 0 $G_y(x,y) = \partial_x F(F(x,y), y) \cdot \partial_y F(x,y) + \partial_y F(F(x,y), y)$ $G_y(x,y) = \partial_x F(x,y) \cdot \partial_y F(x,y) + \partial_y F(x,y) + \partial_y F(x,y) \neq 0$

=>(2xF(0,0)+1) =yF(0,0) =0

=>>xF(0,0) = -1 AND 2yF(0,0) = 0.

#2 Show $x^2+2xy+3y^2=C$ can be solved either for y as a C^1 func of x or x as a C^1 func of y (but perhaps not both) near any (a, b) st. $a^2+2ab+3b^2=C$, provided c>0. What happens if c=0 or c<0?

Solution: $F(x,y) = \chi^2 + 2xy + 3y^2 - C = 0$ $\partial y = 2x + 6y \neq 0 \Rightarrow \chi \neq -3y$ $\partial x = 2x + 2y \neq 0 \Rightarrow \chi \neq -y$

if $c \le 0$. either x=-3y or -y then unsolvable.