Computer Graphics -Transforms

Junjie Cao @ DLUT Spring 2017

http://jjcao.github.io/ComputerGraphics/

What in the world is this?

Cube

f transforms x to f(x)

And what is our favorite type of transformation?

But what does it mean?

$$f(u + v) = f(u) + f(v)$$
$$f(au) = af(u)$$

If a map can be expressed as

$$\mathbf{f(u)} = \sigma_{i=1}^{m} u_i \mathbf{a}_i$$

with fixed vectors a_i , then it is linear

- Do you know...
 - what u_1 and u_2 are?
 - what a₁ and a₂ are?

- u is a linear combination of e_1 and e_2
- f(u) is that same linear combination of a_1 and a_2
- a_1 and a_2 are $f(e_1)$ and $f(e_2)$
- by knowing what e_1 and e_2 map to, you know how to map the entire space to 15-462/662, Fall 2016

An example: Coordinate transformations

My friend says, look at 3 o'clock (in their coordinate frame that means one "forward" and one to the "right")!

Where should I look?

Direction in my friend's coordinate frame

$$\underline{f(\mathbf{u})} = f(u_1\hat{\mathbf{i}} + u_2\hat{\mathbf{j}}) = u_1f(\hat{\mathbf{i}}) + u_2f(\hat{\mathbf{j}}) = u_1\begin{bmatrix}1\\1\end{bmatrix} + u_2\begin{bmatrix}-2\\1\end{bmatrix}$$

Same direction in my coordinate frame

Linear maps

- In graphics we often talk about changing coordinate frames (go from local to world to camera to screen coordinates)
- Equally useful to think about maps transforming a space (and everything in it!)

Let's look at some transforms that are important in graphics...

Scale

Is uniform scale a linear transform?

Yes!

 $R_{ heta}$ = rotate counter-clockwise by heta

 R_{θ} = rotate counter-clockwise by θ As angle changes, points move along $\mathit{circular}$ trajectories.

 R_{θ} = rotate counter-clockwise by θ As angle changes, points move along *circular* trajectories. Shape (distancebetween any two points) does not change! (Rigid or isometric transformation)

What does $R_{ heta}$ look like?

- From x, compute α and r
- Write down $R_{\theta}(x)$ as a function of α , θ and r (i.e. vector (r,0) rotated by $\alpha + \theta$)
- Apply sum of angle formulae...
- Fine, but remember, we only need to know how e_1 and e_2 are transformed!

So, what happens to vectors (1, 0) and (0, 1) after rotation by θ ?

$-sin \theta$ cos 0 $sin \theta$ cos 0

Answer:

$$R_{\theta}(\mathbf{e}_1) = (\cos \theta, \sin \theta) = \mathbf{a}_1$$

 $R_{\theta}(\mathbf{e}_2) = (-\sin \theta, \cos \theta) = \mathbf{a}_2$

So:

$$R_{\theta}(\mathbf{x}) = x_1 \mathbf{a}_1 + x_2 \mathbf{a}_2$$

Is rotation linear?

Yes!

Is rotation linear?

Yes!

- Note: all points are rotated about the origin
 - By the way, what are we actually transforming here?
- What if we want to rotate about another point?

Reflection

 $Re_{y}(x)$: reflection about y-axis

Reflections change "handedness"...

Do you know what $Re_y(x)$ looks like?

Is reflection a linear transform?

Do you know how to reflect about an arbitrary axis?

Shear (in x direction)

What does H(x) look like?

$$\boldsymbol{H}_a(\boldsymbol{x}) = x_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} a \\ 1 \end{bmatrix}$$

Is shearing a linear transformation?

Translation

Let's write $T_b(x)$ in the form

$$T_{\boldsymbol{b}}(\boldsymbol{x}) = x_1 \begin{bmatrix} ? \\ ? \end{bmatrix} + x_2 \begin{bmatrix} ? \\ ? \end{bmatrix}$$

such that $T_b(x) = x + b$

Is translation linear?

No. Translation is affine.

Summary of basic transforms

Linear:

$$f(\mathbf{x} + \mathbf{y}) = f(\mathbf{x}) + f(\mathbf{y})$$
$$f(a\mathbf{x}) = af(\mathbf{x})$$

Scale

Rotation

Reflection

Shear

Not linear:

Translation

Affine:

Composition of linear transform + translation (all examples on previous two slides)

$$f(\mathbf{x}) = g(\mathbf{x}) + \mathbf{b}$$

Not affine: perspective projection (will discuss later)

Euclidean: (Isometries)

Preserve distance between points (preserves length)

$$|f(\mathbf{x}) - f(\mathbf{y})| = |\mathbf{x} - \mathbf{y}|$$

Translation

Rotation

Reflection

"Rigid body" transforms are Euclidean transforms that also preserve "winding" (does not include reflection)

When at first you don't succeed....

We'll turn affine transformations into linear ones via

Homogeneous coordinates (aka projective coordinates)

 But first, let's use matrix notation to represent linear transforms

$$\begin{bmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{bmatrix} \begin{bmatrix}
x_1 \\
x_2
\end{bmatrix} = \begin{bmatrix}
a_{11}x_1 + a_{12}x_2 \\
a_{21}x_1 + a_{22}x_2
\end{bmatrix}
= x_1 \begin{bmatrix}
a_{11} \\
a_{21}
\end{bmatrix} + x_2 \begin{bmatrix}
a_{12} \\
a_{22}
\end{bmatrix} = x_1 a_1 + x_2 a_2
f(x) = \sum_{i=1}^{m} x_i a_i = Ax$$

Linear transforms as matrix-vector products Change of coordinate systems

$$f(\mathbf{x}) = x_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + x_2 \begin{bmatrix} -2 \\ 1 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & -2 \\ 1 & 1 \end{bmatrix} \mathbf{x}$$

Non-uniform scale

$$S(\mathbf{x}) = x_1 a \mathbf{e}_1 + x_2 b \mathbf{e}_2$$
$$= \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \mathbf{x}$$

$$R_{\theta}(\mathbf{e}_{1}) = (\cos \theta, \sin \theta) = \mathbf{a}_{1}$$

$$R_{\theta}(\mathbf{e}_{2}) = (-\sin \theta, \cos \theta) = \mathbf{a}_{2}$$

$$R_{\theta}(\mathbf{x}) = x_{1}\mathbf{a}_{1} + x_{2}\mathbf{a}_{2}$$

$$= \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \mathbf{x}$$

Shear

Translation
Not a linear map*...

*when we're using Cartesian coordinates

2D homogeneous coordinates (2D-H)

Key idea: lift 2D points to a 3D space

So the point
$$(x_1, x_2)$$
 is represented as the 3-vector: $\begin{bmatrix} x_1 \\ x_2 \\ 1 \end{bmatrix}$

And 2D transforms are represented by 3x3 matrices

For example: 2D rotation in homogeneous coordinates:

$$\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ 1 \end{bmatrix}$$

Q: how do the transforms we've seen so far affect the last coordinate?

Translation in 2D-H coords

Translation expressed as 3x3 matrix multiplication:

$$T(x) = x + b = \begin{bmatrix} 1 & 0 & b_1 \\ 0 & 1 & b_2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ 1 \end{bmatrix} = \begin{bmatrix} x_1 + b_1 \\ x_2 + b_2 \\ 1 \end{bmatrix}$$

In homogeneous coordinates, translation is a linear transformation!

Homogeneous/projective coordinates

Homogeneous Coordinates & Projective geometry

The value of WW affects the size (a.k.a. scale) of the image.

Summary so far...

- We know how to transform (scale, rotate, reflect, shear, translate)
 2D points and vectors
 - All these transforms are linear maps
 - expressed as matrix-vector products when
 - using (slightly) higher-dimensional homogenous coordinates

- How about other types of transforms (e.g. rotate about an arbitrary point)?
- How about 3D transforms?

Onto more complex transforms

- How would you transform this object such that it gets twice as large?
 - - but remains where it is...

Composition of basic transforms

Scale by 0.5, then translate by (3,1)

Translate by (3,1), then scale by 0.5

Note 1: order of composition matters!

Note 2: common source of bugs!

How do we compose linear transforms?

Compose linear transforms via matrix multiplication.

Enables simple & efficient implementation: reduce complex chain of transforms to a single matrix.

How would you perform these transformations?

Common pattern: rotation about point x

Q: In homogenous coordinates, what does the corresponding transformation matrix look like? 5-462/662, Fall 2016

Exercise

Reflection about an arbitrary line

Moving to 3D (and 3D-H)

Represent 3D transforms as 3x3 matrices and 3D-H transforms as 4x4 matrices

Scale:

$$\mathbf{S_s} = \begin{bmatrix} \mathbf{S}_x & 0 & 0 \\ 0 & \mathbf{S}_y & 0 \\ 0 & 0 & \mathbf{S}_z \end{bmatrix} \quad \mathbf{S_s} = \begin{bmatrix} \mathbf{S}_x & 0 & 0 & 0 \\ 0 & \mathbf{S}_y & 0 & 0 \\ 0 & 0 & \mathbf{S}_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Shear (in x, based on y,z position):

$$\mathbf{H}_{x,\mathbf{d}} = \begin{bmatrix} 1 & \mathbf{d}_y & \mathbf{d}_z \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad \mathbf{H}_{x,\mathbf{d}} = \begin{bmatrix} 1 & \mathbf{d}_y & \mathbf{d}_z & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Translate:

$$\mathbf{T_b} = \begin{bmatrix} 1 & 0 & 0 & \mathbf{b}_x \\ 0 & 1 & 0 & \mathbf{b}_y \\ 0 & 0 & 1 & \mathbf{b}_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Rotations in 3D

Rotation about x axis:

$$\mathbf{R}_{x,\theta} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta \\ 0 & \sin\theta & \cos\theta \end{bmatrix}$$

Rotation about y axis:

$$\mathbf{R}_{y,\theta} = \begin{bmatrix} \cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta \end{bmatrix}$$

Rotation about z axis:

$$\mathbf{R}_{z,\theta} = \begin{bmatrix} \cos \theta & -\sin \theta & 0\\ \sin \theta & \cos \theta & 0\\ 0 & 0 & 1 \end{bmatrix}$$

View looking down -x axis:

View looking down -y axis:

Commutativity of Rotations—2D

• In 2D, order of rotations doesn't matter:

Commutativity of Rotations—3D

- What about in 3D?
- IN-CLASS ACTIVITY:
 - Rotate 90° around Y, then 90° around Z, then 90° around X
 - Rotate 90° around Z, then 90° around Y, then 90° around X
 - (Was there any difference?)

Rotation about an arbitrary axis

To rotate by θ about w:

- 1. Form orthonormal basis around w (see u and v in figure)
- 2. Rotate to map w to [0 0 1] (change in coordinate space)

$$\mathbf{R}_{uvw} = \begin{bmatrix} \mathbf{u}_x & \mathbf{u}_y & \mathbf{u}_z \\ \mathbf{v}_x & \mathbf{v}_y & \mathbf{v}_z \\ \mathbf{w}_x & \mathbf{w}_y & \mathbf{w}_z \end{bmatrix}$$

$$\mathbf{R}_{uvw}\mathbf{u} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$$

$$\mathbf{R}_{uvw}\mathbf{v} = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}$$

$$\mathbf{R}_{uvw}\mathbf{w} = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$$

- 3. Perform rotation about z: $R_{z,\theta}$
- 4. Rotate back to original coordinate space: \mathbf{R}_{uvw}^{T}

$$\mathbf{R}_{uvw}^{-1} = \mathbf{R}_{uvw}^T = egin{bmatrix} \mathbf{u}_x & \mathbf{v}_x & \mathbf{w}_x \\ \mathbf{u}_y & \mathbf{v}_y & \mathbf{w}_y \\ \mathbf{u}_z & \mathbf{v}_x & \mathbf{w}_z \end{bmatrix}$$

$$R_{\mathbf{w},\theta} = R_{\mathbf{u}\mathbf{v}\mathbf{w}}^{\mathbf{T}} R_{z,\theta} R_{\mathbf{u}\mathbf{v}\mathbf{w}}$$

Rotation from Axis/Angle

 Alternatively, there is a general expression for a matrix that performs a rotation around a given axis u by a given angle θ:

$$\begin{bmatrix} \cos\theta + u_x^2 (1 - \cos\theta) & u_x u_y (1 - \cos\theta) - u_z \sin\theta & u_x u_z (1 - \cos\theta) + u_y \sin\theta \\ u_y u_x (1 - \cos\theta) + u_z \sin\theta & \cos\theta + u_y^2 (1 - \cos\theta) & u_y u_z (1 - \cos\theta) - u_x \sin\theta \\ u_z u_x (1 - \cos\theta) - u_y \sin\theta & u_z u_y (1 - \cos\theta) + u_x \sin\theta & \cos\theta + u_z^2 (1 - \cos\theta) \end{bmatrix}$$

Just memorize this matrix! :-)

Complex Analysis—Motivation

- Natural way to encode geometric transformations in 2D, 3D
- Simplifies notation / thinking / debugging
- Moderate reduction in computational cost/bandwidth/storage
- Fluency with complex analysis can lead into deeper/novel solutions to problems...

DON'T: Think of these numbers as "complex."

DO: Imagine we're simply defining additional operations (like dot and cross).

Imaginary Unit

More importantly: obscures geometric meaning.

Imaginary Unit—Geometric Description

Symbol 1 denotes quarter-turn in the counter-clockwise direction.

Complex Numbers

- Complex numbers are then just 2-vectors
- Instead of e₁,e₁, use "1" and "i" to denote the two bases
- Otherwise, behaves exactly like a real 2-dimensional space

 ...except that we're going to define a useful new notion of the product between two vectors.

Complex Arithmetic

Same operations as before, plus one more:

- Complex multiplication:
 - angles add
 - magnitudes multiply

"POLAR FORM"*:

$$z_1 := (r_1, \theta_1)$$
 have to be more careful here! $z_2 := (r_2, \theta_2)$ \downarrow $z_1 z_2 = (r_1 r_2, \theta_1 + \theta_2)$

Complex Product—Rectangular Form

Complex product in "rectangular" coordinates (1, ι):

$$z_1 = (a+b\imath)$$
 $z_2 = (c+d\imath)$
 $z_1z_2 = ac + ad\imath + bc\imath + bd\imath^2 = (ac-bd) + (ad+bc)\imath.$

The second representation of two quarter turns—

The same as -1 and two quarter turns—

Same as -1 and

- We used a lot of "rules" here. Can you justify them geometrically?
- Does this product agree with our geometric description (last slide)?

Complex Product—Polar Form

Perhaps most beautiful identity in math:

$$e^{i\pi} + 1 = 0$$

Specialization of Euler's formula:

$$e^{i\theta} = \cos(\theta) + i\sin(\theta)$$

Can use to "implement" complex product:

$$z_1 = ae^{i\theta}, \quad z_2 = be^{i\phi}$$

$$z_1 z_2 = abe^{i(\theta + \phi)}$$

(as with real exponentiation, exponents add)

Leonhard Euler (1707–1783)

- · Most prolific mathematician of all time
- Opera Omnia—1 vol./yr. starting 1911
- Still going! Now ~75 vols., 25k pages
- 228 papers posthumously
- · Many later works while blind
- . (Work was also good ...)

[source: William Dunham]

2D Rotations: Matrices vs. Complex

Suppose we want to rotate a vector u by an angle θ , then by an angle φ .

REAL / RECTANGULAR	COMPLEX / POLAR		
$\mathbf{u} = (x, y) \qquad \mathbf{A} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$	$u=re^{i\alpha}$		
$\mathbf{B} = \begin{bmatrix} \cos\phi & -\sin\phi \\ \sin\phi & \cos\phi \end{bmatrix}$	$a = e^{i\theta}$ $b = e^{i\phi}$		
$\mathbf{A}\mathbf{u} = \begin{bmatrix} x\cos\theta - y\sin\theta \\ x\sin\theta + y\cos\theta \end{bmatrix}$	$abu = re^{i(\alpha+\theta+\phi)}$.		
$\mathbf{BAu} = \begin{bmatrix} (x\cos\theta - y\sin\theta)\cos\phi - (x\sin\theta + y\cos\theta)\sin\phi \\ (x\cos\theta - y\sin\theta)\sin\phi + (x\sin\theta + y\cos\theta)\cos\phi \end{bmatrix}$	Or if we want rectangular coords:		
$= \cdots$ some trigonometry $\cdots =$	$= r \left[\begin{array}{c} \cos(\alpha + \theta + \phi) \\ \sin(\alpha + \theta + \phi) \end{array} \right]$		
$\mathbf{BAu} = \left[\begin{array}{c} x\cos(\theta + \phi) - y\sin(\theta + \phi) \\ x\sin(\theta + \phi) + y\cos(\theta + \phi) \end{array} \right].$			
(and simplification is not always this obvious.)			

Pervasive theme in graphics:

Sure, there are often many "equivalent" representations.

...But why not choose the one that makes life easiest*?

Quaternions

(1805-1865)

- TLDR: Kind of like complex numbers but for 3D rotations
- Weird situation: can't do 3D rotations w/ only 3 components!

Quaternions in Coordinates

- Hamilton's insight: in order to do 3D rotations in a way that mimics complex numbers for 2D, actually need FOUR coords.
- One real, three imaginary:

$$H := \mathrm{span}(\{1, \imath, \jmath, k\})$$

$$q = a + b\imath + c\jmath + dk \in \mathbb{H}$$

Quaternion product determined by

$$i^2 = j^2 = k^2 = ijk = -1$$

together w/"natural" rules (distributivity, associativity, etc.)

WARNING: product no longer commutes!

For
$$q, p \in \mathbb{H}$$
, $qp \neq pq$

Noncommutativity of quaternion multiplication

×	1	i	j	<i>k</i>	
1	1	j	j	k	
i	i	-1	k	- <i>j</i>	
j	j	- <i>k</i>	-1	i	
<i>k</i>	k	j	- <i>j</i>	-1	

(Will understand this a lot better when we study transformations.)

Quaternion Product / Hamilton product

Given two quaternions

$$q = a_1 + b_1 i + c_1 j + d_1 k$$

$$p = a_2 + b_2 i + c_2 j + d_2 k$$

Can express their product as

$$qp = a_1a_2 - b_1b_2 - c_1c_2 - d_1d_2 + (a_1b_2 + b_1a_2 + c_1d_2 - d_1c_2)i + (a_1c_2 - b_1d_2 + c_1a_2 + d_1b_2)j + (a_1d_2 + b_1c_2 - c_1b_2 + d_1a_2)k$$

...fortunately there is a (much) nicer expression.

Quaternions—Scalar + Vector Form

- If we have four components, how do we talk about pts in 3D?
- Natural idea: we have three imaginary parts—why not use these to encode 3D vectors?

$$(x,y,z)\mapsto 0+xi+yj+zj$$

Alternatively, can think of a quaternion as a pair

(scalar, vector)
$$\in \mathbb{H}$$

 \mathbb{R} \mathbb{R}^3

Quaternion product then has simple(r) form:

$$(a, \mathbf{u})(b, \mathbf{v}) = (ab - \mathbf{u} \cdot \mathbf{v}, a\mathbf{v} + b\mathbf{u} + \mathbf{u} \times \mathbf{v})$$

For vectors in R3, gets even simpler:

$$\mathbf{u}\mathbf{v} = \mathbf{u} \times \mathbf{v} - \mathbf{u} \cdot \mathbf{v}$$

Conjugation & Norm

To define it, let q=a+bi+cj+dk be a quaternion. The **conjugate** of q is the quaternion $q^*=a-bi-cj-dk$. It is denoted by q^* , q^* , or \tilde{q} .

Conjugation is an <u>involution</u>, meaning **that it is its own inverse**, so conjugating an element twice returns the original element.

$$\|q\| = \sqrt{qq^*} = \sqrt{q^*q} = \sqrt{a^2 + b^2 + c^2 + d^2}$$

3D Transformations via Quaternions

- · Main use for quaternions in graphics? Rotations.
- Consider vector x ("pure imaginary") and unit quaternion q:

$$x \in \operatorname{Im}(\mathbb{H})$$

 $q \in \mathbb{H}, \quad |q|^2 = 1$

Rotation from Axis/Angle, Revisited

Given axis u. anale θ. auaternion a representing rotation is

Slightly easier to remember (and manipulate) than matrix:

$$\begin{bmatrix} \cos\theta + u_x^2 \left(1 - \cos\theta\right) & u_x u_y \left(1 - \cos\theta\right) - u_z \sin\theta & u_x u_z \left(1 - \cos\theta\right) + u_y \sin\theta \\ u_y u_x \left(1 - \cos\theta\right) + u_z \sin\theta & \cos\theta + u_y^2 \left(1 - \cos\theta\right) & u_y u_z \left(1 - \cos\theta\right) - u_x \sin\theta \\ u_z u_x \left(1 - \cos\theta\right) - u_y \sin\theta & u_z u_y \left(1 - \cos\theta\right) + u_x \sin\theta & \cos\theta + u_z^2 \left(1 - \cos\theta\right) \end{bmatrix}$$

More Quaternions and Rotation

- Don't have time to cover everything, but...
- Quaternions provide some very nice utility/perspective when it comes to rotations:
 - Spherical linear interpolation ("slerp")
 - Hopf fibration / "belt trick"

Where else are (hyper-)complex numbers useful in computer graphics?

Complex #s: Language of Conformal Maps

Useless-But-Beautiful Example: Fractals

Defined in terms of iteration on (hyper)complex numbers:

Thanks