بسمه تعالی دانشکده مهندسی برق و کامپیوتر دانشگاه صنعتی اصفهان

زبانهای توصیف سختافزار و مدارات – نیمسال دوم ۹۹-۱۳۹۸ تکلیف شماره سه – تحویل یکشنبه ۱۳۹۹/۲/۲۶

> مریم سعید مهر ش.د.: ۹۶۲۹۳۷۳

* در ابتدا توصیه می *کن*م حتماً ا<mark>ز این لینک</mark> دیدن فرمایئد.

در این تکلیف قرار است که مدارهای طراحی شده در تکلیف دوم را با استفاده از نرم افزار ISE سنتز کرده و گزارشی از نتایج سنتز ارائه کنید. برای هر یک از طرح ها از تراشه مشخصات زیر به عنوان هدف سنتز استفاده کنید.

Family	Spartan6
Device	XC6SLX16
Package	CSG324
Speed	-3

برنامه مربوط به هر یک از سوالات تکلیف را با استفاده از یک ماژول وریلاگ و بصورت Top-module تعریف نموده و سپس آن را سنتز کنید. نتایج و مشاهدات خود حاصل از فرایند سنتز را که بصورت گزارش کاملی در بخش Summary ارائه شده، بصورت یک گزارش کامل توضیح دهید. این اطلاعات شامل کلیه اطلاعات واحدهای استفاده شده از تراشه مربوطه (اعم از تعداد فلیپ فلاپ ها واحدهای LUT و ...)، اطلاعات Timing و فرکانس کلاک و کلیه مواردی است که در گزارش حاصل از سنتز برنامه شما تولید میشود. توجه کنید که برای این تکلیف شما تنها گزارشی به صورت PDF ارسال می کنید. در صورتی که کد طراحی شده توسط شما در تکلیف دوم قابل سنتز نبود می توانید آنرا تغییر دهید. در این صورت در گزارش خود کد جدید را درج کنید.

پس در ادامه صرفاً موارد ذیل برای هر سؤال آورده میشود :

- 1. اطلاعات واحدهای استفاده شده از تراشه (اعم از تعداد FF, LUT و)
 - 2. اطلاعات Timing
 - 3. فركانس كلاك
 - 4. کد (در صورت تغییر نسبت به تکلیف دوم) به همراه با دلیل اصلاح
 - 5. تصاویری از مدار RT بعد از سنتز

** واحدهای استفاده شده از تراشه:

* Design	n Summa					*
Top Level Output File Name						
			····gc			
Primitive and Black Box Usage:						
# BELS	: 11					
# GND	: 1					
# INV	: 1					
# LUT2	: 3					
# LUT6	: 6					
<pre># FlipFlops/Latches # FDCE</pre>	: 7 : 7					
# FDCE # Clock Buffers	: 1					
# BUFGP	: 1					
	: 10					
# IBUF	: 2					
# OBUF	: 8					
Device utilization summary:						
Selected Device : 6slx16csg324-3						
Secretary Service : OSTATOCSGSET S						
Slice Logic Utilization:						
Number of Slice Registers:				18224		
Number of Slice LUTs:				9112		
Number used as Logic:		10	out of	9112	0 %	
Slice Logic Distribution:						
Number of LUT Flip Flop pairs used		10				
Number with an unused Flip Flop	:		out of			
Number with an unused LUT:			out of		0 6	
Number of fully used LUT-FF pair	rs:		out of	10	70 %	
Number of unique control sets:		2				
IO Utilization:						
Number of IOs:		11				
Number of bonded IOBs:		11	out of	232	4 6	
Specific Feature Utilization:						
Number of BUFG/BUFGCTRLs:		1	out of	16	6 %	
Partition Resource Summary:						
No Partitions were found in this	design					
	_					

Timing Report NOTE: THESE TIMING NUMBERS ARE ONLY A SYNTHESIS ESTIMATE. FOR ACCURATE TIMING INFORMATION PLEASE REFER TO THE TRACE REPORT GENERATED AFTER PLACE-and-ROUTE. Clock Information: -----| Clock buffer(FF name) | Load | -----+ | BUFGP | 7 | -----+ Asynchronous Control Signals Information: No asynchronous control signals found in this design Timing Summary: Speed Grade: -3 Minimum period: 2.712ns (Maximum Frequency: 368.745MHz) Minimum input arrival time before clock: 3.252ns Maximum output required time after clock: 3.820ns Maximum combinational path delay: No path found Timing Details: _____ All values displayed in nanoseconds (ns) ______ Timing constraint: Default period analysis for Clock 'clk' Clock period: 2.712ns (frequency: 368.745MHz) Total number of paths / destination ports: 43 / 7 Delay: 2.712ns (Levels of Logic = 2) Source: cnt_out_2 (FF) Destination: out (FF) Source Clock: clk rising Destination Clock: clk rising Data Path: cnt_out_2 to out Gate Net Cell:in->out fanout Delay Delay Logical Name (Net Name) FDCE:C->Q 7 0.447 1.138 cnt_out_2 (cnt_out_2) LUT6:I0->O 2 0.203 0.617 cnt_out[6]_GND_1_o_LessThan_3_o_inv_inv11 (cnt_out[6]_GND_1_o_LessThan_3_o_inv_inv) LUT2:I1->O 1 0.205 0.000 Mmux_GND_1_o_cnt_out[6]_MUX_15_o11 (GND_1_o_cnt_out[6]_MUX_15_o) FDCE:D 0.102

Total

2.712ns (0.957ns logic, 1.755ns route)

(35.3% logic, 64.7% route)

Cross Clock Doma	ains Report	:						
Clock to Setup on destination clock clk								
	Src:Rise Dest:Rise	Src:Fall Dest:Rise	Src:Rise Dest:Fall	Src:Fall Dest:Fall				
	2.712	ĺ		İ				

Total REAL time to Xst completion: 8.00 secs Total CPU time to Xst completion: 7.66 secs

-->

Total memory usage is 4510308 kilobytes

```
timescale 1ns / 1ps
module PCounter #(parameter MAX SIZE = 7,parameter [MAX SIZE-1:0] p = 59) (
      input enable,
      input clk,
      input reset,
      output reg [MAX_SIZE-1:0] cnt_out=0,
      output reg out=0
      );
      always @(posedge clk,negedge reset)
      begin: main
             if (reset==0)
                    cnt out <= 0;
             else
             begin
                    out <= 0:
                    if (enable==1)
                    begin
                          if (cnt_out < p)</pre>
                                 cnt out <= cnt out + 1;
                          else
                          begin
                                 out <= 1;
                                 cnt out <= 0;
                          end
                    end
                    else
                          disable main;
             end
      end
endmodule
```

دلیل اصلاح کد

این کد نسبت به کدی که در تکلیف سری دوم آپلود شد ، یک ورودی enable اضافه تر دارد. اضافه کردن این سیگنال ورودی جدید ، به این دلیل است که برای بخش سوم سؤال اول (اضافه کردن سیگنال های start , stop به ماژول) من در کد آپلود شده در تکلیف دوم ، برای هندل کردن این امر ، از Clock Gating استفاده کرده بودم که در جلسه ی حل تمرین روز ۱۶ اردیبهشت متوجه شدم این روش توصیه شده نیست (هرچند که در سنتز کردن و سیمولیشن کد ، اشکالی ایجاد نمی کرد!) به همین جهت کد را اصلاح کردم. (به طور خلاصه ، اصلاح کد صرفاً برای بهینهتر کردن و درست بودن کد از لحاظ استانداردها است و ربطی به سنتز نشدن آن ندارد)

** واحدهای استفاده شده از تراشه:

*	Design Summa	агу				*
Top Level Output File Name						
Primitive and Black Box Usag						
# BELS	: 48					
# INV	: 1					
# LUT2	: 4					
# LUT3	: 2					
# LUT4	: 6					
# LUT5	: 13					
# LUT6	: 20					
# MUXF7	: 2					
# FlipFlops/Latches	: 38					
# FDCE	: 38					
# Clock Buffers	: 1					
# BUFGP	: 1					
# IO Buffers	: 35					
# IBUF	: 2					
# OBUF	: 33					
Device utilization summary:						
Selected Device : 6slx16csg3	24-3					
Slice Logic Utilization:						
Number of Slice Registers:		38	out of	18224	0%	
Number of Slice LUTs:			out of			
Number used as Logic:			out of		0%	
Number used us Logice.		10	000	7112	070	
Slice Logic Distribution:						
Number of LUT Flip Flop pai	rs used:	46				
Number with an unused Fli		8	out of	46	17%	
Number with an unused LUT	:	0	out of	46	0%	
Number of fully used LUT-	FF pairs:	38	out of	46	82%	
Number of unique control		11				
<pre>IO Utilization:</pre>						
Number of IOs:		36				
Number of bonded IOBs:		36	out of	232	15%	
Specific Feature Utilization	:					
Number of BUFG/BUFGCTRLs:		1	out of	16	6%	
Doctition Described Super-						
Partition Resource Summary:						
No Partitions wars found i	n this docio					
No Partitions were found i	ii tiits destgi					

Timing Report

NOTE: THESE TIMING NUMBERS ARE ONLY A SYNTHESIS ESTIMATE. FOR ACCURATE TIMING INFORMATION PLEASE REFER TO THE TRACE REPORT GENERATED AFTER PLACE-and-ROUTE.

Clock Information:

| Clock buffer(FF name) | Load | ------| NONE(U1/cnt_out_5) | 7 U0/out | 7 BUFGP clk U1/out U2/out U3/out U4/out

INFO:Xst:2169 - HDL ADVISOR - Some clock signals were not automatically buffered by XST with BUFG/BUFR resources. Please use the buffer_type constraint in order to insert these buffers to the clock signals to help prevent skew problems.

Asynchronous Control Signals Information:

No asynchronous control signals found in this design

Timing Summary: Speed Grade: -3

> Minimum period: 2.614ns (Maximum Frequency: 382.614MHz) Minimum input arrival time before clock: 3.963ns Maximum output required time after clock: 3.874ns Maximum combinational path delay: No path found

Timing Details:

All values displayed in nanoseconds (ns)

Timing constraint: Default period analysis for Clock 'U0/out' Clock period: 2.414ns (frequency: 414.164MHz)

Total number of paths / destination ports: 41 / 7 -----

Delay: 2.414ns (Levels of Logic = 2)
Source: U1/cnt_out_1 (FF)
Destination: U1/out (FF)
Source Clock: U0/out rising Destination Clock: U0/out rising

Data Path: U1/cnt_out_1 to U1/out

Cell:in->out	fanout	Gate Delay	Net Delay	Logical Name (Net Name)
FDCE:C->Q	7	0.447	0.878	U1/cnt_out_1 (U1/cnt_out_1)
LUT2:I0->0	1	0.203	0.580	U1/Mmux_GND_2_o_cnt_out[5]_MUX_13_o1_SW0 (N2)
LUT6:I5->0	1	0.205	0.000	U1/Mmux_GND_2_o_cnt_out[5]_MUX_13_o1 (U1/GND_2_o_cnt_out[5]_MUX_13_o)
FDCE:D		0.102		U1/out

Total 2.414ns (0.957ns logic, 1.457ns route) (39.6% logic, 60.4% route)

Cross Clock Dom	•						
Clock to Setup on destination clock U0/out							
	Src:Rise Dest:Rise	Src:Fall Dest:Rise	Src:Rise Dest:Fall	Src:Fall Dest:Fall			
U0/out							
Clock to Setup	on destinat	ion clock	U1/out				
Source Clock	Src:Rise Dest:Rise	Src:Fall Dest:Rise	Src:Rise Dest:Fall	Src:Fall Dest:Fall			
U1/out			•				
Clock to Setup	on destinat	ion clock	U2/out				
Source Clock	Src:Rise Dest:Rise	Src:Fall Dest:Rise	Src:Rise Dest:Fall	Src:Fall Dest:Fall			
U2/out			•				
Clock to Setup	on destinat	ion clock	U3/out				
	Src:Rise Dest:Rise	Src:Fall Dest:Rise	Src:Rise Dest:Fall	Src:Fall Dest:Fall			
U3/out	1.841		l	i i			
Clock to Setup	on destinat	ion clock	U4/out				
Source Clock	Src:Rise Dest:Rise	Src:Fall Dest:Rise	Src:Rise Dest:Fall	Src:Fall Dest:Fall			
U4/out	2.614		l	i i			
Clock to Setup	on destinat	ion clock	clk				
Source Clock	Src:Rise Dest:Rise	Src:Fall Dest:Rise	Src:Rise Dest:Fall	Src:Fall Dest:Fall			
clk	2.414			i i			
=========							

Total REAL time to Xst completion: 5.00 secs Total CPU time to Xst completion: 5.65 secs

-->

Total memory usage is 4510568 kilobytes

```
timescale 1ns / 1ps
module DayCounter(
      input enable,
      input clk,
      input reset,
      output [5:0] second,
      output [5:0] minute,
      output [4:0] hour,
      output [4:0] day,
      output [3:0] month,
      output [6:0] year
      );
      // minute and second are maximum 59 => 6 bit
      // hour is maximum 23 and day is maximum 29 => 5 bit
      // month is maximum 11 => 4 bit
      // year is unbounded but e.g. maximum is 99 then it should become a century => 7 bit
      wire year out, month out, day out, hour out, min out, sec out;
      //second
      PCounter #(.MAX SIZE(6),.p(59)) U0
(.enable(enable),.clk(clk),.cnt_out(second),.out(sec_out),.reset(reset));
      //minute
      PCounter #(.MAX SIZE(6),.p(59)) U1
(.enable(enable),.clk(sec_out),.cnt_out(minute),.out(min_out),.reset(reset));
      //hour
      PCounter #(.MAX_SIZE(5),.p(23)) U2
(.enable(enable),.clk(min_out),.cnt_out(hour),.out(hour_out),.reset(reset));
      //day
      PCounter #(.MAX_SIZE(5),.p(29)) U3
(.enable(enable),.clk(hour_out),.cnt_out(day),.out(day_out),.reset(reset));
      //month
      PCounter #(.MAX SIZE(4),.p(11)) U4
(.enable(enable),.clk(day out),.cnt out(month),.out(month out),.reset(reset));
      //year
      PCounter #(.MAX_SIZE(7),.p(99)) U5
(.enable(enable),.clk(month_out),.cnt_out(year),.out(year_out),.reset(reset));
'endmodule
```


** واحدهای استفاده شده از تراشه:

*	Design Su						,
	======	===	===				
Top Level Output File Name	: P	Cou	nte	r.ngc			
Primitive and Black Box Usage	:						
	-						
# BELS	: 1	1					
# GND	: 1						
# INV	: 1						
# LUT2	: 3						
# LUT6	: 6						
# FlipFlops/Latches	: 7						
# FDCE	: 7						
# Clock Buffers	: 1						
# BUFGP	: 1						
# IO Buffers	: 1	0					
# IBUF	: 2						
# OBUF	: 8						
Device utilization summary:							
Selected Device : 6slx16csg32	4-3						
Slice Logic Utilization:			_				
Number of Slice Registers:					18224	0%	
Number of Slice LUTs:					9112	0%	
Number used as Logic:			10	out of	9112	0%	
Clica Lagis Distribution.							
Slice Logic Distribution:	e usadı		10				
Number of LUT Flip Flop pair Number with an unused Flip			10	out of	10	20%	
Number with an unused LUT:				out of		30% 0%	
Number of fully used LUT-F				out of			
Number of unique control s			2	out or	10	7 0 %	
Number of direque control s	ets.		2				
IO Utilization:							
Number of IOs:			11				
Number of bonded IOBs:			11	out of	232	4%	
Number of bolided 1003.				000	232	770	
Specific Feature Utilization:							
Number of BUFG/BUFGCTRLs:			1	out of	16	6%	
number or bord/borderness			-	000	10	070	
Partition Resource Summary:							
No Partitions were found in	this des	ign					
		_					

** اطلاعات Timing

```
______
Timing Report
NOTE: THESE TIMING NUMBERS ARE ONLY A SYNTHESIS ESTIMATE.
    FOR ACCURATE TIMING INFORMATION PLEASE REFER TO THE TRACE REPORT
    GENERATED AFTER PLACE-and-ROUTE.
Clock Information:
-----
Clock Signal
                         | Clock buffer(FF name) | Load |
------
                     BUFGP 7
Asynchronous Control Signals Information:
No asynchronous control signals found in this design
Timing Summary:
Speed Grade: -3
  Minimum period: 2.712ns (Maximum Frequency: 368.745MHz)
  Minimum input arrival time before clock: 3.252ns
  Maximum output required time after clock: 3.820ns
  Maximum combinational path delay: No path found
Timing Details:
All values displayed in nanoseconds (ns)
______
Timing constraint: Default period analysis for Clock 'clk'
 Clock period: 2.712ns (frequency: 368.745MHz)
 Total number of paths / destination ports: 43 / 7
Delay: 2.712ns (Levels of Logic = 2)
              cnt_out_2 (FF)
 Source:
 Destination: out (FF)
Source Clock: clk rising
 Destination Clock: clk rising
 Data Path: cnt_out_2 to out
                       Gate
                              Net
   Cell:in->out fanout Delay Delay Logical Name (Net Name)
   .....
            FDCE:C->0
   LUT6: I0->0
                  1 0.205 0.000 Mmux_GND_1_o_cnt_out[6]_MUX_15_o11 (GND_1_o_cnt_out[6]_MUX_15_o)
   LUT2:I1->0
                      0.102
                      2.712ns (0.957ns logic, 1.755ns route)
   Total
                             (35.3% logic, 64.7% route)
```

		========	=======					
Cross Clock Domains Report:								
Clock to Setup								
	Src:Rise Src Dest:Rise Dest	::Fall Src:Ri: ::Rise Dest:Fa	se Src:Fall ll Dest:Fall					
- •	2.712	i	i i					
=========			=======	=========				
Total REAL time Total CPU time	· ·							
>								

Total memory usage is 4509608 kilobytes

```
timescale 1ns / 1ps
module Stopwatch(
      input clk,
      input reset,
      input start,
      input stop,
     output [5:0] second,
     output [5:0] minute,
     output [4:0] hour,
     output [4:0] day,
     output[3:0] month,
     output [6:0] year
     );
      reg enable=0;
      DayCounter uu1(
            .enable(enable),
            .clk(clk),
            .reset(reset),
            .second(second),
            .minute(minute),
            .hour(hour),
            .day(day),
            .month(month),
            .year(year)
            );
      always @(posedge start or posedge stop)
      begin
      if(start==1)
            enable <= 1;
      if(stop==1)
            enable <= 0; // stop has a higher priority
      end
endmodule
            -----
```

دلیل اصلاح کد :

به دلیل حذف Clock Gating

** واحدهای استفاده شده از تراشه:

	ign Summ					*
	======	====				=====
Top Level Output File Name	: pwm	_gen	erator.n	igc		
Primitive and Black Box Usage:						
# BELS	: 141					
# GND	: 1					
# INV	: 30					
# LUT1	: 2					
# LUT2	: 3					
# LUT3	: 1					
# LUT4	: 1					
# LUT5	: 32					
# LUT6	: 8					
# MUXCY	: 30					
# VCC	: 1					
# XORCY	: 32					
# FlipFlops/Latches	: 66					
# FD # FDE	: 2 : 64					
# Clock Buffers	: 1					
# BUFGP	: 1					
# IO Buffers	: 19					
# IBUF	: 18					
# OBUF	: 1					
Device utilization summary:						
Selected Device : 6slx16csg324-3						
Slice Logic Utilization:						
Number of Slice Registers:		66	out of	18224	0%	
Number of Slice LUTs:		77	out of	9112	0%	
Number used as Logic:		77	out of	9112	0%	
Slice Logic Distribution:						
Number of LUT Flip Flop pairs u	sed:	109				
Number with an unused Flip Flo	op:	43	out of	109	39%	
Number with an unused LUT:		32	out of	109	29%	
Number of fully used LUT-FF pa Number of unique control sets		34 5	out of	109	31%	
number of aneque control sees						
IO Utilization:						
Number of IOs:		20				
Number of bonded IOBs:		20	out of	232	8%	
Specific Feature Utilization: Number of BUFG/BUFGCTRLs:		1	out of	16	£0/	
Mambel of Bord/BordCIKES:		1	out of	16	6%	

Timing Report

```
NOTE: THESE TIMING NUMBERS ARE ONLY A SYNTHESIS ESTIMATE.
FOR ACCURATE TIMING INFORMATION PLEASE REFER TO THE TRACE REPORT
GENERATED AFTER PLACE-and-ROUTE.
```

```
Clock Information:
                               | Clock buffer(FF name) | Load |
Clock Signal
clk | BUFGP | 66 |
-----
Asynchronous Control Signals Information:
No asynchronous control signals found in this design
Timing Summary:
-----
Speed Grade: -3
  Minimum period: 3.930ns (Maximum Frequency: 254.430MHz)
  Minimum input arrival time before clock: 3.905ns
  Maximum output required time after clock: 3.597ns
  Maximum combinational path delay: No path found
Timing Details:
All values displayed in nanoseconds (ns)
______
Timing constraint: Default period analysis for Clock 'clk'
  Clock period: 3.930ns (frequency: 254.430MHz)
  Total number of paths / destination ports: 932 / 66
Delay: 3.930ns (Levels of Logic = 3)
Source: LowCounter_7 (FF)
  Destination: turn (FF)
Source Clock: clk rising
  Destination Clock: clk rising
  Data Path: LowCounter_7 to turn
                            Gate
                                    Net
   Cell:in->out fanout Delay Delay Logical Name (Net Name)
    FDE:C->Q 2 0.447 0.981 LowCounter_7 (LowCounter_7)
LUT6:I0->0 2 0.203 0.981 GND_1_o_equal_12_o<15>2 (GND_1_o_GND_1_o_equal_12_o<15>1)
LUT6:I0->0 1 0.203 0.808 _n00571 (_n0057)
LUT4:I1->0 1 0.205 0.000 turn_rstpot (turn_rstpot)
                            0.102
                                   turn
    ..........
                            3.930ns (1.160ns logic, 2.770ns route)
```

(29.5% logic, 70.5% route)

** اطلاعات Clock

Cross Clock D	omains Report:
	p on destination clock clk
	Src:Rise Src:Fall Src:Rise Src:Fall

Source Clock | Dest:Rise | Dest:Fall | Dest:Fall | Clk | 3.930 | | | |

Total REAL time to Xst completion: 6.00 secs Total CPU time to Xst completion: 6.08 secs

-->

Total memory usage is 4509544 kilobytes

```
timescale 1ns / 1ps
module pwm_generator (
        input clk,
        input high_wr,
        input low_wr,
        input [15:0] data_in,
        output reg pwm_out=0
        );
        reg [15:0] Low=0;
        reg [15:0] High=0;
        reg [15:0] HighCounter=0;
        reg [15:0] LowCounter=0;
        reg turn=1'bx;// "turn" decides when pwm_out should be 1 and when 0
        always @(posedge clk)
        begin
        if (high_wr)
        begin
                 High <= data_in;
                 HighCounter <= data_in;
                 turn <= 1;
        end
        if (low_wr)
        begin
                 Low <= data_in;
                 LowCounter <= data_in;
        end
        if (turn==1)
        begin: up
                 pwm_out <= 1;
                 if( HighCounter==1 )
                 begin
                         HighCounter <= High;
                         turn <= 0;
                         disable up;
                 end
                 HighCounter <= HighCounter - 1;
        end
        if (turn==0)
        begin: down
                 pwm_out <= 0;
                 if(LowCounter==1)
                 begin
                         LowCounter <= Low;
                         turn <= 1;
                         disable down;
                 end
                LowCounter <= LowCounter - 1;
        \mathsf{end} \\
        end
endmodule
```

دلیل اصلاح کد:

هنگام سنتز کد قبلی (همانی که در تکلیف سری دوم در سامانه آپلود شد) ، اروری مبنی بر

assignment under multiple single edges is not supported for synthesis

دریافت کردم که ظاهراً به دلیل این بود که در چندین بلوک always قصد assign کردن به یک رجیستر خاص را داشتم و در نهایت با گوگل کردن ارور ، متوجه شدم که باید تمام assignment ها به یک رجیستر در یک بلوک always انجام گیرد و در نتیجه تمام سه بلوک always را یکی کردم و بعد از simulation آن از جهت اطمینان از درستی کد جدید ، آن را سنتز کردم و همه چیز اوکی بود .

** واحدهای استفاده شده از تراشه :

*	======= Design Sum		======	======		====== *
=======================================	=======	=====	======	======		=====
Top Level Output File Name	: pw	m_det	ector.ng	c		
Primitive and Black Box Usag	e:					
# BELS	: 17	7				
# GND	: 1	•				
# INV	: 4					
# LUT1	: 30)				
# LUT2	: 3					
# LUT3	: 16	i				
# LUT5	: 34	ļ				
# LUT6	: 14	1				
# MUXCY	: 42					
# VCC	: 1					
# XORCY	: 32					
# FlipFlops/Latches	: 81					
# FD	: 17					
# FDE	: 32					
# FDRE	: 32					
# Clock Buffers	: 1					
# BUFGP # IO Buffers	: 1 : 19					
# IBUF	: 3	'				
# OBUFT	: 16					
# 00011	. 10	•				
Device utilization summary:						
Selected Device : 6slx16csg3	24-3					
Slice Logic Utilization:						
Number of Slice Registers:			out of			
Number of Slice LUTs:			out of			
Number used as Logic:		101	out of	9112	1%	
Sites tests Bistathatian						
Slice Logic Distribution:		404				
Number of LUT Flip Flop pai		101	t of	101	100/	
Number with an unused Fli		20	out of	101	19%	
Number with an unused LUT		0	out of	101	0%	
Number of fully used LUT- Number of unique control		81 5	out of	101	80%	
Number of unique control	sets:	5				
IO Utilization:						
Number of IOs:		20				
Number of bonded IOBs:		20	out of	232	8%	
Harrist of bollded 10031		20	000 01	232	070	
Specific Feature Utilization	:					
Number of BUFG/BUFGCTRLs:		1	out of	16	6%	
,						

** اطلاعات Timing:

```
NOTE: THESE TIMING NUMBERS ARE ONLY A SYNTHESIS ESTIMATE.
           FOR ACCURATE TIMING INFORMATION PLEASE REFER TO THE TRACE REPORT
           GENERATED AFTER PLACE-and-ROUTE.
Clock Information:
                                                          | Clock buffer(FF name) | Load |
Clock Signal
                                                             BUFGP
Asynchronous Control Signals Information:
No asynchronous control signals found in this design
Timing Summary:
Speed Grade: -3
     Minimum period: 3.509ns (Maximum Frequency: 284.949MHz)
     Minimum input arrival time before clock: 4.538ns
Maximum output required time after clock: 4.807ns
     Maximum combinational path delay: No path found
Timing Details:
All values displayed in nanoseconds (ns)
_____
Timing constraint: Default period analysis for Clock 'clk'
    Clock period: 3.509ns (frequency: 284.949MHz)
    Total number of paths / destination ports: 1904 / 112
Delay:
                                     3.509ns (Levels of Logic = 7)
    Source:
                                     HighCounter_0 (FF)
   Destination:
                                    High_0 (FF)
    Source Clock:
                                    clk rising
   Destination Clock: clk rising
   Data Path: HighCounter_0 to High_0
                                                                         Net
                                  fanout Delay
       Cell:in->out
                                                                     Delay Logical Name (Net Name)
        FDRE:C->0
                                                                     1.028 HighCounter 0 (HighCounter 0)
                                             4 0.447
                                                                    1.028 HighCounter_0 (HighCounter_0)
0.000 Mcompar_High[15]_HighCounter[15]_not_equal_10_o_lut<0> (Mcompar_High[15]_HighCounter[15]_not_equal_10_o_lut<0>)
0.000 Mcompar_High[15]_HighCounter[15]_not_equal_10_o_cy<0> (Mcompar_High[15]_HighCounter[15]_not_equal_10_o_cy<0>)
0.000 Mcompar_High[15]_HighCounter[15]_not_equal_10_o_cy<1> (Mcompar_High[15]_HighCounter[15]_not_equal_10_o_cy<1>)
0.000 Mcompar_High[15]_HighCounter[15]_not_equal_10_o_cy<2> (Mcompar_High[15]_HighCounter[15]_not_equal_10_o_cy<2>)
0.000 Mcompar_High[15]_HighCounter[15]_not_equal_10_o_cy<3> (Mcompar_High[15]_HighCounter[15]_not_equal_10_o_cy<4>)
0.000 Mcompar_High[15]_HighCounter[15]_not_equal_10_o_cy<4> (Mcompar_High[15]_HighCounter[15]_not_equal_10_o_cy<4>)
0.000 Mcompar_High[15]_HighCounter[15]_not_equal_10_o_cy<4> (Mcompar_High[15]_HighCounter[15]_not_equal_10_o_cy<4>)
0.000 Mcompar_High[15]_HighCounter[15]_not_equal_10_o_cy<4> (Mcompar_High[15]_HighCounter[15]_not_equal_10_o_cy<4>)
0.000 Mcompar_High[15]_HighCounter[15]_not_equal_10_o_cy<4> (Mcompar_High[15]_HighCounter[15]_not_equal_10_o)
0.000 Mcompar_High[15]_HighCounter[15]_not_equal_10_o_cy<4> (Mcompar_High[15]_HighCounter[15]_not_equal_10_o)
0.000 Mcompar_High[15]_HighCounter[15]_not_equal_10_o_cy<4> (Mcompar_High[15]_HighCounter[15]_not_equal_10_o)
                                               1 0.203
         LUT6: I1->0
         MUXCY:S->0
                                                      0.172
        MUXCY:CI->0
                                                      0.019
        MUXCY:CI->0
                                              1 0.019
                                             1 0.019
1 0.019
        MUXCY:CI->0
                                                      0.019
         MUXCY:CI->0
        MUXCY:CI->0
                                             16 0.258
        FDE:CE
                                                       0.322
                                                                                 High_0
       Total
                                                     3.509ns (1.478ns logic, 2.031ns route)
                                                                     (42.1% logic, 57.9% route)
```

•	Cla	ock	ات	لاعا	اطا	**

Cross Clock Doma	ains Report	:			
Clock to Setup o	on destinat	ion clock	c1k		
				+	-+
Source Clock		Dest:Rise	Dest:Fall	Dest:Fal	ιį
	3.509				

Total REAL time to Xst completion: 7.00 secs Total CPU time to Xst completion: 6.12 secs

-->

Total memory usage is 4509480 kilobytes

** کد اصلاح شده :

این کد ، بدون اشکال بود و به راحتی نیز سنتز شد .

