2011-2012 J.SAAB

Durée: 1h

1. (6pts) Let (γ) be the helix giveb byr:

$$\gamma(\theta) = (a\cos\theta, a\sin\theta, b\theta), \ a, b > 0, \ a^2 + b^2 \neq 1 \ \text{and} \ \theta \in \mathbb{R}$$

- (a) Verify that γ is not parametrized by arc length
- (b) Calculate the curvature K of (γ)
- (c) Find $s = s(\theta)$ the arc length parameter of γ and refind K, the curvature of γ
- (d) Give the Frenet triefedron of γ at $\gamma(s)$, $(\vec{T}, \vec{N}, \vec{B})$ where \vec{T} : is the unit tangent vector to (γ) at $\gamma(s)$; \vec{N} : is the normal to (γ) at $\gamma(s)$, $\vec{B} = \vec{T} \wedge \vec{N}$ and calculate the torsion τ of γ
- (e) give a geometric interpretation of your results
- 2. (6pts) Given the smooth function $K:[0,+\infty[\longrightarrow \mathbb{R}\ ,\, K(s)=\frac{2}{1+s^2}$
 - (a) Find the equation of the plane curve γ who has signed curvature equal to K. (recall that $\cos(2\alpha) = \frac{1-\tan^2\alpha}{1+\tan^2\alpha}$, $\sin 2\alpha = \frac{2\tan\alpha}{1+\tan^2\alpha}$)
 - (b) Can you give an other plane curve $\widetilde{\gamma}(s)$ different from $\gamma(s)$, who has the same signed curvature K
- 3. (8pts) consider the stereographic projection on $S^2 = \{(x, y, z) \in \mathbb{R}^3 / x^2 + y^2 + z^2 = 1\}$

$$\pi: S^2 - \{P\} \longrightarrow \mathbb{R}^2$$

form S^2 minus the south pole P(0,0,-1) to \mathbb{R}^2 which carries a point M(x,y,z) onto the intersection m(u,v) of the xy plane with the straight line (PM)

- (a) Show that π^{-1} is a chart of S^2 and determine its domain
- (b) Construct an other parametrization of S^2 in order to get S^2 , endowed with these parametrizations, as a regular surface