

States	a_	<u></u>
1,2,3,4,8A	5, 2,8,2,3,4,9 B	6, 7,8,2,3,4
5,718,2,3,4,9	9,5,7,8,2,3,4	6,7,8,2,3,4
6,7,8,2,3,4	9,6,7,8,2,3,4 D	6,7,8,2,3,40
7,5,7,8,2,3,4 D	9,5,7,8,3,4	10,6,7,8,2,3,4 E
6,7,8,2,3,4,10 (B)	9,517,8,23,4	6,7,8,2,3,4, 1 P

(2) butnut pp for RE (ab #ab)

states		5
1/ (A)	2,3,5 (B)	B
2,3,5 (3)	b (b)	3,4151
31415	6 3	

Optimised DPA from RE

- 1. form syntax bree
- d. Give høde number
- J. Wullable finding
- 4. First por
- 5. Last pos
- 6. Follow pas
- 7. faming DFA from root hade and fellow pos to form table

with help of that fable, we can find the optimised OPA.

Q) RE = (a16)* abb

113 e d23 e 223 13

Weders	Follow pos	1
	{3,1,23	
2	{3,122}	
3	43	
4	{53	
5	863	
6	6	

