Hand-in Problems Week 9 – Work-Energy and Impulse Momentum Methods (complete by W10)

Question 9.8.

The system is released from rest with no slack in the cable and with the spring stretched 200 mm. Determine the distance s travelled by the 10 kg cart before it comes to rest (a) if m approaches zero, and (b) if m = 2 kg. Assume no mechanical interferences.

m k = 125 N/m

Solution

(a) Let 's' be the slant distance down the incline travelled by the 10 kg cart

$$W_{1-2} = \Delta T + \Delta V_a + \Delta V_e$$

$$W_{1-2} = 0$$

$$\Delta T = \frac{1}{2}m(v_2^2 - v_1^2)$$

$$v_1 = 0$$
 and $v_2 = 0$

therefore

$$\Delta T = 0$$

$$\Delta V_g = mg(h_2 - h_1)$$

 $\Delta V_g = -10(9.81)(s) \sin 25^\circ$ i.e. the change in vertical height for 10 kg cart is $(-s) \sin 25^\circ$

$$\Delta V_e = \frac{1}{2}k(x_2^2 - x_1^2) = \frac{1}{2}k\left[\left(0.2 + \frac{s}{2}\right)^2 - 0.2^2\right]$$

According to the Work-energy equation

$$0 = -10(9.81)(s)\sin 25^{\circ} + \frac{1}{2}k\left[\left(0.2 + \frac{s}{2}\right)^{2} - 0.2^{2}\right]$$

$$10(9.81)(s)\sin 25^\circ = \frac{125}{2}\left[\left(0.2 + \frac{s}{2}\right)^2 - 0.2^2\right]$$

$$s = 1.853 \,\mathrm{m}$$
 (Answer)

(b) Let 's' be the slant distance down the incline travelled by the 10 kg cart

$$W_{1-2} = \Delta T + \Delta V_g + \Delta V_e$$

$$W_{1-2} = 0$$

$$\Delta T = \frac{1}{2}m(v_2^2 - v_1^2)$$

$$v_1 = 0$$
 and $v_2 = 0$

therefore

$$\Delta T = 0$$

$$\Delta V_g = mg(h_2 - h_1)$$

$$\Delta V_g = -10(9.81)(s)\sin 25^\circ + 2(9.81)\left(\frac{s}{2}\right)$$

$$\Delta V_e = \frac{1}{2}k(x_2^2 - x_1^2) = \frac{1}{2}k\left[\left(0.2 + \frac{s}{2}\right)^2 - 0.2^2\right]$$

According to the Work-energy equation

$$0 = -10(9.81)(s)\sin 25^{\circ} + 2(9.81)\left(\frac{s}{2}\right) + \frac{1}{2}k\left[\left(0.2 + \frac{s}{2}\right)^{2} - 0.2^{2}\right]$$

$$10(9.81)(s)\sin 25^{\circ} - 2(9.81)\left(\frac{s}{2}\right) = \frac{125}{2}\left[\left(0.2 + \frac{s}{2}\right)^{2} - 0.2^{2}\right]$$

$$s = 1.226 \,\text{m}$$
 (Answer)

Question 9.9.

The 0.75 kg particle is attached to the light slender rod OA which pivots freely about a horizontal axis through point O. The system is released from rest while in the position $\theta = 0^{\circ}$ where the spring is unstretched. If the particle is observed to stop momentarily in the position $\theta = 50^{\circ}$, determine the spring constant k. For your computed value of k, what is the particle speed v at the position $\theta = 25^{\circ}$?

Solution

Initial length of the spring is given by

$$L_o = \sqrt{0.6^2 + 0.6^2} = 0.8485 \text{ m}$$

At initial position the spring is unstretched i.e. $x_1 = 0$

$$At \theta = 50^{\circ}$$

$$L_2^2 = 0.6^2 + +0.6^2 - 2(0.6)(0.6)\cos(90^\circ + 50^\circ)$$

$$L_2 = 1.1276 \text{ m}$$

$$x_2 = L_2 - L_o = 1.1275 - 0.8485 = 0.2791 \text{ m}$$

$$W_{1-2} = \Delta T + \Delta V_a + \Delta V_e$$

$$W_{1-2} = 0$$
 (i.e. no external force)

$$\Delta T = \frac{1}{2}m(v_2^2 - v_1^2)$$

$$v_1 = 0 \text{ and } v_2 = 0$$

therefore

$$\Delta T = 0$$

$$\Delta V_a = mg(h_2 - h_1)$$

$$\Delta V_q = -0.75(9.81)(0.6 \sin 50^\circ)$$

$$\Delta V_e = \frac{1}{2}k(x_2^2 - x_1^2) = \frac{1}{2}k\left(0.2791^2 - 0^2\right)$$

According to the Work-energy equation

$$0 = 0 - 0.75(9.81)(0.6\sin 50^\circ) + \frac{1}{2}k(0.2791^2 - 0^2)$$

$$k = 86.862 \text{ N/m}$$
 (Answer)

When $\theta = 25^{\circ}$

Initial length of the spring is given by

$$L_o = \sqrt{0.6^2 + 0.6^2} = 0.8485 \,\mathrm{m}$$

At initial position the spring is unstretched i.e. $x_1 = 0$

 $At \theta = 50^{\circ}$

$$L_2^2 = 0.6^2 + +0.6^2 - 2(0.6)(0.6)\cos(90^\circ + 25^\circ)$$

 $L_2 = 1.012 \text{ m}$

$$x_2 = L_2 - L_o = 1.012 - 0.8485 = 0.1635 \text{ m}$$

$$W_{1-2} = \Delta T + \Delta V_g + \Delta V_e$$

 $W_{1-2} = 0$ (i.e. no external force)

$$\Delta T = \frac{1}{2}m(v_2^2 - v_1^2)$$

 $12_1 = 0$

therefore

$$\Delta T = \frac{1}{2}mv^2$$

$$\Delta V_g = mg(h_2 - h_1)$$

$$\Delta V_g = -0.75(9.81)(0.6\sin 25^\circ)$$

$$\Delta V_e = \frac{1}{2}k(x_2^2 - x_1^2) = \frac{1}{2}(86.862)(0.1635^2 - 0^2)$$

According to the Work-energy equation

$$0 = \frac{1}{2}mv^2 - 0.75(9.81)(0.6\sin 25^\circ) + \frac{1}{2}(86.862)(0.1635^2 - 0^2)$$

$$v = 1.3713 \text{ m/s}$$
 (Answer)

Question 9.10.

The initially stationary 12 kg block is subjected to the time-varying force whose magnitude P is shown in the plot. The 30° angle remains constant. Determine the block speed at (a) t = 1 s and (b) t = 4 s.

Solution

The block begins to move when:

$$\sum F_{x} = 0$$

$$20t \cos 30^{\circ} - 0.5N = 0 \qquad ---- (1)$$

$$\sum F_{\nu} = 0$$

$$N - 12(9.81) + 20t \sin 30^{\circ} = 0 \qquad ----- (2)$$

$$N = 117.7 - 10t ---- (3)$$

Solving (1) and (3) yields,

 $t = 2.64 \,\mathrm{s}$ (start time)

(a) Speed at
$$t = 1$$
 s is $v_1 = 0$ (Answer)

(b) Speed at t = 4 s

$$\int_{t_1}^{t_2} \sum F \ dt = mv_4 - mv_1$$

$$\int_{2.64}^{4} [-N\mu_k + F\cos 30^\circ] dt = mv_4$$

$$\int_{2.64}^{4} \left[-(117.7 - 10t)(0.4) + 20t \cos 30^{\circ} \right] dt = 12v_4$$

$$v_4 = 2.69 \text{ m/s}$$
 (Answer)

Question 9.11.

Compute the final velocities v_1' and v_2' after collision of the two cylinders which slide on the smooth horizontal shaft. The coefficient of restitution is e = 0.6.

Solution

Linear momentum of the system:

$$m_1v_1 + m_2v_2 = m_1{v_1}' + m_2{v_2}'$$

$$(2)(7) + (3)(-5) = 2v_1' + 3v_2' \qquad ---- (1)$$

Coefficient of restitution:

$$e = \frac{v_2' - {v_1}'}{v_2 - v_1}$$

$$0.6 = \frac{v_2' - v_1'}{7 - (-5)}$$

$$v_2' - v_1' = 7.5$$
 (2)

Solving (1) and (2) yields,

$$v_1' = -4.52 \text{ m/s}$$
 (Answer)

$$v_2' = 2.68 \text{ m/s}$$
 (Answer)