高中数学I习题集

Johnny Tang

DEEP Team

更新: 2023 年 4 月 22 日

集合

1.1 集合及其运算

填空题

问题 1.1 设集合 $M=\{-1,0,1\},\ N=\{2,3,4,5,6\},\$ 映射 $f:M\to N,\$ 则对任意的 $x\in M,\$ 使得 x+f(x)+xf(x) 恒为奇数的映射 f 的个数为______.

提示 分类讨论.

问题 1.2 称有限集 S 的所有元素的乘积为 S 的"积数",给定数集 $M=\{\frac{1}{2},\frac{1}{3},\cdots,\frac{1}{100}\}$,则集合 M 的所有含偶数个元素的子集的"积数"之和为_____.

提示 举例分析.

解答题

问题 1.3 (2015 高联) 设 a_1, a_2, a_3, a_4 是 4 个有理数,使得 $\{a_i a_j | 1 \leq i < j \leq 4\} = \{-24, -2, -\frac{3}{2}, -\frac{1}{8}, 1, 3\}$. 求 $a_1 + a_2 + a_3 + a_4$ 的值.

提示 通过大小关系将 $a_1a_2, a_1a_3, a_1a_4, a_2a_3, a_2a_4, a_3a_4$ 与这六个数字对应.

问题 1.4 (2017 清华 THUSSAT) 已知集合 $A = \{a_1, a_2, a_3, a_4\}$,且 $a_1 < a_2 < a_3 < a_4$, $a_i \in \mathbb{N}^*$ (i = 1, 2, 3, 4). 记 $a_1 + a_2 + a_3 + a_4 = S$,集合 $B = \{(a_i, a_j) : (a_i + a_j) | S, a_i, a_j \in A, i < j\}$ 中的元素个数为 4 个,求 a_1 的值.

提示 通过大小关系得出不能被 S 整除的两项.

问题 1.5 X 是非空的正整数集合,满足下列条件: (i) 若 $x \in X$, 则 $4x \in X$; (ii) 若 $x \in X$, 则 $[\sqrt{x}] \in X$. 求证: X 是全体正整数的集合.

提示 将两种关于 X 的性质结合起来看.

问题 1.6 设 S 为非空数集,且满足: (i)2 $\notin S$; (ii) 若 $a \in S$,则 $\frac{1}{2-a} \in S$. 证明: (1) 对一切 $n \in \mathbb{N}^*$, $n \geq 3$,有 $\frac{n}{n-1} \notin S$; (2)S 或者是单元素集,或者是无限集.

提示 数学归纳法.

问题 1.7 以某些整数为元素的集合 P 具有下列性质: (i)P 中的元素有正数,有负数; (ii)P 中的元素有奇数,有偶数; (iii) $-1 \notin P$; (iv) 若 $x,y \in P$,则 $x+y \in P$. 试证明: (1) $0 \in P$; (2) $2 \notin P$.

提示 第一问:构造;第二问:反证法.

问题 1.8 已知数集 A 具有以下性质: (i) $0 \in A, 1 \in A$; (ii) 若 $x, y \in A$, 则 $x-y \in A$; (iii) 若 $x \in A, x \neq 0$, 则 $\frac{1}{x} \in A$.

求证: 当 $x,y \in A$ 时,则 $xy \in A$.

提示 只需证明 $\frac{1}{xy} \in A$, 然后构造.

1.2 集合元素的个数

定理 1.1 (容斥原理 1——容斥公式) 设 $A_i(i = 1, 2, \dots, n)$ 为有限集,则

$$|\bigcup_{i=1}^{n} A_i| = \sum_{i=1}^{n} |A_i| - \sum_{1 \le i < j \le n} |A_i \cap A_j| + \dots + (-1)^{n-1} |\bigcap_{i=1}^{n} A_i|$$

可以使用数学归纳法证明.

定理 1.2 (容斥原理 2——筛法公式) 设 $A_i(i=1,2,\cdots,n)$ 为全集 I 的子集,则

$$|\bigcap_{i=1}^{n} C_{I} A_{i}| = |I| - \sum_{i=1}^{n} |A_{i}| + \sum_{1 \le i < j \le n} |A_{i} \cap A_{j}| - \dots + (-1)^{n} |\bigcap_{i=1}^{n} A_{i}|$$

可以通过摩根律证明. 这个公式常常用来计算不满足任意给定性质的子集个数.

填空题

问题 1.9 设 $\{b_n\}$ 是集合 $\{2^t + 2^s + 2^r | 0 \le r < s < t, r, s, t \in \mathbb{Z}\}$ 中所有的数从小到大排列成的数列,已知 $b_k = 1160$,则 k 的值为______.

提示 分段考虑.

问题 1.10 $A = \{z|z^{18} = 1\}$, $B = \{w|w^{48} = 1\}$ 都是 1 的复单位根的集合, $C = \{zw|z \in A, w \in B\}$ 也是 1 的复单位根的集合. 则集合 C 中含有元素的个数为_____.

提示 复数的三角表示.

问题 1.11 已知集合 $\{1,2,\cdots,3n\}$ 可以分为 n 个互不相交的三元组 $\{x,y,z\}$,其中 x+y=3z,则满足上述要求的两个最小的正整数 n 是______.

提示 从条件 x+y=3z 入手变形消元.

问题 1.12 集合 $M = \{x \mid \cos x + \lg \sin x = 1\}$ 中元素的个数是

提示 有没有可能无解?

解答题

问题 1.13 设集合 $M = \{1, 2, \dots, 1995\}$, $A \in M$ 的子集且满足条件: 当 $x \in A$ 时, $15x \notin A$,求 A 中元素个数的最大值.

提示 先构造最大值情况,再证明这是最大值.

问题 1.14 求最大的正整数 n,使得 n 元集合 S 同时满足: (i)S 中的每个数均为不超过 2002 的正整数; (ii) 对于 S 的两个元素 a 和 b(可以相同),它们的乘积 ab 不属于 S.

提示 先构造最大值情况, 再证明这是最大值.

问题 1.15 我们称一个正整数的集合 A 是"一致"的,是指:删除 A 中任何一个元素之后,剩余的元素可以分成两个不相交的子集,而且这两个子集的元素之和相等. 求最小的正整数 n(n>1),使得可以找到一个具有 n 的元素的"一致"集合 A.

提示 将 A 中元素分奇偶讨论.

问题 1.16 设 n 是正整数,我们说集合 $\{1,2,\cdots,2n\}$ 的一个排列 (x_1,x_2,\cdots,x_{2n}) 具有性质 P,是指在 $\{1,2,\cdots,2n-1\}$ 中至少有一个 i,使得 $|x_i-x_{i+1}|=n$,求证:对于任何 n,具有性质 P 的排列比不具有性质 P 的排列的个数多.

提示 只需证明具有性质 P 的排列个数大于全部排列数的一半. 利用容斥原理放缩.

问题 1.17 设 $S \subseteq \mathbb{R}$ 是一个非空的有限实数集,定义 |S| 为 S 中的元素个数,

$$m(S) = \frac{\sum_{x \in S} x}{|S|}$$

已知 S 的任意两个非空子集的元素的算术平均值都不相同. 定义

$$\dot{S} = \{ m(A) | A \subseteq S, \ A \neq \emptyset \}$$

证明: $m(\dot{S}) = m(S)$.

提示 贡献法.

1.3 子集的性质

填空题

问题 1.18 设 $S=\{(x,y)|x^2-y^2$ 为奇数, $x,y\in\mathbb{R}\}$, $T=\{(x,y)|\sin^2(2\pi x^2)-\sin^2(2\pi y^2)=\cos^2(2\pi x^2)-\cos^2(2\pi y^2),\ x,y\in\mathbb{R}\}$, 则 S 与 T 的关系为______.

提示 变形.

解答题

问题 1.19 设 S 是集合 $\{1,2,3,\cdots,50\}$ 的非空子集,S 中任何两个数之和不能被 7 整除. 求 $\operatorname{card}(S)$ 的最大值.

提示 列举.

问题 1.20 已知集合 $A = \{1, 2, \cdots, 10\}$. 求集合 A 的具有下列性质的子集个数:每个子集至少含有 2个元素,且每个子集中任何两个元素的差的绝对值大于 1.

提示 递推思想.

问题 1.21 证明:任何一个有限集的全部子集可以这样地排列顺序,使任意两个相邻的集相差一个元素.

提示 举例或递推.

问题 1.22 对于整数 $n (n \ge 2)$,如果存在集合 $\{1, 2, \dots, n\}$ 的子集族 A_1, A_2, \dots, A_n 满足:

- (a) $i \notin A_i, i = 1, 2, \dots, n$;
- (b) 若 $i \neq j$, $i, j \in \{1, 2, \dots, n\}$, 则 $i \in A_i$ 当且仅当 $j \notin A_i$;
- (c) $\forall i, j \in \{1, 2, \dots, n\}, A_i \cap A_j \neq \emptyset$.

则称 n 是"好数". 证明: (1)7 是"好数"; (2) 当且仅当 $n \ge 7$ 时, n 是"好数".

提示 举例与构造.

问题 1.23 设 S 是一个有 6 个元素的集合,能有多少种方法选取 S 的两个 (不必不相同) 子集,使得这两个子集的并是 S? 选取的次序无关紧要,例如,一对子集 $\{a,c\},\{b,c,d,e,f\}$ 与一对子集 $\{b,c,d,e,f\},\{a,c\}$ 表示同一种取法.

提示 对 $card(A \cap B)$ 进行讨论.

问题 1.24 (2018 山东预赛)设集合 A, B 满足: $A \cup B = \{1, 2, \cdots, 10\}, \ A \cap B = \varnothing$. 若集合 A 中的元素个数不是 A 中的元素,集合 B 中的元素个数不是 B 中的元素,求满足条件的所有不同的集合 A 的个数.

提示 对 |A|, |B| 进行讨论.

问题 1.25 设 k,n 为给定的整数, $n>k\geq 2$,对任意 n 元的数集 P,作 P 的所有 k 元子集的元素和,记这些和组成的集合为 Q,集合 Q 中元素个数是 C_Q . 求 C_Q 的最大值和最小值.

提示 数学归纳法.

问题 1.26 设集合 $S_n = \{1, 2, \dots, n\}$. 若 $X \in S_n$ 的子集,把 X 中所有数的和为 X 的"容量"(规定空集的容量为 0),若 X 的容量为奇(偶)数,则称 X 为 S_n 的奇(偶)子集.

- (1) 证明: S_n 的奇子集与偶子集的个数相等;
- (2) 证明: $\exists n > 2$ 时, S_n 的所有奇子集的容量之和等于所有偶子集的容量之和;
- (3) 当 n > 2 时,求 S_n 的所有奇子集的容量之和.

提示 贡献法.

函数

2.1 函数的极值与简单的不等式

2.1.1 恒等变形

问题 2.1 求函数 $f(x) = \sqrt{8x - x^2} - \sqrt{14x - x^2 - 48}$ 的最值.

解 先求定义域:因为

$$x(8-x) \ge 0$$
, $(8-x)(x-6) \ge 0$

所以 $6 \le x \le 8$. 再看最值:因为

$$f(x) = \sqrt{8-x} \cdot (\sqrt{x} - \sqrt{x-6}) = \frac{6\sqrt{8-x}}{\sqrt{x} + \sqrt{x-6}}$$

这个函数在 [6,8] 上显然单调递减,则 $f(x) \in [0,2\sqrt{3}]$,取等条件分别为 x = 8,6.

问题 2.2 若 $x \neq 0$,求

$$f(x) = \frac{\sqrt{x^4 + x^2 + 1} - \sqrt{x^4 + 1}}{x}$$

的最大值.

解 容易发现,f(x) 是一个奇函数,故最大值只需考虑 x>0 的情况. 因为

$$f(x) = \sqrt{x^2 + \frac{1}{x^2} + 1} - \sqrt{x^2 + \frac{1}{x^2}}$$

令 $t=x+rac{1}{x}\geq 2$,故 $x^2+rac{1}{x^2}=t^2-2\geq 2$. 为了将不等号反向,作变换

$$f(x) = \frac{1}{\sqrt{x^2 + \frac{1}{x^2} + 1} + \sqrt{x^2 + \frac{1}{x^2}}} \le \frac{1}{\sqrt{2+1} + \sqrt{2}} = \sqrt{3} - \sqrt{2}$$

取等条件为x=1.

2.1.2 先猜后凑与配方估计

问题 2.3 设
$$x \in \mathbb{R}_+$$
,求 $y = x^2 + x + \frac{3}{x}$ 的最小值.

解 先估计函数值的下界: 因为

$$y = (x^2 - 2x + 1) + \left(3x + \frac{3}{x} - 2\right) + 5$$

所以

$$y = (x-1)^2 + 3\left(\sqrt{x} - \frac{1}{\sqrt{x}}\right)^2 + 5 \ge 5$$

因为在x=1时这个下界可以取到,可知 $y \ge 5$.

注 在对 y 进行配凑时, 需要让最后的常数项尽可能大.

问题 2.4 已知
$$x, y \in \mathbb{R}$$
,则 $f(x, y) = x^2 + xy + y^2 - x - y$ 的最小值为______

解 令 x = y, 则 $f(x,y) = 3x^2 - 2x$, 在 $x = \frac{1}{3}$ 时取最小值.

作如下变形:

$$f(x,y) = \frac{3}{2} \left(x - \frac{1}{3} \right)^2 + \frac{3}{2} \left(y - \frac{1}{3} \right)^2 - \frac{1}{2} (x - y)^2 - \frac{1}{3} \ge -\frac{1}{3}$$

取等条件为 $x = y = \frac{1}{3}$.

问题 2.5 设
$$x, y$$
 是实数,且 $x^2 - 2xy + y^2 - \sqrt{2}x - \sqrt{2}y + 6 = 0$,求 $u = x + y$ 的最小值.

解 令 x = y,则 $x = 3\sqrt{2}$. 由于取等条件是 x = y,尝试配凑 $(x - y)^2$. 因为

$$(x-y)^2 = \sqrt{2}u - 6 > 0$$

可得 $u \ge 3\sqrt{2}$. 取等条件为 $x = y = \frac{3\sqrt{2}}{2}$.

问题 2.6 已知 x, y 是正实数,求

$$f(x,y) = \frac{x^4}{y^4} + \frac{y^4}{x^4} - \frac{x^2}{y^2} - \frac{y^2}{x^2} + \frac{x}{y} + \frac{y}{x}$$

的最小值.

解 令 x = y, 可知 $f(x,y) \ge 2$.

作如下变形:

$$f(x,y) = \left(\frac{x^4}{y^4} - 2\frac{x^2}{y^2} + 1\right) + \left(\frac{y^4}{x^4} - 2\frac{y^2}{x^2} + 1\right) + \left(\frac{x^2}{y^2} + \frac{y^2}{x^2} - 2\right) + \left(\frac{x}{y} + \frac{y}{x} - 2\right) + 2$$

$$= \left(\frac{x^2}{y^2} - 1\right)^2 + \left(\frac{y^2}{x^2} - 1\right)^2 + \left(\frac{x}{y} - \frac{y}{x}\right)^2 + \left(\frac{\sqrt{x}}{\sqrt{y}} - \frac{\sqrt{y}}{\sqrt{x}}\right)^2 + 2$$

$$\geq 2$$

又因为当x = y = 1时可以取等,于是f(x,y)的最小值为2.

问题 2.7 设
$$x, y$$
 是实数, 求 $u = x^2 + xy + y^2 - x - 2y + 3$ 的最小值.

解 以x为主元,因为

$$u = x^{2} + (y - 1)x + y^{2} - 2y + 3$$
$$= \left(x + \frac{y - 1}{2}\right)^{2} + \frac{3}{4}(y - 1)^{2} + 2$$

于是 $u \ge 2$, 取等条件为x = 0, y = 1.

2.1.3 利用函数的性质

问题 2.8 设函数

$$f(x) = \frac{(x + \sqrt{2013})^2 + \sin 2013x}{x^2 + 2013}$$

已知其最大值为M,最小值为m,则M+m=_____

解 可知

$$f(x) = 1 + \frac{2\sqrt{2013}x + \sin 2013x}{x^2 + 2013}$$

容易发现, f(x) 的后一部分是一个奇函数, 故 f(x) 关于 (1,0) 对称, 即 M+m=2.

问题 2.9 求函数
$$f(x) = \sqrt{2x^2 - 3x + 4} + \sqrt{x^2 - 2x}$$
 的最小值.

解 先看定义域:因为

$$2x^2 - 3x + 4 > 0$$
, $x^2 - 2x > 0$

可知 $x \in (-\infty, 0] \cup [2, +\infty)$. 由于 f(x) 的两个部分均在 $(-\infty, 0]$ 上单调递减、在 $[2, +\infty)$ 上单调递增,可知 f(x) 也在 $(-\infty, 0]$ 上单调递减、在 $[2, +\infty)$ 上单调递增.于是

$$f(x) \ge \min\{f(0), f(2)\} = f(0) = 2$$

2.1.4 综合练习

问题 2.10 求函数 $f(x) = \sqrt{x^4 - 3x^2 - 6x + 13} - \sqrt{x^4 - x^2 + 1}$ 的最大值.

解 看到两个如此不规整的根号相加,想到数形结合,然而根号下是四次多项式,不方便直接进行构造. 不过,注意到 $x^4-x^2+1=(x^2-1)^2+x^2$,可以从点 (x,x^2) 入手. 因为

$$f(x) = \sqrt{(x^2 - 2)^2 + (x - 3)^2} - \sqrt{(x^2 - 1)^2 + x^2}$$

这表示抛物线 $y = x^2$ 上的一点 $P(x, x^2)$ 到定点 A(3, 2) 与 B(0, 1) 的距离之差. 因为

$$|PA| - |PB| \le |AB| = \sqrt{10}$$

于是 $f(x) \leq \sqrt{10}$, 取等条件为 A,B,P 三点共线, 即 $x = \frac{1-\sqrt{37}}{6}$ 时.

问题 2.11 求函数 $y = x^2 + x\sqrt{x^2 - 1}$ 的值域.

解 注意到,该函数的定义域为 $(-\infty,-1]\cup[1,+\infty)$. 令 $t=\frac{1}{x}$ $(t\in[-1,0)\cup(0,1])$,这样的 x 即可满足定义域要求. 于是 $y=\frac{1}{t^2}+\frac{1}{t}\sqrt{\frac{1-t^2}{t^2}}$. 当 t>0 时, $y=\frac{1}{t^2}+\frac{\sqrt{1-t^2}}{t^2}=\frac{1}{1-\sqrt{1-t^2}}$. 由 $\sqrt{1-t^2}\in[0,1)$,可知 $y\in[1,+\infty)$. 当 t<0 时, $y=\frac{1}{t^2}-\frac{\sqrt{1-t^2}}{t^2}=\frac{1}{1+\sqrt{1-t^2}}$,同理可得 $y\in(\frac{1}{2},1]$. 综上, $y\in(\frac{1}{2},+\infty)$.

问题 2.12 证明:函数 $f(x) = 3x^2$ 可以表示为两个单调递增的多项式函数之差.

解 为了使得作差后得到 $3x^2$ 且两个多项式函数均单调递增,考虑某两个三次函数. 给定两个多项式函数 $\varphi_1(x) = (x+1)^3$ 与 $\varphi_2(x) = x^3 + 3x + 1$. 容易证明,它们都是单调递增的函数,且 $f(x) = \varphi_1(x) - \varphi_2(x)$.

2.2 二次函数相关问题

2.2.1 参变互换

问题 2.13 设二次函数 $f(x) = ax^2 + bx + c$ (a > 0),方程 f(x) - x = 0 的两个根 x_1, x_2 满足 $0 < x_1 < x_2 < \frac{1}{a}$.

- (1) 当 $x \in (0, x_1)$ 时, 证明: $f(x) < x_1$;
- (2) 设函数 f(x) 的图像关于直线 $x = x_0$ 对称,证明: $x_0 < \frac{1}{2}x_1$.

解 (1) 因为 $f(x) - x = ax^2 + (b-1)x + c = 0$ 的两根 x_1, x_2 满足

$$x_1 + x_2 = \frac{1-b}{a}, \quad x_1 x_2 = \frac{c}{a}$$

所以

$$f(x) - x_1 = ax^2 + [1 - a(x_1 + x_2)]x + ax_1x_2 - x_1$$
$$= a[x^2 - (x_1 + x_2)x + x_1x_2] + x - x_1$$
$$= (ax - ax_2 + 1)(x - x_1)$$

其中, $x-x_1 < 0$, $ax-ax_2+1 > 0$, 则 $f(x)-x_1 < 0$, 即 $f(x) < x_1$.

(2) 由 (1),此时
$$x_0=\frac{b}{-2a}=\frac{x_1+x_2}{2}-\frac{1}{2a}$$
. 由 $x_2<\frac{1}{a}$,显然有 $x_0<\frac{1}{2}x_1$.

问题 2.14 已知函数 $f(x) = ax^2 + bx + c$ 在 [0,1] 上的函数值的绝对值不超过 1,求 |a| + |b| + |c| 的最大值.

解 因为 $f(0), f\left(\frac{1}{2}\right), f(1) \in [-1, 1]$, 且

$$a = 2f(1) + 2f(0) - 4f\left(\frac{1}{2}\right), \quad b = 4f\left(\frac{1}{2}\right) - 3f(0) - f(1), \quad c = f(0)$$

所以

$$S_0 = |2f(1) + 2f(0) - 4f\left(\frac{1}{2}\right)| + |4f\left(\frac{1}{2}\right) - 3f(0) - f(1)| + |f(0)|$$

且这个式子在 f(0), f(1) 增大时增大, 在 $f\left(\frac{1}{2}\right)$ 增大时减小. 故

$$S_0 \le 8 + 8 + 1 = 17$$

取等条件为 f(1) = 1, f(0) = 1, $f\left(\frac{1}{2}\right) = -1$, 即 $f(x) = 8x^2 - 8x + 1$.

问题 2.15 求函数 $y = 2x - 3 + \sqrt{x^2 - 12}$ 的值域.

解 该函数的定义域为 $(-\infty, -2\sqrt{3}] \cup [2\sqrt{3}, +\infty)$. 于是,关于 x 的方程 $2x - 3 + \sqrt{x^2 - 12} - y = 0$ 在该定义域上有解. 该方程等价于

$$3x^2 - (4y + 12)x + y^2 + 6y + 21 = 0$$

2.2.2 调整

问题 2.16 已知函数 $f(x) = ax^2 + bx + c$ (a > b > c) 的图像上有两点 $A(m_1, f(m_1)), B(m_2, f(m_2)),$ 且满足

$$f(1) = 0$$
, $a^2 + [f(m_1) + f(m_2)]a + f(m_1)f(m_2) = 0$

- (1) 求证: $b \ge 0$;
- (2) 求证: f(x) 的图像被x 轴截得线段长的取值范围是 [2,3);
- (3) 问能否得出 $f(m_1+3)$, $f(m_2+3)$ 中至少有一个为正?

解 (1) 由第二个式子, $a = -f(m_1)$ 或 $-f(m_2)$, 也即 f(x) = -a 的两根为 m_1, m_2 . 这告诉我们方程

$$ax^2 + bx + a + c = 0$$

有两个实数解, 即 $\Delta = b^2 - 4a(a+c) \ge 0$.

由 f(1)=0,有 b=-a-c,故 $(a+c)^2-4a(a+c)\geq 0$,即 $(3a-c)(a+c)\leq 0$. 又因为 a+b+c=0 中必有一正一负,且 a>b>c,故 a>0>c,于是必有 $a+c\leq 0$,即 $b\geq 0$.

因为 a>b=-a-c, 可知 $\frac{c}{a}>-2$; 因为 $b=-a-c\geq 0$, 可知 $\frac{c}{a}\leq -1$. 带入上式,即 $1-\frac{c}{a}\in [2,3)$.

(3) 不妨设 $a = -f(m_1)$, $\mathfrak{P} f(m_1) = a(m_1 - 1)(m_1 - \frac{c}{a}) = -a$, 可得 $(m_1 - 1)(m_1 - \frac{c}{a}) = -1 < 0$, 所

以 $\frac{c}{a} < m_1 < 1$,于是 $\frac{c}{a} + 3 < m_1 + 3 < 4$,即 $m_1 + 3 > 2$. 又因为 f(x) 在 $\left(\frac{1}{2}\left(\frac{c}{a} + 1\right), +\infty\right)$ 上单调递增,即 f(x) 一定在 $(0, +\infty)$ 上单调递增,于是

$$f(m_1+3) > f(1) = 0$$

同理,对于 $a = -f(m_2)$ 的情况,可以得到 $f(m_2 + 3) > 0$. 原题即证毕.

三角函数

3.1 有关三角函数概念的问题

问题 3.1 (2015 高联) 设 w 是正实数,若存在 a,b ($\pi \le a < b \le 2\pi$),使得 $\sin \omega a + \sin \omega b = 2$,求 ω 的取值范围.

 \mathbf{M} 由 $\sin \omega a$, $\sin \omega b \leq 1$, $\sin \omega a = \sin \omega b = 1$. 记 $\omega a = 2k\pi + \frac{\pi}{2}$, $\omega b = 2l\pi + \frac{\pi}{2}$ $(k, l \in \mathbb{Z})$, 则存在 k, l 使得

$$\omega\pi \le 2k\pi + \frac{\pi}{2} < 2l\pi + \frac{\pi}{2} \le 2\omega\pi$$

当区间 $[\omega \pi, 2\omega \pi]$ 的长度 $\geq 4\pi$ 时, 总存在 k, l 满足上式; 当 $\omega \in (0,4)$ 时:

$$1^{\circ}$$
 若 $\omega \pi \leq \frac{1}{2}\pi < \frac{5}{2}\pi \leq 2\omega \pi$,此时 ω 无解;

$$2^{\circ} \ \, 若 \, \omega \pi \leq \frac{5}{2} \pi < \frac{9}{2} \pi \leq 2 \omega \pi \, , \ \, 此 时 \, \omega \in \left[\frac{9}{4}, \frac{5}{2}\right];$$

综上,
$$\omega \in \left[\frac{9}{4}, \frac{5}{2}\right] \cup \left[\frac{9}{4}, +\infty\right)$$

问题 3.2 设函数 $f(x) = \sin\left(\frac{11}{6}\pi x + \frac{\pi}{3}\right)$.

- (1) 对于任意的正数 α ,是否总能找到不小于 α ,且不大于 $(\alpha+1)$ 的两个数 a,b,使 f(a)=1,f(b)=-1? 给出答案并证明.
- (2) 若 α 是任意自然数,再次讨论上述问题.

解 (1) 答案是否定的. 函数 f(x) 的最小正周期为 $\frac{12}{11} > 1$,故在一段长度为 1 的区间上不一定能同时给出极大值与极小值. 现在进行反例构造:

取
$$f(a)=1$$
,例如 $a=\frac{1}{11}$. 找一个以 $x=a$ 为中心、长度为 1 的区间,即区间 $\left(-\frac{9}{22},\frac{13}{22}\right)$. 在该区间上取

不到最小值 -1.

(2) 假设找不到这样的 a,b,由于使 f(x) 函数值为 -1 的自变量 x 的集合为 $\left\{x \mid x = \frac{12}{11}k + \frac{7}{11}, k \in \mathbb{Z}\right\}$,故存在一个 α 使得

$$\frac{12}{11}k + \frac{7}{11} - \frac{12}{11} < \alpha < \alpha + 1 < \frac{12}{11}k + \frac{7}{11}$$

即要求 $\frac{12k-5}{11} < \alpha < \frac{12k-1}{11}$. 由于 α 是自然数,这样的 α 便不存在,与假设矛盾. 原命题即得证.

问题 3.3 求证:存在唯一的一对实数 $\alpha, \beta \in \left(0, \frac{\pi}{2}\right)$,且 $\alpha < \beta$,使得 $\sin(\cos \alpha) = \alpha$, $\cos(\sin \beta) = \beta$.

解 从 \sin 入手:记 $f(x) = \sin(\cos x) - x$.由于 f(x) 在 $\left(0, \frac{\pi}{2}\right)$ 上单调递减,且 f(0) > 0, $f\left(\frac{\pi}{2}\right) < 0$,故 $\left(0, \frac{\pi}{2}\right)$ 上存在唯一一个 α 满足 $\sin(\cos \alpha) = \alpha$.

为了凑出 $\cos(\sin\beta)$, 令 $\alpha = \sin\beta$, 即 $\sin(\cos(\sin\beta)) = \sin\beta$, 由于 $\beta \in \left(0, \frac{\pi}{2}\right)$, 故 $\cos(\sin\beta) = \beta$, 而这样的 β 由 α 唯一确定,即 β 满足题意. 最后,由于 $\sin(\cos\alpha) = \sin(\cos(\sin\beta)) = \sin\beta < \beta$,可知 $\alpha < \beta$.

问题 3.4 (1983 高联) 函数 $F(x) = |\cos^2 x + 2\sin x \cos x - \sin^2 x + Ax + B|$ 在 $\left[0, \frac{3}{2}\pi\right]$ 上的最大值 M 与参数 A, B 有关. 问 A, B 取什么值时,M 为最小?并证明你的结论.

解 化简 F(x),则 $F(x) = |\sqrt{2} \sin\left(2x + \frac{\pi}{4}\right) + Ax + B|$. 观察 F(x) 的图像,其是一个正弦型函数 $f(x) = \sqrt{2} \sin\left(2x + \frac{\pi}{4}\right)$ 与一次函数 g(x) = Ax + B 之和的绝对值,极值只能在 $\frac{\pi}{8}, \frac{5\pi}{8}, \frac{9\pi}{8}$ 处取到. 以 $\frac{\pi}{8}$ 为例: 1° 当 $g\left(\frac{\pi}{8}\right) \neq 0$ 时,不妨令 $g\left(\frac{\pi}{8}\right) > 0$,即 $\frac{\pi}{8}A + B > 0$:当 A > 0 时, $M = \sqrt{2} + \frac{9\pi}{8}A + B > \sqrt{2} + A > \sqrt{2}$; 当 $A \leq 0$ 时, $M = \sqrt{2} + \frac{\pi}{8}A + B > \sqrt{2}$. 2° 当 $g\left(\frac{\pi}{8}\right) = 0$ 时,即 $\frac{\pi}{8}A + B = 0$:当 $A \neq 0$ 时, $M = \sqrt{2} + \frac{9\pi}{8}A + B$ 或 $\sqrt{2} + \frac{5\pi}{8}A + B > \sqrt{2}$; 当 A = 0 时,B = 0,则 $M = \sqrt{2}$.

综上, M 的最小值为 $\sqrt{2}$.

平面向量

填空题

问题 4.1 在边长为 8 的正方形 ABCD 中,M 是 BC 的中点,N 是 AD 边上的一点,且 DN=3NA,若对于常数 m,在正方形 ABCD 的边上恰有 6 个不同的点 P,使 $\overrightarrow{PM}\cdot\overrightarrow{PN}=m$,则实数 m 的取值范围为______.

问题 **4.2** 已知点 P,Q 在 \triangle ABC 内,且 $\overrightarrow{PA} + 2\overrightarrow{PB} + 3\overrightarrow{PC} = 2\overrightarrow{QA} + 3\overrightarrow{QB} + 5\overrightarrow{QC} = \overrightarrow{0}$,则 $\frac{|\overrightarrow{PQ}|}{|\overrightarrow{AB}|}$ 的 值为_____.

问题 4.3 已知向量 $\overrightarrow{OA} \perp \overrightarrow{OB}$,且 $|\overrightarrow{OA}| = |\overrightarrow{OB}| = 24$. 若 $t \in [0,1]$,则 $|t\overrightarrow{AB} - \overrightarrow{AO}| + |\frac{5}{12}\overrightarrow{BO} - (1-t)\overrightarrow{BA}|$ 的最小值为______.

复数

数列

极限与导数

不等式

- 8.1 几个著名不等式的应用
- 8.2 综合解题方法
- 8.2.1 换元与齐次化

问题 8.1 设 a,b,c 为正实数,且任意两数之和大于第三个数.求证:

$$abc \ge (a+b-c)(b+c-a)(c+a-b)$$

 \mathbf{M} 令 x = a + b - c, y = b + c - a, z = c + a - b, 则 <math>x, y, z > 0. 下略.

问题 8.2 证明:不等式

$$\frac{a^4 + a^2b^2 + b^4}{3} \ge \frac{a^3b + ab^3}{2}$$

对所有实数 a,b 均成立.

 \mathbf{M} 令 $m = a^2 + b^2, n = ab$. 下略.

问题 8.3 求证:对任意正实数 a,b,c 都有

$$1 < \frac{a}{\sqrt{a^2 + b^2}} + \frac{b}{\sqrt{b^2 + c^2}} + \frac{c}{\sqrt{c^2 + a^2}}$$

解

8.2.2 恒等变形

恒等变形一般需要刻意关注题目给出的提示信息.一般会出现例如因式分解、裂项等提示.

问题 8.4 设 a,b,c 是正实数,且满足 a+b+c=1.证明:

$$\frac{a-bc}{a+bc}+\frac{b-ca}{b+ca}+\frac{c-ab}{c+ab}\leq \frac{3}{2}$$

解 注意到,

$$1 - \frac{a - bc}{a + bc} = \frac{2bc}{a + bc} = \frac{2bc}{a(a + b + c) + bc} = \frac{2bc}{(b - 1)(c - 1)}$$

下略.

问题 8.5 已知 x_1, \dots, x_n 都是实数, $n \ge 2$,且 $\sum_{k=1}^n |x_k| = 1$, $\sum_{i=1}^n x_i = 0$. 求证:

$$\left| \sum_{k=1}^{n} \frac{x_k}{k} \right| \le \frac{1}{2} - \frac{1}{2n}$$

并指出其取等条件.

解

问题 **8.6** 设 $0 < t_1 \le t_2 \le \cdots \le t_n < 1$. 求证:

$$(1 - t_n)^2 \cdot \left[\frac{t_1}{(1 - t_1^2)^2} + \frac{t_2^2}{(1 - t_2^3)^2} + \dots + \frac{t_n^n}{(1 - t_n^{n+1})^2} \right] < 1$$

解

问题 8.7 设 a_1, \dots, a_n 均为正数,它们的和为 1,求证:

$$\frac{a_1^2}{a_1 + a_2} + \frac{a_2^2}{a_2 + a_3} + \dots + \frac{a_{n-1}^2}{a_{n-1} + a_n} + \frac{a_n^2}{a_n + a_1} \ge \frac{1}{2}$$

解 对称处理.

问题 8.8 设 $a_1, \dots, a_n > 0$,证明:

$$\sum_{k=1}^{n} \frac{k^2}{a_1^2 + \dots + a_k^2} \le \left(\sum_{k=1}^{n} \frac{1}{a_k}\right)^2$$

解

问题 8.9 设 $a_1, \dots, a_n \ (n \ge 2)$ 是 n 个互不相同的实数, $S = a_1^2 + \dots + a_n^2$, $M = \min_{1 \le i < j \le n} (a_i - a_j)^2$. 求证:

$$\frac{S}{M} \ge \frac{n(n^2 - 1)}{12}$$

解

8.2.3 切线 (曲线) 放缩

8.2.4 局部不等式

问题 8.10 设 x, y, z > 0,求证:

$$\frac{x^3}{x+y} + \frac{y^3}{y+z} + \frac{z^3}{z+x} \ge \frac{xy+yz+zx}{2}$$

解

问题 8.11 设 *a*, *b*, *c* 为正实数,求证:

$$\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{a^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\geq \frac{a+b+c}{3}$$

解

问题 8.12 设 x, y, z 为正实数, 求证:

$$\frac{1 + xy + xz}{(1 + y + z)^2} + 1 + yz + yx(1 + z + x)^2 + 1 + zx + zy(1 + x + y)^2 \ge 1$$

8.2.5 局部调整与磨光变换

8.2.6 有上下界的变量

问题 8.13 若 $x_1, \dots, x_n \in [a, b]$,其中 0 < a < b. 求证:

$$(x_1 + \dots + x_n) \left(\frac{1}{x_1} + \dots + \frac{1}{x_n} \right) \le \frac{(a+b)^2}{4ab} n^2$$

解略

问题 8.14 设 $a_1, \dots, a_n, b_1, \dots, b_n \in [1, 2]$,且 $\sum_{i=1}^n a_i^2 = \sum_{i=1}^n b_i^2$. 求证:

$$\sum_{i=1}^{n} \frac{a_i^3}{b_i} \le \frac{17}{10} \sum_{i=1}^{n} a_i^2$$

解

8.2.7 特殊的取等条件配凑

8.3 综合练习

问题 8.15 已知 a_1, \cdots, a_n 为两两不相同的非零自然数列. 求证: 对任何正整数 n 有

$$\sum_{k=1}^{n} \frac{a_k}{k^2} \ge \sum_{k=1}^{n} \frac{1}{k}$$

解

问题 8.16 设正数 a,b,c 满足 abc = 8, 证明:

$$\frac{a^2}{\sqrt{(1+a^3)(1+b^3)}} + \frac{b^2}{\sqrt{(1+b^3)(1+c^3)}} + \frac{c^2}{\sqrt{(1+c^3)(1+a^3)}} \geq \frac{4}{3}$$

解 先用切线放缩: $\sqrt{1+a^3} \le \frac{1}{2}a^2 + 1$, 带入左式易证.

解析几何

立体几何