LECTURE 6: CONVERGENCE OF AN ALGORITHM

- 1. Concept of convergence
- 2. Rate of convergence

General solution method

General iterative descent algorithm

```
Step 1: (Initialization)
          Start from a solution point x^0.
          Set k=0.
Step 2: (Optimality Check)
          Check if x^k is optimal (or near
          optimal).
           If Yes, stop and output x^k.
Step 3: (Movement)
          Move to an improved solution
          point x^{k+1}.
          (Possibly, x^{k+1} = x^k + \alpha_k d_k.)
          Set k \leftarrow k + 1 and go to Step 2.
```

Basic terminologies

- Proceeding from k to k+1 (a cycle from Steps $2 \to 3 \to 2$) means an <u>iteration</u>.
 - An algorithm always terminates (at Step 2) with a desired solution point in a finite number of iterations is a finite algorithm.
 - For an infinite sequence of solution points generated by an algorithm, $\{x^k \mid k = 0, 1, \dots\}$, if $\{x^k\}$ (or a subsequence $\{x^{k_i}\}$) converges to a point x^* that is a desirable solution point, then the algorithm is convergent.

Convergence proof

- Given an iterative algorithm, we need to show that, under certain conditions, the sequence of solutions generated by the algorithm indeed converges to a desired solution.
 - How to come up with such a proof of convergence for the algorithm you designed?

Basic terminologies

- An algorithm converges to a desired solution from any given starting point is said to be globally convergent.
- Let X be a "space" of interests. An algorithm "A" initiated at $x^0 \in X$ would generate a sequence $\{x^k\}$ defined by

$$x^{k+1} = A(x^k) ,$$

when A is a point-to-point mapping,

or
$$x^{k+1} \in A(x^k)$$
,

when A is a point-to-set mapping.

Definitions

- 1. An algorithm "A" is a mapping defined on a space X that assigns to every point $x \in X$ a subset of X.
- 2. Let $\Gamma \subset X$ be a solution set of interests and A is an algorithm on X. A continuous real-valued function z on X is a descent function for Γ and A, if
 - (i) $z(y) < z(x), \ \forall x \notin \Gamma \text{ and } y \in A(x).$
 - (ii) $z(y) \le z(x), \ \forall x \in \Gamma \text{ and } y \in A(x).$

Definitions

3. A point-to-set mapping $A: X \to Y$ is closed at $x \in X$, if the conditions

" $x_k \to x$, $x_k \in X$ " and

" $y_k \to y$, $y_k \in A(x_k)$ "

imply " $y \in A(x)$ ".

Moreover, A is closed on X if it is closed at each point of X.

Let X be closed. Then

- (i) A is closed on X if and only if $graph(A) = \{(x, y) \mid x \in X, y \in A(x)\}$ is closed.
- (ii) If A is a point-to-point mapping, then continuity implies closedness.

Global convergence theorem

Let X be a space of interests, $\Gamma \subset X$ be a solution set of interests, A be an algorithm on X, and $\{x^k\}_{k=0}^{\infty}$ be a sequence of solutions generated by A from a given x^0 such that $x^{k+1} \in A(x^k)$.

 \mathbf{If}

- (i) $\{x^k\} \subset S$ (a compact subset of X);
- (ii) \exists a descent function z for Γ and A;
- (iii) A is closed at points outside Γ ;

then the limit of any convergent subsequence of $\{x^k\}$ is a solution point in Γ .

Rate of convergence

Basic concept:

Let $\{r_k\}_{k=0}^{\infty}$ be a decreasing sequence of "errors" between a current solution and the desired solution. If the sequence converges to zero, we would like to know "how fast" it converges.

Example

$$\left\{\frac{1}{k}\right\}$$
? $\left\{\left(\frac{1}{2}\right)^k\right\}$? $\left\{\left(\frac{1}{k}\right)^k\right\}$? $\left\{\left(\frac{1}{2}\right)^{2^k}\right\}$?

Which one converges fastest?

Terminologies

• Definition Let $\{r_k\}_{k=0}^{\infty}$ be a bounded sequence of real numbers and $s_k = \sup\{r_i \mid i \geq k\}$.

The limit superior of $\{r_k\}$ is

$$\overline{\lim_{k\to\infty}} r_k \triangleq \lim_{k\to\infty} s_k .$$

Definition

Let $\{r_k\}_{k=0}^{\infty}$ be a convergent sequence of real numbers with $\lim_{k\to\infty} r_k = r^*$.

The <u>order of convergence</u> of $\{r_k\}$ is defined as the supremum of the nonnegative numbers psatisfying

$$0 \le \overline{\lim_{k \to \infty}} \frac{|r_{k+1} - r^*|}{|r_k - r^*|^p} < \infty.$$

(i) If the situation of $\frac{0}{0}$ is not involved, we usually consider the definition as

$$\lim_{k \to \infty} \frac{|r_{k+1} - r^*|}{|r_k - r^*|^p} = \beta .$$

In this case,

$$|r_{k+1} - r^*| = \beta |r_k - r^*|^p$$
.

- (ii) $\{r_k\}_{k=1}^{\infty}$ converges faster for larger p.
 - (a) $r_k = a^k$ (with 0 < a < 1) converges to 0 with p = 1, since $\frac{r_{k+1}}{r_k} = a$;
 - (b) $r_k = a^{2^k}$ (with 0 < a < 1) converges to 0 with p = 2, since $\frac{r_{k+1}}{r_k^2} = 1$.

Linear rate of convergence

• Definition:

If the sequence r_k converges to r^* such that

$$\lim_{k \to \infty} \frac{|r_{k+1} - r^*|}{|r_k - r^*|} = \beta < 1 ,$$

we say $\{r_k\}$ converges linearly to r^* with convergence ratio β .

- (i) The tail of $\{r_k\}$ converges at least as fast as the geometric sequence $c\beta^k$ for some constant c (geometric convergence).
- (ii) A linearly convergent sequence with smaller β converges faster.
- (iii) $\beta = 0$ is referred to as <u>superlinear</u> convergence.
- (iv) Any convergent sequence with p > 1 is superlinear.

Examples

(i)
$$\{r_k = \frac{1}{k}\} \to 0.$$

$$\lim_{k \to \infty} \frac{r_{k+1}}{r_k} = 1.$$

The convergence is of order 1, but it is not linear!

(ii)
$$\{r_k = (\frac{1}{k})^k\} \to 0.$$

(a)
$$\lim_{k \to \infty} \frac{r_{k+1}}{r_k} = 0.$$

The convergence is superlinear.

(b)
$$\lim_{k\to\infty} \frac{r_{k+1}}{r_k^p} = \infty$$
 for any $p > 1$. The convergence is of order 1 only!

Examples

- Order 1 convergence: $\{\frac{1}{k}\}$. (Arithmetic convergence)
- Linear convergence: $\{(\frac{1}{2})^k\}$. (Geometric convergence)
- Superlinear convergence: $\{(\frac{1}{\log(k+1)})^k\}; \{(\frac{1}{k})^k\}.$
- Quadratic convergence: $\{(\frac{1}{2})^{2^k}\}$.