## **UNCLASSIFIED**

# AD NUMBER ADB009668 **NEW LIMITATION CHANGE** TO Approved for public release, distribution unlimited **FROM** Distribution authorized to U.S. Gov't. agencies only; Specific Authority; Dec 1975. Other requests shall be referred to ASD, Wright-Patterson, AFB OH **AUTHORITY** USAF ltr 4 may 1977

ASD/XR-TR-75-I



ASDIR-II VOLUME I USERS MANUAL

COPY AVAILABLE TO DDC DOES NOT PERMIT FULLY LEGIBLE PRODUCTION

Chille Court Little

December 1975

CO F

contains test and evaluation information: January 1975.

Other requests for this document must be referred to ASD/XRH,

Wright-Patterson AFB, OH 45433.

Copy available to DDC does not married fally harded reproduction

DEPUTY FOR DEVELOPMENT PLANNING
ALKONAUTICAL SYSTEMS DIVISION
WRIGHT PATTERSON AIR FORCE BASE, OHIO 45433

#### NOTICES

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

This technical report has been reviewed and is approved for publication.

DAMES H. HALL

Colonel, USAF

Deputy for Development Planning



UNCLASSIFIED
ASSIFICATION OF THIS PAGE (When Date

| REPORT DOCUMENTATION PAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | READ INSTRUCTIONS BEFORE COMPLETING FORM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| The state of the s | D. 3. RECIPIENT'S CATALOG NUMBER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ASD/XR-TR-75-1 — Vol.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4. TITLE (and Subtitle)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5. TYPE OF REPORT & PERIOD COVE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ASDIR—II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Final A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Volume I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | July 72 Dec 74,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| USER MANUAL .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6. PERFORMING ORG. REPORT NUMBE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7. AUTHOR(*)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8. CONTRACT OR GRANT NUMBLE(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Charles W./Stone/1st Lt., USAF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Stanley E./Tate/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 9. PERFORMING ORGANIZATION NAME AND ADDRESS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10. PROGRAM ELEMENT, PROJECT, TA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Deputy for Development Planning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ASD/XRH Air Force Systems Command - USAF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Air Force Systems Command - USAF<br>Wright-Patterson AFB, Chio 45433                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12 DEPORT DATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Deputy for Development Planning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12. REPORT DATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ASD/XR<br>Air Force Systems Command - USAF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 19: NUMBER OF PAGES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Wright-Patterson AFR. Ohio 45433                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Wright-Patterson AFB, Ohio 45433 14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 15. SECURITY CLASS. (of this report)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Unclassified                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 150. DECLASSIFICATION DOWNGRADII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 156. DECLASSIFICATION DOWNGRADII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SCHEDULE<br>NIZA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Distribution statement (of this Report)  Distribution limited to US Government agencies of evaluation information; January 1975, Other red be referred to ASD/XRH Wright-Patterson AFB, Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | N/A nly; report contains test a uests for this document mus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Distribution limited to US Government agencies of evaluation information; January 1975, Other red                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N/A  nly; report contains test a  uests for this document mus  45433.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Distribution limited to US Government agencies of evaluation information; January 1975, Other red be referred to ASD/XRH Wright-Patterson AFB, Other Research                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | N/A  nly; report contains test a  uests for this document mus  45433.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Distribution limited to US Government agencies of evaluation information; January 1975, Other red be referred to ASI)/XRH Wright-Patterson AFB, Other referred to ASI)/XRH wright-Patter | N/A  nly; report contains test a uests for this document mus (45433.)  from Report)  ectability pression                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Distribution limited to US Government agencies of evaluation information; January 1975, Other red be referred to ASD/XRH Wright-Patterson AFB, Other red to ASD/XRH Wright-Patterson AFB, Other referred to ASD/XRH Wright-Pat | nly; report contains test a uests for this document must 45433.  **Come Report)  **Come Report)  **Contains test a uests for this document must describe the second |
| Distribution limited to US Government agencies of evaluation information; January 1975, Other red be referred to ASD/XRH Wright-Patterson AFB, Other Referred to ASD/XRH Wrigh | nly; report contains test a uests for this document must 45433.  from Raport)  ectability pression lysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Distribution limited to US Government agencies of evaluation information; January 1975, Other red be referred to ASD/XRH Wright-Patterson AFB, Other Red Block 20, It dilletent in the supplementary notes  19. KEY WORDS (Continue on reverse side It necessary and identity by block number of the supplementary in the supplementary and identity by block number of the supplementary and identity by block number of the supplementary and identity by block number of the ASDIR User Manual which described to the supplementary is a state-of-the-art functionally moduly volume I is the ASDIR User Manual which described to the supplementary and identity in block number of the supplementary in the ASDIR User Manual which described to the supplementary in  | nly; report contains test a uests for this document must 45433.  from Raport)  ectability pression lysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

 $DD_{-1,JAN,73}^{-FORM} = 1473 - \text{Edition of $1$ NOV 65 IS OBSOLETE}$ 

#### **PREFACE**

The Aeronautical Systems Division's Infra-Red Signature Prediction Model (ASDIR) is an integrated system of computer programs.

The ASDIR-II computer program has been developed for computing, by analytical model, the infrared signature produced by the hot parts and the exhaust plume of aircraft. The program development was accomplished in two steps. The first step consisted of collecting, evaluating, and isolating those major sections of existing and available computer programs which analytically modelled the various major areas of the overall objective in a superior manner. The second step consisted of compiling the above selected program sections, creating an overall control program, and writing new program elements to complete the required analytical model.

The documentation for ASDIR-II has been written in three volumes: Volume I - USER Manual - describes the program input and provides the user with example applications, Volume II - PROGRAM DESCRIPTION - describes the program and its various functions, and Volume III - REFERENCE DOCUMENTATION - provides the user with essential background material.

The work reported herein was conducted by Capt C. W. Stone and Mr. S. E. Tate of the Propulsion and Energy Division, Directorate of Advanced Systems Design. Assistance in program shakedown and improvement of programming efficiency was provided by Mr. W. C. Lichtenberg of the same Division. Sample preparation assistance was provided by Lt. T. E. Dayton of ASD/ENYW. This effort was conducted during the period 1 July 1973 to 1 July 1975.

## TABLE OF CONTENTS

| TABLE OF CONTENTS                                                                                                                                                                                                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| INTRODUCTION                                                                                                                                                                                                              |
| APPLICATION OF ASDIR-II PROGRAM OPERATION BASIC ASDIR-II AIRCRAFT CONFIGURATION PRACTICAL AIRCRAFT CONFIGURATIONS                                                                                                         |
| PROGRAM CONTROL SCHEME                                                                                                                                                                                                    |
| PREPARATION OF INPUT DATA DECK       1         IDS 1       1         SIGSUB       1         SIGNIR       20         IDS 2       4         IDS 3       4         IDS 4       4         IDS 5       4         IDS 6       5 |
| APPENDIX A5                                                                                                                                                                                                               |

#### INTRODUCTION

Infrared (IR) energy is emitted by hot parts and hot gases. A number of emitting sources exist in the field of view of IR seeking missiles and IR detection systems which are observing an aerospace system (aircraft) in flight. Important emitters include:

- . Background (earth objects, sky, clouds, etc)
- . Hot parts of engine exhaust systems.
- . Hot gases of engine exhaust (plume).
- . Heat exchangers (oil coolers).
- . Scintillated sunlight reflections.
- . Aircraft lights (internal & external).
- . Aerodynamically heated leading edges and surfaces.

The radiated energy will contain both gray-body Lambertion spectra and also molecular species spectra. Emitted energy rays which pass brough the mixed and cocled exhaust gases will experience spectral attenuation prior to being exposed to atmospheric attenuation. An infrared signature of an energy emitting source is defined as the frequency spectra and distribution in azimuth and elevation of infrared energy emitted by a radiating source as the energy enters the transmission media (the atmosphere in case of aircraft). ASDIR-II calculates the infrared signature of aerospace systems.

ASDIR-II was developed to be a suitably accurate but timewise and computer-resources-wise practical computer analysis or model of the infrared signature. The details of the computer program are presented and described in volumes II and III of this report. The purpose and intent of this volume is to instruct the ASDIR-II user in the use and application of the computer model. Example problems will be found in the Appendix.

#### APPLICATION OF ASDIR-11

#### Program Operation

Program accuracy, simplicity, and rapidity of execution were optimized by maximizing reliance on geometric symmetry in the development of the plume structure and the irradiance rays. It follows that, ASDIR-II is an axisymmetric analysis and the resulting IR signature is a surface of revolution about the aircraft line-of-flight. Points of IR observance are located in space relative to the signature emitter by slant range and aspect, where aspect is the included angle measured from the aftward aircraft line-of-flight. Aspect angles of azimuth and elevation must first be converted to the axisymmetric included angle during input data preparation. Infrared signatures of aircraft configurations which are not surfaces of revolution must be composed of output data of several axisymmetric IR signatures using the principles of superposition.

While the step-by-step directions below will cover the following points, it is appropriate to emphasize a few program features here:

- 1. Input data are grouped into several categories. Input data sets are coded with IDS numbers and Input blocks are coded with IDS numbers. Input data sets make use of namelist "reads" with the exception of IDS1 which uses formatted "reads". All IB data are formatted.
- 2. When engine hot parts are analyzed in the SIGNIR portion of ASDIR-II (IHOT≠0) the aspect angle selections are read in at IB54 and 55. These angles are sequentially selected by a counter, ICHECK. The sequential selection requires that program control return to a point near the beginning of the program for each aspect angle selection and, thereby, repeating read instruction for IDS-2, namelist CASE. For this reason a b\$CASEb\$ card must be provided for each repeat cycle until all angles have been selected. The angle list can be intentionally cut short by simply omitting appropriate number of b\$CASEb\$ cards or by inserting a b\$CASEbTERM= RUE.b\$ card after the desired number of b\$CASEb\$ cards. If too many b\$CASEb\$ cards are input, a program stop will occur when the angle list is exhausted. Each b\$CASEb\$ card represents an opportunity to develop a special output for a single angle such as a plotting deck, a plume characteristic plot, a spectrum analysis, or some other output selection. An appropriate designation (i.e., ISPAT=2 to request a plotting deck) is simply entered on selected input cards as, for example:

b\$CASEbISPAT=2b\$

then neutralized on the next card as:

#### b\$CASEbISPAT=Ob\$

where the b designates a blank card column.

- 3. Certain input data items are redundant in that they are "read in" by more than one "read". Certain other data fall in essentially the same category in that more than one quantity represents the same input. Input data which involve redundancy or compatibility and their input location are summarized in Table I.
- 4. A final data compatibility requirement exists when an "input" states the number of items to be entered. It is important to enter the appropriate number of values so stated. These interactions are summarized in Table II.
- 5. Radiance from the engine exhaust nozzle cavity is normally the most significant part of the overall aircraft IR signature. The radiance is directly dependent upon the geometric view factors, a set of values which is extremely tedious to generate for each engine to be analyzed. Provisions are included in ASDIR-II for generating these whew factors as punched card output in a view factor computer run. For the view factor computer run IB49 through 53 and all IDS input from IDS-2 to IDS-6 may be excluded from the input string if the program execution is requested to stop after punching the view factors. Inputs required for punching view factors and requesting STOP include all "IB" data up to IB48 and specifically:

IDS1 bb03

IB7 bb0x-1 Note: Surface node temperatures are usually not known, so x will usually be zero.

When the view factor cards have been punched, they must be included in the input as IB10 and IB11. In addition IDS1 and IB7 require revision to:

IDS1 bb01

IB7 bb0x01

for resumption of IR signature program execution.

#### TABLE I INPUT COMPATABILITY REQUIREMENTS

| INPUT QUANTITY                                            | NAME                                | INPUT LOCATION               |
|-----------------------------------------------------------|-------------------------------------|------------------------------|
| Stream total temperatures (of primary and secondary flow) | TEMPO, TW<br>TTP, TTS<br>TTPN, TTSN | IB5, IB9<br>IB43, 44<br>IDS5 |
| Overall nozzle length                                     | X2, X10, X20, TPL, XF<br>ANL        | IB4, 5, 6, 12<br>IDS2        |
| Nozzle exit dimensions                                    | Y2, Y10, Y20, AACT<br>RPN, RSN, RP  | IB4, 5, 17<br>IDS2           |
| Stream total pressures                                    | PTP, PTS<br>EPR, FPR                | IB43, 44<br>IDS5             |
| Stream flow rates                                         | WP, WS<br>WAPAC, WASAC              | IB43, 44<br>IDS5             |
| Ambient pressure                                          | PAMB<br>ALTPLM                      | IB45<br>IDSZ                 |
| IR wavelengths                                            | BAND1, BAND2<br>AMI, AMF, IFILTER   | IB57<br>IDS2                 |
| Scenerio                                                  | ALTPLM, ALTOBS, RANGE               | IDS2                         |

## TABLE II INTERACTIVE INPUT

|                                  | LOCATION OF INPUT: |                                                                |
|----------------------------------|--------------------|----------------------------------------------------------------|
| INPUT QUANTITY                   | NUMBER OF ENTRIES  | DATA                                                           |
| Notate geometry                  | IB3                | IB4,5,8,10,11,13,14,15<br>16,20,24,27,33,41,43,<br>44,47,49,53 |
| Fluid nodes                      | IB8                | 1B9                                                            |
| Transpiration cooled nodes       | IB24               | IB25, 26                                                       |
| Film conled nodes                | IB27               | IB28, 29, 30, 31, 32                                           |
| Convection-film nodes            | IB33               | IB34, 35, 36, 37                                               |
| Cooling Data table               | IB38               | IB39                                                           |
| Multiple fluid node surfaces     | IB41               | IB42                                                           |
| Objects protruding into streams  | IB47               | IB48                                                           |
| Conduction paths                 | IB49               | IB50                                                           |
| Special fluid nodes              | IB51               | IB52                                                           |
| Aspect angles                    | IB <b>54</b>       | IB55                                                           |
| The following input are in       | IDS-2:             | 1200                                                           |
| Observation points               | NRANG              | ALTOBS(i)<br>RANGE(i)                                          |
| External radiating areas         | NEXT               | LAREA(i),<br>ETEMP(i)                                          |
| External nozzle plug coordinates | NP                 | XP, RP                                                         |

#### BASIC ASDIR-11 AIRCRAFT CONFIGURATION

The aircraft configuration most simply represented by ASDIR-II is axisymmetric, single engined, and gas turbine powered with no external parts shielding or blocking the view of the hot exhaust nozzle opening or the plume. The IR signature of this basic configuration is completely developed by simply preparing the input data in accordance with the input data instructions below. The output can include listings of spectrally and spatially resolved radiance, plume gas parameters and species, equivalent black body area and temperatures of the nozzle exit plane, etc., or line printer plots or Calcomp Plotter punched decks as directed by output control parameters selected and given in the input. A Calcomp plot of a spatially resolved IR signature is included with example problem 1, Appendix A. (Calcomp plotting routines are not included as part of ASDIR-II).

Included in the program initialization are appropriate input quantities which describe a generic basic configuration plume-only sample case. The sample IR signature covers the band from 2.0 to 2.1 micrometers (pM) wavelengths. The short version output of the sample case is provided in the Appendix and at the end of the program listing for those users who have obtained their own copy of the program. The sample case can be exercized by the following five input cards:

- 1. bb0000
- b\$CASEb\$
- b\$PLUMINb\$
- 4. b\$POWERb\$
- 5. b\$CASEbTERN⊨.TRUE.b\$

where the first b is in column one. The \$ represents the CDC 6600 namelist syntax. When executing ASDIR-II on another computer system, the namelist format and syntax of that system should be used. The sample case is executed in 4.5 seconds on the USAF/ASD computer center's CDC 6600 computer using SCOPE 3.4.3.

#### PRACTICAL ARREST CONFIGURATIONS

Since aircraft configuration of practical interest are considerably more complex than the basic configuration considered in the ASDIR-II model, more effort in preparing input data and combining output data will be required for their representation. Common additional input data preparation will require:

- . hand prepared external surface emissivity weighted areas (ABE), and temperatures (TBB) representing aircraft components for each aspect angle (ASPDEG, resolved from azimuth and elevation) to be considered.
- . hand prepared shielded hot part areas (ABB) of engine internal hot parts for each aspect angle to be considered. Shielded hot part areas are exposed engine part areas as output by SICNIR but are partly or wholly shielded by aircraft components such as the empennage.
- . (Plume radiance cannot be partially shielded conveniently. Complete shielding of plume radiation, and its attenuation influence, can be achieved by setting IRADCK=2 in IDS 2).

Additional output data preparation which will be commonly required a the summing of results of several computer runs. A twin engine configuration signature can be developed, for example, by doubling the results from a single engine computer case. Suppose, further, that each engine is shielded differently by aircraft components. In this case, each engine with its particalar shielding pattern would be put on the computer separately and the results added to form the composite whole signature. For a multi-engine (i.e., four, six, eight, etc.) configuration more single engine cases will be required. The development of an engine less aircraft (IRADCK=2) signature to be added to the several shielded engine-only signatures is a practicable approach and reduces the probability of inadvertantly including a component more than once.

The prescribed technique of superposition of signatures does involve small but unknown error in the composite signature in that some niteraft components, engines, or plumes may be seen through plumes of near engines it some viewing aspects. This error can be considered, in certain instances, as causing the results to be conservative. Also, this error will tend to "wa hout" as a function of range as atmospheric attenuation spectrally specific progress: 5 by more energy.

#### PROGRAM CONTROL SCHEME

Program control parameters are included in the input data for selecting the various program functions as well as the I/C functions. The program (and input requirements) control logic flow diagram is given in Figure 1. The six control codes are:

. IHOT . ICHECK . IRADCK

. NFLW . IFILTER . KDATA

The details of IHOT are discussed in the Preparation of Input Data Deck section.

NFLW is an automatic control which alerts the program to the fact that it is processing the first of many sequential calculations.

When the program begins its second sequence, the NFLW control is changed from 0 to 1 to indicate to the program that preliminary calculations have been made and that most read directives need not be repeated. NFLW is included in the input (IDS-2) but it serves no purpose for the program user and should, therefore, be omitted and ignored.

ICHECK is an automatic counter which selects the sequential calculation quantities ASPDEG, ABB, and TBB. In addition, when ICHECK is <0, namelist CASE is written in the output, ALTOBS and RANGE inputs are converted to units of kilometers, and AMI and AMF are admitted to operational computer registers. These functions make ICHECK convenient to rebegin the ASPDEG sequence with or without a new set of ranges, observer altitudes, or IR band wavelengths.

IFILTER designates to the computer that a filter is used in conjunction with the IB sensor. Either preloaded filter characteristics shown in figs 2 through 6, can be designated or filter characteristics can be input in IDS-4.

When a filter is designated, the IR band designators in IDS-2 are over-written by the filter band wavelengths. The namelist FILT in IDS-4 is read when IFILTER<0.

KDATA is normally not used for input control, although it possesses the potential to affect a read of plume structure data from tape or punched cards which had been produced by a previous computer run. The normal utility of KDATA is to select output options as explained in the Preparation of Input Data Deck section.

Several output options are available in the program such as spatial and plotting punched card output, etc. Each is explained under its control



Figure 1. Input Data Set Logic Tree



BAND 1

Figure 2: Filter characteristics designated by IFILTER=1.



BAND 2

Figure 3: Filter characteristics designated by IFILTER=2.



Figure 4: Filter characteristics designated by IFTLTER =3.

BAND 3



BAND 4

Figure 5: Filter characteristics designated by IFILTER =4.



BAND 5

Figure 6: Filter characteristics designated by IFILTER =5.

code in the Preparation of Input Data Deck section. The output options control codes are:

(IDS-2)

| Print Control Ca | ard (IB-2) |
|------------------|------------|
| KKKI             | (IB-7)     |
| K50, NPLOT       | (IB-56)    |
| IL               | (IDS-2)    |

**ISPAT** (IDS-2) · ITAU (IDS-2) KDATA

#### PREPARATION OF INPUT DATA DECK

The description of the aircraft and background must be detailed, arranged, and punched into an Input Data Deck. The Input Data Deck is organized in two categories; Input Data Sets (IDS) which are predominately in namelist format, and Input Blocks (IB) which are formatted for computer read. The IB's are prepared exclusively to satisfy the internal hot parts (SICNIR) input requirements. In preparing the IB input cards, it is particularly important to provide every card requested even if a given card is blank.

The instructions for the preparation of each input card are given below in the sequence required for input "read" by the program. For input Data Decks which involve logical branching, as depicted in Figure 1, instructions are provided below at the branching points to indicate the next required input. Cross reference to relevant input are also provided to assist in compatibility of input data and avoid anomalies such as an engine operating at 40000 ft altitude in an aircraft flying at 10000 ft.

Every Input Data Deck will begin with IDS-1.

#### IDS-1

- HIOT (2X,12) Initial program control directive declaring the exclusion or inclusion (and mode) of engine internal hot part analysis. For proper directives, enter:
  - bb00 To bypass internal hot parts calculations. Provide ASPDEG, ABB, TBB, ALTPLM, and engine operation data in IDS-2 and IDS-5 from previous ASDIR runs or other information sources (if required data is not available, see next directive). Skip directly to IDS-2.
  - bb01 To enter internal hot parts calculations. Omit ASPDEG, ABB, and TBB in IDS-2. Insure compatibility among IB4, 5, 6, 9, 12, 17, 43, 44, 45, 57 and IDS-2, 5. Skip directly to SIGNIR.
  - bb02 To bypass internal hot parts calculation and enter SIGSUB.
    Omit ABB, ASPDEG, and TBB in IDS-2. As for the bb01 code instructions, insure compatibility. This code is preferred over bb00 for rerunning previously run flight conditions. Proceed directly to SIGSUB.
  - bb03 To acquire geometric view factors. It is usually desirable to punch the view factors by use of bb00-1 in IB7. Inclusion of IDS-2 through 5 is not required. (See IB7 for alternatives). The IHOT-bb03 code together with KKKI= -1(IB7) are required to STOP operation after punching view factors. Skip directly to SIGNIR.

#### SIGSUB

This portion of IDS-1 provides the output of SIGNIR but does not invoke the calculation of SIGNIR. SIGSUB is a convenient way of entering data which had been computed and printed in the output in a previous run. SIGSUB is accessed by INOT=bb02. Enter up to twenty (20) combinations of aspect angle, equivalent radiating area, and effective black body temperature in the following substitute IB formats:



Repeat SIB2 for each value entered in SIB1.

Bypass SIGNIR and proceed to IDS-2.

#### SIGNIR

The inputs to SIGNIR are to be prepared under fifty-seven IB formats of which many are repeated in input data loops as necessary to read in similar data. These data constitute the geometric and flow details of the hot aft end of engines from the turbine discharge to the nozzle exit. Several modes of nozzle cooling are offered for analysis by the program as well as paths of conductive, radiative, and convective heat transfer. The geometric view factors are generated by SIGNIR. In the instructional steps below, each element of data required is described and certain repeat loop notations are made.

131

TITLE = Title cards. User is allowed 80 spaces per each of 5 cards to write this literal information. 5 cards are required. It less than 5 cards are needed, supply the remainder with blank cards.

Input format 20A4

A

IB2

```
Print control card. For radiation results only, input a blank card. For additional print-out,
              input a 1 for each of the following parameters to
              be printed.
PRINT1
           = Print control for stream compressible flow information.
PRINT2
           = Print control for surface boundary layer information.
PRINT3
           = Print control for surface node average heat transfer
              coefficients.
           = Print control for fluid node temperatures.
PRINT4
PRINT5
           = Print control for surface cooling results.
           = Print control for internal geometric view factors.
PRINT6
PRINT7
           = Print control for temperatures of all configuration
              nodes.
PRINT8
           = Print control for the configurations external view
              factors.
PRINT9
           = Print control for radiation results unattenuated by
              atmosphere. Also see K50 in IB56.
PRINTO
           = Print control for force factor information.
                            Input format 2X, 1012
```

**IB3** 

```
NN = Total number of fluid streams. (up to 5)
NNN = Total number of surfaces. (up to 5)
N = Total number of surface nodes. (up to 44)
NO = Total number of entrance-exit nodes. (up to 5)
NNNN = Axis node indicator (input 1 if node exists; if not, input zero).

Input format 2X, 5I2
```

B

 $\bigcup_{\mathbf{B}}$ 

Physical data necessary to describe the surface nodes and axis node. Each card represents information for one node.  $\chi_1$ = Node upstream axial coordinate. (in.) Y1 = Node upstream radial coordinate. (in.) X2 = Node downstream axial coordinate. (in.) Y2 = Node downstream radial coordinate. (in.) VECT = Node surface orientation parameter. (If node represents outside surface of the frustum of a cone, input +1.; if it represents inside surface. input a -1.; axis node has value of +1.) - Node number.\* NODE **ISURF** = Surface number on which node is located. Input form t 5F10.5, 2J2

Repeat IB4 for each surface node (up to 44) & axis node if one exists.

\* Assign a is node number to be one greater than final fluid node number.

**TB5** 

Entrance exit node. Each card represents information for one node. For a "sk node the upstr-am coordinate correspond to the coordinate of the disk inner ring. = Node upstream axial coordinate. (in.) X10 V10 = Node upstream radial coordinate. (in.) X20 = Node downstream axial coordinate. (in.) Y20 = Node downstream radial coordinate, (in.) VECTO = Node surface orientation parameter. If node is an exit disk node, input +1.; if it is an entrance disk node, input -1. If node is not a disk, follow the convention of VECT provided in 1B4. = Node temperature. (°R) TEMPO HODEO = Node number. Input format 6F10.5, I2

Repeat IB5 for each entrance-exit node. 1B6 TPL = Total axial length of the system. (in.) Input format F10.5 187 KKI = Surface node temperature indicator; (input 1 if surface node temperatures are input; if not, input zero). = Internal geometric view factors and surface node KKKI areas indicator (input 1 if they are input; if not, input zero, input -1 if they are to be punched). The calculation of geometric view factors is lengthy and minimization of repeat calculations should be applied whenever possible. The early use of -1 in KKKI is recommended. bb03 is required in IDS-1 and IDS-2 through 5 can be omitted for this run. KKKI = -1 calls for a computer STOP after punching the view factors. If surface node temperatures are not imput, bypass IBO and IBO. Input format 2X, 2I2 **IB8 NNAT** = Total number of fluid nodes and special fluid nodes if any (up to 30). Input format 2X, I2

**IB9** 

= Surface node temperatures (OR) TW Each card will contain a maximum of 8 temperatures. Temperatures must be input according to the numerical order of the nodes; i.e., the first will be the temperature of node 1, the eighth the temperature of node 8. This is a very sensitive parameter; see Table I.

Input format 8110.5

D

TB9 is repeated until all surface node temperatures, entrance-exit nodes, fluid nodes and special fluid nodes have been input, 8 to a card, up to 79 values.

If internal geometric view factors are not input, bypass IB10 and IB11.

Begin loop 1 on IB10 and IB11. The number of times this loop will be operated is equal to the total number of surface and entrance-exit nodes.

B10

F

Input node view factors (node corresponding to the number of times through loop 1) to all numerically higher surface and entrance-exit nodes in a numerical order; i.e., if third time through loop i, view factors would be input as from node 3 to 4, 3 to 5, 3 to 6, etc. Repeat this card for the given node to the other nodes, 8 values to a card.

Input format 8F10.5

1811

AREA

= Surface area of the surface node or the entranceexit node that corresponds to the number of times through loop 1. (Sq. in.)

Input format 1F10.5

TND of LOOP 1; Return to IB10 or proceed.

If surface node temperatures are not input, go to IB34.



F

#### **IB15**

NODEN = All surface nodes along the surface (KSURF) above.

Input format 2X, 2012

Repeat 1B14 and 1B15 for each surface, NNN.

Begin loop 2 which incorporates IB16 through IB40. This loop will identify fully the fluid streams, their surfaces and surface cooling if any. loop 2 will be operated once for each fluid stream, NN.

#### **IB16**

ΥI

ISTREM = Fluid stream number.

K = Type of fluid stream. Input one of the following:

O. for secondary stream.

1, for primary stream.

2, for mixed stream.

KK - Fluid stream exit indicator. Input one if the fluid stream does exit to ambient surroundings

or 0 if the stream does not.

= Axial location representing start of fluid stream.

(in.)
XF = Axial location representing end of fluid stream. (in

If the exit node is not a disc and KK=1, set XF to the smaller of X10 and X20(IB5) and AACT(IB17) to the related fluid stream cross section area.

Input format 2X, 3I2, 2X, 2F10.5

If the above fluid stream does not exit to the ambient surroundings, go to IB18.



AACT

= Cross sectional area of the fluid stream exit. This is the end of the tailpipe for the fluid flow stream in IB16. (Sq. in.)

Input format 1F10.5

#### **IB18**

NNA

= Total number of fluid nodes within this fluid stream.

Input format 2X, I2

#### **IB19**

NODEN2 KIK

XX2

= Fluid node number. \*

- Figure node number.

= Type of fluid node. Input one of the following:

0, for secondary fluid node.

1, for primary or fully mixed fluid node.

= Approximate axial coordinate which represents the mid-point of the fluid node. (in.)

Input format 2X, 2I2, 4X, F10.5

Repeat IB19 until all the fluid nodes for the fluid stream of IB16 have been entered.

\* Numbered consecutively after surface node numbers.

Begin loop 3, an internal loop to be executed 2 times for each time through loop 2. Once for each of the surfaces that border the fluid flow stream in IB16. This loop incorporates 1B20 through 1B40.



**JSURF** Upper surface number then lower surface number boardering the fluid stream in IB16. KA = Type of fluid stream immediately adjacent to the surface. Input one of the following: 0, for secondary stream. 1, for primary or fully mixed stream. THETA = Initial momentum thickness of the surface boundary layer. Input a value of -1 if the surface did not begin with the fluid stream of IB16. If the surface does begin with this fluid stream, input a known initial value or a best estimate. A value of approximately .001 inches might be expected for these surfaces. (in.) = Initial flat plate shape factor for the surface HIA boundary layer. Use the same criteria for this parameter as for THETA; a -1. if the surface does not begin with the fluid flow stream. An approximate value of about 1.3 might be expected for this parameter. (nondimensional) Input format 2X, 2I2, 4X, 2F10.5

If there is no surface cooling on the entire surface of IB20, bypass IB21 through IB40.

If the surface cooling information for the surface of IB20 has been input earlier in loops 2 or 3, bypass IB21 through IB40.

| TTSC   | = Total temperature of the coolant supply fluid for the surface in IB20. (°R) |
|--------|-------------------------------------------------------------------------------|
| RSC    | = Coolant supply fluid gas constant (ft. 1b./1b. °R)                          |
| GAMASC | = Coolant supply fluid specific heat ratio.                                   |
| CPSC   | = Coolant supply fluid specific heat (BTU/1b. °R)                             |
| WSET   | = Coolant supply fluid flow rate. (1b./sec.)                                  |
| 1      | If this parameter is to be computed, input 0.0.                               |
| TS     | = Temperature of the heat source adding heat to the                           |
| l      | coolant supply fluid in the coolant delivery system,                          |
| 1      | (°R). If no source exists, enter 0.0.                                         |
| UA     | = Overall heat transfer coefficient between heat                              |
|        | source and coolant supply fluid, (BTU/hr. °R). If                             |
| •      | no heat is transferred enter 0.0.                                             |
| {      | Input format 7F10.5                                                           |
| }      | 23pm 201mm / 12010                                                            |

If coolant supply fluid flow rate is not to be calculated, bypass IB22.

#### **IB22**

| PTSC | <pre>= Total pressure of coolant supply fluid source. (1b./sq. in.)</pre>                                                            |
|------|--------------------------------------------------------------------------------------------------------------------------------------|
| K12  | = Pressure loss parameter for the coolant delivery system. $K_{12} = \sigma \Delta P/W^{n_{12}}$ lb./sq. in./(lb./sec.) <sup>n</sup> |
| N12  | = Pressure loss exponent for the coolant delivery system. $n_{12} = L_n (\sigma \Delta P/K_{12})/L_n W$ (nondimensional)             |
|      | Input format 3F10.5                                                                                                                  |
|      |                                                                                                                                      |

If surface is convection-film cooled, go to IB33. If surface is film cooled, go to IB27. If surface is transpiration cooled, go to IB23.



### IB24

MA = Number of surface nodes that make up the transpiration cooled portion of the surface. (The transpiration cooled surface is that portion of the surface that extends from the upstream coordinate of the transpiration material to the downstream end of the surface.)

(up to 20) Input format 2X, I2

#### **IB25**

LX

Surface node numbers of the nodes that make up the transpiration cooled surface. Nodes are input in the increasing axial direction. (up to 20 values) Input format 2X, 10I2

#### **TB26**



#### Bypass IB27 through IB40.

#### **IB27**

NUM MA

- = Number of film cooling slots (up to 20)
- Number of surface nodes that makeup the film cooled portion of the surface (The film cooled portion of the surface is that portion of the surface that extends from the start of the cooling through the downstream end of the surface.) (up to 20)

Input format 2X, 2I2

**IB28** 

NODEN1

= Surface node numbers of the nodes that makeup the film cooling surface (up to 20 values) (The nodes are input in the increasing axial direction.)

Input format 2X, 10I2

**IB29** 

LΧ

= Number of cooling slots for each node. (The amount of data entered on this card will be equal to the number of nodes, MA, of IB27.)

Input format 2X, 10I2

**IB30** 

S = Slot height of film cooling slots. (in.). The order of input shall be in an increasing axial direction. The total amount of data entered will be equal to the number of slots, NUM, in 1B27. Each card will contain a maximum of 8 values.

Input format 8F10.5





#### **IB34**

S

**K5** 

= Axial coordinate for cooling. (in.) XN YN

= Radial coordinate corresponding to XN. (in.)

= Height of the cooling slot. (in.)

= Combined turning and exit pressure loss parameter  $(1b.sq. in./(1b./sec.)^2$ 

Input format 4F10.5

Repeat IB34 for each (up to 20) of the cooling slot coordinates; for the end coordinate of the last heat exchanger, and the coordinate for the downstream end of the surface if they do not coincide with those of the end of the last heat exchanger. Use S = 0.0and K5 = 0.0 where coordinates do not represent a cooling slot.

Go to IB36

#### **IB35**

YN

K5

XY = Axial coordinate for cooling. (in.)

= Radial coordinate corresponding to XN. (in.)

S = Height of the cooling slot. (in.)

> - Combined turning and exit pressure loss parameter.  $(1b./sq. in./1b./sec.^2)$

(Uses S = 0.0 and K5 = 0.0 where coordinates do not represent cooling slots.)

Input format 4F10.5

Repeat IB35 for the upstream coordinates of the first heat exchanger, for each (up to 20) of the cooling slot coordinates, and the coordinate for the downstream end of the surface.



Repeat IB39 equal to the number of sets of points, NN1 given in IB38. **IB40** HXT = Plate-fin heat exchanger thickness. (in.) AR = Plate-fin heat exchanger flow to frontal area ratio. SVHX = Plate-fin heat exchanger heat transfer area to volume between plates (ft.-1). = Plate-fin heat exchanger hydraulic diameter (ft.) HD Input format 4F10.5 End of loop 3; Return to IB20 or proceed. End of loop 2; Return to 1816 or proceed. 1341 ICS = Number of surfaces that are associated with more than one fluid stream (up to 5) Input format 2X, I2 If there are not surfaces that are associated with more than one fluid stream, go to IB43. **IB42 ICSURF** = Surface numbers of those surfaces that are associated with more than one fluid stream. The amount of data entered on this card will be equal to ICS entered on IB41 (up to 5 values) Input format 2X, 10I2



**?** 

Begin loop 4 on IB47 and IB48. This loop will be executed the same number of times as there are fluid streams in the configuration.

#### **IB47**

IA

= Number of sets of points (up to 50) to describe any nonaxisymmetric area lumps existing within each (up to 5) fluid stream, taken in sequence.

Input format 2X, I2

If there are no nonaxisymmetric area lumps within the fluid stream, bypass IB48.

#### **IB48**

XΑ

= Axial coordinate for a nonaxisymmetric area lump.
 (in.)

**AREAM** 

= Corresponding amount of cross-sectional area within the fluid stream that a nonaxisymmetric area lump takes up at location XA. Input XA and AREAM for the number of points, IA, entered in 1B47. Each card holds 4 sets of data.

Input format 8F10.5

End of loop 4; Return to IB47 or proceed If IHOT=03 (IDS1) and KKK1=-1 (IB7), terminate the Input Data Deck here. Program execution will stop for insertion of view factors in IB10 and 11.

If surface node temperatures are input, go to 1B53.

#### **IB49**

NCK

= Number of conduction paths that do not involve a fluid stream.(up to 79-N(IE3))

Input format 2X, I2



If no conduction paths go to IB53. IB50 NODE1 = Surface node involved in conduction. NODE2 = Surface node or special fluid node which completes the conduction path from NODE1. HTARY = The overall heat transfer coefficient between NODF1 and NODE2. (BTU/hr. °F) Input format 2X, 2I2, 4X, F10.5 Repeat IB50 for the number of conduction paths entered in IB49. ID51 NN = Number of special fluid nodes (up to 79-N (IB3)) lague format 2X, I2 If no special fluid nodes, go to TB53. **IB52** NODE1 = Special fluid node number. = Temperature of special fluid node number NODE1 (Deg. R) Input format 2X, I2, 6X, F10.5

S

Repeat IB52 for the number of special fluid nodes entered in IB51.

#### **IB53**

EMM

= Emissivity of surface and entrance-exit nodes. Use a value of 1.0 for open entrance-exit nodes. Enter data corresponding to the numerical order of nodes these represent. Each card will contain 8 values (up to 50 values).

Input format 8F10.5

#### **IB54**

NAS

#### **IB55**

THA

= Engine off-axis angles (degrees) (up to 20 values)
 (List in increasing order. Fach card holds 8 values.)

Input format 8F10.5

#### **IB56**

K50

= Second print control for hot metal radiation.
Enter 0 if hot metal spectra is to be
printed; enter 1 to bypass spectra print output.

NPLOT

WL

= Line printer plot control. Enter 1 to plot intensity vs wavelength. Enter 0 to bypass plot.

= Max. wavelength computed. Input 0.0 for default WL of 14μM. If \*\*\* check appears in the output, increase WL.

2X, 2I2, F10.3

T

**IB57** 

BAND1 = Wavelength of lowest end of IR spectrum to be considered for this aircraft, but greater than 1.0 micron.

BAND 2 = Wavelength of highest end of IR spectrum to be considered for this aircraft, but less than 14.0 micron.

See also note comment for WL in IB56.

NOTE: Specific IR detection bands will be selected below in IDS2.

Input format ZF1U.5

1DS2

#### IDS 2 Input for Case Definition

This input data set consists of input-output control code, program path control code, and case defining parameters. The compilation of these quantities constitutes the input data package referred to as CASE. Because of the beneficial interaction with existing values in the computer registers, the namelist format has been selected as the input mode. Quantities omitted in the namelist do not disturb values already in storage.

In the order shown for namelist CASE in program INPUT program listing, the input quantities are as follows:

ABB - Effective black body area of the nozzle exit in square centimeters.

AL - Effective axial length of the plume in feet.

DATINT presets AL to 1000 ft and AL is subsequently calculated in PIMDM. Except in very special cases, AL should be omitted here.

ALTOBS(i) - Up to 5 observing sensor altitudes in feet.

ALTPIM - Altitude of target in feet.

- Upper frequency of desired spectral band in micrometers (microns, μM). This value must be within the range of .9 through 200. μM. Omit if IFILTER is designated greater than zero.

Lower frequency of desired spectral band in micrometers. This value must also be within the range of .9 through 200. μM. Omit if IFILTER is designated greater than zero.

ASPDEG - Aspect angle in degrees. This is the semivertex cone angle between the line of view and the aftward plume centerline. The plume centerline is assumed within the program to coincide with the line of flight.

DDS - Number of segments which represent the observed ray of radiated energy. DATINT presets DDS to 16.
This value is adequate for most applications and, therefore, DDS should normally be omitted.

(NOTE: Omit ABB, ASPDEG, and TBB if IHOT (IDS1) = 0).

- EAREA(i) Up to 20 external effective black body radiating areas such as external hot engine surfaces, other hot surfaces on the target aircraft, etc. Like ABB, this area must be provided in square centimeters. Provide also, ETEMP and NEXT.
- ETEMP(i) Up to 20 external radiating area's temperatures in degrees Kelvin.
- FILTER Filter input control integer. DATINT presets
  IFILTER to zero. Five filter band characteristics
  are preloaded in program FILTER. If it is desired
  to invoke one of these filters, so designate by
  setting IFILTER = n (1 ≤ n ≤ 5) in namelist CASE.
  If another filter is desired, designate IFILTER
  =-1 and prepare its characteristics for
  namelist FILT (See Figure 1 and IDS 4). Ensure that
  the band AMI to AMF defines the filter if IFILTER <0.
- IL Intermediate calculation output control integer preset in DATINT to -1 for normal program operation. This special output call prints the geometry, spectra, and spectral integration of each ray in PLUSIG as they are calculated. This output call consumes a lot of paper and, therefore, should normally be omitted. Although IL should be omitted for normal program execution, it must be reset to -1 for repeated IRADCK ≠ 0 analyses per program execution.
- Program control integer. DATINT presets IRADCK to zero for normal cases and plumes. Special analyses may require the IR signature of simple hot targets attenuated through the atmosphere. For such cases, simply designate IRADCK = 2 and provide EAREA, ETEMP, NEXT, etc. Other special analyses require the IR signature of gas emissions attenuated through the atmosphere. For these cases, designate IRADCK = 1 and provide input as required in IDS 3. For normal program operation, omit IRADCK.
- A spatial output control integer which has been preset to zero in DATINT for normal program operation.

  Designate ISPAT≈0 to write spatial plume radiance on a scratch tape. Designate ISPAT =1 for listing output or ISPAT = 2 for listing and punch card output of spatial plume radiance data. When ISPAT ≠ 0, NEXIT and NANGSEG are each set to 7. The punch card output is suitable for plotting. See Appendix A for Calcomp plot example.

ITAU

- A second spectral output control integer which has been preset to -1 in DATINT for normal program operation. When ITAU is designated greater than or equal to zero, the spectral radiance of the entire ray is printed in ALPLUM. ITAU should be omitted for normal operation.

ITYPE

- A spectral line lapping parameter control integer preset to 1 in DATINT for normal program operation. ITYPE selects the line lapping function in subroutine TAUCAL. Except for very special spectroscopic analyses, ITYPE should be omitted.

**KDATA** 

- Program output control integer preset to 1 in DATINI for minimum output operation. KDATA is a five digit integer represented by KDATA = ABCDE. KDATA is decoded in program PLNDM and the designator A is utilized in program ASDIR 2. The KDATA code breakdown is as follows:

#### A is redefined IREAD:

- = 0, the plume will be computed.
- = 1, the plume gas data array will be read from a data tape 8.
- = 2, the plume gas data array will be read from input (cards punched in a previous program execution, see IDS 6).

### B is redefined IFILE:

- = 0, bypass file function.
- = 1, record plume gas data array on data tape 8.

#### C is redefined IPNCH:

- = 0, bypass punch function.
- = 1, punch plume gas data array on input/output cards.

#### D is redefined IPRNT:

- = 0, bypass print function.
- = 1, print plume gas dara array on output line printer.

# KDATA (Cont'd)

#### E is redefined IPLOT:

- = 0, plot plume static temperature, CO2 concentration, H2O concentration, and velocity on the line printer.
- =1, bypass line printer plots.
- =2, plot static temperature.
- =3, plot CO2 concentration.
- =4, plot H2O concentration.
- =5, plot velocity.

NA

- Atmospheric ray segmentation control integer preset to 5 in DATINT for normal program operation. This value is normally adequate and, therefore, can be omitted.

NANGSEG

 Ray angular segmentation control integer preset to 3 in DATINT for normal program operation. For finer spatial analyses of plume structure, NANCSEG = 7 is suggested. Usually, NANGSEG = 3 is adequate and NANGSEG may be omitted.

NATMO

- Atmospheric relative humidity control integer preset to 2 in DATINI for normal program operation. Input NATMO = 1 for low humidity or = 3 for high humidity. The atmosphere model excludes particulates, aerosols, and abnormal gas content. For normal (mid range) humidity, NATMO may be omitted.

NEXIT

Ray height segmentation control integer preset to 5 in DATINI for normal program operation. For finer spatial analyses of plume structure, NEXIT = 7 is suggested. Usually, NEXIT = 5 is adequate and NEXIT may be omitted.

NEXT

 Number of external radiating areas designator integer preset to zero in DATINT for normal program operation.

NFLW

 Program control integer preset to zero in DATINT for normal program operation. NFLW should be omitted. NP

 Number of external nozzle plug coordinates integer preset to zero in DATINT. If the nozzle of the subject engine has an external plug, designate NP = 2 and provide values for XP and RP. If no external plug, omit NP, XP, and RP.

NRANG

- Number of slant ranges integer preset to 1 in DATINT. If different than 1, designate the number of ranges to be analyzed (maximum of 5).

NUINC

- Spectral wave number stepping size (real) preset to 50. in DATINT for rapid program operation. Finer steps are available within the program as follows:

| NUINC = | increment (wave no. | band (wave no.) |
|---------|---------------------|-----------------|
| n       | n                   | 50 - 11000      |
| 0       | ( 25                | 50 - 2000       |
|         | 10                  | 2000 - 2400     |
|         | 25                  | 2400 - 3080     |
|         | 10                  | 3080 - 3770     |
|         | 25                  | 3770 - 11000 )  |

Values of 25., 10., or zero are suggested as spectroscopically reasonable values of n. Small values, such as 1, will use a lot of computer time.

RANGE(i) - Up to 5 slant ranges, from the observing sensor to the target aircraft, in feet preset to zero in DATING. The zero range is equivalent to no atmospheric attenuation.

RAYPNT - Intermediate calculati , output control preset in DATINT to zero for not all program operation. Similarly to IL, this special output call prints ray geometry and average properties in PLURAY as they are calculated. This call also uses a lot of paper and, therefore,

should normally be omitted.

TRACK - Background black body radiating temperature in degrees Kelvin preset to zero in DATINT.

TBB - Effective black body temperature of the nozzle exit in degrees Kelvin.

TERM Logical program stop command preset to TERM = .FALSE.
immediate prior to read namelist CASE in program INPUT.
After completion of desired program execution, provide a
TERM = .TRUE. namelist CASE input.

NUFRST Spectral integation initiator index integer preset to zero in DATINT. Once the spectral integration structure has been organized in PLUSIG, NUFRST is reset to 1 for the remainder of the program execution.

ICHECK A program and input cycle control integer preset to zero in Input. ICHECK is incremented for each executive cycle of ASDIR-II. When IHOT = 0, ASPDEG, ABB, and TBB must be provided in every CASE input when a value change is desired. ICHECK= -2 must be used to request the output listing of the \$CASE . . . \$ namelist input.

When IHOT \$\neq 0\$, ICHECK sequentially selects the next aspect angle (ASPDEG) data to be processed. When ASPDEG data is exhausted, program operation will terminate. The selection process can be repeated if in the last (or any) CASE input, ICHECK is reset. A simple change of IR band can be made by giving ICHECK =0 and new values for AMI, and AMF. Changes can include new values for DDS, EAREA, ETEMP, IL, IRALKK, ISPAT, ITAM, ITYPE, KDATA, NA, NANGSEG, NATMO, NEXIT, NEXT, NRANG, RAYPNT, and TBACK. New values for ALTOBS, and RANGE can be included in any CASE input, Examples are given in the appendices.

RPN The radius in inches of the primary nozzle.

RTE The radius in inches of the turbine exit stage.

ANL The axial nozzle length in inches from the turbine exit plane to the nozzle exit plane.

RSN The radius in inches of the secondary nozzle at the nozzle exit plane. If the subject engine has no secondary nozzle, designate RSN = 0 or RSN = RPN.

XP The external length in inches of the nozzle plug. If the subject engine has no plug, omit XP since it has been preset to zero in DATINT. If the subject engine has an external plug, designate also RP and NP = 2.

RP The radius in inches of the external nozzle plug in the plane of the nozzle exit.

#### IDS 3 SPECIAL GAS CHEMISTRY INPUT

This input data set consists of gas temperature and species partial pressure combinations for the special calculation of energy radiated from a simple gas target. A control value is required in namelist CASE (IDS2) for IRADCK (IRADCK = 1).

In the order shown for namelist STONE in subroutine PLURAY program listing, the input quantities are as follows:

- P1(i) Partial pressure in atmospheres of the H2O species in the target gas. The array will accept from 1 to 50 values.
- P2(i) Partial pressure in atmospheres of the CO2 species in the target gas. The array will accept from 1 to 50 values.
- P3(i) Partial pressure in atmospheres of the diluent in the target gas. The array will accept from 1 to 50 values.
- XT(i) Temperature in degrees Kelvin of the target gas
  mixture. The array will accept from 1 to 50 values.

#### IDS 4 FILTER DEFINITION

This input data set provides the opportunity to designate one of the five filter characteristics preloaded in program FILTER or to input specific characteristics of some other filter. A control value is required in namelist CASE (IDS 2) for IFILTER.

For the selection of a preloaded filter, designate IFILTER = n where n is the filter selected 1 through 5. Having designated 1FILTER > 0, the AMI and AMF quantities of IDS 1 are redefined to suit the designated filter band. These bands are shown in the program listing in data statements for AB to AC in program INPUT and for AST to AFN in program FILTER. The five filter transmission coefficient sets are shown in data statements in program FILTER.

For the election to provide specific filter transmission coefficients, designate 1FILTER = -1. In this analysis, AMI and AMF define the filter band within a 5  $\mu M$  limit.

In the order shown for namelist FILT in program FILTER, the input quantities are as follows:

- ASTART The lower wavelength of the filter band characteristics in micrometers. The value of ASTART must agree with the value of AMI entered in IDS 2.
- FR(i) Up to 100 specific filter transmission coefficients which describe the filter over the band AMI to AMF. The transmission pefficients must describe the filter at .05 µM intervals.

# IDS 5 Engine Operation Definition

This input data set provides several modes which ultimately define the plume gas data at the nozzle exit plane. The use of two separate namelist input modes is available for providing the plume input data. The first, namelist PLUMIN, will accept plume description data directly and will be discussed first. The second, namelist POWER, will accept engine operating parameters from which the plume gas data at the nozzle exit plane can be calculated. A feature of the engine operation calculation is the calculation of flight conditions in accordance with the Military Standard 210 day type based on the ICAO 1962 Standard Atmosphere. A second feature is the simple combustion chemistry calculation to provide the CO2 and H2O species concentrations for an N-Tane fuel for those input situations when CO2 is not provided in namelist PLUMIN.

Namelist PLUMIN is devoted exclusively to the definition of the plume by specifying the gas flow parameters at the nozzle exit plane. If the ambient properites are known for the subject flight condition of the target aircraft, as well as the nozzle exit gas properties, then the plume calculations are completely defined by namelist PLUMIN. Three parameters of PLUMIN (PA, U8, and XCO2) are utilized to key the program function. If XCO2 is omitted, the subroutine CHEM will be called to compute XCO2 and XH2O as a function of EQR and TANE.

If U8, the primary nozzle exit velocity is omitted, the engine operation input namelist POWER will be read and the engine will be considered to be operating at the provided values of PA, UA, and TA in air. This input mode is appropriate for analyzing engines for test cell operations. For such an application, FLTM can be omitted in POWER making use of UA or UA can be overwritten by designating FLTM in POWER depending on the availability of test cell data.

If in addition to the omission of U8, PA is also omitted, the quantity ALTPIM (IDS 2) will be utilized in subroutine THRUST to calculate the MIL STD 210, hot, standard, or cold atmospheric conditions as well as calculating the engine operation after reading namelist POWER.

In the order shown for namelist PLUMIN in program FLINP (or PLUME) in the program listing, the input quantities are as follows:

| RPN   | - Repeated from IDS 2 and should be omitted. |
|-------|----------------------------------------------|
| RSN   | - Repeated from IDS 2 and should be omitted. |
| XR    | - Repeated from IDS 2 and should be omitted. |
| RP    | - Repeated from IDS 2 and should be omitted. |
| KDATA | - Repeated from IDS 2 and sh. '4 be omitted. |

TANE

- Effective link number of simple fuel chain molecules. The fuel assumed is represented by an HCH chain molecule with atomic hydrogen ends:

I.e.,  $C_nH_{2n+2}$  with n links. A light ker sene such as JP-4 is represented by n = 9.0. TANE is preset to 9.0 in program FLINP.

**EQR** 

- The effective stoichiometric equivalence rat o preset to 0.25 in FLINP. This input is utilized only if U8 is provided and XCO2 is omitted.

XCO2(i) - The mole fraction concentration of carbon dioxide in the primary nozzle exhaust. If XCO2 is to be provided here, designate XCO2 = 11 \* .n where .n represents the mole fraction. If desired, and the data is known, the eleven required values can be entered individually to reflect a known distribution. The eleven values represent ten equal radius increments from centerline

(or plug) to the edge of the primary nozzle. (See text).

XH20(i)

- The mole fraction concentration of water vapor in the primary nozzle exhaust. Entry of H2O data is similar to entry of CO2 data and is required if XCO2 data is provided.

XC02A

- The mole fraction concentration of carbon dioxide in the ambient atmosphere, preset to .00033 in FLINP.

XH20A

- The mole fraction concentration of water vapor (humidity) in the ambient atmosphere, preset to .00033 in FLINP.

U8(i)

- The exhaust nozzle gas velocity in feet per second relative to the nozzle. If a flat velocity profile across the nozzle exit is to be entered, designate U8(1) = 11 \* n, m where n is primary nozzle exit velocity and m is the secondary flow exit velocity. If actual profile data is to be entered, provide the individual profile values in radial increments of (RPN-RP)/10. to fill out the primary and secondary nozzles. If U8 is to be calculated, omit U8, and a flat profile will be assumed.

| T8T(i) | - The exhaust nozzle total temperature in degrees  |
|--------|----------------------------------------------------|
|        | Rankine. Data input is similar to the input of U8, |
|        | and is required if U8 is provided.                 |

P8 - The primary nozzle exit static pressure in atmospheres preset to zero in DATINT. The pressure is considered constant over the exit of the nozzle.

PQ - The secondary nozzle static pressure in atmospheres, preset to P8 (i.e., zero) in FLINP, and is constant over the exit of the secondary nozzle.

UA - Flight velocity in feet per second. Must be input here if U8 is entered. (See text).

TA - Ambient temperature in degrees Rankine. Must be input here if U8 and PA are entered. (See text).

PA - Ambient pressure in atmospheres. If the ambient pressure, temperature, and velocity are to be calculated, omit PA. (See text and notes in program FLINP listing).

Namelist POWER is devoted to the definition of the engine operation from which the plume may ultimately be defined. The input data consists of ambient atmosphere, flight condition, and engine operating parameter. The engine operating parameters can be provided in either absolute or normalized form.

As discussed above, the ambient conditions are calculated by the use of a standard atmosphere model on a function of altitude, and a meteorological code, METEC. The flight and engine ram parameters are derived from the ambient conditions and the flight Mach number, FLTM.

In the order shown for namelist POWER in program THRUST program listing, the input quantities are as follows:

METEC - Meteorological code integer preset to zero in THRUST. The zero value represents an ICAO 1962 standard day. A Mil Std 210 cold day is represented by designating, METEC = -1, and a hot day is represented by, M C = +1.

NORM - An engine data normalization code integer. If the engine data is in absolute form, it is not normalized so designate NORM = 0. NORM is preset to 1 in THRUST because the engine data default case is normalized. (Omission of NORM is not

recommended since it is difficult to distinguish prepared data cards in its absence.)

JET - Number of co-annular jets integer preset to 1 in THRUST. If a mixed exhaust fanjet engine is being analyzed, designate JET = 1. Designate JET = 2 only when the secondary fan exhaust is separate but coplanar with the primary exhaust. A non-coplanar fanjet engine can be synthesized by expanding the secondary to ambient pressure and considering it to be coplanar which requires some pre-input manual calculation of a ficticious secondary nozzle.

FLTM - Flight Mach number. This value will overwrite previously entered values of velocity.

TSFCC - Corrected thrust specific fuel consumption in pounds of fuel per pound thrust per hour (W $_F/T$ ) if NORM = 0; or W $_F/(T^* \sqrt{\Theta_{T2}})$  if NORM = 1 where  $\Theta_{T2} = T_{T2}/518$  688 and  $T_{T2}$  is the flight ram temperature in degrees Rankine.

RREC - Inlet ram recovery factor in decimal form of the ratio of the engine face total pressure to flight ram pressure.

FN - Engine output thrust (T) in pounds if NORM = 0; or  $(T/\delta_{T2})$  if NORM = 1 where  $\delta_{T2} = P_{T2}/14.696$  and  $P_{T2}$  is engine face total pressure in pounds per square inch.

FNRT - Engine rated thrust (RT) at the 100% or intermediate power lever setting in pounds if NORM = 0; or (RT/ $\delta_{T2}$ ) if NORM = 1.

EPR - Engine pressure ratio  $(P_{T7}/P_{T2})$  as the ratio of the nozzle exit total pressure to the engine face total pressure. If NORM = 0, EPR =  $P_{T7}$  in psia.

FPR - Secondary pressure ratio  $(P_{T2.5}/P_{T2})$  as the ratio of the secondary nozzle exit total pressure to the engine face total pressure. If NORM = 0, FPR =  $P_{T2.5}$  in psia.

#### IDS 6 INPUT OF PREVIOUSLY COMPUTED PLUME

This input data set provides an input mode whereby a previously computed plume can be reinserted into the program for further, different, or repeated analysis. A control value is required in namelist CASE for KDATA: i.e., KDATA = 2XXXX. When KDATA is greater than 20000, the entire plume gas data array will be read by the program from input cards in program PLMDM.

Inasmuch as the input cards for this input data set should have been produced by the program in a previous operation, no attempt should be made to prepare these 7544 input quantities manually. The following is a brief summary of the contents of the plume gas data array (PLMGD):

| PLMGD | (1) = DELAM   | 6AMB - PAMB/14.696             |
|-------|---------------|--------------------------------|
|       | (2) = THEAM   | OAMB = TA/518.688              |
|       | (3) = METEC+2 | Meteorological code            |
|       | (4) = TA      | Degrees Rankine                |
|       | (5) = ALTPLM  | IR target altitude             |
|       | (7) = PNRT    | % normal rated thrust          |
|       | (8) = JET     | Number of co-annular jets      |
|       | (9) = WP      | Primary gas flow rate (1b/sec) |
|       |               |                                |

(10) = WS

(11) = WF

(12) = FARW

Secondary air flow rate (1b/sec)

Fuel flow rate (1b/hour)

Overall fuel to air ratio

TTPN - The effective total temperature in the primary nozzle (TT7) in degrees Rankine if NORM = 0; or  $(TT7/O_{T2})$  if NORM = 1.

TTSN - The effective total temperature in the secondary nozzle (TT2.5/ $\Theta_{T2}$ ) if NORM = 1.

WAPAC - The primary nozzle gas flow rate (WP) in pounds per second if NORM = 0; or (WP) \*  $\sqrt{O_{T2}/\delta_{T2}}$  if NORM = 1.

WASAC - The secondary nozzle gas flow rate (WS) in pounds per second if NORM = 0; or (WS \*  $\sqrt{\Theta_{\rm T2}}/\delta_{\rm T2}$ ) if NORM = 1.

| PLMGD (13) = PNPR (Cont'd) | Primary nozzle total to static pressure                              |
|----------------------------|----------------------------------------------------------------------|
|                            | ratio at the nozzle exit.                                            |
| (14) = SNPR                | Secondary nozzle total to static pressure ratio aft the nozzle exit. |
| (15) = PTP                 | Primary nozzle exit total pressure (PT7)                             |
| (13) - 111                 | in psia.                                                             |
| (16) = PTS                 | Secondary nozzle exit total pressure                                 |
|                            | (PT 2.5) in psia.                                                    |
| (17) = TTP                 | Primary nozzle exit total temperature                                |
|                            | (TT7) in degrees Rankine.                                            |
| (18) = TTS                 | Secondary nozzle exit total temperature                              |
|                            | (TT 2.5) in degrees Rankine.                                         |
| (19) = FN                  | Engine nozzle force or thrust in pounds.                             |
| (20) = PNMACH              | Primary nozzle exit Mach number.                                     |
| (21) = SNMACH              | Secondary nozzle exit Mach number.                                   |
| (22) = PNVEL               | Primary nozzle exit velocity in feet per                             |
|                            | second.                                                              |
| (23) = SNVEL               | Secondary nozzle exit velocity in feet                               |
|                            | per second.                                                          |
| (24) = P8                  | Primary nozzle exit static pressure in                               |
|                            | atmospheres.                                                         |
| (25) = PQ                  | Secondary nozzle exit statis pressure in                             |
|                            | atmospheres.                                                         |
| (26) = RP                  | Primary nozzle gas constant in feet per                              |
| and no                     | degree Rankine.                                                      |
| (27) = RS                  | Secondary nozzle and ambient gas constant                            |
| (00)                       | in feet per degree Rankine.                                          |
| (28) =                     | A primary nozzle gas parameter.                                      |
| (29) =                     | A secondary nozzle gas parameter.                                    |
| (31) = XEN(1)              | A primary nozzle interior station in                                 |
|                            | negative inches measured from the nozzle                             |
|                            | exit plane.                                                          |

| PLMGD (32) = REN(1)<br>(Cont'd) | A primary nozzle interior radius in inches at station PIMGD (31).                                                                                                                                                                                                                         |
|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (33) = XEN(3)                   | The primary nozzle exit station of the secondary nozzle exit plane fixed at zero.                                                                                                                                                                                                         |
| (34) = REN(3)                   | The secondary nozzle exit radius in inches preset to primary nozzle exit radius in DATINT.                                                                                                                                                                                                |
| (35) = NEN                      | Number of primary nozzle coordinates in PIMGD array.                                                                                                                                                                                                                                      |
| (42) = RF                       | Nozzle plug radius in inches at nozzle exit plane, preset to zero in DATINT.                                                                                                                                                                                                              |
| (43) = XF                       | Nozzle plug external length in inches from<br>the nozzle exit plane preset to zero in<br>DATINT.                                                                                                                                                                                          |
| (44) = RPN                      | Primary nozzle radius in inches.                                                                                                                                                                                                                                                          |
| (45 - 94)                       | A table of plume stations in feet from nozzle exit plane.                                                                                                                                                                                                                                 |
| (95 - 144)                      | A table of number of plume radii at each plume station in integers.                                                                                                                                                                                                                       |
| (145-7644)                      | The plume gas data table containing the plume radius ordinate in feet, the plume velocity in feet per second, the plume pressure in atmospheres, the plume temperature in degrees Rankine, carbon dioxide concentration in mole fraction, and water vapor concentration in mole fraction. |

#### APPENDIX A

#### ORIENTATION AND DEFAULT SAMPLE

ASDIR-II geometric orientation and a program default sample are presented in this appendix. Three example or demonstration IR signatures are developed in the following appendices. All Samples and demonstrations therein presented are purely generic in that all dimensions and engine performance data were arbitrarily assumed. Consequently, these cases relate not to a single aerosystem, but directly to all aerosystems.

Figure Al shows the general scenerio representing the domain of the ASDIR-II program. Distinctive features of the scenerio as interpreted by the program are indicated. The aspect angle of the observer relative to the targetted aerosystem, (indicated in Figure 1 as ASPDEG), is the included angle measured from the aerosystem's flight path. This angle, ASPDEG, is derivable from elevation and azimuth angles relative to the aerosystem as shown in Figure A2 and A3. These angles are each derivable from absolute (relative to earth) elevation and azimuth angles from the pitch, yaw, and roll angles of the aerosystem. This resolution is not shown. It is to be noted that ASPDEG and elevation and azimuth are the only angular measures relevant to the IR signature.

The line joining the aerosystem target and the IR observer is designated in the figures as R which indicates "slant" range. In Figure A4, the axis of the plane which contains both the R vector and included angle ASPDEC, the DZ axis, is the major axis of an apparent projection plane. The DD axis, othogonal to DZ and R, is the lateral axis of the apparent projection plan. The establishment of the DZ, DD plane provides a reference plane onto which the nozzle exit area and plume radiant intensities are projected in preparation for the spatial integration of the radiated IR energy into an IR signature. External radiating surface intensities are taken by ASDIR-II to be in the DX, DD apparent projection plane whose physical location, conceptionally, represents an image screen normal to the R vector between the observer and the target aerosystem at the "near" edge of the target geometry. Distances of various parts of the target to the apparent projection plane are ignored as is atmospheric absorption of IR energy along these distances. The process of defining elemental ray areas, subsequent integration of radiant energy emission and absorption in a ray element, and the ultimate projection of elemental ray energy onto the apparent projection plane is depicted in Figure A5. Circular section area elements (RAR) are defined on the apparent projection plan (DZ, DD). Intensity integration along any ray parallel to "R" is initiated at the projection of RAR either on the nozzle exit plane (designated 'O' in Figure A5) or at the far edge of the target, and progresses through the target "P" to the apparent projection plane at "Q". Integration of the radiant intensity over all ray's to the geometric limits of the target represents the source radiation of the target in the direction of the corver.

For assistance in the installation of the ASDIR-II program on various computer systems, the program has been initialized with appropriate quantities representing input data of a simple plume-only problem for which the IR signature is computed over a very narrow IR band. These initialized input quantities are referenced as the default sample case. The primary objective for the default sample is the exercise of ASDIR-II in its new installation.

The default sample case is executed with a "blank" Input Data Deck as discussed on page 7 on the report text. The output to be expected is shown in Figures A6, A7, and A8. This output represents a minimum output. Additional output for the default sample case may be requested by including appropriate control codes in the input as discussed in the guide text, and demonstrated in the following appendices. Figure A6 shows a typical output header consisting of program output which describes the case under study. The output listing of the input in Figure A7 is a complete listing of all data registers addressed in inputs utilizing the namelist format. The namelists to be found in the output encompass only IDS2 and IDS5.

As may be expected, the default case is ultrashort, consisting of a single set of values and a very narrow (.1 µM) IR band. The entire IR signature output is shown in Figure A8.

# APPENDIX A FIGURES

| FIGURE NO. | CAPTION                                     |
|------------|---------------------------------------------|
| A1         | GEOMETRIC ORIENTATION - SCENERIO            |
| A2         | GEOMETRIC ORIENTATION - OBSERVER ASPECT     |
| A3         | GEOMETRIC RESOLUTION                        |
| A4         | GEOMETRIC ORIENTATION - APPARENT PROJECTION |
| A5         | RAY PROJECTION SCHEMATIC                    |
| A6         | DEFAULT OUTPUT HEADER                       |
| A7         | DEFAULT OUTPUT LISTING OF NAMELIST INPUT    |
| 8Α         | DEFAULT IR SIGNATURE OUTPUT                 |

# GRAY BODY BACKEROUND



FIGURE A1 GEOMETRIC ORIENTATION - SCENERIO

· COS A = - COS & COS B

• TAN  $\phi = \sin \beta' / \tan \alpha$ B ALWAYO OCCURS FIRST, THEN & AIP ON COWN

From horizondol.

FIGURE A2 GEOMETRIC ORIENTATION - OBSERVER ASPECT



FIGURE A3 GEOMETRIC RESOLUTION

A - IN R, DZ PLANE

- . DZ, DD PLANE OF APPARENT PROJECTION
- . DD ORTHOGONAL TO DZ AND R

FIGURE A4 GEOMETRIC ORIENTATION - APPARENT PROJECTION



FIGURE A5 RAY PROJECTION SCHEMATIC

-8A-

# PLU'E ANALYSIS

|                      | <u> </u>     | LU-E AMALTSIS  |              | <del></del>       |
|----------------------|--------------|----------------|--------------|-------------------|
|                      |              |                | LABLE TO D   | ከሮ ከስ <b>ር</b> ሮች |
| FLIGHT CONDITIO      | 15 **        | CUPY AVAI      | LADLE TO D   | DO BOFA           |
|                      |              | ornalit []     | ITA TEGIDI E | : PROMICT         |
|                      | •            | PEKMII TU      | LLY LEGIBLE  | · 1 lianaa        |
| ALTIIUDE.IS          |              |                |              |                   |
|                      |              | 10 STANDARD DA |              |                   |
|                      |              | EP CONTENT.    |              |                   |
|                      |              | L IS NOT EXPE  |              |                   |
| CASE MACH NUM        |              |                |              |                   |
| PRESSURE<br>TEMPERAT |              | 'S PSIA.       |              |                   |
| VELOCITY             |              | DEGR           |              |                   |
| VELOCITY             | UF 244.      | F 17 SEC •     |              |                   |
| ENCINE TO OUN        | NITHE RITH A | CHEL CONTRALS  | USE DATED IS | 051 05            |
| ENGINE IS RUN        | NING WILM P  | LOFF FOOTABLE  | NOS RALLO IN | · QEJ UF .        |
| ** FLOW FIELD IN     | PUT          |                |              |                   |
| RADIUS               | VE! OCTTY    | TEMPERATURE    | XC02         | × 120             |
| (FEET)               |              | (DEG R)        |              |                   |
|                      |              |                |              |                   |
| 8.6900               | 1856.08      | 1769.02        | .(33149      | .036796           |
| . 1500               | 1856.18      | 1760.12        | .033149      | .236796           |
| .1300                | 1350.33      | 1760.02        | .033149      | ,536746           |
| .1500                | 1856.08      |                | .033149      | .036796           |
| .2330                | 1956.38      | 1769.02        | 033149       | .036796           |
| . 2510               | 1856.08      |                | .233149      | .:36796           |
| .3350                | 1856.08      | 1769.02        | .[33149      | .336796           |
| . 3500               | 1856.08      | 1769.02        | .533149      | .036746           |
| • 4 0 0 0            | 1856.08      | 1769.02        | 033149       | .036796           |
| • 4 50 u             | 1855.38      | 1769.02        | · C 3 31 4 9 | .036795           |
| .5000                | 1856.38      | 1769.02        | +033149      | .:36796           |
| AMBIENT CONDIT       | IONS         |                |              |                   |
| .5500                | 243.82       | 518.67         | .000330      | .000330           |
| INPUT PARAMETE       | 05           |                |              |                   |
| ZIII OT FACRICETE    |              |                |              |                   |
|                      |              | PLUMEAMB       | IFNT         |                   |
| PRESSURE.            |              | 1.303          | 1.008 ATMOS  | •                 |
| SPECIFIC HEAT        |              | .294 BTU/LS-   | F            |                   |
| GAS CONSTANT.        |              | 3.456 FT/F     |              |                   |
| SF. HT. RATIO        |              | 1.305          |              |                   |
| MACH NUMBER          | ·- ·         | 1.000          | ··· · ·      |                   |
| = XCQO               |              |                | A1 = A1 = 65 | -                 |
| <u>₹</u> 9= •500     | XC = 2.536   | REND= 43.65    | 11= 147,93   | 5                 |

| \$CASE  |   |                                         |
|---------|---|-----------------------------------------|
| ABB     | = | 0.0,                                    |
| AL      | = | •1E+04, .                               |
| ALTOBS  | = | 0.0, 0.0, 0.0, 0.0,                     |
| ALTPLM  | = | 0.0,                                    |
| AHF     | = | .21E+01,                                |
| AMI     | = | .2E+01,                                 |
| ASPDEG  | = | •9E+02•                                 |
| DDS     | = | •16E+02,                                |
| EAREA   | = | 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, |
| ETEMP   | = | 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, |
| IFILTER | = | 0,                                      |
| IL      | = | -1,                                     |
| IRADCK  | = | 0, RAYPNT = 0.0,                        |
| ISPAT   | = | 0, TBACK = C.O,                         |
| ITAU    | = | -1, TBB = 0.0,                          |
| ITYPE   | = | 1, TERM = F,                            |
| KDATA   | = | 1, NUFRST = 0,                          |
| NA      | = | 5, ICHECK = -2,                         |
| NANGSEG | = | 3, RPN = 0.0,                           |
| OHTAN   | = | 2, RTE = 0.0,                           |
| NEXIT   | = | 5, ANL = 0.0,                           |
| NEXT    | = | 0, RSN = 0.C,                           |
| NFLH    | = | 0, XP = 6.0,                            |
| NP      | = | 0, RP = 0.0,                            |
| NRANG   | = | 1, AR = 0.0,                            |
| NUINC   | = | .5E+02, \$END                           |
| RANGE   | _ | 0.0. 6.0. 0.0. 0.0. 0.0.                |

FIGURE A7 DEFAULT OUTPUT LISTING OF NAMELIST INPUT

```
SPLUMIN
RPN
    = .5E+30,
RSN
    = .5E+80,
XΡ
    = 0.0,
RP
KDATA
    = 1,
TANE
    = .9E + 01,
EQR
    = .25E+00.
    = .33E-03, .33E-03, .33E-03, .33E-03, .33E-03, .33E-03,
XC05
     -33<del>E-03, -33E-03, -33E-03, -33E-03, -33E-03, -33E-</del>
     .33E-03, .33E-03, .33E-03, .33E-03, .33E-03, .33E-03,
    = *33E-03, *33E-03, *33E-03, *33E-03, *33E-03, *33E-03,
....XH20
      .33E-03, .33E-03, .33E-03, .33E-03, .33E-03, .33E-03,
    = .33E-03,
 XCOZA
XH2OA
    = .33E-03,
 U 8
     TBT
    P8
    = 0.0,
PQ
     = 0.0,
 UA
    = .1E+02,
 TA
     = .519E + 03,
 PA
     = 0.0,
 $END
```

FIGURE A7 DEFAULT OUTPUT LISTING OF NAMELIST INPUT (cont'd)

| METEC | = 0,          |
|-------|---------------|
| NORM  | = 1,          |
| JET   | = 1,          |
| FLTM  | = .2E+ON,     |
| TSFCC | = .996E+J0,   |
| RREC  | = .1E+01,     |
| FN    | = .2593E+04,  |
| FNRT  | = .2593E+04,  |
| EPR   | = .2329RE+01, |
| FPR   | = 0.0,        |
| TTPN  | = .1758E+04,  |
| TTSN  | = 0.0,        |
| HAPAC | = .439E+02,   |
| WASAC | = 0.0,        |
| \$END |               |

FIGURE A7 DEFAULT OUTPUT LISTING OF NAMELIST INPUT(cont'd)

### COPY AVAILABLE TO UDG DOES NOT PERMIT FULLY LEGIBLE PRODUCTION

```
*** POINT SOURCE IR INTENSITY ***
   SPECTFAL BAND
                    - 2.00 TO 2.10 MICRONS
  __VEHICLE ALTITUDE - . LO.IC KM.OR. _ .J.CJ KFT.
               - 90.0 DEGREES IN A NOR. ATMOSPHERF.
   ASFECT ANGLE
   EFFECTIVE BLACK BODY AREA - ABB = ... J.CGCO CMSQ
                               T33 =
   EFFECTIVE 33 TEMPERATURE -
                                         0.0000 DEGK
   FFFECTIVE BACKGROUND TEMP - TRACK =
                            0..
   SLT_RUG (Km/NY)
                       2.7.
   OB ALT (KM/KFT)
   BCKGRND (W/STP)
                       9.0000
                       METALS (W/SIE)
   ATT MET (W/STR)
                       0.0000
   PLM GAS (W/STR)
                       .0092
   EXT EMS (W/STR)
                       0.0000
   APP RAD (W/STR)
                      . 0098
```

FIGURE A8 DEFAULT IR SIGNATURE OUTPUT

## COPY AVAILABLE TO DDC DOES NOT PERMIT FOLLY LEGIBLE PRODUCTION

APPENDIX B

#### GENERIC NOZZLE I DEMONSTRATION

A typical turbofan engine-only case has been developed for the purpose of demonstrating the basic operation of ASDIR-II. Various basic output modes are also demonstrated. This initial demonstration involves only the IR energy radiated from the internal hot parts and plume of a separate-flow, coplanar, axisymmetrice turbofan engine exhaust nozzle. The nozzle diagram for Generic Nozzle I (GN-1) is shown in Figure B1. This rather short exhaust system is sectioned into two streams and each stream is sectioned into several fluid nodes. The stream fluid nodes are defined by the containing surface nodes as indicated in the figure. The surface node length is selected such that the geometric curvature is negligible, the surface temperature along the node may be considered constant and (or) the length does not appreciably exceed about 20 inches. The entrance and exit nodes are numbered (last) as if they were a surface node and are assigned a temperature and emissivity as if they were a solid surface. Of course an exit node appears, in radiance, as if it were a cold surface represented by the background temperature. Since radiant energy passes freely through an entrance or exit (surface) node, the assigned emissivity is unity (1.0) as if the physical mechanism were 100% absorption or emission, which it is. CN-1 also employs the special fluid nodes representing thermal sinks (or sources), and conduction nodes of heat transfer.

The internal and external radiant view factors are to be generated by ASDIR-II by use of the 03 code in IDS-1 and the -1 code in IB-7. The last card of the view factor Input Data Deck is, appropriately, IB-48. A computer listing of this Input Data Deck with instruction steps annotated for the view factors of GN-1 is shown in Figure B2. The view factor run also provides a summary of the internal flow parameters, calculated wall temperatures, etc. in its output if these quantities were requested in IB-2. The full output (print codes 1 through 10 requested) is provided in Figure B3. In addition to the printed output, this program execution also provides the punched (view factor and area) cards. The punched deck "header" card and "end" card are removed and the deck is inserted into the Input Data Deck as IB-10 and IB-11 as punched. The controls of 1DS-1, IB-2, and IB-7 are changed, in this case, to 01 code, Zero's, and 01 code respectively. The remaining input cards are provided (IB-49 etc.) as required and the Input Data Deck is ready of generate the IR signature of GN-1 of Figure B1 and its plume as shown in Figure B4. Figure B4 is also annotated along the left margin with instruction steps,

A summary of the internal hot parts emission eminating from the nozzle is provided in the output which shows equivalent black body area (ABB) and temperature (TBB) as a function of aspect angle (ASPDEG). This summary, shown in Figure B5, is developed in ASDIR-II by expressing the peak radiant energy of the hot parts emission in terms of area and temperature. Further

along in the program, the emission from the engine interior is determined from these areas and temperatures by using the black body spectra over the specific IR band of interest. For this reason, the band stated in Figure B5 must exceed the specific IR band of interest and must extend to a sufficiently long wavelength so that the " \*\*\* CHECK" notation is not printed. This upper band limit is controlled by WL in IB-56. The IR signature "output header", shown in Figure B6, provides, primarily, case description summary information. The contrail comment is preemptive and is (at reporting time) inoperative.

The input data of IDS-2 and IDS-5 are printed in the output to show the input data actually controlling the program. The output listing shown in Figure B-7, are quite helpful in diagnosing a troublesome run if the input data was actually different than intended. These namelist writes occur soon after the namelist read only when ICHECK=-2.

A gas data description of the plume is printed in the output when the second digit (D) of KDATA is set to 1, as shown in Figure B8. A total of 49 stations are generated and printed, but only a few printer pages are included in the figure. When the first digit (E) of KDATA is non-unity, selected quantities of the plume gas data are plotted on the line printer. A value of five (5) will plot the velocity values in the plume as shown in Figure B9. The output format for the IR signature is shown in Figure B10. Again, because of the many pages of printer output, only a few aspect angles are s<sup>1</sup> wn. It should be noted that altitudes and ranges are printed-out in 1 : meters. The spatially resolved IR emission can be plotted by use of an Illiary CALCOMP program and plotter. ASDIR-II will produce data cards so table for such spatial plot by designating ISPAT=2. The resulting plot will appear as Figure B11 for a broadside aspect of 90 degrees. When ISPAT is specified 1 or 2, the spatial data is printed as shown in Figure B12. In this data listing, the columns are headed by quantities described in Figure A3 and A4 of appendix A. Intensity values are listed as watts per steradian per cm2 under headings of range and designation of filter. The IR signature is plotted in polar form in Figure 813 in which is shown the effects of range and observer altitude.

## COPY AVAILABLE TO DDC DOES NOT PERMIT FULLY LEGIBLE PRODUCTION

### APPENDIX B FIGURES

| FIGURE NO. | CAPTIC V                              |
|------------|---------------------------------------|
| B1         | GN-1 NOZZLE DIAGRAM                   |
| B2         | GN-1 VIEW FACTOR INPUT DATA DECK      |
| В3         | OUTPUT OF NOZZLE INTERNAL ANALYSIS    |
| B4         | GN-1 IR SIGNATURE INPUT DATA DECK     |
| В5         | CN-1 INTERNAL HOT PARTS SUMMARY       |
| В6         | GN-1 OUTPUT HEADER                    |
| B7         | GN-1 OUTPUT LISTING OF NAMELIST INPUT |
| В8         | GN-1 PLUME GAS DATA (SAMPLE)          |
| В9         | GN-1 PLUME GAS DATA PLOT              |
| B10        | GN-1 IR SIGNATURE OUTPUT (SAMPLE)     |
| B11        | GN-1 PLUME RADIANCE SPATIAL PLOT      |
| B12        | GN-1 PLUME RADIANCE SPATIAL DATA      |
| B13        | GN-1 IR SIGNATURE POLAR               |

| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                | 1  |
|------------------------------------------------------------------------------------------------------|----|
| 20° R  20° R  20° R  20° R  21                                                                       |    |
| 20 R MML  20 R MML  21 AREA = 420,26  (4) (6) (5) (7) (8) (8) (9) (9) (9) (9) (9) (9) (9) (9) (9) (9 | 32 |
|                                                                                                      | 28 |
|                                                                                                      |    |
|                                                                                                      | 24 |
|                                                                                                      |    |
|                                                                                                      | 20 |
|                                                                                                      |    |
|                                                                                                      | 16 |
|                                                                                                      | 12 |
|                                                                                                      |    |
|                                                                                                      | 80 |
|                                                                                                      |    |
|                                                                                                      | 4  |
| 1 (c) (c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d                                                     |    |

GN-1 NOZZLE DIAGRAM

FIGURE BI

```
IDS
IBL
              THIS IS THE FIRST ASDIR II SAMPLE IMPUT SET
 1
                           GENERIC NOZZLE I
 1
      0204180401
    0.0
               18.0
                           2.0
                                      18.0
    2.0
                18.0
                           7.0
                                      17.7
                                                  -1.0
                                                             0201
    7.00
                17.7
                           12.0
                                      17.1
                                                  -1.0
                                                             0301
    12.0
                17.1
                           18.0
                                      16.1
                                                  -1.0
                                                             0401
               15.1
    18.0
                                                             0531
                           24.0
                                      15.0
                                                  -1.0
    0.0
                12.2
                           2.0
                                      12.2
                                                  +1.0
                                                             0602
    2.0
                           7.0
                                                             0702
               12.2
                                      11.9
                                                  +1.0
    7.0
                11.9
                                                  +1.0
                                                             0502
                           12.0
                                      11.3
    12.0
                11.3
                           14.0
                                      10.3
                                                  +1.0
                                                             0902
    18.0
                10.3
                           24.0
                                      9.38318
                                                  +1.0
                                                             1002
    0.0
                12.0
                           0.5
                                      12.0
                                                  -1.0
                                                             1103
                                      11.7
    2.0
                12.0
                           7.0
                                                             1203
                                                  -1.0
    7.0
                11.7
                           12.0
                                      11.1
                                                  -1.0
                                                             1303
    12.0
                11.1
                           18.0
                                      10.1
                                                  -1.0
                                                             1403
                10.1
                                      9.18936
                                                  -1.0
                                                             1503
    18.0
                           24.0
    0.0
                6.0
                           2.0
                                      6.0
                                                  +1.0
                                                             1604
    2.0
                6.0
                           7.0
                                      3.7
                                                  +1.0
                                                             1704
    7.0
                3.7
                           12.0
                                      0.0
                                                  +1 - 0
                                                             1884
    12.0
                00.0
                           24.0
                                      00.0
                                                             3504
                                                  +1.0
    0.00
                12.2
                           0.00
                                      18.0
                                                  -1.0
                                                             0600.0
                                                                        19
    0.00
                6.00
                           0.00
                                      12.0
                                                  -1.0
                                                             1330.0
                                                                        20
                9.38318
                                      15.0
                                                             U450.0
                                                                        21
                           24.0
                                                  +1.6
    24.0
    24.0
                00.0
                           24.0
                                      9.18936
                                                             9450.0
                                                                        55
 67
    24.0
       00-1
       010500
 14
       0102070405
 15
 14
       0205
 15
       0607080910
 14
       6305
 15
14
       1112131415
       040400
 15
       16171835
 16
       010001 00.0
                           24.0
 17
     430.26
 18
       05
 19
       2300
                01.0
       2400
 19
                04.5
                09.5
       2500
 19
 19
       2600
                15.0
 19
       2780
                21.
 20
       0100
                0.1
 20
       0200
                0.1
                           1.3
       020101
 16
 1.7
     265.29
 18
       0500
 19
       2801
                1.0
 19
                4.5
       2901
 19
       3001
                9.5
 19
       3101
               1300
 19
       3201
                21.0-
 20
       0301
                0.001
 20
       0401
                0.001
                           1.3
 41
      00
                                      1.33
 43 22.636
                1400.0
                           53-38
 44 23.154
                                     1.40
                                                  215.50
 45
    12.232
 46
      0123022403250426052706230724082509261027112412291% 0143115521%5417291830
      1923262821272232
 47
       00
 47
       80
```

FIGURE B2 GN-1 VIEW FACTOR INPUT DATA DECK

1

A I RCRAET SIGNATURE PREDICTION PROGRAM

### THESE RESULTS CONTAIN THE FOLLOWING INFORMATION.

- SCHEOUNE COMOR'SSIPLE FLOW INFORMATION.
  - THE OUMA TYON
- AVERAGE SUPFACE HEAT TPANSFER COLFFICTENTS. AVERAGE SYSTEM GAS TEMPERATURES.
- SURFAGE COOLING INFORMATION.
- SYSTEM SHEEACE FORCE FACTOR CALCULATIONS.
  - SYSTEM TITTENAL VIEW FACTORS.
    SYSTEM WALL TEMPERATURES.
- SYSTEM TYTERNÁL VÍÐU FACTORS.
- SYSTEM LADIATION PATTERNS.
- SYSTEM RADIATION LIVEL BANDHIDIHS.

FIGURE B3 CN-1 OUTPUT OF NOZZLE INTERNAL ANALYSIS

COPY AVAILABLE TO DDG DOES NOT PERMIT FULLY LEGIBLE PRODUCTION

| FLOW STREAM NO. 1 FLOW INFORMATION |                               |                               |                        |                              |                    |                                 |                                 |                                 |
|------------------------------------|-------------------------------|-------------------------------|------------------------|------------------------------|--------------------|---------------------------------|---------------------------------|---------------------------------|
| AYIAL<br>DISTANCE<br>(INCHES)      | OUTER<br>SURF DIS<br>(INCHES) | INNEP<br>SURF DIS<br>(INCH-S) | FLOW<br>AREA<br>(SOIM) | STATIC<br>FFISS<br>(LB/SQIN) | PRIMARY<br>MACH NO | PRIMARY<br>REC TEMP<br>(JEG P.) | PRIMARY<br>VELOCITY<br>(FI/S:C) | PPIHARY<br>OENSITY<br>(L3/CUFT) |
| 0.00                               | 12.0                          | _ 6.,∂3                       | 339.29                 | 18.76                        | .5375              | 1292.23                         | 905.32                          | .0408                           |
| 1.00                               | 12,00                         | 6.09                          | 339,29                 | 18,75                        | 537,5              | 1292.23                         | 9(5.32                          |                                 |
| 2.(1                               | 12.07                         | 6.y3                          | 339.29                 | 18.76                        | .5375              | 1292.23                         | 905+32                          | .64)8                           |
| 3.07                               | 11.94                         | 5.54                          | 351.46                 | 19.10                        | 1(9                | 1292.95                         | 862.41                          | .0413                           |
| 4,00                               | 11.88                         | 5.68                          | 362.31                 | 19.36                        | .4898              | 1293.49                         | 828.11                          | .0418                           |
| 5.00                               | 11.42                         | 4.62                          | 371.00                 | 19.56                        | .4720              | 1293.92                         | 800.53                          |                                 |
| 6.20                               | 11.75                         | 4.16                          | 380.11                 | 19.72                        | . 4593             | 1294.25                         | 778,42                          | .0423                           |
| 7 • 0 0                            | 11.77                         | 3.7)                          | 387.04                 | 19.54                        | <u>.</u> 4486      | 1294.50                         | 760.89                          | • r t. 25                       |
| 8.20                               | 11.58                         | 2.95                          | 393.75                 | 19,95                        | .4388              | 1294.73                         | 744.79                          | .0427                           |
| 9 <b>.</b> ú C                     | 11 • 4F                       | 2.22                          | 397.11                 | 20.01                        | 4341               | 1294.84                         | 737.02                          | . 428                           |
| 15,000                             | 11.34                         | 1.48                          | 397.11                 | 20.01                        | .4341              | 1294.84                         | 737.00                          |                                 |
| 11,50                              | 11.22                         | 7.+                           | 397.77                 | 19.96                        | •438P              | 1254.73                         | 744.74                          | . 427                           |
| 12.00                              | 11.17                         | . 63                          | 397.08                 | 19.94                        | . 44 BF.           | 1294.50                         | 760,81                          | . 5425                          |
| 13.00                              | 12.93                         | 0.02                          | 375.54                 | 19.63                        | .4667              | 1294.07                         | (41.450                         | +: 466                          |
| 14.00                              | 10.77                         | 0.50                          | 354,18                 | 19.40                        | .4864              | 1293.54                         | 822.55                          | 418                             |
| 15.00                              | 14.6                          | 0,40                          | 352.99                 | 19.14                        | •5ú78              | 1293.03                         | M.F.7.35                        | .0414                           |
| 16,00_                             | 10.43                         | o                             | 341.98                 | 18.84                        | .5314              | 1292.40                         | 895,30                          | . 0489                          |
| 47.00                              | 11.27                         | C. 31                         | 331.14                 | 18.50                        | .5575              | 1291.65                         | 937, 33                         | . 1494                          |
| 18,00                              | 10,17                         | 0.01                          | 320 . 47_              | 18.12                        | .5868              | 1290.84                         | 984.66                          | .5397                           |
| 19.00                              | 9.95                          | 0.00                          | 310.91                 | 17.71                        | •6171              | 1289.94                         | 1031,92                         | .0391                           |
| 20.00                              | 9.81                          | 0.65                          | 331.53                 | 17.23                        | .RE19              | 1285,86                         | 1986.41                         | .0383                           |
| 21.00                              | 9.64                          | 0.01                          | 292.23                 | 16.65                        | .5931              | 1287.53                         | 1150.13                         | .0373                           |
| 22.00                              | 9.47                          | C. DA                         | 243.11                 | 15.91                        | .7442              | 1285.81                         | 1224.07                         | 0360                            |
| 23.00                              | 3.34                          | 0.00                          | 274.13                 | 14.89                        | .8145              | 1283.32                         | 1332,99                         | .0343                           |
| 24.06                              | 9.19                          | 0.00                          | 265.29                 | 12.29                        | •9961              | 1275.39                         | 1591.89                         | .0297                           |

FIGURE B3 CN-1 OUTPUT OF NOZZLE INTERNAL AN. 'IS(cont'd)

|      |        |       |       | INFOFMATION |
|------|--------|-------|-------|-------------|
| •••• | <br>50 | REACE | NO. 1 |             |

|        |                                                  |            | -              |                  |                          |
|--------|--------------------------------------------------|------------|----------------|------------------|--------------------------|
| X,X    | (IH+) - "                                        | MACH<br>NO | OEL<br>(IN.)   | SKIN<br>FRICTION | HT<br>(BTU/SOFT.HR,DEGF) |
| 0.000  | 6.000                                            | .578       | 882015         | .038347          | 133.728                  |
| 1.000  | 6.036                                            | .538       | . 37868        | .005282          | 91.495                   |
| 2.000  | ~ °6.100                                         | .536       | <b>₹</b> 59988 | .504622          | 80.700                   |
| 3.605  | 5. Fun                                           | .511       | .089297        | .003992          | 71.189                   |
| 4.000  | ָר בְּאַר בְּאַר יֹיִם אָר בּ <sub>י</sub> ָּאִר | •490       | .122156        | 962500           | 63.783                   |
| 5.0.0  | 4.62^                                            | . 473      | •157255        | .022790          | 58.351                   |
| 6,000  | 4.16                                             | .459       | .196524        | .002401          | 54.019                   |
| 7.0:0  | 3.777                                            | 449        | .242001        |                  | 50.385                   |
| 5.000  | 2.950                                            | .439       | .324722        | .011805          | 45.991                   |
| 9.000  | 5.550                                            | • 434      | .448969        | .001570          | 41,908                   |
| 12.000 | 1.490                                            | a 4 Tu     | .654383        | .901427          | 37.943                   |
| 11.000 | .742                                             | . 4 39     | 1-061136       | .071331          | 33.54                    |
| 12,000 | **************************************           | . 449      | 2. 45179       | .10 (237         | 28.711                   |
|        |                                                  |            |                |                  |                          |

CUPY AVAILABLE TO DDC DOES NOT PERMIT FULLY LEGIBLE PRODUCTION

FIGURE B3 GN-1 OUTPUT OF NOZZLE HYLERVAL ANALYSIS (cont'd)

# COPY AVAILABLE TO DDC DOES NOT PERMIT FULLY LEGIBLE PRODUCTION

FLOW SIFTAM NO. 1 HEAT TRANSFER INFORMATION
SURFACE NO. 2

|               |        |          |                 |                  | •                        |
|---------------|--------|----------|-----------------|------------------|--------------------------|
| X<br>(IN.)    | (Tr.)  | MACH     | OEL             | SKIN<br>FPICTION | HT<br>(BTU/SOFT.HE,PEGF) |
| e.Cca         | 12. :  | .539     | -512688         | ¥00.6347         | 133,728                  |
| 1.005         | 12.000 | 538      | • C378F8        | ·1/05282         | 91.495                   |
| 2.012         | 12.000 | ,533     | .159948         | .004622          | 80.700                   |
| 3.000         | 11.965 | 511      | •3318r8         | -674E78" "       | 72.848                   |
| 4.80.         | 11.940 | 490      | 896801.         | .003428          | 66.553                   |
| <b>5.</b> 600 | 11.827 | 1473     | .124452         | •022961          | 62.101                   |
| 6.001         | 11.760 |          | .14.7870        | .752617          | 58.748                   |
| 7.003         | 11.700 | .449     | <b>,</b> 162390 | .002367          | 96.147                   |
| 4.000         | 11.730 | • 439    | 181493          | .032176          | 53.884                   |
| 9. or c       | 11.460 | . 434    | .19969E         | .00205A          | £5.5at                   |
| 10.517        | 11.3.2 | • 434    | .215396         | •6¢2087          | 51.455                   |
| 11.000        | 11.220 | 439      | .228257         | .012231          | F1.292 ·                 |
| 12.000        | 11.1-1 | ***9     | .239119         | .932472          | 51.719                   |
| 13.000        | 13.933 | . 457    | .249159         | •035878          | 52.834                   |
| 14.002        | 10.767 | . 496    | .258879         | .003168          | 54.087                   |
| 15.00         | 17,630 | 8 76.    | .27.8AZ         | .503457          | 55.165                   |
| 16.000        | 15.433 | •53L ··· | -255411         | .013797          | 96.05C                   |
| 17.050        | 13.257 | . 557    | .302026         | .003918          | £6.727                   |
| 18.000        | 10,100 | .587     | .321524         | .004102          | 57,161                   |
| 19.000        | 9,948  | . 517    | .343907         | .034255          | 57.260                   |
| 20.000        | 9,796  | •652     | .770629         | .004379          | 55.964                   |
| 21.0()        | 9.645  | ,693     | .43157?         | .094494          | 56,243                   |
| 22.003        | 9,493  | 71,4     |                 | .034694          | 54.872                   |
| 23.600        | 9.341  |          | .463148         | .004720          | 52.251                   |
| 24.00         | 9.189  | 996      | .566934         | .094913          | 42.943                   |
|               |        |          |                 |                  |                          |

FIGURE B3 CN-1 OUTPUT OF NOTTLE INTERNAL ANALYSIS (cont'd)

| DISTANCE S<br>(INCHES) ( | 00158<br>1904:5}<br>18.63 | INNER SURF DIS (INCHTS) | FLOW _           | STATIC    | FFREUR             |                                  | • • • • • • • • • • • • • • • • • • • • |                                 |
|--------------------------|---------------------------|-------------------------|------------------|-----------|--------------------|----------------------------------|-----------------------------------------|---------------------------------|
| 0.00                     | 44 23                     |                         | (1501)           | (FB\201A) | SECOND.<br>MACH NO | SECOND.<br>R_C TEMP<br>(DEG F.)_ | SECOND.<br>VELOCITY<br>(FY/SEC)         | SECONO.<br>DENSITY<br>(LP/CUFT) |
| 0.00                     | 16                        | 12.29                   | 550.28           | 19,06     | •534E              | 6t 1.3,7                         | 626.58                                  | • 0 900                         |
| 1.05                     | 18.0                      | 12.2                    | 550.28           | 19.36     | .5346              | 601.37                           | 625.88                                  | .5900                           |
| 2.00                     | 15.5                      | 12.2                    | 55: . 25         | 19.36     | • <b>F3</b> 46     | 601.37                           | 626.88                                  | ,1900                           |
| 3.65                     | 17.94                     | 12,14                   | 548.19           | 19.32     | . 5376             | 6L7*33                           | 530.39                                  | . 7695                          |
| 4.00                     | 17.83                     | 12,03                   | 545.91           | 18.97     | 541°               | 6,1.29                           | 533.96                                  | • ~ 897                         |
| 5.00                     | 17.82                     | _12,62,                 | 543.72           | 18.93     | 5442               | 601,25                           | 637.57                                  | • 0 895                         |
| 6.00                     | 17.74                     | 11.95                   | 561.53           | 18.88     | .5475              | 671.21                           | 641.24                                  | -1894                           |
| 7.05                     | 17.7                      | 11.9                    | 510, 15          | 18.84     | 5509               | 601.17                           | 844,97                                  | .3892                           |
| 8,00                     | 17.53                     | 11.7*                   | _534 95 _        | 18.74     | 5579               | 651,08                           | 6"2.6"                                  |                                 |
| 9.00                     | 17.45                     | 11,65                   | 930,∙60          | 18.54     | .56E^              | 600.98                           | 662,46                                  | • ^ 885                         |
| 10.00                    | 17.36                     | 11,54                   | 526.27           | 18.56     | . 4724             | ะกา.คล                           | £68,≅o                                  | .7892                           |
| 11.55                    | 17.2? _                   | 11.4?                   | 521.85           | 18.43     | .5811              | 607.7 <u>8</u>                   | £77.00                                  | •1879                           |
| 12.00                    | 17.1°                     | _ 11.32 _               | 517.48           | 18.32     | .5881              | 600.67                           | 685.70                                  | .0875                           |
| 13.00                    | 15.93                     | 11.13                   | 511.41           | 14-16_    | 5997               | 600.52                           | 699.32                                  | . #869                          |
| 15.00                    | 16,77                     | 16.97                   | 50 <u>5.</u> 34_ | 17.98     | 6119               | 601.35                           | 711.63                                  | €1863                           |
| 15.00                    | 16,63                     | 10.87                   | 499,26           | 17.79     | 6251               | 605.16                           | 725.70                                  | • ^ 857                         |
| 16.60                    | 15.43                     | 12.63                   | 493.19           | 17, 59    | .6389              | ≈99 <b>.9</b> 6                  | 740.64                                  | •0,850                          |
| 17.00,,                  | 15.27                     | 10.47                   | 487.11           | 17.39     | .6538              | 599,75                           | 756,57                                  | 0842                            |
| 15,00                    | 15.1%                     | 11,31                   | 481.94_          | 17.14     | . 6698_            | 5,99.51                          | 773,65                                  | . 0834                          |
| 19.00                    | 15,92 _                   | 1,0 • 15                | 472.42           | _ 16.77   | .6951              | 599.14                           | 853,29                                  | . '821                          |
| \$0.00                   | 15.73                     | 9.99                    | 463,86           | 16.34     | .7238              | 594.76                           | 5,30.32                                 |                                 |
| 21.50                    | 15.55                     |                         | _455.36          | 15.53     | .7575              | 595.18                           | 855,00                                  | .0788                           |
| 22.t0                    | 15.37                     | 9.69                    | 446.93           | 15.21     | .795°              | 597.52                           | 926.94                                  | .0766                           |
| 23.65                    | 15.15                     | 9,54                    | 438.56           | 14.36     |                    | 596.60                           | 962.68                                  | .0730                           |
| 24.00                    | 15.0                      | 9,35                    | 430.26           | 12•27 _   | .9973              | 594.16                           | 1008.18                                 | .0657                           |

€ FIGURE B3 CONFI OUTPUT OF NORZEE INTERNAL ANALYCIS(cont'd)

COPY AVAILABLE TO DDC DOES NOT PERMIT FULLY LEGIBLE PRODUCTION

## ALIMIT LOLL LEGIBLE PRODUCTION

### FLOW STREAM NO. 2 HEAT TRANSFER INFORMATION

|     | HT<br>(BTU/SOFT,HD,OEGF) | SKIN<br>FRICTION | DEL<br>(TH.) | HACH .              | (IN <sub>1</sub> ) | . (IN*) - |
|-----|--------------------------|------------------|--------------|---------------------|--------------------|-----------|
|     | 40,032                   | .0.1884          | 1.(09799     | . 535               | 12.265             |           |
| •   | 39,931                   | .01 (853         | 1. 121922    | .535                | 12.210             | 1.01      |
| • • | 39.8 12                  | .01832           | 1.034055     | .535                | 12.203             | 5.000     |
|     | 39.793                   | .071839          | 1. 149769    | .538                | 12.146             | 3.070     |
|     | 39. 529                  | .001909          | 1.062048 "   | 541                 | 12.080             | 4.003     |
|     | 39.852                   | 001928           | 1.074518     | - 544               | 12.723             | 5.000     |
|     | 39, 893                  | 7001946          | 1.057183     | .545                | 11.96              | -6.07.    |
|     | 79, 921                  | • C11964         | ~ 1.18^385 ~ | .551                | 11.966             | 7.(43     |
|     | 39, 993                  | .001989          | 1.117578     | •558                | 11.787             | 5.002     |
|     | 47,135                   | .002025          | 1.131519     | •5 <b>6</b> 5       | 11.650             | 9,000     |
| •   | 47,266                   | .037060          | 1.145943     | . = 72              | 11.547             | 114051    |
|     | 有母童 5馬之                  | .002094          | 1.16:879     | • F.B.              | 11.425             | 11.6 5    |
| :   | 40.495                   | *16.515#         | 1.176320     | .588                | 111.310            | 12.000    |
|     | 40.65E                   | .002165          | 1.196109     | .530                | 11.133             | 13.000    |
|     | 40.755                   | .002212          | 1.213631     | .512 -              | 10.967             | 14.000    |
|     | 40.87=                   | .002257          | 1.232019     | *952                | 15.800             | 15. Pr 2  |
| -   | 40.959                   | .002301          | 1.251411     | . <b>5</b> tg -     | 10.633             | 15. C 3   |
|     | 41.000                   | .002345          | 1.271932     | • 454               | 10.467             | 17.003    |
|     | 45.991                   | • O# 2358        | 1.293684     | .67v                | 16.370             | 14.000    |
| -   | 40.892                   | . 122444         | 1.315274     | .695                | 19.147             | 19.000    |
| -   | 40.755                   | -002515          | 1.332175     | . 724 =             | 9,994              | S0.6u0    |
|     | 40,379                   | .C02588          | 1.352184     | .757                | 9.842              | 21.000    |
|     | 39.627                   | .002665          | 1.376560     | *99                 | 9.649              | 22.063 ~  |
|     | 38,153                   | •452750          | 1,408813     | ₽855 <sup>™</sup> 1 | 9.536              | 23.000    |
|     | 32.509                   | .002872          | 1.489334     | ~997 ···            | 9.383              | 24.000    |

FIGURE B3 CN-1 OUTPUT OF NOZZIE | TIERNAL ANALYSIS (cont'd)

1111

| ξΙ Ν. ) | (In*)<br>A       | MACH     | net<br>(IN.) | SKIN<br>FRICTION     | HT<br>(STU/SOFT,HR.DEGF) |
|---------|------------------|----------|--------------|----------------------|--------------------------|
|         | 18,09°C          | e35.     | 1. 19799     | •0°1834              | 49.032                   |
| 1.000   | •18.6 <u>0</u> 6 | . 535    | 1. 121922    | ~(^1883 <sup>~</sup> | 39,931                   |
| 2.000   | 18.000           | 535      | 1.134155     | .001682              | 39.172                   |
| 3.010   | 17,940           | .538     |              | .001890              | 39.818                   |
| 4.000   | 17.890           | .541     | 1.059153     | • 011910             | 39.658                   |
| 5.013   | 17.820           | .564     | 1.77177      | .001930              | 39.996                   |
| 6.( )   | 17.75            | • 5 '+ d | 1.081373     | . 001949             | 39.950                   |
| 7.013   | 17.701           | .551     | 1.192962     | .001967              | 39, 994                  |
| 0.1.0   | 17.585           | .558     | 1.176896     | .001994              | 40.197                   |
| 9.010   | 17,469           | - 665    | 1.117449     | .072032              | 40.270                   |
| 10.000  | 17.341           | • E72 ·  | 1.128455     | •0°2069              | 40.433                   |
| 11.5    | 17.221           | .55      | 1.139874     | .002135              | 40.585                   |
| 12,(1)  | 17.107           | . 758    | 1.15/739     | .00214.              | 40.726                   |
| 13.(.0  | 16.93*           | .690     | 1.156396     | .052180              | 40.881                   |
| 14.610  | 18.757           | -612     | 1.178516     | .002729              | 41.078                   |
| 15.013  | 16.636           | • € 25   | 1.191417     | • C 3 2 277          | 41.245                   |
| 16.271  | 16.433           | .639     | 1.205.69     | .032325              | 41.375                   |
| 17.000  | 16.267           |          | 1.219806     | .002371              | 41.453                   |
| 18,000  | 16.100           | •675     | 1.235576     | •CE2418              | 41,490                   |
| 19.010  | 15.917           | • 642    | 1.253857     | .002475              | 41,419                   |
| 29.000  | 15.733           | • Ť2+    | 1.267745     | .02549               | 41.300                   |
| 21,10   | 15,550           | .757     | 1.284596     | .002624              | 40.936                   |
| . 22.00 | 15.367           | .799     | 1.305666     | .002703              | 40.190                   |
| 23.010  | 15,183           | 1855     | 1. 834319 =  | .6:2790              | 39.708                   |
| 24.605  | 15.000           | . 997    | 1.408892     | .052914              | 32,991                   |
|         |                  |          |              |                      |                          |

COPY AVAILABLE TO DIC DOES NOT PERMIT FULLY LEGIBLE PRODUCTION

-- B12-

FIGURE D3 GN-1 OUTPUT OF NOTTLE INTERNAL ANAL CICE. D

|                                   | FLUID LUMP TEMPERATURES                                                                                                                                                                                                                       |
|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                   | . PLUID COMP TEMPERATURES                                                                                                                                                                                                                     |
|                                   | NODE NO. 23<br>TEMPERATUPE = 1292.23 DEG. R.                                                                                                                                                                                                  |
|                                   | NOOS NO. 24<br>TEMPCE & TUPE = 1293.72 DEG. R.                                                                                                                                                                                                |
|                                   | NOOE NO. 25 TEMPIRATUF=1294.85 CEG. R.                                                                                                                                                                                                        |
|                                   | NODE NO. 26 TEMPERATURE = 1203.(3 DEG. R.                                                                                                                                                                                                     |
|                                   | NCOF MO. 27<br>TEMPERATURE = 1287.53 DEG. R.                                                                                                                                                                                                  |
|                                   | NODE NO. 23<br>TEMPTEATURE € 6: 1.37 OFG. R.                                                                                                                                                                                                  |
|                                   | NODE NO. 29<br>TEMPTRATURE 601.27 DEG. R.                                                                                                                                                                                                     |
|                                   | NODE NO. 30 TEMPERATURE 600.93 DEG. R.                                                                                                                                                                                                        |
| •                                 | NODE NO. 31<br>TEMPERATURE 60".15 PEG. R.                                                                                                                                                                                                     |
|                                   | NGDE HO. 32                                                                                                                                                                                                                                   |
|                                   | TEME:RATUPL= 598.18 DEG. 9.                                                                                                                                                                                                                   |
|                                   |                                                                                                                                                                                                                                               |
| MPV Avan                          |                                                                                                                                                                                                                                               |
| COPY AVAILA                       | BLE TO DOC DOC                                                                                                                                                                                                                                |
| COPY AVAILA<br>ERMIT FULL         | BLE TO DDG DOES NOT                                                                                                                                                                                                                           |
| OPY AVAILA<br>Ermit full          | BLE TO DDG DOES NOT<br>Y LEGIBLE PRODUCTION                                                                                                                                                                                                   |
| OPY AVAILA<br>Er <b>mi</b> t full | NBLE TO DDG DOES NOT<br>Y LEGIBLE PRODUCTION                                                                                                                                                                                                  |
| OPY AVAILA<br>Ermit full          | BLE TO DDG DOES NOT<br>Y LEGIBLE PRODUCTION                                                                                                                                                                                                   |
| OPY AVAILA<br>Er <b>mi</b> t full | BLE TO DDG DOES NOT Y LEGIBLE PRODUCTION  SYSTEM SUFFACE FORC FACTORS                                                                                                                                                                         |
| GOPY AVAILA<br>Ermit full         | I WOOOG! ION                                                                                                                                                                                                                                  |
| OPY AVAILA<br>Ermit full          | SYST_ SUFFACE FORC FACTORS  NOTE NO. FORCE FACTOR (LS.)  1 .623                                                                                                                                                                               |
| COPY AVAILA<br>Ermit full         | SYST_4 SUFFACE FORC FACTORS  NOOF NO. FORCE FACTOR (L9.)  1                                                                                                                                                                                   |
| COPY AVAILA<br>Ermit full         | SYSTEM SUFFACE FORC FACTORS  NOTE NO. FORCE FACTOR (L9.)  1 1.623 2 -1653.817 3 -2789.713 3.246                                                                                                                                               |
| COPY AVAILA<br>Ermit full         | SYSTEM SUFFACE FORC FACTORS  NOTE NO. FORCE FACTOR (LB.)  1                                                                                                                                                                                   |
| COPY AVAILA<br>Ermit full         | SYSTEM SUFFACE FORC FACTORS  NODE NO. FORCE FACTOR (LB.)  1                                                                                                                                                                                   |
| OPY AVAILA<br>Ermit full          | SYSTEM SUFFACE FORC FACTORS  NODE NO. FORCE FACTOR (LB.)  1                                                                                                                                                                                   |
| OPY AVAILA                        | SYSTEM SUFFACE FORC FACTORS  NOTE NO. FORCE FACTOR (LB.)  1                                                                                                                                                                                   |
| COPY AVAILA<br>Ermit full         | SYST_M SUFFACE FORC FACTORS  NOTE NO. FORCE FACTOR (L5.)  1                                                                                                                                                                                   |
| COPY AVAILA<br>Ermit full         | SYSTEM SUFFACE FORC FACTORS  NODE NO. FORCE FACTOR (LB.)  1                                                                                                                                                                                   |
| COPY AVAILA<br>Ermit full         | SYSTEM SUFFACE FORC FACTORS  NODE NO. FORCE FACTOR (L.S.)  1                                                                                                                                                                                  |
|                                   | SYSTEM SURFACE FORC FACTORS  NODE NO. FORCE FACTOR (LB.)  1                                                                                                                                                                                   |
| COPY AVAILA<br>ERMIT FULL         | SYSTEM SURFACE FORCE FACTORS  NODE NO. FORCE FACTOR (LB.)  1                                                                                                                                                                                  |
|                                   | SYSTEM SURFACE FORC FACTORS  NODE NO. FORCE FACTOR (LB.)  1.623 2 -1653.87 3 -2788.713 4 3.246 5 5.3433 6 1725.746 7 3410.728 8 3813.784 9 1.101 10 -514.581 -1667.360 12 -3260.343 13 -3667.797 14 1.624 15 7/1.776 16 2496.84( 177 4949.141 |
|                                   | SYSTEM SURFACE FORC FACTORS  NODE NO. FORCE FACTOR (LB.)  1                                                                                                                                                                                   |

FIGURE B3 GN-1 OUTPUT OF NOZZLE INTERNAL ANALYSIS (cont'd)

AREA(-3) =- 550.56 SO. IN.

F( 3,22) = 3.00000

F(22, 3) = 0.00000

. .

| ·            |                       | معامل والمراجعين بنصيا لينيت النبيد | a and an area and a second and a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|--------------|-----------------------|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              |                       |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              | SYSTEM INTERNAL V     | TEN FACTORS                         | and the second control with the second control of the second control of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|              |                       | 22" (11212 4                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                       |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| F( 4, 4):    | . D8315               | Ft 4, 4)= .08315                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| FI 4, 5):    |                       |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| F(4, 5):     |                       | F( 5, 4) = .02093                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| F( 4, 7)     |                       |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                       |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| F( 4, 8):    |                       | F(8, 4) = .27232                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| F-(-4,-9):   |                       | -F(-9,-41=46325                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| F(4,10)=     |                       | F(10, 4) = .17010                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| F(4,11):     |                       | F(11, 4) = 0.00000                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| F(4,12)=     |                       | F(12, 4) = 0.03000                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| F( 4,13):    |                       | F(13, 4) = 0.00000                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| F { 4, 14} = |                       | F(14, 4) = 0.00001                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                       | -F-(15,-4)=-0.0000                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| F(4,15):     |                       | F(16, 4) = 0.00000                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              | . 0.00000             | F(17, 4) = 0.00000                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| F( 4,18):    | • 0.00000             | F(15, 4) = 0.00000                  | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| F( 4,19):    |                       | F(19, 4) = .07981                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| F(4,20):     | . 0.0000              | F(20, 4) = 0.00000                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| F1-4,21)     |                       | -E(21,-4)=,12729                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| F( 4,22):    | . 0.0000              | F(22, 4) = 0.00000                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              | . AREA( .4) = . 634.4 | 4 SO. IN                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                       | •                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                       |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| F( 5, 5):    | . 89024               | F( 5, 5)= .09024                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| FL 5, 61:    |                       | E( 5, 51=                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| F( 5, 7):    |                       | F( 7, 5) = .31237                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| F(.5, 8)     |                       | F( A. 51=J5143                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| F( 5, 9):    |                       | F( 9, 5) = .25490                   | All the set of the second of t |
| F( 5,10):    |                       | F(10, 5)= .47081                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              | 0.00000               |                                     | , , , , , , , , , , , , , , , , , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|              |                       | F(44, 5) = 0.00000                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| E(_5,121;    |                       | -F(12,-5)= 0.00000                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| F( 5,13):    |                       | F(13, 5) = J. J0000                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| F( 5,14):    |                       | F(14, 5)= 0.0000                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              | 0.00000               | F(15, 5) = 0.00000                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| F(.5,16)     |                       | F(16, .5) = 0.00000                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| F( 5,17):    |                       | F(17, 5) = 0.00000                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                       | F(1', 5)= 0.00000                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| F( 5,10)     |                       | F(17, 5)= .J4174                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| FI 5,20)     |                       | F(20, 5)= 0.00000                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| F(5,21):     |                       | -(21, 5) = .32931                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| F-(-5,22)    | 00000                 | F(22, 5) = 0.00000                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| •            | AREA( 5) = 595.9      | 9 SQ. IN.                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                       |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                       |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| F.(.6,-6):   | . 0.00000             | F( 6, 6)= 0.03000                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| F( 6, 7):    |                       | F( 7, 5) = 0.00003                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| F( 6, 8):    |                       | F( A, 6) = 0.00060.                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                       | F( 9, 5) = 0.00000                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                       | F (14, 6) = 0 19911                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              | 0.00000               | F.11 . 51 = 0.03000                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                       | F(12, 6) = 0.00010                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| F( 6, 13):   |                       | F(13, 6) = 0.00000                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| F( 6, 14):   |                       | F(14, 6) = 0.00000                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              | 0.00000               | F(15, 6) = 0.00000                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                       | -F(15,-6)=-0.00000                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              | 0.00000               | F(17, 5) = 0.00000                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                       |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| •            | 0.00000               | F(10, 6) = 0.00000                  | The second secon |
| F( 6,19):    |                       | F(19, 6) = .11345                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              | - 0.00000             | F(20, 6) = 0.00000                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              | . 00094               | F(21, 6) = .00033                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| F.L.6, 221   |                       | F-(22,-6)=-0.00000                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| •            | AREA( 6) = 153.7      | 1 5Q. IN.                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

```
-SYSTEM INTERNAL VIEW FACTORS-
F(...7, 7) = --.06000
 F(7, 8) = 0.00000
                             F(8,7) = 0.03000
                             £4.9,..7).=.0,.0000n
 F4 7, 91=-8-00000-
                             F(10, 7) = 0.03000
 F(7,10) = 0.00000
 F( 7,11) = 0.00000
                             _F(11, 7) = 0.03000-
                             F(12, 7) = 0.03000
 F(7,12) = 0.00030
                             F(13, 7) = .0.30000...
 F( 7,13) = 3.00630
 F( 7,14) = 0.00000
                             F(14, 7) = 0.00000
 F1 7.151 = 3.JOUAO
                             E(15,...7) = 0.0000
 F(7,16) = 0.00000
                             F(15, 7) = 0.00000
 F.(7,17) = 0.00000
                             F(17, 7) = 0.00000
                             F(18, 7) = 0.00000
 F(7,18) = 0.00000
                              F(19, 7) = .11255
 F( 7,19) = . .16330
                             F(20, 7) = 0.00000
 F(7,20) = 0.00000
 F1 7,211= .00393
                              F( 7,22) = 0.00000
                              F(22, 7) = 0.00000
    AREA( 7) = 379.24 SQ. IN.
                             F(5, 8) = -.00000
 F(8,8) = -.00000
                             F1_9, "1= 0.0000
 F(N, 9) = 0.00000
 F( 8,10) = 0,00000
                              F(10, 5) = 0.0900?
F( 8,11) = 0.0000$ -
                             F(11, A) = 0.00000
                             F(12, A) = 0.00000
· F( 8,12) = 0.00000
 F( 5,13) = 0.00000 -
                              .F.(13, R) = 0.00000.
                              F(14, 8) = 0.00000
 F( 8,14) = 0.80000
                             F-(15, 8)=-0.0000
 .E.C.8,151=_0.00000
 F( 8,16) = 0.00000
                              F(16, 5) = 0.03000
 F(-H_117) = 0.000000
                              F(17, 8) = 0.33003
                              F(18, 8) = 0.03000
 F(8,18) = 0.00000
                              F(19, 8) = .02581
 F( A.19) = .03870
 F( 8,20) = 0.0000n
                              F(20, 3) = 0.00000
            -01516-
 -i-6,2ii-
                              F( 8,22) = 0.00000
                              F(23, 8) = 0.00003
    ___ AREA( 8)= -367.04 SO--IH--
                              F( 9, 9) = -.00000
 F(9, 9) = -.00000
                             F(10y-9)=--00000-
 <del>F( 9,10) = ---0000</del>
                             F(11, 9) = 0.00005

F(12, 9) = 0.00000
 F(9,11) = 0.00000
 F( 9,12) = 0.00000
                              F(13, 9) = 0.00000
 F(9,13) = 0.00000
                             F(14, 9) = 0.99003

F(15, 9) = 0.00000
 F(-9,14) = 0.00000
 F(9,15) = 0.00000
                              F(15, 9) = 0,00000
 F4-0,16) = 0.00000
                             F(17, 9) = 0.00000

F(18, 9) = 0.00000
 F(9,17) = 0.00000
 F( 9,18) = 0.00000 ...
                              F(19, 9) = .00750
 F( 9,19) = .01000
                             F(20, 9) = 0.00000-
F(21, 9) = .06215
 F( 9,20)=-0.00000 -
 F( 9,21)= .36479
 --- F122- 91- 0-00007
            AREA( 9) = 412.77 SQ. IN.
 F(10,10)= -.00000
                             _F(10,10) = . -. 00000.
                              F(11,10) = 0.00000
 F(10,11) = 0.009
                              F-(12,10) = 0.00000
 F(10,12) = 0.00
                             F(13,10) = 0.00000
 F(10,13) = 0.661
                             F(14,10) = 0.00000
 .F(19,14) = 0.860
                              F(15,10) = 0.00000
 F(1J,15) = 0.00017
 F(10,16) = 0.00030
                              F(16, 10) = 0.00000
                                     ") = 0.00027
                              F(1)
 F(10,17) = 0.00000
                              F41A.1 = 0.00004
 F110-181= 0-00000
                              F(19, 10) = .00316
 F(10.19) = .00464
                             F(20,10) = 0.00000
 F(10,20) = 0.00430
 F(10,21) = .31067
                              F(21,10) = .27100
```

FIGURE B3 GN-1 QUIPUT OF NOZZLE INTERNAL ANALYSIS(cont'd)

ARCA(10) = 375.33 SQ. IN.

F(10,22) = 0.00000

F(22,10) = 0.00000

```
- SYSTEM INTERNAL VIEW FACTORS
           -.05229
                                          . 15229
F(11, 11) =
                              F(11,11)=
F(11,12)=
           .10798
                              F(12,11)=
                                          .04365
            .07545
                                          .03154
F(11, 13) =
                              F(13,11)=
F(11,14) =
            .66154
                              F(14,11)=
                                          .02291
                                         ....01565
E411,151=
            -04051
                              F(15,111=
F(11, 16) =
            .09264
                              F(16,11) =
                                          .18528
F(11,17) =
            .09344
                              E(17,11) =
                                          .38401
                                          .01173
            .00563
                              F(18,11) =
F(11,18) =
F(11,19) = 0.00000
                              F(19,11) = 0.00000
F(11,20)=
           .42691
                              F(20,11) =
                                         .13974
F.(11,21) = 0.00000
                              F(21,11) = U. 00000
           .04347
F(11,22)=
                              F(22,11) = .12471
           AREA(11)=---150.80-SQ. -IN.-
F(12,12) =
           .13315
                              F(12, 12) =
                                         .13315
            -11408
F(12, 13)=
                              F(13,12)=
                                          ~ 1·1·7·95
F(12,14) =
            .09A01
                              F(14,12)=
                                         .09023
F(12,15)=
            .05683
                              F(15,12)=
                                         -.05763
            .06135
                                          .39744
F(12,16)=
                              F(15,12)=
            .15753
F-(12, 1/) =
                              F(17, 12) =
                                          . 35031-
F(12,18) =
            .02234
                              F(19,12)=
                                          .11523
F(12,19) = 0.00000
                              F-(1-9,12)=-0.00000
F(12,20) =
           . 25114
                              F(20,12)=
                                         .28709
F(12,21) = -0.0000 ...
                            -- F(21,12) = 0.00000-
F(12,22) = .05272
                              F(22,12)=
                                         .07412
       -- - AREA(12) = - 372.95 SQ. IN.
            .17239
F(13,13) =
                              F(13,13)=
                                          .17209
F(13,14) =
          - -17169
                              F(14,13)=
                                          .15287 -
F(13,15)=
           .09152
                              F(15, 13) =
                                          .05977
F(13, 16) =
            .01657
                              F(15,13)=
                                          .07974
F(13,17)=
            .12854
                              F(17,13) =
                                          .27645
E.(13, 18) =
            .05685
                              F.(14,13) =.
                                         -, 28361
F(13,19) = 0.06000
                              F(19,13) = 0.00000
F.(13,26) =
                              F(20,13)=
                                          .14553
            .13589
F(13,21) = 0.00000
                              F(21,13) = 0.0000n
£(13,22) =
            . 07711
                              F(22,13)=
                                         .10485_
           AREA(13) =
                       360.71 SQ. IN.
F(14,14)=
            .24006
                              F(14,14)=
                                          .24006
            .16355
                                          .18117
F(14,15) =
                              F(15,14)=
F.(14, 16) =
           ..00365
                              F(15,14) =
                                          .31963
F(14,17) =
           .05463
                              F(17,14)=
                                          .13195
F(14-18) = . . 05565.
                              £418+141=- +31125
F(14,19) = 0.00000
                              F(19,14) = 0.80000
F(14, 0)=- .08231
                              F(20,14)=
                                         +09940-
F(14,21) = 0.00000
                              F421,141 - 0.00000
F(14,22)=
           .13429
                              F(22,14)=
                                          .20508
           AREA(14) =
                       405.12 SO. IN.
F.(15,15)=_ +26047
                                          .26047-
                               (15, 15) =
F(15, 16) =
            .00073
                               (15, 15) =
                                          .33354
F(15, 17) =
           .01935
                               (17, 15) =
                                          .04244
F(15, 18) =
            .02810
                               (15, 15) =
                                          . 14291
1.(15,19) = 0.00000
                              / (19,15) = -0, nonoq-
F(15,20) =
            .05?59
                              F(20,15)=
                                         .05711
F(15,21) = 0.00000
                              F(21,15) = 0.00000
F(15,22)=
            .29585
                              F(22,15) = .41014
         _AREA(15) = .367.76 SQ...IN. ..
```

FIGURE B3 GN-1 OUTPUT OF NOZZLE INTERNAL ANALYSIS(cont'd)

| F(16,16) = 0.00000 F(16,16) = 0.00000 F(16,17) = 0.00000 F(116,16) = 0.00000 F(16,19) = 0.00000 F(116,16) = 0.00000 F(16,21) = 0.00000 F(116,16) = 0.00000 F(16,22) = 0.00000 F(21,16) = 0.0000 F(16,22) = 0.00000 F(22,16) = 0.0000 F(16,22) = 0.00000 F(17,17) = 0.00000 F(17,17) = 0.00000 F(17,17) = 0.00000 F(17,10) = 0.00000 F(17,17) = 0.00000 F(17,10) = 0.00000 F(11,17) = 0.00000 F(17,20) = 0.00000 F(11,17) = 0.00000 F(17,22) = 0.0100 F(22,17) = 0.0000 F(17,22) = 0.0100 F(22,17) = 0.00000 F(17,22) = 0.0100 F(22,17) = 0.00000 F(18,19) = 0.00000 F(19,19) = 0.00000 F(18,19) = 0.00000 F(19,19) = 0.00000 F(16,22) = 0.00000 F(22,10) = 0.00000 F(19,23) = 0.00000 F(22,10) = 0.00000 F(19,23) = 0.00000 F(22,10) = 0.00000 F(19,23) = 0.00000 F(23,10) = 0.00000 F(22,23) = 0.00000 F(23,23) = 0.000 |                                       |              |             |                |                   |   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------|-------------|----------------|-------------------|---|
| F(16,14) = 0.00000 F(19,15) = 0.00000 F(16,20) = .46593 F(20,15) = 0.00003 F(16,20) = .46593 F(20,15) = 0.00003 F(16,22) = .00000 F(21,15) = .00000 F(16,22) = .00000 F(22,15) = .00000 F(17,17) = 0.00000 F(27,17) = 0.00000 F(17,17) = 0.00000 F(17,17) = 0.00000 F(17,10) = 0.00000 F(19,17) = 0.00000 F(17,10) = 0.00000 F(19,17) = .000000 F(17,20) = .04109 F(20,17) = .00583 F(17,21) = 0.00000 F(21,17) = .000000 F(17,22) = .04109 F(22,17) = .02598 AREA(17) = 157.71 SQ. IN.  F(18,18) = 0.00000 F(18,18) = 0.00000 F(18,19) = 0.00000 F(19,18) = .000000 F(18,20) = .00450 F(20,18) = .000000 F(18,22) = 1.00000 F(11,18) = .000000 F(18,22) = 1.00000 F(21,18) = .000000 F(18,22) = 1.00000 F(21,18) = .000000 F(18,22) = .00000 F(21,18) = .000000 F(19,22) = 0.00000 F(19,19) = 0.00000 F(19,22) = 0.00000 F(19,19) = 0.00000 F(19,22) = 0.00000 F(21,19) = 0.00000 F(19,22) = 0.00000 F(21,19) = 0.00000 F(21,21) = 0.00000 F(21,19) = 0.00000 F(21,21) = 0.00000 F(21,19) = 0.00000 F(22,21) = 0.00000 F(22,21) = 0.00000 F(22,21) = 0.00000 F(22,21) = 0.00000 F(21,22) = 0.00000 F(21,21) = 0.00000 F(21,22) = 0.00000 F(21,21) = 0.00000 F(21,22) = 0.00000 F(22,21) = 0.00000 F(22,22) = 0.00000 F(22,21) = 0.00000 F(22,22) = 0.00000 F(22,21) = 0.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |              |             |                |                   |   |
| F(16,201= .4659) F(20,15)= 0.9000 F(16,201= .4659) F(20,15)= 0.9000 F(16,21)= 4.0000 F(21,16)= 0.0000 F(16,21)= 4.0000 F(22,16)= .00009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       |              |             |                |                   |   |
| F(16,20) = .4659                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |              |             |                |                   |   |
| F(16,21) = 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |              |             |                |                   |   |
| F(16,22) = .00101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       | F(16,20)=    | .46595      |                |                   |   |
| APEA(16) = 75.40 SQ. IN.  F(17,17) = 0.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |              |             |                |                   |   |
| F(17,17) = 0.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |              |             |                |                   |   |
| F(17,10) = 0.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |              | - M4.CH(10) | 19:40 SQ - IN- |                   |   |
| F(17,10) = 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       | F(17.17)=    | 0.00000     | F(17, 17) =    | 0.00000           |   |
| F(17,19) = 0.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |              |             |                |                   |   |
| F(17,20) = .07450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |              |             |                |                   |   |
| F(17,21) = 0.00000 F(21,17) = 0.00000 F(17,22) = .04109 F(22,17) = .02598  AREA(17) = 157.71 SQ. IN.  F(18,18) = 0.00000 F(18,18) = 0.00000 F(18,19) = 0.00000 F(19,18) = 0.00000 F(18,20) = .00450 F(20,18) = .00096 F(18,21) = 3.00000 F(21,18) = 0.00000 F(18,22) = .13076 F(22,18) = .03564  AREA(19) = 72.30 SQ. IN.  F(19,19) = 0.00000 F(19,19) = 0.00000 F(19,20) = 0.00000 F(21,19) = 0.00000 F(19,20) = 0.00000 F(21,19) = .00000 F(19,22) = 0.00000 F(22,19) = 0.00000 AREA(19) = 550.28 SQ. IN.  F(20,20) = 0.00000 F(22,20) = 0.00000 F(20,21] = .00000 F(22,20) = 0.00000 F(21,21) = .000000 F(22,20) = 0.00000 F(21,21) = .000000 F(22,20) = 0.00000 F(21,21) = .000000 F(22,20) = .000000 F(21,21) = .000000 F(22,21) = .000000 F(21,22) = .000000 F(22,21) = .000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       |              |             |                |                   |   |
| F(17,22) = .04109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |              |             |                |                   |   |
| ### AREA(17) = 157.71 SQ. IN.    F(18,18) = 0.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |              |             |                |                   |   |
| F(18,19) = 0.00000 F(19,18) = 0.00007 F(18,20) = .00450 F(20,18) = .00000 F(18,21) = 3.00000 F(21,18) = 0.00000 F(18,22) = .13076 F(22,18) = .03564  AREA(19) - 72.70 SQ IN.  F(19,19) = 0.00000 F(19,19) = 0.00000 F(19,20) = 0.00000 F(20,19) = 0.00000 F(19,20) = 0.00000 F(21,19) = .036192 F(19,22) = 0.00000 F(22,19) = 0.00000 AREA(19) = 550.28 SQ IN.  F(20,20) = 0.00000 F(21,20) = 0.00000 F(20,21) = 3.00000 F(22,27) = .12016 AREA(20) = 339.29 SQ IN.  F(21,21) = 0.00000 F(21,21) = 0.00000 F(21,21) = 0.00000 F(22,27) = .12016 AREA(21) = 430.26 SQ IN.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •                                     |              |             |                |                   |   |
| F(18,19) = 0.00000 F(19,18) = 0.00007 F(18,20) = .00450 F(20,18) = .00000 F(18,21) = 3.00000 F(21,18) = 0.00000 F(18,22) = .13076 F(22,18) = .03564  AREA(19) - 72.70 SQ IN.  F(19,19) = 0.00000 F(19,19) = 0.00000 F(19,20) = 0.00000 F(20,19) = 0.00000 F(19,20) = 0.00000 F(21,19) = .036192 F(19,22) = 0.00000 F(22,19) = 0.00000 AREA(19) = 550.28 SQ IN.  F(20,20) = 0.00000 F(21,20) = 0.00000 F(20,21) = 3.00000 F(22,27) = .12016 AREA(20) = 339.29 SQ IN.  F(21,21) = 0.00000 F(21,21) = 0.00000 F(21,21) = 0.00000 F(22,27) = .12016 AREA(21) = 430.26 SQ IN.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       |              |             |                |                   |   |
| F(1A,20) = .00450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                     |              |             |                |                   |   |
| F(18,21) = 0.00000 F(18,22) = .13076  AREA(19) - 72.70 SQ. YM.  F(19,19) = 0.00000 F(19,20) = 0.00000 F(19,20) = 0.00000 F(19,21) = .06405 F(19,22) = 0.00000 F(19,22) = 0.00000 F(20,19) = 0.00000 F(21,19) = 0.00000 F(22,19) = 0.00000 F(22,19) = 0.00000 F(22,19) = 0.00000 F(22,20) = 0.00000 F(21,20) = 0.00000 F(22,20) = .000000 F(21,20) = .000000 F(21,21) = 0.00000 F(22,22) = 0.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |              |             |                |                   |   |
| F(18,22) = .13076  AREA(19) - 72.70 SQ. IN.  F(19,19) = 0.00000 F(19,20) = 0.00000 F(19,21) = .06435 F(19,22) = 0.00000 F(19,22) = 0.00000 AREA(19) = 550.28 SQ. IN.  F(20,20) = 0.00000 F(21,20) = 0.00000 F(22,20) = 0.00000 F(22,20) = 0.00000 F(21,20) = 0.00000 F(21,20) = 0.00000 F(21,21) = 0.00000 F(22,22) = 0.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |              |             |                |                   |   |
| AREA(19) - 72.70 SQ. IN.  F(19,19) = 0.00000 F(19,19) = 0.00000 F(19,20) = 0.00000 F(20,19) = 0.00000 F(19,21) = .06435 F(21,19) = .040000 F(19,22) = 0.00000 F(22,19) = 0.00000  AREA(19) = 550.28 SQ. IN.  F(20,20) = 0.00000 F(21,20) = 0.00000 F(20,22) = .09395 F(22,20) = .12015 AREA(20) = 339.29 SQ. IN.  F(21,21) = 0.00000 F(21,21) = 0.00000 F(21,21) = 0.00000 F(22,21) = 0.00000 AREA(21) = 430.76 SQ. IN.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       |              |             |                |                   |   |
| F(19,19) = 0.00000 F(19,19) = 0.00000 F(19,20) = 0.00000 F(20,19) = 0.00000 F(19,21) = .064J5 F(21,19) = .04192 F(19,22) = 0.00000 F(22,19) = 0.00000 AREA(19) = 550.28 SQ. IN.  F(20,20) = 0.00000 F(21,20) = 0.00000 F(20,21] = 0.00000 F(21,20) = 0.00000 F(20,22) = .09395 F(22,20) = .12015 AREA(20) = 339.29 SQ. IN.  F(21,21) = 0.00000 F(21,21) = 0.00000 F(21,22) = 0.00000 F(22,21) = 0.00000 AREA(21) = 430.26 SQ. IN.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       | (2 Ny 22) =  |             | 72.30 SQUIN.   |                   |   |
| F(19,23) = 0.00000 F(19,21) = .06435 F(19,22) = 0.00000 F(21,19) = .03192 F(19,22) = 0.00000 F(22,19) = 0.00000 F(22,19) = 0.00000 F(20,20) = 6.00000 F(21,20) = 0.00000 F(21,20) = 0.00000 F(21,21) = 0.00000 F(22,22) = 0.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |              |             |                |                   |   |
| F(19,21) = .064J5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       | F (19, 19) = | 0.00000     | F(19,19)=      | 1.00000           |   |
| F(19,22) = 0.00000 F(22,19) = 0.00000  AREA(19) = 550.28 SQ. IN.  F(20,20) = 6.00000 F(23,20) = 0.03000  F(20,21) = 3.00030 F(21,20) = 0.03003  F(20,22) = .09395 F(22,20) = .12015  AREA(20) = 339.29 SQ. TN.  F(21,21) = 0.00000 F(21,21) = 0.00000  F(21,22) = 0.00000 F(22,21) = 0.00000  AREA(21) = 430.26 SQ. TN.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       | F(19,23)=    | 0.00000     | F(23,19)=      |                   |   |
| F(19,22) = 0.00000 F(22,19) = 0.00000  AREA(19) = 550.28 SQ. IN.  F(20,20) = 6.00000 F(23,20) = 0.03000  F(20,21) = 3.00030 F(21,20) = 0.03003  F(20,22) = .09395 F(22,20) = .12015  AREA(20) = 339.29 SQ. TN.  F(21,21) = 0.00000 F(21,21) = 0.00000  F(21,22) = 0.00000 F(22,21) = 0.00000  AREA(21) = 430.26 SQ. TN.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       | F-(1.9+211=. | 064J5       |                | , J8192           |   |
| F(20,20) = 0.00000 F(21,20) = 0.00000<br>F(20,211= 1.00000 F(21,20) = 0.00000<br>F(20,22) = .09396 F(22,20) = .12016<br>AREA(20) = 339.29 SO. TN.<br>F(21,21) = 0.00000 F(21,21) = 0.00000<br>F(21,221 = 0.00000 F(22,21) = 0.00000<br>AREA(21) = 430.26 SO. TN.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       | F(19,22)=    | 0.00000     | F(22,19)=      | 0.00000           |   |
| F(20,21) = 0.00000 F(21,20) = 0.03003 F(20,22) = .09395 F(22,20) = .12016 AREA(20) = 339.29 SO. TN.  F(21,21) = 0.00000 F(21,21) = 0.00000 F(21,221 = 0.00000 F427,21) = 0.00002 AREA(21) = 430.26 SO. TN.  F(22,22) = 0.00000 F(22,22) = 0.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |              | AREA(19)=   | 550.28 SQ. IN  |                   |   |
| F(20,211= 2.00030 F(21,20)= 0.03003 F(20,221= .09395 F(22,2n)= .12016 AREA(20)= 339.29 SO. TN.  F(21,21)= 0.00000 F(21,21)= 0.00000 F(21,221= 0.00000 F422,21)= 0.00002 AREA(21)= 430.26 SO. TN.  F(22,22)= 0.00000 F(22,22)= 0.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |              |             |                |                   |   |
| F(20,22) = .09395                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                                     |              |             |                |                   |   |
| AREA(20) = 339.29 SO. TN.  F(21,21) = 0.00000 F(21,21) = 0.00000 F(21,22) = 0.00000 F(27,21) = 0.00000  AREA(21) = 430.76 SQ. TN.  F(22,22) = 0.00000 F(22,22) = 0.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ·                                     |              |             |                |                   |   |
| AREA(21) = 430.76 SQ. IN.  F(22,22) = 0.00000 - F(22,22) = 0.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       | -            |             |                |                   |   |
| AREA(21) = 430.76 SQ. IN.  F(22,22) = 0.00000 - F(22,22) = 0.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |              |             |                |                   |   |
| AREA(21) = 430.76 SQ. IN.  F(22,22) = 0.00000 - F(22,22) = 0.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       | F(21,21)=    | 0.0000      | F(21,21)=      | 0.00000           |   |
| AREA(21) = 430.76 SQ. IN.  F(22,22) = 0.00000 - F(22,22) = 0.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       | F (21,22)=   | ooooo       | F427+211=      | -0.00¢01          |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |              | AREA(21)=   | 430.26 SQ. IN. | ورون مستند بد     | · |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | E133 331-    | 0.00000     | E199 931-      | A 00000           |   |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | · · · · · · · · · · · · · · · · · · · | T 1669661~   |             |                | V. V. V. V. V. V. |   |
| ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ·                                     |              |             |                |                   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |              |             |                |                   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |              |             |                |                   |   |
| and the second s |                                       |              |             |                |                   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del></del>                           | ,            |             | <del></del>    |                   |   |

|          | Car                   | d corn       | mn 1            |              |                  |              |                          |              |                |                                 |                                                   |                           |
|----------|-----------------------|--------------|-----------------|--------------|------------------|--------------|--------------------------|--------------|----------------|---------------------------------|---------------------------------------------------|---------------------------|
| IDS      | 01                    |              |                 |              |                  |              | _                        |              |                |                                 |                                                   |                           |
| IB1:     |                       | THIS I       |                 | <-***        |                  |              |                          |              | PUT S          | E <b>T</b>                      |                                                   |                           |
| 1        |                       | c c=         |                 | GENER        | ><br>רם אם       |              | Ŧ                        |              | ->>            |                                 |                                                   | _                         |
| î,       |                       |              | •               | <-***        |                  |              |                          |              |                |                                 |                                                   |                           |
| 2        | 0204180               |              |                 |              |                  |              |                          |              |                |                                 |                                                   |                           |
| 3<br>4   | 0.0                   | 401<br>18.0  |                 | 2.0          | **               | 18.0         |                          | -1.0         |                | 0191                            |                                                   |                           |
| 4        | 2.0                   | 18.0         |                 | 7.0          |                  | 17.7         |                          | -1.0         |                | 0201                            | •                                                 |                           |
|          | 7.00                  | 17.7         |                 | 12.0         |                  | 17.1         |                          | -1.6         |                | 0301                            |                                                   |                           |
|          | 12.0<br>18.0          | 17.1<br>16.1 |                 | 18.0         |                  | 15.1<br>15.0 |                          | -1.0<br>-1.0 |                | 0401<br>8501                    |                                                   | •                         |
|          | 0.0                   | 12.2         |                 | 2.0          |                  | 12.2         |                          | +1.0         |                | 0602                            |                                                   |                           |
|          | 2.0                   | 12.2         |                 | 7.0          |                  | 11.9         |                          | +1.0<br>+1.0 |                | 0702<br>0392                    |                                                   | •                         |
|          | 7.0<br>12.0           | 11.9         |                 | 12.0<br>18.0 |                  | 11.3<br>10.3 |                          | +1.0         |                | 0992                            |                                                   |                           |
| 4        | 18.0                  | 10.3         |                 | 24.0         |                  | 9.383        | 1.5                      | +1.0         |                | 1002                            |                                                   |                           |
|          | 0 • 0<br>2 • <b>0</b> | 12.0         |                 | 7.0          |                  | 12.0<br>11.7 |                          | -1.0<br>-1.0 |                | 1103<br>1203                    |                                                   |                           |
|          | 7.0                   | 11.7         |                 | 12.0         |                  | 11.1         |                          | -1.0         |                | 1303                            |                                                   |                           |
| •        | 12.0                  | 11.1         |                 | 18.0         |                  | 10.1         |                          | -1.0         |                | 1493                            |                                                   |                           |
|          | 18.0                  | 10.1         |                 | 24.0         |                  | 9.189<br>6.0 | 36                       | -1.0<br>+1.0 |                | 1503<br>1604                    |                                                   |                           |
|          | 2.0                   | 6.0          |                 | 7.0          |                  | 3.7          |                          | +1.0         |                | 1704                            |                                                   |                           |
| 4        | 7.0                   | 3.7          |                 | 12.0         |                  | 0.0          |                          | +1.0         |                | 1804                            |                                                   |                           |
|          | 0.00                  | 12.2         |                 | 24.0         |                  | 18.0         |                          | +1.0<br>-1.0 |                | 35 <b>34</b><br>050 <b>0.</b> 0 | 19                                                |                           |
|          | 0.00                  | 6.00         |                 | 0.00         |                  | 12.0         |                          | -1.6         |                | 1.700.0                         | 20                                                |                           |
| 5        | 24.0                  | 9.383        | 18              | 24.0         |                  | 15.0         |                          | +1.0         |                | 8450.0                          | 21                                                |                           |
|          | 24.0                  | 00.0         |                 | 24.0         |                  | 9.189        | 36                       | +1.0         |                | 0460.0                          | 52                                                |                           |
| 7        | 0001                  |              |                 |              |                  |              |                          |              |                |                                 |                                                   |                           |
| 10       | .0277                 |              | 0591            |              | 04071            |              | 03051                    |              | 11695          |                                 |                                                   | . 64535                   |
| 10<br>10 | .0119<br>0.0500       |              | 00300           |              | 13090<br>42323   |              | . 30000<br>00000         |              | 00003<br>02643 |                                 |                                                   | 0.0000                    |
| 11       | 226.1946              |              |                 | •            |                  | •            |                          | •            |                |                                 |                                                   |                           |
| 10       | -0648                 | -            | u526            |              | 03984            |              | 02209                    |              | 08216          |                                 |                                                   | .03023                    |
| 10<br>10 | 0.0074                |              | 24924           |              | 00 000<br>00 000 |              | . 00000<br>. 33239       |              | 00000<br>00000 |                                 | 3 9.00000                                         | 0.30900                   |
| 11       | 561.7827              | 8            | • • • •         |              |                  | •            |                          |              |                |                                 |                                                   |                           |
| 10<br>10 | .0569                 |              | 06083           |              | 7 <b>743</b> 8   |              | .0225F                   |              | 16296          |                                 |                                                   | .12219                    |
| .0       | 0.00GG<br>-1246       |              | 00301           |              | 03606<br>04717   |              | . 000000                 |              | 10033          | 6.23201                         | . 0.1100                                          | ~. 00000                  |
| 11       | 550.5588              | 4            |                 |              |                  |              |                          |              |                |                                 |                                                   |                           |
| 10<br>10 | -0831                 |              | 3591            |              | <b>JD 506</b>    |              | . 03936<br>. 00000       |              | 15783          |                                 |                                                   | 0.0000<br>.06922          |
| 10       | 0.0000                |              | 0000            |              | 00000<br>00000   |              |                          |              | 0 0 0 0 0      | 0.0000                          | , 0.000 a a                                       | • 00 36 2                 |
| 11       | 634.4374              | 6            |                 |              |                  |              |                          |              |                |                                 |                                                   |                           |
| 10<br>10 | 0.0002                |              | 0010            |              | 00787<br>10390   |              | . <b>03157</b><br>.08020 |              | 17653          |                                 |                                                   | 0.13000<br>0.13000        |
| 10       | .2377                 |              | 00001           |              | 00335            | u .          |                          | · ·          | 03003          | 4.5454.                         |                                                   | 0.6.7020                  |
| 11       | 555-5515              | -            |                 | _            |                  | •            |                          | _            |                |                                 |                                                   |                           |
| 10<br>10 |                       |              | ופרסס.<br>הפטם. |              | 27290<br>8887    |              | . 00000<br>. nuapt       |              | 00000          |                                 |                                                   | 0.0000 <b>0</b><br>.01094 |
| 1.0      | 0.0000                | -            |                 | ., .,        |                  |              |                          |              | 0000           |                                 |                                                   | 1030,4                    |
| 11       |                       |              |                 |              |                  | _            |                          | _            |                |                                 |                                                   |                           |
| 10       |                       |              | 0000            |              | 00 0 0 0         |              | , 00 00 (                |              | 16330          |                                 | ).u.z=.n<br>, , , , , , , , , , , , , , , , , , , | 7.20000                   |
| 10<br>11 | 379.2427              |              |                 |              |                  |              |                          | •            | 70330          | 9.95(0)                         | • • • • • • • • • • • • • • • • • • • •           | 3.346.,                   |
| 10       |                       | -            | 3030            |              | 00000            |              | .03646                   |              | 0 0 0 0 0      |                                 |                                                   | 1.00000                   |
| 10       | 0.0000<br>367.u392    |              | 0000            | 0.           | 00000            | ,            | . 11387(                 | 0.           | 0 1 0 0 0      | .0151                           | 5 0.00000                                         |                           |
| 11<br>10 |                       |              | 0000            | ο ο.         | តែកិច្ចក្        |              | . 0 1 1 1 1              | ι .          | פרכם           | 2.0000                          | 0 0.00700                                         | 0.0630^                   |
| 10       | 0.0000                | 0 0.         | 0000            |              | 61000            |              | 01030                    |              | 66477          |                                 |                                                   | -                         |
| 11       |                       |              | 0000            | n n          | 90000            | n            | ,00000                   | ı n          | 00000          | 0.000                           | 0.00000                                           | 0.00000                   |
| 10       | 0.0000                |              | 0046            |              | 99000            |              | 31067                    |              | 00000          |                                 |                                                   |                           |
| 11       | 375.3256              | 5            |                 |              |                  |              |                          |              |                |                                 |                                                   |                           |
| 10<br>10 |                       |              | 1079<br>4269    |              | 07545<br>00000   |              | .06151<br>.04347         |              | 04051          |                                 | 4 .D9744                                          | -00563                    |
|          | ,                     | •            | ,               | - ••         |                  |              |                          |              |                |                                 |                                                   | •                         |

FIGURE B4 GN-1 IR SIGNATURE INPUT DATA DECK

\$

FIGURE B4 GN-1 IR SIGNATURE INPUT DATA DECK cont'd)

```
0133
      0233
0333
       0433
                  1.0
       0533
                  1.0
       0611
0712
 50
50
50
50
50
50
50
50
50
50
       0813
       0914
       1015
       1634
                  1.0
       1734
                  1.0
       1834
      33
                  500:0
       34
                  720.0
      0.6
 550.0
                                              20.0
                                                                                        75.0
                  5.0
 56 0100
                  5.5
    1.7 5.5

$CAUL ALTUS(1) = 5120., \, ALTPLM=5000., NRANG=3,

$CAUL ALTUS(1) = 5120., \, ALTPLM=5000., NRANG=3,

$RANG(1) = 10420., 13420., 52400.
     RPN=+.18436,KSN=15.0,RTE=12.0,4NL=24.0 $
IDSS SPLUTIN :
IDSS & PONER NORM= 0, JET=2, FLTM= 0.5, TSFC0=3.9, RRED=L 94, FN=0365., FNRT=6356.,
     EPR=22.636,FPR=23.154,TYPN=1400.,TTSN=605.,WAPAC=87.102,WAFAC=?15.58,&
IDSZ ZCASE &
   2 SCASE 8
   2 SCASE
     SCASE
     SCASE &
JCASE &
     SCASE ISPAT=1..
   2 SCASE TERHELIRUE. $
```

FIGURE B4 CN-1 IR \* CENTURE INPUT DATA DECK(cont'd)

HOT METALS
PANDWILTH SUMMATION
1.71 - 5.50 MICHONS

| FF AKIS       | 34 / DATU: H       | ENJIVALENT      | ECHIVALENT | FOUTVALEST     |     |
|---------------|--------------------|-----------------|------------|----------------|-----|
| ANGLE         | -pultiin4          | PLACK DODY      | BLICK RODY | 3F(CK 405A     |     |
| (526.)        | , (475) <b>,</b> ) | TEMPERATURE (K) | AFLA (CM2) | SVAT NOTIVICAR | 1.) |
| 0.0           | 441.447            | 743.05          | 1623.13    | 441.847        |     |
| 5.0           | 460.356            | 739.26          | 1745.07    | 400.356        |     |
| 1 N • O       | 464.720            | 743.05          | 1731.96    | N59.720        |     |
| 21.0          | 440,234            | 746.88          | 1611.10    | 440.234        |     |
| 45.0          | 374.040            | 762.61          | 1199.91    | 374.090        |     |
| 6 <b>3.</b> 3 | add offer          | 762+61          | 832.50     | 259.545        |     |
| 75.0          | 131.011            | 762.61          | 423.11     | 131.911        |     |
| 24 • 7        |                    | 526.69          | A -00      | . 00n          |     |
| †             |                    | ABB             |            |                |     |
|               |                    |                 |            |                |     |
|               |                    | ТВВ             |            |                |     |
| `             |                    | ASPD            | E C        |                |     |
|               |                    | v Roi D         |            | •              |     |

FIGURE B5 CN-1 INTERNAL HOT PARTS SUMMARY

```
* * * A S D I z +
                          __PLUMS ANALYSIS
** ENGINE DEFINITION
                                       RADIAL
                                                   (FEET)
                                     1.0000
                 -2.0000
                  0.0006
** CASE DEFINITION
WAVELENGTH 3.7500 4.8500 MIGRONS
ASP ANGLE 0.0000 DEGREES
PLUME DATA IS CALCULATED. **
* FLIGHT CONDITIONS **
    ALTITUDE IS SUJE. FEET.
   MEATHER IS IGAO MIL STO 210 STANDARD DAY
          WITH .000330 WATER CONTENT.
             VISIBLE CONTRAIL IS NOT EXPECTED ;
    CASE MACH NUMBER IS .50 AT AMPLEME
                          12.23 PS[A.
         PRESSURE OF
         TEMPERATURE OF 501. DEGR. VELOCITY OF 599. FT/SEC.
    ENGINE IS RUNNING WITH A FUEL EQUIVALENCE RATIO (EQR) OF .285
 ** FLOW FIELD INPUT
                   VELOCITY TEMPERATURE (FF/SEC) (DEG R)
        RADIJS
        (FEET)
                                             .)3/842
.u3/842
.03/842
.o3/842
         .0766
                                 1400.00
                                                          .342.11
                    1651.06
         •1532
                    1551.05
                                 1490.09
                                                          .142ú11
         .2297
                   1651.36
                                 1400.00
                                                          .142.11
        .3063 1551.06
                                 1406.00
                                              .337842
                                              .037842
          .3829
                                                                      Core Nozzle
                    1551.06
                                 1400.00
       .4595
.5360
                    1851.36
                                 1415.00
                                 1400.00
                                              .037842
                     1551.36
                                                          .042.11
                                                          .142311
         .6126
                    1551.06
                                 1460.36
                                              ·03: 142
                                              . 37842
          .6892
                    1551.j6
                                 14,0.0.
                                                           .342311
                               __ 1400.0u
         .7558
                    1551.06
                                              ..37842
                                                         . . 42,111 ...
                                              • C U i) 3 3 u
                                                          .333333
          .9189
                    1388.31
                                  6.7.19
                                              .000331
                                              .000330
                                                           .000333
          .9955
                    1088.01
                                  507.19
                                             6u7.19
         1.0721
                    1.85.01
                                                          •33333
                                                                     Secondary Nozzle
                                                          ...3333
         1.1487
                    1 i 88 . i 1
                                  607.19
                    1388.01
         1.2252
** AMBIENT CONDITIONS
         1.3018
                     598.97
                                             .000330
                                                           .000330
** INPUT PARAMETERS
                              PLUME
                                       AMBIENT
   PRESSURE, P .839 .632 ATHOS.

SPECIFIC HEAT, GP .295 BTU/LB-F
GAS CONSTANT, R .53.472 FT/F
SP. HT. RATIO 1.324
HACH NUMBER 1.010
                                                               R8 = RPN
                                                                XC = Plume core length
                                                               REND * Radius at the end of the plume.

AL = Effective plume
                             .856 ATHOS.
    SECONDARY PRESS. =
 SECONDARY PRESS.= .856 ATMOS. AL R8= .766 XC= 6.702 REND= 28.408 AL= 225.162
                                                                       length.
```

FIGURE B6 CN-1 OUTPUT HEADER

```
BCASE
ABB = 0.J,
ALTOBS = .55+04, 0.0, 0.0, 0.0, 0.0,
   = .485E+U1,
AMI = .375E+01,
ASPDEG = .9E+02,
   = .16E+02,
TL = -1,
IRADCK = 9,
   = -1,
ITYPE = 1,
KDATA = 14,
NANGSEG = 3,
NATHO = 2,
NEXIT = 5,
      NEXT = 0,
NP = 0,
NRANG > = 3,
NUINC = .5E+02,
                        = .918936E+01,
RANGE = .15+05, .15+05, .56+05, 0.0, 0.0,
                        = .12E+02,1
                     RTE
RAYPNT = 0.0,
                     ANL = -24E+02,
TBACK = U.O,
                        = .15E+02;
TBB = 0.0,
                     RSN
TERM = F,
                     XP # 6.2.
                        = 0.0,
NUFRST = 0,
ICHECK = 0,
```

```
SPLUHIN
   RPN
                                        = .765785+00.
   RSN
                                      = .125E+01,
  XP
                                        = 0.0.
                                        = 0.0,
  KDATA = 14,
  TANE
                                  = .92+01.
                                     = .25E+00,
  EQR
  XC02
                                        = .33E-03, .33E-03, .33E-03, .33E-03, .33E-03, .33E-03, .33E-03,
                                                                                                                                                                                                                                                                                                                                                                                 .33E-03,
                                                 .33E-u3, .73E-u3, .33E-u3, .32E-u3, .32
                                                                                                                                                                                                                                                                                                                                                                                           .33E-03,_
                                                                                                                                                                                                                                                                                                                                                                                            .33E-03,
                                                 .33E-U3, .33E-O3, .33E-O3, .33E-U3, .33E-O3, .33E-O3, .33E-O3,
                                                                                                                                                                                                                                                                                                                                                                                            .33E-J3,
                                                  .33E-03, .33E-03, .33E-03, .33E-03, .33E-03, .33E-03, .33E-03,
                                                                                                                                                                                                                                                                                                                                                                                            .33E+u3,
                                                  .33E-03, .33E-03, .33E-03, .33E-03, .33E-03, .33E-03, .33E-03,
                                                                                                                                                                                                                                                                                                                                                                                            .33E-63,
                                                  .33E-03, .33E-03, .33E-03, .33E-03, .33F-03, .33E-03,
                                                                                                                                                                                                                                                                                                                                                                                            .33E-53,
                                                 .33E-43, .33E-03, .33E-03, .33E-03, .33E-03, .33E-03, .33E-03,
                                                                                                                                                                                                                                                                                                                                                                                            .33E-03,
                                                  .33E-03, .33E-03, .33E-03, .33E-03, .33E-03, .33E-03, .33E-03,
                                                                                                                                                                                                                                                                                                                                                                                            .33E-03,
                                                .33E-03,
  XH20
                                        = .33E-03, .33E-03, .33E-03, .33E-03, .33E-03, .33E-03, .33E-03,
                                                 .33E-03, .33E-03, .33E-03, .33E-03, .33E-03, .33E-03,
                                                                                                                                                                                                                                                                                                                                                                                            .33E-03,
                                                 .33E-03, .33E-03, .33E-03, .33E-03, .33E-03, .33E-03, .33E-13, .33E-03, .32E-03, .32
                                                                                                                                                                                                                                                                                                                                                                                            .33E-63,
                                                                                                                                                                                                                                                                                                                                                                                            .33E-03,
                                                 .33E-03, .33E-03, .33E-13, .33E-03, .33E-13, .33E-13, .33E-13,
                                                                                                                                                                                                                                                                                                                                                                                            ·335-63,
                                                 .33E-03, .33E-03, .33E-03, .33E-03, .33E-03, .33E-03, .33E-03,
                                                                                                                                                                                                                                                                                                                                                                                            .33E-03,
                                                 -33F-03, -33F-03, -33E-03, -32E-03, -32
                                                                                                                                                                                                                                                                                                                                                                                            .33E-03,
                                                                                                                                                                                                                                                                                                                                                                                            .33E-U3,
                                                 .33E-03, .33E-03, .33E-03, .33E-03, .33E-03, .33E-03, .33E-03,
                                                                                                                                                                                                                                                                                                                                                                                            .33E-03,
                                                 .33E-03.1
                                      = .33E-03.
 XC02A
 XH2CA
                               = .33E-03.
                                        G.O, D.O, O.O, D.O, U.O, O.U, O.U, D.O, U.O, O.O, O.O, O.O, O.O, U.O, O.O, U.O,
 P8
                                        = 0.0.
                                       = 0.0,
 PQ
  IJÀ
                                        = .1E+02.
TA
                                       = .519E+J3,
  PA
                                       = 0.6,
  SEND. .
                                                                                the same of the contract of the same of th
```

FIGURE B7 GN-1 OUTPUT LISTING OF NAMELIST INPUT (cont'd)

```
SPONER
METEC
NORM
JET
FLTM
        = .5c+00.
TSFCC
        = .92+50.
RREC
        = .98E+00,
FN
        = .5566E+04,
        = .6566E+04,
FNRT
EPR
        = .22536£+02,
FPR
        = .23154E+02,
TTPN
        = .14E+04,
        = .605E+03,
TTSH
        = .871J2E+J2,
HAPAC
HASÁC
        = .21558E+03,
SEND
```

FIGURE B7 GN-1 OUTPUT LISTING OF NAMELIST INPUT (cont'd)

| Others orner  | ,                                     | TOTAL VET VETICE | (A) (A) (A)             | STAT TATA      | XCA2 (MDI FRAC) | YASO (MOL FRACE |
|---------------|---------------------------------------|------------------|-------------------------|----------------|-----------------|-----------------|
| KAULUS IFEE   | •                                     |                  |                         |                |                 |                 |
| STATION # = 1 | STATION =                             | 00.0             | CENTERLINE MACH = 1.000 | UD EOGE MADY = | • 969           |                 |
| G • 0         |                                       | 1651.            | * 46%0.                 | 1215.          | .037842         | . 4.42013       |
| 0.            | • 40                                  | 1651.            | 19626                   | 1215.          | .037842         | 117710          |
| 7.            | · RX                                  | 1651.            | * 49368 *               | 1215.          | - 037942        | .042-11         |
|               | :<br>!                                | 1551.            | , 76£6°                 | 1215.          | .637842         | 115250.         |
| • 2           |                                       | 1651.            | ,3394,                  | 1215.          | 37842           | 11 n jg ~ 4     |
| 2.            | 9                                     | 1651.            | .43394                  | 1215.          | . 437942        | . 6.6 2011      |
| Ε.            | 10                                    | 1651.            | . 3394                  | 1215.          | .037842         | 1,42011         |
| -t-           | -                                     | 1551.            | .8394                   | 1215.          | .337842         | 11,541,         |
| .7            | 4                                     | 1651.            | . 9233                  | 1215.          | 37842           | . 642-11        |
| 5,            | · · · · · · · · · · · · · · · · · · · | 1051.            | . 8394                  | 1215.          | -037942         | .042611         |
| ٠.            | 6                                     | 1651.            | , texa.                 | 1215.          | . 437542        | .042011         |
| 9.            | 5                                     | 1651.            | 4688.                   | 1215.          | 37842           | .042011         |
|               |                                       | 1651.            | , 46£6°                 | 1215.          | -037942         | .042011         |
|               |                                       | 1651.            | .8323;                  | . 1215.        | .137842         | .042011         |
|               |                                       | 1088.            | . 9323 ;                | 525            | 0.00330         | . 000330        |
| •             |                                       | 11.88.           | . 33297                 | 525            | .000330         | .0000330        |
| •             |                                       | 1.88.            | .83234                  | 523            | . 006338        | 0.8000330       |
| 6.            | 3                                     | 1,83.            | . 8323                  | 525.           | . 900330        | 02200           |
| 6             |                                       | 1088.            | . 9320 ;                | 525            | .000330         | # 00033g        |
|               | . 2                                   | 1.88             | SCOM BO                 | 525.           | .006330         | . 000339        |
|               | ·Ω                                    | 1.88.            | * 83204                 | 525.           | .000330         | .0000334        |
|               |                                       | 1083.            | 33268                   | 525.           | . 630330        | 022000 .        |
| 1.1           | •                                     | 1.88.            | . 55 25 5               | 525.           | 086230          | 066000.         |
| T • 1         | •                                     | 1088.            | . 3320:                 | . 225          | 000000          | .000330         |
| 1.2           | .5                                    | 599.             | . 43204                 | 591.           | 022000.         | . 0000330       |
| 1.5           | ī                                     | 598.             | : CS:80 *               | 5,1.           | . 0000330       | .000330         |
|               |                                       |                  |                         |                |                 |                 |

-B28-

| FINEST PRESSAE (111) EIGE MATH = .969  551                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | :               | •                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                 |                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------|-------------------|
| # 2 STATION # .44 CENTRRLINE MAD = 11.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | US (FEET)       | VELOCITY                               | EC) , PRESSURE (NTA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | STAT TEMP (DEG R) | XCO2 (MOL FREC) | XHZO (MOL FRAC)   |
| 155 1 1551                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2               | NO.                                    | Ş.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | JGE MADH          | 696•            | i                 |
| 11. 15. 1651. 8394. 1225. 1255. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275. 1275                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 | 1651                                   | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.                | 378             | 1502970           |
| 12   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551   1551                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 | 1651                                   | , 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7                 | 378             | 42,11             |
| 13.5   1651.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | • 12            | 1551.                                  | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 21                | \$78            | .042011           |
| 10   10   10   10   10   10   10   10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | . 213           | 1651.                                  | <b>~</b> 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1215.             | 137842          | 11,240.           |
| 10   10   10   10   10   10   10   10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | , Z,            | 1651                                   | 40.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12.53             | ים הי           | *0.0011           |
| 1651                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (C) 14          | 1651.                                  | to the second se | 77                | 7               |                   |
| 1551 1555 1537 1537 1537 1537 1537 1537                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 600             | 1664                                   | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 0               | 1 r             | 1411111           |
| 1   1   1   1   1   1   1   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 | - FOOT                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7 5               | ייוני           | 0 0               |
| 10   10   10   10   10   10   10   10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 | 1651                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.1               | , r.            | 12.               |
| ### 1215                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 | 4004                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.                | 14.1            | 1111111111        |
| 71 1649 8994 1115 1116 1116 1116 1116 1116 1116 111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,5             | 10.21                                  | 10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15                | ואו             | 14.540.           |
| ### 1115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 | * 65 30 F                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12                |                 | MM6Tato *         |
| 81 1136 83947 533 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.035 10.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.5             | 9                                      | 4620                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   | _               | 38250             |
| \$55<br>90<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>1088<br>108 |                 | 1136                                   | THEMS .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 53                | •               | *003952           |
| 99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - (C)           | 060                                    | (30 mg ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ന                 | • •             | .000543           |
| 99, 1,88.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20.             | 88.0                                   | i de la compania del la compania de  | in                | 3               | .000335           |
| 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1               | د. ر                                   | 1.7 C. K. C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 525               |                 | .000330           |
| 1.02 1.03 1.05 1.06 1.07 1.10 1.10 1.10 1.10 1.10 1.10 1.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9               | 3 4                                    | : 1~ #<br>: #<br>: #<br>: #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | i co              | , -,            | . 404330          |
| 1.05 1.05 1.084 1.3947 1.23 1.084 1.09347 1.23 1.093 1.23 1.0957 1.09347 1.23 1.093 1.34 1.34 1.35 1.35 1.34 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 | 80                                     | 7458                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 525               | , ,             | .0000330          |
| 1.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 (0)           | 2                                      | · 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 524               | $\Rightarrow$   | .000330           |
| 1.13 10570394; 5230003 1.23 6190394; 5140003 1.32 6190394; 5140003 1.32 6190394; 5140003 1.32 6190394; 5140003 1.22 6190394; 5140003 1.22 6190379 1.22 6190379 1.22 6190379 1.24 6190379 1.25 6190379 1.26 6190379 1.27 6190379 1.27 6190379 1.27 6190379 1.27 6190379 1.27 6190379 1.27 6190379 1.27 6190379 1.27 6190379 1.27 6190379 1.27 6190379 1.27 6190379 1.27 6190379 1.27 6190379 1.27 6190379 1.27 6190379 1.27 6190379 1.27 6190379 1.27 6190379 1.27 6190003 1.39 6190003 1.39 6190003 1.39 6190003 1.39 6190003 1.39 6190003 1.39 6190003 1.39 6190003 1.39 6190003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11.11           | 1284.                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 524               | •               | . 000330          |
| 1.2) 7/11 5394; - 5314 6000 1.34 4.43  514 6000 1.34 598 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6320; - 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ::<br>::<br>: - | 1057                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | * M 61 M          | • 000330        | 000330            |
| 3 STATION # .994; 5140003  4.43  5134 5986320  4.44  5150003  5160003  5170003  5180003  5180003  5180003  5180003  5180003  5180003  5180003  5180003  5180003  5180003  5180003  5180003  5180003  5180003  5180003  5180003  5180003  5180003  5180003  5180003  5180003  5180003  5180003  5180003  5180003  5180003  5180003  5180003  5180003  5180003  5180003  5180003  5180003  5180003  5180003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.23            | • 556                                  | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 521.              | 0033            | m                 |
| 1.32 619. 6394; 555. 0000  1.34 598.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A.              | -142                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 514.              | 53              | 003               |
| 1.34 5989320: 5010003 3 STATION = .99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7               | 619                                    | m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.50              | M               | 33                |
| 3 STATION # .99 GENTERLINE 400- # 1.101 EDGE HA2H # .632.  0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n               | . 598.                                 | m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 531.              | 33              | 603               |
| 3 STATION # .99 CENTERLINE 400 # 1.500 EDGE HACH # .632  0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | *               | *865                                   | P)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 501.              | .000330         |                   |
| 13. 1651. 83947 1215. 0378  12. 1551. 83947 1215. 0378  12. 1551. 83947 1215. 0378  12. 1551. 83947 1215. 0378  12. 1551. 83947 1214. 0378  13. 1631. 83947 1214. 0378  14. 1631. 83947 1552. 0002  16. 83247 555. 0002  16. 83247 555. 0002  16. 83247 555. 0002  17. 16. 16. 16. 16. 16. 16. 16. 16. 16. 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 | * NO.                                  | LINE 440-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | JOJ EDSE HACH     | . 632           |                   |
| 1215 1651 6373 6374 6374 6374 6373 6373 6373 6373                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7               | 1651.                                  | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 21                | 037942          | .042011           |
| 24 1651 81947 1215 0373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373 10373                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 | 1651                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 215               | . 037342        | .642411           |
| 1551. 1551. 1573. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575. 1575.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N               | ************************************** |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.7               | .037342         | .042011           |
| 47 1551. 83347 1215. 0374 1215. 0377 1254. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0378 1255. 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .35             | 1551.                                  | Pr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 21                | .037842         | . C42411          |
| .53 165083347 12140373<br>.71 16383947 15530499<br>.91 104393347 555 .0007<br>.92 1.6483947 523 .0003<br>.93 1.6483947 523 .0003<br>.93 64183202 5010003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 23.             | 1551.                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 21                | -037842         | +042011           |
| 71 153;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | . 53            | 1659.                                  | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21                | . 037338        | .042007           |
| .91 1217, .33947 745, .90090<br>.94 1093, .91347 555, .0007<br>.95 1.64, .83947 523, .0003<br>.0003 983, .83947 523, .0003<br>.0003 983, .83247 503, .0003<br>.0003 644, .83294 504, .0003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | <b>●</b> 1864                          | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15                | .036531         | \$550 <b>10</b> • |
| 99 1765, 8320; 8320; 90007<br>99 1766, 8320; 947<br>973, 8320; 8320; 90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>90003<br>900003<br>900003<br>900003<br>900003<br>900003<br>900003<br>900003<br>900003<br>9000003<br>900003<br>900003<br>900003<br>900003<br>900003<br>900003<br>900003<br>900003<br>900003<br>900003<br>900003<br>9000003<br>9000003<br>90000003<br>90000000000                                                                                                                                                                                                         |                 | 1217.                                  | ( m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 745.              | • 489334        | .010001           |
| .99 13.658394? 5250003<br>.16 94383947 5230003<br>.27 8.283747 5180003<br>.39 b4183205 .0003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.6.            | 9.93                                   | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 555.              | . Du0720        | +6100a.           |
| .17 1.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 66.             | 1,186.                                 | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 923.              | .000336         | . 000337          |
| .16 94393947 52300003<br>.27 8.223947 51800003<br>.39 64167947 50800003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •               | 1.64.                                  | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 524.              | . 000330        | •                 |
| .39 612, .35947 518, .0000<br>.41, .67947 508, .0000<br>.42, .63205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •               | 943.                                   | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 523.              | 0.000.          | •                 |
| 39 b+1. 607947 508. 60003<br>41 501.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3               |                                        | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 518.              | • 4000330       | •~                |
| 5938                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 177             |                                        | 6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 508•              | =               |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10.42           |                                        | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -105              | 8               | .000330           |

=# PLUME SAS DAFA #x=>

| RADIUS (FEET) | (FEET)    | VELOCITY (FT/SEC) | SEC) - PRESSURE ATM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ;          |                                               |                                         | - | dental property of |
|---------------|-----------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------------------------------------|-----------------------------------------|---|--------------------|
| STATION & * 4 | 84        | STATION = 225.16  | GENTEALTINE JACK &                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 165•       | N + 104 E E E E E E E E E E E E E E E E E E E | 0+5.                                    |   |                    |
|               | 0.00      | 659               | 7,1988.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            | 533                                           | . +32397                                | , | . 132627           |
| ٠             | 2.00      | 649               | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | 539.                                          | 2                                       |   | .302596            |
|               | 00.4      | 648               | 8391.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            | 538.                                          | 785294.                                 |   | .002505            |
| 1             | 6.01      | -549              | m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | 537.                                          | .6.5.0.                                 | ı | .122363            |
|               | R. 32     | .040              | 7.1628.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            | 536.                                          | 766165.                                 | • | 62142              |
|               | 10.34     | 629               | 183917                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            | 534.                                          | +011810                                 |   | .001974            |
| ,             | 12.16     | 629               | .8331.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            | 532.                                          | • 001911                                |   | .001753            |
|               | 14.09     | 623.              | 7.128.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1          | 530.                                          | -1001412                                |   | .061533            |
|               | 15.13     | 617.              | ₩,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            | 528.                                          | • 05 1225                               |   | .001324            |
| . •           | 18.18     | 613.              | 2.16284                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ,          | 525.                                          | . 4.1.53                                |   | .001137            |
|               | 20.23     | 613.              | 7.1988.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | !          | 523.                                          | .600913                                 |   | .300978            |
|               | 22,28     | 665.              | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | :          |                                               | 0.073                                   |   | . 6666063          |
|               | 24.33     | . 60.3•           | .8394.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |                                               | . 000713                                |   | • 0 0 0 0 5 6      |
|               | 26.33     | 662.              | 5416ER •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            | 518.                                          | 146000.                                 |   | .000675            |
|               | 28.41     | .865              | \$316E8*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            | 528.                                          | . 000411                                |   | •300450            |
|               | 28.59     | -865              | 6 8 3 2 ± 3 1 € 1 € 1 € 1 € 1 € 1 € 1 € 1 € 1 € 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | <br>                                          | . 006330                                |   | . 000330           |
|               |           | 598.              | r,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | :          | 501.                                          | • 000330                                |   | .003330            |
| STATION # =   | 6 1       | STATION : 247.58  | CENTERLINE MADE =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.00       | E06E HACH # 0+0                               | 900                                     | ! | !                  |
|               |           | .855              | • 83215                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            | 501.                                          | . 000330                                |   | .000330            |
|               | 2.63      | 593.              | . 852.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            | 501.                                          | . 00 0330                               |   | .000330            |
|               | 4.13      | .598              | . 81215                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1          | 501.                                          | . 006330                                | : |                    |
|               | 9         | . 893             | . 832.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            | 501.                                          | 0033                                    |   | ~                  |
|               | 4.<br>C12 | 598.              | . 83215                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            | 501.                                          | 022000.                                 |   |                    |
|               | 1.004     | 598.              | . 872115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            | 501.                                          | 1033                                    |   | r >                |
|               | 12-06     | -865              | 4 332 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ;          | 501.                                          | 0653                                    |   | رم<br>در.          |
|               |           | F98.              | - 93245                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            | 501.                                          | . 0 335                                 |   | <b>(^)</b>         |
|               | 9.7       | .865              | . 932:15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | !          | 571.                                          | 333                                     |   | • 44.333           |
|               | 3,1       | 566               | . 83215                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            | 501.                                          | .6.[330                                 |   | 3                  |
|               | 5.0       | 593.              | 93215                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ;<br> <br> | 5:14                                          | ú.33                                    |   |                    |
|               | 22.28     | 593.              | - 83215                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            | 501                                           | 6133                                    |   | . ic. 334          |
|               | •         | . 664             | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | 501.                                          | ا (۱۲<br>د                              |   | •600330            |
|               |           | * 80 G            | (In 1) (I |            | 511.                                          | (7 (M M M M M M M M M M M M M M M M M M |   | 0500000            |
|               |           | 98.00             | , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            | 10.0                                          | ) i                                     |   | .000350            |
|               | œ,        | ** C. C.          | 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            | 501.                                          | .006336                                 |   | * 000.30           |
| •             | ÷.        | 593               | • 932 .5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | !          | 501.                                          | . 63633                                 |   | .000330            |

หมายสมานายสมานายสมานายสมานายสมานายสมานายสมานายสมานายสมานายสมานายสมานายสมานายสมานายสมานายหมายสมานายสมานายสมานาย เมื่อยกายสมานายสมานายสมานายสมานายสมานายสมานายสมานายสมานายสมานายสมานายสมานายสมานายสมานายหมายหมายหมายหมายหมายหมา REFERENCE EXPRESE FOR ENDING TO THE TEXT T esenede es es es es de constant de la constant de l >.1756. > P > 1546. > L > 1335. > IBUTION OF VELOCITY IN EXHAUST PLUME CORE NOZZLE, RADIUŞ = .7556 FEET DISTRIBUTION OF RAD RAD RAD RAG 240 RAD O A A D RAG R # 0 m 4 S ٠. 2

å

|              | SIGNATURE OVER THE SPECTRAL BAND 3.75 TO 4.85 MICRONS AT A RANGE OF SPECT ANGLE OF 0.0 DEGREES IN A NOR. ATMOSPHERE***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.048 KH                                |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| *VEHICLE     | ALTITUDE = 1.52 KM AND OBSERVER ALTITUDE = 1.50 KM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         |
| HAT POIN     | I-SOURCE SIGNATURE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         |
| .0.12 1 0114 | EFFECTIVE BLACK BODY AREA - ABB = 1627.1900 3452                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |
|              | EFFECTIVE BB TEMPERATURE - TAB = 743.0513 DESK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         |
|              | EFFECTIVE BACKGROUND TEMPTRACK= J.30.1 DEGK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |
|              | APPARENT RADIANCE = 84.6718 WATTS/3FERADIAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |
|              | VAICAPETS/STARH 7545.48 = SIATEM DETAURETA<br>VAICAPETS/STARH 9509.001 = VAITAPETS/STARH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         |
|              | METALS = 160.9029 WATTS/STERA)IAN PLUNE GAS SPECIES = .4280 WATTS/STERADIAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |
| •            | BACKGROUND = 0.0000 WATTS/STERADIAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                       |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| ***TOTAL     | SIGNATURE OVER THE SPECTRAL BAND 3.75 TO 4.85 MICRONS AT A RANSE OF SPECT ANGLE OF 0.0 DEGREES IN A NOR. ATMISSMERE***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.048 KH                                |
|              | 12.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |
| *VEHICLE     | ALTITUDE = 1.52 KM AND ORSERVER ALTITUDE = 0.00 KM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         |
| HEE POINT    | T-SOURCE SIGNATURE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         |
|              | EFFECTIVE BLACK BODY AREA - ABB = 1629.1900 CMSQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |
|              | EFFECTIVE 93 TEMPERATURE - 183 = 743.0513 3F64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         |
|              | EFFECTIVE BACKGROUND TEMPTBACK= U.SUJU DESK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |
|              | APPARENT RADIANCE = 79.9132 WAITS/STERADIAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | • • • • • • • • • • • • • • • • • • • • |
|              | ATTENUATED METALS = 79.5761 HATTS/STERADIAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •                                       |
|              | METALS - 160.9029 ENTIS/SYERAJIA (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         |
|              | PLUME GAS SPECIES = .3371 WATTS/STERAJIAN BACKGROUND = 0.0000 WATTS/STERAJIAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         |
|              | D400000 - 00000 A47737312443141                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
|              | the same of the sa | •                                       |
|              | SIGNATURE OVER THE SPECTALL RAND 3.75 TO 4.85 MICRONS AT A RANGE OF SPECT ANGLE OF 0.0 DEGREES IN A NOR. ATMOSPHERE***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 15.240 KM                               |
| • VEHICLE    | ALTITUDE = 1.52 KH AND OBSERVER ALTITUDE = 3.33 KM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         |
| UME POIN     | T-SOURCE SIGNATURE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         |
|              | EFFECTIVE BLACK BODY AREA - ABB = 1629.1941 CMS2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |
|              | EFFECTIVE BB TEMPERATURE - TBR = 743. 513 DEGK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         |
| •            | EFFECTIVE BACKSROUND TEMPTRACK= 0.000 NEGK:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |
|              | APPARENT RADIANCE = 56.5551 HATTS/STERADIAN ATTENDATED MUTAUS = 56.5245 HATTS/STERADIAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         |
|              | - METALS = 160.9029 WATTS/STERADIAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |
|              | PLUME GAS SPECIES = 10000 HATES IN THE PROPERTY OF THE PROPERT |                                         |
|              | BACKGROUNU = 0.0000 MATTS/STERADIAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |

FIGURE B10 GN-1 IR SIGNAUTRE OUTPUT (SAMPLE)

### ASDIR EXHAUST PLUME SPATIAL RADIANCE ASPECT ANGLE 90 DEGREES



- 0 0.20 E -4 WATTS/ST./CM2
- △ 0.50 E -4 WATTS/ST./CM<sup>2</sup>
- + 1:00 E -4 NATTS/ST./CM<sup>2</sup>
- × 0.15 E -3 MATTS/ST./CM<sup>2</sup>
- ◆ 0.20 E -3 NATIS/SI, ZCM²
- ↑ 0.25 E -3 MATTS/ST./CM<sup>2</sup>
- x 0.30 E -3 MATTS/ST./CM2
- z 0.32 E -3 WATTS/ST./CM<sup>2</sup>

FIGURE BIL GN-1 PLUME RADIANCE SPATIAL PLOT

1 . .

```
Stor o tors
NRANG IFILTER RE
                       SENO
                                   XC.
                                              31
                                                       2773
                                  6.7028
                                          5 TAT
              .7555
                       31.1721
       n
  RANGE 1
                                            RANGE 5
            RANGE 2
                       RANGE 3
                                 RANGE 4
             3.045
                       19.240
  - 3.048
            SAC
                           900
                                                       575(41)
                                                                    $16(82)
                                                                                 .3357/765-04
                      .475713 E+00 0.
                                                                  .3.2.4350 -
       .11227245+03
                                                    .36 . 351 . - 3
                                                                                 .39173.1.-94
       .22454485+83
                      .47752985490
                                                                  . 2926519'-73
                                    .24213507+00
       . 2245448F+03
                      .4/39721E+nn
                                                                                 .305.208.-34
                                                   .37.35*11 -33
                                                                  .3975213 03
       .22454488+63
                      .45404435+00
                                                   . 3011174 - 273
                                                                                 .230*121 -34
                                                                                 .21959935-04
       -2445/48F:01
                                    . / - 2 / 15 - + 0 5
       -2024450, +US
                      • • 230 • 03' + 00
                                    .3412762, +80 4.
       -2026456 + 6 T
       -1282768E+03
                     .143516/E+81 U.
                                                  . (*54) ( ): - : (
                                                                    า เกิดสาก - วิ
       -25655365+03
                     .143470LF+11
                     .14307275501
                                    .. 198 16 202 + 22
                                                                                 3:348 4 - 4
       .2565536c+U3
                                                   .3. 78354 + . 5
                                                                  1.5723636-23
       .2565536E+83
                     .1423 (54) + 01
                                    .43241647 + 11
                                                   47.74.15-25
                                                                  .20.7975:-:3
                                    . 7631765+13
                     -1414976 +91
                                                   -13523335-.3
                                                                  *11.584 m - 13
       .2555536F+03
                                    .7700151 + J
                                                   .5339-556-25
                                                                                 .18681 PM-16
                     .14022746+01
                                                                  . 3n 41 24 3: - . 2
       ~2565536F+d3
       .25655365+03
                      .1372535C+U1
                      .2393579F+81 P.
       -1442812(+i) T
                                                   .24323652-03
                                                                  .2338367E-.3
       ·2855625E+03
                      .2392055h+01 .1621
       .28856255+03
                      .23374930+01
                                    . 324
                                              + 10
                                                   .23253355-.3
                                                                  .19358 BE- 3
                                   486
       ·28656257+03
                      .23798555+U1
                                                   .1059Jn5E+13
                                                                  . 4658152E=. +
                      .23592U3F+U1
                                    .6482 J. +63
                                                                  . 55327948-35
                                                                                 .25717111-06
       こう食用ならりなりまして
                                                   .76243218-25
                                                   .327.5436-.5
                                                                  .23542371-05
                      .23555u2F+J1
                                    ...Angg:://E+5g
                                                                                 .1157188L-L7
       .2685625E+93
                     .23347565+01
       .268>625.403
                                   .9711478±+30
                                                   .2194317E-38
                                                                  .16023126-08
                                                                                 -879+461 -14
                                    .1132-285+61 D.
                      .2322030F+81
       -2885625F+d3
                      .3351010F+01 0.
       _1602A56E+03
                     .33493176+01 .1301315 +50
                                                   .20403135-03
                                                                                 .201147458-04
       .3205713-+03
                     . 53442351+01
                                    .36631736+08
                                                   .11545145-23
                                                                  .3514517E-14
                     . 33357756+02
                                    .94131695+.3
                                                   .12771532-14
                                                                  .9395291 -.5
                                                                                 .15:62186-05
                                                                                 .74353321 07
                     .3323931F+31
                                    .7731257E+83
                                                   .71742235-15
        32057132+03
                                                   .93743537-37
                     .33037101+11
                                    .89368021+39
                                                                  . 66079321-37
       -3205/13/+03
                                      1 799171 - 1
                      .32719251+01
       -3205713F+03
                      .43054421 +J1 C.
        .17629016+03
                     .43065ALT+11
                                   .1951974E+3]
                                                   ·17535477-23
                                                                  . 11197 Ph.- 3
                                    •39529481 F63
                                                                                 .337192011-05
       .3525801E+03
                     .43009938+11
                                                   .44979231-54
                                                                  .35489361-34
                     .429168FF+01
                                    .59425725+00
                                                   .54725755-33
                                                                  . 4711579: - 15
                                                                                 - 2001 Stoll - SK
       .3525801F+01
                                    .79202985+33
                                                   .58395542-25
                                                                  .5431742E-35
                      .4278659E+J1
        .3525801E+03
                                                                                 . 31 of to U - 7
                                    . 9895127F+CE
                                                                  .37761136=17
                     .42619188+31
                                                   .5133324: -37
       .3525 RU1E+03
                                                                                 . 195 + about - 18
                     .42414590+11
       .35258012+03
                                    .1195546F+_1
                                                   .14602512-19
                      .420102JE+J1
       .35258010+03
                                                    10 19035-03
                     .5255873E+31 C.
                                                                 .1312365E-03 .11319165-24
       .19229456+03
                                    .2161743 - 1
                                                   .75 (4235- 4
                                                                  .64711645-34
                                                                                 ,6821396L=95
        38458906+63
                     .52538425+11
       .384589UE+J3
                     . 9257749E+J1
                                    .43227221 Fuc
                                                   ·1/1994317-14
                                                                  .93:3791
                                                                                 .1 3 387 -05
                                                   .1/35/31. -. )
                                                                  .2713240
       .384589[E+13
                     -5257596F+ ct
                                                                                 .1964744 -07
                                    • 86333391 FAD
                                                   .517/551.-.5
                                                                  . 19554 141 - . 7
       -38458905*1.3
                      .52333865+11
                     .52151266.401
                                    .13793456411
                                                   -41 - 11 48F -37
                                                                  .3 39945F- /
                                                                                 .1583 4744 - 08
                                    .123437984,1 .19471328+18
                                                                  .1137548F+13
                                                                                 .6325305E-10
       ⊾3845890€+63
                      .51705156+01
                                    -15094350 +J1 9.
                                                                                ٦.
                      .52233v5F+J1 1.
        .2082989F+13
                     .62211255+31 .23413527+63
                                                                  .c1:1399F-24
                                                   .28616926-,4
                                    -45324975 F0B
                                                                                 .3. 21 3617-36
       .4165978 + 03
                      .5214504[+31
                                                   .3250:375-35
                                                                  .67534356-05
                                                   -2514545F-25
                                                                  • 1474) nus = 3
                                    .7021 1781 + . T
                                                   38294227- 5
                                                                  .27773371
                                                                                .17951735-07
                                    .935839cz+63
                      .6188114L+J1
       -4185978E+J3
                                    •1169178L•11
                                                   .3531300E-i/
       .4165978E+C3
                      .6155334E/01
                                                                  . 26434798-57
                                                                                 .1533147-08
                     .5144172[+31
                                    .14.21346+01
                                                   .15971735-28
                                                                  .1245359E- H
       .41659782+U3 .6120010E+,1 .1635031E+01 0.
```

FIGURE BIZ GN-1 PEDME BADIANCE PATEAU DATA

## COPY AVAILABLE TO DDC DOES NOT PERMIT FULLY LEGIBLE PRODUCTION

# COPY AVAILABLE TO DDG DOES NOT PERMIT FULLY LEGIBLE PRODUCTION

|   | •                      |                                       |                       | •              | . ,                   |                                |
|---|------------------------|---------------------------------------|-----------------------|----------------|-----------------------|--------------------------------|
|   | RAR                    | RPO                                   | RDZ                   | 517(31)        | STG(~2)               | 31G(R3)                        |
|   | -1812266E+05           | .2391461E+G2                          |                       | 7726337E-35    | .5696342E-05          | . 3017359E-07                  |
|   | .3624532E+35           | .239,929E+12                          | .56561045+01          | .5421557E-)5   | .5.27512E-05          | 256-3276-87                    |
|   |                        |                                       |                       |                | .3434968E-05          | .1824527E-87                   |
|   | -3624532E+05           | .2389331E+92                          | .1133J37E+21          | .46565238-23   | •                     |                                |
|   | .3624532E+05           | .2386676E+92                          | 16994555+01           | .25384375-28   | ,133A329E-65          | .7863703E-48                   |
|   | .3624532E+u5           | .2382946E+12                          | .2264473E+31          | .1026517F5     | ,7525236E 40?         | .4065525E~06                   |
|   | .3624532E+05           | .237815JE+J2                          | .25293915+.1          | .29961.7E-:7   | .2231926E-07          | .1215357E-95                   |
|   | .3624532E+U5           | .23723132+02                          | .339271CE+61          | .42365725-18   | .3153271E-05          | .179J448E-89                   |
|   | .3624532E+95           | .2366467E+12                          | .395633CE+C1          |                | 3,                    | •                              |
|   | 738813432+65           | .5833979E+62                          |                       | 1228174E-15    | .9157232E-07          | .5243316E-83                   |
|   | .7762687C+u5           | .5832839E+J2                          | .1213531E+61          | .112754655     | .8261457E-47          | .47859645-88                   |
|   | P62587E+15             | .5829418E+02                          | .24265335+01          | .8685355E-:/   | .64257 35E~07         | .37214325-08                   |
|   | •7762687E+u5           | .5423718E+02                          | .3638578£+01          | .56471715-17   | .4154638E-07          | -24253546-98                   |
|   | •7762687E+u5           | .5815742E+02                          | .4849839E+01          | .2935463E-07   | .2192543E-W7          | .12672945-05                   |
|   | •7762687£+u5           | .5845491E+J2                          | .5059# <b>86E</b> +#1 | .1163722E-7    | .88785752-03          | .5211883E-09                   |
|   | <b>~776</b> 2687E+05   | .579297CE+32                          | .72661932+01          | .2327339E-25   | .17643935-#5          | .18534U6E-89                   |
|   | .77626875+u5           | .5780448E+02                          | .8473331E+ú1          | 0.             | 9.                    | 9.                             |
|   | .59534215+05           | .9276497E+J2                          | 3.                    | ,73555385+17   | .5265417E- <b>0</b> 7 | .3132641E-08                   |
|   | .1190684E+L6           | .9274749E+52                          | .186C443E+01          | -5490545E-77   | .4854458E-87          | .289511 <i>8</i> E- <b>0</b> 3 |
|   | -1190084E+06           | .9269595E+32                          | .372J23GE+u1          | .5134491E-07   | .3560501E-07          | .22934195-08                   |
|   | .1193384E+46           | .926:767E+J2                          | .5578702E+01          | .3454313E-07   | .2625545E-87          | .15592475-08                   |
|   | 1193084E+06            | .9248538E+12                          | .7435264E+01          | .1941254E-07   | .1453412E-07          | .8735477E-03                   |
|   | .1190884E+u6           | .9232922E+02                          | .9289J81E+81          | .9435535E-US   | .63255965-03          | .3825373E-89                   |
|   | .119JC 84E+ .6         | .9213626E+32                          | .1113958E+22          | .19493152-08   | .1441282E-05          | .8772369E-18                   |
|   | .11939 84E+06          | .9194430E+.2                          | .1299027E+62          |                | 4.                    | 1.                             |
|   | .8019499E+35           | ·1271901E+03                          |                       | .5454345E-07   | .4127527E-07          | -2478381E-08                   |
|   | .1683900E+46           | .1271666E+.3                          | .2537356E+31          | .5312505E-97   | .3747954E-87          | -2262915E-08                   |
|   | -160395LE+36           | .1270959E+23                          | .5813526E+01          | .3951350E-07   | .2972582E-07          | -1793101E-08                   |
|   | .1683900E+06           | -1269731E+03                          | .75185265+61          | .2729546E-u7   | .20325715-07          | .12334425-98                   |
|   | .16039CLE+C6           | -1258133E+13                          | .1002357E+C2          | .15J2130E-07   | .1185304E-07          | .72177265-09                   |
|   | .1603900E+26           | •1266¢15E+33                          | 1251918E+12           | .7547511E-03   | .55515832-05          | .34020225-09                   |
|   | .1603900E+36           | .1263428E+03                          | .15013165+02          | .1356437E-05   | .13723575-86          | .33919035-10                   |
|   | *1603900E+05           |                                       | . 1750724E+62         |                | *131532180            | 133767032-10                   |
|   | .1008858E+J6           | .16161535+33                          |                       | .4745743E-07   | .35404308-07          | .21554828-08                   |
|   |                        |                                       |                       |                | -                     |                                |
|   | 20177150105            | *1615657E*35                          | .J1942092+01          | 15172725-07    | 26105005-07           | .10917070-00                   |
|   | .2C17715E+35           | -1614969E+13                          | .63J7423E+11          | .35177355-07   | .26105002-07          | .1592568E-08                   |
|   | .2017715E+ú6           | .161346E+.3                           | 94583435421           | .24923335-07   | .1545358E-87          | .1125477E-08                   |
|   | -,2017715E+65          | •1611413E+03                          | .1260594E+v2          | 15427492-07    | .1141326F-07          | -63536225-39                   |
|   | -2017715E+35           | .1638749E+33                          | 15749.75+02           | .75825136-08   | .5681188E-03          | -3475383E-#9                   |
|   | 2017715E+J6            | .1635494E+33                          | .1888564E+U?          | 20853155-03    | .15415848-08          | . 9465113E-10                  |
|   | .2017715E+G5           | .16022392+33                          | .2262421E+02          |                | J                     | 70744575 70                    |
| • | 1215765E+05            | .1963465E+13                          |                       | .4472423E-07   | .3317391E-87          | .20310575-08                   |
|   | .2431531E+06           | .1960C48E+13                          | .3801181E+01          | .4144335E-07   | .30714395-07          | .13803752-78                   |
|   | .2431531E+u5           | .1958976E+J3                          | .7671019E+01          | .33313625-07   | .2503520E-07          | .1532514E-08                   |
|   | .2431531E+.5           | •1957191E+J3                          | •1139817E+02          | .24454335-07   | .1809917E-07          | .1107741E-D3                   |
|   | 2431531E+J6            | -1954693F+33                          | .1519130E+02          | -15522 OE-07   | .1155726E-07          | .70331165-09                   |
|   | .2431531E+u6           | +1951432E+73                          | .18973065+02          | .3401105E-US   | .62123485-08          | .38145065-09                   |
|   | ~2431531E+J6           | *1947550E+03                          | .2276013E+02          | .25354136-85   | .1951351E-08          | .12025155-09                   |
|   | .2431531E+J6           | •1943637E+03                          | .26541195+02          |                | 1.                    | , 0 <b>.</b>                   |
|   | .1422673E+J5           | .2304657E+03                          |                       | .3134235E-07   |                       | .14242825-08                   |
|   | .2845346E+_5           | .23#42395+U3                          | .444B093E+01          | .2943+53E-07   | .21794565-07          | .13374845-98                   |
|   | ~. <b>28453</b> 46E+26 | .2302985E+U3                          | .88946152+U1          | .24583512-87   | .1827148E-07          | .11215962-08                   |
|   | .23453462+66           | .23iJ896E+03                          | .1333500E+U2          | .18712872-07   | .1385911E-u7          | . 85192502-09                  |
|   | ~2845346E+J6           | .2297972E+43                          | .17776672+02          | .13045395-07   | 95585?uE-u3           | .57435592-89                   |
|   | .28453462+55           | .2294215E+03                          | .2220906E+02          | .81583215-05   | .6045727E-08          | .373+440E-09                   |
|   | .2845346E+06           | .2289625E+03                          | .26633615+02          | .29597325-08   | .2183652E- <b>0</b> 5 | *1223724-83                    |
| - | .28453465+36           | .2285036E+03                          | .3105815E+02          | 0.             | ••                    | 1.                             |
|   | <del></del> :          | · · · · · · · · · · · · · · · · · · · |                       | ~~.1503;5PE+01 | .1223324E+01          | .1351353E+08                   |
|   |                        |                                       |                       |                |                       |                                |

FIGURE B12 GN-1 PLUME RADIANCE SPATIAL DATA (cont'd)

n -- -

\*\*\* GN-1 is a single engine (Figure 1) isolated in space with no external surface radiance, ie. engine-internal-hot-parts-with-plume only. \*\*\*

GN-1 Altitude: 5000 FT (1.524 KM) Speed: 599 FT/SEC (0.5 Mach) IR Band: 3.75 to 4.85 μM

| Key  | ОЪ          | server         |
|------|-------------|----------------|
| Sym. | Altitude-FT | Slant Range-FT |
| 0    | 5000        | 10000          |
|      | 0           | 10000          |
| Δ    | 0           | 50000          |



FIGURE B13 GN-1 IR SIGNATURE POLAR

### APPENDIX C

### GENERIC NOZZLE II (GN-2) DEMONSTRATION

A second typical single turbofan engine case has been developed for the purpose of demonstrating the operation of ASDIR-II for a practical configuration. Various alternative 1/O modes are also demonstrated. This second demonstration involves not only the engine internal hot parts and exhaust gas plume emission, but also the IR emission from external surfaces of the entire aircraft. An IR missile from one mile will have a field of view diameter greater than 150 feet which is sufficiently large to encompass even a large aircraft. The demonstrator aircraft is shown in Figure C1 with temperature and emissivity data given in Table C1. The separated flow, axisymmetric engine exhaust nozzle (GN-2) has an external plug as shown in Figure C2. The view factors for GN-2 were obtained as demonstrated for GN-1, and this demonstration begins with the SIGSUB summary of which were already established in a "previous run."

A zero elevation analysis of GN-2 will include, in addition to external radiating surfaces, the IR signature resolved in two IR bands (2.5 to 3. and 4.5 to 5.), from two ranges (6076 feet and 12152 feet), and each range from two observer altitudes. In addition to these points of primary interest, the zero range reference point source will be included as will some aspect angle (0, 10, 50, 60, 90) coverage. Note that the ICHECK control will be exercised in this demonstration. Also note that this entire analysis was performed with a single Input Data Deck in a single computer run.

The Input Data Deck is shown in Figure C3 for the IR signature in which the SIGSUB engine representation has been determined in a preliminary run (not shown). The external radiating surfaces for zero elevation are included in IDS-2 (EAREA, ETEMP, NEXT). Note that the target aircraft is characterized by a single set of values for altitude, Mach number, engine operation, and plume. The aspect angles can be verified in SIB2 of Figure C3, and the ranges and observer altitudes can be verified in Figure C5. Observe the use of ICHECK, in Figure C3, to control the recycling of the programmed sequence. Also note the repeat use of IDS2 in Figures B4 and C3. In Figure C3, the EAREA's correspond to aspect angles shown in SIB2.

The signature output begins as shown in Figure C4. Figure C5 is an improved output format which requires less paper than the old format of Figure B10. Finally, the IR signatures are plotted in two bands, three ranges, and two observer altitudes in Figure C6. In passing, it is to be acknowledged that provisions are not included in ASDIR-II for automatic plotting of the IR signature polar which makes hand plotting of the output a necessary part of data reporting.

### APPENDIX C FIGURES

| FIGURE NO. | CAPTION                                          |
|------------|--------------------------------------------------|
| C1         | GN-2 IN A SINGLE ENGINE GENERIC AIRCRAFT         |
| C2         | GN-2 NOZZLE DTAGRAM                              |
| C3         | GN-2 IR SIGNATURE INPUT DATA DECK                |
| C4         | GN-2 IR SIGNATURE OUTPUT HEADER                  |
| CS         | GN-2 IR SIGNATURE OUTPUI'                        |
| C6         | GN-2 IR SIGNATURE IN TWO BANDS AT ZERO ELEVATION |



FIGURE C1 GN-2 IN A SINGLE ENGINE GENERIC AIRCRAFT

TABLE C1 EXTERNAL EMISSION DATA

| COMPONENT                                            | NO.                | EMISS.                   | темр.<br>°К                  |                                       | AREA* CM <sup>2</sup>                 |                                     |
|------------------------------------------------------|--------------------|--------------------------|------------------------------|---------------------------------------|---------------------------------------|-------------------------------------|
|                                                      | 1                  | €(i)                     | ETEMP(1)                     | ATOP(1)                               | ASIDE(i)                              | AEND(1)                             |
| BASIC A/C<br>AVIO COOLER<br>ENGINE BAY<br>ENG SHROUD | 1<br>2<br>3<br>4** | .60<br>.80<br>.85<br>.90 | 278.<br>306.<br>333.<br>361. | 827767.<br>26942.<br>44745.<br>10363. | 283818.<br>13472.<br>44745.<br>10363. | 122632.<br>1433.<br>17953.<br>3932. |

#### NOTES:

\* ASDIR2 accepts aspect angles measured from the tail. The aspect angle is the resultant of the azimuth (β) and the elevation (α) as measured from the nose. Azimuth is positive toward the starboard wing and the elevation is positive up. The aspect is determined as described in Appendix A. The external radiating areas are prepared for input by the following;

EAREA(i)=(
$$\in$$
(i))\*(ATOP(i)\*]SIN $\propto$ [+ASIDE(1)\*]SIN $\beta$ \*COS $\propto$ [+AEND(i)\*]COS $\beta$ \*COS $\propto$ [)

where ] [ denotes absolute values and azimuth always occurs first, then elevation occur in the azimuthal plane.
\*\* NEXT is given the largest value under NO. i.



FIGURE C2 GN-2 NOZZLE FIAGRAM

\_\_\_\_

```
TDS 1
SIB 1
       05
   2
     2318.34 762.61 0.0
   2
     2185.78
              724.48
     2094.74 69..25 37.0
              667.72
     1267.16
                        60.0
      435.49
                        ១២.ភូ
               649.75
IDS 2
      $3ASE ALT035(1)=3*50 '....ALT2LM=3000.,AMI=2.5,AMT=3.0,
      NRANG=5.
      NEXT=4, ETEMP(1) = 273, ,316, ,333, ,361, ,
      EAREA(1)=73579.,1146.,1536[.,3539.,_
      RANGE(1)=0.,5076.,12152.,6075.,12152.,
      NP=2,XP=12.0,??=7...,
      RPN=11.552, RSN=16.535, PTE=12.0, ANL=24. 3
IDS 5
      SPLUMIN S
IDS 5
      $PONER NORM= , JET=2, FLTM=1.5, TSFCC=0.9, RREC=0.98, FM=6555.,
      EPR=22.636,FPP=23.154,TTPN=1400.,TTSN=605.,WAPAC=87.112,
      FNR T=6566 .. WIS10=215.58.7
IDS 2
      EAGEA(1)=1,2632.,35...,21633.,5115.,
   2
      SCASE
      EAREA(1)=148865.,6381.,32232.,7728.,
      EAREA(1)=184262.,99' 7.,40567,,9847,,
                                      SCASE
      _E49EA(1)=170291.,10773.,38033.,9327.,_______
      TOASE ICHECKELL, AMIETA, C. MEEE
      EACEA(1)=73579.,1145.,1525 .,1579.,
      BCASE
      FAREA(1)=102032..300@..21533..5106..
      EAREA(1)=148865.,6381.,32282.,7728.,
      SCASE
      EAREA(1)=184262.39807.48567.3847.
      EAREA(1)=17_291.,15778.,38733.,9327.,
       SCASE TERME. TRUE. $
```

FIGURE C3 GN-2 IR SIGNATURE INPUT DATA DECK

## COPY AVAILABLE TO DDC DOES NOT PERMIT FULLY LEGIBLE PRODUCTION

|                                                          | PLIJM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ELAMMLYSIS                                            |        |  |
|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|--------|--|
|                                                          | The second secon | over to the first beautiful had also as a compression |        |  |
| * ENGINE DEFI                                            | NITION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                       |        |  |
|                                                          | AXIAL.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RADIAL                                                | (FFET) |  |
|                                                          | -2.0000<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.000n<br>.9527                                       |        |  |
| PLUG DEFINI                                              | TION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ·                                                     |        |  |
|                                                          | VXIVE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RADIAL                                                | (FEET) |  |
|                                                          | <u>1.060</u> n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | • 5833                                                |        |  |
| ** CASE DEFIN                                            | TITION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                       |        |  |
|                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |        |  |
| WAVELENGTH<br>ASP ANGLE                                  | 2.5 g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3                                                     |        |  |
|                                                          | and the second s | <b>9</b>                                              |        |  |
| PLUME DATA T                                             | IS CALCULATED. **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                       |        |  |
|                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | erin i i kale mark inga si i i gale a si              |        |  |
|                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |        |  |
| ·* ELIGHT CONF                                           | JITIONS **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                       |        |  |
| * ELIGHI CON                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |        |  |
| * FLIGHT CONF                                            | IS SAAA. FEET.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CTANDADD NAV                                          |        |  |
| * FLIGHT CONT<br>ALTITUDE<br>WEATHER                     | IS SOON. FEET. IS IDAD MIL STO 211 TH .UUU331 WATER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CONTEST.                                              |        |  |
| * FLIGHT CONT<br>ALTITUDE<br>WEATHER<br>WIT              | IS SOON. FEET. IS IDAD MIL STO 211 TH .000331 WATER VISIBLE CONTRAIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | . CONTENT.<br>ISUNOT EXPECTED                         |        |  |
| * FLIGHT CONF<br>ALTITUDE<br>WEATHER<br>WIT<br>CASE MACE | IS SOON. FEET.  IS ICAO MIL STO 211  TH .000 335 WATER  VISIBLE CONTRAIL  1 NUMBER IS .50 AT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | - MARIENT<br>TSTNOT EXPECTED<br>CONTENT:              |        |  |
| ALTITUDE WEATHER WIT  CASE MACE                          | IS SOON. FEET. IS IDAD MIL STO 211 TH .000331 WATER VISIBLE CONTRAIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CONTENT. IS NOT EXPENTED AMBIENT PSIA.                |        |  |

FIGURE C4 GN-2 IR SIGNATURE OUTPUT I ADER

٠.

. .

| .5833<br>.6213<br>.6592<br>.6971<br>.7351 | VELOCTTY<br>(FIZEC)<br>1651.05<br>1651.06<br>1651.06 | 1400.90            | X 902        | . XH27                                  |
|-------------------------------------------|------------------------------------------------------|--------------------|--------------|-----------------------------------------|
| .6213<br>.6592<br>.6971                   | 1651.76                                              |                    | ,037842      |                                         |
| .6213<br>.6592<br>.6971                   | 1651.76                                              |                    |              | .042011                                 |
| .6971                                     | 1651.76                                              | L4!!U*')U          | . 437942     | . 042011                                |
|                                           |                                                      | 1440.00            | 1137842      | .042011                                 |
| .7351                                     | 1551.16                                              | 1400.00            | . 077842     | .042011                                 |
|                                           | 1651.55                                              | 1400.00            | .037842      | .842011                                 |
| .7730                                     | 1651.05                                              | 1400.00            | . 1137942    | .042011                                 |
| .81~9                                     | 1551.05                                              | 14 1.00            | .037842      | .042011                                 |
| .8489                                     | 1651.56                                              | 141, 110           | 1177442      | 6/142/111                               |
| • 8 ዓ                                     | 1651.06                                              | 1400.00            | · U 7 7 9 42 | .042011                                 |
| .9247                                     | <sup>™</sup> 1551.05                                 | 1400.00            | · 677842     | . 042011                                |
| ,9627                                     | 1551.85                                              | 1.4 11 11 . 11 11  | . () 77842   | •N42#11                                 |
| 1.0006                                    | 1089.01                                              | 5∥7•1̈́3 ¯         | . 00 0330    | .080330                                 |
| 1.5707                                    | 1 00 04                                              | 007.10             | .0000770     | 17 11 17 77 15                          |
| 1.,765                                    | 1. 28.01                                             | 5.7.19             | • Bu 0330    | . 0 0 0 7 3 0                           |
| 1.1144                                    | 1 0 88 01                                            | 5°7•19             | • 0.00330    | • 40 03 30                              |
| AMBIENT CONDIT                            | TONS                                                 |                    |              | _                                       |
| 1.1523                                    | 598.97                                               | 500.84             | • 00 n 33c   | *Ju6435                                 |
| INPUT PARAMETER                           | R3                                                   |                    |              |                                         |
|                                           |                                                      | PEHME AM3          | IENT         |                                         |
| PRESSURE,                                 | מ                                                    | .839               | .832 ATMOS   | · · - · · · · · · · · · · · · · · · · · |
| SPECIFIC HEAT                             | •                                                    | 295 <u>DTT/L3-</u> |              |                                         |
| GAS CONSTANT,                             | •                                                    | 53.472 FT/F        |              |                                         |
| SP. HI. RATIO                             |                                                      | 11.31/1            |              |                                         |
| MACH NUMBER                               |                                                      | 1.000              |              |                                         |
| SEDONDARY PRIM<br>= DPOX =                |                                                      | 856 ALMOS          |              |                                         |

FIGURE C4 GN-2 IR SIGNATURE OUTPUT HEADER (cont'd)

## COPY AVAILABLE TO DDC DOES NOT PERMIT FULLY LEGIBLE PRODUCTION

# COPY AVAILABLE TO DDG DOES NOT PERMIT FULLY LEGIBLE PRODUCTION

```
* POINT SOURCE IR INTENSITY ***
 SPECTRAL PAND - 2.50 TO 3.00 MICRONS
VEHICLE ALTITUDE - 1.52 KM OR 5.00 KET
                   - C.C DEGREES IN A NOR. ATMOSPHERE.
 ASPECT ANGLE
EFFECTIVE BLACK 200Y ARTA - AP3 = 2318.3400 2452
  EFFECTIVE BR TEMPSPATURE - TBR = 732.5100 DESK
 EFFECTIVE RACKSROUND TOMP - TRACK =
                                           0.0000 DESK
SLT RNG (KM/NM)
                             0..
                                                     2.
                       0.7
                                   2.1
                                        1.
                                              4,/
                                                          ? . / . 1 .
  OR ALT (KM/KFT)
                                   2./
                                              2.1
                       3.01 6
                                                                      ้ก.เมือก
  BCKGRND (W/STR)
                                              [.0300
                                                          9.0000
                                   0.0000
  METALS (W/STR)
                                                                     91.41.74
                      91.11 4
                                  91.4136
                                             91.41.74
                                                         31.4174
                      46.7589
  ATT MET (W/STR)
                                  2...0991
                                             15.8347
                                                         15.6797
                                                                     17.4432
  PLM GAS (W/STR)
                       , 9397
                                  . . JR12
                                               • 7455
                                                          0.531
                                                                       · C232
  EXT EMS (W/STR)
                        .195.
                                   6/14
                                                           .7540
                                                . 3515
                                                                       . (411)
  APP_RAD_ (W/STR)
                      47,7936 ...
                                  20, 24, 7
                                             15.9229
                                                         13.7454
                                                                     12,5125
A BULAL CONSCE TO INTENSITA AAA
  SPECTRAL RAND
                   - 2.50 TO 3.10 MICRONS
  VEHICLE ALTITUDE - 1.52 KM OR 5.40 KET
  ASPECT ANGLE
                  - 10.0 DEGREES IN A TOR. ATMOSPHIRE.
  EFFECTIVE BLACK BODY AREA - ARR = 2185.7800 GMSD EFFECTIVE BR TEMPERATURE - TBB = 724.4800 DEGK
 EFFECTIVE BACKGROUND THMS - TRACK = _____ n. nann_ DESK_
  SLT RNG (KM/VY)
                                   2./ 1.
                       11./ U.
                                              4./
  08 ALT (KM/KFT)
                                                          J.0000
  RCKGRND (W/STR)
                       0.0000
                                   9.0909
                                               0.0000
                                                                      0.000
  METALS (W/STP)
                      50.106n
                                  511.11150
                                             60.1050
                                                         5...1 5.
                                                                     5 .1 5
                                             11. 0125
                                                         11.3979
  ATT MET (W/STR)
                      44.7565
                                  13.8591
                                                                      A. 4643
  PLM GAS (MISTE)
                                   n 827
                                                          _____7575
                       1.7967
                                               45.455
                                                                       . r 2 a4
  EXT FMS (W/STR)
                                               .0739
                                                           • .. 775
                                                                      • 59°
                       .2812
                                   . 11725
  APP RAD (WISTR)
                                  14. 642
                                             11.9331
                                                         11.5289
                                                                      8.5517
                      46,9344
```

FIGURE C5 GN-2 IR SIGNATURE OUTPUT

```
. The state of th
```

```
* POINT SOURCE IN INTENSITY ***
  SPECTRAL PAND
                    - 2.50 70 3.40 4702045
 VEHICLE ALTITUDE - 1.52 KM OF C.25 KET
ASPECT ANGLE - 30.0 OFFRIER IN A HOR. ATHOSPHERE.
 EFFECTIVE BRITEMPERATURE - TRR = 58.25.79.0 CHSO
  EFFECTIVE BACKGROUND TIME - TRACK = . . . (.C.) 0 DESK . . ....
  SET PNG (KM/YM)
                                    2.7
                                          1.
                                                11 01
                                                            ?./
                        1.1.
                       2./
  OR ALT (KM/KFT)
                              5.
  BCKGRND (W/STR)
                       5.0615
                                   F . 7 . 7 . 7
                                               ំ ព្រក្ស
                                                            Ս. ԱՊՈՎ
                                                                       8.0904
  METALS (M/STR) 35.2775
ATT MET (W/STR) 32.3433
                                   35.0775
                                               36.0775
                                                                       35.0775
                                                          .35.0775
                                    8.5815
                                                5.6829
                                                            7.11491
                                    .1178
                                                                        • 04 n3
PLM_GAS (M/STR)____ 5.8365 .__
                                                          • 955B .....
                   • 4237
                                    • 1333
  EXT EMS (M/STR)
                                                 .1113
                                                        . 1159
                                                                         • 48 B B
 APP RAD (W/STR)
                                    9.0397
```

### \* POINT SOURCE TO THICHSITY \*\*\*

```
- 2.50 TO 3.00 MICROMS
     SPECTRAL RANGE
    ACHIVED VELLIABLE - 1°48 KA OJ - 3°00 KEL
                                                                          - 60.0 DEGREES TH A MOR. ATMOSPHERE.
     ASPECT AMOLE
    EFFECTIVE REACK RODY AREA + AREA + AREA = 1.257.1600 RMS2 EFFECTIVE RESTERVATORS + TRANSPORT TRANSPORT OF TRANSPORT
CHECOTIVE GACKGROUND TOMP - TRACK = 1.0000 DEGK
                                                                                           1: . Z
     SET PNG (KM/NY)
                                                                                                                     5.
                                                                                                                                           2,7
                                                                                                                                                                    1.
                                                                                                                                                                                                                                           2./
                                                                                                                                                                                                                                                                                         4.1
                                                                                                                                          2.1
     OR ALT (KM/KET)
     BOKERNO (MYSTR)
                                                                                                                                         u. 2015
                                                                                                                                                                                                                                          1.2000
                                                                                         \Gamma_{i} , \Gamma_{i} ( \Gamma_{i}
                                                                                                                                                                                      0.000
                                                                                                                                                                                                                                                                                         0.000
                                                                                                                                                                                      17.5877
                                                                                                                                        17, 1993
     METALS (N/STR)
                                                                                   17,6973
                                                                                                                                                                                                                                      17.5533
                                                                                                                                                                                                                                                                                      17.5393
                                                                                                                                                                                                                                          7,4897
     ATT MET (W/STR)
                                                                                                                                           4.2691
                                                                                                                                                                                      3.7.81
                                                                                        15.5157
                                                                                                                                                                                                                                                                                          2.5497
     PLM GAS (W/STR) ..
                                                                                                                                          1144
                                                                                                                                                                                            . 1585
                                                                                                                                                                                                                                           .0577
                                                                                                                                                                                                                                                                                            • 4353
                                                                                            6.5543
     EXT FMS (W/STR)
                                                                                           . 5379
                                                                                                                                             . 1768
                                                                                                                                                                                               .1413
                                                                                                                                                                                                                                             .1493
                                                                                                                                                                                                                                                                                             .1129
     APP_RAD_(W/STR) = 27.8184 ____4.5733 ...
                                                                                                                                                                                           7.5080
                                                                                                                                                                                                                                           3.7043
                                                                                                                                                                                                                                                                                           2.7384
```

### COPY AVAILABLE TO DDC DOES NOT PERMIT FULLY LEGIBLE PRODUCTION

FIGURE C5 GN-2 IR SIGNATURE OUTPUT (cont'd)

### Francia Wily LEGIBLE PRODUCTION

### \* POINT SOUPCE IS INTENSITY \*\*\*

```
SPECTRAL BAND - 2.50 TO 3.J MICRONS
VEHICLE ALTITUD" - 1.52 KM OR 5.1 KFT
ASPECT AMGLE - 8.1 DEGRES IN A 408. ATMOSPHERE.
EFFECTIVE PLACK RODY AREA - 193 = 479.4900 DMRR
EFFECTIVE BRITEMPERATURE - 183 = 549.7500 DESK
11. / 11. 2. / 1. 4. / 2. 2. / 1. 4. / 2. 2. / 1. 4. / 2. 2. / 5. 2. / 5. 1. / 11. 11. 11. 11.
SET RNG (KMZMM)
OB ALT (KM/KET)
                      0.8000
                                             0.000
RCKGRND (W/STR)
                                                                       . 1 7
                                 0.000
                                                          0.00
                                              7,8263 7,8253
.7232 .7527
METALS (M/STR)
                      3.4263
                                 3.0263
ATT MET (W/STR)
                                  • 3580
                      3.51111
                      6.9550
                                               • 555
                                                           <u>• ^ 6 2</u> 7
PLM GAS (W/STR)
                                   .1009
                     5 (1911
                                               .1334
                                  .157u
EXT EMS (W/STR)
                                                           ·1430
                                                                       .1665
APP RAD (W/STR)
                     1, . 975
                                  1.1957
                                                          . 9377
                                                                        .7-77
                                               . 9131
```

FIGURE C5 GN-2 IR SIGNATURE OUTPUT (c.nt'd)

### \*\* POINT SOURCE IR INICHSTIV \*\*\*

```
SPECTRAL BAND - 4.5" TO S. 40 MICHAN
                   1.50 KM OF BAND KET
VEHIOLE ALTITUDE -
ASPECT ANGLE - 0.0 OCUPET CIN A 100. ATHERMISE.
FEFFECTIVE BLACK BORY AMEN - ARB = 8310, 3600 MAD FFFECTIVE BO TEMPERATURE - TOX - 750,5400 MEX
EFFECTIVE GACKGROUND TEMP - 1316K = 0.0000 Disk
SET PNG (KM/MM)
                    0.7
                               2.1
                                    1.
                                          4.1
                                                ?.
                                                     2./
                                                          1,
OR ALT (KM/KET)
                    2./ 5.
                                2./
                                         2./ 5.
                                    5.
                                                     0.7
BCKGPMT (W/STR)
                    100
                                1.0
                                                                 0.0000
                  109.4279 119.4279
130.7675 70.8832
                                                    1 19.4279
METALS (W/STR)
                                         1.9.4279
                                                               103,4273
ATT MET (W/STR)
                                          59.3753
                                                     51.4107
                                                                 * 300° d
                                . 5525
                                           .3594
PLM GAS (W/STR)
                    2.1917
                                                       4750
                                                      3.7743
EXT EMS (M/STR)
                    9.6A71
                              ち 455年
                                           5 4 345
                                                                 4.6407
APP RAD (W/STR)
                  112.5753
                               77.9999
                                          65.5544
                                                     70.0500
                                                                 55.4340
```

#### \*\* POINT SOURCE IR INTERSTITY \*\*\*

```
SPECTRAL BAND - 4.5 TO 5.1 MICROUS
<u>VEHICLE ALTITUDE - 1.52 km 00 5.7 VET</u>

ASPECT ANGLE - 11.5 DEG 5 TH 5 402, 1140324727.
EFFECTIVE BLACK GODY APEA - ARE - 2183, 21 AR 0490
EFFECTIVE OF THMOHOLOGY - TORE 704.4899 DUGK
EFFECTIVE BACKGROUND TOMP - TBACK - 0.0040 )TSK
មែ.ស្រាម
BOKGRND (W/STR)
                                 0.9000
                                             0 • 0000.
                                                         वर <sub>गाउ</sub>द्
                                BF. First
                                                        97, 25, 46,
                                                                     07,7665
METALS (W/STP)
                     93.3665
                                 54.5123
ATT MET (WISTR)
                     80.1921
                                             45.0125
                                                         पुत्रकृषाच्याः
                                                                     79,4769
                                  • < 1 ? 0
                                            7.7542
                    2.4937
13.8483
                                                          ું 15 રાવ વ
                                                                      776
PLM GAS (W/STR)
                              ----\frac{q_{\bullet}^{\bullet}\cdot \sqrt{-\rho_{i}\cdot \gamma_{i}}}{2}
(XT EMS (W/STR)
                                                         3,2,00
                                                                     Section.
APP RAU (W/STR)
                    95.54111
                                54.3521
                                             54. 775
                                                         57 7225
                                                                     44.44
```

FIGURE C5 GR-2 IR SIGNATURE OFFICE (contid)

### COPY AVAILABLE TO DDC DOES NOT PERMIT FULLY LEGIBLE PRODUCTION

### COPY AVAILABLE TO DDC DOES NOT PERMIT FULLY LEGILLE PRODUCTION

```
* BOINT BONSOE IS INTERESTANTAMENT
 SPECTRAL MAMM - 4.50 TO 5.30 MICHOUS
VEHICLS ALTITUDE - 1.52 KM 09 5.00 KFT
 ASPECT ANGLE - 30.0 DEGREES THIA MOR. ATMOSPHERE.
FFEECTIVE BLACK CODY AREA - ARR - 2194, 7410 CMSD
 EFFECTIVE OF TEMPERATURE - TOR = 69..2611 DESK
 OR ALT (KM/KFT) 2.7 5. 2.7 5.
                                    2./ 5. 1./
                                                   0.
 BOKSRNO (WZSTR) 6.7566 F.JEBO
                                    0.0000 0.0000
                                                        0.0000
 METALS (MZSTR) 6.,6224 50.6224 50.6224 50.5224 50.5274
 ATT MET (W/STR) 59,2431 39,7945 37,4917
                                              35.7475
                                                        28.7819
 PLM.GAS. (M/STR) 4.1850 1.0072 5485
                                               ___.8370 _ _ . . . . 5483 .
 EXT EMS (W/STR) 20.7920 13.8499 11.5525 12.3305 2.9595
APP RAD (W/STR) 84.2201 54.5515 45.7928 43.0251 39.2997
                                              12.3305
* POINT SOURCE IS INTENSITY ***
 SPECTRAL RAND - 4.50 TO 5.00 MTCRONS
VEHICLE ALTITUDE - 1.52 KM OR 5.00 KFI -
 ASPECT ANGLE - 60.8 DEGREES IN A NOR. ATMOSPHERE.
 EFFECTIVE 2LACK HDDY AREA - 103 = 1257.1600 0491
EFFECTIVE 88 TEMPERATURE - T88 = 657.72(P DESK
 EFFECTIVE BACKGROUND TEMP - TBACK = 0.0(46 DESK
 SLT RNS (KM/NM) ____./ [... 2./ 1. 4./ 2. 2./ 1. 4./ 2.
                                    2./ 5.
                            2./ 5.
 OB ALT (KM/KFT)
                   2.1
                      5.
                                                2.7 3.
                                                        1./ n.
 BOKGRND (HZSTR)
                  Bastlett.
                            ն. որյո
                                     ն "ցոյդ
                                               0 • 00 00
                                                         0.0000
 METALS (W/STR) 31.5374 31.5374 31.5734 31.5734 ATT MET (W/STR) 31.1575 20.8157 17.4991 19.6070
                                                         31.5774
                                                         15.0372
 PLM GAS (W/STR) . 4.1.903, ... ... 9570 ...
                                     •5181 ...
                  26.725 . 17.5764
 EXT FMS (W/STR) .
                                     14.7558
                                               15.5338
                                                         12.5114
APP RAD (NXSTR) 51.5737 39.3097 32.3570 35.2301 28.1567
```

FIGURE C5 GN-2 IR SIGNATURE OUTPUT ( ont'd)

| * POINT SOURCE IR IN | ITENSITY *** |                  |              | <u></u>        |             |
|----------------------|--------------|------------------|--------------|----------------|-------------|
| SPECIPAL RAND -      | 4.50 TO 5.   | אוראסאוג אור אוע |              | 4.             | <del></del> |
| VEHTOLE ALITTUDE -   |              |                  | CT.          |                |             |
| ASPECT ANGLE -       | าก.ก กกร     | CES THE A YO     | THOSONIA . C | २ ८ .          |             |
| EFFECTIVE BLACK PA   | DY AREA -    | AP3 = 435        | .4900 CM37   |                |             |
| EFFECTIVE 38 TOMPS   | RATURE -     | TB3 = 547        | 1.75 7 3554  |                |             |
| EFFECTIVE BACKGROU   | IND TOMO - I | BACK = C         | • CON 056K   |                |             |
|                      |              |                  |              |                |             |
| SLT RNG (KM/NM)      |              | 2./ 1.           | 4./ 2.       | 2./ 1.         | 4./ ?.      |
| OB VEL (KANKEL)      | 2./ 5.       | 2./ 5.           | 2./ 5.       | 3./ 3.         | . / 0.      |
| BCKGRND (WYSTR)      | d. habb      | - 0. 889c        | ี คุกกักก    | ែម៊ុ∗ ម៉ោកក    | ្ត ព្រះ្ធ   |
| METALS (W/STO)       | 7.4574       | 7.4534           | 7 . 4534     | 7.4534         | 7.4534      |
| ATT MET (W/STR)      | 7. 3647      | 4.92112          | 4.1355       | 4.4130         | 7,5542      |
| PLM GAS (W/STR)      | 4. n 279     | . 9295           | .5931        | • <b>91</b> 99 | · 5014      |
| FXT EMS (W/STR)      | 24.8061      | 16.523B          | 13.3027      | 14.79311       | 11.8327     |
| APP RAT (W/ST?)      | 36.1985      | 22.3734          | 18.6325      | 20.0208        | 15.9385     |

## COPY AVAILABLE TO DDG DOES NOT PERMIT FULLY LEGIBLE PRODUCTION

FIGURE C5 GN-2 IR SIGNATURE OUTPUT (cont'd)



FIGURE C6 GN-2 IR SIGNATURE IN TWO  $\omega_{\rm c}$  DS AT ZERO ELEVATION

### APPENDIX D

#### GENERIC NOZZLE III (GN-3) DEMONSTRATION

The final typical turbofan engine case represents a twin engine aircraft shown in Figure Dl. The engines are mounted together in the tail and have a partially mixed flow axisymmetric exhaust nozzle with no external plug. The plume interaction which may occur in the real exhaust nozzle with plumes has not been treated in ASDIR so, therefore must be neglected.

This case will demonstrate output superposition required for the IR analysis of multi-engine aircraft and engine shielding by aircraft parts. The second entry feature affected by SIGSUB will again be demonstrated as it was in Appendix C. The signature will be developed by first analyzing one engine by itself and then adding the external emitting surfaces of the aircraft to the Input Data Deck for the analysis of the second engine. The two outputs will be added to form the final IR signature. Figure D2 shows those aspects angles for which low temperature external parts block to some degree the view of the higher temperature radiating parts. The exhaust nozzle diagram is shown in Figure D3. The several input data decks, output samples, and a final IR signature plot in the plane of symmetry (zero azimuth) are also shown.

The IR Hot Part Summary Input Data Deck for the GN-3 demonstration is shown in Figure D4. The preliminary analysis to acquire the view factors was conducted but is not shown. Figure D5 shows the SIGSUB input format to represent the results obtained from the input of Figure 14. The output list of the input is omitted in these figures. Note in Fig. r. D5 that the external radiating areas of the aircraft are fully does bed by input data (ETEMP, EAREA) but their analysis is excluded by input, NEXT=0. The IR signature input data deck for one engine plus alrilame is shown in Figure D6 wherein the NEXT = 4 input on the t IDS2 card is not rescinded by NEXT = 0 on the second IDS2 card. er data of Figure D6 is identical to the engine only data in Wig to D5. A sample of the engine only IR signature is shown in Figure D7 and engine plus airframe IR signature data is shown in Figure D8. The composite zero azimuth IR signature (sum of Figures D7 and D8) is shown in Figure D9. Since the tail shielding occurs only in the look-down scenerio, the observer altitude is above the target. In this case, a non-zero earth background is required for which a 290°K (62°F) blackbody has been assumed to be appropriate as indicated by texts on backgrounds.

### APPENDIX D FIGURES

| FIGURE NO. | CAPTION                                                         |
|------------|-----------------------------------------------------------------|
| D1         | GN-3 IN A TWIN ENGINE GENERIC AIRCRAFT                          |
| D2         | EMISSION SHIELDING BY PARTS OF A GENERIC TWIN ENGINE AIRCRAFT   |
| D3         | GN-3 NOZZLE DIAGRAM                                             |
| D4         | GN-3 HOT PARTS SUMMARY INPUT DATA DECK                          |
| D5         | GN-3 IR SIGNATURE ENGINE ONLY INPUT DATA DECK                   |
| D6         | GN-3 IR SIGNATURE INPUT DATA DECK FOR ONE FINGINE PLUS AIRFRAME |
| D7         | GN-3 ENGINE ONLY IR SIGNATURE (SAMPLE)                          |
| D8         | GN-3 ENGINE PLUS AIRFRAME IR SIGNATURE (SAMPLE)                 |
| D9         | GN-3 COMPOSITE AIRCRAFT IR SIGNATURE (ZERO AZIMUTH)             |



FIGURE D1 GN-3 IN A TWIN ENGINE GENERIC ATRCRAFT

TABLE D1 EXTERNAL EMISSION DATA

| COMPONENT                                            | NO.              | EMISS.            | ТЕМР.<br>°К                  |                                       | AREA*<br>CM <sup>2</sup>             |                                      |
|------------------------------------------------------|------------------|-------------------|------------------------------|---------------------------------------|--------------------------------------|--------------------------------------|
|                                                      | i                | (i)               | ETEMP(1)                     | ATOP(i)**                             | ASIDE(1)                             | AEND(i)                              |
| BASIC A/C<br>AVIO COOLER<br>ENGINE BAY<br>ENG SHROUD | 1<br>2<br>3<br>4 | .60<br>.80<br>.85 | 278.<br>306.<br>333.<br>361. | 885273.<br>20067.<br>67076.<br>21832. | 299111.<br>9104.<br>49183.<br>13843. | 160304.<br>5261.<br>19045.<br>18711. |

#### NOTES:

- See Table C1 for the resolution of EAREA(i).
- \*\* The areas of radiating surfaces must be proportionately reduced to adjust for shielding by tail surfaces, wing tips, and other similar obstructions. For example, ATOP(i) must be considered as zero for elevations from below.



FIGURE D2 EMISSION SHIELDING BY PARTS OF A GENERIC TWIN ENGINE AJRCRAFT



FIGURE D3 GN-3 NOZZLE DIAGRAM

| DS1             | 01                                      |        |                     | <del></del>                             | <del></del>      | <del></del>  |                 |              |                                         |
|-----------------|-----------------------------------------|--------|---------------------|-----------------------------------------|------------------|--------------|-----------------|--------------|-----------------------------------------|
| B 1             | THI                                     | . TC T |                     |                                         | R II SAMP        |              | וד פקד          |              |                                         |
|                 | 4 / · · · · · · · · · · · · · · · · · · | SENERI |                     | LE III                                  |                  |              |                 | ->>          |                                         |
|                 |                                         |        | < <                 | ****                                    | ***              | ¥=>>         |                 |              | •                                       |
|                 |                                         |        | _                   |                                         | *                |              |                 |              |                                         |
| 2               | 0304140                                 | in t   | <del> </del>        |                                         |                  |              |                 |              |                                         |
| 4               | h.a                                     | 5.0    | 2                   | • 0                                     | 6 • <b>0</b>     | +1.          |                 | J171         |                                         |
| <sup>-</sup>    | 2:0                                     | 6.0    |                     | • C                                     | 3.7              | +1.          |                 | 0271         |                                         |
|                 | <b>7.</b> 3                             | 3.7    | 1                   | 2                                       | 0.3              | +1.          |                 | 1771         |                                         |
|                 | p.0                                     | 12.0   |                     | •0                                      | 12.0             | -1.          |                 | 0402         |                                         |
|                 | 2.0                                     | 12.0   |                     | • 0                                     | 11.7             | -1.          |                 | 0502         |                                         |
|                 | V.0<br>D.0                              | 11.7   |                     | 2.0                                     | 11.1<br>12.2     | -1.          |                 | 0602         |                                         |
|                 | 2.0                                     | 12.2   |                     | •00<br>•00                              | - 11.9 -         | +1.6         |                 | በፖባኛ<br>ጋጸጎ3 |                                         |
|                 | 5.0                                     | 11.9   |                     | 2.0                                     | 11.3             | +1.          |                 | 0913         |                                         |
|                 | 0.0                                     | 18.0   |                     |                                         | 18.6             | -1.(         |                 | 1004         |                                         |
|                 | 2.0                                     | 18.2   | 7                   | .00                                     | 17.7             | 1.0          |                 | 1114         |                                         |
|                 | 7.0                                     | 17.7   |                     | 2.0                                     | 17.1             | -1.          |                 | 1214         |                                         |
|                 | 12.0                                    | 17.1   |                     | 8.0                                     | 16.1             | -1.0         |                 | 1374         |                                         |
|                 | 18.0                                    | 16.1   |                     | 4.0<br>4.0                              | 15.0             | -1.6<br>+1.0 |                 | 1404<br>3131 |                                         |
| 5               | j. )                                    | 12.2   |                     | •0                                      | 18.              | -1.1         |                 | `50ù.''      | 15                                      |
| •               | 0.0                                     | 6.0    | _                   | •0                                      | 12.0             | ~1.1         |                 | 1400.        | 15                                      |
|                 | 24.0                                    | 8.4    |                     | 4.0                                     | 15.0             | +1.          |                 | 190.         | 17                                      |
|                 | 24.0                                    | U • O  |                     | 4 • D                                   | 8 • 40           | +1.(         | •<br>•          | 190.         | 1 ª .                                   |
| -               | 24.0                                    |        |                     |                                         |                  |              |                 |              |                                         |
| _7              | 0001                                    | n      | ์<br>บับกกก         |                                         | un               | 528          |                 |              |                                         |
| 1 (             | 0.0000                                  |        | 9 u A u S           | ព•ហល្ប                                  |                  |              | .27344<br>८৪৭৭٨ | .31 (3)      |                                         |
|                 | .0135                                   |        | 30047               |                                         | <u> </u>         | <u> </u>     |                 |              |                                         |
| 11              |                                         |        |                     |                                         | _                |              |                 |              | _                                       |
| 10              | 0.0000                                  |        | កព្យប្              | .084                                    | 01 .35           | 0.20         | .27545          | ים נונט. ח   | 1 0. <b>00</b> 001                      |
|                 | 0.0000                                  |        | 0 0 0 <u>0</u> 0    | 0.000                                   | u a 🦳 📅 • n s    | 120          | .08527          | U.nanu(      | 1                                       |
|                 | .0339                                   |        |                     |                                         |                  |              |                 |              |                                         |
| $\frac{11}{10}$ |                                         |        | 01173               | .115                                    | 27 29            | 361          |                 | ი, მენმე     |                                         |
| 1.0             | 0.0000                                  |        | 011/3               | .148                                    |                  |              | 7.000C)         |              |                                         |
| 11              |                                         |        |                     |                                         |                  | ,            |                 |              | • • • • • • • • • • • • • • • • • • • • |
| 10              | .0522                                   | 9.     | 10798               | .075                                    | 45 '•0'          | (0.0         | ը. սցրոց        | 0.0100       | n g.ngan                                |
|                 | 0.0000                                  |        | 01571               | . () 44                                 | 16 0.00          | nno          | . 42691         | .04871       | 1 . 1372                                |
| _11             |                                         |        |                     |                                         |                  |              |                 |              |                                         |
| 10              |                                         |        | 11408               | 0.000                                   |                  |              | 56 60 g . ∪     |              |                                         |
| 11              | .0401<br>372.9482                       |        | u <u>6733</u>       | 0 • 6 0 g                               | წ( •∠¤           | 114          | 5453            | . 1455       |                                         |
| 1(              |                                         |        | ousen               | 0.000                                   | 00 0.00          | nun i        | ը, որոսո        | 0. ស។ប្រ     | i u.nniigi                              |
| . †_}           | .1011                                   |        | 00000               | .136                                    |                  | 606          | .0573?          |              |                                         |
| _11             | 360.7109                                | 6      |                     |                                         |                  |              |                 |              |                                         |
| 1(              |                                         |        | 00700               | 0.000                                   |                  | 397          | .30108          | .7813        | • : ? . 9                               |
|                 | .4072                                   |        | ស <b>១</b> សេសស្គ្រ |                                         | 94 P.O(          | 000          |                 |              |                                         |
| 7 ]             |                                         |        | 00060               |                                         | 0.7              |              | 97654           | 0.000        | n 0407                                  |
| _10             | 2030<br>0.0000                          |        | 00001<br>00394      | .112<br>0.000                           |                  | 489          | .23655          | 11558        | .01237                                  |
| 13              | t                                       |        | 00034               | u • u u u                               | u ()             |              |                 |              |                                         |
|                 |                                         |        | 02796               | .188                                    | 76 15            | 528          | .27282          | . 3514       | 3 .[387]                                |
| $^{-}10$        | /ı ~•∪\\\\\\                            |        | 02/70               | * * * * * * * * * * * * * * * * * * * * | <b>(</b> ♥ • 4 L | 760          | • 6 1 6 0 6     | + 1 J L + 1  | J • L J '' 1 .                          |

FIGURE D4 GN-3 HOT PARTS SUMMARY INPUT DATA DECK

| 11              | 367.03923            | •                     |                                         |                   |                 |                  |               |
|-----------------|----------------------|-----------------------|-----------------------------------------|-------------------|-----------------|------------------|---------------|
| 10              | .02777               |                       | . 6407                                  | 1 .4705           | 1 .01697        | . 42323          | 0.000         |
| -7              | .01009               |                       |                                         | _ •••             |                 | 0.2043           |               |
| 11              | 226.19467            |                       |                                         |                   |                 |                  |               |
| 10              | .0548                |                       | 0398                                    | .1231             | 7 .24924        | r. 7790.         | . 439         |
| 11              | 561 - 78278          |                       |                                         |                   |                 | 62770            |               |
| $\frac{10}{11}$ | •06699<br>550•55884  |                       | 3 • • • • • • • • • • • • • • • • • • • | 2 .1240           | <u>4 0.0000</u> | . 03779          | . 0553        |
| 10              | .16234               |                       | .0692                                   | 2 .0032           | 7 .13/163       | .07500           |               |
| 11              | 634.43746            |                       |                                         |                   |                 |                  |               |
| 10              | .17164               |                       | . 1271                                  | .8 .2584          | 6 . 05587       | ,                |               |
| 11              | 595.99154            |                       |                                         |                   |                 |                  |               |
| 10              | 0.00000              |                       | .(1692                                  | 9 .0051           | 1               | <del>-</del>     |               |
| 11<br>10        | 55J.28137<br>0.00000 |                       | 0 .0794                                 | . <b>.</b>        |                 |                  |               |
| -11             | 339.29201            |                       |                                         |                   |                 |                  |               |
| īd              | 0.0000               |                       | 3                                       |                   |                 |                  |               |
| -11             | 485 - 18757          |                       |                                         |                   |                 |                  |               |
| 10              | 0.0000               |                       |                                         |                   |                 |                  | ,             |
| 11              | 221.6707F<br>0104    | 5                     |                                         |                   |                 |                  |               |
| $\frac{14}{15}$ | 0104                 |                       |                                         |                   |                 |                  |               |
| 14              | 0203                 |                       |                                         |                   |                 | ı                |               |
| 15              | 040506               |                       |                                         |                   |                 |                  |               |
| _ 14            | 0303                 |                       |                                         | ·                 |                 |                  |               |
| 15              | 070809               |                       |                                         |                   |                 |                  |               |
| 14              | 0405                 | 74 /                  |                                         |                   |                 |                  |               |
| 15              | 10111213<br>0101     | 0.0                   | 12.0                                    |                   |                 |                  |               |
| 16<br>18        |                      | U • 11                | 12.0                                    |                   |                 |                  |               |
| 19              | 1901                 | 1.0                   |                                         |                   |                 |                  |               |
|                 | 2001                 | 4.5                   |                                         |                   |                 |                  |               |
|                 | 2101                 | 9.5                   |                                         |                   |                 |                  |               |
| 20              | 0201                 | .001                  | 1.3                                     |                   |                 |                  |               |
| 16              | 0101<br>02           | .00 <u>1</u><br>0.0   | 12.0                                    |                   |                 |                  |               |
| 18              | 03                   | 0.0                   | 1200                                    |                   |                 |                  |               |
| 19              | 24                   | 1.0                   |                                         |                   |                 |                  |               |
|                 | 25                   | 4.5                   |                                         |                   |                 |                  |               |
|                 | 26                   | 9.5                   |                                         |                   |                 |                  |               |
| 20              | 04                   | 0.001                 | 1.3                                     |                   |                 |                  |               |
| 16              | 03<br>030201         | .001<br>12.0          | 1.3<br>24.0                             |                   |                 |                  |               |
|                 | 706.86               | 12.0                  | 2.400                                   |                   |                 |                  |               |
| 18              | 04                   |                       |                                         |                   |                 |                  |               |
| 19              | 2201                 | 15.0                  |                                         |                   | •               |                  |               |
|                 | 2301                 | 21.0                  |                                         |                   |                 |                  |               |
| . !             | 2701                 | 15.0                  |                                         |                   |                 |                  |               |
| 20              | 2801<br>0401         | 21.0                  | -1.                                     | <del></del>       |                 | <del></del>      |               |
| 2 4             | 0101                 | -1.                   | -1.                                     |                   |                 |                  |               |
| 41              | 02                   |                       |                                         |                   | ·               |                  |               |
| 42              | 0104                 |                       |                                         |                   |                 |                  |               |
|                 | 22.636               | 1400.                 | 53.38                                   | 1.33              | 87.1            |                  |               |
|                 | 23.154               | 605.                  | 53.3                                    | 1.4               | 215.53          |                  |               |
|                 | 12.232               | 11 1 1 2 4 11 5 4 O D | 520062407                               | 260 925 10264     | 0264425422      | 513271428152     | 6121017204    |
| 46              | 01190220             | 0036104190            | SE HOOCTO                               | - 40 Je 25 Pác p1 | · CATTEBICS     | 31,307,145,91,95 | AT STAIL (SA) |
| 7 /             |                      |                       |                                         | •                 | •               |                  | •             |

FIGURE D4 GN-3 HOT PARTS SUMMARY INPUT DATA DECK contid.

| 7        | 00                      |                  |             |                     | <del></del> |              |              |              |
|----------|-------------------------|------------------|-------------|---------------------|-------------|--------------|--------------|--------------|
|          | 00                      |                  |             |                     |             |              |              |              |
| 9        | 11                      | <b></b>          |             |                     |             |              |              |              |
| יטי      | 0129                    | 1.0              |             |                     |             |              |              |              |
|          | 0229                    | 1.0              |             |                     |             |              |              |              |
|          | 0329                    | 1.0              |             |                     |             |              |              |              |
|          | 0407                    | 1.0              |             |                     |             | ·            |              |              |
|          | U508                    | 1.0              |             |                     |             |              |              |              |
|          | 0609                    | 1.0              |             |                     |             |              |              |              |
| į        | 1030                    | 1.0              |             |                     |             |              |              |              |
|          | 1130                    | 1.C              |             |                     |             |              |              |              |
| 1        | 1230                    | 1.0              |             |                     |             |              |              |              |
|          | 1330                    | 1.0              |             |                     |             |              |              |              |
|          | 1436                    | 1.0              |             |                     |             |              |              |              |
| 51       | 0.2                     |                  |             |                     |             |              |              |              |
| 52       | 29                      | 720.             |             | <del></del>         | •           |              |              |              |
|          |                         |                  |             |                     |             |              |              |              |
|          | 30                      | 500.             |             |                     |             |              |              |              |
|          | 30<br>95                | 500.<br>         | . 95        | . 35                | -95         | 45           | • 85         | <u>. 8</u> 1 |
| 3        | 95                      | 95               | . 95<br>. 6 | • 95<br>• 6         | • 95<br>• 6 | • 95<br>• 50 | • 55<br>1• U |              |
| 3        |                         |                  |             | • <b>9</b> 5<br>• 6 |             | .95          | .85<br>1.0   | . As         |
| 3        | . 95<br>. 85            | •95<br>•5        |             |                     |             |              |              |              |
| 53       | .95<br>.85<br>1.0<br>16 | •95<br>•5        | • 6         | .6                  |             |              |              | 1.           |
| 53<br>54 | .95<br>.85<br>1.0       | .95<br>.5<br>1.0 |             |                     | • 5         | •50          | 1.0          |              |
| 53<br>54 | .95<br>.85<br>1.0<br>16 | .95<br>.5<br>1.0 | 161.        | 124.                | 107.        | 93.          | 32.          | 73.          |

|             |                        |                          |            | AMAII em.     | BLE TO DDC DOES NOT |             |              |
|-------------|------------------------|--------------------------|------------|---------------|---------------------|-------------|--------------|
| IDS1        | . 2                    |                          |            | POLI !        | AVAILABL!           | E TA DOC O  | nce vo       |
| SIBI        | 16                     |                          |            | PERMIT        | CILI V              | EGIBLE PRO  | UES MU       |
| 2           |                        |                          | 1.80       |               | IULLI               | LUIBLE PRO  | NICTION      |
| 2           |                        |                          |            |               |                     |             | Mairon       |
| 2           |                        |                          |            |               |                     |             |              |
| 2           |                        |                          |            |               | •                   |             |              |
| 2           | -0.                    |                          |            |               |                     |             |              |
| 2           |                        | -                        |            | -             |                     |             |              |
| 2           | 485.<br>1038.          |                          |            |               |                     |             |              |
| 2           |                        |                          | •          |               |                     |             |              |
| 2           |                        | `. '.                    |            |               |                     |             |              |
| 2           |                        |                          |            | -             |                     |             |              |
| 2           |                        |                          |            | -             |                     | ····        |              |
| 2           |                        |                          | _          |               |                     |             |              |
|             | 2537                   | 775.                     | 5          | •             |                     |             |              |
| 2           | 2524                   | 775.                     |            |               |                     |             |              |
| 2           | -07                    |                          | , •        |               |                     |             |              |
| IDS2        | GCASE NE               | (T=4,NRANG=              | 2,ALTPLM=  | 5-93.,4       | MI=2.5, N           | MF≔₹.^,     |              |
|             |                        | Exclu                    |            |               |                     |             |              |
|             | ICHECK=-               | ?• <del>- −</del> Reque  | sts namel  | ist out       | :put of \$1         | CASE \$.    |              |
|             | TRACK=50               | Typic                    | al "Earth  | " backg       | round te            | mperature.  | <del>-</del> |
|             | ALTOBS(L)              | ) =:3₹50UN <b>.,</b> ?   | (ANGE(1)=0 | .,5075.       | ,12152.,            |             |              |
|             | EYEMP(1):              | = 278., 3                | 333        | ., 361        | • •                 |             |              |
|             | EAREA(1)               | 95182.                   |            | <u>u</u> . ,  | 0.,                 | n •,,       |              |
|             | RPN=11.73              | 5,RSN=15.0,              | RTE=12.0,  | ANL = 24.     | •                   |             |              |
|             | . \$<br>เรือบ แล้งเกิด |                          |            |               |                     |             | -            |
| IDSS        | SPLUMIN S              | 5<br>5                   |            | ****          |                     |             |              |
|             |                        |                          |            |               |                     | =U.98,FN=71 |              |
|             |                        | 1 MASAC=13               |            | 400001        | 1 N-000.            | WAPAG-137.7 | £ 9          |
| TING        | SCASE                  | 1 • • • 4 3 40 - 1       | 07.001.13  |               |                     |             |              |
| 1002        | -                      | =5846 . , 669            | 12         |               |                     |             |              |
|             | EAREA(1)               |                          |            | 0.,           | J.,                 | n , ,       |              |
|             | \$                     | 1 / 2 40                 | ,          | ••,           | J.,                 |             |              |
| 7           | SCASE                  |                          |            |               |                     |             |              |
| -           |                        | =5978.,895               | 5          |               |                     |             |              |
|             | EAREA(1)=              |                          |            | 7             | 18562.              | 6397.,      |              |
|             | \$                     |                          | •          |               | ,                   |             |              |
| 7           | SCASE                  |                          |            | ~             |                     |             |              |
|             | ALT085(2)              | =10037.,15               | 074.,      |               |                     |             |              |
|             | EAREA(1)=              |                          |            | 9.,           | 47267.,             | 15290.,     |              |
|             | \$                     |                          |            |               |                     |             |              |
|             | SCASE '                |                          |            |               |                     |             |              |
|             |                        | )=10811.,1 <u>6</u>      |            |               |                     |             |              |
|             | EAREA(1)=              | = 507954.                | ·• 1535    | 2.,           | 54523.,             | n.,         |              |
|             | \$                     |                          |            |               |                     |             |              |
|             | \$CASE                 |                          |            |               |                     |             |              |
|             |                        | )=11076.,17              |            | <del></del> . |                     | <del></del> |              |
|             | EAREA(1)=              | = 531164.                | , 1605     | 4. ,          | 37059.,             | n.,         |              |
|             | \$                     |                          |            | -             |                     |             |              |
|             | \$CASE                 | 1-41 47 47               | 7 (* 71.   |               |                     |             |              |
| • • • • • • | EAREA(1)=              | )=11,17.,17<br>= 535788. | •          | ₹ .           | 28713.              | 1 n5 83.,   |              |
|             | \$                     | - 2321.00                | 1040       | J . ,         | cort J. ,           | 1,,040.4    |              |
|             | SCASE                  |                          |            | <del></del>   |                     |             |              |
|             |                        | =10810.,15               | 6620       |               |                     |             |              |
|             |                        | TOOLUBYI.                |            |               |                     |             |              |

FIGURE D5 GN-3 IR SIGNATURE ENGINE ONLY INPUT DATA DUCK

```
EAREA(1) = 528529., 16583., 17777., 23714.,
$
SCASE
ALTORS(2)=10593.,15186.,
EAREA(1) = 516435., 16422.,
                             16585., 24557.,
$
ALTOBS(2)=8741.,12482.,
EAREA(1) = 363348., 13200., 47858., 25357.,
$CASE
ALTOBS(2)=8220.,11440.,
EAREA(1)= 324095., 12776., 43942.,
$CASE
ALTOBS(2)=7078.,9156.,
EAREA(1) = 247797., 1417., 74712., 22545.,
$CASE
ALTOBS(2)=6470.,7340.,
EAREA(1) = 196782., 7968., 29511.,
                                       21°93.,
SCASE
ALTOBS(2)=5530.,6060..
EAREA(1) = 116399, 52, 21796, 18489,
$CASE
ALTOBS (2) = 5424.,5848.,
EAREA(1) = 107253., u., 20126., 1817.,
SCASE.
ALTOBS(2)=11076.,17152.,
EAREA(1) = 531164., 16:54., 57015., 19549.,
$CASE TERM=.TRUF. $
```

FIGURE D5 GN-3 IR SIGNATURE ENGINE ONLY INPUT DATA DECK cont'd.

```
2
 16
      -0.
                -0.
                          18p.
      -0.
                 -0.
                          172.
                 - D.
                          161.
      -0.
                 - 0 -
                          124.
      -0.
                 -0.
                          107.
      -0.
                 -0.
                           90.
     485.
               759.
                           82.
    1038.
               745.
                           73.
    1300.
                746.
                           67.
                           38.
    2285.
               763.
                           32.
    2507.
               763.
    2666.
               767.
                           20.
    2662.
               771.
                           14.
    2537.
               775.
    2524.
                775.
                           90.
                -N.
      ~ D •
SCASE NEXT=4, NRANG=2, ALTPLM=50 10., AMT=2.5, AMF=3.0,
ICHECK=-2,
TBACK=290.,
ALTOBS(1)=3*5000.,RANGF(1)=0.,6076.,12157.,
EIEMP(1) = 2/8., 3.6., 333., 361.,
             95182.,
                            0.,
EAREA(1) =
                                         U.,
RPN=11.73,RSN=15.0,RTE=12..,ANL=24.,
SPLUMIN 1
$POWER NORM=1,JET=2,FLTM=9.5,TSFCC=0.9,33EC=0.98.FH=7130.,
UPR=22.636,FPR=23.154,TTPN=1464.,TTSN=645.,NAPAC=137.73,
FNRI-BUUL.,WASAU=137.51.5
$CASE
ALTORS(2)=5846.,5592.,
EAREA(1)=
                             0.,
             73924.
$
$CASE
ALTOBS(2)=6978.,8956.,
EAREA(1)=
           172930.,
                          5227.,
                                    18562.
$CASE
ALTORS(2)=11137.,15074.,
EAREA(1)=
           440355.,
                        13309.,
                                    47267.,
SCASE
ALTOBS(2)=15811.,15622.,
                         15352.
EAREA(1)=
           507954..
                                    54523.
SCASE
ALTOBS(2)=11076.,17152.,
EAREA(1) = 531164..
                         16054.,
                                     37059.
                                                    п.,
SCASE
ALTOBS(2)=11017.,17034.,
EAREA(1)=
           535798.,
                                     281
                         16483.
SCASE T
ALTOBS(2)=10810.,16620.,
EAREA(1) =
            528529.,
                         16583.,
                                    17777.,
FIGURE D6 GN-3 IR SIGNATURE INPUT DATA DECK FOR ONE
```

```
ALTOBS(2)=10593.,15186.,
EAREA(1) = 516435., 16422., 10585., 24557.,
ALTOBS(2)=8741.,12482.,
EAREA(1) = 363348., 13200., 47853., 25357.,
$CASE
ALTOBS(2)=8220.,11440.,
EAREA(1) = 324095., 12076., 43942., 24693.,
ALTOBS(2, 1078.,9156.,
EAREA(1) = 247797.
                     1417., 34712., 22545.,
$CASE
ALTOBS(27-5470.,7943.,
EAREA(1) = 196782., 7968., 29501., 21093.,
$CASE
ALTOBS(2)=553(.,6053.,
EAREA(1) = 116399., 5592.,
                              21096., 18488.,
SCASE
ALTOBS(2)=5424.,5848.,
EAREA(1)= 107253., 0., 20126., 19170.,
$CASE
ALTOSS(2)=11075.,17152.,
EAREA(1) = 531164., 16054., 57015., 19649.,
SCASE TERME.TRUE. 3
```

FIGURE D 6 GN-3 IR SIGNATURE INPUT DATA DECK FOR ONE ENGINE PLUS AIRFRAMF cont'd.

## COPY AVAILABLE TO DDC DOES NOT PERMIT FULLY LEGIBLE PRODUCTION

|                                                                                                  | <del></del>                                                                                                           | CIEY-JANALYSIS                                                                                  |                                                                                                 | <del></del>                                                                                     |
|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| FLIGHT COMDITION                                                                                 | IS **                                                                                                                 | <del></del>                                                                                     | ····                                                                                            |                                                                                                 |
| ALTITUDE IS S                                                                                    |                                                                                                                       |                                                                                                 |                                                                                                 |                                                                                                 |
| WEATHER IS ICA                                                                                   |                                                                                                                       |                                                                                                 |                                                                                                 |                                                                                                 |
|                                                                                                  |                                                                                                                       |                                                                                                 |                                                                                                 |                                                                                                 |
| VISI<br>PMDV-HOAM BEAD                                                                           | THE CONTRAIL                                                                                                          | L IS NOT EXPEC                                                                                  | 1=3                                                                                             |                                                                                                 |
|                                                                                                  | OF 12.2                                                                                                               |                                                                                                 |                                                                                                 |                                                                                                 |
| ### 3537 E                                                                                       | UF 1646.                                                                                                              | フーアこ; Ϥ↓<br>. カ <i>モ</i> Γコ                                                                     |                                                                                                 |                                                                                                 |
| VELOCITY                                                                                         | OF 599.                                                                                                               | FT/360.                                                                                         |                                                                                                 |                                                                                                 |
| ENGINE IS RUN                                                                                    | ING HITH DAIN                                                                                                         | FUEL EDUIVALEN                                                                                  | CE- PATIO- (+                                                                                   | QR)0719                                                                                         |
| E_INBUT. PACAMETE                                                                                | ?\$                                                                                                                   |                                                                                                 |                                                                                                 |                                                                                                 |
|                                                                                                  |                                                                                                                       | DE UME VM3.1                                                                                    | EUT                                                                                             |                                                                                                 |
| PRESSUFF,                                                                                        |                                                                                                                       |                                                                                                 |                                                                                                 |                                                                                                 |
|                                                                                                  |                                                                                                                       | .292 9TU/L8-F                                                                                   |                                                                                                 |                                                                                                 |
| GAS CONSTAUT,                                                                                    |                                                                                                                       |                                                                                                 |                                                                                                 |                                                                                                 |
| SP. HT. RATIO                                                                                    |                                                                                                                       | 1.307                                                                                           |                                                                                                 |                                                                                                 |
|                                                                                                  |                                                                                                                       | 1.502                                                                                           |                                                                                                 |                                                                                                 |
| SECONDACY ORE                                                                                    | 35                                                                                                                    | . AGE ATMINE:                                                                                   |                                                                                                 |                                                                                                 |
|                                                                                                  |                                                                                                                       | 7710- 26 405                                                                                    |                                                                                                 |                                                                                                 |
| R8= +378                                                                                         |                                                                                                                       | ₹5 NU= 35 402                                                                                   | A_= 257.55°                                                                                     | •                                                                                               |
| ** FLD4 FIFLD TN                                                                                 | PUT                                                                                                                   |                                                                                                 |                                                                                                 |                                                                                                 |
| RADIUS                                                                                           | VFLOCITY                                                                                                              | TEMPERATURE                                                                                     | X002                                                                                            | XH23                                                                                            |
| ·                                                                                                |                                                                                                                       |                                                                                                 |                                                                                                 |                                                                                                 |
|                                                                                                  | 1651.36                                                                                                               | 1400.00                                                                                         | .025252                                                                                         | .027144                                                                                         |
| 0.000                                                                                            | 1.72 1 0.0                                                                                                            | 2,000.0                                                                                         |                                                                                                 |                                                                                                 |
| 0.000                                                                                            | 1651.75                                                                                                               | 1400.00                                                                                         | <del>- 150525-</del>                                                                            | - + 0 2 · 1 4 4 · · ·                                                                           |
| 0.0007<br>                                                                                       | 1651.36<br>1651.36                                                                                                    | 1400.00<br>1400.00                                                                              | .026252                                                                                         | .029144                                                                                         |
| 0.0007<br>                                                                                       | 1651.36<br>1651.36<br>1651.36                                                                                         | 1400.00<br>1400.00<br>1400.00                                                                   | .026252<br>,026252                                                                              | .023144<br>023144                                                                               |
| 0.0007<br>                                                                                       | 1651.36<br>1651.36<br>                                                                                                | 1400.00<br>1400.00<br>1400.00<br>1400.00                                                        | .026252<br>026252<br>.026252                                                                    | .023144<br>023144<br>023144                                                                     |
| 0.0007<br>                                                                                       | 1651.36<br>1651.36<br>                                                                                                | 1400.00<br>1400.00<br>1400.00<br>1400.00                                                        | .026252<br>,026252<br>.026252<br>,026252                                                        | .023144<br>023144<br>.023144<br>023144                                                          |
| 0.0007<br>.0973<br>.1955<br>.2933<br>.3913<br>.4883<br>.5865                                     | 1651, 36<br>1651, 36<br>                                                                                              | 1400.00<br>1400.00<br>1400.00<br>1400.00<br>1400.00                                             | .026252<br>,026262<br>.026252<br>,026252<br>.026252                                             | .023144<br>.023144<br>.023144<br>.023144<br>.023144                                             |
| 0.0003<br>- 0973<br>- 1955<br>- 2933<br>- 3913<br>- 4883<br>- 5865<br>- 6943                     | 1651.36<br>1651.36<br>                                                                                                | 1400.00<br>1400.00<br>1400.00<br>1400.00<br>1400.00<br>1400.00                                  | .026252<br>.026262<br>.026252<br>.026252<br>.026252<br>.026262                                  | .023144<br>.023144<br>.023144<br>.023144<br>.023144                                             |
| 0.0007<br>.0973<br>.1955<br>.2933<br>.3913<br>.4883<br>.5865<br>.6943<br>.7823                   | 1651.36<br>1651.36<br>                                                                                                | 1400.00<br>1400.00<br>1400.00<br>1400.00<br>1400.00<br>1400.00                                  | .026252<br>.026262<br>.026252<br>.026252<br>.026252<br>.026252                                  | .023144<br>.023144<br>.023144<br>.023144<br>.023144                                             |
| 0.0000<br>.0973<br>.1955<br>.2933<br>.3910<br>.4883<br>.5865<br>.6943<br>.7821                   | 1651.36<br>1651.36<br>1651.36<br>1651.36<br>1651.36<br>1651.36<br>1651.36<br>1651.36                                  | 1400.00<br>1400.00<br>1400.00<br>1400.00<br>1400.00<br>1400.00<br>1400.00                       | .026252<br>.026262<br>.026252<br>.026252<br>.026252<br>.026252<br>.026252                       | .023144<br>.023144<br>.023144<br>.023144<br>.023144<br>.023144                                  |
| 0.0007<br>-0973<br>-1955<br>-2933<br>-3913<br>-4883<br>-5865<br>-6943<br>-7821<br>-8793<br>-9775 | 1651.36<br>1651.36<br>1651.36<br>1651.36<br>1651.36<br>1651.36<br>1651.36<br>1651.36                                  | 1400.00<br>1400.00<br>1400.00<br>1400.00<br>1400.00<br>1400.00<br>1400.00                       | .026252<br>.026262<br>.026252<br>.026252<br>.026252<br>.026252<br>.026252<br>.026252            | .023144<br>.023144<br>.023144<br>.023144<br>.023144<br>.023144<br>.023144                       |
| 0.0000<br>.0973<br>.1955<br>.2933<br>.3910<br>.4883<br>.5865<br>.6943<br>.7821<br>.8793<br>.9775 | 1651.36<br>1651.36<br>1651.36<br>1651.36<br>1651.36<br>1651.36<br>1651.36<br>1651.36<br>1651.36<br>1651.36            | 1400.00<br>1400.00<br>1400.00<br>1400.00<br>1400.00<br>1400.00<br>1400.00<br>1400.00<br>1400.00 | .026252<br>.026262<br>.026252<br>.026252<br>.026252<br>.026252<br>.026252<br>.026252<br>.026252 | .023144<br>.023144<br>.023144<br>.023144<br>.023144<br>.023144<br>.023144<br>.023144<br>.023144 |
| 0.0000<br>.0973<br>.1955<br>.2933<br>.3910<br>.4883<br>.5865<br>.6843<br>.7821                   | 1651.36<br>1651.36<br>1651.36<br>1651.36<br>1651.36<br>1651.36<br>1651.36<br>1651.36<br>1651.36<br>1651.36<br>1651.36 | 1400.00<br>1400.00<br>1400.00<br>1400.00<br>1400.00<br>1400.00<br>1400.00<br>1400.00<br>1400.00 | .026252<br>.026262<br>.026252<br>.026252<br>.026252<br>.026252<br>.026252<br>.026252            | .023144<br>.023144<br>.023144<br>.023144<br>.023144<br>.023144<br>.023144                       |

FIGURE D7 GN-3 ENGINE ONLY IR SIGNATURE (SAMPLE).

```
*** BOINT SUNSEE IN INTERSITA ******
   SPECIFAL 31ND - 2.50 13 3.00 MICPONS
   VEHICLE ALTITUDE - 1.52 KM OR 5.00 KFT
  EFFECTIVE 3LACK 300Y ARE2 - AB3 = 1300.0000 CMS0
  LISESFORING BB TEMPERATURE ... 133 = 746.0000.000K ....
   EFFECTIVE BACKGROUND TEMP - TRACK = 290,0000 DEGK
   SET RNG (KM/NH)
                     3./ 3. 2./ 1.
   D3 ALI (KM/KFI) 2./ 5. 3./ 11.
 ____ 5CC3R1D (W/STR)_____ 6.0373 ____ 6.0373 ___
   METALS (W/STR) 44.0083
                            44.0023
   ATT YET (WYSTR)
                    33.0442
   PLM GAS (W/STR) 16.8573
                              5.2636
 EXT EMS (4/ST-2) -- 0.00-0 -- 0.00-0-
   APP RAD (W/STR)
                    49.8542
                              12.1718
*** POINT - SOUPS E - IR- INTENSITY - * * * - - - - -
  VEHICLS ALTITUDE - 1.52 KM OR 5.00 KFT
   ASPECT ANGLE - 33.0 DEGREES IN A NOR. ATHOSPHERE.
   EFFECTIVE BLACK BODY AREA - A88 = 2285.0000 CMSD EFFECTIVE BB TEMPER/1938 TBB = 763.0000 DEGK- --
   EFFECTIVE BACKGROUND' TEMP - TRACK - 290.0000 DEGK
   SLI RNG (KM/NM)
                     0./ 0.
                              2./ 1.
   <del>03 ALT (KM/KFI)</del>
                     4.0322
   BCKSRND (W/STR)
                              4.5382 ·--
   METALS (N/STR)
                    90.4150
                              90.4150
   ATT MET (W/STR)
                    76.9706
                              23,1242
   PLY GAS (W/STR)
                    14.3674
                              4.2829
   EXT E'45 (WSTR)
                    -0.000
   APP RAD (W/STR)
                    87.2958
                              23.3689
```

### COPY AVAILABLE TO BEC DOES NOT PERMIT FULLY LEGIBLE PRODUCTION

强 的图点

FIGURE D7 GN-3 ENGINE ONLY IR SIGNATURE (SAMPLE) cont'd.

## COPY AVAILABLE TO DDC DOES NOT BY A RPERMIT FULLY LEGIBLE PRODUCTION

#### PLUME ANALYSIS

| · ·                           | PLUME ANTE                               | , <b>Y</b> \ 1 \ \ "                                                                                                                                                                                                             | •                    |                 |
|-------------------------------|------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------|
| ** FLIGHT CONDITION           | 3. **                                    | maren e de la como de la compania d<br>La compania de la co |                      | •               |
| VISI WITH                     | O MIL STO (<br>.000330 WA)<br>BLE CONTRA | PAT STANDARD TO<br>TER CONTENT.<br>IL IS NOT EXPE                                                                                                                                                                                |                      |                 |
| CASE MACH NUMB                |                                          |                                                                                                                                                                                                                                  |                      |                 |
| PRESSURE                      |                                          | 23 7911.                                                                                                                                                                                                                         |                      |                 |
| TEMPERATU<br>VÉLOCITY         |                                          | . DEGR.<br>. FT/SEC.                                                                                                                                                                                                             | - v v - 1960         | <u>.</u>        |
| ENGINE IS RUNA                |                                          | FUEL FOUTVALE                                                                                                                                                                                                                    | NOF RATIO (B         | [03] OF .195    |
| ** INPUT PARAMETER            |                                          |                                                                                                                                                                                                                                  |                      |                 |
|                               | ···                                      | PLUME AMB                                                                                                                                                                                                                        | IENT                 |                 |
| ###ecup#                      |                                          |                                                                                                                                                                                                                                  |                      |                 |
| PRESSURE,<br>SPECIFIC HEAT,   | р                                        | .839<br>.292 BTU/L3-9                                                                                                                                                                                                            | .832 AT405.          |                 |
| GAS CONSTANT.                 |                                          | 53.43? FT/F                                                                                                                                                                                                                      | -                    |                 |
| SP. HT. RATIO                 | . ~                                      | 1.317                                                                                                                                                                                                                            |                      | -               |
|                               |                                          |                                                                                                                                                                                                                                  |                      |                 |
| MACH NUMBER<br>SECONDARY PRES | · · ·                                    | 1.00°                                                                                                                                                                                                                            | ** *                 |                 |
|                               |                                          | • • • • • • • • •                                                                                                                                                                                                                |                      |                 |
| DPDX =<br>  R8= .978          | (a= 1.051                                |                                                                                                                                                                                                                                  | 41 207 00            |                 |
| R8= .978 ) ** FLOW FIFLD INF  |                                          | REMD= 36.465                                                                                                                                                                                                                     | AL = 287.50          | )<br>··· · ••-  |
| RADIUS<br>(FEET)              | VELOCTTY<br>(FT/SEC)                     | TEMPERATURE (DES R)                                                                                                                                                                                                              | X 3 0 5              | XH23            |
|                               | ****i                                    | a ( r.)                                                                                                                                                                                                                          | - (26262             | 20111           |
| 6.000                         | 1651.36                                  | 1401.00                                                                                                                                                                                                                          | •1.56565<br>•1.56565 | 29146           |
| .0978                         | 1651.36                                  | 140(,00                                                                                                                                                                                                                          | .126262              | .)29144         |
| •1955                         | 1651.36                                  | 1406.00                                                                                                                                                                                                                          | .025252              |                 |
| .2937                         | 1651.35                                  | 14.6.27                                                                                                                                                                                                                          | • 125252             | . 29144         |
| .3910                         | 1651.36                                  | 140(                                                                                                                                                                                                                             | . 26262              | 1291+4          |
| .4889                         | 1651.36                                  | 1400.70                                                                                                                                                                                                                          | .029252              | . 127144        |
| • 5865                        | 1651.36                                  | 14.1.15                                                                                                                                                                                                                          | .:25252              | .129!44         |
| •6843                         | 1651.36                                  | 14(0,00                                                                                                                                                                                                                          |                      | .)29144         |
| •7820                         | 1651.36                                  | 1400.50                                                                                                                                                                                                                          | . 25262              | . 123144        |
| .8798                         | 1651.36                                  | 1400.00                                                                                                                                                                                                                          | 25252                | 120144          |
| •9775                         | 1651.36                                  | 1400.00                                                                                                                                                                                                                          | . [25252             | .129:44         |
| 1.0753                        | 1038.01                                  | 607.19<br>607.19                                                                                                                                                                                                                 | •000331<br>•000331   | ' ገሀሰጵያባ        |
| 1.1730<br>** AMBIENT CONDIT   | 1088.01<br>CONS                          | 0117.1.19                                                                                                                                                                                                                        | עיינווט •            | • )33"          |
| 1.2708                        | 598.97                                   | 500.94                                                                                                                                                                                                                           | . ეგივვც             | •46633 <b>0</b> |

FIGURE D8 GN-3 ONE ENGINE PLUS AIRFRAME IR SIGNATURE (SAMPLE)

יח

### COPY AVAILABLE TO DDG DOES NOT PERMIT FULLY LEGIBLE PRODUCTION

```
* POINT SOUPCE IR INTENSITY ***
  SPECTRAL BAND - 2.50 TO 3.00 MICROMS
  VEHICLE ALTITUDE - 1.52 KM OR 5.00 KFT
  ASPECT ANGLE - 67.0 DEGREES IN A NOR. ATMOSPHERT.
  EFFECTIVE BEACK BODY AREA - ARR = 1300.0000 0980 EFFECTIVE BE TEMPERATURE - TRR = 746.0000 0380
  EFFECTIVE BACKGROUND TEMP - TRACK = 290.0000 DESK
  SLT RNG (KM/NM)
                        U./
                             0. 2./
  OB ALT (KM/KFT)
                        2./
                              5.
                                    3./ 11.
  ACKGRNO (W/STR)
                       5.0373
                                    5.7373
                                   44.7083
  METALS (W/STR)
                       44.0083
  ATT MET (W/STR) 39.0442
                                   11.94.5
  PLM GAS (W/STR)
                       15.8573
                                  5, 2686
                       .3965
  EXT EMS (W/STR)
                                    -. GR36
  APP RAD (W/STR)
                       50.2607
                                   12.1832
 POINT SOURCE IR INTENSITY ***
  SPECTRAL BAND - - 2.50 TO 3.00 MIGRONS
  VEHICLE ALTITUDE - 1.52 MM OR 5.10 KFT
  ASPECT ANGLE - 38.0 DEGREES ON A NOR. ATMOSPHERE.
  EFFECTIVE BLACK BODY AREA - ARE 2285. IT 1982
EFFECTIVE BR TEMPERATURE - 199 = 763. ICIS DESK
EFFECTIVE BACKGROUND TEMP - TRACK = 290.0000 DESK
  SLT RNG (KM/NM)
                        6./
                                    2./
                               U.
  OB ALT (KM/KFT)
                        2.1
                              5.
                                    3./
  BCKGRND (W/STR)
                        4.0382
                                    4. 1797
  METALS (W/STR)
                       90.4150
                                   90.4150
  ATT MET (N/STR)
                       76.9706
                                   23.1242
                       14.3634
                                   4.2829
  PLM GAS (W/STR)
  EXT EMS (W/STR)
                        . 5737
                                    . 4532
  APP RAD (W/STR)
                       87.3696
                                   23.4221
```

FIGURE D8 GN-3 ONE ENGINE PLUS AIRFRAME IR SIGNATURE (SAMPLE) cont'd.



FIGURE D9 GN-3 COMPOSITE AIRCRAFT IR SIGNATURE AT ZERO AZIMUTH.