

Measuring the prompt component of the atmospheric muon flux

Pascal Gutjahr

level4

Bundle energy at entry

Bundle energy at surface

Leading muon energy at entry

Leading muon energy at surface

level5

Bundle energy at entry

Bundle energy at surface

Leading muon energy at entry

Leading muon energy at surface

Check relevance of different primary particles for primary models as a function of the primary particle energy

- per particle means energy per nucleus
- ratio means the contribution of the particle to the total flux of all particles
- vertical lines indicate our 5 simulation datasets
- for example: He4 is very relevant in the high-energy region in GSF, but less relevant in the other weightings – in the other weightings, Fe56 is more relevant at high energies

