str. 1/3 Seria: 11

Zadanie 1

Obie funkcje podcałkowe są dodatnie, zatem badanie zbieżności sprowadza się do badania asymptotyki.

Pierwsza całka

Przy $x \to 0^+$ widzimy, że $\frac{1-e^{-cx}}{x^c+x^{2c}} = \frac{1-e^{-cx}}{-cx} \frac{-c}{x^{c-1}+x^{2c-1}}$. Pierwszy czynnik dąży do 1, zatem wystarczy zbadać asymptotykę drugiego czynnika. Całka $\int\limits_0^1 \frac{-c}{x^{c-1}+x^{2c-1}} dx$ zachowuje się asymptotycznie jak $\int\limits_0^1 \frac{1}{x^{c-1}} dx$, która jest zbieżna na c < 2 i rozbieżna na c > 2.

Przy $x \to +\infty$ widzimy, że $1-e^{-cx}$ dąży do 1, zatem należy zbadać asymptotykę funkcji $\frac{1}{x^c+x^{2c}}$. Całka $\int\limits_{1}^{\infty} \frac{dx}{x^c+x^{2c}}$ zachowuje się asymptotycznie jak $\int\limits_{1}^{\infty} \frac{dx}{x^{2c}}$, która jest zbieżna dla $c>\frac{1}{2}$ i rozbieżna dla $c\leqslant\frac{1}{2}$.

Zatem całka z zadania jest zbieżna dla $c \in (\frac{1}{2}, 2)$ i rozbieżna poza tym przedziałem.

Druga całka

Przy $x \to 0^+$ mamy, że $\frac{(\sin x)^w}{x\sqrt{x}(\pi-x)} = \frac{(\sin x)^w}{x^w} \frac{1}{x^{1.5-w}(\pi-x)}$. Pierwszy czynnik dąży do 1, więc decydująca jest asymptotyka drugiego, skąd zbieżność jest wtedy i tylko wtedy, gdy 1.5-w < 1, czyli w > 0.5.

Przy $x \to \pi^-$ mamy, że $\frac{(\sin x)^w}{x\sqrt{x}(\pi-x)} = \frac{(\sin x)^w}{(\pi-x)^w} \frac{1}{x^{1.5}(\pi-x)^{1-w}}$. Mamy teraz, że pierwszy czynnik dąży do 1, zaś drugi zachowuje się przy π tak jak $\frac{1}{t^{1-w}}$ w otoczeniu zera, zatem całka jest zbieżna dla 1-w < 1, czyli w > 0. Stąd całka z zadania jest zbieżna dla w > 0.5.

Zadanie 3

W jawnej puli z GAL* jest zadanie, żeby sprawdzić, że wielomiany Q_n są wektorami własnymi operatora $\phi: C^{\infty}([-1,1]) \to C^{\infty}([-1,1])$ takiego, że $\phi(f)(x) = ((1-x^2)f'(x))'$, więc sprawdzę to.

Lemat 1. Dla $k \in \mathbb{Z}$, $n \in \mathbb{N}$ takich, $\dot{z}e\ 2k-n-2 \geqslant 0$ mamy: $(2k-n-1)(n+1)! \left(\binom{n}{k} \binom{2k}{n+1} + \binom{n}{k-1} \binom{2k-2}{n+1} \right) = n(n+1)\binom{n}{k-1}\binom{2k-2}{n}n!$

Dowód. Mamy:

$$\begin{split} L &= (2k-n-1)(n+1)! \left(\binom{n}{k} \binom{2k}{n+1} + \binom{n}{k-1} \binom{2k-2}{n+1} \right) = \\ &= (2k-n-1)(n+1)! \left(\frac{n!(2k)!}{k!(n-k)!(n+1)!(2k-n-1)!} + \frac{n!(2k-2)!}{(k-1)!(n-k+1)!(n-k+1)!(n+1)!(2k-n-3)!} \right) = \\ &= (2k-n-1)(n+1)! \frac{n!(2k-2)!}{(k-1)!(n-k+1)!(2k-2-n)!n!} \left(\frac{(2k)(2k-1)(n-k+1)}{k(2k-n-1)(n+1)} + \frac{2k-n-2}{n+1} \right) = \\ &= (n+1)! \binom{n}{k-1} \binom{2k-2}{n} \left(\frac{2(2k-1)(n-k+1)}{n+1} + \frac{(2k-n-2)(2k-n-1)}{n+1} \right) = \\ &= (n+1)! \binom{n}{k-1} \binom{2k-2}{n} \frac{2(2k-1)(n-k+1) + (2k-n-2)(2k-n-1)}{n+1} \end{split}$$

Wystarczy teraz pokazać, że $\frac{2(2k-1)(n-k+1)+(2k-n-2)(2k-n-1)}{n+1}=n$. W tym celu możemy wymnożyć licznik uzyskując $4kn-4k^2+4k-2n+2k-2+4k^2-2kn-2k-2kn+n^2+n-4k+2n+2=n^2+n$, czyli istotnie licznik jest n-krotnością mianownika. Zatem teza lematu jest prawdziwa.

nr albumu: 347208 str. 2/3 Seria: 11

Łatwo mamy, że:1

$$\begin{split} P_n(x) &= \sum_k \binom{n}{k} (-1)^k x^{2k} \\ Q_n(x) &= \sum_k \binom{n}{k} (2k) (2k-1) \dots (2k-n+1) (-1)^k x^{2k-n} = \sum_{k=0}^n \binom{n}{k} \binom{2k}{n} n! (-1)^k x^{2k-n} \\ Q_n'(x) &= \sum_k \binom{n}{k} \binom{2k}{n} n! (2k-n) (-1)^k x^{2k-n-1} = \sum_{k=0}^n \binom{n}{k} \binom{2k}{n+1} (n+1)! (-1)^k x^{2k-n-1} \\ (1-x^2) Q_n'(x) &= \sum_k x^{2k-n-1} \left((-1)^k \binom{n}{k} \binom{2k}{n+1} (n+1)! - (-1)^{k-1} \binom{n}{k-1} \binom{2(k-1)}{n+1} (n+1)! \right) \\ &= \sum_k (-1)^k x^{2k-n-1} (n+1)! \left(\binom{n}{k} \binom{2k}{n+1} + \binom{n}{k-1} \binom{2k-2}{n+1} \right) \\ ((1-x^2) Q_n'(x))' &= \sum_k (-1)^k x^{2k-n-2} (2k-n-1) (n+1)! \left(\binom{n}{k} \binom{2k}{n+1} + \binom{n}{k-1} \binom{2k-2}{n+1} \right) \\ &= \sum_k (-1)^k x^{2k-n-2} n(n+1) \binom{n}{k-1} \binom{2k-2}{n} n! = -n(n+1) Q_n(x) \end{split}$$

Zatem Q_n jest wektorem własnym operatora liniowego φ (z wartością własną -n(n+1)).

Jednak zauważmy, że operator ten jest (rzeczywisty) samosprzężony, gdyż $\langle \phi(f), g \rangle = \int_{-1}^{1} ((1-x^2)f'(x))'g(x)dx = 0$

$$\underbrace{\left[(1-x^2)f'(x)\right]_{-1}^{1}}_{=0} - \int_{-1}^{1} (1-x^2)f'(x)g'(x)dx = \underbrace{\left[(1-x^2)g'(x)\right]_{-1}^{1}}_{=0} - \int_{-1}^{1} (1-x^2)g'(x)f'(x)dx = \int_{-1}^{1} ((1-x^2)g'(x))'f(x)dx = \underbrace{\left[(1-x^2)g'(x)\right]_{-1}^{1}}_{=0} - \underbrace{\left[(1-x^2)g'(x)\right]_{-1}^{1}}_{=0} -$$

Zatem jak wiemy z galu, jego wektory własne odpowiadające różnym wartościom własnym są ortogonalne.

Zadanie 4

Przypuśćmy, że funkcja g nie jest ciągła, lecz spełnia warunek z zadania. Skoro g nie jest ciągła, to posiada punkt nieciągłości i jest tam przynajmniej jednostronnie nieciągła. Dla uproszczenia przyjmijmy (przez ewentualną izometrię), że g jest lewostronnie nieciągła w zerze oraz g(0) = 0.

Skonstruujmy indukcyjnie zbiory I_n w następujący sposób: $I_0=[0,1]$, następnie wycinamy środkowy odcinek o długości $\frac{1}{4}$ i nazywamy to I_1 , następnie z każdego z pozostałych odcinków wycinamy środkowy odcinek długości $\frac{1}{16}$ i nazywamy to I_2 . Ogólnie w n-tym kroku bierzemy zbiór I_{n-1} składający się z jakichś odcinków i wycinamy z każdego z nich środkowe $\frac{1}{4^n}$ i nazywamy to I_n .

Widzimy, że na n-tym etapie konstrukcji mamy 2^n odcinków, z każdego wyrzucimy odcinek długości 4^{-n} , zatem wyrzucamy coś długości 2^{-n} i sumując to po n = 1, 2, ... widzimy, że wycięliśmy łącznie coś długości $\frac{1}{2}$.

Zatem zbiór $I = \bigcap_n I_n$ nie jest miary zero. Ponadto, jeśli wyrzucaliśmy odcinki otwarte, to I_n są domknięte, więc I jako przecięcie zbiorów domkniętych jest domknięte.

Funkcje $f_n:[0,1]\to\mathbb{R}$ definiujemy tak: na zbiorze I_n jest ona równa 0, zaś na każdym odcinku wyrzuconym w kroku $k\leqslant n$ jest ona wypukłą funkcją kwadratową taką, że na krańcach odcinka ma wartość 0, zaś w swoim minimum ma wartość $-\frac{1}{n}$.

Teraz widzimy, że f_n są funkcjami ciągłymi. Co więcej, dla dowolnego $\varepsilon>0$ biorąc n takie, że $\frac{1}{n}<\varepsilon$ widzimy, że dla $m_1,m_2>n$ mamy $|f_{m_1}(x)-f_{m_2}(x)|<\frac{1}{n}<\varepsilon$, gdyż jeżeli na jakimś x te funkcje się różnią, to to może być jedynie dlatego, że np. $x\in I_{m_1}\setminus I_{m_2}$, lecz to daje, że wtedy $f_{m_1}(x)=0$, $0\geqslant f_{m_2}(x)\geqslant -\frac{1}{m_2}\geqslant -\frac{1}{n}\geqslant -\varepsilon$. (Analogicznie dla $x\in I_{m_2}\setminus I_{m_1}$).

Zatem ciąg f_n jest jednostajnie zbieżny, zatem jego granica $f := \lim f_n$ jest funkcją ciągłą, więc całkowalną w sensie Riemanna.

Jednak zauważmy, że f zeruje się na zbiorze I i nie jest zerem na $[0,1] \setminus I$ (gdyż każda wartość $x \notin I$ musi nie należeć już do jakiegoś I_k i wtedy począwszy od n=k mamy, że $f_n(x)=f_k(x)<0$).

 $^{^1}$ Stosuję tu konwencję, że sumuję po wszystkich $k \in \mathbb{Z}$, lecz po prostu dla k spoza odpowiedniego przedziału odpowiednie symbole Newtona są zerowe, więc taki skrót notacyjny nic nie zmienia

nr albumu: 347208 str. 3/3 Seria: 11

Skoro funkcja g nie jest lewostronnie ciągła w zerze, to istnieje takie $\varepsilon > 0$, że dla każdego $\delta > 0$ mamy, że istnieje $x \in (-\delta, 0)$, że $|q(x)| > \varepsilon$.

Rozpatrzmy dowolne $x \in I$. Wtedy f(x) = 0, więc g(f(x)) = 0.

W dowolnym otoczeniu punktu x istnieje liczba wymierna r o mianowniku będącym potęgą dwójki, a te liczby to dokładnie środki przedziałów, które wyrzucaliśmy w konstrukcji zbiorów I, zatem $r \notin I$. Zatem f(r) < 0, więc istnieje takie u in (f(r), 0), że $|g(u)| > \varepsilon$. Jednak funkcja f jest ciągła, więc na przedziale między x a r osiąga wartość u. Powiedzmy, że robi to w punkcie t. Wtedy $|g(f(t))| = |g(u)| > \varepsilon$.

Zatem funkcja $g \circ f$ na dowolnym otoczeniu punktu x przyjmuje wartości większe na moduł niż ε . A to oznacza, że nie jest ona ciągła w punkcie x.

Zatem zbiór punktów nieciągłości funkcji $g \circ f$ zawiera zbiór I, a on nie jest miary zero. Zatem $g \circ f$ nie jest całkowalna w sensie Riemanna. Uzyskana sprzeczność dowodzi, że g musi być ciągła.

Zadanie 5

Niech F, G będą odpowiednio funkcjami pierwotnymi funkcji f, g. Ponieważ f, g są niemalejące, to F, G są wypukłe.

Ustalmy $n \in \mathbb{N}$ i niech $x_i = a + \frac{\mathfrak{i}(b-a)}{n}$ dla $i = 0, 1, \ldots, n$. Jest to podział odcinka [a, b] na równe fragmenty. Oznaczmy $u_k = F(x_k) - F(x_{k-1})$, $v_k = G(x_k) - G(x_{k-1})$. Teraz mamy, że $u_{k+1} = F(x_{k+1}) - F(x_k) \geqslant F(x_k) - F(x_{k-1}) = u_k$ (dla takich k, żeby napisy miały sens). Analogicznie $v_{k+1} \geqslant v_k$.

Ponadto $u_k+\ldots+u_n=\int\limits_{x_k}^{x_n}f(x)dx=\int\limits_a^bf(x)dx-\int\limits_a^{x_k}f(x)dx\geqslant\int\limits_a^bg(x)dx-\int\limits_a^{x_k}g(x)dx=\int\limits_{x_k}^{x_n}g(x)dx=\nu_k+\ldots+\nu_n$ i dla k=0 zachodzi równość. Ponadto na mocy twierdzenia o wartości średniej mamy $u_k=\frac{f(\zeta_k)}{n},\,\nu_k=\frac{g(\xi_k)}{n}$ dla $\zeta_k,\xi_k\in[x_{k-1},x_k].$

Oznaczmy $\phi_n: \mathbb{R} \to \mathbb{R}$ jako $\phi_n(x) = \sqrt{1 + n^2 x^2}$. Wtedy $\phi_n'(x) = \frac{n^2 x}{s \operatorname{qrt} 1 + n^2 x^2}$,

$$\varphi_n''(x) = \frac{n^2\sqrt{1+n^2x^2} - n^2x \cdot \frac{n^2x}{\sqrt{1+n^2x^2}}}{1+n^2x^2} = \frac{n^2+n^4x^2 - n^4x^2}{(1+n^2x^2)\sqrt{1+x^2}} = \frac{n^2}{(1+n^2x^2)^{1.5}} > 0$$

zatem ϕ_n jest funkcją wypukłą.

Zatem na mocy dowodzonej na ćwiczeniach nierówności Karamaty, $\phi_n(u_1) + \ldots + \phi_n(u_n) \geqslant \phi_n(\nu_1) + \ldots + \phi_n(\nu_n)$. Stąd $\sqrt{1+f(\zeta_1)^2} + \ldots + \sqrt{1+f(\zeta_n)^2} \geqslant \sqrt{1+g(\xi_1)^2} + \ldots + \sqrt{1+g(\xi_n)^2}$. Dzieląc stronami przez n widzimy, że są to jedne z możliwych sum Riemannowskich funkcji $x \mapsto \sqrt{1+f(x)^2}$, $x \mapsto \sqrt{1+g(x)^2}$. Funkcje te są całkowalne w sensie Riemanna, jako funkcje ciągłe.

Zatem przechodząc do granicy z $n \to +\infty$ mamy $\int\limits_{b}^{b} \sqrt{1+f(x)^2} dx \geqslant \int\limits_{a}^{b} \sqrt{1+g(x)^2} dx$.