WHAT IS CLAIMED IS:

- 1 1. A fabricating method for an array substrate of a liquid crystal display device, the
- 2 method comprising:
- forming a gate line including a gate electrode on a substrate;
- forming a gate-insulating layer on the substrate, the gate-insulating layer covering the
- 5 gate line and gate electrode;
- forming an active layer on the gate-insulating layer;
- 7 forming a data line, a source electrode and a drain electrode on the active layer;
- 8 forming a passivation layer on the gate-insulating layer, the passivation layer covering
- 9 the data line, source electrode and drain electrode;
- dry-etching a surface of the passivation layer with a gas such that the surface is
- 11 embossed; and
- forming a reflective electrode on the embossed surface of the passivation layer such
- that an exterior surface of the reflective electrode is embossed.
 - 1 2. The method of claim 1, wherein the gas used for the dry-etching is a mixture gas of
- $2 SF_6 + O_2$.
- 1 3. The method of claim 1, wherein the gas used for the dry-etching is a mixture gas of
- $2 CF_4 + O_2$.

1

4. The method of claim 1, wherein the gas used for the dry-etching is O_2 gas.

1	5.	The method of claim 1, wherein the passivation layer includes an organic insulating
2	materia	1.
1 2	6. (BCB).	The method of claim 5, wherein the organic insulating material is benzocyclobutene
1 2	7. metal.	The method of claim 1, wherein the reflective electrode is an opaque conductive
1 2	8. metal.	The method of claim 7, wherein the opaque conductive metal is an aluminum based
1	9.	The method of claim 1, further including forming a contact hole in the passivation
2	layer p	rior to forming a reflective electrode on the embossed surface of the passivation layer
3	such th	nat an exterior surface of the reflective electrode is embossed.
1 2	10. layer p	The method of claim 1, further including forming a contact hole in the passivation prior to dry-etching the surface of the passivation layer.
1	11.	A liquid crystal display device comprising:
2		upper and lower substrates with a liquid crystal layer interposed therebetween;
3		a gate line and a gate electrode on the lower substrate;
4		a gate-insulating layer on the lower substrate, the gate-insulating layer covering the

16

5		gate line and gate electrode;
6		an active layer on the gate-insulating layer;
7		a source electrode and a drain electrode on the active layer;
8		a data line on the gate-insulating layer;
9		a passivation layer on the data line, source electrode, and drain electrode; and
10		an embossed reflective electrode on the passivation layer.
1	12.	The device of claim 11, wherein the passivation layer includes an organic insulating
2	materia	al.
1	13.	The device of claim 11, wherein the organic insulating material is benzocyclobutene
2	(BCB)	
1	14.	The device of claim 11, wherein the reflective electrode is an opaque conductive
2	metal.	
1	15.	The device of claim 14, wherein the opaque conductive metal is an aluminum based
2	metal.	
1	16.	A method of fabricating an array substrate for a liquid crystal display device, the
2	metho	d comprising:
3		forming a gate line including a gate electrode on a substrate;
4		forming a first insulating layer on the substrate, the first insulating layer covering the

)	gate tine and gate electrode,	
6	forming an active layer on the first insulating layer;	
7	forming a data line, a source electrode and a drain electrode on the active layer;	
8	forming a second insulating layer on the data line, source electrode and drain	
9	electrode;	
10	forming a first contact hole in the second insulating layer, exposing a first portion of	
11	the drain electrode;	
12	forming a transparent electrode contacting the drain electrode via the first contact	
13	hole;	
14	forming a passivation layer on the first insulating layer and transparent electrode;	
15	forming a second contact hole in the passivation layer and the second insulating layer	
16	exposing a second portion of the drain electrode;	
17	dry-etching a surface of the passivation layer with a gas such that the surface is	
18	embossed; and	
19	forming a reflective electrode on the embossed surface of the passivation layer such	
20	that an exterior surface of the reflective electrode is embossed.	
1	17. The method of claim 16, wherein the gas used for the dry-etching is a mixture gas of	
2	$SF_6 + O_2$.	

The method of claim 16, wherein the gas used for the dry-etching is a mixture gas of

 $CF_4 + O_2$.

18.

1

2

1	19.	The method of claim 10, wherein the gas used for the dry-eleming is 02 gas.
1	20.	The method of claim 16, wherein the passivation layer includes an organic insulating
2	materia	al.
1	21.	The method of claim 20, wherein the organic insulating material is benzocyclobutene
2	(BCB)	•
1	22.	The method of claim 16, wherein the reflective electrode is an opaque conductive
2	metal.	
1	23.	The method of claim 22, wherein the opaque conductive metal is an aluminum based
2	metal.	
1	24.	A liquid crystal display device comprising:
2		upper and lower substrates with a liquid crystal layer interposed therebetween;
3		a gate line and a gate electrode on the lower substrate;
4		a first insulating layer on the lower substrate, the first insulating layer covering the
5	gate li	ne and gate electrode;
6		an active layer on the gate-insulating layer;
7		a source electrode and a drain electrode on the active layer;
8		a data line on the gate-insulating layer;
9		a second insulating layer on the data line, source electrode and drain electrode;

U		a transparent electrode on the second insulating layer,	
1		a passivation layer on the second insulating layer and the transparent electrode; and	
2		an embossed reflective electrode on the passivation layer.	
1	25.	The device of claim 24, wherein the passivation layer includes an organic insulating	
2	materi	material.	
1	26.	The device of claim 24, wherein the organic insulating material is benzocyclobutene	
2	(BCB)).	
1	27.	The device of claim 24, wherein the reflective electrode is an opaque conductive	
2	metal.		
1	28.	The device of claim 27, wherein the opaque conductive metal is an aluminum based	
2	metal.		
		•	