The current landscape of Deep Learning

Trends and Challenges

Soumith Chintala
Facebook Al Research
soumith@gmail.com

IIIT Hyderabad 18th February, 2015

Deep Neural Networks

- Feed-forward Neural Networks
 - Convolutional neural networks
- Recurrent Neural Networks
- Boltzmann Machines

Domains under discussion

- Vision (images, videos, RGB-D)
- Natural Language Processing
- Neural Machines

Optimization and scaling

- Convex and non-convex optimizers
- Weight initialization and conditioning
- Distributed training

ConvNets for Images: ImageNet Challenge

Top-5 Error on Imagenet Classification Challenge (1000 classes)

AlexNet	~15%
---------------------------	------

Deeper Networks
Smaller convolutions

Trends in ConvNet Architectures

- Smaller kernels
 - increase in discriminative power
- Deeper Networks
- Regularized fully connected layers
 - Dropout, MaxOut, DropConnect

ConvNets for Image Classification

- How to win?
 - Pick a dataset
 - Train a ConvNet
 - Beat state-of-the-art
 - Publish
 - O Win!

ConvNets for Image Segmentation

- MALIS
- Watershed + ConvNets + Trees
- Plenty of scope for improvement
 - Clement Farabet, Camille Couprie, Srini Turaga

turaga (2009)

image

groundtruth

Segmentation and Stereo

Farabet et. al. (2012)

ConvNets + Graphical Model (Tompson et. al. 2014)

Inferring groups and generalizing ConvNets

Chen et. al. (2014)

- Deep Haar Scattering on Graphs
- Deep Symmetry Networks

Generative Adversarial Nets

Goodfellow et. al. (2014)

ConvNets for Video

ConvNets for NLP

Collobert et. al. (2011)

Recurrent Neural Networks

Mikolov 2014

RNNs for visual attention

Mnih et. al. (DeepMind) 2014

RNN-LSTMs

Sutskever et. al. (2014)

- Machine Translation
- Language Modeling
- Learning to execute (Python programs)

Basic LSTM unit (figure from deeplearning.net)

RNN - Memory Networks for Q&A

Bilbo travelled to the cave. Gollum dropped the ring there. Bilbo took the ring. Bilbo went back to the Shire. Bilbo left the ring there. Frodo got the ring. Frodo journeyed to Mount-Doom. Frodo dropped the ring there. Sauron died. Frodo went back to the Shire. Bilbo travelled to the Grey-havens. The End.

Where is the ring? A: Mount-Doom Where is Bilbo now? A: Grey-havens

Where is Frodo now? A: Shire

Weston et. al. 2014

Alternative memory

- Slow RNNs
 - Mikolov et. al. "Learning Longer MEMORY IN RECURRENT NEURAL NETWORKS"
- Gated Recurrent Units

Chung et. al. (2015)

Neural Machines: Turing Machine

Graves et. al. 2014 (DeepMind)

- Copying
- Sorting

Neural Machines

- Neural Turing Machine
 - Graves et al. 2014
- Memory Networks
 - Weston et. al. 2014
- Learning to Execute programs
 - Zaremba et. al. 2014
- Discovering Efficient Mathematical Identities
 - Zaremba et. al. 2014

Optimization

- New algorithms
 - ADAM
- Distributed optimization
 - Hogwild, Dogwild
 - Downpour
 - Elastic Averaging SGD
- Understanding high-dimensional spaces
 - Loss Surfaces of Multilayer Networks Chormanska et. al 2014
 - Exact solutions to the nonlinear dynamics of learning in deep linear neural networks - Saxe et. al. 2014
 - Identifying and attacking the saddle point problem in highdimensional non-convex optimization - Dauphin et. al. 2014

Visualization by Alec Radford (Indico)

Trends

- Deeper nets
- Smaller convolutions
- RNN + LSTM
- Multiple GPUs + Multiple Machines
- Neural Machines
- Other kinds of memory units
- Better weight initialization
- Meta-problems

Challenges

- Scaling up for big data (videos, social networks etc.)
- Discrete optimization
- Memory that works