高数学习

韩海舰

January 16, 2020

1 第一章 函数,极限,连续性

- 1.1 第一周练习
- 1. 已知 f(x+1) 的定义域为 [0,a](a>0), 则 f(x) 的定义域为 ()。
 - 1. [1, a+1]
 - 2. [-1, a+1]
 - 3. [a, a+1]
 - 4. [a-1,a]

正确答案: A 你错选为 B

2

若 $\lim_{n \to \infty} x_n = a(\mathbf{a})$ 为常数),则下列说法不正确的是。

- 1. 数列 $\{x_n\}$ 有界。
- $2. \quad \lim_{n \to \infty} x_{2n} = a$
- 3. 若 $x_n > 0$ (n=1,2...n), 则 a>0
- 4. 常数 a 唯一。

正确答案: C 你没选择任何选项 极限的性质包括: 唯一性,有界性,保号性。其中保号性是指如果极限 >0,则 $x_n>0$ 。

1.2 第二周练习

1. 已知函数

$$f(x) = \begin{cases} x^2 \sin \frac{1}{x}, & x < 0\\ \frac{\sqrt{1+x^2}-1}{x}, & x > 0 \end{cases}$$

$$\iiint \lim_{x \to 0} f(x) = (?)$$

结果为0

2.

若
$$\lim_{x\to 0} f(x) = 0$$
,则()

- 1. 仅当 $\lim_{x\to x_0}g(x)=0$ 时,才有 $\lim_{x\to x_0}f(x)g(x)=0$ 成立。
- 2. 当g(x)为任意函数时,有 $\lim_{x\to x_0}f(x)g(x)=0$ 成立
- 3. 仅当g(x)为常数时,才能使 $\lim_{x\to x_0} f(x)g(x) = 0$ 成立
- 4. 当g(x)有界时,能使 $\lim_{x\to x_0} f(x)g(x) = 0$ 成立

答案是 4.

$$\lim_{x \to 0} f(x) = 0$$

是无穷小,无穷小与有界函数之积是无穷小。 3

$$\lim_{x \to 0} (1 - x)^{\frac{1}{\sin x}} = (?)$$

- 1. 1
- 2. e
- 3. e^{-1}
- 4. e^{-2}

正确答案: C 你错选为 B

1.3 第三周练习

等价无穷小:

$$\begin{vmatrix}
sin(x) \sim x, & tan(x) \sim x \\
arcsin(x) \sim x & \\
e^{x} - 1 \sim x, & a^{x} - 1 \sim x \ln a \\
\ln(x+1) \sim x, & 1 - cos(x) \sim \frac{1}{2}x^{2}
\end{vmatrix}$$

$$\sqrt[n]{1+x} - 1 \sim \frac{1}{n}x$$
(1)

有用极限:

$$\lim_{x \to 0} (1+x)^{\frac{1}{x}} = e \tag{2}$$

无穷小的关系:

$$\alpha = \lim f(x) = 0, \beta = \lim g(x) = 0,$$
 均是无穷小

高阶无穷小:	$\frac{\alpha}{\beta} = 0$	α 是 β 的高阶无穷小
等价无穷小:	$\frac{\alpha}{\beta} = 1$	α 是 β 的等阶无穷小
同价无穷小:	ρ , , ,	α 是 β 的同阶无穷小
k 价无穷小:	$\frac{\alpha}{\beta^k} = c (c \neq 0)$	α 是 β 的 k 阶无穷小

matlab 中求极限

limit(f,x,a)

f 是表达式,可以直接用'xxx',也可用 syms 来定义。

x 表示自变量, a 表示趋向。

例如:

limit('(exp(x)+exp(-x))/sin(x)',x,0)

or

syms x y;

y=(exp(x)+exp(-x))/sin(x);

limit(y,x,0)

结果为 2

2 导数与微分

2.1 第四周练习

- 1. 设函数 f(u) 可导,且 $y = f(x^2)$ 当自变量 x 在 x=1 处取得增量 $\Delta x = -0.1$ 时,相应的函数增量 Δy 的线性主部为 0.1,则 $f^{'}(1) = ()$.
 - 1. 0.1
 - 2. 1
 - 3. -0.5
 - 4. -1

正确答案: C 你错选为 D

- 2. 函数 y=f(x) 在 x_0 处连续、可导、可微的关系中不正确的是:
 - 1. 可导是可微的充分必要条件
 - 2. 可微是连续的充分条件
 - 3. 连续是可导的充分必要条件
 - 4. 连续式可微的必要条件

正确答案: C 你错选为 A 连续:

- 1. f(x) 在 x₀ 处有定义
- 2. f(x) 在 x₀ 处有极限

$$3. \quad \lim_{x \to x0} f(x) = f(x0)$$

可导:

1. f(x) 在 x_0 的邻域内有定义

2.
$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x0 + \Delta x) - f(x_0)}{\Delta x}$$
存在

3.
$$f'_{+}(x_0) = f'_{-}(x_0)$$

可导 \Longrightarrow 连续,但连续未必可导。可导 \Longleftrightarrow 可微 二阶导数:

$$\frac{d^2y}{dx^2} = \frac{d\frac{dy}{dx}}{dx}$$

3 第三章微分中值定理与导数应用

3.1 第六周练习

- 1. $\[\vec{x}\]$ $\lim_{x\to 0} \left\{ \frac{\sin x}{x} \right\}^{\frac{1}{1-\cos x}} = ()$
 - 1. 1
 - 2. $e^{-\frac{1}{3}}$
 - 3. $e^{\frac{1}{6}}$
 - 4. e^2

正确答案: B 你错选为 A

2
$$\vec{x} \lim_{x \to 1} \left\{ \frac{3}{1-x^3} - \frac{1}{1-x} \right\} = ()$$

- 1. -1
- 2. 0
- $3. \infty$
- 4. 1

正确答案: D 你错选为 C 通分

- **3** . 函数 $y = x^2 + 4x 5$ 在区间 [-6,6] 上
 - 1. 先单调减少再单调增加
 - 2. 先单调增加再单调减少
 - 3. 单调增加
 - 4. 单调减少

正确答案: A 你错选为 C 注意 x 的区间,判断 y'的符号

3.2 第七周练习

- 1 . 函数 $y = \frac{lnx}{x}$ 在区间 $(0, +\infty)$ 内,
 - 1. 无极值
 - 2. 最大值为 🕯
 - 3. 最小值为 1
 - 4. 无最大值

正确答案: B 你错选为 A 求导, x=e,

- **2** . 曲线 $y = e^{-(x-1)^2}$ 的渐近线是
 - 1. x=1 为铅直渐近线, y=1 是水平渐近线
 - 2. x=1 为铅直渐近线, y=0 是水平渐近线
 - 3. y=0 是水平渐近线
 - 4. x=0 为铅直渐近线, y=0 是水平渐近线

正确答案: C 你错选为 A

 $\lim_x \to \infty f(x)$ =? 判断水平渐近线, $\lim_x \to x0 f(x)$ =? 判断铅直渐近线。 拐点: 凹凸转折点。

拐点的充分必要条件: f(x) 在 (a,b) 内二阶可导, $f''(x_0) = 0, x_0 \in (a,b)$, 而且 $f''(x_0)$ 处两边符号不相等

曲 率: 反应曲线的弯曲程度。直线的曲率为 0, 圆的曲率为 1/R. 圆的半径越大,则曲率越小,否则曲率越大。

$$K = \lim_{\Delta S \to 0} \frac{\alpha}{\Delta S}$$

 α 是弧的转角。曲率的计算公式:

$$\frac{|y''|}{(1+y'^2)^{\frac{3}{2}}}$$
(3)

matlab 中的函数 定义符号: syms x 求导: diff(f) 例如: f=sin(x);diff(f); 积分: 符号积分: int(fun,x) 计算不定积分 int(fun,x,a,b): 计算定积分 例如: f=sinx;int(f) int(f,-pi,pi); 数值积分: trapz(x,y): 梯形积分 例如: x=-1:0.01:1 y=tan(x);trapz(x,y); quad(fun,x,a,b) 辛普森积分 fun 可以是匿名函数 @(x), 或内联函数 inline() 比如 y=cosx, 可以表示成: $y=0(x)\cos(x)$

pretty(fx) 人性化显示公式

4 第四章一元函数积分学

4.1 第九周练习

y=inline('cos(x)')

y=@(x)tan(x) quad(y,-1,1)

例如:

1.f(x) 在 [a,b] 上连续是 $\int_a^b f(x)dx$ 的()

1. 充分必要条件

- 2. 必要非充分条件
- 3. 既非充分也非必要条件
- 4. 充分而非必要条件

正确答案: D 你错选为 C

若 f(x) 在 [a,b] 连续,则其上界函数 $\int_a^x f(t)dt$ 必然是其原函数,即函数连续 必有原函数。

2 . 求 $\int \frac{\sqrt{x^2-9}}{x^2} dx$ 正确答案: $ln|x+\sqrt{x^2-9}|-\frac{1}{x}\sqrt{x^2-9}+C$

3 . 求 $\int_a^b f(mx+n)dx =$ 正确答案: $\frac{1}{m} \int_{ma+n}^{mb+n} f(x)ds$

4 求 $\int_0^{1/2} \frac{x^2}{\sqrt{1-x^2}} dx$ 正确答案: $\pi/12 - \sqrt{3}/8$

5 $\Re \int_{-2}^{2} (e^{x^2} sinx^3 - \sqrt{4 - x^2}) dx$

正确答案: -2π

4.2 第十一周练习

1 . 求 $\int (x^2+1)e^{2x}dx$ 正确答案: $\frac{1}{2}(x^2+1)e^{2x}-\frac{1}{2}xe^{2x}-\frac{1}{4}e^{2x}+C$

 ${\bf 2}$. 已知 f(x) 的原函数是 $tan^2x,$ 则 $\int_0^1 xf^{'}(x)dx=$ 答案是: $2tan1sec^21+tan^21$

 $3 \quad . \ \, \cancel{x} \int_{\frac{-1}{2}}^{\frac{1}{2}} \frac{xarcsinx}{\sqrt{1-x^2}} dx$

答案是: $1 - \frac{\sqrt{3}}{6}\pi$

4 . $\[\vec{x} \]_{-1}^2 \frac{1}{x^2} dx$

答案是发散。由于积分区间中存在瑕点。

- 第五章积分应用 5
- 5.1 第十二周练习
- 1 . 计算心形 $\rho = 1 + \cos\theta$ 和圆 $\rho = 3\cos\theta$ 所围公共部分面积。 正确答案: $5\pi/4$

 ${f 2}$. 已知一弹簧原长 1 米,把它压缩 1 厘米所用的力为 0.05 牛顿,把弹簧从 80 厘米压缩到 60 厘米所做的功() 正确答案: 0.3 (N.m)

计算曲线面积

直角坐标: ds = y * dx 极坐标: $ds = \frac{\rho^2 d\theta}{2}$

计算曲线长度:

直角坐标: $ds = \sqrt{1 + y'^2} dx$

参数方程: $ds = \sqrt{dx^2(t) + dy^2(t)}$

极坐标: $ds = \sqrt{\rho^2 + {\rho'}^2} d\theta$

常用积分公式

$$\int \ln x dx = x \ln x - x + C$$

$$\int \sin^2 x dx = \frac{x}{2} - \frac{\sin 2x}{4} + C$$

$$\int \cos^2 x dx = \frac{x}{2} + \frac{\sin 2x}{4} + C$$

$$\int \cos^n x \sin^n x dx = \frac{1}{m+n} \cos^{m-1} x \sin^{n+1} x + \frac{m-1}{m+n} \int \cos^{m-2} x \sin^n x + C$$

$$(4)$$

6 第六章 微分方程

6.1 第十三周练习

1. 微分方程 $\frac{dy}{dx}=2x$ 的一条积分曲线与直线 y=2x+3 相切,则切点为: 正确答案: (1,5)

直线斜率为 2, 积分曲线切线斜率为 $y'=2x,2x=2 \Longrightarrow x=1 \Longrightarrow y=5$

2 . 微分方程 xy' + y = y(lnx + lny) 的通解为:

正确答案: $y = \frac{1}{x}e^{Cx}$ 用换元法, u=xy

 ${\bf 3}$. 设 y(x) 满足微分方程 $xy'+y-y^2lnx=0,y(1)=1,$ 则, y(e)=? 正确答案: 1/2

用换元法,u=1/y,将方程转换成 u,x 的非齐次线性方程,然后用公式,最后代回。

6.2 第十四周练习

1 $.y^{''} = e^x$ 的通解为:

正确答案: $e^{-x} + C_1 x + C_2$

- 2 . 微分方程 $xy^{''}+xy^{'2}-y'=0$ 的通解 正确答案: $y=ln(x^2+2C_1)+C_2$ 化简后方程变为: $y^{''}+y^{'2}-y^{'}/x=0$ 。符合 $y^{''}=f(x,y^{'})$ 格式,所以用 $p=y^{'}$ 替换,替换后变成伯努立方程,两边同除 p^2 ,然后用公式。
- 6.3 第十五周练习
- 1. 微分方程 y'' + y = x + sinx 的特解是: y= ()
 - 1. Ax + B + Ccosx + Dsinx
 - 2. Ax + B + Cxsinx
 - 3. Ax + B + x(Ccosx + Dsinx)
 - 4. Ax + x(Ccosx + Dsinx)

正确答案 C, 错答为 B

- **2** . 微分方程 $y'' + 3y' + 2y = x^2 e^{-2x}$ 的特解是: y= ()
 - 1. $y = ax^2e^{-2x}$
 - 2. $y = (ax^2 + bx + c)e^{-2x}$
 - 3. $y = x(ax^2 + bx + c)e^{-2x}$
 - 4. $y = x^2(ax^2 + bx + c)e^{-2x}$

正确答案 C, 错答为 D

$$\lambda = -2, m = 2, \lambda_1 = -2, \lambda_2 = -1, k = 1$$

- **3** . 微分方程 $y'' y' = e^x + 1$ 的通解是: y= ()
 - 1. $y = C_1 + C_2 e^x$
 - $2. \ y = axe^x + b$
 - 3. $y = C_1 + C_2 e^x + x e^x x$
 - 4. $y = C_1 + C_2 e^x x$

正确答案 C, 错答为 D

通解为齐次方程的通解 + 非齐次方程的特解。齐次方程的通解为 $y=C_1+C_2e^x$, 特解为 xe^x-x

3 . 微分方程 y'' + 4y = 1/2cos2x 的通解是: y= ()

1.
$$y = x(ACos2x + Bsin2x)$$

$$2. \ y = A\cos 2x + B\sin 2x + 1/8x\sin 2x$$

3.
$$y = A\cos 2x + B\sin 2x$$

4.
$$y = A + Be^{-4x} + 1/8xcos2x$$

正确答案 B, 错答为 C

通解为齐次方程的通解 + 非齐次方程的特解。特征根 $0\pm 2i$, 齐次方程的通解 为 $y=C_1cos2x+C_2sin2x$, 特解只能选 B。

4 . 微分方程 y'' - 4y' + 3y = 9 的通解是: y= ()

1.
$$y = C_1 e^x + C_2 e^{3x}$$

2.
$$y = e^x(C_1\cos 3x + C_2\sin 3x) - 3$$

3.
$$y = C_1 e^x + C_2 e^{3x} + 3$$

4.
$$y = C_1 e^x + C_2 e^{3x} + 3x^2$$

正确答案 C, 错答为 A

通解为齐次方程的通解 + 非齐次方程的特解。特征根为 1, 3, 齐次方程的通解为 $y=C_1e^x+C_2e^{3x}$, 将待选的特解带入方程只有选 \mathbb{C} 。

微分方程定义:含有未知函数和未知函数导数的方程称为微分方程。 注意不是所有含有未知函数导数的方程都是微分方程,比如 u'v+uv'=(uv)'就是一个恒等式,它不是微分方程。

微分方程的分类:导数的最高阶数称为微分方程的阶。 含有一个未知变量的函数,称为常微分方程; 含有2个以上未知变量的函数,称为偏微分方程。

微分方程的解:

微分方程的解是函数。将该函数带入原方程使得原方程恒成立,将此函数称为 微分方程的解

含有微分方程阶数的个数个独立常数的解称为微分方程的通解。

不含常数的解称为微分方程的特解。

含有初始条件的微分方程称为初始问题。

一阶常微分方程:

例 I I I I I I I I I I I I I I I I I I I		
方程名称	方程格式	方程解
可分离变量方程	$\frac{dy}{dx} = f(x)g(y)(g(y) \neq 0)$	
齐次方程	$\frac{dy}{dx} = f(\frac{y}{x})$	
齐次线性方程	$\frac{dy}{dx} + p(x)y = 0$ $y' + p(x)y = 0$	$y = Ce^{-\int p(x)dx}$
非齐次线性方程	$\frac{dy}{dx} + p(x)y = q(x)$ $y' + p(x)y = q(x)$	$y = e^{-\int p(x)dx} \left(\int q(x)e^{\int p(x)dx} dx + C \right)$ 或常数变量法
伯努力方程	$\frac{dy}{dx} + p(x)y = q(x)y^n, n \neq 0, 1$	两边除以 y^n , 转换成非齐次线性方程, 然后用公式法或常数变量法求解。

二阶微分方程

可降阶的微分方程: y'' = f(x, y, y'), 思路是将二阶降为一阶

方程形式	降阶方法
y'' = f(x)	逐级不定积分
y'' = f(x, y')	$\Leftrightarrow y' = p(x)$
y'' = f(y, y')	$\Leftrightarrow y' = p(y), y'' = dp/dy * p$

二阶线性常微分方程:

方程名	方程格式	解格式
二阶齐次线 性常微分方 程	y'' + p(x)y' + q(x)y = 0	$y = C_1 y 1 + C_2 y 2$ y1, y2 是线性无关的解
二阶非齐次 线性常微分 方程	y'' + p(x)y' + q(x)y = f(x)	y = y + Y Y 是对应齐次方程的通解, y 是方程特解。

二阶常系数线性常微分方程:

	111111111111111111111111111111111111111	
方程名	方程格式	解格式
二阶常系数 齐次线性常 微分方程	$y^{''} + py^{'} + qy = 0$	根据 $r^2 + pr + q = 0$ 特征方程结果 $p^2 - 4q$ 的结果 根 通解 $p^2 - 4q > 0$ λ_1, λ_2 , 单根 $C_1 e^{\lambda_1 x} + C_2 e^{\lambda_2 x}$ $p^2 - 4q = 0$ λ , 重根 $(C_1 + x)e^{\lambda}x$ $p^2 - 4q < 0$ $\alpha \pm i\beta$, 共轭根 $e^{\alpha x}[C_1 cos(\beta x) + C_2 sin(\beta x)]$
二阶常系数非齐次线性常微分方程	$y^{''} + py^{'} + qy = f(x)$	通解: $y = y + Y$ Y 是对应齐次方程的通解, y 是方程特解 自由项情况 1: $f(x) = e^{\lambda x}Q_m(x)$ $Q_m(x)$ 是 x 的 m 次多项式 根据特征方程 $r^2 + pr + q = 0$ 根的结果和 $2\lambda + p$ 的情况 特解: $y = x^k e^{\lambda x}P_m(x), P_m(x)$ 是 x 的 m 次多项式 特征方程结果 k $\lambda^2 + p\lambda + q \neq 0$ $k=0$ λ 不是特征方程的根 $\lambda^2 + p\lambda + q = 0$ 和 $2\lambda + p \neq 0$ $k=1$ λ 是单根 $\lambda^2 + p\lambda + q = 0$ 和 $2\lambda + p = 0$ $k=2$ λ 是重根 自由项情况 2: $f(x) = e^{\lambda x}(P_l(x)cos\omega x + P_n(x)sin\omega x)$ $P_l(x), P_n(x)$ 是 x 的 l,n 次多项式 根据特征方程 $r^2 + pr + q = 0$ 根的结果 特解: $y = x^k e^{\lambda x}[R_m^{(1)}(x)cos(\omega x) + R_m^{(2)}(x)sin(\omega x)]$ m=max(l,n), $R_m(x)$ 是关于 x 的 m 次多项式 特征方程结果 k $\lambda + i\omega$ 不是特征方程的根 $k=0$ $\lambda + i\omega$ 是特征方程的根 $k=0$ $\lambda + i\omega$ 是特征方程的根 $k=0$ $\lambda + i\omega$ 是特征方程的根 $k=0$

matlab 中的微分方程: 符号微分方程: dsolve('eq1,eq2..','con1,con2','v') eq1,eq2.. 微分方程, con1, con2.. 初始条件, v 变量 Dy 表示导数 y' 例子: 求 y'+3xy=4x 的通解 syms y x; dsolve('Dy+3*x*y=4*x','x') ezplot(y); ans = 4/3+exp(-3/2*x^2)*C1

>> pretty(ans)

$$\frac{2}{4/3} + \exp(-3/2 \times) C1$$

7 期末考试

- **1** . 当 $x \to 0$ 时,下列哪一个无穷小时对于 x 的三阶无穷小()
 - 1. $x^3 + 0.0001x^2$
 - 2. $\sqrt{a+x^3} \sqrt{a}$ (a > 0)
 - 3. $\sqrt[3]{x^2} \sqrt{x}$
 - 4. $\sqrt[3]{tanx}$

正确答案 B, 错选 A

高阶无穷小的概念是 $\lim_{\beta^k} = C, C \neq 0$, 只有

$$\lim \frac{\sqrt{a+x^3}-\sqrt{a}}{x^3}=C$$
, 所以选 B。

- $2 \quad . \int x f''(x) dx = ()$
 - 1. $xf(x) \int f(x)dx$
 - 2. xf''(x) xf'(x) f(x) + C
 - 3. xf'(x) + f(x) + C
 - 4. xf'(x) f(x) + C

正确答案 D, 错选 C

3 . 当 $x \rightarrow 0$ 时,与 $sin2x + 5x^2$ 等价无穷小的量时 ()

- 1. $5x^2$
- 2. *x*
- 3. x^2
- 4. 2*x*

正确答案 D, 错选 A

4 $.\int_{-1}^{1} \frac{2+x^3 \sin^2 x}{\sqrt{4-x^2}} dx = ()$

- 1. $\pi/2$
- 2. $2/3\pi$
- $3. \pi$
- $4. \ 2\pi$

正确答案 B

 $\mathbf{5}$. 设 $f(x) = \int_{2x}^{1} \frac{\sin t}{t} dt$, 则 f'(x) = ()

- $1. -\frac{\sin 2x}{2x}$
- $2. \ \frac{\sin 2x}{2x}$
- 3. $\frac{\sin 2x}{x}$
- $4. -\frac{\sin 2x}{2x}$

正确答案 D

6 $.\int_0^1 \frac{x}{\sqrt{1-x^2}} dx = ()$

- 1. -1
- 2. 2
- 3. 1
- 4. 0

正确答案 C, 错选为 A

7
$$.\int_{-1}^{1} x^3 \sqrt{1-x^2} dx = ()$$

- 1. 0
- 2. $\frac{1}{3}\pi$
- 3. $\frac{\pi}{4}$
- 4. $\frac{\pi}{2}$

正确答案为 A

- 8 . 微分方程 y'' + 2y' + y = x 的通解是 ()
 - 1. $y = x + C_1 e^{-x} + C_2 x e^{-x}$
 - 2. $y = x 2 + C_1 x e^{-x} + C_2 e^x$
 - 3. $y = x 2 + C_1 x e^{-x} + C_2 e^{-x}$
 - 4. $y = x 2 + C_1 e^{-x} + C_2 e^x$

正确答案为 C, 错选为 A。

首先确定齐次方程的根为 -1,所以齐次方程通解为 $(C_1+C_2x)e^{-x}$, 其次,确定非齐次方程右边为 $e^{\lambda x}P_m(x)$ 格式, $\lambda=0, m=1$,而 $\lambda=0$ 不是特

所以非齐次方程的特解中 k=0, 特解为 y=ax+b, 带入方程得到

a = 1, b = -2

8 附录 1 常用公式

双曲函数

_/	火川 凹 奴		
	$sh(x) = \frac{e^{(x)} - e^{-(x)}}{2}$	$ch(x) = \frac{e^2 + e^{-x}}{2}$	$th(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$
	sh'(x) = ch(x)	ch'(x) = sh(x)	$th'(x) = \frac{1}{ch^2(x)}$
	$arcsh(x) = ln(x + \sqrt{x^2 + 1})$	$arcch(x) = ln(x + \sqrt{x^2 - 1})$	$arcth(x) = \frac{1}{2}ln\frac{1+x}{1-x}$
	$arcsit(x) = tit(x + \sqrt{x} + 1)$		$x \in (-1,1)$
	$arcsh'(x) = \frac{1}{x^2 + 1}$	$arcch'(x) = \frac{1}{x^2 - 1}$	$arcth'(x) = \frac{1}{1-x^2}$

 $ch^{2}(x) - sh^{2}(x) = 1$ $ch^{2}(x) + sh^{2}(x) = ch(2x)$

欧拉公式	$e^{j\theta} = \cos\theta + j\sin\theta$
	$tan\alpha = \frac{2tan(\frac{\alpha}{2})}{1 - tan(\frac{\alpha}{2})^2}$
万能公式	$sin \alpha = \frac{2tan(\frac{\alpha}{2})}{1 + tan(\frac{\alpha}{2})^2}$
	$cos\alpha = \frac{1 - tan^2(\frac{\alpha}{2})}{1 + tan(\frac{\alpha}{2})^2}$

9 附录 2 不定积分的常用方法

- 9.1 基本初等函数积分公式
- 9.1.1 幂函数

$$\int x^{\mu} dx = \left\{ \begin{array}{ll} \frac{x^{\mu+1}}{\mu+1} + C & \mu \neq -1 \\ ln|x| + C & \mu = -1 \end{array} \right.$$

9.1.2 指数函数

$$\int e^x dx = e^x + C$$
$$\int a^x dx = \frac{a^x}{\ln a} + C$$

9.1.3 对数函数

$$\int \ln x dx = x * \ln x - x + C$$
$$\int \log_a x dx = x * \log_a x - x \log_a e + C$$

9.1.4 三角函数

9.1.5 反三角函数

9.2 常用积分公式

$\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \ln\left \frac{x - a}{x + a}\right + C$	$\int \frac{dx}{x^2 + a^2} = \frac{1}{a} \arctan \frac{x}{a} + C$
$\int \frac{dx}{\sqrt{1-x^2}} = \arcsin(x) + C$	$\int \frac{-dx}{\sqrt{1-x^2}} = \arccos(x) + C$
$\int \frac{dx}{1+x^2} = arctan(x) + C$	$\int \frac{-dx}{1+x^2} = \operatorname{arccot}(x) + C$

9.3 常用方法

1. 凑微分

将
$$\varphi'(x)$$
 ($\varphi'(x)$) $\varphi'(x)$ $dx = \int f(\varphi(x)) d(\varphi(x))$ 将 $\varphi'(x) dx$ 凑到 $d(\varphi(x))$ 中。
2. 换元法
$$\int f(x) dx = \int f(\varphi(t)) \varphi'(t) dt$$
 用 $x = \varphi(t)$ 进行替换变量,进行积分 常用换元:

型式	換元
$\sqrt{a^2+x^2}$	$x = a * tan(\alpha), x = a * cot(\alpha), x = a * sh(\alpha),$
$\sqrt{a^2-x^2}$	$x = a * sin()\alpha), x = a * cos(\alpha),$
$\sqrt{x^2-a^2}$	$x = a * sec(\alpha), x = a * csc(\alpha),$

3. 分部积分

9.4 常用形式

- 1) 采用凑微分方法,将 ax + b 凑到微分中。
- 2) 因式分解

9.4.2 含 $\sqrt{ax+b}$

- 1) 利用 $t = \sqrt{ax + b}$ 来去除根号。
- 2) 利用已经获得的结果,分部积分。 参考例子:

$$\int \sqrt{ax+b}dx$$
, 凑微分。

 $\int x\sqrt{ax+b}dx$, 利用 $t=\sqrt{ax+b}$ 来去除根号。或分部积分。

 $\int x^2 \sqrt{ax + b} dx$,利用 $t = \sqrt{ax + b}$ 来去除根号。或分部积分。 $\int \frac{x}{\sqrt{ax + b}} dx$,利用 $t = \sqrt{ax + b}$ 来去除根号。或先求出 $\int \frac{dx}{\sqrt{ax + b}}$,再分部积分。

 $\int \frac{x^2}{\sqrt{ax+b}} dx$,利用 $t = \sqrt{ax+b}$ 来去除根号。或先求出 $\int x/\frac{dx}{\sqrt{ax+b}}$,再分部积分。

 $\int \frac{dx}{x} \frac{dx}{x + \sqrt{ax + b}}$, 利用 $t = \sqrt{ax + b}$ 来去除根号, 然后利用

 $\int \frac{dx}{x^2+a^2} = \frac{1}{|a|} arctan(\frac{x}{|a|}) + C$ 和 $\int \frac{dx}{x^2-a^2} = \frac{1}{2a} ln(|\frac{x-a}{x+a}|) + C$ 来积分,。需要根据 b>0, b<0 选择积分型式。 $\int \frac{dx}{x^2*\sqrt{ax+b}},$ 需要先分解因式,然后利用 $\int \frac{dx}{x*\sqrt{ax+b}}$ 结果。

- 1) 凑微分
- 2) 分解

参考例子:

- $\int \frac{dx}{ax^2+b}$, 利用 $\int \frac{dx}{x^2+a^2} = \frac{1}{|a|} arctan(\frac{x}{|a|}) + C$ 和 $\int \frac{dx}{x^2-a^2} = \frac{1}{2a} ln(|\frac{x-a}{x+a}|) + C$
- $\int \frac{xdx}{ax^2+b}$, 凑微分

- $\int \frac{x^2 dx}{ax^2 + b}$, 分解
- $\int \frac{dx}{x*(ax^2+b)}$, 分解
- $\int \frac{dx}{x^2*(ax^2+b)}$, 分解
- $\int \frac{dx}{x^3*(ax^2+b)}$,利用上一个分解的结果分解

9.4.5 $\Rightarrow ax^2 + bx + c, (a > 0)$

- 1) 凑微分
- 2) 分解

参考例子:

- $\int \frac{dx}{ax^2+bx+c}$, 方法 1: 考虑将 ax^2+bx+c 分解成 $(Ax+B)^2+C^2$ 形式,然后利用 $\int \frac{dx}{x^2+a^2} = \frac{1}{|a|} arctan(\frac{x}{|a|}) + C$ 和 $\int \frac{dx}{x^2-a^2} = \frac{1}{2a} ln(|\frac{x-a}{x+a}|) + C$ 。因为 $\sqrt{b^2-4ac}$ 结果不定,所以有两个结果 方法 2: 由于 $\frac{1}{x-r_1}*\frac{1}{x-r_2}=\frac{1}{r_1-r_2}(\frac{1}{x-r_1}-\frac{1}{x-r_2})$,将 ax^2+bx+c 分解 成: $\frac{1}{a}\frac{1}{r_1-r_2}(\frac{1}{x-r_1}-\frac{1}{x-r_2})$ 形式,r1,r2 是该方程的根。然后凑微分即可积分。
- $\int \frac{xdx}{ax^2+bx+c}$, 凑微分,将 x 凑到 dx 中。 $\frac{x}{ax^2+bx+c} = \frac{ax+b-b}{ax^2+bx+c}$

- 1) 用 $x = a * tan\alpha$ 利用 $\sqrt{1 + tan^2\alpha} = sec\alpha$ 换元来脱根号
- 2) 分解

参考例子:

- $\int \frac{dx}{\sqrt{x^2+a^2}} = arcsh\frac{x}{a} + C = ln(x+\sqrt{x^2+a^2}) + C.$ 用 $x = a*tan\alpha$ 利用 $\sqrt{1+tan^2\alpha} = sec\alpha$ 换元来脱根号
 利用 $\int secx = ln|secx+tanx| + C$ 公式。注意回带的时候,利用作图来求三角函数值比较方便。
- $\int \frac{dx}{\sqrt{x^2 + a^2}^3}$. 用 $x = a * tan\alpha$ 利用 $\sqrt{1 + tan^2\alpha} = sec\alpha$ 换元来脱根号注意回带的时候,利用作图来求三角函数值比较方便。
- $\int \frac{xdx}{\sqrt{x^2+a^2}}$. 用 $x=a*tan\alpha$ 利用 $\sqrt{1+tan^2\alpha}=sec\alpha$ 换元来脱根号注意回带的时候,利用作图来求三角函数值比较方便。
- $\int \frac{xdx}{\sqrt{x^2+a^2}^3}$. 用 $x = a*tan\alpha$ 利用 $\sqrt{1+tan^2\alpha} = sec\alpha$ 换元来脱根号注意回带的时候,利用作图来求三角函数值比较方便。

 $\bullet \int \frac{x^2 dx}{\sqrt{x^2 + a^2}}.$

方法 1: 用 $x=a*tan\alpha$ 利用 $\sqrt{1+tan^2\alpha}=sec\alpha$ 换元来脱根号,注意用此方法需要计算 $\int sec^3\alpha d\alpha$,在计算的时候会循环,从而求得。方法 2: 将分子拆解成 $x^2+a^2-a^2$,然后利用现成公式。需要计算 $\int \sqrt{x^2+a^2}dx$ 。注意用此方法需要计算 $\int sec^3\alpha d\alpha$,在计算的时候会循环,从而求得。

- $\int \frac{x^2 dx}{\sqrt{x^2 + a^2}^3}$. 方法 1: 用 $x = a * tan\alpha$ 利用 $\sqrt{1 + tan^2\alpha} = sec\alpha$ 换元来脱根号
- $\int \sqrt{x^2 + a^2} dx$. 用 $x = a * tan\alpha$ 利用 $\sqrt{1 + tan^2\alpha} = sec\alpha$ 换元来脱根号注意回带的时候,利用作图来求三角函数值比较方便。
- $\int \sqrt{x^2 + a^2}^3 dx$ 用 $x = a * sh\alpha$ 利用 $1 + sh^2\alpha = ch^2\alpha$ 换元来脱根号,得到 $\int a^4ch^4\alpha d\alpha$,然后积分
- $\int x\sqrt{x^2+a^2}^3dx$ 凑微分
- $\int x^2 \sqrt{x^2 + a^2}^3 dx$ 分部积分? x 在分母
- $\int \frac{dx}{x\sqrt{x^2+a^2}}$ 用 $x=a*tan\alpha$ 利用 $\sqrt{1+tan^2\alpha}=sec\alpha$ 换元来脱根号
- $\int \frac{dx}{x^2\sqrt{x^2+a^2}}$ 用 $x = a * tan\alpha$ 利用 $\sqrt{1+tan^2\alpha} = sec\alpha$ 换元来脱根号, 化简得到 $\int cot\alpha * csc\alpha d\alpha = csc\alpha$ 积分形式
- $\int \frac{\sqrt{x^2+a^2}}{x} dx$ 用 $x = a * tan\alpha$ 利用 $\sqrt{1+tan^2\alpha} = sec\alpha$ 换元来脱根号, 化简后, 分解得到 $a\int (\frac{sin\alpha}{1-sin^2\alpha} + \frac{1}{sin\alpha}) d\alpha$ 积分形式
- $\int \frac{\sqrt{x^2+a^2}}{x^2} dx$ 用 $x = a * tan\alpha$ 利用 $\sqrt{1+tan^2\alpha} = sec\alpha$ 换元来脱根号, 化简后,分解得 到 $\int (\frac{1}{cos\alpha} + \frac{cos\alpha}{1-cos^2\alpha}) d\alpha$ 积分形式

9.4.7 $riangleq \sqrt{x^2 - a^2}, (a > 0)$

- 1) 用 $x = a * sec \alpha$ 利用 $\sqrt{1 + sec^2 \alpha} = tan \alpha$ 換元来脱根号
- 2) 分解 参考例子:

• $\int \frac{dx}{\sqrt{x^2 - a^2}} = \ln|x + \sqrt{x^2 - a^2}| + C$ 用 $x = a * sec\alpha$ 利用 $\sqrt{1 + sec^2\alpha} = tan\alpha$ 换元来脱根号 注意回带的时候,利用作图来求三角函数值比较方便。

- 1) 用 $x = a * sin\alpha$ 利用 $\sqrt{1 sin^2\alpha} = cos\alpha$ 換元来脱根号
- 2) 分解

参考例子:

- $\int \frac{dx}{\sqrt{a^2-x^2}} = \arcsin(x/a) + C$ 直接套用公式,凑微分;或者令 $x = a\sin\alpha$ 来脱根号。 注意回带的时候,利用作图来求三角函数值比较方便。
- **9.4.9** $\Rightarrow \sqrt{\pm ax^2 + bx + c}, (a > 0)$
- 1) 凑微分
- 2) 分解

参考例子:

- $\int \frac{dx}{\sqrt{ax^2+bx+c}} = \frac{1}{\sqrt{a}} ln |2ax+b+2\sqrt{a}\sqrt{ax^2+bx+c}| + C, a > 0$ 将 ax^2+bx+c 分解成 $\frac{1}{4a} [(2ax+b)^2+4ac-b^2] = \frac{1}{4a} [(2ax+b)^2-(\sqrt{b^2-4ac})^2], 然后利用 \int \frac{dx}{\sqrt{x^2-a^2}}$ 公式积分。
- $\int \frac{dx}{\sqrt{-ax^2+bx+c}} = \frac{1}{\sqrt{a}} \arcsin(\frac{2ax-b}{\sqrt{b^2+4ac}}) + C, a > 0$ 将 $-ax^2 + bx + c$ 分解成 $\frac{1}{4a} [-(2ax+b)^2 + 4ac + b^2] = \frac{1}{4a} [-(2ax+b)^2 + (\sqrt{b^2+4ac})^2],$ 然后利用 $\int \frac{dx}{\sqrt{a^2-x^2}}$ 公式积分。
- **9.4.10** 含 $\sqrt{\pm \frac{x-a}{x+a}}$ 或 $\sqrt{(x-a)(x-b)}$
- $1)t = \sqrt{\frac{x-a}{x+a}}$,变量代换去根号 参考例子:
 - $\int \sqrt{\frac{x-a}{x-b}} dx$ 两次代换,第一次 $t=\sqrt{\frac{x-a}{x+a}}$,第二次 t=seck
- 9.4.11 含三角函数