Introdução à Teoria da Computação Exercícios

Livro: Michel Sipser, Introdução à Teoria da Computação – 2ª Ed. – Capítulo 04

EXERCÍCIOS

Responda a cada um dos itens abaixo para o AFD M e dê razões para suas respostas.

a.
$$\langle M, 0100 \rangle \in A_{AFD}$$
?

b.
$$\langle M, 011 \rangle \in A_{\mathsf{AFD}}$$
?

c.
$$\langle M \rangle \in A_{\mathsf{AFD}}$$
?

d.
$$\langle M, 0100 \rangle \in A_{\mathsf{EXR}}$$
?

levinedinosen

e.
$$\langle M \rangle \in V_{\mathsf{AFD}}$$
?

f.
$$\langle M, M \rangle \in EQ_{\mathsf{AFD}}$$
?

- 4.2 Considere o problema de se determinar se um AFD e uma expressão regular são equivalentes. Expresse esse problema como uma linguagem e mostre que ele é decidível.
- Seja $TODAS_{AFD} = \{\langle A \rangle | A \text{ \'e um AFD e } L(A) = \Sigma^* \}$. Mostre que $TODAS_{AFD}$ é decidível.
 - 4.4 Seja $A\varepsilon_{GLC} = \{\langle G \rangle | G \text{ é uma GLC que gera } \varepsilon \}$. Mostre que $A\varepsilon_{GLC}$ é decidível.
 - 4.5 Seja X o conjunto $\{1, 2, 3, 4, 5\}$ e Y o conjunto $\{6, 7, 8, 9, 10\}$. Descrevemos as funções $f: X \longrightarrow Y$ e $g: X \longrightarrow Y$ nas tabelas abaixo. Responda a cada item e dê uma razão para cada resposta negativa.

\boldsymbol{n}	f(n)	\boldsymbol{n}	$oxed{g(n)}{10}$
1141	W sempre para 6 12	PE	Equipe due out auturas
_			disso, ela aceita todi e us
3	A e, consequentiane	618930	A. Logo, M é um d 8 cis
4		4	77
5	6	5	6

 $^{\mathsf{R}}\mathbf{a}$. f é um-para-um?

 $^{\mathsf{R}}\mathbf{d}$. g é um-para-um?

b. f é sobrejetora?

e. g é sobrejetora?

c. f é uma correspondência?

f. g é uma correspondência?

- Seja \mathcal{B} o conjunto de todas as sequências infinitas sobre $\{0,1\}$. Mostre que \mathcal{B} é incontável, usando uma prova por diagonalização.
- **4.7** Seja $T = \{(i, j, k) | i, j, k \in \mathcal{N}\}$. Mostre que T é contável.
- 4.8 Revise a maneira pela qual definimos conjuntos como sendo do mesmo tamanho na Definição 4.12 (página 184). Mostre que "é do mesmo tamanho" é uma relação de equivalência.

entos versta esta (1983C) ejevistente a rapalva entre encaña a tabandanta da se

PROBLEMAS

- Seja *INFINITA*_{AFD} = $\{\langle A \rangle | A \text{ \'e um AFD e } L(A) \text{ \'e uma linguagem infinita} \}$. Mostre que *INFINITA*_{AFD} $\hat{\text{e}}$ decidível.
- **4.10** Seja *INFINITA*_{AP} = $\{\langle M \rangle | M \text{ é um AP e } L(M) \text{ é uma linguagem infinita} \}$. Mostre que *INFINITA*_{AP} é decidível.
- Seja $A = \{\langle M \rangle | M \text{ é um AFD que não aceita nenhuma cadeia contendo um número ímpar de 1s} \}$. Mostre que A é decidível.
- Seja $A = \{\langle R, S \rangle | R \in S \text{ são expressões regulares e } L(R) \subseteq L(S) \}$. Mostre que A é decidível.
- Seja $\Sigma = \{0,1\}$. Mostre que o problema de se determinar se uma GLC gera alguma cadeia em 1* é decidível. Em outras palavras, mostre que

$$\{\langle G\rangle|\ G \ \text{\'e uma GLC sobre}\ \{0,1\}\ \text{e}\ 1^*\cap L(G)\neq\emptyset\}$$

é uma linguagem decidível.

- *4.14 Mostre que o problema de se determinar se uma GLC gera todas as cadeias em 1* é decidível. Em outras palavras, mostre que $\{\langle G \rangle | G \text{ é uma GLC sobre } \{0,1\} \text{ e}$ $1^* \subseteq L(G)\}$ é uma linguagem decidível.
- Seja $A = \{\langle R \rangle | R$ é uma expressão regular que descreve uma linguagem contendo pelo menos uma cadeia w que tem 111 como uma subcadeia (isto é, w = x111y para alguma x e alguma y). Mostre que A é decidível.
- **4.16** Prove que EQ_{AFD} é decidível testando os dois AFDs sobre todas as cadeias até um certo tamanho. Calcule um tamanho que funcione.
- *4.17 Seja C uma linguagem. Prove que C é Turing-reconhecível sse existe uma linguagem decidível D tal que $C = \{x | \exists y \ (\langle x, y \rangle \in D)\}.$
- **4.18** Sejam A e B duas linguagens disjuntas. Digamos que a linguagem C separa A e B se $A \subseteq C$ e $B \subseteq \overline{C}$. Mostre que quaisquer duas linguagens co-Turingreconhecíveis disjuntas são separáveis por alguma linguagem decidível.
- **4.19** Seja $S = \{\langle M \rangle | M \text{ \'e um AFD que aceita } w^{\mathcal{R}} \text{ sempre que ele aceita } w \}$. Mostre que S 'e decid'evel.

- **4.20** Uma linguagem é *livre-de-prefixo* se nenhum membro é um prefixo próprio de um outro membro. Seja $LIVRE-DE-PREFIXO_{\mathsf{EXR}} = \{R | R \text{ é uma expressão regular onde } L(R) \text{ é livre-de-prefixo} \}$. Mostre que $LIVRE-DE-PREFIXO_{\mathsf{EXR}} \text{ é decidível}$. Por que uma abordagem similar falha em mostrar que $LIVRE-DE-PREFIXO_{\mathsf{GLC}}$ é decidível?
- R*4.21 Digamos que um AFN é ambiguo se ele aceita alguma cadeia ao longo de dois ramos diferentes da computação. Seja AMBIGAFN = {\langle N \rangle | N \rightarrow | N \rightarrow | Mostre que AMBIGAFN \rightarrow | decidível. (Sugestão: Uma maneira elegante de resolver este problema \rightarrow | construir um AFD apropriado e aí então rodar EAFD sobre ele.)
- 4.22 Um estado inútil em um autômato com pilha nunca é atingido sobre qualquer cadeia de entrada. Considere o problema de se determinar se um autômato com pilha tem quaisquer estados inúteis. Formule esse problema como uma linguagem e mostre que ele é decidível.
- R*4.23 Seja $BAL_{AFD} = \{\langle M \rangle | M \text{ é um AFD que aceita alguma cadeia contendo igual número de 0s e 1s}. Mostre que <math>BAL_{AFD}$ é decidível. (Dica: Os teoremas sobre LLCs são úteis aqui.)
- *4.24 Seja $PAL_{AFD} = \{\langle M \rangle | M \text{ \'e um AFD que aceita algum palíndromo} \}$. Mostre que PAL_{AFD} é decidível. (Dica: Os teoremas sobre LLCs são úteis aqui.)
- *4.25 Seja $E = \{\langle M \rangle | M \text{ \'e um AFD que aceita alguma cadeia com mais 1s que 0s} \}$. Mostre que E \acute{e} decidível. (Dica: Os teoremas sobre LLCs são úteis aqui.)
- 4.26) Seja $C = \{\langle G, x \rangle | G \text{ é uma GLC que gera alguma cadeia } w, \text{ onde } x \text{ é uma subcadeia de } w\}$. Mostre que C é decidível. (Sugestão: Uma solução elegante para esse problema usa o decisor para V_{GLC} .)
- **4.27** Seja $C_{\mathsf{GLC}} = \{\langle G, k \rangle | L(G) \text{ contém exatamente } k \text{ cadeias, onde } k \geq 0, \text{ ou então } k = \infty \}$. Mostre que C_{GLC} é decidível.
- **4.28** Seja A uma linguagem Turing-reconhecível consistindo de descrições de máquinas de Turing, $\{\langle M_1 \rangle, \langle M_2 \rangle, \dots \}$, onde toda M_i é um decisor. Prove que alguma linguagem decidível D não é decidida por nenhum decisor M_i cuja descrição aparece em A. (Dica: Você pode achar útil considerar um enumerador para A.)

SOLUÇÕES SELECIONADAS

- 4.1 (a) Sim. O AFD M aceita 0100.
 - (b) Não. M não aceita 011.
 - (c) Não. Essa entrada tem apenas um único componente e, portanto, não é da forma correta.
 - (d) Não. O primeiro componente não é uma expressão regular e por isso a entrada não é da forma correta.
 - (e) Não. A linguagem de M não é vazia.
 - (f) Sim. M aceita a mesma linguagem que si própria.
- 4.5 (a) Não, f não é um-para-um porque f(1) = f(3).
 - (d) Sim, g é um-para-um.

- **4.9** A seguinte MT I decide $INFINITA_{AFD}$.
 - $I = \text{"Sobre a entrada } \langle A \rangle \text{ onde } A \text{ \'e um AFD:}$
 - 1. Seja k o número de estados de A.
 - 2. Construa um AFD D que aceite todas as cadeias de comprimento k ou mais.
 - **3.** Construa um AFD M tal que $L(M) = L(A) \cap L(D)$.
 - **4.** Teste $L(M) = \emptyset$, usando o decisor T de V_{AFD} do Teorema 4.4.
 - 5. Se T aceita, rejeite; se T rejeita, aceite."

Esse algoritmo funciona porque um AFD que aceita uma quantidade infinita de cadeias tem que aceitar cadeias arbitrariamente longas. Por conseguinte, esse algoritmo aceita tais AFDs. Reciprocamente, se o algoritmo aceita um AFD, o AFD aceita alguma cadeia de comprimento k ou mais, onde k é o número de estados do AFD. Essa cadeia pode ser bombeada da maneira prescrita pelo lema do bombeamento para linguagens regulares para se obter uma quantidade infinita de cadeias aceitas.

4.11 A seguinte MT decide A.

"Sobre a entrada $\langle M \rangle$:

- 1. Construa um AFD O que aceite toda cadeia contendo um número ímpar de 1s.
- **2.** Construa o AFD B tal que $L(B) = L(M) \cap L(O)$.
- **3.** Teste se $L(B) = \emptyset$, usando o decisor T de V_{AFD} do Teorema 4.4.
- 4. Se T aceita, aceite; se T rejeita, rejeite."
- 4.13 Você mostrou no Problema 2.18 que, se C for uma linguagem livre-do-contexto e R uma linguagem regular, então $C\cap R$ é livre-do-contexto. Conseqüentemente, $1^*\cap L(G)$ é livre-do-contexto. A seguinte MT decide A.

"Sobre a entrada $\langle G \rangle$:

- 1. Construa a GlC H tal que $L(H) = 1^* \cap L(G)$.
- 2. Teste se $L(H) = \emptyset$, usando o decisor R de V_{GLC} do Teorema 4.8.
- 3. Se R aceita, rejeite; se R rejeita, aceite."
- **4.21** O seguinte procedimento decide $AMBIG_{AFN}$. Dado um AFN N, construímos um AFD D que simula N e aceita uma cadeia sse ela for aceita por N ao longo de dois ramos de computação diferentes. Aí, então, usamos um decisor para V_{AFD} para determinar se D aceita quaisquer cadeias.

Nossa estratégia para construir D é similar à da conversão de AFN para AFD na prova do Teorema 1.39. Simulamos N mantendo uma pedra sobre cada estado ativo. Começamos colocando uma pedra vermelha sobre o estado inicial e sobre cada estado atingível a partir do inicial ao longo de transições ε . Movemos, adicionamos e removemos pedras de acordo com as transições de N, preservando a cor das pedras. Sempre que duas ou mais pedras são movidas para o mesmo estado, substituímos suas pedras por uma pedra azul. Após ler a entrada, aceitamos se uma pedra azul estiver sobre um estado de aceitação de N.

O AFD D tem um estado correspondente a cada posição possível de pedras. Para cada estado de N, três possibilidades ocorrem: ele pode conter uma pedra vermelha, uma pedra azul ou nenhuma pedra. Por conseguinte, se N tiver n estados,

- D terá 3^n estados. Seu estado inicial, seus estados de aceitação e sua função de transição são definidas de modo a realizar a simulação.
- 4.23 A linguagem de todas as cadeias com igual número de 0s e 1s é uma linguagem livre-do-contexto, gerada pela gramática $S \to 1S0S \mid 0S1S \mid \varepsilon$. Seja P o AP que reconhece essa linguagem. Construa uma MT M para BAL_{AFD} , que opera da seguinte forma. Sobre a entrada $\langle B \rangle$, onde B é um AFD, use B e P para construir um novo AP R que reconheça a interseção das linguagens de B e P. Aí então, teste se a linguagem de R é vazia. Se sua linguagem for vazia, rejeite; caso contrário, aceite.