

# NEURAL NETWORK LEARNING RULES CHAPTER 2



## **ARTIFICIAL NEURAL NETWORK LEARNING**





#### Neural Network Learning Rules

We know that, during ANN learning, to change the input/output behavior, we need to adjust the weights. Hence, a method is required with the help of which the weights can be modified. These methods are called Learning rules, which are simply algorithms or equations.



#### **Neural Network Learning Rules**



 The learning signal r in general a function of wi, x and sometimes of teacher's signal di.

$$r = r(\mathbf{w}_i, \mathbf{x}, d_i)$$

 Incremental weight vector wi at step t becomes:

$$\Delta \mathbf{w}_i(t) = cr \left[ \mathbf{w}_i(t), \mathbf{x}(t), d_i(t) \right] \mathbf{x}(t)$$

Where c is a learning constant having +ve value.



#### **Neural Network Learning Rules**

- Perceptron Learning Rule -- Supervised Learning
- Hebbian Learning Rule Unsupervised Learning
- Delta Learning Rule -- Supervised Learning
- Widrow-Hoffs Learning Rule -- Supervised Learning
- > Correlation Learning Rule -- Supervised Learning
- Winner-Take-all Learning Rule -- Unsupervised Learning
- Outstar Learning Rule -- Supervised Learning

# Hebbian Learning Rule For Ote Hebbian learning rule Ote learning signal is equal simply to the neuron's Output. T= + (wix) - 0

The encrement vector Dwi becomes

| Dwi= C. + (wit.x).x -

Single meight wij in adapted using,

Dwij= C+(wit-202; j=1,2,-...)

=> This learning rule requires weight initialization at small random values around w; = Oprior to learning.

Purely feed forward, unsupervised learning.

## Amity School of Engineering & Technology

One we net or ne



Hebbian learning with binary and contin Technology activation fenchions.

$$\alpha = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

$$\chi = \begin{bmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \\ \chi_4 \end{bmatrix} \qquad \omega = \begin{bmatrix} 1 \\ -1 \\ 0 \\ 0.5 \end{bmatrix}$$

Needs to be trained using the set of three enput nectors as belows-

$$\mathcal{X}_{1} = \begin{bmatrix} -\frac{1}{2} \\ -\frac{1}{5} \\ 0 \end{bmatrix} \qquad \mathcal{H}_{2} = \begin{bmatrix} -\frac{1}{5} \\ -\frac{2}{5} \\ -\frac{1}{5} \end{bmatrix} \qquad \mathcal{X}_{3} = \begin{bmatrix} 0 \\ -\frac{1}{5} \\ -\frac{1}{5} \end{bmatrix}$$

for an arbibary constants c=1.

Sol's Since, the enitial weights are nonzero value, the network has capparently been beared beginded. Assume first that bipolar binory neurous are used, and stus

Step 1: Input of applied to the network results in activation net as below: -

$$\text{Net}' = \omega^{1} \times_{1} = [1 - 1 \ 0 \ 0.5] \begin{bmatrix} 1 \\ -2 \\ 1.5 \\ 0 \end{bmatrix}$$

## School of Engineering & Technology

The updated unights are,  

$$w^2 = w^1 + (.sgn(net^1)x_1)$$

$$= \begin{bmatrix} -1 \\ 0.5 \end{bmatrix} + 1.12 \begin{bmatrix} -1 \\ 1.5 \end{bmatrix} = \begin{bmatrix} -3 \\ 1.5 \\ 0.5 \end{bmatrix}$$
Sgn(net^1)=1
became
net^1 > 0

Step 2: This learning step is with  $x_2$  as expect,  $\operatorname{net}^2 = \omega^{2t} x_2 = [2 -3 \cdot 1.5 \cdot 0.5] \begin{bmatrix} -0.5 \\ -2.5 \end{bmatrix}$ 

$$= 2 + 1.5 - 3.0 - 0.75 = -1.0 + 0.75$$
  
=  $-0.25$ 

The updated weights are,

$$\omega^{3} = \omega^{2} + \text{Sgn}(\text{net}^{2}) \times_{2}$$

$$= \omega^{2} + (-1) \times_{2}$$

$$= \begin{bmatrix} 2 \\ -3 \\ 0.5 \end{bmatrix} - \begin{bmatrix} -0.5 \\ -2 \\ -1.5 \end{bmatrix} = \begin{bmatrix} -2.5 \\ 2.5 \\ 2 \end{bmatrix}$$
net<sup>2</sup> < 0

Step 3: The learning step is with  $x_3$  as enput, net  $^3 = \omega^{3t} x_3 = \begin{bmatrix} 1 & -2.5 & 3.5 & 2 \end{bmatrix} \begin{bmatrix} 0 \\ -1 \\ 1.5 \end{bmatrix}$  = 0 - 2.5 - 3.5 + 3.0 = -3.0

The updated weights care,

$$w^{4} = w_{3} + \text{Sgn}(\text{net}^{3}) \times_{3}$$

$$= \begin{bmatrix} -2.5 \\ 3.5 \\ 2 \end{bmatrix} + (-1) \begin{bmatrix} 0 \\ -1 \\ 1.5 \end{bmatrix} = \begin{bmatrix} 1 \\ -3.5 \\ 4.5 \\ 0.5 \end{bmatrix}$$

#### S'School of Engineering & Technology

Kevi ei hing, the same problem with Continuous bipolar actuation fenction + (net), using exput XI and enitial weight wi, we obtain neuron? Output values and updated neeights for 2=1. the finet) is computed as,



#### Step 2:

$$\text{net}^2 = \omega^{2t} \chi_2 = \begin{bmatrix} 1.905 & -2.81 & 1.36 & 0.9 \end{bmatrix} \begin{bmatrix} 1 & \text{of Engineering hology} \\ -1.5 & \text{of Engineering hology} \end{bmatrix}$$

$$f(net^{2}) = \frac{9}{1 + e^{-\lambda(-0.16)}}$$

$$= \frac{9}{1 + 1.17}$$

$$w^{3} = \omega_{2} + f(net^{2}) \chi_{2}$$

$$= \begin{bmatrix} 1.905 \\ -2.81 \\ 1.36 \\ 0.5 \end{bmatrix} + \begin{bmatrix} -0.077 \\ -0.5 \\ -1.5 \end{bmatrix}$$

$$= \begin{bmatrix} 1.905 \\ -2.81 \\ 1.36 \\ 0.5 \end{bmatrix} + \begin{bmatrix} -0.077 \\ 0.038 \\ 0.154 \\ 0.154 \\ 0.116 \end{bmatrix}$$

$$w_{3} = \begin{bmatrix} 1.928 \\ -0.944 \\ 1.974 \\ 1.974 \end{bmatrix} + \begin{bmatrix} 1.828 \\ -2.772 \\ 1.512 \\ 1.512 \end{bmatrix}$$



(

$$\frac{\text{CY}}{\text{SITY}} = \frac{3^{\circ}}{8} \cdot 4^{\circ} (\text{nef}^{3}) = \omega_{0}^{3t} \times 3^{\circ}$$

$$= [1.828 - 2.722 \cdot 1.512 \cdot 0.616) \begin{bmatrix} 0 \\ -1 \\ 1.5 \end{bmatrix}$$
ty School of Engineering & Technology

$$= 0 - 2.772 - 1.512 + 0.924$$

$$= -3.36$$

$$f(net^3) = 2 - 1$$

$$= 1 + e^{-71 \text{ net}_3}$$

$$= \frac{2}{1 + e^{-(1)(-3.36)}} - 1$$

$$= \frac{2}{1 + 28.78} - 1 = -0.932$$

$$\begin{array}{lll}
\omega_{3} + 2 \omega_{3} + 2 \omega_{5} & f(net^{3}) \times_{3} \\
&= \begin{bmatrix} 1.905 \\ -2.81 \\ 1.36 \\ 0.5 \end{bmatrix} + (-0.932) \begin{bmatrix} 0 \\ -1 \\ 1.5 \end{bmatrix}$$