

HCC/HCF40208B

4 x 4 MULTIPORT REGISTER

- FOUR 4-BIT REGISTERS
- ONE INPUT AND TWO OUTPUT BUSES
- UNLIMITED EXPANSION IN BIT AND WORD DIRECTIONS
- DATA LINES HAVE LATCHED INPUTS
- 3-STATE OUTPUTS
- SEPARATE CONTROL OF EACH BUS, ALLOWING SIMULTANEOUS INDEPENDENT READING OF ANY OF FOUR REGISTERS ON BUS A AND BUS B AND INDEPENDENT WRIT-ING INTO ANY OF THE FOUR REGISTERS
- 40108B IS PIN-COMPATIBLE WITH INDUS-TRY TYPE MC14580
- STANDARDIZED, SYMMETRICAL OUTPUT CHARACTERISTICS
- QUIESCENT CURRENT SPECIFIED AT 20V FOR HCC DEVICE
- 5V, 10V, AND 15V PARAMETRIC RATINGS
- INPUT CURRENT OF 100nA AT 18V AND 25°C FOR HCC DEVICE
- 100% TESTED FOR QUIESCENT CURRENT
- MEETS ALL REQUIREMENTS OF JEDEC TEN-TATIVE STANDARD N° 13A, "STANDARD SPE-CIFICATIONS FOR DESCRIPTION OF "B" SERIES CMOS DEVICES"

DESCRIPTION

The HCC40208B (extended temperature range) and HCF40208B (intermediate temperature range) are monolithic integrated circuits, available in 24-lead dual in-line plastic or ceramic package and plastic micro package. The HCC/HCF40208B is a 4 x 4 multiport register containing four 4-bit registers, write address decoder, two separate read address decoders, and two 3-state output buses. When the ENABLE input is low, the corresponding output bus is switched, independently of the clock to a high-impedance state. The high-impedance third state provides the outputs with the capability of being connected to the bus lines in a bus-organized system without the need for interface or pull-up components. When the WRITE ENABLE input is high, all data input lines are latched on the positive transition of the CLOCK and the data is entered into the word selected by the write address lines. When WRITE ENABLE is low, the CLOCK is inhibited and no new data is entered. In either case, the contents of any word may be accessed via the read address lines independent of the state of the CLOCK input.

June 1989 1/13

FUNCTIONAL DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{DD} *	Supply Voltage : HCC Types HCF Types	- 0.5 to + 20 - 0.5 to + 18	V V
Vi	Input Voltage	- 0.5 to V _{DD} + 0.5	V
I_1	DC Input Current (any one input)	± 10	mA
P _{tot}	Total Power Dissipation (per package) Dissipation per Output Transistor for T _{op} = Full Package-temperature Range	200 100	mW mW
T _{op}	Operating Temperature : HCC Types HCF Types	- 55 to + 125 - 40 to + 85	°C °C
T _{stg}	Storage Temperature	- 65 to + 150	°C

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for external periods may affect device reliability. * All voltages are with respect to V_{SS} (GND).

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
V_{DD}	Supply Voltage : HCC Types HCF Types	3 to 18 3 to 15	V V
VI	Input Voltage	0 to V _{DD}	V
Top	Operating Temperature : HCC Types HCF Types	- 55 to + 125 - 40 to + 85	°C

SCHEMATIC DIAGRAM

LOGIC DIAGRAM

TIMING DIAGRAM

TRUTH TABLE

Clock	Write Enable		Write 0	Read 1A	Read 0A	Read 1B	Read 0B	Enable A	Enable B	D _n	QnA	Q _{nB}
	1	S1	S2	S1	S2	S1	S2	1	1	1	1	1
	1	S1	S2	S1	S2	S1	S2	1	1	0	0	0
Х	Х	Х	Х	Х	Х	Х	Χ	0	0	Х	Z	Z
	1	0	0	0	1	1	0	1	1	D _n to Word 0	Word 1 Out	Word 2 Out
	0	0	0	0	1	1	0	1	1	Word 0 Not Altered	Word 1 Out	Word 2 Out
Х	Х	Х	Х	1	0	0	1	1	1	Х	Word 2 Out	Word 1 Out
	Х	Х	Х	Х	Х	Х	Х	1	1	Х	NC	NC

^{1 =} HIGH LEVEL, 0 = LOW LEVEL,X = DON'T CARE,Z = HIGH IMPEDANCE. S1 and S2 refer to input strates of either 1 or 0.

STATIC ELECTRICAL CHARACTERISTICS (over recommended operating conditions)

			Т	est Con	dition	s				Value				
Symbol	Parame	ter	٧ı	٧o	I ₀	V_{DD}	TL	o w*		25°C		T _{Hi}		Unit
			(V)	(V)	(μΑ)	(V)	Min.	Max.	Min.	Тур.	Max.	Min.	Max.	
١L	Quiescent		0/ 5			5		5		0.04	5		150	
	Current	HCC	0/10			10		10		0.04	10		300	
		Types	0/15			15		20		0.04	20		600	
			0/20			20		100		0.08	100		3000	μΑ
		HCF	0/ 5			5		20		0.04	20		150	
		Types	0/10			10		40		0.04	40		300	
		Турсз	0/15			15		80		0.04	80		600	
V_{OH}	Output High	า	0/ 5		< 1	5	4.95		4.95			4.95		
	Voltage		0/10		< 1	10	9.95		9.95			9.95		V
			0/15		< 1	15	14.95		14.95			14.95		
V_{OL}	Output Low	,	5/0		< 1	5		0.05			0.05		0.05	
	Voltage		10/0		< 1	10		0.05			0.05		0.05	V
			15/0		< 1	15		0.05			0.05		0.05	
V_{IH}	Input High			0.5/4.5	< 1	5	3.5		3.5			3.5		
	Voltage			1/9	< 1	10	7		7			7		V
				1.5/13.5	< 1	15	11		11			11		
V_{IL}	Input Low			4.5/0.5	< 1	5		1.5			1.5		1.5	
	Voltage			9/1	< 1	10		3			3		3	V
				13.5/1.5	< 1	15		4			4		4	
I _{OH}	Output		0/ 5	2.5		5	- 2		- 1.6	- 3.2		- 1.15		
	Drive	HCC	0/ 5	4.6		5	- 0.64		- 0.51	- 1		- 0.36		
	Current	Types	0/10	9.5		10	- 1.6		- 1.3	- 2.6		- 0.9		
			0/15	13.5		15	- 4.2		- 3.4	- 6.8		- 2.4		A
			0/ 5	2.5		5	- 1.53		- 1.36	_		- 1.1		mA
		HCF	0/ 5	4.6		5	- 0.52		- 0.44	- 1		- 0.36		
		Types	0/10	9.5		10	- 1.3		- 1.1	- 2.6		- 0.9		
			0/15	13.5		15	- 3.6		- 3.0	- 6.8		- 2.4		

^{*} $T_{Low} = -55^{\circ}\text{C}$ for HCC device : -40°C for HCF device. * $T_{High} = +125^{\circ}\text{C}$ for HCC device : $+85^{\circ}\text{C}$ for HCF device. The Noise Margin for both "1" and "0" level is : 1V min. with $V_{DD} = 5V$, 2V min. with $V_{DD} = 10V$, 2.5V min. with $V_{DD} = 15V$. ** Forced output disable.

STATIC ELECTRICAL CHARACTERISTICS (continued)

			Т	est Con	dition	s				Value				
Symbol	Parame	ter	٧ı	٧o	I ₀	V_{DD}	ΤL	* ow		25°C		T _H i	igh*	Unit
			(V)	(V)	(μΑ)	(V)	Min.	Max.	Min.	Тур.	Max.	Min.	Max.	
I_{OL}	Output	HCC	0/ 5	0.4		5	0.64		0.51	1		0.36		
	Sink	Types	0/10	0.5		10	1.6		1.3	2.6		0.9		
	Current	Types	0/15	1.5		15	4.2		3.4	6.8		2.4		
		LICE	0/ 5	0.4		5	0.52		0.44	1		0.36		mA
		HCF Types	0/10	0.5		10	1.3		1.1	2.6		0.9		
		Types	0/15	1.5		15	3.6		3.0	6.8		2.4		
I _{IH} , I _{IL}	Input Leakage	HCC Types	0/18	Any In	nut.	18		± 0.1		±10 ⁻⁵	± 0.1		± 1	^
	Current	HCF Types	0/15	Any In	iput	15		± 0.3		±10 ⁻⁵	± 0.3		± 1	μА
I _{OH} ,I _{OL} **	3-State Output	HCC Types	0/18	0/18		18		± 0.4		±10 ⁻⁴	± 0.4		± 12	^
	Leakage Current	HCF Types	0/15	0/15		15		± 1.0		±10 ⁻⁴	± 1.0		± 7.5	μА
Cı	Input Capa	citance		Any In	put					5	7.5			pF

DYNAMIC ELECTRICAL CHARACTERISTICS ($T_{amb} = 25^{\circ}C$, $C_{L} = 50 pF$, $R_{L} = 200 k\Omega$, typical temperature coefficient for all V_{DD} values is $0.3\%/^{\circ}C$, all input rise and fall time = 20ns)

Symbol	Parameter	Test Conditions			Value		Unit
Cymbol	T drameter		V _{DD} (V)	Min.	Тур.	Max.	Oiiit
t _{PHL} ,	Propagation Delay Time :		5		360	720	
t_{PLH}	Clock to Write Enable to Q		10		140	280	ns
			15		100	200	
	Read or Write Address to Q		5		300	600	
			10		120	240	ns
			15		85	170	
t _{PZH} ,	3-state Disable Delay Time		5		100	200	
t_{PHZ}			10		50	100	ns
			15		40	80	
t _{PZL} ,	3-State Disable Delay time		5		130	260	
t_{PLZ}			10		60	120	ns
			15		50	100	
t _{THL} ,	Output Transition Time		5		100	200	
t_{TLH}			10		50	100	ns
			15		40	80	
t _{setup}	Setup Time		5	0	- 95		
	Data to Clock t _{s (D)}		10	0	- 35		ns
			15	0	- 20		
	Write Enable to Clock t _{s(WE)}		5	250	125		
			10	100	50		ns
			15	70	35		
	Write Address to Clock ts (WA)		5	250	125		
	. ,		10	100	50		ns
			15	70	35		

 ^{*} T_{Low} = -55°C for HCC device : -40°C for HCF device.
 * T_{High} = + 125°C for HCC device : + 85°C for HCF device.
 The Noise Margin for both "1" and "0" level is : 1V min. with V_{DD} = 5V, 2V min. with V_{DD} = 10V, 2.5V min. with V_{DD} = 15V.

^{**} Forced output disable.

DYNAMIC ELECTRICAL CHARACTERISTICS (continued)

Symbol	Parameter	Test Conditions			Unit		
- Syllibol	- arameter		V _{DD} (V)	Min.	Тур.	Max.	Oiiit
t _r , t _f	Clock Rise and Fall Time		5			15	
			10			5	μs
			15			5	
thold	Hold Time		5	220	110		
	Data to Clock t _{h(D)}		10	100	50		ns
			15	80	40		
	Write Enable to Clock th(WE)		5	270	135		
			10	130	65		ns
			15	80	40		
	Write Address to Clock ts(WA)		5	330	165		
			10	140	70		
			15	90	45		
t _W	Clock Pulse Width		5	350	175		
	Clock or Write Enable t _{W(CL)}		10	130	65		ns
			15	90	45		
	Write Address t _{W(WA)}		5	300	150		
	, ,		10	150	75		ns
			15	90	45		
f _{CL}	Maximum Clock Input Frequency		5	1.5	3		
			10	3.5	7		MHz
			15	4.5	9		

Output Low (sink) Current Characteristics.

Output High (source) Current Characteristics.

Typical Propagation Delay Time vs. Load Capacitance (CL or WE to Q).

Typical Dynamic Power Dissipation vs. Input Frequency.

Typical Transition Time vs. Load Capacitance.

TEST CIRCUITS

Output-enable-delay-times and Waveforms.

Power-dissipation and Waveforms.

Quiescent Device Current.

Input Voltage.

Input Current.

Plastic DIP24 (0.25) MECHANICAL DATA

DIM.		mm		inch				
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.		
a1		0.63			0.025			
b		0.45			0.018			
b1	0.23		0.31	0.009		0.012		
b2		1.27			0.050			
D			32.2			1.268		
Е	15.2		16.68	0.598		0.657		
е		2.54			0.100			
e3		27.94			1.100			
F			14.1			0.555		
I		4.445			0.175			
L		3.3			0.130			

Ceramic DIP24 MECHANICAL DATA

DIM.		mm		inch				
Dilwi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.		
Α			32.3			1.272		
В	13.05		13.36	0.514		0.526		
С	3.9		5.08	0.154		0.200		
D	3			0.118				
E	0.5		1.78	0.020		0.070		
e3		27.94			1.100			
F	2.29		2.79	0.090		0.110		
G	0.4		0.55	0.016		0.022		
1	1.17		1.52	0.046		0.060		
L	0.22		0.31	0.009		0.012		
M	1.52		2.49	0.060		0.098		
N1	4° (min.), 15°	(max.)						
Р	15.4		15.8	0.606		0.622		
Q			5.71			0.225		

SO24 MECHANICAL DATA

DIM.		mm		inch				
DIIVI.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.		
А			2.65			0.104		
a1	0.10		0.20	0.004		0.007		
a2			2.45			0.096		
b	0.35		0.49	0.013		0.019		
b1	0.23		0.32	0.009		0.012		
С		0.50			0.020			
c1			45°	(typ.)				
D	15.20		15.60	0.598		0.614		
Е	10.00		10.65	0.393		0.420		
е		1.27			0.05			
e3		13.97			0.55			
F	7.40		7.60	0.291		0.299		
L	0.50		1.27	0.19		0.050		
S			8° (ı	max.)				

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

