Class C Power Amplifier

Muhammad Adeel

M.Sc. Electronics (KU)

M.Phil. ISPA (KU)

Class C Power Amplifier

Class C amplifiers are biased so that conduction occurs for much less than 180° .

Class C amplifiers are more efficient than either class A or push-pull class B and class AB, which means that more output power can be obtained from class C operation.

(b) Input voltage and output current waveforms

The ac source voltage has a peak value that is slightly greater than $|V_{\rm BE}| + V_{\rm BE}$ so that the base voltage exceeds the barrier potential of the base-emitter junction for a short time near the positive peak of each cycle, during this short interval, the transistor is turned on.

Muhammad Adeel

Power Dissipation

The power dissipation during the *on time is*,

$$P_{D(on)} = I_{c(sat)}V_{ce(sat)}$$

The transistor is on for a short time, t_{on} , and off for the rest of the input cycle. Therefore, assuming the entire load line is used, the power dissipation averaged over the entire cycle is,

$$P_{\text{D(avg)}} = \left(\frac{t_{\text{on}}}{T}\right) P_{\text{D(on)}} = \left(\frac{t_{\text{on}}}{T}\right) I_{c(sat)} V_{ce(sat)}$$

Example

A class C amplifier is driven by a 200 kHz signal. The transistor is on for 1 μ s, and the amplifier is operating over 100 percent of its load line. If $I_{c(sat)} = 100$ mA and $V_{ce(sat)} = 0.2$ V, what is the average power dissipation of the transistor?

The period is

$$T = \frac{1}{200 \,\mathrm{kHz}} = 5 \,\mu\mathrm{s}$$

Therefore,

$$P_{\text{D(avg)}} = \left(\frac{t_{\text{on}}}{T}\right) I_{c(sat)} V_{ce(sat)} = (0.2)(100 \text{ mA})(0.2 \text{ V}) = 4 \text{ mW}$$

The low power dissipation of the transistor operated in class C is important because, as you will see later, it leads to a very high efficiency when it is operated as a tuned class C amplifier in which relatively high power is achieved in the resonant circuit.

Tuned Operation

(b) Output waveforms

 (a) C₁ charges to +V_{CC} at the input peak when transistor is conducting.

(b) C1 discharges to 0 volts.

(c) L recharges C1 in opposite direction.

Muhammad Adeel

(d) C_1 discharges to 0 volts.

(e) L recharges C_1 .

Maximum output Power and Efficiency

Since the voltage developed across the tank circuit has a peak-to-peak value of approximately $2V_{CC}$, the maximum output power can be expressed as

$$P_{out} = \frac{V_{rms}^2}{R_c} = \frac{(0.707V_{CC})^2}{R_c}$$

$$P_{out} = \frac{0.5V_{CC}^2}{R_c}$$

 R_c is the equivalent parallel resistance of the collector tank circuit at resonance and represents the parallel combination of the coil resistance and the load resistance. It usually has a low value. The total power that must be supplied to the amplifier is

$$P_{\rm T} = P_{out} + P_{\rm D(avg)}$$

Therefore, the efficiency is

$$\eta = \frac{P_{out}}{P_{out} + P_{D(avg)}}$$

When $P_{out} >> P_{D(avg)}$, the class C efficiency closely approaches 1 (100 percent).