Cryptanalyse — 4TCY902U Responsable : G. Castagnos

TP 5 — LFSR

I LFSR

- I. Écrire une fonction qui simule une étape d'un LFSR : elle doit prendre en entrée l'état au temps t et un polynôme de rétroaction et ressortir l'état au temps t+1 et le bit de sortie (on supposera que le degré du polynôme est égal à la longueur de l'état).
- 2. En déduire une fonction prenant en paramètres un état initial $S^{(0)}$, un polynôme de rétroaction f et un entier N et retournant les N premiers bits de sortie du LFSR de rétroaction f et initialisé par $S^{(0)}$. Pour tester votre fonction, le LFSR de longueur f et de polynôme de rétroaction $f(X) = X^5 \oplus X^4 \oplus 1$, initialisé par $f(X) = X^5 \oplus X^5 \oplus 1$

2 On s'intéresse maintenant aux cycles des registres d'un LFSR.

- 1. Écrire une fonction prenant en paramètre l'état initial $S^{(0)}$ du LFSR et le polynôme de rétroaction (de même degré que la longueur des registres) et retournant le cycle des registres obtenus, c'est à dire la liste des différents états obtenus dans une période : $S^{(0)}$, $S^{(1)}$, ..., $S^{(T-1)}$ tous distincts et $S^{(0)} = S^{(T)}$.
- 2. Tester avec $f(X) = X^5 \oplus X^4 \oplus 1$ et les états initiaux 00101, 01000 et 10100. Que remarquez vous?
- 3. Écrire une fonction prenant en paramètre le polynôme de rétroaction et retournant tous les cycles de registres possibles (en faisant varier l'état initial).
- 4. Combien de cycles produit le LFSR de longueur 5 de polynôme de rétroaction f? Même question avec les LFSR de longueur 4 de polynômes de rétroaction 1 ⊕ X² ⊕ X⁴, 1 ⊕ X ⊕ X² ⊕ X³ ⊕ X⁴ et 1 ⊕ X ⊕ X⁴. Quelles sont les propriétés de ces divers polynômes?
- 5. Écrire une fonction qui prend en paramètre f et un état initial et qui renvoie le polynôme g telle que Z(X) = g(X)/f(X) soit la série formelle du LFSR engendré par f et initialisé par l'état initial. Tester dans les différents cas de la question précédente si f est le polynôme minimal.
- 3 On note $(z_i)_{i\geq 0}$ la suite produite par un LFSR de polynôme de rétroaction $X^7\oplus X^6\oplus 1$. On suppose que cette suite vérifie $z_{2i}=z_i$ pour tout $i\geq 0$. Quel est l'état initial (z_0,z_1,\ldots,z_6) du LFSR?

4 Trace et LFSR

1. soit $\mathbf{F} = \mathbf{F}_{2\ell}$. On pose, pour tout $\alpha \in \mathbf{F}$,

$$trace(\alpha) = \alpha \oplus \alpha^2 \oplus \alpha^4 \oplus \cdots \oplus \alpha^{2^{\ell-1}}.$$

- (a) Montrez que trace(α) \in \mathbf{F}_2 .
- (b) Montrez que trace(α) \oplus trace(β) = trace($\alpha \oplus \beta$) pour tout α , $\beta \in \mathbf{F}$.
- (c) Soit $\alpha \in \mathbf{F}$. Montrez que, si trace $(\alpha u) = 0$ pour tout $u \in \mathbf{F}$, alors $\alpha = 0$.
- 2. Soit $f(X) = 1 \oplus c_1 X \oplus c_2 X^2 \oplus \cdots \oplus c_\ell X^\ell$ un polynôme de $\mathbf{F}_2[X]$ de degré ℓ que l'on suppose irréductible. On fixe une racine α de f dans \mathbf{F} et on pose $\mathbf{F} = \mathbf{F}_2[\alpha]$.
 - (a) On note $\gamma = \alpha^{-1}$. Montrer que la suite des $(\gamma^j)_{j \ge 0}$ est engendrée par un LFSR de polynôme de rétroaction f dans le corps \mathbf{F} . En déduire que pour tout $\beta \in \mathbf{F}$, la suite binaire définie par $z_j = \operatorname{trace}(\beta \gamma^j)$ pour $j \ge 0$ est également engendrée par un LFSR de polynôme de rétroaction f.
 - (b) Combien de suites distinctes sont engendrées par f? En déduire que toute suite engendrée par f est de la forme précédente.
 - (c) Pour tout entier t, on note $z^{(t)}$ la suite définie par

$$\left(z^{(t)}\right)_j = z_{tj}, \forall j \ge 0.$$

On dit que cette suite est une t-décimation de la suite z. Montrez que la suite $z^{(t)}$ est engendrée par le polynôme minimal de α^t sur \mathbf{F}_2 .

- (d) Exemple : $f(X) = 1 \oplus X^3 \oplus X^4$. On sait que f est irréductible sur \mathbf{F}_2 et que ses racines engendrent \mathbf{F}_{16}^* . Soit z une suite non nulle engendrée par f. Quels sont les polynômes minimaux des suites $z^{(2)}$, $z^{(3)}$, $z^{(5)}$? Quelles sont leur période?
- On a partiellement intercepté une suite binaire dont on sait qu'elle est produite par un LFSR de longueur 5 :

2

Peut on retrouver les bits manquants et le polynôme de rétroaction?