Funções trigonométricas

Antes de mostramos as funções trigonométricas, necessitamos de algumas definições:

Definição 7: Circunferência trigonométrica é uma circunferência de centro na origem do plano cartesiano, de raio unitário e cujos arcos têm origem no ponto A(1,0), com sentido anti-horário positivo.

Definição 8: Um radiano é a medida de um arco de comprimento 1, medido no sentido antihorário.

Como a circunferência mede 2π radianos e também 360° , tem se que $360^{\circ} = 2\pi$ rad e consequentemente $180^{\circ} = \pi$ rad. A conversão de graus em radianos, ou vice-versa, pode ser feita usando regra de três simples com as igualdades apresentadas anteriormente.

Exemplos: Obtenha a medida em radianos equivalente a:

a)
$$30^{\circ} = \frac{\pi}{6}$$

b)
$$45^{\circ} = \frac{\pi}{4}$$

c)
$$120^{\circ} = \frac{2\pi}{3}$$

d)
$$270^{\circ} = \frac{3\pi}{2}$$

A seguir, tem-se a circunferência trigonométrica com os valores de seno, cosseno e tangente dos ângulos notáveis.

Seja P um ponto sobre a circunferência trigonométrica com arco medindo t rad. Se P for o ponto (x,y), então a função seno será definida por

$$sen t = y$$

$$\cos t = x$$

O domínio das funções seno e cosseno é o conjunto dos números reais e a conjunto imagem, de ambas, é o intervalo [-1,1]

Gráfico da função f(x) = sen x

Gráfico da função $f(x) = \cos x$

A função tangente é definida por

$$tg t = \frac{sen t}{cos t}$$

para todo número real t para o qual $\cos t \neq 0$.

O domínio da função tangente é o conjunto dos números reais exceto os números para os quais $\cos t = 0$, ou seja, os valores da forma $\frac{\pi}{2} + k\pi (k \in \mathbb{Z})$.

Gráfico da função $f(x) = \operatorname{tg} x$.

Exercícios

1) Esboce o gráfico das funções a seguir, determinando seu domínio e imagem:

a)
$$f(x) = 3 \operatorname{sen}(x)$$

$$f(x) = 1 + \cos(x)$$

b)
$$f(x) = 1 + \cos(x)$$
 c) $f(x) = 2 \sin(\frac{x}{2})$

$$d) f(x) = -2\cos(2x)$$

d)
$$f(x) = -2\cos(2x)$$
 e) $f(x) = \sin(x + \frac{\pi}{2})$ f) $f(x) = \tan(2x)$

$$f) f(x) = tg (2x)$$

g)
$$f(x) = 3\cos(2x - \frac{\pi}{3})$$
 h) $f(x) = 1 - \sin(x)$

$$h) f(x) = 1 - sen(x)$$