Magic States Distillation Using Quantum Expander Codes.

David Ponarovsky

January 9, 2024

What about concatination? So, take a quantum good code. And consider a prasintion k'|k|m such that $k' = \dim C_Z^{\perp}$ and $k = \dim C_X/C_Z^{\perp}$. Now concatinate with two genorthogonal codes, such that any logical bit of k has wight of 1 module 8 and the others has weight 0.

Claim 0.1. Let C_A and $C_{A'}$ such that $C_{A'} \subset C_A$. Then $(C_A^{\perp} \otimes C_B^{\perp})^{\perp}$, $C_{A'} \otimes C_{B'}$ form a **CSS** code C such there exists a subspace $V \subset C$ with effective distance d.

Proof. Idea. consider generators of the form $e_0 \otimes g$. Any codeword in their span is just a first row asssituentd to a code word of C_A . If we assume less than linear number on that row then we will secuces to decode it, + some other generators that we don't care about.

$$C_X = \left((C_A \otimes C_0)^{\perp} \otimes C_0^{\perp} \right)^{\perp}$$
$$C_Z = \left((C_A \otimes C_0) \otimes C_0 \right)^{\perp}$$

Claim 0.2. Let C be a code at rate $\rho(C) > 7/8$ has at least one codeword $x \in C$, such that |x| = 81.

Definition 0.1. We will say that a code C is (l,m)-genorthogonal if there exists a generator set G for C such that for any $I \subset G$ such that 1 < |I| < l we have that:

$$\sum_{i \in [n]} \prod_{g_j \in I \subset G} g_j^i =_m 0$$

Claim 0.3. If there exists a single (l,m)-genorthogonal code for a finite length Δ , then there is a family of (l,m)-genorthogonal good codes. Moreover, if there exists a generator in C_0 of weight $|\cdot|_m = 1$, then there exists a family that also has at least one generator of weight $|\cdot|_m = 1$.

Proof. Denote by $C_0 = \Delta[1, \rho_0, \delta_0]$ an (l, m)-genorthogonal code and observes that for any $C = [n, \rho n, \delta n]$ the tensor code $C_0 \otimes C = [\Delta n, \rho_0 \rho \Delta n, \delta_0 \delta \Delta n]$ is also (l, m)-genorthogonal code.

For the second part of the claim, Choose C to be a good code with rate $> (2^m - 1)/2^m$ by Claim 0.2 there is at least on codeword c in C such that $|c| =_m 1$.

So pick the base for $C_0 \otimes C$ such the first generator is $g_0 \otimes c$ where g_0 denote a generator of C_0 satisfies $|g_0| =_m 1$. Then $|g_0 \otimes c| = |g_0| \cdot |c| =_m 1$.

Claim 0.4. Suppose that there exists (m+1,m)-genorthogonal code, such that any generator of it has weight $|\cdot| =_m 1$ then there exists also a family of good (m+1,m)-genorthogonal codes such that a liner portion of his generators g have weight $|g| =_m 1$.

Proof. Denote by C_0 a finte (m+1,m)-genorthogonal code, such that any generator of it has weight $|\cdot| =_m 1$. Let C be a good (m+1,m)-genorthogonal code with generator c such that $|c| =_m 1$, the existence of which is given by Claim 0.3. Denote its rate by ρ . If C has more than $\rho/m \cdot n$ generators at weight $|\cdot| =_m 1$ then we are done. Otherwise, by the pigeonhole principle, there is an i such that more than ρ/m portion of the generators are at weight $|\cdot| =_m i$. Denote them by $g_1, g_2, g_3, \ldots, g_m$.

Define the set $g_1', g_2'..g_m'$ as

$$g'_{t} = c + \sum_{j=t}^{t+m} g_{j}$$

$$\Rightarrow |g'_{t+1}| = |c| + \sum_{t} |g_{j}| + \sum_{|I| < l+1} \left| \prod_{g \in I} \alpha_{\star} g \right|$$

$$=_{m} c + m \cdot i =_{m} c =_{m} 1$$

Now take $C_0 \otimes C$, and set the new generator set to be $g_i^0 \otimes g_j'$. And it's easy to verify that we got the code we wanted.

Claim 0.5. There exists, a good LDPC code (classic) C such that C^{\perp} is also a good code and a generator set G, for exists $G' \subset G$ and $|G'| = \Theta(|G|)$ such:

- 1. For any pair $x \neq y \in G' \rightarrow x \cdot y =_8 0$
- 2. For any triple $x \neq y, z \in G' \rightarrow \sum_i x_i y_i z_i =_8 0$
- 3. For any $x \in G' \rightarrow |x| =_8 1$

Claim 0.6. There is $n \to \Theta(n)$ magic states distillation into a binary qldpc code with $\Theta(\sqrt{n})$ distance, and therefore with asymptotic overhead approaching 1

Proof. For the encoding we are going to use the hyperproduct code defined in [TZ14]. Let C be the code given by Claim 0.5 and consider the hyperproduct of C with itself $Q = Q(C \times_H C)$. In addition, denote by C_X , C_Z the CSS representation of Q.

By the fact that C^{\perp} is also a good code, then Q is a positive rate, square root distance code. Let ρ be the rate of C and $1-\rho$ be the rate of C^{\perp} . As $\rho > 0$, then one can find $I \subset [n]$ coordinates such that for any $i \in I$ the indicator $e_i \notin C^{\perp}$. Hence, it holds from [TZ14] that any vector of the form $e_i \otimes x$ is a codeword of C_X/C_Z^{\perp} .

Denote by ρ' the portion of G' as defined in Claim 0.5, and define S to be:

$$S = \left\{ e_i \otimes x | e_i \not\in C^{\perp}, x \in G' \right\}$$

Observes that $|S| = \rho' \rho n^2$ and in addition S satisfies the properties in Claim 0.5. Denote by f a codeword supported only on S and denote by X_s the indecator that indicate that s supports f. Thus:

$$T^{\otimes n} |f\rangle = \exp\left(i\pi/4 \sum_{g} X_g \overbrace{|g|}^{8k+1} - 2 \cdot i\pi/4 \underbrace{\sum_{g,h} X_g X_h |g \cdot h|}_{8k} + 4 \cdot i\pi/4 \underbrace{\sum_{g,h} X_g X_h X_l |g \cdot h \cdot l|}_{8k}\right) |f\rangle$$

$$= \exp\left(i\pi/4 \sum_{g \in S} X_g\right) |f\rangle$$

Therefore we can, generate the enocded ([COMMENT] For now without spanning on on C_Z^{\perp}) product of $T^{\otimes |S|} |+\rangle^{|S|}$:

$$\prod_{s \in S} \left(\left. |0\rangle + \exp\left(i\pi/4\right) \left| s \right\rangle \right)$$

[COMMENT] What is left:

- 1. Show that one can generate $\prod_{s \in S} \left(|C_Z^{\perp}\rangle + \exp\left(i\pi/4\right) |C_Z^{\perp} + s\rangle \right)$ without propagate the errors. I think I know how to do it.
- 2. Compute a threshold p_0 for using Baravi construction.

Thus we have that $\gamma = \log(n/k)/\log(d) = \log(n/|S|)/\log(\Theta(\sqrt{n})) \to 0$ and the overhead growes as $\log^{\gamma}(n) \to 1$ [BH12], [MEK12].

References

- [BH12] Sergey Bravyi and Jeongwan Haah. "Magic-state distillation with low overhead". In: *Physical Review A* 86.5 (2012), p. 052329.
- [MEK12] Adam M. Meier, Bryan Eastin, and Emanuel Knill. Magic-state distillation with the four-qubit code. 2012. arXiv: 1204.4221 [quant-ph].
- [TZ14] Jean-Pierre Tillich and Gilles Zemor. "Quantum LDPC Codes With Positive Rate and Minimum Distance Proportional to the Square Root of the Blocklength". In: *IEEE Transactions on Information Theory* 60.2 (Feb. 2014), pp. 1193–1202. DOI: 10.1109/tit. 2013.2292061. URL: https://doi.org/10.1109%2Ftit.2013.2292061.