

Projektstudium Navigation

Florian Folger – Henry Tran – Thomas Abmayr Projektstudium Navigation WS 2018/2019 Hochschule München, Fakultät für Geoinformation

Motivation

- Erste Einblicke in die Robotik durch Steuerung und Navigation eines Roboters.
- erlerntes Wissen aus vorherigen absolvierten Studienfächern anwenden
- Roboter Pioneer 3DX, Simulation mit MobileSim und Matlab

 (x_W, y_W)

 $(x_S, y_S)/\theta$

Abb. 2: Darstellung Koppelnavigation

Robotersteuerung

Manuelle Steuerung

- − W → Vorwärts
- $-A \rightarrow Links$
- D → Rechts
- S → Rückwärts

Abb. 1: Manuelle Steuerung

Occupancy Grid

Erstellen der Karte:

- Durch Koppelnavigation erstellen der näheren
 Umgebung
- Darstellung in einem
 OccupancyGrid, welches die
 Karte in ein Raster einteilt

Erstellen Gesamtkarte:

- GPS-Daten einlesen und in Occupancy Grid darstellen

Abb. 4: Darstellung der Karte

Abb. 5: Komplette Karte

Package Drop

Map Building

Verwendung der 16

Sonar misst Distanz zur

und Winkeländerung

Berechnung der Positions-

durch polares Anhängen

 $x_w = \left((d_s + \sqrt{x_s + y_s}) * cos(\alpha + \theta) + x_R \right)$

 $y_w = ((d_s + \sqrt{x_s + y_s}) * \sin(\alpha + \theta) + y_R)$

Abb. 3: Formel Koppelnavigation

Koppelnavigation:

Sonarsensoren

Wand

Briefkasten ansteuern

- Briefkasten misst Distanzzum Roboter
- Ab einem Schwellwert von
 1.5 Metern teilt der Briefkasten dem Roboter dies mit

Abb. 6: Briefkasten und Roboter

- Roboter richtet sich zum Briefkasten aus und steuert selbstständig auf diesen zu.
- Nach Ankunft kann ein neuer Briefkasten angesteuert werden

Homeing

Rückkehr zur Startposition

- Messen der Distanz zu den Stützpunkten
- Berechnung der Differenz

Abb. 7: Formel für Homeing

Abb. 8: Darstellung Trajektorie

- minimal berechnete Distanz wird als kürzeste Strecke interpretiert
- Rückkehr zur Startposition

Collision Avoidance

Kollision vermeiden

- Empfindlichkeit der vorderen, seitlichen und hinteren Sensoren definieren
- Distanz zum Hindernis mittels der Sonarsensoren messen
- Roboter stoppt automatisch um den Zusammenstoß zu vermeiden und dreht sich um 180°

Abb. 9: Vermeiden einer Kollision

Ausblick

- höhere Positionsgenauigkeit durch die Implementation eines Kalmanfilters
- Ergänzung eines optischen Sensors für realitätsnahe
 3-D Abbildungen
- Verbindung mit der Matlab Mobile App um den Roboter fernzusteuern
- Aufsuchen einer Ladestation bei niedrigem Batteriewert
- Datenaustausch über TCP oder UDP