Similar matrices:

Let A and B be non matrices. A is similar to B if there is an invertible non matrix P such that P'AP=B.

Ex. let
$$A = \begin{bmatrix} 1 & 2 \\ 0 & -1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 0 \\ -2 & -1 \end{bmatrix}$. Then A is similar to $B(A \sim B)$, since

Thus,
$$AP = P13$$
 with $P = \begin{bmatrix} 1 & -1 \end{bmatrix} \begin{bmatrix} 1 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix}$
Thus, $AP = P13$ with $P = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$

Thm: Let A and B be non matries with A~B. Then

- (i). det A = det B & tr(A) = tr(B)
- (ii) A is ûnvertible iff B is ûnvertible
- (iii) A and B have the same rank
- (iv) A and B have same characteristic polynomial
 - (V) A and B have the same eigenvalues

Ex:
$$A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$ are not similar, since $\det A = -3$ but $\det(B) = 3$.

Ex $A = \begin{bmatrix} 1 & 3 \\ 2 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 1 \\ 3 & -1 \end{bmatrix}$. They have same det and early.

But characteristic poly one $A^2 - 3A - 4$ and $A^2 - 4$ which are different. So A is not similar B.

Diagonalization:

An men matrix A is diagonalizable if there is a diagonal matrix D such that A is similar to D, that is, if there exists an invertible nen matrix P such that P'AP = D.

Necessary and Sufficient condition for a matrix to be diagonalizable

An n-square matrix A us déagonalizable iff A has n linearly indépendent ségenvectors.

This means, there exist an investible matrix P and a digonal matrix D such that P'AP = D if and only if the columns of P are n linearly independent eigenvectors of A and diagonal entries of D are the eigenvalues of A corresponding to the eigenvectors in P in the same order.

Thu: - If A is an nxn matrix with n distinct eigenvalues, then A is diagonolizable.

Thm: - If A is an nxn matrix then A is diagonalizable iff the algebraic multiplicity of each eigenvalues equals to its geometric multiplicity.

The Big use of diagonal factorization: $D = P^{-1}AP \iff A = PDP^{-1}$ $A^{2} = (PDP^{-1})^{2} = (PDP^{-1})(PDP^{-1}) = PD^{2}P^{-1}$ $A^{3} = PD^{3}P^{-1} \text{ and so } A^{m} = PD^{m}P^{-1}.$