Radiation Detection

December 2, 2020

Alfaifi, Ammar 201855360

1 Objective

To learn and analyze the electromagnetic radiation intensity as it travels through space. Also, to find some related calculations such as absorption law.

```
[7]: # import the needed libs
import numpy as np
import scipy as sc
import sympy as sp
import astropy
import pandas as pd
import matplotlib.pyplot as plt

from IPython.display import set_matplotlib_formats, Markdown, display
set_matplotlib_formats('png', 'pdf')

# plt.rc("figure", )
plt.rcParams['figure.dpi'] = 150
plt.rc("figure", figsize=(6, 3))
plt.rc('text', usetex=False)
plt.rc('font', family='serif')
```

2 Theory

2.1 We will use the absorption equation

$$I = I_0 e^{-\mu_m t_d}$$

to find the constant μ_m .

3 Measurments & Data

First loading the data into dataFrame Given that initial initial intensity $I_0 = 8000 counts/s$

```
[8]: # set the given value

I_0 = 8000

# Load the data into a pandas dataFrame from data.csv
```

```
data = pd.read_csv("data.csv")
data
```

[8]:	Pb	Absorber	thickness	t_d	[cm]	Radiation	count	rate	[counts/s]
0					0.3				4490
1					0.6				2655
2					1.0				1810
3					1.2				922
4					2.8				42

4 Calculations

4.1 First plot the raw data

[9]: <AxesSubplot:xlabel='Pb Absorber thickness t_d [cm]'>

4.2 Manipulate the equation to get a straight line equation

$$\ln\left(I/I_0\right) = -\mu_m t_d$$

where μ_m is the line slope

```
[10]: y = np.log(data["Radiation count rate [counts/s]"]/I_0)
x = -data["Pb Absorber thickness t_d [cm]"]
```

Thus the slope of the best fit line is $\mu_m = 1.893/cm$

5 Conclusion

In short, in this lab, we aimed to learn more about electromagnetic radiation in terms of its intensity through distance. We found that as the thickness of a material increases the intensity on the other side decreases exponentially. We analyzed the experiment by the absorption equation $\ln(I/I_0) = -\mu_m t_d$ where μ_m is the line slope. We found its value approximately equals $\mu_m = 1.893 cm^{-1}$