Estatística II, 2014/2015, Exame época recurso, 2015/06/29

Duração: 2h. Pode-se utilizar máquina de calcular sem memória de texto. Entregar as tabelas estatísticas e o enunciado **identificado**, com a prova. **Cotações**: todas as questões têm igual cotação (20/12).

- 1 Um agricultor compra sementes ao fornecedor A (a quem compra 40% do total) e ao fornecedor B (60% do total); das sementes vendidas por A, só 85% germinam; só 75% das sementes fornecidas por B germinam.
- *a*) Calcule a probabilidade de que uma semente escolhida ao acaso germine.

Resolução

S: "semente germina"

$$Pr(S) = Pr(S|A) Pr(A) + Pr(S|B) Pr(B) = 0.85 \times 0.4 + 0.75 \times 0.6 = 0.79.$$

b) Uma determinada semente germinou; qual a probabilidade de ter sido vendida por *A*? **Res.:**

$$Pr(A|S) = Pr(S \land A)/Pr(S) = Pr(S|A)Pr(A)/Pr(S) = 0.85 \times 0.4/0.79 \approx 0.378.$$

2 Considere a função probabilidade da variável aleatória *X* (*a* constante)

a) Determine a expressão de E(X) como função da constante a. Calcule o valor de a, sabendo que E(X) = 1/60.

Res.:

$$E(X) = -2 \times 12/60 - 1 \times 15/60 + a \times 10/60 + 1 \times 6/60 + 2 \times 17/60 = 1/60 \Leftrightarrow 1 + 10a = 1 \Leftrightarrow a = 0.$$

b) Considere a = 0. Determine a função probabilidade da variável $Y = X^2$.

Res.:

Suporte de *Y*: {0,1,4}

$$Pr(Y = 0) = Pr(X = 0) = 10/60$$

$$Pr(Y = 1) = Pr(X = -1) + Pr(X = 1) = 15/60 + 6/60 = 21/60$$

$$Pr(Y = 4) = Pr(X = -2) + Pr(X = 2) = 12/60 + 17/60 = 29/60$$

A função probabilidade de Y pode exprimir-se, por ex., como

$$f_Y(y) = \begin{cases} 10/60, & y = 0 \\ 21/60, & y = 1 \\ 29/60, & y = 4 \end{cases}$$

- 3 Considere a função (c: constante) $f(x) = \begin{cases} cx, & 0 \le x \le 1 \\ 0, & x < 0 \lor x > 1. \end{cases}$
- a) Determine c, de modo que f seja uma função densidade.

Res.:

$$f(x) \ge 0, \forall x \Leftrightarrow c > 0$$

$$\int_0^1 cx dx = 1 \Leftrightarrow c[x^2/2]_0^1 = 1 \Leftrightarrow c/2 = 1 \Leftrightarrow c = 2.$$

b) Determine a expressão da função de distribuição.

Res.:

$$F(x) = \int_{-\infty}^{x} f(u)du = \begin{cases} 0, & x < 0 \\ \int_{0}^{x} 2udu = [u^{2}]_{0}^{x} = x^{2}, & 0 \le x < 1. \\ 1, & x \ge 1 \end{cases}$$

c) Calcule a mediana da distribuição.

Res.:

$$F(Me) = 1/2 \Leftrightarrow Me^2 = 1/2 \Leftrightarrow Me = 1/\sqrt{2}$$
.

- **4** O número de clientes que chega a uma loja é uma variável aleatória Poisson. Suponha que, em média, chegam à loja 20 clientes por hora.
- *a*) Calcule a probabilidade de chegarem 5 clientes em 15 minutos.

Res.:

X: "nº de clientes em cada 15 minutos"; $X \sim \text{Poisson}(20/4) \equiv e^{-5}5^x/x!$. $Pr(X = 5) = e^{-5}5^5/5! \approx 0,175$.

b) Acabou de chegar um cliente. Qual a probabilidade de não chegar ninguém nos próximos 5 minutos?

Res.:

T: "tempo, em períodos de 5 minutos, entre dois clientes consecutivos"

$$T \sim f_T(t) = (20/12)e^{-(20/12)t}$$
.

$$\Pr(T > 1) = 1 - \Pr(T \le 1) = 1 - \int_0^1 (20/12)e^{-(20/12)t}dt = e^{-(20/12)} \approx 0.189.$$

Informação adicional

Função probabilidade Poisson $f_X(x) = e^{-\lambda} \lambda^x / x!$, $\lambda > 0$, $x \in \mathbb{N}_0$. Função densidade exponencial negativa $f_T(t) = \lambda e^{-\lambda t}$, $\lambda > 0$, t > 0.

Seja θ um parâmetro populacional desconhecido e T um seu estimador, obtido a partir de uma amostra casual. Verifique que $EQM(T) = [B(T)]^2 + V(T)$, em que $B(T) = E(T) - \theta$.

Res.:

$$\begin{split} EQM(T) &= E[(T-\theta)^2] = E\{[T-E(T)+E(T)-\theta]^2\} = \\ E\{[T-E(T)]^2 + 2[T-E(T)][E(T)-\theta] + [E(T)-\theta]^2\} = \\ \underbrace{E\{[T-E(T)]^2\}}_{=V(T)} + 2[E(T)-\theta]\underbrace{E[T-E(T)]}_{=0} + \underbrace{[E(T)-\theta]^2}_{=[E(T)]^2} = V(T) + [B(T)]^2. \end{split}$$

- **6** Recolhida uma amostra casual de 30 observações de uma população $\mathcal{N}(\mu, \sigma^2)$, obteve-se $\sum_{i=1}^{30} x_i = 30$ e $\sum_{i=1}^{30} x_i^2 = 300$.
- **a**) Admita que $\sigma^2 = 4$. Teste, ao nível de 10%, a hipótese H_0 : $\mu = 0.9$ contra a alternativa H_1 : $\mu \neq 0.9$.

Res.:

Estatística de teste $(\bar{X} - \mu)/(\sigma/\sqrt{n}) \sim \mathcal{N}(0,1)$ Rejeita-se H_0 , se $|(\bar{x} - 0,9)/(2/\sqrt{30})| > 1,645 \leftarrow \text{percentil 0,95}, \mathcal{N}(0,1);$ $|(30/30 - 0,9)/(2/\sqrt{30})| \approx 0,274 < 1,645 \Rightarrow \text{aceita-se } H_0.$ **b**) Repita o teste da alínea **a**) supondo σ^2 desconhecido.

Res.:

Estatística de teste
$$(\bar{X} - \mu)/(S/\sqrt{n-1}) \sim t(29)$$

Rejeita-se H_0 , se $|(\bar{x} - 0.9)/(s/\sqrt{29})| > 1.699 \leftarrow$ percentil 0.95, $t(29)$; $s^2 = 300/30 - (30/30)^2 = 9$
 $|(30/30 - 0.9)/(3/\sqrt{29})| \approx 0.180 < 1.699 \Rightarrow$ aceita-se H_0 .