Homework 1 (Due Friday, October 26, 2018)

Problem 1. Let $a=(a_n)_{n=1}^{\infty}$ be a sequence of complex numbers. We set

$$l^{\infty} = \{a : ||a||_{\infty} = \sup_{n} |a_n| < \infty\},$$

$$l^p = \left\{ a : ||a||_p = \left(\sum_{n=1}^{\infty} |a_n|^p \right)^{1/p} < \infty \right\}, \quad 1 \le p < \infty.$$

- (i) Show that l^p , $1 \le p \le \infty$, are Banach spaces.
- (ii) Prove that $l^{\infty} = (l^1)^*$ but $(l^{\infty})^* \neq l^1$. More precisely, for the last part, show that there exists a linear continuous form on l^{∞} which is *not* of the form

$$l^{\infty} \ni a \mapsto \sum_{j=1}^{\infty} a_j b_j,$$

where $b = (b_j)_{j=1}^{\infty} \in l^1$.

Problem 2. Prove that if Z is a subspace of a normed linear space X, and $y \in X$ has distance d from Z, then there exists $\Lambda \in X^*$ such that $\|\Lambda\| \leq 1$, $\Lambda(y) = d$ and $\Lambda(z) = 0$ for all $z \in Z$.

Note. The distance referred to above is $d = \inf\{||z - y|| : z \in Z\}$.

Problem 3. Show that linear combinations of functions of the form

$$\mathbb{R} \ni t \mapsto \frac{1}{t-z}, \quad \operatorname{Im} z \neq 0,$$

are dense in the space of continuous functions on \mathbb{R} which tend to 0 at infinity. (Here we equip the latter space with the uniform norm.)

Problem 4. Let V be a complex vector space and let f_j , $0 \le j \le N$, be linear forms on V such that

$$\bigcap_{j=1}^N \operatorname{Ker} f_j \subset \operatorname{Ker} f_0.$$

Show that f_0 is a linear combination of the f_j 's, $1 \le j \le N$.

Problem 5. Let X be a Banach space such that X^* is separable. Prove that X is separable.

Problem 6. Show that the closure in $L^2(\mathbb{R})$ of the set of functions of the form

$$p(x)e^{-x^2}, x \in \mathbb{R},$$

where p is a complex polynomial on \mathbb{R} , is equal to all of $L^2(\mathbb{R})$.

Hint. Use the Fourier transformation.

Problem 7. Let $f \in L^1_{loc}(\mathbb{R})$ be 2π -periodic, so that $f(x+2\pi) = f(x)$, $x \in \mathbb{R}$. Show that linear combinations of the translates f(x-a), $a \in \mathbb{R}$, are dense in $L^1(0,2\pi)$ if and only if each Fourier coefficient of f is $\neq 0$.

Problem 8. Let E_1 be a finite-dimensional subspace of the normed space E. Show that there exists a continuous projection $P: E \to E_1$, i.e., a continuous linear map $P: E \to E$ such that $P^2 = P$ and the range of P is equal to E_1 .