Convolutional Neural Network

Matrix representation of a picture innovation

ovate achiev

lead

	-
1.0 1.0 1.0 0.9 0.6 0.6 0.6 1.0 1.0 1.0 1.0 1.0	J
1.00.5 0.0 0.0 0.0 0.0 0.0 0.5 1.0 1.0 1.0)
1.002 02 0.50.60.60.50.00.00.51.01.0)
1.00.91.01.01.01.00.90.00.00.091.0)
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.5 0.0 0.5 1.0)
1.0 1.0 1.0 0.5 0.5 0.5 0.5 0.5 0.4 0.0 0.5 1.0)
1.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	_
0.9 0.0 0.0 0.6 1.0 1.0 1.0 1.0 0.5 0.0 0.5 1.0	_
0.5 0.0 0.6 1.0 1.0 1.0 1.0 1.0 0.5 0.0 0.5 1.0	_
0.5 0.0 0.7 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.5 1.0	_
0.6 0.0 0.6 1.0 1.0 1.0 1.0 0.5 0.0 0.0 0.5 1.0	_
0.9 0.1 0.0 0.6 0.7 0.7 0.5 0.0 0.5 0.0 0.5 1.0	_
1.00.7 0.1 0.0 0.0 0.0 0.1 0.9 0.8 0.0 0.5 1.0	_
1.0 1.0 1.0 0.8 0.8 0.9 1.0 1.0 1.0 1.0 1.0 1.0)

What We See

What Computers See

Image Classification

Training ...

$$\mathbf{h} = \sigma(\mathbf{W}_1)\mathbf{x} + \mathbf{b}_1$$

$$\mathbf{o} = (\mathbf{W}_2)^{\mathbf{h}} \mathbf{h} + \mathbf{b}_2$$

$$y = softmax(o)$$

Output layer

Hidden layer

Input layer

Image Classification

Where is Waldo?

Where is Waldo?

Two Principles

1. Translation Invariance:

Our vision systems should, in some sense, respond similarly to the same object regardless of where it appears on the image.

Two Principles

2. Locality:

Our visions systems should, in some sense, focus on somewhat local regions, without regard for what else is happening on the image at greater distances.

2-D Convolution Layer

Input

Kernel

Output

0	1	2
3	4	5
6	7	8

$$0 \times 0 + 1 \times 1 + 3 \times 2 + 4 \times 3 = 19,$$

 $1 \times 0 + 2 \times 1 + 4 \times 2 + 5 \times 3 = 25,$
 $3 \times 0 + 4 \times 1 + 6 \times 2 + 7 \times 3 = 37,$
 $4 \times 0 + 5 \times 1 + 7 \times 2 + 8 \times 3 = 43.$

(vdumoulin@ Github)

2-D Convolution Layer

1	2
4	5
7	8
	1 4 7

- $\mathbf{X} : n_h \times n_w$ input matrix

- $\mathbf{W}: k_h \times k_w$ kernel matrix

- : the bias scalar

-
$$Y : (n_h - k_h + 1) \times (n_w - k_w + 1)$$
 output matrix

$$Y = X \star W + b$$

(vdumoulin@ Github)

- and are the trainable parameters

Convolution

- We just slide the kernel over the input image
- Each time we slide the kernel we get one value in the output

2D convolutions applied to images

- We just slide the kernel over the input image
- Each time we slide the kernel we get one value in the output
- The resulting output is called a feature map.
- We can use multiple filters to get multiple feature maps.

Fliters

$$egin{bmatrix} -1 & -1 & -1 \ -1 & 8 & -1 \ -1 & -1 & -1 \end{bmatrix}$$

Edge Detection

(wikipedia)

$$\left[egin{array}{ccc} 0 & -1 & 0 \ -1 & 5 & -1 \ 0 & -1 & 0 \ \end{array}
ight]$$

Sharpen

Gaussian Blur

What do we do near the boundary?

The original convolution window may ignore this Waldo at the boundary ...

Padding can help!

Padding

Padding adds rows/columns around input

0 0 0 0 0 0 0 1 2 0 0 3 4 5 0

7

Input

Kernel

Output

0	3	8	4
9	19	25	10
21	37	43	16
6	7	8	0

$$0 \times 0 + 0 \times 1 + 0 \times 2 + 0 \times 3 = 0$$

How about two nearly identical windows?

The original convolution window may be too computational expensive to slide one pixel at a time...

Stride can help!

Stride

- Stride is the number of "unit" the kernel shifted per slide over rows/columns

Strides of 3 for height and 2 for width

		Inpu	t			Kernel		Out	put	
0	0	0	2	0		0 1	7	0	8	
0	6	7	5 8	0 ;	*	2 3	V.	6	8	
0	0	0	0	0						
()×() +	0 >	(1+	1 ×	$2 + 2 \times 3$	8 = 8			
()×() +	6 >	(1+	0 ×	$2 + 0 \times 3$	B = 6			

How to calculate the shape of the output?

- Given:
 - Input shape: $(n_h n_w)$
 - Kernel size: (k_h, k_w)
 - Padding size: $(p_h p_w)$
 - Stride size: $(s_h s_w)$
- The output shape is

$$\lfloor (n_h - k_h + p_h + s_h)/s_h \rfloor \times \lfloor (n_w - k_w + p_w + s_w)/s_w \rfloor$$

Max Pooling

- Returns the maximal value in the pooling window

Input

0	1	2
3	4	5
6	7	8

Output

4	5
7	8

max(0,1,3,4) = 4

2 x 2 Max

Pooling

Average Pooling

Max pooling

Average pooling

- Max pooling: the strongest pattern signal in a window
- Average pooling: the average signal strength in a window

Pooling VS Convolution

- Pooling layers can apply similar padding and stride as convolutional layers
- Pooling has no kernel (weights) to train

- Color image may have three RGB channels
- Converting to one grayscale channel loses information

Multiple Input Channels

- Have a kernel for each channel, and then sum results over channels

Convolutional Neural Network

- Can we learn multiple layers of meaningful kernels/filters in addition to learning the weights of the classifier?
- Yes, we can!
- Simply by treating these kernels as parameters and learning them in addition to the weights of the classifier (using back propagation)
- Such a network is called a Convolutional Neural Network.

31/68

Training CNN

We can thus train a convolution neural network using backpropagation by thinking of it as a feedforward neural network with sparse connections

- A CNN can be implemented as a feedforward neural network
- wherein only a few weights(in color) are active
- the rest of the weights (in gray) are zero

LeNet

LeNet consists of two parts: Part I. Convolution Block

- Convolution layer to recognize the spatial patterns
 - 5×5 kernel
 - sigmoid activation function
- Average pooling layer to reduce the dimensionality

LeNet

LeNet consists of two parts: Part II. Fully-connected layers Block

- 3 fully-connected layers
 - with 120, 84, and 10 outputs, respectively

Recurrent Networks: Time Series

- Suppose we want to predict next state of world
 - and it depends on history of unknown length
 - e.g., robot with forward-facing sensors trying to predict next sensor reading as it moves and turns
- Idea: use hidden layer in network to capture state history

(a) Feedforward network

(b) Recurrent network

- Consider the task of predicting the part of speech tag (noun, adverb, adjective verb) of each word in a sentence
- Once we see an adjective (social) we are <u>almost</u> sure that the next word should be a noun (man)
- Thus the current output (noun) depends on the current input as well as the previous input
- Further the size of the input is not fixed (sentences could have arbitrary number of words)
- Notice that here we are interested in producing an output at each time step
- Each network is performing the same task (input: word, output: tag)

- Sometimes we may not be interested in producing an output at every stage
- Instead we would look at the full sequence and then produce an output
- For example, consider the task of predicting the polarity of a movie review
- The prediction clearly does not depend only on the last word but also on some words which appear before
- Here again we could think that the network is performing the same task at each step (input: word, output: +/-) but it's just that we don't care about intermediate outputs

• First, the function being computed at each time-step now is different

$$y_1 = f_1(x_1)$$

$$y_2 = f_2(x_1, x_2)$$

$$y_3 = f_3(x_1, x_2, x_3)$$

- The network is now sensitive to the length of the sequence
- For example a sequence of length 10 will require f_1, \ldots, f_{10} whereas a sequence of length 100 will require f_1, \ldots, f_{100}

• The solution is to add a recurrent connection in the network,

$$s_i = \sigma(Ux + Ws_{i-1} + b)$$
$$y_i = \sigma(Vs_i + c)$$
$$or$$
$$y_i = f(x_i, s_i, W, U, V)$$

- s_i is the state of the network at timestep i
- The parameters are W, U, V which are shared across timesteps
- The same network (and parameters) can be used to compute y_1, y_2, \ldots, y_{10} or y_{100}

Artificial Neural Networks: Summary

- Highly non-linear regression/classification
- Hidden layers learn intermediate representations
- Potentially millions of parameters to estimate
- Deep networks have produced real progress in many fields
 - computer vision
 - speech recognition
 - mapping images to text
 - recommender systems
 - **—** ...
- They learn very useful non-linear representations

References

Mitesh Khapra

https://www.youtube.com/watch?v=yw8xwS15Pf4

Visualization of CNN

https://www.youtube.com/watch?v=cNBBNAxC8I4

Back propagation

https://www.youtube.com/watch?v=G5b4jRBKNxw&lis
t=PLZbbT5o s2xq7LwI2y8 QtvuXZedL6tQU&index=25

Dive into deeplearning

https://c.d2l.ai/gtc2020/