Numara__:
Ad Soyad:

Otomata Teorisi ve Biçimsel Diller dersi arasınavı (2014-2015 Güz)

(Boş yerleri müsvedde olarak kullanabilirsiniz, cevaplarınızı lütfen ilgili kutucuğa sığdırınız.)

1. DÜZENLİ DİLLER

a. (15P) $\Sigma = \{a,b,c\}$ alfabesine göre ne başında ne de sonunda "a" sembolü olmayan ama içinde en az bir "b" ve bir de "c" sembolleri bulunan kelimeleri kabul eden dilin NFAsını çiziniz.

b. (20P) Sağdaki NFA için DFA dönüşümünü yapınız. $(\Sigma = \{a,b\})$

 $Q' = \{0, \{0\}, \{1\}, \{2\}, \{0,1\}, \{0,2\}, \{1,2\}, \{0,1,2\}\} \quad q' = \{0\} \quad F' = \{\{0\}, \{0,1\}, \{0,2\}, \{0,1,2\}\}$

 $\delta'(0,a)=\{0,1,2\}$ $\delta'(0,b)=0$ $\delta'(\{0\},a)=\{0,1,2\}$ $\delta'(\{0\},b)=\{0,1,2\}$ $\delta'(\{1\},a)=\{0,1,2\}$ $\delta'(\{1\},b)=0$ $\delta'(\{2\},a)=\{0,1,2\}$ $\delta'(\{2\},b)=0$ $\delta'(\{0,1\},a)=\{0,1,2\}$ $\delta'(\{0,1\},b)=\{0,1,2\}$ $\delta'(\{0,2\},a)=\{0,1,2\}$ $\delta'(\{0,2\},b)=0$ $\delta'(\{1,2\},a)=\{0,1,2\}$ $\delta'(\{1,2\},b)=\{0,1,2\}$ $\delta'(\{0,1,2\},b)=\{0,1,2\}$ $\delta'(\{0,1,2\},a)=\{0,1,2\}$

 $Lq_0 = (aUb)Lq_1$

Sadeleşmiş son hali

Lq₂=εUaLq₁UbLq₀

c. (15*P*) Sağdaki DFA için düzeni ifadeyi yazınız. ($\Sigma = \{a,b\}$)

 $Lq_1=(aUb)(\epsilon UaLq_1UbLq_0)$ $Lq_1=(aUb)U(aUb)a Lq_1U(aUb)b Lq_0$ $Lq_1=((aUb)a)^*((aub)U(aUb)b Lq_0)$

 $Lq_1=(aUb)Lq_2$

 $Lq_1=((aUb)a)*(aUb)((aUb)a)*(aUb)b Lq_0$ $Lq_0=(aUb)(((aUb)a)*(aUb)((aUb)a)*(aUb)b Lq_0)$

Lq₀=(aUb)((aUb)a)*(aUb)b Lq₀ U (aUb)((aUb)a)*(aUb)

 $Lq_0 = ((aUb)((aUb)a)*(aUb)b)*((aUb)((aUb)a)*(aUb))$

2. İCERİKTEN BAĞIMSIZ DİLLER

a. (15*P*) Tek uzunluklu ve içinde en az bir adet "b" içeren palindrom (hem soldan hem sağdan aynı okunan) kelimeleri kabul eden içerikten bağımsız dilin gramerini oluşturunuz. $(\Sigma = \{a,b\})$

```
S -> bAb | aSa | b
A -> aAa | bAb | a | b
```

b. (20*P*) Yukarıdaki (2.a) problem için bir PDA (pushdown otomata) tasarlayınız.

_	b. (201) Tukartuaki (2.a) problem için bir 1 bir (pushdown otomata) tasarlayınız.					
	S -> BD CF b	S	qa\$->qNDB	Α	qaA->qNEC	
	$S_0 \rightarrow BD CF b$		qb\$->qNDB		qbA->qNEC	
	A -> CE BD a b		qa\$->qNFC		qaA->qNDB	
	B -> b		qb\$->qNFC		qbA->qNDB	
	C -> a		qb\$->qRε		qaA-> qRε	
	D -> AB	S_0	qa\$->qNDB		qbA-> qRε	
	E -> AC		qb\$->qNDB	В	qbB->qRε	
	$F \rightarrow S_0C$		qa\$->qNFC	С	qaC->qRε	
			qb\$->qNFC	D	qaD->qNBA	
			qb\$->qRε		qbD->qNBA	
		F	qaF->qNCS ₀	E	qaE->qNCA	
			qbF->qNCS ₀		qbE->qNCA	

c. (15P) A= $\{0^n1^n2^m \mid n, m \in N\}$, $B=\{0^n1^m2^m \mid n, m \in N\}$, $L=A \cap B$ ise L dilinin içerikten bağımsız bir dil olmadığını pumping lemma ile ispatlayınız.

L=A \cap B ise $0^n1^n2^m=0^n1^n2^m$ sonuç olarak n=m diyebiliriz. L dili L= $\{0^n1^n2^n\mid n\in N\}$ ile tanımlanabilir. S= $0^n1^n2^n$ seklinde L diline ait bir kelime olsun. $|S|=3n\geq n$ ve S=uvxyz şeklinde yazıldığında $|vy|\geq 1$, $|vxy|\leq n$ ve her $i\geq 0$ değeri için uvⁱxyⁱz L dilinin elemanı olmalıdır.

Birinci durumda vxy parçasının "2" içermediğini varsayalım, $v^i x y^i$ ile şişirildiğinde 0 veya 1 (n+i) defa, 2 ise n defa S içerisinde bulunacaktır. Bu durumda $0^n 1^n 2^n$ eşitliği bozulacaktır.

Ikinci durumda vxy parçasının "0" içermediğini varsayalım, vⁱxyⁱ ile şişirildiğinde 1 veya 2 (n+i) defa, 0 ise n defa S içerisinde bulunacaktır. Bu durumda 0ⁿ1ⁿ2ⁿ eşitliği bozulacaktır.

Son durum ise vxy parçasının en az bir 0 ve 2 içerdiğini varsaymaktır ki bu durum |vxy|>n eşitsizliğine sebep olur ve mümkün değildir.

Her üç koşulun olumsuz sonuçlanmasından dolayı L dili içerikten bağımsız bir dil değildir.