# Sistemas Inteligentes

K-NEAREST NEIGHBORS

# k-nearest neighbors

#### Ideia:

- Exemplos similares devem possuir rótulos similares
- Classificar os novos exemplos como exemplos do treinamento similares

#### Algoritmo:

- Para um dado x, determinar a qual classe ele pertence da seguinte forma:
  - Encontre o dado de treinamento que mais se assemelhar a x;
  - Classifique x com o mesmo rótulo do dado de treinamento

#### Questões:

- Como quantificar a similaridade?
- Quantos dados de treinamento devo considerar?
- Como resolver inconsistências?

## 1-Vizinho mais próximo

Um dos classificadores mais simples, que explora a ideia de classificar o novo dado de acordo com o dado de treinamento mais próximo a ele.



## Métricas de distância



Dist(**a**,**b**) =  $(a_1 - b_1)^2 + (a_2 - b_2)^2$ 



Dist(**a**,**b**) =  $(a_1 - b_1)^2 + (3a_2 - 3b_2)^2$ 

# k – vizinhos mais próximos

Generalização do método anterior. O novo dado é classificado de acordo com o rótulo mais frequente dos seus k vizinhos mais próximos.





## Vantagens e Desvantagens

Simples de implementar e possui poucos parâmetros:

- Aumentar o número de vizinhos pode ser benéfico para reduzir a sensibilidade ao ruído nos dados. Por outro lado, aumentar o número de vizinhos torna o processo de classificação mais custoso
- Regra geral: escolha um valor k não muito grande, mas também não muito pequeno

Necessita de uma medida de distância que seja compatível com a noção de similaridade desejada para a tarefa de classificação.

Pode ser proibitivo utilizar o algoritmo para grandes bases de dados, pois a classificação deve comparar os dados com todos os exemplos de treinamento.

Precisão na predição cai rapidamente com o aumento no número de atributos considerados.

# Sistemas Inteligentes

**DECISION TREES** 

# Exemplo de classificação

|     | binary        | categoric cont    |               | class                 |  |
|-----|---------------|-------------------|---------------|-----------------------|--|
| Tid | Home<br>Owner | Marital<br>Status | Annual Income | Defaulted<br>Borrower |  |
| 1   | Yes           | Single            | 125K          | No                    |  |
| 2   | No            | Married           | 100K          | No                    |  |
| 3   | No            | Single            | 70K           | No                    |  |
| 4   | Yes           | Married           | 120K          | No                    |  |
| 5   | No            | Divorced          | 95K           | Yes                   |  |
| 6   | No            | Married           | 60K           | No                    |  |
| 7   | Yes           | Divorced          | 220K          | No                    |  |
| 8   | No            | Single            | 85K           | Yes                   |  |
| 9   | No            | Married           | 75K           | No                    |  |
| 10  | No            | Single            | 90K           | Yes                   |  |

Figure 4.6. Training set for predicting borrowers who will default on loan payments.



Figure 4.3. General approach for building a classification model.

### **Decision Trees**

Classificador cujo modelo segue uma estrutura de árvore

- Um nó interno denota um teste a ser realizado sobre um determinado atributo
- Uma derivação representa um resultado do teste
- As folhas representam os rótulos das classes

A geração da árvore de decisão consiste em duas etapas

- Construção da árvore
  - No início, todos os exemplos de treinamento estão no nó raiz
  - Particionam-se os exemplos de maneira recursiva, baseado em determinados atributos
- Poda da árvore
  - Identificar e remover ramos que refletem o ruído ou outliers

# Dados para treinamento para árvore de decisão

| age  | income | student | credit_rating | buys_computer |
|------|--------|---------|---------------|---------------|
| <=30 | high   | no      | fair          | no            |
| <=30 | high   | no      | excellent     | no            |
| 3140 | high   | no      | fair          | yes           |
| >40  | medium | no      | fair          | yes           |
| >40  | low    | yes     | fair          | yes           |
| >40  | low    | yes     | excellent     | no            |
| 3140 | low    | yes     | excellent     | yes           |
| <=30 | medium | no      | fair          | no            |
| <=30 | low    | yes     | fair          | yes           |
| >40  | medium | yes     | fair          | yes           |
| <=30 | medium | yes     | excellent     | yes           |
| 3140 | medium | no      | excellent     | yes           |
| 3140 | high   | yes     | fair          | yes           |
| >40  | medium | no      | excellent     | no            |

## Decision Tree "buys\_computer"



# Algoritmo de Hunt

 $X_t$ : conjunto de dados de treinamento no nó t

 $y = \{y_1, \dots, y_c\}$ : rótulos das classes

Passo 1: Se todos os dados em  $X_t$  pertencem a uma mesma classe  $y_t$ , então t é um nó folha e deve ser rotulado como  $y_t$ 

Passo 2: Se  $X_t$  contém dados que pertencem a mais de uma classe

- Selecione um atributo que será utilizado no teste para particionar os dados em subconjuntos menores
- Crie um nó filho para cada possível resultado do teste
- Aplique o algoritmo recursivamente para cada nó filho

# Construção da *Decision Tree* - exemplo

|     | hinary        | catego            | rical contin     | jous<br>class         |
|-----|---------------|-------------------|------------------|-----------------------|
| Tid | Home<br>Owner | Marital<br>Status | Annual<br>Income | Defaulted<br>Borrower |
| 1   | Yes           | Single            | 125K             | No                    |
| 2   | No            | Married           | 100K             | No                    |
| 3   | No            | Single            | 70K              | No                    |
| 4   | Yes           | Married           | 120K             | No                    |
| 5   | No            | Divorced          | 95K              | Yes                   |
| 6   | No            | Married           | 60K              | No                    |
| 7   | Yes           | Divorced          | 220K             | No                    |
| 8   | No            | Single            | 85K              | Yes                   |
| 9   | No            | Married           | 75K              | No                    |
| 10  | No            | Single            | 90K              | Yes                   |

Figure 4.6. Training set for predicting borrowers who will default on loan payments.



Figure 4.7. Hunt's algorithm for inducing decision trees.

# Bifurcação de Nó

#### Atributos Binários



Figure 4.8. Test condition for binary attributes.



Figure 4.10. Different ways of grouping ordinal attribute values.



(b) Binary split {by grouping attribute values}

Figure 4.9. Test conditions for nominal attributes.



Figure 4.11. Test condition for continuous attributes.

# Como selecionar a bifurcação?

### Considere que

p(i|t): fração dos dados no nó t que pertencem à classe i

A melhor bifurcação é selecionada com base no grau de **impureza** de seus nós filhos

- Uma distribuição de classes (0,1) possui alta pureza
- Uma distribuição de classes (0.5,0.5) possui a menor pureza (maior impureza)



# Quais são as medidas de impureza?

Entropy(t) = 
$$-\sum_{i=1}^{c} p(i \mid t) \log p(i \mid t)$$

Gini
$$(t) = 1 - \sum_{i=1}^{c} [p(i \mid t)]^2$$

Classification error(
$$t$$
) =  $1 - \max_{i} [p(i | t)]$ 



Figure 4.13. Comparison among the impurity measures for binary classification problems.

# Medidas de Impureza

Ganho de um teste: compare a impureza de um nó pai com a impureza dos nós filhos

$$\Delta = I(parent) - \sum_{j=1}^{k} \frac{N(v_j)}{N} I(v_j)$$

Maximizar o ganho = minimizar a impureza ponderada dos nós filhos

• Se I(pai) = Entropy(pai), então a quantidade  $\Delta_{info}$  é denominada de ganho de informação

# Calculando o ganho - exemplo



Figure 4.14. Splitting binary attributes.

# A estratégia é boa para se determinar a bifurcação?



Figure 4.12. Multiway versus binary splits.

Medidas baseadas apenas na impureza favorecem atributos com grande número de valores! E uma condição de teste com vários possíveis resultados pode não ser apropriada, pois o # de padrões em cada partição é muito pequeno para se fazer predições.

## Alternativa: usar o Gain Ratio

O Gain Ratio é definido como

$$Gain\ ratio\ = \frac{\Delta_{info}}{Split_{info}}$$

onde

$$Split_{Info} = -\Sigma_{i=1...k} p(v_i) \log(p(v_i))$$

para

• k: número total de bifurcações

Se cada atributo possui o mesmo número de padrões,  $Split_{Info} = \log k$ 

• Quanto maior o número de bifurcações  $\rightarrow$  maior o valor de  $Split_{info} \rightarrow$  menor o  $Gain\ Ratio$ 

# Construindo Decision Trees (pseudo código)

```
GenDecTree(Sample S, Features F)
     If stopping_condition(S,F) = true then
          leaf = createNode()
     a.
          leaf.label= Classify(S)
          return leaf
2.
     root = createNode()
      root.test_condition = findBestSplit(S,F)
3.
      V = \{v \mid v \text{ is a possible outcome of root.test condition}\}
4.
     for each value veV:
          S_v: = {s | root.test_condition(s) = v and s \in S};
          child = TreeGrowth(S, ,F);
          Add child as a descent of root and label the edge (root \rightarrow child) as v
```

return root

6.

# Exemplo de aplicação



500 círculos and 500 triângulos (dados).

#### **Círculos:**

$$0.5 \le \text{sqrt}(x_1^2 + x_2^2) \le 1$$

### **Triângulos**

$$sqrt(x_1^2+x_2^2) > 1$$
 or  $sqrt(x_1^2+x_2^2) < 0.5$ 

# Underfitting x Overfitting

Quando o modelo é muito simples, não é capaz de reduzir o erro de treinamento, tampouco o de teste. Quando há muita flexibilidade no modelo é necessário tomar cuidado para não obter uma solução com *overfitting*.



# Overfitting devido ao ruído



## Erros devido a pouco treinamento



# Overfitting: como lidar com isso?

Dados dois modelos com erro de generalização similares, deve-se dar preferência ao modelo mais simples → Navalha de Occam

- Modelos mais complexos têm maior chance de gerar overfitting
- Necessário considerar a complexidade do modelo na sua avaliação

Outra abordagem: poda após geração da árvore

- Obtenha a árvore de decisão completa
- Podar os nós da árvore de decisão em uma abordagem "bottom-up"
- Se o erro de generalização melhorar depois da poda, substitua a sub árvore podada por um nó folha, cuja classe é determinada pela classe da maioria dos padrões associadas à sub árvore
- Algoritmos como o "Minimum Description Length" (MDL) podem ser utilizados nesse processo
- Pode-se realizar a poda enquanto a árvore está sendo criada também (preprunning)

## Avaliando os Modelos

Uma maneira usual de representar a performance do classificador é através da *Confusion matrix* 

#### **Predicted Class**

Actual Class

|           | Class = 1 | Class = 0 |  |
|-----------|-----------|-----------|--|
| Class = 1 | TP        | FN        |  |
| Class = 0 | FP        | TN        |  |

TP: True Positive; TN: True Negative; FP: False Positive; FN: False Negative

Diferentes tipos de erro podem ser mais ou menos relevantes, dependendo da aplicação

 Por exemplo, no diagnóstico automático de câncer a partir de imagens, o que é mais importante: TP ou FN?

# Acurácia, Taxa de Erro, Sensibilidade e Especificidade

**Acurácia**: porcentagem dos dados de teste que foram corretamente classificados.

$$Accuracy = \frac{TP + TN}{TP + TN + FN + FP}$$

Taxa de Erro: 1 – acurácia, ou  $Error \ rate = \frac{FP + FN}{TP + TN + FN + FP}$ 

| A∖P | С  | ¬C |     |
|-----|----|----|-----|
| С   | TP | FN | Р   |
| ¬C  | FP | TN | N   |
|     | P' | N' | All |

Se houver um desbalanço na quantidade de dados – por exemplo, uma das classes é rara, as métricas anteriores podem ocultar informações sobre o desempenho do classificador

Alternativas:

Sensibilidade: Taxa de True

Positive

$$Sensitivity = \frac{TP}{TP + FN}$$

**Especificidade**: Taxa de True

Negative

$$Specificity = \frac{TN}{FP + TN}$$

## Precisão, Recall e medida F

**Precisão**: porcentagem de dados classificados como positivos que são efetivamente positivos

$$precision = \frac{TP}{TP + FP}$$

**Recall**: porcentagem dos dados positivos que o classificador classificou corretamente como positivos

$$recall = \frac{TP}{TP + FN}$$

Medida F (ou F-score): media harmônica entre a precisão e o recall

$$F = \frac{2 \times precision \times recall}{precision + recall}$$

# Exemplo

Precision = 90/230 = 39.13%

Recall = 90/300 = 30.00%

| Actual Class\Predicted class | cancer = yes | cancer = no | Total | Recognition(%)      |
|------------------------------|--------------|-------------|-------|---------------------|
| cancer = yes                 | 90           | 210         | 300   | 30.00 (sensitivity  |
| cancer = no                  | 140          | 9560        | 9700  | 98.56 (specificity) |
| Total                        | 230          | 9770        | 10000 | 96.40 (accuracy)    |

# Método de validação Holdout

- Dados são divididos em dois conjuntos
  - Treinamento (e.g., 2/3), que é utilizado para construção do modelo
  - Teste (e.g., 1/3) para avaliação de desempenho
- Amostragem aleatória: variação do holdout
  - Repetir o método holdout k vezes, dividindo aleatoriamente os conjuntos. O desempenho global será a média de todos os desempenhos.

### Hold-out validation



# K-fold Cross-Validation

Particionar os dados em k conjuntos mutuamente exclusivos, de mesmo tamanho

- A cada iteração, utilize um dos subconjuntos como teste (os demais como dados de treinamento). Desempenho global será a média dos desempenhos
- Leave-one-out: caso particular da validação k-fold, em que k é igual o número de dados disponíveis

K-fold cross validation



# Bootstrap Validation

### Funciona bem para conjunto de dados pequenos

- Dados de treinamento s\u00e3o amostrados aleatoriamente a partir dos dados dispon\u00edveis (com substitui\u00e7\u00e3o), i.e., um mesmo dado pode ser sorteado mais de uma vez
- Os dados que não forem sorteados formam o conjunto de teste

