Math 1300-005 - Spring 2017

Applied Optimization, Pt. 1 - 4/5/17

Guidelines: Please work in groups of two or three. This will not be handed in, but is a study resource for Midterm 3.

1. Consider

$$f(x) = \frac{x}{1+x^2}$$

on the open interval $(0, \infty)$. Use the First Derivative Test for Absolute Extrema to determine whether or not f has an absolute maximum or absolute minimum on $(0, \infty)$. Be sure to include full justification.

2. Consider

$$g(x) = 12x - x^3$$

on the open interval $(-\infty, 0)$. Use the First Derivative Test for Absolute Extrema to determine whether or not g has an absolute maximum or absolute minimum on $(-\infty, 0)$. Be sure to include full justification.

Having practiced the first derivative test for absolute extrema in a general setting, let us now apply it to applied optimization problems. Today we will start off easy.

- 3. Find two numbers whose difference is 100 and whose product is a minimum.
 - (a) Let the two numbers in question be denoted x and y. By the given info we know the difference of x and y is 100, so

$$x - y = 100.$$

This equation is called our *constraint equation* as it puts constraints on what x and y can be.

(b) We are seeking to minimize the product of x and y, denoted

$$P = xy$$
.

This equation is called our *optimizing equation*, and we will eventually do our calculus here.

(c) Notice our expression for P involves two variables! To get around this, let us solve our constraint equation x - y = 100 for y, giving

$$y = 100 - x.$$

Substituting this into our expression for P gives

$$P = x(100 - x) = 100x - x^2.$$

- (d) Notice P is now a function of a single variable. What is the domain of P? Well x and y can in principle be anything, so our domain is $(-\infty, \infty)$.
- (e) Now use the first derivative test for absolute extrema to find the minimum value of $P = 100x x^2$ on the interval $(-\infty, \infty)$. Be sure to include full justification.

(f) The step above will give the value of x the satisfies the problem; but we were told to find two numbers. To find y, substitute the value for x back into the constraint. Thus

$$x = y = y$$

4.		7 cm^2 of material is available to make a box with a square base and an open top, the largest possible volume of the box.
	(a)	Let x denote the length of the sides of the square base of the box, and let y denote the height. We know the surface area of the box is 27 cm^2 , so write this as an equation involving x and y . This is our <i>constraint</i> . [Hint: a picture helps a ton!]
	(b)	We are seeking to minimize the volume V of the box. Write an equation involving $V, x,$ and y . This is our <i>optimizing equation</i> .
	(c)	Your expression for V should involve x and y . To get it purely in terms of x , solve your constraint equation from (a) for y and substitute this into your optimizing equation and simplify. V should now be a function of x alone.
	(d)	Since x and y are lengths of sides of a box, what is the domain of V ?
	(e)	Apply the first derivative test for absolute extrema to find the maximum value of V on the domain found above. Be sure to include full justification.
	(f)	What is the largest possible volume?

5.	Now try sum is a	one on your own. minimum.	Find	two	positiv	e num	bers	whose	produc	t is	100 an	d w	hose