Credibility Dynamics and Disinflation Plans

Rumen Kostadinov McMaster Francisco Roldán IMF

UdeSA Alumni Conference
December 2019

The views expressed herein are those of the authors and should not be attributed to the IMF, its Executive Board, or its management.

Motivation

- · Macro models: expectations of future policy determine current outcomes
- Policy typically set assuming commitment or discretion
- · Governments actively attempt to influence beliefs about future policy
 - · Forward guidance, inflation targets, fiscal rules
- This paper: rational-expectations theory of government credibility
- Application in a (modern) Barro-Gordon setup

Motivation

- · Macro models: expectations of future policy determine current outcomes
- · Policy typically set assuming commitment or discretion
- · Governments actively attempt to influence beliefs about future policy
 - · Forward guidance, inflation targets, fiscal rules
- This paper: rational-expectations theory of government credibility
 - Insights from reputation literature
- · Application in a (modern) Barro-Gordon setup

1

- What is reputation?
 - · Private sector posterior belief that the government is committed to a particular plan
- Given a plan [Continuation equilibrium]
 - Larger departures are easier to detect
 - · Crucial feature: noise partially masks government's current choice
 - \cdot 'More time-inconsistent' plans have a more negative average drift of reputation
- Planner anticipates credibility dynamics of plans [Equilibrium
- Consider the limit when initial reputation vanishes to zero

- What is reputation?
 - · Private sector posterior belief that the government is committed to a particular plan
- · Given a plan [Continuation equilibrium]
 - · Larger departures are easier to detect
 - · Crucial feature: noise partially masks government's current choice
 - $\cdot\,$ 'More time-inconsistent' plans have a more negative average drift of reputation
- Planner anticipates credibility dynamics of plans
 [Equilibrium]
- Consider the limit when initial reputation vanishes to zero

- · What is reputation?
 - · Private sector posterior belief that the government is committed to a particular plan
- · Given a plan [Continuation equilibrium]
 - · Larger departures are easier to detect
 - · Crucial feature: noise partially masks government's current choice
 - · 'More time-inconsistent' plans have a more negative average drift of reputation
- Planner anticipates credibility dynamics of plans [Equilibrium]
- · Consider the limit when initial reputation vanishes to zero

- · What is reputation?
 - · Private sector posterior belief that the government is committed to a particular plan
- · Given a plan [Continuation equilibrium]
- Planner anticipates credibility dynamics of plans
 [Equilibrium]

	Main result
Planner chooses a back-loaded plan	 In application, gradual disinflation No real inertia, but good for incentives

· Consider the limit when initial reputation vanishes to zero

Literature

· Sustainable plans - anything goes

from Kydland and Prescott (1977), Chari and Kehoe (1990), Abreu, Pearce, and Stacchetti (1990), Phelan and Stacchetti (2001)

· Reputation without noise - zero inflation at onset

Milgrom and Roberts (1982), Kreps and Wilson (1982), Barro (1986), Backus and Driffill (1985), Barro and Gordon (1986), Sleet and Yeltekin (2007)

Dovis and Kirpalani (2019) – constant but more than zero

· Reputation with noise

Commitment: Lu (2013), Lu, King, and Pastén (2008, 2016)

Static plans: Faingold and Sannikov (2011)

Preference uncertainty with noise – announcements irrelevant

Cukierman and Meltzer (1986), Faust and Svensson (2001), Phelan (2006), etc

Roadmap

· Model

- $\cdot \ Continuation \ equilibria \ conditional \ on \ a \ plan$
- · Plans
- $\cdot \, \mathsf{Conclusion}$

Model

Framework

- A government dislikes inflation and output away from a target $y^\star>0$

$$L_t = \mathbb{E}_t \left[\sum_{s=0}^{\infty} \beta^s \left((\mathbf{y}^* - \mathbf{y}_{t+s})^2 + \gamma \pi_{t+s}^2 \right) \right]$$

· A Phillips curve relates output to current and expected future inflation

$$\pi_t = \kappa \mathbf{y}_t + \beta \mathbb{E}_t \left[\pi_{t+1} \right]$$

- The government controls inflation only imperfectly (through g_t)

$$\pi_t = \mathbf{g}_t + \epsilon_t$$

with $\epsilon_t \stackrel{\textit{iid}}{\sim} \mathsf{F}_\epsilon$

5

Reputation

- The government can be rational or one of many 'behavioral' types
 - · Behavioral types $c \in \mathcal{C}$
 - Type c is committed to an inflation plan $\{a_t\}_{t=0}^{\infty}$
 - For simplicity let all plans have $a_{t+1} = \phi_{c}(a_{t})$

[Finding the state is an art]

- · Behavioral types have (total) probability z
 - · Conditional on behavioral, probability ν over $\mathcal C$
- Private sector knows z and ν
 - · Does inference over the government's type
 - Uses announcement and inflation choices

Reputation

- · The government can be rational or one of many 'behavioral' types
 - · Behavioral types $c \in \mathcal{C}$
 - Type c is committed to an inflation plan $\{a_t\}_{t=0}^{\infty}$
 - For simplicity let all plans have $a_{t+1} = \phi_c(a_t)$ [Finding the state is an art]
- · Behavioral types have (total) probability z
 - · Conditional on behavioral, probability ν over $\mathcal C$
- Private sector knows z and ν
 - · Does inference over the government's type
 - Uses announcement and inflation choices

Behavioral types

- What is the set C?
 - \cdots and associated possible ϕ_c functions
- Consider $\{a_t\}_t$ paths characterized by
 - · Starting point a₀
 - · Decay rate ω
 - Asymptote χ

$$a_{t} = \chi + (a_{0} - \chi)e^{-\omega t}$$
$$\phi(a) = \chi + e^{-\omega}(a - \chi)$$

Behavioral types

- What is the set C?
 - \cdots and associated possible ϕ_c functions
- Consider $\{a_t\}_t$ paths characterized by
 - · Starting point a₀
 - Decay rate ω
 - · Asymptote χ

$$a_{t} = \chi + (a_{0} - \chi)e^{-\omega t}$$
$$\phi(a) = \chi + e^{-\omega}(a - \chi)$$

Gameplay

- At t = 0, inflation targets are announced
 - Type $\mathbf{c} \in \mathcal{C}$ says \mathbf{c}
 - Rational type strategizes announces r possibly $\in \mathcal{C}$
- At time $t \ge 0$, the government sets inflation
 - Behavioral type $c \in C$ implements $g_t = a_t^c$
 - Rational type acts strategically chooses $a_i \le a_i^c$

Gameplay

- At t = 0, inflation targets are announced
 - Type $\mathbf{c} \in \mathcal{C}$ says \mathbf{c}
 - Rational type strategizes announces r possibly $\in \mathcal{C}$
- At time $t \ge 0$, the government sets inflation
 - Behavioral type $c \in C$ implements $g_t = a_t^c$
 - Rational type acts strategically chooses a ≤ a^c

Gameplay

- At t = 0, inflation targets are announced
 - Type $\mathbf{c} \in \mathcal{C}$ says \mathbf{c}
 - Rational type strategizes announces r possibly $\in \mathcal{C}$
- At time $t \ge 0$, the government sets inflation
 - Behavioral type $c \in C$ implements $g_t = a_t^c$
 - Rational type acts strategically chooses $g_t \leq a_t^c$

Continuation equilibria conditional

on a plan

Rational type's problem

Given an announcement c,

· The problem of the rational type is, given expectations g_c^*

$$\begin{split} \mathcal{L}^c(p,a) &= \min_g \mathbb{E}\left[(y^\star - y)^2 + \gamma \pi^2 + \beta \mathcal{L}^c(p',\phi_c(a)) \right] \\ &\text{subject to } \pi = g + \epsilon \\ &\pi = \kappa y + \beta \big[p'\phi_c(a) + (1-p')g_c^\star(p',\phi_c(a)) \big] \\ &p' = p + p(1-p) \frac{f_\epsilon(\pi-a) - f_\epsilon(\pi-g_c^\star(p,a))}{pf_\epsilon(\pi-a) + (1-p)f_\epsilon(\pi-g_c^\star(p,a))} \end{split}$$

· Rational expectations requires g_c^{\star} to be the policy associated with \mathcal{L}^c

9

Continuation Equilibrium

Definition

Given an announcement c, a continuation equilibrium is a pair (\mathcal{L}^c, g_c^*) such that

- $\cdot \mathcal{L}^c$ is the rational type's value function at expectations g_c^\star
- g_c^* is the policy function associated with \mathcal{L}^c

The Value Function

Incentives

$$rac{\partial \mathsf{y}}{\partial \pi} = rac{1}{\kappa} \left[1 - eta rac{\partial \mathsf{p}'}{\partial \pi} \left(\phi_c(a) - \mathsf{g}^\star(\mathsf{p}', \phi_c(a)) + (1 - \mathsf{p}') rac{\partial \mathsf{g}^\star(\mathsf{p}', \phi_c(a))}{\partial \mathsf{p}'}
ight)
ight]$$

- · More inflation
 - 1. Increases output by $\frac{1}{\kappa}$
 - 2. Shifts inflation expectations from $\phi_c(a)$ towards $g^*(p', \phi_c(a))$
 - ... p' decreases with higher π when $g^*(p, a) > a$
 - 3. Shifts expectations of the rational type's future choice

$$\frac{\partial \mathsf{y}}{\partial \pi} = \frac{1}{\kappa} \left[\mathbf{1} - \beta \frac{\partial \mathsf{p}'}{\partial \pi} \left(\phi_{\mathsf{c}}(\mathsf{a}) - \mathsf{g}^{\star}(\mathsf{p}', \phi_{\mathsf{c}}(\mathsf{a})) + (\mathbf{1} - \mathsf{p}') \frac{\partial \mathsf{g}^{\star}(\mathsf{p}', \phi_{\mathsf{c}}(\mathsf{a}))}{\partial \mathsf{p}'} \right) \right]$$

- · More inflation
 - 1. Increases output by $\frac{1}{\kappa}$
 - 2. Shifts inflation expectations from $\phi_c(a)$ towards $g^*(p', \phi_c(a))$
 - ... p' decreases with higher π when $g^*(p, a) > a$
 - 3. Shifts expectations of the rational type's future choice

$$rac{\partial \mathsf{y}}{\partial \pi} = rac{\mathsf{1}}{\kappa} \left[1 - eta rac{\partial \mathsf{p}'}{\partial \pi} \left(\phi_{\mathsf{c}}(a) - \mathsf{g}^{\star}(\mathsf{p}', \phi_{\mathsf{c}}(a)) + (1 - \mathsf{p}') rac{\partial \mathsf{g}^{\star}(\mathsf{p}', \phi_{\mathsf{c}}(a))}{\partial \mathsf{p}'}
ight)
ight]$$

- · More inflation
 - 1. Increases output by $\frac{1}{\kappa}$
 - 2. Shifts inflation expectations from $\phi_c(a)$ towards $g^*(p', \phi_c(a))$
 - ... p' decreases with higher π when $g^*(p, a) > a$
 - 3. Shifts expectations of the rational type's future choice

$$rac{\partial \mathsf{y}}{\partial \pi} = rac{\mathsf{1}}{\kappa} \left[1 - eta rac{\partial \mathsf{p}'}{\partial \pi} \left(\phi_c(a) - \mathsf{g}^\star(\mathsf{p}', \phi_c(a)) + (\mathsf{1} - \mathsf{p}') rac{\partial \mathsf{g}^\star(\mathsf{p}', \phi_c(a))}{\partial \mathsf{p}'}
ight)
ight]$$

- · More inflation
 - 1. Increases output by $\frac{1}{\kappa}$
 - 2. Shifts inflation expectations from $\phi_c(a)$ towards $g^*(p', \phi_c(a))$
 - ... p' decreases with higher π when $g^*(p, a) > a$
 - 3. Shifts expectations of the rational type's future choice

Phillips curves

- Without reputation: if $\beta \mathbb{E} [\pi'] = k_j$ choose point on *j*th PC
- If announced aand in eq'm $g^*(p, a) = a$ \implies get flat PC
- If $g^*(p, a) > a$ $\implies \frac{\partial p'}{\partial \pi} \text{ matters}$

Phillips curves

- Without reputation: if $\beta \mathbb{E} [\pi'] = k_j$ choose point on jth PC
- If announced aand in eq'm $g^*(p, a) = a$ \implies get flat PC
 - If $g^*(p, a) > a$ $\implies \frac{\partial p'}{\partial \pi}$ matters

Phillips curves

- Without reputation: if $\beta \mathbb{E} [\pi'] = k_j$ choose point on jth PC
- If announced aand in eq'm $g^*(p, a) = a$ \implies get flat PC
- · If $g^{\star}(p, a) > a$ $\implies \frac{\partial p'}{\partial \pi}$ matters

Equilibrium Deviations

Plans

Plans

- For each $c \in C$, find $\mathcal{L}^c(p, a), g_c^*(p, a)$.
- Generates big matrix $\mathcal{L}(p, a; \omega, \chi)$
- First pass: preferred plan at each p

Plans

- For each $c \in C$, find $\mathcal{L}^c(p, a), g_c^*(p, a)$.
- Generates big matrix $\mathcal{L}(p, a; \omega, \chi)$
- First pass: preferred plan at each p

What plan to choose?

- · Back to the initial announcement
- Ideally, if in equilibrium gov't announces type c with density $\mu(c)$,

$$p_0(c; z, \mu) = \frac{z\nu(c)}{z\nu(c) + (1-z)\mu(c)}$$

So study

$$\lim_{z\to 0} \min_{\mu} \int \mathcal{L}(p_0(a_0,\omega,\chi;z,\mu),a_0,\omega,\chi) d\mu$$

What plan to choose?

- · Back to the initial announcement
- Today, Kambe (1999): gov't announces type c and becomes committed to c with exogenous p_0 probability
 - Tractable: p_0 independent of c
- · So the limit we consider is

$$\lim_{p_0\to 0} \min_{a_0,\omega,\chi} \mathcal{L}(p_0,a_0,\omega,\chi)$$

What plan to choose?

- · Back to the initial announcement
- Today, Kambe (1999): gov't announces type c and becomes committed to c with exogenous p_0 probability
 - Tractable: p_0 independent of c
- · So the limit we consider is

$$\lim_{p_0\to 0} \min_{a_0,\omega,\chi} \mathcal{L}(p_0,a_0,\omega,\chi)$$

- · Not entirely arbitrary
 - For given p_0 , plans that minimize \mathcal{L} should be played often

K-equilibrium

Concluding Remarks

- Model of reputational dynamics and policy
 - · Simple environment
 - · Focus on low reputation limit
- · Credibility-dynamics concerns influence choice of policy
 - · Tradeoff between literal promises and incentives
 - · Gradual plans boost reputation-building incentives for future decision-makers

- · To do:
 - · Solve for complete distribution of mimicked types + take limit
 - Thousand extensions

$$\mathcal{B}(p,\pi,a,g) = p + p(1-p)\frac{f_{\epsilon}(\pi-a) - f_{\epsilon}(\pi-g)}{pf_{\epsilon}(\pi-a) + (1-p)f_{\epsilon}(\pi-g)}$$

Results

Reputation (Kreps and Wilson, 1982; Milgrom and Roberts, 1982)

Imagine an incumbent facing a sequence of potential entrants

- · Each period, entrant decides entry, incumbent fights or accomodates
 - · Incumbent prefers entrant to stay out but prefers to accomodate if entry
- Fighting the first entrant doesn't affect the decision of following entrants
- Reputation as incomplete information
 - What if the incumbent could be behavioral and always produce q upon entry?
- Incentive for the rational incumbent to pretend to be behaviora
- Independent of the 'objective' probability of behavioral

Reputation (Kreps and Wilson, 1982; Milgrom and Roberts, 1982)

Imagine an incumbent facing a sequence of potential entrants

- · Each period, entrant decides entry, incumbent fights or accomodates
 - · Incumbent prefers entrant to stay out but prefers to accomodate if entry
- Fighting the first entrant doesn't affect the decision of following entrants
- Reputation as incomplete information
 - \cdot What if the incumbent could be behavioral and always produce q upon entry?
- Incentive for the rational incumbent to pretend to be behaviora
- Independent of the 'objective' probability of behavioral

Reputation (Kreps and Wilson, 1982; Milgrom and Roberts, 1982)

Imagine an incumbent facing a sequence of potential entrants

- · Each period, entrant decides entry, incumbent fights or accomodates
 - · Incumbent prefers entrant to stay out but prefers to accomodate if entry
- $\cdot\,$ Fighting the first entrant doesn't affect the decision of following entrants
- Reputation as incomplete information
 - \cdot What if the incumbent could be behavioral and always produce q upon entry?
- · Incentive for the rational incumbent to **pretend** to be behavioral
- · Independent of the 'objective' probability of behavioral