# Глубинное обучение для текстовых данных

I. Введение

### Автоматическая обработка текстов



### Автоматическая обработка текстов



Генерация естественного языка

### Языковые технологии



#### Многозначность

Он был в отличной форме, но на животе она уже не застегивалась.

#### Сленг

Жиза Зашквар Кекнуться Каеф

#### Идиомы

Мир тесен Вышла из себя Играть с огнем Не месяц май

#### Омонимия

Стали Стекло Косой

#### Неологизмы

Постить Зафрендить Каршеринг

#### Нестандартный язык

ем можед личку прочетаеш

#### Знание об окружающем мире

Даша [обругала / обняла] Машу, потому что она была расстроена.

Кто расстаривался? [Даша / Маша]

#### Сложные именованные сущности

«Анна Каренина» стала первым российским мюзиклом

#### Данные

Разметка данных – трудоемкий и дорогой процесс.

- Слово базовая структурная единица языка
- Даже без контекста слово само по себе несет много полезной информации
- Слов очень много, поэтому возникают большие и разреженные признаковые пространства

- Язык определяет внутреннюю структуру:
  - Слова и словосочетания (морфология)
  - Предложения (синтаксис)
  - Текст (дискурс, порядок изложения)



# Содержание курса

#### Часть 1. Базовый уровень

- Модели представления текста: векторная модель, языковая модель
- Уровни анализа текста: морфологолический анализ, синтаксический анализ
- Основные постановки задач: классификация текстов, извлечение именнованных сущностей, машинный перевод

#### Часть 2. Продвинутый уровень

- Модели представления текста: контекстуализированные модели, тематическое моделирование, графы знаний,
- Постановки задач: суммаризация текстов, вопросно-ответные системы, поисковые системы

# Структура курса

ФОРМУЛА ОЦЕНКИ:

0.3 домашка + 0.2 квизы + 0.5 экз

#### Роль машинного обучения в обработке текстов

Знание о языке + знание об окружающем мире + данные + машинное обучение = (почти всегда) успех!



# Что нужно знать?

- Основные понятия теории вероятностей и математической статистики и линейной алгебры
- Базовые алгоритмы машинного обучения
- Простые нейросетевые модели
- Программировать на Python
- Как использовать iPython-блокноты

# Что вы узнаете?

Вы научитесь решать основные задачи обработки текстов.

- Основные понятия автоматической обработки текстов
- Практические постановки задач, возникающие при работе с текстовыми данными
- Архитектуры нейронных сетей, используемые при работе с текстовыми данными
- Инструменты для работы с русским и английским

# Индустриальные задачи обработки текстов

## Классификация текстов

#### Большой спектр индустриальных задач

- Фильтрация спама
- Анализ тональности
- Категоризация новостей и сообщений
- Выявление недоброкачественных отзывов

Никогда больше не стану покупать у вас пончики. В пончике должна быть ОДНА дырка посредине, а в вашем пончике я нашла 15! Ну это никуда не годится!

Обожаю пончики на завтрак! Это лучшее начало трудового дня, они заряжают энергией и хорошим настроением меня и всю мою семью. Гомер С.

# Ранжирование

#### Сортировка текстов в соответствии с некоторыми критериями

- Информационный поиск релевантность текста пользовательскому запросу
- Рекомендательные системы близость интересам пользователя

# Машинный перевод

#### Перевести текст с одного языка на другой

The shop owner caught the boy red-handed when he was stealing cigarettes.



Хозяин магазина поймал парня красноруким, когда он воровал сигареты.



Хозяин магазина поймал парня с поличным, когда он воровал сигареты.

## Анализ и коррекция текста

Исправление опечаток, ошибок согласования и синтаксических ошибок

Когад-то в России и правда жило беспечальное юное поколение, которое улыбнулось к лету, морю и солнцу – и выбрали «Пепси».



Щас уже турдно установить, почему это произошло...

# Анализ и коррекция текста

Исправление опечаток, ошибок согласования и синтаксических ошибок

Когад-то в России и правда жило беспечальное юное поколение, которое улыбнулось к лету, морю и солнцу – и выбрали «Пепси».



<u>Щас</u> уже <u>турдно</u> установить, почему это произошло...

## Анализ и коррекция текста

Исправление опечаток, ошибок согласования и синтаксических ошибок

Когда-то в России и правда жило беспечальное юное поколение, которое улыбнулось лету, морю и солнцу – и выбрало «Пепси».



Сейчас уже трудно установить, почему это произошло...

© В.О. Пелевин, "Generation П"

## Ведение диалога

#### Диалоговые помощники, виртуальные ассистенты, чат-боты

- Система анализирует входных сообщений
- Система синтезирует выходных сообщений или выполняет нужное действие



### Поиск ответа на вопрос

#### Важная часть поисковых и диалоговых систем

- Фактологические вопросы
- Вопросы по тексту
- Вопросы на здравый смысл

Кто написал "Старик и Море"?

Эрнест Хемингуэй

Столица Соединённого Королевства?

Лондон

# Тренд-аналитика

#### Тренды в социальных сетях, бренд аналитика



## Суммаризация

#### Получить краткое изложение длинного текста

Вот растение, которому в наш суматошный век истрёпанных нервов, изнурительных бессонниц и сдвинутой с места психики надо бы поставить красивый памятник: валериана, подобно матери, успокоит и усыпит, вернет так необходимое всем нам душевное равновесие.



© В. Солоухин

## Суммаризация

#### Получить краткое изложение длинного текста

Валериане следовало бы поставить памятник: она успокаивает, помогает заснуть, возвращает душевное равновесие.



# Связь с лингвистикой

#### Лингвистика

#### Кто такие лингвисты?

- Лингвистика наука, изучающая языки
- Лингвист прежде всего специалист, исследующий и описывающий языки, и иностранные, и свой родной, и даже язык вообще, универсальный механизм, обеспечивающий наше общение.

#### Примеры лингвистических вопросов

- •Генетическое родство языков (родственен ли один язык другому)
- •Бывают ли языки без гласных? Без падежей? Без глаголов?
- •Когда в русском языке прилагательное идет после существительного (мальчик красивый, а не красивый мальчик)?
- •Законы постановки ударений (директора́ или дире́кторы? Неводы или невода?)
- •Проблема границы язык/диалект
- •Документация исчезающих языков

#### Лингвистика

#### ... и смежные дисциплины

- Психолингвистика наука на стыке нейропсихологии и лингвистики: как язык хранится в мозгу? Как дети усваивают язык и учатся говорить? Как хранятся несколько языков в мозгу у билингвов?
- Социолингвистика наука на стыке социологии и лингвистики: социально обусловленное переключение языков и, шире, кодов; функционирование языка в обществе

#### Информационный поиск

- С 1940-х: информационный поиск
- Поиск фильмов, поиск подходящих книг в библиотеке
- NLP помогает лингвистике

#### Машинный перевод

- 7.01.1954: Джорджтаунский эксперимент
- Перевод около 60 предложений с русского на английский
- В основе системы лежал небольшой словарь и несколько правил
- Лингвистика помогает NLP

#### Чат-боты

- 1966: Первый чат-бот ELIZA, "психотерапевт"
- Синтаксический разбор предложения (подлежащее, сказуемое)
- Выделение ключевых слов (по списку)
- Выбор нужного шаблона ответа
- Лингвистика помогает NLP

П: У меня болит голова.

**Д:** Почему вы говорите, что у вас **болит голова**?

**П:** Мой **отец** меня **ненавидит**.

**Д:** Кто еще из **семьи** вас **ненавидит**?

#### Корпусная лингвистика

- С 1960-х: корпуса текстов
- Автоматическая разметка текстов по разным признакам, в первую очередь грамматическим
- Корпуса помогают лингвистам отвечать на вопросы типа "а когда в русском языке прилагательное может идти после существительных"
- Дисциплина "корпусная лингвистика"
- С 29.04.2004 открыт Национальный корпус русского языка
- Максимально лингвистическая часть NLP помогает лингвистике

### А как сейчас?

#### Основной метод – deep learning

- Большинство задач, связанных с обработкой текста, решают с помощью нейронных сетей, черных ящиков
- бОльшая часть шагов работы с текстом (предобработка, токенизация, обучение модели) не основаны на правилах
- Лингвистика как наука не получает от черных ящиков никакой полезной информации
- Черные ящики не пользуются достижениями лингвистики
- Взаимосвязи больше нет?

### А как сейчас?

#### Основной метод – deep learning

- Появляется ряд исследований, в которых анализируется, какую информацию о языке знает та или иная модель
- Возможно, со временем лингвисты научатся извлекать из моделей NLP новые знания и о языке
- Пока что эти две дисциплины почти не пересекаются, но снова двигаются навстречу друг другу.

# Исследования

#### Почему важно следить за исследованиями?

#### Хорошие зарплаты в R&D, академический туризм ...:)

- Автоматическая обработка текстов новая и быстро развивающаяся область
- Новые методы и модели открывают возможности для приложений, позволяют сократить время на разработку и повысить качество существующих решений
- Исследовательские разработки, как правило, публикуются в открытом доступе и могут быть использованы в коммерческих проектах

### Направления исследований

- Как представить слово и текст в понятном компьютеру виде?
- Как научить компьютер понимать разные языки?
- Как научить компьютер понимать не только текст?
- Как решать одновременно несколько задач?
- Как извлечь из текстов структуру?
- Как используют методы автоматической обработки текстов в медицине?
- Как используют методы автоматической обработки текстов для анализа пользовательских текстов

### Модели представления слова и текста

#### Первое поколение: векторное представление текста



### Модели представления слова и текста

#### Второе поколение: векторное представление слова

"Матрица слово-текст строится по большому корпусу"

$$\begin{bmatrix} 123 \\ 456 \\ 12 \\ ... \\ 89 \end{bmatrix} \begin{bmatrix} 23 \\ 372 \\ 8 \\ ... \\ 83 \end{bmatrix} \begin{bmatrix} 16 \\ 124 \\ 76 \\ ... \\ 29 \end{bmatrix} \begin{bmatrix} 2 \\ 12 \\ 12 \\ 299 \\ ... \\ 65 \end{bmatrix} \begin{bmatrix} 177 \\ 6 \\ 504 \\ ... \\ 304 \end{bmatrix}$$

# **Модели представления слова и текста**Третье поколение: языковые модели

В середине 2000-ных годов использование нейросетевых технологий стало де-факто индустриальным и академических стандартом.



### Мультиязычные модели

In der Computerlinguistik (CL) oder linguistischen Datenverarbeitung wird untersucht, wie natürliche Sprache in Form von Textoder Sprachdaten mit Hilfe des Computers algorithmisch verarbeitet werden kann.

Компьютерная лингвистика — научное направление в области математического и компьютерного моделирования интеллектуальных процессов у человека и животных при создании систем искусственного интеллекта, которое ставит своей целью использование математических моделей для описания естественных языков.

Computational linguistics is an interdisciplinary field concerned with the statistical or rule-based modeling of natural language from a computational perspective, as well as the study of appropriate computational approaches to linguistic questions.



### Мультимодальные модели



### Перенос обучения

Традиционный подход к машинному обучению

Подход на основе переноса обучения



### Графы знаний



### Анализ текстов в медицине



Автоматизация записи на прием



Анализ историй болезни



Автоматические отчеты о больнице



Анализ научных статей



Анализ отзывов на лекарства



Помощь в определении диагноза



Поиск клинических испытаний



Телемедицина



Ответ на частые вопросы

#### Анализ социальных сетей и социальных медиа





Где отдыхают?







Какие бывают пищевые привычки?







Как относятся к политике?



### Компьютерный юмор



- Токенизация
- Сегментация предложений
- Удаление пунктуации
- Удаление стоп-слов
- Фильтрация по длине, частоте, регулярному выражению
- Лемматизация приведение к нормальной форме ()
- Стемминг приведение к псевдооснове ()

- Токенизация
  - По пробельному символу
  - Регулярные выражения
- Сегментация предложений
  - Регулярные выражения
  - Классификаторы для сложных случаев

- Удаление пунктуации
  - Смайлики нужны для классификации по тональности
  - Дефисы и тире часто перепутаны
  - Регулярные выражения
- Регистр
  - В некоторых задачах важен регистр
  - А в некоторых создает избыточное пространство признаков

- Удаление стоп-слов
  - Союзы
  - Предлоги
  - Местоимения
  - Вспомогательные и модальные глаголы
- Удаление слишком частых и самых редких слов





Лемматизация – приведение к нормальной форме



#### Стемминг – приведение слова к псевдооснове



# Векторизация

### Векторное представление документа

#### Модель "мешка слов"

| Номер<br>текста | вхождений слова<br>«абрикос» | <br>вхождений слова<br>«ямал» |
|-----------------|------------------------------|-------------------------------|
| 1               | 0                            | <br>23                        |
| * * *           | * * *                        | <br>                          |
| N               | 4                            | <br>0                         |

### Векторное представление документа

tf-idf взвешивание показывает насколько важно слово t и насколько оно отличает документ d от прочих

- $d \in D$  множество документов
- $t \in V$  множество слов

$$tf_{t,d} = \frac{\text{count}(t,d)}{\sum_{t' \in V} \text{count}(t',d)}$$

•  $df_{t,d,D} = |\{d \in D : count(t,d) > 0\}|$ 

• 
$$tf - idf(t, d, D) = tf_{t,d} \times \log \frac{|D|}{df_{t,d,D} + 1}$$

# Векторное представление документа Модель "мешка слов"

- Проблемы
  - Не учитывается порядок слов
  - Не учитываются синонимы

### Векторное представление документа

#### Выделение коллокаций

- Статистические меры, помогающие учесть зависимость между словами
- $N_{t_1,t_2}$  число документов, содержащих оба слова
- $N_{t_1}$  число документов, содержащих одно слово

$$PMI(t_1, t_2) = \log \frac{N_{t_1, t_2}}{N_{t_1} N_{t_2}}$$

### Векторное представление документа

#### Выделение коллокаций

| PMI    | $w^1$     | $w^2$        |
|--------|-----------|--------------|
| 4.4862 | Стивен    | Хокинг       |
| 4.4862 | Чарли     | Чаплин       |
| 4.4860 | Альбрехт  | Дюрер        |
| 4.4860 | светлое   | пиво         |
| 4.4860 | холодное  | оружие       |
| 2.3764 | корзина   | интерес      |
| 2.3541 | гастроном | произведение |
| 1.4875 | базар     | чай          |
| 1.2456 | кресло    | папироса     |
| 0.8752 | задание   | колодец      |

### Заключение

#### Основные выводы

- Для текстов можно строить признаковые описания
- Мы хотим учитывать в признаках как можно больше информации, содержащейся в тексте
- Стандартными признаковыми описаниями являются «мешок слов» и векторы tf - idf
- N-граммные признаки обычно позволяют обучать более качественные модели, чем униграммные