

Question	Vickery (2005	Kaiser (2015)	Conci (2021)	Konkle (2012)
What was the rationale for conducting the study?		 Visual working memory (VWM) capacity extremely limited, can be partly overcome by exploiting regularities in sensory input (chunking, better performance) Focus of traditional visual working memory research: geometric shapes, colored disks Unclear how findings transfer to naturalistic realworld stimuli Characteristic of real-world scenes: contain high degree of spatial regularity Only few studies investigated visual memory for naturalistic objects in real-world context (memory for spatial relations better when embedded in meaningful scene, objects stored in memory in relation to environment) Focus of research more on visual perception and the effect of object regularities Object grouping based on real-world regularities may not only facilitate visual perception but could also represent a powerful mechanism to overcome capacity limitations of VWM 		
What is/are the research question/s and hypotheses?		 how do real-world spatial regularities affect working memory capacity for individual objects Hypothesis: enhanced VWM performance for regularly positioned objects due to grouping of objects based on typical real-world configurations H1: higher sensitivity for regularly configured objects than irregularly configured objects H2: decreased sensitivity for inverted condition H3: similar sensitivity for both encoding time 		

EXERCISE: READING AND UNDERSTANDING PAPERS

What was the design? (independent & dependent variables)	 Dependent variables: VWM performance Independent variables: configuration (regular vs irregular) 12 object pairs of everyday objects with typical spatial configuration Pairs either placed in typical configuration or vertically reversed 2 different exemplars for each single object, leading to 4 possible pairs per category H1: configuration + number of pairs (2 vs 3) H2: configuration + orientation (upright vs inverted) H3: configuration + encoding time (2s vs 4s) 2x2 within-subject design 	
How was the dependent variable measured?	 Delayed change detection task: participants had to memorize multiple objects that presented in pairs Procedure: verbal suppression task, display of 2 / 3 object pairs, retention interval, display again all objects at different locations, Change in objects? Measure: d' for change-detection sensitivity E1: delayed change detection task, comparison of performance between object pairs presented in regular configuration vs interchanged positions E2: delayed change detection task, comparison of performance between object pairs manipulated by configuration & orientation E3: delayed change detection task, comparison of performance between object pairs manipulated by configuration & encoding time 	
What were the most important results?	 Visual working memory enhanced for objects positioned according to real world regularities (vs. irregularly positioned) Effect specific to upright stimuli E1: main effect of pair configuration, higher sensitivity for regularly configured pairs E2: interaction effect Configuration & Orientation, no main effects (For original pairs, sensitivity 	

EXERCISE: READING AND UNDERSTANDING PAPERS

	significantly higher for the regular than for the irregular configuration, benefit for regular pairs abolished by inversion E3: main effect for configuration (higher sensitivity for regular than irregular configuration), nonsignificant interaction of encoding time & configuration
How do the results integrate into existing literature?	 Objects can be held in visual working memory more efficiently when positioned according to frequently experienced real-world regularities -> grouping of single objects into larger representational units VWM performance was enhanced when pairs of objects were positioned according to such regularities, in comparison to an irregular positioning of the same objects Crucially, this effect of regularity was significantly reduced when the object pairs were inverted Because the VWM effect was statistically independent of encoding time, our results are unlikely to solely reflect improved perception of regularly positioned objects. Rather, they indicate that real-world regularities are additionally associated with more efficient storage of objects in VWM Ilifelong experience with specific spatial configurations of real-world objects similarly facilitates VWM performance

EXERCISE: READING AND UNDERSTANDING PAPERS

What are open questions?	results could in principle reflect either a VWM benefit for regularly positioned objects or a VWM cost for irregularly positioned objects	
	at which stage of the memory process the benefit for object regularities arises	