B2B31ZEO - Základy elektrických obvodů

3. přednáška, 6. března 2024

Stacionární ustálený stav

- Elementární analýza odporových obvodů
 - Transfigurace (princip ekvivalence), str. 69-71
 - trojúhelník hvězda, hvězda trojúhelník
 - Příklady
 - Výkon, výkonové přizpůsobení, str. 133 135
 - Příklady

Obvodové rovnice

- Obvodové rovnice úvod, str. 253
 - Topologie elektrických obvodů
 - Nezávislé obvodové rovnice
 - Výběr metody pro popis obvodu

Metody analýzy obvodů

• elementární (heuristické, speciální)

- jednoduché metody a postupy bez sestavování rovnic
- řešitel volí metody podle znalostí a okolností, není dán pevný postup řešení
- použitelné pro jednoduché obvody

algoritmické

- pevný algoritmus, který vede k cíli
- obvodové rovnice

Stacionární ustálený stav

$$u = R \cdot i$$

$$u = L \frac{\mathrm{d}i}{\mathrm{d}t}$$

$$i = C \frac{\mathrm{d}u}{\mathrm{d}t}$$

- stejnosměrné napětí a proud
- odeznění přechodných jevů
- ustálení obvodových veličin na konstantních hodnotách

induktor

kapacitor

$$I = konst.$$

U = konst.

$$U = R I$$

$$U=0 \rightarrow zkrat$$

$$U = 0 \rightarrow zkrat$$
 $I = 0 \rightarrow rozpojeni$

Transfigurace

seskupení obvodových prvků, které má z hlediska svých svorek stejné vlastnosti, jako seskupení původní.

Používá se v případech, kdy seskupení obvodových prvků nelze zjednodušit použitím pravidel o sériovém a paralelním řazení

Trojúhelník – hvězda

Mají-li být zapojení rovnocenná, musí být mezi kteroukoliv dvojicí svorek stejný odpor.

$$R_a = \frac{R_1 R_3}{R_1 + R_2 + R_3}$$

$$R_a = \frac{R_1 R_3}{R_1 + R_2 + R_3} \qquad R_b = \frac{R_1 R_2}{R_1 + R_2 + R_3}$$

$$R_c = \frac{R_2 R_3}{R_1 + R_2 + R_3}$$

Transfigurace

 seskupení obvodových prvků, které má z hlediska svých svorek stejné vlastnosti, jako seskupení původní.

Používá se v případech, kdy seskupení obvodových prvků nelze zjednodušit použitím pravidel o sériovém a paralelním řazení

Hvězda – trojúhelník

$$R_1 = R_a + R_b + \frac{R_a R_b}{R_c}$$
 $R_2 = R_b + R_c + \frac{R_b R_c}{R_a}$ $R_3 = R_a + R_c + \frac{R_a R_c}{R_b}$

Příklady elementární analýzy odporových obvodů

- příklady na transfiguraci
 - trojúhelník hvězda
 - hvězda trojúhelník

Výkon, výkonové přizpůsobení

výkon přeměněný na teplo

$$P_i = R_i I^2$$

výkon zdroje

$$P_z = U_i I$$

$$P_L = P_z - P_z$$

$$P_L = P_z - P_i = U_i I_k \left[\frac{I}{I_k} - \left(\frac{I}{I_k} \right)^2 \right] = P_k \left[\frac{I}{I_k} - \left(\frac{I}{I_k} \right)^2 \right]$$

Výkon, výkonové přizpůsobení

výkon dodaný do zátěže

$$P_L = P_z - P_i = U_i I_k \left[\frac{I}{I_k} - \left(\frac{I}{I_k} \right)^2 \right] = P_k \left[\frac{I}{I_k} - \left(\frac{I}{I_k} \right)^2 \right]$$

Výkon, výkonové přizpůsobení

Požadavky

- energetické aplikace: přenosy s vysokou účinností
- aplikace ve sdělovací technice: maximalizace výkonu přeneseného ze zdroje do spotřebiče

Závěr

- energetické aplikace: $R_i \ll R_L$ (stav blízký chodu naprázdno)
- aplikace ve sdělovací technice: $R_i = R_i$ (výkonové přizpůsobení)

Příklady elementární analýzy odporových obvodů

příklady

Topologie elektrických obvodů

Sedm mostů města Královce

- Topologie elektrických obvodů
 - větev … v

představuje obvodový prvek čára libovolného tvaru zakončená dvěma body (uzly)

- uzel ... u
 - místo vodivého spojení obvodových prvků (nebo připojení = svorka)
- graf
 získáme, překreslíme-li elektrický obvod pomocí větví a uzlů

- Topologie elektrických obvodů
 - planární graf
 graf nakreslený v rovině bez křížení
 - referenční uzel
 "vztažný" uzel,
 zpravidla spojení nejvíce obvodových prvků
 často je určen konstrukcí obvodu
 - *uzlová dvojice ... d* d = u 1
 - smyčka

každá uzavřená dráha tvořená větvemi obvodu, která neprochází žádným uzlem dvakrát

jednoduchá smyčka
 při oběhu v jednom směru odbočují
 větve pouze ven z plochy smyčky

- Topologie elektrických obvodů
 - strom je množina větví spojující všechny uzly obvodu nejmenším počtem čar
 - nezávislá větev je větev nepatřící do stromu
 - nezávislá smyčka ... s

vznikne, když nezávislou větev doplníme větvemi stromu (nezávislá větev patří pouze této smyčce); platí, že počet nezávislých smyček je roven počtu jednoduchých smyček (= počtu nezávislých větví) s = v - d = v - u + 1

Nezávislé obvodové rovnice

- Aplikací Kirchhoffových zákonů na všechny smyčky (nebo všechny uzly) obvodu získáme soustavu rovnic, která je lineárně závislá.
- Na základě I.KZ můžeme získat d lineárně nezávislých rovnic
- Na základě II.KZ můžeme získat s lineárně nezávislých rovnic
- Na základě obou KZ můžeme sestavit celkem s + d = v lineárně nezávislých rovnic
- Rovnice lze sestavit na základě obvodové struktury, bez ohledu na charakter obvodových prvků

 Protože řešení v rovnic v jednom roku je náročné, rozděluje se do více kroků

	d < s	d > s	
	I.KZ	II.KZ	
	MUN	MSP	
a)	u(d)	i(s)	minimum neznamých
b)	<i>U(V)</i>	i(v)	všechny obvodové veličiny
c)	i(v)	U(V)	charakteristiky obv. prvků

Výběr metody pro popis obvodu

$$X(MUN) = d - Z_u = u - 1 - Z_u$$

 $X(MSP) = s - Z_i = v - d - Z_i$