

S1D15705 Series Technical Manual

NOTICE No part of this material may be reproduced or duplicated in any form or by any means without the written permission of Seiko Epson. Seiko Epson reserves the right to make changes to this material without notice. Seiko Epson does not assume any liability of any kind arising out of any inaccuracies contained in this material or due to its application or use in any product or circuit and, further, there is no representation that this material is applicable to products requiring high level reliability, such as, medical products. Moreover, no license to any intellectual property rights is granted by implication or otherwise, and there is no representation or warranty that anything made in accordance with this material will be free from any patent or copyright infringement of a third party. This material or portions thereof may contain technology or the subject relating to strategic products under the control of the Foreign Exchange and Foreign Trade Law of Japan and may require an export license from the Ministry of International Trade and Industry or other approval from another government agency. All other product names mentioned herein are trademarks and/or registered trademarks of their respective companies. ©SEIKO EPSON CORPORATION 2005, All rights reserved.

Configuration of product number

Contents

1.	DESCRIPTION	1
2.	FEATURES	1
3.	BLOCK DIAGRAM	3
4.	PAD	4
5.	PIN DESCRIPTION	14
6.	FUNCTION DESCRIPTION	18
7.	COMMAND	38
8.	COMMAND SETTING	50
9.	ABSOLUTE MAXIMUM RATINGS	54
10.	DC CHARACTERISTICS	55
11.	MICROPROCESSOR (MPU) INTERFACE: REFERENCE	70
12.	CONNECTION BETWEEN LCD DRIVERS: REFERENCE	71
13.	LCD PANEL WIRING: REFERENCE	72
	TCP PIN LAYOUT	
15.	TCP DIMENSIONS	74
16.	TEMPERATURE SENSOR CIRCUIT	75
17	CALITIONS	78

1. DESCRIPTION

The S1D15705 series is a 1-chip dot matrix liquid crystal driver that can be connected to the bus of a microcomputer. It stores the 8-bit parallel or serial display data sent from the microcomputer in the built-in display data RAM and generates liquid crystal drive signals independently of the microcomputer. Since it incorporates 65×200 bits of the display data RAM and the one-dot pixel of the liquid crystal panel and one bit of the built-in RAM have a one-to-one correspondence, it enables display with the high degree of freedom.

The S1D15705 series incorporates 65 circuits of the common output and 168 circuits of the segment output and can display 65×168 dots (capable of displaying 10 columns \times 4 rows of a 16 \times 16 dot kanji font) using the single chip. The S1D15707 Series incorporates 33 circuits of the common output and 200 circuits of the segment output and can display 33 × 200 dots (capable of displaying 12 columns \times 2 rows of a 16 \times 16 dot kanji font). The S1D15708 series incorporates 17 circuits of the common output and 200 circuits of the segment output and can display 17 × 200 dots (capable of displaying 12 columns \times 1 rows of a 16 \times 16 dot kanji font). It can also expand the display capacity by using the two chips for the master and slave configuration. Incorporating an analog temperature sensor circuit, the S1D15705*10** can be used to constitute a system to provide optimum LCD contrast throughout a wide temperature range without need for use of supplementary parts such as the thermistor, under controls of a microcomputer.

Since the read/write operation of the display data RAM does not require external operation clocks, the S1D15705 series can be operated with the minimum current consumption. Since it also incorporates a liquid crystal drive power supply with low current consumption, liquid crystal drive power supply voltage adjusting resistor, and display clock CR oscillator circuit, it can provide a display system for high performance handy equipment with the minimum current consumption and the minimum parts configuration.

2. FEATURES

 Direct display of RAM data using the display data RAM

RAM bit data "1" goes on.
"0" goes off (at

"0" goes off (at display normal rotation).

• RAM capacity $65 \times 200 = 13,000$ bits

Liquid crystal drive circuit
 The S1D15705 Series
 65 circuits for the common output and 168 circuits for the segment output

The S1D15707 Series

33 circuits for the common output and 200 circuits for the segment output

The S1D15708 Series

17 circuits for the common output and 200 circuits for the segment output

- High-speed 8-bit MPU interface (Both the 80 and 68 series MUPs can directly be connected.)/serial interface enabled
- Abundant command functions Display Data Read/Write, Display ON/OFF, Display Normal Rotation/Reversal, Page Address Set, Display Start Line Set, column address set, Status Read, Power Supply Save Display All Lighting ON/OFF, LCD Bias Set, Read Modify Write, Segment Driver Direction Select, Electronic Control, V5 Voltage Adjusting Built-in Resistance Ratio Set, Static Indicator, n Line Alternating Current Reversal Drive, Common Output State Selection, and Built-in Oscillator Circuit ON
- Built-in static drive circuit for indicators (One set, blinking speed variable)
- Built-in power supply circuit for low power supply liquid crystal drive
 Booster circuit (Boosting magnification - double, triple, quadruple, boosting reference power supply external input enabled)
- 3% high accuracy alternating current voltage adjusting circuit (Temperature gradient: -0.05%/°C)
 Built-in V5 voltage adjusting resistor, built-in V1 to V4 voltage generation split resistors, built-in electronic control function, and voltage follower
- Built-in CR oscillator circuit (external clock input enabled)
- Ultra-low power consumption
- Built-in temperature sensor circuit (S1D15705D10B*)
- Power supplies

Logic power supply: VDD - Vss = 2.4 to 3.6 V (S1D15705*03**, S1D15707*03**) VDD - Vss = 3.6 to 5.5 V

(S1D15705*00**, S1D15707*00**, S1D15708*00**) Boosting reference power supply: VDD-Vss=1.8 to 6.0 V

Liquid crystal drive power supply: $V_5 - V_{DD} = -4.5$ to -18.0 V (S1D15705*****) /-4.5 V to -16.0 V (S1D15707*****)/-4.5 V to -10.0 (S1D15708*****)

- Wide operating temperature range -40 to 85°C
- CMOS process
- Shipping form Bare chip, TCP
- No light-resistant and radiation-resistant design are provided.

Series specification

Product name	Voltage [V]	Duty	Bias	SEG Dr	COM Dr	VREG temperature gradient	Shipping form
S1D15705D00B*	-3.6 to -5.5	1/65	1/9, 1/7	168	65	−0.05%/°C	Bare chip
S1D15705D10B*	-3.6 to -5.5	1/65	1/9, 1/7	168	65	−0.05%/°C	Bare chip
S1D15705D03B*	-2.4 to -3.6	1/65	1/9, 1/7	168	65	−0.05%/°C	Bare chip
S1D15705T00A*	-3.6 to -5.5	1/65	1/9, 1/7	168	65	−0.05%/°C	TCP
S1D15705T03A*	-2.4 to -3.6	1/65	1/9, 1/7	168	65	−0.05%/°C	TCP
S1D15707D00B*	-3.6 to -5.5	1/33	1/6, 1/5	200	33	−0.05%/°C	Bare chip
S1D15707D03B*	-2.4 to -3.6	1/33	1/6, 1/5	200	33	−0.05%/°C	Bare chip
S1D15707T00**	-3.6 to -5.5	1/33	1/6, 1/5	200	33	−0.05%/°C	TCP
S1D15707T03**	-2.4 to -3.6	1/33	1/6, 1/5	200	33	−0.05%/°C	TCP
S1D15708D00B*	-3.6 to -5.5	1/17	1/6, 1/5	200	17	−0.05%/°C	Bare chip

^{*}Specifications for circuits other than the temperature sensor circuit are the same as those of the S1D15705D00B*.

3. BLOCK DIAGRAM

Example: S1D15705****

4. PAD

Pad layout

	Item	Х	Size	Υ	Unit
Chip size		13.30	×	2.81	mm
Chip thickne	SS		0.625		mm
Bump pitch			71 (Min.))	μm
Bump size	PAD No.1 to 93	85	×	85	μm
-	PAD No.94	85	×	73	μm
	PAD No.95 to 127	85	×	47	μm
	PAD No.128	85	×	73	μm
	PAD No.129	73	×	85	μm
	PAD No.130 to 301	47	×	85	μm
	PAD No.302	73	×	85	μm
	PAD No.303	86	×	73	μm
	PAD No.304 to 336	85	×	47	μm
	PAD No.337	85	×	73	μm
Bump heigh	t		17 (Typ.)	μm

S1D15705**** Pad Central Coordinates

PAD	PIN			PAD	PIN			PAD	PIN		
No.	Name	Х	Y	No.	Name	Х	Υ	No.	Name	X	Υ
1	(NC)	6195	1246	51	CAP2-	-567	1246	101	COM25	-6474	727
2	(NC)	6059		52	CAP2+	-701		102	COM24		654
3	SYNC	5922		53	CAP2+	-835		103	COM23		581
4	FRS	5786		54	Vss	-969		104	COM22		509
5	FR	5649		55	Vss	-1103		105	COM21		436
6	CL	5513		56	VRS	-1237		106	COM20		363
7	DOF SYNC	5376		57	VRS	-1371		107	COM19		291
8 9		5240 5103		58 59	VDD	-1505		108	COM18		218
10	Vss CS1	4967		60	Vdd V1	-1639 -1772		109 110	COM17 COM16		145 73
11	CS2	4830		61	V1 V1	-1772 -1906		111	COM16		0
12	VDD	4694		62	V1 V2	-1900 -2040		112	COM15		-73
13	RES	4557		63	V2 V2	-2174		113	COM14		-/3 -145
14	A0	4421		64	(NC)	-2308		114	COM12		-218
15	Vss	4284		65	V3	-2442		115	COM11		–291
16	WR, R/W	4148		66	V3	-2576		116	COM10		-363
17	RD, E	4011		67	V4	-2710		117	COM9		-436
18	VDD	3875		68	V4	-2844		118	COM8		-509
19	D0	3738		69	V 5	-2978		119	COM7		-581
20	D1	3602		70	V 5	-3111		120	COM6		-654
21	D2	3465		71	(NC)	-3245		121	COM5		-727
22	D3	3329		72	VR	-3379		122	COM4		-800
23	D4	3192		73	TEST1	-3513		123	COM3		-872
24	D5	3056		74	TEST2	-3647		124	COM2		-945
25	D6 (SCL)	2919		75	TEST3	-3781		125	COM1		-1018
26	D7 (SI)	2783		76	TEST4	-3915		126	COM0		-1090
27	VDD	2646		77	VDD	-4049		127	COMS		-1163
28	VDD	2512		78	M/S	-4185		128	(NC)	▼	-1248
29	VDD	2378		79	CLS	-4322		129	(NC)	-6232	-1246
30 31	Vdd Vdd	2245 2111		80 81	Vss C86	-4458 4505		130	(NC)	-6147	
32	VSS	1977		82	P/S	-4595 -4731		131 132	(NC) SEG0	-6075 -6002	
33	VSS	1843		83	VDD	-4868		133	SEG1	-5930	
34	VSS	1709		84	HPM	-4000 -5004		134	SEG2	-5859	
35	VSS2	1575		85	Vss	-5141		135	SEG3	-5787	
36	VSS2	1441		86	IRS	-5277		136	SEG4	-5715	
37	VSS2	1307		87	VDD	-5414		137	SEG5	-5643	
38	VSS2	1173		88	TEST5	-5550		138	SEG6	-5571	
39	Vss2	1039		89	TEST6	-5687		139	SEG7	-5499	
40	(NC)	906		90	TEST7	-5836		140	SEG8	-5427	
41	Vour	772		91	TEST8	-5956		141	SEG9	-5355	
42	Vout	638		92	TEST9	-6076		142	SEG10	-5283	
43	CAP3-	504		93	(NC)	-6195	↓	143	SEG11	-5212	
44	CAP3-	370		94	(NC)	-6474	1248	144	SEG12	-5140	
45	(NC)	236		95	COM31		1163	145	SEG13	-5068	
46	CAP1+	102		96	COM30		1090	146	SEG14	-4996	
47	CAP1+	-32		97	COM29		1017	147	SEG15	-4924	
48	CAP1-	-166		98	COM28		945	148	SEG16	-4852	
49	CAP1-	-300		99	COM27		872	149	SEG17	-4780	
50	CAP2-	-433	▼	100	COM26	▼	799	150	SEG18	-4708	▼

					T						Unit: µm
PAD No.	PIN Name	X	Y	PAD No.	PIN Name	X	Y	PAD No.	PIN Name	X	Y
151	SEG19	-4636	-1246	201	SEG69	-1042	-1246	251	SEG119	2553	-1246
152	SEG20	-4564		202	SEG70	-970		252	SEG120	2625	
153	SEG21	-4493		203	SEG71	-898		253	SEG121	2696	
154	SEG22	-4421		204	SEG72	-826		254	SEG122	2768	
155	SEG23	-4349		205	SEG73	-754		255	SEG123	2840	
156	SEG24	-4277		206	SEG74	-682		256	SEG124	2912	
157	SEG25	-4205		207	SEG75	-611		257	SEG125	2984	
158	SEG26	-4133		208	SEG76	-539		258	SEG126	3056	
159	SEG27	-4061		209	SEG77	-467		259	SEG127	3128	
160	SEG28	-3989		210	SEG78	-395		260	SEG128	3200	
161	SEG29	-3917		211	SEG79	-323		261	SEG129	3272	
162	SEG30	-3846		212	SEG80	-251		262	SEG130	3343	
163	SEG31	-3774		213	SEG81	-179		263	SEG131	3415	
164	SEG32	-3702		214	SEG82	-107		264	SEG132	3487	
165	SEG33	-3630		215	SEG83	-35		265	SEG133	3559	
166	SEG34	-3558		216	SEG84	36		266	SEG134	3631	
167	SEG35	-3486		217	SEG85	108		267	SEG135	3703	
168	SEG36	-3414		218	SEG86	180		268	SEG136	3775	
169	SEG37	-3342		219	SEG87	252		269	SEG137	3847	
170	SEG38	-3270		220	SEG88	324		270	SEG138	3919	
171	SEG39	-3199		221	SEG89	396		271	SEG139	3990	
172	SEG40	-3127		222	SEG90	468		272	SEG140	4062	
173	SEG41	-3055		223	SEG91	540		273	SEG141	4134	
173	SEG42	-2983		224	SEG92	612		274	SEG141	4206	
175	SEG43	-2911		225	SEG93	683		275	SEG143	4278	
176	SEG44	-2839		226	SEG94	755		276	SEG144	4350	
176	SEG45	-2767		227	SEG95	827		277	SEG144	4422	
177	SEG45	-2695		228	SEG95	899		278	SEG145	4494	
	SEG47				SEG90	971		279	SEG140		
179	SEG47 SEG48	-2623 -2552		229	SEG97	1043		280	SEG147	4566 4637	
180	SEG49	-2332 -2480		230 231	SEG99	1115		281	SEG149		
181		1								4709	
182	SEG50	-2408		232	SEG100	1187		282	SEG150	4781	
183	SEG51	-2336		233	SEG101	1259		283	SEG151	4853	
184	SEG52	-2264		234	SEG102	1330		284	SEG152	4925	
185	SEG53	-2192		235	SEG103	1402		285	SEG153	4997	
186	SEG54	-2120		236	SEG104	1474		286	SEG154	5069	
187	SEG55	-2048		237	SEG105	1546		287	SEG155	5141	
188	SEG56	-1976		238	SEG106	1618		288	SEG156	5213	
189	SEG57	-1905		239	SEG107	1690		289	SEG157	5284	
190	SEG58	-1833		240	SEG108	1762		290	SEG158	5356	
191	SEG59	-1761		241	SEG109	1834		291	SEG159	5428	
192	SEG60	-1689		242	SEG110	1906		292	SEG160	5500	
193	SEG61	-1617		243	SEG111	1977		293	SEG161	5572	
194	SEG62	-1545		244	SEG112	2049		294	SEG162	5644	
195	SEG63	-1473		245	SEG113	2121		295	SEG163	5716	
196	SEG64	-1401		246	SEG114	2193		296	SEG164	5788	
197	SEG65	-1329		247	SEG115	2265		297	SEG165	5860	
198	SEG66	-1258		248	SEG116	2337		298	SEG166	5931	
199	SEG67	-1186		249	SEG117	2409		299	SEG167	6003	
200	SEG68	-1114	▼	250	SEG118	2481	*	300	(NC)	6075	▼

Unit: µm

PAD No.	PIN Name	Х	Υ
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 331 332 333 334 335 336 337	(NC) (NC) (NC) (NC) (NC) (NC) (NC) (NC)	6147 6232 6474	-1246

S1D15707***** Pad Central Coordinates

PAD	PIN			PAD	PIN			PAD	PIN		
No.	Name	Х	Υ	No.	Name	Х	Υ	No.	Name	X	Y
1	(NC)	6195	1246	51	CAP2-	-567	1246	101	COM25	-6474	727
2	(NC)	6059		52	CAP2+	-701		102	COM24		654
3	SYNC	5922		53	CAP2+	-835		103	COM23		581
4	FRS	5786		54	Vss	-969		104	COM22		509
5	FR	5649		55	Vss	-1103		105	COM21		436
6	_CL_	5513		56	VRS	-1237		106	COM20		363
7	DOF	5376		57	VRS	-1371		107	COM19		291
8	SYNC	5240		58	VDD	-1505		108	COM18		218
9	Vss Vss	5103		59	VDD	-1639		109	COM17		145
10	CS1	4967		60	V1	-1772		110	COM16		73
11	CS2	4830		61	V1	-1906		111	COM15		0
12	VDD	4694		62	V2	-2040		112	COM14		-73
13	RES	4557		63	V2	-2174		113	COM13		-145
14	A0	4421		64	(NC)	-2308		114	COM12		-218
15	Vss_	4284		65	V3	-2442		115	COM11		-291
16	WR, R/W	4148		66	V3	-2576		116	COM10		-363
17	RD, E	4011		67	V4	-2710		117	COM9		-436
18	VDD	3875		68	V4	-2844		118	COM8		-509
19	D0	3738		69	V5	-2978		119	COM7		-581
20	D1	3602		70	V ₅ (NC)	-3111		120	COM6		-654
21	D2	3465		71		-3245		121	COM5		-727
22	D3	3329		72	VR TEST1	-3379		122	COM4		-800 973
23 24	D4 D5	3192 3056		73 74	TEST1	-3513 -3647		123 124	COM3 COM2		-872
25	D6 (SCL)	2919		75	TEST3	-3047 -3781		124	COM2		-945 -1018
26	D6 (SCL)	2783		76	TEST3	-3761 -3915		125	COM1		-1018 -1090
27	VDD VDD	2646		77	VDD	-4049		120	COMS		-1090 -1163
28	VDD	2512		78	M/S	-4185		127	(NC)		-1103 -1248
29	VDD	2378		79	CLS	-4322		129	(NC)	- 6232	-1246 -1246
30	VDD	2245		80	Vss	-4458		130	(NC)	-6147	-1240
31	VDD	2111		81	C86	-4595		131	(NC)	-6075	
32	Vss	1977		82	P/S	-4731		132	SEG0	-6002	
33	Vss	1843		83	VDD	-4868		133	SEG1	-5930	
34	Vss	1709		84	HPM	-5004		134	SEG2	-5859	
35	VSS2	1575		85	Vss	-5141		135	SEG3	-5787	
36	VSS2	1441		86	IRS	-5277		136	SEG4	<i>-</i> 5715	
37	VSS2	1307		87	VDD	-5414		137	SEG5	-5643	
38	VSS2	1173		88	TEST5	-5550		138	SEG6	- 5571	
39	VSS2	1039		89	TEST6	-5687		139	SEG7	-5499	
40	(NC)	906		90	TEST7	-5836		140	SEG8	-5427	
41	Vout	772		91	TEST8	-5956		141	SEG9	-5355	
42	Vout	638		92	TEST9	-6076		142	SEG10	-5283	
43	CAP3-	504		93	(NC)	-6195	↓	143	SEG11	-5212	
44	CAP3-	370		94	(NC)	-6474	1248	144	SEG12	-5140	
45	(NC)	236		95	COM31		1163	145	SEG13	-5068	
46	CAP1+	102		96	COM30		1090	146	SEG14	-4996	
47	CAP1+	-32		97	COM29		1017	147	SEG15	-4924	
48	CAP1-	-166		98	COM28		945	148	SEG16	-4852	
49	CAP1-	-300		99	COM27		872	149	SEG17	-4780	
50	CAP2-	-433	▼	100	COM26	♦	799	150	SEG18	-4708	\

PAD PIN No. Name X Y No. No.						1					,	Unit: μm
152 SEG20 -4469 202 SEG70 -970 252 SEG120 2625 153 SEG21 -4493 203 SEG71 -898 253 SEG121 2696 155 SEG23 -4349 205 SEG73 -754 255 SEG123 2840 155 SEG23 -4349 205 SEG73 -754 255 SEG123 2840 156 SEG24 -4277 206 SEG73 -661 257 SEG125 2984 158 SEG26 -4133 208 SEG76 -6539 258 SEG126 3056 159 SEG27 -4061 209 SEG77 -467 259 SEG125 2984 160 SEG28 -3989 210 SEG78 -395 260 SEG128 3200 161 SEG29 -3917 211 SEG79 -323 261 SEG129 3272 162 SEG30 -3846 212 SEG81 -179 263 SEG131 3415 164 SEG32 -3702 214 SEG81 -179 263 SEG131 3415 165 SEG33 -3358 216 SEG83 -355 265 SEG133 3559 166 SEG34 -3558 216 SEG88 36 266 SEG134 3631 3616 SEG34 -3558 216 SEG88 36 266 SEG134 3631 3671 368 SEG36 -3444 218 SEG86 180 268 SEG137 3847 170 SEG38 -3270 220 SEG88 324 270 SEG38 -3270 220 SEG88 324 270 SEG33 -3360 215 SEG88 326 SEG133 3699 3172 SEG41 -3127 222 SEG89 396 271 SEG133 3710 3717 3717 SEG39 -3199 221 SEG89 396 271 SEG133 3710 3717 3717 SEG41 -3127 222 SEG99 468 272 SEG140 3494	PAD No.	PIN Name	X	Y	PAD No.	PIN Name	X	Y	PAD No.	PIN Name	X	Y
153 SEG21 -4493 203 SEG71 -898 253 SEG121 2666 154 SEG22 -4421 204 SEG72 -826 254 SEG122 2768 155 SEG23 -4349 205 SEG73 -754 255 SEG123 2840 156 SEG24 -4277 206 SEG75 -611 257 SEG25 2984 158 SEG26 -4205 207 SEG75 -611 257 SEG25 2984 158 SEG26 -4133 208 SEG76 -539 258 SEG126 3056 159 SEG27 -4061 209 SEG77 -467 259 SEG127 3128 160 SEG28 -3989 210 SEG78 -395 260 SEG128 3200 3261 SEG30 -3846 212 SEG30 -251 262 SEG130 3343 163 SEG31 -3774 213 SEG81 -179 263 SEG131 3415 34	151	SEG19	-4636	-1246	201	SEG69	-1042	-1246	251	SEG119	2553	-1246
154 SEG22 -4421 204 SEG72 -826 254 SEG122 2768 155 SEG32 -4349 205 SEG73 -754 255 SEG123 2840 156 SEG24 -4277 206 SEG74 -682 256 SEG124 2912 157 SEG25 -4205 207 SEG75 -611 257 SEG125 2984 158 SEG26 -4133 208 SEG76 -539 258 SEG126 3056	152	SEG20	-4564		202	SEG70	-970		252	SEG120	2625	
155 SEG23 -4349 205 SEG73 -754 255 SEG123 2840 156 SEG24 -4277 206 SEG74 -682 256 SEG123 2840 157 SEG25 -4205 207 SEG75 -611 257 SEG125 2984 158 SEG26 -4133 208 SEG76 -539 258 SEG126 3056	153	SEG21	-4493		203	SEG71	-898		253	SEG121	2696	
156 SEG24 -4277 206 SEG74 -682 256 SEG124 2912 157 SEG25 -4205 207 SEG75 -611 257 SEG125 2984 158 SEG26 -4133 208 SEG76 -539 258 SEG126 3056 159 SEG27 -4061 209 SEG77 -467 259 SEG127 3128 160 SEG28 -3989 210 SEG78 -395 260 SEG128 3200 161 SEG29 -3917 211 SEG79 -323 261 SEG129 3272 162 SEG30 -3846 212 SEG80 -251 262 SEG130 3343 343 163 SEG31 -3774 213 SEG81 -179 263 SEG131 3415 164 SEG32 -3702 214 SEG82 -107 264 SEG132 3487 165 SEG33 -3630 215 SEG83 -35 265 SEG133 3559 166 SEG34 -3558 216 SEG84 -35 265 SEG133 3559 166 SEG34 -3558 216 SEG84 -35 266 SEG133 3703 168 SEG36 -3446 217 SEG85 108 267 SEG135 3703 168 SEG36 -3444 218 SEG86 180 268 SEG136 3775 169 SEG37 -3342 219 SEG87 252 269 SEG136 3775 169 SEG37 -3342 219 SEG87 252 269 SEG136 3775 170 SEG38 -3270 220 SEG88 324 270 SEG138 3919 171 SEG39 -3199 221 SEG89 396 271 SEG139 3990 172 SEG41 -3055 223 SEG91 540 273 SEG141 4134 4134 174 SEG42 -2983 224 SEG92 612 274 SEG142 4206 175 SEG44 -2839 226 SEG39 683 275 SEG144 4278 176 SEG46 -2695 228 SEG96 899 278 SEG144 4350 177 SEG48 -2552 230 SEG98 1043 280 SEG144 4350 180 SEG48 -2552 230 SEG98 1043 280 SEG144 4366 4384 SEG55 -2264 234 SEG102 1300 284 SEG152 4925 485	154	SEG22	-4421		204	SEG72	-826		254	SEG122	2768	
156	155	SEG23	-4349		205	SEG73	-754		255	SEG123	2840	
157 SEG26 -4205 207 SEG75 -611 257 SEG125 2984 158 SEG26 -4133 208 SEG76 -539 258 SEG126 3056 159 SEG27 -4061 209 SEG77 -467 259 SEG127 3128 160 SEG28 -3989 210 SEG78 -395 260 SEG128 3200 161 SEG29 -3917 211 SEG39 -323 261 SEG128 3200 162 SEG30 -3846 212 SEG80 -251 262 SEG130 3343 163 SEG31 -3774 213 SEG81 -179 263 SEG131 3415 164 SEG32 -3702 214 SEG82 -107 264 SEG132 3487 165 SEG33 -3350 215 SEG83 -35 265 SEG133 3359 166 SEG34 -3558 216 SEG84 36 266 SEG134 3631 167 SEG35 -3486 217 SEG85 108 267 SEG135 3703 188 SEG36 -3414 218 SEG86 180 268 SEG137 3847 170 SEG38 -3342 219 SEG87 252 269 SEG137 3847 170 SEG38 -3379 220 SEG88 324 270 SEG138 3919 171 SEG39 -3199 221 SEG89 396 271 SEG138 3919 171 SEG40 -3127 222 SEG90 468 277 SEG144 4062 173 SEG41 -3055 223 SEG91 540 273 SEG141 4134 174 SEG42 -2983 224 SEG92 612 274 SEG144 4206 175 SEG45 -2667 227 SEG98 889 278 SEG144 4350 177 SEG46 -2665 228 SEG98 899 278 SEG146 4494 4494 179 SEG47 -2623 229 SEG98 899 278 SEG146 4494 4494 179 SEG47 -2623 229 SEG98 115 281 SEG149 4709 182 SEG50 -2408 231 SEG99 115 281 SEG149 4709 182 SEG50 -2408 231 SEG99 115 281 SEG149 4709 182 SEG50 -2408 233 SEG100 1187 282 SEG155 524 478 536 478 478 536 478 478 536 478 478 536 478 478 536 478 478 536 478 478 536 478 478 536 478 478 536 478 478 536 478 47			-4277		206	SEG74	-682		256	SEG124	2912	
158			-4205						257	SEG125	2984	
159												
160			-4061						259			
161									I			
162 SEG30 -3846									I			
163 SEG31 -3774									I			
164												
165 SEG34 -3558 216 SEG84 36 266 SEG134 3631			1									
166									I			
167 SEG35 -3486 217 SEG85 108 267 SEG136 3703 168 SEG36 -3414 218 SEG86 180 268 SEG136 3775 169 SEG37 -3342 219 SEG87 252 269 SEG137 3847 170 SEG38 -3270 220 SEG88 324 270 SEG138 3919 171 SEG39 -3199 221 SEG890 488 272 SEG140 4062 173 SEG41 -3055 223 SEG91 540 273 SEG140 4062 175 SEG43 -2911 225 SEG93 683 275 SEG140 2406 175 SEG44 -2839 226 SEG94 755 276 SEG144 4350 177 SEG45 -2767 227 SEG95 827 277 SEG144 4350 178 SEG46 -2695			1						I			
168 SEG36 -3414 218 SEG86 180 268 SEG136 3775 169 SEG37 -3342 219 SEG87 252 269 SEG137 3847 170 SEG38 -3270 220 SEG88 324 270 SEG138 3919 171 SEG39 -3199 221 SEG89 396 271 SEG139 3990 172 SEG40 -3127 222 SEG90 468 272 SEG140 4062 173 SEG41 -3055 223 SEG91 540 273 SEG141 4134 174 SEG42 -2983 224 SEG92 612 274 SEG142 4206 175 SEG43 -2911 225 SEG93 683 275 SEG143 4278 176 SEG44 -2839 226 SEG94 755 276 SEG144 4350 177 SEG45 -2767			1									
169			1									
170			1									
171 SEG39 -3199 221 SEG89 396 271 SEG139 3990 172 SEG40 -3127 222 SEG90 468 272 SEG140 4062 173 SEG41 -3055 223 SEG91 540 273 SEG141 4134 174 SEG42 -2983 224 SEG92 612 274 SEG142 4206 175 SEG43 -2911 225 SEG93 683 275 SEG143 4278 176 SEG44 -2839 226 SEG94 755 276 SEG144 4350 177 SEG45 -2767 227 SEG98 827 277 SEG145 4422 178 SEG46 -2695 228 SEG98 899 278 SEG144 4350 179 SEG47 -2623 229 SEG97 971 279 SEG147 4566 180 SEG48 -2552									I			
172 SEG40 -3127 222 SEG90 468 272 SEG140 4062 173 SEG41 -3055 223 SEG91 540 273 SEG140 4062 174 SEG42 -2983 224 SEG92 612 274 SEG142 4206 175 SEG43 -2911 225 SEG93 683 275 SEG142 4206 176 SEG44 -2839 226 SEG94 755 276 SEG144 4350 177 SEG45 -2767 227 SEG98 827 277 SEG145 4422 178 SEG46 -2695 228 SEG98 899 278 SEG146 4494 179 SEG48 -2552 230 SEG98 897 277 SEG145 4422 178 SEG48 -2552 230 SEG98 899 278 SEG144 4435 179 SEG48 -2552												
173 SEG41 -3055 223 SEG91 540 273 SEG141 4134 174 SEG42 -2983 224 SEG92 612 274 SEG142 4206 175 SEG43 -2911 225 SEG93 683 275 SEG142 4278 176 SEG44 -2839 226 SEG94 755 276 SEG144 4350 177 SEG45 -2767 227 SEG95 827 277 SEG145 4422 178 SEG46 -2695 228 SEG96 899 278 SEG146 4494 179 SEG47 -2623 229 SEG97 971 279 SEG147 4566 180 SEG48 -2552 230 SEG98 1043 280 SEG147 4709 181 SEG50 -2408 231 SEG99 1115 281 SEG1449 4709 182 SEG50 -2408												
174 SEG42 -2983 224 SEG92 612 274 SEG142 4206 175 SEG43 -2911 225 SEG93 683 275 SEG143 4278 176 SEG44 -2839 226 SEG94 755 276 SEG144 4350 177 SEG45 -2767 227 SEG95 827 277 SEG145 4422 178 SEG46 -2695 228 SEG96 899 278 SEG145 4422 179 SEG47 -2623 229 SEG97 971 279 SEG147 4566 180 SEG48 -2552 230 SEG98 1043 280 SEG148 4637 181 SEG49 -2408 231 SEG99 1115 281 SEG149 4709 182 SEG50 -2408 232 SEG100 1187 282 SEG150 4781 183 SEG51 -2336			1									
175 SEG43 -2911 225 SEG93 683 275 SEG143 4278 176 SEG44 -2839 226 SEG94 755 276 SEG144 4350 177 SEG45 -2767 227 SEG95 827 277 SEG145 4422 178 SEG46 -2695 228 SEG96 899 278 SEG145 4422 179 SEG47 -2623 229 SEG97 971 279 SEG147 4566 180 SEG48 -2552 230 SEG98 1043 280 SEG147 4566 180 SEG48 -2552 230 SEG99 1115 281 SEG147 47566 183 SEG149 -2480 231 SEG99 1115 281 SEG147 4759 182 SEG50 -2408 233 SEG100 1187 282 SEG154 4799 183 SEG55 -2264 234 SEG102 1330 284			1						I			
176 SEG44 -2839 226 SEG94 755 276 SEG144 4350 177 SEG45 -2767 227 SEG95 827 277 SEG145 4422 178 SEG46 -2695 228 SEG96 899 278 SEG146 4494 179 SEG47 -2623 229 SEG97 971 279 SEG147 4566 180 SEG48 -2552 230 SEG98 1043 280 SEG148 4637 181 SEG49 -2480 231 SEG99 1115 281 SEG149 4709 182 SEG50 -2408 232 SEG100 1187 282 SEG150 4781 183 SEG51 -2336 233 SEG101 1259 283 SEG150 4781 184 SEG52 -2264 234 SEG102 1330 284 SEG152 4925 185 SEG53 -2192 <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>I</td> <td></td> <td></td> <td></td>			1						I			
177 SEG45 -2767 227 SEG95 827 277 SEG145 4422 178 SEG46 -2695 228 SEG96 899 278 SEG146 4494 179 SEG47 -2623 229 SEG97 971 279 SEG146 4494 180 SEG48 -2552 230 SEG98 1043 280 SEG148 4637 181 SEG49 -2480 231 SEG99 1115 281 SEG149 4709 182 SEG50 -2408 232 SEG100 1187 282 SEG154 4781 183 SEG51 -2336 233 SEG101 1259 283 SEG150 4781 183 SEG52 -2264 234 SEG102 1330 284 SEG152 4925 185 SEG53 -2192 235 SEG103 1402 285 SEG153 4997 186 SEG54 -2120 </td <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			1									
178 SEG46 -2695 228 SEG96 899 278 SEG146 4494 179 SEG47 -2623 229 SEG97 971 279 SEG146 4494 180 SEG48 -2552 230 SEG98 1043 280 SEG148 4637 181 SEG49 -2408 231 SEG90 1115 281 SEG149 4709 182 SEG50 -2408 232 SEG100 1187 282 SEG150 4781 183 SEG51 -2336 233 SEG101 1259 283 SEG151 4853 184 SEG52 -2264 234 SEG102 1330 284 SEG152 4925 185 SEG53 -2192 235 SEG103 1402 285 SEG153 4997 186 SEG54 -2120 236 SEG105 1546 287 SEG155 5141 188 SEG55 -2048									I			
179 SEG47 -2623 229 SEG97 971 279 SEG147 4566 180 SEG48 -2552 230 SEG98 1043 280 SEG148 4637 181 SEG49 -2480 231 SEG99 1115 281 SEG149 4709 182 SEG50 -2408 232 SEG100 1187 282 SEG150 4781 183 SEG51 -2336 233 SEG101 1259 283 SEG151 4853 184 SEG52 -2264 234 SEG102 1330 284 SEG152 4925 185 SEG53 -2192 235 SEG103 1402 285 SEG153 4997 186 SEG54 -2120 236 SEG104 1474 286 SEG154 5069 187 SEG55 -2048 237 SEG105 1546 287 SEG155 5141 188 SEG57 -19			1						I			
180 SEG48 -2552 230 SEG98 1043 280 SEG148 4637 181 SEG49 -2480 231 SEG99 1115 281 SEG149 4709 182 SEG50 -2408 232 SEG100 1187 282 SEG150 4781 183 SEG51 -2336 233 SEG101 1259 283 SEG151 4853 184 SEG52 -2264 234 SEG102 1330 284 SEG152 4925 185 SEG53 -2192 235 SEG103 1402 285 SEG153 4997 186 SEG54 -2120 236 SEG104 1474 286 SEG153 4997 188 SEG56 -1976 238 SEG106 1618 287 SEG155 5141 188 SEG57 -1905 239 SEG107 1690 289 SEG157 5284 190 SEG58 -			1						I			
181 SEG49 -2480 231 SEG99 1115 281 SEG149 4709 182 SEG50 -2408 232 SEG100 1187 282 SEG150 4781 183 SEG51 -2336 233 SEG101 1259 283 SEG151 4853 184 SEG52 -2264 234 SEG102 1330 284 SEG152 4925 185 SEG53 -2192 235 SEG103 1402 285 SEG153 4997 186 SEG54 -2120 236 SEG104 1474 286 SEG154 5069 187 SEG55 -2048 237 SEG105 1546 287 SEG155 5141 188 SEG56 -1976 238 SEG107 1690 289 SEG157 5284 190 SEG58 -1833 240 SEG108 1762 290 SEG158 5356 191 SEG59			1						I			
182 SEG50 -2408 232 SEG100 1187 282 SEG150 4781 183 SEG51 -2336 233 SEG101 1259 283 SEG151 4853 184 SEG52 -2264 234 SEG102 1330 284 SEG152 4925 185 SEG53 -2192 235 SEG103 1402 285 SEG153 4997 186 SEG54 -2120 236 SEG104 1474 286 SEG154 5069 187 SEG55 -2048 237 SEG105 1546 287 SEG155 5141 188 SEG56 -1976 238 SEG106 1618 288 SEG156 5213 189 SEG57 -1905 239 SEG107 1690 289 SEG157 5284 190 SEG58 -1833 240 SEG108 1762 290 SEG158 5356 191 SEG59 <td< td=""><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td>I</td><td></td><td></td><td></td></td<>			1						I			
183 SEG51 -2336 233 SEG101 1259 283 SEG151 4853 184 SEG52 -2264 234 SEG102 1330 284 SEG152 4925 185 SEG53 -2192 235 SEG103 1402 285 SEG153 4997 186 SEG54 -2120 236 SEG104 1474 286 SEG154 5069 187 SEG55 -2048 237 SEG105 1546 287 SEG155 5141 188 SEG56 -1976 238 SEG106 1618 288 SEG156 5213 189 SEG57 -1905 239 SEG107 1690 289 SEG157 5284 190 SEG58 -1833 240 SEG108 1762 290 SEG158 5356 191 SEG69 -1761 241 SEG109 1834 291 SEG159 5428 192 SEG60 <td< td=""><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td>I</td><td></td><td></td><td></td></td<>			1						I			
184 SEG52 -2264 234 SEG102 1330 284 SEG152 4925 185 SEG53 -2192 235 SEG103 1402 285 SEG153 4997 186 SEG54 -2120 236 SEG104 1474 286 SEG154 5069 187 SEG55 -2048 237 SEG105 1546 287 SEG155 5141 188 SEG56 -1976 238 SEG106 1618 288 SEG156 5213 189 SEG57 -1905 239 SEG107 1690 289 SEG157 5284 190 SEG58 -1833 240 SEG108 1762 290 SEG158 5356 191 SEG59 -1761 241 SEG109 1834 291 SEG159 5428 192 SEG60 -1689 242 SEG110 1906 292 SEG160 5500 193 SEG61 <td< td=""><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td>I</td><td></td><td></td><td></td></td<>			1						I			
185 SEG53 -2192 235 SEG103 1402 285 SEG153 4997 186 SEG54 -2120 236 SEG104 1474 286 SEG153 4997 187 SEG55 -2048 237 SEG105 1546 287 SEG155 5141 188 SEG56 -1976 238 SEG106 1618 288 SEG156 5213 189 SEG57 -1905 239 SEG107 1690 289 SEG157 5284 190 SEG58 -1833 240 SEG108 1762 290 SEG158 5356 191 SEG59 -1761 241 SEG109 1834 291 SEG159 5428 192 SEG60 -1689 242 SEG110 1906 292 SEG160 5500 193 SEG61 -1617 243 SEG111 1977 293 SEG161 5572 194 SEG63 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>												
186 SEG54 -2120 236 SEG104 1474 286 SEG154 5069 187 SEG55 -2048 237 SEG105 1546 287 SEG155 5141 188 SEG56 -1976 238 SEG106 1618 288 SEG156 5213 189 SEG57 -1905 239 SEG107 1690 289 SEG157 5284 190 SEG58 -1833 240 SEG108 1762 290 SEG158 5356 191 SEG59 -1761 241 SEG109 1834 291 SEG159 5428 192 SEG60 -1689 242 SEG110 1906 292 SEG160 5500 193 SEG61 -1617 243 SEG111 1977 293 SEG161 5572 194 SEG62 -1545 244 SEG112 2049 294 SEG162 5644 195 SEG64 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>												
187 SEG55 -2048 237 SEG105 1546 287 SEG155 5141 188 SEG56 -1976 238 SEG106 1618 288 SEG156 5213 189 SEG57 -1905 239 SEG107 1690 289 SEG157 5284 190 SEG58 -1833 240 SEG108 1762 290 SEG158 5356 191 SEG59 -1761 241 SEG109 1834 291 SEG159 5428 192 SEG60 -1689 242 SEG110 1906 292 SEG160 5500 193 SEG61 -1617 243 SEG111 1977 293 SEG161 5572 194 SEG62 -1545 244 SEG112 2049 294 SEG162 5644 195 SEG63 -1473 245 SEG113 2121 295 SEG163 5716 196 SEG65 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>												
188 SEG56 -1976 238 SEG106 1618 288 SEG156 5213 189 SEG57 -1905 239 SEG107 1690 289 SEG157 5284 190 SEG58 -1833 240 SEG108 1762 290 SEG158 5356 191 SEG59 -1761 241 SEG109 1834 291 SEG159 5428 192 SEG60 -1689 242 SEG110 1906 292 SEG160 5500 193 SEG61 -1617 243 SEG111 1977 293 SEG161 5572 194 SEG62 -1545 244 SEG112 2049 294 SEG162 5644 195 SEG63 -1473 245 SEG113 2121 295 SEG163 5716 196 SEG64 -1401 246 SEG114 2193 296 SEG164 5788 197 SEG66 <td< td=""><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>			1									
189 SEG57 -1905 239 SEG107 1690 289 SEG157 5284 190 SEG58 -1833 240 SEG108 1762 290 SEG158 5356 191 SEG59 -1761 241 SEG109 1834 291 SEG159 5428 192 SEG60 -1689 242 SEG110 1906 292 SEG160 5500 193 SEG61 -1617 243 SEG111 1977 293 SEG161 5572 194 SEG62 -1545 244 SEG112 2049 294 SEG162 5644 195 SEG63 -1473 245 SEG113 2121 295 SEG163 5716 196 SEG64 -1401 246 SEG114 2193 296 SEG164 5788 197 SEG65 -1329 247 SEG115 2265 297 SEG165 5860 198 SEG66 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>												
190 SEG58 -1833 240 SEG108 1762 290 SEG158 5356 191 SEG59 -1761 241 SEG109 1834 291 SEG159 5428 192 SEG60 -1689 242 SEG110 1906 292 SEG160 5500 193 SEG61 -1617 243 SEG111 1977 293 SEG161 5572 194 SEG62 -1545 244 SEG112 2049 294 SEG162 5644 195 SEG63 -1473 245 SEG113 2121 295 SEG163 5716 196 SEG64 -1401 246 SEG114 2193 296 SEG164 5788 197 SEG65 -1329 247 SEG115 2265 297 SEG165 5860 198 SEG66 -1258 248 SEG116 2337 298 SEG167 6003 199 SEG67 -1186 249 SEG117 2409 299 SEG167 6003 <td></td>												
191 SEG59 -1761 241 SEG109 1834 291 SEG159 5428 192 SEG60 -1689 242 SEG110 1906 292 SEG160 5500 193 SEG61 -1617 243 SEG111 1977 293 SEG161 5572 194 SEG62 -1545 244 SEG112 2049 294 SEG162 5644 195 SEG63 -1473 245 SEG113 2121 295 SEG163 5716 196 SEG64 -1401 246 SEG114 2193 296 SEG164 5788 197 SEG65 -1329 247 SEG115 2265 297 SEG165 5860 198 SEG66 -1258 248 SEG116 2337 298 SEG166 5931 199 SEG67 -1186 249 SEG117 2409 299 SEG167 6003			1									
192 SEG60 -1689 242 SEG110 1906 292 SEG160 5500 193 SEG61 -1617 243 SEG111 1977 293 SEG161 5572 194 SEG62 -1545 244 SEG112 2049 294 SEG162 5644 195 SEG63 -1473 245 SEG113 2121 295 SEG163 5716 196 SEG64 -1401 246 SEG114 2193 296 SEG164 5788 197 SEG65 -1329 247 SEG115 2265 297 SEG165 5860 198 SEG66 -1258 248 SEG116 2337 298 SEG166 5931 199 SEG67 -1186 249 SEG117 2409 299 SEG167 6003									I			
193 SEG61 -1617 243 SEG111 1977 293 SEG161 5572 194 SEG62 -1545 244 SEG112 2049 294 SEG162 5644 195 SEG63 -1473 245 SEG113 2121 295 SEG163 5716 196 SEG64 -1401 246 SEG114 2193 296 SEG164 5788 197 SEG65 -1329 247 SEG115 2265 297 SEG165 5860 198 SEG66 -1258 248 SEG116 2337 298 SEG166 5931 199 SEG67 -1186 249 SEG117 2409 299 SEG167 6003									I			
194 SEG62 -1545 244 SEG112 2049 294 SEG162 5644 195 SEG63 -1473 245 SEG113 2121 295 SEG163 5716 196 SEG64 -1401 246 SEG114 2193 296 SEG164 5788 197 SEG65 -1329 247 SEG115 2265 297 SEG165 5860 198 SEG66 -1258 248 SEG116 2337 298 SEG166 5931 199 SEG67 -1186 249 SEG117 2409 299 SEG167 6003			1									
195 SEG63 -1473 245 SEG113 2121 295 SEG163 5716 196 SEG64 -1401 246 SEG114 2193 296 SEG164 5788 197 SEG65 -1329 247 SEG115 2265 297 SEG165 5860 198 SEG66 -1258 248 SEG116 2337 298 SEG166 5931 199 SEG67 -1186 249 SEG117 2409 299 SEG167 6003			1						I			
196 SEG64 -1401 246 SEG114 2193 296 SEG164 5788 197 SEG65 -1329 247 SEG115 2265 297 SEG165 5860 198 SEG66 -1258 248 SEG116 2337 298 SEG166 5931 199 SEG67 -1186 249 SEG117 2409 299 SEG167 6003			1									
197 SEG65 -1329 247 SEG115 2265 297 SEG165 5860 198 SEG66 -1258 248 SEG116 2337 298 SEG166 5931 199 SEG67 -1186 249 SEG117 2409 299 SEG167 6003			1									
198 SEG66 -1258 248 SEG116 2337 298 SEG166 5931 199 SEG67 -1186 249 SEG117 2409 299 SEG167 6003			1						I			
199 SEG67 -1186 249 SEG117 2409 299 SEG167 6003			1									
			1									
200 SEG68 −1114 ▼ 250 SEG118 2481 ▼ 300 (NC) 6075 ▼									I			
	200	SEG68	-1114	▼	250	SEG118	2481	▼	300	(NC)	6075	▼

Unit: µm

PAD No.	PIN Name	Х	Υ
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 331 332 333 334 335 336 337	(NC) (NC) (NC) (NC) SEG168 SEG169 SEG171 SEG172 SEG173 SEG174 SEG175 SEG176 SEG177 SEG178 SEG180 SEG181 SEG182 SEG183 SEG184 SEG185 SEG185 SEG186 SEG187 SEG190 SEG191 SEG192 SEG193 SEG194 SEG195 SEG196 SEG197 SEG198 SEG197 SEG198 SEG199 COMS (NC)	6147 6232 6474	-1246 ↓ -1248 -1163 -1090 -1018 -945 -872 -800 -727 -654 -581 -509 -436 -363 -291 -218 -145 -73 0 73 145 218 291 363 436 509 581 654 727 799 872 945 1017 1090 1163 1248

S1D15708**** Pad Central Coordinates

											σmι. μm
PAD No.	PIN Name	X	Υ	PAD No.	PIN Name	X	Y	PAD No.	PIN Name	X	Y
1	(NC)	6159	1246	51	CAP2-	-567	1246	101	COM12	-6474	727
2	(NC)	6059		52	CAP2+	-701		102	COM12		654
3	SYNC	5922		53	CAP2+	-835		103	COM11		581
4	FRS	5786		54	Vss	-969		104	COM11		509
5	FR	5649		55	Vss	-1103		105	COM10		436
6	_CL_	5513		56	VRS	-1237		106	COM10		363
7	DOF	5376		57	VRS	-1371		107	COM9		291
8	SYNC	5240		58	Vdd	-1505		108	COM9		218
9	<u>Vss</u>	5103		59	Vdd	-1639		109	COM8		145
10	CS1	4967		60	V1	-1772		110	COM8		73
11	CS2	4830		61	V1	-1906		111	COM7		0
12	Vdd	4694		62	V2	-2040		112	COM7		-73
13	RES	4557		63	V2	-2174		113	COM6		-145
14	A0	4421		64	(NC)	-2308		114	COM6		-218
15	Vss	4284		65	Vз	-2442		115	COM5		-291
16	\overline{WR} ,R/ \overline{W}	4148		66	V3	-2576		116	COM5		-363
17	RD, E	4011		67	V4	-2710		117	COM4		-436
18	Vdd	3875		68	V4	-2844		118	COM4		-509
19	D0	3738		69	V 5	-2978		119	COM3		-581
20	D1	3602		70	V 5	-3111		120	COM3		-654
21	D2	3465		71	(NC)	-3245		121	COM2		-727
22	D3	3329		72	VR	-3379		122	COM2		-800
23	D4	3192		73	TEST1	-3513		123	COM1		-872
24	D5	3056		74	TEST2	-3647		124	COM1		-945
25	D6 (SCL)	2919		75	TEST3	-3781		125	COM0		-1018
26	D7 (SI)	2783		76	TEST4	-3915		126	COM0		-1090
27	VDD	2646		77	VDD	-4049		127	COMS		-1163
28	VDD	2512		78	M/S	-4185		128	(NC)	▼	-1248
29	VDD	2378		79	CLS	-4322		129	(NC)	-6232	-1246
30	VDD	2245		80	Vss	-4458		130	(NC)	-6147	
31	VDD	2111		81	C86	-4595		131	(NC)	-6075	
32	Vss	1977		82	P/S	-4731		132	SEG0	-6002	
33	Vss	1843		83	VDD	-4868		133	SEG1	-5930	
34	Vss	1709		84	HPM	-5004		134	SEG2	-5859	
35	VSS2	1575		85	Vss	-5141		135	SEG3	-5787	
36	VSS2	1441		86	IRS	-5277		136	SEG4	-5715	
37	Vss2	1307		87	VDD	-5414		137	SEG5	-5643	
38	VSS2	1173		88	TEST5	-5550		138	SEG6	-5571	
39	VSS2	1039		89	TEST6	-5687		139	SEG7	-5499	
40	(NC)	906		90	TEST7	-5836		140	SEG8	-5427	
41	Vout	772		91	TEST8	-5956		141	SEG9	-5355	
42	Vout	638		92	TEST9	-6076		142	SEG10	-5283	
43	CAP3-	504		93	(NC)	-6195	1010	143	SEG11	-5212	
44	CAP3-	370		94	(NC)	-6474	1248	144	SEG12	-5140	
45	(NC)	236		95	COM15		1163	145	SEG13	-5068	
46	CAP1+	102		96	COM15		1090	146	SEG14	-4996	
47	CAP1+	-32		97	COM14		1017	147	SEG15	-4924	
48	CAP1-	-166		98	COM14		945	148	SEG16	-4852	
49	CAP1-	-300 433		99	COM13		872	149	SEG17	-4780	
50	CAP2-	-433	▼	100	COM13	 	799	150	SEG18	-4708	▼

					I	ı					Umit: μm
PAD	PIN	X	Y	PAD	PIN	x	Υ	PAD	PIN	Χ	Υ
No.	Name			No.	Name			No.	Name		
151	SEG19	-4636	-1246	201	SEG69	-1042	-1246	251	SEG119	2553	-1246
152	SEG20	-4564		202	SEG70	-970		252	SEG120	2625	
153	SEG21	-4493		203	SEG71	-898		253	SEG121	2696	
154	SEG22	-4421		204	SEG72	-826		254	SEG122	2768	
155	SEG23	-4349		205	SEG73	-754		255	SEG123	2840	
156	SEG24	-4277		206	SEG74	-682		256	SEG124	2912	
157	SEG25	-4205		207	SEG75	-611		257	SEG125	2984	
158	SEG26	-4133		208	SEG76	-539		258	SEG126	3056	
159	SEG27	-4061		209	SEG77	-467		259	SEG127	3128	
160	SEG28	-3989		210	SEG78	-395		260	SEG128	3200	
161	SEG29	-3917		211	SEG79	-323		261	SEG129	3272	
162	SEG30	-3846		212	SEG80	-251		262	SEG130	3343	
163	SEG31	-3774		213	SEG81	-179		263	SEG131	3415	
164	SEG32	-3702		214	SEG82	-107		264	SEG132	3487	
165	SEG33	-3630		215	SEG83	-35		265	SEG133	3559	
166	SEG34	-3558		216	SEG84	36		266	SEG134	3631	
167	SEG35	-3486		217	SEG85	108		267	SEG135	3703	
168	SEG36	-3414		218	SEG86	180		268	SEG136	3775	
169	SEG37	-3342		219	SEG87	252		269	SEG137	3847	
170	SEG38	-3270		220	SEG88	324		270	SEG138	3919	
171	SEG39	-3199		221	SEG89	396		271	SEG139	3990	
172	SEG40	-3127		222	SEG90	468		272	SEG140	4062	
173	SEG41	-3055		223	SEG90	540		273	SEG141	4134	
173	SEG42	-3033 -2983		223		612		274	SEG141	4206	
175	SEG43	-2903 -2911			SEG92			275	SEG143	4278	
				225	SEG93	683					
176	SEG44	-2839		226	SEG94	755		276	SEG144	4350	
177	SEG45	-2767		227	SEG95	827		277	SEG145	4422	
178	SEG46	-2695		228	SEG96	899		278	SEG146	4494	
179	SEG47	-2623		229	SEG97	971		279	SEG147	4566	
180	SEG48	-2552		230	SEG98	1043		280	SEG148	4637	
181	SEG49	-2480		231	SEG99	1115		281	SEG149	4709	
182	SEG50	-2408		232	SEG100	1187		282	SEG150	4781	
183	SEG51	-2336		233	SEG101	1259		283	SEG151	4853	
184	SEG52	-2264		234	SEG102	1330		284	SEG152	4925	
185	SEG53	-2192		235	SEG103	1402		285	SEG153	4997	
186	SEG54	-2120		236	SEG104	1474		286	SEG154	5069	
187	SEG55	-2048		237	SEG105	1546		287	SEG155	5141	
188	SEG56	-1976		238	SEG106	1618		288	SEG156	5213	
189	SEG57	-1905		239	SEG107	1690		289	SEG157	5284	
190	SEG58	-1833		240	SEG108	1762		290	SEG158	5356	
191	SEG59	-1761		241	SEG109	1834		291	SEG159	5428	
192	SEG60	-1689		242	SEG110	1906		292	SEG160	5500	
193	SEG61	-1617		243	SEG111	1977		293	SEG161	5572	
194	SEG62	-1545		244	SEG112	2049		294	SEG162	5644	
195	SEG63	-1473		245	SEG113	2121		295	SEG163	5716	
196	SEG64	-1401		246	SEG114	2193		296	SEG164	5788	
197	SEG65	-1329		247	SEG115	2265		297	SEG165	5860	
198	SEG66	-1258		248	SEG116	2337		298	SEG166	5931	
199	SEG67	-1186		249	SEG117	2409		299	SEG167	6003	
200	SEG68	-1114		250	SEG118	2481	↓	300	(NC)	6075	
		<u> </u>					· .		(/		

Unit: µm

PAD No.	PIN Name	Х	Υ
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337	(NC) (NC) (NC) (NC) (NC) SEG168 SEG169 SEG170 SEG171 SEG172 SEG173 SEG174 SEG175 SEG176 SEG177 SEG178 SEG180 SEG181 SEG182 SEG188 SEG188 SEG188 SEG189 SEG190 SEG191 SEG191 SEG192 SEG193 SEG194 SEG195 SEG196 SEG197 SEG198 SEG197 SEG198 SEG199 COMS (NC)	6147 6232 6474	-1246 → 1248 -1248 -1163 -1090 -1018 -945 -872 -800 -727 -654 -581 -509 -436 -363 -291 -218 -145 -73 0 73 145 218 291 363 436 509 581 654 727 799 872 945 1017 1090 1163 1248

5. PIN DESCRIPTION

Power Supply Pin

Pin name	I/O	Description	Number of pins
VDD	Power supply	Commonly used with the MPU power supply pin Vcc.	12
Vss	Power supply	0 V pin connected to the system ground (GND).	9
Vss2	Power supply	Boosting circuit reference power supply for liquid crystal drive.	5
VRS	Power supply	External input pin for liquid crystal power supply voltage adjusting circuit. They are set to OPEN.	2
V1, V2 V3, V4 V5	Power supply	Multi-level power supply for liquid crystal drive. The voltage specified according to liquid crystal cells is impedance-converted by a split resistor or operation amplifier (OP amp) and applied. The potential needs to be specified based on VDD to establish the relationship of dimensions shown below:	10
		VDD (=V0) \geq V1 \geq V2 \geq V3 \geq V4 \geq V5 Master operation When the power supply is ON, the following voltages are applied to V1 to V4 from the built-in power supply circuit. The selection of the voltages is determined using the LCD bias set command.	
		S1D15705*** S1D15707***, S1D15708*** V1 1/9•V5 1/6•V5 1/5•V5	
		V2 2/9•V5 2/7•V5 2/6•V5 2/5•V5 V3 7/9•V5 5/7•V5 4/6•V5 3/5•V5 V4 8/9•V5 6/7•V5 5/6•V5 4/5•V5	

LCD Power Supply Circuit Pin

Pin name	I/O	Description	Number of pins
CAP1+	0	Boosting capacitor positive side connecting pin. Connects a capacitor between the pin and CAP1– pin.	2
CAP1-	0	Boosting capacitor negative side connecting pin. Connects a capacitor between the pin and CAP1+ pin.	2
CAP2+	0	Boosting capacitor positive side connecting pin. Connects a capacitor between the pin and CAP2– pin.	2
CAP2-	0	Boosting capacitor negative side connecting pin. Connects a capacitor between the pin and CAP2+ pin.	2
CAP3-	0	Boosting capacitor negative side connecting pin. Connects a capacitor between the pin and CAP1+ pin.	2
Vout	0	Boosting output pin. Connects a capacitor between the pin and Vss2.	2
VR	I	Voltage adjusting pin. Applies voltage between VDD and V5 using a split resistor.	1
		Valid only when the V5 voltage adjusting built-in resistor is not used (IRS=LOW) Do not use VR when the V5 voltage adjusting built-in resistor is used (IRS=HIGH)	

System Bus Connecting Pins

Pin name	I/O			Description	on		Number of pins
D7 to D0 (SI) (SCL)	I/O	standard When the D7: Ser D6: Ser In this car	to 8-bit bidirectional data bus is used to connect an 8-bit or 16-bit tandard MPU data bus. When the serial interface is selected (P/S=LOW), D7: Serial data entry pin (SI) D6: Serial clock input pin (SCL) In this case, D0 to D5 are set to high impedance. When Chip Select is in the non-active state, D0 to D7 are set to ligh impedance.				
A0	I	to discrim	ninate data / d GH: Indicates	commands. that D0 to D7	MPU address by are display date are control date		1
RES	I		by setting \overline{R}		RES signal lev	el.	1
CS1 CS2	I				V and CS2=HIG	GH, this signal ands is enabled.	2
RD (E)	I	Pin that signal is • When th	connects the LOW, the S1 ne 68 series	e RD signal of D15705 series	data bus is set lected, active HIC	IPU. When this in the output state.	1
WR (R/W)	I	Pin that bus sigr • When the Read/win R/W=HI	connects the nal is latched ne 68 series	e WR signal o on the leadin MPU is conne gnal input pin peration	·	MPU. The data	1
FRS	0		n for static di				1
C86	I	C86=H		ng pin es MPU interfa s MPU interfa			1
P/S	I	P/S=HIGI P/S=LOV	Switching pin for parallel data entry/serial data entry P/S=HIGH: Parallel data entry P/S=LOW: Serial data entry According to the P/S state, the following table is given.				
		P/S	P/S Data/ Data Read/write Serial clock command				
		HIGH	A0	D0 to D7	RD, WR		
		LOW	A0	SI (D7)	Write-only	SCL (D6)	
		be HIGH, RD(E) an	LOW, or "Old WR (R/W)	PEN". are fixed to H		ce. D0 to D5 can	

Pin name	I/O	Description	Number of pins
CLS	I	Pin that selects the validity/invalidity of the built-in oscillator circuit for display clocks. CLS=HIGH: Built-in oscillator circuit valid CLS=LOW: Built-in oscillator circuit invalid (external input) When CLS=LOW, display clocks are input from the CL pin. When the S1D15705 series is used for the master/slave configuration, each of the CLS pins is set to the same level together.	1
		Display clock Master Slave Built-in oscillator circuit used HIGH HIGH	
		External input LOW LOW	
M/S	I	Pin that selects the master/slave operation for the S1D15705 series. The liquid crystal display system is synchronized by outputting the timing signal required for the liquid crystal display for the master operation and inputting the timing signal required for the liquid crystal display for the slave operation. M/S=HIGH: Master operation M/S=LOW: Slave operation According to the M/S and CLS states, the following table is given.	1
		M/S CLS Oscillator Power supply CL FR SYNC FRS DOF	
		HIGH HIGH Valid Valid Output Output Output Output Output LOW Invalid Invalid Input Input Input Output Input	
CL	I/O	LOW Invalid Invalid Input Input Output Input Display clock I/O pin	1
		According to the M/S and CLS states, the following table is given. M/S CLS CL HIGH HIGH Output LOW Input LOW Input LOW Input LOW Input When the S1D15705 series is used for the master/slave configuration, each CL pin is connected.	
FR	I/O	Liquid crystal alternating current signal I/O pin M/S=HIGH: Output M/S=LOW: Input When the S1D15705 series is used for the master/slave configuration, each FR pin is connected.	1
SYNC	I/O	Liquid crystal synchronizing current signal I/O pin M/S=HIGH: Output M/S=LOW: Input When the S1D15705 series is used for the master/slave configuration, each SYNC pin is connected.	2
DOF	I/O	Liquid crystal display blanking control pin M/S=HIGH: Output M/S=LOW: Input When the S1D15705 series is used for the master/slave configuration, each DOF pin is connected.	1
IRS	I	V5 voltage adjusting resistor selection pin IRS=HIGH: Built-in resistor used IRS=LOW: Built-in resistor not used. The V5 voltage is adjusted by the VR pin and stand-alone split resistor. Valid only at master operation. The pin is fixed to HIGH or LOW at slave operation.	1
НРМ	I	Power supply control pin of the power supply circuit for liquid crystal drive HPM=HIGH: Normal mode HPM=LOW: High power supply mode Valid only at master operation. The pin is fixed to HIGH or LOW at slave operation.	1

Liquid Crystal Drive Pin

Pin name	I/O		Number of pins				
SEG0 to SEGn	0	Output pins for the LCD segment drive. For the pin assignment by model, refer to the table below.					
SEGII		Product	name	SEG	Number of pins		
		S1D15705)****	SEG0 to SEG16	7 168		
		S1D15707****/S	S1D15708*	**** SEG0 to SEG19	9 200		
		Contents of the a desired level a	display I among V	RAM and FR signal a OD, V2, V3 and V5.	are combined to select		
				Outpu	ıt voltage		
		RAM data	FR	Display normal operatio	Display reversal		
		HIGH	HIGH	VDD	V2		
		HIGH	LOW	V5	V3		
		LOW	HIGH	V2	VDD		
		LOW	LOW	V3	V ₅		
		Power save	_		VDD		
COM0 to		Output pins for t For the pin assig	64 or 32 or 16				
COMn		Product n	ame	SEG	Number of pins		
		S1D15705*	****	COM0 to COM63	64		
		S1D15707*	****	COM0 to COM31	32		
		S1D15708*	****	COM0 to COM15	16		
		Scan data and F among VDD, V1,	R signa V4 and	I are combined to se V5.	lect a desired level		
		Scanning	data	FR	Output voltage		
		HIGH		HIGH	V5		
		HIGH		LOW	VDD		
		LOW		HIGH	V1		
		LOW		LOW	V4		
		Power sa	ve	_	VDD		
COMS	0	When COMS is	used for	If output pin. Set to 0 the master/slave co	OPEN when not used. nfiguration, the same	2	

Test Pin

Pin name	I/O	Description	Number of pins
TEST1 to 6	I/O	IC chip test pin. Fix the pin to HIGH. When using the temperature sensor with the S1D15705*10**, refer to "Section 17. Temperature Sensor Circuit".	6
TEST7 to 9	I/O	IC chip test pin. Take into consideration so that the capacity of lines cannot be exhausted by setting the pin to OPEN.	3

6. FUNCTION DESCRIPTION

MPU Interface

Selection of interface type

The S1D15705 series transfers data through 8-bit bidirectional data buses (D7 to D0) or serial data input (SI). By setting the polarity of the P/S pin to either HIGH or LOW, the 8-bit parallel data entry or serial data entry can be selected as listed in Table 1.

Table 1

P/S	CS1	CS2	Α0	RD	WR	C86	D7	D6	D5 to D0
HIGH: Parallel data entry	CS1	CS2	A0	RD	\overline{WR}	C86	D7	D6	D5 to D0
LOW: Serial data entry	CS1	CS2	A0	_	_	_	SI	SCL	(HZ)

Fix — to HIGH or LOW. HZ indicates the high impedance state.

Parallel interface

When the parallel interface is selected (P/S=HIGH), the S1D15705 series can directly be connected to the MPU bus of either the 80 or 68 series MPU by setting the C86 pin to HIGH or LOW as listed in Table 2.

Table 2

C86	CS1	CS2	A0	RD	WR	D7 to D0
H: 68 series MPU bus	CS1	CS2	A0	Е	R/W	D7 to D0
L: 80 series MPU bus	CS1	CS2	A0	RD	\overline{WR}	D7 to D0

In addition, the data bus signal can be identified according to the combinations of the A0, \overline{RD} (E), \overline{WR} (R/W) signals as listed in Table 3.

Table 3

Common	68 series	80 series		
A0	R/W	RD	WR	Function
1	1	0	1	Display data read
1	0	1	0	Display data write
0	1	0	1	Status read
0	0	1	0	Control data write (command)

Serial interface

When the serial interface is selected (P/S=LOW), the serial data entry (SI) and serial clock input(SCL) can be accepted with the chip in the non-active state (CS1=LOW or CS2=HIGH. The serial interface consists of an 8-bit shift register and a 3-bit counter. Serial data is fetched from the serial data entry pin in the order of D7, D6,, and D0 on the leading edge of the serial clock and

converted into 8-bit parallel data on the leading edge of the 8th serial clock, then processed.

Whether to identify that the serial data entry is display data or command is judged by the A0 input, and A0=HIGH indicates display data and A0=LOW indicates the command. After the chip is set to the non-active state, the A0 input is read and identified at the timing on the $8 \times n$ -th leading edge of the serial clock. Fig. 1 shows the signal chart of the serial interface.

- When the chip is in the non-active state, both the shift register and counter are reset to the initial state.
- Cannot be read for the serial interface.
- For the SCL signal, pay careful attention to the terminating reflection of lines and external noise. The operation confirmation using actual equipment is recommended.

Chip select

The S1D15705 series has two chip select pins CS1 and CS2 and enables the MPU interface or serial interface only when CS1=LOW and CS2=HIGH.

When Chip Select is in the non-active state, <u>D0</u> to D7 are in the high impedance state and the A0, RD, and WR inputs become invalid. When the serial interface is selected, the shift register and counter are reset.

Display data RAM and internal register access

Since the S1D15705 series access viewed from the MUP side satisfies the cycle time and does not require the wait time, high-speed data transfer is enabled.

The S1D15705 series performs a kind of inter-LSI pipeline processing through the bus holder attached to the internal data bus when it performs the data transfer with the MPU.

For example, when data is written on the display data RAM, the data is first held in the bus holder and written

on the display data RAM up to the next data write cycle. Further, when the MPU reads the contents of display data RAM, the read data at the first data read cycle (dummy) is held in the bus holder and read on the system bus from the bus holder up to the next data read cycle. The read sequence of the display data RAM is restricted. When the address is set, note that the specified address data is not output to the subsequent read instruction and output at the second data read. Therefore single dummy read is required after the address set and write cycle. Fig. 2 shows this relationship.

Busy flag

When the busy flag is "1", it indicates that the S1D15705 series is performing an internal operation, and only the status read instruction can be accepted. The busy flag is output to the D7 pin using the status read command. If the cycle time (tCYC) is ensured, the MPU throughput can be improved greatly since this flag needs not be checked before each command.

• Write

• Read

Fig. 2

Display Data RAM

Display data RAM

This display data RAM stores display dot data and consists of 65 (8 pages \times one 8 bit + 1) \times 200 bits. Desired bits can be accessed by specifying page and column addresses.

Since the MPU display data D7 to D0 correspond to the common direction of the liquid crystal display, the restrictions at display data transfer is reduced and the

display configuration with the high degree of freedom can easily be obtained when the S1D15705 series is used for the multiple chip configuration.

Besides, the read/write operation to the display data RAM is performed through the I/O buffer from the MPU side independently of the liquid crystal drive signal read. Therefore even when the display data RAM is asynchronously accessed during liquid crystal display, the access will not have any adverse effect on the display such as flickering.

Fig. 3

Page address circuit

As shown in Fig. 4, the page address of the display data RAM is specified using the page address set command. To access the data using a new page, the page address is respecified.

The page address 8 (D3,D2,D1,D0=1,0,0,0) is an indicator dedicated RAM area and only the display data D0 is valid.

Column address circuit

As shown in Fig. 4, an address on the column side of the display data RAM is specified using the column address set command. Since the specified address is incremented

by 1 whenever the display data read/write command is input, the MPU can successively access the display data

Besides, the column address stops the increment at the column C7H. Since the column and page addresses are independent each other, for example, the page and column addresses need to be respecified respectively to move from the column C7H of page 0 and column 00H. Further, as shown in Fig. 4, the correspondence relationship between the column address of the display data RAM and the segment address can be reversed using the ADC command (segment driver direction select command). Therefore the IC assignment restrictions at LCD module assembly are reduced.

Table 4

	S1D15705****			/ S1D15708****
SEG output	SEG0	SEG167	SEG0	SEG199
ADC "0"	0 (H)→ Colum	n Address→ A7 (H)	0 (H)→ Columr	n Address→ C7 (H)
(D0) "1"	C7 (H)←Colum	n Address← 20 (H)	C7 (H)←Columr	n Address ← 0 (H)

Line address circuit

When displaying contents of the display data RAM, the line address circuit is used for specifying the corresponding addresses. See Figure 4-1 and 4-2. Using the display start line address set command, the top line is normally selected (when the common output state is normal, COM0 is output. And, when reversed, the S1D15705***** outputs COM63, S1D15707***** outputs COM31 and

S1D15708***** outputs COM15). For the S1D15705****, the display area of 65 lines is secured starting from the specified display start line address in the address incrementing direction. And, 33 lines are provided for the S1D15707****, 17 lines are provided for the S1D15708****.

Dynamically changing the line address using the display start line address set command enables screen scrolling and page change.

Fig. 4-1

Fig. 4-2

Display data latch circuit

The display data latch circuit is a latch that temporarily stores the display data output from the display data RAM to the liquid crystal drive circuit.

Since the Display Normal Rotation/Reversal, Display ON/OFF, and Display All Lighting ON/OFF commands control the data in this latch, the data within the display data RAM is not changed.

Oscillator Circuit

This oscillator circuit is a CR type oscillator and generates display clocks. The oscillator circuit is valid only when M/S=HIGH and CLS=HIGH and starts oscillation after the Built-in Oscillator Circuit ON command is entered. When CLS=LOW, the oscillation is stopped and the display clocks are entered from the CL pin.

Display Timing Generator Circuit

This display timing generator circuit generates timing signals from the display clocks to the line address circuit and the display latch circuit. It latches the display data to the display data latch circuit and outputs it to the segment drive output pin by synchronizing to the display clocks. The read operation of display data to the liquid crystal drive circuit is completely independent of the access to the display data RAM from the MPU. Therefore

even when the display data RAM is asynchronously accessed during liquid crystal display, the access will not have any adverse effect on the display such as flickering.

The circuit also generates the internal common timing, liquid crystal alternating current signal (FR), and synchronous signal (SYNC) from the display clocks. As shown in Fig. 5 and 6, the FR normally generates the drive waveforms in the 2-frame alternating current drive system to the liquid crystal drive circuit. It can generate n-line reversal alternating current drive waveforms by setting data (n-1) to the n-line reversal drive register. If a display quality problem such as crosstalk occurs, it can be improved by using the n-line reversal alternating current drive waveforms. Determine the number of lines (n) to which alternating current is applied by actually displaying the liquid crystal.

SNYC is a signal that synchronizes the line counter and common timing generator circuit to the SYNC signal output side IC. Therefore the SYNC signal becomes a waveform at a duty ratio of 50% that synchronizes to the frame synchronization.

When the S1D15705 series is used for the multiple chip configuration, the slave side needs to supply the display timing signals (FR, SYNC, CL, and DOF) from the master side.

Table 5 shows the state of FR, SYNC, CL, or \overline{DOF} .

Table 5

Operation mode	FR	SYNC	CL	DOF
Master (M/S=HIGH) Built-in oscillator circuit valid (CLS=HIGH)	Output	Output	Output	Output
Built-in oscillator circuit invalid (CLS=LOW)	Output	Output	Input	Output
Slave (M/S=LOW) Built-in oscillator circuit valid (CLS=HIGH)	Input	Input	Input	Input
Built-in oscillator circuit invalid (CLS=LOW)	Input	Input	Input	Input

2-frame alternating current drive waveforms

Fig. 5

60 61 62 63 64 65 1 SYNC FR VDD V₁ COM₀ V4 VDD COM₁ ----- V4 RAMDATA VDD V2 SEGn ۷з

n-line reversal alternating current drive waveforms (Example of n=5: when the line reversal register is set to 4)

Common Output State Selection Circuit

The S1D15705 series can set the scanning direction of the COM output using the common output state selection command (see Fig. 6). Therefore the IC assignment restrictions at LCD module assembly are reduced.

Fig. 6

State **COM** scanning direction S1D15705**** S1D15707**** S1D15708**** Normal rotation COM₀ **COM 63** COM 0 **COM 31** COM 0 **COM 15** Reversal **COM 63** COM 0 **COM 31** COM 0 **COM 15** COM 0

Table 6

Liquid Crystal Drive Circuit

These are a 233-channel (S1D15705***** and S1D15707*****), a 217-channel (S1D15708*****) multiplexers that generate four voltage levels for liquid crystal drive. It outputs the liquid crystal drive voltage that corresponds to the combinations of the display data, COM scanning signal, and FR signal.

Fig. 7 shows examples of the SEG and COM output waveforms.

Fig. 7

Power Supply Circuit

This power supply circuit is a low power supply consumption one that generates the voltage required for the liquid crystal drive and consists of a boosting circuit, voltage adjusting circuit, and voltage follower circuit. It is valid only at master operation.

The power supply circuit ON/OFF controls the boosting

circuit, voltage adjusting circuit, and voltage follower circuit using the power supply control set command, respectively.

Therefore, it can also use the partial functions of the external power supply and built-in power supply together. Table 7 lists the functions that control 3-bit data using the power control set command and Table 8 lists the reference combinations.

Table 7 Description of controlling bits using the power control set command

	Item		ate
			"0"
D2	Boosting circuit control bit	ON	OFF
D1	Voltage adjusting circuit (V adjusting circuit) control bit	ON	OFF
D0	Voltage follower circuit (V/F circuit) control bit	ON	OFF

Table 8 Reference combinations

Status of use	D2	D1	D0	Boosting circuit	V adjusting circuit	V/F circuit	External voltage input	Boosting system pin
① Built-in power supply used	1	1	1	0	0	0	VSS2	Used
② V adjusting circuit and V/F circuit only	0	1	1	X	0	0	Vout, Vss2	OPEN
③ V/F circuit only	0	0	1	X	Χ	0	V5, VSS2	OPEN
External power supply only	0	0	0	X	Χ	Χ	V1 to V5	OPEN

- The boosting system pin indicates the CAP1+, CAP1-, CAP2+, CAP2-, or CAP3- pin.
- Although the combinations other than those listed in the above table are also possible, they cannot be recommended because they are not actual use methods.

Boosting circuit

The boosting circuit incorporated in the S1D15705 series enables the quadruple boosting, triple boosting, and double boosting of the VDD – VSS2 potential. For the quadruple boosting, the VDD \leftrightarrow VSS2 potential is quadruple-boosted to the negative side and output to the VOUT pin by connecting the capacitor C1 between CAP1+ \leftrightarrow and CAP1-, between CAP2+ \leftrightarrow and CAP2-, between CAP1+ \leftrightarrow and CAP3-, and between VSS2 \leftrightarrow and VOUT.

For the triple boosting, the $VDD \leftrightarrow VSS2$ potential is

triple-boosted to the negative side and output to the VOUT pin by connecting the capacitor C1 between CAP1+↔ and CAP1-, between CAP2+↔ and CAP2-, and between VSS2↔ and VOUT and strapping both CAP3- and VOUT pins.

For the double boosting, the VDD ↔ VSS2 potential is doubly boosted to the negative side and output to the VOUT pin by connecting the capacitor C1 between CAP1+↔ and CAP1-, and between VSS2↔, setting CAP2+ to OPEN, and VOUT and strapping CAP2-, CAP3-, and VOUT pins.

Fig. 8 shows the relationships of boosting potential.

• Set the VSS2" voltage range so that the voltage of the VOUT pin cannot exceed the absolute maximum ratings.

Voltage adjusting circuit

The boosting voltage generated in Vout outputs the liquid crystal drive voltage V5 through the voltage adjusting circuit.

Since the S1D15705 series incorporates a high-accuracy constant power supply, 64-step electronic control function, and V5 voltage adjusting resistor, a high-accuracy voltage adjusting circuit can eliminate and save parts.

(A) When using the V5 voltage adjusting built-in resistor The liquid crystal power supply voltage V5 can be controlled only using the command without an external resistor and the light and shade of liquid crystal display be adjusted by using the V5 voltage adjusting built-in resistor and the electronic control function.

The V5 voltage can be obtained according to Expression A-1 within the range of |V5|<|VOUT|.

$$V_{5} = \left(1 + \frac{Rb}{Ra}\right) \cdot V_{EV}$$

$$= \left(1 + \frac{Rb}{Ra}\right) \cdot \left(1 - \frac{\alpha}{162}\right) \cdot V_{REG}$$

$$\left[\because V_{EV} = \left(1 - \frac{\alpha}{162}\right) \cdot V_{REG}\right]$$
(Expression A-1)

Fig. 9

VREG is a constant voltage source within an IC, and the value at Ta=25°C is constant as listed in Table 9.

Table 9

Device	Temperature gradient	Unit	VREG	Unit
Internal power supply	-0.05	[%/°C]	-2.1	[V]

 α indicates an electronic control command value. Setting data in a 6-bit electronic control register enters one state among 64 states. Table 10 lists the values of α based on the setup of the electronic control register.

Table 10

D5	D4	D3	D2	D1	D0	α
0	0	0	0	0	0	63
0	0	0	0	0	1	62
0	0	0	0	1	0	61
						:
1	1	1	1	0	1	2
1	1	1	1	1	0	1
1	1	1	1	1	1	0

Rb/Ra indicates the V5 voltage adjusting built-in resistance ratio and can be adjusted into eight steps using the V5 voltage adjusting built-in resistance ratio set command. The reference values of the (1+Rb/Ra) ratio are obtained as listed in Table 11 by setting 3-bit data in the V5 voltage adjusting built-in resistance ratio register.

Table 11 (Reference values)

			S1D15705****	S1D15707*****/ S1D15708*****
F	Register		Device per temperature gradient [Unit: %/°C]	Device per temperature gradient [Unit: %/°C]
D2	D1	D0	-0.05	-0.05
0	0	0	4.5	3.0
0	0	1	5.0	3.5
0	1	0	5.5	4.0
0	1	1	6.0	4.5
1	0	0	6.5	5.0
1	0	1	7.0	5.5
1	1	0	7.6	6.0
1	1	1	8.1	6.5

It is necessary to take a manufacturing deviation of upto $\pm 7\%$ of the built-in resistance ratio into consideration. When this is not permissible, supplement external Ra and Rb to ajdust the V5 voltage.

Figs. 10 show the V5 voltage reference values per temperature gradient device based on the values of the V5 voltage adjusting built-in resistance ratio register and electronic control register at Ta=25°C.

Fig. 10-1 S1D15705**** Temperature gradient = -0.05% C device

V5 voltage based on the values of V5 voltage adjusting built-in resistance ratio register and electronic control register

Fig. 10-2 S1D15707*****, S1D15708***** Temperature gradient = -0.05% C device

V5 voltage based on the values of V5 voltage adjusting built-in resistance ratio register and electronic control register

*S1D15708 should be used in system operating voltage ranges. ($V_5-V_{DD}=-10V$ or $V_5-V_{DD}=less$ than -10V)

<Setting example: S1D15705**** When setting $V_5 = -9 \text{ V}$ at $T_a=25^{\circ}\text{C}$ > From Fig. 8 and Expression A-1.

Table 12

	Register					
Description	D5	D4	D3	D2	D1	D0
V5 voltage adjusting	_	_	_	0	1	0
electronic control	0	1	1	0	0	1

In this case, Table 13 lists the V5 voltage variable range and pitch width using the electronic control function.

Table 13

V 5	Min.		Тур.		Max.	Unit
Variable range	-11.6	to	-9.3	to	-7.1	[V]
Pitch width			67			[mV]

(B) When using the external resistor (not using the V5 voltage adjusting built-in resistor) ①

The liquid crystal power supply voltage V5 can also be set by adding the resistors (Ra' and Rb') between VDD and VR and between VR and V5 without the V5 voltage adjusting built-in resistor (IRS pin=LOW). Also in this case, the liquid crystal power supply voltage V5 can be controlled using the command and the light and shade of liquid crystal display can be adjusted by using the electronic control function.

The V5 voltage can be obtained from Expression B-1 by setting the external resistors Ra' and Rb' within the range of |V5| < |VOUT|.

$$\begin{split} V_5 &= \left(1 + \frac{Rb'}{Ra'}\right) \cdot V_{EV} \\ &= \left(1 + \frac{Rb'}{Ra'}\right) \cdot \left(1 - \frac{\alpha}{162}\right) \cdot V_{REG} \\ &\left[\because V_{EV} = \left(1 - \frac{\alpha}{162}\right) \cdot V_{REG}\right] \end{split}$$

<Setting example: S1D15705**** When setting V5=-7 V at Ta=25°C>

Set the value of the electronic control register as the intermediate value (D5, D4, D3, D2, D1, D0) = (1,0,0,0,0,0). From the foregoing we can establish the expression:

$$\alpha = 31$$

$$V_{REG} = -2.1V$$

From Expression B-1, it follows that

$$V_{5} = \left(1 + \frac{Rb'}{Ra'}\right) \cdot \left(1 - \frac{\alpha}{162}\right) \cdot V_{REG} \quad \text{(Expression B-2)}$$
$$-7V = \left(1 + \frac{Rb'}{Ra'}\right) \cdot \left(1 - \frac{31}{162}\right) \cdot (-2.1)$$

Also, suppose the current applied to Ra' and Rb' is 5μ A. $Ra' + Rb' = 1.4M\Omega$ (Expression B-2)

It follows that

Therefore from Expressions B-2 and B-3, we have

$$\frac{Rb'}{Ra'} = 3.12$$

$$Ra' = 340k\Omega$$

$$Rb' = 1060k\Omega$$

In this case, Table 14 lists the V5 voltage variable range and pitch width using the electronic control function.

Table 14

V 5	Min.		Тур.		Max.	Unit
Variable range	-8.6	to	-7.0	to	-5.3	[V]
Pitch width			52			[mV]

(C) When using the external resistor (not using the V5 voltage adjusting built-in resistor) ②

In the use of the above-mentioned external resistor, the liquid crystal power supply voltage V5 can also be set by adding the resistors to finely adjust Ra' and Rb'. Also in this case, the liquid crystal power supply voltage V5 can be controlled using the command and the light and shade of liquid crystal display can be adjusted by using the electronic control function.

The V5 voltage can be obtained from the following expression C-1 by setting the external resistors R1, R2 (variable resistors), and R3 within the range of |V5| < |VOUT| and finely adjusting R2 (Δ R2).

$$V_{5} = \left(1 + \frac{R_{3} + R_{2} - \Delta R_{2}}{R_{1} + \Delta R_{2}}\right) \cdot V_{EV}$$

$$= \left(1 + \frac{R_{3} + R_{2} - \Delta R_{2}}{R_{1} + \Delta R_{2}}\right) \cdot \left(1 - \frac{\alpha}{162}\right) \cdot V_{REG}$$

$$\left[\because V_{EV} = \left(1 - \frac{\alpha}{162}\right) \cdot V_{REG}\right] \quad \text{(Expression C-1)}$$

Fig. 12

<Setting example: S1D15705**** When setting V5=-5 to -9 V at Ta=25°C>

Set the value of the electronic control register as the intermediate value (D5, D4, D3, D2, D1, D0) = (1,0,0,0,0,0). From the foregoing we can establish the expression:

$$\alpha = 31$$

$$V_{REG} = -2.1V$$

When $\Delta R2=0\Omega$, to obtain V5=-9 V from Expression C-1, it follows that

$$-9V = \left(1 + \frac{R_3 + R_2}{R_1}\right) \cdot \left(1 - \frac{31}{162}\right) \cdot \left(-2.1\right)$$
(Expression C-2)

When $\Delta R2=R2$, to obtain V5=-5V, it follows that

$$-5V = \left(1 + \frac{R_3}{R_1 + R_2}\right) \cdot \left(1 - \frac{31}{162}\right) \cdot \left(-2.1\right)$$
(Expression C-3)

Also, suppose the current applied between VDD and V5 is $5\mu A$.

$$R_1 + R_2 + R_3 = 1.4M\Omega$$
 (Expression C-4)

It follows that

Therefore from Expressions C-2, C-3, and C-4, we have

$$R_1 = 264k\Omega$$

$$R_2 = 211k\Omega$$

$$R_3 = 925k\Omega$$

In this case, Table 6-15 lists the V5 voltage variable range and pitch width using the electronic control function.

_			4	_
เฉ	n	Δ١	1	h

V 5	Min.		Тур.		Max.	Unit
Variable range	-8.7	to	-7.0	to	-5.3	[V]
Pitch width			53			[mV]

- When using the V5 voltage adjusting built-in resistor or electronic control function, the state where at least the voltage adjusting circuit and voltage follower circuit are operated together needs to be set using the power control set command. Also when the boosting circuit is OFF, the voltage needs to be applied from Vout.
- The VR pin is valid only when the V5 voltage adjusting built-in resistor (IRS pin=LOW). Set the VR pin to OPEN when using the V5 voltage adjusting built-in resistor (IRS pin=HIGH).
- Since the VR pin has high input impedance, noise must be taken into consideration such as for short and shielded lines.

Liquid crystal voltage generator circuit

The V5 voltage is resistor-split within an IC and generates the V1, V2, V3, and V4 potentials required for the liquid crystal drive.

Further, the V₁, V₂, V₃, and V₄ potentials are impedance-converted by the voltage follower and supplied to the liquid crystal drive circuit.

Using the bias set command allows you to select a desired bias ratio from 1/9 or 1/7 for the S1D15705**** and 1/6 or 1/5 for the S1D15707**** and S1D15708****.

High power mode

The power supply circuit incorporated in the S1D15705 series has the ultra-low power consumption (normal mode: HPM=HIGH). Therefore the display quality

may be deteriorated in large load liquid crystal or panels. In this case, the display quality can be improved by setting HPM pin=LOW (high power mode). Whether to use the power supply circuit in this mode should need the display confirmation by actual equipment.

Besides, if the improvement is insufficient even for the high power mode setting, the crystal liquid drive power needs to be supplied externally.

Command sequence when the built-in power supply is turned off

To turn off the built-in power supply, set it in the power save state and then turn off the power supply according to the command sequence shown in Fig. 13 (procedure).

Fig. 13

Reference circuit examples

- 1 Built-in power supply used
- (1) When using the V5 voltage adjusting built-in resistor (Example of Vss2=Vss, quadruple boosting)
- (2) When not using the V5 voltage adjusting built-in resistor (Example of Vss2=Vss, quadruple boosting)

- 2 Only the voltage adjusting circuit and V/F circuit used
- (1) When using the V₅ voltage adjusting built-in resistor
- (2) When not using the V₅ voltage adjusting built-in resistor

3 Only the V/F circuit used

4 Only the external power supply used Depending on all external power supplies

Common reference setting example At V5=-8 to -12 V variable

Item	Setting value	Unit
C1	1.0 to 4.7	μF
C2	0.01 to 1.0	μF

Fig. 14

- *1 Since the VR pin has high input impedance, it uses short and shielded wires.
- *2 C1 and C2 are determined according to the size of the LCD panel. Set a value so that the liquid crystal drive voltage can be stable.

[Setting example] • Turn on the V adjusting circuit and the V/F circuit and apply external voltage.

- Display LCD heavy load patterns like lateral stripes and determine C2 so that the liquid crystal drive voltages (V1 to V5) can be stable.
- Then turn on all built-in power supplies and determine C1.
- *3 Capacity is connected in order to stabilize voltage between VDD and Vss power supplies.

*4 When the built-in V/F circuit is used to drive an LCD panel with heavy alternating or direct current load, we recommend that external resistance be connected in order to stabilize V/F outputs, or electric potentials, V1, V2, V3 and V4.

Exemplary connection diagram 1 for external resistance

Vdd R4 ₹ R4 ₹ C₂ S1D15705 Series V2 Vз

Adjust resistance value R4 to the optimal level by checking driving waveform displayed on the LCD.

Reference setting: R4 = 0.1 to 1.0 [M Ω]

Fig. 15

*5 Precautions when installing the COG

When installing the COG, it is necessary to duly consider the fact that there exists a resistance of the ITO wiring occurring between the driver chip and the externally connected parts (such as capacitors and resistors). By the influence of this resistance, non-conformity may occur with the indications on the liquid crystal display.

Therefore, when installing the COG design the module paying sufficient considerations to the following three points.

- Suppress the resistance occurring between the driver chip pin to the externally connected parts as much as possible.
- Suppress the resistance connecting to the power supply pin of the driver chip.
- Make various COG module samples with different ITO sheet resistance to select the module with the sheet resistance with sufficient operation margin.

Also, as for this driver IC, pay sufficient attention to the following points when connecting to external parts for the characteristics of the circuit.

Connection to the boosting capacitors The boosting capacitors (the capacitors connecting to respective CAP pins and capacitor being inserted between Vout and Vss2) of this IC are being switched over by use of the transistor with very low ON-resistance of about 10Ω . However, when installing the COG,

Exemplary connection diagram 2 for external resistance

the resistance of ITO wiring is being inserted in series with the switching transistor, thus dominating the boosting ability.

Consequently, the boosting ability will be hindered as a result and pay sufficient attention to the wiring to respective boosting capacitors.

Connection of the smoothing capacitors for the liquid crystal drive

The smoothing capacitors for the liquid crystal driving potentials (V1. V2, V3 and V4) are indispensable for liquid crystal drives not only for the purpose of mere stabilization of the voltage levels. If the ITO wiring resistance which occurs pursuant to installation of the COG is supplemented to these smoothing capacitors, the liquid crystal driving potentials become unstable to cause nonconformity with the indications of the liquid crystal display. Therefore, when using the COG module, we definitely recommend to connect reinforcing resistors externally.

Reference value of the resistance is $100k\Omega$ to $1M\Omega$. Meanwhile, because of the existence of these reinforcing resistors, current consumption will increase.

Indicated below is an exemplary connection diagram of external resistors.

Please make sufficient evaluation work for the display statuses with any connection tests.

Exemplary connection diagram 1.

Exemplary connection diagram 2.

Reset Circuit

When the \overline{RES} input is set to the LOW level, this LSI enters each of the initial setting states

- 1. Display OFF
- 2. Display Normal Rotation
- 3. ADC Select: Normal rotation (ADC command D0=0)
- 4. Power Control Register: (D2,D1,D0)=(0,0,0)
- 5. Register Data Clear within Serial Interface
- 6. LCD Power Supply Bias Ratio: S1D15705: 1/9 bias S1D15707/S1D15708: 1/6 bias
- 7. n-Line Alternating Current Reversal Drive Reset
- 8. Sleeve mode cancel (standby mode is not canceled)
- 9. Display All Lighting OFF: (Display All Lighting ON/OFF command D0=LOW)
- 10. Built-in Oscillator Circuit stopped
- 11. Static Indicator OFF
 Static Indicator Register: (D1,D2)=(0,0)
- 12. Read Modify Write OFF
- 13. Display start line set to the first line
- 14. Column address set to address 0
- 15. Page address set to page 0
- 16. Common Output State Normal rotation
- 17. V5 Voltage Adjusting Built-in Resistance Ratio Register: (D2,D1,D0)=(0,0,0)
- 18. Electronic Control Register Set Mode Reset Electronic Control Register* (D5, D4, D3, D2, D1, D0) = (1,0,0,0,0,0)
- 19. n-Line Alternating Current Reversal Register: (D3, D2, D1, D0) = (0, 0, 0, 0)
- 20. Test Mode Reset

On the other hand, when using the reset command, only the items 11 to 20 of the above-mentioned initial setting are executed.

When the power is turned on, the initialization using the \overline{RES} pin is required. After the initialization using the RES pin, each input pin needs to be controlled normally. Besides, when the MPU control signal has high impedance, overcurrent may be applied to an IC. After turning on the power, take action so that the input pin cannot have high impedance.

The S1D15705 Series discharge electric charges of V5 and VOUT at RES pin is set to the LOW level. If external power supplies for driving LCD are used, do not input external power while the RES pin is set to the LOW level to prevent short-circuiting between the external power supplies and VDD.

7. COMMAND

The S1D15705 series identifies data bus signals according to the combinations of A0, $\overline{\text{RD}}(E)$, and $\overline{\text{WR}}(R/\overline{W})$. Since the interpretation and execution of commands are performed only by the internal timing independently of external clocks, the S1D15705 performs high-speed processing that does not require busy check normally.

The 80 series MPU interface starts commands by inputting low pulses to the \overline{RD} pin at read and to the \overline{WR} pin at write operation. The 68 series MPU interface enters the read state when HIGH is input to the R/\overline{W} pin. It enters the write state when LOW is input to the same pin. It starts commands by inputting high pulses to the E pin (for the timing, see the Timing Characteristics of Chapter 10). Therefore the 68 series MPU interface differs from the 80 series MPU interface in that $\overline{RD}(E)$ is set to "1 (H)" at status read and display data read in the Command Description and Command Table. The command description is given below by taking the 80 series MPU interface as an example.

When selecting the serial interface, enter sequential data from D7.

Command description

(1) Display ON/OFF

This command specifies display ON/OFF.

Α0		R/W WR	D7	D6	D5	D4	D3	D2	D1	D0	Setting
0	1	0	1	0	1	0	1	1	1	1	Display ON
										0	Display OFF

For display OFF, the segment and common drivers output the VDD level.

(2) Display Start Line Set

This command specifies the display start line address of the display data RAM shown in Fig. 4. The display area is displayed for 65 lines for the S1D15705****, 33 lines for the S1D15707**** and 17 lines for the S1D15708**** from the specified line address to the line address increment direction. When this command is used to dynamically change the line address, the vertical smooth scroll and page change are enabled. For details, see the Line address circuit of "Function Description".

Α0		R/W WR	D7	D6	D5	D4	D3	D2	D1	D0	Line address
0	1	0	0	1	0	0	0	0	0	0	0
					0	0	0	0	0	1	1
					0	0	0	0	1	0	2
							\downarrow				\downarrow
					1	1	1	1	1	0	62
					1	1	1	1	1	1	63

(3) Page Address Set

This command specifies the page address that corresponds to the low address when accessing the display data RAM shown in Fig. 4 from the MPU side. The display data RAM can access desired bits when the page address and column address are specified. Even when the page address is changed, the display state will not be changed. For details, see the Page address circuit of "Function Description".

A0	E RD	R/W WR	D7	D6	D5	D4	D3	D2	D1	D0	Page address
0	1	0	1	0	1	1	0	0	0	0	0
							0	0	0	1	1
							0	0	1	0	2
								\downarrow			\downarrow
							0	1	1	1	7
							1	0	0	0	8

(4) Column Address Set

This command specifies the column address of the display data RAM shown in Fig. 4. The column address is set (basically successively) by dividing it into high-order four bits and low-order four bits. Since the column address is automatically incremented by 1 whenever the display data RAM is accessed. The MPU can successively read/write the display data. The column address stops the increment at C7H. In this case, the page address is not changed successively. For details, see the Column address circuit of "Function Description".

	Α0	E RD	R/W WR	D7	D6	D5	D4	D3	D2	D1	D0
$\text{High-order bit} \rightarrow$	0	1	0	0	0	0	1	A7	A6	A5	A4
Low-order bit \rightarrow							0	АЗ	A2	A1	A0

A7	A6	A5	A4	А3	A2	A1	Α0	Column address
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	1	1
0	0	0	0	0	0	1	0	2
	\downarrow							\downarrow
1	0	1	0	0	1	1	0	166
1	0	1	0	0	1	1	1	167
			,	\downarrow				\downarrow
1	1	0	0	0	1	1	0	198
1	1	0	0	0	1	1	1	199

(5) Status Read

Α0		R/W WR	D7	D6	D5	D4	D3	D2	D1	D0
0	0	1	BUSY	ADC	ON/OFF	RESET	0	0	0	0

BUSY	When BUSY=1, indicates an internal operation being done or reset. The command cannot be accepted until BUSY=0 is reached. However, if the cycle time is satisfied, the command needs not be checked.
ADC	Indicates the correspondence relationship between the column address and segment driver. 0: Reversal (column address 199–n ↔ SEG n) 1: Normal rotation (column address n ↔ SEG n) (Reverses the polarity of ADC command.)
ON/OFF	ON/OFF: Specifies display ON/OFF 0: Display ON 1: Display OFF (Reverses the polarity of display ON/OFF command.)
RESET	Indicates the RES signal or that initial setting is being done using the reset command. 0: Operating state 1: Resetting

(6) Display Data Write

This command writes 8-bit data to the specified address of the display data RAM. Since the column address is automatically incremented by 1 after the data is written, the MPU can successively write the display data.

Α0		R/W WR	D6	D5	D4	D3	D2	D1	D0
1	1	0	Write data						

(7) Display Data Read

This command reads the 8-bit data in the specified address of the display data RAM. Since the column address is automatically incremented by 1 after the data is written, the MPU can successively read the data consisting of multiple words.

Besides, immediately after the column address is set, dummy read is required one time. For details, see the description of the Display data RAM and internal register access of "Function Description". When using the serial interface, the display cannot be read.

Α0		R/W WR		D6	D5	D4	D3	D2	D1	D0
1	0	1	Read data							

(8) ADC Select (Segment Driver Direction Select)

This command can reverse the correspondence relationship between the column address of the display RAM data shown in Fig. 4 and the segment driver output. Therefore the order of the segment driver output pin can be reversed using the command. After the display data is written and read, the column address is incremented by 1 according to the column address of Fig. 4. For details, see the Column address circuit of "Function Description".

Α0		R/W WR	D7	D6	D5	D4	D3	D2	D1	D0	Setting
0	1	0	1	0	1	0	0	0	0	0	Clockwise (normal rotation)
										1	Counterclockwise (reversal)

(9) Display Normal Rotation/Reversal

This command can reversal display lighting and non-lighting without overwriting the contents of display data RAM. In this case, the contents of display data RAM are held.

Α0		R/W WR	I	D6	D5	D4	D3	D2	D1	D0	Setting
0	1	0	1	0	1	0	0	1	1	0	LCD on potential (normal rotation) RAM data HIGH
										1	LCD on potential (reversal) RAM data LOW

(10) Display All Lighting ON/OFF

This command can forcedly make all display set in the lighting state irrespective of the contents of display data RAM. In this case, the contents of display data RAM are held.

This command has priority over the display normal rotation/reversal command.

Α0		R/W WR		D6	D5	D4	D3	D2	D1	D0	Setting
0	1	0	1	0	1	0	0	1	0	0	Normal display state
										1	Display all lighting

(11) LCD Bias Set

This command selects the bias ratio of the voltage required for liquid crystal drive. The command is valid when the V/F circuit of the power supply circuit is operated.

	E	R/W									S	elected state
A0	RD	WR	D7	D6	D5	D4	D3	D2	D1	D0	S1D15705****	S1D15707**** / S1D15708****
0	1	0	1	0	1	0	0	0	1	0	1/9 bias	1/6 bias
										1	1/7 bias	1/5 bias

(12) Read Modify Write

This command is used together with the end command. Once this command is entered, the column address can be incremented by 1 only using the display data write command instead of being changed using the display read command. This state is held until the end command is entered. When the end command is entered, the column address returns to the address when the read modify write command is entered. This function can reduce the load of the MPU when repeatedly changing data for a specific display area such as a blinking cursor.

	Е	R/W								
A0	RD	WR	D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	1	1	1	0	0	0	0	0

- * The commands other than Display Data Read/Write can be used even in Read Modify Write mode. However, the column address set command cannot be used.
- · Sequence for cursor display

Fig. 16

(13) End

This command resets the Read Modify Write mode and returns the column address to the mode initial address.

Α0	E RD	R/W WR	D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	1	1	1	0	1	1	1	0

Fig. 17

(14) Reset

This command initializes Display Start Line, Column Address, Page Address, Common Output State, V5 Voltage Adjusting Built-in Resistance Ratio, Electronic Control, and Static Indicator and resets the Read Modify Write mode and Test mode. This will not have any effect on the display data RAM. For details, see the Reset of "Function Description".

Reset operation is performed after the reset command is entered.

Α0	E RD	R/W WR	D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	1	1	1	0	0	0	1	0

The initialization when the power is applied is performed using the reset signal to the \overline{RES} pin. The reset command cannot be substituted for the signal.

(15) Common Output State Selection

This command can select the scanning direction of the COM output pin. For details, see the Common Output State Selection Circuit of "Function Description".

Α0		R/W WR		D6	D5	D4	D3	D2	D1	D0		S1D15705****	Selected state S1D15707****	S1D15708****
0	1	0	1	1	0	0	0	*	*	*	Normal rotation	COM0 → COM63	COM0 → COM31	C OM0 → COM15
							1				Reversal	COM63 → COM0	COM31 → COM0	COM15→ COM0

*: Invalid bit

(16) Power Control Set

This command sets the function of the power supply circuit. For details, see the Power Supply Circuit of "Function Description".

Α0		R/W WR	1	D6	D5	D4	D3	D2	D1	D0	Selected state
0	1	0	0	0	1	0	1	0 1			Boosting circuit: OFF Boosting circuit: ON
									0 1		V adjusting circuit: OFF V adjusting circuit: ON
										0	V/F circuit: OFF V/F circuit: ON

(V/F circuit: Voltage follower circuit, V adjusting circuit: voltage adjusting circuit)

(17) V5 Voltage Adjusting Built-in Resistance Ratio Set

This command sets the V5 voltage adjusting built-in resistance ratio. For details, see the Power Supply Circuit of "Function Description".

Α0		R/W WR	D7	D6	D5	D4	D3	D2	D1	D0	Rb to Ra ratio
0	1	0	0	0	1	0	0	0	0	0	Small
								0	0	1	
								0	1	0	
									\downarrow		\downarrow
								1	1	0	
								1	1	1	Large

(18) Electronic Control (2-Byte Command)

This command controls the liquid crystal drive voltage V5 output from the voltage adjusting circuit of the built-in liquid crystal power supply and can adjust the light and shade of liquid crystal display.

Since this command is a 2-byte command that is used together with the electronic control mode set command and electronic control register set command, always use both the commands consecutively.

• Electronic Control Mode Set

Entering this command validates the electronic control register set command. Once the electronic control mode is set, the commands other than the electronic control register set command cannot be used. This state is reset after data is set in the register using the electronic control register set command.

	E	R/W								
A0	RD	WR	D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	1	0	0	0	0	0	0	1

• Electronic Control Register Set

This command is used to set 6-bit data in the electronic volume register to allow the liquid crystal drive voltage V5 to enter one-state voltage value among 64-state voltage values.

After this command is entered and the electronic control register is set, the electronic control mode is reset.

Α0	E RD		D7	D6	D5	D4	D3	D2	D1	D0	V5
0	1	0	*	*	0	0	0	0	0	0	Small
0	1	0	*	*	0	0	0	0	0	1	
0	1	0	*	*	0	0	0	0	1	0	
							\downarrow				↓
0	1	0	*	*	1	1	1	1	1	0	
0	1	0	*	*	1	1	1	1	1	1	Large

When not using the electronic control function, set (1,0,0,0,0,0).

• Sequence of the electronic control register set

Fig. 18

(19) Static Indicator (2-Byte Command)

This command controls the indicator display of the static drive system. The static indicator display is controlled only using this command, and this command is independent of other display control commands.

The static indicator is used to connect the SYNC pin to one of its liquid crystal drive electrodes and the FRS pin to the other. For the electrodes used for the static indicator, the pattern separated from the electrodes for dynamic drive are recommended. When this pattern is too adjacent, the deterioration of liquid crystal and electrodes may be caused. Since the static indicator ON command is a 2-byte command that is used together with the static indicator register set command, always use both the commands consecutively. (The static indicator OFF command is a 1-byte command.)

• Static Indicator ON/OFF

Entering the static indicator ON command validates the static indicator register set command. Once the static indicator ON command is entered, the commands other than the static indicator register set command cannot be used. This state is reset after the data is set in the register using the static indicator register set command.

Α0		R/W WR	D7	D6	D5	D4	D3	D2	D1	D0	Static indicator
0	1	0	1	0	1	0	1	1	0	0	OFF
										1	ON

• Static Indicator Register Set

This command sets data in the 2-bit static indicator register and sets the blinking state of the static indicator.

Α0	E RD	R/W WR	D7	D6	D5	D4	D3	D2	D1	D0	Indicator display state
0	1	0	*	*	*	*	*	*	0	0	OFF
									0	1	ON (blinks at an interval of approximately 0.5 second.)
									1	0	ON (blinks at an interval of approximately one second.)
									1	1	ON (goes on at all times.)

*: Invalid bit

• Sequence of Static Indicator Register Set

Fig. 19

(20) Power Save

This command makes the static indicator enter the power save state and can greatly reduce the power consumption. The power save state consists of the sleep state and stand-by state.

Α0		R/W WR	D7	D6	D5	D4	D3	D2	D1	D0	Power save state
0	1	0	1	0	1	0	1	0	0		Stand-by state Sleep state

The operating state before the display data and power save activation is held in the sleep and stand-by states, and the display data RAM can also be accessed from the MPU.

• Sleep State

This command stops all the operations of LCD display systems, and can reduce the power consumption approximate to the static current when they are not accessed from the MPU. The internal state in the sleep state is as follows:

- (1) The oscillator circuit and the LCD power supply circuit are stopped.
- (2) All liquid crystal drive circuit is stopped and the segment and common drivers output the VDD level.

• Stand-by State

This command stops the operation of the duty LCD display system and operates only the static drive system for indicators. Consequently the minimum current consumption required for the static drive is obtained. The internal state in the stand-by state is as follows:

- (1) The LCD power supply circuit is stopped. The oscillator circuit is operated.
- (2) The duty drive system liquid crystal drive circuit is stopped and the segment and common drivers output the VDD level. The static drive system is operated.
 - * When using external power supplies, it is recommended that the function of the external power supply circuit should be stopped at power save activation. For example, when providing each level of the liquid crystal drive voltage using a stand-alone split resistor circuit, it is recommended that the circuit which cuts off the current applied to the split resistor circuit should be added at power save activation. The S1D15705 series has the liquid crystal display blanking control pin DOF and is set to LOW at power save activation. The function of the external power supply circuit can be stopped using the DOF output.

(21) Power Save Reset

This command resets the power save state and returns the state before power save activation.

Α0	E RD	R/W WR	D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	1	1	1	0	0	0	0	1

(22) n-Line Reversal Drive Register Set

This command sets the number of reversal lines of the liquid crystal drive in the register. 2 to 16 lines can be set. For details, see the Display Timing Generator Circuit of "Function Description".

Α0	E RD	R/W WR	D7	D6	D5	D4	D3	D2	D1	D0	Line of reversal lines
0	1	0	0	0	1	1	0	0	0	0	_
							0	0	0	1	2
							0	0	1	0	3
									\downarrow		\downarrow
							1	1	1	0	15
							1	1	1	1	16

(23) n-Line Reversal Drive Reset

This command resets the n-line reversal alternating current drive and returns to the normal 2-frame reversal alternating current drive system. The value of the n-line reversal alternating current drive register is not changed.

Α0	E RD	R/W WR	D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	1	1	1	0	0	1	0	0

(24) Built-in Oscillator Circuit ON

This command starts the operation of the built-in CR oscillator circuit. This command is valid only for the master operation (M/S=HIGH) and built-in oscillator circuit valid (CLS=HIGH).

	Α0	E RD	R/W WR	D7	D6	D5	D4	D3	D2	D1	D0
İ	0	1	0	1	0	1	0	1	0	1	1

(25) NOP

Non-OPeration

Α0	$\frac{E}{RD}$	R/W WR	D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	1	1	1	0	0	0	1	1

(26) Test

 $\underline{\text{IC chip}}$ test command. Do not use this command. If the test command is used incorrectly, it can be reset by setting the $\overline{\text{RES}}$ input to LOW or by using the reset command or NOP.

	4.0	E	R/W WR	D7	D	D E	D 4	D 0	D 0	D4	D 0
	ΑU	ΚD	WK	טי	D6	D5	D4	D3	D2	D1	DO
ĺ	0	1	0	1	1	1	1	*	*	*	*

*· Invalid hit

(Note) Although the S1D15705 series holds the command operating state, it may change the internal state if excessive foreign noise is entered. Such action that suppresses the generation of noise and prevents the effect of noise needs to be taken on installation and systems. Besides, to prevent sudden noise, it is recommended that the operating state should periodically be refreshed.

Table 16 S1D15705 Series Commands

		10	JUIC	100		omi					111110	ands	
	Command	Α0	RD	WR	_		_			D2	D1	D0	Function
(1)	Display ON/OFF	0	1	0	1	0	1	0	1	1	1	0	LCD display ON/OFF 0: OFF, 1: ON
(2)	Display Start Line Set	0	1	0	0	1	D	ispla	ay s	tart a	addr	ess	Sets the display start line address of the display RAM.
(3)	Page Address Set	0	1	0	1	0	1	1	ı	Pag Addi			Sets the page address of the display RAM.
(4)	Column Address Set High-Order Bit Column Address Set Low-Order Bit	0	1	0	0	0	0	0	á L	igh of Columbia Colum	imn ess ordei imn		Sets the high-order four bits of the column address of the display RAM. Sets the low-order four bits of the column address of the display RAM.
(5)	Status Read	0	0	1		Sta	tus		0	0	0	0	Reads the status information.
(6)	Display Data Read	1	1	0			W	rite'	data	a			Writes data on the display RAM.
(7)	Display Data Write	1	0	1			R	ead	dat	а			Reads data from the display RAM.
(8)	ADC Select	0	1	0	1	0	1	0	0	0	0	0	Supports the SEG output of the display RAM address. 0: normal rotation, 1: Reversal
(9)	Display Normal Rotation/Reversal	0	1	0	1	0	1	0	0	1	1	0	LCD display normal rotation/ reversal 0: normal rotation, 1: Reversal
(10)	Display All Lighting ON/OFF	0	1	0	1	0	1	0	0	1	0	0 1	Display all lighting 0: normal display, 1: All ON
(11)	LCD Bias Set	0	1	0	1	0	1	0	0	0	1	0 1	Sets the LCD drive voltage bias ratio. S1D15705***** 0: 1/9, 1: 1/7, S1D15707***** 0: 1/6, 1: 1/5
(12)	Read Modify Write	0	1	0	1	1	1	0	0	0	0	0	Increments the column address. At write operation: By 1, at read: 0
(13)	End	0	1	0	1	1	1	0	1	1	1	0	Resets Read Modify Write.
(14)	Reset	0	1	0	1	1	1	0	0	0	1	0	Internal resetting
(15)	Common Output State Selection	0	1	0	1	1	0	0	0	*	*	*	Selects the scanning direction of the COM output. 0: Normal rotation, 1: Reversal
(16)	Power Control Set	0	1	0	0	0	1	0	1	-	era stat	-	Selects the state of the built-in power supply
(17)	V ₅ Voltage Adjusting Internal Resistance Ratio Set	0	1	0	0	0	1	0	0			ance tting	Selects the state of the built-in resistance ratio (Rb/Ra).
(18)	Electronic Control Mode Set Electronic Control Register Set	0	1	0	1 *	0	0			0 ronic ol va		1	Sets the V ₅ output voltage in the electronic register.
(19)	Static Indicator ON/OFF	0	1	0	1	0	1	0	1	1	0	0	0: OFF, 1: ON
	Static Indicator Register Set	0	1	0	*	*	*	*	*	*	St	1 ate	Sets the blinking state.
(20)	Power Save	0	1	0	1	0	1	0	1	0	0	0	Moves to the power save state. 0: Stand-by, 1: Sleep
(21)	Power Save Reset	0	1	0	1	1	1	0	0	0	0	1	Resets power save.
(22)	n-Line Reversal Drive Register Set	0	1	0	0	0	1	1		luml evers		-	Sets the number of line reversal drive lines.
<u> </u>	n-Line Reversal Drive Reset	0	1	0	1	1	1	0	0	1	0	0	Resets the line reversal drive.
(24)	Built-in Oscillator Circuit ON	0	1	0	1	0	1	0	1	0	1	1	Starts the operation of the built-in CR oscillator circuit.
<u> </u>	NOP	0	1	0	1	1	1	0	0	0	1	1	Non-Operation command
(26)	Test	0	1	0	1	1	1	1	*	*	*	*	Do not use the IC chip test command.

*: Invalid bit

8. COMMAND SETTING

Instruction Setup: Reference

(1) Initial Setting

Notes: Reference items

- *1: If external power supplies for driving LCD are used, do not supply voltage on Vout or V5 pin during the period when $\overline{RES} = LOW$. Instead, input voltage after releasing the reset state.

 6. Function Description "Reset Circuit"
- *2: The contents of DDRAM are not defined even in the initial setting state after resetting.
 6. Function Description Section "Reset Circuit"
- *3: 7. Command Description Item (21) Power save reset
- *4: 7. Command Description Item (24) Built-in oscillator circuit ON
- *5: 7. Command Description Item (11) LCD bias set
- *6: 7. Command Description Item (8) ADC select
- *7: 7. Command Description Item (15) Common output state selection
- *8: 6. Function Description Section "Display Timing Generator Circuit", 7. Command Description Item (22) n-Line Reversal Register Set
- *9: 6. Function Description Section "Power Supply Circuit" and 7. Command Description Item (17) V5 Voltage Adjusting Built-in Resistance ratio Set
- *10: 6. Function Description Section "Power Supply Circuit" and 7. Command Description Item (18) Electronic Control
- *11: 6. Function Description Section "Power Supply Circuit" and 7. Command Description Item (16)
 Power Control Set

(2) Data Display

Notes: Reference items

- *12: 7. Command Description Item (2) Display Start Line Set
- *13: 7. Command Description Item (3) Page Address Set
- *14: 7. Command Description Item (4) Column Address Set
- *15: The contents of DDRAM is not defined after completing initial setting. Enter data in each DDRAM to be used for display.
 - 7. Command Description Item (6) Display Data Write
- *16: Avoid activating the display function with entering space characters as the data if possible.
 - 7. Command Description Item (1) Display ON/OFF

(3) Refresh *17

Notes: Reference items

*17: It is recommended that the operating modes and display contents be refreshed periodically to prevent the effect of unexpected noise.

Input (21) Power Save Reset and (22) NOP in order to avoid going into a power save state and IC tip test state accidentally.

(4) Power OFF *17

Notes: Reference items

- *18: This IC is a VDD VSS power system circuit controlling the LCD driving circuit for the VDD V5 power system. Shutting of power with voltage remaining in the VDD V5 power system may cause uncontrolling voltage to be output from the SEG and COM pins. Follow the Power OFF sequence.
- *19: 7. Command Description Item Power Saving
- *20: When external power supplies for driving LCD are used, turn all external power supplies off before entering reset state.
 - 6. Function Description Item Reset Circuit
- *21: The reference value for the threshold voltage of the LCD panel is 1 [V]. When the built-in power circuit is used, the discharge time, th, or the time interval between the point when the reset state has started and the point when voltage between VDD and V5 becomes 1 [V] depends on the VDD Vss power voltage and the capacity C2 connected between V1 V5 and VDD.

Set up tL so that the relationship, tL > tH, is maintained. A state of tL < tH may cause faulty display.

If command control is disabled when power is OFF, take action so that the relationship, $t_L > t_H$, is maintained by measures such as making the trailing characteristic of power (VDD – VSS) longer.

Fig. 22

9. ABSOLUTE MAXIMUM RATINGS

Table 17

Vss=0 V unless specified otherwise

Ite	m	Symbol	Specifi	catio	on value	Unit
Power supply voltage		Vdd	-0.3	to	+7.0	V
Power supply voltage (2)			-7.0	to	+0.3	
(Based on VDD)	At triple boosting	Vss2	-6.0	to	+0.3	
	At quadruple boosting		-4.5	to	+0.3	
Power supply voltage (3)	(Based on VDD)	V5, VOUT	-20.0	to	+0.3	
Power supply voltage (4)	(Based on VDD)	V1, V2, V3, V4	V5	to	+0.3	
Input voltage		Vin	-0.3	to	VDD+0.3	
Output voltage		Vo	-0.3	to	VDD+0.3	
Operating temperature		Topr	-40	to	+85	°C
Storage temperature	TCP	Tstr	-55	to	+100	
	Bare chip		- 55	to	+125	

Fig. 23

- (Notes) 1. The values of the VSS2, V1 to V5, and VOUT voltages are based on VDD=0 V.
 2. The V1, V2, V3, and V4 voltages must always satisfy the condition of VDD≥V1≥V2≥V3≥V4≥V5.
 3. The VSS2 and VOUT voltages must always satisfy the condition of VDD≥VSS≥VSS2≥VOUT.
 4. When LSI is used exceeding the absolute maximum ratings, the LSI may be damaged permanently. Besides, it is desirable that the LSI should be used in the electrical characteristics condition for normal operation. If this condition is exceeded, the LSI may malfunction and have an adverse effect on the reliability of the LSI.

10. DC CHARACTERISTICS

Table 18 Unless otherwise specified, Vss=0 V, Ta=-40 to $+85^{\circ}$ C

				Specifi	cation v	/alue		Applicable
Item	Symbol	Condition	on	Min.	Тур.	Max.	Unit	pin
Operating voltage (1)	Vdd	S1D15705*03**/	S1D15707*03**	2.4		3.6	V	VDD *1
	VDD	S1D15705*00**/	S1D15707*00**	3.6	_	5.5		VDD *1
		/S1D15708*00*	*					
Operating voltage (2)	Vss2	(Based on VDD)		-6.0	_	-1.8		Vss2
Operating voltage (3)	V5	S1D15705****	(Based on VDD)	-18.0		-4.5		V5 *2
	V5	S1D15707****	(Based on VDD)	-16.0	_	-4.5		V5 *2
	V5	S1D15708****	(Based on VDD)	-10.0	_	-4.5		V5 *2
	V1, V2	(Based on VDD)		0.4×V5	_	Vdd		V1, V2
	V3, V4	(Based on VDD)		V5	_	0.6×V5		V3, V4
High level input voltage	VIHC			0.8×VDD	_	Vdd		*3
Low level input voltage	VILC			Vss	_	0.2×Vdd		*3
High level output voltage	Vонс	Іон=-0.5mA		0.8×VDD	_	Vdd		*4
Low level output voltage	Volc	IoL=0.5mA		Vss	_	0.2×Vdd		*4
Input leak current	I⊔	VIN=VDD or Vss		-1.0	_	1.0	μΑ	*5
Output leak current	ILO			-3.0	_	3.0		*6
Liquid crystal driver	Ron	Ta=25°C	V5=-14.0V	_	2.0	3.5	kΩ	SEGn
On resistance		(Based on VDD)	V5=-8.0V	_	3.2	5.4		COMn *7
Static current consumption	n Issq			_	0.01	5	μΑ	Vss, Vss2
Output leak current	I5Q	V5=-18.0V (Base	ed on VDD)	_	0.01	15		V5
Input pin capacity	CIN	Ta=25°C, f=1MH	lz	_	5.0	8.0	pF	
Oscillating Built-in	fosc	Ta=25°C		18	22	26		*8
frequency oscillation								
		Ta=25°C, S1D15	4.5	5.5	6.5	kHz	CL *8	
Ta=25°C, S1D			5707****	2.25	2.75	3.25		CL *8
		Ta=25°C, S1D15	5708****	1.13	1.38	1.63		CL *8

Table 19

	Item	Symbol	Symbol Condition			ication v	alue	Unit	Applicable
	item	Symbol	Cond	Condition			Max.	Oilit	pin
<u>.</u> _	Input voltage	Vss2	At triple boostin	-	-6.0	_	-1.8	V	Vss2
oly circuit		Vss2		(Based on VDD) At quadruple boosting (Based on VDD)			-1.8		Vss2
supply	Boosting output voltage	Vout	(Based on VDD)	(Based on VDD)			_		Vout
power s	Voltage adjusting circuit operating voltage	Vout	(Based on VDD)		-20.0	_	-6.0		Vout
	V/F circuit operating	V5	S1D15705****	* (Based on VDD)	-18.0	_	-4.5		V5 *9
uilt-in	voltage	V5	S1D15707****	* (Based on VDD)	-16.0	_	-4.5		V5 *9
Buil		V5	S1D15708****	* (Based on VDD)	-10.0	_	-4.5		V5 *9
-	Reference voltage	VREG0	Ta=25°C,	−0.05%/°C	-2.04	-2.10	-2.16		*10

[*: see Page 61.]

Dynamic current consumption value (1) During display operation and built-in power supply OFF Current values dissipated by the whole IC when the external power supply is used

Table 20-1 Display All White

Ta=25°C

Item	Cymbol	Condition	Spe	cificatio	Unit	Remarks	
item	Symbol	Condition	Min.	Тур.	Max.	וווט	Remarks
S1D15705*00**	IDD	VDD=5.0V, V5-VDD=-11.0V	_	22	37	μΑ	*11
S1D15705*03**	(1)	VDD=3.0V, V5-VDD=-11.0V	_	22	37		
S1D15707*00**		VDD=5.0V, V5-VDD=-8.0V		8	14		
S1D15707*03**		VDD=3.0V, V5-VDD=-8.0V		8	14		
S1D15708*00**		VDD=5.0V, V5-VDD=-6.0V		4	7		

Table 20-2 Display Checker Pattern

Ta=25°C

lto-m-	Cumbal	Condition	Spe	cificatio	Unit	Domorko	
Item	Symbol	Condition	Min.	Тур.	Max.	Unit	Remarks
S1D15705*00**	IDD	VDD=5.0V, V5-VDD=-11.0V		33	55	μΑ	*11
S1D15705*03**	(1)	VDD=3.0V, V5-VDD=-11.0V	_	32	54		
S1D15707*00**		VDD=5.0V, V5-VDD=-8.0V		14	24		
S1D15707*03**		VDD=3.0V, V5-VDD=-8.0V		14	24		
S1D15708*00**	-	VDD=5.0V, V5-VDD=-6.0V		5	9		

Dynamic current consumption value (2) During display operation and built-in power supply ON Current values dissipated by the whole IC containing the built-in power supply circuit

Table 21-1 Display Checker Pattern

Ta=25°C

Itam.	Cymbol	Condi	!!! a.u.	Spe	cificatio	n value	Unit	Remarks
Item	Symbol	Condi	ition	Min.	Тур.	Max.	Unit	Remarks
S1D15705*00**	IDD	VDD=5.0V,	Normal mode	_	73	122	μΑ	*12
	(2)	Triple boosting						
		V5-VDD=-11.0V	High power mode	_	216	360		
S1D15705*03**		VDD=3.0V,	Normal mode	_	92	154		
		Quadruple boosting						
		V5-VDD=-11.0V	High power mode	_	272	454		
S1D15707*00**		VDD=5.0V,	Normal mode	_	40	67		
		Triple boosting						
		V5-VDD=-8.0V	High power mode	_	171	285		
S1D15707*03**		VDD=3.0V,	Normal mode	_	51	85		
		Quadruple boosting						
		V5-VDD=-8.0V	High power mode	_	228	380		
S1D15708*00**	1	VDD=5.0V,	Normal mode		28	47		
		Double boosting						
		V5-VDD=-6.0V	High power mode		137	229		

[*: see Page 61.]

Table 21-2 Display Checker Pattern

Ta=25°C

ltom.	Cumbal	Cand	!!! a.u.	Spe	cificatio	n value	Unit	Remarks
Item	Symbol	Cond	ition	Min.	Тур.	Max.	Unit	Remarks
S1D15705*00**	IDD	VDD=5.0V,	Normal mode	_	97	162	μΑ	*12
	(2)	Triple boosting						
		V5-VDD=-11.0V	High power mode	_	254	424		
S1D15705*03**		VDD=3.0V,	Normal mode	_	130	217		
		Quadruple boosting						
		V5-VDD=-11.0V	High power mode	_	308	514		
S1D15707*00**		VDD=5.0V,	Normal mode	_	54	90		
		Triple boosting						
		V5-VDD=-8.0V	High power mode	_	185	309		
S1D15707*03**		VDD=3.0V,	Normal mode	_	71	119		
		Quadruple boosting						
		V5-VDD=-8.0V	High power mode	_	248	414		
S1D15708*00**		VDD=3.0V,	Normal mode	_	35	59		
		Double boosting						
		V5-VDD=-6.0V	High power mode	_	144	240		

Current consumption at power save $Vss=0~V~and~Vdd=3.0~V~\pm10\%~(S1D15705*03**,~S1D15707*03**)\\ 5.0V~\pm~10\%~(S1D15705*00**,~S1D15707*00**,~S1D15708*00**)$

Table 22 Ta=25°C

lto-m	Cymphol	Condition	Spe	cificatio	115:4	Domorko	
Item	Symbol	Condition	Min.	Тур.	Max.	Unit	Remarks
Sleep state	IDDS1	Ta=25°C		0.01	5	μΑ	
Stand-by state	IDDS2	Ta=25°C	_	4	8		

[*: see Page 61.]

[Reference data 1]

• Dynamic current consumption (1) External power supply used and LCD being displayed

Condition: Built-in power supply OFF

External power supply used S1D15705: $V_5 - V_{DD} = -11.0 V$ S1D15707: $V_5 - V_{DD} = -8.0 \text{ V}$ S1D15708: $V_5 - V_{DD} = -6.0 \text{ V}$ Display pattern: All white/checker

 $Ta = 25^{\circ}C$

Remarks: *11

Fig. 24

[Reference data 2]

• Dynamic current consumption (2) Built-in power supply used and LCD being displayed

Triple boosting S1D15707: $V_5 - V_{DD} = -8.0 V$

Quadruple boosting

Condition: Built-in power supply ON Normal mode

Double boosting

S1D15705: $V_5 - V_{DD} = -11.0 \text{ V}$

S1D15708: $V_5 - V_{DD} = -6.0 \text{ V}$ Display pattern: All white/checker

 $Ta = 25^{\circ}C$

Remarks: *12

Fig. 25

[*: see page 61.]

[Reference data 3]

• Dynamic current consumption (3) During access

Fig. 26

Indicates the current consumption when the checker pattern is always written at fCYC.

Only IDD (1) when not accessed

Condition: Built-in power supply OFF and external

power supply used

S1D15705:

 $V_5 - V_{DD} = -11.0 \text{ V}$

S1D15707:

 $V_5 - V_{DD} = -11.0 \text{ V}$

S1D15705*03**/S1D15707*03**:

VDD - VSS = 3.0 V

S1D15705*00**/S1D15707*00**

/S1D15708*00**:

VDD - VSS = 5.0 V

 $Ta = 25^{\circ}C$

[*: see page 61.]

2

4

VDD [V]

6

[Reference data 4]

Vss and V5 system operating voltage ranges

Remarks: *2

Fig. 27

Relationships between the oscillating frequency fosc, display clock frequency fcL, and liquid crystal frame frequency fFR

Table 23

	Item	fcL	fF	R .
	ILCIII	ICL	Normal duty drive	n-line reverse drive
S1D15705****	When built-in oscillator circuit used	fosc 4	fosc 4.65	fosc 4.n
	When built-in oscillator circuit not used	External input (fcL)	fcL 65	fcL n
S1D15707****	When built-in oscillator circuit used	fosc 8	fosc 8.33	fosc 8.n
	When built-in oscillator circuit not used	External input (fcL)	<u>fcL</u> 33	fcL n
S1D15708****	When built-in oscillator circuit used	<u>fosc</u> 16	fosc 16.17	<u>fosc</u> 16.n
	When built-in oscillator circuit not used	External input (fcL)	<u>fcL</u> 17	<u>fcL</u> n

(fFR shows the alternating current cycle (frame cycle) of liquid crystal. The signal of FR terminal becomes twice as a frame cycle.)

[Reference items marked by *]

- *1 The wide operating voltage range is not warranted. However, when there is a sudden voltage change during MPU access, it cannot be warranted.
- *2 For the VDD and V5 operating voltage ranges, see Fig. 27. These ranges are applied when using the external power supply.
- *3 A0, D0 to D5, D6 (SCL), D7 (SI), RD (E), WR (R/W), CS1, CS2, CLS, CL, FR, M/S, C86, P/S, DOF, RES, IRS and HPM pins
- *4 D0 to D7, FR, FRS, DOF and CL pins
- *5 A0, RD (E), WR (R/W), CS1, CS2, CLS, M/S, C86, P/S, RES, IRS and HPM pins
- *6 Applied when D0 to D5, D6 (SCL), D7 (SI), CL, FR, and \overline{DOF} pins are in the high impedance state
- *7 Resistance value when the 0.1 V voltage is applied between the output pin SEGn or COMn and power supply pins (V1, V2, V3, and V4). Specified within the range of operating voltage (3) RON = 0.1 V/ΔI (ΔI indicates the current applied when 0.1 V is applied between the power ON.)
- *8 For the relationship between the oscillating frequency and frame frequency, see Table 23. The specification value of the external input item is a recommended value.
- *9 The V5 voltage adjusting circuit is adjusted within the voltage follower operating voltage range.
- *10 Built-in reference voltage source of the V5 voltage adjusting circuit.
- *11 and *12 Indicate the current dissipated by a single IC at built-in oscillator circuit used, 1/9 bias (S1D15705*****), 1/6 bias (S1D15707*****/S1D15708*****), and display ON. Does not include the current due to the LCD panel capacity and wireing capacity. Applicable only when there is no access from the MPU.
 - *12 When the V5 voltage adjusting built-in resistor is used

Timing Characteristics

System bus read/write characteristics 1 (80 series MPU)

[S1D15705*00**, S1D15707*00**, S1D15708*00**: VDD=4.5V to 5.5V, Ta=-40 to +85°C]

•			Condition	Specificati	ion value	
ltem	Signal	Symbol		Min.	Max.	Unit
Address hold time	A0	tah8		0	_	ns
Address setup time		tAW8		0	_	
System cycle time		tCYC8		250	_	
Control LOW pulse width (Write)	WR	tcclw		30	_	
Control LOW pulse width (Read)	RD	tcclr		70	_	
Control HIGH pulse width (Write)	\overline{WR}	tcchw		30	_	
Control HIGH pulse width (Read)	RD	tCCHR		30		
Data setup time	D0 to D7	tDS8		30	_	
Data hold time		tDH8		10	_	
RD access time		tACC8	CL=100pF	_	70	
Output disable time		tOH8		5	50	

[S1D15705*00**, S1D15707*00**, S1D15708*00**: VDD=3.6V to 4.5V, Ta=-40 to +85°C]

	o			Specificati	on value	
Item	Signal	Symbol	Condition	Min.	Max.	Unit
Address hold time	A0	tAH8		0	_	ns
Address setup time		taw8		0	_	
System cycle time		tCYC8		300	_	
Control LOW pulse width (Write)	WR	tcclw		60	_	
Control LOW pulse width (Read)	RD	tCCLR		120		
Control HIGH pulse width (Write)	WR	tcchw		60		
Control HIGH pulse width (Read)	RD	tCCHR		60	_	
Data setup time	D0 to D7	tDS8		40		
Data hold time		tDH8		15	_	
RD access time		tACC8	CL=100pF	_	280	
Output disable time		tOH8		10	100	

[S1D15705*03**, S1D15707*03**: VDD=2.4V to3.6V, Ta=-40 to +85°C]

	0: 1	0 1 1	0 1111	Specificati	on value	
Item	Signal	Symbol	Condition	Min.	Max.	Unit
Address hold time	A0	tah8		0	_	ns
Address setup time		taw8		0		
System cycle time		tCYC8		800	_	
Control LOW pulse width (Write)	WR	tcclw		120		
Control LOW pulse width (Read)	RD	tCCLR		240		
Control HIGH pulse width (Write)	WR	tcchw		120		
Control HIGH pulse width (Read)	RD	tCCHR		120	_	
Data setup time	D0 to D7	tDS8		80	_	
Data hold time		tDH8		30		
RD access time		tACC8	CL=100pF	_	280	
Output disable time		tOH8		10	200	

^{*1} This is in the case of making the access by \overline{WR} and \overline{RD} , setting the $\overline{CS1}$ =LOW.

^{*2} This is in the case of making the access by $\overline{CS1}$, setting the \overline{WR} , \overline{RD} =LOW.

^{*3} The rise and fall times (tr and tf) of the input signal are specified for less than 15 ns. When using the system cycle time at high speed, they are specified for $(tr+tf) \le (tCYC8-tCCLW-tCCHW)$ or $(tr+tf) \le (tCYC8-tCCLR-tCCHR)$.

^{*4} All timings are specified based on the 20 and 80% of VDD.

^{*5} tCCLW and tCCLR are specified for the overlap period when $\overline{CS1}$ is at LOW (CS2= HIGH) level and \overline{WR} , \overline{RD} are at the LOW level.

System bus read/write characteristics 2 (68 series MPU)

[S1D15705*00**, S1D15707*00**, S1D15708*00**: VDD=4.5V to 5.5V, Ta=-40 to +85°C]

		<u> </u>			Specificati	on value	
Item		Signal	Symbol	Condition	Min.	Max.	Unit
Address hold time		A0	tAH6		0	_	ns
Address setup time			tAW6		0		
System cycle time			tCYC6		250		
Data setup time		D0 to D7	tDS6		30		
Data hold time			tDH6		10	_	
Access time			tACC6	CL=100pF	_	70	
Output disable time			tOH6		5	50	
Enable HIGH pulse width	Read	E	tEWHR		70	_	
	Write		tEWHW		30		
Enable LOW pulse width	Read	Е	tEWLR		30	_	
	Write		tEWLW		30	_	

[S1D15705*00**, S1D15707*00**, S1D15708*00**: VDD=3.6V to 4.5V, Ta=-40 to +85°C]

					Specificati	on value	
Item		Signal	Symbol	Condition	Min.	Max.	Unit
Address hold time		A0	tAH6		0		ns
Address setup time			tAW6		0		
System cycle time			tCYC6		300		
Data setup time		D0 to D7	tDS6		40	_	
Data hold time			tDH6		15		
Access time			tACC6	CL=100pF	_	140	
Output disable time			tOH6		10	100	
Enable HIGH pulse width	Read	E	tewhr		120	_	
	Write		tEWHW		60		
Enable LOW pulse width	Read	Е	tewlr		60	_	
	Write		tEWLW		60		

[S1D15705*03**, S1D15707*03**: VDD=2.4V to 3.6V, Ta=-40 to +85°C]

140.00		Cianal	Cymbol	Condition	Specificati	on value	l lmi4
Item		Signal	Symbol	Condition	Min.	Max.	Unit
Address hold time		A0	tAH6		0		ns
Address setup time			tAW6		0		
System cycle time			tCYC6		800	_	
Data setup time		D0 to D7	tDS6		80		
Data hold time			tDH6		30	_	
Access time			tACC6	CL=100pF	_	280	
Output disable time			tOH6		10	200	
Enable HIGH pulse width	Read	Е	tewhr		240	_	
	Write		tewhw		120		
Enable LOW pulse width	Read	Е	tewlr		120		
	Write		tEWLW		120	_	

^{*1} This is in the case of making the access by E, setting the $\overline{CS1}$ =LOW.

^{*2} This is in the case of making the access by $\overline{CS1}$, setting the E=HIGH.

^{*3} The rise and fall times (tr and tf) of the input signal are specified for less than 15 ns. When using the system cycle time at high speed, they are specified for $(tr+tf) \le (tCYC6-tEWLW-tEWHW)$ or $(tr+tf) \le (tCYC6-tEWLR-tEWHR)$.

^{*4} All timings are specified based on the 20 and 80% of VDD.

^{*5} tEWLW and tEWLR are specified for the overlap period when $\overline{\text{CS1}}$ is at LOW (CS2= HIGH) level and E is at the HIGH level.

Serial interface

[S1D15705*00**, S1D15707*00**, S1D15708*00**: VDD=4.5V to 5.5V, Ta=-40 to +85°C]

lt a ma	Cianal	Symbol	Condition	Specificati	ion value	Unit
Item	Signal	Symbol	Condition	Min.	Max.	Unit
Serial clock cycle	SCL	tscyc		200		ns
SCL HIGH pulse width		tshw		75	_	
SCL LOW pulse width		tslw		75		
Address setup time	A0	tsas		50	_	
Address hold time		tsah		100		
Data setup time	SI	tsds		50	_	
Data hold time		tsdh		50		
CS-SCL time	CS	tcss		100	_	
		tcsh		100		

[S1D15705*00**, S1D15707*00**, S1D15708*00**: VDD=3.6V to 4.5V, Ta=-40 to +85°C]

Itam	Cianal	Symbol	Condition	Specificati	ion value	Unit
Item	Signal	Symbol	Condition	Min.	Max.	Unit
Serial clock cycle	SCL	tscyc		250	_	ns
SCL HIGH pulse width		tshw		100	_	
SCL LOW pulse width		tsLW		100	_	
Address setup time	A0	tsas		150	_	
Address hold time		tsah		150		
Data setup time	SI	tsds		100	_	
Data hold time		tsdh		100		
CS-SCL time	CS	tcss		150	_	
		tcsH		150	_	

[S1D15705*03**, S1D15707*03**: VDD=2.4V to 3.6V, Ta=-40 to +85°C]

Itom	Signal	Symbol	Condition	Specificati	on value	Unit
Item	Signai	Symbol	Condition	Min.	Max.	Unit
Serial clock cycle	SCL	tscyc		400	_	ns
SCL HIGH pulse width		tshw		150	_	
SCL LOW pulse width		tslw		150	—	
Address setup time	A0	tsas		250	_	
Address hold time		tsah		250	—	
Data setup time	SI	tsds		150	_	
Data hold time		tsdh		150	—	
CS-SCL time	CS	tcss		250	_	
		tcsH		250	_	

^{*1} The rise and fall times (tr and tf) of the input signal are specified for less than 15 ns.

^{*2} All timings are specified based on the 20 and 80% of VDD.

Display control output timing

[S1D15705*00**, S1D15707*00**, S1D15708*00**: VDD=4.5V to 5.5V, Ta=-40 to +85°C]

	0			Spec				
Item	Signal	Symbol	Condition	Min.	Тур.	Max.	Unit	
FR delay time	FR	tDFR	CL=50pF	_	10	40	ns	
SYNC delay time	SYNC	tDSNC	CL=50pF	_	10	40	ns	

[S1D15705*00**, S1D15707*00**, S1D15708*00**: VDD=3.6V to 4.5V, Ta=-40 to +85°C]

				Specification value			
Item	Signal	Symbol	Condition	Min.	Тур.	Max.	Unit
FR delay time	FR	tDFR	CL=50pF	_	20	80	ns
SYNC delay time	SYNC	tDSNC	CL=50pF	_	20	80	ns

[S1D15705*03**, S1D15707*03**: VDD=2.4V to 3.6V, Ta=-40 to +85°C]

				Specification value			
Item	Signal	Symbol	Condition	Min.	Тур.	Max.	Unit
FR delay time	FR	tDFR	CL=50pF	_	50	200	ns
SYNC delay time	SYNC	tDSNC	CL=50pF		50	200	ns

- *1 Valid only when the master mode is selected.
- *2 All timings are specified based on the 20 and 80% of VDD.
- *3 Pay attention not to cause delays of the timing signals CL, FR and SYNC to the salve side by wiring resistance, etc., while master/slave operations are in progress. If these delays occur, indication failures such as flickering may occur.

Reset input timing

[S1D15705*00**, S1D15707*00**, S1D15708*00**: VDD=4.5V to 5.5V, Ta=-40 to +85°C]

				Spec			
Item	Signal	Symbol	Condition	Min.	Тур.	Max.	Unit
Reset time		tR		_	_	0.5	μs
Reset LOW pulse width	RES	trw		0.5	_	_	

[S1D15705*00**, S1D15707*00**, S1D15708*00**: VDD=3.6V to 4.5V, Ta=-40 to +85°C]

				Specification value			
Item	Signal	Symbol	Condition	Min.	Тур.	Max.	Unit
Reset time		tR		_		1	μs
Reset LOW pulse width	RES	trw		1	_	_	

[S1D15705*03**, S1D15707*03**: VDD=2.4V to 3.6V, Ta=-40 to +85°C]

				Spec			
Item	Signal	Symbol	Condition	Min.	Тур.	Max.	Unit
Reset time		tR		_	_	1.5	μs
Reset LOW pulse width	RES	trw		1.5		_	

^{*1} All timings are specified based on the 20 and 80% of VDD.

11. MICROPROCESSOR (MPU) INTERFACE: REFERENCE

The S1D15705 series can directly be connected to the 80 system MPU and 68 series MUP. It can also be operated with a fewer signal lines by using the serial interface.

The S1D15705 series is used for the multiple chip configuration to expand the display area. In this case, it can select the ICs that are accessed individually using the Chip Select signal.

After the initialization using the RES pin, the respective input pins of the S1D15705 series need to be controlled normally.

12. CONNECTION BETWEEN LCD DRIVERS: REFERENCE

The S1D15705 series is used for the multiple chip configuration to easily expand the liquid crystal display area. Use the same device (S1D15705*****/S1D15705*****, S1D15707****** or S1D15708*****/S1D15708*****) for the master/slave.

S1D15705 (master) ↔ S1D15705 (slave)

13. LCD PANEL WIRING: REFERENCE

The S1D15705 series is used for the multiple chip configuration to easily expand the liquid crystal display area. Use the same device (S1D15705*****/S1D15705*****, S1D15707****** or S1D15708*****/S1D15708*****) for the multiple chip configuration.

1-chip configuration

2-chip configuration

14. TCP PIN LAYOUT

Note) This TCP pin layout does not specify the TCP dimensions.

15. TCP DIMENSIONS

16. TEMPERATURE SENSOR CIRCUIT

S1D15705*10** incorporates a temperature sensor circuit with a $11.4 \text{mV/}^{\circ}\text{C}$ (typ.) temperature gradient carrying analog voltage output pins. The S1D15705*10** makes it possible to provide LCD indications with optimum contrast throughout a wide temperature range without need for use of supplementary parts by inputting electronic volume control registration value equivalent signals corresponding to the outputs of the temperature sensor through the MPU to control the LCD drive voltage V_5 .

For LCD drive voltage controls of higher precision, we recommend you to constitute a system which can absorb deviations of the output voltage by, such as, feeding back sampled output voltages under a certain temperature environment to the MPU to let it memorize as the reference voltages.

Regarding the specifications of other items than the temperature sensor circuit, such as of the absolute maximum ratings, DC characteristics, AC characteristics, etc., refer to the specifications for S1D15705*00**.

Pin Definitions

Temperature sensor circuit related pins are allocated to TEST1, 2, 3 and 4 and the pin names are TEST1, SVS, VSEN, SEN and SENSEL in the given sequence. The temperature sensor should be used under the pin statuses indicated in the Table below. When the temperature sensor is not being used, fix respective pins to HIGH.

Pin names	I/O	Pin definitions	Number of pins
SVS	Power supply	This is the power supply pin for the temperature sensor. Apply prescribed operating voltage between the VDD.	1
VSEN	0	This is the analog voltage output pin for the temperature sensor. Monitor the output voltage between the VDD.	1
SEN	0	Consider to keep this pin open in order not to apply the load capacitance of wires, etc.	1
SENSEL	I	Fix this pin to HIGH.	1

Electric Characteristics

Items	Codes	Conditions	Spe	cificati	ions	Units	Applicable
items	Codes	Conditions	Min.	Тур.	Max.	Ullits	pins
Operating voltage	SVS	(On the basis of VDD)	-5.5	-5.0	-4.5	V	SVS
Output voltage	VSEN	(On the basis of VDD) Ta = 40°C (On the basis of VDD) Ta = 25°C (On the basis of VDD) Ta = 85°C		-3.62 -2.88 -2.20	-2.28	V	Vsen
Output voltage temperature gradient	VGRA	*1	9.4	11.4	13.4	mV/°C	Vsen
Output voltage linearity	ΔVL	*2	-1.5	_	1.5	%	Vsen
Output voltage setup time	tsen	*3	100	_	_	mS	Vsen
Operating current	ISEN	Ta = 25°C	_	40	150	μΑ	SVS

[* Notes]

- *1: Represents the gradient of the approximate line of the Typ. output voltages.
- *2: Represents the maximum deviation between the output voltage curve and the approximate line. Assuming that the difference of output voltages at -40°C and at 80°C as ΔVSEN, assuming that the difference between the approximate line and the output voltage values as ΔDIFF and assuming that the maximum value thereof as ΔDIFF (MAX), the output voltages linearity ΔVL can be calculated by use of the following equation.

$$\Delta V_L = \frac{\Delta DIFF~(MAX)}{\Delta V_{SEN}} \times 100$$

*3: Represents the queuing time after the supply voltage SVS is applied to the SVS pin until the output voltage is stabilized and monitoring thereof becomes feasible. Be sure to sample the output voltage after the prescribed queuing time has elapsed.

Output voltage characteristics

Output Pin Load

Maintain the load capacity CL for the VSEN output pin VSEN at 100pF or less and keep the load resistance RL for the VSEN output pin VSEN at $1M\Omega$ or more.

In order to obtain accurate output voltage values, be careful not to insert a current flowing channel between the Vss.

17. CAUTIONS

Cautions must be exercised on the following points when using this Development Specification:

- 1. This Development Specification is subject to change for engineering improvement.
- 2. This Development Specification does not guarantee execution of the industrial proprietary rights or other rights, or grant a license. Examples of applications described in This Development Specification are intended for your understanding of the Product. We are not responsible for any circuit problem or the like arising from the use of them.
- 3. Reproduction or copy of any part or whole of this Development Specification without permission of our company, or use thereof for other business purposes is strictly prohibited.

For the use of the semi-conductor, cautions must be exercised on the following points:

[Cautions against Light]

The semiconductor will be subject to changes in characteristics when light is applied. If this IC is exposed to light, operation error may occur. To protect the IC against light, the following points should be noted regarding the substrate or product where this IC is mounted:

- (1) Designing and mounting must be provided to get a structure which ensures a sufficient resistance of the IC to light in practical use.
- (2) In the inspection process, environmental configuration must be provided to ensure a sufficient resistance of the IC to light.
- (3) Means must be taken to ensure resistance to light on all the surfaces, backs and sides of the IC

International Sales Operations

AMERICA

EPSON ELECTRONICS AMERICA, INC. HEADQUARTERS

150 River Oaks Parkway San Jose, CA 95134, U.S.A.

Phone: +1-800-228-3964 FAX: +1-408-922-0238

SALES OFFICES

West

1960 E.Grand Avenue Flr 2 El Segundo, CA 90245, U.S.A.

Phone: +1-800-249-7730 FAX: +1-310-955-5400

Central

101 Virginia Street, Suite 290 Crystal Lake, IL 60014, U.S.A.

Phone: +1-800-853-3588 FAX: +1-815-455-7633

Northeast

301 Edgewater Place, Suite 210 Wakefield, MA 01880, U.S.A.

Phone: +1-800-922-7667 FAX: +1-781-246-5443

Southeast

3010 Royal Blvd. South, Suite 170 Alpharetta, GA 30005, U.S.A.

Phone: +1-877-332-0020 FAX: +1-770-777-2637

EUROPE

EPSON EUROPE ELECTRONICS GmbH HEADQUARTERS

Riesstrasse 15

80992 Munich, GERMANY

Phone: +49-89-14005-0 FAX: +49-89-14005-110

DÜSSELDORF BRANCH OFFICE

Altstadtstrasse 176

51379 Leverkusen, GERMANY

Phone: +49-2171-5045-0 FAX: +49-2171-5045-10

FRENCH BRANCH OFFICE

1 Avenue de l' Atlantique, LP 915 Les Conquerants Z.A. de Courtaboeuf 2, F-91976 Les Ulis Cedex, FRANCE Phone: +33-1-64862350 FAX: +33-1-64862355

BARCELONA BRANCH OFFICE Barcelona Design Center

Edificio Testa, C/Alcalde Barnils 64-68, Modulo C 2a planta

E-08190 Sant Cugat del Vallès, SPAIN

Phone: +34-93-544-2490 FAX: +34-93-544-2491

UK & IRELAND BRANCH OFFICE

8 The Square, Stockley Park, Uxbridge Middx UB11 1FW, UNITED KINGDOM Phone: +44-1295-750-216/+44-1342-824451

FAX: +44-89-14005 446/447

Scotland Design Center

Integration House, The Alba Campus Livingston West Lothian, EH54 7EG, SCOTLAND Phone: +44-1506-605040 FAX: +44-1506-605041

ASIA

EPSON (CHINA) CO., LTD.

23F, Beijing Silver Tower 2# North RD DongSanHuan

ChaoYang District, Beijing, CHINA

Phone: +86-10-6410-6655 FAX: +86-10-6410-7320

SHANGHAI BRANCH

7F, High-Tech Bldg., 900, Yishan Road,

Shanghai 200233, CHINA

Phone: +86-21-5423-5522 FAX: +86-21-5423-5512

EPSON HONG KONG LTD.

20/F., Harbour Centre, 25 Harbour Road

Wanchai, Hong Kong

Phone: +852-2585-4600 FAX: +852-2827-4346

Telex: 65542 EPSCO HX

EPSON Electronic Technology Development (Shenzhen) LTD.

12/F, Dawning Mansion, Keji South 12th Road,

Hi- Tech Park, Shenzhen

Phone: +86-755-2699-3828 FAX: +86-755-2699-3838

EPSON TAIWAN TECHNOLOGY & TRADING LTD.

14F, No. 7, Song Ren Road,

Taipei 110

Phone: +886-2-8786-6688 FAX: +886-2-8786-6677

HSINCHU OFFICE

No. 99. Jiangong Road. Hsinchu City 300

Phone: +886-3-573-9900 FAX: +886-3-573-9169

EPSON SINGAPORE PTE., LTD.

1 HarbourFront Place,

#03-02 HarbourFront Tower One, Singapore 098633 Phone: +65-6586-5500 FAX: +65-6271-3182

SEIKO EPSON CORPORATION **KOREA OFFICE**

50F, KLI 63 Bldg., 60 Yoido-dong

Youngdeungpo-Ku, Seoul, 150-763, KOREA

Phone: +82-2-784-6027 FAX: +82-2-767-3677

GUMI OFFICE

2F, Grand B/D, 457-4 Songjeong-dong,

Gumi-City, KOREA

Phone: +82-54-454-6027 FAX: +82-54-454-6093

SEIKO EPSON CORPORATION SEMICONDUCTOR OPERATIONS DIVISION

IC Sales Dept. **IC Marketing Group**

421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN Phone: +81-42-587-5814 FAX: +81-42-587-5117

> Document Code: 404948101 First Issue February, 2004 Printed October 2005 in JAPAN