Battery Modeling in Electronic Design

Alberto Macii and Massimo Poncino

Politecnico di Torino

Outline

- Introduction & battery trends
- Battery non-idealities
- Battery models
- Automated Circuit-equivalent Model Identification
- Conclusions

Introduction

- Autonomous devices are ubiquitous!
 - How many devices we use is NOT battery-powered?

Battery Trend

- Battery tech is improving
 - but no Moore's law in batteries...

Batteries have to be handled with care

- Batteries are complex (and not ideal) devices...
- Traditional assumptions about the energy supply from the designer's perspective:
 - **1. Any current can be drawn** from the energy supply at V_{dd}
 - **2. Average power consumed** by the device is what matters

Unfortunately, these are WRONG assumptions if we use a battery

Battery non-idealities (1): Rated Capacity Effect

The amount of energy a battery can provide depends on the current drawn from the battery

Battery non-idealities (2): Dependence on dynamics

Battery non-idealities (3): recovery

A battery recovers some deliverable charge when it is given some rest.

Main impact of non-idealities

Current magnitude impacts battery efficiency

- Whenever possible use a smaller current
- Consistent with "low-power design"!
- But we have a converter in between...
 - A small load current can become a large battery current depending on the power levels and efficiency!
 - Recall: $I_{batt} = I_{load} * (V_{load}/V_{batt}) * 1/\eta$

Main impact of non-idealities (2)

- Large current variations impact battery efficiency
 - Smooth current profile as much as possible (filter?)
 - Average current (power) is not a reliable metric for battery!
- Idle times can increase battery efficiency
 - Contrast with smoothing of current variations…?
 - A minor effect, can neglect in electronic devices

Minimum avg. current ≠ max battery lifetime!

Battery Models

- Three main categories:
 - Electrochemical
 - Accurate, but unfriendly for electronic designers.
 - Analytical
 - The battery is described with equations relating relevant figures of merit (e.g., load).
 - Circuit-based
 - Suitable to be integrated in a simulation environment.

Analytical Models: Peukert's law

- Energy capacity: $C = I^n \times t$
 - t = discharge time
 - I = discharge current
 - n = Peukert's coefficient
 - = 1 for ideal battery
 - 1.1-1.3 for real batteries
 - depends on chemistry and design
- Good first order approximation
 - does not capture dynamics of discharge profile
 - Popular model in automotive!

Circuit-Based Models

Identification of Model Parameters

- Model is very practical...
- ...But what if I am a system designer and:
 - have no access to measurements (nor expertise)
 - want to explore different battery options?
- Here is where our approach works
 - 1. Use only publicly available data
 - 2. These data DRIVE the degree of complexity of the resulting model

Proposed Battery Modeling Flow

Data Template Mapping Table

Туре	Available Data	Circuit Template
1	• 1 V vs. Capacity (or SOC) curve	$C = I_{batt} $ $\downarrow^{+} V_{oc}(soc) V_{batt}$ $\downarrow^{-} V_{batt}$
2	 >1 V vs. Capacity curves at different currents OR 1 V vs. Capacity curve + internal resistance 	$C \xrightarrow{I_{batt}} V_{oc}(SOC)$ $\downarrow v_{oc}(SOC)$ $\downarrow v_{batt}$
3	As for Type2, plus: • 1 V vs. t curve for a current pulse	$C = I_{batt} \bigcirc V_{oc}(SOC) \bigcirc V_{batt} \bigcirc V_{batt}$
4	As for Type 2, plus: • 1 V vs. t curve for a set of current pulses	$C = I_{batt} $ $\downarrow_{\overline{}}$ $R_{ser}(SOC) \qquad R_{L}(SOC) \qquad W$ $V_{oc}(SOC) \qquad C_{S}(SOC) \qquad C_{L}(SOC) \qquad V_{batt}$

Simulation Results

Results for the steady-state response

Avg. error: below 0.5% - Max error (knee region): 7%

Simulation Results (2)

Results for the cycle life

- Operating temperature 23°C charge current 3A discharge current 5A
- Max error 0.98% after 500 cycles

Conclusion

- Battery modeling is essential for effective power/energy assessment of an electronic systems.
- Data availability may become an issue:
 - Measurements are costly and time consuming.
 - Public datasheets report limited information.
- Our methodology allows designers to:
 - Automatically generate different equivalent electrical circuit models by mean of a modular template
 - Accounts for 2nd order battery effects like temperature and aging