Übungsaufgaben zur Vorlesung "Analysis I"

Blatt 9

Aufgabe 1. Berechnen Sie im Existenzfall die folgenden Grenzwerte:

- a) $\lim_{x \to 1} \frac{2}{\sqrt{x+3}-2}$
- b) $\lim_{x \to 1} \frac{x^k 1}{x^l 1}, k, l \in \mathbb{N}$
- c) $\lim_{x \to -\infty} \frac{\sqrt{x^2 + 14} + x}{\sqrt{x^2 2} + x}$

Aufgabe 2. Zeigen Sie:

- a) \mathbb{Q} liegt dicht in \mathbb{R} , d.h. für jedes $x \in \mathbb{R}$ gibt es eine Folge rationaler Zahlen, die gegen x konvergiert.
- b) Stimmen zwei stetige Funktionen $f,g\colon [a,b]\to\mathbb{R}$ in allen rationalen Punkten überein, so ist f=g auf [a,b].

Aufgabe 3.

a) Beweisen Sie mit Hilfe der " $\varepsilon - \delta$ "-Argumente die Stetigkeit von $f(x) = \sqrt{x}$ auf seinem Definitionsbereich.

Hinweis: Betrachten Sie den Fall $x_0 = 0$ gesondert.

b) Man beweise, dass die Funktion

$$f \colon \mathbb{R} \to \mathbb{R}, \quad f(x) = \left\{ \begin{array}{ll} x, & \text{falls } x \in \mathbb{Q}, \\ 0, & \text{falls } x \in \mathbb{R} \setminus \mathbb{Q}, \end{array} \right.$$

nur im Punkt x = 0 stetig ist.

Aufgabe 4. Sei die Funktion f stetig im Punkt x_0 und $f(x_0) \neq 0$. Zeigen Sie, dass es eine Zahl C > 0 und eine Umgebung von x_0 gibt, so dass für alle x aus dieser Umgebung $|f(x)| \geq C$ gilt.

Abgabe: Bis 20. Dezember vor Vorlesungsbeginn in das Postfach Ihrer Tutorin bzw. Ihres Tutors.

Aufgabe	1			2		3		4	
	a	b	c	a	b	a	b		
Punkte	2	3	2	2	2	3	3	3	20

Präsenzaufgaben und Anregungen

- 1. Bestimmen Sie die Häufungspunkte folgender Mengen:
 - a) $\{n!: n \in \mathbb{N}_0\}$
 - b) $(0,1) \setminus \{\frac{1}{2}\}$
- 2. Sei $D \subset \mathbb{R}$, $x_0 \in \mathbb{R}$. Zeigen Sie: x_0 ist genau dann ein Häufungspunkt von D, wenn für jedes $\varepsilon > 0$ ein $x \in D$ mit $0 < |x x_0| < \varepsilon$ existiert.
- 3. Berechnen Sie im Existenzfall die folgenden Grenzwerte:

a)
$$\lim_{x \to 6} \frac{\sqrt{x-2}-2}{x-6}$$

$$d) \lim_{x \to -1+} \frac{1}{x - [x]}$$

b)
$$\lim_{x \to +\infty} (\sqrt{x^2 - 1} - \sqrt{x^2 + 1})$$

e)
$$\lim_{x \to 1} \frac{x^3 - 7x + 6}{x - 1}$$

c)
$$\lim_{x \to -1-} \frac{1}{x - [x]}$$

f)
$$\lim_{x \to +\infty} \left(\sqrt{x + \sqrt{x + \sqrt{x}}} - \sqrt{x} \right)$$

4. Formulieren Sie folgende Aussagen mithilfe von Ungleichungen und führen Sie entsprechende Beispiele an:

a)
$$\lim_{x \to x_0} f(x) = -\infty$$

b)
$$\lim_{x \to +\infty} f(x) = a$$

c)
$$\lim_{x \to -\infty} f(x) = +\infty$$

5. Sei die Funktion f in einer Umgebung U von x_0 definiert. Ist die Funktion f stetig im Punkt x_0 , wenn

$$\forall \delta > 0 \,\exists \varepsilon > 0 \,\forall x \in U : |f(x) - f(x_0)| < \varepsilon \Rightarrow |x - x_0| < \delta?$$

- 6. Zeigen Sie mithilfe der " $\varepsilon \delta$ "-Definition, dass die Funktion $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}$, $f(x) = \frac{1}{x^2}$, stetig ist.
- 7. Untersuchen Sie die Funktion f auf Stetigkeit auf dem Definitionsbereich und zeichnen Sie ihren Graphen, wenn:

2

a)
$$f(x) = \frac{|x+2|}{x+2}$$

b)
$$f(x) = \begin{cases} -\frac{1}{x}, & \text{falls } x < 0, \\ 5x - x^2, & \text{falls } x \ge 0, \end{cases}$$

c)
$$f(x) = x - [x]$$