Aggregate Implications of Corporate Taxation over the Business Cycle

Hui-Jun Chen

The Ohio State University

Job Market Paper

[Click here for the latest version]

January 2025

- Calibration

Model

- Long-run effects of corporate tax deductions
- Short-run dynamics of corporate tax deduction
- Application: policy evaluation

What are the macro effects of corporate tax deductions?

Fact large deductions (100-150B), investment responses are large and heterogeneous (The Joint Committee on Taxation (2017), Chodorow-Reich, Zidar and Zwick (2024b), Zwick and Mahon (2017), Ohrn (2018, 2019))

Model hetero. firms + financial frictions + corporate taxes + investment deduction

Validation (i) deduction policies in matching investment rate distribution (Cooper and Haltiwanger (2006))
(ii) qualitative pattern of hetero. investment response to policy (Zwick and Mahon (2017))

Application GE effects on investment deductions as counter-cyclical policies

■ against different shocks (TFP v.s. credit); v.s. other stimulus policies (TCJA)

Two policies that accelerates investment deductions

- Firms' taxable income is deductible by eligible investment that follows <u>deduction schedule</u>
- Section 179 expensing: allow firms' inv. lower than a threshold to deduct entire cost
- Bonus depreciation: allow all firms to deduct a bonus fraction, the rest is <u>carried forward</u>

Preview of findings

Long run

Comparing steady states with policy expansion; cost: 0.3% of GDP

- Targeted policy boosts GDP by 1.6%, yet untargeted one boosts by 1.06%
- lacktriangle Convex combination of both deductions only boosts GDP by 1.3% (Ohrn (2019))

Response

Comparing two economy, with and without investment tax deductions,

- Deductions reduce half life of output responses by 2 years after credit shocks
- Deductions have almost no effect after TFP shocks

One-period Comparing temporarily raise deductions after a credit shock,

- Targeted policy boost GDP by 0.51%
- Untargeted policy only boost GDP by 0.38%

Key mechanisms

Recall two inefficiencies: financial frictions and tax wedges

- Financial frictions hinder capital accumulation of small firms by limit investment loan
- Wedges on shadow prices of capital ⇒ results in firms not investing (inaction)

Role of the deduction policies: lower user cost of capital and decrease needs for funding

Who gets the tax credit matters:

- large firms raise dividend; small firms raise investment
- Focusing on high-productivity firms is better

Literature

- Large empirical literature on responsiveness of investment to tax credit
 - Public firm data: Goolsbee (1998), Cummins, Hassett and Hubbard (1996), House and Shapiro (2008), Lamont (1997); Firm/State-level data: Zwick and Mahon (2017), Ohrn (2018), Ohrn (2019)

New - evaluates aggregate effects of both investment subsidy policies

- Representative firm model on the response of fiscal policies with simplistic tax structure
 - Hall and Jorgenson (1967), Summers, Bosworth, Tobin and White (1981), Fernández-Villaverde (2010), Occhino (2022), Occhino (2023), Chodorow-Reich, Smith, Zidar and Zwick (2024a)

New - accounts for distributional effects and a realistic tax deduction structure

- Heterogeneous firm model that accounts for distribution effects of shocks
 - Khan and Thomas (2013), House (2014), Koby and Wolf (2020), Winberry (2021)

New - utilize the technique and expands the analysis to counter-cyclical fiscal policies

- Model
- Calibration
- Long-run effects of corporate tax deductions
- Short-run dynamics of corporate tax deduction
- Application: policy evaluation

Environment

Household: supplies labor, pays labor tax, lends risk-free loans, and owns the firms

Government: collect taxes to fund exogenous government spending

Firms: states $(k, b, \psi, \varepsilon)$

- lacktriangle Deductible stock ψ <u>carry</u> unrealized investment tax deductions <u>forward</u> to the next period
- lacktriangle DRS production; persistent idiosyncratic productivity arepsilon; i.i.d. exit shock π_d
- Capital k accumulation is hindered by financial frictions and tax wedges:
 - **1** collateral constraint $b' \leq \theta k'$
 - ② selling capital generate taxable income ⇒ higher corporate tax burden

LR

Investment deductions and taxable income

$$\mathcal{I}(k', k, \psi, \varepsilon) = \max \left\{ z \varepsilon f(k, n) - wn - \mathcal{J}(k', k)(k' - (1 - \delta)k) - \delta^{\psi} \psi, \frac{\mathbf{0}}{\mathbf{0}} \right\},\,$$

- Gov won't issue tax rebate when taxable income is negative ⇒ zero lower bound
- lacksquare $\mathcal{J}(k',k)$: indicator function for investment deduction policies

$$\mathcal{J}(k',k) = \begin{cases} \omega & \text{if } k' - (1-\delta)k \leq \overline{I} \\ \underline{\xi}\omega & \text{if } k' - (1-\delta)k > \overline{I} \end{cases}$$

- \bar{I} : Section 179 threshold (targeted policy)
- $\xi \in [0,1]$: bonus depreciation (untargeted policy)
- ω : fraction of eligible investment to total investment

LR

Deductible stock to capture IRS deduction schedule

$$\mathcal{I}(k',k,\psi,\varepsilon) = \max\left\{z\varepsilon f(k,n) - wn - \mathcal{J}(k',k)(k'-(1-\delta)k) - \frac{\delta^{\psi}\psi}{}, 0\right\},\$$

■ Deductible stock ψ follows law of motion.

$$\psi' = (1 - \delta^{\psi})\psi + (\omega - \mathcal{J}(k', k))(k' - (1 - \delta)k)$$

- lacksquare $(\omega \mathcal{J}(k',k))(k'-(1-\delta)k)$: investment deduction that is not realized immediately
- lacksquare $\delta^{\psi}>\delta$: captures the favorable treatment for deduction ("accelerated depreciation")

How corporate tax burden affect budget

$$D = z\varepsilon F(k,n) - wn - b + qb' - (k' - (1-\delta)k) - \tau^{c}\mathcal{I}(k',k,\psi,\varepsilon)$$

If
$$\mathcal{I}(k', k, \psi, \varepsilon) > 0$$
,

(Barro and Furman (2018), Chodorow-Reich, Smith, Zidar and Zwick (2024a))

$$D = \underbrace{(1 - \tau^c)}_{\text{taxed}} (z \varepsilon F(k, n) - wn) - b + qb' - \underbrace{(1 - \tau^c \mathcal{J}(k', k))}_{\text{deduction}} (k' - (1 - \delta)k) + \tau^c \delta^{\psi} \psi$$

More generous deduction policies $(\mathcal{J}(k',k)\uparrow)$, higher dividend payment

If
$$\mathcal{I}(k', k, \psi, \varepsilon) \leq 0$$
,

$$D = z\varepsilon F(k,n) - wn - b + qb' - (k' - (1 - \delta)k)$$

How two kinks dissect choice spaces

$$D = (z\varepsilon F(k,n) - wn) - b + qb' - - I$$
capital decision rule at median productivity with zero debt and taxable capital

$$D = (1 - \tau^{c})(z \varepsilon F(k, n) - wn) - b + qb' - I |_{I \ge 0} - (1 - \tau^{c} \omega)I |_{I < 0}$$

capital decision rule at median productivity with zero debt and taxable capital

$$D = (1 - \tau^c)(z\varepsilon F(k, n) - wn) - b + qb' - (1 - \tau^c \mathcal{J}(k', k))I|_{I \ge 0} - (1 - \tau^c \omega)I|_{I < 0} + \tau^c \delta^{\psi} \psi$$
capital decision rule at median productivity with zero debt and taxable capital

$$D = (1 - \tau^c)(z\varepsilon F(k, n) - wn) - b + qb' - (1 - \tau^c \mathcal{J}(k', k))I|_{I \ge 0} - (1 - \tau^c \omega)I|_{I < 0} + \tau^c \delta^{\psi} \psi$$
capital decision rule at median productivity with zero debt and taxable capital

Value function and discrete choices

$$D(k', b', k, b, \psi, \varepsilon) = z\varepsilon F(k, n) - wn - b + qb' - (k' - (1 - \delta)k) - \tau^{c} \mathcal{I}(k', k, \psi, \varepsilon)$$
$$v^{0}(k, b, \psi, \varepsilon; \mu) = \pi_{d} \max_{n} \left\{ D(0, 0, k, b, \psi, \varepsilon) \right\} + (1 - \pi_{d})v(k, b, \psi, \varepsilon; \mu)$$
$$v(k, b, \psi, \varepsilon; \mu) = \max \left\{ v^{H}(k, b, \psi, \varepsilon; \mu), v^{L}(k, b, \psi, \varepsilon; \mu), v^{N}(k, b, \psi, \varepsilon; \mu) \right\}$$

For each option, firms maximize dividend and continuation value subject to (1) budget constraints, (2) collateral constraints, and (3) deductible stock LoM

- Introduction
- Model
- Calibration
- Long-run effects of corporate tax deductions
- Short-run dynamics of corporate tax deduction
- Application: policy evaluation

Calibrated Moments for Baseline Model

Parameter	Target		Model
$\beta = 0.96$	real interest rate	= 0.04	0.04
$\alpha = 0.3$	private capital-output ratio	= 2.3	2.03
$\nu = 0.6$	labor share	= 0.6	0.6
$\tau^n=0.25$	government spending-output ratio	= 0.21	0.201
$\delta = 0.069$	average investment-capital ratio	= 0.069	0.069
$\varphi = 2.05$	hours worked	= 0.33	0.33
$\theta = 0.54$	debt-to-assets ratio	= 0.37	0.371
$\rho_{\varepsilon} = 0.6$	corr. in investment rate	= 0.058	0.050
$\sigma_{\varepsilon} = 0.1$	std. in investment rate	= 0.337	0.300
$\omega = 0.6$	investment rate $>20\%$	= 0.186	0.185
$\xi = 0.5$	2015 bonus rate		
$\bar{I} = 0.092$	2015 threshold model counterpart Detail		

Model validation: investment rate distribution for large firms

- Simulate 50,000 unconstrained firms for 100 periods
- Take the last 17 periods and plot investment rate distribution for firm × periods
- Model with investment deduction tightly match the investment rate distribution

Model validation: heterogeneous investment response in the short-run

- Simulate 50,000 firms for 100 periods
- Drop credit at date 79 and boost bonus rate at date 80
 - aggregate tax term elasticity from date 79 to date 80: −1.23
- Zwick and Mahon (2017): -1.6

- Introduction
- Model
- Calibration
- Long-run effects of corporate tax deductions
- Short-run dynamics of corporate tax deduction
- Application: policy evaluation

Aggregate outcomes as percentage deviation of baseline

Variable	S179	Bonus	S179 + Bonus	Tax cut
Output	1.61%	1.06%	1.31%	0.64%
Consumption	1.55%	0.92%	1.27%	0.56%
Labor	0.06%	0.13%	0.04%	0.08%
Capital	4.22%	3.21%	3.39%	1.95%
Investment	4.22%	3.21%	3.39%	1.95%
Measured TFP	0.32%	0.03%	0.28%	0.01%
Dividend	2.08%	10.14%	2.99%	-2.09%

- \blacksquare Each policy costs 0.3% of baseline GDP and delivers the same government spending \bar{G}
- In S179 + Bonus, policy tools are 82% of the level in S179 and Bonus
- Untargeted nature of bonus induces dividend payment: recall $D \propto \mathcal{J}(k',k)$
 - unconstrained firms: user cost of capital drops, easier to achieve target capital

Distribution of Excess Return on Investment

	mean	mass at 0
baseline	1.24	20%
S179	1.08	31%
Bonus	1.09	26%

Expanding S179 reduces investment wedge for productive firms

- Introduction
- Model
- Calibration
- Long-run effects of corporate tax deductions
- Short-run dynamics of corporate tax deduction
- Application: policy evaluation

Corporate tax deductions leads to faster recoveries after credit shocks

Exercise Two economy, w/ and w/o deductions

Shock 27% initial drop in credit, $\rho=0.909$ lead to 26% drop in debt

Control Hold $\{G\}_{t=0}^T$ fixed

Summary

	w/ deduct	w/o deduct
Half life: \hat{z}	12 period	16 period
Trough: \hat{z}	-0.95%	-0.91%
Half life: y	14 period	16 period
Trough: y	-3.38%	-3.05%

Almost no role of corporate taxation following a TFP shock

- Introduction
- Model
- Calibration
- Long-run effects of corporate tax deductions
- Short-run dynamics of corporate tax deduction
- Application: policy evaluation

Comparison of temporary investment tax deductions under credit shocks

Shock 27% initial drop in credit, $\rho=0.909$ lead to 26% drop in debt

Policy implement in date 4, unexpected by HH $\,$

S179 boost \hat{z} by 0.05% at date 6

	Y	C	K
trough ↓	0.51%	0.28%	0.29%

Bonus boost \hat{z} by 0.005% at date 6

	Y	C	K
trough ↓	0.38%	0.14%	0.19%

S179 + Bonus boost \hat{z} by 0.04% at date 6

	Y	C	K
trough ↓	0.35%	0.19%	0.25%

Comparison of temporary investment tax deductions under credit shocks

Shock 27% initial drop in credit, $\rho=0.909$ lead to 26% drop in debt

Policy implement in date 4, unexpected by HH

S179 boost \hat{z} by 0.05% at date 6

	Y	C	K
trough \downarrow	0.51%	0.28%	0.29%

Bonus boost \hat{z} by 0.005% at date 6

	I		17
trough ↓	0.38%	0.14%	0.19%

S179 + Bonus boost \hat{z} by 0.04% at date 6

	Y	C	K
trough ↓	0.35%	0.19%	0.25%

Model Calib LR SR **App**

Comparison of temporary investment tax deductions under credit shocks

Intro

Shock 27% initial drop in credit, $\rho=0.909$ lead to 26% drop in debt

Policy implement in date 4, unexpected by HH

S179 boost \hat{z} by 0.05% at date 6

	Y	C	K
trough \downarrow	0.51%	0.28%	0.29%

Bonus boost \hat{z} by 0.005% at date 6

	Y	C	K
$trough \downarrow$	0.38%	0.14%	0.19%

 $\mathsf{S}179 + \mathsf{Bonus} \,\,\mathsf{boost} \,\,\hat{z} \,\,\mathsf{by} \,\, 0.04\%$ at date 6

	Y	C	K
trough ↓	0.35%	0.19%	0.25%

Model Calib LR SR **App**

Comparison of temporary investment tax deductions under credit shocks

Shock 27% initial drop in credit, $\rho=0.909$ lead to 26% drop in debt

Policy implement in date 4, unexpected by HH

S179 boost \hat{z} by 0.05% at date 6

	Y	C	K
trough \downarrow	0.51%	0.28%	0.29%

Bonus boost \hat{z} by 0.005% at date 6

$$\begin{array}{c|cccc} & Y & C & K \\ \hline \text{trough} \downarrow & 0.38\% & 0.14\% & 0.19\% \\ \end{array}$$

 $\mathsf{S}179 + \mathsf{Bonus}$ boost \hat{z} by 0.04% at date 6

	Y	C	K
trough ↓	0.35%	0.19%	0.25%

Conclusions

- Equilibrium model of how investment tax credit and subsidy policies boost economy
- Use model to quantify the macroeconomics effects of both subsidy policies:
 - S179 boost GDP by motivating marginal firms to be unconstrained and alleviate misallocation
 - ullet Bonus depreciation is 30% less effective than S179 as it motivates dividend payment
 - Cutting statutory tax rate is the least effective
- What's next:
 - Permanent change in policies
 - Policy effectiveness under aggregate uncertainty
 - Endogenizing financial frictions: does deduction policy reduce the incidence of firm default?

References Empirical Model

References I

- Barro, Robert J. and Jason Furman (2018) "Macroeconomic Effects of the 2017 Tax Reform," *Brookings Papers on Economic Activity*, 2018 (1), 257–345, 10.1353/eca.2018.0003.
- Chodorow-Reich, Gabriel, Matthew Smith, Owen Zidar, and Eric Zwick (2024a) "Tax Policy and Investment in a Global Economy," *SSRN Electronic Journal*, 10.2139/ssrn.4746790.
- Chodorow-Reich, Gabriel, Owen Zidar, and Eric Zwick (2024b) "Lessons from the Biggest Business Tax Cut in US History," *Journal of Economic Perspectives*, 38 (3), 61–88, 10.1257/jep.38.3.61.
- Cooper, Russell W. and John C. Haltiwanger (2006) "On the Nature of Capital Adjustment Costs," *Review of Economic Studies*, 73 (3), 611–633, 10.1111/j.1467-937x.2006.00389.x.
- Cummins, Jason G., Kevin A. Hassett, and R.Glenn Hubbard (1996) "Tax reforms and investment: A cross-country comparison," *Journal of Public Economics*, 62 (1), 237–273, https://doi.org/10.1016/0047-2727(96)01580-0, Proceedings of the Trans-Atlantic Public Economic Seminar on Market Failures and Public Policy.
- Fernández-Villaverde, Jesús (2010) "Fiscal Policy in a Model With Financial Frictions," *American Economic Review*, 100 (2), 35–40, 10.1257/aer.100.2.35.

References Empirical Model

References II

- Goolsbee, A. (1998) "Investment Tax Incentives, Prices, and the Supply of Capital Goods," *The Quarterly Journal of Economics*, 113 (1), 121–148, 10.1162/003355398555540.
- Hall, Robert E. and Dale W. Jorgenson (1967) "Tax Policy and Investment Behavior," *The American Economic Review*, 57 (3), 391–414, http://www.jstor.org/stable/1812110.
- House, Christopher L. (2014) "Fixed costs and long-lived investments," *Journal of Monetary Economics*, 68, 86–100, 10.1016/j.jmoneco.2014.07.011.
- House, Christopher L and Matthew D Shapiro (2008) "Temporary Investment Tax Incentives: Theory with Evidence from Bonus Depreciation," *American Economic Review*, 98 (3), 737–768, 10.1257/aer.98.3.737.
- Joint Committee on Taxation (2017) "Macroeconomic Analysis Of The Conference Agreement For H.R. 1, "The Tax Cuts And Jobs Act"."
- Khan, Aubhik and Julia K. Thomas (2013) "Credit Shocks and Aggregate Fluctuations in an Economy with Production Heterogeneity," *Journal of Political Economy*, 121 (6), 1055–1107, 10.1086/674142.
- Koby, Yann and Christian Wolf (2020) "Aggregation in heterogeneous-firm models: Theory and measurement," Working Paper.

References Empirical Model

References III

- Lamont, Owen (1997) "Cash Flow and Investment: Evidence from Internal Capital Markets," *The Journal of Finance*, 52 (1), 83–109, 10.1111/j.1540-6261.1997.tb03809.x.
- Occhino, Filippo (2022) "The macroeconomic effects of the tax cuts and jobs act," *Macroeconomic Dynamics*, 27 (6), 1495–1527, 10.1017/s1365100522000311.
- ——— (2023) "The macroeconomic effects of business tax cuts with debt financing and accelerated depreciation," *Economic Modelling*, 125, 106308, 10.1016/j.econmod.2023.106308.
- Ohrn, Eric (2018) "The Effect of Corporate Taxation on Investment and Financial Policy: Evidence from the DPAD," *American Economic Journal: Economic Policy*, 10 (2), 272–301, 10.1257/pol.20150378.
- ——— (2019) "The effect of tax incentives on U.S. manufacturing: Evidence from state accelerated depreciation policies," *Journal of Public Economics*, 180, 104084, 10.1016/j.jpubeco.2019.104084.
- Summers, Lawrence H., Barry P. Bosworth, James Tobin, and Philip M. White (1981) "Taxation and Corporate Investment: A q-Theory Approach," *Brookings Papers on Economic Activity*, 1981 (1), 67, 10.2307/2534397.

References IV

Winberry, Thomas (2021) "Lumpy Investment, Business Cycles, and Stimulus Policy," *American Economic Review*, 111 (1), 364–396, 10.1257/aer.20161723.

Zwick, Eric and James Mahon (2017) "Tax Policy and Heterogeneous Investment Behavior," *American Economic Review*, 107 (1), 217–248, 10.1257/aer.20140855.

• Empirical Literatures

Model Appendix

Corporate tax deductions in the US

■ Consider a firm buying \$1000 of computer and interest rate is 4%:

Year	Cost $ imes$ Depreciation $\%$	Normal		50% Bonus	S179 eligible /
					100% Bonus
0	$1000 \times 20.00\%$	\$200	\Longrightarrow $+800 \times 0.5$	\$600	\$1000
1	$1000 \times 32.00\%$	\$320		\$160	\$0
2	$1000 \times 19.20\%$	\$192		\$96	\$0
3	$\$1000\times11.52\%$	\$115.2	\Rightarrow $\times 0.5$	\$57.5	\$0
4	$1000 \times 11.52\%$	\$115.2		\$57.5	\$0
5	$$1000 \times 5.76\%$	\$57.6		\$29	\$0
Total		\$1000		\$1000	\$1000
NPV		\$933		\$966	\$1000

Example: Modified Accelerated Cost Recovery System (MARCS)

Shawn bought and placed in service a used pickup for \$15,000 on March 5,1998. The pickup has a 5 year class life. His depreciation deduction for each year is computed in the following table.

Year	$Cost \times MACRS~\%$	Depreciation
1998	$$15,000 \times 20.00\%$	\$3,000
1999	$$15,000 \times 32.00\%$	\$4,800
2000	$15,000 \times 19.20\%$	\$2,880
2001	$15,000 \times 11.52\%$	\$2,880
2002	$15,000 \times 11.52\%$	\$2,880
2003	$$15,000 \times 5.76\%$	\$864
Total		\$15,000

VIACIOS FEICEILIAGE TADIE	MACRS	Percentage	Table
---------------------------	-------	------------	-------

MACKS Percentage Table							
Year	3 Year	5 Year	7 Year				
1	33.33%	20.00%	14.29%				
2	44.45%	32.00%	24.49%				
3	14.81%	19.20%	17.49%				
4	7.41%	11.52%	12.49%				
5		11.52%	8.93%				
6		5.76%	8.92%				
7			8.93%				
8			4.46%				

References Empirical

Long-duration industries respond more to bonus depreciation

References Empirical Model

Conforming states enjoys 18% of investment boosts

Table: Investment Impacts of State Bonus and State 179

Dependent Var:	In CapEx					
Specification	(1)	(2)	(3)	(4)		
State Bonus	0.038		0.031	0.174**		
	(0.036)		(0.037)	(0.073)		
State 179		0.013	0.012	0.020**		
		(0.009)	(0.009)	(0.009)		
Bonus 179 Interaction				-0.047***		
				(0.016)		
Year FE	✓	✓	✓	✓		
State Controls, Time Trends	✓	✓	✓	✓		
NAICS × Year FE	✓	✓	✓	✓		
Adj. R-Square	0.286	0.286	0.286	0.286		
State × NAICS Groups	883	883	883	883		
Observations	11,987	11,987	11,987	11,987		

Notes: Table 5 presents coefficient estimates of the impact of State 179 and State Bonus on Ln CapEx. All specifications include include year fixed effects, State \times NAICS fixed effects, state linear time trends, NAICS \times Year fixed effects, and a robust set if time-varying state level controls to capture the effect of changes in state politics, productivity, population, and finances. Standard errors are at the state level and are reported in parentheses. Statistical significance at the 1 percent level is denoted by ***, 5 percent by **, and 10 percent by *.

Heterogeneity in investment response

Table: Heterogeneity by Ex Ante Constraints

	Sa	les	Div payer?		Lagged cash	
	Small	Big	No	Yes	Low	High
~	6.29	3.22	5.98	3.67	7.21	2.76
$z_{N,t}$	(1.21)	(0.76)	(0.88)	(0.97)	(1.38)	(0.88)
Equality test $p = 0.030$		p = 0.079		p = 0.000		
Observations	177,620	255,266	274,809	127,523	176,893	180,933
Clusters (firms)	29,618	29,637	39,195	12,543	45,824	48,936
R^2	0.44	0.76	0.69	0.80	0.81	0.76

Heterogeneous response to bonus depreciation

Empirical

How to determine \bar{I}

In 2015.

- Real investment: \$2459.8B (Table 3.7 BEA)
- \blacksquare Numbers of firms in US: 5,900,731 (SUSB)
- lacktriangle Average investment: \$416,853
- Section 179 deduction: \$500,000
- Choose $\bar{I} = \frac{500,000}{416.853} \times$ aggregate investment ~ 0.092

Outline

Empirical Literatures

Model Appendix

Unconstrained firms' problem: positive taxable income

Let W function be the value function for unconstrained firms.

The start-of-period value before the realization of exit shock is

$$W^{0}(k, b, \psi, \varepsilon; \mu) = p(\mu)\pi_{d} \max_{n} \left\{ z\varepsilon F(k, n) - wn - b + (1 - \delta)k - \tau^{c}\mathcal{I}(0, k, \psi) \right\}$$
$$+ (1 - \pi_{d})W(k, b, \psi, \varepsilon; \mu)$$

Upon survival, unconstrained firms undertake binary choice,

$$W(k,b,\psi,\varepsilon;\mu) = \max \left\{ W^L(k,b,\psi,\varepsilon;\mu), W^H(k,b,\psi,\varepsilon;\mu), W^N(k,b,\psi,\varepsilon;\mu) \right\}.$$

Firm's current value: $W(k,b,\psi,\varepsilon;\mu)=W(k,0,\psi,\varepsilon;\mu)-pb$ Start-of-period value: $W^0(k,b,\psi,\varepsilon;\mu)=W^0(k,0,\psi,\varepsilon;\mu)-pb$.

Unconstrained firms' problem (Cont.)

Given these transformation, firms' problem can be rewritten as

$$\begin{split} W^L(k,b,\psi,\varepsilon_i;\mu) &= p\left((1-\tau^c)(z\varepsilon f(k,n)-wn)-b+(1-\tau^c\omega)(1-\delta)k+\tau^c\delta^\psi\psi\right) \\ &+ \max_{k'\leq (1-\delta)k+\bar{I}} \left\{-p(1-\tau^c\omega)k'+\beta\sum_{j=1}^{N_\varepsilon}\pi_{ij}^\varepsilon W^0(k',0,\psi',\varepsilon_j;\mu')\right\}, \\ W^H(k,b,\psi,\varepsilon_i;\mu) &= p\left((1-\tau^c)(z\varepsilon f(k,n)-wn)-b+(1-\tau^c\omega\xi)(1-\delta)k+\tau^c\delta^\psi\psi\right) \\ &+ \max_{k'\in ((1-\delta)k+\bar{I},\bar{k})} \left\{-p(1-\tau^c\omega\xi)k'+\beta\sum_{j=1}^{N_\varepsilon}\pi_{ij}^\varepsilon W^0(k',0,\psi',\varepsilon_j;\mu')\right\}, \\ W^N(k,b,\psi,\varepsilon_i;\mu) &= p\left(z\varepsilon f(k,n)-wn-b+(1-\delta)k\right) \\ &+ \max_{k'\geq \bar{k}} \left\{-pk'+\beta\sum_{j=1}^{N_\varepsilon}\pi_{ij}^\varepsilon W^0(k',0,\psi',\varepsilon_j;\mu')\right\}, \end{split}$$

Unconstrained firms' problem when taxable income is nonpositive

The following question defines the lower bound for capital when the firms are having zero or negative taxable income:

$$W^{N}(k,b,\psi,\varepsilon_{i};\mu) = p(y-wn-b+(1-\delta)k) + \max_{k'} \left\{ -pk' + \beta \sum_{j=1}^{N_{\varepsilon}} \pi_{ij}^{\varepsilon} W^{0}(k',0,\psi',\varepsilon_{j};\mu') \right\},\,$$

where

$$\psi' = (1 - \delta^{\psi})\psi + (1 - \mathcal{J}(I))\omega I \qquad \text{if } (y - wn - \mathcal{J}(I)\omega I - \delta^{\psi}\psi) \ge 0$$

$$\psi' = \psi + \omega I - y + wn \qquad \text{if } (y - wn - \mathcal{J}(I)\omega I - \delta^{\psi}\psi) < 0$$

Minimum Saving Policy

The minimum saving policy, $B^w(k,\psi,\varepsilon)$, can be recursively calculated by the following two equations with both policy functions for labor, $N(k,\varepsilon)$, and capital, $K^w(k,\psi,\varepsilon)$,

$$\begin{split} B^w(k,\psi,\varepsilon) &= \min_{\varepsilon_j} \left(\tilde{B}(K^w(k,\psi,\varepsilon_i),\psi',\varepsilon_j) \right) \\ \tilde{B}(k,\psi,\varepsilon_i) &= \frac{1}{1 - \tau^c \tau^b} \Big((1 - \tau^c) \pi(k,\varepsilon_i) + \tau^c \delta^\psi \psi \\ &\quad - (1 - \tau^c \omega \mathcal{J} \left(K^w(k,\psi,\varepsilon_i) - (1 - \delta)k \right) \right) (K^w(k,\psi,\varepsilon_i) - (1 - \delta)k) \\ &\quad + q \min \left\{ B^w(k,\psi,\varepsilon_i), \theta K^w(k,\psi,\varepsilon_i) \right\} \Big), \end{split}$$

I set interest deductability $\tau^b=0$ as minimum saving policy cannot converge with positive τ^b . As $\frac{1}{q}$ is the risk-free rate, firms are paying $\frac{q}{1-\tau^c\tau^b}>q$, implies the interest rate that firms are paying is less than risk-free rate.

Constrained firms' problem

Constrained firms' bond decision is implied by binding collateral constraints, i.e., $B^c(k,b,\psi,\varepsilon) = \theta K^c(k,b,\psi,\varepsilon) \text{, and the capital decision } K^c(k,b,\psi,\varepsilon) \text{ has to be determined recursively.}$

$$J(k, b, \psi, \varepsilon; \mu) = \max \left\{ J^H(k, b, \psi, \varepsilon; \mu), J^L(k, b, \psi, \varepsilon; \mu), J^N(k, b, \psi, \varepsilon; \mu) \right\},$$

and J^H , J_L and J_N are defined as

Constrained firms' problem: invest higher than threshold

$$J^{H}(k, b, \psi, \varepsilon; \mu) = \max_{k' \in \Omega_{H}(k, b, \psi, \varepsilon)} \beta \sum_{j=1}^{N_{\varepsilon}} \pi_{ij}^{\varepsilon} V^{0}(k', b_{H}^{2}(k'), \psi', \varepsilon_{j}; \mu'),$$

subject to

$$b_H(k') = -\frac{1}{q} \Big((1 - \tau^c) \pi(k, \varepsilon) - b + \tau^c \delta^{\psi} \psi - (1 - \tau^c \omega \xi) (k' - (1 - \delta)k) \Big),$$

$$\psi' = (1 - \delta^{\psi}) \psi + (1 - \xi) (k' - (1 - \delta)k),$$

The choice sets for H-type firms' problem are defined by

$$\Omega_H(k,b,\psi,\varepsilon) = \left[\max\left\{ (1-\delta)k + \bar{I}, \min\left\{ \bar{k}_H(k,b,\psi,\varepsilon), \bar{k} \right\} \right\}, \min\left\{ \bar{k}_H(k,b,\psi,\varepsilon), \bar{k} \right\} \right],$$

Maximum affordable capital: $\bar{k}_H=\frac{(1-\tau^c)\pi(k,\varepsilon)+\tau^c\delta^\psi\psi-b+(1-\tau^c\omega\xi)(1-\delta)k}{1-\tau^c\omega\xi-q\theta}$

Empirical

Constrained firms' problem: invest lower than threshold

$$J^{L}(k, b, \psi, \varepsilon; \mu) = \max_{k' \in \Omega_{L}(k, b, \psi, \varepsilon)} \beta \sum_{j=1}^{N_{\varepsilon}} \pi_{ij}^{\varepsilon} V^{0}(k', b_{L}^{2}(k'), \psi', \varepsilon_{j}; \mu'),$$

subject to

$$b_L(k') = \frac{1}{q} \Big(-(1 - \tau^c)\pi(k, \varepsilon) + b - \tau^c \delta^{\psi} \psi + (1 - \tau^c \omega)(k' - (1 - \delta)k) \Big),$$

$$\psi' = (1 - \delta^{\psi})\psi.$$

Choice set: $\Omega_L(k, b, \psi, \varepsilon) = \left[0, \max\left\{0, \min\left\{(1 - \delta)k + \bar{I}, \bar{k}_L(k, b, \psi, \varepsilon)\right\}\right\}\right],$

Maximum affordable capital: $\bar{k}_L = \frac{(1-\tau^c)\pi(k,\varepsilon)+\tau^c\delta^\psi\psi-b+(1-\tau^c\omega)(1-\delta)k}{1-\tau^c\psi-\sigma^\theta}$.

When taxable income is negative for constrained firms

$$J^{N}(k, b, \psi, \varepsilon; \mu) = \max_{k' \in \Omega^{N}(k, b)} \beta \sum_{j=1}^{N_{\varepsilon}} \pi_{ij}^{\varepsilon} V^{0}(k', b_{N}(k'), \psi', \varepsilon_{j}; \mu')$$

subject to

$$b_N(k') = -\frac{1}{q} \left(z \varepsilon f(k, n) - wn - b - (k' - (1 - \delta)k) \right)$$

$$\psi' = (1 - \delta^{\psi}) \psi + (1 - \xi) \omega (k' - (1 - \delta)k)$$

$$\Omega^N(k, b, \varepsilon) = \left[\min \left\{ \max \left\{ \bar{k}, 0 \right\}, \bar{k}_N(k, b, \varepsilon) \right\}, \bar{k}_N(k, b, \varepsilon) \right]$$

$$\bar{k}_N(k, b, \varepsilon) = \frac{z \varepsilon f(k, n) - wn - b + (1 - \delta)k}{1 - q\theta}$$

When taxable income is nonpositive

- In principle, IRS will not give tax subsidy if taxable income is negative.
- User cost of capital for firms with nonpositive taxable income is not affected by deduction.
- lacksquare Solving for $\mathcal{I} \geq 0$ gives the upper threshold for capital decision that pays corporate tax:

$$k' \leq \bar{k} \equiv \min \left(\frac{z \varepsilon f(k,n) - w n - \delta^{\psi} \psi}{\xi \omega} + (1 - \delta) k, \mathbf{K}_{max} \right),$$

Assume $F(k,n)=k^{\alpha}n^{\nu}$, I solve for $\bar{k}=(1-\delta)k+\bar{I}$ and get,

$$\tilde{k} \equiv \left(\frac{\delta^{\psi}\psi + \xi\omega\bar{I}}{A(w)z^{\frac{1}{1-\nu}}\varepsilon^{\frac{1}{1-\nu}}}\right)^{\frac{1-\nu}{\alpha}}$$

Firms that invest higher than threshold

$$v^{H}(k, b, \psi, \varepsilon_{i}; \mu) = \max_{D, k', b', n} D + \sum_{j=1}^{N_{\varepsilon}} \pi_{ij}^{\varepsilon} Q(\mu) v^{0}(k', b', \psi', \varepsilon_{j}; \mu'),$$

subject to

$$0 \leq D = (1 - \boldsymbol{\tau}^c)(z\varepsilon F(k,n) - wn) - b$$

$$+ qb' - (1 - \boldsymbol{\tau}^c \xi \omega)(k' - (1 - \delta)k) + \boldsymbol{\tau}^c \delta^\psi \psi. \tag{Dividend}$$

$$k' \in ((1 - \delta)k + \bar{I}, \bar{k}) \text{ and } k > \tilde{k} \tag{Choice Sets}$$

$$b' \leq \theta k' \tag{Collateral}$$

$$\psi' = (1 - \delta^\psi)\psi + (\omega - \omega \xi)(k' - (1 - \delta)k) \tag{deductible stock LoM}$$

$$\mu' = \Gamma(\mu) \tag{Distribution LoM}$$

 $b' < \theta k'$

 $\mu' = \Gamma(\mu)$

 $\psi' = (1 - \delta^{\psi})\psi$

$$v^{L}(k, b, \psi, \varepsilon_{i}; \mu) = \max_{D, k', b', n} D + \sum_{j=1}^{N_{\varepsilon}} \pi_{ij}^{\varepsilon} Q(\mu) v^{0}(k', b', \psi', \varepsilon_{j}; \mu'), \tag{1}$$

subject to

$$0 \le D = (1 - \tau^c)(z\varepsilon F(k, n) - wn) - b$$
$$+ ab' - (1 - \tau^c \omega)(k' - (1 - \delta)k) + \tau^c \delta^{\psi} \psi.$$

 $k' < (1-\delta)k + \bar{I}$ and $k > \hat{k}$

(Tax Benefit LoM)

(Distribution LoM)

(Dividend) (Choice Sets)

(Collateral)

Firms not paying corporate tax

$$v^{N}(k,b,\psi,\varepsilon_{i};\mu) = \max_{D,k',b',n} D + \sum_{j=1}^{N_{\varepsilon}} \pi_{ij}^{\varepsilon} Q(\mu) v^{0}(k',b',\psi',\varepsilon_{j};\mu'), \tag{2}$$

subject to

$$0 \leq D = z\varepsilon F(k,n) - wn - b + qb' - (k' - (1-\delta)k) \tag{Dividend}$$

$$k' \geq \max(\bar{k},0) \tag{Choice Sets}$$

$$b' \leq \theta k' \tag{Collateral}$$

$$\psi' = (1-\delta^{\psi})\psi + (\omega - \mathcal{J}(k',k))(k' - (1-\delta)k) \tag{Tax Benefit LoM}$$

$$\mu' = \Gamma(\mu) \tag{Distribution LoM}$$

Household

In each period, representative households maximize their lifetime utility by choosing consumption, c, labor supply, n^h , future firm shareholding, λ' , and future bond holding, a':

$$V^{h}(\lambda, a; \mu) = \max_{c, n^{h}, a', \lambda'} \left\{ u(c, 1 - n^{h}) + \beta V^{h}(\lambda', a'; \mu') \right\}$$
s.t. $c + q(\mu)a' + \int \rho_{1}(k', b', \psi', \varepsilon'; \mu)\lambda'(d[k' \times b' \times \psi' \times \varepsilon']) \leq (1 - \tau^{n})w(\mu)n^{h},$ (3)
$$+ a + \int \rho_{0}(k, b, \psi, \varepsilon; \mu)\lambda(d[k \times b \times \psi \times \varepsilon]) + R - T$$

where $\rho_0(k, b, \psi, \varepsilon)$ is the dividend-inclusive price of the current share, $\rho_1(k', b', \psi', \varepsilon')$ is the ex-dividend price of the future share, τ^n is payroll tax, R is the steady state government lump-sum rebates to households, and T is lump-sum tax to fund policy changes.

Equilibrium

Market clear :
$$Y = C + [(1 - \pi_d)(K' - (1 - \delta)K) - \pi_d(1 - \delta)K] + \pi_d k_0 + \bar{G}$$

Output :
$$Y = \int z \varepsilon F(k, n(k, \varepsilon)) d\mu$$

Capital:
$$K = \int k d\mu$$

Labor :
$$N^h=N$$
 , where $N=\int n(k,arepsilon)d\mu$

Deductible stocks :
$$\Psi = \int \psi(k,\psi,\varepsilon) d\mu$$

Debt :
$$B = \int b d\mu$$

Corp. revenue:
$$R = \tau^c \int \max \left(z \varepsilon F(k,n) - wn - \mathcal{J}(k',k) (K' - (1-\delta)k) - \delta^\psi \psi, 0 \right) d\mu$$

Gov. Budget :
$$\bar{G} = \tau^n w N^h + R + T$$

Empirical

Household Optimality Conditions

After-tax wage fully compensate MRS between leisure and consumption:

$$w(\mu) = \frac{1}{(1-\tau^n)} \frac{D_2 u(c, 1-n^h)}{D_1 u(c, 1-n^h)}$$

With $u(c, 1-n^h) = \log c + \varphi(1-n^h)$, implied Frisch elasticity is ∞ ,

$$w(\mu) = \frac{\varphi c}{(1 - \tau^n)}$$

■ As there's no agg. shock, SDF equals discounting factor equals to bond prices

$$Q(\mu) = \beta \frac{D_1 u(c, 1 - n^h)}{D_1 u(c, 1 - n^h)} = \beta = q$$

Exogenous Parameters

	Parameter	Value	Reason
Exogenous parameters			
fraction of entrants capital endowment	χ	0.1	10% of aggregate capital
exogenous exit rate	π_d	0.1	10% entry and exit
Corporate tax rate	$ au^c$	0.21	US Tax schedule after TCJA
Tax benefit depreciation rate	δ^ψ	0.138	$\delta^\psi=2\delta$ (Double-declining balance)

Frequency and Functional Form

- Model frequency: annual
- Household utility function: $u(c, n^h) = \log c + \varphi(1 n^h)$
- Production function: $F(k,n) = k^{\alpha}n^{\nu}$
- Initial capital for entrants: $k_0 = \chi \int k \tilde{\mu}(d[k \times b \times \psi \times \varepsilon])$
- lacksquare Initial bond and taxable capital: $b_0=0$ and $\psi_0=0$
- Idiosyncratic productivity shock: $\log \varepsilon' = \rho_{\varepsilon} \log \varepsilon + \eta'_{\varepsilon}$, $\eta_{\varepsilon} \sim N(0, \sigma_{\varepsilon}^2)$
 - 7-state Markov chain discretized using Tauchen algorithm

Empirical

Steady State Comparison (Cont.)

Description	baseline	S179	bonus	both
marginal utility of consumption	100 (2.80)	98.47	99.08	98.13
wage	100 (0.97)	101.55	100.92	101.91
า				
unconstrained firm mass	0.080	0.093	0.099	0.129
constrained firm mass	0.920	0.907	0.901	0.871
capital: unconstrained	100 (2.70)	94.31	99.78	92.51
capital: constrained	100 (0.96)	104.36	100.39	100.03
investment: unconstrained	100 (0.01)	170.53	7.04	102.47
investment: constrained	100 (0.18)	102.29	106.01	105.38
'ariables				
dividend	100 (0.03)	102.08	110.14	115.64
average firm value	100 (3.41)	98.02	94.13	95.35
user cost of capital	100 (0.14)	86.26	97.44	85.45
effective corporate tax rate	100 (0.10)	92.43	94.08	91.68
	marginal utility of consumption wage unconstrained firm mass constrained firm mass capital: unconstrained capital: constrained investment: unconstrained investment: constrained dividend average firm value user cost of capital	marginal utility of consumption wage 100 (2.80) unconstrained firm mass 0.080 constrained firm mass 0.920 capital: unconstrained 100 (2.70) capital: constrained 100 (0.96) investment: unconstrained 100 (0.01) investment: constrained 100 (0.18) fariables dividend 100 (0.03) average firm value 100 (3.41) user cost of capital 100 (0.14)	marginal utility of consumption wage 100 (2.80) 98.47 100 (0.97) 101.55	marginal utility of consumption wage 100 (2.80) 98.47 99.08 100 (0.97) 101.55 100.92 100.92 100.93 0.099 100.93 0.099 100.93 0.099 100.93 0.990 0.907 0.901 100.93 0.990 0.907 0.901 100.93 100.93 100.99 100.990 100.

References Empirical Model

Capital choice state space

Model prediction: not much heterogeneity in long-run investment response

- Include the GE effects
- \blacksquare aggregate elasticity: -0.17

Investment elasticity without financial friction

- When $\theta \to \frac{1}{q}$, the collateral constraints are not binding
- Aggregate tax term elasticity: 0.29

Investment Response to raising bonus depreciation

Tax term: $\frac{1-\tau^c \omega \xi}{1-\tau^c}$; Elasticity: $\frac{\%\Delta \text{Investment at bin}}{\%\Delta \text{tax term}}$

> Size-dependent investment response 0.20.18

Private excess return on capital

N-type firms:

$$\beta \sum_{i=1}^{N_{\varepsilon}} \pi_{ij}^{\varepsilon} \left[\frac{\partial V^{0}(k', b', \psi', \varepsilon_{j}; \mu)}{\partial k'} + \frac{\partial V^{0}(k', b', \psi', \varepsilon_{j}; \mu)}{\partial \psi'} \frac{\partial \psi'}{\partial k'} \right] - 1$$

H-type firms:

$$\beta \sum_{j=1}^{N_{\varepsilon}} \pi_{ij}^{\varepsilon} \left[\frac{\partial V^{0}(k', b', \psi', \varepsilon_{j}; \mu)}{\partial k'} + \frac{\partial V^{0}(k', b', \psi', \varepsilon_{j}; \mu)}{\partial \psi'} \frac{\partial \psi'}{\partial k'} \right] - (1 - \tau^{c} \omega \xi)$$

L-type firms:

$$\beta \sum_{j=1}^{N_{\varepsilon}} \pi_{ij}^{\varepsilon} \left[\frac{\partial V^{0}(k', b', \psi', \varepsilon_{j}; \mu)}{\partial k'} + \frac{\partial V^{0}(k', b', \psi', \varepsilon_{j}; \mu)}{\partial \psi'} \frac{\partial \psi'}{\partial k'} \right] - (1 - \tau^{c} \omega)$$

Approximating the derivatives of the value functions

I use RHS and LHS secant to approximate the derivatives of the value functions.

Let
$$i_{\varepsilon}=1,\ldots,N(\varepsilon)$$
, $i_b=1,\ldots,N(b)$, $i_k=1,\ldots,N(k)$ and $i_{\psi}=1,\ldots,N(\psi)$.

RHS secant at $(k_{i_k},b_{i_b},\psi_{i_\psi},\varepsilon_{i_\varepsilon})$, $i_k=1,\ldots,N(k)-1$ is

$$s_r(k_{i_k},b_{i_b},\psi_{i_\psi},\varepsilon_{i_\varepsilon}) = \frac{V^0(k_{i_k+1},b_{i_b},\psi_{i_\psi},\varepsilon_{i_\varepsilon}) - V^0(k_{i_k},b_{i_b},\psi_{i_\psi},\varepsilon_{i_\varepsilon})}{k_{i_k+1} - k_{i_k}}$$

LHS secant at $(k_{i_k}, b_{i_b}, \psi_{i_\psi}, \varepsilon_{i_\varepsilon})$, $i_k = 2, \dots, N(k)$ is

$$s_l(k_{i_k},b_{i_b},\psi_{i_\psi},\varepsilon_{i_\varepsilon}) = \frac{V^0(k_{i_k},b_{i_b},\psi_{i_\psi},\varepsilon_{i_\varepsilon}) - V^0(k_{i_k-1},b_{i_b},\psi_{i_\psi},\varepsilon_{i_\varepsilon})}{k_{i_k}-k_{i_k-1}}$$

Approximating the derivatives of the value functions (Cont.)

When
$$i_k = 2, ..., N(k) - 1$$
,

$$D_k V^0(k_{i_k}, b_{i_b}, \psi_{i_\psi}, \varepsilon_{i_\varepsilon}) = 0.5 s_r(k_{i_k}, b_{i_b}, \psi_{i_\psi}, \varepsilon_{i_\varepsilon}) + 0.5 s_l(k_{i_k}, b_{i_b}, \psi_{i_\psi}, \varepsilon_{i_\varepsilon})$$

When $i_k = 1$,

$$D_k V^0(k_{i_k}, b_{i_b}, \psi_{i_{\psi}}, \varepsilon_{i_{\varepsilon}}) = s_r(k_{i_k}, b_{i_b}, \psi_{i_{\psi}}, \varepsilon_{i_{\varepsilon}})$$

When
$$i_k = N(k)$$
,

$$D_k V^0(k_{i_k}, b_{i_b}, \psi_{i_{\psi}}, \varepsilon_{i_{\varepsilon}}) = s_l(k_{i_k}, b_{i_b}, \psi_{i_{\psi}}, \varepsilon_{i_{\varepsilon}})$$

Distribution: median productivity

Distribution: minimum productivity

Empirical

IRF: negative credit shocks with scale 27% and persistence 0.909

References Empirical

IRF: negative credit shocks with scale 27% and persistence 0.909

References Empirical

IRF: negative credit shocks with scale 27% and persistence 0.909

References Empirical

IRF: negative credit shocks with scale 27% and persistence 0.909

