Лабораторная работа 1.3.3

ИЗМЕРЕНИЕ ВЯЗКОСТИ ВОЗДУХА ПО ТЕЧЕНИЮ В ТОНКИХ ТРУБКАХ

Татаурова Юлия Романовна

6 сентября 2024 г.

Цель работы: экспериментально исследовать свойства течения газов по тонким трубкам при различных числах Рейнольдса; выявить область применимости закона Пуазейля и с его помощью определить коэффициент вязкости воздуха.

Оборудование: система подачи воздуха (компрессор, поводящие трубки); газовый счетчик барабанного типа; спиртовой микроманометр с регулируемым наклоном; набор трубок различного диаметра с выходами для подсоединения микроманометра; секундомер.

Теоретические сведения

Течение в трубе может быть либо ламинарным, либо турбулентным. При ламинарном течении слои жидкости не перемешиваются между собой. Турбулентному течению характерны образование вихрей и активное перемешивание слоев. Характер течения определяется числом Рейнольдса:

$$Re = \frac{\rho ur}{\eta} \tag{1}$$

С ростом числа Рейнольдса достигается его критическое значение ($Re_{text} \approx 10^3$), при котором характер течения из ламинарного переходит в турбулентное. Из закона Ньютона для силы вязкого трения в жидкостях и газах:

$$\tau_{xy} = -\eta \frac{\partial v_x}{\partial y} \tag{2}$$

следуют следующие формулы:

$$Q = \frac{\pi R^4 \Delta P}{8\eta l} \tag{3}$$

$$u(r) = \frac{\Delta P}{4l}(R^2 - r^2) \tag{4}$$

$$u_{\rm cp} = \frac{Q}{\pi R^2} = \frac{u_{\rm max}}{2} \tag{5}$$

Ясно, что распределение скорости в трубе не будет пуазейлевским сразу. Оценим расстояние от начала трубы, на котором течение можно считать пуазейлевским:

$$K \sim \frac{1}{2}\rho u^2 \pi R^2 dx$$

$$A_{\text{Tp}} \sim \eta \frac{du}{dr} 2\pi R dx l$$

$$\frac{du}{dr} \sim \frac{\Delta u}{R} \sim \frac{u}{R}$$

$$Re = \frac{K}{A_{\text{Tp}}}$$

$$l_{\text{пред}} \sim R \cdot Re$$

Примем $l_{\text{vcr}} = 0.2R \cdot Re$

Экспрериментальная установка

Поток воздуха поступает через газовый счетчик в трубку. Интенсивность подачи воздуха регулируется краном. В разные части трубки можно подключать манометр, чтобы измерять разность давлений на измеряемых концах трубки. С помощью газового счетчика и секундомера измеряется средний объемный расход газа $Q=\frac{\Delta V}{\Delta t}$

Рис. 1: Экспериментальная установка

Экспрериментальные данные и ход работы

Измерим параметры окружающей среды:

P_{atm} , к $\Pi \mathrm{a}$	φ , %	$t^{\circ}C$
100.68	20	24.1

Таблица 1: Параметры окружающей среды

Эксперимент на первой трубке

$$d_{ ext{труб}} = 3.95 \pm 0.05 \; ext{мм}$$
 $l_{ ext{труб}} = 90 ext{см}$

Рассчитаем значение $\Delta P_{\rm kp}$ и $Q_{\rm kp}$, при котором число Рейнольдса станет равным критическому Reкр $\approx 10^3$. Для оценки будем считать $\eta \approx 2 \cdot 10^{-5}~{\rm Ha\cdot c.}$ Плотность воздуха из уравнения идеального газа:

$$\rho = \frac{P\mu}{RT} \tag{6}$$

$\Delta P_{ m \kappa p}$, к $\Pi { m a}/{ m Дел}$	$Q_{\rm kp}, {\rm M}^3/{\rm c} \cdot 10^{-5}$	$l_{\rm kp}, { m cm}$
182 / 92	10.8	39.5

Таблица 2: Критический объемный расход, давление и длина (k = 0.2)

Определим V_{\min} и t_{\min} , при которых относительная погрешность измерения Q не больше $\varepsilon=1\%$.

$$\sigma_V=0.005$$
, тогда $V_{\min}=rac{\sigma_V}{arepsilon}=0.5$ л Аналогично $t_{\min}=rac{\sigma_{
m t}}{arepsilon}$, где

$$\sigma_{\rm t} = \sqrt{\frac{\sum_{i=1}^{N} (t_{\rm cp} - t_{\rm i})^2}{N-1}} = 0.83 \text{ c} \rightarrow t_{\rm min} = 8.3 \text{ c}$$

$N_{\bar{0}}$	1	2	3	4	5	6	7
t ,c	5.97	5.77	5.88	5.76	5.74	5.72	5.84

Таблица 3: Время прохождения V_{\min} объема газа

Теперь определим зависимость перепада давления от объемного расхода при ламинарном и турбуло

$\mathcal{N}_{\overline{0}}$	1	2	3	4	5	6	7
t ,c	38.47	26.85	20.23	16.92	13.25	11.62	10.87
ΔP , Дел	20	30	40	50	60	71	80
Q, мл	11.36	17.61	24.17	38.82	48.92	61.12	71.43

Таблица 4: Зависимость давления от объемного расхода $\Delta P(Q)$ в ламинарном режиме (k=0.2)

В логарифмической шкале:

Рис. 2: Зависимость давления от объемного расхода при ламинарном течении

Рис. 3: Логарифмическая ависимость давления от объемного расхода при ламинарном течении

Итак из логирифмического графика видно, что при ламинарном течении зависимость перепада давления от расхода линейная, что и было изложено в теории. Из первого графика, зная теперь угол наклона, можно определить значение коэффициента динамической вязкости

$$\eta = \frac{\pi R^4 \Delta P}{8lQ} = 2.9 \cdot 10^{-5} \tag{7}$$

$N_{ar{o}}$	1	2	3	4	5	6	7
ΔP , Дел	80	100	120	140	160	180	200
Q, мл	90.17	97.47	104.82	108.54	114.59	124.9	126.58

Таблица 5: Зависимость давления от объемного расхода $\Delta P(Q)$ в турбулентном режиме (k=0.4)

Рис. 4: Зависимость давления от объемного расхода при турбулентном течении

Здесь можно заметить, что степень зависимости находится между 2 и 3, тогда как в теоретических раскладках степень выходила равной 2.

По графику четко видно, что переход от ламинарного течения к турбулентному происходит при давлении в 80 Дел., в то время как в теории мы предположили переход при $P_{\rm kp}=91$ Дел.

Эксперимент на второй трубке

$$d_{ ext{труб}} = 5.3 \pm 0.05 \; ext{мм}$$
 $l_{ ext{труб}} = 90 ext{см}$

Определим зависимость перепада давления от объемного расхода при ламинарном и турбулентном

Рис. 5: Турбулентное и ламинарное течение

$\Delta P_{ m \kappa p}$, к $\Pi { m a}/{ m Дел}$	$Q_{\rm kp}, {\rm M}^3/{\rm c} \cdot 10^{-5}$	$l_{\rm kp},{ m cm}$
135 / 68	14	53

Таблица 6: Критический объемный расход, давление и длина (k = 0.2)

$\mathcal{N}_{ar{0}}$	1	2	3	4	5	6	7
ΔP , Дел	10	15	20	25	30	35	40
Q, мл	28.04	43.98	55.68	76.57	89.45	102.15	117.23

Таблица 7: Зависимость давления от объемного расхода $\Delta P(Q)$ в ламинарном режиме (k=0.2)

В логарифмической шкале:

Итак из логирифмического графика видно, что при ламинарном течении зависимость перепада давления от расхода линейная, что и было изложено в теории. Из первого графика, зная теперь угол наклона, можно определить значение коэффициента динамической вязкости воздуха η .

$$\eta = \frac{\pi R^4 \Delta P}{8lQ} = 2.7 \cdot 10^{-5} \text{ } \Pi \text{a.c}$$
 (8)

Здесь можно заметить, что степень зависимости находится между 2 и 3, тогда как в теоретических раскладках степень выходила равной 2.

По графику четко видно, что переход от ламинарного течения к турбулентному происходит при давлении в 70 Дел., в то время как в теории мы предположили переход при $P_{\rm kp}=68$ Дел.

Рис. 6: Зависимость давления от объемного расхода при ламинарном течении

Рис. 7: Логарифмическая ависимость давления от объемного расхода при ламинарном течении

Результаты и выводы

Погрешность вычисления коэффициента динамической вязкости можно оценить как $\varepsilon_{\eta} = \sqrt{1+1+(4*1)^2} \approx 4.2\%$ (1% погрешность определения Q, 1% погрешность определения длины трубки, и 16% от радиуса трубки т.к он входит со степенью 4)

$\mathcal{N}_{ar{0}}$	1	2	3	4	5	6	7
ΔP , Дел	70	90	100	110	120	130	140
Q, мл	196.08	203.67	220.91	224.22	231.66	241.16	251.47

Таблица 8: Зависимость давления от объемного расхода $\Delta P(Q)$ в турбулентном режиме (k=0.2)

Рис. 8: Зависимость давления от объемного расхода при турбулентном течении

1)Определение границы перехода от ламинарного течения к турбулентному: Из графика можно определить границу перехода, т.к резко меняется наклон. Соответственно посчитаем критическое значение числа Рейнольдса для двух трубок:

$$Re_{\rm kp} = \frac{\rho Q_{\rm kp}}{\pi R \eta}$$

 $Re_1 \approx 570; Re_2 \approx 995 \approx 10^3$

Как видим число Рейнольдса почти совпадает с предполагаемым равным 10^3 .

2)Зависимость перепада давлений от объемного расхода при ламинарном течении: Эта зависимость действительно оказалась линейной, как и предполагалось в теории. Из этого так же следует, что критическая длина трубки была так же определена верна и к моменту измерения распределение скоростей было пуассоновским.

3)Определение коэф. динамической вязкости:

С помощью графика зависимости давления от расхода было найдено значение динамической вязкости при ламинарном течении. Оно оказалось чуть больше, чем было предположено (2.7 > 2).

Рис. 9: Турбулентное и ламинарное течение