A

Project Report For

"ARDUINO DAY 2021"

Problem Statement: IoT Based Digital Notice Board using

Node MCU (ESP 8266)

Probable Discipline: Electronics & Communication

College Name: Sal Institute of Technology and

Engineering Research

College Code: 067

Team Leader Name: Rajput Kishan

Faculty Guide: Prof. Kuldeep Shukla

Prepared By:

Rajput Kishan Raghuvirsinh Sankle Akshay Prabhakar Jha Durganand Rajesh Mrigankshi Singh Chauhan Tripathi Neha Devisahai

(Electronics & Communication Engineering)

Under the guidance of

Prof. Kuldeep Shukla

(Electronics & Communication Engineering)

SAL Institute of Technology and Engineering Research, Ahmedabad

TABLE OF CONTENTS

Chapter No.	Description	Page No.
1	Synopsis Abstract	1
2	Block Diagram	2
3	Flow Diagram	3
4	Component List and Description	4
5	Results/Output	6
6	Advantages & Disadvantages /	7
6	limitations of Project	7
7	Future scope	8
	Datasheets	9

CHAPTER 1. SYNOPSIS ABSTRACT

Node MCU is an open-source IoT platform, it includes firmware which runs on the ESP8266 Wi-Fi soc which makes the Node MCU a good choice for the IoT Application. As most of the digital notice board prefer LED technology for display. We decided to use An LED Matrix, it is formed by Arrangement of LEDs in rows and columns to form a Matrix which is driven by 74HC595 shift register daisy chain and 4017-decade counter. Column scanning is done by 74HC595 Shift Registers, Shift Register has 8 bits serial-in, serial or parallel-out shift register with output latches. Row scanning is done by the 4017-decade counter. A decade counter is a circuit in which each of the chip outputs is turned on, one at a time, sequentially or in succession. The User will open the IP address using the Wi-Fi on his mobile or computer which will show An HTML website opens with an input text box, The LED Matrix will show the result as inserted into the text box.

CHAPTER 2. BLOCK DIAGRAM

For Column using 74HC595 Shift Register.

For Row using the 4017 Decade Counter.

3.3/5 V Power Supply.

CHAPTER 3. FLOW DIAGRAM

CHAPTER 4. COMPONENTS LIST & DESCRIPTION

1. LEDs

➤ A light-emitting diode (LED) is a semiconductor light source that emits light when current flows through it.

2. 4017 Decade Counter

➤ A decade counter is a circuit in which each of the chip outputs is turned on, one at a time, sequentially or in succession.

3. 74HC595 Shift Register

➤ 74HC595 is an "8-bit serial-in, serial or parallel-out shift register with output latches; 3-state." we can use it to control 8 outputs at a time while only taking up a few pins on the microcontroller.

4. 2N3904 Transistors

➤ The 2N3904 is a common NPN bipolar junction transistor used for general-purpose low-power amplifying or switching applications It is designed for low current and power, medium voltage, and can operate at moderately high speeds.

5. Node MCU (8266)

➤ Node MCU is an open-source firmware and development kit that helps you to prototype or build IoT products. It includes firmware, which runs on the ESP8266 Wi-Fi SoC from Espressif Systems, and hardware, which is based on the ESP-12 module.

6. General Purpose Board

➤ General-purpose PCB's are widely used to embed circuits randomly for running of hardware. Its layer is coated with copper and allows proper soldering without any short circuit.

7. Resistors

resistors are used to reduce current flow, adjust signal levels, to divide voltages, bias active elements, and terminate transmission lines, among other uses

8. Female and Male Headers

➤ A pin header is a form of electrical connector.

9. A Wi-Fi Connection

CHAPTER 5. RESULTS

(SAL)
Front View

Back View

CHAPTER 6. ADVANTAGES & DISADVANTAGES

Advantages

- 1. We can update our signboard with the use of programming
- 2. Quick Updates or a Fix can be possible.
- 3. Economical Efficient for the larger Matrix.
- 4. Power Efficient.
- 5. Easy to Operate.
- 6. The number LED in the matrix can be expanded with the simple addition of Shift register & Decade Counter IC.
- 7. All Components are easily available.
- 8. Does not require any special components.
- 9. Easy to install & Does not require more space.
- 10. Updates can be made wirelessly.
- 11.Brightness can be adjusted.
- 12. Special Characters or Symbols can be coded manually.

Disadvantages

1. Requires PC at the time of debugging.

CHAPTER 7. FUTURE SCOPE

- The LED matrix can be increased with Demands using 74HC595 Shift registers and 4017 Decade Counter.
- External Power Supply Can be used up to 12V.
- The RGB or Color Matrix can be made with the help of an RGB LED.
- The Brightness can be adjusted by the use of the PWM method or by the use of resistors.
- For More Robust Approach PCB layout can be made.
- Use of Sound or Vocal with the scrolling of text.

APPENDIX (COMPONENT'S DATA SHEETS)

5 mm Round White LED

Absolute Maximum Ratings (Ta=25°C)

Parameter	Symbol	Rating	Unit
Continuous Forward Current	$ m I_F$	30	mA
Peak Forward Current (Duty /10 @ 1KHZ)	I_{FP}	100	mA
Reverse Voltage	V_R	5	V
Operating Temperature	$T_{ m opr}$	-40 ~ +85	°C
Storage Temperature	$T_{ m stg}$	-40 ~ +100	°C
Soldering Temperature (T=5 sec)	T_{sol}	260 ± 5	°C
Power Dissipation	P_d	100	mW
Zener Reverse Current	Iz	100	mA
Electrostatic Discharge	ESD	4K	V

4017 Pin Information

Pin description

Symbol	Pin	Description
Q[0:9]	3, 2, 4, 7, 10, 1, 5, 6, 9, 11	Decoded output
GND	8	Ground (0 V)
Q5-9	12	Carry output (active LOW)
CP1	13	Clock input (HIGH-to-LOW edge-triggered)
CP0	14	Clock input (LOW-to-HIGH edge-triggered)
MR	15	Master reset input (active HIGH)
V_{CC}	16	Supply voltage

74HC595 Shift Register

		PINS 1-7, 15	Q0 " Q7	Output Pins
	_	PIN 8	GND	Ground, Vss
Q1 1 O	16 V _{CC}	PIN 9	Q7"	Serial Out
Q3 3	14 DS	PIN 10	MR	Master Reclear, active low
Q4 4 595	13 OE 12 ST_CP	PIN 11	SH_CP	Shift register clock pin
Q6 6	11 SH_CP	PIN 12	ST_CP	Storage register clock pin (latch pin)
Q7 7 GND 8	10 MR 9 Q7'	PIN 13	OE	Output enable, active low
MLA001		PIN 14	DS	Serial data input
		PIN 16	Vcc	Positive supply voltage

			MINNOM	MAX	UNIT
vcc	Supply voltage		2 5	6	V
		VCC = 2 V	1.5		
.	High lovel input valtage	VCC = 4.5 V	3.15		,
VIH	High-level input voltage	VCC = 6 V	4.2		ľ
		VCC = 2 V	0.5		
VIL Low-level input voltage	Low lovel input voltage	VCC = 4.5 V	1.35		,
	Low-level input voltage	VCC = 6 V	1.8]^
VI	Input voltage		0	VCC	V
VO	Output voltage		0	VCC	٧
		VCC = 2 V	1000		
?t/?v‡	Input transition rise/fall time	VCC = 4.5 V	500		
		VCC = 6 V	400		ns
TA	Operating free-air temperature		-55	125	?C

2N3904 Transistors

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
VCBO	Collector-Base Voltage (IE = 0)	60	V
VCEO	Collector-Emitter Voltage (IB = 0)	40	V
VEBO	Emitter-Base Voltage (IC = 0)	6 E	V
IC	Collector Current	200	mA
Ptot	Total Dissipation at TC = 25 oC	625	mW
Tstg	Storage Temperature	-65 to 150	оС
Tj	Max. Operating Junction Temperature	150	оС

- Microcontroller: Tensilica 32-bit RISC CPU Xtensa LX106
- Operating Voltage: 3.3V
- Input Voltage: 7-12V
- Digital I/O Pins (DIO): 16
- Analog Input Pins (ADC): 1
- UARTs: 1
- SPIs: 1
- I2Cs: 1
- Flash Memory: 4 MB
- SRAM: 64 KB
- Clock Speed: 80 Mhz
- Wi-Fi: IEEE 802.11 b/g/n:
- Integrated TR switch, balun, LNA, power amplifier and matching network WEP or WPA/WPA2 authentication, or open networks