

Universidade Estadual do Ceará

Capacitação em Inteligência Artificial e Aplicações

Classificadores Supervisionados: Classificação Bayesiana

- Prof. Gerson Vieira Albuquerque Neto
- Prof. Rodrigo Carvalho Souza Costa
- Prof. Yves Augusto Romero

Planejamento da Disciplina

D	S	Т	Q	Q	S	S
26	27 Introdução ao curso	28 Áreas e aplicações de IA	29 Tipos e definições de Inteligência artificial	30 Revisão de álgebra e probabilidade	31 Laboratório Python 1	1
2	Introdução aos classificadores supervisionados	4 Aula teórica Naive BaSim	5 Aula prática Naive BaSim	6 Feriado Semana Santa	Feriado Semana Santa	8
9	10 KNN + Métricas de Avaliação	11 Regressão Linear e e Introdução à árvores de decisão	12 Prática Regressão Lienar + Árvores de Decisão	13 Introdução à Clusterização + KMédias	14 Introdução ao PCA / prática com classificadores já implementados	15
16	17 Introdução ao Perceptron Simples – Prática	18 Teoria MLP / Aplicação scilearn	19 Introdução ao DeepLearning	20 Uso de biblioteca DeepLearning	21 Feriado Tiradentes	28
23	24 Introdução ao TensorFlow / Keras	25 Introdução ao Pytorch	26 Tensorflow for android	27	28	29

Objetivos da Aula

- Após a conclusão deste módulo, você será capaz de:
 - Compreensão de algoritmos de aprendizado baseado em similaridade.
 - Compreender como avaliar a eficiência do classificador

. Instituto Iracema Classificadores Supervisionados: Classificação Bayesiana pesquisa e inovação

- Classificação por k-NN
- Avaliação dos modelos de aprendizagem
- Formas de medir o erro

Algoritmo k-NN

- O algoritmo de classificação k-NN é um método teoricamente maduro e um dos algoritmos de aprendizado de máquina mais simples.
- De acordo com este método, se a maioria das k amostras mais semelhantes a uma amostra (vizinhos mais próximos no espaço próprio) pertencem a uma categoria específica, esta amostra também pertence a esta categoria.

A categoria da amostra ? varia de acordo o número dos nós mais próximos.

Medidas de Distância

Euclidiana

$$D(P_x, P_y) = \sqrt{\sum_{c=1}^{n} (x_i - y_i)^2} \qquad (P_x, P_y) = \sum_{c=1}^{n} |x_i - y_i| \qquad (P_x, P_y) = \sqrt{(x - \mu)S^{-1}(x - \mu)}$$

Manhatan

$$(P_x, P_y) = \sum_{c=1}^n |x_i - y_i|$$

Mahalanobis

$$(P_x, P_y) = \sqrt{(x - \mu)S^{-1}(x - \mu)}$$

K-NN

- Como o resultado da previsão é determinado com base no número e pesos dos vizinhos no conjunto de treinamento, o algoritmo k-NN tem uma lógica simples.
- k-NN é um método não paramétrico que geralmente é usado em conjuntos de dados com limites de decisão irregulares.
 - O algoritmo k-NN geralmente adota o método de votação majoritária para predição de classificação e o método de valor médio para predição de regressão.
- k-NN requer um grande número de cálculos.

Ajuste no valor de K

Geralmente, um valor k maior reduz o impacto do ruído na classificação, mas ofusca a fronteira entre as classes.

- A fronteira de decisão torna-se mais suave à medida que o número de k aumenta.
- À medida que o número k aumenta e tende ao infinito, todos os pontos de dados acabarão por se tornar todos azuis ou vermelhos.

! Instituto Iracema Classificadores Supervisionados: Classificação Bayesiana pesquisa e inovação

- Classificação por k-NN
- Avaliação dos modelos de aprendizagem
- Formas de medir o erro

Avaliação dos modelos: Capacidade de generalização

- O objetivo do aprendizado de máquina é que o modelo obtido após o aprendizado tenha um bom desempenho em novas amostras, não apenas em amostras usadas para treinamento.
- A capacidade de aplicar um modelo a novas amostras é chamada de generalização ou robustez.

Avaliação dos modelos: Erro

- Erro: diferença entre o resultado da amostra previsto pelo modelo obtido após a aprendizagem e o resultado real da amostra.
 - o Erro de treinamento: erro que você obtém ao executar o modelo nos dados de treinamento.
 - Erro de generalização: erro que você obtém ao executar o modelo em novos exemplos. Obviamente, preferimos um modelo com um erro de generalização menor.

Avaliação dos modelos: Capacidade do modelo

- Underfitting: ocorre quando o modelo ou o algoritmo não ajusta os dados bem o suficiente.
- Overfitting: ocorre quando o erro de treinamento do modelo obtido após o aprendizado é pequeno, mas o erro de generalização é grande (baixa canacidade de deneralização)

Avaliação dos modelos: complexidade do modelo

- Também conhecido como capacidade de ajuste do modelo
 - Quando a capacidade se adapta à complexidade da tarefa e à quantidade de dados de treinamento fornecidos, o efeito do algoritmo geralmente é ideal.
 - Modelos com capacidade insuficiente não podem resolver tarefas complexas e pode ocorrer um ajuste insuficiente.
 - Um modelo de alta capacidade pode resolver tarefas complexas, mas o excesso de ajuste pode ocorrer se a capacidade for maior do que a exigida por uma tarefa.

Underfitting Good fitting
Nem todos os recursos são aprendidos.

Overfitting Ruídos são aprendidos.

Causa do Overfitting: Erro

- Erro total da predição final = Bias² + Variância + Erro irredutível
- Geralmente, o erro de predição pode ser dividido em dois tipos:
 - Erro causado por "viés" ou Bias
 - Erro causado por "variância"
- Variancia:
 - O Deslocamento do resultado da previsão do valor médio
 - Erro causado pela sensibilidade do modelo a pequenas flutuações no conjunto de treinamento
- Bias:
 - Diferença entre o valor de previsão esperado (ou médio) e o valor correto que estamos tentando prever.

Relação entre variância e Bias

- As combinações de variância e viés são as seguintes:
 - Baixo viés e baixa variância > Bom modelo
 - Baixo viés e alta variância
 - Alto viés e baixa variância
 - Alto viés e alta variância > Modelo ruim
- Idealmente, queremos um modelo que possa capturar com precisão as regras nos dados de treinamento e resumir os dados invisíveis (novos dados).
- No entanto, geralmente é impossível para o modelo concluir as duas tarefas ao mesmo tempo.

Complexidade e erro do modelo

- À medida que a complexidade do modelo aumenta, o erro de treinamento diminui.
- À medida que a complexidade do modelo aumenta, o erro de teste diminui até um certo ponto e, em seguida, aumenta na direção inversa, formando uma curva convexa.

. Instituto Iracema Classificadores Supervisionados: Classificação Bayesiana pesquisa e inovação

- Classificação por k-NN
- Avaliação dos modelos de aprendizagem
- Formas de medir o erro

Avaliação de Desempenho: ML por Regressão

 Quanto mais próximo de zero é o Erro Absoluto Médio (MAE – Mean Absolute Error), melhor é o ajuste do modelo aos dados de treinamento.

$$MAE = \frac{1}{m} \sum_{i=1}^{m} |y_i - \hat{y}_i|$$

Erro Quadrático Médio (MSE - Mean Square Error)

$$MSE = \frac{1}{m} \sum_{i=1}^{m} (y_i - \widehat{y}_i)^2$$

- O valor de \mathbb{R}^2 varia no intervalo de $(-\infty, 1]$. Um valor grande indica que o modelo fez um bom ajuste aos dados de treinamento e é calculado a partir do RSS.
- O Valor de RSS indica a diferença entre o valor predito e o valor da amostra treinada.

$$R^{2} = 1 - \frac{RSS}{TSS} = 1 - \frac{\sum_{i=1}^{m} (y_{i} - \widehat{y}_{i})^{2}}{\sum_{i=1}^{m} (y_{i} - \overline{y}_{i})^{2}}$$

Avaliação de Desempenho: ML por Classificação

- Exemplo:
 - Detecção de Intrusão. Detecta casos positivos de intrusão e notifica o administrador de rede sobre o
- Comportamento normal (Acertos)
 - Tráfego suspeito detectado.
 - Tráfego legítimo que o IDS analisa como sendo normal.
- Falhas de detecção (Erros)
 - Tráfego suspeito não detectado.
 - Tráfego legítimo que o IDS analisa como sendo suspeito.

Avaliação de Desempenho: ML por Classificação

- Termos e definições:
 - P: positivo, indicando o número de casos positivos reais nos dados.
 - N: negativo, indicando o número de casos reais negativos nos dados.
 - TP: verdadeiro positivo, indicando o número de casos positivos que são corretamente classificados pelo classificador.
 - TN: verdadeiro negativo, indicando o número de casos negativos que são corretamente classificados pelo classificador.
 - O PF: falso positivo, indicando o número de casos positivos que são classificados incorretamente pelo classificador.
 - FN: falso negativo, indicando o número de casos negativos que são classificados incorretamente pelo classificador.

Valor Estimado Valor Real	Sim	Não	Total
Positivo	TP	FN	P
Negativo	FP	TN	N
Total	P'	N'	P + N

Matriz de Confusão

	TRUE	FALSE	
POSITIVE	True-Positive (Rule matched and attack present)	False-Positive (Rule matched and no attack present)	
NEGATIVE	True-Negative (No rule matched and no attack present)	False-Negative (No rule matched and attack present)	

Avaliação de Desempenho: Métricas calculadas a partir da matriz de confusão

Medida	Relação
Acurácia ou taxa de reconhecimento	$\frac{TP + TN}{P + N}$
Taxa de erro e taxa de classificação incorreta	$\frac{FP + FN}{P + N}$
Sensibilidade, taxa positiva verdadeira e recordação (recall)	$\frac{TP}{P}$
Especificidade e taxa de verdadeiro negativo	$\frac{TN}{N}$
Precisão	$\frac{TP}{TP + FP}$
F ₁ , média harmônica da taxa de recordação e precisão	$\frac{2 \times precision \times recall}{precision + recall}$
F_{β} , onde β é um número real não negativo	$\frac{(1+\beta^2) \times precision \times recall}{\beta^2 \times precision + recall}$

Exemplo de Métricas

- Treinamos um modelo de aprendizado de máquina para identificar se o objeto em uma imagem é um gato.
 - Agora usamos 200 imagens para verificar o desempenho do modelo.
 - o Entre as 200 imagens, objetos em 170 imagens são gatos, enquanto outros não.
 - O resultado de identificação do modelo é que os objetos em 160 imagens são gatos, enquanto outros não são
- Medidas

o Precisão:
$$P = \frac{TP}{TP + FP} = \frac{140}{140 + 20} = 87.5\%$$

• Taxa de Recordação:
$$R = \frac{TP}{P} = \frac{140}{170} = 82.4\%$$

O Acurácia:
$$ACC = \frac{TP + TN}{P + N} = \frac{140 + 10}{170 + 30} = 75\%$$

Avaliação de Desempenho: Matriz de Confusão

- Matriz de confusão: uma tabela de dimensões m×m.
- $CM_{i,j}$ das primeiras m linhas e m colunas indica o número de casos que realmente pertencem à classe i, mas que são classificados na classe j pelo classificador.
 - O Idealmente, para um classificador de alta precisão, a maioria dos valores de previsão deve estar localizada na diagonal de $CM_{1,1}$ a $CM_{m,m}$ da tabela, enquanto os valores fora da diagonal são 0 ou próximos de 0.
 - Ou seja, FN e FP estão próximos de 0.

Avaliação de Desempenho: Métricas calculadas a partir da matriz de confusão

Medida	Relação
Acurácia ou taxa de reconhecimento da	$\frac{\sum_{c=1}^{m} TP_c + \sum_{c=1}^{m} TN_c}{\sum_{c=1}^{m} P_c + N_c}$
Sensibilidade, taxa positiva verdadeira e recordação (recall) da classe C	$\frac{TP_c}{P_c}$
Precisão da classe C	$\frac{TP_c}{TP_c + FP_c}$
Macroprecisão	$\frac{\sum_{c=1}^{m} Precis\tilde{a}o_{C}}{\sum_{c=1}^{m} P_{C} + N_{C}}$
Microprecisão	$\frac{\sum_{c=1}^{m} TP_c}{\sum_{c=1}^{m} P_C + N_C}$

Universidade Estadual do Ceará

Na próxima aula

 Vamos compreender como funciona um algoritmo de árvore de decisão

Dúvidas?

Módulo de Inteligência Artificial

