B= $\Re\{\xi\}$, $\forall \xi\}$, \forall

Q2.

(23

We prove by induction. Assume $\frac{n}{2}$ n(n+3) = $\frac{n(n+3)(n+5)}{3}$ Base case: if n=0, $0 \times (0+3) = \frac{0 \times (0+1) \times (0+5)}{3} = 0$

Inductive case = if m=n-1, $\frac{m(m+1)(m+5)}{3} + n(n+3) = \frac{(n-1)n(n+4)}{3} + n(n+3)$ $= \frac{n^3+6n^2+5n}{3}$

 $\frac{n(n+1)(n+1)}{3} = \frac{n^3+6n^2+5n}{3}$

Since $\frac{n(n+1)(n+5)}{3} = \frac{(n-1)[(n-1)+1][(n-1)+5]}{3} + n(n+5)$, by induction we can conclude that for $n(N, o.3+1.4+2.5+...+n(n+3)) = \frac{n(n+1)(n+5)}{3}$

(24	
m=4.	
	$4! = 24$, $4^{2} + 2 = 18$, $4! > 4^{2} + 2$.
, , , , ,	For smaller natural numbers,
	$3! = 6, 3^2 + 2 = 11, 4! < 3^2 + 2.$
	$2! = 2$, $2^2 + 2 = 6$, $2! < 2^2 + 2$
	$ \cdot _{2} _{1}$, $ \cdot _{2}^{2}+2=3$, $ \cdot _{1}< \cdot _{2}^{2}+2$.