清华大学统计学辅修课程

Design and Analysis of Experiments

Lecture 8 – 2^{k-p} Fractional Factorial Design

周在莹 清华大学统计学研究中心

http://www.stat.tsinghua.edu.cn

Outline

- ► Fundamental Principles
- ► Fractional Factorial designs- one of the most important designs for screening
- 别名 ▶ Aliasing, Defining Relation and Word
 - > design generator, alias structure, word length pattern
- 辨识度▶ Design Resolution and Aberration 低阶混杂
 - > maximum resolution and minimum aberration
 - ► Fold-Over Technique
 - ▶ Plackett-Burman Designs

Fundamental Principles Regarding Factorial Effects

- Suppose there are k factors (A,B,...,J,K) in an experiment. All possible factorial effects include
 - > effects of order 1: A, B, ..., K (main effects)
 - > effects of order 2: AB, AC, ..., JK (2-factor interactions)
 - >
- ► <u>Hierarchical Ordering Principle</u>

阶层有序

- > Lower order effects are more likely to be important than higher order effects
- > Effects of the same order are equally likely to be important
- ► Effect Sparsity Principle (Pareto Principle) 稀疏性原则
 - > The number of relatively important effects in a factorial experiment is small
- ► Effect Heredity Principle
 - In order for an interaction to be significant, at least one of its parent factors should be significant

Motivation

- There may be many variables (often because we don't know much about the system). Need $r2^k$ runs for k factors (r=# of replicates)
- ► As the number of factors becomes large enough to be "interesting", the size of the designs grows very quickly, detailed later
- ► Emphasis is on **factor screening**; efficiently identify the factors with large effects
- ▶ May not have sources (time, money, etc) for full factorial design

Fraction Is Enough?

- Number of runs required for full factorial grows quickly, even r = 1
 - ➤ If $k = 7 \Rightarrow 128$ runs required
 - > Can estimate 127 effects
 - ➤ Only 7 df for main effects, 21 for 2-factor interactions, the remaining 99 df are for interactions of order ≥ 3
- ▶ Often only lower order effects are important
- ► Full factorial design may not be necessary according to
 - > Hierarchical Ordering Principle
 - Effect Sparsity Principle
- ▶ A fraction of the full factorial design (i.e. a subset of all possible level combinations) is sufficient
- ► Almost always run as unreplicated factorials, but often with center points

Discussion: 2⁵ design

▶ How many main effects and interaction effects respectively?

	Main		Interactions					
	Effects	2-Factor	3-Factor	4-Factor	5-Factor			
#	5	10	10	5	1			

- ▶ How many degrees of freedom for this design?
 - > 31 degrees of freedom in a 2⁵ design
- ► A full factorial design
 - > Covers all main effects and interaction effects
 - > Uses most degrees of freedom for interaction effects
- ▶ Use of a FF design instead of full factorial design is usually done for economic reasons. Since there is no free lunch, what price to pay?

Example 1

- Suppose you were designing a new car
- ▶ Wanted to consider the following nine factors each with 2 levels
 - 1. Engine Size; 2. Number of cylinders; 3. Drag; 4. Weight; 5. Automatic vs Manual; 6. Shape; 7. Tires; 8. Suspension; 9. Gas Tank Size;
- ▶ Only have resources for conduct $2^6 = 64$ runs
 - ➤ If you drop three factors for a 2⁶ full factorial design, those factor and their interactions with other factors cannot be investigated
 - > Want to investigate all nine factors in the experiment
 - ➤ A fraction of 2⁹ full factorial design will be used
 - Confounding (aliasing) will happen because using a subset
- ► How to choose (or construct) the fraction?

Aliasing of effects is a price one must pay for choosing a smaller design

Example 2: Filtration Rate Experiment

- ► Recall that there are four factors in the experiment (*A*, *B*, *C* and *D*), each of 2 levels
- ▶ 2⁴ full factorial design consists of all the 16 level combinations of the four factors
- Suppose the available resource is enough for conducting 8 runs
- ▶ We need to choose half of them
- ▶ The chosen half is called 2^{4-1} fractional factorial design
- ▶ Question: Which half we should select (construct)?

A	B	C	D
_	_	_	_
+	_	_	_
_	+	_	_
+	+	_	_
_	_	+	_
+	_	+	_
_	+	+	_
+	+	+	_
_	_	_	+
+	_	_	+
_	+	_	+
+	+	_	+
_	_	+	+
+	_	+	+
_	+	+	+
+	+	+	+

factor

Effect Aliasing and Defining Relation

- ▶ 2⁴⁻¹ Fractional Factorial Design
 - \triangleright the number of factors: k = 4
 - \triangleright the fraction index: p = 1
 - > the number of runs (level combinations):

$$N = 2^4/2^1 = 8$$

- \triangleright Construct 2^{4-1} designs via "confounding" (aliasing)
 - > Select 3 factors (e.g. A, B, C) to form a 2³ full factorial (basic design)
 - ➤ Confound (alias) D with a high order interaction of A, B and C. For example,

$$D = ABC$$

	factorial effects (contrasts)											
- 1	Α	В	С	AB	AC	ВС	ABC=D					
1	-1	-1	-1	1	1	1	-1					
1	1	-1	-1	-1	-1	1	1					
1	-1	1	-1	-1	1	-1	1					
1	1	1	-1	1	-1	-1	-1					
1	-1	-1	1	1	-1	-1	1					
1	1	-1	1	-1	1	-1	-1					
1	-1	1	1	-1	-1	1	-1					
_1	1	1	1	1	1	1	1					

Defining Relation & Defining Word

 \triangleright D = ABC, the chosen fraction includes the following 8 level combinations:

$$(-,-,-,-), (+,-,-,+), (-,+,-,+), (+,+,-,-),$$

 $(-,-,+,+), (+,-,+,-), (-,+,+,-), (+,+,+,+)$

- ▶ Note: 1 corresponds to + and −1 corresponds to −
- ► Verify:
 - ➤ 1. The chosen level combinations form a half of the 2⁴ design
 - ➤ 2. The product of columns A, B, C and D equals 1,i.e.,

	factorial effects (contrasts)											
ı	Α	В	С	AB	AC	ВС	ABC=D					
1	-1	-1	-1	1	1	1	-1					
1	1	-1	-1	-1	-1	1	1					
1	-1	1	-1	-1	1	-1	1					
1	1	1	-1	1	-1	-1	-1					
1	-1	-1	1	1	-1	-1	1					
1	1	-1	1	-1	1	-1	-1					
1	-1	1	1	-1	-1	1	-1					
1	1	1	1	1	1	1	1					

I = ABCD

which is called the <u>defining relation</u>, or *ABCD* is called a <u>defining word</u> (contrast)

Aliasing in 2^{4-1} Design

- ▶ For four factors A, B, C and D, there are $2^4 1$ effects:
 - *▶ A, B, C, D, AB, AC, AD, BC, BD, CD, ABC, ABD, ACD, BCD, ABCD*
- ► Contrasts for main effects by converting to –1 and + to 1; contrasts for other effects obtained by multiplication

Response	-	А	В	С	D	AB	 CD	ABC	BCD	 ABCD
$\overline{y_1}$	1	-1	-1	-1	-1	1	 1	-1	-1	 1
y_2	1	1	-1	-1	1	-1	 -1	1	1	 1
y_3	1	-1	1	-1	1	-1	 -1	1	-1	 1
y_4	1	1	1	-1	-1	1	 1	-1	1	 1
y_5	1	-1	-1	1	1	1	 1	1	-1	 1
y_6	1	1	-1	1	-1	-1	 -1	-1	1	 1
y_7	1	-1	1	1	-1	-1	 -1	-1	-1	 1
y_8	1	1	1	1	1	1	 1	1	1	 1

$$A = \bar{y}_{A+} - \bar{y}_{A-} = \frac{1}{4} (-y_1 + y_2 - y_3 + y_4 - y_5 + y_6 - y_7 + y_8)$$

$$BCD = \bar{y}_{BCD+} - \bar{y}_{BCD-} = \frac{1}{4} (-y_1 + y_2 - y_3 + y_4 - y_5 + y_6 - y_7 + y_8)$$

 $\Rightarrow A$ and BCD are aliases/aliased/not distinguishable. The contrast is for A+BCD

▶ AB, CD ... There are other 5 pairs are aliases or aliased... They are caused by the defining relation

$$I = ABCD$$
;

that is, I (the intercept) and 4-factor interaction ABCD are aliased

Response	1	Α	В	С	D	AB	 CD	ABC	BCD	 ABCD
y_1	1	-1	-1	-1	-1	1	 1	-1	-1	 1
y_2	1	1	-1	-1	1	-1	 -1	1	1	 1
y_3	1	-1	1	-1	1	-1	 -1	1	-1	 1
y_4	1	1	1	-1	-1	1	 1	-1	1	 1
y_5	1	-1	-1	1	1	1	 1	1	-1	 1
y_6	1	1	-1	1	-1	-1	 -1	-1	1	 1
y_7	1	-1	1	1	-1	-1	 -1	-1	-1	 1
y_8	1	1	1	1	1	1	 1	1	1	 1

Alias Structure for 2^{4-1} with I = ABCD (denoted by d_1)

► Alias Structure:

- $\rightarrow I = ABCD$
- \rightarrow A = A * I = A * ABCD = BCD
- \triangleright B = ... = ACD
- ightharpoonup C = ... = ABD
- $\triangleright D = ... = ABC$
- \rightarrow AB = AB * I = AB * ABCD = CD
- $\rightarrow AC = ... = BD$
- $\rightarrow AD = ... = BC$
- ▶ All 16 factorial effects for *A*, *B*, *C* and *D* are partitioned into 8 groups each with 2 aliased effects

Clear Effects

- ▶ <u>Definition</u>: A main effect or two-factor interaction is called <u>clear</u> if it is not aliased with any other main effects or two-factor interactions and <u>strongly</u> <u>clear</u> if it is not aliased with any other main effects, two-factor interactions or three-factor interactions
- ▶ A clear effect is estimable under the assumption of negligible 3-factor and higher interactions and a strongly clear effect is estimable under the weaker assumption of negligible 4-factor and higher interactions
- ▶ Question: In the 2^{4-1} design with I = ABCD, which effects are clear and strongly clear?
- ▶ Ans: B, C, D, E are clear, none is strongly clear
- ▶ We usually care about the clear effects

Another 2⁴⁻¹ Fractional Factorial Design

The defining relation I = ABD generates a different 2^{4-1} fractional factorial design, denoted by d_2 . Its alias structure is given below

$$I = ABD$$
, $A = BD$, $B = AD$, $C = ABCD$, $D = AB$, $ABC = CD$, $ACD = BC$, $BCD = AC$

- ▶ Recall d_1 is defined by I = ABCD. Comparing d_1 and d_2 , which one we should choose or which one is better?
 - ➤ 1. Length of a defining word is defined to be the number of the involved factors
 - > 2. Resolution of a fractional factorial design is defined to be the minimum length of the defining words, usually denoted by Roman numbers, III, IV, V, etc...

Resolution and Maximum Resolution Criterion

- ▶ d_1 : I = ABCD is a resolution IV design denoted by 2_{IV}^{4-1}
- ▶ d_2 : I = ABC is a resolution III design denoted by 2_{III}^{4-1}
- ▶ If a design is of resolution R, then none of the i-factor interactions is aliased with any other interaction of order less than R i.
 - \triangleright d_1 : main effects are not aliased with other main effects or 2-factor interactions
 - > d_2 : main effects are not aliased with main effects
- ▶ d_1 is better, because d_1 has higher resolution than d_2 . In fact, d_1 is optimal among all the possible fractional factorial 2^{4-1} designs
- ► <u>Maximum Resolution Criterion</u>
 - > fractional factorial design with maximum resolution is optimal

Analysis for 2^{4–1} Design: Filtration Experiment

- Recall that the filtration rate experiment was originally a 2^4 full factorial experiment. We pretend that only half of the combinations were run. The chosen half is defined by I = ABCD. So it is now a 2^{4-1} design. We keep the original responses
- Let L_{effect} denote the estimate of effect (based on the corresponding contrast). Because of aliasing,

$$L_I \rightarrow I + ABCD, L_A \rightarrow A + BCD,$$

 $L_B \rightarrow B + ACD, L_C \rightarrow C + ABD,$
 $L_D \rightarrow D + ABC, L_{AB} \rightarrow AB + CD,$
 $L_{AC} \rightarrow AC + BD, L_{AD} \rightarrow AD + BC$

bas	basic design										
A	B	C	D = ABC	filtration rate							
_	_	_	_	45							
+	_	_	+	100							
_	+	_	+	45							
+	+	_	_	65							
_	_	+	+	75							
+	_	+	_	60							
_	+	+	_	80							
+	+	+	+	96							

R Output

- > model <- lm(rate \sim A + B + C + D + I(A*B) +I(A*C) + I(A*D), plant1)
- > summary(model) We call the model saturated if the design has k = N 1 variables
- > anova(model)

```
Analysis of Variance Table
Response: rate
         Df Sum Sq Mean Sq F value Pr(>F)
             722.0
                     722.0
A
В
               4.5
                       4.5
\mathbf{C}
          1 392.0
                     392.0
D
          1 544.5
                     544.5
I(A * B)
               2.0
                       2.0
I(A * C)
         1 684.5
                     684.5
I(A * D) 1 722.0
                     722.0
Residuals 0
               0.0
Warning message:
In anova.lm(model):
ANOVA F-tests on an essentially perfect fit are unreliable
```

Residuals:

ALL 8 residuals are 0: no residual degrees of freedom!

Coefficients:

]	Estimate	Std. Erro	r t value	Pr(> t)
(Intercept)	70.75	NA	NA	NA
A	9.50	NA	NA	NA
В	0.75	NA	NA	NA
\mathbf{C}	7.00	NA	NA	NA
D	8.25	NA	NA	NA
I(A * B)	-0.50	NA	NA	NA
I(A * C)	-9.25	NA	NA	NA
I(A * D)	9.50	NΔ	NΔ	NΔ

Residual standard error: NaN on 0 degrees of freedom Multiple R-squared: 1, Adjusted R-squared: NaN F-statistic: NaN on 7 and 0 DF, p-value: NA

QQ Plot to Identify Important Effects

Normal Q-Q Plot

▶ Potentially important effects: A, C, D, AC and AD

清华大学统计学研究中心

Note: Always Check the Variances

- ## QQ plot to Identify Important Effects
- > effects <- (coef(model) *2)[-1] #the effect estimates
- > res <- qqnorm(effects)</pre>
- > qqline(effects, col = 'red')
- > identify(res\$x, res\$y, plot = TRUE)
- ##realize the problem
- > plot(res)
- > abline($lm(res\$x \sim res\$y)$, col = 'green')
- > identify(res\$x, res\$y, plot = TRUE)

Confirmation Experiment

- ightharpoonup > summary(lm(rate \sim A + C + D + I(A*C) + I(A*D), plant1))
- ▶ Use x_1, x_3, x_4 for A, C, D, the regression model is $\hat{y} = 70.75 + 9.50x_1 + 7.00x_3 + 8.25x_4 9.25x_1x_3 + 9.50x_1x_4$
- ▶ Use the model to predict the response at a test combination of interest in the design space not one of the points in the current design
- ▶ Run this test combination then compare predicted and observed
- For example, consider the point +, +, -, +. The predicted response is $\hat{y} = 70.75 + 9.50(1) + 7.00(-1) + 8.25(1) 9.25(-1) + 9.50(1) = 100.25$ actual response is 104

Regression Models

- ▶ Use x_1 , x_3 , x_4 for A, C, D, the regression model is $\hat{y} = 70.75 + 9.50x_1 + 7.00x_3 + 8.25x_4 9.25x_1x_3 + 9.50x_1x_4$
- ► Compared with the regression model based on all the data (2⁴ design in Lec07)

$$\hat{y} = 70.06 + 10.81x_1 + 4.94x_3 + 7.31x_4 - 9.06x_1x_3 + 8.31x_1x_4$$

- ▶ It appears that the model based on 2^{4-1} is as good as the original one
- ▶ Is this really true?
- NO, because the chosen effects are aliased with other effects, so we have to resolve the ambiguities between the aliased effects first

Coefficients:

Estimate Std. Error t value Pr(>|t|)(Intercept) 70.7500 0.6374 111.00 8.11e-05 *** 9.5000 0.6374 14.90 0.00447 ** A \mathbf{C} 7.0000 0.6374 10.98 0.00819 ** D 8.2500 0.6374 12.94 0.00592 ** I(A * C)-9.2500 0.6374 -14.51 0.00471 ** I(A * D)9.5000 0.6374 14.90 0.00447 **

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.803 on 2 degrees of freedom Multiple R-squared: 0.9979, Adjusted R-squared: 0.9926

F-statistic: 188.6 on 5 and 2 DF, p-value: 0.005282

Aliased Effects and Techniques for Resolving the Ambiguities

▶ The estimates are for the sum of aliased factorial effects

$$L_{I} = 70.75 \rightarrow I + ABCD,$$

$$L_{A} = 19.0 \rightarrow A + BCD,$$

$$L_{B} = 1.5 \rightarrow B + ACD,$$

$$L_{C} = 14.0 \rightarrow C + ABD,$$

$$L_{D} = 16.5 \rightarrow D + ABC,$$

$$L_{AB} = -1.0 \rightarrow AB + CD,$$

$$L_{AC} = -18.5 \rightarrow AC + BD,$$

$$L_{AD} = 19.0 \rightarrow AD + BC$$

Coeffici	ents:	Coefficien	nts:				
	Estimate	Estimate Std. Error t value Pr(> t)					
(Interce	pt) 70.75	(Intercept)	70.7500	0.6374	111.00	8.11e-05	
A	9.50	A	9.5000	0.6374	14.90	0.00447	
В	0.75	C	7.0000	0.6374	10.98	0.00819	
C	7.00	D	8.2500	0.6374	12.94	0.00592	
D	8.25	I(A * C)	-9.2500	0.6374	-14.51	0.00471	
I(A * B)	-0.50	I(A * D)	9.5000	0.6374	14.90	0.00447 *	
I(A * C)	-9.25						
I(A * D)	9.50						

- ► Techniques for resolving the ambiguities in aliased effects
 - > Use the fundamental principles
 - > Follow-up Experiment
 - -add orthogonal runs, or optimal design approach, or fold-over design

Sequential Experiment

- ▶ If it is necessary, the remaining 8 runs of the original 2⁴ design can be conducted
- ▶ Recall that the 8 runs we have used are defined defined by I = ABCD. The remaining 8 runs are indeed defined by the following relationship

$$D = -ABC$$
; or $I = -ABCD$

which implies that:

$$A = -BCD, B = -ACD, ..., AB = -CD...$$

ba	sic desi	ign		
A	B	C	D = -ABC	filtration rate
_	_	_	+	43
+	_	_	_	71
_	+	_	_	48
+	+	_	+	104
_	_	+	_	68
+	_	+	+	86
_	+	+	+	70
+	+	+	_	65

Note on $I = \pm ABCD$

- Both designs belong to the same **family**, defined by $I = \pm ABCD$
- One-half fraction, with I = +ABCD, is usually called the principal fraction
- The alternate, or complementary, one-half fraction is I = -ABCD
- Suppose that after running the principal fraction, the alternate fraction was also run. The two groups of runs can be combined to form a full factorial – an example of sequential experimentation
- Another example->

The two one-half fractions of the 2³ design

The Alias Structure

▶ Similarly, we can derive the following estimates (\tilde{L}_{effect}) and alias structure

$$\tilde{L}_{I} = 69.375 \rightarrow I - ABCD,$$

$$\tilde{L}_{A} = 24.25 \rightarrow A - BCD,$$

$$\tilde{L}_{B} = 4.75 \rightarrow B - ACD,$$

$$\tilde{L}_{C} = 5.75 \rightarrow C - ABD,$$

$$\tilde{L}_{D} = 12.75 \rightarrow D - ABC,$$

$$\tilde{L}_{AB} = 1.25 \rightarrow AB - CD,$$

$$\tilde{L}_{AC} = -17.75 \rightarrow AC - BD,$$

$$\tilde{L}_{AD} = 14.25 \rightarrow AD - BC$$

Combine Sequential Experiments

$$\hat{y} = 70.06 + 10.81x_1 + 4.94x_3 + 7.31x_4 - 9.06x_1x_3 + 8.31x_1x_4$$

- \triangleright Combining two experiments \Rightarrow the 2⁴ full factorial experiment
- Combining the estimates from these two experiments \Rightarrow the estimates based on the full experiment $\frac{1}{i} \frac{1}{2} (\mathcal{L}_i + \tilde{\mathcal{L}}_i) \frac{1}{2} (\mathcal{L}_i \tilde{\mathcal{L}}_i)$

►
$$L_A = 19.0 \rightarrow A + BCD$$
, $\tilde{L}_A = 24.25 \rightarrow A - BCD$
⇒ $A = \frac{1}{2} (L_A + \tilde{L}_A) = 21.63$
 $ABC = \frac{1}{2} (L_A - \tilde{L}_A) = -2.63$

▶ Other effects are summarized in the table->

We know the combined experiment is not a completely randomized experiment. Is there any underlying factor we need consider? What is it?

A	21.63 $ ightarrow A$	-2.63 $ ightarrow$ BCD
B	3.13 $ ightarrow B$	-1.63 $ ightarrow$ ACD
C	9.88 $ ightarrow$ C	4.13 $ ightarrow ABD$
D	14.63 $ ightarrow$ D	1.88 $ ightarrow ABC$
AB	.13 $ ightarrow$ AB	-1.13 $ ightarrow$ CD
AC	-18.13 $ ightarrow$ AC	-0.38 $ ightarrow BD$
AD	16.63 $ ightarrow$ AD	2.38 $ ightarrow$ BC

General 2^{k-1} Design

- ▶ *k* factors: *A*, *B*, ..., *K*
- ▶ Can only afford half of all the combinations (2^{k-1})
- ▶ Basic design: a 2^{k-1} full factorial for k-1 factors: A, B, ..., J
- ▶ The setting of kth factor is determined by aliasing K with the ABC...J, i.e.,

$$K = ABC...J$$

- ▶ Defining relation: $I = ABCD...\tilde{I}JK$. Resolution = k
- \triangleright 2^k factorial effects are partitioned into 2^{k-1} groups each with two aliased effects
- ▶ Only one effect from each group (the representative) should be included in ANOVA or regression model
- Use fundamental principles, domain knowledge, follow-up experiment to dealias

Example: Injection Molding Experiment

Parts manufactured in an injection molding process are showing excessive shrinkage. A quality improvement team has decided to use a designed experiment to study the injection molding process so that shrinkage can be reduced. The team decides to investigate six factors

A: mold temperature, B: screw speed, C: holding time

D: cycle time, E: gate size, F: holding pressure

each at two levels, with the objective of learning about main effects and

interactions

They decide to use 16-run fractional factorial design

- A full factorial has 2⁶=64 runs
- 16-run is one quarter of the full factorial
- How to construct the fraction?

One Quarter Fraction: 2^{k-2} Design, d_1

- ► Injection Molding Experiment is a 2⁶⁻² design
- Two defining relations are used to generate the columns for E and F

$$I = ABCE$$
; $I = BCDF$

They induce another defining relation:

$$I = ABCE*BCDF = AB^2C^2DEF = ADEF$$

▶ The complete defining relation:

$$I = ABCE = BCDF = ADEF$$

▶ Defining contrasts subgroup:

	basic	design				
A	B	C	D	E = ABC	F = BCD	shrinkage
_	_	_	_	_	_	6
+	_	_	_	+	_	10
_	+	_	_	+	+	32
+	+	_	_	_	+	60
_	_	+	_	+	+	4
+	_	+	_	_	+	15
_	+	+	_	_	_	26
+	+	+	_	+	_	60
_	_	_	+	_	+	8
+	_	_	+	+	+	12
_	+	_	+	+	_	34
+	+	_	+	_	_	60
_	_	+	+	+	_	16
+	_	+	+	_	_	5
_	+	+	+	_	+	37
	+	+	+	+	+	52

Alias Structure for 2^{6-2} with I = ABCE = BCDF = ADEF

I = ABCE = BCDF = ADEF implies

$$A = BCE = ABCDF = ADEF$$

▶ Similarly, we can derive the other groups of aliased effects

$$A = BCE = DEF = ABCDF$$
, $AB = CE = ACDF = BDEF$
 $B = ACE = CDF = ABDEF$, $AC = BE = ABDF = CDEF$
 $C = ABE = BDF = ACDEF$, $AD = EF = BCDE = ABCF$
 $D = BCF = AEF = ABCDE$, $AE = BC = DF = ABCDEF$
 $E = ABC = ADF = BCDEF$, $AF = DE = BCEF = ABCD$
 $F = BCD = ADE = ABCEF$, $BD = CF = ACDE = ABEF$
 $BF = CD = ACEF = ABDE$
 $ABD = CDE = ACF = BEF$
 $ACD = BDE = ABF = CEF$

This is a 2_{IV}^{6-2} design

Question: In this design, which effects are clear and strongly clear?

Word Length Pattern & Defining Contrast Subgroup

- For a general 2^{k-p} design, it has 2^p-1 words
- Define A_i = number of defining words of length i(i.e., involving i factors). $W = (A_3, A_4, \dots, A_k)$ is called the word length pattern
- ▶ It is required that $A_2 = 0$ (Why?)
- ▶ Again, resolution is the shortest word length among the 2^p-1 words
- ▶ Recall that the complete defining relation:

$$I = ABCE = BCDF = ADEF$$

▶ <u>Defining contrasts subgroup</u>: The group formed by these defining words

Note: Various Definitions on 'Word Length Pattern'

- ▶ In Montgomery, just write down the length of each word
- Some denotes $W = (A_0, A_1, ..., A_6)$, where A_i is the number of defining words of length i, where <u>resolution</u> is the smallest i such that i > 0 and $A_i > 0$
- ▶ For example, the 2^{6-2} design with I = ABCE = BCDF = ADEF
 - W = (0, 3, 0, 0)-here
 - \rightarrow *W* = (4, 4, 4)-Montgomery
 - \rightarrow W = (1, 0, 0, 0, 3, 0, 0)-else
- ▶ The resolution agrees: The design has resolution IV, it is a 2_{IV}^{6-2} design

Note: Projection Thinking

▶ For the 2^{6-2} Design d_1 , the complete defining relation:

$$I = ABCE = BCDF = ADEF$$

- ▶ **Projection** of the design into subsets of the original six variables
- Any subset of the original six variables that is <u>not</u> a word in the complete defining relation will result in a full factorial design
 - ➤ Consider *ABCD* (full factorial)
- ▶ Any subset of the original six variables that IS a word in the complete defining relation will result in a replicated factorial design
 - > Consider *ABCE* (replicated half fraction)

A Projective Rationale for Resolution

- ► For a resolution *R* design, its projection onto any *R*-1 factors is a full factorial in the *R*-1 factors. This would allow effects of all orders among the *R*-1 factors to be estimable
- ► <u>Caveat</u>: it makes the assumption that other factors are inert
- ► This property can be exploited in data analysis:
- ▶ After analyzing the main effects, if only R-1 of them are significant, then all the interactions among the R-1 factors can also be estimated because the collapsed design on the R-1 factors is a full factorial

2^{6-2} Design: an Alternative, d_2

- ▶ <u>Basic Design</u>: A, B, C, D
- Generators E = ABCD, F = ABC, i.e., I = ABCDE. I = ABCF

which induces: I = DEF

- ► Complete defining relation: I = ABCDE = ABCF = DEF
- ▶ Word length pattern: W = (1, 1, 1, 0)
- ► Alias structure (ignore effects of order 3 or higher) ->
- ► Recall that an effect is said to be <u>clearly estimable</u> if it is not aliased with main effect or two-factor interactions
- ▶ Which design is better, d_1 or d_2 ?

 d_1 has six clearly estimable main effects while d_2 has three clearly estimable main effects and six clearly estimable two-factor interactions

A =	AB = CF =
B =	AC = BF =
C =	AD =
D = EF =	AE =
E = DF =	AF = BC =
F = DE =	BD =
	BE =
	CD =
	CE =
-	

Injection Molding Experiment Analysis

- ► Estimates of factorial effects
- ► Effcts *B*, *A*, *AB*, *AD*, *ACD*, are large

Obs	NAME	COL1	effect	aliases
1	AD	-2.6875	-5.375	AD+EF
2	ACD	-2.4375	-4.875	
3	AE	-0.9375	-1.875	AE+BC+DF
4	AC	-0.8125	-1.625	AC+BE
5	С	-0.4375	-0.875	
6	BD	-0.0625	-0.125	BD+CF
7	BF	-0.0625	-0.125	BF+CD
8	ABD	0.0625	0.125	
9	E	0.1875	0.375	
10	F	0.1875	0.375	
11	AF	0.3125	0.625	AF+DE
12	D	0.6875	1.375	
13	AB	5.9375	11.875	AB+CE
14	A	6.9375	13.875	
15	В	17.8125	35.625	

	Estimate	Std. Err	or t valu	ie Pr(> t)
(Intercept)	27.3125	NA	NA NA	NA
A	6.9375	NA	. NA	NA
В	17.8125	NA	. NA	NA
C	-0.4375	NA	NA NA	NA
D	0.6875	NA	. NA	NA
E	0.1875	NA	NA	NA
F	0.1875	NA	NA	NA
A:B	5.9375	NA	NA	NA
A:C	-0.8125	NA	NA	NA
B:C	-0.9375	NA	NA	NA
A:D	-2.6875	NA	NA	NA
	-0.0625	NA	NA	NA
C:D	-0.0625	NA	NA	NA
A:E	NA	NA	NA	NA
B:E	NA	NA	NA	NA
C:E	NA	NA	NA	NA
D:E	0.3125	NA	NA	NA
A:F	NA	NA	NA	NA
E:F	NA	NA	NA	NA
A:B:C	NA	NA	NA	NA
A:B:D	0.0625	NA	NA	NA
A:C:D	-2.4375	NA	NA	NA
B:C:D	NA	NA	NA	NA
A:B:C:D:E	E:F NA	NA	NA	NA

	Estimate S	Std. Error	t value	Pr(> t)
(Intercep	ot) 27.3125	5 NA	. NA	. NA
A	6.9375	NA	NA	NA
В	17.8125	NA	NA	NA
C	-0.4375	NA	NA	NA
D	0.6875	NA	NA	NA
E	0.3125	NA	NA	NA
F	0.1875	NA	NA	NA
A:B	5.9375	NA	NA	NA
A:C	-0.8125	NA	NA	NA
B:C	-0.9375	NA	NA	NA
A:D	-2.6875	NA	NA	NA
B:D	-0.0625	NA	NA	NA
C:D	-0.0625	NA	NA	NA
A:E	0.1875	NA	NA	NA
B:E	-2.4375	NA	NA	NA
C:E	0.0625	NA	NA	NA
D:E	NA	NA	NA	NA
A:B:C:D)·E·F N	IA N	A N	A N

QQ Plot to Identify Important Effects

Normal Q-Q Plot

A:D A:C:D B:C A:C
-5.375 -4.875 -1.875 -1.625
C B:D C:D A:B:D
-0.875 -0.125 -0.125 0.125
F E D:E D
0.375 0.375 0.625 1.375
A:B A B
11.875 13.875 35.625

De-aliasing and Model Selection

- $> m1 <- lm(shrinkage \sim A + B + I(A*B) + I(A*D) + I(A*C*D), mold1)$
- > m2 <- lm(shrinkage \sim A + B + I(A*B), mold1)
- > anova(m2, m1)
- ► Three-Factor Interaction

Analysis of Variance Table

Model 1: shrinkage ~ A + B + I(A * B) Model 2: shrinkage ~ A + B + I(A * B) + I(A * D) + I(A * C * D) Res.Df RSS Df Sum of Sq F Pr(>F) 1 12 248.750 2 10 38.125 2 210.62 27.623 8.457e-05 ***

Choosing a Design

40

- ▶ Recall 2^{k-p} with maximum resolution should be preferred. But, it is possible that there are two designs that attain the maximum resolution. How should we further distinguish them?
- \blacktriangleright For example, consider 2^{7-2} fractional factorial design

A design cannot be judged by its resolution alone

- ⇒ d_1 : basic design: A, B, C, D, E; F = ABC, G = ABDEcomplete defining relation: I = ABCF = ABDEG = CDEFGword length pattern: W = (0, 1, 2, 0, 0)Resolution: IV
- > d₂: basic design: A, B, C, D, E; F = ABC, G = ADE complete defining relation: I = ABCF = ADEG = BCDEGF

word length pattern: W = (0, 2, 0, 1, 0)

Resolution: IV

 $ightharpoonup d_1$ and d_2 , which is better?

Intuitively one would argue that d_1 is better because

$$A_4(d_1) = 1 < A_4(d_2) = 2$$

(Why? Effect hierarchy principle.)

Minimum Aberration Criterion

- ▶ <u>Definition</u>: Let d_1 and d_2 be two 2^{k-p} designs, let r be the smallest positive integer such that $Ar(d_1) \neq Ar(d_2)$
- ▶ If $A_r(d_1) < A_r(d_2)$, then d_1 is said to have less aberration than d_2
- ▶ If there does not exist any other design that has less aberration than d_1 , then d_1 has minimum aberration
- $W(d_1) = (0, 1, 2, 0, 0); W(d_2) = (0, 2, 0, 1, 0)$
- Minimizing aberration in a design of resolution R ensures that the design has the minimum number of main effects aliased with interactions of order R-1, the minimum number of two-factor interactions aliased with interactions of order R-2, and so forth
- \blacktriangleright For given k and p, a minimum aberration design always exists
- ▶ Small Minimum Aberration Designs are used a lot in practice. They are tabulated in most design books. See Table 8-14 in Montgomery. For the most comprehensive table, consult Wu & Hamada

16-Run 2^{k-p} FFD (k-p=4)

▶ *k* is the number of factors and F&R is the fraction and resolution

k	F&R	Design Generators	Clear Effects
5	2_V^{5-1}	5 = 1234	all five main effects, all 10 2fi's
6	2_{IV}^{6-2}	5 = 123, 6 = 124	all six main effects
6*	2_{III}^{6-2}	5 = 12, 6 = 134	3, 4, 6, 23, 24, 26, 35, 45, 56
7	2_{IV}^{7-3}	5 = 123, 6 = 124, 7 = 134	all seven main effects
8	2_{IV}^{8-4}	5 = 123, 6 = 124, 7 = 134, 8 = 234	all eight main effects
9	2_{III}^{9-5}	5 = 123, 6 = 124, 7 = 134, 8 = 234, 9 = 1234	none
10	2_{III}^{10-6}	$5 = 123, 6 = 124, 7 = 134, 8 = 234, 9 = 1234, t_0 = 34$	none
11	2_{III}^{11-7}	$5 = 123, 6 = 124, 7 = 134, 8 = 234, 9 = 1234, t_0 = 34, t_1 = 24$	none
12	2_{III}^{12-8}	$5 = 123, 6 = 124, 7 = 134, 8 = 234, 9 = 1234, t_0 = 34, t_1 =$	none
		$24, t_2 = 14$	
13	2_{III}^{13-9}	$5 = 123, 6 = 124, 7 = 134, 8 = 234, 9 = 1234, t_0 = 34, t_1 =$	none
		$24, t_2 = 14, t_3 = 23$	
14	2_{III}^{14-10}	$5 = 123, 6 = 124, 7 = 134, 8 = 234, 9 = 1234, t_0 = 34, t_1 =$	none
		$24, t_2 = 14, t_3 = 23, t_4 = 13$	
15	2_{III}^{15-11}	$5 = 123, 6 = 124, 7 = 134, 8 = 234, 9 = 1234, t_0 = 34, t_1 =$	none
		$24, t_2 = 14, t_3 = 23, t_4 = 13, t_5 = 12$	

32-Run 2^{k-p} FFD $(k-p=5, 6 \le k \le 11)$

► *k* is the number of factors and F&R is the fraction and resolution

	k	F&R	Design Generators	Clear Effects
	6	2_{VI}^{6-1}	6 = 12345	all six main effects, all 15 2fi's
	7	2_{IV}^{7-2}	6 = 123, 7 = 1245	all seven main effects, 14, 15, 17, 24, 25, 27, 34, 35, 37, 45, 46, 47, 56, 57, 67
-	8	2_{IV}^{8-3}	6 = 123, 7 = 124, 8 = 1345	all eight main effects, 15, 18, 25, 28, 35, 38, 45, 48, 56, 57, 58, 68, 78
	9	2_{IV}^{9-4}	6 = 123, 7 = 124, 8 = 125, 9 = 1345	all nine main effects, 19, 29, 39, 49, 59, 69, 79, 89
	9	2_{IV}^{9-4}	6 = 123, 7 = 124, 8 = 134, 9 = 2345	all nine main effects, 15, 19, 25, 29, 35, 39, 45, 49, 56, 57, 58, 59, 69, 79, 89
	10	2_{IV}^{10-5}	$6 = 123, 7 = 124, 8 = 125, 9 = 1345, t_0 = 2345$	all 10 main effects
	10	2_{III}^{10-5}	$6 = 12, 7 = 134, 8 = 135, 9 = 145, t_0 = 345$	3, 4, 5, 7, 8, 9, t_0 , 23, 24, 25, 27, 28, 29, 2 t_0 , 36, 46, 56, 67, 68, 69, 6 t_0
	11	2_{IV}^{11-6}	$6 = 123, 7 = 124, 8 = 134, 9 = 125, t_0 = 135, t_1 = 145$	all 11 main effects
	11	2_{III}^{11-6}	$6 = 12, 7 = 13, 8 = 234, 9 = 235, t_0 = 245, t_1 = 1345$	$4, 5, 8, 9, t_0, t_1, 14, 15, 18, 19, 1t_0, 1t_1$

General 2^{k-p} Fractional Factorial Designs

- \triangleright k factors, 2^k level combinations, but want to run a 2^{-p} fraction only
- \triangleright Select the first k-p factors to form a full factorial design (basic design)
- ▶ Alias the remaining *p* factors with some high order interactions of the basic design
- ▶ There are p defining relations, which induce other $2^p p 1$ defining relations. The complete defining relation is I = ... = ...
- ▶ Defining contrasts subgroup: $G = \{\text{defining words}\}$
- ▶ Word length pattern: $W = (W_i)W_i$ =the number of defining words of length i
- Alias structure: 2^k factorial effects are partitioned into 2^{k-p} groups of effects, each of which contains 2^p effects. Effects in the same group are aliased (aliases)
- ▶ Use maximum resolution and minimum aberration to choose the optimal design
- ▶ In analysis, only select one effect from each group to be included in the full model
- ▶ Choose important effect to form models, pool unimportant effects into error component
- ▶ De-aliasing and model selection

清华大学统计学研究中心

Choice of Fractions and Avoidance of Specific Combinations

▶ A 2^{k-p} design has 2^p choices. In general, use randomization to choose one of them. For example, the 2^{6-3} design has 8 choices

$$4 = \pm 12$$
, $5 = \pm 13$, $6 = \pm 23$

Randomly choose the signs

▶ If specific combinations (e.g., (+++) for high pressure, high temperature, high concentration) are deemed undesirable or even disastrous, they can be avoided by choosing a fraction that does not contain them. Example on p.237 of WH

Main Effects Model

- ► Only main effects are considered
- ► All interaction effects are ignored

A 2⁷⁻⁴ design for a main effects model with 7 factors

	Ba	sic Desi	gn				
Run	A	B	C	D = AB	E = AC	F = BC	G = ABC
1	_	_	_	+	+	+	_
2	+	_	_	_	_	+	+
3	_	+	_	_	+	_	+
4	+	+	_	+	_	_	_
5	_	_	+	+	_	_	+
6	+	_	+	_	+	_	_
7	_	+	+	_	_	+	_
8	+	+	+	+	+	+	+

Example: Leaf Spring Experiment

- > y: free height of spring, target is 8.0 inches
 - > Goal: get y as close to 8.0 as possible (nominal-the-best problem)
- Five factors at two levels, use a 16-run design with three replicates for each run. It is a 2^{5-1} design, 1/2 fraction of the 2^5 design

		Level		
	Factor	_	+	
<i>B</i> .	high heat temperature (°F)	1840	1880	
<i>C</i> .	heating time (seconds)	23	25	
D.	transfer time (seconds)	10	12	
E.	hold down time (seconds)	2	3	
Q.	quench oil temperature (°F)	130-150	150-170	

Leaf Spring Experiment: Design Matrix and Data

- \triangleright E=BCD
- ► Two-Step Procedure for Nominal-the-Best Problem
 - > (i) Select levels of some factors to minimize Var(y)
 - ▶ (ii) Select the level of a factor not in (i) to move E(y) closer to the target

		Factor								
В	<i>C</i>	D	Ε	Q	1	Free Heigh	t	\bar{y}_i	s_i^2	$\ln s_i^2$
_	+	+	_	_	7.78	7.78	7.81	7.7900	0.0003	-8.1117
+	+	+	+	_	8.15	8.18	7.88	8.0700	0.0273	-3.6009
-	_	+	+	_	7.50	7.56	7.50	7.5200	0.0012	-6.7254
+	_	+	_	_	7.59	7.56	7.75	7.6333	0.0104	-4.5627
-	+	_	+	_	7.94	8.00	7.88	7.9400	0.0036	-5.6268
+	+	_	_	_	7.69	8.09	8.06	7.9467	0.0496	-3.0031
-	_	_	_	_	7.56	7.62	7.44	7.5400	0.0084	-4.7795
+	_	_	+	_	7.56	7.81	7.69	7.6867	0.0156	-4.1583
-	+	+	_	+	7.50	7.25	7.12	7.2900	0.0373	-3.2888
+	+	+	+	+	7.88	7.88	7.44	7.7333	0.0645	-2.7406
-	_	+	+	+	7.50	7.56	7.50	7.5200	0.0012	-6.7254
+	_	+	_	+	7.63	7.75	7.56	7.6467	0.0092	-4.6849
_	+	_	+	+	7.32	7.44	7.44	7.4000	0.0048	-5.3391
+	+	_	_	+	7.56	7.69	7.62	7.6233	0.0042	-5.4648
_	_	_	_	+	7.18	7.18	7.25	7.2033	0.0016	-6.4171
+	_	_	+	+	7.81	7.50	7.59	7.6333	0.0254	-3.6717

Leaf Spring Experiment: Factorial Effects

- ► Analysis for Location Effects
- ► Same strategy as in full factorial experiments except for the interpretation and handling of aliased effects
- ► E=BCD ⇒ I=BCDE
 B=CDE, C=BDE, D=BCE, E=BCD,
 BC= DE, BD = CE, BE= CD,
 ► Q=BCDEQ ⇒
 BQ=CDEQ, CQ=BDEQ, DQ=BCEQ, EQ=BCDQ,
 BCQ = DEQ, BDQ = CEQ, BEQ = CDQ

Effect	ÿ	$\ln s^2$
В	0.221	1.891
C	0.176	0.569
D	0.029	-0.247
\boldsymbol{E}	0.104	0.216
Q	-0.260	0.280
BQ	0.085	-0.589
CQ	-0.165	0.598
DQ	0.054	1.111
EQ	0.027	0.129
BC	0.017	-0.002
BD	0.020	0.425
CD	-0.035	0.670
BCQ	0.010	-1.089
BDQ	-0.040	-0.432
BEQ	-0.047	0.854

Suggest Significant Effects by Normal Probability Plot

 $\hat{y} = 7.6360 + 0.1106x_B + 0.0519x_E + 0.0881x_C - 0.1298x_Q + \frac{0.0423x_Bx_Q}{0.0827x_C} - 0.0827x_Cx_Q$

Effect	ÿ	$\ln s^2$
В	0.221	1.891
\boldsymbol{C}	0.176	0.569
D	0.029	-0.247
E	0.104	0.216
Q	-0.260	0.280
BQ	0.085	-0.589
CQ	-0.165	0.598
DQ	0.054	1.111
EQ	0.027	0.129
BC	0.017	-0.002
BD	0.020	0.425
CD	-0.035	0.670
BCQ	0.010	-1.089
BDQ	-0.040	-0.432
BEQ	-0.047	0.854

Analysis for dispersion effects

Confirm Significant Effects by a Formal Test

▶ Recall that for the full factorial design $N = 2^k n$

Var(Effect) =
$$Var(2\hat{\beta}) = \frac{\sigma^2}{2^{k-2}n} = \frac{\sigma^2}{N2^{-2}}$$

 $N2^{-2} = 2^{k-p}2^{-2} = 2^{5-1-2}$

- > for each effect, the estimate follows $N(0, \sigma^2/4)$
- > σ^2 can be estimated by $s^2=0.017$
- ► Thus, the significance of each effect can be confirmed by a *t*-test (with adjustment for multiple tests)
 - \rightarrow m = 15 if all effects are tested
 - m = 12 if 3 -order interaction effects are ignored
- ► Advantage of the Normal-Probability-Plot method:
 - > Can still work for experiments without replicates

	$\hat{y} = 7.6360 +$	$0.1106x_{B} +$	$0.0881x_{C}$ -	$0.1298x_Q$ -	$-0.0827x_Cx_Q$
--	----------------------	-----------------	-----------------	---------------	-----------------

Effect	\bar{y}	$\ln s^2$
В	0.221	1.891
C	0.176	0.569
D	0.029	-0.247
E	0.104	0.216
Q	-0.260	0.280
BQ	0.085	-0.589
CQ	-0.165	0.598
DQ	0.054	1.111
EQ	0.027	0.129
BC	0.017	-0.002
BD	0.020	0.425
CD	-0.035	0.670
BCQ	0.010	-1.089
BDQ	-0.040	-0.432
BEQ	-0.047	0.854

Fold-over Technique

Suppose the original experiment is based on a 2_{III}^{7-4} design with generators

$$d_1$$
: 4 = 12, 5 = 13, 6 = 23, 7 = 123

None of its main effects are clear

▶ To de-alias them, we can choose another 8 runs (no. 9-16->) with reversed signs for each of the 7 factors. This follow-up design d_2 has the generators

$$d_2$$
: 4 = -12, 5 = -13,6 = -23, 7 = 123

- ▶ With the extra degrees of freedom, we can introduce a new factor 8 (or a blocking variable) for run number 1-8, and −8 for run number 9-16
- The combined design $d_1 + d_2$ is a 2_{IV}^{8-4} design and thus all main effects are clear
- ► Its defining contrast subgroup is

$$I = 1237 = 1256 = 1346 = 1457 = 2345 = 2467 = 3567$$

清华大学统计学研究中心

Augmented Design Matrix Using Fold-Over Technique

	d_1								
Run	1	2	3	4=12	5=13	6=23	7=123	8	
1	_	_	_	+	+	+	_	+	
2	_	_	+	+	_	_	+	+	
3	_	+	_	_	+	_	+	+	
4	_	+	+	_	_	+	_	+	
5	+	_	_	_	_	+	+	+	
6	+	_	+	_	+	_	_	+	
7	+	+	_	+	_	_	_	+	
8	+	+	+	+	+	+	+	+	
				d_{i}	2				
Run	-1	-2	-3	-4	-5	-6	-7	-8	
9	+	+	+	_	_	_	+	_	
10	+	+	_	_	+	+	_	_	
11	+	_	+	+	_	+	_	_	
12	+	_	_	+	+	_	+	_	
13	_	+	+	+	+	_	_	_	
14	_	+	_	+	_	+	+	_	
15	_	_	+	_	+	+	+	_	
16	_	_	_	_	_	_	_	_	

Fold-over Technique: Version Two

- ➤ Suppose one factor, say 5, is very important. We want to de-alias 5 and all two-factor interactions involving 5
- ► Choose, instead, the following 2_{III}^{7-4} design

$$d_1$$
: 4 = 12, 5 = 13, 6 = 23, 7 = 123

 d_3 : 4 = 12, 5 = -13, 6 = 23, 7 = 123

► Then the combined design $d_1 + d_3$ is a 2_{III}^{7-3} design with the generators

$$d': 4 = 12, 6 = 23, 7 = 123$$

- ➤ Since 5 does not appear here, 5 is strongly clear and all two-factor interactions involving 5 are clear
- ► Choice between d_2 and d_3 depends on the priority given to the effects

Cons:
It requires
doubling of the
run size and can
only de-alias a
specific set of
effects

Why do Fractional Factorial Designs Work?

- ► The sparsity of effects principle
 - > There may be lots of factors, but few are important
 - > System is dominated by main effects, low-order interactions
- ► The **projection** property
 - > Every fractional factorial contains full factorials in fewer factors
- ► Sequential experimentation
 - > Can add runs to a fractional factorial to resolve difficulties (or ambiguities) in interpretation
- ▶ Note: Ockham's razor in interpretation
 - A scientific principle that when one is confronted with several different possible interpretations of a phenomena, the simplest interpretation is usually the correct one

Possibilities for Follow-up Experimentation after an Initial Fractional Factorial Experiment

Plackett-Burman (PB) and Model Robust Screening Designs

- We looked at 2^{k-p} designs, which give us designs that have 8, 16, 32, 64, 128, etc. number of runs
- ▶ However, there is a pretty big gap between 16 and 32, 32 to 64, etc. We sometimes need other alternative designs besides these with a different number of observations
- ▶ A class of designs that allows us to create experiments with some number between these fractional factorial designs are the Plackett-Burman designs, for

$$N = 12, [16], 20, 24, 28, [32], 36, 40, 44, 48, \dots$$

any number which is divisible by four

► These designs are similar to Resolution III designs, meaning you can estimate main effects clear of other main effects-often used for screening experiments (where the objective is to determine which factors from a list assembled by brainstorming are important enough to be studied in more detail in follow-up experiments)

- For run sizes that are powers of 2, they are the same as a 2^{k-p} fractional factorial design. For other run sizes, they retain the desirable orthogonality property of 2^{k-p} designs, but they do not have generators or a defining relation
- ▶ The designs for run sizes of 12, 20, and 24 can be created by cyclically rotating the factor levels for the first run

Run	A	В	\mathbf{C}	D	\mathbf{E}	\mathbf{F}	G	Η	J	K	${ m L}$
1	+	+	_	+	+	+	_	_	_	+	_
2	_	+	+	_	+	+	+	_	_	_	+
3	+	_	+	+	_	+	+	+	_	_	_
4	_	+	_	+	+	_	+	+	+	_	_
5	_	_	+	+	+	+	_	+	+	+	_
6	_	_	_	+	_	+	+	_	+	+	+
7	+	_	_	_	+	_	+	+	_	+	+
8	+	+	_	_	_	+	_	+	+	_	+
9	+	+	+	_	_	_	+	_	+	+	_
10	_	+	+	+	_	_	_	+	_	+	+
11	+	_	+	+	+	_	_	_	+	_	+
12	_	_	_	_	_	_	_	_	_	_	_

Run Size	Factor Levels
	++-+++-
20	+++++-+-+++-
24	++++-+

12-Run Plackett-Burman Design

Each combination of levels for any **pair** of factors appears the same number of times, throughout all the experimental runs

- > library(FrF2)
- > pb(nruns = 12, randomize=FALSE)#nfactors no more than nruns-1

> .libPaths()

Partial Confounding

- ► The cyclical pattern is a result of number theory properties that generate these orthogonal arrays. There is a lot of mathematical research behind these designs to achieve a matrix with orthogonal columns which is what we need
- ▶ Nongeometric designs: these designs cannot be represented as cubes
- ▶ Although some effects are orthogonal they do not have the same structure allowing complete or orthogonal correlation with the other two way and higher order interactions
- ► For 11 factors and 12 runs
 - > The correlation matrix for main effects is identity
 - Every main effect is partially aliased with every two-factor interaction not involving itself
- ► If you assume that interactions are not important, these are great designs, very efficient with small numbers of observations and useful
- ► If your assumption is wrong and there are interactions, it could show up as influencing one or the other main effects

```
> design <- pb( nruns = 12)
> nmain <- apply(as.matrix(design), 2, as.numeric)
> cor(nmain)
> AB <- nmain[,1]*nmain[,2]
> BC <- nmain[,2]*nmain[,3]
> cor(AB, nmain[,1]) #0
> cor(AB, nmain[,3]) #-0.3333333
```

cor(BC, nmain[,1])

