MO-M191 712 HOLECULAR HODELING IN DRUG DESIGN FOR THE DEVELOPMENT OF DRAMOPHOSPHORUS ANTIDOTES/PROPHYLACTICS(U) NEW JERSEY INST OF TECH NEWARK T GUND NUG 05 DNND17-84-C-4113 F/G 6/15 1/2 UNCLASSIFIED

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS 1963 A

AD	

MOLECULAR MODELING IN DRUG DESIGN FOR THE DEVELOPMENT OF ORGANOPHOSPHORUS ANTIDOTES/PROPHYLACTICS

ANNUAL REPORT

August 1985 (For the period June 1, 1984 - May 31, 1985)

eOriginal contains color plates: All DTIC reproductions will be in black and white

Dr. Tamara Gund

Supported by

U. S. ARMY MEDICAL RESEARCH AND DEVELOPMENT COMMAND Fort Detrick, Frederick, Maryland 21701-5012

Contract No. DAMD17-84-C-4113

New Jersey Institute of Technology 323 Dr. Martin Luther King Jr. Bvld. Newark, New Jersey 07102

DOD DISTRIBUTION STATEMENT

Approved for public release; distribution unlimited

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

REPORT DOCUMENTATION							
1a REPORT SECURITY CLASSIFICATION Unclassified				1b. RESTRICTIVE MARKINGS			
2a. SECURITY	CLASSIFICATIO	N AUTHORITY			I/AVAILABILITY OF		
26. DECLASSIF	ICATION / DOW	VNGRADING SCHE	DULE	distribution	r public rel n unlimited	ease;	
4. PERFORMIN	G ORGANIZAT	ION REPORT NUM	BER(S)	5. MONITORING	ORGANIZATION RE	PORT NO	JMBER(S)
				<u> </u>			
The Foun	dation of		6b OFFICE SYMBOL (If applicable)	7a. NAME OF MONITORING ORGANIZATION			
6c. ADDRESS (ute of Techr d ZIP Code)	ology	7b. ADDRESS (Cit	ty, State, and ZIP C	ode)	
Newark,	New Jerse	y 07102					
8a. NAME OF	FUNDING / SPC	ONSORING Army Medica	86. OFFICE SYMBOL	9. PROCUREMEN	T INSTRUMENT IDE	NTIFICAT	TION NUMBER
		ment Command		DAMD17-84	4-C-4113		
8c. ADDRESS (City, State, and	I ZIP Code)		10. SOURCE OF	FUNDING NUMBER	5	
Fort Detr	ick, Fred	erick, Maryl	and 21701-5012	PROGRAM ELEMENT NO.	PROJECT NO 3M161.	TASK NO.	WORK UNIT ACCESSION NO
11. TITLE (Inch	ude Security C	lassification)		61102A	102BS11	EB	025
(U) Molec	ular Mode: /Prophylac	ling in Drug ctics	Design for the I	Development o	of Organophos	phoro	us
12. PERSONAL Tamara Gui							
13a. TYPE OF	REPORT	13b. TIME		14. DATE OF REPO	ORT (Year, Month, L	Day) 15	PAGE COUNT
Annual Rep		FROM 6	<u>/84</u> то <u>5/85</u>	August 1985	<u> </u>		
16. SUPPLEME	NIART NOTAL						
17.	COSATI	CODES	18. SUBJECT TERMS (Continue on revers	e if necessary and	identify	by block number)
FIELD	GROUP	SUB-GROUP			•	•	
06	03						
06	13 (Continue on	reverse if necessa	ry and identify by block i	number)			
	(00,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	7.000.00	y and lacrimy by block .				
i							
		ILITY OF ABSTRAC			CURITY CLASSIFICA	TION	
	UNCLASSIFIED/UNLIMITED SKSAME AS RPT. DTIC USERS 22a. NAME OF RESPONSIBLE INDIVIDUAL				(Include Area Code)	22c O	FFICE SYMBOL
	ly Pawlus			301-663-		1	PD-RMI-S

INSTRUCTIONS FOR PREPARATION OF REPORT DOCUMENTATION PAGE

GENERAL INFORMATION

The accuracy and completeness of all information provided in the DD Form 1473, especially classification and distribution limitation markings, are the responsibility of the authoring or monitoring DoD activity.

Because the data input on this form will be what others will retrieve from DTIC's bibliographic data base or may determine how the document can be accessed by future users, care should be taken to have the form completed by knowledgeable personnel. For better communication and to facilitate more complete and accurate input from the originators of the form to those processing the data, space has been provided in Block 22 for the name, telephone number, and office symbol of the DoD person responsible for the input cited on the form.

All information on the DD Form 1473 should be typed.

Only information appearing on or in the report, or applying specifically to the report in hand, should be reported. If there is any doubt, the block should be left blank.

Some of the information on the forms (e.g., title, abstract) will be machine indexed. The terminology used should describe the content of the report or identify it as precisely as possible for future identification and retrieval.

MOTE: Unclassified abstracts and titles describing classified documents may appear separately from the documents in an unclassified context, e.g., in DTIC announcement bulletins and bibliographies. This must be considered in the preparation and marking of unclassified abstracts and titles.

The Defense Technical Information Center (DTIC) is ready to offer assistance to anyone who needs and requests it. Call Data Base Input Division, Autovon 284-7044 or Commercial (202) 274-7044.

SECURITY CLASSIFICATION OF THE FORM

In accordance with DoD 5200.1-R, Information Security Program Regulation, Chapter IV Section 2, paragraph 4-200, classification markings are to be stamped, printed, or written at the top and bottom of the form in capital letters that are larger than those used in the text of the document. See also DoD 5220.22-M, Industrial Security Manual for Safeguarding Classified Information, Section II, paragraph 11a(2). This form should be unclassified, if possible.

SPECIFIC BLOCKS

- **Block 1a.** Report Security Classification: Designate the highest security classification of the report. (See DoD 5220.1-R, Chapters I, IV, VII, XI, Appendix A.)
- **Block 1b.** Restricted Marking: Enter the restricted marking or warning notice of the report (e.g., CNWDI, RD, NATO).
- <u>Block 2a.</u> Security Classification Authority: Enter the commonly used markings in accordance with DoD 5200.1-R, Chapter IV, Section 4, paragraph 4-400 and 4-402. Indicate classification authority.
- **Block 2b.** Declassification / Downgrading Schedule: Indicate specific date or event for declassification or the notation, "Originating Agency Determination Required" or "OADR." Also insert (when applicable) downgrade to on (e.g., Downgrade to Confidential on 6 July 1983). (See also DoD 5220.22-M, Industrial Security Manual for Safeguarding Classified Information, Appendix II.)

MOTE: Entry must be made in Blocks 2a and 2b except when the original report is unclassified and has never been upgraded.

- <u>Block 3.</u> Distribution/Availability Statement of Report: Insert the statement <u>as it appears on the report.</u> If a limited distribution statement is used, the reason must be one of those given by DoD Directive 5200.20, Distribution Statements on Technical Documents, as supplemented by the 18 OCT 1983 SECDEF Memo, "Control of Unclassified Technology with Military Application." The Distribution Statement should provide for the broadest distribution possible within limits of security and controlling office limitations.
- <u>Block 6.</u> Performing Organization Report Number(s): Enter the unique alphanumeric report number(s) assigned by the organization originating or generating the report from its research and whose name appears in Block 6. These numbers should be in accordance with ANSI STD 239-23-74, "American National Standard Technical Report Number." If the Performing Organization is also the Monitoring Agency, enter the report number in Block 4.

<u>Block 5.</u> Monitoring Organization Report Number(s): Enter the unique alphanumeric report number(s) assigned by the Monitoring Agency. This should be a number assigned by a DoD or other government agency and should be in accordance with ANSI STD 239 23-74. If the Monitoring Agency is the same as the Performing Organization, enter the report number in Block 4 and leave Block 5 blank.

TATATATAT SCREEKEEF BESSEEST KASAKATATIOSESSEST TAKAKAKATIVASKATIKAS

Elleria Postoria

- <u>Block 6a.</u> Name of Performing Organization: For in-house reports, enter the name of the performing activity. For reports prepared under contract or grant, enter the contractor or the grantee who generated the report and identify the appropriate corporate division, school, laboratory, etc., of the author.
- $\underline{\textbf{Block 6b}}. \ \, \textbf{Office Symbol:} \ \, \textbf{Enter the office symbol of the Performing Organization}.$
- **Block 6c.** Address: Enter the address of the Performing Organization. List city, state, and ZIP code.
- Block 7a. Name of Monitoring Organization: This is the agency responsible for administering or monitoring a project, contract, or grant. If the monitor is also the Performing Organization, leave Block 7a. blank. In the case of joint sponsorship, the Monitoring Organization is determined by advance agreement. It can be either an office, a group, or a committee representing more than one activity, service, or agency.
- <u>Block 7b.</u> Address: Enter the address of the Monitoring Organization. Include city, state, and ZIP code.
- Block 8a. Name of Funding/Sponsoring Organization Enter the full official name of the organization under whose immediate funding the document was generated, whether the work was done in-house or by contract. If the Monitoring Organization is the same as the Funding Organization, leave 8a blank
- $8 \log 8 b$. Office Symbol: Enter the office symbol of the Funding/Sponsoring Organization.
- <u>Block 8c.</u> Address: Enter the address of the Funding/ Sponsoring Organization. Include city, state and ZIP code

Slock 9. Procurement Instrument Identification Number: For a contractor grantee report, enter the complete contract or grant number(s) under which the work was accomplished. Leave this block blank for in-house reports.

Block 10. Source of Funding (Program Element, Project, Task Area, and Work Unit Number(s): These four data elements relate to the DoD budget structure and provide program and/or administrative identification of the source of support for the work being carried on. Enter the program element, project, task area, work unit accession number, or their equivalents which identify the principal source of funding for the work required. These codes may be obtained from the applicable DoD forms such as the DD Form 1498 (Research and Technology Work Unit Summary) or from the fund citation of the funding instrument. If this information is not available to the authoring activity, these blocks should be filled in by the responsible DoD Official designated in Block 22. If the report is funded from multiple sources, identify only the Program Element and the Project, Task Area, and Work Unit Numbers of the principal contributor.

Block 11. Title: Enter the title in Block 11 in initial capital letters exactly as it appears on the report. Titles on all classified reports, whether classified or unclassified, must be immediately followed by the security classification of the title enclosed in parentheses. A report with a classified title should be provided with an unclassified version if it is possible to do so without changing the meaning or obscuring the contents of the report. Use specific, meaningful words that describe the content of the report so that when the title is machine-indexed, the words will contribute useful retrieval terms.

If the report is in a foreign language and the title is given in both English and a foreign language, list the foreign language title first, followed by the English title enclosed in parentheses. If part of the text is in English, list the English title first followed by the foreign language title enclosed in parentheses. If the title is given in more than one foreign language, use a title that reflects the language of the text. If both the text and titles are in a foreign language, the title should be translated, if possible, unless the title is also the name of a foreign periodical. Transliterations of often used foreign alphabets (see Appendix A of MIL-STD-8478) are available from DTIC in document AD-A080 800.

<u>Block 12.</u> Personal Author(s): Give the complete name(s) of the author(s) in this order: last name, first name, and middle name. In addition, list the affiliation of the authors if it differs from that of the performing organization.

List all authors. If the document is a compilation of papers, it may be more useful to list the authors with the titles of their papers as a contents note in the abstract in Block 19. If appropriate, the names of editors and compilers may be entered in this block.

Block 13a. Type of Report: Indicate whether the report is summary, final, annual, progress, interim, etc.

Block 13b. Time Covered: Enter the inclusive dates (year, month, day) of the period covered, such as the life of a contract in a final contractor report.

Block 14. Date of Report: Enter the year, month, and day, or the year and the month the report was issued as shown on the cover

<u>Block 15.</u> Page Count: Enter the total number of pages in the report that contain information, including cover, preface, table of contents, distribution lists, partial pages, etc. A chart in the body of the report is counted even if it is unnumbered.

<u>Block 16.</u> Supplementary Notation: Enter useful information about the report in hand, such as: "Prepared in cooperation with .," "Translation at (or by) .," "Symposium.," If there are report numbers for the report which are not noted elsewhere on the form (such as internal series numbers or participating organization report numbers) enter in this block.

Block 17. COSATI Codes—This block provides the subject coverage of the report for announcement and distribution purposes. The categories are to be taken from the COSATI Subject Category List" (DoD Modified). Oct 65 AD-624 000 A copy is available on request to any organization generating reports for DoD. At least one entry is required as follows.

Field - to indicate subject coverage of report

Group - to indicate greater subject specificity of information in the report

Sub-Group - if specificity greater than that shown by Group is required, use further designation as the numbers after the period (.) in the Group breakdown. Use <u>only</u> the designation provided by AD-624 000

Example: The subject "Solid Rocket Motors" is Field 21. Group 08, Subgroup 2 (page 32, AD-624 000)

Block 18. Subject Terms: These may be descriptors, keywords, posting terms, identifiers, open-ended terms, subject headings, acronyms, code words, or any words or phrases that identify the principal subjects covered in the report and that conform to standard terminology and are exact enough to be used as subject index entries. Certain acronyms or "buzz words" may be used if they are recognized by specialists in the field and have a potential for becoming accepted terms. "Laser" and "Reverse Osmosis" were once such terms.

If possible, this set of terms should be selected so that the terms individually and as a group will remain UNCLASSIFIED without losing meaning. However, priority must be given to specifying proper subject terms rather than making the set of terms appear "UNCLASSIFIED" <u>Each term on classified reports must be immediately followed by its security classification, enclosed in parentheses.</u>

For reference on standard terminology the "DTIC Retrieval and Indexing Terminology" DRIT-1979, AD-A068 500, and the DoD "Thesaurus of Engineering and Scientific Terms (TEST) 1968, AD-672 000, may be useful

Block 19. Abstract: The abstract should be a pithy, brief (preferably not to exceed 300 words), factual summary of the most significant information contained in the report. However, since the abstract may be machine-searched, all specific and meaningful words and phrases which express the subject content of the report should be included, even if the word limit is exceeded.

If possible, the abstract of a classified report should be unclassified and consist of publicly releasable information (Unlimited), but in no instance should the report content description be sacrificed for the security classification

MOTE: An unclassified abstract describing a classified document may appear separately from the document in an unclassified context e.g., in DTIC announcement or bibliographic products. This must be considered in the preparation and marking of unclassified abstracts.

For further information on preparing abstracts, employing scientific symbols, verbalizing, etc., see paragraphs 2 1(n) and 2.3(b) in MIL-STD-847B

Block 20. Distribution / Availability of Abstract This block must be completed for all reports. Check the applicable statement: "unclassified / unlimited," "same as report," or, if the report is available to DTIC registered users." DTIC users."

<u>Block 21.</u> Abstract Security Classification: To ensure proper safeguarding of information, this block must be completed for all reports to designate the classification level of the entire abstract For CLASSIFIED abstracts, each paragraph must be preceded by its security classification code in parentheses

Block 22a,b,c. Name. Telephone and Office Symbol of Responsible individual. Give name, telephone number, and office symbol of DoD person responsible for the accuracy of the completion of this form

FOREWORD

Citations of commercial organizations and trade names in this report do not constitute an official Department of the Army endorsement or approval of the products or services of these organizations.

Accesio	n For							
NTIS	CRA&I	4						
DTIC	DTIC TAB							
Unannousiced								
Justific	ation							
By Distribution /								
Availability Codes								
Dist	Avail a Spec							
A-1								

TABLE OF CONTENTS

			PAGE
I.	STATEMENT	OF PROBLEM UNDER STUDY	1
11.	BACKGROUND	& REVIEW OF LITERATURE	1
III.	OVERALL PL	AN	7
IV.	PROGRESS T	O DATE	8
	A. HARDW	ARE	8
	B. SOFTW	ARE	8
	C. PERSO	NNEL	10
	D. ACCOM	PLISHMENTS	10
	1.	INTERFACING OF PROGRAMS	10
	2.	PARAMETERIZATION OF ALLINGERS MM2 PROGRAM	11
	3.	MUSCARINIC AGONISTS MODELED	12
		CHART I - AGONISTS THAT WERE MODELLED USING TRIBBLE FOR STRUCTURE INPUT	13
	4.	MOLECULAR MODELING APPROACH USED	15
	5.	OPTIMIZATION STUDIES	15
		CHART II - GLOBAL MINIMUM STRUCTURES	16
		PREFERRED CONFORMATIONS OF MUSCARINE AND ITS ISOMERS	43
		OPTIMIZATION OF CIS/TRANS-2,3-DEHYDROMUSCARINE, CIS/TRANS-MUSCARONE, AND CIS/TRANS-F2268	43
		OPTIMIZATION OF 5-METHYLFURMETHIDE, TFTM, F-2581 AND ARECOLINE DERIVATIVES	44
	9.	CALCULATION OF PARTIAL CHARGES	45
	10.	DERIVATIONOF ELECTROSTATIC POTENTIAL CONTOURS	53
	CONCLUSION	s	57
V.	FUTURE GOL	AS	59
VI.	REFERENCES		60
	APPENDIX A	- MNDO CHARGE CALCULATIONS	62

FIGURES

				PAGE
FIGURE	ı	-	CHOLINERGIC RECEPTOR MODEL OF KIER	4
FIGURE	2	-	CHOTHIA - PAULING CHOLINERGIC MDOEL	4
FIGURE	3	-	ACETYLCHOLINE INTERACTING WITH THE RECEPTOR'S CARBOXYLATE OXYGEN	5
FIGURE	4	-	TRIANGULAR PLANE ON THE X,Y AXIS	42
FIGURE	5	-	MUSCARINE (150 DIHEDRAL ANGLE) - ELECTROSTATIC	56

TABLES

			PAGE
TABLE	I	MM2 CALCULATED - GLOBAL MINIMUM STRUCTURES.	25
TABLE	II	MUSCARINE	26
TABLE	III	EPIALLO MUSCARINE	27
TABLE	IV	EPIMUSCARINE MM2 CALCULATIONS	28
TABLE	V	ALLOMUSCARINE MM2 CALCULATIONS	29
TABLE	VI	DEHYDRO-MUSCARINE (CIS) - DIHEDRAL DRIVER CALCULATIONS	30
TABLE	VII	DEHYDRO-MUSCARINE (TRANS) - DIHEDRAL DRIVER CALCULATIONS	31
TABLE	VIII	MUSCARONE (CIS) (DIHEDRAL ANGLE DRIVER CALCULATION)	32
TABLE	IX	MUSCARONE (TRANS) (DIHEDRAL ANGLE DRIVER CALCULATION)	33
TABLE	Х	F2268 (CIS) (DIHEDRAL ANGLE DRIVER CALCULATION)	34
TABLE	ХI	F2268 (TRANS) (DIHEDRAL ANGLE DRIVER CALCULATION)	35
TABLE	XII	5-METHYLFURMETHIDE - DIHEDRAL ANGLE DRIVER CALCULATIONS	36
TABLE	XIII	TFTM - DIHEDRAL ANGLE DRIVER CALCULATIONS	37
TABLE	XIV	F - 2581 - MM2 CALCULATIONS	38
TABLE	x v	ARECOLINE (H, H) - DIHEDRAL ANGLE DRIVER CALCULATIONS	39
TABLE	XVI	ARECOLINE (H, CH3) - DIHEDRAL ANGLE DRIVER CALCULATIONS	40
TABLE	XVII	ARECOLINE (CH3, CH3) - DIHEDRAL ANGLE DRIVER CALCULATIONS	41
TABLE	XVIII	CHARGES FROM MNDO (OPT. & UNOPT.) AND CNDO MUSCARINE (GLOBAL MINIMUM)	47
TABLE	XIX	CHARGES FROM MNDO (OPT. & UNOPT.) AND CNDO EPIALLOMUSCARINE (LOCAL MINIMUM 162 DEG.)	48

TABLES (CONT.)

			PAGE
TABLE	ХX	CHARGES FROM MNDO (OPT. & UNOPT.) AND CNDO	
		EPIMUSCARINE (LOCAL MINIMUM 151 DEG.)	49
TABLE	XXI	CHARGES FROM MNDO (OPT. & UNOPT.) AND CNDO	
		ALLOMUSCARINE (LOCAL MINIMUM 131 DEG.)	50
TABLE	XXII	CHARGES FROM MNDO (OPT. & UNOPT.) AND CNDO	
		DEHYDRO-MUSCARINE (GLOBAL MINIMUM) (TRANS)	51
TABLE	XXIII	CHARGES FROM MNDO (OPT. & UNOPT.) AND CNDO	
		DEHYDRO-MUSCARINE (CIS) - (GLOBAL MINIMUM)	52
TABLE	XXIV	MUSCARINIC AGONISTS	54-55

I. STATEMENT OF PROBLEM UNDER STUDY

We are interested in studying the muscarinic acetylcholine receptor. Our work will involve molecular modeling of muscarinic agonists and antagonists to determine their bioactive conformations. From the modeled ligands we hope to derive a pharmacophoric pattern common to the ligands. This pharamcophoric pattern will enable a topography of the muscarinic receptor to be derived which will facilitate the design of novel agonists and antagonists. The work will concentrate on the design of new antagonists which could be synthesized and tested by army collaborators. These antagonists we hope will prove to be new antidotes for organophosphate poisons.

II. BACKGROUND AND REVIEW OF LITERATURE

The malfunctioning of acetylcholine mediated transmission of nervous signals (which involves nicotinic and muscarinic receptors as well as acetylcholinesterase enzyme) is responsible for many diseases incurred by man¹, and interfering with cholinergic transmission is a key strategy in chemical warfare. 1c Many nerve poisons function by inhibiting acetylcholinesterase, which prevents removal of released neurotransmitter, resulting in overstimulation of the cholinergic receptors. This produces biological responses that eventually may cause death.

An antidote may reverse the effects of acetylcholinesterase inhibitors by either binding to the receptor to reduce overstimulation by the agonist, or by reacting with the inhibitor, thereby reactivating the acetylcholinesterase enzyme

so that it can resume its original function. 1c

The acetylcholine receptor (AChR) is representative of a large class of membrane proteins responsible for the electrical activity of the nervous system. The receptor upon binding of an agonist responds by opening a channel and allowing ions to pass through the membrane. The ion flows produce electrical signals which cause nerve impulve activity, such as muscle contraction.

An agonist combines with the acetylcholine receptor to initiate changes in conformation states that results in the opening of the ion channel. The mechanism by which this process occurs is still unknown. The agonist is believed to remain bound to the receptor during activation, thus suggesting that the acetylcholine receptor can mold its conformation to fit the agonist structure.^{2e} One method of studying the binding process is by structure-activity relationships. This endeavor is however difficult because most agonsits are flexible molecules and their bioactive conformations are undetermined. Rigid agonists facilitate the solution of this problem since the number of possible conformations is greatly diminished. The number of possible complementary conformational states of the receptor is likewise reduced.

Both the nicotinic and muscarinic receptors have been thoroughly studied, although much more is known about the nicotinic system. The nicotinic receptor has been isolated from membranes, and reconstituted back into the membrane environment. The muscarinic receptor has not been isolated in pure form, because a convenient source which contains large amounts of the receptor has not yet been found.

Since the actual structure of neither receptor is known, indirect methods have been used to gain insight into the structure, the binding mechanism, the geometry of the receptor site, and the bound conformations of agonists and antagonists.

Nonrigid molecules possess functional groups that are free to adopt a large number of spatial orientations. Predictions of the most probable conformers of these flexible molecules can be made either empirically, e.g. x-ray, NMR spectroscopy, 1R, etc., or theoretically, via calculations. The assumption is often made that the preferred conformations are those that are most likely to be the active form of the molecule. Molecules that have the same pharmacological effects are considered, and their conformational profiles compared for structural similarities.

The conformations of acetylcholine and other cholinegic ligands have been studied experimentally and computationally by many workers.^{2,6,7} The types of calculations performed include Extended Huckel Theory (EHT), Intermediate Neglect of Differential Overlap (INDO), Perturbative Configuration Interaction of Localized Orbitals (PCILO), and ab initio calculations at the STO-3G level. Most of the calculations involved flexible molecules, and centered around deriving energy surfaces of fixed conformations with varying torsional angles of interest.⁶

Two receptor models for nicotinic and muscarinic binding were derived. One by Kier⁷, shown in figure 1, is based upon comparisons of interatomic distances separating atomic centers of functional importance. The other, by Chothia and Pauling³

(figure 2), is based on preferred values of relevant dihedral angles from x-ray crystallographic studies of potent cholinomimetics. 9

Fig. 1 The cholinergic receptor models of Kier showing the interaction of the preferred conformers of acetylcholine with (a) the muscarinic receptor and (b) the nicotinic receptor

Fig. 2. The Chothia-Pauling cholinergic model indicating the "nicotinic face" which consists of the quaternary nitrogen and carbonyl oxygen and the "muscarinic face" which is the quaternary nitrogen and acctyl methyl group.

Both models are based on fixed conformations of agonists and antagonists bound to the receptors, and both proposals fail to explain the activity of the reverse ester of acetylcholine. Donelsmith et al⁴ found it necessary to invoke a model based on flexible receptors and ligands.

Schulman, Sabio and Disch¹⁰ derived a preferred muscarinic pharmacophore (figure 3) by calculation of conformational energies and energies of interaction to a hypothetical carboxylate group (CO₂) for a coloumbic interaction and to an OH for a similar hydrogen bonding interaction. Their pharmacophoric pattern incorporates the distances between the receptor carboxylate (P) and hydroxy (Q) and the angle between them. This pharmacophore corresponds to an angle PNOQ between 60 and 117°. This pharmacophore does not however explain the binding of all the muscarinic agonists.

Figure 3 (a) Acetylcholine interacting with the receptor's carboxylate oxygen and an electrophilic group, such as a hydrogen-bonding proton. (b) The oxygen is indicated symbolically by P while the electrophilic site is located at the point of minimum electrostatic potential near the ester oxygen, denoted by Q. The interaction dihedral angle PNOQ is indicated on the right-hand side of the figure. Also shown are the distances |PQ| and |PC₁|.

Beers and Reich¹¹ proposed a pharmacophoric distance for active muscarinic and nicotinic agonists. They predicted that the optimal distance between the site of coulombic interaction (quaternary nitrogen) and hydrogen bonding interaction (ester oxygen) for a muscarinic agonist is 4.44A.

Pullman , Courriere and Coubeils 2 performed quantum mechanical studies (PCILO) on acetylcholine, nicotine and muscarine to determine their conformational and electronic Their conformational studies agreed with properties. experimental data and their electronic studies revealed that the nitrogen on acetylcholine is almost neutral and the positive chargesare spread over the three methyl groups, thus forming a large positive area for coulombic interaction with the receptor. Pauling⁸ performed calculations on a series of anticholinergic substances, and discovered a consistent low energy conformation in all but two compounds, and determined which functional groups were necessary for pharmacological activity. The calculated energy of the consistent conformation was generally less than the crystal conformations, and for the two remaining structures the consistent conformations were only 2 kcal higher than the crystal Weinstein 13 performed quantum mechanical structures. calculations on 3-acetoxyquinuclidine and found that the molecule could adopt the gauche acetylcholine binding conformation. The interaction pharmacophore of the active species was defined by the electrostatic potential fields which were generated, and revealed a reactivity pattern identical with acetylcholine.

The structures of many agonists and antagonists of acetylcholine receptors are known. Activity and specificity varies with conformation and configuration of the molecule. A systematic computer graphic study of semirigid receptor agonists and antagonists could assist in correlating the structures of these drugs to their actions. Computer calculations now enable accurate predictions of preferred conformations 14, charge densitites, electrostatic potential contours and pharmacophoric patterns 15,16. Without computers it is difficult to superimpose three dimensional molecular models to see how well two or more structures conform to one another, or to search for common structural elements. Also with models one can only guess at preferred conformations and relative energies, at charge densitites and electrostatic potential contours.

III. OVERALL PLAN

The overall strategy for studying the muscarine receptor and designing of antagonists which could serve as antidotes for nerve gas poisons is outlined below:

- A. Obtain State of the Art Systems for Modeling Muscarinic Ligands and for Receptor Mapping
 - 1. Hardware
 - a. Graphics
 - b. Computer
 - 2. Software
 - a. Graphics Input, Display
 - b. Calculations
- B. Assemble a Project Team

- C. Collect Suitable Muscarinic Ligands and Reliable
 Biological Data From the Literature
- D. Establish a Viable Collaboration to Obtain New Compounds and Biological Data
- E. Investigate Various Modeling Techniques for Applicability to the Research Problem
- F. Apply Appropriate Techniques to Modeling Molecules of Interest
- G. Draw Conclusions Related to Design of Muscarinic Antagonists
- H. Derive a Geometric Model for the Muscarinic Receptor Site
- I. Design Novel Muscarinic Antagonists for Synthesis and Pharmacological Testing

In the first year of this contract we have made substantial progress on objectives A, B, C, D, E, F, and G, as detailed in the remainder of this report.

IV. PROGRESS TO DATE

A. HARDWARE

The hardware that has been acquired for this project includes an Evans and Sutherland PS 330 Color Vector Terminal and two Advanced Electronics Design (AED) 767 color raster terminals, all interfaced to a VAX 11/780 super minicomputer.

B. SOFTWARE

At the start of this project the TRIBBLE¹⁷ software from Dupont was available. At that time we were going to build a modeling system based on TRIBBLE, and use it for studying muscarinic agonists, antagonists and for receptor mapping. But

since then, there has been an explosion of modeling software on the commercial market, and so we dispensed for the time being withthe idea of developing a software system and proceeded to acquire available modeling systems through grants and purchasing. The following systems are now in-house and are being used for this project: (1) TRIBBLE from D. Pensak, Dupont de Nemours; (2) CHEMGRAF, from Keith Davies, Chemical Design Ltd, Botley works, Oxford, England; (3) CHEMLAB, from Molecular Design Ltd., San Leandro, California; and (4) SYBYL, from TRIPOS, St. Louis, Missouri. TRIBBLE was obtained at no charge; CHEMGRAF and CHEMLAB were acquired through other grants, but updates will be obtained through this contract. SYBYL was awarded as a grant from TRIPOS; the first year's maintenance fee was paid by the university.

Our objective for obtaining these various modeling packages was to explore different modeling techniques in order to use optimal methods for modeling muscarinic ligands and mapping their receptor. In our experience, no single software package is adequate for solving this problem. Various portions of each package are superior to the others, and addition of programs, parameters and interfaces are still necessary.

Besides the above modeling packages, other calculational programs have been obtained and interfaced. These include QuantumMechanical Methods:MOPAC (MNDO,MINDO) from M.J.S. Dewar (available through QCPE), Gaussian 82 from J. Pople (available from QCPE), PRDDO obtained from T. Halgren (Merck, Sharpe & Dohme); and a Classical mechanical method:, MM2, from Allinger (available from QCPE).

C. PERSONNEL

Much time during this period was taken up in assembling a first rate project team. Team members include a systems programmer, Dr. Rong Fa Liang, who is responsible for all software and hardware developments and maintenance; a postdoctoral fellow, Dr. Mark Hermsmeier, who will join the group August 1, 1985 and will be responsible for all applications work; and myself. A consultant, Kai Wen Jen, has been used for some specialized software development.

D. ACCOMPLISHMENTS

2222

1. Interfacing of Programs

CHEMGRAF, TRIBBLE, and MOPAC have been interfaced so that data can be generated in one program and used in another.

We typically use TRIBBLE modules for structure generation and calculation. Data are then read into CHEMGRAF for display and other manipulations. The following modifications in TRIBBLE and CHEMGRAF have been performed.

a. TRIBBLE mimized (MM2) structures (TRIBBLE CONFILE) can be viewed and modified in CHEMGRAF ("modify/cursor") and sent back to TRIBBLE for MM2 minimization. The process can be repeated as often as one likes. The reason for this modification is that CHEMGRAF minimizations are not as rigorous as the calculations in TRIBBLE, but the graphics input, display and modification features in CHEMGRAF are superior to those in TRIBBLE.

- b. CHEMGRAF sketched structures can be converted to TRIBBLE recognized files (TRIBBLE CON). These can then be sent for MM2 calculations and the optimized structures viewed by CHEMGRAF. One problem encountered in interfacing different molecular modeling systems is that whenever an operation is performed, such as sketching of a structure using the graphics programs, a file of data is created which must be in the correct format for recognition by the next program. Different modeling systems use different file formats.
- c. TRIBBLE, MOPAC and CHEMGRAF have been interfaced so that graphics of CHEMGRAF, molecular mechanics (MM2) and Semiempirical calculations (CNDO) of TRIBBLE, and MNDO and MINDO of MOPAC can be utilized and data sent back and forth automatically. The procedure involves generating a CON file in TRIBBLE, converting this to a TRE file which can then be submitted to a CNDO calculation in TRIBBLE or sent to MOPAC for a better MNDO or MINDO calculation. The MOPAC charge files or CNDO charge files can then be read into the CHEMGRAF electrostatics program for generation of an electrostatic surface. Programming was done to convert TRIBBLE TRE files to MOPAC input formats.
 - 2. Parameterization of Allingers MM2 program.

The normal version of MM2 does not handle charges properly and was not parameterized for ammonium salts. Since all the molecules that we are presently considering are ammonium salts, MM2 was modified for us to handle charges by Dr. T. Halgren of Merck Sharpe and Dohme. Parameters were developed in conjunction with Dr. J. Snyder, presently of Searle. Parameters were developed from x-ray data on cyclic and non-cyclic ammonium

ዾዀዹኯዼኯዹፙፚፙዾ፞ዼጜጜጜፙፚጜጜፙጜጜጜጜፙጜጜጜጜዀቜጜጜፚጜጜጜፙፚፚፙፙፙቜቜቔቔቔጜዄጜዄጜጜጜጜጜጜጜቜጜጜ

salts and futher refined by calculations at the 6-31G* level. We had to alter the normal MM2 program within TRIBBLE to incorporate these changes.

3. Muscarinic Agonists Modeled

Chart I lists the agonists that were modelled using TRIBBLE for structure input; CHEMGRAF for display and manipulation; molecular mechanics (MM2 revised version with ammonium salt parameters) for calculation of minimum energy conformations;

MOPAC (MNDO) for charge calculations; and CHEMGRAF for electrostatic potential energy contours.

AGONISTS THAT WERE MODELLED USING TRIBBLE FOR STRUCTURE INPUT

a. muscarine

b. epiallomuscarine

c. epimuscarine

d. allomuscarine

e. cis/trans 2.3 dehydromuscarine

f. cis/trans Muscarone

g. cis/trans F2268

h. 5-methylfurmethide

i. TFTM

j. arecoline

4, Molecular Modeling Approach Used

Biological activity is a result of ligand-receptor binding. It is well known that drug - receptor interactions are analogous to a lock and key concept where complementarity is needed to involve a biological response. However, drug - receptor interactions are governed by electrostatic attractions, as well as geometric factors. We therefore, have calculated conformational and electronic properties of the agonists in Chart I. Our approach involved (a) generating three dimensional structures from two dimensional sketches, (b) calculating minimum energy conformations by the revised MM2 program; (c) identifying the pharmacophoric pattern; (d) comparing structures according to steric energies and physical parameters, bond lengths, bond angles, and non-bonding distances; (e) calculating partial atomic charges using MNDO (MOPAC); (f) calculating electrostatic potential energy contour surfaces.

5. Optimization Studies

Chart II gives structures for the lowest energy conformers of the agonists in Chart I.

Beers and Reich¹¹ and others⁵ have proposed that for the muscarine analogs, the major sites of interaction between the agonist and the receptor involve a coulombic and a hydrogen bonding interaction involving the quaternary nitrogen and the ring oxygen, respectively. Beers and Reich¹¹ proposed that the distance between the coulombic and the hydrogen bonding interaction (at the van der Waals extension of the ring oxygen) should be 4.44A⁰. We therefore calculated the distances between

a. Muscarine

b. Epiallomuscarine

c. Epimuscarine

d. Allomuscarine

e. Dehydromuscarine (2,3)(cis)

f. Dehydromuscarine (2,3)(trans)

g. Muscarone (cis)

h. Muscarone (trans)

i. F 2268 (cis)

j. F 2268 (trans)

k. 5-Methylfurmethide

1. TFTM

m. F 2581

n. Arecoline (H,H)

o. Arecoline (H, CH₃)

STATES ACCORDED FORTING STORES ACCOUNTS ACCOUNTS

p. Arecoline (CH₃,CH₃)

the quaternary nitrogen and ring oxygen extension for the minimum energy structures which were generated. Table I lists the steric energies, extended N...O distances, and dihedral angles of the side chains for the lowest energy structures. As can be seen, the Beers and Reich distance of 4.44A° is not achieved in the lowest energy conformers which have extended N1110 distances of about 3.0A°. We therefore searched for other low energy conformations. Where a rotatable side chain is present we used the MM2 dihedral driver option to generate conformations with 30° incremental rotations over a 360° range. Tables II-XVII indicate the correlation of dihedral angle with steric energy and extended N...O distance. In all cases several conformations with the critical distance around 4.4AO are possible. The conformations most likely to be important for bioactivity are those within 5 kcal of the global minimum(10). These are indicated in the Tables. The smaller the energy difference between the global minimum and the possible bioactive conformation the more likely that the conformation can be achieved.

The procedure that we used to calculate the nonbonding distances between O....N at the Van der Waals extension of oxygen is illustrated for muscarine and is as follows:

Muscarine

Table I

MM2 Calculated - Global Minimum Structures

Agonist a	Steric Energy	Degree of Dihedral Angle 1,5,8,9	Non-Bonded Dist. Between N···0 (A°)
Muscarine	27.71	73.25	3.064
Epiallomuscarine	27.90	70.00	3.046
Epimuscarine	27.31	65	2.998
Allomuscarine	28.49	65	3.047
Dehydromuscarine(cis)	12.89	75.35	3.527
Dehydromuscarine (trans)	13.29	69.46	3.415
Muscarone(cis)	31.14	72.25	3.125
Muscarone(trans)	31.85	-72.82	3.108
F2268(cis)	22.61	70.35	3.115
F2268(trans)	22.68	-73.18	3.133
5-methylfurmethide	4.94	72.3	3.589
TFTM	25.74	71.38	3.047
F2581	33.08	diequatorial	5.13
Arecoline (H,H)	-15.13	180	5.761
Arecoline (H, CH ₃)	-13.05	180	5.621
Arecoline (CH ₃ ,CH ₃)	- 8.09	180	5.823

 $^{^{\}mathrm{a}}$ Units - kilocalories/mole

የሰዘናው የአፍሪካ የሰዘር አመንፈራዊ ሲዲተራዊ እንደ ተፈመ**ለት እንደ እ**ር ተመርከር እና ለመፈር እና ለመፈር እና ለመፈር እና እርሱ እና እርሱ እርሱ እርሱ እርሱ እርሱ እር

 $[^]b\mathrm{N}\dots^o$ - distances calculated by adding 1.74Å to the ether oxygen by the method described in the text.

TABLE II - Muscarine-

MM2 Calculations Dihedral Angle vs Steric Energy and Non-Bonding Distance

Degree of Dihedral Angle 1-5-8-9	Steric Energy	Non-Bonded Dist. Betw. N&O (without adding 1.74)	Non-Bonded Dist. Betw. N&O (adding 1.74)
00	32.0992	2.881	2.589
30 ⁰	30.1730	2.928	2.625
60 ⁰	27.9962	3.082	2.931
90 ⁰	28.4646	3.294	3.384
120° .	30.6470	3.561	3.921
*150 ⁰	30.063 2	3.745	4.291
*180°	30.3956	3.801	4.405
210 ⁰	37.9842	3.738	4.358
240 ⁰	51.0647	3.561	4.096
270 ⁰	36.3006	3.314	3.501
30 0 0	37.119	3.037	2.943
330 ⁰	•	•	-
360 ⁰	32.1006	2.882	2.588
*73.25 ⁰	27.71	3.144	3.064 Global Minimum

^{*}Reers and Reich distance can be achieved within a resonable (< 5kcal) energy difference from the global minimum.

TABLE III - Epiallo muscarine

MM2 Calculations Dihedral Angle versus Steric Energy and N.... O Nonbonded Distance

Angle	Steric Energy	Non-Bonded Dist. Betw. が&O	Adding 1.74
	32.5077	2.887	2.754
30 ⁰	30.2524	2.936	2.717
60 ⁰	28.1305	3.086	2.928
90 ⁰	28.7245	3.296	3.349
120 ⁰	30.85 54	3.564	3.899
*150°	30.2598	3.744	4.278
*180 ⁰	30.5754	3.806	4.477
210	40.5153	3.743	4.496
240	49.8966	3.566	4.298
270 🕠	35.1314	3.305	3.610
300	36.1160	3.026	3.052
330	•	-	-
360	32.5109	2.889	2.700
70 ⁰	27.8961	3.145	3.046 -Global Minimum

^{*}Beers and Reich distance can be achieved within a reasonable (0.5kcal.) energy difference from the global minimum.

TABLE IV - Epimuscarine M_{12} Calculations

Dihedral Angle Versus Steric Energy and Nonbonded N--- O Distance

Arig1e	Steric Energy	Non-Bonded Dist. Betw. N&O	Adding 1.74
00	31.47	2.877	2.800
30 ⁰	28.9260	2.910	2.798
60 ⁰	27.3719	3.055	2.947
90 ⁰	28.4111	3.266	3.369
120 ⁰	30.4002	3.542	3.937
*150°	29.5390	3.729	4.315
*180 ⁰	31.0881	3.806	4.426
210 ⁰	54.6888	3.744	4.382
240 ⁰	57.0296	3.568	4.124
270 ⁰	37.8808	3.293	3.538
300 ⁰	36.2178	3.015	2.986
330 ⁰	42.1248	2.790	2.472
360 ⁰	31.3326	2.869	2.695
** 65 ⁰	27.3140	3.084	2.998 - Global Minimum

^{*}Beers and Reich distance can be achieved within a reasonable \$\int_5\text{kcal}\$) energy difference from the global minimum.

ACCESSION RESERVED ASSOCIATION (1222)

Dihedral Angle Versus Steric Energy and N O Nonbonded Distance

Angle	Steric Energy	Dist. (without adding 1.74	Adding 1.74
00	33.0342	2.896	3.053
30 ⁰	30.0768	2.916	2.949
60 ⁰	28.4934	3.059	3.025
90 ⁰	29.0921	3.285	3.632
*120 ⁰	31.1177	3.556	4.136
*150 ⁰	30.7894	3.739	4.526
*180°	32.7963	3.812	4.812
2100	44.5254	3.751	4.916
240 ⁰	-	•	-
270 ⁰	51.3878	3.625	4.852
300 ⁰	54.4142	3.413	4.481
330 ⁰	•	•	• .
360 ⁰	32.5591	2.868	2.743
** 65°	28.4932	3.088	3.047 (Global Minimum

^{*} Beers and Reich distance can be achieved within a reasonable (<5kcal.) energy difference from the global minimum.

TABLE VI

DEHYDRO-MUSCARINE (CIS) - DIHEDRAL DRIVER CALCULATIONS

ANGLE	STERIC ENERGY	NON-BONDED BETW. N+ 1 0 (WITHOUT ADDING 1.74)	(ADDING 1.74)
0 30 40 90 *120 *150 *150 210 240 *270 300 330 340	16.9362 15.3340 13.3445 13.9236 17.2516 19.0228 19.9690 21.8192 19.5610 14.9363 15.2707	3.011 3.048 3.175 3.385 3.411 3.783 3.839 3.784 3.427 3.394 3.162	2.982 3.008 3.301 3.779 4.205 4.526 4.526 4.679 4.642 4.399 4.018 3.500
GLOBAL 75.35	MINIMUM 12.9971	3.269	3.527

^{*}Beers and Reich N...O distance can be achieved within a reasonable energy difference from the global minimum.

TABLE VII

DEHYDRO-MUSCARINE (TRANS) - DIHEDRAL DRIVER CAICUTATIONS

ANGLE	STERIC ENERGY	NON-BONDED DIST. BETW. N+ 2 0 (WITHOUT ADDING 1.74)	(ADDING 1.74)
0 30 40 90 * 120 * 150 * 180 210 240 270 330 340	16.7992 15.4710 13.4395 13.6632 16.9415 18.6415 18.5633 21.3898 19.4275 14.7920 15.7969	3.011 3.050 3.177 3.375 3.610 3.784 3.838 3.783 3.626 3.332 3.079	3.030 3.042 3.302 3.753 4.195 4.527 4.641 4.399 3.922 3.379
GLOBAL 59.45	MINIMUM 13.2904	3.223	3.415

^{*}Beers and Reich N \dots 0 distance can be achieved within a reasonable energy difference from the global minimum.

TABLE VIII

MUSCARONE(CIS) (DIHEDRAL ANGLE DRIVER CALCULATION)

ANGLE	STERIC ENERGY	NON-BONDED DIST. BETW. N+ % O (WITHOUT ADDING 1.74)	(ADDING 1.74)
	75 4/70	2.883	2.579
0	35.4632	2.938	2.648
30	33.5596	- · · - ··	2.960
٤0	31.3711	3.099	
90	32.0099	3.304	3.414
÷120	34.3315	3.570	3.945
*150	33.4717	3.750	4.304~
*180	33.3810	3.813	4.431
		3.750	4.381
210	46.5779	3.573	4.116
240	56.0390		3.512
270	39.4803	3.321	
300	40.1041	3.045	2.956
330	-	-	-
360	35.4635	2.886	2.584
GLOBAL MINIMUM			
72.254	31.1444	3.155	3.125

^{*}Beers and Reich N...O distance can be achieved within a resonable energy from the global minimum $\,$

TABLE IX

MUSCARONE (TRANS) (DIHEDRAL ANGLE DRIVER CALCULATION)

ANGLE	STERIC ENERGY	NON-PONDED DIST. RETW. N+ 2 O (WITHOUT ADDING 1.74)	(ADDING 1.74)
0	36.9340	2.966	2.590
30	35.9957	2.945	2.951
50	35.9474	3.127	3.578
90	39.4441	3.397	4,.269
120	12.6102	3.654	4.858
150	39.039 3	3.784	5.02 8
190	37.7577	3.826	1.941
210	39.2353	3.761	1.557
240	40.8118	3.589	4.271
270	38.3541	3.335	3.841
300	379082	3.061	3.497
330	55.1198	2.844	3.371
360	36,8031	2.876	2.597
GLOBAL	MINIMUM		
-72.817	31.8475	3.171	3.108

TABLE X

F2268(CIS) (DIHEDRAL ANGLE DRIVER CALCULATION)

		NON-BONDED DIST. BETW. N+ & O	(ADDING 1.74)
ANGLE	STERIC ENERGY	(WITHOUT ADDING 1.74)	CHIRITIC ITAL
0	26.7321	2.882	2.657
30	25.1573	2.934	2.684
60	22.9113	3.085	2.984
90	23.3569	3.297	3.430
*120	25.8362	3.560	3.957
* 150	25.2501	3.740	4.338
* 190	25.0284	3.800	4.467
210	36.5119	3.737	1.429
240	52.2328	3.561	4.175
270	30.7114	3.288	3.542
300	31.5263	3.008	2.780
330	36.2617	2.782	2.480
360	26.7295	2.994	2.653
GLOBAL M	INIMUM		
70.350	22.6097	3.146	3.115

^{*}Beers and Reich distance can be achieved within a reasonable energy difference from the global minimum.

TABLE XI

F2248(TRANS) (DIHEDRAL ANGLE DRIVER CALCULATION)

ANGLE	STERIC ENERGY	NON-BONDED DIST. BETW. N+ % O (WITHOUT ADDING 1.74)	(ADDING 1.74)
0	27.0962	2.896	2.742
30	26.3905	2.954	3.035
50 50	27.8748	3.155	3.491
90	28.9113	3.371	3.847
		3.621	4.244
120	31.9911	3.770	4.439
150	28.7478	3.903	4.484
*180	25,2976		4.273
*210	26.9101	3.739	
240	27.5736	3.562	3.875
270	23.4769	3.296	3.395
300	24.5012	3.013	2.858
330	33,2217	2.788	2.506
340	27.1035	2.887	2.756
GLOBAL M	1INIMUM		
-73.193	22.6939	3.168	3.133

^{*}Beers and Reich distance can be achieved within a reasonable energy difference from the global minimum.

5-METHYLFURMETHIDE - DIHEDRAL ANGLE DRIVER CALCULATIONS

TABLE XII

(O-C-C-N) ANGLE	STERIC ENERGY	NON-BONDED DIST. BETW. N+ & O (ADDING 1.74)
0	7-8054	2.903
30	6.8470	3.042
60	5.2360	3.407
90	5.1620	3.868
*120	7.8222	4.288
* 150	9.6616	4.555
*180	9.6294	4.634
*210	9.6615	4.554
* 240	7.8221	4.287
279	5.1619	3∙ 867
300	5.2378	3.407
330	6.8467	3.042
360	7.8052	2.901
GLOBAL M		3• 589
72.3	4•9423	7-7-7

^{*}Beers and Reich distance can be achieved within a reasonble energy difference from the global minimum.

TFTM - DIHEDRAL ANGLE DRIVER CALCULATIONS

(O-C-C-N) ANGLE	STERIC ENERGY	NON-BONDED DIST. BETW. N+ & O (ADDING 1.74)
0	29.9969	2.673
30	28.0292	2.682
60	25.9540	2.911
90	26.5745	3.346
120	28.8811	3.893
* 150	28.3165	4.274
* 180	28.5027	4•455
210	31.9607	4.333
240	34.9764	4.214
270	31.4737	3. 775
300	30.4913	3. 488
330	29.1929	2.974
360	29.9960	3.047
GLOBAL N	MINIMUM	
71.38	25•7355	3. 047

^{*}Beers and Reich distance can be achieved within a reasonable energy difference from the global minimum.

TABLE XIV

F - 2581 - MM₂ Calculations

	STERIC ENERGY	NOW-BONDED DIST. BETW. N & O (ADDING 1.74)
E*	33.0837	5•131
A*	**	3.667

^{*} E : EQUATORIAL, A : AXIAL expressed in bond C-N

^{**} The conformer A is transformed to conformer E after minimization by MN2

TABLE XV

ARECOLINE (H, H) -DIHEDRAL ANGLE DRIVER CALCULATIONS

		NON-BONDED DIST. BETW. N+ & O
ANGLE (x)	STERIC ENERGY	(ADDING 1.74)
* 0	- 7.3232	4.439 S-CIS
* 30	- 7.6732	4•455
* 60	- 7.6363	4.641
90	- 8.4700	4.805
120	-11.6448	5.058
150	-14.2788	5•404
* * 180	-15.1262	5.761 S-TRANS
210	-14.0699	6.041
240	-10.8724	5•930
270	- 7.1244	5•093
300	- 6.6777	4•721
330	- 6 . 9701	4.520
360	- 7.3223	4•437

* * GLOBAL MINIMUM

^{*}Beers and Reich distance can be achieved within a reasonable energy difference from the global minimum.

TABLE XVI

ARECOLINE (H, CH3) - DIHEDRAL ANGLE DRIVER CALCULATIONS

<u>AN G</u>	LE(x)	STERIC ENERGY	NON-BONDED DIST. BETW. N+ & O (ADDING 1.74)	
	0	- 5.2516	4.538 S-CIS	
3	0	- 5.1769	4•48 2	
6	0	- 5.0884	4.471	
9	0	- 5.7944	4.474	
12	20	- 9.2410	4.689	
15	50	-12.1585	5.138	
** 18		-13.0450	5.621 S-TRAN	S
21	0	-12.0999	5•997	
24	,0	- 9 . 3215	6.026	
27	70	- 5.9268	5•495	
30	00	- 5.2402	5.051	
33	50	- 5.3669	4.693	
36	60	- 5.2513	4.540	

** GLOBAL MINIMUM

ARECOLINE (CH3, CH3) - DIHEDRAL ANGLE DRIVER CALCULATIONS

TABLE XVII

			NON-BONDED DIS BETW. N+ & O	Τ•
8	$\underline{ANGLE}(x)$	STERIC ENERGY	(ADDING 1.74)	
	0	-0.6485	4.452	S-CIS
ĝę.	30	-1.1694	4.486	
&	60	- 1•1235	4.688	
	90	-2.0598	4.862	
	120	- 4•9738	5•134	
	150	- 7•3248	5.482	
	* * 180	-8.0919	5.823	S-TRANS
	210	-7.1987	6.096	
	240	-4.2426	5•973	
₹	270	-0.3862	5.032	
	300	0.0060	4.640	
8	330	-0.2453	4.502	
	360	-0.6466	4.451	
X				
· ·	** GLOBAL M	INIMUM		
is:				
		^	P	
		*	-X-OCH3	
		L+,*	•	
8		H 5 7 7		
		Hz C CH3		
XX				
8				
312				
R.				
		4	1	
**************************************	4.民族民國東京教会中華中央	папана какапапапапапапа	د م مداد است من بور بور بوردون	م خرام خشاف در دان جو بور چورو
	<u> </u>			

- a. Assume $C_1 C_2 0$ to form a triangular plane on the x,y axis, z=0 (figure 4)
- b. Set up three dummy atoms according to the bond length of $\text{C}^1\text{C}_2^{},$ $\text{C}^1\text{O},\text{C}^2\text{O}$

FIGURE 4

c. Form two right triangles and calculate the length 0-a using the phythagorean theorem. Bond lengths C_2 0, C_1 0, and C_1 C2 can be obtained from the MM2 output and aC1 = 1/2 C1C2. By the phythagorean theorem:

$$(OC_2)_2 = (Oa)_2 + (aC_2)_2$$

$$(0a)_2 = (0C_2)_2 - (aC_2)_2$$

$$0a = [(0C_2)_2 - (0C_2)_2]_{1/2}$$

Adding 1.74A + 0a = new distance (a-0-B) in a straight line extension. We then calculate the non-bonding distance from N to

в.

Tables II-V show the results of dihedral driver calculations for muscarine, epiallomuscarine, epimuscarine and allomuscarine. The lowest energy (global minimum) structures were given in Chart II. The calculated energies were similar (Table I, about 28 kcal). The ring conformations and the side chain dihedral angles were also similar about 70°). Extended N...0 distances (about 3.0A°) were not within the Beers and Reich distance of 4.44A°. Incremental rotation of the side chain and MM2 optimization produced conformers with better N...0 distances but higher energies. Those with steric energies within 5 kcal of the lowest are considered most accessible conformers. For muscarine, epiallo-and epimuscarine these are conformations with dihedral angles of 150° and 180°, and for allomuscarine conformations

7. Optimization of cis/trans-2,3-dehydromuscarine, cis/trans-Muscarone, and cis/trans-F2268

Tables VI-XI show the results of dihedral driver optimizations for the titled compounds. As for the muscarine isomers, the global minimum structures have extended N...0

with dihedral angles of 120, 150 and 180°. All of these have

extended N... 0 distances between 4.1 to 4.8AO.

distances which are similar and too short (3.1 to $3.5A^{O}$), and

similar dihedral angles (about $\pm 70^{\circ}$). Potential bioactive conformations for all of the above except trans-F2268 have dihedral angles of 120, 150 and 180° and extended distances between 4.1 to $5.0A^{\circ}$. Trans-F2268 has the best extended N...0 distances (4.3 to $4.94A^{\circ}$) at dihedral angles of 180° and 210° . Trans-muscarone can achieve the potential bioactive conformations with difficulty since the difference in steric energy between the lowest energy conformer and these varies by 6 to 16 kcal. The extended N...0 distances for the trans isomer are also a bit high. (4.9 to $5.0A^{\circ}$).

8. Optimization of 5-methylfurmethide, TFTM, F-2581 and Arecoline Derivatives

The 5-membered ring agonists, 5-methylfumethide and TFTM (Tables XII and XIII) are analogous to the muscarine analogs with global minimum structures having dihedral angles of about 70° and extended N...0 distances between 3.0 - 4.0A°. Better N...0 distances are obtained for conformers with dihedral angles between 120 and 240° (N...0 4.3 to 4.6A°). For TFTM however, to attain the projected bioconformations a distortion of 6 to 9 kcal of energy must occur.

F2581 (Table XIV) has fewer conformational possibilities. The six membered ring exists as a chair, and for the 1,4 trans isomer the two substituents are preferentially in diequatorial positions. However, the diequatorial isomer (energy 33.08 kcal) does not fit the bioactive scheme (extended N...0 distance of 5.1A°). When we attempted to model the diaxial conformer we did not get a final energy and the extended N...0 distance was too

short, 3.67A^O.

The arecoline derivatives (Tables XV-XVII) that we modeled included the NH_2 , monomethyl and dimethyl ammonium salts. The best ring conformation for all of these analogs was a half-chair. The global mimimum for all of the congeners (NH_2 , NH , CH_3 and $\mathrm{N-CH}_3$, CH_3) was the s-trans conformer (180° dihedral angle indicated by asteriscs). Although this conformation had the lowest energy, in each case the extended N...O distances were too high ($5.6-5.8\mathrm{A}^{\circ}$).

It has been proposed that the muscarinic receptor binds to the quaternary ammonium group and to the ester ether oxygen while the nicotinic receptor binds to the ester carbonyl oxygen. The conformers with dihedral angles between 0-60° had the best extended N...0 distances, 4.4 to 4.7A°, but their energies were high (7 to 8 kcal higher). We don't know at this point whether binding to the receptor can lower these energy differences. Perhaps binding could occur initially by hydrogen bonding to the oxygen of the s-trans conformation, followed by rotation around the single bond to achieve the coulombic interaction at the quaternary nitrogen.

9. Calculation of Partial Charges

Partial charges were calculated for the molecules in Chart

I. For all cases MOPAC (MINDO) was used, and in some cases MINDO
and CNDO charges were derived as well. We were testing various
methodsfor partialcharge generation. Tables XVIII - XXIII give
the results of partial charges calculated by the different methods.

Charges were calculated for the lowest energy conformation and for all
the most probable bioconformations (those with extended N...0

distances around 4.0 - 4.8A° and within 7 kcal from the global minimum). These results are given in Appendix A. Cationic head charges were calculated for the various conformers. An example of this calculation is illustrated for muscarine. The cationic head is illustrated below and is within the enclosed region.

Taking the sum of the charges in that region gives a charge of 0.917 for muscarine. A comparion of MNDO and CNDO data indicates a better correlation with literature data for MNDO derived charges. It is well known that for tetrasubstitued nitrogens, the positive charge resides on the peripheral methyls and hydrogens and not on the nitrogen. 12 MNDO calculations agree with this result, while CNDO calculations give a positive nitrogen. MINDO calculations are very similar to MNDO. As can be seen from Tables XVIII to XXIII, and Appendix A there is a small variation in cationic head charge with isomer, conformation and agonist. A larger head charge would result in a better agonistreceptor interaction. Muscarine and its Cis/trans isomers epiallomuscarine, epimuscarine and allomuscarine all have similar cationic head charges of about 0.9 esu., while their dehydro analogs, cis/trans 2,3 dehydromuscarine have slightly larger cationic charges, 1.0 esu. cationic head charges for cis/trans muscarone are about 0.94 esu for all conformers.

TABLE XVIII

CHARGES FROM MNDO(OPT. & UNOPT.) AND CHOO MUSCARINE(GLOBAL MINIMUM)

SEQ.	TYPE	CNDO	MNDO(OPT.)	MNDO(UNOFT.)	CATIONIC HEAD CHARGE (MNDO)
4	0	-0.2528	-0.3299	-0.3314	0.91.7
1	Č	0.1521	0.0747	0.0777	
7	Č	0.1520	0.1126	0.0929	
2 3 4	Ç	-0.0170	-0.0347	-0.0321	
	Č	0.1561	0.1061	0.0921	
5 6	C C	-0.0328	0.0269	0.0207	
7	Õ	-0.2647	-0.3162	-0.3191	
é	C	0.0599	0.0928	0.0679	
9	N	0.0952	-0.1505	-0.0836	
10	C	0.0530	0.1064	0.0913	
11	Č	0.0541	0.1051	0.0828	
12	Č	0.0544	0.1241	0.0862	
13	H	-0.0039	0.0403	0.0461	
14	H	-0.0083	0.0378	0.0491	
15	H	0.0177	0.0290	0.0353	
16	H	0.0283	0.0554	0.0503	
17	H	-0.0096	0.0345	0.0393	
18	Ĥ	0.0240	0.0151	0.0178	
19	H	0.0176	0.0184	0.0209	
20	H	0.0141	0.0072	0.0053	
21	H	0.1580	0.2067	0.1957	
22	н	0.0324	0.0519	0.0608	
23	H	0.0406	0.0667	0.0717	
24	Ĥ	0.0548	0.0544	0.0593	
	H	0.0520	0.0552	0.0594	
2 5	Н	0.0514	0.0619	0.0655	
26	Н	0.0527	0.0565	0.0615	
27	Н	0.0509	0.0545	0.0592	
28	H	0.0518	0.0586	0.0523	
29	Н	0.0612	0.0618	0.0671	
30	H	0.0476	0.0686	0.0771	t
31		0.0478	0.0481	0.0508	
32	Н	U • U J J 4	0.0.52		

CHARGES FROM MNDO(OPT. % UNOPT.) AND CNDO

+EPIALLOMUSCARINE(LOCAL MINIMUM 142 DEG.)

SEQ.	TYPE	CNDO	MNDO(OPT.)	MNDO(UNOPT.)	CATIONIC HEAD CHARGE (MNDO)
				madoverer 1.7	CHARCE (INDO)
1	0	-0.2273	-0.3131	-0.2943	
1 2 3	C	0.1605	0.0910	0.0796	0.903
	C	0.1525	0.1112	0.0950	
4	C	-0.0259	-0.0433	-0.0151	
5	C	0.1520	0.1201	0.0994	
٤	C	-0.0321	0.0372	0.0261	
7	0	-0.2623	-0.3080	-0.3150	
8	C	0.0583	0.0726	0.0187	
9	N	0.0954	-0.1509	-0.0837	
10	C	0.0518	0.1092	0.0805	
11	C	0.0546	0.1099	0.0832	
12	C	0.0528	0.1123	0.0809	
13	Н	-0.0203	0.0149	0.0227	
14	Н	-0.0072	0.0314	0.0186	
15	Н	0.0086	0.0215	0.0260	
16	Н	0.0137	0.0502	0.0481	
17	Н	-0.0071	0.0298	0.0429	
18	H	0.0226	0.0087	0.0101	
19	H	0.0232	0.0232	0.0197	
20	н	0.0220	0.0180	0.0257	
21	Н	0.1588	0.2033	0.1971	
22	Н	0.0349	0.0537	0.0615	
23	Н	0.0383	0.0746	0.0777	
24	Н	0.0537	0.0540	0.0518	
25	Н	0.0518	0.0561	0.0600	
26	Н	0.0530	0.0586	0.0321	
27	Н	0.0514	0.0546	0.0611	
28	H	0.0538	0.0566	0.0519	
29	Н	0.0549	0.0602	0.0619	
30	Н	0.0561	0.0534	0.0566	
31	H	0.0547	0.0611	0.0640	
32	Н	0.0518	0.0533	0.0587	

TABLE XIX

^{*}same numbering scheme as muscarine

TABLE XX

CHARGES FROM MNDO(OPT. & UNOPT.) AND CHDO

TEPIMUSCARINE(LOCAL MINIMUM 151 DEG.)

SEQ.	TYPE	CNDO	MNDO(OFT.)	MNDO(UNOPT.)	CATIONIC HEAD CHARGE (MNDO)
1 2 3	0	-0.2273	-0.3040	-0.2936	0.015
<u> </u>	C	0.1502	0.0872	0.0796	0.915
	C	0.1504	0.1075	0.0847	
1	C	-0.0260	-0.0492	-0.0460	
5	C	0,1537 -0,0324	0.117 <i>1</i> 0.0397	0.1068	
6 7			-0.3170	0.0281	
8	C	-0.2700 0.0603	0.0848	-0.3258	
5 9		0.0803	-0.1517	0.0450	
10	N C	0.0531	0.1092	-0.0858 0.0821	
11	Ċ	0.0544	0.1104	0.0840	•
12	č	0.0530	0.1062	0.0820	
13	H	-0.0140	0.0225	0.0308	
14	H	-0.0054	0.0352	0.0519	
15	H	0.0044	0.0358	0.0350	
16	Н	0.0216	0.0311	0.0453	
17	H	-0.0174	0.0178	0.0253	
18	н.	0.0231	0.0097	0.0119	
19	H	0.0230	0.0207	0.0274	
20	Н	0.0198	0.0197	0.0147	
21	Н	0.1591	0.2042	0.1981	
22	H	0.0418	0.0490	0.0828	
23	Н	0.0400	0.0752	0.0793	
24	Н	0.0544	0.0585	0.0510	
25	Н	0.0514	0.0549	0.0587	
26	Н	0.0514	0.0553	0.0583	
27	Н	0.0511	0.0557	0.0591	
28	Н	0.0540	0.0584	0.0434	
29	Н	0.0547	0.0599	0.0541	
30	Н	0.0559	0.0318	0.0561	
31	Н	0.0547	0.0599	0.0624	
32	н	0.0513	0.0591	0.0573	

⁺ same numbering scheme as muscarine

CHARGES FROM MNDO(OPT. & UNOPT.) AND CHDO

TABLE XXI

THE THE CHOCAL MINIMUM 131 DEG.)

SEQ.	TYPE	CNDO	MNDO(OPT.)	MNDO(UNOFT.)	CATIONIC HEAD CHARGE (MNDO)
1	a	-0.2313	-0.3127	-0.2904	
ż	č	0.1504	0.0810	0.0671	0.903
2	Č	0.1494	0.1012	0.0949	0.505
4	ç	-0.0234	-0.0385	-0.0379	
5	č	0.1539	0.1130	0.0954	
4	S	-0.0312	0.0300	0.0262	
£ ? 8	Ö	-0.2748	-0.3223	-0.3338	
, Q	Č	0.0561	0.0733	0.0321	
9	Ň	0.0963	-0.1536	-0.0843	
10		0.0525	0.1076	0.0821	
11	000	0.0541	0.1111	0.0939	
12	č	0.0526	0.1125	0.0823	
13	H	-0.0124	0.0345	0.0328	
14	H	-0.0063	0.0399	0.0511	
15	Н	0.0136	0.0442	0.0425	
16	Н	0.0288	0.0431	0.0537	
17	Н	-0.0159	0.0328	0.0445	
18	. н	0.0233	0.0113	0.0128	
19	н	0.0200	0.0133	0.0138	
20	Н	0.0224	0.0231	0.0268	
21	Н	0.1597	0.2053	. 0.1995	
22	Н	0.0396	0.0533	0.0913	
23	Н	0.0422	0.0692	0.0714	
24	Н	0.0534	0.0577	0.0429	
25	н	0.0527	0.0554	0.0600	
26	Н	0.0524	0.0559	0.0596	
27	Н	0.0513	0.0557	0.0597	
29	Н	0.0538	0.0564	0.0633	
29	Н	0.0544	0.0598	0.0635	
30	Н	0.0557	0.0601	0.0554	
31	Н	0.0563	0.0635	0.0350	
32	Н	0.0511	0.0531	0.0569	

⁺same numbering scheme as muscarine

CHARGES FROM MNDO(OPT. & UNOPT.) AND CNDO
DEHYDRO-MUSCARINE(GLORAL MINIMUM) (TRANS)

SEQ.	TYPE		HNDO(OPT.)	MNDO(UNOPT.)	CATIONIC HEAD CHARGE (MNDO)
1	0	-0.2299	-0.2665	-0.2139	
2	C	0.1338	0.0802	0.0984	
2	C	0.1551	0.1414	0.1329	1.005
4	C	-0.0601	-0.0955	-0.1301	
5	C	0.1339	-0.0354	-0.0361	
ა 7	C	-0.0374	0.0195	0.0011	
	0	-0.2612	-0.3099	-0.3049	
8	C	0.0673	0.1744	0.1433	
9	N	0.0985	-0.1548	-0.0870	
10	C	0.0520	0.1099	0.0804	
11	C	0.0529	0.1066	0.0811	
12	C	0.0524	0.1177	0.0810	
13	Н	0.0059	0.0596	0.0917	
14	Н	-0.0053	0.0427	0.0547	
15	Н	0.0184	0.1051	0.0912	
16	Н	0.0290	0.0180	0.0243	
17	Н	0.0215	0.0232	0.0254	
18	H	0.0112	0.0085	0.0004	
19	Н	0.1582	0.2041	0.1934	
20	Н	0.0392	0.0564	0.0670	
21	Н	0.0431	0.0721	0.0760	
22	Н	0.0527	0.0542	0.0598	
23	Н	0.0587	0.0674	0.0758	
24	Н	0.0524	0.0526	0.0557	
25	Н	0.0521	0.0570	0.0628	
26	Н	0.0526	0.0550	0.0590	
27	Н	0.0538	0.0578	0.0621	
58	Н	0.0639	0.0707	0.0846	
29	H	0.0502	0.0482	0.0542	
30	Н	0.0551	0.0601	0.0622	

TABLE XXIII
CHARGES FROM MNDO(OPT. 2 UNOPT.) AND CHDO

+DEHYDRO-MUSCAPINE (CIS)-(GLOBAL MINIMUM)

SEQ.	TYPE	CNDO	MNDO(OPT.)	MNDO(UNOPT.)	CATIONIC HEAD CHARGE (MNDO)
	0	-0.2272	-0.2639	-0.2107	
1	C C	0.1365	0.0797	0.0696	1.008
2 3	C	0.1525	0.1391	0.1311	
3 4	C	-0.0511	-0.0847	-0.0991	
	C	0.1311	-0.0399	-0.0125	
5	C	-0.0316	0.0371	0.0290	
6	0	-0.2404	-0.3092	-0.3074	
?	C	0.0673	0.1757	0.1428	
8	N	0.0984	-0.1543	-0.0874	
9		0.0514	0.1093	0.0791	
10	C	0.0530	0.1056	0.0919	
11	C	0.0529	0.1158	0.0919	
12 13	H	-0.0119	0.0354	0.0375	
14	H	-0.0033	0.0404	0.0556	
15	H	0.0181	0.1065	0.0937	
15	H	0.0251	0.0153	0.0153	
17	 H	0.0210	0.0157	0.0192	
18	H	0.0204	0.0178	0.0234	
19	H	0.1590	0.2010	0.1963	
20	H	0.0397	0.0572	0.0392	
21	H	0.0427	0.0717	0.0766	
22	H	0.0525	0.0543	0.0597	
23	H	0.0588	0.0662	0.9764	
24	H	0.0530	0.0536	0.0547	
25	H	0.0520	0.0565	0.0526	
26	н	0.0529	0.0550	0.0593	
27	H	0.0540	0.0587	0.0621	
28	H	0.0502	0.0479	0.0543	
29	H	0.0555	0.0609	0.0630	
30	H	0.0623	0.0697	0.0920	

^{*}same numbering scheme as trans dehydro-muscarine

The cationic head charge of 5-methylfurmethide (1.02 esu) coincides with that of 2,3 dehydromuscarine, while the cationic head charge of TFTM is closer to muscarine and its isomers (0.93 esu). Arecoline, H,H, H,CH₃, and CH₃,CH₃ is also close to muscarine (0.92 esu).

10. Derivation of Electrostatic Potential Contours

Electrostatic Potential (18) contours were generated from the MNDO charges for the lowest energy and the possible bioactive conformations of the agonists in Chart I. Table XXIV summarizes the agonists, steric energies, dihedral angles, N... 0 distances, and electrostatic contour levels that were generated. Most of the electrostatic potentials were contoured at 20,30,100, and 150 kcals and some at 30,120 and 160 as well. Electrostatic potentials were generated as repulsive potentials to an incoming positive charge: the larger the potential the more positive the area, and increased binding to the receptor might be expected. Since there is a net charge of +1 on these agonists, there are no negative potentials but there are areas of more or less positive charge. We checked the conformations for the highest and lowest contouring values. The largest potential obtained for any of the agonists is 160 kcal. The lowest potential falls at 20 kcal. The most positive region is always around the methyl and methylene substituents on the nitrogen (cationic head). lowest potentials are found near the oxygens. This substantiates the idea of coulomic interaction occuring at the amino group and hydrogen bonding interaction at the oxygens. From the plotted maps it is difficult to see significant differences. We plan to

Table XXIV

Muscarinic Agonists

C P C	Compound Muscarine 2 Epimuscarine	aSteric Energy 27.71 30.06 30.39 31.09 29.52	b <u>Dihedral Angle</u> 73.25 150 180 180 151		ectrostatic 0,40,100,15 0,40,100,15 0,40,100,15 0,40,100,15
Allomuscarine	rine	31.12 31.30 30.79 32.80 28.42	120 131.63 150 180 65	4.14 4.53 4.8 3.01	20,40,100,150 20,40,100,150 20,40,100,150 20,40,100,150 20,40,100,150
Epiallomuscarine	scarine	27.90 30.26 30.30 30.58	70 150 162 180	3.05 4.28 4.43 4.48	20,40,100,150 20,40,100,150 20,40,100,150 30,40,100,150
Dehydromuscarine (trans)	scarine ns)	16.94 18.64 18.56	120 150 180	4.20 4.53 4.68	30,40,100,150 30,40,100,150 30,40,100,150
Dehydromuscarine (cis)	scarine)	17.25 18.99 19.56 14.94	120 180 240 270	4.21 4.68 4.40 4.01	20,40,100,150 30,40,100,150 30,40,100,150 30,40,100,150
Muscarone (trans)		31.84	287.18	3.1	30,50,70,100 120,160

CNO Dist. dElectrostatic Contour	3.13 30,50,70,100,120,160 4.3 30,50,70,100,120,160 4.43 30,50,70,100,120,160	30,50,70,100,120,160 4.47 30,50,70,100,120,160	3.13 30,50,70,100,120,160 4.48 30,50,70,100,120,160 4.27 30,50,70,100,120,160	3.59 20,30,100,150 4.29 20,30,100,150 4.55 20,30,100,150	3.05 20,30,100,150 4.27 20,30,100,150 4.46 20,30,100,150
b Dihedral Angle	72.25 150.00 180	150 180	286.62 180 210	72.3 120 150	71.38 150.00 180.00
aSteric Energy	31.14 33.47 33.30	25.03	22.68 25.30 26.81	4.94 7.8 9.66	25.74 28.32 28.50
Compound	Muscarone (cis)	F-2268 (cis)	F-2268 (trans)	5-Methyl-furmethide	TFTM
	. ∞	• 6	10.	11.	12.

<sup>a. reported in kilocalories/mole
b. reported in degrees
c. reported in Angstroms (A°)
d. reported in kilocalories</sup>

Figure 5. Muscarine (150 dihedral angle) - Electrostatic Potential Contour. Contoured at 150 kcal, 100 kcal, 40 kcal, and 20 kcal. Most positive region is found within the 150 kcal enclosure (N-CH₃ groups). Least positive areas are found in the 20 kcal region (oxygens, ring and OH). Color Coding: yellow, 150 kcal; red, 100 kcal; blue, 40 kcal; light bulue, 20 kcal

compute electrostatic potential difference maps to unveil subtle differences in the electrostatic field for different analogs.

The methodology is illustrated in figure 5 where illustrations for muscarine are given. Muscarine has a maximum electrostatic potential of 150 kcals: this region is shown in black and surrounds the N-methyls. The lowest potentials are found around the ring oxygens and these are shown in red.

Conclusions

The five membered ring cyclic analogs of muscarine show the same general conformational trends. The lowest energy (global minimum) for each 5 membered cyclic agonist falls at a dihedral angle of about 70° (±5°). These minimum energy structures, however, all possess extended N...0 distances substantially smaller than the 4.44A° required for muscarine activity according to the Beers and Reich hypothesis⁽¹¹⁾. To achieve the requisite N...0 distance, rotation of the side chain is needed. The conformations with an appropriate extended N...0 distance (4.4A° ±.4) usually fall at dihedral angles of 120-210°, with preference for most cases at 150-180°. However, with this rotation an increase in steric energy is observed. The energies vary from 2 to 16 kcal above the minimum. We tentatively conclude the most probable bioactive conformations possess dihedral angles between 150-180°.

For some of the agonists these conformations are difficult to achieve due to a large energy barrier: this is true for transdehydromuscarine, and for trans muscarone.

At this point it is not clear how the conformational aspects

govern activity. All of these molecules have other functional groups which could be involved in binding, perhaps to another site. Schulman, Sabio, and Disch⁽¹⁰⁾ have performed calculations on some of the same molecules and have reached similar conclusions.

Partial charge calculations and electrostatic potential energies agree that where another carbonyl, hydroxyl or ether oxygen is present, this is a high electron density region and thus possibly subject to an additional hydrogen bonding interaction, which potentiates the binding to the muscarinic receptor. Alternatively it could hinder binding if that binding is to other than the muscarinic receptor. The molecule might compete for which receptor to bind to.

V. FUTURE GOALS

resolution recognist to the test of the second

In the following year the work will progress in the ways described below.

With our conformational work nearly finished on several of the representative agonists, we will proceed to perform receptor mapping studies. This work will be started using SYBYL procedures on the molecules we modeled thus far. We are starting the modeling of muscarinic antagonists and the comparison of agonist/antagonist conformational and electronic properties.

We will begin designing new antagonists and look for sterically constrained agonists/antagonists. An unexplained problem is what effect on binding is there by remote functional groups such as the OH in muscarine and its isomers, the carbonyl in muscarone, the ether oxygen in F2268 and the double bond in 2-3-dehydromuscarine. We will try to investigate the problem by careful calculation of electronic properties of these molecules and by fitting them into derived receptor surfaces.

Conformational work will proceed by superposition of agonists/antagonists. Electrostatic effects will be studied by deriving electrostatic potential difference maps. A close investigation and correlation with muscarinic activity vs. agonist/antagonist and conformation and electronic properties will be made.

A thorough literature search will be made for obtaining new ligands to fit into our scheme.

VI.REFERENCES

- a) Review: G.G. Lunt and R. Harrison, Biochem. Soc. Trans. 8, 693-694 (1980): b) Review: S.M. Aquilonius, "Parkinson's Disease, Curr. Progr. Probl. Manag. Proc. No. Eur. Symp. 1979," U.K. Rinne, M. Klinger, G. Stamm, Ed., Elsevier, Amsterdam, 1980, 17-27; c) M.C. Gerald, "Pharmacology, An Introduction to Drugs", and Ed. Prentice Hall Ince., Englewood Cliffs, N.J., 1981, p. 128-147, L.A. Kepner and O.L. Wolthuis, Eur. J. Pharmacol., 48, 377-382 (1978).
- 2. a) Review: J. Hucho, Trends in Biochem. Sci., 6, 242 (1981); b) M.J. Ross, M. Klymkowski, D.A. Agard and R.M. Stroud, J. Mol. Biol., 116, 299 (1977); c) C.F. Stevens, Nature 287, 13 (1980); d) M.W. Klymkowski and R.M. Stroud, J. Mol. Biol. 128, 319-334 (1979); e) C.E.Spivak and E.X. Albuquerque, Progress in Cholinergic Biology: Model Cholinergic Synapses, edit, by I. Hanin and A.M. Goldberg, Raven Press, New York, 323-357, (1982).
- 3. E. Heilbronn and T. Bartfai, "Progress in Neurobiology", Vol. 11, 1978, pp. 171-188 Pergamon Press.
- 4. K.W. Reed, W.J. Murray, E.B. Roche and L.N. Donelsmith, Gen. Pharmac., 12, 177-185 (1981).
- 5. L.B.Kier, "Molecular Orbital Theory in Drug Design", Academic Press, N.Y., 1971, p. 163.
- 6. B.R. Gelin and M. Karplus, J.Am. Chem. Soc., 97, 6996 (1975) and references 3-12 therein.
- 7. L.B. Kier, Molec. Pharmacol., 3, 487 (1967).
- P. Pauling in "The Conformation of Anticholinergic Substances," J.C. Stoclet, Ed., Adv. Pharmacol., Ther., Proc. 7th Int. Congi. Pharmacol., Pergamon, 1979, p. 302, P. Pauling and N. Datta, Anticholinergic Substances: a single consistent conformation, Proc. Nat. Acad. Sci. U.S.A. 77, 708-712 (1980). P. Pauling and T.F. Petcher, Chem. Comm. 1001-1002 (1969).
- 9. R.W. Baker, C.H. Chothia, P. Pauling and T.J. Petcher, Nature, 230, 439-445 (1971).
- 10. J.M. Schulman, M.L. Sabrio, and R.L. Disch, J. Med. Chem., 26, 817 (1983).
- 11. Beers and Reich, Nature, 228, 917 (1970).
- 12. B. Pullman, Ph. Courriere and J.P. Coubeils Mol. Pharmacol. 7, 397-405 (1971).
- 13. H. Weinstein, R. Osman, W.D. Edwards and J.P. Green, Int. J. Quantum Chem., Quantum Biol., Symp. 5, 449 (1978).

- 14. a) U. Burkert and N.L. Allinger, "Molecular Mecahnics" ACS Monograph 177, ACS p. 1-319 (1982); b) N.L. Allinger and Y.H. Yuh, Quantum Chemistry Program Exchange, Prog. No. 395 (1980).
- 15. C. Humblet and G.R. Marshall, Drug Devel. Res., $\underline{1}$, 409 (1981).
- 16. a) P. Gund, Progr. Mol. and Subcell. Biol., 5, 177 (1977;
 b) P. Gund, Ann. Repts. Med. Chem., 14, 299 (1979).
- 17. a) D.F. Eaton and D.F. Pensak, J. Am. Chem. Soc., 100, 7428-9 (1980); b) D.A. Pensak, Industrial Res. and Dev. 74 (1983).
- 18. P. Politzer, "Chemical Applications of Atomic and Molecular Electrostatic Potentials", (P. Politzer and D.G. Truhlar, eds.) Plenum Press, New York, 1981.

የዘዘ፤ አንኤተ፤ ለይዘው የውስተው የመመር የመርፈር ለተፈጥሮ አስተለው የተመለከት ለተመሰው የተመለከት ለመደር የተመለከት ለመደር የተመለከት ለተመሰው የተመለከት ለተመሰው የተመ

APPENDIX A

MNDO CHARGE CALCULATIONS

<mark>መመርያ መጀመርያ የመጀመርያ የ</mark>ተለያዩ የተለያዩ የተለ

		х	у	z	charge
1	0	2.7422	-0.0747	3.5455	-0.3323
2	С	3.3868	-0.6266	2.4075	0.0776
3	С	3.6946	0.6787	4.2713	0.0911
4	С	4.7018	0.1445	2.2117	0.0931
5	С	2.4326	-0.5062	1.2161	0.0218
6	н	3.5771	-1.7024	2.6381	0.0449
7	С	4.5523	1.3220	3.1766	-0.0318
8	C	3.0029	1.7083	5.1821	0.0690
9	н	4.3124	-0.0425	4.8560	0.0393
10	0	5.7831	-0.6459	2.6585	-0.3187
11	Н	4.9139	0.4595	1.1620	0.0485
12	н	2.8842	-0.9503	0.2994	0.0179
13	Н	1.4733	-1.0373	1.4156	0.0205
14	Н	2.1953	0.5615	1.0029	0.0063
15	Н	3.9937	2.1510	2.6805	0.0348
16	Н	5.5262	1.7135	3.5542	0.0408
17	И	2.2504	1.1917	6.3811	-0.0833
18	Н	3.7893	2.4165	5.5339	0.0609
19	Н	2.3084	2.3042	4.5440	0.0708
20	Н	6.0820	-1.1921	1.9475	0.1955
21	С	3.1692	0.4891	7.3330	0.0813
22	С	1.6331	2.3620	7.0899	0.0826
23	С	1.1592	0.2522	5.9698	0.0861
24	H	3.6022	-0.4332	6.8858	0.0666
25	Н	4.0083	1.1541	7.6419	0.0592
26	Н	2.6242	0.1761	8.2533	0.0593
27	Н	0.9236	2.9056	6.4242	0.0622
28	H	1.0656	2.0345	7.9914	0.0615
29	Н	2.4127	3.0843	7.4256	0.0592
30	Н	1.5694	-0.6846	5.5313	0.0785
31	Н	0.5443	-0.0508	6.8484	0.0505
32	н	0.4807	0.7288	5.2253	0.0662

MNDO CHARGES - MUSCARINE (150° dihed. angle)

```
J
                                                      charge
                    x
1.6252
                              -0.0408
                                                z
              0
                                          -1.1411
                                                      -0.3032
        1
                                          -2.4385
        2
              C
                    1.9266
                              -0.5316
                                                       0.0750
        3
              C
                                          -0.9814
                    0.2172
                              -0.0406
                                                       0.0973
3
              C
                    0.6680
                              -1.2437
                                          -2.9580
                                                       0.0927
        4
              C
        5
                              -1.4558
                                          -2.3318
                    3.1428
                                                       0.0225
             Н
        6
                               0.3577
                                          -3.0657
                                                       0.0451
3
                    2.1771
        7
              C
                   -0.2273
                              -1.3083
                                          -1.7178
                                                      -0.0421
              C
        8
                               0.0271
                                           0.5208
                  -0.1237
                                                       0.0595
              H
        9
                                          -1.5216
)
                  -0.1354
                               0.8679
                                                       0.0305
       10
              0
                              -0.4342
                                          -3.9215
                   0.0267
                                                      -0.3216
              Н
                              -2.2436
                                          -3.4197
       11
                    0.8498
                                                       0.0469
       12
              Н
                                          -3.3337
                    3.4321
                              -1.8483
                                                       0.0149
       13
              Н
                    4.0216
                              -0.9152
                                          -1.9105
                                                       0.0266
       14
                    2.9248
                              -2.3249
                                          -1.6693
                                                       0.0058
              H
       15
                    0.0254
                              -2.2155
                                          -1.1198
                                                       0.0366
              H
2
                              -1.3352
                                          -1.9724
                                                       0.0448
       16
              Н
                  -1.3115
                               0.7046
                                           0.9243
                                                      -0.0854
       17
              N
                  -1.4082
              Н
                                           0.9222
       18
                  -0.1067
                              -1.0128
                                                       0.0665
       19
              H
                   0.7144
                               0.5568
                                           1.0324
                                                       0.0790
                                          -4.7542
                                                       0.1963
       20
              H
                   0.4594
                              -0.5498
              C
                                           0.2637
                                                       0.0795
       21
                   -2.5850
                               0.0593
د
              C
                                                       0.0835
       22
                  -1.5614
                               0.5771
                                           2.4125
              C
                                           0.5791
                                                       0.0812
       23
                  -1.3841
                               2.1634
              Н
       24
                               0.2075
                                          -0.8388
                                                       0.0652
                  -2.5575
       25
              Н
                  -2.6098
                              -1.0347
                                           0.4746
                                                       0.0613
       26
              Н
                  -3.5403
                               0.5030
                                           0.6274
                                                       0.0607
       27
              Н
                               1.0541
                                           2,9468
                  -0.7074
                                                       0.0647
)
       28
                  -2.4979
                               1.0677
                                           2.7653
                                                       0.0616
              H
       29
              Н
                              -0.4929
                                           2.7212
                                                       0.0617
                  -1.6065
       30
              H
                  -1.3397
                               2.3325
                                          -0.5194
                                                       0.0672
)
       31
              H
                  -2.3050
                               2.6731
                                           0.9454
                                                       0.0588
                               2.6696
                                           1.0433
                                                       0.0659
       32
              H
                   -0.5066
       * T MUS180N.OUT
>
```

)

)

3

)

)

)

)

MNDO CHARGE - MUSCARINE (180⁰ dihe. angle)

		x	у	z	charge
1	0	1.6284	-0.0788	-1.0983	-0.3046
2	С	1.9776	-0.4788	-2.4127	0.0761
3	С	0.2147	-0.0371	-0.9938	0.0986
4	С	0.7363	-1.1464	-3.0198	0.0944
5	С	3.1869	-1.4137	-2.3242	0.0233
6	Н	2.2516	0.4514	-2.9663	0.0473
7	C	-0.2307	-1.2336	-1.8363	-0.0468
8	С	-0.1361	-0.0295	0.5075	0.0580
9	Н	-0.0991	0.9205	-1.4753	0.0387
10	0	0.1616	-0.2898	-3.9842	-0.3201
11	Н	0.9219	-2.1332	-3.5074	0.0457
12	Н	3.5110	-1.7396	-3.3392	0.0149
13	Н	4.0512	-0.9066	-1.8365	0.0274
14	Н	2.9431	-2.3240	-1.7296	0.0046
15	Н	-0.0658	-2.1833	-1.2745	0.0306
16	Н	-1.2879	-1.1724	-2.1819	0.0442
17	N	-1.5800	0.0141	0.9373	-0.0841
18	Н	0.3536	-0.9129	0.9810	0.0727
19	, H	0.3804	0.8662	0.9280	0.0739
20	Н	0.6494	-0.3647	-4.7906	0.1965
21	C	-2,2921	-1.2748	0.6663	0.0804
22	C	-1.6163	0.2494	2.4212	0.0829
23	C	-2.2992	1.1352	0.2547	0.0797
24	Н	-2.4112	-1.4670	-0.4194	0.0629
25	Н	-1.7501	-2.1362	1.1200	0.0634
26	Н	-3.3223	-1.2571	1.0911	0.0596
27	Н	-1.1287	1.2148	2.6903	0.0643
28	Н	-2.6642	0.2924	2.7986	0.0613
29	Н	-1.0902	-0.5666	2.9688	0.0637
30	Н.	-2.3530	0.9694	-0.8451	0.0652
31	Н	-3.3463	1.2221	0.6260	0.0600
32	Н	-1.7865	2.1076	0.4379	0.0654
\$					

		x	у	z	charge
1	0	1.6212	-0.0344	-1.1745	-0.3305
2	C	1.9218	-0.8155	-2.3205	0.0818
3	Ċ	0.2180	-0.0221	-0.9776	0.0925
4	C	0.5890	-1.2577	-2.9372	0.0938
5	С	2.8491	-0.0288	-3.2487	0.0229
6	Н	2.4568	-1.7136	-1.9269	0.0324
7	С	-0.3101	-1.2668	-1.7011	-0.0327
8	C	-0.1302	0.0103	0.5209	0.0653
9	Н	-0.1621	0.8857	-1.5009	0.0408
10	٥	0.1014	-0.2783	-3.8285	-0.3176
11	Н	0.6271	-2.2362	-3.4740	0.0511
12	Н	3.0828	-0.6187	-4.1646	0.0137
13	Н	2.3869	0.9347	-3.5630	0.0160
14	Н	3.8112	0.2118	-2.7402	0.0193
15	Н	-0.1238	-2.1857	-1.0959	0.0344
16	Н	-1.3968	-1.2047	-1.9457	0.0603
17	N	0.1618	1.2765	1.2842	-0.0824
18	Н	-1.2192	-0.2147	0.6102	0.0600
19	Н	0.4055	-0.8410	1.0034	0.0691
20	Н	0.4251	-0.4612	-4.6975	0.1965
21	C	-0.6358	2.4260	0.7483	0.0813
22	C	-0.2201	1.0596	2.7195	0.0827
23	C	1.6179	1.6208	1.2235	0.0859
24	Н	-0.3411	2.6859	-0.2926	0.0678
25	Н	-1.7255	2.1930	0.7548	0.0587
26	Н	-0.4780	3.3407	1.3651	0.0590
27	Н	0.3646	0.2236	3.1683	0.0619
28	Н	-0.0278	1.9714	3.3308	0.0614
29	Н	-1.3028	0.8122	2.8135	0.0590
30	Н	1.9315	1.8938	0.1914	0.0800
31	Н	1.8447	2.5011	1.8680	· 0. 0503
32	Η.	2.2449	0.7690	1.5745	0.0654

MNDO CHARGES - EPIALLOMUSCARINE (150°)

		x	у	z	charge
1	0	1.6226	-0.0334	-1.1483	-0.3010
2	С	1.9646	-0.8030	-2.2898	0.0790
3	C	0.2128	-0.0361	-0.9870	0.0987
4	С	0.6543	-1.2525	-2.9473	0.0936
5	C	2.9122	-0.0022	-3.1851	0.0229
6	Н	2.4953	-1.6994	-1.8869	0.0337
7	C	-0.2847	-1.2762	-1.7407	-0.0443
8	C	-0.1228	0.0274	0.5160	0.0550
9	Н	-0.1219	0.8867	-1.5135	0.0348
10	0	0.1801	-0.2755	-3.8485	-0.3201
11	Н	0.7176	-2.2268	-3.4891	0.0493
12	Н	3.1776	-0.5838	-4.0976	0.0103
13	Н	2.4514	0.9596	-3.5067	0.0160
14	Н	3.8572	0.2425	-2.6474	0.0260
15	Н	-0.1127	-2.2021	-1.1427	0.0349
16	Н	-1.3568	-1.2339	-2.0404	0.0449
17	N	-1.4064	0.7020	0.9262	-0.0846
18	Н	-0.1051	-1.0149	0.9110	0.0642
19	H	0.7168	0.5534	1.0290	0.0795
20	Ä	0.5989	-0.4016	-4.6867	0.1973
21	С	-2.5855	0.0704	0.2572	0.0798
22	С	-1.5613	0.5581	2.4126	0.0836
23	C	-1.3759	2.1644	0.5967	0.0811
24	Н	-2.5634	Q.2415	-0.8418	0.0646
25	Н	-2.6111	-1.0272	0.4480	0.0609
26	Н	-3.5390	0.5084	0.6324	0.0603
27	Н	-0.7051	1.0243	2.9529	0.0647
28	Н	-2.4953	1.0497	2.7706	0.0613
29	H	-1.6123	-0.5152	2.7087	0.0613
30	Н	-1.3277	2.3451	-0.4998	0.0679
31	Н	-2.2958	2.6735	0.9662	0.0582
32	Н	-0.4981	2.6627	1.0687	0.0660

```
EPIALLOMUSCARINE (162° dihed. angle)
                              MNDO CHARGES -
•
                       X
                                  y
                                              z
                                                       charge
)
                                                      -0.2963
                                0.4023
                                           2.3694
                    2.0531
              0
                                           1.5583
                                                       0.0796
                               0.3144
                    3.2107
        2
3
                                           3.7393
                                                       0.0996
                                0.2999
7
              C
                    2.4190
                                                       0.0950
                                           2.4353
                              -0.2884
                    4.3090
              C
                                                       0.0264
                                           0.2784
                              -0.4592
        5
6
              C
                    2.8903
                                                       0.0227
                                           1.3043
              H
                                1.3688
3
                    3.4795
                                           3.7864
                                                      -0.0454
              C
                               0.3316
        7
                    3.9531
                                           4.5097
                                                       0.0487
                               1.4069
        8
              C
                    1.6719
                                                       0.0429
                              -0.7106
                                           4.0352
        9
              H
                    2.0540
3
                                           2.5396
                                                      -0.3150
                              -1.6868
       10
              0
                    4.1550
                                                       0.0486
                              -0.0705
                                           2.0948
              H
                    5.3499
       11
                                                       0.0104
                    3.7992
                              -0.5599
                                          -0.3580
       12
              H
                                                       0.0197
                    2.5101
                              -1.4813
                                           0.5051
       13
              Н
                                                       0.0257
                    2.1090
                                0.0648
                                          -0.3191
       14
              H
                                                       0.0260
                    4.3274
                                1.3813
                                           3.8346
              H
       15
                                                       0.0481
                    4.3961
                               -0.2531
                                           4.6249
              Н
       16
                                                      -0.0837
                                            6.0065
                    1.5378
                                1.2970
       17
              N
                                                       0.0645
                                            4.2506
                    2.1531
                                2.3791
       18
              H
                                           4.0807
                                                       0.0777
                    0.6429
                                1.4579
       19
              н
                                                       0.1971
                                            1.7969
                    4.5684
                               -2.1000
       20
              H
                                            6.6838
                                                       0.0805
                    2.8712
                                1.2954
       21
              C
                                           6.4941
                                                       0.0832
              C
                                2.4876
       22
                    0.7625
                                            6.3876
                                                       0.0809
                                0.0558
              C
                    0.7901
       23
                                            6.3743
                                                       0.0618
                    3.4788
                                2.1767
       24
              H
                                                       0.0600
                                            7.7917
                                1.3284
                    2.7560
       25
              H
                                                        0.0621
                                            6.4551
                                0.3690
       26
              H
                    3.4400
                                            7.5996
                                                        0.0611
                                2.4554
       27
              H
                    0.6249
                                                        0.0619
                                3.4379
                                            6.2476
       28
              H
                    1.2902
                                                        0.0649
                                2.5260
                                            6.0315
              H
                   -0.2508
       29
                                                        0.0666
                                            5.8867
       30
              Н
                   -0.2046
                                0.0181
                                                        0.0660
                                            6.1139
                    1.3535
                               -0.8641
       31
              Н
                                                        0.0587
                                            7.4883
                    0.6208
                                0.0158
       32
              н
```

The state of the s

DESCRIPTION OF THE PROPERTY OF

MNDO CHARGES - EPIALLOMUSCARINE (180°)

3			x	у	z	charges
	1	0	1.6363	-0.0507	-1.1094	-0.3004
	2	C	2.0196	-0.8341	-2.2263	0.0807
Э	3	C	0.2196	-0.0228	-0.9995	0.1003
	4	С	0.7412	-1.1674	-2.9988	0.0958
	5	С	3.1026	-0.1039	-3.0224	0.0239
3	6	Н	2.4397	-1.7745	-1.7937	0.0281
	7	C	-0.2801	-1.1867	-1.8613	-0.0486
	8	C	-0.1283	-0.0195	0.5025	0.0521
0	9	Н	-0.0827	0.9459	-1.4650	0.0443
	10	0	0.3962	-0.1196	-3.8784	-0.3170
	11	Н	0.7856	-2.1172	-3.5844	0.0484
	12	Н	3.4003	-0.6968	-3.9175	0.0098
	13	Н	2.7496	0.8945	-3.3679	0.0188
	14	Н	4.0129	0.0592	-2.4006	0.0266
•	15	Н	-0.2088	-2.1497	-1.3024	0.0266
	16	Н	-1.3145	-1.0437	-2.2511	0.0454
	17	N	-1.5710	0.0108	0.9380	-0.0839
9	18	Н	0 .3 653	-0.9061	0.9658	0.0488
	19	Н	0.3868	0.8739	0.9298	0.0757
	20	Н	0.8810	-0.2194	-4.6838	0.1978
•	21	C	-2.2863	-1.2711	0.6436	0.0810
	22	C	-1.6015	0.2166	2.4265	0.0828
	23	C	-2.2916	1.1464	0.2810	0.0799
•	24	Н	-2.4195	-1.4356	-0.4452	0.0618
	25	Н	-1.7398	-2.1430	1.0708	0.0631
	26	Н	-3.3118	-1.2634	1.0798	0.0594
	27	Н	-1.1108	1.1754	2.7131	0.0645
	28	Н	-2.6479	0.2543	2.8085	0.0609
	29	Н	-1.0754	-0.6113	2.9558	0.0633
2	30	Н	-2:3446	1.0058	-0.8223	0.0645
	31	н	-3.3387	1.2239	0.6544	0.0594
	32	Н	-1.7799	2.1150	0.4855	0.0660
9	\$					

		x	у	z	charge
1	0	1.6329	-0.0365	-1.1291	
2	C	2.1155	-1.1079	-1.9167	-0.4026
3	C	0.2225	-0.0222		0.6865
4	С	2.1815	-2.2962	-0.9766	0.1505
5	C	2.2255	-2.3675	-0.9573	0.1928
6	Н	2.1763	-1.9974	-1.0563	0.4360
7	C	-0.3179	-1.2854	-1.2430	-0.9004
8	C	-0.1317	0.0139	-1.6739	-0.5285
9	Н	-0.1533	0.8854	0.5253	0.0540
10	0	3.2648	-2.1434	-1.5036	0.0360
11	Н	2.2576	-3.2940	-0.0650	-0.3112
12	Н	2.5537	-3.2361	-1.4528	-0.0174
13	н	2.9676	-2.2257	-1.6720	0.0568
14	Н	1.2501	-2.6258	-0.2371	0.0799
15	Н	-1.1415	-1.7945	-0.5844	0.3726
16	Н	-0.6974	-1.0306	-1.1211	0.0097
17	N	0.2591	1.2314	-2.6927	0.0432
18	Н	-1.2381		1.3242	-0.0850
19	Н	0.3145	-0.1079	0.5996	0.0488
20	H	4.0092	-0.8896	1.0025	0.0429
21	C	-0.3835	-2.6130	-0.4128	0.2095
22	Č	-0.2102	2.4670	0.7751	0.0838
23	Č	1.7452	1.0329	2.7365	0.0821
24	H	-0.0132	1.4174	1.3433	0.0836
25	H	-1.4910	2.7032	-0.2474	0.0673
26	н	-0.1560	2.3536	0.7284	0.0599
27	H	-1.3165	3.3512	1.4143	0.0575
28	H		0.9045	2.7783	0.0597
29	Н	0.2593	0.1307	3.1926	0.0581
30	Н	0.0500	1.9082	3.3755	0.0607
31		2.1399	1.6932	0.3407	0.0801
31 32	H	2.0319	2.2472	2.0298	0.0505
32 4	П	2.2608	0.4925	1.6908	0.0627

MNDO CHARGES - EPIMUSCARINE (150°)

		x	у	z	charge
1	0	1.6530	-0.0834	-1.0085	-0.3690
2	С	2.1565	-1.1892	-1.7333	0.6838
3	C	0.2339	-0.0719	-0.9264	0.1551
4	C	2.1652	-2.3454	-0.7331	0.1998
5	C	2.2117	-2.4190	-0.8255	0.4358
6	Н	2.1738	-2.0522	-1.0235	-0.8919
7	C	-0.2708	-1.3490	-1.6212	-0.5706
8	C	-0.1422	0.0392	0.5681	0.0478
9	Н	-0.0757	0.8324	-1.4977	0.0268
10	0	3.2156	-2.1871	0.1964	-0.3224
11	Н	2.2424	-3.3604	-1.1920	-0.0210
12	Н	2.5546	-3.3127	-1.3957	0.0608
13	Н	2.9196	-2.2580	0.0200	0.0864
14	Н	1.2134	-2.6493	-0.3884	0.3877
15	Н	-1.1243	-1.8499	-1.1103	-0.0072
16	Н	-0.5824	-1.1207	-2.6687	0.0390
17	N	-1.4308	0.7377	0.9196	-0.0803
18	Н	-0.1459	-0.9884	0.9998	0.0437
19	Н	0.6859	0.5751	1.0896	0.0675
20	Н	3.9975	-2.5793	-0.1654	0.2177
21	C	-2.5982	0.0900	0.2455	0.0835
22	С	-1.6246	0.6493	2.4059	0.0829
23	С	-1.3785	2.1863	0.5379	0.0828
24	Н	-2.5195	0.1711	-0.8622	0.0743
25	Н	-2.6707	-0.9870	0.5214	0.0615
26	H	-3.5531	0.5807	0.5439	0.0548
27	Н	-1.6873	-0.4118	2.7411	0.0583
28	Н	-0.7810	1.1328	2.9508	0.0622
29	Н	-2.5658	1.1567	2.7202	0.0613
30	Н	-1.3066	2.3251	-0.5634	0.0679
31	Н	-2.3004	2.7178	0.8689	0.0575
32	Н	-0.5056	2.6936	1.0096	0.0634
\$.			•		

MNDO CHARGES - EPIMUSCARINE (180° dihed. angle)

		x	у	z	charge
1	0	1.6596	-0.3016	-0.7886	-0.2931
2	С	2.0717	-0.9451	-1.9785	0.0815
3	C	0.2398	-0.2653	-0.7968	0.0997
4	C	1.1236	-2.1396	-2.0864	0.0977
5	C	3.5618	-1.2816	-1.8959	0.0315
6	Н	1.8914	-0.2309	-2.8194	0.0224
7	С	-0.1579	-1.6112	-1.4259	-0.0491
8	С	-0.2223	0.0097	0.6493	0.0594
9	Н	-0.0394	0.5835	-1.4667	0.0232
10	0	1.6014	-3.2170	-1.3095	-0.3133
11	Н	0.9755	-2.5051	-3.1310	0.0415
12	Н	3.8851	-1.8554	-2.7946	0.0107
13	Н	4.1754	-0.3528	-1.8430	0.0244
14	н	3./972	-1.8883	-0.9920	0.0234
15	Н	-0.4909	-2.3472	-0.6601	0.0385
16	Н	-0.9714	-1.4744	-2.1773	0.0316
17	N	-1.6944	0.1118	0.9627	-0.0854
18	Н	0.2175	-0.7925	1.2878	0.0781
19	Н	0.2746	0.9583	0.9644	0.0754
20	Н	2.2430	-3.6997	-1.8084	0.1946
21	C	-2.4432	-1.1599	0.7165	0.0822
22	С	-1.8322	0.4525	2.4199	0.0829
23	C	-2.3154	1.2086	0.1541	0.0796
24	Н	-2.5154	-1.3907	-0.3681	0.0607
25	н	-1.9686	-2.0152	1.2501	0.0690
26	Н	-3.4941	-1.0780	1.0779	0.0578
27	Н	-1.3920	-0.3460	3.0609	0.0655
28	Н	-1.3182	1.4114	2.6619	0.0638
29	Н	-2.9023	0.5682	2.7093	0.0607
30	Н	-2.2760	0.9780	-0.9346	0.0597
31	Н	-3.3874	1.3477	0.4253	0.0604
32	Н	-1.7905	2.1771	0.3227	0.0648

MNDO CHARGES - EPIMUSCARINE (210° dihed.angle)

```
X
                             y
                                        z
                                                  charge
       0
             1.6411
  1
                        -0.0270
                                    -1.0824
                                               -0.2951
  2
       C
             1.9633
                        -0.4692
                                    -2.3864
                                                 0.0813
  3
       C
             0.2249
                        -0.0243
                                    -0.9741
                                                 0.0979
  4
       C
             1.0238
                        -1.6555
                                    -2.6044
                                                0.0982
 5
6
7
8
       C
             3.4590
                        -0.7782
                                    -2.4736
                                                0.0315
       HC
             1.7071
                         0.3615
                                    -3.0893
                                                0.0249
            -0.2063
                        -1.2665
                                    -1.7720
                                               -0.0618
       C
            -0.1221
                         0.0132
                                     0.5288
                                                0.0613
 9
            -0.1176
                         0.9105
                                   -1.4800
                                                0.0378
10
       0
             1.5757
                        -2.8279
                                   -2.0443
                                               -0.3182
11
       Н
             0.7962
                        -1.8592
                                   -3.6785
                                                0.0429
12
       Н
             3.7155
                        -1.1986
                                   -3.4730
                                                0.0107
13
       н
             4.0639
                        0.1460
                                   -2.3249
                                                0.0259
14
       Н
             3.7739
                        -1.5111
                                   -1.6961
                                                0.0218
15
       H
            -0.4675
                        -2.1196
                                   -1.1063
                                                0.0334
16
       Н
            -1.0794
                       -1.0354
                                   -2.4271
                                                0.0364
17
       N
            -1.3973
                       -0.6232
                                     1.0231
                                               -0.0846
18
       H
             0.7351
                       -0.4519
                                    1.0706
                                                0.0848
19
       Н
            -0.1239
                        1.0893
                                    0.8254
                                                0.0669
       Н
20
             2.1805
                       -3.2122
                                   -2.6607
                                                0.1964
21
            -1.4433
                       -2.1034
                                    0.8101
                                                0.0710
       С
22
           -1.4968
                       -0.3674
                                    2.5007
                                                0.0828
23
       C
            -2.5780
                        0.0041
                                    0.3484
                                                0.0794
24
       Н
           -1.5307
                       -2.3609
                                   -0.2674
                                                0.0744
25
       H
           -0.5434
                       -2.5993
                                    1.2413
                                                0.0727
26
       Н
           -2.3404
                       -2.5472
                                    1.2999
                                                0.0562
27
       H
           -0.6407
                       -0.8290
                                    3.0452
                                                0.0659
28
       Н
           -1.4983
                        0.7247
                                    2.7233
                                                0.0620
29
       H
           -2.4363
                       -0.7928
                                    2.9230
                                                0.0607
30
       Н
           -2.5701
                       -0.1978
                                   -0.7466
                                                0.0587
31
       H
           -3.5331
                       -0.4023
                                    0.7541
                                                0.0609
32
       Н
           -2.5844
                        1.1085
                                    0.4975
                                                0.0627
$
```

.)

)

)

)

				•	
		x	У	z	charge
1	0	1.6243	-0.0164	-1.1581	-0.3008
2	C	2.0913	-1.3379	-1.3801	0.0718
3	С	0.2156	-0.0269	-0.9888	0.1010
4	С	0.8711	-2,2661	-1.3607	0.0842
5	С	2.8407	-1,3616	-2.7169	0.0179
6	Н	2.7963	-1.5768	-0.5482	0.0458
7	С	-0.2663	-1.3024	-1.6905	-0.0375
8	С	-0.1084	0.0227	0.5248	0.0417
9	Н	-0.1583	0.8663	-1.5365	0.0383
10	0	0.6730	-2.7594	-0.0524	-0.3372
11	Н	0.9322	-3.1381	-2.0551	0.0542
12	Н	3.2511	-2.3766	-2.9240	0.0142
13	Н	2.1690	-1.0831	-3.5609	0.0075
14	Н	3.6942	-0.6451	-2.7094	0.0277
15	Н	-1.2686	-1.6531	-1.3498	0.0452
16	Н	-0.3120	-1.1413	-2.7942	0.0539
17	N	-0.9195	1.1939	1.0125	-0.0863
18	Н	-0.6551	-0,9046	0.8098	0.0754
19	Н	0.8498	-0.0134	1.0948	0.0803
20	Н	1.1559	-3.5694	0.0366	0.2000
21	С	-2.2639	1.2177	0.3533	0.0828
22	С	-1.1170	1.0532	2.4943	0.0846
23	С	-0.1973	2.4805	0.7529	0.0824
24	Н	-2.1829	1.3560	-0.7478	0.0597
25	Н	-2.8146	0.2667	0.5376	0.0610
26	Н	-2.8843	2.0558	0.7464	0.0595
27	Н	-1.6583	0.1108	2.7412	0.0622
28	Н	-0.1403	1.0386	3.0311	0.0637
29	Н	-1.7143	1.9012	2.9021	0.0588
30	Н	-0.0650	. 2.6749	-0.3342	0.0657
31	Н	-0.7640	3.3444	1.1704	0.0552
32	Н	0.8121	2.4722	1.2251	0.0670

MNDO CHARGES - ALLOMUSCARINE (131° dihed. angle)

			x	у	z	charge	
3							
	1	0	2.1100	-0.2461	3.2237	-0.2904	
	2	С	3.1140	0.1998	2.3268	0.0671	
•	3	C	2.6288	-0.2013	4.5396	0.0954	
	4	C	4.4653	0.0662	3.0453	0.0869	
	5	C	3.0173	-0.6326	1.0459	0.0262	
	6	Н	2.8828	1.2688	2.1018	0.0328	
	7	C	4.0993	-0.5984	4.3746	-0.0379	
	8	C	2.4002	1.2078	5.1351	0.0324	
	9	Н	2.0753	-0.9896	5.0963	0.0445	
	10	0	4.9886	1.3508	3.3112	-0.3338	
_	11	Н	5.2385	-0.5069	2.4792	0.0511	
•	12	Н	3.7736	-0.2993	0.2985	0.0128	
	13	Н	3.1934	-1.7120	1.2589	0.0138	
_	14	Н	2.0102	-0.5351	0.5787	0.0268	
•	15	Н	4.7442	-0.2867	5.2292	0.0425	
	16	Н	4.1769	-1.7068	4.2649	0.0537	
_	17	N	1.8044	1.2781	6.5161	-0.0843	
•	18	Н	3.3677	1.7591	5.1362	0.0813	
	19	Н	1.7375	1.7796	4.4438	0.0744	
_	20	H	5.5224	1.6173	2.5760	0.1995	
0	21	C	2.6702	0.5536	7.4989	0.0821	
	22	C	1.7175	2.7208	6.9229	0.0838	
	23	C	0.4208	0.7021	6.5326	0.0823	
0	24	Н	3.7032	0.9716	7.5018	0.0629	
	25	Н	2.2603	0.6416	8.5313	0.0600 0.0596	
0	26	Н	2.7411	-0.5314	7.2609	0.0597	
•	27	H	1.2806	2.8250	7.9429	0.0377	
	28	Н	2.7254	3.1963	6.9392	0.0635	
0	29	Н	1.0760	3.2996	6.2189 5.7928	0.0664	
•	30	Н	-0,2345	1.2169		0.0650	
	31	Н	0.4144	-0.3851	6.2989 7.5389	0.0569	
0	32	Н	-0.0438	0.8173	/ • 3367	V+VJ67	
~	\$						

MNDO CHARGES - ALLOMUSCARINE (150°)

		x	у	z	charge
1	0	1.6254	-0.0419	-1.1027	-0.2915
2	C	2.1042	-1.3549	-1.3434	0.0700
3	C	0.2144	-0.0533	-0.9624	0.1055
4	C	0.8940	-2.2926	-1.4107	0.0866
5	ε	2.9129	-1.3316	-2.6448	0.0185
6	Н	2.7724	-1.6149	-0.4878	0.0462
7	C	-0.2589	-1.3269	-1.6734	-0.0416
8	С	-0.1281	0.0495	0.5415	0.0336
9	Н	-0.1320	0.8519	-1.5098	0.0377
10	0	0.6899	-2.9031	-0.1538	-0.3362
11	Н	0.9729	-3.1041	-2.1734	0.0526
12	Н	3.3433	-2.3358	-2.8636	0.0136
13	Н	2.2744	-1.0343	-3.5081	0.0075
14	Н	3.7576	-0.6075	-2.5787	0.0292
15	Н	-1.2356	-1.7248	-1.3172	0.0370
16	н	-0.3395	-1.1385	-2.7708	0.0535
17	N	-1.4191	0.7255	0.9285	-0.0841
18	Н	-0.1112	-0.9737	0.9783	0.0848
19	Н	0.7052	0.5970	1.0421	0.0748
20	Н	1.2303	-3.6794	-0.1082	0.2001
21	C	-2.5932	0.0654	0.2788	0.0821
22	C	-1.5758	0.6236	2.4185	0.0838
23	C	-1.3987	2.1777	0.5574	0.0817
24	Н	-2.5521	0.1713	-0.8287	0.0580
25	Н	-2.6340	-1.0180	0.5361	0.0658
26	Н	-3.5482	0.5305	0.6154	0.0583
27	Н	-1.6178	-0.4406	2.7473	0.0641
28	Н	-0.7252	1.1135	2.9465	0.0634
29	Н	-2.5151	1.1169	2.7597	0.0591
30	Н	-1.3539	2.3267	-0.5440	0.0626
31	н	-2.3212	2.6916	0.9135	0.0573
32	H	-0.5236	2.6953	1.0134	0.0660

>			х	У	z	charge
>	1	0	2.1154	-0.1193	3.1886	-0.2438
	2 3	C	2.8411 2.7649	-0.3317 0.8754	1.9864 3.8632	0.0884
>	4	č	4.3056	-0.0289	2.3309	0.1329
	5	Č	2.2829	0.5940	0.8962	0.0044
	6	Н	2.6934	-1.3977	1.6891	0.0817
>	ž	Ĉ	4.0283	0.9518	3.4234	-0.1304
	8	С	2.1620	1.6983	4.9680	0.1433
	9	0	4.9291	-1.1723	2.8685	-0.3049
>	10	Н	4.8969	0.3709	1.4735	0.0547
	11	Н	2.8117	0.4281	-0.0705	0.0243
	12	Н	1.1993	0.3966	0.7265	0.0254
>	13	Н	2.3939	1.6699	1.1637	0.0006
	14	Н	4.7926	1.6442	3.8123	0.0912
	15	N	1.9224	0.9234	6.2324	-0.0870
>	16	Н	2.8470	2.5522	5.1803	0.0670
	17	Н	1.2091	2.1375	4.5912	0.0760
	18	н	5.8523	-1.1391	2.6719	0.1934
>	19	С	3.2012	0.3073	6.7085	0.0804
	20	С	1.4117	1.8658	7.2797	0.0814
	21	C	0.9030	-0.1515	6.0153	0.0810
>	22	Н	3.0483	-0.2287	7.6735	0.0598
	23	Н	3.5956	-0.4343	5.9770	0.0758
	24	Н	3.9832	1.0850	6.8686	0.0557
>	2 5	Н	1.2188	1.3336	8.2397	0.0628
	26	Н	2.1490	2.6758	7.4860	0.0590
	27	Н	0.4578	2.3429	6.9563	0.0621
>	28	Н	1.2636	-0.9263	5.3030	0.0846
	29	Н	0.6724	-0.6771	6.9705	0.0542
	30	Н	-0.0486	0.2733	5.6207	0.0622
_	_					

		x	У	z	charge
1	0	1.4813	-0.0248	-1.4691	-0,2276
2	C	1.4461	-0.5564	-2.7856	0.0628
3	С	0.1916	0.0102	-1.0137	-0.0206
4	C	0.0893	-0.1369	-3.3627	0.1350
5	C	1.6120	-2.0809	-2.7122	0.0063
6	Н	2.2978	-0.1094	-3.3524	0.0736
7	C	-0.6397	-0.0889	-2.0597	-0.1230
8	C	-0.1511	0.0016	0.4520	0.1355
9	0	0.1531	1.1605	-3.9074	-0.3066
10	Н	-0.3399	-0.8477	-4.1076	0.0528
11	Н	1.6134	-2.5267	-3.7334	0.0216
12	Н	2.5769	-2.3507	-2.2243	0.0272
13	Н	0.7921	-2.5629	-2.1319	-0.0007
14	Н	-1.7369	-0.1620	-2.0080	0.0850
15	N	-0.9154	1.2030	0.9358	-0.0864
16	Н	-0.7349	-0.9261	0.6559	0.0697
17	Н	0.8060	-0.0956	1.0158	0.0822
18	Н	0.4566	1.0975	-4.8001	0.1954
19	C	-2.2656	1.3242	0.3039	0.0804
20	C	-1.0979	1.0708	2.4187	0.0814
21	C	-0.1237	2.4422	0.6514	0.0784
22	Н	-2.1963	1.5960	-0.7715	0.0697
23	Н	-2.8445	0.3779	0.4093	0.0605
24	Н	-2.8547	2.1397	0.7832	0.0597
25	Н	-1.6897	0.1595	2.6673	0.0609
26	Н	-0.1166	0.9974	2.9419	0.0639
27	H	-1.6350	1.9519	2.8397	0.0629
28	Н	0.0233	2.5877	-0.4433	0.0767
29	Н	-0.6449	3-3460	1.0434	0.0578
30	Н	0.8821	2.3931	1.1289	0.0655
æ		_	= · = · = -		0.000

MNDO CHARGES - DEHYDROMUSCARINE (150°) (TRANS)

)			v		_	•
			x	у	Z	charge
_	1	0	1.5045	-0.0719	-1.4045	-0.2248
)	2	C	1.5356	-0.6458	-2.7017	0.0625
	3	C	0.1954	-0.0549	-0.9992	0.0001
_	4	C	0.2202	-0.2138	-3.3562	0.1384
)	5	С	1.6666	-2.1703	-2.5752	0.0060
	6	Н	2.4250	-0.2305	-3.2335	0.0757
	7	C	-0.5762	-0.1238	-2.0934	-0.1427
•	8	С	-0.1378	0.0297	0.4714	0.1294
	9	0	0.3356	1.0688	-3.9260	-0.3039
_	10	Н	-0.1831	-0.9329	-4.1076	0.0493
3	11	Н	1.7167	-2.6454	-3.5819	0.0219
	12	Н	2.5972	-2.4427	-2.0261	0.0271
_	13	Н	0.8064	-2.6217	-2.0296	-0.0037
3	14	Н	-1.6738	-0.1279	-2.1336	0.0783
	15	N	-1.4189	0.7124	0.8666	-0.0831
_	16	Н	-0.0721	-0.9903	0.9161	0.0797
•	17	Н	0.7079	0.6161	0.9003	0.0761
	18	Н	0.7197	0.9848	-4.7851	0.1943
_	19	C	-2.6069	-0.1686	0.6357	0.0798
•	20	C	-1.3503	0.9915	2.3424	0.0804
	21	C	-1.5795	2.0199	0.1553	0.0789
	22	Н	-2.7604	-0.4084	-0.4356	0.0643
•	23	Н	-2.5017	-1.1334	1.1833	0.0618
	24	Н	-3.5415	0.3245	0.9900	0.0615
	25	Н	-1.2114	0.0498	2.9225	0.0624
•	26	Н	-0.5038	1.6733	2.5897	0.0661
	27	Н	-2.2843	1.4794	2.7057	0.0634
	28	Н	-1.7130	1.8899	-0.9402	0.0734
•	29	Н	-2.4798	2.5631	0.5241	0.0582
	30	Н	-0.6922	2.6738	0.3195	0.0692
	•					

MNDO CHARGES - DEHYDROMUSCARINE (180°) (TRANS)

POSZOBNI PZZEZONI TESSESOCI PROPOZZI PROSONI ERRCKOSTIKKONOSTIKONOSTIKONOSTI

		X _	у	z	charge
1	0	1.5242	0.0061	-1.3778	-0.2234
2	C	1.5955	-0.5630	-2.6751	0.0613
3	C	0.2091	-0.0238	-0.9923	0.0044
4	C	0.2814	-0.1634	-3.3512	0.1408
5	С	1.7631	-2.0840	-2.5502	0.0066
6	н	2.4835	-0.1230	-3.1891	0.0772
7	C	-0.5400	-0.0951	-2.1025	-0.1477
8	C	-0.1229	0.0765	0.4784	0.1306
9	0	0.3743	1.1215	-3.9193	-0.2999
10	H	-0.0906	-0.8915	-4.1100	0.0461
11	H	1.8445	-2.5546	-3.5569	0.0226
12	Н	2.6898	-2.3342	-1.9840	0.0270
13	Н	0.9046	-2.5590	-2.0222	-0.0089
14	Н	-1.6362	-0.1096	-2.1735	0.0766
15	N	-1.5663	0.0434	0.8981	-0.0826
16	Н	0.4203	-0.7652	0.9682	0.0741
17	Н	0.3468	1.0204	0.8412	0.0825
18	Н	0.7854	1.0518	-4.7668	0.1935
19	C	-2.2235	-1.2432	0.5076	0.0803
20	C	-1.5992	0.1303	2.3994	0.0795
21	C	-2.3191	1.2236	0.3663	0.0787
22	. H	-2.2759	-1.3809	-0.5920	0.0656
23	Н	-1.6719	-2.1157	0.9274	0.0632
24	Н	-3.2704	-1.2847	0.8871	0.0613
25	Н	-1.0573	-0.7243	2.8668	0.0637
26	Н	-1.1245	1.0716	2.7614	0.0657
27	Н	-2.6457	0.1131	2.7827	0.0638
28	Н	-2.3787	1.2323	-0.7410	0.0710
29	Н	-3.3676	1.2271	0.7435	0.0595
30	H	-1.8390	2.1783	0.6822	0.0669

Ţ	EPIALLOBN.OUT	MNDO CHARGES -	DEHYDROMUSCARINE	(CIS) (GLOBAL MIN	.)
---	---------------	----------------	------------------	-------------------	-----

		х	у	z	charge
1	0	2.5208~	0.0501	5.3531	-0.2407
2	Ċ	3.4877	-0.1416	4.3298	0.0696
3	Ċ	3.0726	0.9422	6.2301	-0.0425
4	Ċ	4.8486	-0.0290	5.0289	0.1311
5	C	3.2249	-1.4681	3.6145	0.0290
6	Н	3.3546	0.7035	3.6081	0.0375
7	C	4.4052	0.9230	6.0926	-0.0991
8	C	2.3037	1.7459	7.2412	0.1428
9	0	5.2257	-1.2460	5.6293	-0.3076
10	Н	5.6692	0.3563	4.3783	0.0556
11	Н	4.0017	-1.6564	2.8383	0.0153
12	Н	3.2327	-2.3236	4.3279	0.0192
13	Н	2.2305	-1.4597	3.1115	0.0234
14	н	5.1113	1.5139	6.6987	0.0937
15	N	1.8583	0.9407	8.4284	-0.0874
16	Н	2.9468	2.5898	7.5844	0.0682
17	H	1.4275	2.2005	6.7232	0.0766
18	Н	5 • 7535	-1.7344	5.0160	0.1963
19	С	3,0453	0.3502	9.1251	0.0791
20	С	1.1349	1.8478	9.3765	0.0819
21	C	0.9326	-0.1580	8.0080	0.0818
22	Н	2.7323	-0.2076	10.0377	0.0597
23	Н	3.5890	-0,3682	8.4703	0.0764
24	Н	3.760 <i>9</i>	1.1448	9•4386	0.0567
25	Н	0.7880	1.2923	10.2782	0.0626
26	Н	1.7956	2.6758	9.7230	0.0593
27	Н	0.2404	2.3017	8.8909	0.0621
28	Н	0.5468	-0.7118	8.8948	0.0543
29	Н	0.0572	0.2484	7.4510	0.0630
30	Н	1.4449	-0.9042	7.3604	0.0820

MNDO CHARGE - EPIALLODEHYDROMUSCARINE(cis)(120°)

```
X
                          у
                                       z
                                                charge
             1.4712
                       -0.0431
 1
       0
                                   -1.4734
                                               -0.2282
 2
       C
             1.4190
                       -0.5478
                                   -2.7998
                                                0.0941
 3
       C
             0.1828
                        0.0023
                                   -1.0135
                                               -0.0108
 4
       C
             0.0688
                       -0.0937
                                   -3.3652
                                                0.1356
      C
 5
            2.6479
                       -0.0779
                                   -3.5807
                                                0.0355
 67
             1.4397
                       -1.6630
                                   -2.7076
                                                0.0346
       C
           -0.6535
                       -0.0724
                                   -2.0577
                                              -0.1613
       C
 8
           -0.1596
                       -0.0083
                                    0.4519
                                                0.1348
 9
            0.1406
                        1.2135
                                   -3.8844
                                              -0.3045
10
       Н
           -0.3476
                       -0.7953
                                   -4.1267
                                                0.0530
11
      Н
            2.6004
                       -0.4296
                                   -4,6368
                                                0.0167
12
      H
            2.7244
                        1.0334
                                   -3.5887
                                                0.0261
13
      Н
            3.5850
                       -0.4756
                                   -3.1271
                                               0.0184
14
      H
           -1.7515
                       -0.1289
                                   -2.0048
                                               0.0804
15
      N
           -0.9125
                        1.2009
                                    0.9366
                                              -0.0869
      Н
16
           -0.7555
                       -0.9293
                                    0.6511
                                               0.0699
      H
17
            0.7949
                       -0.1181
                                    1.0177
                                               0.0832
18
      Н
                        1.2925
                                               0.1925
           -0.4598
                                   -4.6087
      CCC
19
           -2.2546
                                    0.2942
                                               0.0820
                        1.3505
20
                                    2.4168
           -1.1115
                        1.0591
                                               0.0812
21
           -0.0974
                        2.4296
                                    0.6720
                                               0.0782
22
      Н
                                   -0.7757
           -2.1712
                        1.6396
                                               0.0669
23
      H
           -2.8476
                        0.4109
                                    0.3801
                                               0.0609
24
      Н
           -2.8369
                        2.1669
                                    0.7801
                                               0.0594
      Н
25
           -1.6368
                        1.9460
                                    2.8405
                                               0.0628
26
      H
           -1.7219
                        0.1565
                                    2.6515
                                               0.0610
27
      Н
           -0.1367
                        0.9635
                                    2.9486
                                               0.0644
28
      Н
            0.0679
                        2.5793
                                  -0.4196
                                               0.0761
29
      H
           -0.6101
                        3.3388
                                    1.0624
                                               0.0576
      н
30
            0.9008
                        2.3618
                                    1.1630
                                               0.0662
```

3

>

)

)

\$

MNDO CHARGES - EPIALLODEHYDROMUSCARINE (cis)(150°)

	•	X	-0.0717	Z	charge
1	0	1.4950		-1.4165	-0.2262
2	C	1.5153	-0.6509	-2.7112	0.0963
3	C	0.1860	-0.0503	-1.0093	0.0081
4	C	0.2084	-0.1966	-3.3679	0.1387
5	С	2.7955	-0.2431	-3.4427	0.0361
6	Н	1.5083	-1.7599	-2.5597	0.0309
7	C	-0.5876	-0.1092	-2.1034	-0.1792
8	C	-0.1402	0.0241	0.4638	0.1277
9	0	0.3347	1.0847	-3.9379	-0.3007
10	Н	-0.1785	-0.9223	-4.1224	0.0491
11	Н	2.8046	-0.6560	-4.4776	0.0158
12	Н	2.8915	0.8646	-3.5104	0.0295
13	Н	3.6972	-0.6265	-2.9118	0.0177
14	Н	-1.6852	-0.1077	-2.1428	0.0732
15	N	-1.4149	0.7112	0.8714	-0.0831
16	Н	-0.0803	-1.0006	0.8984	0.0801
17	Н	0.7114	0.6002	0.8951	0.0767
18	H	-0.2448	1.1551	-4,6793	0.1910
19	Ċ	-2.6119	-0.1546	0.6300	0.0802
20	C	-1.3407	0.9667	2.3514	0.0803
21	Č	-1.5631	2.0305	0.1803	0.0802
22	H	-2.7746	-0.3694	-0.4452	0.0635
23	H	-2.5121	-1.1313	1.1570	0.0626
24	Ĥ	-3.5399	0.3395	0.9996	0.0610
25	H	-2.2682	1.4603	2.7236	0.0631
26	H	-1.2126	0.0145	2.9167	0.0629
27	H	-0.4859	1.6345	2.6080	0.0663
28	H	-1.6938	1.9169	-0.9176	0.0701
29	H	-2.4601	2.5753	0.5549	0.0581
				0.3542	0.0381
30	Н	-0.6710	2.6748	V • 3362	0.009/

			X	У	Z	change
~	1	0	1.5257	-0.0056	-1.3710	charge -0.2245
3	2	C	1.5946	-0.5793	-2.6661	0.0908
	3	C	0.2086	-0.0342	-0.9896	
	4	ε	0.2898	-0.1626	-3.3497	0.0115 0.1417
3	5	C	2.8778	-0.1289	-3.3667	0.0358
	6	Н	1.6184	-1.6886	-2.5190	
	7	C	-0.5371	-0.1123	-2.1022	0.0269 -0.1786
3	8	C	-0.1256	0.0754	0.4803	0.1291
	9	O	0.3891	1.1296	-3.9004	-0.2993
~	10	Н	-0.0600	-0.8926	-4.1182	0.0471
)	11	Н	2.9187	-0.5289	-4.4058	0.04/1
	12	Н	2.9454	0.9816	-3.4202	0.0309
`	13	Н	3.7787	-0.4939	-2.8215	0.0307
)	14	Н	-1.6330	-0.1325	-2.1761	0.0718
	15	N	-1.5691	0.0443	0.9002	-0.0825
	16	H	0.4204	-0.7582	0.9805	0.0751
	17	Н	0.3407	1.0250	0.8327	0.0820
	18	Н	-0.0155	1.1430	-4.7526	0.1923
	19	Č	-2.2146	-1.2562	0.5386	0.0805
	20	C	-1.6024	0.1672	2.3991	0.0793
	21	C	-2.3320	1.2064	0.3440	0.0798
	22	Н	-2.2467	-1.4242	-0.5580	0.0652
	23	Н	-1.6651	-2.1136	0.9911	0.0636
	24	Н	-3.2666	-1.2922	0.9044	0.0611
	25	Н	-2.6481	0.1411	2.7842	0.0636
	26	H	-1.0457	-0.6662	2.8871	0.0640
	27	н	-1.1429	1.1247	2.7376	0.0658
	28	Н	-2.4139	1.1793	-0.7613	0.0688
	29	Н	-3.3745	1.2206	0.7377	0.0589
	30	H	-1.8489	2.1713	0.6223	0.0674

MNDO CHARGES - EPIALLODEHYDROMUSCARINE (cis)(240 $^{\rm O}$)

_			x	у	z	charge
	1	0	1.5448	-0.0336	-1.3467	-0.2345
	2	С	1.5971	-0.5314	-2.6736	0.0904
•	3	С	0.2249	-0.0243	-0.9741	-0.0128
	4	С	0.3179	-0.0150	-3.3372	0.1366
	5	C	2.9048	-0.0995	-3.3397	0.0361
_	6	Н	1.5692	-1.6475	-2.5933	0.0168
	7	С	-0.5152	-0.0014	-2.0929	-0.1363
	8	C	-0.1150	0.0124	0.4982	0.1288
-	9	0	0.4803	1.3018	-3.8088	-0.2938
	10	Н	-0.0590	-0.6809	-4.1498	0.0461
	11	Н	2.9353	-0.4381	-4.4008	0.0135
_	12	Н	3.0234	1.0080	-3.3261	0.0341
	13	Н	3.7840	-0.5374	-2.8132	0.0156
	14	Н	-1.6103	0.0333	-2.1731	0.0827
-	15	N	-0.9201	-1.1139	1.0850	-0.0846
	16	Н	0.8596	0.0857	1.0348	0.0838
	17	Н	-0.6507	0.9756	0.6671	0.0731
-	18	Н	0.0831	1.3847	-4.6606	0.1934
	19	C	-0.1956	-2.4183	0.9735	0.0838
	20	C	-1.1026	-0.8188	2.5488	0.0792
-	21	C	-2.2857	-1.1933	0.4761	0.0811
	22	Н	-0.0294	-2.7233	-0.0806	0.0641
	23	H	0.8026	-2.3635	1.4658	0.0667
-	24	Н	-0.7739	-3.2362	1.4618	0.0586
	25	Н	-1.6862	-1.6229	3.0540	0.0624
	26	H	-0.1217	-0.7389	3.0720	0.0654
-	27	Н	-1.6479	0.1409	2.7038	0.0636
	28	Н	-2.2634	-1.4630	-0.5990	0.0626
	29	Н	-2.9011	-1.9712	0.9842	0.0601
•	30	Н	-2.8212	-0.2204	0.5682	0.0631
	\$					

MNDO CHARGES - EPIALLODEHYDROMUSCARINE (cis) (270°)

		x	у	Z	charge
1	0	1.5684	-0.5069	-1.3767	-0.2293
2	C	1.4647	-0.9086	-2.7357	0.0837
3	C	0.2867	-0.2822	-0.9510	-0.0458
4	С	0.2736	-0.1271	-3.3043	0.1374
5	С	2.8000	~0.6793	-3.4463	0.0351
6	Н	1.2338	~2.0038	-2.7218	0.0164
7	C	-0.4828	-0.0282	-2.0176	-0.1148
8	C	-0.1236	-0.0777	0.4822	0.1381
9	0	0.6611	1.1609	-3.7200	-0.2952
10	Н	-0.2667	-0.6609	-4.1220	0.0486
11	Н	2.7197	-0.9393	-4.5268	0.0139
12	Н	3.1255	0.3832	-3.3692	0.0337
13	Н	3.6030	-1.3093	-2.9988	0.0154
14	Н	-1.5403	0.2796	-1.9724	0.0893
15	И	-0.4794	-1.3434	1.2002	-0.0888
16	Н	0.7156	0.4424	1.0002	0.0828
17	Н	-0.9927	0.6207	0.5095	0.0707
18	Н	0.3843	1.3065	-4.6104	0.1954
19	C	0.6820	~2.2870	1.2000	0.0843
20	Č	-0.8387	-1.0103	2.6162	0.0825
21	C	-1.6525	-1.9947	0.5365	0.0827
22	Н	0.9552	-2.5992	0.1665	0.0694
23	Н	1.5774	-1.8185	1.6697	0.0681
24	Н	0.4406	-3.2129	1.7712	0.0558
25	Н	-1.1206	-1.9269	3.1841	0.0618
26	Н	0.0180	-0.5320	3.1447	0.0649
27	Н	-1.7035	-0.3083	2.6559	0.0610
28	H	-1.4139	-2,2944	-0.5094	0.0622
29	Н	-1.9583	-2.9157	1.0844	0.0608
30	н	-2.5295	-1.3076	0.5089	0.0597
\$ ·					

7			x	у	2	charge
	1	0	1,6270	-0.0240	-1.1443	-0.2920
_	2	С	1.9041	-0.4851	-2.4574	0.0681
9	3	С	0.2148	-0.0288	-0.9837	0.0996
	4	C	0.7975	-1.4621	-2.7864	0.2004
_	5	C	3.3116	-1.0783	-2.5162	0.0365
0	6	Н	1.8107	0.3911	-3.1430	0.0453
	7	С	-0.2728	-1.2794	-1.7319	-0.1021
_	8	С	-0.1237	0.0310	0.5225	0.0608
3	9	Н	-0.1312	0.8895	-1.5126	0.0187
	10	0	0.7698	-2.2748	-3.6767	-0.2010
_	11	Н	3.5576	-1.4259	-3.5460	0.0324
7	12	Н	4.0747	-0.3222	-2.2200	0.0255
	13	Н	3.4043	-1.9482	-1.8262	0.0139
_	14	Н	-0.2747	-2.1841	-1.0815	0.0579
4	15	Н	-1.2732	-1.1472	-2.2042	0.0554
	16	N	-1.4089	0.7014	0.7336	-0.0868
3	17	Н	-0.0963	-1.0087	0.9236	0.0705
4	18	Н	0.7130	0.5653	1.0313	0.0811
	19	С	-2.5879	0.0508	0.2808	0.0803
•	20	C	-1.5555	0.5682	2.4233	0.0829
י	21	С	-1.3973	2.1626	0.5967	0.0816
	22	Н	-2.5639	0.1939	-0.8223	0.0590
3	23	Н	-2.6073	-1.0429	0.4935	0.0636
1	24	Н	-3.5432	0.4923	0.6473	0.0638
	25	H	-0.7017	1.0481	2.9554	0.0880
	26	Н	-2.4931	1.0525	2.7819	0.0634
•	27	Н	-1.5930	-0.5029	2.7290	0.0633
	28	Н	-1.3600	2.3361	-0.5014	0.0630
1	29	Н	-2.3197	2.6642	0.9704	0.0615
•	30	Н	-0.5204	2.6722	1.0581	0.0676
	₫.					

The second second

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS 1963 A

```
MNDO CHARGES - MUSCARONE (cis)(180°)
                   1.6212
                                                     -0.2936
                              -0.0648
                                          -1.11<sup>Z</sup>
             0
        1
                              -0.4346
        2
             C
                   1.9370
                                          -2.4430
                                                       0.0699
        3
             C
                   0.2031
                              -0.0214
                                          -0.9975
                                                       0.1009
        4
             C
                   0.8298
                              -1.3719
                                          -2.8631
                                                       0.2024
             C
        5
                   3.3394
                              -1.0396
                                          -2,4996
                                                       0.0372
        6
             Н
                   1.8726
                               0.4872
                                          -3.0696
                                                       0.0467
        7
             C
                  -0.2748
                              -1.2115
                                          -1.8413
                                                     -0.1084
        8
              C
                  -0.1484
                              -0.0261
                                           0.5068
                                                       0.0604
        9
             Н
                               0.9417
                                          -1.4685
                                                       0.0290
                  -0.1106
      10
              0
                   0.8228
                                          -3.7830
                                                     -0.2012
                              -2.1513
             H
                   3.6106
                              -1.3263
                                          -3.5417
                                                       0.0323
      11
      12
                   4.1012
                              -0.3118
                                          -2.1365
                                                       0.0265
             H
                   3.4042
                              -1.9514
                                          -1.8624
                                                       0.0133
      13
             Н
      14
             Н
                  -0.3159
                              -2.1509
                                          -1.2432
                                                       0.0501
                                          -2.3549
                                                       0.0552
      15
             Н
                  -1.2446
                              -1.0169
                                           0.9399
                                                     -0.0861
      16
             N
                  -1.5919
                               0.0177
             H
                   0.3309
                              -0.9267
                                           0.9581
                                                       0.0745
      17
      18
             Н
                   0.3787
                               0.8538
                                           0.9471
                                                       0.0772
             C
                                           0.5779
                                                       0.0806
      19
                  -2.3465
                              -1.2241
      20
             C
                               0.1461
                                           2.4383
                                                       0.0822
                  -1.6216
      21
             C
                  -2.2836
                               1.2070
                                           0.3481
                                                       0.0801
      22
             H
                                                       0.0612
                  -2.4823
                              -1.3187
                                          -0.5199
                                                       0.0657
      23
             H
                  -1.8261
                              -2.1339
                                           0.9561
                              -1.2098
                                                       0.0621
      24
             Н
                  -3.3717
                                           1.0147
                                           2.7754
                                                       0.0649
      25
             Н
                  -1.1011
                               1.0722
                               0.1963
                                           2.8203
                                                       0.0631
      26
             Н
                  -2.6674
)
      27
                              -0.7248
                                           2.9243
                                                       0.0651
             Н
                  -1.1238
                                                       0.0596
      28
             Н
                  -2.3345
                               1.1303
                                          -0.7616
                                           0.7228
                                                       0.0632
      29
             H
                  -3.3300
                               1.2892
)
      30
             H
                  -1.7491
                               2.1497
                                           0.6076
                                                       0.0658
      $
)
)
)
)
```

というないない かっとうかいかん かんかんかんかん

Sec. 25

0.5

)

MNDO CHARGES - MUSCARONE (cis)(210°)

				x	у	Z	charge		
		1	0	1.6434	-0.0273	-1.0909	-0.2957		
		2 3	C	1.9673	-0.4340	-2.4104	0.0696		
			C	0.2249 0.8890	-0.0243 -1.4198	-0.9741	0.0992		
	3	4 5	C	3.3879	-0.9964	-2,7930 -2,4506	0.2033 0.0372		
		6	Н	1.8724	0.4626	-3.0688	0.0372		
		7	Ċ	-0.2175	-1.2580	-1,7736	-0.1169		
	•	8	C	-0.1225	0.0133	0.5308	0.0606		
e e		9	Н	-0.1201	0.9112	-1.4777	0.0435		
		10	0	0.9042	-2.2312	-3.6848	-0.2010		
		11 12	H	3.6653 4.1273	-1.3112	-3.4829	0.0326		
		13	H	3.4829	-0.2327 -1.8826	-2.1162 -1.7818	0.0279 0.0110		
	>	14	H	-0.2275	-2.1764	-1.1425	0.0415		
1		15	Н	-1.1943	-1.1122	-2.2902	0.0590		
C.		16	N	-1.3963	-0.6260	1.0226	-0.0857		
		17	H	0.7367	-0.4361	1.0823	0.0834		
		18 19	H	-0.1372 -1.3931	1.0926 -2.1167	0.8147	0.0699		
	•	20	C	-1.5361	-2.116/ -0.3118	0.8789 2.4869	0.0735 0.0820		
		21	C	-2.5815	-0.0622	0.3012	0.0820		
		22	H	-1.4254	-2.4281	-0.1863	0.0673		
	•	23	Н	-0.4916	-2.5635	1.3575	0.0674		
;		24	Н	-2.2933	-2.5658	1.3583	0.0619		
		25 26	H	-1.5769 -2.4707	0.7881 -0.7492	2.6626	0.0638		
		27	H	-0.6774	-0.7214	2.9081 3.0677	0.0631 0.0657		
R		28	H	~2.5499	-0.3167	-0.7824	0.0591		
	•	29	H	-3.5327	-0.4739	0.7106	0.0636		
P.		30	, H	-2.6163	1.0475	0.3971	0.0644		
E-2000		\$		•					
					•				
	*								
N I									
	•								
	•								
Š									
Ķ									
K									
4)									
R									
10000									
1									
11						00			
Ŗ						89			
Serve Serv Serv	กับกับกับก	<u>uoununu</u> n	LMOVLMOVANOV.	KUNGUK PUKRUKAN RAT	?	የሚያስፈዋው ነው የመጠቀ ነ	መርመ የመረጃው የመስከብ ላሉ የ	ያ ያስመል ግል ግል ግል ግል ግል	ייני אור אורער אר אור אורער אורער
_ • • • • • •		7 - 4 1 - 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						<u> </u>	

```
MNDO CHARGES - MUSCARONE (trans) (90°)
                        x
                                    y
                                              Z
                                                       charge
                             -0.0252
                                         -1.1581
                                                     -0.3058
                   1.6307
             0
       1
                                         -2.5371
                                                      0.0631
             C
                   1.8937
                              0.1957
       2
       3
             Ċ
                                         -0.9738
                                                      0.0918
                   0.2223
                             -0.0280
                                                      0.1990
             C
                                         -3.1676
       4
                   0.5980
                               0.6613
                                                      0.0226
       5
                             -1.0703
                                         -3.1696
             C
                   2.4739
                   2.6259
                                         -2.5835
                                                      0.0633
             Н
                               1.0360
       6
                               0.9192
                                         -2.0254
                                                     -0.0979
             C
       7
                  -0.3605
                                          0.5372
                                                      0.0733
                               0.0189
       8
             C
                  -0.1187
                                         -1.3077
                                                      0.0417
       9
                             -1.0586
             H
                  -0.0607
                                                     -0.1954
                                         -4.3405
                               0.7674
      10
             0
                   0.3400
                                                      0.0332
                                         -4,2406
                   2.7310
                              -0.9014
      11
             Н
                                         -2.6424
                                                      0.0281
                             -1.3881
      12
                   3.4028
             H
                                         -3.1188
                                                      0.0076
                             -1.9123
      13
             Н
                   1.7460
                                                      0.0693
                                         -2.3037
      14
             Н
                  -1.4121
                               0.6734
                                                      0.0383
                               1.9971
                                         ~1.7788
      15
             H
                  -0.2552
                                                     -0.0861
                                          1.2082
                  -0.6195
                               1,2707
      16
             N
                                                      0.0573
                                          0.7121
                  -0.8952
                              -0.7642
      17
             H
                                          1.0838
                                                      0.0849
             H
                   0.7818
                              -0.3491
      18
                                          1.0911
                                                      0.0820
             C
                               2.3708
      19
                   0.3900
                                          2.6743
                                                      0.0801
                               0.9712
      20
             C
                  -0.7948
                                                      0.0814
                                          0.6870
             C
                  -1.9517
                               1.7146
      21
)
                                          0.0338
                                                      0.0607
             H
                               2.6580
      22
                   0.5698
                                                      0.0599
                               3.2849
                                          1.6308
             Н
      23
                   0.0507
                                                      0.0690
                                          1.5213
                   1.3697
                               2.0593
      24
             H
                                          2.8341
                                                      0.0629
                               0.1592
      25
             H
                  -1.5415
                                          3.1411
                                                      0.0655
             H
                   0.1646
                               0.6487
      26
                                                      0.0633
                                          3.2315
      27
             Н
                  -1.1494
                               1.8691
)
                                                      0.0613
                                         ~0.3709
                               2.0421
      28
             Н
                  -1.9052
                                                      0.0632
                                          0.7594
      29
             Н
                  -2.7023
                               0.8943
                                                      0.0624
                                          1.2670
      30
             н
                  -2.3365
                               2.5848
      $ ,
)
```

)

)

)

•			х	у	Z	chamaa
-	1	0	1.6310	-0.0256		charge
	2	Č	1.9017	0.2004	-1.1543	-0.3048
•	3	č	0.2217	-0.0292	-2.5307 -0.9743	0.0634
	4	č	0.6108	0.6712		0.0937
	5	Č	2.4822	-1.0644	-3.1658 -3.1653	0.1995
•	6	Ĥ	2.6362	1.0391	-2.5699	0.0225
_	7	C	-0.3575	0.9168	-2.0292	0.0640
	8	Č	-0.1188	0.0197	0.5378	-0.0987
•	9	H	-0.0601	-1.0593	-1.3109	0.0725
	10	Ö	0.3616	0.7888		0.0405
	11	H	2.7448	-0.8920	-4.3395	-0.1960
•	12	H	3.4078	-1.3864	-4.2344	0.0331
•	13	H	1.7522	-1.9050	-2.6349	0.0283
	14	H	-1.4030	0.6613	-3.1213	0.0073
	15	H	-0.2670	1.9947	-2.3215	0.0681
	16	N	-0.7238	1.2337	-1.7772	0.0390
	17	Ĥ	-0.8256	-0.8236	1.1929	-0.0859
)	18	H	0.8075	-0.2634	0.7273	0.0570
	19	Ċ	0.2091	2.4024	1.0917	0.0852
	20	č	-0.9180	0.9217	1.1057	0.0815
•	21	č	-2.0677	1.5849	2.6542	0.0801
	22	. Н	0.4025	2.7032	0.6335	0.0813
	23	H	-0.2105	3.2899	0.0550	0.0608
•	24	H	1.1943	2.1609	1.6331	0.0603
	25	H	-1.6148	0.0633	1.5671	0.0683
	26	Н	0.0477	_	2.7952	0.0631
,	27	H	-1.3450	0.6614 1.7939	3.1462	0.0656
	28	H	-2.0099		3.2014	0.0633
	29	H	-2.7579	1.9281	-0.4191	0.0612
	30	H	-2.5330	0.7111	0.6746	0.0635
	\$	••	2,0000	2.4187	1.2079	0.0623

		x	у	Z	charge
1	0	1.6221	-0.0270	-1.1486	-0.3052
2	С	1.8433	-0.5907	-2.4278	0.2367
3	C	0.2202	-0.0347	-0.9772	0.0598
4	Ō	0.7339	-1.3999	-2.7703	-0.2959
5	Ċ	3.1244	-1.4234	-2.4191	0.0171
6	Н	1.8877	0.2437	-3.1676	0.0428
7	C	-0.1722	-1.3232	-1.6931	0.1166
8	C	-0.1186	0.0338	0.5236	0.0634
9	Н	-0.1485	0.8553	-1.5378	0.0325
10	Н	4.0051	-0.7947	-2.1532	0.0248
11	Н	3.0542	-2.2511	-1.6763	0.0142
12	Н	3.3128	-1.8735	-3.4208	0.0346
13	Н	-0.0004	-2.2314	-1.0701	0.0283
14	Н	-1.2057	~1.3251	-2.1077	0.0439
15	N	-1.4084	0.7048	0.9175	-0.0873
16	Н	-0.0938	-1.0027	0.9332	0.0719
17	Н	0.7144	0.5738	1.0326	0.0830
18	С	-2.5744	0.0439	0.2525	0.0783
19	С	-1.5706	0.5835	2.4056	0.0829
20	C	-1.3941	2.1622	0.5660	0.0808
21	Н	-2.5321	0.1715	-0.8522	0.0603
22	Н	-2.5957	-1.0471	0.4789	0.0636
23	Н	-3.5363	0.4879	0.5980	0.0650
24	Н	-0.7241	1.0704	2.9428	0.0663
25	Н	-2.5137	1.0678	2.7493	0.0639
26	Н	-1.6086	-0.4852	2,7198	0.0635
27	Н	-1.3449	2.3266	-0.5329	0.0641
28	Н	-2.3211	2.6661	0.9248	0.0620
29	Н	-0.5233	2.6775	1.0327	0.0679
_ ·					

		x	У	z	charge
1	0	1.6102	-0.0745	-1.1166	-0.3049
2	C	1.8629	-0.5355	-2.4278	0.2391
3	C	0.2020	-0.0278	-0.9980	0.0621
4	0	0.7983	-1.3842	-2.8036	-0.2946
5	ε	3.1891	-1.2922	-2.4756	0.0221
6	Н	1.8524	0.3449	-3.1143	0.0370
7	C	-0.2047	-1.2460	-1.8219	0.1137
8	C	-0.1473	-0.0290	0.5023	0.0626
9	Н	-0.1218	0.9200	-1.4920	0.0406
10	Н	4.0346	-0.6305	-2.1774	0.0252
11	Н	3.1727	-2.1651	-1.7833	0.0163
12	Н	3.3941	-1.6702	-3.5036	0.0342
13	Н	-0.1840	-2.1871	-1.2253	0.0211
14	Н	-1.1743	-1.1255	-2.3569	0.0399
15	N	-1.5930	0.0184	0.9253	-0.0869
16	Н	0.3310	-0.9265	0.9608	0.0772
17	Н	0.3766	0.8537	0.9406	0.0784
18	C	-2.3396	-1.2222	0.5460	0.0787
19	С	-1.6352	0.1405	2.4228	0.0825
20	C	-2.2766	1.2098	0.3292	0.0792
21	Н	-2.4539	-1.3133	-0.5547	0.0608
22	Н	-1.8249	-2.1331	0.9294	0.0669
23	Н	-3.3720	-1.2101	0.9654	0.0634
24	H	-1.1168	1.0649	2.7678	0.0654
25	Н	-2.6845	0.1895	2.7953	0.0637
26	H	-1.1425	-0.7328	2.9097	0.0655
27	Н	-2.3211	1.1353	-0.7809	0.0605
28	H	-3.3254	1.2937	0.6964	0.0638
29	Н	-1.7423	2.1510	0.5946	0.0665

MNDO CHARGES - F2268 (trans)(120°)

			x	у	z	charge
	1	0	1.6065	-0.0121	-1.1843	-0.3173
)	2	C	1.8061	0.4267	-2.5158	0.2349
	3	C	0.2072	-0.0552	-0.9780	0.0570
	4	0	0.5441	0.6175	-3.1247	-0.2880
)	5	C	2.6202	-0.6023	-3.2983	0.0191
	6	Н	2.3159	1.4183	-2.4647	0.0355
	7	C	-0.3458	0.8631	-2.0600	0.1154
)	8	C	-0.0989	0.0547	0.5349	0.0693
	9	Н	-0.0617	-1.0940	-1.2954	0.0566
	10	Н	3.6161	-0.7638	-2.8253	0.0261
)	11	Н	2.0919	-1.5828	-3.3335	0.0180
	12	Н	2.7881	-0.2626	-4.3462	0.0328
	13	Н	-1.3683	0.5923	-2.4111	0.0604
)	14	Н	-0.2720	1.9508	-1.8467	0.0079
	15	N	-0.9235	1.1684	1.1256	-0.0861
	16	Н	-0.6071	-0.9002	0.8111	0.0597
)	17	Н	0.8738	0.0112	1.0795	0.0860
	19	C	-0.2024	2.4782	1.0305	0.0791
	19	C	-1.1183	0.8735	2.5897	0,0806
)	20	C	-2.2786	1.2658	0.4997	0.0799
	21	Н	-0.0253	2.7864	-0.0198	0.0623
	22	- H	-0.7884	3.2925	1.5155	0.0615
.)	23	Н	0.7911	2.4250	1.5323	0.0678
	24	Н	-1.6731	-0.0815	2.7403	0.0638
	25	Н	-0.1415	0.7886	3.1200	0.0662
)	26	Н	-1.7020	1.6798	3.0912	0.0637
	27	Н	-2.2254	1.5970	-0.5576	0.0595
	28	Н	-2.8046	0.2841	0.5333	0.0648
J	29	Н	-2.9100	2.0152	1.0303	0.0635
_						

```
.
                      MNDO CHARGES - F2268 (trans) (150°)
                        Х
                                    у
                                                        charge
)
        1
              0
                    1.6321
                              -0.0136
                                          -1.1356
                                                      -0.3165
        2
              C
                    1.8951
                               0.4341
                                          ~2.4530
                                                      0.2358
        3
              C
                    0.2233
                              -0.0273
                                          -0.9766
)
                                                      0.0651
              0
                   0.6867
                               0.9202
                                          ~3.0014
                                                      -0.2895
        5
              C
                   2.4422
                              -0.7072
                                          -3.3092
                                                      0.0119
        6
              H
                   2.6099
                               1,2876
                                          -2.3779
                                                      0.0521
)
        7
              C
                  -0.1466
                               1.1388
                                          -1.8875
                                                      0.1053
        8
              C
                  -0.1003
                               0.0280
                                          0.5317
                                                      0.0622
        9
             H
                  -0.1538
                              -0.9818
                                         -1.4198
                                                      0.0537
)
       10
             H
                   3.3904
                              -1.1051
                                         -2.8801
                                                      0.0275
      11
             Н
                   1.7123
                              -1.5469
                                         -3,3700
                                                      0.0113
      12
             H
                   2.6537
                              -0.3588
                                         -4.3462
                                                      0.0341
)
      13
             H
                  -1,2005
                               1.1363
                                         -2.2475
                                                      0.0501
      14
             H
                   0.1514
                               2.1297
                                         -1.4728
                                                      0.0167
      15
             N
                  -1.3664
                               0.6648
                                          1.0466
                                                     -0.0860
)
                  -0.0332
      16
             H
                             -1.0201
                                          0.9095
                                                      0.0759
      17
             H
                   0.7473
                              0.5677
                                          1.0160
                                                      0.0757
      18
             C
                  -1.4508
                              2,1386
                                          0.7980
                                                      0.0808
      19
             C
                  -1.4076
                              0.4592
                                          2.5368
                                                      0.0816
      20
             C
                  -2.5549
                             -0.0183
                                          0.4445
                                                      0.0768
      21
             H
                  -1.6361
                              2.3745
                                         ~0.2699
                                                     0.0614
      22
             H
                  -2.3117
                              2.5853
                                          1.3467
                                                      0.0616
      23
             H
                  -0.5241
                              2.6572
                                          1.1353
                                                      0.0690
      24
             н
                  -1.3747
                             -0.6235
                                          2.7994
                                                     0.0645
      25
             H
                 -0.5450
                              0.9602
                                          3.0343
                                                     0.0664
      26
             H
                 -2.3426
                              0.8752
                                          2.9784
                                                     0.0635
      27
             H
                 -2.5745
                              0.1080
                                         -0.6608
                                                     0.0598
      28
            H
                 -2.5384
                             -1.1115
                                          0.6597
                                                     0.0650
      29
            Н
                 -3.5052
                              0.3995
                                          0.8499
                                                     0.0642
```

		x	у	z	charge
1	0	1.6365	-0.0770	-1.1255	-0.3103
2	C	1.9091	0.4770	-2.3985	0.2360
3	C	0.2294	-0.0916	-0.9728	0.0623
4	0	0.7001	0.9402	-2,9639	-0.2900
5	C	2.5434	-0.5739	-3,3090	0.0135
6	Н	2.5741	1.3588	-2.2406	0.0499
7	C	-0.2055	1.0435	-1.8912	0.1105
8	C	-0.0884	0.0238	0.5294	0.0597
9	H	-0.1051	-1.0748	-1.3831	0.0435
10	Н	3.4966	-0.9529	-2.8738	0.0271
11	Н	1.8600	-1.4425	-3.4510	0.0110
12	Н	2.7700	-0.1455	-4.3124	0.0341
13	Н	-1.2272	0.9225	-2.3170	0.0484
14	Н	-0.0672	2.0500	-1.4309	0.0213
15	N	-1.5251	0.0313	0.9844	-0.0846
16	Н	0.4290	-0.8380	1.0146	0.0785
17	Н	0.4160	0.9404	0.9164	0.0753
18	C	-2.2411	1.2839	0.5839	0.0788
19	C	-1.5380	-0.0416	2.4857	0.0824
20	C	-2.2571	-1.1565	0.4416	0.0795
21	H	-2.3709	1.3529	-0.5160	0.0602
22	Н	-3.2658	1.3143	1.0208	0.0635
23	Н	-1.6926	2.1887	0.9332	0.0660
24	Н	-1.0445	-0.9722	2.8499	0.0655
25	Н	-1.0046	0.8288	2.9332	0.0652
26	H	-2.5798	-0.0422	2.8819	0.0635
27	Н	-2.3277	-1.1131	-0.6688	0.0609
28	Н	-1.7429	-2.1043	0.7227	0.0669
29	H	-3.2983	-1.1986	0.8365	0.0634
4 `'					

```
х
                                                      charge
-0.3149
                              -0.0274
                                          -1.0985
                    1.6348
              0
        1
                                          -2.3329
                                                       0.2361
                               0.5914
              C
                    1.9428
        2
                              -0.0243
                                          -0.9741
                                                       0.0638
        3
              C
                   0.2249
                                                      -0.2920
                               1.1079
                                          -2.8947
        4
              0
                   0.7539
                              -0.4187
                                          -3.2885
                                                       0.0136
        5
              C
                   2.5770
                               1.4506
                                          -2.1130
                                                       0.0507
                   2.6198
        6
              Н
)
                                          -1.8356
                                                       0.1171
        7
              C
                  -0.1714
                               1.1681
                                           0.5259
                                                       0.0588
        8
              C
                               0.0131
                  -0.1214
                                          -1.4452
                                                       0.0330
        9
                  -0.1184
                              -0.9768
)
                                                       0.0257
                              -0.8390
                                          -2.8569
              Н
                   3.5144
       10
                                                       0.0088
                              -1.2652
                                          -3.4921
              Н
                    1.8816
       11
                                          -4.2617
                                                       0.0348
                               0.0606
              H
                    2.8314
)
       12
                                          -2.2871
                                                       0.0517
                               1.0900
       13
              Н
                  -1.1862
                               2.1446
                                          -1.3171
                                                       0.0283
              Н
                  -0.0249
       14
                                           1.0088
                                                      -0.0855
                              -0.6327
7
       15
              N
                  -1.3945
                                                       0.0852
              Н
                    0.7382
                              -0.4728
                                           1.0464
       16
                                                       0.0680
                               1.0798
                                           0.8524
              Н
                  -0.1130
       17
                                           0.5557
                                                       0.0799
              C
                  -2.6143
                               0.1080
7
       18
                                           2.5118
                                                       0.0824
              C
                  -1.3830
                              -0.6169
       19
                                          0.5461
-0.5435
                                                       0.0794
              C
                  -1.4740
                              -2.0543
       20
                                                       0.0606
              Н
                  -2.7529
                               0.0444
       21
                                           1.0111
                                                       0.0633
       22
              Н
                  -3.5351
                              -0.3241
                                           0.8443
                                                       0.0643
                  -2.5613
                               1.1829
       23
              H
                                           2.9157
                                                       0.0660
              Н
                              -1.1815
       24
                   -0.5111
                                                       0.0640
                                           2,9007
              Н
                   -1.3277
                               0.4262
       25
                                                       0.0635
                                           2.9285
              Н
                   -2.3038
                              -1.0868
       26
                                                       0.0625
                                          -0.5634
              Н
                   -1.5481
                              -2.1130
       27
                                                       0.0684
                                           0.8676
                   -0.5751
                              -2.6291
       28
              Н
                                           0.9637
                                                       0.0625
              Н
                   -2.3747
                              -2.5604
       29
```

)

)

T	MEF7	2N.OUT	MNDO CHARG	ES - 5-METHY	LFURMETHIDE	(GLOBAL MIN.)
		х	у	2	charge	
1 2 3 4 5 6 7 8 9 10 11 2 13 14 5 6 7	ם טטטטטטטדד דד ב דד ס נ	3.5875 4.5846 3.8983 5.4695 4.6535 5.0483 3.0847 6.3857 3.7539 4.6827 5.5583 5.5599 1.8038 2.8776 3.7106 2.0891	0.9616 0.4381 0.6294 -0.1779 0.5533 -0.0589 0.9875 -0.6954 0.0835 1.6261 0.0514 -0.4639 0.2119 2.0824 0.8075 -1.2579	4.0754 3.3054 5.3626 4.0996 1.8135 5.3613 6.5740 3.7711 1.3557 1.5171 1.4017 6.2498 6.6928 6.5405 7.4792 6.7128	-0.0961 0.0401 -0.1803 -0.1383 0.0818 -0.0260 0.1643 0.1160 0.0211 0.0301 0.0355 0.0968 -0.0914 0.0717 0.0682 0.0858	
17 18 19 20 21 22 23 24 25 26 27		0.8807 1.1321 1.1510 2.5520 2.7829 0.6757 1.3026 -0.0944 0.9038 0.1729 1.7788	0.5267 0.5955 -1.8430 -1.5962 -1.5185 1.6206 0.1982 0.0016 1.6862 0.0437 0.3628	5.5570 7.9774 6.8522 5.7579 7.5451 5.4997 4.5812 5.6810 7.9983 8.1097 8.8547	0.0845 0.0816 0.0579 0.0655 0.0582 0.0632 0.0716 0.0547 0.0623 0.0610	

CHARGES FROM MNDO
5-Methylfurmethide (GLOBAL MINIMUM WITH 72.30 DIHEDRAL ANGLE)

SEQ. NO.	TYPE	CHARGE	CATIONIC HEAD CHARGE
1	0	-0.0961	1.0192
2	C	0.0401	
3	С	-0.1803	
4	C	- 0.1383	
5	C	0.0818	
6	C	-0.0260	
7	C	0.1643	
8	Н	0.1160	
9	Н	0.0211	
10	H	0.0301	
11	Н	0.0355	
12	Н	0.0968	
13	N	-0.0914	
1 4	Н	0.0717	
15	Н	0.0682	
16	C	0.0858	
17	C	0.0845	
18	С	0.0816	
19	Н	0.0579	
20	Н	0.0655	
21	Н	0.0582	
22	H	0.0632	
23	H	0.0716	
24	H	0.0547	
25	H	0.0623	
26	Н	0.0610	
27	Н	0.0601	

CHARGES FROM MNDO

5-Methylfurmethide (LOCAL MINIMUM WITH 1200 DIHEDRAL ANGLE)

SEQ. NO.	TYPE	<u>CHARGE</u>	CATIONIC HEAD CHARGE
1	0	-0.0796	1.0168
2	C	0.0452	
3	C	-0.1707	
4	С	-0.1404	
5	C	0.0814	
6	С	-0.0446	
7	С	0.1585	
8	Н	0.1144	
9	H	0.0338	
10	Н	0.0244	
11	Н	0.0306	
12	Н	0.0867	
13	NT IN	-0.0880	
14	Н	0.0676	
15	Н	0.0743	
16	C	0.0817	
17	C	0.0834	
18	C	0.0844	
19	Н	0.0629	
20	Н	0.0612	
21	Н	0.0618	
22	Н	0.0670	
23	Н	0.0570	
24	Н	0.0632	
25	Н	0.0643	
2 6	Н	0.0620	
27	Н	0.0575	

CHARGES FROM MNDC

5-Methylfurmethide (LOCAL MINIMUM WITH 150° DIHEDRAL ANGLE)

SEQ. NO.	TYPE	CHARGE	CATIONIC HUAD CHARGE
1	0	-0.0803	1.0237
2	C	0.0428	
3	C	-0.1470	
4	C	-0.1386	
5	C	0.0833	
6	C	-0.0635	
7	С	0.1552	
8	Н	0.1127	
9	Н	0.0328	
10	Н	0.0257	
11	Н	0.0288	
12	H	0.0796	
13	N	-0.0827	
14	H	0.0754	
15	H	0.0633	
16	C	0.0808	
17	C	0.0840	
18	С	0.0812	
19	Н	0.0643	
20	H	0.0622	
21	Н	0.0632	
22	Н	0.0670	
23	Н	0.0576	
24	Н	0.0652	
25	H	0.0648	
26	Н	0.0631	
27	Н	0.0591	

CHARGES FROM MICKY
TETM (GLOBAL MINIMUM WITH 71.38° DIHEDRAL ANGLE)

SEQ. NO.	TYPE	<u>CHARGE</u>	CATIONIC HEAD CHARGE
1	C	-0.3421	9238
2	С	0.1404	
3	C	0.0924	
4	C	-0.0513	
5	ਪ੍	0.0285	
6	Ħ	0.0419	
7	C	-0.0428	
8	C	0.0663	
9	Н	0.0256	
10	Н	0.0357	
11	H	0.0590	12
12	Н	0.0357	51 1 15 ₂₅
13	H	0.0481	13 6 6 24
14	7.1	-0.0834	1 3 29
15	Н	0.0723	8 10 414 23
16	Н	0.0598	28 26 21
17	C	0.0819	28 26 17 21
18	С	0.0825	20 \22
19	С	0.0864	
20	H	0.0641	
21	Н	0.0583	
22	Н	0.0605	
23	Н	0.0618	
24	H	0.0590	
25	H	0.0630	
26	Н	0.0508	
27	Н	0.0676	
28	Н	0.0779	

<mark>የመመጀመር የመመጀመር የመጀመር የመመጀመር የመጀመር የመ</mark>ስፈር የመጀመር የመጀመር

CHARGES FROM MNDO

TFTM (LOCAL MINIMUM WITH 150° DIHEDRAL ANGLE)

SEQ. NO.	TYPE	CHARGE	CATIONIC HEAD CHARGE
1	0	-0.3128	0.9287
2	C	0.1384	
3	C	0.0990	
4	C	-0.0507	
5	Н	0.0334	
6	Н	0.0425	
7	C	-0.0556	
8	C	0.0567	
9	H	0.0180	
10	Н	0.0330	
11	Н	0.0572	
12	Н	0.0372	
13	H	0.0316	
14	N	- 0.0857	
15	H	0.0673	
16	Н	0.0805	
17	C	0.0811	
18	C	0.0834	
19	C	0.0819	
20	Н	0.0628	
21	Н	0.0611	
22	H	0.0599	
23	H	0.0616	
24	H	0.0623	
25	Н	0.0655	
26	Н	0.0640	
27	H	0.0591	
28	Н	0.0672	

CHARGES FROM MNDO
TFTM (LOCAL MINIMUM WITH 180° DIHEDRAL ANGLE)

SEQ. NO.	TYPE	<u>CHARGE</u>	CATICNIC HEAD MARGE
1	0	-0.3130	9 . 9 2 40
2	С	0.1400	
3	C	0.1003	
4	C	-0.0498	
5	Н	0.0252	
6	Н	0.0495	
7	C	-0.0594	
8	\mathcal{C}	0.0538	
9	Н	0.0285	
10	Н	0.0375	
11	Н	0.0568	
12	Н	0.0288	
13	H	0.0315	
14	N	- 0•0845	
15	Н	0.0721	
16	H	0.0754	
17	C	0.0809	
18	C	0.0827	
19	C	0.0813	
20	H	0.0646	
21	Н	0.0597	
22	H	0.0613	
23	Н	0.0612	
24	Н	0.0643	
25	H	0.0646	
26	H	0.0601	
27	Н	0.0607	
28	Н	0.0658	

A | - ILMED -88 071C