CHM129 Acid-Base Equilibrium

1. Identify the acid, base, conjugate acid and conjugate base in the following reaction:

2. Calculate the $[OH^-]$ at 25 $^{\circ}C$ for a solution with $[H_3O^+]=7.5\times10^{-5}$ M. Determine whether the solution is acidic, basic or neutral.

$$[H_{3}0^{\dagger}] [OH^{-}] = 1.0 \times 10^{-14}$$

$$[OH^{-}] = \frac{1.0 \times 10^{-14}}{[H_{3}0^{\dagger}]} = \frac{1.0 \times 10^{-14}}{7.5 \times 10^{-5}} = 1.3 \times 10^{-10}$$

$$[H_{3}0^{\dagger}] > [OH^{-}] = Acidic Solution$$

3. Complete the following table (show your work):

pH	pOH	[H ⁺] [H ₃ 0 ⁺]		Acidic or Basic
2:12	11.88	7.5×10 ⁻³ M	1.3×10-12 M	Acidiz
8.30	5.70	5-0 X10-9 M	2.0 X10-6M	Basic
13-11	1.89	7-8 X 10 13 M	1.3 x 10 ⁻² M	Basic

4. (a) Calculate the pH of a solution containing 0.425g HNO₃ in 2.00L of solution.

$$0.425 g HNO3 \left(\frac{1 \text{ mol } HNO3}{63.02 g HNO3}\right) = 6.74 \times 10^{-3} \text{ mol } HNO3$$

$$[HNO3] = \frac{6.74 \times 10^{-3} \text{ mol}}{2.00 L} = 3.37 \times 10^{-3} M = [H_3O^4] \text{ strong acid}$$

$$pH = -\log [H_3C4] = -\log(3.37 \times 10^{-3}) = 2.472$$

(b) Calculate the concentration of an aqueous solution of $Ba(OH)_2$ that has a pH of 12.05.

$$[OH] = 10^{-1.95} = 1.1 \times 10^{-2} M$$

 $POH = 14.00 - PH = 14.00 - 12.05 = 1.95$
 $[OH] = # OH \times [Base]$ for strong base
 $[Base] = \frac{[OH]}{# OH} = \frac{1.1 \times 10^{-2} M}{2} = 5.6 \times 10^{-3} M$