Chapter 4: Determinant of matrices

- Axioms for determinant function.
- 2 Properties of determinant function.
- 3 Existence and uniqueness of determinant function.
- Invertibility of a matrix in terms of determinant.
- Omputation of determinant by Gauss-Jordan Method.
- Inverse of a matrix in terms in terms of the cofactor matrix.
- \bullet Cramer's Rule for solving n linear equations in n unknowns.

Axiomatic approach for the Determinant Function

Recall the formula for determinants of square matrices.

$$det[a] = a, det \begin{bmatrix} a & b \\ c & d \end{bmatrix} = ad - bc$$

and det
$$\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} = aei - ahf - bdi + bgf + cdh - ceg.$$

- We will explain how these formulas and similar formulas for all square matrices can be derived using properties of determinant of matrices.
- Our approach to determinants of square matrices is via their properties rather than via an explicit formulas as above.
- **①** Let $\mathbb F$ denote either the field $\mathbb R$ of real numbers or the field $\mathbb C$ of complex numbers.
- **5** The set of $n \times n$ matrices with entries in \mathbb{F} is denoted by $\mathbb{F}^{n \times n}$.

Axioms for determinant functions

- **①** Suppose that the columns of $A \in \mathbb{F}^{n \times n}$ are A_1, A_2, \dots, A_n ,
- ② Define $d: \mathbb{F}^{n \times n} \to \mathbb{F}$ by $d(A) = d(A_1, A_2, \dots, A_n)$.
- The function d is called a **multilinear** function if for each k = 1, 2, ..., n; scalars α, β and column vectors $A_1, ..., A_{k-1}, A_{k+1}, ..., A_n, B, C \in \mathbb{F}^{n \times 1}$ $d(A_1, ..., A_{k-1}, \alpha B + \beta C, A_{k+1}, ..., A_n) = \alpha \ d(A_1, ..., A_{k-1}, B, A_{k+1}, ..., A_n) + \beta \ d(A_1, ..., A_{k-1}, C, A_{k+1}, ..., A_n).$
- **1** d is called an **alternating** function if for some $i \neq j$ and $A_i = A_j$, then

$$d(A_1,A_2,\ldots,A_n)=0$$

- **1** If $d(I) = d(e_1, e_2, \dots, e_n) = 1$ then d is called a **normalized** function.
- **Definition.** A normalized, alternating, and multillinear function d on $n \times n$ matrices is called a **determinant function** of order n.

Properties of determinant function

- **Lemma:** Suppose that $d(A_1, A_2, ..., A_n)$ is a multilinear alternating function on columns of $n \times n$ matrices. Then
 - (a) If some $A_k = 0$ then $d(A_1, A_2, ..., A_n) = 0$.
 - (b) $d(A_1, \ldots, A_k, A_{k+1}, \ldots, A_n) = -d(A_1, \ldots, A_{k+1}, A_k, \ldots, A_n).$
 - (c) $d(A_1, ..., A_i, ..., A_i, ..., A_n) = -d(A_1, ..., A_i, ..., A_i, ..., A_n)$.
- **Proof:** (a) If $A_k = 0$ then by multilinearity

$$d(A_1,\ldots,0\cdot A_k,\ldots,A_n)=0\cdot d(A_1,\ldots,A_k,\ldots,A_n)=0.$$

1 (b) Put $A_k = B, A_{k+1} = C$. By the alternating property

$$0 = d(A_1,...,B+C,B+C,...,A_n)$$

= $d(A_1,...,B,B+C,...,A_n)+d(A_1,...,C,B+C,...,A_n)$
= $d(A_1,...,B,C,...,A_n)+d(A_1,...,C,B,...,A_n)$

- Hence $d(A_1, ..., B, C, ..., A_n) = -d(A_1, ..., C, B, ..., A_n)$.
- (c) can be proved similarly.

Formula for the determinant of a 2×2 matrix

• Suppose $d(A_1, A_2)$ is an alternating multilinear normalized function on 2×2 matrices $A = (A_1, A_2)$. Then

$$d\begin{bmatrix} x & y \\ z & u \end{bmatrix} = xu - yz.$$

- ② Write $A_1 = xe_1 + ze_2$ and $A_2 = ye_1 + ue_2$.
- Then using the axioms for determinant function we get

$$d(A_1, A_2) = d(xe_1 + ze_2, ye_1 + ue_2)$$

$$= d(xe_1 + ze_2, ye_1) + d(xe_1 + ze_2, ue_2)$$

$$= d(xe_1, ye_1) + d(ze_2, ye_1)$$

$$+d(xe_1, ue_2) + d(ze_2, ue_2)$$

$$= yzd(e_2, e_1) + xud(e_1, e_2)$$

$$= (xu - yz)d(e_1, e_2) = xu - yz$$

Uniqueness of the determinant function

- **4 Vanishing Lemma for multilinear functions:** Suppose f is a multilinear alternating function on $n \times n$ matrices and $f(e_1, e_2, \ldots, e_n) = 0$. Then f = 0.
- **② Proof:** Let $A = (a_{ij}) = (A_1, \dots, A_n)$ be an $n \times n$ matrix. Write

$$A_j = a_{1j}e_1 + a_{2j}e_2 + \cdots + a_{nj}e_n.$$

Since f is multilinear we have

$$f(A_1,\ldots,A_n)=\sum a_{h(1)1}a_{h(2)2}\cdots a_{h(n)n} f(e_{h(1)},e_{h(2)},\ldots,e_{h(n)}),$$

- lacktriangle Here the sum is over all functions $h:\{1,2,\ldots,n\} o \{1,2,\ldots,n\}.$
- Since f is alternating we have

$$f(A_1,\ldots,A_n)=\sum a_{h(1)1}a_{h(2)2}\cdots a_{h(n)n} f(e_{h(1)},e_{h(2)},\ldots,e_{h(n)}),$$

• where the sum is over all bijections $h: \{1, \ldots, n\} \rightarrow \{1, \ldots, n\}$.

Uniqueness of the determinant function

O By using part (c) of the lemma above we see that we can write

$$f(A_1,\ldots,A_n)=\sum_h \pm a_{h(1)1}a_{h(2)2}\cdots a_{h(n)n} f(e_1,e_2,\ldots,e_n),$$

- **②** Here the sum is over all bijections $h:\{1,\ldots,n\} \to \{1,\ldots,n\}.$
- Therefore f(A) = 0.
- **Theorem:** Let f be an alternating multilinear function on $\mathbb{F}^{n\times n}$ and d a determinant function on $\mathbb{F}^{n\times n}$.

$$f(A_1,\ldots,A_n)=d(A_1,\ldots,A_n)f(e_1,e_2,\ldots,e_n).$$

 \odot In particular, if f is also a determinant function then

$$f(A_1, A_2, \ldots, A_n) = d(A_1, A_2, \ldots, A_n).$$

Proof of uniqueness of determinant function

Proof: Consider the function

$$g(A_1,...,A_n) = f(A_1,...,A_n) - d(A_1,...,A_n)f(e_1,e_2,...,e_n).$$

- ② Since f, d are alternating and multilinear so is g. Since $g(e_1, e_2, \dots, e_n) = 0$ the result follows from the previous Lemma.
- **Notation:** We denote the determinant of *A* by det *A*.
- Setting det[a] = a shows existence for n = 1.
- **3** Assume that we have shown existence of determinant function on $\mathbb{F}^{(n-1)\times(n_1)}$.
- **○** The determinant of an $n \times n$ matrix A can be computed in terms of $(n-1) \times (n-1)$ determinants.
- Let $A_{ij} = \text{the } (n-1) \times (n-1)$ matrix obtained from A by deleting the ith row and jth column of A.

Existence of determinant function

1 Theorem. Let $A = (a_{ij})$ be an $n \times n$ matrix. Then the function

$$f(A) = a_{11} \det A_{11} - a_{12} \det A_{12} + \cdots + (-1)^{n+1} a_{1n} \det A_{1n}.$$

is the determinant function on $n \times n$ matrices.

- **2 Proof:** Denote the function by $f(A_1, A_2, ..., A_n)$.
- **3** Suppose that the columns A_j and A_{j+1} of A are equal.
- **1** Then A_{1i} have equal columns except when i = j or i = j + 1.
- **5** By induction $f(A_{1i}) = 0$ for $i \neq j, j + 1$. Therefore

$$f(A) = a_{1j} [(-1)^{j+1} \det(A_{1j})] + [(-1)^{j+2} \det(A_{1j+1})] a_{1j+1}.$$

- **1** Since $A_j = A_{j+1}$, $a_{1j} = a_{1j+1}$ and $A_{1j} = A_{1j+1}$.
- Therefore f(A) = 0 and hence $f(A_1, A_2, ..., A_n)$ is alternating.
- Multilinearity of f is left as an exercise. If A = I then by induction $f(A) = 1 \det(A_{11}) = f(e_1, e_2, \dots, e_{n-1}) = 1$.

Determinant of elementary and upper triangular matrices

- **Theorem:** (i) Let U be an upper triangular or a lower triangular matrix. Then det U is the product of diagonal entries of U.
- ② (ii) If $E = [e_1, \dots, e_i + me_i, \dots, e_n]$, for some $i \neq j$. Then $\det E = 1$.
- lacksquare (iii) If $F=[e_1,e_2,\ldots,e_j,\ldots,e_i,\ldots,e_n]$, for some $i\neq j$. Then $\det F=-1$.
- **1** (iv) If $G = [e_1, e_2, \dots, me_i, \dots, e_n]$ then $\det G = m$.
- **Proof:** (i) Let $U = (u_{ij})$ be upper triangular. Use induction on n. The case n = 1 is clear. For $n \times n$ upper triangular matrix U, use the formula

$$f(A) = a_{11} \det A_{11} - a_{12} \det A_{12} + \dots + (-1)^{n+1} a_{1n} \det A_{1n}$$

To see that det $U = u_{11}u_{22} \dots u_{nn}$.

- (ii) Follows from part (i).
- ullet (iii) As E is obtained from the identity matrix by exchanging columns i and j and the det is alternating, the result follows.
- (iv) Follows form part (i).

det(AB) = det A det B

1 Theorem: Let A, B be two $n \times n$ matrices. Then

$$\det(AB) = \det A \det B.$$

- **2 Proof:** Let D_i be the ith column of a matrix D. Then $(AB)_i = AB_i$.
- Therefore we prove that

$$\det(AB_1, AB_2 \dots, AB_n) = \det(A_1, A_2, \dots, A_n) \det(B_1, \dots, B_n)$$

- Keep A fixed and define $f(B_1, B_2, \dots, B_n) = \det(AB_1, AB_2, \dots, AB_n)$.
- \odot We show that f is alternating and multilinear.

det(AB) = det A det B

1 Let C be an $n \times 1$ column vector. For any scalars x, y we get

$$0 = f(B_1, ..., B_i, ..., B_n) = \det(AB_1, ..., AB_i, ..., AB_i, ..., AB_n)$$

$$f(B_1, ..., xB_k + yC, ..., B_n) = \det(AB_1, ..., A(xB_k + yC), ..., AB_n)$$

$$= \det(AB_1, ..., xAB_k + yAC, ..., AB_n)$$

$$= \det(AB_1, ..., xAB_k, ..., AB_n)$$

$$+ \det(AB_1, ..., yAC, ..., AB_n)$$

$$= xf(B_1, ..., B_n) + yf(B_1, ..., C, ..., B_n).$$

- ② Therefore $f(B_1, B_2, ..., B_n) = \det(B_1, ..., B_n) f(e_1, e_2, ..., e_n)$.
- **3** As $f(e_1, e_2, ..., e_n) = \det(Ae_1, ..., Ae_n) = \det(A_1, ..., A_n) = \det A$,
- It follows that det(AB) = det A det B.

Determinant and invertibility

- **9 Proposition:** (i) If A is invertible then $\det A \neq 0$ and $\det A^{-1} = \frac{1}{\det A}$.
- ② (ii) If $\det A \neq 0$ then A is invertible.
- (iii) If AB = I then A is invertible and $B = A^{-1}$.
- **9 Proof:** (i) Since $AA^{-1} = I$, det A^{-1} det $A = \det I = 1$.
- (ii) Suppose *A* is not invertible.
- **1** Then there is a nonzero column vector x such that Ax = 0.
- So some column of A is a linear combination of other columns of A.
- **1** By multilinearity and alternating properties we have $\det A = 0$.
- (iii) Let AB = I. Taking determinants we have det $A \det B = 1$. So det $A \neq 0$ and A is invertible. Now $B = (A^{-1}A)B = A^{-1}(AB) = A^{-1}$.

Determinant of transpose of a matrix

1 Theorem: For any $n \times n$ matrix A,

$$\det A = \det A^t$$
.

- **2 Proof:** Since $(A^t)^{-1} = (A^{-1})^t$, A is invertible $\iff A^t$ is invertible.
- Therefore if A is not invertible then A^t is also not invertible and $\det A = 0 = \det A^t$.
- **②** So we may assume that A is invertible. Now we write $A = E_1 E_2 \cdots E_k$, where E_1, \dots, E_k are elementary matrices.
- Now transpose of an elementary matrix is also an elementary matrix of the same type and has the same determinant.
- The result follows by multiplicativity of the determinant function.
- **Theorem:** Let $A = (a_{ij})$ be an $n \times n$ matrix and let $1 \le k \le n$. Then

$$\det A = \sum_{i=1}^n (-1)^{k+i} a_{ik} \det A_{ik}.$$

Computation of determinant by Gauss-Jordan elimination

- **1** Let E = the $n \times n$ elementary matrix for the row operation $A_i + cA_j$
- **3** F =the $n \times n$ elementary matrix for the row operation $A_i \sim A_j$
- **3** $G = \text{the } n \times n \text{ elementary matrix for the row operation } A_i \sim cA_i$.
- Suppose that A be an $n \times n$ matrix and U is the RCF of A.
- **3** If c_1, c_2, \ldots, c_p are the multipliers used for the row operations
- **1** $A_i \sim cA_i$ and r row exchanges have been used to get U from A then for any alternating multilinear function d,

$$d(U) = (-1)^r c_1 c_2 \dots c_p \ d(A).$$

- Note that d(FA) = -d(A), d(EA) = d(A) and d(GA) = cd(A).
- Suppose that $u_{11}, u_{22}, \ldots, u_{nn}$ are the diagonal entries of U then $d(A) = (-1)^r (c_1 c_2, \ldots c_p)^{-1} u_{11} u_{22} \ldots u_{nn} d(e_1, e_2, \ldots, e_n).$
- Therefore $\det(A) = (-1)^r (c_1 c_2, \dots c_p)^{-1} u_{11} u_{22} \dots u_{nn}$.

Matrix inverse and the cofactor matrix

Operation: Let $A = (a_{ij})$ be an $n \times n$ matrix. The **cofactor** of a_{ij} , denoted by cof a_{ij} is defined as

$$cof a_{ij} = (-1)^{i+j} \det A_{ij}.$$

- **②** The **cofactor matrix** of *A* is defined as the matrix cof $A = (\text{cof } a_{ii})$.
- **Theorem:** For any $n \times n$ matrix A,

$$A(\operatorname{cof} A)^t = (\operatorname{det} A)I = (\operatorname{cof} A)^t A.$$

- Therefore if det A is nonzero then $A^{-1} = \frac{1}{\det A}(\operatorname{cof} A)^t$.
- **9 Proof:** The (i,j) entry of $(\operatorname{cof} A)^t A$ is :

$$a_{1j} \operatorname{cof} a_{1i} + a_{2j} \operatorname{cof} a_{2i} + \cdots + a_{nj} \operatorname{cof} a_{ni}$$
.

- If i = j, it is easy to see that it is det A. When $i \neq j$ consider the matrix B obtained by replacing i^{th} column of A by i^{th} column of A.
- **1** Then B has a repeated column. Therefore det B = 0.
- **1** The other equation $A(\operatorname{cof} A)^t = (\det A)I$ is proved similarly.

Cramer's Rule for solving linear equations

be a system of *n* linear equations in *n* unknowns, x_1, x_2, \ldots, x_n .

Suppose the coefficient matrix $A = (a_{ij})$ is invertible.

Let C_j be the matrix obtained from A by replacing the j^{th} column of A by $b=(b_1,b_2,\ldots,b_n)^t$. Then for $j=1,2,\ldots,n,$ $x_j=\frac{\det C_j}{\det A}$.

Proof: Let A_1, \ldots, A_n be the columns of A. Write

$$b=x_1A_1+x_2A_2+\cdots+x_nA_n.$$

- **1** Then $\det(b, A_2, A_3, \dots, A_n) = x_1 \det A$ and each $x_j = \frac{\det C_j}{\det A}$.
- Cramer's rule gives a compact formula for the solutions. But it requires too many computations. The Gauss-Jordan method is preferred over this method.