Contents

1	Strin	gs 1
	1.1	Manacher
	1.2	
	1.3	Hashing
	1.4	
	1.5	Finding Repetitions
	1.6	Longest Common Prefix
	1.7	Suffix Array
	1.8	Count Unique Substrings
	1.9	Knuth Morris Pratt
	1.10	Group Identical Substrings
2	Coor	netry 3
_	2.1	•
	2.2	
	2.3	Point In Convex
	2.4	Line Sweep
	2.5	Line Intersection 4
	2.6	Basic Geometry 4
	2.7	Circle Line Intersection 4
	2.8	Convex Hull
	2.9	Count Lattices
	2.10	Segment Intersection
	2.11	Areas
_	-	
3	-	amic Programming 5
	3.1	Knuth Optimization
	3.2	Knapsack
	3.3	Divide And Conquer 6
	3.4	Digit Dp
	3.5	Subset Sum
	3.6	Longest Increasing Subsequence 6
	3.7	Longest Common Subsequence 6
	3.8	Max Sum
	3.9	Bitmask Weights 6
	3.10	Edit Distance
	0.10	Edit Bistance T.
4	Math	
	4.1	Chinese Remainder Theorem
	4.2	Extended Euclidean
	4.3	Modulo Inverse
	4.4	Sum Of Divisors
	4.5	Range Sieve
	4.6	Pollard Rho Brent
	4.7	Factorial Modulo
	4.8	Matrix
	4.9	
	4.10	Miller Rabin
	4.11	Fibonacci
	4.12	Fast Fourier Transform
	4.13	Segmented Sieve
	4.14	Linear Sieve
	4.15	Tonelli Shanks
5	Misc	ellaneous 9
0	5.1	
	5.1	*
	5.3	Ternary Search
6	Data	Structures 10
	6.1	Segment Tree 2d
	6.2	Range Add Point Query
	6.3	Disjoint Set Union
	6.4	
	6.5	*
	0.0	Mo

```
6.6
  6.7
  6.8
6.9
  Sqrt Decomposition . . . . . . . . . . . . . . . .
  6.10
  7 Graph Theory
7 1
  7.3
7.4
  Ford Fulkerson . . . . . . . . . . . . . . . . . .
7.5
  7.6
7.7
  7.8
7.9
  7.10
  7.11
  Maximum Bipartite Matching . . . . . . . . . . .
  7.15
  7.16
  7.17
  7.18
  7.19
  Lowest Common Ancestor . . . . . . . . . . . . . .
  7.23
7 24
  Fast Second Mst . . . . . . . . . . . . . . . . .
7 25
8 References
  8 1
  1 Strings
```

1.1 Manacher

```
vector<int> manacher_odd(string s) {
      int n = s.size();
      s = "$" + s + "^";
      vector<int> p(n + 2);
      int 1 = 1, r = 1;
      for(int i = 1; i <= n; i++) {</pre>
        p[i] = max(0, min(r - i, p[l + (r - i)]));
 8
        while(s[i - p[i]] == s[i + p[i]]) p[i]++;
9
        if(i + p[i] > r) l = i - p[i], r = i + p[i];
      return vector<int>(begin(p) + 1, end(p) - 1);
12
13
   vector<int> manacher(string s) {
14
      string t;
      for(auto c: s) t += string("#") + c;
16
      auto res = manacher_odd(t + "#");
      return vector<int>(begin(res) + 1, end(res) - 1);
18 }
```

```
1.2 Hashing
```

```
11 compute_hash(string const& s) {
11
11
          const 11 p = 31, m = 1e9 + 9;
12
          11 hash_value = 0, p_pow = 1;
12
          for (char c : s) {
12
           hash\_value = (hash\_value + (c - 'a' + 1) *
                 p_pow) % m;
           p_pow = (p_pow * p) % m;
13
          return hash_value;
13
13
    9 }
13
```

1.3 Rabin Karp

13

13

14

14

14

14

15

15

15

15

15

16

16

16

16

17

17

17

17

18

18

18

18

19

```
vector<ll> rabin_karp(string const& s, string const
            & t) {
         const 11 p = 31, m = 1e9 + 9;
         11 S = s.size(), T = t.size();
         vector<ll> p_pow(max(S, T));
         p_pow[0] = 1;
         for (ll i = 1; i < (ll) p_pow.size(); i++) p_pow[</pre>
              i] = (p_pow[i-1] * p) % m;
         vector<ll> h(T + 1, 0);
         for (ll i = 0; i < T; i++) h[i + 1] = (h[i] + (t[
              i] - 'a' + 1) * p_pow[i]) % m;
         11 h s = 0;
17 10
         for (ll i = 0; i < S; i++) h_s = (h_s + (s[i] - '
              a' + 1) * p pow[i]) % m;
         vector<11> occurences;
         for (11 i = 0; i + S - 1 < T; i++) {
           11 \text{ cur}_h = (h[i + S] + m - h[i]) % m;
           if (cur_h == h_s * p_pow[i] % m) occurences.
                push_back(i);
         return occurences;
```

1.4 Z Function

```
vector<int> z_function(string s) {
  int n = s.size();
  vector<int> z(n);
  for (int i = 1, l = 0, r = 0; i < n; i++) {
    if (i < r) z[i] = min(r - i, z[i - 1]);
    while (i + z[i] < n \&\& s[z[i]] == s[i + z[i]])
         z[i]++;
    if (i + z[i] > r) {
     1 = i;
      r = i + z[i];
  return z;
```

1.5 Finding Repetitions

```
vector<int> z_function(string const& s) {
     int n = s.size();
     vector<int> z(n);
     for (int i = 1, l = 0, r = 0; i < n; i++) {
       if (i \le r) z[i] = min(r - i + 1, z[i - 1]);
       while (i + z[i] < n \&\& s[z[i]] == s[i + z[i]])
            z[i]++;
```

```
if (i + z[i] - 1 > r) {
         1 = i;
          r = i + z[i] - 1;
11
12
      return z;
13 }
14 int get_z(vector<int> const& z, int i) {
      if (0 <= i && i < (int) z.size()) return z[i];</pre>
16
      else return 0;
17 }
18 vector<pair<int, int>> repetitions;
19 void convert_to_repetitions(int shift, bool left,
         int cntr, int 1, int k1, int k2) {
      for (int 11 = max(1, 1 - k2); 11 <= min(1, k1);</pre>
           11++) {
21
        if (left && 11 == 1) break;
22
        int 12 = 1 - 11;
        int pos = shift + (left ? cntr - 11 : cntr - 1
             -11+1);
        repetitions.emplace_back(pos, pos + 2 * 1 - 1);
25
26
void find_repetitions(string s, int shift = 0) {
28
     int n = s.size();
29
     if (n == 1) return;
     int nu = n / 2;
     int nv = n - nu;
     string u = s.substr(0, nu);
     string v = s.substr(nu);
     string ru(u.rbegin(), u.rend());
      string rv(v.rbegin(), v.rend());
      find_repetitions(u, shift);
      find repetitions (v, shift + nu);
      vector<int> z1 = z_function(ru);
      vector<int> z2 = z_function(v + '#' + u);
39
40
      vector<int> z3 = z_function(ru + '#' + rv);
41
      vector<int> z4 = z_function(v);
42
      for (int cntr = 0; cntr < n; cntr++) {</pre>
43
       int 1, k1, k2;
44
        if (cntr < nu) {</pre>
45
         1 = nu - cntr;
          k1 = get_z(z1, nu - cntr);
47
          k2 = get_z(z2, nv + 1 + cntr);
48
49
          1 = cntr - nu + 1;
50
          k1 = get_z(z3, nu + 1 + nv - 1 - (cntr - nu))
51
          k2 = get_z(z4, (cntr - nu) + 1);
        if (k1 + k2 >= 1) convert_to_repetitions(shift,
              cntr < nu, cntr, 1, k1, k2);</pre>
55 }
```

1.6 Longest Common Prefix

1.7 Suffix Array

```
vector<int> sort_cyclic_shifts(string const& s) {
      int n = s.size();
      const int alphabet = 256;
      vector<int> p(n), c(n), cnt(max(alphabet, n), 0);
      for (int i = 0; i < n; i++) cnt[s[i]]++;</pre>
      for (int i = 1; i < alphabet; i++) cnt[i] += cnt[</pre>
           i - 11;
      for (int i = 0; i < n; i++) p[--cnt[s[i]]] = i;</pre>
      c[p[0]] = 0;
      int classes = 1;
      for (int i = 1; i < n; i++) {
       if (s[p[i]] != s[p[i-1]]) classes++;
        c[p[i]] = classes - 1;
13
14
      vector<int> pn(n), cn(n);
      for (int h = 0; (1 << h) < n; ++h) {
        for (int i = 0; i < n; i++) {</pre>
          pn[i] = p[i] - (1 << h);
          if (pn[i] < 0)
            pn[i] += n;
        fill(cnt.begin(), cnt.begin() + classes, 0);
        for (int i = 0; i < n; i++) cnt[c[pn[i]]]++;</pre>
        for (int i = 1; i < classes; i++) cnt[i] += cnt</pre>
             [i - 1];
        for (int i = n-1; i >= 0; i--) p[--cnt[c[pn[i
             ]]]] = pn[i];
        cn[p[0]] = 0;
        classes = 1;
        for (int i = 1; i < n; i++) {</pre>
          pair<int, int> cur = {c[p[i]], c[(p[i] + (1)
               << h)) % n]};
          pair < int, int > prev = {c[p[i-1]], c[(p[i-1]] + }
                 (1 << h)) % n]};
          if (cur != prev) ++classes;
          cn[p[i]] = classes - 1;
32
33
        c.swap(cn);
34
      }
35
      return p;
36
    vector<int> build_suff_arr(string s) {
38
      s += "$";
      vector<int> sorted_shifts = sort_cyclic_shifts(s)
40
      sorted_shifts.erase(sorted_shifts.begin());
41
      return sorted_shifts;
43 // compare two substrings
44 int compare(int i, int j, int l, int k) {
      pair<int, int> a = \{c[k][i], c[k][(i + 1 - (1 <<
           k)) % n]};
      pair<int, int> b = \{c[k][j], c[k][(j + 1 - (1 <<
```

```
47 return a == b ? 0 : a < b ? -1 : 1;
48 }
```

1.8 Count Unique Substrings

```
int count unique substrings(string const& s) {
      int n = s.size();
      const int p = 31;
      const int m = 1e9 + 9;
      vector<long long> p_pow(n);
      p_pow[0] = 1;
      for (int i = 1; i < n; i++) p_pow[i] = (p_pow[i -</pre>
            1] * p) % m;
      vector<long long> h(n + 1, 0);
      for (int i = 0; i < n; i++) h[i + 1] = (h[i] + (s))
            [i] - 'a' + 1) * p_pow[i]) % m;
      int cnt = 0;
      for (int 1 = 1; 1 <= n; 1++) {</pre>
        unordered_set<long long> hs;
        for (int i = 0; i <= n - 1; i++) {</pre>
           long long cur_h = (h[i + 1] + m - h[i]) % m;
           \operatorname{cur}_h = (\operatorname{cur}_h * \operatorname{p_pow}[n - i - 1]) % m;
           hs.insert(cur_h);
        cnt += hs.size();
      return cnt;
21 }
```

1.9 Knuth Morris Pratt

```
1 vector<11> prefix_function(string s) {
      11 n = (11) s.length();
      vector<ll> pi(n);
      for (ll i = 1; i < n; i++) {
       11 j = pi[i - 1];
       while (j > 0 \&\& s[i] != s[j]) j = pi[j - 1];
       if (s[i] == s[j]) j++;
       pi[i] = j;
     return pi;
11 }
12 // count occurences
13 vector < int > ans(n + 1);
14 for (int i = 0; i < n; i++)
    ans[pi[i]]++;
16 for (int i = n-1; i > 0; i--)
    ans[pi[i-1]] += ans[i];
18 for (int i = 0; i <= n; i++)
    ans[i]++;
```

1.10 Group Identical Substrings

```
vector<vector<int>> group_identical_strings(vector
string> const& s) {
int n = s.size();
vector<pair<long long, int>> hashes(n);
for (int i = 0; i < n; i++) hashes[i] = {
    compute_hash(s[i]), i};
sort(hashes.begin(), hashes.end());
vector<vector<int>> groups;
for (int i = 0; i < n; i++) {</pre>
```

2 Geometry

2.1 Nearest Points

```
struct pt {
                11 x, y, id;
            struct cmp_x {
                 bool operator()(const pt & a, const pt & b) const
                       return a.x < b.x || (a.x == b.x && a.y < b.y);</pre>
   8
          };
            struct cmp v {
                 bool operator()(const pt & a, const pt & b) const
                               { return a.y < b.y; }
11 };
12 11 n;
13 vector<pt> a;
14 double mindist;
15 pair<11, 11> best_pair;
void upd_ans(const pt & a, const pt & b) {
                 double dist = sqrt((a.x - b.x) * (a.x - b.x) + (a.x - 
                             .y - b.y) * (a.y - b.y));
                 if (dist < mindist) {</pre>
19
                      mindist = dist:
20
                      best_pair = {a.id, b.id};
21
22
23
          vector<pt> t;
24 void rec(ll 1, ll r) {
25
                if (r - 1 \le 3) {
26
                      for (11 i = 1; i < r; ++i)</pre>
27
                           for (11 \ j = i + 1; \ j < r; ++j)
28
                                 upd_ans(a[i], a[j]);
29
                       sort(a.begin() + 1, a.begin() + r, cmp_y());
                11 m = (1 + r) >> 1, midx = a[m].x;
33
                rec(1, m);
34
                rec(m, r);
                 merge(a.begin() + 1, a.begin() + m, a.begin() + m
                              , a.begin() + r, t.begin(), cmp_y());
                 copy(t.begin(), t.begin() + r - 1, a.begin() + 1)
37
                 11 \text{ tsz} = 0;
38
                 for (11 i = 1; i < r; ++i) {
39
                     if (abs(a[i].x - midx) < mindist) {</pre>
40
                            for (11 j = tsz - 1; j >= 0 && a[i].y - t[j].
                                       y < mindist; --j)
                                 upd_ans(a[i], t[j]);
42
                            t[tsz++] = a[i];
43
               }
44
45 }
46 t.resize(n);
48 mindist = 1E20;
49 rec(0, n);
```

2.2 Minkowski Sum

```
struct pt {
       11 x, y;
       pt operator + (const pt & p) const { return pt {x}
            + p.x, y + p.y; }
       pt operator - (const pt & p) const { return pt {x}
            -p.x, y - p.y; }
       11 cross(const pt & p) const { return x * p.y - y
             * p.x; }
 6
    };
    void reorder_polygon(vector<pt> & P) {
 8
       size_t pos = 0;
       for (size_t i = 1; i < P.size(); i++) {</pre>
         if (P[i].y < P[pos].y || (P[i].y == P[pos].y &&
               P[i].x < P[pos].x)) pos = i;
       rotate(P.begin(), P.begin() + pos, P.end());
    vector<pt> minkowski(vector<pt> P, vector<pt> Q) {
      // the first vertex must be the lowest
       reorder_polygon(P);
      reorder_polygon(Q);
       // we must ensure cyclic indexing
      P.push_back(P[0]);
      P.push_back(P[1]);
       0.push back(0[0]);
       Q.push_back(Q[1]);
       // main part
       vector<pt> result;
25
       size_t i = 0, j = 0;
       while (i < P.size() - 2 || j < Q.size() - 2){</pre>
        result.push_back(P[i] + Q[j]);
         auto cross = (P[i + 1] - P[i]).cross(Q[j + 1] -
               ([i]O
         if (cross >= 0 && i < P.size() - 2) ++i;</pre>
         if (cross <= 0 && j < Q.size() - 2) ++j;</pre>
32
      return result;
33 }
```

2.3 Point In Convex

```
struct pt {
      long long x, y;
      pt() {}
      pt (long long \underline{x}, long long \underline{y}) : x(\underline{x}), y(\underline{y}) {}
      pt operator+(const pt &p) const { return pt(x + p
            .x, y + p.y); }
      pt operator-(const pt &p) const { return pt(x - p
            .x, y - p.y);
      long long cross(const pt &p) const { return x * p
            y - y * p.x;
      long long dot(const pt &p) const { return x * p.x
            + y * p.y; }
      long long cross(const pt &a, const pt &b) const {
            return (a - *this).cross(b - *this); }
10
      long long dot(const pt &a, const pt &b) const {
            return (a - *this).dot(b - *this); }
11
      long long sqrLen() const { return this->dot(*this
           ); }
12
    bool lexComp(const pt &1, const pt &r) { return 1.x
           < r.x \mid | (1.x == r.x && 1.y < r.y); }
```

```
4 int sgn(long long val) { return val > 0 ? 1 : (val
         == 0 ? 0 : -1); }
   vector<pt> seq;
   pt translation;
   int n:
18
   bool pointInTriangle(pt a, pt b, pt c, pt point) {
      long long s1 = abs(a.cross(b, c));
      long long s2 = abs(point.cross(a, b)) + abs(point
           .cross(b, c)) + abs(point.cross(c, a));
      return s1 == s2;
    void prepare(vector<pt> &points) {
      n = points.size();
      int pos = 0;
      for (int i = 1; i < n; i++) {
        if (lexComp(points[i], points[pos])) pos = i;
      rotate(points.begin(), points.begin() + pos,
          points.end());
      seq.resize(n);
      for (int i = 0; i < n; i++) seq[i] = points[i +</pre>
          1] - points[0];
      translation = points[0];
34
    bool pointInConvexPolygon(pt point) {
      point = point - translation;
      if (seq[0].cross(point) != 0 && sgn(seq[0].cross(
          point)) != sgn(seq[0].cross(seq[n - 1])))
3.8
        return false;
      if (seg[n-1].cross(point) != 0 && sgn(seg[n-1])
           1].cross(point)) != sqn(seq[n - 1].cross(seq
        return false;
      if (seq[0].cross(point) == 0)
        return seq[0].sqrLen() >= point.sqrLen();
      int 1 = 0, r = n - 1;
      while (r - 1 > 1) {
44
       int mid = (1 + r) / 2;
        int pos = mid;
        if (seq[pos].cross(point) >= 0) 1 = mid;
        else r = mid;
50
      int pos = 1;
      return pointInTriangle(seg[pos], seg[pos + 1], pt
           (0, 0), point);
52 }
```

2.4 Line Sweep

```
1  const double EPS = 1E-9;
2  struct pt { double x, y; };
3  struct seg {
4   pt p, q;
5   11 id;
6   double get_y(double x) const {
7   if (abs(p.x - q.x) < EPS) return p.y;
8   return p.y + (q.y - p.y) * (x - p.x) / (q.x - p.x);
9  }
10  };
11  bool intersect1d(double 11, double r1, double 12, double r2) {
12   if (11 > r1) swap(11, r1);
13   if (12 > r2) swap(12, r2);
14   return max(11, 12) <= min(r1, r2) + EPS;
15  }</pre>
```

```
16 11 vec(const pt& a, const pt& b, const pt& c) {
      double s = (b.x - a.x) * (c.y - a.y) - (b.y - a.y)
           ) * (c.x - a.x);
      return abs(s) < EPS ? 0 : s > 0 ? +1 : -1;
19 1
20 bool intersect(const seg& a, const seg& b) {
21
      return intersect1d(a.p.x, a.q.x, b.p.x, b.q.x) &&
             intersect1d(a.p.y, a.q.y, b.p.y, b.q.y) &&
23
             vec(a.p, a.q, b.p) * vec(a.p, a.q, b.q) <=</pre>
                   3.3 0
24
              vec(b.p, b.q, a.p) * vec(b.p, b.q, a.q) <=
25 }
26 bool operator<(const seq& a, const seq& b) {
      double x = max(min(a.p.x, a.g.x), min(b.p.x, b.g.
28
      return a.get_y(x) < b.get_y(x) - EPS;</pre>
29 }
30 struct event {
      double x;
      11 tp, id;
      event() {}
34
      event (double x, 11 tp, 11 id) : x(x), tp(tp), id(
      bool operator<(const event& e) const {</pre>
36
        if (abs(x - e.x) > EPS) return x < e.x;
        return tp > e.tp;
38
39 };
40 set<seg> s;
41 vector<set<seg>::iterator> where;
    set<seg>::iterator prev(set<seg>::iterator it) {
      return it == s.begin() ? s.end() : --it;
44 }
45 set<seg>::iterator next(set<seg>::iterator it) {
46
     return ++it;
47 }
48 pair<11, 11> solve(const vector<seg>& a) {
49
      11 n = (11) a.size();
      vector<event> e;
      for (11 i = 0; i < n; ++i) {
        e.push_back(event(min(a[i].p.x, a[i].q.x), +1,
        e.push_back(event(max(a[i].p.x, a[i].q.x), -1,
54
      sort(e.begin(), e.end());
      s.clear():
      where.resize(a.size());
      for (size_t i = 0; i < e.size(); ++i) {</pre>
59
       11 \text{ id} = e[i].id;
60
        if (e[i].tp == +1) {
          set<seq>::iterator nxt = s.lower_bound(a[id])
61
               , prv = prev(nxt);
62
          if (nxt != s.end() && intersect(*nxt, a[id]))
                return make_pair(nxt->id, id);
63
          if (prv != s.end() && intersect(*prv, a[id]))
                return make pair (prv->id, id);
64
          where[id] = s.insert(nxt, a[id]);
65
         } else {
66
          set<seg>::iterator nxt = next(where[id]), prv
                = prev(where[id]);
          if (nxt != s.end() && prv != s.end() &&
               intersect(*nxt, *prv)) return make_pair(
               prv->id, nxt->id);
68
          s.erase(where[id]);
69
71
      return make_pair(-1, -1);
```

```
17 }
```

```
2.5 Line Intersection
    struct pt { double x, y; };
    struct line { double a, b, c; };
    const double EPS = 1e-9;
    double det (double a, double b, double c, double d)
         { return a*d - b*c; }
   bool intersect(line m, line n, pt & res) {
      double zn = det(m.a, m.b, n.a, n.b);
      if (abs(zn) < EPS) return false;</pre>
      res.x = -det(m.c, m.b, n.c, n.b) / zn;
      res.y = -det(m.a, m.c, n.a, n.c) / zn;
     return true;
12 bool parallel(line m, line n) { return abs(det(m.a,
         m.b, n.a, n.b)) < EPS; }
13 bool equivalent(line m, line n) {
      return abs(det(m.a, m.b, n.a, n.b)) < EPS
          && abs(det(m.a, m.c, n.a, n.c)) < EPS
          && abs(det(m.b, m.c, n.b, n.c)) < EPS;
2.6 Basic Geometry
```

struct point2d { ftype x, y; point2d() {} point2d(ftype x, ftype y): x(x), y(y) {} point2d& operator+=(const point2d &t) { x += t.x: y += t.y; return *this; point2d& operator-=(const point2d &t) { x -= t.x: y -= t.y; return *this; point2d& operator*=(ftype t) { y *= t;

return *this;

return *this;

x /= t;

y /= t;

point2d& operator/=(ftype t) {

(*this) *= t; }

(*this) /= t; }

+ a.y * b.y + a.z * b.z; }

+ a.v * b.v;

return point2d(*this) += t; }

return point2d(*this) -= t; }

```
point2d operator+(const point2d &t) const {
      point2d operator-(const point2d &t) const {
      point2d operator*(ftype t) const { return point2d
      point2d operator/(ftype t) const { return point2d
   point2d operator*(ftype a, point2d b) { return b *
31 ftype dot(point2d a, point2d b) { return a.x * b.x
32 ftype dot(point3d a, point3d b) { return a.x * b.x
```

```
33 ftype norm(point2d a) { return dot(a, a); }
   double abs(point2d a) { return sgrt(norm(a)); }
   double proj(point2d a, point2d b) { return dot(a, b
        ) / abs(b); }
36 double angle(point2d a, point2d b) { return acos(
         dot(a, b) / abs(a) / abs(b)); }
37 point3d cross(point3d a, point3d b) { return
         point3d(a.y \star b.z - a.z \star b.y, a.z \star b.x - a.x
          * b.z, a.x * b.y - a.y * b.x); }
38 ftype triple(point3d a, point3d b, point3d c) {
         return dot(a, cross(b, c)); }
39 ftype cross(point2d a, point2d b) { return a.x * b.
         y - a.y * b.x; }
40 point2d intersect(point2d al, point2d dl, point2d
         a2, point2d d2) { return a1 + cross(a2 - a1,
         d2) / cross(d1, d2) * d1; }
41 point3d intersect(point3d a1, point3d n1, point3d
         a2, point3d n2, point3d a3, point3d n3) {
      point3d x(n1.x, n2.x, n3.x);
      point3d y(n1.y, n2.y, n3.y);
      point3d z(n1.z, n2.z, n3.z);
      point3d d(dot(a1, n1), dot(a2, n2), dot(a3, n3));
      return point3d(triple(d, v, z), triple(x, d, z),
          triple(x, y, d)) / triple(n1, n2, n3);
```

2.7 Circle Line Intersection

```
double r, a, b, c; // given as input
   double x0 = -a * c / (a * a + b * b);
   double y0 = -b * c / (a * a + b * b);
   if (c * c > r * r * (a * a + b * b) + EPS) {
     puts ("no points");
   } else if (abs (c *c - r * r * (a * a + b * b)) <
        EPS) {
     puts ("1 point");
     cout << x0 << ' ' << y0 << '\n';
     double d = r * r - c * c / (a * a + b * b);
     double mult = sqrt (d / (a * a + b * b));
     double ax, ay, bx, by;
     ax = x0 + b * mult;
     bx = x0 - b * mult;
     ay = y0 - a * mult;
     by = y0 + a * mult;
     puts ("2 points");
     cout << ax << ' ' << ay << '\n' << bx << ' ' <<
          by << '\n';
19 }
```

2.8 Convex Hull

```
1 struct pt {
     double x, y;
   11 orientation(pt a, pt b, pt c) {
     double v = a.x * (b.y - c.y) + b.x * (c.y - a.y)
         + c.x * (a.y - b.y);
     if (v < 0) {
       return -1:
     \} else if (v > 0) {
       return +1;
     return 0;
```

```
13 bool cw(pt a, pt b, pt c, bool include_collinear) {
14
      11 o = orientation(a, b, c);
15
      return o < 0 || (include_collinear && o == 0);</pre>
16
17
    bool collinear(pt a, pt b, pt c) {
1.8
      return orientation(a, b, c) == 0;
19 }
20 void convex_hull(vector<pt>& a, bool
         include_collinear = false) {
      pt p0 = *min_element(a.begin(), a.end(), [](pt a,
        return make_pair(a.y, a.x) < make_pair(b.y, b.x</pre>
23
      sort(a.begin(), a.end(), [&p0](const pt& a, const
25
        11 o = orientation(p0, a, b);
26
        if (o == 0) {
          return (p0.x - a.x) * (p0.x - a.x) + (p0.y - a.x)
               a.y) * (p0.y - a.y)
               < (p0.x - b.x) * (p0.x - b.x) + (p0.y -
                    b.y) * (p0.y - b.y);
        return o < 0;
31
      if (include_collinear) {
        11 i = (11) a.size()-1;
34
        while (i \geq= 0 && collinear(p0, a[i], a.back()))
        reverse(a.begin()+i+1, a.end());
36
      vector<pt> st;
38
      for (ll i = 0; i < (ll) a.size(); i++) {</pre>
39
        while (st.size() > 1 && !cw(st[st.size() - 2],
             st.back(), a[i], include_collinear)) {
40
          st.pop_back();
41
42
        st.push_back(a[i]);
43
44
      a = st;
45 }
```

2.9 Count Lattices

```
1 int count_lattices(Fraction k, Fraction b, long
         long n) {
      auto fk = k.floor();
      auto fb = b.floor();
      auto cnt = 0LL;
      if (k >= 1 || b >= 1) {
        cnt += (fk * (n - 1) + 2 * fb) * n / 2;
        k = fk;
        b -= fb;
      auto t = k * n + b;
      auto ft = t.floor();
      if (ft >= 1) cnt += count_lattices(1 / k, (t - t.
           floor()) / k, t.floor());
13
      return cnt;
14 }
```

2.10 Segment Intersection

```
1 const double EPS = 1E-9;
2 struct pt {
```

```
double x, y;
      bool operator<(const pt& p) const {</pre>
        return x < p.x - EPS \mid \mid (abs(x - p.x) < EPS &&
             y < p.y - EPS);
 6
 7
    };
    struct line {
      double a, b, c;
      line() {}
      line(pt p, pt q) {
        a = p.y - q.y;
        b = q.x - p.x;
        c = -a * p.x - b * p.y;
      void norm() {
18
        double z = sqrt(a * a + b * b);
        if (abs(z) > EPS) a /= z, b /= z, c /= z;
      double dist(pt p) const { return a * p.x + b * p.
           y + c; }
    };
    double det (double a, double b, double c, double d)
      return a * d - b * c;
    inline bool betw(double 1, double r, double x) {
      return min(1, r) \le x + EPS \&\& x \le max(1, r) +
28
    inline bool intersect_1d(double a, double b, double
          c, double d) {
      if (a > b) swap(a, b);
      if (c > d) swap(c, d);
      return max(a, c) <= min(b, d) + EPS;</pre>
34 bool intersect(pt a, pt b, pt c, pt d, pt& left, pt
         & right) {
      if (!intersect_ld(a.x, b.x, c.x, d.x) || !
           intersect_ld(a.y, b.y, c.y, d.y)) return
           false:
      line m(a, b);
      line n(c, d);
      double zn = det(m.a, m.b, n.a, n.b);
      if (abs(zn) < EPS) {
        if (abs(m.dist(c)) > EPS || abs(n.dist(a)) >
             EPS) return false;
        if (b < a) swap(a, b);
        if (d < c) swap(c, d);
        left = max(a, c);
        right = min(b, d);
45
        return true;
      } else {
        left.x = right.x = -det(m.c, m.b, n.c, n.b) /
48
        left.y = right.y = -det(m.a, m.c, n.a, n.c) /
49
        return betw(a.x, b.x, left.x) && betw(a.y, b.y,
              left.y) &&
               betw(c.x, d.x, left.x) && betw(c.y, d.y,
                     left.y);
52 }
```

2.11 Areas

```
int signed_area_parallelogram(point2d p1, point2d
```

```
p2, point2d p3) {
      return cross (p2 - p1, p3 - p2);
    double triangle_area (point2d p1, point2d p2,
         point2d p3) {
      return abs(signed_area_parallelogram(p1, p2, p3))
            / 2.0;
    bool clockwise(point2d p1, point2d p2, point2d p3)
      return signed_area_parallelogram(p1, p2, p3) < 0;</pre>
10 bool counter_clockwise(point2d p1, point2d p2,
         point2d p3) {
      return signed_area_parallelogram(p1, p2, p3) > 0;
    double area(const vector<point>& fig) {
      double res = 0;
      for (unsigned i = 0; i < fig.size(); i++) {</pre>
        point p = i ? fig[i - 1] : fig.back();
        point q = fig[i];
        res += (p.x - q.x) * (p.y + q.y);
      return fabs(res) / 2;
21 }
```

3 Dynamic Programming

3.1 Knuth Optimization

```
1 11 solve() {
      11 N:
      ... // Read input
      vector<vector<ll>> dp(N, vector<ll>(N)), opt(N,
           vector<ll>(N));
      auto C = [\&](11 i, 11 j) {
        ... // Implement cost function C.
      };
8
      for (11 i = 0; i < N; i++) {
        opt[i][i] = i;
        ... // Initialize dp[i][i] according to the
             problem
      for (11 i = N - 2; i >= 0; i--) {
        for (11 j = i + 1; j < N; j++) {
          11 \text{ mn} = 11\_\text{MAX}, \text{ cost} = C(i, j);
          for (11 k = opt[i][j-1]; k \le min(j-1,
               opt[i + 1][j]); k++) {
            if (mn \ge dp[i][k] + dp[k + 1][j] + cost) {
              opt[i][j] = k;
              mn = dp[i][k] + dp[k + 1][j] + cost;
          dp[i][j] = mn;
      cout << dp[0][N - 1] << '\n';
25
```

3.2 Knapsack

3.3 Divide And Conquer

```
1 11 m, n;
    vector<ll> dp_before(n), dp_cur(n);
    11 C(11 i, 11 j);
    void compute(ll 1, ll r, ll optl, ll optr) {
      if (1 > r) return;
      11 \text{ mid} = (1 + r) >> 1;
      pair<11, 11> best = {LLONG_MAX, -1};
      for (ll k = optl; k <= min(mid, optr); k++)</pre>
      best = min(best, \{(k ? dp\_before[k - 1] : 0) +
             C(k, mid), k});
      dp_cur[mid] = best.first;
11
      11 opt = best.second;
      compute(1, mid - 1, optl, opt);
13
      compute(mid + 1, r, opt, optr);
14
15 11 solve() {
      for (ll i = 0; i < n; i++) dp_before[i] = C(0, i)</pre>
      for (11 i = 1; i < m; i++) {
        compute(0, n - 1, 0, n - 1);
18
19
        dp_before = dp_cur;
20
21
      return dp_before[n - 1];
```

3.4 Digit Dp

```
1 vector<vector<vector<ll>>>> dp(K + 1, vector
         <vector<vector<11>>>(9 * K + 1, vector<vector</pre>
         11>> (9 * K + 1, vector<11>(9 * K, 0)));
    for (11 n = 1; n \le 9 * K; n++) dp[0][n][0][0] = 1;
    11 pow10 = 1;
    for (11 k = 1; k <= K; k++) {
      for (11 n = 1; n \le 9 * K; n++) {
        for (11 s = 0; s <= 9 * K; s++) {
          for (11 m = 0; m < n; m++) {
            for (11 y = 0; y \le 9; y++) {
                if (s \ge y) dp[k][n][s][m] += dp[k -
                     1][n][s - y][((m - y * pow10) % n]
                     + n) % n];
13
14
      pow10 *= 10;
15 }
16 string N;
17 cin \gg N;
18 11 n = N.length(), ans = 0;
19 vector<11> g(9 * K + 1, 0);
20 for (11 s = 1; s \leq 9 * K; s++) {
```

string substring = "";

```
11 pow10 = 1;
      for (11 i = 0; i < n - 1; i++) pow10 *= 10;
      for (ll i = 0; i < n; i++) {
         substring += '0';
         for (11 \ \dot{j} = 0; \ \dot{j} < N[i] - '0'; \ \dot{j}++)  {
          11 digit_sum = j;
           for (11 k = 0; k < i; k++) digit_sum +=</pre>
                substring[k] - '0';
           if (s \ge digit\_sum) g[s] += dp[n - 1 - i][s][
                s - digit_sum][((-pow10 * stoll(
                substring)) % s + s) % s];
           substring[i]++;
        pow10 /= 10;
34
      ans += q[s];
35 }
36
    auto is_good = [&](string s) -> bool {
      11 \text{ digit\_sum} = 0;
      for (ll i = 0; i < (ll) s.length(); i++)</pre>
           digit_sum += s[i] - '0';
      return stoll(s) % digit_sum == 0;
    if (is_good(N)) ans++;
    cout << ans << "\n";
```

3.5 Subset Sum

3.6 Longest Increasing Subsequence

```
1  ll get_ceil_idx(vector<ll> &a, vector<ll> &T, ll l,
         11 r, 11 x) {
     while (r - 1 > 1) {
      11 m = 1 + (r - 1) / 2;
       if (a[T[m]] >= x) {
       r = m;
       } else {
         1 = m;
8
     return r;
  11 LIS(ll n, vector<ll> &a) {
    11 len = 1;
     vector<ll> T(n, 0), R(n, -1);
     T[0] = 0;
     for (ll i = 1; i < n; i++) {
       if (a[i] < a[T[0]]) {</pre>
        T[0] = i;
```

} else if (a[i] > a[T[len - 1]]) {

3.7 Longest Common Subsequence

```
1 11 LCS(string x, string y, 11 n, 11 m) {
      vector<vector<ll>> dp(n + 1, vector<ll>(m + 1));
      for (11 i = 0; i <= n; i++) {</pre>
        for (11 j = 0; j \le m; j++) {
          if (i == 0 || j == 0) {
            dp[i][j] = 0;
          } else if (x[i - 1] == y[j - 1]) {
            dp[i][j] = dp[i - 1][j - 1] + 1;
          } else {
            dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
      11 \text{ index} = dp[n][m];
      vector<char> lcs(index + 1);
      lcs[index] = ' \setminus 0';
      11 i = n, j = m;
      while (i > 0 \&\& j > 0) {
       if (x[i-1] == y[j-1]) {
          lcs[index - 1] = x[i - 1];
          i--;
          j--;
          index--;
        } else if (dp[i - 1][j] > dp[i][j - 1]) {
        } else {
28
29
      return dp[n][m];
31
```

3.8 Max Sum

```
int max_subarray_sum(vi arr) {
   int x = 0, s = 0;
   for (int k = 0; k < n; k++) {
      s = max(arr[k], s+arr[k]);
      x = max(x, s);
   }
   return x;
}</pre>
```

3.9 Bitmask Weights

```
1 vector<pair<11, 11>> dp(1 << n, {INF, 0});
2 dp[0] = {1, 0};
3 for (11 mask = 1; mask < (1 << n); mask++)</pre>
```

3.10 Edit Distance

```
1  ll edit_distance(string x, string y, ll n, ll m) {
      vector<vector<int>> dp(n + 1, vector<int>(m + 1,
       dp[0][0] = 0;
       for (int i = 1; i <= n; i++) {</pre>
        dp[i][0] = i;
 6
      for (int j = 1; j <= m; j++) {</pre>
 8
        dp[0][j] = j;
 9
10
      for (int i = 1; i <= n; i++) {</pre>
11
         for (int j = 1; j <= m; j++) {</pre>
           dp[i][j] = min({dp[i-1][j] + 1, dp[i][j-1]}
                1] + 1, dp[i - 1][j - 1] + (x[i - 1] !=
               y[j - 1])));
13
14
15
      return dp[n][m];
16 }
```

4 Math

4.1 Chinese Remainder Theorem

```
struct Congruence {
      11 a, m;
 3 };
 5 11 chinese_remainder_theorem(vector<Congruence>
         const& congruences) {
      11. M = 1:
      for (auto const& congruence : congruences) M *=
           congruence.m:
      11 \text{ solution} = 0;
      for (auto const& congruence : congruences) {
       11 a_i = congruence.a;
        11 M_i = M / congruence.m;
        11 N_i = mod_inv(M_i, congruence.m);
        solution = (solution + a_i * M_i % M * N_i) % M
14
15
      return solution;
16 }
```

4.2 Extended Euclidean

```
1 int gcd(int a, int b, int& x, int& y) {
2    if (b == 0) {
3         x = 1;
4         y = 0;
5         return a;
6    }
7    int x1, y1, d = gcd(b, a % b, x1, y1);
8         x = y1;
9         y = x1 - y1 * (a / b);
10    return d;
11 }
```

4.3 Modulo Inverse

```
1  11 mod_inv(11 a, 11 m) {
2    if (m == 1) return 0;
3    11 m0 = m, x = 1, y = 0;
4    while (a > 1) {
5        11 q = a / m, t = m;
6        m = a % m;
7        a = t;
8        t = y;
9        y = x - q * y;
10        x = t;
11    }
12    if (x < 0) x += m0;
13    return x;
14 }</pre>
```

4.4 Sum Of Divisors

```
1 ll sum of divisors(ll num) {
      11 total = 1;
      for (int i = 2; (11) i * i <= num; i++) {</pre>
        if (num % i == 0) {
           int e = 0;
           do {
            e++;
            num /= i;
9
           } while (num % i == 0);
          11 \text{ sum} = 0, \text{ pow} = 1;
           do {
            sum += pow;
            pow *= i;
          } while (e-- > 0);
15
          total *= sum;
16
18
      if (num > 1) total *= (1 + num);
      return total:
20 }
```

4.5 Range Sieve

```
vector<bool> range_sieve(11 1, 11 r) {
    11 n = sqrt(r);
    vector<bool> is_prime(n + 1, true);
    vector<11> prime;
    is_prime[0] = is_prime[1] = false;
    prime.push_back(2);
    for (11 i = 4; i <= n; i += 2) is_prime[i] =
        false;</pre>
```

4.6 Pollard Rho Brent

```
1 ll mult(ll a, ll b, ll mod) {
    return (__int128_t) a * b % mod;
3
4 11 f(11 x, 11 c, 11 mod) {
     return (mult(x, x, mod) + c) % mod;
    ll pollard_rho_brent(ll n, ll x0 = 2, ll c = 1) {
     11 \times = x0, g = 1, q = 1, xs, y, m = 128, 1 = 1;
      while (q == 1) {
        y = x;
        for (11 i = 1; i < 1; i++) x = f(x, c, n);
        11 k = 0;
        while (k < 1 \&\& g == 1) {
          xs = x;
          for (ll i = 0; i < m && i < l - k; i++) {
           x = f(x, c, n);
            q = mult(q, abs(y - x), n);
          g = \underline{gcd}(q, n);
20
          k += m;
21
        1 *= 2:
23
24
      if (g == n) {
        do {
         xs = f(xs, c, n);
          g = \underline{gcd(abs(xs - y), n)};
        } while (q == 1);
      return g;
31 }
```

4.7 Factorial Modulo

4.8 Matrix

```
1 /*
    Matrix exponentation:
    f[n] = af[n-1] + bf[n-2] + cf[n-3]
   |f[n] | |a b c||f[n-1]|
   |f[n-1]|=|1 0 0||f[n-2]|
    |f[n-2]| |0 1 0||f[n-3]|
    |f[n] | |a b c|^(n-2)|f[2]|
10 |f[n-1]| = |1 \ 0 \ 0| |f[1]|
11 |f[n-2]| |0 1 0|
                          | f [ 0 ] |
12 */
13 struct Matrix { int mat[MAX_N][MAX_N]; };
14 Matrix matrix mul(Matrix a, Matrix b) {
15
    Matrix ans; int i, j, k;
16
    for (i = 0; i < MAX_N; i++)</pre>
      for (j = 0; j < MAX_N; j++)</pre>
      for (ans.mat[i][\dot{\eta}] = k = 0; k < MAX_N; k++)
19
       ans.mat[i][i] += a.mat[i][k] * b.mat[k][i];
20
      return ans:
21
22 Matrix matrix_pow(Matrix base, int p) {
23
      Matrix ans; int i, j;
24
      for (i = 0; i < MAX_N; i++)</pre>
25
       for (j = 0; j < MAX_N; j++)</pre>
         ans.mat[i][j] = (i == j);
      while (p) {
       if (p & 1) ans = matrix mul(ans, base);
29
        base = matrix_mul(base, base);
       p >>= 1;
31
32
      return ans;
33 }
```

4.9 Find All Solutions

```
bool find_any_solution(ll a, ll b, ll c, ll &x0, ll
          &v0, 11 &g) {
      q = qcd_{extended(abs(a), abs(b), x0, y0)};
      if (c % q) return false;
      x0 \star = c / q;
      y0 \star = c / g;
      if (a < 0) x0 = -x0;
      if (b < 0) y0 = -y0;
      return true;
 9
10 void shift_solution(11 & x, 11 & y, 11 a, 11 b, 11
         cnt) {
      x += cnt * b;
     y -= cnt * a;
13
   11 find_all_solutions(11 a, 11 b, 11 c, 11 minx, 11
          maxx, 11 miny, 11 maxy) {
      11 x, y, q;
      if (!find_any_solution(a, b, c, x, y, g)) return
           0;
      a /= g;
      b /= g;
      11 \text{ sign}_a = a > 0 ? +1 : -1;
      11 \text{ sign } b = b > 0 ? +1 : -1;
      shift_solution(x, y, a, b, (minx - x) / b);
      if (x < minx) shift_solution(x, y, a, b, sign_b);</pre>
      if (x > maxx) return 0;
```

```
11 \ 1x1 = x;
      shift solution (x, y, a, b, (maxx - x) / b);
      if (x > maxx) shift_solution(x, y, a, b, -sign_b)
      11 \text{ rx1} = x;
28
      shift_solution(x, y, a, b, -(miny - y) / a);
      if (y < miny) shift_solution(x, y, a, b, -sign_a)</pre>
      if (v > maxy) return 0;
      11 \ 1x2 = x;
      shift_solution(x, y, a, b, -(maxy - y) / a);
      if (y > maxy) shift_solution(x, y, a, b, sign_a);
     11 \text{ rx2} = x;
35
      if (1x2 > rx2) swap(1x2, rx2);
36
      11 1x = max(1x1, 1x2), rx = min(rx1, rx2);
      if (1x > rx) return 0;
      return (rx - 1x) / abs(b) + 1;
39 }
```

4.10 Miller Rabin

```
1 using u64 = uint64 t;
    using u128 = __uint128_t;
    u64 binpower (u64 base, u64 e, u64 mod) {
      u64 \text{ result} = 1;
      base %= mod;
      while (e) {
      if (e & 1) result = (u128) result * base % mod;
       base = (u128) base * base % mod;
9
       e >>= 1;
      return result;
12
   bool check_composite(u64 n, u64 a, u64 d, l1 s) {
     u64 x = binpower(a, d, n);
      if (x == 1 \mid | x == n - 1) return false:
      for (11 r = 1; r < s; r++) {
       x = (u128) x * x % n;
       if (x == n - 1) return false;
      return true;
    bool miller_rabin(u64 n) {
      if (n < 2) return false;</pre>
      11 r = 0;
      u64 d = n - 1;
      while ((d \& 1) == 0) {
        d >>= 1;
        r++;
      for (11 a : {2, 3, 5, 7, 11, 13, 17, 19, 23, 29,
         31, 37}) {
        if (n == a) return true;
32
       if (check_composite(n, a, d, r)) return false;
      return true:
```

4.11 Fibonacci

```
4 - d'Ocagne's identity: f[m]f[n+1] - f[m+1]f[n] =
         (-1) ^n f[m-n]
5 - Addition rule: f[n+k] = f[k]f[n+1] + f[k-1]f[n]
6 - k = n case: f[2n] = f[n](f[n+1] + f[n-1])
7 - f[n] \mid f[nk]
8 - f[n] | f[m] => n | m
9 - GCD rule: gcd(f[m], f[n]) = f[gcd(m, n)]
10 - [[1 \ 1], [1 \ 0]]^n = [[f[n+1] \ f[n]], [f[n], f[n]]
         -1]]]
11 - f[2k+1] = f[k+1]^2 + f[k]^2
12 - f[2k] = f[k](f[k+1] + f[k-1]) = f[k](2f[k+1] - f[k])
        k])
13 - Periodic sequence modulo p
14 - sum[i=1..n]f[i] = f[n+2] - 1
15 - sum[i=0..n-1]f[2i+1] = f[2n]
16 - sum[i=1..n]f[2i] = f[2n+1] - 1
17 - sum[i=1..n]f[i]^2 = f[n]f[n+1]
18 Fibonacci encoding:
19 1. Iterate through the Fibonacci numbers from the
        largest to the
20 smallest until you find one less than or equal to n
    2. Suppose this number was F i. Subtract F i from n
         and put a 1
    in the i-2 position of the code word (indexing from
         0 from the
   leftmost to the rightmost bit).
24 3. Repeat until there is no remainder.
   4. Add a final 1 to the codeword to indicate its
    Closed-form: f[n] = (((1 + rt(5))/2)^n - ((1 - rt))/2)^n
         (5)) / 2)^n/rt(5)
28
29
    struct matrix {
       11 mat[2][2];
        matrix friend operator *(const matrix &a, const
             matrix &b) {
          matrix c;
          for (int i = 0; i < 2; i++) {</pre>
           for (int j = 0; j < 2; j++) {
             c.mat[i][j] = 0;
              for (int k = 0; k < 2; k++) c.mat[i][j]</pre>
                   += a.mat[i][k] * b.mat[k][j];
39
          return c;
40
41
      matrix matpow(matrix base, 11 n) {
       matrix ans{ {
        {1, 0},
         {0, 1}
        } };
        while (n) {
         if (n & 1) ans = ans * base;
          base = base * base;
         n >>= 1;
51
52
        return ans;
53
      11 fib(int n) {
        matrix base{ {
         {1, 1},
         {1, 0}
        return matpow(base, n).mat[0][1];
      pair<int, int> fib (int n) {
```

4.12 Fast Fourier Transform

```
1 using cd = complex<double>;
    const double PI = acos(-1);
    void fft(vector<cd>& a, bool invert) {
      int n = a.size();
      if (n == 1) return;
      vector<cd> a0 (n / 2), a1 (n / 2);
      for (int i = 0; 2 * i < n; i++) {
       a0[i] = a[2 * i];
       a1[i] = a[2 * i + 1];
      fft(a0, invert);
      fft(a1, invert);
13
      double ang = 2 * PI / n * (invert ? -1 : 1);
      cd w(1), wn(cos(ang), sin(ang));
      for (int i = 0; 2 * i < n; i++) {
       a[i] = a0[i] + w * a1[i];
17
        a[i + n / 2] = a0[i] - w * a1[i];
18
        if (invert) {
19
          a[i] /= 2;
          a[i + n / 2] /= 2;
21
        w \star = wn;
23
24 }
    vector<int> multiply(vector<int> const& a, vector<</pre>
         int> const& b) {
         vector<cd> fa(a.begin(), a.end()), fb(b.begin()
            , b.end());
27
        int n = 1;
28
        while (n < a.size() + b.size()) n <<= 1;</pre>
29
        fa.resize(n);
        fb.resize(n);
         fft(fa, false);
         fft(fb, false);
         for (int i = 0; i < n; i++) fa[i] *= fb[i];</pre>
         fft(fa, true);
35
        vector<int> result(n);
36
         for (int i = 0; i < n; i++) result[i] = round(</pre>
             fa[i].real());
37
         return result;
38 }
```

4.13 Segmented Sieve

```
vector<11> segmented_sieve(11 n) {
   const 11 S = 10000;
   11 nsqrt = sqrt(n);
   vector<char> is_prime(nsqrt + 1, true);
   vector<11> prime;
   is_prime[0] = is_prime[1] = false;
   prime.push_back(2);
   for (11 i = 4; i <= nsqrt; i += 2) {
    is_prime[i] = false;
}</pre>
```

```
for (11 i = 3; i <= nsgrt; i += 2) {</pre>
        if (is_prime[i]) {
          prime.push_back(i);
          for (11 j = i * i; j <= nsqrt; j += i) {
            is_prime[j] = false;
18
19
      vector<11> result;
      vector<char> block(S);
      for (11 k = 0; k * S \le n; k++) {
       fill(block.begin(), block.end(), true);
        for (11 p : prime) {
          for (11 j = max((k * S + p - 1) / p, p) * p -
               k * S; j < S; j += p) {
            block[j] = false;
          }
        if (k == 0) {
          block[0] = block[1] = false;
        for (11 i = 0; i < S && k * S + i <= n; i++) {
          if (block[i]) {
            result.push_back(k * S + i);
36
      return result;
```

4.14 Linear Sieve

4.15 Tonelli Shanks

```
1 ll legendre(ll a, ll p) {
2    return bin_pow_mod(a, (p - 1) / 2, p);
3 }
4 ll tonelli_shanks(ll n, ll p) {
5    if (legendre(n, p) == p - 1) {
6       return -1;
7    }
8    if (p % 4 == 3) {
7       return bin_pow_mod(n, (p + 1) / 4, p);
10    }
11    Q = p - 1, S = 0;
12    while (Q % 2 == 0) {
13       Q /= 2;
14       S++;
15    }
16    ll z = 2;
```

```
for (; z < p; z++) {</pre>
        if (legendre(z, p) == p - 1) {
19
          break;
21
22
      11 M = S, c = bin_pow_mod(z, Q, p), t =
          bin_pow_mod(n, Q, p), R = bin_pow_mod(n, Q)
           + 1) / 2, p);
      while (t % p != 1) {
        if (t % p == 0) {
          return 0;
        11 i = 1, t2 = t * t % p;
        for (; i < M; i++) {
         if (t2 % p == 1) {
            break;
          t2 = t2 * t2 % p;
        11 b = bin_pow_mod(c, bin_pow_mod(2, M - i - 1,
              p), p);
        M = i;
        c = b * b % p;
        t = t * c % p;
38
        R = R * b % p;
39
40
      return R:
41
```

5 Miscellaneous

5.1 Techniques

```
Dynamic Programming
   - Bitmask
   - Range
   - Digit
   - Knapsack
 7 Graph Theory
8 - Tree diameter
9 - Reversing edges
10 - Tree re-rooting
11 - DP on trees
12 - DFS tree
13 - Euler tour
14 - Binary Jumping
15 - Centroid
16 - DAG
17 - Condense
18 Data Structures
19 - Multiple information
20 - Binary searching on the tree
21 - 2D range query
22 - SQRT decomposition
   - Small-to-large
   Sorting and searching
   - Sliding window
   - Two pointers
   - Binary search on the answer
28 */
```

5.2 Gauss

```
const double EPS = 1e-9;
     const 11 INF = 2;
    11 gauss(vector <vector <double>> a, vector <double>
       11 n = (11) a.size(), m = (11) a[0].size() - 1;
       vector<11> where (m, -1);
       for (11 col = 0, row = 0; col < m && row < n; ++</pre>
            col) {
         11 sel = row;
         for (11 i = row; i < n; ++i) {</pre>
           if (abs(a[i][col]) > abs(a[sel][col])) {
11
12
         if (abs (a[sel][col]) < EPS) {</pre>
14
           continue:
15
16
         for (ll i = col; i <= m; ++i) {</pre>
17
           swap(a[sel][i], a[row][i]);
18
19
         where[col] = row;
20
         for (ll i = 0; i < n; ++i) {</pre>
21
           if (i != row) {
22
             double c = a[i][col] / a[row][col];
23
             for (ll j = col; j <= m; ++j) {</pre>
24
               a[i][j] -= a[row][j] * c;
25
26
27
28
         ++row;
29
      ans.assign(m, 0);
31
       for (ll i = 0; i < m; ++i) {</pre>
         if (where[i] != -1) {
           ans[i] = a[where[i]][m] / a[where[i]][i];
34
36
      for (11 i = 0; i < n; ++i) {
37
         double sum = 0;
38
         for (11 j = 0; j < m; ++j) {
39
           sum += ans[j] * a[i][j];
40
41
         if (abs (sum - a[i][m]) > EPS) {
42
           return 0;
43
44
45
      for (ll i = 0; i < m; ++i) {
46
        if (where[i] == -1) {
47
           return INF;
48
49
50
      return 1;
51 }
```

5.3 Ternary Search

```
double ternary_search(double 1, double r) {
      double eps = 1e-9;
      while (r - 1 > eps) {
        double m1 = 1 + (r - 1) / 3;
        double m2 = r - (r - 1) / 3;
        double f1 = f(m1);
        double f2 = f(m2):
        if (f1 < f2) {
         1 = m1;
10
        } else {
11
          r = m2:
```

```
return f(1);
.5 }
```

Data Structures

SegTree2d() {}

6.1 Segment Tree 2d

```
template<typename T, typename InType = T>
    class SegTree2dNode {
    public:
      int i, j, tree_size;
      SegTree<T, InType>* seg_tree;
      SegTree2dNode<T, InType>* lc, * rc;
      SegTree2dNode() {}
      SegTree2dNode(const vector<vector<InType>>& a,
           int i, int j) : i(i), j(j) {
        tree_size = a[0].size();
        if († - i == 1) {
          lc = rc = nullptr;
          seq_tree = new SegTree<T, InType>(a[i]);
        int k = (i + j) / 2;
16
        lc = new SegTree2dNode<T, InType>(a, i, k);
        rc = new SegTree2dNode<T, InType>(a, k, j);
        seg_tree = new SegTree<T, InType>(vector<T>(
             tree_size));
        operation_2d(lc->seg_tree, rc->seg_tree);
       ~SeqTree2dNode() {
        delete lc:
        delete rc;
      void set_2d(int kx, int ky, T x) {
        if (kx < i || j <= kx) return;</pre>
        if (j - i == 1) {
          seg_tree->set(ky, x);
          return:
        1c - \sec_2 d(kx, ky, x);
        rc \rightarrow set_2d(kx, ky, x);
33
        operation_2d(lc->seg_tree, rc->seg_tree);
34
35
      T range_query_2d(int lx, int rx, int ly, int ry)
36
        if (lx <= i && j <= rx) return seg_tree->
             range_query(ly, ry);
        if (j <= lx || rx <= i) return -INF;</pre>
        return max(lc->range_query_2d(lx, rx, ly, ry),
             rc->range_query_2d(lx, rx, ly, ry));
39
      void operation_2d(SegTree<T, InType>* x, SegTree<</pre>
           T, InType>* y) {
        for (int k = 0; k < tree_size; k++) {</pre>
          seg_tree->set(k, max(x->range_query(k, k + 1)
               , y->range_query(k, k + 1)));
43
44
4.5
    template<typename T, typename InType = T>
    class SegTree2d {
48 public:
49
      SegTree2dNode<T, InType> root;
```

```
SegTree2d(const vector<vector<InType>>& mat) :
           root(mat, 0, mat.size()) {}
      void set_2d(int kx, int ky, T x) { root.set_2d(kx
           , ky, x); }
      T range_query_2d(int lx, int rx, int ly, int ry)
           { return root.range_query_2d(lx, rx, ly, ry)
54 };
```

6.2 Range Add Point Query

```
template<typename T, typename InType = T>
    class SegTreeNode {
    public:
      const T IDN = 0, DEF = 0;
      int i, j;
      T val:
      SegTreeNode<T, InType>* lc, * rc;
      SegTreeNode(int i, int j) : i(i), j(j) {
        if (j - i == 1) {
          lc = rc = nullptr;
          val = DEF;
          return;
        int k = (i + j) / 2;
        lc = new SegTreeNode<T, InType>(i, k);
16
        rc = new SegTreeNode<T, InType>(k, j);
        val = 0:
18
      SegTreeNode(const vector<InType>& a, int i, int j
          ) : i(i), j(j) {
        if (j - i == 1) {
          lc = rc = nullptr;
          val = (T) a[i];
          return;
        int k = (i + j) / 2;
        lc = new SegTreeNode<T, InType>(a, i, k);
        rc = new SegTreeNode<T, InType>(a, k, j);
2.8
        val = 0;
      void range_add(int 1, int r, T x) {
        if (r <= i || j <= 1) return;</pre>
        if (l <= i && j <= r) {
          val += x;
          return;
        lc->range_add(1, r, x);
        rc->range_add(1, r, x);
38
      T point_query(int k) {
        if (k < i \mid | j \le k) return IDN;
        if (j - i == 1) return val;
        return val + lc->point_query(k) + rc->
             point_query(k);
    template<typename T, typename InType = T>
    class SegTree {
    public:
      SegTreeNode<T, InType> root;
      SegTree(int n) : root(0, n) {}
      SegTree(const vector<InType>& a) : root(a, 0, a.
      void range_add(int 1, int r, T x) { root.
           range_add(l, r, x); }
```

```
52  T point_query(int k) { return root.point_query(k)
    ; }
53 };
```

6.3 Disjoint Set Union

```
struct DSU {
      vector<int> parent, size;
      DSU(int n) {
        parent.resize(n);
        size.resize(n);
        for (int i = 0; i < n; i++) make_set(i);</pre>
      void make set(int v) {
        parent[v] = v;
        size[v] = 1;
11
      bool is same(int a, int b) { return find set(a)
           == find_set(b); }
      int find_set(int v) { return v == parent[v] ? v :
            parent[v] = find_set(parent[v]); }
      void union_sets(int a, int b) {
15
       a = find_set(a);
16
        b = find set(b);
        if (a != b) {
          if (size[a] < size[b]) swap(a, b);</pre>
          parent[b] = a;
20
          size[a] += size[b];
23 };
```

6.4 Sparse Table 2d

```
const int N = 100;
    int matrix[N][N];
    int table[N][N][(int)(log2(N) + 1)][(int)(log2(N) +
          1)];
    void build_sparse_table(int n, int m) {
      for (int i = 0; i < n; i++)
         for (int j = 0; j < m; j++)
          table[i][j][0][0] = matrix[i][j];
       for (int k = 1; k \le (int)(log2(n)); k++)
         for (int i = 0; i + (1 << k) - 1 < n; i++)
           for (int j = 0; j + (1 << k) - 1 < m; j++)
             table[i][j][k][0] = min(table[i][j][k -
                 1][0], table[i + (1 << (k - 1))][j][k
                 - 1][0]);
      for (int k = 1; k \le (int)(log2(m)); k++)
13
         for (int i = 0; i < n; i++)</pre>
14
           for (int j = 0; j + (1 << k) - 1 < m; j++)
             table[i][j][0][k] = min(table[i][j][0][k -
                 1], table[i][j + (1 << (k - 1))][0][k
                 - 11):
16
      for (int k = 1; k \le (int)(log2(n)); k++)
17
         for (int 1 = 1; 1 <= (int) (log2(m)); 1++)</pre>
18
          for (int i = 0; i + (1 << k) - 1 < n; i++)
19
             for (int j = 0; j + (1 << 1) - 1 < m; <math>j++)
               table[i][j][k][l] = min(
                 min(table[i][j][k-1][l-1], table[i]
                      + (1 << (k - 1)) ] [j] [k - 1] [1 -
22
                 min(table[i][j + (1 << (l - 1))][k -
                      1][1 - 1], table[i + (1 << (k - 1)
```

6.5 Mo

```
void remove(idx); // TODO: remove value at idx
         from data structure
    void add(idx);
                       // TODO: add value at idx from
         data structure
    int get_answer(); // TODO: extract the current
         answer of the data structure
    int block size;
    struct Query {
      int 1, r, idx;
      bool operator<(Query other) const {</pre>
 8
        return make_pair(l / block_size, r) < make_pair</pre>
             (other.l / block_size, other.r);
9
    };
    vector<int> mo_s_algorithm(vector<Query> queries) {
      vector<int> answers(queries.size());
      sort(queries.begin(), queries.end());
      // TODO: initialize data structure
      int cur_1 = 0, cur_r = -1;
      // invariant: data structure will always reflect
           the range [cur_1, cur_r]
      for (Query q : queries) {
        while (cur_1 > q.1) {
19
          cur_1--;
          add(cur_l);
        while (cur_r < q.r) {</pre>
          cur r++;
          add(cur_r);
        while (cur_1 < q.1) {
          remove(cur_l);
          cur_1++;
        while (cur_r > q.r) {
          remove(cur_r);
          cur_r--;
3.3
        answers[q.idx] = get_answer();
      return answers;
37 }
```

6.6 Sparse Table

```
vector<vector<ll>> build sum(ll N, ll K, vector<ll>>
          &array) {
      vector<vector<ll>> st(K + 1, vector<ll>(N + 1));
      for (ll i = 0; i < N; i++) st[0][i] = array[i];</pre>
      for (11 i = 1; i <= K; i++)
        for (11 j = 0; j + (1 << i) <= N; j++)
          st[i][j] = st[i - 1][j] + st[i - 1][j + (1 <<
                (i - 1));
      return st;
    11 sum_query(11 L, 11 R, 11 K, vector<vector<11>> &
         st) {
      11 \text{ sum} = 0;
      for (11 i = K; i >= 0; i--) {
        if ((1 << i) <= R - L + 1) {
          sum += st[i][L];
          L += 1 << i;
      return sum;
    vector<vector<ll>> build min(ll N, ll K, vector<ll>>
      vector<vector<ll>>> st(K + 1, vector<ll>(N + 1));
      for (ll i = 0; i < N; i++) st[0][i] = array[i];</pre>
      for (ll i = 1; i <= K; i++)</pre>
        for (11 j = 0; j + (1 << i) <= N; j++)
          st[i][j] = min(st[i-1][j], st[i-1][j+(1
                << (i - 1))];
      return st;
29
    11 min_query(11 L, 11 R, vector<vector<11>>> &st) {
      11 i = log2 floor(R - L + 1);
32
      return min(st[i][L], st[i][R - (1 << i) + 1]);</pre>
33 }
```

6.7 Binary Trie

```
struct Node { struct Node* parent, child[2]; };
   struct BinaryTrie {
     Node* root:
     BinarvTrie() {
       root = new Node();
       root->parent = NULL;
       root->child[0] = NULL;
       root->child[1] = NULL;
9
     void insert_node(int x) {
       Node* cur = root;
       for (int place = 29; place >= 0; place--) {
         int bit = x >> place & 1;
         if (cur->child[bit] != NULL) cur = cur->child
              [bit];
         else {
           cur->child[bit] = new Node();
           cur->child[bit]->parent = cur;
           cur = cur->child[bit];
           cur->child[0] = NULL;
           cur->child[1] = NULL;
     void remove node(int x) {
       Node* cur = root;
       for (int place = 29; place >= 0; place--) {
         int bit = x >> place & 1;
```

```
28
          if (cur->child[bit] == NULL) return;
29
          cur = cur->child[bit];
31
        while (cur->parent != NULL && cur->child[0] ==
             NULL && cur->child[1] == NULL) {
          Node* temp = cur;
          cur = cur->parent;
34
          if (temp == cur->child[0]) cur->child[0] =
          else cur->child[1] = NULL;
36
          delete temp;
37
38
39
      int get_min_xor(int x) {
40
        Node* cur = root;
41
        int minXor = 0;
42
        for (int place = 29; place >= 0; place--) {
          int bit = x >> place & 1;
43
44
          if (cur->child[bit] != NULL) cur = cur->child
               [bit1:
45
          else (
46
            minXor ^= 1 << place;
47
            cur = cur->child[1 ^ bit];
48
49
50
        return minXor;
51
52 };
```

6.8 Segment Tree

```
template<typename T, typename InType = T>
    class SegTreeNode {
    public:
      const T IDN = 0, DEF = 0;
      int i, j;
      T val;
      SegTreeNode<T, InType>* lc, * rc;
      SegTreeNode(int i, int j) : i(i), j(j) {
       if (i - i == 1) {
         lc = rc = nullptr;
11
          val = DEF:
          return;
13
14
        int k = (i + j) / 2;
15
        lc = new SegTreeNode<T, InType>(i, k);
         rc = new SegTreeNode<T, InType>(k, j);
17
        val = op(lc->val, rc->val);
18
19
      SegTreeNode(const vector<InType>& a, int i, int j
          ) : i(i), j(j) {
         if (j - i == 1) {
          lc = rc = nullptr;
          val = (T) a[i];
23
          return;
24
         int k = (i + j) / 2;
        lc = new SegTreeNode<T, InType>(a, i, k);
27
         rc = new SegTreeNode<T, InType>(a, k, j);
28
        val = op(lc->val, rc->val);
29
30
31
      void set(int k, T x) {
        if (k < i || j <= k) return;</pre>
32
        if (j - i == 1) {
33
          val = x;
34
          return;
35
```

```
1c->set(k, x);
         rc \rightarrow set(k, x);
38
        val = op(lc->val, rc->val);
39
40
      T range_query(int 1, int r) {
        if (1 <= i && j <= r) return val;</pre>
41
         if (j <= 1 || r <= i) return IDN;</pre>
        return op(lc->range_query(1, r), rc->
             range_query(1, r));
45
      T \circ p(T \times, T y) \{ \}
46
   };
47 template<typename T, typename InType = T>
48 class SegTree {
49
    public:
50
      SegTreeNode<T, InType> root;
      SegTree(int n) : root(0, n) {}
      SegTree(const vector<InType>& a) : root(a, 0, a.
           size()) {}
      void set(int k, T x) { root.set(k, x); }
      T range_query(int 1, int r) { return root.
            range_query(1, r); }
55 };
```

6.9 Sqrt Decomposition

```
int n;
   vector<int> a (n);
    int len = (int) sqrt (n + .0) + 1; // size of the
         block and the number of blocks
    vector<int> b (len);
    for (int i = 0; i<n; ++i) b[i / len] += a[i];</pre>
    for (;;) {
      int 1, r:
      // read input data for the next query
      int sum = 0;
      for (int i = 1; i <= r; )</pre>
       if (i % len == 0 && i + len - 1 <= r) {</pre>
          // if the whole block starting at i belongs
               to [1, r]
          sum += b[i / len];
14
          i += len:
        } else {
          sum += a[i];
          ++i;
18
19
      // or
20
      /*
      int sum = 0;
      int c_1 = 1 / len, c_r = r / len;
      if (c_1 == c_r)
          for (int i=1; i<=r; ++i)
              sum += a[i];
26
      else {
          for (int i=1, end=(c_1+1)*len-1; i<=end; ++i)
              sum += a[i];
          for (int i=c_1+1; i<=c_r-1; ++i)
              sum += b[i]:
          for (int i=c_r*len; i<=r; ++i)
             sum += a[i];
34
      */
35 }
```

6.10 Minimum Queue

```
1 11 get_minimum(stack<pair<11, 11>> &s1, stack<pair<</pre>
         11, 11>> &s2) {
      if (s1.empty() || s2.empty()) {
        return s1.empty() ? s2.top().second : s1.top().
             second:
      } else {
        return min(s1.top().second, s2.top().second);
 7
   void add element(ll new element, stack<pair<11, ll</pre>
      11 minimum = s1.empty() ? new_element : min(
           new_element, s1.top().second);
      s1.push({new_element, minimum});
    11 remove_element(stack<pair<11, 11>> &s1, stack
         pair<11, 11>> &s2) {
      if (s2.empty()) {
        while (!s1.empty()) {
          11 element = s1.top().first;
          s1.pop();
          11 minimum = s2.empty() ? element : min(
               element, s2.top().second);
          s2.push({element, minimum});
21
      11 removed_element = s2.top().first;
      s2.pop();
      return removed_element;
24
```

6.11 Range Add Range Query

```
template<typename T, typename InType = T>
    class SegTreeNode {
    public:
      const T IDN = 0, DEF = 0;
      int i, j;
      T val, to_add = 0;
      SegTreeNode<T, InType>* lc, * rc;
      SegTreeNode(int i, int j) : i(i), j(j) {
       if (i - i == 1) {
         lc = rc = nullptr;
          val = DEF:
          return;
        int k = (i + j) / 2;
        lc = new SegTreeNode<T, InType>(i, k);
        rc = new SegTreeNode<T, InType>(k, j);
        val = operation(lc->val, rc->val);
18
      SegTreeNode(const vector<InType>& a, int i, int j
          ) : i(i), j(j) {
        if (j - i == 1) {
          lc = rc = nullptr;
          val = (T) a[i];
          return;
        int k = (i + j) / 2;
        lc = new SegTreeNode<T, InType>(a, i, k);
        rc = new SegTreeNode<T, InType>(a, k, j);
2.8
        val = operation(lc->val, rc->val);
29
      void propagate() {
        if (to add == 0) return;
        val += to_add;
        if (j - i > 1) {
```

```
lc->to_add += to_add;
35
          rc->to add += to add;
36
37
        to\_add = 0;
38
39
      void range_add(int 1, int r, T delta) {
40
        propagate();
41
        if (r <= i | | j <= 1) return;</pre>
42
        if (1 <= i && j <= r) {
43
          to add += delta;
44
          propagate();
45
        } else {
46
          lc->range_add(l, r, delta);
47
           rc->range_add(1, r, delta);
48
          val = operation(lc->val, rc->val);
49
50
51
      T range_query(int 1, int r) {
52
        propagate();
53
         if (1 <= i && j <= r) return val;</pre>
         if (j <= 1 || r <= i) return IDN;</pre>
         return operation(lc->range_query(l, r), rc->
             range query(1, r));
56
57
      T operation(T x, T y) {}
58 };
59
    template<typename T, typename InType = T>
    class SegTree {
61
    public:
62
      SegTreeNode<T, InType> root;
63
      SegTree(int n) : root(0, n) {}
      SegTree(const vector<InType>& a) : root(a, 0, a.
           size()) {}
65
       void range add(int 1, int r, T delta) { root.
           range_add(l, r, delta); }
66
      T range_query(int 1, int r) { return root.
           range_query(1, r); }
67 };
```

7 Graph Theory

7.1 Bridge

```
vector<vector<int>> adj;
    vector<bool> visited;
 4 vector<int> tin, low;
 5 int timer;
    void dfs(int v, int p = -1) {
      visited[v] = true;
      tin[v] = low[v] = timer++;
      for (int to : adj[v]) {
       if (to == p) continue;
11
        if (visited[to]) {
          low[v] = min(low[v], tin[to]);
        } else {
14
          dfs(to, v);
15
          low[v] = min(low[v], low[to]);
          if (low[to] > tin[v]) IS_BRIDGE(v, to);
17
18
    }
19 }
20 void find_bridges() {
21
      timer = 0;
      visited.assign(n, false);
      tin.assign(n, -1);
```

```
low.assign(n, -1);
      for (int i = 0; i < n; ++i) {
        if (!visited[i]) dfs(i);
28 }
 7.2 Dijkstra
    const int INF = 1000000000;
   vector<vector<pair<int, int>>> adj;
 3 void dijkstra(int s, vector<int> & d, vector<int> &
          p) {
      int n = adj.size();
      d.assign(n, INF);
 6
      p.assign(n, -1);
      d[s] = 0;
      using pii = pair<int, int>;
      priority_queue<pii, vector<pii>, greater<pii>> g;
      q.push({0, s});
      while (!q.empty()) {
        int v = q.top().second, d_v = q.top().first;
        q.pop();
        if (d_v != d[v]) continue;
        for (auto edge : adj[v]) {
          int to = edge.first, len = edge.second;
          if (d[v] + len < d[to]) {</pre>
              d[to] = d[v] + len;
              p[to] = v;
              q.push({d[to], to});
      }
24 }
```

7.3 Zero One Bfs

```
vector<int> d(n, INF);
2 d[s] = 0;
3 deque<int> q;
4 q.push_front(s);
5 while (!q.empty()) {
    int v = q.front();
     q.pop_front();
      for (auto edge : adj[v]) {
      int u = edge.first, w = edge.second;
10
       if (d[v] + w < d[u]) {
         d[u] = d[v] + w;
12
         if (w == 1) q.push_back(u);
         else q.push_front(u);
14
     }
16 }
```

7.4 Hungarian

```
1  vector<int> u (n+1), v (m+1), p (m+1), way (m+1);
2  for (int i=1; i<=n; ++i) {
3    p[0] = i;
4    int j0 = 0;
5    vector<int> minv (m+1, INF);
6    vector<bod> used (m+1, false);
7    do (
```

```
used[j0] = true;
        int i0 = p[j0], delta = INF, j1;
        for (int j=1; j<=m; ++j)</pre>
          if (!used[j]) {
12
            int cur = A[i0][j]-u[i0]-v[j];
13
             if (cur < minv[j]) minv[j] = cur, way[j] =</pre>
             if (minv[j] < delta) delta = minv[j], j1 =</pre>
        for (int j=0; j<=m; ++j)</pre>
          if (used[j]) u[p[j]] += delta, v[j] -= delta
           else minv[j] -= delta;
         i0 = i1;
      } while (p[j0] != 0);
        int j1 = way[j0];
        p[j0] = p[j1];
         j0 = j1;
      } while (†0);
    vector<int> ans (n+1);
    for (int j=1; j<=m; ++j)</pre>
      ans[p[j]] = j;
30 int cost = -v[0];
```

7.5 Ford Fulkerson

```
bool bfs(ll n, vector<vector<ll>>> &r_graph, ll s,
         11 t, vector<11> &parent) {
      vector<bool> visited(n, false);
      queue<11> q;
      q.push(s);
      visited[s] = true;
      parent[s] = -1;
      while (!q.empty()) {
        11 u = q.front();
        q.pop();
        for (11 \ v = 0; \ v < n; \ v++)  {
          if (!visited[v] && r_graph[u][v] > 0) {
            if (v == t) {
              parent[v] = u;
              return true;
            q.push(v);
            parent[v] = u;
            visited[v] = true;
        }
      return false:
    11 ford_fulkerson(ll n, vector<vector<ll>>> graph,
         11 s, 11 t) {
      11 u, v;
      vector<vector<ll>> r_graph;
      for (u = 0; u < n; u++)
        for (v = 0; v < n; v++)
          r_graph[u][v] = graph[u][v];
      vector<11> parent;
      11 \text{ max flow} = 0;
      while (bfs(n, r_graph, s, t, parent)) {
        11 path_flow = INF;
34
        for (v = t; v != s; v = parent[v]) {
          u = parent[v];
          path_flow = min(path_flow, r_graph[u][v]);
```

```
37     }
38     for (v = t; v != s; v = parent[v]) {
39         u = parent[v];
40         r_graph[u][v] -= path_flow;
41         r_graph[v][u] += path_flow;
42     }
43     max_flow += path_flow;
44     }
45     return max_flow;
46  }
```

7.6 Prim

```
const int INF = 1000000000;
    struct Edge {
       int w = INF, to = -1;
      bool operator<(Edge const& other) const {</pre>
         return make_pair(w, to) < make_pair(other.w,</pre>
             other to):
    };
8
    int n;
    vector<vector<Edge>> adj;
10 void prim() {
      int total_weight = 0;
      vector<Edge> min_e(n);
      min_e[0].w = 0;
      set < Edge > q;
      q.insert({0, 0});
      vector<bool> selected(n, false);
17
      for (int i = 0; i < n; ++i) {</pre>
18
        if (q.empty()) {
19
           cout << "No MST!" << endl;</pre>
20
          exit(0);
         int v = q.begin()->to;
23
         selected[v] = true;
24
         total_weight += q.begin()->w;
25
         q.erase(q.begin());
         if (min_e[v].to != -1) cout << v << " " <<</pre>
              min_e[v].to << endl;</pre>
         for (Edge e : adj[v]) {
28
          if (!selected[e.to] && e.w < min_e[e.to].w) {</pre>
29
             q.erase({min_e[e.to].w, e.to});
             min_e[e.to] = \{e.w, v\};
             q.insert({e.w, e.to});
34
      cout << total_weight << endl;</pre>
```

7.7 Centroid Decomposition

```
return subtree_size[node];
   int get_centroid(int node, int tree_size, int
        parent = -1) {
            for (int child : adj[node]) {
14
                    if (child == parent || is_removed[
                         child]) continue;
                    if (subtree_size[child] * 2 >
                         tree_size) return get_centroid
                         (child, tree size, node);
            return node;
18
19
   void build_centroid_decomp(int node = 0) {
            int centroid = get_centroid(node,
20
                 get_subtree_size(node));
            // do something
            is_removed[centroid] = true;
            for (int child : adj[centroid]) {
                    if (is_removed[child]) continue;
                    build_centroid_decomp(child);
```

7.8 Kahn

```
void kahn(vector<vector<ll>> &adj) {
      11 n = adj.size();
      vector<11> in_degree(n, 0);
      for (11 u = 0; u < n; u++)
       for (ll v: adj[u]) in_degree[v]++;
      queue<11> q;
      for (11 i = 0; i < n; i++)
       if (in_degree[i] == 0)
          q.push(i);
      11 \text{ cnt} = 0;
      vector<11> top_order;
      while (!q.empty()) {
       11 u = q.front();
        q.pop();
15
        top_order.push_back(u);
16
        for (11 v : adj[u])
          if (--in_degree[v] == 0) g.push(v);
18
        cnt++;
      if (cnt != n) {
        cout << -1 << '\n';
        return:
      // print top_order
```

7.9 Dinics

```
vector<int> level, ptr;
      queue<int> q;
      Dinic(int n, int s, int t) : n(n), s(s), t(t) {
        adj.resize(n);
        level.resize(n);
        ptr.resize(n);
18
      void add_edge(int v, int u, ll cap) {
        edges.emplace_back(v, u, cap);
        edges.emplace_back(u, v, 0);
        adj[v].push_back(m);
        adj[u].push_back(m + 1);
        m += 2:
24
      bool bfs() {
        while (!q.empty()) {
          int v = q.front();
          q.pop();
          for (int id : adj[v]) {
            if (edges[id].cap - edges[id].flow < 1)</pre>
                 continue;
            if (level[edges[id].u] != -1) continue;
            level[edges[id].u] = level[v] + 1;
            g.push(edges[id].u);
34
        return level[t] != -1;
38
      11 dfs(int v, 11 pushed) {
        if (pushed == 0) return 0;
40
        if (v == t) return pushed;
        for (int& cid = ptr[v]; cid < (int)adj[v].size</pre>
             (); cid++) {
          int id = adj[v][cid], u = edges[id].u;
43
          if (level[v] + 1 != level[u] || edges[id].cap
                - edges[id].flow < 1) continue;</pre>
44
          11 tr = dfs(u, min(pushed, edges[id].cap -
               edges[id].flow));
          if (tr == 0) continue;
          edges[id].flow += tr;
          edges[id ^ 1].flow -= tr;
          return tr;
        return 0;
      11 flow() {
        11 f = 0;
        while (true) {
          fill(level.begin(), level.end(), -1);
          level[s] = 0;
          q.push(s);
58
          if (!bfs()) break;
59
          fill(ptr.begin(), ptr.end(), 0);
60
          while (11 pushed = dfs(s, flow_inf)) f +=
               pushed;
62
        return f;
63
64 };
```

7.10 Floyd Warshall

```
1  void floyd_warshall(vector<vector<ll>>> &dis, ll n)
{
2   for (ll k = 0; k < n; k++)
3    for (ll i = 0; i < n; i++)
4   for (ll j = 0; j < n; j++)</pre>
```

```
if (dis[i][k] < INF && dis[k][j] < INF)</pre>
               dis[i][j] = min(dis[i][j], dis[i][k] +
                    dis[k][j]);
      for (11 i = 0; i < n; i++)
         for (11 j = 0; j < n; j++)
 9
           for (11 k = 0; k < n; k++)
             if (dis[k][k] < 0 \&\& dis[i][k] < INF \&\& dis
                  [k][j] < INF)
11
               dis[i][j] = -INF;
12 }
```

7.11 Kosaraju

```
void topo_sort(int u, vector<vector<int>>& adj,
         vector<bool>& vis, stack<int>& stk) {
      vis[u] = true;
      for (int v : adj[u]) {
        if (!vis[v]) {
          topo_sort(v, adj, vis, stk);
      stk.push(u);
 9
    vector<vector<int>>> transpose(int n, vector<vector<</pre>
         int>>& adj) {
      vector<vector<int>> adj_t(n);
13
      for (int u = 0; u < n; u++) {
14
        for (int v : adj[u]) {
15
          adj_t[v].push_back(u);
16
17
18
      return adj_t;
19
20
    void get_scc(int u, vector<vector<int>>& adj_t,
         vector<bool>& vis, vector<int>& scc) {
      vis[u] = true;
23
      scc.push_back(u);
      for (int v : adj_t[u]) {
        if (!vis[v]) {
          get_scc(v, adj_t, vis, scc);
27
29
    void kosaraju(int n, vector<vector<int>>& adj,
         vector<vector<int>>& sccs) {
      vector<bool> vis(n, false);
      stack<int> stk;
      for (int u = 0; u < n; u++) {
       if (!vis[u]) {
36
          topo_sort(u, adj, vis, stk);
37
39
      vector<vector<int>> adj_t = transpose(n, adj);
40
      for (int u = 0; u < n; u++) {
41
       vis[u] = false;
42
43
      while (!stk.empty()) {
44
        int u = stk.top();
45
        stk.pop();
46
        if (!vis[u]) {
47
          vector<int> scc;
48
          get_scc(u, adj_t, vis, scc);
49
          sccs.push_back(scc);
50
```

7.12 Maximum Bipartite Matching

```
bool bpm(ll n, ll m, vector<vector<bool>> &bpGraph,
          11 u, vector<bool> &seen, vector<11> &matchR)
      for (11 v = 0; v < m; v++) {
        if (bpGraph[u][v] && !seen[v]) {
 4
          seen[v] = true;
          if (matchR[v] < 0 \mid \mid bpm(n, m, bpGraph,
               matchR[v], seen, matchR)) {
            matchR[v] = u;
            return true;
      return false:
    11 maxBPM(11 n, 11 m, vector<vector<bool>> &bpGraph
      vector<11> matchR(m, -1);
      11 \text{ result} = 0;
      for (11 u = 0; u < n; u++) {
        vector<bool> seen(m, false);
        if (bpm(n, m, bpGraph, u, seen, matchR)) {
          result++;
20
      return result;
```

7.13 Kruskals

```
struct Edge {
      int u, v, weight;
      bool operator<(Edge const& other) {</pre>
        return weight < other.weight;</pre>
 6
   };
   int n;
   vector<Edge> edges;
 9 int cost = 0;
10 vector<Edge> result;
11 DSU dsu = DSU(n);
12 sort(edges.begin(), edges.end());
13 for (Edge e : edges) {
14 if (dsu.find_set(e.u) != dsu.find_set(e.v)) {
      cost += e.weight;
16
       result.push_back(e);
        dsu.union_sets(e.u, e.v);
19 }
```

7.14 Is Cyclic

```
bool is_cyclic_util(int u, vector<vector<int>> &adj
       , vector<bool> &vis, vector<bool> &rec) {
     vis[u] = true;
     rec[u] = true;
     for(auto v : adj[u]) {
```

```
if (!vis[v] && is_cyclic_util(v, adj, vis, rec)
            ) return true;
       else if (rec[v]) return true;
8
     rec[u] = false;
9
     return false;
   bool is_cyclic(int n, vector<vector<int>> &adj) {
      vector<bool> vis(n, false), rec(n, false);
      for (int i = 0; i < n; i++)
       if (!vis[i] && is_cyclic_util(i, adj, vis, rec)
      return false;
16 }
```

7.15 Find Cycle

```
1 bool dfs(ll v) {
      color[v] = 1;
      for (ll u : adj[v]) {
        if (color[u] == 0) {
          parent[u] = v;
          if (dfs(u)) {
            return true;
        } else if (color[u] == 1) {
          cycle_end = v;
          cycle_start = u;
          return true;
      color[v] = 2;
16
      return false;
    void find_cycle() {
      color.assign(n, 0);
      parent.assign(n, -1);
      cycle_start = -1;
      for (11 v = 0; v < n; v++) {
        if (color[v] == 0 && dfs(v)) {
          break;
      if (cycle_start == -1) {
        cout << "Acyclic" << endl;</pre>
      } else {
        vector<ll> cycle;
        cycle.push_back(cycle_start);
        for (11 v = cycle_end; v != cycle_start; v =
             parent[v]) {
          cycle.push_back(v);
        cycle.push_back(cycle_start);
        reverse(cycle.begin(), cycle.end());
        cout << "Cycle found: ";</pre>
        for (11 v : cycle) {
39
          cout << v << ' ';
        cout << '\n';
43 }
```

7.16 Topological Sort

```
1 void dfs(ll v) {
```

```
visited[v] = true;
      for (ll u : adj[v]) {
        if (!visited[u]) {
          dfs(u);
      ans.push back(v);
9
10 void topological_sort() {
11
      visited.assign(n, false);
      ans.clear();
13
      for (11 i = 0; i < n; ++i) {
14
       if (!visited[i]) {
15
         dfs(i);
16
17
18
     reverse(ans.begin(), ans.end());
19 }
```

7.17 Min Cost Flow

```
struct Edge {
      int from, to, capacity, cost;
    vector<vector<int>> adj, cost, capacity;
    const int INF = 1e9;
    void shortest_paths(int n, int v0, vector<int>& d,
         vector<int>& p) {
      d.assign(n, INF);
      d[v0] = 0;
      vector<bool> ing(n, false);
      queue<int> q;
      q.push(v0);
      p.assign(n, -1);
13
      while (!q.empty()) {
14
        int u = q.front();
15
        q.pop();
16
        inq[u] = false;
17
        for (int v : adj[u]) {
18
          if (capacity[u][v] > 0 && d[v] > d[u] + cost[
               u][v]) {
19
            d[v] = d[u] + cost[u][v];
20
            p[v] = u;
21
            if (!ing[v]) {
22
              inq[v] = true;
23
              q.push(v);
24
25
          }
26
        }
27
28
    int min_cost_flow(int N, vector<Edge> edges, int K,
          int s, int t) {
      adj.assign(N, vector<int>());
      cost.assign(N, vector<int>(N, 0));
      capacity.assign(N, vector<int>(N, 0));
      for (Edge e : edges) {
34
       adj[e.from].push_back(e.to);
35
        adj[e.to].push_back(e.from);
        cost[e.from][e.to] = e.cost;
37
        cost[e.to][e.from] = -e.cost;
38
        capacity[e.from][e.to] = e.capacity;
39
40
      int flow = 0;
41
      int cost = 0;
      vector<int> d, p;
      while (flow < K) {</pre>
```

```
shortest_paths(N, s, d, p);
        if (d[t] == INF) break;
        int f = K - flow, cur = t;
        while (cur != s) {
         f = min(f, capacity[p[cur]][cur]);
49
          cur = p[cur];
50
        flow += f:
        cost += f * d[t];
        cur = t;
        while (cur != s) {
          capacity[p[cur]][cur] -= f;
          capacity[cur][p[cur]] += f;
          cur = p[cur];
58
59
60
     if (flow < K) return -1;</pre>
      else return cost;
```

7.18 Kuhn

```
1 int n, k;
   vector<vector<int>> q;
   vector<int> mt;
    vector<bool> used;
   bool try_kuhn(int v) {
     if (used[v]) return false;
      used[v] = true;
      for (int to : g[v]) {
       if (mt[to] == -1 || try_kuhn(mt[to])) {
          mt[to] = v;
11
          return true:
12
      return false;
15
   int main() {
      mt.assign(k, -1);
        vector<bool> used1(n, false);
19
        for (int v = 0; v < n; ++v) {
          for (int to : g[v]) {
            if (mt[to] == -1) {
              mt[to] = v;
              used1[v] = true;
              break:
        for (int v = 0; v < n; ++v) {
          if (used1[v]) continue;
          used.assign(n, false);
          try_kuhn(v);
32
3.3
        for (int i = 0; i < k; ++i)
          if (mt[i] != −1)
            printf("%d %d\n", mt[i] + 1, i + 1);
```

7.19 Articulation Point

```
11 children = 0;
      visited[u] = true;
      disc[u] = low[u] = ++time;
      for (auto v : adj[u]) {
       if (!visited[v]) {
          children++;
          APUtil(adj, v, visited, disc, low, time, u,
          low[u] = min(low[u], low[v]);
          if (parent != -1 && low[v] >= disc[u]) {
            isAP[u] = true;
       } else if (v != parent) {
         low[u] = min(low[u], disc[v]);
      if (parent == -1 && children > 1) {
       isAP[u] = true;
20
21
    void AP(vector<vector<11>> &adj, 11 n) {
      vector<ll> disc(n), low(n);
      vector<bool> visited(n), isAP(n);
      11 time = 0, par = -1;
      for (11 u = 0; u < n; u++) {
       if (!visited[u]) {
28
          APUtil(adj, u, visited, disc, low, time, par,
               isAP):
      for (11 u = 0; u < n; u++) {
       if (isAP[u]) {
          cout << u << " ";
34
```

7.20 Hierholzer

```
void print_circuit (vector<vector<ll>>> &adj) {
      map<11, 11> edge_count;
      for (11 i = 0; i < adj.size(); i++) {</pre>
        edge_count[i] = adj[i].size();
5
      if (!adj.size()) {
        return;
      stack<ll> curr_path;
      vector<ll> circuit;
      curr_path.push(0);
      11 curr_v = 0;
      while (!curr_path.empty()) {
        if (edge_count[curr_v]) {
          curr path.push(curr v);
          11 next_v = adj[curr_v].back();
          edge_count[curr_v]--;
          adj[curr_v].pop_back();
          curr_v = next_v;
        } else {
          circuit.push_back(curr_v);
          curr_v = curr_path.top();
          curr_path.pop();
26
      for (ll i = circuit.size() - 1; i >= 0; i--) {
27
        cout << circuit[i] << ' ';
```

7.21 Lowest Common Ancestor

```
struct LCA {
       vector<ll> height, euler, first, segtree;
       vector<bool> visited;
      LCA(vector<vector<11>>> &adj, 11 root = 0) {
        n = adi.size():
        height.resize(n);
         first.resize(n);
         euler.reserve(n * 2);
         visited.assign(n, false);
         dfs(adj, root);
12
         11 m = euler.size();
13
         segtree.resize(m * 4);
14
         build(1, 0, m - 1);
15
      void dfs(vector<vector<ll>>> &adj, ll node, ll h = |22
16
         visited[node] = true;
         height[node] = h;
19
         first[node] = euler.size();
20
         euler.push back(node);
         for (auto to : adj[node]) {
          if (!visited[to]) {
23
             dfs(adj, to, h + 1);
24
             euler.push_back(node);
25
26
27
28
29
      void build(ll node, ll b, ll e) {
         if (b == e) segtree[node] = euler[b];
          11 \text{ mid} = (b + e) / 2;
32
          build(node << 1, b, mid);</pre>
          build(node << 1 | 1, mid + 1, e);</pre>
34
           11 1 = segtree[node << 1], r = segtree[node</pre>
                << 1 | 11;
           segtree[node] = (height[1] < height[r]) ? 1 :</pre>
36
38
      11 query(11 node, 11 b, 11 e, 11 L, 11 R) {
39
        if (b > R | | e < L) return -1;</pre>
40
         if (b >= L && e <= R) return segtree[node];</pre>
41
         11 \text{ mid} = (b + e) >> 1;
42
         11 left = query(node << 1, b, mid, L, R);</pre>
         11 right = query(node << 1 | 1, mid + 1, e, L,</pre>
         if (left == -1) return right;
         if (right == -1) return left;
45
         return height[left] < height[right] ? left :</pre>
47
48
      ll lca(ll u, ll v) {
49
         11 left = first[u], right = first[v];
50
         if (left > right) swap(left, right);
51
         return query(1, 0, euler.size() - 1, left,
              right);
52
```

```
struct Edge {
     int a, b, cost;
    };
    int n, m, v;
    vector<Edge> edges;
 6 const int INF = 1000000000;
    void solve() {
     vector<int> d(n, INF);
      d[v] = 0;
      vector<int> p(n, -1);
      for (int i = 0; i < n; ++i) {
       \mathbf{x} = -1;
       for (Edge e : edges)
         if (d[e.a] < INF)</pre>
            if (d[e.b] > d[e.a] + e.cost) {
              d[e.b] = max(-INF, d[e.a] + e.cost);
18
              p[e.b] = e.a;
              x = e.b;
      if (x == -1) cout << "No negative cycle from " <<</pre>
      else {
        int y = x;
        for (int i = 0; i < n; ++i) y = p[y];</pre>
        vector<int> path;
        for (int cur = y;; cur = p[cur]) {
         path.push_back(cur);
          if (cur == y && path.size() > 1) break;
        reverse(path.begin(), path.end());
32
        cout << "Negative cycle: ";</pre>
        for (int u : path) cout << u << ' ';</pre>
34
 7.23 Edmonds Karp
 1 int n;
   vector<vector<int>> capacity;
    vector<vector<int>> adi:
```

```
int bfs(int s, int t, vector<int>& parent) {
      fill(parent.begin(), parent.end(), -1);
      parent[s] = -2;
      queue<pair<int, int>> q;
      q.push({s, INF});
      while (!q.empty()) {
       int cur = q.front().first, flow = q.front().
             second:
        for (int next : adj[cur]) {
          if (parent[next] == -1 && capacity[cur][next
               1) {
            parent[next] = cur;
            int new_flow = min(flow, capacity[cur][next
            if (next == t) return new_flow;
            q.push({next, new_flow});
19
       }
2.0
      return 0:
23 int maxflow(int s, int t) {
      int flow = 0;
```

vector<int> parent(n);

```
int new_flow;
      while (new flow = bfs(s, t, parent)) {
       flow += new_flow;
        int cur = t;
        while (cur != s) {
          int prev = parent[cur];
          capacity[prev][cur] -= new_flow;
          capacity[cur][prev] += new_flow;
          cur = prev;
36
      return flow;
38 }
```

7.24 Is Bipartite

```
1 bool is_bipartite(vector<11> &col, vector<vector<11</pre>
         >> &adj, 11 n) {
      queue<pair<11, 11>> q;
      for (11 i = 0; i < n; i++) {
        if (col[i] == -1) {
          q.push({i, 0});
          col[i] = 0;
          while (!q.empty()) {
            pair<11, 11> p = q.front();
            q.pop();
            11 v = p.first, c = p.second;
            for (11 j : adj[v]) {
              if (col[j] == c) {
                return false;
              if (col[j] == -1) {
                col[j] = (c ? 0 : 1);
                q.push({j, col[j]});
21
      return true;
24
```

7.25 Fast Second Mst

```
struct edge {
       int s, e, w, id;
        bool operator<(const struct edge& other) {</pre>
             return w < other.w; }</pre>
   typedef struct edge Edge;
   const int N = 2e5 + 5;
    long long res = 0, ans = 1e18;
   int n, m, a, b, w, id, 1 = 21;
   vector<Edge> edges;
   vector<int> h(N, 0), parent(N, -1), size(N, 0),
         present (N, 0);
vector<vector<pair<int, int>>> adj(N), dp(N, vector
         <pair<int, int>>(1));
12 vector<vector<int>> up(N, vector<int>(1, -1));
   pair<int, int> combine(pair<int, int> a, pair<int,</pre>
      vector<int> v = {a.first, a.second, b.first, b.
           second);
      int topTwo = -3, topOne = -2;
      for (int c : v) {
```

```
17
        if (c > topOne) {
18
          topTwo = topOne;
19
          topOne = c;
20
         } else if (c > topTwo && c < topOne) topTwo = c</pre>
21
      return {topOne, topTwo};
23 }
24 void dfs(int u, int par, int d) {
25
      h[u] = 1 + h[par];
26
      up[u][0] = par;
27
      dp[u][0] = {d, -1};
28
      for (auto v : adj[u]) {
29
       if (v.first != par) dfs(v.first, u, v.second);
31 }
32 pair<int, int> lca(int u, int v) {
33
      pair<int, int> ans = \{-2, -3\};
34
      if (h[u] < h[v]) swap(u, v);</pre>
35
      for (int i = 1 - 1; i >= 0; i--) {
       if (h[u] - h[v] >= (1 << i)) {
          ans = combine(ans, dp[u][i]);
38
          u = up[u][i];
39
40
41
      if (u == v) return ans;
42
      for (int i = 1 - 1; i >= 0; i--) {
       if (up[u][i] != -1 && up[v][i] != -1 && up[u][i
43
             ] != up[v][i]) {
44
          ans = combine(ans, combine(dp[u][i], dp[v][i
               ]));
          u = up[u][i];
46
          v = up[v][i];
47
48
49
      ans = combine(ans, combine(dp[u][0], dp[v][0]));
      return ans;
51
52
53 int main(void) {
54
      cin >> n >> m;
55
      for (int i = 1; i <= n; i++) {</pre>
       parent[i] = i;
57
       size[i] = 1;
58
59
      for (int i = 1; i <= m; i++) {</pre>
60
        cin >> a >> b >> w; // 1-indexed
61
        edges.push_back({a, b, w, i - 1});
62
63
      sort(edges.begin(), edges.end());
64
      for (int i = 0; i \le m - 1; i++) {
65
       a = edges[i].s;
66
       b = edges[i].e;
67
       w = edges[i].w;
68
        id = edges[i].id;
69
        if (unite_set(a, b)) {
70
         adj[a].emplace_back(b, w);
71
          adj[b].emplace_back(a, w);
72
          present[id] = 1;
73
          res += w;
74
76
      dfs(1, 0, 0);
      for (int i = 1; i <= 1 - 1; i++) {</pre>
78
        for (int j = 1; j <= n; ++j) {</pre>
79
         if (up[j][i - 1] != -1) {
80
            int v = up[j][i - 1];
81
             up[j][i] = up[v][i - 1];
82
             dp[j][i] = combine(dp[j][i-1], dp[v][i-
```

```
1]);
      for (int i = 0; i \le m - 1; i++) {
        id = edges[i].id;
        w = edges[i].w;
       if (!present[id]) {
          auto rem = lca(edges[i].s, edges[i].e);
          if (rem.first != w) {
            if (ans > res + w - rem.first) ans = res +
                w - rem.first;
          } else if (rem.second != -1) {
            if (ans > res + w - rem.second) ans = res +
                 w - rem.second;
96
       }
97
      }
98
     cout << ans << "\n";
      return 0;
```

8 References

8.1 Stack

```
1  // declaration
2  stack<T> stk;
3  // functions
4  stk.empty();
5  stk.size();
6  stk.top();
7  stk.push(x);
8  stk.pop();
```

8.2 Queue

```
1  // declaration
2  queue<T> q;
3  // functions
4  q.empty();
5  q.size();
6  q.front();
7  q.back();
8  q.push(x);
9  q.pop();
```

8.3 Syntax

```
1 // set
2 st.insert(x)
3 st.begin()
4 st.find(x)
5 st.count(x)
6 st.erase(x)
7 st.end()
8 st.size()
9 st.empty()
10 // multiset
11 ms.insert(x)
12 ms.begin()
13 ms.end()
```

```
14 ms.clear()
   ms.erase(x)
   ms.size()
   ms.empty()
18 // map
19 begin()
20 end()
21 size()
22 max_size()
23 empty()
24 pair insert(keyvalue, mapvalue)
25 erase(iterator position)
26 erase(const g)
27 clear()
28 // ordered_set
29 find_by_order(k)
30 order_of_key(k)
31 #include <ext/pb_ds/assoc_container.hpp>
    #include <ext/pb_ds/tree_policy.hpp>
    using namespace __gnu_pbds;
    #define ordered_set
       tree<int, null_type, less<int>, rb_tree_tag, \
            tree_order_statistics_node_update>
   // tuple
    get<i>(tuple)
40 make_tuple(a1, a2, ...)
   tuple_size<decltype(tuple)>::value
42 tuple1.swap(tuple2)
43 tie(a1, a2, ...) = tuple
44 tuple_cat(tuple1, tuple2)
    // iterator
46 for (auto it = s.begin(); it != s.end(); it++) cout
         << *it << "\n";
47 begin()
48 end()
49 advance(ptr, k)
50 next(ptr, k)
   prev(ptr, k)
    // permutations
53 do {} while (next_permutation(nums.begin(), nums.
         end()));
    // bitset
    int num = 27; // Binary representation: 11011
   bitset<10> s(string("0010011010")); // from right
         to left
57 bitset<sizeof(int) * 8> bits(num);
58 int set_bits = bits.count();
59 bits.set(index, val);
60 bits.reset();
61 bits.flip();
62 bits.all();
63 bits.any();
64 bits.none();
65 bits.test();
66 to_string();
67 to_ulong();
68 to_ullong();
69 [], &, |, !, >>=, <<=, &=, |=, ^=, ~;
70 // hamming distance
71 int hamming(int a, int b) {
    return __builtin_popcount(a ^ b);
74 // gcc compiler
75 __builtin_popcount(x)
76 __builtin_parity(x)
    __builtin_clz(x) // leading
   __builtin_ctz(x) // trailing
```

8.4 Priority Queue

```
1 // declaration
   priority_queue<T> pq;
    priority_queue<T> pq(v.begin(), v.end());
    priority_queue<T, vector<T>, greater<T>> pq;
   // custom comparator
    class Compare {
    public:
      bool operator() (T a, T b) {
        if (cond) {
            return true; // do not swap
11
12
        return false;
13
14 };
15 priority_queue<T, vector<T>, Compare> pq;
16 // functions
17 pq.empty();
18 pq.size();
19 pq.top();
```

```
20 pq.push(x);
21 pq.pop();
 8.5 Vector
 1 // declaration
   vector<T> v;
   vector<T> v = \{v0, v1, v2, ...\};
   vector<T> v(size, initial);
   // functions
 6 v.begin();
7 v.end();
 8 v.size();
 9 v.empty();
10 v.push_back(x);
11 v.pop_back();
12 v.insert();
13 v.erase(x);
14 v.clear();
15 // algorithms
lower_bound(v.begin(), v.end(), x);
```

```
upper_bound(v.begin(), v.end(), x);
   binary_search(v.begin(), v.end(), x);
   // sort
21 sort(v.rbegin(), v.rend()); // reverse iterators
22 sort(v.begin(), v.end(), greater<T>); // using
        functor
23 bool comp(T a, T b) {
     if (cond) {
25
       return true; // do not swap
26
27
     return false;
28 }
29 sort(v.begin(), v.end(), comp); // using custom
   sort(v.begin(), v.end(), [](const T a, const T b) {
     if (cond) {
       return true;
     return false;
35 }); // using lambda function
```

f(n) = O(g(n))	iff \exists positive c, n_0 such that $0 \le f(n) \le cg(n) \ \forall n \ge n_0$.	$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}, \sum_{i=1}^{n} i^{2} = \frac{n(n+1)(2n+1)}{6}, \sum_{i=1}^{n} i^{3} = \frac{n^{2}(n+1)^{2}}{4}.$					
$f(n) = \Omega(g(n))$	iff \exists positive c, n_0 such that $f(n) \geq cg(n) \geq 0 \ \forall n \geq n_0$.	i=1 $i=1$ $i=1$ In general:					
$f(n) = \Theta(g(n))$	iff $f(n) = O(g(n))$ and $f(n) = \Omega(g(n))$.	$\sum_{i=1}^{n} i^{m} = \frac{1}{m+1} \left[(n+1)^{m+1} - 1 - \sum_{i=1}^{n} \left((i+1)^{m+1} - i^{m+1} - (m+1)i^{m} \right) \right]$					
f(n) = o(g(n))	iff $\lim_{n\to\infty} f(n)/g(n) = 0$.	$\sum_{i=1}^{n-1} i^m = \frac{1}{m+1} \sum_{k=0}^m \binom{m+1}{k} B_k n^{m+1-k}.$					
$ \lim_{n \to \infty} a_n = a $	iff $\forall \epsilon > 0$, $\exists n_0$ such that $ a_n - a < \epsilon$, $\forall n \ge n_0$.	Geometric series:					
$\sup S$	least $b \in \mathbb{R}$ such that $b \ge s$, $\forall s \in S$.	$\sum_{i=0}^{n} c^{i} = \frac{c^{n+1} - 1}{c - 1}, c \neq 1, \sum_{i=0}^{\infty} c^{i} = \frac{1}{1 - c}, \sum_{i=1}^{\infty} c^{i} = \frac{c}{1 - c}, c < 1,$					
$\inf S$	greatest $b \in \mathbb{R}$ such that $b \le s$, $\forall s \in S$.	$\sum_{i=0}^{n} ic^{i} = \frac{nc^{n+2} - (n+1)c^{n+1} + c}{(c-1)^{2}}, c \neq 1, \sum_{i=0}^{\infty} ic^{i} = \frac{c}{(1-c)^{2}}, c < 1.$					
$ \liminf_{n \to \infty} a_n $	$\lim_{n \to \infty} \inf \{ a_i \mid i \ge n, i \in \mathbb{N} \}.$	Harmonic series: $n = \sum_{i=1}^{n} 1 \qquad \sum_{i=1}^{n} n(n+1) \qquad n(n-1)$					
$\limsup_{n \to \infty} a_n$	$\lim_{n \to \infty} \sup \{ a_i \mid i \ge n, i \in \mathbb{N} \}.$	$H_n = \sum_{i=1}^n \frac{1}{i}, \qquad \sum_{i=1}^n iH_i = \frac{n(n+1)}{2}H_n - \frac{n(n-1)}{4}.$					
$\binom{n}{k}$	Combinations: Size k subsets of a size n set.	$\sum_{i=1}^{n} H_i = (n+1)H_n - n, \sum_{i=1}^{n} {i \choose m} H_i = {n+1 \choose m+1} \left(H_{n+1} - \frac{1}{m+1} \right).$					
$\begin{bmatrix} n \\ k \end{bmatrix}$	Stirling numbers (1st kind): Arrangements of an n element set into k cycles.	1. $\binom{n}{k} = \frac{n!}{(n-k)!k!}$, 2. $\sum_{k=0}^{n} \binom{n}{k} = 2^n$, 3. $\binom{n}{k} = \binom{n}{n-k}$,					
$\left\{ egin{array}{c} n \\ k \end{array} \right\}$	Stirling numbers (2nd kind): Partitions of an n element	$4. \binom{n}{k} = \frac{n}{k} \binom{n-1}{k-1}, \qquad 5. \binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1},$					
(m)	set into k non-empty sets.	6. $\binom{n}{m}\binom{m}{k} = \binom{n}{k}\binom{n-k}{m-k},$ 7. $\sum_{k=0}^{n} \binom{r+k}{k} = \binom{r+n+1}{n},$					
$\left\langle {n\atop k} \right\rangle$	1st order Eulerian numbers: Permutations $\pi_1\pi_2\pi_n$ on $\{1,2,,n\}$ with k ascents.	8. $\sum_{k=0}^{n} {k \choose m} = {n+1 \choose m+1},$ 9. $\sum_{k=0}^{n} {r \choose k} {s \choose n-k} = {r+s \choose n},$					
$\left\langle\!\left\langle {n\atop k}\right\rangle\!\right\rangle$	2nd order Eulerian numbers.	10. $\binom{n}{k} = (-1)^k \binom{k-n-1}{k},$ 11. $\binom{n}{1} = \binom{n}{n} = 1,$					
C_n	Catalan Numbers: Binary trees with $n+1$ vertices.	12. $\binom{n}{2} = 2^{n-1} - 1,$ 13. $\binom{n}{k} = k \binom{n-1}{k} + \binom{n-1}{k-1},$					
14. $\begin{bmatrix} n \\ 1 \end{bmatrix} = (n-1)!,$ 15. $\begin{bmatrix} n \\ 2 \end{bmatrix} = (n-1)!H_{n-1},$ 16. $\begin{bmatrix} n \\ n \end{bmatrix} = 1,$ 17. $\begin{bmatrix} n \\ k \end{bmatrix} \ge \begin{Bmatrix} n \\ k \end{Bmatrix},$							
$18. \begin{bmatrix} n \\ k \end{bmatrix} = (n-1) \begin{bmatrix} n-1 \\ k \end{bmatrix} + \begin{bmatrix} n-1 \\ k-1 \end{bmatrix}, 19. \begin{bmatrix} n \\ n-1 \end{bmatrix} = \begin{bmatrix} n \\ n-1 \end{bmatrix} = \begin{pmatrix} n \\ 2 \end{pmatrix}, 20. \sum_{k=0}^{n} \begin{bmatrix} n \\ k \end{bmatrix} = n!, 21. \ C_n = \frac{1}{n+1} \binom{2n}{n},$							
$22. \ \left\langle {n \atop 0} \right\rangle = \left\langle {n \atop n-1} \right\rangle = 1, \qquad 23. \ \left\langle {n \atop k} \right\rangle = \left\langle {n \atop n-1-k} \right\rangle, \qquad 24. \ \left\langle {n \atop k} \right\rangle = (k+1) \left\langle {n-1 \atop k} \right\rangle + (n-k) \left\langle {n-1 \atop k-1} \right\rangle,$							
$25. \ \left\langle \begin{matrix} 0 \\ k \end{matrix} \right\rangle = \left\{ \begin{matrix} 1 & \text{if } k = 0, \\ 0 & \text{otherwise} \end{matrix} \right. $ $26. \ \left\langle \begin{matrix} n \\ 1 \end{matrix} \right\rangle = 2^n - n - 1, $ $27. \ \left\langle \begin{matrix} n \\ 2 \end{matrix} \right\rangle = 3^n - (n+1)2^n + \binom{n+1}{2}, $							
28. $x^n = \sum_{k=0}^n \binom{n}{k} \binom{x+k}{n}$, 29. $\binom{n}{m} = \sum_{k=0}^m \binom{n+1}{k} (m+1-k)^n (-1)^k$, 30. $m! \binom{n}{m} = \sum_{k=0}^n \binom{n}{k} \binom{k}{n-m}$,							
		32. $\left\langle \left\langle {n\atop 0} \right\rangle \right\rangle = 1,$ 33. $\left\langle \left\langle {n\atop n} \right\rangle \right\rangle = 0$ for $n \neq 0,$					
$34. \; \left\langle \!\! \left\langle \!\! \begin{array}{c} n \\ k \end{array} \!\! \right\rangle \!\! \right\rangle = (k + 1)^n$	-1) $\left\langle \left\langle {n-1 \atop k} \right\rangle \right\rangle + (2n-1-k)\left\langle \left\langle {n-1 \atop k} \right\rangle \right\rangle$						
$36. \left\{ \begin{array}{c} x \\ x-n \end{array} \right\} = \sum_{k}^{n} \left\{ \begin{array}{c} x \\ x \end{array} \right\}$	$\sum_{k=0}^{n} \left\langle \!\! \left\langle n \atop k \right\rangle \!\! \right\rangle \left(\begin{matrix} x+n-1-k \\ 2n \end{matrix} \right),$	37. ${n+1 \choose m+1} = \sum_{k} {n \choose k} {k \choose m} = \sum_{k=0}^{n} {k \choose m} (m+1)^{n-k},$					

The Chinese remainder theorem: There exists a number C such that:

 $C \equiv r_1 \mod m_1$

: : :

 $C \equiv r_n \mod m_n$

if m_i and m_j are relatively prime for $i \neq j$. Euler's function: $\phi(x)$ is the number of positive integers less than x relatively prime to x. If $\prod_{i=1}^{n} p_i^{e_i}$ is the prime factorization of x then

$$\phi(x) = \prod_{i=1}^{n} p_i^{e_i - 1} (p_i - 1).$$

Euler's theorem: If a and b are relatively prime then

$$1 \equiv a^{\phi(b)} \bmod b.$$

Fermat's theorem:

$$1 \equiv a^{p-1} \bmod p.$$

The Euclidean algorithm: if a > b are integers then

$$gcd(a, b) = gcd(a \mod b, b).$$

If $\prod_{i=1}^{n} p_i^{e_i}$ is the prime factorization of x

$$S(x) = \sum_{d|x} d = \prod_{i=1}^{n} \frac{p_i^{e_i+1} - 1}{p_i - 1}.$$

Perfect Numbers: x is an even perfect number iff $x = 2^{n-1}(2^n - 1)$ and $2^n - 1$ is prime. Wilson's theorem: n is a prime iff

$$(n-1)! \equiv -1 \mod n$$
.

$$\mu(i) = \begin{cases} (n-1)! = -1 \bmod n. \\ \text{M\"obius inversion:} \\ \mu(i) = \begin{cases} 1 & \text{if } i = 1. \\ 0 & \text{if } i \text{ is not square-free.} \\ (-1)^r & \text{if } i \text{ is the product of} \\ r & \text{distinct primes.} \end{cases}$$
 If

 If

$$G(a) = \sum_{d|a} F(d),$$

$$F(a) = \sum_{d \mid a} \mu(d) G\left(\frac{a}{d}\right).$$

Prime numbers:

$$p_n = n \ln n + n \ln \ln n - n + n \frac{\ln \ln n}{\ln n}$$

$$+O\left(\frac{n}{\ln n}\right),$$

$$\pi(n) = \frac{n}{\ln n} + \frac{n}{(\ln n)^2} + \frac{2!n}{(\ln n)^3} + O\left(\frac{n}{(\ln n)^4}\right).$$

-	-		
- 11	Otir	nit:	ions
-	cm	II U.	ющо

An edge connecting a ver-Looptex to itself. Directed Each edge has a direction.

SimpleGraph with no loops or multi-edges.

WalkA sequence $v_0e_1v_1\ldots e_\ell v_\ell$. TrailA walk with distinct edges. Pathtrail with distinct

vertices.

ConnectedA graph where there exists a path between any two

vertices.

ComponentΑ maximal connected subgraph.

TreeA connected acyclic graph. Free tree A tree with no root. DAGDirected acyclic graph. EulerianGraph with a trail visiting each edge exactly once.

Hamiltonian Graph with a cycle visiting each vertex exactly once.

CutA set of edges whose removal increases the number of components.

Cut-setA minimal cut. Cut edge A size 1 cut.

k-Connected A graph connected with the removal of any k-1vertices.

k-Tough $\forall S \subseteq V, S \neq \emptyset$ we have $k \cdot c(G - S) \le |S|$.

A graph where all vertices k-Regular have degree k.

k-Factor Α k-regular spanning subgraph.

Matching A set of edges, no two of which are adjacent.

CliqueA set of vertices, all of which are adjacent.

Ind. set A set of vertices, none of which are adjacent.

Vertex cover A set of vertices which cover all edges.

Planar graph A graph which can be embeded in the plane.

Plane graph An embedding of a planar

$$\sum_{v \in V} \deg(v) = 2m.$$

If G is planar then n - m + f = 2, so

$$f \le 2n - 4, \quad m \le 3n - 6.$$

Any planar graph has a vertex with degree ≤ 5 .

Notation:

E(G)Edge set Vertex set V(G)

c(G)Number of components

G[S]Induced subgraph deg(v)Degree of v

Maximum degree $\Delta(G)$

 $\delta(G)$ Minimum degree $\chi(G)$ Chromatic number

 $\chi_E(G)$ Edge chromatic number G^c Complement graph K_n Complete graph

 K_{n_1,n_2} Complete bipartite graph

Ramsev number

Geometry

Projective coordinates: (x, y, z), not all x, y and z zero.

 $(x, y, z) = (cx, cy, cz) \quad \forall c \neq 0.$

Cartesian Projective (x, y)(x, y, 1)y = mx + b(m, -1, b)x = c(1,0,-c)

Distance formula, L_p and L_{∞}

$$\sqrt{(x_1 - x_0)^2 + (y_1 - y_0)^2},$$
$$[|x_1 - x_0|^p + |y_1 - y_0|^p]^{1/p},$$

$$\lim_{p \to \infty} \left[|x_1 - x_0|^p + |y_1 - y_0|^p \right]^{1/p}.$$

Area of triangle $(x_0, y_0), (x_1, y_1)$ and (x_2, y_2) :

$$\frac{1}{2} \operatorname{abs} \begin{vmatrix} x_1 - x_0 & y_1 - y_0 \\ x_2 - x_0 & y_2 - y_0 \end{vmatrix}.$$

Angle formed by three points:

$$(x_2, y_2)$$

$$(0, 0) \qquad \ell_1 \qquad (x_1, y_1)$$

$$\cos \theta = \frac{(x_1, y_1) \cdot (x_2, y_2)}{\ell_1 \ell_2}.$$

Line through two points (x_0, y_0) and (x_1, y_1) :

$$\begin{vmatrix} x & y & 1 \\ x_0 & y_0 & 1 \\ x_1 & y_1 & 1 \end{vmatrix} = 0.$$

Area of circle, volume of sphere:

$$A = \pi r^2, \qquad V = \frac{4}{3}\pi r^3.$$

If I have seen farther than others, it is because I have stood on the shoulders of giants.

- Issac Newton