POLITECHNIKA WARSZAWSKA

Wydział Elektroniki i Technik Informacyjnych

INTELIGENTNE SYSTEMY INFORMACYJNE

Eliza-like Chatting Bot

Autor:
Jacek Witkowski

1 Wstęp

Zadaniem projektu było stworzenie programu potrafiącego prowadzić rozmowę z użytkownikiem. Przyjąłem, że temat rozmowy będzie ograniczony do muzyki rockowej, ponieważ wcześniej posiadałem już bazę reguł mogącą posłużyć za fundament budowy odpowiedniej bazy wiedzy dla tego projektu.

2 Opis działania

Program swoje działanie opiera na bazie reguł, które zawierają następujące informacje:

- 1. zbiór możliwych wejść (tekstów wpisywanych przez użytkownika),
- 2. zbior możliwych wyjść (komunikatów wypisywanych przez program),
- 3. (opcjonalnie) informacja czy reguła ma zakończyć działanie programu.

Przykładowo, gdy użytkownik wpisze "WHAT IS YOUR NAME" otrzyma odpowiedź "MY NAME IS ELIZA".

2.1 Przebieg interakcji z użytkownikiem

Konwersację zawsze rozpoczyna użytkownik. Tekst wpisany przez użytkownika jest przekazywany do obiektu Responses Generator, którego zadaniem jest wygenerowanie odpowiedzi. W pierwszej kolejności obiekt sprawdza czy użytkownik w poprzednim komunikacie nie napisał tego samego co bieżącym. Jeśli tak, to wysyłana jest jedna z odpowiedzi ze zbioru repeat Response-Descriptors. Jeśli nie to:

- 1. wyszukiwane są reguły, których wejście pasuje do wpisanego przez użytkownika (czyli te, których wejście zawiera się w początku napisu podanego prez użytkownika),
- 2. wyizolowanie tych reguł, które najlepiej pasują do tekstu wprowadzonego przez użytkownika,
- 3. z najbardziej dopasowanych reguł, wybierana jest losowo jedna,
- 4. tworzona jest odpowiedź na podstawie wybranej reguły i wpisanego przez użytkownika tekstu

2.2 Przetwarzanie odpowiedzi

W czwartym kroku algorytmu przedstawionego wyżej generowana jest odpowiedź na podstawie reguły i wejścia. Jeśli w regule wyjście jest napisem nie zawierającym znakow *, to jest ono po prostu zwracane w oryginalnej formie. Jeśli natomiast znaki * występują, wówczas są one zastępowane tekstem generowanym na podstawie wejścia użytkownika. Przykładowo załóżmy, że użytkownik wpisał "MY NAME IS JACK", a istnieje reguła o wejściu: "MY NAME IS" i wyjściu DO YOU LIKE MUSIC, *?. Wówczas * zostanie zastąpiona tekstem, który "wystaje" poza to, co udało się dopasować. Wiadomością, którą otrzyma użytkownik, będzie: DO YOU LIKE MUSIC, JACK?.

2.2.1 Transpozycje

Dodatkowym krokiem podczas przetwarzania odpowiedzi jest zastosowanie transpozycji, czyli zamiana niektórych słów zgodnie ze zdefiniowanymi regułami (np. "I'M" \rightarrow "YOU'RE"). Transpozycji poddawane są tylko te teksty, które są wstawiane zamiast * w odpowiedzi. Przykładowo załóżmy, że reguła ma wejście: "I THINK I" i wyjście "DO YOU REALLY*?". Wówczas jeśli użytkownik wpisze "I THINK I LIKE YOU" otrzyma odpowiedź: "DO YOU REALLY LIKE ME?".

3 Możliwości rozwoju

W pierwszym kroku należało by ulepszyć utrzymywanie kontekstu wypowiedzi (obecnie pamiętana jest co najwyżej jedna poprzednia odpowiedź, co jest sporym uproszczeniem). Należałoby stworzyć ontologię reprezentującą różne tematy i ich wzajemne relacje. Wówczas reguły mogłby by definiować w jakim kontekście mają być stosowane i do jakiego kontekstu należy przejść.

Drugim możliwym usprawnieniem byłoby wprowadzenie mechanizmu samouczenia. W najprostszej wersji program mógłby przyjmować bezpośrednio od użytkownika sugestie jak należy odpowiadać na zadane pytania.

W kolejnym kroku można byłoby ulepszyć dopasowywanie reguł do wprowadzonego przez użytkownika napisu. Przykładowo można byłoby wyszukiwać odpowiednie reguły wg słów kluczowych (wymagałoby to sprowadzenia każdego słowa w tekście wprowadzonym przez użytkownika do swojej podstawowej formy).