cc4102

Jeremy Barbay

17 October 2011

Contents

1 DONE CC4102: (B203) Lower Bounds

SCHEDULED: 2011-10-17 Mon 11:30-12:45

- 1. Complejidad Computacional de un algoritmo y de un problema:
 - (a) Tres nociones distintas:
 - Cota superior: "en cuanto tiempo se puede hacer"?
 - Cota inferior: "cuanto tiempo se necesita al minimo"?
 - Complejidad Computacional: cuanto tiempo usa la mejor solucion?
 - (b) Puntos importantes
 - i. Diferencia entre cota superior y inferior
 - ii. Definir el modelo (e.g. modelo de comparacion)
 - iii. Diferencia entre Peor Caso y otros (e.g. Mejor caso, caso promedio, caso de una instancia)
- 2. Ejemplo: Torre de Hanoi y Platos Sucios

	Torre de Hanoi	Platos Sucios	Platos Sucios
	con n discos	con n platos de s tamaños	con n_i platos
			de tamaño $i, i \in [1s]$
Cota Superior	$1 + 2 + 4 + \dots = 2^{n+1} - 1$	Menos que $2^{n+1} - 1$?	
Cota Inferior	$1 + 2 + 4 + \dots = 2^{n+1} - 1$	Mas que $2^{s+1} - 1$?	
Complejidad	$2^{n+1} - 1$	$\Theta((n-s-1)2^{s-1})$	$\sum_{i=1}^{s} n_i 2^{s-i}$

- Torre de Hanoi
 - cf Años previos, Wikipedia, etc...
- Platos Sucios
 - Cota Superior
 - * Mueve todos platos de mismo tamaño en tiempo lineal
 - * por el resto, como por torre de hanoi
 - Cota Inferior *en el peor caso con n_i platos de tamaño $i, i \in [1..s]$
 - * todas las instancias con n_i platos de tamaño $i, i \in [1..s]$ son de misma dificultad.
 - * similar a la torre de hanoi sobre s discos.
 - $* \sum_{i=1}^{s} n_i 2^{s-i}$
 - -Cota Inferior *en el peor caso con n platos y s tamaños
 - * el peor caso es cuando hay $n_1 = n s + 1$ dicos pequeños.
 - $\ast\,$ la formula general da
 - · $(n-s+1)2^{s-1}$ para los n_1 discos de tamaño 1, y
 - $\sum_{i=2}^{s} 2^{s-i} = 2^0 + \ldots + 2^{s-2} = 2^{s-1} 1$ para los otros discos
 - · que suma a $(n-s)2^{s-1} + 2^s 1$
 - · (uno puede verificar que vale $2^n 1$ por s = n)
- 3. Tecnicas
 - (a) Strategia de Aversario
 - "batalla naval"
 - (b) Reduccion
 - Lemma del Ave
 - 3SUM
 - (c) Information Theory
 - Arboles de Decisiones

2 TODO CC4102: (B203) Lower Bounds

SCHEDULED: 2011-10-20 Thu 11:30-12:45

- 1. Lista de Tecnicas para mostrar Cotas Inferiores
 - (a) Estrategia de Aversario
 - "batalla naval"
 - Max
 - minMax
 - busqueda desordenada
 - busqueda ordenada

- (b) Reduccion
 - Lemma del Ave
 - 3SUM
- (c) Information Theory
 - Arboles de Decisiones
 - Huffman
- 2. Estrategia de Adversario
 - (a) Busqueda Desordenada
 - (b) Maxima
 - for loop
 - (c) minMax
 - i. Cota Superior
 - Calcular el minimo con el algoritmo previo, y el maximo con un algoritmo simetrico, da una complejidad de 2n-2 comparaciones, que es demasiado.
 - El algoritmo siguente calcula el max y el min en $\frac{3n}{2} 2$ comparaciones:
 - A. Dividir A en $\lfloor n/2 \rfloor$ pares (y eventualemente un elemento mas, x).
 - B. Comparar los dos elementos de cada par.
 - C. Ponga los elementos superiores en el grupo S, y los elementos inferiores en el grupo I.
 - D. Calcula el minima m del grupo I con el algorimo de la pregunta previa, que performa $\lfloor n/2 \rfloor 1$ comparaciones
 - E. Calcula el maxima M del grupo I con un algoritmo simetrico, con la misma complejidad.
 - F. Si n es par,
 - $-\ m$ y M son respectivamente el minimo y el maximo de A.
 - G. Sino, si x < m,
 - -x y M son respectivamente el minimo y el maximo de A.
 - H. Sino, si x > M,
 - -m y x son respectivamente el minimo y el maximo de A.
 - I. Sino
 - m y M son respectivamente el minimo y el maximo de A
 - La complejidad total del algoritmo es
 - $-n/2 + 2(n/2 1) = 3n/2 2 \in 3n/2 + O(1)$ si n es par

- $-(n-1)/2 + 2(n-1)/2 + 2 = 3n/2 + 1/2 \in 3n/2 + O(1)$ si n es impar.
- en la clase 3n/2 + O(1) en ambos casos.

ii. Cota Inferior

- Sean las variables siguentes:
 - O los o elementos todavia no comparados;
 - G los g elementos que "ganaron" todas sus comparaciones hasta ahora;
 - -P los p elementos que "perdieron" todas sus comparaciones hasta ahora;
 - -E las e valores eliminadas (que perdieron al menos una comparacion, y ganaron al menos una comparacion);
- (o, g, p, e) describe el estado de cualquier algoritmo:
 - siempre o + g + p + e = n;
 - al inicio, g = p = e = 0 y o = n;
 - al final, o = 0, g = p = 1, y e = n 2.
- Despues una comparacion a?b en cualquier algoritmo del modelo de comparacion, (o, g, p, e) cambia en funcion del resultado de la comparacion de la manera siguente:

	$a \in O$	$a \in G$	$a \in P$	$a \in E$
$b \in O$	o-2, g+1, p+1, e	o - 1, p, e + 1	o-1, g, p, e+1	o-1,g+1,p,e
		o-1, g, p+1, e	o-1, g+1, p, e	o-1,g,p+1,e
$b \in G$		o, g - 1, p, e + 1	o, g, p, e	o, g, p, e
			o, g - 1, p - 1, e + 2	0, g-1, p, e+1
$b \in P$			o, g, p-1, e+1	o, g, p, e
				o, g, p - 1, e + 1
$b \in E$				o, g, p, e

• En algunas configuraciones, el cambio del vector estado depende del resultado de la comparacion: un adversario puede maximizar la complejidad del algoritmo eligando el resultado de cada comparacion. El arreglo siguente contiene en graso las opciones que maximizan la complejidad del algoritmo:

	$a \in O$	$a \in G$	$a \in P$	$a \in E$
$b \in O$	o-2, g+1, p+1, e	o - 1, p, e + 1	o-1, g, p, e+1	o-1,g+1,p,e
		$\mathbf{o} - 1, \mathbf{g}, \mathbf{p} + 1, \mathbf{e}$	$\mathbf{o} - 1, \mathbf{g} + 1, \mathbf{p}, \mathbf{e}$	o-1, g, p+1, e
$b \in G$		o, g-1, p, e+1	$\mathbf{o}, \mathbf{g}, \mathbf{p}, \mathbf{e}$	$\mathbf{o}, \mathbf{g}, \mathbf{p}, \mathbf{e}$
			o, g - 1, p - 1, e + 2	o, g-1, p, e+1
$b \in P$			o, g, p-1, e+1	$\mathbf{o}, \mathbf{g}, \mathbf{p}, \mathbf{e}$
				o, g, p - 1, e + 1
$b \in E$				o, g, p, e

• Con estas opciones, hay

- $-\lceil n/2 \rceil$ transiciones de O a $G \cup P$, y
- -n-2 transiciones de $G \cup P$ a E.
- Eso resulta en una complejidad en el peor caso de $\lceil 3n/2 \rceil 2 \in 3n/2 + O(1)$ comparaciones.

(d) Maxima y secundo maxima

- Cota inferior de $n-1+log_2n-1$ con campionato
- TAREA: cota inferior de 3/2n-2
 - piensan en las limitas de este modelo

3. REDUCCION:

- Prerequisitos:
 - Vearon reducciones en el curso de calculabilidad (Alejandro Hevia o Gonzalo Navarro) para NP
 - Ya conocen la cota inferior de $\Omega(n\lg n)$ en el modelo de comparación para ordenar
- Cobertura Convexa (i.e. Convex Hull) $\in \Omega(n \lg n)$
 - Cota inferior de $\Omega(n \log n)$ por reduccion
- Insertar y Extract-Min en Colas de Prioridades (i.e. Priority Queues) $\in \Omega(\lg n)$
- 3SUM,
 - se puede mostrar cotas inferiores sin conocer la complejidad
 - Definicion del problema 3SUM
 - Encontrar 3 puntos colineares a dentro de n puntos esta 3SUMhard:
 - $\ast\,$ Dado una instancia S de 3SUM
 - * $\forall x \in S$, crea los puntos (x, 1), (-x/2, 2), and (x, 3).
 - * $\exists a, b, c \in S \text{ tq } a + b + c = 0 \text{ iff hay 3 puntos colineares}$ (a, 1), (-b/2, 2), (c, 3).

4. Information theory:

- Arboles de decision = arboles de codificacion
- Cada algoritmo correcto tiene que **demostrar** que su respuesta es correcta.
- El tamaño de esta respuesta constitue una cota inferior.
- Si existe un conjunto S de instancia que necesitan una justificación (i.e. **certificado**) de corrección distinta, entonces hay una cota inferior de $\Omega(\lg |S|)$ en el modelo de comparación
- Eso permite de dar cotas inferiores para
 - (a) Busqueda Binaria

- en el peor caso,
- en promedio con distribuciones de probabilidades
 - * Shannon lower bound $n \sum p_i \log 1/p_i$
 - * So no algorithm can do better than this
 - * Can one encode in this space?
 - · Huffman: H+1
 - * Is it useful as a search tree?
 - \cdot No: order in the leaves
 - * Hu-Tucker:
 - · H+2 => optimal algorithm in O-terms, O(H+1) time.
 - * Detour: dynamic programming algorithm for building the optimal tree in $O(n^2)$ time.

(b) Ordenamiento

- en el peor caso,
- En promedio
 - * Cada permutacion requiere acciones distintas para ser ordenada
 - * Un algoritmo con las mismas acciones sobre dos permutaciones distintas esta incorrecto.