Digital Integrated Circuits

#Homework 1 2024.09.20 (Due: 09.27 15:30 ED520)

Given VDD=0.9V, W_{min} =64nm, L_{min} =32nm with resolution of 1nm; there are three kinds of V_t : High V_t , Medium V_t and Low V_t CMOS

- (1) MOS and Inverter with medium threshold voltages (30%)
 - A. Run SPICE to draw the I-V DC curves for PMOS and NMOS with minimum feature size using High V_t, Medium V_t, and Low V_t respectively. (24%)
 - B. Keep L equals to L_{min}, design the W of each transistor using medium V_t such that the logic threshold of inverter is at 0.5VDD. <u>Discuss your design</u> <u>procedures</u> and the way you choose your MOS dimensions. Run SPICE to verify your results. (6%)
- (2) Design a CMOS schmitt trigger shown at Fig. 1(b) such that V^+ = 0.54-0.57V and V^- = 0.36-0.33V with CT=VDD (70%)
 - A. Discuss the difference between Fig. 1(a) and (b). Give the W/L of each device (in table form) of Fig. 1(b) with CT=VDD and discuss your design procedures to determine the size of each transistor using medium V_t. (30%)
 - B. Run SPICE to verify your results. Your report must have the figures of VTC, I_{N2} vs V_{in} , and I_{N4} vs V_{in} (20%)
 - C. Use the same size as in part A, and modify CT to 0.8VDD. Repeat part B to have figures to indicate the new V⁻ and V⁺ (20%)

(b) Schmitt trigger with controllable hysteresis

Fig. 1 Schmitt Trigger Circuit