

Analyse et management des risques industriels

Généralités

• S-1?

Analyse et management des risques industriels

- 1. Modélisation des effets généralités
- 2. Théorie pour l'incendie

Analyse et management des risques industriels

- 1. Modélisation des effets généralités
- 2. Théorie pour l'incendie

4 – Taille de la surface

- Paramètres usuellement non intégrés
 - Spectre radiatif
 - > T° non homogène
 - **>**....
- Modélisation incendie
 - > Problème très complexe

Modèles

- semi-empiriques (simple)
 - 1. Sources ponctuelles : 1 ou multiple
 - Pas de prédiction de la forme
 - 2. Sources surfaciques
 - Forme de type surface solide (géométrie simple)
 - Dépend de données expérimentales
 - Simple à comprendre
 - Simple à calculer (puissance de calculs faibles)
 - Temps de calcul courts

Modèles

- > Fields Models (très complexes)
 - Equation des fluides de Navier-Stockes
 - Usuellement méca fluide sans combustion
 - Puissance de calculs très élevée
 - Temps de calcul très élevés
- Integral Models (complexes)
 - Modèles intermédiaires
 - Equations « Fields Models » simplifiées

Analyse et management des risques industriels

- 1. Modélisation des effets généralités
- 2. Théorie pour l'incendie

- Quantité libérée (modèles numériques)
 - > Ecoulement liquide
 - Libération gazeuse
 - Ecoulement bi-phasique

Type de feux

- Quantité libérée (modèles numériques)
 - > Ecoulement liquide
 - Libération gazeuse
 - Ecoulement bi-phasique

- Type de feux
 - feux de flaque pool fires (sur sol ou eau)
 - jet de flamme (torche)
 - boule de feu
 - feux « confinés »

Feu d'hydrocarbures

> Equation générale

$$q'' = SEP_{act} \times F_{view} \times \tau_a$$
 $J/(m^2 \cdot s)$

in which:

```
q" = Heat flux at a certain distance, in J/(m^2 \cdot s)
```

 SEP_{act} = Actual surface emissive power, in $J/(m^2 \cdot s)$

 F_{view} = View factor

 τ_a = Atmospheric transmissivity

Surface Emissive Power (SEP)

$$SEP_{theor} = Q'/A$$
 $J/(m^2 \cdot s)$

in which:

 SEP_{theor} = Theoretical Surface Emissive Power, in $J/(m^2 \cdot s)$

Q' = Combustion energy per second, in J/s

A = Surface area of the flame, in m^2

$$SEP_{max} = F_s \times SEP_{theor} J/(m^2 \cdot s) (6.3)$$

in which:

 SEP_{max} = The maximum Surface Emissive Power from a flame without soot production, in $J/(m^2 \cdot s)$

 F_s = Fraction of the combustion energy radiated from the flame surface

Fs = f(type de flamme, type hydrocarbures)

> Modèle Surfacique

> 12 étapes

- Etape 1 Diamètre
 - > Surface réelle irrégulière
 - 1. Equivalent (géométrie simple)

$$D = (4 \times A_p/\pi)^{1/2}$$

in which:

D = Pool diameter, in m

 A_p = Surface area of the pool, in m^2

2. V et
$$\delta$$
 D = $(4 \times V/(\pi \times \delta))^{1/2}$

> si L > 2 I

Modèle cylindrique 2

Modèle cylindrique 1

Modèle plan

Etape 2 – Taux de combustion

$$m'' = m_{\infty}'' \times (1 - e^{-k \times \beta \times D})$$
 (kg/(m²·s))

in which:

m'' = Burning rate at still weather conditions, in kg/(m²·s)

 m_{∞} " = see m" for D $\rightarrow \infty$ (see also table 6.5)

k = Absorption extinction coefficient of the flame, in m⁻¹

 β = Mean beam length corrector

$$(1 - e^{-k \times \beta \times D}) > 0.95 \text{ si } D > 1m$$

Etape 2 – Taux de combustion

Table 6.5

Flammable material	m _∞ " (kg/(m².s))	k × ß (m ⁻¹)	k (m ⁻¹)	T _f (K)
Liq. H ₂	0.169	6.1	-	1600
LNG	0.078	1.1	0.5	1500
LPG	0.099	1.4	0.4	-
Butane	0.078	2.7	-	-
Hexane	0.074	1.9	-	-
Heptane	0.101	1.1	-	-
Benzene	0.085	2.7	4.0	1490
Xylene	0.090	1.4	-	-
Gasoline	0.055	2.1	2.0	1450
Kerosene	0.039	3.5	2.6	1480
JP-5	0.054	1.6	0.5	1250
Methanol	0.015	1)	-	1300
Ethanol	0.015	1)	0.4	1490

Etape 2 – Taux de combustion

Calcul alternatif

$$m'' = c_8 \times \Delta H_c / (\Delta H_v + C_p \times (T_b - T_a))$$
 (kg/(m²·s)) (6.67)

in which:

 $= 0.001 \text{ kg/(m}^2 \cdot \text{s})$

 ΔH_c = The heat of combustion of the flammable material and its boiling point in J/kg

 ΔH_v = The heat of vaporisation of the flammable material and its boiling point, in J/kg

 C_p = The heat capacity in J/(kg·K) T_b = The liquid boiling temperature, in K

= Ambient temperature in K

Etape 3 – Hauteur de la flamme

$$L/D = 55 \times (m''/(\rho_{air} \times (g \times D)^{1/2}))^{0.67} \times (u^*)^{-0.21}$$

in which:

L = Average flame height, in m

Etape 4 – Hauteur de la flamme

Determine the scaled wind velocity u*

$$u^* = u_w/u_c$$

in which:

u_w = Wind velocity at height of 10 metres, in m/s

Etape 5 – Hauteur de la flamme

$$u_c = (g \times m'' \times D/\rho_{air})^{1/3}$$
 (m/s)

in which:

u_c = Characteristic wind velocity, in m/s

g = Gravitational acceleration 9.81 m/s^2

m" = Burning flux in still weather conditions, in $kg/(m^2 \cdot s)$

D = Pool diameter, in m

Etape 6a/6b - Inclinaison / Déformation

Etape 6 – Inclinaison

$$\Theta = \arcsin(((4 \times c^2 + 1)^{1/2} - 1)/(2 \times c))$$

Avec C=
$$\tan\Theta/\cos\Theta = 0.666 \times (Fr_{10})^{0.333} \times (Re)^{0.117}$$

Etape 6 – Inclinaison

$$Fr_{10} = u_w^2/(g \times D) \tag{-}$$

in which:

 Fr_{10} = Froude number for wind velocity at a height of 10 metres

$$Re = u_w \times D/v \tag{-}$$

in which:

 $v = \text{Kinematic viscosity of air, in m}^2/\text{s}$

Etape 7 - SEP

$$SEP_{max} = F_s \times m'' \times \Delta H_c / (1 + 4 \times L/D)$$
 (J/(m²·s))

in which:

 SEP_{max} = Maximum Surface Emissive Power, in J/(m²·s)

 F_s = Fraction of the generated heat radiated from the flame surface

 $m'' = Burning rate, in kg/(m^2 \cdot s)$

 ΔH_c = Heat of combustion, in J/kg

L = Average height of flame, in m

D = Pool diameter, in m

Etape 7 – SEP

Substance	Pool diameter (m)	Radiation fraction F _s (-)
methanol	0.076	0.162
	0.152	0.165
	1.22	0.177
methane	0.305	0.21
	0.76	0.23
	1.53	0.15-0.24
	3.05	0.24-0.34
	6.10	0.20-0.27
butane	0.305	0.199
	0.457	0.205
	0.76	0.269
gasoline	1.22	0.30-0.40
	1.53	0.16-0.27
	3.05	0.13-0.14
benzene	0.076	0.350
	0.457	0.345
	0.76	0.350
	1.22	0.360

0.1 < Fs < 0.4

Etape 7 - SEP

$$SEP_{act} = SEP_{max} \times (1 - \varsigma) + SEP_{soot} \times \varsigma$$
 (J/(m²·s))

in which:

 SEP_{act} = Actual surface emissive power, in $J/(m^2 \cdot s)$

 SEP_{soot} = The surface emissive power of soot, which is about $20 \cdot 10^3 \text{ J/(m}^2 \cdot \text{s})$

Etape 8 – Taux absorption H2O

$$p_w = RH \times p_w^o$$

in which:

RH = Relative humidity, fraction between 0 and 1

 p_w^o = Saturated vapour pressure of water in air, in N/m²

Calculate $p_w \times x$

From Figure 6.2 α_w in relation to $p_w \times x$ can be found

Par défaut, Tf = 1'200K

Etape 9 – Taux absorption CO2

Calculate $p_c \times x$

From Figure 6.3 α_c in relation to $p_c \times x$ can be found

Etape 10 - Transmissivité

$$\tau_{\rm a} = 1 - \alpha_{\rm w} - \alpha_{\rm c}$$

Etape 11 – Facteur de forme

Etape 11 – Facteur de forme

$$\begin{split} d^2\Phi_{12} &= L_{1.} \; dS_{1.} \; cos \; \theta_1 \; .d\Omega_1 \\ d\Omega_1 &= \frac{dS_2 \cdot cos \; \theta_2}{d^2} \\ d^2\Phi_{12} &= L_1 \; \; \frac{dS_2 \cdot cos \theta_2 \cdot dS_1 \cdot cos \; \theta_1}{d^2} \end{split}$$

Etape 11 – Facteur de forme

$$d^{2}\Phi_{12} = \frac{L_{1}^{0}dS_{1}\cos\theta_{1}dS_{2}\cos\theta_{2}}{d^{2}}$$

$$d^{2}\Phi_{12} = \frac{M_{1}^{0}dS_{1}cos\theta_{1}dS_{2}cos\theta_{2}}{\pi d^{2}}$$

$$\Phi_{12} = M_1^0 \int_{S1} \int_{S2} \frac{dS_1 \cos\theta_1 dS_2 \cos\theta_2}{\pi d^2}$$

Etape 11 – Facteur de forme

$$F_{12} = \frac{\Phi_{12}}{\Phi_1} = \frac{\Phi_{12}}{M_1^0.S_1}$$

$$F_{12} = \frac{1}{\pi S_1} \int_{S1} \int_{S2} \frac{dS_1 \cos\theta_1 dS_2 \cos\theta_2}{d^2}$$

Etape 11 – Facteur de forme

Etape 11 – Facteur de forme

$$h_r = L/R$$

$$x_r = X/R$$

$$A = (x_r + 1)^2 + h_r^2$$

$$B = (x_r - 1)^2 + h_r^2$$

Etape 11 – Facteur de forme

then, for a horizontal plane at ground level $(\theta = \pi/2)$:

$$F_{h} = \frac{1}{\pi} \left\{ \tan^{-1} \sqrt{\frac{x_{r}+1}{x_{r}-1}} - \left(\frac{x_{r}^{2}-1+h_{r}^{2}}{\sqrt{AB}} \right) \tan^{-1} \sqrt{\frac{(x_{r}-1)A}{(x_{r}+1)B}} \right\}$$
 (6.)

and for a vertical plane at ground- level ($\theta = 0$):

$$F_{v} = \frac{1}{\pi} \left\{ \frac{1}{x_{r}} tan^{-1} \left(\frac{h_{r}}{\sqrt{x_{r}^{2} - 1}} \right) + \left(\frac{h_{r}(A - 2x_{r})}{x_{r}\sqrt{AB}} \right) tan^{-1} \sqrt{\frac{(x_{r} - 1)A}{(x_{r} + 1)B}} - \frac{h_{r}}{x_{r}} tan^{-1} \sqrt{\frac{x_{r} - 1}{x_{r}}} \right\}$$

Etape 12 – Flux reçu à une distance x

$$q'' = SEP_{act} \times F_{view} \times \tau_a$$
 (J/(m²·s))

Modèle point

$$q'' = F_s \times m_h' \times \Delta H_c / (4 \times \pi \times X^2) = F_s \times m_h' \times \frac{\Delta H_c}{4 \times \pi \times X^2}$$
 (J/(m²·s))

in which:

 $q'' = Heat flux, in J/(m^2 \cdot s)$

 F_s = Fraction of the combustion heat radiated from the flame surface

 $m_h' = Burning rate, in kg/s$

 ΔH_c = Net heat of combustion at the boiling point of the flammable material.

J/kg

X = The distance from the source to the receiver, in m

> Peu précis

- Modèles semi-empiriques aussi pour
 - > Feu de flaque non circonscrite
 - 1^{er} temps augmentation de la surface donc augmentation du taux de combustion
 - puis stabilisation car taux de combustion égal au débit de fuite
 - > Feu de torche
 - Boule de feu

Rappel du phénomène

Etape 1 – Quantité impliquée

$$m = V_{rel} \times \rho_{mat} = f \times V \times \rho_{mat}$$
 (kg) (6.89)

m = Mass of the flammable material, in kg

f = Fraction of the volume of the pressure tank, filled with the flammable liquefied pressurised gas

V = Volume of the tank, in m³

 V_{rel} = Amount of e.g. LPG which will be released in case of a complete tank failure

 ρ_{mat} = Density of the flammable material in the pressure tank, in kg/m³

Etape 2 – Rayon de la boule

$$r_{\rm fb} = c_9 \times m^{0.325} \tag{m}$$

In which:

 $c_9 = 3.24 \text{ m/kg}^{0.325}$

 r_{fb} = Radius of the fireball, in m

m = Mass of the flammable material, in kg

Etape 3 – Durée de la boule

$$t = c_{10} \times m^{0.26}$$
 (s)

in which:

 $c_{10} = 0.852 \text{ s/kg}^{0.26}$

t = Duration of the fireball, in s

m = Mass of the flammable material, in kg

Etape 4 – Hauteur de la boule

$$H_{\text{bleve}} = 2 \times r_{\text{fb}} \tag{6.22}$$

in which:

 H_{bleve} = Height from the centre of the fire ball to the ground under the fire ball, in m

Etape 5 – Distance Boule/récepteur

Etape 5 – Distance Boule/récepteur

$$X = (x_{\text{bleve}}^2 + H_{\text{bleve}}^2)^{1/2} \tag{m}$$

In which:

 x_{bleve} = Distance measured over the ground from the projected centre of the fire ball on the ground under the fire ball, and the object, in m

 H_{bleve} = Height from the centre of the fire ball to the ground under the fire ball, in m

= Distance from the centre of the fire ball to the radiated object, in m

$$x = X - r_{fb} \tag{m}$$

in which:

Distance from the surface area of the flame to the object, in m

Etape 6 – Facteur de forme

$$F_{\text{view}} = (r_{\text{fb}}/X)^2 \tag{-}$$

in which:

 F_{view} = Geometric view factor, dimensionless

 r_{fb} = Radius of the fire ball, in m

X = Distance from the centre of the fire ball to the radiated object, in m

Etape 7 – Fraction irradiée

$$F_{s} = c_{6} \times (P_{sv})^{0.32} \tag{-}$$

in which:

 $c_6 = 0.00325 (N/m^2)^{0.32}$

 P_{sv} = Vapour pressure of flammable material inside the vessel, in N/m²

Etape 8 – Chaleur de Combustion

$$\Delta H = \Delta H_c - \Delta H_v - C_p \times \Delta T$$

(J/kg)

(6.94)

in which:

 ΔH = Nett available heat, in J/kg

 ΔH_c = Combustion heat of the flammable material at its boiling point, in J/kg

 ΔH_v = Vaporisation heat of the flammable material at its boiling point, in J/kg

 C_p = Specific heat capacity at constant pressure, $J/(kg \cdot K)$

 $\Delta \hat{T}$ = Temperature difference between flame and ambient temperature, in K

Assume $\Delta T = 1700 \text{ K}$

Etape 9 – SEP

$$SEP_{act} = \Delta H \times m \times F_s / (4 \times \pi \times r_{fb}^2 \times t)$$
 (J/(m²·s)) (6.95)

in which:

 SEP_{act} = Actual Surface Emissive Power, SEP, in $J/(m^2 \cdot s)$, which is the average radiation emittance (emissive power) of the flame surface.

 SEP_{max} = Maximum Surface Emissive Power, in $J/(m^2 \cdot s)$.

If it is assumed that there is no soot formation, then $SEP_{act} = SEP_{max}$

Etape 10 – Absorption H2O

$$\alpha_{\rm w}$$

Etape 11 – Absorption CO2

$$\alpha_{\rm c}$$

Etape 12 – Transmissivité

$$\tau_{\rm a} = 1 - \alpha_{\rm w} - \alpha_{\rm c}$$

Etape 13 – Rayonnement au point P

$$q'' = SEP_{act} \times F_{view} \times \tau_a$$
 (J/(m²·s))

in which:

q" = Heat flux at a certain distance, in $J/(m^2 \cdot s)$

 τ_a = Atmospheric transmissivity