

计算机组成原理

第四章 存储系统

4.3 静态存储器工作原理

1

SRAM存储单元结构

•工作管: T₁、 T₂ (保存数据)

•负载管: T₃、 T₄ (补充电荷)

•门控管: T₅、T₆、T₇、T₈ (开关作用)

2 SRAM存储单元工作原理

- X地址选通(行选通)
 - □T5、T6管导通
 - □A点与位线相连
- Y地址选通 (列选通)
 - □T7、T8管导通
 - □A点电位输出到I/O端

2 SRAM存储单元工作原理

•写过程

$$X$$
有效 \to T_5 、 T_6 通 \to A与 I/O 连通 Y 有效 \to T_7 、 T_8 通 \to B与 $\overline{I/O}$ 连通 $I/O=1 \to A=1 \to T_2$ 通 \to B=0 \to T_1 截止 $\overline{I/O}=0 \to$ B=0 \to T_1 截止 \to A=1 \to T_2 通 \to B=0 \to T₁ 形成 \to A=1 \to B=0

$$I/O=0 \rightarrow A=0 \rightarrow T_2$$
截止 $\rightarrow B=1 \rightarrow T_1$ 通
$$\overline{I/O}=1 \rightarrow B=1 \rightarrow T_1$$
 通 $\rightarrow A=0 \rightarrow T_2$ 截止
$$= 50$$
 此时,T1、T2形成了稳态,B=1、A=0

2 SRAM存储单元工作原理

•读过程

X有效 $\rightarrow T_5$ 、 T_6 通 $\rightarrow A$ 与 I/O 连通

Y有效→ T_7 、 T_8 通 → B与 I/O 连通

通过外接于I/O与 I/O间的电流放大器中的电流方向可判断读出的是1还是0(与写入时定义的1和0有关)

无论读/写,都要求X和Y译码线同时有效

2 SRAM存储单元工作原理

•保持

X、 Y撤销后,由负载管 T_3 、 T_4 分别为工作管 T_1 、 T_2 提供工作电流,保持其稳定互锁状态不变。

3 静态存储器的结构

N位地址,寻址2ⁿ个存储单元,2ⁿ根译码线

N位地址,寻址 2^n 个存储单元, $2^{n/2+1}$ 根译码线

3 静态存储器的结构

3 静态存储器的结构

行、列地址各有多少位?

3 静态存储器的结构

- 地址线 □ 10根地址线 , 1K存储空间;
- 数据线 每个单元4位数据;
- 片选线 □ □ 低电平有效;
- 电源线GND、Vcc。

行、列地址各有多少位?

3 静态存储器的结构

