CNN_Models_Part_1

VGG

- AlexNet is deeper and bigger than LeNet to get performance
- Go even bigger & deeper?
- Options
 - More dense layers (too expensive)
 - More convolutions
 - Group into blocks

Dense (1000)

Dense (4096)

VGG Blocks

- Deeper vs. wider?
 - 5x5 convolutions
 - 3x3 convolutions (more)
 - Deep & narrow better
- VGG block
 - 3x3 convolutions (pad 1)
 (n layers, m channels)
 - 2x2 max-pooling (stride 2)

VGG block

Part of AlexNet

VGG Architecture

- Multiple VGG blocks followed by dense layers
- Vary the repeating number to get different architectures, such as VGG-16, VGG-19, ...

Progress

- LeNet (1995)
 - 2 convolution + pooling layers
 - 2 hidden dense layers
- AlexNet
 - Bigger and deeper LeNet
 - ReLu, Dropout, preprocessing
- VGG
 - Bigger and deeper AlexNet (repeated VGG blocks)

Network in Network

Non linear mapping introduced by mlpconv layer consisting of multiple fully connected layers with non linear activation function.

The Curse of the Last Layer(s)

The Last Layer(s)

Convolution layers need relatively few parameters

$$c_i \times c_o \times k^2$$

 Last layer needs many parameters for n classes

$$c \times m_w \times m_h \times n$$

- LeNet 16x5x5x120 = 48k
- AlexNet 256x5x5x4096 = 26M
- VGG 512x7x7x4096 = 102M

VGG parameters

```
sequential1 output shape: (1, 64, 112, 112)
sequential 2 output shape: (1, 128, 56, 56)
sequential3 output shape: (1, 256, 28,
sequential4 output shape: (1, 512, 14, 14)
sequential 5 output shape: (1, 512, 7, 7)
dense0 output shape:
                           (1, 4096)
dropout0 output shape:
                           (1, 4096)
densel output shape:
                           (1, 4096)
dropout1 output shape:
                           (1, 4096)
dense2 output shape:
                           (1, 10)
```

Breaking the Curse of the Last Layer

- Key Idea
 - Get rid of the fully connected last layer(s)
 - Convolutions and pooling reduce resolution (e.g. stride of 2 reduces resolution 4x)
- Implementation details
 - Reduce resolution progressively
 - Increase number of channels
 - Use 1x1 convolutions (they only act per pixel)
- Global average pooling in the end

What's a 1x1 convolution anyway?

- Extreme case
 1x1 image with n channels
- Equivalent to MLP
- Pooling allows for translation invariance of detection (e.g. 5x5)

Slide credit: Alex Smola and Mu Li (Berkley)

Non linear mapping introduced by mlpconv layer consisting of multiple fully connected layers with non linear activation function.

NiN Block

- A convolutional layer
 - kernel size, stride, and padding are hyper-parameters
- Following by two 1x1 convolutions
 - 1 stride and no padding, share the same output channels as first layer
 - Act as dense layers

NiN Networks 3x3 MaxPool, stride 2 **VGG Net NiN Net** Dense 3x3 Conv (384), pad 1 Dense Convolution block 3x3 MaxPool, stride 2 Max Pooling Dense NiN block ReLu Max Pooling 5x5 Conv (256), pad 1 Convolution ReLu 3x3 MaxPool, stride 2 1x1 Convolution ReLu ReLu 11x11 Conv (96), stride 4 Convolution 1x1 Convolution ReLu ReLu Convolution Convolution

NiN Last Layers

- Replaced AlexNet's dense layers with a NiN block
- Global average pooling layer to combine outputs

Summary

- Reduce image resolution progressively
- Increase number of channels
- Global average pooling for given number of classes

```
sequential1 output shape: (96, 54, 54)
pool0 output shape: (96, 26, 26)
sequential2 output shape: (256, 26, 26)
pool1 output shape: (256, 12, 12)
sequential3 output shape: (384, 12, 12)
pool2 output shape: (384, 5, 5)
dropout0 output shape: (384, 5, 5)
sequential4 output shape: (10, 5, 5)
pool3 output shape: (10, 1, 1)
flatten0 output shape: (10)
```

Summary

- LeNet (the first convolutional neural network)
- AlexNet
 - More of everything
 - ReLu, Dropout, Invariances

VGG

- Even more of everything (narrower and deeper)
- Repeated blocks

NiN

1x1 convolutions + global pooling instead of dense

Inception

Picking the best convolution ...

Slighte crediti: Allex Sund branch John fil (Beetklex))

Why choose? Just pick them all.

Inception Blocks

4 paths extract information from different aspects, then concatenate along the output channel

Inception Blocks

The first inception block with channel sizes specified

Inception Blocks

Inception blocks have fewer parameters and less computation complexity than a single 3x3 or 5x5 convolutional layer

- Mix of different functions (powerful function class)
- Memory and compute efficiency (good generalization)

	#parameters
Inception	0.16 M
3x3 Conv	0.44 M
5x5 Conv	1.22 M

GoogLeNet

5 stages with 9 inceptions blocks

Stage 1 & 2

 Smaller kernel size and output channels due to more layers

The many flavors of Inception Networks

- Inception-BN (v2) Add batch normalization
- Inception-V3 Modified the inception block
 - Replace 5x5 by multiple 3x3 convolutions
 - Replace 5x5 by 1x7 and 7x1 convolutions
 - Replace 3x3 by 1x3 and 3x1 convolutions
 - Generally deeper stack
- Inception-V4 Add residual connections (more later)

Inception V3 Block for Stage 3

Inception V3 Block for Stage 4

Inception V3 Block for Stage 5

Batch Normalization

- Loss occurs at last layer
 - Last layers learn quickly
- Data is inserted at bottom layer
 - Bottom layers change everything changes
 - Last layers need to relearn many times
 - Slow convergence
- This is like covariate shift
 Can we avoid changing last layers while learning first layers?

Batch Normalization

- Can we avoid changing last layers while learning first layers?
- Fix mean and variance

$$\mu_B = \frac{1}{|B|} \sum_{i \in B} x_i \text{ and } \sigma_B^2 = \frac{1}{|B|} \sum_{i \in B} (x_i - \mu_B)^2 + \epsilon$$

and adjust it separately

$$x_{i+1} = \gamma \frac{x_i - \mu_B}{\sigma_B} + \beta$$
variance

mean

Slide credit: Alex Smola

This was the original motivation ...

What Batch Norms really do

- Doesn't really reduce covariate shift (Lipton et al., 2018)
- Regularization by noise injection

$$x_{i+1} = \gamma \frac{x_i - \hat{\mu}_B}{\hat{\sigma}_B} + \beta$$
 Random offset

Random

scale

- Random shift per minibatch
- · Random scale per minibatch
- No need to mix with dropout (both are capacity control)
- Ideal minibatch size of 64 to 256

Details

torch.nn.BatchNorm(...)

- Dense Layer
 One normalization for all
- Convolution
 One normalization per channel
- Compute new mean and variance for every minibatch
 - Effectively acts as regularization
 - Optimal minibatch size is ~128
 (watch out for parallel training with many machines)

ResNet Block in detail

In code

The many flavors of ResNet blocks

Putting it all together

- Same block structure as e.g. VGG or GoogleNet
- Residual connection to add to expressiveness
- Pooling/stride for dimensionality reduction
- Batch Normalization for capacity control

... train it at scale ...

Acknowledgement

All the slides in this presentation have been borrowed/inspired from course taught by <u>Alex Smola</u> and <u>Mu Li</u> (Berkley) in 2019. I would like to thank <u>Alex Smola</u> and <u>Mu Li</u> for generously sharing their course material and allowing me to use their material.