Useful Information

- Derivative of Cosine $\frac{d}{dt}\cos(kt) = -k\sin(kt)$
- Derivative of Sine $\frac{d}{dt}\sin(kt) = k\cos(kt)$
- Fourier Transform: $F(\omega) = \int_{-\infty}^{\infty} f(t)e^{-i\omega t}dt$
- Gravitational Constant: $G = 6.6 \times 10^{-11} \, \text{N}(\text{m/kg})^2$
- Gravitational Time Dilation: $t_0 = t_f \sqrt{1 \frac{2GM}{rc^2}}$
- Newtons 2nd Law: $F = m \frac{d^2x}{dt^2}$
- Small Angle Approximation: $sin(\theta) \approx \theta$ for $\theta << 1$
- Snell's Law: $\frac{v_1}{v_2} = \frac{n_2}{n_1}$
- Speed of light: $c = 3.0 \times 10^8 \,\mathrm{m/s}$
- Time Dilation: $\Delta t' = \frac{\Delta t}{\sqrt{1 \frac{v^2}{c^2}}}$
- Uncertinty of N Averages: $\sigma_{ave} = \frac{\sigma}{\sqrt{N}}$
- Velocity Formula: $v = \frac{x}{t}$