Function Spaces

Lecture 27 - 07/04/21 Cauchy Sequences and Complete Spaces

Recall the definition of a Cauchy sequence in a metric space.

A metric space (X,d) is said to be complete if every Cauchy seq. in X converges.

- → Any convergent sequence is Cauchy.
 - → Let A be a closed subspace of a complete metric space (X,d). Then A is complete in the restricted metric.
- → X is complete under the metric d iff it is complete under the standard bounded metric d = min {d, 1}.

Try to prove the above basic facts.

(5.1)

Lemma. X is complete iff every Cauchy sequence in X has a convergent subsequence. Proof let (x_n) be Cauchy and the subseq. $x_{n_k} \to x$.

For $\varepsilon>0$, let N such that $d(x_n, x_m) < \varepsilon/2$ for all n, m > N.

For sufficiently large k>N, let $d(x_{n_k},x)<\frac{\varepsilon}{2}$.

Then & (xn, x) < & for all n>N, proving the claim.

The other direction is direct.

Theo. IR^k is complete in the Euclidean metric d and the square metric f. (5-2)

Proof Since $P < d < \sqrt{k} P$, \mathbb{R}^k is complete with one metric lift it is complete with the other.

We shall show that (IR^k, p) is complete. Let (X_n) be Cauchy. Then $\{X_n\}$ is a bounded subset of IR^k (Why?).

Let $x_n < M$ for all $n \in \mathbb{N}$. Then $x_n \in [-M, M]^k$ for any k. Since this subspace is compact (it is closed and bounded), any sequence in it has a convergent subsequence, (x_n) in particular. Using Lemma 5.1 completes the proof.

Lemma. Let $X = \prod_{\alpha \in J} X_{\alpha}$ and (x_n) a sequence of points in X. Then $(5.3) \times_n \rightarrow \times$ iff $\prod_{\alpha} (x_n) \rightarrow \prod_{\alpha} (x)$ for all $\alpha \in J$.

Proof The forward direction is immediate since T_{α} is a continuous map. Suppose $T_{\alpha}(x_n) \to T_{\alpha}(x)$ for all $\alpha \in J$. Let $U = T_{\alpha}U_{\alpha}$ be a basis element of X containing X. For each α with $U_{\alpha} \neq X_{\alpha}$, let N_{α} such that $T_{\alpha}(x_n) \in U_{\alpha}$ for $n \geq N_{\alpha}$. Letting N be the largest of these N_{α} , then for all $n \geq N$, $x_n \in U$. Therefore, $x_n \to X$

Theo. There is a metric for the product space IR^{CO} with respect to which (5.4) it is complete.

Proof. Let $D(x,y) = \sup_{i} \{ \min \{d(x,y), i\}_{i} \}$. D induces the product topology.

We claim that \mathbb{R}^{ω} under D is complete. Let (x_n) be Cauchy in \mathbb{R}^{ω} . For fixed i, $(\pi_i(x_n))$ is Cauchy because $\overline{a}(\pi_i(x), \pi_i(y)) \leq i D(x,y)$. Therefore, $(\pi_i(x_n))$ converges to some a_i . The result follows on using Lemma 5.3.

Completeness is not a topological property. For example, (-1,1) is not complete and R is, but the two are homeomorphic.

Def Let (y,d) be a metric space. If $x = (x_a)_{\alpha \in J}$ and $y = (y_a)_{\alpha \in J}$ are paints in y^J , then $p(x,y) = \sup \{d(x_a,y_a) : \alpha \in J\}$ defines a metric on y^J . It is called the uniform metric on y^J corresponding to the metric d on y^J .

Recall that $Y^3 = \{f: J \rightarrow Y\}$. Then $\overline{p}(f,g) = \sup \{\overline{a}(f(\omega), g(\omega)): \omega \in J\}.$

Theo. With the above defined notation, if (Y, d) is complete, then so (5.5) is (Y^{J}, \overline{e}) .

Proof Since (Y,d) is complete, so is (Y, J).

Let (f_n) be Cauchy in Y^J For $\alpha \in J$, $\overline{a}(f_n(\alpha), f_m(\alpha)) \leq \overline{e}(f_n, f_m)$.

Therefore, $(f_n(\alpha))$ is Cauchy in (Y,\overline{A}) , and thus convergent (Why?). Let $f_n(\alpha) \to f(\alpha)$ for each α .

Let $\varepsilon>0$. Cauchyness implies that for sufficiently large N, \overline{a} (fn(α), fm(α)) $< \varepsilon/2$ for n,m \geqslant N and $\alpha \in J$.

Then making m arbitrarily large and using convergence of $(f_n(\alpha))$, $\overline{d}(f_n(\alpha),f(\alpha)) \leq \frac{\epsilon}{2}$ for n > N and $\alpha \in J$.

Therefore,

 $\overline{\rho}\left(f_{n},f\right)\leq \frac{\varepsilon}{2}/2<\mathcal{E}\quad\text{for}\quad n\geqslant N,$ proving the claim.

Hence forth, denote

 $Y^{\times} = \{f: Y \rightarrow X\}$ $\mathcal{C}(X,Y) = \{f: Y \rightarrow X : f \text{ is continuous}\}$ $\mathcal{B}(X,Y) = \{f: Y \rightarrow X : f \text{ is bounded}\}$

Theo. Let X be a topological space and (y,d) be a metric space Then (5.6) $\mathcal{C}(X,Y)$ and $\mathcal{B}(X,Y)$ are closed in Y^X under the uniform metric. In particular, if Y is complete, so are $\mathcal{C}(X,Y)$ and $\mathcal{B}(X,Y)$.

Proof Let $f_n \to f$ in Y^X . We claim that f_n converges uniformly. For each \$\&>0\$, choose N such that $\overline{\rho}(f_sf_n) < *E$ for all n>N.

Then for all XEX,

 $\overline{d}\left(f(x),f_{n}(x)\right)\leq\overline{\varrho}\left(f,f_{n}\right)<\varepsilon,$

so (fn) converges uniformly to f.

Now, we show that C(X,Y) is closed in Y^X relative to $\overline{\rho}$. Let $(f_n) \in C(X,Y)$ and $f_n \to f$. By the uniform limit theorem, $f \in C(X,Y)$

Showing that $\mathcal{B}(x,y)$ is closed is straightforward (using the triangle inequality).