

Mechanical Design and Optimization of a Standardized Cubesat

A Thesis by David Malawey 2016.02.23

Outline

- 1. Background and Research Objectives
- 2. Multidisciplinary Optimization
 - Problem Setup
 - Sensitivity, Pareto Front
- 3. Mechanical Design and Prototyping
 - Design for Manufacturability
 - Finite Element Analysis
- 4. Results, Lessons, Suggestions
 - Machining results
 - MDO results
 - Overall Contributions
- 5. Questions & Extras

Term	Meaning
Power	electrical power
Batt	Batteries
Panel	solar panel
X_n	design variable
<i>X</i> *	Optimal design at hand
P_n	Parameter
g(X,P)	Constraint function
J(X,P)	Objective function

Background

- MDO for Cubesats
 - o "Large Scale MDO of a Small Satellite..." [1]

- Maximizes power gen, data transmit
- Extensive (attitude, communication, power)
- Configuration of Existing satellite
- "Uncertainty-Based MDO of Lunar Cubesat..."[2]

- Maximize capability for lunar mission
- Payload, propulsion decided
- "...Propulsion for Earth-Escape Missions" [3]

- Novel Thruster Feasibility
- ∆V Maneuvers
- "Mechanical Design and Optimization..."

- Cost effectiveness
- Varying missions

Background

- CubeSat Prototypes
 - o Full design envelope, CDS [2]
 - o Sheet metal: high investment
 - Extrusion: low flexibility
 - o intricate machining: expensive

Unknown – Shared by NanoRacks

Objectives of the research

- Maximize mission effectiveness, <u>minimizing the mass</u> of the critical functions.
- Optimize for <u>cost effectiveness</u>
 - o Include commercial off-the-shelf components
- Maintain <u>flexibility</u> to reoptimize for different missions.
 - o Take advantage of continuously growing body of data
 - o Ability to expand to 3U, NU.
- Make a prototype that is <u>fed by the optimizer</u> and is designed for manufacturability
 - Make a CAD model and simple finite element analysis

2U configuration

- Design Vector:
 - shown
- Objective function:
 - min. mass
 - · min. cost
- Constraints (3)
 - Power demand is met by panels and batteries
 - Structure bending stiffness
 - Propellant is sufficient

Var	Description	Metric	Lower	Upper
X_1	Propellant type	Gas type	1	9
X_2	Thruster type	Model	1	3
X_3	Structure material	Material	1	3
X_4	Solar panels	Qty	0	4
X_5	Batteries	Qty	1	Inf.
X_6	Structure rail width	(mm)	3	20

Power Constraint

$$\sum_{1}^{n} (I_{n}v_{n}D_{n} * 24P_{1}) - (X_{5}v_{b}P_{7} + X_{6}P_{3}P_{8} * 24P_{1}) = 0$$

 I_n = current

 v_n = voltage

 D_n = duty cycle

 P_1 = mission duration

n = no. devices

 v_b = batt voltage

 P_7 = batt capacity (Ah)

 P_3 = panel power rating

 P_8 = sunlight ratio

- Novel "Heuristic + Gradient" combination
 - GA resolves all 6 variables
 - SQP refines 3 continuous variables
 - Fairly repeatable

min J(X,P) = [mass(X,P)]s.t. $g(X,P) \le 0$

 $x_{L.Bound,i} \leq x_i \leq x_{U.Bound,i}$

- Sensitivity Analysis
 - Sensitivity: continuous variables
 - Mass: subject to structure
 - Cost: subject to solar panels
 - Also, Parameter Sensitivity

Mass Cost

Jacobean:
$$\frac{\%}{\%} = \begin{bmatrix} .084 & .395 \\ .075 & .003 \\ .336 & .006 \end{bmatrix}$$
 Panel

Struct.

Pareto front

- AWS simplest method with 2-stage optimizer.
- Difficulty with "bare" Pareto front
 - Increase lambda resolution
- Investigate design decisions

for i=1:N;

$$\lambda = (i/N)$$

 $J^* = cost(\lambda) + mass(1 - \lambda)$

- Begin with Benchmark
 - o Reduce cost
 - Maintain function (mass, strength, features)
 - Make design fed by optimizer

- Design takes results from the optimizer
- Bending stiffness constraint is met by adjusting length L
- Frame mass is proportional to x-sec area

	ISIS1	ISIS2	DPM
I_{a} , (mm ⁴)	61	10	78
$I_a (mm^4)$	239	35	270

Constraint

$$g_2(X, P) = EI_{x^*} - EI_{benchmark}$$

Area Moment of Inertia

$$I_a = \frac{t(2L - t)(2L^2 - 2Lt + t^2)}{12}$$

- Build Models
- Perform simple FEA
 - Consider: Moving from Benchmark to FEA as baseline.
 - Perform Convergence Study

© David Malawey, Texas A&M Mechanical Engineering Department

Fixture for speed and accuracy

Prototyping Results

- Continue with prototyping
 - Meet the tolerances
 - o Improve the speed by 62%
 - Find weaknesses in process
- Truly measure manufacturing time/cost

- Fitment into P-pod deployer
- Meeting tolerances
- Add modular components
 - Inert Fixed Panel
 - Solar Fixed Panel
 - Deployable Antenna FP

ey, Texas A&M Mechanical Engineering Department

Conclusions

- Heuristic method is capable of optimizing a cubesat and is enhanced by a gradient-based function for continuous variables.
- More COTS subsystem data is required to make a truly usable
- Manufacturing cost can be lowered at least 50% from existing satellites while maintaining functionality.
 - (piece by piece evaluation)

Recommended Future Work

Future Item	Description
Validate X* Design with full prototype	Build a model with all subsystems. Determine feasibility and adjust parameters as needed.
Pareto Front – Add heuristic data	Populate the optimizer with more thruster designs and more metals to fabricate from. Add the option of using magnetorquers which have no cold gas and find the point of cost advantage
Add Multi-timescales	Ensure that the batteries are sufficient during high-draw period in shadow.
Details That Impact Performance	Account for heating requirements
Write CNC generating code	Find a way to generate G-code from the CAD model and integrate CAD model into optimizer.

References

- [1] "CubeSat Design Specification (CDS)," California Polytechnic, San Luis Obispo, 2009.
- [2] X. Hu, "Uncertainty-based Multidisciplinary Design Optimization of Lunar CubeSat Missions," University of Cambridge.
- [3] S. Spangelo and B. Longmier, "Optimization of CubeSat System-Level Design and Propulsion Systems for Earth-Escape Missions," *Journal of Spacecraft and Rockets*, vol. 52, no. No.4, 2015.
- [4] M. Swartwout, "The First One Hundred Cubesats: A Statistical Look," *Journal of Small Satellites*, pp. 213-233, 2013.
- [5] J. T. Hwang, D. Y. Lee, J. W. Cutler and J. R. R. A. Martins, "Large-Scale MDO of a Small Satellite Using a Novel Framework for the Solution of Coupled Systems and their Derivatives," in *54th AIAA Structures*, *Structural Dynamics, and Materials Conference*, Boston, MA, 2013.

Questions or Extras?

Deployable antenna video (youtube)

Propulsion Module Explained

Prototype tolerance validation

• MDO Matlab code

• FEA with bearing stress

Pareto gradient misbehavior

Sensitivity to parameters

• (give handout)

Sensitivity to Parameters

Parameter	nominal	new	Effect
accy mass (kg)	0.33	0.66	mass increase only 337g
thruster (qty)	4	2	change from Moog (9g,1.0W) to Busek (17g,0.89W)
struct L.bound (mm)	3	1	1.66mm A36 steel
batt capacity (mAh)	3400	5000	from 2.39> 2.35 panels
prop tank volume	16.3	30	Xenon 1 tank
disturbance/day (ΔV)	0.5	0.75	30g Freon + 2tank, 43g Freon +3tank
duration (days)	30	60	58g prop + 4 tank, pwr cons increase to 746 but made by solar
X*	-	-	freon, titanium, Moog1W

Propulsion Module

- Impulse required (N·s) is a product of the required change in velocity and mass of satellite. When a propellant is selected, the specific impulse (units=seconds) of that propellant is used to determine the mass of that propellant required to achieve the Δv .
- Specific impulse roughly means the force (N) exerted by expelling a unit weight of propellant per second (N/s)
- The volume of the propellant is found using the density at which that cold gas might be stored.

Propellant	Density (3500 psia, 0C) (g/cm3)	Specific Impulse (s)	Cost(\$/kg)
Hydrogen	0.02	296	120
Helium	0.04	179	52
Neon	0.19	82	330
Nitrogen	0.28	80	4
Argon	0.44	57	5
Krypton	1.08	39	330
Xenon	2.74	31	1200
Freon 14	0.96	55	10
Methane	0.19	114	10
Ammonia	0.88	105	10

$$\Delta v_{required} = \Delta v_{initial} + P_9 P_1$$

$$m_{propellant} = \frac{I_{req}}{(I_{sp} * g)}$$

$$I_{req} = \Delta v_{req} m$$

 P_9 = disturbance per day P_1 = mission duration g = gravity I_{sp} = specific impulse of propellant

FEA – Bearing Stress

- 45lb load total
- yields a minimum factor of safety of
 3.9 in all regions of the material

Prototype Tolerance Validation

Pareto gradient misbehavior

- GA-only gives X points
- Adding SQP results in O's
 - All X points converge to blue points
 - Sometimes this *increases* the objective function from the GA result.

Pareto Designs

Comparison of Thesis Scopes of Work

CubeSat MS Thesis Scopes of Work

David Malawey, 2/12/2015	David	Malawey,	2/12/2015	
--------------------------	-------	----------	-----------	--

David Malawey, 2/12/2015																					
Design/analysis Tasks																					
		1U, 2U, or 3U	FEA (sat or frame)	Mechanical drawings	Vibration/stress Simulation	Actual Vibration/stress test	test/experiment design	structure design	module selection	develop prototype	antenna mechanical design	FEA 1 or more components	frame manufacturing method	material selection, detailed	simulation design	Attitude control algorithsms	ADC component integration	aerodynamic calculations	magnetic calculations	gravity calculations	TOTAL
Title David Malawey Thesis	Level	0130	1	2	>	A	۳	25	₹	70	ਰ 1	Œ	1	-	. <u>s</u>	Ā	4	ă	-	<u></u>	F
Quick-Turn Finite Element Analysis for Plug-and-Play																					- 0
Satellite Structures	MS thesis	1U	1	1	1	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	5
Development of CubeSat Vibration Testing Capabilities	IVIS CITESIS	10			_	-	-											_		_	_
for the Naval Postgraduate School & Cal Poly San Luis																					
Obispo	MS thesis	1U	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	2
Development of Composite and Polymer Material																				\neg	\neg
Cubesat Structure with focus on Materials	MS (1sem)	3U	0	1	0	0	0	1	0	0	1	1	1	1	0	0	0	0	0	0	6
Desgn of a Cubesat Guidance, Navigation, and Control																					\neg
Module	MS thesis	1 U	0	1	0	0	0	0	1	0	0	0	0	0	1	1	1	0	0	0	5
Structural Subsystem Design, Analysis, and Opitimization																					\neg
for a nanosatellite	MS thesis	1 U	1	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	3
Passive Attitude Stabilization for Small Satellites	MS thesis	1U & 3U	0	0	0	0	0	0	0	0	0	0	0	1	1	1	0	1	1	1	6
Design, Analysis, Fabrication, and Testing of a																					
Nanosatellite Structure	MS thesis	NA	1	0	1	1	0	1	0	1	0	0	1	0	0	0	0	0	0	0	6
Nanosat/Cubesat Constellation concepts	MS thesis																				
			3	3	2	2	1	4	1	2	1	1	2	3	2	2	1	1	1	1	

c = consideration

- → Propulsion Calculations
- → [very basic] propulsion controller design
- → 1U module optimization (3U consideration but not design)