Esame di Logica

14 Febbraio 2024

Questo è un esame a libro aperto: gli studenti possono portare e usare liberamente libri, appunti, fogli stampati e così via, ma non possono usare dispositivi elettronici come tablet o cellulari (o comunicare).

1 Logica Sillogistica

- Scrivete una teoria in logica sillogistica che rappresenti le seguenti affermazioni:
 - Tutte le stelle sono gassose;
 - Nessun asteroide è gassoso;
 - Qualche pianeta è gassoso;
 - Qualche pianeta non è gassoso;
 - Nessuna stella è un pianeta.
- Per ognuna di queste affermazioni, verificate se è una conseguenza della vostra teoria. Se lo è, scrivetene una dimostrazione nel sistema di deduzione visto a lezione (usando dimostrazioni dirette o indirette); se non lo è, descrivete un modello che soddisfa tutte le formule della vostra teoria ma non l'affermazione data.
 - 1. Qualche pianeta non è un asteroide;
 - 2. Nessun pianeta è un asteroide;
 - 3. Nessuna stella è un asteroide;
 - 4. Qualche pianeta non è una stella.

SOLUZIONE:

- $\bullet\,$ Siano ${\bf s}=$ stella, ${\bf g}=$ gassoso, ${\bf a}=$ asteroide, ${\bf p}=$ pianeta. Allora la teoria è
 - $-\mathbf{A}(s,g);$
 - $-\mathbf{E}(a,g);$

- $-\mathbf{I}(p,g);$
- $-\mathbf{O}(p,g);$
- $-\mathbf{E}(s,p).$
- Consideriamo le quattro affermazioni:
 - $-\mathbf{O}(p,a)$ segue dalla teoria per dimostrazione diretta:
 - (1) | E(a,g) Ipotesi
 - (2) | I(p,g) Ipotesi
 - (3) $\mid E(g,a) C1, da(1)$
 - (5) O(p,a) PS4, da (3) e (2)
 - $\mathbf{E}(p,a)$ non segue dalla teoria. Infatti, consideriamo il modello con dominio $\Delta=\{1,2,3\}$, dove $\iota(s)=\{1\},\ \iota(p)=\{2,3\},\ \iota(a)=\{3\},\ e$ $\iota(g)=\{1,2\}.$

Allora

- * $\mathbf{A}(s,g)$ è soddisfatta, perchè $\iota(s) = \{1\} \subseteq \{1,2\} = \iota(g);$
- * $\mathbf{E}(a,g)$ è soddisfatta, perchè $\iota(s) \cap \iota(g) = \emptyset$;
- * $\mathbf{I}(p,g)$ è soddisfatta, perchè $\iota(p) \cap \iota(g) = \{2\} \neq \emptyset$;
- * $\mathbf{O}(p,g)$ è soddisfatta, perchè $\iota(p)\setminus\iota(g)=\{3\}\neq\emptyset$;
- * $\mathbf{E}(s,p)$ è soddisfatta, perchè $\iota(s) \cap \iota(p) = \emptyset$;

ma $\mathbf{E}(p,a)$ non è soddisfatta, perchè $\iota(p) \cap \iota(a) = \{3\} \neq \emptyset$.

- $-\mathbf{E}(s,a)$ segue dalla teoria per la seguente dimostrazione diretta:
 - (1) | A(s,g) Ipotesi
 - (2) E(a,g) Ipotesi
 - (3) $\mid E(g,a) C1, da(2)$
 - (4) E(s,a) PS2 da (3) e (1)
- $\mathbf{O}(p,s)$ segue dalla teoria per la seguente dimostrazione indiretta:
 - $(1) \mid A(s,g)$ Ipotesi
 - (2) O(p,g) Ipotesi
 - (3) A(p,s) Contraddizione di O(p,s)
 - $(4) \mid A(p,g) \quad PS1, da(1) e(3)$
 - e $\mathbf{A}(p,g)$ e $\mathbf{O}(p,g)$ sono in contraddizione.

2 Logica Proposizionale

- Scrivete una teoria di logica proposizionale che descriva il seguente scenario:
 - Se il semaforo è rosso e la macchina passa il semaforo, la macchina riceve una multa;
 - Se la macchina non passa il semaforo, la macchina non riceve una multa.
- Usando una tabella di verità, trovate tutti gli assegnamenti di valori di verità che soddisfano la teoria;
- Per ognuna delle seguenti affermazioni, verificate se è una conseguenza della vostra teoria oppure no, usando le tavole di verità:
 - Se il semaforo non è rosso, la macchina non riceve una multa.
 - Se la macchina non riceve una multa, la macchina non passa il semaforo.
- Verificate se la teoria ha "Se la macchina non riceve una multa e il semaforo è rosso, la macchina non passa il semaforo" come conseguenza logica oppure no usando il metodo dei tableau (potete chiudere un ramo non appena trovate due letterali in contraddizione, senza espandere gli altri).

SOLUZIONE:

 \bullet R = il semaforo è rosso, P = la macchina passa il semaforo, M = la macchina riceve una multa. La teoria è

$$(R \wedge P) \to M;$$

 $(\neg P) \to (\neg M).$

• La tabella di verità è

R	P	M	$R \wedge P$	$(R \wedge P) \to M$	$\neg P$	$\neg M$	$(\neg P) \to (\neg M)$
0	0	0	0	1	1	1	1
0	0	1	0	1	1	0	0
0	1	0	0	1	0	1	1
0	1	1	0	1	0	0	1
1	0	0	0	1	1	1	1
1	0	1	0	1	1	0	0
1	1	0	1	0	0	1	1
1	1	1	1	1	0	0	1

Quindi gli assegnamenti che soddisfano la teoria sono quelli che assegnano a R, P, e M i valori (0,0,0), (0,1,0), (0,1,1), (1,0,0), e (1,1,1).

• Le affermazioni da verificare sono $(\neg R) \to (\neg M)$ e $(\neg M) \to (\neg P)$.

R	P	M	$\neg R$	$\neg M$	$(\neg R) \to (\neg M)$	$\neg M$	$\neg P$	$(\neg M) \to (\neg P)$
0	0	0	1	1	1	1	1	1
0	1	0	1	1	1	1	0	0
0	1	1	1	0	0	0	0	1
1	0	0	0	1	1	1	1	1
1	1	1	0	0	1	0	0	1

Quindi nessuna formula è una conseguenza della teoria.

• La formula $(\neg M \land R) \to \neg P$ segue dalla teoria secondo il seguente tableau chiuso:

3 Logica dei Predicati

• Scrivete una teoria in logica dei predicati che rappresenti le seguenti affermazioni, usando i predicati unari $\mathbf{A}(x)$ ("x è un animale"), $\mathbf{V}(x)$ ("x è volante"), $\mathbf{L}(x)$ ("x ha le ali"), $\mathbf{U}(x)$ ("x è un uccello"), e $\mathbf{N}(x)$ ("x è un insetto"):

- Tutti gli animali che sono volanti hanno ali;
- Tutti gli uccelli hanno ali;
- Qualche insetto ha ali;
- Nessun insetto è un uccello;
- Tutti gli insetti e tutti gli uccelli sono animali;
- Esistono animali che sono volanti ma che non sono nè uccelli nè insetti.
- Esiste una struttura che soddisfa la teoria descritta sopra e in cui non esisteno uccelli? Se no, spiegate perchè non può esistere; se sì, presentatela.
- Esiste una struttura che soddisfa la teoria descritta e in cui non esistono insetti? Se no, spiegate perchè non può esistere; se sì, presentatela.

SOLUZIONE:

• La teoria è

```
- \forall x((A(x) \land V(x)) \rightarrow L(x));
- \forall x(U(x) \rightarrow L(x));
- \exists x(N(x) \land L(x));
- \neg \exists x(N(x) \land U(x));
- \forall x(N(x) \rightarrow A(x)) \land \forall x(U(x) \rightarrow A(x));
- \exists x(A(x) \land V(x) \land \neg U(x) \land \neg N(x)).
```

- Esistono strutture che soddisfano la teoria e in cui non esistono uccelli. Per esempio, consideriamo la struttura con dominio $\{1,2\}$ dove $I(A) = I(V) = I(L) = \{1,2\}, \ I(U) = \emptyset, \ I(N) = \{1\}.$
- Una tale struttura non può esistere. Infatti, la teoria dice che qualche insetto ha le ali, e pertanto qualche insetto deve esistere.