

OPO Digitale Technieken

Les 1

Algemene info

- Doel OPO = wat ken/kun je na deze lessen...
 - Begrippen (vb. analoog-digitaal; synchroon-asynchroon, ...) en afkortingen
 - Digitale oplosmethoden
 - Symbolen + schema's leren tekenen
 - Digitale schakelingen bouwen op breadboard
 - Met datasheets leren werken
 - Metingen uitvoeren op digitale schakelingen
 - Simulatie
 - Toepassingen/schakelingen leren kennen/herkennen
 - Codes, talstelsels
 - Input-output (hardware interface met mens)
 - En veel, veel meer...

Algemene info

- ECTS lezen (via Toledo)
 - OPO of module = 6 studiepunten (180 uur studie)
 - Begintermen
 - Inhoud
 - Evaluatie

Algemene info

- Evaluatie:
 - 1e zittijd = 2e EP (examenperiode) = juni MAAR
 → Eindevaluatie theorie Digitale Technieken en Oefeningen samen met permanente evaluaties in het labo → 1 cijfer (op 20) → geen deelvrijstellingen!!!
 - 2^e zittijd = 3^e EP = augustus of september
 - Zie ECTS
 - TIP: slaag in 1^e zittijd!!!
- Aanwezigheidscontroles kunnen
- Lessen beginnen stipt → te laat = niet meer binnenkomen
- Lessen goed bijhouden: voor theorie, oefeningen en labo!!

Te kennen leerstof?

- Theorie
- Oefeningen
- Toepassingen, schema's, omzettingen, symbolen, ...
- Cursusboek; geziene inhouden, rest is 'naslagwerk'!
- Presentaties en <u>extra</u> documenten op Toledo
- Samengevat: ALLES WAT GEZIEN IS

 TIP: in de theorieles wordt duidelijk gezegd wat gekend dient te zijn en hoe je het moet kennen (niet per e-mail of op Toledo)!

Analoge weergave

- De meeste fysische verschijnselen zijn continu:
 - Vloeiend verloop
 - Oneindig veel gradaties
- Waarneembaar maken of gemakkelijk voorstellen:
 - Via geschikt instrument weergeven
 - Liefst visueel weergeven
 - Traditioneel met aanwijsnaald
 - In functie van de tijd: vloeiende grafiek
- Deze weergave noemt men 'analoog'
- Grieks: αναλογος = in overeenstemming met, evenredig
- Analoog = in overeenstemming met de werkelijkheid

Analoge weergave

Meten = aflezen op een geijkte schaal

Alcoholthermometer

Temperatuur

Draaispoelmeter

Stroomsterkte

Weeghaak =

Kracht (gewicht)

Digitale weergave

- Er bestaan ook 'abrupte' gebeurtenissen:
 - Verbreken van een contact
 - Verspringen van een secondewijzer
 - Het tellen van voorwerpen: een aantal neemt toe met volle eenheden
- Getallen hebben een 'discreet' karakter. Discreet = waarde die met duidelijk te onderscheiden tussenstappen verspringt.
- De overgang van het ene natuurlijk getal naar het volgende gebeurt altijd sprongsgewijs = discontinu.
- De weergave van zulke ogenblikkelijke veranderingen = 'digitaal'. Algemene betekenis is getalvormig, numeriek.

Analoog - digitaal

Digitaal meettoestel

Digitaal meettoestel: maakt automatisch de omzetting van de analoge meting naar een digitale aanduiding.

Aanduiding rechtstreeks in cijfers = digitaal toestel

Omzetting van analoge naar digitale waarde: ADC = analoog digitaal convertor

De gebruikte elektronische componenten bepalen 'analoge schakeling' of 'digitale schakeling'. Welke componenten?

Analoge en digitale toestellen

Analoge schakelingen:

- versterkers
- filters

- ...

bevatten: weerstanden, condensatoren, spoelen

transistoren, fets, opamps, ...

Digitale schakelingen:

- computer
- GSM
- flatscreen TV
- tablet

- ...

<u>bevatten</u>: logische poorten (AND, OR, NOT, ...)

tellers, geheugens, microcontrollers

FPGA, ...

Logische variabelen en logische niveau's

Begrippen

- Logische VARIABELE (of binaire variabele)
 - 2 toestanden \rightarrow o toestand
- - → 1 toestand
 - aanduiding: "bit" (binary digit)
- Logische niveaus (gebieden)
 - 2 niveaus
- → Hoog niveau (H) [meest pos. algebraïsche waarde]
- → Laaq niveau (L) [minst pos. algebraïsche waarde]
- Soorten logica
 - positieve logica

negatieve logica

De logische o en 1 blijven altijd gelijk aan het logische concept Fout en Juist. Ze hebben geen direct verband met enige fysische waarde (= spanning).

België - Nederland

2-0

H-L

5V-oV

TTL-logica = Transistor Transistor Logic

Analoge signalen: ruim spanningsbereik (tussen voeding en massa)

→ kwetsbaarheid voor vervorming

Digitale signalen: enkel uiterste niveaus, tussenliggende waarden verboden

Eenvoudigste manier om een digitaal signaal op te wekken:

In de rest van de cursus: betekenis van hoog en laag niveau is bitwaarde 1 en o (positieve logica)

Digitaal signaal = concept is simpel = 'ongevoelig' voor verstoring (als signaal mag afwijken van zijn ideale niveau) → bredere stoormarge

Stoorpulsen en vervorming hebben geen effect op de kwaliteit van het digitale signaal (brom, schakelruis, ...).

Opgelet: signaal toch niet te erg verminken!

Praktijk: een digitaal signaal vervormt (schuine flanken, afgeronde hoeken, ...) kan eruit zien als een analoog signaal

Jij kan uit context afleiden welke interpretatie geldig is: (grillig) sinusachtig golvend → analoog eerder blokgolf → digitaal

Waarde spanning

gebied waarin de spanning ligt 2 mogelijkheden: H of L

Oefening: binaire variabele op ID-kaart?

Logische functie

Logische functie

- Binaire variabele X
- Binaire variabelen A, B, C, ...
- Ondubbelzinnig bepaald
- Wij noteren de variabelen A, B, C, X, ... bij voorkeur met een hoofdletter

Voorbeeld notatiewijze:

$$X = A.B + C + D$$

Logische functie – AND (EN)

Logische functie – AND (EN)

Serieschakeling van drukknoppen

Waarheidstabel (= WT) – AND (EN)

Niets doen, niet indrukken = 0 Wel indrukken = 1

В	A	Y
0	0	0
0	1	0
1	0	0
1	1	1

Logische functie – OR (OF)

$$Y = A + B$$

Logische functie - OR (OF)

Parallelschakeling van drukknoppen

Waarheidstabel

В	Α	Υ
0	0	0
0	1	1
1	0	1
1	1	1

Voorstellingswijzen logische functies

Venn-diagram

Waarheidstabel – Venn-diagram

В	A	X
0	0	0
0	1	0
1	0	0
1	1	1

Voorbeeld met 3 variabelen

Complex voorbeeld...

Karnaugh-kaart (met 3 variabelen)

Samenvatting: voorstellingswijzen van logische functies

Naast een formule van een logische functie, bestaan ook grafische voorstellingswijzen:

Waarheidstabel

C	В	A	X
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

Venn-diagram

Karnaugh-kaart

Informatie-inhoud van bitstrings

Tabel met alle mogelijke combinaties k

$\mathbf{b_3}$	\mathbf{b}_2	$\mathbf{b_1}$	$\mathbf{b_0}$
0	0	0	0
0	0	0	1
0	0	1	0
0	0	1	1
0	1	0	0
0	1	0	1
0	1	1	0
0	1	1	1
1	0	0	0
1	0	0	1
1	0	1	0
1	0	1	1
1	1	0	0
1	1	0	1
1	1	1	0
1	1	1	1

$$2^{n-1} < k \le 2^n$$

b = bit n = aantal bits

> **Bitstring** $b_3b_2b_1b_0$ door bij elkaar horende bits na elkaar te schrijven. Links MSB (most significant bit = meest beduidende bit) en rechts LSB (least significant bit = minst beduidende bit).

Bitstrings

Voorbeeld: toestanden ↔ aantal bits

Wat zijn het aantal mogelijke combinaties met 3 bits?

Afspraken voor waarheidstabel (WT)

- Vanaf nu gebruiken we standaard de systematisch aflopende volgorde in WT voor theorie, lab, oefeningen en evaluaties!
- Dit heeft enkele voordelen:
 - Links een kolom bijtekenen voor uitbreiding met extra variabelen.
 - Iedereen heeft dezelfde oplossing, dus gemakkelijk te vergelijken.
 - Later: voordeel bij opstellen van een Karnaughkaart
- Bovenaan de tabel staat de laagste decimale waarde (vb. 000) en onderaan de hoogste decimale waarde (vb. 111)

Afspraak voor waarheidstabel (WT)

M2R		L2R	
C	В	Α	X
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Oefening:

Stel de waarheidstabel op (volgens de opgegeven afspraken). Teken ook het Venn-diagram.

NB: waar niets staat, is het inverse van de variabele A, B of C. Je mag dit wel noteren, maar voor de duidelijkheid wordt dit meestal weggelaten.

Meer logische functies

NOT (NIET)

Y
1
0

Andere notaties:

$$\overline{\mathbf{A}} = \mathbf{A'} = /\mathbf{A} = \mathbf{NOT} \mathbf{A}$$

Letter overstrepen in Word: typ letter en druk dan op ALT+772 (je kan dit herhalen voor meerdere streepjes boven elkaar bij slechts één letter)

NOR (NOF)

$$Y = A + B + C + ...$$

NOR (NOF)

$$\mathbf{Y} = \mathbf{A} + \mathbf{B} + \mathbf{C} + \dots$$

С	В	A	Y
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

NAND (NEN)

Analoog – thuis zelf als oefening maken

XOR (XOF)

XOR (XOF)

$$\mathbf{Y} = \mathbf{A} \oplus \mathbf{B}$$

_	B=0	B=1
A=0	0	1
A=1	1	0

В	Α	Y
0	0	0
0	1	1
1	0	1
1	1	0

Inverse XOR?

_	B=0	B=1
A=0	0	1
A=1	1	0

_	B=0	B=1
A=0	1	0
A=1	0	1

XOR

XNOR

XNOR (XNOF)

$$\mathbf{Y} = \overline{\mathbf{A} \oplus \mathbf{B}}$$

	B=0	B=1
A=0	1	0
A=1	0	1

В	А	Υ
0	0	1
0	1	0
1	0	0
1	1	1

Engels → **Nederlands**

OR = OF $\underline{N}OR = \underline{N}OF$

AND = EN $\underline{N}AND = \underline{N}EN$

NOT = NIET

XOR = XOF XNOR = XNOF

(= EXOR) (plaats X is steeds vooraan!!)

(= EOR)

& = ampersand = betekenis 'EN'

Evolutie symbool: Et-4-8-8-8

Symbool juist schrijven!

 $\alpha \neq \&$

Fout gevonden?

AND

Normen:

"Rechthoekige":

"Afgeronde":

IEC = International Electrotechnical Commission

ANSI (of MIL) = American National Standards Institute

NAND NOR XNOR

