

Phani Jayanth Jonnalagedda

☑Email **☑**+917330743873 **Ģ**GitHub **⊕**Website

My research interests lie in **Computer Architecture**, **Parallel Processing**, and **Deep Learning**, specifically in robust and energy-efficient hardware accelerator architectures, Vector Processing, and In-Memory Computing techniques

EDUCATION

Indian Institute of Technology Madras (IITM)

Chennai, India

B. Tech (Honours) in Electrical Engineering and Minor in Computing: CGPA 9.1/10

(Jul 2019 - Jun 2023)

PUBLICATION

S. Mittal, S. Srivastava, and J. P. Jayanth, "A Survey of Deep Learning Techniques for Underwater Image (Feb 2022) Classification," in IEEE Transactions on Neural Networks and Learning Systems, <u>DOI</u>

SKILLS

Languages: Bluespec Verilog, Verilog HDL, Python, C/C++

Frameworks: PyTorch, ROS, CocoTb, Tensorflow, SciPy **Others:** Git, Docker, LaTeX, AWS, Arduino, ESP32, RPi

Tools: Gem5, Spike, ChampSim, LTSpice, GNU Electric **RESEARCH PROJECTS**

RISCV Vector ISA Support in SHAKTI C-Class, Undergraduate Thesis, Prof. Kamakoti V, IITM

(Nov 2022 - Present)

- Augmenting the SHAKTI C-Class Microprocessor with RISCV Vector ISA Support.
- Engineering configurable Vector Functional Units in Bluespec System Verilog.

Matrix-Multiply Support in RISCV ISA, Prof. Sparsh Mittal, CANDLE Lab, IIT Roorkee

(Sep 2022 - Present)

- Adding Matrix-Multiply Extensions and Approximate Instructions to RISCV ISA for accelerating AI Workloads.
- Benchmarking against RISCV Scalar and Vector-based implementations using Gem5 and Spike Simulators.

In-Memory Computing (IMC) Engine, Prof. Janakiraman V, IITM

(Apr 2022 - Jun 2022)

- Designed an SRAM-based IMC Engine that performs Multiply and Accumulate (MAC) with a MAC range of 128.
- Constructed Charge-based and Current-based SRAM Cells (with Decoupled Read-Write), Flash and Column ADCs, and Sense Amplifier on GNU Electric.
- Evaluated the Bitline Saturation Effect and the Energy-Delay Product (EDP) per MAC computation.
- Achieved 98% accuracy on simulating the IMC Engine tuned with MNIST dataset using 8-bit fixed-point inputs and weights in LTSpice.

Discrete Cosine Transform (DCT) in Hardware, Prof. Kamakoti V, SHAKTI Lab, IITM

[Report] (Mar 2022 - May 2022)

- Implemented 8-point DCT algorithm in Bluespec Verilog for the H.264 Video Codec Module of SHAKTI C-Class.
- Reduced the computational latency by employing Butterfly architecture-based Fast DCT Algorithm by 2.5X.
- Accelerated the execution by using a cosine look-up table and fixed-point operations instead of full-precision floating-point computations, incurring a minimal MSE Loss of 2.41.
- Pipelined the design for increased throughput and achieved an average accuracy of 97.64% on 8-point DCT.

TECHNICAL PROJECTS & COURSEWORK

Computer Architecture (CS6600), Instructor: Prof. Madhu Mutyam, IITM

[Report] (Nov 2022 - Dec 2022)

- Designed a hybrid Branch Predictor on ChampSim, combining the TAGE and Hashed Perceptron Predictors.
- Implemented predictor selection with a 4-bit Counter Table indexed using PC and Branch History Length of 13.
- Achieved 0.2% and 0.6% reduction in MPKI over the TAGE and Hashed Perceptron Predictors, respectively.
- Developed a hybrid LLC Replacement Policy on ChampSim, combining the Hawkeye and SHiP++ policies.

Secure Processor Microarchitecture (CS6630), Instructor: Prof. Chester Rebeiro, IITM

[Report] (Sep 2022 - Nov 2022)

- Performed Correlation and Differential Power Analysis attacks to obtain round keys from the CLEFIA Cipher.
- Executed the 8th Round Fault Injection attack on AES T-Table implementation for gleaning the AES round keys.
- Implemented Time-Driven and Evict+Time Cache Side-Channel attacks to extract the first round key of AES.

Acceleration of Mandelbrot Fractal Generation, Prof. Nitin Chandrachoodan, Course: <u>EE5332</u> (Apr 2022 - May 2022)

- Accelerated Static Mandelbrot Fractal Image Generation on an FPGA using HLS C, with advanced visual features like fractal coloring, panning, and zooming.
- Attained 3X speedup in performance over C-based software implementation of Mandelbrot Fractal Generation.
- Analyzed several HLS Pragmas and hardware parameters like arithmetic word lengths, memory types, and data I/O to optimize hardware design efficiently.
- Utilized PYNQ framework to interface PYNQ-Z1 FPGA and AXI4 Stream Protocol for data I/O to the IP Block.

Advanced Encryption Standard (AES) Algorithm Acceleration, Prof. Nitin Chandrachoodan, Course: EE2003 (Dec 2021)

- Accelerated standard and two security-enhanced versions of the AES algorithm on Artix 7 FPGA using Verilog.
- Interfaced the design with Microblaze Soft IP Core on Xilinx Vivado, providing I/O through C code using Vitis IDE.
- Achieved a 2X speedup in performance over C-based software implementation of the standard AES algorithm.
- Generated GDSII layout of the design for ASIC-based flow using the open-source silicon compiler OpenLane.

8-bit Signed Carry Save Multiplier (CSM), Prof. Janakiraman V, Course: EE5311

[Report] (Nov 2021 - Dec 2021)

- Designed the Schematic and Layout of an 8-bit Signed CSM, with and without pipelining on GNU Electric.
- Studied the design with multiple types of Full Adders (CSA, CLA) in the Vector Merge Stage of the Signed CSM.
- Simulated and Validated the DRC & LVS clean design using LTSpice and performed RC Extraction on the layout.

Pipelined RISCV 32-bit Processor, Personal Project (Team of 2)

(Sep 2021)

- Built a 5-Stage Pipelined RISCV ISA-based 32-bit Processor using Verilog HDL.
- Studied ways to detect and handle hazards in pipeline-based designs and ideated on Hazard Detection Unit and Data Forwarding Unit implementation in the processor.

PROFESSIONAL EXPERIENCE

Qualcomm, Hardware Engineering Intern, GPU Design Team

Bengaluru, India (May 2022 - Aug 2022)

- Developed a Python-based framework that uses design files to perform automated retention register list analysis to identify possible redundant retention registers in the design for power curtailment.
- Identified 3658 potential redundancies (out of 7890 retention registers in the Camera sub-module) utilizing PrimeTime(PX) STA and Power Analysis Tools from Synopsys.

LEADERSHIP & TEACHING EXPERIENCE

Core Member, Electronics Club, CFI, IITM

(Apr 2020 - Apr 2022)

- Spearheaded a 3-Tier Team of 50+ electronics enthusiasts and managed club sessions and events on campus.
- Project Head for the Mountable Heads-Up Display for Helmets project that assists bikers in hassle-free navigation through traffic. Co-mentored the research-oriented study of Digital Design using FPGAs in the club.
- Designed a Development Board around ESP-WROOM-32 SoC with built-in WiFi and Bluetooth capabilities.

Workshop Trainer, Shaastra, IITM

(Jan 2021 & Jan 2022)

- Taught 50+ participants the concepts of Parallel Programming (OpenMP), CUDA, and RTOS at Shaastra 2022.
- Instructed 100+ participants in Robotics and the Robot Operating System (ROS) framework at Shaastra 2021.

SCHOLASTIC & EXTRA-CURRICULAR ACHIEVEMENTS

- Won Gold in DRDO's DRGE Vision-based Obstacle Avoidance Drone Challenge in Inter IIT Tech Meet 9.0 of 2021.
- Secured an All-India Rank of 546 (of 1.2M+) in JEE Mains and 685 (of 170K+) in JEE Advanced Exams of 2019.
- Awarded the KVPY National Fellowship by the Indian Institute of Science (IISc) in both SA and SX Streams.

HOBBIES & INTERESTS

- Proficient in multiple drawing and painting mediums Oils, Acrylic, Watercolours, Charcoal, and Pastels.
- Avid Reader of Fiction and Fantasy Thrillers. Writing Enthusiast.