Numerical Methods

WAFFLE'S CRAZY PEANUT

(Last updated: 26/3/14)

1 Solution of Equations:

1.1 Fixed-point Iteration:

Iterate within the limits of roots.

Procedure:

- (i) Identify whether the given f(x) is linear algebraic, non-linear algebraic, or transcendental equation.
- (ii) Start finding f(0), f(1), ... until there's a change of sign in the value, which corresponds to the limit (a, b) within which the root lies.
- (iii) Write the function in the form $x = \phi(x)$
- (iv) Check the condition $|\phi'(a)| < 1$ and $|\phi'(b)| < 1$
- (v) Now, find x_0 , $x_1 = \phi(x_0)$, $x_2 = \phi(x_1)$, ... for values lying in the limit (a, b) and stop when the repetition of rounded values occurs.

Note: For infinite series, as there's no specific interval, find the roots directly by taking x = f(x), neglecting higher powers, and iterating using step (v).

Keep in mind Root-finding will be easier if iterations begin with the value nearer to a or b, based on whether |f(a)| or |f(b)| is closer to zero.

If f(a) is closer to zero, then the root is closer to a, and vice versa.

1.2 Newton-Raphson Method:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Procedure:

- (i) Identify whether the given f(x) is linear algebraic, non-linear algebraic, or transcendental equation.
- (ii) Start finding f(0), f(1), ... until there's a change of sign in the value, which corresponds to the limit (a, b) within which the root lies.
- (iii) Now, find x_0 , x_1 , x_2 ... using the iterative formula, and proceed until repetition occurs.

Some formulas (can be derived):

• If
$$x = \frac{1}{N}$$
,

$$x_{n+1} = x_n(2 - Nx_n)$$

• If
$$x = \sqrt{N}$$
,

$$x_{n+1} = \frac{1}{2} \left(x_n + \frac{N}{x_n} \right)$$

• If
$$x = \frac{1}{\sqrt{N}}$$
,

$$x_{n+1} = \frac{1}{2} \left(x_n + \frac{1}{Nx_n} \right)$$

• If
$$x = N^{1/k}$$
,
$$x_{n+1} = \frac{1}{k} \left((k-1)x_n + \frac{N}{x_n^{k-1}} \right)$$

1.3 Solution of linear system of equations:

