

Universidad de Costa Rica Facultad de Ingeniería Escuela de Ingeniería Eléctrica IE-0624 Laboratorio de Microcontroladores

EIE

Escuela de Ingeniería Eléctrica

STM32F429 / L3GD20 / ILI4391

MSc. Marco Villalta Fallas - marco.villalta@ucr.ac.cr

Il Ciclo 2022

STM32F429

STM32F429 Discovery kit

Caracteristicas

- Microcontrolador STM32F429ZIT6
- 2.4"QVGA TFT LCD
- USB OTG con conector Micro-AB
- Sensor de movimiento L3GD20, Giroscopio ST MEMS de 3-ejes
- 6 LEDS: LD1 (USB Comms), LD2(3.3V PowerOn, 2 LEDS de ususario (LD3 y LD4), 2 LEDS USB OTG (LD5 y LD6)
- 2 push-button (Usuario y reset)

- 64-Mbit SDRAM
- Header para LQFP144 I/Os
- On-board ST-LINK/V2-B
- Funciones USB: Debug, virtual COM, almacenamiento
- Alimentación por USB o fuente externa de 3V o 5V

Microcontrolador STM32F429

Caracteristicas

- Core: ARM 32 bits Cortex-M4 con FPU (RISC)
- 180 MHz
- 2MB flash, 256 KB SRAM
- Controlador LCD-TFT
- Low Power
- 3x12bit ADC
- 2x12bit convertidor D/A
- 17 timers: 12 timers de 16bit, 2 de 32bit de hasta 180MHz, c/u con 4IC/OC/PWM

- Debug: SWD, JTAG
- 168 I/O con capacidad de interrupcion
- 21 interfaces de comunicaciones(I2C,USART,SPI,SAI,CAN)
- Conectividad avanzada USB 2.0
- Intefaz de camara
- True RNG
- CRC
- Controladores DMA

L3GD20

- Sensor de 3 ejes angular
- Bajo consumo
- Incluye un elemento sensor y una interfaz capaz de medir la razon angular con respecto al mundo externo
- Comunicaciones I2C/SPI
- Conectado en la STM32F429 Discovery Kit al SPI5
- Se configura por medio de instrucciones SPI

Recordando: SPI

- Interfaz de comunicación serial con 4 lineas
- SCLK: Señal de reloj, SS: Slave Select(activo en bajo), MOSI: Master Output Slave Input (salida datos de maestro, MISO: Master Input Slave Output (salida datos de esclavo)
- Modelo Maestro Esclavo
- Full duplex
- Sin limitación de velocidad

Figura: Bus SPI típico

Figura: Bus SPI en daisy chain

Registro: WHO AM I

WHO AM I (0Fh)

	Table 18. WHO_AM_I register										
[1	1	0	1	0	1	0	0			

- Identificador unico
- Util para validar configuracion al leer el valor.

Registro: CTRL REG1

CTRL_REG1 (20h)

Table 19. CTRL REG1 register

		DR1	DR0	BW1	BW0	PD	Zen	Xen	Yen
--	--	-----	-----	-----	-----	----	-----	-----	-----

Table 20. CTRL_REG1 description

DR1-DR0	Output data rate selection. Refer to Table 21
BW1-BW0	Bandwidth selection. Refer to Table 21
PD	Power-down mode enable. Default value: 0 (0: power-down mode, 1: normal mode or sleep mode)
Zen	Z axis enable. Default value: 1 (0: Z axis disabled; 1: Z axis enabled)
Yen	Y axis enable. Default value: 1 (0: Y axis disabled; 1: Y axis enabled)
Xen	X axis enable. Default value: 1 (0: X axis disabled; 1: X axis enabled)

- Control de ejes
- Control de modo de poder

Registro: CTRL REG2

CTRL_REG2 (21h)

Table 23. CTRL_REG2 register

	0(1)	0(1)	HPM1	HPM0	HPCF3	HPCF2	HPCF1	HPCF0
--	------	------	------	------	-------	-------	-------	-------

^{1.} These bits must be set to '0' to ensure proper operation of the device

Table 24. CTRL_REG2 description

	High-pass filter mode selection. Default value: 00 Refer to <i>Table 25</i>
	High-pass filter cutoff frequency selection Refer to Table 26

Configuracion de filtro paso alto

Registro: CTRL REG4

CTRL_REG4 (23h)

Table 29, CTRL REG4 register

	BDU	BLE	FS1	FS0		0(1)	0(1)	SIM
This value must not be changed.								

Table 30. CTRL REG4 description

BDU	Block data update. Default value: 0 (0: continuos update; 1: output registers not updated until MSb and LSb reading)
BLE	Big/little endian data selection. Default value 0. (0: Data LSb @ lower address; 1: Data MSb @ lower address)
FS1-FS0	Full scale selection. Default value: 00 (00: 250 dps; 01: 500 dps; 10: 2000 dps; 11: 2000 dps)
SIM	SPI serial interface mode selection. Default value: 0 (0: 4-wire interface; 1: 3-wire interface).

- Configuracion dps
- Configuracion modo SPI

Registro de lectura

STATUS REG (27h)

Table 37. STATUS_REG register										
ZYXOR	ZOR	YOR	XOR	ZYXDA	ZDA	YDA	XDA			

OUT_TEMP (26h)

Table 35. OUT_TEMP register

Temp7	Temp6	Temp5	Temp4	Temp3	Temp2	Temp1	Temp0

7.10 OUT_X_L (28h), OUT_X_H (29h)

X-axis angular rate data. The value is expressed as two's complement.

7.11 OUT Y L (2Ah), OUT Y H (2Bh)

Y-axis angular rate data. The value is expressed as two's complement.

7.12 OUT Z L (2Ch), OUT Z H (2Dh)

Z-axis angular rate data. The value is expressed as two's complement.

Como se configura en la STM32F429 Discovery kit

- Se debe habilitar reloj para SPI y puertos de los pines donde esta conectado el giroscopio.
- 2 Se deben de configurar la funcion de los pines (Ver tabla 6 hoja de datos de la tarjeta STM32F429 Discovery kit
- 1 Inicializar y configurar el protocolo SPI, ver funciones de Libopencm3 y ejemplos para el L3GD20
 - spi_set_master_mode
 - spi_set_baudrate_prescaler
 - spi_set_clock_polarity_0
 - spi_set_clock_phase_0
 - spi_set_full_duplex_mode
 - spi_set_unidirectional_mode
 - spi_enable_software_slave_management
 - spi send msb first
 - spi_set_nss_high
 - spi enable
- Configurar el L3GD20 por medio de SPI

L3GD20 y Libopencm3/spi

Como se escribe a un registro?

- Debe ponerse en bajo el pin CS
- Se indica cual registro se quiere configurar con una instruccion spi_send
- Se lee respuesta con spi_read
- Se indica cual es el valor para el registro con otro spi_send
- Se lee respuesta con spi read
- Se pone en alto el pin CS

L3GD20 y Libopencm3/spi

Como se lee de un registro?

- Debe ponerse en bajo el pin CS
- Se indica cual registro se quiere leer con una instruccion spi_send (Se debe hacer una mascara OR con un 0x80, MSB en 0 escribe en 1 lee)
- Se lee respuesta con spi_read
- Se envia un 0 con spi_send
- Se lee respuesta(valor del registro) con spi_read
- Se pone en alto el pin CS

ILI9341

Pantalla LCD/TFT IL19341

- Pantalla a colores táctil
- Resolución 240x320 píxeles
- Controlador gráfico ILI9341, controlador táctil XPT2046
- Comunicaciones I2C/SPI
- Conectado en la STM32F429 Discovery Kit al SPI5
- Se configura por medio de instrucciones SPI