Lecture 4: Neural Networks and Backpropagation

Dr. José Ramón Iglesias

DSP-ASIC BUILDER GROUP

Director Semillero TRIAC

Ingenieria Electronica

Universidad Popular del Cesar

Administrative: Discussion Section

Discussion section tomorrow:

Backpropagation

Recap

- We have some dataset of (x,y)
- We have a score function: $s = f(x; W) \stackrel{\text{e.g.}}{=} Wx$
- We have a **loss function**:

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$
 Softmax $L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$ SVM

$$L = rac{1}{N} \sum_{i=1}^N L_i + R(W)$$
 Full loss

Finding the best W: Optimize with Gradient Descent


```
# Vanilla Gradient Descent

while True:
    weights_grad = evaluate_gradient(loss_fun, data, weights)
    weights += - step_size * weights_grad # perform parameter update
```

<u>Landscape image</u> is <u>CC0 1.0</u> public domain <u>Walking man image</u> is <u>CC0 1.0</u> public domain

Gradient descent

$$rac{df(x)}{dx} = \lim_{h o 0} rac{f(x+h) - f(x)}{h}$$

Numerical gradient: slow:(, approximate:(, easy to write:)
Analytic gradient: fast:), exact:), error-prone:(

In practice: Derive analytic gradient, check your implementation with numerical gradient

Stochastic Gradient Descent (SGD)

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(x_i, y_i, W) + \lambda R(W)$$

$$\nabla_W L(W) = \frac{1}{N} \sum_{i=1}^N \nabla_W L_i(x_i, y_i, W) + \lambda \nabla_W R(W)$$

Full sum expensive when N is large!

Approximate sum using a **minibatch** of examples 32 / 64 / 128 common

```
# Vanilla Minibatch Gradient Descent

while True:
   data_batch = sample_training_data(data, 256) # sample 256 examples
   weights_grad = evaluate_gradient(loss_fun, data_batch, weights)
```

weights += - step size * weights grad # perform parameter update

Last time: fancy optimizers

Last time: learning rate scheduling

Step: Reduce learning rate at a few fixed points. E.g. for ResNets, multiply LR by 0.1 after epochs 30, 60, and 90.

Cosine:
$$\alpha_t = \frac{1}{2}\alpha_0 \left(1 + \cos(t\pi/T)\right)$$

Linear:
$$\alpha_t = \alpha_0(1 - t/T)$$

Inverse sqrt:
$$\alpha_t = \alpha_0/\sqrt{t}$$

 $lpha_0$: Initial learning rate

 $lpha_t$: Learning rate at epoch t T : Total number of epochs

Today:

Deep Learning

Released yesterday: dall-e-2

"Teddy bears working on new AI research on the moon in the 1980s."

"Rabbits attending a college seminar on human anatomy.

"A wise cat meditating in the Himalayas searching for enlightenment."

a shiba inu wearing a beret and black turtleneck

a dolphin in an astronaut suit on saturm, artistation a propaganda poster depicting a cat dressed as french emporor napoleon holding a piece of cheese

Neural Networks and Backpropagation

Ramesh et al., Hierarchical Text-Conditional Image Generation with CLIP Latents, 2022.

Neural Networks

Neural networks: the original linear classifier

(**Before**) Linear score function:
$$f = Wx$$

$$x \in \mathbb{R}^D, W \in \mathbb{R}^{C \times D}$$

Neural networks: 2 layers

(**Before**) Linear score function: f=Wx

(Now) 2-layer Neural Network $f = W_2 \max(0, W_1 x)$

$$x \in \mathbb{R}^D, W_1 \in \mathbb{R}^{H \times D}, W_2 \in \mathbb{R}^{C \times H}$$

(In practice we will usually add a learnable bias at each layer as well)

Why do we want non-linearity?

Cannot separate red and blue points with linear classifier

Why do we want non-linearity?

Cannot separate red and blue points with linear classifier

After applying feature transform, points can be separated by linear classifier

Neural networks: also called fully connected network

(**Before**) Linear score function: f = Wx(**Now**) 2-layer Neural Network $f = W_2 \max(0, W_1 x)$

$$x \in \mathbb{R}^D, W_1 \in \mathbb{R}^{H \times D}, W_2 \in \mathbb{R}^{C \times H}$$

"Neural Network" is a very broad term; these are more accurately called "fully-connected networks" or sometimes "multi-layer perceptrons" (MLP)

(In practice we will usually add a learnable bias at each layer as well)

Neural networks: 3 layers

(**Before**) Linear score function:
$$f=Wx$$
 (**Now**) 2-layer Neural Network or 3-layer Neural Network

$$f=W_3\max(0,W_2\max(0,W_1x))$$

$$x \in \mathbb{R}^D, W_1 \in \mathbb{R}^{H_1 \times D}, W_2 \in \mathbb{R}^{H_2 \times H_1}, W_3 \in \mathbb{R}^{C \times H_2}$$

(In practice we will usually add a learnable bias at each layer as well)

Neural networks: hierarchical computation

(**Before**) Linear score function:

(Now) 2-layer Neural Network $f = W_2 \max(0, W_1 x)$

$$f = W_2 \max(0, W_1 x)$$

$$x \in \mathbb{R}^D, W_1 \in \mathbb{R}^{H \times D}, W_2 \in \mathbb{R}^{C \times H}$$

Neural networks: learning 100s of templates

(**Before**) Linear score function: f = Wx

(Now) 2-layer Neural Network

$$f = W_2 \max(0, W_1 x)$$

Share templates between classes

Neural networks: why is max operator important?

(**Before**) Linear score function: f=Wx

(**Now**) 2-layer Neural Network $f = W_2 \max(0, W_1 x)$

The function $\max(0,z)$ is called the **activation function**.

Q: What if we try to build a neural network without one?

$$f = W_2 W_1 x$$

Neural networks: why is max operator important?

(**Before**) Linear score function: f = Wx

(**Now**) 2-layer Neural Network $f = W_2 \max(0, W_1 x)$

The function $\max(0, z)$ is called the **activation function**.

Q: What if we try to build a neural network without one?

$$f = W_2 W_1 x$$
 $W_3 = W_2 W_1 \in \mathbb{R}^{C \times H}, f = W_3 x$

A: We end up with a linear classifier again!

Activation functions

ReLU is a good default choice for most problems

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Leaky ReLU

 $\max(0.1x, x)$

tanh

tanh(x)

Maxout

 $\max(w_1^T x + b_1, w_2^T x + b_2)$

ReLU

 $\max(0, x)$

ELU

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

Neural networks: Architectures

Example feed-forward computation of a neural network

hidden layer 1 hidden layer 2

```
# forward-pass of a 3-layer neural network:

f = lambda x: 1.0/(1.0 + np.exp(-x)) # activation function (use sigmoid)

x = np.random.randn(3, 1) # random input vector of three numbers (3x1)

h1 = f(np.dot(W1, x) + b1) # calculate first hidden layer activations (4x1)

h2 = f(np.dot(W2, h1) + b2) # calculate second hidden layer activations (4x1)

out = np.dot(W3, h2) + b3 # output neuron (1x1)
```



```
import numpy as np
    from numpy.random import randn
 3
    N, D in, H, D out = 64, 1000, 100, 10
    x, y = randn(N, D_in), randn(N, D_out)
    w1, w2 = randn(D in, H), randn(H, D out)
    for t in range(2000):
 9
      h = 1 / (1 + np.exp(-x.dot(w1)))
10
      y_pred = h.dot(w2)
11
      loss = np.square(y pred - y).sum()
      print(t, loss)
12
13
14
      grad y pred = 2.0 * (y pred - y)
      grad_w2 = h.T.dot(grad_y_pred)
15
      grad h = grad y pred.dot(w2.T)
16
      grad_w1 = x.T.dot(grad_h * h * (1 - h))
17
18
      w1 -= 1e-4 * grad w1
19
20
      w2 -= 1e-4 * grad w2
```



```
import numpy as np
    from numpy.random import randn
 3
    N, D in, H, D out = 64, 1000, 100, 10
    x, y = randn(N, D_in), randn(N, D_out)
    w1, w2 = randn(D in, H), randn(H, D out)
 6
    for t in range(2000):
      h = 1 / (1 + np.exp(-x.dot(w1)))
10
      y_pred = h.dot(w2)
11
      loss = np.square(y pred - y).sum()
      print(t, loss)
12
13
14
      grad y pred = 2.0 * (y pred - y)
      grad_w2 = h.T.dot(grad_y_pred)
15
      grad h = grad y pred.dot(w2.T)
16
      grad_w1 = x.T.dot(grad_h * h * (1 - h))
17
18
      w1 -= 1e-4 * grad w1
19
20
      w2 -= 1e-4 * grad w2
```

Define the network


```
import numpy as np
    from numpy.random import randn
 3
    N, D in, H, D out = 64, 1000, 100, 10
    x, y = randn(N, D_in), randn(N, D_out)
    w1, w2 = randn(D in, H), randn(H, D out)
    for t in range(2000):
 9
      h = 1 / (1 + np.exp(-x.dot(w1)))
10
      y_pred = h.dot(w2)
11
      loss = np.square(y pred - y).sum()
      print(t, loss)
12
13
14
      grad y pred = 2.0 * (y pred - y)
      grad_w2 = h.T.dot(grad_y_pred)
15
      grad h = grad y pred.dot(w2.T)
16
      grad_w1 = x.T.dot(grad_h * h * (1 - h))
18
      w1 -= 1e-4 * grad w1
19
20
      w2 -= 1e-4 * grad w2
```

Define the network

Forward pass


```
import numpy as np
    from numpy.random import randn
 3
    N, D in, H, D out = 64, 1000, 100, 10
    x, y = randn(N, D_in), randn(N, D_out)
    w1, w2 = randn(D in, H), randn(H, D out)
    for t in range(2000):
      h = 1 / (1 + np.exp(-x.dot(w1)))
10
      y_pred = h.dot(w2)
11
      loss = np.square(y pred - y).sum()
      print(t, loss)
12
13
      grad y pred = 2.0 * (y pred - y)
14
      grad_w2 = h.T.dot(grad_y_pred)
15
      grad h = grad y pred.dot(w2.T)
16
      grad_w1 = x.T.dot(grad_h * h * (1 - h))
17
18
      w1 -= 1e-4 * grad w1
19
20
      w2 -= 1e-4 * grad w2
```

Define the network

Forward pass

Calculate the analytical gradients


```
import numpy as np
    from numpy.random import randn
 3
    N, D in, H, D out = 64, 1000, 100, 10
    x, y = randn(N, D_in), randn(N, D_out)
    w1, w2 = randn(D_in, H), randn(H, D_out)
    for t in range(2000):
      h = 1 / (1 + np.exp(-x.dot(w1)))
10
      y_pred = h.dot(w2)
11
      loss = np.square(y pred - y).sum()
      print(t, loss)
12
13
      grad y pred = 2.0 * (y pred - y)
14
      grad_w2 = h.T.dot(grad_y_pred)
15
      grad h = grad y pred.dot(w2.T)
16
      grad_w1 = x.T.dot(grad_h * h * (1 - h))
18
19
      w1 -= 1e-4 * grad w1
20
      w2 -= 1e-4 * grad w2
```

Define the network

Forward pass

Calculate the analytical gradients

Gradient descent

Setting the number of layers and their sizes

Do not use size of neural network as a regularizer. Use stronger regularization instead:

(Web demo with ConvNetJS: http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html)

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i) + \lambda R(W)$$

This image by Fotis Bobolas is licensed under CC-BY 2.0

Biological Neurons: Complex connectivity patterns

This image is CC0 Public Domain

Neurons in a neural network: Organized into regular layers for computational efficiency

Biological Neurons: Complex connectivity patterns

This image is CC0 Public Domain

But neural networks with random connections can work too!

Xie et al, "Exploring Randomly Wired Neural Networks for Image Recognition", arXiv 2019

Be very careful with your brain analogies!

Biological Neurons:

- Many different types
- Dendrites can perform complex non-linear computations
- Synapses are not a single weight but a complex non-linear dynamical system

[Dendritic Computation. London and Hausser]

Plugging in neural networks with loss functions

$$s = f(x; W_1, W_2) = W_2 \max(0, W_1 x)$$
 Nonlinear score function

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$
 SVM Loss on predictions

$$R(W) = \sum_k W_k^2 \operatorname{Regularization}$$

$$L=rac{1}{N}\sum_{i=1}^{N}L_{i}+\lambda R(W_{1})+\lambda R(W_{2})$$
 Total loss: data loss + regularization

Problem: How to compute gradients?

$$s = f(x; W_1, W_2) = W_2 \max(0, W_1 x)$$
 Nonlinear score function

$$L_i = \sum_{i \neq y_i} \max(0, s_j - s_{y_i} + 1)$$
 SVM Loss on predictions

$$R(W) = \sum_k W_k^2 \quad \text{Regularization}$$

$$L = \frac{1}{N} \sum_{i=1}^{N} L_i + \lambda R(W_1) + \lambda R(W_2)$$
 Total loss: data loss + regularization

If we can compute $\frac{\partial L}{\partial W_1}, \frac{\partial L}{\partial W_2}$ then we can learn W_1 and W_2

(Bad) Idea: Derive $\nabla_W L$ on paper

$$s = f(x; W) = Wx$$

$$L_{i} = \sum_{j \neq y_{i}} \max(0, s_{j} - s_{y_{i}} + 1)$$

$$= \sum_{j \neq y_{i}} \max(0, W_{j,:} \cdot x + W_{y_{i},:} \cdot x + 1)$$

$$L = \frac{1}{N} \sum_{i=1}^{N} L_{i} + \lambda \sum_{k} W_{k}^{2}$$

$$= \frac{1}{N} \sum_{i=1}^{N} \sum_{i \neq j} \max(0, W_{j,:} \cdot x + W_{y_{i},:} \cdot x + 1) + \lambda \sum_{k} W_{k}^{2}$$

Problem: Very tedious: Lots of matrix calculus, need lots of paper

Problem: What if we want to change loss? E.g. use softmax instead of SVM? Need to re-derive from scratch =(

Problem: Not feasible for very complex models!

$$\nabla_W L = \nabla_W \left(\frac{1}{N} \sum_{i=1}^N \sum_{j \neq y_i} \max(0, W_{j,:} \cdot x + W_{y_i,:} \cdot x + 1) + \lambda \sum_k W_k^2 \right)$$

Better Idea: Computational graphs + Backpropagation

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

Really complex neural networks!! input image loss

Figure reproduced with permission from a <u>Twitter post</u> by Andrej Karpathy.

Neural Turing Machine Figure reproduced with p

Lecture 4 -

Solution: Backpropagation

$$f(x,y,z) = (x+y)z$$

$$f(x,y,z)=(x+y)z$$

$$f(x,y,z)=(x+y)z$$

e.g.
$$x = -2$$
, $y = 5$, $z = -4$

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f(x,y,z) = (x+y)z$$

e.g.
$$x = -2$$
, $y = 5$, $z = -4$

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$f(x,y,z)=(x+y)z$$

e.g.
$$x = -2$$
, $y = 5$, $z = -4$

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Want:
$$\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$$

$$f(x,y,z)=(x+y)z$$

e.g.
$$x = -2$$
, $y = 5$, $z = -4$

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$f(x,y,z)=(x+y)z$$

e.g.
$$x = -2$$
, $y = 5$, $z = -4$

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$f(x,y,z)=(x+y)z$$

e.g.
$$x = -2$$
, $y = 5$, $z = -4$

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$f(x,y,z)=(x+y)z$$

e.g.
$$x = -2$$
, $y = 5$, $z = -4$

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Want:
$$\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$$

$$f(x,y,z)=(x+y)z$$

e.g.
$$x = -2$$
, $y = 5$, $z = -4$

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$f(x,y,z)=(x+y)z$$

e.g.
$$x = -2$$
, $y = 5$, $z = -4$

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Want:
$$\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$$

$$f(x,y,z)=(x+y)z$$

e.g.
$$x = -2$$
, $y = 5$, $z = -4$

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$f(x,y,z)=(x+y)z$$

e.g.
$$x = -2$$
, $y = 5$, $z = -4$

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

Upstream Local gradient gradient Universidad

Neural Networks and Backpropagation

$$f(x,y,z)=(x+y)z$$

e.g.
$$x = -2$$
, $y = 5$, $z = -4$

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

Universidad

$$f(x,y,z)=(x+y)z$$

e.g.
$$x = -2$$
, $y = 5$, $z = -4$

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

Universidad

Another example: $f(w,x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$

Another example: $f(w,x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$

Another example: $f(w,x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$egin{aligned} f(x) = e^x &
ightarrow & rac{df}{dx} = e^x \ & \ f_a(x) = ax &
ightarrow & rac{df}{dx} = a \end{aligned}$$

$$f(x)=rac{1}{x} \qquad \qquad \qquad rac{df}{dx}=-1/x^2 \ f_c(x)=c+x \qquad \qquad \qquad \qquad rac{df}{dx}=1$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$f(x) = e^x \qquad \qquad o \qquad \qquad rac{df}{dx} = e^x \ f_a(x) = ax \qquad \qquad o \qquad \qquad rac{df}{dx} = a$$

$$f(x) = rac{1}{x} \qquad \qquad
ightarrow \qquad rac{df}{dx} = -1/x^2 \ f_c(x) = c + x \qquad \qquad
ightarrow \qquad rac{df}{dx} = 1$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$f(x) = rac{1}{x} \qquad \qquad \qquad rac{df}{dx} = -1/x^2 \ f_c(x) = c + x \qquad \qquad
ightarrow \qquad rac{df}{dx} = 1$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$egin{aligned} f(x) = e^x &
ightarrow & rac{df}{dx} = e^x \ & \ f_a(x) = ax &
ightarrow & rac{df}{dx} = a \end{aligned}$$

$$f(x)=rac{1}{x} \qquad \qquad
ightarrow \qquad rac{df}{dx}=-1/x^2 \ f_c(x)=c+x \qquad \qquad
ightarrow \qquad rac{df}{dx}=1$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$egin{aligned} f(x) = e^x &
ightarrow & rac{df}{dx} = e^x \ & \ f_a(x) = ax &
ightarrow & rac{df}{dx} = a \end{aligned}$$

$$f(x)=rac{1}{x} \qquad \qquad
ightarrow \qquad rac{df}{dx}=-1/x \ f_c(x)=c+x \qquad \qquad
ightarrow \qquad rac{df}{dx}=1$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$egin{aligned} f(x) = e^x &
ightarrow & rac{df}{dx} = e^x \ & \ f_a(x) = ax &
ightarrow & rac{df}{dx} = a \end{aligned}$$

$$f(x)=rac{1}{x} \qquad \qquad
ightarrow \qquad rac{df}{dx}=-1/x \ f_c(x)=c+x \qquad \qquad
ightarrow \qquad rac{df}{dx}=1$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$f(x) = e^x \qquad o \qquad rac{df}{dx} = e^x \ f_a(x) = ax \qquad o \qquad rac{df}{dx} = a$$

$$f(x)=rac{1}{x} \qquad \qquad
ightarrow \qquad rac{df}{dx}=-1/x \ f_c(x)=c+x \qquad \qquad
ightarrow \qquad rac{df}{dx}=1$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$f(x) = e^x \qquad o \qquad rac{df}{dx} = e^x \ f_a(x) = ax \qquad o \qquad rac{df}{dx} = a$$

$$f(x)=rac{1}{x} \qquad \qquad
ightarrow \qquad rac{df}{dx}=-1/x \ f_c(x)=c+x \qquad \qquad
ightarrow \qquad rac{df}{dx}=1$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$f(w,x) = rac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$f(x)=e^x \qquad \qquad o \qquad \qquad rac{df}{dx}=e^x \ f_a(x)=ax \qquad \qquad o \qquad \qquad rac{df}{dx}=a$$

$$f(x)=rac{1}{x} \qquad \qquad
ightarrow \qquad rac{df}{dx}=-1/x \ f_c(x)=c+x \qquad \qquad
ightarrow \qquad rac{df}{dx}=1$$

Another example:

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$egin{aligned} f(x) = e^x &
ightarrow & rac{df}{dx} = e^x \ f_a(x) = ax &
ightarrow & rac{df}{dx} = a \end{aligned}$$

$$f(x)=rac{1}{x} \qquad \qquad
ightarrow \qquad rac{df}{dx}=-1/x^2 \ f_c(x)=c+x \qquad \qquad
ightarrow \qquad rac{df}{dx}=1$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

Computational graph

representation may not

$$f(w,x) = rac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$$

$$rac{d\sigma(x)}{dx} = rac{e^{-x}}{(1+e^{-x})^2} = \left(rac{1+e^{-x}-1}{1+e^{-x}}
ight) \left(rac{1}{1+e^{-x}}
ight) = \left(1-\sigma(x)
ight)\sigma(x)$$

Computational graph

representation may not

$$f(w,x) = rac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$$

Computational graph representation may not be unique. Choose one where local gradients at each node can be easily expressed!

0.73

Sigmoid local gradient:
$$\frac{d\sigma(x)}{dx} = \frac{e^{-x}}{\left(1+e^{-x}\right)^2} = \left(\frac{1+e^{-x}-1}{1+e^{-x}}\right) \left(\frac{1}{1+e^{-x}}\right) = \left(1-\sigma(x)\right)\sigma(x)$$

 $[1.00] \times [(1 - 1/(1+e^{-1})) (1/(1+e^{-1}))] = 0.2$

0.20

$$f(w,x) = rac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$$

$$\begin{array}{ll} \text{Sigmoid local} & \frac{d\sigma(x)}{dx} = \frac{e^{-x}}{\left(1+e^{-x}\right)^2} = \left(\frac{1+e^{-x}-1}{1+e^{-x}}\right) \left(\frac{1}{1+e^{-x}}\right) = \left(1-\sigma(x)\right)\sigma(x) \end{array}$$
 gradient:

Computational graph

representation may not

add gate: gradient distributor

add gate: gradient distributor

mul gate: "swap multiplier"

add gate: gradient distributor

copy gate: gradient adder

mul gate: "swap multiplier"

add gate: gradient distributor

copy gate: gradient adder

mul gate: "swap multiplier"

max gate: gradient router

Forward pass: Compute output

Backward pass: Compute grads

```
def f(w0, x0, w1, x1, w2):
    s0 = w0 * x0
    s1 = w1 * x1
    s2 = s0 + s1
    s3 = s2 + w2
    L = sigmoid(s3)
```

```
grad_L = 1.0
grad_s3 = grad_L * (1 - L) * L
grad_w2 = grad_s3
grad_s2 = grad_s3
grad_s0 = grad_s2
grad_s1 = grad_s2
grad_w1 = grad_s1 * x1
grad_x1 = grad_s1 * w1
grad_w0 = grad_s0 * x0
grad_x0 = grad_s0 * w0
```


Forward pass: Compute output

```
def f(w0, x0, w1, x1, w2):
    s0 = w0 * x0
    s1 = w1 * x1
    s2 = s0 + s1
    s3 = s2 + w2
    L = sigmoid(s3)
```

Base case

```
grad L = 1.0
grad_s3 = grad_L * (1 - L) * L
grad_w2 = grad_s3
grad_s2 = grad_s3
grad_s0 = grad_s2
grad_s1 = grad_s2
grad_w1 = grad_s1 * x1
grad_x1 = grad_s1 * w1
grad w0 = grad s0 * x0
grad_x0 = grad_s0 * w0
```


Forward pass: Compute output

Sigmoid

```
grad L = 1.0
grad_s3 = grad_L * (1 - L) * L
grad_w2 = grad_s3
grad_s2 = grad_s3
grad_s0 = grad_s2
grad_s1 = grad_s2
grad_w1 = grad_s1 * x1
grad_x1 = grad_s1 * w1
grad w0 = grad s0 * x0
grad_x0 = grad_s0 * w0
```


Forward pass: Compute output

Add gate

```
grad L = 1.0
grad_s3 = grad_L * (1 - L) * L
grad_w2 = grad_s3
grad_s2 = grad_s3
grad_s0 = grad_s2
grad_s1 = grad_s2
grad_w1 = grad_s1 * x1
grad_x1 = grad_s1 * w1
grad w0 = grad s0 * x0
grad_x0 = grad_s0 * w0
```


Forward pass: Compute output

Add gate

```
grad_L = 1.0
grad_s3 = grad_L * (1 - L) * L
grad_w2 = grad_s3
grad_s2 = grad_s3

grad_s0 = grad_s2
grad_s1 = grad_s2
grad_w1 = grad_s1 * x1
grad_x1 = grad_s1 * w1
grad_w0 = grad_s0 * x0
grad_x0 = grad_s0 * w0
```


Forward pass: Compute output

Multiply gate

```
grad_L = 1.0
grad_s3 = grad_L * (1 - L) * L
grad_w2 = grad_s3
grad_s2 = grad_s3
grad_s0 = grad_s2
grad_s1 = grad_s2
grad_w1 = grad_s1 * x1
grad_x1 = grad_s1 * w1
grad_w0 = grad_s0 * x0
grad_x0 = grad_s0 * w0
```


Forward pass: Compute output

```
def f(w0, x0, w1, x1, w2):
    s0 = w0 * x0
    s1 = w1 * x1
    s2 = s0 + s1
    s3 = s2 + w2
    L = sigmoid(s3)
```

```
grad_L = 1.0
grad_s3 = grad_L * (1 - L) * L
grad_w2 = grad_s3
grad_s2 = grad_s3
grad_s0 = grad_s2
grad_s1 = grad_s2
grad_w1 = grad_s1 * x1
grad_x1 = grad_s1 * w1
grad_w0 = grad_s0 * x0
grad_x0 = grad_s0 * w0
```

Multiply gate

"Flat" Backprop: Do this for assignment 1!

Stage your forward/backward computation!

```
margins
E.g. for the SVM:
 # receive W (weights), X (data)
                                                                                     L_i = \sum_{j 
eq y_i} \max(0, s_j - s_{y_i} + 1)
 # forward pass (we have 8 lines)
 scores = #...
                                                                                 s (scores)
 margins = #...
                                                             W
 data loss = #...
 reg loss = #...
 loss = data loss + reg loss
 # backward pass (we have 5 lines)
 dmargins = # ... (optionally, we go direct to dscores)
 dscores = #...
 dW = #...
```


"Flat" Backprop: Do this for assignment 1!

E.g. for two-layer neural net:

```
# receive W1,W2,b1,b2 (weights/biases), X (data)
# forward pass:
h1 = \#... function of X,W1,b1
scores = #... function of h1, W2, b2
loss = #... (several lines of code to evaluate Softmax loss)
# backward pass:
dscores = #...
dh1,dW2,db2 = #...
dW1, db1 = #...
```


Backprop Implementation: Modularized API

Graph (or Net) object (rough pseudo code)

```
class ComputationalGraph(object):
    # . . .
    def forward(inputs):
        # 1. [pass inputs to input gates...]
        # 2. forward the computational graph:
        for gate in self.graph.nodes topologically sorted():
            gate.forward()
        return loss # the final gate in the graph outputs the loss
    def backward():
        for gate in reversed(self.graph.nodes topologically sorted()):
            gate.backward() # little piece of backprop (chain rule applied)
        return inputs gradients
```


Modularized implementation: forward / backward API

Gate / Node / Function object: Actual PyTorch code

(x,y,z are scalars)

```
class Multiply(torch.autograd.Function):
 @staticmethod
 def forward(ctx, x, y):
                                            Need to cash some
    ctx.save_for_backward(x, y)
                                            values for use in
                                            backward
   z = x * y
    return z
 @staticmethod
                                             Upstream
 def backward(ctx, grad_z):
                                             gradient
   x, y = ctx.saved_tensors
    grad_x = y * grad_z # dz/dx * dL/dz
                                             Multiply upstream
    qrad_y = x * qrad_z # dz/dy * dL/dz
                                             and local gradients
    return grad_x, grad_y
```


Example: PyTorch operators

SpatialClassNLLCriterion.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
SpatialConvolutionMM.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
SpatialDilatedConvolution.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
SpatialDilatedMaxPooling.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
SpatialFractionalMaxPooling.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
SpatialFullDilatedConvolution.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
SpatialMaxUnpooling.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
SpatialReflectionPadding.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
SpatialReplicationPadding.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
SpatialUpSamplingBilinear.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
SpatialUpSamplingNearest.c	Canonicalize all includes in PyTorch. (#14849)	4 months ag
THNN.h	Canonicalize all includes in PyTorch. (#14849)	4 months ago
Tanh.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
TemporalReflectionPadding.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
TemporalReplicationPadding.c	Canonicalize all includes in PyTorch. (#14849)	4 months ag
TemporalRowConvolution.c	Canonicalize all includes in PyTorch. (#14849)	4 months ag
TemporalUpSamplingLinear.c	Canonicalize all includes in PyTorch. (#14849)	4 months ag
TemporalUpSamplingNearest.c	Canonicalize all includes in PyTorch. (#14849)	4 months ag
VolumetricAdaptiveAveragePoolin	Canonicalize all includes in PyTorch. (#14849)	4 months ag
VolumetricAdaptiveMaxPooling.c	Canonicalize all includes in PyTorch. (#14849)	4 months ag
VolumetricAveragePooling.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
VolumetricConvolutionMM.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
VolumetricDilatedConvolution.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
VolumetricDilatedMaxPooling.c	Canonicalize all includes in PyTorch. (#14849)	4 months ag
VolumetricFractionalMaxPooling.c	Canonicalize all includes in PyTorch. (#14849)	4 months ag
VolumetricFullDilatedConvolution.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
VolumetricMaxUnpooling.c	Canonicalize all includes in PyTorch. (#14849)	4 months ag
VolumetricReplicationPadding.c	Canonicalize all includes in PyTorch. (#14849)	4 months ag
VolumetricUpSamplingNearest.c	Canonicalize all includes in PyTorch. (#14849)	4 months ag
VolumetricUpSamplingTrilinear.c	Canonicalize all includes in PyTorch. (#14849)	4 months ag
linear_upsampling.h	Implement nn.functional.interpolate based on upsample. (#8591)	9 months ag
pooling_shape.h	Use integer math to compute output size of pooling operations (#14405)	4 months ag
unfold.c	Canonicalize all includes in PyTorch. (#14849)	4 months ag


```
#ifndef TH_GENERIC_FILE
    #define TH_GENERIC_FILE "THNN/generic/Sigmoid.c"
    #else
    void THNN_(Sigmoid_updateOutput)(
                                                                    Forward
              THNNState *state,
              THTensor *input,
              THTensor *output)
 9
      THTensor_(sigmoid)(output, input);
    void THNN_(Sigmoid_updateGradInput)(
              THNNState *state,
              THTensor *gradOutput,
              THTensor *gradInput,
              THTensor *output)
18
19
      THNN_CHECK_NELEMENT(output, gradOutput);
20
      THTensor_(resizeAs)(gradInput, output);
      TH_TENSOR_APPLY3(scalar_t, gradInput, scalar_t, gradOutput, scalar_t, output,
        scalar_t z = *output_data;
        *gradInput_data = *gradOutput_data * (1. - z) * z;
      );
    #endif
```

PyTorch sigmoid layer

Source


```
#ifndef TH_GENERIC_FILE
    #define TH_GENERIC_FILE "THNN/generic/Sigmoid.c"
    #else
    void THNN_(Sigmoid_updateOutput)(
                                                                    Forward
              THNNState *state,
              THTensor *input,
              THTensor *output)
9
      THTensor_(sigmoid)(output, input);
    void THNN_(Sigmoid_updateGradInput)(
              THNNState *state,
              THTensor *gradOutput,
              THTensor *gradInput,
              THTensor *output)
18
19
      THNN_CHECK_NELEMENT(output, gradOutput);
      THTensor_(resizeAs)(gradInput, output);
      TH_TENSOR_APPLY3(scalar_t, gradInput, scalar_t, gradOutput, scalar_t, output,
        scalar_t z = *output_data;
        *gradInput_data = *gradOutput_data * (1. - z) * z;
      );
    #endif
```

PyTorch sigmoid layer

```
return (1 / (1 + std::exp((-a))));
```



```
#ifndef TH_GENERIC_FILE
    #define TH_GENERIC_FILE "THNN/generic/Sigmoid.c"
    #else
    void THNN_(Sigmoid_updateOutput)(
                                                                    Forward
              THNNState *state,
              THTensor *input,
              THTensor *output)
      THTensor_(sigmoid)(output, input);
    void THNN_(Sigmoid_updateGradInput)(
              THNNState *state,
              THTensor *gradOutput,
16
              THTensor *gradInput,
              THTensor *output)
      THNN_CHECK_NELEMENT(output, gradOutput);
      THTensor_(resizeAs)(gradInput, output);
      TH_TENSOR_APPLY3(scalar_t, gradInput, scalar_t, gradOutput, scalar_t, output,
        scalar_t z = *output_data;
        *gradInput_data = *gradOutput_data * (1. - z) * z;
```

PyTorch sigmoid layer

```
static void sigmoid_kernel(TensorIterator& iter) {
   AT_DISPATCH_FLOATING_TYPES(iter.dtype(), "sigmoid_cpu", [&]() {
     unary_kernel_vec(
        iter,
        [=](scalar_t a) -> scalar_t { return (1 / (1 + std::exp((-a)))); },
        [=](Vec256<scalar_t> a) {
        a = Vec256<scalar_t> ((scalar_t)(0)) - a;
        a = a.exp();
        a = Vec256<scalar_t>((scalar_t)(1)) + a;
        a = a.reciprocal();
        return a;
        Forward actually
        });
        Solution defined elsewhere...
```

Backward

$$-(1-\sigma(x))\,\sigma(x)$$

Source

#endif

So far: backprop with scalars

What about vector-valued functions?

Lecture 4 -

Recap: Vector derivatives

Scalar to Scalar

$$x \in \mathbb{R}, y \in \mathbb{R}$$

Regular derivative:

$$\frac{\partial y}{\partial x} \in \mathbb{R}$$

If x changes by a small amount, how much will y change?

Recap: Vector derivatives

Scalar to Scalar

$$x \in \mathbb{R}, y \in \mathbb{R}$$

$$x \in \mathbb{R}^N, y \in \mathbb{R}$$

Regular derivative:

$$\frac{\partial y}{\partial x} \in \mathbb{R}$$

$$\frac{\partial y}{\partial x} \in \mathbb{R}^N \quad \left(\frac{\partial y}{\partial x}\right)_n = \frac{\partial y}{\partial x_n}$$

If x changes by a small amount, how much will y change?

For each element of x, if it changes by a small amount then how much will y change?

Recap: Vector derivatives

Scalar to Scalar

$$\mathbb{R}$$
 as $\in \mathbb{R}^N$ as $\in \mathbb{R}$

Vector to Scalar

 $x \in \mathbb{R}, y \in \mathbb{R}$ $x \in \mathbb{R}^N, y \in \mathbb{R}$

Regular derivative:

$$\frac{\partial y}{\partial x} \in \mathbb{R} \qquad \frac{\partial y}{\partial x}$$

If x changes by a small amount, how much will y change?

Derivative is **Jacobian**:

$$\frac{\partial y}{\partial x} \in \mathbb{R}^N \quad \left(\frac{\partial y}{\partial x}\right)_n = \frac{\partial y}{\partial x_n} \quad \frac{\partial y}{\partial x} \in \mathbb{R}^{N \times M} \quad \left(\frac{\partial y}{\partial x}\right)_{n,m} = \frac{\partial y_m}{\partial x_n}$$

For each element of x, if it changes by a small amount then how much will each element of y change?

Vector to Vector

 $x \in \mathbb{R}^N, y \in \mathbb{R}^M$

Gradients of variables wrt loss have same dims as the original variable

Jacobian is **sparse**: off-diagonal entries always zero! Never **explicitly** form Jacobian -- instead use **implicit** multiplication

Jacobian is **sparse**: off-diagonal entries always zero! Never **explicitly** form Jacobian -- instead use **implicit** multiplication

Backprop with Matrices (or Tensors)

Loss L still a scalar!

Backprop with Matrices (or Tensors)

Loss L still a scalar!

Matrix Multiply

$$y_{n,m} = \sum_{d} x_{n,d} w_{d,m}$$

y: [N×M]

Also see derivation in the course notes: http://cs231n.stanford.edu/handouts/linear-backprop.pdf

Matrix Multiply

$$y_{n,m} = \sum_{d} x_{n,d} w_{d,m}$$

Jacobians:

dy/dx: $[(N\times D)\times (N\times M)]$ dy/dw: $[(D\times M)\times (N\times M)]$

For a neural net we may have N=64, D=M=4096
Each Jacobian takes ~256 GB of memory! Must work with them implicitly!

y: [N×M]

Matrix Multiply

$$y_{n,m} = \sum_{d} x_{n,d} w_{d,m}$$

Lecture 4 -

[3 2 1 -2] element of x?

y: [N×M]

---- [2 3-3 9] [-8 1 4 6]

$$y_{n,m} = \sum_{d} x_{n,d} w_{d,m}$$

$$\begin{bmatrix} 2 & 1 & 3 & 2 \end{bmatrix}$$

Q: What parts of y are affected by one element of x?

A: $x_{n,d}$ affects the whole row $y_{n,.}$

$$\frac{\partial L}{\partial x_{n,d}} = \sum_{m} \frac{\partial L}{\partial y_{n,m}} \frac{\partial y_{n,m}}{\partial x_{n,d}}$$

Matrix Multiply

$$y_{n,m} = \sum_{d} x_{n,d} w_{d,m}$$

does $x_{n,d}$

Lecture 4 -

affect $y_{n,m}$?

$$\frac{\partial L}{\partial x_{n,d}} = \sum_{m} \frac{\partial L}{\partial y_{n,m}} \frac{\partial y_{n,m}}{\partial x_{n,d}}$$

Matrix Multiply

$$y_{n,m} = \sum_{d} x_{n,d} w_{d,m}$$

A:
$$x_{n,d}$$
 affects the whole row $y_{n,\cdot}$

$$\frac{\partial L}{\partial x_{n,d}} = \sum_{m} \frac{\partial L}{\partial y_{n,m}} \frac{\partial y_{n,m}}{\partial x_{n,d}} = \sum_{m} \frac{\partial L}{\partial y_{n,m}} w_{d,m}$$

does $x_{n,d}$

 \mathbf{A} : $w_{d,m}$

Lecture 4 -

affect $y_{n,m}$?

$$w_{d,m}$$
 dL/dy: [N×M [2 3-3 9]] \mathbf{Q} : How much [-8 1 4 6]

$$\begin{bmatrix} \mathsf{N} \times \mathsf{D} \end{bmatrix} \begin{bmatrix} \mathsf{N} \times \mathsf{M} \end{bmatrix} \begin{bmatrix} \mathsf{M} \times \mathsf{D} \end{bmatrix}$$
$$\frac{\partial L}{\partial x} = \left(\frac{\partial L}{\partial y}\right) w^T$$

$$\frac{\partial}{\partial x_{n,d}} \quad \frac{\partial}{\partial y_n} \partial y_n$$

Matrix Multiply

$$y_{n,m} = \sum_{d} x_{n,d} w_{d,m}$$
 Q: What parts of y Q: How much

does $x_{n,d}$

 \mathbf{A} : $w_{d,m}$

Lecture 4 -

affect $y_{n,m}$?

A:
$$x_{n,d}$$
 affects the whole row $y_{n,\cdot}$

$$\frac{\partial L}{\partial x_{n,d}} = \sum_{m} \frac{\partial L}{\partial y_{n,m}} \frac{\partial y_{n,m}}{\partial x_{n,d}} = \sum_{m} \frac{\partial L}{\partial y_{n,m}} w_{d,m}$$

$$\frac{L}{w_{d,m}}$$

dL/dy: [N×M]

Matrix Multiply
$$y_{n,m} = \sum x_{n,d} w_{d,m}$$

Lecture 4 -

By similar logic:

$$\begin{bmatrix} \mathsf{N} \times \mathsf{D} \end{bmatrix} \begin{bmatrix} \mathsf{N} \times \mathsf{M} \end{bmatrix} \begin{bmatrix} \mathsf{M} \times \mathsf{D} \end{bmatrix}$$
$$\begin{bmatrix} \partial L & - \begin{pmatrix} \partial L \\ \end{pmatrix}_{uv}^T \end{bmatrix}$$

$$\frac{\partial L}{\partial L} = x^T \left(\frac{\partial L}{\partial L} \right)$$

These formulas are easy to remember: they are the only way to make shapes match up!

Summary for today:

- (Fully-connected) Neural Networks are stacks of linear functions and nonlinear activation functions; they have much more representational power than linear classifiers
- backpropagation = recursive application of the chain rule along a computational graph to compute the gradients of all inputs/parameters/intermediates
- implementations maintain a graph structure, where the nodes implement the forward() / backward() API
- forward: compute result of an operation and save any intermediates needed for gradient computation in memory
- backward: apply the chain rule to compute the gradient of the loss function with respect to the inputs

Next Time: Convolutional Neural Networks!

