

THE HARMONY SOUTH AFRICAN MATHEMATICS OLYMPIAD

Organised by the SOUTH AFRICAN MATHEMATICS FOUNDATION Sponsored by HARMONY GOLD MINING

SECOND ROUND 2005

JUNIOR SECTION: GRADES 8 AND 9

10 MAY 2005

TIME: 120 MINUTES

NUMBER OF QUESTIONS: 20

ANSWERS

PRACTICE EXAMPLES	POSITION	
1	С	
2	D	

NUMBER	POSITION		
1	С		
2	D		
3	Е		
4	С		
5	Α		
6	С		
7	D		
8	C A C D C		
9	С		
10	Е		
11	C & D		
12	А		
13	А		
14	В		
15	B C		
16	С		
17	Е		
18	В		
19	D		
20	E		

PRIVATE BAG X173, PRETORIA, 0001 TEL: (012) 392-9323

E-mail: <u>ellie@samf.ac.za</u>

Organisations involved: AMESA, SA Mathematical Society, SA Akademie vir Wetenskap en Kuns

1. ANSWER: C

$$1 - \frac{1}{2} \times \frac{1}{2}$$

$$= 1 - \frac{1}{4}$$

$$= \frac{3}{4}$$

2. ANSWER: D

9	X	7
8	10	а
b	С	d

The sum of the rows, columns and diagonals must be the same.

.. Row 1 = Diagonal from left

$$9+x+7=9+10+d$$

 $\therefore d=x-3$

Also Row 1 = Column 1

$$\therefore 9+x+7=9+8+6$$

$$b=x-1$$

Lastly Row
$$3 = \text{Column } 2$$

$$\therefore x-1+c+x-3=x+b+c$$

$$\therefore x=14$$

3. ANSWER: E

Suppose the initial purchase price is *X*.

Applying a 20% discount will lead to Terry having to pay

$$X - 0.2X = 0.8X$$
.

Applying a further 10% discount will lead to a final price of

$$0.8X - 0.8X = 0.72X$$
.

The effective single discount is therefore

$$X - 0.72X = 0.28X = 28\%$$
 discount.

4. ANSWER: C

5. ANSWER: A

Let the 2 numbers be x and y.

Then
$$x + y = -8$$

and
$$x \times y = 7$$
.

Split 7 into 2 factors:
$$1 \times 7 = x \times y$$
.

Since the sum =
$$-8$$
,

6. ANSWER: C

$$4,32^2 - 3,32^2 + 1,36$$

Let us investigate

$$3^{2}-2^{2}$$
 $5^{2}-4^{2}$
= 9-4 = 25-16
= 5 = 9
 $3^{2}-2^{2}=3+2=5$; $5^{2}-4^{2}=5+4$

Conclusion: $a^2 - b^2 = a + b$ if a - b = 1

Therefore:
$$4,32^2 - 3,32^2 + 1,36$$

= $4,32 + 3,32 + 1,36$
= $7,64 + 1,36$
= 9

7. ANSWER: D

$$\left(1 - \frac{1}{3}\right)\left(1 - \frac{1}{4}\right)\left(1 - \frac{1}{5}\right)\cdots\left(1 - \frac{1}{2005}\right)$$

$$= \left(\frac{2}{3}\right)\left(\frac{3}{4}\right)\left(\frac{4}{5}\right)\cdots\left(\frac{78}{79}\right)\left(\frac{79}{80}\right)\cdots\frac{2004}{2005}$$

$$= \frac{2}{2005} \text{ as the first denominator cancels the next bracket's numerator, etc.}$$

8. ANSWER: C

Time =
$$\frac{\text{Distance}}{\text{Speed}}$$
$$= \frac{1,2 \times 10^8}{6 \times 10^4}$$
$$= 0,2 \times 10^4$$
$$= 2000 \text{ hours}$$

The answer is just less than 3 months.

1 month = approx.
$$31 \times 24$$

= approx. 744 hours
2 months = approx. 1488 hours
3 months = approx. 2232 hours
 $31 \times 24 = (30+1) \times 24$
= $720 + 24$

= 744 hours

9. ANSWER: C

In quadrilateral ADHE

$$\hat{A} + A\hat{D}H + \hat{H}_1 + A\hat{E}H = 360^{\circ}$$

$$\hat{A} + 90^0 + \hat{H}_1 + 90^0 = 360^0$$

$$\hat{A} + \hat{H}_1 = 180^{\circ}$$

 $\hat{H}_1 = B\hat{H}C$ (vertically opposite angles)

$$\hat{A} + B\hat{H}C = 180^{\circ}$$

$$B\hat{H}C = 180^0 - A$$

<u>OR</u>

In
$$\triangle ADC$$
, $\hat{C} = 90^{\circ} - \hat{A}$
 \therefore external angle $\hat{H}_2 = 90^{\circ} + (90^{\circ} - \hat{A})$
 $= 180^{\circ} - \hat{A}$

10. ANSWER: E

Smallest possible $\frac{x}{y}$ -values can be:

$$\frac{-6}{-2} = 3$$
 or $\frac{-6}{-\frac{1}{2}} = 12$ or $\frac{10}{-2} = -5$ or $\frac{10}{-\frac{1}{2}} = -20$

Similarly the biggest value for $\frac{x}{y} = 12 = b$

$$\therefore$$
 $a = -20$ and $b = 12$

$$\therefore ab = -20 \times 12 = -240$$

11. ANSWER: C&D

Maximum number of days in April is 30. When April starts on a Saturday the calendar will look as follows. The 28^{th} of April 20xy will fall on a Friday.

Sun- day	Mon- day	Tues- day	Wed- nesday	Thurs- day	Friday	Satur- day
						1
	3				7	
	10				14	
	17				21	
	24				28	
30						

However, when April starts on a Tuesday the 28th of April 20*xy* will fall on a Monday.

12. ANSWER: A

Area of each face = 1 cm^2

Number of exposed faces =
$$5+4+4+\cdots+4+5\cdots100$$
 terms
= $98\times4+2\times5$
= $392+10$
= 402

Area of exposed faces $= 402cm^2$

13. ANSWER: A

Let
$$\hat{A} = x = \hat{C}$$

 $\hat{B} = \hat{D} = x + 40^{\circ}$
 $\hat{A} + \hat{B} + \hat{C} + \hat{D} = 360^{\circ}$
 $x + x + 40^{\circ} + x + x + 40^{\circ} = 360^{\circ}$
 $4x + 80^{\circ} = 360^{\circ}$
 $4x = 280^{\circ}$
 $x = 70^{\circ}$

14. ANSWER: B

average =
$$\frac{\text{total earnings}}{\text{days worked}}$$

$$\therefore 78 = \frac{x}{20}$$

$$\therefore x = 1560$$

Also
$$90 = \frac{y}{25}$$

$$\therefore y = 2250$$

She must earn R2 250 - R1 560 = R690 over the next 5 days.

15. ANSWER: B

$$A = B + x \mid B$$

$$\frac{10(B+x)+B}{(B+x)+B} = 7 \operatorname{rem} x$$
$$\frac{10B+10x+B}{(2B+x)} = 7 + \frac{x}{(2B+x)}$$

$$LCM = (2B+x)$$

$$\therefore 10B+10x+B=7(2B+x)+x$$

$$\therefore 10B+10x+B=14B+7x+x$$

$$\therefore 11B+10x=14B+8x$$

$$\therefore 2x=3B$$

$$\therefore \frac{2}{3}x=B$$

$$\therefore x = \frac{3B}{2}$$

if
$$B = 2$$
 then $x = 3$, and $A = 5$.

if
$$B = 4$$
 then $x = 6$, and $A = 10$; too big $\therefore x = 3$.

16. ANSWER: C

The number can be written as

$$(100 \times 2) + (10 \times y) + (2x - 1)$$

$$= 100x + 10y + 2x - 1$$

$$= 102x + 10y - 1 = 112x + 29$$

$$10y = 10x + 30$$

$$y = x + 3$$

17. ANSWER: E

Trial and improvement:

$$\begin{array}{r}
325 \\
\underline{147} \\
2275 \\
13000 \\
\underline{32500} \\
47775
\end{array}$$

18. ANSWER: B

Let genuine = g and counterfeit = c

19. ANSWER: D

The smallest possible sum will be 1 (from 10 000 000) and the highest possible sum will be 72 (from 99 999 999).

We therefore have 72 possible answers and the average of 1 and 72 will be

$$\frac{1}{2}(1+72) = 36\frac{1}{2}$$

.: Both 36 and 37 will occur the most.

20. ANSWER: E

Area
$$\frac{1}{4}$$
 DOE $=\frac{\pi(4)^2}{4} = 4\pi cm^2$
Area $\frac{1}{4}$ DAC $=\frac{\pi(2)^2}{4} = \pi cm^2$
Area $\frac{1}{4}$ CBE $=\pi cm^2$ as before

Area
$$DCEF$$
 = Area DOE - Area DCO - Area OCE + Area leaf OC = $4\pi - 2\pi - 2\pi + \text{area leaf OC}$

∴ Area DCEF = Area leaf OC

Then Area of leaf is $\lceil 2(\pi-2) \rceil$

Answer: $2[2(\pi-2)]=4(\pi-2)=4\pi-8$