C BASICS

Angel Noé Martínez González

May 6, 2015

DATA TYPES I

The memory can be viewed as a bytes serie, directionable components; each byte has their unique direction in memory (32 bits in 32 bits machine)

Memoria de 512 Mo			
#536870911 #536870910 #536870909			
#4 #3 #2			
#1			

DATA TYPES II

- ► Generally speaking, a k-bits system has registers and buses of k-bits. We can have a system manipulator of 32 bits on a OS of 64 bits but not otherwise.
- ► A data type defines: number of bytes to use for a data and the way to use each byte.
- ► Elemental types: **characters**, **integers** and **floating points** (for real numbers).
- ► There is no standard in data types size but

```
1 == \text{sizeof(char)} \le \text{sizeof(short)} \le \text{sizeof(int)} \le \text{sizeof(float)} \le \text{sizeof(double)} \le \text{sizeof(long double)}
```

sizeof(x) returns the bytes number of the variable x: variable type or only type.

DATA TYPES III

In a 32 bits machine

char	1	[-128, 127]
short	2	[-32768, 32767]
int	4	[-2147483648, 2147483647]
long	4	[-2147483648, 2147483647]
float	4	$[1.18 \times 10^{-38}, 3.4 \times 10^{38}]$
double	8	$[2.2 \times 10^{-308}, 1.8 \times 10^{308}]$
long double	10	$[1.18 \times 10^{-4932}, 3.4 \times 10^{4932}]$
apuntadores	4	$[0, 2^{32} - 1]$

unsigned of a type take only the positive values.

4/7

INTEGER TYPES I

To represent a subset on \mathbb{N}

For n bits to represent the number

- ▶ The most important bit is for the sign: s = 0 for positive
- ▶ A positive number presented in base 2 over n-1 bits

$$a = \sum_{i=0}^{n-2} a_i 2^i$$

INTEGER TYPES II

Negative integers

- ► Two's complement. Used for a faster sum of numbers.
- ► Only one representation of 1.
- ► Basically is the one's complement plus 1

$$a = \sum_{i=0}^{n-1} (1 - a_i)2^i + 1 = 2^n - |a|$$

FLOATING POINT TYPES I

