→ Name: Anshuman Pati

Reg: 21BAI1258

Task - 5

import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import warnings

warnings.filterwarnings('ignore')

Double-click (or enter) to edit

Load the dataset.

data = pd.read_csv("Mall_Customers.csv")
data

	CustomerID		Age	Annual Income (k\$)	Spending Score (1-100)
0	1	Male	19	15	39
2	3	Female	20	16	6
4	5	Female	31	17	40
195	196	Female	35	120	79
196	197	Female	45	126	28
197	198	Male	32	126	74
198	199	Male	32	137	18
199	200	Male	30	137	83

200 rows × 5 columns

Data preprocessing.

data.shape

data.describe()

(200, 5)

	CustomerID	Age	Annual Income (k\$)	Spending Score (1-100)
count	200.000000	200.000000	200.000000	200.000000
mean	100.500000	38.850000	60.560000	50.200000
std	57.879185	13.969007	26.264721	25.823522
min	1.000000	18.000000	15.000000	1.000000
25%	50.750000	28.750000	41.500000	34.750000
50%	100.500000	36.000000	61.500000	50.000000
75%	150.250000	49.000000	78.000000	73.000000
max	200.000000	70.000000	137.000000	99.000000

```
data.isnull().any()
     CustomerID
     Age
     Annual Income (k$)
     Spending Score (1-100)
     dtype: bool
data.isnull().sum()
     CustomerID
     Gender
     Annual Income (k$)
     Spending Score (1-100)
     dtype: int64
data.info()
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 200 entries, 0 to 199
                                      Non-Null Count Dtype
      0 CustomerID 200 non-null
1 Gender 200 non-null
2 Age 200 non-null
3 Annual Income (k$) 200 non-null
4 Spending Score (1-100) 200 non-null
                                                          int64
                                       200 non-null
                                                          int64
     dtypes: int64(4), object(1)
     memory usage: 7.9+ KB
Uni Variate Analysis
for i in data.columns:
    if(i!='Gender'):
         plt.hist(data[i])
         plt.show()
         data[i].value_counts().plot.pie(autopct='%1.1f%%')
         plt.show()
```



```
wcss = []
for i in range(1,11):
    kmeans = KMeans(n_clusters=i,init='k-means++',random_state=42)
    kmeans.fit(data.drop(columns = ['CustomerID',"Age","Gender"]))
    wcss.append(kmeans.inertia_)

sns.set()
plt.plot(range(1,11),wcss)
plt.title('Elbow Graph')
plt.xlabel('Number of Clusters')
plt.ylabel('WCSS')
plt.show()
```



```
model = KMeans(n_clusters = 5)
data['cluster'] = model.fit_predict(data)
```

```
plt.figure(figsize=(8, 6))

colors = ['red', 'blue', 'green', 'purple', 'black']

for cluster_label, color in zip(range(5), colors):
    cluster_data = data[data['cluster'] == cluster_label]
    plt.scatter(cluster_data['Annual Income (k$)'], cluster_data['Spending Score (1-100)'], c=color, label=f'Cluster_label}')

plt.title('K-means Clustering')
plt.xlabel('Annual Income (k$)')
plt.ylabel('Spending Score (1-100)')
plt.ylabel('Spending Score (1-100)')
plt.legend()
plt.show()
```

