Uncertainty Quantification for Model Constitutive Relations

Finite Volume Neural Network (FINN) applied to a Diffusion-Sorption Problem

$$\frac{\partial c}{\partial t} = \frac{D}{R(c)} \frac{\partial^2 c}{\partial x^2}$$

Analytical Diffusion-Sorption Solution

Retardation (given)

Concentration Field (output)

FINN on Diffusion-Sorption Problem

$$\frac{\partial c}{\partial t} = \frac{D}{R(c)} \frac{\partial^2 c}{\partial x^2}$$

Concentration Field (input, synthetic or measured)

Retardation (output, learned)

PI3NN Method

Prediction Intervals from 3 Neural Networks

Step 1: Learn Mean Function

Step 2: Shift Mean to obtain Median

Reasons for Uncertainty

- 1. Data Uncertainty
- 2. Model Uncertainty

1. Data Uncertainty

Pls from Data Uncertainty

Pls from Data Uncertainty

Pls from Data Uncertainty

2. Model Uncertainty

Model Uncertainty of FINN

- 1. Randomly initialized neural network weights
- 2. "Information extraction" from incomplete data
 - "Noisy Concentration Mask"
 - "Time Interval Subset"

1. Random Network Weights

2a. Noisy Concentration Mask

2b. Time Interval Subsets

FINN on each Time Interval separately

2a. Noisy Concentration Mask

2b. Time Interval Subset

Comparison: Weights – Concentration Mask

Comparison: Weights – Concentration Mask

Comparison: Weights – Time Interval Subset

Comparison: Weights – Time Interval Subset

Application of PI3NN

- PI3NN Advantage:
 - o Computationally inexpensive computation of Quantiles
- Idea:
 - Sample points for PI3NN from enveloping curves

Application of PI3NN – Dataset Generation

Application of PI3NN - Training

Application of PI3NN - Training

TODOs

- Issues near 0:
 - o PI3NN struggels
 - Large errors for Rs of time intervals method
- Which method to choose to sample points for PI3NN

Extra Slides

FINN Method

$$\frac{\partial c}{\partial t} = \frac{D}{R(c)} \frac{\partial^2 c}{\partial x^2}$$

PDE

Finite Volume Method

ODE

Neural ODE solver

Solution (c(x,t), R(c))

$$\frac{\partial c_i}{\partial t} v_i = A_{i-1} \frac{D_i}{R(c_i)} \frac{c_{i-1} - c_i}{\Delta x} - A_{i+1} \frac{D_i}{R(c_i)} \frac{c_i - c_{i+1}}{\Delta x}$$

Approach 1: PIs for Concentration Field

Diffusion-Sorption Residual Field

Diffusion-Sorption Residual Field

Residual Predictions

Isotherms from Mean and PI Networks

Learned mean and +/- Isotherms

Manually shifted

Isotherm PIs for different Quantiles

Isotherm PIs for different Quantiles

Isotherm PIs for different Quantiles

Do Isotherms converge with increasing Dataset

Do Isotherms converge with increasing Dataset

