Business Analysis of Annual Food Imports by Source Country

By: Cameron Rangecroft, Balram Prasad, Camila Gomez Liendo, Claire Zhu

Overview

- Client is the owner of a local grocery store
- Problem:
 - Client is looking to improve capacity in one of the major food groups Dairy,
 Fruit, Grains, Vegetables, Meat
 - Given that expansion in each of these areas requires capital, our client wants to be sure that he is increasing in the correct area
- Client understands that imports to the United States have been increasing over the last years due to policy change
- Task:
 - Develop a model to accurately predict which food group will increase the most in 2018, and provide recommendation on where the client should allocate his funds.

Exploratory Analysis

Dairy

Regression Type: Second Degree Polynomial

Prediction Equation:

Dairy_pred = $1114.07 + 57.15 * (Year since 2002) - 0.39 * (Year since 2002)^2$

Relevant Number:

Adjusted R-squared: 0.8172

P-value: 6.299e-06 (<0.05)

2015-2017 Dairy Imports:

2015: \$1.894B, **2016:** \$1.876, **2017:** 1.827B

Projected 2018 Dairy Imports: \$1.929B

Percentage Change from 2017-2018:

 $1.827B \rightarrow 1.929B \sim 5.55\%$ Increase

Fruit

Regression Type: Linear Regression

Prediction Equation:

Fruit_pred = 4351.90 + 877.90 * (Year since 2002)

Relevant Number:

Adjusted R-squared: 0.9843

P-value: 2.995e-14 (<0.05)

2015-2017 Fruit Imports:

2015: \$15.955B, **2016:** 17.157B , **2017:** 18.383B

Projected 2018: \$18.398B

Percentage Change from 2017-2018: 0.08%

 $18.383B \rightarrow 18.398B \sim 0.08\%$ Increase

Grains

Regression Type: Linear Regression

Prediction Equation:

Grains_pred= 3170.90 + 545.90 * (Year since 2002)

Relevant Number:

Adjusted R-squared: 0.9539

P-value: 5.829e-11 (<0.05)

2015-2017 Grains Imports:

2015: \$10.030B, **2016:** \$10.179B , **2017:** \$10.861B

Projected 2018: \$11.905B

Percentage Change from 2017-2018: 9.62%

 $10.860B \rightarrow 11.905B \sim 9.62\%$ Increase

Vegetables

Regression Type: Linear Regression

Prediction Equation:

Vegetables_pred = 4416.90 + 552.2 * (Year since 2002)

Relevant Number:

Adjusted R-squared: 0.9897

P-value: 1.609e-15 (<0.05)

2015-2017 Vegetables Imports:

2015: \$11.290B , **2016:** \$12.469B, **2017:** \$12.743B

Projected 2018: \$13.252B

Percentage Change from 2017-2018: 4.00%

 $12.743B \rightarrow 13.252B \sim 4.00\%$ Increase

Meat

Regression Type: Linear regression

Prediction Equation:

Meat_pred= 2857.21 + 279.22 * (Year since 2002)

Relevant Number:

Adjusted R-squared: 0.6404

P-value: 0.0001196 (<0.05)

2015-2017 Meat Imports:

2015: \$8.606B, **2016:** \$7.205B, **2017:** \$7.523B

Projected 2018: \$7.325B

Percentage Change from 2017-2018: -0.02%

 $7.522B \rightarrow 7.325B \sim 0.02\%$ Decrease

Summary

Type of food	Type of model	Percent change	Adjusted R-squared
Dairy	Second Degree Polynomial	5.55% Increase	0.8172
Fruit	Linear	0.08% Increase	0.9843
Grains	Linear	9.62% Increase	0.9539
Vegetables	Linear	4.00% Increase	0.9897
Meat	Linear	0.02% Decrease	0.6404

- Our recommendation is for our client to invest in capital for Grains
 - Grains has the highest projected growth at 9.63% from 2018-2019
 - While it does not have the highest adjusted R², our model is shown still be a good predictor - less 5% of the variation in year cannot be explained by the variation in imports

Potential Improvements to our Model

Dividing the imports by Country

Limitations

- Our recommendation only looked at imports many other qualitative and quantitative factors
 - Political Environment, trade wars, currency exchange
 - Customer preference change in population or popular trend
 - Climate change and unforeseen weather patterns
 - Cost structure profit margins and acquisition cost of capital

Conclusion

- Based on our model we believe that imports of grains will go up the most - relatively high accuracy
- Only one variable of many to look at before making a comprehensive recommendation
- Further analysis would be to receive cost and pricing data as well as study the regions from which each food type is coming from.

Questions