Contrôle S1 Architecture des ordinateurs

Répondre exclusiveme	nt sur le	sujet
----------------------	-----------	-------

Durée: 1 h 30

Exercice 1 (2 points)

Simplifiez les expressions suivantes. Donnez chaque résultat sous la forme d'une puissance de deux. Le résultat seul est attendu (pas de détail).

Expression	Résultat				
$\frac{64^4 \cdot 16^5 \cdot 8^{-8}}{(256^{-3} \cdot 32^{16})^4}$	2-36 2-204				
$\frac{((65536\cdot32^{-3})^3\cdot2048^{10})^5}{(64^{-7}\cdot1024)^{-7}\cdot256}$	2333				

Exercice 2 (3 points)

1. Donnez, <u>en puissance de deux</u>, le nombre d'octets que contiennent les grandeurs suivantes. Le résultat seul est attendu (pas de détail).

• 32 Mib =
$$2^{22}$$

2. Donnez, à l'aide des préfixes binaires (Ki, Mi ou Gi), le nombre de bits que contiennent les grandeurs suivantes. <u>Vous choisirez un préfixe qui permet d'obtenir la plus petite valeur numérique entière</u>. Le résultat seul est attendu (pas de détail).

Exercice 3 (5 points) 3

Convertissez les nombres suivants de la forme de départ vers la forme d'arrivée. Ne pas écrire le résultat sous forme de fraction ou de puissance (p. ex. écrire 0,25 et non pas ¼ ou 2⁻²). Le résultat seul est attendu (pas de détail).

Nombre à convertir	Forme de départ	Forme d'arrivée	Résultat
10111001,01101	Binaire	Décimale	185,40625,
CE,68	Hexadécimale	Décimale	206,4375,0
88,88	Décimale	Hexadécimale (2 chiffres après la virgule)	58, FT, 58, EO
105,40625	Décimale Binaire		1101001,01101
151,32	Base 8	Binaire	1101001,011012
151,32	Base 8	Hexadécimale	69,68 _{AB}
151,32	Hexadécimale	Base 8	521,1448
59,27	Décimale	Base 7 (3 chiffres après la virgule)	113,2844
32	Base 4	Base 5	245
101110101,01011	Binaire	Hexadécimale	175,58,5

Exercice 4 (2 points)

Partie 1 : Encodage d'entiers non signés

Soit l'addition sur 8 bits suivante : 250 + 10
 Les deux opérandes et le résultat sont sur 8 bits. Donnez la représentation du résultat sur 8 bits. Utilisez la base 10.

2500+100= 40

00000100

Soit la soustraction sur 8 bits suivante : 4 – 10
 Les deux opérandes et le résultat sont sur 8 bits. Donnez la représentation du résultat sur 8 bits. Utilisez la base 10.

4no- 10no= 250no

11111010

Partie 2 : Encodage d'entiers signés

Soit l'addition sur 8 bits suivante : 120 + 10
 Les deux opérandes et le résultat sont sur 8 bits. Donnez la représentation du résultat sur 8 bits. Utilisez la base 10.

 $120_{10} + 10_{10} = -126_{10}$ 10000010

2. Soit la soustraction sur 8 bits suivante : **-126 – 10**Les deux opérandes et le résultat sont sur 8 bits. Donnez la représentation du résultat sur 8 bits. Utilisez la base 10.

-126-10=1200 OMMOOO

Exercice 5 (4 points)

Effectuez les opérations suivantes. Le détail des calculs devra apparaître.

Base 2											Base			4	•		
	1	, 1	0	, 0		0	1	, 1	, 1	0		1	9	C	A	8	
_	, ;	1	, 1	1		0	0	, 1	, 1	1	+		В	F	С	E	
	0	1	0	1	(5	0	1	1	1		1	5	C	7	6	
																_	
Base 2	<u> </u>			<u> </u>				I	<u> </u>		Base	e 8		<u> </u>		I	
1 1	0 1	0	1	0	0	0	1	1	0	0		1	7	2	4	6	
- 1	1 1	0	0	V	ì		11	10			+		2	6	5	3	
0 -	1 0	.0	1	0								1	2	1	2	1	
- 1	11	1	0	0	\forall												_
	0	1	1	0	0												
		1	1	0	0	V											
					0	0											
						/											

M1	Adresse basse	One
1/11	Adresse haute	3FFF16
M2	Adresse basse	400016
1712	Adresse haute	4FFF6

1/1/2	Adresse basse	8000A6				
M 3	Adresse haute	83FF16				
M4	Adresse basse	840016				
1014	Adresse haute	87FF16				

Si vous manquez de place, vous pouvez utiliser le cadre ci-dessous.

Quel est le nombre minimum de fils d'adresse requis par le microprocesseur?

16