Map of Hits

 $\underline{{\tt SVG\ viewer}}$ is required to view graphical representation of the map as Scalable Vector Graphics (SVG plot).

sequence02 (SVG Plot; Alignments; Masked)

sequence03 (SVG Plot; Alignments; Masked)

sequence04 (SVG Plot; Alignments; Masked)

sequence05 (SVG Plot; Alignments; Masked)

sequence06 (SVG Plot; Alignments; Masked)

sequence07 (SVG Plot; Alignments; Masked)

sequence08 (SVG Plot; Alignments; Masked)

sequence09 (SVG Plot; Alignments; Masked)

sequence10 (SVG Plot; Alignments; Masked)

sequence10	29	76	Harbinger- N47_OS	1871	1914	DNA/Harbinger	d	0.8043	1.1667	238
sequence10	252	360	CR1-X1_Pass	4316	4424	NonLTR/CR1	d	0.9725	1.0000	882
sequence10	407	617	Mariner-25_SIn	1071	1281	DNA/Mariner	d	0.6934	2.1852	549

Masked Sequence

>sequence01

 $\label{tagg} TTAGGGTTA$

>sequence02

TTTACAGAACCCCCCGCCCCCGGGGGTTGGGGGGGGAAACCAAGCAGCCGCAGATGACTTCCTGCCACT TAATCCGCGCGCCGCCTCCGCAGCCCCCAAGCACCCGCGGGACTGGGCTGAAACCAGCGCCTCGTCCT XXXXXXXXXXXXXXX

>sequence03

>sequence04

```
XXXXCTGCAACCCAGGACA
>sequence06
```

>sequence07

>sequence08

ATATCCCTTCGGCCTGAATGGGCCAGACCTAACGCCATATTACTGGAAAACAGAAATGGAGGAATTAAAG XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXAGCCAGCAGCACTTATCAATCAAGAAACAGAGC AGATCCTGGCAGAGCTCTGTCGCCGACTGCTCCCGTGTTCAAAAGGCCCACATCAACTTCAACAAATTCT XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXTTATGAGGTTATACAAGCTTTAGAAAAGGCGGCT XXXXXXXXXXXXXXXXXXXXXXXXXXXAAGTTGCTCCTACCTTACCAATTGAAAATCAAATTGG >sequence09

>sequence10

Local Alignments*

<u>Name</u>	From	To	<u>Name</u>	From	To	Dir	<u>Sim</u>	Pos/Mm:Ts	Score
sequence02	1	63	hAT-N4_XT	1	63	d	0.9206	1.6667	439

- 1 CAGGGGTCCTCAAACTACGGCCCGCGGGCCGGATACGGCCCCCAGGGTCCTCAATCCGGCCC 63
- 1 CAGGGGTCCTCAAACTACGGCCCGCGGGCCGGATACGGCCCCCAAGGTCATTTACCCGGCCC 63

<u>Name</u>	From	To	<u>Name</u>	From	To	Dir	Sim	Pos/Mm:Ts	Score
sequence02	264	362	Chompy-1934B_Crp	415	510	С	0.7475	1.7000	245

- 264 CGGCCGGG--CTGAGGAGGGGGCCG--CGCCATCAGCGAGG-GGGGCGGCTCCCCCGTCTCTCCCT 328 510 CNGCCGGGGCCTCGGGGGGGGGGGGCCGG-GCCCGCGAGGCGGGGGGGGCTCC---GT-TCCCCCGCCC 446
- 329 CCCTCCAGCTCCCAGGCAGGACAAGCAAGCCAGC 362 |||:|||-:||: |:||--|||||
- 445 CCCCCCAGCTCC-GGGCGCGCAA--AAGCCAGC 415

Name	From	To	<u>Name</u>	From	To	Dir	Sim	Pos/Mm:Ts	Score
sequence02	382	2395	hAT-2_ET	1088	3105	d	0.9022	1.8660	14672

382 ACCATCATGTCAAAAAAAAAAAAATTTACTCCGAGTGCAGGGTATTCCAAGAAAAGTGGATTTTTGATT 451 1088 ACAATGATATCAAGAAAGAGAAAAATTGACTCGGAGTGTAGGATATTCAAAGAACAGTGGACTTATGATT 1157 452 ATTTTTCCACGGAATACAAAGAAAGACTGTTTGTCTGATATGCCAGAATTCAGTGTCTGTGTTCAAGGA 521 1158 ACTTTTCATGCAGTACAAGGAAAGACTGTGTGTTTGATATGCCAGAATATAGTGTCTGTGTTCAAAGA 1227 522 ATACAATTTGCGTCGACACTACGAAACTCAACATAAAGATAAATATGATTCTTTGGTCGGACAAGTGAGA 591 1228 ATACAATTTGCGTCGACACTATCAAACTCAACATAAAGATAAATATGATTGTTTGGTCGGAGAAGTGAGA 1297 592 AAAGATAAAATATTAAGACTGAAACATGGATTGACAACTCAGCAAAATACTTCTGTGAAGCAAAAGCAGC 661 1298 AAAGATAAAATATTAAAACTGAAAAATACATTGACAACTCAGCAAAATACTTTTGTGAAGCAGAAGCAGC 1367 662 TCAATATATCATCACTTSGAGCAAGCTATCAAGTTGCCAAGCTCATAGCGCGCACTTGMAGAGCATTCAT 731 1368 TAAATATTTCATCACTGCGAGCAAGTTTTCAAGTTGCCAAGCTAATAGCGTGCACTGGCAGACCATTCGT 1437 732 AGAGGGAGAATTTGTTAAAGAATGCCTTCTTTCTGTTGCCAAAGAGATGTGTCCAGAGAAGGCGGATTTA 801 1438 GGAGGGAGAATTTGTTAAAGAATGCCTTCTTTCTGTTGCCAAAGAGATGTGTCCAGAGAAGGCCGATTTA 1507 802 TTTAGTACAGTGAGTTTTTCAGGACCTACAATTACACGAAGGATTGAAGAAATGGGGGAAAATTTGAATC 871 1508 TTTAGTACAGTGAGTCTTTCAGGACCTACAATTACACAAAGGATTGAAGAAATGGGAGACAATTTGCATC 1577 872 TGCAGTTGCAAAACTCCTCGAAAAAACTTTGCTATTTCTCATTGGCACTCGACGAAAGCAATGATGTTCG 941 1578 AGCATTTGCAAAACTCCGCAAAAAAACTTTCCTATTTTTCCTTGGCACTCGACGAAAGTAATGATGTTCG 1647 942 TGATTCTGCACAACTTCTAATTTTCATTCGTGGGACAAATGATTCTTT-TGAAGTCACAGAGGAGCTTGC 1010

1011	TGCACTGAAAAGCATCAAAGGAACAACTACAGGAGAGATATCTATGAGAAAGTTTGCCAAACTATGAAT	1080
1717	$\tt TGCACTGCAAAGCATCAAAGGAACAACTACAGGAGAGGATATCTATGAAAAGGTTTGCCAAACTGTGAAT$	1786
1081	GATTTGGAGCTGGACTGGGGTAAACTATTCAGTGTGACAACTGATGGTGCTCCTAGCATGGTGGGGTCCA	1150
1787	GGTTTGGAGCTGGACTGGGCTAAACTAGCCAGTGTGACAACTGATGGTGCTCCTAGCATGGTGGGGGTCTA	1856
1151	TGAAAGGAGTGGTTGCACGCATTAACAAAGAGATGGACAAACGCAACCATTCACATCCAATAGCCATACA	1220
1857	AGAAAGGAGTAATTGCTCGCATTAACCAAGAGATGGACAAACATAACCATTCTCATCCAATAGCCATACA	1926
1221	CTGCATCATCCACCAACAAGCACTGTGTTGTAAATCACTGAAGCTGGACTCTGTCATGAAAATTGTAGTT	1290
1927		1996
1291	TCTTGTGTTAACTTCATTAGAGCTCATGCACTAAACCACAGACAG	1360
1997		2066
1361		1430
2067		2135
1431	GATTTTATGACTTACTTCCACAGGTTTATGATTTTATGCTTTCTAAAAACAAAGAAGTACCAGAGCTCAA	1500
2136	: :	2205
1501		1570
2206	TGATGCAGAATGGCACCTTGCCTTTCTGACAGATGTAACAGAGCTACTCAACAGTTTCAATGTG	2275
1571	CAACTTCAAGGAAAGGGGAAGCTCATCTGTGATATGTATTCACATGTGAAAGCATTTCAAGTCAAATTAG	1640
2276		2345
1641	ACCTGCTCATTAACCAAGTAAAGGAGGAAAACTTCTGCCATCTCCCCACAACTCAAAACCTGTCTGCAGA	1710
2346	: : : : :	2415
1711	AAAACCAGCAGTTGCATTCCCAAACAAACATGTATGGATGTACTAGAAATGTTGCAAAAGGAGTTTCAA	1780
2416	::	2485
1781	ATTAGATTTAAAGAGCTTCGTCTCCATGAACAGGACATACAGCTTTTCCGGAACCCATTTTCTGTTGACA	1850
2486		2555
1851	TTGAAACTGTTGATCCGATTTACCAAATGGAATTGGCCGAACTACAGACTTGTGACTCGCTGAAAGATGC	1920
2556		2625
1921	ATTCAAATCAAGCAGCCTTACTAATTTCTA-TGCATCTCTCCCCTCAGAGACATATCATAATCTCAGGAA	1989
2626	:	2694
1990	CCATGCACTCAAAATTGCAACCATCTTTGGCAGCACCTATGTCTGTGAGCAGACTTTTTCCCGAATGAAA	2059
2695		2764
2060	CATCTGAAATCTCCAATCAGATCCAGACTAACTGATGAACACTTGCATCACTTGCTACGACTAGCAGTGA	2129
2765		2834
2130	CAAATATGGAACCTAACATTGACCATCTCATTAGCCAAAAGCAGGCCCATAGTTCACATTGAAATATTAT	2199
2835	::: :::- CAAATATGGAACTGGACATTGACCATCTCATTAGCAAAAAGCAGGCCCATAGTTCCCATTGAAATACTG-	2903
2200	TTGTTTTTGTTGATTACAATTGTTCTTCATTTTAAATATTGCATTCTTTTTCCTGTTTT	2258
	-	

2904	GTAAGTTTGTTGATTTAACTTTACTTGTTCTTCATTTTAAATATTGTATT-TGTTCCCATTTTGTTTT	2970
2259	TTTGTGCACTACAAA-TAAAATATGTGCAGTGTGCATAGGAATTCGTTCATTTTTTTCCAAAC	2323
2971	TTTTACTTCAAAATAAGATATGTGCAGTGTGCATAGGAATTTGTTCATAGTTTTTTTT	3034
2324	TATAGTCCGGCCCCGACAGTG-TCTGAGGGACAGTGAACCGGCCCCTGTTTAAAAAGTTTGAGGACCC	2392
3035	TATAGTCTGGCCCTCCAATGGTCTGAGGGACAGTGAACTGGCCCCCTGTTTAAAAAAGTTTGAAGACCC	3102
2393	CTG 2395	
3103	CTG 3105	

<u>Name</u>	From	To	<u>Name</u>	From	To	Dir	Sim	Pos/Mm:Ts	Score
sequence03	16	437	CR1-E_Pass	2650	3078	d	0.7471	2.0408	1587

16	AGGGCTGGAGCCCCTCTGCTCTGGAGCCAGGCTGGGAGAGCTGGGGGTGCTCA-CCTGGAGAGGAGA	84
2650	AGGACTGGAGCACCTCCCCTACGAAGACAGGCTGAGAAAGTTGGGGCTGTTCAGCCTGGAGAAGAAGAGAGAG	2719
85	CTCCAGGGAGAGCTCAGAGCC-CCTKSCAGGGCCTAAAGGGGCTCCAGGAGAGCTGGAGAGGGACTGG	151
2720	TTGCGTGGAGACCTCATAGCAACCTTCCAGTATCTGAAGGGGGCCTACAGGGAAGCCGGAGAGGGACTCT	2789
152	GGACAAGGGA-TGGAGGGACAGGACACAGGG-AATGGCTCCCA-CTGCCAGAGGGCAGGGC	218
2790	TCGTCAGGAACTGTAGTGATAGGACAAGGAGTAATGGGTACAAACTGAAAGAGGGGAAATTTAGGTTAGA	2859
219	TATTGGGAAGGAATTGTTCCCTGGGAGGGTGGGCAGGCCCTGGCACAGGGTGCCCAGAGCAGCTGTGGCT	288
2860	TATTAGGAAGAAATTCTTTACTGTGAGGGTGGTGAGACACTGGAACAGGTTGCCCAGGGAGGTTGTGGAT	2929
289	GCCCCTGGATCCCTGGCAGTGCCCAAGGCCAGGCTGGACGGGGCTTGGAGCAGCCTGGGACAGTGGGAGG	358
2930	GCCCCANCCCTGGCAGTGTTCAAGGCCAGGTTGGATAAGGCCTTGAGCAACCTGGTCTAGTGGGAGG	2996
359	TGTCCCTGCCCGTGGCAGGGGGTGGAACGAGATGAGCTTTAACGTCCCTTCCAACCCAAACCATTCT	425
2997	$\tt TGTCCCTGCCCATGGCAGGGGGGTTGGGACTAGATGATCTTTAAGGTCCNTTCCAACCCTTAACATTCT$	3066
426	GTGATTCTGTGA 437 :	
3067	ATGATTCTATGA 3078	

	1		1						
Name	From	To	<u>Name</u>	From	To	Dir	<u>Sim</u>	Pos/Mm:Ts	Score
sequence04	501	953	hAT-N3 CM	321	679	d	0.7413	1.8684	654

<u>Name</u>	From	To	<u>Name</u>	From	To	Dir	Sim	Pos/Mm:Ts	Score
sequence04	90	438	hAT-N3_CM	345	679	d	0.7281	1.7838	557

90	CACACACACACACACAGGGCCGGCCCCAGGGACACACAAGAGCAGGATACACACAC	158
345	CACACACTCACACAGA-GAGACACACACACACACCAGAGAGAGA	407
159	CAGGCTCCAGAGAGATGTAGGAGCAGGGGACACACACACACACACACACACACAC	210
408	CACACACTCACAGACACAGAGAGAGACACACACACACACA	476
211	AGGCCGGCCCCAGGGACACACAAGAGCAGGATACACACACACACGAGAGGCCAGGC-	266
477	AGAGAGACACATTCTCAGAGAGAGACACTCACAAACACATAGAGAGAG	537
267	TCCAGAGAGATGTAGGAGCAGGGGACACACACACACACAC	334
538	CACCCACACAGAGGAGAGGGAGACACAGACATACTCACACAGACACTCACAAAC	591
335	AAGAGCAGGATACACACACACGAGAGGCCCAGGCTC-CAGAGAGATGTAGGAGCAGGGGACACACAC	403
592	:: :	652
404	ACACACATACGAGGCCGGCCCCAGGGACACACA 438	
653	: : ACACACAAACACACAGAGACACACA 679	

<u>Name</u>	From	To	<u>Name</u>	From	To	Dir	<u>Sim</u>	Pos/Mm:Ts	Score
sequence04	954	1030	HAT-10_Mad	3134	3220	С	0.7692	2.1667	245

<u>Name</u>	From	To	<u>Name</u>	From	To	Dir	Sim	Pos/Mm:Ts	Score
sequence05	1	41	TguERVL2b1_LTR	525	566	С	0.8333	1.5000	242

<u>Name</u>	From	To	<u>Name</u>	From	To	Dir	Sim	Pos/Mm:Ts	Score
sequence05	42	564	ERV3-7_PMaj-LTR	37	608	С	0.8012	1.5192	2012

42 GAATAACAATT---TATTAGGGAAATTAAAA-ATAAAGGCA-----AGAAAAACC--CCAGTGGGCTA 98

608	GAATAACAGTTCTTTACTAGGAAAATTAAAATAAAAATGCAGTAGTACAAAAAAAA	547
	: : : : : : : :	168
546	CTGACAGAGTCAGAATACAACCTGACACCCTGTTGGTCAGGGTGTTGGTAGCAGTCCGATTAAATGGT	479
169	GGCTGTAGTCCTCCTGAAGTGATGGATGTGGCTCTGTCGAAGCAGTGGTCCAGTAGAAAGGTCTGCTCCT	238
478	GGCTGCAGTCCTCCTGSAGTGACAGATGTGGTTCTGTTGAAGCAGTGATCCTGTAGAAGGGTGTAGTTTT	409
239	CCTCAGAAAGTCCAGTGGTGACTATGCAGCTCCTGTCCTCTGGGAATCCAGTGGGAAGGA	298
408	CCTCTGAAGGTCCAGTGGTGGTGTAGATGGGTCTGGTCT	342
299	TGCCCGTGGTGTTCAGAGTCCCAGATTATATCCAAGATGGAACGCTTGGTTCCTCCCTC	368
341	TGCCTGTGGTGTTCCAAGTCTCAGATTATATCCAGGTAGGAATGCTTGGCTCCTCCCCCTGGGTGGAGCA	272
369	TCTCACAATRGAATGATGAGTCATGAGGCCAGGTGTTGATGGGCTCATTAACAGAAGATA	428
271	TCTCACAATGGGATGATATTTATCAGTCATGCAGTGAGAC-TCAATGG-CCCATTAACAGAAGATA	204
429	GTCCGGAGGGAGTTATCTCTGAGTCATGCGGCAGGGCATTGA	470
203	TCCCCCTGGAGGGAGGATGGGTGTGGAAGAGATAAAGAACACTGCCMCACCTGGTTTTAACA	142
471	TGGGCCATTAGCAGAAAGATAGTCCGGAGGGAGGAGGCCA-GGAAACACC	519
141	GCTGGCCCATTAACAGAA-GATATCCCCTGGAGTTATGAGGGATGGGTCATGGAAGAGATAAAGAACACT	73
520	GCCCCACCTGGTTTCAACAGCTCATGAGGATGGTAATAGAATACA 564	
72		

	Name	From	To	Name	From	To	Dir	Sim	Pos/Mm:Ts	Score
$\ \Gamma \ $	sequence06	1	3910	AviRTE MUn	14	3958	d	0.9382	1.3471	30997

1 CACCCCCTTGTTGTGGGGAAAGAGCTCACCTGCCCTTGTGAGGTTGGGAGCTATGCTGGTGGTGGCATAT 70

```
CACCCCTTGTCGTGGGGAAAGAGCTTGCGTGCCCTTGTGAGGTTGGGAGCTATGCTGGTGGTGGCATAT 83
71 GCCTCCAGTAGGGTCTCCCATGCCAGACGAGTCTCAACTGAAGGGTCA----AAGTGTGTCCATTGGCAG 136
  84 GCCTCTAGTAGGGTCTCCCATGCCAGACAGGTCTCAACTGAAGGGTCAGACAAAGTGTGTCCATGGGCAG 153
137 GATGGGCTCACCAGCCTTAGGGCTACCATCCTAGGAGAAGGACAACTCTAACTTCAAACCCAGGCAGATG 206
  154 GATGGGCTCACTAGCCTTTGGGCAACCATCCTAGGAGAAGGACAACTCTAACTTCAAACCCAGGCAGATG 223
207 GAGCTCGTTTAGCCCTGTAAGGCCACCCATCTAAGAGAAGGATACTCTAATTAAACCTACGACCTGAGGA 276
  224 GAGCTCGTTTAGCCCTGTAAGGCCATCCATCTAAGAGAAGGATACTCTAATCAAACCTATGACCTGAGGA 293
277 CCTTGCTGCCACCATCCAAGCTCGCTAGGCCCTGGCAGATAAACCTCAGGTGTAAAGGGTGGGGCCAGTT 346
  294 CTTTGCTGTCACCGTCCAAGCTCGCTAGGCCCTGGCAGATAAACCTCAGGTGTAAAGGGTGGGGCCAGTT 363
347 CCACGCATGCTGTGCTTCACCTAAAAAATCCACTGCACAGGCCTGAAGGGTTTACCCACACTTGCAAAGC 416
  364 CTGCGCATGCTGTGCCTCACCTAAAAAATCCACTGCACAGGCCCGAAGGGTTTACCCACACTTGCAAAGC 433
417 CCTGTAGCGACAGGCGAGGGACAAAACGGCAGGTGATAAGGTGCACTGGAAGCTTCAGACCCAGCCCTGC 486
  434 CCTGTAGCGACAGGCGAGGGACGAAACGGCAGGTGATAAGGTGCACTGGAAGYCGCAGACCCAACCCTGC 503
487 ATGCAGGCAGTTCACGACATTGGTCGCTCGAGACTGACCCAGGAGATGACAGTCTTGTTTGACAGCATCC 556
```

504 ATGCAGGCGGTTCAGGACATTGGTCGCTCGAGACTGACCCAGGAGATGACAGTCTTGTTTGGCAACATCC 57	73
557 TGAATGATCAAGCAGCCTTTTCTCAAGGAGAGCACTGCTTGCT	
627 GGCCTAACCAAAGCTCATCTCCCCCTCCACCTGGTTGGCTAGCTGTGGCCAAAGGGCATCTTCTGTTGCG 69	
697 GTCGATCAAAGGCAGAGACAAAGGCATACACCTGCCTCCAAAGGTGTGTCCAGATTGACACTCACATG 76 : :	
765 TTGGAACATCAGAACCATGCTTGATACAGCAAACAGTGGGCGTCCTGAGCGCCGTTCTGCGCTAATTGCC 83	
835 CATGAACTGTCACGACTCAACATCGATATTGCTGCTCTCAGTGAAGTTCGCCTTCATGAGGAAGGTAGCC 90 :	
905 TTAAAGAACATGGTGCCGGCTACAAACTCTACTGGTCAGGCAAATCCAAAACTGAAAGTCATCTTTCTGG 97	
975 AGATGGCTTCATGATTAAAAACTCCATCATCTCTAAACTTGAAAATTTGCCGACAGGTCAATCCAATCTT 10	
1045 ATTATCTCCTTACGTCTTCCACTACACAATAAGCAACATATTGTTCTTTTCAGCATATGCGCTCCAACTC 1	
1115 TGCAAGCTGACCCTGCAGAAAAAGACAAATTCTACTCTGACCTGTGTTGCCTCACCCAAAAGGTTCCTAC 1	
1185 AGATGATAAGATCGTAATTCTTGGTGACTTCAACGCCCGGGTAGGTA	
1255 GTACTAAGCAAGCACAGTGTTGGTAGCTGCAGTGATAATGTTCACCTCTAGCTAG	
1325 AGCAGCTCACCATCACCAATACTATTTTCCAGCAGAAAGACAGCCTGGAGACAACCTGGATGCATCCTTG 1 :	
1395 ATCTAAATATTGGCACCTTATTGATTATGTCTTAGTGGGCCAGAGAAATGCTCGTGATGTCTGTC	
1465 CAAGTGATGCCTAATGCAGAATGTCAATCAGACCACAGCCTTGTGTGTTGCAAGCTTAACCTCCACTTCA 1 : :	
1535 AGGCCAAACCTAAGAGGGGCAGCATTCTGAGGAGGAGGCTCAATAGCTGCAAG 1	
1588 TGAGGGACAGCTTTCAGGCTAACCTTCAAACTAGGCTTGAAGACCATCTTATAGATTCTTCTCCTGAAGT 1	
1658 GCTTTGGTAACATATTAAAAATAGCATCCTGCAGTCCTCTGTAGAACCATTTGAGTTCTCCTTAAAGAAA 1 : :	

1728	$\tt AACAAAGACTGTTTTGATGATAACAATCAGGAGGTCCAGGAACTGCTGGCAAAAAAAA$	1797
1763		1830
1798	TCAAGCATGCCTTGCTCAGCCACTTTGCCATGTAAGAAATGCAGCCTTTCGTCTTGCATGCA	1867
1831		1900
1868	${\tt CAACAGAAACTTCGAGACATCCAGAACAAGTGGTGGCTCAACCTAGCAGAAAAGACTCAACTATGGGCAG}$	1937
1901		1970
1938	$\tt ATTTGGGTGACCACAGAGGATTCTATGAGGCTCTGAAGGCAGTGTATGGACCCACATTTCAGGTTCAAAG$	2007
1971		2040
2008	CCCCT-AAGTGCAGATGGCCAAATGCTTCTTATAGATAAAATCTCCATCCTGAATCGTTGGTCTGAA	2073
2041	CCCCTTACTTAGTGCAGATGGCCAAACGCTTCTTACAGATAAAATCTCCATCCTGAATCATTGGTCTGAA	2110
2074	CATTTTCAAACACTCTTTAGTGCTAACCGTGTAGTCCAAGGCGTAGGAATCCAGCACATTTTACAACATC	2143
2111	CATTTTCAAACACTCTTTAGTGCTAACCGTGTAGTCCAAGGCGMAGGAATCCAGCACATTTTACAACATC	2180
2144	$\tt TGGTGAAAAATGAACTGGATATAGCCCGTACCATGGGAGAGACTCT-AAGGCTATACAGCAGGTGAAAAC$	2212
2181		2250
2213	TGGCAAGGCAGCTGGGGTAGGCGGAATCCCACCAGAAAACTGGAATCACGAAGGCCAAGCACTTCATGCT	2282
2251	TGGCAAGGCAGCTGGGGTCGACGGAATCCCACCCGAAATCTGGAAGCACGGAGGCCAAGCACTTCATGCT	2320
2283	AAATTTCACGAGCTAGTTGTGCGCTGAGAACAAGGTAAATTACCGTCAGGTTTCTGTGATGGAATCA	2352
2321	AAATTTCACGAGCTAGTTGTGCGCTGTTGGGAACAAGGTAAATTACCATCAGATTTTCGTGATGCAATCA	2390
2353	TCATCACTCTGTATAAGAAAAAAGGTGTAAAGCTCAAGCTACTGAGGTGTAACTCTGACCTC	2414
2391	TCATCACTCTGTATAAGAAAAAAGGTGTAAAGTCAGACTGCTCAAGTTACCGAGGTATAACTYTGCTCTC	2460
2415	CATTGCTGGAAAAACCCTTGCAAGAATACTATTGAACAGATTAGTATCCACTATCACAGAAGAACTTCTA	2484
2461	CATTGCTGGAAAAATTCTTGCAAGAATACTATTGAACAGATTAGTACCCGCTATCGCAGAAGAACTTCTA	2530
2485	CCTGAAAGTCAGTGTGATTTCAGAGCTAATAGAAGTACCACAGACATGGTATTTGTTTTCAAACAACTGC	2554
2531	CCTGAAAGTCAGTGTGGTTTCAGAKCTAATAGAAGTACCACAGACATGGTATTTGTTCTCAGACAACTGC	2600
2555	AAGAGAAGTGTAGAGAACAGAATAAGGGTCTCTGTGTTACTTTTGTTGACCCTCACCTAAGTTTTTGACAC	2624
2601	AAGARAAGTGTAGAACAGAATAAGGGGCTCTATGTAACTTTCGTTGACCTCACCAAAGCTTTTGACAC	2670
2625	TGTGAGCAGAAAAGGCCTGTGGCTGATCTTGGAACGATTAGGTTGTCCCCCCAGGTTCCTCAAAATGATT	2694
2671	TGTGAGCAGAAAAGGCCTGTGGCTGATCTTGGAACGATTAGGTTGTCCCCCCAAGTTCCTCAAAATGATT	2740
2695	ATTCTGTTACATGAGGACCAGCAAGGCCAAGTCAGATATGGTGATGCACTCTCTGAACCATTCCCAATAA	2764
2741	ATTCTGTTACATGAGGATCAGCAAGGCCAAGTCAGATATGGCGATGCACTCTCTGARCCCTTCCCAATAA	2810
2765	CCAGTGGTGTGAAACAAGGTTGCGTTCTCATACCAATTTTATTTA	2834
2811		2880
2835	AACGGCTATGGTAGACCTTGACAAACAAAACGGCATTTATATTCGATATCGTACTGATGGGAGCCTATTC	2904
2881	AAGGGCTATGGTAGACCTCGACGAACAAAATGGCATTTATATTCGATATCGTACTGATGGGAGCCTATTC	2950
2905	AATCTAAGGCGACTGAAGGCCCACACTAAGACCCTAAATCATCTTGTCCATGAACTGCTTTTTGCTGACG	2974

2951	$\tt AATCTAAGGCGACTGAAGGCCCACACTAAGACCYTAAATCATCTTGTCCGTGAACTGCTTTTTGCTGATG$	3020
2975	ATGCCGCCATTGTTGCCCACACAGAAGCAGCTCTGCAGTGCTTAACATCTTGCTTTGCAGAGGCAGCTGA	3044
3021	ATGCCGCCCTTGTTGCCCACACAGAAGCAGCTCTGCAGCGTTTAACATCTTGCTTTGCGGAGGCGGCTGA	3090
3045	G-GTTTTGGGCTGGAAGTCAGTTTGAAGAAGACAGTAGTTCTCTGCCAACCTGCACCACAAGAAGATTAT	3113
3091	GCTTTTTGGGCTGGAAGTCAGCTTGAAGAAGACAGTAGTTCTCTACCAACCTGCACCACAAGAAGATTAT	3160
3114	CATCCTCCCCACATTACCATTGGCGAGTCAGAGCTTAAGTCAGTTCAGCAGTTCAGCTATCTGGGAAGCA	3183
3161	CATCATCCCCACATTACCATTGGCGAGTCAGAGCTTAAGTCAGCTATCAGCAGTTCAGCTATCTGGGAAGCA	3230
3184	TTATTTCCTCGGATGCCACAATCTACAAAGGGATAGACAACAGAATAGCAAAGGCTTATAGAGCCTTCAG	3253
3231	TTATTTCCTCGGATGCCACGATCGACAAAGAGATAGACAACAGAATAGCAAAGGCWTATAGAGCCTTCGG	3300
3254	AACACTACATAAAAGAGTCTGGTGCAACAAACACCTGGAGAAAAGTACAAAGATTAGTGTCTATAGAGCT	3323
3301	AAAACTCCATAAAAGAGTCTGGTGCAATAAACACCTGAAGAAAAGTACAAAGATTAGTGTCTATAGAGCC	3370
3324	ATTGTACTGTCTACTCTTTTATATGGGTCTGAATCATGGGTTATCTACCGTCATCACCTGCAACTCCTCA	3393
3371		3440
3394	GATGCTTTCATCAGCGCTGCCTCCTTACAAT-CTAAACATCCATTGGACTGACTATGTGTCAAATGTAAC	3462
3441	: :	
3463	TGTCCTTGAACAGGCAGGGGTCACCAGTATTGAGGCT-TATTGCTGAAATCGCTGCTGCGCTGGGCAGGG	3531
3511	TGTCCTTGAACAGGCAGGGGTCACCAGTATCGAGGCCATATTGCTGAAATTGCAGCTGCGCTGGGCAGGG	3580
3532	CACATCTCTAGGATGGAGGATCACCGCCTCCCTAAGATTGTGTTTTATGGTGAACTCGCCACTGGCTGCC	3601
3581		3650
3602	GCAAGAGAAGTGCCCCAGAGAAGAGATATATGGATTCCCTGAAACAATACCTCAGCCTTGGCCATACTGA	3671
3651	GCAAGAGAAGTGCCCCAAAGAAGAAGATATAAGGACTCCCTGAAACAATACCTTAGCCTTGGCCATATTGA	3720
3672	CTACCATCAGTGGTCCACCTTGGTCTCCAATCAGGAGACTTGGAGACACCATACATA	3741
3721	CTACCATCAGTGGTCCACCTTGGCCTCCAATCAGGAGACTTGGAGACACACTATACATAATGCTGTTGTC	3790
3742	TCCTTTGAGAACACACGCAGAATTAGTCTCAAGGAGAAAAGACAAGGTAGAAAGAA	3811
3791	TCCTTTGAGAACACGCAGAATTAGTCTCGAGGAGAAAAGACAACGTAGAAAGAA	3860
3812	TACCACCTAAAGAGACTTTTCACTGTGCTTTTTTGCAACCGGATTTGCCTATCCCACATTGGCCTTTTTA	3881
3861	: : : : :	3929
3882	GTCACCAGCACACTTGTAGTAAGCGTGGG 3910	
3930	: : :	

Name	From	То	Name	From	То	Dir	Sim	Pos/Mm:Ts	Score
sequence07	5	78	tRNA-Asp-GAY	1	75	d	0.8667	2.2500	431

74 AGGCA 78

71 AGCCA 75

Name	From	To	<u>Name</u>	From	To	Dir	Sim	Pos/Mm:Ts	Score
sequence07	89	144	TguSINE1	77	132	d	0.9821	1.0000	511

/ /	IAAGAGIIGGACICAAIGAICCIIGIGGGICCCIICCAACICAGAAIAIICIGIG I32	

Name	From	To	<u>Name</u>	From	To	Dir	Sim	Pos/Mm:Ts	Score
sequence08	45	809	eBHBV2	421	1192	d	0.6849	1.8020	1030

115 TOTGCTANATTARGANCGTGGTTGGCCATCTCTCTCAGTACAGGGGAAGCGAACCAACGTGACTCATTG 490 116 TOTGCCTANATTARGAACGTGGTTGCCACTCCTCTCAGTACAGAGGAAGAGGATGCCCCAACCATCAA 184		: :	:	11111	TGGCACATTCA	1 111	: : :	: :		::		
	421	ATAACGCCCA:	TAGACTT	'TTGTGG	TGGCATTGTAA'	TTGTTT	AATTTGA	AGGGG	AACCAAACG'	FGACTGATTG	490	
### TATTCCCGCTTGAGAACTGGTTGTCTACTCCTGAAAAATATAGGGGTAGAGATGCCCCAACCATTGAA 560 ###################################	115										184	
	491										560	
561 GCGATCACTCGACCAATTCGGGTGGCAAGACCAGGCCCACAAAGTTCTCAGAAAAATAGA 620 248 AGAGCTAGA-TCAA-CAAAGAAGGAGAAA-TCCTTCCATTAGAAGGAGA 293	185										247	
	561										620	
621 AAACCTCGTGGACTCAAGCTCAGAAGAAAGAAAAGTTAAAACTTCTATTACTTAC	248										293	
: - : : : : :	621										690	
691 AATCCCGTTCTAGACGACCTTCTTCTGAGGGGAAGGGATCCTATCAACGTGCGGGCTCCCCTA 753 349 AACCACATAATGGATCAGGTTTCTCCAGAGCCTCCACACCCCATAGAGCACAATCTCCTTCCCAAAAC 416 : -	294										348	
	691										753	
417 CATTAAGGTCAAGCATACACTGGGAAAGCTAAAAAGGTTTATATTCTAATCATATTTC 473 -: : : : : :	349										416	
-: :	754										798	
799 -GGTAATGCGGAGGGGCTTCACAAATTGGGTACTTTGGCTGGATTATATCACATCTCAGG 857 474TGATTTTAATATAAACTGGCAAATCTCTGATCTTACAGAAACAAAC	417										473	
: : ::	799										857	
858 CTGTGAGTTTAATCCAGACTGGAAAATTCCTGATATTACAGAAACACATATATCAGAGAACACAG 922 541 GAGACTCCTGCCAGGACATGGAAATTTGACCCTGGCCAAATTCTGGCCAAAGGGCATTCAT 604 :	474										540	
:	858										922	
923 GGGATGAGATCTCCT-CGAGAAATTGGAAATATTGTTACCAGCCAAATTTTGGCCCAAGGGCATTTCCT 991 605 ACTATCCTGTTGAAAGCGGTGTAAAAGTTAATAAGTATCCTGGGTTT-GAAATGGAACATT 664 : - :: :: : - : 992 ATT-TCCCAAAATCTATGGGCATCAAAGATAAGTACCAAGAGTATAGAGATTGCCACCAACATA 1054 665 TATTGTTAACTAAACTTTATTTACAAAAAACTATTCAAGGCA-GGAATTCTATATAGGAGAGAGTCAAAG 733 :: : : : : :	541										604	
: - :: :: : : - : 992 ATT-TCCCAAAATCTATGGGCATCAAAGATAAGTACCAAGAGTATAGAGATTGCCACCAACATA 1054 665 TATTGTTAACTAAACTTTATTTACAAAAAACTATTCAAGGCA-GGAATTCTATATAGGAGAGAGTCAAAG 733	923										991	
992 ATT-TCCCAAAATCTATGGGCATCAAAGATAAGTACCAAGAGTATAGAGATTGCCACCAACATA 1054 665 TATTGTTAACTAAACTTTATTTACAAAAAACTATTCAAGGCA-GGAATTCTATATAGGAGAGAGTCAAAG 733	605										664	
	992										1054	
1055 TAGTGAGGCTCTATTTA-GAAAAACTCTTTG-TGCATGGTATCCTGTATAGACGAGAATCTAAA 1116 734 CACTGT-GTTTCATTTAGAGGCAAATTTT-TTCAGTGGGAGCAACAGTTCCTTGTCTCCAGACCA 796 - - 1117 CA-TGTCATATCATTTAAAAGGCAAACCCTATTC-TTGGGAATCTAAATACCTTGTCAATCAACATCA 1181 797 CATGGGACAAGGA 809 1182TGGGACAAGGA 1192	665	5 TATTGTTAA	CTAAACT	TTATTT	ACAAAAAACTA'	TTCAAGO	GCA-GGA	AATTCI	TATATAGGA(GAGAGTCAAAG	733	
- -: ::: - - :: :	105											
1117 CA-TGTCATATCATTTAAAGGCAAACCCTATTC-TTGGGAATCTAAATACCTTGTCAATCAACATCA 1181 797 CATGGGACAAGGA 809 1182TGGGACAAGGA 1192	734	4 CACTGT-GT	TTCATTT	'AGAGGC	AAATTTT-TTC	AGTGGG <i>I</i>	AGCA	AACAGI	TTCCTTGTC-	TCCAGACC <i>I</i>	796	
1182TGGGACAAGGA 1192	111											
1182TGGGACAAGGA 1192	79	7 CATGGGACA	AGGA 80	9								
Name From To Name From To Dir Sim Pos/Mm:Ts Score	1182			.92								
		Name	From	<u>To</u>	Name	From	To	Dir	Sim	Pos/Mm:T	Scor	e

```
        sequence08
        1020
        1087
        L1_AC_10
        3950
        4020
        d
        0.7429
        1.5000
        227
```

1086 AA 1087 || 4019 AA 4020

<u>Name</u>	From	To	Name	From	To	Dir	Sim	Pos/Mm:Ts	Score
sequence08	1248	2766	eBHBV1	2632	4188	d	0.7205	2.0238	3611

1248 CCAATACCTCCTGTTGGGAAAGTGAGGAAGATGTCAGATATATTAGGCCAAATACTCCTTGTCCTAATAG	
1318 GATTACTGGCTGGGTTTTTCTTGTTGACAAAAATCCTTAAAATACTAAAGAGGCTCAATTGGTGGTGGAC : :	
1388 TTCTCTCAGTTTTCCAAAGGGAGACACGCTATGTGCTTTCCAAAGTACTGGGCACCCAGTCACCGTG	
2772 TTCTCTCAGTTTTCCAGGGGGACAAACAAGGTGTCTTTTCCAAAATACTGG-TGCCCAAACCTCACCA	2838
1455 CACT-TGCACAGATCTTGCCCATGGACATGCCCATGATTTCCCTGGATGTTTCTCAGGCTTTTTATCATC -: -: :	
1524 TTCCTCTCAATCCTGCTTCTGCTATGCAGCTTGCTGTTTCTGACGGAAAACTGGTCTACTATTTTCAGAA	
1594 AGCTCCAATGATA-TCGGTCTCAGCCCTTTTCTCCTCCATCTCTTCTCAACTGCCCTTGCAGCTGAACTA	
1663 TCTTGTCACTGGAATATTTGGACTTTTGCTTATAGGGATGACTTCCTCCTCTGCCACACAAGCTCTCG : :	
1731 TTACCTTAACTCAGCCACAGTGTCTGCTGTTTTCTTGAAAGCTTTGGGGTAAGAATAAACTTTGAT	
1797 AAACGTACTCCATCACCTGTTGAAGAAATCAAATTCTTAGGACTGAAATTTACAAGGACTGACATGAT : ::::: : : - :- : :	
1865 GATACCTGATGAAAAATGGATTGAAAGTAAACAGGTTATTAAACAAATTGATTGTAAC : : - : : 3254 GATTCCTGAGACAATGTGGGACAAATTAAGGACTGTAATTGAAAAGATAA-AAATCGGAGAAC	
1923 AAATGTTATGATTTTAAAATCCTGCAAAGATTAATAGGCCACGTAAACTTTGTCATT-CCTTTTACTACT : : : : : : : : :	
1992 TATTCTAATCATGTGCTACAACCATTGTATGCTGCTGTAATAAACAAAAAGGATTTTCAA : : : : ::	2051
3381 GGTTGTGTAGAATTGTTACTATCTATGTATCAAGCAATTACTGCCAAACAAAA	3433
2052 TTTTCTGTTCCATATAAAGCTTTATTGTATAAA-ATGTGTTGT-CAAGGAGTTAAATGGAAAT-TGCAA	
2118CCCAAGGACAGTGTTCCTGTTCCTAAGCTTGTGACAGATGGCATGTTGGAAGTTGGA	2174

```
3495 CTGGTTCTGGACCCCCATGCACCAAGACCCT-TACCAAGGGTTGCAACAGATGCTATGTTGACACATGGC 3563
2175 GCCATATCCCATATCATCGGTGGGT-TGTCTTCCTTCCATTTTGCAGGACCTAGACCA-ATACACATTCA 2242
   3564 GCAATATTCCATATCAACGGTGGGTGTGCCGTGTTTACGTTTAGCA--AACAATACCCTATTCACATACA 3631
2243 AGAATTATTGATGGCATTGGTTGCAGTTTCTTTG---ATCAA----ACCGCGGTCTTTGATCTGT---- 2300
   ||||||:::||:|||-----|||---||||||--:|:||----||----:||:|--|| ||||
3632 AGAATCGCTGGTGG-----TGC---TTCTTTGTAGGTTAATGTTAC---ATCCT-ATATGTATACT 3685
2301 ----GACTCAACATTTGT-CTGCAGACAAAAA---TTCAGCTCTTTGCCATGGAGATTTGC-ACTGTGGG 2361
   3686 TACAGATTCAACCTTTGTTCT----ACATAAGCGTTTTGGCTCCCTGCCATGGAGATTTGCTATCTTGTG 3751
2362 CCAGGCAAATCTTATCTCAGGTCAAAGTGTAC----TGGACT----CCT-TCAAAGTTTAACCCAGCG 2420
   3752 CGAA-CAATGCTTG-----AAGGGTACCCCACTGTACTTTGTACCTAGCAAA-TATAACCCTGCT 3809
2421 GATGGCCCAACACGGGAGACTATC---TGATTGGAC---TGCATATACTTGCACCCTCCTCAGAAAGC 2484
   3810 GATGGCCCAAC---CAGGGGTCTCCCCCCTGATTGGACAACTGT---TCCTTACACACCTCTCTTGAAGC 3873
2485 CCTTAAAACTGCCATATC-----------CCAAGCTTGTCAACAA 2518
   3874 CCTTAAAAGTACCACTTCGACTCTGTGGTCGTTAAGATTACACACCTCTCCTTACGGAGCTGCTCGCCAA 3943
2519 GGTATATATTAC-ATCCTTTATTGCTGTTGCTTTCTTGCTGTACTTT--GTCTTAATGAAACAATTTGTA 2585
   3944 GGTAT-TCTTACGAT--TTCCTTGCTGTTGCTGT-TTGCTGTACCTTTGGT----ATGTACC--TCTGTT 4003
2586 T-TGACTC--TCTT-CATATGGATCCTACTGTTAGAATAGCTCT-TCGAA-ATGTTCATAGTCTGTCTGA 2649
   4004 TATGATTCAATTTTATATATGGATATTAATGCACAAAGAGCTTTGTCAAATATGTT--TGATTTGCCTAT 4071
2650 AGATTTCTTTCCACCTGTGCCTGAATTACTTACTTCTGCTGAAGATGTGTTCGAACCTTATTTGC-AAAG 2718
    4072 TGATTTCTTTCCATCAATAGAAGATTTAATTAGGTATACTAAGGATGCTATTGAACC--ATTTACTAAAG 4139
2719 A--GAT-TCAGAAAATAAACATGTTGTTATTGCAACTAATTTTATGGGTTT 2766
   4140 AAGGATCTCT--AAAGAAACATGTGGTTTTTGGCTACTCATTTTTTAGATTT 4188
```

Name	From	To	Name	From	To	Dir	Sim	Pos/Mm:Ts	Score
sequence08	2807	2896	MER50I	4285	4370	d	0.7356	1.5000	263

<u>Name</u>	From	To	<u>Name</u>	From	То	Dir	Sim	Pos/Mm:Ts	Score
sequence09	306	378	tRNA-Met_OS	7	77	d	0.7500	1.7000	275

Name	From	To	<u>Name</u>	From	From To		Sim	Pos/Mm:Ts	Score
sequence10	29	76	Harbinger-N47_OS	1871	1914	d	0.8043	1.1667	238

```
29 AACCCTATAGCTCAGGAACCAAGAGTGGGAGGGGAGAGACAAAGAGAT 76
|:||||||:|||---||||||||||:|::|||||-|:|||||
1871 AGCCCTATAGTTCAG---CCAAGAGTGGGGGAAGAGAG-CGACGAGAT 1914
```

Name	From	To	<u>Name</u>	From	To	Dir	Sim	Pos/Mm:Ts	Score
sequence10	252	360	CR1-X1_Pass	4316	4424	d	0.9725	1.0000	882

<u>Name</u>	From	To	<u>Name</u>	From	To	<u>Dir</u>	Sim	Pos/Mm:Ts	Score
sequence10	407	617	Mariner-25_SIn	1071	1281	d	0.6934	2.1852	549

Masked Regions

>sequence02 FRAGMENT 1 -> 63

CAGGGGTCCTCAAACTACGGCCCGCGGGCCGGATACGGCCCCCAGGGTCCTCAATCCGGCCC

>sequence02 FRAGMENT 362 -> 264

>sequence02 FRAGMENT 382 -> 2395

ACCATCATGTCAAAAAAAAAAAATTTTACTCCGAGTGCAGGGTATTCCAAGAAAAGTGGATTTTTGATT ATTTTTCCACGGAATACAAAGAAGAGCTGTTTGTCTGATATGCCAGAATTCAGTGTCTGTGTTCAAGGA ATACAATTTGCGTCGACACTACGAAACTCAACATAAAGATAAATATGATTCTTTGGTCGGACAAGTGAGA AAAGATAAAATATTAAGACTGAAACATGGATTGACAACTCAGCAAAATACTTCTGTGAAGCAAAAGCAGC ${\tt TCAATATCATCACTTSGAGCAAGCTATCAAGTTGCCAAGCTCATAGCGCGCACTTGMAGAGCATTCAT}$ AGAGGGAGA ATTTGTTA A AGA ATGCCTTCTTTCTGTTGCCA A AGAGATGTGTCCA GAGA AGGCGGATTTA TTTAGTACAGTGAGTTTTTCAGGACCTACAATTACACGAAGGATTGAAGAAATGGGGGAAAATTTGAATC TGCAGTTGCAAAACTCCTCGAAAAAACTTTGCTATTTCTCATTGGCACTCGACGAAAGCAATGATGTTCG TGATTCTGCACAACTTCTAATTTTCATTCGTGGGACAAATGATTCTTTTGAAGTCACAGAGGAGCTTGCT GCACTGAAAAGCATCAAAGGAACAACTACAGGAGAGGATATCTATGAGAAAGTTTGCCAAACTATGAATG ATTTGGAGCTGGACTGGGGTAAACTATTCAGTGTGACAACTGATGGTGCTCCTAGCATGGTGGGGTCCAT GAAAGGAGTGGTTGCACGCATTAACAAAGAGATGGACAAACGCAACCATTCACATCCAATAGCCATACAC TGCATCATCCACCAACAAGCACTGTGTTGTAAATCACTGAAGCTGGACTCTGTCATGAAAATTGTAGTTT TGTTGCCTATGAAGATATTCTGTACCACAGAAGTCCGTTGGCTGAGTCGAGGGGAGAGTTTTTTGAAATG ATTTTATGACTTACTTCCACAGGTTTATGATTTTATGCTTTCTAAAAACAAAGAAGTACCAGAGCTCAAA

>sequence03 FRAGMENT 16 -> 437

>sequence04 FRAGMENT 90 -> 438

>sequence04 FRAGMENT 1030 -> 954

>sequence05 FRAGMENT 41 -> 1

TGACTTGGTGCCTCCCACTGGTCTGTTTTCAAACCAGTACA

>sequence05 FRAGMENT 564 -> 42

>sequence06 FRAGMENT 1 -> 3910

 $\tt CACCCCTTGTTGTGGGGAAAGAGCTCACCTGCCCTTGTGAGGTTGGGAGCTATGCTGGTGGTGGCATAT$ GCCTCCAGTAGGGTCTCCCATGCCAGACGAGTCTCAACTGAAGGGTCAAAGTGTGTCCATTGGCAGGATG GGCTCACCAGCCTTAGGGCTACCATCCTAGGAGAAGGACAACTCTAACTTCAAACCCAGGCAGATGGAGC TCGTTTAGCCCTGTAAGGCCACCCATCTAAGAGAAGGATACTCTAATTAAACCTACGACCTGAGGACCTT GCTGCCACCATCCAAGCTCGCTAGGCCCTGGCAGATAAACCTCAGGTGTAAAGGGTGGGGCCAGTTCCAC GCATGCTGTGCTTCACCTAAAAAATCCACTGCACAGGCCTGAAGGGTTTACCCACACTTGCAAAGCCCTG TAGCGACAGGCGAGGGACAAAACGGCAGGTGATAAGGTGCACTGGAAGCTTCAGACCCAGCCCTGCATGC AGGCAGTTCACGACATTGGTCGCTCGAGACTGACCCAGGAGATGACAGTCTTGTTTGACAGCATCCTGAA TGATCAAGCAGCCTTTTCTCAAGGAGAGCACTGCTTGCTCCATATGGAGAGAGGTCTAGAAAAGGTGGCC TAACCAAAGCTCATCTCCCCCTCCACCTGGTTGGCTAGCTGTGGCCAAAGGGCATCTTCTGTTGCGGTCG ATCAAAGGCAGAGACAAAGGCATACACCTGCCTCCAAAGGTGTGTCCAGATTGACACTCACATGTTGGAA CATCAGAACCATGCTTGATACAGCAAACAGTGGGCGTCCTGAGCGCCGTTCTGCGCTAATTGCCCATGAA CTGTCACGACTCAACATCGATATTGCTGCTCTCAGTGAAGTTCGCCTTCATGAGGAAGGTAGCCTTAAAG AACATGGTGCCGGCTACAAACTCTACTGGTCAGGCAAATCCAAAACTGAAAGTCATCTTTCTGGAGATGG CTTCATGATTAAAAACTCCATCATCTCTAAACTTGAAAATTTGCCGACAGGTCAATCCAATCTTATTATC CTGACCCTGCAGAAAAAGACAAATTCTACTCTGACCTGTGTTGCCTCACCCAAAAGGTTCCTACAGATGA TCACCATCACCAATACTATTTTCCAGCAGAAAGACAGCCTGGAGACAACCTGGATGCATCCTTGATCTAA

ATGCCTAATGCAGAATGTCAATCAGACCACAGCCTTGTGTGTTGCAAGCTTAACCTCCACTTCAAGGCCA ${\tt AACCTAAGAGGGGCAGCATTCTGAGGAGGGGGGCTCAATAGCTGCAAGTGAGGGACAGCTTTCAGGCTAAC}$ $\verb|CTTCAAACTAGGCTTGAAGACCATCTTATAGATTCTTCTCCTGAAGTGCTTTGGTAACATATTAAAAATA| \\$ GCATCCTGCAGTCCTCTGTAGAACCATTTGAGTTCTCCTTAAAGAAAAACAAAGACTGTTTTGATGATAA CAATCAGGAGGTCCAGGAACTGCTGGCAAAAAAAAAGAGATCTGCCCATCAAGCATGCCTTGCTCAGCCAC TTTGCCATGTAAGAAATGCAGCCTTTCGTCTTGCATGCAGTAAACTCCAACAGAAACTTCGAGACATCCA GAACAAGTGGTGGCTCAACCTAGCAGAAAAGACTCAACTATGGGCAGATTTGGGTGACCACAGAGGATTC TATGAGGCTCTGAAGGCAGTGTATGGACCCACATTTCAGGTTCAAAGCCCCTAAGTGCAGATGGCCAAAT GCTTCTTATAGATAAAATCTCCATCCTGAATCGTTGGTCTGAACATTTTCAAACACTCTTTAGTGCTAAC CGTGTAGTCCAAGGCGTAGGAATCCAGCACATTTTACAACATCTGGTGAAAAATGAACTGGATATAGCCC GTACCATGGGAGAGACTCTAAGGCTATACAGCAGGTGAAAACTGGCAAGGCAGCTGGGGTAGGCGGAATC CCACCAGAAAACTGGAATCACGAAGGCCAAGCACTTCATGCTAAATTTCACGAGCTAGTTGTGCGCTGCT GAGAACAAGGTAAATTACCGTCAGGTTTCTGTGATGGAATCATCACTCTGTATAAGAAAAAAGGTGT AAAGCTCAAGCTACTGAGGTGTAACTCTGACCTCCATTGCTGGAAAAACCCTTGCAAGAATACTATTGAA CAGATTAGTATCCACTATCACAGAAGAACTTCTACCTGAAAGTCAGTGTGATTTCAGAGCTAATAGAAGT ACCACAGACATGGTATTTGTTTTCAAACAACTGCAAGAGAGTGTAGAGAACAGAATAAGGGTCTCTGTG TTACTTTTGTTGACCTCACCTAAGTTTTTGACACTGTGAGCAGAAAAGGCCTGTGGCTGATCTTGGAACG $\tt ATTAGGTTGTCCCCCCAGGTTCCTCAAAATGATTATTCTGTTACATGAGGACCAGCCAAGGCCAAGTCAGA$ TATGGTGATGCACTCTCTGAACCATTCCCAATAACCAGTGGTGTGAAACAAGGTTGCGTTCTCATACCAA TTATATTCGATATCGTACTGATGGGAGCCTATTCAATCTAAGGCCGACTGAAGGCCCACACTAAGACCCTA AATCATCTTGTCCATGAACTGCTTTTTGCTGACGATGCCGCCATTGTTGCCCACACAGAAGCAGCTCTGC AGTGCTTAACATCTTGCTTTGCAGAGGCCAGCTGAGGTTTTGGGCTGGAAGTCAGTTTGAAGAAGACAGTA GTTCTCTGCCAACCTGCACCACAAGAAGATTATCATCCTCCCCACATTACCATTGGCGAGTCAGAGCTTA AGTCAGTTCAGCAGTTCAGCTATCTGGGAAGCATTATTTCCTCGGATGCCACAATCTACAAAGGGATAGA GAGAAAAGTACAAAGATTAGTGTCTATAGAGCTATTGTACTGTCTACTCTTTTATATGGGTCTGAATCAT GGGTTATCTACCGTCATCACCTGCAACTCCTCAGATGCTTTCATCAGCGCTGCCTCCTTACAATCTAAAC ATTGCTGAAATCGCTGCTGCGCTGGGCAGGGCACATCTCTAGGATGGAGGATCACCGCCTCCCTAAGATT GTGTTTTATGGTGAACTCGCCACTGGCTGCCGCAAGAGAAGTGCCCCAGAGAAGAGATATATGGATTCCC TGAAACAATACCTCAGCCTTGGCCATACTGACTACCATCAGTGGTCCACCTTGGTCTCCAATCAGGAGAC TTGGAGACACCATACATAACGCTGTTGTCTCCTTTGAGAACACGCAGAATTAGTCTCAAGGAGAAA AGACAAGGTAGAAAGAATTGCACCCTGCCTATACCACCTAAAGAGACTTTTCACTGTGCTTTTTTTGCAAC CGGATTTGCCTATCCCACATTGGCCTTTTTAGTCACCAGCACACTTGTAGTAAGCGTGGG

>sequence07 FRAGMENT 5 -> 78

TCCACTTTAGTACAGTGGTGAGTGTCCCCGCCTCTCATGCGGGAGACCGGGGTTCGATTCCCGCCAGGGA

>sequence07 FRAGMENT 89 -> 144

TTAAGAGTTGGACTCGATGATCCTTGTGGGTCCCTTCCAACTCAGAATATTCTGTG

>sequence08 FRAGMENT 45 -> 809

>sequence08 FRAGMENT 1020 -> 1087

CCAATCACAGAAGAAGAGGCAGAGGCATTGAAAAAGAAATTTCTAGAAGAGCAACAACAACGGATAAA >sequence08 FRAGMENT 1248 -> 2766

```
ACCAATACACATTCAAGAATTATTGATGGCATTGGTTGCAGTTTCTTTGATCAAACCGCGGTCTTTGATC
TGTGACTCAACATTTGTCTGCAGACAAAAATTCAGCTCTTTTGCCATGGAGATTTGCACTGTGGGCCAGGC
{\tt AAATCTTATCTCAGGTCAAAGTGTACTGGACTCCTTCAAAGTTTAACCCAGCGGATGGCCCAACACACGG}
GAGACTATCTGATTGGACTGCATATACTTGCACCCTCCTCAGAAAGCCCTTAAAACTGCCATATCCCAAG
\tt CTTGTCAACAAGGTATATATTACATCCTTTATTGCTGTTGCTTTCTTGCTGTACTTTGTCTTAATGAAAC
GAAGATTTCTTTCCACCTGTGCCTGAATTACTTACTTCTGCTGAAGATGTGTTCGAACCTTATTTGCAAA
GAGATTCAGAAAATAAACATGTTGTTATTGCAACTAATTTTATGGGTTT
>sequence08 FRAGMENT 2807 -> 2896
GTAAGATCTCTGAGGAGCCAGCTGGGAATATAGATTTTTCTGAAAATTAGGGAGATCCTGACAAATTATT
TGAAACCATTAGAGAAAATA
>sequence09 FRAGMENT 306 -> 378
GTGGCGCAGCCGGTTAGCGCGCGGTACTTATACAGCAAACCCGAGCAATGCTGAGGCCGTGGGTTCGAGC
>sequence10 FRAGMENT 29 -> 76
AACCCTATAGCTCAGGAACCAAGAGTGGGAGGGGGAGAGACAAAGAGAT
>sequence10 FRAGMENT 252 -> 360
\tt CGGGCACATGGTGTACTCTTGGGGATGGTCCTGTGCAGGGCCAGGAGTTGGACTCGATGATCCTTATGG
GTCCCTTCCAACTCAGCATATTCTGTGATTCTGTGATCC
>sequence10 FRAGMENT 407 -> 617
TCCCAAAGATCAAGTTGGTGCTCAAAGGAACCCATTTTTTGTCGGTAGAAGATGTGAAAGCAAAAACGAC
GGAGATCCTCAACAGCCTTTCAGAAAATGATCTGTGGAATTGCTTTGAACATTGGCAGCATCGTATGCAG
```

Annotation of Repbase Sequences

```
ID
    AviRTE MUn repbase;
                             DNA;
                                    VRT; 3999 BP.
XX
AC
XX
DT
    23-APR-2016 (Rel. 21.05, Created)
DT
    24-APR-2016 (Rel. 21.05, Last updated, Version 1)
XX
DE
    RTE non-LTR retrotransposon from Melopsittacus undulatus.
XX
KW
    RTE; Non-LTR Retrotransposon; Transposable Element; AviRTE MUn.
XX
OS
    Melopsittacus undulatus
OC
    Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
    Archelosauria; Archosauria; Dinosauria; Saurischia; Theropoda;
OC
OC
    Coelurosauria; Aves; Neognathae; Psittaciformes; Psittaculidae;
OC
    Melopsittacus.
XX
RN
    [1]
    1-3999
RΡ
    Suh A., Witt C.C., Menger J., Sadanandan K.R., Podsiadlowski L.,
RA
    Gerth M., Weigert A., McGuire J.A., Mudge J. et al.;
RΑ
     "Ancient horizontal transfers of retrotransposons between birds
RT
    and ancestors of human pathogenic nematodes.";
RT
    nature communications 7, 11396-11396 (2016).
RT.
XX
DR
    [1] (Consensus)
    AviRTE is a novel RTE family present in some birds and nematodes.
CC
CC
    Frequent horizontal transfer. Only distantly related to BovB.
CC
    Subfamily AviRTE MUn has 601 copies in Melopsittacus undulatus.
CC
    Mean distance to consensus is 6%.
XX
FΗ
                   Location/Qualifiers
    Key
FT
    CDS
                   695..3958
FT
                   /product="AviRTE MUn 1p"
FT
                   /translation="MGIFCCGRLKTKRQRHTPASKGVSRLTLACWNIRTML
FT
                   DTANSGRPERRSALIAHELSRLNIDIAALSEVRLHEEGSLKEHGAGYTLYW
FT
                   SGKSKTESHLSGVGFMIKNSIVSKLENLPIGHSDRIISLRLPLHNKQHVVL
                   FSIYAPTLQADPAEKDKFYSDLRRLTQKVPIDDKIIILGDFNAQVGKNFEA
FΤ
FT
                   WKGVLGKHGVGSCNDNGRLLLEFCAEQQLTITNTIFQQKDSXKTTWMHPRS
                   KHWHLIDYVLVRQRNVRDVCHTRVMPSAECQTDHRLVRCKLNFHFKPKPKR
FT
```

```
FT
                   GGIPRRRLNVNNLQIAAVRDSFQANLQTRLEDHLIDSSPEALWQHIKNSIL
FT
                   QSSVESFGFSLKKNKDWFDDNNQEVQELLTKKRSAHQAHLAQPLCHVRKAA
                   \verb|FRLACSKLQQKLRDIQNKWWLNLAEKTQLCADLGDHRGFYEALKAVYGPTY|
FТ
FТ
                   QVQSPLLSADGQTLLTDKISILNHWSEHFQTLFSANRVVQGXGIQHILQHL
                   VKNELDIAPTMGETLKAIQQVKTGKAAGVDGIPPEIWKHGGQALHAKFHEL
FΤ
FT
                   VVRCWEQGKLPSDFRDAIIITLYKKKGVKSDCSSYRGITLLSIAGKILARI
FT
                   LLNRLVPAIAEELLPESQCGFRXNRSTTDMVFVLRQLQEKCREQNKGLYVT
FT
                   FVDLTKAFDTVSRKGLWLILERLGCPPKFLKMIILLHEDQQGQVRYGDALS
FT
                   EPFPITXGVKQGCVLAPTLFTIFFSMMLQRAMVDLDEQNGIYIRYRTDGSL
FT
                   FNLRRLKAHTKTLNHLVRELLFADDAALVAHTEAALQRLTSCFAEAAELFG
FT
                   LEVSLKKTVVLYQPAPQEDYHHPHITIGESELKSVQQFSYLGSIISSDATI
FT
                   DKEIDNRIAKAYRAFGKLHKRVWCNKHLKKSTKISVYRAIVLSTLLYGSES
FT
                   WVIYRHHLRLLERFHQRCLRTILNIHWTDYVSNVTVLEQAGVTSIEAILLK
FT
                   LQLRWAGHVSRMKDHRLPKIVFYGELATGCRKRSAPKKRYKDSLKQYLSLG
FT
                   HIDYHQWSTLASNQETWRHTIHNAVVSFENTRRISLEEKRQRRKNRAPPIP
FT
                   PKETFRCAFCNRICLSHIGLFSHQRACSKRG"
XX
SQ
     Sequence 3999 BP; 1129 A; 979 C; 904 G; 973 T; 14 other;
//
ID
     CR1-E Pass repbase;
                             DNA;
                                    VRT; 3085 BP.
XX
AC
XX
ПΤ
     08-JAN-2009 (Rel. 14.01, Created)
DΤ
     21-JAN-2009 (Rel. 14.01, Last updated, Version 1)
XX
DE
    CR1 Non-LTR Retrotransposon from Passeriformes.
XX
KW
    CR1; Non-LTR Retrotransposon; Transposable Element; CR1-E Pass;
KW
    LINE.
XX
OS
    Passeriformes
OC
    Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
     Archelosauria; Archosauria; Dinosauria; Saurischia; Theropoda;
OC
    Coelurosauria; Aves; Neognathae.
XX
RN
     [1]
     1-3085
RP
RA
     Smit A.F.;
     "CR1-E Pass - CR1 Non-LTR Retrotransposon from Passeriformes.";
RT
     Repbase Reports 9(1), 45-45 (2009).
RL
XX
DR
     [1] (Consensus)
XX
     18% div. Minor subfamilies ignored. 83% similar to CR1-E in
CC
     chicken (consensus starts at poss 1418 in full chicken CR1-E
CC
CC
     consensus, at very end of ORF1).
XX
SQ
     Sequence 3085 BP; 828 A; 685 C; 968 G; 585 T; 19 other;
//
                                  VRT; 4428 BP.
ΙD
     CR1-X1 Pass repbase;
                             DNA;
XX
AC
XX
     08-JAN-2009 (Rel. 14.01, Created)
DT
     21-JAN-2009 (Rel. 14.01, Last updated, Version 1)
DT
XX
DE
    CR1 Non-LTR Retrotransposon from Passeriformes.
XX
KW
     CR1; Non-LTR Retrotransposon; Transposable Element; CR1-X1 Pass;
KW
     LINE.
XX
OS
     Passeriformes
OC
    Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
     Archelosauria; Archosauria; Dinosauria; Saurischia; Theropoda;
OC
OC
    Coelurosauria; Aves; Neognathae.
XX
RN
     [1]
```

```
1-4428
RP
     Smit A.F.;
RA
RT
     "CR1-X1 Pass - CR1 Non-LTR Retrotransposon from Passeriformes.";
RL
     Repbase Reports 9(1), 50-50 (2009).
XX
DR
     [1] (Consensus)
XX
     subfamily1 17%. gag ORF (full) 311-1453, pol (1 frameshift)
CC
CC
     1618-4348, but, like the distantly related R1-YB2 Tgu,
CC
     a frameshift that appears tru in the consensus. The frameshift
     (2 bp missing) is at 3807, corresponding to pos 3239 of
CC
     CR1-YB2 Pass. Notably, this is at a different, later spot then
CC
     in CR1-YB2 Pass.With 600 copies of terminal 700 bp, coseg could
CC
     find 2 or \overline{3} subfamilies. These are at most 5-6% different from
CC
CC
     each other, and I get the impression that recombined copies have
CC
     hopped around, so there is only one consensus. Absent at
CC
     orthologous sites in chicken.
XX
SQ
     Sequence 4428 BP; 1163 A; 1004 C; 1344 G; 899 T; 18 other;
//
ID
     Chompy-1934B Crp repbase;
                                 DNA;
                                         VRT; 1460 BP.
XX
AC
XX
     29-JAN-2013 (Rel. 18.04, Created)
DT
     24-APR-2013 (Rel. 18.04, Last updated, Version 1)
DT
XX
DE
     DNA transposon from the crocodile: consensus.
XX
KW
     Harbinger; DNA transposon; Transposable Element; Nonautonomous;
KW
    Chompy; Chompy-1934B Crp.
XX
OS
    Crocodylus porosus
OC
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
     Archelosauria; Archosauria; Crocodylia; Longirostres;
OC
OC
    Crocodylidae; Crocodylus.
XX
RN
     [1]
     1-1460
RP
     International Crocodilian Genomes Working Group;
RG
     "Transposable elements from the crocodilian genomes.";
RT
     Direct Submission to Repbase Update (07-FEB-2013).
RT.
XX
DR
     [1] (Consensus)
XX
CC
     3 bp TSDs, cTNAq target. 21% subsr outside CGs. See
CC
     CRrnd-5 family-1934 1 for description
CC
     CRrnd-5 family-1934 2#DNA/PIF-Chompy.
XX
SQ
     Sequence 1460 BP; 178 A; 560 C; 534 G; 175 T; 13 other;
//
ΙD
     ERV3-7 PMaj-LTR repbase;
                                 DNA;
                                         VRT; 741 BP.
XX
АC
XX
DT
     17-OCT-2018 (Rel. 24.09, Created)
     17-OCT-2018 (Rel. 24.09, Last updated, Version 2)
DT
XX
DE
     Endogenous retrovirus from the great tit genome, long terminal
DΕ
     repeat consensus.
XX
     ERV3; Endogenous Retrovirus; Transposable Element;
ΚW
    ERV3-7 PMaj-LTR.
ΚW
XX
OS
     Parus major
    Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
     Archelosauria; Archosauria; Dinosauria; Saurischia; Theropoda;
OC
     Coelurosauria; Aves; Neognathae; Passeriformes; Paridae; Parus.
```

```
XX
RN
     [1]
RP
     1-741
RΑ
     Kojima K.K.;
RT
     "Endogenous retroviruses from the great tit genome.";
     Repbase Reports 19(9), 1747-1747 (2019).
RT.
XX
DR
     [1] (Consensus)
XX
CC
     ~92% identical to consensus. 5-bp TSDs.
XX
SQ
     Sequence 741 BP; 188 A; 190 C; 144 G; 217 T; 2 other;
//
ID
     HAT-10 Mad repbase;
                              DNA;
                                      PLN; 6710 BP.
XX
AC
XX
DT
     20-OCT-2010 (Rel. 15.10, Created)
DT
     20-OCT-2010 (Rel. 15.11, Last updated, Version 2)
XX
DE
    Autonomous hAT elements, consensus.
XX
KW
    hAT; DNA transposon; Transposable Element; HAT-10 Mad.
XX
MN
    HAT-10 Mad.
XX
OS
    Malus domestica
OC
    Eukaryota; Viridiplantae; Streptophyta; Embryophyta; Tracheophyta;
OC.
     Spermatophyta; Magnoliophyta; eudicotyledons; Gunneridae;
OC.
    Pentapetalae; rosids; fabids; Rosales; Rosaceae; Maloideae;
OC
    Maleae; Malus.
XX
RN
     [1]
RP
     1-6710
RA
     Bao W. and Jurka J.;
RT
     "hAT-type DNA transposons from the apple genome.";
RL
     Repbase Reports 10(10), 1626-1626 (2010).
XX
RN
     Velasco R., Zharkikh A., Affourtit J., Dhingra A., Cestaro A.,
RA
     Kalyanaraman A., Fontana P., Bhatnagar S.K. et al.;
RA
     "The genome of the domesticated apple (Malus x domestica
RT
RT
     Borkh).";
     Nat Genet 42(10), 833-839(2010).
RL
XX
DR
     [1] (Consensus)
XX
CC
     TIR is 11-bp long.
XX
FΗ
     Key
                   Location/Qualifiers
FT
     CDS
                   3409..5058
FT
                   /product="HAT-10 Mad 1p"
FT
                   /translation="MDARDSDSVTDEESVEIIMGTERDLGSESIDNTNSSS
                   {\tt TKKKARTINLGKRKLRSPVWNTFTKLDTIFEDSKRRAQCKACKKVMIDDSH}
FΤ
FT
                   HGTGNMKRHLNTCPAKNNVELFMSASELCSQKFDPLVFRGLLVEAIIKHNL
FT
                   PFNFVEHEGIKALFAYVCPDIKLPCRNTIKACVLRMFKTEKQALHNLLGSV
FT
                   EGRICLTSDLWSSQCTDGYLALTAHFVDKDWKLNKRIISFCHMPXPHTGVA
FT
                   LCEKISALVTEWGIEKKLFSITLDNASSNICFVNILRNQLNIRGLLLMNGD
FT
                   FFHVRCCAHILNLIVQDGLKEIDSSVVKIRECIKYVKGSEARKLKFQECVK
FT
                   QVGILDSKRGLRQDVPTRWNSTYLMLDSAIFYRYAFINLGLSDSNFESCXS
FT
                   SEEWDKVVKISKFLGYFYDVTCLFSGTKYPTSNLFFPKVFVIQLQIKAAID
FT
                   DCDSFMNKMGDYMHIKFQKYWSDYSLIMSIAIILDPRYKLHFVDWAYTKLH
FT
                   GVNSMEYXNVHGTLIALFNVYSEISAHLNFSNIPMNSMSNHQTEGEGDALF
FT
                   EVT"
XX
SQ
     Sequence 6710 BP; 2032 A; 1010 C; 1224 G; 2440 T; 4 other;
//
ID
     Harbinger-N47 OS repbase;
                                   DNA;
                                           PLN; 2206 BP.
```

```
XX
AC
XX
DT
     05-JUL-2016 (Rel. 21.09, Created)
DT
     05-JUL-2016 (Rel. 21.09, Last updated, Version 1)
XX
DE
     DNA transposon from Oryza sativa, consensus.
XX
KW
     Harbinger; DNA transposon; Transposable Element; Nonautonomous;
KW
     DNA; Harbinger-N47 OS.
XX
OS
     Oryza sativa
OC
     Eukaryota; Viridiplantae; Streptophyta; Embryophyta; Tracheophyta;
     Spermatophyta; Magnoliophyta; Liliopsida; Poales; Poaceae;
OC
OC
     BOP clade; Oryzoideae; Oryzeae; Oryzinae; Oryza.
XX
RN
     [1]
RΡ
    1-97
RΑ
    Bao W.;
RT
     "DNA transposons from the rice genome.";
     Repbase Reports 16(10), 1958-1958 (2016).
RL
XX
DR
     [1] (Consensus)
XX
CC
     ~98% identical to the consensus.
XX
     Sequence 2206 BP; 625 A; 490 C; 444 G; 643 T; 4 other;
SQ
//
ID
                             DNA;
                                    VRT; 6848 BP.
     L1 AC 10
                 repbase;
XX
AC
XX
DT
     21-SEP-2012 (Rel. 17.09, Created)
DT
     21-SEP-2012 (Rel. 17.09, Last updated, Version -1)
XX
DE
     L1 non-LTR retrotransposons - a consensus sequence.
XX
    L1; Non-LTR Retrotransposon; Transposable Element; L1_AC_10.
KW
XX
OS
    Anolis carolinensis
OC
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
     Lepidosauria; Squamata; Bifurcata; Unidentata; Episquamata;
OC
OC
     Toxicofera; Iguania; Dactyloidae; Anolis.
XX
RN
     [1]
RA
    Novick P.A., Basta H., Floumanhaft M., McClure M.A.
RA
     and Boissinot S.;
RT
     "The evolutionary dynamics of autonomous non-LTR retrotransposons
RT
     in the lizard Anolis carolinensis shows more similarity to fish
RT
     than mammals.";
RL
    Mol Biol Evol 26(8), 1811-1822 (2009).
XX
DR
     [1] (Consensus)
XX
FΗ
                   Location/Qualifiers
     Key
FT
                   join(1559..1927,1837..2643)
     CDS
FT
                   /product="L1_AC_10_1p"
                   /translation="MAYKLRDRDNKDPKMLQKRTSISEEPNIRDMTDTILK
FT
FT
                   ELQRMQEKQDAYQKLAQEQMLDFKKEIKEELRTMKQEIGTINQELQDLKLE
FT
                   KAEIRSSQEKIRKEVQLLDLETKLNRDKNCWSQKSKLTGKNTKRSTIVGLG
FT
                   DKIKSRQELLESKELEYQLRFRNVWEEAKENIRRIIIEIIANILNCSTDEA
FT
                   EDRTDRIYRINTNYAKRNKTPRDVIVNFTKKIFRDEILKINNTNTITFKGE
FT
                   KIVILKEYPTETLNRRQKYQFLVDELKKHKIRFRWEKTEGLMTTYKGEKYW
FT
                   ITSEAKARNFYKKLKKETEEEEKSDEEDQFRTSKSRANVYKKRALDQEFLE
                   HQSKLKKGQDNQEEKVEDKEGEEEEEENQITLSEEEEERTEGEKREEAL"
FT
FT
     CDS
                   join(2643..3593,3597..4016,3929..5380,5334..5666,
                   5612..6376)
FT
                   /product="L1 AC 10 2p"
FT
                   /translation="MRRHLKIYTCNVNGLNTPQKRNKIYNSLKKLDYDIIS
FT
```

```
FT
                   LQETHIRHGQEKFLTQLKLGQEFHSSYIQKKRGVVTYVNPKLQAQQTFKDM
FT
                   DGRILGITINIENLKILVINIYAPNETKSKFVKKLKELMYDKEFDKIILMG
                   DFNGVMNCEKDRNPGRKSRDKKYKGLLSKEFKDFKEEYDLDDVWRSHHENE
FТ
FТ
                   RDYTFFSAKYKSWSRIDMVWVSKSLSPLVQKIKILPRLDTDHNPIELILNQ
FT
                   KERHWRWKLDSNLLKRKEDIEKNRTLLEEFIKINDNHETPLHIVWEASKAT
FT
                   MRGYFIQQGVWKKREKQKHIKSIIDISKIERELKSNPNDLVLLQKLEMTQK
FT
                   RREFFELEERAKOMNYIKOTHFESANKPGRWLSRKLRGKKEATNINRIRIG
FT
                   EKYHCLEEDILKQFSKYYKQLYGKDSIEREKITSYLGKLKLQSQKKREKIL
FT
                   TKKSLKRKYKWPLFGKAKTPITEKEREDLNKEISKKEIQMAIKKFDSSKSP
FT
                   GPDGLTAVYYKTFEKELIPYLHKIMNNIRENGKMPDSWKEALITVIHKENS
FT
                   DPEEIKNYRPISLLNVDYKIFSNIIAERMKSFLKNWIKEEQSGFLPNRNIK
FT
                   DNIRLVVDLLEYYESHNQHEILFLAVDAEKAFDRVNWDFFKLLIQVLDMGY
FΤ
                   YLQNSIEAIYQNQKAKILVNGKETEEFVIEKGTRQGCPLSPLIFIMTLETL
FT
                   LINIRSNTELQGANIQGVQYKVQAYADDIICFIEDPVNKGEKWISTIKEYG
FT
                   DIAGLKINMSKTKALAKNINKKKQELISKTLGIEITSKIKYLGISISPKNS
FT
                   QLLKNNYEKNWKNIKKDLENWKNLEISLLGRISVVKMSILPKMLFLFQCLP
FΤ
                   ILRNQKCFITWNKDLSRFIWQGKNPRIKRINLIDDKRRGGFAMPDLKTYYE
FT
                   ASNLIWIKDWIQLKNKKKLTLEGFKSRMAFIFMVRQNRDLRAGWHSYLWYD
FT
                   KIKIEKKFGNHFIRSALIKTWNKYKLRMYNKTPTWISPLEAVQRRLLGWSQ
FT
                   WPKYEDLIKLQGSEYVLKSQQELKTEYKNITWLQYGQLKNTIKKMKKYNLV
FΤ
                   TVWPIEEYYKKDEIKGFMGKNNLWDKILFSTGHLILRIYKILLEWNTEIEQ
FΤ
                   VKNNMVKWATDIGRPIQMEEWEACWGRKLKYTYSYQLKENWMKMFYRWYIT
                   PQKLGMISKTKNYKCWKCGEKERTFHHIWWECKKAKEYWNKIHEIIQNMLN
FT
FΤ
                   IKVKKTPELYLLGIFKESQDINEEKLMTYLTTSARMSYARYSRQKVIPKTE
FT
                   EWLTKVAEIKNMDRLTYLIAKNQGRPRKETNWQAIEKYLGTNMATK"
XX
     Sequence 6848 BP; 2822 A; 1080 C; 1389 G; 1557 T; 0 other;
SQ
//
ID
    MER50I
                 repbase;
                             DNA;
                                    PRI; 7205 BP.
XX
AC
XX
DT
     20-AUG-1998 (Rel. 3.07, Created)
DT
     20-APR-2006 (Rel. 5.05, Last updated, Version 3)
XX
DE
    Primate MER50I repetitive element - a consensus.
XX
KW
    ERV1; Endogenous Retrovirus; Transposable Element; MER4I-group;
    MER50; LTR retroelement; MER50I.
KW
XX
NM
    MER50I.
XX
OS
    Homo sapiens
OC
    Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
    Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini;
OC
    Catarrhini; Hominidae; Homo.
OC
XX
RN
    [1]
RP
    1-1382
RA
    Kapitonov V.V. and Jurka J.;
RT
     "MER50I.";
    Direct Submission to Repbase Update (AUG-1998).
RL
XX
RN
    [2]
RP
    1-7205
    Smit A.F.;
RA
RT
     "MER50I.";
     Direct Submission to Repbase Update (FEB-2000).
RL
XX
DR
     [2] (Consensus)
XX
CC
    MER50I is a class I retrovirus-like element flanked by MER50
CC
CC
    It is closely related to other MER4I-group members [1].
CC
    A full-length coding regions is present for gag (pos 1732-3083),
    matching the HUERS-P3 gag the best (61% similarity). There are
CC
CC
CC
    partial matches to pol (pos ~3089-3645) and env (pos 6221-6927).
    Individual sequences are on average 12% diverged from the
```

```
CC
     consensus.
XX
     Sequence 7205 BP; 1968 A; 1691 C; 1537 G; 1892 T; 117 other;
SQ
//
ID
    Mariner-25 SIn repbase;
                                DNA;
                                       INV; 1324 BP.
XX
АC
XX
\mathsf{DT}
     10-APR-2012 (Rel. 19.02, Created)
     10-APR-2012 (Rel. 19.02, Last updated, Version 1)
DT
XX
DE
     Mariner-type transposon sequence - a consensus.
XX
    Mariner/Tc1; DNA transposon; Transposable Element;
KW
    Mariner-25 SIn.
KW
XX
OS
    Solenopsis invicta
OC
    Eukaryota; Metazoa; Ecdysozoa; Arthropoda; Hexapoda; Insecta;
OC
    Pterygota; Neoptera; Holometabola; Hymenoptera; Apocrita;
    Aculeata; Vespoidea; Formicidae; Myrmicinae; Solenopsis.
OC
XX
RN
RA
    Wurm Y., Wang J., Riba-Grognuz O., Corona M., Nygaard S.,
RA
     Hunt B.G., Ingram K.K., Falquet L., Nipitwattanaphon M. et al.;
     "The genome of the fire ant Solenopsis invicta.";
RT
    Proc Natl Acad Sci U S A 108(14), 5679-5684 (2011).
RL
XX
RN
    [2]
RP
    1-1324
    Bao W. and Jurka J.;
RΑ
RT
     "DNA transposons from the fire ant genome.";
RL
    Repbase Reports 14(2), 341-341 (2014).
XX
DR
     [2] (Consensus)
XX
CC
    >97% identical to consensus. 30bp TIR.
XX
FΗ
                   Location/Qualifiers
    Key
FT
     CDS
                   join(194..685,689..1264)
                   /product="Mariner-25 SIn 1p"
FT
                   /translation="MCDEKHEQRINVKFLVKLKKTPTECYKLLKEAYGENS
FT
FT
                   LSRARVFEWYKRFSEGRESTKDDQRPGRPVSVSTPQIVTKINEIVRGDRRM
                   SIRMIAETVNADKETVRKILHDELNMKKICAKLVPKNLTPDQKLVRQQICS
FT
FT
                   DFLERLDEEPELIENIITCDETWIFYDAETKRQSMHWKTPASPRMKKARMS
FT
                   KSKFKAMLIVFFDINGIVMTEWVPEGQTVNQTYYLKVLATLRERVRKKRPE
FT
                   LWKNKSWILHQDNAPAHNALSVKRYLASRGTPVLEHAPYSPDLAPCDFFLF
FT
                   PKIKSALKGTRFESMEEVKRKSAELLNALTKKDFQHCFDQWKKRMERCVAR
FT
                   GGEYIEGEHSIVE"
XX
SQ
     Sequence 1324 BP; 415 A; 264 C; 312 G; 333 T; 0 other;
//
     TguERVL2b1 LTR repbase;
ΙD
                                DNA;
                                        VRT; 566 BP.
XX
AC
XX
DT
     08-JAN-2009 (Rel. 14.01, Created)
     21-JAN-2009 (Rel. 14.01, Last updated, Version 1)
DT
XX
DE
     Long terminal repeat of ERV3 Endogenous Retrovirus from
DΕ
     Estrildidae.
XX
     ERV3; Endogenous Retrovirus; Transposable Element; ERVL; LTR;
ΚW
ΚW
    TguERVL2b1 LTR.
XX
OS
    Estrildidae
    Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
    Archelosauria; Archosauria; Dinosauria; Saurischia; Theropoda;
OC
    Coelurosauria; Aves; Neognathae; Passeriformes; Passeroidea.
```

```
XX
RN
     [1]
RP
     1-566
RA
     Smit A.F.;
     "TguERVL2b1 LTR - ERV3 Endogenous Retrovirus from Estrildidae.";
RT
RL
     Repbase Reports 9(1), 181-181 (2009).
XX
DR
     [1] (Consensus)
XX
CC
     8-9% 80 Perhaps TguERVL-B LTR2 LTRs span something quite
CC
     different than TquERVL-B and we may have to rename it.
XX
     Sequence 566 BP; 132 A; 137 C; 116 G; 181 T; 0 other;
SQ
//
     TquSINE1
                             DNA;
ID
                 repbase;
                                     VRT; 137 BP.
XX
AC
XX
DT
     08-JAN-2009 (Rel. 14.01, Created)
     20-MAR-2019 (Rel. 24.03, Last updated, Version 3)
DT
XX
DE
     tRNA-derived SINE family from Estrildidae.
XX
KW
     SINE2/tRNA; SINE; Non-LTR Retrotransposon; Transposable Element;
ΚW
     Nonautonomous; tRNA; TguSINE1; tRNA-CR1.
XX
NM
     TguSINE1.
XX
OS
     Estrildidae
OC
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
     Archelosauria; Archosauria; Dinosauria; Saurischia; Theropoda;
OC
     Coelurosauria; Aves; Neognathae; Passeriformes; Passeroidea.
XX
RN
     [1]
     1-137
RP
RA
     Smit A.F.;
     "TguSINE1 - tRNA from Estrildidae.";
RT
     Repbase Reports 9(1), 272-272 (2009).
RL
XX
DR
     [1] (Consensus)
XX
CC
     tRNA-Ile-ATT/CR1-X 15%.
XX
SQ
     Sequence 137 BP; 34 A; 29 C; 31 G; 43 T; 0 other;
//
     eBHBV1
                                     VRT; 4865 BP.
ΙD
                 repbase;
                             DNA;
XX
АC
XX
DT
     07-MAR-2017 (Rel. 22.11, Created)
     07-MAR-2017 (Rel. 22.11, Last updated, Version 2)
DT
XX
DΕ
     Melopsittacus undulatus endogenous budgerigar hepatitis B viruses
DE
     element 1 (eBHBV1), complete sequence.
XX
KW
     DNA Virus; Integrated Virus; Hepadnavirus; eBHBV1.
XX
OS
     Melopsittacus undulatus
\mathsf{OC}
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
     Archelosauria; Archosauria; Dinosauria; Saurischia; Theropoda;
OC
OC
     Coelurosauria; Aves; Neognathae; Psittaciformes; Psittaculidae;
OC
     Melopsittacus.
XX
RN
     [1]
     1-4865
RP
RA
     Liu W., Pan S., Yang H., Bai W., Shen Z., Liu J. and Xie Y.;
     "The first full-length endogenous hepadnaviruses: identification
RT
RT
     and analysis.";
```

```
Journal of Virology 86(17), 9510-9513 (2012).
RL
XX
    BK008520.
CC
XX
     Sequence 4865 BP; 1359 A; 1007 C; 1055 G; 1444 T; 0 other;
SQ
//
                             DNA; VRT; 3856 BP.
ID
     eBHBV2
                 repbase;
XX
AC
XX
     07-MAR-2017 (Rel. 22.11, Created)
DT
     07-MAR-2017 (Rel. 22.11, Last updated, Version 2)
DT
XX
DE
    Melopsittacus undulatus endogenous budgerigar hepatitis B viruses
     element 2 (eBHBV2), complete sequence.
DE
XX
KW
    DNA Virus; Integrated Virus; Hepadnavirus; eBHBV2.
XX
OS
    Melopsittacus undulatus
    Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
    Archelosauria; Archosauria; Dinosauria; Saurischia; Theropoda;
OC
OC
     Coelurosauria; Aves; Neognathae; Psittaciformes; Psittaculidae;
OC
    Melopsittacus.
XX
RN
    [1]
    1-3856
RΡ
RA
     Liu W., Pan S., Yang H., Bai W., Shen Z., Liu J. and Xie Y.;
     "The first full-length endogenous hepadnaviruses: identification
RT
RT
     and analysis.";
RL
     Journal of Virology 86(17), 9510-9513 (2012).
XX
CC
    BK008521.
XX
SQ
     Sequence 3856 BP; 1113 A; 813 C; 787 G; 1143 T; 0 other;
//
                                    MAM; 3105 BP.
ΙD
     hAT-2 ET
                 repbase;
                            DNA;
XX
AC
XX
DT
     21-APR-2009 (Rel. 14.10, Created)
     22-APR-2009 (Rel. 14.10, Last updated, Version 1)
DT
XX
DE
    hAT-2 ET is a family of autonomous DNA elements in the genome of
    Echinops telfairi found also in Tarsius syrichta, Microcebus
DE
    murinus, Myotis lucifugus, Monodelphis domestica, Otolemur
DE
    garnetii, Anolis carolinensis, Xenopus tropicalis and Schmidtea
DE
DE
    mediterranea.
XX
ΚW
    hAT; DNA transposon; Transposable Element; hAT-2 ET.
XX
OS
    Echinops telfairi
OC
    Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
    Mammalia; Eutheria; Afrotheria; Tenrecidae; Tenrecinae; Echinops.
XX
RN
     [1]
RP
     1-3105
     Novick P.A., Smith J., Ray D. and Boissinot S.;
RA
RT
     "Independent and parallel lateral transfer of DNA transposons in
RT
     tetrapod genomes.";
     Gene 449(1-2), 85-94(2010).
RL
XX
DR
     [1] (Consensus)
XX
FΗ
                   Location/Qualifiers
     Key
FT
     CDS
                   1091..2896
                   /product="hAT-2 ET 1p"
FT
FT
                   /translation="MISRKRKIDSECRIFKEQWTYDYFFMQYKERAVCLIC
FT
                   QNIVSVFKEYNLRRHYQTQHKDKYDCLVGEVRKDKILKLKNTLTTQQNTFV
```

```
FT
                   KQKQLNISSLRASFQVAKLIACTGRPFVEGEFVKECLLSVAKEMCPEKADL
                   FSTVSLSGPTITQRIEEMGDNLHQHLQNSAKKLSYFSLALDESNDVRDSAQ
FT
FТ
                   LLIFIRGMNDYXEVTEELAALQSIKGTTTGEDIYEKVCQTVNGLELDWAKL
FТ
                   ASVTTDGAPSMVGSKKGVIARINQEMDKHNHSHPIAIHCLIHQQALCSKSL
FΤ
                   KWDSVMKIVVSCVNFIRANALNHRQFQEFLSELNVAYEDVLYHTEVRWLSR
FT
                   GRVLKHFYDLLPQITAFLLSKNKEVPELNDAEWKWHLAFLTDVTELLNSFN
FT
                   VQLQGKGKLICDMQSHVKAFEVKLGLLIKQVKEENFCHLPTTQNLLAEKPL
FT
                   VAFPNKTCVDSLEKLQKEFQFRFKELHLHEQDIQLFRNPFSIDIENVDTIY
FT
                   QMELAELQNCDSLKDAFKSSSLPNFXASLPSETYPNLRNHALKMATIFGST
FT
                   YVCEQTFSRMKHLKSPTRSRLTDAHLHHLLRLAVTNMELDIDHLISKKQAH
FT
                   SSH*"
XX
     Sequence 3105 BP; 911 A; 580 C; 696 G; 901 T; 17 other;
SQ
//
                             DNA;
                                    VRT; 893 BP.
ID
     hAT-N3 CM
                 repbase;
XX
AC.
XX
DT
     06-OCT-2016 (Rel. 21.12, Created)
     06-OCT-2016 (Rel. 21.12, Last updated, Version 1)
ΤП
XX
     DNA transposon from the elephant shark - consensus.
DE
XX
KW
    hAT; DNA transposon; Transposable Element; Nonautonomous;
KW
    hAT-N3 CM.
XX
OS
    Callorhinchus milii
    Eukaryota; Metazoa; Chordata; Craniata; Vertebrata;
OC
OC
    Chondrichthyes; Holocephali; Chimaeriformes; Callorhinchidae;
OC
    Callorhinchus.
XX
RN
     [1]
RΡ
     3-183
RA
     Bao W.;
RT
     "DNA transposons from the elephant shark genome.";
RL
     Repbase Reports 16(12), 2239-2239 (2016).
XX
DR
     [1] (Consensus)
XX
CC
     ~84% identical to consensus. TSDs are 8-bp long.
XX
     Sequence 893 BP; 314 A; 231 C; 214 G; 134 T; 0 other;
SQ
//
ID
     hAT-N4 XT
                 repbase;
                             DNA;
                                    VRT; 328 BP.
XX
AC
XX
DT
     31-AUG-2006 (Rel. 11.08, Created)
DT
     31-AUG-2006 (Rel. 11.08, Last updated, Version 1)
XX
DΕ
     A nonautonomous family of hAT transposons - a consensus.
XX
KW
    hAT; DNA transposon; Transposable Element; Nonautonomous;
KW
     Interspersed repeat; non-autonomous; hAT-N4_XT.
XX
OS
     Xenopus tropicalis
OC
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
     Amphibia; Batrachia; Anura; Pipoidea; Pipidae; Xenopodinae;
OC
OC
     Xenopus; Silurana.
XX
RN
     [1]
RP
     Kapitonov V.V. and Jurka J.;
RA
     "hAT-N4_XT, a family of nonautonomous hAT DNA transposons from
RT
     frog.";
RT
     Repbase Reports 6(8), 425-425 (2006).
RL
XX
DR
     [1] (Consensus)
```

```
XX
CC
     The genome contains several thousand copies of hAT-N4 XT-like
CC
     elements. These nonautonomous elements have been transposed a
CC
     long time ago (~13% divergence from the consensus).
XX
SQ
     Sequence 328 BP; 59 A; 108 C; 106 G; 55 T; 0 other;
//
ID
     tRNA-Asp-GAY repbase;
                              DNA;
                                       VRT; 75 BP.
XX
AC
XX
DT
     29-AUG-2008 (Rel. 13.08, Created)
     29-AUG-2008 (Rel. 13.08, Last updated, Version -1)
DT
XX
DE
     tRNA from Vertebrata.
XX
     tRNA; Multicopy gene; tRNA-Asp-GAY.
KW
XX
OS
    Vertebrata
    Eukaryota; Metazoa; Chordata; Craniata.
OC
XX
RN
RP
    1-75
RA
     Smit A.F.;
RT
     "tRNA-Asp-GAY - tRNA from Vertebrata.";
    Direct Submission to Repbase Update (05-AUG-2008).
RL
XX
DR
     [1] (Consensus)
XX
     Sequence 75 BP; 12 A; 22 C; 25 G; 16 T; 0 other;
SQ
//
ID
     tRNA-Met OS repbase;
                             DNA;
                                    PLN; 87 BP.
XX
AC
XX
DT
     29-DEC-2015 (Rel. 21.03, Created)
     29-DEC-2015 (Rel. 21.03, Last updated, Version 1)
DT
XX
DΕ
     tRNA sequence - consensus.
XX
KW
     tRNA; Multicopy gene; tRNA-Met OS.
XX
OS
    Oryza sativa
     Eukaryota; Viridiplantae; Streptophyta; Embryophyta; Tracheophyta;
OC
     Spermatophyta; Magnoliophyta; Liliopsida; Poales; Poaceae;
OC
     BOP clade; Oryzoideae; Oryzeae; Oryzinae; Oryza.
OC
XX
RN
     [1]
RP
    1-80
RA
     Bao W.;
RT
     "tRNA sequences from the rice genome.";
RL
     Direct Submission to Repbase Update (28-DEC-2015).
XX
DR
     [1] (Consensus)
XX
CC
     99% identical to the consensus.
XX
     Sequence 87 BP; 16 A; 22 C; 30 G; 19 T; 0 other;
SQ
```

Summary Table

Repeat Class Fragments Length
Integrated Virus 2 2284

DNA Virus	2	2284
Multicopy gene	2	147
trna	2	147
Transposable Element	16	8533
DNA transposon	8	3314
Harbinger	2	147
Mariner/Tc1	1	211
hAT	5	2956
Endogenous Retrovirus	3	654
ERV1	1	90
ERV3	2	564
Non-LTR Retrotransposon	5	4565
CR1	2	531
L1	1	68
RTE	1	3910
SINE	1	56
SINE2/tRNA	1	56
Total	20	10964

^{*} alignment score for local alignment may not always be equal to alignment score in map of hits because of use of heuristics for stitching fragments reported in map section, and use of different wu-blast parameters on stage of search and stage of producing local alignments.