华东师范大学软件学院实验报告

实验课程: 数字逻辑实践 年级: 大一 实验成绩:

实验名称: 同步时序电路逻辑设计 **姓名:** 张梓卫

实验编号: No.6 学号: 10235101526 实验日期: 23-12-25

指导教师: 蔡海滨 组号: 实验时间: 2 学时

一、实验目的

- (1)掌握 Mealy 型时序电路设计方法。
- (2) 验证所设计电路的逻辑功能。
- (3)体会状态分配对电路复杂性的影响。

二、实验内容与实验步骤

设计一同步序列检测器,当输入序号为1001时,输出一个"1"即

输入 X 序列为 0100110011 ·······

输出 Y 序列为 0000100010 ······

选用 D触发器,做这个实验。

按照例题中的设计方案:

要实现序列"1001",则设出5个状态:

分别为 S0、S1、S2、S3、S4:

其中 S0 为初态, 无任何输入;

- S1 为输入了第一个"1"后的状态;
- S2 为先后输入为"10"后的状态:
- S3 为先后输入为"100"后的状态;
- S4 为先后输入为"1001"后的状态;

右侧为状态转换图。

X.

经过化简, 画出下方的状态转换表。

0/0 S.) 1/0
S_{4} $1/0$ S_{1} $1/0$
1/1 $0/0$ $1/0$ $0/0$ $0/0$ $0/0$
0/0 0/2

注意到状态转换表中 S0 和 S4 是等效的。可见可令最简状态(S0、S4) $\rightarrow Sa$ 、 $S1 \rightarrow Sb$ 、 $S2 \rightarrow Sc$ 、 $S3 \rightarrow Sd$,可将左侧的状态表化简为:

	5	0	1
	S.	S./0	S1/0
	51	S2/0	51/0
•	S2	S3/0	S1/0
	53	50/0	54/1
	54	5./0	51/0
		,	

	So与	54	龙等	紋	B)
--	-----	----	----	---	----

s/X	0	1
Sa	50/0	Sb/0
Sb	Se/O	56/0
So	S2/0	Sb/0
Sd	Sa/0	Sa/1

状态分配: 化简后状态数 m=4,则记忆单元数 r = log(2)(4) = 2. 两个记忆单元(即 2 个触发器)Q1、Q2 可以有四种状态:00、01、10 和 11。

题目限定要求使用 D 触发器, 故状态转换真值表如下图所示:

	X	02	Q1	Qz	Q'	Y	Dz	DL
-	0	0	0	0	0	0	0	0
	0	0	1	1	0	0	1	O
	0	1	0	1	1	0	1	1
_	0	1	1	0	0	0	0	0
	1	0	0	0	1	0	0	1
_	1	0	1	Ó	1	0	0	1
	1	1	0	0	1	0	0	1
	1	1	1	0	0	1	0	0

做出卡诺图,并化简 D1、D2 的表达式:

Q2Q1	0	1
00	0	0
10	0	0

$$D_1 = Q_2Q_1' + Q_2'X$$
$$= [(Q_2Q_1')' \cdot (Q_2'X)']'$$

$$D_z = Q_z'Q_1X' + Q_zQ_1'X' = X'(Q_z \oplus Q_1)$$

$$= [(Q_z'Q_1X')' \cdot (Q_zQ_1'X')']'$$

驱动方程为: D1=[(Q2 • Q1')' • (Q2' • X)']'

D2=X' (Q2ΦQ1)

输出方程为: Y=Q1 · Q2 · X

"1001"序列检测逻辑电原理图:

根据上述步骤,设计出最终的芯片引脚接线图

经检查, 该电路没有孤立状态, 故可以进行自启动。

根据实验五中十进制计数器的设计:

INALATE I ACTIVITATION OF							
CP0(下边沿)	QD	QC	QB	QA			
0	0	0	0	0			
1	0	0	0	1			
2	0	0	1	0			
3	0	0	1	1			
4	0	1	0	0			
5	0	1	0	1			
6	0	1	1	0			
7	0	1	1	1			
8	1	0	0	0			
9	1	0	0	1			

注意到 QB 可以输出序列"1001", 故按照实验要求,设计出输入序号信号装置:

三、实验环境

数字逻辑实验箱: 若干导线

74LS04*1 74LS00*1 74LS74*1 74LS86*1 74LS08*1 74LS90*1 74LS11*1 74LS10*1 (可能用到)

四、实验过程与分析

注意到所用芯片均为 14 引脚芯片。14 引脚的芯片位仅有 6 个,所以需要将一个 16 引脚的芯片位改置为 14 引脚。可用左下角的 16 引脚位,将最左侧的导夹空置,于 15 号引脚处注入 Vcc, 7 引脚接地,视为一个 14 引脚芯片位。

注意到接地接口和 Vcc 接口可能不够,可使用实验箱左上角的接口,此时要选用长导线,应避免导线缠绕过于复杂导致后续查错时出现问题。

为了确保实验接线能够顺利完成而不出差错,实验前,进行了部分芯片规划:

【实验过程】首先连接好芯片、接地、以及做好74LS74中R端、S端的接1工作。

随后接入其他导线,观察左上端 L3 的亮灭情况. 每循环一次"1001",右端 L12 输出一次 1

五、实验结果总结

- 1、由于时钟信号与输入序列"1001"的不对等,手动输入信号时,不能轻易得到实验结果,接入 74LS90 的十进制计数器,以二进制形式显示 QD、QC、QB、QA 的计数情况,之后将 QB 输入序列当作输入"X",观察 Y 的变化情况。
- 2、在实验完毕后,观察同学手动输入时,发现只需要接入一个时钟显示,之后手动拨动开关使其每一个脉冲沿对应"1001",也可以得到一个 Y。