ПРАКТИЧЕСКАЯ РАБОТА №4

Выполнила: Евдокимова Дарья, 21205

Пусть непрерывная система имеет дробно-рациональную передаточную функцию $W(s)=\frac{b(s)}{a(s)}$. Предполагаем, что она физически реализуема, т. е. $\deg a(s)>\deg b(s)$. Построим соответствующую дискретную систему в нормальной форме первого порядка

$$\begin{cases} v[k+1] = A_d v[k] + B_d u[k], \\ x[k] = C_d v[k]. \end{cases}$$
 (5.9)

Для вычисления матриц A_d , B_d , C_d в среде Scilab достаточно выполнить последовательность команд:

```
s=poly(0,'s');
W(s)=2*s/(s^2+2) // передаточная функция
// Создание записи непрерывной системы:
Sys=syslin('c',W(s));
h=0.1; // шаг временной сетки
Sysd=dscr(Sys,h)
// Матрицы A, B, C дискретной системы:
Sysd.A
Sysd.B
Sysd.C
```

Время дискретизации h = T; T/2; T/10; T/100.

ПИ-рег

Схема ПИ-регулятора

Данные взяты из 1й лабы

Для ПИ-регулятора (покоординатная настройка)								
T1	Kcrit	K = K_H = Kcrit * 0.45	Ткрит	Ти = Т_и,Н = Ткрит/1.2	Ошибка			
0.00	2.4	1.0800	6.6000	5.5	5.626			

Чтоб данные вывелись в микрокапе, надо нажать сюда

Вот график

Получим данные, нажав на numeric output .TNO.

. Сохраняем файл в формате

Код представлен ниже.

Графики для ПИ-регулятора

$$h = T$$

Код ПИ-рег

```
Для ПИ-регулятора

// задаем все необходимые параметры

n = 5;

T0 = 0.91;

K = 1.08;

Ti = 5.5

T1 = 0; // ==> exp(-s*T1) = 1
coef = 1; // этот параметр равен 1, 2, 10, 100 - по зада

h = 1/coef; // шаг временной сетки

s = poly(0, 's'); // задаём полином
Wright = 1 /(1 + s*T0)^n;
Wleft = (1 + 1/(s * Ti)) * K * Wright;
W = Wleft / (1 + Wleft); // передаточная функция всей системы

// создание записи непрерывной системы
```

```
sl = syslin('c', W); // 'c' - for character string
sysD = dscr(sl, h); // h - sampling period (период дискретизации)
// здесь сетка, на кт будем сроить решение
time max = 100;
t = [0:h:time max];
//Если х является списком syslin (линейная система в виде
пространства состояний или передаточной форме), то zeros(x)
так же является корректным и возвращает матрицу нулей.
v = zeros(sysD.B); // создаем матрицу, состоящую из нулей (того же
размера, что и sysD.B)
u = ones(t); // создаем матрицу, состоящую из единиц
x = zeros(u);
// дискретная система в нормальной форме 1го порядка
for i=1:length(u)
  v = sysD.A * v + sysD.B;
  x(i) = sysD.C * v;
// переходная характеристика системы по дискретной модели
plot(t, x,'black');
data = fscanfMat("D:\OTY2024\pract4 1\PI-reg.TNO");
// переходная характеристика системы из микрокапа
plot(data(:, 1), data(:, 2), 'red');
// считаем ошибку
y = data(:,2);
err = 0;
tau = h * 100;
for k = 2:length(t)
  err = err + (y((k-1)*tau) - x(k))^2;
end
err = sqrt(err/length(t));
disp(err);
```

ПИД-рег

Схема ПИД-регулятора

Данные взяты отсюда

	Для ПИД-регулятора (покоординатная настройка)						
T1	Kcrit	K = Kcrit * 0.6	Ткрит	Ти = Ткрит/2	Тд = Ти/4	Тс = Тд/8	Ошибка
0,00	2,25	1,3500	8,1000	4,05	1,0125	0,1265625	3,139

Графики для ПИ-регулятора

h = T

h = T/100

Код ПИД-рег

```
Для ПИД-регулятора

// задаем все необходимые параметры
n = 5;
T0 = 0.91;
K = 1.35;
Ti = 4.05;
Td = Ti/4;
Tc = Td/8;
T1 = 0; // ==> exp(-s*T1) = 1
coef = 1; // этот параметр равен 1, 2, 10, 100 - по зада
h = 1/coef; // шаг временной сетки

s = poly(0, 's'); // задаём полином

Wright = 1 /(1 + s*T0)^n;
Wleft = (1 + 1/(s * Ti) + (Td *s) / (1 + Tc *s)) * K * Wright;
W = Wleft / (1 + Wleft); // передаточная функция всей системы
```

```
// создание записи непрерывной системы
sl = syslin('c', W); // 'c' - for character string
sysD = <u>dscr</u>(sl, h); // h - sampling period (период дискретизации)
// здесь сетка, на кт будем сроить решение
time max = 100;
t = [0:h:time max];
//Если х является списком syslin (линейная система в виде
пространства состояний или передаточной форме), то zeros(x)
так же является корректным и возвращает матрицу нулей.
v = zeros(sysD.B); // coздаем матрицу, состоящую из нулей (того же
размера, что и sysD.B)
u = ones(t); // создаем матрицу, состоящую из единиц
x = zeros(u);
// дискретная система в нормальной форме 1го порядка
for i=1:length(u)
v = sysD.A * v + sysD.B;
x(i) = sysD.C * v;
end
// переходная характеристика системы по дискретной модели
plot(t, x,'black');
data = fscanfMat("D:\OTY2024\pract4 1\PID-reg.TNO");
// переходная характеристика системы из микрокапа
plot(data(:, 1), data(:, 2), 'red');
// считаем ошибку
y = data(:,2);
err = 0:
tau = h * 100;
for k = 2:length(t)
  err = err + (y((k-1)*tau) - x(k))^2;
end
err = sqrt(err/length(t));
disp(err);
```

Результаты нормы ошибок

Надо было посчитать ошибку:

$$e \doteq \sqrt{\frac{1}{N} \sum_{k=1}^{N} [h((k-1)\tau) - h_d[k]]^2},$$

где h(t) — переходная характеристика непрерывного регулятора, вычисленная в Місто-Сар Demo, $h_d[k]$ — переходная характеристика дискретного аналога регулятора, вычисленная в Scilab, au — шаг временной сетки.

Время дискретизации h	ПИ-регулятор	ПИД-регулятор		
Т	0.0502419	0.0563164		
T/2	0.0255769	0.0296625		
T/10	0.0054306	0.0081758		
T/100	0.0009205	0.0041616		