Ejercicio en clase:

1. Seguir la plantilla de word para implementar a mano RSA con sus propios valores

CRIPTOGRAFÍA: CIFRADO DE LLAVE PÚBLICA

Cifrado con Algoritmo RSA

EJERCICIO

Desarrollado por: Marino Bastidas Rosero

Presentado a: Andrés Felipe Escallón Portilla

Mayo de 2025

PLANTEAMIENTO:

Dados los números primos **p=17, q=23**, y el mensaje **m=6**; usar el algoritmo RSA para encriptar el mensaje(m).

SOLUCIÓN:

1. Hallar n y $\Phi(n)$:

a.
$$n = 17*23 = 17*23 = 391$$

 \square n = 391

b.
$$\Phi(n) = (p-1)*(q-1) = (17-1)*(23-1) = (16)*(22) = 352$$

□Φ(n) = 352

2. Hallar k:

 $d*e \equiv 1 \mod \Phi(n)$

a. Para hallar e, se deben tener en cuenta las siguientes características:

ii. MCD (e, $\Phi(n)$) = 1 \square e y $\Phi(n)$ sean primos relativos.

$$\rightarrow 1 < 3 < 352$$

$$\rightarrow$$
 MCD (3, 352) = 1

 $d*3 \equiv 1 \mod 352$

Algoritmo extendido de Euclides

$$e^*x + \Phi(n)^*y = MCD(e,\Phi(n))=1$$

Reemplazando:

$$3*x+352*y = 1$$

División Euclidiana:

$$352/3 \rightarrow 352 = 3*117+1$$

Reorganizando se obtiene:

Comparando con 3*x+352*y = 1

$$x = -117$$

y = 1

$$x = 352 - 117 = 235$$

Pero
$$d = x \rightarrow d = 235$$

- 3. Según lo anterior se procede de la siguiente manera:
 - a. En conclusión:
 - i. Llave pública: (e, n) = (3, 391).
 - ii. Llave privada: (d, n) = (235, 391).

4. Una vez se tienen las llaves, se puede pasar a encriptar (cifrar) / desencriptar (descfirar) el mensaje:

Cifrado: $mc = 6^3 \mod 391 = 216 \mod 391 = 216$; con MCD (6, 391) = 1 y 6 < 391.

Descifrado: $m = 216^{235} \mod 391$.