MA 227-103 — Summer 2017 — Dr. Clontz

Name:	Exercise Type:	
J#:	\mathbf{Quiz}	
Date: 2017 June 14		
Standard: This student is able to C03: VectCalc. Compute and apply vector function limits derivatives, and integrals.	,	Mark:
4/4 * reat	tempt due on:	

Find $\mathbf{r}(t)$ given $\mathbf{r}'(t) = \langle -\sin(t), 4+2t \rangle$ and $\mathbf{r}(0) = \langle 3, 2 \rangle$.

MA 227-103 — Summer 2017 — Dr. Clontz

Name:	Exercise Type:	
J#:	Quiz	
Date: 2017 June 13		
Standard: This student is able to S04: Kinematics. Compute and apply position, velocity, and acceleration vector functions.		Mark:
2/3 * reat	tempt due on:	

Suppose the movement of a particle along the curve $y = x^2$ is described by $\mathbf{r}(t) = \langle 2t - 1, 4t^2 - 4t + 1 \rangle$. Sketch this curve and plot the point $\mathbf{r}(1)$ along with its velocity and acceleration vectors $\mathbf{v}(1), \mathbf{a}(1)$.