

About me

Experience

2017 -----present

Data Analyst----- Team Leader -----

Studies

2013------2016 ------2018

BSc

Finance and Banking BBU

MSc

Econometrics and Applied Statistics BBU

Structure of the presentation

INTRODUCTION & COURSE OVERVIEW

KEY FACTORS INFLUENCING BRANCH GROWTH

DATA ACQUISITION AND PREPROCESSING

STATISTICAL ANALYSIS

MACHINE LEARNING

CASE STUDY

ETHICAL CONSIDERATIONS AND LIMITATIONS

CONCLUSION AND Q&A

The Importance of Branch Network Optimization

Evolving banking landscape:

digital vs. physical presence.

Physical branches:

crucial for relationships & complex services (especially for complex financial products, building trust).

Data-driven decisions:

essential for strategic branch placement to maximize profitability and market share.

Course objectives:

data gathering, modeling, interpretation for effective branch network planning.

Understanding Growth Drivers

Economic

Demographic

Social

Competitive

Gathering and Preparing Your Data

Sources

Government agencies (e.g., census data), economic databases (e.g., World Bank), market research firms, internal bank data, local business registries, Chambers of Commerce, economic development agencies.

Data types

Geographic (latitude/longitude), time-series (economic indicators), categorical (demographics), and textual (social media sentiment).

Preprocessing

Cleaning, handling missing values, feature engineering (creating relevant derived variables), spatial data alignment, and ensuring data quality and consistency.

Statistical Techniques

Regression Analysis

Identifies relationships between variables.

Correlation Analysis

Measures the strength of relationships.

Time Series Analysis

Analyzes data trends over time.

Machine Learning

Supervised Learning

Techniques like linear regression and decision trees.

Unsupervised Learning

Techniques like clustering for identifying patterns.

Neural Networks

Advanced models for complex predictions.

Case Study

Strategic Analysis and Grouping of Urban and Peripheral Regions for Growth Potential: A Case Study of Banca Transilvania's Branches

Clustering of Urban and Regions from the Perspective of Banca Transilvania's Expansion

Growth Drivers Used

- Resident population by age group
- Resident population employed by occupation group
- Resident population by ethnicity
- Registered unemployed
- Average number of employees
- Labor force Labor resources
- Average monthly net nominal wage earnings by activities of the national economy (sections and divisions)

- Permanent emigrants by counties and localities of departure
- Average annual number of pensioners
- Budget execution Income and expenditure statement
- FOB exports
- Deaths
- Turnover
- Company registrations

Preparing Your Data

- %Young, %Elderly
- Resident population employed by occupation group transition from county level to city level based on the Labor Force
- Percentage evolution of **registered unemployed** (y2 vs y1)
- Percentage evolution of **employees** (y2 vs y1)
- **Labor force Labor resources** transition from county level to city level based on population aged 15 to 64
- Average monthly wage earnings by activities Percentage evolution (y2 vs y1)
- Percentage evolution of **permanent emigrants** (y2 vs y1)
- Company registrations transition from county level to city level based on **Labor resources**

- Average annual number of pensioners transition from county level to city level based on population and age
- Ratio income/expenditure
- Personal income tax (PIT)
- Percentage of **minorities**
- Percentage of expenditure (social assistance, goods and services, employees, health, education)
- Percentage of income (budget balance from revenue, subsidies from revenue)
- FOB exports transition from county level to city level based on population
- Percentage evolution of deaths (y2 vs y1)
- Turnover transition from county level to city level based on **employees**

1100K **Employees** 0 VS 1000K **Population** 900K 800K 700K 600K Employees 500K 400K 300K 200K 0 0 100K ОК

1000K

Population

1200K

1400K

1600K

1800K

2000K

2200K

OK

200K

400K

600K

800K

Strategic
Identification and
Delimitation of
Service Areas for
Optimal Branch
Coverage

Clusters

176 observations

Inputs:

- %Young
- Percentage evolution of **employees**
- FOB exports per capita
- Ratio income/expenditure
- Personal income tax per capita
- Employees/Resident population
- Active population/Resident population
- Turnover per capita
- Health expenditure per capita
- Percentage of expenditure with employees
- Percentage of budget balance
- Social assistance expenditure per capita

Model Summary

Algorithm	TwoStep
Inputs	12
Clusters	6

Cluster Quality

Size of Smallest Cluster	2 (1.1%)
Size of Largest Cluster	56 (32%)
Ratio of Sizes: Largest Cluster to Smallest Cluster	28.00

Responsible Data Use and Limitations

Potential biases in data and models

Importance of human judgment

Model limitations, changing banking world

Need to consider social equity and avoid discriminatory outcomes

Key Takeaways and Future Directions

Summary of key concepts and techniques.

Importance of continuous monitoring and refinement.

Emerging trends in banking and data analytics (e.g., AI, machine learning, realtime analytics).

Q&A session.