Empirical Project 3 | ECON 270

Group Members:
Shalin Luitel
Sweta Nanadakumar
Jahnavi Kalyan
Arnold Gyateng

1. Names of variables used for the project:

rate_black_population_2010
count_person_enrolledincollegeun
count_person_enrolledinschool
unemploymentrate_person
median_income_household
count_housingunit
genderincomeinequality_person_15
median_income_person
count_household_05orlessratiotop
count_household_nohealthinsuranc

Dropped variable "dcx6l3mg60hpe7c" using drop dcx6l3mg60hpe7c

2. Summary Statistics for kfr pooled p25 and variables used.

. sum kfr_pooled_p25 rate_black_population_2010 count_person_enrolledincollegeun count_person_enrolledinschool unemploymentrat
> e_person median_income_household count_housingunit genderincomeinequality_person_15 median_income_person count_household_05o

> rlessratiotop count_household_nohealthinsuranc

Variable	Obs	Mean	Std. Dev.	Min	Max
kfr_poole~25 rate_bl~2010 count_pers~n count_pers~l unemployme~n	1,259 2,518 2,518 2,518 2,518 3,220	.4132139 .1008264 .0466533 .234954 .0341267	.0517072 .1444777 .0351332 .047066 .017293	.2128646 .0001027 .0070801 .0957636	.6140298 .8338889 .4086202 .5243892
median_inc~d count_hous~t genderinc~15 median_inc~n count_hous~p	2,518 2,518 3,220 2,518 2,518	3.512239 1.024281 .2277109 .8536498 .0271955	2.885716 .0822837 .0714873 .6967384 .0202923	.0197511 .6446485 424122 .0030308 .0008629	23.24831 1.933008 .5568318 5.529024 .1892992
count_hous~c	989	.2499479	.1313378	.0454211	1.283477

- 3. In addition to the predictors already in the training dataset inspect the result, and comment on what you find?
- . regress kfr_pooled_p25 rate_black_population_2010 count_person_enrolledincollegeun count_person_enrolledinschool unemploymentrate_pers > on median_income_household count_housingunit genderincomeinequality_person_15 median_income_person count_household_05orlessratiotop co > unt household nohealthinsuranc

Source	SS	df	MS	Number of obs	=	498
				F(10, 487)	=	52.70
Model	.372561537	10	.037256154	Prob > F	=	0.0000
Residual	.344307598	487	.000706997	R-squared	=	0.5197
				Adj R-squared	=	0.5098
Total	.716869135	497	.001442393	Root MSE	=	.02659

kfr_pooled_p25	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
rate_black_population_2010	1384719	.0102434	-13.52	0.000	1585987	1183451
count_person_enrolledincollegeun	0815554	.0643576	-1.27	0.206	2080081	.0448974
count_person_enrolledinschool	.1655877	.0584825	2.83	0.005	.0506784	.2804969
unemploymentrate_person	.443496	.098501	4.50	0.000	.2499565	.6370355
median_income_household	.003821	.0055012	0.69	0.488	006988	.01463
count_housingunit	0276306	.0189981	-1.45	0.146	0649589	.0096977
genderincomeinequality_person_15	.1096356	.0285502	3.84	0.000	.0535389	.1657323
median_income_person	0291165	.0258405	-1.13	0.260	0798892	.0216562
count_household_05orlessratiotop	-1.263531	.1270193	-9.95	0.000	-1.513104	-1.013957
count_household_nohealthinsuranc	.0355552	.0120128	2.96	0.003	.011952	.0591585
_cons	.3994056	.0199089	20.06	0.000	.3602876	.4385237

In the regression analysis table for kfr_pooled_p25 vs datacommons variables, we see 498 total observations with an R-squared value of 0.52. Out of 10 variables used to predict kfr_pooled_p25, 6 variables are statistically significant for an alpha value of 0.05 which 4 variables fail to reject the null hypothesis of no relationship of variables with kfr_pooled_p25. We expect kfr_pooled_p25 value of 0.40 when all of the explanatory variables are 0, as shown by _cons, significant to alpha value of 0.05.

4. How well does your linear regression predict kfr_pooled_p25 in sample? You have to calculate the mean square error.

sum mse_forest if training == 1

Variable	0bs	Mean	Std. Dev.	Min	Max
mse_forest	498	.0001278	.0001909	3.07e-11	.0012536

The Mean square error is 1.28*10⁻⁴. The mean square error is very small (insignificant) in our model prediction. Therefore, this linear regression to predict kfr_pooled_p25 from the sample variables is robust with significant prediction strength.