ЛАБОРАТОРНА РОБОТА № 1 НАЛАШТУВАННЯ СТАТИЧНИХ МАРШРУТІВ І МАРШРУТІВ ЗА УМОВЧАННЯМ ДЛЯ ІРV4

Соболевський Іван 123-17-1 Вариант 20

1.1. Мета лабораторної роботи

Отримати навички налаштування статичних маршрутів і маршрутів за замовчуванням на маршрутизаторах мережі організації з метою забезпечення взаємодії між всіма ПК, використовуючи рекурсивний статичний маршрут, безпосередньо підключений статичний маршрут і маршрут за замовчуванням.

1.2. Організація виконання лабораторної роботи

Для виконання лабораторної роботи необхідно вивчити, використовуючи рекомендовану літературу, конспект лекцій і методичні рекомендації, такі питання:

- розрахунок об'єднаних маршрутів;
- принцип дії та конфігурація статичних маршрутів і маршрутів за умовчанням;
- принцип дії та налаштування плаваючих статичних маршрутів;
- перевірка маршрутної інформації на маршрутизаторах.

В якості вихідних даних необхідно застосувати побудовану модель мережі з лабораторної роботи №13 «Впровадження і налаштування сервісів вебсерверу, серверу електронної пошти, DHCP, DNS та FTP в Cisco Packet Tracer» відповідно до методичних рекомендацій [15].

Далі необхідно виконати наведені нижче кроки.

Крок 1. Перевірка конфігурацій ПК та досяжності мереж

- 1. Для перевірки правильного налаштування конфігурацій ПК і доступності локальних інтерфейсів маршрутизаторів виконайте команду «ping» з командного рядка кожного ПК на його шлюз. Ехо-запити повинні бути успішними. При невдалому виконанні ехо-запитів виконайте пошук і усунення несправностей.
- 2. Перевірте досяжність мереж, відправивши ехо-запити по табл. 1.1, та дайте пояснення.

Для перевірки правильного налаштування ПК і доступності локальних інтерфейсів маршрутизаторів виконаємо просту розсилку даних за допомогою вбудованих функцій 'Cisco Packet Tracer':

Як приклад, наведемо список подій, які показують етапи ехо-запиту з ПК 'PC2.1' другої підмережі 'LAN_N2' до ПК 'PC3.2.3' підмережі 'LAN_N3':

Simulation Panel						
Event List						
Vis.	Time(sec)	Last Device	At Device	Туре	^	
	0.000	-	PC2.1	ICMP		
	0.001	PC2.1	LAN_N2	ICMP		
	0.002	LAN_N2	Filial 1	ICMP		
	0.003	Filial 1	Central	ICMP		
	0.004	Central	Filial 2	ICMP		
	0.005	Filial 2	LAN_N3	ICMP		
	0.006	LAN_N3	LAN_N3.2	ICMP		
	0.007	LAN_N3.2	PC3.2.3	ICMP		
			1.111.11		- 9	

На цьому етапі було визначено, що, завдяки статичним маршрутам, які були прописані на ключових пристроях заздалегідь, усі користувачі мережі мають між собою стійкий зв'язок.

Частина 2. Налаштування статичних маршрутів.

Налаштування статичних маршрутів необхідне для комунікації кінцевих вузлів та мережевих пристроїв різних підмереж. Основним поняттям в області статичної маршрутизації є транзитні переходи (так звані 'хопи') — вихідні інтерфейси, на які необхідно пересилати пакети, адресовані для певної мережі. Маршрути транзитних переходів визначаються за допомогою рекурсивних запитів до таблиці маршрутизації.

Central

```
Enter configuration commands, one per line. End with CNTL/Z.
Router(config) #interface FastEthernet0/0
Router(config-if)#
Router(config-if)#exit
Router(config) #interface FastEthernet0/1
Router(config-if) #ip address 177.13.3.65 255.255.255.192
Router(config-if)#
Router(config-if) #exit
Router(config)#
Router(config) #ip route 177.13.1.0 255.255.255.0 177.13.3.133
Router(config) #ip route 177.13.0.0 255.255.255.0 177.13.3.133
Router(config)#
Router(config) #interface FastEthernet0/1
Router(config-if)#
Router(config-if) #exit
Router(config)#
Router(config) #ip route 177.13.2.128 255.255.128 177.13.3.129
Router(config) #ip route 177.13.2.0 255.255.128 177.13.3.129
Router(config)#
```

Частина 3. Налаштування маршрутів за замовченням.

Спрощеним аналогом статичних маршрутів є маршрут за замовченням. За ним маршрутизатор визначає, на який інтерфейс відправляються пакети з ІР-адресою, що відноситься до невідомої підмережі. Статичний маршрут задається так²:

Router> enable //вхід до привілейованого режиму Router# config t //вхід до режиму глобальної конфігурації

Router(config)# ip route {0.0.0.0 | 0.0.0.0} {hacmynhuŭ xon}

Filial 2

ip route 0.0.0.0 0.0.0.0 177.13.3.134 Router(config)#

Filial 1

Router(config) #ip route 0.0.0.0 0.0.0.0 177.13.3.130

Пакети досягають свого отримувача та повертається відповідь

Частина 4. Налаштування плаваючого статичного маршруту.

Плаваючі статичні маршрути – це статичні маршрути, використовуються для надання резервного шляху основному статичному чи динамічному маршруту на випадок пошкоджень каналів зв'язку. При налаштуванні плаваючих маршрутів інженер оперує **М**РТТРНОП адміністративної відстані основною характеристикою систем маршрутизації.

Більшість протоколів маршрутизації мають метричну структуру й використовують алгоритми, що не є сумісними з іншими протоколами. У мережі з багатьма проколами маршрутизації найважливішим є обмін маршрутної інформації та можливість вибору найкоротшого шляху поміж багатьма протоколами.

Адміністративна відстань (англ. Administrative Distance, AD) — це характеристика маршруту, яку використовують маршрутизатори для вибору найкоротшого шляху, якщо існує декілька варіантів способів передачі інформації. Для цього встановимо модулі **HWIC-1GE-SFP** та модулі підключення **GLC-LH-SMD**:

Влаштуємо резервне підключення між маршрутизаторами 'Filial 1' та 'Filial 2' за допомогою оптоволоконного кабелю (англ. Fiber):

Надаймо отриманій мережі адреси з пулу 192.168.0.0 /30:

- інтерфейс GigabitEthernet0/1/0 маршрутизатора 'Filial 1'
 отримує адресу 192.168.0.1 /30;
- інтерфейс GigabitEthernet0/1/0 маршрутизатора 'Filial 2' отримує адресу 192.168.0.2 /30.

Так як отримане підключення є резервним, необхідно присвоїти йому адміністративну відстань, яка відрізняється від встановленої за замовчанням (AD = 1). Команда має наступний синтаксис:

Налаштуємо резервне підключення у мережі *'Filial 1' – 'Filial 2'* з плаваючою адресою за замовченням та адміністративною відстанню у п'ять пунктів (AD = 5) на маршрутизаторі *'Filial 1'*:

Network Address	
177.13.2.128/25 via 192.168.0.1	
0.0.0.0/0 via 177.13.3.134	
177.13.2.0/25 via 192.168.0.1	

Router(config) #ip route 177.13.2.0 255.255.255.128 192.168.0.1 5 Router(config) #ip route 177.13.2.128 255.255.255.128 192.168.0.1 5

Filial 1

Network Address	
0.0.0.0/0 via 192.168.0.2	
0.0.0.0/0 via 177.13.3.130	

Обірвемо основний маршрут


```
Tracing route to 177.13.0.3 over a maximum of 30 hops:
                                      177.13.2.129
      4 ms
                 4 ms
                           4 ms
                                      192.168.0.2
  2
      6 ms
                 6 ms
                           6 ms
                                      177.13.0.3
  3
      10 ms
                 10 ms
                           10 ms
Trace complete.
C:\>
```

Висновок

Налагодження маршрутизації в мережі підприємства є одною з основних задач мережевого інженера. Маршрутизація всередині мережі визначає процеси транспортування (передачі) даних між кінцевими пристроями.

Такі мережеві пристрої, як маршрутизатори, використовують маршрутизацію і містять в оперативній пам'яті специфічні таблиці— таблиці маршрутизації.

Основною темою цієї роботи є статичні маршрути, які використовуються з метою отримання доступу до віддалених мереж. Статичні маршрути поділяють так:

- звичайні статичні маршрути (англ. standard static route);
- маршрути за замовченням (англ. default static route);
- сумарні статичні маршрути (англ. summary static route);
- плаваючі статичні маршрути (англ. floating static route).

Слід відмітити, що плаваючі статичні маршрути використовуються у якості резервних шляхів передачі інформації й мають таку характеристику, як адміністративна відстань. Значення адміністративної відстані використовують протоколи маршрутизації з метою визначення найбільш оптимального шляху транспорту даних.