W H O S C O R E S ?

PREDICTING THE NUMBER OF GOALS SCORED IN A PREMIER LEAGUE SEASON

CLAYTON YOUNG

Why Premier League?

Viewership and influence

- In 2019, viewership rose in 11 per cent to 1.35 billion¹
- Broadcast in 212 territories to 643 million homes and a potential TV audience of 4.7 billion people²
- 10% of the world's population support Manchester United, including 100 million people in China more than are members of the Communist Party ³
- Premier League striker, Didier Drogba, ends civil war in Ivory Coast⁴

- 1. https://www.premierleague.com/news/1280062
- 2. https://www.thetimes.co.uk/article/history-and-time-are-key-to-power-of-football-says-premier-league-chief-3d3zf5kb35m
- 3. https://www.britishcouncil.org/research-policy-insight/insight-articles/playing-game-soft-power-sport
- 4. https://www.bbc.com/sport/football/52072592

Goals?

- Predicting number of nonpenalty goals in a season.
 - Assumption: non-penalty goals better measure of player performance.

Data

Rows: 2091 Columns: 81

Africa Country Abbreviations

Africa is a diverse area with a rich history. From the Egyptians to the Nenet tribe, you country abbreviations below.

2-Letter	3-Letter	Country Name
DZ	DZA	Algeria
AO	AGO	Angola
BJ	BEN	Benin

GDP (US\$ million) by country											
	+	Region	IMF	[1]	UN ^{[1}	12]	World Bank ^[13]				
	Country or territory		Estimate +	Year ≑	Estimate +	Year ≑	Estimate +	Year ≑			
1	United States (more)	Americas	22,675,271	2021	21,433,226	2020	20,936,600	2020			
2	China (more)	Asia	16,642,318	^[n 2] 2021	14,342,933	^[n 3] 2020	14,722,731	2020			
3	Japan (more)	Asia	5,378,136	2021	5,082,465	2020	5,064,873	2019			
4	Germany (more)	Europe	4,319,286	2021	3,861,123	2020	3,806,060	2020			
5	United Kingdom (more)	Europe	3,124,650	2021	2,826,441	2020	2,707,744	2020			
6	India (more)	Asia	3,049,704	2021	2,891,582	2020	2,622,984	2020			
7	France (more)	Europe	2,938,271	2021	2,715,518	2020	2,603,004	2020			
8	Italy (more)	Europe	2,106,287	2021	2,003,576	2020	1,886,445	2020			
9	Canada (more)	Americas	1,883,487	2021	1,741,496	2020	1,643,408	2020			
10	South Korea (more)	Asia	1,806,707	2021	1,646,539	2020	1,630,525	2020			
11	Russia (more)	Europe	1,710,734	2021	1,692,930	2020	1,483,498	2020			
12	Brazil (more)	Americas	1,491,772	2021	1,847,795	2020	1,444,733	2020			
13	Australia (more)	Oceania	1,617,543	2021	1,380,207	2020	1,330,901	2020			
14	Spain (more)	Europe	1,461,552	2021	1,393,490	2020	1,281,199	2020			
15	Mexico (more)	Americas	1,192,480	2021	1,256,440	2020	1,076,163	2020			
16	Indonesia (more)	Asia	1,158,783	2021	1,119,190	2020	1,058,424	2020			

								Playing	Time	•			Pe	rforn	nance		
Rk	Player	Nation	Pos	Squad	Age	Born	MP	Starts	Min	90s	Gls	Ast	G-PK	PK	PKatt	CrdY	CrdR
1	Max Aarons	+ ENG	DF	Norwich City	21-253	2000	4	4	360	4.0	0	0	0	0	0	1	0
2	Che Adams	X SCO	FW	Southampton	25-063	1996	3	3	250	2.8	0	1	0	0	0	0	0
3	Rayan Aït Nouri	FRA	FW	Wolves	20-100	2001	1	0	7	0.1	0	0	0	0	0	0	0
4	Kristoffer Ajer	NOR NOR	DF	<u>Brentford</u>	23-150	1998	4	4	340	3.8	0	0	0	0	0	1	0
5	Nathan Aké	NED NED	DF	Manchester City	26-208	1995	1	1	90	1.0	0	0	0	0	0	0	0
6	Marc Albrighton	+ ENG	MF,FW	<u>Leicester City</u>	31-300	1989	2	2	180	2.0	1	0	1	0	0	1	0
7	Thiago Alcántara	ESP	MF	Liverpool	30-156	1991	3	1	116	1.3	0	1	0	0	0	0	0
8	Trent Alexander-Arnold	+ ENG	DF	Liverpool	22-342	1998	4	4	360	4.0	0	2	0	0	0	0	0
9	Alisson	BRA	GK	Liverpool	28-347	1992	4	4	360	4.0	0	0	0	0	0	0	0
10	Allan	BRA	MF	Everton	30-249	1991	4	4	360	4.0	0	1	0	0	0	0	0
11	Dele Alli	+ ENG	MF	<u>Tottenham</u>	25-156	1996	4	4	360	4.0	1	0	0	1	1	1	0
12	Miguel Almirón	PAR	MF	Newcastle Utd	27-216	1994	4	4	360	4.0	0	0	0	0	0	0	0
13	Marcos Alonso	■ ESP	DF	Chelsea	30-260	1990	4	4	355	3.9	1	0	1	0	0	1	0
14	Steven Alzate	COL	MF	<u>Brighton</u>	23-006	1998	1	1	71	0.8	0	0	0	0	0	0	0
15	Daniel Amartey	GHA	DF	<u>Leicester City</u>	26-267	1994	3	3	270	3.0	0	0	0	0	0	0	0
16	Joachim Andersen	DEN	DF	Crystal Palace	25-106	1996	4	3	304	3.4	0	0	0	0	0	1	0
17	Michail Antonio	X JAM	FW	West Ham	31-170	1990	4	4	356	4.0	4	3	4	0	1	2	1
18	Adam Armstrong	+ ENG	FW	Southampton	24-216	1997	4	4	343	3.8	1	0	1	0	0	0	0
19	Pierre-Emerick Aubameyang	GAB	FW	Arsenal	32-088	1989	3	2	178	2.0	1	0	1	0	0	0	0
20	Jordan Ayew	<u></u> GHA	FW,MF	Crystal Palace	30-003	1991	4	3	288	3.2	0	0	0	0	0	0	0

Variables of Interest

Existing

- Age
- Matches played
- Starts
- Min
- 90s

Collapsed

- Position
- Team
- Continent

Interaction

- position*shots
- GDP*continent

Predictors

Distribution of non-penalty goals

First Models

Scaled

- Lasso R²: 0.726 +- 0.042
- Ridge R²: 0.727 +- 0.040
- ElasticNet R²: 0.700 +- 0.087

Not Scaled

- Polynomial Features R²: -15.125 +- 31.535
- Simple R²: 0.750 +- 0.051
- Lasso R²: 0.749 +- 0.051
- Ridge R²: 0.750 +- 0.051
- ElasticNet R²: 0.750 +- 0.051

	variables	vif
0	shots	3.599829
1	tackles_won	4.666362
2	Pos_DEF	3.385871
3	Pos_GKO	2.093084
4	Squad_Top	1.510735
5	Continent_Europe	14.780894
6	Continent_South America	3.930148
7	Continent_other	2.059496
8	DefXshots	2.385224
9	GKOXshots	1.129904
10	gpdXeurope	1973.533991
11	gpdXSA	61.844581
12	gpdXo	1867.991593
13	Estimate.1	3889.110788
14	Age	14.871670
15	Min	9.602529

BoxCox transformation

- Transformed:
 - Goals (shown)
 - Shots
 - Tackles

Simple R²: 0.663 +- 0.026

Lasso R²: 0.658 +- 0.026

Ridge R²: 0.656 +- 0.026

Elastic Net R²: 0.657 +- 0.026

Final Model

- Polynomial Features R²: 0.754 +- 0.045
- Cook's d (max): 0.227
- Durbin-Watson: 2.005

	variables	vif
0	shots	1.282513
1	Pos_DEF	2.114895
2	Pos_GKO	1.095816
3	Squad_Top	1.362244
4	DefXshots	2.076611
5	GKOXshots	1.073879

Model Fit Test

• R²: 0.788

• MSE: 2.020

• MAE: 0.871

Performance:

- random.randint(0, 20)
 - 16,8
- lm_poly.predict(X_poly_test[[rand_int]])
 - 1.6, 2.6
- y_test[[randint]]
 - 0, 1

Coefficients & Intercept

- Intercept: -0.205
- Shots: 0.000
- Pos_DEF: 0.089
- Pos_GKO: 0.099
- Squad_Top: 0.101
- DefXshots: -0.021
- GKOXshots: -0.008

First round supplementary

- basic r^2: 0.8075057399285094
- ridge r^2: 0.8078898169222304
- lasso r^2: 0.8092520529861036
- eNet r^2: 0.8074703871326342
- poly r^2: 0.7761784037632165
- basic mse: 1.8318209079250967
- ridge mse: 1.8281659404102744
- lasso mse: 1.8152025798279599
- eNet mse: 1.8321573334923515
- poly mse: 2.1299392484712985
- basic mae: 0.9082069848828243
- ridge mae: 0.9049915432396918
- lasso mae: 0.8905999674002204
- eNet mae: 0.9080380681447343
- poly mae: 0.9885802204892361

BoxCox w/min variables

- Simple mean cv r^2: 0.653 +- 0.027
- Lasso mean cv r^2: 0.646 +- 0.027
- Ridge mean cv r^2: 0.647 +- 0.028
- eNet mean cv r^2: 0.646 +- 0.027
- poly mean cv r^2: 0.670 +- 0.026

Residuals and QQ plot

Actual first model*

OLS Regression Results										
Dep. Variable: Model: Method: Date: Sime: No. Observations: Df Residuals: Df Model: Covariance Type:	Gls OLS Least Squares Sun, 05 Sep 2021 18:53:27 1193 1178 14 nonrobust	F-stati Prob (F	squared:		0.338 0.330 43.02 2.10e-95 -2917.2 5864. 5941.					
	coef	std err	t	P> t	[0.025	0.975]				
const index Age MP Starts Min 90s Continent_Africa Continent_Europe Continent_Oceania Continent_Oceania Continent_South Americ Pos_ATT Pos_DEF Pos_GKO Squad_Not Squad_Top	0.9252	0.297 4.5e-05 0.020 0.027 0.088 0.033 3.001 0.288 0.500 0.207 0.428 0.810 0.317 0.165 0.157 0.254 0.175 0.173	-2.166 1.718 0.762 3.522 1.513 2.165 -2.201 -0.468 -2.004 -2.265 -0.273 1.142 0.487 8.611 -5.298 -4.859 -5.010 1.349	0.031 0.086 0.446 0.000 0.130 0.031 0.028 0.640 0.045 0.024 0.785 0.254 0.627 0.000 0.000 0.000 0.000	-1.227 -1.1e-05 -0.023 0.042 -0.040 0.007 -12.496 -0.700 -1.984 -0.876 -0.956 -0.664 -0.468 1.100 -1.142 -1.734 -1.220 -0.106	-0.061 0.000 0.053 0.146 0.307 0.138 -0.719 0.431 -0.063 0.722 2.515 0.777 1.750 -0.525 -0.737 -0.533 0.572				
Omnibus: Prob(Omnibus): Skew: Kurtosis:	778.821 0.000 2.811 17.169				2.029 11550.428 0.00 9.82e+19					

Notes:

Standard Errors assume that the covariance matrix of the errors is correctly specified.
 The smallest eigenvalue is 1.76e-30. This might indicate that there are

strong multicollinearity problems or that the design matrix is singular.