Data Visualization in R with ggplot2:: Meg Hartwick, PhD March 3rd, 2021

Materials Available at:

https://github.com/meghartwick/ggplot2-Workshop

PowerPoint Slides

- o HTML
 - o https://rpubs.com/meghartwick/733550

Notebook and Code

Flow

I. Foundation - Concept Review

II. Structure – ggplot2:: syntax

III. Application – Sketch to Story

Why do you usually make graphics?

- 1. For your own use.
- 2. Informal sharing with colleagues.
- 3. For formal presentations or publication.

How do you usually make graphics?

- 1. Quick and accessible (excel).
- 2. Statistical software (eg: JMP, SAS).
- 3. Tableau, base R, some ggplot2.
- 4. R, Python and/or others

What makes for a good graphic?

1. Really busy with every detail in text...

2. 1 10011

3. A clear message that tells a story....

What makes for a good graphic?

1. Really busy with every detail in text...

2. Flashy plotting...

3. A clear message that tells a story.

What makes for a good graphic?

1. Really busy with every detail in text...

2. Flashy plotting...

3. A clear message that tells a story...

Today's Goal

- Understand how to develop graphics that:
 - Effectively tell a story

• In ggplot2 (and some tidyverse)

Are refined or highly refined.

1. Concepts

2. Tidyverse

3. ggplot2::

I. Foundation

Foundations and Concepts Refresher

1. Data

- Structure
 - Continuous
 - Discrete
- Format
 - Wide
 - Long

2. Graph Attributes

- Dimension
- Axes scale
- Symbols, color schemes etc.

3. Key Elements

- Title
- Axes labels
- Embedded comments

1. Concepts

2. Tidyverse

3. ggplot2::

I. Foundation

Tidyverse

- Originally 'Hadleyverse'
- o Collection of R packages with shared:
 - Philosophy
 - Structure
 - Syntax
- Package 'piping' (%>%)
 - Functions act as verbs
- Over 27 packages including:
 - readr importing data
 - *dplyr* data cleaning
 - *ggplot2* data visualization
 - *lubridate* working with dates
 - *stringr* working with strings

1. Concepts

2. Tidyverse

3. ggplot2::

I. Foundation

ggplot2::

- Developed by Hadley Wickham
- o 10+ years old
- Readability > base R plot
- Over 84 extensions
 - ggtext
 - ggthemes
 - gganimate
 - esquisse
- o 'Grammer of Graphics'
- o 8 main class of functions
 - align with key elements and attributes of graphics communication

Foundations

- 1. Data
 - Structure
 - Continuous
 - Discrete
 - Format
 - Wide
 - Long
- 2. Graph attributes
 - Dimension
 - Axes scale
 - Symbols, colors etc.
- 3. Key elements
 - Title
 - Axes labels
 - Embedded comments

- 1. Data
- 2. Function
- 3. Coordinates

- 4. Mapping
- 5. Geometries
- 6. Scales
- 7. Facets

8. Themes

- 2. Function
- 3. Coordinates
- 4. Mapping
- 5. Geometries
- 6. Scales
- 7. Facets
- 8. Themes

II. Structure

ggplot2::

- Slides
 - Code How the element is called
 - Considerations some assumptions to keep in mind
 - Arguments How, when, what to use
- o HTML
 - Follow along with the code and graphics
- Notebook and Code
 - Run code as source code or chunks

- 1. Data
- 2. Function
- 3. Coordinates
- 4. Mapping
- 5. Geometries
- 6. Scales
- 7. Facets
- 8. Themes

1. Data

- 2. Function
- 3. Coordinates
- 4. Mapping
- 5. Geometries
- 6. Scales
- 7. Facets
- 8. Themes

df %>%

- Considerations
 - Discrete or Continuous data for coordinates
 - o Discrete or Continuous metadata for mapping
 - o Missing Data etc.
 - o Tidyverse can be really useful here
 - data transformations
 - o df reshaping
 - o Structure check
 - skimr::skim()
- Arguments
 - o Date can be piped to function or called within

```
skimr::skim(df)
```

df %>% dplyr::filter() %>% dplyr::pivot()

1. Data

- 2. Function
- 3. Coordinates
- 4. Mapping
- 5. Geometries
- 6. Scales
- 7. Facets
- 8. Themes

df %>%

- Considerations
 - Discrete or Continuous data for coordinates
 - o Discrete or Continuous metadata for mapping
 - o Missing Data etc.
 - o Tidyverse can be really useful here
 - o data transformations
 - o df reshaping
 - o Structure check
 - skimr::skim()
- Arguments
 - Date can be piped to function or called within

skimr::skim(df)

df %>% dplyr::filter() %>% dplyr::pivot()

Foundation: Graph Data

2. Function

- 3. Coordinates
- 4. Mapping
- 5. Geometries
- 6. Scales
- 7. Facets
- 8. Themes

```
df %>%
ggplot(...) +
```

2. Function

- 3. Coordinates
- 4. Mapping
- 5. Geometries
- 6. Scales
- 7. Facets
- 8. Themes

```
ggplot(...) +
```

- Consideration
 - o Calls the plot object
 - o Best placement of df for plot development
- Arguments
 - o Data =
 - Coordinates =
 - o Mapping =

```
ggplot(df, aes()) + ...
ggplot(df) +
ggplot() +
df %>% ggplot(., aes()) +
```

- 1. Data
- 2. Function
- 3. Coordinates
- 4. Mapping
- 5. Geometries
- 6. Scales
- 7. Facets
- 8. Themes

df %>% ggplot(.,
$$aes(x = x, y = y, ...)) +$$

- 1. Data
- 2. Function
- 3. Coordinates
- 4. Mapping
- 5. Geometries
- 6. Scales
- 7. Facets
- 8. Themes

ggplot(.,
$$aes(x = x, y = y, ...)) +$$

- Considerations
 - Data positions for plot
 - Not necessary to specify here, but must be supplied in plot layers
 - o Continuous Data
 - Coordinate according to the data
 - o Discrete Data
 - At 1, 2, 3 etc. on axis
 - Alphabetical for character class
 - Level for factors class

- 2. Function
- 3. Coordinates
- 4. Mapping
- 5. Geometries
- 6. Scales
- 7. Facets
- 8. Themes

II. Structure

```
ggplot(., aes(x = x, y = y, ...)) +
```

- Arguments
 - o x =
 - o y =
 - o positional, not necessary to specify
 - o for geometries that use count, y not accepted

Time

- 2. Function
- 3. Coordinates
- 4. Mapping
- 5. Geometries
- 6. Scales
- 7. Facets
- 8. Themes

- 1. Data
- 2. Function
- 3. Coordinates
- 4. Mapping
- 5. Geometries
- 6. Scales
- 7. Facets
- 8. Themes

$$ggplot(., aes(x = x, y = y, * = var1) +$$

- Considerations
 - Variables are mapped to visual properties (aesthetics)
 - Choosing the aesthetic (*)
 - Color
 - Fill
 - Size
 - Shape
 - Linetype
 - Transparency
 - o Is the Continuous or Discrete?
 - o What are you mapping to?

- 2. Function
- 3. Coordinates
- 4. Mapping
- 5. Geometries
- 6. Scales
- 7. Facets
- 8. Themes

```
ggplot(., aes(x = x, y = y, * = var1) +
```

- Arguments
 - Mappings can be set in ggplot() ggplot(.,aes(color = var1))
 - Mappings can be set in individual layers geom_point(.,aes(color = var1))
 - What is outside of the mapping will be interpreted literally - geom_point(.,aes(color = 'var1'))
 - Levels of the mapping are set in scales, else:
 - (.,aes(), color = 'black')

- 1. Data
- 2. Function
- 3. Coordinates
- 4. Mapping
- 5. Geometries
- 6. Scales
- 7. Facets
- 8. Themes

df %>%
ggplot(., aes(x = x, y = y, * = var1))+
geom_*(...) +

- 2. Function
- 3. Coordinates
- 4. Mapping
- 5. Geometries
- 6. Scales
- 7. Facets
- 8. Themes

```
geom_*(...) +
```

- Considerations
 - o What kind of visual representations (*) are the best approach?
 - Types of Geometry
 - Reference Lines
 - Barcharts
 - Dots and points
 - Boxplots
 - Heatmaps
 - Maps
 - Density
 - Polygons
 - Jitters
 - Error Bars
 - Text and Labels

- 2. Function
- 3. Coordinates
- 4. Mapping
- 5. Geometries
- 6. Scales
- 7. Facets
- 8. Themes

II. Structure

geom_*(...) +

- Considerations
 - o What kind of visual representations (*) are the best approach?
 - Types of Geometry
 - Reference Lines
 - Barcharts
 - Dots and points
 - Boxplots
 - Heatmaps
 - Maps
 - Density
 - Polygons
 - Jitters
 - Error Bars
 - Text and Labels

Foundation: Graph Attributes

- 1. Data
- 2. Function
- 3. Coordinates
- 4. Mapping
- 5. Geometries
- 6. Scales
- 7. Facets
- 8. Themes

```
geom_*(...) +
```

- Arguments
 - Over 40 individual geoms
 - geom_*()
 - geom_point()
 - geom_hist()
 - geom_bar()
 - geom_col()
 - geom_tile()

- Can build individual mappings within geoms_*()
- Can add multiple geometries as annotation layers
- Know the defaultsgeom_*(mapping =, data =, stat = , position =)

- 2. Function
- 3. Coordinates
- 4. Mapping
- 5. Geometries
- 6. Scales
- 7. Facets
- 8. Themes

II. Structure

```
df %>%
ggplot(., aes(x = x, y = y, * = var1))+
geom_*(...) +
scale_*_*(...) +
                                                                as.character(Trial)
                          Sepal.Length
                                                                Species
                           2-
                                                                   versicolor
                           1-
                                                                 virginica
```

Trial

- 2. Function
- 3. Coordinates
- 4. Mapping
- 5. Geometries
- 6. Scales
- 7. Facets
- 8. Themes

```
scale_*_*(...) +
```

- Concept
 - o Specify Data and Mappings
 - Set arguments for coordinates (*)
 - X
 - y
 - Set arguments for mappings (*)
 - color
 - fill
 - alpha
 - linetype
 - ... and many more
 - o Different calls for discrete and continuous data types
 - Commonly used defaults are prebuilt

- 1. Data
- 2. Function
- 3. Coordinates
- 4. Mapping
- 5. Geometries
- 6. Scales
- 7. Facets
- 8. Themes

```
scale_*_*(...) +
         Arguments
                                 100,000.00
           scale_*_*(
                                 10,000.00
           name = ,
                               1,000.000
1,000.000
            breaks = ,
           values = ,
           labels = ,
                                   100.00
           limits = ,
            trans = ,
                                    10.00
           guide = ,
            position = ,
                                                2000
                                                                      2020
                                                           2010
            ....)
                                                           Time
```

- 2. Function
- 3. Coordinates
- 4. Mapping
- 5. Geometries
- 6. Scales
- 7. Facets
- 8. Themes

```
scale_*_*(...) +

    Standard Axis Scales

           scale_x_continuous(...)
                                            100,000.00
           scale_y_continuous(...)
                                             10,000.00
           scale_x_discrete(...)
           o scale_y_discrete(...)
                                           Cog(Value) 1,000.000 100.000
         Pre-Built Custom Axis Scales
           o scale_*_log10(...)
                                               10.00
           o scale_*_reverse(...)
           o scale_*_sqrt(...)
                                                         2000
                                                                            2020
                                                                   2010
                                                                   Time
           o scale_*_datetime(...)
           o ... and many more
```

- 1. Data
- 2. Function
- 3. Coordinates
- 4. Mapping
- 5. Geometries
- 6. Scales
- 7. Facets
- 8. Themes

```
scale_*_*(...) +
```

- Standard Alpha Scales
 - scale_alpha_continuous(...)
 - o scale_alpha_discrete(...)
- Standard Shape Scales
 - o scale_shape_continuous(...)
 - o scale_shape_discrete(...)
- Standard Linetype Scales
 - scale_linetype_continuous(...)
 - scale_linetype_discrete(...)
- ... and many more Standard
- ... and many more Pre-Built

- 2. Function
- 3. Coordinates
- 4. Mapping
- 5. Geometries
- 6. Scales
- 7. Facets
- 8. Themes

- Standard Color Scales
 - scale_color_continuous(...)
 - scale_fill_continuous(...)
 - o scale_color_manual(...)
 - o scale_fill_manual(...)
- Pre-Built Custom Color Scales
 - o scale_*_brewer(...)
 - o scale_*_gradient(...)
 - o scale_*_gradientn(...)
 - o scale_*_viridis(...)
 - o ... and many more

- 2. Function
- 3. Coordinates
- 4. Mapping
- 5. Geometries
- 6. Scales
- 7. Facets
- 8. Themes

```
scale_*_*(...) +
```

- Standard Scale specify colors
- o scale_color_manual(values = c('red', 'green', 'blue')
- Pre-Built Custom Color Scales
- o scale_color_brewer(palete = 'set2')

- 2. Function
- 3. Coordinates
- 4. Mapping
- 5. Geometries
- 6. Scales
- 7. Facets
- 8. Themes

II. Structure

```
df %>%
ggplot(., aes(x = x, y = y, * = var1) +
geom_*(...) +
scale_*_*(...) +
facet_*(...)
```


- 2. Function
- 3. Coordinates
- 4. Mapping
- 5. Geometries
- 6. Scales
- 7. Facets
- 8. Themes

II. Structure

```
facet_*(...) +
```

- Concept
 - o Highlight levels in data through multiple panels
 - o facet_wrap(...)
 - creates a ribbon of levels
 - o facet_grid(...)
 - creates a matrix of rows and columns of variable combinations

• Arguments

```
    nrow =,
    ncol =,
    scales = ,
    shrink =,
    labeller = ,
    strip.position = ,
    ...)
```

- 2. Function
- 3. Coordinates
- 4. Mapping
- 5. Geometries
- 6. Scales
- 7. Facets
- 8. Themes

II. Structure

```
df %>%
ggplot(., aes(x = x, y = y, * = var1) +
geom_*(...) +
scale_*_*(...) +
theme(...)
```


- 2. Function
- 3. Coordinates
- 4. Mapping
- 5. Geometries
- 6. Scales
- 7. Facets
- 8. Themes

II. Structure

theme(...)

- Concept
 - Encompasses ALL the options of ggplot2:: plot 'Elements'
 - o 4 main modifiers
 - line: all line elements
 - rect: all rectangular elements
 - text: all text elements
 - title: all title elements (including: plot, axes, legends..)
 - o Pre-built themes available
 - theme_bw(...)
 - theme_grey(...)
 - o ggthemes::
 - a package with a wider selection of Pre-Built themes

- 2. Function
- 3. Coordinates
- 4. Mapping
- 5. Geometries
- 6. Scales
- 7. Facets
- 8. Themes

II. Structure

theme(...)

- Concept
 - Encompasses ALL the options of ggplot2:: plot 'Elements'
 - o 4 main modifiers
 - line: all line elements
 - rect: all rectangular elements
 - text: all text elements
 - title: all title elements (including: plot, axes, legends..)
 - o Pre-built themes available
 - theme_bw(...)
 - theme_grey(...)
 - o ggthemes::
 - a package with a wider selection of Pre-Built themes

Foundation: Graph Elements

- 1. Data
- 2. Function
- 3. Coordinates
- 4. Mapping
- 5. Geometries
- 6. Scales
- 7. Facets
- 8. Themes

II. Structure

```
theme(...) +
```

- Argument
 - o The main modifiers:

```
- theme(
  text* = element_text(),
  panel* = element_rect(),
  axis* = element_line(),
  title* = element_text())
```

o where * = ...

- 1. Data
- 2. Function
- 3. Coordinates
- 4. Mapping
- 5. Geometries
- 6. Scales
- 7. Facets
- 8. Themes

II. Structure

theme(...) +

theme(aspect.ratio, axis.title. axis.title.x, axis.title.x.top, axis.title.x.bottom, axis.title.y, axis.title.v.left, axis.title.y.right, axis.text, axis.text.x, axis.text.x.top, axis.text.x.bottom. axis.text.y, axis.text.y.left, axis.text.y.right, axis.ticks. axis.ticks.x. axis.ticks.x.top, axis.ticks.x.bottom. axis.ticks.y, axis.ticks.y.left, axis.ticks.y.right,

axis.ticks.length, axis.ticks.length.x, axis.ticks.length.x.top, axis.ticks.length.x.bottom, legend.title.align, axis.ticks.length.y, axis.ticks.length.y.left, axis.ticks.length.v.right, axis.line, axis.line.x. axis.line.x.top, axis.line.x.bottom, axis.line.y, axis.line.y.left, axis.line.y.right, legend.background, legend.margin, legend.spacing, legend.spacing.x, legend.spacing.y, legend.key, legend.key.size, legend.key.height, legend.key.width,

legend.text, legend.text.align, legend.title, legend.position, legend.direction, legend.justification, legend.box, legend.box.just, legend.box.margin, legend.box.background, legend.box.spacing, panel.background, panel.border, panel.spacing, panel.spacing.x, panel.spacing.y, panel.grid, panel.grid.major, panel.grid.minor, panel.grid.major.x, panel.grid.major.y, panel.grid.minor.x,

panel.grid.minor.y, panel.ontop, plot.background, plot.title, plot.title.position, plot.subtitle, plot.caption, plot.caption.position, plot.tag, plot.tag.position, plot.margin, strip.background, strip.background.x, axis.ticks.length.x.bottom, strip.background.x, strip.background.y, strip.placement, strip.text, strip.text.x, strip.text.y, strip.switch.pad.grid, strip.switch.pad.wrap, ...,)

Sketch

- Facetted Width and Length
- Bargraph
- Trial axis breaks as '2010', 2015', '2020'
- Y axis at 2, 4, 6, 8
- Choose a different palette for species
- Ditch the points, and accompanying scale
- Dodge position
- Species in italics
- No grey in facet
- New font

Sketch

- Facetted Width and Length
- Bargraph
- Trial axis breaks as '2010', 2015', '2020'
- Y axis at 2, 4, 6, 8
- Choose a different palette for species
- Ditch the points, and accompanying scale
- Dodge position
- Species in italics
- No grey in facet
- New font

Sketch

Sketch

Polished

This is just one round of editing! What else would you change???

Polished

Conclusions

Troubleshooting

- O Class of data: counts or continuous data?
- Layer, layer, order matters
- What are the arguments within the function
 - Change the default or consider an alternate geom/function
- Are you invoking a discrete call on continuous data?
- Oid you set color when you meant fill?
- Did you specify the multiple arguments for the same item?
 - The last one will be what is seen, check your code.
- o Is the default of the function to use a count transform?

Conclusions

Resources for working in R

- o ggplot2.tidyverse/org
- o ggplot2-book.org/
- o www.r-graph-gallery.com/
- tidytuesday podcast and webpage
- Esquisse and Colors Add-Ins
- Thomas lin Pedersen ggplot2 two-part series
- Stackoverflow

Conclusions

Today's Goal

- Understand how to develop graphics that:
 - Effectively tell a story

• In ggplot2 (and some tidyverse)

• Are refined or highly refined.

o Github: github.com/meghartwick/

LinkedIn: /meghan-hartwick-83291551/

o Twitter: @HartwickMeghan

'The question in R is not if it can be done, but how.'

Questions?