Математическая логика

Алгоритм Куайна и Мак-Клоски. *Quine–McCluskey method*

Лектор: к.ф.-м.н., доцент кафедры
прикладной информатики и теории вероятностей РУДН
Маркова Екатерина Викторовна
markova_ev@pfur.ru

Курс математической логики

	Наименование	Содержание раздела
п/п	раздела дисциплины	
1.	Введение в алгебру	Прямое произведение множеств. Соответствия и функции. Алгебры.
	логики	Функции алгебры логики. Суперпозиции и формулы. Булева Алгебра.
		Принцип двойственности. Совершенная дизьюнктивная нормальная
		форма (СДНФ). Совершенная конъюнктивная нормальная форма
		(СКНФ). Разложение булевых функций по переменным. Построение
		СДНФ для функции, заданной таблично.
2.	Минимизация	Проблема минимизации. Порождение простых импликантов.
	булевых функций	Алгоритм Куайна и Мак-Клоски. Таблицы простых импликантов.
3.	Полнота и	Замкнутые классы. Класс логических функций, сохраняющий
	замкнутость систем	константы 0 и 1. Определение и доказательство замкнутости. Класс
	логических функций	самодвойственных функций. Определение и лемма о
		несамодвойственной функции. Класс монотонных функций.
		Определение и лемма о немонотонной функции. Класс линейных
		функций. Определение и лемма о нелинейной функции.
4.	Исчисление	Общие принципы построения формальной теории. Интерпретация,
	высказываний и	общезначимость, противоречивость, логическое следствие. Метод
	предикатов	резолюций для исчисления высказываний. Понятие предиката.
		Кванторы. Алфавит. Предваренная нормальная форма. Алгоритм
		преобразования формул в предваренную нормальную форму.
		Скулемовская стандартная форма. Подстановка и унификация.
		Алгоритм унификации. Метод резолюций в исчислении предикатов.

Литература

- Зарипова Э.Р., Кокотчикова М.Г., Севастьянов Л.А. Лекции по дискретной математике: Учеб. пособие. Математическая логика. Москва: РУДН, 2014. 118 с.
- Светлов В.А., Логика: учебное пособие, изд-во: Логос, 2012 г. 429 с.
- Микони С.В., Дискретная математика для бакалавра. Множества, отношения, функции, графы. СПб., Изд-во Лань, 2013 г., 192 с.
- Горбатов В.А., Горбатов А.В., Горбатова М.В., Дискретная математика, М.: АСТ, 2014 г, 448 с.
- Сайт кафедры прикладной информатики и теории вероятностей РУДН (информационный ресурс). Режим доступа: http://api.sci.pfu.edu.ru/ свободный.
- Учебный портал кафедры прикладной информатики и теории вероятностей РУДН (информационный ресурс) Режим доступа: http://stud.sci.pfu.edu.ru для зарегистрированных пользователей.
- Учебный портал РУДН, раздел «Математическая логика» http://web-local.rudn.ru/web-local/prep/rj/index.php?id=209&p=26522

Теорема о простых импликантах

Теорема. Каждая функция $f \not\equiv 0$ представима в виде $f = \bigvee_i P_i$, где P_i – простые импликанты.

Док-во. 1) Функция f=1 т. и т. т., к. $\bigvee_i P_i = 1$. Очевидно, что, если $\bigvee_i P_i = 1$, то f=1.

Пусть теперь для некоторого набора значений переменных $f = \bigvee_i k_i = 1$. Если конъюнкция $k_i = 1$, то по определению k_i — импликант. Сокращаем этот импликант до простого. Данную процедуру повторяем для всех наборов значений переменных, для которых f = 1. \square

Определение неизбыточной ДНФ

ДНФ $\Phi = \bigvee_{i} k_{i}$ функции f называют неизбыточной если:

- 1) все k_i простые импликанты;
- 2) удаление любой k_i из Φ нарушает равенство $f = \Phi$.

Задача минимизации

Задача минимизации может быть разделена на следующие этапы:

- 1) нахождение всех простых импликантов функции f;
- 2) нахождение неизбыточных ДНФ функции f;
- 3) выбор минимальных ДНФ функции f .

Элементарная конъюнкция α покрывается элементарной конъюнкцией β , если каждая переменная, входящая в β , входит в α (с учетом отрицания).

Пример. Покрывающие конъюнкции.

Конъюнкция $\alpha = xyz$ покрывается конъюнкцией $\beta = xy$.

Конъюнкция $\alpha = x\overline{y}z$ не покрывается конъюнкцией $\beta = x\overline{z}$.

Элементарная конъюнкция α называется дополнением элементарной конъюнкции β по отношению к ДНФ Φ , если:

- 1) конъюнкция α покрывается конъюнкцией β ,
- 2) в конъюнкцию α входят все переменные, входящие в Φ .

Пример. Найти дополнительные конъюнкции $\beta = xy$ по отношению к $\Phi = xy\overline{z} \lor \overline{t} \lor zt \lor \overline{x} \ \overline{y}$.

Предложите свое решение.

Пример. Найти дополнительные конъюнкции $\beta = xy$ по отношению к $\Phi = xy\overline{z} \lor \overline{t} \lor zt \lor \overline{x} \ \overline{y}$.

Пусть
$$\Phi=xy\overline{z}\vee\overline{t}\vee zt\vee\overline{x}\ \overline{y}$$
 . Тогда конъюнкции $\alpha_1=xyzt$, $\alpha_2=xyz\overline{t}$, $\alpha_3=xy\overline{z}t$, $\alpha_4=xy\overline{z}\ \overline{t}$

являются дополнениями конъюнкции $\beta = xy$ по отношению к Φ .

Теорема о дополнениях к СДНФ

Теорема. Пусть Φ – СДН Φ функции f . Если β – импликант f , то все дополнения элементарной конъюнкции β по отношению к Φ входят в Φ .

Опережая док-во заметим, что объединяя в СДНФ Ф функции f соответствующим образом пары элементарных конъюнкций и применяя последовательно равенство $xy \lor \overline{x}y = y$, можно в результате получить все простые импликанты функции f.

Теорема о дополнениях к СДНФ

Док-во. Пусть $\beta = x_{i_1}^{\rho_1} x_{i_2}^{\rho_2} ... x_{i_m}^{\rho_m}$ – импликант функции f и пусть $\alpha = x_1^{\delta_1} x_2^{\delta_2} ... x_n^{\delta_n}$ является дополнением β по отношению к Φ . (Дополнение больше!!!)

Предположим, что α не входит в Φ .

Рассмотрим такой набор значений переменных, что $\alpha=1$, т.е. положим $x_i=\delta_i$, $i=1,\ldots,n$. Тогда $\rho_1=\delta_{i_1},\ldots,\rho_m=\delta_{i_m}$ и $\beta=1$, а $\Phi=0$ поскольку α по предположению не входит в Φ .

Но это противоречит тому, что β является импликантом f . \square

Пример

Найти простые импликанты для функции $f = xyzt \lor x\overline{y}z\overline{t} \lor x\overline{y}zt \ .$

Предложите решение!

Пример

Пример.

Найти простые импликанты для функции $f = xyzt \lor x\overline{y}z\overline{t} \lor x\overline{y}zt$.

Первая и третья конъюнкции дают $xyzt \lor x\overline{y}zt = xzt$. Вторая и третья конъюнкции дают $x\overline{y}z\overline{t} \lor x\overline{y}zt = x\overline{y}z$. Полученные выражения являются простыми импликантами (надо проверять!) и, следовательно, $f = xzt \lor x\overline{y}z$.

- 1) Выпишем для функции f её СДНФ Ф .
- 2) В каждой элементарной конъюнкции все переменные будем записывать в одинаковом порядке.
- 3) Каждую конъюнкцию будем представлять в виде последовательности из 1, 0 и —, ставя на *i* -м месте 1, если *i* -я переменная входит в конъюнкцию без отрицания, 0 если с отрицанием и —, если не входит.

Например, $f(x, y, z, t) = xyz \lor x\overline{z} \lor x\overline{t}$ запишем в виде $111 - \lor 1 - 0 - \lor 1 - -0$.

4) Образуем из элементарных конъюнкций группы, включая в одну группу наборы с одинаковым числом единиц (группы, в которых число единиц отличается на 1, называются соседними); расположим группы в порядке возрастания числа единиц.

Например, для функции f(x,y,z,t) = (1110.0000.1100.1100) построим СДНФ, откуда найдем ее элементарные конъюнкции и сгруппируем их в группы.

$$f(x, y, z, t) = xyzt \lor xyzt$$

элементарные конъюнкции представляются как 1101, 1001, 1100, 1000, 0010, 0001, 0000, а список групп будет следующим:

<u>1100</u>

- 5) Равенство $xy \lor \overline{x}y = y$ может быть применимо только к подходящим парам наборов из соседних групп. Подходящая пара образуется двумя наборами, отличающимися в одной позиции, и в этой позиции не стоит черточка. Подходящие пары будем отмечать звездочками (*).
- б) Ставим в различающейся позиции подходящей пары черточку и помещаем получившийся набор в следующий список групп.
- 7) Повторяем описанный процесс с шага 4, пока это возможно. Непомеченные наборы образуют простые импликанты.

					*	*	*	0000	000-
				*			*	$\overline{0001}$	00-0
						*		0010	<u>-000</u>
		*	*		*			<u>1000</u>	-001
	*		*	*				1001	100-
*		*						<u>1100</u>	<u>1-00</u>
*	*							1101	1-01
									110-
								Старый	Новый
								список	список

		*		000-	-00-
				00-0	1-0-
			*	<u>-000</u>	
			*	-001	
*		*		100-	
	*			<u>1-00</u>	
	*			1-01	
*				110-	
				Старый	Новый
			(список	список

Непомеченными остались следующие импликанты 00-0,

1-0-.

Они образуют простые импликанты xyt, yz, xz.

Otbet: $f(x, y, z, t) = \overline{xyt} \lor x\overline{z} \lor \overline{yz}$.

Подготовить к КР 1

Выполнить ДЗ 1 по матлогике. Сдавать семинаристу до КР 1. После КР не принимается. http://web-local.rudn.ru/web-local/prep/rj/index.php?id=209&p=26522

К контрольной подготовить следующие темы:

- 1) СДНФ, СКНФ, ПЖ, фиктивные и существенные переменные, дополнительные задания из лекции.
- 2) Представить функцию булевой формулой и упростить (в виде ДНФ).
- 3) Двойственность 3 способами: по определению (по правилу), таблично, по принципу.
- 4) Проверить справедливость 2 способами: через ДНФ и таблично.

Тема следующей лекции:

«Таблицы простых импликантов».