- Tourism Experience Analysis Project Report
- 1 Project Objective

The aim of this project was to leverage tourism datasets to build predictive and analytical models that:

- Predict Ratings (Regression Model)
- classify Tourist Satisfaction Levels (Classification Model)
- © Recommend Attractions (Recommendation System)

All models were deployed into an interactive Streamlit web application for real-time access and usage.

- Data Collection & Merging
- Datasets Used:
 - Continent, Region, Country, City Geographic hierarchy
 - | User Tourist demographic & location data
 - **I** Transaction Tourist visit records
 - **Mode Travel mode information**
 - **a** Item & Updated_Item Attraction details
 - Type Attraction type mapping
- Key Processing & Merging Steps:
 - Hierarchical Merges:
 Continent → Region → Country → City → User → Transaction
 - Merged attraction details, removed duplicates (AttractionId)
 - Cleaned categorical fields (trim spaces, standardize case)
 - Removed invalid ratings (outside 1–5 range)
 - Capped outliers in ratings
 - Added time-based features: VisitSeason, VisitQuarter
 - Engineered user-level features: average past rating, visit count, rating trend
 - Engineered attraction-level features: average past ratings, previous visits, visitor counts
 - Added city-level popularity metrics

- Created interaction features:
 - user_continent
 - user_attraction_type
 - attraction_type_season

Final Output:

Merged dataset saved as Final_dataset.csv for model training.

- Regression Model Predicting Ratings
 - Algorithm: 🌢 XGB Regressor, Gradient boost regressor and ensemble model
 - Features: Mix of numerical, categorical, and engineered features
 - Metrics Used:
 - o R² Score
 - Mean Absolute Error (MAE)
 - Root Mean Square Error (RMSE)
- Key Insights:
 - Achieved high R² → strong predictive accuracy
 - Top Predictive Features:
 - 1. user_avg_rating_before
 - 2. city_popularity
 - 3. VisitSeason
- Visualization:
 - Feature Importance Graph showing historical user behavior & attraction popularity as the biggest influences.
- Classification Model Tourist Satisfaction
 - Objective: Predict if a tourist is Satisfied or Not Satisfied
 - Label Rule:
 - Rating ≥ 4 → V Satisfied
 - o Rating < 4 → X Not Satisfied</p>
 - Algorithm: XGB Classifier
 - Metric: Accuracy

Key Insights:

- High accuracy achieved
- Top Predictors:
 - 1. VisitSeason
 - 2. attraction_avg_rating_before
 - 3. user_continent

Visualization:

• Feature Importance Graph highlighting seasonal trends & attraction type influence.

S Recommendation System

- Approach: Some Collaborative Filtering using Cosine Similarity
- Functionality:
 - o Input an attraction name
 - o Output Top N similar attractions based on user-item interaction patterns
- **6** Streamlit Web Application

***** Features:

- Sidebar Navigation: Choose Regression, Classification, or Recommendation
- UI Enhancements: Color themes, headers, responsive layout
- Interactive Inputs:
 - Dropdowns for categorical features
 - Sliders for numerical inputs
- Visual Outputs:
 - o Feature importance bar charts
 - Metrics:
 - R² for regression
 - Accuracy for classification
 - Recommendation results in table format

Frror Handling:

• Unique keys for widgets (avoiding duplicate errors)

• Dataset load validation

Key Insights

- 📜 User & attraction history predict future ratings well
- Lity popularity is a strong influencing factor
- Secommendation system aligns with tourist preferences

8 Actionable Insights

- Ti Promote attractions during off-peak seasons to spread demand
- © Create personalized marketing campaigns based on user history
- | Sundle popular cities & attractions for premium tour packages