Finite Automata

Outline

- Regular expressions = specification
- Finite automata = implementation
- 2 Types DFA, NFA
- Deterministic Finite Automata (DFA)
 - One transition per input per state
 - No E-moves
- Nondeterministic Finite Automata (NFA)
 - Can have multiple transitions for one input in a given state
 - Can have ε-moves
- Finite automata have finite memory
 - Need only to encode the current state

Design of a Lexical Analyzer Generator

- Translate regular expressions to NFA
- Translate NFA to an efficient DFA

Deterministic Finite Automata

• A DFA is a 5-tuple $(S, \Sigma, \delta, s_0, F)$ where

S is a finite set of *states* Σ is a finite set of symbols, the *alphabet* δ is a *mapping* from $S \times \Sigma$ to a state $s_0 \in S$ is the *start state* $F \subseteq S$ is the set of *accepting* (or *final*) *states*

Simulating a DFA

- Input string x terminated by an eof. A DFA D
- Output yes if accepts else no

$$S := s0$$
 $a := nextchar()$
while $a \neq eof do$
 $S := move(S,a)$
 $a := nextchar()$
end do
if S is in F then
return "yes"
else return "no"

Example DFA

A DFA that accepts (a | b)*abb

Nondeterministic Finite Automata

• An NFA is a 5-tuple $(S, \Sigma, \delta, s_0, F)$ where

```
S is a finite set of states

\Sigma is a finite set of symbols, the alphabet

\delta is a mapping from S \times \Sigma to a set of states

s_0 \in S is the start state

F \subseteq S is the set of accepting (or final) states
```

Transition Graph

• An NFA can be diagrammatically represented by a labeled directed graph called a *transition graph*

Transition Table

• The mapping δ of an NFA can be represented in a *transition* table

$$\delta(0,\mathbf{a}) = \{0,1\}$$
 $\delta(0,\mathbf{b}) = \{0\}$
 $\delta(1,\mathbf{b}) = \{2\}$
 $\delta(2,\mathbf{b}) = \{3\}$

State	Input a	Input b
0	{0, 1}	{0}
1		{2}
2		{3}

Conversion of RE to NFA (Thompson's Construction)

- Input: A RE r over an alphabet Σ
- Output: An NFA N for r
- It guarantees that the resulting NFA will have exactly one final state, and one start state.
- Decompose r into sub expressions.

Thompson's Construction cont...

• To recognize an empty string ε

ullet To recognize a symbol a in the alphabet Σ

- If $N(r_1)$ and $N(r_2)$ are NFAs for regular expressions r_1 and r_2
 - For regular expression $r_1 | r_2$

NFA for $r_1 | r_2$

Thompson's Construction (cont.)

• For regular expression r_1

Final state of $N(r_2)$ become final state of $N(r_1r_2)$

NFA for $r_1 r_2$

• For regular expression

 r^*

NFA for r*

(Example - (a|b)*a)

1/9/2017

13