Álgebra 1 - Turma $2-1^{\circ}/2022$

Lista de Exercícios – Semana 11

Prof. José Antônio O. Freitas

Observação: Nos casos em que não forem especificadas as operações do anel, considere as operações usuais.

Exercício 1: Determinar quais dos seguintes subconjuntos de Q são subanéis:

(a)
$$\mathbb{Z}$$

(c)
$$C = \left\{ \frac{a}{b} \in \mathbb{Q} \mid a \in \mathbb{Z}, \ b \in \mathbb{Z}, \ 2|b \right\}$$

(b)
$$B = \{x \in \mathbb{Q} \mid x \notin \mathbb{Z}\}$$

(d)
$$D = \left\{ \frac{a}{2^n} \in \mathbb{Q} \mid a \in \mathbb{Z} \in n \in \mathbb{Z} \right\}$$

Exercício 2: No anel $(\mathbb{Z} \times \mathbb{Z}, \oplus, \otimes)$ onde as operações \oplus e \otimes são definidas por

$$(a,b) \oplus (c,d) = (a+c,b+d)$$
$$(a,b) \otimes (c,d) = (ac-bd,ad+bc).$$

Quais dos seguintes conjuntos são subanéis?

(a)
$$A = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} \mid x = 0\}$$

(b)
$$B = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} \mid y = 0\}$$

(c)
$$C = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} \mid x = y\}$$

(d)
$$D = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} \mid x = 2k, \ k \in \mathbb{Z}\}$$

(e)
$$E = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} \mid y = 3k, \ k \in \mathbb{Z}\}$$

(f)
$$F = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} \mid x + y = 2k, \ k \in \mathbb{Z}\}$$

Exercício 3: No anel $(\mathbb{Q}, \star, \odot)$ onde as operações \star e \odot em \mathbb{Q} definidas por

$$x \star y = x + y - 6$$
$$x \odot y = x + y - \frac{xy}{6}.$$

Quais dos seguintes subconjuntos são subanéis?

(a)
$$A = \mathbb{Z}$$

(b)
$$B = \{2k \mid k \in \mathbb{Z}\}$$

(c)
$$C = \{6k \mid k \in \mathbb{Z}\}$$

(d)
$$D = \{3k \mid k \in \mathbb{Z}\}$$

Exercício 4: Quais dos conjuntos abaixo são subanéis de $M_2(\mathbb{R})$?

$$L_{1} = \left\{ \begin{pmatrix} a & 0 \\ b & 0 \end{pmatrix} \mid a, b \in \mathbb{R} \right\}$$

$$L_{2} = \left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \mid a, b, c \in \mathbb{R} \right\}$$

$$L_{3} = \left\{ \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} \mid a, b \in \mathbb{R} \right\}$$

$$L_{4} = \left\{ \begin{pmatrix} 0 & a \\ c & b \end{pmatrix} \mid a, b, c \in \mathbb{R} \right\}$$

$$L_{5} = \left\{ \begin{pmatrix} 0 & a \\ 0 & b^{2} + 1 \end{pmatrix} \mid a, b \in \mathbb{R} \right\}$$

Exercício 5: Quais dos conjuntos abaixo são subanéis de $M_2(\mathbb{Z}_2)$?

$$L_{1} = \left\{ \begin{pmatrix} \overline{a} & \overline{0} \\ \overline{b} & \overline{0} \end{pmatrix} \mid a, b \in \mathbb{Z}_{2} \right\}$$

$$L_{2} = \left\{ \begin{pmatrix} \overline{a} & \overline{b} \\ \overline{0} & \overline{c} \end{pmatrix} \mid a, b, c \in \mathbb{Z}_{2} \right\}$$

$$L_{3} = \left\{ \begin{pmatrix} \overline{a} & \overline{0} \\ \overline{0} & \overline{b} \end{pmatrix} \mid a, b \in \mathbb{Z}_{2} \right\}$$

$$L_{4} = \left\{ \begin{pmatrix} \overline{0} & \overline{a} \\ \overline{c} & \overline{b} \end{pmatrix} \mid a, b, c \in \mathbb{Z}_{2} \right\}$$

$$L_{5} = \left\{ \begin{pmatrix} \overline{0} & \overline{a} \\ \overline{0} & \overline{b}^{2} + \overline{1} \end{pmatrix} \mid a, b \in \mathbb{Z}_{2} \right\}$$

Exercício 6: Determine todos os subanéis do anel $(\mathbb{Z}_8, \oplus, \otimes)$.

Exercício 7: Determine todos os subanéis do anel $(\mathbb{Z}_{16}, \oplus, \otimes)$.

Exercício 8: Mostre que a interseção de dois subanéis de um anel A é ainda um subanel de A.

Exercício 9: É verdade que a união de subanéis é um subanel?

Exercício 10: Seja $(A, +, \cdot)$ um anel e $x \in A$ fixo. Mostre que o conjunto

$$N(x) = \{ y \in A \mid xy = yx \}$$

 \acute{e} um subanel de A.

Exercício 11: Verifique se $L = \{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\}$ é um subanel do anel \mathbb{R} .

Exercício 12: Seja $d \in \mathbb{Z}$ e considere o subconjunto de $M_2(\mathbb{Z})$ dado por

$$M_2^d(\mathbb{Z}) = \left\{ \begin{pmatrix} a & db \\ b & a \end{pmatrix} \mid a, b \in \mathbb{Z} \right\}.$$

Mostre que $M_2^d(\mathbb{Z})$ é um subanel de $M_2(\mathbb{Z})$.

Exercício 13: Seja X um conjunto infinito. Sabemos que $(\mathcal{P}(X), \Delta, \cap)$ é um anel com unidade. Seja

$$R = \{ A \in \mathcal{P}(X) \mid A \text{ \'e finito} \}.$$

Prove as seguintes afirmações:

- (a) R é um subanel de $\mathcal{P}(X)$.
- (b) R não possui unidade.
- (c) Para todo $A \in R$, $A \neq \emptyset$ existe $B \in R$, $B \neq \emptyset$, tal que $A \cap B = \emptyset$.
- (d) Para todo $A \in \mathcal{P}(X)$, $A \neq X$, $A \neq \emptyset$ existe $B \in \mathcal{P}(X)$, $B \neq \emptyset$, tal que $A \cap B = \emptyset$.

Exercício 14: Verifique se são ideiais:

- (a) $I = {\overline{0}, \overline{2}, \overline{4}}$ no anel \mathbb{Z}_6 ;
- (b) $I = m\mathbb{Z} \times n\mathbb{Z}$ no anel $\mathbb{Z} \times \mathbb{Z}$, em que $m, n \in \mathbb{Z}$;
- (c) $I = \{x \in \mathbb{Z} \mid 25 \text{ divide } 35x\}$ no anel \mathbb{Z} ;
- (d) $I = \{x \in \mathbb{Z} \mid x \text{ divide } 24\}$ no anel \mathbb{Z} ;
- (e) $I = \{x \in \mathbb{Z} \mid 6 \text{ divide } x \text{ e } 24 \text{ divide } x^2\}$ no anel \mathbb{Z} ;
- (f) $I = \mathbb{Z}$ no anel $(\mathbb{Q}, \oplus, \odot)$ em que a $a \oplus b = a + b 1$ e $a \odot b = a + b ab$, para todos a, $b \in \mathbb{Q}$;
- (g) $I=2\mathbb{Z}$ no anel $(\mathbb{Z},+,\cdot)$ em que a adição é a usual e $a\cdot b=0$, para quaisquer $a,\,b\in\mathbb{Z}.$

Exercício 15: Seja $(A, +, \cdot)$ um anel comutativo.

- (a) Mostre que a interseção de quaisquer dois ideais de A é sempre um conjunto não vazio.
- (b) Mostre que essa interseção é sempre um ideal.
- (c) A união de ideias é ainda um ideal?
- (d) Sejam $J_1, J_2 \subset A$ ideiais tais que $J_1 \subset J_2$. Mostre que $J_1 \cup J_2$ é um ideal de A.

(e) Sejam I e J ideais de A. Mostre que

$$I + J = \{x + y \mid x \in I, y \in J\}$$

 $\acute{\mathrm{e}}$ um ideal de A.

(f) Se I é um ideal de um anel comutativo A, mostre que $r(I) = \{x \in A \mid xy = 0 \text{ para todo } y \in I\}$, então r(I) é um ideal de A.

Exercício 16: Sendo A um anel, não necessariamente comutativo, dizemos que $I \subset A$, $I \neq \emptyset$ é um **ideal à esquerda** em A se, e somente se:

- (i) Para todos $x, y \in I$ temos $x y \in I$;
- (ii) Para todo $\alpha \in A$ e todo $x \in I$ temos $\alpha x \in I$.

Verifique se são ideiais à esquerda em $M_2(\mathbb{R})$:

(a)
$$L_1 = \left\{ \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} \mid a, b \in \mathbb{R} \right\}.$$

(b)
$$L_2 = \left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \mid a, b, c \in \mathbb{R} \right\}.$$

(c)
$$L_3 = \left\{ \begin{pmatrix} a & 0 \\ b & 0 \end{pmatrix} \mid a, b \in \mathbb{R} \right\}.$$

(d)
$$L_4 = \left\{ \begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix} \mid a, b \in \mathbb{R} \right\}.$$