Modelowanie horyzontów zdarzeń czarnych dziur przy użyciu metryki Schwarzschilda: Rozwiązania analityczne i numeryczne

Aleksandra Niedziela

Weronika Jakimowicz

02.04.2005

Spis treści

Wstęp		3
1.1	Rozmaitość Riemannowska i tensor metryczny	3
1.2	Czarne dziury Schwarzschild'a	3

1 Wstęp

1.1 Rozmaitość Riemannowska i tensor metryczny

Pojęcie gładkiej rozmaitości pozwala na opisywanie konstrukcji geometrycznych poprzez lokalne sprowadzenie ich za pomocą gładkich map do podzbiorów \mathbb{R}^n (lub \mathbb{C}^n). Do dowolnej gładkiej rozmaitości M wymiaru n możemy dołączyć wiązkę styczną TM, która dla dowolnego punktu $p \in M$ zawiera przestrzeń liniową T_pM nazywaną przestrzenią styczną do M w punkcie p.

Istnieje więc w matematyce sposób na rozważanie dowolnych przestrzeni przez pryzmat dobrze zbadanych \mathbb{R}^n oraz dopisanie do nich struktury przestrzeni liniowej dzięki przestrzeniom stycznym. Idąc dalej, możemy zastanowić się jakie inne właściwości przestrzeni euklidesowych możemy uogólnić na abstrakcyjne przestrzenie T_pM .

Rozmaitość Riemanna to gładka, rzeczywista rozmaitość M z rodziną dwuliniowych funkcji

$$g_p: T_pM \times T_pM \to \mathbb{R}$$

zdefiniowanych w każdym punkcie $p \in M$. Każda taka funkcja g_p jest dodatnio określonym iloczynem wewnętrznym na T_pM , a więc pociąga za sobą normę

$$||v||_p = \sqrt{g_p(v,v)}.$$

W ten sposób możemy na TM określić funkcję g, która dowolnym dwóm wektorom X_p, Y_p zaczepionym w tym samym punkcie $p \in M$ przypisuje ich odpowiednik iloczynu skalarnego $g_p(X_p, Y_p)$. Tak określony funkcjonał nazywamy tensorem metrycznym, lub w skrócie metryką, na rozmaitości M.

Dowolna mapa (U, φ) na n-wymiarowej Riemannowskiej rozmaitości M zawierająca punkt p \in M pociąga za sobą bazę przestrzeni T $_{p}$ M

$$\left\{\frac{\partial}{\partial \varphi_1}, ..., \frac{\partial}{\partial \varphi_n}\right\}$$

w takim razie funkcjonał g_p zapisuje się macierzą o wymiarze n \times n. Wyrazami takiej macierzy są wartości g_p na kolejnych parach wektorów bazowych.

Mając bazę dualną do $\{rac{\partial}{\partial arphi_1}\}$ możemy zapisać tensor metryczny za pomocą prawdziwego tensora

$$g = \sum_{i,j \le n} g_{i,j} d\varphi^i \otimes d\varphi^j$$

gdzie $g_{i,j}$ to wyrazy macierzy wspomnianej wyżej, a d φ^i to elementy bazy dualnej do $\frac{\partial}{\partial \varphi_i}$

1.2 Czarne dziury Schwarzschild'a

Jednym z najprostszych, a przez to najczęściej używanych, sposobów opisu przestrzeni wokół czarnej dziury jest modelowanie tej osobliwości jako sferycznie symetrycznego obiektu o pewnej masie, pozbawionego ładunku elektrycznego i przyśpieszenia kątowego. Tak zdefiniowane czarne dziury nazywamy czarnymi dziurami Schwarzschild'a, na pamiątkę niemieckiego fizyka który jako pierwszy znalazł dokładne rozwiązanie równania Einsteina.

Wspomniane rozwiązanie nazywa się metryką Schwarzschild'a:

$$g = -c^2 d\tau^2 = -\left(1 - \frac{r_s}{r}\right)c^2 dt^2 + \left(1 - \frac{r_s}{r}\right)^{-1} dr^2 + r^2 d\Omega^2$$