Séminaire des doctorants

Introduction

Equations intégrales, projecteurs de Calderòn, Eléments finis de frontière

Martin Averseng

CMAP, Ecole Polytechnique

December 7, 2017

- Introduction
- 2 Représentation intégrale
- 3 Projecteurs de Calderòn
- 4 Eléments finis de frontière
- 5 Résolution numérique

Methode BEM (Boundary Element Method)

Méthode de résolution numérique des EDP.

Problème type :

Introduction

$$\left\{ \begin{array}{ll} -\Delta u = 0 & \text{ dans } \Omega^e \text{ ou } \Omega^i \\ u \text{ ou } \frac{\partial u}{\partial n} = 0 & \text{ sur } \Gamma \end{array} \right.$$

Equations intégrales : inconnue = fonctions λ , μ définies sur la frontière Γ . Solution de l'équation dans $\Omega^{e,i}$ obtenue via représentation intégrale

$$u(x) = \int_{\Gamma} G(x, y) \lambda(y) - \frac{\partial G}{\partial n_y}(x, y) \mu(y) dy, x \in \Omega$$

Caractéristiques de la méthode

Deux classes de méthodes

- Collocation (peu de résultats de convergence)
- Galerkine (cadre Sobolev, doubles intégrales)

Avantages principaux :

- Domaines infinis
- Maillages plus simples
- Excellente précision

Difficultés majeures :

- Evaluation numérique d'intégrales singulières
- Systèmes linéaires denses
- Connaissance requise d'une solution fondamentale

Applications industrielles

Acoustique : problèmes de diffraction, simulation de la propagation du son dans une cavité et recherche de modes (habitacles de voitures / avions, radar / sonar).

Elasticité : Vérification des matériaux, critère de fracture (application en excavation par exemple.)

Figure: Les trois modes de fracture

Mais aussi électromagnétisme, écoulements irrotationnels, traitement d'image, systèmes de particules... **Problèmes inverses**: méthodes itératives.

Eléments finis de frontière

- 2 Représentation intégrale

Modèle d'EDP

Classe d'EDP:

$$\mathcal{P}u = -\mathsf{div}(A\nabla u) + b \cdot \nabla u + cu$$

Avec la condition d'ellipticité : A définie positive.

Definition

Dérivée conormale sur Γ :

$$\mathcal{B}_{\nu}u(y) := (A\nabla u(y)) \cdot \nu(y).$$

Pour le Laplacien, $\mathcal{B}_{\nu}\equiv$ dérivée normale. Généralisations : coefficients non constants, EDP vectorielles, A complexe et pas nécessairement en forme divergence.

Solution fondamentale

Un opérateur linéaire \mathcal{G} est appelé une solution fondamentale pour \mathcal{P} si

$$\mathcal{PG}u = u = \mathcal{PG}u,$$

avec \mathcal{G} de la forme

$$\mathcal{G}u(x) = \int_{\mathbb{R}^n} G(x, y)u(y)dy$$

On appelle G(x,y) = G(x-y) le noyau de Green de l'opérateur, et on a

$$\mathcal{P}G = \delta$$

(Attention : Pas d'unicité pour G).

Condition de radiation

 B_o une boule qui contient (compactement) Ω^i .

$$\mathcal{M}u(x) := \int_{\partial B_{\sigma}} G(x, y) \mathcal{B}_{\nu} u(y) - \mathcal{B}_{\nu, y} G(x, y) u(y) d\sigma(y)$$

Lemme

Introduction

Si $\mathcal{P}u=0$ dans Ω_e , \mathcal{M} ne dépend pas du choix de ρ .

Condition de radiation dépend de la solution fondamentale G:

$$\mathcal{M}u = 0$$
 identiquement sur \mathbb{R}^n .

- $\mathcal{P} = \operatorname{div}(B\nabla u)$: Condition de radiation équivaut à condition de décroissance à l'infini sur u(x) et $B_{\nu}u(x)$.
- Equation de Helmholtz $\mathcal{P}u = -\Delta u k^2 u$: condition de radiation de Sommerfeld

$$\lim_{\rho \to \infty} \rho^{(n-1)/2} \left(\frac{\partial u}{\partial \rho} - iku \right) = 0$$

Réprésentation intégrale pour l'équation de Laplace.

Noyau de Green :

$$G(z) = \begin{cases} -\frac{1}{2\pi} \log |z| & \text{en dimension } 2\\ \frac{1}{4\pi |z|} & \text{en dimension } 3 \end{cases}$$

On note $[\phi] = \gamma^+ \phi - \gamma^- \phi$ saut d'une distribution ϕ à travers Γ .

Théorème

Si $u \in H^1_{loc}(\Omega^{i,e})$, vérifie la condition de radiation, $\Delta u = 0$ sur Ω^i et Ω^e , alors $\forall x \notin \Gamma$

$$u(x) = \int_{\Gamma} G(x, y) \left[\frac{\partial u}{\partial \nu_y} \right] (y) - \frac{\partial G}{\partial \nu_y} (x, y) [u] (y) dy$$

Théorème

Introduction

Soit u défini par u_i sur Ω^i et u_e sur Ω^e tel que

$$\mathcal{P}u_{i,e}=0,\quad \text{sur }\Omega_{i,e}$$

Alors, pour $x \notin \Gamma$,

$$u(x) = \int_{\Gamma} G(x, y) \left[\mathcal{B}_{\nu} u \right](y) - \mathcal{B}_{\nu, y} G(x, y) \left[u \right](y) d\sigma(y)$$

Definition

Potentiel de simple couche : $S\lambda := \int_{\Gamma} G(x,y)\lambda(y)d\sigma(y)$

Potentiel de double couche : $\mathcal{D}\mu := \int_{\Gamma} \mathcal{B}_{\nu,y} G(x,y) \mu(y) d\sigma(y)$

- 1 Introduction
- 2 Représentation intégrale
- 3 Projecteurs de Calderòn
- 4 Eléments finis de frontière
- 5 Résolution numérique

Relations de saut

Pour tout fonction u telle que $\mathcal{P}u=0$ sur $\Omega^{i,e}$, on a, en notant λ et μ les sauts de u et de sa dérivée normale:

$$u(x) = S\lambda(x) - \mathcal{D}\mu(x) \in C^{\infty}(\Omega^{i,e}).$$

Pour aboutir à une équation intégrale, on fait tendre x vers un point de Γ , par l'intérieur ou l'extérieur. Il ne suffit pas de passer à la limite sous l'intégrale :

Relations de saut

On a les relations suivantes :

$$[S\lambda] = 0$$

$$[B_{\nu}S\lambda] = \lambda$$

$$[D\mu] = -\mu$$

$$[B_{\nu}D\mu] = 0$$

Traces des potentiels \mathcal{S} et \mathcal{D}

On pose
$$S=\gamma\mathcal{S}$$
, $D=(\gamma^++\gamma^-)\mathcal{D}$, $T=\frac{1}{2}(\mathcal{B}_{\nu}^++\mathcal{B}_{\nu}^-)\mathcal{S}$, $R=-\mathcal{B}_{\nu}\mathcal{D}$. En fait, $T=D^*$.

Représentation intégrale des opérateurs surfaciques

$$S\lambda(x) = \int_{\Gamma} G(x, y)\lambda(y)d\sigma(y)$$

Lorsque Γ possède un plan tangent au point x,

$$D\mu(x) = \int_{\Gamma} \mathcal{B}_{\nu,y} G(x,y) \mu(y) d\sigma(y)$$

Si Γ est de classe C^2 au voisinnage de x,

$$R\mu(x) = \text{p.f.} \int_{\Gamma \backslash B_{\sigma}(x)} B_{\nu,x} B_{\nu,y} G(x,y) \mu(y) dy$$

Le dernier opérateur a un noyau qualifié d'"hyper-singulier".

L'étude de la continuité de S, D et R dans les espaces de Sobolev a fait l'objet de beaucoup d'efforts dans les 50 dernières années. $H^s(\Gamma)$ espaces de Sobolev définit sur la frontière d'un ouvert.

Théorème

Pour tout $-\frac{1}{2} \le s \le \frac{1}{2}$ les applications linéaires suivantes sont continues:

$$S: H^{s-1/2}(\Gamma) \to H^{s+1/2}(\Gamma)$$

$$D : H^{s+1/2}(\Gamma) \to H^{s+1/2}(\Gamma)$$

$$D^*: H^{s-1/2}(\Gamma) \to H^{s-1/2}(\Gamma)$$

$$R: H^{s+1/2}(\Gamma) \to H^{s-1/2}(\Gamma)$$

Cas d'égalité notoirement difficiles lorsque Γ n'est que Lipschitz. Propriété de Fredholm héritée de la coercivité de \mathcal{P} .

Théorème

Lorsque Γ est de classe $C^{1+\mu}$, pour un certain $0<\mu<1,\ D$ est continu de $L^\infty(\Gamma)$ dans $C^\mu(\Gamma)$. D est compact de $C^\lambda(\Gamma)$ dans lui-même pour $0\leq \lambda \leq \mu$.

Lorsque Γ a un "coin", D n'est plus compact. La régularité du domaine est un point épineux de la théorie et le centre du sujet de ma thèse. Polygônes, écrans.

Calcul numérique de S, D et R

C'est l'un des aspects critiques de la méthode !

- ullet Lorsque x et y sont éloignés : quadrature numérique.
- Lorsque x et y sont prohches: deux options: formules exactes pour des fonctions tests simples (polynômes par morceaux) ou changements de coordonnées pour retirer la singularité.

Pour le noyau hyper-singulier, méthode par intégration par parties. Dans le cas de l'équation de Laplace, par exemple

$$(R\phi,\psi) = (S\overrightarrow{\mathsf{rot}}_{\Gamma}\phi, \overrightarrow{\mathsf{rot}}_{\Gamma}\psi)$$

Où $\overrightarrow{\mathsf{rot}}_\Gamma$ est le rotationnel surfacique sur $\Gamma...$ (abscisse curviligne en 2D)

Pour tout λ, μ , en posant $u = S\lambda - D\mu$

$$\begin{pmatrix} u^{i} \\ \mathcal{B}_{\nu}u^{i} \end{pmatrix} = \begin{pmatrix} \frac{I}{2} - D & S \\ -R & \frac{I}{2} + D^{*} \end{pmatrix} \begin{pmatrix} \lambda \\ \mu \end{pmatrix}$$

$$\begin{pmatrix} u^e \\ \mathcal{B}_{\nu} u^e \end{pmatrix} = \begin{pmatrix} -\frac{I}{2} - D & S \\ -R & -\frac{I}{2} + D^* \end{pmatrix} \begin{pmatrix} \lambda \\ \mu \end{pmatrix}$$

$$C_i := \begin{pmatrix} \frac{I}{2} - D & S \\ -R & \frac{I}{2} + D^* \end{pmatrix}, C_e := \begin{pmatrix} \frac{I}{2} - D & S \\ -R & \frac{I}{2} + D^* \end{pmatrix} = I - C_i$$
 projecteurs.

Relations de Calderòn

Introduction

$$DS = SD^*$$
, $RD = D^*R$, $SR = \frac{I}{4} - D^2$, $RS = \frac{I}{4} - D^{*2}$

Reformulation d'un problème aux limites en termes des opérateurs S, D et R. Exemple : problème de Dirichlet intérieur pour le Laplacien.

Théorème

Soit g une fonction régulière définie sur Γ . Si $u_i \in H^1(\Omega^i)$ est une solution de

$$\begin{cases} -\Delta u_i &= 0 & \text{dans } \Omega^i \\ \gamma u_i &= g & \text{sur } \Gamma \end{cases}$$

alors $\psi := \mathcal{B}_{\nu}^{-} u_{i}$ est une solution de l'équation intégrale

$$S\psi = \left(\frac{I}{2} + D\right)g$$

Réciproquement si ψ est une solution de l'équation intégrale, $-\mathcal{S}\psi + \mathcal{D}q$ définit une solution du problème de Dirichlet intérieur.

Problèmes d'unicité

Il peut arriver que l'équation intégrale qu'on a formulée n'ait pas une unique solution, malgré le fait que ce soit le cas pour le problème de départ.

Théorème

Soit $\mathcal{P} = -\Delta u - k^2 u$ l'opérateur de Helmholtz. Le problème de Dirichlet extérieur pour \mathcal{P} (+ condition de Sommerfeld) admet une solution unique pour toute donnée $q \in H^{1/2}(\Gamma)$.

mais pourtant,

Théorème

Ker $S = \{0\} \Leftrightarrow k^2$ n'est pas une valeur propre intérieure du Laplacien.

En pratique : induit des problèmes de conditionnement de l'opérateur intégral lorsque k^2 est proche d'une valeur propre. Astuce de Brackage-Werner. 20

- 1 Introduction
- 2 Représentation intégrale
- 3 Projecteurs de Calderòn
- 4 Eléments finis de frontière
- 5 Résolution numérique

Etude d'un problème type

On va étudier le cas $\mathcal{P}=-\Delta$, et le problème de Dirichlet extérieur en dimension 3.

$$\left\{ \begin{array}{rcl} \Delta u &= 0 & \text{dans } \Omega^e \\ u &= g & \text{sur } \Gamma \\ |u(x)| &= O(\frac{1}{|x|}) & \text{à l'infini} \end{array} \right.$$

Théorème

Cette équation a une unique solution dans $H^1_{loc}(\Omega^e)$.

On utilise la reformulation par équation intégrale

$$S\lambda = b := \left(\frac{I}{2} + D\right)g$$

Formulation variationnelle

On utilise une formulation de type Galerkine de l'équation intégrale, à savoir

$$(S\lambda|\mu)_{\Gamma} = (b,\mu)_{\Gamma}.$$

C'est-à-dire,

Introduction

$$\int_{\Gamma} \int_{\Gamma} \frac{\lambda(x)\mu(y)}{4\pi|x-y|} dx dy = \int_{\Gamma} b(y)\mu(y) dy$$

La forme bilinéaire est coercive. Espace variationnel $V_h\subset H^{-1/2}(\Gamma)$ de dimension finie. Solution approchée : $\varphi_h\in V_h$ telle que

$$(S\lambda_h|\mu)_\Gamma=(b,\mu)_\Gamma$$
 pour tout $\mu\in V_h$

Lemme de Céa du à la forte ellipticité de la forme bilinéaire.

Théorème

$$||\varphi - \varphi_h|| \le C \inf_{\mu \in V_h} ||\varphi - \mu||$$

Inégalité de Garding, optimalité asymptotique

Remarque avant de donner la vitesse de convergence : Pour un opérateur $\mathcal P$ général (par exemple Helmholtz, Maxwell etc.), S et R ne sont pas nécessairement fortement elliptiques. On a en revanche toujours l'inégalité de Garding suivante :

Theorem

Il existe deux opérateurs compacts $L_1:H^{-1/2}(\Gamma)\to H^{1/2}(\Gamma)$ et $L_2:H^{1/2}(\Gamma)\to H^{-1/2}(\Gamma)$ tels que

$$(\phi, (S + L_1)\phi) \ge c||\phi||_{H^{-1/2}(\Gamma)}^2$$

$$(\phi, (R+L_2)\phi) \ge c||\phi||_{H^{1/2}(\Gamma)}^2$$

Inégalité de Garding, quasi-optimalité asymptotique

L'inégalité de Garding suffit à garantir la quasi-optimalité pour un maillage assez fin.

Theorem

Si la famille E_h est "dense" dans E, si b est une forme bilinéaire sur E satisfaisant une inégalité de Garding, et si le problème

$$b(u,v) = l(v)$$

possède une unique solution u, alors pour un certain h_0 , le problème variationnel discret a une unique solution pour tout $h < h_0$.

Vitesse de convergence pour des fonctions constantes par morceaux

On considère V_h l'espace des fonctions constantes par morceaux sur un maillage suffisamment "uniforme" (je n'ai pas envie de préciser)

Théorème

Introduction

On suppose que la solution exacte est dans $H^s(\Gamma)$, $0 \le s \le 1$.

$$||\varphi - \varphi_h||_{H^{-1/2}(\Gamma)} \le Ch^{s+1/2}||\varphi||_{H^s(\Gamma)}$$

Lorsque la solution est régulière, la solution approchée converge plus vite vers la solution exacte (même situation que les éléments finis).

Vitesse de convergence en présence de coins

Lorsque le domaine comporte des singularités géométriques, la solution n'est pas régulière \rightarrow étude asymptotique combinée avec l'une des méthodes suivantes :

- Raffinement du maillage / augmentation de l'ordre polynomial
 / un mélange des deux (méthodes hp)
- Espaces de fonctions "augmentés" (on inclut dans V_h une fonction ayant la bonne asymptotique au coin.
- (Un de mes axes de recherche) Changement de variable.

- 1 Introduction
- 2 Représentation intégrale
- 3 Projecteurs de Calderòn
- 4 Eléments finis de frontière
- 6 Résolution numérique

Une fois que la formulation variationelle a été discrétisée, on est ramené à la résolution d'un système linéaire $N\times N$.

$$Bu = L$$

Où $B_{i,j}=\int_{\Gamma\times\Gamma}G(x-y)\phi_i(x)\phi_j(y)$ (pleine !) Et où u est le vecteur des coordonnées de la solution approchée dans la base des fonctions ϕ_i . En général : méthodes itératives. Deux difficultés majeures.

- Compression et accélération du produit matrice vecteur.
- Préconditionnement du système linéaire : centre du sujet de ma thèse.

Quelques mots sur les méthodes d'accélération compression

FMM méthode la plus utilisée actuellement. Réduit la complexité du produit matrice-vecteur de N^2 à Nlog(N). Deux défauts :

- TRES compliqué (illustration : cours sur la FMM)
- ullet Formules différentes pour chaque noyau G (développements asymptotiques)

Méthode SCSD : développée par Matthieu Aussal (pendant sa thèse) et François Alouges au CMAP. Méthode très intuitive (j'explique au tableau). Mon dernier papier : version 2D de la SCSD (qui n'était que disponible en 3D) avec estimation de complexités.

Quelques mots sur le préconditionnement

- Préconditionnement "de Calderòn", mais on préférerait des préconditionneurs locaux !
- Approches pseudo-différentielles, mais tout s'écroule quand le domaine a des coins.