ASSIGNMENT #2 – NEURAL NETWORKS

Context

This assignment is an opportunity to demonstrate your knowledge and practice solving problems about feedforward neural networks. This assignment contains an implementation component (i.e. you will be asked to write code to solve one or more problems) and an experiment component (i.e. you will be asked to experiment with your code and report results).

Logistics

Assignment due date: February 17, 2023

Assignments are to be submitted electronically through Brightspace. It is your responsibility to ensure that your assignment is submitted properly and that all the files for the assignment are included. Copying of assignments is NOT allowed. High-level discussion of assignment work with others is acceptable, but each individual or small group is expected to do the work themselves.

Programming language: Python 3

For all parts of the implementation, you may use the Python Standard Library (https://docs.python.org/3/library/) and the following packages (and any packages they depend on): Keras, NumPy, Pandas, scikit-learn, SciPy, TensorFlow. Unless explicitly indicated below or explicitly approved by the instructor, you may not use any additional packages.

You must implement your code yourself; do not copy-and-paste code from other sources. Please ensure your implementation follows the specifications provided; it may be tested on several different test cases for correctness. Please make sure your code is readable; it may also be manually assessed for correctness. You do not need to prove correctness of your implementation.

You must submit your implementation as a single file named "assignment2.py" with functions as described below (you may have other variables/functions/classes in your file). Attached is skeleton code indicating the format your implementation should take.

You must submit your report on experimental results as a single file named "assignment2.pdf".

Implementation Component

Question 1 [10 marks]

Consider the neural network illustrated in Figure 1. It is designed for multi-class classification given an input vector. Using the Sequential API in Keras, write a function that creates a feedforward neural network with the same architecture. All neurons in hidden layers should use the ReLU activation function. All neurons in the output layer should use the softmax activation function. Compile the model using stochastic gradient descent as the optimizer and cross-entropy loss.

Figure 1. Feedforward neural network architecture. Figure generated using the following tool: http://alexlenail.me/NN-SVG/index.html.

The function must be named "sequential_model".

The function should take no input arguments.

The function should return one value: (1) a Keras model object.

Question 2 [10 marks]

Consider the neural network illustrated in Figure 2. It is designed for regression given an input vector. Using the Functional API in Keras, write a function that creates a feedforward neural network with the same architecture. All neurons in hidden layers and the output layer should use the ReLU activation function. Compile the model using stochastic gradient descent as the optimizer and mean squared error loss.

Figure 2. Feedforward neural network architecture. Figure generated using the following tool: http://alexlenail.me/NN-SVG/index.html.

The function must be named "functional_model".

The function should take no input arguments.

The function should return one value: (1) a Keras model object.

Question 3 [10 marks]

Consider developing a feedforward neural network for regression to predict the compressive strength of concrete from various features, including ingredients and age. A dataset for this task is provided in the attached "Concrete_data.xls" file. The first eight columns of the spreadsheet refer to features. The last column of the spreadsheet refers to the compressive strength of concrete. Each row in the spreadsheet refers to an instance. Full details on the dataset are provided in the "Concrete_Readme.txt" file.

This dataset is publicly available and it comes from the UCI machine learning repository: https://archive.ics.uci.edu/ml/datasets/Concrete+Compressive+Strength. This dataset was originally collected and analyzed in the paper below.

I-Cheng Yeh, "Modeling of strength of high performance concrete using artificial neural networks," Cement and Concrete Research, Vol. 28, No. 12, pp. 1797-1808 (1998).

Write a function that creates, trains, and evaluates a feedforward neural network to predict concrete compressive strength from the provided features.

The function must be called "compressive_strength_model".

The function should take one input argument: (1) the full file path to the "Concrete_data.xls" dataset.

The function should return two values: (1) a Keras model object that is trained to predict concrete compressive strength and (2) the performance of the model on the validation set.

Experiment Component

Question 4 [10 marks]

Conduct a series of experiments on the neural network you implemented for predicting concrete compressive strength in the above question. For these experiments, hold out a test set.

- a. Experiment on the number of neurons in each hidden layer. Plot the performance on the validation set as a function of the number of neurons in each hidden layer.
- b. Experiment on the number of hidden layers in your network. Plot the performance on the validation set as a function of the number of hidden layers in your network.
- c. Experiment on the number of epochs of training. Plot the performance on the validation set as a function of the number of epochs of training.

Using the held out test set, compute the following.

d. For the model with best performance on the validation set in the above experiments, report performance on the training set, validation set, and test set.