FCC PART 15E DFS TEST REPORT FOR CERTIFICATION On Behalf of

Chunghsin Technology Group CO.,LTD

8" Android Tablet

Model Number: ONA19TB002

Additional Model: ONA19TB010

FCC ID: 2AE2WT0815M

Prepared for:	Chunghsin Technology Group CO.,LTD				
	No. 618-2 GONGREN WEST ROAD, JIAOJIANG AREA, TAIZHOU CITY,				
	ZHEJIANG, CHINA				
Prepared By:	EST Technology Co., Ltd.				
	Chilingxiang, Qishantou, Santun, Houjie, Dongguan, Guangdong, China				
Tel: 86-769-83081888-808					

Report Number:	ESTE-R1901016
Date of Test:	Dec. 11, 2018~Jan. 17, 2019
Date of Report:	Jan. 17, 2019

EST Technology Co., Ltd Report No. ESTE-R1901016 Page 1 of 49

TABLE OF CONTENTS

Descri	iption	Page
ΓEST R	EPORT VERIFICATION	3
1.	GENERAL INFORMATION	4
	1.1. Description of Device (EUT)	4
2.	SUMMARY OF TEST	6
	2.1. Test methodology	6
	2.2. Summary of test result	
	2.3. Test Facilities	7
	2.4. Measurement uncertainty	8
	2.5. Assistant equipment used for test	
	2.6. Test mode	
	2.7. Test Equipment	
3.	SETUP OF EQUIPMENT UNDER TEST	
	3.1. Setup Configuration Of EUT	
	3.2. Setup Configuration Of TS8997	11
4.	DYNAMIC FREQUENCY SELECTION REQUIREMENTS	12
	4.1. Applicable standard	12
	4.2. Operation Modes and Requirement Test Item	
	4.3. Conformance Limit	
	4.4. Transmitter Output Power	
	4.5. Operation Modes and Requirement Test Item	
	4.6. Test Result	
5.	TEST SETUP PHOTOS	40
6.	PHOTOS OF EUT	41

EST Technology Co., Ltd.

Applicant: Address:	Chunghsin Technolog No. 618-2 GONGRE ZHEJIANG, CHINA		OJIANG AREA, TAIZHOU CITY,	
Manufacturer: Address:	Chunghsin Technolog No. 618-2 GONGRE ZHEJIANG, CHINA		OJIANG AREA, TAIZHOU CITY,	
E.U.T:	8" Android Tablet			
Model Number:	ONA19TB002			
Additional Model:	ONA19TB010 (They are identical ex	cept model name onl	y)	
Power Supply:	DC 5V From Adapter DC 3.7V From batter	Input AC 100~240V		
Test Voltage:	DC 5V From Adapter DC 5V From Adapter	Input AC 120V/60H	and the second s	
Trade Name:	onn	Serial No.:		
Date of Receipt:	Dec. 11, 2018	Date of Test:	Dec. 11, 2018~Jan. 17, 2019	
Test Specification:	FCC Rules and Regul ANSI C63.10:2013	ations Part 15 Subpar	rt E:2018	
Test Result:	The device described above is tested by EST Technology Co., Ltd. The measurement results were contained in this test report and EST Technology Co., Ltd. was assumed full responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT to be technically compliance with the FCC Rules and Regulations Part 15 Subpart E requirements.			
	This report applies to part without written a		only and shall not be reproduced in nology Co., Ltd. Date: Jan. 17, 2019	
Prepared by:	Reviev	ved by:	Approved by:	
			- 1011·	
Ring	to	u)	LSH EST COULT	
Ring / Assistant	Tony / En	ngineer	Iceman Hu / Manager	
Ring / Assistant Other Aspects: None.	Tony / En	ngineer	Iceman Hu / Manager	

duplicated in extracts without written approval of EST Technology Co., Ltd.

1. GENERAL INFORMATION

1.1. Description of Device (EUT)

Product Name	:	10.1" ANDROID TABLET WITH 1	DETACHABLE KEYBOARD	
FCC ID	:	2AE2WT0815M		
Model Number	:	ONA19TB002		
Operation frequency	:	UNII Band I:		
	IEEE 802.11a: 5180 ~ 5240MHz;			
		IEEE 802.11n HT20: 5180 ~ 5240N	MHz;	
		IEEE 802.11n HT40: 5190 ~ 5230MHz;		
		UNII Band II:		
		IEEE 802.11a: 5260 ~ 5320MHz;		
		IEEE 802.11n HT20: 5260 ~ 5320N	MHz;	
		IEEE 802.11n HT40: 5270 ~ 5310N	MHz;	
		UNII Band III:		
		IEEE 802.11a: 5500 ~ 5700MHz;		
		IEEE 802.11n HT20: 5500 ~ 5700N	MHz;	
		IEEE 802.11n HT40: 5510 ~ 5670N	MHz;	
		UNII Band IV:		
		IEEE 802.11a: 5745 ~ 5825MHz;		
		IEEE 802.11n HT20: 5745 ~ 5825MHz;		
		IEEE 802.11n HT40: 5755 ~ 5795MHz;		
Modulation	:	OFDM(QPSK, BPSK, 16-QAM, 64		
Transmit Data Rate	:	IEEE 802.11a: 54, 48, 36, 24, 18, 13	, , 1 ,	
		IEEE 802.11n HT20: 14.4, 28.9, 43	.3, 57.8, 86.7, 115.6, 130.0, 144.4	
		Mbps;		
		IEEE 802.11n HT40: 30, 60, 90, 12	0, 180, 240, 270, 300 Mbps;	
Channels Spacing	:	IEEE 802.11a: 20MHz;		
		IEEE 802.11n HT20: 20MHz;		
		IEEE 802.11n HT40: 40MHz;		
Antenna	:	Internal antenna		
		Frequency Range Antenna 5150~5875 MHz 1.27 dBi		
		Note: Bluetooth uses Antenna		
		11a,b,g,n, uses Antenna		
g 1 T		D ()		
Sample Type	:	Prototype production		

EST Technology Co., Ltd Report No. ESTE-R1901016 Page 4 of 49

Number of channel		T		 	
number of channel	Band	Mode	Channel	Frequency	
	Dullu	111040		(MHz)	
		IEEE 802.11a &	36	5180	
		n HT20:	40	5200	
		5180-5240MHz	44	5220	
	UNII Band I		48	5240	
		IEEE 802.11n	38	5190	
		HT40: 5180-5240MHz	46	5230	
			52	5260	
		IEEE 802.11a &	56	5280	
		n HT20:	60	5300	
	UNII Band II	5260-5320MHz	64	5320	
	OT (II Build II	IEEE 802.11n	54	5270	
		HT40:			
		5270-5310MHz	62	5310	
			100	5500	
		IEEE 802.11a & n HT20: 5500-5700MHz	104	5520	
			108	5540	
			112	5560	
	LIMIL Dand		116	5580	
	UNII Band III		132	5660	
	111		136	5680	
			140	5700	
		IEEE 802.11n	102	5510	
		HT40:	110	5550	
		5510-5670	134	5670	
			149	5745	
		IEEE 802.11a &	153	5765	
		n HT20:	157	5785	
	UNII Band	5745-5825MHz	161	5805	
	IV		165	5825	
		IEEE 802.11n	151	5755	
		HT40: 5755-5795MHz	159	5795	

EST Technology Co., Ltd Report No. ESTE-R1901016 Page 5 of 49

2. SUMMARY OF TEST

2.1. Test methodology.

According to its specifications, the EUT must comply with the requirements of the following standards: FCC 06-96

FCC 47 CFR Part 15, Subpart E

FCC KDB 905462 D02 UNII DFS Compliance Procedures New Rules v02

FCC KDB 905462 D03 Client Without DFS New Rules v01r02

2.2. Summary of test result

Description of Test Item	Standard	Results
Dynamic Frequency Selection	FCC Part 15:407 (h) (i) (j)	PASS

EST Technology Co., Ltd Report No. ESTE-R1901016 Page 6 of 49

2.3. Test Facilities

EMC Lab

: Certificated by CNAS, CHINA

Registration No.: L5288

Date of registration: November 13, 2017

Certificated by FCC, USA Designation Number: CN1215

Test Firm Registration Number: 722932 Date of registration: November 21, 2017

Certificated by A2LA, USA Registration No.: 4366.01

Date of registration: November 07, 2017

Certificated by Industry Canada CAB identifier No.: CN0035

Date of registration: January 04, 2019

Certificated by VCCI, Japan

Registration No.: R-13663; C-14103 Date of registration: July 25, 2017

This Certificate is valid until: July 24, 2020

Certificated by TUV Rheinland, Germany Registration No.: UA 50413872 0001 Date of registration: July 31, 2018

Certificated by TUV/PS, Shenzhen

Registration No.: SCN1017

Date of registration: January 27, 2011

Certificated by Intertek ETL SEMKO Registration No.: 2011-RTL-L2-64 Date of registration: April 28, 2011

Certificated by Nemko, Hong Kong

Registration No.: 175193

Date of registration: May 4, 2011

Name of Firm : EST Technology Co., Ltd.

Site Location : Chilingxiang, Qishantou, Santun, Houjie, Dongguan, Guangdong,

China

EST Technology Co., Ltd Report No. ESTE-R1901016 Page 7 of 49

2.4. Measurement uncertainty

Test Item	Uncertainty
Uncertainty for Conduction emission test	2.54dB
Uncertainty for Radiation Emission test (9Khz-30MHz)	3.11
Uncertainty for Radiation Emission test (30MHz-1GHz)	3.62
Uncertainty for Radiation Emission test (1GHz to 18GHz)	4.86
Uncertainty for spurious emissions test (18GHz to 40GHz)	4.67
Uncertainty for radio frequency	7×10-8
Uncertainty for conducted RF Power	0.20dB
Uncertainty for Power density test	0.26dB
Temperature	±0.6°C
Humidity	±4.0 %
Volatage DC	±1.0%
Volatage (AC, <10KHz)	±1.5%

Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

2.5. Assistant equipment used for test

2.5.1. Adapter

M/NBSY01J3050200U U

Input AC 100-240V, 50/60Hz, 0.3A

Output DC 5.0V, 2.0A

Manufacturer onn

2.5.2. Router (Master)

Manufacturer LINKSYS

M/N WRT3200ACM FCC ID Q87-WRT3200ACM IC 3839A-WRT3200ACM S/N

1981060A621419 MAC 6038E0B87B20

Max Gain 3.81 dBi

2.5.3. Notebook

Manufacturer Lenovo

Thinkpad X250 M/N S/N 2014AP6082

EST Technology Co., Ltd Report No. ESTE-R1901016 Page 8 of 49

2.6. Test mode

The EUT has been tested under its typical operating condition.

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Band	Mode	Frequency (MHz)				
	IEEE 802.11a	5260				
UNII Band II	IEEE 802.11a	5320				
UNII Band II	IEEE 802.11n HT40	5270				
	IEEE 802.11n HT40	5310				
	IEEE 802.11a	5500				
UNII Band III	IEEE 802.11a	5700				
	IEEE 802.11n HT40	5510				
	IEEE 802.11n HT40	5670				

2.7. Test Equipment

2.7.1. Measurement equipment used

Equipment	Manufacturer	Model No.	Serial No.	Calibration	Last Cal.	Next Cal.
				Body		
TS 8997	Rohde	/	/	/	/	/
	&Schwarz					
Open Switch and	Rohde	OSP-B157WB	101309	CEPREI	June 15,18	1Year
Control Unit	&Schwarz					
Signal and	Rohde	FSV	103173	CEPREI	June 15,18	1 Year
Spectrum Analyzer	&Schwarz					
Signal Generator	Rohde	SMB100A	108752	CEPREI	June 15,18	1 Year
	&Schwarz					
Vector Signal	Rohde	SMBV100A	260753	CEPREI	June 15,18	1Year
Generator	&Schwarz					
Test Software	Rohde	WMS32	V10.40.00	N/A	N/A	N/A
	&Schwarz					

EST Technology Co., Ltd Report No. ESTE-R1901016 Page 9 of 49

3. SETUP OF EQUIPMENT UNDER TEST

3.1. Setup Configuration Of EUT

EST Technology Co., Ltd Report No. ESTE-R1901016 Page 10 of 49

3.2. Setup Configuration Of TS8997

EST Technology Co., Ltd Report No. ESTE-R1901016 Page 11 of 49

4. DYNAMIC FREQUENCY SELECTION REQUIREMENTS

4.1. Applicable standard

According to 15.407

4.2. Operation Modes and Requirement Test Item.

The manufacture shall state whether the EUT is capable of operating as a Master or a Slave modes, if the EUT is capable of operating in more than one operational mode then every operating mode shall be assessed separately.

Table 1: Applicability of DFS Requirements Prior to Use of a Channel

Requirement	Operational Mode			
	Master	Client Without Radar Detection	Client With Radar Detection	
Non-Occupancy Period	Yes	Not required	Yes	
DFS Detection Threshold	Yes	Not required	Yes	
Channel Availability Check Time	Yes	Not required	Not required	
U-NII Detection Bandwidth	Yes	Not required	Yes	

Table 2: Applicability of DFS requirements during normal operation

Requirement	Operational Mode		
	Master Device or Client	Client Without	
	with Radar Detection	Radar Detection	
DFS Detection Threshold	Yes	Not required	
Channel Closing Transmission Time	Yes	Yes	
Channel Move Time	Yes	Yes	
U-NII Detection Bandwidth	Yes	Not required	

Additional requirements for devices with	Master Device or Client with	Client Without Radar
multiple bandwidth modes	Radar Detection	Detection
U-NII Detection Bandwidth and Statistical	All BW modes must be tested	Not required
Performance Check		
Channel Move Time and Channel Closing	Test using widest BW mode	Test using the widest
Transmission Time	available	BW mode available for
		the link
All other tests	Any single BW mode	Not required

Note: Frequencies selected for statistical performance check (Section 7.8.4) should include several frequencies within the radar detection bandwidth and frequencies near the edge of the radar detection bandwidth. For 802.11 devices it is suggested to select frequencies in each of the bonded 20 MHz channels and the channel center frequency.

EST Technology Co., Ltd Report No. ESTE-R1901016 Page 12 of 49

4.3. Conformance Limit

Table 3: DFS Detection Thresholds for Master Devices and Client Devices with Radar Detection

and Choir Beviets With Radar Betetion					
Maximum Transmit Power	Value				
	(See Notes 1, 2, and 3)				
EIRP ≥ 200 milliwatt	-64 dBm				
EIRP < 200 milliwatt and	-62 dBm				
power spectral density < 10 dBm/MHz					
EIRP < 200 milliwatt that do not meet the power spectral density	-64 dBm				
requirement					

Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna.

Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response.

Note3: EIRP is based on the highest antenna gain. For MIMO devices refer to KDB Publication 662911 D01.

Table 4: DFS Response Requirement Values

Parameter	Value
Non-occupancy period	Minimum 30 minutes
Channel Availability Check Time	60 seconds
Channel Move Time	10 seconds
	See Note 1.
Channel Closing Transmission Time	200 milliseconds + an
	aggregate of 60
	milliseconds over remaining
	10 second period.
	See Notes 1 and 2.
U-NII Detection Bandwidth	Minimum 100% of the U-
	NII 99% transmission
	power bandwidth. See Note
	3.

Note 1: Channel Move Time and the Channel Closing Transmission Time should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst.

Note 2: The *Channel Closing Transmission Time* is comprised of 200 milliseconds starting at the beginning of the *Channel Move Time* plus any additional intermittent control signals required to facilitate a *Channel* move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Note 3: During the *U-NII Detection Bandwidth* detection test, radar type 0 should be used. For each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.

EST Technology Co., Ltd Report No. ESTE-R1901016

Table 5 – Short Pulse Radar Test Waveforms

Radar	Pulse Width	PRI	Number of Pulses	Minimum	Minimum
Type	(µsec)	(μsec)		Percentage of	Number of
				Successful	Trials
				Detection	
0	1	1428	18	See Note 1	See Note 1
1	1	Test A: 15 unique	((1))	60%	30
		PRI values	$\left \left(\frac{360}{360} \right) \right $		
		randomly selected	Roundup		
		from the list of 23	19·10 ⁶		
		PRI values in Table			
		5a	$\left(\left\langle \text{PRI}_{\mu\text{sec}}\right\rangle\right]$		
		Test B: 15 unique			
		PRI values			
		randomly selected			
		within the range of			
		518-3066 μsec,			
		with a minimum			
		increment of 1			
		μsec, excluding			
		PRI values selected			
		in Test A			
2	1-5	150-230	23-29	60%	30
3	6-10	200-500	16-18	60%	30
4	11-20	200-500	12-16	60%	30
Aggregate (I	Radar Types 1-	4)	10 11 1 1 1	80%	120

Note 1: Short Pulse Radar Type 0 should be used for the detection bandwidth test, channel move time, and channel closing time tests.

Table 6 – Long Pulse Radar Test Waveform

	<u>υτα το υτα που το υτα που το του το που το του το που το του το του το του το του του του τ</u>						
Radar	Pulse	Chirp	PRI	Number	Number	Minimum	Minimum
Type	Width	Width	(µsec)	of Pulses	of Bursts	Percentage of	Number of
	(µsec)	(MHz)		per Burst		Successful	Trials
						Detection	
5	50-100	5-20	1000-	1-3	8-20	80%	30
			2000				

Table 7 – Frequency Hopping Radar Test Waveform

				* * *	. 3		
Radar	Pulse	PRI	Pulses	Hopping	Hopping	Minimum	Minimum
Type	Width	(µsec)	per	Rate	Sequence	Percentage of	Number of
	(µsec)		Нор	(kHz)	Length	Successful	Trials
					(msec)	Detection	
6	1	333	9	0.333	300	70%	30

EST Technology Co., Ltd Report No. ESTE-R1901016 Page 14 of 49

4.4. Transmitter Output Power

Band	Mode	Max Output	Antenna Gain	Max Eirp		
Band	Mode	Power (dBm)	(dBi)	dBm	mW	
UNII Band II	IEEE 802.11a	13.490	1.27	14.760	29.923	
	IEEE 802.11n HT40	13.539	1.27	14.809	30.262	
UNII Band III	IEEE 802.11a	11.363	1.27	12.633	18.336	
OMI Daily III	IEEE 802.11n HT40	11.976	1.27	13.246	21.115	

4.5. Operation Modes and Requirement Test Item.

The manufacture shall state whether the EUT is capable of operating as a Master or a Slave modes,

EUT is capable of operating in more than one operational mode then every operating mode shall be assessed separately.

Applicability of DFS Requirements Prior to Use of a Channel

EST Technology Co., Ltd Report No. ESTE-R1901016 Page 15 of 49

4.6. Test Result

DFS In-Service Monitoring (5260 MHz; 20 MHz)

Measurement Summary

DUT Frequency (MHz)	Radar Type No.	Type of Measurement value	Overall Result
5260.000000	0	First of all Transmitt Test	PASS
5260.000000	0	Channel Move Time	PASS
5260.000000	0	Channel Closing Transmission Time	PASS
5260.000000	0	Non-occupancy period	PASS

Channel Move Time Detailed Results

	DUT Frequency (MHz)	Radar Type No.	CMT Tx Time (s)	CMT Limit (s)	CMT Result
Ī	5260.000000	0	1.310	10.000	PASS

(continuation of the "Channel Move Time Detailed Results" table from column 5 ...)

DUT Frequency (MHz)	CMT Comment
5260.000000	Tx Time value is last trailing edge found within sweep. See Note 1.

Channel Closing Transmission Time Detailed Results

DUT Frequency (MHz)	Radar Type	CCTT Type of Value	CCTT No. of Pulses found	CCTT Tx Time (ms)
5260.000000	0	first 200 ms	1833	19.528
5260.000000	0	remaining 10.0 second(s)	191	5.524

(continuation of the "Channel Closing Transmission Time Detailed Results" table from column 5 ...)

DUT Frequency (MHz)	CCTT Tx Time Limit (ms)	CCTT Result	CCTT Comment
5260.000000	200.000	PASS	See Note 1.
5260.000000	60.000	PASS	See Note 1.

Non-occupancy period Detailed Results

DUT Frequency (MHz)	Radar Type No.	NOP No. of Pulses found	NOP No. of Pulses	NOP Tx Time (s)	NOP Tx Time Limit (s)
5260.000000	0	0	0	0.000	0.000

(continuation of the "Non-occupancy period Detailed Results" table from column 6 ...)

DUT Frequency (MHz)	NOP Result
5260.000000	PASS

Transmitting Test Detailed Results

•	<u> </u>	TGII G	. toounto			
	DUT Frequency (MHz)	Tx-Test DutyCyc	Tx-Test DutyCycle	Tx-Test No. of Pulses found	Tx-Test Result	Tx-Test Comment
	5260.000000	85.583	>=17 %	155	PASS	

Additional Information

Note	Description
Note 1:	Because of the radar pulse event at the beginning, the investigation of the trace begins with an offset of 26.7 ms conforming to the end of the Radar burst.
Note 2:	Channel move time (CMT) / channel closing transmission time (CCTT) measurement was made with hi resolution video sweep using OSP DAQ channel
Note 3:	Because of the substantially higher sampling rate of the video signal the results for CCTT and CMT are more accurate than in the graphics visible. Reached timing accuracy of the video trace: approx 4
Note 4:	The Non-Occupancy Period trace starts at the end of the Channel move time trace (20.000 secs.) Labeling of the x-axis (time) is relative to its beginning (0 secs.)

Radar level verification

Description	Value	Unit
Configured DUT EIRP:	31.62	mW
Configured DUT PSD:		dBm/MHz
Requirement of the Detection threshold value for this given values acc. to FCC clause 5.2 / Table 3	-62	dBm
Vector Generator level setting	11.22	dBm
Configured overall pathlost from Vector Generator RF out to DUT connector of 'DUT to OSP'-cable	70.85	dB
Given additional level added to the amplitude of the waveform to account for variations in measurement equipment acc. to FCC clause 5.2 / Table 3 / Note 2	1.00	dB
This results in the following radar signal level at the DUT	-59.63	dBm

EST Technology Co., Ltd Report No. ESTE-R1901016 Page 17 of 49

In-Service Monitoring Transmitt Test Sweep Threshold

In-Service Monitoring Channel Move Time
Threshold
Start of Radar

Trigger at end of Radar
First 200ms of Channel Closing Tx Time

10sec Channel Move Time Limit
 Last measured edge of Channel Closing Tx Time

In-Service Monitoring Non-occupancy period Threshold

EST Technology Co., Ltd Report No. ESTE-R1901016 Page 18 of 49

DFS In-Service Monitoring (5320 MHz; 20 MHz) Measurement Summary

DUT Frequency (MHz)	Radar Type No.	Type of Measurement value	Overall Result
5320.000000	0	First of all Transmitt Test	PASS
5320.000000	0	Channel Move Time	PASS
5320.000000	0	Channel Closing Transmission Time	PASS
5320.000000	0	Non-occupancy period	PASS

Channel Move Time Detailed Results

DUT Frequency (MHz)	Radar Type No.	CMT Tx Time	CMT Limit (s)	CMT Result
5320.000000	0	1.585	10.000	PASS

(continuation of the "Channel Move Time Detailed Results" table from column 5 ...)

DUT Frequency (MHz)	CMT Comment
5320.000000	Tx Time value is last trailing edge found within sweep. See Note 1.

Channel Closing Transmission Time Detailed Results

DUT Frequency (MHz)	Radar Type No.	CCTT Type of Value	CCTT No. of Pulses found	CCTT Tx Time
5320.000000	0	first 200 ms	125	3.976
5320.000000	0	remaining 10.0 second(s) period	43	6.508

(continuation of the "Channel Closing Transmission Time Detailed Results" table from column 5 ...)

DUT Frequency (MHz)	CCTT Tx Time Limit	CCTT Result	CCTT Comment
5320.000	200.000	PASS	See Note 1.
5320.000	60.000	PASS	See Note 1.

Non-occupancy period Detailed Results

DUT Frequency	Radar Type	NOP No. of Pulses found	NOP No. of	NOP Tx	NOP Tx Time
(MHz)	No.		Pulses Limit	Time	Limit
5320.000000	0	0	0	0.000	0.000

(continuation of the "Non-occupancy period Detailed Results" table from column 6 ...)

DUT Frequency	NOP Result
(MU-)	
5320.000000	PASS

Transmitting Test Detailed Results

DUT Frequency (MHz)	Tx-Test DutyCycle	Tx-Test DutyCycle	Tx-Test No. of Pulses found	Tx-Test Result	Tx-Test Comment
5260.000000	85.583	>=17 %	155	PASS	

EST Technology Co., Ltd Report No. ESTE-R1901016 Page 19 of 49

Additional Information

Description
Because of the radar pulse event at the beginning,
the investigation of the trace begins with an offset of 26.7 ms
conforming to the end of the Radar burst.
Channel move time (CMT) / channel closing transmission time (CCTT) measurement
was made with hi resolution video sweep using OSP DAQ channel
Because of the substantially higher sampling rate of the video signal
the results for CCTT and CMT are more accurate than in the graphics visible.
Reached timing accuracy of the video trace: approx 4
The Non-Occupancy Period trace starts at the end of the Channel move time trace
(20.000 secs.)
Labeling of the x-axis (time) is relative to its beginning (0 secs.)

Radar level verification

Description	Value	Unit
Configured DUT EIRP:	31.62	mW
Configured DUT PSD:	6.00	dBm/MHz
Requirement of the Detection threshold value for this given values acc. to FCC clause 5.2 / Table 3	-62	dBm
Vector Generator level setting	11.93	dBm
Configured overall pathlost from Vector Generator RF out to DUT connector of 'DUT to OSP'-cable	71.22	dB
Given additional level added to the amplitude of the waveform to account for variations in measurement equipment acc. to FCC clause 5.2 / Table 3 / Note 2	1.00	dB
This results in the following radar signal level at the DUT	-59.29	dBm

In-Service Monitoring Transmitt Test Sweep

Threshold

In-Service Monitoring Channel Move Time

Threshold

Start of Radar

Trigger at end of Radar

First 200ms of Channel Closing Tx Time

10sec Channel Move Time Limit

Last measured edge of Channel Closing Tx Time

In-Service Monitoring Non-occupancy period

Threshold

EST Technology Co., Ltd Report No. ESTE-R1901016 Page 21 of 49

DFS In-Service Monitoring (5500 MHz; 20 MHz) Measurement Summary

DUT Frequency (MHz)	Radar Type No.	Type of Measurement value	Overall Result
5500.000000	0	First of all Transmitt Test	PASS
5500.000000	0	Channel Move Time	PASS
5500.000000	0	Channel Closing Transmission Time	PASS
5500.000000	0	Non-occupancy period	PASS

Channel Move Time Detailed Results

DUT Frequency (MHz)	Radar Type No.	CMT Tx Time	CMT Limit (s)	CMT Result
5500.000000	0	1.251	10.000	PASS

(continuation of the "Channel Move Time Detailed Results" table from column 5 ...)

DUT Frequency (MHz)	CMT Comment
5500.000000	Tx Time value is last trailing edge found within sweep. See Note 1.

Channel Closing Transmission Time Detailed Results

DUT Frequency (MHz)	Radar Type No.	CCTT Type of Value	CCTT No. of Pulses found	CCTT Tx Time
5500.000000	0	first 200 ms	575	8.208
5500.000000	0	remaining 10.0 second(s) period	14	1.892

(continuation of the "Channel Closing Transmission Time Detailed Results" table from column 5 ...)

DUT Frequency (MHz)	CCTT Tx Time Limit (ms)	CCTT Result	CCTT Comment
5500.000000	200.000	PASS	See Note 1.
5500.000000	60.000	PASS	See Note 1.

Non-occupancy period Detailed Results

DUT Frequency (MHz)	Radar Type No.	NOP No. of Pulses found	NOP No. of Pulses Limit	NOP Tx Time (s)	NOP Tx Time Limit (s)
5500.000000	0	0	0	0.000	0.000

(continuation of the "Non-occupancy period Detailed Results" table from column $\,$ 6 ...)

DUT Frequency (MHz)	NOP Result
5500.000000	PASS

Transmitting Test Detailed Results

DUT Frequency (MHz)	Tx-Test DutyCycle (%)	Tx-Test DutyCycle Limit	Tx-Test No. of Pulses found	Tx-Test Result	Tx-Test Comment
5260.000000	85.583	>=17 %	155	PASS	

EST Technology Co., Ltd Report No. ESTE-R1901016 Page 22 of 49

Additional Information

Note	Description
Note 1:	Because of the radar pulse event at the beginning, the investigation of the trace begins with an offset of 26.7 ms conforming to the end of the Radar burst.
Note 2:	Channel move time (CMT) / channel closing transmission time (CCTT) measurement was made with hi resolution video sweep using OSP DAQ channel
Note 3:	Because of the substantially higher sampling rate of the video signal the results for CCTT and CMT are more accurate than in the graphics visible. Reached timing accuracy of the video trace: approx 4
Note 4:	The Non-Occupancy Period trace starts at the end of the Channel move time trace (20.000 secs.) Labeling of the x-axis (time) is relative to its beginning (0 secs.)

Radar level verification

Description	Value	Unit
Configured DUT EIRP:	31.62	mW
Configured DUT PSD:	6.00	dBm/MHz
Requirement of the Detection threshold value for this given values acc. to FCC clause 5.2 / Table 3	-62	dBm
Vector Generator level setting	10.80	dBm
Configured overall pathlost from Vector Generator RF out to DUT connector of 'DUT to OSP'-cable	71.23	dB
Given additional level added to the amplitude of the waveform to account for variations in measurement	1.00	dB
This results in the following radar signal level at the DUT	-60.43	dBm

EST Technology Co., Ltd Report No. ESTE-R1901016 Page 23 of 49

In-Service Monitoring Channel Move Time
Threshold
Start of Radar
Trigger at end of Radar
First 200ms of Channel Closing Tx Time
10sec Channel Move Time Limit
Last measured edge of Channel Closing Tx Time

In-Service Monitoring Non-occupancy period Threshold

EST Technology Co., Ltd Report No. ESTE-R1901016 Page 24 of 49

DFS In-Service Monitoring (5700 MHz;20 MHz) Measurement Summary

DUT Frequency (MHz)	Radar Type No.	Type of Measurement value	Overall Result
5700.000000	0	First of all Transmitt Test	PASS
5700.000000	0	Channel Move Time	PASS
5700.000000	0	Channel Closing Transmission Time	PASS
5700.000000	0	Non-occupancy period	PASS

Channel Move Time Detailed Results

DUT Frequency (MHz)	Radar Type No.	CMT Tx Time (s)	CMT Limit (s)	CMT Result
5700.000000	0	2.127	10.000	PASS

(continuation of the "Channel Move Time Detailed Results" table from column 5 ...)

DUT Frequency (MHz)	CMT Comment
5700.000000	Tx Time value is last trailing edge found within sweep. See Note 1.

Channel Closing Transmission Time Detailed Results

DUT Frequency (MHz)	Radar Type No.	CCTT Type of Value	CCTT No. of Pulses found	CCTT Tx Time (ms)
5700.000000	0	first 200 ms	672	22.456
5700.000000	0	remaining 10.0 second(s) period	126	6.240

(continuation of the "Channel Closing Transmission Time Detailed Results" table from column $\,$ 5 ...)

DUT Frequency (MHz)	CCTT Tx Time Limit	CCTT Result	CCTT Comment
5700.000000	200.000	PASS	See Note 1.
5700.000000	60.000	PASS	See Note 1.

Non-occupancy period Detailed Results

DUT Frequency (MHz)	Radar Type No.	NOP No. of Pulses found	NOP No. of Pulses Limit	NOP Tx Time (s)	NOP Tx Time Limit (s)
5700.000000	0	0	0	0.000	0.000

(continuation of the "Non-occupancy period Detailed Results" table from column 6 ...)

DUT Frequency (MHz)	NOP Result
5700.000000	PASS

Transmitting Test Detailed Results

DUT Frequency (MHz)	Tx-Test DutyCycle (%)	Tx-Test DutyCycle Limit	Tx-Test No. of Pulses found	Tx-Test Result	Tx-Test Comment
5700.000000	41.567	>=17 %	293	PASS	

EST Technology Co., Ltd Report No. ESTE-R1901016 Page 25 of 49

Additional Information

Description
Because of the radar pulse event at the beginning,
the investigation of the trace begins with an offset of 26.7 ms
conforming to the end of the Radar burst.
, and the second
Channel move time (CMT) / channel closing transmission time (CCTT) measurement
was made with hi resolution video sweep using OSP DAQ channel
Because of the substantially higher sampling rate of the video signal
the results for CCTT and CMT are more accurate than in the graphics visible.
Reached timing accuracy of the video trace: approx 4
The Non-Occupancy Period trace starts at the end of the Channel move time trace
(20.000 secs.)
Labeling of the x-axis (time) is relative to its beginning (0 secs.)

Radar level verification

Description	Value	Unit
Configured DUT EIRP:	31.62	mW
Configured DUT PSD:	3.00	dBm/MHz
Requirement of the Detection threshold value for this given values acc. to FCC clause 5.2 / Table 3	-62	dBm
Vector Generator level setting		dBm
Configured overall pathlost from Vector Generator RF out to DUT connector of 'DUT to OSP'-cable	72.09	dB
Given additional level added to the amplitude of the waveform to account for variations in measurement	1.00	dB
This results in the following radar signal level at the DUT	-59.67	dBm

Page 26 of 49

In-Service Monitoring Channel Move Time

Threshold

Start of Radar

Trigger at end of Radar

First 200ms of Channel Closing Tx Time

10sec Channel Move Time Limit

Last measured edge of Channel Closing Tx Time

DFS In-Service Monitoring (5270 MHz; 40 MHz)

Measurement Summary

DUT Frequency (MHz)	Radar Type No.	Type of Measurement value	Overall Result
5270.000000	0	First of all Transmitt Test	PASS
5270.000000	0	Channel Move Time	PASS
5270.000000	0	Channel Closing Transmission Time	PASS
5270.000000	0	Non-occupancy period	PASS

Channel Move Time Detailed Results

DUT Frequency (MHz)	Radar Type No.	CMT Tx Time (s)	CMT Limit (s)	CMT Result
5270.000000	0	0.128	10.000	PASS

(continuation of the "Channel Move Time Detailed Results" table from column $\,\,$ 5 ...)

DUT Frequency (MHz)	CMT Comment
5270.000000	Tx Time value is last trailing edge found within sweep. See Note 1.

Channel Closing Transmission Time Detailed Results

DUT Frequency (MHz)	Radar Type No.	CCTT Type of Value	CCTT No. of Pulses found	CCTT Tx Time (ms)
5270.000000	0	first 200 ms	2	0.016
5270.000000	0	remaining 10.0 second(s) period	0	0.000

(continuation of the "Channel Closing Transmission Time Detailed Results" table from column 5 ...)

DUT Frequency (MHz)	CCTT Tx Time Limit (ms)	CCTT Result	CCTT Comment
5270.000000	200.000	PASS	See Note 1.
5270.000000	60.000	PASS	See Note 1.

Non-occupancy period Detailed Results

DUT Frequency (MHz)	Radar Type No.	NOP No. of Pulses found	NOP No. of Pulses Limit	NOP Tx Time (s)	NOP Tx Time Limit (s)
5270.000000	0	0	0	0.000	0.000

(continuation of the "Non-occupancy period Detailed Results" table from column 6 ...)

DUT Frequency (MHz)	NOP Result
5270.000000	PASS

Transmitting Test Detailed Results

DUT Frequency (MHz)	Tx-Test DutyCycle (%)	Tx-Test DutyCycle Limit	Tx-Test No. of Pulses found	Tx-Test Result	Tx-Test Comment
5320.000000	41.073	>=17 %	287	PASS	

Additional Information

EST Technology Co., Ltd Report No. ESTE-R1901016 Page 28 of 49

Note	Description
Note 1:	Because of the radar pulse event at the beginning, the investigation of the trace begins with an offset of 26.7 ms conforming to the end of the Radar burst.
Note 2:	Channel move time (CMT) / channel closing transmission time (CCTT) measurement was made with hi resolution video sweep using OSP DAQ channel
Note 3:	Because of the substantially higher sampling rate of the video signal the results for CCTT and CMT are more accurate than in the graphics visible. Reached timing accuracy of the video trace: approx 4
Note 4:	The Non-Occupancy Period trace starts at the end of the Channel move time trace (20.000 secs.) Labeling of the x-axis (time) is relative to its beginning (0 secs.)

Radar level verification

Description	Value	Unit
Configured DUT EIRP:	31.62	mW
Configured DUT PSD:	10.00	dBm/MHz
Requirement of the Detection threshold value for this given values acc. to FCC clause 5.2 / Table 3	-64	dBm
Vector Generator level setting	9.23	dBm
Configured overall pathlost from Vector Generator RF out to DUT connector of 'DUT to OSP'-cable	70.91	dB
Given additional level added to the amplitude of the waveform to account for variations in measurement equipment acc. to FCC clause 5.2 / Table 3 / Note 2	1.00	dB
This results in the following radar signal level at the DUT	-61.68	dBm

Report No. ESTE-R1901016 Page 29 of 49 EST Technology Co., Ltd

In-Service Monitoring Channel Move Time
Threshold
Start of Radar
Trigger at end of Radar
First 200ms of Channel Closing Tx Time
10sec Channel Move Time Limit
Last measured edge of Channel Closing Tx Time

In-Service Monitoring Non-occupancy period Threshold

EST Technology Co., Ltd Report No. ESTE-R1901016 Page 30 of 49

DFS In-Service Monitoring (5310 MHz; 40 MHz)

Measurement Summary

DUT Frequency (MHz)	Radar Type No.	Type of Measurement value	Overall Result
5310.000000	0	First of all Transmitt Test	PASS
5310.000000	0	Channel Move Time	PASS
5310.000000	0	Channel Closing Transmission Time	PASS
5310.000000	0	Non-occupancy period	PASS

Channel Move Time Detailed Results

DUT Frequency (MHz)	Radar Type No.	CMT Tx Time (s)	CMT Limit (s)	CMT Result
5310.000000	0	0.188	10.000	PASS

(continuation of the "Channel Move Time Detailed Results" table from column 5 ...)

DUT Frequency (MHz)	CMT Comment
5310.000000	Tx Time value is last trailing edge found within sweep. See Note 1.

Channel Closing Transmission Time Detailed Results

DUT Frequency (MHz)	Radar Type No.	CCTT Type of Value	CCTT No. of Pulses found	CCTT Tx Time (ms)
5310.000000	0	first 200 ms	10	0.080
5310.000000	0	remaining 10.0 second(s) period	0	0.000

(continuation of the "Channel Closing Transmission Time Detailed Results" table from column 5 ...)

DUT Frequency (MHz)	CCTT Tx Time Limit (ms)	CCTT Result	CCTT Comment
5310.000000	200.000	PASS	See Note 1.
5310.000000	60.000	PASS	See Note 1.

Non-occupancy period Detailed Results

DUT Frequency (MHz)	Radar Type No.	NOP No. of Pulses found	NOP No. of Pulses Limit	NOP Tx Time (s)	NOP Tx Time Limit (s)
5310.000000	0	0	0	0.000	0.000

(continuation of the "Non-occupancy period Detailed Results" table from column 6 ...)

DUT Frequency (MHz)	NOP Result	
5310.000000	PASS	

Transmitting Test Detailed Results

DUT Frequency (MHz)	Tx-Test DutyCycle (%)	Tx-Test DutyCycle Limit	Tx-Test No. of Pulses found	Tx-Test Result	Tx-Test Comment	
5320.000000	41.073	>=17 %	287	PASS		

EST Technology Co., Ltd Report No. ESTE-R1901016 Page 31 of 49

Additional Information

Note	Description
Note 1:	Because of the radar pulse event at the beginning, the investigation of the trace begins with an offset of 26.7 ms conforming to the end of the Radar burst.
Note 2:	Channel move time (CMT) / channel closing transmission time (CCTT) measurement was made with hi resolution video sweep using OSP DAQ channel
Note 3:	Because of the substantially higher sampling rate of the video signal the results for CCTT and CMT are more accurate than in the graphics visible. Reached timing accuracy of the video trace: approx 4
Note 4:	The Non-Occupancy Period trace starts at the end of the Channel move time trace (20.000 secs.) Labeling of the x-axis (time) is relative to its beginning (0 secs.)

Radar level verification

Description	Value	Unit
Configured DUT EIRP:	31.62	mW
Configured DUT PSD:	5.00	dBm/MHz
Requirement of the Detection threshold value for this given values acc. to FCC clause 5.2 / Table 3	-62	dBm
Vector Generator level setting	11.56	dBm
Configured overall pathlost from Vector Generator RF out to DUT connector of 'DUT to OSP'-cable	71.15	dB
Given additional level added to the amplitude of the waveform to account for variations in measurement	1.00	dB
This results in the following radar signal level at the DUT	-59.59	dBm

In-Service Monitoring Channel Move Time
Threshold
Start of Radar
Trigger at end of Radar
First 200ms of Channel Closing Tx Time
10sec Channel Move Time Limit
Last measured edge of Channel Closing Tx Time

EST Technology Co., Ltd Report No. ESTE-R1901016 Page 33 of 49

DFS In-Service Monitoring (5510 MHz; 40 MHz)

Measurement Summary

DUT Frequency (MHz)	Radar Type No.	Type of Measurement value	Overall Result
5510.000000	0	First of all Transmitt Test	PASS
5510.000000	0	Channel Move Time	PASS
5510.000000	0	Channel Closing Transmission Time	PASS
5510.000000	0	Non-occupancy period	PASS

Channel Move Time Detailed Results

DUT Frequency (MHz)	Radar Type No.	CMT Tx Time (s)	CMT Limit (s)	CMT Result
5510.000000	0	1.422	10.000	PASS

(continuation of the "Channel Move Time Detailed Results" table from column 5 ...)

DUT Frequency (MHz)	CMT Comment
5510.000000	Tx Time value is last trailing edge found within sweep. See Note 1.

Channel Closing Transmission Time Detailed Results

DUT Frequency (MHz)	Radar Type No.	CCTT Type of Value	CCTT No. of Pulses found	CCTT Tx Time (ms)
5510.000000	0	first 200 ms	581	5.224
5510.000000	0	remaining 10.0 second(s) period	331	2.976

(continuation of the "Channel Closing Transmission Time Detailed Results" table from column 5 ...)

DUT Frequency (MHz)	CCTT Tx Time Limit (ms)	CCTT Result	CCTT Comment
5510.000000	200.000	PASS	See Note 1.
5510.000000	60.000	PASS	See Note 1.

Non-occupancy period Detailed Results

DUT Frequency (MHz)	Radar Type No.	NOP No. of Pulses found	NOP No. of Pulses Limit	NOP Tx Time (s)	NOP Tx Time Limit (s)
5510.000000	0	0	0	0.000	0.000

(continuation of the "Non-occupancy period Detailed Results" table from column 6 ...)

DUT Frequency (MHz)	NOP Result	
5510.000000	PASS	

EST Technology Co., Ltd Report No. ESTE-R1901016 Page 34 of 49

Additional Information

Note	Description
Note 1:	Because of the radar pulse event at the beginning, the investigation of the trace begins with an offset of 26.7 ms conforming to the end of the Radar burst.
Note 2:	Channel move time (CMT) / channel closing transmission time (CCTT) measurement was made with hi resolution video sweep using OSP DAQ channel
Note 3:	Because of the substantially higher sampling rate of the video signal the results for CCTT and CMT are more accurate than in the graphics visible. Reached timing accuracy of the video trace: approx 4
Note 4:	The Non-Occupancy Period trace starts at the end of the Channel move time trace (20.000 secs.) Labeling of the x-axis (time) is relative to its beginning (0 secs.)

Radar level verification

Description	Value	Unit
Configured DUT EIRP:	31.62	mW
Configured DUT PSD:	10.00	dBm/MHz
Requirement of the Detection threshold value for this given values acc. to FCC clause 5.2 / Table 3	-64	dBm
Vector Generator level setting	9.06	dBm
Configured overall pathlost from Vector Generator RF out to DUT connector of 'DUT to OSP'-cable	71.24	dB
Given additional level added to the amplitude of the waveform to account for variations in measurement equipment acc. to FCC clause 5.2 / Table 3 / Note 2	1.00	dB
This results in the following radar signal level at the DUT	-62.18	dBm

EST Technology Co., Ltd Report No. ESTE-R1901016 Page 35 of 49

In-Service Monitoring Transmitt Test Sweep Threshold

In-Service Monitoring Channel Move Time

- Threshold

Start of Radar

Trigger at end of Radar

First 200ms of Channel Closing Tx Time

10sec Channel Move Time Limit

Last measured edge of Channel Closing Tx Time

In-Service Monitoring Non-occupancy period Threshold

EST Technology Co., Ltd Report No. ESTE-R1901016 Page 36 of 49

DFS In-Service Monitoring (5670 MHz; 40 MHz) Measurement Summary

DUT Frequency (MHz)	Radar Type No.	Type of Measurement value	Overall Result
5670.000000	0	First of all Transmitt Test	PASS
5670.000000	0	Channel Move Time	PASS
5670.000000	0	Channel Closing Transmission Time	PASS
5670.000000	0	Non-occupancy period	PASS

Channel Move Time Detailed Results

DUT Frequency (MHz)	Radar Type No.	CMT Tx Time	CMT Limit (s)	CMT Result
5670.000000	0	2.025	10.000	PASS

(continuation of the "Channel Move Time Detailed Results" table from column 5 ...)

DUT Frequency (MHz)	CMT Comment
5670.000000	Tx Time value is last trailing edge found within sweep. See Note 1.

Channel Closing Transmission Time Detailed Results

DUT Frequency (MHz)	Radar Type No.	CCTT Type of Value	CCTT No. of Pulses found	CCTT Tx Time (ms)
5670.000000	0	first 200 ms	0	0.000
5670.000000	0	remaining 10.0 second(s) period	2	0.016

(continuation of the "Channel Closing Transmission Time Detailed Results" table from column 5 ...)

DUT Frequency (MHz)	CCTT Tx Time Limit (ms)	CCTT Result	CCTT Comment
5670.000000	200.000	PASS	See Note 1.
5670.000000	60.000	PASS	See Note 1.

Non-occupancy period Detailed Results

DUT Frequency (MHz)	Radar Type No.	NOP No. of Pulses found	NOP No. of Pulses Limit	NOP Tx Time (s)	NOP Tx Time Limit (s)
5670.000000	0	0	0	0.000	0.000

(continuation of the "Non-occupancy period Detailed Results" table from column 6 ...)

DUT Frequency (MHz)	NOP Result
5670.000000	PASS

Transmitting Test Detailed Results

DUT Frequency (MHz)	Tx-Test DutyCycle (%)	Tx-Test DutyCycle Limit	Tx-Test No. of Pulses found	Tx-Test Result	Tx-Test Comment
5670.000000	26.760	>=17 %	124	PASS	

EST Technology Co., Ltd Report No. ESTE-R1901016 Page 37 of 49

Additional Information

Note	Description
Note 1:	Because of the radar pulse event at the beginning, the investigation of the trace begins with an offset of 26.7 ms conforming to the end of the Radar burst.
Note 2:	Channel move time (CMT) / channel closing transmission time (CCTT) measurement was made with hi resolution video sweep using OSP DAQ channel
Note 3:	Because of the substantially higher sampling rate of the video signal the results for CCTT and CMT are more accurate than in the graphics visible. Reached timing accuracy of the video trace: approx 4
Note 4:	The Non-Occupancy Period trace starts at the end of the Channel move time trace (20.000 secs.) Labeling of the x-axis (time) is relative to its beginning (0 secs.)

Radar level verification

Description	Value	Unit
Configured DUT EIRP:	31.62	mW
Configured DUT PSD:	3.00	dBm/MHz
Requirement of the Detection threshold value for this given values acc. to FCC clause 5.2 / Table 3	-62	dBm
Vector Generator level setting	12.06	dBm
Configured overall pathlost from Vector Generator RF out to DUT connector of 'DUT to OSP'-cable	72.30	dB
Given additional level added to the amplitude of the waveform to account for variations in measurement equipment acc. to FCC clause 5.2 / Table 3 / Note 2	1.00	dB
This results in the following radar signal level at the DUT	-60.24	dBm

EST Technology Co., Ltd Report No. ESTE-R1901016 Page 38 of 49

In-Service Monitoring Transmitt Test Sweep Threshold

In-Service Monitoring Channel Move Time

ThresholdStart of Radar

Trigger at end of Radar

First 200ms of Channel Closing Tx Time

10sec Channel Move Time Limit

Last measured edge of Channel Closing Tx Time

In-Service Monitoring Non-occupancy period Threshold

EST Technology Co., Ltd Report No. ESTE-R1901016 Page 39 of 49

5. TEST SETUP PHOTOS

EST Technology Co., Ltd Report No. ESTE-R1901016 Page 40 of 49

6. PHOTOS OF EUT

External Photos M/N: ONA19TB002

EST Technology Co., Ltd Report No. ESTE-R1901016 Page 41 of 49

External Photos M/N: ONA19TB002

EST Technology Co., Ltd Report No. ESTE-R1901016 Page 42 of 49

EST Technology Co., Ltd Report No. ESTE-R1901016 Page 43 of 49

External Photos

EST Technology Co., Ltd Report No. ESTE-R1901016 Page 44 of 49

External Photos

EST Technology Co., Ltd Report No. ESTE-R1901016 Page 45 of 49

RF Antenna

EST Technology Co., Ltd Report No. ESTE-R1901016 Page 46 of 49

EST Technology Co., Ltd

EST Technology Co., Ltd

RF Antenna Port