Stratégies

GEO-CAPE INTELLIGENT OBSERVATION STUDIES @GSFC

http://geocape.herokuapp.com

Pat Cappelaere

GSFC Team: Stu Frye, Karen Moe, Dan Mandl, Jacqueline LeMoigne, Tom Flatley, Alessandro Geist

GEO-CAPE Workshop

September 1, 2015

TABLE OF CONTENTS

INTRO

01

02

03

04

Summary

Assumptions

Clouds

Scheduling

Closing

- + Mission
- + Instruments
- + Selection
- + Scheduling

- + Forecasting
- + Sub-Gridding
- + Cloud Detection
- + Onboard Detection Algorithms

- + Architecture
- + Strategies
- + KISS
- + Schedule Layout
- + Visualization

- + Ground Processing
- + Distribution
- + Next Steps
- + Backup Material
- + Open Questions

STRATEGIES OVERVIEW

Based On Current Assumptions That Need To Be Validated

Strategy 1	Strategy 2	Strategy 3	Strategy 4	Strategy 5
Ground Scheduler With Simple Priorities Potentially Acquired Scenes per hour	Ground Scheduler With Cloud Forecast	Ground Scheduler With Sub-area Forecast	Onboard Scheduler and Onboard Cloud Detection	Smart Onboard Scheduler and onboard Image Processing to Reduce Downlink Costs
< 10 scenes	~ 14 scenes	~16 scenes	~ 19 scenes	~ 19.2 scenes
Complexity:				
****	****	****	****	****
Cost:				_
	=	=	€	Ī

OBJECTIVES OF GSFC STUDY ELEMENTS

Analyze And Summarize Strategies To Improve Science Data Collection

Smart Cloud Forecasting

Onboard Cloud Detection

Ground/Onboard Scheduling with Robust Executive

Assumptions

- + Mission
- + Instruments
- + Study Selection
- + Scheduling

MISSION ASSUMPTIONS

Optimize Acquisition of "Cloud Free" Scenes At Lowest Cost

Mission Life Time: 5 years

~16 hours of Operations per day

Survey Mode

U.S Coastal Waters: East Coast, Gulf Coast, West Coast, Puerto Rico, Great Lakes

Targeted Events As Necessary

Regions of Interests

Other Coastal Waters of North & South America

Anywhere within Field of Regard

MISSION ASSUMPTIONS

Optimize Acquisition of "Cloud Free" Scenes At Lowest Cost

Standard (Threshold) Survey Mode (60min Repeat Frequency)

High Repeat (Baseline) Mode (30mn Repeat Frequency)

Targeted Events and Regions of Special Interest

Engineering Tasks and Special Window Events (Sun interference...)

Some scenes will be requested by external users and subject to Science Team Approval

Scenes will need some kind of a priority scheme for scheduling

INSTRUMENT CONCEPTS & CAPABILITY

IIIOIIICIIILII	IOONOLI	I O G OAI	ADILII	•	
Instrument Type	Filter Radiometer FR	Filter Radiometer FR	Wide Angle Spectro- meter WAS	Multi-Slit Spectro- meter COEDI	Multi-Slit Spectro- meter COEDI
Spatial Resolution (m) (nadir)	250	375	375	375	250
Spectral Resolution (nm)	5 nm	5 nm	0.4 nm	0.4 nm	0.4 nm
Spectral Range (nm) (2135 not req)	Multispectral (50) 340-1050; 1245, 1640, 2135	Multispectral (50) 340-1050; 1245, 1640, 2135	340-1050; 1245, 1640, 2135 nm	340-1050 1245,1640 nm	340-1050 1245,1640 nm
Scan Rate (km²/min)	100,105	100,105	48,200	43,200	28,800
Mass CBE (kg)	190.4	126.3	309.4	202.8	358.6
Power CBE (W)	200.1	161.2	341.3	192.5	257.7
Volume (m x m x m)	1.5 x 1.46 x 1.02	1.0 x 0.97 x 0.68	2.6 x 1.8 x 1.5	1.5 x 1.7 x 1.1	2.2 x 2.5 x 1.7
Telemetry CBE (kbps)	15,900	10,600	23,832	23,854	35,765
Detector Size	4k X 4K	2730 X 2730	8k X 1k	2k X 1k (x 2)	3k X 1k (x 2)
Real Detector Size	4096 x 4096		Line scanner (8K)	2 line scans 2048 20 pixels apart	2 line scans 3072 20 pixels apart

THRESHOLD FR ASSUMPTIONS @375M

- *Detector Size 2730 x 2730*
- Subsampled 2x2 initial spatial resolution 187.5m -> 375m final
- Scan Rate: 100,134 km²/min -> 157 seconds per scan
- Scan Rate: 2730*2730*0.1875*0.1875*60/157 = 100,134 km²/min
- Final Scene Size: 1365 x 1365 pixels (512km x 512km)
- Total Time including mirror displacement = 157s + 1s = 158s
- 50+3 bands??? @ 2bytes/pixels

- Scene Size: 53*2*1365*1365 = 197.5 MB
- Data Ingest Rate: 197.5 / 158 = 1.250 MB/s
- Estimated Daily Storage/Downlink:
 21 scenes/hr. * 16hr/day * 444.6MB = 65.7 GB
- Estimated Monthly Downlink: 1.97 TB

Example of Instrument
Analysis for each of 4 options

Strawman 18 Coastal/Lakes Survey Scenes Using FR

INSTRUMENT ANALYSIS COMPARISON

	FR	FR	COEDI	WAS
Resolution	250m	375m	375m	375m
Scene Size	512 x 512 km	512 x 512km	768 x 535.5km	1536 x 375 km
Scene Storage	446.6MB	197.5 MB	304.15 MB	434.2 MB
High Repeat Baseline (30min)	11 scenes	11 scenes	8 scenes	2 scenes
Threshold (1hr)	22 scenes	22 scenes	17 scenes	4 scenes
CONUS Coverage	18 scenes	18 scenes	15 scenes	13 scenes
Data Rate	2.814 MB/s	1.25 MB/s	1.46 MB/s	0.57 MB/s
Parametric Cost (\$M)	\$132M	\$108M	136.2M	165.2M
Daily Storage/Downlin k	150 GB	65.7 GB	102.2 GB	145.9 GB
Monthly Downlink	4.5 TB	1.97 TB	3.1 TB	4.38 TB

Clouds

- + Forecasting
- + Sub-Gridding
- + Cloud Detection
- + Onboard Detection Algorithms

02

SURVEY SCENES & FORECAST

Example FR Scene Forecast Schedule

Red scenes fail cloud threshold and are not scheduled

Green scenes pass cloud threshold and are scheduled

Orange scenes are marginal and are scheduled for more evaluation onboard

Red: 11 (52.4%) Orange: 5 (23.8%) Green: 5 (23.8%)

Two Cloud Thresholds: Green, Orange

- Below Green Threshold: Cloud Coverage is Acceptable For Science Team, Scene is Green
 - Above Orange, Scene Is Not Even Scheduled On the Ground, Scene is Red
- Between Green And Orange: Scene Can Be Scheduled, But Will Be Checked On Board. It May Become Green

This Allows Higher Threshold Values For Use by Ground Scheduler

After Acquisition, Onboard Cloud Detection Is Used To Check Scene Against Green Thresholds. Scenes Can Then Be Accepted or Rejected.

- ~ 20% Chance to Accept Marginal Scenes and increase Scene Marginal Return
- ~ 20% Chance to Reject Marginal Scenes and Optimize Data Downlink/Storage

The ~20% acceptance/rejection of marginal scenes is based on studies done for HyspIRI, GEWEX and other analysis listed in the reference backup.

Cloud Forecast Optimization Strategy

Rationale: Focus Cloud Forecast on Sub-areas of the Scene (sub-grids)

Forecast is obtained at the center of sub-area of interest (and not on a pixel by pixel basis). This is faster and cheaper.

Scene Forecast is then calculated by averaging the forecasts of sub-areas.

ONBOARD CLOUD DETECTION

Strategy to Resolve Orange (marginal) Scenes using Scene Sub-grids

Rationale: Determine if the orange scheduled scenes were actually within the acceptable green threshold for science quality in order to make decisions about downlinking and rescheduling

Approach: Evaluate only coastal zone subgrids (masking out sub-grids over land, for example) and average those results to determine if the green threshold is met; if successful downlink those observations; if too cloudy, delete to reduce downlink costs

SPECTRAL BANDS USED FOR CLOUD DETECTION BY OTHER SENSORS COMPARED TO THE BANDS AVAILABLE ON GEO-CAPE

Scheduling Ops Demo Air quality &

http://geocape.herokuapp.com

- + Architecture
- + Strategies
- + KISS
- + Schedule Layout
- + Visualization

- Science team members are provided user front end GUI to add/remove scenes and edit scene attributes
- They enter scene parameters including location, size, priority, number of collects, cloud coverage thresholds, etc...
- Requests are submitted and can be accepted or rejected by the scheduling system. Every 6 hours the front end assembles the scenes to be imaged, including engineering tasks and activity blackouts, and gathers the cloud forecast for each scene
- The scenes are scheduled based on scene attributes and cloud forecasts. The schedule may be reviewed by the science team and potentially rejected. Scene attributes may have to be tweaked and ingested by the scheduling system to generate a new plan
- Approved schedule is generated and uplinked after science team approval

SCHEDULE LAYOUT CONCEPT

SCHEDULE EXAMPLE

FR Schedule

New Schedules

Date: 2015-06-15T06:00:00.000Z

Others

1

03

01

02

cene	0:00	1:00	2:00	3:00	4:00	5:00	6:00	7:00	8:00	9:00	10:00	11:00	12:00		14:00							21:00			24:00	0:00	1:00	2:00	3:00	4:00	5:
scene_1	-	-	-	-	-	-	-	Х	Х	Х	X	X	X	0.68	0.65	0.64	0.68	0.76		0.75	0.65	0.52	0.4	0.24	0.01	0	0	0	0.11	Х)
scene_2	-	-	-	-	-	-	-	Х	Х	Х	X	Х	X	0.78	0.67			0.91		0.8				0.73	0.82	0.51	0.21	0.06	0.24	Х)
scene_3	-	-	-	-	-	-	-	Х	Х	Х	X	X	X	0.79	0.68			0.9		0.89				0.89	1				Х	Х)
scene_4	-	-	-	-	-	-	-	Х	Х	Х	Х	х	X	0.9	0.74			0.88		0.88				0.9	1	0.71			х	Х)
scene_5	-	-	-	-	-	-	-	Х	Х	Х	X	Х	0.7		0.42			0.71		0.71		0.3	0.26	0.27	0.33		Х	Х	X	-	-
scene_6	-	-	-	-	-	-	-	Х	Х	X	Х	X	0.36	0.27	0.13	0.08	0.27	0.6		0.76			0.7	0.87	0.98		Х	Х	X	-	-
scene_7	-	-	-	-	-	-	-	Х	Х	Х	Х	0.12	0.15	0.13	0.09	0.11	0.24	0.41		0.44	0.25	0.14	0.26	0.48	0.49	Х	Х	X	X	-	
scene_8	-	-	-	-	-	-	-	Х	Х	Х	Х	0.07	0	0	0	0	0	0	0	0	0	0	0	0	0	Х	Х	Х	-	-	-
scene_9	-	-	-	-	-	-	-	Х	Х	Х	Х	0.05	0.05	0.04	0.02	0.01	0	0	0	0	0	0	0	0	0	х	Х	X	-	-	
scene_10	-	-	-	-	-	-	-	Х	Х	Х	0.23	0.44	0.54	0.49	0.31	0.16	0.13	0.14	0.14	0.14	0.13	0.12	0.12	0.12	0.01	Х	Х	X	-	-	
scene_11	-	-	-	-	-	-	-	Х	Х	Х	0.7	0.85			0.69	0.59	0.62	0.7	0.74	0.71	0.64	0.62	0.7	0.82	0.87	х	Х	X	-	-	
scene_12	-	-	-	-	-	-	-	Х	Х	Х	0.57				0.69			0.89		0.89			0.71	0.89	1	0.85	Х	X	-	-	-
scene_13	-	-	-	-	-	-	-	Х	Х	Х	0.7				0.69			0.86		0.87				0.89	0.99		Х	X	-	-	
scene_14	-	-	-	-	-	-	-	Х	Х	Х	X	0.65			0.63			0.91		0.9				0.93	0.99		Х	Х	X	-	
scene_15	-	-	-	-	-	-	-	Х	Х	Х	0.72				0.71			0.88		0.88				0.9	1		Х	Х	-	-	-
scene_16	-	-	-	-	-	-	-	Х	Х	X	Х	0.84			0.62			0.58		0.62				0.79	0.78	Х	Х	Х	-	-	-
scene_17	-	-	-	-	-	-	-	Х	Х	Х	0.74				0.76			0.63		0.58				0.87	0.96	Х	Х	Х	-	-	-
scene_18	-	-	-	-	-	-	-	Х	Х	Х	Х	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Х	Х	Х	-	-	-
scene_19	-	-	-	-	-	-	-	Х	Х	X	Х	0.65			0.28	0.2	0.36	0.61		0.61		0.21	0.22	0.28	0.31	х	X	Х	-	-	-
scene_20	-	-	-	-	-	-	-	Х	Х	0.65	0.74				0.74			0.92		0.83				0.44	0.5	Х	X	Х	-	-	-
scene_21	-	-	-	-	-	-	-	Х	Х	Х	0.79				0.74			0.89		0.89				0.9	1	х	X	Х	-	-	-
-																															
green												3	3	3	4	4	3	3	3	3	3	3	3	4	5	1	1	2	1		
orange											1	1	1	3	3	4	4	1	1	2	3	5	5	3			1		1		
red										1	7	11	13	15	14	13	14	17	17	16	15	13	13	14	16	9	2	2			
total										1	8	15	17	21	21	21	21	21	21	21	21	21	21	21	21	10	4	4	2		

#Green: 52
Million sq
miles: 4.47
#Orange: 39
#Red: 222
#Total: 313

Based on actual forecast data for June 15, 2015 and cloud threshold criteria per region

SCHEDULE VISUALIZATION SNAPSHOT

GROUND PROCESSING

- Calibration
- Atmospheric Correction
- Ortho-Rectification
- Co-Registration
- [Vectorization]
- Distribution

01

02

03

scene_14

Image:

ld:	913a9c64c24d8df281637df053e3653a20e32fda
Date:	2015-06-16T09:00:00.000Z
Description:	GEOCAPE scene_14
Status:	complete

Follow @geobliki

Like Share You and 1,741,121 others like this.

BROWSE SNAPSHOT

01

02

03

04

Full Access to Final Product(s) & MetaData

Easy To Share And Distribute to Community of Interest

Realtime User Notifications

Summary:

Key Findings

- GEO-CAPE Observation Operations Simulator developed
- Hosted Payload data handling and potential cost savings examined
- Candidate cloud detection algorithms identified, including value of SWIR band 1375nm
- Feasibility established for
 - Cloud threshold settings and forecast constraints, incorporating marginal scene handling
 - Onboard processing of cloud detection to <u>not</u> downlink marginal observations that fail cloud threshold (reduce data handling costs)
 - Cost of onboard processing capability with 2015 technology

Use GSFC Observation Ops Simulator Tool (http://geocape.herokuapp.com)

- Examine "What If" scenarios incorporating actual cloud forecast data for example/fixed targets
- Characterize instrument scene based on foot print center point to generate target observation requests

Possible Follow-on Activities

- Integrate scheduler with simulator to enable live simulations with dynamic targets (1-2 month)
- Update Simulator tool per user feedback (days to weeks)
- Analyze VNIR Band Study for High Cloud Detection (1-2 months)
- Research Commercial Vendor Communication Capabilities, Cost & API (1-2 months)

01

02

03

"Now is no time to think of what you do not have. Think of what you can do with what there is."

Ernest Hemingway

01

02

03

04

http://geocape.herokuapp.com

<u>pat@cappelaere.com</u> <u>stuart.w.frye@nasa.gov</u>

BACKUP SLIDES

01

02

03

COMMERCIAL DOWNLINK COST (DOD)

This table reflects current DOD prices for Commercial Satellite Access. NASA costs have been assumed to be comparable

Current Satel Conversion R	0.1	AOR	MHz	Mbps	Cost	Cost per MHz	Mbps to MHz
IS-20	Ext Ku	AFG	60	100	\$200,000	\$3,333	1.67
IS-17	Ku	ME Inroutes	8.1	13.5	\$27,000	\$3,333	1.67
IS-17	Ku	ME Outroutes	5 24.2	31.5	\$63,000	\$2,603	1.30
IS-17	C	ME - Oman	36	64	\$128,000	\$3,556	1.78

SATELLITE INTERNET COST (IDIRECT)

Coverage CONUS

Source: http://www.groundcontrol.com/US_Canada_Satellite_Internet.htm

750GB/month, *40 sites* \$56K/month

\$0.14 per MB

01

02

03

CLOUD DETECTION ALGORITHMS DETAILS

LANDSAT-7 BANDS USED FOR CLOUD DETECTION

Band Number	Wavelength (Range)	Spatial Resolution (in meters)
2	0.52-0.60	30
3	0.63-0.69	30
4	0.77-0.90	30
5	1.55-1.75	30
6 (Thermal IR)	10.40-12.50	60 (30 after 02/2010)

EO-1/Hyperion Bands Used for Cloud Detection

Band Number	Wavelength (Central)	Spatial Resolution (in meters)
21	0.56	30
31	0.66	30
51	0.86	30
110	1.25	30
123	1.38	30
150	1.65	30

GOES Bands Used for Cloud Detection

Band Number	Wavelength (Range)	Spatial Resolution (in kilometers)
2	3.8 – 4.0	4 km
4	10.2 - 11.2	4 km
5	11.5 – 12.5	4 km
6	12.9 – 13.7	4 km

Landsat-8 Bands Used for Cloud Detection

Band Number	Wavelength (Range)	Spatial Resolution (in meters)
3	0.53 - 0.59	30 m
4	0.64 - 0.67	30 m
5	0.85 - 0.88	30 m
6	1.57 - 1.65	30 m
9	1.36-1.38	30 m
10	10.60 – 11.19	100 m * (30 m)
11	11.50 - 12.51	100 m * (30m)

^{*} TIRS bands are acquired at 100 meter resolution, but are resampled to 30 meter in delivered data product.

MODIS Bands Used for Cloud Detection

Band Number	Wavelength (Central)	Spatial Resolution (in meters)
1	0.645	250 m
2	0.858	250 m
5	1.240	500 m
6	1.640	500 m
7	2.130	500 m
20	3.750	500 m
31	11.030	500 m
26	1.375	500 m

REFERENCES (1 of 2)

References for Cloud Detection Algorithms: N. Memarsadeghi, "A Review of Landsat-7 and EO-1 Cloud Detection Algorithms," on the Imagepedia section of the IMAGESEER website, https://imageseer.nasa.gov/imagepedia/Imagepedia 7 CloudDetection Nargess Jan2011.pdf

M. Griffin, H. Burke, D. Mandl, and J. Miller. "Cloud Cover Detection Algorithm for EO-1 Hyperion Imagery" in 2003 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), July 2003, vol. 1, pages: 86-89. Cloud Detection.

T. Doggett, R. Greeley, S. Chien, R. Castano, B. Cichy, A. G. Davies, G. Rabideau, R. Sherwood, D. Tran, V. Baker, J. Dohm, and F. Ip, "Autonomous detection of cryospheric change with hyperion on-board Earth Observing-1", Remote Sensing of Environment, Vol. 101, Issue 4, April 2006, pages 447-462.

Doggett_et_al, Correspondences with Thomas Doggett, January-April, 2008.

Correspondences with Michael K. Griffin, MIT Lincoln Laboratory, August 2010.

EO-1 Website (http://eo1.gsfc.nasa.gov/), EO-1 Preliminary Technology and Science Validation Report, http://eo1.gsfc.nasa.gov/new/validationReport/index.html#part14, and Cloud detection related publications and presentations listed on above link under Part 7 (Sensor Web/ Test bed Initiatives, Section 5.

Hyperion cloud detection algorithm (General Overview):

http://eo1.gsfc.nasa.gov/new/validationReport/Technology/SensorWebs/Final%20Rpt Appendix Cloud%20Cover%20Val.ppt

E. El-Araby, T. El-Ghazawi, J. Le Moigne, and R. Irish, "Reconfigurable Processing for Satellite On-Board Automatic Cloud Cover Assessment (ACCA)", Journal of Real Time Image Processing, 2009, Vol. 4, No. 3, pp. 245-259. Landsat-Cloud Detection.

ACCA algorithm (General Overview): http://landsathandbook.gsfc.nasa.gov/pdfs/ACCA_slides.pdf

REFERENCES (2 of 2)

Landsat Handbook (http://landsathandbook.gsfc.nasa.gov/), ACCA Algorithm:
http://landsathandbook.gsfc.nasa.gov/pdfs/ACCA_slides.pdf

Landsat facts: http://geo.arc.nasa.gov/sge/landsat/l7.html

G. Jedlovec, "Automated Detection of Clouds in Satellite Imagery", in Advances in Geoscience and Remote Sensing, Edited by G. Jedlovec, 2009.

M.D. King et al, "Cloud Retrieval Algorithms for **MODIS**: Optical Thickness, Effective Particle Radius, and Thermodynamic Phase", MODIS Algorithm Theoretical Basis Document, 1997.

S. Ackerman et al ("Discriminating Clear-Sky from Cloud with MODIS," MODIS Algorithm Theoretical Basis Document, 2010.

References for Cloud Predictions:

- Global Cloud Cover for Assessment of Optical Satellite Observations Opportunities: A HyspIRI Case Study, M. Mercury, R. Green, et al Remote Sensing of Environment journal 126 (2012) 62-71
 - Climatic Atlas of Clouds [http://www.atmos.washington.edu/CloudMap/]
- GEWEX Study: Assessment of Global Cloud Data Sets from Satellites [http://www.wcrp-climate.org/documents/GEWEX Cloud Assessment 2012.pdf]
 - Trends in Global Cloud Cover in Two Decades of HIRS Observations [http://journals.ametsoc.org/doi/pdf/10.1175/JCLI3461.1]
 - Empirical experience from EO-1 tasking. Formal simulation may be required to firm up the threshold numbers

GEO-CAPE Oceans STM

Draft v.4.6 - Feb. 28, 2013

		020 0.112 0			•	
Science Focus	Science Questions	Approach Science Ouestion	Measurement Requirements	Instrument Requirements	Platform Requirem.	Ancillary Data Requirem
Short-Term Processes	How do short-term coastal and open ocean processes interact with and influence larger scale physical, biogeochemical and ecosystem dynamics? (OBB 1)	GEO-CAPE will observe coastal regions at sufficient temporal and spatial scales to resolve near-shore processes, tides, coastal fronts, and eddies, and track carbon pools and pollutants. Two complementary operational modes will be employed: (1) survey mode for evaluation of diurnal to interannual variability of constituents, rate measurements and hazards for estuarine and continental shelf and slope regions with linkages to	Water-leaving radiances in the near-UV, visible & NIR for separating absorbing & scattering constituents & chlorophyll fluorescence Product uncertainty TBD Temporal Resolution:	Spectral Range: Hyperspectral UV-VIS-NIR • Threshold: 345-1050 nm; 2 SW bands 1245 & 1640 nm • Baseline: 340-1100 nm; 3 SWIF bands 1245, 1640, 2135 nm • Spectral Sampling & Resolutio • Threshold: UV-Vis-NIR: ≤2 & ≤5	coastal waters adjacent to the continental U.S., North, Central and South America	Western hemisphere data sets from models, missions, or field observations Measurement Requirements (1) Ozone (2) Total water
Land- Ocean Exchange	How are variations in exchanges across the land- ocean interface related to changes within the watershed, and how do such exchanges influence coastal and open ocean biogeochemistry and ecosystem dynamics? (OBB 1 & 2; CCSP 1 & 3)	open-ocean processes at appropriate spatial scales, and (2) targeted, high-frequency sampling for observing episodic events including evaluating the effects of diurnal variability on upper ocean constituents, assessing the rates of biological processes and coastal hazards. Measurement objectives for both modes include: (a) Quantify dissolved and particulate carbon pools and related rate measurements such as export production, air-sea CO2 exchange, net community production, respiration, and photochemical oxidation	Targeted Events: • Threshold: ≤1 hour • Baseline: ≤0.5 hour Survey Coastal U.S.: • Threshold: ≤3 hours • Baseline: ≤1 hour Regions of Special Interest (RSI): Threshold: ≥1 RSI 3 scans/day • Baseline: multiple RSI 3 scans/day	400-450nm: ≤0.4 & ≤0.8nm (for N at spatial resolution of 750x750m nadir); SWIR resolution: ≤20-40 r • Baseline: UV-ViS-NIR: ≤0.25 & 0 nm; SWIR: ≤20-50 nm Signal-to-Noise Ratio (SNR) at • Threshold: ≥1000 for 10 nm FV ≥600 for 40 nm FWHM (800-900 FWHM (900-1050 nm); ≥250 and 1640 nm (20 & 40 nm FWHM); ≥8	O₂ day and download of full spatial data and spectral data. Ltyp(70° SZA): VHM (350-800 nm); nm); ≥300 for 40 nm ≥180 for 1245 & 500 NO₂ band.	vapor (3) Surface wind velocity (4) Surface barometric pressure (5) Vicarious calibration & validation - coastal (6) Full prelaunch characterization (7) Cloud cover Science
Impacts of Climate Change & Human Activity	How are the productivity and biodiversity of coastal ecosystems changing, and how do these changes relate to natural and anthropogenic forcing, including local to regional impacts of climate variability? (OBB 1, 2 & 3; CCSP 1 & 3)	of dissolved organic matter. (b) Quantify phytoplankton properties: biomass, pigments, functional groups (size/taxonomy/Harmful Algal Blooms (HABs)), daily primary productivity using bio-optical models, vertical migration, and chlorophyll fluorescence. (c) Measure the inherent optical properties of coastal ecosystems: absorption and scattering of particles phytoplankton and detritus, CDOM absorption. (d) Estimate upper ocean particle characteristics including particle abundance and particle size distribution.	Other coastal and large inland bodies of water within ocean color FOR: • Baseline: ≤3 hours Spatial Resol. (nadir): • Threshold: ≤375 x 375 m • Baseline: ≤250 x 250 m Field of Regard for Ocean Color Retrievals: 60°N to 60°S; 155°W to 35°W	Baseline: ≥1500 for 10 nm (350 SWIR and NO ₂ bands same as the 2135nm (50nm FWHM) Threshold: Aggregate SWIR bapixels to meet SNR; Baseline: Note to be supported by the second by the secon	areshold; ≥100 for ands to 2x2 GSD to aggregation. hreshold: ≥25,000 min S imaging	Requirements (1) SST (2) SSH (3) PAR (4) UV solar irradiance (5) MLD (6) Air/Sea pCO2 (7) pH (8) Ocean circulation (9) Tidal & other coastal currents (10) Aerosol
Impacts of Airborne- Derived Fluxes	How do airbornederived fluxes from precipitation, fog and episodic events such as fires, dust storms & volcanoes affect the ecology and biogeochemistry of coastal and open ocean ecosystems? (OBB 1 & 2; CCSP 1)	(e) Detect, quantify and track hazards including HABs and petroleum-derived hydrocarbons. GEO-CAPE observations will be integrated with field measurements, models and other satellite data: (1) to derive coastal carbon budgets and determine whether coastal ecosystems are sources or sinks of carbon to the atmosphere, (2) to quantify the responses of coastal ecosystems and biogeochemical cycles to river discharge, land use change, airborne-derived fluxes, hazards and climate change, and	Coastal Coverage*: width from coast to ocean: • Threshold: min 375 km • Baseline: min 500 km Scanning Priority: • Threshold: 1. U.S. Coastal Waters* 3 to 8 times per day 2. Other coastal and large inland bodies of water 3. Open ocean waters within FOR	Pointing Knowledge LOS Pointing Accuracy LOS Pointing Stability LOS Geolocation Reconstr. Non-saturating detector array(s On-board Calibration: • Lunar: Threshold: minimum m Baseline: same as threshold • Solar: Threshold: none; Baseli Polarization Sensitivity: <1.0% Relative Radiometric Precision • Threshold: ≤1% through mission	<pre>100%</pre>	deposition (11) run-off loading in coastal zone (12) Wet deposition in coastal zone (13) Wave height & surface wind speed Validation Requirements Conduct high frequency field measurements
Episodic Events & Hazards	How do episodic hazards, contaminant loadings, and alterations of habitats impact the biology and ecology of the coastal zone? (OBB 4)	(3) to enhance management decisions with improved information on the coastal ocean, such as required for Integrated Ecosystem Assessment (IEA), protection of water quality, and mitigation of harmful algal blooms, oxygen minimum zones, and ocean acidification. 3 5	download from other sensor making. Pre-launch characterization radiometric precision	• Baseline: ≤0.5% through mission Mission lifetime: Threshold: 3 yes Baseline only: Near Real-Time size (GOES, etc.) for on-board autonom: Adequate to achieve the require	on lifetime ears; Goal: 5 years catellite data omous decision	and modeling to validate GEO- CAPE retrievals from river mouths to beyond the edge of the continental margin.

GEO-CAPE Science Questions are traceable to NASA's OBB Advanced Planning Document (OBB) and the U.S. Carbon Cycle Science Plan (CCSP).

^{*} Coastal coverage within field-of-view (FOV) includes major estuaries and rivers such as Chesapeake Bay, Lake Pontchartrain/Mississippi River delta and the Laurentian Great Lakes, e.g., the Chesapeake Bay coverage region would span west to east from Washington D.C. to several hundred kilometers offshore (total width of 375 km threshold).