A Brief Introduction to Neural Network Models

Lei Wu leiwu@princeton.edu

July 1, 2019

Outline

- Classical Networks
 - Fully Connected Networks
 - Convolutional Networks
 - Recurrent Networks
- Training of Neural networks
 - Backpropogation
 - Gradient Vanishing
- Modern Deep Networks

Outline

- Classical Networks
 - Fully Connected Networks
 - Convolutional Networks
 - Recurrent Networks
- Training of Neural networks
 - Backpropogation
 - Gradient Vanishing
- Modern Deep Networks

Two-layer networks

ullet A two-layer network defines function mapping from \mathbb{R}^d to \mathbb{R}^k

$$f(x) = \sum_{i=1}^{m} a_k \sigma(b_k \cdot x + c_k)$$
$$= A^T \sigma(Bx)$$

Nonlinear Activation Functions

Saturating	Sigmoid	$\frac{1}{1+e^{-x}}$
	Tanh	$\frac{e^x - e^{-x}}{e^x + e^{-x}}$
Non-saturating	ReLU	$\max(0,x)$
	Leaky ReLU	$\max(ax, x)$, with $a = 0.01$
	Parametric ReLU	$\max(ax, x)$, with a learnable

Table: Commonly used activation functions

Multi-layer Fully Connected Networks

Multi-layer Fully Connected Networks

Let

$$x^{0} = x$$
$$x^{\ell+1} = \sigma(A^{\ell}x^{\ell} + b^{\ell}),$$

A L-layer network is defined as $f(x) = x^L$. It can also be written as

$$f(x) = A^{L}\sigma(A^{L-1}\sigma(A^{L-2}\cdots\sigma(A^{1}x)))$$

4回 + 4回 + 4 = ト 4 = り へ の 。

Convolutional Networks

Convolutional networks are similar to fully connected networks.

$$f(x) = A^{L}\sigma(A^{L-1}\sigma(A^{L-2}\cdots\sigma(A^{1}x))).$$

The only difference is that $A^{\ell}x = x * w$ is convolutional transformation.

• Input: $\boldsymbol{x} = (x_1, x_2, \dots, x_T)$, with $x_t \in \mathbb{R}^{d_x}$.

- Input: $\boldsymbol{x} = (x_1, x_2, \dots, x_T)$, with $x_t \in \mathbb{R}^{d_x}$.
- Code: $h = (h_1, h_2, \dots, h_T)$, with $h_t \in \mathbb{R}^{d_h}$ encodes the information of x_1, x_2, \dots, x_t through

$$h_t = f(x_t, h_{t-1}).$$

- Input: $\boldsymbol{x} = (x_1, x_2, \dots, x_T)$, with $x_t \in \mathbb{R}^{d_x}$.
- Code: $h=(h_1,h_2,\ldots,h_T)$, with $h_t\in\mathbb{R}^{d_h}$ encodes the information of x_1,x_2,\ldots,x_t through

$$h_t = f(x_t, h_{t-1}).$$

• Output: $y = (y_1, y_2, ..., y_T)$ with

$$y_t = g(y_{t-1}, h_t)$$

- Input: $x = (x_1, x_2, \dots, x_T)$, with $x_t \in \mathbb{R}^{d_x}$.
- Code: $h=(h_1,h_2,\ldots,h_T)$, with $h_t\in\mathbb{R}^{d_h}$ encodes the information of x_1,x_2,\ldots,x_t through

$$h_t = f(x_t, h_{t-1}).$$

• Output: $y = (y_1, y_2, ..., y_T)$ with

$$y_t = g(y_{t-1}, h_t)$$

• Parameterization: Use fully or convolutional networks to parameterize *f* and *q*.

Vanilla Recurrent Network

• Update Formulation:

$$h_t = \tanh(W_{hh}h_{t-1} + W_{hx}x_t)$$
$$y_t = W_{yh}h_t$$

Vanilla Recurrent Network

• Update Formulation:

$$h_t = \tanh(W_{hh}h_{t-1} + W_{hx}x_t)$$

$$y_t = W_{yh}h_t$$

Visualization:

Update Formulation:

$$\begin{split} h_t &= o_t \odot c_t \\ c_t &= (1-f_t) \odot c_{t-1} + i_t \odot \tanh \left(W_c x_t + U_c h_t + b_c\right) \\ \begin{pmatrix} f_t \\ i_t \\ o_t \end{pmatrix} &= \operatorname{sigmoid} \begin{pmatrix} W_f x_t + U_f h_{t-1} + b_f \\ W_i x_t + U_i h_{t-1} + b_i \\ W_o x_t + U_o h_{t-1} + b_o \end{pmatrix} \end{split}$$

where $o_t, f_t, i_t \in [0, 1]$ represent the output gate, forget gate and input gate, respectively.

Update Formulation:

$$\begin{split} h_t &= o_t \odot c_t \\ c_t &= (1-f_t) \odot c_{t-1} + i_t \odot \tanh \left(W_c x_t + U_c h_t + b_c\right) \\ \begin{pmatrix} f_t \\ i_t \\ o_t \end{pmatrix} &= \operatorname{sigmoid} \begin{pmatrix} W_f x_t + U_f h_{t-1} + b_f \\ W_i x_t + U_i h_{t-1} + b_i \\ W_o x_t + U_o h_{t-1} + b_o \end{pmatrix} \end{split}$$

where $o_t, f_t, i_t \in [0, 1]$ represent the output gate, forget gate and input gate, respectively.

• Key Factors:

Update Formulation:

$$\begin{split} h_t &= o_t \odot c_t \\ c_t &= (1-f_t) \odot c_{t-1} + i_t \odot \tanh \left(W_c x_t + U_c h_t + b_c\right) \\ \begin{pmatrix} f_t \\ i_t \\ o_t \end{pmatrix} &= \operatorname{sigmoid} \begin{pmatrix} W_f x_t + U_f h_{t-1} + b_f \\ W_i x_t + U_i h_{t-1} + b_i \\ W_o x_t + U_o h_{t-1} + b_o \end{pmatrix} \end{split}$$

where $o_t, f_t, i_t \in [0, 1]$ represent the output gate, forget gate and input gate, respectively.

- Key Factors:
 - The extra state c_t is used to store long time memory.

Update Formulation:

$$\begin{aligned} h_t &= o_t \odot c_t \\ c_t &= (1-f_t) \odot c_{t-1} + i_t \odot \tanh \left(W_c x_t + U_c h_t + b_c\right) \\ \begin{pmatrix} f_t \\ i_t \\ o_t \end{pmatrix} &= \operatorname{sigmoid} \begin{pmatrix} W_f x_t + U_f h_{t-1} + b_f \\ W_i x_t + U_i h_{t-1} + b_i \\ W_o x_t + U_o h_{t-1} + b_o \end{pmatrix} \end{aligned}$$

where $o_t, f_t, i_t \in [0, 1]$ represent the output gate, forget gate and input gate, respectively.

• Key Factors:

- The extra state c_t is used to store long time memory.
- Gate mechanism.

Outline

- Classical Networks
 - Fully Connected Networks
 - Convolutional Networks
 - Recurrent Networks
- Training of Neural networks
 - Backpropogation
 - Gradient Vanishing
- Modern Deep Networks

Empirical Risk Minimization:

Cost function:

$$J(\theta) := \frac{1}{n} \sum_{i=1}^{n} \ell(f(x_i; \theta), y_i)$$

Optimizer:

$$g_t = \frac{1}{|S_t|} \sum_{i \in S_t} \nabla_{\theta} \ell(f(x_i; \theta^t), y_i)$$
$$\theta_{t+1} = \theta_t + G(g_t; \eta),$$

where G can correspond to SGD, Adam, RMSProp, etc..

• Let
$$z^\ell = A^\ell \sigma(z^{\ell-1}) + b^\ell, x^\ell = \sigma(z^\ell)$$
, and $x^0 = x, f(x) = z^L.$

- Let $z^\ell = A^\ell \sigma(z^{\ell-1}) + b^\ell, x^\ell = \sigma(z^\ell)$, and $x^0 = x, f(x) = z^L.$
- Let E = l(f(x), y). Then

$$\begin{split} \frac{\partial E}{\partial b^{\ell}} &= \frac{\partial E}{\partial z^{\ell}} \\ \frac{\partial E}{\partial A^{\ell}} &= \frac{\partial E}{\partial z^{\ell}} \cdot \left(x^{\ell-1} \right)^T \end{split}$$

- Let $z^\ell = A^\ell \sigma(z^{\ell-1}) + b^\ell, x^\ell = \sigma(z^\ell)$, and $x^0 = x, f(x) = z^L.$
- Let E = l(f(x), y). Then

$$\begin{split} \frac{\partial E}{\partial b^{\ell}} &= \frac{\partial E}{\partial z^{\ell}} \\ \frac{\partial E}{\partial A^{\ell}} &= \frac{\partial E}{\partial z^{\ell}} \cdot \left(x^{\ell-1} \right)^T \end{split}$$

By chain rule,

$$\frac{\partial E}{\partial z^{l-1}} = \frac{\partial E}{\partial z^{\ell}} \frac{\partial z^{\ell}}{\partial x^{\ell-1}} \frac{\partial x^{\ell-1}}{\partial z^{\ell-1}}$$
$$= \sigma'(z^{\ell-1}) \odot (A^{\ell})^T \frac{\partial E}{\partial z^{\ell}}$$

with $\frac{\partial E}{\partial z^L} = l'(f, y)$.

 \bullet Let $\delta^\ell = \frac{\partial E}{\partial z^l}$ denote the gradient signal. We have

 \bullet Let $\delta^\ell = \frac{\partial E}{\partial z^l}$ denote the gradient signal. We have

Forward Propagation

$$z^0 = x$$

$$z^\ell = A^\ell \sigma(z^{\ell-1}) + b^\ell$$

ullet Let $\delta^\ell=rac{\partial E}{\partial z^l}$ denote the gradient signal. We have

Forward Propagation

$$z^{0} = x$$
$$z^{\ell} = A^{\ell} \sigma(z^{\ell-1}) + b^{\ell}$$

Back Propagation

$$\begin{split} \delta^L &= l'(f,y) \\ \delta^{\ell-1} &= \sigma'(z^{\ell-1}) \odot (A^\ell)^T \delta^\ell \end{split}$$

ullet Let $\delta^\ell=rac{\partial E}{\partial z^l}$ denote the gradient signal. We have

Forward Propagation

$$z^{0} = x$$
$$z^{\ell} = A^{\ell} \sigma(z^{\ell-1}) + b^{\ell}$$

Back Propagation

$$\begin{split} \delta^L &= l'(f,y) \\ \delta^{\ell-1} &= \sigma'(z^{\ell-1}) \odot (A^\ell)^T \delta^\ell \end{split}$$

• Let $\delta^{\ell} = \frac{\partial E}{\partial z^{\ell}}$ denote the gradient signal. We have

Forward Propagation

$$z^{0} = x$$
$$z^{\ell} = A^{\ell} \sigma(z^{\ell-1}) + b^{\ell}$$

Back Propagation

$$\begin{split} \delta^L &= l'(f,y) \\ \delta^{\ell-1} &= \sigma'(z^{\ell-1}) \odot (A^\ell)^T \delta^\ell \end{split}$$

Gradient Vanishing:

$$\delta^\ell = [\sigma'(z^\ell)\odot(A^{\ell+1})^T][\sigma'(z^{l+1})\odot(A^{\ell+2})^T]\cdots[\sigma'(z^{L-1})\odot(A^L)^T\delta^L]$$

The value is approximately the multiplication of L-l term. If $\sigma'(z^\ell) < 1$ or $\|A^\ell\|_2 < 1$, then δ^ℓ will be exponentially small.

Gradient Vanishing:

$$\delta^\ell = [\sigma'(z^\ell)\odot(A^{\ell+1})^T][\sigma'(z^{l+1})\odot(A^{\ell+2})^T]\cdots[\sigma'(z^{L-1})\odot(A^L)^T\delta^L]$$

The value is approximately the multiplication of L-l term. If $\sigma'(z^\ell)<1$ or $\|A^\ell\|_2<1$, then δ^ℓ will be exponentially small.

• Depth: $\delta^{\ell} \approx (\sigma'(z) ||A||_2)^{L-\ell}$.

Gradient Vanishing:

$$\delta^\ell = [\sigma'(z^\ell)\odot(A^{\ell+1})^T][\sigma'(z^{l+1})\odot(A^{\ell+2})^T]\cdots[\sigma'(z^{L-1})\odot(A^L)^T\delta^L]$$

The value is approximately the multiplication of L-l term. If $\sigma'(z^\ell)<1$ or $\|A^\ell\|_2<1$, then δ^ℓ will be exponentially small.

• Depth: $\delta^{\ell} \approx (\sigma'(z) ||A||_2)^{L-\ell}$.

Gradient Vanishing:

$$\delta^\ell = [\sigma'(z^\ell)\odot(A^{\ell+1})^T][\sigma'(z^{l+1})\odot(A^{\ell+2})^T]\cdots[\sigma'(z^{L-1})\odot(A^L)^T\delta^L]$$

The value is approximately the multiplication of L-l term. If $\sigma'(z^\ell)<1$ or $\|A^\ell\|_2<1$, then δ^ℓ will be exponentially small.

• Depth: $\delta^{\ell} \approx (\sigma'(z) ||A||_2)^{L-\ell}$.

Observation

The vanishing gradient is the key difficulty to training deep neural networks.

Outline

- Classical Networks
 - Fully Connected Networks
 - Convolutional Networks
 - Recurrent Networks
- 2 Training of Neural networks
 - Backpropogation
 - Gradient Vanishing
- Modern Deep Networks

ImageNet Classification top-5 error (%)

.

ResNet: Basic Structure

Vanilla net

$$x^{n+1} = F(x^n; \theta)$$

Residual net

$$x^{n+1} = F(x^n; \theta) + x^n$$

ResNet: The Importance of Identity Connection

•
$$x^{\ell+1} = x^{\ell} + F(x^{\ell})$$

•
$$x^{L} = x^{\ell} + \sum_{i=\ell}^{L-1} F(x^{i})$$

$$\begin{array}{l} \bullet \ \, \frac{\partial E}{\partial x^{\ell}} = \\ \quad \, \frac{\partial E}{\partial x^{L}} \left(1 + \frac{\partial}{\partial x^{\ell}} \sum_{i=\ell}^{L-1} F(x^{i}) \right) \end{array}$$

Observation

The skip connection can alleviate the vanishing of gradient.