Agrégation interne 2005, épreuve 1

Préambule

On note \mathbb{N} , \mathbb{Z} , \mathbb{R} , \mathbb{C} l'ensemble des entiers naturels, des entiers relatifs, des nombres réels et des nombres complexes respectivement.

On désigne par \mathcal{P} le plan affine euclidien \mathbb{R}^2 muni du produit scalaire euclidien usuel $\langle \cdot, \cdot \rangle$ et de la norme associée $\|\cdot\|$. Le plan vectoriel \mathbb{R}^2 est orienté de sorte que la base canonique $(\overrightarrow{\varepsilon}_1, \overrightarrow{\varepsilon}_2)$ soit directe. On identifiera \mathbb{R}^2 et \mathbb{C} par l'application $(x, y) \mapsto x + iy$. Si N et P sont deux points distincts de \mathcal{P} , on désigne par NP la droite affine passant par N et P.

Soit K une partie compacte et convexe de \mathcal{P} dont l'intérieur K_0 n'est pas vide. On note B la frontière de K dans \mathcal{P} , appelée aussi bord de K. On admettra la propriété suivante : une droite passant par un point de K_0 rencontre K selon un segment [N,P], et l'on a $K_0 \cap NP = [N,P]$ et $B \cap NP = \{N,P\}$.

L'objet de ce problème est l'étude du trajet d'un rayon lumineux (ou encore d'une boule de billard assimilée à un point) issu d'un point M_0 intérieur à K, dirigé par un vecteur \overrightarrow{v} donné, $\overrightarrow{v} \neq \overrightarrow{0}$, et qui se réfléchit selon les lois de l'optique géométrique sur le bord B de K.

Plus précisément, on appelle trajectoire de $(M_0, \overrightarrow{v})$ la suite $(M_n)_{n\geq 0}$ constituée de M_0 et des points M_1, M_2, \cdots définis, pour $n \geq 1$, par les quatre propriétés suivantes :

- (1) pour tout $n \ge 1$, le point M_n appartient à B;
- (2) les vecteurs \overrightarrow{v} et $\overrightarrow{M_0M_1}$ sont colinéaires de même sens;
- (3) pour tout $n \ge 1$, on a $M_{n-1} \ne M_n$;
- (4) la normale à B en M_n existe et c'est la bissectrice intérieure de l'angle en M_n du triangle $M_{n-1}M_nM_{n+1}$.

On admettra que la donnée de $(M_0, \overrightarrow{v})$ définit (sous réserve de la condition (4) une unique trajectoire $(M_n)_{n>0}$.

Soit p un entier naturel non nul, on dit que la trajectoire $(M_n)_{n\geq 0}$ est périodique de période p si $M_{n+p}=M_n$ pour tout entier $n\geq 1$.

I. Nombre de rotations d'une ligne polygonale fermée

Soit k un entier ≥ 1 . Dans tout le problème, on suppose que le bord B de l'ensemble compact convexe K est paramétré par

$$f:t\mapsto e^{it}\rho\left(t\right) ,$$

où ρ est une fonction de la variable réelle t, à valeurs strictement positives, de classe \mathcal{C}^k et 2π -périodique.

1. Abscisse curviligne sur B. Soit g la fonction définie sur \mathbb{R} par

$$g(t) = \int_{0}^{t} \sqrt{\rho(u)^{2} + \rho'(u)^{2}} du.$$

- (a) Démontrer que g est un \mathcal{C}^k -difféomorphisme de \mathbb{R} sur \mathbb{R} .
- (b) Prouver que $g(t + 2\pi) = g(t) + g(2\pi)$ pour tout nombre réel t. On définit un paramétrage de B, en posant, pour $s \in \mathbb{R}$,

$$M\left(s\right) = \left(f \circ g^{-1}\right)\left(s\right)$$

et on pose $L = g(2\pi)$.

- (c) Calculer la norme euclidienne de $\frac{\overrightarrow{dM}}{ds}(s)$ (vecteur dérivé de M par rapport à s). Interpréter géométriquement L.
- (d) Démontrer que l'application $s \mapsto M(s)$ est L-périodique, et que $M(s_1) = M(s_2)$ si, et seulement si, $s_1 s_2 \in L\mathbb{Z}$.
- 2. Nombre de rotations d'une ligne polygonale fermée. Soit p un entier ≥ 1 et soient N_1, N_2, \dots, N_{p+1} des points de B.
 - (a) Choisissons un nombre réel s_1 tel que $M(s_1) = N_1$. Démontrer qu'il existe une unique suite (s_2, \dots, s_{p+1}) de nombres réels telle que $M(s_{i+1}) = N_{i+1}$ et $s_i \leq s_{i+1} \leq s_i + L$, pour $1 \leq i \leq p$.
 - (b) Supposons $N_{p+1} = N_1$. Prouver alors que $m = \frac{s_{p+1} s_1}{L}$ est un entier indépendant du choix de s_1 tel que $M(s_1) = N_1$. L'entier m est appelé nombre de rotations de la ligne polygonale fermée $N_1, N_2, \dots N_{p-1}, N_p, N_1$. Comparer m et p.
- 3. Dessiner, sans justification, une ligne polygonale fermée de 7 sommets, inscrite dans un ensemble compact convexe du plan, dont le nombre de rotations est 3.

II. Théorème de Birkhoff

Les notations et les hypothèses sont celles du préambule et de la partie **I**. En particulier, on considère le paramétrage de B par $s \mapsto M(s)$ défini dans la partie **I**. On suppose en outre dans cette partie que trois points distincts de B ne sont jamais alignés.

L'objet des questions qui suivent est de prouver que, si m et p sont des entiers satisfaisant à $1 \le m \le p-1$, il existe au moins une trajectoire $(M_n)_{n\ge 0}$ périodique de période p et telle que le nombre de rotations de la ligne polygonale fermée $M_1, M_2, \dots, M_p, M_1$ soit égal à m. Une telle trajectoire est dite de type (m, p) [la définition de « période » d'une trajectoire est donnée dans le Préambule, celle de « nombre de rotations » dans la question **I.2.b.**].

1. On définit une application ψ de \mathbb{R}^2 dans \mathbb{R} en posant

$$\psi(s, s') = ||\overrightarrow{M(s)} \overrightarrow{M(s')}||.$$

On pose aussi $\Omega = \{(s, s') \in \mathbb{R}^2 \mid (s' - s) \notin L\mathbb{Z}\}$; on admettra que l'ensemble Ω est ouvert dans \mathbb{R}^2 .

- (a) Prouver que l'application ψ est continue sur \mathbb{R}^2 et de classe \mathcal{C}^k sur Ω .
- (b) Exprimer, lors qu'elles existent, les dérivées partielles de ψ à l'aide d'angles que l'on préciser a.
- 2. On suppose p=2.
 - (a) Démontrer que la fonction ψ admet un maximum absolu sur \mathbb{R}^2 .
 - (b) Prouver l'existence d'une trajectoire de type (1, 2).
- 3. On suppose $p \geq 3$ et $1 \leq m \leq p-1$. On désigne par W l'ensemble des points (s_1, \dots, s_p) de \mathbb{R}^p satisfaisant aux conditions

$$0 \le s_{i+1} - s_i \le L$$
 pour $i = 1, \dots, p-1$ et $(m-1) L \le s_p - s_1 \le mL$.

On définit une fonction F sur W en posant

$$F(s_1, \dots, s_p) = \psi(s_1, s_2) + \psi(s_2, s_3) + \dots + \psi(s_{p-1}, s_p) + \psi(s_p, s_1).$$

- (a) Construire un élément $\alpha = (\alpha_1, \dots, \alpha_p)$ de W tel que l'ensemble constitué par les points $M(\alpha_i)$, $1 \le i \le p$, possède au moins deux éléments.
- (b) Pour simplifier les notations, posons $A_i = M(\alpha_i)$ pour $1 \le i \le p$. Démontrer que si $A_1 \ne A_2$ et $A_2 = A_3$, il existe un élément α' de W tel que $F(\alpha') > F(\alpha)$. En déduire que, si deux points consécutifs de la suite $A_1, A_2, \dots, A_p, A_1$ sont confondus, il existe un élément α' de W tel que $F(\alpha') > F(\alpha)$.
- (c) Démontrer que la fonction F admet un maximum absolu strictement positif sur W.
- (d) Prouver l'existence d'une trajectoire de type (m, p).

III. Billard elliptique

Soient a et b deux nombres réels tels que 0 < b < a; posons $c = \sqrt{a^2 - b^2}$. On suppose dans cette partie que le bord B de K est l'ellipse de foyers O et $O' = O + 2c \overrightarrow{\varepsilon}_1$, de demi axes a et b. On admettra que l'ellipse B est paramétrée par

$$f(t) = e^{it} \frac{b^2}{a - c\cos t},$$

et que B est aussi l'ensemble des points N du plan \mathcal{P} tels que

$$\|\overrightarrow{ON}\| + \|\overrightarrow{O'N}\| = 2a.$$

Comme dans la partie I, on utilise le paramétrage de B par $s \mapsto M(s)$.

- 1. En dérivant l'application $s \mapsto \|\overrightarrow{OM}(s)\| + \|\overrightarrow{O'M}(s)\|$, démontrer que l'ellipse B possède une tangente en M(s) qui est la bissectrice extérieure du triangle O'M(s)O en M(s). On notera D(s) cette tangente.
- 2. Etant donnés une droite affine D de \mathcal{P} , un vecteur unitaire \overrightarrow{n} normal à D et un point P de la droite D, on considère le produit

$$\mathcal{E}(D, \overrightarrow{n}, P) = \left\langle \overrightarrow{OP}, \overrightarrow{n} \right\rangle \left\langle \overrightarrow{O'P}, \overrightarrow{n} \right\rangle.$$

(a) Démontrer que $\mathcal{E}(D, \overrightarrow{n}, P)$ ne dépend pas du choix du point P de D ni du choix du vecteur normal unitaire \overrightarrow{n} .

On appelle énergie de la droite D par rapport aux points O et O' et on note $\mathcal{E}(D)$ la valeur du produit $\mathcal{E}(D, \overrightarrow{n}, P)$.

- (b) Interpréter géométriquement la valeur absolue ainsi que le signe de l'énergie $\mathcal{E}\left(D\right)$.
- 3. Energie d'une droite D(s) tangente en M(s) à l'ellipse B. On rappelle que, pour $s \in \mathbb{R}$, on note D(s) la tangente à l'ellipse B au point M(s). On note respectivement $\phi(s)$ et $\phi'(s)$ les mesures appartenant à l'intervalle $[0,\pi]$ des angles orientés de droites (D(s), M(s)O) et (D(s), M(s)O').
 - (a) Déterminer quelle relation lie $\phi(s)$ et $\phi'(s)$. En déduire une expression de l'énergie $\mathcal{E}(D(s))$ en fonction de $\phi(s)$, de $\left\|\overrightarrow{OM}(s)\right\|$ et de $\left\|\overrightarrow{O'M}(s)\right\|$.
 - (b) Démontrer l'égalité $\mathcal{E}(D(s)) = b^2$.

4.

- (a) Déduire des résultats précédents une relation liant b, $\sin\phi\left(s\right)$, $\left\|\overrightarrow{OM}\left(s\right)\right\|$ et $\left\|\overrightarrow{O'M}\left(s\right)\right\|$.
- (b) On désigne par L le périmètre de l'ellipse B (on ne cherchera pas à calculer L). Pour $s \in \mathbb{R}$, on pose $h(s) = (\sin \phi(s))^2$. Démontrer que la fonction h est L-périodique, de classe \mathcal{C}^{∞} , et donner le tableau de ses variations sur l'intervalle [0, L]
- 5. Énergie d'une droite $D(s,\theta)$ issue d'un point M(s). Pour $s \in \mathbb{R}$ et $\theta \in [0,\pi]$, on note $D(s,\theta)$ la droite issue du point M(s) telle que $(D(s),D(s,\theta))\equiv \theta \pmod{\pi}$. Démontrer que l'énergie $\mathcal{E}(D(s,\theta))$ a pour expression

$$\mathcal{E}\left(D\left(s,\theta\right)\right) = b^{2} \frac{\left(\cos\theta\right)^{2} - \left(\cos^{2}\phi\left(s\right)\right)^{2}}{\left(\sin^{2}\phi\left(s\right)\right)^{2}}.$$

6. Etude de E(s, u).

Pour $s \in \mathbb{R}$ et $u \in [-1, 1]$, on pose $E(s, u) = \mathcal{E}(D(s, \arccos u))$, de sorte que l'on a

$$E(s, u) = \frac{b^{2}}{(\sin \phi(s))^{2}} (u^{2} - (\cos \phi(s))^{2}).$$

Déterminer les extrema globaux de la fonction E sur $\mathbb{R} \times [-1, 1]$. A quelles droites $D(s, \theta)$ correspondent-ils?

- 7. Soit $(M_n)_{n\geq 0}$ une trajectoire et soit E_0 l'énergie de la droite M_0M_1 .
 - (a) Démontrer que, pour tout $n \geq 0$, l'énergie de la droite $M_n M_{n+1}$ vaut E_0 .
 - (b) On suppose $E_0 > 0$; démontrer qu'alors les droites $M_n M_{n+1}$, pour $n \ge 0$, sont toutes tangentes à une même ellipse que l'on déterminera.

IV. La transformation T

Les hypothèses et les notations sont celles de la partie III.

Comme dans la question III.5. pour tout couple $(s, u) \in \mathbb{R} \times]-1, 1[$, on pose $\theta = \arccos u$ et on considère la droite $D(s, \theta)$ issue du point M(s) telle que

$$(D(s), D(s, \theta)) \equiv \theta \pmod{\pi}$$
.

Cette droite recoupe l'ellipse B en un point M(s'), où 0 < s' - s < L, et se réfléchit selon les lois de l'optique géométrique en une droite $D(s', \theta')$, où θ' est la mesure appartenant à l'intervalle $]0, \pi[$ de l'angle orienté de droites $(D(s'), D(s', \theta'))$.

On pose $u' = \cos \theta'$ et on définit l'application T de $\mathbb{R} \times [-1, 1]$ dans lui-même par

$$T(s, u) = (s', u') = (T_1(s, u), T_2(s, u)).$$

On admettra que l'application T est de classe C^{∞} sur $\mathbb{R} \times]-1,1[$.

On considère dans cette partie, la fonction ψ définie dans la question III.1 et la fonction E définie dans la question III.6.

- 1. Démontrer que la fonction E est invariante par T.
- 2. On définit deux fonctions G_1 et G_2 sur $\Omega' = \{(s, s') \in \mathbb{R}^2 \mid 0 < s' s < L\}$ par

$$G_1(s, s') = \left(s, -\frac{\partial \psi}{\partial s}(s, s')\right), G_2(s, s') = \left(s', \frac{\partial \psi}{\partial s'}(s, s')\right).$$

On admettra que $\frac{\partial^2 \psi}{\partial s \partial s'}$ ne s'annule jamais.

- (a) Démontrer l'égalité $T \circ G_1 = G_2$.
- (b) En déduire la valeur du déterminant jacobien de T.

3.

- (a) Démontrer qu'il existe une fonction $U: \mathbb{R} \times]0, b^2[\to]0, 1[$, de classe \mathcal{C}^{∞} , telle que E(s, U(s, r)) = r pour tout $(s, r) \in \mathbb{R} \times]0, b^2[$.
- (b) Pour $(s, r) \in \mathbb{R} \times]0, b^2[$, posons J(s, r) = (s, U(s, r)). En admettant que $T_2(s, U(s, r))$ est toujours positif, démontrer que, pour $s \in \mathbb{R}$ et $0 < r < b^2$, on a l'égalité

$$(T \circ J)(s,r) = J(T_1(s,U(s,r)),r).$$

(c) Soit E_0 un nombre réel tel que $0 < E_0 < b^2$. Pour $s \in \mathbb{R}$, on pose

$$\mu(s) = \frac{\partial U}{\partial r}(s, E_0), \ \nu(s) = T_1(s, U(s, E_0)).$$

Démontrer que, pour tout $s \in \mathbb{R}$, on a

$$\mu(s) = (\mu \circ \nu)(s) \nu'(s).$$

4. On suppose toujours $0 < E_0 < b^2$. On désigne par B' l'ellipse de foyers O et O', dont le demi petit axe vaut $b' = \sqrt{E_0}$. Pour $s \in \mathbb{R}$, on pose

$$\chi\left(s\right) = \int_{0}^{s} \mu\left(t\right) dt.$$

(a) Démontrer qu'il existe un nombre réel χ_0 (ne dépendant que de E_0) tel que, pour tout $s \in \mathbb{R}$, on ait

$$\chi\left(\nu\left(s\right)\right) = \chi\left(s\right) + \chi_{0}.$$

En déduire une condition nécessaire, portant sur χ_0 et $\chi(L)$, pour qu'il existe une trajectoire périodique $(M_n)_{n\geq 0}$ pour laquelle toutes les droites M_nM_{n+1} , $n\geq 0$, sont tangentes à l'ellipse B'.

(b) Réciproquement, démontrer que si cette condition est remplie, toute trajectoire $(M_n)_{n\geq 0}$ pour laquelle toutes les droites M_nM_{n+1} , $n\geq 0$ sont tangentes à l'ellipse B', est une trajectoire périodique.