Lecture 10

Structured Argumentation & Applications of Argumentation

Lecture Outline

- Structured Argumentation Frameworks
 - Rule-based Argumentation (ASPIC+) (Modgil and Prakken, 2014)
 - Deductive Argumentation (Besnard and Hunter, 2014)
 - Assumption Based Argumentation (Toni, 2014)
 - Defeasible Logic Programming (Garcia and Simari, 2014)
- Applications of Argumentation

Structured Argumentation

- A more detailed formalization of arguments concerned with how arguments are constructed and when an argument attacks another argument.
- Features of structured argumentation frameworks
 - Formal language for representing knowledge
 - Arguments constructed from the available knowledge
 - The premises and claim of the argument are made explicit
 - Relationship between premises and claim is formally defined
 - Attacks among arguments are formally defined
 - Defeat = Attack + Preference

ASPIC+: Main Ideas

- Arguments are inference graphs where
 - Nodes are well founded formulae of a logical language $\mathcal L$
 - Links are applications of inference rules
 - \mathcal{R}_s = **Strict** rules (ϕ_1 , ..., $\phi_n \rightarrow \phi$); or
 - \mathcal{R}_d = **Defeasible** rules $(\phi_1, ..., \phi_n \Rightarrow \phi)$
 - Reasoning starts from a knowledge base $\mathcal{K} \subseteq \mathcal{L}$

Defeat

- Attack on conclusion, premise or inference rule
- Takes into account preferences over arguments
- Acceptability of arguments: based on the semantics of AAFs

Argumentation System

- An argumentation system is a triple $AS = (\mathcal{L}, \mathcal{R}, n)$ where:
 - \mathcal{L} is a **logical language** with negation (¬)
 - $\mathcal{R} = \mathcal{R}_s \cup \mathcal{R}_d$ is a set of **strict** (ϕ_1 ,..., $\phi_n \rightarrow \phi$) and **defeasible** (ϕ_1 ,..., $\phi_n \Rightarrow \phi$) inference rules
 - $n: \mathcal{R}_d \to \mathcal{L}$ is a **naming convention** for defeasible rules
- Notation:
 - $-\phi = \neg \phi$ if ϕ does not start with a negation
 - $-\phi = \psi$ if ϕ is of the form $\neg \psi$

Argumentation Theory

- A knowledge base in $AS = (\mathcal{L}, \mathcal{R}, n)$ is a set $\mathcal{K} \subseteq \mathcal{L}$
- \mathcal{K} is a partition $\mathcal{K}_{\mathsf{n}} \cup \mathcal{K}_{\mathsf{p}}$ with:
 - \mathcal{K}_n = **necessary** premises
 - \mathcal{K}_{p} = **ordinary** premises
- An **argumentation theory** is a pair $AT = (AS, \mathcal{K})$ where AS is an argumentation system and \mathcal{K} a knowledge base in AS

Structure of an argument

- An argument A on the basis of an argumentation theory is:
 - ϕ if $\phi \in \mathcal{K}$
 - Prem(A) = $\{\phi\}$, Conc(A) = ϕ , Sub(A) = $\{\phi\}$, DefRules(A) = \emptyset
 - A_1 , ..., $A_n \rightarrow \phi$ if A_1 , ..., A_n are arguments such that there is a strict inference rule $Conc(A_1)$, ..., $Conc(A_n) \rightarrow \phi$
 - Prem(A) = Prem(A_1) $\cup ... \cup$ Prem(A_n)
 - Conc(A) = ϕ
 - Sub(A) = Sub(A_1) $\cup ... \cup$ Sub(A_n) $\cup \{A\}$
 - DefRules(A) = DefRules(A_1) $\cup ... \cup$ DefRules(A_n)
 - A_1 , ..., $A_n \Rightarrow \phi$ if A_1 , ..., A_n are arguments s.t. there is a defeasible inference rule $Conc(A_1)$, ..., $Conc(A_n) \Rightarrow \phi$
 - Prem(A) = Prem(A_1) $\cup ... \cup$ Prem(A_n)
 - Conc(A) = ϕ
 - $Sub(A) = Sub(A_1) \cup ... \cup Sub(A_n) \cup \{A\}$
 - DefRules(A) = DefRules(A_1) $\cup ... \cup$ DefRules(A_n) $\cup \{A_1, ..., A_n \Rightarrow \emptyset\}$

Types of arguments

- An argument A is:
 - **Strict** if DefRules(A) = \varnothing
 - **Defeasible** if not strict
 - **Firm** if $Prem(A) \subseteq \mathcal{K}_n$
 - Plausible if not firm

Examples of arguments in ASPIC+

- Consider an argumentation theory with:
 - $\mathcal{R}_s = \{s_1, s_2\}, \mathcal{R}_d = \{d_1, d_2, d_3, d_4, d_5\}, \text{ where:}$

$$d_1: p \Rightarrow q$$

$$d_{\Delta}$$
: $u \Rightarrow v$

$$d_1: p \Rightarrow q$$
 $d_4: u \Rightarrow v$ $s_1: p, q \rightarrow r$

$$d_2: s \Rightarrow t$$

$$d_2: s \Rightarrow t$$
 $d_5: v, x \Rightarrow \neg t$ $s_2: v \rightarrow \neg s$

$$S_2: V \rightarrow \neg S$$

$$d_3$$
: $t \Rightarrow \neg d_1$

•
$$\mathcal{K}_{n} = \{p\}, \ \mathcal{K}_{p} = \{s, u, x\}$$

• Some arguments we can construct are:

$$A_1: p$$

$$A_2: A_1 \Rightarrow q$$

$$A_1: p \qquad A_2: A_1 \Rightarrow q \qquad A_3: A_1, A_2 \Rightarrow r$$

- A_1 is strict and firm while A_2 and A_3 are defeasible and firm
- We can also construct

$$B_1$$
: S

$$B_2: B_1 \Rightarrow t$$

$$B_1$$
: S B_2 : $B_1 \Rightarrow t$ B_3 : $B_2 \Rightarrow \neg d_1$

$$C_2: C_1 \Rightarrow \nu$$

$$C_1: u \qquad C_2: C_1 \Rightarrow v \qquad C_3: C_2 \Rightarrow \neg s$$

$$D_3$$
: X

$$D_3$$
: X D_4 : C_2 , $D_3 \Rightarrow \neg t$

Attack

- A undermines B (on ϕ) if
 - Conc(A) = $-\phi$ for some $\phi \in \text{Prem}(B)/\mathcal{K}_n$;
- *A* **rebuts** *B* (on *B'*) if
 - Conc(A) = -Conc(B') for some $B' \in Sub(B)$ with a defeasible top rule
- A undercuts B (on B') if
 - Conc(A) = -n(r) for some $B' \in Sub(B)$ with defeasible top rule r
- A attacks B iff A undermines or rebuts or undercuts B.

Examples of attacks in ASPIC+

Structured Argumentation Framework

- A structured argumentation framework (SAF) defined by an argumentation theory AT is a triple (Args, C, \leq_a) where
 - Args = {A | A is an argument on the basis of AT}
 - C is the attack relation on Args
 - \leq_a is a preference ordering on *Args*
- A *c-SAF* is a *SAF* in which all arguments have consistent premises

Defeat

- Given a SAF = $(Args, C, \leq_a)$ and arguments $A, B \in Args$:
- A defeats B iff for some $B' \in Sub(B)$
 - A undermines or rebuts B on B' and not A < B'
 - $(A <_a B' iff A \leq_a B' and not B' \leq_a A)$
 - A undercuts B on B'
- General constraint: A <_a B if B is strict and firm and A is defeasible or plausible.

Generating AAFs from SAFs

- An AAF corresponding to a $SAF = (Args, C, \leq_a)$ a pair (Args, R) where
 - R is the defeat relation on Args defined by C and \leq_a .

Deductive Argumentation

Argumentation Graph

Defines how arguments and counterarguments are composed into a graph

Counterarguments

Defines when an argument attacks another argument

Arguments

Defines how an argument is constructed from the base logic

Base Logic

Defines the logical language and the consequence or entailment relation

Base Logic

- A logic is defined by a language ${\cal L}$ and a consequence relation \vdash_i
- Examples of base logic:
 - Simple logic
 - Classical logic
 - Non-monotonic logics
 - Temporal logics
 - Description logics
 - Paraconsistent logics

Deductive arguments

- Given a base logic (a language \mathcal{L} and a consequence relation \vdash_i), a **deductive argument** is a pair $\langle \Phi, \alpha \rangle$ where $\Phi \vdash_i \alpha$
 - \bullet **\Phi** is the support or premises or assumptions of the argument
 - α is the claim or conclusion of the argument
- For an argument $A = \langle \Phi, \alpha \rangle$:
 - Support(A) = Φ
 - Claim(A) = α
- An argument $\langle \Phi, \alpha \rangle$
 - satisfies the **consistency constraint** when Φ is consistent
 - satisfies the **minimality constraint** when there is no $\Psi \subset \Phi$, such that $\Psi \vdash_{i} \alpha$

Arguments based on classical logic

- For a set of classical logic formulae Φ and a classical logic formula α , $\langle \Phi, \alpha \rangle$ is a **classical logic argument** iff
 - $\Phi \vdash \alpha$
 - ⊢ is the standard consequence relation of classical logic
 - Ф ⊬⊥
 - Φ is consistent
 - there is no $\Psi \subset \Phi$, such that $\Psi \vdash \alpha$
 - Φ is minimal
- An example:

```
\{\{\forall X. multipleOfTen(X) \rightarrow even(X), \neg even(77)\}, \neg multipleOfTen(77)\}\}
```

Classical logic attacks

- Let A and B two classical logic arguments:
 - A is a classical defeater of B if Claim(A) $\vdash \neg \land \varphi_i \mid \varphi_i \in \text{Support}(B)$
 - e.g. ⟨ {a ∨ b, c}, (a ∨ b) ∧ c ⟩ is a classical defeater of ⟨ {¬a, ¬b}, ¬a ∧ ¬b ⟩
 - A is a classical direct defeater of B if $\exists \varphi_i \in \text{Support}(B)$ s.t. Claim(A) $\vdash \neg \varphi_i$
 - e.g. ⟨ {a ∨ b, c}, (a ∨ b) ∧ c ⟩ is a classical direct defeater of ⟨ {¬a ∧ ¬b}, ¬a ∧ ¬b ⟩
 - A is a classical undercut of B if $\exists \varphi_1,...,\varphi_n \in \text{Support}(B)$ s.t. Claim(A) $\vdash \neg \land_{1...n} \varphi_i$
 - e.g. ⟨ {¬a ∧ ¬b}, ¬(a ∧ b) ⟩ is a classical undercut of ⟨ {a, b, c}, a ∧ b ∧ c ⟩
 - A is a classical direct undercut of B if $\exists \varphi_i \in \text{Support}(B) \text{ s.t. } \text{Claim}(A) \equiv \neg \varphi_i$
 - e.g. ⟨ {¬a ∧ ¬b}, ¬a ⟩ is a classical direct undercut of ⟨ {a, b, c}, a ∧ b ∧ c ⟩
 - A is a classical canonical undercut of B if Claim(A) $\equiv \neg \land \varphi_i \mid \varphi_i \in \text{Support}(B)$
 - e.g. $\langle \{\neg a \land \neg b\}, \neg (a \land b \land c) \rangle$ is a classical canonical undercut of $\langle \{a, b, c\}, a \land b \land c \rangle$

Classical logic attacks (cont'd)

- Let A and B two classical logic arguments:
 - A is a classical rebuttal of B if Claim(A) $\equiv \neg$ Claim(B)
 - e.g. $\langle \{a, a \rightarrow b\}, (b \lor c) \rangle$ is a classical rebuttal of $\langle \{\neg a \land \neg b, \neg c\}, \neg (b \lor c) \rangle$
 - A is a classical defeating rebuttal of B if Claim(A) $\vdash \neg$ Claim(B)
 - e.g. $\langle \{a, a \rightarrow b\}, b \rangle$ is a classical defeating rebuttal of $\langle \{\neg a \land \neg b, \neg c\}, \neg (b \lor c) \rangle$

Examples of classical logic arguments & attacks

- Propositional logic arguments
 - A = ({lowCostFly, luxFly, lowCostFly, luxFly→goodFly}, goodFly}
 - B = \{\forall \lambda \lambda \cong \text{ly} \rangle \square \lambda \lambda \text{luxFly}\}, \square \lambda \text{lowCostFly} \rangle \square \lambda \text{luxFly}\}
 - B is a classical undercut of A
- First-order logic arguments
 - A = $\langle \{bird(Tweety), \forall X.bird(X) \rightarrow flies(X)\}, flies(Tweety) \rangle$
 - $B = \langle \{\exists X. \text{ bird}(X) \land \neg flies(X)\}, \neg \forall X. \text{bird}(X) \rightarrow flies(X) \rangle$
 - B is a classical direct undercut of A

Approaches to constructing argument graphs

Descriptive approach:

- Input: an abstract argument graph
- Output: an instantiated argument graph

Abstract Graph

Instantiated Graph

Arguments & Attacks

Knowledge Base

Generative approach:

- Input: knowledge base
- Output: an instantiated argument graph

Generating an instantiated graph

Generating an abstract graph

• Consider the simple logic knowledge base:

$$\{a, b, c, a \land c \rightarrow \neg a, b \rightarrow \neg c, a \land c \rightarrow \neg b\}$$

And let all arguments involve one more rules

Assumption-based Argumentation

- A deductive system is a pair (\mathcal{L} , \mathcal{R}) where
 - \mathcal{L} is a logical language
 - \mathcal{R} is a set of rules $(\phi_1, ..., \phi_n \rightarrow \phi)$ over \mathcal{L}
- An assumption-based argumentation framework is a tuple (\mathcal{L} , \mathcal{R} , \mathcal{A} , \sim)
 - (\mathcal{L} , \mathcal{R}) is a deductive system
 - $\mathcal{A} \subseteq \mathcal{L}$, $\mathcal{A} \neq \emptyset$ is a set of **assumptions**
 - No rule has an assumption as conclusion
 - ~ is a total mapping from $\mathcal A$ into $\mathcal L$. ~a is the **contrary** of a
- An argument $S \vdash p$ is a deduction of p from a set $S \subseteq A$.
- Argument $S \vdash p$ attacks argument $S' \vdash p'$ iff $p = ^q$ for some $q \in S'$
- Acceptability semantics similar to the semantics of AAFs
- Read more about ABA in (Toni, 2014)

Defeasible Logic Programming (DeLP)

- An argumentation system based on logic programming
- Elements of a **Defeasible Logic Program**
 - A set of facts
 - A set of strict and defeasible rules
 - A binary argument ordering
- An argument (A, L) is a defeasible derivation for L (similar to ASPIC+)
- Argument A attacks argument B at sub-argument B' iff the conclusions of A and B' are inconsistent. A defeats B iff A attacks B on B' and $A \not \subset B'$
- Game-theoretic acceptability semantics
- Read more about DeLP in (Garcia and Simari, 2014)

Applications of Argumentation

- Argumentation on the Web
 - The Argument Web
 - Argument search on the Web
 - Online debate platforms
- Argumentation in Medicine
- Argumentation in Law

The Argument Web

- An Online Ecosystem of Tools, Systems and Services for Argumentation (Reed et al., 2017), https://arg-tech.org/index.php/research/
- The Argument Interchange Format
 - An ontology of arguments
 - Models arguments at different levels of abstraction
 - Aims to facilitate the exchange of data between different argumentation tools and agent-based applications.
 - Integrates elements of argumentation theories from different disciplines: formal argumentation, multi-agent systems, informal logics
 - Available in several formats (OWL, XML, JSON, Prolog, SVG, etc.)

The Argument Web

- OVA (Online Visualisation of Argument): http://ova.arg-tech.org/
 - A web drag-and-drop interface for analysing textual arguments
 - Manual annotation of the argumentative structure of natural language text
 - Based on the Argument Interchange Format
 - Arguments can be saved on the Argument Web
 - Other similar tools
 - DebateGraph, https://debategraph.org/
 - RationaleOnline, https://www.rationaleonline.com/
- Collaborative analysis of arguments
 - OVA 2.0: allows multiple analysts to work together on a single analysis
 - AnalysisWall: a large, shared workspace (high-resolution touchscreen) running bespoke argument analysis software

Source: https://arg-tech.org

The Argument Web

- Argugrader (Argument Pedagogy): http://www.argugrader.com/
 - Students prepare their argument analysis in OVA
 - Argugrader compares submissions over model answers using graph matching algorithms and produces a grade and textual feedback
- Dialogue applications
 - Arvina (web-based discussion s/w): https://arg-tech.org/index.php/arvina/
 - Argublogging (dialogue application for bloggers)
- AIFdb Corpora: http://corpora.aifdb.org/
 - Corpora of argument in several different languages from various domains as diverse as mediation, pedagogy, politics, broadcast debate, eDemocracy and financial discussion

Argument Search

- Technology that finds pro and con arguments for controversial issues
- args.me: https://www.args.me/
 - Indexes debate portal arguments
 - Retrieves and ranks relevant arguments in response to queries.
- ArgumenText: https://www.argumentsearch.com/
 - Indexes diverse web pages
 - Mines relevant arguments in response to queries
- PerspectroScope: https://perspectroscope.seas.upenn.edu/
 - Similar to ArgumentText for debate portals and Wikipedia texts

Searching for arguments in args.me

Page 1 of 639 arguments, 326 pro, 313 con (retrieved in 0.4s)

#1 No execution of the innocent

http://www.bbc.co.uk (81 other sources...)

As long as human justice remains fallible, the risk of executing the innocent can never be eliminated.

#2 Everyone has a right to live

http://www.amnesty.org (102 other sources...)

Everyone has an inalienable human right to live, even those who commit murder.

#3 Death penalty fails to deter

http://www.procon.org (24 other sources...)

There is no scientific proof that executions have a greater deterrent effect than life imprisonment.

Con

#1 Retribution

http://www.bbc.co.uk (36 other sources...)

Real justice requires people to suffer for their wrongdoing in a way adequate for the crime.

#2 Death penalty deters

http://www.debate.org (15 other sources...)

By executing convicted murderers, would-be murderers are deterred from killing people.

#3 Prevention of re-offending

http://www.bbc.co.uk (25 other sources...)

Those executed cannot commit further crimes. Imprisonment does not protect sufficiently.

Argument Search: Tasks

Read more about args.me in (Wachsmuth et al., 2017)

Argument mining

- Core task is many argument-based applications
- Automatic identification of arguments and their relations in natural language text
- A challenging problem involving several NLP tasks:
 - Sentence classification
 - Sentiment analysis
 - Named entity recognition
 - Link prediction
 - Discourse relation classification
 - Etc.
- See (Lippi and Torroni, 2016) for a recent survey

Argument mining: an example

Debate platforms

- Platforms where web users can participate in debates
 - Users can create debates, post pro/con arguments and vote on other users' arguments.
 - Tools for evaluating arguments and visualising debates
 - Examples: Kialo.com, Debate.org, createdebate.com, debategraph.org
- Social Argumentation Frameworks (Leite and Martins, 2011)
 - Extension of Abstract Argumentation Frameworks
 - Evaluation of arguments in debates based on the votes they have received and the strength of the opposing arguments
 - Frameworks considering argument support
 - Quantitative Argumentation Debate Framework (Rago et al., 2016)
 - Multi-Aspect Comment Evaluation Framework (Patkos et al., 2016)

An online debate in Kialo.com

Read more about the Project Debater at: https://research.ibm.com/interactive/project-debater/

Argumentation in Medicine

- Medical information: complex, heterogeneous, incomplete, inconsistent
- Medical decision support
 - Capsule (Walton et al., 1997) helps family doctors with drug prescription. Arguments pro and con a drug based on similar past cases and patient record.
- Evidence-based research
 - Framework that produces argument-based personalised recommendations for treatment based on the results of clinical trials (Hunter and Williams, 2012).
- Behaviour change
 - Automated persuasion system that selects convincing arguments for persuading a patient to change behaviour (e.g. take more exercise) (Hunter, 2018)

Argumentation in Law

- Legal reasoning is essentially argumentative
- Case-based reasoning
 - **HYPO** (Ashley, 1990) and **CATO** (Aleven, 2003): Use of arguments to model how lawyers make use of past decisions when arguing a case.
 - Argument-based model of precedent (Horty and Bench-Capon, 2012)
- Practical reasoning
 - Modelling legal arguments using argument schemes (Atkinson et al., 2005)
- Evidential reasoning
 - Evidential Argumentation System (Oren and Norman, 2008)
 - Use of formal argumentation systems to model Wingmore charts and reason about legal evidence (Bex et al., 2003)

References (Structured Argumentation)

- S. Modgil and H. Prakken (2014). The ASPIC+ framework for structured argumentation: a tutorial. Argument and Computation, 5:31-62, 2014.
- Ph. Besnard and H. Hunter (2014). Constructing argument graphs with deductive arguments: a tutorial. Argument and Computation, 5:5-30, 2014.
- F. Toni (2014). A tutorial on assumption-based argumentation. Argument and Computation, 5:89-117, 2014.
- A. J. Garcia and G. R. Simari (2014). Defeasible logic programming: DeLP-Servers, contextual queries, and explanations for answers. Argument and Computation, 5(1):63-88, 2014.

References (Applications)

- C. Reed, K. Budzynska, R. Duthie, M. Janier, B. Konat, J. Lawrence, A. Pease and M. Snaith (2017). The Argument Web: an Online Ecosystem of Tools, Systems and Services for Argumentation. Philosophy & Technology. 30(2): 137-160, 2017.
- H. Wachsmuth, M. Potthast, K. Al-Khatib, Y. Ajjour, J. Puschmann, J. Qu, J. Dorsch, V. Morari, J. Bevendorff, B. Stein (2017): Building an Argument Search Engine for the Web. In: Proceedings of the Fourth Workshop on Argument Mining. pp. 49–59.
- M. Lippi and P. Torroni (2016). Argumentation Mining: State of the Art and Emerging Trends. ACM Transactions on Internet Technology, 10:1–10:25, 2016.
- J. Leite, J. Martins (2011). Social abstract argumentation, Proc. Twenty-Second International Joint Conference on Artificial Intelligence (IJCAI'11), pp.2287–2292.
- A. Rago, F. Toni, M. Aurisicchio, P. Baroni (2016). Discontinuity-free decision support with quantitative argumentation debates, Proceedings of the Fifteenth International Conference, KR, 2016, pp.63–73.

References (Applications)

- T. Patkos, A. Bikakis, G. Flouris (2016). A multi-aspect evaluation framework for comments on the social web, Proceedings of the Fifteenth International Conference, KR 2016, pp.593–596.
- R. Walton, C. Gierl, P. Yudkin, H. Mistry, M. Vessey and J. Fox (1997). Evaluation of Computer Support for Prescribing CAPSULE Using Simulated Cases. British Medical Journal, 315(7111): 791–795.
- A. Hunter and M. Williams (2012). Aggregating Evidence About the Positive and Negative Effects of Treatments. Artificial Intelligence in Medicine 56(3): 173–190.
- A. Hunter (2018). Towards a Framework for Computational Persuasion with Applications in Behaviour Change, Argument and Computation 9(1):15-40.
- K.D. Ashley (1990). Modeling Legal Argument: Reasoning with Cases and Hypotheticals, MIT Press, Cambridge, MA, 1990.

References (Applications)

- V. Aleven (2003). Using background knowledge in case-based legal reasoning: a computational model and an intelligent learning environment, Artificial Intelligence, 150 (2003): 183–237.
- J. Horty, T.J.M. Bench-Capon (2012). A factor-based definition of precedential constraint, Artificial Intelligence and Law 20 (2012) 181–214.
- K. Atkinson, T.J.M. Bench-Capon, P. McBurney (2005). Arguing about cases as practical reasoning, Proceedings of the Tenth International Conference on Artificial Intelligence and Law, ACM Press, pp.35–44.
- N. Oren and T.J. Norman (2008). Semantics for evidence-based argumentation. In Proc. of COMMA, volume 172 of Frontiers in Artificial Intelligence and Applications, pages 276-284. IOS Press.
- F.J. Bex, H. Prakken, C. Reed, D.N. Walton (2003). Towards a formal account of reasoning about evidence: argumentation schemes and generalisations, Artificial Intelligence and Law 12 (2003) 125–165.

Bibliographic Resources on Argumentation

- Books on Argumentation
 - Handbook of Formal Argumentation, vol.1 & 2
 - Elements of Argumentation (Besnard and Hunter, 2008)
 - Argumentation in AI (Eds: I. Rahwan and G. Simari, 2009)
- Al Journals and Conferences
- Journal: <u>Argument & Computation</u>
- Conferences & workshops on argumentation
 - Conference on Computational Models of Argument
 - Workshop on Argumentation in Multiagent Systems
 - Workshop Computational Models of Natural Argument
 - Workshop Theory and Applications of Formal Argumentation
 - Workshop on Argument Strength
- International Competition on Computational Models of Argumentation