1 Polynomial Rings

Definition 1.1: Polynomial Ring

Let R be a commutative ring. The **polynomial ring** over R in the indeterminate x is defined by

$$R[x] = \{a_0 + a_1x + a_2x^2 + \dots + a_nx^n \mid a_0, a_1, \dots, a_n \in \mathbb{R}, n \in \mathbb{Z}_{>0}\}\$$

Remark: We say that the set represented by R[x] is a set of "formal symbols." In other words, these are things we can write down, not functions.

Definition 1.2

We say that

$$a_0 + a_1x + a_2x^2 + \dots + a_nx^n = b_0 + b_1x + b_2x^2 + \dots + b_mx^m$$

are equal if $a_i = b_i$ for all $i = 0, 1, 2, \ldots$ Here, we define $a_i = 0$ if i > n, and $b_i = 0$ if i > m.

Consider $\mathbb{F}_2[x]$. Here, polynomials determine functions. Consider f(x) = x and $g(x) = x^2$. Then, this determines a function:

$$\begin{array}{c|c} f(x) & g(x) \\ \hline \varphi_f: \mathbb{F}_2 \mapsto \mathbb{F}_2 \text{ defined by:} & \varphi_g: \mathbb{F}_2 \mapsto \mathbb{F}_2 \text{ defined by:} \\ \bullet \ \varphi_f(0) = 0 & \bullet \ \varphi_g(0) = 0^2 = 0 \\ \bullet \ \varphi_f(1) = 1 & \bullet \ \varphi_g(1) = 1^2 = 1 \end{array}$$

Here, $f(x) \neq g(x)$ but they determine the same function $\mathbb{F}_2 \mapsto \mathbb{F}_2$

Definition 1.3

In R[x], if

$$f(x) = a_0 + a_1 x + \dots + a_n x^n$$

$$g(x) = b_0 + b_1 x + \dots + b_m x^m$$

then

$$f(x) + g(x) = (a_0 + b_0) + (a_1 + b_1)x + \dots + (a_s + b_s)x^s$$

for $s = \max\{n, m\}$. Additionally,

$$f(x)g(x) = c_0 + c_1x + \dots + c_{n+m}x^{n+m}$$

where

$$c_0 = a_0 b_0$$

$$c_1 = a_1b_0 + a_0b_1$$

$$c_2 = a_2b_0 + a_1b_1 + a_0b_2$$

$$c_k = a_k b_0 + a_{k-1} b_1 + \dots + a_1 b_{k-1} + a_0 b_k$$

Remark: In practice, we use distributive law for multiplication.

Definition 1.4

When $f(x) = a_0 + a_1 x + \cdots + a_n x^n$ with $a_n \neq 0$, we say that:

- f(x) has degree n, written deg f(x) = n. However^a, if f(x) = 0, then we say that f(x) has no degree or f(x) has degree $-\infty$.
- a_n is the **leading coefficient** of f(x).
- $f(x) = a_0$ is a **constant** polynomial.
- If $a_n = 1$, we say that f(x) is a **monic** polynomial.

aIf f(x) is degree 0, then $f(x) = a_0 x^0 = a_0$ for $a_0 \neq 0$.

Remarks:

- We omit terms like $0x^k$. For example, if our polynomial is $1 + 0x + 1x^2$, then we write $1 + 1x^2$.
- We write $1x^k$ as just x^k . So, for example, we write $1 + 1x^2$ as $1 + x^2$.
- We write $\cdots + (-a_k)x^k + \ldots$ as $\cdots a_kx^k + \ldots$ For example, $1 + (-1)x^2 = 1 x^2$.

1.1 Properties of Polynomial Rings

Proposition. Let R be a commutative ring and $r \in R$. Then, the evaluation map

$$\varphi_r : R[X] \mapsto R$$

$$f(x) \mapsto f(r) = a_0 + a_1 r + a_2 r^2 + \dots + a_n r^n$$

 $is\ a\ homomorphism.$

Proof. The proof is straightforward.

• Addition:

$$\varphi_r(f(x) + g(x)) = \varphi_r((a_0 + b_0) + (a_1 + b_1)x + \dots + (a_s + b_s)x^s)$$

$$= (a_0 + b_0) + (a_1 + b_1)r + \dots + (a_s + b_s)r^s$$

$$= a_0 + a_1r + \dots + a_nr^n + b_0 + b_1r + \dots + b_mr^m$$

$$= \varphi_r(f(x)) + \varphi_r(g(x))$$

• Multiplication:

$$\varphi_r(f(x)g(x)) = \varphi_r(c_0 + c_1x + \dots + c_{n+m}x^{n+m})$$

$$= c_0 + c_1r + \dots + c_{n+m}r^{n+m}$$

$$= (a_0 + a_1r + \dots + a_nr^n)(b_0 + b_1r + \dots + b_mr^m)$$

$$= \varphi_r(f(x))\varphi_r(g(x))$$

This proves that this is a homomorphism.

Remark: This is not an injective homomorphism, but it is a surjective homomorphism.

Theorem 1.1

If D is an integral domain, then D[x] is an integral domain.

Proof. D[x] is commutative by definition. We know that $1 \in D$ so f(x) = 1 is the unity of D[x]. Suppose $f(x), g(x) \in D[x] \setminus \{0\}$ so that

$$f(x) = a_0 + a_1 x + \dots + a_n x^n$$

$$g(x) = b_0 + b_1 x + \dots + b_m x^m$$

for $a_n \neq 0$ and $b_m \neq 0$. Then,

$$f(x)g(x) = a_0b_0 + (a_1b_0 + a_1b_0)x + \dots + a_nb_mx^{n+m}$$

but, $a_n \neq 0$ and $b_m \neq 0$ which implies that $a_n b_m \neq 0$ by D being an integral domain. Thus, $f(x)g(x) \neq 0$, so there are no zero-divisors and D[x] is an integral domain.