Package 'hiDIP'

August 30, 2022				
Type Package				
Title Hierachical Decomposition Partitioning				
Version 1.0.1				
Author Anne Chao, Jian-You Lin				
Maintainer Anne Chao <chao@stat.nthu.edu.tw></chao@stat.nthu.edu.tw>				
Description Provides functions for hierarchical diversity analysis.				
License GPL (>= 3)				
Depends R (>= 4.0)				
Suggests knitr, rmarkdown, ggpubr				
Imports Rcpp,				
dplyr, ggplot2, ape, data.tree, ade4, phytools, reshape2, networkD3, maps				
LazyData true				
Encoding UTF-8				
RoxygenNote 7.2.1				
LinkingTo Rcpp				
R topics documented:				
DataInfo				
gghier_functional				
gghier_taxonomy				
hier.functional				
hier.phylogeny				
hier.taxonomy				
Index 8				

2 gghier_functional

DataInfo	Exhibit basic data information
Datainio	Exhibit basic adia injormation

Description

DataInfo: exhibits basic data information

Usage

```
DataInfo(data, diversity = "TD", datatype = "abundance", tree = NULL)
```

Arguments

data data.frames

diversity selection of diversity type: 'TD' = 'Taxonomic diversity', 'PD' = 'Phylogenetic

diversity', and 'FD' = 'Functional diversity'.

data type of input data: individual-based abundance data (datatype = "abundance"),

sampling-unit-based incidence frequencies data (datatype = "incidence"),

Value

a data.frame of basic data information inclinding sample size, observed species richness, sample coverage estimate, and the first ten abundance frequency counts.

Examples

```
## Taxonomic diversity
data(macro)
DataInfo(data = macro, diversity = 'TD')

## Phylogenetic diversity
data(macro)
data(macro_tree)
DataInfo(data = macro, diversity = 'PD', tree = macro_tree)

## Functional diversity
data(macro)
DataInfo(data = macro, diversity = 'FD')
```

gghier_functional gg

ggplot2 extension for outcome from hier_functional

Description

```
ggplot2 extension for outcome from hier_functional
```

```
gghier_functional(outcome, method = 1, profile = "q")
```

gghier_phylogeny 3

Arguments

outcome a list object computed by hier_functional.

method (method = 1) diversity(alpha, gamma) based on Tsallis entropy (1988); (method

= 2) beta diversity based on additive decomposition; (method = 3) dissimilarity measure based on additive decomposition; (method = 4) diversity(alpha, gamma) based on Hill Number (1973); (method = 5) beta diversity based on multiplicative decomposition; (method = 6) dissimilarity measure based on multiplicative decomposition; (method = 6) dissimilarity measure based on multiplicative decomposition; (method = 6) dissimilarity measure based on multiplicative decomposition; (method = 6) dissimilarity measure based on multiplicative decomposition; (method = 6) dissimilarity measure based on multiplicative decomposition; (method = 6) dissimilarity measure based on multiplicative decomposition; (method = 6) dissimilarity measure based on multiplicative decomposition; (method = 6) dissimilarity measure based on multiplicative decomposition; (method = 6) dissimilarity measure based on multiplicative decomposition; (method = 6) dissimilarity measure based on multiplicative decomposition; (method = 6) dissimilarity measure based on multiplicative decomposition; (method = 6) dissimilarity measure based on multiplicative decomposition; (method = 6) dissimilarity measure based on multiplicative decomposition; (method = 6) dissimilarity measure based on multiplicative decomposition; (method = 6) dissimilarity measure based on multiplicative decomposition; (method = 6) dissimilarity measure based on multiplicative decomposition; (method = 6) dissimilarity measure based on multiplicative decomposition; (method = 6) dissimilarity measure based on multiplicative decomposition; (method = 6) dissimilarity measure based on multiplicative decomposition; (method = 6) dissimilarity measure based on multiplicative decomposition; (method = 6) dissimilarity measure based on multiplicative decomposition; (method = 6) dissimilarity measure dec

tiplicative decomposition.

profile a selection of profile versus to diversity.q-profile (profile = "q");tau-profil

(prifile = "tau")

Examples

```
## Functional diversity
data(macro)
data(macro_mat)
data(macro_dis)
output3 = hier.functional(data = macro, mat = macro_mat, dis = macro_dis, q = c(0, 1, 2), FDtau = c(0.2, 0.4, 0.6
gghier_functional(output3, method = 1, profile = "q")
output4 = hier.functional(data = macro, mat = macro_mat, dis = macro_dis, q = c(0, 1, 2), FDtype = "AUC")
gghier_functional(output4, method = 1, profile = "q")
```

gghier_phylogeny

ggplot2 extension for outcome from hier_phylogeny

Description

ggplot2 extension for outcome from hier_phylogeny

Usage

```
gghier_phylogeny(outcome, method = 1)
```

Arguments

outcome a list object computed by hier_phylogeny.

method (method = 1) diversity(alpha, gamma) based on Tsallis entropy (1988); (method

= 2) beta diversity based on additive decomposition; (method = 3) dissimilarity measure based on additive decomposition; (method = 4) diversity(alpha, gamma) based on Hill Number (1973); (method = 5) beta diversity based on multiplicative decomposition; (method = 6) dissimilarity measure based on multiplicative decomposition; (method = 6) dissimilarity measure based on multiplicative decomposition; (method = 6) dissimilarity measure based on multiplicative decomposition; (method = 6) dissimilarity measure based on multiplicative decomposition; (method = 6) dissimilarity measure based on multiplicative decomposition; (method = 6) dissimilarity measure based on multiplicative decomposition; (method = 6) dissimilarity measure based on multiplicative decomposition; (method = 6) dissimilarity measure based on multiplicative decomposition; (method = 6) dissimilarity measure based on multiplicative decomposition; (method = 6) dissimilarity measure based on multiplicative decomposition; (method = 6) dissimilarity measure based on multiplicative decomposition; (method = 6) dissimilarity measure based on multiplicative decomposition; (method = 6) dissimilarity measure based on multiplicative decomposition; (method = 6) dissimilarity measure based on multiplicative decomposition; (method = 6) dissimilarity measure based on multiplicative decomposition; (method = 6) dissimilarity measure based on multiplicative decomposition; (method = 6) dissimilarity measure based on multiplicative decomposition; (method = 6) dissimilarity measure based on multiplicative decomposition; (method = 6) dissimilarity measure based on multiplicative decomposition; (method = 6) dissimilarity measure based on multiplicative decomposition; (method = 6) dissimilarity measure based on multiplicative decomposition; (method = 6) dissimilarity measure based on multiplicative decomposition; (method = 6) dissimilarity decompositi

tiplicative decomposition.

Examples

```
## Phylogeny diversity
data(macro)
data(macro_mat)
data(macro_tree)
output2 = hier.phylogeny(data = macro, mat = macro_mat, tree = macro_tree, q = seq(0, 2, 0.2))
gghier_phylogeny(output2, method = 1)
```

4 hier.functional

gghier_taxonomy

ggplot2 extension for outcome from hier_taxonomy

Description

ggplot2 extension for outcome from hier_taxonomy

Usage

```
gghier_taxonomy(outcome, method = 1)
```

Arguments

outcome

a list object computed by hier_taxonomy.

method

(method = 1) diversity(alpha, gamma) based on Tsallis entropy (1988);(method = 2) beta diversity based on additive decomposition; (method = 3) dissimilarity measure based on additive decomposition;(method = 4) diversity(alpha, gamma) based on Hill Number (1973); (method = 5) beta diversity based on multiplicative decomposition;(method = 6) dissimilarity measure based on multiplicative decomposition.

.

Examples

```
## Taxonomy diversity
data(macro)
data(macro_mat)
output1 = hier.taxonomy(data = macro, mat = macro_mat, q = seq(0, 2, 0.2))
gghier_taxonomy(output1, method = 1)
```

hier.functional

Decomposition of functional diversity

Description

Decomposition of functional diversity

```
hier.functional(
  data,
  mat,
  dis,
  q = seq(0, 2, 0.2),
  FDtype = "tau_values",
  FDtau = NULL,
  weight = "size",
  nboot = 20,
  conf = 0.95,
  type = "mle",
  datatype = "abundance",
  decomposition = "relative"
)
```

hier.phylogeny 5

Arguments

data	data.frames
mat	hierarchical structure of data.
dis	species pairwise distance matrix for all species in the pooled assemblage.
q	a numerical vector specifying the diversity orders. Default is $seq(0,2,0.2)$.
FDtype	select FD type: (FDtype = "tau_values") for FD under specified threshold values, or (FDtype = "AUC") (area under the curve of tau-profile) for an overall FD which integrates all threshold values between zero and one. Default is "tau_values".
FDtau	a numerical vector between 0 and 1 specifying tau values (threshold levels). If NULL (default), then threshold is set to be the mean distance between any two individuals randomly selected from the pooled assemblage (i.e., quadratic entropy).
weight	weight for relative decomposition.
nboot	a positive integer specifying the number of bootstrap replications when assessing sampling uncertainty and constructing confidence intervals. Bootstrap replications are generally time consuming. Enter 0 to skip the bootstrap procedures. Default is 20.
conf	a positive number < 1 specifying the level of confidence interval. Default is 0.95.
type	estimate type: estimate (type = "est"), empirical estimate (type = "mle"). Default is "mle".
decomposition	Relative decomposition: (decomposition = "relative"), Absolute decomposition: (decomposition = "absolute").

Examples

```
## Functional diversity
data(macro)
data(macro_mat)
data(macro_dis)
output3 = hier.functional(data = macro, mat = macro_mat, dis = macro_dis, q = seq(0, 2, 0.2))
output3
```

hier.phylogeny

Decomposition of phylogeny diversity

Description

Decomposition of phylogeny diversity

```
hier.phylogeny(
  data,
  mat,
  tree,
  q = seq(0, 2, 0.2),
```

hier.taxonomy

```
weight = "size",
nboot = 20,
conf = 0.95,
type = "mle",
decomposition = "relative"
)
```

Arguments

data data.frames

mat hierarchical structure of data.

tree a phylogenetic tree in Newick format for all observed species in the pooled

assemblage.

q a numerical vector specifying the diversity orders. Default is seq(0,2,0.2).

weight weight for relative decomposition.

nboot a positive integer specifying the number of bootstrap replications when assessing

sampling uncertainty and constructing confidence intervals. Bootstrap replications are generally time consuming. Enter 0 to skip the bootstrap procedures.

Default is 20.

conf a positive number < 1 specifying the level of confidence interval. Default is

0.95.

type estimate type: estimate (type = "est"), empirical estimate (type = "mle").Default

is "mle".

decomposition Relative decomposition: (decomposition = "relative"), Absolute decompo-

sition: (decomposition = "absolute").

Examples

```
## Phylogeny diversity
data(macro)
data(macro_mat)
data(macro_tree)
output2 = hier.phylogeny(data = macro, mat = macro_mat, tree = macro_tree, q = seq(0, 2, 0.2))
output2
```

hier.taxonomy

Decomposition of taxonomy diversity

Description

Decomposition of taxonomy diversity

```
hier.taxonomy(
  data,
  mat,
  q = seq(0, 2, 0.2),
  weight = "size",
```

hier.taxonomy 7

```
nboot = 20,
conf = 0.95,
type = "mle",
datatype = "abundance",
decomposition = "relative"
)
```

Arguments

data	data.frames
mat	hierarchical structure of data.
q	a numerical vector specifying the diversity orders. Default is $seq(0,2,0.2)$.
weight	weight for relative decomposition.
nboot	a positive integer specifying the number of bootstrap replications when assessing sampling uncertainty and constructing confidence intervals. Bootstrap replications are generally time consuming. Enter 0 to skip the bootstrap procedures. Default is 20.
conf	a positive number < 1 specifying the level of confidence interval. Default is 0.95.
type	estimate type: estimate (type = "est"), empirical estimate (type = "mle"). Default is "mle".
datatype	data type of input data: individual-based abundance data (datatype = "abundance"), sampling-unit-based incidence frequencies data (datatype = "incidence").
decomposition	Relative decomposition: (decomposition = "relative"), Absolute decompo-

Examples

```
## Taxonomic diversity
data(macro)
data(macro_mat)
output1 = hier.taxonomy(data = macro, mat = macro_mat, q = seq(0, 2, 0.2))
output1
```

sition: (decomposition = "absolute").

Index

```
DataInfo, 2

gghier_functional, 2
gghier_phylogeny, 3
gghier_taxonomy, 4

hier.functional, 4
hier.phylogeny, 5
hier.taxonomy, 6
```