6. Алгоритмы на графах (продолжение)

6.3 Построение кратчайшего остова

Задача отыскания кратчайшего остова графа является классической задачей теории графов.

Исследование методов решения этой задачи послужили основой для многих других важных результатов теории графов.

Остов

Напоминание:

граф G'(V', E') называется подграфом графа G(V, E), если $V' \subset V \ \& E' \subset E$.

Если $V' = V \& E' \subset E$, то **G'** называется **остовным подграфом G**.

Остовный подграф, который является деревом, называется *остовом* или *каркасом*.

Несвязный граф не имеет остовов.

Связный граф может иметь множество остовов.

<u>Пример</u>. **G**(**V**, **E**):

Остовы графа *G*:

Замечание.

Для определения остова достаточно определить ребра (т. к. вершины остова – это все вершины графа \boldsymbol{G}).

Если граф **G** является взвешенным (заданы длины ребер), то возникает **задача нахождения кратчайшего остова**.

Эта задача имеет множество практических интерпретаций.

Например:

имеется заданное множество населенных пунктов и соединяющих их дорог; требуется определить минимальный (по сумме расстояний) набор рейсовых маршрутов, который позволил бы попасть из каждого населенного пункта в любой другой.

Можно указать множество способов определения какого-нибудь остова графа.

Например:

- алгоритм поиска в глубину строит остов (по ребрам возврата);
- множество кратчайших путей из заданной вершины до всех остальных вершин образует остов.

Однако полученные таким образом остовы не обязательно являются кратчайшими.

Остовы графа G:

 G_1 – дерево кратчайших путей от вершины V_2 (не является кратчайшим остовом);

 G_2 и G_3 – кратчайшие остовы.

Схема алгоритма построения кратчайшего остова

Вход: C – матрица весов (длин) дуг графа G(V, E);

выход: T – кратчайший остов G.

В процессе работы алгоритма T – множество непересекающихся деревьев, являющихся подграфами G.

В начале работы алгоритма T включает отдельные вершины G, в конце работы – содержит единственный элемент – кратчайший остов G.

Схема алгоритма:

- 1. T = V
- **2.** Пока **T** содержит больше одного элемента, выполнять
 - **2.1** взять любой элемент из T,
 - 2.2 найти ближайшее к нему поддерево,
 - **2.3** соединить эти деревья в *T*.

Различные способы выбора поддерева для наращивания на шаге 2.1 приводят к различным конкретным вариантам алгоритма построения кратчайшего остова.

В алгоритме Прима кратчайший остов порождается в процессе разрастания одного дерева, к которому присоединяются одиночные вершины.

При этом для каждой вершины **v**, кроме начальной, используются две пометки:

- a[v] ближайшая к v вершина, уже включённая в остов,
- $\boldsymbol{\beta}[\boldsymbol{v}]$ длина ребра, соединяющего \boldsymbol{v} с ближайшей вершиной остова.

Если вершину **v** на данном этапе ещё нельзя соединить с остовом одним ребром, то

$$\boldsymbol{a}[\boldsymbol{v}] = 0, \quad \boldsymbol{\beta}[\boldsymbol{v}] = \infty.$$

Алгоритм Прима

Вход: **С** – матрица весов (длин) дуг (квадратная матрица порядка **n**);

выход: **Т** – множество ребер кратчайшего остова.

S – множество вершин, включенных в кратчайший остов.

Описание алгоритма:

1. Выбор $u \in V$; $S = \{u\}$; $T = \emptyset$

Выбираем произвольную вершину; включаем ее в кратчайший остов

2. Для
$$v \in V \setminus \{u\}$$
 если $v \in \Gamma(u)$, то

$$a[v] = u;$$

 $\beta[v] = c_{uv}$

u – ближайшая вершина остова; c_{uv} – длина соответствующего ребра

иначе

$$a[v] = 0;$$

 $\beta[v] = \infty$

Ближайшая вершина остова и расстояние до нее неизвестны

3. Для
$$i = 1, 2, ..., n-1$$

3.1
$$x = \infty$$
 Начальное значение для поиска новой вершины

3.2 Для
$$v \in V \setminus S$$
 если $\boldsymbol{\beta}[v] < x$

$$\mathbf{w} = \mathbf{v};$$
 $\mathbf{x} = \boldsymbol{\beta}[\mathbf{v}]$

Найдена более близкая вершина; сохраняем расстояние до нее

3.3
$$S = S \cup \{w\};$$

 $T = T \cup (a[w], w)$

TO

Добавляем найденную вершину в остов, а найденное ребро – в множество ребер остова

3.4 Для
$$v \in \Gamma(w)$$
 если $v \notin S$,

если $\boldsymbol{\beta}[\boldsymbol{v}] > \boldsymbol{c}_{\boldsymbol{v}\boldsymbol{w}}$,

$$m{a}[m{v}] = m{w}; \ m{\beta}[m{v}] = m{c}_{vw}$$

Изменяем ближайшую вершину остова и длину ведущего к ней ребра

Замечание.

Алгоритм Прима буквально следует приведенной выше схеме алгоритма построения кратчайшего остова.

В качестве первого из соединяемых деревьев используется одно и то же разрастающееся дерево T;

в качестве второго – ближайшая одиночная вершина (еще не включенная в остов).

Пример.

Рассмотрим граф:

Матрица весов (длин) имеет вид

$$C = \begin{pmatrix} 0 & 2 & 3 & 4 & \infty & \infty \\ 2 & 0 & \infty & 3 & \infty & \infty \\ 3 & \infty & 0 & 2 & 4 & 5 \\ 4 & 3 & 2 & 0 & \infty & 4 \\ \infty & \infty & 4 & \infty & 0 & 2 \\ \infty & \infty & 5 & 4 & 2 & 0 \end{pmatrix}$$

Шаг 1:

Выбрана вершина v_1 ;

$$S = \{v_1\};$$

$$T = \emptyset$$

Шаг 2:

$$V \setminus \{v_1\} = \{v_2, v_3, v_4, v_5, v_6\}$$

$$v = v_2$$

$$v_2 \in \Gamma(v_1)$$

$$a[v_2] = v_1;$$

$$\beta[v_2] = c_{12} = 2$$

$$V = V_3$$

$$v_3 \in \Gamma(v_1)$$

$$a[v_3] = v_1;$$

$$\beta[v_3] = c_{13} = 3$$

$$v = v_4$$
 $v_4 \in \Gamma(v_1)$
 $a[v_4] = v_1;$
 $\beta[v_4] = c_{14} = 4$
 $v = v_5$
 $v_5 \notin \Gamma(v_1)$
 $a[v_5] = 0;$
 $\beta[v_5] = \infty$
 $v = v_6$
 $v_6 \notin \Gamma(v_1)$
 $a[v_6] = 0;$
 $\beta[v_6] = \infty$
 $a[v_6] = 0;$
 $a[v_6] = \infty$
 $a[v_6] = \infty$

3.3
$$S = S \cup \{w\} = \{v_1, v_2\};$$

 $T = T \cup (a[w], w) = \{(v_1, v_2)\}$

3.4
$$\Gamma(w) = \Gamma(v_2) = \{v_1, v_4\}$$

 $v = v_1$
 $v_1 \in S$
 $v = v_4$
 $v_4 \notin S$
 $\beta[v_4] = 4 > c_{42} = 3$
 $\alpha[v_4] = v_2;$
 $\beta[v_4] = c_{42} = 3$

 $\underline{\mathsf{MTOF}}:$ $\boldsymbol{a} = (-, \boldsymbol{v_1}, \boldsymbol{v_1}, \boldsymbol{v_2}, 0, 0);$ $\boldsymbol{\beta} = (-, 2, 3, 3, \infty, \infty).$

 $\boldsymbol{\beta}[\mathbf{v_6}] = \infty > \mathbf{x}$

3.3
$$S = S \cup \{w\} = \{v_1, v_2, v_3\};$$

 $T = T \cup (a[w], w) = \{(v_1, v_2), (v_1, v_3)\}$
3.4 $\Gamma(w) = \Gamma(v_3) = \{v_1, v_4, v_5, v_6\}$
 $v = v_1$
 $v_1 \in S$
 $v = v_4$
 $v_4 \notin S$
 $\beta[v_4] = 3 > c_{43} = 2$
 $\beta[v_4] = c_{43} = 2$

```
v = v_5
    v_5 \notin S
    \boldsymbol{\beta}[\mathbf{v_5}] = \infty > \boldsymbol{c_{53}} = 4
    a[v_5] = v_3;
    \beta[v_5] = c_{53} = 4
v = v_6
    v_6 \notin S
    \boldsymbol{\beta}[\mathbf{v_6}] = \infty > \boldsymbol{c_{63}} = 5
    a[v_6] = v_3;
    \beta[v_6] = c_{63} = 5
                                        <u>Итог:</u>
                                       a = (-, v_1, v_1, v_3, v_3, v_3);
                                       \boldsymbol{\beta} = (-, 2, 3, 2, 4, 5).
```

□ 3:
$$i = 3$$
3.1 $x = ∞$
3.2 $V \setminus S = \{v_4, v_5, v_6\}$
 $v = v_4$
 $β[v_4] = 2 < x$
 $w = v_4$;
 $x = β[v_4] = 2$

$$v = v_5$$
 $β[v_5] = 4 > x$

$$v = v_6$$
 $β[v_6] = 5 > x$

3.3
$$S = S \cup \{w\} = \{v_1, v_2, v_3, v_4\};$$

 $T = T \cup (a[w], w) = \{(v_1, v_2), (v_1, v_3), (v_3, v_4)\}$
3.4 $\Gamma(w) = \Gamma(v_4) = \{v_1, v_2, v_3, v_6\}$
 $v_1 \in S, v_2 \in S, v_3 \in S$
 $v = v_6$
 $v_6 \notin S$
 $\beta[v_6] = 5 > c_{64} = 4$
 $\alpha[v_6] = v_4;$
 $\beta[v_6] = c_{64} = 4$
 $\alpha[v_6] = c_{64} = 4$

Шаг 3:
$$\underline{i} = 4$$
3.1 $x = \infty$
3.2 $V \setminus S = \{v_5, v_6\}$
 $v = v_5$

$$\beta[v_5] = 4 < x$$

$$x = \beta[v_5] = 4$$

$$v = v_6$$

$$\beta[v_6] = 4 = x$$

3.3
$$S = S \cup \{w\} = \{v_1, v_2, v_3, v_4, v_5\};$$

 $T = T \cup (a[w], w) =$
 $= \{(v_1, v_2), (v_1, v_3), (v_3, v_4), (v_3, v_5)\}$

3.4
$$\Gamma(w) = \Gamma(v_5) = \{v_3, v_6\}$$

 $v = v_3$
 $v_3 \in S$
 $v = v_6$
 $v_6 \notin S$
 $\beta[v_6] = 4 > c_{65} = 2$
 $\alpha[v_6] = c_{65} = 2$

 $\underline{\mathsf{MTOF}}:$ $\boldsymbol{a} = (-, \boldsymbol{v_1}, \boldsymbol{v_1}, \boldsymbol{v_3}, \boldsymbol{v_3}, \boldsymbol{v_5});$

 $\boldsymbol{\beta} = (-, 2, 3, 2, 4, 2).$

Шаг 3:
$$\underline{i} = \underline{5} = n - 1$$
3.1 $x = \infty$
3.2 $V \setminus S = \{v_6\}$
 $v = v_6$

$$\beta[v_6] = 2 < x$$

$$\mathbf{w} = \mathbf{v_6};$$

 $\mathbf{x} = \boldsymbol{\beta}[\mathbf{v_6}] = 2$

3.3
$$S = S \cup \{w\} = \{v_1, v_2, v_3, v_4, v_5, v_6\};$$

 $T = T \cup (a[w], w) =$
 $= \{(v_1, v_2), (v_1, v_3), (v_3, v_4), (v_3, v_5), (v_5, v_6)\}$

3.4
$$\Gamma(w) = \Gamma(v_6) = \{v_3, v_4, v_5\}$$

 $v_3 \in S, v_4 \in S, v_5 \in S$

Конец работы алгоритма.

Кратчайший остов определяется множеством ребер

$$T = \{(v_1, v_2), (v_1, v_3), (v_3, v_4), (v_3, v_5), (v_5, v_6)\}$$

6.4 Потоки в сетях. Нахождение максимального потока

Сеть

В литературе можно встретить различные определения сети.

Это связано с широким применением сетевых моделей к решению задач различных классов.

В рамках данной дисциплины будем использовать следующее определение.

- **Сетью** (**транспортной сетью**) будем называть ориентированный (n, m)-граф G(V, E), для которого выполняются условия:
- 1) существует одна и только одна вершина s, называемая uctouhukom, для которой $d^+(s)=0$; нет ни одной дуги, входящей в s
- 2) существует одна и только одна вершина $oldsymbol{t}$, называемая $oldsymbol{crokom}$, для которой

$$d^{-}(t)=0$$
; нет ни одной дуги, исходящей из t

3) каждой дуге $(u,v) \in E$ поставлено в соответствие некоторое число $c(u,v) \ge 0$, называемое **пропускной способностью дуги**.

Граф G(V, E) – нагруженный граф, который может быть задан матрицей весов (пропускных способностей дуг)

Замечание.

Нулевое значение элемента $c_{uv} = c(u, v)$ матрицы C пропускных способностей дуг соответствует дуге с нулевой пропускной способностью (т. е. отсутствию дуги); положительное значение $c_{uv} = c(u, v)$ – дуге с ненулевой пропускной способностью (т. е. дуга присутствует).

В дальнейшем будем предполагать: нумерация узлов сети такова, что узел $\boldsymbol{v_1} = \boldsymbol{s}$ является источником, а узел $\boldsymbol{v_n} = \boldsymbol{t}$ — стоком. Узлы сети, отличные от источника и стока, иногда называют *промежуточными*.

Пример.

s – источник,

t - CTOK,

v₂, **v**₃, **v**₄, **v**₅ – промежуточные узлы.

Примеры приложений.

 Имеется сеть автомобильных дорог, по которым можно проехать из пункта **A** в пункт **B**.
 Дороги могут пересекаться в промежуточных пунктах.

Количество автомобилей, которые могут проехать по каждому отрезку дороги в единицу времени (пропускная способность дороги), ограничено.

Вопросы:

- какое максимальное количество автомобилей, которые могут проехать из **A** в **B** за единицу времени без образования пробок?
- какие дороги и насколько нужно расширить, чтобы увеличить максимальный автомобильный поток на заданную величину?

Имеется сеть трубопроводов, соединяющих пункт

 А (нефтепромысел) с пунктом В (нефтезаводом).
 Трубопроводы могут соединяться и разветвляться в промежуточных пунктах.

Количество нефти, которое может быть перекачано по каждому отрезку трубопровода в единицу времени (пропускная способность трубопровода), ограничено.

Вопрос:

сколько нефти можно прокачать через такую сеть в единицу времени?

Ит.д.

Поток в сети

Функция

$$f: E \rightarrow R$$

называется **потоком в сети G(V, E)**, если выполняются условия:

1) для любой дуги $(u,v) \in E$

$$0 \le f(u,v) \le c(u,v)$$

Поток через любую дугу неотрицателен и не превосходит пропускной способности дуги

2) для любого промежуточного узла **v**

$$\sum_{\{u \mid (u,v) \in E\}} f(u,v) - \sum_{\{u \mid (v,u) \in E\}} f(v,u) = 0.$$

Сумма потоков по дугам, входящим в узел, равна сумме потоков по дугам, исходящим из него

Утверждение.

Для любого потока f в сети G(V, E) справедливо равенство

$$\sum_{\{u \mid (s,u)\in E\}} f(s,u) = \sum_{\{u \mid (u,t)\in E\}} f(u,t).$$

Число

называется *величиной потока f*.

Пусть f – поток в сети G(V, E).

Дуга $(u,v) \in E$ называется **насыщенной**, если f(u,v) = c(u,v). Поток по дуге равен пропускной способности этой дуги

Поток называется **полным**, если любой путь $\langle s,t \rangle$ содержит, по крайней мере, одну насыщенную дугу.

Поток f^* называется **максимальным**, если для любого потока f в сети G справедливо $w(f) \leq w(f^*)$.

<u>Замечание</u>.

Ясно, что максимальный поток f обязательно является полным: в противном случае в G существует простой путь $\langle s,t \rangle$, не содержащий насыщенных дуг и, следовательно, можно увеличить потоки по всем дугам этого пути, тем самым увеличив величину потока w(f) — противоречие с предположением о максимальности f.

Обратное в общем случае неверно: существуют полные потоки, не являющиеся максимальными.

Задача о максимальном потоке:

в данной сети найти поток максимальной величины.

Примеры интерпретации (см. выше):

- определение максимально возможного объема жидкости или газа, который может быть перекачан по сети трубопроводов от источника до пункта потребления;
- аналогично определение максимально возможного потока транспорта в сети автострад, максимального потока грузов при железнодорожных перевозках и т. п.

Принципиальное отличие этой задачи от рассмотренных ранее задач дискретной оптимизации:

перебор всех возможных вариантов невозможен; более того, само существование максимального потока не очевидно.

Ответом на второе замечание является

Теорема.

В каждой сети существует максимальный поток.

Разрезы

Напоминание:

разрезом связного графа G(V, E) называется множество ребер $P \subset E$, удаление которых делает граф несвязным.

Пусть G(V, E) – связный граф, u и w – две его несмежные вершины.

Пусть $P \subset E$ — подмножество ребер G, такое что u и w принадлежат разным компонентам связности графа G - P (графа, полученного из G путем удаления всех ребер, принадлежащих P). Такое множество P называется (u, w)-разрезом графа G.

Всякий (\boldsymbol{u} , \boldsymbol{w})-разрез графа $\boldsymbol{G}(\boldsymbol{V}, \boldsymbol{E})$ определяется разбиением множества вершин \boldsymbol{V} на два подмножества \boldsymbol{U} и \boldsymbol{W} , такие что

$$U \subset V$$
, $W \subset V$, $U \cup W = V$, $U \cap W = \emptyset$, $u \in U$, $w \in W$,

при этом множество P содержит все ребра, соединяющие вершины из U и W.

Пусть G(V, E) – сеть,

 $P \subset E - (s, t)$ -разрез сети G.

Тогда

$$V = S \cup T$$
, $S \cap T = \emptyset$, $s \in S$, $t \in T$,

причем P содержит как дуги, идущие от узлов множества S к узлам множества T, так и дуги, идущие от узлов множества T к узлам множества S.

Обозначим:

 P^+ – множество дуг от S к T,

 P^- – множество дуг от T к S,

$$P = P^+ \cup P^-.$$

Обозначим:

 ${\it F}({\it P})$ – сумма потоков через дуги разреза ${\it P}$:

$$F(P) \stackrel{\mathsf{def}}{=} \sum_{(u,v)\in P} f(u,v);$$

С(Р) – пропускная способность разреза Р (сумма пропускных способностей дуг разреза Р):

$$C(P) \stackrel{\mathsf{def}}{=} \sum_{(u,v)\in P} c(u,v);$$

 $F(P^+)$ и $F(P^-)$ – суммы потоков через «положительную» и «отрицательную» части разреза P:

$$F(P^+) \stackrel{\mathsf{def}}{=} \sum_{u \in S, v \in T} f(u, v); \quad F(P^-) \stackrel{\mathsf{def}}{=} \sum_{u \in T, v \in S} f(u, v).$$

Лемма 1.

$$w(f) = F(P^+) - F(P^-).$$

Лемма 2.

$$w(f) \leq F(P)$$
.

Лемма 3.

$$\max_{f} w(f) \leq \min_{P} C(P).$$

Теорема Форда-Фалкерсона (1956 г).

Пусть G(V, E) – сеть.

Максимальный поток в сети G равен минимальной пропускной способности «положительной» части (s, t)-разреза сети:

$$w(f^*) = \max_f w(f) = \min_P C(P^+).$$

Алгоритм нахождения максимального потока

Алгоритм реализует идею доказательства теоремы Форда-Фалкерсона:

используется граф G', полученный из G «удалением» ориентации дуг.

В множество вершин S включаются вершины $u \in V$, обладающие свойством:

в G' существует цепь $\langle s, u \rangle$, причем дуги вдоль пути $\langle s, u \rangle$ в G не насыщены, а дуги против направления пути имеют положительный поток.

Такие цепи $\langle s,u
angle,\;$ называются **аугментальными цепями**.

Если оказывается, что $t \in S$, то это означает, что поток не максимальный и его можно увеличить на некоторую величину $\boldsymbol{\delta}$.

Вход: C – матрица пропускных способностей дуг сети G(V, E) с источником s и стоком t (квадратная матрица порядка n);

выход: F — матрица максимального потока (квадратная матрица порядка n).

Используются обозначения:

- N вектор меток узлов сети (0 или 1) вектор размерности n;
- S вектор принадлежности узлов сети множеству S (0 или 1) вектор размерности n;

Для каждого узла сети:

Векторы размерности п

- р номер предшествующей вершины в аугментальной цепи (от 1 до n);
- d метка («-» или «+»), определяющая знак возможного изменения потока по входящим в узел дугам;
- δ величина возможного изменения потока.

Описание алгоритма:

нулю

1. Для всех
$$u, v \in V$$

$$f_{uv} = 0$$

Формирование нулевого потока

2. Для
$$v \in V$$

$$S[v] = 0;$$
 $N[v] = 0;$
 $d[v] = *+*$
 $p[v] = 0;$
 $\delta[v] = 0;$

Инициализация: все узлы не принадлежат *S*, все узлы не помечены, поток по всем дугам может возрастать, предшествующая вершина в аугментальной цепи отсутствует , изменение потока по всем дугам равно

3.
$$S[s] = 1;$$
 $\delta[s] = \infty;$

Добавляем источник сети в множество *S*, изменение потока, входящего в *s*, не ограничено

4. a = 0 Признак расширения *S*

если (
$$S[v] = 1) & (N[v] = 0)$$

Узел *v* принадлежит *S* и не помечен

5.1 для
$$u \in \Gamma(v)$$
 если ($S[u] = 0$) & ($f_{vu} < c_{vu}$)

Узел u не принадлежит S и поток по дуге (v, u) меньше ее пропускной способности

Узел *и* включается в *S*, допускается увеличение потока по дугам, входящим в *u*, узел *v* становится предшествующим *u*, определяется величина возможного увеличения потока *δ*

$$S[u] = 1;$$
 $d[u] = *+*;$
 $p[u] = v;$
 $\delta[u] = \min{\{\delta[v], c_{vu} - f_{vu}\};}$
 $a = 1$

5.2 Для
$$u \in \Gamma^{-1}(v)$$
если ($S[u] = 0$) & ($f_{uv} > 0$)

Узел u не принадлежит S и поток по дуге (u , v) положителен

 $S[u] = 1$;
 $d[u] = \ll - \gg ;$
 $p[u] = v;$
 $\delta[u] = \min \{ \delta[v], f_{uv} \} ;$
 $a = 1$

5.3 $N[v] = 1$ Помечаем узел v

6. Если S[t] = 1TO

6.1
$$x = t$$
; $\delta = \delta[t]$

х – текущий узел аугментальной цепи, $oldsymbol{\delta} = oldsymbol{\delta}[oldsymbol{t}]$ - величина изменения потока

6.2 пока $x \neq s$

выполнять

6.2.1 если
$$d[x] = \ll + \gg$$
то
 $f_{p[x], x} = f_{p[x], x} + \delta$
иначе
 $f_{x, p[x]} = f_{x, p[x]} - \delta$
6.2.2 $x = p[x]$

- **6.3** переход на шаг 2
- **7.** Если **a** ≠ 0 то переход на шаг 4.

Пример.

Рассмотрим сеть:

Матрица пропускных способностей дуг имеет вид:

6

<u>Шаг 1</u>.

Формирование нулевого потока: все элементы матрицы *F* равны нулю.

Шаг 2.

Инициализация:
$$\mathbf{N} = (0, 0, 0, 0, 0, 0);$$
 $\mathbf{S} = (0, 0, 0, 0, 0, 0, 0);$
 $\mathbf{d} = (+, +, +, +, +, +, +);$
 $\mathbf{p} = (0, 0, 0, 0, 0, 0, 0);$
 $\mathbf{\delta} = (0, 0, 0, 0, 0, 0, 0)$

<u>Шаг 3</u>.

$$S = (1, 0, 0, 0, 0, 0);$$
 до $\delta = (\infty, 0, 0, 0, 0, 0)$

Добавляем источник в множество *S*

```
<u>Шаг 4</u>.
```

$$a = 0$$

<u>Шаг 5</u>.

$$v = v_1$$
 (T. e. $v = s$)
($S[v] = 1$) & ($N[v] = 0$)

5.1
$$\Gamma(\mathbf{v_1}) = \{\mathbf{v_2}, \mathbf{v_3}\}\$$
 $\mathbf{u} = \mathbf{v_2}$

$$(S[2] = 0) & (f_{12} < c_{12})$$

$$S[2] = 1;$$

$$d[2] = «+»;$$

$$\boldsymbol{p}[2] = 1;$$

$$\delta[2] = \min{\{\delta[1], c_{12} - f_{12}\}} = 7;$$

$$a = 1$$

$$u = v_3$$
 s
 $(S[3] = 0) & (f_{13} < c_{13})$
 $S[3] = 1;$

$$\mathbf{S}[3] - 1,$$
 $\mathbf{d}[3] = *+*;$
 $\mathbf{p}[3] = 1;$
 $\mathbf{\delta}[3] = \min{\mathbf{\delta}[1], c_{13} - f_{13}} = 8;$
 $\mathbf{a} = 1$

$$5.2 \Gamma^{-1}(v) = \emptyset$$

5.3
$$N[1] = 1$$

Итог:

$$\mathbf{N} = (1, 0, 0, 0, 0, 0);$$
 $\mathbf{S} = (1, 1, 1, 0, 0, 0);$
 $\mathbf{d} = (+, +, +, +, +, +);$
 $\mathbf{p} = (0, 1, 1, 0, 0, 0);$
 $\mathbf{\delta} = (\infty, 7, 8, 0, 0, 0)$

6

2

<u>Шаг 5</u> (продолжение). 6 $\mathbf{v} = \mathbf{v}_2$ (S[v] = 1) & (N[v] = 0)5.1 $\Gamma(v_2) = \{v_3, v_4, v_5\}$ $u = v_3$ $S[3] \neq 0$ $u = v_4$ $(S[4] = 0) & (f_{24} < c_{24})$ S[4] = 1;d[4] = «+»;p[4] = 2; $\delta[4] = \min{\{\delta[2], c_{24} - f_{24}\}} =$ $= \min\{7, 3\} = 3;$ a = 1

$$u = v_5$$

 $(S[5] = 0) & (f_{25} < c_{25})$
 $S[5] = 1;$

d[5] = «+»;

p[5] = 2;

$$(c_{25})$$
 s (c_{25}) $(c_{2$

5.2
$$\Gamma^{-1}(\mathbf{v_2}) = \{\mathbf{v_1}\}\$$
 $\mathbf{u} = \mathbf{v_1}$
 $\mathbf{S}[1] \neq 0$

a = 1

5.3
$$N[2] = 1$$

Итог:

 $\delta[5] = \min{\{\delta[2], c_{25} - f_{25}\}} = \min{\{7, 6\}} = 6;$

$$N = (1, 1, 0, 0, 0, 0);$$
 $S = (1, 1, 1, 1, 1, 0);$
 $d = (+, +, +, +, +, +);$
 $p = (0, 1, 1, 2, 2, 0);$
 $\delta = (\infty, 7, 8, 3, 6, 0)$

6

$$v = v_3$$

 $(S[v] = 1) & (N[v] = 0)$
 $5.1 \Gamma(v_3) = \{v_4, v_5\}$
 $u = v_4$
 $S[4] \neq 0$
 $u = v_5$
 $S[5] \neq 0$

$$S[5] \neq 0$$

5.2 $\Gamma^{-1}(v_3) = \{v_1, v_2\}$
 $u = v_1$
 $S[1] \neq 0$
 $u = v_2$
 $S[2] \neq 0$

5.3 $N[3] = 1$

$$N = (1, 1, 1, 0, 0, 0);$$
 $S = (1, 1, 1, 1, 1, 0);$
 $d = (+, +, +, +, +, +);$
 $p = (0, 1, 1, 2, 2, 0);$
 $\delta = (\infty, 7, 8, 3, 6, 0)$

Шаг
$$5$$
 (продолжение). $v = v_4$ $(S[v] = 1) & (N[v] = 0)$ $S[f] = 0$ $S[f]$

a = 1

5.2
$$\Gamma^{-1}(v_4) = \{v_2, v_3\}$$

 $u = v_2$
 $S[2] \neq 0$
 $u = v_3$
 $S[3] \neq 0$

5.3 N[4] = 1

$$N = (1, 1, 1, 1, 0, 0);$$
 $S = (1, 1, 1, 1, 1, 1);$
 $d = (+, +, +, +, +, +);$
 $p = (0, 1, 1, 2, 2, 4);$
 $\delta = (\infty, 7, 8, 3, 6, 3)$

$$v = v_5$$

 $(S[v] = 1) & (N[v] = 0)$
 $5.1 \Gamma(v_5) = \{v_6\} = \{t\}$
 $u = v_6$
 $S[6] \neq 0$

5.2
$$\Gamma^{-1}(\mathbf{v}_5) = \{\mathbf{v}_2, \mathbf{v}_3\}$$

 $\mathbf{u} = \mathbf{v}_2$
 $\mathbf{S}[2] \neq 0$
 $\mathbf{u} = \mathbf{v}_3$
 $\mathbf{S}[3] \neq 0$

5.3
$$N[5] = 1$$

$$N = (1, 1, 1, 1, 1, 0);$$

 $S = (1, 1, 1, 1, 1, 1);$
 $d = (+, +, +, +, +, +);$
 $p = (0, 1, 1, 2, 2, 4);$
 $\delta = (\infty, 7, 8, 3, 6, 3)$

Шаг 5 (продолжение).

$$v = v_6 = t$$
 $(S[v] = 1) & (N[v] = 0)$
 $5.1 \Gamma(t) = \emptyset$
 $5.2 \Gamma^{-1}(t) = \{v_4, v_5\}$
 $u = v_4$
 $S[4] \neq 0$
 $u = v_5$
 $S[5] \neq 0$

5.3 N[6] = 1

$$\mathbf{N} = (1, 1, 1, 1, 1, 1);$$
 $\mathbf{S} = (1, 1, 1, 1, 1, 1);$
 $\mathbf{d} = (+, +, +, +, +, +);$
 $\mathbf{p} = (0, 1, 1, 2, 2, 4);$
 $\mathbf{\delta} = (\infty, 7, 8, 3, 6, 3)$

Шаг 6. S[t] = 1**6.1** x = t; $\boldsymbol{\delta} = \boldsymbol{\delta}[\boldsymbol{t}] = 3$ $x = 6 \neq s$ **6.2.1** d[x] = *+* $f_{46} = f_{46} + \delta = 0 + 3 = 3$ **6.2.2** $\mathbf{x} = \mathbf{p}[6] = 4$ $x = 4 \neq s$ **6.2.1** d[x] = *+* $\mathbf{f_{24}} = \mathbf{f_{24}} + \mathbf{\delta} = 0 + 3 = 3$

6.2.2
$$x = p[4] = 2$$

$$x = 2 \neq s$$

6.2.1 $d[x] = *+*$
 $f_{12} = f_{12} + \delta = 0 + 3 = 3$
6.2.2 $x = p[2] = 1$
 $x = 1 = s$

6.3 переход на шаг 2.

<u>Шаги 2 – 4</u> повторяются без изменений.

Изменения на шаге 5:

$$\mathbf{v} = \mathbf{v_1}$$

 $\mathbf{\delta}[2] = \min{\{\mathbf{\delta}[1], c_{12} - f_{12}\}} = \min{\{\infty, 7 - 3\}} = 4;$
 $\mathbf{v} = \mathbf{v_2}$
 $\mathbf{f_{24}} = \mathbf{c_{24}} \Rightarrow \mathbf{S} = (1, 1, 1, 0, 1, 0); \mathbf{p} = (0, 1, 1, 2, 2, 0);$
 $\mathbf{\delta} = (\infty, 4, 8, 0, 0, 0)$
 $\mathbf{\delta}[5] = \min{\{\mathbf{\delta}[2], c_{25} - f_{25}\}} = \min{\{4, 6\}} = 4;$

$$N = (1, 1, 0, 0, 0, 0);$$

 $S = (1, 1, 1, 0, 1, 0);$
 $P = (0, 1, 1, 0, 2, 0);$
 $\delta = (\infty, 4, 8, 0, 4, 0)$

$$v = v_3$$

 $(S[v] = 1) & (N[v] = 0)$
 $S[v] = 1) & (V_1 = 0)$
 $S[v] = 1) & (V_2 = 0)$
 $S[v] = 1) & (V_3 = 0) & (V_4 = 0)$
 $S[v] = 0 & (V_5 = 0)$

$$v = v_4$$

 $(S[v] = 1) & (N[v] = 0)$
 $S[0] = 1) & (V_4) = \{v_6\} = \{t\}$
 $u = v_6$
 $(S[0] = 0) & (f_{46} < c_{46})$
 $S[0] = 1;$
 $d[0] = 0$
 $d[0]$

При $v = v_5$ и $v = v_6$ изменений нет.

Итог:

$$N = (1, 1, 1, 1, 1, 1);$$

 $S = (1, 1, 1, 1, 1, 1);$
 $d = (+, +, +, +, +, +);$
 $p = (0, 1, 1, 3, 2, 4);$
 $\delta = (\infty, 4, 8, 2, 6, 2)$

Шаг 6. S[t] = 1**6.1** x = t; $\boldsymbol{\delta} = \boldsymbol{\delta}[\boldsymbol{t}] = 2$ $x = 6 \neq s$ **6.2.1** d[x] = *+* $f_{46} = f_{46} + \delta = 3 + 2 = 5$ **6.2.2** $\mathbf{x} = \mathbf{p}[6] = 4$ $x = 4 \neq s$ **6.2.1** d[x] = *+* $f_{34} = f_{34} + \delta = 0 + 2 = 2$

6.2.2 x = p[4] = 3

<u>Шаг 6</u> (продолжение).

$$x = 3 \neq s$$

6.2.1 $d[x] = \text{$<+$}$
 $f_{13} = f_{13} + \delta = 0 + 2 = 2$
6.2.2 $x = p[3] = 1$
 $x = 1 = s$

6.3 переход на шаг 2.

<u>Шаги 2 – 4</u> повторяются без изменений.

После завершения шага 5:

$$d = (+, +, +, -, +, +);$$

 $S = (1, 1, 1, 1, 1, 1);$
 $p = (0, 1, 1, 6, 2, 5);$
 $\delta = (\infty, 4, 6, 7, 4, 4).$

Шаг 6. S[t] = 1**6.1** x = t; $\boldsymbol{\delta} = \boldsymbol{\delta}[\boldsymbol{t}] = 4$ $x = 6 \neq s$ **6.2.1** d[x] = *+* $f_{56} = f_{56} + \delta = 0 + 4 = 4$ **6.2.2** $\mathbf{x} = \mathbf{p}[6] = 5$ $x = 5 \neq s$ **6.2.1** d[x] = *+* $f_{25} = f_{25} + \delta = 0 + 4 = 4$

6.2.2 x = p[5] = 2

<u>Шаг 6</u> (продолжение).

$$x = 2 \neq s$$

6.2.1 $d[x] = \text{$<+$}$
 $f_{12} = f_{12} + \delta = 3 + 4 = 7$
6.2.2 $x = p[2] = 1$
 $x = 1 = s$

6.3 переход на шаг 2.

<u>Шаги 2 – 4</u> повторяются без изменений.

После завершения шага 5:

$$d = (+, -, +, -, +, +);$$

 $S = (1, 1, 1, 1, 1, 1);$
 $p = (0, 3, 1, 6, 3, 5);$
 $\delta = (\infty, 2, 6, 2, 2, 2).$

Шаг 6. S[t] = 1**6.1** x = t; $\delta = \delta[t] = 2$ $x = 6 \neq s$ **6.2.1** d[x] = *+* $f_{56} = f_{56} + \delta = 4 + 2 = 6$ **6.2.2** $\mathbf{x} = \mathbf{p}[6] = 5$ $x = 5 \neq s$ **6.2.1** d[x] = *+* $f_{35} = f_{35} + \delta = 0 + 2 = 2$ **6.2.2** x = p[5] = 3

<u>Шаг 6</u> (продолжение).

$$x = 3 \neq s$$

6.2.1 $d[x] = \text{$<+$}$
 $f_{13} = f_{13} + \delta = 2 + 2 = 4$
6.2.2 $x = p[3] = 1$
 $x = 1 = s$

6.3 переход на шаг 2.

$$F = \begin{pmatrix} 0 & 7 & 4 & 0 & 0 & 0 \\ 0 & 0 & 0 & 3 & 4 & 0 \\ 0 & 0 & 0 & 2 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 5 \\ 0 & 0 & 0 & 0 & 0 & 6 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

<u>Шаги 2 – 4</u> повторяются без изменений.

После завершения шага 5:

$$d = (+, +, +, +, +, +, +);$$
 $S = (1, 0, 1, 0, 0, 0);$
 $N = (1, 0, 1, 0, 0, 0);$
 $p = (0, 0, 1, 0, 0, 0);$
 $\delta = (\infty, 0, 4, 0, 0, 0),$
 $a = 1.$

<u>Шаг 6</u>.

$$S[t] = 0$$

Шаг 7.

 $a \neq 0 \rightarrow$ переход на шаг 4.

На шаге 5 изменений нет.

Шаг 6.
$$S[t] = 0$$

Итог:

Матрица максимального потока

$$F^* = egin{pmatrix} 0 & 7 & 4 & 0 & 0 & 0 \ 0 & 0 & 0 & 3 & 4 & 0 \ 0 & 0 & 0 & 2 & 2 & 0 \ 0 & 0 & 0 & 0 & 0 & 5 \ 0 & 0 & 0 & 0 & 0 & 6 \ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix},$$

Красным цветом выделен минимальный разрез

величина максимального потока равна

$$w(f^*) = f(s, v_2) + f(s, v_3) = f(v_4, t) + f(v_5, t) = 11,$$

дуги $(\mathbf{s}, \mathbf{v_2}), (\mathbf{v_2}, \mathbf{v_4}), (\mathbf{v_3}, \mathbf{v_4})$ и $(\mathbf{v_3}, \mathbf{v_5})$ являются насыщенными.