Résolution sur $[0, 2\pi]$ de l'inéquation $(I): 4\sin^2(x) + 2(1+\sqrt{2})\cos(x) - \sqrt{2} - 4 > 0$.

Posons $y = \cos x \in [-1, 1]$, de sorte que (I) s'écrive

$$4(1-y^2) + 2(1+\sqrt{2})y - \sqrt{2} - 4 > 0 \iff 4y^2 - 2(1+\sqrt{2})y + \sqrt{2} < 0 \text{ (\$)}$$

Le polynôme $4y^2-2\left(1+\sqrt{2}\right)y+\sqrt{2}$ admet les deux racines $\frac{1}{2}$ et $\frac{\sqrt{2}}{2}$, toutes deux dans [-1,1].

Pour s'en convaincre, on peut observer que la somme des racines est $\frac{1+\sqrt{2}}{2} = \frac{1}{2} + \frac{1}{\sqrt{2}}$ et le produit $\frac{\sqrt{2}}{4}$. L'idée vient alors assez vite... Sinon, il y a toujours le truc pointu, qui vaut

$$\Delta = 4\left(\left(1 + \sqrt{2}\right)^2 - 4\sqrt{2}\right) = 4\left(\left(1 + 2\sqrt{2} + 2\right) - 4\sqrt{2}\right) = 4\left(1 - 2\sqrt{2} + 2\right) = 4\left(1 - \sqrt{2}\right)^2$$

Ainsi

$$(\$) \Longleftrightarrow \frac{1}{2} < y < \frac{\sqrt{2}}{2}$$
 (signe du trinôme)

et donc

$$(I) \Longleftrightarrow \frac{1}{2} < \cos x < \frac{\sqrt{2}}{2}$$

 $(I) \Longleftrightarrow \frac{1}{2} < \cos x < \frac{\sqrt{2}}{2}$ A l'aide d'un dessin, on conclut (en se rappelant qu'on travaille sur $[0,2\pi]$)

$$(I) \Longleftrightarrow \left\{ \begin{array}{l} \frac{\pi}{4} < x < \frac{\pi}{3} \text{ ou} \\ \frac{5\pi}{3} < x < \frac{7\pi}{4} \end{array} \right.$$

L'ensemble des solutions est

$$S = \left] \frac{\pi}{4}, \frac{\pi}{3} \right[\cup \left] \frac{5\pi}{3}, \frac{7\pi}{4} \right[$$

EXERCICE 2 Pour *n* entier naturel, on pose:

$$a_n = \frac{(2n)!}{(n+1) \times (n!)^2}, \quad S_n = \sum_{k=0}^n a_k a_{n-k} \quad \text{et} \quad T_n = \sum_{k=0}^n k a_k a_{n-k}$$

1. En simplifiant les facteurs communs aux numérateurs et aux dénominateurs on parvient vite à

$$a_0 = 1, a_1 = 1, a_2 = 2, a_3 = 5 \text{ et } a_4 = 14$$

Puis

$$S_0 = a_0 a_0 = 1$$
, $S_2 = a_0 a_1 + a_1 a_0 = 2$, $S_2 = a_0 a_2 + a_1 a_1 + a_2 a_0 = 5$
 $S_3 = a_0 a_3 + a_1 a_2 + a_2 a_1 + a_3 a_0 = 14$

On peut conjecturer : $\forall n \in \mathbb{N}, \ S_n = a_{n+1}...$ puisque $\boxed{S_0 = a_1, \ S_1 = a_2, \ S_2 = a_3 \text{ et } S_3 = a_4}$

2. Soit $n \in \mathbb{N}$. Le changement d'indice k' = n - k donne immédiatement $T_n = \sum_{k=0}^n (n-k) a_{n-k} a_k$.

On a alors

$$T_n = n \sum_{k=0}^{n} a_{n-k} a_k - \sum_{k=0}^{n} k a_{n-k} a_k = nS_n - T_n$$

Il vient bien

$$2T_n = nS_n$$

3. Soit $n \in \mathbb{N}$. Calculons $(n+2) a_{n+1}$:

$$(n+2)a_{n+1} = \frac{(n+2)(2n+2)!}{(n+2)\times((n+1)!)^2} = \frac{(2n+2)(2n+1)(2n)!}{(n+1)^2(n!)^2} = \frac{2(2n+1)(2n)!}{(n+1)(n!)^2}$$

Finalement

$$(n+2)a_{n+1} = 2(2n+1)a_n$$

4. Soit $n \in \mathbb{N}$. On a

$$T_{n+1} + S_{n+1} = \sum_{k=0}^{n+1} k a_k a_{n+1-k} + \sum_{k=0}^{n+1} a_k a_{n+1-k} = \sum_{k=0}^{n+1} (k+1) a_k a_{n+1-k}$$

Isolons le premier terme puis tranlatons l'indice :

$$T_{n+1} + S_{n+1} = a_0 a_{n+1} + \sum_{k=1}^{n+1} (k+1) a_k a_{n+1-k} = a_{n+1} + \sum_{k=0}^{n} (k+2) a_{k+1} a_{n-k}$$

En utilisant la question précédente

$$T_{n+1} + S_{n+1} = a_{n+1} + \sum_{k=0}^{n} 2(2k+1) a_k a_{n-k} = a_{n+1} + 2(2T_n + S_n)$$

On a montré que $2T_n = nS_n$, donc en remplaçant

$$T_{n+1} + S_{n+1} = a_{n+1} + 2(nS_n + S_n)$$

Soit

$$T_{n+1} + S_{n+1} = a_{n+1} + 2(n+1)S_n$$

Alors, comme $2T_{n+1}=(n+1)S_{n+1}$, on a $T_{n+1}+S_{n+1}=\frac{n+1}{2}S_{n+1}+S_{n+1}=\frac{n+3}{2}S_{n+1}$, d'où

$$\boxed{\frac{n+3}{2}S_{n+1} = a_{n+1} + 2(n+1)S_n}$$

5. Montrons par récurrence que : $\forall n \in \mathbb{N}, \ P(n) : S_n = a_{n+1}$

- P(0) est vraie, nous l'avons vu en première question

- Soit $n \in \mathbb{N}$. Supposons P(n) et montrons P(n+1) : la dernière égalité donne d'après P(n)

$$\frac{n+3}{2}S_{n+1} = a_{n+1} + 2(n+1)a_{n+1} = (2n+3)a_{n+1}$$

Or la formule de la question 3. appliquée à n+1 donne : $(n+3)a_{n+2}=2\,(2n+3)\,a_{n+1}$. Il s'ensuit sans trop de difficulté que

$$aS_{n+1} = a_{n+2}$$
 CQFD.

- Par principe de récurrence, notre prédicat P(n) est vrai pour tout entier n.

EXERCICE 3

On se donne une suite $(x_k)_{k\in\mathbb{N}^*}$ de réels strictement positifs, et on suppose que pour tout entier $n\geqslant 1$, on a

$$\sum_{k=1}^{n} x_k^3 = \left(\sum_{k=1}^{n} x_k\right)^2$$

Montrons par récurrence que pour tout entier $n \ge 1$ on a $x_n = n$.

Considérons à cet effet, pour $n \in \mathbb{N}^*$ le prédicat $H(n) : \forall k \in [1, n], x_k = k$.

- <u>Initialisation</u>: puisque $\sum_{k=1}^{1} x_k^3 = \left(\sum_{k=1}^{1} x_k\right)^2$, on a $x_1^3 = x_1^2$. Comme $x_1 > 0$, il vient $x_1 = 1$, *i.e.* H(1).
- <u>Hérédité</u>: soit $n \in \mathbb{N}^*$. Supposons H(n), et prouvons H(n+1): $\forall k \in [1, n+1]$, $x_k = k$ Puisque par hypothèse de récurrence $\forall k \in [1, n]$, $x_k = k$, il suffit de montrer que $x_{n+1} = n + 1$.

Partons de
$$\sum_{k=1}^{n+1} x_k^3 = \left(\sum_{k=1}^{n+1} x_k\right)^2$$
, c'est-à-dire

$$\sum_{k=1}^{n} x_k^3 + x_{n+1}^3 = \left(\sum_{k=1}^{n} x_k + x_{n+1}\right)^2$$

ou, d'après l'hypothèse faite sur la suite $(x_n)_{n\in\mathbb{N}^*}$

$$\left(\sum_{k=1}^{n} x_k\right)^2 + x_{n+1}^3 = \left(\sum_{k=1}^{n} x_k\right)^2 + 2x_{n+1} \sum_{k=1}^{n} x_k + x_{n+1}^2$$

Il vient

$$x_{n+1}^3 = 2x_{n+1} \sum_{k=1}^n x_k + x_{n+1}^2$$

Or par hypothèse de récurrence $\forall k \in \llbracket [1,n \rrbracket]$, $x_k = k$, et donc $2\sum_{k=1}^n x_k = 2\sum_{k=1}^n k = n\left(n+1\right)$. Il en résulte

$$x_{n+1}\left(x_{n+1}^2-x_{n+1}-n\left(n+1\right)\right)=0 \overset{x_{n+1}>0}{\Rightarrow} x_{n+1}^2-x_{n+1}-n\left(n+1\right)=0$$
 L'équation du second degré $x^2-x-n\left(n+1\right)=0$ admet assez évidemment les racines $-n$ et $n+1$.

Comme $x_{n+1} > 0$, on peut conclure à

$$x_{n+1} = n+1$$
 CQFD.

<u>Conclusion</u>: le principe de récurrence valide donc H(n) pour tout $n \in \mathbb{N}^*$, ce qui entraine en particulier

$$\forall n \in \mathbb{N}^*, \ x_n = n$$

Remarque : on n'a pas supposé pour l'hérédité que $x_n = n$, mais $x_k = k$ pour tous les k inférieurs à n. On dit que l'on a fait une récurrence forte.

EXERCICE 4

Soient $n \in \mathbb{N}^*$ et $a_1, a_2, ..., a_n$ des réels strictement positifs. On pose

$$S = \sum_{k=1}^{n} a_k$$
 et $T = \sum_{k=1}^{n} a_k^{(k-1)/k}$

On fixe un réel λ strictement supérieur à 1 et pour $k \in \mathbb{N}^*$, on définit la fonction $f_k : x \mapsto x^{(k-1)/k} - \lambda x$

- 1. Dans cette question on fixe que $k \geqslant 2$
 - a) $\frac{k-1}{k}$ n'étant pas un entier, f est définie et dérivable sur \mathbb{R}_+^* (par somme d'usuelles)
 - b) Etudions les variations de f_k sur \mathbb{R}_+^* : $\forall x>0, f_k'(x)=\frac{k-1}{k}x^{-1/k}-\lambda$. Comme $-\frac{1}{k}<0, f_k'$ est strictement décroissante sur \mathbb{R}_+^* , et s'annule au point $x_k>0$ vérifiant

$$\frac{k-1}{k}x_k^{-1/k} = \lambda \quad \text{soit} \quad x_k^{-1} = \left(\frac{\lambda k}{k-1}\right)^k \quad \text{ou} \quad \boxed{x_k = \left(\frac{k-1}{\lambda k}\right)^k}$$

 f_k est donc croissante sur $]0,x_k[$ et décroissante sur $]x_k,+\infty[$. Elle admet un maximum en x_k .

c) On a alors

$$f_k(x_k) = \left(\frac{k-1}{\lambda k}\right)^{k-1} - \lambda \left(\frac{k-1}{\lambda k}\right)^k = \left(\frac{k-1}{\lambda k}\right)^{k-1} \left(1 - \lambda \frac{k-1}{\lambda k}\right) = \left(\frac{k-1}{\lambda k}\right)^{k-1} \left(\frac{1}{k}\right)^{k-1} \left(\frac{1}{k}\right)$$

Ainsi

$$f_k(x_k) = \frac{1}{\lambda^{k-1}} \times \frac{(k-1)^{k-1}}{k^k}$$

d) Comme $k \geqslant 2$ (et $k-1 \geqslant 1$) on en déduit que $0 \leqslant (k-1)^{k-1} \leqslant k^{k-1} \leqslant k^k$. Mais alors

$$f_k(x_k) \leqslant \frac{1}{\lambda^{k-1}}$$

2. Comme $f_k\left(x_k\right)$ est maximum pour f, on en déduit : $\forall k\geqslant 2,\ \forall x>0,\ f_k\left(x\right)\leqslant \frac{1}{\lambda^{k-1}}.$ Remarquons que cette inégalité est encore valable pour $k=1\ (\forall x>0,\ f_1\left(x\right)=1-\lambda x\leqslant 1)$. On a ainsi

$$\forall k \in \mathbb{N}^*, \ f_k\left(a_k\right) \leqslant \frac{1}{\lambda^{k-1}} \quad i.e. \quad a_k^{(k-1)/k} - \lambda a_k \leqslant \frac{1}{\lambda^{k-1}}$$

Par sommation

$$T - \lambda S \leqslant \sum_{k=1}^{n} \frac{1}{\lambda^{k-1}} \stackrel{\text{translation}}{=} \sum_{k=0}^{n-1} \frac{1}{\lambda^{k}} \stackrel{\lambda \neq 1}{=} \frac{1 - 1/\lambda^{n+1}}{1 - 1/\lambda} = \frac{\lambda}{\lambda - 1} \left(1 - 1/\lambda^{n+1}\right)$$

 $\text{Comme } \lambda > 1 \text{, on a } 1 - 1/\lambda^{n+1} > 0, \\ \frac{\lambda}{\lambda - 1} > 0, \text{ et donc } \frac{\lambda}{\lambda - 1} \left(1 - 1/\lambda^{n+1} \right) \leqslant \frac{\lambda}{\lambda - 1}. \text{ Il vient : } \frac{\lambda}{\lambda - 1} = 0, \\ \frac{\lambda$

$$T \leqslant \lambda S + \frac{\lambda}{\lambda - 1}$$

- **3.** Pour x > 1 on définit $g(x) = xS + \frac{x}{x-1}$.
 - a) L'étude de g sur $]1, +\infty[$ n'est pas difficile : $\forall x > 1, \ g\left(x\right) = xS + 1 + \frac{1}{x-1}$ donc $g'\left(x\right) = S \frac{1}{\left(x-1\right)^2}$. g' est donc clairement croissante sur $]1, +\infty[$, et s'annule lorsque

$$(x-1)^2 = \frac{1}{S} \Longleftrightarrow \left[x = 1 - \frac{1}{\sqrt{S}} < 1 \text{ ou } x = 1 + \frac{1}{\sqrt{S}} = \alpha > 1 \right]$$

(rappelons que S>0). Ainsi g est décroissante sur $]1,\alpha[$ et croissante sur $]\alpha,+\infty[$, et atteint un minimum

5

en α . Ce minimum vaut alors

$$g(\alpha) = S\left(1 + \frac{1}{\sqrt{S}}\right) + 1 + \frac{1}{1/\sqrt{S}} = S + \sqrt{S} + 1 + \sqrt{S} = S + 2\sqrt{S} + 1$$

Soit

$$g\left(\alpha\right) = \left(\sqrt{S} + 1\right)^2$$

b) On prend alors $\lambda=\alpha$: l'inégalité du 2. s'écrit $T\leqslant g\left(\lambda\right)=\left(\sqrt{S}+1\right)^2$, d'où

$$\boxed{\sqrt{T}\leqslant \sqrt{S}+1} \quad \text{(puisque} T>0 \text{ et } \sqrt{S}+1>0\text{)}$$