中山大学软件学院 2010 级软件工程专业(2012学年秋季学期)

《SE-303 编译原理》期末试题(A卷答案卷)

(考试形式:闭卷 考试时间:2小时)

Part one: Answer the following questions (15 points. 5 points for each item.)

1. What phases does a compiler have?

.....

【参考答案】

编译程序分为: 词法分析、语法分析、语义分析、中间代码生成、代码优化、代码生成、符号表管理和出错处理八个阶段。

【评分标准】

本小题 5 分。

词法分析、语法分析、语义分析、中间代码生成、代码优化、代码生成各 1 分; 由于符号表管理和出错处理可以看成是多个阶段共有的部分,因此如果没有答出这两部分建议也不扣分;

如果按照课本将代码优化分成机器无关的优化和机器相关的优化,也可以给分。

2. What are the two main techniques in syntax analysis?

【参考答案】

语法分析的两个主要技术是自顶向下分析技术和自底向上分析技术。

【评分标准】

本小题 5 分。若具体列举分析技术,如 LL(1),LR(0),SLR(1)等,没有概括,则给 4 分。

3. Describe the four components of a context-free grammar.

【参考答案】

上下文无关文法由终结符号、非终结符号、一个开始符号与一组产生式组成。

【评分标准】

本小题 5 分。

终结符号、非终结符号、一个开始符号各1分;如果未明确说明是"一个",扣0.5分。 一组产生式占2分。

Part two: Compute and answer the following questions (85 points)

4. (15 points)Convert the following NFA into a DFA with minimum number of states:

【参考答案】

对图 4-1 的 NFA 先转换为 DFA 如下图 4-2 所示。

具体的转换过程如表 4-1 所示

表 4-1

NFA	DFA	0	1
{0,1,2,4,5}	1	2	3
{1,2,4,5}	2	2	3
{3}	3	4	Ф
{2,4,5}	4	4	3

【评分标准】

本小题7分。

如图 4-2 所示:转换后的 DFA 正确,但状态数多于 4 或转换关系不完全正确,得 5 分。 如果答案不正确,但能写出如表 4-1 所示的求解过程,可酌情给分。

(2)

【参考答案】

将图 4-2 的 DFA 进行最小化优化,优化后的 DFA 如图 4-3 所示,转换状态如表 4-2 所示。

表 4-2

DFA	优化后 DFA 状态
1,2,4	A
3	В

【评分标准】

本小题8分。

如图 4-3 所示: 优化后的 DFA 正确,但状态数多于 2 或转换关系不完全正确,得 5 分; DFA 正确,状态数等于 2 且状态转换关系正确,得 8 分。

如果按以上转换过程进行分析(如图 4-3 所示,表 4-2 所示),但最终结果不对,可根据计算过程酌情给分。

- **5.** (10 points) Which of the following language is a regular language, a context-free language or a context-sensitive language? For the regular language, write its regular expression, for the context-free language (which is not a regular language), write its context-free grammar.
 - (1) $L_1 = \{w \mid w \in \{0,1\}^* \text{ and } w \text{ does not contain subsequence } 011\};$
 - (2) $L_2 = \{ wcw \mid w \in \{0,1\}^* \text{ and } c \neq 0, 1 \};$
 - (3) $L_3 = \{ w \mid w \in \{0,1\}^* \text{ and } w = 1^n 0^m 1^m 0^n, n \ge 0, m \ge 0 \}.$

(1)

【参考答案】是正则语言. 正则表达式为:1*0*(1 | ε)0*

【评分标准】本小题 4 分. 答对正则语言得 2 分,给出正确的正则表达式得 2 分。

(2)

【参考答案】是上下文有关语言。

【评分标准】本小题 2 分. 答对上下文有关语言得 2 分。(希望同学能说明此题是上下文有关语言的原因)

(3)

【参考答案】是上下文无关语言,上下文无关方法为:

 $S \rightarrow 1S0|A$

 $A \rightarrow 0A1|\epsilon$

【评分标准】本小题 4 分.答对上下文无关语言得 2 分,给出正确的文法得 2 分。

- **6.** (10 points) Given the following grammar:
 - G: $S \rightarrow SS | (S) | ()$
 - (1) Prove this grammar is ambiguous.

- (2) Describe what language this grammar generate.
- (3) Construct an unambiguous grammar that generate the same language as this grammar.

(5) Construct an unambiguous grammar that generate the same ranguage as this grammar.

(1)

【参考答案】

对于句子()()(),可以构造出两棵语法分析树,如图 6-1:

图 6-1

(2)

【参考答案】

产生所有由'('和')'组成的匹配括号串.

【评分标准】本小题3分.

【评分标准】本小题 4 分.正确给出证明过程即可得全分。

(3)

【参考答案】

 $S \rightarrow ST \mid T$

 $T \rightarrow (S) | ()$

【评分标准】本小题 3 分.正确给出无二义性文法即可得全分。给出文法与以上文法不同,酌情给分。

7. (10 points) Construct the predictive parsing table of the following grammar.(Hint: To eliminate left recursion of the grammar first)

G:
$$E \rightarrow E+T \mid T$$

 $T \rightarrow T \bullet F \mid F$
 $F \rightarrow F* \mid a \mid b$

【参考答案】

(1) 消除左递归,得文法

$$E \rightarrow TE'$$

 $E' \rightarrow +TE' \mid \epsilon$
 $T \rightarrow FT'$
 $T' \rightarrow \bullet FT' \mid \epsilon$

```
F \rightarrow aF'|bF'

F' \rightarrow *F'| \epsilon
```

【评分标准】

答对此部分可得 4 分。

由产生式知:

$FIRST(E)=\{a,b\}$	FOLLOW(E)={\$}
FIRST(E')={+ , ε }	FOLLOW(E')={\$}
$FIRST(T)=\{a,b\}$	$FOLLOW(T)=\{+,\$\}$
$FIRST(T')=\{\bullet, \epsilon\}$	FOLLOW(T')={+, \$}
$FIRST(F)=\{a,b\}$	$FOLLOW(F)=\{\bullet,+,\$\}$
$FIRST(F')=\{*, \epsilon\}$	FOLLOW(F')={ • , +, \$}

【评分标准】

答对此部分可得5分。

预测分析表如下表 7-1 所示:

表 7-1

	+	•	*	a	b	\$
E				E→TE'	E→TE'	_
E '	E'→+TE'					E'→ ε
T				T→FT'	T→FT'	
T '	T '→ ε	$T' \rightarrow \bullet FT'$				T'→ ε
F				F→aF'	F→bF'	
F'	F'→ ε	F'→ ε	$F' \rightarrow *F'$			F'→ ε

【评分标准】

答对此部分可得6分。

8. (15 points) Given the following grammar:

 $A \rightarrow aAd$ $A \rightarrow aAb$ $A \rightarrow \epsilon$

- (1) Is the grammar an SLR(1) grammar? Explain the reason concisely.
- (2) Given the input string: ab#, please describe the parsing process in detail.

(1)

【参考答案】

对于文法: $A \rightarrow aAd|aAb|\epsilon$,其拓广文法为 G',增加产生式 $S' \rightarrow A$,设产生式排序为:

- $(0) S' \rightarrow A$
- $(1) A \rightarrow aAd$
- $(2) A \rightarrow aAb$
- $(3) A \rightarrow \epsilon$

【评分标准】

答对此部分可得2分。

由产生式知:

First (S') = $\{\varepsilon,a\}$

First (A) = $\{\varepsilon,a\}$

 $Follow(S') = \{\$\}$

 $Follow(A) = \{d,b,\$\}$

【评分标准】

答对此部分可得 2 分。

G'的 LR(0)项目集族及识别活前缀的 DFA 如下图 7-1 所示:

图 8-1

在 I_0 中: $A \rightarrow .aAd$ 和 $A \rightarrow .aAb$ 为移进项目, $A \rightarrow .$ 为归约项目,存在移进-归约冲突,因此所给文法不是 LR(0)文法。

在 I_0 与 I_2 中: Follow(A) \cap {a} = {d, b, \$} \cap {a} = ϕ ,所以在 I_0 、 I_2 中的移进—归约冲突可以由 Follow 集解决,所以 G 是 SLR(1) 文法。

【评分标准】

答对此部分可得6分。如果答案不正确,但能正确地给出分析过程,可酌情给分。

(2)

【参考答案】

构造的 SLR(1)分析表如下表 8-1 所示:

表 8-1

State Action			Goto		
State	a	d	b	\$	A
0	S2	r3	r3	r3	1
1				Acc	
2	S2	r3	r3	r3	3
3		S4	S5		
4		r1	r1	r1	
5		r2	r2	r2	

对输入串 ab#的分析过程如下表 7-2 所示:

表 8-2

状态栈	文法符号栈	剩余输入串	动作
0	#	ab#	移入
0 2	#a	b#	规约: A→ε
0 2 3	#aA	b#	移入
0 2 3 5	#aAb	#	规约: A→aAb
0 1	#A	#	

【评分标准】

答对此部分可得5分。如果答案不正确,但能正确地给出分析过程,可酌情给分。

9. (*Optional 1*) (15 points)

Based on the syntax-directed definitions in the textbook, translate the following statement into quadruple (three-address statement) sequence:

WHILE $A < C \land A < D DO$

IF A = 1 THEN

A := A+1

ELSE WHILE A < D DO A := A+2

【参考答案】

- (1) (j <, A, C, 3)
- (2) $(j, _, _, 0)$
- (3) (j <, A, D, 5)
- (4) $(j, _, _, 2) \leftarrow S.CHAIN$
- (5) (j=, A, 1, 7)
- (6) $(j, _, _, 10)$
- (7) $(+, A, 1, T_1)$
- (8) $(:=, T_1, ,A)$
- (9) $(j, _, _, 1)$
- (10) $(j \le A, D, 12)$
- (11) $(j, _, _, 1)$
- (12) $(+, A, 2, T_2)$
- (13) $(:=, T_2, _, A)$
- (14) (j,_,_,10)

(15)
$$(j, _, _, 1)$$

【评分标准】

本小题 15 分。

每个四元式1分。

如果未能按四元式描述,但描述正确,可酌情给分。

(Optional 2) (15 points)

The following grammar generates binary strings and their complements.

$$F \rightarrow B$$

$$|\neg B$$

$$B \rightarrow B0$$

$$|B1$$

$$|0$$

$$|1$$

The value of a (non-negated) string is just the decimal value of the binary number the string represents; the value of a negated string is the decimal value of the string with 1's replaced by 0's and 0's replaced by 1's. For example, the value of 010 is 2 and $\neg 010$ is 5. Design a syntax-directed definition (SDD) for the above grammar such that the non-terminal F has an attribute F.val which keeps the value of an input string generated by F. Please do NOT modify the grammar.

【参考答案】

SDD 如表 9-1(2)所示

表 9-1(2)

产生式	语义规则
F → B	B.c = false, F.val = B.val
F → ¬B	B.c = true, F.val = B.val
$B \rightarrow B_1 0$	$B_1.c = B.c, B.val = B_1.val * 2 + (B.c ? 1 : 0)$
$B \rightarrow B_1 1$	$B_1.c = B.c, B.val = B_1.val * 2 + (B.c ? 0 : 1)$
$B \rightarrow 0$	$B_1.c = B.c, B.val = (B.c ? 1 : 0)$
B → 1	$B_1.c = B.c, B.val = (B.c?0:1)$

【评分标准】

本小题 15 分。

10. (10 points) Consider the following basic block:

1)	$S_0 := 2$
2)	$S_1 := 3/S_0$
3)	$S_2 := T - C$
4)	$S_3 := T + C$
5)	$R := S_0/S_3$
6)	H := R
7)	$S_4 := 3/S_1$

8)	$S_5 := T + C$
9)	$S_6 := S_4/S_5$
10)	$H := S_6 * S_2$

- (1) Construct the DAG of the above basic block;
- (2) Assume that only R and H will be used after the basic block. Give the optimized three-address statement sequence.

(1)

【参考答案】

DAG 图:

图 10-1

【评分标准】

本小题5分。

(2)

【参考答案】

若只有 R,H 在基本块出口活跃,优化后的四元式序列

 $S_2 := T - C$

 $S_3 := T + C$

 $R := 2 / S_3$

 $H := R * S_2$

【评分标准】

本小题5分。