Estadística La Venganza

Importar datos

load("../../Digitalizacion de señales/S3/Utils4SP/Datasets/S5_Estadistica101_LaVenganza

Plots Exploratorios

```
figure
stackedplot(atmosfera,'XVariable','DateTime')
```


summary(atmosfera)

Variables:

Fecha: 137522×1 cell array of character vectors

Hora: 137522×1 cell array of character vectors

Pres_kpa: 137522×1 double

Values:

Min 77.55 Median 78.06 Max 78.46

Temp_C: 137522×1 double

Values:

Min 13.38
Median 21.01
Max 100
NumMissing 11

Hum_perc: 137522×1 double

Values:

Min 15.27 Median 50.16 Max 99.97 NumMissing 61

DateTime: 137522×1 datetime

Values:

Min 20210518 06:00:03 Median 20210522 05:59:48 Max 20210526 05:59:55

%Exploración de números faltantes
%Todos las lecturas de atmósfera tal que existan NaNs en su campo "Humedad"
%y que sean todos los campos
atmosfera(ismissing(atmosfera.Hum_perc),:)

ans = 61×6 table

	Fecha	Hora	Pres_kpa	Temp_C	Hum_perc	DateTime
1	'210519'	'01:55:14'	77.8600	16.5900	NaN	20210519 0
2	'210523'	'04:27:47'	78.2000	17.2300	NaN	20210523 0
3	'210523'	'05:17:37'	78.2000	17.2000	NaN	20210523 0
4	'210524'	'02:32:46'	78.3800	100	NaN	20210524 0
5	'210524'	'02:32:56'	78.3800	100	NaN	20210524 0
6	'210524'	'02:33:06'	78.3800	100	NaN	20210524 0
7	'210524'	'02:33:11'	78.3800	100	NaN	20210524 0
8	'210524'	'02:33:16'	78.3900	100	NaN	20210524 0
9	'210524'	'02:33:21'	78.3800	100	NaN	20210524 0
10	'210524'	'02:33:26'	78.3800	100	NaN	20210524 0
11	'210524'	'02:33:31'	78.3700	100	NaN	20210524 0
12	'210524'	'02:33:36'	78.3700	100	NaN	20210524 0
13	'210524'	'02:33:41'	78.3600	100	NaN	20210524 0
14	'210524'	'02:33:47'	78.3600	100	NaN	20210524 0

:

%Exploración de números faltantes
%Todos las lecturas de atmósfera tal que existan NaNs en su campo "Temperatura"
%y que sean todos los campos

atmosfera(ismissing(atmosfera.Temp_C),:)

ans = 11×6 table

	Fecha	Hora	Pres_kpa	Temp_C	Hum_perc	DateTime
1	'210518'	'17:59:58'	77.7100	NaN	49.6800	20210518 1
2	'210520'	'09:27:14'	77.9500	NaN	38.9700	20210520 0
3	'210520'	'09:37:27'	77.9500	NaN	39.4700	20210520 0
4	'210520'	'21:22:43'	77.8400	NaN	44.8400	20210520 2
5	'210521'	'20:50:27'	78.0400	NaN	48.0700	20210521 2
6	'210522'	'20:57:34'	78.0700	NaN	51.3400	20210522 2
7	'210522'	'20:57:44'	78.0800	NaN	51.2100	20210522 2
8	'210522'	'20:58:39'	78.0700	NaN	51.2900	20210522 2
9	'210523'	'10:19:08'	78.3200	NaN	53.7100	20210523 1
10	'210523'	'21:44:54'	78.0100	NaN	52.8200	20210523 2
11	'210525'	'18:14:48'	78	NaN	61.0600	20210525 1

%Exploración de números faltantes

%Todos las lecturas de atmósfera tal que existan NaNs en su campo "Temperatura" %y que sean DateTime y Humedad

atmosfera(ismissing(atmosfera.Temp_C),["DateTime" "Hum_perc"])

ans = 11×2 table

	DateTime	Hum_perc
1	20210518 1	49.6800
2	20210520 0	38.9700
3	20210520 0	39.4700
4	20210520 2	44.8400
5	20210521 2	48.0700
6	20210522 2	51.3400
7	20210522 2	51.2100
8	20210522 2	51.2900
9	20210523 1	53.7100
10	20210523 2	52.8200
11	20210525 1	61.0600

```
atmosfera_clean=rmmissing(atmosfera);

figure
stackedplot(atmosfera_clean,'XVariable','DateTime')
```


Métricas de tendencia central

```
%Una gráfica con boxplot e histograma
figure
tiledlayout(1,2)
nexttile
boxplot(atmosfera_clean.Hum_perc)
```

Warning: Unable to set 'Position', 'InnerPosition', 'OuterPosition', or 'ActivePositionProperty' for objects in a TiledChartLayout

```
xlabel("Humedad relativa")
ylabel("%")

nexttile
histogram(atmosfera_clean.Hum_perc,'BinWidth',5,'Normalization',"probability")
xlabel("Humedad [%]")
ylabel("Probabilidad")

%Serie de tiempo
figure
plot(atmosfera_clean.DateTime,atmosfera_clean.Hum_perc)
```

```
ylabel("Humedad relativa [%]")
grid on
grid minor
```



```
%mediana y promedio
%promedio
hum_mean=mean(atmosfera_clean.Hum_perc)
```

 $hum_mean = 49.6841$

```
%mediana
hum_median=median(atmosfera_clean.Hum_perc)
```

 $hum_median = 50.1550$

```
%moda
hum_mode=mode(atmosfera_clean.Hum_perc)
```

 $hum_mode = 28.9200$

```
%Cuantiles
%Primer cuartil
hum_1Q=quantile(atmosfera_clean.Hum_perc,0.25)
```

 $hum_1Q = 29.8800$

```
%tercer cuartil
hum_2Q=quantile(atmosfera_clean.Hum_perc,0.75)
```

```
hum_2Q = 66.9600
```

```
%Una gráfica con boxplot e histograma con promedio y mediana
figure
tiledlayout(1,2)
nexttile
boxplot(atmosfera_clean.Hum_perc)
```


Warning: Unable to set 'Position', 'InnerPosition', 'OuterPosition', or 'ActivePositionProperty' for objects in a TiledChartLayout

```
xlabel("Humedad relativa")
ylabel("%")

nexttile
histogram(atmosfera_clean.Hum_perc,'BinWidth',5,'Normalization',"probability")
xlabel("Humedad [%]")
ylabel("Probabilidad")
hold on
xline(hum_median,'--r','Mediana')
xline(hum_mean,'--k','Promedio',"LabelHorizontalAlignment","left")
xline(hum_mode,'--b','Moda',"LabelHorizontalAlignment","left")
xline(hum_1Q,'--g','Primer cuartil')
xline(hum_2Q,'--g','Tercer cuartil')
hold off
```



```
%Serie de tiempo
figure
plot(atmosfera_clean.DateTime,atmosfera_clean.Hum_perc)
hold on
yline(hum_median,'r','Mediana')
yline(hum_mean,'--k','Promedio',"LabelVerticalAlignment","bottom")
yline(hum_mode,'--b','Moda',"LabelVerticalAlignment","bottom")
yline(hum_1Q,'--g','Primer cuartil')
yline(hum_2Q,'--g','Tercer cuartil')
hold off
ylabel("Humedad relativa [%]")
grid on
grid minor
```


Dispersión

```
buho_left=buho(:,1);
%plot(buho_left)

figure
tiledlayout(1,2)
nexttile
boxplot(buho_left)
```

Warning: Unable to set 'Position', 'InnerPosition', 'OuterPosition', or 'ActivePositionProperty' for objects in a TiledChartLayout

```
xlabel("Audio Buho")
ylabel("V")

nexttile
histogram(buho_left,20,'Normalization',"probability")
xlabel("Audio Buho [V]")
ylabel("Probabilidad")

%Serie de tiempo
figure
plot(buho_left)
ylabel("Audio Buho [V]")
```



```
%Promedio
buho_mean= mean(buho_left);

%Var
buho_var=var(buho_left);

%std
buho_std=std(buho_left);

figure
tiledlayout(1,2)
nexttile
boxplot(buho_left)
```


Warning: Unable to set 'Position', 'InnerPosition', 'OuterPosition', or 'ActivePositionProperty' for objects in a TiledChartLayout

```
xlabel("Audio Buho")
ylabel("V")

nexttile
histogram(buho_left,20,'Normalization',"probability")
xlabel("Audio Buho [V]")
ylabel("Probabilidad")
hold on
xline(buho_mean,'--r','Promedio')
xline(buho_mean+buho_std,'--g','+\sigma')
xline(buho_mean-buho_std,'--g','-\sigma')
xline(buho_mean+2*buho_std,'--k','+2\sigma')
xline(buho_mean-2*buho_std,'--k','-2\sigma')
hold off
```



```
%Serie de tiempo
figure
plot(buho_left)
ylabel("Audio Buho [V]")
hold on
yline(buho_mean,'--r','Promedio')
yline(buho_mean+buho_std,'--g','+\sigma')
yline(buho_mean-buho_std,'--g','-\sigma')
yline(buho_mean+2*buho_std,'--k','+2\sigma')
yline(buho_mean-2*buho_std,'--k','-2\sigma')
hold off
grid on
grid minor
```


Ajustes

```
plot(atmosfera_clean.Temp_C,atmosfera_clean.Hum_perc,'.')
xlabel("Temperatura [°C]")
ylabel("Humedad [%]")
grid on
[fit_relacion,gof]=fit(atmosfera_clean.Temp_C,atmosfera_clean.Hum_perc,'poly1')
fit_relacion =
    Linear model Poly1:
    fit_relacion(x) = p1*x + p2
    Coefficients (with 95% confidence bounds):
               -2.772 (-2.781, -2.763)
      p2 =
                113.2 (112.9, 113.4)
gof = struct with fields:
          sse: 1.5967e+07
      rsquare: 0.7212
          dfe: 137448
   adjrsquare: 0.7212
         rmse: 10.7783
[fit_relacion2,gof]=fit(atmosfera_clean.Temp_C,atmosfera_clean.Hum_perc,'poly2')
fit_relacion2 =
    Linear model Poly2:
    fit_relacion2(x) = p1*x^2 + p2*x + p3
```

```
Coefficients (with 95% confidence bounds):

p1 = 0.088 (0.08654, 0.08946)

p2 = -7.097 (-7.169, -7.024)

p3 = 162.6 (161.8, 163.5)

gof = struct with fields:

sse: 1.4498e+07

rsquare: 0.7468

dfe: 137447

adjrsquare: 0.7468

rmse: 10.2703
```

```
figure
plot(atmosfera_clean.Temp_C,atmosfera_clean.Hum_perc,'.')
hold on
plot(fit_relacion,'r')
plot(fit_relacion2,'b')
```



```
hold off
xlabel("Temperatura [°C]")
ylabel("Humedad [%]")
legend("Data", "Ajuste de línea", "Ajuste polinomio grado 2")
grid on
```

