Algebraische Geometrie II, SoSe 2016 Institut für Algebraische Geometrie Leibniz Universität Hannover

Prof. Dr. Klaus Hulek Benjamin Wieneck

ÜBUNGSBLATT 9

Aufgabe 1. Sei $f: X \to Y$ eine stetige Abbildung zwischen topologischen Räumen, \mathcal{F} eine Garbe auf X und

$$0 \longrightarrow \mathcal{F} \longrightarrow \mathcal{W}^0 \xrightarrow{\varphi^0} \mathcal{W}^1 \xrightarrow{\varphi^1} \mathcal{W}^2 \longrightarrow \cdots$$

die kanonische welke Auflösung von \mathcal{F} . Bezeiche $f_{\star}\varphi^{i}: f_{\star}\mathcal{W}^{i} \to f_{\star}\mathcal{W}^{i+1}$ die induzierte Abbildung. Man zeige: die höhere direkte Bilgarbe $R^{i}f_{\star}\mathcal{F}$ ist kanonisch isomorph zu

$$\frac{\ker(f_\star \varphi^i)}{\operatorname{im}(f_\star \varphi^{i-1})} \, .$$

Aufgabe 2. Sei C eine glatte irreduzible Kurve vom Geschlecht g=1 und $x_0 \in C$. Bezeichne Pic⁰(C) die Geradenbündel vom Grad 0. Man zeige, dass durch

$$x \longmapsto \mathcal{O}_C(x-x_0)$$

eine Bijektion zwischen C und $Pic^0(C)$ definiert wird.

Bemerkung: Dies liefert eine Gruppenstruktur auf C mit neutralen Element x_0 .

Aufgabe 3. Sei C eine Kurve und $p \in C$. Man zeige, dass eine rationale Funktion f auf C existiert, welche einen Pol in p hat, aber sonst regulär ist.

Aufgabe 4. Seien $C_1, \ldots C_n$ glatte, irreduzible Kurven mit $g(C_i) = g_i$ und $p_j, q_j \in \coprod_{i=1}^n C_i, j = 1, \ldots, r$ verschiedene Punkte. Die assoziierte nodale Kurve ist definiert als

$$C := \coprod_{i=1}^{n} C_i / \sim$$

wobei die Äquivalenzrelation \sim jeweils p_j mit q_j für $j=1,\ldots,r$ identifiziert. Man zeige, dass $h^1(C,\mathcal{O}_C)=r+1-n+\sum_{i=1}^n g_i$.

Hinweis: Eine reguläre Funktion f auf C ist eine reguläre Funktion f auf $\coprod_{i=1}^{n} C_i$, mit $f(p_j) = f(q_j)$.