

Eur päisches **Patentamt**

European Patent Office Office européen des brevets

Bescheinigung

Certificate

Attestation

Die angehefteten Unterlagen stimmen mit der ursprünglich eingereichten Fassung der auf dem nächsten Blatt bezeichneten europäischen Patentanmeldung überein.

The attached documents are exact copies of the European patent application conformes à la version described on the following initialement déposée de page, as originally filed.

Les documents fixés à cette attestation sont initialement déposée de la demande de brevet européen spécifiée à la page suivante.

Patentanmeldung Nr.

Patent application No. Demande de brevet nº

02014178.4

Der Präsident des Europäischen Patentamts; Im Auftrag

For the President of the European Patent Office

Le Président de l'Office européen des brevets p.o.

R C van Dijk

·	

Anmeldung Nr:

Application no.: 02014178.4

Demande no:

Anmeldetag:

Date of filing: 25.06.02

Date de dépôt:

Anmelder/Applicant(s)/Demandeur(s):

Sony DADC Austria AG Sonystrasse 20 5081 Anif AUTRICHE

Bezeichnung der Erfindung/Title of the invention/Titre de l'invention: (Falls die Bezeichnung der Erfindung nicht angegeben ist, siehe Beschreibung. If no title is shown please refer to the description. Si aucun titre n'est indiqué se referer à la description.)

Method for generating disk label print data

In Anspruch genommene Prioriät(en) / Priority(ies) claimed /Priorité(s) revendiquée(s)
Staat/Tag/Aktenzeichen/State/Date/File no./Pays/Date/Numéro de dépôt:

Internationale Patentklassifikation/International Patent Classification/Classification internationale des brevets:

G07D/

Am Anmeldetag benannte Vertragstaaten/Contracting states designated at date of filing/Etats contractants désignées lors du dépôt:

AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

į

Description

EPO - Munich

The invention relates to a method for generating printing data of the basis of which a disk label is creatable, as well as a system for performing said method.

5

10

15

20

30

35

Disk labels are usually created on the basis of printing data. The most difficult part of designing a disk label is therefore the generation process of said printing data. A customer like a producer of a music CD who wants to design a CD-label therefore has to send his design ideas (graphic data in form of electronic files or graphics/drawings printed on paper) to a company/graphic department having the necessary software for generating printing data. The company/graphic department generates the printing data according to the design ideas of the customer. To check if this has been done properly, the printing data is usually visualized in form of hardcopies which are then sent to the customer for approval. If the customer agrees, the printing data is released for the CD-label manufacturing process.

However, this procedure shows the following disadvantages: A lot of time is need in order to transfer the graphic data/hardcopies between the company/graphic department and the customer. Further, since a lot of people are incorporated in the necessary processes of approval and exchanging graphic data/hardcopies between the company/graphic and the customer, there is a high danger of possible errors which may occur during said processes.

It is an object of the present invention to provide a method for generating printing data usable for creating disk labels which avoids the problems discussed above, i.e. which facilitates the printing data generating process.

In order to solve this object, the present invention provides a method for generating printing data according to claim 1. In order to perform said method, a network capable client according to claim 12, a network capable server according to claim 19, and a system according to claim 23 are provided. Preferred embodiments thereof are respectively defined in the respective following subclaims. A computer program product according to the present invention is defined in claim 25 and a computer readable storage means is defined in claim 26.

According to the present invention, a method for generating printing data on the basis of which a disk label is creatable comprises the steps of:

- (a) generating graphic data representing said disk label at a graphic data generating location, and
- 5 (b) transforming said graphic data into said printing data at a printing data generating location, said method being characterized in that said graphic data generating location and said printing data generating location are parts of a communication network, respectively, wherein steps (a) and (b) are controlled by a network capable client being part of said communication network.

"Graphic data" here means any possible representation of graphics/drawings/pictures like JPEG-data, bmp, tiff or simply coordination signals/keyboard inputs which are generated in conjunction with a designing process.

"Printing data" here means any picture format (like JPEG, bmp, tiff, CYMK, postscript or the like) which can directly be used by a printer to generate CD-labels. The graphic data and the printing data may be identical.

20

25

30

35

15

This method shows the following advantages:

- The danger of error sources is reduced since only one person (user of the network capable client) is needed for generating both the graphic data and the printing data.
- A lot of time can be saved since the transfer (if necessary at all) of the graphic data from the graphic data generating location to the printing data generating location can be performed via a communication network. Thus, time consuming transfers of graphic data/graphics via mail are no longer necessary.
- The process of generating printing data can be initiated/controlled/performed from/at any location. The only requirement is that the client used to control/initiate/perform those tasks is connected to a corresponding network which links the client with the company manufacturing said disks. In the case where steps a) and or b) are initiated/controlled/performed by said client on an applet basis, a corresponding applet-plug in is needed on the client side.

5

15

20

25

30

35

- It is possible to secure that the printing data is generated according to the specifications of the company manufacturing said disks, in particular the physical size of the disk, e.g. CD-ROM, and an inner ring specification, e.g. printing areas and areas where printing is not allowed in the middle of the disk. To do this, the company may offer all necessary software needed to create the printing data on a server being part of the communication network, said software being structured in a way that only printing data conforming with desired specification is allowed to be generated.

10 In a preferred embodiment, the communication network includes the Internet and/or an Intranet.

The graphic data generating location and the printing data generating location may, for example, be both located on the network capable client. For this purpose, the client (for example a Personal Computer) may for example store within a memory unit graphic data generating software like a drawing program as well as a printing data generating software like a conversion program which transforms an output of said graphic data generating software (graphic data) into the desired printing data. Alternatively, the graphic data generating location and the printing data generating location may both be located on a server also being part of the communication network. In this case, the processes of generating graphic data/printing data are not performed within the client itself, but are initiated to be executed on the remote server on the basis of remote controlling capabilities of the client (for example, browser or telnet functionality). Another possible solution is to separate the graphic data generating location from the printing data generating location, for example to assign the graphic data generating location to the network capable client, and to assign the printing data generating location to the network capable server. In this case, the graphic data is produced on the client and then transferred via the communication network to the server, where the graphic data is transformed into the printing data. In the case where the data format of the graphic data is already identical with the data format of the printing data, a transformation step (graphic data to printing data) might not be necessary, in particular, if also the specifications of the company manufacturing the disks are fulfilled. Preferably, the server is located within the company which manufactures the disk labels.

As a consequence, the separation between the graphic data generating location and the printing data generating location effectively does not exist for the

5

10

15

20

customer, since all processes seem to be performed at one location (which can be accessed by the man machine interface of the client) from the customers view.

In a preferred embodiment, the graphic data is visualized to the user of the client on a low dpi value basis, whereas the printing data derived from the graphic shows a high dpi value. If, for example, the user of the client uses the mouse to draw a line on the screen of a display of the client, the coordination signals of the mouse (graphic data) are visualized on the display as a line having a low dpi value, whereas internally the coordination signals of the mouse are simultaneously transformed into printing data showing a high dpi value (the high dpi value is needed for manufacturing disk labels). Preferably, said low dpi value is about 72 dpi (usual monitor resolution), whereas said high dpi value is about 300 to 360 dpi, but may also be higher, e.g. with future development of printers. This automatism has the advantage that no errors can occur during the process of transforming said graphic data into printing data; the graphic data is stored in terms of printing data (high dpi value) and only visualized on a low dpi value basis. At the end of the designing process the artwork may be scaled in order to increase the dpi number to e.g. 360.

As already mentioned above, the term "printing data" means any picture format which can be directly used by a printer to generate CD-labels (for example JPEG, CYMK, postscript or the like). In order to be more flexible, the printing data may be adapted to different printing units by respective printing data conversion processes which convert the printing data from a first printing data format to a second printing data format, respectively. For example, printing data being available in form of postscript data may be converted into printing data showing the CYMK-format. This allows to use different printing machines requiring different kinds of printing data. This adapting process may be performed automatically or manually.

30

35

25

Preferably, the printing data comprises postscript data or picture data of any other picture formats.

In a preferred embodiment, all steps being performed by a user intending to generate graphic data which can not be assigned to predefined CD-label printing areas are blocked during step a).

In order to perform above-described process, the present invention provides a network capable client having means for locally and/or remotely controlling/performing all processes needed for generating printing data on the basis of which a disk label is creatable.

5

10

15

20

25

Preferably, the client comprises/runs a browser means (for example Netscape Communicator) for visiting remote websites and for using functionality offered by these remote websites. For example, the browser means may be capable of using applets (e.g. shockwave applets) being offered by the website, wherein the applets then serve as the basis for controlling/performing the processes needed for generating printing data. For example, the applet may contain the graphic data generating software as well as the printing data generating software mentioned above. However, the means for locally and/or remotely controlling/performing the processes for generating printing data may also be constituted by a "normal" piece of software which can be installed on the client and afterwards be executed on the client's side. The finished image-file can be downloaded in order to be saved on a disc or any other device.

The client preferably comprises/runs a drawing tool (graphic data generating software) allowing a user to generate graphics/pictures/drawings corresponding to the desired disk label which may be a standard drawing tool like PhotoShop, Corel Draw or a drawing tool specialized on creating disk labels. The drawing tool visualizes the graphics/pictures/drawings on a low dpi value Advantageously, the client also comprises/runs means for generating printing data (printing data software) generating corresponding said graphics/pictures/drawings on a high dpi value basis. In a preferred embodiment, the graphic data generating software (drawing tool) is part of said applet/downloadable software.

30 Advantageously, the client comprises means for exporting printing data generated on the client's side to a remote server.

The client may comprise means allowing the user only to generate drawings which fit into predefined CD-label printing areas.

35

The present invention further provides a network capable server offering functionality directly usable by a remote client on said server and/or installable on said remote client in order to be remotely used, which is characterized in that

said functionality is adapted to locally and/or remotely controlling/performing all processes needed for generating printing data on the basis of which a disk label is creatable.

In other words, the server may either offer software running on the server itself but being remotely controlled by the network capable client described above, or offer software being downloadable to be executed on the client side. The software may include all software tools being necessary to generate said printing data or only a part of these software tools.

10

15

20

25

The server preferably hosts functionality allowing a web browser running on a remote client to access said offered functionality. The functionality is preferably provided in form of applets which can be used in conjunction with a web browser. The server further may comprise functionality for receiving printing data remotely generated by the remote client. Thus, the "interface" between the software needed to generate the printing data and the remote client/user which uses this software can be provided in form of a website.

Further, the present invention provides a system for performing all processes needed for generating printing data on the basis of which a disk label is creatable, which is characterized by a network capable client according to the present invention and a network capable server according to the present invention, wherein said network capable client and said network capable server are connected with each other via a communication network. Preferably, the communication network comprises the Internet and/or an Intranet.

Further, a computer program product having computer product means adapted to perform/embody the inventive method or any step thereof is provided, which also may be designated as web capable disk label design tool.

30

Last, a computer readable storage means storing thereon a computer program product having computer product means adapted to perform/embody the inventive method or any step thereof is provided.

35 For a better understanding of the invention, further features and embodiments thereof will be explained below by way of example while making reference to the accompanying drawing, wherein:

5

10

15

20

25

30

35

- Fig. 1 shows a preferred embodiment of a system for generating printing data according to the present invention.
- Fig. 2 shows a preferred embodiment of a GUI (Graphical User Interface) of a graphic data generating software according to the present invention.

A system 1 comprises a network capable server 2, a first network capable client 3, a second network capable client 4, a third network capable client 5, and a communication network 6 (here: the Internet), wherein the Internet 6 connects each client 3 to 5 with the server 2.

In the following, it is assumed that a user of the first client 3 wants to generate printing data for a disk label. To do this, he uses network capabilities of the first client 3, for example a web browser, to establish a connection to the server 2 via the Internet 6. The server 2 hosts a website in which a (shockwave) applet is included, said applet comprising all software components/functionality needed for generating the desired graphic/printing data. The user then may download the applet hosted by the server 2 via the Internet 6 in order to execute it on the first client 3. Alternatively, the applet may be executed on the server 2. If the user generates the printing data on the client's side, the printing data has to be transferred back to the server 2 via the Internet 6. The company manufacturing the disk labels then uses the printing data received by the server 2/generated on the server 2 in order to create the disk labels. Respective printing data generating processes controlled/initiated/performed by the second client 4 or the third client 5 are done in an analogous manner.

The inventive system 1 described above has the advantages that the time for generating the printing data is very short, since the transmission of the applet to the client (if necessary at all) as well as the transmission of the printing data from the client 3 back to the server 2 can be performed very quickly (the typical size of a printing data file is dependent on the format and resolution and might range from 200 kilobyte to 10 - 20 MB, e.g. 2 MB). Further, no approvals are necessary since the graphic data/printing data is generated by the user itself and not by a separate graphic department. Thus, the user can immediately see if his created printing data corresponds to his ideas. In addition, possible errors are reduced since only one person is involved in the process of generating the printing data. Also, the only hardware requirement for the user is to have a network capable (Internet capable) client like a PC having Internet access. Last,

since the printing data is generated by the applet which is programmed by the company manufacturing the disk labels, the company has the possibility to design the applet in a way that only printing data corresponding to desired specifications is allowed to be generated by a user. That is, the printing data is in exactly the format which is required for the actual manufacturing process.

In the following, a preferred embodiment of the software components used for generating the printing data will be explained.

As already mentioned, the software components (graphic data generating software and printing data generating software) are preferably available in form of an applet. The printing data is preferably generated as postscript file or picture file. Each software component contains functions which can be changed independently from functions of another software component.

15

20

30

35

10

5

It is possible to perform settings/pre-selections of parameters, which can be defined by the user at the beginning of the printing data generating process. These settings/pre-selections have an influence on the whole generating process and should therefore preferably be done at the beginning of the printing data generating process. However, these settings/pre-selections can also be done during the printing data generating process.

Basically, there are two different categories of settings/pre-selections: The first setting category concerns the shape of the disk: for example it is distinguished between different categories of disks like CD-ROMs, DVDs (Audio DVD-R, DVD-RW), MiniDisks or the like, since each different type of disk may show different areas which are allowed or not allowed to be labeled. Further, within each category, it may be distinguished between different types of disks. According to the selected category/type of disk, the user is for example allowed/not allowed to create a CD-label which covers the inner ring of a CD which is not used for recording data. More generally, a basic principle of the software components is customization. That is, operations of the user which might lead to useless printing data are recognized and blocked by the software components. The second setting/pre-selection categories concerns the color system used by the software components. Since in this embodiment the printing data has to be available in terms of the CMYK-color-model, the color system is restricted to the colors available within this model. However, the user can also define colors to be exclusively used for the design/layout of the disk label.

The colors can be defined with the help of sliders or keyboard inputs. The selection of colors is limited to those which had been defined within the color system described above. This limitation avoids errors. The presentation of colors at the display of the clients is done on the basis of the RGB-color-model, i. e. all entries which have been done within the CMYK model are transformed into the corresponding RGB-value in order to be visualized at the display of the client. The colors being generated by the user may be stored within a library, which enables the user to retrieve generated/used colors, which avoids the effort of generating/mixing them another time.

10

15

20

25

35

5

The software components provide three tools to the user. Accordingly, also three tool modification menus are available. The selection of one tool invokes the respective tool modification menu and presents it to the user. Within these tool modification menus, settings/pre-adjustments according to the user's wishes can be done. Each tool corresponds to one mode, which means that each user exclusively gets those settings/pre-adjustments needed for the respective tool. This function facilitates the handling of the tools and the understanding of the respective functions. Of course, it is possible for the user to change the mode/tool at any time. If the user does this, the parameters, of course, also change. The handling mechanism of the three tools is in the following referred to as "action tool".

The first tool provided by the action tool is a "selection tool": This tool is used to select a generated graphic object (to activate said object). This tool is needed since modifications at the object can only be done if the object is activated. Possible modifications of the object are movements as well as enlargementreduction processes of the object. Further, the transparence of the object can be changed.

30

A second tool provided by the action tool is the "shape tool": On the basis of this tool geometrical shapes (square, rectangle, circle, etc.) can be generated.

A third tool provided by the action tool is a "text tool": This tool provides the possibility to generate texts and to determine the layout of those texts (style and size of the text, bold text, underlined text, orientation of the text, line distance, etc.).

5

10

15

20

25

30

35

٠.

.....

Further functions provided by the software components are:

- Grid button: This button enables the user to fade-in/out predefined grids.
- Help button: This button enables the user to get access to a help file which contains explanations about the single functions.
- Ready button: This button enables the user to terminate the printing data generating process. If the user presses this button, the current created label will be graphically shown in a preview window.

- Preview: If the user presses an OK-button within said preview window, the corresponding printing data will be sent to a server/stored as final printing data. If the user presses a CANCEL-button, he returns back to the printing data generation process.

In the following, making reference to Fig. 2, a preferred embodiment of a graphical user interface of a graphic data generating software according to the present invention will be explained.

A graphical user interface (GUI) 10 shows a CD-label area 11 with a preview of the currently designed CD label, a first color adjusting means 12 for choosing different possible colors, a second color adjusting means 13 for modifying the colors according to the CMYK color model which also includes a possibility for saving the modified color settings, an object modifying means 14 for modifying the size of a selected object, a presetting means 15 to choose one of different printing areas according to the specifications of the CD manufacturer. positioning indicating means 16 indicating the position of an object or a pointer in the CD-label area 11, picture loading means 17 for importing one or more pictures to be included on the CD label, e.g. the shown sunflower in the CD-label area 11, a export means 18 for exporting a generated CD label, an object insertion means 19, a text insertion means 20, a pointer activation means 21, an object deleting means 21, an object activation means 23 which allows to move an object to the front, i.e. the top layer, an object characteristic selecting means 24 to select one of different object characteristics, like transparency, and an object characteristic setting means 25 to set/change the object characteristic selected by the object characteristic selecting means 24.

Claims

- 1. Method for generating printing data on the basis of which a disk label is creatable, wherein
- 5 a) graphic data representing said disk label is generated at a graphic data generating location (2 to 5),
 - b) said graphic data is transformed into said printing data at a printing data generating location (2 to 5),

characterized in that

20

25

30

35

- said graphic data generating location (2 to 5) and said printing data generating location (2 to 5) are parts of a communication network (6), respectively, wherein steps a) and b) are controlled by a network capable client (3 to 5) being part of said communication network.
- 15 2. Method according to claim 1, characterized in that said communication network (6) includes the Internet and/or an Intranet.
 - 3. Method according to claim 1 or 2, characterized in that said graphic data generating location (2 to 5) and said printing data generating location (2 to 5) are both located on said network capable client (3 to 5).
 - 4. Method according to claim 1 or 2, characterized in that said graphic data generating location (2 to 5) and said printing data generating location (2 to 5) are both located on a network capable server (2) being part of said communication network (6).
 - 5. Method according to claim 1 or 2, characterized in that said graphic data generating location (2 to 5) is located on said network capable client (3 to 5), and said printing data generating location (2 to 5) is located on a network capable server (2) being part of said communication network (6).
 - 6. Method according to anyone of the preceding claims, characterized in that said graphic data is visualized to a client's user on a low dpi value basis, whereas said printing data is generated so as to have a high dpi value.
 - 7. Method according to claim 6, **characterized in that** said low dpi value is 72 dpi, and said high dpi value is 300 to 360 dpi.

8. Method according to anyone of the preceding claims, **characterized in that** said printing data is adapted to different printing units by respective printing data conversion processes which convert said printing data from a first printing data format to a second printing data format, respectively.

5

- 9. Method according to anyone of the preceding claims, characterized in that said printing data comprises postscript data or picture data of other picture formats.
- 10 10. Method according to anyone of the preceding claims, characterized in that said printing data comprises CMYK-color-model-data.
 - 11. Method according to anyone of the preceding claims, **characterized in that** all steps intending to generate graphic data which can not be assigned to predefined CD-label printing areas are blocked during step a).
 - 12. Network capable client (3 to 5) having means for locally and/or remotely controlling/performing all processes needed for generating printing data on the basis of which a disk label is creatable.

20

15

- 13. Network capable client (3 to 5) according to claim 12, **characterized by** browser means usable for visiting remote websites and for employing functionality of said remote websites.
- 25 14. Network capable client (3 to 5) according to claim 13, **characterized in that** said browser means is capable of using applets being offered by said
 website, said applets being the basis for controlling/performing said processes
 needed for generating printing data.
- 30 15. Network capable client (3 to 5) according to anyone of the claims 12 to 14, characterized by comprising/running a drawing tool allowing a user to generate a drawing corresponding to said desired disk label.
- 16. Network capable client (3 to 5) according to claim 15, **characterized by**35 means allowing said user only to generate drawings which fit into predefined CD-label printing areas.

17. Network capable client (3 to 5) according to claim 15 or 16, **characterized** in that said drawing tool visualizes said drawing on a low dpi value basis, wherein said client comprises means for generating printing data corresponding to said drawing on a high dpi value basis.

5

25

30

- 18. Network capable client (3 to 5) according to anyone of the claims 12 to 17, characterized by means for exporting said printing data to a remote server (2).
- 19. Network capable server (2) offering functionality directly usable by a remote client on said server (2) and/or installable on said remote client (3 to 5) in order to be remotely used, **characterized in that** said functionality is adapted to locally and/or remotely controlling/performing all processes needed for generating printing data on the basis of which a disk label is creatable.
- 15 20. Network capable server (2) according to claim 19, **characterized by** web means allowing a web browser running on a remote client (3 to 5) to access said offered functionality.
- 21. Network capable server (2) according to claim 20, characterized in that
 20 said offered functionality are applets to be used in conjunction with a web browser.
 - 22. Network capable server (2) according to anyone of the claims 19 to 21, characterized by means for receiving printing data being remotely generated by said remote client (3 to 5).
 - 23. System (1) for performing all processes needed for generating printing data on the basis of which a disk label is creatable, **characterized by**
 - a network capable client (3 to 5) according to anyone of the claims 12 to 18, and a
 - network capable server (2) according to anyone of the claims 19 to 22, wherein said network capable client (3 to 5) and said network capable server (2) are connected with each other via a communication network (6).
- 35 24. System according to claim 23, characteriz d in that said communication network (6) comprises the Internet and/or an Intranet.

- 25. Computer program product comprising computer program means adapted to perform and/or embody the method steps as defined in anyone of claims 1 to 11 when being executed on a computer, a digital signal processor or the like.
- 5 26. Computer readable storage means, storing thereon a computer program product according to claim 25.

Abstract

Method for generating disk label print data

A method for generating printing data on the basis of which a disk label is creatable includes the steps of a) generating graphic data representing said disk label at a graphic data generating location (2 to 5), b) transforming said graphic data into said printing data at a printing data generating location (2 to 5), wherein said graphic data generating location (2 to 5) and said printing data generating location (2 to 5) are parts of a communication network (6), respectively, wherein steps a) and b) are controlled by a network capable client (3to 5) being part of said communication network (6).

(Fig. 1)

EPO - Munich 88 25. Juni 2002

45.4

/9

=