Intermediate BaseLine reactor neutrino experiments unveil the neutrino mass hierarchy

Mehran Dehpour

Outline

Introduction

- Solar neutrinos
- Solved solar neutrino problem
- Atmospheric neutrinos
- Unsolved neutrino mass hierarchy problem

Reactor neutrino experiments

- Short and Long BaseLine reactor neutrino experiment Intermediate BaseLine reactor neutrino experiment
- Conclusion

Bachelor of science in physics

Master of science in particle physics

Postmaster

Introduction

Neutrino oscillation

G. Bellini et al., Adv. High Energy Phys. 2014 (2014) 191960

Solar neutrino production

X. Xu et al., Prog.Part.Nucl.Phys. 131 (2023) 104043

Solar neutrino flux

X. Xu et al., Prog.Part.Nucl.Phys. 131 (2023) 104043

SNO

A. Bandyopadhyay, S. Choubey, R. Gandhi, S Goswami, D.P Roy, Phys.Lett.B 559 (2003) 121-130

Atmospheric neutrino production

T. Kajita, Ann.Rev.Nucl.Part.Sci. 64 (2014) 343-362

Atmospheric neutrino flux

M. Honda et al., Phys.Rev.D 83 (2011) 123001

Super-Kamiokande

S. Choubey et al., Astropart.Phys. 14 (2000) 67-78

Reactor neutrino experiments

Reactor neutrino production

Reactor neutrino flux

S. Kim et al., Adv.High Energy Phys. 2013 (2013) 453816

Survival probability of $\overline{\nu}_e$

$$\begin{split} P_{\overline{\nu}_e \to \overline{\nu}_e}^{\rm NH/IH} &= 1 - \frac{1}{2} & \sin^2 2\theta_{13} \left[1 - \cos \left(\frac{\Delta m_{\rm atm}^2 L}{2E_\nu} \right) \right] \\ &- \frac{1}{2} \cos^4 \theta_{13} \sin^2 2\theta_{12} \left[1 - \cos \left(\frac{\Delta m_{\rm sol}^2 L}{2E_\nu} \right) \right] \\ &+ 2 \sin^2 \theta_{13} \cos^2 \theta_{13} \sin^2 / \cos^2 \theta_{12} \left[\cos \left(\frac{\Delta m_{\rm atm}^2 L}{2E_\nu} - \frac{\Delta m_{\rm sol}^2 L}{2E_\nu} \right) - \cos \left(\frac{\Delta m_{\rm atm}^2 L}{2E_\nu} \right) \right] \end{split}$$

S. Choubey et al., Phys.Rev.D 68 (2003) 113006

Chooz and KamLAND

M. Apollonio et al., Eur.Phys.J.C 27 (2003) 331-374, K. Inoue, New J.Phys. 6 (2004) 147

JUNO

M. He, Nucl.Part.Phys.Proc. 265-266 (2015) 111-113, A. Abusleme et al., Chin.Phys.C 46 (2022) 12, 123001

Accelerator neutrino experiments

Conclusion

- We have four main types of neutrino experiments in which neutrinos are produced in solar, atmosphere, reactor, and accelerator
- ightharpoonup Currently, due to global fits, we are not sure about neutrino mass hierarchy, octant of θ_{23} , and $\delta_{\rm CP}$ yet
- These will be determined in future accelerator neutrino experiments
- Also, the neutrino mass hierarchy can solved in the Intermediate BaseLine reactor neutrino experiment which the first such experiment, JUNO, will start data taking this year

Thanks for your attention!

Backup slides

The two-flavor neutrino oscillation

$$U = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$$

$$P_{
u_{lpha} o
u_{eta}}(L, E_{
u}) = rac{1}{2} \sin^2 2 heta \left[1 - \cos \left(rac{\Delta m^2 L}{2E_{
u}}
ight)
ight]$$

MSW effect on two-flavor neturino oscillation

$$egin{align} \Delta m_{
m M}^2 &\equiv \sqrt{\left(\Delta m^2\cos2 heta-2EV_{
m CC}
ight)^2+\left(\Delta m^2\sin2 heta
ight)^2} \ & an2 heta_{
m M} \equiv rac{ an2 heta}{1-rac{2EV_{
m CC}}{\Delta m^2\cos2 heta}} \ & an2 heta_{
m CC} \equiv \sqrt{2}\,G_{
m F}\, extbf{N}_{
m e} \end{aligned}$$

The three-flavor neutrino oscillation

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$c_{ij} \equiv \cos \theta ij, \ s_{ij} \equiv \sin \theta_{ij}$$

$$P_{\nu_{\alpha} \to \nu_{\beta}}(L, E_{\nu}) = \sum_{j,k} U_{\alpha j}^* U_{\beta j} U_{\alpha k} U_{\beta k}^* \exp\left(-i \frac{\Delta m_{jk}^2}{2E_{\nu}} L\right)$$

$$\Delta m_{
m sol}^2 \equiv \Delta m_{12}^2, \ \Delta m_{
m atm}^2 \equiv \Delta m_{13}^2$$

CP violation

$$\begin{split} A_{\alpha\beta}^{\mathrm{CP}} &= P_{\nu_{\alpha} \to \nu_{\beta}} - P_{\overline{\nu}_{\alpha} \to \overline{\nu}_{\beta}} \\ &= 4 \sum_{k>j} \Im \left[U_{\alpha k}^* U_{\beta k} U_{\alpha j} U_{\beta j}^* \right] \sin \frac{\Delta m_{kj}^2 L}{2E_{\nu}} \end{split}$$

Reactor Antineutrino deficit and 5 MeV bump Anomalies

Current global fit

F. Capozzi et al., Phys.Rev.D 104 (2021) 8, 083031