Finite Difference Calculus

Finite difference calculus

- Calculations must be done on discrete (often equallyspaced) values representing functions
 - ex. 3.0, 3.5, 4.0, 5.0, 7.0, 10,...
 - measurements of physical systems
 - speed, temperature, etc.
 - simulations of complex systems
 - Roots or extrema of these functions must be found
 - rely on knowing the derivative ex. Newton's method
- Estimating a derivative based on discrete samples:
 - Finite difference methods

Finite differences

Finite differences

- Computers don't allow $h \to 0$
 - can't solve analytically if we don't know the function
- Rely on finite differences and bounding the error
- Forward difference:

$$\frac{d}{dt}f(x_2) \approx \Delta f(x_2) = \frac{f(x_3) - f(x_2)}{x_3 - x_2}$$

 Derive the forward difference and error using a Taylor series approximation. Bound the error.

$$v(x_{i+1}) = v(x_i) + v'(x_i)(x_{i+1} - x_i) + O[(x_{i+1} - x_i)^2]$$

• Solve for
$$v'(x_i)$$

$$v'(x_i) = \frac{v(x_{i+1}) - v(x_i) - O[(x_{i+1} - x_i)^2]}{(x_{i+1} - x_i)}$$

$$v'(x_i) = \frac{v(x_{i+1}) - v(x_i)}{(x_{i+1} - x_i)} + O(x_{i+1} - x_i)$$

$$v'(x) = \frac{v(x + h) - v(x)}{h} + O(h)$$

Forward + backward differences

• First forward finite difference approximation:

$$v'(x) = \frac{v(x+h) - v(x)}{h}$$

First backward finite difference approximation.

$$v'(x) = \frac{v(x) - v(x - h)}{h}$$

based on the Taylor expansion

$$v(x - h) = v(x) - v'(x)h + O(h^2)$$

• Both methods exhibit linear error: O(h)

Central difference approximation

- Can we create a more accurate estimate?
- Expansions out to the second derivative:
 - Forward expansion:

$$v(x+h) = v(x) + v'(x)h + \frac{v''(x)}{2}h^2 + O(h^3)$$

• Backward expansion:

$$v(x - h) = v(x) - v'(x)h + \frac{v''(x)}{2}h^2 + O(h^3)$$

• Calculate v(x+h) - v(x-h):

$$v(x+h) - v(x-h) = 2v'(x)h + O(h^3)$$
$$v'(x) = \frac{v(x+h) - v(x-h)}{2h} + O(h^2)$$

Finite differences (summary)

• First forward finite difference approximation:

$$v'(x) = \frac{v(x+h)-v(x)}{h}$$
 at $O(h)$ error

First backward finite difference approximation:

$$v'(x) = \frac{v(x) - v(x - h)}{h}$$
 at $O(h)$ error

• First central finite difference approximation:

$$v'(x) = \frac{v(x+h)-v(x-h)}{2h}$$
 at $O(h^2)$ error

Problems

- Discretization error
 - Analytically we take $h \to 0$, but this isn't possible
 - Small h improves accuracy at the cost of speed
 - Large h introduces artifacts (like aliasing)
- Loss of precision
 - As h gets smaller, discretization error drops but $x \approx x + h$
 - If f(x) is computed with n digits of precision, it is difficult to compute f'(x) with n digits of precision.
- Noise
 - As h gets smaller, noise is amplified
 - If f(x) or f(x+h) are in error by d, then f'(x) is in error by d/h
- All errors are cumulative for higher order derivatives.

Examples

Algorithm depends on usage (ex. boundary value problems)

Calculate
$$f'(x)$$
, for $f(x) = |x|$ for $x = 0.5$ and $h = 0.75$ exact = 1

forward =
$$\frac{1.25 - 0.5}{0.75} = 1$$

backward =
$$\frac{0.5 - 0.25}{0.75} = \frac{1}{3}$$

central =
$$\frac{1.25 - 0.25}{1.5} = \frac{2}{3}$$

Examples

- Compute the derivative of $\log x$ using **forward** and **central** differences with 3 significant figures, x = 100, and h = 10. How many bits are lost?
 - exact = .00434
 - forward:

$$\frac{\log(110) - \log(100)}{10} \approx \frac{2.04 - 2}{10} = \frac{.02}{10} = .004$$
$$\frac{-\log\left(1 - \frac{\log 100}{\log 110}\right)}{\log 2} \approx 5.62$$

central:

$$\frac{\log(110) - \log(90)}{20} \approx \frac{2.04 - 1.95}{20} = \frac{.09}{20} = .0045$$
$$\frac{-\log\left(1 - \frac{\log 90}{\log 110}\right)}{\log 2} \approx 4.55$$

Examples

 Compute the derivative using central differences and 3 significant figures.

$$f(x) = e^x$$
 for $x = 1$ and $h = 0.5$

$$\frac{e^{1.5} - e^{0.5}}{2 \cdot 0.5} \approx \frac{4.48 - 1.65}{1} = 2.83$$

What is the relative error?

exact = 2.72
$$e_r = \frac{|2.83 - 2.72|}{|2.72|} \approx 4\%$$

• How many bits are lost if h = 0.01?

$$\frac{-\log\left(1 - \frac{e^{0.99}}{e^{1.01}}\right)}{\log 2} \approx \frac{-\log\left(1 - \frac{2.69}{2.74}\right)}{\log 2} \approx \frac{-\log(1 - 0.98)}{\log 2} \approx 5.66$$

between 5 and 6 bits are lost