Categories and Hilbert Spaces

cat

Shanghe Chen and Dean Young

We wish to acknowledge the collaboration are pursuing these plans as a lo	orative efforts of Shanghe ong term project.	e Chen and Dean Young.	Together the

1. Contents

Section	Description
Introduction	
Contents	
Unicode	
hilb	Countable strict twocategory of hilbert spaces

2. Introduction

3. Unicode

Lean 4 uses unicode, and this entails an extensive catalogue of characters to choose from. Here is a list of the unicode characters we will use:

Symbol	Unicode	VSCode shortcut	Use	
		Lean's Kerne	el	
×	2A2F	\times	Product of types	
\rightarrow	2192	\rightarrow	Hom of types	
⟨,⟩	27E8,27E9	\langle,\rangle	Product term introduction	
\mapsto	21A6	\mapsto	Hom term introduction	
٨	2227	\wedge	Conjunction	
V	2228	\vee	Disjunction	
A	2200	\forall	Universal quantification	
3	2203	\exists	Existential quantification	
7	00AC	\neg	Negation	
		Variables and Co	nstants	
	1D52,1D56		Variables and constants	
0,1,2,3,4,5,6,7,8,9	1D52,1D56		Variables and constants	
-	207B		Variables and constants	
0,1,2,3,4,5,6,7,8,9	2080 - 2089	\0-\9	Variables and constants	
α - ω , A- Ω	03B1-03C9		Variables and constants	
		Categories	\$	
1	1D7D9	\b1	The identity morphism	
0	2218	\circ	Composition	
		Twocategorie	es	
1	1D7CF	_	Horizontal identity map	
•	2022	\smul	Horizontal composition of objects	
•	2219		Horizontal composition of morphisms	
		Adjunction	S	
	21C4	\rightleftarrows	Adjunctions	
≒	21C6	\leftrightarrows	Adjunctions	
	1BC94		Right adjoints	
	0971		Left adjoints	
4	22A3	\dashv	The condition that two Functors are adjoint	
		Monads and Com	onads	
?,¿	003F, 00BF	?,\?	The corresponding (co)monad of an adjunction	
!,i	0021, 00A1	!, \!	The (co)-Eilenberg-(co)-Moore adjunction	
!;	A71D, A71E	, .	The (co)exponential map	
	Miscellaneous			
~	223C	\sim	Homotopies	
~	2243	\equiv	Equivalences	
_	2245	\cong	Isomorphisms	
∞	221E	\infty	Infinity categories and infinity groupoids	
	1	1 - 3	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
	221E	\infty	Infinity categories and infinity groupoids	
\sim	441L	\III by	mining categories and mining groupolds	

Of these, the characters $^{!},^{!},,^{!},1,$ and \bullet do not have VSCode shortcuts, and so we

provide alternatives for them.

It is not possible to copy the from the pdf to the clipboard while preserving the integrity of the code. To see the official Lean 4 file please click the link on the top right of the front page or click this link.

Bibliography

- Arlin, Kevin David. "2-categorical Brown representability and the relation between derivators and infinity-categories." Doctoral dissertation, University of California, Los Angeles, 2020.
- 2. Saunders Mac Lane, "Categories for the Working Mathematician," Graduate Texts in Mathematics, vol. 5, Springer-Verlag, New York, 1971.
- Samuel Eilenberg and Saunders Mac Lane, "General Theory of Natural Equivalences," Transactions of the American Mathematical Society, vol. 58, no. 2, pp. 231-294, 1945.
- 4. Daniel M. Kan, "Adjoint Functors," Transactions of the American Mathematical Society, vol. 87, no. 2, pp. 294-329, 1958.
- 5. Chris Heunen, Jamie Vicary, and Stefan Wolf, "Categories for Quantum Theory: An Introduction," Oxford Graduate Texts, Oxford University Press, Oxford, 2018.
- 6. S. Eilenberg and J. C. Moore, "Adjoint Functors and Triples," Proceedings of the Conference on Categorical Algebra, La Jolla, California, 1965, pp. 89-106.
- 7. Daniel M. Kan, "On Adjoints to Functors" (1958): In this paper, Kan further explored the theory of adjoint Functors, focusing on the existence and uniqueness of adjoints. His work provided important insights into the fundamental aspects of adjoint Functors and their role in Category theory.
- 8. Leonardo de Moura and Jeremy Avigad, "The Lean Theorem Prover," Journal of Formalized Reasoning, vol. 8, no. 1, pp. 1-37, 2015.
- Riehl, Emily, and Dominic Verity. Elements of ∞-Category Theory. Johns Hopkins University, Baltimore, MD, USA and Centre of Australian Category Theory, Macquarie University, NSW, Australia.

Further reading:

- 1. J. Beck, "Distributive laws," in Seminar on Triples and Categorical Homology Theory, Springer-Verlag, 1969, pp. 119-140.
- Leonardo de Moura and Soonho Kong, "Lean Theorem Proving Tutorial," Proceedings of the 6th International Conference on Interactive Theorem Proving (ITP), Lecture Notes in Computer Science, vol. 9236, pp. 378-395, Springer, Berlin, 2015.

- 3. Jeremy Avigad, Leonardo de Moura, and Soonho Kong, "Theorem Proving in Lean," Logical Methods in Computer Science, vol. 12, no. 4, pp. 1-43, 2016.
- 4. Daniel Selsam, Leonardo de Moura, David L. Dill, and David L. Vlah, "Leonardo: A Solver for MIP and Mixed Integer Nonlinear Programming," Proceedings of the 33rd Conference on Neural Information Processing Systems (NeurIPS), pp. 493-504, 2019.