Jaw Force Sensor For Medical Applications

MECH 6V49.005 Soft Robotics

Group Project Presentation

Spring 2023

Under the guidance of: Dr. Yonas Tadesse

Presentation by: Shraddhesh Subhash Kamal (SXK200115), Ankit Mangesh Kocharekar (AMK210004),

Andy Siu-Kwan Lau (ASL190003), Benjamin Matthew Martinez (BMM180003)

(05/04/2023)

Significance and Background

Temporomandibular Joint

Image Reference:

https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.tmjsleepmacon.com%2Ftmj-disorders.html&psig=AOvVaw2ftLiaeGQKu64DxfVMweO6&ust=1683258605577000&source=images&cd=vfe&ved=0CBlQjhxqFwoTCKj7-Yvh2v4CFQAAAAAdAAAAAAAAA

Causes for Temporomandibular Joint Disorder (TMJD)

Image Reference: https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.healthline.com%2Fhealth%2Ftmj-disorders&psig=AOWaw3lu6RPYd-

PhzLgRENmGd0C&ust=1683259107222000&source=images&cd=vfe&ved=0CBIQjhxqFwoTCKjvnvvi2v4CFQAAAA AdAAAAABAE

The most common way to identify the early onset of TMJD is to notice the reduction in bite force.

Existing Technologies for Bite Force Measurement

Piezoresistive Sensors

<u>Pros:</u> High sensitivity, thin, light, cheap <u>Cons:</u> Less accuracy, low durability

Piezoelectric Foil Sensors

Pros: Super-thin, high accuracy

Cons: Low sensitivity and flexibility

Images Reference: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8062967/#

Our Device Idea

CAD Model of Our Device

CAD model of our device using Solidworks

Cavity for sensor

CAD Model Assembly of the Mold for Casting

CAD model of the mold using Solidworks

Sectional view of CAD model of our device

Additively manufactured (FDM) using PLA

Casting of EcoFlex 00-10

Final Prototype Assembly and Setup

Setup and Testing

Setup:

- Piezoelectric Pressure sensor
- Wires for soldering
- Arduino UNO
- 220Ω Resistor
- EcoFlex 00-10 cast
- Board
- Laptop
- Cable

https://youtube.com/shorts/N3CgNRUDO80?feature=share

Arduino IDE Code for Generating Signal Graph

FEA Simulation (using ANSYS Workbench)

Material Properties:

FEA Simulation (Meshing)

Meshing Parameters:

Display		
Display Style	Use Geometry Setting	
Defaults		
Physics Preference	Mechanical	
Element Order	Program Controlled	
Element Size	Default	
Sizing		
Use Adaptive Sizi	Yes	
Resolution	5	
Mesh Defeaturing	Yes	
Defeature Size	Default	
Transition	Fast	
Span Angle Center	Coarse	
Initial Size Seed	Assembly	
Bounding Box Di	9.9379e-002 m	
Average Surface	1.7489e-004 m ²	
Minimum Edge L	2.2471e-004 m	
Quality		
Check Mesh Qua	Yes, Errors	
Error Limits	Aggressive Mechanical	
Target Elemen	Default (5.e-002)	
Smoothing	Medium	
Mesh Metric	None	
Inflation		
Advanced		

Initial Size Seed	Assembly
Bounding Box Diagonal	9.9379e-002 m
Average Surface Area	1.7489e-004 m ²
Minimum Edge Length	2.2471e-004 m
Quality	
Check Mesh Quality	Yes, Errors
Error Limits	Aggressive Mechani
☐ Target Element Quality	Default (5.e-002)
Smoothing	Medium
Mesh Metric	None
Inflation	
Use Automatic Inflation	None
Inflation Option	Smooth Transition
Transition Ratio	0.272
Maximum Layers	5
Growth Rate	1.2
Inflation Algorithm	Pre
View Advanced Options	No
Advanced	
Number of CPUs for Para	Program Controlled
Straight Sided Elements	No
Rigid Body Behavior	Dimensionally Redu
Triangle Surface Mesher	Program Controlled
Topology Checking	Yes
Pinch Tolerance	Please Define
Generate Pinch on Refre	No
Statistics	
Nodes	16123
Elements	9112

FEA Simulation (Boundary Conditions)

FEA Simulation (Analysis Settings)

D	Details of "Analysis Settings" ▼ 耳 □ ×		
⊟	Step Controls		
	Number Of Steps	1.	
	Current Step Number	1.	
	Step End Time	1. s	
	Auto Time Stepping	On	
	Define By	Substeps	
	Initial Substeps	10.	
	Minimum Substeps	10.	
	Maximum Substeps	100.	
⊟	Solver Controls		
	Solver Type	Program Controlled	
	Weak Springs	Off	
	Solver Pivot Checking	Program Controlled	
	Large Deflection	On	
	Inertia Relief	Off	
	Quasi-Static Solution	Off	
+	Rotordynamics Controls		
+	Restart Controls		
+	Nonlinear Controls		
+	Advanced		
+	Output Controls		
+	Analysis Data Management		
+	Visibility		

FEA Simulation (Results)

Stress:

FEA Simulation (Results)

Strain:

FEA Simulation (Results)

Deformation:

https://youtu.be/MeNV149ahEk

Our Learnings and Future Scope

New things we learnt during this project:

- The maximum bite force of the natural teeth of healthy adults in the molar area can be anywhere between 300 and 600 Newtons.
- If you increase resistance in the circuit, the sensitivity of the piezo sensor increases.

Future Scope:

- Thin film flexible piezoelectric pressure sensors can be custom made to desired shape that can be used to ensure complete coverage of teeth surface area.
- A tougher grade of EcoFlex (probably 00-50) or a more rigid yet hyperelastic material would withstand higher values of force.
- This device could be used by dentists to note changes in the patient's bite force, during every visit, over a period of time to detect early onset of TMJD.
- This device could also be used to design and develop better night-time dental guards for bruxism patients.

Thank You Any Questions?

