

Seongil Wi

Notification: Midterm Exam

- Oct. 24 (Thursday)
- Class Time (1h 15m), Closed book

- T/F problems + Computation problems + Descriptive problems
- Scope: everything learned from September 3 to October 17
 - Understanding is important!
 - The MIPS reference card will be provided. Do not memorize the content about it.

 If you are taking Linear Algebra (MTH20401), please send me an email (Those who have already sent an email are excluded)

Q&A Session for Your Midterm Exam

- Oct. 17 (Thursday), After the class
 - -45 minutes lecture
 - It is okay to leave the room after the lecture is end
 - -30 minutes Q&A session

Where Are We?

Today's Topic

Logic Design Basics

- Information encoded in binary
 - -Low voltage = 0, High voltage = 1
 - -One wire per bit
 - Multi-bit data encoded on multi-wire buses

Two Types of Logic Circuits

Combinational circuit

Sequential circuit

Two Types of Logic Circuits

- Combinational circuit
 - Outputs only depends on the current inputs

Sequential circuit

Combinational Logic Circuits

Inp	Output	
a	b	Output
0	0	0
0	1	0
1	0	0
1	1	1

Outputs only depends on the current inputs

Combinational Circuits: AND, OR, NOT

Input		Output
a	b	Output
0	0	0
0	1	0
1	0	0
1	1	1

Inp	Output	
a	b	Output
0	0	0
0	1	1
1	0	1
1	1	1

Input	Output
0	1
1	0

Basic blocks for creating combinational circuits

Combinational Circuits: NAND

12

Combinational Circuits: NOR

Input		Output
a	b	Output
0	0	1
0	1	1
1	0	1
1	1	0

Inp	Output	
а	b	Output
0	0	1
0	1	0
1	0	0
1	1	0

13

Combinational Circuits: XOR

0	0	1
0	1	1
1	0	1
1	1	0

0	0	1
0	1	0
1	0	0
1	1	0

Input		Output
a	b	Output
0	0	0
0	1	1
1	0	1
1	1	0

∘Sum

CarryOut

Combinational Circuits: Adder

	Inputs		Out	puts	
а	b	CarryIn	CarryOut	Sum	Comments
0	0	0	0	0	$0 + 0 + 0 = 00_{two}$
0	0	1	0	1	$0 + 0 + 1 = 01_{two}$
0	1	0	0	1	$0 + 1 + 0 = 01_{two}$
0	1	1	1	0	$0 + 1 + 1 = 10_{two}$
1	0	0	0	1	$1 + 0 + 0 = 01_{two}$
1	0	1	1	0	$1 + 0 + 1 = 10_{two}$
1	1	0	1	0	$1 + 1 + 0 = 10_{two}$
1	1	1	1	1	1 + 1 + 1 = 11 _{two}

Combinational Circuits: Multiplexor

Multiplexor A(a.k.a., MUX)

Input S	Output
0	A's Input
1	B's Input

Combinational Circuits: Multiplexor

Multiplexor (a.k.a., MUX)

Input S	Output
0	A's Input
1	B's Input

Combinational Circuits: Multiplexor

17

Multiplexor (a.k.a., MUX)

Input S	Output		
0	A's Input		
1	B's Input		

Combinational Circuits: Decoder

Input		Output			
A_1	A_0	D_3	D_2	D_1	D_0
0	0	0	0	0	1
0	1	0	0	1	0
1	0	0	1	0	0
1	1	1	0	0	0

Combinational Circuits: Decoder

Input		Output			
A ₁	A_0	D_3	D_2	D_1	D_0
0	0	0	0	0	1
0	1	0	0	1	0
1	0	0	1	0	0
1	1	1	0	0	0

Mainly used for

data operations

Two Types of Logic Elements

- Outputs only depends on the current inputs

Sequential circuit

- Outputs depends on the <u>current inputs and current state</u>

Two Types of Logic Elements

- Combinational circuit
 - Outputs only depends on the current inputs

Input A — Combinational Input B — circuit

Mainly used for data operations

Output X

→ Output Y

Not deterministic only with respect to the input

- Sequential circuit
 - Outputs depends on the <u>current inputs and current state</u>

Sequential circuit

Output X

Output Y

Sequential Circuit

- Outputs depends on the <u>current inputs and current state</u>

23

Sequential Circuit: Example

addi \$t1, \$t1, 100

Sequential circuit

- Outputs depends on the current inputs and current state

24

Sequential Circuit: Example

addi \$t1, \$t1, 100

Sequential circuit

- Outputs depends on the current inputs and current state

Sequential Circuit: Final View

26

Motivation: Clocks

CPU Clocking

*

Operation of digital hardware governed by a constant-rate clock

28

Motivation: D-Latch and D Flip-flop

The data value to be stored

State Element #1: D-Latch

State Element #1: D-Latch

State Element #1: D-Latch

State Element #2: D Flip-flop

Output changes only on the clock edge

34

State Element #2: D Flip-flop

Output changes only on the clock edge

3

This Course

We consider about *rising-edge triggered D flip-flop*

Clocking Methodology in Sequential Circuit

addi \$t5, \$t1, 100 **→** a \$t5 Adder → Sum \$t1 State State element Combinational logic element Clock cycle

Clocking Methodology Summary

42

Clocking Methodology Summary

The bottleneck to increase the clock frequency more!

Critical Path

Clock cycle

The bottleneck to increase the clock frequency more!

Summary

- Outputs only depends on the current inputs

Input A Combinational circuit

Mainly used for data operations

Output X

Output Y

Mainly used for

storing data

Sequential circuit

Outputs depends on the <u>current inputs and current state</u>

Summary

*

- Combinational circuit
 - Outputs only depends on the current inputs

Input A ———

Combinational

Mainly used for data operations

Output X

For more details, refer to the *EEE202: Digital Logic and Laboratory* course!

Question?