

XN297L 软件设计和调试参考 (仅适合 2M/1Mbps 速率)

目录

_	推荐的寄存器配置	3
	1、功能寄存器配置	3
	1.1、TX 模式	3
	1.2、RX 模式	3
	2、功率配置	4
=	特殊要求	4
	1 发送流程特殊要求	4
	2 发送 payload 长度要求	5
Ξ	软件应用流程	5
	1上电初始化	5
	2 上电初始化配置发送(PTX)状态流程	6
	3 上电初始化配置接收(PRX)状态流程	7
	4 Burst 发送(PTX)流程 [®]	7
	5 Burst 接收(PRX)流程	7
	6 Burst 接收转发送切换流程 [®]	8
	7 Burst 发送转接收切换流程	8
	8 Enhanced 发送(PTX)流程	9
	9 Enhanced 接收(PRX)流程	9
	10 切换频点流程	9

2.4GHz无线收发芯片

版本	修订时间	更新内容	相关文档
V1.2	2016. 12	该文档只适合	《05_SampleCode(XN297L)》
		1M/2Mbps 通信	
		速率。	

一、推荐的寄存器配置

1.1 功能寄存器配置

1.1.1TX 模式

BB_CAL: 0x12, 0xED, 0x67, 0x9C, 0x46

RF_CAL: 0xF6, 0x3F, 0x5D

RF_CAL2: 0x45, 0x21, 0xEF, 0x2C, 0x5A, 0x40

DEM_CAL: 0x01

DEM_CAL2: 0x0B, 0xDF, 0x02

1.1.2 RX 模式

BB_CAL: 0x12, 0xED, 0x67, 0x9C, 0x46

RF_CAL: 0xF6, 0x3F, 0x5D (0x06, 0x3F, 0x5D, 安规时使用) ^①

RF CAL2: 0x45, 0x21, 0xEF, 0x2C, 0x5A, 0x40

DEM_CAL: 0x01

DEM_CAL2: 0x0B, 0xDF, 0x02

备注①: RX 模式 RF_CAL 配置成 0x06, 0x3F, 0x5D 用于过 RX 模式的安规,不能用于 TX 模式,如果在 TX 模式下使用该配置会导致不良率升高,如果有 RX 切换到 TX 的操作,需要先将 RF_CAL 从 0x06, 0x3F, 0x5D 配置成 0xF6, 0x3F, 0x5D,再进入 TX 模式;如果不过安规建议使用和 TX 模式一样的配置 0xF6, 0x3F, 0x5D。

1.2 功率配置

RF_SETUP 寄存器	输出功 率 (dBm)	特殊说明
27	11	
26	10	
15	9	
OD	7	该档位不能用于 250Kbps 通信, 1Mbps 通信仅安规时考虑使用,不过 安规,使用其它配置。
06	6	该档位不能用于 250Kbps 通信, 1Mbps 通信仅安规时考虑使用,不过 安规,使用其它配置。
2C	5	
05	5	该档位不能用于 250Kbps 通信, 1Mbps 通信仅安规时考虑使用,不过 安规,使用其它配置。
14	4	
OC	3	该档位不能用于 250Kbps 通信, 1Mbps 通信仅安规时考虑使用,不过 安规,使用其它配置。
2A	-1	
29	-9	
19	-10	
30	-23	

二、特殊要求

2.1 发送流程特殊要求

1、在发送数据过程(包括 Enhanced 模式回 ACK 过程)(按照 16 byte payload 计算,从 CE High 开始计算,时间大约为 0.9 ms),整个系统不要有其它操作,其它操作都有可能会引入干扰影响发送信号质量,例如读写 SPI 操作等。

2、发送过程要严格按照以下流程实现

1 1 4 2 7 7 7 7	7 1 010 12 2 7 7 0
顺序	操作说明
1	CE_HIGH
2	延时 100us
3	写发射数据(命令字: 0xA0, payload)
4	延时 1ms
5	查询 STATUS 看发送是否完成(读 0x07 是否为 0x20 进行判断),完成后才能执行下一步
6	清 FLUSH_TX(1110 0001,0)
7	清状态寄存器(配置 0x07 写 0x70)
8	CE_LOW

2.2 发送 payload 长度要求

发送 payload 长度,建议限制在 64byte 以内。

三、软件应用流程

3.1 上电初始化

下述流程都以重新上电复位后的芯片进入休眠模式为起点,休眠状态和待机状态-I推荐的 SPI 最高速率为 1Mbps,其它状态 SPI 速率最高为 4Mbps。

顺序	操作说明
1	上电默认进入休眠模式
2	软件复位(命令字: 0x53, 0x5A)
3	复位释放(命令字: 0x53, 0xA5)
4	清 FLUSH_TX(1110 0001,0)
5	清 FLUSH_RX(1110 0010,0)
6	清状态寄存器(配置 0x07 写 0x70)
7	打开接收通道 n(0-5)
1	(EN_RXADDR 寄存器 0x02)
8	设置通道 n 的地址宽度(3-5 字节)
	(SETUP_AW 寄存器 0x03)
9	写地址(寄存器 0x0A~10,地址)
10	设置工作频点
- 10	(RF_CH 寄存器 0x05)
11	设置传输速率 1Mbps 和功率档位
	(RF_SETUP 寄存器 0x06 配置为 0b00xxxxxx)
12	设置接收数据长度
10	(寄存器 0x11 [~] 16)
13	配置 DEMOD_CAL (DEMOD_CAL 寄存器 0x19 为 01)
14	配置 RF_CAL2(RF_CAL2 寄存器 0x1A 为
	0xd5,0x21,0xef,0x2c,0x5a,0x40)
15	配置 DEM_CAL2 (DEM_CAL2 寄存器 0x1B 为
	0x0b,0xdf,0x02) 配置 RF CAL(RF CAL 寄存器 0x1E 为
16	0xf6,0x3f,0x5d)
	配置 BB CAL(BB CAL 寄存器 0x1F 为
17	0x12,0xed,0x67,0x9c,0x46)
	控制以下模式:
	1)CE 控制方式;
	2) IRQ 输出方式;
	3)最长数据长度;
18	4)是否使能动态 payload;
	5)是否使能 ACK 带 payload;
	6) 是否使能 W TX PAYLOAD NOACK 命令
	(FEATURE 寄存器 0x1D)
	设置 Burst 或者 Enhanced 模式(输出次数、传
10	输时延)
19	(EN_AA 寄存器 0x01 和 SETUP_RETR
	寄存器 0x04)

3.2 上电初始化配置发送(PTX)状态流程

顺序	操作说明
1	配置 Tx 模式(config 寄存器 0x00 为 8E)
2	CE LOW

3.3 上电初始化配置接收(PRX)状态流程

顺序	操作说明
1	配置 Rx 模式 (config 寄存器 0x00 为 8F)
2	延时 10ms
3	CE HIGH
4	延时 10ms

3.4 Burst 发送(PTX)流程^②

顺序	操作说明
1	CE_HIGH
2	延时 100us
3	写发射数据(命令字: 0xA0, payload)
4	延时大于 1ms
5	查询 STATUS 看发送是否完成(读 0x07 是否为 0x20 进行判断),完成后才能执行下一步
6	清 FLUSH_TX(1110 0001, 0)
7	清状态寄存器(配置 0x07 写 0x70)
8	CE_LOW

备注②: 步骤 4 延时大于 1ms 是保证在发送过程中不要有其它操作,进入发射状态要严格按照以上的流程,即先 CE_HIGH,延时 100us,再写 TX Payload,不然可能会导致通信丢包;

3.5 Burst 接收(PRX)流程

顺序	操作说明		
1	查询 STATUS 看接收是否完成(读 0x07 是否为		
1	0x40 进行判断),完成后才能执行下一步		
2	读接收数据(命令字: 0x61, payload)		
3	清 FLUSH_RX(1110 0010,0)		
4	清状态寄存器(配置 0x07 写 0x70)		

3.6 Burst 接收转发送切换流程[®]

顺序	操作说明
1	配置 Rx 模式 (config 寄存器 0x00 为 8F)
2	CE_HIGH
3	查询 STATUS 看接收是否完成(读 0x07 是否为
J	0x40 进行判断),完成后才能执行下一步
4	读接收数据(命令字: 0x61, payload)
5	清 FLUSH_RX(1110 0010,0)
6	清状态寄存器(配置 0x07 写 0x70)
	配置 Tx 模式 (config 寄存器 0x00 为 8E)
7	
8	写发射数据(命令字: 0xA0, payload)
9	延时 3ms
10	查询 STATUS 看发送是否完成(读 0x07 是否为
10	0x20 进行判断),完成后才能执行下一步
11	清 FLUSH_TX(1110 0001, 0)
12	清状态寄存器(配置 0x07 写 0x70)

备注: config 配成 8E 后,10us 内写 payload;写 payload 完后,需要延时 3ms 以上;

3.7 Burst 发送转接收切换流程

顺序	操作说明
1	CE_HIGH
2	延时 100us
3	写发射数据(命令字: 0xA0, payload)
4	延时 1ms
5	CE_LOW
6	查询 STATUS 看发送是否完成(读 0x07 是否为
U	0x20 进行判断),完成后才能执行下一步
7	清 FLUSH_TX(1110 0001,0)
8	清状态寄存器(配置 0x07 写 0x70)
9	配置 Rx 模式 (config 寄存器 0x00 为 8F)
10	CE_HIGH
11	查询 STATUS 看接收是否完成(读 0x07 是否为
11	0x40 进行判断),完成后才能执行下一步
12	读接收数据(命令字: 0x61, payload)
13	清 FLUSH_RX(1110 0010,0)
14	清状态寄存器(配置 0x07 写 0x70)

3.8 Enhanced 发送(PTX)流程

顺序	操作说明
1	CE_HIGH
2	延时 100us
3	写发射数据(命令字: 0xA0, payload)
4	延时 1ms
5	查询 STATUS 看发送是否完成(读 0x07 是否为 0x60 进行判断),完成后才能执行下一步
6	读接收数据(命令字: 0x61, payload)
7	清 FLUSH_TX(1110 0001, 0)
8	清 FLUSH_RX(1110 0010,0)
9	清状态寄存器(配置 0x07 写 0x70)

3.9 Enhanced 接收(PRX)流程

顺序	操作说明
1	查询 STATUS 看接收是否完成(读 0x07 是否为
	0x40 进行判断),完成后才能执行下一步
2	读接收数据(命令字: 0x61, payload)
3	写发射 ACK 数据(命令字: 0xA8, payload)
4	延时 1ms
5	清 FLUSH_TX(1110 0001,0)
6	清 FLUSH_RX(1110 0010,0)
7	清状态寄存器(配置 0x07 写 0x70)

3.10 切换频点流程

顺序	操作说明
1	配置频点(RF CH 寄存器 0x05 为 CH(切换信道))

备注: 配置频点只需要修改 0x05 寄存器, 其它均不需要操作