Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/KR05/002149

International filing date:

05 July 2005 (05.07.2005)

Document type:

Certified copy of priority document

Document details:

Country/Office: KR

Number:

10-2004-0052612

Filing date:

07 July 2004 (07.07.2004)

Date of receipt at the International Bureau: 19 July 2005 (19.07.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

This is to certify that the following application annexed hereto is a true copy from the records of the Korean Intellectual Property Office.

Ħ

10-2004-0052612

Application Number

원 년 Date of Application 2004년 07월 07일

JUL 07, 2004

워

인

주식회사 엘지화학 LG CHEM. LTD.

Applicant(s)

년 28 2005

COMMISSIONER

【서지사항】

【서류명】

특허출원서

[권리구분]

특허

【수신처】

특허청장

【참조번호】

0001

【제출일자】

2004.07.07

【국제특허분류】

C08F

【발명의 국문명칭】

극성 작용기를 갖는 고리형 올레핀 중합방법, 이에 의해 제

조된 올레핀 중합체 및 상기 중합체를 포함하는 광학 이방

성 필름

【발명의 영문명칭】

Method for polymerizing cyclic olefin having polar

funtional group, olefin polymer produced by the method

and optical anisotropic film comprising the same

【출원인】

[명칭]

주식회사 엘지화학

【출원인코드】

1-2001-013456-3

【대리인】

【성명】

김의박

【대리인코드】

9-1998-000152-1

【포괄위임등록번호】

2001-019542-7

【발명자】

【성명의 국문표기】

윤성철

【성명의 영문표기】

YOON, Sung Cheo!

【주민등록번호】

701013-1495816

【우편번호】

305-390

【주소】

대전광역시 유성구 전민동 청구나래아파트 106동 502호

【국적】

KR

[발명자]

【성명의 국문표기】 전성호

【성명의 영문표기】 CHUN, Sung Ho

[주민등록번호] 650325-1018836

【우편번호】 305-740

【주소】 대전광역시 유성구 도룡동 현대아파트 101동 806호

【국적】 KR

[발명자]

【성명의 국문표기】 김원국

【성명의 영문표기】 KIM,Won Kook

【주민등록번호】 671203-1108524

【우편번호】 302-850

【주소】 대전광역시 서구 월평3동 302번지 황실타운 115-1203

【국적】 KR

【발명자】

【성명의 국문표기】 임태선

【성명의 영문표기】 LIM,Tae Sun

[주민등록번호] 730712-1641414

【우편번호】 305-740

【주소】 대전광역시 유성구 도룡동 LG사택 7동 202호

【국적】 KR

【발명자】

【성명의 국문표기】 김헌

【성명의 영문표기】 KIM,Heon

【주민등록번호】 730510-2641430

[우편번호] 555-050

【주소】 전라남도 여수시 안산동 435 도원LG사택 5-501

【국적】 KR

【발명자】

【성명의 국문표기】 이정민

【성명의 영문표기】 LEE,Jung Min

【주민등록번호】 750115-2727814

【우편번호】 730-320

【주소】 경상북도 구미시 인의동 824-1

【국적】 KR

【발명자】

【성명의 국문표기】 백경림

【성명의 영문표기】 PAIK,Kyung Lim

【주민등록번호】 771217-2332721

【우편번호】 301-841

【주소】 대전광역시 중구 중촌동 401-2 9통 4반

【국적】 KR

【취지】 특허법 제42조의 규정에 의하여 위와 같이 출원합니다. 대

리인 김의

박 (인)

【수수료】

【기본출원료】 0 면 38,000 원

【가산출원료】 42 면 0 원

【우선권주장료】 0 건 0 원

【심사청구료】 0 항 0 원

【합계】 38,000 원

[요약서]

[요약]

극성 작용기에 의한 촉매의 비활성화가 없고, 극성 작용기를 갖는 고리형 올 레핀 중합체를 고분자량 및 높은 수율로 제조하는 방법이 제공된다.

본 발명에 의한 올레핀 중합방법에 따르면, 모노머의 극성 작용기에 의한 촉매의 비활성화를 억제할 수 있기 때문에, 폴리올레핀 중합시 중합체의 분자량이 100,000이상이고, 중합수율도 60%이상인 폴리올레핀을 제조할 수 있으며, 촉매의 활성이 우수하기 때문에, 촉매 대 모노머의 사용량을 1/5000 내지 1/20,000의 범위로 사용할 수 있어, 촉매 잔사를 제거하는 단계가 필요없다.

【색인어】

극성 작용기를 갖는 고리형 폴리올레핀

【명세서】

【발명의 명칭】

극성 작용기를 갖는 고리형 올레핀 중합방법, 이에 의해 제조된 올레핀 중합 체 및 상기 중합체를 포함하는 광학 이방성 필름{Method for polymerizing cyclic olefin having polar funtional group, olefin polymer produced by the method and optical anisotropic film comprising the same}

【발명의 상세한 설명】

【발명의 목적】

<1>

<2>

<3>

【발명이 속하는 기술분야 및 그 분야의 종래기술】

본 발명은 고리형 올레핀계 중합체에 관한 것으로서, 보다 상세하게는 극성 작용기를 갖는 고리형 올레핀계 중합체를 제조하는 방법, 이에 의해 제조된 올레핀 중합체 및 상기 중합체를 포함하는 광학 이방성 필름에 관한 것이다.

지금까지 정보 전자 산업 분야에서는 실리콘 산화물이나 실리콘 나이트라이드와 같은 무기물이 주로 사용되어 왔는데, 크기가 작고 효율이 높은 소자에 대한 필요성이 증대됨에 따라 고기능성 신소재에 대한 필요성이 증대되고 있다. 이러한 고기능 특성 요건을 만족시킬 수 있는 소재로서 유전상수와 흡습성이 낮고, 금속 부착성, 강도, 열안정성 및 투명도가 우수하며, 높은 유리전이온도(Tg > 250℃)를 가지는 중합체에 대한 관심이 높아가고 있다.

이러한 중합체는 반도체나 TFT-LCD의 절연막, 편광판 보호필름, 다중칩 모듈

(multichip modules), 집적회로(IC), 인쇄 회로기판(printed circuit board), 전자소재의 봉지제나 평판 디스플레이(flat panel display) 등의 전자 재료로 사용될수 있다.

고리형 올레핀 중합체는 노보넨과 같은 고리형 단량체로 이루어진 중합체로서 기존 올레핀계 중합체에 비해 투명성, 내열성, 내약품성이 우수하고 복굴절율과 수분흡 수율이 매우 낮아 CD, DVD, POF(Plastic Optical Fiber)와 같은 광학소재, 커패시 터 필름, 저유전체와 같은 정보전자소재, 저흡수성 주사기, 블리스터 팩키징 (Blister Packaging) 등과 같은 의료용 소재로 다양하게 응용될 수 있다.

고리형 올레핀의 중합방법으로는, 하기 반응식 1에 나타난 바와 같이 ROMP (Ring Opening Metathesis Polymerization), 에틸렌과의 공중합, 및 부가 중합방법 등을 들 수 있으며, 이러한 중합반응에는 메탈로센 화합물, Ni, Pd-화합물과 같은 전이 금속 촉매가 이용되고 있다. 이러한 촉매들의 중심금속, 리간드, 촉매조성에 따라, 중합반응의 특성과 수득되는 고분자의 특성이 달라질 수 있다.

【반웅식 1】

<4>

ROMP에 사용되는 촉매들로서는 TiCl4, \(\piCl6\) 와 같은 염화물 혹은 카보닐 형태의 유기금속화합물이 \(R_3Al\), \(Et_2AlCl\) 와 같은 루이스산 형태의 조촉매와 반응하여 금속카벤(metal carbene) 혹은 금속시클로부탄(metallacyclobutane) 형태의 촉매활성종을 형성하고 이 활성종은 올레핀의 이중결합과 반응하여 금속시클로부탄(metallacyclobutane) 의 고리중간체를 거쳐 이중결합을 갖는 최종 생성물로 개환된다 (Ivin, K. J.; O'Donnel, J. H.; Rooney, J. J.; Steward, C. D. Makromol. Chem. 1979, Vol. 180, 1975). 상기 ROMP에 의해 제조되는 중합체는 모노머 반복단위당 한 개의 이중결합을 포함하고 있기 때문에 열안정성 및 산화 안정성이 크게 떨어지며, 주로 열경화성 수지로 사용된다.

<7>

<8>

<9>

상기 에틸렌과 노보넨의 공중합체는 최초로 로나(Leuna)사에 의해 티타늄계의 지글러-나타 촉매를 이용하여 제조되었으나 잔류 불순물로 인하여 생성된 공중합체가 투명하지 않았으며 또한 Tg가 140℃이하로 제한되었다(Koinzer, P. et al., 독일 특허 제109,224호).

상기 고리형 올레핀 단량체의 부가(addition) 중합방법으로는 게이로드 등이 $[Pd(C_6H_5CN)Cl_2]_2$ 촉매를 사용한 노보넨 중합방법을 보고하였는데,(Gaylord, N.G.; Deshpande, A.B.; Mandal, B.M.; Martan, M. J. Macromol. Sci.-Chem. 1977, Vol. All(5), 1053-1070) 지르코늄계의 메탈로센 촉매에 의해 제조된 폴리노보넨은 결정

성이 매우 높고 일반적인 유기용매에 녹지 않으며 유리전이 온도를 보이지 않고 열분해가 된다(Kaminsky, W.; Bark, A.; Drake, I. Stud. Surf. Catal. 1990, Vol. 56, 425). 그 반면에 Pd-금속 촉매를 사용하여 얻은 폴리노보넨은 테트라클로로에 탈렌, 클로로벤젠 또는 디클로로벤젠 등과 같은 유기용매에 녹으며, 분자량은 100,000이상이고, Tg는 300℃이상이라는 특징이 있다.

<10>

일반적으로 고분자가 정보 전자 소재 용도로 사용되기 위해서는 실리콘, 실리콘 산화물, 실리콘 나이트라이드, 알루미나, 구리, 알루미늄, 금, 은, 백금, 티타늄, 니켈, 탄탈륨, 크로뮴 등과 같은 금속 표면에 대한 접착성이 요구된다. 따라서, 이러한 노보넨계 중합체의 금속 부착성 및 여러 가지 전기적, 광학적, 화학적물리적 특성을 조절하기 위하여, 노보넨계 단량체에 극성 작용기를 도입하려는 시도들이 이루어졌다.

<11>

미국특허 제3,330,815호는 촉매로서 (PhCN)2PdCl2 이량체 등을 사용하여, 극성 작용기가 있는 노보넨계 단량체를 중합하는 방법이 개시되어 있으나, 촉매종이모노머의 극성 작용기에 의해 비활성화되어 중합 반응의 진행이 곤란하게 됨에 따라 분자량이 10,000이상인 중합체를 얻기 어렵다는 문제점이 있었다.

<12>

또한, 미국특허 제5,705,503호에는 촉매 복합체로서 ((Allyl)PdCl)₂/AgSbF₆ 를 사용하여, 극성 작용기가 있는 노보넨계 단량체를 중합하는 방법이 개시되어 있 으나, '촉매 대 모노머의 비율이 1:100 내지 1:250으로서 촉매 사용량이 과량이기 때문에 최종적으로 얻어지는 중합체 내에 상기 촉매 잔사가 다량으로 남아 있게 되 어 상기 중합체가 향후 열적 산화에 의해 열화될 염려가 있으며, 광 투과도 역시 열악해질 염려가 있었다.

<13>

<14>

<15>

또한 양이온형 [Pd(CH₃CN)₄][BF₄]₂ 촉매에 의해 에스테르 노보넨 단량체를 중합하는 경우 중합 수율이 낮고 엑소(exo) 이성질체만 선택적으로 중합되는 경향을 보였으며,(Sen, A.; Lai, T.-W. J. Am. Chem. Soc. 1981, Vol. 103, 4627-4629)에스테르기 또는 아세틸기를 포함하는 노보넨을 중합하는 경우, 촉매를 단량체 대비 약 1/100에서 1/400 까지의 과량으로 사용해야 하므로, 중합 후 촉매 잔사를 제거하기가 곤란하다는 문제점이 있었다.

최근 미국특허 제6,455,650호에는 촉매 복합체로서 $[(R')_z M(L')_x (L'')_y]_b [WCA]_d \equiv \Lambda + 8 \text{하고}, 작용기가 있는 노보넨계 단량체를 중합하는 방법이 개시되어 있으나, 극성 작용기가 있는 노보넨계 단량체를 중합하는 경우에는 그 수율이 5%로서 매우 낮기 때문에, 극성 작용기를 갖는 중합체의 제조에는 부적합하다는 문제점이 있었다.$

또한 리피안 등에 의한 문헌 (Sen, et al., Organometallics 2001, Vol. 20, 2802-2812)에서는 [(1,5-Cyclooctadiene)(CH₃)Pd(Cl)]을 PPh₃ 과 같은 포스핀 및 [Na][†][B(3,5-(CF₃)₂C₆H₃)₄]⁻ 와 같은 조촉매로 활성화하여 에스테르 노보넨을 중합하는 반응에서 단량체 대비 약 1/400 정도의 과량의 촉매를 사용하여 40% 이하의 중합 수율로 6500 정도의 분자량을 가진 중합체를 얻은 것으로 보고하고 있다.

<16>

상기에서 알 수 있듯이 종래의 극성 작용기를 갖는 고리형 올레핀 중합방법은 중합수율, 수득되는 중합체의 분자량, 촉매사용량 측면에서 실용적으로 요구되는 수준을 모두 만족시키지는 못했으며, 특히 촉매 구조상 극성 작용기에 의해 비활성되거나 열적 안정성이 떨어져 고온 중합에 사용되기 어렵다는 문제점이 있었다.

【발명이 이루고자 하는 기술적 과제】

<17>

본 발명이 이루고자 하는 첫 번째 기술적 과제는 상기 종래기술의 문제점을 해결하기 위하여 극성 작용기에 의한 촉매의 비활성화가 없고, 극성 작용기를 갖는 고리형 올레핀 중합체를 고분자량 및 높은 수율로 제조하는 방법을 제공하는 것이 다.

<18>

본 발명이 이루고자 하는 두 번째 기술적 과제는 유리전이 온도가 높으며, 열안정성, 산화안정성, 내화학성 및 금속 접착성이 우수한, 극성 작용기를 갖는 고 리형 올레핀 중합체를 제공하는 것이다.

<19>

본 발명이 이루고자 하는 세 번째 기술적 과제는 상기 올레핀 중합체를 포함 하여 제조된 광학 이방성 필름을 제공하는 것이다.

【발명의 구성】

- <20> 본 발명은 상기 첫 번째 기술적 과제를 달성하기 위하여,
- 그> 극성 작용기를 포함하는 고리형 올레핀계 중합체의 제조방법에 있어서,
- <22> i) 하기 화학식 1로 표시되는 10족 금속 함유 전촉매와

- <23> ii) 하기 화학식 2로 표시되는 포스포늄을 함유하는 염화합물을 포함하는 조촉매로 이루어진 촉매 혼합물을 제조하는 단계; 및
- ◇4> 상기 축매 혼합물 존재하에, 80℃ 내지 150℃의 온도에서, 극성 작용기를 갖는 고리형 단량체를 포함하는 단량체 용액을 부가중합시키는 단계를 포함하는, 극성 작용기를 갖는 고리형 올레핀계 중합체의 제조방법을 제공한다.

【화학식 1】

<26>

 $(R^0)_x(R^1)_yM$ (1)

(상기 화학식 1에서, R⁰ 및 R¹은 각각 독립적으로 수소; 할로겐; 탄소수 1 내지 20의 선형 또는 분지형 알킬, 알케닐; 치환 또는 비치환된 탄소수 5 내지 12의시클로 알킬; 치환 또는 비치환된 탄소수 6 내지 40의 아릴; 치환 또는 비치환된 탄소수 7 내지 15의 아랄킬(aralkyl); Si, Ge, S, 0 및 N으로 이루어진 군에서 선택된 어느 하나의 혜태로 원자를 포함하는 탄소수 1 내지 20의 선형 또는 분지형 혜태로알킬, 혜태로알케닐; Si, Ge, S, 0 또는 N의 혜태로 원자를 포함하는 탄소수 6 내지 40의 혜태로아릴, 탄소수 7 내지 15의 혜태로아랄킬(aralkyl); 탄소수 1 내지 20의 선형 또는 분지형 할로알킬(haloalkyl), 할로알케닐; 탄소수 3 내지 20의선형 또는 분지형 할로알키닐(alkynyl); 치환 또는 비치환된 탄소수 6 내지 40의할로아릴이며, 이때 상기 상기 각각의 치환기는 할로겐 또는 탄소수 1 내지 20의할로알킬이고;

<27>

M은 10족 금속이며;

<28>

<31>

<33>

x와 y는 0 내지 2이며, 동시에 0은 아닌 정수임)

【화학식 2】

<29> [H−P(R²)_{3-a}[X(R²')_b]_a][Ani]

<30> (상기 화학식 2에서, a는 0 내지 3의 정수이며;

X는 산소, 황, 실리콘, 또는 질소이고;

b는, X가 산소 또는 황인 경우 1이고, X가 질소인 경우 2이며, X가 실리콘인 경우 3이며;

R² 및 R² 는 각각 독립적으로 수소; 탄소수 1 내지 20의 선형 또는 분지형 알 킬, 알콕시, 알릴, 알케닐, 또는 비닐; 치환 또는 비치환된 탄소수 3 내지 12의 시 클로알킬; 치환 또는 비치환된 탄소수 6 내지 40의 아릴; 치환 또는 비치환된 탄소수 7 내지 15의 아랄킬(aralkyl); 탄소수 3 내지 20의 알키닐(alkynyl); 트리(탄소수 1 내지 10의 선형 또는 분지형 알킬)실릴, 트리(탄소수 1 내지 10의 선형 또는 분지형 알킬)실릴, 트리(탄소수 1 내지 10의 선형 또는 분지형 알콕시)실릴; 트리(치환 또는 비치환된 탄소수 3 내지 12의 시클로알킬)실 릴; 트리(치환 또는 비치환된 탄소수 6 내지 40의 아릴)실릴; 트리(치환 또는 비치환된 탄소수 6 내지 10의 선형 또는 분지형 알킬)실록시; 트리(치환 또는 비치환된 탄소수 3 내지 12의 시클로알킬)실록시; 트리(치환 또는 비치환된 탄소수 3 내지 12의 시클로알킬)실록시; 트리(치환 또는 비치환된 탄소수 3 내지 12의 시클로알킬)실록시;

치환기는 할로겐 또는 탄소수 1 내지 20의 할로알킬이며;

<34>

<35>

<36>

<37>

<38>

[Ani]은 상기 화학식 1의 금속 M에 약하게 배위될 수 있는 음이온이며, 보레이트, 알루미네이트, [SbF₆]-, [PF₆]-, [AsF₆]-, 퍼플루오로아세테이트

(perfluoroacetate; [CF₃CO₂]-), 퍼플루오로프로피오네이트(perfluoropropionate; [C₂F₅CO₂]-), 퍼플루오로부틸레이트(perfluorobutyrate; [CF₃CF₂CF₂CO₂]-), 퍼클로레이트(perchlorate; [ClO₄]-), 파라-톨루엔설포네이트(p-toluenesulfonate; [p-CH₃C₆H₄SO₃]-), [SO₃CF₃]-, 보라타벤젠, 및 할로겐으로 치환되거나 비치환된 카보레인으로 이루어진 군으로부터 선택되는 어느 하나임)

본 발명은 상기 두 번째 기술적 과제를 달성하기 위하여, 상기 제조방법에 의해 제조된 극성 작용기를 갖는 고리형 올레핀 중합체를 제공한다.

또한, 본 발명은 상기 세 번째 기술적 과제를 달성하기 위하여, 상기 제조방 법에 의해 제조된 극성 작용기를 갖는 고리형 올레핀 중합체를 포함하는 광학 이방 성 필름을 제공한다.

이하, 본 발명을 상세하게 설명한다.

본 발명에 따른 극성 작용기를 갖는 고리형 올레핀 중합체의 제조방법은 단량체의 극성 작용기에 의한 촉매의 비활성화를 억제할 수 있으며, 촉매의 활성이우수하기 때문에 고수율로 높은 분자량의 중합체를 제조할 수 있고, 단량체 대비촉매의 사용량을 저감시킬 수 있어, 촉매 잔사를 제거하는 단계가 별도로 필요없다

는 것을 특징으로 한다.

<39>

일반적인 유기금속 중합 촉매의 경우 중합 온도를 올리면 중합 수율이 증가하는 반면, 중합체의 분자량이 감소하거나 촉매가 열분해되어 중합 활성을 보이지않는 경향을 보인다 (Kaminsky et al. Angew. Chem. Int. Ed., 1985, vol 24, 507; Brookhart et al. Chem. Rev. 2000, vol 100, 1169; Resconi et al. Chem. Rev. 2000, vol 100, 1253). 이처럼 중합 온도가 증가함에 따라서 분자량이 감소하게 되는 것은 촉매에 결합된 고분자의 β -위치에 놓인 수소가 촉매로 이동함으로서 고분자 사슬이 촉매로부터 분리되기 때문이다.

<40>

이에 비하여 노보넨 단량체의 극성 작용기는 상온에서는 양이온형 촉매와 상호 작용하여 노보넨의 이중결합이 삽입하는 촉매활성자리를 막음으로써 중합 수율과 분자량이 낮아지게 되지만, 중합온도를 증가시키면, 촉매에 결합된 노보넨 고분자의 β-위치에 놓인 수소의 경우 노보넨 단량체 고유 특성상 촉매와 상호 작용할수 있는 입체 구조적인 환경을 형성하기 어렵고, β-수소가 촉매로 이동하기 어렵기 때문에 분자량이 증가하게 된다(Kaminsky et al. Macromol. Symp. 1995, vol. 97, 225). 따라서, 중합온도를 상승시킬 필요가 있으나, 종래에 알려진 극성 작용기를 포함하는 노보넨 중합체를 제조할 때 사용되는 촉매들은 중합온도를 80 ℃ 이상으로 올리면 대부분 열분해되어 활성이 낮아서 고분자량의 중합체를 얻을 수 없었다.

<41>

그러나 본 발명에 사용되는 촉매의 경우, 80 °C 이상의 온도에서 분해되지 않을 정도로 열적으로 안정하여 고온에서 노보넨 단량체의 극성 작용기와 양이온형 촉매와의 상호작용을 방해함으로써, 촉매 활성자리를 형성시키거나 회복시킬 수 있기 때문에 고분자량의 극성 작용기를 포함하는 고리형 올레핀계 중합체를 높은 수월로 제조할 수 있다. 한편, 중합온도가 150 ℃를 초과하는 때에는 상기 촉매성분이 열분해되어 활성이 낮아져서 고분자량의 극성 작용기를 포함하는 고리형 올레핀계 중합체를 제조하기가 어렵다.

<42>

본 발명에 사용되는 촉매 혼합물은 i) 상기 화학식 1로 표시되는 10족 금속 함유 전촉매와 ii) 상기 화학식 2로 표시되는 포스포늄을 함유하는 염화합물을 포 함하는 조촉매로 이루어진 것을 특징으로 하며 80 내지 150 ℃의 중합온도에서 열 분해되지 않으면서도 높은 활성을 나타낸다.

<43>

상기 화학식 2의 보레이트 또는 알루미네이트는 하기 화학식 2a 또는 화학식 2b로 표시되는 음이온일 수 있다.

【화학식 2a】

<44> [M'(R³)₄]

【화학식 2b】

<45> [M'(OR³)₄]

<46> (상기 화학식 2a, 및 2b에서,

<47> M'는 보론 또는 알루미늄이고;

<48>

R³는 각각 독립적으로 할로겐; 할로겐으로 치환 또는 비치환된 탄소수 1 내지 20의 선형 또는 분지형 알킬, 알케닐; 할로겐으로 치환 또는 비치환된 탄소수 3 내지 12의 시클로알킬; 탄소수 3 내지 20의 탄화수소로 치환 또는 비치환된 탄소수 6 내지 40의 아릴; 탄소수 3 내지 20의 선형 또는 분지형 트리알킬실록시 또는 탄소수 18 내지 48의 선형 또는 분지형 트리아릴실록시가 치환된 탄소수 6내지 40의 아릴; 할로겐으로 치환 또는 비치환된 탄소수 7 내지 15의 아랄킬(aralkyl)임)

<49>

본 발명에 조촉매로서 사용되는 포스포늄을 함유하는 화합물은 전자적 안정화 능력을 가지며, 전이 금속 화합물을 열적, 화학적으로 활성화시키는 역할을 한다. 상기 10 족의 전이금속을 함유하는 전촉매에 대한 조촉매의 비율은 전촉매 1물에 대해 0.5 내지 10물일 수 있는데, 상기 조촉매의 몰수가 0.5물 미만인 때에는 전촉매의 활성화 효과가 미약하고, 10물을 초과할 때에는 과량의 포스포늄이 금속에 배위하여 입체적으로 노보넨 단량체 배위를 막고 전자적으로 양이온 형태의촉매활성종이 지나치게 안정화되어 노보넨 단량체의 이중결합과 상호작용이 약해지고 그 결과 중합 수율과 분자량이 모두 감소하는 문제점이 있기 때문에 바람직하지 않다.

<50>

본 발명에 사용되는 상기 촉매 혼합물은 미립자 지지체상에 담지시켜 사용할수도 있으며, 상기 미립자 지지체는 실리카, 티타니아, 실리카/크로미아, 실리카/크로미아, 실리카/ 크로미아/티타니아, 실리카/알루미나, 알루미늄 포스페이트겔, 실란화된 실리카, 실리카 히드로겔, 몬트모릴로로나이트 클레이 또는 제올라이트일 수 있다. 이처럼

미립자 지지체상에 담지시켜 사용하는 경우에는 용도에 따라 분자량 분포를 조절할 수 있고, 얻어지는 고분자의 겉보기 밀도를 향상시킬 수 있다는 이점이 있다.

<51>

<52>

<53>

본 발명에 사용되는 상기 촉매 혼합물은 용매를 사용하지 않고 고체상으로 직접 투입할 수도 있으나, 용매 상에 이들을 혼합하여 활성화된 촉매 용액을 제조한 후 투입할 수 있으며, 상기 전촉매와 조촉매를 별도의 용액에 용해시켜 중합시투입할 수도 있다. 상기 촉매 혼합물을 용매에 용해시키는 경우에 사용될 수 있는 용매로는 디클로로메탄, 디클로로에탄, 톨루엔, 클로로벤젠 또는 그 혼합물 등을 두 있다.

반응계 중의 유기용매의 총량은 상기 단량체 용액 중의 총 단량체 중량에 대해 50% 내지 800%일 수 있으며, 50% 내지 400%인 것이 바람직한데, 50% 미만인 때에는 중합 반응중에 용액점도가 너무 높아 교반이 어려워지고 미반응 단량체가 남게 되어 중합 수율이 저하되며, 점도가 너무 높아 과량의 용매를 넣어 용액을 묽혀야 하기 때문에 상업화에 대한 문제점이 있고, 800%를 초과하는 때에는 중합 반응속도가 느려 중합 수율과 분자량이 모두 감소하는 경향이 있다.

본 발명에 사용되는 상기 촉매 혼합물은 상기 전촉매와 조촉매로 된 금속 촉매 착화합물일 수 있는데, 상기 촉매 혼합물을 사용량은 상기 전촉매 성분 기준으로 상기 단량체 용액 중의 총 단량체 몰량 대비 1/2,500 내지 1/200,000의 범위 내일 수 있다. 즉, 종래의 촉매 시스템보다 훨씬 적은 양의 촉매를 사용하면서도 극성 작용기를 갖는 노보넨계 단량체를 높은 수율로 중합할 수 있는 것이다. 상기 사용량은 더욱 바람직하게는 1/5000 내지 1/20000이다.

<54>

본 발명의 극성 작용기를 포함하는 고리형 올레핀계 부가 중합체를 제조할때 사용되는 단량체는 극성 작용기를 포함하는 노보넨계 단량체이다. 고리형의 노보넨계 단량체 또는 노보넨 유도체는 최소한 하나의 노보넨(바이시클로[2,2,1]헵트-2-엔(bicyclo[2.2.1]hept-2-ene)) 단위를 포함하는 단량체를 뜻한다.

<55>

본 발명의 국성 작용기를 갖는 고리형 올레핀계 부가 중합체는 적어도 하나이상의 국성 작용기를 포함하는 노보덴계 단량체를 상기에서 설명한 촉매시스템의 존재 하에서 부가 중합하여 호모 중합체를 제조하거나, 서로 다른 국성 작용기를 포함하는 노보덴계 단량체를 부가 중합하여 국성 작용기를 포함하는 노보덴계 단량체들로 이루어진 이원 또는 삼원 공중합체를 제조하거나, 또는 국성 작용기를 포함하는 노보덴계 단량체와 국성 작용기를 포함하지 않는 노보덴을 부가 중합하여 공중합하여 이원, 또는 삼원 공중합체를 제조할 수 있다.

<56>

이와 같은 극성 작용기를 갖는 노보넨계 단량체는 하기 화학식 3으로 표시되는 화합물일 수 있다.

【화학식 3】

<57>

(3)

<58> (상기 화학식 3에서,

<61>

<62>

<59> m은 0 내지 4의 정수이고,

<60> R⁴, R⁵, R⁶, 및 R⁷ 중의 적어도 하나는 극성 작용기를 나타내며, 나머지는 비극성 작용기이고; R⁴, R⁵, R⁶, 및 R⁷ 은 서로 연결되어 탄소수 4 내지 12의 포화 또는 불포화 시클릭 그룹, 또는 탄소수 6 내지 24의 방향족 고리를 형성할 수 있으며;

상기 비극성 작용기는 수소; 할로겐; 탄소수 1 내지 20의 선형 또는 분지형 알킬, 할로알킬(haloalkyl), 알케닐, 할로알케닐; 탄소수 3 내지 20의 선형 또는 분지형 알키닐(alkynyl), 할로알키닐(alkynyl); 알킬, 알케닐, 알키닐, 할로겐, 할 로알킬, 할로알케닐, 또는 할로알키닐로 치환되거나 비치환된 탄소수 3 내지 12의 시클로알킬; 알킬, 알케닐, 알키닐, 할로겐, 할로알킬, 할로알케닐, 또는 할로알키 닐로 치환되거나 비치환된 탄소수 6 내지 40의 아릴; 또는 알킬, 알케닐, 알키닐, 할로겐, 할로알키닐, 할로알케닐, 또는 할로알키닐로 치환되거나 비치환된 탄소수 7 내지 15의 아랄킬(aralkyl)이고;

상기 극성 작용기는 적어도 하나 이상의 산소, 질소, 인, 황, 실리콘, 또는 보론을 포함하는 비탄화수소 극성기(non-hydrocarbonaceous polar group)로서,

 $-S(=0)R^9, -R^8S(=0)R^9, -R^8C(=S)R^9, -R^8C(=S)SR^9, -R^8SO_3R^9, -SO_3R^9, -R^8N=C=S, -NCO, -R^8SO_3R^9, -R^8SO_3R^9, -R^$

$$R^{8}$$
 -NCO, -CN, $-R^{8}$ CN, -NNC(=S) R^{9} , $-R^{8}$ NNC(=S) R^{9} , -NO₂ , $-R^{8}$ NO₂,

$$-R^{12}C(0)N_{R^{13}} - N_{R^{13}}^{R^{12}} - R^{11}N_{R^{13}}^{R^{12}} - OC(0)N_{R^{13}}^{R^{12}} - R^{11}OC(0)N_{R^{13}}^{R^{12}} - R^{11}OC(0)N_{R^{13}}^{R^{12}$$

(상기 작용기의 각각의 R⁸는 탄소수 1 내지 20의 선형 또는 분지형 알킬, 할 로알킬, 알케닐, 할로알케닐; 탄소수 3 내지 20의 선형 또는 분지형 알키닐, 할로 알키닐; 알킬, 알케닐, 알키닐, 할로겐, 할로알킬, 할로알케닐, 할로알키닐로 치환

<64>

되거나 비치환된 탄소수 3 내지 12의 시클로알킬; 알킬, 알케닐, 알키닐, 할로겐, 할로알킬, 할로알케닐, 할로알키닐로 치환되거나 비치환된 탄소수 6 내지 40의 아릴; 또는 알킬, 알케닐, 알키닐, 할로겐, 할로알킬, 할로알케닐, 할로알키닐로 치환되거나 비치환된 탄소수 7 내지 15의 아랄킬이고,

상기 작용기의 각각의 R⁹, R¹⁰, 및 R¹¹ 은 수소; 할로겐; 탄소수 1 내지 20의 선형 또는 분지형 알킬, 할로알킬, 알케닐, 할로알케닐; 탄소수 3 내지 20의 선형 또는 분지형 알키닐, 할로알키닐; 알킬, 알케닐, 알키닐, 할로겐, 할로알킬,

할로알케닐, 또는 할로알키닐로 치환되거나 비치환된 탄소수 3 내지 12의 시클로알킬; 알킬, 알케닐, 알키닐, 할로겐, 할로알킬, 할로알케닐, 또는 할로알키닐로 치환되거나 비치환된 탄소수 6 내지 40의 아릴; 알킬, 알케닐, 알키닐, 할로겐, 할로 알킬, 할로알케닐, 또는 할로알키닐로 치환되거나 비치환된 탄소수 7 내지 15의 아랄길; 또는 알콕시, 할로알콕시, 카보닐록시, 할로카보닐록시이며;

k는 1 내지 10의 정수임))

<65>

<66>

<67>

<68>

본 발명의 방법에 따라서 제조되는 극성 작용기를 포함하는 노보넨 부가 중합체는 극성 작용기를 포함하는 노보넨계 단량체를 적어도 0.1 내지 99.9 몰% 포함하며, 이때 극성기를 포함하는 노보넨은 엔도, 엑소 이성질체 혼합물로 이루어져있고 혼합물 조성비는 관계없다.

본 발명의 부가 중합은 통상적인 노보넨계 중합체의 중합방법과 같이 노보넨계 단량체, 및 촉매를 용매에 용해 혼합하여 중합한다. 본 발명의 중합방법으로 극

성 작용기를 포함하는 고리형 올레핀계 부가 중합체를 제조하면 적어도 40% 이상의 고수율로 제조할 수 있으며, 제조되는 부가 중합체의 분자량(Mw)은 적어도 100,000이상의 고분자량을 가질 수 있다. 또한 부가 중합체를 이용하여 광학필름으로 제조한다면 분자량은 100,000 내지 1,000,000으로 조절하는 것이 바람직하다.

<69>

따라서 종래에는 극성 작용기를 포함하는 고리형 올레핀계 부가 중합체를 지극히 낮은 수율로, 낮은 분자량으로만 제조가 가능하였지만, 본 발명의 제조방법은 높은 수율로 높은 분자량의 극성 작용기가 도입된 고리형 올레핀계 부가 중합체를 제조할 수 있다.

<70>

본 발명에 따라 제조된, 극성 작용기를 갖는 노보넨계 중합체는 투명하며 금속이나 다른 극성 작용기를 가진 중합체에 대한 부착성이 우수하고, 절연성 전자재료 등으로 사용될 수 있는 유전상수가 낮고, 열안정성 및 강도가 우수한 고리형 올레핀 중합체이다. 또한 이 중합체는 커플링제 없이 전자 소재의 기질(substrate)에 부착될 수 있고, 구리, 은, 또는 금과 같은 금속 기질(substrate)에 잘 부착될 수 있으며, 편광판의 보호필름 등으로 사용될 수 정도로 광학적 특성이 우수하며, 집적회로, 회로인쇄기판 또는 다중 칩모듈(multichip modules)과 같은 전자소재에 사용될 수 있다.

<71>

본 발명은 상기 중합체를 이용하여 종래에는 제조할 수 없었던 복굴절율을 조절할 수 있는 광학 이방성 필름으로 제조할 수 있다.

<72>

일반적인 고리형 올레핀의 형태적인 유닛(conformational unit)은 하나 또는

두 개의 안정한 회전 상태를 가지므로 딱딱한(rigid) 페닐 고리를 주쇄로 한 폴리이미드와 같이 연장된 형태를 이룰 수 있다. 이러한 연장된 형태를 갖는 노보넨계고분자에 극성기를 도입하면, 간결한 형태를 갖고 있는 고분자의 경우보다 극성기의 도입으로 분자간의 상호작용이 증가하게 되며, 따라서 분자간의 충전(packing)에 지향 순서(directional order)를 갖게 되어 광학적, 및 전기적으로 이방성을 가실 수 있다는 것을 발견하였다.

<73>

상기 복굴절률은 고리형 올레핀계 부가 중합체에 도입되는 극성 작용기의 종류와 함량에 따라 조절할 수 있으며, 특히 제조되는 두께 방향의 굴절률의 조절이용이하여 다양한 모드의 LCD(Liquid crystal display)용 광학 보상 필름으로 제조할 수 있다.

<74>

상기 광학 이방성 필름은 본 발명에 따른 상기 극성 작용기를 갖는 고리형 올레핀계 부가 중합체를 용매에 녹여 용매 캐스팅 방법으로 필름 또는 시트상으로 제조할 수 있으며, 1 종 이상의 이들 고리형 올레핀계 중합체의 블렌드로부터 필름 을 제조할 수도 있다.

<75>

고리형 올레핀계 부가 중합체를 용매에 녹여 용매 캐스팅 방법으로 필름을 제조하는 방법은 고리형 올레핀계 부가 중합체를 고분자 함량 5 내지 95 중량%, 더욱 바람직하게는 10 내지 60 중량%으로 용매에 투입하고 상은에서 교반하여 제조하는 것이 바람직하다. 이때 제조된 용액의 점도는 100 내지 10000 cps인 것이 용매캐스팅에 바람직하며, 더욱 바람직하게는 300 내지 8000 cps이다. 또한, 상기 필름 제조시에는 필름의 기계적인 강도와 내열성, 내광성, 취급성을 개선하기 위하여 가

소제, 열화방지제, 자외선 안정제, 또는 대전 방지제와 같은 첨가제를 첨가할 수 있다.

이와 같이 제조된 필름은 하기 수학식 1로 표시되는 리타데이션 값(Rth)이 70 내지 1000 nm인 광학 이방성 필름 특성을 갖는다:

【수학식 1】

<76>

<77>

<79>

<80>

<82>

<83>

 $R_{th} = \Delta (n_y - n_z) \times d_{(4)}$

<78> (상기 수학식 1에서,

ny는 파장 550 nm에서 측정되는 면내의 고속 축(fast axis)의 굴절률이고;

nz는 파장 550 nm에서 측정되는 두께 방향의 굴절률이며;

(81> d는 필름의 두께임.)

이러한 광학 이방성 특성을 가지는 필름은 필름의 굴절률이 $n_x \cong n_y < n_z$ 인 관계 (n_x) 는 면내의 저속 축(slow axis)의 굴절률이고; n_y 는 고속 축(fast axis)의 굴절률이며; n_z 는 두께 방향의 굴절률임)를 만족하게 되어 다양한 모드의 액정디스플레이용 네가티브 C-플레이트(negative C-plate)형 광학 보상 필름으로 사용할수 있다.

이하, 바람직한 실시예를 들어 본 발명을 더욱 상세히 설명하나, 본 발명이이에 의해 제한되는 것은 아니다.

<84>

하기의 제조예 및 실시예에서, 공기나 물에 민감한 화합물을 다루는 모든 작업은 표준 설랭크 기술(standard Schlenk technique) 또는 드라이 박스 기술을 사용하여 실시하였다. 핵자기 공명 스펙트럼은 브루커 300 스펙트로미터(Bruker 300 spectrometer)를 사용하여 얻었으며, ¹H NMR은 300 MHz에서 그리고 ¹³C NMR은 75 MHz에서 측정하였다. 중합체의 분자량과 분자량 분포는 GPC(gel permeation chromatography)를 사용하여 측정하였으며 이때 폴리스티렌(polystyrene) 샘플을 표준으로 하였다. TGA 및 DSC와 같은 열분석은 TA Instrument(TGA 2050; heating rate 10 K/min)를 이용하여 실시하였다. 톨루엔은 포타슘/벤조페논에서 증류하여 정제하였으며, 디클로로메탄과 클로로벤젠은 CaH2에서 증류 정제하여 사용하였다.

제조예 1

5-노보넨-2-카복실릭산 메틸에스테르의 제조

<87>

<88>

<85>

<86>

2 L 고압반응기에 DCPD (dicyclopentadiene, 알드리치사 제조, 256.5 配, 1.9 mol), 메틸아크릴레이트 (알드리치사 제조, 405 ml, 4.5 mol), 하이드로퀴논 (3.2 g, 0.03 mol)을 넣은 후 온도를 220℃까지 상승시켰다. 이를 300 rpm으로 교반하면서 5 시간동안 반응시킨 후, 종료되면 반응물을 식히고 증류장치로 옮겼다. 진공펌프를 이용하여 1 torr로 감압 증류하여 50℃에서 생성물을 얻었다 (수율: 57.6 %, 엑소/엔도=58/42).

¹H-NMR (600MHz, CDCl₃), 엔도: δ 6.17 (dd, 1H), 5.91 (dd, 1H), 3.60 (s,

3H), 3.17 (b, 1H), 2.91 (m, 1H), 2.88 (b, 1H), 1.90 (m, 1H), 1.42 (m, 2H), 1.28 (m, 1H); 엑全: 6 6.09 (m, 2H), 3.67 (s, 3H), 3.01 (b, 1H), 2.88 (b, 1H), 2.20 (m, 1H), 1.88 (m, 1H), 1.51 (d, 1H), 1.34 (m, 2H).

제조예 2

<89>

<90>

<92>

<93>

<94>

<95>

5-노보넨-2-알릴아세테이트의 제조

2 L 고압반응기에 DCPD (알드리치, 248 ml, 1.852 md), 알릴아세테이트 (알드리치, 500 ml, 4.63 md), 하이드로퀴논 (0.7 g, 0.006 md)을 넣은 후 온도를 190 ℃까지 상승시켰다. 이를 300 rpm로 교반하면서 5 시간동안 반응시킨 후, 종료되면 반응물을 식히고 증류장치로 옮겼다. 진공펌프를 이용하여 1 torr로 감압 증류를 2차에 걸쳐서 실시하여 56℃에서 생성물을 얻었다 (수율: 30 %, 엑소/엔도=57/43).

 $^{1}\text{H-NMR}$ (300MHz, CDCl₃) : $86.17 \sim 5.91$ (m, 2H), $4.15 \sim 3.63$ (m, 2H), $2.91 \sim 2.88$ (m, 2H), 2.38 (m, 1H), 2.05 (s, 3H), 1.83 (m, 1H), $1.60 \sim 1.25$ (m, 2H), 0.57 (m, 1H).

제조예 3

[HP(Cy)₃][C1]의 제조

P(Cy)₃ (2.02 g, 7.2 mmol)를 250 mL 쉬렌크(schlenk) 플라스크에 투입하고 디에틸에테르 (150 mL) 을 넣어 용해시켰다. 다음으로, 상온에서 HCl (14.4 mL, 1.0M in ether)를 투입하고 반응이 진행되는 동안 하얀색 침전물이 형성되었으며, 약 20분 정도 반응시키고 하얀색 침전을 유리필터를 통해 여과하고 디에틸에테르 (80 mL)로 세 번정도 세척한 다음, 상은에서 잔류용매를 진공를 통해 용매를 제거하고 [HP(Cy)₃][C1] (86%, 1.95g)를 얻었다.

 1 H-NMR (600MHz, CD₂Cl₂) : $87.02 \sim 6.23$ (d, 1H, J_{H-P} =470 Hz), 2.56 \sim 1.30 (m, 33H); 13 C-NMR (600MHz, CD₂Cl₂) : 828.9 (d), 28.5 (d), 26.8 (d), 25.6 (s). 31 P-NMR (600MHz, CD₂Cl₂) : 822.98 (d, J_{P-H} =470 Hz).

<97> 제조예 4

<98>

<99>

[HP(n-Bu)3][Cl]의 제조

P(Cy)₃ (2.0 g, 10.0 mmol)를 250 mL 쉬렌크(schlenk) 플라스크에 투입하고 디에틸에테르 (150 mL)을 넣어 용해시켰다. 다음으로, 상온에서 HCl (20.0 mL, 1.0M in ether)를 투입하고 반응이 진행되는 동안 하얀색 침전물이 형성되었으며, 약 20분 정도 반응시키고 하얀색 침전을 유리필터를 통해 여과하고 디에틸에테르 (80 mL)로 세 번정도 세척한 다음 상온에서 잔류용매를 진공를 통해 용매를 제거하고 [HP(n-Bu)₃][Cl] (90%, 2.15g)를 얻었다.

<100> 제조예 5

<101> [HP(Cy)3][B(C6F 5)4]의 제조

<102>

글로브 박스 안에서 제조예 3에서 얻은 [HP(Cy)₃][CI] (0.56g, 1.75 mmol)와 [Li][B(C₆F₅)₄] (1.0g, 1.46 mmol)를 각각의 100 mL 쉬렌크(schlenk) 플라스크에 투입하고 디클로로메탄 (20 mL)을 넣어 용해시켰다. 다음으로, 상온에서 [HP(Cy)₃][CI] 용액을 [Li][B(C₆F₅)₄] 용액쪽으로 천천히 적가하였다. 1시간 정도 반응후 미반응물을 유리필터를 통해 거르고 용매 5 mL 정도 될 때까지 진공하에 용매를 제거한 다음, -78 ℃로 온도를 낮추고 디에틸에테르 (30 mL)를 넣어 재결정하였다. 마지막으로 상기 용액을 따르고 디에틸에테르 (30 mL)로 세 번정도 세척한 후, 상온에서 잔류용매를 진공를 통해 용매를 제거하고 [HP(Cy)₃][B(C₆F₅)₄] (90%, 1.26g)를 얻었다.

<103>

 1 H-NMR (600MHz, CD₂Cl₂) : $85.32 \sim 4.65$ (d, 1H, $J_{H-P}=440$ Hz), $2.43 \sim 1.33$ (m, 33H); 13 C-NMR (600MHz, CD₂Cl₂) : 8149.7, 148.1, 139.7, 139.2, 138.1, 138.0, 137.8, 136.2, 125.1, 124.9, 29.0, 28.8, 26.7 (d), 25.4 (s). 31 P-NMR (600MHz, CD₂Cl₂) : 31.14 (d, $J_{P-H}=440$ Hz). 19 F-NMR (600MHz, CD₂Cl₂) : -130.90, -161.51, -163.37.

<104>

제조예 6

<105> [HP(n-Bu)₃][B(C₆F₅)₄]의 제조

<106>

글로브 박스 안에서 제조예 4에서 얻은 [HP(n-Bu)₃][Cl] (0.42g, 1.75 mmo l)와 [Li][B(C₆F₅)₄] (1.0g, 1.46 mmol)를 각각의 100 mL 쉬렌크(schlenk) 플라스크에 투입하고 디클로로메탄 (20 mL)을 넣어 용해시켰다. 다음으로, 상은에서 [HP(Cy)₃][Cl] 용액을 [Li][B(C₆F₅)₄] 용액쪽으로 천천히 적가한 다음, 1시간 정도 반응후 미반응물을 유리필터를 통해 거르고 용매 5 mL 정도 될 때까지 진공하에 용매를 제거하였다. 다음으로, -78℃로 온도를 낮추고 디에틸에테르 (30 mL)를 넣어 재결정한 후, 상기 용액을 따르고 디에틸에테르 (30 mL)로 세 번정도 세척하였다. 마지막으로, 상은에서 잔류용매를 진공를 통해 용매를 제거하고 [HP(Cy)₃][B(C₆F₅)₄] (87%, 1.12g)를 얻었다.

<107>

<108>

실시예 1

5-노보넨-2-카복실릭산 메틸에스테르의 중합

<109>

상기 제조예 1에서 제조된 5-노보넨-2-카복실릭산 메틸에스테르(MENB, 10mL, 55.6mmol)를 250 mL 쉬렌크플라스크에 투입하고 Pd(OAc)₂ (OAc=acetate, 2.5 mg, 11 μmol)와 [HP(Cy)₃][B(C₅F₅)₄] (21.1 mg, 22 μmol)를 250 mL 쉬렌크플라스크에 투입하고 디클로로메탄 1 mℓ를 넣어 용해시켰다. 다음으로 90℃에서 촉매용액을 실린지를 통해 상기 단량체에 적가하고, 90℃에서 10 시간동안 반응 시킨후 50 mL 톨루엔을 넣어 굳어진 중합체를 용해시킨 다음, 과량의 에탄을에 투입하여 흰색의 중합체 침전물을 얻었다. 이 침전물을 유리 깔때기로 걸러서 희수한 중합체를 진공오븐에

서 80℃로 24 시간동안 건조하여 5-노보넨-2-카복실릭산 메틸에스테르의 중합체 8.4 g (투입된 단량체 총량기준 80.5 중량%)를 얻었다. 분자량(Mw)은 200,400이고, Mw/Mn은 2.02이었다.

<110>

<111>

실시예 2~8

5-노보넨-2-알릴아세테이트의 중합

<112> [HP(Cy)3][B(C6F5)4] 양을 Pd(OAc)2 몰대비 2:1, 1:1, 2:3, 1:2, 1:4, 1:8 로

변화시켜 5-노보넨-2-알릴아세테이트를 중합하였다. 상기 제조예 2의 5-노보넨-2-알릴아세테이트 (4 mL, 24.7 mmol)과 톨루엔 (12 ml)를 100 ml 쉬렌크 플라스크에 투입하고 촉매로 Pd(OAc)₂ (1.1 mg, 4.9 μmol)와 여러 가지 당량비로 변화한 [HP(Cy)₃][B(C₅P₅)₄]를 디클로로메탄 (1 ml)에 녹인후 단량체 용액에 투입하고 4 시 간동안 90 ℃에서 교반하면서 반응시켰다. 중합 반응과 폴리머 회수 과정은 실시예 1과 동일한 방법으로 실시하여 5-노보넨-2-알릴아세테이트의 중합체를 제조하였고, 그 결과를 표 1에 나타내었다.

【丑 1】

<113>

구 분	Pd(OAc) ₂ (mg)	[HP(Cy) ₃] [B(C ₆ F ₅) ₄]	Pd/B	수율			
				[g]	[%]	Mw	Mw/Mn
		(mg)		:			
실시예 2	1 1	2.4	2/1	1.77	43.2	333,400	2.11
<u>실시계 2</u> 실시예 3	1 1	4.7	1/1	3.52	86.0	272,800	2.28
<u>실시에 4</u> 실시예 4	1.1	7.1	2/3	3,82	93.2	260,000	2.56
실시예 5_	1.1	9.5	1/2	3.83	93.4	256,300	2.49
실시예 6	1 1	19.0	1/4	3.80	90.5	221,600	2,45
<u> </u>	1 1	28.4	1/6	3.39	82.7	194,100	2.25
<u> </u>	1 1	38.0	1/8	3,30	80.5	193,200	2.20

<114>

실시예 9

<115>

<116>

노보넨 카복실릭산 메틸에스테르 / 노보넨 부가 공중합체 제조
250 ml 쉬렌크 플라스크에 단량체로 노보넨 카복실릭산 메틸에스테르 (16.74 g),
노보넨 (4.44 g) 및 용매로 정제된 톨루엔 37 ml를 투입하였다. 이 플라스크에 디
클로로메탄 (2 ml)에 녹인 Pd(OAc)₂ (4.79 mg)와 [HP(Cy)₃][B(C6 F₅)₄] (40.4 mg)을
투입하고 10시간동안 90℃에서 교반하면서 반응시켰다. 반응 10 시간 후에 상기
반응물을 과량의 에탄을에 투입하여 흰색의 공중합체 침전물을 얻었다. 이 침전물을 유리 깔때기로 걸러서 희수한 공중합체를 진공오븐에서 65℃로 24 시간동안 건
조하여 노보넨과 노보넨 카복실릭산 메틸에스테르 공중합체 14.86 g을

얻었다(수율: 투입된 모노머 총량기준 70.2 중량 %). 이 중합체의 중량평균 분자량 (Mw)은 184,000 이고, Mw/Mn은 2.12 이었다.

<117> 실시예 10

<119>

<118> 노보넨 카복실릭산 메틸에스테르 / 부틸노보넨 부가 공중합체 제조

250 ml 쉬렌크 플라스크에 단량체로 노보넨 카복실릭산 메틸에스테르 (14.64 g), 부틸노보넨 (6.14 g) 및 톨루엔 (37 ml)를 투입하였다. 이 플라스크에 디클로로메 탄 (2 ml)에 녹인 Pd(acac)₂ (4.19 mg)과 [HP(Cy)₃][B(C6F 5)₄] (32.8 mg)을 투입하고 10 시간 동안 90℃에서 교반하면서 반응시켰다. 반응 10 시간 후에 상기 반응물을 과량의 에탄올에 투입하여 흰색의 공중합체 침전물을 얻었다. 이 침전물을 유리 깔

때기로 걸러서 회수한 공중합체를 진공오븐에서 65℃로 24 시간동안 건조하여 부틸 노보넨과 노보넨 카복실릭산 메틸에스테르 공중합체 13.7 g을 얻었다(수율: 투입된 모노머 총량기준 65.9 중량%). 이 중합체의 중량평균 분자량(Mw)은 157,000이었고, Mw/Mn은 2.13이었다.

<120> 실시예 11

<122>

<121> 5-노보넨-2-알릴아세테이트 / 부틸노보넨 부가 공중합체 제조 (촉매: Pd(acac)₂)

250 ㎡ 쉬렌크 플라스크에 5-노보넨-2-알릴아세테이트 (8.2 g), 부틸노보넨 (3.2 g) 및 톨루엔 (36 ㎡)를 투입하였다. 이 플라스크에 디클로로메탄 (2 ㎡)에 녹인 촉매로 Pd(OAc)₂ (3.2mg)와 [HP(Cy)₃][B(C₄F₅)₄] (27.0 mg)를 투입하고 4 시간동안 90℃에서 교반하면서 반응시켰다. 반응 4 시간 후에 상기 반응물을 과량의 에탄올에 투입하여 흰색의 공중합체 침전물을 얻었다. 이 침전물을 유리 깔때기로 걸러서 회수한 공중합체를 진공오븐에서 65 ℃로 24 시간동안 건조하여 부틸노보넨과 노보넨 카복실릭산 부틸에스테르의 공중합체 9.30 g을 얻었다(수율: 투입된 모노머 총량기준 81.7 중량%). 이 중합체의 중량평균 분자량(Mw)은 218,300 이었고, Mw/Mn은 3.52 이었다.

<123> 비교예 1

<124> 5-노보넨-2-카복실산 중합

<125> 5-노보넨-2-카복실산 10 g과 [Pd(C₆H₅CN)Cl₂]₂ 100 mg 를 반응 플라스크에 채우고 140 ℃에서 10.5 시간 반응시켜, 5.75 g 의 중합체를 얻었고 분자량은 1129 였다. <126> 비교예 2

<127> 5-노보넨-2-메틸-데카닐아세테이트 중합

<128> 5-노보넨-2-메틸-데카닐아세테이트 (1.03 g, 3.7 mmol)을 쉬렌크 플라스크에 담고 다른 플라스크에 [(Allyl)PdCl]₂ (13.15 mg, 3.60*10⁻² mmol) 과 AgSbF ₆ (35 mg,

10.1*10⁻² mmol) 를 담고 클로로벤젠 2 mL 를 넣어 녹인다. AgCl 침전물을 거르고 상온에서 단량체쪽으로 적가하고 24시간동안 반응시킨다. 중합수율은 1.01 g (98%)이고 중량평균분자량은 58,848 이었다.

<129> 비교예 3

<130> <u>5-노보넨-2-알릴아세테이트 중합</u>

<131> 쉬렌크 플라스크에 5-노보넨-2-알릴아세테이트 (5.0 g, 30 mmol)에 Li[B(C₆F₅)₄]·
2.5Et₂O 를 넣는다. [(Allyl)PdCl]₂ (0.55 mg, 0.0015 mmol) 과 P(Cy)₃ (0.84 mg, 0.0030 mmol) 를 톨루엔 0.1 mL 에 녹이고 단량체쪽으로 적가한다. 65 ℃에서 4 시간 반응시켰을 때 0.25 g (5%) 의 중합체를 얻었다.

<132> 실시예 12~13

<133>

<u>광학 이방성 필름의 제조</u>

상기 실시예 1 및 2에서 얻은 중합체를 하기 표 2의 조성과 같이 혼합하여 코팅 용액을 제조하고, 이 코팅 용액을 나이프 코터 또는 바코터를 이용하여 유리 기판 위에서 캐스팅 한 후, 상은에서 1 시간 건조하고, 다시 질소 분위기 하에 100 ℃에서 18 시간 동안 건조하였다. 건조 후 -10 ℃에서 10 초간 보관한 후 나이프 (knife)로 유리 기판 위의 필름을 박리하여 두께 편차가 2 % 미만인 균일한 두께의투명 필름을 얻었다. 이들 필름에 대한 두께와 400 내지 700 mm에서의 광 투과도를하기 표 2에 함께 나타내었다.

【班 2】

<135>

<137>

<139>

<140>

구분	핍름 용액	조성	필름 물성	
TT	폴리머(중량부)	용매(중량부)	두께(<i>μ</i> m)	광 투과도(%)
실시예 12	실시예 1에서 제조된 폴	THF 560	114	92
	리머			
실시예 13	실시예 2에서 제조된 폴	MC 360, 및	120	92
	리머	TOLUENE 200		

<136> 상기 표 2에서,

THF는 테트라하이드로퓨란이고, MC는 메틸렌클로라이드이다.

<138> 시험예 1

광학 이방성 측정

상기 실시예 12 및 13에 의한 투명 필름은 각각 아베(Abbe) 굴절계를 이용하여 굴절률(n)을 측정하고, 자동 복굴절계(왕자 계측 기기 제조; KOBRA-21 ADH)를 이용하여 면내의 위상차 값(Re)을 측정하고, 입사광과 필름면과의 각도가 50도 일때의 위상차 값(Re)을 측정하고, 하기 수학식 2에 따라서 필름 두께 방향과 면 내의 x-axis와의 위상차 값(Rth)을 구하였다.

【수학식 2】

$$R_{th} = \frac{R_{\theta} \times \cos \theta_f}{\sin^2 \theta_f}$$

또한 R_e 와 R_{th} 값에서 필름의 두께를 나누어 굴절률차 (n_x-n_y) 와 굴절률차 (n_y-n_z) 를 구하였다. 하기 표 3에 각각의 투명 필름의 (n_x-n_y) , R_{θ} , R_{th} , (n_y-n_z) 를 나타내었다.

[丑 3]

<143>

<144>

<142>

	n (굴절률)	$(n_x-n_y)x10^3$	R _{th} (nm/µm)	$(n_y-n_z)x10^3$
실시예 12	1.52	0.008		
실시예 13	1,50	0.009	2.13	2.13

또한 $n_y > n_z$ 인 트리아세테이트 셀룰로즈 필름을 겹쳐서 R_{Θ} 를 측정하였을 경우 모든 고리형 올레핀계 필름의 R_{Θ} 값이 증가하였으며, 이는 고리형 올레핀계 필름의 R_{th} 는 두께 방향으로 네가티브 복굴절률(negative birefringence; $n_y > n_z$)에 의한 것임을 보여준다.

【발명의 효과】

<145>

본 발명에 의한 올레핀 중합방법에 따르면, 모노머의 극성 작용기에 의한 촉매의 비활성화를 억제할 수 있기 때문에, 폴리올레핀 중합시 중합체의 분자량이 150,000이상이고, 중합수율도 80%이상인 폴리올레핀을 제조할 수 있으며, 촉매의

활성이 우수하기 때문에, 촉매 대 모노머의 사용량을 1/5000 내지 1/20,000의 범위 로 사용할 수 있어, 촉매 잔사를 제거하는 단계가 필요없다.

【특허청구범위】

【청구항 1】

극성 작용기를 포함하는 고리형 올레핀계 중합체의 제조방법에 있어서,

- i) 하기 식 1로 표시되는 10족 금속 함유 전촉매와
- ii) 하기 식 2로 표시되는 포스포늄을 함유하는 염화합물을 포함하는 조촉매로 이루어진 촉매 혼합물을 제조하는 단계; 및

상기 촉매 혼합물 존재하에, 80℃ 내지 150℃의 온도에서, 극성 작용기를 갖는 고리형 단량체를 포함하는 단량체 용액을 부가중합시키는 단계를 포함하는 극성 작용기를 갖는 고리형 올레핀계 중합체의 제조방법.

$$(R^0)_x(R^1)_yM \tag{1}$$

(상기 식 1에서, R⁰ 및 R¹은 각각 독립적으로 수소; 할로겐; 탄소수 1 내지 20의 선형 또는 분지형 알킬, 알케닐; 치환 또는 비치환된 탄소수 5 내지 12의 시클로 알킬; 치환 또는 비치환된 탄소수 6 내지 40의 아릴; 치환 또는 비치환된 탄소수 7 내지 15의 아랄킬(aralkyl); Si, Ge, S, O 및 N으로 이루어진 군에서 선택된 어느 하나의 헤데로 원자를 포함하는 탄소수 1 내지 20의 선형 또는 분지형 헤데로알킬, 헤데로알케닐; Si, Ge, S, O 또는 N의 헤데로 원자를 포함하는 탄소수 6 내지 40의 헤데로아릴, 탄소수 7 내지 15의 헤데로아랄킬(aralkyl); 탄소수 1 내지 20의 선형 또는 분지형 할로알킬(haloalkyl), 할로알케닐; 탄소수 3 내지 20의 선형 또는 분지형 할로알킬(haloalkyl), 할로알케닐; 탄소수 3 내지 20의 선

형 또는 분지형 할로알키닐(alkynyl); 치환 또는 비치환된 탄소수 6 내지 40의 할로아릴이며, 이때 상기 상기 각각의 치환기는 할로겐 또는 탄소수 1 내지 20의 할로알킬이고;

M은 10족 금속이며;

x와 y는 0 내지 2이며, 동시에 0은 아닌 정수임)

 $[H-P(R^2)_{3-a}[X(R^2)_b]_a][Ani]$ (2)

(상기 식 2에서, a는 0 내지 3의 정수이며;

X는 산소, 황, 실리콘, 또는 질소이고;

b는, X가 산소 또는 황인 경우 1이고, X가 질소인 경우 2이며, X가 실리콘인경우 3이며;

R² 및 R^{2'}는 각각 독립적으로 수소; 탄소수 1 내지 20의 선형 또는 분지형 알킬, 알콕시, 알릴, 알케닐, 또는 비닐; 치환 또는 비치환된 탄소수 3 내지 12의 시클로알킬; 치환 또는 비치환된 탄소수 6 내지 40의 아릴; 치환 또는 비치환된 탄소수 7 내지 15의 아랄킬(aralkyl); 탄소수 3 내지 20의 알키닐(alkynyl); 트리(탄소수 1 내지 10의 선형 또는 분지형 알킬)실릴, 트리(탄소수 1 내지 10의 선형 또는 분지형 알콕시)실릴; 트리(치환 또는 비치환된 탄소수 3 내지 12의 시클로알킬)실릴; 트리(치환 또는 비치환된 탄소수 6 내지 40의 아릴)실릴; 트리(치환 또는 비치

형 알킬)실록시; 트리(치환 또는 비치환된 탄소수 3 내지 12의 시클로알킬)실록시; 트리(치환 또는 비치환된 탄소수 6 내지 40의 아릴)실록시이고, 이때 상기 각각의 치환기는 할로겐 또는 탄소수 1 내지 20의 할로알킬이며;

[Ani]은 상기 화학식 1의 금속 M에 약하게 배위될 수 있는 음이온이며, 보레이트, 알루미네이트, [SbF₆]-, [PF₆]-, [AsF₆]-, 퍼플루오로아세테이트 (perfluoroacetate; [CF₃CO₂]-), 퍼플루오로프로피오네이트(perfluoropropionate; [C₂F₅CO₂]-), 퍼플루오로부틸레이트(perfluorobutyrate; [CF₃CF₂CF₂CO₂]-), 퍼클로레이트(perchlorate; [C1O₄]-), 파라-톨루엔설포네이트(p-toluenesulfonate; [p-CH₃C₆H₄SO₃]-), [SO₃CF₃]-, 보라타벤젠, 및 할로겐으로 치환되거나 비치환된 카보레인으로 이루어진 군으로부터 선택되는 어느 하나임)

【청구항 2】

제 1 항에 있어서, 상기 식 2의 보레이트 또는 알루미네이트가 하기 식 2a 또는 2b로 표시되는 음이온인 것을 특징으로 하는 극성 작용기를 갖는 고리형 올레 핀계 중합체의 제조방법.

$$[M'(R^3)_4]$$
 (2a)

 $[M'(OR^3)_4]$ (2b)

(상기 식 2a, 및 2b에서,

M'는 보론 또는 알루미늄이고;

R³는 각각 독립적으로 할로겐; 할로겐으로 치환 또는 비치환된 탄소수 1 내지 20의 선형 또는 분지형 알킬, 알케닐; 할로겐으로 치환 또는 비치환된 탄소수 3 내지 12의 시클로알킬; 탄화수소로 치환 또는 비치환된 탄소수 6 내지 40의 아릴; 탄소수 3 내지 20의 선형 또는 분지형 트리알킬실록시 또는 탄소수 18 내지 48의 선형 또는 분지형 트리아릴실록시가 치환된 탄소수 6내지 40의 아릴; 할로겐으로 치환 또는 비치환된 탄소수 7 내지 15의 아랄킬(aralkyl)임)

【청구항 3】

제 1 항에 있어서, 상기 10 족의 전이금속을 함유하는 전촉매에 대한 조촉매의 비율은 전촉매 1 몰에 대해 0.5 내지 10 몰인 것을 특징으로 하는 극성 작용기를 갖는 고리형 올레핀계 중합체의 제조방법.

【청구항 4】

제 1 항에 있어서, 상기 촉매 혼합물을 미립자 지지체상에 담지시킨 것을 특 징으로 하는 극성 작용기를 갖는 고리형 올레핀계 중합체의 제조방법.

【청구항 5】

제 4 항에 있어서, 상기 미립자 지지체는 실리카, 티타니아, 실리카/크로미아, 실리카/크로미아/티타니아, 실리카/알루미나, 알루미늄 포스페이트겔, 실란화된 실리카, 실리카 히드로겔, 몬트모릴로로나이트 클레이 또는 제올라이트인 것을 특징으로 하는 극성 작용기를 갖는 고리형 올레핀계 중합체의 제조방법.

【청구항 6】

제 1항에 있어서, 상기 촉매 혼합물을 디클로로메탄, 디클로로에탄, 톨루엔, 클로로벤젠 및 그 혼합물로 이루어진 군으로부터 선택된 유기용매에 용해시켜 사용 하는 것을 특징으로 하는 극성 작용기를 갖는 고리형 올레핀계 중합체의 제조방법.

【청구항 7】

제 1항에 있어서, 반응계 중의 유기용매의 총량은 상기 단량체 용액 중의 총 단량체 중량 대비 50 내지 800%인 것을 특징으로 하는 극성 작용기를 갖는 고리형 올레핀계 중합체의 제조방법.

【청구항 8】

제 1항에 있어서, 상기 촉매 혼합물은 상기 전촉매와 조촉매로 된 금속 촉매 착화합물을 포함하는 것을 특징으로 하는 극성 작용기를 갖는 고리형 올레핀계 중 합체의 제조방법.

【청구항 9】

제 1항에 있어서, 상기 촉매 혼합물을 고체상으로 단량체 용액에 투입하는 것을 특징으로 하는 극성 작용기를 갖는 고리형 올레핀계 중합체의 제조방법.

【청구항 10】

제 1항에 있어서, 상기 촉매 혼합물을 상기 전촉매 성분 기준으로 상기 단량 체 용액 중의 총 단량체 몰량 대비 1/2,500 내지 1/200,000의 양으로 반응계에 투입하는 것을 특징으로 하는 극성 작용기를 갖는 고리형 올레핀계 중합체의 제조방

법.

【청구항 11】

제 1항에 있어서, 상기 고리형 올레핀계 단량체가 하기 식 3으로 표시되는 화합 물인 것을 특징으로 하는 극성 작용기를 갖는 고리형 올레핀계 중합체의 제조방법.

$$\mathbb{R}^4$$
 \mathbb{R}^5
 \mathbb{R}^6
 \mathbb{R}^7
 \mathbb{R}^6

(상기 식 3에서,

m은 0 내지 4의 정수이고,

 R^4 , R^5 , R^6 , 및 R^7 중의 적어도 하나는 극성 작용기를 나타내며, 나머지는 비극성 작용기이고; R^4 , R^5 , R^6 , 및 R^7 는 서로 연결되어 탄소수 4 내지 12의 포화 또는 불포화 시클릭 그룹, 또는 탄소수 6 내지 24의 방향족 고리를 형성할 수 있으며;

상기 비극성 작용기는 수소; 할로겐; 탄소수 1 내지 20의 선형 또는 분지형 알킬, 할로알킬(haloalkyl), 알케닐, 할로알케닐; 탄소수 3 내지 20의 선형 또는 분지형 알키닐(alkynyl), 할로알키닐(alkynyl); 알킬, 알케닐, 알키닐, 할로겐, 할 로알킬, 할로알케닐, 또는 할로알키닐로 치환되거나 비치환된 탄소수 3 내지 12의 시클로알킬; 알킬, 알케닐, 알키닐, 할로겐, 할로알킬, 할로알케닐, 또는 할로알키 닐로 치환되거나 비치환된 탄소수 6 내지 40의 아릴; 또는 알킬, 알케닐, 알키닐, 할로겐, 할로알킬, 할로알케닐, 또는 할로알키닐로 치환되거나 비치환된 탄소수 7 내지 15의 아랄킬(aralkyl)이고;

상기 극성 작용기는 적어도 하나 이상의 산소, 질소, 인, 황, 실리콘, 또는 보론을 포함하는 비탄화수소 극성기(non-hydrocarbonaceous polar group)로서,

 $-OR^{9}, -OC(0)OR^{9}, -R^{8}OC(0)OR^{9}, -C(0)R^{9}, -R^{8}C(0)R^{9}, -OC(0)R^{9}, -R^{8}OC(0)R^{9}, -(R^{8}O)_{k}-(R^{$

 OR^9 , $-(OR^8)_k - OR^9$, $-C(O) - O - C(O)R^9$, $-R^8C(O) - O - C(O)R^9$, $-SR^9$, $-R^8SR^9$, $-SSR^8$, $-R^8SSR^9$,

 $-S(=0)R^{9}, -R^{8}S(=0)R^{9}, -R^{8}C(=S)R^{9}, -R^{8}C(=S)SR^{9}, -R^{8}SO_{3}R^{9}, -SO_{3}R^{9}, -R^{8}N=C=S, -NCO, -R^{8}N=C=S, -R^{8}N=C=$

 R^{8} -NCO, -CN, $-R^{8}$ CN, -NNC(=S) R^{9} , $-R^{8}$ NNC(=S) R^{9} , -NO₂ , $-R^{8}$ NO₂,

$$-R^{11}C(0)N R^{12} - N R^{12} - R^{11}N R^{12} - OC(0)N R^{12} - R^{11}OC(0)N R^{12} - R^{$$

(상기 작용기의 각각의 R⁸는 탄소수 1 내지 20의 선형 또는 분지형 알킬, 할로알킬, 알케닐, 할로알케닐; 탄소수 3 내지 20의 선형 또는 분지형 알키닐, 할로알키닐; 알킬, 알케닐, 알키닐, 할로겐, 할로알키, 할로알케닐, 할로알키닐로 치환되거나 비치환된 탄소수 3 내지 12의 시클로알킬; 알킬, 알케닐, 알키닐, 할로겐, 할로알키, 할로알케닐, 할로알키닐로 치환되거나 비치환된 탄소수 6 내지 40의 아릴; 또는 알킬, 알케닐, 알키닐, 할로겐, 할로알키, 할로알케닐, 할로알키닐로 치환되거나 비치환된 탄소수 6 내지 40의 아

상기 작용기의 각각의 R⁹, R¹⁰, 및 R¹¹ 은 수소; 할로겐; 탄소수 1 내지 20의 선형 또는 분지형 알킬, 할로알킬, 알케닐, 할로알케닐; 탄소수 3 내지 20의 선형 또는 분지형 알키닐, 할로알키닐; 알킬, 알케닐, 알키닐, 할로겐, 할로알킬,

할로알케닐, 또는 할로알키닐로 치환되거나 비치환된 탄소수 3 내지 12의 시클로알킬; 알킬, 알케닐, 알키닐, 할로겐, 할로알킬, 할로알케닐, 또는 할로알키닐로 치환되거나 비치환된 탄소수 6 내지 40의 아릴; 알킬, 알케닐, 알키닐, 할로겐, 할로 알킬, 할로알케닐, 또는 할로알키닐로 치환되거나 비치환된 탄소수 7 내지 15의 아랄길; 또는 알콕시, 할로알콕시, 카보닐록시, 할로카보닐록시이며;

【청구항 12】

제 1항에 있어서, 상기 단량체 용액이 극성 작용기를 포함하지 않는 고리형 올레핀계 화합물을 더 포함하는 것을 특징으로 하는 극성 작용기를 갖는 고리형 올 레핀계 중합체의 제조방법.

【청구항 13】

제 1항에 있어서, 상기 극성 작용기를 갖는 고리형 올레핀계 중합체가 극성 작용기를 갖는 고리형 올레핀계 호모중합체, 서로 다른 극성 작용기를 갖는 고리형 올레핀계 단량체들의 공중합체, 극성 작용기를 갖는 고리형 올레핀계 단량체와 극 성 작용기를 포함하지 않는 고리형 올레핀계 단량체의 공중합체를 포함하는 것을 특징으로 하는 극성 작용기를 갖는 고리형 올레핀계 중합체의 제조방법.

【청구항 14】

제 1 항에 있어서, 상기 극성 작용기를 갖는 고리형 올레핀계 중합체는 중량 평균 분자량(Mw)이 100,000 내지 1,000,000인 것을 특징으로 하는 극성 작용기를 갖는 고리형 올레핀계 중합체의 제조방법.

【청구항 15】

제 1항 내지 제 15항 중 어느 한 항에 따른 방법으로 제조된 중량평균 분자 량(Mw)이 100,000 이상인 극성 작용기를 갖는 고리형 올레핀계 중합체.

제 1항 내지 제 15항 중 어느 한 항에 따른 방법으로 제조된 중량평균 분자량(Mw)이 100,000 이상인 극성 작용기를 갖는 고리형 올레핀계 중합체를 포함하는 광학 이방성 필름.

【청구항 17】

제 16항에 있어서, 상기 광학 이방성 필름이 하기 식 4로 표시되는 리타데이 션 값(R_{th})이 70 내지 1000 nm인 것을 특징으로 하는 광학 이방성 필름:

$$R_{th} = \Delta (n_y - n_z) \times d_{(4)}$$

(상기 식 4에서,

ny는 파장 550 nm에서 측정되는 면내의 고속 축(fast axis)의 굴절률이고;

n₂는 파장 550 nm에서 측정되는 두께 방향의 굴절률이며;

d는 필름의 두께임.)

【청구항 18】

제 16항에 있어서, 상기 광학 이방성 필름의 굴절률은 $n_x \cong n_y < n_z$ 인 관계 $(n_x$ 는 면내의 저속 축 $(slow\ axis)$ 의 굴절률이고; n_y 는 고속 축 $(fast\ axis)$ 의 굴절률이며; n_z 는 두께 방향의 굴절률임)를 만족하는 액정디스플레이용 네가티브 C-플레이트 $(negative\ C-plate)$ 형 광학 보상 필름인 것을 특징으로 하는 광학 이방성

필름.

From the INTERNATIONAL BUREAU

PCT

NOTIFICATION CONCERNING SUBMISSION OR TRANSMITTAL OF PRIORITY DOCUMENT

(PCT Administrative Instructions, Section 411)

Date of mailing (day/month/year)

To

Y.P.LEE, MOCK & PARTNERS
The Cheonghwa Bldg. 1571-18 Seocho-dong,
Seocho-gu
Seoul 137-874
RÉPUBLIQUE DE CORÉE

06 October 2005 (06.10.2005)		
Applicant's or agent's file reference LG-24919-PCT	IMPORTANT NOTIFICATION	
International application No. PCT/KR2005/002149	International filing date (day/month/year) 05 July 2005 (05.07.2005)	
International publication date (day/month/year)	Priority date (day/month/year) 07 July 2004 (07.07.2004)	
Applicant		

LG CHEM. LTD.

- 1. By means of this Form, which replaces any previously issued notification concerning submission or transmittal of priority documents, the applicant is hereby notified of the date of receipt by the International Bureau of the priority document(s) relating to all earlier application(s) whose priority is claimed. Unless otherwise indicated by the letters "NR", in the right-hand column or by an asterisk appearing next to a date of receipt, the priority document concerned was submitted or transmitted to the International Bureau in compliance with Rule 17.1(a) or (b).
- 2. (If applicable) The letters "NR" appearing in the right-hand column denote a priority document which, on the date of mailing of this Form, had not yet been received by the International Bureau under Rule 17.1(a) or (b). Where, under Rule 17.1(a), the priority document must be submitted by the applicant to the receiving Office or the International Bureau, but the applicant fails to submit the priority document within the applicable time limit under that Rule, the attention of the applicant is directed to Rule 17.1(c) which provides that no designated Office may disregard the priority claim concerned before giving the applicant an opportunity, upon entry into the national phase, to furnish the priority document within a time limit which is reasonable under the circumstances.
- 3. (If applicable) An asterisk (*) appearing next to a date of receipt, in the right-hand column, denotes a priority document submitted or transmitted to the International Bureau but not in compliance with Rule 17.1(a) or (b) (the priority document was received after the time limit prescribed in Rule 17.1(a) or the request to prepare and transmit the priority document was submitted to the receiving Office after the applicable time limit under Rule 17.1(b)). Even though the priority document was not furnished in compliance with Rule 17.1(a) or (b), the International Bureau will nevertheless transmit a copy of the document to the designated Offices, for their consideration. In case such a copy is not accepted by the designated Office as the priority document, Rule 17.1(c) provides that no designated Office may disregard the priority claim concerned before giving the applicant an opportunity, upon entry into the national phase, to furnish the priority document within a time limit which is reasonable under the circumstances.

Priority_date	Priority_application_No.	Country or regional Office or PCT receiving Office	Date of receipt of priority document
07 July 2004 (07.07.2004)	10-2004-0052612	KR	19 July 2005 (19.07.2005)

The International Bureau of WIPO 34, chemin des Colombettes 1211 Geneva 20, Switzerland	Authorized officer François BAECHLER	
	Facsimile No. +41 22 338 7090	
Facsimile No. +41 22 338 82 70	Telephone No. +41 22 338 9544	