CPU SCHEDULING ALGORITHMS:

- * FCFS -> first come first serve
- * SJF -> Shortest job first.
- * SRT -> Shortest Remaining Time.
- * Priority based Scheduling
- * Round robin based scheduling.

PCFs:

				CI-AI	THI-BI
Process	Assival time (AT)	Burst time (BT)	completion time (cT)	Twinaround Lime (TAT)	waiting time ('wT)
Po	0	5	5	5	0
P,	1	3	8	7	4
P2	2	8	16	14	6
P3	3	6	22	19	13

Gantt chart:

9	anti c	novc , → BT	H) BT	r	> Burust time	values.
C)	5 5th 8	8+8	6 16 16	22	
	Po	Pi	P2	Pa	, , , , , , , , , , , , , , , , , , ,	

* completion time values are found by using Gantt chart.

Avg (TAT) = tot (TAT) =
$$5+7+14+19$$

no. of process 4
= $\frac{45}{4}$ = 11.25 msec
Avg (WT) = $0+4+6+13$ = $\frac{23}{4}$ = 5.75 msec

(check notes for Explanation) > AT > Arrival time

BT -> Buret time

Shortest Job Fürst

CT -> completion time

Non - preemptive

TAT -> Turnaround time WT -> waiting time

Process	PT	BT	CT	TAT	wT
Po	o	7	7	7	Ó
Ρ,	2	4	12	10	6
P2	4	1	8	4	3
P3	5	4	16	11	7
				tot: 32	tot : 16

Grantt chart:

0		7	7+1	8	8+4	12	12+4	16
	Po		P2		Pı		P ₃	

Avg
$$(TAT) = 32$$

$$= 8 \text{ msec.}$$

" Po & P, are Shortest processes.

- " Po completed.
- ", P, P2 P3 are remaining in Queue
- P₁ P₂ P₃ 4 1 4 \Rightarrow BT values
- " In the above Procuses check BT values.
- P2 is Small.
- " remaining P, P3 with same BT values
- ". Take Small process as P, > first Pz -> Last.

SRT:

* Shortest Remaining Time

* preemptive. (A process is pause the process to Switching over to another process depending upon some criteria)

			·	CT - AT	TAT-BT
Process	TA	BT	CT	TAT	WT
Po	O	7	16	16	9
P,	2	4	7	5	
P ₂	4	1	5	1	0
P ₃	5	4	11	6	2

F	0	P,	1	P2	P ₁	P ₃	Po
0	2	2	4	4+0 5	5 5+0	7 7 1 4 1	1 11+5 16
				Bī	RT Lemair	ing BT	RT
						me	

Avg $(TAT) = \frac{28}{4}$

Avg (WT) =
$$\frac{12}{4}$$
= $\frac{3 \text{ mecc.}}{}$

: Poss Prace the two shortest Processes.

".' As given in the name we need to find remaining time (RT) for Po & P1

Princita	Rocal	Scheduling:
10000	ruseg	Scheduling

					CT-AT	TAT-BT
Process	Priority	TA.	ВТ	СТ	TAT	wT_
Po	3	0	7	7	7	0
Pi	2	2	4	15	13	9
P2	4	4	1	16	12	11
P ₃		5	4	11	6	2

Great chaet:

Po × B3 > Low × High process.

1 > High Scheck with process.

Po P3 P1 P2

Po P3 P1 P2

1+4 11 11+4 15 15+4 16

- ·: first finish off the Po process. Since it is Low priority.
- ": Next High priority with P, P2 P3 prouses.
- is start with (P3) with By value 4

4 P3: 1 > High

: Next P, with B7 value 4

4 P1:2 > High

- ". Next Po -> we completed abready.
- "Next P2 with B7
 Value 4 Ly P2: 4 > High

Round Robin based Scheduling:

Quantum Value = 3 Mec.

Also called as time Slice.

		y y		CT - AT	TAT - BT
Process	AT	BT	CT	TAT	wī
Po	D	7	21	21	14
Ρ,	2	4	14	12	8
P ₂	4	1	10	6	5

Quantum: Maximum time cru given to the process at a single point of short process time.

		-	-					-				-
	Po		Pı		Po		P2		PI		Po	7.5
0		3	3+3	6	6+3	9	9+1	10	10+4	14	14+7	21

Avg (TAT) =
$$\frac{39}{4}$$

= 9.75 msec.
Avg (wT) = $\frac{27}{4}$
= 6.75 msec.

Process add with the Quantum Values.

and after that all the three processes are added with the Burst time (BT)

Values.