Finding an efficient way to parallelise Pytorch deep-learning models

Supervisor: Arya Mazaheri M.Sc.

Outline

Introduction

Related Work

Execution Optimiser of FlexFlow

Data and Model Parallelism with PyTorch

Three different libraries from PyTorch

Typical combination of data and model parallelism

Best Found Parallelisation Strategy

Parallelisation of Fully-connected Layer

Best Found Strategy

Experimental implementation with torch.distributed

Layer (Parameter) placement

Backpropagation and Loss

Introduction

- Data Parallelism and Model Parallelism in deep learning.
- Data Parallelism is well-supported by typical deep learning frameworks.
- Model Parallelism is yet widely to be addressed, except for manual strategies.
- Training on heterogeneous systems, e.g. Clusters of servers.
- Some frameworks does this, but require rewriting old models.

Contributions

Making use of automatic strategy finding process and applying this result to implement a corresponding parallelised model with PyTorch distributed library.

Related Work

- AlexNet [1] manual, low-level data parallelism with CUDA in C/C++.
- DistBelief [2] manual, low-level model parallelism on different dedicated machines with C/C++.
- Mesh-Tensorflow [3] automatic, requires rewriting models in a Tensorflow-like framework.
- Megatron-LM [4] automatic, uses PyTorch, restricts to language models.
- FlexFlow [5] automatic, uses Legion (CUDA, cuDNN in C/C++), under development, can determine the best parallel strategy.

Execution Optimiser of FlexFlow

- An operator graph \mathcal{G} to describe all operators and state in a deep neural network. Each node $o_i \in \mathcal{G}$ is an operator.
- A device topology $\mathcal{D} = (\mathcal{D}_N, \mathcal{D}_E)$ describing all available hardware devices and their interconnections.
- A parallelisation strategy S describes one possible parallelisation of an application.

FlexFlow overview.

Data and Model Parallelism with PyTorch: Three different libraries from PyTorch

	Multi-GPU	Multi-machine	Customised Gradient Flow
DataParallel[6]	yes	no	no
DistributedDataParallel[7]	yes	yes	no
torch.distributed[8]	yes	yes	yes

Data and Model Parallelism with PyTorch: Data Parallelism in DataParallel

Multi-GPU which DataParallel only support.

Data and Model Parallelism with PyTorch: Model Parallelism in DistributedDataParallel

Multi-machine which DistributedDataParallel only support.

Gradient Flow Customisation for the combination of Model and Data parallelism from torch.distributed

torch.distributed supports everything flexibly.

Parallelisation of Fully-connected Layer: Fully-connected Layer as Matrix Multiplication

Fully-connected layer computation is interpreted as matrix multiplication.

Parallelisation of Fully-connected Layer: Data Parallelism with the first dimension

Parallelisation of Fully-connected Layer: Model Parallelism with the second dimension

Model parallelism in fully-connected layer.

Best Found Strategy: Parallelisation Strategy for AlexNet by FlexFlow's Execution Optmiser

```
        op[0] conv1:
        dtm(1 ) gpu(0 )

        op[1] pool2:
        dtm(1 ) gpu(0 )

        op[2] conv3:
        dtm(1 ) gpu(0 )

        op[3] pool4:
        dtm(1 ) gpu(0 )

        op[4] conv5:
        dtm(1 ) gpu(0 )

        op[5] conv6:
        dtm(1 ) gpu(0 )

        op[6] conv7:
        dtm(1 ) gpu(0 )

        op[7] pool8:
        dtm(1 ) gpu(0 )

        op[8] flat:
        dtm(1 ) gpu(0 )

        op[9] thear9:
        dtm(1 1 ) gpu(0 )

        op[10] thear10:
        dtm(1 1 ) gpu(0 )

        op[11] thear11:
        dtm(1 1 ) gpu(0 )
```

Layer placement for one GeForce 1080Ti GPU only.

```
op[0] convi: dtn(2 ) gpu(0 1 )
op[1] pool2: dtn(2 ) gpu(0 1 )
op[2] convi: dtn(2 ) gpu(0 1 )
op[3] pool4: dtn(2 ) gpu(0 1 )
op[4] convi: dtn(2 ) gpu(0 1 )
op[5] convo: dtn(2 ) gpu(0 1 )
op[6] convo: dtn(2 ) gpu(0 1 )
op[6] convo: dtn(2 ) gpu(0 1 )
op[6] convo: dtn(2 ) gpu(0 1 )
op[7] pool8: dtn(2 ) gpu(0 1 )
op[8] flat: dtn(2 ) gpu(0 1 )
op[8] flat: dtn(2 ) gpu(0 0 )
op[10] ltnear10: dtn(2 1 ) gpu(0 0 )
op[11] ltnear11: dtn(2 1 ) gpu(0 0 )
```

Layer placement for two identical GeForce 1080Ti GPUs

Strategy with Customised Gradient Flow

Conv2D layers are replicated on two GPUs, but full-connected layers are on one GPU0 only!

Implementation with torch.distributed: Layer (Parameter) placement

Parameter placement for typical data parallelism.

Parameter placement for customised parallelism.

Fully-connected layer placement in strategy with Customised Gradient Flow

Conv2D layers are replicated on two GPUs, but full-connected layers are on one GPU0 only!

Implementation with torch.distributed: Backpropagation and Loss

Loss convergence in typical data parallelism.

Loss convergence in customised parallelism.

Loss calculation in strategy with Customised Gradient Flow

Both tensors which perform loss calculation are resided on only GPU0!

Conclusions and Future Work

Conclusions:

- Proposed a process how to take into account the parallelisation strategy when applying parallelism in training PyTorch models.
- FlexFlow's execution optimiser could be used to determine the best parallelisation strategy.
- torch.distributed suits the most to implement the best found strategy.

Future Work:

- Further investigation into FlexFlow's execution optimiser: initiallisation strategy, optimisation step, etc.
- Implementing more complicated models with torch.distributed.
- Developing a Python wrapper for such execution optimiser to turn any PyTorch model into its customised version.

References I

- [1] A. Krizhevsky, I. Sutskever and G. E. Hinton, 'Imagenet classification with deep convolutional neural networks', in *Advances in neural information processing systems*, 2012, pp. 1097–1105.
- [2] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, M. Ranzato, A. Senior, P. Tucker, K. Yang et al., 'Large scale distributed deep networks', in *Advances in neural information processing systems*, 2012, pp. 1223–1231.
- [3] N. Shazeer, Y. Cheng, N. Parmar, D. Tran, A. Vaswani, P. Koanantakool, P. Hawkins, H. Lee, M. Hong, C. Young *et al.*, 'Mesh-tensorflow: Deep learning for supercomputers', in *Advances in Neural Information Processing Systems*, 2018, pp. 10 414–10 423.

References II

- [4] M. Shoeybi, M. Patwary, R. Puri, P. LeGresley, J. Casper and B. Catanzaro, 'Megatron-Im: Training multi-billion parameter language models using gpu model parallelism', arXiv preprint arXiv:1909.08053, 2019.
- [5] Z. Jia, M. Zaharia and A. Aiken, 'Beyond data and model parallelism for deep neural networks', arXiv preprint arXiv:1807.05358, 2018.
- [6] S. Kim and J. Kang, Optional: Data Parallelism PyTorch Tutorials 1.5.1 documentation, [Online]. Available: https: //pytorch.org/tutorials/beginner/blitz/data_parallel_tutorial.html (visited on 06/07/2020).

References III

- [7] S. Li, Getting Started with Distributed Data Parallel PyTorch Tutorials 1.5.1 documentation, [Online]. Available: https://pytorch.org/tutorials/intermediate/ddp_tutorial.html (visited on 06/07/2020).
- [8] S. Arnold, Writing Distributed Applications with PyTorch PyTorch Tutorials 1.5.1 documentation, [Online]. Available: https://pytorch.org/tutorials/intermediate/dist_tuto.html (visited on 06/07/2020).