

international collegiate programming contest INDONESIA NATIONAL CONTEST INC 2019

Problem K Odd GCD Matching

Supposed there are N integers $A_{1...N}$. A_i can be paired with A_j if $GCD(A_i, A_j)$ is an odd number. GCD(a, b) is the greatest common divisor of a and b. For example, b can be paired with b because GCD(b, b) = b is an odd number; however, b cannot be paired with b because CD(b, b) = b is an even number.

An odd GCD matching of $A_{1..N}$ is a set of pairs which satisfies the following.

- Each pair contains two integers (i, j) where $1 \le i < j \le N$.
- Each integer *i* only appears at most once in the set.
- If (i, j) is in the set, then A_i must be able to be paired with A_j .

Given $A_{1..N}$, your task is to find the size of a maximum odd GCD matching of $A_{1..N}$. An odd GCD matching is maximum if and only if there are no other odd GCD matching which has more pairs than it.

For example, let $A_{1..5}=\{6,8,9,12,13\}$. The size of a maximum odd GCD matching in this example is 2; one such example is $\{(1,3),(2,5)\}$ which corresponds to the pairs $(A_1=6 \text{ with } A_3=9)$ and $(A_2=8 \text{ with } A_5=13)$. Note that $\{(1,3)\}$ with the size of 1 is also a valid odd GCD matching, but it is not a maximum one. On the other hand, $\{(2,4)\}$ is not a valid odd GCD matching as $A_2=8$ cannot be paired with $A_4=12$ in this example.

Input

Input begins with a line containing an integer: N ($1 \le N \le 20\,000$) representing the size of A. The next line contains N integers: A_i ($1 \le A_i \le 10^6$) representing the array A.

Output

Output in a line an integer representing the size of a maximum odd GCD matching of $A_{1...N}$.

Sample Input #1

5 6 8 9 12 13

Sample Output #1

2

Explanation for the sample input/output #1

This is the example from the problem description.

international collegiate programming contest INDONESIA NATIONAL CONTEST INC 2019

Sample Input #2

3 10 10 10

Sample Output #2

0

Explanation for the sample input/output #2

With 3 elements, the candidate pairs are only (1,2), (1,3), and (2,3). However, none of these candidates are valid as all $GCD(A_i, A_j)$ are not an odd number, thus, the maximum odd GCD matching for this case is an empty set $\{\}$ with a size of 0.

Sample Input #3

7 4 3 2 4 5 6 3

Sample Output #3

3

Explanation for the sample input/output #3

One example maximum odd GCD matching is $\{(1,5),(2,4),(3,7)\}$ which contains 3 pairs.