

Content

- 1. Programme Objective
- 2. Programme Content

Part 1: Data Collection

Part 2: Data Visualization

3. Application to Human Resource Training

1. Programme Objective

Programme Objective

- Study between self-evaluations and objective assessments (2014)
- interviewed 357,000 people

Completely Mismatch

Completely Matching

Programme Objective

Programme Objective Statement

To better collect and analyse data of employees' personality,

In order to assist human resource professional in providing related training

So as to enhance overall workplace performance.

2. Programme Content

Programme Content

Part 1: Data Collection (Simple Code)

Part 2: Data Visualization (Pandas)

Code Illustration

Part 1 - Data Collection

- Uses Enneagram (九型人格)
- Uses Riso-Hudson Enneagram Type Indicatior (RHETI)
- Has 144 forced-choice questions

Example - Q1

- A. I have been romantic and imaginative.
- B. I have been pragmatic and down to earth.

MEDIATOR

Attention goes to: conflict and discomfort. Energy goes into other people and avoiding/ preventing conflicts.

special and fulfilling.

@ Enneagram Europe

and self-sufficient and acquiring knowledge.

Code Illustration

```
print("The Riso-Hudson Enneagram Type Indicator (RHETI version 2.5) is one of the most popular Enneagram-b
      agreement = input("Do you understand all terms before you start? Yes or No")
      if (agreement == "Yes") or (agreement == "yes"):
          break
      elif (agreement == "No") or (agreement == "no"):
          print("Thank you for your interest.")
          continue
      else:
10
          print("Please enter Yes or No.")
          continue
12
13 type 1 = 0
14 type_2 = 0
15 type 3 = 0
16 type 4 = 0
17 type_5 = 0
18 type 6 = 0
19 type 7 = 0
20 type_8 = 0
21 type_9 = 0
22
23 #01
24 while True:
      Q1 = input("Q1 A. I have been romantic and imaginative. / B. I have been pragmatic and down to earth.")
      if (01 == "A") or (01 == "a"):
27
          type 4 = type 4 + 1
28
          break
29
      elif (01 == "B") or (01 == "b"):
30
          type 6 = type 6 + 1
31
          break
32
33
          print("Please enter either A or B")
34
35
          continue
36#02
      Q2 = input("Q2 A. I have tended to take on confrontations. / B. I have tended to avoid confrontations. ")
39
      if (Q2 == "A") or (Q2 == "a"):
          type_8 = type_8 + 1
41
          break
      elif (02 -- "B") or (02 -- "b").
```

```
Q19 = input("Q19. A. Generally, I've been methodical and cautious. / B. Generally, I've been adventurous and tak
     if (019 == "A") or (019 == "a"):
          type 6 = type 6 + 1
     elif (019 == "B") or (019 == "b"):
          type_7 = type_7 + 1
          break
     else:
          print("Please enter either A or B")
          continue
57 #020
58 while True:
59 Q20 = input("Q20. A. I have tended to be a supportive, giving person who seeks intimacy with others. / B. I have
     if (020 == "A") or (020 == "a"):
          type 2 = type 2 + 1
          break
     elif (020 == "B") or (020 == "b"):
          type 1 = type 1 + 1
          break
     else:
          print("Please enter either A or B")
70 while True:
     Q21 = input("Q21. A. I've often felt the need to be a pillar of strength. / B. I have often felt the need to per
     if (021 == "A") or (021 == "a"):
          type_8 = type_8 + 1
          break
     elif (Q21 == "B") or (Q21 == "b"):
          type_3 = type_3 + 1
          print("Please enter either A or B")
          continue
81 #022
82 while True:
     Q22 = input("Q22 ")
     if (Q22 == "A") or (Q22 == "a"):
          type_5 = type_5 + 1
          break
     elif (Q22 == "B") or (Q22 == "b"):
```

Code Illustrastion

```
In [1]: runfile('C:/Users/Leung/Desktop/test.py', wdir='C:/Users/
Leung/Desktop')
Type 1 score: 9
Type 2 score: 12
Type 3 score: 13
Type 4 score: 20
Type 5 score: 21
Type 6 score: 10
Type 7 score: 2
Type 8 score: 7
Type 9 score: 15
Your Result:
Your personality type is type 5.
Thank you for your participation!!
```

Programme Content

Part 1: Data Collection (Simple Code)

Part 2: Data Visualization (Pandas)

Data

L	Candidate	Type 1	Type 2	Type 3	Type 4	Type 5	Type 6	Type 7	Type 8	Type 9	Type
2	1	14	31	3	30	2	0	23	19	22	2
3	2	30	8	23	21	26	14	8	9	5	1
1	3	30	31	7	11	6	5	34	8	12	7
5	4	22	11	O	25	3	29	28	3	23	6
5	5	8	20	13	25	6	14	11	21	26	9
7	6	22	5	24	34	3	13	0	26	17	4
3	7	12	20	7	2	21	34	12	13	23	6
Э	8	13	18	22	24	4	27	20	7	9	6
0	9	6	19	18	26	7	2	10	25	31	9
1	10	14	5	21	9	29	9	12	16	29	9
2	11	29	21	5	23	18	7	13	6	22	1
3	12	13	26	11	15	4	34	17	15	9	6
4	13	21	13	20	12	21	22	O	23	12	8
5	14	17	30	20	4	15	10	5	25	18	2
6	15	0	13	10	20	24	25	8	17	27	9
7	16	18	21	11	3	23	27	22	8	11	6
8	17	31	8	1	32	7	24	26	4	11	4
9	18	15	14	14	5	17	20	13	28	18	8
0	19	21	0	5	22	21	26	7	25	17	6
1	20	16	15	18	14	12	10	19	23	17	8
2	21	2	13	5	12	22	23	22	32	13	8
3	22	7	30	12	32	8	6	32	13	4	4,7
4	23	13	8	20	29	17	28	12	14	3	4
5	24	9	26	6	21	24	15	19	24	0	2
6	25	28	18	15	22	4	27	24	0	8	1
7	26	4	22	19	2	15	18	31	19	14	7
8	27	9	26	7	29	22	28	0	0	23	4
9	28	7	32	5	16	5	32	27	6	14	6
O	29	7	15	13	24	20	8	26	13	18	7
-			-		-					ıI	-

Pandas-Import Data

Show the distribution of their types

```
In [6]: import pandas as pd
    excel_file="employeedata.xlsx"
    data=pd.read_excel(excel_file)
    data.head(55)
```

	emplyees	type
0	1	2
1	2	1
2	3	7
3	4	6
4	5	9
5	6	4
6	7	6
7	8	6
8	9	9
9	10	9
10	11	1
11	12	6
12	13	8
13	14	2
14	15	9
15	16	6
16	17	4
17	18	8
18	19	6

Pandas-Histogram

Show the distribution of their type

```
import matplotlib.pyplot as plt
import seaborn as sns
data['type'].plot(kind="hist",bins=9)
plt.show()
```


Pandas-Swarmplot

 Show the concentration of the scores that workers get in every types

```
In [135]: import pandas as pd
    excel_file="result.xlsx"
    data=pd.read_excel(excel_file)
    data.head(1000)
```

22	1	13
23	1	9
24	1	28
25	1	4
26	1	9
27	1	7
28	1	7
29	1	11
420	9	13
421	9	4
422	9	3
423	9	0
424	9	8
425	9	14
426	9	23
427	9	14
428	9	18
429	9	15
420		40

Pandas-Swarmplot

Show the concentration of the scores
 that workers get in each types

```
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
sns.set(style ="whitegrid")
ax=sns.swarmplot(x='Type', y='Score', data=data)
plt.title('Graph')
plt.show()
```

plt.show()

Application to Human Resource Training

Suggestion

- HR training should be focused on :
 - a. improving type 6's weakness
 - b. optimizing type 3
- But.... Enneagram is just a reference, not 100% accurate

~ Thank You ~

