Rapport de stage

Master 2 IA

LAURENT Thomas

Années: 2018 - 2019

Contents

1	Intr	oduction Générale	2
	1.1	L'approche symbolique	4
	1.2	L'approche connexionniste	6
	1.3	L'approche statistique	8
	1.4	L'approche décisionnel	9
	1.5	L'approche par satisfaction	10
	1.6	L'approche par représentation et raisonnement	11

Chapter 1 Introduction Générale

Depuis les années 1950, on parle d'intelligence artificiel (IA, ou AI en anglais) un processus ayant les capacités de penser ou de raisonner comme une tache qui serait humainement exécuté a l'aide d'une conscience ou un réseau neuronal. Un processus pensant pouvant prédire une action, un état ou un résultat. Mais l'intelligence artificiel est en réalité plus complexe que sa, un processus pouvant donner des résultats sur des données qu'elle connait et donc que le processus connait à l'avance le résultat n'est pas un processus d'intelligence artificiel car elle ne fait que pour un dictionnaire de données retourner la valeur associé aux data donné.

Pour qu'un processus soit dit, doté d'une intelligence, il faut qu'elle soit équipé d'une capacité de raisonnement voir d'apprentissage pour les cas où les données donné en entré soit totalement inconnue du processus, dans ce cas la le processus doit savoir prédire une réponse viable et ayant du sens en utilisant les données qu'elles connait déjà.

Le domaine de l'intelligence artificiel est bien plus vaste que la description donné ci dessus, selon le *Texte de la 236e conférence de l'université de tout les savoirs donné par Jean-paul HALTON* il existerai 3 grandes approches à l'intelligence artificiel, l'approche *Symbolique*, l'approche *Connexioniste* puis l'approche *Statistique*, ces trois termes sont décrit ci dessous.

1.1 L'approche symbolique

Un exemple réelle d'approche symbolique serait dans le code de la route, chaque panneaux (ou inscriptions qu'elles soient au sol ou peu importe où) ont une signification spécifique sur l'état que l'automobiliste doit adopter sur certain tronçon de route ou dans un état future. Si un automobiliste voit un panneau ¡sens interdit¿ sur un tronçon juste devant lui, une information est envoyé au cerveaux (où plutôt dans la base de connaissance) et une réponse direct (sans aucun apprentissage) est retourné par le réseau de connaissance indiquant qu'il ne faudrait pas aller sur ce tronçon sous resserve d'accidents par exemple.

Cette approche est dit **offline** car avant d'effectuer des requêtes à la base de connaissance celle ci a besoin d'être au préalable remplit d'informations vrai et de tout les cas possible. Admettons qu'un conducteur n'ai pas apprit la signification d'un panneau ¡sens interdit¿ voyer vous le problème que cette individu peut causer.

L'hypothèse du monde clos est appliqué par cette approche, pour une donné que le réseau de connaissance ne connais pas, la réponse retourné sera une réponse négative, prenons encore notre conducteur ci dessus, si celui ci voit un nouveau tronçon devant lui (un tronçon qu'il n'a jamais vue), il n'a aucune données dans sa base de connaissance qui décrit ce nouveau tronçon (bien-sur nous allons admettre que le conducteur n'a pas la possibilité d'ajouter de nouvelles informations dans sa base de connaissance ni d'apprendre sur ce nouveau tronçon), le conducteur va trivialement dire qu'il ne va pas s'aventurer sur ce nouveau tronçon car sa base de connaissance n'a pu fournir aucune informations sur ce telle tronçon.

Dans l'informatique, nous le savons, les ordinateurs ne savent que faire des opérations logique simple comme le ET, le OU, et le NOT, ces opérations sont accompagné de registres (mémoire vive, disque dur, ...) pouvant pour la duré de la vie d'un processus stocker les données et faire des opérations dessus avec d'autres données stocké dans la machine, c'est de la qu'avec quelques registres et une succession d'opérations logiques simple on peut former des circuits pouvant traiter les opérations mathématiques comme l'addition, la soustraction, la multiplication et la division. Ses informations sont possibles car elles sont ancré dans la base de connaissance de la machine qui lance les processus, par héritage les processus sont capable d'appeler les circuits pouvant faire les opérations cité ci dessus.

Un exemple logiciel d'approche symbolique serait le langage *Prolog* qui pour une base de connaissance donné en début de fichier, infère les différents questions posé dans la suite du programme.

Prenons un exemple simple, pour une base de connaissance donné ci dessous:

```
1 - Homme(Jean)
2 - Homme(Pierre)
3 - Femme(Marie)
4 - En_couple(Jean,Marie)
```

Effectuons des requêtes à la base de donnée ci dessus, demandons:

Es ce que Jean est un homme? la base de connaissance va répondre oui.

Es ce que Marie est un homme? non.

Es ce que Marie et Pierre sont en couple? non.

Es ce que Jean et Marie sont en couple? oui.

Pour confirmer la théorie du monde clos, nous pouvons demander si Philippe et un homme, n'ayant aucune informations sur un dénommé Philippe, la base de connaissance va déclencher une exception disant qu'il n'a pas trouvé un tel Philippe, vu qu'il ne connais pas ce Philippe, la base de connaissance va répondre NON.

L'hypothèse du monde clos est une échappatoire fréquemment utilisé dans les bases de connaissances, mais le non envoyé à cause de cette hypothèse n'a pas la même signification que le non Philippe n'est pas une homme. Pour y remédier certain logiciels ont ajouté une valeur à "oui" et "non", nous appelons ceci le *Three valued logic* et ce mode est implémenté dans certaines bases SQL, la troisième valeur est nommé "unknow" ayant la bonne signification demandé par l'hypothèse du monde close.

1.2 L'approche connexionniste

L'approche connexionniste est l'approche la plus proche du schéma du cerveaux au vue de requêtes. Le processus de réflexion du cerveau est représenté par une série de mini processus ne pouvant répondre qu'a un type de problème qui est définit lors de la création de ce mini processus, un mini processus est nommé neurone dans le cerveau, et nous allons préférer l'utilisation du terme neurone pour la suite.

Chaque neurone est définit par plusieurs entrées, et une seul sortie et peu être semblable à un *Perceptron* en machine learning:

En informatique, Chacun de ses neurones sont équipé d'une capacité d'apprentissage qui va influer sur les futures résultats, via un vecteur de variables (dites Poids ou weight en anglais) ce sont ses variables couplé au données d'entré (via un dot) qui va donner le résultat de l'opération, lors de la période de création du neurone, ils se voit attribuer son vecteur de poids à des valeurs aléatoire (plus généralement que des zero), une base de connaissance de référence, une fonction de résultat, et d'une fonction d'erreur pour donner une signification future au vecteur de poids.

Chaque sample (ou ligne) de la base de connaissance de référence est doté d'une variable réponse (noté étiquette) indiquant la réponse que le neurone devrait donner si dans le future on demande au neurone le résultat de ce sample. Avant de rendre le neurone fonctionnel, il se doit de passer les testes d'apprentissages, pour chaque sample dans la base de connaissance de référence, il va le multiplier avec le vecteur de poids et en tirer le résultat via une fonction de résultat et calculer l'indice d'erreur avec le résultat donné et la variable étiquette du sample, via l'indice d'erreur les poids du neurone

vont s'équilibrer jusqu'à converger vers un vecteur dit optimal. Une fois optimal ce neurone donnera les meilleurs résultats qu'il pourra donner.

Les résultats donné par le neurone ne sont pas viable à 100%, il se peu qu'il y ai des faux positif qui passe pour de vrai négatif, mais nous en discuterons plus bas dans ce rapport.

1.3 L'approche statistique

L'approche statistique se base sur statistiques, prenons un exemple d'une grande chaine de distribution, celle ci a des besoin plus ou moins conséquent d'innover pour continuer à avoir une trace dans les têtes des consommateurs, pour s'y faire le staff organise des études sur leurs site internet, ses études sont a complété de chiffres et de choix prédéfinit. Une fois équipé de beaucoup de résultats, il s'en vient de la prise de décision sur les futures changements, l'entreprise munit d'un arbre de décision le remplit selon les valeurs généré par l'étude. pour chaque nœud de l'arbre, l'entreprise va devoir entreprendre une action (peindre, commander, offrir), sur les feuilles de l'arbre le gain (ou la perte) prévue en hypothèse, et entre deux nœuds la probabilité calculer avec l'étude.

Une autre approche statistique largement utilisé est via les réseau bayésien. Les enfants qui trient leurs bonbons en fessant une pile de bonbon qu'ils aiment, une pile de bonbon qu'ils n'aiment pas puis une pile de bonbon qu'ils se savent pas quoi en penser de se bonbon. Sur l'arrière du paquet il est indiqué le gout du bonbon par rapport à la forme, la couleur et la taille (l'axiome de bijection n'est pas satisfait). Dans un premier temps l'enfant va pour chaque bonbon qu'il prend lire l'arrière du paquet puis classe le bonbon dans une pile, à force de voir les piles de bonbon grossir, il décide de laisser tomber le paquet de bonbon pour classer la suite de lui même, ainsi pour chaque bonbon prit, il calculera une sorte de probabilité avec ses croyances et l'état actuel des piles. Le cerveau est très complexe pour pouvoir introduire ce raisonnement dans un processus, il existe donc des versions mathématiques du calcule de l'appartenance d'un bonbon à une pile, par exemple l'entropie ou le le gain d'information.

Selon moi, ses trois approches forme une définition simple de l'intelligence artificiel, mais plusieurs approches qui ne sont pas cité ci dessus ont leur place dans la définition, car rien qu'avec les trois approches ci dessus nous pouvons inférer sur une base de donné en posant des questions simple, généraliser un concept en une série de matrice et prédire des événements selon une base de croyance. Enfin, l'une des approches que je voudrais ajouter est cité un peu plus haut dans l'approche statistique, l'autre approche est aussi basé sur des inférences sur une base de donné, non pour donner une réponse seulement boolean, mais pour fournir tout un modèle en guise de réponse.

1.4 L'approche décisionnel

La prise de décision, une brique très utilisé dans beaucoup de processus se disant intelligent, la où un système de recommandation trie les films selon des probabilités allié à un algorithme de ranking, il n'y a rien de vraiment décisionnel. Un processus devant prendre des décisions est un processus qui veut maximiser son gain ou minimiser sa perte. Un joueur d'échec cherche a maximiser son gain pour faire perdre son adversaire, c'est un jeu à somme nul, la somme des gain du gagnant et du perdant donne zero. Pour cela, il nous faut une décomposition des possibilités que les deux joueurs peuvent faire puis construire une matrice qui pour chaque lignes numéroté par un choix que le joueur 1 peut faire, pour chaque colonnes par un choix que le joueur 2 peut faire et pour chaque cellule un couple de valeurs représentant respectivement le gain du joueur 1 et le gain du joueur 2. Via une stratégie inférer sur la matrice pour en déduire les meilleurs possibilité de décision des deux joueurs.

La grande chaine de distribution dans l'approche statistique a réussi à construire un arbre de décision qui pour chaque feuille donne le gain (ou perte), pour chaque node une question, et pour chaque arrête la probabilité de la réponse à la question. Ceci est de la planification, remonter des feuilles jusque la racine en sommant le produit de la feuille et de la probabilité posté sur l'arrête.

1.5 L'approche par satisfaction

Un problème est peut être décomposé en un ensemble de sous problème, prenons une usine qui doit fournir entre 2000 et 6000 écrous et entre 1000 et 7000 vis en métal, l'usine ne peut faire qu'une pièce à la fois quelque soit la pièce, les écrous et les vis sont taillé depuis des petits cubes de métal, mais l'entreprise ne dispose que de 8000 cubes de métal, or pour produire un vis il faut un cube en entier et pour produire un écrous il faut une moitié de cube, l'entreprise voudrait produit autant de vis que d'écrous. Ce problème est plutôt simple si on demande à quelqu'un de l'entreprise qualifié pour le résoudre, mais si nous devons automatiser cette tache à l'aide d'un processus.

On dit qu'un processus est capable de faire de la recherche opérationnel si elle est capable de donner une solution satisfaisante pour un problème combinatoire modélisé en instructions mathématique simple. Une modélisation simple serait de décrire le modèle comme suit:

```
Soit les variables suivantes: vis, écrous

Maximiser vis (ou écrous)

vis == écrous

2000 < vis < 6000

1000 < écrous < 7000

2 x écrous + vis == 8000
```

On parle aussi de satisfaction de contraintes ou de problème de satisfiabilité, ses deux processus sont capable de donner des réponses à une majorité de problème et même en donnant une affectation à chaque variables, dans le cas que le processus n'est pas capable de donner une réponse, on dira que le problème est insatisfiable.

1.6 L'approche par représentation et raisonnement

Dans le monde d'aujourd'hui l'un des problème pour des touriste est de comprendre leurs environnements, bien sûr avec une très bonne maitrise de la langue local (ou de l'anglais) le boulot est assez simple, mais pas tout les voyageurs ne savent manipuler la langue local ou la langue de Shakespeare, c'est pour sa qu'il existe des processus pouvant pour une entré sous forme textuel, retourner un autre texte traduit dans une autre langue, quelques fois l'algorithme n'arrive pas à bien traduire la demande, quelque fois le résultat est plutôt acceptable.

Ce problème ci dessus est plus un problème de raisonnement sur le langage naturelle que de représentation, je ne rentrerais pas en détail sur les algorithmes de transformation de la langue naturelle. Mais l'un des problème majeur de la traduction texte vers texte c'est qu'il faut écrire du texte en entrée, voyez vous à chaque coin de rue taper une nouvelle requête, non. Un axe orienté représentation et l'axe de transformation image vers texte, plus techniquement appelé OCR (optical character recognition) qui pour une image retrouve des motifs et les isoles tout sa pour pouvoir donner du texte au traducteur.

Mais le travail ne s'arrête pas la pour toutes les polices (machine ou humain) il faut savoir avec précision quelle parcelle de pixel correspond à quelle caractère, une approche connexionniste et statistique (ou plus généralement Machine learning) est requit pour la transformation de vecteur vers caractère.