

Faculdade de Ciências Departamento de Física

Curso de Licenciatura em Física

DISCIPLINA: ESPECTROSCOPIA Aula Prática V Espectroscopia de Ressonância Magnética

1.	Avalie as característica numérica do spin e identifique quais dos seguintes núcleos terão um es-
	pectro RM.

- (a) ${}^{2}H_{1}$
- (b) $^{15}N_7$
- (c) $^{18}O_8$
- (d) $^{19}F_9$
- (e) $^{27}Al_{13}$
- 2. O que é frequência de Larmor? Como esta é calculada.
- 3. Qual é a importância do campo magnético estático no processo de ressonância magnética?
- 4. Demonstre que a frequência de Larmor pode ser obtida a partir da energia absorvida ou emitida pelo núcleo.
- 5. Calcule o campo magnético necessário para satisfazer a condição de ressonância de um protão em um campo de RF a 150MHz.
- 6. O $^{33}S_{16}$ tem spin nuclear de $\frac{3}{2}$ e um factor de Landé de 0.4289. Calcule:
 - (a) A razão giromagnética;
 - (b) As energias dos estados nucleares em um campo magnético de 7.5T.
- 7. O $^{14}N_7$ tem um factor-g de 0.404. Calcule:
 - (a) A razão giromagnética;
 - (b) As energias dos estados nucleares em um campo magnético de 115000G.
- 8. Um núcleo tem número quântico de spin iguala $\frac{5}{2}$. Determine:

- (a) O número de estados energéticos possíveis;
- (b) Os valores dos números quânticos de spin desses estados.
- 9. Calcule o número de onda em unidades espectroscópicas de uma dada transição no átomo de $^{13}C_6$ em um campo magnético de 14.4T, sabendo que a sua constante giromagnética de $6.73 \times 10^7 \frac{Hz}{T}$.
- 10. Qual é a frequência de absorção em um campo magnético estático de 2.4T para:
 - (a) Hidrogénio; (b) Carbono-13 e (c) Ferro-19.
- 11. Calcule a frequência de separação dos níveis de spin nuclear do nitrogénio-14 em um campo magnético de 154000G. Sabendo que sua constante giromagnética é $1.93 \times 10^7 \frac{Hz}{T}$.
- 12. Uma amostra de substância constitui um sistema macroscópico de partículas elementares e seus agregados. Avalie:
 - (a) O nome da grandeza física que é responsável pelo sinal eléctrico.
 - (b) A equação do Vector Magnétização Macroscópica no equilíbrio termodinâmico.
 - (c) A função do campo magnético oscilante aplicado na amostra.
- 13. Seja dada a equação clássica de Larmor:

$$\frac{d\vec{M}}{dt} = \gamma[\vec{M} \times \vec{B}]$$

- (a) O que esta equação representa?
- (b) Determine a sua solução.
- 14. Uma amostra tem T_1 igual 1.0 segundo. Se a magnetização da amostra for induzida a zero, qual será o tempo para que a magnetização volte a ser 0.98 do valor inicial?
- 15. Uma amostra de substância desconhecida, tem T_1 de 0.8 segundos. A magnetização da amostra foi induzida a zero, em seguida ela tende ao equilíbrio. Após 1 segundo, qual será a fracção da magnetização ni equilibrio presente?
- 16. Uma amostra de substância desconhecida, tem T_2 de 100ms. Quanto tempo é necessário para que a a magnetização transversal decaia 0.63 do valor inicial.
- 17. Uma amostra possui um T_2 de 50ms. A magnetização é induzida ao plano transversal e seguida desliga-se o campo RF. Qual é o valor da magnetização transversal que estará presente 20ms após o enceramento do campo RF?
- 18. Segundo os dados da Literatura, o sangue arterial tem $T_1 = 1200 ms$ e $T_2 = 50 ms$. Supondo que a não homogeneidade do campo RF e da magnetização no sangue induz uma relaxação com $T_2^* = 150 ms$ e o vector magnetização resultante e do sangue tem direção de $\frac{\pi}{4}$ radianos em relação ao eixo Z. Determine o instante de tempo, após um pulso de $\frac{\pi}{2}$ radianos verifica-se estes parâmetros.