Source: [KBe2020math530floIndex]

Looking forward

- · Will use canvas's discussion board in the future.
- · Assume matrices have real numbers

Solving with Matrices

- Elementary matrices (like $\begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix}$)
- · Steps walk through
 - Start with $\begin{bmatrix} a & b \\ d & e \end{bmatrix}$ (the coefficient matrix).
 - You want to get somewhere such that $\begin{bmatrix} 1x \\ 0y \end{bmatrix} = \begin{bmatrix} c \\ f \end{bmatrix}$ And ultimately $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} ans_x \\ ans_y \end{bmatrix}$

 - srcD3SolveWithMatricies.pn

Matrix Inverse Formula

· I should technically know this already.

Derivation

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} w & x \\ y & z \end{bmatrix} \begin{bmatrix} aw + by & ax + bz \\ cw + dy & cx + dz \end{bmatrix} \therefore$$

$$cw + dy = 0$$

$$ax + bz = 0$$

$$cx + dz = 1$$

There's two 2 variable equations. srcIdentityMatrixFormula.png

Matrix Operations

- If we have a set of objects that are almost groups in under both addition and multiplication, then it's called a field
 - 2x2 Matrices aren't quite close enough on the multiplication (too many no inverses) but we can work with other sizes. ### Vector Products
- Matrices of dimension nx1
- What multiplications on vectors are "nice"?
 - Transpose the first (left) one and multiply normally, then squish 2x2 into 2x1
 - · Cross product
 - Element wise (is closed)
 - Take every element and multiply them all together, and then duplicate?
 - · No, no identity
 - · Any one to one mapping?

 No, identity doesn't work if it's on the left. 					

Exr0n · 2020-2021 Page 2