Mary-Francis LaPorte

mflaporte@ucdavis.edu | Davis, CA 95616

Education **University of California, Davis** Davis, CA, USA PHD PLANT BIOLOGY August 2024 (Expected) Dissertation: Using genomic prediction, genetic association, and crop modeling to study nutritional traits in maize and rice Advisor: Christine Diepenbrock, PhD University of Oklahoma (OU) Norman, OK, USA BS: PLANT BIOLOGY, summa cum laude May 2019 Concentration: Molecular techniques analyzing OsAT5 gene regulation on the cell walls of A. thaliana Advisor: Laura Bartley, PhD Research Experience _ Department of Plant Sciences, University of California, Davis Davis, CA PHD CANDIDATE; ADVISOR: CHRISTINE DIEPENBROCK, PHD Sept. 2019 - Present Analyzed maize genomic data for Joint Linkage and Genome Wide Association Study analysis Compared Genomic Prediction methods to predict carotenoid traits in a maize association mapping panel, including parallelizing and adapting scripts for High-Performance Computing **National Renewable Energy Lab** Golden, CO PHD PRACTICUM; ADVISOR: AMBARISH NAG, PHD July 2022 - Present Compared the genomes of halophilic, halotolerant, and halophobic algal varieties to explore genetic mechanisms for salt tolerance, with application for outdoor algae cultivation · Utilized high performance computing techniques for increasing the scale of comparative genomics applications Department of Plant Biology and Microbiology, University of Oklahoma Norman, OK Undergraduate Research Assistant; Advisor: Laura Bartley, PhD 2016 - 2019 Applied molecular and genetic techniques to analyze OsAT5 gene expression on the cell walls of A. thaliana • Analyzed Switchgrass transcriptomic data focusing on cell-wall related genes Department of Molecular Plant Physiology, Utrecht University Utrecht, The Netherlands Undergraduate Research Intern; Advisor: Henriette Schluepmann, PhD Sept. 2017 - Dec. 2017 Purified and quantified RNA from Azolla filiculoides differential gene expression analysis for application in domestication Publications MF LaPorte, M Vachev, M Fenn, C Diepenbrock. 2022. Simultaneous dissection of grain carotenoid levels and kernel color in biparental maize populations with yellow-to-orange grain. G3: Genes, Genomes, Genetics. R Dale, S Oswald, A Jalihal, MF LaPorte, DM Fletcher, AH Hubbard, SH Shiu, A Nelson, A Bucksch. 2021. Overcoming the challenges to enhancing experimental plant biology with computational modeling. Frontiers in Plant Sciences. Presentations ___

CONFERENCE TALKS

Summer 2022. *Mathematical Modeling In Crop Sciences*. Invited talk: Multi-scale modeling in plant biology. American Society of Plant Biologists, Portland, OR (Virtual).

Winter 2021. Towards orange, biofortified maize: identifying genes associated with carotenoid traits and kernel color. Talk: Plant Breeding Retreat, Davis, CA (Virtual)

- Fall 2021. Towards orange, biofortified maize: identifying genes associated with carotenoid traits and kernel color. Seminar: Zeavolution Maize Seminar Series. Virtual
- Spring 2021. Towards orange, biofortified maize: identifying genes associated with carotenoid traits and kernel color. Corn Breeding Research Meeting. Virtual.
- Fall 2020. Towards orange, biofortified maize: identifying genes associated with carotenoid traits and kernel color. Colloquium Talk, Plant Biology Graduate Group Colloquium. Davis, CA (Virtual)

POSTER PRESENTATIONS

- Summer 2022. **MF LaPorte**, A Koide, W Suwarno, J Crossa, N Palacios-Rojas, C Diepenbrock. Predicting Carotenoid Breeding Values and Kernel Color in Maize Grain. Computational Science Graduate Fellowship Program Review, Washington D.C., USA.
- Summer 2018. **MF LaPorte**, C Zhang, L Bartley. Expression of a rice ferulate monolignol transferase in Arabidopsis improves cell wall suitability for biorefining. American Society of Plant Biologists, Montreal, Canada.
- Spring 2018. **MF LaPorte**, C Zhang, LE Bartley. Expression of a rice ferulate monolignol transferase in Arabidopsis improves cell wall suitability for biorefining. Undergraduate Research Symposium, Norman, OK, USA.
- Summer 2017. **MF LaPorte**, C Zhang, LE Bartley. Expression of a rice ferulate monolignol transferase in Arabidopsis improves cell wall suitability for biorefining. Curiosity-to-Creativity Symposium, Norman, OK, USA.

Awards, Fellowships, & Grants _____

2020 - 2024	Computer Science Graduate Fellowship, U.S. Department of Energy
2022	Borlaug Scholar, National Association of Plant Breeders
2019	Dean's Distinguished Graduate Fellowship, UC Davis College of Biological Science
2018	Ronald Lehr Award for Undergraduate Research (Grand Prize), OU Phi Beta Kappa
2018	Microbiology and Plant Biology Endowed Scholarship for Undergraduates, OU
2018	Microbiology and Plant Biology Department
2017	Effective Communication of Research Award, Curiosity-to-Creativity Symposium,
	University of Oklahoma
2016	Best essay by an undergraduate related to the Anthropocene Biosphere, Anthropocene
	Biosphere Project
2015 - 2019	National Merit Scholarship, University of Oklahoma

Teaching and Mentoring _

2021-	Software Carpentries , Instruct workshops for undergraduates, graduate students, faculty,
Present	and researchers in topics including: python, R, version control with Git, data management
	and organization, SQL database management
	Undergraduate Mentoring , Mentored an undergraduate student (Computer Science major)
2022-	to apply the mathematically-complex Reproducing Kernel Hilbert Space Model to predict
Present	carotenoid traits in maize. Covered topics including plant breeding, genetics and
	genomics, linear algebra, and code implementation and optimization

University Service and Outreach _____

	Plant Sciences Symposium Organizational Committee, Organized and spearheaded
2022	accessibility, diversity, and inclusion efforts for speaker talks, attendee participation, and
	student networking at this industry-backed, student-organized conference
2021-2022	Mentorship Committee: Plant Biology Graduate Group , Developed and implemented
	resources for Graduate Students related to wellbeing and mental health during the
	pandemic and support for incoming graduate students
2022-2023	Seminar committee: Plant Biology Graduate Group, Facilitate student involvement in the
	department seminar series, especially as speakers return for in-person talks
2020-2021	Advocacy committee: Plant Biology Graduate Group, Represent Plant Biology interests in
	the UC Davis Graduate Student Association

Relevant Coursework _____

2020-2021	Statistical Methods for Research I-II , Individual data analysis projects in R, including the study of causal inference	Statistics
2021	Machine Learning , Mathematical theory and application of Python tools including sklearn and TensorFlow	Statistics
2021	Machine Learning , Understanding and developing applications of machine learning models in python	Computer Science
2021	Quantitative Genetics , Applied quantitative genetics R packages (MASS, synbreed, etc) to animal and plant data	Plant Science
2021	Advanced Plant Breeding , Proposed a full hypothetical breeding program, from yearly optimization to IP	Plant Science
2022	Programming Languages , Studied the concepts behind lambda calculus, imperative programming, and language design	Computer Science
2022	Large-Scale Scientific Computing , Numerical algorithms and techniques for large-scale scientific computation, especially applications of fast-solvers in MATLAB	Computer Science

Programming Skills _____

R, Python, Shell Scripting, MATLAB, Version Control with Git, utilizing High Performance Computing