Project 2

Marcus Hjørund & Gard Gravdal

2024-03-15

Contents

1	Pro	Problem 1																1														
	1.1	a)																			 											1
	1.2	b)																			 											2
	1.3	c)																			 											2
	1.4	d)																			 											3
	1.5	e)																			 											4
	1.6	f)																														5
2	Pro	ble	m	${f 2}$																											7	15

1 Problem 1

In this problem we will look at a portion from the Tokyo rainfall dataset, which contains daily rainfall from 1951 to 1989. We consider a response to be whether the amount of rainfall exceeded 1mm over the given time period:

$$y_t|x_t \sim \text{Bin}(n_t, \pi(x_t)), \ \pi(x_t) = \frac{\exp(x_t)}{1 + \exp(x_t)} = \frac{1}{1 + \exp(-x_t)},$$
 (1)

for n_t being 10 for t=60 (Feburary 29th) and 39 for all other days. $\pi(x_t)$ is the probability of rainfall exceeding 1mm of days $t=1,\ldots,T$ and T=366. Note that x_t is the logit probability of exceedence and can be obtained from $\pi(x_t)$ via $x_t=\log(\pi(x_t)/(1-\pi(x_t)))$. We assume conditional independence among the $y_t|x_t$ for all $t=1,\ldots,366$.

1.1 a)

As we can see in Figure 1 the rain in Tokyo seems to show seasonal trend. There are few occurrences of rain more than 1mm in the period December-January, the peak of rainfall is in June-July, with a following drier period in August-September.

Figure 1: Tokyo rain data

1.2 b)

Next we want to obtain an expression for the likelihood of y_t depending on the parameters $\pi(x_t)$ for $t = 1, \ldots, 366$. This gives the likelihood for the data \boldsymbol{y} given the probabilities $\pi(\boldsymbol{x})$, where we will later update \boldsymbol{x} using our a MCMC algorithm. Since we assume conditional intependence for $y_t|x_t$ we can write the likelihood, using the expression for $\pi(x_t)$ given in Equation (1):

$$L(\pi(\boldsymbol{x})|\boldsymbol{y}) = \prod_{t=1}^{T} \binom{n_t}{y_t} \left(\frac{\exp(x_t)}{1 + \exp(x_t)}\right)^{y_t} \left(1 - \frac{\exp(x_t)}{1 + \exp(x_t)}\right)^{n_t - y_t}$$

$$= \prod_{t=1}^{T} \binom{n_t}{y_t} \left(\frac{\exp(x_t)}{1 + \exp(x_t)}\right)^{y_t} \left(\frac{1}{1 + \exp(x_t)}\right)^{n_t - y_t}$$

$$= \prod_{t=1}^{T} \binom{n_t}{y_t} \frac{\exp(x_t y_t)}{(1 + \exp(x_t))^{n_t}}$$
(2)

1.3 c)

Now we want to apply a Bayesian hierarchical model to the dataset, where we use a random walk of order 1 (RW(1)) to model the trend on a logit scale,

$$x_t = x_{t-1} + u_t,$$

for $u_t \stackrel{iid}{\sim} \mathcal{N}(0, \sigma_u^2)$ so that,

$$p(\boldsymbol{x}|\sigma_u^2) \propto \prod_{t=2}^T \frac{1}{\sigma_u} \exp\left\{-\frac{1}{2\sigma_u^2} (x_t - x_{t-1})^2\right\}.$$
 (3)

Then we place a inverse gamma prior on σ_u^2 such that,

$$p(\sigma_u^2) = \frac{\beta^\alpha}{\Gamma(\alpha)} (1/\sigma_u^2)^{\alpha+1} \exp(-\beta/\sigma_u^2)$$

for shape and scale α and β . We let $\mathbf{y} = (y_1, y_2, \dots, y_T)^T$, $\mathbf{x} = (x_1, x_2, \dots, x_T)^T$ and $\mathbf{\pi} = (\pi(x_1), \pi(x_2), \dots, \pi(x_T))^T$.

Now we will derive the posteriori distribution for $\sigma_u^2|x$, which is used in Gibbs sampling in the hybrid sampler in Section 1.6. If we draw a directed acyclical graph for the hierarchical Bayesian model, we see that y is independent of σ_u^2 , as all information from y is stored in x. From Bayes theorem we know that

$$p(\sigma_u^2|\boldsymbol{y}, \boldsymbol{x}) \propto p(\sigma_u^2)p(\boldsymbol{x}|\sigma_u^2).$$

We then have that

$$p(\sigma_{u}^{2}|\boldsymbol{x},\boldsymbol{y}) \propto \frac{\beta^{\alpha}}{\Gamma(\alpha)} (1/\sigma_{u}^{2})^{\alpha+1} \exp(-\beta/\sigma_{u}^{2}) \prod_{t=2}^{T} \frac{1}{\sigma_{u}} \exp\left\{-\frac{1}{2\sigma_{u}^{2}} (x_{t} - x_{t-1})^{2}\right\}$$

$$= \frac{\beta^{\alpha}}{\Gamma(\alpha)} (1/\sigma_{u}^{2})^{\alpha+1} \exp(-\beta/\sigma_{u}^{2}) \cdot (\sigma_{u}^{2})^{-\frac{T-1}{2}} \exp\left\{-\frac{1}{2\sigma_{u}^{2}} \sum_{t=2}^{T} (x_{t} - x_{t-1})^{2}\right\}$$

$$\propto (\sigma_{u}^{2})^{-(\alpha + \frac{T-1}{2} + 1)} \exp\left\{-\frac{1}{\sigma_{u}^{2}} \left(\beta + \frac{1}{2} \sum_{t=2}^{T} (x_{t} - x_{t-1})^{2}\right)\right\}$$
(4)

which follows an inverse gamma distribution with parameters

$$\alpha^* = \alpha + \frac{T-1}{2}$$
 and $\beta^* = \beta + \frac{1}{2} \sum_{t=2}^{T} (x_t - x_{t-1})^2$.

1.4 d)

In the Metropolis-Hastings algorithm, which we will implement, we need to find an expression for the acceptance probability α , which in general is given as

$$\alpha(y|x) = \min\left\{1, \frac{\pi(y)Q(x|y)}{\pi(x)Q(y|x)}\right\}$$

where Q(x|y) is a proposed conditional probability mass function (pmf), $\pi(x)$ is the probability of being in state x, and the transition probability is given as

$$p(y|x) = \begin{cases} Q(y|x)\alpha(y|x) & \text{for } y \neq x \\ 1 - \sum_{y \neq x} Q(y|x)\alpha(y|x) & \text{for } y = x \end{cases}$$

which is the probability of transitioning to state y given that the current state is x. The expression for α can be derived from the detailed balance equation, $\pi(x)p(y|x) = \pi(y)p(x|y)$ which is true for a time reversible Markov chain.

We will now consider the conditional prior proposal distribution, $Q(\mathbf{x}'_{\mathcal{I}}|\mathbf{x}_{-\mathcal{I}}, \sigma_u^2, \mathbf{y}) = p(\mathbf{x}'_{\mathcal{I}}|\mathbf{x}_{-\mathcal{I}}, \sigma_u^2)$, where $\mathbf{x}'_{\mathcal{I}}$ is the proposed values for $\mathbf{x}_{\mathcal{I}}, \mathcal{I} \subseteq \{1, \ldots, 366\}$ is a set of time indices, and $\mathbf{x}_{-\mathcal{I}} = \mathbf{x}_{\{1,\ldots,366\}\setminus\mathcal{I}}$ is a subset of \mathbf{x} that includes all other indices than those in \mathcal{I} . Our expression for the acceptance probability is then

$$\alpha(\boldsymbol{x}_{\mathcal{I}}'|\boldsymbol{x}_{-\mathcal{I}}, \sigma_{u}^{2}, \boldsymbol{y}) = \min \left\{ 1, \frac{\pi(\boldsymbol{x}_{\mathcal{I}}'|\boldsymbol{x}_{-\mathcal{I}}, \sigma_{u}^{2}, \boldsymbol{y}) Q(\boldsymbol{x}_{\mathcal{I}}|\boldsymbol{x}_{\mathcal{I}}', \boldsymbol{x}_{-\mathcal{I}}, \sigma_{u}^{2}, \boldsymbol{y})}{\pi(\boldsymbol{x}_{\mathcal{I}}|\boldsymbol{x}_{-\mathcal{I}}, \sigma_{u}^{2}, \boldsymbol{y}) Q(\boldsymbol{x}_{\mathcal{I}}'|\boldsymbol{x}_{\mathcal{I}}, \boldsymbol{x}_{-\mathcal{I}}, \sigma_{u}^{2}, \boldsymbol{y})} \right\}$$

$$= \min \left\{ 1, \frac{p(\boldsymbol{x}_{\mathcal{I}}'|\boldsymbol{x}_{-\mathcal{I}}, \sigma_{u}^{2}, \boldsymbol{y}) p(\boldsymbol{x}_{\mathcal{I}}|\boldsymbol{x}_{-\mathcal{I}}, \sigma_{u}^{2})}{p(\boldsymbol{x}_{\mathcal{I}}|\boldsymbol{x}_{-\mathcal{I}}, \sigma_{u}^{2}, \boldsymbol{y}) p(\boldsymbol{x}_{\mathcal{I}}'|\boldsymbol{x}_{-\mathcal{I}}, \sigma_{u}^{2})} \right\}.$$

We can simplify this expression by looking at $p(\boldsymbol{x}_{\mathcal{I}}|\boldsymbol{x}_{-\mathcal{I}},\sigma_{u}^{2},\boldsymbol{y})$ and $p(\boldsymbol{x}_{\mathcal{I}}'|\boldsymbol{x}_{-\mathcal{I}},\sigma_{u}^{2},\boldsymbol{y})$. From probability theory we know that $P(A|B) = \frac{P(A\cap B)}{P(B)}$, such that we can divide the expression of $p(\boldsymbol{x}_{\mathcal{I}}'|\boldsymbol{x}_{-\mathcal{I}},\sigma_{u}^{2},\boldsymbol{y})$ as follows:

$$\begin{split} p(\boldsymbol{x}_{\mathcal{I}}'|\boldsymbol{x}_{-\mathcal{I}}, \sigma_{u}^{2}, \boldsymbol{y}) &= \frac{p(\boldsymbol{x}_{\mathcal{I}}', \boldsymbol{y}|\boldsymbol{x}_{-\mathcal{I}}, \sigma_{u}^{2})}{p(\boldsymbol{y}|\boldsymbol{x}_{-\mathcal{I}}, \sigma_{u}^{2})} = \frac{p(\boldsymbol{y}|\boldsymbol{x}_{\mathcal{I}}', \boldsymbol{x}_{-\mathcal{I}}, \sigma_{u}^{2}) \cdot p(\boldsymbol{x}_{\mathcal{I}}'|\boldsymbol{x}_{-\mathcal{I}}, \sigma_{u}^{2})}{p(\boldsymbol{y}|\boldsymbol{x}_{-\mathcal{I}}, \sigma_{u}^{2})} \\ &= \frac{p(\boldsymbol{y}_{\mathcal{I}}|\boldsymbol{x}_{\mathcal{I}}') \cdot p(\boldsymbol{y}_{-\mathcal{I}}|\boldsymbol{x}_{-\mathcal{I}}) \cdot p(\boldsymbol{x}_{\mathcal{I}}'|\boldsymbol{x}_{-\mathcal{I}}, \sigma_{u}^{2})}{p(\boldsymbol{y}|\boldsymbol{x}_{-\mathcal{I}})} \end{split}$$

where we have used that \boldsymbol{y} is independent of σ_u^2 and that $\boldsymbol{x}_{\mathcal{I}}$ and $\boldsymbol{x}_{-\mathcal{I}}$ are disjoint sets, and $y_t|x_t$ are conditionally independent. We perform a similar calculation for $p(\boldsymbol{x}_{\mathcal{I}}|\boldsymbol{x}_{-\mathcal{I}},\sigma_u^2,\boldsymbol{y})$ and obtain

$$p(\boldsymbol{x}_{\mathcal{I}}|\boldsymbol{x}_{-\mathcal{I}}, \sigma_{u}^{2}, \boldsymbol{y}) = \frac{p(\boldsymbol{y}_{\mathcal{I}}|\boldsymbol{x}_{\mathcal{I}}) \cdot p(\boldsymbol{y}_{-\mathcal{I}}|\boldsymbol{x}_{-\mathcal{I}}) \cdot p(\boldsymbol{x}_{\mathcal{I}}|\boldsymbol{x}_{-\mathcal{I}}, \sigma_{u}^{2})}{p(\boldsymbol{y}|\boldsymbol{x}_{-\mathcal{I}})}.$$

We can then simplify $\alpha(\boldsymbol{x}_{\mathcal{I}}'|\boldsymbol{x}_{-\mathcal{I}},\sigma_{u}^{2},\boldsymbol{y})$, which becomes

$$\alpha(\boldsymbol{x}_{\mathcal{I}}'|\boldsymbol{x}_{-\mathcal{I}}, \sigma_{u}^{2}, \boldsymbol{y}) = \min\left\{1, \frac{p(\boldsymbol{x}_{\mathcal{I}}'|\boldsymbol{x}_{-\mathcal{I}}, \sigma_{u}^{2}, \boldsymbol{y})p(\boldsymbol{x}_{\mathcal{I}}|\boldsymbol{x}_{-\mathcal{I}}, \sigma_{u}^{2})}{p(\boldsymbol{x}_{\mathcal{I}}|\boldsymbol{x}_{-\mathcal{I}}, \sigma_{u}^{2}, \boldsymbol{y})p(\boldsymbol{x}_{\mathcal{I}}'|\boldsymbol{x}_{-\mathcal{I}}, \sigma_{u}^{2})}\right\} = \min\left\{1, \frac{p(\boldsymbol{y}_{\mathcal{I}}|\boldsymbol{x}_{\mathcal{I}}')}{p(\boldsymbol{y}_{\mathcal{I}}|\boldsymbol{x}_{\mathcal{I}})}\right\}.$$
(5)

We can then see that $\alpha(\mathbf{x}'_{\mathcal{I}}|\mathbf{x}_{-\mathcal{I}}, \sigma_u^2, \mathbf{y})$ becomes a ratio of likelihoods for the proposed values $\mathbf{x}'_{\mathcal{I}}$ against the existing values $\mathbf{x}_{\mathcal{I}}$.

1.5 e)

We note that the density specified by (3) is improper, for example for T = 2, density takes the shape of an infinite 'Gaussian ridge' centered around the line given by $x_1 = x_2$. Equation (3) can be rewritten as

$$p(\boldsymbol{x}|\sigma_u^2) \propto \exp\left\{-\frac{1}{2}\boldsymbol{x}^T\mathbf{Q}\boldsymbol{x}\right\}$$
 (6)

which resembles a multivariate normal density but where the improperiety of the density translates into the precision matrix

$$\mathbf{Q} = \frac{1}{\sigma_u^2} \begin{pmatrix} 1 & -1 & & & \\ -1 & 2 & -1 & & & \\ & & \ddots & & & \\ & & -1 & 2 & -1 \\ & & & -1 & 1 \end{pmatrix},$$

having one zero eigenvalue. We partition the components of x into two subvectors writing

$$oldsymbol{x} = egin{pmatrix} oldsymbol{x}_A \ oldsymbol{x}_B \end{pmatrix},$$

and partitioning the precision matrix in the same way as

$$\mathbf{Q} = \begin{pmatrix} \mathbf{Q}_{AA} & \mathbf{Q}_{AB} \\ \mathbf{Q}_{BA} & \mathbf{Q}_{BB} \end{pmatrix}.$$

We then want to derive the conditional distribution of x_A conditional on x_B . We know from before that the conditional density is always proportional to the joint (improper) density. We assume without loss of

generality that $\mu = 0$ and find that

$$f_{\boldsymbol{x}_{A}|\boldsymbol{x}_{B}}(\boldsymbol{x}_{A}) \propto \exp\left\{-\frac{1}{2}(\boldsymbol{x}_{A}^{T}, \boldsymbol{x}_{B}^{T}) \begin{bmatrix} \mathbf{Q}_{AA} & \mathbf{Q}_{AB} \\ \mathbf{Q}_{BA} & \mathbf{Q}_{BB} \end{bmatrix} \begin{pmatrix} \boldsymbol{x}_{A} \\ \boldsymbol{x}_{B} \end{pmatrix} \right\}$$

$$= \exp\left\{-\frac{1}{2}(\boldsymbol{x}_{A}^{T}\mathbf{Q}_{AA}\boldsymbol{x}_{A} + \boldsymbol{x}_{B}^{T}\mathbf{Q}_{BA}\boldsymbol{x}_{A} + \boldsymbol{x}_{A}^{T}\mathbf{Q}_{AB}\boldsymbol{x}_{B} + \boldsymbol{x}_{B}^{T}\mathbf{Q}_{BB}\boldsymbol{x}_{B}) \right\}$$

$$\propto \exp\left\{-\frac{1}{2}(\boldsymbol{x}_{A} - \boldsymbol{\mu}_{A|B})^{T}\mathbf{Q}_{AA}(\boldsymbol{x}_{B} - \boldsymbol{\mu}_{A|B}) \right\}$$

$$\propto \exp\left\{-\frac{1}{2}(\boldsymbol{x}_{A}^{T}\mathbf{Q}_{AA}\boldsymbol{x}_{A} - \boldsymbol{\mu}_{A|B}^{T}\mathbf{Q}_{AA}\boldsymbol{x}_{A} - \boldsymbol{x}_{A}^{T}\mathbf{Q}_{AA}\boldsymbol{\mu}_{A|B}) \right\}$$

where we only consider terms involving x_A , which is random in this case, and we use the fact that we can write the terms involving x_A in the second line in quadratic form, completing the square. We then equate the coefficients in the last line to the terms in the second line to find our expressions for $\mu_{A|B}$ and $\mathbf{Q}_{A|B}$. We have

$$-\mathbf{Q}_{AA}\boldsymbol{\mu}_{A|B} = \mathbf{Q}_{AB}\boldsymbol{x}_{B} \implies \boldsymbol{\mu}_{A|B} = -\mathbf{Q}_{AA}^{-1}\mathbf{Q}_{AB}\boldsymbol{x}_{B} \tag{7}$$

$$\mathbf{Q}_{A|B} = \mathbf{Q}_{AA}.\tag{8}$$

These results is used to simulate from $x'_{\mathcal{I}}|x_{-\mathcal{I}}|$ later on when we generate realizations from the random walk.

1.6 f

In this section we want to implement an MCMC sampler from the posterior distribution $p(\boldsymbol{\pi}, \sigma_u^2 | \boldsymbol{y})$ using Metropolis-Hastings steps for individual x_t parameters using the conditional prior, $p(x_t | \boldsymbol{x}_{-t}, \sigma_u^2)$, and Gibbs steps for σ_u^2 .

We will begin by deriving the conditional prior distribution using the results from Equations (7) and (8) as the conditional mean and precision (inverse variance) of $x'_{\mathcal{I}}|\mathbf{x}_{-\mathcal{I}}, \sigma_u^2$. We need to derive the conditional prior distribution for three cases, $t=1, \ 2 \le t \le 365$ and t=366. For the case $t=1, \ \mathcal{I}=\{1\}$, we have for the conditional mean that $-\mathbf{Q}_{\mathcal{I}\mathcal{I}}^{-1}=-\sigma_u^2$, $\mathbf{Q}_{\mathcal{I}-\mathcal{I}}=\frac{1}{\sigma_u^2}(-1,0,\ldots,0)$ with dimension $1\times(T-1)$. Thus the conditional expectation is given as

$$x_{\mathcal{I}}|\mathbf{x}_{-\mathcal{I}}, \sigma_u^2 = -\mathbf{Q}_{\mathcal{I}\mathcal{I}}^{-1}\mathbf{Q}_{\mathcal{I}-\mathcal{I}}\mathbf{x}_{-\mathcal{I}} = -\sigma_u^2 \cdot \frac{1}{\sigma_u^2}(-1, 0, \dots, 0)(x_2, x_3, \dots, x_T)^T = x_2.$$
 (9)

Similarly we have for t = 366, $\mathcal{I} = \{366\}$, we have

$$x_{\mathcal{I}}|\mathbf{x}_{-\mathcal{I}}, \sigma_u^2 = -\sigma_u^2 \cdot \frac{1}{\sigma_u^2}(0, \dots, 0, -1)(x_1, \dots, x_{364}, x_{365})^T = x_{365}.$$
 (10)

Then finally for the interior points, $2 \le t \le 365$, $\mathcal{I} = \{2\}, \{3\}, \dots, \{365\}$, we have $-\mathbf{Q}_{\mathcal{I}\mathcal{I}}^{-1} = -\frac{\sigma_u^2}{2}$ and $\mathbf{Q}_{\mathcal{I}-\mathcal{I}} = \frac{1}{\sigma_u^2}(0, \dots, 0, -1, -1, 0, \dots, 0)$ with dimension $1 \times (T-1)$. We then calculate the conditional expectation as

$$x_{\mathcal{I}}|\boldsymbol{x}_{-\mathcal{I}}, \sigma_{u}^{2} = -\frac{\sigma_{u}^{2}}{2} \cdot \frac{1}{\sigma_{u}^{2}}(0, \dots, 0, -1, -1, 0, \dots, 0)(x_{1}, \dots, x_{t-1}, x_{t+1}, \dots, x_{366})^{T} = \frac{1}{2}(x_{t-1} + x_{t+1}). \quad (11)$$

We perform a similar calculation to calculate the conditional variance. We have that the conditional variance $\Sigma_{\mathcal{I}|-\mathcal{I},\sigma_u^2} = \mathbf{Q}_{\mathcal{I}|-\mathcal{I},\sigma_u^2}^{-1}$. For t=1 and t=366 we have that $\mathbf{Q}_{\mathcal{I}\mathcal{I}}^{-1} = \sigma_u^2$ and for $2 \le t \le 365$ we have $\mathbf{Q}_{\mathcal{I}\mathcal{I}}^{-1} = \frac{\sigma_u^2}{2}$. Thus we can summarize the conditional distribution of $x_{\mathcal{I}}|\mathbf{x}_{-\mathcal{I}}$ as

$$x_{\mathcal{I}}|\mathbf{x}_{-\mathcal{I}}, \sigma_{u}^{2} \sim \begin{cases} \mathcal{N}(x_{2}, \sigma_{u}^{2}) & \text{for } t = 1\\ \mathcal{N}(\frac{1}{2}(x_{t-1} + x_{t+1}), \frac{\sigma_{u}^{2}}{2}) & \text{for } t = 2, \dots, 365\\ \mathcal{N}(x_{365}, \sigma_{u}^{2}) & \text{for } t = 366. \end{cases}$$
(12)

This is the distribution we simulate from on the random walk to generate realizations of x'_t , which is the proposed value for x at index t. Next we will derive the expression for the acceptance probability $\alpha(x'_t|\mathbf{x}_{-t},\sigma_u^2,\mathbf{y})$ for $\mathcal{I}=\{t\}$. We use the expression for the acceptance probability derived in Equation (5). We have

$$\alpha(x_t'|\mathbf{x}_{-t}, \sigma_u^2, \mathbf{y}) = \min\left\{1, \frac{p(y_t|x_t')}{p(y_t|x_t)}\right\} = \min\left\{1, \frac{\binom{n_t}{y_t} \frac{\exp(x_t'y_t)}{(1 + \exp(x_t'))^{n_t}}}{\binom{n_t}{y_t} \frac{\exp(x_ty_t)}{(1 + \exp(x_t))^{n_t}}}\right\}$$

$$= \min\left\{1, \exp\left(y_t(x_t' - x_t) \cdot \frac{(1 + \exp(x_t))^{n_t}}{(1 + \exp(x_t'))^{n_t}}\right)\right\}$$

$$= \min\left\{1, \exp\left(y_t(x_t' - x_t) - n_t \ln\left(\frac{1 + \exp(x_t')}{1 + \exp(x_t')}\right)\right)\right\}$$

In the algorithm, we will for each $t \in \{1, \dots, 366\}$, use the Metropolis-Hastings algorithm, using the following algorithm,

Hybrid sampler Metropolis-Hastings:

```
Initialize x = x_0 and \sigma_u^2 \sim p(\sigma_u^2) repeat n times: for t = 1, \ldots, 366: generate x_t' \sim p(\sigma_u^2 | \mathbf{x}_{-t}) \alpha \leftarrow \min\left\{1, \exp\left(y_t(x_t' - x_t) - n_t \ln\left(\frac{1 + \exp(x_t')}{1 + \exp(x_t)}\right)\right)\right\} generate u \sim \text{unif}(0, 1) if (u < \alpha): x_t \leftarrow x_t' else x_t \leftarrow x_t end for \beta^* = \beta + \frac{1}{2} \sum_{t=2}^T (x_t - x_{t-1})^2 generate \sigma_u^2 \sim \text{InvGamma}(\alpha + \frac{T-1}{2}, \beta^*) end for
```

Return samples $x_1, ..., x_T$

```
# Problem 1
library(matrixStats)
library(MASS)

expit <- function(x){
   return(exp(x)/(1 + exp(x)))
}

# f)

# Defining global variables
alpha = 2
beta = 0.05</pre>
```

```
N = 50000
alpha_prob <- function(x_prop, x, t){</pre>
  # Calculates acceptance probability
  y = rain$n.rain[t]
  n = rain$n.years[t]
  ans = \exp(y*(x_prop - x) - n * \log((1+\exp(x_prop))/(1+\exp(x))))
  return(min(1,ans))
}
MH_step <- function(x, sigma2, accept_count, mu, t){</pre>
  # Calculates one step of Metropolis-Hastings
  # All inputs are numbers
  x_prop <- rnorm(1, mu, sqrt(sigma2))</pre>
  # Probability of acceptance
  alpha_accept <- alpha_prob(x_prop, x, t)</pre>
  u <- runif(1)
  if (alpha_accept > u){
    x <- x_prop
    accept_count = accept_count + 1
  return(list(x = x, accept_count = accept_count))
}
moments_prop <- function(x,t,sigma2, T_max = 366){</pre>
  # Returns mu proposed as defined in the text
  \# Input x is (1xT_max), t is a number
  if (t == 1){
    return(list(mu= x[2],sigma2 = sigma2 ))
  else if (t == T_max) {
    return(list(mu = x[T_max-1], sigma2 = sigma2))
  }
  else{
    return(list(mu = 0.5*(x[t-1] + x[t+1]), sigma2 = sigma2/2))
}
MCMC \leftarrow function(n = N, T_max = 366){
  # Time start
  time = proc.time()[3]
  # Initialization
  accept_count = 0
  x \leftarrow rep(1,T_max*n)
  x <- matrix(x, nrow = n, ncol = T_max)
  sigma2 \leftarrow rep(1,n)
  sigma2[1] <- rgamma(1, alpha, scale = beta)^-1</pre>
  for (i in 2:n){
    # One iteration of MCMC:
    old_sigma2 = sigma2[i-1]
```

```
for (t in 1:T_max){
      param = moments_prop(x[i-1,],t,old_sigma2, T_max = T_max)
      mu_temp = param$mu
      sigma2_temp = param$sigma2
      MH_step_t <- MH_step(x[i-1,t], sigma2_temp, accept_count, mu_temp, t)</pre>
      x[i,t] <- MH_step_t$x
      accept_count <- MH_step_t$accept_count</pre>
    # Gibbs step, updating sigma2
    z = beta + 0.5*sum((x[i,-T_max] - x[i, -1])^2)
    sigma2[i] \leftarrow 1/rgamma(1,alpha + (T_max-1)/2, scale = z)
  accept_rate = accept_count/ (n * T_max)
  total_time = proc.time()[3] - time
 return(list(x = x, total_time = total_time, accept_rate = accept_rate, sigma2 = sigma2))
}
MCMC_run <- MCMC()</pre>
MCMC_run$total_time
## elapsed
## 445.65
MCMC_run$accept_rate
## [1] 0.9327913
burnin <- ceiling(N/10)</pre>
interval <- burnin:N</pre>
x_{vec} = seq(1,N)
plot(x_vec, expit(MCMC_run$x[,1]), ylim = c(0,1), ylab = "y", xlab = "x", type = "l")
```


plot(x_vec, expit(MCMC_run\$x[,201]), ylim = c(0,1), ylab = "y", xlab = "x", type = "l")

plot(x_vec, expit(MCMC_run\$x[,366]), ylim = c(0,1), ylab = "y", xlab = "x", type = "l")


```
plot(x_vec, MCMC_run$sigma2, ylim = c(0,0.01), ylab = "y", xlab = "x", type = "l")
```



```
# Plotting histograms
# General histogram function
plot_hist <- function(x, xlab = "x", ylab = "Density", breaks = 50, xlim = c(0,1), alpha = 0.05){</pre>
  # Plots general histogram with quantiles and mean
  quantiles \leftarrow quantile(x, probs = c(alpha/2, 1 - alpha/2))
  hist(x, breaks = breaks, xlab = xlab, ylab = ylab, xlim = xlim, main = NULL)
  abline(v = quantiles[1], col = "blue")
  abline(v = quantiles[2], col = "blue")
  abline(v = mean(x), col = "red")
  legend("right",legend = c("CI", "Mean", "Samples"), col = c("blue", "red", "grey"), lty = 1)
}
# Plots
xlab1 = expression(paste(pi, "(x"[1],")"))
xlab2 = expression(paste(pi, "(x"[201],")"))
xlab3 = expression(paste(pi, "(x"[366],")"))
xlab4 = expression(paste(sigma[u]^2))
par(mfrow = c(2, 2), mar = c(5,4,4,2))
hist(expit(MCMC_run$x[,1])[interval], breaks = 50, xlab = xlab1, ylab = "Density", xlim = c(0,0.5), main
hist(expit(MCMC_run\$x[,1])[interval], breaks = 50, xlab = xlab2, ylab = "Density", xlim = c(0,0.5), main
hist(expit(MCMC_run\x[,1])[interval], breaks = 50, xlab = xlab3, ylab = "Density", xlim = c(0,0.5), main
plot_hist(MCMC_run$sigma2[interval], xlim = c(0,0.006), xlab = xlab4)
```



```
par(mfrow = c(1, 1))

# AVFs:
par(mfrow = c(2, 2), mar = c(5,4,4,2))
acf(expit(MCMC_run$x[,1])[interval], main = xlab1)
acf(expit(MCMC_run$x[,201])[interval], main = xlab2)
acf(expit(MCMC_run$x[,366])[interval], main = xlab3)
acf(MCMC_run$sigma2[interval], main = xlab4)
```



```
par(mfrow = c(1, 1), mar = c(5,5,1,1))
```

```
mean_x = colMeans(MCMC_run$x[interval,])
pi_data = rain$n.rain/rain$n.years

x_quantiles <- colQuantiles(MCMC_run$x[interval,], probs = c(0.025, 0.975))
par(mfrow = c(1, 1))
plot(1:366,pi_data, type = "l",xlab = "Day", ylab = expression(paste(pi, "(x)")))
lines(expit(mean_x), type = "l", col = "red")
lines(expit(x_quantiles[,1]), type = "l", col = "blue")
lines(expit(x_quantiles[,2]), type = "l", col = "blue")
legend("topright",legend = c("CI", "Empirical mean", "Data"), col = c("blue", "red", "grey"), lty = 1)</pre>
```


2 Problem 2

head(rain_data)

```
t n_t y_t
## 1 1
                                   39
                                       39
             3 3
                                       39
                                       39
## 5 5
                                       39
                                                                8
## 6 6 39
\#install.packages("INLA", repos = c(getOption("repos"), INLA = "https://inla.r-inla-download.org/R/stables = c(getOption("repos"), INLA = (getOption("repos"), INLA = (get
library("INLA")
t <- proc.time()[3]
control.inla = list(strategy="simplified.laplace", int.strategy="ccd")
mod <- inla(n.rain ~ -1 + f(day, model="rw1", constr=FALSE),</pre>
data=rain, Ntrials=n.years, control.compute=list(config = TRUE),
family="binomial", verbose=TRUE, control.inla=control.inla)
run_time <- proc.time()[3]-t</pre>
run_time
```

```
## elapsed ## 0.8
```

```
INLA_fit <- mod$summary.fitted.values$mean
lower <- mod$summary.fitted.values$`0.025quant`
upper <- mod$summary.fitted.values$`0.975quant`
plot(seq(1,366, by = 1), INLA_fit,type = "l", col = "yellow")
lines(expit(mean_x), type = "l", col = "red")</pre>
```



```
plot(seq(1,366, by = 1), lower, type = "l", col = "orange")
lines(seq(1,366, by = 1), upper, type = "l", col = "orange")
lines(expit(x_quantiles[,1]), type = "l", col = "blue")
lines(expit(x_quantiles[,2]), type = "l", col = "blue")
```


?control.fixed
?f
inla.doc("rw1")
inla.doc("X")