_					
1.	Input:	A,B,C	\rightarrow	(nxn)	moethix
	/ 1	' '		_	

Output: A·B=c, it this is the case then yes, otherwise no

Run tive O(n3) [DX&] X (8xr) = PX8xr

Use randomized Algorithms to find runtime O(n2)

A nundomized Algorithm

1. Select a NXI matrix whoes entries are 0.5 or 1.5

A · B = C?

 $A \cdot B \cdot r = Cr = \Omega \times I$ matrix

3.00ses.

$$AB = C$$
 if $A \cdot B \cdot r - cr = 0$ then Yes
 $AB - C = 0$
 $AB - Cr = 0$
 $(AB - C) r = 0$

a. it AXB # C.	Problemor] ==	i	+ A.B.r.cr=0
			and ABrto Crt.o
AB + C	(AB-c)) r 40 U	ten yes.
AB-C=0		~	
ABr - cr + 6)	多了空势 生	
Albr=0, Cr=0	probability		
Dust of and ma	ittik the probability of all	a upuld (a p	$i6 \frac{1}{2^n}$ which is $\leq \frac{1}{2}$.
00001 1121 110	ura, he productly of all	M month es O	16 21 williams = = = -
3. M AXB & C,	problemon] 45		
AB+ C	[AB-C)· + 22		
AB-C+0	AB-C \$ 0		
Abr-cr + D			
- 101			
AB t c ORIPE	ABr = Cr, Albrio	C+0 239.	ર
	0		
2) input: A: {	_ f , x		
A: A set of	f n distinat integers, nz:	Į	
Outliet: :A thorn is	S Elements 3 U, V & A	(0+11- 7 than	ves elso no
Dulhar. II here is	s demond 1 W,VC/-	WIV- 2 Ma	1 /20, 5/20 110.
EX) A= [-10,6,4	2,1,11,16], 2	:= 10	
	<u> </u>		
6+4=10			
Runtime O(n logn)			
	C014. 0:50		
det printpours ((ow, size, n):		

New away = 2 3 for i in maye (0, Size): temp = n - auzi7 if temp in New way: return true New army Courtiss : print (NO) nume a nevarry for the case on any size subtract each cleanf from n and it it's not the answer add the elevent in to the new arrof and Check for the next elevent 3) compare the following 2 problems 1 0/1 knapsack problem @ fractional knacksucp problem. input: n distinct items, \$, W (veibble) output: Optimal load < W EK) ∠ 250 bb CLB) 100 05 60 5 Items value weight a, 50 1,92,05 1 1 1 -5025 30 = 105 100 Os 25 75 Q3 100 200 235 (250 Og 40 Q5 30 60 knap sack 2) 50% aq 20) Circly Algorithm Fractional Knup suck - items cance blocken into smaller pieces. n items the fraction rate: x : 0 \ \(\frac{2}{3} \le 1

wijck Zi·Wi
profit XI. Di (value)
maximize $\sum_{n=1}^{N} P_{i} \cdot 2i / \sum_{n=1}^{N} C(i \cdot wi) \leq W$
move mize 2 11 et / 2 oc wis - W
\wedge
optimal solution > Octivai) = V
50 find the ratio Pi with largest nation select from
the leginning
5 x)
ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا
Os 100 Co Co Co Co Co Co Co
02 27 76 3 -> recoverage, a, 50 100 \(\frac{1}{2}\) \(\frac{100}{100}\) \(\frac{100}{100}\) \(\frac{1}{2}\)
02 27 96 3 - recoverage, a, 50 100 \(\frac{1}{2}\)
O4 40 200 3 ay 40 20 3
a, 50 100 a, 150 100 a, 100 100 1 0, 100 0, 100 1 </td
Ex 250 lb is max so as + as + 2 a, =
Ex 250 lb is max 50 03 + 05 + 10 01 =
Ex 250 lb is max so as +as + 2 a, = (00 + 30 + 45 = \$175 Dest protit