CSc 8530 Parallel Algorithms

Spring 2019

February 19th, 2019

Upper common tangent – sequential algorithm

- Example taken from [O'Rourke, 1997]
- Here, we compute the lower common tangent, but the idea is the same

Upper common tangent - sequential algorithm

• We can check if a point is above or below a line (a,b) by using the equation for a line:

$$(y - y_a)/(x - x_a) = (y_b - y_a)/(x_b - x_a)$$
$$(y_b - y_a)x - (x_b - x_a)y = x_a * y_b - x_b * y_a$$
$$\alpha x + \beta y = \gamma$$

- All the points such that $\alpha x + \beta y < \gamma$ are below the line (and vice versa for above)
- For the UH and LH, we only need to check the two neighbors of the two current candidate points
 - Because the hulls are convex
 - Takes constant sequential time

Partitioning strategy

- The partitioning strategy consists of:
 - lacktriangledown Breaking up a problem into p independent problems of roughly equal size
 - Solving the subproblems concurrently
- Differs from divide and conquer:
 - The splits are not (necessarily) recursive
 - The main work lies in partitioning the input, not in combining the solutions of the subproblems
- ullet In the simplest case, we simply break up the data into p non-overlapping chunks
- More generally, we ensure that the subproblems are independent, even if some of the data they access is the same

A simple merging algorithm

- Let b_i be an arbitrary element of B
- Since A is sorted, we can find $rank(b_i:A)$ using binary search
 - Runs in $O(\log(n))$ (why?)
- If we run O(n) binary searches in parallel, we can solve the merge problem in:
 - $T(n) = O(\log(n))$
 - $W(n) = O(n \log(n))$
- The work is non-optimal (why?)
 - ullet The sequential algorithm is O(n)

- We can design an optimal merging algorithm as follows:
 - ① Choose approximately $n/\log{(n)}$ elements of each of A and B that partition A and B into blocks of almost equal lengths
 - Apply the binary search method to rank each of the chosen elements in the other sequence
- We reduce the problem to merging pairs of $O(\log{(n)})$ sequences
- ullet For simplicity, though, we will discuss a slight variant in which we only partition B into equal-sized blocks
 - ullet The blocks of A may vary in size

An optimal merging algorithm – partitioning illustration

- Each B_i is of size $\log(m)$
- The A_i blocks could be of different sizes
- Here, $j(i) = rank(b_{i \log (m)} : A)$
 - That is, $A(j) \leq b_{i \log (m)}$, for all $j \leq j(i)$

An optimal merging algorithm – partitioning pseudocode

ALGORITHM 2.7

(Partition)

Input: Two arrays $A = (a_1, \ldots, a_n)$ and $B = (b_1, \ldots, b_m)$ in increasing order, where both $\log m$ and $k(m) = m/\log m$ are integers. **Output:** k(m) pairs (A_i, B_i) of subsequences of A and B such that $(1) |B_i| = \log m$, $(2) \sum_i |A_i| = n$, and (3) each element of A_i and B_i is larger than each element of A_{i-1} or B_{i-1} , for all $1 \le i \le k(m) - 1$.

begin

- 1. Set j(0): = 0, j(k(m)): = n
- 2. for $1 \le i \le k(m) 1$ pardo
 - 2.1. Rank $b_{i \log m}$ in A using the binary search method, and let $j(i) = rank(b_{i \log m} : A)$
- 3. for $0 \le i \le k(m) 1$ pardo 3.1. Set B_i : = $(b_i \log_{m+1}, \dots, b_{(i+1) \log_m})$ 3.2. Set A_i : = $(a_{j(i)+1}, \dots, a_{j(i+1)})$ $(A_i$ is empty if i(i) = i(i+1)

end

- Let $C = (C_0, C_1, \ldots)$ be the sorted sequence obtained by merging each A_i and B_i
 - By definition, C is equivalent to merging A and B directly (why?)
- Step 1 takes O(1) sequential time
- Step 2 takes $O(\log{(n)})$ parallel time with $O((\log{(n)}) \times (m/\log{(m)}) = O(n+m)$ work
 - Note that $(m\log{(n)}/\log{(m)}) < (m\log{(n+m)}/\log{(m)}) \leq n+m, \text{ for } n,m \geq 4$
- Step 3 takes O(1) parallel time with O(n) work
- Total running time and work:

- Let $C = (C_0, C_1, \ldots)$ be the sorted sequence obtained by merging each A_i and B_i
 - By definition, C is equivalent to merging A and B directly (why?)
 - $A_{i-1}(j) \le A_i(j) \le A_{i+1}(j)$, for all i, j. (Same for B)
- Step 1 takes O(1) sequential time
- Step 2 takes $O(\log{(n)})$ parallel time with $O((\log{(n)}) \times (m/\log{(m)}) = O(n+m)$ work
 - Note that $(m\log{(n)}/\log{(m)}) < (m\log{(n+m)}/\log{(m)}) \leq n+m, \text{ for } n,m \geq 4$
- Step 3 takes O(1) parallel time with O(n) work
- Total running time and work:

- Let $C = (C_0, C_1, \ldots)$ be the sorted sequence obtained by merging each A_i and B_i
 - By definition, C is equivalent to merging A and B directly (why?)
 - $A_{i-1}(j) \le A_i(j) \le A_{i+1}(j)$, for all i, j. (Same for B)
- Step 1 takes O(1) sequential time
- Step 2 takes $O(\log{(n)})$ parallel time with $O((\log{(n)}) \times (m/\log{(m)}) = O(n+m)$ work
 - Note that $(m\log{(n)}/\log{(m)}) < (m\log{(n+m)}/\log{(m)}) \leq n+m, \text{ for } n,m \geq 4$
- Step 3 takes O(1) parallel time with O(n) work
- Total running time and work:
 - $T(n) = O(\log n)$

- Let $C = (C_0, C_1, \ldots)$ be the sorted sequence obtained by merging each A_i and B_i
 - By definition, C is equivalent to merging A and B directly (why?)
 - $A_{i-1}(j) \le A_i(j) \le A_{i+1}(j)$, for all i, j. (Same for B)
- Step 1 takes O(1) sequential time
- Step 2 takes $O(\log{(n)})$ parallel time with $O((\log{(n)}) \times (m/\log{(m)}) = O(n+m)$ work
 - Note that $(m\log{(n)}/\log{(m)}) < (m\log{(n+m)}/\log{(m)}) \leq n+m, \text{ for } n,m\geq 4$
- Step 3 takes O(1) parallel time with O(n) work
- Total running time and work:
 - $T(n) = O(\log n)$
 - W(n) = O(n+m)

- ullet For simplicity, assume A and B are both O(n)
- After applying the previous algorithm, we are left with $O(n/\log{(n)})$ merging subproblems
- We then tackle each subproblem separately
- Let A_i, B_i be an arbitrary subproblem
 - $|B_i| = O(\log{(n)})$, by construction
 - If $|A_i| = O(\log(n))$, then apply an optimal sequential algorithm to sort these two blocks
 - Otherwise, apply the previous algorithm in reverse:
 - Partition A_i into $O(\log(n))$ blocks
 - \bullet This step takes $O(\log\log{(n)})$ with $O(|A_i|)$ work
 - We then apply the sorting algorithm to each pair of sub-blocks
- Total running time and work:

- ullet For simplicity, assume A and B are both O(n)
- After applying the previous algorithm, we are left with $O(n/\log{(n)})$ merging subproblems
- We then tackle each subproblem separately
- Let A_i, B_i be an arbitrary subproblem
 - $|B_i| = O(\log{(n)})$, by construction
 - If $|A_i| = O(\log(n))$, then apply an optimal sequential algorithm to sort these two blocks
 - Otherwise, apply the previous algorithm in reverse:
 - Partition A_i into $O(\log(n))$ blocks
 - \bullet This step takes $O(\log\log{(n)})$ with $O(|A_i|)$ work
 - We then apply the sorting algorithm to each pair of sub-blocks
- Total running time and work:
 - $T(n) = O(\log(n))$

- ullet For simplicity, assume A and B are both O(n)
- After applying the previous algorithm, we are left with $O(n/\log{(n)})$ merging subproblems
- We then tackle each subproblem separately
- Let A_i, B_i be an arbitrary subproblem
 - $|B_i| = O(\log{(n)})$, by construction
 - If $|A_i| = O(\log(n))$, then apply an optimal sequential algorithm to sort these two blocks
 - Otherwise, apply the previous algorithm in reverse:
 - Partition A_i into $O(\log(n))$ blocks
 - \bullet This step takes $O(\log\log{(n)})$ with $O(|A_i|)$ work
 - We then apply the sorting algorithm to each pair of sub-blocks
- Total running time and work:
 - $T(n) = O(\log(n))$
 - W(n) = O(n)

Symmetry breaking

- Some problems have inherent dependencies between subsets of the data
- How we process a given chunk will depend on (potentially arbitrary) choices on how we process other parts of the data
- In other words, our input data is symmetric (i.e., indistinguishable)
- But, our processing of it is asymmetric
- We will now see how to parallelize these types of situations

- Let G = (V, E) be a directed cycle
 - The in-degree and out-degree are 1
 - For any two vertices, there is a directed path between them
- A k-coloring of G is a mapping $c: V \mapsto \{0, 1, \dots, k-1\}$
 - Such that $c(i) \neq c(j)$ if $(i, j) \in E$
 - In other words, adjacent vertices cannot have the same color
- The minimum coloring problem in general graphs is NP-hard
- For directed cycles, though, we will always need either 2 or 3 colors (why?)

- Let G = (V, E) be a directed cycle
 - The in-degree and out-degree are 1
 - For any two vertices, there is a directed path between them
- A k-coloring of G is a mapping $c: V \mapsto \{0, 1, \dots, k-1\}$
 - Such that $c(i) \neq c(j)$ if $(i, j) \in E$
 - In other words, adjacent vertices cannot have the same color
- The minimum coloring problem in general graphs is NP-hard
- For directed cycles, though, we will always need either 2 or 3 colors (why?)
 - 2 colors for even cycles and 3 for odd cycles
- Thus, we will focus on 3-colorings

• Given G's restricted topology, it is easy to define an optimal sequential algorithm (how?)

- Given G's restricted topology, it is easy to define an optimal sequential algorithm (how?)
 - Follow the cycle, alternating between two colors.
 - If the cycle is odd, use the third color for the last node.
- Unfortunately, this scheme is not amenable to parallelization (why?)

- Given G's restricted topology, it is easy to define an optimal sequential algorithm (how?)
 - Follow the cycle, alternating between two colors.
 - If the cycle is odd, use the third color for the last node.
- Unfortunately, this scheme is not amenable to parallelization (why?)
 - We have to arbitrarily map vertices to colors
 - But the choices are interdependent

- Given G's restricted topology, it is easy to define an optimal sequential algorithm (how?)
 - Follow the cycle, alternating between two colors.
 - If the cycle is odd, use the third color for the last node.
- Unfortunately, this scheme is not amenable to parallelization (why?)
 - We have to arbitrarily map vertices to colors
 - But the choices are interdependent
- We need a mechanism for partitioning the vetices into classes such that each class is assigned the same color

A basic coloring algorithm

- We will explore and almost constant-time algorithm for breaking the node symmetry
- ullet Assume G is represented by an array S
 - Such that S(i) = j whenever $(i, j) \in E$
 - The predecessor of a node is P(S(i)) = i, for all i
- The array is not necessarily sorted based on the path
- ullet Assume that we have an initial coloring c
 - We can start with c(i) = i, if needed
 - Let $i_{t-1} \dots i_k \dots i_1 i_0$ be the **binary expansion** of i
 - The kth least significant bit is i_k
- We will use this binary representation to reduce the number of colors

A basic coloring algorithm – pseudocode

ALGORITHM 2.9

(Basic Coloring)

Input: A directed cycle whose arcs are specified by an array S of size n and a coloring c of the vertices.

Output: Another coloring c' of the vertices of the cycle.

begin

for $1 \le i \le n$ pardo

1. Set k to the least significant bit position in which c(i) and c(S(i)) disagree.

2. Set c'(i): = $2k + c(i)_k$

end