<u>Trabajo Práctico Nº 3:</u> Modelos para Variables Categóricas No Ordenadas.

Ejercicio 1: Alternativas de Pesca.

La variable dependiente y toma el valor 1, 2, 3 o 4, dependiendo de cuál de los cuatro modos alternativos de pesca, respectivamente, playa, muelle, barco privado y barco chárter, se elija. En la base de datos, estos son beach, pier, private o charter. Los datos provienen de Herriges, J. A. y Kling, C. L. (1999): "Nonlinear Income Effects in Random Utility Models", Review of Economics and Statistics, 81, 62-72.

(a) Abrir la base y describir las categorías.

Fishing mode		N(income)	mean(income)	sd(income)
beach pier private charter	 	134 178 418 452	4.051617 3.387172 4.654107 3.880899	2.50542 2.340324 2.777898 2.050029

Fishing mode		mean(pbeach)	mean(ppier)	mean(pprivate)	mean(pcharter)
beach		35.69949	35.69949	97.80914	125.0032
pier		30.57133	30.57133	82.42908	109.7634
private		137.5271	137.5271	41.60681	70.58408
charter		120.6483	120.6483	44.56376	75.09694

Fishing mode		mean(qbeach)	mean(qpier)	mean(qprivate)	mean(qcharter)
beach pier private charter	 	.2791948 .2614444 .2082868 .2519077	.2190015 .2025348 .1297646 .1595341	.1593985 .1501489 .1775412 .1771628	.5176089 .4980798 .6539167 .6914998

(b) Estimar un modelo logit multinomial.

Logit multinomial (betas):

Multinomial lo	ogistic regres		Number of ob LR chi2(3) Prob > chi2 Pseudo R2	= 41.14 = 0.0000	
	Coefficient			=	interval]
beach		me)			
	1434029 .8141503				
private income _cons	.0919064 .7389208	.0406637			
	 0316399 1.341291			1136571 .9600457	

<u>Logit multinomial (relative-risk ratios):</u>

Log likelihood	d = -1477.1506				Number of ob LR chi2(3) Prob > chi2 Pseudo R2	= 41.14 = 0.0000
mode	RRR		Z		[95% conf.	interval]
beach	 (base outco: +	me)				
pier income _cons		.0461693 .516081			.7804799 1.442013	
private income _cons		.0445781 .4118906			1.012282 1.423808	
charter income _cons	.9688554 3.823979	.040543	-0.76 6.90	0.450	.8925639 2.611816	1.051668 5.598715

Note: $_{cons}$ estimates baseline relative risk for each outcome.

(c) Estimar un modelo logit condicional.

Logit condicional:

<u> </u>					of obs = of cases =	4,728
Alternatives variable: fishmode				Alts per	case: min = avg = max =	4.0
Log likelihood	d = -1215.1376				chi2(5) = > chi2 =	
d	Coefficient	Std. err.	z	P> z	[95% conf	. interval]
fishmode p q	 0251166 .357782					
beach	(base alter	native)				
charter income _cons	 0332917 1.694366				131958 1.255235	
pier income _cons	1275771 .7779593	.0506395			2268288 .3457992	
private income _cons	.0894398 .5272788	.0500671 .2227927			0086898 .0906132	

Ejercicio 2: Predicción de Calificaciones de Clientes.

Net Promoter Score®, o NPS®, mide la experiencia del cliente y predice el crecimiento del negocio. Es utilizada por empresas que brindan servicios al consumidor final (bancos, telefónicas, etc). EL NPS se calcula usando la respuesta a una pregunta usando una escala de 0 a 10: ¿Qué tan probable es que recomiende a un amigo o colega? Los encuestados se agrupan de la siguiente manera:

- Los promotores (puntuación 9-10) son entusiastas leales que seguirán comprando y recomendarán a otros, lo que impulsará el crecimiento.
- Los neutrales (puntuación 7-8) son clientes satisfechos pero poco entusiastas que son vulnerables a las ofertas de la competencia.
- Los detractores (puntuación 1-6) son clientes insatisfechos que pueden dañar su marca e impedir el crecimiento a través del boca a boca negativo.

Al restar el porcentaje de detractores del porcentaje de promotores, se obtiene el puntaje neto del promotor, que puede oscilar entre un mínimo de -100 (si todos los clientes son detractores) y un máximo de 100 (si todos los clientes son promotores). Estas encuestas se utilizan para generar estrategias de originacion (nuevos clientes) y de reducción de churn (fuga de clientes). La base con la que se va a hacer la primera parte de la práctica consiste en la encuesta de NPS que se le hace a los clientes de un Banco luego de efectuar una transacción en caja. En base a esto, utilizando la base "NPS.dta", responder las siguientes preguntas.

(a) Abrir y describir la base.

Variable	Obs	Mean	Std. dev.	Min	Max
nps marital_st~e	42 , 019	8.369975	2.263878	1	10
gender_code edad branch_desc	42,020 0	52.16497	12.56996	19	101
segmento	0				
operaciones mes nps anterior	42,020 42,020	1.728439 6.736292	1.476585 3.241668	1 1	31 12
hora	42,020	11.7812	1.743031	7	18
dia dia	42 , 020 0	14.91792	8.634796	1	31
espera cliente	42,020 42,020	10.89938 21372.36	10.70589 12335.51	0 1	60 42760

(b) Generar una variable que clasifique a los clientes en función de si son promotores, detractores o neutrales.

clasificaci on	Freq.	Percent	Cum.
Detractor Neutral Promotor	6,265 9,579 26,175	14.91 22.80 62.29	14.91 37.71 100.00
Total	42,019	100.00	

(c) Analizar cómo cambia la variable de espera en función de la clasificación de los clientes.

(d) Tomar una muestra del 10% de los datos. Estimar un logit multinomial para predecir cómo cambian las clasificaciones en función de la espera, condicionando en explicativas que se considere relevantes.

Logit (betas):

Multinomial log	3	ion			Number of obs LR chi2(14) Prob > chi2 Pseudo R2	= 4,202 = 418.26 = 0.0000 = 0.0542
clasificacion	Coefficient	Std. err.	Z	P> z	[95% conf.	interval]
Detractor	(base outco	ome)				
Neutral _Igender_co_2	0106823 12.80348 .0192837 7049277 5423917	.1117659 .0042832 730.9035 .1868698 .1983862 .2023154 .0044156 .2819115	-0.02 2.49 0.02 0.10 -3.55 -2.68 -5.30 1.62	0.984 0.013 0.986 0.918 0.000 0.007 0.000 0.105	2213368 .0022873 -1419.741 3469745 -1.093758 9389226 032066 0957557	.2167774 .0190772 1445.348 .3855418 3160979 0147573 1.009317
Promotor _Igender_co_2 _edad _Isegmento_2 _Isegmento_3 _Isegmento_4 _Isegmento_5 _espera _cons	13.38895 .254493 6899248 7035198	.0991182 .0038062 730.903 .1689136 .1774649 .1827513 .0040826 .2520943	-0.75 5.85 0.02 1.51 -3.89 -3.85 -11.74 4.25	0.455 0.000 0.985 0.132 0.000 0.000 0.000	2683366 .0147969 -1419.155 0765715 -1.03775 -1.061706 0559326 .5763835	.1201995 .0297169 1445.933 .5855575 3421 3453338 039929 1.564575

<u>Logit multinomial (relative-risk ratios):</u>

Multinomial log	-	sion			Number of obs LR chi2(14) Prob > chi2 Pseudo R2	= 4,202 = 418.26 = 0.0000 = 0.0542
clasificacion	RRR	Std. err.	Z	P> z	[95% conf.	interval]
Detractor	(base outco	ome)				
Neutral Igender_co_2 edad Isegmento_2 Isegmento_3 Isegmento_5 espera cons	.9977229 1.01074 363481.5 1.019471 .4941443 .5813562 .9768603 1.578982	.1115114 .0043292 2.66e+08 .1905084 .0980314 .1176173 .0043134 .4451333	-0.02 2.49 0.02 0.10 -3.55 -2.68 -5.30 1.62	0.984 0.013 0.986 0.918 0.000 0.007 0.000 0.105	.8014467 1.00229 0 .7068233 .3349555 .3910489 .9684427 .9086859	1.242068 1.01926 1.470411 .7289881 .8642781 .985351 2.743726
Promotor _Igender_co_2	.9286081 1.022506 652751.9 1.289808 .5016138 .4948405 .9531997 2.916777	.0920419 .0038919 4.77e+08 .217866 .0890188 .0904327 .0038915 .7353029	-0.75 5.85 0.02 1.51 -3.89 -3.85 -11.74 4.25	0.455 0.000 0.985 0.132 0.000 0.000 0.000	.7646504 1.014907 0 .9262867 .354251 .3458654 .9456029 1.779591	1.127722 1.030163 1.795992 .7102772 .707984 .9608576 4.780643

Note: _cons estimates baseline relative risk for each outcome.

(e) Calcular los efectos marginales.

Efectos marginales en Logit multinomial (detractor):

Marginal effects after mlogit

y = Pr(clasificacion==Detractor) (predict, pr outcome(1))

= .13172136

variable	dy/dx	Std. err.	Z	P> z	[95%	C.I.]	X
_Igend~2* edad _Isegm~2* _Isegm~3* _Isegm~4* _Isegm~5* espera	.0062526 0021919 1331684 0220274 .0931274 .0890482 .0047328	.01127 .0012 .00569 .02219 .05089 .04974	0.56 -1.83 -23.41 -0.99 1.83 1.79 1.92	0.579 0.067 0.000 0.321 0.067 0.073 0.055	015827 004541 144317 065524 006608 008432 000097	.028332 .000157 12202 .021469 .192863 .186529	.678486 52.2109 .000952 .567587 .183246 .148263 11.1349

^(*) $\mathrm{d}y/\mathrm{d}x$ is for discrete change of dummy variable from 0 to 1

Efectos marginales en Logit multinomial (neutral):

Marginal effects after mlogit

y = Pr(clasificacion==Neutral) (predict, pr outcome(2))

= .23194672

variable	dy/dx	Std. err.	Z	P> z	[95%	C.I.]	Х
_Igend~2* edad _Isegm~2* _Isegm~3* _Isegm~4* _Isegm~5* espera	.01049 001382 0628502 034214 02724 .0021924 .0029036	.01435 .00072 .1635 .02341 .02669 .02992 .00123	0.73 -1.91 -0.38 -1.46 -1.02 0.07 2.37	0.465 0.056 0.701 0.144 0.307 0.942 0.018	017644 002801 383304 08009 079548 056453 .000501	.038624 .000037 .257604 .011662 .025068 .060838	.678486 52.2109 .000952 .567587 .183246 .148263 11.1349

^(*) dy/dx is for discrete change of dummy variable from 0 to 1

Efectos marginales en Logit multinomial (promotor):

Marginal effects after mlogit

y = Pr(clasificacion==Promotor) (predict, pr outcome(3))

= .63633192

variable	dy/dx	Std. err.	z	P> z	[95%	C.I.]	X
_Igend~2* edad _Isegm~2* _Isegm~3* _Isegm~4* _Isegm~5* espera	0167426 .0035739 .1960187 .0562415 0658873 0912406 0076364	.01648 .0009 .16356 .02657 .04487 .04211	-1.02 3.99 1.20 2.12 -1.47 -2.17 -4.77	0.310 0.000 0.231 0.034 0.142 0.030 0.000		.015551 .005331 .516589 .108311 .022054 008712	.678486 52.2109 .000952 .567587 .183246 .148263 11.1349

^(*) dy/dx is for discrete change of dummy variable from 0 to 1

(f) Repetir el análisis con un Probit multinomial y comparar.

Probit multinomial:

Multinomial probit regression Number of obs = 4.20 Wald chi2(14) = 416.3 Log likelihood = -3635.6144 Prob > chi2 = 0.000								
clasificacion	Coefficient	Std. err.	z	P> z	[95% conf.	interval]		
Detractor	(base outcome)							
Neutral _Igender_co_2 edad _Isegmento_2 _Isegmento_3 _Isegmento_4 _Isegmento_5 espera _cons	.0092218 352632 .0867023 7015738 3109711	.0798336 .003062 .5757431 .1308623 .1429056 .1472973 .0033331 .2034099	-0.67 3.01 -0.61 0.66 -4.91 -2.11 -4.16 1.04	0.502 0.003 0.540 0.508 0.000 0.035 0.000 0.298	2100787 .0032205 -1.481068 1697831 9816635 5996685 020404 1867675	.1028631 .0152231 .7758037 .3431876 421484 0222737 0073386 .6105848		
Promotor _Igender_co_2	097611 097611 .012833 -1.411541 .2629534 6144694 4984651 0350071 1.035228	.0738029 .002822 .6475008 .1220016 .1313595 .1378136 .0031476 .1878494	-1.32 4.55 -2.18 2.16 -4.68 -3.62 -11.12 5.51	0.186 0.000 0.029 0.031 0.000 0.000 0.000	242262 .007302 -2.680619 .0238348 8719294 7685749 0411763 .6670502	.0470399 .018364 1424626 .5020721 3570095 2283554 0288379 1.403406		

Efectos marginales en Probit multinomial (detractor):

variable	dy/dx	Std. err.	z	P> z	 [95%	C.I.]	X
_Igend~2*	.0136968	.01125	1.22	0.223	008346	.03574	.677297
edad _Isegm~2*	0019418 .2216672	.00044 .14863	-4.41 1.49	0.000 0.136	002806 06965	001078 .512984	52.1844 .002618
_Isegm~3* _Isegm~4*	0345801 .1251906	.01966 .02726	-1.76 4.59	0.079	07312 .071753	.00396 .178628	.578058 .183484
_Isegm~5* espera	.0823211	.02707	3.04 9.74	0.002	.02926	.135382	.140171
	.0010700	.00040	J • / ¬	0.000	.003737	.005021	11.1347

^(*) dy/dx is for discrete change of dummy variable from 0 to 1

Efectos marginales en Probit multinomial (neutral):

variable	dy/dx	Std. err.	Z	P> z	[95%	C.I.]	X
Igend~2*	.0048601	.01424	0.34	0.733	023054	.032774	.677297
	00013	.00055	-0.24	0.812	0012	.00094	52.1844
	.1369606	.15124	0.91	0.365	159457	.433378	.002618
	0261368	.0229	-1.14	0.254	071021	.018747	.578058
	0571084	.02392	-2.39	0.017	103993	010224	.183484
	.0120419	.02754	0.44	0.662	041943	.066027	.140171
	.0029577	.00066	4.52	0.000	.001674	.004242	11.1349

^(*) dy/dx is for discrete change of dummy variable from 0 to 1

Efectos marginales en Probit multinomial (promotor):

Marginal effects after mprobit
 y = Pr(clasificacion==Promotor) (predict, pr outcome(3))

variable	dy/dx	Std. err.	z	P> z	[95%	C.I.]	X
_Igend~2* edad _Isegm~2*	0185569 .0020718 3586278	.01634 .00063 .15141	-1.14 3.31 -2.37	0.256 0.001 0.018	05058 .000845 655388		.677297 52.1844 .002618
_Isegm~3* _Isegm~4*	.0607169 0680822	.0265 .0313	2.29 -2.18	0.022	.008771	.112663	.578058
_Isegm~5* _espera	0943629 0076366	.03271	-2.88 -10.01	0.004	158476 009132	03025	.140171

^(*) dy/dx is for discrete change of dummy variable from 0 to 1

(g) Realizar un test de la significatividad de las variables.

Stata.

Juan Menduiña

Ejercicio 3.

Utilizando la EPH del cuarto trimestre de 2016, estimar un modelo multinomial que permita predecir la condición de actividad de una persona, entre inactivo, ocupado o desocupado.

<mark>Stata.</mark>