Tarea 2 - RDDs

1. Para propósitos de esta tarea, trabajaremos únicamente en las variables "ent", "sex", "eda", "clase1", "e_con", "n_hij" e "ingocup". (inicial)

```
Variables cuantitativas: "eda" e "ingocup".

Variables cualitativas: "ent", "sex", "clase1", "e con" e "n hij".
```

Para poder tener un mejor y más fácil manejo de cada una de las variables, se anexa una columna "índice" a nuestros datos a observar; para el caso en que queramos seleccionar filas específicas. Nos aseguramos de que nuestra base de datos esté completa imprimiendo el número total de celdas.

++	+-	+	+-	+	+		·
index	ent s	sex e	da d	clase1	e_con	n_hij	ingocup
++	+-	+	+-	+	+		+
1	1	1	0	NULL	NULL	NULL	NULL
2	1	1	0	NULL	NULL	NULL	NULL
3	1	1	0	NULL	NULL	NULL	NULL
4	1	1	0	NULL	NULL	NULL	NULL
5	1	1	0	NULL	NULL	NULL	NULL
6	1	1	0	NULL	NULL	NULL	NULL
7	1	1	0	NULL	NULL	NULL	NULL
j 8 j	1	1	0 j	NULL	NULL	NULL	NULL
j 9	1	1	0 j	NULL	NULL	NULL	NULL
j 10 j	1	1	0 j	NULL	NULL	NULL	NULL
j 11 j	1	1 j	ø i	NULL	NULL	NULL	NULL
j 12 j	1	1	ø i	NULL	NULLİ	NULL	NULL
j 13 j	1	1	ø i	NULL I	NULL I	NULL	NULL
i 14 i	1	1	ø i	NULLİ	NULLİ	NULL	
j 15 j		1	ø i	NULL	NULL	NULL	
16		1	0 i	NULL	NULL		
17		1	0	NULL	NULL		
18		1	0	NULL	NULL		
1 19		1	0	NULLI	NULLI		
201		1	0	NULL	NULL		
++	+-		+-			140LL	140LL
only sh	owing	top	20	rows			

Total individuos: 415998

- 2. Toda nuestra base de datos podemos manejarla como un RDD. Aplicamos las funciones filtro-rdd a las columnas filtro-dataframe, de la imagen anterior, de la siguiente forma: (inicial)
 - Seleccionamos a la población económicamente activa ("clase1" == 1).
 - Seleccionamos a quienes tengan registrado su número de hijos ("n_hij" != None).
 - Seleccionamos a quienes tengan registrado sus ingresos mensuales ("ingocup" != None).
 - Seleccionamos a las entidades que sean de CDMX o Nuevo León ("ent" == 9 or "ent" == 19).
 - Imprimimos la información en formato lista (.collect()).

Al trabajar con muchos datos, solo anexamos los primeros visualizados.

```
[Row(index=117738,\ ent=9,\ sex=2,\ eda=15,\ clase1=1,\ e\_con=6,\ n\_hij=0,\ ingocup=1032),\\
 Row(index=117756, ent=9, sex=2, eda=15, clase1=1, e_con=6, n_hij=0, ingocup=1290),
 Row(index=117765, ent=9, sex=2, eda=15, clase1=1, e_con=6, n_hij=0, ingocup=4300),
 Row(index=117825, ent=9, sex=2, eda=16, clase1=1, e_con=6, n_hij=0, ingocup=1935),
 Row(index=117838, ent=9, sex=2, eda=16, clase1=1, e_con=6, n_hij=0, ingocup=1935),
 Row(index=117863, ent=9, sex=2, eda=17, clase1=1, e_con=6, n_hij=0, ingocup=2150),
 \label{lower} \mbox{Row(index=117878, ent=9, sex=2, eda=17, clase1=1, e\_con=6, n\_hij=0, ingocup=4300), and index=127878, ent=9, sex=2, eda=17, clase1=1, e\_con=6, n\_hij=0, ingocup=4300), and index=127878, ent=9, sex=2, eda=17, clase1=1, e\_con=6, n\_hij=0, ingocup=4300), and index=12788, ent=9, sex=2, eda=17, clase1=1, e\_con=6, n\_hij=0, ingocup=4300), and index=12788, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=17, eda=
 Row(index=117910, ent=9, sex=2, eda=17, clase1=1, e_con=6, n_hij=1, ingocup=7740),
 Row(index=117933, ent=9, sex=2, eda=18, clase1=1, e_con=6, n_hij=0, ingocup=2580),
 Row(index=117947, ent=9, sex=2, eda=18, clase1=1, e_con=6, n_hij=0, ingocup=2580),
 Row(index=117953, ent=9, sex=2, eda=18, clase1=1, e_con=6, n_hij=0, ingocup=7740),
 Row(index=117954, ent=9, sex=2, eda=18, clase1=1, e_con=6, n_hij=1, ingocup=1720),
 Row(index=117956, ent=9, sex=2, eda=18, clase1=1, e_con=6, n_hij=0, ingocup=5160),
 Row(index=117980, ent=9, sex=2, eda=18, clase1=1, e_con=6, n_hij=0, ingocup=3870),
 Row(index=117989, ent=9, sex=2, eda=18, clase1=1, e_con=6, n_hij=0, ingocup=5400),
 Row(index=117997, ent=9, sex=2, eda=19, clase1=1, e_con=6, n_hij=0, ingocup=4300),
 Row(index=118007, ent=9, sex=2, eda=19, clase1=1, e_con=6, n_hij=1, ingocup=1032),
 Row(index=118021, ent=9, sex=2, eda=19, clase1=1, e_con=1, n_hij=0, ingocup=6880),
 Row(index=118025, ent=9, sex=2, eda=19, clase1=1, e_con=6, n_hij=1, ingocup=1720),
 Row(index=118027, ent=9, sex=2, eda=19, clase1=1, e_con=6, n_hij=0, ingocup=5160),
 Row(index=118036, ent=9, sex=2, eda=19, clase1=1, e_con=6, n_hij=0, ingocup=8200),
 Row(index=118039, ent=9, sex=2, eda=19, clase1=1, e_con=6, n_hij=0, ingocup=14000),
 Row(index=118047, ent=9, sex=2, eda=19, clase1=1, e_con=6, n_hij=0, ingocup=6450),
 Row(index=118048, ent=9, sex=2, eda=19, clase1=1, e_con=6, n_hij=1, ingocup=3655),
 Row(index=118049, ent=9, sex=2, eda=19, clase1=1, e_con=6, n_hij=0, ingocup=3870),
 Row(index=118050, ent=9, sex=2, eda=19, clase1=1, e_con=1, n_hij=1, ingocup=1720),
 Row(index=118055, ent=9, sex=2, eda=19, clase1=1, e_con=6, n_hij=0, ingocup=1720),
```

3. Para ver cuántos datos totales tenemos después de hacer las filtraciones con RDD, usamos la función count(). (inicial)

2895

Para los siguientes ejercicios, calcularemos como obtener promedios mediante el uso de RDD. Para ello usaremos nuestra base de datos antes de que le apliquemos RDD.

Estadísticas descriptivas básicas para CDMX

 Realizamos la filtración-variables del punto 2 (inicial) sin haber convertido la información a RDD. Filtramos solo para la gente de la entidad 9.

++		++				+		
ent se	X	eda	clase1	e_con	n_hij	ingocup		
++		++				+		
9	2	15	1	6	0	1032		
9	2	15	1	6	0	1290		
9	2	15	1	6	0	4300		
9	2	16	1	6	0	1935		
9	2	16	1	6	0	1935		
9	2	17	1	6	0	2150		
9	2	17	1	6	0	4300		
9	2	17	1	6	1	7740		
9	2	18	1	6	0	2580		
9	2	18	1	6	0	2580		
9	2	18	1	6	0	7740		
9	2	18	1	6	1	1720		
9	2	18	1	6	0	5160		
9	2	18	1	6	0	3870		
9	2	18	1	6	0	5400		
9	2	19	1	6	0	4300		
9	2	19	1	6	1	1032		
9	2	19	1	1	0	6880		
9	2	19	1	6	1	1720		
9	2	19	1	6	0	5160		
++		++		·		+		
only chausing ton 20 roug								

only showing top 20 rows

Realizamos los siguientes pasos para calcular el número de hijos promedio que tienen las personas en CDMX:

- Seleccionamos la columna "n hij" (select) y la convertimos en rdd.
- Convertimos los datos en un vector unitario (flatMap), y guardamos el resultado en una "variable 1".
- Sumamos por pares los elementos guardados en "variable 1" (reduce), y guardamos el resultado en una "variable 2".
- Dividimos el resultado "variable 2" entre "variable 1.count()", e imprimimos el resultado.

1.6484962406015038

La gente de la CDMX tiene en promedio 2 hijos. Nota: después de analizar la información se observó que en dicha gente filtrada solamente están contempladas las mujeres. Por lo tanto, las mujeres de la CDMX tienen en promedio 2 hijos.

2. Hagamos un pequeño análisis descriptivo de las primeras 20 mujeres, que tienen 2 hijos, para ver lo que PySpark nos arroja

+				·	+	·	·+	
index	ent	sex	eda	clase1	e_con	n_hij	ingocup	
118073	9	2	20	1	6	2	10000	
118130	9	2	20	1	2	2	3010	
118307	9	2	23	1	1	2	6880	
118323	9	2	23	1	2	2	3440	
118336	9	2	23	1	6	2	6450	
118372	9	2	24	1	6	2	3000	
118374	9	2	24	1	2	2	2580	
118418	9	2	24	1	1	2	6450	
118474	9	2	25	1	6	2	9030	
118482	9	2	25	1	6	2	3000	
118483	9	2	25	1	6	2	7000	
118499	9	2	25	1	1	2	3440	
118547	9	2	26	1	5	2	8000	
118580	9	2	26	1	1	2	4300	
118605			27	1	1	2	1500	
118607	9	2	27	1	2	2	3440	
118615	9	2	27	1	1	2	7000	
118651	9	2	28	1	1	2	6000	
118653	9	2	28	1	2	2	6000	
118682	9	2	28	1	j 4	2	2580	
only showing top 20 rows								

- La individua 118,073 tiene el mayor ingreso mensual (\$10,000), está soltera (e_con = 6) y tiene 20 años.
- La individua 118,605 tiene el menor ingreso mensual (\$1,500), vive con su pareja en unión libre (e_con = 1) y tiene 27 años.

Estadísticas descriptivas básicas para Nuevo León

1. Realizamos la filtración-variables del punto 2 (inicial) sin haber convertido la información a RDD. Filtramos solo para la gente de la entidad 19.

+	+				+	++		
ent	sex	eda	clase1	e_con	n_hij	ingocup		
+ 19	+ I 2	13	 1	⊦ I 6	⊦ I 0	+ 3870		
1 19				•				
1 19				•		:		
1 19						: :		
19			•	•				
19								
19	•							
19					•			
19	2	16	1		•	12900		
19	2	16	1	6	0	2580		
19	2	16	1	6	j 0	2580		
19	2	16	1	6	0	6450 j		
19	2	16	1	6	0	6450		
19	2	16	1	6	0	5160		
19	2	17	1	6	0	7740		
19	2	17	1	6	0	6450		
19	2	17	1	6	0	7740		
19	2	17	1	6	0	9460		
19	2	17	1	6	0	1075		
19	2	17	1	6	0	7740		
+	++	·+	·		+	++		
only showing top 20 rows								

Realizamos los siguientes pasos para calcular el número de hijos promedio que tienen las personas en Nuevo León:

- Seleccionamos la columna "n hij" (select) y la convertimos en rdd.
- Convertimos los datos en un vector unitario (flatMap), y guardamos el resultado en una "variable 3".
- Sumamos por pares los elementos guardados en "variable 3" (reduce), y guardamos el resultado en una "variable 4".
- Dividimos el resultado "variable 4" entre "variable 3.count()", e imprimimos el resultado.

1.7749863462588749

La gente de Nuevo León tiene en promedio 2 hijos. Nota: después de analizar la información se observó que en dicha gente filtrada solamente están contempladas las mujeres. Por lo tanto, las mujeres de la Nuevo León tienen en promedio 2 hijos.

2. Hagamos un pequeño análisis descriptivo de las primeras 20 mujeres, que tienen 2 hijos, para ver lo que PySpark nos arroja

+	+	+	+	+	+		+	
index	ent	sex	eda	clase1	e_con	n_hij	ingocup	
246599	+ 19	+ 2	 18	 1	+ 1	 2	+ 860	
1246854						'		
246909								
246912		2	20					
246978	19	2	21	•		•		
246996	19	2	21	1	1	2	6600	
247047	19	2	21	1	1	2	2000	
247094	19	2	22	1	1	2	7310	
247180	19	2	22	1	5	2	8600	
247312	19	2	23	1	1	2	10750	
247318	19	2	23	1	2	2	9890	
247346	19	2	24	1	1	2	1290	
247376	19	2	24	1	5	2	21500	
247380	19	2	24	1	2	2	5590	
247395	19	2	24	1	1	2	3440	
247403	19	2	24	1	5	2	8000	
247417	19	2	24	1	2	2	4300	
247428	19	2	24	1	5	2	8600	
247429	19	2	24	1	1	2	8600	
247438	19	2	25	1	6	2	8600	
+	+	+	+	+	+	·	+	
only showing top 20 rows								

- La individua 247,376 tiene el mayor ingreso mensual (\$21,500), está casada (e_con = 5) y tiene 24 años.
- La individua 246,599 tiene el menor ingreso mensual (\$860), vive con su pareja en unión libre (e_con = 1) y tiene 18 años.