For t=1...T:

• Train base classifier
$$h_t(x)$$
 using D_t
• Choose $\alpha_t = \sum_{i=1}^m D_t(i)\delta(h_t(x^i) \neq y^i)$
• train stub [work omitted; different stub because of new data weights D; breaking opportunistically (will discuss at end)]
• $h_t(x) = +1$ if $x < -0.5$ -1 otherwise

$$\epsilon_t = \sum_{i=1}^{t} D_t(i) \delta(h_t(x^*)
eq y^*)$$
 $\alpha_t = \frac{1}{2} \ln\left(\frac{1-\epsilon_t}{\epsilon_t}\right)$ • Update, for i=1..m:

Initialize: $D_1(i) = 1/m$, for $i = 1, \ldots, m$

Output final classifier:
$$H(x) = \operatorname{sign} \left(\sum_{i=1}^{T} \alpha_t h \right)$$

 $D_{t+1}(i) \propto D_t(i) \exp(-\alpha_t y^i h_t(x^i))$

 $H(x) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$

1

 $H(x) = sign(0.35 \times h_1(x) + 0.55 \times h_2(x) + 0.79 \times h_3(x))$

• $h_1(x)=+1$ if $x_1>0.5$, -1 otherwise

• $h_2(x)=+1$ if $x_1<1.5$, -1 otherwise

 $h_3(x) = +1$ if $x_1 < -0.5$, -1 otherwise

t=3:

- $= 0.33 \times 0 + 0.5 \times 0 + 0.17 \times 1 = 0.17$
- $\alpha_3 = (1/2) \ln((1-\epsilon_3)/\epsilon_3) = 0.5 \times \ln(4.88) = 0.79$
- $h_3(x)=+1$ if $x_1<-0.5$, -1 otherwise
- because of new data weights D; breaking ties opportunistically (will discuss at end)] • $\varepsilon_3 = \Sigma_i D_3(i) \delta(h_3(x^i) \neq y^i)$

• $D_3 = [D_3(1), D_3(2), D_3(3)] = [0.33, 0.5, 0.17]$