Masarykova univerzita Fakulta informatiky

Studie nástrojů pro trasování a testování programů v Javě

BAKALÁRSKA PRÁCA

Matej Majdiš

Prehlásenie

Prehlasujem, že táto bakalárska práca je mojím pôvodným autorským dielom, ktoré som vypracoval samostatne. Všetky zdroje, pramene a literatúru, ktoré som pri vypracovaní používal alebo z nich čerpal, v práci riadne citujem s uvedením úplného odkazu na príslušný zdroj.

Vedúci práce: RNDr. Adam Rambousek

Zhrnutie

Kľúčové slová

Poďakovanie

Obsah

1	Úvo	d		2			
	1.1	Cieľ p	oráce	3			
	1.2		nie práce	3			
2	Bajt			4			
	2.1		túra class súboru	4			
		2.1.1	Reprezentácia dátových typov	6			
		2.1.2	Premenné tried a inštancií	7			
		2.1.3	Metódy	8			
		2.1.4	Atributy	9			
	2.2	Inštru	ıkcie JVM	9			
		2.2.1	Dátové typy	10			
		2.2.2	Architektúra a inštrukčná sada	10			
3	Clas	sloade	ery	13			
		3.0.3	Dynamické načítavanie tried	13			
		3.0.4	Znovunačítanie triedy	13			
4	Byte	eman .		15			
	4.1		nan Agent	16			
	4.2 Štruktúra jazyka pravidel						
		4.2.1		17			
		4.2.2	Závislosti	18			
		4.2.3	Výrazy	18			
		4.2.4	Podmienky	18			
		4.2.5	Akcie	18			
		4.2.6	Vstavané volania	18			
5	Nás	troj Jav	vasist	19			
Lit				20			
		11/Lv		21			

Kapitola 1

Úvod

Java je dnes jedným z najpoužívanejších programovacích jazykov. Od syntakticky podobných programovacích jazykov ako napríklad C++, alebo C# sa líši prekladom zdrojových tried do medzikódu často označovaného ako bajtkód (*bytecode*, *p-code*, *portable code*).

Preklad a spustenie programu napísaných v programovacom jazyku Java prebieha v nasledujúcich fázach:

- 1. Preklad do medzikódu: Java compiler ¹ preloží zdrojový kód do bajtkódu. V praxy to znamená, že každej triede, alebo rozhraniu je priradený súbor *class*, ktorý obsahuje inštrukcie popisujúce fungovanie danej triedy.
- Načítanie a Interpretácia: Virtuálny stroj Javy (d'alej len JVM ²) načíta inštrukcie *class* súboru potrebnej triedy, ktoré d'alej spracúva jedným z nasledujúcich spôsobov:
 - JIT prekladač (*Just In Time compiler*): Štandardne je z bajtkódu najskôr vygenerovaný strojový (*machine code*) konkrétneho zariadenia, ktorý je následne interpretovaný priamo vykonávaný procesorom.
 - Java interpreter: Ďalším spôsobom spracovania bajtkódu je využitie Java interpretru, ktorý bajtkódkód spracováva a sám interpretuje.

Výhodou prekladu do bajtkódu je jeho a prenositeľ nosť. Samotný bajtkód je platformovo nezávislí. Program teda nieje nutné prispôsobovať jednotlivým operačným systémom, ktoré sa líšia len v implementácií JVM.

^{1.} Najčastejšie využívaným Javacompilerom je *javac*, ktorý je súčasť ou JDK (Java Development Kit).

^{2.} Java Virtual Machine, špecifikácia je dostupná na http://docs.oracle.com/javase/specs/jvms/se7/html

Class súbory obsahujúce bajtkód je možné za behu programu modifikovať. Jednotlivé triedy a rozhrania aplikácie uložené v týchto súboroch podľa potreby načítava JVM. Vkladanie nových metód a tried na úrovni bajtkódu, pred načítaním class súboru do JVM sa nazýva injekcia bajtkódu (bytecode injection, ďalej len BI). Pridávanie novej funkcionality pomocou BI bez nutnosti zastavenia behu programu je často využívané pri testovaní a trasovaní (tracing) programov.

Obr. 1.1: Grafické znázornenie prekladu a spustenia programu, zdroj: vlastné spracovanie

1.1 Cieľ práce

TODO...

1.2 Členenie práce

Kapitola 2

Bajtkód

Po preklade zdrojových kódov prekladačom *javac* je každej triede, prípadne rozhraniu programu priradený jeden *class* súbor popisujúci jej funkcionalitu.

Pri načítavaní *class* súbru JVM dostane takzvaný prúd inštrukcií bajtkódu (*bytecode stream*) pre každú metódu triedy. V prípade volania konkrétnej metódy za behu programu sú inštrukcie danej metódy vykonávané. Každá z inštrukcí bajtkódu je reprezentovaná číselnou hodnotou nazývanou *opcode*. Zároveň má každá inštrukcia aj textovú podobu (*mnemonic*), ktorá je jej menom. V *class* súboorch sú inštrukcie uložené v numerickej podobe.

Táto kapitola popisuje formát class súboru a následne stručne charakterizuje inštrukčnú sadu bajtkódu. 1

2.1 Štruktúra class súboru

Class súbor pozostáva z jednej ClassFile štruktúry. ClassFile štruktúra jednoznačne identifikuje konkrétnu triedu, prípadne rozhranie, definuje jej premenné a metódy.

Nasledujúci popis definuje sadu datových typov. Typy *u*1, *u*2, a *u*4 reprezentujú neznamienkové jedno, dvoj, alebo štvorbajtové číslo. *ClassFile* je zobrazená ako pseudoštruktúra v notácií jazyka C. Obsah štruktúry je popísaný ako po sebe nasledujúce položky.

Formát ClassFile štruktúry

```
ClassFile {
  u4 magic;
  u2 minor_version;
  u2 major_version;
  u2 constant_pool_count;
  cp_info constant_pool[constant_pool_count-1];
```

^{1.} Nasledujúci text vychádza zo 4. až 6. kapitoly špecifikácie JVM [LYBB13].

```
u2 access_flags;
u2 this_class;
u2 super_class;
u2 interfaces_count;
u2 interfaces[interfaces_count];
u2 fields_count;
field_info fields[fields_count];
u2 methods_count;
method_info methods[methods_count];
u2 attributes_count;
attribute_info attributes[attributes_count];
```

Konštanta *magic* identifikuje formát súboru *class*, jej hodnota je 0xCA-FEBABE.

Položky *minor_version* a *major_version* určujú verziu *class* súboru. Napríklad *minor_version* s hodnotou *m* a *major_version* s hodnotou *M* indikujú verziu s hodnotou *M.m.*

Hodnota položky *constant_pool_count* je rovná počtu záznamov v *constant_pool[]* plus jeden.

Úložisko záznamov constant_pool[] (v podobe poľa štruktúr) zahŕňa rôzne konštanty: mená tried a rozhraní, mená premenných a iné. Každý záznam constant_pool[] sa skladá zo značky (tag) a indexu (name index). Značka určuje typ záznamu. Tabuľka značiek je uvedená v prílohe A.1. Pomocou unikátneho indexu, je možné odkazovať sa na záznamy v ďalších častiach bajtkódu. Existuje niekoľko typov štruktúr ² reprezentujúcich rôzne druhy záznamov. Napríklad štruktúra CONSTANT_String_info reprezentuje objekty typu String zatiaľ čo štruktúry CONSTANT_Methodref_info a CONSTANT_InterfaceMethodref_info reprezentujú metódy danej triedy, alebo rozhrania.

Hodnota *access_flags* popisuje oprávnenia prístupu k informáciam a vlastnosti tejto triedy, respektíve rozhrania pomocou indikátorov. Napríklad nastavenie indikátora *ACC_INTERFACE* znamená, že *class* súbor popisuje rozhranie. Tabuľka indikátorov je uvedená v prílohe A.2.

Položka $this_class$ obsahuje index $constant_pool[]$ odkazujúci na štruktúru typu $CONSTANT_Class_info$ 3 . Reprezentuje triedu, respektíve rozhranie, definované týmo class súborom.

Hodnotou *super_class* je taktiež index *constant_pool[]* odkazujúci na štruktúru typu *CONSTANT_Class_info*. Reprezentuje priamu nadtriedu triedy

^{2.} Všetky štruktúry constant_pool[] sú popísane v špecifikácií JVM [LYBB13].

^{3.} CONSTANT_Class_info je štrukura constant_pool, ktorá reprezentuje triedu, alebo rozhranie

definovanej týmto *class* súborom. V prípade, že tento *class* súbor popisuje rozhranie, index odkazuje na triedu *Object*. Trieda *Obejct* má ako jediná hodnotu *super class* nulovú.

Počet rozhraní, ktoré trieda implementuje vyjadruje položka *interface_count*, v prípade rozhrania je táto položka rovná počtu priamych nadrozhraní.

Pole *interfaces*[] obsahuje indexy *constant_pool*[] odkazujúce na štruktúru typu *CONSTANT_Class_info*. Zahŕňa indexy všetkých rozhraní, ktoré sú implementované triedou, prípadne priamymi nadrozhraniami *class* súboru.

Položka *fields_count* je rovná počtu premenných triedy a premenných inštancí (*fields*) *class* súboru.

Štruktúry typu *field_info* sú združené v poli *fields*[]. Toto pole zahŕňa každú premennú danej triedy, respektíve rozhrania. Nezahŕňa zdedené atribúty. Podrobne sa štruktúrou *field_info* sa zaoberá kapitola 2.1.2.

Hodnata položky *methods_count* vyjadruje počet štruktúr *method_info* v poli *methods*[].

Položka *methods[]* je pole štruktúr typu *method_info*. Každá štruktúra *method_info* popisuje metódu tejto triedy, respektíve rozhrania. Zahŕňa konštruktory, metódy triedy a metód inštancí. Neobsahuje však žiadne zdedené metódy. Štruktúru *method_info* popisuje kapitola 2.1.3.

Hodnota attributes_count je rovná počtu atribútov poľa attributes[] class súboru.

Pole attributes[] obsahuje štruktúry typu attribute_info. Atribútmi štruktúry ClassFile sú napríklad: SourceFile, Deprecated, InnerClasses a iné. Atribút SourceFile slúži na reprezentáciu mena class súboru. Pole attributes[] class súboru môže obsahovať maximálne jeden takýto atribút. Atribút Depricated môže byť použitý v prípade, že bola daná trieda nahradená (depricated). Pri volaní takejto triedy môže prekladač upozorníť užívateľa, že sa odkazuje na nahradenú triedu ⁴. Vo všeobecnosti sa štruktúre attribute_info sa venuje kapitola 2.1.4.

2.1.1 Reprezentácia dátových typov

Dátové typy sú v *class* súboroch reprezentované vo formáte reťazcov s kódovaním *UTF-8*. Delíme ich na:

- dátové typy premenných
 - primitívne dátové typy
 - referenčné dátové typy

^{4.} Rovnakým spôsobom je možné atribút Depricated aplikovať aj na premenné a metódy.

polia

dátové typy metód

Primitívnym dátovým typom (*byte, integer*, ...) je priradený popis v podobe znaku (B, I, ...). Napríklad premenná typu *int* je reprezentovaná znakom: I.

Referenčné dátové typy reprezentuje popis v tvare: *L*<*classname*>;, kde *classname* je meno triedy, alebo rozhrania daného referenčného dátového typu. Premenná typu *Object* je interpretovaná ako *java/lang/Object*;.

Identifikačný reťazec jednorozmerného poľa typu T sa značí [T, pričom počet znakov <math>[je rovný dimenzii poľa. Napríklad premenná typu: double d[][][] generuje reťazec: [[[D.

Reťazec dátového typu metódy sa skladá z reťazcov pre dátový typ parametrov, ohraničených v zátvorkách (P^*) a reťazca pre dátový typ návratovej hodnoty R. Tvar reťazca dátového typu metódy je potom (P^*)R. V prípade návratovej hodnoty null je reťazcom návratovej hodnoty znak V. Napríklad metódu $boolean\ long\ pow\ (int\ n,\ int\ k)$ reprezentuje reťazec: (II)I, v prípade metódy $Object\ method(byte\ b)$ by šlo o reťazec: (B)Ljava/lang/Object;. Komplexný prehľad reprezentácie datových typov je uvedený v prílohe A.3.

2.1.2 Premenné tried a inštancií

Premenné tried inštancií (*fields*) *class* súboru sú v poli *fields*[] reprezentované pomocou štruktúry *field_info*. Formát štruktúry *field_info* je nasledovný:

Štruktúra field_info

```
field_info {
  u2 access_flags;
  u2 name_index;
  u2 descriptor_index;
  u2 attributes_count;
  attribute_info attributes[attributes_count];
}
```

Položka *access_flags* je indikátorom oprávnenia prístupu k danej premennej. Mená indikátorov spolu s ich interpretáciou a hodnotou sú uvedené v prílohe A.4.

Dvojbajtová hodnota *name_index* je index *constant_pool[]* reprezentujúci meno premennej

Podobne ako *name_index* aj *descriptor_index* je dvojbajtová položka odkazujúca sa na štruktúru v *constant_pool*. Na rozdiel od mena premennej však

popisuje datový typ premennej. Reprezentáciou datových typov sa zaoberá kapitola 2.1.1.

Položka attributes_count vyjadruje počet atribútov v poli attributes[].

Pole attributes[] môže obsahovať ľubovoľné množstvo atribútov popisujúcich premennú. Štruktúra reprezentujúca atribút je daná všeobecným predpisom attributeq_info. Atribúty premenných musia byť reprezentované jednou zo štruktúr ConstantValue, Synthetic, Signature, Deprecated, Runtime-VisibleAnnotations, alebo RuntimeInvisibleAnnotations. Atribút ConstantValue popisuje konštantné statické premenné, Synthetic je používaný u položiek, ktoré sa nevyskytujú v zdrojovom kóde. Štruktúrou attribute_info sa zaoberá kapitola 2.1.4.

2.1.3 Metódy

Každá metóda triedy, prípadne rozhrania je v poli *methods[]* uložená pomocou štruktúry *method_info*. Štruktúra *method_info* má nasledujúci formát:

Štruktúra method_info

```
method_info {
   u2 access_flags;
   u2 name_index;
   u2 descriptor_index;
   u2 attributes_count;
   attribute_info attributes[attributes_count];
}
```

Indikátor *access_flags* zahŕňa nastavenia prístupových práv a vlastností metódy. Tabuľaka indikátorov *access_flags* štruktúry *method_info* sa nachádza v prílohe A.5.

Položky name_index a descriptor_index sú podobne ako u štruktúry field_info indexmi do constant_pool. Tieto indexy v constant_pool odkazujú na štruktúry popisujúce meno a datový typ metódy. Reprezentácia dátových typov je popísaná v kapitole 2.1.1.

Hodnotou položky attributes_count je počet atirbútov poľa attributes[.

Pole attributes[] zahŕňa dodatočné atribúty (položky) danej metódy. Každá položka poľa je reprezentovaná všeobecným predpisom attributes_info. Počet štruktúr v poli nieje obmedzený, každá položka však musí byť jednou zo štruktúr: Code, Exceptions, Synthetic, Signature, Deprecated, RuntimeVisibleAnnotations, RuntimeInvisibleAnnotations, RuntimeVisibleParameterAnnotations, RuntimeInvisibleParameterAnnotations, alebo AnnotationDefault. Atribút Code je jedným z najdôležitejších. Obshauje inštrukcie bajtkódu popisujúce fungovanie metódy. Okrem metód deklarovaných ako abstraktná,

alebo natívna musí každá metóda obsahovať práve jeden atribút *Code*. Atribút *Exceptions* zahŕňa indexy výnimiek, ktoré metóda vyhadzuje. Popisom formátu štruktúry *attributes_info* sa zaoberá kapitola 2.1.4.

2.1.4 Atribúty

Pojem atribút v tomto texte vyjadruje atribúty používané v poli attributes[] štruktúr field_info, method_info a Code_attributes. Všeobecný predpis všet-kých atribútov je vyjadrený štruktúrou attribute_info. Existuje niekoľko zá-kladných preddefinovaných atribútov: SourceFile, ConstantValue, Code, Exceptions, InnerClasses, Synthetic, LineNumberTable, LocalVariableTable, Deprecated a iné. Líšia sa funkcionalitou a využitím jednotlivými časťami class súboru. Všetky atribúty vychádzajú z už spomínaného všeobecného predpisu attribute_info, ktorý má nasledujúci formát:

Štruktúra attribute_info

```
attribute_info {
  u2 attribute_name_index;
  u4 attribute_length;
  u1 info[attribute_lenght];
}
```

Položka attributes_name_index je indexom do constant_pool odkazujúcim na meno atribútu. Tento proces sa nazýca kontrola formátu (format checking). Prvé štyri bajty musia obsahovať tzv. magickú konštantu magic. Všetky rozoznané atribúty musia mať správnu dĺžku

2.2 Inštrukcie JVM

Po načítaní *class* súboru JVM sa JVM nasjkôr uistí, že je tento súbor v správnom formáte popísanom v kapitole 2.1. Štvorbajtová položka *attribute_length* je rovná hodnote vyjadrujúcej dĺžku následných informácií uložených v *info[attribute_length]*. Informácie sa líšia na základe odlišnej funkcionality a využitá jednotlivých atribútov. *Class* súbor nesmie byť skrátený ani obsahovať nadbytočné bajty, takisto úložisko *constant_pool* nesmie obsahovať žiadne nerozoznateľné informácie.

Inštrukcie bajtkódu načítanej metódy sú uložené v poli *code*[] atribútu *Code*, štruktúry *method_info* daného *class* súboru. Štruktúra *Code_attribute* reprezentujúca atribút *Code* musí spĺňať obmedzenia definované JVM. Tieto obmedzenie rozdeľujeme na dve základné kategórie:

- Statické obmedzenia: Stanovujú rozloženie inštrukcií v poli code a priradenie operandov jednotlivým inštrukciám. Niektorými z nich sú napríklad:
 - prvá inštrukcia musí začínať na indexe 0,
 - pole *code* nesmie byť prázdne.
- Štrukturované obmedzenia: Špecifikujú vztahy medzi inštrukciami JVM. Ide o podmienky ako napríklad:
 - žiadna lokálna premenná nemôže byť volaná predtým ako jej bola priradená hodnota,
 - pred volaním (nestatickej) metódy respektíve premennej musí byť inicializovaná inštancia triedy ktorá ju obsahuje.

Prekladače jazyka Java generujú *class* súbory, ktoré spĺňajú požiadavnky popísané v predchádzajúcom odseku. JVM však nemá žiadnu záruku, že *class* súbor, ktorý požaduje bol generovaný prekladačom. Metódou verifikácie ⁵ *class* súboru môže JVM určiť či daný súbor pochádza z dôveryhodného zdroja.

2.2.1 Dátové typy

Dátové typy JVM delíme do troch základných kategórií:

- Primitívne dátové typy: byte, short, int, long, boolean, float, double.
- Referenčné dátové typy: pole, inštancia triedy, rozhranie.
- Typ returnAddress: používaný výhradne ištrukciami jsr, ret a jsr_w.

Väčšina uvedených typov má veľkosť 32 bitov, typy *long* a *double* sú však 64 bitové, preto zaberajú dva sloty v zásobníku.

2.2.2 Architektúra a inštrukčná sada

Architektúra JVM je založená na datovej štruktúre zásobník ⁶, ktorej základnými operáciami sú *push* - vloženie prvku do zásobníka a *pop* - výber

^{5.} Ďalšie príklady obmedzení a podorbný popis verifikácie *class* súborov je dostupný v špecifikácií JVM [LYBB13]

^{6.} Dátová štruktúra zásobník (*stack*) funguje na princípe FIFO (*first in first out*), kde posledný vložený prvok je prvým vybraným.

prvku z vrcholu zásobníka. JVM nemá registre na ukladanie hodnôt, preto musia byť pred použitím všetky uložené na zásobník.

Na nasledujúcom jednoduchom príklade sú popísané základné inštrukcie bajtkódu pre prácu s premennými a konštantami.

Metóda greatherThen pred a po kompilácií

```
public int greaterThen(int intOne, int intTwo) {
   if (intOne > intTwo) {
      return 0;
   } else {
      return 1;
   }
}

0: iload_1
1: iload_2
2: if_icmple 7
5: iconst_0
6: ireturn
7: iconst_1
8: ireturn
```

Inštrukcie *iload_1* a *iload_2* pridajú do zásobníka operandov (ďalej len zásobník) hodnoty lokálnych premenných na indexoch 1 a 2. V tomto prípade ide o parametre *intOne* a *intTwo*.

Obr. 2.1: Znázornenie funkcionality inštrukcií iload_1 a iload_2.

Vo všeobecnosti môžeme túto inštrukciu chápať ako *xload* s predponou extitx označujúcou ľubovoľný primitívny datový typ(napríklad: *lload* pre long, *fload* pre float). Existujú dva tvary, volania tejto inštrukcie:

- $load_{<n>}$, kde n označuje index (celé číslo) lokálnej premennej, zároveň musí platiť: $0 \le n \le 4$,
- *load vindex*, kde pozíciou lokalnej premennej je hodnota *vindex*.

Ďalšou inštrukciou je *if_icmple* s parametrom 7, ktorá porovná dva objekty na vrchole zásobníka a prejde na siedmu inštrukciu v prípade, že je hodnota položky na vrchole zásobníka väčšia ako hodnota druhej položky. V príklade sú na zásobníku len položky vložené predchádzajúcimi inštrukciami. Podmienka teda platí v prípade, že hodnota parametra *intOne* je menšia hodnota *intTwo*. Vo všeobecnosti je možné podmienené výrazy vyjadriť pomocou inštrukcií: *if_acmp<cond>, if_icmp<cond>, if<cond>, ifnonnull, ifnull*.

Inštrukcie *iconst_0* a *iconst_1* vložia na zásobník hodnotu 0 respektíve 1 v závislosti od vyhodnotenia podmienky *if_icmple*. Táto hodnota je následne vrátená inštrukciou *ireturn*. Inštrukcie *iconst_<n>, a ireturn* sú taktiež dostupné vo variantách s predponou ľubovoľného primitívneho dátového typu.

Dôkladný popis všetkých inštrukcií vrátene ich parametrov možno nájsť v špecifikácií JVM [LYBB13].

Kapitola 3

Classloadery

Class loader je objekt zodpovedný za načítavanie tried. Trieda ClassLoader je abstraktná. Pomocou mena class súboru by mal class loader nájsť a generovať obsah definujúci danú triedu. Každá trieda obsahuje referenciu na ClassLoader, ktorý ju definoval. [Ora11]

Zvyčajne je trieda do JVM načítaná len v prípade, že je potrebná. Načítané sú zároveň všetky triedy na ktoré sa odkazuje. Pomocou *class loaderov* je možné za behu programu dynamicky načítať ďalšie triedy, prípadne načítať nové inštancie pôvodných tried.

Pri štandardnom načítaní triedy niektorá z implementácií *ClassLoader* vykoná nasledujúce tri kroky:

- 1. Skontroluje či trieda už nebola načítaná
- 2. Ak nebola, požiada nadtriedu o načítanie danej triedy
- 3. V prípade, že nuspeje pokúsi sa načítať triedu pomocou vlastného class loaderu

3.0.3 Dynamické načítavanie tried

K načítaniu novej triedy za behu programu je potrebný *class loader*. Získať ho je možné pomocou príkazu *MyClass.class.getClassLoader()*;. Novú triedu reprezentovanú súborom *class* následne vráti metóda *class loaderu*: *loadClass(class)*.

3.0.4 Znovunačítanie triedy

Dynamické znovunačítanie triedy je komplkovanejšie. Vstavané implementácie triedy *ClassLoader* vždy kontrolujú, či trieda už nebola do JVM načítaná. Preto nieje možné žiadnu triedu načítať dvakrát pomocou vstavaných *class loaderov*. Je nutné navrhnúť vlastnú implementáciu.

-

! PRÍKLAD VLASTNÉHO CLASSLOADERA - TODO ...!

-

Ďalšou komplikáciou je trieda *ClassLoader.resolve()*, ktorá zabezbečuje linkovanie. Táto trieda je *final*, z čoho vyplíva, že ju nieje možné prepísať, nepovolí však žiadnemu *class loaderu* linkovať dva-krát tú istú triedu. Preto je nutné pri kaďom ďalšom znovunačítaní triedy vytvoriť novú inštanciu *class loaderu*.

! PRÍKLAD POUŽITIA CLASSLOADERA - TODO ...!

Kapitola 4

Byteman

Byteman je nástroj manipulujúci s bajtkódom určný na zásah do bajtkódu Java aplikácií počas načítavania JVM, alebo za behu programu. Používa sa najmä na zjednodušenie trasovania a testovania aplikácií. Umožňuje používateľovi pridávať novú funkcionalitu do ktorejkoľvek časti programu. Funguje bez nutnosti prepisovania a opätovnej kompilácie pôvodnej aplikácie.

Byteman modifikuje bajtkód aplikácie za behu programu. Preto môže zmeniť Java kód, popisujúci časť treid JVM ako napríklad *String, Thread* a podobne. Vďaka tejto funkcionalite je taktiež možné napríklad trasovanie správania sa JVM.

Byteman používa jednoduchý jazyk ECA pravdiel ¹ založený na Jave. Tieto ECA pravidlá používa na špecifikáciu kde, kedy a ako má byť pôvodný Java kód transformovaný aby modifikoval operáciu [Red].

Primárne bol *Byteman* určený na podoru testovania multivláknových a multi-JVM aplikácií za použitia techniky nazývanej *fault injection* ². Zahŕňa preto funkcionalitu, ktorá bola navrhnutá na riešenie problémov súvisiacich s týmto typom testovania. *Byteman* poskytuje podporu pre automatizáciu v štyroch hlavných oblastiach:

- trasovanie špecifických väzieb kódu a zobrazovanie stavu aplikácie, prípadne JVM,
- narúšanie normálneho priebehu zmenou stavov, volanie nenaplánovaných metód, vynucovanie návratových volaní, prípadne vyhadzovanie neočakávaných výnimiek,
- organizácia časovania aktivít vykonaných nezávislými vláknami aplikácie.

^{1.} ECA (event-condition-action) pravidlá pozostávajú z udalosti, podmienky a akcie. Význam pravidla znamená: Ak nastane udalosť, skontrolu podmienku a v prípade, že platí, vykonaj akciu [Sel95].

^{2.} TODO...

• monitorovanie a zhromažďovanie štatistík, sumarizujúcich aplikáciu a operácie JVM.

V súčasnosti je *Byteman* využívaný oveľa širšie ako nástroj na testovanie [Red].

Najjednoduchším použitím *Bytemana* je vkladanie kódu, ktorý trasuje správanie sa aplikácie. Táto metóda môže byť využitá na monitorovanie, alebo ladenie, ako aj na úpravu kódu pri testovaní a overenie, správneho fungovania aplikácie. Pri vkladaní kódu na veľmi špecifické miesta je možné vyhnúť sa režijným nákaldom, ktoré často rastú pri ladení, alebo trasovaní proguktu [Byt].

4.1 Byteman Agent

Aby mohol *Byteman* manipulovať s programom, musí na ňom bežať *Byteman Agent*, ktorý konfiguruje JVM pre prácu s pravidlami jeho jazyka.

Pri inštalácií agenta s prekladom programu je riešením použitie argumentu príkazu *java -javaagent*, ktorý zadáva cestu k *JAR* súboru popisujúcemu pravidlá jazyka. Agentovi je možné pomocou argumentov nakonfigurovať dve základné možnosti funkcionality:

- Základnou možnosť ou je použiť argument script:[PATH], ktorý načíta do programu skript definovaný pravidlami v súbore s cestou PATH
- V prípade potreby načítavania pravidiel do programu aj po spustení
 je nutné nastaviť argument *listener* na hodnotu *true*. Do takto spusteného programu je možné následne pomocou skriptu *bmsubmit.sh* pridávať a odoberať ľubovoľné pravidlá.

Byteman je nastavený aby neinjektoval kód do tried JVM. Pri zmene tried ako napríklad *String a Thread* je preto nutné zmeniť túto vlastnosť nastavením system property org. jboss. byteman. transform. all. Zároveň je nutné zaistiť, aby bol Byteman Agent načítaný (rovnako ako tieto triedy) defaultným (bootstrap) classloaderom.

Agenta je možné inštalovať taktiež do už bežaicich aplikácií ³ bez nutnosti ich opätovného spustenia. Slúži na to skipt *bminstall.sh. Byteman* je následne možné využiť ako nástroj na kontrolu správania sa programu [Red].

^{3.} typicky ide o dlho bežiace aplikácie ako napríklad aplikačný server JBoss

4.2 Štruktúra jazyka pravidel

Pravidlá jazyka Byteman sú definované v skriptoch s príponou *btm*. Každé pravidlo pozostáva zo sekvencie definícií. Všeobecný predpis takto definovaného pravidla je nasledovný:

Kostra pravidla

RULE <rule name>
CLASS <class name>
METHOD <method name>
BIND <bindings>
IF <condition>
DO <actions>
ENDRULE

Každá z definícií, ktorú je možné v pravidle použiť patrí do niektorej z kategórií: Udalosti, Závislosti, Výrazy, Podmienky, Akcie, Vstavané volania. Tieto kategórie a jednotlivé definície popisujú nasledujúce podkapitoy. Definície musia byť zároveň zadané v správnom poradí pričom prvou je vždy *RULE* a poslednou *ENDRULE*.

4.2.1 Udalosti

Udalosti pravidiel (*Rule Events*) identifikujú umiestneneie pravidla v cieľovej metóde, ktorá sa nachádza v cieľovej triede.

Za kľučvým slovom *RULE* musí nasledovať meno pravidla, ktoré je ľubovoľným textovým reťazcom, pričom musí obsahovať medzeru. Kvôli rozlišovaniu jednotlivých pravidiel by mali byť tieto mená unikátne.

Rovnako za kľúčovými slovami *CLASS* a *METHOD* sa nachádza meno triedy a metódy do ktorej bude pravidlo načítané. Meno triedy môže byť špecifikované aj bez cesty ku balíku, v ktorom sa nachádza. V takomto prípade, Byteman spracuváva každú triedu s týmto menom, ktorá je do JVM načítaná. Definíciu *CLASS* je možné nahradiť kľúčovým slovom *INTER-FACE*, ktoré rovňakým spôsobom ako *CLASS* popisuje rozhranie. Doplnením znaku ňa začiatok mena triedy, respektíve rozrania je možné zabezpečiť dedičnosť - prenos pravidiel na potomkov. Metódu je možné okrem samotného názvu špecifikovať aj jej návratovým typom, prípadne argumentami. Tieto bližšie špecifikácie niesu povinné, preto je možné načítať pravidlo do viacerých preťažených metód zároveň.

Po nájdení metódy, respektíve metód, ktoré vyplívajú s definícií CLASS, METHOD, prípadne INTERFACE je do každej z nich vložený takzvaný spúšť ač *trigger point*. TODO...

4.2.2 Závislosti

Závislosti pravidiel (Rule bindings) TODO...

4.2.3 Výrazy

Výrazy Rule expressions TODO...

4.2.4 Podmienky

Podmienky (Rule Conditions) TODO...

4.2.5 Akcie

Akcie pravidiel (Rule Actions) TODO...

4.2.6 Vstavané volania

Vstavané volania (Built-In Calls) TODO... Rule Helpers?

Kapitola 5

Nástroj Javasist

Literatúra

- [Byt] Byteman project description. http://byteman.jboss.org. Accessed: 2015-03-09.
- [LYBB13] Tim Lindholm, Frank Yellin, Gilad Bracha, and Alex Buckley. The Java Virtual Machine Specification, Java SE 7 Edition. Addison-Wesley Professional, 1st edition, 2013. http://docs.oracle.com/javase/specs/jvms/se7/html/.
- [Ora11] Oracle. Class ClassLoader documentation, 7th edition, 2011. http://docs.oracle.com/javase/7/docs/api/java/lang/ClassLoader.html.
- [Red] Red Hat and individual contributors. Byteman Programmer's Guide. http://downloads.jboss.org/byteman/2.2.1/ProgrammersGuide.pdf.
- [Sel95] Timos Sellis. Rules in Database Systems: Second International Workshop, RIDS '95, Glyfada, Athens, Greece, September 25 27, 1995. Proceedings. Lecture Notes in Artificial Intelligence. Springer, 1995.

Dodatok A

Tabuľky

Zdrojom nasledujúcich tabuliek je špecifikácia JVM [LYBB13].

Constant Type	Value
CONSTANT_Class	7
CONSTANT_Fieldref	9
CONSTANT_Methodref	10
CONSTANT_InterfaceMethodref	11
CONSTANT_String	8
CONSTANT_Integer	3
CONSTANT_Float	4
CONSTANT_Long	5
CONSTANT_Double	6
CONSTANT_NameAndType	12
CONSTANT_Utf8	1
CONSTANT_MethodHandle	15
CONSTANT_MethodType	16
CONSTANT_InvokeDynamic	18

Tabuľka A.1: Tabuľka značiek určujúcich typ záznamu v *constant_pool*. Stĺpec *Constant Type* označuje názov typu, stĺpec *value* priraďuje každému typu číselnú hodnotu.

Meno Indikátora	Hodnota	Interpretácia
ACC_PUBLIC	0x0001	Deklarovaná ako verejná; prí-
		stupná aj mimo balíka.
ACC_FINAL	0x0010	Deklarovaná ako final; žiadne pod-
		triedy po inicializácií.
ACC_SUPER	0x0020	Volá metódu nadtriedy, hlavne in-
		štrukcia invokespecial.
ACC_INTERFACE	0x0200	Je rozhranie, nie trieda.
ACC_ABSTRACT	0x0400	Deklarovaná ako abstraktná, ne-
		môže byť inštanciovaná.
ACC_SYNTHETIC	0x1000	Deklarovaná ako synthetic, nieje
		prítomná v zdrojovom kóde.
ACC_ANNOTATION	0x2000	Deklarovaná ako typ annotation.
ACC_ENUM	0x4000	Deklarovaná ako typ enum.

Tabuľka A.2: Tabuľka indikátorov prístupových práv *ClassFile* štruktúry.

Reprezentácia	Тур	Interpretácia
pomocou reť azca		
В	byte	znamienkové celé číslo veľkosti jed-
		ného bajtu
С	char	Znak s kódovaním UTF-16
D	double	číselná hodnota s dvojitou presnosťou
		a plávajúcou desatinnou čiarkou
F	float	číselná hodnota s plávajúcou desatin-
		nou čiarkou
I	int	celé číslo
J	long	celé číslo väčšieho rozsahu
L ClassName ;	referencia	inštancia triedy ClassName
S	short	znamienkové celé číslo krátkeho roz-
		sahu
Z	boolean	pravda alebo nepravda
[reference	jednorozmerné pole

Tabuľka A.3: Tabuľka reprezentácie datových typov pre premenné.

Meno Indikátora	Hodnota	Interpretácia
ACC_PUBLIC	0x0001	Deklarovaná ako verejná; prístupná aj
		mimo balíka.
ACC_PRIVATE	0x0002	Deklarovaná ako privátna; použiteľná
		len vrámci triedy, v ktorej bola defino-
		vaná.
ACC_PROTECTED	0x0004	Deklarovaná ako protected; prístupná
		aj podtriedam.
ACC_STATIC	0x0008	Deklarovaná ako statická.
ACC_FINAL	0x0010	Deklarovaná ako final; žiadne ďalšie
		priradenia po inicializácií.
ACC_VOLATILE	0x0040	Deklarovaná ako volatile; nemôže byť
		uložená do medzipamäte.
ACC_TRANSIENT	0x0080	Deklarovaná ako transient; nieje čí-
		taná ani modifikovaná objektovým
		manažérom.
ACC_SYNTHETIC	0x1000	Deklarovaná ako synthetic, nieje prí-
		tomná v zdrojovom kóde.
ACC_ENUM	0x4000	Deklarovaná ako prvok objektu enum

Tabuľka A.4: Tabuľka indikátorov prístupových práv a vlastností štruktúry $\it field_info$.

Meno Indikátora	Hodnota	Interpretácia
ACC_PUBLIC	0x0001	Deklarovaná ako verejná; prí-
		stupná aj mimo balíka.
ACC_PRIVATE	0x0002	Deklarovaná ako privátna; pou-
		žiteľná len vrámci triedy, v kto-
		rej bola definovaná.
ACC_PROTECTED	0x0004	Deklarovaná ako protected; prí-
		stupná aj podtriedam.
ACC_STATIC	0x0008	Deklarovaná ako statická.
ACC_FINAL	0x0010	Deklarovaná ako final; nemôže
		byť prepísaná.
ACC_SYNCHRONIZED	0x0020	Deklarovaná ako synchronized;
		pri volaní je zabalená za použitia
		monitora.
ACC_BRIDGE	0x0040	Bridge metóda; je generovaná
		prekladačom.
ACC_VARARGS	0x0080	Deklarovaná s dynamickým po-
		čtom argumentov.
ACC_NATIVE	0x0100	Deklarovaná ako natívna; im-
		plementovaná v inom jazyku
		ako Java.
ACC_ABSTRACT	0x0400	Deklarovaná ako abstraktná,
		nieje implementovaná.
ACC_STRICKT	0x0800	Deklarovaná ako stricktfp, vý-
		počty s plávajúcou čiarkou sú FP
		- strict.
ACC_SYNTHETIC	0x1000	Deklarovaná ako synthetic, nieje
		prítomná v zdrojovom kóde.

Tabuľka A.5: Tabuľka indikátorov prístupových práv a vlastností štruktúry *method_info*.