

Technical Information Brief: TAGMI Bayes Network Model

AUTHORS
KEMP-BENEDICT Eric (SEI)
MORRIS Joanne (SEI)
FENCL Amanda (SEI)
WANG Guozhong (SEI)

30 SEPTEMBER 2013

TABLE OF CONTENTS

Acknowledgements	3
Introduction	4
Model Structure	5
The Core Model	6
Relating the Data to 'Success'	6
Accounting for external factors	6
Measuring the Strength of the Data	7
Data, Factors and indicators of success	7
Expert elicitation of probabilities	8
Results	9
What do the results mean?	9
i) The data itself	9
ii) The importance of the data	10
iii) The importance of the factors	10
iv) The importance of the capitals	11
References	12
Appendix A: Defining the models	13
Limpopo: Data – Factor	14
Limpopo : Factor – Capital	27
Limpopo: Capital – Success	27
Limpopo : Data missing	28
Volta: Data - Factor	30
Volta: Factor – Capital	37
Volta: Capital – Success	38
Volta : Data missing	38

ACKNOWLEDGEMENTS

This document was developed under the V1 and L1 'Targeting and Scaling out' project in Limpopo and Volta Basin (http://volta.waterandfood.org and http://waterandfood.org/basins/limpopo-2/) coordinated by the Stockholm Environment Institute (SEI) in partnership with the Kwame Nkrumah University of Science and Technology (KNUST), the Savanna Agricultural Research Institute of the Council for Scientific and Industrial Research, Ghana (SARI), l'Institut National de l'Environnement et de Recherches Agricoles (INERA), the University of Ouagadougou, Waternet, the International Water Management Institute (IWMI) and the University of the Witwatersrand. We thank the local communities and experts for contributing to the development of this work. This work was carried out with funding from the CGIAR Challenge Program for Water and Food (CPWF), European Union and technical support of IFAD, with additional core support from SEI-SIDA and IWMI.

© 2012 - 2013 Stockholm Environment Institute and Challenge Program on Water and Food

INTRODUCTION

Project Aim: To produce a framework and web-based "decision support", (or targeting and scaling out tool) that will assist in identifying sites where the introduction of AWM interventions for smallholder farming systems are likely to be successful.

The key elements of the tool are: i) a Bayesian network model; ii) a database of district-level contextual data; iii) a program written to run the Bayes model simultaneously for all districts in a country; and iv) the web interface that displays the results as a map. (Figure 1)

Figure 1: Components of the web-based decision support tool for Targeting AGricultural Water management Interventions (TAGMI)

The online tool is built using OpenSource software, and is available online to be used and shared freely under the conditions of the Apache License

(http://www.apache.org/licenses/).

Figure 2 Screen shot of TAGMI online interface

Researchers, practitioners and farmers have identified approaches to manage rainfall for agriculture in efficient and productive ways from field to basin scales. Yet successful targeting and scaling out of appropriate interventions remains a challenge. TAGMI sets out to address this challenge, using the following rationale:

- a) The targeting problem is that:
 - We want to out-scale agricultural water management (AWM) technologies
 - We want to pick sites where the chances of success are relatively good
 - A good way to decide is through rapid assessment in the field at prospective sites
- b) But where to do the rapid assessments? (the pre-targeting problem):
 - Decide where conditions are promising enough that it is worth investing in a rapid field assessment
 - Only use existing and easily accessible data that is available over a large part of the basin
 - Other considerations:
 - Make it affordable
 - Build on accumulated experience and knowledge
- c) Building a conceptual model to decide where conditions are promising:
 - There are factors that contribute to the success or failure of AWM technologies
 - Biophysical
 - Social and institutional
 - Technological
 - o Implementation-specific
 - The factors usually cannot be observed directly, but there is indirect evidence that they are present or absent
- d) Facts of life conceptual model in practice:
 - The needed data are incomplete and imperfect
 - No model can capture all complexities of agricultural communities and their environments
 - There will be continued learning and therefore a need to update the model

MODEL STRUCTURE

The model relates observed data to an indicator of success, as shown in Figure 3. The core model is structurally simple: it relates factors of success to a success indicator. Additional model elements relate observed data (evidence) to the factors of success, and relate factors of success to the success indicator indirectly through "pseudo-factors". The model, including the additional elements, is discussed in more detail in this section.

Figure 3: Model overview

The Core Model

The model is implemented as a Bayesian network (BN). The variables in such a model are discrete probability distributions, rather than fixed values; in the targeting model described in this paper the success indicator—as a Bayesian variable—takes on two possible values, "yes" and "no", and the output displayed to the user is the probability that the value of the indicator is "yes". 'Success' is the likelihood that an AWM technology introduced in a target community will still be in use 2 years after the intervention project has ended.

Based on participants' discussions, and using the DFID Sustainable Livelihood Framework (DFID, 1999), 'Success' is conditional on adequate levels of 5 capitals: Human, Social, Financial, Physical and Natural. Water resources are included as a separate 6th capital given its centrality to AWM (Figure 4). A capital cannot immediately be measured using any data, but is rather described as the sum of states of a number of related resources. For example, human capital is defined as "the skills, knowledge, ability to labour and good health that together enable people to pursue different livelihood strategies and achieve their livelihood objectives" (DFID 1999). Therefore, each capital comprises 2-4 key factors (e.g. Human capital is a combination of Labour availability, Skills, and Health). Most factors also cannot be directly measured, hence each factor is described by 1-3 data variables (e.g. Labour availability is indicated by the relative size of the working age population and the gender ratio in the population). The data variables are the evidence base of the model, describing the context in each district.

Relating the Data to 'Success'

The **arrows** linking data-factor, factor-capital and capital-Success convey the conditional probabilities of how each node in the network influences the presence of the next node. Using the Bayes algorithm, the model calculates the probability that the **factor** is present given knowledge about the state of its **data variable** (high, medium or low), then the probability that the **capital** is present given the calculated state of its **factors**, then the probability that **Success** is present given the calculated state of all **capitals**. A similar application of Bayesian network modelling to analyse the likelihood of water poverty is explained in detail in Kemp-Benedict et al. (2009).

Figure 4: Conceptual model structure, showing the conditions for success (6 capitals) and the related factors and data (drawn by author)

Accounting for external factors

There are, potentially, a large number of factors contributing to the success indicator. The number of possible combinations is extremely large and it would be quite challenging for an expert to estimate

the joint probability of success given all combinations of states for the factors of success. Also, the guiding assumption is that all factors of success are important (that is, we do not assume that they are substitutable, although that is a possible extension).

To reduce the cognitive burden on the expert while keeping faithful to the conceptual structure of the model, we insert, between each capital and 'Success', an intermediate "pseudo-factor" that can take one of two values—present or absent. The success indicator shows success only if all of the pseudo-factors are present, but there is a probabilistic relationship between the factors of success and the pseudo-factors; such a construct is called a "noisy-and".

The "noisy-and" also provides a leak mechanism, to account for any factor that might influence success, that has not been taken into account in the model, i.e. if all factors in the model are absent, there is still a chance (however slight) that Success can be present.

Measuring the Strength of the Data

One advantage of a Bayesian model is that not all of the evidence needs to be specified. If there is some location where one or more evidence variable is missing data, then it does not have to be set. But in that case it is important to signal that the value for the probability of success is less certain than in other locations. We do this by calculating the information entropy of the probability of success, which measures the change in the model outcome from a null state (no evidence) to an informed stated (with evidence). The result of the information entropy calculation informs the 'strength of evidence' that is displayed in the tool. This is a measure of the quality of the data used, as well as the amount of missing data. For example, if data is old, or available at a coarser geographic coverage or scale of analysis than the model is at (district-level), the evidence base for the result is weak, and the strength of evidence will be LOW. Low strength of evidence can also reflect an uncertainty in how well the data used is related to the concept it describes. Alternatively, if the data is recent, consistently representative across the country, at district level and highly relevant for all factors in the model, the evidence base for the result is strong and the strength of evidence will be HIGH.

DATA, FACTORS AND INDICATORS OF SUCCESS

The Bayesian network model is a combination of local, national and regional datasets with the expert input of our Basin project partners. The model structure was developed and populated through a series of consultations with local researchers and key stakeholders (including local government and agricultural extension agents). The initial learning event provided lists of key variables that have contributed to either the success or failure of examples of AWM technology projects from the area or region. A successful case was defined by the participants as one where the technology was still in use at least 2 years after the intervention introducing the technology had ended.

The initial list of variables was analysed and aggregated into a manageable list of main categories of factors (Table 1) which may not be directly measurable, but can be represented in part by various indicators (data variables). The potential data variables were identified and refined during the second round of consultations, where the participants gave feedback on the initial model and discussed the relationships between factors and indicators, and their importance to the likelihood of success of an AWM intervention. The conditional probabilities that define the model quantitatively are constructed from those discussions, as discussed in the next section.

Table 1: Key factors influencing the success or failure of past AWM interventions, aggregated from participants' discussions (first consultations, 2011)

Natural	Physical
Soil type, topography *	Market access *
Water availability and accessibility *	Technology design appropriate *
Water quality *	Security of technology
Soil biology	Market input/supply chain *
Biomass *	Market competition **
Microclimate	Infrastructure
Pest and weeds	
Land availability	
Human	Social
Willingness to engage*	Leadership (traditional, political)
Easy to understand/manage**	Leadership among adopters
Safe water quality	Actors known to client (trust)
Education level	Clear demand
Health status	Conflict *
Skills set *	Organisational responsibility /management
Labour *	organisation *
Gender **	Land tenure
Wealth/poverty	Culture & tradition
Financial	Other – 'best practices of implementation'
Investments assistance *	Community owns initiative **
Investment cost *	Early engagement with stakeholders
Maintenance cost *	Continuous assistance/backstopping *
Return of investments **	Direct benefit *
Access to credit	Clear demand
	Clear objective
	Appropriate design (of technology) *
	Appropriate implementation *
* mentioned for all 4 countries	
** mentioned for 3 of the 4 countries	

Expert elicitation of probabilities

With sufficient data it is possible to fit the conditional probability distribution through a process called "training". However, we expect to apply the tool in model-poor environments, and so must rely on expert elicitation.

It is difficult for experts to provide complete conditional probability distributions, as the number of probabilities required is exponential to the number of variables involved and the number of states each variable can have. For example (Table 2), the conditional probability of 1 factor with 2 possible states, given 1 indicator with 3 possible states, is a combination of 6 probabilities; 1 factor with 2 possible states, given 2 indicator with 3 possible states each, is a combination of 18 probabilities; etc.:

Table 2a & b): 2 examples of conditional probability tables

a)					b)
indica	ator	low	med	high	
	yes	0.2	0.5	0.8	
factor	no	0.8	0.5	0.2	

)	Indicator1		low			med			high			
	Indicator2		low	med	high	low	med	high	low	med	high	
		yes	0.06	0.2	0.5	0.2	0.5	0.8	0.5	0.8	0.96	
	factor	no	0.94	0.8	0.5	0.8	0.5	0.2	0.5	0.2	0.04	

There are well-tested elicitation techniques, but also well-known problems with any of these techniques because of people's cognitive limitations. For this project we follow a particular approach to eliciting conditional probability distributions (Kemp-Benedict 2008).

In this approach, the expert assigns weighting factors to each of the states of the indicator (low-med-high), and also to each of the parent nodes (yes-no). Then, using a derivation of the Bayes algorithm in combination with the probability distribution of the existing data, a conditional probability table can be calculated, similar to Table 2. The tables will have a Gaussian distribution, having been mathematically generated, but can be skewed more or less from an even distribution by the weights attached to the states of the factors and indicators. This method requires far less input from the experts, and more comprehensible. The minimum input needed is to characterise two aspects of the relationship between a factor and an indicator: the *type* and the *strength*.

- the *type*:
 - o If it is positive, the factor will be more likely to be **yes** when the indicator is **high**
 - o If it is negative, the factor will be more likely to be **yes** when the indicator is **low**
- the strength:
 - A **strong** relationship (0.2 0.5 0.8) will be **strongly skewed** from an even distribution (0.5 0.5 0.5)
 - A **weak** relationship (0.4 0.5 0.6) will be **much closer to an even** distribution (0.5 0.5 0.5)

For detailed descriptions of the weightings defining the models, refer to Appendix A: Defining the models.

RESULTS

What do the results mean?

The results are influenced by four aspects of the model:

- i) The data itself
- ii) The importance of the data (designated by experts or the model designer)
- iii) The importance of the factors (designated experts)
- iv) The importance of the capitals (designated by the model designer, based on input from experts)

i) The data itself

The numeric data for each variable is classified into 3 categories (low-med-high), to have approximately an equal number of districts falling into each category. The thresholds therefore are statistically determined. As a result, the distribution of possible states is standardised. The exception is Mean Annual Rainfall, where thresholds were set manually using expert knowledge. The first significant impact of this approach is that the distance between thresholds depends on the range of the data, rather than on theoretical concepts, meaning that the results show relative differences across districts. For example, **Access to agricultural credit** in Burkina Faso ranges from 0 - 9%, with the equal-count thresholds at 1% and 2%. Arguably this could all be classed as *low*, but using the equal-count thresholds allows the model to differentiate those districts that have *relatively* higher **access to credit** than other districts.

The second significant impact lies within the quality of the data - many of the variables were only found for province, or even regional, scale. Where possible, in the case of proportions or averages,

these coarser results have been allocated to the district level, leading to large blocks of districts with similar values. In these cases, the categories may be more skewed towards those larger blocks. For example, the classification of **rural population possessing mobile telephones** in Ghana is skewed towards the 'med' category (Table 3).

Table 3: Probability distribution of cellphone possession in Ghana (data source: Population & housing census, 2010)

	% Rural population possessing mobile telephones in Ghana (2010)	# districts	Hypothetical equal-
low	Less than 18%	29	31
med	18 - 30%	40	32
high	More than 30%	26	32

ii) The importance of the data

The conditional probability tables linking the data to the factors they represent are based on expert input and reflect both the *type* (positive or negative) and *strength* (very strong - strong -weak) of the relationship between the data and the factor. Simply, a *very strong* relationship means higher conditional probabilities, where a *weak* relationship has conditional probabilities closer to 0.5 (an even chance of any outcome occurring). The conditional probabilities of each type of relationship with no data, or perfectly evenly distributed data are illustrated in Table 4:

Table 4: Example conditional probability table

		Access to clean drinking water									
		Very s	trong rel	ation	Strong	relation		Weak relation			
		low	med	high	low	med	high	low	med	high	
Health	Good	0.2	0.5	0.8	0.33	0.5	0.66	0.45	0.5	0.55	
	Bad	0.8	0.5	0.2	0.66	0.5	0.33	0.55	0.5	0.45	

This means that data with a *very strong* relationship will have more effect on the value of the factor, and therefore contribute more to the final result, than data with a *weak* relationship. Most of the data in the current models are set to a *very strong* relationship with the factor they represent, unless expert input indicated otherwise.

iii) The importance of the factors

The value of each factor is calculated from the combined states of the data representing it. However, each factor also carries a weight that reflects how much it contributes to achieving the capital it belongs to - for example, do **Health status**, **Labour availability** and **Skills** contribute equally to achieving **Human capital**? Or is it more important to have a particular factor? These weights are provided by expert knowledge from consultations (Extremely important - Very important - Important - Somewhat important - Not important).

Weighting the factors means that a factor with a high weight will have more effect on the value of the capital, and therefore contribute more to the final result, than a factor with a low weight. An example of the effect is that a high-weight factor with a lower value may have a more positive impact on the value of the capital than a low-weight factor with a higher value.

iv) The importance of the capitals

The value of each capital is calculated from the combined, weighted states of the factors describing it. Similar to the factors, each capital also has a weight, reflecting how important that capital is to achieving long-term success of the project.

At this point in the model, the *noisy-AND* function provides an interface between the capitals and the final 'Success' which is calculated using a pure AND function, i.e. Success will only be positive if, and only if, <u>all</u> capitals are positive. Combined with the weighting of the capitals, this *noisy-AND* function translates the capitals into a probability that means: "If this capital is not present, how much will that reduce the likelihood of success? How necessary is this capital to the likelihood of success?" The weights used are drawn from the feedback and discussions at the consultations (Absolutely necessary - Very necessary - Necessary - Somewhat necessary - Not necessary).

For example:

- a. if a capital that is *absolutely necessary* is absent, the likelihood of success will be significantly reduced;
- b. however, if the capital was only *somewhat important*, the likelihood of success will not be much affected.

In another example, if all capitals are seen as *absolutely necessary*, the probability of success will be very low, because any lack in any capital will cause a significant reduction in 'Success'. On the other hand, if all capitals are seen as *not important*, the probability of success will be close to 100% - because no matter how low your level of capital is, it is not important, and therefore makes no difference to the likelihood of success.

REFERENCES

DFID. 1999. Sustainable Livelihoods Guidance Sheets. London: UK Department for International Development.

Djurfeldt, A.A., Djurfeldt, G., Lodin, J.B. 2013. Geography of Gender Gaps: Regional Patterns of Income and Farm–Nonfarm Interaction Among Male- and Female-Headed Households in Eight African Countries, *World Development* **48:** 32-47. http://dx.doi.org/10.1016/j.worlddev.2013.03.011

Kemp-Benedict, E. (2008) *Elicitation Techniques for Bayesian Network Models*. SEI Working Paper WP-US-0804. Also available at: http://www.sei-international.org/publications?pid=1102

Kemp-Benedict, E., Bharwani, S., de la Rosa, E., Krittasudthacheewa, C., and Matin, N. (2009) *Assessing Water-related Poverty Using the Sustainable Livelihoods Framework*, SEI Working Paper. Also available at: http://www.sei-international.org/publications?pid=1456

Mati, B., T. De Bock, M. M. Malesu, E. Khaka, A. Oduor, M. Nyabenge and V. Oduor. 2006. *Mapping the potentials for rainwater harvesting technologies in Africa: A GIS overview for the continent and ten selected countries*. World Agroforestry Centre (ICRAF), Netherlands Ministry of Foreign Affairs Nairobi, Kenya

Mazvimavi, K. and S. Twomlow. (2009). Socioeconomic and institutional factors influencing adoption of conservation farming by vulnerable households in Zimbabwe. *Agricultural Systems* **101**: 20-29.

Namara, R. E.; Awuni, J. A.; Barry, B.; Giordano, M.; Hope, L.; Owusu, E. S.; Forkuor, G. (2011). *Smallholder shallow groundwater irrigation development in the upper east region of Ghana*. Colombo, Sri Lanka: International Water Management Institute. 35p. (IWMI Research Report 143). doi: 10.5337/2011.214

Noble, A. D.; Bossio, D. A.; Penning de Vries, F. W. T.; Pretty, J.; Thiyagarajan, T. M. (2006). *Intensifying agricultural sustainability: An analysis of impacts and drivers in the development of 'bright spots'*. Colombo, Sri Lanka: Comprehensive Assessment Secretariat. 42p. Comprehensive Assessment Research Report 13.

Rusinamhodzi, L., M. Corbeels, M. Wijk, M. Rufino, J. Nyamangara and K. Giller. (2011). A metaanalysis of long-term effects of conservation agriculture on maize grain yield under rain-fed conditions. *Agronomy for Sustainable Development* **31**(4): 657-673

Shamon, B. and Naifeh, S. 2013. Gendered adoption patterns of informal irrigation technologies in the Upper East Region of Ghana, *European Journal of Natural Sciences* 11 http://www.bellpress.org/Journals/index.php/EJNS/article/view/1077

APPENDIX A: DEFINING THE MODELS

As described earlier, the **arrows** linking data-factor, factor-capital and capital-Success convey the conditional probabilities of how each node in the network influences the presence of the next node. Using the Bayes algorithm, the model calculates the probability that the **factor** is present given knowledge about the state of its **data variable** (high, medium or low), then the probability that the **capital** is present given the calculated state of its **factors**, then the probability that **Success** is present given the calculated state of all **capitals**. A similar application of Bayesian network modelling to analyse the likelihood of water poverty is explained in detail in Kemp-Benedict et al. (2009).

Figure 5: Conceptual model structure, showing the conditions for success (6 capitals) and the related factors and data (drawn by author)

The following tables detail the weightings used to construct the conditional probability tables (CPTs) systematically across the network, for all Volta models. These define how each node is indicative of the next in the probability chain (e.g. how does the data relate to the probable presence of the factor). In some cases we were provided with complete, detailed CPTs by experts during our consultations, but in most cases not, so a set of defaults were used, as detailed in each section.

Limpopo: Data – Factor

In the absence of detailed conditional probabilities from experts, the relationship between data and factor is a combination of *type* (positive or negative) and *strength* (strong, medium or weak):

- a *strong positive* relationship means that if the data (e.g. literacy) is high, the factor (e.g. Skills) will almost certainly be high as well (a 1:1 relationship)
- a medium positive relationship means that if the data is high, there is about a 70% chance that the factor will also be high
- a weak positive relationship means that if the data is high, there is about a 55% chance that the factor will also be high

A negative relationship simply means the factor state will be the inverse of the data state (if the data is high, the factor will be low.

Note: weightings are only shown for variables where data was available for at least one country

Thresholds give the range of the data for each category (L = Low; M = Medium; H = High). No thresholds reflects no data for that variable/country.

References reflect the source of the weighting for the relationship – is it positive/ negative/ weak/ strong. Where no reference was given in stakeholder consultations or found in literature, the researchers set the weighting.

					Conservation Agricultur	re	Irrigatio	1 <u> </u>	Small Reservo	irs	
					Water resources						
Wat	er availabili	ty for agricu	lture								
D_M	IARmin (CA)	Thresholds	(mm per yea	r):	mean annual rainfall		mean annual rainfa	ıll	mean annual rainfall		
L M H	Bots <350 350-700 >700	Moz <350 350-700 >700	SA <350 350-700 >700	Zim <350 350-700 >700	L M H -	-1 1 0.2	1 0.5 0 -0.5 -1 low med high		1 0.5 0 0 0.5 1 low med high	L M H	1 0 -1
D_M	IARavg (Irr,	SR) Threshol	ds (mm per	year):	References:						
L M H	Bots 400-460 460-500 500-530	Moz 500-700 700-830 830-900	SA 500-580 580-660 660-720	460-560	Rusinamhodzi et al (2011) < 600 good; 600-1000 minir > 1000 bad Stakeholder consultations	mal;					

Wate	er accessibil	ity for agricu	lture						
D_pr	ox_riv Thre	sholds (%):			6 district area <1km to a river % district area <1k	m to a rive	% district area <1km	to a	river
	Bots	Moz	SA	Zim	L -0.1	L -1	0.5	L	-0.5
L	9-13	0-5	12-16.5	0-15	M 0	M 0	0	М	0
М	13-15.5	5-10.5	16.5-20	15-19.5	-0.5	H 1		Н	0.5
Н	15.5-24	10.5-17	20-25	19.5-22	low med high	п і	low med high		
D_su	rfwater Thr	esholds:			density of surface	water	density of surface wa	iter l	oodie
	Bots	Moz	SA	Zim	bodies per km²		per km²		
	0.0002-	0.009-		0.004-	1		1		1
L	0.0008	0.038	0.001-0.002	0.028	0.5	L -1	0.5	L	1
	0.0008-	0.038-		0.028-	-0.5	M -0.3	-0.5	M	0
М	0.005	0.047	0.002-0.006	0.078	-1	Н 1	-1	Н	-1
	0.005-				low med high		low med high		
Н	0.0075	0.047-0.27	0.006-0.25	0.078-1.03	Reference:				
					Stakeholder consu	ılts (SA)			
D_wa	ater_infr Th	resholds (% h	ouseholds):		access to water sto	orage	access to water stora	ige (S	SWIs)
	Bots	Moz	SA	Zim	(SWIs)		1 0.5		-1
L	43-72				1			L	
M	72-74.5				0.5	L -1	-0.5	M	
					-0.5	M 0		Н	1
Н	74.5-87				-1	Н 1	low med high		
					low med high				
D_wa	atertable Th	resholds (mb	gl):		depth to water tab	ole	depth to water table		
	Bots	Moz	SA	Zim	0.5		0.5		
L	0-7	0-7	0-7	0-7	0.3	L 1	0.3	L	1
М	7-25	7-25	7-25	7-25	-0.5	M -0.5	-0.5	М	-0.5
Н	>25	>25	>25	>25	low med high	Н -1	low med high	Н	-1
	- 23	, 25	, 23	, 23	low filed flight		low filed flight		

					Social Cap	oital							
Comn	nunity lead	ership & Orgo	anisational co	apacity									
D_nu	mCBOs Thre	esholds (#/10	00HH):		number of commun	ty		number of community			number of community		
L M H	Bots 0.1-0.3 0.3-0.4 0.4-0.6	Moz 0.4-1.5 1.5-4.8 4.8-7.8	SA 0.6-0.78 0.78-1.4 1-4-1.6	Zim 0.02-0.03 0.03-0.05 0.05-0.08	organisations 1 0.5 0 -0.5 -1 low med high	L M H	-1 0 1	organisations 1 0.5 0 -0.5 -1 low med high	L M H	-1 0 1	organisations 1 0.5 0 -0.5 -1 low med high	L M H	-1 0 1
Refer	ences:				References:			low med nigh			low med nigh		
Noble	e et al (2006) (leadership	important)		Mazvimazi & Twoml (NGOs important)	ow (20	009)						
D_vo	ting Thresho	olds (%):			voting turnout			voting turnout			voting turnout		
	Bots 71-76 76-79 79-81 ort network	Moz 43-56 56-60 60-66 available nresholds (%)	SA 64-68 68-76 76-82	Zim	access to informatio	L M H	-1 0 1	access to informat	L M H	-1 0 1	access to informat	L M H	-1 0 1
_	Bots	Moz	SA	Zim	radio, newspaper or	TV		radio, newspaper	or TV		radio, newspaper	or TV	
L M H	63-76 76-81 81-87	32.1 41.5	68-73 73-76 76-83	20-22 22-27 27-41	1 0.5 0 -0.5 -1 low med high	L M H	-1 0 1	1 0.5 0 -0.5 -1 low med high	L M H	-1 0 1	1 0.5 0 -0.5 -1 low med high	L M H	-1 0 1
D_rer	mittances T	nresholds (%)	:		proportion of incom	e fron	1	proportion of inco	me fror	n	proportion of inco	me fron	า
L M H	Bots 17-35 35-39 39-61	Moz 17 22	SA 10-14 14-28 28-29	Zim	remittances 1 0.5 0 -0.5 -1 low med high	L M H	-1 0 1	remittances 1 0.5 0 -0.5 -1 low med high	L M H	-1 0 1	remittances 1 0.5 0 -0.5 -1 low med high	L M H	-1 0 1

Acces	s to land						
D_ow	n_land Thr	esholds (%):			ownership of land	ownership of land	
L M H	Bots 44-61 61-64 64-71	Moz 87 92	SA	Zim 40-60 60-70 70-85	L -0.5 M C H 0.5 References: Stakeholder consultations	0 0.5 M 0	
D_av		sholds (ha):				average farm size	
L M H	Bots 2 3 4	Moz 0.9-1.7 1.7-1.9 1.9-2.4	SA	Zim 2-3 3-5 5	References: Mazvimazi & Twomlow 2009	0.5 O.5 O.5 O.5 O.5 O.5 O.5 O.5	
		to resources			proportion of female-headed	proportion of female-headed	proportion of female-headed
L M H	nHH Thresh Bots 32-42 42-45 45-57	Moz 37.2 47.2	SA 30-38 38-45 45-59	Zim 33-47 47-63 63-70	proportion of female-neaded households L 0.9 M 0 H -0.9 References: Mazvimazi & Twomlow (2009 - Gender only significant to 10%	households L 0.5 M 0 M 0 H -0.5 Reference: Research team – evidence from literature suggests a negative relationship, but	households L 0.5 M 0 H -0.5 Reference: Research team – evidence from literature suggests a negative relationship, but conflicting results suggest it to be a weak relationship

D_gei	mployment	Thresholds (women:men)	:						female employm	nent rate	<u></u>
	Bots	Moz	SA	Zim						0.5		4
L	0.6-0.8	0.93		0.14-1.24						0.5	L	-1
М	0.8-0.9			1.24-1.3						-0.5	N	
Н	0.9-1	0.95		1.3						low med high	Н	1
					Financi	al capita	ı					
Weal	th											
D_po	verty Thresl	nolds (%):			incidence of pov	erty		incidence of poverty		incidence of pov	erty	
	Bots	Moz	SA	Zim	0.5	1	1	0.5	1	0.5	1	1
L	12-18	50-64	43-51	45-74	0	M	0.3	0		0	M	0.3
М	18-20	64-89	51-61	74-81	-0.5	Н	-0.7	-0.5 - -1 H		-0.5	Н	-0.7
Н	20-40	89-95	61-70	81-96	low med high	'''	-0.7	low med high	-0.7	low med high	"	-0.7
Acces	s to credit				•			•				
D_ava	ailMFIs Thre	esholds (#/10	00 HH):		availability of mi	cro-finar	ice	availability of micro-fi	nance	availability of mi	cro-finar	nce
	Bots	Moz	SA (%)	Zim	institutions			institutions		institutions		
			, ,	0.004-	1		0.0	1	0.2	1		0.0
L		1	14-14.5	0.008	0.5	L	0.3		L 0.3	0.5	L	0.3
				0.008-	-0.5	M	0.7	-0.5	M 0.7	-0.5	M	0.7
M			14.5-24	0.011	-1 low med high	Н	1	-1 low med high	H 1	-1 low med high	Н	1
Н		2.4	24-31	0.011-0.02	References:			References:		low med mgn		
					Stakeholder cons	sults (7in	n)	Stakeholder consultat	ions			
					Stakeriolaer cons	Jares (Ziri	•,	Namara et al (2011) -				
								tenure security				

					Human co	apital	1						
Heal	th status												
D_ws	safe Thresho	olds (%):			households with sa	households with safe drinking households with safe drinking					households with safe drinking		
L M H	Bots 91-94 94-99.9 99.9-100	Moz 50-80 80-90 90-97	SA 71-93 93-97 97-100	Zim 25-56 56-80 80-86	water 1 0.5 0 -0.5 -1	L M H	-1 0.5 1	water 1 0.5 0 -0.5 -1	L M H	-1 0.5 1	water 1	L M H	-1 0.5 1
					low med high			Reference: Stakeholder consult	ts (S <i>l</i>	۸)	low med high References: Stakeholder consul	ts (Zin	า)
D_fo	od_sec Thre	· · · · · · · · · · · · · · · · · · ·			food security level			food security level			food security level		
L M H	Bots 79-93 93-99	Moz 35-74 74-82 82-89	SA 82-90 90-93 93-99	Zim 72-80 80-89 89-96	0.5 0 -0.5 -1 low med high	L M H	-1 0 1	0.5 - 0 - 0.5 - 1 low med high	L M H	-1 -0.3 1	0.5 - 0 -0.5 - 1 low med high	L M H	-1 0.5 1
	33 33	02 03	33 33	03 30	low lined lings			Reference: Stakeholder consult	ts (S <i>l</i>	A)	References: Stakeholder consul	ts (Zin	า)
D_cli	nics Thresho	olds (#/1000H	HH):					density of clinics					
L M H	Bots	Moz 0-0.25 0.25-0.5 0.5-1.2	SA 0.14-0.23 0.23-0.33 0.33-0.45	Zim				no.5 low med high Reference: Stakeholder consult	L M H	-0.3 0 0.3			

Labo	ur availabili	ty											
D_w	ork_pop Thr	esholds (% 15	5-65):		working age pop	ulation		working age pop	ulation		working age popu	ulation	
L M H D_g_ L M H	Bots 28-33 33-40 40-51 ratio Thresh Bots 0.97-1.06 1.06-1.08 1.08-1.16	Moz 47-49 49-51 51-57 holds (women Moz 1.08-1.24 1.24-1.26 1.26-1.33	SA 52-57 57-63 63-70 :men): SA 0.82-0.98 0.98-1.14 1.14-1.27	Zim 52-53 53-55 55-57 Zim 0.85-1.05 1.05-1.11 1.11-1.18	no.5 observed to the control of the	L M sults (Zid L M H	-1 0 1 m) -0.7 0	References: Stakeholder congender ratio	L M H sults (SA L M H	-0.7 -0.3 0.7 A, Zim) -1 0 1	References: Stakeholder cons gender ratio	L M ults (Zir L M H	-1 0.3 1 n) -0.7 0 0.7
D_HI L M H	V Threshold Bots 15-dec 15-18 18-27	s (%): Moz 10 29.9	SA 14-26 26-32 32-47	Zim 15-19 19-21 21	HIV prevalence 1	L M H sults (Zi	0.6 0.3 -0.6	HIV prevalence	L M H	1 -0.15 -1	HIV prevalence	L M H	0.6 0.3 -0.6
Skills	(education	and training)					-	1			1		
	eracy Thresh Bots 75-79 79-92 92-95		SA 45-54 54-61 61-70	Zim 86-95 95-95 95-96	literacy rate 1 0.5 0 -0.5 .1 low med high	L M H	-0.6 0.05 0.5	literacy rate 1 0.5 0 -0.5 -1 low med high	L M H	-0.6 0.05 0.5	literacy rate 1 0.5 0 0.5 1 low med high References: Stakeholder cons	L M H ults (Zir	-0.6 0.05 0.5 n)

D_eq	uipment Th	resholds (%):			access to agricu	ltural		access to agricultural		access to agricultural		
- '	Bots	Moz	SA	Zim	equipment			equipment		equipment		
L M H	4-28 28-32 32-40	9.3		32-40 40-51 51	1 0.5 0 -0.5	L M H	-0.6 0.3 1	L M H	-1 0 1	1 0.5 0 -0.5	L M H	-1 0 1
					low med high References:			low med high		low med high		
					Stakeholder cor	sults (Zim)					
Acces	s to marke	ts			Jean Grader Go.		,	<u> </u>		I		
D_ma	arket Thresh	holds (hrs):			distance to the	nearest m	arket	distance to the nearest		distance to the neare	st m	arket
	Bots	Moz	SA	Zim	town			market town		town		
L	0-1	0-4	1-2	1-2.9	0.5	L	1	0.5 L	1	0.5	L	1
М	1-3.25	4-8	2-3.5	2.9-5	0	М	0	0 M	0	0	М	0
Н	3.25-4.2	8-14	3.5-6	5-8.5	-0.5 -1 low med high	Н	-1	low med high	-1	-0.5 - low med high	Н	-1
D_ce	II_net Thres	sholds (%):			possession of ce	ellphones		possession of cellphones		possession of cellpho	nes	
	Bots	Moz	SA	Zim	0.5	L	-1	0.5 - L	-1	0.5		-1
L	52-71	0.1-0.3	66-71		0	М	0	o M	0	0	L M	0
М	71-89	0.3-0.5	71-75		-0.5	H	1	-0.5 - H	1	-0.5	Н	1
Н	89-95	0.5-2.1	75-83		low med high	- 11	1	low med high	1	low med high	"	1
D_tra	insport Thre	esholds (%):						have transportation		have transportation		
	Bots	Moz	SA	Zim				0.5	4	0.5		4
L		6-21							-1	0.3	L N4	-1 0.3
М		21-38						-0.5 -1 H	0.3	-0.5	М	
Н		38-69						low med high	1	-1 low med high	Н	1
								References:				
								Stakeholder consults (SA)			
								l .		<u> </u>		

D in	nut market	: Thresholds:			density of input markets density of input markets
'''	_		CA	7:	
	Bots	Moz	SA	Zim	0.5 L -1 0.5 L -1
L	20-21				M = 0
M	21-23				-0.5 H 1 -0.5 H 1
Н	23-34				low med high
					References:
					Stakeholder consults (SA)
		et Thresholds	(# populated	places	number of output markets number of output markets
1000	km⁻²):				
	Bots	Moz	SA	Zim	
L	0. 2-0. 9	0. 2-0. 6	0. 3-0. 5	0. 4-1.1	M 0 -0.5 M 0
М	0. 9-5	0. 6-1.7	0. 5-1.1	1.1-2	ow med high H 1 ow med high
Н	5-19	1.7-19	1.1-140	2-11	References:
	0 20		2.2 2.0		Stakeholder consults (SA)
oil s	uitability fo	r agriculture			
		ds (% district v	with high SOC):	soil organic carbon content soil organic carbon content
	Bots	Moz	SA	Zim	
L	21-68	77-96	5-55	0.98-17	0.5 L -1 0.5 L -1
М	68-80	96-99	55-85	17-30.2	M 0.5 0 M 0
					$\begin{bmatrix} 1 \end{bmatrix}$ H 1 $\begin{bmatrix} 1 \end{bmatrix}$ H 1
Н	80-99	99-100	85-100	30.2-68.3	low med high
					References:
					Stakeholder consults (SA)

D_cla	y Threshold	y Thresholds (% district with high clay content):		ontent):	presence of clay	in the to	psoil	presence of clay in	the topsoi	presence of clay in the topsoil		
	Bots	Moz	SA	Zim	0.5	L	-0.3	0.5	L -0.3	0.5	L	-1
L	41-84	3-30	10-14	0.5-3.4 3.4-7.2	-0.5	M	0.3	-0.5	M 0.3	-0.5	М	0
M	84-97	30-42	14-50		-1 low med high	Н	1	-1 low med high	H 1	-1	Н	1
Н	97-99	42-70	50-100	7.2-50.5	References:			low med nigh		low med high		
					Stakeholder con	sults (Zin	ո)					
Land	availability	for agricultu	re		1		,					
D_cr	opland Thre	sholds (ha):			total cropland a	rea		total cropland area		total cropland area		
	Bots	Moz	SA	Zim	0.5		-1	0.5	L -0.9	0.5		-1
L	523-2658	158-8361	2648-73917	1210- 40975	0	M	-1	0	L -0.9 M 0.3	0	M	-1
М	2658- 15944 15944-	8361- 19473 19473-	73917- 196949 196949-	40975- 68025 68025-	-0.5 - low med high	Н	1	low med high References:	H 1	-0.5	Н	1
Н	174485	54848	847739	170170				Stakeholder consul	ts (Zim)			
D_slo	lope Thresholds (% district with flat land):		average slope			average slope		average slope				
L	Bots	Moz	SA 73-80	Zim	0.5	L	-0.3	0.5	L -0.3		L	-0.3
M			80-90		-0.5	M H	0 1	-0.5	M 0 H 1	-0.5	M H	0 1
Н	91-100	97-100	90-100	99-100	low med high			low med high		low med high		
D_pc	p_dens Thre	esholds (# pe	ople km ⁻²):		population dens	sity						
	Bots	Moz	SA	Zim	0.5	L	0.7					
L	4-10	1-4	20-50	8-12	0		-0.15					
M	10-728	4-34	50-75	12-14	-0.5	H	-0.7					
Н	728-1135	34-865	75-540	14-37	low med high		-0.7					

Bion	nass availabi	lity for agricu	ulture							
D_bi	i o_prod Thre	sholds:			potential bioma	ss produ	ction			
L M H	Bots 0.08-0.64 0.64-1.06 1.06-1.32	Moz 1.45-1.9 1.9-2.5 2.5-3	SA 0.04-0.95 0.95-1.55 1.55-2.6 ad km ⁻²):	Zim 0.77-1.65 1.65-1.99 1.99-2.8	References: Stakeholder cor					
L M H	<i>N</i> 11-12 2-6 12-19 7-15			low med high References: Stakeholder cor	L M H	0.5 0 -0.5				
L M H	ryspells Thre Bots 1809-2136 2136-2382 2382-2628	Moz 15-2077 2077-2346 2346-2628	SA 1384-1904 1904-2274 2274-2346	Zim 1988-2218 2218-2375 2375-2601	likelihood of dry growing season 1	L M H	0.7 0.3 -1	likelihood of dry spells during growing season L 0. M 0. H -	growing season	during L -0.7 M -0.3 H 1

Agricultural pests and diseases									
D_los	s_prod Thre	esholds (%):				loss of harvest to pests or			
	Bots	Moz	SA	Zim		disease			
L	4-10					0.5 L 1			
M	10-18					0 M 0			
Н	18-22					low med high			
					References:	References:			
					Namara et al (2011)	Stakeholder consults (SA)			

Limpopo: Factor – Capital

How important is a high level of the *factor* (e.g. Water availability for agriculture) to achieving a high level of the *capital* (e.g. Water resources)? Where:

4 = Essential; 3 = Very important; 2 = Important; 1 = Somewhat important; 0 = Not important

	Conservation Agriculture	Small scale irrigation	Small reservoirs
Water availability	4	4	4
Water access	4	4	4
Water quality	0	3	4
Organisational capacity	3	4	4
Support network	3	3*	3*
Land access	3	4	3
Conflict	3	4	0
Gender	3	4	2
Wealth	3*	3*	4*
Credit access	3	3	4
Health	3	3	3
Labour availability	4	3	3
Skills	4	4	3
Infrastructure	4	4	4
Market access	3	4	1
Soil suitability	4	3	4
Land availability	4	4	2
Biomass	4	0	0
Extreme Weather*	3*	3*	-
Weeds and pests	2	0	0
* No weight given by workshop p	participants, so value assig	gned by modeller	

Limpopo: Capital - Success

How necessary is the *capital* (e.g. Water resources) for successful projects? Where:

4 = Essential (the project will certainly fail without it); 3 = Important; 2 = Somewhat Important; 1= Not important (its presence or absence will make no difference to the likelihood of success)

	Conservation Agriculture	Small scale irrigation	Small reservoirs
Water resources	4	4	4
Social capital	3	4	3
Financial capital	3	3	4
Human capital	3	3	3
Physical capital	3	4	3
Natural capital	4	3	3

Limpopo: Data missing

* denotes data is missing

	Botswana	Mozambique	South	Zimbabwe
			Africa	
	Water resour	ces		
Water availability for agriculture				
mean annual rainfall (mm)				
Water accessibility for agriculture				
% district area <1km to a river				
depth of water table				
access to surface water				
access to water storage infrastructure		*	*	*
possession of water permits	*	*	*	*
Water quality for agriculture				
salinity of water	*	*	*	*
	Social Capit	al		
Community leadership & Organisational co	apacity			
number of community organisations				
voting turnout (%)				*
number of conflicting interest groups	*	*	*	*
number of disputes managed	*	*	*	*
Support network available				
access to information from radio,				
newspaper or television				
proportion of income from remittances				*
Access to land				
ownership of land			*	
average farm size			*	
Gendered access to resources				
proportion of female-headed households				
female employment rate			*	
women's access to assets	*	*	*	*
	Financial cap	ital		
Wealth				
incidence of poverty				
Access to credit				
availability of micro-finance institutions	*			
	Human capit	tal		
Health status				
households with safe drinking water				

	Botswana	Magambiana	South	Zimbabwe
	Dotswana	Mozambique	Africa	Zimbabwe
food insecurity level			Annea	
density of clinics	*			*
Labour availability				
working age population (15-65)				
gender ratio (women:men)				
HIV prevalence				
Skills (education and training)				
literacy rate				
agricultural extension services				*
use of soil management practices	*	*	*	*
			*	
employment rate			·	
	Physical capi	tal		
Physical infrastructure	, <u>_</u> .			
proximity to a road				
access to agricultural equipment			*	
post-harvest infrastructure available	*	*	*	*
Access to markets				
distance to the nearest market town				
possession of cellphones				*
density of input markets		*	*	*
density of output markets				
have transportation	*			*
•				
	Natural capi	tal		
Soil suitability for agriculture				
soil organic carbon content				
presence of clay loam in the district				
Land availability for agriculture				
total cropland area				
average slope				
population density				
Biomass availability for agriculture				
potential biomass production				
cattle density (head/km2)				
Weather variability				
incidence of dry spells during growing				
season				
Agricultural pests and diseases				
loss of harvest to pests or disease		*	*	*

Volta: Data - Factor

In the absence of detailed conditional probabilities from experts, the relationship between data and factor is a combination of *type* (positive or negative) and *strength* (strong, medium or weak):

- a strong positive relationship means that if the data (e.g. literacy) is high, the factor (e.g. Skills) will almost certainly be high as well (a 1:1 relationship)
- a *medium positive* relationship means that if the data is high, there is about a 70% chance that the factor will also be high
- a weak positive relationship means that if the data is high, there is about a 55% chance that the factor will also be high

A negative relationship simply means the factor state will be the inverse of the data state (if the data is high, the factor will be low.

Note: weightings are only shown for variables where data was available for at least one country **Thresholds** give the range of the data for each category (L = Low; M = Medium; H = High). No thresholds reflects no data for that variable/country.

References reflect the source of the weighting for the relationship – is it positive/ negative/ weak/ strong. Where no reference was given in stakeholder consultations or found in literature, the researchers set the weighting.

			SWC			Irrigation			Small Reservoi	rs	
				Wat	ter re	sources					
Wa	ter availabilit	y for agricult	ture								
D_N	MAR Threshol	ds (mm):	mean annual rainf	all		mean annual rain	fall	mean annual rainfall			
L	BF 200-750	GH 200-750	0.5	L	1	0.5	L	-1	0.5	L	1
M H	750-1200 >1200	750-1200 >1200	-0.5 - low med high	M H	0.5 -0.5	-0.5 - low med high	M H	0 1	-0.5 -1 low med high	M H	0 -1
	7 1200	7 1200	Reference: Mati et al 2006	•••	0.5	low med mgm		_	low med mgn		_
	ter accessibili		1								
D_p	orox_riv Thres	sholds (%):	% district area <1k	m to a	a	% district area <1 river	km to a	1	% district area <1k river	m to a	a
L	BF 0-12	GH 0-14.4	0.5	L	-1	0.5	L	-1	0.5	L	-0.5
М	12-18.2	14.4-22.2	-0.5	М	0	-0.5	М	0	-0.5	Μ	0
Н	18.2-40	22.2-33	low med high	Н	1	low med high	Н	1	low med high	Н	0.5
			Reference: Stakeholder consu	ılts (GI	H)	Reference: Stakeholder cons	ults (GH	۱)			
D_v (mb	vatertable Th	resholds	depth to water tal		,	depth to water ta			depth to water tab	le	
	BF	GH	0.5			1 0.5			0.5		
L	0-7	0-7	0	L	1	0	L	1	0	L	0.6
М	7-25	7-25	-0.5	M	-0.5	-0.5	M	-0.5	-0.5	M	0
Н	>25	>25	low med high	Н	-1	low med high	Н	-1	low med high	Н	-0.6
									Reference: Stakeholder consu	lts (BI	F)

			SWC			Irrigation			Small Reservoirs		
	ss to land										
D_o	wn_land Thre	esholds (%):				ownership of land	d		ownership of land		
	BF	GH				0.5			0.5		
L	67-90.2	4-7				0	L	-0.6	0	L	-0.6
M	90.2-93.2	7				-0.5	М	0		М	0
Н	93.2-98	7-15				low med high	Н	0.6	-1 □ low med high	Н	0.6
						Reference:	_		Reference:		
						Stakeholder cons	sults (GF	I)	Stakeholder consu	lts (G	H)
	iced Conflict										
D_u	nemploy Thre	esholds (%):	unemployment ra	ate							
	BF	GH	0.5								
L	0.3-0.94		0	L	1						
M	0.94-2.14		-0.5	М	0						
Н	2.14-2.3		low med high	Н	-1						
			Reference:								
			Stakeholder cons	ults (GF	1)						
Gen											
D_fe	D_femHH Thresholds (%):		female-headed ho	ousehol	lds	female-headed h	ousehol	ds	female-headed hou	useho	lds
	BF	GH	0.5			0.5			0.5		
L	4-7.6	14-27.7	0	L	0.5	0	L	-0.5	0	L	0.5
M	7.6-10.2	27.7-36.8	-0.5	М	0	-0.5	М	0		М	0
Н	10.2-13	36.8-39	-1 □ low med high	Н	-0.5	low med high	Н	0.5	-1 □ low med high	Н	-0.5
			Reference:			Reference:	_		Reference:		
			Djurfeldt et al (20	13)		Shamon & Naifeh	ı (2013)		Djurfeldt et al (201	3)	
	_credit Thresh	nolds	women's access to credit			women's access to credit			women's access to	credi	t
(woı	men:men):		1 7			1 7			1 7		
	BF	GH	0.5			0.5 -			0.5		
L		0.45-0.6	0	L	-1	0	L	-1	0	L	-1
M		0.6-0.66	-0.5	М	0	-0.5	M	0	-0.5	М	0
Н		0.66-0.85	low med high	Н	1	low med high	Н	1		Н	1
			Reference:			Reference:			Reference:		
			Djurfeldt et al (20	13)		Djurfeldt et al (20)13)		Djurfeldt et al (201	3)	
	_ ratio Thresh	olds	gender ratio								
(WOI	men:men):	611	1 7								
	BF	GH	0.5								
L		0.8-1	-0.5	L	-1						
М		1-1.05	-0.5	М	0						
Н		1.05-1.2	low med high	Н	1						
			Reference:								
			Stakeholder cons	ults (GF	1)						

Volta: Factor – Capital

How important is a high level of the *factor* (e.g. Water availability for agriculture) to achieving a high level of the *capital* (e.g. Water resources)? Where:

4 = Essential; 3 = Very important; 2 = Important; 1 = Somewhat important; 0 = Not important

	Soil Water Conservation**	Small scale irrigation	Small reservoirs	
Water availability	4	4	4	
Water access	4	4	4	
Water quality	0	3	2	
Organisational capacity	3	3	3	
Support network	3	3*	3*	
Land access	3	2	2	
Conflict	3	3	2	
Gender	3	2	2	
Wealth	3*	3*	3*	
Credit access	3	3	3	
Health	3	1	4	
Labour availability	4	3	3	
Skills	4	2	2	
Infrastructure	4	3	3	
Market access	3	4	4	
Soil suitability	4	1	3	
Land availability	4	4	4	
Biomass	4	1	2	
Extreme Weather*	3*	-	3*	
Weeds and pests	2	3	3	
* No weight given by workshop participants, so value assigned by modeller				

^{**} same as Limpopo - no input from workshop participants

Volta: Capital – Success

How necessary is the *capital* (e.g. Water resources) for successful projects? Where:

4 = Essential (the project will certainly fail without it); 3 = Important; 2 = Somewhat Important; 1= Not important (its presence or absence will make no difference to the likelihood of success)

	Soil Water Conservation**	Small scale irrigation	Small reservoirs	
Water resources	4	4	4	
Social capital	3	3	3	
Financial capital	3	3	3	
Human capital	3	3	3	
Physical capital	3	4	4	
Natural capital	4	3	3	
** same as Limpopo - no input from workshop participants				

Volta: Data missing

^{*} denotes data is missing

	Burkina Faso	Ghana			
Water resources					
Water availability for agriculture					
mean annual rainfall (mm)					
Water accessibility for agriculture					
% district area <1km to a river					
depth of water table					
access to surface water					
access to water infrastructure	*	*			
Water quality for agriculture					
salinity of water	*	*			
Social Capital					
Community leadership & Organisational capacity					
number of community organisations					
voting turnout (%)					
number of conflicting interest groups	*	*			
number of disputes managed	*	*			
Support network available					
access to information from radio, newspaper or TV					
proportion of income from remittances	*				
No Conflict					
number of ethnic groups	*	*			
unemployment rate		*			
Access to land					
ownership of land					

	Burkina Faso	Ghana
Gendered access to resources		
proportion of female-headed households		
women with credit	*	
Financial capital		
Wealth		
incidence of poverty		
Access to credit		
availability of micro-finance institutions		
Human capital		
Health status		
households with safe drinking water		
malnutrition prevalence		
density of clinics		
Labour availability (15.65)		
working age population (15-65)		
gender ratio (women:men)	*	*
migration	*	*
income generation	<u>~</u>	<u>~</u>
Skills (education and training)		
literacy rate	*	*
agricultural extension services	·*	
Physical capital		
Physical infrastructure		
proximity to a road		
access to agricultural equipment		
Access to markets		
distance to the nearest market town		
possession of cellphones		
density of input markets	*	
density of output markets		
have transportation		
Natural capital		
Soil suitability for agriculture		
soil organic carbon content		
presence of clay loam in the district		
Land availability for agriculture		
total cropland area		
average slope	*	*
population density		
urbanisation	*	*
Biomass availability for agriculture		

	Burkina Faso	Ghana
potential biomass production		
Weather variability		
incidence of dry spells during growing season		
Agricultural pests and diseases		
loss of harvest to pests or disease	*	*