Contrôle de connaissances ACCQ203a – Algorithmes pour l'algèbre

1er février 2023 10h15 – 11h45

Documents autorisés : 1 feuille A4 recto-verso manuscrite, dictionnaire de traduction imprimé. Sont interdits : notes de cours, polycopié et matériel électronique (calculatrice, ordinateur, téléphone, etc.).

Durée: 1h30.

Exercice 1. On définit la matrice A suivante

$$\mathbf{A} = \begin{pmatrix} -27 & 40 & -55 \\ -40 & 59 & -82 \\ 15 & -23 & 29 \end{pmatrix} \in \mathbb{Z}^{3 \times 3}.$$

On pose $\mathbf{A}' = 10\mathbf{A}$.

- 1. Donner la forme normale de Smith de A. (On ne demande pas les matrices de passage). (3 pts)
- 2. On note N le sous-module de \mathbb{Z}^3 engendré par les colonnes de la matrice \mathbf{A} . Quel est le rang de la partie libre et la suite des facteurs invariants de la partie de torsion du quotient \mathbb{Z}^3/N ?
- 3. On note N' le sous-module de \mathbb{Z}^3 engendré par les colonnes de la matrice $\mathbf{A}' = 10\mathbf{A}$. Même (½ pt) question pour le quotient \mathbb{Z}^3/N' .
- 4. Quel est l'idéal annulateur de la partie de torsion de \mathbb{Z}^3/N' ? (½ pt)

Solution 1. 1. On effectue la suite d'opération suivantes. On commence par essayer de faire apparaître un 1 en position de pivot (ce qui semble possible puisque le pgcd entre 27 et 40 est 1).

Avec $C_2 \leftarrow C_2 + C_1$,

$$\mathbf{A} = \begin{pmatrix} -27 & 13 & -55 \\ -40 & 19 & -82 \\ 15 & -8 & 29 \end{pmatrix} \qquad \mathbf{L} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad \mathbf{C} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Avec $C_1 \leftarrow C_1 + 2C_2$,

$$\mathbf{A} = \begin{pmatrix} -1 & 13 & -55 \\ -2 & 19 & -82 \\ -1 & -8 & 29 \end{pmatrix} \qquad \mathbf{L} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad \mathbf{C} = \begin{pmatrix} 3 & 1 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

On peut rendre le coefficient pivot positif avec $C_1 \leftarrow -C_1$

$$\mathbf{A} = \begin{pmatrix} 1 & 13 & -55 \\ 2 & 19 & -82 \\ 1 & -8 & 29 \end{pmatrix} \qquad \mathbf{L} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad \mathbf{C} = \begin{pmatrix} -3 & 1 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

On simplifie les lignes en effectuant $L_2 \leftarrow L_2 - 2L_1$ et $L_3 \leftarrow L_3 - L_1$

$$\mathbf{A} = \begin{pmatrix} 1 & 13 & -55 \\ 0 & -7 & 28 \\ 0 & -21 & 84 \end{pmatrix} \qquad \mathbf{L} = \begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix} \qquad \mathbf{C} = \begin{pmatrix} -3 & 1 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

On fait de même sur les colonnes avec $C_2 \leftarrow C_2 - 13C_1$ et $C_3 \leftarrow C_3 + 55C_1$

$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -7 & 28 \\ 0 & -21 & 84 \end{pmatrix} \qquad \mathbf{L} = \begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix} \qquad \mathbf{C} = \begin{pmatrix} -3 & 40 & -165 \\ -2 & 27 & -110 \\ 0 & 0 & 1 \end{pmatrix}$$

À ce stade, nous observons que le 1 en pivot divise tous les coefficients restants. On peut donc s'attaquer au prochain sous-bloc. Si nous étions pressés de conclure, on pourrait simplement constater que le bloc 2×2 restant est de rang 1 et de pgcd 7. Directement, on sais que le bloc se réduira simplement en $\begin{pmatrix} 7 & 0 \\ 0 & 0 \end{pmatrix}$

Pour le plaisir de faire des calculs, nous corrigeons les signes avec $C_2 \leftarrow -C_2$.

$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 7 & 28 \\ 0 & 21 & 84 \end{pmatrix} \qquad \mathbf{L} = \begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix} \qquad \mathbf{C} = \begin{pmatrix} -3 & -40 & -165 \\ -2 & -27 & -110 \\ 0 & 0 & 1 \end{pmatrix}$$

On continue avec l'opération $C_3 \leftarrow C_3 - 4C_2$

$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 7 & 0 \\ 0 & 21 & 0 \end{pmatrix} \qquad \mathbf{L} = \begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix} \qquad \mathbf{C} = \begin{pmatrix} -3 & -40 & -5 \\ -2 & -27 & -2 \\ 0 & 0 & 1 \end{pmatrix}$$

Il reste à faire $L_3 \leftarrow L_3 - 3L_2$

$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 7 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad \mathbf{L} = \begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 5 & -3 & 1 \end{pmatrix} \qquad \mathbf{C} = \begin{pmatrix} -3 & -40 & -5 \\ -2 & -27 & -2 \\ 0 & 0 & 1 \end{pmatrix}$$

On pose

$$\mathbf{\Delta} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 7 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

2. On peut observer que $\mathbf{LAC} = \Delta$ équivaut à $\mathbf{A} = \mathbf{L}^{-1} \Delta \mathbf{C}^{-1}$. Comme \mathbf{C} est une matrice de $\mathbf{GL}_3(\mathbb{Z})$, l'image N de \mathbf{A} est aussi l'image de la matrice $\mathbf{L}^{-1} \Delta$. Appelons \mathbf{l}_1 , \mathbf{l}_2 , \mathbf{l}_3 les vecteurs colonne de la matrice \mathbf{L}^{-1} . Ainsi une base de N est simplement $(\mathbf{l}_1, 7\mathbf{l}_2)$. Comme \mathbf{L} est une matrice de $\mathbf{GL}_3(\mathbb{Z})$, \mathbf{l}_1 , \mathbf{l}_2 , \mathbf{l}_3 forme une base de \mathbb{Z}^3 .

On peut alors facilement identifier le quotient \mathbb{Z}^3/N à

$$0\mathbf{l}_1 \oplus (\mathbb{Z}/7\mathbb{Z})\mathbf{l}_2 \oplus \mathbb{Z}\mathbf{l}_3 \simeq (\mathbb{Z}/7\mathbb{Z}) \oplus \mathbb{Z}.$$

La partie libre est \mathbb{Z} , de rang 1. La partie de torsion est $(\mathbb{Z}/7\mathbb{Z})$, les facteurs invariants sont simplement (7).

3. Le raisonnement est le même avec 10Δ à la place de Δ . La base de N' est $(10l_1, 70l_2)$. Le quotient \mathbb{Z}^3/N' s'identifie à

$$(\mathbb{Z}/10\mathbb{Z})\mathbf{l}_1 \oplus (\mathbb{Z}/70\mathbb{Z})\mathbf{l}_2 \oplus \mathbb{Z}\mathbf{l}_3 \simeq (\mathbb{Z}/10\mathbb{Z}) \oplus (\mathbb{Z}/70\mathbb{Z}) \oplus \mathbb{Z}.$$

La partie libre est \mathbb{Z} , de rang 1. La partie de torsion est $(\mathbb{Z}/10\mathbb{Z}) \oplus (\mathbb{Z}/70\mathbb{Z})$, les facteurs invariants sont désormais (10, 70).

4. Il s'agit de l'ensemble des multiples de 70, à savoir l'idéal 70Z.

Exercice 2. On définit les vecteurs

$$\mathbf{u} = \begin{pmatrix} -9\\10\\6\\11 \end{pmatrix} \quad \text{et} \quad \mathbf{v} = \begin{pmatrix} -3\\3\\2\\2 \end{pmatrix} \in \mathbb{Z}^4.$$

On munit \mathbb{Z}^4 du produit scalaire usuel. On appelle Λ le sous- \mathbb{Z} -module de \mathbb{Z}^4 engendré par les vecteurs \mathbf{u} et \mathbf{v} .

- 1. Calculer une base LLL réduite de Λ . (2 pts)
- 2. On souhaite placer une famille de boules de ouvertes de rayon r, de centre \mathbf{x} avec $\mathbf{x} \in \Lambda$ et (1pt) qui ne s'interpénètrent pas. Pour quelles valeurs de r est-ce possible?
- 3. Combien de voisins la frontière d'une boule touche-t-elle dans le (les) empilement(s) décrit(s) à la question précédente?

Solution 2. 1. Le vecteur \mathbf{v} a l'air d'être le plus court des deux (on se passe du calcul). On a $\|\mathbf{v}\|^2 = 26$ et

$$\frac{\langle \mathbf{u}, \mathbf{v} \rangle}{\|\mathbf{v}\|^2} = \frac{91}{26} = 3 + \frac{1}{2}$$

On décide de retrancher $\mathbf{w} \leftarrow \mathbf{u} - 3\mathbf{v}$. On obtient

$$\mathbf{w} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 5 \end{pmatrix}$$

qui est aussi de norme 26.

La famille (v, w) est donc une base LLL réduite.

- 2. Le premier minimum est de longueur $\sqrt{26}$. On peut donc placer des boules de rayon $r \le \frac{1}{2}\sqrt{26}$.
- 3. On est ici dans une configuration très particulière. On a un troisième vecteur de norme $\sqrt{26}$ qui est

$$\mathbf{w} - \mathbf{v} = \begin{pmatrix} 3 \\ -2 \\ -2 \\ 3 \end{pmatrix}$$

On retrouve la configuration du réseau \mathbb{A}_2 (à une homothétie près). Lorsque $r=\frac{1}{2}\sqrt{26}$, il y a 6 boules qui touchent chaque boule centrale. Sinon, si $r<\frac{1}{2}\sqrt{26}$, il y a 0 boules qui touchent chaque boule centrale.

Exercice 3. On donne le polynôme

$$h(z) = z^8 + z^7 + z^3 - 1 \in \mathbb{Z}[z]$$

et le polynôme

$$f(x) = x^8 + x^7 + x^3 - 1 \in \mathbb{F}_3[x].$$

- 1. Vérifier que f ne possède pas de facteurs de degré 1. (½ pt)
- 2. Déterminer la factorisation sans facteurs carrés de $f \in \mathbb{F}_3[x]$. $(\frac{1}{2} \text{ pt})$
- 3. On a calculé le pgcd suivant $(\frac{1}{2} \text{ pt})$

$$f(x) \wedge (x^9 - x) = x^4 + 1.$$

Que peut-on dire des degrés des facteurs irréductibles du polynôme $f \in \mathbb{F}_3[x]$?

- 4. Vérifier que le polynôme $z^4 + 1$ divise le polynôme h(z) dans $\mathbb{Z}[z]$.
- 5. Que peut-on dire des degrés des facteurs irréductibles du polynôme $h \in \mathbb{Z}[z]$? $(\frac{1}{2} \text{ pt})$

(1 pt)

 $(\frac{1}{2} \text{ pt})$

- 6. Calculer la matrice de Petr-Berlekamp \mathbf{Q} associée au polynôme x^4+1 . $(\frac{1}{2} \text{ pt})$
- 7. Calculer une base \mathcal{B} du noyau de $(\mathbf{Q} \mathbf{I})$. Pouvait-on prévoir le cardinal de \mathcal{B} ? $(\frac{1}{2} \text{ pt})$
- 8. Quels sont les éléments de la sous-algèbre de Petr-Berlekamp $\mathcal{A} \subseteq \mathbb{F}_3[x]$? $(\frac{1}{2} \text{ pt})$
- 9. Déterminer un élément u(x) de \mathcal{A} tel que $(x^4+1) \wedge u$ n'est pas trivial et factoriser x^4+1 $(\frac{1}{2} \text{ pt})$ dans $\mathbb{F}_3[x]$.
- 10. Nous rappelons que $3^8 = 6561$ et nous observons l'identité suivante

$$z^4 + 1 = (z^2 + 2695z - 1)(z^2 - 2695z - 1) \mod 3^8.$$

Nous rappelons l'expression de la borne de Mignotte pour un polynôme unitaire de degré det à coefficients entiers dans l'intervalle [-M, M]:

$$\sqrt{d+1} \cdot 2^d \cdot M$$
.

Montrer que le polynôme $z^4 + 1 \in \mathbb{Z}[z]$ est irréductible.

 $(\frac{1}{2} \text{ pt})$

11. Donner la factorisation complète de $h \in \mathbb{Z}[z]$.

1. On calcule les valeurs f(0) = -1, f(1) = -1 et f(-1) = 1 qui sont toutes Solution 3. non nulles.

2. Il faut commencer par calculer la dérivée

$$f'(x) = -x^7 + x^6 = -x^6(x-1).$$

Le pgcd $f \wedge f'$ vaut 1, car ni 0 ni 1 ne sont des racines de f. En conséquence, f est déjà sous forme sans facteurs carrés.

- 3. Le pgcd $f(x) \wedge (x^{3^2} x)$ attrape tous les facteurs de degré divisant 2. Mais, nous avons vu qu'il n'y a pas de facteurs de degré 1. Donc f possède deux facteurs irréductible de degré 2 (et dont le produit est $x^4 + 1$) et des facteurs irréductibles de degré qui ne divisent pas 2. La somme des degrés de ces derniers facteurs valant 4, la seule possibilité est qu'il y ait un seul facteur irréductible de degré 4.
- 4. On a (en posant la division)

$$z^{8} + z^{7} + z^{3} - 1 = (z^{4} + 1)(z^{4} + z^{3} - 1).$$

- 5. On en déduit que $(z^4 + z^3 1)$ est forcément un facteur irréductible de h et que soit $(z^4 + 1)$ est irréductible, soit se factorise en deux morceaux sur $\mathbb{Z}[z]$.
- 6. On obtient la matrice

$$\left(\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \end{array}\right) \in \mathbb{F}_3^{4 \times 4}.$$

7. Une base de

$$\mathbf{Q} - \mathbf{I} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & -1 \end{pmatrix} \in \mathbb{F}_3^{4 \times 4}$$

est donnée par les vecteurs (1,0,0,0) et (0,1,0,1). On savait déjà que $x^4 + 1$ avait deux facteurs, donc ce cardinal était prévisible.

8. Il y a neuf éléments dans \mathcal{A} qui sont

$$\alpha + \beta x + \beta x^3$$

avec $\alpha, \beta \in \mathbb{F}_3$.

9. Pour trouver u, on a intérêt à choisir un polynôme non constant et unitaire, donc prendre $\beta=1$. Ensuite, si $\alpha=0$, on a $x^3+x=x(x^2+1)$ qui contient les racine carrées de -1 alors que x^4+1 contient les racine quartiques primitives de -1. Mieux vaut prendre

$$u = 1 + x + x^3$$

On a dans ce cas

$$x^4 + 1 = x \cdot (x^3 + x + 1) - (x^2 + x - 1)$$

et

$$x^{3} + x + 1 = (x + 2) \cdot (x^{2} + x - 1)$$

Donc

$$(x^4+1) \wedge (x^3+x+1) = (x^2+x-1)$$

On en déduit la factorisation

$$x^4 + 1 = (x^2 + x - 1)(x^2 - x - 1)$$

10. Si $z^4 + 1$ était réductible, on aurait un facteur $g(z) \in \mathbb{Z}$ avec des coefficients compris entre -B et B avec

$$B = \sqrt{5} \cdot 2^5 \cdot 1$$

d'après la borne de Mignotte. Mais alors ce facteur apparaîtrait tel quel modulo 3^8 . Or ce n'est pas le cas. Donc $z^4 + 1$ est irréductible.

11. La factorisation complète de h(z) est finalement

$$z^{8} + z^{7} + z^{3} - 1 = (z^{4} + 1)(z^{4} + z^{3} - 1).$$

Exercice 4. On considère les polynômes suivants

$$\begin{cases} g_1(x,y) = x - 4y^2 - y \\ g_2(x,y) = xy + x + 3y^2 \end{cases}$$

dans $\mathbb{F}_{11}[x,y]$ muni de l'ordre lexicographique sur les monômes (avec x>y).

- 1. Calculer le polynôme de syzygie $s = S(g_1, g_2)$. (½ pt)
- 2. Calculer le reste r du polynôme s dans sa pseudo-division par g_1 . (1 pt)
- 3. Montrer que $\{g_1, r\}$ engendre le même idéal que l'idéal $\mathfrak{I} = \langle g_1, g_2 \rangle$. (½ pt)
- 4. Montrer que $\{g_1, r\}$ est une base de Gröbner minimale et réduite de l'idéal \mathfrak{I} . On conseille (1½ pts) de donner le principe avant d'effectuer le calcul.
- 5. Déterminer l'ensemble des racines de r dans \mathbb{F}_{11} . (½ pt)
- 6. En déduire l'ensemble des racines du système (1 pt)

$$(\mathcal{S}) \begin{cases} g_1(x,y) = 0 \\ g_2(x,y) = 0 \end{cases}$$

7. Proposer une base vectorielle et calculer la dimension, en tant que \mathbb{F}_{11} -espace vectoriel, du (½ pt) quotient $\mathbb{F}_{11}[x,y]/\mathfrak{I}$.

Solution 4. 1. On calcule le polynôme

$$s = S(g_1, g_2) = y g_1 - g_2 = -x - 4y^3 - 4y^2.$$

2. On a

$$s + q_1 = -4y^3 + 3y^2 - y$$

Donc $r = -4y^3 + 3y^2 - y$.

3. Clairement, $r = (y+1)g_1 - g_2$ appartient à \mathfrak{I} , donc $\{g_1, r\}$ engendre un idéal contenu dans l'idéal \mathfrak{I} . Par ailleurs,

$$g_2 = (y+1)g_1 - r.$$

ce qui montre que l'idéal \mathfrak{I} est inclus dans l'idéal engendré par $\{g_1, r\}$.

4. On commence par calculer le polynôme de syzygie entre g_1 et r. Il s'agit de

$$t = y^3 f_1 - xr = 5xy^3 - 3xy^2 + xy - 4y^5 - y^4$$

On cherche ensuite à simplifier t en le réduisant par une pseudo-division par f_1 et par r. Pour se simplifier la tâche, on note que

$$\frac{1}{5}t = xy^3 - 5xy^2 - 2xy - 3y^5 + 2y^4$$

et que

$$\frac{1}{-4}r = y^3 + 2y^2 + 3y.$$

On commence avec

$$\frac{1}{5}t - y^3 f_1 = -5xy^2 - 2xy + y^5 + 3y^4.$$

Puis

$$\frac{1}{5}t - (y^3 - 5y^2)f_1 = -2xy + y^5 + 5y^4 - 5y^3.$$

Puis

$$\frac{1}{5}t - (y^3 - 5y^2 - 2y)f_1 = y^5 + 5y^4 - 2y^3 - 2y^2.$$

Puis

$$\frac{1}{5}t - (y^3 - 5y^2 - 2y)f_1 - y^2 \frac{1}{-4}r = 3y^4 - 5y^3 - 2y^2.$$

Et finalement

$$\frac{1}{5}t - (y^3 - 5y^2 - 2y)f_1 - (y^2 + 3y)\frac{1}{-4}r = 3y^4 - 5y^3 - 2y^2.$$

Ceci démontre que la base $\{g_1, r\}$ est une base de Groebner minimale réduite.

5. Les racines de

$$r = 7y^3 + 3y^2 - y = -4y(y+4)(y-2)$$

sont 0, -4 et 2.

6. On substitue les trois valeurs dans le système. Pour y = 0, on obtient

$$(\mathcal{S}_0) \quad \begin{cases} g_1(x,0) &= x \\ g_2(x,0) &= x \end{cases}$$

qui est s'annule pour x = 0.

Pour y = -4, on obtient

$$(S_{-4})$$
 $\begin{cases} g_1(x,0) = x-5 \\ g_2(x,0) = -3x+4 \end{cases}$

qui est s'annule pour x = 5.

Pour y = 2, on obtient

$$(S_{-4})$$
 $\begin{cases} g_1(x,0) = x+4 \\ g_2(x,0) = 3x+1 \end{cases}$

qui est s'annule pour x = -4.

Il y a trois solutions (0,0), (5,-4) et (-4,2).

7. On peut utiliser le fait que $\{g_1, r\}$ est une base de Groebner et dessiner un diagramme en escalier pour déterminer les monômes qui ne sont pas plus réduits. Il reste 1, y et y^2 , qui forment une base. Le quotient est de dimension 3.

	1	2	3	4	5	-5	-4	-3	-2	-1
1	1	2	3	4	5	-5	-4	-3	-2	-1
2	2	4	-5	-3	-1	1	3	5	-4	-2
3	3	-5	-2	1	4	-4	-1	2	5	-3
4	4	-3	1	5	-2	2	-5	-1	3	-4
5	5	-1	4	-2	3	-3	2	-4	1	-5
-5	-5	1	-4	2	-3	3	-2	4	-1	5
-4	-4	3	-1	-5	2	-2	5	1	-3	4
-3	-3	5	2	-1	-4	4	1	-2	-5	3
-2	-2	-4	5	3	1	-1	-3	-5	4	2
-1	-1	-2	-3	-4	-5	5	4	3	2	1

Figure 1 – Table des produits dans \mathbb{F}_{11}

\boldsymbol{x}	1	2	3	4	5	-5	-4	-3	-2	-1
x^{-1}	1	-5	4	3	-2	2	-3	-4	5	-1

Figure 2 – Table des inverses dans \mathbb{F}_{11}