Neural Network Basic Assignment 1

이름: 이성범

1. Sigmoid Function을 z에 대해 미분하세요.

$$= \frac{(-e^{-2})}{(1+e^{-2})^2} = \frac{1+e^{-2}-1}{(1+e^{-2})^2}$$

$$= \frac{1+e^{-2}-1}{(1+e^{-2})^2} = \frac{1+e^{-2}-1}{(1+e^{-2})^2}$$

$$= \frac{1+e^{-2}-1}{(1+e^{-2})^2} = \frac{1}{(1+e^{-2})^2} = \frac{1}{(1+e^{-2})^2}$$

$$= \frac{1+e^{-2}-1}{(1+e^{-2})^2} = \frac{1}{(1+e^{-2})^2} = \frac{1}{(1+e$$

(=0)을 평면좌표상에 나타낸 그림이 있습니다.

를 분류하는 임의의 *b,w*를 선정하고 분류해보세요.

2- | 빈 문제

$$b=1, w_0=1, w_1=1.5, w_2=1$$

$$\varphi(N_{00}b+w_1)\lambda_1+w_2\lambda_2=\gamma$$

$$\varphi(2)=\{0, 2 \neq 0\}$$

$$\chi_1 \quad \chi_2 \quad | \quad 3 \quad | \quad 1 \quad 2 \neq 0$$

$$\chi_1 \quad \chi_2 \quad | \quad 3 \quad$$

트워 제대로 된 것은 약 시한

2-2. Perceptron 학습 규칙에 따라 임의의 학습률을 정하고 b, w를 1회 업데이트 해주세요.

2-14 921

$$b=1, w_0=1, w_1=1.5, w_2=1, \eta=0.1$$
 $w_7 = w_7 + \eta (\gamma - \hat{\gamma}) \chi_7$
 $t=1, \chi_1=0, \chi_2=0, \gamma=1$ ϱ cch
 $w_0 \in [+0.1(1-1)\cdot]=[$
 $w_1 \in [-1.5+0.1(1-1)\cdot 0=[$
 $w_2 \in [+0.1(1-1)\cdot 0=[$

L) मेरी यापार माला पास्ता गाउँची एता हर थेलपा सहस्त. 이거 위한 같은 방식으로 (0,1), (1,0), (1,1) 순수로 가능기는 만대는 게기면 된다. 3. 다음과 같은 구조와 초기값을 가진 Multilayer Perceptron이 있습니다.

3-1. Forward Propagation이 일어날 때, 각 노드는 어떤 값을 갖게 되는지 빈 칸을 채워주세요. (Sigmoid Function 사용)

```
29
1 # 3-1 번 문제
                                           30 \text{ y1\_true} = 0.5
 2 import numpy as np
                                           31 y2_{true} = 0.9
 3
 4# 시그모이드 함수 구현
                                           32
 5 def sigmoid(x):
                                           33 print(f'a_1_1 : {a_1_1}')
 6 | return 1 / (1 + np.exp(-x))
                                           34 print(f'a_1_2 : {a_1_2}\m')
                                           35 print(f'z_2_1 : \{z_2_1\}')
8 X_1 = 0.5
                                           36 print(f'z_2_2 : {z_2_2}\m')
9
                                           37 print(f'y1
                                                              : {y1}')
10 \text{ w}_1111 = 0.1
                                           38 print(f'y2
                                                               : {y2}')
11 \text{ w}_1_21 = 0.1
                                           39 ...
12
13 z_1_1 = X_1 * w_1_11
                                           40 두번째 레이어의 경우
14 z_1_2 = X_1 * w_1_21
                                           41 활성화 함수 이후의 출력 값을
15
                                           42 적으면 y의 값과 같아지기 때문에
16 a_1_1 = sigmoid(z_1_1)
                                           43 활성화 함수 이전의
17 a_1_2 = sigmoid(z_1_2)
                                           44 출력 값을 출력했습니다.
                                           45 ' ' '
19 \text{ w}_2_11 = 0.4
20 \text{ w}_221 = 0.5
                                           a_1_1 : 0.5124973964842103
21 \text{ w}_2_{12} = 0.45
22 \text{ w}_222 = 0.55
                                           a_1_2 : 0.5124973964842103
24 z_2 = (a_1 + w_2 = 11) + (a_1 + w_2 = 12)
                                           z_2_1 : 0.4356227870115788
25 z_2 = (a_1_1 * w_2_1) + (a_1_2 * w_2_2)
                                           z_2_2 : 0.5381222663084209
26
27 \text{ y1} = \text{sigmoid}(z_2_1)
                                                 : 0.6072155356954312
                                           v1
28 y2 = sigmoid(z_2)
                                           у2
                                                  : 0.6313755010102448
```

3-2. output layer에 있는 노드들의 Mean Squared Error을 구해주세요.

```
1 # 3-2번 문제
2 def MSE(y_true, y_pred):
3 | mse = ( 1/len(y_pred) ) * ( 1/2*np.sum((y_true - y_pred)**2) )
4 | return mse
5
6 y_true = np.array([y1_true, y2_true])
7 y_pred = np.array([y1, y2])
8 print(f"MSE : {MSE(y_true, y_pred)}")
```

MSE : 0.020913573137988827

3-3. 3-2에서 구한 답을 토대로, Back Propagation이 일어날 때 가중치 w_{11}^1 과 w_{11}^2 의 조정된 값을 구해주세요. (학습률 $\eta=0.5$)

```
-1 # 3-3번 문제
 2
 3 Ir = 0.5
 4
 5 dE = -(y1_true - y1)
 6 ds = y1 + (1 - y1)
7 dz = a_1_1
8
9 dw = dE * ds * dz
10
11 w_2_11_update = w_2_11 - Ir*dw
12
13 print(f'업데이트된 w_2_11: {w_2_11_update}')
14
15 dE1 = -(y1_{true} - y1) * y1 * (1 - y1) * w_2_11
16 dE2 = -(y2_{true} - y2) * y2 * (1 - y2) * w_2_21
17
18 dE = dE1 + dE2
19 ds = a_1_1 + (1 - a_1_1)
20 dz = X_1
21
22 dw = dE * ds * dz
23
24 w_1_11_update = w_1_11 - lr*dw
26 print(f'업데이트된 w_1_11: {w_1_11_update}')
```

업데이트된 w_2_11: 0.39344735614480647 업데이트된 w_1_11: 0.10131363680057552

참고자료

1. https://wikidocs.net/37406