1 Transformata Laplace

Tabela 1: Tablel cu transformate Laplace

f(t)	$\mathscr{L}[f(t)]$	f(t)	$\mathscr{L}[f(t)]$
$\delta(t)$	1	$\sin at$	$\frac{a}{s^2 + a^2}$
1	$\frac{1}{s}$	$\cos at$	$\frac{s}{s^2 + a^2}$
t	$\frac{1}{s^2}$	$e^{-at}\sin bt$	$\frac{b}{(s+a)^2 + b^2}$
e^{-at}	$\frac{1}{s+a}$	$e^{-at}\cos bt$	$\frac{s+a}{(s+a)^2+b^2}$

Tabela 2: Proprietăți ale transformatei Laplace

Proprietate	Domeniul timp	$Domeniul\ s$
	f(t)	$F(s) = \mathscr{L}[f(t)]$
Liniaritate	$af_1(t) + bf_2(t)$	$aF_1(s) + bF_2(s)$
Prima derivată	$\frac{df(t)}{dt}$	sF(s) - f(0)
A doua derivată	$\frac{d^2f(t)}{dt^2}$	$s^2F(s) - sf(0) - f'(0)$
A n-a derivată	$\frac{d^n f(t)}{dt^n}$	$s^n F(s) - s^{n-1} f(0) - \dots - f^{(n-1)}(0)$
Integrare în timp	$\int_0^t f(\tau)d\tau$	$\frac{1}{s}F(s)$
Teorema valorii finale	$f(\infty) = \lim_{t \to \infty} f(t)$	$\lim_{s\to 0} sF(s),$ dacă toți polii lui $sF(s)$ sunt în semiplanul stâng

2 Răspunsul la treaptă al sistemului de ordinul 1

Răspunsul la treaptă unitară al unui sistem de ordinul 1 cu funcția de transfer $G(s) = \frac{k}{Ts+1}$ este:

$$c(t) = k(1 - e^{-t/T})$$

și timpul de răspuns este:

$$t_s = 4T$$

3 Răspunsul la treaptă al sistemului de ordinul 2

Pentru un sistem de ordinul 2 cu funcția de transfer:

$$G(s) = \frac{K}{\frac{1}{\omega_n^2} s^2 + \frac{2\zeta}{\omega_n} s + 1} = \frac{K\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

- (a) cazul subamortizat: $0 < \zeta < 1$,
 - polii sunt: $s_{1,2} = -\zeta \omega_n \pm \omega_n \sqrt{1-\zeta^2} j$
 - răspunsul la treaptă unitară este:

$$c(t) = k \left[1 - \frac{e^{-\zeta \omega_n t}}{\sqrt{1 - \zeta^2}} \sin \left(\omega_d t + \arctan \frac{\sqrt{1 - \zeta^2}}{\zeta} \right) \right], \text{ unde } \omega_d = \omega_n \sqrt{1 - \zeta^2}$$

- caracteristicile răspunsului tranzitoriu:
 - timpul de răspuns, $t_s = \frac{4}{\zeta \omega_n}$
 - timpul răspunsului maxim, $t_p = \frac{\pi}{\omega_d}$
 - suprareglajul, $M_p = e^{-\frac{\pi \zeta}{\sqrt{1-\zeta^2}}}$
 - timpul de creştere, $t_r = \frac{1}{\omega_d} \cdot \left(\pi \arctan \frac{\sqrt{1-\zeta^2}}{\zeta} \right) = \frac{\pi-\beta}{\omega_d}$
- (b) cazul critic amortizat, $\zeta = 1$
 - polii sunt: $s_1 = s_2 = -\omega_n$
 - răspunsul la treaptă unitară este:

$$c(t) = k \left(1 - e^{-\omega_n t} (1 - \omega_n t) \right)$$

- (c) cazul supra-amortizat, $\zeta > 1$
 - polii sunt: $s_{1,2} = -\zeta \omega_n \pm \omega_n \sqrt{\zeta^2 1}$
 - răspunsul la treaptă unitară este:

$$c(t) = k \left(1 + \frac{\omega_n}{2\sqrt{\zeta^2 - 1}} \left(\frac{e^{s_1 t}}{s_1} - \frac{e^{s_2 t}}{s_2} \right) \right)$$

- (d) cazul ne-amortizat, $\zeta = 0$
 - polii sunt: $s_{1,2} = \pm \omega_n j$
 - răspunsul la treaptă unitară este:

$$c(t) = k \left(1 - \cos \omega_n t \right)$$