Fundamentos de Sistemas de Operação MIEI 2014/2015

2º Teste, 9 de Dezembro 2014, 2 horas – versão A

Numero	Nome
Sem consulta e sen hipóteses colocadas	esclarecimento de dúvidas; indique explicitamente nas suas respostas eventuais
A detecção de fraud cadeira.	le d <mark>urante a rea</mark> lização ou correcção do teste implica, no mínimo, a reprovaç <mark>ão à</mark>

Questão 1 (2.0 valores) Considere um sistema operativo em que o algoritmo de escalonamento é Round Robin com uma única fila READY e uma fatia fixa de tempo *Tf.* Suponha que existem no sistema 20 processos *cpu-bound* e que não é aceitável que um processo esteja mais de *500* milisegundos sem que lhe seja atribuído CPU. Faça, justificando, uma estimativa para um valor de *Tf* que permitiria assegurar o requisito anterior. O valor que calculou é aceitável se considerarmos um tempo de comutação entre processos (*Tc*) de 10 microsegundos?

Questão 2 (2.0 valores) Considere um sistema operativo que utiliza um algoritmo de escalonamento com uma única fila de processos prontos e uma fatia fixa de tempo *Tf.* Admita que dois processos A e B são os únicos no sistema, tendo entrado na fila de processos prontos no instante de tempo 0, pela ordem A, B. Quando um processo passa de WAITING para READY é colocado à cabeça da fila READY. Os processos realizam as seguintes ações:

- Processo A: Usa o CPU durante 25 milisegundos e termina
- Processo B: Faz 3 vezes um conjunto de acções em que usa o CPU durante 2 milisegundos e de seguida faz uma operação de entrada/saída que demora 8 milisegundos; após o ciclo, termina

Supondo que a troca de contexto tem uma duração desprezável, diga, justificando, em que instante de tempo terminam os processos A e B para um algoritmo de escalonamento *Round Robin* com uma fatia de tempo de 5 ms. Justifique a sua resposta fazendo um diagrama em que no eixo dos XX está o tempo e sobre ele estão duas linhas, uma para o processo A e outra para o processo B em que seja possível saber, em cada momento, em que estado (RUNNING, READY, WAITING) estão os processos A e B.

Questão 3 (2.0 valores) Considere um escalonador de processos que usa múltiplas filas READY ordenadas por prioridade (*MLFQ Multi-level Feedback Queue*). A prioridade máxima P corresponde ao valor numérico 0 e a prioridade mínima ao valor numérico 199. O escalonador recalcula a prioridade P de um processo de 1 em 1 segundos de acordo com a fórmula

$$P = (V/2) + 60$$

em que V é directamente proporcional ao tempo de CPU atribuído recentemente ao processo. Diga o que acontece à prioridade de um processo *CPU-bound* e explique porque é que é necessário dividir V por 2 a cada segundo que passa.

U~	h.o (25).e	CPV-Ba	d Corpora	as freq	Lation d	e Ente
ate or	· Down	Dava ti 1	s ocumul	e Verto	do CPV e	hitem V
e'm	ain do s	u o h	van Id	200	Answ 2	ido, en ced
Sa	sa veli	de Po	ulce e e	· xee h	inidud	diminat.
Ad	livitar h	en 2 pa	mile un	a alan	mercia d	prida
man	elevela	grado	n Perk		. Al in	e Jan
CPV	Book p		7 Parril	*		**************************************

Questão 4 (3 valores) Um sistema em que os endereços virtuais têm 32 bits, usa uma MMU que suporta páginas com dimensão de 1 Mbyte (2^20).

a) Para as condições acima referidas, pretende-se fazer uma simulação do número de faltas de página correspondentes a uma dada sequência de endereços virtuais. O primeiro passo é obter o número da página virtual npv e o deslocamento desc correspondente a um dado endereço virtual ev. Para esse efeito escreveram-se as seguintes linhas de código C que se pretende que complete:

#define F	PAGE_SIZ	ZE	^20			
npv = _	(ev	42	0x444	00000)	3203	 · · · · · · · · · · · · · · · · · · ·
desc = _	<u> </u>	<u> 24 0 v</u>	oord.	4443		

b) Para um dado processo em execução, as primeiras entradas da tabela de páginas são as seguintes:

Nº página virtual	№ página física (em base 16)	
0	0xBAD	
1	0xABC	
2	Inválida	
3	0xBEE	

As outras entradas são todas inválidas. Indique, justificando, os endereços físicos que correspondem aos endereços virtuais (em base 16) abaixo indicados. Responda "Endereço Inválido" se o endereço virtual for inválido.

0x00000000	pv = 0x000	H = Ox BAD	= Ox BADOOOO
0x00 2 22001	b1 = 0x002	pip invelide	erdones invitio
0x10001001	bv = 0x 100	plin invelide	edoreso invelid
0x0033BA11	pv = 0 x 003	HOXBEE	4 = 0xBEE3BAM

Questão 5 (3 valores) Considere um sistema de operação e um CPU+MMU que suportam paginação a pedido.

a) Explique como é que é possível executar programas cuja imagem é superior ao tamanho da memória física disponível.

Usando perimeses a pedido, aparos é precio ter en RATI as piras referencidos par em dide instruero. As primo são carregidos em menário RAM à medido que são neces-solvisos. Quendo não hé primo físicas livas use-se um alfaitas de substituição par escelho u primo vítimo.

b) Para este tipo de sistema, diga como funciona a ligação dinâmica de bibliotecas. Relacione esse funcionamento com a possibilidade que existe de mapear ficheiros no espaço de endereçamento de um processo (como faz a chamada ao sistema mmap() do UNIX).

As bibliotecos dinámicos contem códijo puno e indeputo de posição (PIC). Ouando un síntolo defenindo mo bibliotece e refrencido, o So use am fraso emo o mamp do UNIX pare mepear o ficheiro que canter o códijo de bibliotece no espesa de inderegament do processo. A partir defui freim o sistem de perinesso e podido

- c) Neste contexto, diga o que é uma situação de thrashing. Supondo que dispõe permanentemente dos seguintes indicadores sobre o desempenho do sistema
- Taxa de ocupação do CPU (PCPU)
- Número de operações sobre o disco de paginação (NIOP)
- Número de páginas físicas livres (NFL)

que combinações de valores de (PCPU, NIOP e NFL) permitiriam concluir que o sistema estava numa situação de *thrashing* ?

Um situação de threshy aentece quando todos os procesos têm em memoria memo pífino do que o múnimo. Anim, o nitros de felto de pípine amete muito e o tempo de execuso de instrus aenete tabé muito tome = h+TRAN+ (1-h) todo e h afaste-se de 0 ...

Em term dos indicedos pero estas todos blaqueodos NIOP -alto propre estas a ocomo muito transferêncios estas PATE o disa

Questão 6 (2 valores) Suponha uma variante do sistema de ficheiros UNIX em que os blocos têm 8 Kbytes e os endereços de blocos têm 4 bytes. Cada i-node tem:

- 12 endereços directos
- 1 endereço indirecto isto é que contém o endereço de um bloco com endereços
- 1 endereço duplamente indirecto contém endereços de blocos que contêm endereços de blocos com endereços

Diga, justificando, qual é máxima dimensão em blocos de um ficheiro neste sistema.

Questão 7 (3 valores) O sistema de ficheiros XPTO usa uma forma de designação dos ficheiros igual à do UNIX - /dir1/dir2/dir3/.../ficheiro. Estão disponíveis as chamadas ao sistema tradicionais sobre ficheiros (open / read / write /close). Na zona dos meta-dados de um disco formatado com o sistema de ficheiros XPTO há

- Um *super bloco* que contém a dimensão do disco e o número do bloco onde se encontra a directoria raiz.
- Um bitmap de ocupação de blocos
- Uma tabela geral de ficheiros (TGF) que tem uma entrada para cada ficheiro existente no disco e em que cada entrada tem os campos:
 - Em uso/livre
 - Comprimento do ficheiro em bytes
 - Lista de blocos onde estão os dados do ficheiro
- As directorias são ficheiros que podem ser vistos como um vector de registos em que cada registo tem os seguintes campos:
 - Tipo da entrada: ficheiro, directoria, livre
 - Nome (cadeia de caracteres)
 - Índice na TGF onde está a informação sobre o ficheiro.

Para o sistema de ficheiros XPTO pretende-se que descreva em detalhe como seriam implementadas as chamadas ao sistema referidas nas alíneas abaixo. Repare que o que se pretende é que indique o que é feito em termos de preenchimento das tabelas do sistema operativo (quer as globais quer as associadas a cada processo) e as leituras e escritas que são feitos na zona de meta-dados do disco e não o que fazem as chamadas ao sistema do ponto de vista do programador.

a) Abertura para escrita de um ficheiro que se supõe que já existia antes mas que está vazio $f = open("/dir1/f", O_WRONLY)$

- letting do bloco que contén a din. naix de la contra de din. din se extraoção de director din se do soldie no TOF de fieb for extraoção de director din se lives replach de ficlama USO a Ram. Prendiment de entrade La coma a informa sobre forma a compar a 15 entrada lives de teselo de canais do procaso con, este entris avió, um reference para L

b) Seja BLOCK_SIZE o tamanho de um bloco do disco. Escrita de BLOCK_SIZE bytes no final do ficheiro e em que o *offset* corrente é um múltiplo de BLOCKSIZE.

nw = write(f, buf, BLOCKSIZE)

- of party do ether of m telle de canais chet schene good de ficheins abortes

- se necessius obter - m - bloco livre Brow bitmep

- se necessius obter - m - bloco livre Brow bitmep

- escreve - se o contendo de buy no bloco B

- actualize - ne o informe - sobre o ficheino (confrinto,

bloco) ne estando L de tabel genel de ficher abortes

- octualize - ne estando f de tabel de carrais abortes

c) Fecho do ficheiro close(f).

- actualizar a interest disco a partir de l'Atr, se

winte isso ordo fi saito.

libert se atrada le de tebele sere de fichero

cherto

de proceso

Questão 8 (3 valores) Considere o sistema de ficheiros descrito na pergunta 7. Suponha que o mapa de blocos ocupa apenas um bloco no disco e que cada directoria também ocupa no máximo um bloco. Imagine que vai remover o ficheiro /dir1/f7 que se supõe que existe.

a) A operação referida implica a escrita em mais do que um bloco do disco. Que blocos são esses?

A mobboso am a bitmep do blan per libertar

A mobboso am a bitmep do blan per libertar

B no TGF pan indicar que a atrada este

livre

C mo bloso que anter e directorio din 1 para

animela que a estad asti livre.

b) O que aconteceria se houvesse uma falha de energia ou um erro no sistema operativo que se manifestasse pela terminação abrupta do sistema operativo enquanto a operação de remoção do ficheiro estava a decorrer. Quais seriam as consequências para o sistema de ficheiros?

A order pele sul as the operación acima são ejectudos mas o' indiferete. Supudo por exerto que B e C fra feito e A mão: he' blocos ocupados que mão são referenciados por malum entrada modinactoria mos fue esta compedos. O sistem do ficheiros esta incoerete.

c) Suponha que se pretendia corrigir o erro anterior da próxima vez que se fizesse mount() do disco. O que haveria a fazer nessa ocasião? Refira apenas o que fazer em relação a remoções de ficheiros que não correram bem.

Usando una estrateja " a fack" ten-se-ii de:

- Venifican se todos os blocos referenciados por
entrados on TEF estão mancelos como ourpados os
bitometos. Trancas como livros os blocos não referenicdos ne TEF
- percone o drune de directorios e venifican fuer
são as entredos on TEF que esta referenciado por
estados on directorios. Trancas como livros os fue
mos são referenciados e fazer alfo am os blocos
(corbedo los como livros, cobicas no losto tonos)