Epistemic logics based on abilities PhD in Computer Science

Andrés R. Saravia

LIIS group (Logics, Interaction and Intelligent Systems)
FaMAF, Universidad Nacional de Córdoba

26/XI/2024

Organigrama

- Motivation
- ${f 2}$ "Knowing how" based on LTS $^{\it U}$ s
- 3 Expanding the framework: Dynamic operators
- 4 Conclusions

Modal Logics: Modes of truth about expressions

- Modal Logics: Modes of truth about expressions
 - Necessity, possibility, obligations, and so on

- Modal Logics: Modes of truth about expressions
 - Necessity, possibility, obligations, and so on
 - It is cold in the city

- Modal Logics: Modes of truth about expressions
 - Necessity, possibility, obligations, and so on
 - It is possible that is cold in the city

- Modal Logics: Modes of truth about expressions
 - Necessity, possibility, obligations, and so on
 - It is possible that is cold in the city
 - The students assist in the morning

- Modal Logics: Modes of truth about expressions
 - Necessity, possibility, obligations, and so on
 - It is possible that is cold in the city
 - The students are obliged to assist in the morning

- Modal Logics: Modes of truth about expressions
 - Necessity, possibility, obligations, and so on
 - It is possible that is cold in the city
 - The students are obliged to assist in the morning
- Epistemic Logics: Modal Logics that reason about the knowledge of the agents

- Modal Logics: Modes of truth about expressions
 - Necessity, possibility, obligations, and so on
 - It is possible that is cold in the city
 - The students are obliged to assist in the morning
- Epistemic Logics: Modal Logics that reason about the knowledge of the agents
- Usually describes the "knowing that" (Hintikka, 1962)

- Modal Logics: Modes of truth about expressions
 - Necessity, possibility, obligations, and so on
 - It is possible that is cold in the city
 - The students are obliged to assist in the morning
- Epistemic Logics: Modal Logics that reason about the knowledge of the agents
- Usually describes the "knowing that" (Hintikka, 1962)
- Knowledge of the agents about propositional facts

- Modal Logics: Modes of truth about expressions
 - Necessity, possibility, obligations, and so on
 - It is possible that is cold in the city
 - The students are obliged to assist in the morning
- Epistemic Logics: Modal Logics that reason about the knowledge of the agents
- Usually describes the "knowing that" (Hintikka, 1962)
- Knowledge of the agents about propositional facts
 - $K_i \varphi$: "the agent i knows that φ holds"

- Modal Logics: Modes of truth about expressions
 - Necessity, possibility, obligations, and so on
 - It is possible that is cold in the city
 - The students are obliged to assist in the morning
- Epistemic Logics: Modal Logics that reason about the knowledge of the agents
- Usually describes the "knowing that" (Hintikka, 1962)
- Knowledge of the agents about propositional facts
 - $K_i \varphi$: "the agent i knows that φ holds"
 - John knows that the day is cloudy

- Modal Logics: Modes of truth about expressions
 - Necessity, possibility, obligations, and so on
 - It is possible that is cold in the city
 - The students are obliged to assist in the morning
- Epistemic Logics: Modal Logics that reason about the knowledge of the agents
- Usually describes the "knowing that" (Hintikka, 1962)
- Knowledge of the agents about propositional facts
 - $K_i \varphi$: "the agent i knows that φ holds"
 - John knows that the day is cloudy
 - The robot knows that it is in the kitchen

- Modal Logics: Modes of truth about expressions
 - · Necessity, possibility, obligations, and so on
 - It is possible that is cold in the city
 - The students are obliged to assist in the morning
- Epistemic Logics: Modal Logics that reason about the knowledge of the agents
- Usually describes the "knowing that" (Hintikka, 1962)
- Knowledge of the agents about propositional facts
 - $K_i \varphi$: "the agent i knows that φ holds"
 - John knows that the day is cloudy
 - The robot knows that it is in the kitchen
- Other patterns of knowledge

- Modal Logics: Modes of truth about expressions
 - Necessity, possibility, obligations, and so on
 - It is possible that is cold in the city
 - The students are obliged to assist in the morning
- Epistemic Logics: Modal Logics that reason about the knowledge of the agents
- Usually describes the "knowing that" (Hintikka, 1962)
- Knowledge of the agents about propositional facts
 - $K_i \varphi$: "the agent i knows that φ holds"
 - John knows that the day is cloudy
 - The robot knows that it is in the kitchen
- Other patterns of knowledge
 - knowing why, knowing whether, knowing who, knowing the value

- Modal Logics: Modes of truth about expressions
 - Necessity, possibility, obligations, and so on
 - It is possible that is cold in the city
 - The students are obliged to assist in the morning
- Epistemic Logics: Modal Logics that reason about the knowledge of the agents
- Usually describes the "knowing that" (Hintikka, 1962)
- Knowledge of the agents about propositional facts
 - $K_i \varphi$: "the agent i knows that φ holds"
 - John knows that the day is cloudy
 - The robot knows that it is in the kitchen
- Other patterns of knowledge
 - knowing why, knowing whether, knowing who, knowing the value, knowing how

Knowledge of the agents about their own abilities to reach goals

- Knowledge of the agents about their own abilities to reach goals
- Epistemic logic of Knowing How based on Labeled Transition Systems (LTSs) (Wang, 2015)

- Knowledge of the agents about their own abilities to reach goals
- Epistemic logic of Knowing How based on Labeled Transition Systems (LTSs) (Wang, 2015)
 - Kh(ψ , φ): "when ψ holds, the agent knows how to achieve φ "

- Knowledge of the agents about their own abilities to reach goals
- Epistemic logic of Knowing How based on Labeled Transition Systems (LTSs) (Wang, 2015)
 - Kh(ψ , φ): "when ψ holds, the agent knows how to achieve φ "
- Generalize this framework

- Knowledge of the agents about their own abilities to reach goals
- Epistemic logic of Knowing How based on Labeled Transition Systems (LTSs) (Wang, 2015)
 - Kh(ψ , φ): "when ψ holds, the agent knows how to achieve φ "
- Generalize this framework
 - Incorporate an uncertainty component between plans

- Knowledge of the agents about their own abilities to reach goals
- Epistemic logic of Knowing How based on Labeled Transition Systems (LTSs) (Wang, 2015)
 - Kh(ψ , φ): "when ψ holds, the agent knows how to achieve φ "
- Generalize this framework
 - Incorporate an uncertainty component between plans
 - Introduce multiple and less idealized agents

EMERGENCY PROCEDURE

IN CASE OF FIRE

KEEP CALM

PULL FIRE ALARM

FROM A SAFE LOCATION

CALL 999 (FIRE BRIGADE)

Evacuation: use only stairs or ramps, avoid elevators.

EMERGENCY PROCEDURE

IN CASE OF FIRE

KEEP CALM

PULL FIRE ALARM

FROM A SAFE LOCATION

CALL 999 (FIRE BRIGADE)

Evacuation: use only stairs or ramps, avoid elevators.

EMERGENCY PROCEDURE

IN CASE OF FIRE

KEEP CALM

PULL FIRE ALARM

FROM A SAFE LOCATION

CALL 999 (FIRE BRIGADE)

Evacuation: use only stairs or ramps, avoid elevators.

EMERGENCY PROCEDURE

IN CASE OF FIRE

KEEP CALM

PULL FIRE ALARM

FROM A SAFE LOCATION

CALL 999 (FIRE BRIGADE)

Evacuation: use only stairs or ramps, avoid elevators.

EMERGENCY PROCEDURE

IN CASE OF FIRE

KEEP CALM

PULL FIRE ALARM

FROM A SAFE LOCATION

CALL 999 (FIRE BRIGADE)

Evacuation: use only stairs or ramps, avoid elevators.

If unsafe to evacuate: close door, block cracks, stay low near windows.

Consider two agents *i* and *j*:

EMERGENCY PROCEDURE

IN CASE OF FIRE

KEEP CALM

PULL FIRE ALARM

FROM A SAFE LOCATION

CALL 999 (FIRE BRIGADE)

Evacuation: use only stairs or ramps, avoid elevators.

If unsafe to evacuate: close door, block cracks, stay low near windows.

Consider two agents *i* and *j*:

i took a safety course and avoids using the elevator

EMERGENCY PROCEDURE

IN CASE OF FIRE

KEEP CALM

PULL FIRE ALARM

FROM A SAFE LOCATION

CALL 999 (FIRE BRIGADE)

Evacuation: use only stairs or ramps, avoid elevators.

If unsafe to evacuate: close door, block cracks, stay low near windows.

Consider two agents *i* and *j*:

- i took a safety course and avoids using the elevator
- j considers all evacuation options as valid

Basic actions (Act)

■ use stairs (u_s)

- use stairs (u_s)
- use ramp (u_r)

- use stairs (u_s)
- use ramp (u_r)
- use elevator (u_e)

- use stairs (u_s)
- use ramp (u_r)
- use elevator (u_e)
- call fire brigade (c_{fb})

Basic actions (Act)

- use stairs (u_s)
- use ramp (u_r)
- use elevator (u_e)
- call fire brigade (c_{fb})

Recommended plans: $u_s c_{fb}$, $u_r c_{fb}$

Basic actions (Act)

- use stairs (u_s)
- use ramp (u_r)
- use elevator (u_e)
- call fire brigade (c_{fb})

Recommended plans: $u_s c_{fb},\, u_r c_{fb}$

Not recommended plan: uecfb

Basic actions (Act)

- use stairs (u_s)
- use ramp (u_r)
- use elevator (u_e)
- call fire brigade (c_{fb})

Recommended plans: $u_s c_{fb}$, $u_r c_{fb}$

Not recommended plan: uecfb

Agents (Agt)

■ Agent i separates recommended ($\{u_sc_{fb}, u_rc_{fb}\}$) from not ($\{u_ec_{fb}\}$)

Basic actions (Act)

- use stairs (u_s)
- use ramp (u_r)
- use elevator (u_e)
- call fire brigade (c_{fb})

Recommended plans: $u_s c_{fb}$, $u_r c_{fb}$

Not recommended plan: uecfb

Agents (Agt)

- Agent i separates recommended ($\{u_sc_{fb}, u_rc_{fb}\}$) from not ($\{u_ec_{fb}\}$)
- Agent j does not ({u_sc_{fb}, u_rc_{fb}, u_ec_{fb}})

Basic actions (Act)

- use stairs (u_s)
- use ramp (u_r)
- use elevator (u_e)
- call fire brigade (c_{fb})

Recommended plans: u_sc_{fb}, u_rc_{fb}

Not recommended plan: uecfb

Agents (Agt)

- Agent i separates recommended ($\{u_sc_{fb}, u_rc_{fb}\}$) from not ($\{u_ec_{fb}\}$)
- Agent j does not ({u_sc_{fb}, u_rc_{fb}, u_ec_{fb}})

Basic actions (Act)

- use stairs (u_s)
- use ramp (u_r)
- use elevator (u_e)
- call fire brigade (c_{fb})

Recommended plans: u_sc_{fb}, u_rc_{fb}

Not recommended plan: uecfb

Agents (Agt)

- Agent i separates recommended ($\{u_sc_{fb}, u_rc_{fb}\}$) from not ($\{u_ec_{fb}\}$)
- Agent j does not ({u_sc_{fb}, u_rc_{fb}, u_ec_{fb}})

States (S) and propositional variables (Prop)

• w_1 : there is a fire (f) and the protocol can be followed (c)

Basic actions (Act)

- use stairs (u_s)
- use ramp (u_r)
- use elevator (u_e)
- call fire brigade (c_{fb})

Recommended plans: $u_s c_{fb}$, $u_r c_{fb}$

Not recommended plan: uecfb

Agents (Agt)

- Agent i separates recommended ($\{u_sc_{fb}, u_rc_{fb}\}$) from not ($\{u_ec_{fb}\}$)
- Agent j does not ({u_sc_{fb}, u_rc_{fb}, u_ec_{fb}})

- w_1 : there is a fire (f) and the protocol can be followed (c)
- w₂: it is a safe location (s)

Basic actions (Act)

- use stairs (u_s)
- use ramp (u_r)
- use elevator (u_e)
- call fire brigade (c_{fb})

Recommended plans: $u_s c_{fb}$, $u_r c_{fb}$

Not recommended plan: uecfb

Agents (Agt)

- Agent i separates recommended ($\{u_sc_{fb}, u_rc_{fb}\}$) from not ($\{u_ec_{fb}\}$)
- Agent j does not ({u_sc_{fb}, u_rc_{fb}, u_ec_{fb}})

- w_1 : there is a fire (f) and the protocol can be followed (c)
- w₂: it is a safe location (s)
- w_3 : there is a fire (f), but the protocol can not be followed $(\neg c)$

Basic actions (Act)

- use stairs (u_s)
- use ramp (u_r)
- use elevator (u_e)
- call fire brigade (c_{fb})

Recommended plans: $u_s c_{fb}$, $u_r c_{fb}$

Not recommended plan: uecfb

Agents (Agt)

- Agent i separates recommended ($\{u_sc_{fb}, u_rc_{fb}\}$) from not ($\{u_ec_{fb}\}$)
- Agent j does not ({u_sc_{fb}, u_rc_{fb}, u_ec_{fb}})

- w_1 : there is a fire (f) and the protocol can be followed (c)
- w₂: it is a safe location (s)
- w_3 : there is a fire (f), but the protocol can not be followed $(\neg c)$

$$Act = \{u_s, u_r, u_e, c_{fb}\}, Agt = \{i, j\}, S = \{w_1, w_2, w_3\}, y_i = \{f, c_i, s\}, s_i = \{f, c_i, s\}, s_$$

Definition (LTS^U)

Definition (LTS U)

Given Act, Agt and Prop. $\mathcal{M} = \langle S, \{R_a\}_{a \in Act}, \{U(i)\}_{i \in Agt}, V \rangle$:

■ S is a non-empty set of states

Definition (LTS^U)

- S is a non-empty set of states
- R_a a binary relation over S

Definition (LTS U)

- S is a non-empty set of states
- R_a a binary relation over S
- $V : S \to \mathcal{P}(\mathsf{Prop})$ is a valuation function

Definition (LTS U)

- S is a non-empty set of states
- R_a a binary relation over S
- $V : S \to \mathcal{P}(\mathsf{Prop})$ is a valuation function
- $U(i) \subseteq \mathcal{P}(\mathsf{Act}^*)$ s.t. if $\pi_1, \pi_2 \in U(i)$ and $\pi_1 \neq \pi_2$, then $\pi_1 \cap \pi_2 = \emptyset$

Definition (LTS^U)

- S is a non-empty set of states
- R_a a binary relation over S
- $V : S \to \mathcal{P}(\mathsf{Prop})$ is a valuation function
- $U(i) \subseteq \mathcal{P}(\mathsf{Act}^*)$ s.t. if $\pi_1, \pi_2 \in U(i)$ and $\pi_1 \neq \pi_2$, then $\pi_1 \cap \pi_2 = \emptyset$

Definition (LTS U)

Given Act, Agt and Prop. $\mathcal{M} = \langle S, \{R_a\}_{a \in Act}, \{U(i)\}_{i \in Agt}, V \rangle$:

- S is a non-empty set of states
- R_a a binary relation over S
- $V : S \to \mathcal{P}(\mathsf{Prop})$ is a valuation function
- $U(i) \subseteq \mathcal{P}(\mathsf{Act}^*)$ s.t. if $\pi_1, \pi_2 \in U(i)$ and $\pi_1 \neq \pi_2$, then $\pi_1 \cap \pi_2 = \emptyset$

 \bullet S = { w_1, w_2, w_3 }

Definition (LTS U)

- S is a non-empty set of states
- R_a a binary relation over S
- $V : S \to \mathcal{P}(\mathsf{Prop})$ is a valuation function
- $U(i) \subseteq \mathcal{P}(\mathsf{Act}^*)$ s.t. if $\pi_1, \pi_2 \in U(i)$ and $\pi_1 \neq \pi_2$, then $\pi_1 \cap \pi_2 = \emptyset$

- \bullet S = { w_1, w_2, w_3 }
- $\bullet \ R_{u_s} = R_{u_r} = \{(w_1, w_2)\}$

Definition (LTS^U)

- S is a non-empty set of states
- R_a a binary relation over S
- $V : S \to \mathcal{P}(\mathsf{Prop})$ is a valuation function
- $U(i) \subseteq \mathcal{P}(\mathsf{Act}^*)$ s.t. if $\pi_1, \pi_2 \in U(i)$ and $\pi_1 \neq \pi_2$, then $\pi_1 \cap \pi_2 = \emptyset$

- \bullet S = { w_1, w_2, w_3 }
- $\bullet \ R_{u_s} = R_{u_r} = \{(w_1, w_2)\}$

Definition (LTS U)

- S is a non-empty set of states
- R_a a binary relation over S
- $V : S \to \mathcal{P}(\mathsf{Prop})$ is a valuation function
- $U(i) \subseteq \mathcal{P}(\mathsf{Act}^*)$ s.t. if $\pi_1, \pi_2 \in U(i)$ and $\pi_1 \neq \pi_2$, then $\pi_1 \cap \pi_2 = \emptyset$

- \bullet S = { W_1, W_2, W_3 }
- $\bullet R_{u_s} = R_{u_r} = \{(w_1, w_2)\}$
- $\bullet \ \mathbf{R}_{\mathbf{u}_{\mathsf{e}}} = \{(w_1, w_2), (w_1, w_3)\}\$

Definition (LTS^U)

- S is a non-empty set of states
- R_a a binary relation over S
- $V: S \to \mathcal{P}(\mathsf{Prop})$ is a valuation function
- $U(i) \subseteq \mathcal{P}(\mathsf{Act}^*)$ s.t. if $\pi_1, \pi_2 \in U(i)$ and $\pi_1 \neq \pi_2$, then $\pi_1 \cap \pi_2 = \emptyset$

- \bullet S = { w_1, w_2, w_3 }
- $\bullet R_{u_s} = R_{u_r} = \{(w_1, w_2)\}$
- $\bullet \ \mathrm{R}_{\mathrm{u_e}} = \{(w_1, w_2), (w_1, w_3)\}\$
- $\bullet R_{c_{\mathrm{fb}}} = \{(w_2, w_2)\}\$

Definition (LTS^U)

- S is a non-empty set of states
- R_a a binary relation over S
- $V: S \to \mathcal{P}(\mathsf{Prop})$ is a valuation function
- $U(i) \subseteq \mathcal{P}(\mathsf{Act}^*)$ s.t. if $\pi_1, \pi_2 \in U(i)$ and $\pi_1 \neq \pi_2$, then $\pi_1 \cap \pi_2 = \emptyset$

- \bullet S = { w_1, w_2, w_3 }
- $\bullet R_{u_s} = R_{u_r} = \{(w_1, w_2)\}\$
- $\bullet \ \mathbf{R}_{\mathbf{u}_{e}} = \{(w_{1}, w_{2}), (w_{1}, w_{3})\}\$
- $\bullet R_{c_{\mathrm{fb}}} = \{(w_2, w_2)\}\$
- $V(w_1) = \{f, c\}, V(w_2) = \{s\}, V(w_3) = \{f\}$

Definition (LTS U)

- S is a non-empty set of states
- R_a a binary relation over S
- $V : S \to \mathcal{P}(\mathsf{Prop})$ is a valuation function
- $U(i) \subseteq \mathcal{P}(\mathsf{Act}^*)$ s.t. if $\pi_1, \pi_2 \in U(i)$ and $\pi_1 \neq \pi_2$, then $\pi_1 \cap \pi_2 = \emptyset$

- \bullet S = { w_1, w_2, w_3 }
- $\bullet R_{u_s} = R_{u_r} = \{(w_1, w_2)\}$
- $\bullet \ \mathrm{R}_{\mathrm{u_e}} = \{(w_1, w_2), (w_1, w_3)\}\$
- $\bullet R_{c_{\mathrm{fb}}} = \{(w_2, w_2)\}\$
- $V(w_1) = \{f, c\}, V(w_2) = \{s\}, V(w_3) = \{f\}$
- $U(i) = \{\{u_sc_{fb}, u_rc_{fb}\}, \{u_ec_{fb}\}\}$

Definition (LTS^U)

- S is a non-empty set of states
- R_a a binary relation over S
- $V : S \to \mathcal{P}(\mathsf{Prop})$ is a valuation function
- $U(i) \subseteq \mathcal{P}(\mathsf{Act}^*)$ s.t. if $\pi_1, \pi_2 \in U(i)$ and $\pi_1 \neq \pi_2$, then $\pi_1 \cap \pi_2 = \emptyset$

- \bullet S = { w_1, w_2, w_3 }
- $\bullet \ R_{u_s} = R_{u_r} = \{(w_1, w_2)\}\$
- $\bullet \ \mathrm{R}_{\mathrm{u_e}} = \{(w_1, w_2), (w_1, w_3)\}\$
- $\bullet R_{c_{fb}} = \{(w_2, w_2)\}\$
- $V(w_1) = \{f, c\}, V(w_2) = \{s\}, V(w_3) = \{f\}$
- $U(i) = \{\{u_sc_{fb}, u_rc_{fb}\}, \{u_ec_{fb}\}\}$
- $U(j) = \{\{u_sc_{fb}, u_rc_{fb}, u_ec_{fb}\}\}$

Fail-proof plans:

Fail-proof plans: Each partial execution has to be completed

Fail-proof plans: Each partial execution has to be completed

Fail-proof plans: Each partial execution has to be completed

 $\mathbf{u_r}$ is strongly executable at w_1

Fail-proof plans: Each partial execution has to be completed

 $\mathbf{u_r}$ is strongly executable at w_1 $\mathbf{u_r}\mathbf{c_{fb}}$ is strongly executable at w_1

Fail-proof plans: Each partial execution has to be completed

Fail-proof plans: Each partial execution has to be completed

 $\mathbf{u_r}$ is strongly executable at w_1 $\mathbf{u_r} \mathbf{c_{fb}}$ is strongly executable at w_1 $\mathbf{u_e}$ is strongly executable at w_1 $\mathbf{u_e} \mathbf{c_{fb}}$ is not strongly executable at w_1

Fail-proof plans: Each partial execution has to be completed

 $egin{array}{l} \mathbf{u_r} \ \mathbf{is} \ \text{strongly executable at} \ \mathbf{w_1} \ \mathbf{u_r} \ \mathbf{c_{fb}} \ \text{is strongly executable at} \ \mathbf{w_1} \ \mathbf{u_e} \ \text{is strongly executable at} \ \mathbf{w_1} \ \mathbf{u_e} \ \mathbf{c_{fb}} \ \text{is not strongly executable} \ \text{at} \ \mathbf{w_1} \ \mathbf{v_1} \ \mathbf{v_2} \ \mathbf{v_3} \ \mathbf{v_4} \ \mathbf{v_5} \ \mathbf{v_6} \ \mathbf{v$

Definition (Strong executability for a plan)

 $\sigma = b_1 \dots b_n \in Act^*$ is *strongly executable* (SE) at $u \in S$ iff, for each $k = 1, \dots, n-1$,

$$v \in R_{b_1...b_k}(u)$$
 implies $R_{b_{k+1}}(v) \neq \emptyset$.

Syntax and semantics of L_{Kh_i} over LTS^Us

Definition

$$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid \mathsf{Kh}_{i}(\varphi, \varphi)$$

Definition

$$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid \mathsf{Kh}_{i}(\varphi, \varphi)$$

$$\mathcal{M}, w \models p$$
 iff $p \in V(w)$

Definition

$$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid \mathsf{Kh}_{i}(\varphi, \varphi)$$

$$\mathcal{M}, w \models p$$
 iff $p \in V(w)$
 $\mathcal{M}, w \models \neg \varphi$ iff $\mathcal{M}, w \not\models \varphi$

Definition

$$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid \mathsf{Kh}_{i}(\varphi, \varphi)$$

```
\mathcal{M}, w \models p iff p \in V(w)

\mathcal{M}, w \models \neg \varphi iff \mathcal{M}, w \not\models \varphi

\mathcal{M}, w \models \varphi \lor \psi iff \mathcal{M}, w \models \varphi or \mathcal{M}, w \models \psi
```

Definition

$$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid \mathsf{Kh}_{i}(\varphi, \varphi)$$

```
\mathcal{M}, w \models p iff p \in V(w)

\mathcal{M}, w \models \neg \varphi iff \mathcal{M}, w \not\models \varphi

\mathcal{M}, w \models \varphi \lor \psi iff \mathcal{M}, w \models \varphi or \mathcal{M}, w \models \psi

\mathcal{M}, w \models \mathsf{Kh}_i(\psi, \varphi) iff there exists \pi \in \mathsf{U}(i) s.t. for each \sigma \in \pi
```

Definition

$$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid \mathsf{Kh}_{i}(\varphi, \varphi)$$

 $\mathsf{Kh}_i(\psi,\varphi)$: "when ψ holds, agent i knows how to reach φ ".

```
\label{eq:matter_matter_matter} \begin{split} \mathcal{M}, w &\models \rho & \text{iff} \quad p \in V(w) \\ \mathcal{M}, w &\models \neg \varphi & \text{iff} \quad \mathcal{M}, w \not\models \varphi \\ \mathcal{M}, w &\models \varphi \lor \psi & \text{iff} \quad \mathcal{M}, w \models \varphi \text{ or } \mathcal{M}, w \models \psi \\ \mathcal{M}, w &\models \mathsf{Kh}_i(\psi, \varphi) \text{ iff there exists } \pi \in \mathsf{U}(i) \text{ s.t. for each } \sigma \in \pi \end{split}
```

1. is SE at all ψ -states

Syntax and semantics of L_{Kh_i} over LTS^Us

Definition

$$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid \mathsf{Kh}_{i}(\varphi, \varphi)$$

 $\mathsf{Kh}_i(\psi,\varphi)$: "when ψ holds, agent i knows how to reach φ ".

```
\mathcal{M}, w \models p iff p \in V(w)

\mathcal{M}, w \models \neg \varphi iff \mathcal{M}, w \not\models \varphi

\mathcal{M}, w \models \varphi \lor \psi iff \mathcal{M}, w \models \varphi or \mathcal{M}, w \models \psi

\mathcal{M}, w \models \mathsf{Kh}_{i}(\psi, \varphi) iff there exists \pi \in \mathsf{U}(i) s.t. for each \sigma \in \pi
```

- 1. is SE at all ψ -states and
- 2. its executions from ψ -states always end in φ -states

Kh_i(ψ, φ): "when ψ holds, agent i knows how to reach φ". \mathcal{M} , $w \models \mathsf{Kh}_i(\psi, \varphi)$ iff there exists $\pi \in \mathsf{U}(i)$ s.t. for each $\sigma \in \pi$

- 1. is SE at all ψ -states and
- 2. its executions from ψ -states always end in φ -states

$$U(i) = \{\{u_sc_{fb}, u_rc_{fb}\}, \{u_ec_{fb}\}\}\$$

$$U(j) = \{\{u_sc_{fb}, u_rc_{fb}, u_ec_{fb}\}\}\$$

Kh_i(ψ, φ): "when ψ holds, agent i knows how to reach φ". \mathcal{M} , w \models Kh_i(ψ, φ) iff there exists $\pi \in U(i)$ s.t. for each $\sigma \in \pi$

- 1. is SE at all ψ -states and
- 2. its executions from ψ -states always end in φ -states

$$U(i) = \{\{u_sc_{fb}, u_rc_{fb}\}, \{u_ec_{fb}\}\}\$$

$$U(j) = \{\{u_sc_{fb}, u_rc_{fb}, u_ec_{fb}\}\}$$

Kh_i(ψ, φ): "when ψ holds, agent i knows how to reach φ". \mathcal{M} , w \models Kh_i(ψ, φ) iff there exists $\pi \in U(i)$ s.t. for each $\sigma \in \pi$

- 1. is SE at all ψ -states and
- 2. its executions from ψ -states always end in φ -states

$$U(i) = \{\{u_sc_{fb}, u_rc_{fb}\}, \{u_ec_{fb}\}\}\$$

$$U(j) = \{\{u_sc_{fb}, u_rc_{fb}, u_ec_{fb}\}\}$$

 $\models \mathsf{Kh}_i(f \land c, s)$

Kh_i(ψ, φ): "when ψ holds, agent i knows how to reach φ". \mathcal{M} , w \models Kh_i(ψ, φ) iff there exists $\pi \in U(i)$ s.t. for each $\sigma \in \pi$

- 1. is SE at all ψ -states and
- 2. its executions from ψ -states always end in φ -states

$$\begin{aligned} & \mathbf{U}(i) = \{\{\mathbf{u_{s}c_{fb}}, \mathbf{u_{r}c_{fb}}\}, \{\mathbf{u_{e}c_{fb}}\}\} \\ & \mathbf{U}(j) = \{\{\mathbf{u_{s}c_{fb}}, \mathbf{u_{r}c_{fb}}, \mathbf{u_{e}c_{fb}}\}\} \end{aligned}$$

$$\models \mathsf{Kh}_i(f \land c, s)$$

 $\not\models \mathsf{Kh}_j(f \land c, s)$

Kh_i(ψ, φ): "when ψ holds, agent i knows how to reach φ". \mathcal{M} , w \models Kh_i(ψ, φ) iff there exists $\pi \in U(i)$ s.t. for each $\sigma \in \pi$

- 1. is SE at all ψ -states and
- 2. its executions from ψ -states always end in φ -states

$$\begin{split} &U(i) = \{\{u_sc_{fb}, u_rc_{fb}\}, \{u_ec_{fb}\}\} \\ &U(j) = \{\{u_sc_{fb}, u_rc_{fb}, u_ec_{fb}\}\} \end{split}$$

$$\models \mathsf{Kh}_i(f \land c, s)$$

 $\not\models \mathsf{Kh}_i(f \land c, s)$

- $u_s c_{fb}$ and $u_r c_{fb}$ take the agent from all $(f \wedge c)$ -states and reaches only s-states;

Kh_i(ψ, φ): "when ψ holds, agent i knows how to reach φ". \mathcal{M} , w \models Kh_i(ψ, φ) iff there exists $\pi \in U(i)$ s.t. for each $\sigma \in \pi$

- 1. is SE at all ψ -states and
- 2. its executions from ψ -states always end in φ -states

$$\begin{split} &U(i) = \{\{u_sc_{fb}, u_rc_{fb}\}, \{u_ec_{fb}\}\} \\ &U(j) = \{\{u_sc_{fb}, u_rc_{fb}, u_ec_{fb}\}\} \end{split}$$

$$\models \mathsf{Kh}_i(f \land c, s)$$

 $\not\models \mathsf{Kh}_i(f \land c, s)$

- $u_s c_{fb}$ and $u_r c_{fb}$ take the agent from all $(f \wedge c)$ -states and reaches only s-states;
- plan $u_e c_{fb}$ does not complete at w_3 ;

Kh_i(ψ, φ): "when ψ holds, agent i knows how to reach φ". \mathcal{M} , w \models Kh_i(ψ, φ) iff there exists $\pi \in U(i)$ s.t. for each $\sigma \in \pi$

- 1. is SE at all ψ -states and
- 2. its executions from ψ -states always end in φ -states

$$U(i) = \{\{u_sc_{fb}, u_rc_{fb}\}, \{u_ec_{fb}\}\}$$

$$U(j) = \{\{u_sc_{fb}, u_rc_{fb}, u_ec_{fb}\}\}$$

$$\models \mathsf{Kh}_i(f \land c, s)$$

 $\not\models \mathsf{Kh}_i(f \land c, s)$

- $u_s c_{fb}$ and $u_r c_{fb}$ take the agent from all $(f \wedge c)$ -states and reaches only s-states;
- plan u_eC_{fb} does not complete at w₃;
 {u_sC_{fb}, u_rC_{fb}, u_eC_{fb}} is not SE at w₁

$$\mathsf{A}\varphi := \bigvee_{i \in \mathsf{Agt}} \mathsf{Kh}_i(\neg \varphi, \bot)$$
: "at all states φ holds" $\mathcal{M}, w \models \mathsf{A}\varphi$ iff for all $u \in \mathsf{S}, \mathcal{M}, u \models \varphi$

$$A\varphi := \bigvee_{i \in Agt} Kh_i(\neg \varphi, \bot)$$
: "at all states φ holds" $\mathcal{M}, w \models A\varphi$ iff for all $u \in S$, $\mathcal{M}, u \models \varphi$

$$A\varphi := \bigvee_{i \in Agt} Kh_i(\neg \varphi, \bot)$$
: "at all states φ holds" $\mathcal{M}, w \models A\varphi$ iff for all $u \in S$, $\mathcal{M}, u \models \varphi$

$$A\varphi := \bigvee_{i \in Agt} Kh_i(\neg \varphi, \bot)$$
: "at all states φ holds" $\mathcal{M}, w \models A\varphi$ iff for all $u \in S$, $\mathcal{M}, u \models \varphi$

Axiomatization $\mathcal{L}_{\mathsf{Kh}_i}^{\mathsf{LTS}^U}$ de $\mathsf{L}_{\mathsf{Kh}_i}$

Rules:

 $\frac{\varphi}{\mathsf{A}\varphi}$ NECA

- Improvement from a previous proposal (L_{Kh}) that used LTSs without uncertainty ($\mathcal{L} = \langle S, \{R_a\}_{a \in Act}, V \rangle$)
 - \mathcal{L} , $w \models \mathsf{Kh}(\psi, \varphi)$ iff there exists $\sigma \in \mathsf{Act}^*$ s.t.
 - 1. is SE at all ψ -states and
 - 2. its executions from ψ -states always end in φ -states

Reasons for not knowing how that are not represented.

- Improvement from a previous proposal (L_{Kh}) that used LTSs without uncertainty ($\mathcal{L} = \langle S, \{R_a\}_{a \in Act}, V \rangle$)
 - $\mathcal{L}, w \models \mathsf{Kh}(\psi, \varphi)$ iff there exists $\sigma \in \mathsf{Act}^*$ s.t.
 - 1. is SE at all ψ -states and
 - 2. its executions from ψ -states always end in φ -states

Reasons for not knowing how that are not represented. $\{U(i)\}_{i \in Aat}$ solved two major issues:

- Improvement from a previous proposal (L_{Kh}) that used LTSs without uncertainty ($\mathcal{L} = \langle S, \{R_a\}_{a \in Act}, V \rangle$)
 - \mathcal{L} , $w \models \mathsf{Kh}(\psi, \varphi)$ iff there exists $\sigma \in \mathsf{Act}^*$ s.t.
 - 1. is SE at all ψ -states and
 - 2. its executions from ψ -states always end in φ -states

Reasons for not knowing how that are not represented. $\{U(i)\}_{i \in Aat}$ solved two major issues:

■ Issue 1: The agent had all the plans to choose one

- Improvement from a previous proposal (L_{Kh}) that used LTSs without uncertainty ($\mathcal{L} = \langle S, \{R_a\}_{a \in Act}, V \rangle$)
 - \mathcal{L} , $w \models \mathsf{Kh}(\psi, \varphi)$ iff there exists $\sigma \in \mathsf{Act}^*$ s.t.
 - 1. is SE at all ψ -states and
 - 2. its executions from ψ -states always end in φ -states

Reasons for not knowing how that are not represented.

- $\{U(i)\}_{i \in Agt}$ solved two major issues:
- Issue 1: The agent had all the plans to choose one

Issue 2: The agent distinguishes each plan from all the others

- Improvement from a previous proposal (L_{Kh}) that used LTSs without uncertainty ($\mathcal{L} = \langle S, \{R_a\}_{a \in Act}, V \rangle$)
 - $\mathcal{L}, w \models \mathsf{Kh}(\psi, \varphi)$ iff there exists $\sigma \in \mathsf{Act}^*$ s.t.
 - 1. is SE at all ψ -states and
 - 2. its executions from ψ -states always end in φ -states

Reasons for not knowing how that are not represented.

- $\{U(i)\}_{i \in Agt}$ solved two major issues:
- Issue 1: The agent had all the plans to choose one
 - The agent migth not be conscious that certain plans exist
- Issue 2: The agent distinguishes each plan from all the others

- Improvement from a previous proposal (L_{Kh}) that used LTSs without uncertainty ($\mathcal{L} = \langle S, \{R_a\}_{a \in Act}, V \rangle$)
 - $\mathcal{L}, w \models \mathsf{Kh}(\psi, \varphi)$ iff there exists $\sigma \in \mathsf{Act}^*$ s.t.
 - 1. is SE at all ψ -states and
 - 2. its executions from ψ -states always end in φ -states

Reasons for not knowing how that are not represented. $\{U(i)\}_{i \in Aat}$ solved two major issues:

- Issue 1: The agent had all the plans to choose one
 - The agent migth not be conscious that certain plans exist
 - being able of \neq being conscious of being able $(\bigcup_{\pi \in U(i)} \pi \subseteq Act^*)$
- Issue 2: The agent distinguishes each plan from all the others

Improvement from a previous proposal (L_{Kh}) that used LTSs without uncertainty ($\mathcal{L} = \langle S, \{R_a\}_{a \in Act}, V \rangle$)

 $\mathcal{L}, w \models \mathsf{Kh}(\psi, \varphi)$ iff there exists $\sigma \in \mathsf{Act}^*$ s.t.

- 1. is SE at all ψ -states and
- 2. its executions from ψ -states always end in φ -states

Reasons for not knowing how that are not represented. $\{U(i)\}_{i \in Aat}$ solved two major issues:

- Issue 1: The agent had all the plans to choose one
 - The agent migth not be conscious that certain plans exist
 - being able of \neq being conscious of being able $(\bigcup_{\pi \in U(i)} \pi \subsetneq Act^*)$
- Issue 2: The agent distinguishes each plan from all the others
 - For the agent the effects of two plans can be indistinct (U(j) = {{u_sc_{fb}, u_rc_{fb}, u_ec_{fb}}})

Multiple agents can share the same LTS

- Multiple agents can share the same LTS
- Model more imperfect and less idealized agents

- Multiple agents can share the same LTS
- Model more imperfect and less idealized agents
- L_{Kh}, generalizes L_{Kh}

- Multiple agents can share the same LTS
- Model more imperfect and less idealized agents
- L_{Kh_i} generalizes L_{Kh} every LTS has an equivalent LTS^U with $U(i) := \{\{\sigma\} \mid \sigma \in Act^*\}$

- Multiple agents can share the same LTS
- Model more imperfect and less idealized agents
- L_{Kh_i} generalizes L_{Kh} every LTS has an equivalent LTS^U with $U(i) := \{\{\sigma\} \mid \sigma \in Act^*\}$
- Lower computational complexity

- Multiple agents can share the same LTS
- Model more imperfect and less idealized agents
- L_{Kh_i} generalizes L_{Kh} every LTS has an equivalent LTS^U with $U(i) := \{\{\sigma\} \mid \sigma \in Act^*\}$
- Lower computational complexity
 - Model checking: P (vs PSpace for L_{Kh})

- Multiple agents can share the same LTS
- Model more imperfect and less idealized agents
- L_{Kh_i} generalizes L_{Kh} every LTS has an equivalent LTS^U with $U(i) := \{\{\sigma\} \mid \sigma \in Act^*\}$
- Lower computational complexity
 - Model checking: P (vs PSpace for L_{Kh})
 - SAT: NP-complete (vs NP^{NP} upperbound for L_{Kh})

- Multiple agents can share the same LTS
- Model more imperfect and less idealized agents
- L_{Kh_i} generalizes L_{Kh} every LTS has an equivalent LTS^U with $U(i) := \{\{\sigma\} \mid \sigma \in Act^*\}$
- Lower computational complexity
 - Model checking: P (vs PSpace for L_{Kh})
 - SAT: NP-complete (vs NP^{NP} upperbound for L_{Kh})
- A clear distinction between
 - ontic information, available abilities (LTS part),

- Multiple agents can share the same LTS
- Model more imperfect and less idealized agents
- L_{Kh_i} generalizes L_{Kh} every LTS has an equivalent LTS^U with $U(i) := \{\{\sigma\} \mid \sigma \in Act^*\}$
- Lower computational complexity
 - Model checking: P (vs PSpace for L_{Kh})
 - SAT: NP-complete (vs NP^{NP} upperbound for L_{Kh})
- A clear distinction between
 - ontic information, available abilities (LTS part), and
 - epistemic information, perceived-as-possible abilities (U)

- Multiple agents can share the same LTS
- Model more imperfect and less idealized agents
- L_{Kh_i} generalizes L_{Kh} every LTS has an equivalent LTS^U with $U(i) := \{\{\sigma\} \mid \sigma \in Act^*\}$
- Lower computational complexity
 - Model checking: P (vs PSpace for L_{Kh})
 - SAT: NP-complete (vs NP^{NP} upperbound for L_{Kh})
- A clear distinction between
 - ontic information, available abilities (LTS part), and
 - epistemic information, perceived-as-possible abilities (U)
- We can define ontic and epistemic dynamic operators that modifiy each type of information

Ontic: Public Announcement ($PAL_{Kh_i} = L_{Kh_i} + [!\chi]$)

Ontic: Public Announcement (PAL_{Kh_i} = L_{Kh_i} + [! χ])

• $[!\chi]\varphi$: "after announcing χ , φ holds"

Ontic: Public Announcement (PAL_{Kh_i} = L_{Kh_i} + [! χ])

- $[!\chi]\varphi$: "after announcing χ , φ holds"
- Deletes states (S) and the relations between these (R)

Ontic: Public Announcement (PAL_{Kh_i} = L_{Kh_i} + [! χ])

- $[!\chi]\varphi$: "after announcing χ , φ holds"
- Deletes states (S) and the relations between these (R)
- More expressive than L_{Khi} over arbitrary LTS^Us

Ontic: Public Announcement (PAL_{Kh_i} = L_{Kh_i} + [! χ])

- $[!\chi]\varphi$: "after announcing χ , φ holds"
- Deletes states (S) and the relations between these (R)
- More expressive than L_{Kh_i} over arbitrary LTS^Us
- SAT problem is decidable only over a restricted class of models

Ontic: Public Announcement (PAL_{Kh_i} = L_{Kh_i} + [! χ])

- $[!\chi]\varphi$: "after announcing χ , φ holds"
- Deletes states (S) and the relations between these (R)
- More expressive than L_{Kh_i} over arbitrary LTS^Us
- SAT problem is decidable only over a restricted class of models

Epistemic: Refinement ($L_{Ref} = L_{Kh_i} + \langle \sigma_1 \not\sim \sigma_2 \rangle$)

Ontic: Public Announcement (PAL_{Kh_i} = L_{Kh_i} + [! χ])

- $[!\chi]\varphi$: "after announcing χ , φ holds"
- Deletes states (S) and the relations between these (R)
- More expressive than L_{Khi} over arbitrary LTS^Us
- SAT problem is decidable only over a restricted class of models

Epistemic: Refinement ($L_{Ref} = L_{Kh_i} + \langle \sigma_1 \not\sim \sigma_2 \rangle$)

Given a set of plans, divide it in two to be distinguishable

Ontic: Public Announcement (PAL_{Kh_i} = L_{Kh_i} + [! χ])

- $[!\chi]\varphi$: "after announcing χ , φ holds"
- Deletes states (S) and the relations between these (R)
- More expressive than L_{Khi} over arbitrary LTS^Us
- SAT problem is decidable only over a restricted class of models

Epistemic: Refinement ($L_{Ref} = L_{Kh_i} + \langle \sigma_1 \neq \sigma_2 \rangle$)

- Given a set of plans, divide it in two to be distinguishable
- $\langle \sigma_1 \not\sim \sigma_2 \rangle \varphi$: "there exists a way of separating σ_1 y σ_2 s.t. φ holds"

Ontic: Public Announcement (PAL_{Kh_i} = L_{Kh_i} + [! χ])

- $[!\chi]\varphi$: "after announcing χ , φ holds"
- Deletes states (S) and the relations between these (R)
- More expressive than L_{Kh_i} over arbitrary LTS^Us
- SAT problem is decidable only over a restricted class of models

Epistemic: Refinement ($L_{Ref} = L_{Kh_i} + \langle \sigma_1 \not\sim \sigma_2 \rangle$)

- Given a set of plans, divide it in two to be distinguishable
- $\langle \sigma_1 \nsim \sigma_2 \rangle \varphi$: "there exists a way of separating σ_1 y σ_2 s.t. φ holds"
- $[\sigma_1 \nsim \sigma_2] \varphi$: "for each way of separating σ_1 and σ_2 , φ holds"

Ontic: Public Announcement (PAL_{Kh_i} = L_{Kh_i} + [! χ])

- $[!\chi]\varphi$: "after announcing χ , φ holds"
- Deletes states (S) and the relations between these (R)
- More expressive than L_{Kh_i} over arbitrary LTS^Us
- SAT problem is decidable only over a restricted class of models

Epistemic: Refinement ($L_{Ref} = L_{Kh_i} + \langle \sigma_1 \not\sim \sigma_2 \rangle$)

- Given a set of plans, divide it in two to be distinguishable
- $\langle \sigma_1 \nsim \sigma_2 \rangle \varphi$: "there exists a way of separating σ_1 y σ_2 s.t. φ holds"
- $[\sigma_1 \nsim \sigma_2] \varphi$: "for each way of separating σ_1 and σ_2 , φ holds"
- $\blacksquare \not\models \mathsf{Kh}_{j}(f \land c, s)$

Ontic: Public Announcement (PAL_{Kh_i} = L_{Kh_i} + [! χ])

- $[!\chi]\varphi$: "after announcing χ , φ holds"
- Deletes states (S) and the relations between these (R)
- More expressive than L_{Kh_i} over arbitrary LTS^Us
- SAT problem is decidable only over a restricted class of models

Epistemic: Refinement ($L_{Ref} = L_{Kh_i} + \langle \sigma_1 \neq \sigma_2 \rangle$)

- Given a set of plans, divide it in two to be distinguishable
- $\langle \sigma_1 \nsim \sigma_2 \rangle \varphi$: "there exists a way of separating σ_1 y σ_2 s.t. φ holds"
- $[\sigma_1 \nsim \sigma_2] \varphi$: "for each way of separating σ_1 and σ_2 , φ holds"
- $\blacksquare \not\models \mathsf{Kh}_i(f \land c, s) \models \langle \mathsf{u}_s \mathsf{c}_{fb} \not\sim \mathsf{u}_e \mathsf{c}_{fb} \rangle \mathsf{Kh}_i(f \land c, s)$

Ontic: Public Announcement (PAL_{Kh_i} = L_{Kh_i} + [! χ])

- $[!\chi]\varphi$: "after announcing χ , φ holds"
- Deletes states (S) and the relations between these (R)
- More expressive than L_{Kh_i} over arbitrary LTS^Us
- SAT problem is decidable only over a restricted class of models

Epistemic: Refinement ($L_{Ref} = L_{Kh_i} + \langle \sigma_1 \not\sim \sigma_2 \rangle$)

- Given a set of plans, divide it in two to be distinguishable
- $\langle \sigma_1 \nsim \sigma_2 \rangle \varphi$: "there exists a way of separating σ_1 y σ_2 s.t. φ holds"
- $[\sigma_1 \nsim \sigma_2] \varphi$: "for each way of separating σ_1 and σ_2 , φ holds"
- $\blacksquare \not\models \mathsf{Kh}_{j}(f \land c, s) \models \langle \mathsf{u}_{s} \mathsf{c}_{fb} \not\sim \mathsf{u}_{e} \mathsf{c}_{fb} \rangle \mathsf{Kh}_{j}(f \land c, s)$
- More expressive than L_{Kh_i} over arbitrary LTS^Us

Ontic updates: limited axiomatizations via reductions axioms

- Ontic updates: limited axiomatizations via reductions axioms
- Epistemic updates: fails uniform substitution, no axiomatizations

- Ontic updates: limited axiomatizations via reductions axioms
- Epistemic updates: fails uniform substitution, no axiomatizations
- L_{Kh_i} can not capture the effect of these modalities as Kh_i describe plans implicitly

- Ontic updates: limited axiomatizations via reductions axioms
- Epistemic updates: fails uniform substitution, no axiomatizations
- L_{Kh_i} can not capture the effect of these modalities as Kh_i describe plans implicitly
- Extend the static language with basic modalities ([b], $b \in Act$) for executions ($L_{Kh_i,\square} = L_{Kh_i} + [b]$)

- Ontic updates: limited axiomatizations via reductions axioms
- Epistemic updates: fails uniform substitution, no axiomatizations
- L_{Kh_i} can not capture the effect of these modalities as Kh_i describe plans implicitly
- Extend the static language with basic modalities ([b], $b \in Act$) for executions ($L_{Kh_{i},\square} = L_{Kh_{i}} + [b]$)
 - $[b]\varphi$: "each execution of b reaches φ -states"

- Ontic updates: limited axiomatizations via reductions axioms
- Epistemic updates: fails uniform substitution, no axiomatizations
- L_{Kh_i} can not capture the effect of these modalities as Kh_i describe plans implicitly
- Extend the static language with basic modalities ([b], b ∈ Act) for executions (L_{Khi,□} = L_{Khi} + [b])
 - $[b]\varphi$: "each execution of b reaches φ -states"
 - $\langle b \rangle \varphi$: "there is an execution of b that reaches a φ -state"

- Ontic updates: limited axiomatizations via reductions axioms
- Epistemic updates: fails uniform substitution, no axiomatizations
- L_{Kh_i} can not capture the effect of these modalities as Kh_i describe plans implicitly
- Extend the static language with basic modalities ([b], $b \in Act$) for executions ($L_{Kh_{i,\square}} = L_{Kh_i} + [b]$)
 - $[b]\varphi$: "each execution of b reaches φ -states"
 - $\langle b \rangle \varphi$: "there is an execution of b that reaches a φ -state"
- Define a dynamic modality ([!b]) that distinguishes an action from others $(L_{Kh_i,\square,[!b]} = L_{Kh_i,\square} + [!b])$

- Ontic updates: limited axiomatizations via reductions axioms
- Epistemic updates: fails uniform substitution, no axiomatizations
- L_{Kh_i} can not capture the effect of these modalities as Kh_i describe plans implicitly
- Extend the static language with basic modalities ([b], $b \in Act$) for executions ($L_{Kh_{i,\square}} = L_{Kh_i} + [b]$)
 - $[b]\varphi$: "each execution of b reaches φ -states"
 - $\langle b \rangle \varphi$: "there is an execution of b that reaches a φ -state"
- Define a dynamic modality ([!b]) that distinguishes an action from others ($L_{Kh_{i,\square},[!b]} = L_{Kh_{i,\square}} + [!b]$)
 - $[!b]\varphi$: "after announcing b is distinguishable, φ holds".

- Ontic updates: limited axiomatizations via reductions axioms
- Epistemic updates: fails uniform substitution, no axiomatizations
- L_{Kh_i} can not capture the effect of these modalities as Kh_i describe plans implicitly
- Extend the static language with basic modalities ([b], $b \in Act$) for executions ($L_{Kh_{i,\square}} = L_{Kh_i} + [b]$)
 - $[b]\varphi$: "each execution of b reaches φ -states"
 - $\langle b \rangle \varphi$: "there is an execution of b that reaches a φ -state"
- Define a dynamic modality ([!b]) that distinguishes an action from others ($L_{Kh_{i,\square},[!b]} = L_{Kh_{i,\square}} + [!b]$)
 - $[!b]\varphi$: "after announcing b is distinguishable, φ holds".
- Sound and complete axiomatization via reduction axioms

- Ontic updates: limited axiomatizations via reductions axioms
- Epistemic updates: fails uniform substitution, no axiomatizations
- L_{Kh_i} can not capture the effect of these modalities as Kh_i describe plans implicitly
- Extend the static language with basic modalities ([b], b ∈ Act) for executions (L_{Kh_i,□} = L_{Kh_i} + [b])
 - $[b]\varphi$: "each execution of b reaches φ -states"
 - $\langle b \rangle \varphi$: "there is an execution of b that reaches a φ -state"
- Define a dynamic modality ([!b]) that distinguishes an action from others (L_{Kh_i,□,[!b]} = L_{Kh_i,□} + [!b])
 - $[!b]\varphi$: "after announcing b is distinguishable, φ holds".
- Sound and complete axiomatization via reduction axioms
- $L_{Kh_{i},\square}$ and $L_{Kh_{i},\square,[!b]}$ are equally expressive and decidable.

L_{Kh_i} logic [Ch. 4]

Distiction between ontic and epistemic information

- Distiction between ontic and epistemic information
- Represents more reasons of knowing how

- Distiction between ontic and epistemic information
- Represents more reasons of knowing how
- Sound and complete axiomatization [Ch. 5]

- Distiction between ontic and epistemic information
- Represents more reasons of knowing how
- Sound and complete axiomatization [Ch. 5]
- Bisimulations results and formula equivalence [Ch. 6]

- Distiction between ontic and epistemic information
- Represents more reasons of knowing how
- Sound and complete axiomatization [Ch. 5]
- Bisimulations results and formula equivalence [Ch. 6]
- Generalizes the semantics based on LTSs [Ch. 6]

- Distiction between ontic and epistemic information
- Represents more reasons of knowing how
- Sound and complete axiomatization [Ch. 5]
- Bisimulations results and formula equivalence [Ch. 6]
- Generalizes the semantics based on LTSs [Ch. 6]
- Lower computational complexity [Ch. 7]

- Distiction between ontic and epistemic information
- Represents more reasons of knowing how
- Sound and complete axiomatization [Ch. 5]
- Bisimulations results and formula equivalence [Ch. 6]
- Generalizes the semantics based on LTSs [Ch. 6]
- Lower computational complexity [Ch. 7] Dynamic operators [Ch. 8]

```
L<sub>Kh<sub>i</sub></sub> logic [Ch. 4]
```

- Distiction between ontic and epistemic information
- Represents more reasons of knowing how
- Sound and complete axiomatization [Ch. 5]
- Bisimulations results and formula equivalence [Ch. 6]
- Generalizes the semantics based on LTSs [Ch. 6]
- Lower computational complexity [Ch. 7]
 Dynamic operators [Ch. 8]
- Public announcements ($[!\chi]$) and arrow updates ([E]) [Ch. 8.1]

- Distiction between ontic and epistemic information
- Represents more reasons of knowing how
- Sound and complete axiomatization [Ch. 5]
- Bisimulations results and formula equivalence [Ch. 6]
- Generalizes the semantics based on LTSs [Ch. 6]
- Lower computational complexity [Ch. 7] Dynamic operators [Ch. 8]
- Public announcements ($[!\chi]$) and arrow updates ([E]) [Ch. 8.1]
- Specific refinement $\langle \sigma_1 \nsim \sigma_2 \rangle$, arbitrary refinement $\langle \nsim \rangle$, public refinement of a plan [! σ] and its private version [! σ , i] [Ch. 8.2 and 9]

L_{Kh_i} logic [Ch. 4]

- Distiction between ontic and epistemic information
- Represents more reasons of knowing how
- Sound and complete axiomatization [Ch. 5]
- Bisimulations results and formula equivalence [Ch. 6]
- Generalizes the semantics based on LTSs [Ch. 6]
- Lower computational complexity [Ch. 7] Dynamic operators [Ch. 8]
- Public announcements ($[!\chi]$) and arrow updates ([E]) [Ch. 8.1]
- Specific refinement ⟨σ₁ ≁ σ₂⟩, arbitrary refinement ⟨≁⟩, public refinement of a plan [!σ] and its private version [!σ, i] [Ch. 8.2 and 9]

Deontic operators (abilities, norms and compliance) [Ch. 10]

 Consider alternatives to strong executability (weak executability, traces of partial executions, and so on)

- Consider alternatives to strong executability (weak executability, traces of partial executions, and so on)
- Caracterize the exact complexity class of the dynamic and deontic logics

- Consider alternatives to strong executability (weak executability, traces of partial executions, and so on)
- Caracterize the exact complexity class of the dynamic and deontic logics
- Analysis of possible class of models, expressivity results, axiomatizations and extensions of the base language

- Consider alternatives to strong executability (weak executability, traces of partial executions, and so on)
- Caracterize the exact complexity class of the dynamic and deontic logics
- Analysis of possible class of models, expressivity results, axiomatizations and extensions of the base language
- Consider other dynamic operators such as "learning how" and "forgetting how"

Referencias

Hintikka, J. (1962). Knowledge and Belief. Ithaca, NY: Cornell University Press.

Wang, Y. (2015). "A Logic of Knowing How". En: *Logic, Rationality, and Interaction – 5th International Workshop, LORI 2015*, págs. 392-405. DOI: 10.1007/978-3-662-48561-3_32.