Lösung periodischer Fahrplanoptimierungsprobleme durch Modulo-Simplex-Berechnungen

Lösung periodischer Fahrplanoptimierungsprobleme durch Modulo-Simplex-Berechnungen

Einleitung und Motivation

Mathematische Modellierung

Nicht-periodische Fahrpläne

Taktfahrpläne

Das Slack-Modell

Grundlagen von Flussnetzwerken

Spannbaumstrukturen

Untersuchung des Slack-Modells

Das Modulo-Netzwerk-Simplex-Verfahren

Einführung

Simplex-Tableau

Verbesserungen der Lösung

Zusammenfassung und Abschluss

Einleitung und Motivation Gliederung

Einleitung und Motivation

Mathematische Modellierung

Nicht-periodische Fahrpläne

Taktfahrpläne

Das Slack-Model

Grundlagen von Flussnetzwerken

Spannbaumstrukturer

Untersuchung des Slack-Modells

Das Modulo-Netzwerk-Simplex-Verfahren

Einführung

Simplex-Tableau

Verbesserungen der Lösung

Zusammenfassung und Abschluss

Einleitung

- ▶ Die Taktfahrplanoptimierung hat in den letzten Jahren viel Aufmerksamkeit erfahren, vor allem aus der kombinatorischen Optimierung.
- Fast alle Linien des ÖPNV verkehren nach einem Taktfahrplan.

Idee

- Fokus auf die Optimierung von gewichteten Slack-Zeiten
 - → Gemischt-Ganzzahliges Programm.
- Sehr schwer zu lösen für reale Szenarien.
- Definition von Modulo-Gleichungen und Lösung mit Modulo-Simplex.

Mathematische Modellierung Gliederung

Einleitung und Motivation

Mathematische Modellierung Nicht-periodische Fahrpläne Taktfahrpläne

Das Slack-Model

Grundlagen von Flussnetzwerken

Spannbaumstrukturen

Untersuchung des Slack-Modells

Das Modulo-Netzwerk-Simplex-Verfahren

Einführung

Simplex-Tableau

Verbesserungen der Lösung

Zusammenfassung und Abschluss

Nicht-periodische Fahrpläne Gliederung

Einleitung und Motivation

Mathematische Modellierung Nicht-periodische Fahrpläne

Taktfahrpläne

Das Slack-Model

Grundlagen von Flussnetzwerken

Spannbaumstrukturen

Untersuchung des Slack-Modells

Das Modulo-Netzwerk-Simplex-Verfahren

Einführung

Simplex-Tableau

Verbesserungen der Lösung

Zusammenfassung und Abschluss

Schienennetz und Ereignisse

Ein *Schienennetz* ist ein System von Linien \mathcal{L} und Stationen \mathcal{S} .

Bedient Linie $L \in \mathcal{L}$ die Station $S \in \mathcal{S}$, so sei

- \blacktriangleright (L, arr, S) das Ankunfts- und
- ightharpoonup (L, dep, S) das Abfahrts-*Ereignis*.

Eine Linie ist eine alternierende Sequenz von Ankunfts- und Abfahrts-Ereignis.

Fahrpläne und Vorgänge

Ein Fahrplan $\pi=(\pi_i)$ ordnet jedem Event i=(L,arr,S) (bzw. i=(L,dep,S)) einen Zeitpunkt $\pi_i\in\mathbb{R}$ zu.

Ein Vorgang ("Activity") $a:i\to j$ beschreibt den Übergang von i zu j. Die Dauer des Vorgangs, die Spannung ("Tension") ist

$$x_a = \pi_j - \pi_i$$

Sei ${\mathcal A}$ die Menge aller Vorgänge.

Fahrpläne und Vorgänge

Ein Fahrplan $\pi=(\pi_i)$ ordnet jedem Event i=(L,arr,S) (bzw. i=(L,dep,S)) einen Zeitpunkt $\pi_i\in\mathbb{R}$ zu.

Ein Vorgang ("Activity") $a:i\to j$ beschreibt den Übergang von i zu j. Die Dauer des Vorgangs, die Spannung ("Tension") ist

$$x_a = \pi_i - \pi_i$$

Sei ${\mathcal A}$ die Menge aller Vorgänge.

Beispiel:

Haltevorgang a von Linie L an Station S:

$$a:(L,dep,S)\to (L,arr,S)$$

Zeiteinschränkungen und Zulässigkeit

Jedem Vorgang $a \in \mathcal{A}$ wird eine *zulässige Dauer*

$$\Delta_a = [l_a, u_a]$$

zugeordnet.

Ein Fahrplan π heißt *zulässig* ("feasible"), wenn gilt:

$$\forall a \in \mathcal{A} : x_a \in \Delta_a \quad \iff \quad \forall (a : i \to j) \in \mathcal{A} : l_a \le \pi_j - \pi_i \le u_a$$

Aussagekraft von Zeiteinschränkungen

Fast alle realen Einschränkungen können durch Zeitspannen beschrieben werden.

Aussagekraft von Zeiteinschränkungen

- Fast alle realen Einschränkungen können durch Zeitspannen beschrieben werden.
 - Fahrzeit eines Zuges
 - Sicherheitseinschränkungen (z. B. Vorfahrt)
 - Wartezeiten (Kundenzufriedenheit)
 - Umsteigezeiten
 - ▶ ..

Ereignisnetzwerk

Abbildung: Ereignisnetzwerk, vgl. [NO08, Fig. 1]

Zusammenfassung

- ▶ Schienennetz Linien \mathcal{L} , Stationen \mathcal{S}
- lacktriangle Ereignisse (L, arr, S), (L, dep, S)
- ▶ Fahrplan $\pi = (\pi_i)$
- ▶ Vorgang $a: i \rightarrow j$
- Spannung $x_a = \pi_j \pi_i$
- lacktriangle Zulässige Dauer $\Delta_a = [l_a, u_a]$

Taktfahrpläne Gliederung

Einleitung und Motivation

Mathematische Modellierung

Nicht-periodische Fahrpläne

Taktfahrpläne

Das Slack-Model

Grundlagen von Flussnetzwerken

Spannbaumstrukturen

Untersuchung des Slack-Modells

Das Modulo-Netzwerk-Simplex-Verfahren

Einführung

Simplex-Tableau

Verbesserungen der Lösung

Zusammenfassung und Abschluss

Problematiken

- lacktriangle Nicht-periodische Optimierungsprobleme ightarrow Kürzester-Pfad-Berechnungen.
- lacktriangle Taktfahrpläne ightarrow dieses einfache Modell funktioniert nicht mehr.
 - Es ist a-priori nicht klar, in welcher Sequenz Züge ankommen.
 - Erst nach Ordnung bekannt.

Taktfahrpläne und periodische Zulässigkeit

Ein Taktfahrplan $\pi=(\pi_i)$ ordnet jedem periodischem Ereignis i einen Ereigniszeitpunkt $\pi_i\in\mathbb{R}$ zu. Ereignisse finden zu den Zeitpunkten π_i+z_iT mit dem Modulo-Parameter $z_i\in\mathbb{Z}$ und der Taktzeit T statt.

Ein Taktfahrplan π heißt *zulässig* ("feasible"), wenn gilt:

$$\forall (a:i\to j)\in\mathcal{A}: \exists z_a\in\mathbb{Z}: l_a\leq \pi_j-\pi_i-z_aT\leq u_a$$

Modulo-Operator und Slack-Zeiten

Sei

$$[t]_T := \min \{ t + zT \mid t + zT \ge 0, \quad z \in \mathbb{Z}, \quad T = \text{const } \}$$

Es gilt offensichtlich $0 \le [t]_T < T$.

Die untere und obere *Slack-Zeit* misst, um wie viel Zeit die Spannung $x_a=\pi_j-\pi_i$ verändert werden darf.

$$y_a^{low} := [x_a - l_a]_T$$
$$y_a^{upp} := [u_a - x_a]_T$$

Das Optimierungsproblem (Potential-Modell)

- Durch Umkehrung einer Kante a können obere und untere Pufferzeit ausgetauscht werden.
- lackbox O.B.d.A. kann das Problem nur in Bezug auf y_a^{low} definiert werden.
- → Gemischt-Ganzzahliges Programm ("mixed-integer program"):

$$\min \left\{ \sum_{a \in \mathcal{A}} \omega_a (x_a - l_a - z_a T) \, \middle| \, \forall a \in \mathcal{A} : l_a \le x_a - z_a T \le u_a, \quad z_a \in \mathbb{Z} \right\}$$

Zusammenfassung

$$T = const$$

$$\boldsymbol{\pi} = (\pi_i)$$

$$a:i\to j$$

$$x_a = \pi_j - \pi_i$$

$$\Delta_a = [l_a, u_a]$$

Untere/Obere Slack-Zeit

$$y_a^{low} = [x_a - l_a]_T, \ y_a^{upp} = [u_a - x_a]_T$$

Optimierungsproblem

$$\min \left\{ \sum_{a \in \mathcal{A}} \omega_a (x_a - l_a - z_a T) \, \middle| \, \forall a \in \mathcal{A} : l_a \le x_a - z_a T \le u_a, \quad z_a \in \mathbb{Z} \right\}$$

Das Slack-Modell Gliederung

Einleitung und Motivation Mathematische Modellier

Nicht-periodische Fahrpläne

Taktfahrpläne

Das Slack-Modell

Grundlagen von Flussnetzwerken

Spannbaumstrukturen

Untersuchung des Slack-Modells

Das Modulo-Netzwerk-Simplex-Verfahren

Einführung

Simplex-Tableau

Verbesserungen der Lösung

Zusammenfassung und Abschluss

Grundlagen von Flussnetzwerken Gliederung

Einleitung und Motivation

Mathematische Modellierung

Nicht-periodische Fahrpläne

Taktfahrpläne

Das Slack-Modell

Grundlagen von Flussnetzwerken

Spannbaumstrukturen

Untersuchung des Slack-Modells

Das Modulo-Netzwerk-Simplex-Verfahren

Einführung

Simplex-Tableau

Verbesserungen der Lösung

Zusammenfassung und Abschluss

Gerichtete Graphen

Abbildung: Gerichteter Graph mit n=4 Kanten und m=4 Knoten (laufendes Beispiel)

Notation: Die Kante $a:A\to B$ geht von Knoten A zu Knoten B.

Spannbaum und Komplement-Baum (Ko-Baum)

Abbildung: Mehrere (nicht alle) Spannbäume (rot) und Ko-Bäume (blau)

Inzidenzmatrix

Die *Inzidenzmatrix* eines Netzwerks mit n Knoten und m Kanten ist eine $n \times m$ -Matrix $\Theta = (\theta_{ia})$:

$$\theta_{ia} \coloneqq \begin{cases} 1 & \text{ falls } a: j \to i \\ -1 & \text{ falls } a: i \to j \\ 0 & \text{ sonst} \end{cases}$$

Inzidenzmatrix

Die *Inzidenzmatrix* eines Netzwerks mit n Knoten und m Kanten ist eine $n \times m$ -Matrix $\Theta = (\theta_{ia})$:

$$\theta_{ia} \coloneqq \begin{cases} 1 & \text{ falls } a: j \to i \\ -1 & \text{ falls } a: i \to j \\ 0 & \text{ sonst} \end{cases}$$

Beispiel:

$$\Theta = \begin{pmatrix} A & b & c & d & e \\ 1 & -1 & 1 & 0 & 0 \\ -1 & 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 & -1 \\ D & 0 & 0 & -1 & 1 & 1 \end{pmatrix}$$

Netzwerkmatrix ("Edge-Cycle-Matrix")

Durch Hinzufügen einer Ko-Baum-Kante zum Baum $\mathcal T$ wird ein eindeutiger Zyklus c definiert. Sei $\Gamma=(\gamma_{ca})$ die *Netzwerkmatrix*:

$$\gamma_{ca} \coloneqq \begin{cases} 1 & \text{falls der Zyklus } c \text{ die Kante } a \text{ in positiver Richtung enthält} \\ -1 & \text{falls der Zyklus } c \text{ die Kante } a \text{ in negativer Richtung enthält} \\ 0 & \text{sonst} \end{cases}$$

Netzwerkmatrix ("Edge-Cycle-Matrix")

Durch Hinzufügen einer Ko-Baum-Kante zum Baum $\mathcal T$ wird ein eindeutiger Zyklus c definiert. Sei $\Gamma=(\gamma_{ca})$ die *Netzwerkmatrix*:

$$\gamma_{ca} \coloneqq \begin{cases} 1 & \text{falls der Zyklus } c \text{ die Kante } a \text{ in positiver Richtung enthält} \\ -1 & \text{falls der Zyklus } c \text{ die Kante } a \text{ in negativer Richtung enthält} \\ 0 & \text{sonst} \end{cases}$$

Beispiel:

$$\mathbf{\Gamma} = \begin{bmatrix} a & b & c & d & e \\ 0 & 1 & 1 & 0 & 1 \\ -1 & 0 & 1 & 1 & 0 \end{bmatrix}$$

Potential und Spannung

Ein *Potential* $\pi = (\pi_i)$ ordnet jedem Knoten i einen Wert $\pi_i \in \mathbb{R}$ zu.

Die Potentialdifferenz $x_a := \pi_j - \pi_i$ sei die *Spannung* von Kante $a: i \to j$. Es gilt $\Theta^T \pi = \mathbf{x}$. Weiterhin ist \mathbf{x} eine periodische Spannung gdw. $\Gamma \mathbf{x} \equiv_T \mathbf{0}$ gilt.

Potential und Spannung

Ein *Potential* $\pi = (\pi_i)$ ordnet jedem Knoten i einen Wert $\pi_i \in \mathbb{R}$ zu.

Die Potentialdifferenz $x_a \coloneqq \pi_j - \pi_i$ sei die *Spannung* von Kante $a: i \to j$. Es gilt $\mathbf{\Theta}^T \pi = \mathbf{x}$. Weiterhin ist \mathbf{x} eine periodische Spannung gdw. $\Gamma \mathbf{x} \equiv_T \mathbf{0}$ gilt.

Beispiel:

$$\mathbf{x} = \begin{bmatrix} \pi_A & \pi_B & \pi_C & \pi_D \end{bmatrix}^T \in \mathbb{R}^4$$

$$\mathbf{x} = \begin{bmatrix} x_a \\ x_b \\ x_c \\ x_c \\ x_d \\ x_e \end{bmatrix} := \begin{bmatrix} \pi_A - \pi_B \\ \pi_C - \pi_A \\ \pi_A - \pi_D \\ \pi_D - \pi_B \\ \pi_D - \pi_C \end{bmatrix} = \begin{bmatrix} 1 & -1 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 1 & 0 & 0 & -1 \\ 0 & -1 & 0 & 1 \\ 0 & 0 & -1 & 1 \end{bmatrix} \cdot \begin{bmatrix} \pi_A \\ \pi_B \\ \pi_C \\ \pi_D \end{bmatrix}$$

Potential und Spannung, Fortsetzung

Beispiel:

$$\mathbf{x} = \begin{bmatrix} x_a & x_b & x_c & x_d & x_e \end{bmatrix}$$

$$\mathbf{\Gamma} \mathbf{x} = \begin{bmatrix} 0 & 1 & 1 & 0 & 1 \\ -1 & 0 & 1 & 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} x_a \\ x_b \\ x_c \\ x_d \\ x_c \end{bmatrix} = \begin{bmatrix} x_b + x_c + x_d \\ x_c + x_d - x_a \end{bmatrix}$$

$$C = D$$

Flüsse

Der $\textit{Bedarf}\,\mathbf{v}=(v_i)$ (mit $\sum_i v_i=0$) ordnet jedem Knoten i einen Bedarf $v_i\in\mathbb{R}$ zu. Ein Knoten mit v_i heißt

$$\begin{cases} \textit{Quellknoten} & \text{für } v_i > 0 \\ \textit{Zielknoten} & \text{für } v_i < 0 \\ \textit{Durchgangsknoten} & \text{für } v_i = 0 \end{cases}$$

Ein Fluss $\varphi = (\varphi_a)$ (mit $\Theta \varphi = \mathbf{v}$) ordnet jeder Kante a einen Flusswert $\varphi_a \in \mathbb{R}$ zu.

Schnitte

Die Knoten eines Graphen lassen sich in zwei disjunkte Mengen P und \bar{P} zerlegen. Sei $\eta = (\eta_{(a:i \to i)})$ der *Schnitt* bzgl. dieser Zerlegung:

$$\eta_{(a:i\to j)} \coloneqq \begin{cases} 1 & \text{ falls } i \in P \text{ und } j \in \bar{P} \\ -1 & \text{ falls } i \in \bar{P} \text{ und } j \in P \\ 0 & \text{ sonst} \end{cases}$$

Schnitte

Die Knoten eines Graphen lassen sich in zwei disjunkte Mengen P und \bar{P} zerlegen. Sei $\eta = (\eta_{(a:i \to i)})$ der *Schnitt* bzgl. dieser Zerlegung:

$$\eta_{(a:i\to j)} \coloneqq \begin{cases} 1 & \text{ falls } i \in P \text{ und } j \in \bar{P} \\ -1 & \text{ falls } i \in \bar{P} \text{ und } j \in P \\ 0 & \text{ sonst} \end{cases}$$

Beispiel:

$$\begin{split} P &= \{\,\mathsf{C}\,\} \\ \bar{P} &= \{\,\mathsf{A},\mathsf{B},\mathsf{D}\,\} \\ \boldsymbol{\eta} &= \begin{bmatrix} 0 & -1 & 0 & 0 & 1 \end{bmatrix}^T \end{split}$$

Zusammenfassung

- Gerichtete Graphen
- Spannbaum und Komplement-Baum (Ko-Baum)

▶ Inzidenzmatrix
$$\Theta = (\theta_{ia})$$

• Netzwerkmatrix
$$\Gamma = (\gamma_{ca})$$

▶ Potential
$${m \pi}=(\pi_i)$$

Spannung
$$\mathbf{x} = \mathbf{\Theta}^T \boldsymbol{\pi} = (x_a), \ x_a = \pi_j - \pi_i$$

▶ Bedarf
$$\mathbf{v} = (v_i)$$

▶ Fluss
$$\varphi = (\varphi_a) \text{ mit } \Theta \varphi = \mathbf{v}$$

Schnitt
$$\eta = (\eta_a)$$
 für P , \bar{P}

Spannbaumstrukturen Gliederung

Einleitung und Motivation

Mathematische Modellierung Nicht-periodische Fahrpläne

Das Slack-Modell

Grundlagen von Flussnetzwerken

Spannbaumstrukturen

Untersuchung des Slack-Modells

Das Modulo-Netzwerk-Simplex-Verfahren

Einführung

Simplex-Tableau

Verbesserungen der Lösung

Zusammenfassung und Abschluss

Spannbaumstrukturen und generiertes Potential

Sei $\mathcal{T} = \mathcal{T}^l + \mathcal{T}^u$ ein Spannbaum, separiert in \mathcal{T}^l und \mathcal{T}^u , sodass gilt:

$$\forall a \in \mathcal{T}^l : x_a = l_a \quad \text{und} \quad \forall a \in \mathcal{T}^u : x_a = u_a$$

Jede Struktur bestimmt ein eindeutiges Potential $\pi^{(\mathcal{T})}$, für das gilt:

$$\forall (a:i\to j)\in \mathcal{T}^l: \pi_j^{(\mathcal{T})} - \pi_i^{(\mathcal{T})} = l_a$$

$$\forall (a:i \to j) \in \mathcal{T}^l : \pi_j^{(\mathcal{T})} - \pi_i^{(\mathcal{T})} = u_a$$

Das Optimierungsproblem (Slack-Modell)

 $\text{Mit } \mathbf{b} \coloneqq [-\Gamma \mathbf{l}]_T \text{ und } \delta \coloneqq \mathbf{u} - \mathbf{l} \text{ ist die } \textit{Menge zulässiger Slack-Zeiten } \mathcal{Y} \text{ definiert:}$

$$\mathcal{Y} \coloneqq \{ \mathbf{y} \in \mathbb{Z}^m \, | \, \mathbf{\Gamma} \mathbf{y} \equiv_T \mathbf{b}, \quad \mathbf{0} \le \mathbf{y} \le \boldsymbol{\delta} \, \}$$

Das Optimierungsproblem kann wie folgt umformuliert werden:

$$\min \left\{ \left. oldsymbol{\omega}^T \mathbf{y} \, \middle| \, \mathbf{y} \in \mathcal{Y} \, \right\} \right.$$

Zusammenfassung

- ▶ Spannbaumstruktur $\mathcal{T} = \mathcal{T}^l + \mathcal{T}^u$
- $\mathbf{b} = [-\Gamma \mathbf{l}]_T$
- $\delta = u 1$
- ► Zulässige Slack-Zeiten

$$\mathcal{Y} = \left\{ \mathbf{y} \in \mathbb{Z}^m \, | \, \mathbf{\Gamma} \mathbf{y} \equiv_T \mathbf{b}, \quad \mathbf{0} \leq \mathbf{y} \leq \boldsymbol{\delta} \, \right\}$$

Optimierungsproblem

$$\min \left\{ \left. \boldsymbol{\omega}^T \mathbf{y} \, \right| \mathbf{y} \in \mathcal{Y} \right. \right\}$$

Untersuchung des Slack-Modells Gliederung

Einleitung und Motivation

Mathematische Modellierung

Nicht-periodische Fahrpläne

Taktfahrpläne

Das Slack-Modell

Grundlagen von Flussnetzwerken

Spannbaumstrukturen

Untersuchung des Slack-Modells

Das Modulo-Netzwerk-Simplex-Verfahren

Einführung

Simplex-Tableau

Verbesserungen der Lösung

Zusammenfassung und Abschluss

Dualität zum Minimum-Cost Flow Problem

Werden die Modulo-Parameter z_a fixiert, kann das Optimierungsproblem umformuliert werden:

$$\min \left\{ \sum_{a}^{\mathcal{A}} \omega_{a}(x_{a} - l_{a} - z_{a}T) \middle| \forall a \in \mathcal{A} : l_{a} \leq x_{a} - z_{a}T \leq u_{a} \right\}$$

$$= \min \left\{ \sum_{a}^{\mathcal{A}} \omega_{a}(x_{a} - l'_{a}) \middle| \forall a \in \mathcal{A} : l'_{a} = l_{a} + z_{a}T \leq x_{a} \leq u'_{a} = u_{a} + z_{a}T \right\}$$

$$= \min \left\{ \boldsymbol{\omega}^{T} (\boldsymbol{\Theta}^{T} \boldsymbol{\pi} - \mathbf{l}') \middle| \mathbf{l}' \leq \boldsymbol{\Theta}^{T} \boldsymbol{\pi} \leq \mathbf{u}' \right\}$$

Dies ist die duale Formulierung des Minimum-Cost Flow Problems. Jeder Extrempunkt der gültigen Region des Problems entspricht einer Spannbaumstruktur.

Periodische Basislösung

Sind $\mathbf{z}^{\mathcal{T}}$ die fixierten Modulo-Parameter, so heißt

$$egin{bmatrix} m{\pi}^{\mathcal{T}} \ \mathbf{z}^{\mathcal{T}} \end{bmatrix}$$

die $\textit{periodische Basisl\"{o}sung}$ in Bezug auf die Spannbaumstruktur $\mathcal{T}.$

Sei

$$\mathcal{Q} \coloneqq conv.hull \left\{ egin{array}{c} \left[oldsymbol{\pi} \ \mathbf{z}
ight] \ \left| \mathbf{l} \leq oldsymbol{\Theta}^T oldsymbol{\pi} - T \mathbf{z} \leq \mathbf{u}, \quad oldsymbol{\pi} \in \mathbb{R}^n, \quad \mathbf{z} \in \mathbb{Z}^m \end{array}
ight\}$$

der periodische Fahrplan-Polyeder.

Theorem. Der Vektor $\left| egin{array}{c} \pi \\ \mathbf{z} \end{array} \right| \in \mathcal{Q}$ ist ein Extrempunkt von \mathcal{Q} gdw. er eine periodische Basislösung in Bezug auf eine Spannbaumstruktur ist. Beweis siehe [Nac99].

Das Modulo-Netzwerk-Simplex-Verfahren Gliederung

Einleitung und Motivation

Mathematische Modellierung

Nicht-periodische Fahrpläne

Taktfahrpläne

Das Slack-Model

Grundlagen von Flussnetzwerken

Spannbaumstrukturen

Untersuchung des Slack-Modells

Das Modulo-Netzwerk-Simplex-Verfahren

Einführung

Simplex-Tableau

Verbesserungen der Lösung

Zusammenfassung und Abschluss

Einführung Gliederung

Einleitung und Motivation

Mathematische Modellierung

Nicht-periodische Fahrpläne

Taktfahrpläne

Das Slack-Modell

Grundlagen von Flussnetzwerken

Spannbaumstrukturen

Untersuchung des Slack-Modells

Das Modulo-Netzwerk-Simplex-Verfahren Einführung

Simplex-Tableau

Verbesserungen der Lösung

Zusammenfassung und Abschluss

Arbeits-/Erkundungsbereich

Die Modulo-Simplex-Methode erkundet die Extrempunkte des Optimierungsproblems

$$\min \left\{ \boldsymbol{\omega}^T \mathbf{y} \, \big| \, \mathbf{y} \in \mathcal{Y} \coloneqq \left\{ \mathbf{y} \in \mathbb{Z}^m \, | \, \exists \mathbf{z} \in \mathbb{Z}^m : (\mathbf{\Gamma} \mathbf{y} - T\mathbf{z} = \mathbf{b}, \quad \mathbf{0} \le \mathbf{y} - T\mathbf{z} \le \boldsymbol{\delta}) \, \right\} \right\}$$

Das heißt des Polyeders $conv.hull(\mathcal{Y})$.

Behandlung der Modulo-Parameter

- ▶ Die Ganzzahligkeit von z macht das Problem sehr schwer.
- ▶ Daher: Eliminierung von z durch Restklassenberechnungen (Modulo-Berechnungen).

$$\min \left\{ \left. \boldsymbol{\omega}^T \mathbf{y} \, \middle| \, \mathbf{y} \in \mathcal{Y} \coloneqq \left\{ \left. \mathbf{y} \in \mathbb{Z}^m \, \middle| \, \exists \mathbf{z} \in \mathbb{Z}^m : \left(\mathbf{\Gamma} \mathbf{y} \equiv_T \mathbf{b}, \quad \mathbf{0} \leq \mathbf{y} \leq \boldsymbol{\delta} \right) \right. \right\} \right\}$$

Simplex-Tableau Gliederung

Einleitung und Motivation

Mathematische Modellierung

Nicht-periodische Fahrpläne

Taktfahrpläne

Das Slack-Model

Grundlagen von Flussnetzwerken

Spannbaumstrukturen

Untersuchung des Slack-Modells

Das Modulo-Netzwerk-Simplex-Verfahren

Einführung

Simplex-Tableau

Verbesserungen der Lösung

Zusammenfassung und Abschluss

Idee

- ▶ Beginnend von der Basislösung $\begin{bmatrix} \mathbf{0}^T & \mathbf{b}^T \end{bmatrix}^T$ bewegt sich der Algorithmus auf den Kanten des Polyeders $conv.hull(\mathcal{Y})$.
- In jedem Schritt: Überprüfen der Verbesserung.
- lacktriangle Keine Verbesserung möglich ightarrow lokales Minimum gefunden.

Separierung der Netzwerkmatrix

Separierung der Netzwerkmatrix $\Gamma_{\mathcal{T}} = \left[\mathbf{N}_{\mathcal{T}}, \mathbf{I}_{\mathcal{T}}^{co}\right]$ in Baum-Kanten $\mathbf{N}_{\mathcal{T}}$ und Ko-Baum-Kanten $\mathbf{I}_{\mathcal{T}}^{co}$.

$$\implies \text{ Periodische Basislösung } \mathbf{y}_{\mathcal{T}} = \begin{bmatrix} \mathbf{y}_{\mathcal{T}} \\ \mathbf{y}_{\mathcal{T}}^{co} \end{bmatrix} = \begin{bmatrix} \mathbf{0} \\ \mathbf{b} \end{bmatrix}$$

Separierung der Netzwerkmatrix

Separierung der Netzwerkmatrix $\Gamma_{\mathcal{T}} = \left[\mathbf{N}_{\mathcal{T}}, \, \mathbf{I}_{\mathcal{T}}^{co}\right]$ in Baum-Kanten $\mathbf{N}_{\mathcal{T}}$ und Ko-Baum-Kanten $\mathbf{I}_{\mathcal{T}}^{co}$.

$$\implies \text{Periodische Basislösung } \mathbf{y}_{\mathcal{T}} = \begin{bmatrix} \mathbf{y}_{\mathcal{T}} \\ \mathbf{y}_{\mathcal{T}}^{co} \end{bmatrix} = \begin{bmatrix} \mathbf{0} \\ \mathbf{b} \end{bmatrix}$$

Beispiel:

$$\Gamma = {}^{b}_{d} \left[\begin{array}{ccccc} 0 & 1 & 1 & 0 & 1 \\ -1 & 0 & 1 & 1 & 0 \end{array} \right]$$

$$\Longrightarrow \quad \Gamma_{\mathcal{T}} = {}^{b}_{d} \left[\begin{array}{ccccc} 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ -1 & 1 & 0 & 0 & 1 \end{array} \right]$$

Aufstellung des Tableau

Seien a_1, \cdots, a_{r-1} die Ko-Baum-Kanten und a_r, \cdots, a_m die Baum-Kanten. Formulierung als Simplex-Tableau:

$$[N I b \| \omega]$$

	a_1		a_r		a_m		
a_r	γ_{r1}		1		0	b_r	ω_r
÷	:	٠		٠		:	:
a_m	γ_{m1}		0		1	b_m	ω_m
							ω

Basis-Austausch, Teil 1

Auswahl eines Pivot-Elements a_{ij} :

	a_1		a_{j}		a_r		a_i		a_m		
a_r	γ_{r1}		γ_{rj}		1		0		0	b_r	ω_r
÷	:	٠.	:	٠.	:	٠.		٠.	:	:	:
a_i	γ_{i1}		γ_{ij}		0		1		0	b_i	ω_i
÷	:	٠	:	٠.	:	٠.		٠	:	:	:
a_m	γ_{m1}		γ_{mj}		0		0		1	b_m	ω_m
											ω

Basis-Austausch, Teil 2

Austausch von z_i mit x_j :

$$\gamma_{ij} = \frac{1}{\gamma_{ij}}$$

Pivotzeile für alle
$$s \neq j$$
:

$$\gamma_{is} = \frac{\gamma_{is}}{\gamma_{ij}} \qquad b_r = \left[\frac{b_r}{\gamma_{ij}}\right]_T$$

Pivotspalte für alle
$$r \neq i$$
:

$$\gamma_{rj} = -\frac{i r j}{\gamma_{ij}}$$

$$\gamma_{rs} = \gamma_{rs} - \frac{\gamma_{is}\gamma_{rj}}{\gamma_{ij}}$$
 $b_r = \left[b_r - \frac{\gamma_{rj}}{\gamma_{ij}}b_i\right]_T$

Basis-Austausch, Teil 2

Austausch von z_i mit x_i :

Pivotzeile für alle
$$s \neq j$$
:

Pivotspalte für alle
$$r \neq i$$
:

$$\gamma_{ij} = \frac{1}{\gamma_{ij}}$$

$$\gamma_{is} = \frac{\gamma_{is}}{\gamma_{ij}}$$

$$\gamma_{rj} = -\frac{\gamma rj}{\gamma_{ij}}$$

$$\gamma_{rs} = \gamma_{rs} - \frac{\gamma_{is}\gamma_{rj}}{\gamma_{ij}}$$

$$\gamma_{rs} = \gamma_{rs} - \frac{\gamma_{is}\gamma_{rj}}{\gamma_{ij}}$$
 $b_r = \left[b_r - \frac{\gamma_{rj}}{\gamma_{ij}}b_i\right]_T$

 $b_r = \left[\frac{b_r}{\gamma_{ij}}\right]_T$

								, .	J	L , , , ,	J 1
	a_1		a_i		a_r		a_{j}		a_m		
a_r	$\gamma_{r1} - rac{\gamma_{i1}\gamma_{rj}}{\gamma_{ij}}$		$-rac{\gamma_{rj}}{\gamma_{ij}}$		1		0		0	$\left[b_r - \frac{\gamma_{rj}}{\gamma_{ij}} b_i\right]_T$	ω_r
:	:	٠.	:	٠.	:	•		٠.	:	:	:
a_{j}	$\frac{\gamma_{i1}}{\gamma_{ij}}$		$\tfrac{1}{\gamma_{ij}}$		0		1		0	$\left[\frac{b_i}{\gamma_{ij}}\right]_T$	ω_j
:	:	٠	:	٠.	:	•		٠.	:	:	:
a_m	$\gamma_{m1} - \frac{\gamma_{i1}\gamma_{mj}}{\gamma_{ij}}$		$-\frac{\gamma_{mj}}{\gamma_{ij}}$		0		0		1	$\left[b_m - \frac{\gamma_{mj}}{\gamma_{ij}} b_m \right]_T$	ω_m
											ω

Kostenänderung

Kosten vor (ω) und nach $(\tilde{\omega}_{ij})$ der Vertauschung von a_i und a_j :

$$\omega = \sum_{k=r}^{m} \omega_k b_k \qquad \qquad \tilde{\omega}_{ij} = \omega_j \left[\frac{b_i}{\gamma_{ij}} \right]_T + \sum_{\substack{k=r\\k \neq i}}^{m} \omega_k \left[b_k - \frac{\gamma_{kj}}{\gamma_{ij}} b_i \right]_T$$

Kostenänderung:

$$\Delta\omega_{ij} = \tilde{\omega}_{ij} - \omega$$

$$= \omega_j \left[\frac{b_i}{\gamma_{ij}} \right]_T - \omega_i b_i + \sum_{\substack{k=-r\\k-d_i}}^m \omega_k \left(\left[b_k - \frac{\gamma_{kj}}{\gamma_{ij}} b_i \right]_T - b_k \right)$$

Auswahl des Pivotelements

- Berechnung aller Kostenänderungen.
- Nur für Austausche, die einen Spannbaum beibehalten!
- Andere Austausche führen zur Division durch Null.
- ightharpoonup Ist keine negative (verbessernde) Änderung möglich ightarrow Abbruch.

Beispiel (vgl. [NO08])

a_i	$\Delta_i = [l_i, u_i]$	ω_i
$\overline{a_1}$	[9, 28]	8
a_2	[7, 26]	3
a_3	[2, 21]	5
a_4	[1, 20]	9
a_5	[5, 24]	1
a_6	[3, 22]	4

T=20

Abbildung: Ereignisnetzwerk

Beispiel, Bestimmung einer Spannbaumstruktur

Abbildung: Spannbaum und Ko-Baum

$$\mathbf{b} = \begin{bmatrix} -\mathbf{\Gamma} \mathbf{l} \end{bmatrix}_T = \begin{bmatrix} 1\\15\\0 \end{bmatrix}$$

a_i	$\Delta_i = [l_i, u_i]$	ω_i	y_i
a_1	[9, 28]	8	15
a_2	[7, 26]	3	0
a_3	[2, 21]	5	0
a_4	[1, 20]	9	1
a_5	[5, 24]	1	0
a_6	[3, 22]	4	0

$$\mathbf{b} = \begin{bmatrix} -\mathbf{\Gamma} \mathbf{l} \end{bmatrix}_T = \begin{bmatrix} 1\\15\\0 \end{bmatrix}$$

a_i	$\Delta_i = [l_i, u_i]$	ω_i	y_i
a_1	[9, 28]	8	15
a_2	[7, 26]	3	0
a_3	[2, 21]	5	0
a_4	[1, 20]	9	1
a_5	[5, 24]	1	0
a_6	[3, 22]	4	0

$$\mathbf{b} = \begin{bmatrix} -\mathbf{\Gamma} \mathbf{l} \end{bmatrix}_T = \begin{bmatrix} 1\\15\\0 \end{bmatrix}$$

a_i	$\Delta_i = [l_i, u_i]$	ω_i	y_i
a_1	[9, 28]	8	15
a_2	[7, 26]	3	0
a_3	[2, 21]	5	0
a_4	[1, 20]	9	1
a_5	[5, 24]	1	0
a_6	[3, 22]	4	0

$$\mathbf{b} = \begin{bmatrix} -\mathbf{\Gamma} \mathbf{l} \end{bmatrix}_T = \begin{bmatrix} 1\\15\\0 \end{bmatrix}$$

a_i	$\Delta_i = [l_i, u_i]$	ω_i	y_i
a_1	[9, 28]	8	15
a_2	[7, 26]	3	0
a_3	[2, 21]	5	0
a_4	[1, 20]	9	1
a_5	[5, 24]	1	0
a_6	[3, 22]	4	0

$$\mathbf{b} = \begin{bmatrix} -\mathbf{\Gamma} \mathbf{l} \end{bmatrix}_T = \begin{bmatrix} 1\\15\\0 \end{bmatrix}$$

a_i	$\Delta_i = [l_i, u_i]$	ω_i	y_i
a_1	[9, 28]	8	15
a_2	[7, 26]	3	0
a_3	[2, 21]	5	0
a_4	[1, 20]	9	1
a_5	[5, 24]	1	0
a_6	[3, 22]	4	0

Beispiel, Darstellung im Tableau und Kostenänderung

Initiales Simplex-Tableau:

	a_2		a_5		a_1	a_6	b	ω
a_4	-1	0	1	1	0	0	1	9
a_1	-1	-1	1	0	1	1	15	8
a_6	0	1	-1	0	0	1	0	4
								129

Kostenänderung für verschiedene Austausche:

$$\begin{array}{c|ccccc} & a_2 & a_3 & a_5 \\ \hline a_4 & 40 & - & -12 \\ a_1 & -60 & -35 & 0 \\ a_6 & - & 0 & 0 \\ \hline \end{array}$$

Beispiel, Basis-Austausch

Austausch von Ko-Baum-Kante a_1 mit Baum-Kante a_2 :

	a_2	a_3	a_5	a_4	a_1	a_6	$\mid b \mid$	ω
a_4	-1	0	1	1	0	0	1	9
a_1	-1	-1	1	0	1	1	15	8
a_6	0	1	-1	0	0	1	0	4
								129

~→

	a_1	a_3	a_5	a_4	a_2	a_6	$\mid b \mid$	ω
$\overline{a_4}$	-1	1	0	1	0	0	6	9
a_2	-1	1	-1		1	0	5	3
a_6	0	1	-1	0	0	1	0	4
								69

Beispiel, Spannbaum vor und nach Austausch

Beispiel, Iteration 2

Simplex-Tableau nach Iteration 1:

	a_1	a_3	a_5	a_4	a_2	a_6	$\mid b \mid$	ω
a_4	-1	1	0	1	0	0	6	9
a_2	-1	1	-1	0	1	0	5	9 3
a_6	0	1	$0 \\ -1 \\ -1$	0	0	1	0	4
								69

Kostenänderung für verschiedene Austausche:

⇒ Keine weitere Verbesserung möglich. Abbruch.

Beispiel, Bewertung des Ergebnisses

Endergebnis:

			a_5					
a_4	-1	1	0	1	0	0	6	9
a_2	-1	1	$0 \\ -1 \\ -1$	0	1	0 0	5	9 3 4
a_6	0	1	-1	0	0	1	0	4
								69

Aber der Spannbaum $\mathcal{T} = \{ a_4, a_1, a_6 \}$ mit Tableau

	a_6	a_1	a_4	a_2	a_3	a_5	$\mid b \mid$	$\mid \omega \mid$
a_2	-1	-1	0	1	0	0	5	3
a_3	0	-1	1	0	1	0	6	5
a_2 a_3 a_5	-1	-1	1	0	0	1	6	1
								51

liefert ein besseres Ergebnis.

Lokalität des Verfahrens

- Das Simplex-Verfahren findet meistens nur ein lokales Minimum.
- Es sind Modifikationen nötig, um ein globales Optimum zu finden.

Verbesserungen der Lösung Gliederung

Einleitung und Motivation

Mathematische Modellierung

Nicht-periodische Fahrpläne

Taktfahrpläne

Das Slack-Model

Grundlagen von Flussnetzwerker

Spannbaumstrukturen

Untersuchung des Slack-Model

Das Modulo-Netzwerk-Simplex-Verfahren

Einführung

Simplex-Tablea

Verbesserungen der Lösung

Zusammenfassung und Abschluss

Änderung der Lösung durch Spannungen

Jede Spannung \mathbf{x} (mit $\Gamma \mathbf{x} \equiv_T \mathbf{0}$) definiert mit

$$\mathbf{y}' \coloneqq [\mathbf{y} + \mathbf{x}]_T$$

eine neue Lösung von $\Gamma \mathbf{y}' \equiv_T \mathbf{b}$. Diese ist gültig, wenn $\mathbf{y}' \leq \delta$ gilt.

Diese Lösung ist besser, wenn sich die Zielfunktion $\omega^T y$ verbessert.

Knotenlokale Verbesserungen

Ein Knoten i induziert einen Schnitt $\eta^{(i)}$ mit $P=\{\,i\,\}$. Eine Änderung des Potentials π_i

$$\pi_i' \coloneqq \pi_i + \delta$$

ist äquivalent zur Änderung der Slack-Zeiten

$$\mathbf{y}' \coloneqq \mathbf{y} + \delta \boldsymbol{\eta}^{(i)}$$

nach δ -facher Anwendung des Schnitts.

Prüfung der Verbesserung durch Enumeration von $\delta \in (0,T) \subsetneq \mathbb{Z}$ für jeden Knoten.

Anwendung der Modifikationen

Nach Änderung von ${f y}$ muss eine neue Basislösung gefunden werden:

- Fixieren der Modulo-Parameter z.
- Lösen des Minimum-Cost-Flow Problems.

Danach kann das Modulo-Simplex-Verfahren erneut angewendet werden.

Zusammenfassung und Abschluss Gliederung

Einleitung und Motivation

Mathematische Modellierung

Nicht-periodische Fahrpläne

Taktfahrpläne

Das Slack-Model

Grundlagen von Flussnetzwerken

Spannbaumstrukturen

Untersuchung des Slack-Modells

Das Modulo-Netzwerk-Simplex-Verfahren

Einführung

Simplex-Tableau

Verbesserungen der Lösung

Zusammenfassung und Abschluss

Der Modulo-Netzwerk-Simplex-Algorithmus

Initialisierung: Bestimmung einer initialen Spannbaumstruktur $\mathcal{T}=\mathcal{T}^l+\mathcal{T}^u$ mit Lösung \mathbf{y} .

solange eine Knotenlokale Verbesserung η existiert tue

Anwendung des Schnitts durch Transformation der Lösung: $\mathbf{y} \leftarrow \mathbf{y} + \boldsymbol{\eta}$.

Fixieren der Modulo-Parameter z, Lösung des Minimum-Cost-Flow

Problems und Transformtion der Lösung in eine Spannbaumstruktur.

solange ein Paar (i,j) mit $\Delta\omega_{i,j}<0$ existiert tue

Tausche Ko-Baum-Kante a_i mit Baum-Kante a_j .

Ende

Ende

Globalität der Lösung

- Nur lokales Optimum.
- Knotenlokale Verbesserungen möglich.
- Dies garantiert aber noch immer kein globales Optimum!
- Weitere Möglichkeiten (siehe [GS11]):
 - Waiting Edge Cuts
 - Random Node Cuts
 - Multi Node Cuts

Literatur

Marc Goerigk and Anita Schöbel.

Engineering the Modulo Network Simplex Heuristic for the Periodic Timetabling Problem. pages 181–192. May 2011.

K. Nachtigall.

Periodic network optimizationi and fixed interval timetables.

https://elib.dlr.de/3657/, 1999.

Karl Nachtigall and Jens Opitz.

Solving Periodic Timetable Optimisation Problems by Modulo Simplex Calculations.

In Matteo Fischetti and Peter Widmayer, editors, 8th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization, and Systems (ATMOS'08), volume 9 of OpenAccess Series in Informatics (OASIcs), Dagstuhl, Germany, 2008. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.