DETERMINATION OF WATER RATES OF SMALL ENGINES BY CLAYTON'S METHOD

BY

J. M. BYANSKAS

L. W. LUCKOW

ARMOUR INSTITUTE OF TECHNOLOGY

Illinois Institute
of Technology
UNIVERSITY LIBRARIES

AT 406 Byanskas, J. M. Determination of the water rates of small engines by

For Use In Library Only

DETERMINATION OF THE WATER RATES OF SMALL ENGINES BY CLAYTON'S METHOD

117 1

A THESIS

PRESENTED BY

JOHN M. BYANSKAS LINCOLN W. LUCKOW

TO THE

IULHOUS INSTITUTE OF TECHNOLO.
PAUL V GALVIN LIBRARY
35 WEST 33RD STREET
CHICAGO, IL 60616

PRESIDENT AND FACULTY

OF

ARMOUR INSTITUTE OF TECHNOLOGY

FOR THE DEGREE OF

BACHELOR OF SCIENCE IN MECHANICAL ENGINEERING

HAVING COMPLETED THE PRESCRIBED COURSE OF STUDY IN

MECHANICAL ENGINEERING

MAY 25, 1916

Am Taymond

Table of Contents.

IntroductionPag	e 1.
Preliminary	1.
Body	2.
Test of 8" x 9" Wachs engine"	5.
Test of 8 1/2" x 10" Phoenix"	6.
Test of 9" x 24" Corliss engine "	6.
Conclusion	8.

. The state of the

Determination of the Water Rates of Small Engines by Clayton's Method.

Introduction:

The subject chosen for thesis was "Determination of the Water rates of Small Engines by Clayton's Method". Determinations of the exhaust qualities of the different engines under various loads were found in connection with the water rate determinations.

Preliminary:

It was found by Clayton and published in his book, "A New Analysis of the Cylinder Performance of Reciprocating Engines" that the water rates of reciprocating engines could be approximated with very little error by the indicator card. A certain relation existing between the value of n for the expansion PVⁿ and the quality at cut-off enabled him to determine the water rate of an engine. He found that with a cylinder having a tight-fitting piston the expansion follows the law PVⁿ=C. The curve of which this is the equation becomes a straight line when plotted on logarithmic paper. This can be proved by mathematics.

 $PV^{n} = PV^{n} = C$ $\log P + n \log V = \log P + n \log V$ $n (\log V - \log V) = \log P - \log P$ $n = \frac{\log P}{\log V - \log V}$

The value of n can be obtained from the log diagram by measuring the vertical and horizontal distances between two points on the expansion curve, which is a straight line, with a uniformly graduated scale. The value of n is equal to the distance along the pressure axis divided by the distance along the volume axis. The quality at cut-cff is equal to the weight of saturated steam at cut-cff divided by the weight of steam per stroke (found from the total amount of steam used) and the steam in the clearance space.

Experiments conducted by Clayton were made on relatively large-sized cylinders, all of which were above 15 inches in diameter with but a few exceptions. The diameter of the largest cylinder tested in the performance of this thesis was 9 inches. These experiments were made to determine the relation between x and n for small engines.

Body:

The general mode of procedure was as follows: All of the engines were tested at four loads: friction, quarter, half, and full loads. In

- -

.

--

exhaust steam a throttling calcrimeter was placed above the cylinder and a separating calcrimeter was placed on the exhaust side. The steam consumption was found by weighing the steam which was condensed in a surface condenser. The inlet and exhaust pressures were kept approximately constant, inlet pressure about 100# gauge and exhaust about 5# gauge. The connections to the indicators were made as short as possible. The reducing motion employed for all of this work was of the pantograph type which insured the proper motion to the indicator drum.

After the engine had been running with friction load, i.e. brake removed, until conditions were steady, the run was started. The following readings were taken every ten minutes:

R.P.M., inlet pressure, exhaust pressure, throttling calorimeter temperature, separating calorimeter, and weight of condensed steam. Indicator cards were taken at regular intervals. The reading of the barometer was recorded for each series of tests. Fig. 1 is a sample of the running log taken for the test on the Phoenix engine.

After the run was completed the

. . • .

indicator springs and the pressure gauges were calibrated. The indicator cards were integrated with a planimeter and the areas were listed on a log sheet. The average card was then taken for each load and the I.H.P. under that load determined. Before the card could be transferred to the log diagram the head and crank end clearances of the engine had to be found. This was accomplished by the simple method of filling the clearance space with water. After securing the clearance, it was then laid off to the same scale as that of the indicator card, an inch on the card horizontally representing a definite number of cubic feet. The line of absolute zero pressure is also drawn on the average card. The total volume, represented on the indicator card by the distance from the clearance line to the other end of the stroke along the abscissa, is then divided into a definite number of parts. The volumes at the various parts of the stroke together with the absolute pressures were then transferred onto the log diagram. The lcg diagram gave a straight line for the expansion curve and the slope of this line determined the value of n. The quality at cut-off was found

; ¥)

as already explained in a previous paragraph.

In order to study how the steam consumption per hour varied with the I.H.P. the Willans line was drawn. This, for most reciprocating engines is a straight line when the ordinates are steam consumption per hour and I.H.P.

I. The first engine to be tested was an 8" x 9" vertical Wachs engine of the sidecrank type. A centrifugal fly-ball throttling governor was the means of adjusting the speed by changing the pressure. Before commencing the run the bearings were tightened and the D-slidevalve was set to give equal cut-offs. The engine was allowed to run with brake removed until the temperature conditions became constant. The first load under which the engine was run was the friction load. The run lasted one hour and during that time the readings already mentioned were made. Runs under quarter, half, and full load were then made, the engine developing about 12 I.H.P. at full load.

The curve showing the relation of quality at cut-off to n was a line which sloped slightly downward, showing that as n increases there is a decrease of \mathbf{x}_{a} . As this engine is a

. constant cut-off throttling engine the cut-off is fixed and expansion takes place for only a short part of the stroke. Wire-drawing was very pronounced on all of the indicator cards taken from this engine. The Willans line checked up fairly close with what was expected. The curve showing the relation of the quality of exhaust to the I.H.P. indicated a decrease in quality with an increase in load.

II. The second engine to be tested was an 8 1/2" x 10" high-speed, single cylinder, piston-valvePhoenix engine. The percentage of cut-cff was governed by an automatic shaft governor. As in the preceding case the engine was run at four loads, the maximum I.H.P. being about 35 H.P.

The x_c and n curve showed a slight slope downward, simulating the curve for the Wachs engine. The points for the Willans line laid on a straight line. The curve showing the relation of quality of exhaust to the I.H.P. proved to be a curve sloping downward as for the Wachs engine.

III. The low pressure cylinder of a

cross-compound Corliss engine was disconnected from the engine and the high-pressure cylinder was used for the third test. The engine speed and the percent of cut-off were controlled by a fly-ball governor. The size of the engine was 9" x 24". Dashpots are used on the steam inlet valves to effect sharp cut-offs. The lengths of the governor rods were changed for each run in order to equalize cut-offs. The engine was run at four loads, the engine developing 27 I.H.P. for its maximum.

The x_c and n curve gave a line with an upward slope. This was directly opposite to the lines obtained for the Wachs and the Phoenix engines. The points found by experiment agreed very closely with those found by Clayton in his tests on Corliss engines. This result was expected as most of the engines tested by Clayton were of the Corliss type. The Willans line did not check up very satisfactorily. As in the two previous tests the quality of exhaust decreased as the I.H.P. of the engine increased.

4.7

Conclusion:

values of \mathbf{x}_2 and n for the different engines on the same sheet as was done by Clayton. The result showed that engines of such unlike characteristics as tested in these series of experiments could not give a line which culd be used for determining water rates of small engines. As the three engines ran at widely different speeds the slopes of the lines were different and the average slope could not be used. Clayton found in his experiments a new line for each different speed at which the same engine was run.

The curves of I.H.P. and exhaust quality all had the same characteristics; i.e. the quality of exhaust decreased as the I.H.P. increased. This introduced something contrary to what has always been considered the case. This new relation could not be explained from all the theoretical discussion which was given to it. The only solution or explanation offered for this apparent contradiction is that the engines were small.

This investigation showed that the relation between $\mathbf{x}_{\mathbf{c}}$ and n for the engines tested was different from that obtained by Clayton.

The water rates of small engines can not be computed from Clayton's results. Each individual small engine would require its own curves if its water rate was to be determined from an indicator card.

	5.	1887 William	10, 250 5, 250	1-15			19.77 T	
	2-0-			; = ₹ .		1. 15 数	5	
			Ę.A	- 14				
			,3,63v.					
		1						
				-		1 -	4	
				\$\frac{1}{2}\frac{1}{2}\tag{1}	•		i'	G
		i.k			4 7		4 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	
	ı	1	-1				1 - 2 - 1	
						1		
	Y 1 (*),	5.1				1 / /	1	
			* A-1					
	1	6	g in	- jel-			1 1	
	,		<i>← /-*</i>	7 -1%		12/- 1	57.00	
			1957		1.37-47		į į	
			*	. " '	6.2%			
			_ e/S _ i	F.T.E.	1.420		Jet in	
	\$\frac{1}{2} \cdot \frac{1}{2}	4 = 10		.4334	11. 3, 3,	1_1	5/3/27	
		1						
			(20 K, 7	1 5%	51215	4. Sp		
		8 0	70	5'-1 1				
		1	. =	\$7.467				
	1,00			2.3921			reser 1	
	-15 T	fi fi	1	436			.]	
				医甲基	signs	=15461=1	12/50	
	50 P. J.	1 12	.g:315]	25-	- 3657	(90	Wer !	
	ne ha	1 50		.37.5	1000	18 8 318	300	
	ā,5 ∰ .0 _ē 5		, i'	1				
4	- W. 1 - 1 - 1		100	5 G 65				
	200		35	F 3'8)				
	12 July 1		1,042	£ 513)	。生//	78.50	E de	
	5.50	· ·	1 227	234	0.5.5			
			100	£ 30	(B)	23, 27	77.5	
	.		16.3	294	: 35		. –	
			31		i - :-:siti, :	 -245		

Fig. 4

HEAD END CARD FOR STAT WACHS ENGINE FULL LOAD.

CRANK END CARD FOR END VACAE ENDINE FULL LOAD

	130	

Fig. 10

Fig. 12

Fig. 13

Fig. 14

F19. 14

			¥,				
			- 45	111			
				15			
L T							
,				1			
				1			
							(F ₃ .
			:32	40			116
			- 5				
			. 7				
							- 3
							1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
							1
							-
							100
							(a) (b)
							T.
							-175
j:							. 1
d d							-
					e:		42° T
				l _m n			
1							
1						3	
						1	
£	38	23		(S)	,	38	3
1	9.04 - 25.0	1 - 5/4/7 -	minds	(I)	۱ انتخاص ما در مار	U 195	

•

