Кафедра статистического моделирования Дипломная работа студентки 522-й группы Недзвецкой Кристины Александровны

Матричные методы оптимизации нестационарных недетерминированных конечных автоматов с периодически меняющейся структурой

Научный руководитель: к. ф.-м. н., доцент А.Ю.Пономарева Рецензент: д. ф.-м. н., профессор М.К. Чирков

Санкт-Петербург 2006 г.

Описание модели

- Область задания: $R_1 = (\{0,1\}, \vee, \&, \leq), \vee -$ сложение, & умножение; $R_1^{m,n}$ множество всех матриц размера $(m \times n)$ над R_1 .
- lack Mодель: $\mathcal{A} = \langle X^{(\tau)}, A^{(\tau)}, Y^{(\tau)}, \mathbf{r}, \{\mathbf{D}^{(\tau)}(s,l)\}, \mathbf{q}^{(\tau)}, t_p, T \rangle$, где

•
$$\tau = \tau(t) = \begin{cases} t, & t \le t_p \\ (t - t_p - 1)(\text{mod } T) + t_p + 1, & t > t_p \end{cases}$$
;

- $X^{(\tau)}$ входной алфавит, $Y^{(\tau)}$ выходной алфавит, $\tau=\overline{1,t_p+T};$
- $A^{(\tau)}$ алфавит состояний, $|A^{(\tau)}| = m_{\tau}, \ \tau = \overline{0, t_p + T},$ $A^{(t_p + T)} = A^{(t_p)}$ (периодичность);
- $\mathbf{r} \in R_1^{1,m_0}$ начальный вектор (с каких состояний алфавита $A^{(0)}$ автомат начнет работу);
- $\mathbf{D}^{(\tau)}(s,l) \in R_1^{m_{\tau-1},m_{\tau}}$ правило перехода из состояний алфавита $A^{(\tau-1)}$ в состояния алфавита $A^{(\tau)},\,x_s\in X^{(\tau)},\,y_l\in Y^{(\tau)},\,\tau=\overline{1,t_p+T};$
- $\mathbf{q}^{(\tau)} \in R_1^{m_\tau,1}$ финальный вектор (в каких состояниях алфавита $A^{(\tau)}$ автомат закончит работу), $\tau = \overline{0,t_p+T},$ $\mathbf{q}^{(t_p+T)} = \mathbf{q}^{(t_p)}$ (периодичность).

Обобщенное отображение, эквивалентность автоматов

Множество допустимых слов:

$$Z_{\text{ДОП}} = \{(w, v) | w = x_{s_1} \dots x_{s_d}, \ v = y_{l_1} \dots y_{l_d},$$

 $x_{s_t} \in X^{(\tau(t))}, \ y_{l_t} \in Y^{(\tau(t))} \ \forall t = \overline{1, d} \} \bigcup \{(e, e)\}.$

■ Обобщенное отображение:

$$\Phi_{\mathcal{A}}(w,v) = \begin{cases} \mathbf{r} \prod_{t=1}^{d} \mathbf{D}^{(\tau(t))}(s_{t}, l_{t}) \mathbf{q}^{(\tau(d))}, & |w| = |v| > 0, \\ \mathbf{r} \mathbf{q}^{(0)}, & w = v = e, |e| = 0 \end{cases}$$

где
$$w = x_{s_1} x_{s_2} \dots x_{s_d}, \ v = y_{l_1} y_{l_2} \dots y_{l_d}, \ (w, v) \in Z_{\text{ДОП}}.$$

 \blacksquare Эквивалентность автоматов: $\mathcal{A} \sim \mathcal{B}$, если

$$\Phi_{\mathcal{A}}(w,v) = \Phi_{\mathcal{B}}(w,v) \ \forall (w,v) \in Z_{\Pi \cap \Pi}.$$

Цель работы

Автомат \mathcal{A} находится в минимальной форме если не существует эквивалентного ему автомата \mathcal{B} , такого, что

$$|B^{(\tau)}| \le |A^{(\tau)}|, \ \tau = \overline{1, t_p + T}, \ \sum_{\tau=0}^{t_p + T - 1} |B^{(\tau)}| < \sum_{\tau=0}^{t_p + T - 1} |A^{(\tau)}|.$$

- **Ц**ель работы: построить автомат \mathcal{B} , такой, что
 - 1. $\mathcal{B} \sim \mathcal{A}, \, |B^{(\tau)}| \leq |A^{(\tau)}|, \, \, \tau = \overline{1, t_p + T}$ и хотя бы для одного τ это неравенство строгое.
 - 2. \mathcal{B} является минимальной формой автомата \mathcal{A} .

Правосторонне приведенная форма автомата

$$\Phi_i(w,v) = \mathbf{e}_i \prod_{t=1}^d \mathbf{D}^{(\tau(t))}(s_t,l_t) \mathbf{q}^{(\tau(d))}$$

$$w = x_{s_1} x_{s_2} \dots x_{s_d}, \ v = y_{l_1} y_{l_2} \dots y_{l_d}, \ (w,v) \in Z_{ДО\Pi}.$$

Начально эквивалентные в такте τ состояния: $a_i, a_j \in A^{(\tau)}$, такие, что $\Phi_i(w,v) = \Phi_j(w,v),$

$$\forall (w,v): \begin{bmatrix} |w| = |v| = \tau, \ \tau = \overline{0, t_p}, \\ |w| = |v| = \tau + (k-1)T, \ \forall k = 1, 2, \dots, \ \tau = \overline{t_p + 1, t_p + T} \end{bmatrix}.$$

$$A^{(\tau)} = \bigsqcup_{\rho, \ \rho \le m_{\tau}} \Omega_{\rho}^{(\tau)}.$$

- Правосторонняя преобразующая матрица автомата в такте τ : $\mathbf{H}_q^{(\tau)} \in R_1^{m_\tau,\rho}$, у которой каждый вектор—столбец сопоставлен одному из класов $\Omega_\rho^{(\tau)}$.
- Правосторонне приведенная форма автомата \mathcal{A} : любой автомат \mathcal{B} , такой, что $\mathcal{B} \sim \mathcal{A}$ и $\mathbf{H}_q^{(\tau)}(\mathcal{B}) = \mathbf{I}(|B^{(\tau)}|), \ \tau = \overline{0, t_p + T}$ (у \mathcal{B} ни в одном такте нет ни одной пары начально эквивалентных состояний).

Результаты: построение правосторонне приведенной формы

$$\mathcal{A} = \langle X^{(\tau)}, A^{(\tau)}, Y^{(\tau)}, \mathbf{r}, \{\mathbf{D}^{(\tau)}(s, l)\}, \mathbf{q}^{(\tau)}, t_p, T \rangle,$$

 $\mathbf{H}_q^{(\tau)}, \tau = \overline{0, t_p + T}.$

- $lacksymbol{\Pi}$ Лемма. $\mathbf{H}_q^{(au)}\mathbf{H}_q^{(au)T}\mathbf{q}^{(au)}=\mathbf{q}^{(au)};$ кроме того, если
 - $w = w_1 w_2$, $v = v_1 v_2$, $|w_1| = |v_1| = d_1$, $|w_2| = |v_2| = d_2$, $d = d_1 + d_2$;
 - $\mathbf{h}_q(w_2, v_2) = \prod_{t=d_1+1}^d \mathbf{D}(s_t, l_t) \mathbf{q}^{(\tau(d))}, \ d_1 = \overline{0, d-1}, \ (w_2, v_2) \in Z_{\underline{H}\mathbf{O}\Pi},$

TO

$$\mathbf{H}_{q}^{(\tau(d_1)-1)}\mathbf{H}_{q}^{(\tau(d_1)-1)T}\mathbf{h}_{q}(w_2, v_2) = \mathbf{h}_{q}(w_2, v_2).$$

Теорема. Если автомат \mathcal{B} получен из автомата \mathcal{A} с помощью следующего преобразования:

$$\mathbf{r}_B = \mathbf{r} \mathbf{H}_q^{(0)}, \ \mathbf{D}_B^{(\tau)}(s,l) = \mathbf{H}_q^{(\tau-1)T} \mathbf{D}^{(\tau)}(s,l) \mathbf{H}_q^{(\tau)}, \ \mathbf{q}_B^{(\tau)} = \mathbf{H}_q^{(\tau)T} \mathbf{q}^{(\tau)},$$

то $\mathcal{B} \sim \mathcal{A}$ и автомат \mathcal{B} правосторонне приведен.

Левосторонне приведенная форма автомата

$$\Phi^j(w,v) = \mathbf{r} \prod_{t=1}^d \mathbf{D}^{(au(t))}(s_t,l_t) \mathbf{e}_j$$
 $w = x_{s_1} x_{s_2} \dots x_{s_d}, \ v = y_{l_1} y_{l_2} \dots y_{l_d}, \ (w,v) \in Z_{ДО\Pi}.$

Финально эквивалентные в такте τ состояния: $a_i, a_j \in A^{(\tau)}$, такие, что $\Phi^i(w,v) = \Phi^j(w,v),$

$$\forall (w,v): \begin{bmatrix} |w| = |v| = \tau, \ \tau = \overline{0,t_p}, \\ |w| = |v| = \tau + (k-1)T, \ \forall k = 1,2,\dots, \ \tau = \overline{t_p + 1,t_p + T} \end{bmatrix}.$$

$$A^{(\tau)} = \bigsqcup_{g,\ g \le m_{\tau}} \Theta_g^{(\tau)}.$$

- Певосторонняя преобразующая матрица автомата в такте τ : $\mathbf{H}_r^{(\tau)} \in R_1^{g,m_\tau}$, у которой каждый вектор—строка сопоставлен одному из класов $\Theta_g^{(\tau)}$.
- Певосторонне приведенная форма автомата: любой автомат \mathcal{B} , такой, что $\mathcal{B} \sim \mathcal{A}$ и $\mathbf{H}_r^{(\tau)}(\mathcal{B}) = \mathbf{I}(|B^{(\tau)}|), \ \tau = \overline{0, t_p + T}$ (у \mathcal{B} ни в одном такте нет ни одной пары финально эквивалентных состояний).

Результаты: построение левосторонне приведенной формы

$$\mathcal{A} = \langle X^{(\tau)}, A^{(\tau)}, Y^{(\tau)}, \mathbf{r}, \{\mathbf{D}^{(\tau)}(s, l)\}, \mathbf{q}^{(\tau)}, t_p, T \rangle,$$
$$\mathbf{H}_r^{(\tau)}, \tau = \overline{0, t_p + T}.$$

- \blacksquare Лемма. $\mathbf{r}\mathbf{H}_r^{(au)T}\mathbf{H}_r^{(au)}=\mathbf{r};$ кроме того, если
 - $w = w_1 w_2$, $v = v_1 v_2$, $|w_1| = |v_1| = d_1$, $|w_2| = |v_2| = d_2$, $d = d_1 + d_2$;
 - $\mathbf{h}_r(w_1, v_1) = \mathbf{r} \prod_{t=1}^{d_1} \mathbf{D}(s_t, l_t), \ d_1 = \overline{0, d-1}, \ (w_1, v_1) \in Z_{ДО\Pi},$

TO

$$\mathbf{h}_r(w_1, v_1)\mathbf{H}_r^{(\tau(d_1)-1)T}\mathbf{H}_r^{(\tau(d_1)-1)} = \mathbf{h}_r(w_1, v_1).$$

Теорема. Если автомат \mathcal{B} получен из автомата \mathcal{A} с помощью следующего преобразования:

$$\mathbf{r}_B = \mathbf{r} \mathbf{H}_r^{(0)T}, \ \mathbf{D}_B^{(\tau)}(s,l) = \mathbf{H}_r^{(\tau-1)} \mathbf{D}^{(\tau)}(s,l) \mathbf{H}_r^{(\tau)T}, \ \mathbf{q}_B^{(\tau)} = \mathbf{H}_r^{(\tau)} \mathbf{q}^{(\tau)},$$

то $\mathcal{B} \sim \mathcal{A}$ и автомат \mathcal{B} левосторонне приведен.

Результаты: свойства приведенных форм

$$\mathbf{H}_q^{(\tau)}, \ \tau = \overline{0, t_p + T},$$
 $\mathbf{H}_r^{(\tau)}, \ \tau = \overline{0, t_p + T}.$

- **Теорема.** Если автомат \mathcal{B} правосторонне приведенная форма автомата \mathcal{A} , то его левосторонняя преобразующая матрица $\mathbf{H}_r^{(\tau)}(\mathcal{B})$ может быть построена из различных строк матрицы $\mathbf{H}_r^{(\tau)}\mathbf{H}_q^{(\tau)}$.
- **Теорема.** Если автомат \mathcal{B} левосторонне приведенная форма автомата \mathcal{A} , то его правосторонняя преобразующая матрица $\mathbf{H}_r^{(\tau)}(\mathcal{B})$ может быть построена из различных столбцов матрицы $\mathbf{H}_r^{(\tau)}\mathbf{H}_q^{(\tau)}$.

Эти теоремы показывают, что если

- автомат \mathcal{A} был левосторонне приведен, то автомат \mathcal{B} так же будет левосторонне приведен;
- автомат \mathcal{A} был правосторонне приведен, то автомат \mathcal{B} так же будет правосторонне приведен.

Результаты: построение минимальных форм

Недостижимое состояние: $a_i \in A^{(\tau(d))}$, такое, что для любых (w,v), $w=x_{s_1}x_{s_2}\dots x_{s_d},\,v=y_{l_1}y_{l_2}\dots y_{l_d},\,\mathbf{r}\prod_{l=1}^d\mathbf{D}^{(\tau(t))}(s_t,l_t)\mathbf{e}_i=0.$

■ Теорема. Если

- 1. удалить из состояний автомата ${\cal A}$ все недостижимые, а затем
- 2. построить левосторонне приведенную форму, из нее —
- 3. построить правосторонне приведенную форму, то полученный автомат будет находиться в минимальной форме (у него ни в одном такте не будет ни одной пары начально эквивалентных состояний и ни одной пары финально эквивалентных состояний).
- При этом, если поменять 2. и 3. местами, то получившийся в результате автомат так же будет находиться в минимальной форме.