PRÉPARATION OLYMPIQUE FRANÇAISE DE MATHÉMATIQUES

ENVOI 2 : ARITHMÉTIQUE À RENVOYER AU PLUS TARD LE 14 DÉCEMBRE 2018

Exercices Juniors

Exercice 1. Trouver le nombre de solutions de $n^2m^6 = 180t + 2$ pour n,m et t des entiers positifs.

<u>Solution de l'exercice 1</u> On considère l'expression modulo 4. La gauche est un carré et est donc congru à 0 ou 1.180 est congru à 0 modulo 4 donc 180t+2 est congru à 0*t+2=2. L'équation n'a pas de solutions modulo 4, elle n'en a donc pas non plus dans $\mathbb N$

Exercice 2. Trouver la somme des n tels que $n^2 + 8n + 44$ soit un carré parfait.

<u>Solution de l'exercice 2</u> Soit f la fonction étudiée, une idée dans ce genre d'exercice est de coincer f(n) entre 2 carrés d'entiers consécutifs $k^2 < f(n) < (k+1)^2$ et de dire par l'absurde que si $f(n) = i^2$ alors k < i < k+1 ce qui est impossible car on a des entiers.

Ici les calculs peuvent s'abréger en remarquant que f a même parité que n+4, ainsi si $(n+4)^2=n^2+8n+16 < f(n) < n^2+12n+36=(n+6)^2$ ce qui est vrai dès que n>2, f(n) n'est pas un carré. Pour les petits cas 2 est solution et 1 non.

Exercice 3. Un entier n est *parfait* si la somme de ses diviseurs est 2n. Soit n un entier parfait et p son plus petit diviseur premier. Montrer que l'exposant de p dans la décomposition en produit de puissances de nombres premiers de n est pair.

<u>Solution de l'exercice 3</u> Soit $n=p_1^{\alpha_1}\cdots p_k^{\alpha_k}$ avec les p_i premiers distincts. La somme des diviseurs de n est $\sigma(n)=\prod_{i=1}^k(1+\cdots+p_i^{\alpha_i})$ (cf. la page 14 du cours d'arithmétique complet disponible sur maths-olympiques.fr).

Supposons par l'absurde que a_1 soit impair, alors $1+\cdots+\mathfrak{p}_1^{a_1}=(1+\mathfrak{p}_1)+\mathfrak{p}_1^2(1+\mathfrak{p}_1)+\cdots+\mathfrak{p}_1^{a_1-1}(1+\mathfrak{p}_1)$. Alors \mathfrak{p}_1+1 divise $1+\cdots+\mathfrak{p}_1^{a_1}$, donc aussi $2\mathfrak{n}=\prod_{i=1}^k(1+\cdots+\mathfrak{p}_i^{a_i})$. Si \mathfrak{p}_1+1 n'est pas premier : il a un plus grand diviseur premier $\mathfrak{q}<\mathfrak{p}_1$ qui vérifie $\mathfrak{q}|2\mathfrak{n}$; alors comme \mathfrak{q} est premier avec \mathfrak{n} , $\mathfrak{q}=2$; mais alors $\mathfrak{q}^2|\mathfrak{p}_1+1|2\mathfrak{n}$ et donc $\mathfrak{q}|\mathfrak{n}$, contradiction.

Donc \mathfrak{p}_1+1 est premier et alors nécessairement $\mathfrak{p}_1=2$ et $\mathfrak{p}_1+1=\mathfrak{p}_2=3$. Alors $\mathfrak{n},\frac{\mathfrak{n}}{2},\frac{\mathfrak{n}}{3}$ et $\frac{\mathfrak{n}}{6}$ sont entiers et divisent de \mathfrak{n} . Comme $\mathfrak{n}>6$, ils sont différents de 1. Ainsi $2\mathfrak{n}=\sigma(\mathfrak{n})\geqslant \mathfrak{n}+\frac{\mathfrak{n}}{2}+\frac{\mathfrak{n}}{3}+\frac{\mathfrak{n}}{6}+1=2\mathfrak{n}+1$, contradiction. Donc \mathfrak{a}_1 est pair.

Exercices Communs

Exercice 4. Soit n un entier strictement positif. Montrer qu'il existe n entiers 2 à 2 distincts r_1, \ldots, r_n tels que chaque r_i divise $r_1 + \cdots + r_n$.

<u>Solution de l'exercice 4</u> La solution s'inspire des fractions égyptiennes, une fraction égyptienne est uplet d'entiers distincts a_1, \ldots, a_n vérifiant $1/a_1 + \cdots + 1/a_n = 1$, par exemple

1/2 + 1/3 + 1/6 = 1.

Alors en posant $r_i := \prod_{j \neq i} \alpha_j = \frac{\alpha_1 \cdots \alpha_n}{\alpha_i} \in \mathbb{Z}$, ils seront distinct et leur somme fera $\alpha_1 \cdots \alpha_n$, que chaque r_i divise.

On montre par récurrence qu'une fraction égyptienne existe pour chaque $n \geqslant 3$. L'exemple fait l'initialisation.

Hérédité : supposons prouvé pour n prouvons pour n+1, on écrit les coefficients triés dans l'ordre croissant, puis on écrit $a_n'=1+a_n$ et $a_{n+1}'=a_n(1+a_n)$ On remarque $1/a_n'+1/a_{n+1}'=1/a_n$. En posant $a_i'=a_i$ pour $i\in\{1,\ldots,n-1\}$, on dispose d'une fraction égyptienne de longueur n+1, ce qui conclut la récurrence (depuis l'exemple on a 1/7+1/42=1/6 et cela donne : 1/2+1/3+1/7+1/42=1).

Exercice 5. Soit n un entier positif. Montrer qu'il existe un entier positif m tel que n! = $\varphi(m)$, où φ est la fonction indicatrice d'Euler. (On rappelle que si $m = p_1^{\alpha_1} \cdots p_k^{\alpha_k}$ avec p_1, \ldots, p_k des nombres premiers 2 à 2 distincts, $\varphi(m) = m\left((1 - \frac{1}{p_1}) \cdots (1 - \frac{1}{p_k})\right)$)

<u>Solution de l'exercice 5</u> On procède par construction en partant des plus grands nombres premiers au plus petit.

L'idée est de contraindre la valeur de $\phi(m)$. La construction peut paraître un peu lourde mais il ne faut pas se laisser et impressionner et comprendre l'idée qui est derrière.

Soit $p_1, p_2 \dots$ les nombres premiers $p_k \le n < p_{k+1}$

On montre par récurrence descendante que pour tout i il existe mi tel que

- m_i est un produit de p_j avec $k \ge j \ge i$
- Pour tout $j \ge i$, p_i a le même exposant dans m_i et n!
- $\phi(\mathfrak{m}_i)|\mathfrak{n}!$

L'initialisation se fait pour i=k+1 avec $m_{k+1}=1$.

Pour l'hérédité on multiplie m_{i+1} par p_i jusqu'à avoir autant de p_i dans $\phi(m_i)$ que dans n! pour obtenir m_i on respecte ainsi les 2 premières hypothèses sur m_i .

Vérifions que la dernière est aussi vérifiée, pour $j\geqslant i$ on sait que l'on n'a pas de problème, le risque est une trop grosse valuation pour un p_l où l petit or vu la construction si $p_l^\alpha|\varphi(m_i)$, $p_l^\alpha|(p_i-1)(p_{i+1}-1)\cdots(p_k-1)|n!$ on est donc assuré que la récurrence marche. Avec $m=m_1$, on obtient une solution à l'exercice.

Exercice 6. Soit $n \ge 3$ un entier, montrer qu'il existe deux entier x et y tels que $7x^2 + y^2 = 2^n$.

Solution de l'exercice 6 Encore une solution par récurrence! Initialisation : $x_3 = y_3 = 1$. Hérédité : On suppose prouvé par récurrence pour n, $(X = (x_n + y_n)/2, Y = |7x_n - y_n|/2)$ $(X = |x_n - y_n|/2, Y = (7x_n + y_n)/2)$ les 2 couples vérifient $7X^2 + Y^2 = 2^{n+1}$. Le premier couple est solution si x_n et y_n on même congruence modulo 4 (X et Y impairs) sinon le second convient, ce qui conclut.

Exercices Seniors

Exercice 7. Soit $p \ge 5$ un nombre premier. Montrer qu'il existe un entier n tel que pour tout $x \in \{n-1, n, n+1\}$, $p^2 \nmid x^{p-1}-1$ et $p \nmid x$.

<u>Solution de l'exercice 7</u> Lemme : entre 0 et p^2 il y a exactement p-1 éléments dont la puissance (p-1)-ième est congrue à 1 modulo p^2 .

preuve : On prend ω une racine primitive modulo p^2 (pour rappel ω une racine primitive modulo m signifie que les puissances de ω correspondent à tout les inversibles modulo m, ce qui existe dès que m est 1,2,4 ou une puissance de premier impair ou 2 fois une puissance de premier impair, lire les polycopiés pour plus de détail), les éléments d'ordre divisant

p-1, sont alors ce dont le logarithme discret (log vérifie que $\log(x) < \varphi(m)$ et $\omega^{(\log(x))} = x \pmod{m}$) est divisible par p, ce qui donne bien p-1 possibilités.

On utilise un principe des tiroirs : les chaussettes sont les x entre 0 et p^2 d'ordre divisant p-1, il y en a p-1 par le lemme, les p tiroirs sont les intervalles kp+1; (k+1)p, il y donc un tiroir vide d'où l'on peut tirer le n voulu en prenant par exemple kp+2.

Exercice 8. Soit P un polynôme à coefficients rationnels de degré supérieur ou égal à 2, et $(q_n)_{n\in\mathbb{N}}$ une suite de rationnels tels que pour tout $n\geqslant 0$, $q_n=P(q_{n+1})$. Montrer que la suite q_n est périodique à partir d'un certain rang.

<u>Solution de l'exercice</u> 8 Soit u entier tel que uq_1 soit entier. Soit $\tilde{P}(X) = uP(\frac{1}{u}X)$. Soit ν entier tel que $\nu\tilde{P}$ soit à coefficients entiers. Soit a le coefficient dominant de $\nu\tilde{P}$. On pose $Q(X) = a\tilde{P}(\frac{1}{a}X)$, $m = a^{deg(P)-2}\nu$ et pour tout $n \in \mathbb{N}$, $r_n = uaq_n$.

Nous avons mQ(X) unitaire à coefficients entiers et pour tout n, $r_n = Q(r_{n+1})$. r_0 est entier, or comme pour tout n, r_{n+1} est racine rationnelle du polynôme $mQ(X) - mr_n$ unitaire à coefficients entiers, par récurrence, r_n est entier pour tout n.

Comme deg(Q) > 1, |Q(x)/x| tend $vers + \infty$ quand |x| tend $vers + \infty$. Donc il existe $M > |r_0|$ tel que pour tout x, $|Q(x)| \leqslant M \Rightarrow |x| \leqslant M$. Par récurrence immédiate, $|r_n| \leqslant M$ pour tout n. La suite r prend donc ses valeurs dans un ensemble fini. Soit p minimal tel que $\{r_0,\ldots,r_{p-1}\}=\{r_0,r_1,\ldots\}$. Montrons par récurrence sur n que $r_{n+p}=r_n$ pour tout n. Par hypothèse, $r_{n+p}\in\{r_n,\ldots,r_{n+p-1}\}=\{r_0,\ldots,r_{p-1}\}$. Donc $r_{n+p}=r_{n+k}$ avec $k\in\{0,\ldots,p-1\}$. Alors si k>0, $r_{p-1}=Q^{\circ(n+1)}(r_{n+p})=Q^{\circ(n+1)}(r_{n+k})=r_{k-1}$ et il y a contradiction avec la minimalité de p. Donc k=0 et $r_n=r_{n+p}$. Ce qui conclut la récurrence.

Nous venons de montrer que la suite est périodique de période p.

Exercice 9. Pour m entier positif, on note d(m) le nombre de diviseurs positifs de m (1 et m compris). Soit k un entier strictement positif. Montrer qu'il existe une infinité d'entiers positifs n tels que n ait exactement k diviseurs premiers distincts et tel que pour tout a, b entiers strictement positifs avec n = a + b, d(n) ne divise pas $d(a^2 + b^2)$

<u>Solution de l'exercice 9</u> Prouvons que chaque entier de la forme $n=m2^{p-1}$ avec p premier impair, possédant k-1 facteurs premiers strictement plus grand que 3 et vérifiant $(5/4)^{(p-1)/2} > m$ est solution.

Si a+b=n et $d(n)|d(a^2+b^2)$ alors $p|d(a^2+b^2)$. Donc il existe q premier tel que q ait un exposant cp-1 dans a^2+b^2 . Si $q\geqslant 5$, $a^2+b^2\geqslant 5^{q-1}>n^2$, or $a^2+b^2=n^2-2ab\leqslant n^2$. Donc q=2 ou 3.

Si q = 3 en regardant $a^2 + b^2$ modulo 3, 3 divise a et b donc n, contradiction avec l'hypothèse.

Si q = 2, si α et b ont des valuations 2-adiques distinctes la plus petite est p-1 celle de la somme des carrés 2p-2, absurde.

S'ils ont même valuation 2-adique $\mathfrak{a}=2^{\mathfrak{t}}\mathfrak{a}_0$ $\mathfrak{b}=2^{\mathfrak{t}}\mathfrak{b}_0$ avec \mathfrak{a}_0 et \mathfrak{b}_0 impaire $\mathfrak{a}_0^2+\mathfrak{b}_0^2=x2^{\mathfrak{cp}-1-2\mathfrak{t}}$ la gauche fait 1 modulo 4, donc $\mathfrak{cp}-1-2\mathfrak{t}=1$ or $\mathfrak{t}<\mathfrak{p}-1$, donc $\mathfrak{c}=1$ est la seule solution, on a un problème de parité absurde, ce qui conclut.