

TARGET: JEE (Advanced) 2015

Course: VIJETA & VIJAY (ADP & ADR) Date: 17-04-2015

TEST INFORMATION

DATE: 19.04.2015 CUMULATIVE TEST-01 (CT-01)

Syllabus : Function & Inverse Trigonometric Function, Limits, Continuity & Derivability, Quadratic Equation, Application of Derivatives

REVISION DPP OF SEQUENCE & SERIES AND BINOMIAL THEOREM

Single of Multiple Compression	e choice objective (–1 neg ehension (–1 negative ma	ative marking) Q. 1 to Q.1 gative marking) Q. 14 to 3 Irking) Q.35 to 37 ative marking) Q. 38,39,40	4 (4 mar) (3 mar)	Max. Tir ks 2.5 min.) ks, 3 min.) ks 2.5 min.) ks 2.5 min.)	ne : 110.5 min. [39, 32.5] [84, 63] [9, 7.5] [12, 7.5]
1.	The sum $\frac{3}{1!+2!+3!} + \frac{3}{2}$	4 + 3!+ 4! + + 2006!	2008 + 2007!+ 2008! is equal	to	
	(A) $\frac{1}{2} - \frac{1}{2006!}$	(B) $\frac{1}{2} - \frac{1}{2008!}$	(C) $\frac{1}{2006! - 2008!}$	(D) $\frac{1}{2007!} - \frac{1}{2}$	<u>1</u> 008!
2.	If $1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \frac{1}{1}$	$\frac{1}{1} + \ldots \infty = \frac{\pi}{4}$, then th	e value of $\frac{1}{1.3} + \frac{1}{5.7} + \frac{2}{9.8}$	1 11 + ∞ is	
	(A) $\frac{\pi}{8}$	(B) $\frac{\pi}{6}$	(C) $\frac{\pi}{4}$	(D) $\frac{\pi}{36}$	
3.	Let A,G,H are respective where x, y, z are non-z (A) A.P.	ively the A.M., G.M. and ero quantities then x, y, and (B) G.P.	d H.M. between two pos z are in (C) H.P.	sitive numbers. I	f xA = yG = zŀ
4.	` '	ents of the polynomial o	,	` '	he expansion o
5.	Let $\alpha_n = (2 + \sqrt{3})^n$. If [] denotes greatest intege	, ,	` ,) is equal to
	(A) 1	(B) $\frac{1}{2}$	(C) $\frac{1}{3}$	(D) $\frac{2}{3}$	
6.	The number of natural (A) 49	numbers < 300 that are (B) 37	divisible by 6 but not by (C) 33	18 is (D) 16	
7.	If a _i , i = 1, 2, 3, 4 be for	ur real numbers of same	sign then the minimum v	value of $\sum \frac{a_i}{a_i}$	
	where i, $j \in \{1,2\ 3,\ 4\}$ a (A) 6	nd i ≠ j is (B) 8	(C) 12	(D) 24	
8.	If $U_n = U_{n-1} + U_{n-2}$, $n \ge 3$	3 and $U_1 = U_2 = 1$, then $\frac{1}{10}$	$\sum_{n=1}^{\infty} \frac{U_n}{U_{n-1} U_{n+1}}$ is equal to		
	(A) 1	(B) 3	(C) 2	(D) 4	

Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

PAGE NO.-1

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

Toll Free: 1800 200 2244 | 1800 258 5555 | cin: U80302RJ2007PTC024029

- Let T_r and S_r be the rth term and the sum of first 'r' terms of a series respectively. If for an odd number 10. 'n', $S_n = n \& T_n = \frac{T_{n-1}}{n^2}$, then T_m (m being even) is,
 - (A) $\frac{2}{1+m^2}$
- (B) $\frac{2m^2}{1+m^2}$
- (C) $\frac{(m+1)^2}{2+(m+1)^2}$ (D) $\frac{2(m+1)^2}{1+(m+1)^2}$

- 11. The remainder, when 15²³ + 23²³ is divided by 38, is
 - (A) 4

- (C) 23
- (D) 0

- The value of $\sum_{r=0}^{20} r(20-r)(^{20}C_r)^2$ is equal to 12.
 - (A) $400 \cdot {}^{39}C_{20}$ (B) $400 \cdot {}^{40}C_{19}$
- (C) 400 . ³⁹C₁₉
- The term independent from 'x' in the expansion of $\left(1+\sqrt{x}+\frac{1}{\sqrt{x}-1}\right)^{-30}$ is 13.
 - (A) 30C₂₀
- (B) 0

14. If
$$a = \sum_{r=0}^{20} {}^{20}C_r$$
, $b = \sum_{r=0}^{9} {}^{20}C_r$, $c = \sum_{r=11}^{20} {}^{20}C_r$, then

(A) a = b + c

(B) b = $2^{19} - \frac{1}{2}^{20}C_{10}$

(C) c = $2^{19} + \frac{1}{2}^{20}C_{10}$

- (D) $a 2c = \frac{2^{10} (1.3.5....19)}{10!}$
- 15. The age of the father of two children is twice that of the elder one added to 4 times that of the younger one. If the geometric mean of the ages of the two children is $4\sqrt{3}$ and their harmonic mean is 6, then father's age is 8p years. The value of p is contained in the set
 - (A) $\{4x : |x| \le 5, x \in R\}$

(B) $\{z : Im(z) = 0, z \in C\}$

(C) $\left\{ \frac{12x}{x^2 + 1} : x = \sin \theta, \theta \in R \right\}$

- (D) $\{5 + \cos\theta : 2\sin\theta < 1, \tan\theta > 0, \theta \in R\}$
- The natural numbers are written as a sequence of digits 123456789101112 . . . , then in the 16. sequence
 - (A) 190th digit is 1

(C) 2014th digit is 8

(B) 201st digit is 3 (D) 2013th digit is same as 2014th digit

- If $N = 7^{2014}$, then 17.
 - (A) sum of last four digits of N is 23
 - (B) Number of divisors of N are 2014
 - (C) Number of composite divisors of N are 2013
 - (D) If number of prime divisors of N are p then number of ways to express a non-zero vector coplanar with two given non-collinear vectors as a linear combination of the two vectors is p + 1.
- Consider the sequence of numbers $\alpha_0, \alpha_1, \ldots, \alpha_n$ where α_0 = 17.23, α_1 = 33.23 and α_{r+2} = $\frac{\alpha_r + \alpha_{r+1}}{2}$. 18.

Then

(A) $|\alpha_{10} - \alpha_9| = \frac{1}{32}$

- (B) $\alpha_0 \alpha_1$, $\alpha_1 \alpha_2$, $\alpha_2 \alpha_3$, ... are in G.P.
- (C) $\alpha_0 \alpha_2$, $2(\alpha_1 \alpha_2)$, $\alpha_1 \alpha_3$ are in H.P.
- (D) $|\alpha_{10} \alpha_9| = |\alpha_8 \alpha_7|$

Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

19. A sequence of numbers A_n where $n \in N$ is defined as :

$$A_1 = \frac{1}{2}$$
 and for each $n \ge 2$, $A_n = \left(\frac{2n-3}{2n}\right)A_{n-1}$, then

(A)
$$\sum_{K=1}^{5} A_{K} = 1$$

(B)
$$\sum_{K=1}^{10} A_K < 1$$

(C)
$$A_3 = A_1 A_2$$

(D)
$$\sum_{K=1}^{n} A_{K} > 1 \forall n \geq 3$$

20. Given 'n' arithmetic means are inserted between each of the two sets of numbers a, 2b and 2a, b where a, b \in R. If mth mean of the two sets of numbers is same then

(A)
$$\frac{a}{b} = \frac{m}{n - m + 2}$$

(A)
$$\frac{a}{b} = \frac{m}{n - m + 1}$$
 (B) $\frac{a}{b} = \frac{n}{n - m + 1}$ (C) $\frac{a}{b} < n$

(C)
$$\frac{a}{b} < n$$

(D)
$$\frac{a}{b} \le m$$

If a, b, c are three terms of an A.P. such that $a \neq b$ then $\frac{b-c}{a-b}$ may be equal to 21.

(B)
$$\sqrt{3}$$

If $S_n = \frac{1}{3!} + \frac{5}{4!} + \frac{11}{5!} + ... + \frac{n^2 + n - 1}{(n + 2)!}$ is sum of n terms of sequence $< t_n >$ then 22.

(A)
$$t_{100} = \frac{10099}{102!}$$

(B)
$$S_{2009} = \frac{1}{2} - \frac{1}{2011(2009!)}$$

(C)
$$S_{2009} = \frac{1}{4} - \frac{1}{2011(2009!)}$$

(D)
$$\lim_{n\to\infty} S_n = \frac{1}{2}$$

Consider the sequence $< a_n >$ given by $a_n = \frac{1000^n}{n!}$, $n \in N$ then correct option is/are 23.

(A)
$$a_n \to \infty$$
 as $n \to \infty$

(B)
$$a_n \to 0$$
 as $n \to \infty$

(C)
$$a_n = a_{n+1}$$
 for exactly one value of n

(D)
$$a_n < a_{n+1} \forall n \in N$$

If a_1, a_2, a_3, \ldots , are in A.P. with common difference d and $b_K = a_K + a_{K+1} + \ldots + a_{K+n-1}$ for $K \in N$ then 24.

(A)
$$\sum_{K=1}^{n} b_{K} = n^{2} a_{n}$$

(B)
$$\sum_{K=1}^{n} b_{K} = (n+1)^{2} a_{n}$$

(C)
$$b_K = \frac{n}{2} [a_n + a_1 + 2d(K - 1)]$$

(D)
$$\sum_{K=1}^{n} b_{K} = n(n + 1)a_{n}$$

If $f(n) = \sum_{i \in \mathbb{N}^n} {n+1 \choose i} C_i^n C_j$ then 25.

$$(A) f(2) = 16$$

(B)
$$f(5) = 1001$$

$$(C) f(6) = 4096$$

- (D) all of these
- If $(1 + x + x^2)^n = \sum_{k=0}^{2n} a_k x^k$ then $a_r {}^nC_1 a_{r-1} + {}^nC_2 a_{r-2} \dots + (-1)^r {}^nC_r a_0$ is equal to 26.

$$(\lambda \in W \text{ and } 0 \le \lambda \le n/3)$$

(A) 0 if
$$r \neq 3\lambda$$

(B) 0 if
$$r = 3\lambda$$

- (C) non-zero if $r \neq 3\lambda$
- (D) non-zero if $r = 3\lambda$

27. Which of the following is true?

(A)
$${}^{26}C_0 + {}^{26}C_1 + \ldots + {}^{26}C_{13} = 2^{25} + \frac{1}{2} {}^{26}C_{13}$$
 (B) ${}^{25}C_0 + {}^{25}C_1 + \ldots + {}^{25}C_{12} = 2^{24}$

(B)
$${}^{25}C_0 + {}^{25}C_1 + \dots + {}^{25}C_{12} = 2^{24}$$

(C)
$$^{25}C_1 - ^{25}C_2 + ^{25}C_3 - \dots + ^{25}C_{25} = -1$$

(D)
$$^{25}C_1 \cdot 3^1 - ^{25}C_2 \cdot 3^2 + \dots + ^{25}C_{25} \cdot 3^{25} = 2^{25} + 1$$

- If ${}^{100}C_6 + 4.{}^{100}C_7 + 6.{}^{100}C_8 + 4.{}^{100}C_9 + {}^{100}C_{10}$ has value xC_y then x + y can take value (A) 112 (B) 114 (C) 196 (D) 198 28.
- $(2-3x+2x^2+3x^3)^{20} = a_0 + a_1x + ... + a_{60}x^{60}$, then 29.

(A)
$$\sum_{r=1}^{30} a_{2r-1} = 0$$
 (B) $\sum_{r=1}^{30} a_{2r} = 2^{40} - 2^{20}$ (C) $a_0 = 2$

(D)
$$a_{59} = 40(3^{19})$$

Let $(1 + x^2)^2 (1 + x)^n = \sum_{k=0}^{n+4} a_k x^k$. If $n \in N$ and a_1 , a_2 , a_3 are in arithmetic progression then the possible 30. value(s) of n is/are (A) 2 (C)4(D) 5

If $f(m) = \sum_{n=0}^{\infty} {}^{30}C_{30-n}^{20}C_{m-n}^{20}$, then (if n < k then take ${}^{n}C_{k} = 0$) 31.

> (B) $f(0) + f(1) + f(2) + \dots + f(25) = 2^{49} + \frac{1}{2} \cdot {}^{50}C_{25}$ (A) Maximum value of f(m) is 50C₂₅

(D) $\sum_{n=0}^{50} (f(m))^2 = {}^{100}C_{50}$ (C) f(33) is divisible by 37

The value of $^{15}\mathrm{C_1}$ + $^{16}\mathrm{C_2}$ + $^{17}\mathrm{C_3}$ + \dots + $^{39}\mathrm{C_{25}}$ is equal to 32. (A) ${}^{40}C_{15} - 1$ (C) ${}^{25}C_{1} + {}^{26}C_{2} + {}^{27}C_{3} + \dots + {}^{39}C_{15}$

If $(8+3\sqrt{7})^n = I + f$, where 'I' is an integer, $n \in \mathbb{N}$ and 0 < f < 1, then 33.

(A) I is an odd integer (B) I is an even integer (C) (I + f) (1 - f) = 1(D) $(I + f) (1 - f) = 2^n$

For natural numbers m, n, if $(1-y)^m (1+y)^n = 1 + a_1y + a_2y^2 + \dots & a_1 = a_2 = 10$, then 34. (C) m + n = 80(B) m > n(A) m < n

Comprehension (Q. No. 35 to 37)

Let f(n) denotes the nth term of the sequence 2, 5, 10, 17, 26, and g(n) denotes the nth term of the sequence 2, 6, 12, 20,30,

Let F(n) and G(n) denote respectively the sum of n terms of the above sequences.

 $\lim_{n\to\infty} \frac{f(n)}{g(n)}$ (A) 1 35. (C)3(B)2(D) does not exist

 $\lim_{n\to\infty}\frac{F(n)}{G(n)}=$ (A) 0 36.

C) 2 (D) does not exist

 $\lim_{n\to\infty} \left(\frac{F(n)}{G(n)}\right)^n - \lim_{n\to\infty} \left(\frac{f(n)}{g(n)}\right)^n =$ 37.

(A) $\frac{\sqrt{e}-1}{e\sqrt{2}}$ (B) $\frac{\sqrt{e}+1}{e\sqrt{e}}$ (C) $\frac{1-\sqrt{e}}{e\sqrt{e}}$ (D) $\frac{e\sqrt{e}}{1+\sqrt{e}}$ Let S denote the sum of the series $\frac{3}{2^3} + \frac{4}{2^4.3} + \frac{5}{2^6.3} + \frac{6}{2^7.5} + \frac{7}{2^7.15} + \dots \infty$, then the value of S⁻¹ is 38.

If S = 1 + $\frac{4}{3}$ + 1 + $\frac{16}{27}$ + ∞ , then find the value of [S] (where [.] is G.I.F.) 39.

The value of $\lim_{n\to\infty} \sum_{t=0}^{n} \left(\sum_{t=0}^{r-1} \frac{1}{5^n} C_r^{r} C_t 3^t \right)$ is equal to 40.

DPP#3

REVISION DPP OF APPLICATION OF DERIVATIVES

1. (C) (B) 3. 4. (C) (A) 6. (D) 7. 2. (A) (B)

8. (A) 9. (B) (D) (C) (A) (A) (A) 10. 11. 12. 13. 14. 15. (B) (D) 17. (C) 18. (A) 19. (A,D)20. (A,C,D)16.

21. 23. (A,C,D) 24. 25. (A,B,C) 22. (B,D) (C,D) (A,C)26. (B,C)

27. (B,C) 28. (A,B) 29. (C,D) 30. (A,B,C,D)31. (A,B)

32. (A,C,D) 33. (A,C,D) 34. (A,B,C,D)35. (A,B)36. (A,B,C,D)

37. 5 (B) 38. (A) 39. (D) 40.