

Mixed Precision Quantization for ReRAM-based **DNN Inference Accelerators**

Sitao Huang¹, Aayush Ankit², Plinio Silveira³, Rodrigo Antunes³, Sai Rahul Chalamalasetti⁴, Izzat El Hajj⁵, Dong Eun Kim², Glaucimar Aguiar³, Pedro Bruel^{4,6}, Sergey Serebryakov⁴, Cong Xu⁴, Can Li⁴, Paolo Faraboschi⁴, John Paul Strachan⁴, Deming Chen¹, Kaushik Roy², Wen-mei Hwu¹, and Dejan Milojicic⁴

¹University of Illinois at Urbana-Champaign, USA ²Purdue University, USA ⁴Hewlett Packard Enterprise, USA

³Hewlett Packard Enterprise, Brazil

⁵American University of Beirut, Lebanon ⁶University of São Paulo, Brazil

{shuang91,dchen,w-hwu}@illinois.edu, {aankit,kim2976,kaushik}@purdue.edu, izzat.elhajj@aub.edu.lb, {firstname.lastname}@hpe.com

Background: Memristive Crossbars

Compact cell structure

Cell area is 4F² vs 120F² for CMOS (SRAM).

Tunable Resistance

6×

A. Ankit et al. PUMA: A Programmable Ultra-efficient Memristor-based Accelerator for Machine Learning Inference. ASPLOS 2019.

Background: Matrix-Vector Multiplication Unit in DNN Accelerators

Analog Multiplication

Analog Dot Product

Analog Matrix-Vector Multiplication Unit (MVMU)

Motivation: Cost of Analog-to-Digital Convertors (ADC)

Energy consumption and latency of MVMU is typically dominated by ADC

 Reducing ADC resolution can save MVMU energy and latency Energy

Latency

ADC Resolution (bits)	LSTM (24 ReRAM tiles)		MLP (9 ReRAM tiles)		LSTM (24 ReRAM tiles)		MLP (9 ReRAM tiles)	
	Energy (µJ)	Reduction	Energy (ய)	Reduction	Cycles	Reduction	Cycles	Reduction
8 (baseline)	65.1	-	18.7	-	48589	-	23923	-
6	45.1	30.7%	12.8	31.5%	39349	19.0%	18883	21.1%
4	30.3	53.5%	84.5	54.7%	30109	38.0%	13843	42.1%
2	20.6	68.3%	56.8	69.6%	20869	57.1%	8803	63.2%
1	17.8	72.7%	48.8	73.9%	16293	66.5%	6337	73.5%

Quantization in ReRAM Accelerators

- Quantization in ReRAM accelerators
 - Weight quantization: Use few bits to represent weights in crossbars
 - Input quantization: Quantize inputs (activations) in digital domain
 - Partial sum (ADC) quantization: ADC produces
 lower bitwidth digital outputs for better efficiency
- Benefits
 - Lower energy consumption
 - Lower processing latency
 - Higher area efficiency

Design Space Search Problem and Challenges

- Design Space Search problem
 - Given the design space $S = P_1 \times P_2 \times \cdots \times P_n$, and cost function f(s),
 - Find the optimal $s^* = (p_1, p_2, ..., p_n) \in S$, s.t. $s^* = \operatorname{argmin} f(s)$

Challenges

- The design space is enormous, even for small networks
 - Example: LeNet-5 design points = 4^{16} = 4,294,967,296 (only consider weights and input quantization)

Parameters	Values
Weight Bitwidth	4, 8, 16, 32
Weight Bitwidth (fractional part)	1, 2,, (weight bitwidth - 1)
Input Bitwitdth	4, 8, 16, 32
Input Bitwidth (fractional part)	1, 2,, (input bitwidth - 1)
Accumulation Bitwidth	4, 8, 16, 32
Accumulation Bitwidth (fractional part)	1, 2,, (accumulation bitwdith - 1)
ADC Precision	1, 2, 3, 4, 5, 6, 7, 8, 9

- Non-differentiable cost function (DNN accuracy/energy/latency/area)
- Cost function evaluation can be expensive (simulation)

DNN Quantization as a Reinforcement Learning (RL) Problem

Action = (Layer1_activation_INT, Layer1_activation_FRAC, Layer1_weight_INT, Layer1_weight_FRAC)

Mixed Precision Quantization for ReRAM DNN Accelerators with RL

RL setting: <u>agent</u> interacts with <u>environment</u> and learns the best <u>policy</u> to take <u>actions</u> in certain <u>states</u> of the environment

- Markov Decision Process (MDP) model: $\mathcal{M} = (S, \mathcal{A}, \mathcal{P}, \mathcal{R}, \gamma)$
 - State space S: all possible configurations of the DNN
 - Action space \mathcal{A} : all possible configurations for a layer in DNN
 - Transition function \mathcal{P} : quantize DNN layer by layer
 - Reward \mathcal{R} : function of inference accuracy, power, and latency
 - Discount factor γ: set to 1 (finite horizon)
- Policy π : a function that maps state space to action space
 - Tells the agent what action a to take given the current state s:

$$a = \pi(s)$$

Source: David Silver. Introduction to Reinforcement Learning.

Mixed Precision Quantization for ReRAM DNN Accelerators with RL

RL setting: <u>agent</u> interacts with <u>environment</u> and learns the best <u>policy</u> to take <u>actions</u> in certain <u>states</u> of the environment

Reward R: function of accuracy, power, and latency

• Cost of accuracy loss due to quantization:

Cross-entropy loss of the quantized DNN and the original model $Cost_{accuracy} = Loss_{quantization} - Loss_{original}$

Cost of hardware (estimates of power and latency):

$$Cost_{\text{hardware}} = \sum_{i} \alpha^{B_{\text{ADC}}^{i}} \left(f_{\text{input}}^{i} \frac{B_{\text{input}}^{i}}{B_{\text{full}}} + f_{\text{weight}}^{i} \frac{B_{\text{weight}}^{i}}{B_{\text{full}}} \right)$$

■ Reward: $Reward = -T(Cost_{accuracy}) - Cost_{hardware}$ where $T_t(x) = \infty \cdot \mathbb{1}_{x>t} + x$

Source: David Silver. Introduction to Reinforcement Learning.

Mixed Precision Quantization for ReRAM DNN Accelerators with RL

Learning: actor-critic based method

Evaluation

- Benefits of Quantization for DNN Layer
 - Profile certain layers of DNN with <u>all</u> possible quantization configurations
 - Study how do quantization schemes change the energy and latency of a DNN layer running on ReRAM DNN accelerators
 - No search flow involved
- Mixed Precision Quantization Search Flow
 - Enable RL based search flow
 - Study the quality of the search results
 - Quantify the benefits of quantization for complete DNN running on ReRAM accelerators

Evaluation: Benefits of Quantization for DNN Layer

Evaluation: Mixed Precision Quantization Search Flow

Intermediate values in search

Search results

Quantization	Energy (ய)	Latency (ms)	Accuracy
$Q_{\it baseline}$	850.99 (1.00x)	2.95 (1.00×)	97.27% (-0.00%)
Q_{A}	175.61 (4.84 ×)	0.76 (3.89 ×)	96.09% (-1.18%)
Q_B	229.82 (3.70×)	0.85 (3.48×)	96.29% (-0.98%)
Q_{C}	468.48 (1.82×)	1.69 (1.74×)	97.07% (-0.20%)

$$Q_{base}$$
: (16,16,8),(16,16,8),(16,16,8),(16,16,8)
 Q_A : (4, 16, 7), (4, 8, 8), (4, 8, 7), (4, 16, 8)
 Q_B : (16, 8, 8), (4, 8, 8), (8, 8, 8), (4, 8, 8)
 Q_C : (16,16,6), (16,8,8), (4,8,7), (4,16,7)

Conclusion

- We proposed a quantization scheme for ReRAM-based DNN inference accelerators that jointly targets weights, inputs, and partial sums, with a functional simulator that models the quantization scheme
- We proposed an automated mixed precision quantization flow powered by deep reinforcement learning that searches for the best quantization configuration for DNN inference on ReRAM-based accelerators
- Evaluation results show that our quantization scheme and search flow effectively improves the efficiency of ReRAM-based DNN accelerators
- Future work
 - Enable retraining to improve quantization and search results
 - Extend the flow to larger networks and other types of DNNs
 - Leverages faster and more accurate performance models to guide the search

Mixed Precision Quantization for ReRAM-based **DNN Inference Accelerators**

Sitao Huang¹, Aayush Ankit², Plinio Silveira³, Rodrigo Antunes³, Sai Rahul Chalamalasetti⁴, Izzat El Hajj⁵, Dong Eun Kim², Glaucimar Aguiar³, Pedro Bruel^{4,6}, Sergey Serebryakov⁴, Cong Xu⁴, Can Li⁴, Paolo Faraboschi⁴, John Paul Strachan⁴, Deming Chen¹, Kaushik Roy², Wen-mei Hwu¹, and Dejan Milojicic⁴

¹University of Illinois at Urbana-Champaign, USA ²Purdue University, USA ⁴Hewlett Packard Enterprise, USA

³Hewlett Packard Enterprise, Brazil

⁵American University of Beirut, Lebanon ⁶University of São Paulo, Brazil

{shuang91,dchen,w-hwu}@illinois.edu, {aankit,kim2976,kaushik}@purdue.edu, izzat.elhajj@aub.edu.lb, {firstname.lastname}@hpe.com

Thank You!

Mixed Precision Quantization for ReRAM-based **DNN Inference Accelerators**

Sitao Huang¹, Aayush Ankit², Plinio Silveira³, Rodrigo Antunes³, Sai Rahul Chalamalasetti⁴, Izzat El Hajj⁵, Dong Eun Kim², Glaucimar Aguiar³, Pedro Bruel^{4,6}, Sergey Serebryakov⁴, Cong Xu⁴, Can Li⁴, Paolo Faraboschi⁴, John Paul Strachan⁴, Deming Chen¹, Kaushik Roy², Wen-mei Hwu¹, and Dejan Milojicic⁴

¹University of Illinois at Urbana-Champaign, USA ²Purdue University, USA

³Hewlett Packard Enterprise, Brazil

⁴Hewlett Packard Enterprise, USA

⁵American University of Beirut, Lebanon ⁶University of São Paulo, Brazil

{shuang91,dchen,w-hwu}@illinois.edu, {aankit,kim2976,kaushik}@purdue.edu, izzat.elhajj@aub.edu.lb, {firstname.lastname}@hpe.com

Electrical & Computer Engineering