Stroke Risk Prediction Based on Patient Health Indicators

By Manuel Ramirez

Problem Statement

Problem:

Stroke is a leading cause of death and disability worldwide.

Early identification of high-risk individuals can save lives. Predicting stroke is challenging due to complex risk factors.

Project Objectives

Goals:

Develop a machine learning model to predict stroke risk.

Use health indicators like age, glucose level, hypertension.

Support preventive healthcare and decision-making.

Dataset Overview

Source: Kaggle —
Stroke Prediction
Dataset

Stroke Prediction
Dataset

Stroke Prediction
Dataset

Stroke Prediction
Dataset

Stroke Prediction
Stroke Predic

Data Preparation

Steps Taken:

- Imputed missing values (BMI) using median.
- Encoded categorical features with one-hot encoding.
- Standardized numerical features.
- Train-test split: 70% training / 30% testing (stratified).

Models Built

Algorithms:

- Logistic Regression
- Random Forest Classifier
- Support Vector Machine (SVM)

Hyperparameter Tuning:

GridSearchCV optimization for Random Forest and SVM.

Model Performance

Model Metrics Summary:

Model	Accuracy	Recall (Stroke)	F1- Score	ROC AUC
Logistic Regression	0.74	0.76	0.22	0.84
Random Forest (Tuned)	0.87	0.31	0.19	0.92
SVM (Tuned)	0.71	0.73	0.20	0.81

Key Insights

Findings:

- Age, Average Glucose Level, Heart Disease were top predictors.
- Class imbalance affected recall despite high overall accuracy.
- SHAP analysis improved model interpretability for clinical use.

SHAP Feature Importance Plot

"Feature importance derived from SHAP analysis. Age, average glucose level, and heart disease status were the strongest predictors of stroke risk."

Model: Random	Forest precision	recall	f1-score	support
0 1	0.96 0.14	0.90 0.31	0.93 0.19	1458 75
accuracy macro avg weighted avg	0.55 0.92	0.60 0.87	0.87 0.56 0.90	1533 1533 1533

Confusion Matrix - Random Forest - 1200 - 1000 1316 142 0 -- 800 **True label** - 600 - 400 52 23 - 200 Predicted label

Confusion Matrix for Final Model (Random Forest)

"Confusion Matrix showing Random Forest model performance. While 'No Stroke' cases are classified accurately, 'Stroke' prediction remains challenging due to class imbalance."

Challenges & Limitations

Challenges:

- Severe class imbalance (only ~5% positive stroke cases).
- Limited feature set (missing deeper clinical history).

Future Work:

- Apply SMOTE for better balance.
- Test advanced models (e.g., XGBoost).
- Expand dataset with more clinical features.