Sensitivity and robustness

Kjartan Halvorsen

November 30, 2021

Sensitivity and complementary sensitivity

Sensitivity and complementary sensitivity

1. Determine the closed-loop transfer function $G_v(s)$ from v(t) to y(t) and the transfer function $G_n(t)$ from n(t) to y(t).

Sensitivity and complementary sensitivity

- 1. Determine the closed-loop transfer function $G_v(s)$ from v(t) to y(t) and the transfer function $G_n(t)$ from n(t) to y(t).
- 2. Show that if $F_{fb}(s)$ and/or G(s) contains an integrator (pole in the origin), then $G_{\nu}(0)=0$ and $G_{n}(0)=-1$. This means that constant disturbances are completely eliminated, but a constant measurement error (sensor bias) is passed unattenuated to the output.

The Nyquist plot and stability margins

The sensitivity function

$$S(i\omega) = G_{\nu}(i\omega) = \frac{1}{1 + G_{o}(i\omega)} = \frac{1}{1 + G(i\omega)F_{fb}(i\omega)}$$

The sensitivity function

Interpretations of the sensitivity function

Several important interpretations of the sensitivity function S(s)

- 1. $S(i\omega)$ tells us how well our closed-loop system attenuates disturbances of different frequencies
- 2. Its maximum value is a measure of how close the closed-loop system is to being unstable.
- 3. $S(i\omega)$ tells us how modelling errors or modelling variations of the plant influences the closed-loop system

An important limitation

Respect the Unstable

The practical, physical (and sometimes dangerous) consequences of control must be respected, and the underlying principles must be clearly and well taught.

By Gunter Stein

Gunter Stein's Bode Lecture

An important limitation

Figure 3. Sensitivity reduction at low frequency unavoidably leads to sensitivity increase at higher frequencies.

$$\int_0^\infty \ln |S(i\omega)| d\omega = \int_0^\infty \ln \left|rac{1}{1+G_o(i\omega)}
ight| d\omega = \pi \sum ext{Re}(p_k)$$

An important limitation

