Комплан. Лекция

Хуй

8 октября 2024 г.

Линейная функция

 $w=az+b,\; a,b\in\mathbb{C}$ - линейная ф-ия w'=a
eq 0 конф на всей комп пл-ти

1. Преобразование переноса (сдвига)

$$w = z + c, c = c_1 + ic_2$$

$$z = x + iy, w = u + iv$$

$$u + iv = x + iy + c_1 + ic_2$$

$$\begin{cases} u = x + c_1 \\ v = y + c_2 \end{cases}$$

2. Преобразование поворота (вращения)

$$w = z \cdot e^{i\alpha}, \ \alpha \in \mathbb{R}$$

$$\alpha > 0 \text{ против}$$

$$\alpha < 0 \text{ по}$$

$$z = re^{i\phi}$$

$$w = re^{i(\phi + \alpha)}$$

$$|w| = r = |z| \quad \arg w = \phi + \alpha = \arg z + \alpha$$

$$e^{i(\phi + \alpha)} = r\cos(\phi + \alpha) + i\sin(\phi + \alpha)$$

$$\begin{cases} u = r\cos(\phi + \alpha) \\ v = r\sin(\phi + \alpha) \end{cases}$$

3. Преобразование подобия (гомотетия)

$$w=kz,\ k>0$$
 $w=k\cdot re^{i\phi},\ |w|=k|z|,\ \arg w=\phi=\arg z$ $k>1$ - растяжение, $k<1$ - сжатие $w=az+b,\ a=ke^{i\alpha},\ k=|a|>0,\ \alpha=\arg a$ $w=ke^{i\alpha}z+b$ 1) $w_1=ze^{i\alpha}$ 2) $w_2=w_1\cdot k$ 3) $w_3\equiv w=w_2+b$

Дробно-линейное преобразование

$$w = \frac{az + b}{cz + d} \equiv L(z)$$

$$\delta = \begin{vmatrix} a & b \\ c & d \end{vmatrix} \neq 0$$

$$\delta = 0 = ad - bc \implies ad = bc$$

$$\frac{a}{c} = \frac{b}{d} = \lambda \implies a = \lambda b, \ b = \lambda d$$

$$w = \frac{\lambda cz + \lambda d}{cz + d} \equiv \lambda$$

1 Пусть $c = 0, a \neq 0, d \neq 0$

$$w = \frac{a}{d}z + \frac{b}{d} \equiv a_1 z + b_1$$

 $\underline{\mathrm{Def}}$ Точки $z_1,\,z_2$ называются симметричными относительно $C:|z-z_0|=R,$ если

1) Лежат на одном луче, исходящем из центра окружности

2) Произведение их расстояний от центра равно квадрату радиуса. $|z_1-z_0|\cdot|z_2-z_0|=R^2$

$$|z_1 - z_0| < R \implies |z_2 - z_0| > R$$

$$z_1 \to z_0 \implies z_2 \to \infty$$

$$z_1 = z_0, \ z_2 = \infty$$

<u>Def</u> Преобразование переводящие точки z в симметричные с ними относительно окружности С точки ξ , называется симметрией (инверсией) относительно окружности

4.

$$w = \frac{R^2}{z}$$

$$z = |z|e^{i\phi}, \ w = |w|e^{i\theta}$$

$$|w|e^{i\theta} = \frac{R^2}{|z|}e^{i\phi}$$

$$|w| = \frac{R^2}{|z|} \implies |z||w| = R^2$$

$$\theta = -\phi$$

$$1) \ w_1 = \frac{R^2}{\overline{z}} \quad \overline{z} = |z|e^{-i\phi}$$

$$w_1 = \frac{R^2}{|z|}e^{i\phi} \iff |w_1||z| = R^2, \ \arg w_1 = \phi = \arg z$$

 w_1 - симметрия. |z|=R

2)
$$w = \overline{w_1}$$

 $w=rac{R^2}{z}$ - симметрия отн |z|=R с последующем зеркальным отражением относительно действ. оси

<u>Тh</u> (Конформность дробно-линейного преобразования)

Дробно-линейное преобразование $w=\frac{az+b}{cz+d}$ ($\delta\neq 0$) отображает конформно расширенную компл. пл-ть z на расш. комп. пл-ть w (др. линейное преобр. конформно на всей расш компл. пл-ти)

Proof

1. Взаимнооднозначность

1)
$$c \neq 0$$

$$\forall z = -\frac{d}{c} \text{ cooth } ! w \neq \infty$$

$$w(cz + d) = az + b$$

$$wcz - az = b - wd$$

$$z = \frac{b - wd}{wc - a}$$

$$\forall w \neq \frac{a}{c} \text{ cooth } ! z \neq \infty$$

$$L(-\frac{d}{c}) = \infty, \ L(\infty) = \frac{a}{c}$$

$$\overline{\mathbb{C}}_z \overset{\text{B3-odh}}{\longleftrightarrow} \overline{\mathbb{C}}_w$$

2)
$$c = 0$$

$$w = a_1 z + b_1, \ a_1 \neq 0$$
 $\forall z \neq \infty \text{ cooth } ! \ w \neq \infty$

$$z = \frac{w}{a_1} - \frac{b_1}{a_1}$$
 $\forall w \neq \infty \text{ cooth } ! z \neq \infty$

$$L(\infty) = \infty$$

2. Конформность

1)
$$c \neq 0$$

$$\frac{\partial w}{\partial z} = \frac{a(cz+d) - c(az+b)}{(cz+d)^2} \frac{ab - bc}{(cz+d)^2}$$

$$\begin{bmatrix} \neq 0, & z \neq \infty \\ \neq \infty, & z \neq -\frac{d}{c} \end{bmatrix}$$

a)
$$z = \infty$$

$$z = \frac{1}{t}, \ z = \infty \to t = 0$$
$$w(t) = \frac{a\frac{1}{t} + b}{c\frac{1}{t} + d}$$
$$a + bt$$

$$w(t) = \frac{a + bt}{c + }$$

$$\frac{\partial w}{\partial t}|_{t=0} \frac{a}{c} \neq 0$$

b)
$$z = \frac{-d}{c} \to w = \infty$$

$$w = \frac{1}{\zeta}$$

$$\frac{1}{\zeta} = \frac{az+b}{cz+d} \implies \zeta$$

$$\frac{\partial \zeta}{\partial z}|_{z=\frac{-d}{c}} \neq 0$$

$$w = a_1 z + b_1 \quad \frac{dw}{dz} = a_1 \neq 0$$

$$L(\infty) = \infty$$

$$z = \frac{1}{t}, \ w = \frac{1}{\zeta}$$

$$z = \infty \to t = 0, w = \infty \to \zeta = 0$$

$$\frac{d\zeta}{dt}|_{t=0} \neq 0$$

 $\underline{\mathrm{Def}}$ Окружность на $\overline{\mathbb{C}}$ или окружность в широком смысле называется всякая кривая определяемая уравнением:

$$A(x^2+y^2)+Bx+Cy+D=0,\ A,B,C,D\in\mathbb{R}$$

$$A=0$$
- прямая , $A\neq 0$ - окружность