Text2Scene

Object Dictionaries

Patrick Schrottenbacher

- 1. Aufgabenstellung
- 2. Verlauf
 - 1. Wordnet
 - 2. Wordvector
 - 3. BERT
 - 4. Evaluation
- 3. Final thoughts
- 4. Quellen

Aufgabenstellung

Erstellung eines Object-dictionaries mithilfe von Wordnet, BERT und Wordvectors

- 1. Aufgabenstellung
- 2. Verlauf
 - 1. Wordnet
 - 2. Wordvector
 - 3. BERT
 - 4. Evaluation
- 3. Final thoughts
- 4. Quellen

Neo4j / Graphdatenbanken

- Knoten und Kanten
- Spezifisch: Knoten sowie Kanten haben beliebig viele Attribute, sowie labels
- Pros
 - Schnelles querying für (stark) verbundene Datensätze
 - Gut fürs modellieren komplexer/irregulärer Datensätze
- Kons
 - Größerer Speicherplatz verbrauch (im Vergleich zu RDBs)
 - Datenstruktur nicht statisch

- 1. Aufgabenstellung
- 2. Verlauf
 - 1. Wordnet
 - 2. Wordvector
 - 3. BERT
 - 4. Evaluation
- 3. Final thoughts
- 4. Quellen

NLTK/Wordnet

- NLTK: interface für lexikalische Ressourcen
- Wordnet: Lexikarische Datenbank
- Fokus liegt auf Synonymen, Antonymen, Hyponymen etc.

Datenstruktur

Objekt Klassifizierung

Resultat

- 1. Aufgabenstellung
- 2. Verlauf
 - 1. Wordnet
 - 2. Wordvector
 - 3. BERT
 - 4. Evaluation
- 3. Final thoughts
- 4. Quellen

Wordvector

- FastText: Jedes Wort hat eine Vektorrepräsentation
- Wir können die 10 nächsten Vektorrepräsentationen nehmen und die relation speichern.
- Problem: FastText arbeitet mit "normalen Wörtern" d.h. es gibt z.B. keine Unterschied zwischen der Farbe "blau" und "blau sein"
- => Restrukturierung der Datenstruktur

Restrukturierung

- Jedes Lemma bekommt ein "RootWord" zugeschrieben
- Mehrere Lemma können somit ein gemeinsames "RootWord" besitzen
- Unterteilung dieser in "RootWordObject"
- Wir können nun Wordvector Relationen für unsere "RootWords" einspeichern

- 1. Aufgabenstellung
- 2. Verlauf
 - 1. Wordnet
 - 2. Wordvector
 - 3. BERT
 - 4. Evaluation
- 3. Final thoughts
- 4. Quellen

BERT

- Erstellung von Sätzen welche Informationen über Objekte beinhalten welche uns Interessieren
- Z.B: "The {Target} is on top of the {mask}" wobei "{Target}" ein Objekt aus unserem dictionary ist
- Wir nehmen die top 5 Ergebnisse und speichern diese ein

- 1. Aufgabenstellung
- 2. Verlauf
 - 1. Wordnet
 - 2. Wordvector
 - 3. BERT
 - 4. Evaluation
- 3. Final thoughts
- 4. Quellen

Evaluation

- Subjekt und Objekt werden unabhängig voneinander verdeckt
- Modell rät Subjekt und Objekt
- Vergleiche jedes set miteinander
- Evaluiere MR, MMR und H@X

Evaluation

- 1. Aufgabenstellung
- 2. Verlauf
 - 1. Wordnet
 - 2. Wordvector
 - 3. BERT
 - 4. Evaluation
- 3. Final thoughts
- 4. Quellen

Final thoughts

In Zukunft

- Evaluation verbessern mit besserem Modell
- FocusE: Betrachte Kantengewichte
- Datenstruktur neu anpassen
- BERT weiterhin verfolgen
- Relationen zu Verben erweitern
- Satzvervollständigung für Objekte

Quellen

- neomodel: https://neomodel.readthedocs.io/ /downloads/en/stable/pdf/
- neo4j: https://neo4j.com/
- NLTK/wordnet: https://www.nltk.org/howto/wordnet.html
- Ampligraph: https://github.com/Accenture/AmpliGraph
- BertMaskFlask: https://gitlab.texttechnologylab.org/henlein/bertmaskflaskservice

Vielen Dank für Ihre Aufmerksamkeit!