## Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования «СЕВЕРО-КАВКАЗСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

Институт цифрового развития Кафедра инфокоммуникаций

## ОТЧЕТ ПО ПРАКТИЧЕСКОЙ РАБОТЕ №1.3 дисциплины «Алгоритмизация»

## Выполнил: Степанов Леонид Викторович 2 курс, группа ИВТ-б-о-22-1, 09.03.01 «Информатика и вычислительная техника», направленность (профиль) «Программное обеспечение средств вычислительной техники и автоматизирование систем», очная форма обучения (подпись) Руководитель практики: Воронкин Р.А., канд. техн. наук, доцент, доцент кафедры инфокоммуникаций (подпись) Отчет защищен с оценкой Дата защиты Ставрополь, 2023 г.

## Порядок выполнения работы:

1. Написал программу (linW.py), которая использует алгоритм линейного поиска, она рассчитывает какое время необходимо при худшем случае при разных значениях длинны массива: от 100 до 1000 с шагом 100.



Рисунок 1 – Результат выполнения программы linW.py



Рисунок 2 — Таблица значений в excel

При помощи метода наименьших квадратов вывели систему уравнений: 2850000a+4500b=0,0828 и 4500a+9b=0,000133, решив которую мы нашли график функции: y=0,0000000272x+0,0000011944 и проверили при помощи метода корреляции правильность графика.



Рисунок  $3 - \Gamma$ рафик функции y = 0,0000000272x + 0,0000011944

| г-исх | 0,998875882 |
|-------|-------------|
| R-кв  | 1           |
|       |             |

Рисунок 4 – Проверка метода наименьших квадратов

2. Написал программу (linS.py), которая использует алгоритм линейного поиска, она рассчитывает какое время необходимо при среднем случае при разных значениях длинны массива: от 100 до 1000 с шагом 100



Рисунок 5 – Результат выполнения программы linS.py

| - |     |                  |                 |                  |                  |                  |                  |                  |                  |                  |                     |
|---|-----|------------------|-----------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|---------------------|
| 2 | X   | 100              | 200             | 300              | 400              | 500              | 600              | 700              | 800              | 900              | 4500,0000000000     |
| 3 | у   | 0,0000023400     | 0,0000041700    | 0,0000062300     | 0,0000084900     | 0,0000110700     | 0,0000138700     | 0,0000164700     | 0,0000192800     | 0,0000212600     | 0,0001031800        |
| 4 | x^2 | 10000            | 40000           | 90000            | 160000           | 250000           | 360000           | 490000           | 640000           | 810000           | 2850000,00000000000 |
| 5 | y*x | 0,000234         | 0,000834        | 0,001869         | 0,003396         | 0,005535         | 0,008322         | 0,011529         | 0,015424         | 0,019134         | 0,0662770000        |
| 6 | y^2 | 0,00000000000548 | 0,0000000001739 | 0,00000000003881 | 0,00000000007208 | 0,00000000012254 | 0,00000000019238 | 0,00000000027126 | 0,00000000037172 | 0,00000000045199 | 0,00000000154365    |
| 7 | ٧   | 0,00000026       | 0,00000297      | 0,00000568       | 0,00000839       | 0,00001110       | 0,00001381       | 0,00001652       | 0,00001923       | 0,00002194       |                     |

Рисунок 6 – Таблица значений в excel

При помощи метода наименьших квадратов вывели систему уравнений: 2850000a+4500b=0,06627 и 4500a+9b=0,000103, решив которую мы нашли график функции: y=0,0000000271x-0,0000024472 и проверили при помощи метода корреляции правильность графика.



Рисунок 7 — График функции y = 0.0000000271x - 0.0000024472

| 11 | r-исх | 0,998291599 |
|----|-------|-------------|
| 12 | R-кв  | 1           |

Рисунок 8 – Проверка метода наименьших квадратов

Вывод: