MNIST

Nikhita Kannam

The MNIST dataset is a popular dataset that contains handwritten digits as images as well as labels containing the number for those digits. The images 28x28 and the digits are 0 to 9. The dataset is often used for machine learning, classification and deep learning. The MNIST dataset has 60,000 images stored in train_digits and 10,000 labels stores in train_Labels. For this project, linear regression and logistic regression will be used on the dataset to get the Confusion Matrices, Accuracy and Error Rates. My goal is to see how often a certain digit is mistaken for another and what pairs of digits are mistaken for each other.

```
load image file = function(filename) {
  ret = list()
   f = file(filename, 'rb')
  readBin(f, 'integer', n = 1, size = 4, endian = 'big')
  n = readBin(f, 'integer', n = 1, size = 4, endian = 'big')
  nrow = readBin(f, 'integer', n = 1, size = 4, endian = 'big')
ncol = readBin(f, 'integer', n = 1, size = 4, endian = 'big')
  x = readBin(f, 'integer', n = n*nrow*ncol, size = 1, signed = FALSE)
  close(f)
   data.frame(matrix(x, ncol = nrow*ncol, byrow = TRUE))
load label file = function(filename) {
  f = file(filename, 'rb')
  readBin(f, 'integer', n = 1, size = 4, endian = 'big')
  n = readBin(f, 'integer', n = 1, size = 4, endian = 'big')
L = readBin(f, 'integer', n = n, size = 1, signed = FALSE)
   close(f)
   L
}
# set working directory
 #setwd("~/CSc/DSE Applied Stat/Project 2 Regressions")
# load images and corresponding labels
train digits = load image file('train-images.idx3-ubyte')
train Labels = load label file('train-labels.idx1-ubyte')
# Select digit k and re-label the dataset wrt selected digit
k = 9
is_k = which((train Labels == k) %in% TRUE)
not k = which((train Labels == k) %in% FALSE)
# Display i'th instance of selected digit in the training set:
 image(1:28, 1:28, matrix(as.matrix(train digits[is k[i],]), nrow=28)[ , 28:1],
      col = gray(seq(0, 1, 0.05)), xlab = "", ylab="")
```


Our digit k will be 9.

We are provided the train_digits dataframe which has 60000 rows and 784 columns. Each row represents an image. The train_labels has the labels for each image. For this assignment, train_labels will be turned into a list of 1s and -1. If the label is k (in our case 9), the label will be replaced with a 1, else it will be replaced with a -1. Then train_labels will be combined with the train_digits dataframe. The result will be one dataframe that has 785 columns, the last column will be the label for the image in that row.

```
not_zero_index = which((colSums(train_digits) > 0) %in% TRUE)
```

```
#Replace train_labels with 1 if it's k and -1 if it's not k.

df_label1 <- replace(train_Labels, which((train_Labels == k) %in% TRUE), 1)
df_label1 <- replace(df_label1, which((train_Labels == k) %in% FALSE), -1)</pre>
```

Train digits has been change to remove any column which has all 0s. If the sum of all numbers in the column is less than 1, the column is removed.

```
train_digits <- train_digits[,not_zero_index]
df_y <- data.frame(df_label1)
  df <- cbind(train_digits, df_y)</pre>
```

Linear Regression

Once we have the dataframe we will perform the train and test split. For linear regression, lm() is used to fit the model.

In order to perform linear regression, the data should be split into a train and test data set. This is done with the code below. Sample splits the data in half.

fit_train will be the fit model. summary() gives the Coefficients, Residual standard error, Multiple R-squared, Adjusted R-squared, F-statistic, and p-value.

```
set.seed(1)

sample <- sample(c(TRUE, FALSE), nrow(df), replace=TRUE, prob=c(0.5,0.5))
train <- df[sample, ]
test <- df[!sample, ]

fit_train <- lm(train$df_label1 ~ ., data = train)
summary(fit_train)</pre>
```

```
## Call:
## lm(formula = train$df label1 ~ ., data = train)
##
## Residuals:
               1Q Median
                              30
##
      Min
                                       Max
## -3.4137 -0.2302 -0.0494 0.1318 2.3183
##
## Coefficients: (16 not defined because of singularities)
                Estimate Std. Error t value Pr(>|t|)
9.814e-05 2.452e-03 0.040 0.968075
## X14
                                      NA
## X15
                       NA
                                 NA
## X16
                       NA
                                  NA
                                          NA
                                                   NA
## X33
                       NA
                                  NA
                                          NA
              -3.046e-02 1.021e-01 -0.298 0.765325
## X34
              2.242e-03 7.600e-03
-1.344e-03 3.265e-03
                                      0.295 0.768021
## X35
                                      -0.412 0.680602
## X36
              -8.753e-05 1.324e-03 -0.066 0.947273
## X37
## X38
              1.560e-04 1.387e-03
                                      0.112 0.910475
              -5.305e-04 1.148e-03 -0.462 0.643976
-1.671e-05 9.846e-04 -0.017 0.986460
## X39
## X40
              1.420e-04 8.536e-04
## X41
                                      0.166 0.867917
              -3.396e-04 8.684e-04 -0.391 0.695702
## X42
## X43
               2.463e-04 9.105e-04
                                      0.271 0.786776
              -2.266e-04 7.783e-04 -0.291 0.770947
## X44
## X45
              -6.267e-05 7.183e-04 -0.087 0.930478
              -8.277e-05 8.911e-04 -0.093 0.925992
-7.565e-04 1.033e-03 -0.732 0.463963
## X46
## X47
## X48
              5.462e-04 1.935e-03
                                      0.282 0.777712
## X49
              -7.287e-04 1.760e-03 -0.414 0.678812
              -2.536e-04 2.391e-03 -0.106 0.915509
-2.939e-03 6.868e-03 -0.428 0.668682
## X50
## X51
## X52
              2.976e-03 5.516e-03
                                      0.540 0.589511
## X59
              -2.370e-02 5.918e-02 -0.400 0.688859
1.110e-02 5.946e-02 0.187 0.851919
## X60
              8.324e-04 2.609e-03
## X61
                                      0.319 0.749695
## X62
              -1.459e-03 8.565e-03 -0.170 0.864707
## X63
               1.165e-03 1.652e-03
                                      0.705 0.480649
              -4.258e-04 1.207e-03 -0.353 0.724214
## X64
              2.320e-04 8.232e-04 0.282 0.778060
## X65
               3.476e-04 6.136e-04 0.566 0.571077
## X66
```

```
-9.315e-05 4.667e-04 -0.200 0.841794
## X67
                                    0.025 0.979696
## X68
              9.857e-06 3.873e-04
                                    -0.311 0.755696
## X69
              -1.021e-04
                          3.280e-04
              -5.345e-05 2.894e-04 -0.185 0.853466
## X70
## X71
              -1.491e-04 2.586e-04 -0.577 0.564090
## X72
              1.659e-05
                          2.441e-04
                                    0.068 0.945795
                                    -0.376 0.707251
## X73
              -8.834e-05
                          2.352e-04
## X74
              -8.800e-05 2.455e-04 -0.359 0.719945
                                    0.168 0.866903
## X75
              4.421e-05 2.638e-04
## X76
              -1.213e-04
                          2.995e-04
                                    -0.405 0.685453
               2.958e-05
                         3.968e-04
## X77
                                    0.075 0.940571
## X78
              2.250e-04 5.317e-04
                                    0.423 0.672219
                          7.190e-04
## X79
              2.168e-04
                                     0.302 0.763019
## X80
              -1.074e-03 1.420e-03
                                    -0.756 0.449617
## X81
              8.953e-04 2.802e-03
                                    0.320 0.749299
## X82
              8.376e-04 5.262e-03
                                    0.159 0.873540
               8.587e-03
## X87
                          2.669e-02
                                     0.322 0.747660
              -1.796e-03 6.406e-03 -0.280 0.779221
## X88
                                    0.346 0.729106
## X89
              1.799e-03 5.195e-03
                                    0.657 0.511474
              8.467e-04 1.290e-03
## X90
## X91
              -2.203e-04
                         8.925e-04
                                    -0.247 0.805027
## X92
              3.589e-05 6.496e-04
                                    0.055 0.955940
## X93
              1.774e-05 4.895e-04
                                    0.036 0.971091
## X94
               4.802e-05
                          3.586e-04
                                     0.134 0.893474
## X95
              1.449e-04 3.005e-04
                                     0.482 0.629749
              3.399e-05 2.589e-04
## X96
                                    0.131 0.895568
                                    -0.173 0.862445
              -3.916e-05 2.260e-04
## X97
## X98
              -2.985e-05 1.986e-04
                                    -0.150 0.880517
## X99
              4.478e-05 1.794e-04
                                    0.250 0.802898
## X100
              -1.562e-04 1.671e-04 -0.935 0.349981
## X101
              -1.034e-04
                         1.656e-04 -0.624 0.532520
                         1.679e-04 -0.208 0.835599
              -3.484e-05
## X102
## X103
              -1.024e-04 1.826e-04 -0.561 0.574966
              -1.288e-04 2.027e-04 -0.635 0.525137
## X104
## X105
              -1.767e-05
                          2.496e-04
                                    -0.071 0.943553
## X106
              -1.774e-04 3.161e-04 -0.561 0.574759
## X107
              7.984e-05 4.342e-04
                                    0.184 0.854088
## X108
               1.501e-04
                         6.366e-04
                                     0.236 0.813615
               2.553e-04 1.177e-03
                                    0.217 0.828333
## X109
## X110
              -3.738e-04 3.504e-03 -0.107 0.915043
              1.683e-03 4.231e-03
## X111
                                    0.398 0.690710
## X114
                     NA
                                NA
                                        NA
              -2.193e-03 7.191e-03 -0.305 0.760401
## X115
## X116
              -1.430e-03 3.188e-03 -0.449 0.653694
              1.054e-03 1.039e-03
                                    1.015 0.310092
## X117
                         6.133e-04 -0.801 0.423197
## X118
              -4.912e-04
## X119
              -6.008e-05 4.659e-04 -0.129 0.897397
                                    0.533 0.594367
              1.788e-04 3.358e-04
## X120
              -3.147e-04
                          2.687e-04
                                    -1.171 0.241482
## X121
## X122
              -2.067e-05 2.188e-04 -0.094 0.924737
## X123
              -1.367e-04 1.829e-04 -0.748 0.454640
## X124
              -4.659e-06
                         1.537e-04
                                    -0.030 0.975814
              -1.512e-04 1.315e-04 -1.150 0.250205
## X125
## X126
              1.547e-06 1.154e-04
                                    0.013 0.989299
                                    0.274 0.784304
              2.860e-05 1.045e-04
## X127
                                     1.013 0.310873
## X128
               1.010e-04
                         9.968e-05
              9.334e-05 9.871e-05
                                    0.946 0.344348
## X129
## X130
              1.182e-04 1.027e-04
                                    1.151 0.249865
                                    -0.018 0.985561
## X131
              -1.981e-06 1.095e-04
## X132
               1.022e-04
                         1.210e-04
                                     0.845 0.397976
## X133
              7.969e-05 1.410e-04
                                    0.565 0.571931
## X134
              -7.428e-05 1.718e-04
                                    -0.432 0.665573
## X135
              6.783e-05
                          2.190e-04
                                    0.310 0.756798
                                    -0.871 0.383940
              -2.514e-04
                         2.888e-04
## X136
                                    0.930 0.352278
              4.047e-04 4.351e-04
## X137
              -5.319e-04
## X138
                         9.410e-04 -0.565 0.571915
## X139
               1.514e-03
                          1.679e-03
                                     0.902 0.367214
## X140
              -8.083e-03 7.850e-03 -1.030 0.303176
## X143
              -1.014e-04 3.579e-03 -0.028 0.977408
## X144
               2.718e-04
                         1.381e-03
                                    0.197 0.844017
              -1.639e-04 6.792e-04 -0.241 0.809333
## X145
```

```
-2.430e-04 4.156e-04 -0.585 0.558702
## X146
## X147
              -1.334e-04 2.796e-04 -0.477 0.633183
               8.479e-05
## X148
                          2.217e-04
                                      0.382 0.702187
                                     0.321 0.748535
## X149
               5.804e-05 1.811e-04
## X150
               1.255e-04 1.487e-04
                                     0.844 0.398482
## X151
               7.404e-05 1.270e-04
                                      0.583 0.559836
## X152
               3.718e-04 1.135e-04
                                      3.276 0.001052 **
## X153
              1.245e-04 1.031e-04
                                     1.208 0.227231
               7.947e-05 9.519e-05
                                     0.835 0.403795
## X154
              -3.477e-05
## X155
                          8.987e-05
                                     -0.387 0.698827
              -2.123e-04 8.674e-05 -2.447 0.014410 *
## X156
## X157
              -2.091e-04 8.454e-05 -2.474 0.013377 *
              -2.387e-04
## X158
                          8.432e-05
                                     -2.831 0.004650 **
              -1.763e-04 8.673e-05 -2.033 0.042064 *
## X159
## X160
              -3.866e-05 9.397e-05 -0.411 0.680773
## X161
              -9.621e-05 1.067e-04 -0.902 0.367038
              -8.056e-05
                          1.264e-04 -0.637 0.523988
## X162
               1.167e-04 1.577e-04
                                    0.740 0.459458
## X163
## X164
              -2.261e-04 2.058e-04 -1.099 0.271956
                                     1.065 0.286848
               2.920e-04 2.742e-04
## X165
## X166
               2.979e-04
                          4.368e-04
                                     0.682 0.495293
              -7.695e-04 7.890e-04 -0.975 0.329413
## X167
## X168
              9.104e-03 5.087e-03
                                     1.790 0.073518 .
## X170
              -8.149e-02
                          8.501e-02
                                     -0.959 0.337780
              -1.138e-04 1.890e-03 -0.060 0.951975
## X171
              -5.929e-04 7.287e-04 -0.814 0.415845
## X172
## X173
              -4.427e-05 4.183e-04 -0.106 0.915722
## X174
              5.022e-04 2.886e-04
                                     1.741 0.081773 .
              -1.382e-05 2.155e-04 -0.064 0.948884
## X175
## X176
              -5.431e-05 1.701e-04 -0.319 0.749469
## X177
              -7.258e-05 1.391e-04 -0.522 0.601808
               1.369e-04 1.199e-04
## X178
                                     1.142 0.253593
## X179
              -1.640e-04 1.062e-04 -1.544 0.122519
                                     1.177 0.239015
               1.136e-04 9.644e-05
## X180
## X181
               2.528e-06
                          9.039e-05
                                      0.028 0.977691
## X182
              1.469e-04 8.782e-05
                                     1.672 0.094462 .
## X183
              8.027e-05 8.553e-05
                                     0.938 0.348029
## X184
              -2.713e-06 8.300e-05
                                     -0.033 0.973924
                                     1.830 0.067195
               1.480e-04 8.086e-05
## X185
## X186
              2.358e-04 8.057e-05
                                     2.927 0.003424 **
              3.363e-04 8.263e-05
                                     4.070 4.71e-05 ***
## X187
                                     0.326 0.744370
## X188
               2.842e-05 8.716e-05
               4.133e-05 9.807e-05 0.421 0.673432
## X189
## X190
              -6.053e-05 1.144e-04 -0.529 0.596726
              -1.976e-04 1.393e-04 -1.419 0.156007
-2.091e-04 1.764e-04 -1.185 0.235841
## X191
## X192
## X193
              -1.307e-04 2.242e-04 -0.583 0.559914
## X194
              -1.817e-04 2.961e-04 -0.614 0.539500
               5.275e-04
                                     1.085 0.278147
## X195
                          4.864e-04
## X196
              -3.007e-03 2.149e-03 -1.400 0.161615
## X197
              -5.059e-02 4.147e-01 -0.122 0.902916
## X198
              -3.947e-04
                          2.712e-03 -0.146 0.884303
              -3.961e-04 1.100e-03 -0.360 0.718820
## X199
              7.009e-04 5.219e-04
## X200
                                     1.343 0.179283
              -2.165e-04 3.233e-04 -0.670 0.503056
## X201
## X202
              -3.968e-04
                          2.308e-04 -1.719 0.085567 .
## X203
              -1.762e-04 1.789e-04 -0.985 0.324662
## X204
              -8.676e-06 1.435e-04 -0.060 0.951802
## X205
              -1.441e-04 1.198e-04 -1.203 0.228868
## X206
              -1.418e-04 1.024e-04 -1.385 0.166088
## X207
              -1.403e-04 9.122e-05 -1.538 0.123984
              -5.308e-05 8.581e-05 -0.619 0.536161
## X208
## X209
               8.150e-05
                          8.365e-05
                                     0.974 0.329923
                                     1.299 0.194123
               1.068e-04 8.222e-05
## X210
               4.319e-04 8.099e-05
## X211
                                     5.333 9.73e-08 ***
                                     5.782 7.46e-09 ***
## X212
               4.615e-04 7.982e-05
## X213
                3.982e-04
                           7.850e-05
                                       5.072 3.96e-07 ***
                6.779e-05 7.846e-05 0.864 0.387591
## X214
              -1.815e-04 7.968e-05 -2.277 0.022777 *
## X215
              -2.063e-05 8.320e-05 -0.248 0.804181
-9.358e-05 9.360e-05 -1.000 0.317408
## X216
## X217
```

```
-1.260e-04 1.079e-04 -1.168 0.242964
## X218
                                     0.396 0.691905
## X219
               5.158e-05 1.302e-04
              -7.653e-05
                                     -0.473 0.636333
## X220
                          1.619e-04
              -1.245e-04 1.970e-04 -0.632 0.527259
## X221
## X222
               1.978e-05 2.609e-04
                                     0.076 0.939568
## X223
              -5.439e-04 4.489e-04
                                     -1.211 0.225723
## X224
              9.373e-04 1.944e-03
                                      0.482 0.629785
## X225
                     NA
                               NA
                                       NA
                                                 NA
              -2.604e-03 2.227e-03 -1.170 0.242164
## X226
## X227
              -4.111e-05
                          6.770e-04
                                     -0.061 0.951582
## X228
              -9.352e-04 4.269e-04 -2.190 0.028496 *
## X229
              2.411e-04 2.822e-04
                                     0.854 0.392862
                                     -0.388 0.698344
## X230
              -8.044e-05 2.076e-04
              -5.221e-05 1.638e-04 -0.319 0.749983
## X231
## X232
              -3.789e-04 1.312e-04 -2.887 0.003888 **
## X233
              1.598e-04 1.099e-04
                                     1.453 0.146201
## X234
              -1.809e-04
                          9.491e-05
                                     -1.906 0.056720 .
              -1.517e-04 8.783e-05 -1.727 0.084105 .
## X235
## X236
              -1.044e-04 8.331e-05 -1.253 0.210226
              -6.362e-05 8.290e-05 -0.767 0.442798
## X237
## X238
               2.236e-04
                          8.275e-05
                                     2.702 0.006900 **
## X239
               5.450e-05 8.157e-05
                                     0.668 0.504038
## X240
              4.009e-05 8.011e-05
                                     0.501 0.616725
## X241
               1.309e-04
                          7.835e-05
                                      1.671 0.094736 .
                                     0.084 0.932849
               6.599e-06 7.832e-05
## X242
              1.350e-04 8.005e-05
                                     1.686 0.091733 .
## X243
              -1.104e-04 8.454e-05
                                     -1.306 0.191707
## X244
## X245
              -2.866e-05 9.392e-05
                                     -0.305 0.760226
## X246
              1.210e-04 1.079e-04
                                     1.122 0.262037
## X247
              -1.942e-04 1.294e-04 -1.501 0.133431
## X248
              -5.018e-05
                          1.611e-04 -0.311 0.755476
              -3.548e-05 1.982e-04 -0.179 0.857959
## X249
## X250
              2.203e-04 2.578e-04
                                     0.854 0.392880
                                     0.884 0.376888
               4.237e-04 4.795e-04
## X2.51
## X252
              -6.343e-04
                          1.578e-03
                                     -0.402 0.687614
## X253
              8.485e-02 6.285e-01
                                     0.135 0.892604
## X254
              1.067e-03 1.923e-03
                                     0.555 0.578889
                          7.409e-04 -1.602 0.109192
4.124e-04 2.213 0.026879 *
## X255
              -1.187e-03
## X256
               9.127e-04 4.124e-04
## X257
              -2.062e-04 2.787e-04 -0.740 0.459401
              -2.252e-04 2.050e-04 -1.098 0.272077 1.289e-05 1.571e-04 0.082 0.934600
## X258
## X259
              -9.404e-05 1.270e-04 -0.740 0.459095
## X260
## X261
              -2.562e-04 1.063e-04 -2.411 0.015918 *
## X262
              -1.699e-04
                          9.400e-05 -1.807 0.070753 .
                                     0.293 0.769717
## X263
               2.571e-05 8.781e-05
## X264
              -9.458e-06 8.472e-05 -0.112 0.911109
              -3.640e-05 8.474e-05 -0.429 0.667574
## X265
              -1.524e-04
                          8.274e-05
                                     -1.842 0.065448 .
## X266
              9.063e-06 8.186e-05
                                     0.111 0.911838
## X267
## X268
              -1.936e-05 8.135e-05 -0.238 0.811891
## X269
              -1.145e-04
                          8.029e-05
                                     -1.426 0.154001
## X270
              -1.745e-04 8.054e-05 -2.167 0.030280 *
              5.014e-05 8.266e-05 0.607 0.544110
## X271
              -5.777e-05 8.749e-05 -0.660 0.509025
## X272
                          9.672e-05
## X273
               5.447e-05
                                      0.563 0.573350
              -1.132e-04 1.127e-04 -1.004 0.315396
## X2.74
## X275
              2.775e-05 1.330e-04
                                     0.209 0.834762
              -2.256e-04 1.642e-04 -1.374 0.169444 2.427e-05 2.225e-04 0.109 0.913118
## X276
## X277
              -3.382e-04 3.003e-04 -1.126 0.259994
## X278
              -2.646e-04 5.683e-04 -0.466 0.641540
## X279
## X280
               7.146e-04
                          1.697e-03
                                     0.421 0.673776
                          5.404e-01 -0.138 0.890455
              -7.443e-02
## X2.81
              -2.013e-03 1.371e-03 -1.468 0.142057
## X282
                          7.451e-04
                                     0.926 0.354258
## X283
               6.902e-04
## X284
              -4.761e-04
                          4.215e-04
                                     -1.130 0.258623
## X285
              -4.572e-04 2.862e-04 -1.598 0.110149
               4.092e-05 2.051e-04 0.200 0.841868
## X286
## X287
              -1.754e-05 1.576e-04
                                     -0.111 0.911366
              -1.506e-04 1.263e-04 -1.192 0.233090
## X288
```

```
1.673e-04 1.061e-04
## X289
                                    1.577 0.114849
                                    1.844 0.065135 .
## X290
               1.725e-04 9.354e-05
               5.900e-05
## X291
                          8.800e-05
                                     0.670 0.502564
                                    1.561 0.118630
## X292
              1.334e-04 8.551e-05
## X293
              -1.908e-05 8.306e-05
                                    -0.230 0.818296
## X294
              -1.054e-04
                          8.376e-05
                                    -1.258 0.208312
              -1.650e-04 8.499e-05 -1.941 0.052260 .
## X295
## X296
              -4.143e-05 8.468e-05 -0.489 0.624658
                                    0.046 0.963631
## X297
              3.787e-06 8.304e-05
## X298
               1.211e-04
                          8.175e-05
                                     1.481 0.138634
              -2.662e-05 8.442e-05 -0.315 0.752473
## X299
## X300
              1.009e-05 8.905e-05
                                    0.113 0.909800
## X301
              -6.894e-05
                         9.933e-05
                                     -0.694 0.487623
              -5.638e-05 1.157e-04 -0.487 0.626060
## X302
## X303
              -2.053e-05 1.401e-04 -0.147 0.883480
## X304
              1.415e-04 1.784e-04
                                    0.793 0.427686
                                    -0.579 0.562269
## X305
              -1.451e-04
                          2.503e-04
              -2.982e-04 3.683e-04 -0.810 0.418134
## X306
## X307
              1.603e-04 6.946e-04 0.231 0.817520
              -3.037e-03 1.997e-03
## X308
                                    -1.521 0.128293
## X309
                     NA
                                NA
                                        NA
## X310
              1.842e-03 1.509e-03
                                    1.221 0.222018
## X311
              -1.020e-03 8.181e-04 -1.247 0.212384
## X312
              -7.098e-05 4.775e-04 -0.149 0.881819
              2.377e-04 3.101e-04
                                    0.767 0.443247
## X313
              5.372e-05 2.122e-04
                                    0.253 0.800172
## X314
              -1.399e-04 1.602e-04 6.785e-05 1.268e-04
                                    -0.873 0.382613
## X315
## X316
                                     0.535 0.592637
## X317
               2.234e-04 1.062e-04
                                    2.104 0.035359 *
## X318
              -5.883e-06 9.405e-05 -0.063 0.950129
## X319
               1.509e-04
                          8.797e-05
                                     1.716 0.086189 .
                                     0.210 0.833341
               1.800e-05 8.552e-05
## X320
## X321
              2.417e-05 8.403e-05
                                    0.288 0.773659
                                    0.911 0.362103
              7.670e-05 8.416e-05
## X322
## X323
              -1.371e-04
                          8.581e-05
                                    -1.598 0.110126
## X324
              1.959e-04 8.569e-05
                                    2.286 0.022236 *
## X325
              -7.425e-05 8.342e-05 -0.890 0.373417
## X326
               2.716e-05
                          8.191e-05
                                     0.332 0.740212
                                     1.142 0.253493
               9.778e-05 8.563e-05
## X327
## X328
              1.296e-04 9.104e-05
                                     1.423 0.154723
                                     2.172 0.029830 * 1.159 0.246342
              2.197e-04 1.011e-04
## X329
              1.396e-04 1.204e-04
## X330
              2.821e-05 1.509e-04
                                    0.187 0.851732
## X331
## X332
              -7.237e-05 1.957e-04 -0.370 0.711586
## X333
              1.970e-04
                          2.826e-04
                                    0.697 0.485724
                          5.174e-04 -1.251 0.211103
## X334
              -6.471e-04
## X335
              -4.829e-04 8.145e-04 -0.593 0.553247
              6.626e-03 6.099e-03
## X336
                                    1.087 0.277248
## X337
                     NA
                                NA
                                        NA
## X338
              -2.761e-03 2.070e-03 -1.334 0.182241
## X339
              9.837e-04 1.042e-03
                                    0.944 0.344952
## X340
              -6.675e-04
                          5.567e-04
                                    -1.199 0.230459
              -8.154e-04 3.360e-04 -2.427 0.015243 *
## X341
              7.367e-05 2.144e-04
## X342
                                    0.344 0.731180
                                    2.439 0.014734 *
              3.912e-04 1.604e-04
## X343
## X344
               1.030e-04
                          1.267e-04
                                     0.813 0.416378
              1.367e-06 1.062e-04
## X345
                                     0.013 0.989733
## X346
              2.064e-04 9.342e-05
                                     2.209 0.027160 *
## X347
              1.035e-04 8.833e-05
                                     1.172 0.241402
                                    -0.201 0.840743
## X348
              -1.691e-05
                          8.415e-05
## X349
              -4.151e-05 8.361e-05 -0.497 0.619545
              -4.235e-05 8.475e-05 -0.500 0.617258
## X350
## X351
               1.839e-05
                          8.698e-05
                                     0.211 0.832548
                                     0.709 0.478559
               6.010e-05 8.481e-05
## X352
              1.495e-04 8.167e-05
                                     1.831 0.067103 .
## X353
## X354
               7.030e-05 8.039e-05
                                     0.874 0.381902
## X355
              -1.128e-05
                          8.373e-05
                                     -0.135 0.892788
## X356
              -1.231e-05 9.019e-05 -0.136 0.891452
               7.149e-05 1.014e-04
## X357
                                    0.705 0.480775
## X358
               8.611e-05
                         1.226e-04
                                     0.702 0.482387
             3.251e-04 1.587e-04 2.048 0.040576 *
## X359
```

```
## X360
               4.470e-04 2.104e-04 2.124 0.033642 *
                                      1.104 0.269761
## X361
               3.247e-04 2.942e-04
               -2.984e-04
## X362
                           6.117e-04
                                      -0.488 0.625639
               -1.231e-03 9.574e-04 -1.286 0.198412
## X363
## X364
               -3.465e-03 4.446e-03 -0.779 0.435810
                      NA
                                 NA
                                        NA
## X365
                                                   NA
## X366
               4.234e-03 4.678e-03
                                       0.905 0.365433
## X367
               -2.774e-03 1.498e-03 -1.852 0.064056 .
                                      0.660 0.509208
## X368
               4.676e-04 7.084e-04
## X369
               5.727e-04
                           3.411e-04
                                       1.679 0.093169 .
                                      1.998 0.045694 *
## X370
               4.349e-04 2.176e-04
## X371
               -1.159e-04 1.579e-04
                                      -0.734 0.462928
               1.834e-04 1.242e-04
2.120e-04 1.036e-04
                                      1.477 0.139741
2.045 0.040821 *
## X372
## X373
## X374
               2.747e-05 9.171e-05
                                      0.300 0.764523
## X375
              -4.195e-05 8.613e-05 -0.487 0.626167
               -7.390e-05
                           8.409e-05 -0.879 0.379489
## X376
              -4.291e-05 8.306e-05 -0.517 0.605464
## X377
## X378
               -3.573e-05 8.506e-05 -0.420 0.674430
                                      1.569 0.116756
1.196 0.231584
               1.351e-04 8.615e-05
## X379
## X380
               9.792e-05 8.185e-05
                                      1.827 0.067754 .
## X381
               1.428e-04 7.819e-05
                                      0.222 0.823935
## X382
               1.767e-05 7.942e-05
                2.745e-04 8.208e-05 3.344 0.000827 ***
1.778e-04 8.864e-05 2.006 0.044829 *
## X383
               2.745e-04 8.208e-05
## X384
               1.678e-07 1.011e-04 0.002 0.998675
## X385
                                      0.747 0.454972
               9.314e-05 1.247e-04 0.747 0.454972
-4.902e-05 1.576e-04 -0.311 0.755827
## X386
## X387
## X388
               -1.319e-04 2.125e-04 -0.621 0.534874
## X389
               -2.354e-04 2.841e-04 -0.828 0.407466
## X390
               -4.290e-04
                          6.031e-04 -0.711 0.476839
               4.635e-04 1.054e-03
                                      0.440 0.660105
## X391
## X392
               1.071e-03 1.847e-03
                                      0.580 0.562204
               -3.370e-03 4.003e-03 -0.842 0.399959
## X393
## X394
               -3.594e-03 5.792e-03 -0.621 0.534893
## X395
              -2.915e-04 2.423e-03 -0.120 0.904249
## X396
               1.301e-03 7.882e-04 1.650 0.098933 .
## X397
               -2.140e-04
                           3.373e-04
                                      -0.635 0.525717
              -6.937e-05 2.017e-04 -0.344 0.730912
## X398
               3.524e-04 1.491e-04
## X399
                                      2.364 0.018092 *
              -1.752e-04 1.196e-04 -1.464 0.143157
-9.344e-05 1.007e-04 -0.928 0.353548
## X400
## X401
               1.495e-04 8.991e-05
                                      1.662 0.096471 .
## X402
                                      1.264 0.206331
## X403
              1.077e-04 8.521e-05
## X404
               1.071e-04
                          8.363e-05
                                       1.281 0.200148
                                      2.032 0.042197 *
## X405
               1.700e-04 8.366e-05
## X406
              -6.764e-05 8.634e-05 -0.783 0.433375
                                      2.973 0.002951 **
               2.536e-04 8.529e-05
## X407
               -6.677e-05
                           7.926e-05
                                      -0.842 0.399522
## X408
## X409
               4.915e-05 7.654e-05
                                      0.642 0.520781
## X410
               2.239e-04 7.943e-05
                                      2.819 0.004822 **
## X411
              -1.873e-04
                          8.099e-05 -2.313 0.020728 *
                                      0.342 0.732100
## X412
               3.022e-05 8.826e-05
              -4.089e-05 1.021e-04 -0.401 0.688767
## X413
              -3.005e-05 1.253e-04 -0.240 0.810462
## X414
## X415
               -5.134e-05
                           1.578e-04 -0.325 0.744857
## X416
               -6.254e-05 2.053e-04 -0.305 0.760632
## X417
               -1.304e-04 2.778e-04 -0.469 0.638948
                                      0.455 0.649073
## X418
               2.394e-04 5.260e-04
## X419
               -7.068e-04 1.039e-03 -0.680 0.496511
## X420
               -4.561e-04 1.182e-02 -0.039 0.969228
## X421
                     NA
                                 NA
                                        NA
                                                   NA
                                       0.737 0.460898
## X422
               9.200e-02 1.248e-01
               -8.626e-04 2.126e-03 -0.406 0.684899
## X423
               -2.057e-03 7.503e-04 -2.742 0.006107 **
## X424
                                      2.179 0.029336 *
## X425
               6.922e-04 3.177e-04
                                      -1.640 0.101089
## X426
               -3.065e-04
                           1.869e-04
## X427
               -4.512e-05 1.413e-04 -0.319 0.749504
               1.055e-04 1.162e-04 0.908 0.364006
## X428
              1.562e-04 1.000e-04 1.561 0.118443
2.944e-05 9.091e-05 0.324 0.746061
## X429
## X430
```

```
-2.316e-05 8.680e-05 -0.267 0.789623
## X431
## X432
              1.122e-05 8.581e-05 0.131 0.895940
               1.016e-05
## X433
                         8.592e-05
                                     0.118 0.905911
## X434
               3.386e-05 8.681e-05
                                    0.390 0.696545
## X435
              -9.540e-05 8.354e-05 -1.142 0.253497
## X436
              -1.302e-04
                          7.719e-05 -1.687 0.091621 .
## X437
               1.528e-04
                          7.746e-05
                                    1.972 0.048583 *
## X438
              1.319e-04 7.981e-05
                                    1.652 0.098462 .
                                    0.071 0.943696
## X439
              5.795e-06 8.205e-05
## X440
              -1.065e-04
                          9.004e-05
                                    -1.182 0.237073
              -5.583e-05 1.043e-04 -0.535 0.592406
## X441
## X442
              -9.517e-06 1.263e-04 -0.075 0.939950
              -1.864e-04
## X443
                         1.546e-04
                                    -1.206 0.227943
              -1.628e-04 1.948e-04
## X444
                                    -0.836 0.403432
## X445
              1.535e-04 2.695e-04
                                    0.569 0.569040
## X446
              -1.215e-04 4.786e-04 -0.254 0.799560
               5.468e-04
## X447
                         9.849e-04
                                     0.555 0.578740
              -1.117e-03 2.644e-03 -0.423 0.672585
## X448
## X449
                    NA
                               NA
                                       NA
                                                 NA
              -2.411e-03 4.928e-03 -0.489 0.624665
## X450
## X451
               1.016e-03 2.036e-03
                                     0.499 0.617902
## X452
              8.198e-04 6.628e-04
                                    1.237 0.216181
## X453
              -3.242e-04 2.774e-04 -1.169 0.242609
## X454
               1.211e-04
                         1.756e-04
                                     0.690 0.490378
              -1.097e-04 1.375e-04 -0.798 0.424955
## X455
              -1.676e-04 1.137e-04 -1.474 0.140612
## X456
              -5.032e-05 1.008e-04 -0.499 0.617646
## X457
## X458
               4.508e-05
                         9.261e-05
                                    0.487 0.626398
## X459
              2.064e-04 8.963e-05
                                    2.303 0.021272 *
                                    0.680 0.496211
## X460
              6.044e-05 8.882e-05
## X461
              1.580e-04
                         8.811e-05
                                    1.793 0.072928 .
              -1.332e-04 8.665e-05 -1.538 0.124122
## X462
## X463
              -1.177e-04 8.121e-05 -1.450 0.147111
                                    0.136 0.891536
              1.078e-05
                          7.907e-05
## X464
## X465
               1.486e-04
                          7.977e-05
                                     1.863 0.062519 .
## X466
              -2.949e-05 8.091e-05 -0.365 0.715462
## X467
              -1.263e-04 8.375e-05 -1.508 0.131626
## X468
              -8.003e-05
                         9.230e-05 -0.867 0.385907
              -1.626e-04 1.056e-04 -1.540 0.123607
## X469
## X470
              -1.971e-04 1.266e-04 -1.557 0.119472
              1.962e-04 1.535e-04
-1.835e-04 1.926e-04
                                    1.278 0.201289
## X471
## X472
                                    -0.953 0.340579
              -1.690e-04 2.481e-04 -0.681 0.495701
## X473
## X474
              3.778e-04 4.146e-04
                                    0.911 0.362279
## X475
              -4.185e-04
                         8.744e-04
                                    -0.479 0.632213
                         2.068e-03 -0.050 0.960072
              -1.035e-04
## X476
## X478
              -1.374e-02 1.195e-02 -1.150 0.250181
              -7.062e-04 1.743e-03 -0.405 0.685342
## X479
              -1.150e-04
                         5.425e-04
                                    -0.212 0.832081
## X480
## X481
              -2.806e-04 2.497e-04 -1.124 0.261103
## X482
              -2.553e-05 1.646e-04 -0.155 0.876754
## X483
               4.092e-05
                         1.358e-04
                                     0.301 0.763079
              1.070e-04 1.143e-04
                                    0.937 0.348952
## X484
              6.014e-05 1.023e-04
## X485
                                    0.588 0.556643
              -1.183e-04 9.393e-05 -1.260 0.207727
## X486
                         9.226e-05
## X487
               9.987e-06
                                     0.108 0.913795
## X488
              4.027e-05 9.135e-05
                                    0.441 0.659357
## X489
              2.234e-05 8.976e-05
                                    0.249 0.803418
## X490
               5.682e-05 8.626e-05
                                     0.659 0.510122
## X491
              -2.777e-04 8.111e-05 -3.424 0.000618 ***
## X492
                7.616e-05 7.972e-05 0.955 0.339468
              -2.360e-05 8.118e-05 -0.291 0.771246
## X493
## X494
              -1.259e-05
                         8.260e-05 -0.152 0.878860
              -3.754e-05 8.727e-05 -0.430 0.667055
## X495
              -1.074e-04 9.551e-05 -1.125 0.260799
## X496
## X497
              8.416e-05 1.084e-04
                                    0.776 0.437485
## X498
              -5.520e-05
                         1.264e-04
                                    -0.437 0.662406
## X499
              -1.051e-04 1.550e-04 -0.678 0.497698
                                    0.002 0.998152
## X500
              4.407e-07 1.903e-04
## X501
              -1.943e-05 2.418e-04
                                    -0.080 0.935955
              -2.138e-04 3.512e-04 -0.609 0.542605
## X502
```

```
## X503
               3.589e-04 7.573e-04
                                    0.474 0.635556
## X504
               2.497e-04 3.836e-03
                                     0.065 0.948105
## X505
              -2.404e-03
                          7.541e-03
                                     -0.319 0.749885
## X506
               1.517e-02 9.789e-03
                                     1.549 0.121285
## X507
              1.127e-04 1.119e-03
                                     0.101 0.919792
## X508
               3.791e-04
                         4.604e-04
                                     0.823 0.410253
                                    -0.072 0.942521
## X509
              -1.683e-05 2.335e-04
## X510
              -1.436e-04 1.613e-04 -0.891 0.373094
## X511
              -3.669e-05 1.340e-04 -0.274 0.784224
## X512
              -6.284e-05
                          1.135e-04
                                    -0.554 0.579747
              -1.112e-04 1.018e-04 -1.093 0.274341
## X513
## X514
              -8.020e-06 9.522e-05 -0.084 0.932880
              -2.161e-05
## X515
                          9.393e-05 -0.230 0.818070
## X516
              2.734e-05
                         9.185e-05
                                     0.298 0.765959
## X517
              -9.261e-05 8.978e-05 -1.031 0.302321
## X518
              -1.197e-04 8.639e-05 -1.385 0.166021
## X519
               1.194e-04
                          8.313e-05
                                     1.436 0.150910
                                    1.405 0.159898
              1.141e-04 8.117e-05
## X520
## X521
              -1.147e-04 8.123e-05 -1.412 0.157984
                                    0.397 0.691397
               3.324e-05 8.375e-05
## X522
## X523
              -1.495e-04
                          8.983e-05
                                    -1.665 0.095997 .
              -6.790e-05 9.776e-05 -0.695 0.487318
## X524
## X525
              -1.927e-05 1.105e-04 -0.174 0.861578
## X526
              -3.616e-05
                          1.284e-04 -0.282 0.778152
                                    0.632 0.527697
## X527
              9.836e-05 1.557e-04
              -7.834e-05 1.931e-04 -0.406 0.685031
## X528
                         2.476e-04 -0.364 0.715579
              -9.022e-05
## X529
## X530
              3.339e-04
                          3.610e-04
                                    0.925 0.355039
## X531
              -2.905e-04 8.873e-04 -0.327 0.743382
## X532
              -1.532e-03 3.664e-03 -0.418 0.675849
## X533
                    NA
                               NA
                                       NA
                                                 NA
## X534
              -5.397e-03 3.690e-03 -1.462 0.143638
## X535
              -6.384e-04 9.638e-04 -0.662 0.507732
              -3.664e-04 3.969e-04 -0.923 0.355827
## X536
## X537
               1.884e-04
                          2.218e-04
                                     0.849 0.395669
## X538
              4.985e-05 1.588e-04
                                    0.314 0.753665
## X539
              -4.170e-05 1.326e-04 -0.315 0.753113
                         1.124e-04 -0.042 0.966140
1.006e-04 0.366 0.714163
## X540
              -4.773e-06
## X541
              3.683e-05 1.006e-04
## X542
              -2.016e-04 9.407e-05 -2.143 0.032156 *
## X543
              -2.027e-04
                         9.191e-05 -2.206 0.027404 *
## X544
              -1.066e-04
                         9.007e-05 -1.183 0.236786
              -9.005e-05 8.807e-05 -1.022 0.306592
## X545
## X546
              -5.412e-05 8.509e-05 -0.636 0.524741
## X547
              -1.460e-04
                         8.336e-05 -1.752 0.079852 .
              -2.258e-05 8.200e-05 -0.275 0.783050
## X548
## X549
              -5.585e-06 8.270e-05 -0.068 0.946162
              -1.693e-04 8.624e-05 -1.963 0.049645 *
## X550
              6.228e-05
                          9.126e-05
## X551
                                     0.682 0.495003
## X552
              -8.569e-07 9.938e-05 -0.009 0.993120
## X553
              -9.937e-05 1.135e-04 -0.875 0.381408
## X554
               1.001e-05
                         1.346e-04
                                     0.074 0.940702
                                    0.479 0.632174
## X555
               7.736e-05 1.616e-04
                                    0.097 0.922942
## X556
              1.970e-05 2.037e-04
              -7.297e-05 2.716e-04 -0.269 0.788223
## X557
## X558
              -3.926e-04
                          4.206e-04
                                    -0.933 0.350622
               7.413e-05 1.049e-03
## X559
                                    0.071 0.943684
## X560
              1.858e-03 5.225e-03
                                     0.356 0.722057
## X562
              5.177e-04
                          5.948e-03
                                     0.087 0.930643
## X563
               4.177e-04
                          8.437e-04
                                     0.495 0.620533
## X564
              -1.567e-04 3.765e-04 -0.416 0.677401
              -2.537e-04 2.230e-04 -1.138 0.255320
## X565
## X566
              -3.208e-05
                         1.568e-04
                                    -0.205 0.837938
              2.091e-05 1.278e-04
## X567
                                    0.164 0.870025
              -2.138e-05 1.115e-04 -0.192 0.847941
## X568
## X569
              -1.364e-04
                          9.919e-05 -1.375 0.169133
## X570
               2.384e-05
                          9.144e-05
                                     0.261 0.794286
## X571
              -4.529e-05 8.709e-05 -0.520 0.603036
## X572
              -5.104e-05 8.590e-05 -0.594 0.552387
## X573
              -2.211e-04
                         8.540e-05 -2.589 0.009617 **
              1.246e-04 8.388e-05 1.486 0.137364
## X574
```

```
-9.674e-05 8.246e-05 -1.173 0.240752
## X575
## X576
              -4.171e-06 8.238e-05 -0.051 0.959619
               2.818e-05
                         8.379e-05
## X577
                                    0.336 0.736617
              -2.056e-05 8.807e-05 -0.234 0.815369
## X578
## X579
              -6.171e-05 9.444e-05 -0.653 0.513487
## X580
               3.516e-05 1.037e-04
                                     0.339 0.734597
                                    0.063 0.950116
## X581
               7.646e-06 1.222e-04
              -4.310e-06 1.451e-04 -0.030 0.976306
## X582
## X583
              -1.034e-04 1.796e-04 -0.576 0.564855
               8.388e-05
## X584
                         2.304e-04
                                     0.364 0.715814
              -1.025e-05 2.969e-04 -0.035 0.972473
## X585
              5.629e-04 4.849e-04
## X586
                                    1.161 0.245713
                                    -0.546 0.584810
## X587
              -7.105e-04 1.300e-03
## X588
              -6.547e-04 6.393e-03
                                    -0.102 0.918440
## X589
                    NA
                              NA
                                     NA
                                             NA
## X590
              -2.536e-04 8.648e-03 -0.029 0.976606
                                    -0.258 0.796507
## X591
              -2.241e-04
                         8.692e-04
              -5.989e-05 3.955e-04 -0.151 0.879637
## X592
## X593
              2.482e-04 2.334e-04 1.063 0.287568
                                    -0.540 0.589513
              -8.677e-05 1.608e-04
## X594
## X595
              -4.062e-06 1.300e-04 -0.031 0.975073
              -5.640e-05 1.108e-04 -0.509 0.610874
## X596
## X597
              3.951e-05 9.999e-05
                                    0.395 0.692749
## X598
              -6.072e-05
                         9.170e-05
                                    -0.662 0.507919
## X599
              -4.975e-05 8.711e-05 -0.571 0.567967
              -1.066e-04 8.393e-05 -1.271 0.203905
## X600
                                    0.126 0.899459
## X601
              1.044e-05 8.267e-05
## X602
              -2.088e-04 8.352e-05 -2.500 0.012417 *
## X603
              2.357e-05 8.313e-05 0.284 0.776771
## X604
              -1.615e-04 8.409e-05 -1.921 0.054747 .
## X605
              -4.083e-05 8.658e-05 -0.472 0.637199
## X606
              -8.529e-05 9.176e-05 -0.929 0.352648
## X607
              -6.757e-06 1.011e-04 -0.067 0.946704
              -3.970e-05 1.140e-04 -0.348 0.727741
## X608
## X609
              5.043e-05
                         1.342e-04
                                     0.376 0.707169
              3.583e-05 1.643e-04
## X610
                                    0.218 0.827379
## X611
              -8.660e-05 2.101e-04 -0.412 0.680253
## X612
              1.869e-04
                         2.769e-04
                                    0.675 0.499581
              -1.755e-04 3.560e-04 -0.493 0.622011
## X613
## X614
              -3.517e-04 5.853e-04 -0.601 0.547957
              -1.900e-03 1.478e-03 -1.285 0.198655
-1.417e-03 1.162e-02 -0.122 0.902994
## X615
## X616
## X617
                    NA
                               NA
                                     NA
                                               NA
## X618
              2.275e-02 2.049e-02
                                    1.110 0.266957
## X619
              -1.702e-04 1.153e-03
                                    -0.148 0.882649
              -2.832e-04 4.749e-04 -0.596 0.550966
## X620
## X621
               7.458e-05 2.719e-04
                                    0.274 0.783912
                                    0.037 0.970277
              6.837e-06 1.835e-04
## X622
              -9.418e-06
                                    -0.067 0.946292
## X623
                         1.398e-04
              7.565e-05 1.162e-04
                                    0.651 0.514959
## X624
## X625
              -1.198e-04 1.010e-04 -1.186 0.235631
## X626
               9.154e-06 9.306e-05
                                    0.098 0.921647
              -5.340e-05 8.882e-05 -0.601 0.547709
## X627
              1.507e-05 8.670e-05 0.174 0.861999
## X628
              -4.981e-05 8.544e-05 -0.583 0.559920
## X629
                         8.496e-05 -1.067 0.286112
## X630
              -9.063e-05
              -1.037e-04 8.561e-05 -1.212 0.225644
## X631
## X632
              -1.087e-04 8.866e-05 -1.226 0.220087
## X633
              4.775e-05 9.240e-05
                                     0.517 0.605334
                                    0.526 0.599102
## X634
              5.284e-05 1.005e-04
## X635
              -2.117e-05 1.124e-04 -0.188 0.850663
## X636
              1.009e-04 1.321e-04
                                    0.764 0.444977
## X637
              -2.284e-04
                         1.621e-04
                                    -1.409 0.158837
              3.499e-04 2.026e-04
                                    1.727 0.084235 .
## X638
              -3.343e-04 2.607e-04 -1.283 0.199649
## X639
## X640
              -4.999e-05 3.466e-04 -0.144 0.885306
## X641
               8.768e-04
                         4.849e-04
                                     1.808 0.070587
## X642
              -1.686e-03 9.593e-04
                                    -1.757 0.078896 .
## X643
              8.217e-03
                         7.331e-03
                                    1.121 0.262339
## X644
                     NA
                               NA
                                      NA
             7.528e-05 1.777e-03
                                    0.042 0.966204
## X647
```

```
## X648
              4.368e-04 6.263e-04 0.697 0.485503
## X649
              -3.454e-04 3.588e-04 -0.963 0.335724
## X650
               6.814e-05
                         2.313e-04
                                     0.295 0.768257
                                    0.137 0.891012
## X651
               2.289e-05 1.671e-04
## X652
              -3.789e-04 1.316e-04 -2.879 0.003997 **
                                    1.718 0.085827 .
              1.897e-04
                         1.104e-04
## X653
              -1.787e-04 9.927e-05 -1.800 0.071804 .
## X654
## X655
              -1.387e-04 9.158e-05 -1.514 0.129974
## X656
              -1.173e-04 8.761e-05 -1.339 0.180617
## X657
              -1.514e-04
                         8.667e-05
                                    -1.746 0.080738 .
              -5.210e-05 8.604e-05 -0.606 0.544830
## X658
## X659
              -1.054e-04 8.699e-05 -1.211 0.225779
              -2.471e-04
## X660
                         9.146e-05
                                    -2.702 0.006895 **
              -1.176e-04 1.007e-04 -1.167 0.243192
## X661
## X662
              -2.124e-04 1.138e-04 -1.866 0.061993 .
## X663
              -2.128e-04 1.349e-04 -1.577 0.114805
## X664
               6.679e-06
                         1.625e-04
                                     0.041 0.967206
              -1.991e-04 2.058e-04 -0.967 0.333400
## X665
## X666
              -2.538e-04 2.682e-04 -0.946 0.344066
                                    1.773 0.076182 .
              6.227e-04 3.511e-04
## X667
## X668
              -2.214e-04
                         4.787e-04
                                    -0.462 0.643785
              -1.472e-04 7.012e-04 -0.210 0.833689
## X669
## X670
              -7.443e-04 1.512e-03 -0.492 0.622633
## X671
              -2.634e-03
                         2.533e-03 -1.040 0.298309
                                    0.303 0.762240
              1.200e-03 3.968e-03
## X675
              -1.620e-04 1.047e-03 -0.155 0.877083
## X676
              -4.222e-04 5.765e-04 -0.732 0.463992
## X677
## X678
              1.309e-04
                         3.761e-04
                                    0.348 0.727842
## X679
              -3.417e-04 2.521e-04 -1.356 0.175259
## X680
              4.679e-05 1.846e-04 0.254 0.799872
## X681
              -8.114e-05 1.503e-04 -0.540 0.589346
                                    0.062 0.950518
## X682
               7.880e-06 1.270e-04
## X683
              -2.007e-04 1.110e-04 -1.808 0.070623 .
              -1.788e-05 1.001e-04 -0.179 0.858234
## X684
## X685
              -1.016e-04
                         9.803e-05
                                    -1.036 0.300201
## X686
              -7.489e-05 9.726e-05 -0.770 0.441305
## X687
              -9.536e-05 9.951e-05 -0.958 0.337954
## X688
              -3.552e-05
                         1.059e-04
                                    -0.335 0.737302
              -1.541e-04 1.194e-04 -1.290 0.197104
## X689
              5.301e-05 1.388e-04
## X690
                                    0.382 0.702511
                                    -0.293 0.769331
## X691
              -4.897e-05 1.670e-04
## X692
              -7.040e-05 2.077e-04 -0.339 0.734713
              3.703e-04 2.684e-04
                                    1.379 0.167757
## X693
## X694
              -2.319e-04 3.497e-04 -0.663 0.507158
## X695
               2.813e-04
                         5.270e-04
                                     0.534 0.593523
                                    1.818 0.069107
## X696
               1.382e-03
                          7.605e-04
## X697
              1.307e-03 1.266e-03
                                    1.032 0.302141
              -1.485e-03 2.532e-03
                                    -0.587 0.557471
## X698
              2.290e-02
                                     0.784 0.433051
## X699
                         2.921e-02
## x703
              -3.874e-03 2.365e-02 -0.164 0.869909
## X704
              4.916e-04 2.224e-03
                                    0.221 0.825062
                                    -2.271 0.023147 *
## X705
              -2.326e-03 1.024e-03
## X706
               1.402e-03 6.240e-04
                                     2.247 0.024640 *
## X707
              1.913e-04 4.099e-04
                                    0.467 0.640760
                                    0.542 0.587880
## X708
              1.559e-04 2.877e-04
## X709
               2.144e-04
                         2.142e-04
                                     1.001 0.316943
              -8.269e-05 1.749e-04 -0.473 0.636420
## X710
## X711
              9.921e-04 1.517e-04
                                    6.540 6.24e-11 ***
## X712
               -1.791e-05 1.384e-04 -0.129 0.897024
               8.080e-04 1.293e-04
                                     6.249 4.18e-10 ***
## X713
                                     4.387 1.16e-05 ***
## X714
               5.695e-04 1.298e-04
## X715
               1.869e-04 1.340e-04
                                     1.395 0.163099
## X716
               8.540e-04 1.446e-04
                                     5.905 3.57e-09 ***
                7.857e-04 1.620e-04
                                     4.849 1.24e-06 ***
## X717
               1.218e-03 1.862e-04
                                     6.545 6.05e-11 ***
## X718
                                     5.700 1.21e-08 ***
## X719
                1.252e-03 2.196e-04
                                      5.616 1.97e-08 ***
## X720
                1.618e-03
                          2.881e-04
                                     3.867 0.000110 ***
## X721
                1.518e-03 3.926e-04
                                     5.637 1.75e-08 ***
## X722
               2.869e-03 5.090e-04
## X723
               -8.468e-04 7.508e-04 -1.128 0.259378
             4.094e-03 1.243e-03 3.293 0.000994 ***
## X724
```

```
-6.163e-03 2.106e-03 -2.926 0.003437 **
              1.775e-02 5.289e-03 3.356 0.000792 ***
-4.405e-02 2.749e-02 -1.602 0.109090
## X726
## X727
              1.633e-02 1.560e-02 1.047 0.295073
## X732
## X733
               4.802e-03 1.843e-03
                                     2.606 0.009168 **
## X734
              -2.013e-03 1.061e-03 -1.898 0.057718 .
               4.809e-04 5.750e-04
## X735
                                      0.836 0.402949
              -1.921e-04 4.184e-04 -0.459 0.646164
## X736
## X737
              1.553e-04 3.065e-04
                                     0.507 0.612458
## X738
              -7.392e-05
                          2.498e-04
                                      -0.296 0.767327
              -1.782e-04 2.117e-04 -0.841 0.400117
## X739
## X740
              -3.202e-04 1.906e-04 -1.680 0.093003
              1.581e-04 1.803e-04 0.877 0.380413 
-2.186e-04 1.819e-04 -1.202 0.229293
                                      0.877 0.380413
## X741
## X742
## X743
              6.001e-04 1.885e-04
                                     3.183 0.001459 **
## X744
              -2.867e-05 2.078e-04 -0.138 0.890271
                          2.331e-04
## X745
              -4.544e-04
                                     -1.949 0.051275
                                     2.975 0.002935 **
              8.186e-04 2.752e-04
## X746
## X747
              -6.339e-04 3.420e-04 -1.854 0.063814 .
## X748
              -6.608e-05 4.625e-04 -0.143 0.886404
## X749
               5.570e-04 6.214e-04
                                      0.896 0.370137
              -1.211e-03 8.717e-04 -1.389 0.164728
## X750
## X751
              -2.213e-03 1.699e-03 -1.302 0.192892
## X752
               6.345e-03 3.309e-03
                                      1.918 0.055156
              -2.894e-01 1.878e-01 -1.541 0.123225
## X753
## X754
              -2.752e-04 7.777e-03 -0.035 0.971773
## X761
                                 NΑ
                      NΑ
                                         NΑ
              9.074e-03 9.345e-03
## X762
                                      0.971 0.331551
## X763
              -3.298e-03 2.913e-03 -1.132 0.257576
## X764
              1.775e-03 1.654e-03
                                      1.073 0.283275
## X765
              -1.282e-03 1.265e-03 -1.013 0.310953
               6.474e-04
                                      0.825 0.409271
                           7.845e-04
## X766
## X767
              -3.818e-04 6.615e-04 -0.577 0.563778
                                     0.204 0.838215
              1.229e-04 6.019e-04
## X768
## X769
              -5.530e-04 4.798e-04
                                      -1.153 0.249124
## X770
              -9.167e-04 4.925e-04 -1.861 0.062708
## X771
              -1.357e-04 4.823e-04 -0.281 0.778442
              -1.047e-03 5.581e-04 -1.876 0.060711
4.830e-05 6.231e-04 0.078 0.938220
## X772
## X773
## X774
              -1.848e-03 6.817e-04 -2.711 0.006715 **
## X775
              -9.158e-04 8.808e-04 -1.040 0.298456
9.524e-04 1.619e-03 0.588 0.556446
## X776
              -5.261e-03 2.572e-03 -2.045 0.040815 *
## X777
## X778
              1.342e-02 8.474e-03 1.584 0.113214
## X779
              -2.602e-02 1.357e-02 -1.918 0.055145
## X780
                      NA
                                 NA
                                          NA
## --
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4506 on 29347 degrees of freedom
## Multiple R-squared: 0.4462, Adjusted R-squared: 0.433
## F-statistic: 33.74 on 701 and 29347 DF, p-value: < 2.2e-16
```

Beta Image

The columns with all 0s have been removed. There are no longer 784 columns in our train_digits dataset. This means our image is smaller than a 28x28 matrix. However, we need a 28x28 matrix for the beta image. Below is the code to pass in a 28x28 matrix into image().

First an empty list is created to hold the coefficients at the right index. The coefficients are placed in a one column dataframe called beta_image. The for loop will go through not_zero_index, which is a list of

indices where the sum of a column is **not** equal to 0. The coefficient will be placed at the correct index. The list is then converted into a 28x28 matrix which is passed into image() to output the beta image.

```
set.seed(1)
empty_list_beta <- vector("list", 784)
beta_image <- data.frame(fit_train$coefficients)
i <- 2
for (num in not_zero_index) {

empty_list_beta[num] <- beta_image[i,]
i <- i+1
}</pre>
```


Confusion matrix for test and train sets

```
predicted <- predict(fit_train, test)
p_class <- ifelse(predicted >.5,"1","-1")
confusion_mat_test <- table(p_class, test[['df_label1']])
confusion_mat_test</pre>
```

```
predicted <- predict(fit_train, train, type="response")
p_class <- ifelse(predicted >.5,"1","-1")
confusion_mat_train <- table(p_class, train[['df_label1']])
confusion_mat_train</pre>
```

Accuracy and Classification Error rate

Formula for Accuracy: (TP + TN) / (TP + FP + TN + FN)

Formula for Classification Error rate: 1 - Accuracy

```
#For the testing set
TP <- confusion_mat_test[1,1]
TN <- confusion_mat_test[2,2]
FP <- confusion_mat_test[1,2]
FN <- confusion_mat_test[2,1]
Accuracy_test <- (TP + TN) / (TP + FP + TN + FN)
classification_error_test <- 1-Accuracy_test
paste0('The Accuracy for the testing set is: ',Accuracy_test)
paste0('The classification error rate for the testing set is:
',classification_error_test)</pre>
```

```
"The Accuracy for the testing set is: 0.905912991218991"

"The classification error rate for the testing set is: 0.094087008781009"
```

```
TP <- confusion_mat_train[1,1]
TN <- confusion_mat_train[2,2]
FP <- confusion_mat_train[1,2]
FN <- confusion_mat_train[2,1]
Accuracy <- (TP + TN) / (TP + FP + TN + FN)
classification_error_train <- 1-Accuracy
paste0('The Accuracy for the training set is: ',Accuracy_test)
paste0('The classification_error_train)</pre>
```

```
"The Accuracy for the training set is: 0.905912991218991"

"The classification error rate for the training set is: 0.093647043162834"
```

The accuracy and error rate for both training and testing are very similar. For the testing set, the error rate is 0.094087 and for the training set the error rate is 0.0936. The error rate is slightly higher for the testing set which can be expected because we fit the training set.

```
plot(fit_train, lwd = '2', col = 'cadetblue3')
```


The residual and fitted plot have scatterplots that seem to be in 2 straight lines. The number of points above residual 0 and the number below seem to be around the same. There are a couple points that stand out, meaning points stray from the rest of the points. This means that there are a few outliers.

QQ plots can help us understand the distribution of the data. Here the points are mostly in a straight line in the middle but curve at both ends with a big jump at Quantile 2. The data exhibits that it might have more extreme values than what would be expected in a Normal Distribution.

Due to the red line not going horizontally with, it can be assumed that homoscedasticity is not satisfies for the regression model. Meaning the spread of residuals is not equal at all fitted values.

The leverage is the extent to which the coefficients in the modal would change if that particular data point was removed. There are a few points that are close to the cooks distance lines (the gray dashed lines) however it does not appear that any points are inside these lines. So, it can be assumed that there aren't any significantly influential points. However, some points come very close.

Part 2

Picking 2 digits

Instead of using just one digit and comparing it to the others. We will use two digits. For example, if our digits are 0 and 1. Images that are labelled 0 and 1 are kept, the label 0 will be changed to 1 and 1 will be changed to -1. Same with 02, 03, etc.

The code used in part 1 is put under 2 for loops. The first for loop will keep track of digit k and the second for loop will keep track of the second digit. In this chunk of code, list_df holds the label column (1 or -1) for each pair. List_of_df_lin holds the dataframes after the label column is combined.

```
#Use the same logic used in Part 1. Have lists to keep track of pairs, lists and
dataframes. label = list()
list_df = list()
list_of_pairs = list()

#Use for loop. The first digit will be x
for (x in 0:9) {
    corr = x
```

```
list to nine \leftarrow list(0,1,2,3,4,5,6,7,8,9)
   second loop list <- list to nine[-c(corr+1)]</pre>
   #Second digit will be y
   for (y in 0:9) {
     #y should greater than x because we don't need pairs like 11, 22. We also don't
need pairs twice, for example 12 and 21 are the same pair
     if (y > x) {
       incorr = y
       pair = list()
       pair <- append(pair,corr)</pre>
       pair <- append(pair,incorr)</pre>
       #store the pair in a list
       list of pairs[[length(list of pairs) + 1]] <- pair</pre>
       #corr is one digit and incorr is the second
       df label2 <- replace(train Labels, which((train Labels == corr) %in% TRUE), 1)</pre>
       df_label2 <- replace(df_label2, which((train_Labels == incorr) %in% TRUE), -1)</pre>
       list_df[[length(list_df) + 1]] <- df_label2</pre>
   }
 }
#This list will store all the new dataframes for each digit.
list of df lin = list()
for (one pair in list df) {
   df y2 <- data.frame(one pair)</pre>
   df2 <- cbind(train digits, df y2)</pre>
   df2 <- subset(df2, (one_pair==1|one_pair==-1))</pre>
   list of df lin[[length(list of df lin) + 1]] <- df2</pre>
}
```

This chunk of code is calculating the confusion matrix, accuracy and error rates for each of the new dataframes.

```
set.seed(1)
#Error Rates for Train and Error Rates for Test will be stored in these lists.
train_error <- list()
test_error <- list()
for (df_for_split in list_of_df_lin) {

sample <- sample(c(TRUE, FALSE), nrow(df_for_split), replace=TRUE, prob=c(0.5,0.5))
train01 <- df_for_split[sample, ]
test01 <- df_for_split[!sample, ]
fit_train01 <- lm(train01$one_pair ~ ., data = train01)

predicted01 <- predict(fit_train01, test01, type="response")
p_class01 <- ifelse(predicted01 >.5,"1","-1")
confusion_mat_test <- table(p_class01, test01[['one_pair']])

predicted <- predict(fit_train01, train01, type="response")
p_class <- ifelse(predicted >.5,"1","-1")
confusion_mat_train <- table(p_class, train01[['one_pair']])</pre>
```

```
TP <- confusion_mat_test[1,1]
TN <- confusion_mat_test[2,2]
FP <- confusion_mat_test[1,2]
FN <- confusion_mat_test[2,1]
Accuracy_test <- (TP + TN) / (TP + FP + TN + FN)
classification_error_test <- 1-Accuracy_test
test_error[[length(test_error) + 1]] <- classification_error_test</pre>

TP <- confusion_mat_train[1,1]
TN <- confusion_mat_train[2,2]
FP <- confusion_mat_train[1,2]
FN <- confusion_mat_train[2,1]
Accuracy <- (TP + TN) / (TP + FP + TN + FN)
classification_error_train <- 1-Accuracy
train_error[[length(train_error) + 1]] <- classification_error_train
}
</pre>
```

Matrix with error rates

Right now there are 45 error rates for the testing sets and 45 error rates for the training sets. The test error rates will be displayed on the lower half of the matrix and the train error rates will be on the upper half. A 10x10 matrix is created and lower.tri and upper.tri are used to fill in the matrix. The diagonal will be empty because those are the pairs of 11, 22, etc.

```
suppressWarnings({
   my_mat <- matrix(, ncol = 10, nrow=10)

my_mat[lower.tri(my_mat, diag = FALSE)] <- test_error[1:45]
my_mat <- matrix(my_mat, ncol = 10, nrow=10)
my_mat[upper.tri(my_mat, diag = FALSE)] <- train_error[1:45]
my_mat <- rbind(c(0:9), my_mat)
my_mat <- cbind(c(-1:9), my_mat)
my_mat
})</pre>
```

```
-1
                                                              6
0
             0.005890782 0.05316154 0.02604222 0.02123613 0.01953304 0.0410937 0.03674022 0.09060655 0.03840378
1
    0.01315789 NA
                 0.04534031 0.06515455 0.07843137 0.01029963 0.0127349 0.07960576 0.04124044 0.1128205
                             0.04314913 0.02353957 0.0170227 0.06250661 0.03202656 0.04351204 0.04625429
2
    0.06434431 0.02796104 NA
                                           0.02083991 0.01175561 0.04133218 0.03271875 0.02459802 0.01414141
    0.05721393 0.02531646 0.07828498 NA
    0.03607236 0.02040155 0.05673531 0.04350622 NA
                                                     0.01487911 0.04889329 0.08298034 0.04188206 0.04819407
    0.07358117 0.02398315 0.05685841 0.09552107 0.05146732 NA
                                                            0.04442049 0.03229614 0.05450549 0.01530558
   0.05119966 0.02130751 0.05180349 0.04054482 0.02996378 0.0529794 NA
                                                                        0.04276453 0.07055777 0.04686843
7
    0.03486529 0.02395118 0.04755798 0.05598496 0.05506937 0.04656271 0.02605042 NA
                                                                                 0.03854699 0.07213115
8
   0.04836461
    0.0341067 0.02095329 0.04252121 0.05380178 0.0830095 0.0630303 0.02331103 0.08409641 0.0629272 NA
```

The *highest* error rate is *0.1295887* for the pair *5* and *8* in the testing data. People might have more of a chance of confusing these 2 digits because the lower half of both digits curves the same way. 5 is very similar to 8 except it's not completely connected at the top and bottom. The second highest error rate was 3 and 8. This could be because the right side of both digits are the same. Since 5 and 8 are mixed up and 3 and 8 are mixed up often, I was interested to see the error rate for 3 and 5. 3 and 5 have the third highest error rate in the testing set.

The **lowest** error rate is **0.005890782** for the pair **0** and **1**. 0 and 1 do not look similar. This is also the case for the training set.

However, for the training set the highest error rate is .1128 for the digits 1 and 9.

Beta image for the highest error rate

```
#The pair with the highest error rate is 5 and 8
df label58 <- replace(train Labels, which((train Labels == 5) %in% TRUE), 1)
df label58 <- replace(df label58, which((train Labels == 8) %in% TRUE), -1)
df y58 <- data.frame(df label58)</pre>
df58 <- cbind(train digits, df y58)
df58 <- subset(df58, (df label58==1|df label58==-1))
set.seed(1)
sample <- sample(c(TRUE, FALSE), nrow(df58), replace=TRUE, prob=c(0.5,0.5))</pre>
train58 <- df58[sample,
test58 <- df58[!sample,
fit train58 <- lm(train58$df label58 ~ ., data = train58)
empty list beta58 <- vector("list", 784)</pre>
beta image58 <- data.frame(fit train58$coefficients)
i <- 2
for (num58 in not_zero_index) {
 empty_list_beta58[num58] <- beta image58[i,]</pre>
 i <- i+1
empty matrix beta58 <- matrix(empty list beta58, nrow = 28, ncol = 28)</pre>
empty_matrix_beta58 <- replace(empty_matrix_beta58, empty_matrix_beta58== 'NULL', NA)</pre>
image(1:28, 1:28, matrix(as.matrix(as.numeric(empty_matrix_beta58)), nrow=28)[ , 28:1],
      col = gray(seq(0, 1, 0.05)), xlab = "", ylab="")
```

```
#The pair with the lowest error rate is 1 and 0
 df_label01 <- replace(train_Labels, which((train Labels == 0) %in% TRUE), 1)</pre>
 df label01 <- replace(df label01, which((train Labels == 1) %in% TRUE), -1)
df y01 <- data.frame(df label01)</pre>
df01 \leftarrow cbind(train digits, df y01)
df01 <- subset(df01, (df label01==1|df label01==-1))
set.seed(1)
sample <- sample(c(TRUE, FALSE), nrow(df01), replace=TRUE, prob=c(0.5,0.5))</pre>
train01 <- df01[sample, ]
test01 <- df01[!sample, ]
fit train01 <- lm(train01$df label01 ~ ., data = train01)</pre>
set.seed(1)
empty list beta01 <- vector("list", 784)</pre>
beta image01 <- data.frame(fit train01$coefficients)
i <- 2
for (num01 in not zero index) {
  empty_list_beta01[num01] <- beta_image01[i,]</pre>
empty matrix beta01 <- matrix(empty list beta01, nrow = 28, ncol = 28)</pre>
empty matrix beta01 <- replace(empty matrix beta01, empty matrix beta01== 'NULL', NA)</pre>
image(1:28, 1:28, matrix(as.matrix(as.numeric(empty_matrix_beta01)), nrow=28)[ , 28:1],
     col = gray(seq(0, 1, 0.05)), xlab = "", ylab="")
```

Beta Image for highest training set

```
#The pair with the lowest error rate is 1 and 9
df label91 <- replace(train Labels, which((train Labels == 1) %in% TRUE), 1)
df label91 <- replace(df label91, which((train Labels == 9) %in% TRUE), -1)
df y91 <- data.frame(df label91)</pre>
df91 <- cbind(train digits, df y91)
df91 <- subset(df91, (df label91==1|df label91==-1))
set.seed(1)
sample <- sample(c(TRUE, FALSE), nrow(df91), replace=TRUE, prob=c(0.5,0.5))</pre>
train91 <- df91[sample, ]</pre>
test91 <- df91[!sample, ]
fit_train91T <- lm(train91$df label91 ~ ., data = train91)</pre>
set.seed(1)
empty list beta91 <- vector("list", 784)</pre>
beta image91 <- data.frame(fit train91T$coefficients)</pre>
i < -2
for (num91 in not zero index) {
 empty_list_beta91[num91] <- beta_image91[i,]</pre>
  i < -\overline{i} + 1
empty matrix beta91 <- matrix(empty list beta91, nrow = 28, ncol = 28)</pre>
empty matrix beta91 <- replace(empty matrix beta91, empty matrix beta91== 'NULL',</pre>
NA)
```

Beta Image for highest and lowest error rates for testing side by side

The coefficients for the highest error rate pair (5 and 8) are much higher then the lowest error rate pair (0 and 1).

Beta Image for highest and lowest error rates for training side by side

Part 3

Logistic Regression

Logistic Regression is usually used to predict the probability of a binary event occurring (yes or no)

We will fit the model using logistic regression. Our k will be 9. Similar to linear regression, the data will be split into train and test.

```
k = 9
df_label_log <- replace(train_Labels, which((train_Labels == k) %in% TRUE), 1)
df_label_log <- replace(df_label_log, which((train_Labels == k) %in% FALSE), -1)
df_y_log <- data.frame(df_label_log)
df_log <- cbind(train_digits, df_y_log)
set.seed(1)

sample <- sample(c(TRUE, FALSE), nrow(df_log), replace=TRUE, prob=c(0.5,0.5))
train_log <- df_log[sample, ]
test_log <- df_log[!sample, ]

log_fit <- glm(as.factor(df_label_log) ~ ., data = train_log, family = 'binomial')
log_fit</pre>
```

```
## Call: glm(formula = as.factor(df label log) ~ ., family = "binomial",
                data = train log)
 ##
## Coefficients:
                                                           X13
                                                                                           X14
                                                                                                                            X15
                                                                                                                                                            X16
                                                                                                                                                                                            X33
 ## (Intercept)
## -1.360e+15 -5.263e+13 1.493e+13
                                                                                                                                                            NA
                                                                                                                            NA
                                                                                                                                                                                            NA
## X34 X35 X36 X37
## -4.950e+14 1.752e+13 3.142e+12 -9.345e+12
                                                                                                                                                          X38
                                                                                                                                                                                          X39
                                                                                                                                      3.913e+12 2.802e+12
                                                                                        X42
                                                        X41
                                                                                                                        X43
                        X40
                                                                                                                                                        X44
         5.330e+12 -9.864e+12 3.662e+12 -3.394e+10 3.984e+11 1.736e+12 X46 X47 X48 X49 X50 X51
##
##
         -5.962e+12 5.804e+12 -6.944e+12 -1.612e+12 -3.662e+12 2.765e+13
##
                                                                                                                                                      X62 1.090e+13
                                                                                                                       X52 X59 X60 X61
-3.637e+13 -3.579e+13 1.355e+14 -4.025e+12
##
##
                                                       X65
                                                                                                                       X67
                                                                                                                                                      X68
                       X64
                                                                                        X66
##
                                                                                                                                                                                        X69
                                                                                                                                                                        -1.279e+12
        -1.700e+13 1.122e+13 -4.306e+11 -1.342e+13 3.031e+12
##
                                     X71 X72 X73
-4.357e+11 3.224e+12 -7.568e+12
##
                                                                                                                                           X74
1.118e+12
                         X70
                                                                                                                                                                                         X75
                                                                                                           X73
-7.568e+12
X79
##
         -1.390e+12
                                                                                                                                                                         -6.343e+12
                                           X77
                                                                                       X78
                       X76
                                                                                                                                           X80
##
                                                                                                                                                                                       X81
##
          5.430e+12 4.247e+12 -9.643e+12 3.417e+12 2.235e+12 -5.581e+12
          X82 X87 X88 X89
1.957e+13 3.357e+13 -1.971e+13 1.482e+12
##
                                                                                                                                                        X90
                                                                                                                                                                                         X91
                                                                                                                                     9.291e+12
                                                                                                                                                                        -2.239e+12
##
##
                                                                                        X94
                                                                                                                       X95
                        X92
                                                        X93
                                                                                                                                                       X96
          5.568e+12 -6.724e+12 -2.258e+12 4.762e+12 3.894e+10 2.098e+11
##
##

    x98
    x99
    x100
    x101
    x102
    x103

    9.761e+11
    -5.728e+12
    9.073e+11
    -4.293e+12
    4.762e+12
    -5.118e+12

##
        | X104 | X105 | X106 | X107 | X108 | X109 | X107 | X108 | X109 | X107 | X108 | X109 | X101 | X110 | X111 | X114 | X115 | X116 | X117 | X118 | X119 | X120 | X121 | X122 | X123 | X148 | X129 | X120 | X121 | X122 | X123 | X124 | X125 | X126 | X127 | X128 | X129 | X129 | X128 | 
##
##
##
##
##
##
       -2.393e+12 8.565e+11 -4.324e+12 3.830e+12 -3.702e+12 2.627e+12 x130 x131 x132 x133 x134 x135 -2.341e+12 2.270e+12 -6.311e+12 4.366e+12 2.696e+12 3.551e+11
##
##
```

##	X136	X137	X138	X139	X140	X143	
##	1.246e+12	-4.590e+11	-1.055e+13		-8.159e+13	5.177e+12	
##	X144	X145	X146	X147	X148	X149	
##	2.386e+12	-5.368e+12			1.598e+12	-3.847e+11	
##	X150	X151	X152	X153	X154	X155	
##	1.104e+11	-7.388e+11	1.938e+12	-1.312e+12	6.282e+11	-7.958e+11	
##	X156	X157	X158	X159	X160	X161	
		-2.492e+11			4.210e+11		
##	-6.619e+11		-2.088e+12			-3.533e+12	
##	X162	X163	X164	X165	X166	X167	
##	4.322e+11	-1.772e+12	1.735e+12	-8.310e+12	9.986e+12	-5.831e+12	
##	X168	X170	X171	X172	X173	X174	
##	3.498e+13	-1.205e+12		-1.936e+12	-2.258e+12	2.911e+12	
##	X175	X176	X177	X178	X179	X180	
			Δ1//	VT 10			
##	3.092e+11	-2.830e+12		1.143e+12		6.484e+11	
##	X181	X182	X183	X184	X185	X186	
##	-5.980e+10	1.081e+12	2.910e+11	4.937e+11	2.455e+11	9.034e+11	
##	X187	X188	X189	x190	X191	X192	
##	9.760e+11	2.484e+11	-2.809e+11	2.965e+11		-1.944e+12	
			-2.009e+11				
##	X193	X194	X195	X196	X197	X198	
##	2.329e+12	-1.542e+12	3.407e+12	-6.669e+12	2.476e+15	2.340e+12	
##	X199	X200	X201	X202	X203	X204	
##	-3.233e+12	2.070e+12	8.428e+12	-7.379e+12	X203 1.021e+12	-6.089e+11	
##	X205						
		_1 657-111	X207 3.144e+11	_2 5016111	X209 1.045e+12	5 671-111	
##	1.663e+11						
##	X211	X212	X213	X214	X215 2.431e+10	X216	
##	9.616e+11	3.599e+11	1.591e+12	-1.511e+11	2.431e+10	-5.235e+11	
##	X217	X218	X219	X220	X221	X222	
##	3.301e+11	-4.316e+11			-1.361e+12	-3.141e+12	
##	X223	X224			X227	X228	
##	1.482e+12		2223	X226 7.896e+12	-1.782e+12	-2.226e+12	
		-1.151e+13	NA				
##	X229	X230	X231	X232	X233	X234	
##	-6.501e+11	2.889e+11	X231 -7.158e+09		4.751e+11		
##	X235	X236	X237	X238	X239 7.733e+11	X240	
##	1.519e+11	-6.318e+11	-6.146e+11	3.966e+11	7.733e+11	7.602e+10	
##	X241	X242	X243	X244	X245	X246	
##	3.000e+11	1.436e+10			-7.662e+10		
##	X247	X248	X249 2.515e+11		X251	X252	
##	-1.570e+12				2.562e+12		
##	X253	X254	X255	X256	X257	X258	
##	-3.859e+15	-1.077e+13	4.371e+12	2.066e+12	-2.485e+12	-4.683e+11	
##	X259	X260	X261	X262	X263	X264	
##	-1.827e+12	3.818e+11		-3 795e+11	1.902e+09		
##	X265	X266	X267	X268	X269	X270	
##	-3.701e+11	-4.273e+11				-7.962e+11	
##	X271	X272	X273	X274	X275	X276	
##	1.550e+11	-9.894e+11	-1.252e+11	-7.767e+11	3.789e+11	-2.549e+12	
##	X277	X278	X279	X280	X281	X282	
##	1.766e+11	-4.004e+12		1.739e+12		-1.444e+12	
##			X285				
					1.861e+12		
##	2.043e+12	-1.922e+12	-1.373e+12	9.407e+11		-9.762e+11	
##	X289	X290	X291	X292	X293	X294	
##	4.364e+11	5.565e+11	-4.385e+11	-8.811e+10	1.652e+10	-1.034e+12	
##	X295	X296	X297	X298	X299	X300	
##	5.709e+11	-1.097e+12	-1.756e+11	2.895e+11	-3.355e+11	2.836e+11	
##	X301	X302	X303	X304	X305	X306	
##	-4.779e+09	-8.317e+11	3.899e+11	2.128e+12	-8.608e+11	-5.481e+12	
				2.120e+12 X310		-3.461E+12 X312	
##	X307	X308	X309		X311		
##	4.736e+12	-1.797e+13	NA	-3.291e+11	-1.339e+13	8.990e+11	
##	X313	X314	X315	X316	X317	X318	
##	6.744e+11	-5.519e+11	-1.957e+11	1.037e+12	6.358e+11	-5.494e+11	
##	X319	X320	X321	X322	X323	X324	
##	9.056e+11	6.507e+11	8.063e+11	-9.214e+11	-8.340e+11	8.543e+11	
##	X325	X326	X327	X328	X329	X330	
##	-3.330e+11	4.466e+11	5.705e+11	1.600e+11	1.029e+12	1.117e+12	
##	X331	X332	X333	X334	X335	X336	
##	1.706e+11	-1.944e+12	1.207e+12	-1.518e+12	-1.045e+12	4.074e+13	
##	X337	X338	X339	X340	X341	X342	
##	NA	-9.089e+12	2.112e+12	1.812e+12	-1.486e+12	9.025e+11	
##	X343	X344	X345	X346	X347	X348	
##	-1.216e+11	-7.783e+11	1.036e+11	7.901e+11	-1.190e+11	2.534e+10	
##	X349	X350	X351	X352	X353	X354	
##	A349	ASJU	VOOT	A332	V272	A334	

##	3.272e+11	-3.311e+11	-4.921e+10	8.973e+11	4.763e+11	3.520e+11	
##	X355	X356	X357	X358	X359	X360	
##	2.317e+11	1.532e+11	3.581e+11	1.436e+11	4.546e+11	3.236e+12	
##	X361	X362	X363	X364	X365	X366	
##	-2.641e+12 X367	-5.697e+12	-7.509e+12	-1.589e+13	NA X371	4.926e+11 X372	
##	-7.029e+12	X368 -5.485e+12	X369 2.504e+12	X370 9.537e+11	2.411e+11	1.006e+12	
##	X373	X374	X375	X376	X377	X378	
##	2.675e+11	-1.124e+11	3.095e+11	-1.613e+11	1.044e+11	-6.309e+11	
##	X379	X380	X381	X382	X383	X384	
##	9.070e+11	-1.769e+11	1.007e+12	-4.363e+11	6.833e+11	9.295e+11	
##	X385 -2.195e+11	X386	X387	X388	X389	X390	
##	-2.195e+11 X391	1.413e+12 X392	-7.292e+11 X393	-1.986e+12 X394	5.987e+12 X395	-7.614e+12 X396	
##	6.445e+12	-5.757e+12	5.541e+12		1.347e+13	6.158e+12	
##	X397	X398	X399	X400	X401	X402	
##	-3.059e+12	-1.091e+12	7.576e+11	-4.199e+11	-3.009e+11	2.100e+11	
##	X403	X404	X405	X406	X407	X408	
##	6.620e+10	2.448e+11		-9.536e+11	-5.539e+10	4.715e+10	
##	X409 7.029e+11	X410 6.102e+11	X411	X412 3.520e+10	X413 -2.176e+11	X414 -7.626e+11	
##	X415	X416	X417	X418	X419	X420	
##	1.375e+12	-1.484e+12		8.440e+12	-7.120e+12		
##	X421	X422	X423	X424	X425	X426	
##	NA	1.353e+15	-5.833e+12		1.915e+12	2.332e+11	
##	X427	X428	X429	X430	X431	X432	
##	-2.666e+11 X433	-2.767e+11 X434	6.126e+11 X435	4.481e+10 X436	-7.782e+11 X437	8.115e+11 X438	
##	1.702e+11		2.546e+11			-2.174e+11	
##	X439	X440	X441	X442	X443	X444	
##	-4.021e+11	-4.033e+09	3.936e+11	1.251e+12	-2.097e+12	1.574e+12	
##	X445	X446	X447	X448	X449	X450	
##	-1.144e+12		6.561e+12		NA	3.495e+12	
##	X451 -1.272e+11	X452 -4.839e+11	X453 2.562e+12	X454	X455 -9.737e+11	X456 2.716e+11	
##	-1.272e+11 X457	X458	2.362e+12 X459	X460	-9.737e+11 X461	2.716E+11 X462	
##	-4.032e+11	2.129e+11		1.689e+12	-4.237e+11	-8.629e+11	
##	X463	X464	X465	X466	X467	X468	
##	-2.298e+10			3.392e+11		5.864e+11	
##	X469	X470 -2.603e+12	X471	X472	X473 2.042e+12	X474	
##	-8.590e+11 X475	-2.603e+12 X476	3.407e+12 X478	-3.336e+12 X479	X480	-1.839e+12 X481	
##	-1.132e+13	1.152e+13	4.021e+13		2.698e+12	-4.185e+12	
##	X482	X483	X484	X485	X486	X487	
##	-1.443e+12	6.970e+11	-7.196e+11	1.781e+12	-1.243e+12	6.787e+11	
##	X488	X489	X490	X491	X492	X493	
##	-5.773e+11 X494	7.576e+11 X495	-1.854e+11 X496	-6.397e+11 X497	-7.003e+11 X498	-8.674e+11 X499	
##	4.042e+11	-1.143e+11	-8.216e+11	1.035e+12	-1.340e+12	-3.312e+11	
##	X500	X501	X502	X503	X504	X505	
##	1.158e+12	-3.957e+12	-9.068e+11	8.685e+12	-2.111e+13	2.924e+13	
##	X506	X507	X508	X509	X510	X511	
##	-2.184e+13	-8.921e+12	-1.190e+12	3.107e+12	-6.188e+11	-6.358e+10 X517	
##	X512 4.450e+11	X513 -7.358e+11	X514 5.793e+11	X515 -3.510e+11	X516 1.340e+12	-1.369e+12	
##	X518	X519	X520	-3.310e+11 X521	X522	X523	
##	1.214e+10	8.295e+11	1.315e+12	1.793e+11	-2.858e+10	2.518e+09	
##	X524	X525	X526	X527	X528	X529	
##	-5.487e+11	-3.877e+11	1.039e+12	-1.744e+12	5.541e+11	1.944e+12	
##	X530 1.286e+12	X531 -6.021e+12	X532 -4.689e+12	X533 NA	X534 -6.763e+12	X535 3.060e+12	
##	1.286e+12 X536	-6.021e+12 X537	-4.689e+12 X538	NA X539	-6.763e+12 X540	3.060e+12 X541	
##	2.077e+12	-1.624e+12	4.046e+11	-2.202e+12	8.475e+11	1.159e+12	
##	X542	X543	X544	X545	X546	X547	
##	-1.088e+12	-3.033e+11	-1.425e+12	8.132e+11	-1.126e+11	-1.032e+12	
##	X548	X549	X550	X551	X552	X553	
##	-1.358e+12 X554	-4.077e+11 X555	-4.330e+11 X556	-6.225e+11 X557	-2.174e+11 X558	-1.641e+12 X559	
##	6.168e+11	-3.373e+11	1.536e+12	-1.584e+12	-6.257e+12	8.736e+12	
##	X560	X562	X563	X564	X565	X566	
##	3.179e+13	-5.095e+12	3.656e+12	-5.410e+12	-2.683e+11	8.888e+10	

##	X567	X568	X569	X570	X571	X572	
## 3.	.188e+12	-4.525e+12 X574	-6.679e+11	-1.327e+12	2.491e+11	-9.263e+10	
##	X573	X574	X575	X576	X577	X578	
## -9.	.344e+11	-1.652e+11	7.397e+10	6.209e+11	-3.737e+11	1.918e+11	
##	X579	x580	x581	X582	x583	x584	
## 7.	6080+11	6 7120+11	1 2730+12	1 1340+10	8 5710+11	-3 0396+12	
##	VE 0 E	0.712E111	VE07	1.1246.10	0.07/16/11	J.0JJE112	
##	AJ0J	7 (45-110	1 110-110	AJ00	VOOA	AJ90	
## 1.	.4/6e+12	7.645e+12	-1.119e+13	2.262e+13	NA	9.4010+12	
##	X591	X592	X593	X594	X595	X596	
## -4.	.758e+12	-1.893e+11	2.642e+12	-1.581e+12	1.292e+12	4.895e+11	
##	X597	X574 -1.652e+11	X599	X600	X601	X602	
## 9.	.601e+11	-6.076e+10	-6.636e+11	-5.975e+11	-9.747e+11	6.173e+11	
##	X603	X604	X605	X606	X607	X608	
## -9.	.007e+11	-3.027e+11	5.920e+10	-1.293e+12	-9.957e+11	-4.944e+11	
##	X609	X610	X611	X612	X613	X614	
## -1.	.361e+11	-1.078e+12	-1.154e+12	2.150e+12	1.483e+12	-5.556e+12	
##	X615	X616	X617	X618	X619	X620	
## -1.	189e+13	7 447e+13	NΑ	8 038e+13	3 166e+12	-3 050e+11	
##	x621	x622	x623	X624	x625	X626	
## 2.	6560+12	_1 7010±12	-1 700a±10	_1 0/10_12	3 3630+00	_3 307 ₀ ±11	
## 2.	V627	-1.701E+12	-4.700E+IU	-1.040E+12	2.303E+03	-3.307E+11	
##	0/00/11	A028	A029	A03U	X031	X03Z	
## 4.	.0406+11	X616 7.447e+13 X622 -1.781e+12 X628 5.208e+11	9.3186+10	-5.7756+11	-3.1030+11	3.4/90+10	
## 8.	.2/1e+10	9.082e+11	7.996e+11	-8.462e+11	3.016e+11	9.110e+11	
##	X639	X640 -2.604e+12 X648	X641	X642	X643	X644	
## -7.	.421e+11	-2.604e+12	4.640e+12	1.135e+11	2.045e+13	NA	
##	X647	X648	X649	X650	X651	X652	
## -4.	.965e+12	-1.745e+10	3.146e+11	-2.913e+12	3.088e+11	-1.302e+12	
##	X653	X654 -9.891e+11	X655	X656	X657	X658	
## 1.	.310e+11	-9.891e+11	-1.282e+12	-3.815e+11	-3.792e+11	-6.084e+10	
##	X659	X660 -1.739e+12	X661	X662	X663	X664	
## -9.	.762e+11	-1.739e+12	-9.658e+11	-2.177e+12	-1.282e+12	8.741e+10	
##	X665	X666 -1.392e+12	X667	X668	X669	X670	
	.306e+12	-1.392e+12	6.545e+12	-2.165e+12	2.159e+12	-1.665e+13	
##	x671	X675	X676	X677	X678	x679	
## -1.	5160+13	X675 1.561e+13 X681 7.407e+11	=2 309e±13	2 9020+12	1 71/0+12	-1 289e+11	
## -1.	. JIOE+IJ	V601	-2.309E+13	Z.30ZETIZ	1./146+12	-1.209E+11	
## 5	0220111	7 4070111	7 170 111	A 0.42 a 1.1.1	A 7620111	6 012a11	
## 5.	.9320+11	7.40/e+11	7.1700+11	-4.9436+11	-4./63e+11	-6.U1Ze+11	
##	X686	X687 8.049e+11	X688	X689	X69U	X691	
## -5.	.448e+11	8.049e+11	9.546e+11	6.449e+11	1.0//e+12	4.098e+11	
##	X692	X693 9.725e+11	X694	X695	X696	X697	
## 1.	.432e+12	9.725e+11	5.993e+11	-5.614e+12	1.028e+13	-1.364e+13	
##	X698	X699 1.896e+14	X703	X704	X705	X706	
## 1.	.275e+13	1.896e+14	1.127e+14	8.603e+12	-9.369e+12	3.042e+12	
##	X707	X708 -1.229e+12	X709	X710	X711	X712	
## -1.	.609e+12	-1.229e+12	4.856e+11	-2.947e+11	1.500e+11	5.763e+10	
##	X713	X714	X715	X716	X717	X718	
## 1.	.360e+12	-6.243e+11	-2.240e+11	-4.232e+11	1.932e+11	7.432e+11	
##	X719	X720	X721	X722	X723	X724	
## -8.	.984e+11	1.088e+12	2.384e+12	-7.992e+11	4.038e+12	-7.819e+12	
##	x725	x726	X727	x732	x733	X734	
	.899e+12	4.667e+13	-2.349e+14	8.224e+13			
##	X735	X736	X737	X738	X739	X740	
	.770e+11	1.446e+12	5.061e+10	1.369e+12	7.586e+11	3.359e+11	
##	.770e711 X741	X742	X743	X744	X745	X746	
	.501e+11	4.901e+11	1.649e+12	7.420e+11	-5.299e+11	-2.538e+10	
##	X747	X748	X749	X750	X751	X752	
		-3.128e+12	2.210e+12	2.698e+11	1.551e+12	2.008e+13	
##	X753	X754	X761	X762	X763	X764	
	.327e+14	3.533e+13	NA	3.724e+13	-7.722e+12	6.415e+11	
##	X765	X766	X767	X768	X769	X770	
	.420e+12	-1.640e+12	2.556e+11	-5.791e+12	2.896e+12		
##	X771	X772	X773	X774	X775	X776	
## 5.	.186e+12	-1.166e+13	8.552e+12	-7.442e+12	1.200e+12	8.273e+12	
##	X777	X778	X779	X780			
		3.927e+13	-9.350e+13	NA			
##							
	cees of Fr	reedom: 30048	Total (i.e. N	Null); 29347	Residual		
	ll Deviano			,,,			
			AIC: 84590)			
" " 1/03			1110. 04070				


```
predicted_log <- predict(log_fit, test_log, type="response")
Confusion_Matrix_log <- ifelse(predicted_log >.5,"1","-1")

confusion_mat_test_log <- table(Confusion_Matrix_log, test_log[['df_label_log']])
confusion_mat_test_log</pre>
```

```
Confusion_Matrix_log -1 1
-1 26328 719
1 661 2243
```

```
predicted_log <- predict(log_fit, train_log, type="response")
Confusion_Matrix_log <- ifelse(predicted_log >.5,"1","-1")
confusion_mat_train_log <- table(Confusion_Matrix_log, train_log[['df_label_log']])
confusion mat train_log</pre>
```

```
Confusion_Matrix_log -1 1
-1 26562 654
1 500 2333
```

```
TP <- confusion_mat_test_log[1,1]
TN <- confusion_mat_test_log[2,2]
FP <- confusion_mat_test_log[1,2]
FN <- confusion_mat_test_log[2,1]
Accuracy_test <- (TP + TN) / (TP + FP + TN + FN)
classification_error_test_log <- 1-Accuracy_test
paste0('The Accuracy for the testing set is: ',Accuracy_test)
paste0('The classification error rate for the testing set is: ',classification_error_test_log)</pre>
```

```
"The Accuracy for the testing set is: 0.953924743748122"

"The classification error rate for the testing set is: 0.046075256251878"
```

```
TP <- confusion_mat_train_log[1,1]
TN <- confusion_mat_train_log[2,2]
FP <- confusion_mat_train_log[1,2]
FN <- confusion_mat_train_log[2,1]
Accuracy <- (TP + TN) / (TP + FP + TN + FN)
classification_error_train_log <- 1-Accuracy
paste0('The Accuracy for the training set is: ',Accuracy_test)
paste0('The classification error rate for the training set is:
',classification_error_train_log)</pre>
```

"The Accuracy for the training set is: 0.953924743748122"

"The classification error rate for the training set is: 0.0384039402309561"

The Classification Error Rates for train and test dataset are similar but it is a little higher for the testing set: the testing error rate is 0.04607 and the training error rate is 0.0384. Compared to our Linear Regression Model, the error rates for Logistics Regression are lower for both the training and testing set.

plot(log fit, lwd = '2', col = 'pink')

The QQ plot indicates that there might be extreme values that would not be expected in a normal distribution. The residual for both Residual vs Fitted and Residual vs Leverage are very high. The dataset should be reevaluated for outliers.

Part 2 with Logistic Regression

Logistic regression is applied on all pairs on digit, similar to part 2. These 2 chunks of code are similar but with different variable names.

```
label = list()
list df log = list()
 list of pairs log = list()
 for (x log in 0:9) {
   corr log = x log
   list to nine log \leftarrow list(0,1,2,3,4,5,6,7,8,9)
   second_loop_list_log <- list_to_nine_log[-c(corr_log+1)]</pre>
  for (y_log in 0:9) {
     if (y log > x log) {
       incorr log = y_log
       pair \log = \text{list}()
       pair log <- append(pair log,corr log)</pre>
       pair log <- append(pair log,incorr log)</pre>
       list of pairs log[[length(list of pairs log) + 1]] <- pair log
       df label2 log <- replace(train Labels, which((train Labels == corr log) %in%
TRUE), 1)
       df label2 log <- replace(df label2 log, which((train Labels == incorr log)</pre>
%in% TRUE\overline{)}, -1)
       list df log[[length(list df log) + 1]] <- df label2 log</pre>
   }
```

The dataframes for each of the digit pairs are stored in list_of_df_lin_log.

```
list_of_df_lin_log = list()
for (one_pair_log in list_df_log){
    df_y2_log <- data.frame(one_pair_log)
    df2_log <- cbind(train_digits, df_y2_log)
    df2_log <- subset(df2_log,(one_pair_log==1|one_pair_log==-1))
    list_of_df_lin_log[[length(list_of_df_lin_log) + 1]] <- df2_log
}</pre>
```

The Logistic Regression is applied to all dataframes from above. The confusion matrix, accuracy and classification error rates are calculated for the train and test sets.

```
set.seed(1)
train error log <- list()</pre>
test_error_log <- list()</pre>
for (df_for_split_log in list_of_df_lin_log) {
   sample log <- sample(c(TRUE, FALSE), nrow(df_for_split_log), replace=TRUE,</pre>
prob=c(0.5,0.5))
   train01_log <- df_for_split_log[sample_log, ]</pre>
   test01 log
               <- df_for_split_log[!sample_log, ]
   fit train01 log <- glm(as.factor(one pair log) ~ ., data = train01 log, family =
'binomial')
  predicted01 log <- predict(fit train01 log, test01 log, type="response")</pre>
  p_class01_log <- ifelse(predicted01_log >.5,"1","-1")
  confusion_mat_test_log1 <- table(p_class01_log, test01_log[['one_pair_log']])</pre>
  predicted_log1 <- predict(fit_train01_log, train01_log, type="response")</pre>
  p_class_log1 <- ifelse(predicted_log1 >.5,"1","-1")
  confusion mat train log1 <- table(p class log1, train01 log[['one pair log']])</pre>
  TP <- confusion_mat_test_log1[1,1]</pre>
  TN <- confusion_mat_test_log1[2,2]</pre>
  FP <- confusion_mat_test_log1[1,2]</pre>
 FN <- confusion mat test log1[2,1]
 Accuracy test <- (TP + TN) / (TP + FP + TN + FN)
 classification error test log1 <- 1-Accuracy test
 test error log[[length(test error log) + 1]] <- classification error test log1
 TP <- confusion_mat_train_log1[1,1]</pre>
  TN <- confusion_mat_train_log1[2,2]</pre>
  FP <- confusion_mat_train_log1[1,2]</pre>
  FN <- confusion_mat_train_log1[2,1]</pre>
  Accuracy <- (TP + TN) / (TP + FP + TN + FN)
 classification_error_train_log1 <- 1-Accuracy</pre>
  train error log[[length(train error log) + 1]] <- classification error train log1
```

Similar to part 2, the error rates for testing are placed on the lower matrix while the error rates for training are placed on the upper matrix A 10x10 matrix is created and lower.tri and upper.tri are used to fill in the matrix. The diagonal does not have error rates.

```
suppressWarnings({

my_mat_log <- matrix(, ncol = 10, nrow=10)

my_mat_log[lower.tri(my_mat_log, diag = FALSE)] <- test_error_log[1:45]
my_mat_log <- matrix(my_mat_log, ncol = 10, nrow=10)
my_mat_log[upper.tri(my_mat_log, diag = FALSE)] <- train_error_log[1:45]
my_mat_log_1 <- rbind(c(0:9), my_mat_log)
my_mat_log_2 <- cbind(c(-1:9), my_mat_log_1)
my_mat_log_2

})</pre>
```

```
-1
                                                                                                                                                                                                                                                                                                                             6
                                                                                                                                                                                                                                                                                                                                                                                                                              8
                                                                                                                                                                                                                                                                                                                                                                                                                              0.03542673 0
0
                                                                          0
                                                                                                                          0.01288437 0
                                                                                                                                                                                                                           0
                                                                                                                                                                                                                                                                                                                            0
                                                                                                                                                                                                                                                                                                                                                                             0
                    0.005952381 NA
                                                                                                                          0.00921466 0.01423171 0.02784097 0
                                                                                                                                                                                                                                                                                                                            0
                                                                                                                                                                                                                                                                                                                                                                             0.0271851 0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                              0.05373467
1
                                                                                                                                                                                                                                                                                                                            0.543945
2
                     0.04932353 0.03722903 NA
                                                                                                                                                                                                                           0
                                                                                                                                                                                                                                                                            0
                    0.03958469 0.02911392 0.5552474 NA
3
                                                                                                                                                                                                                           0
                                                                                                                                                                                                                                                                            0
                                                                                                                                                                                                                                                                                                                            0
                                                                                                                                                                                                                                                                                                                                                                             0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                              0
                   0.01841761 0.01505829 0.03035178 0.021003 NA
                                                                                                                                                                                                                                                                                                                                                                             0.01944173 0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                              0.5237736
                     0.01725275 0
6
                     0.03159811 0.01485069 0.03007599 0.01837187 0.03084184 0.03601718 NA
                                                                                                                                                                                                                                                                                                                                                                                                                              0.02017478 0.01219
                     0.02559492
                      \texttt{0.05137318} \quad \texttt{0.044171} \quad \texttt{0.06449882} \quad \texttt{0.0605803} \quad \texttt{0.05109802} \quad \texttt{0.08215391} \quad \texttt{0.5195972} \quad \texttt{0.03874973} \quad \texttt{NA} 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                               0.003753351
                      0.02608789 \quad 0.01935381 \quad 0.0300655 \quad 0.03523859 \quad 0.04576857 \quad 0.0430854 \quad 0.02082884 \quad 0.05462583 \quad 0.03178909 \quad NA \\ 0.02082888 \quad 0.03188909 \quad NA \\ 0.02082888 \quad 0.0318909 \quad NA \\ 0.02082889 \quad 0.0318909 \quad NA \\ 0.02082889 \quad 0.0318909 \quad NA \\ 0.02082899 \quad 0.0318909 \quad NA \\ 0.02082899 \quad 0.031899 \quad 0.0318909 \quad NA \\ 0.02082899 \quad 0.031899 \quad
```

The results from this matrix are different than what I was expecting and what I got with the Linear Regression Model. I was expecting the results to be 1 and 7 or 5 and 8. The **highest** error rate is **0.55524** for the digit pair **2** and **3**. The top half of both these digits are very similar which could be an explanation as to why it has a high error rate. The lowest error rate is **0.00595** from the pair **0** and **1**, similar to the linear regression error rate.

Another thing to notice in this matrix is that there are a lot of 0s. The zeros are mostly on training set error rates. It is unlikely that a lot of the pairs have 100% accuracy. The zeros could be due to overfitting, which is only the training set (the dataset which we fitted) has the 0 error rates

Beta Image for Highest Error Rate

```
df_label_log32 <- replace(train_Labels, which((train_Labels == 2) %in% TRUE), 1)
df_label_log32 <- replace(df_label_log32, which((train_Labels == 3) %in% TRUE), -1)
df_y_log32 <- data.frame(df_label_log32)
df_log32 <- cbind(train_digits, df_y_log32)</pre>
```

```
set.seed(1)
sample <- sample(c(TRUE, FALSE), nrow(df_log32), replace=TRUE, prob=c(0.5,0.5))
train_log32 <- df_log32[sample, ]
test_log32 <- df_log32[!sample, ]
#head(train_log, 10)
log_fit32 <- glm(as.factor(df_label_log32) ~ ., data = train_log32, family =
'binomial')</pre>
```

Beta Image for Lowest Error Rate

```
df_label_log01 <- replace(train_Labels, which((train_Labels == 1) %in% TRUE), 1)
df_label_log01 <- replace(df_label_log01, which((train_Labels == 0) %in% TRUE), -1)
df_y_log01 <- data.frame(df_label_log01)
df_log01 <- cbind(train_digits, df_y_log01)
set.seed(1)

sample <- sample(c(TRUE, FALSE), nrow(df_log01), replace=TRUE, prob=c(0.5,0.5))
train_log01 <- df_log01[sample, ]
test_log01 <- df_log01[!sample, ]
log_fit01 <- glm(as.factor(df_label_log01) ~ ., data = train_log01, family =
'binomial')</pre>
```

```
set.seed(1)
empty_list_beta01 <- vector("list", 784)
beta_image01 <- data.frame(log_fit01$coefficients)
i <- 2
for (num01 in not_zero_index) {

empty_list_beta01[num01] <- beta_image01[i,]
i <- i+1
}</pre>
```

Beta image comparison for highest and lowest error rates.

The coefficients for both seem to be very similar.

Part 4

Removing outliers with cooks distance (Linear Regression on K vs not K)

Cooks distance will be used to find and remove outliers. The goal for this part is to see if the outliers impacted the results and whether removing them gives us better or worse results. For part 1, I used k = 9. I will repeat part 1 again for digit 9 but with outliers removed. This will be done with Linear and Logistic Regression.

Part 2 will be repeated as well for all pairs of digits and the error rate matrices will be compared

I'm creating a dataframe called df_cook which is a combination of the train_digits dataframe and the labels columns.

```
df_label_cook <- replace(train_Labels, which((train_Labels == 9) %in% TRUE), 1)
df_label_cook <- replace(df_label_cook, which((train_Labels == 9) %in% FALSE), -1)
dfY_cook <- data.frame(df_label_cook)
df_cook <- cbind(train_digits, dfY_cook)</pre>
```

The df_cook is split into train and test and the train_cook is is used to fit the model using linear regression

```
set.seed(1)
sample <- sample(c(TRUE, FALSE), nrow(df_cook), replace=TRUE, prob=c(0.5,0.5))</pre>
```

```
train_cook <- df_cook[sample, ]
test_cook <- df_cook[!sample, ]
fit_cook <- lm(train_cook$df_label_cook ~ ., data = train_cook)</pre>
```

In order to get the cooks distance outliers, cooks.distance() is used on the fit model fit_cook. Outliers are numbers that are greater than (4/n), n being the number of rows. After the outliers are identified they are removed from the train_cook dataset.

```
cooksDistance <- cooks.distance(fit_cook)
sample_size <- nrow(fit_cook)
plot(cooksDistance, pch="*", cex=2, main="Cooks distance")
abline(h = 4/sample_size, col="red")

n <- nrow(train_cook)
outliers <- as.numeric(names(cooksDistance)[(cooksDistance > (4/n))])
index <- data.frame(outliers)
train_cook_removed <- train_cook[!(row.names(train_cook) %in% index$outliers),]</pre>
```


train_cook_removed is the train split with the outliers removed. Now the train split is fit. We will repeat the steps in part 1.

```
fit_outliers <- lm(train_cook_removed$df_label_cook ~ ., data = train_cook_removed)
predicted_cook <- predict(fit_outliers, test_cook, type="response")
p_class_cook <- ifelse(predicted_cook > .5, "1", "-1")
confusion_mat_test_cook <- table(p_class_cook, test_cook[['df_label_cook']])
confusion_mat_test_cook</pre>
```

```
p_class_cook -1 1
-1 26864 2617
1 125 345
```

```
predicted_cook <- predict(fit_outliers, train_cook, type="response")
p_class_cook <- ifelse(predicted_cook >.5,"1","-1")
confusion_mat_train_cook <- table(p_class_cook, train_cook[['df_label_cook']])
confusion_mat_train_cook</pre>
```

```
p_class_cook -1 1
-1 26946 2617
1 116 370
```

```
TP <- confusion_mat_test_cook[1,1]
TN <- confusion_mat_test_cook[2,2]
FP <- confusion_mat_test_cook[1,2]
FN <- confusion_mat_test_cook[2,1]
Accuracy_test <- (TP + TN) / (TP + FP + TN + FN)
classification_error_test <- 1-Accuracy_test
paste0('The classification error rate for the testing set is:
',classification_error_test)</pre>
```

"The classification error rate for the testing set is: 0.0915495309004708"

```
TP <- confusion_mat_train_cook[1,1]
TN <- confusion_mat_train_cook[2,2]
FP <- confusion_mat_train_cook[1,2]
FN <- confusion_mat_train_cook[2,1]
Accuracy <- (TP + TN) / (TP + FP + TN + FN)
classification_error_train <- 1-Accuracy
paste0('The classification error rate for the training set
is:',classification_error_train)</pre>
```

"The classification error rate for the training set is: 0.0909514459715798"

Let's compare the classification error rates with the outliers removed to when the outliers were included.

Testing Set Error rates

With outliers: 0.09408

Without outliers: 0.09154

Training Set Error rates

With outliers: 0.09364

Without outliers: 0.09095

After performing cooks distance and removing the outliers, the errors rates for both the training and testing decreased by a small margin. Due to the outliers being removed, it is expected that the error rates would decrease.

Removing outliers with cooks distance (Logistic Regression on K vs not K)

The above process is repeated but with Logistic Regression. The same train_cook data set is used to fit the model and remove outliers.

```
cook_log <- glm(as.factor(df_label_cook) ~ ., data = train_cook, family = 'binomial')
cooksDistance_log <- cooks.distance(cook_log)
sample_size <- nrow(train_cook)
plot(cooksDistance_log, pch="*", cex=2, main="Cooks distance Log")
abline(h = 4/sample_size, col="red")

n <- nrow(train_cook)
outliers <- as.numeric(names(cooksDistance_log)[(cooksDistance_log > (4/n))])
index <- data.frame(outliers)
train_cook_removed_log <- train_cook[!(row.names(train_cook) %in% index$outliers),]
cook_log_removed <- glm(as.factor(df_label_cook) ~ ., data = train_cook_removed_log,
family = 'binomial')</pre>
```



```
predicted_cook <- predict(cook_log_removed, test_cook, type="response")
p_class_cook <- ifelse(predicted_cook > .5,"1","-1")
confusion_mat_test_cook <- table(p_class_cook, test_cook[['df_label_cook']])
confusion_mat_test_cook</pre>
```

```
p_class_cook -1 1
-1 26349 740
1 640 2222
```

```
predicted_cook <- predict(cook_log_removed, train_cook, type="response")
p_class_cook <- ifelse(predicted_cook >.5,"1","-1")
confusion_mat_train_cook <- table(p_class_cook, train_cook[['df_label_cook']])
confusion_mat_train_cook</pre>
```

```
p_class_cook -1 1
-1 26612 631
1 450 2356
```

```
TP <- confusion_mat_test_cook[1,1]
TN <- confusion_mat_test_cook[2,2]
FP <- confusion_mat_test_cook[1,2]
FN <- confusion_mat_test_cook[2,1]
Accuracy_test <- (TP + TN) / (TP + FP + TN + FN)
classification_error_test <- 1-Accuracy_test
paste0('The classification error rate for the testing set is:
',classification_error_test)</pre>
```

```
"The classification error rate for the testing set is: 0.046075256251878"
```

```
TP <- confusion_mat_train_cook[1,1]
TN <- confusion_mat_train_cook[2,2]
FP <- confusion_mat_train_cook[1,2]
FN <- confusion_mat_train_cook[2,1]
Accuracy <- (TP + TN) / (TP + FP + TN + FN)
classification_error_train <- 1-Accuracy
paste0('The classification error rate for the training set is:
',classification_error_train)</pre>
```

```
"The classification error rate for the training set is: 0.0359745748610603"
```

Let's compare the classification error rates with the outliers removed to when the outliers were included.

Testing Set Error rates

With outliers: 0.04607

Without outliers: 0.04607

Training Set Error rates

With outliers: 0.0384

Without outliers: 0.03597

After performing cooks distance and removing the outliers, the errors rates for the training set decreased, which was expected because the outliers being removed would have made the fit more accurate. However, the testing error rate stayed exactly the same.

plot(cook_log_removed, lwd = '2', col = 'coral1')

Repeating part 2

Part 2 will be repeated with all digit pairs with the outliers removed. This is for linear regression.

```
label = list()
 list df = list()
 list of pairs = list()
 for (x in 0:9) {
   corr = x
   list to nine \leftarrow list(0,1,2,3,4,5,6,7,8,9)
   second loop list <- list to nine[-c(corr+1)]</pre>
  for (y in 0:9) {
     if (y > x) {
       incorr = y
       pair = list()
       pair <- append(pair,corr)
pair <- append(pair,incorr)</pre>
       list of pairs[[length(list of pairs) + 1]] <- pair</pre>
       df_label2 <- replace(train_Labels, which((train_Labels == corr) %in% TRUE), 1)</pre>
       df_label2 <- replace(df_label2, which((train_Labels == incorr) %in% TRUE), -1)</pre>
       list df[[length(list df) + 1]] <- df label2</pre>
   }
}
list of df lin = list()
for (one_pair in list_df) {
   df y2 <- data.frame(one pair)
   df\overline{2} \leftarrow cbind(train digits, df y2)
   df2 <- subset(df2, (one_pair==1|one_pair==-1))</pre>
   list of df lin[[length(list of df lin) + 1]] <- df2
```

The code has been modified to add cooks distance and remove the outliers.

```
set.seed(1)
train_error <- list()</pre>
 test error <- list()
 for (df for split in list of df lin) {
   set.seed(1)
  sample <- sample(c(TRUE, FALSE), nrow(df for split), replace=TRUE, prob=c(0.5,0.5))</pre>
   train cook <- df for split[sample, ]</pre>
   test cook <- df_for_split[!sample, ]</pre>
  fit train01 <- lm(train cook$one pair ~ ., data = train cook)
  cooksDistance <- cooks.distance(fit train01)</pre>
  n <- nrow(train cook)
  outliers <- as.numeric(names(cooksDistance)[(cooksDistance > (4/n))])
   index <- data.frame(outliers)</pre>
   train_cook_removed <- train_cook[!(row.names(train_cook) %in% index$outliers),]</pre>
  fit outliers <- lm(train cook removed$one pair ~ ., data = train cook removed)
  predicted01 <- predict(fit outliers, test cook, type="response")</pre>
  p class01 <- ifelse(predicted01 >.5,"1","-1")
   confusion_mat_test <- table(p_class01, test_cook[['one_pair']])</pre>
 predicted <- predict(fit_outliers, train_cook, type="response")
p_class <- ifelse(predicted >.5,"1","-1")
   confusion mat train <- table(p class, train cook[['one pair']])</pre>
  TP <- confusion mat test[1,1]
  TN <- confusion_mat_test[2,2]
   FP <- confusion mat test[1,2]
  FN <- confusion mat test[2,1]
   Accuracy_test <- (TP + TN) / (TP + FP + TN + FN)
```

```
classification_error_test <- 1-Accuracy_test
  test_error[[length(test_error) + 1]] <- classification_error_test

TP <- confusion_mat_train[1,1]
  TN <- confusion_mat_train[2,2]
  FP <- confusion_mat_train[1,2]
  FN <- confusion_mat_train[2,1]
  Accuracy <- (TP + TN) / (TP + FP + TN + FN)
  classification_error_train <- 1-Accuracy
  train_error[[length(train_error) + 1]] <- classification_error_train</pre>
```

```
suppressWarnings({

my_mat_log <- matrix(, ncol = 10, nrow=10)

my_mat_log[lower.tri(my_mat_log, diag = FALSE)] <- test_error[1:45]
my_mat_log <- matrix(my_mat_log, ncol = 10, nrow=10)
my_mat_log[upper.tri(my_mat_log, diag = FALSE)] <- train_error[1:45]
my_mat_log_1 <- rbind(c(0:9), my_mat_log)
my_mat_log_2 <- cbind(c(-1:9), my_mat_log_1)
my_mat_log_2

})</pre>
```

```
-1
            1
           1
  0.0214599 NA 0.03987173 0.06054535 0.06431287 0.01572529 0.0217633 0.06689072 0.05357524 0.0892318
                          0.04792816 0.02733067 0.0236755 0.06548635 0.03664583 0.03546258 0.05013339
   0.05137791 0.0275086 NA
2
   0.04914734 0.0247883 0.07868852 NA 0.02364329 0.01576684 0.04338395 0.03564144 0.02271986 0.01666313
   0.03825078 0.01967884 0.04795108 0.04319149 NA
                                             0.02201209 0.05300589 0.07790493 0.04208395 0.03965667
   0.07076145 0.02956067 0.05919754 0.0849446 0.05018751 NA 0.04990279 0.03453807 0.04584152 0.01728982
   0.05246253 0.0205297 0.0525641 0.04693294 0.02880791 0.05132432 NA
                                                              0.05238845 0.07130454 0.04111632
   0.02703556 0.02471019 0.04284364 0.06106314 0.0510409 0.05405697 0.02062507 NA 0.04041416 0.06443408
   0.05661605
   0.03131346 0.02470294 0.04119091 0.05861193 0.07232536 0.05901711 0.02490647 0.07773109 0.06500751 NA
```

I expected the error rates for both the training and testing datasets to decrease. Compared to the error rate matrix with outliers, most of the error rates did decrease. For example, the highest error rate was 0.12 the pair 5 and 8. With the outliers removed, the error rate is 0.11. The pair 5 and 8 still has the highest error rate in the testing data set.

The training error rates also mostly decrease with a few exceptions. The lowest error rate in the training set is 0.015 for the pair 0 and 1. This is the pair that had the lowest error rate before when the outliers were included.

```
set.seed(1)
train_error <- list()
test_error <- list()
for (df_for_split in list_of_df_lin){
```

```
set.seed(1)
sample <- sample(c(TRUE, FALSE), nrow(df_for_split), replace=TRUE, prob=c(0.5,0.5))
train_cook <- df_for_split[sample, ]
test_cook <- df_for_split[!sample, ]
fit_train01 <- glm(as.factor(one_pair) ~ ., data = train_cook, family = 'binomial')
cooksDistance <- cooks.distance(fit_train01)
outliers <- as.numeric(names(cooksDistance)[(cooksDistance > (4/n))])
index <- data.frame(outliers)
train_cook_removed <- train_cook[!(row.names(train_cook) %in% index$outliers),]
fit_outliers <- glm(as.factor(one_pair) ~ ., data = train_cook_removed, family = 'binomial')
predicted01 <- predict(fit_outliers, test_cook, type="response")
p_class01 <- ifelse(predicted01 >.5,"1","-1")
confusion_mat_test <- table(p_class01, test_cook[['one_pair']])
predicted <- predict(fit_outliers, train_cook, type="response")</pre>
p_class <- ifelse(predicted >.5,"1","-1")
confusion_mat_train <- table(p_class, train_cook[['one_pair']])
TP <- confusion_mat_test[1,1]
TN <- confusion_mat_test[2,2]
FP <- confusion_mat_test[1,2]
FN <- confusion_mat_test[2,1]
Accuracy_test <- (TP + TN) / (TP + FP + TN + FN)
classification_error_test <- 1-Accuracy_test
test_error[[length(test_error) + 1]] <- classification_error_test
TP <- confusion_mat_train[1,1]
TN <- confusion_mat_train[2,2]
FP <- confusion_mat_train[1,2]
FN <- confusion_mat_train[2,1]
Accuracy \langle (TP + TN) / (TP + FP + TN + FN) \rangle
classification_error_train <- 1-Accuracy
train_error[[length(train_error) + 1]] <- classification_error_train
```

```
suppressWarnings({

my_mat_log <- matrix(, ncol = 10, nrow=10)

my_mat_log[lower.tri(my_mat_log, diag = FALSE)] <- test_error[1:45]

my_mat_log <- matrix(my_mat_log, ncol = 10, nrow=10)

my_mat_log[upper.tri(my_mat_log, diag = FALSE)] <- train_error[1:45]

my_mat_log_1 <- rbind(c(0:9), my_mat_log)

my_mat_log_2 <- cbind(c(-1:9), my_mat_log_1)

my_mat_log_2

})
```

-1	0	1	2	3	4	5	6	7	8	9
0	NA	0.001273683	0.06090055	0.001195652	0.001379457	0.003606146	0.09073421	0.005189578	0.04614229	0.001965066
1	0.006735589	NA	0.006520577	0.009571508	0.02053232	0.001444159	0.00127085	0.03024718	0.002774813	0.05233143
2	0.08449049	0.03454204	NA	0.0009737098	0.001404343	0.001490066	0.01397184	0.001940073	0.001006824	0.002890173
3	0.03294143	0.02232487	0.04791116	NA	0.003173596	0.00159261	0.003036876	0.0009661836	0.002391564	0.001061346
4	0.01998496	0.01904912	0.03003647	0.01925532	NA	0.003100295	0.006000667	0.1077245	0.003942041	0.008257279
5	0.04373146	0.02025151	0.0340934	0.1247013	0.0346349	NA	0.002808382	0.001283148	0.01036892	0.0006483683
6	0.02944325	0.01676853	0.03098291	0.01875199	0.03364506	0.03912518	NA	0.002309711	0.01258954	0.0118236
7	0.02503682	0.02516779	0.0305576	0.03900967	0.04163584	0.02826931	0.02104599	NA	0.002672011	0.01632047
8	0.05359252	0.1114083	0.06786748	0.07995747	0.04734174	0.08146842	0.04491243	0.04139388	NA	0.005097614
9	0 02629048	0 02095059	0 02966599	0 03872196	0 05172229	0 04113646	0 0242651	0 05588235	0 02821283	NΔ

For the logistic error rate matrix, most of the error rates decreased after removing the outliers. However, there are a few that increased. The lowest error rate for testing is the pair 0 and 1. The highest error rate for the testing was for pairs 3 and 5. Before, the training set had a lot of 0s as error rates, which was unexpected. Here none of the error rates are 0, however they are still very small.