

OCITS-Seminar Implementation of link prediction on facebook data

using Dgraph for data storage

Konstantin Igin Matr. Nr. 375455 31.07.2020 SS2020

Contents

- Motivation
- Introduction
- Environment setup
 - Dgraph setup
 - Dataset selection, processing and upload
- Implementation
- Results
- Conclusion/Outlook

Motivation

Amount of graph structure applications grows continuously

Motivation

Amount of graph structure applications grows continuously

- Processing of data stored using traditional approaches (SQL) into an actual graph structure might require extra ressources
- Data Storages able to store data in a more native format required

Motivation

Amount of graph structure applications grows continuously

- Processing of data stored using traditional approaches (SQL) into an actual graph structure might require extra ressources
- Data Storages able to store data in a more native format required

- Link prediction used widely these days
- It is particularly interesting how existing solutions of graph databases are optimized for practical use cases (like link prediction)

Introduction

Link prediction overview [1]

Used to predict what edges are most likely to appear in a given graph

- Process usually consists of following steps:
 - Given a graph
 - Split data into a training set and a test set
 - Choose link prediction algorithm and use it on training set
 - Check accuracy compared to a test set
 - Compare with other link prediction algorithms

Link prediction overview [2] - Graph splitting

- Labels need to be defined values of 1 or 0 (edge, non edge)
- Solution: randomly hide some of the edges from graph
- Hidden edges represent features with target variable of value 1
- Non-existent edges represent features with target variable of value 0

A-C	0
A-E	0
В-Е	0
B-D	0

A-B	1
E-D	1

Link prediction overview [3] - Algorithms

The Jaccard coefficient of nodes X and Y is

$$\mathrm{jacc_coeff}(X,Y) = \frac{|N(X) \cap N(Y)|}{|N(X) \cup N(Y)|}$$

The Resource Allocation index of nodes *X* and *Y* is

$$\operatorname{res_alloc}(X,Y) = \sum_{u \in N(X) \cap N(Y)} \frac{1}{|N(u)|}$$

The Adamic-Adar index of nodes X and Y is

$$\operatorname{adamic_adar}(X,Y) = \sum_{u \in N(X) \cap N(Y)} \frac{1}{\log(|N(u)|)}$$

Preferential Attachment: the score *Sxy* depends on the degree of node *x* and *y* respectively

$$S_{xy} = k_x \cdot k_y$$

K-shortest-path prediction

$$S_k = \sum_{i=0}^{k-1} KSP(s,t,k)[i]$$

How to evaluate models/algorithms performance

Precision

Precision = Total number of documents retrieved that are relevant/Total number of documents that are retrieved.

Recall

Recall = Total number of documents retrieved that are relevant/Total number of relevant documents in the database

AP

Average Precision is method to evaluate the precision and ranking of a predicted list of retrieved objects

$$AP(q) = \frac{\sum_{k=1}^{n} \left[P(k) \times rel(k) \right]}{n}$$

Dgraph setup

- Dgraph entity was setup locally using Docker
- Following schema initiated:

 Primitive dgraph setup used: single zero, single group with single alpha.

Cluster Management

Groups (1)

Dataset [1]

https://snap.stanford.edu/data/ego-Facebook.html

- Nodes represent persons, edges are undirected and represent relation ("friend")
- Consists of 4 different file types for each file representing a single node's perspective

Dataset statistics		
Nodes	4039	
Edges	88234	
Nodes in largest WCC	4039 (1.000)	
Edges in largest WCC	88234 (1.000)	
Nodes in largest SCC	4039 (1.000)	
Edges in largest SCC	88234 (1.000)	
Average clustering coefficient	0.6055	
Number of triangles	1612010	
Fraction of closed triangles	0.2647	
Diameter (longest shortest path)	8	
90-percentile effective diameter	4.7	

Dataset [2]

- Data transformed into .rdf format using custom <u>python script</u> and written down into separate files
- Features were used as separate nodes, which allowed to increase amount of nodes and edges in graph
- Firstly nodes written to features_facebook.rdf and persons_facebook.rdf files using blank node ids
- This files were used by live loader to load data into dgraph
- Later loaded uids were used to add edges using live loader

Implementation

Data preparation & Details

- We will try to predict [a] possible new connections between persons
- & [b] new connections between persons and features
- Populate networkx Graph from Dgraph
- Average time required (mean of 100 calculations on MacBook Air 13" mid 2012):
 [a] 5.71 sec. [b] 5.21 sec.

```
# prepare data
G = nx.Graph() # normal graph
G_persons = nx.Graph() # graph only with persons
for row in tqdm(features):
    feature = row['name']
    G.add_node(feature)
for row in tqdm(persons):
    person = row['uid']
    G.add_node(person)
                                                                     query)
    G_persons.add_node(person)
for row in tqdm(persons):
    person = row['uid']
    if 'tracks' in row:
        tracks = row['tracks']
        for feat in tracks:
            G.add_edge(person, feat['name'])
            # edges can be provided with additional attributes
            G[person][feat['name']]['type'] = 'tracks'
    if 'follows' in row:
                                                                     query)
        follows = row['follows']
        for pers in follows:
            G.add_edge(person, pers['uid'])
            G_persons.add_edge(person, pers['uid'])
             # edges can be provided with additional attributes
            G[person] [pers['uid']] ['type'] = 'follows'
            G_persons[person][pers['uid']]['type'] = 'follows'
```

def getAllPersons(self) -> str:

Calculate 0's - negative samples - graph complement

- Non-existent edges can be taken from complement graph
- Take complement of graph containing only
 - [a] persons and their connections
 - o [b] persons/features connections
- Networkx provides functionality to calculate complement graph:

Results:

- [a] 8.066.507 non-existent person's connections edges
- [b] 5.144.780 non-existent connections between persons and features

Calculate 1's - positive samples - split graph

- Not to disconnect the graph
- Amount of nodes should remain the same
- Results:
 - [a] 84.196 existent removable person's connections edges
 - [b] 35.974 existent removable connections

```
''' REMOVE LINKS FROM CONNECTED NODE PAIRS TO CREATE TRAINING SET BASIS '''
print("Working on removable edges in graph...")
omissible_links = [] # contains removable edges
if to calculate removable:
    G_temp = G.copy()
    for e in tqdm(G.edges):
        src = e[0]
       dst = e[1]
       if not filter_removable(src, dst, prediction_mode):
            continue
       # remove nodes pair
       G temp.remove edge(src, dst)
       # check if there is no splitting of graph and number of nodes is same
       if nx.number_connected_components(G_temp) == 1 and len(G_temp.nodes) == initial_node_count:
            # prepare as a line
           omissible_links.append(src + " " + dst + "\n")
           G_temp.add_edge(src, dst)
    # save removable links to some file
   with open(removable_links_file, "a") as f:
       f.writelines(omissible links)
    # read removables from file
   with open(removable_links_file, 'r') as f:
       for line in tqdm(f):
           edge = line.strip().split(" ")
            src, dst = edge[0], edge[1]
           if filter_removable(src, dst, prediction_mode):
                omissible links.append((src, dst))
print("Removable edges calculated...")
G_train = G.copy()
```

Networkx provided algorithms

- Networkx provides functionality to compute many popular metrics
- We selected 4 of them: Jaccard Coefficients, Adamic Adar Index, Resource Allocation Index, Preferential Attachment
- Plus: k-shortest-paths-prediction custom implementation
- GraphQL+- has own k-shortest-paths query

```
def k_shortest_prediction(G, src, dst, k):
    shortests = nx.shortest_simple_paths(G,
src, dst)
    res = 0
    for c, path in enumerate(shortests):
        res += 1/sqrt(len(path))
        if c == k-1:
            break
    return res
```

Prediction set

[a] 8.066.507 non-existent person's connections edges

[b] 5.144.780 non-existent connections between persons and features

[a] 84.196 existent removable person's connections edges

[b] 35.974 existent removable connections

[a] The ratio link/no link is ~1%

[b] The ration link/no link is < 1%

Prediction set

[a] 8.066.507 non-existent person's connections edges

[b] 5.144.780 non-existent connections between persons and features

[a] 84.196 existent removable person's connections edges

[b] 35.974 existent removable connections

- Prediction performed on different
 numbers of samples between 1000 and
 80.000 for [a] and 35.000 for [b]
- For each sample corresponding edges were removed from the graph

- [a] The ratio link/no link is ~1%
- [b] The ration link/no link is < 1%

```
interface = DgraphInterface()

''' SETTINGS '''
numbers = [1000, 5000, 10000, 25000, 50000, 80000]_# how many nodes to take for both labels (balanced sets)
predict_persons = True

interface = DgraphInterface()
g, _ = download_graph(predict_persons, interface)

for number in numbers:
```

Results

[a] Performance measures

[a] Calculation times measures

[a] Calculation times measures between k-shortests

[b] Performance measures

[b] Calculation times measures

[b] Calculation times measures between k-shortests

GraphQL+- Implementation k-shortest-path queries

```
nsole
                                                         Q { A as var(func: eq(id, "345")) B as var(func: eq(id, "169"))
             Mutate ≢
                                      x Clear ▶ Run
Query
1 {
                                                                      </>
JSON
                                                          * Graph
                                                                                >_ Request
                                                                                                 G Geo
      A as var(func: eq(id, "345"))
      B as var(func: eq(id, "169"))
                                                              "_path_": [
      path as shortest(from: uid(A), to: uid(B),
     numpaths: 3) {
                                                                  "follows": {
        follows
                                                                    "follows": {
                                                                      "uid": "0xfffd8d67d9be8981"
      path(func: uid(path)) {
                                                                    },
                                                                    "uid": "0xfffd8d67d9c0d372"
11
12
                                                                  "uid": "0xfffd8d67d9c0d375",
                                                                  "_weight_": 2
                                                                  "follows": {
                                                                    "follows": {
                                                                      "uid": "0xfffd8d67d9be8981"
                                                                    "uid": "0xfffd8d67d9c05e40"

    Variable

                                                                  "uid": "0xfffd8d67d9c0d375",
                                                                  " weight ": 2
   { A as var(func: eq(id, "345")) B as var(func: eq(id, "16...
```

```
get_k_shortest_pathes(self, k: int, src: str, dst: str):
variables = {'$src': src, '$dst': dst, '$k': str(k)}
res = self.client.txn(read only=True).query(query, variables=variables)
latency = res.latency
return ppl, latency
```

GraphQL+- Implementation k-shortest-path queries

Problem: no way to sum weights using queries (GraphQL+-)

- "Queries run concurrently, achieving low-latency and better throughput"
- Calculating weights for each requested edge manually requires a lot of resources

K-Shortests-Paths on Dgraph

- Remark: the simplest form of
 Dgraph deployment used
- Time of dgraph-networkx
 transformation not taken in count
- But: only processing delay taken in count for dgraph calculation

Outlook

- https://github.com/kostjaigin/OCITS_Dgraph implementations
- Algorithms/Scores we applied are usually used as features for ML models
- Simplest form of Dgraph deployment
- Basic knowledge in the field of link prediction gained
- GraphQL+- implementations of considered algorithms

Sources

- 1. A. Hogan, E. Blomqvist, M. Cochez, C. D'Amato, G. De Melo, C. Gutierrez, J. E. Labra Gayo, S. Kirrane, S. Neuemaier, A. Polleres, R. Navigli, A. Ngonga Ngomo, S. M. Rashid, A. Rula, L. Schmelzeisen, J. Sequeda, S. Staab and A.Zimmermann, "Knowledge Graphs", 2020.
- 2. A.Lebedev, J. Lee, V. Rivera, and M. Mazzara, "Link Prediction using Top-k Shortest Distances", Innnopolis University, Russia, 2017.
- 3. J. McAuley and J. Leskovec, "Learning to Discover Social Circles in Ego Networks", NIPS, 2012.
- 4. K.M. Ting, "Precision and Recall", in *Sammut C., Webb G.I. (eds) Encyclopedia of Machine Learning*. Springer, Boston, MA., 2010.
- 5. L. Sanders, O. Woolley, I. Moize and N. Antulov-Fantulin, "Introduction to Link Prediction. Machine Learning and Modelling for Social Networks", ETH Zürich, 2020.
- 6. Neo4j.Inc, "Overcoming SQL Strain and SQL Pain", *Go.neo4j.com*, 2018. [Online]. Available: https://go.neo4j.com/rs/710-RRC-335/images/WP-OvercomingSQLstrain.pdf?_ga=2.167365822.1441496647.1596201298-1505 888731.1596201298. [Accessed: 31- Jul- 2020].
- 7. T. Akiba, T. Hayashi, N. Nori, Y. Iwata and Y. Yoshida ", "Efficient Top-k Shortest-Path Distance Queries on Large Networks by Pruned Landmark Labeling" in *Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence*, Austin, Texas, 2015.