IOT BASED SMART CROP PROTECTION SYSTEM FOR AGRICULTURE

Submitted by

KARTHIKEYAN A (923819104019)
ABEESH K (923819104001)
PANDIYARAJAN A (923819104033)
SURIYAPRAKASH P (923819104046)

BACHELOR OF ENGINEERING

in

COMPUTER SCIENCE AND ENGINEERING

MANGAYARKARASI COLLEGE OF ENGINEERING, MADURAI 625 402

ANNA UNIVERSITY:: CHENNAI 600 025

TABLE OF CONTENTS

CHAPTER NO	TITLE	PAGE NO				
	INTRODUCTION					
1	Project Overview Purpose	1				
	LITERATURE SURVEY					
2	Existing System	2				
	References					
	Problem Statement Definition					
2	IDEATHON & PROPOSED SOLUTION					
3	3 Empathy Map Canvas					
	Ideathon & Brainstorming					
	INTRODUCTION Project Overview Purpose LITERATURE SURVEY Existing System References Problem Statement Definition IDEATHON & PROPOSED SOLUTION Empathy Map Canvas					
	Problem Solution Fit					
4						
4	Functional Requirement	7				
	4 REQUIREMENT ANALYSIS Functional Requirement Non-Functional Requirement					
5	PROJECT DESIGN					
S	8					
6	PROJECT PLANNING & SCHEDULING					
Ideathon & Brainstorming Proposed Solution Problem Solution Fit REQUIREMENT ANALYSIS Functional Requirement Non-Functional Requirement PROJECT DESIGN Data Flow Diagrams Solution & Technical Architecture PROJECT PLANNING & SCHEDULING Sprint Planning, Schedule & Estimation Sprint Delivery Schedule Reports From JIRA		11				
		11				
	Reports From JIRA					
7		13				
		-				
8						
		21				
	User Acceptance Testing					

9	RESULTS 9.1 Performance Metrics	23
10	ADVANTAGES & DISADVANTAGES Advantages Disadvantages	24
11	CONCLUSION	25
12	FUTURE SCOPE	25
13	APPENDIX	26

Introduction

Agriculture is a pillar of India's economy and deserves security. Security and protection are required at the very initial stage, like protection from attacks of rodents or insects in the fields and as well as grain stores. Those challenges also need to be taken into account. The security systems that are used today are not smart enough to deliver real-time notification after detecting the problem. Climate change, soil erosion and loss of biodiversity also increase the pressure of farmers and a drastic decrease in the crop production.

Project Overview

An intelligent crop protection system helps the farmers in protecting the crop from the animals and birds which destroy the crop. This system also helps farmers to monitor the soil moisture levels in the field and also the temperature and humidity values near the field. The motors and sprinklers in the field can be controlled using the mobile application. The device will detect the animals and birds using the Clarified service. If any animal or bird is detected the image will be captured and stored in the IBM Cloud object storage. It also generates an alarm and avoid animals from destroying the crop The image URL will be stored in the IBM Cloudant DB service. The device will also monitor the soil moisture levels, temperature, and humidity values and send them to the IBM IOT Platform. The image will be retrieved from Object storage and displayed in the web application. A web application is developed to visualize the soil moisture, temperature, and humidity values.

Purpose

The Main motive of this project is to protect the various agriculture fields from factors such as birds, animals, insects and other climatic conditions. This system helps the crops to protect from ravaging animals also birds feeding into newly growing crops, This system can also find the increase in water in level during extreme rain. With this system the surrounding temperature, humidity, moisture content can also be detected.

LITERATURE SURVEY

Existing problem

As new technologies has been introduced and utilized in modern world, there is a need to bring advancement in the sector of agriculture also. Various Researches have been undergone to enhance crop cultivation and are widely used. So as to enhance the crop productivity efficiently, it is necessary to monitor the environmental conditions in and around the field. The parameters that have to be exact monitored to enhance the yield are soil characteristics, weather conditions, moisture, temperature, etc., Internet of Things (IOT) is being utilized in a number of real time applications. The introduction of Internet of thing (IOT) along with the sensor network in farmer furbishes the traditional way of farming. Online crop monitoring the use of IOT helps the farmers to stay related to his subject from somewhere andanytime. Various sensors are used to screen and collect records about the area conditions. Collectively the about the farm circumstance is disbursed to the farmer thru GSM technology.

References

- 1. Official webpage of the European Smart crop protection System at: http://effis.jrc.ec.europa.eu/
- 2. Official webpage of the Copernicus Earth Observation Programme at: http://www.copernicus.eu
- 3. Forest Fires in Europe, Middle East and North Africa 2016, JRC Science for policy report,BN 978-92-79-71292-0, ISSN 1831-9424, doi:10.2760/17690, availabe at: http://effis.jrc.ec.europa.eu/media/cms page media/40/Smart Crop in Europe Middle east and North Africa 2016 final pdf JZU7He L.pd

Problem Statement Definition

The problem of wild life attack on crops i.e., Animals, Birds cause a lot of damage to crops by running over them, eating and completely vandalizing them. This lead to poor yield of crops and significant financial loss to the owners of the farmland.

IDEATION AND PROPOSED SOLUTION

Empathy Map Canvas

An empathy map is a collaborative tool teams can use to gain a deeper insight into their customers. Much like a user persona, an empathy map can represent a group of users, such as a customer segment.

Big Ideas

It consists of all the ideas of instruments and equipments that we are going to implement in this project.

Idea Prioritization

It deals with the prioritizing of the big ideas in order of highest to lowest likes.

Problem Solution Fit

Proposed Solution

S.No	Parameter	Description
1.	Problem Statement (Problem to be solved)	IOT based smart crop protection system for agriculture
2.	Idea / Solution description	Animals are some concepts. This system is microcontroller- IOT-Based Crop Protection System Against Birds and Wild based and uses a microcontroller from the PIC family. To identify wild animals entering the field, this device employs a motion sensor. using Arduino, be frequently found in mobile devices.
3.	Novelty / Uniqueness	Object detection using Artificial intelligence

REQUIREMENT ANALYSIS

Functional Requirements

FR No.	Functional Requirement (Epic)	Sub Requirement (Story / Sub-Task)
FR-1	User registration	Registration through Gmail Create an account Follow the instructions
FR-2	User Confirmation	Confirmation via Email Confirmation via OTP
FR-3	Interface sensor	Interface sensor and the application so if animals enter the field it gives alarm.
FR-4	Accessing datasets	Datasets are retrieved from Cloudant DB
FR-5	Web application	Motors and sprinklers in the field can be controlled by web application.

Non-Functional Requirements

FR No.	Non-Functional Requirement	Description
NFR-1	Usability	The smart protection system defines that this project helps farmers to protect the farm.
NFR-2	Security	We have designed this project to secure the crops from animals.
NFR-3	Reliability	This project will help farmers in protecting their fields and save them from significant financial losses. This will also help them in achieving better crop yields thus leading to their economic well being.
NFR-4	Performance	IOT devices and sensors are used to indicate the farmer by a message when animals try to enter into the field and also we use an SD card module that helps to store a specified sound to scare the animals.
NFR-5	Availability	By developing and deploying resilient hardware and software we can protect the crops from wild animals.
NFR-6	Scalability	Since this system uses computer vision techniques integrated with IBM cloudant services helps efficiently to retrieve images in large scale thus improving scalability

PROJECT DESIGN

Data Flow Diagram

Solution & Technical Architecture

Customer Journey Map

PROJECT PLANNING PHASE

Sprint Planning, Schedule & Estimation

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint-1	Registration	USN-1	As a farmer, I can register for the application by entering my email, password, and Confirming my password.	2	High	K Abeesh
Sprint-1	User Confirmation	USN-2	As a farmer, I will receive confirmation email once I have registered for the application	1	Medium	P Suriyaprakash
Sprint-1	Login	USN-3	As a farmer, I can log into the application by entering email & password	2	High	A Karthikeyan
Sprint-2	Interface Sensor	USN-1	A sensor interface is a bridge between a device and any attached sensor. The interface takes data collected by the sensor and outputs it to the attached device.	2	High	A Karthikeyan A Pandiyarajan
Sprint-3	Coding (Accessing datasets)	USN-1	Coding is a set of instructions used to manipulate information so that a certain input results in a particular output.	2	High	K Abeesh A Karthikeyan A Pandiyarajan P Suriyaprakash
Sprint-4	Web Application	USN-1	As a Farmer, I will show the current Information of the Field.	1	Medium	K Abeesh P Suriyaprakash

Sprint Delivery Schedule

Sprint	Total Story	Duratio	Sprint Start	Sprint End Date	Story Points	Sprint Release
	Points	n	Date	(Planned)	Completed (as	Date (Actual)
					on Planned	
					End Date)	
Sprint-1	20	4 Days	24 Oct 2022	27 Oct 2022	20	29 Oct 2022
Sprint-2	20	5 Days	28 Oct 2022	01 Nov 2022	20	04 Nov 2022
Sprint-3	20	8 Days	02 Nov 2022	09 Nov 2022	20	11 Nov 2022
Sprint-4	20	9 Days	10 Nov 2022	18 Nov 2022	20	19 Nov 2022

Reports From JIRA

CODING AND SOLUTION

7.1 Feature

```
import cv2
import numpy as np
importwiotp.sdk.device
import playsound
import random
import time
import
datetime
import
ibm boto3
from ibm botocore.client import Config,
ClientErrorfrom cloudant.client import
Cloudant
from cloudant.error import CloudantException
from cloudant.result import Result, ResultByKey
from clarifai grpc.channel.clarifai channel import
ClarifaiChannel from clarifai grpc.grpc.api import
service pb2 grpc
stub =
service pb2 grpc.V2Stub(ClarifaiChannel.get grpc channel())
from clarifai grpc.grpc.api import service pb2,
resources pb2
from clarifai grpc.grpc.api.status import status code pb2
# Constants for IBM COS values
COS ENDPOINT = "https://s3.jp-tok.cloud-object-storage.appdomain.cloud" # Current list
avaiable at https://control.cloud-object-storage.cloud.ibm.com/v2/endpoints
COS API KEY ID =
"9Vp5U7vuntgNduJwVKZXDn7f4wKRPaDJT5a1kiDXapEP" # eg
"W00YiRnLW4a3fTjMB-odB-2ySfTrFBIQQWanc--P3byk"
COS AUTH ENDPOINT =
"https://iam.cloud.ibm.com/identity/token" COS RESOURCE CRN
= "crn:v1:bluemix:public:cloud-object-
storage:global:a/9b399604cf904a88a997a81684b97184:24b5d2b1-5259-4c70-83ac-
24552802d92e::" # eg "crn:v1:bluemix:public:cloud-object-
storage:global:a/3bf0d9003abfb5d29761c3e97696b71c:d6f04d83-6c4f- 4a62-a165-
696756d63903::"
```

clientdb=Cloudant("apikey-v2-thovtw7l8mtpl3w17or63t37f6a4wivqvvgg4gkhi83",

```
"89c52b4f4fdd6459155676646ee45a3a", url="https://apikey-v2-
 thovtw7l8mtpl3w17or63t37f6a4wivqvvgg4gkhi83:89c52b4f4fdd6459155676646ee45a3a@a6f904
 5f-ff4b- 4a32-a9a0-35efb443e91b-bluemix.cloudantnosqldb.appdomain.cloud")
 clientdb.connect()
 cos = ibm boto3.resource("s3",ibm api key id=COS API KEY ID,
 ibm service instance id=COS RESOURCE CRN,
          ibm auth endpoint=COS AUTH ENDPOINT,
config=Config(signature version="oauth"), endpoint url=COS ENDPOINT
 def multi part upload(bucket name, item name, file path):
 try:
   print("Starting file transfer for {0} to bucket: {1}\n".format(item_name,
   bucket name))part size = 1024 * 1024 * 5
    file threshold = 1024 * 1024 * 15
   transfer config = ibm boto3.s3.transfer.TransferConfig(
       multipart threshold=file threshold,
       multipart chunksize=part size
   )
   with open(file path, "rb") as file data:
      cos.Object(bucket name,
      item name).upload fileobj(
          Fileobj=file data,
          Config=transfer config
      print("Transfer for {0} complete:
 {1}\n".format(item_name))except ClientError as be:
   print("CLIENT ERROR:
 {0}\n".format(be))except Exception as e:
   print("Unable to complete multi-part upload: {0}".format(e))
 def myCommandCallback(cmd):
  print("Command received: %$" %
  cmd.data)command=cmd.data[
  'command' | print(command)
  if(command=='light
     on'):
     print('lighton')
  elif(command=='lig
    htoff'):
     print('lightoff')
  elif(command=='m
     otoron'):
    print('motoron')
```

```
elif(command=='m
    otoroff'):
    print('motoroff')
myConfig = {
         "identity":
          { "orgId":
          "4wq31x",
         "typeId": "raspberrypi",
         "deviceId": "demo123"
  "auth" : {
         "token": "mind1234"
client= wiotp.sdk.device.DeviceClient(config=myConfig,
logHandlers=None) client.connect()
database name ="sample"
my database = clientdb.create database(database name)
if my database.exists ():
  print(f" (database name)' successfully
cap=cv2.VideoCapture('garden.mp4')
if(cap.isOpened()==True):
  print('File
opened')else:
  print('File not found')
while(cap.isOpened():
 ret, frame = cap.read()
 gray = cv2.cvtColor(frame,
 cv2.COLOR BGR2GRAY)imS =
 cv2.resize(frame, (960, 540))
 cv2.imwrite('ex.jpg',imS)
 with open("ex.jpg",
    "rb") as f:
    file bytes =
    f.read()
    print("Alert! Alert! Animal detected")
    picname=datetime.datetime.now().strftime("%y-%m-%d-
    %H-%M") cv2.imwrite(picname+'.jpg',frame)
    multi part upload("karthi01", picname+'.jpg', picname+'.jpg')
    json document={"link":COS ENDPOINT+'/'+'karthi01'+'/'+picname+'.jp
    g'} new document = my database.create document(json document)
    if new document.exists():
```

```
print(f"Document successfully created.")
      time.sleep(5)
       detect=True moist=random.randint(0,100)
 humidity=random.randint(0,100)
 myData={'Animal':
 detect,'moisture':moist,'humidity':humidity} print(myData)
 if(humidity!=None):
   client.publishEvent(eventId="status", msgFormat="json", data=myData, qos=0, onPublish=None)
   print("Publish Ok..")
 client.commandCallback = myCommandCallback
 cv2.imshow('frame',imS)
 if cv2.waitKey(1) & 0xFF ==
   ord('q'):
 break
client.disconnect()
cap.release()
cv2.destroyAllWindo
w()
```

Device Details:

Recent Events:

Node-Red Connection and Dashboard Design:

TESTING

8.1Test cases

Test Case	Test Scenario	Test Data	Status	Comments	Executed by
	Create the IBM Cloud services				
	which are being used in this	https://cloud.ibm.com			
TC_001	project	/login	Pass	Results verified	Pandiyarajan A
10_001	Configure the IBM Cloud services	710811			,,
	which are being used in				
	completing this	https://cloud.ibm.com			
TC_002	project.	/login	Pass	Results verified	Abeesh k
	IBM Watson IoT platform acts as				
	the mediator to connect the web	https://4wq3lx.internetofthings.			
	application to IoT devices, so	ibmcloud.com/dashboard/			
	create the IBM Watson IoT	devices/browse			
TC_003	platform		Pass	Results verified	Karthikeyan A
	IoT device to the IBM cloud	Temperature, Humidity,			
	create a device in the	Soil moisture sensor values			
	IBM Watson	are generated randomly			
TC_004	IoT platform	in simulation	Pass	Results verified	Karthikeyan A
	Configure the connection convicts	https://cloud.ibm.com			
	Configure the connection security and create API keys that are used	/developer/appservice			
	in the Node-RED service for	/create- app?starterKit=59c9d5			
	accessing the IBM IoT platform	bd-4d31-3611-897a-			
TC_005	accessing the ibivitor platform	f94eea80dc9f&default	Pass	Results verified	Suriyaprakesh p
		Values of sensors and button			
TC_006	Create a Node-RED service.	for light ON/OFF is displayed	Pass	Results verified	Suriyaprakesh p
_	publish random sensor data	https://www.python.org/			
	such as temperature, humidity	downloads/release			
	level, soil moisture to	/python-370/			
TC_007	the IBM IoT platform		Pass	Results verified	Abeesh k

8.2 User Acceptance Testing

1. Purpose of Document

The purpose of this document is to briefly explain the test coverage and open issues of the [ProductName] project at the time of the release to User Acceptance Testing (UAT).

2. Defect Analysis

This report shows the number of resolved or closed bugs at each severity level, and how they were resolved

Resolution	Severity 1	Severity 2	Severity 3	Severity 4	Subtotal
By Design	7	3	6	5	21
Duplicate	4	0	3	0	7
External	1	2	0	1	4
Fixed	14	1	3	8	26
Not Reproduced	0	0	1	0	1
Skipped	0	0	1	1	2
Won't Fix	0	4	2	0	6
Totals	26	11	18	19	67

3. Test Case Analysis

This report shows the number of test cases that have passed, failed, and untested

Section	Total Cases	Not Tested	Fail	Pass
Print Engine	5	О	О	5
Client Application	30	О	О	30
Security	2	О	О	2
Outsource Shipping	1	О	О	1
Exception Reporting	7	О	О	7
Final Report Output	9	О	О	9
Version Control	1	О	О	1

CHAPTER-9 RESULTS

9.1 Performance Metrics

- 1. Requirement Identification
 - Functional Requirements
 - Non-Functional Requirements
- 2. Implementation result
 - System Implementation results
 - Results of web application Implementation
- 3. Resource utilization results
 - Foreground activities results
 - Memory usage
 - Energy usage
- 4. Background activities results

ADVANTAGES & DISADVANTAGES

10.1 ADVANTAGE:

- ✓ Easily detect the problems in the field.
- ✓ Most Accurate
- ✓ Flexible Model which can give maximized outcome
- ✓ No Specific Requirements needed to implement the model

10.2 DISADVANTAGE:

- ✓ Wind can wreak havoc on sprinklers, directing water in the wrong direction.
- ✓ The cost of maintenance becomes high whether there is a repair or not.
- ✓ If there are faulty data processing equipment or sensors then it will lead to the situation where the wrong decisions are taken.

CONCLUSION

In this project, we proposed a method for efficient crop monitoring for agricultural field. With the application of IOT the datas can be stored and retrieved from anywhere. In this proposed work, the sensor part is limited only for monitoring of crop. hence in future it can be automated for irrigation and the system can be enhanced with security of farm land under video surveillence which prevents it from obtrude intrusion.

CHAPTER-12

FUTURE SCOPE

In the current project we have implemented the project that can protect and maintain the crop. In this project the farmer monitor and controlthe field remotely. In future we can add or update few more things to this projectWe can create few more models of the same project ,so that thefarmer can have information of a entire. We can update the this project by using solar power mechanism. So that the power supply from electric poles can be replaced with solar panels. It reduces the power line cost. It will be a one time investment. We can add solar fencing technology to this project. We can use GSM technology to this project so that the farmers can get the information directly to his home through SMS. This helps the farmerto get information if there is a internet issues.

APPENDIX

Github: http://bit.ly/3GvthyG

Demo Link: http://bit.ly/3Ef0H1q