Vecka 17 Lektion 1

Använd miniräknaren i a) och e).

Höjden över marken för en varmluftsballong kan beskrivas av en funktionen h given av

$$h(t) = 2t^4 - 6t^3 + 4.5t^2$$
,

där t är tiden i timmar och h(t) är höjden i kilometer. Ballongen startar vid tiden t = 0.

Ballongresan stannar när ballongen når marken igen.

Vi kan anta att ballongen rör sig över ett totalt platt landskap.

a) Beräkna ballongens höjd över marken efter 1 timme. Rita grafen av h.

b) Vid vilken tid når ballongen marken igen?

c) Vilken är den högsta höjden som nåtts?

d) Beräkna h'(0,50).

Vad säger detta resultat om ballongens stigning?

4 poäng

3 poäng

2 poäng

3 poäng

Formen på ballongen kan approximativt skapas genom att rotera grafen av f runt x-axeln där

$$f(x) = -0.0005x^4 + 0.01x^3 + 0.001x^2 - 0.03x + 1, \quad 2 \le x \le 20.$$

Se nedanstående figur.

x och y är angivna i meter.

e) Beräkna ballongens volym V med hjälp av formeln

$$V = \pi \cdot \int_a^b (f(x))^2 dx.$$

3 poäng

a)
$$h(t) = 2t^4 - 6t^3 + 4.5t^2$$

$$h(1) = 0.5 \ Km$$

Svar: Efter en timme har ballongen stigit

b)
$$h(t) = 0$$

$$t_{end} = 1.5 \ h$$

Efter 1.5 timmar har ballongen landat

solve
$$(h'(t) = 0, t)$$
: $t = 0, t = 0.75, t = 1.5$

För att hitta det värdet av t som utgör den relevanta lokala maximipunkten gör vi en teckentabell:

	t<0	t=0	0 <t<0.75< th=""><th>t=0.75</th><th>0.75<t<1.5< th=""><th>t=1.5</th><th>1.5<t< th=""></t<></th></t<1.5<></th></t<0.75<>	t=0.75	0.75 <t<1.5< th=""><th>t=1.5</th><th>1.5<t< th=""></t<></th></t<1.5<>	t=1.5	1.5 <t< th=""></t<>
h(t)	\ 1.1	0	/ 1.3	0.6328	\ 1.5	0	/ 1.7
h'(t)	- 2.1	0	+ 2.3	0	- 2.5	0	+ 2.7
h''(t)		9		-4.5		9	

Den gula raden är överkurs. Andra-derivatan kan vara mer effektiv om man snabbt vill få reda på saker om funktionen, det kan vara värt att lära sig.

2.1: h'(-1) = -35

1.1: Eftersom derivatan är negativ är funktionen avtagande

2.3: h'(0.5) = 1

1.3: Eftersom derivatan är positiv är funktionen tilltagande

2.5: Eftersom derivatan är negativ är funktionen avtagande

2.7: h'(2) = 101.7: Eftersom derivatan är positiv är funktionen tilltagande

$$h'(0.50) = 1$$

Ballongen stiger med 1 Km/timme

e)
$$f(x) = -0.0005x^4 + 0.01x^3 + 0.001x^2 - 0.03x + 1, \{2 \le x \le 20\}$$

$$V = \pi * \int_a^b (f(x))^2 dx$$

$$\pi * \int_2^{20} (f(x))^2 dx$$

$$T = \frac{1}{2} \left(-5 \cdot \mathbf{E} \cdot \mathbf{A} \cdot x^4 + 0.01 \cdot x^3 + 0.001 \cdot x^2 - 0.03 \cdot x + 1 \right)^2 dx$$

$$V = 2030.81 \ m^3$$

2030.81