Aplicando Programação Genética na Geração de Classificadores de Sentimento

Airton Bordin Junior

airtonbjunior@gmail.com

Prof. Dr. Nádia Félix Felipe da Silva

nadia@inf.ufg.br

Prof. Dr. Celso Gonçalves Camilo Junior

celso@inf.ufg.br

Prof. Dr. Thierson Couto Rosa

thierson@inf.ufg.br

Roteiro

- Introdução
 - Contextualização
 - Problema
 - Objetivo
- Conceitos
- Materiais e Métodos
- Análise dos Resultados
- Conclusão

Introdução - Contextualização

- Web é utilizada como plataforma para debates, opiniões, avaliações, etc.
- Instituições, pessoas e empresas tem interesse em saber qual a opinião sobre determinado tema

Introdução - Contextualização

 A Análise de Sentimentos (AS) é uma linha de pesquisa que tem por objetivo a classificação das emoções de um determinado texto, geralmente como positivo, negativo ou neutro

Introdução - Problema

- [????] Aspectos inerentes ao contexto das opiniões que serão avaliadas
- Custo da construção de um classificador para um contexto específico (geralmente manual)

Introdução - Objetivo

- Classificador de sentimentos pode ser visto como um modelo
- Criação do classificador pode ser abordada como um problema de otimização
- Geração de modelos competitivos de classificação de sentimentos usando Programação Genética

Roteiro

- Introdução
 - Contextualização
 - Problema
 - Objetivo
- Conceitos
- Materiais e Métodos
- Análise dos Resultados
- Conclusão

Análise de Sentimentos

- Principais abordagens
 - Aprendizado de máquina
 - Aprendizado supervisionado
 - Análise Léxica
 - Características léxicas
 - Dicionário Léxico
 - Híbrida

Programação Genética

 Resolução de problemas, de forma automatizada, sem demandar conhecimentos detalhados sobre a solução

Roteiro

- Introdução
 - Contextualização
 - Problema
 - Objetivo
- Conceitos
- Materiais e Métodos
- Análise dos Resultados
- Conclusão

Materiais e Métodos

STEM, LEMMA
PONCTUACTION
POLARITY SUM
EMOTICONS, HASHTAGS

DICTIONARIES

POS/NEG WORDS

EMOTICONS

SLANGS

Materiais e Métodos

- Benchmark utilizado: SemEval 2014
 - Base de treinamento
 - Base de teste
 - Ranking dos trabalhos
- Dicionários
 - Opinion Lexicon
 - 2006 palavras positivas, 4800 palavras negativas
 - Emoticons
 - 186 emoticons positivos, 166 emoticons negativos

Materiais e Métodos – Base treino

Materiais e Métodos – Base teste

Materiais e Métodos

Parametrização Programação Genética

Modelo	População	Gerações	Crossover	Mutação
Α	50	500	35%	15%
В	50	600	95%	35%
С	100	650	45%	25%

Materiais e Métodos

Funções Programação Genética (20)

- positiveHashtags
- negativeHashtags
- positiveEmoticons
- negativeEmoticons
- polaritySum
- hashtagPolaritySum
- emoticonsPolaritySum
- positiveWords
- negativeWords
- hasHashtag

- hasEmoticons
- if_then_else
- stemmingText
- removeStopWords
- removeLinks
- removeEllipsis
- removeAllPonctuation
- replaceNegatingWords
- replaceBoosterWords
- boostUpperCase

Materiais e Métodos - Baseline

- Modelo simples criado para comparação com os modelos gerados
- Soma simples das polaridades de cada palavra da frase
- Muito utilizado em classificadores criados manualmente

1	love	this	camera	
0	+1	0	0	

Roteiro

- Introdução
 - Contextualização
 - Problema
 - Objetivo
- Conceitos
- Materiais e Métodos
- Análise dos Resultados
- Conclusão

Materiais e Métodos - Baseline

- Métricas mais utilizadas para avaliação dos modelos
 - Acurácia
 - Precisão
 - Recall
 - F1
- Métrica utilizada: F1
 - Média harmônica de Precisão e Recall

■ Baseline ■ Modelo A ■ Modelo B ■ Modelo C

All messages

Resultados

Em relação ao baseline

Base teste	Modelo A	Modelo B	Modelo C
Twitter2013	+6%	+4%	+4%
Twitter2014	+7%	<u>-1%</u>	<u>-1%</u>
Sarcasm	0%	+8%	+12%
SMS2013	+3%	+5%	0%
LiveJournal	+1%	+4%	+1%
Todas	+5%	+6%	+2%

68.77 NRC Canada 10 CISUC KISS 66.27 **2**⁰ 65.55 Coooolll 30 58.32 Este trabalho UMCC_DLSI 45.27 490 38.72 50° Warwick 36.05 DAEDALUS 510

68.77 NRC Canada 10 CISUC KISS 66.27 **2**⁰ 65.55 Coooolll 30 Este trabalho 58.32 UMCC_DLSI 45.27 490 38.72 50° Warwick DAEDALUS 36.05

Roteiro

- Introdução
 - Contextualização
 - Problema
 - Objetivo
- Conceitos
- Materiais e Métodos
- Análise dos Resultados
- Conclusão

Conclusão

- Alguns modelos apresentaram melhores resultados em determinadas sub-bases de teste
- Em todas as bases o F1 médio dos modelos gerados pela PG foram superiores ao baseline

Trabalhos futuros

- Melhorar inicialização da população
- Incluir novas funções para uso da Programação Genética
- Testar novas combinações de parâmetros do algoritmo
- Ampliar conjunto de dicionários
- Ampliar base de treinamento

Aplicando Programação Genética na Geração de Classificadores de Sentimento

Airton Bordin Junior

airtonbjunior@gmail.com

Prof. Dr. Nádia Félix Felipe da Silva

nadia@inf.ufg.br

Prof. Dr. Celso Gonçalves Camilo Junior

celso@inf.ufg.br

Prof. Dr. Thierson Couto Rosa

thierson@inf.ufg.br

Resultados – Modelo A

Resultados – Modelo B

Resultados – Modelo C

