

MAT255I Análisis Funcional

Sebastián Guerra (sebastian.guerrap@uc.cl) Profesor: Nikola Kamburov (nikamburov@mat.uc.cl)

Apuntes aún no revisados, por favor no distribuir

Versión: 28 de agosto de 2023

Índice general

1.		o al Análisis Funcional
	1.1.	¿Qué estudia el Análisis Funcional?
	1.2.	Motivación
		Objeto central: espacio de Banach
	1.4.	Resultados que vamos a ver
2.	Esp	acios de Banach
	2.1.	Nociones básicas
	2.2.	Operadores y funcionales
		2.2.1. Aplicaciones
	2.3.	El teorema de Baire
		2.3.1. Aplicaciones

Intro al Análisis Funcional

1.1. ¿Qué estudia el Análisis Funcional?

Estudia los espacios vectoriales de dimensión infinita y las transformaciones lineales entre ellos.

Definición 1.1.1. Un espacio vectorial V sobre \mathbb{K} campo de escalares tiene dimensión infinita si $\forall n \in \mathbb{N}$ hay n elementos de V que son linealmente independientes sobre \mathbb{K}

Ejemplo: $V = C([0,1], \mathbb{R}) = \text{funciones reales continuas en } [0,1].$ $\{1, x, \dots, x^{n-1}\} \subseteq V$ es linealmente independiente sobre \mathbb{R} .

Demostración.
$$\sum_{k=0}^{n-1} a_k x^k \equiv 0, \ a_k \in \mathbb{R}.$$

Reconocemos que existe la operación $\frac{d}{dx}$ definida en $C^{\infty}([0,1],\mathbb{R})$, funciones suaves, y la operación evaluar en x=0.

Evaluando en $x = 0 \rightarrow a_0 = 0$. Derivamos a los lados.

$$\sum_{k=1}^{n-1} a_k k x^{k-1} \equiv 0$$

y ahora evaluamos en x = 0:

$$a_1 = 0$$

...

Demostración alternativa. Reconocemos que hay un producto interno en $V = C([0,1],\mathbb{R})$

$$\langle f, g \rangle = \int_0^1 f(x)g(x) \, dx$$

$${f_k = \sin(\pi kx)}_{k=1}^n \subseteq V$$

$$\langle \sin(\pi kx), \sin(\pi lx) \rangle = \begin{cases} 0 & k \neq l \\ \frac{1}{2} & k = l \end{cases}$$

$$S = \sum_{k=1}^{n} a_k f_k \equiv 0$$

$$0 = \langle S, f_k \rangle = \left\langle \sum a_k f_k, f_l \right\rangle = a_l \langle f_0, f_l \rangle = \frac{1}{2} a_l$$

$$\implies a_l = 0, \forall l = 1, \dots, n$$

1.2. Motivación

Ejemplo (Ecuación de Poisson):

$$\begin{cases} \Delta u = f & \text{en } \Omega \subseteq \mathbb{R}^n \\ u = 0 & \text{en } \partial \Omega \end{cases}$$

Seba Aañdir dibujo

El problema se reformula así:

$$\begin{cases} D = \Delta : x \to Y \ni f \\ Du = f \end{cases}$$

tiene una solución $u \in X$ para ciertos espacios X, Y apropiados.

El Análaisis Funcional busca construir teoría más general que aplica para todos los problemas que comparten las mismas características topológicas/algebraicas/métricas.

1.3. Objeto central: espacio de Banach

Definición 1.3.1 (Espacio de Banach). $(V, ||\cdot||)$ es un espacio de Banach si es un espacio normado completo (clave para sacar límites).

 $\{\text{Espacios de Hilbert}, (V, \langle \cdot, \cdot \rangle) completos\} \subseteq \{\text{Espacios de Banach}, (V, ||\cdot||)\} \subseteq \{\text{Espacios métricos}, (V, d) control of the substitution of the substitut$

Seba Arreglar

Lógica de inclusiones

1. $\langle \cdot, \cdot \rangle$ induce una norma $||\cdot||$

$$||v|| = \langle v, v \rangle^{1/2}$$

2. $||\cdot||$ induce una métrica $d(\cdot,\cdot)$

$$d(v, w) = ||v - w||$$

1.4. Resultados que vamos a ver

1. Resultados que se parecen a los teoremas que conocemos en la situación de dimensión finita.

Ejemplo: Cada funcional lineal en \mathbb{R} $(l : \mathbb{R}^n \to \mathbb{R})$ se puede representar como $l(v) = v \cdot w$ para algún vector (único) $w \in \mathbb{R}^n$.

En la situación de dimensión ∞ , se tiene el Teorema de Representación de Riesz:

Teorema 1.4.1 (Representación de Riesz). Sea (V, \langle, \rangle) un espacio de Hilbert $y \mid V \rightarrow \mathbb{R}$ un funcional lineal continuo . Entonces existe un único $w \in V$, tal que

$$l(v) = \langle v, w \rangle$$

2. Resultados son muy diferentes de la situación en dimensión finita. contraintuitivos .

Ejemplo: $\overline{B_1(0)} \subseteq \mathbb{R}^n$ es compacta (Heine-Borel). En dim $V = \infty$, este teorema es falso.

Proposición 1.4.2. Sea V un espacio de Banach y sea $B = \{v \in V : ||v|| \le 1\}$. B es compacto en $V \iff \dim V < \infty$

Ejemplo: En particular, la bola unitaria cerrada en

$$B \subseteq L^p([0,1]), \quad p \in (1,\infty)$$

no es compacta.

⇒ motiva la definición de topologías débiles.

Espacios de Banach

2.1. Nociones básicas

Definición 2.1.1 (Espacios métricos). Un espacio métrico (X, d) y $d: X \times X \to [0, \infty)$ la métrica que satisface:

- 1. $d(x,y) = 0 \iff x = y$
- 2. (simetría) d(x,y) = d(y,x)
- 3. (Designaldad triangular) $d(x,y) \le d(x,z) + d(z,y)$

Definición 2.1.2. Sea V un espacio vectorial (sobre \mathbb{R} o \mathbb{C}). Una norma en V es una función $||\cdot||:V\to [0,\infty)$ que satsiface:

- 1. $||v|| = 0 \iff v = 0$
- 2. $||\lambda v|| = |\lambda| \cdot ||v||$
- 3. (Designaldad triangular) $||v + w|| \le ||v|| + ||w||$

Una función $||\cdot||:V\to [0,\infty)$ que satisface solo 2. y 3. se llama semi-norma .

Una espacio vectorial V con una norma se llama Espacio normado $(V, ||\cdot||)$.

Proposición 2.1.1. $(V, ||\cdot||)$ define un espacio métrico con métrica d(v, w) := ||v-w||.

Ejemplo: $V = \mathbb{R}^n$, \mathbb{C}^n tiene la estructura de espacio normado:

$$|x|_2 := \left(\sum_{k=1}^n |x_k|^2\right)^{1/2}, \quad x = (x_1, \dots, x_n)$$

• En \mathbb{R}^2 , $|(x_1, x_2)| := |x_1|$ define una semi-norma:

$$|(x_1, x_2)| = 0 \iff x_1 = 0, x_2 \in \mathbb{R}$$

- $|x|_{\infty} = \max_{k=1,\dots,n} \{x_k\}$ es una norma.
 - $|x|_p := \left(\sum_{k=1}^n |x_k|^p\right)^{1/p}, \quad p \in [1, \infty)$

Seba Añadir dibujos de norma infinito y norma 1

Proposición 2.1.2. En \mathbb{R}^n y \mathbb{C}^n todas normas son equivalentes: si $||\cdot||_1, ||\cdot||_2$ son 2 normas, existe c > 0 tal que

$$\frac{1}{c}||v||_2 \le ||v||_1 \le c||v||_2, \quad \forall v \in V$$

Definición 2.1.3. Sea X un espacio métrico. Definimos

$$C_{\infty}(X) := \{ f : X \to \mathbb{C} \text{ continuas y acotadas} \}$$

Ejemplo: $C_{\infty}([0,1]) = C([0,1])$ (funciones continuas)

Proposición 2.1.3. $||f||_{\infty} := \sup_{x \in X} |f(x)|$ define una norma en $C_{\infty}(X)$.

Demostración. 1. $||f||_{\infty} = 0 \iff f(x) = 0 \forall x \in X$.

2.

$$||\lambda f||_{\infty} = \sup_{x} |\lambda f(x)|$$
$$= \sup_{x} |\lambda| \cdot |f(x)|$$
$$= |\lambda| \cdot ||f||_{\infty}$$

3.

$$|f_1(x) + f_2(x)| \le |f_1(x)| + |f_2(x)|$$

 $\le ||f_1||_{\infty} + ||f_2||_{\infty}$

Convergencia en $||\cdot||_{\infty}$

$$f_n \to f$$
, en $C_\infty(X)$

 \sin

$$||f_n - f||_{\infty} \xrightarrow{n \to \infty} 0$$

$$\iff \forall \varepsilon > 0 \exists N \in \mathbb{N} \text{ tal que}$$

$$||f_n - f||_{\infty} < \varepsilon, \quad \forall n \ge N$$

$$\iff |f_n(x) - f(x)| < \varepsilon, \quad \forall x \in X$$

Ejemplo: $\mathbb{K} = \mathbb{R} \circ \mathbb{C}$.

$$\ell^p(\mathbb{K}) := \{ \{a_k\}_k \subseteq \mathbb{K} : ||a||_p < \infty \}$$

donde

$$||a||_p := \begin{cases} \left(\sum_{k=1}^{\infty} |a_k|^p\right)^{1/p} & p \in [1, \infty) \\ \sup_{k \in \mathbb{N}} |a_k| & p = \infty \end{cases}$$

Sea (X, \mathcal{B}, σ) un espacio de medida.

$$L^p(x,\sigma) := \{ f : X \to \mathbb{K} \, \sigma \text{-medibles, tales que} ||f||_{L^p} < \infty \}$$

donde

$$||f||_{L^p} := \left(\int |f|^p d\sigma\right)^{1/p}$$

$$||f||_{L^{\infty}} := \operatorname{ess\,sup}_{x} |f|$$

Ejemplo: $X=[0,1],\,\sigma=$ medida de Lebesgue. En C([0,1]) definimos

$$||f||_{\infty} = \sup |f(x)|$$

$$||f||_{L^1} = \int |f(x)| \, dx$$

Estas 2 normas no son equivalentes

Definición 2.1.4. Un espacio normado $(V, ||\cdot||)$ es un espacio de Banach si es completo con respecto a la métrica inducida.

Ejemplo: \mathbb{R}^n , \mathbb{C}^n son espacios de Banach (con respecto a cualquier norma) $L^p(X, \mathcal{B}, \sigma)$ es un espacio de Banach (cuando (X, \mathcal{B}, σ) es completo).

Proposición 2.1.4. $C_{\infty}(X)$ es un espacio de Banach.

Demostración. $\{f_n\} \subseteq V = C_{\infty}(X)$ de Cauchy.

- 1. Adivinar el límite f.
- 2. Probar la convergencia:

$$||f_n - f|| \to 0$$

3. f está en el espacio.

 $\forall \varepsilon > 0 \exists N = N(\varepsilon) \text{ tal que}$

$$||f_n - f_m||_{\infty} \le \varepsilon, \quad \forall n, m \ge N$$

Para todo $x \in X$ fijo, tenemos entonces

$$|f_n(x) - f_m(x)| \le ||f_n - f_m||_{\infty} \le \varepsilon$$

Esto es $\{f_n(x)\}_n$ es Cauchy en \mathbb{C} .

$$\implies f(x) := \lim_{n \to \infty} f_n(x)$$
 existe

$$|f_n(x) - f(x)| = \lim_{m \to \infty} |f_n(x) - f_m(x)|$$

 $\leq \varepsilon \quad \forall n \geq N(\varepsilon) \text{ independiente de } x \in X$

$$\implies ||f_n - f||_{\infty} < \varepsilon, \quad \forall n \ge N(\varepsilon)$$

Esto es $f_n \to f$ uniformemente sobre X.

 $\implies f$ es continua sobre X.

¿Por qué f es acotada?

Considere $\varepsilon = 1$

$$\implies ||f_n - f_{\bar{N}}||_{\infty} \le 1$$

cuando $n \geq \bar{N} := N(1)$.

$$||f_n||_{\infty} \le ||f_{\bar{N}}||_{\infty} + ||f_n - f_{\bar{N}}||_{\infty}$$

 $\le ||f_{\bar{N}}||_{\infty} + 1$

$$\implies f(x) = \lim_{n \to \infty} f_n(x)$$
 es acotada

Definición 2.1.5. Sea $(V, ||\cdot||)$ un espacio normado. $v_n \in V, n \in \mathbb{N}$. $\sum_{n=1}^{\infty} v_n$ es sumable si

$$S_m = \sum_{n=1}^m v_n$$

converge

 $\sum_{n} v_n$ es absolutamente sumable si

$$\sum_{n=1}^{\infty} ||v_n||$$

converge.

Proposición 2.1.5. Si $\sum_{n=1}^{\infty} v_n$ es absolutamente sumable, entonces, $\{S_m\}$ es Cauchy

Teorema 2.1.6. Un espacio normado $(V, ||\cdot||)$ es un espacio de Banach si y solo si toda serie absolutamente sumable es sumable.

 $Demostración. \iff :$

- 1. Tome una sucesión $\{v_n\}$ de Cauchy. Es suficiente demostrar que una subsucesión converge. $v_{n_k} \to v$ en V. Fije $\varepsilon > 0$. $\Longrightarrow ||v_m v|| \le \underbrace{||v_m v_{n_k}||}_{\le \varepsilon/2} + \underbrace{||v_{n_k} v||}_{\le \varepsilon/2} \le \varepsilon$, tomando k, m suficientemente grandes.
- 2. Dos trucos: Podemos "acelerar" la convergencia. Existe una subsucesión $\{v_{n_k}\}$ tal que

$$||v_{n_{k+1}} - v_{n_k}|| \le 2^{-k} \tag{2.1}$$

$$||v_n - v_m|| \le 2^{-k} \quad \forall n, m \ge N(2^{-k}) := N_k$$

$$n_k := N_1 + \ldots + N_k$$

Afirmamos que $\{v_{n_k}\}$ converge.

Truco de la suma telescopica.

$$\sum_{k=1}^{\infty} (v_{n_{k+1}} - v_{n_k})$$

es absolutamente sumable debido a (1.1) entonces es sumable:

$$\sum_{k=1}^{m} (v_{n_{k+1}} - v_{n_k}) \xrightarrow{m \to \infty} S \in V$$

Sumas parciales convergen

$$v_{n_{m+1}} - v_{n_1} \xrightarrow{m \to \infty} S \in V$$

$$\implies v_{n_{m+1}} \xrightarrow{m \to \infty} S + v_{n_1} \in V$$

2.2. Operadores y funcionales

Nos interesan las aplicaciones lineales entre espacios normados.

Ejemplo:

$$T: C([0,1], \mathbb{C}) \to C([0,1], \mathbb{C})$$
$$f \to F(x) = \int_0^x f(y) \, dy$$

T es lineal.

$$F(x) = \int_0^1 \mathbb{1}_{\{y < x\}} f(y) \, dy$$

Definición 2.2.1. V, W son 2 espacios vectoriales.

 $T:V\to W$ es lineal si

$$T(\lambda_1 v_1 + \lambda_2 v_2) = \lambda_1 T(v_1) + \lambda_2 T(v_2) \quad \forall v_1, v_2 \in V \text{ y } \lambda_1, \lambda_2 \in \mathbb{K}$$

$$T: C([0,1]) \to C([0,1])$$

$$f \to \int_0^1 \underbrace{K(x,y)}_{\text{Kernel}} f(y) \, dy := Tf(x)$$

operador integral. Cuando $K \in C([0,1]^2), T$ está bien definida.

En dim ∞ vamos a exigir que los operadores lineales sean continuos.

Definición 2.2.2. $T:V\to W,V,W$ son espacios métricos. Decimos que T es continuo si

$$T^{-1}(O) \stackrel{ab}{\subseteq} V, \forall O \stackrel{ab}{\subseteq} V$$

$$\iff T^{-1}(C) \stackrel{cerr}{\subseteq} V \quad \forall C \stackrel{cerr}{\subseteq} W$$

 $\iff v_n \to v \text{ en } V \text{ entonces } Tv_n \to Tv \text{ en } W.$

Teorema 2.2.1. Sean V,W espacios normados. Entonces $T:V\to W$ operador lineal es continuo si y solo si

$$||Tv||_W \le C||v|| \quad \forall v \in V \tag{2.2}$$

para alguna constante C.

Definición 2.2.3. Operador lineal que satisface 1,2 se llama acotado .

 $Demostración. \implies$: Sea T continuo. $B:=\{||w||_W<1\}$ $0\in T^{-1}(B)=B^v_r$

$$T^{-1}(B) \supseteq B_r^v := \{ v \in V : ||v||_V < r \}$$

pues $T^{-1}(B)$ es abierto

$$\implies T^{-1}(B) \supseteq \{v \in V : ||v||_V = \frac{r}{2}\}$$

esfera de radio $\frac{r}{2}$.

$$||T\bar{v}||_W < 1$$

Todo $v \in V, v \neq 0$ se puede escribir como $v = \frac{\bar{v}}{r/2}||v||_V$

Para algún $\bar{v} \in S_{r/2}^v$

Por lo tanto

$$||Tv||_{W} = ||T(\frac{\bar{v}}{r/2}||v||_{V})||_{W}$$

$$= ||\frac{2}{r}||v||_{V}T(\bar{v})||_{W}$$

$$= \frac{2}{r}||v||_{V}||T\bar{v}||_{W} < 1$$

$$\leq \frac{2}{r}||v||_{V} \quad \forall v \neq 0$$

Ejemplo:

$$Tf(x) := \int_0^1 K(x, y) f(y) \, dy$$

es acotado en $(C([0,1]),||||_{\infty})$

$$\begin{split} |Tf(x)| &\leq \int_0^1 \underbrace{|K(x,y)|}_{\leq M} |f(y)| \, dy \\ &\leq M \int_0^1 |f(y)| \, dy \leq M ||f||_\infty \quad \forall x \implies ||Tf||_\infty \leq M ||f||_\infty \end{split}$$

Definición 2.2.4. Sean V, W espacios normados. Defina $\mathcal{B}(V, W)$ como el conjunto de operadores lineales continuos acotados de V a W. Obviamente $\mathcal{B}(V, W)$ es un espacio vectorial.

Norma operador $T: V \to W$:

$$||T|| := \sup_{||v||=1} ||Tv||$$

Obviamente, $T \in \mathcal{B}(V, W), ||T|| < \infty$

$$||Tv|| \le C \underbrace{||v||}_{1} = C$$

$$\implies ||T|| \le C$$

De hecho, para $T \in \mathcal{B}(V, W)$

$$\begin{aligned} ||T|| &= \sup_{v \neq 0} \frac{||Tv||}{||v||} = \sup_{||v|| \leq 1} ||Tv|| \\ &= \inf\{C > 0 : ||Tv|| \leq C||v|| \quad \forall v \in V\} \end{aligned}$$

Tenemos $||Tv|| \le ||T||||v||$

Teorema 2.2.2. $\mathcal{B}(V,W)$ es un espacio normado bajo la norma operador.

Demostración. 1.
$$||T|| = 0 \implies ||Tv|| = 0 \forall v \in V$$

 $\implies Tv = 0 \implies T = 0.$
2. $||\lambda T|| = |\lambda|||T||$

3. Sea $v \in V, ||v|| = 1. \forall T, S \in \mathcal{B}(V, W),$

$$\begin{aligned} ||(T+S)v|| &= ||Tv+Sv|| \\ &\leq ||Tv|| + ||Sv|| \\ &\leq ||T||||v|| + ||S||||v|| = (||T|| + ||S||)||v|| \end{aligned}$$

$$\implies ||(T+S)v|| \le ||T|| + ||S||$$
$$\implies ||T+S|| \le ||T|| + ||S||$$

¿Cuándo es $\mathcal{B}(V, W)$ completo?

Teorema 2.2.3. $\mathcal{B}(V, W)$ es Banach cuando W es Banach.

Demostración. $T_n \in \mathcal{B}(V, W)$ Cauchy. Queremos demostrar que converge en $||\cdot||_{\mathcal{B}(V,W)}$.

1. $\forall v \in V, \{T_n v\}$ es Cauchy en W pues

$$||T_n v - T_n v|| \le ||T_n - T_w|| \cdot ||v||$$

 $\implies \{T_n v\}$ converge. Definimos

$$Tv := \lim_{n \to \infty} T_n v$$

2. ¿Por qué $T \in \mathcal{B}(V, W)$? \rightarrow lineal:

$$T(\lambda v) = \lim_{n \to \infty} T_n(\lambda v) = \lambda \lim_{n \to \infty} T_n v = \lambda T(v)$$

$$T(v_1 + v_2) = T(v_1) + T(v_2)$$

 \rightarrow acotado:

 $\{T_n\}$ es Cauchy.

 $\{||T_n||\}$ es Cauchy en $[0,\infty)$

$$|||T_n|| - ||T_m||| \le ||T_n - T_w||$$

$$\implies ||T_n|| \le C \quad \forall n \in \mathbb{N}$$

Sea $v \in V, ||v|| = 1.$

$$||Tv|| = ||\lim_{n \to \infty} T_n v||$$

$$= \lim_{n \to \infty} \underbrace{||T_n v||}_{\leq C||v|| = C} \leq C$$

$$\implies ||T|| \le C$$

3. Convergencia: $T_n \to T$ en norma operador. Sea $v \in V, ||v|| = 1.$

$$||(T_n-T)v||$$

$$T_m v \to T v$$

$$= \lim_{m \to \infty} ||(T_n - T_m)v||$$

$$\leq \underbrace{||T_n - T_m||}_{\leq \varepsilon} \cdot ||v|| \quad \forall n, m \geq N(\varepsilon)$$

$$\implies ||T_n - T|| \leq \varepsilon \quad \forall n \geq N(\varepsilon)$$

2.2.1. Aplicaciones

Definición 2.2.5. Sea V un espacio normado sobre \mathbb{K} .

$$V^* = \mathcal{B}(V, \mathbb{K})$$

se llama el espacio dual de V.

Teorema 2.2.4. Cuando $\mathbb{K} = \mathbb{R}, \mathbb{C}$ (completos) V^* es un espacio de Banach

Elementos de V^* se llaman funcionales en V.

Ejemplo: $[\ell^p(\mathbb{C})]^* = ?, p \in [1, \infty)$ Resulta que $? = \ell^q(\mathbb{C})$ donde $\frac{1}{p} + \frac{1}{q} = 1$. Si $v \in \ell^p, w \in \ell^q$ podemos definir un funcional en ℓ^p

$$\ell_w : \ell^p(\mathbb{C}) \to \mathbb{C}$$

$$v = \{v_k\} \to \sum_{k=1}^{\infty} v_k \bar{w}_k$$

$$|\ell_w| \le ||w||_{\ell^q} ||v||_{\ell^p}$$

Es la desigualdad de Hölder discreta.

$$(\ell^1)^* \simeq \ell^\infty \ (\ell^2)^* \simeq \ell^2$$

Nota: $(\ell^{\infty})^* \not\simeq \ell^1$

Cuando V=W espacio de Banach, entonces B(V,V) es un espacio de Banach. Es también álgebra .

$$T, S \in B(V, V) \implies TS \in B(V, V)$$

$$||TS|| = \sup_{||v||=1} ||T(Sv)|| \le ||T|| \cdot ||Sv||$$

$$\le ||T|| \cdot ||S|| \cdot ||v|| \le ||T|| \cdot ||S||$$

Cómo resolver ecuaciones del tipo

$$(T - \lambda I)u = v$$

donde $v \in V \leftarrow$ un espacio de Banach, $T \in B(V, V), \, \lambda \neq 0.$

Queremos construir el operador inverso

$$S := (T - \lambda I)^{-1}$$

Cuando $|\lambda| > ||T||$, S se puede construir a través de la serie de Neumann

$$-\lambda (I - \underbrace{\frac{T}{\lambda}}_{||T/\lambda|| < 1}) u = v$$

Sabemos que

$$(1-x)^{-1} = \sum_{n=0}^{\infty} x^n \quad |x| < 1$$

Definimos

$$S := -\frac{1}{\lambda} \sum_{n=0}^{\infty} \left(\frac{T}{\lambda}\right)^n \tag{2.3}$$

2.3 define $S \in B(V, V)$ ya que

$$\sum_{n=0}^{\infty} \left(\frac{T}{\lambda}\right)^n$$

es sumable pues es absolutamente sumable en el espacio de Banach B(V, V).

$$\rightarrow$$
 ;
por qué $(T-\lambda I)S=S(T-\lambda I)=I?$

Para verificar que $S(T - \lambda I) = I$,

$$S_N = \sum_{n=0}^{N} -\frac{1}{\lambda} \left(\frac{T}{\lambda}\right)^n$$

$$S_N(T - \lambda I) = S_N T - S_N \lambda = \sum_{n=0}^N - \left(\frac{T}{\lambda}\right)^{n+1} - \sum_{n=0}^N - \left(\frac{T}{\lambda}\right)^n$$
$$= \underbrace{-\left(\frac{T}{\lambda}\right)^{N+1}}_{\to 0 \text{ en } B(V, V)} + I$$

¿Cómo obtener espacios normados/Banach de otros espacios?

Definición 2.2.6 (Espacio cociente). Sea W un subespacio del espacio vectorial V.

$$V/W := \{[v], v \in V\}$$

 $[\cdot]$ se define a través $v_1 \sim v_2$ si $v_1 - v_2 \in W$.

Se nota también V mód W y se llama el espacio cociente.

Es útil denotar [v] = v + W

Una construcción de subespacio $W\subseteq V$ tal que V/W es normado es a través de una semi-norma definida en V.

Ejemplo: $V = C^1([0,1]) =$ espacio de funciones en [0,1] con derivadas continuas en [0,1].

$$||f|| := \max_{t \in [0,1]} |f'(t)|$$

$$||f|| = 0 \iff f = \text{const}$$

Teorema 2.2.5. Sea $(V, ||\cdot||)$ un espacio vectorial semi-normado. Entonces $Z := \{v \in V : ||v|| = 0\}$ es un subespacio de V y

$$||v + Z||_{V/Z} := ||v|| \tag{2.4}$$

define una norma en V/Z.

Demostración. 1. Z es un subespacio vectorial.

$$z_1, z_2 \in Z \implies z_1 + z_2 \in Z$$

$$||z_1 + z_2|| \le ||z_1|| + ||z_2|| = 0$$

$$z \in Z \implies \lambda z \in Z$$

Así, V/Z tiene la estructura de un espacio vectorial.

2. Tenemos que comprobar que 2.4 es una buena definición:

Si v_1, v_2 son 2 representantes de [v]:

$$v_1 = v_2 + z, \quad z \in Z$$

$$||v_1|| \le ||v_2|| + ||z|| \implies ||v_1|| \le ||v_2||$$

 $||v_2|| \le ||v_1|| \implies ||v_1|| = ||v_2||$

$$||v+z||_{V/Z} = 0$$

$$\implies v+Z = Z \implies v \in Z$$

Las otras 2 proposiciones se heredan de manera obvia

 $C^1([0,1])/const$ es un espacio normado con la norma inducida.

Otra construcción similar:

Proposición 2.2.6. Si $W \subseteq V$ subespacio cerrado de un espacio normado $(V, ||\cdot||)$, entonces V/W tiene una norma:

$$||[v]||_{V/W} := \inf_{w \in W} ||v - w||$$

Demostración. En ayudantía

Completación de espacios normados

Definición 2.2.7. Sea $(V, ||\cdot||)$ un espacio normado. La completación de V es un espacio de Banach $(\tilde{V}, ||\cdot||_{\tilde{V}})$ con una aplicación lineal

$$\mathcal{J}_{\tilde{V}}:V\to \tilde{V}$$

que satisface las siguientes propiedades:

- 1. $\mathcal{J}_{\tilde{V}}$ es uno a uno
- 2. $\mathcal{J}_{\tilde{V}}(V)$ es denso en \tilde{V}
- 3. $\mathcal{J}_{\tilde{V}}(V)$ es una isometría:

$$||\mathcal{J}_{\tilde{V}}(v)||_{\tilde{V}} = ||v||_{V} \quad \forall v \in V$$

Teorema 2.2.7. Todo espacio normado V tiene una completación. Esta es única en el siguiente sentido:

Seba hacer dibujo

 $\overline{\tilde{V}} = \{sucesiones \ de \ Cauchy \ en \ V \ que \ convergen\}$

$$\{v_n\} \sim \{\underset{\sim}{w_n}\} \ si \ ||v_n - w_n|| \to 0$$

Sea $\tilde{v} \in \tilde{V}$

Seba ESTOY HASTA EL PICO

2.3. El teorema de Baire

(X,d) espacio métrico.

$$B_r(x) = \{ y \in X : d(x, y) < r \}$$

$$\overline{B_r}(x) = \{ y \in X : d(x, y) \le r \}$$

 $O \subseteq X$ es abierto si $\forall x \in O, \exists B_r(x) \in O. \bigcup_{\alpha} O_{\alpha}$ es abierto.

 $F \subseteq X$ es cerrado si F^c es abierto. $\bigcap_{\alpha} F_{\alpha}$ es cerrado.

$$\overline{E} = \bigcap_{F \supseteq E} F$$

$$\mathring{E} = \bigcup_{O \subseteq E} O$$

$$E \stackrel{denso}{\subseteq} X \text{ si } \overline{E} = X$$

Definición 2.3.1. a Seba arreglar

esencialmente, denso en ninguna parte E significa que E no contiene bolas abiertas.

Ejemplo: $E = \{x\}$ es denso en niguna parte.

Proposición 2.3.1. F es cerrado y denso en ninguna parte \iff F^c es abierto y denso.

La noción de categoria de Baire

Definición 2.3.2. $E \subseteq X$ cat I si $E = \bigcup_k E_k$ donde E_k es denso en ninguna parte.

Ejemplo: \mathbb{Q} es cat I.

Definición 2.3.3. Si G tiene G^c que es cat I, decimos que G es **genérico**.

Definición 2.3.4. E es de cat II si no es de primera categoría.

Observaciones

1. Si E es cat I, y $F \subseteq E$ es cat I

$$F \subseteq E \subseteq \bigcup_{k} E_{k}$$

$$\implies F = \bigcup_{k} E_{k} \cap F, \quad \overline{E_{k} \cap F} \subseteq \overline{E_{k}}$$

$$\implies E_{k} \cap F \text{ son densos en niguna parte.}$$

- 2. Si $\{E_k\}_{k\in\mathbb{N}}$ de cat I, $\bigcup_k E_k = \bigcup_k \bigcup_l \underbrace{E_{kl}}_{\text{dense en NP}}$ es una unión contable.
- 3. No hay conexión entre conjuntos de cat I y conjuntos despreciables del punto de vista de teoría de la medida.

Ejemplo:
$$G_j = \bigcup_n (q_n - 2^{-(n+j+1)}, q_n + 2^{-(n+j+1)})$$

 $\{q_j\}$ enumeración de \mathbb{Q} .
 G_j es abierto y denso en \mathbb{R} .
 $\implies E_j = G_j^c$ es cerrado y denso en NP
 $\implies E := \bigcup_j E_j$ es cat I

y de plena medida en \mathbb{R} .

 $\iff E^c$ es de medida 0 de Lebesgue.

$$|E^c| = |\bigcap E_j^c|$$

$$= |\bigcap G_j| \le |G_j|$$

$$|G_j| \le \sum_{n=1}^{\infty} 2 \cdot 2^{-(n+j+1)}$$

$$= 2^{-j} \xrightarrow{j \to \infty} 0$$

Teorema 2.3.2 (Teorema de Baire). Sea (X, d) completo. Entonces, X es de la cat II en sí mismo.

Demostración. Supongamos que X es de cat I en sí:

$$X = \bigcup_k \underbrace{E_k}_{\text{densos en NP}} = \bigcup_k \underbrace{\overline{E_k}}_{=F_k \text{ denso en NP y cerrado}}$$

Llegaremos a una contradicción si demostramos que hay un $x \notin F_k$, $\forall k$.

$$F_1 \neq X$$
. $\overline{B_{r_1}}(x_1) \subseteq F^c$, $\overline{B_{r_2}}(x_2) \subseteq F_2^c$.

De esta manera obtenemos bolas cerradas $\overline{B_{r_k}}(x_k)$ tales que

1.

$$\overline{B_{r_{k+1}}}(x_{k+1}) \subseteq \overline{B_{r_k}}(x_k)$$

2.

$$\overline{B_{r_k}}(x_k) \subseteq F_k^c$$

3.

$$r_{k+1} \le \frac{r_k}{2} \implies r_k \to 0$$

 $\{x_k\}$ es Cauchy pues:

$$\forall k, l \ge n, x_k, x_l \in \overline{B_{r_n}}(x_n)$$

$$\implies |x_k - x_l| \le 2r_n \xrightarrow{n \to \infty} 0$$

$$\implies x_k \to x \in X$$

Como $x_k \in \overline{B_{r_k}} \quad \forall k \ge n,$

$$\implies x = \lim x_k \in \overline{B_{r_n}}(x_n) \subseteq F_n^c$$

Por lo que $x \notin F_n \quad \forall n$.

Corolario 2.3.2.1. $G \subseteq X$ es $gen\'erico \implies denso en X$, con X completo.

Demostración. Asumimos que G genérico no es denso, entonces hay una bola B

$$\Longrightarrow \overline{B} \subseteq G^c = \bigcup_k E_k \subseteq \bigcup \overline{E_k}$$

$$\implies \overline{B} = \bigcup_{k \text{ cerrados y densos en NP}} \overline{E_k} \cap \overline{B}$$

Pero \overline{B} es un espacio métrico completo, contradicción con el teorema de Baire.

Corolario 2.3.2.2. X completo, $X = \bigcup_k F_k \leftarrow cerrado$. Entonces, por lo menos uno F_k contiene una bola.

2.3.1. Aplicaciones

Teorema 2.3.3. El conjunto de funciones continuas en [0,1] que no son derivables en nigún punto es **denso** en C([0,1])

Demostración. Sea $\mathcal{D} = \{ f \in C([0,1]) : f'(x_*) \text{ existe en un punto } x_* \in [0,1] \}$

Queremos demostrar que \mathcal{D} es cat I en C([0,1]).

Por 2.3.2.1, \mathcal{D}^c es genérico \implies denso en C([0,1]).

Si $f \in \mathcal{D} \implies f'(x_*)$ existe

$$\implies \lim_{x \to x_*} \frac{f(x) - f(x_*)}{x - x_*}$$

existe.

$$\implies |f(x) - f(x_*)| \le M|x - x_*| \quad \forall x \in [0, 1]$$

para algún M > 0.

$$\implies \mathcal{D} \subseteq \bigcup_{N=1}^{\infty} E_N$$

 $E_N := \{ f \in C([0,1]) : |f(x) - f(x_*)| \le N|x - x_*| \text{ para algún } x_* \in [0,1] \}$

Estaremos listos si probamos que:

- 1. E_N es cerrado en C([0,1])
- 2. E_N es denso en ninguna parte.
- 1. $f_n \in E_N$ y $f_n \to f$, en $||\cdot||_{\infty}$. $[0,1] \ni x_n^* \to x^* \text{ (podemos extraer una subsucesión que converge)}$

$$|f_n(x) - f_n(x_n^*)| \le N|x - x_n^*| \quad \forall x \in [0, 1]$$

Queremos demostrar que

$$|f(x) - f(x^*)| < N|x - x^*|$$

$$|f(x) - f(x^*)| \le \underbrace{|f(x) - f_n(x)|}_{\le ||f - f_n||_{\infty} \le \varepsilon/2} + |f_n(x) - f_n(x^*)| + \underbrace{|f_n(x^*) - f(x^*)|}_{\le \varepsilon/3}$$

$$|f_n(x) - f_n(x^*)| \le |f_n(x) - f_n(x^*)| + |f_n(x_n^*) - f_n(x^*)|$$

$$\le N|x - x_n^*| + N|x_n^* - x^*|$$

$$\le N(|x - x^*| + |x^* - x_n^*|) + N|x_n^* - x^*|$$

$$\le N|x - x^*| + \underbrace{2N|x_n^* - x^*|}_{\varepsilon/3}$$

2. ¿Por qué E_N es denso en NP de X?

 $P_M = \{\text{funciones continuas en } [0,1] \text{ derivables a trozos, } |f'| = M\}$

son funciones zig-zag. Cuando M > N, $P_M \cap E_N = \emptyset$. Además, P_M es denso en C([0,1]). Como consecuencia, E_N no puede tener interior no trivial ya que E_N no puede tener una bola abierta (hay funciones de P_M en E_N y P_M es denso).

Mostraremos que P_M es denso.

$$P = \{ \text{las funciones continuas lineales a tozos} \} \stackrel{denso}{\subseteq} C([0, 1])$$

Podemos aproximar cada $f \in P$ con una función $g \in P_M$ arbitrariamente bien.

Teorema de la Aplicación Abierta y Teorema del grafo cerrado

Sean $(X, ||\cdot||_X), (Y, ||\cdot||_Y)$ espacios de Banach.

$$T \in \mathcal{B}(X,Y) \implies T^{-1}(O) \stackrel{ab}{\subseteq} X \quad \forall O \stackrel{ab}{\subseteq} Y$$

Si T es biyectiva adicionalmente, entonces $S:=T^{-1}$ es lineal (no necesariamente acotada). Sin embargo, si S es continua, entonces $S^{-1}(U) \overset{ab}{\subseteq}, \forall U \overset{ab}{\subseteq} X$

$$\iff T(U) \overset{ab}{\subseteq} Y \quad \forall U \overset{ab}{\subseteq} X$$

Definición 2.3.5. Sea $T: X \to Y$ una aplicación. Decimos que T es abierta si

$$T(U) \overset{ab}{\subseteq} Y \quad \forall U \overset{ab}{\subseteq} X$$

Si $T:X\to Y$ es lineal, continua y biyectiva, entonces $T^{-1}:Y\to X$ es lineal. ¿Es T^{-1} continua?

Lo será cuando T es abierta.

Teorema 2.3.4 (Aplicación Abierta). Si X, Y son espacios de Banach, $T \in \mathcal{B}(X, Y)$ y sobreyectiva, entonces T es abierta.

Corolario 2.3.4.1. Si X, Y son espacios de Banach, $T \in \mathcal{B}(X, Y)$ es biyectiva, entonces $T^{-1} \in \mathcal{B}(Y, X)$. Existen c, C > 0 tales que

$$c||x||_X \le ||\underbrace{Tx}_y||_Y \le C||x||_X \quad \forall x \in X$$
$$c||T^{-1}y||_X \le ||y||_Y$$

Demostración del teorema 2.3.4. 1. Será suficiente demostrar que $T(B_2^X \supseteq B_\delta^Y)$. $(B_r^X = B_r^X(0))$

Por linealidad

$$\begin{split} T(B_r^X(x)) &= T(x + B_r^X) \\ &= Tx + T(B_r^X) = y + \frac{r}{2}T(B_2^X) \\ &\supseteq y + \frac{r}{2}B_\delta^Y = B_{\frac{\delta r}{2}}^Y(y) \end{split}$$

2. Vamos a demostrar que $\overline{T(B_1^X)}\supseteq B_\delta^X$ para algún $\delta>0$ Por la sobreyectividad:

$$catII \to Y = \bigcup_{n=1}^{\infty} \overline{T(B_n^X)}$$

Entonces, $T(B_n^X)\supseteq B_r^Y(y)$ para algún $n\in\mathbb{N}, r>0, y\in Y$. Tomamos \tilde{y} tal que $|\tilde{y}-y|\leq \frac{r}{2}$ e $\tilde{y}=Tx$ para algún $x\in B_n^X$.

$$T(B^x_{2n}(\tilde{x})) \supseteq \overline{T(B^X_n)} \supseteq B^Y_r(y) \supseteq B^Y_{\frac{r}{2}}(y)$$

Restando Tx

$$T(B_{2n}^X) \supseteq B_{\frac{r}{2}}^X$$

Reescalando

$$\overline{T(B_1^X)} \supseteq B_{\frac{r}{4n}Y} \quad \delta = \frac{r}{4n}$$

3. Tenemos $T(B_1^X) \supseteq B_\delta^Y.$ Reescalando

$$\overline{T(B_{2^{-k}}^X)} \supseteq B_{\delta 2^{-k}}^Y$$

¿Por qué $T(B_2^X) \supseteq B_\delta^Y$?

Fije $y_0 \in B_\delta^Y$. Podemos encontrar $x_0 \in B_1^X$ tal que

$$||y_0 - Tx_0||_Y < \frac{\delta}{2}$$

$$\implies y_1 := y_0 - Tx_0 \in B_{\delta/2}^Y$$

 \implies existe $x_1 \in B_{\frac{1}{2}}^X$ tal que

$$||y_1 - Tx_1|| < \frac{\delta}{4}$$

De esta manera construimos sucesiones $\{x_n\}, \{y_n\}$, tales que

a)
$$x_n \in B_{2^{-n}}^X, y_n \in B_{\delta 2^{-n}}^Y$$

$$b) y_{n+1} = y_n - Tx_n$$

$$x := \sum_{n=0}^{\infty} x_n \in X$$
 porque X es Banach. Veremos que $Tx = y$ y $x \in B_2^X$.