Luck is Hard to Beat: The difficulty of sports prediction

Luck is Hard to Beat: The difficulty of sports prediction

Raquel Aoki Renato Assuncao Pedro Vaz de Melo

Halifax, August 13, 2017

Department of Computer Science,
Universidade Federal de Minas Gerais, Brazil

1. Introduction

Sports are extremely surprising

Unpredictability cannot be avoided

Sports are extremely surprising

Unpredictability cannot be avoided

Attractive area

Relatively isolated systems

Datasets available

Popularity

Φ Coefficient: Contributions

- Skill influence

- Significance test
- Which teams should be removed to make a league random

Probabilistic Graphical Model: Contributions

- Teams' skill in a season/league

- Players and teams characteristics more influents

2. Related Work

Sports Results Forecasting

Which team will score next or who will win the game?

Miljkovic et al. [2010]	Naive Bayes
Gabel & Redner[2012],	Random Walk
Merritt & Clauset[2014]	Random Walk
Chen & Joachims [2016]	Probabilistic Graphical Models

Sport Leagues Characterization

Factors which has influence on sport results

Vaz de Melo et al. [2012]	Network between basketball players
Wang et al. [2015]	Best soccer tactics
Van Haaren et al. [2016]	Spatial and time patterns in volleyball games
Ribeiro et al. [2016]	Advantage in home games

Sport Leagues Characterization

Teams' Skill

Tarlow et al. [2014]	Football teams' skill estimated by probabilistic graphical models
Chetrite et al. [2015]	Number of potential winners
Pelechrinis et al. [2016]	NBA teams' ranking using PageRank
Spiegelhalter [2007]	Luck in soccer leagues

Disentangling luck and skill

Random leagues

- Baseline leagues
 - Teams with the same number of games
 - Same number of games as home teams
 - The result is the points accumulated sum

Baseline leagues examples

- X_h: random variable representing the points earned by a team when it plays in a match at home
- X_a: random variable representing the points earned by a team when it plays away

 X_a and X_h are specific for each sport.

▷ It depends on the possible results in the sport

Basketball	Points	
	Home	Away
P_h	1	0
P _a	0	1

▷ It depends on the possible results in the sport

Soccer		Points	
	Home	Away	
P_h	3	0	
P_{t}	1	1	
P _a	0	3	

▷ It depends on the possible results in the sport

Probabilities non-negative

- ▷ Socce example: $P_h + P_t + P_a = 1$
- Those probabilities are specifics for each sport/league/season.

 \triangleright X_a and X_h have multinomial distribution

$$\mu_{X_h} = P_h \times 3 + P_t \times 1 + P_a \times 0$$

$$\sigma_{X_h}^2 = P_h \times 3^2 + P_t \times 1^2 + P_a \times 0^2 - \mu_{X_h}^2$$

X_a and X_h have multinomial distribution

$$\mu_{X_h} = P_h \times 3 + P_t \times 1 + P_a \times 0$$

$$\sigma_{X_h}^2 = P_h \times 3^2 + P_t \times 1^2 + P_a \times 0^2 - \mu_{X_h}^2$$

Similarly,

$$\mu_{X_a} = P_a \times 3 + P_t \times 1 + P_h \times 0$$

$$\sigma_{X_a}^2 = P_a \times 3^2 + P_t \times 1^2 + P_h \times 0^2 - \mu_{X_a}^2$$

 $\triangleright Y_{2k}$ is a random model

$$Y_{2k} = \sum_{i} (X_{hi} + X_{ai})$$

It represents the cumulative points after 2k games in a league

For *k* large and independent games:

$$\triangleright Y_{2k} \sim N(\mu_{2k}, \sigma_{2k}^2)$$

(Unique for each season)

$$\sigma_{2k}^2 = k(\sigma_{X_h}^2 + \sigma_{X_a}^2)$$

(Theoretical variance)

Comparison between the theoretical variance and the sample variance s²

- For one season/league: Valid
- For more than one season or different leagues and sports: Not valid

Solution: φ Coefficient

$$\phi = \frac{S^2 - \sigma_{2k}^2}{S^2}$$

Defined in (-∞,1]

Distance between the random model variance and the observed variance

Close to 1: skill factor has more influence

Close to 0: skill factor has a small influence in the results

Negative values: observed variance is less than the expected value in the random model

Confidence Interval(95%) around 0;

- Monte Carlo simulation considering true the random model hypothesis;
- Unique confidence interval

If φ is different of 0, how many teams should be removed from a league in order to turn it random?

Simulation

Skill

If the skill component has influence in a league, it is possible to estimate the teams' skill?

Probabilistic Graphical Model

 Seasons/Leagues with φ significantly different of 0 and positive

Skill component decomposed into explanatory features

Skill of *n* teams

 $\triangleright \quad \alpha_1, \alpha_2, ..., \alpha_n$

Probability of i beat j

$$\triangleright \ \pi_{ij} = \frac{\alpha_i}{\alpha_i + \alpha_j}$$

The α values are calculated as:

$$\Rightarrow \alpha_i = exp(\mathbf{w}^T \mathbf{x}_i)$$

- x_i: vector of d dimension composed with i team features
 - \circ Explains the skill associate to α_i

▶ The model learns the relevance/weight (w) of each feature to find the skill

Likelihood function:

- Games final score
- - \circ N_{ν}: points sum of each team
 - \circ S_{ι}: point of the home team
- \triangleright N_k is a sequence of success and failures
- \triangleright S_k~ Binomial Distribution conditioned in N_k

Likelihood function:

- N_k could be very large (basketball)
 Computationally intractable

Binomial distribution -> Poisson distribution

$$S_k \sim \text{Poisson}\left(N_k \times \frac{\alpha_{h(k)}}{\alpha_{h(k)} + \alpha_{a(k)}} + \varepsilon_k\right)$$

 \triangleright Random effect ε_{k} in each game

Likelihood function:

- \triangleright Log-linear model $\log(\alpha_i) = \mathbf{w}^T \mathbf{x}_i$
 - w: weight features

o x: set of features of team i:

$$\mathcal{D} = \{\mathbf{x}, S_k, N_k, \forall k = 1, ..., K\}$$

$$L(\mathcal{D}|\mathbf{w}, \varepsilon_k) \approx \prod_{k=1}^K \left(N_k \frac{\alpha_{h(k)}}{\alpha_{h(k)} + \alpha_{a(k)}} + \varepsilon_k \right)^{S_k} \times \exp\left(-N_k \frac{\alpha_{h(k)}}{\alpha_{h(k)} + \alpha_{a(k)}} + \varepsilon_k \right)$$

Priori distribution of w weight

▷ p(w) ~ Normal(w;0,2l)

Priori distribution of random effect

 \triangleright p(ε) ~ Normal(ε;0,31)

W **Unknown** Random Effect Teams α_n ε_k X Luck Features **Unknown** Known for(i in 1:n) n: teams amount for(k in 1: K)K: games amount Score Home Team

Features weight

Posteriori Distribution

Proportional to product between the Likelihood function and the *Prior* distribution

$$p(\mathbf{w}, \varepsilon | \mathcal{D}) \propto \prod_{k=1}^{K} \left(N_k \frac{\alpha_{h(k)}}{\alpha_{h(k)} + \alpha_{a(k)}} + \varepsilon_k \right)^{S_k}$$

$$\times \exp\left(-N_k \frac{\alpha_{h(k)}}{\alpha_{h(k)} + \alpha_{a(k)}} + \varepsilon_k \right) \exp\left(-\frac{1}{2\sigma_w^2} \mathbf{w}^T \mathbf{w} \right)$$

$$\times \exp\left(-\frac{1}{2\sigma_\varepsilon^2} \varepsilon^T \varepsilon \right)$$

Posteriori Distribution

- Metropolis-Hastings Algorithm (MCMC)
 - Posteriori distribution Random samples
 - Inference about the parameters

Models selection

Features combination

- Deviance Information Criterion (DIC)
 - Model complexity
 - Data fit

4.1 Results

Φ Coefficient

270713 games

▶ 1503 seasons

84 countries

4 sports

Datasets

Leagues between 2007 and 2016

Sport -	Leagues		Seasons		
	Count	%	Count	%	
Handball	25	12.63%	234	15.57%	
Basketball	42	21.21%	310	20.63%	
Volleyball	51	25.76%	328	21.82%	
Soccer	80	40.40%	631	41.98%	
Sum	198	100%	1503	100%	

- Basketball and volleyball
 - Many points in a single match
 - It is harder to a less skilled team win just by luck
- Soccer and handball
 - Few relevant events in a match
 - A soccer game has an average of 2.62 goals

Sport	Skil	I	Luck		Corre
	Count	%	Count	%	Sum
Basketball	310	100%	0	0%	310
Soccer	586	92.87%	45	7.13%	631
Handball	192	82.05%	42	17.75%	234
Volleyball	326	99.39%	2	0.61%	328
Sum	1414	94.08%	89	5.92%	1503

- Primera División, Spain
 - 3.2(16%) teams removed by season
 - Real Madri (10) and Barcelona (9)
- Premier League, England
 - 4.9(25%) teams removed by season
 - Manchester United(9)
- NBA, United States of America
 - 17-25(+50%) teams removed by season

Algeria, Division 1

- 1.93season 2015

Albert Bodjongo incident

Home | News | U.S. | Sport | TV&Showbiz | Australia | Femail | Health | Science | Money | Vi

Football | Transfer News | Premier League | Champions League | Boxing | UFC | F1 | Tennis | Rugby | Cricket |

Algerian League is so tight all 16 teams can mathematically still win the title with four rounds of matches to go

- 11 points split leaders Setif and bottom-placed Hussein Dey with four rounds of the Algerian League to play
- · All 16 teams could mathematically still win the championship
- Top two qualify for CAF Champions League while three are relegated
- Incredibly tense final day is expected on June 12

By ADAM SHERGOLD

PUBLISHED: 10:44 GMT, 27 April 2015 | UPDATED: 10:44 GMT, 27 April 2015

4.2 Results

Skill

Dados

League

- National Basketball Association (NBA)
 - Datasets available
 - Skill component large(0.97)
- Theory can be extend to other leagues and sports

Dados

- A model for each season (2012-2016)
 - 1. Regular Season: round-robin system (≈ 1230 matches)
 - 2. Playoffs: 16 teams

Datasets

СО	East conference or West conference
A5	Average salary of the top 5 players salaries
A6	Average salary of the 6 to 10 top salaries
SD	Standard deviation for the players salaries
AP	Average Player Efficiency Rating(PER)
VL	Team Volatility, measuring how much a team change its players between seasons
RV	Roster Aggregate Volatility, measuring how much the players have been transferred from other teams in the past years
CC	Team Inexperience, the graph clustering coefficient.
RC	Roster Aggregate Coherence, measuring the strength of the relationship among the players
SI	Roster Size, the number of players

Model selection

Model	Average DIC
1 - CO+A5+AP+VL+RC+SI	-851727,84
2 - CO+A5+A6+AP+SD+VL+RC+SI	-848333,74
3 - CO+A5+AP+SD+VL+RC+SI	-851158,02
4 - CO+A5+A6+AP+VL+RV+CC+RC+SI	-841589,70

Season	P(U)	P(U A)	P(U H)	P(U A,R+)	P(U H,R+)
2012	0.35	0.27	0.44	0.25	0.24
2013	0.36	0.25	0.47	0.16	0.13
2014	0.37	0.29	0.45	0.15	0.14
2015	0.37	0.30	0.44	0.22	0.20
2016	0.34	0.26	0.43	0.19	0.13
Average	0.36	0.27	0.45	0.19	0.17

Season	P(U)	P(U A)	P(U H)	P(U A,R+)	P(U H,R+)
2012	0.35	0.27	0.44	0.25	0.24
2013	0.36	0.25	0.47	0.16	0.13
2014	0.37	0.29	0.45	0.15	0.14
2015	0.37	0.30	0.44	0.22	0.20
2016	0.34	0.26	0.43	0.19	0.13
Average	0.36	0.27	0.45	0.19	0.17

5. Conclusion

Conclusion

Goals

- Evaluate the luck and skill influence in sport leagues
- Estimate the teams' skill

Contributions

- Φ coefficient
 - Which leagues and sports are more competitive
- Bayesian model
 - Which features have more influence on the skill

6. Future Work

Trabalhos Futuros

Leagues

Adapt the φ coefficient to other kinds of leagues

Sports

Expand the amount of sports studied

Model

Add new features in the bayesian model

Hot Hand

Study the *Hot Hand* influence in the sport

Thanks! Questions?

<u>Link φ coefficient</u>

Link NBA teams' skill