Clase Práctica 9

Maite Angel

2022-06-21

Repaso

Pueden encontrar un repaso completo desde la sentencia de las hipótesis hasta la toma de decisión angelmaitelucia.shinyapps.io/TestDeHipotesis

Hasta ahora

Dados $X_1,...X_n$ m.a., α nivel de significación deseado y $x_1,...,x_n$ una realización de la muestra:

- Planteamos las hipótesis H_0 , H_1
- Definimos el estadístico/ pivote (T)
- Definimos la R.R. para α
- Tomar una decisión

Nuevo

En esta clase nos centramos en la parte de decidirnos por una hipótesis o la otra y evaluar algunas cualidades del test.

Una herramienta análoga muy usada en la literatura a la región de rechazo R_{α} es el p-valor.

P-valor: como lo calculo y para que lo uso

El p-valor indica cuan **probable** es observar valores igual o más extremos que el que obtuvimos **en dirección** de H_1 cuando H_0 es verdadero

Para muestras normales tendremos que para los distintos posibles tests (digamos que nuestro valor de interés es θ y el valor a contrastar θ_0)

- $H_0: \theta = \theta_0 \text{ (o } \theta \leq \theta_0 \text{) contra } H_1: \theta > \theta_0; \text{ p-valor } = P(T \geq T_{obs}|_{H_0})$
- $H_0: \theta = \theta_0 \text{ (o } \theta \geq \theta_0) \text{ contra } H_1: \theta < \theta_0; \text{ p-valor} = P(T \leq T_{obs}|_{H_0})$
- $H_0: \theta = \theta_0 \text{ contra } H_1: \theta \neq \theta_0; \text{ p-valor} = P(|T| \geq |T_{obs}||_{H_0}).$

Una vez calculado lo **uso para decidir**:

- si **p-valor** $\leq \alpha$ se rechaza H_0 en favor de H_1 .
- si **p-valor** $> \alpha$ se acepta H_0 .

Ejemplo

Dados $X_1,...X_n$ m.a. con distribución $N(\mu, \sigma_0^2)$, σ_0 conocido y α nivel de significación deseado. Tenemos un test para la media de forma que $H_0: \mu = \mu_0, H_1: \mu > \mu_0$

Para tomar una decisión deberemos ver si la probabilidad de observar lo que observe o algo más extremo bajo H_0 (**p-valor**) es aceptable para α .

Para optar por rechazar H_0 basta pedir que bajo H_0 $P(T \ge T_{obs}) < P(T \ge k_{\alpha}) = \alpha$ (área turquesa < área amarilla), osea $T_{obs} \ge k_{\alpha}$.

Figure 1: Distribucion T bajo H_0

Esta vez estamos comparando áreas bajo la curva.

Errores

• $\alpha = P(R_{\alpha}|_{H_0}) = P(\text{cometer error de tipo I})$:

La probabilidad de cometer error de tipo I viene dada por el nivel de significación α .

• $\beta = P(R_{\alpha}^c|_{H_1}) = P(\text{cometer error de tipo II})$:

La probabilidad de cometer error de tipo II se representa por β . $1 - \beta$ se llama **potencia del test**,que cuantifica la probabilidad de rechazar la hipótesis nula cuando es falsa.

Función de potencia: La función de potencia se analiza en función del verdadero valor del parámetro en cuestión θ :

$$\Pi(\theta) = P(\text{rechazar } H_0|_{\theta \text{ es el verdadero parámetro}}) = P(R.R._{\alpha}|_{\theta \text{ es el verdadero parámetro}})$$

Luego podremos reescribir los errores de la siguiente forma:

Si tenemos θ que satisface $H_0: \theta = \theta_0$

• $P(\text{cometer error de tipo I}) = \Pi(\theta)$

Si tenemos θ que satisface H_1

• $P(\text{cometer error de tipo II}) = 1 - \Pi(\theta)$

Queremos potencia chica en H_0 y potencia grande en H_1 .

Ejercicio 1: Equilibristas

Un fabricante de cuerdas para equilibristas diseña un experimento para estimar la tensión de ruptura media de una fibra que supone es 20. Para ello, observa las tensiones de 16 hilos de dicha fibra seleccionados aleatoriamente.

Las tensiones son 20.8, 20.6, 21.0, 20.9, 19.9, 20.2, 19.8, 19.6, 20.9, 21.1, 20.4, 20.6, 19.7, 19.6, 20.3, 20.7.

Plantear un test adecuado, calcular la región de rechazo, calcular el p-valor y decir que se decide a nivel 0.02.

Solución

$$H_0: \mu = 20, H_1: \mu \neq 20$$

$$\alpha = 0.02 \hspace{1cm} n = 16 \hspace{1cm} T = \sqrt{n} \frac{\bar{X} - 20}{S} \text{ bajo } H_0 \sim t_{(15)} \hspace{1cm} T_{obs} = \sqrt{16} \frac{20.38125 - 20}{0.5230918} = 2.915358$$

$$R_{\alpha} = \{x_1, ..., x_{16} : |T| \ge k_{\alpha}\} = \{x_1, ..., x_{16} : T \ge t_{1-\frac{\alpha}{2}, 15} \text{ ó } T \le t_{\frac{\alpha}{2}, 15}\}$$
$$= \{x_1, ..., x_{16} : T \ge 2.60248 \text{ ó } T \le -2.60248\}$$

como 2.915358 cae en R_{α} , RECHAZO H_0 .

Ahora por la otra alternativa

p-valor =
$$P(|T| \ge T_{obs}|_{H_0}) = P(T \ge T_{obs}|_{H_0}) + P(T \le -T_{obs}|_{H_0}) = 1 - F_{t_{15}}(T_{obs}) + F_{t_{15}}(-T_{obs})$$

=1-pt(2.915358,15)+pt(-2.915358,15)=0.01065742 como es menor que nivel α entonces RECHAZO H_0 .

Ejercicio 2: The Freeze-Out

En febrero de 1990 Akio Kashiwagi, un jugador ballena (los que apuestan mucho, más de \$ 1M en un finde) ganó \$ 6M en el casino Trump Plaza en Atlantic City y \$ 19M en el casino Diamond Beach en Darwin, Australia.

En mayo del mismo año, al volver al Trump Plaza, el casino aceptó que jugara Baccarat (juego similar al blackjack) a 200.000 dólares por mano con la condición de que jugara hasta que ganara o perdiera \$ 12M.

Esta imposición aseguro que el jugador tuviera que jugar muchas más manos para ganarle al casino lo cual redujo la **volatilidad**(varianza) en favor del casino.

En este tipo de juegos un solo jugador ballena jugando un número límite de jugadas tienen muchas más chances de dejar el casino con mucho dinero que uno que jugó la misma cantidad de plata pero en muchas más jugadas. A esta estrategia originada en el casino de Atlantic City se la llama "Freeze-Out".

El juego terminó de forma prematura después de 70 horas. Según el New York Times, ambas partes negaron ser responsables de terminar el desafío y pasó a la historia con cierto tono mitológico.

Problema

El casino Diamond Beach implementó una de estas técnicas de **Freeze-Out** y quiere ver que efectivamente se redujo la volatilidad del Baccarat. Para esto observó 91 jugadas independientes de 70 horas obteniendo

un desvío muestral de 0.22. Supongamos que las ganancias (o pérdidas) siguen una distribución normal que en condiciones típicas posee un desvío de 0.32.

Plantear un test de hipótesis adecuado de nivel 0.05. Plantear la función de potencia y calcular la probabilidad de sentenciar que no cambió la varianza si el verdadero desvío es 0.24.

Para ver valores esperados reales de juego y un análisis más profundo se puede consultar: Casino math de Robert C. Hannum y Anthony N. Cabot

Solución

$$H_0: \sigma^2 = 0.32^2, H_1: \sigma^2 < 0.32^2$$

$$\alpha = 0.05$$
 $S = 0.22$ $T = \frac{(n-1)S^2}{0.32^2}$ bajo $H_0 \sim \chi_{90}^2$ $T_{obs} = \frac{(90)0.22^2}{0.32^2} = 42.53$

sol por p-valor $P(T \le T_{obs}|_{H_0}) = F_{\chi^2_{90}}(T_{obs}) = e^{-6}$ como es menor que nivel α entonces RECHAZO H_0 .

Para calcular la potencia necesito la región de rechazo ya que quiero traducir que significa "rechazar H_0 "

$$R_{\alpha} = \{x_1, ..., x_{91} : T \le \chi^2_{90, \alpha}\} = \{x_1, ..., x_{91} : T \le 69.12\}$$

Obs: como 42.53 cae en R_{α} , RECHAZO H_0 .

Ahora si:

$$\pi(\sigma^2) = P(\text{rechazar } H_0 \text{ dado que era falsa}) = P(T \le 69.12|_{\sigma^2}) = P(\frac{(n-1)S^2}{0.32^2} \le 69.12|_{\sigma^2})$$

$$=P(\frac{(n-1)S^2}{\sigma^2} \leq \frac{0.32^2*69.12}{\sigma^2}|_{\sigma^2}) = F_{\chi^2_{90}}(\frac{0.32^2*69.12}{\sigma^2})$$

Por último lo que nos están pidiendo es la probabilidad de tipo II, como 0.24 satisface H_1 :

$$P(\text{Error de tipo II}) = 1 - \pi(0.24^2) = 0.01.$$