Plotting the 10 most important variables

Parker Christenson

MSAAI 510

These variables are just what I think are the most important variables to plot...

```
Link to the dataset: https://www.kaggle.com/c/home-credit-default-risk/data
```

```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import plotly.express as px
import plotly.graph_objects as go
import umap
```

WARNING:tensorflow:From c:\Users\tehwh\anaconda3\Lib\site-packages\keras\src\losses.py:2976: The name tf.losses.sparse_softmax_cross_entropy is deprecated. Please use tf.compat.v1.losses.sparse_softmax_cross_entropy instead.

```
In []: df = pd.read_csv('train_data.csv')
    # also getting the cols of the df

#df.columns

...

So I was not able to get the cols using the df.columns method, so I used the extent think of it like a power query editor, but you get to write code in python.
...
```

Out[]: '\nSo I was not able to get the cols using the df.columns method, so I used the ex tention sanddance to get the cols and view the data\nthink of it like a power quer y editor, but you get to write code in python. \n'

```
In []: # getting the unique vals of the 'TARGET' col
df['TARGET'].unique()

# assuming that the 0 is "DENIED" and 1 is "APPROVED" changing the values into stri
df['TARGET'] = df['TARGET'].map({0:'DENIED', 1:'APPROVED'})
```

```
In [ ]: # using plotly to graph the amount of approved and denied applications by the loan
fig = px.histogram(df, x='NAME_CONTRACT_TYPE', color='TARGET', title='Loan Type vs
fig.show()
```

```
In [ ]: # using sns to plot the amount of approved loans by the CODE_Gender col
sns.countplot(x='CODE_GENDER', data=df, hue='TARGET')
```

```
Out[ ]: <Axes: xlabel='CODE_GENDER', ylabel='count'>
```



```
In [ ]: # using the 'CNT_CHILDREN' col to plot the amount of approved loans by the amount o
    sns.countplot(x='CNT_CHILDREN', data=df, hue='TARGET')

# also printing out the unique count of the 'CNT_CHILDREN' col
    df['CNT_CHILDREN'].value_counts()
```

```
Out[]: CNT_CHILDREN
               107584
         1
                 30670
         2
                 13415
         3
                 1811
         4
                   210
                    44
         6
                    10
         7
                     4
                     2
         12
         19
                     2
         14
                     1
                     1
         11
         9
                     1
         Name: count, dtype: int64
```



```
In [ ]: # creating a new col to group the 'AMT_INCOME_GROUP' by 100K increments
        df['AMT_INCOME_GROUP'] = df['AMT_INCOME_TOTAL'] // 100000
        plt.scatter(df['AMT_INCOME_GROUP'], df['TARGET'])
        plt.xlabel('Income')
        plt.ylabel('Loan Approval')
        plt.title('Income vs Loan Approval')
        plt.show()
```



```
In [ ]: # bar plot based off what I am assuming is the credit limit which is the 'AMT_CREDI
sns.barplot(x='TARGET', y='AMT_CREDIT', data=df)
```

Out[]: <Axes: xlabel='TARGET', ylabel='AMT_CREDIT'>


```
In [ ]: # Doing some feature extraction here from the data set to get ratios of the 'AMT_CR
df['CREDIT_TO_INCOME_RATIO'] = df['AMT_CREDIT'] / df['AMT_INCOME_TOTAL']
# using the 'CREDIT_TO_INCOME_RATIO' col to plot the amount of approved loans by th
sns.barplot(x='TARGET', y='CREDIT_TO_INCOME_RATIO', data=df)
```

Out[]: <Axes: xlabel='TARGET', ylabel='CREDIT_TO_INCOME_RATIO'>


```
In [ ]: # doing two scatter plots a scatter plot based off the 'AMT_ANNUITY' and 'AMT_CREDI
sns.scatterplot(x='AMT_ANNUITY', y='AMT_CREDIT', data=df, hue='CODE_GENDER')
```

Out[]: <Axes: xlabel='AMT_ANNUITY', ylabel='AMT_CREDIT'>


```
In [ ]: # Now doing it based off the 'AMT_ANNUITY' and 'AMT_INCOME_TOTAL' columns, but with
sns.lmplot(x='AMT_ANNUITY', y='AMT_INCOME_TOTAL', data=df, hue='TARGET')
```

Out[]: <seaborn.axisgrid.FacetGrid at 0x17f22884210>

In []: # now getting the description of the data set
df.describe()

Out[]:		SK_ID_CURR	CNT_CHILDREN	AMT_INCOME_TOTAL	AMT_CREDIT	AMT_ANNUITY
	count	153755.000000	153755.000000	1.537550e+05	1.537550e+05	153750.000000
	mean	277867.616930	0.417398	1.692611e+05	5.988824e+05	27083.127015
	std	102831.742645	0.722523	3.180805e+05	4.023748e+05	14468.883776
	min	100004.000000	0.000000	2.565000e+04	4.500000e+04	1615.500000
	25%	188542.000000	0.000000	1.125000e+05	2.700000e+05	16506.000000
	50%	277749.000000	0.000000	1.462500e+05	5.135310e+05	24903.000000
	75 %	366718.000000	1.000000	2.025000e+05	8.086500e+05	34587.000000
	max	456255.000000	19.000000	1.170000e+08	4.050000e+06	230161.500000

8 rows × 107 columns

```
In [ ]: # plotting the days employed vs the amount of credit together with the target
sns.scatterplot(x='DAYS_EMPLOYED', y='AMT_CREDIT', data=df, hue='TARGET')
```

Out[]: <Axes: xlabel='DAYS_EMPLOYED', ylabel='AMT_CREDIT'>

Plot 10

['DENIED' 'APPROVED']

C:\Users\tehwh\AppData\Local\Temp\ipykernel_16988\1390636616.py:13: SettingWithCopyW
arning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy

