Computer Graphics

Unit 4 – Part 1

-By Manjula. S

3D Viewing

- Viewing Pipelining
- Viewing parameters
- Transformation of world coordinates to viewport coordinates

3D viewing Pipeline

-By Manjula. S

3D Viewing Transformation Pipeline

Viewing Pipelining

FIGURE 8
Orientation of the view plane and view-plane normal vector **N**.

6

Viewing Transformation

15

Viewing parameters

- View
- Viewplane
- View reference point(VRP)
- Normal vector
- Viewing distance

FIGURE 8Orientation of the view plane and view-plane normal vector **N**.

FIGURE 10

Specifying the view-plane normal vector \mathbf{N} as the direction from a selected reference point \mathbf{P}_{ref} to the viewing-coordinate origin $\mathbf{P}_{\mathbf{0}}$.

3D Viewing

V view up vector

 $P_0 = (x_0, y_0, z_0)$ view point

N viewplane normal

Viewplane is at point z_{vp} in negative z_v direction

V is perpendicular to N

3D viewing coordinates

Specification of projection:

 \mathbf{P}_0 : View or eye point

P_{ref}: *Center* or *look-at point*

V: View-up vector (projection along vertical axis)

 z_{vp} : positie view plane

 P_0 , P_{ref} , V: define *viewing* coordinate system Several variants possible

FIGURE 8
Orientation of the view plane and view-plane normal vector **N**.

FIGURE 9

Three possible positions for the view plane along the z_{view} axis.

FIGURE 11

Adjusting the input direction of the view-up vector **V** to an orientation perpendicular to the view-plane normal vector **N**.

Transformation of window port to viewport

$$\mathbf{n} = \frac{\mathbf{N}}{|\mathbf{N}|} = (n_x, n_y, n_z)$$

$$\mathbf{u} = \frac{\mathbf{V} \times \mathbf{n}}{|\mathbf{V} \times \mathbf{n}|} = (u_x, u_y, u_z)$$

$$\mathbf{v} = \mathbf{n} \times \mathbf{u} = (v_x, v_y, v_z)$$
(1)

FIGURE 12

A right-handed viewing system defined with unit vectors **u**, **v**, and **n**.

Transformation of window port to viewport

- ▶ T(xv,yv,zv)
- Rx
- Rz
- Ry

Rm=T.Rx.Rz.Ry

Transformation from World to Viewing Coordinates

World Coordinates as Reference

Step-1: Translate

Transformation from World to Viewing Coordinates

Transformation from World to Viewing Coordinates

$$\mathbf{T} = \begin{bmatrix} 1 & 0 & 0 & -x_0 \\ 0 & 1 & 0 & -y_0 \\ 0 & 0 & 1 & -z_0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad \mathbf{R} = \begin{bmatrix} u_x & u_y & u_z & 0 \\ v_x & v_y & v_z & 0 \\ n_x & n_y & n_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{R} = \begin{bmatrix} u_x & u_y & u_z & 0 \\ v_x & v_y & v_z & 0 \\ n_x & n_y & n_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

World Coordinates to Viewing

$$\mathbf{M}_{WC, VC} = \mathbf{R} \cdot \mathbf{T}$$

Viewing Coordinates
$$\mathbf{M}_{WC, \ VC} = \mathbf{R} \cdot \mathbf{T} = \begin{bmatrix} u_x & u_y & u_z & -\mathbf{u} \cdot \mathbf{P}_0 \\ v_x & v_y & v_z & -\mathbf{v} \cdot \mathbf{P}_0 \\ n_x & n_y & n_z & -\mathbf{n} \cdot \mathbf{P}_0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- Translate the viewing-coordinate origin to the origin of the worldcoordinate system.
- **2.** Apply rotations to align the x_{view} , y_{view} , and z_{view} axes with the world x_w , y_w , and z_w axes, respectively.

The viewing-coordinate origin is at world position $P_0 = (x_0, y_0, z_0)$. Therefore, the matrix for translating the viewing origin to the world origin is

$$\mathbf{T} = \begin{bmatrix} 1 & 0 & 0 & -x_0 \\ 0 & 1 & 0 & -y_0 \\ 0 & 0 & 1 & -z_0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \tag{2}$$

For the rotation transformation, we can use the unit vectors \mathbf{u} , \mathbf{v} , and \mathbf{n} to form the composite rotation matrix that superimposes the viewing axes onto the world frame. This transformation matrix is

$$\mathbf{R} = \begin{bmatrix} u_x & u_y & u_z & 0 \\ v_x & v_y & v_z & 0 \\ n_x & n_y & n_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(3)

where the elements of matrix **R** are the components of the **uvn** axis vectors.

The coordinate transformation matrix is then obtained as the product of the preceding translation and rotation matrices:

$$\mathbf{M}_{WC, VC} = \mathbf{R} \cdot \mathbf{T}$$

$$= \begin{bmatrix} u_x & u_y & u_z & -\mathbf{u} \cdot \mathbf{P}_0 \\ v_x & v_y & v_z & -\mathbf{v} \cdot \mathbf{P}_0 \\ n_x & n_y & n_z & -\mathbf{n} \cdot \mathbf{P}_0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(4)

-By Manjula. S

17

Transformation of window port to viewport

Translation factors in this matrix are calculated as the vector dot product of each of the \mathbf{u} , \mathbf{v} , and \mathbf{n} unit vectors with \mathbf{P}_0 , which represents a vector from the world origin to the viewing origin. In other words, the translation factors are the negative projections of \mathbf{P}_0 on each of the viewing-coordinate axes (the negative components of \mathbf{P}_0 in viewing coordinates). These matrix elements are evaluated as

$$-\mathbf{u} \cdot \mathbf{P}_0 = -x_0 u_x - y_0 u_y - z_0 u_z$$

$$-\mathbf{v} \cdot \mathbf{P}_0 = -x_0 v_x - y_0 v_y - z_0 v_z$$

$$-\mathbf{n} \cdot \mathbf{P}_0 = -x_0 n_x - y_0 n_y - z_0 n_z$$
(5)

Matrix 4 transfers world-coordinate object descriptions to the viewing reference frame.

Thank You