

CS10720 Problems and Solutions

Thomas Jansen

Today: Representing Rational Numbers

February 4th

Reminder

Don't forget portfolio submission deadline tomorrow, 7pm containing

- summary of Monday's lecture (representing integers)
- answers to both questions in one of the three problems from the worksheet about representing integers from the practicals
- summary of today's lecture (representing rational numbers)

Ideally everything in only one blog entry but clearly marking what is what

Reminder portfolio contributes 40% to module marks meaning you will fail the module if you don't do it

Plans for Today

1 Representing Rational Numbers
Motivation
IEEE-754

2 Summary
Summary & Take Home Message

Rational Numbers

Remember we have binary representations for natural numbers $x \in \mathbb{N}$ and for integers $x \in \mathbb{Z}$ (signed magnitude; one's complement; two's complement; excess)

What about real numbers $x \in \mathbb{R}$?

Observation in general, not feasible since we're dealing with finite computers/representations

What about rational numbers $x \in \mathbb{Q}$?

Remark two different possibilities fixed point representations i. e., fixed number of digits after decimal point

+simple

-useful only in special circumstances (e.g., money: £2.98)

floating point representations

Towards Floating Point Representations

For starters decimal representations

Observation almost every number $x\in\mathbb{Q}$ has unique representation as $x=(-1)^s\cdot m\cdot 10^e$ with sign $s\in\{0,1\}$ exponent $e\in\mathbb{Z}$ mantissa $m\in\mathbb{Q}$ and $1\leq m<10$

is called normalised floating point representation

Examples and Observations

- $12.34 = (-1)^0 \cdot 1.234 \cdot 10^1$
- $-383.902 = (-1)^1 \cdot 3.83902 \cdot 10^2$
- $-0.023 = (-1)^1 \cdot 2.3 \cdot 10^{-2}$
- $9.1 = (-1)^0 \cdot 9.1 \cdot 10^0$
- 0 cannot be represented this way

Binary Floating Point Representations

Observation $x=(-1)^s\cdot m\cdot 10^e$ is decimal representation we prefer binary representation $x=(-1)^s\cdot m\cdot 2^e$ with $1\leq m<2$ (m and e in binary representation)

Example
$$(1011.101)_2 = (-1)^0 \cdot (1.011101)_2 \cdot 2^3$$

Observation cannot represent $(0.2)_{10}$ like this

Proof Assume
$$0.2 = \frac{1}{5} = \sum_{i=-l}^{-3} d_i \cdot 2^i$$
 with $d_i \in \{0,1\}$

thus
$$\frac{1}{5}$$
 = $\sum_{i=3}^{l} d_{-i} \cdot 2^{-i} = 2^{-l} \sum_{i=3}^{l} d_{-i} \cdot 2^{l-i}$
= $2^{-l} \sum_{i=0}^{l-3} d_{-l+i} \cdot 2^{i} = \frac{a}{2^{l}}$ with $a, l \in \mathbb{N}$

thus $5a = 2^l$

About the Example

Remember

 $(0.2)_{10}$ cannot be represented in binary with any finite number of digits

Is this a specific problem with the binary representation?

Observation for 0.2 it is, in general it is not

Example

Consider $\frac{1}{3}$. $\frac{1}{3}=(0.1)_3$ but $\frac{1}{3}$ cannot be represented in decimal with any finite number of digits

Conclusion

many rational numbers have no finite floating point rep. and that holds for any base \rightsquigarrow we can proceed with base 2

IEEE-754

Institute of Electrical & Electronical Engineers

```
Basis x=(-1)^s\cdot m\cdot 2^e with sign s\in\{0,1\} exponent e\in\mathbb{Z} mantissa m\in\mathbb{Q} and 1\leq m<2
```

Definitions

- ullet mantissa m represented in standard binary encoding
- do not store leading 1 in m (called implicit 1)
- exponent e in excess representation with $k=2^{l_e-1}-1$

Caution artificially restrict exponent further (by 1 'on each side')

$$\begin{split} e_{\min} &= -k+1 = -\left(2^{l_e-1}-1\right)+1\\ e_{\max} &= 2^{l_e}-1-k-1 = 2^{l_e-1}-1\\ \text{(to make room for encoding 'special' numbers)} \end{split}$$

What is l_e ?

IEEE-754

Remember $x = (-1)^s \cdot m \cdot 2^e$

with sign
$$s \in \{0,1\}$$
 exponent $e \in \mathbb{Z}$ in excess representation with $k=2^{l_e-1}-1$ e further restricted between $e_{\min}=-k+1=-\left(2^{l_e-1}-1\right)$ and $e_{\max}=2^{l_e}-1-k-1=2^{l_e-1}-1$ to make room to encode 'special' numbers mantissa $m \in \mathbb{Q}$ and $1 \leq m < 2$, rep. in binary encoding

Length of Representation

6					
name	total length	sign	exponent	mantissa	
single precision	32	1	8	23	
double precision	64	1	11	52	
quadruple precision	128	1	15	112	

IEEE 754: Special Numbers

'number'	sign	exponent	mantissa
$+\infty$	0	$e_{max} + 1$	0
$-\infty$	1	$e_{\sf max}+1$	0
NaN	s	$e_{\sf max}+1$	$\neq 0$
0	0	$e_{min} - 1$	0
-0	1	$e_{min} - 1$	0
$(-1)^s \cdot \left(\sum_{i=1}^{l_m} m_i \cdot 2^{-i}\right) \cdot 2^{e_{\min}}$	s	$e_{min} - 1$	$m \neq 0$

NaN not a number

last row denormalised representation

Why denormalised numbers?

About Denormalised Numbers

Obvious can represent even smaller numbers

Obvious $x \neq y$

But without denormalised representation x - y = 0 rounded

Always better If
$$x-y\neq 0$$
 Then $z:=1/(x-y)$

IEEE 754: An Example

$$\begin{split} l &= 32, \ l_s = 1, \ l_e = 8, \ l_m = 23 \\ k &= 2^7 - 1 = 127, \ e_{\min} = -k + 1 = -126, \\ e_{\max} &= 2^8 - k - 2 = 127 \end{split}$$

We want to encode -3.

negative, thus sign 1

binary representation
$$3 = 2 + 1 = 2^1 + 2^0 = (2^0 + 2^{-1}) \cdot 2^1$$

exponent 1 excess rep.
$$\rightsquigarrow$$
 represent $1 + k = 128$
 $128 = (1000\,0000)_2$

mantiassa 1.1, implicit 1 not represented, thus
$$100\,0000\,0000\cdots$$

IEEE 754: Another Example

$$\begin{split} l &= 32, \ l_s = 1, \ l_e = 8, \ l_m = 23 \\ k &= 2^7 - 1 = 127, \ e_{\min} = -k + 1 = -126, \\ e_{\max} &= 2^8 - k - 2 = 127 \end{split}$$

We want to encode 0.0546875.

positive, thus sign 0

binary representation
$$0.0546875 = \frac{1}{32} + \frac{1}{64} + \frac{1}{128} = 2^{-5} + 2^{-6} + 2^{-7} = (2^0 + 2^{-1} + 2^{-2}) \cdot 2^{-5}$$

$$122 = (0111 \ 1010)_2$$

mantiassa 1.11, implicit 1 not represented, thus $110\,0000\,0000\cdots$

$$\begin{array}{c|c} \textbf{Result} & \underbrace{0}_{\text{sign}} & \underbrace{01111010}_{\text{exponent}} & \underbrace{110\,0000\,0000\,0000\,0000\,0000}_{\text{mantissa}} \\ \end{array}$$

IEEE 754: Final Example

$$\begin{split} l &= 32, \ l_s = 1, \ l_e = 8, \ l_m = 23 \\ k &= 2^7 - 1 = 127, \ e_{\min} = -k + 1 = -126, \\ e_{\max} &= 2^8 - k - 2 = 127 \end{split}$$

$$\underbrace{0}_{\mathsf{sign}}\underbrace{1000\,0101}_{\mathsf{exponent}}\underbrace{010\,1001\,0000\,0000\,0000\,0000}_{\mathsf{mantissa}}$$

sign 0, thus positive

exponent
$$(1000\,0101)_2=133$$
, represents $133-k=133-127=6$ mantissa including implicit 1 is 1.0101001 $(1.0101001)_2=1+\frac{1}{4}+\frac{1}{16}+\frac{1}{128}$

thus
$$(2^0 + 2^{-2} + 2^{-4} + 2^{-7}) \cdot 2^6 = 2^6 + 2^4 + 2^2 + 2^{-1} = 84.5$$

http://onlineted.com

Summary & Take Home Message

Things to remember

- fixed point representations
- floating point representations
- floating point representations with different bases
- IEEE 754 floating point representation
 - definition
 - representation lengths
 - · special numbers
 - denormalised representation
 - examples

Take Home Message

- IEEE-754 representation for rational numbers combines different representations.
- Standards are important.

Lecture feedback http://onlineted.com