Feuille d'exercices numéro 1, VAR

Exercice 1

Dessiner les sous ensembles suivants de \mathbb{R}^2 :

- 1) $\{(x,y) \text{ tel que } max(|x|,|y|) \le 1\};$
- 2) $\{(x,y) \text{ tel que } |x| + |y| < 1\};$
- 3) $\{(x,y) \text{ tel que } x^2 + 4y^2 < 1\};$
- 4) $\{(x,y) \text{ tel que } 0 \le y < x^2\};$
- 5) $\{(x,y) \text{ tel que } sin(y) \le x < 2\};$

Lesquels sont ouverts, fermés, ni l'un ni l'autre?, expliquer à l'aide d'un dessin.

Exercice 2

Montrer à partir de la définition que les sous ensembles suivants de \mathbb{R}, \mathbb{R}^2 ou \mathbb{R}^3 sont des ouverts.

- 1) L'intervalle]-1,1[;
- 2) $\{(x,y) \text{ tel que } |x| < 1 \text{ et } |y| < 2\}$;
- 3) $\{(x,y) \text{ tel que } (x-1)^2 + y^2 < 1\};$
- 4) Le cube $]-1,1[^3;$
- 5) $\{(x, y, z) \text{ tel que } x^2 + y^4 + z^6 < -5\};$

Exercice 3

Lesquels des sous ensembles suivants de \mathbb{R}^2 sont des ouverts :

- 1) $\{(x,y) \text{ tel que } |xy| \le 2\}$;
- 2) $\{(x,y) \text{ tel que } y > x^2 \text{ et } 0 \le |x| < 2\};$
- 3) $\{(x, y) \text{ tel que } y < x\};$
- 4) $\{(x,y) \text{ tel que } 1 < x^2 + y^2 \le 4\}$;
- 5) $\{(x,y) \text{ tel que } x \in \mathbb{Z} \text{ et } y \in \mathbb{Z}\};$
- 6) $\{(x,y) \text{ tel que } x \in \mathbb{Q} \text{ et } y \in \mathbb{Q}\};$
- 7) $\{(x,y) \text{ tel que } x > 0 \text{ et } y = \sin(1/x)\};$

Déterminer l'intérieur, le complémentaire, l'adhérance, la frontière des sous ensembles précédent.

Exercice 4

Soient A et B deux sous ensembles de \mathbb{R}^2 arbitraires.

- 1) Montrer que : $A \cap \overline{B} \subset \overline{A \cap B}$;
- 2) Trouver deux sous ensembles ouverts A et B tels que les quatre sous ensembles suivants soient tous distincts : $A \cap \overline{B}$; $B \cap \overline{A}$; $\overline{A} \cap \overline{B}$; et $\overline{A} \cap \overline{B}$.
- 3) Soient D_1 et D_2 deux disques fermés disjoints. On pose : $A = \mathring{D_1} \cup \delta(D_2)$ et $B = \mathring{D_2}$. Montrer que $A \cap \overline{B}$ n'est pas contenu dans $\overline{A \cap B}$. (δ désigne la frontière)

Exercice 5

Trouver un sous ensemble X de \mathbb{R} tel que les sous ensembles suivants soient tous distincts : X, \overline{X} , \mathring{X} , $\mathring{\overline{X}}$,

Exercice 6

Montrer qu'une réunion d'ensembles ouverts reste un ouvert, est ce vrai pour une intersection?

Exercice 7

Dans les énoncés des trois premiers exercices, déterminer les sous ensembles compacts.

Exercice 8

Montrer que l'intersection ou la réunion de deux sous ensembles compacts est un ensemble compact. Peut on remplacer " deux " par une famille infinie?

Exercice 9

Soient X et Y deux parties de \mathbb{R} (ou \mathbb{R}^n). Montrer que :

- 1) Si X ou Y est un ouvert alors la somme X + Y est un ouvert.
- 2) Si X et Y sont des compacts alors la somme est un compact.
- 3) Si l'un des deux est compact et l'autre fermé alors la somme est fermée.
- 4) Si les deux sont fermés, la somme n'est pas nécessairement fermée.

Exercice 10

Soient X un compact de \mathbb{R}^m et Y un compact de \mathbb{R}^n . Montrer que le produit $X \times Y$ est un compact de \mathbb{R}^{m+n} .

Exercice 11

Soit K un compact de \mathbb{R}^n contenu dans une boule ouverte de rayon r. Montrer que K est contenue dans une boule fermé de rayon strictement inférieur à r.

Exercice 12

On considère sur \mathbb{R}^2 , que l'on peut généraliser à \mathbb{R}^n , les applications suivantes où a et b sont deux réels non nuls :

$$n_1(x,y) = \sqrt{x^2 + y^2}$$
; $n_2(x,y) = \sqrt{\left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2}$; $n_3(x,y) = Sup(|x|,|y|)$;

Montrer que ces applications définissent des normes sur \mathbb{R}^2 . Sont elles équivalentes?

Exercice 13

On considère sur \mathbb{R}^n des normes $n_1,n_2,...n_p$ et $\lambda_1,\lambda_2,...\lambda_p$ des réels positifs de somme 1. Montrer que l'application suivante :

$$n(\vec{x}) = n((x_1, x_2, ...x_n)) = \sum_{i=1}^{p} \lambda_i . n_i((x_1, x_2, ...x_n));$$

définie une norme sur \mathbb{R}^n .

Exercice 14

On considère sur \mathbb{R}^n le produit scalaire euclidien ainsi que la norme qui lui est associée. Montrer les identités suivantes :

$$<\vec{x},\vec{y}> = \frac{1}{4}(\|\vec{x}+\vec{y}\|^2 - \|\vec{x}-\vec{y}\|^2) \; \; ; \; \; \|\vec{x}+\vec{y}\|^2 + \|\vec{x}-\vec{y}\|^2 = 2(\|\vec{x}\|^2 + \|\vec{y}\|^2) \; \; ;$$

où \vec{x} et \vec{y} sont deux éléments de \mathbb{R}^n .

Exercice 15

Soit E un espace vectoriel normé de dimension fini. Montrer l'identité suivante :

$$\|\frac{\vec{x}}{\|\vec{x}\|} - \frac{\vec{y}}{\|\vec{y}\|}\| \le 2\frac{\|\vec{x} - \vec{y}\|}{\|\vec{x}\|} ;$$

où \vec{x} et \vec{y} sont deux éléments non nuls de E.

Exercice 16

On muni \mathbb{R}^2 d'une distance d, soit \tilde{d} l'application définie sur \mathbb{R}^2 suivante : $\tilde{d}(\vec{x}, \vec{y}) = Inf\{1, d(\vec{x}, \vec{y})\}$. Démontrer que \tilde{d} est une distance sur \mathbb{R}^2 . Décrire lorsque d est la distance euclidienne, les boules ouvertes et fermées pour la distance \tilde{d} .

Exercice 17

Soit H le sous ensemble de \mathbb{R}^2 défini comme suit : $H = \{\vec{x} = (x_1, x_2) \in \mathbb{R}^2 / x_1 \geq 0 \; ; \; x_2 \geq 0\}$. On muni H de la distance euclidienne usuelle. Trouver deux boules $B(\vec{x}, r_1)$ et $B(\vec{y}, r_2)$ tel que : $B(\vec{x}, r_1) \subset B(\vec{y}, r_2)$ et $r_1 \geq r_2$. Peut on avoir une inégalité stricte?

Exercice 18

Soit K le sous ensemble de \mathbb{R}^2 défini comme suit : $K = \{\vec{x} = (x_1, x_2) \in \mathbb{R}^2 / x_1.x_2 = 0\}$. On définit sur $K \times K$ l'application d suivante : $d((x_1, x_2), (y_1, y_2)) = Sup\{|(x_1 - y_1)|, |(x_2 - y_2)|\}$. Montrer que d est une distance sur K, trouver une boule $B(\vec{a}, r)$ telle que la boule fermée de centre \vec{a} et de rayon r soit distincte de l'adhérance $\overline{B(\vec{a}, r)}$ de $B(\vec{a}, r)$.

Exercice 19

On note $\mathbb{R}[X]$ l'espace vectoriel des polynômes à coefficients réels de la variable X. Soit $P(X) = a_0 + a_1.X + a_2.X^2 + ...a_n.X^n$ un élément de $\mathbb{R}[X]$, on défini les trois applications suivantes :

$$N_1(P) = Sup_{i \in \mathbb{N}}(|a_i|) \; ; \; N_2(P) = \sum_{i \in \mathbb{N}} |a_i| \; ; \; N_3(P) = Sup_{x \in [0,1]}|P(x)|$$

Démontrer que chacune de ces applications définissent une norme sur l'espace des polynômes $\mathbb{R}[X]$. Sont elles équivalentes?

Exercice 20

Soient F_1 et F_2 deux sous ensembles fermés de \mathbb{R}^n . On suppose que la réunion $F_1 \cup F_2$ et l'intersection $F_1 \cap F_2$ sont connexes par arcs. En déduire que F_1 et F_2 sont connexes par arcs.