Modul	Einführung in die Sensordatenfusion									
BA-INF 137										
Workload	Umfang	Dauer		Turnus						
180 h	6 LP 1 Semester jährlich									
Modulverantwort-	PD Dr. Wolfgang Koch									
licher										
Dozenten	PD Dr. Wolfgang Koch									
Zuordnung	Studiengang			Modus		Studiensemester				
	B. Sc. Informatik Wahlpflicht 4.									
Lernziele: fachliche	Sensordatenfusion verknüpft unvollständige und fehlerhafte,									
Kompetenzen	aber einander ergänzende Messdaten, so dass ein									
	zugrundeliegendes Phänomen der Realität besser verstanden									
	wird. Die Vorlesung vermittelt dazu benötigten Grundlagen, die									
	anhand vieler Anwendungsbeispiele veranschaulicht werden. Die									
	Studierenden lernen dadurch wichtiges Handwerkszeug der									
	Schätz- und Filterungstheorie, der Simulation und									
	Performance-Evaluation kennen, die auch in anderen Gebieten									
	der Informatik nützlich sind. Die benötigten Grundbegriffe der									
	Stochastik werden in der Vorlesung eingeführt. Freude an									
	mathematischer Einsicht und Geschick bei der Implementierung									
	von Algorithmen sind Voraussetzung. Geeignete Studierende									
	können im 5. Semester im Fraunhofer FKIE							=		
	mitwirken und/oder ihre Bachelor-Arbeit schreiben. Im									
	Master-Studiengang kann das Thema weiter vertieft werden.									
Lernziele:	Umgang mit Wahrscheinlichkeitsdichten, Ableitung von									
Schlüsselkompe-	Algorithmen, Anwenden der Linearen Alegbra auf Probleme der									
tenzen	Wahrscheinlichkeitsrechnung.									
Inhalte	diskrete und stetige Zufallsvariablen,									
	Wahrscheinlichkeitsdichtefunktionen, Modellierung von									
	unsicherem Wissen, Bayes-Formalismus, Gauß-Dichten und									
	Gauß-Summen, Chi-Quadrat-Test, Kalman Filter									
Teilnahme-	Empfohlen: alle Module aus folgender Liste:									
voraussetzungen	BA-INF 021 – Lineare Algebra									
	BA-INF 022 – Analysis									
Veranstaltungen	Lehrform			Gruppeng	größe	SWS	Workload[h]	LP		
	Vorlesun	_		40		2	30 P / 45 S	2,5		
	Übungen	L		20		2	30 P / 75 S	3,5		
	P = Präsenzstudium, $S = Selbststudium$									
Prüfungsleistungen	Mündliche Prüfung (benotet							otet)		
Studienleistungen	Erfolgreiche Übungsteilnahme						(unbenotet)			
Medieneinsatz							`			
Literatur	W. Koch: "Tracking and Sensor Data Fusion: Methodological									
	Framework and Selected Applications", Springer, 2014.									