Regulação da expressão gênica em procariotos

(Parte I)

BIOLOGIA MOLECULAR I- BFB705 2018

Regulação da expressão gênica em procariotos

- √ Célula bacteriana estrutura e morfologia
- √ Adaptação ao ambiente e expressão gênica
- √ Níveis de regulação da expressão gênica
 - I- Regulação ao nível da transcrição

Fatores que afetam o início da transcrição:

- ✓ Sequência de bases do promotor
- \checkmark Competição entre os fatores σ da RNA polimerase

Célula bacteriana: organismo unicelular sem organelas

- Citoplasma- matriz citoplasmática, DNA (nucleóide), ribossomos, plasmídeos, e onde a grande maioria das reações metabólicas ocorrem.
- Membrana citoplasmáticaenvolve o citoplasma limita o acesso ao interior da célula.
- Parede celular (peptideoglicana, mureina), resiste à pressão osmótica e dá forma á célula.
- Flagelos (apêndice para natação).
- Pilus/pili ou fimbria/fimbrias (para interação/adesão a superfícies bióticas ou abióticas).
- Cápsula (proteção).

Formas e arranjos celulares

- Três formas básicas:
- 1- <u>Esféricas</u>- arredondadas, ovóides ou achatadas em um dos lados.
- 2- <u>Cilíndricas</u>- Bastões, bacilos ou bastonetes (podem ter terminações achatadas, arredondadas, afiladas ou pontiagudas)
- 3- Espiraladas- espirilos (forma espiral ou saca-rolha)

Morfologia bacteriana Cocóide* (cocos, esférica):

- individuais, duplas, tétrade,
 sarcina (cubos)
- cadeias = estreptococos
- grupos = estafilococos
 - *(Coccus/cocci)
- Cocos- ~ 0,5-1,0 μm de diam.

Bastonete* (bacilo, alongada/curvos)

Individuais:

- Bacilos (a)
- Diplobacilos (b)
- Cocobacilos (d)

Cadeias:

Estreptobacilos (c)

*(Bacillus/bacilli)

Bastonete ~ 0.5 -1.5 µm diam 1-4 µm comprimento.

Coccobacillus

Outras formas bacterianas

Bastonetes curvos- Vibrio

Pedunculadas - Caulobacter

Filamentosas e ramificadas

Actinomyces

Espiraladas: Espirilos (A) e Espiroquetas (B)

Até 60 μ m comp x 1,4-1,7 μ m diam (rígidas)

Helicobacter pylori (úlcera gástrica)

5-250 μ m comp × 0.1-0.6 μ m de diam (flexíveis)

Treponema pallidum (sífilis)

Células bacterianas atípicas

- · Megabactéria- visível a olho nu.
 - 150-750 μm de diam (coco);
 - $40\mu m/200\mu m$ diam até $80\mu m$ - $700\mu m$ comp (bastonete)

Nature 362, 239-241 (1993) doi:10.1038/362239a0

Megabactérias (visíveis a olho nu)

Epulopiscium fishelsoni - (80 μm x 600 μm) descoberta no intestino do "peixe cirurgião", no Mar Vermelho, em 1985, mas encontrada em outras regiões.

(http://micro.cornell.edu/research/epulopiscium)

Thiomargarita namibiensis - a maior bactéria conhecida (coco de ~500 µm diâmetro, ~ cabeça de uma Drosoplila) descoberta em 1997, em sedimentos marinhos na África.

Bactéria

A forma mais abundante de vida da Terra em biomassa e diversidade:

- em 1g de solo fértil: ~10⁹ células bacterianas, ou 10⁴ X o no. células eucarióticas
- no mar: as bactérias representam 90% peso total de todos os organismos

"The number of bacteria on earth is $\sim 5 \times 10^{30}$ (William Whitman/ University of Georgia/USA)

Onde são encontradas?

Corpo humano contém:

10¹³ células X 10¹⁴ bactérias

Flora microbiana normal- relativamente estável

Números de organismos por grama de tecido ou flúido ou por cm² de pele.

Tipos de vida: <u>livre</u> ou associadas a substratos bióticos ou abióticos em <u>biofilmes</u>

Biofilme na superfície de lago (A) e em lente de contato (B)

Células planctônicas (livres)

Biofilmes: Comunidades microbianas complexas e dinâmicas, formadas por micro colônias e micro canais, envoltas por uma matriz, geralmente polissacarídica. O biofilme se forma sequencialmente e sofre alterações ao longo do tempo.

~90% das bactérias na natureza encontram-se em biofilmes mistos.

Biofilmes bacterianos ocorrem no corpo humano.

Bacterial co-aggregation: an integral process in the development of multi-species biofilms. *Trends Microbiol.*, (2003) **11**:94-100.

As condições
ambientais em um
biofilme maduro são
heterogêneas e as
bactérias têm que se
adaptar a elas.

- > Um biofilme no estágio inicial de formação:
- (a) há abundância de substrato e oxigênio.
- > No biofilme maduro há ambientes que :
- (b) contêm substrato e oxigênio;
- (c) contêm substrato, mas não tem oxigênio;
- (d) não contêm substrato, nem oxigênio.

Porque formar biofilmes?

Melhores condições de sobrevivência do

que em vida livre.

Proteção contra:

 Radiações UV
 Desidratação
 Predadores

 Antimicrobianos

Figure 7: SEM of mature human dental plaque demonstrating corn cob formation. Bar = 10 microns at an original magnification of 2,020. Courtesy of Dr. Charles Cobb. University of Missouri-Kanses City

- Troca de material genético
- · Maior aproveitamento de nutrientes

http://onlinelibrary.wiley.com/doi/10.1111/j.1601-1546.2012.00277.x/pdf

Considerações gerais sobre Bactérias

- Não controlam o ambiente que habitam, portanto, têm que se adaptar para sobreviver.
 - Ex: bactérias do solo ou água são sujeitas a flutuações constantes de:
 - pH, umidade, temperatura, disponibilidade e natureza dos nutrientes, tensão de oxigênio, presença de substâncias tóxicas, radiação solar, etc. Em biofilmes.... (slide anterior)
- Apesar disto, bactérias são encontradas em todos os ecossistemas do planeta!

Razão do sucesso

- Detectar as alterações ambientais (sinais)
- Produzir uma resposta adaptativa apropriada.

Ou seja, sintetizando um <u>conjunto de moléculas (proteínas</u> <u>principalmente e</u> sRNAs) por expressão dos genes correspondentes.

Portanto, sinais ambientais distintos induzem alterações na expressão gênica e a síntese de um novo conjunto de proteínas e sRNAs.

É esta expressão diferencial de genes que permite a adaptação da bactéria a ambientes distintos.

Porque regular a expressão gênica?

- A necessidade de alguns produtos gênicos depende das condições ambientais, portanto,
- · só uma fração dos genes é expressa em um dado momento.

Alto custo da síntese de uma proteína de 300 aminoácidos:

1350 moléculas de ATP/GTP

1650 átomos de carbono

540 átomos de nitrogênio.

Além disto há uso de: ribossomos, polimerases, chaperonas...

E. coli possui genes que codificam ~ 4000 proteínas....

A economia na produção de proteína é central para a fisiologia celular O custo da produção de proteínas é comumente atribuído à tradução de proteínas.

Expressão gênica: constitutiva x regulada

Genes de expressão constitutiva - expressos em taxas ~
 constantes durante a vida da célula - genes de manutenção.

Ex: DNA polimerase, DNA girase, RNA polimerase etc.

 Genes regulados - expressão varia em resposta a sinais ambientais - expressão regulada: indução/repressão
 Ex: genes que controlam o crescimento e divisão celular, a produção de flagelo, de fimbrias, de toxinas etc

Níveis de controle da expressão gênica

- Em termos gerais são três as etapas principais:
 - Transcrição controla quando e com que frequência um gene é transcrito - a principal etapa do controle em bactérias é o início da transcrição!
 - Tradução a) taxa de degradação do mRNA
 b) eficiência da tradução (vários fatores)
 - Pós-tradução mecanismos de ativação:
 - reversíveis (fosforilação, glicosilação etc) ou
 - irreversíveis (processamento proteolítico, etc).

Regulação da expressão gênica

1 - Regulação ao nível da transcrição

Regulação ao nível da transcrição

- Maioria dos genes bacterianos é regulada ao nível da transcrição: principalmente no início do processo
 - Processo mediado pela interação proteína (s)-DNA
 - Componente protéico central do processo- a enzima RNA polimerase
 - Em Escherichia coli e outras bactérias existe uma única RNA polimerase: um complexo de 6 sub-unidades, que catalisa a síntese de todos os RNAs celulares (5'→ 3')
 - RNA polimerase se liga a um sítio específico no DNA a montante do gene a ser transcrito- promotor

RNA polimerase (RNAP) bacteriana

RNAP holoenzima

Cerne da enzima: $\alpha_2\beta\beta'\omega$; (Alongamento da transcrição)

Holoenzima: cerne + σ (Início da transcrição)

- ββ' juntas formam o sítio ativo.
- • a é essencial para a estrutura e interação da enzima com proteínas reguladoras; a também se liga ao DNA.
- W tem função estrutural
- σ reconhece sequências do promotor no DNA (a maioria das bactérias tem vários σ distintos)

RNA polimerase (RNAP) de E. coli

Adapted from K. M. Geszvain and R. Landick (ed. N. P. Higgins). The Bacterial Chromosome. American Society for Microbiology, 2004.

Fatores sigma (o) bacterianos

- O sequenciamento de genomas revelou que o número de subunidades σ varia entre diferentes espécies de bactérias:
- A maioria dos genomas bacterianos codifica pelo menos 3 fatores σ . Mas,
 - Sorangium cellulosum contém 109 fatores σ.
- Mycoplasma genitalium contém 1 fator σ,
- Escherichia coli tem 7 fatores σ
- Bacillus subtilis tem 17 fatores σ
- Mycobacterium tuberculosis tem 13.

[&]quot;Bacteria that live in varied environments have more sigma factors"

Fatores sigma (o) bacterianos

Os fatores σ bacterianos podem ser classificados em <u>duas</u>
 famílias distintas com base na similaridade de estrutura com
 os fatores de Escherichia coli:

- (1) a família do fator primário, σ^{70/σ^D} responsável pela maior parte da transcrição durante o crescimento;
- (2) a família do $\sigma^{54/\sigma N}$, proteína estruturalmente distinta do σ^{70} e envolvida na expressão de genes de utilização de nitrogênio e interação com o meio exterior (síntese de cápsula, flagelo, etc)

Os sete fatores σ de E. coli: σ^{70} , σ^{32} , σ^{24} , σ^{38} , σ^{28} , σ^{19} ; σ^{54}

DNA: interação com a RNAPolimerase

Estrutura de uma unidade transcricional típica: um segmento de DNA que contém signais para o início (promotor) e o término da transcrição (terminador) e é transcrito em uma molécula de RNA. [+1- início da transcrição]

Unidades transcricionais em bactéria: óperons

Óperon- conjunto de genes (cistrons) transcritos a partir de um mesmo promotor (25% dos genes de *E. coli*)

Uma molécula única de RNA é obtida na transcrição. Esta contém informação para a síntese de todas as proteínas codificadas no óperon: o produto é um mRNA policistrônico

Transcrição em bactérias: elementos importantes para o início da transcrição

·Promotores

- sequências no DNA a montante (5`) do gene, onde a RNAP se liga para dar início a transcrição.

·RNA polimerase (RNAP)

 enzima que interage com o promotor catalisa a transcrição do gene a jusante, com síntese do RNA.

Regiões comuns a maioria dos promotores bacterianos

Sequências de 6-7 bp centradas a -10 ("Pribnow box") e -35 (a 5`) do ponto do início da transcrição (+1), reconhecidas pela maioria dos fatores σ (sigma) da RNAP bacteriana.

Região Promotora de ligação da RNAP-σ⁷⁰

Sequências a -10 e -35 consenso de um promotor de *Escherichia* coli reconhecido pela RNAP- σ⁷⁰ responsável pela transcrição da maioria dos genes durante o crescimento celular

Sítios de ligação de σ distintos a promotores de E. coli

Facto	r Use	-35 Sequence	Separation	-10 Sequence
σ ⁷⁰ σ ³² σΕ σ ⁵⁴ σ ⁶	general heat shock heat shock nitrogen flagellar	TTGACA CCCTTGAA not known CTGGNA (-24) CTAAA	16–18 bp 13–15 bp not known 6 bp 15 bp	TATAAT CCCGATNT not known TTGCA (-12) GCCGATAA
$\sigma^{5/38}$	stress response	<u>TTG</u> ACA	17 ± 2	TATACT

CTATACT

As sequências a -10 e -35 que reconhecem os fatores σ^{70} e σ^{38} apresentam similaridades, porem os promotores σ^{38} geralmente têm:

- a sequência a "- 10" centrada entre nucleotídeos os 7-14;
- a posição da sequência a -35 pode variar, assim como certas bases (itálico);
- distância entre -10 e -35 também variável (17±2bp)

Nucleic Acids Research, 2000, Vol. 28, No. 18, 3497-3503; Genome Biol. 2003; 4(1): 203. THE JOURNAL OF BIOLOGICAL CHEMISTRY Vol. 276, No. 32, pp. 30064-30071, 2001

Fatores que afetam o <u>início</u> da transcrição

 I- Sequência de bases dos promotores e interação com a RNAP

 II- Competição entre os fatores σ pelo cerne da RNApol

I- Sequência de bases do promotor e interação com a RNAP

Regiões da proteína σ que interagem com o promotor

A proteína σ apresenta quatro domínios: $\sigma 1$ - $\sigma 4$ (N \rightarrow C)

A região 2 do σ reconhece a sequência -10 e a 4 do σ , reconhece a -35 do promotor. O fator σ isolado não se liga ao promotor!

Mol Cell, 2006;23(1):97-107.

RNAP- σ^{70} X DNA de *E. coli*: sequências consenso

Garrett & Grisham: Biochemistry, 2/e

Figure 31.3

*Sequência consenso- sequência ideal, na qual cada posição representa a base mais frequente quando muitas sequências são alinhadas.

Exs of (-35) and (-10) sequences within E. coli σ^{70} promoters

"For many bacterial genes, there is a good correlation between the rate of transcription and the degree of agreement between the promoter sequences with the consensus sequences"

Desvio das sequências -10 e -35 do consenso pode levar a uma expressão gênica fraca. Ex: o promotor do gene lacI é considerado fraco; o promotor do gene recA é um dos mais fortes de E. coli!

Gene recA: is under repression by LexA protein, but even when repressed, the level of gene expression is high enough to maintain ~ 1000 RecA monomers/cell;

Gene lacI: is not under repression and ~160 LacI monomers are present per cell.

Proc. NatL Acad. Sci. USA Vol. 80, pp. 65-69, January 1983; Biochimie (1991) 73, 457-470; <u>EMBO J</u>. 2000; 19(14): 3762-3769. <u>Nucleic Acids Res</u>. 2013 Jul; 41(13): 6381-6390.

Outras regiões importantes em promotores bacterianos que se ligam a RNAP. σ^{70}

 $O \sigma^{70}$ pode contatar outras sequências no DNA para aumentar a eficiência da transcrição:

- -10 Ext ("extended"): alguns promotores contém um motivo TG.. adicional localizado a montante do elemento 10: crucial para a transcrição a partir de promotores de *E. coli* (~30%) e outras bactérias, cujos 6bps a -35 são pouco conservados em relação ao consenso ou ausentes.
- •Dis ("discriminatory"), entre o elemento -10 e +1 rica em G (5'-GGG-3')
- ·está envolvida na regulação do tempo de vida do complexo aberto.

RNAP- α : azul; β and β ': cinza; ω : preto; regiões do fator σ^{70} .

Promotor- elemento **U**P: azul claro; -35: azul escuro; "-10 extended": vermelho; -10: amarelo; "discriminator": laranja; +1, sítio de inicio da transcrição: verde. As regiões de ligação entre os domínio de $\bf a$ de $\bf \sigma$ são mostradas como molas.

Biomolecules **2015**, *5*, 1035-1062 **α**

Características <u>comuns</u> dos promotores que afetam a interação com a RNAP- σ^{70}

- -caixa de 6 bp a -10 e
- -caixas de 6 bp a -35 e
- -espaçamento de 17 \pm 1 bp entre -10 e a -35
 - (espaçadores mais curtos ou mais longos que o consenso, diminuem a força do promotor)
- Com base apenas nestes parâmetros pode-se dizer que a taxa de transcrição de diferentes genes cujos <u>promotores</u> reconhecem a mesma RNAP pode variar: a partir de alguns promotores podem ser geradas poucas cópias de RNA/geração celular e de outros, podem ser transcritos dezenas de milhares de cópias de RNA/geração.

II- Competição entre os σs pelo cerne da RNAP

RNAP de Escherichia coli

- ~ 4.000 genes em E. coli
- ~ 8,000 RNAP, das quais, ~30% estão envolvidas na etapa de alongamento da transcrição, em determinado momento.

Demais moléculas de RNAP (hipóteses):

- Ligadas a promotores de mRNA (~23%)
- Ligadas ao DNA, mas pausadas ou em movimento muito lento durante a transcrição (30%),
- Ligadas não especificamente ao DNA e holoenzimas livres prontas para se ligar ao promotor (2%)
- Enzimas imaturas recém-sintetizada (15%).

Journal of Bacteriology, 2001, Vol. 183, No. 8, p. 2527-2534,

- Que RNAP-σ (s) atuarão em dado momento vai depender de dois parâmetros:
- das <u>concentrações celulares</u> das subunidades σ, que vão depender das condições ambientais
- da <u>afinidade de ligação</u> de cada σ pelo cerne da enzima RNAP
 - Concorrência entre as subunidades σ , para se ligar a uma oferta limitada do cerne da RNAP, é que vai determinar que genes serão expressos em dado momento.

Fatores Sigma de E. coli

Afinidade de fatores o pela RNAP de E. coli:

 $\sigma^{70/D} > \sigma^{54/N} > \sigma^{28/F} > \sigma^{24/E} / \sigma^{19/FecI} > \sigma^{32/H} > \sigma^{38/S}$

Crescimento bacteriano

O crescimento bacteriano:

 aumento no número de células,
 que ocorre com a divisão
 celular.

A maioria das células
 bacterianas se tornam
 maiores e se dividem por
 fissão binária.

Cell wall

Cell membrane

Chromosome 1 Chromosome 2

Ribosomes

Acompanhando o crescimento bacteriano com o tempo: Cinética do crescimento bacteriano em sistema fechado

- > Durante o crescimento exponencial de Escherichia coli:
- A maioria da atividade de transcrição é realizada pela RNAP- σ^{70} , devido maior concentração intracelular de σ^{70} e maior afinidade para pelo cerne da RNAP.
- Além do $\sigma^{70/D}$ (~60-90% of the total pool of sigma factors nesta fase), $\sigma^{54/N}$ e $\sigma^{28/F}$ também são encontrados nesta fase.
- A concentração intracelular de $\sigma^{70/D}$, $\sigma^{54/N}$ e $\sigma^{28/F}$ é constante nas fases exponencial e estacionária de células de E. coli
- Afinidade de fatores σ pela RNAP de E.~coli: $\sigma^{70/D} > \sigma^{54/N} > \sigma^{28/F} > \sigma^{24/E}/\sigma^{19/FecI} > \sigma^{32/H} > \sigma^{38/S}$

Acompanhando o crescimento bacteriano com o tempo: Cinética do crescimento bacteriano em sistema fechado

Durante a fase estacionária do crescimento de Escherichia coli:

- A célula bacteriana regula a transcrição de modo a ativar a expressão dos genes necessários para a sobrevivência sob estresse e deficiência de nutrientes e para reduzir a transcrição de genes "desnecessários".
- *E. coli* usa o fator $\sigma^{5/38}$ codificada pelo gene *rpoS*, como o principal regulador da transcrição em resposta a várias formas de estresse.
- $ightharpoonup \sigma^{5/38}$ atua especificamente na fase estacionária: na fase exponencial, mesmo que haja transcrição do gene de $\sigma^{5/38}$, a tradução de seu mRNA é inibida e qualquer proteína $\sigma^{5/38}$ que é sintetizada é rapidamente degradada.
- Acta Naturae. 2015; 7(4): 22-33. J. Bacteriology 2014, vol 196, no 18, p. 3279–3288

- \succ Regulação do nível do $\sigma^{5/38}$ de fase estacionária em E. coli
 - Na fase estacionária a célula precisará de proteínas cujos genes são transcritos pela RNAP.σ^{5/38}, para se adaptar à nova condição.
 - Nesta fase o nível de $\sigma^{5/38}$ na célula aumenta para ~ 250-300/célula (~ 30-35% da $[\sigma^{70}]$).
 - Mas, o nível de σ^{70} permanece constante, porém a frequência de transcrição dos genes sob controle de σ^{70} cai mais que 10 xs.

Jishage M. and Ishihama, A. (1998) Proc. Natl Acad. Sci. USA, 95, 4953-4958.

Genes regulados por $\sigma^{5/38}$ em E. coli

• O fator RpoS ou $\sigma^{5/38}$ é o principal regulador do resposta ao estresse geral-transcreve mais de ~500 genes que conferem resistência às células na fase estacionária, e a fatores tais como estresse oxidativo, radiação UV, choque térmico, alta osmolaridade, pH ácido, etc.

RNA Biology, 2014, 11:5, 494-507; Current Genomics, 2013, 14, 378-387

Fase exponencial x estacionaria do crescimento de E. coli

- 1- Na fase estacionária o nível de $\sigma^{5/38}$ na célula aumenta para ~ 250-300/célula (~ 30-35% da $[\sigma^{70}]$).
- 2- O nível de σ^{70} permanece o mesmo da fase exponencial, porém a frequência de transcrição dos genes sob controle de σ^{70} cai mais que 10 xs.

Proteolytic Regulation of Stress Response Pathways in *Escherichia coli*, 2013, Sub- cellular biochemistry 66:105-28; Jishage M. and Ishihama, A. (1998) Proc. Natl Acad. Sci. USA, 95, 4953-4958.

1- Mecanismos de aumento dos níveis de $\sigma^{5/38}$

> Aumento das taxas de transcrição de *rpoS* e tradução do *rpoS* mRNA,

 \succ Estabilização de seu mRNA e da proteína $\sigma^{5/38}$.

➤ Ativação de σ^{5/38}

Acúmulo de $\sigma^{5/38}$ (RpoS) em E. coli na fase estacionária:

- > aumento da taxa de transcrição de rpoS pela RNAP-σ⁷⁰ (1)
- > aumento da taxa de <u>tradução</u> do *rpoS* mRNA (2)
- > inibição da degradação de $\sigma^{5/38}$ por ClpXP (3); ativação de $\sigma^{5/38}$ por Crl (4)

Ativação do $\sigma^{5/38}$ pela proteína Crl (pós-tradução)

- $\sigma^{5/38}$ /RpoS tem a menor afinidade para o cerne da polimerase dentre todos os fatores σ de E. coli.
- A interação de $\sigma^{5/38}$ com a proteína ativadora Crl, ajuda superar essa falta de afinidade, por estimular a interação entre $\sigma^{5/38}$ e o cerne da RNAP (mecanismo?)
- Assim, Crl desempenha um papel importante na regulação da expressão dos genes controlados por $\sigma^{\rm S/38}$.

Gaal T, Mandel MJ, Silhavy TJ, Gourse RL (2006) Crl facilitates RNA polymerase holoenzyme formation. J Bacteriol 188 (22):7966–7970.

Banta, Amy B. et al. "Structure of the RNA Polymerase Assembly Factor Crl and Identification of Its Interaction Surface with Sigma S." Journal of Bacteriology 196.18 (2014): 3279-3288.

Fase exponencial x estacionaria do crescimento de E. coli

- 1 Na fase estacionária o nível de $\sigma^{5/38}$ na célula aumenta para ~ 250 300/célula (~ 30-35% da $[\sigma^{70}]$).
- 2- O nível de σ^{70} permanece o mesmo da fase exponencial, porém a frequência de transcrição dos genes sob controle de σ^{70} cai mais que 10 xs.

Proteolytic Regulation of Stress Response Pathways in *Escherichia coli*, 2013, Sub- cellular biochemistry 66:105-28; Jishage M. and Ishihama, A. (1998) Proc. Natl Acad. Sci. USA, 95, 4953-4958.

2- Mecanismos que contribuem para a redução da transcrição por RNAP- σ^{70} e aumento pela RNAP- $\sigma^{5/38}$ na fase estacionária

> Interação de fatores Sigma com anti-o

> Interação da RNAP- σ^{70} com moléculas que favorecem a transcrição pela RNAP- $\sigma^{5/38}$

Interação com fatores anti- σ

Fatores anti-o: interação reversível

- A atividade de fatores σ pode ser afetada por interação com "fatores anti- σ "- proteínas que se ligam a um σ de forma específica, bloqueando sua interação com a RNAP.
- Isto evita a transcrição de genes cujos produtos não são importantes naquela condição.
- É um processo reversível.

Fatores anti-o afetam o início da transcrição

• Fatores anti-σ descritos em *E. coli*:

• Anti- $\sigma^{70/D}$, anti- $\sigma^{24/E}$, anti- $\sigma^{28/F}$, anti- $\sigma^{38/S}$, anti- $\sigma^{32/H}$, anti- $\sigma^{19/FecI}$, [anti- $\sigma^{54/N}$????]

Fatores anti- σ e σ correspondentes em várias espécies bacterianas

TABLE 1 List of anti-sigma factors and their cognate sigma factors

Organism	Sigma factors	Anti-σ factors	Size(aa)	Function
Bacteriophage T4	E. coliσ ⁷⁰	AsiA	90	Housekeeping
Bacillus subtilis	σ^{F}	SpollAB	147	Sporulation
	σ^{G}	SpollAB	147	Sporulation
	σ^{B}	RsbW	160	Stress response
	σ^{D}	FlgM	97	Flagellar biosynthesis
Salmonella typhimurium	σ^{28}	FlgM	97	Flagellar biosynthesis
Eubacteria	σ^{32}	DnaK	638	Heat shock
Streptomyces coelicolor	σ^{WhiG}	?		Sporulation
ECF subfamily				
Alcaligenes eutrophus	σ^{CnrH}	Orf1	192	Co/Ni resistance
Azotobacter vinelandii	σ^{AlgU}	MucA	194	Alginate biosynthesis
Bacillus subtilis	σ^{SigX}	?		
	σ ^{SigV}	Anti-SigV	285	
	σ^{SigZ}	?		
Erwinia amylovora	σ^{22}	?		Virulence factors/
				Hypersensitivity
Escherichia coli	σ^{E}	RseA/McIA	208	Extreme temperature
				survival
	σ^{Fecl}	FecR	317	FeIII-Citrate transport
Haemophilus influenzae	σ^{E}	RseA/McIA	195	
Myxococcus xanthus	σ ^{CarQ}	CarR	221	Caroteroid biosynthesis
Mycobacterium tuberculosis	σ ^E	?		
Mycobacterium leprae	σ ^E	?		
Salmonella typhimurium	σ ^E	?		
Streptomyces coelicolor	σ ^E	?		Agarase synthesis
Sulfolobus acidocaldarius	σ ^E	?		
Synechocystis sp.	σ ^E	?		
Photobacterium SS9	σ ^E	Orf2	232	High pressure survival
Pseudomonas aeruginosa	σ ^{22(AlgT/AlgU)}	MucA	194	Alginate biosynthesis
	σ ^{PvdS}	?		Pyoverdine biosynthesis
Pseudomonas putida	σ ^{Pupl}	PupR	316	Pseudobactin transport
Pseudomonas syringae	σ ^{HrpL}	?		Virulence factors/
				Hypersensitivity
Rhodobacter sphaeroides	σE	ChrR	213	Cytochrome c ₂ expression

Exemplo:

- Rsd (Regulator of sigma D''ou σ^{70}) de E. coli é um fator anti- σ^{70} . Na fase estacionária, há um aumento na quantidade de fator Rsd/célula e ele se liga região 4 de σ^{70} , que é responsável pelo reconhecimento do promotor -35, bloqueando a associação com o núcleo da RNAP.
- Assim, na fase estacionária parte do σ^{70} é estocado inativo em complexo com a Rsd, favorecendo a interação do cerne da RNAP com outros fatores σ (especialmente σ^{38}).

Biomolecules 2015, 5, 1245-1265; Proc Natl Acad Sci U S A. 2013; 110(52): 21142-21147.

2- Mecanismos que contribuem para a redução da transcrição por RNAP- σ^{70} e aumento pela RNAP- $\sigma^{5/38}$ na fase estacionária

> Interação de fatores Sigma com anti-o

> Interação da RNAP- σ^{70} com moléculas que favorecem a transcrição pela RNAP- $\sigma^{5/38}$

FEMS Microbiol Rev 34 (2010) 646-657c

(I)- Interação com (p)ppGpp [ppGpp ou pppGpp] (Alarmonas)

A resposta "estringente": modulação da expressão gênica durante estresses nutricionais e redução do crescimento celular pelas alarmonas

- I- Resposta estringente (severa, estrita)
- Em muitas espécies bacterianas a transcrição por RNAP.σ⁷⁰ na fase estacionária é regulada por pequenas moléculas, "alarmonas":
 - guanosina penta/tetrafosfato ou (p)ppGpp interage com a holoenzima RNAP.σ⁷⁰ e controla a transcrição gênica.

 (p)ppGpp acumula durante limitação de nutrientes (fase estacionária da cultura)/situação de estresse e atua na adaptação à estas condições.

"Resposta estringente"

Síntese de pppGpp via RelA: Na deficiência de amino ácidos, um tRNA não carregado se liga no sítio A do ribossoma. Isto induz a ligação da proteína RelA ao ribossoma e a síntese de (p)ppGpp a partir do ATP + GDP/GTP.

- Síntese de pppGpp via SpoT em condição de estresse ou deficiência de nutrientes (C).
- SpoT também hidrolisa o (p)pGpp.

Reação catalisada pela RelA/SpoT em E. coli:

$$ATP + GDP \rightarrow AMP + ppGpp (A)$$

$$ATP + GTP \rightarrow AMP + pppGpp (B)$$

RelA/SpoT convertem GDP/GTP e ATP em ppGpp ou pppGpp pela adição de um grupo (PPi) derivado do ATP no carbono 3' carbon da ribose do GDP/GTP, liberando AMP.

Síntese e hidrólise de (p)ppGpp em E. coli

SpoT: é uma enzima bifuncional, responsável por manter os níveis intracelulares de (p)ppGpp via degradação enzimática.

O controle dos níveis celulares das (p)ppGpp é crucial para a viabilidade celular e depende da taxa de síntese e degradação destas moléculas.

Resposta estringente

- (p) ppGpp afeta a transcrição em larga escala por ligação direta a RNAP. σ^{70} em espécies Gram-negativas (E. coli).
- Em geral, (p) ppGpp reprime a transcrição de genes que codificam proteínas envolvidas na "tradução" e de "fatores necessários para o crescimento e divisão celular", e ativa a expressão de genes de "reposta ao estresse"
- Porem, o mecanismos de ação não são completamente compreendidos.
- Boutte, C. C., & Crosson, S. (2013). Bacterial lifestyle shapes the regulation of stringent response activation. Trends in Microbiology, 21(4), 174-180

(p)ppGpp exerce grande parte de seus efeitos com ajuda da proteína **DksA**, que também se liga a RNAP. O complexo (**C**) atua positiva ou negativamente na transcrição, dependendo das propriedades de cada promotor.

Resposta estringente

 Além da transcrição, em E. coli, (p) ppGpp também pode afetar diretamente a replicação cromossômica- inibição da "primase", um componente essencial da maquinária de replicação.

• Plasmid 63 (2010) 61-67

Forquilha de replicação

Alongamento pela DNA polimerase III (E. coli)

SSB = single-stranded binding proteins

Sintese de $\sigma^{5/38}$ em E. coli na fase estacionária

(p)ppGpp aumenta as taxas de transcrição de *rpoS* e tradução do mRNA do *rpoS*, inibe a degradação do RpoS e também estimulaa atividade do RpoS.

Resposta estringente em E. coli

"Protein DksA also binds to the RNA polymerase and augments the (p)ppGpp regulation of the transcription initiation at certain σ 70-dependent promoters, functioning both as negative and positive regulators".

Resposta estringente: reprogramação da transcrição gênica

- É induzida pelo acúmulo da alarmona (p)ppGpp, que modula a transcrição (afeta também a replicação do DNA e tradução) de ~ 1/3 dos genes de E. coli.
- A célula para de crescer e se dividir, liberando energia para síntese de amino ácidos e degradação de proteínas, para produzir outras proteínas, necessárias à sobrevivência, até que as condições nutricionais melhorem.

(p)ppGpp é uma molécula pequena que controla vários eventos na vida de bactérias para permitir a sobrevivência sob condições desfavoráveis.

Fig. 4. Diagram depicting the various physiological aspects in bacteria affected by (p)ppGpp.

(II)- Interação com o RNA 65: altera a interação do σ^{70} -RNAP com certos promotores em *E. coli*

65 RNA: pequeno RNA regulador da transcrição na fase estacionária de cultura

- •O RNA 65 de E. coli, tem 184nt, é não codificante, e homólogos já foram encontrados em outras espécies bacterianas.
- ·As sequências primárias destes RNAs homólogos não é bem conservada, porém formam estruturas secundárias conservadas.
- · Estrutura secundária: A molécula se dobra na forma de "grampo de cabelo" contendo uma grande "bolha" de RNA fita simples.
- *As posições dos nucleotídeo de 65 RNA que entram em contato com a σ^{70} -RNAP são indicadas com setas.

O RNA 65 acumula na **fase estacionária** (~10,000/célula) e se liga especificamente a **75%** das σ^{70} -RNAP (na região 4 da σ^{70} e β/β' da RNAP), para formar o complexo σ^{70} -RNAP-65RNA, que é a "principal forma da holoenzima na fase estacionária tardia".

Como a σ^{70} -RNAP-6SRNA não se liga a promotores de centenas de genes inibindo sua transcrição.

Molecular Microbiology (2008) 67(6), 1242-1256

Biochemistry (Moscow), 2015, Vol. 80, No. 11, pp. 14291446.

Como o RNA 65 atua? Etapas iniciais da transcrição

Interação do RNA 65 com a RNAP

- A estrutura secundária do RNA 65 tem similaridade com a conformação do DNA no complexo aberto do início da transcrição.
- O RNA 65 se ligar a σ^{70} -RNAP de modo semelhante ao DNA.

Estrutura do RNA 65 de *E. coli* x DNA bacteriano na conformação de complexo aberto durante o início da transcrição

Atuação do RNA 65

- O RNA 65 não interage com os promotores, mas apenas compete com eles pela RNAP- σ^{70} .
- Portanto, a inibição da transcrição deve depender da força do promotor, ou seja, de sua afinidade pela RNAP- σ^{70} .
- O efeito do RNA 65 é maior sobre promotores que possuem uma sequência a -35 fraca (que interage com na região 4 da σ^{70})
- Nestes casos, o RNA 65 bloqueia a interação entre a σ⁷⁰-RNAP e estes promotores, causando inibição da transcrição dos genes.
- Isto leva a liberação de nutrientes para síntese de proteínas produtos de genes regulados por RNAP-σ³⁸·

Síntese do pRNA e liberação da RNAP

- No complexo RNA 65. o⁷⁰ RNAP, a bolha de fita simples do 65 RNA fica próxima do sítio ativo da RNAP.
- Esta bolha apresenta uma sequência (amarelo) que pode ser utilizada como molde para síntese de um RNA ("RNA product" ou pRNAs, 14-20 nt), quando o suprimento de nutrientes voltar ao normal, liberando a RNAP.

- Na presença de nutrientes: (a) as células entram em crescimento exponencial,
- (b) ocorre a síntese do pRNA, usando o RNA 65 como molde (amarelo)
- (c) ocorre a desestabilização do complexo RNA 65.σ⁷⁰- RNAP, com liberação da RNAP e do RNA 65.pRNA. Nucleic Acids Research, 2012, Vol. 40, No.

Hipóteses para a maior eficiência do σ^{5/38} na fase estacionária

- Nesta fase, o fator sigma σ^S acumula em E. coli, e regula a expressão de 500 genes, devido ao aumento da síntese e estabilidade, além disto:
 - Fator anti- σ^{70} (Rsd) reduz os níveis do σ^{70} livre
 - O (p)ppGpp causa aumento dos níveis celulares de σ^s ,
 facilitando sua ligação a RNAP.
 - σ^{70} -RNAP.65 RNA (75% das σ^{70} -RNAP), reduz a transcrição pela holoenzima e junto (p)ppGpp atua liberando nutrientes para transcrição pela RNAP. $\sigma^{S/38}$.

O processo de transcrição

Can. J. Microbiol. **63**: 89–99 (2017) dx.doi.org/10.1139/cjm-2016-0576

Fim