GATHERING DATA FROM MESSY SOURCES

ROHAN ALEXANDER

INTRODUCTION

OVERVIEW

- Gathering, preparing, and cleaning data are essential steps before any type of quantitative analysis can be conducted.
- In this seminar, I will use R to ethically gather data from real world sources including an API, Wikipedia, and PDFs.
- I will then prepare and clean these data based on several principals that I will introduce.

RECOMMENDED READING

- Wickham, Hadley, 2014, 'rvest: easy web scraping with R', 24 November, https://blog.rstudio.com/2014/11/24/rvest-easy-web-scraping-with-r/.
- Alexander, Rohan, 2019, 'Gathering and analysing text data', 3 January, https://rohanalexander.com/posts/2019-01-03-gathering-and-analysing-text-data/.
- Henze, Martin, 2020, 'Web Scraping with rvest + Astro Throwback', 23 January, https://html/html/html/.
 Henze, Martin, 2020, 'Web Scraping with rvest + Astro Throwback', 23 January, https://html/html/.
 Henze, Martin, 2020, 'Web Scraping with rvest + Astro Throwback', 23 January, https://html//html//html/.
 Henze, Martin, 2020, 'Web Scraping with rvest + Astro Throwback', 23 January, https://html//html/.
- Silge, Julia, 2017, 'Scraping CRAN with rvest', 5 March, https://juliasilge.com/blog/scraping-cran/.

KEY SKILLS AND CONCEPTS

- BEGIN WITH AN END IN MIND.
 START SIMPLE, THEN ITERATE.
 CONTROL YOURSELF
- 4. SHOW DON'T TELL.

KEYSOFTWARE

- R
 - R Core Team (2019). R: A language and environment for statistical computing. R
 Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
- R Studio
 - https://rstudio.com/

KEYLIBRARIES

- library(janitor)
 - Sam Firke (2020). janitor: Simple Tools for Examining and Cleaning Dirty Data. R package version 2.0.1. https://creativecommons.org/package=janitor
- library(pdftools)
 - Jeroen Ooms (2019). pdftools: Text Extraction, Rendering and Converting of PDF Documents. R package version 2.3.
- library(tidyverse)
 - Wickham et al., (2019). Welcome to the tidyverse. Journal of Open Source Software, 4(43), 1686,
- library(stringi)
 - Gagolewski M. and others (2020). R package stringi: Character string processing facilities.

KEYFUNCTIONS

- case_when()
- distinct()
- geom_col()
- ggplot()
- group_by()
- head()
- if_else()
- map_dfr()
- mutate()

- mutate_all()
- mutate_at()
- pdf_text()
- pivot_longer()
- rbind()
- remove_empty()
- rename()
- select()
- separate()

- str_detect()
- str_remove_all()
- str_replace()
- str_squish()
- str_to_title()
- stri_split_lines()
- ungroup()
- unique()
- write_csv()

GETTING DATA FROM PDFS INTO R

PDFS ARE FOR HUMANS

The distribution of population by age, sex, and administrative unit from the 2019 Kenyan census can be downloaded here:

https://www.knbs.or.ke/?wpdmpro=2019-kenya-population-and-housing-census-volume-iii-distribution-of-population-by-age-sex-and-administrative-units.

It is great that they make it easily available, and it is easy to look-up a particular result.

2019 KENYA POPULATION AND HOUSING CENSUS

Volume III: Distribution of Population by Age and Sex

Counting Our People for Sustainable Development and Devolution of Services

PDFS ARE FOR HUMANS

But:

- It is not overly useful to do larger-scale data analysis, such as building a Bayesian hierarchical model.
- We don't know how this PDF was put together so we don't know whether we can trust it.
- We can't manipulate the data to get results that we are interested in.

Table 2.2: Distribution of Population by Age and Sex, Kenya

ENYA	or openation by rigo and oon, its	-7-		
Age	Male	Female	Intersex	Total
Total	23,548,056	24,014,716	1,524	47,564,296
0	552,508	552,528	33	1,105,074
1	580,856	573,920	29	1,154,805
2	614,005	610,705	33	1,224,743
3	619,989	821,941	28	1,241,956
4	638,986	627,675	23	1,266,689
0 - 4	3,006,344	2,936,769	154	5,993,267
5	626,157	610,459	40	1,236,656
6	635,924	535,942	30	1,271,896
7	609,615	801,301	24	1,210,940
8	618,618	616,833	46	1,235,497
9	626,637	620,981	36	1,247,654
5-9	3,116,951	3,085,516	176	6,202,643
10	700,526	578,721	33	1,379,280
11 12	573,757	591,394	33 36	1,165,184
13	686,954 635,152	648,485 628,630	29	1,335,475 1,263,811
14	613,371	588,912	39	1,202,322
10 -14	3,209,760	3,136,142	170	6,346,072
15	611,376	583,931	34	1,195,341
16	553,944	541,378	31	1,095,353
17	561,688	528,796	27	1,090,511
18	475,670	457,032	24	932,726
19	483,586	488,305	35	971,926
15-19	2,686,264	2,599,442	151	5,285,857
20	486,633	523,210	46	1,009,389
21	406,910	444,707	44	851,661
22	406,099	455,328	34	861,461
23	420,329	477,118	43	897,438
24	392,719	434,417	39	827,175
20-24	2,112,690	2,334,778	206	4,447,674
25	454,278	485,467	51	939,796
26	358,506	434,246	27	762,779
27	373,128	403,578	29	776,735
28	318,319	353,653	19	671,991
29	335,312	367,915	27	703,254
25-29 30	1,839,543 449,798	2,014,859 497,944	153 59	3,854,555
31	296,545	324,359	29	947,801 620,933
32	369,566	407,999	24	777,609
33	302,318	340,100	18	642,436
34	280,431	301,485	24	581,940
30-34	1,698,678	1,871,887	154	3,570,719
35	382,439	379,319	25	761,783
36	256,797	251,332	21	508,150
37	262,021	241,630	20	503,671
38	211,212	206,305	16	417,533
39	235,726	223,242	11	458,979
35-39	1.348,195	1,301,828	93	2,650,116
40	310,926	235,821	20	596,767
41	249,854	235,257	16	485,127
42	233,583	220,164	10	453,757
43	199,253	199,791	11	399,055
44	163,538	150,981	6	324,525
40-44	1,157,154	1,102,014	63	2,259,231
45	266,741	247,573	15	514,329
46 47	178,394	172,948	11	351,353 362,405
47 48	185,808 132,797	176,586 125,840	11 11	362,405 258,648
40 49	152,594	146,924	3	299,521
45-49	916,334	869,871	51	1,786,256
	- 10,000	-24,01		ili odlava

ROHAN ALEXANDER, 22 MAY 2020

..

PDFS ARE FOR R!

In this section we convert a PDF of Kenyan census results of counts, by age and sex, by county and subcounty, into a tidy dataset that can be analysed.

I will draw on and introduce a bunch of handy packages including:

- janitor
- pdftools
- tidyverse; and
- stringi.

```
• • •
> read_csv("/outputs/data/cleaned_dataset.csv")
Parsed with column specification:
cols(
  area = col_character(),
  age = col_character(),
  gender = col_character(),
  number = col_double()
# A tibble: 14,382 x 4
                 gender number
           age
   area
           <chr> <chr>
                         <dbl>
   <chr>
 1 Mombasa 0
                 male
                         15111
                 female
                         15009
 2 Mombasa 0
 3 Mombasa 0
                 total
                         30120
 4 Mombasa 1
                 male
                         15805
 5 Mombasa 1
                 female 15308
 6 Mombasa 1
                 total
                         31113
 7 Mombasa 2
                 male
                         15088
 8 Mombasa 2
                 female 14837
 9 Mombasa 2
                 total
                         29925
10 Mombasa 3
                         14660
                 male
# ... with 14,372 more rows
```

BEGINWITH AN END IN MIND.

KEY CONCEPT #1

Planning and then literally sketching out what you want from a final dataset/ graph/paper stops you wasting time and keeps you focused.

SKETCH OUT WHAT YOU WANT

A few quick sketches of an example graph and table will be invaluable.

We need:

 area, age, gender, and then the number of people.

We expect:

• An increase at younger ages, then a decrease

AREA	AGE	GEMER	Number
Monlasa	0-5	Female	10
Montrea	0-5	Male	11
Monher	5-10	Femle	17
Mondesa	5-10	Male	18

WHAT ASPECTS OF PLANNING ARE IMPORTANT?

- 1. Having a polished output.
- 2. The planning itself.
- 3. Fixing a output that will be achieved.
- 4. All of the above.

WHAT ASPECTS OF PLANNING ARE IMPORTANT?

- 1. Having a polished output.
- 2. The planning itself.
- 3. Fixing a output that will be achieved.
- 4. All of the above.

SET-UP THE PROJECT

Open R Studio, create a new project called 'getting_kenyan_census_data', and in that folder create three sub-folders:

- inputs
- outputs
- scripts

ADD THE TOP MATTER

Create a new R Script, and populate some top matter including:

- Purpose
- Author
- Email
- Date

And set-up your workspace by reading in the packages that we need.

```
• • •
#### Preamble ####
# Purpose: Gather data from the Kenyan
# census PDF
# Author: Rohan Alexander
# Email: rohan.alexander@utoronto.ca
# Date: 22 May 2020
# Ideas: -
# Issues: -
#### Workspace set-up ####
library(janitor)
library(pdftools)
library(tidyverse)
library(stringi)
```

READINTHEPDF

Download the file and save the PDF into the inputs folder. We will never save changes to that PDF.

This enhances reproducibility.

To find the URL that you need navigate through their website: knbs.or.ke.

```
#### Preamble ####
# Purpose: Gather data from the Kenyan census PDF
# Author: Rohan Alexander
# Email: rohan.alexander@utoronto.ca
# Date: 22 May 2020
# Ideas: -
# Issues: -
#### Workspace set-up ####
library(janitor)
library(pdftools)
library(tidyverse)
library(stringi)
#### Get the data ####
download.file(url = "PASTE_THE_URL_HERE",
              destfile = "inputs/kenya_census.pdf")
```

START SIMPLE, THEN ITERATE.

KEY CONCEPT #2

The quickest way to make a complicated model is often to first build a simple model and then complicate it.

READ IN THE PDF AND START SIMPLE

- Read in the PDF using pdftools::pdf_text(),
- Call it 'all_pages',
- Then grab page 26 using stringi::stri_split_lines
- Call it page_26.

```
#### Preamble ####
library(janitor)
library(pdftools)
library(tidyverse)
library(stringi)
#### Get the data ####
download.file(url = "PASTE_THE_URL_HERE",
              destfile = "inputs/kenya_census.pdf")
all_pages <- pdftools::pdf_text("inputs/kenya_census.pdf")
page_26 <- stringi::stri_split_lines(all_pages[[PASTE_THE_PAGE_HERE]])[[1]]</pre>
```

MOVING TO A RECTANGULAR DATASET

- Looking at that page, the pdftools package has done a pretty good job.
- But it is a character vector and most of our experience is with rectangular datasets so we want to make it into a tibble.
- We are going to exploit regularities in the dataset to do this.
 - 1. Remove the headings and page number
 - 2. Use the multiple spaces to separate columns

3] "KENY		on of Population by Age and Sex, Ko	,		
1] "	Age	Male	Female	Intersex	Total"
5] "	Total	23,548,056	24,014,716	1,524	47,564,296"
5] "	0	552,598	552,528	38	1,105,074"
7] " 3] "	1	580,856	573,920	29	1,154,805"
9] "	2	614,005 619,989	610,705 621,941	33 26	1,224,743" 1,241,956"
9] "	4	638,986	627,675	28	1,266,689"
	9-4	3,996,344	2,986,769	154	5,993,267"
2] "	5	626,157	610,459	40	1,236,656"
3] "	6	635,924	635,942	30	1,271,896"
1] "	7	609,615	601,301	24	1,210,940"
5] "	8	618,618	616,833	46	1,235,497"
5] "	9	626,637	620,981	36	1,247,654"
7] "	5-9	3,116,951	3,085,516	176	6,202,643"
3] "	10	700,526	678,721	33	1,379,280"
9] "	11	573,757	591,394	33	1,165,184"
.] "	12 13	686,954 635,152	648,485 628,630	36 29	1,335,475" 1,263,811"
21 "	14	613,371	588,912	39	1,202,322"
1 "	10 -14	3,209,760	3,136,142	170	6,346,072"
1] "	15	611,376	583,931	34	1,195,341"
51 "	16	553,944	541,378	31	1,095,353"
i] "	17	561,688	528,796	27	1,090,511"
" [18	475,670	457,032	24	932,726"
3] "	19	483,586	488,305	35	971,926"
9] "	15-19	2,686,264	2,599,442	151	5,285,857"
9] "	20	486,633	523,210	46	1,009,889"
[] " ?] "	21 22	406,910 406,000	444,707 455,328	44 34	851,661" 861,461"
3] "	23	406,099 420,329	455,328 477,116	43	861,461" 897,488"
1] "	24	392,719	434,417		827,175"
i "	20-24	2,112,690	2,334,778	206	4,447,674"
5] "	25	454,278	485,467		939,796"
" ["	26	358,596	404,246		762,779"
3] "	27	373,128	403,578		776,735"
9] "	28	318,319	353,653		671,991"
2] "	29	335,312	367,915		703,254"
1] "	25-29	1,839,543	2,014,859		3,854,555"
2] " 3] "	30	449,798 206,545	497,944		947,801" 638,933"
1] "	31 32	296,545 369,586	324,359 407,999		620,933" 777,609"
·] [] "	33	302,318	340,100		642,436"
	34	280,431	301,485		581,940"
"] "	30-34	1,698,678	1,871,887		3,570,719"
i] "	35	382,439	379,319		761,783"
] "	36	256,797	251,332	21	508,150"
1 "	37	262,021	241,630		503,671"
1 "	38	211,212	206,305		417,533"
] "	39	235,726	223,242		458,979"
1 "	35-39	1,348,195	1,301,828		2,650,116"
1 "	40 41	310,926 249,854	285,821 235,257		596,767" 485,127"
i] "	42	233,583	220,164	10	453,757"
u T "	43	199,253	199,791	11	399,055"
j "	44	163,538	160,981	6	324,525"
1 "	49-44	1,157,154	1,102,014	63	2,259,231"
ij "	45	266,741	247,573	15	514,329"
] "	46	178,394	172,948	11	351,353"
2] "	47	185,808	176,586		362,405"
3] "	48	132,797	125,840		258,648"
1] "	49	152,594	146,924	3	299,521"
5] "	45-49	916,334	869,871	51	1,786,256"
5] "					

GET RID OF TOP AND BOTTOM AND CONVERT

 Identify the rows that you want to remove and then remove them.

[1] [2]		oution of Population by Age and		2019 Kenya N	ational Population and Housing Census	: Volume III"
[4]	"KENYA" " Age	Maile	Female	Intersex	Total"	
	" Total	23,548,056	24,014,716	1,524	47,564,295"	
[6]		552,508	552,528	38	1,105,074"	
[7]		580 856	573 928	20	1 154 885"	
[03]	" 47 " 48	185,808 132,797	176,586 125,840	11 11	362,405'' 258,648''	
[0.1]	" 19 " 15 10	152,594	146,924	3	299,521"	
1001	" 45-49 "	916,334	869,871	51	1,786,256"	14"

• Convert the character vector into a tibble

```
library(janitor)
library(pdftools)
library(tidyverse)
library(stringi)
download.file(url = "PASTE_THE_URL_HERE",
              destfile = "inputs/kenya_census.pdf")
all_pages <- pdftools::pdf_text("inputs/kenya_census.pdf")</pre>
page_26 <- stringi::stri_split_lines(all_pages[[PASTE_THE_PAGE_HERE]])[[1]]</pre>
page 26 no header <- page 26[PASTE THE FIRST ROW OF INTEREST HERE:length(page 26)]</pre>
page_26_no_header_no_footer <- page_26_no_header[1:PASTE_THE_LAST_ROW_OF_INTEREST_HERE]</pre>
demography_data <- tibble(all = page_26_no_header_no_footer)</pre>
```

SPLIT INTO COLUMNS

 We exploit the fact that (with a few exceptions that we first correct) if there is a space then we want a new column.

•	age 🕏	male [‡]	female ‡	intersex [‡]	total \$
1	Age	Male	Female	Intersex	Total
2	Total	23,548,056	24,014,716	1,524	47,564,296
3	0	552,508	552,528	38	1,105,074
4	1	580,856	573,920	29	1,154,805
5	2	614,005	610,705	33	1,224,743
6	3	619,989	621,941	26	1,241,956
7	4	638,986	627,675	28	1,266,689

```
demography_data <-</pre>
 demography_data %>%
 mutate(all = str_squish(all)) %>% # Any space more than two spaces is
squished down to one
 mutate(all = str_replace(all, "10 -14", "10-14")) %>%
 mutate(all = str_replace(all, "Not Stated", "NotStated")) %>% # Any
 separate(col = all,
          into = c("age", "male", "female", "intersex", "total"),
          sep = " ", # Just looking for a space. Seems to work fine
          remove = TRUE,
          fill = "right"
```

FIXTHECLASS

- One thing to note is that the 'numbers' are still characters. So we want to change them to integers.
- Before we can use as.integer() we need to remove any characters that would cause an NA during this conversion.
- What characters do you think could cause a problem?
- After this, you can save the dataset to the outputs folder.

```
# Fix the types

demography_data <-
   demography_data %>%
   filter(age != "Age") %>%
   mutate_at(vars(male, female, intersex, total), ~str_remove_all(., "INSERT_A_CHARACTER")) %>%
   mutate_at(vars(male, female, total), ~as.integer(.))
```

WHICH OF THE FOLLOWING CHARACTERS DO YOU THINK WILL CAUSE A PROBLEM FOR AS.INTEGER()?

- 1. 1,000
- 2. 1-000
- 3. 1000.00
- 4. 1000

WHICH OF THE FOLLOWING CHARACTERS DO YOU THINK WILL CAUSE A PROBLEM FOR AS.INTEGER()?

- 1. 1,000
- 2. 1-000
- 3. 1000.00
- 4. 1000

PLEASE PUT THE FOLLOWING INTO ORDER (1MIN)

- 1. Clean the character vectors
- 2. Convert character vectors to a tibble
- 3. Convert PDF to character vectors
- 4. Fix the classes
- 5. Get PDF
- 6. Load libraries
- 7. Save the cleaned dataset
- 8. Separate the columns

- 1. Load libraries
- 2. Get PDF
- 3. Convert PDF to character vectors
- 4. Clean the character vectors
- 5. Convert character vectors to a tibble
- 6. Separate the columns
- 7. Fix the classes
- 8. Save the cleaned dataset

BREAK-OUT GROUPS (10 MIN)

- We cleaned one page, but there are many pages. One way to deal with this is to change our code into a function.
- In R a function has the following form:

```
function_name <- function(function_inputs) {
function behaviour
return(output)
}</pre>
```

- We will now form break-out groups and you have 10 minutes to work as a small team to convert your code into something that can loop over all the pages of interest.
- Hints:
 - map_dfr() takes a function, applies it to a list and then combines all of the outputs into a tibble.
 - The pages of interest are pages 30 to 513.