A&(B|C) (A&B)|(A&C)

B|C A&(B|C) (A&B)|(A&C)

B|C A&B A&C A&(B|C) (A&B)|(A&C)

 $A \quad B \quad C \qquad B|C \qquad A\&B \qquad A\&C \quad A\&(B|C) \quad (A\&B)|(A\&C)$

A B C B|C A&B A&C A&(B|C) (A&B)|(A&C)
0 0 0 1
0 1 0
0 1 1
1 0 0
1 0 0
1 0 1
1 1 1
1 0 0

Α	В	C	B C	A&B	<i>A&C</i>	A&(B C)	(A&B) (A&C)
0	0	0	(0 0) = 0	(0&0)=0	0		
0	0	1	(0 1) = 1	(0&0)=0	0		
0	1	0	(1 0) = 1	(0&1)=0	0		
0	1	1	1	0	0		
1	0	0	0	0	0		
1	0	1	1	0	1		
1	1	0	1	1	0		
1	1	1	1	1	1		

Α	В	C	B C	A&B	A& C	A&(B C)	(A&B) (A&C)
0	0	0	(0 0) = 0	(0&0)=0	0	0	0
0	0	1	(0 1) = 1	(0&0)=0	0	0	0
0	1	0	(1 0) = 1	(0&1)=0	0	0	0
0	1	1	$\dots 1$	0	0	0	0
1	0	0	0	0	0	0	0
1	0	1	1	0	1	1	1
1	1	0	1	1	0	1	1
1	1	1	1	1	1	1	1

Α	В	С	B C	A&B	A& C	A&(B C)	(A&B) (A&C)
0	0	0	(0 0) = 0	(0&0)=0	0	0	0
0	0	1	(0 1) = 1	(0&0)=0	0	0	0
0	1	0	(1 0) = 1	(0&1) = 0	0	0	0
0	1	1	$\dots 1$	0	0	0	0
1	0	0	0	0	0	0	0
1	0	1	1	0	1	1	1
1	1	0	1	1	0	1	1
1	1	1	1	1	1	1	1

De Morgan's Laws: $\sim (A|B) = (\sim A)\&(\sim B)$ and $\sim (A\&B) = (\sim A)|(\sim B)$

Encoding Byte Values

Hexadecimal 00₁₆ to FF₁₆

- Base 16 number representation
- Use characters '0' to '9' and 'A' to 'F'

Byte = 8 bits = 2 hex digits

- Binary 000000002 to 111111112
- Decimal: 0₁₀ to 255₁₀

He	De	
0 1 2 3 4 5 6 7 8 9 A B C D E	0	0000
1	0 1 2 3 4 5 6 7 8 9	0001
2	2	0010
3	3	0011
4	4	0011 0100
5	5	0101
6	6	0110
7	7	0111 1000
8	8	1000
9	9	1001
A	10	1010
В	11	1011
C	12	1100
D	13	1101
E	10 11 12 13 14 15	1000 1010 1011 1100 1101 1110
F	15	1111

Shift Operations

- Left Shift: x << y</p>
 - Shift bit-vector x left y positions
 - Throw away extra bits on left
 - Fill with 0's on right
- Right Shift: x >> y
 - Shift bit-vector x right y positions
 - Throw away extra bits on right
 - Logical shift
 - Fill with 0's on left
 - Arithmetic shift
 - Replicate most significant bit on left

Undefined Behavior

Shift amount < 0 or ≥ word size

Argument x	01100010		
<< 3	00010000		
Log. >> 2	00011000		
Arith. >> 2	00011000		

Argument x	10100010
<< 3	00010000
Log. >> 2	00101000
Arith. >> 2	11101000

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Signed vs. Unsigned numbers

Using W bits to represent an integer gives 2^w different

Signed vs. Unsigned numbers

An unsigned representation gives [0, 2^W-1]

Unsigned Representation

$$B2U(X) = \sum_{i=0}^{w-1} x_i \cdot 2^i$$

 $x_i:i^{\text{th}}$ binary digit

$$101 = 2^2 + 2^0 = 5$$

Signed vs. Unsigned numbers

Signed gives [-2^{W-1}, 2^{W-1}-1]

Signed Representation

$$B2T(X) = -x_{w-1} \cdot 2^{w-1} + \sum_{i=0}^{w-2} x_i \cdot 2^i$$

 $x_i : i^{\text{th}}$ binary digit

$$101 = -2^2 + 2^0 = -3$$

Two-complement Encoding Example (Cont.)

x = 15213: 00111011 01101101y = -15213: 11000100 10010011

Weight	152	13	-152	213
1	1	1	1	1
2	0	0	1	2
4	1	4	0	0
8	1	8	0	0
16	0	0	1	16
32	1	32	0	0
64	1	64	0	0
128	0	0	1	128
256	1	256	0	0
512	1	512	0	0
1024	0	0	1	1024
2048	1	2048	0	0
4096	1	4096	0	0
8192	1	8192	0	0
16384	0	0	1	16384
-32768	0	0	1	-32768
Sum		15213		-15213

W = 4, Unsigned and Signed

	Unsigned	Signed
0000	0	0
1010	8+2 = 10	-8+2 = 6
0111	4+2+1 = 7	4+2+1 = 7
1000	-8	8
1111	8+4+2+1= 15	-8+4+2+1= -1

W = 4, Unsigned and Signed

	Unsigned	Signed
0000	UMin	
1010		
0111		TMax
1000		TMin
1111	UMax	

Casting Surprises

Expression Evaluation

- If there is a mix of unsigned and signed in single expression, signed values implicitly cast to unsigned
- Including comparison operations <, >, ==, <=, >=
- **Examples for** W = 32: **TMIN = -2,147,483,648**, **TMAX = 2,147,483,647**

Constant ₁	Constant ₂	Relation	Evaluation
0	0U	==	unsigned
-1	0	<	signed
-1	OU	>	unsigned
2147483647	-2147483648	>	signed
2147483647U	-2147483648	<	unsigned
-1	-2	>	signed
(unsigned)-1	-2	>	unsigned
2147483647	2147483648U	<	unsigned
2147483647	(int) 2147483648U	>	signed

Sign Extension

Task:

- Given w-bit signed integer x
- Convert it to w+k-bit integer with same value

Rule:

Make k copies of sign bit:

Sign Extension: w = 3 to w = 5

 $101 \rightarrow 11101$

Sign Extension Example

```
short int x = 15213;
int         ix = (int) x;
short int y = -15213;
int         iy = (int) y;
```

	Decimal	Hex	Binary
x	15213	3B 6D	00111011 01101101
ix	15213	00 00 3B 6D	00000000 00000000 00111011 01101101
У	-15213	C4 93	11000100 10010011
iy	-15213	FF FF C4 93	11111111 11111111 11000100 10010011

- Converting from smaller to larger integer data type
 - C automatically performs sign extension
- When converting from larger to smaller, top is truncated

Programmer Idioms

- Signed value of -1 is "all ones"
 - E.g. signed char x = -1 sets 'x' to 0xffff
 - (-1 << 8) = 0xff...f00
- (1 << x)-1 produces "mask" of x-1 bits
 - (1 << 5)-1 -> 0x10 1 -> 0x0f
- Signed ~x+1 is the same as -x
 - E.g. using 3 bit numbers,

$$^{\circ}$$
0x7 -> 0x0 + 1 -> 0x1
 $^{\circ}$ 0x2 -> 0x5 + 1 -> 0x6

Truncation: w = 5 to w = 3

 $10011 \rightarrow 011$

Summary: Expanding, Truncating: Basic Rules

- Expanding (e.g., short int to int)
 - Unsigned: zeros added
 - Signed: sign extension
 - Both yield expected result
- Truncating (e.g., unsigned to unsigned short)
 - Unsigned/signed: bits are truncated
 - Result reinterpreted
 - Unsigned: mod operation
 - Signed: similar to mod
 - For small numbers yields expected behavior

Integer Mathematical Operations And Memory Representations

Reading: CS:APP Chapter 2.3

Integer Mathematical Operations and Memory Representations

- Unsigned addition
- Signed (2's complement) addition
- Unsigned multiplication
- Signed multiplication
- Power-of-two multiplication using shift
- Representations in memory, pointers, strings
- Summary

Unsigned Addition

Operands: w bits

 \mathcal{U}

True Sum: w+1 bits

u + v

Discard Carry: w bits

$$UAdd_{w}(u, v)$$

Standard Addition Function

- Ignores carry output
- **Implements Modular Arithmetic**

$$s = UAdd_w(u, v) = u + v \mod 2^w$$

Unsigned Addition, W = 4

Visualizing (Mathematical) Integer Addition

Integer Addition

- 4-bit integers u, v
- Compute true sum $Add_4(u, v)$
- Values increase linearly with u and v
- Forms planar surface
- but, >15 not possible! ...

$Add_4(u, v)$

Visualizing Unsigned Addition

Wraps Around

- If true sum $\ge 2^w$
- At most once

True Sum

Two's Complement Addition

TAdd and UAdd have Identical Bit-Level Behavior

Signed vs. unsigned addition in C:

```
int s, t, u, v;
s = (int) ((unsigned) u + (unsigned) v);
t = u + v
```

Will give s == t

2's Complement (Signed) Addition, W = 4

2's Complement (Signed) Addition, W = 4

TAdd Overflow

Functionality

- True sum requires w+1 bits
- Drop off MSB
- Treat remaining bits as 2's comp. integer

True Sum

Visualizing 2's Complement Addition

Values

- 4-bit two's comp.
- Range from -8 to +7

Wraps Around

- If sum $\geq 2^{w-1}$
 - Becomes negative
 - At most once
- If sum $< -2^{w-1}$
 - Becomes positive
 - At most once

Multiplication, Unsigned

0011
*0101

3

- Goal: ComputingProduct of w-bitnumbers x, y
 - Either signed or unsigned

Multiplication

- But, exact results can be bigger than w bits
 - Unsigned: up to 2w bits
 - Result range: $0 \le x * y \le (2^w 1)^2 = 2^{2w} 2^{w+1} + 1$
 - Two's complement min (negative): Up to 2w-1 bits
 - Result range: $x * y \ge (-2^{w-1})*(2^{w-1}-1) = -2^{2w-2} + 2^{w-1}$
 - Two's complement max (positive): Up to 2w bits, but only for $(TMin_w)^2$
 - Result range: $x * y \le (-2^{w-1})^2 = 2^{2w-2}$

Multiplication

- So, maintaining exact results...
 - would need to keep expanding word size with each product computed
 - is done in software, if needed
 - e.g., by "arbitrary precision" arithmetic packages

Unsigned Multiplication in C

- Standard Multiplication Function
 - Ignores high order w bits
- Implements Modular Arithmetic

$$UMult_w(u, v) = u \cdot v \mod 2^w$$

Signed Multiplication in C

Standard Multiplication Function

- Ignores high order w bits
- Some of which are different for signed vs. unsigned multiplication
- Lower bits are the same

Power-of-2 Multiply with Shift

Operation

- $\mathbf{u} \ll \mathbf{k}$ gives $\mathbf{u} * \mathbf{2}^k$
- Both signed and unsigned

Operands: w bits

Examples

$$u << 5$$
 - $u << 3$ == $u * 24$

- Most machines shift and add faster than multiply
 - Compiler generates this code automatically

Unsigned Power-of-2 Divide with Shift

- Quotient of Unsigned by Power of 2
 - $\mathbf{u} \gg \mathbf{k}$ gives $\lfloor \mathbf{u} / 2^k \rfloor$
 - Uses logical shift

	Division	Computed	Hex	Binary
x	15213	15213	3B 6D	00111011 01101101
x >> 1	7606.5	7606	1D B6	00011101 10110110
x >> 4	950.8125	950	03 B6	00000011 10110110
x >> 8	59.4257813	59	00 3B	00000000 00111011

Compiled Signed Division Code

C Function

```
long idiv8(long x)
{
  return x/8;
}
```

- Use constants if it's constant
- Don't be clever it's built-in

Compiled Arithmetic Operations

```
testq %rax, %rax
  js L4
L3:
  sarq $3, %rax
  ret
L4:
  addq $7, %rax
  jmp L3
```

Explanation

```
if x < 0
   x += 7;
# Arithmetic shift
return x >> 3;
```

- Uses arithmetic shift for int
- For Java Users
 - Arith. shift written as >>

Integer Mathematical Operations and Memory Representations

- Unsigned addition
- Signed (2's complement) addition
- Unsigned multiplication
- Signed multiplication
- Power-of-two multiplication using shift
- Summary

Arithmetic: Basic Rules

Addition:

- Unsigned/signed: Normal addition followed by truncate, same operation on bit level
- Unsigned: addition mod 2^w
 - Mathematical addition + possible subtraction of 2^w
- Signed: modified addition mod 2^w (result in proper range)
 - Mathematical addition + possible addition or subtraction of 2^w

Multiplication:

- Unsigned/signed: Normal multiplication followed by truncate, same operation on bit level
- Unsigned: multiplication mod 2^w
- Signed: modified multiplication mod 2^w (result in proper range)

Why Should I Use Unsigned? (cont.)

- Do Use When Performing Modular Arithmetic
 - Multiprecision arithmetic
- Do Use When Using Bits to Represent Sets
 - Logical right shift, no sign extension